CLUSTERING OF LOW-REDSHIFT (z ≤ 2.2) QUASARS FROM THE SLOAN DIGITAL SKY SURVEY

Nicholas P. Ross1, Yue Shen2, Michael A. Strauss2, Daniel E. Vanden Berk1, Andrew J. Connolly3, Gordon T. Richards4, Donald P. Schneider5, David H. Weinberg5, Patrick B. Hall6, Neta A. Bahcall2, and Robert J. Brunner2

1 Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA; npr@astro.psu.edu
2 Princeton University Observatory, Princeton, NJ 08544, USA
3 Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA
4 Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
5 Astronomy Department and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210, USA
6 Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3, Canada
7 Department of Astronomy, MC-221, University of Illinois, 1002 West Green Street, Urbana, IL 61801, USA

Received 2008 October 22; accepted 2009 March 23; published 2009 May 13

ABSTRACT

We present measurements of the quasar two-point correlation function, ξQ, over the redshift range 0.3 ≤ z ≤ 2.2 based upon data from the Sloan Digital Sky Survey (SDSS). Using a homogeneous sample of 30,239 quasars with spectroscopic redshifts from the Data Release 5 Quasar Catalog, our study represents the largest sample used for this type of investigation to date. With this redshift range and an areal coverage of ≈4000 deg2, we sample over 25 h−3 Gpc3 (comoving) of the universe in volume, assuming the current Lambda Cold Dark Matter (ΛCDM) cosmology. Over this redshift range, we find that the redshift-space correlation function, ξ(s), is adequately fit by a single power law, with s0 = 5.95 ± 0.45 h−1 Mpc and γs = 1.16 ± 0.12, when fit over 1.0 h−1 Mpc ≤ s ≤ 25.0 h−1 Mpc. We find no evidence for deviation from ξ(s) = 0 at scales of s > 100 h−1 Mpc, but do observe redshift-space distortions in the two-dimensional ξ(r, π) measurement. Using the projected correlation function, wp(rp), we calculate the real-space correlation length, r0 = 5.45±0.35 h−1 Mpc and γ = 1.90±0.04 over scales of 1.0 h−1 Mpc ≤ rp ≤ 130.0 h−1 Mpc. Dividing the sample into redshift slices, we find very little, if any, evidence for the evolution of quasar clustering, with the redshift-space correlation length staying roughly constant at z ∼ 6–7 h−1 Mpc at z ≲ 2.2 (and only increasing at redshifts greater than this). We do, however, see tentative evidence for evolution in the real-space correlation length, r0, at z > 1.7. Our results are consistent with those from the 2dF QSO Redshift Survey and previous SDSS quasar measurements using photometric redshifts. Comparing our clustering measurements to those reported for X-ray selected active galactic nuclei at z ∼ 0.5–1, we find reasonable agreement in some cases but significantly lower correlation lengths in others. Assuming a standard ΛCDM cosmology, we find that the linear bias evolves from b ∼ 1.4 at z = 0.5 to b ∼ 3 at z = 2.2, with b(z = 1.27) = 2.06 ± 0.03 for the full sample. We compare our data to analytical models and infer that quasars inhabit dark matter halos of constant mass M_halo ∼ 2 × 10^12 h−1 M⊙ from redshifts z ≳ 2.5 (the peak of quasar activity) to z ∼ 0; therefore, the ratio of the halo mass for a typical quasar to the mean halo mass at the same epoch drops with decreasing redshift. The measured evolution of the clustering amplitude is in reasonable agreement with recent theoretical models, although measurements to fainter limits will be needed to distinguish different scenarios for quasar feeding and black hole growth. Key words: cosmology: observations – large-scale structure of universe – quasars: general – surveys

Online-only material: color figures

1. INTRODUCTION

Understanding how and when the structures in the local universe formed from the initial conditions present in the early universe is one of the fundamental goals of modern observational cosmology. Tracing the evolution of clustering with cosmic epoch offers the potential to understand the growth of structure and its relation to the energy and matter content of the universe, including the relationship between the dark matter (DM) and the luminous galaxies and quasars that we observe.

As such, one of the primary science goals of the Sloan Digital Sky Survey (SDSS; York et al. 2000) is to measure the large-scale distribution of galaxies and quasars, and in particular, to determine the spatial clustering of quasars as a function of redshift. Shen et al. (2007) report on the clustering of high-redshift (z ≥ 2.9) quasars from the SDSS; in this paper, we investigate the spatial clustering from redshift z = 2.2 to the present day, i.e., the evolution of quasar clustering over nearly 80% of the age of the universe (the gap in redshift being a consequence of the optical selection techniques used in the SDSS).

Due to their high intrinsic luminosities, quasars are seen to large cosmological distances, and are thus good probes of large-scale structure (LSS) and its evolution. However, until recently, quasar studies were plagued by low-number statistics, leading to shot noise, and samples covered only small areas of sky, leading to sample variance. With the advent of large solid angle (>1000 deg−2) surveys with efficient selection techniques, these limitations have been overcome, and the number of known quasars has increased by more than an order of magnitude in the last decade, thanks mainly to the 2dF QSO Redshift Survey (2QZ; Boyle et al. 2000; Croom et al. 2004) and the SDSS. The latest SDSS quasar catalog (Schneider et al. 2007) contains nearly 80,000 objects. Using the data from these large surveys, we are now in a position to make high-precision measurements of quasar clustering properties.
The two-point correlation function (2PCF), ξ, is a simple but powerful statistic commonly employed to quantify the clustering properties of a given class of object (Peebles 1980). The observed value of ξ for quasars can be related to the underlying (dark) matter density distribution via

$$\xi(r)_{\text{quasar}} = b_Q^2 \xi(r)_{\text{matter}},$$ \hspace{1cm} (1)

where $\xi(r)_{\text{matter}}$ is the mass correlation function and b_Q is the linear bias parameter for quasars. Although Equation (1) defines b_Q, and there are theoretical arguments suggesting that b_Q is scale-independent on large scales, e.g., Scherrer & Weinberg (1998), we do not know a priori if this is the case.

With certain reasonable assumptions, the measurement and interpretation of the bias can lead to determination of the dark matter halo (DMH) properties of quasars and to quasar lifetimes ($t_q; \text{Martini} & \text{Weinberg 2001; Haiman} & \text{Hui 2001})$. In the standard scenario, quasar activity is triggered by accretion onto a central, supermassive black hole (SMBH; e.g., Salpeter 1964; Lynden-Bell 1969; Rees 1984). Given the possible connection between the SMBH and host halo, and the fact that halo properties are correlated with the local density contrast, clustering measurements can be used to constrain this potential halo–SMBH connection and provide an insight into quasar and black hole physics (e.g., Baes et al. 2003; Wyithe & Loeb 2005; Wyithe & Padmanabhan 2006; Adelberger & Steidel 2005a; Fine et al. 2006; da Ângela et al. 2008). This information, combined with the quasar luminosity function (QLF), constrains η, the fraction of the Eddington luminosity at which quasars shine, and their duty cycle (Wyithe & Loeb 2005; Shankar et al. 2009).

Early measurements of the quasar 2PCF (e.g., Arp 1970; Hawkins & Reddish 1975; Osmer 1981; Shanks et al. 1983, 1987) measured statistically significant clustering on scales of a few h^{-1} Mpc, for both the quasar autocorrelation function and cross-correlation with galaxies. This result has been confirmed with data from more recent surveys, (e.g., Croom et al. 2005; Porciani et al. 2004). The Quasar 2PCF is typically fit to a single power law of the form

$$\xi(r) = (r/r_0)^{-\gamma},$$

over the range $1 \text{ h}^{-1} \text{ Mpc} \leq r \leq 100 \text{ h}^{-1} \text{ Mpc}$. Here, r_0 is the correlation length quoted in comoving coordinates and γ is the power-law slope. Typical measured correlation lengths and slopes for quasars at redshift $z \sim 1.5$ are $r_0 = 5-6 \text{ h}^{-1} \text{ Mpc}$ and $\gamma \sim 1.5$, respectively.

The evolution of the quasar correlation function has been disputed for a long time, with some authors reporting that r_0 either decreased or only weakly evolved with redshift (e.g., Iovino & Shaver 1988; Croom & Shanks 1996), while others reported an increase with redshift (e.g., Kundic 1997; La Franca et al. 1998). However, with the advent of the 2QZ Survey, r_0 has been shown to evolve at the ~90%–99% confidence level, in the sense that quasar clustering increases with redshift, although the actual degree of evolution is weak (Croom et al. 2001, 2005; Porciani et al. 2004). In particular, Croom et al. (2005) used over 20,000 objects from the final 2QZ data set to measure the redshift-space 2PCF, $\xi(s)$, over the redshift range $0.3 < z < 2.2$ and found a significant increase in the clustering amplitude at high redshift. The quasar bias, where the bias depends on the underlying Cold Dark Matter (CDM) model such that a constant r_0 can imply a strongly varying b, was found to be a strong function of redshift, with an empirical dependence of

$$b_Q(z) = (0.53 \pm 0.19) + (0.289 \pm 0.035)(1 + z)^2.$$ \hspace{1cm} (3)

These values were used to derive the mean DMH mass occupied by quasars, giving a redshift-independent value of $M_{\text{DMH}} = (3.0 \pm 1.6) \times 10^{12} \text{ h}^{-1} M_\odot$. Independent analysis of the 2QZ data by Porciani et al. (2004) confirmed these findings.

Using the SDSS, Shen et al. (2007) found that redshift $2.9 \leq z \leq 5.4$ quasars are significantly more clustered than their $z \sim 1.5$ counterparts, having a real-space correlation length and power-law slope of $r_0 = 15.2 \pm 2.7 \text{ h}^{-1} \text{ Mpc}$ and $\gamma = 2.0 \pm 0.3$, respectively, over the scales $4 \text{ h}^{-1} \text{ Mpc} \leq r_p \leq 150 \text{ h}^{-1} \text{ Mpc}$ (where r_p is the separation from the projected correlation function, $w_p(r_p)$). Shen et al. (2007) also found that bias increases with redshift, with $b_Q \sim 8$ at $z = 3.0$ and $b_Q \sim 16$ at $z = 4.5$.

Myers et al. (2006, 2007a), also using SDSS data, examined the clustering of photometrically selected quasar candidates over ~50 h^{-1} kpc to ~20 h^{-1} Mpc scales. In this sample, quasar redshifts were assigned from photometric rather than spectral information (Richards et al. 2001). They found that the linear bias, b_Q, increases with redshift, from $b_Q = 1.93$ at redshifts $0.4 \leq z < 1.0$ to $b_Q = 2.84$ at $2.1 \leq z < 2.8$, consistent with Equation (3) (Figure 4 of Myers et al. 2007a).

Padmanabhan et al. (2008a) measured the clustering of photometrically selected luminous red galaxies (LRGs) around a low redshift, $0.2 < z < 0.6$, sample of quasars, with both LRG and quasar samples coming from the SDSS. They determined a large-scale quasar bias $b_Q = 1.09 \pm 0.15$ at a median redshift of $z = 0.43$. After taking into account measurement and interpretation subtleties, the results from Padmanabhan et al. (2008a), are in qualitative agreement with those from Serber et al. (2006), who find that $M_\odot \leq 22$, $z < 0.4$ quasars are located in higher local galaxy overdensities than typical L^* galaxies. Serber et al. (2006) suggested that quasars typically reside in L^* galaxies, but have a local excess of neighbors within ~0.15–0.7 h^{-1} Mpc, which contributes to the triggering of quasar activity through mergers and other interactions. Strand et al. (2008) using photometric redshift cuts, confirm the basic overdensity values measured by Serber et al. (2006). Hennawi et al. (2006) and Myers et al. (2007b, 2008) reached similar conclusions by examining pairs of quasars on $< 1 h^{-1}$ Mpc scales. The quasar correlation function shows a small-scale excess over a power law, and Hennawi et al. (2006) suggested that the small-scale excess can be attributed to dissipative interaction events that trigger quasar activity in rich environments.

Due to the evolution of the QLF and the flux-limited nature of most quasar samples, there is a strong correlation between redshift and luminosity in these samples, making it difficult to isolate luminosity dependence of clustering from redshift dependence. Recently, da Ângela et al. (2008) combined data from the 2QZ and the 2SLAQ Survey (2dF-SDSS LRG and QSO Survey; Croom et al. 2009), to investigate quasar clustering and break this degeneracy. da Ângela et al. (2008) estimate the mass of the DMH which quasars inhabit to be ~3 $\times 10^{12} h^{-1} M_\odot$, in agreement with Croom et al. (2005), a value that does not evolve strongly with redshift or depend on QSO luminosity. Their results also suggest that quasars of different luminosities may contain black holes of similar mass.

There have also been recent advances in theoretical predictions of the quasar correlation function and its evolution with redshift (Lidz et al. 2006; Hopkins et al. 2007, 2008; Shankar et al. 2009; Basilakos et al. 2008) and we discuss these models in more detail in Sections 4 and 5.

In this paper, we shall measure the quasar 2PCF for redshifts $z \leq 2.2$, using the largest sample of spectroscopically identified
quasars to date. We will investigate the dependence of quasar clustering strength with redshift and luminosity, allowing tests of current quasar formation and evolution models.

This paper is organized as follows. In Section 2, we present our data sample, mentioning several effects that could give rise to systematics in the measurements. In Section 3, we briefly describe the techniques involved in measuring the 2PCF and in Section 4 we present our results. In Section 5, we compare and contrast our evolutionary results with recent observational results in the literature, and we conclude in Section 6. Appendix A gives technical details for the SDSS, Appendix B describes our error analysis, and Appendix C carries out a series of systematic checks.

In our companion paper (Shen et al. 2009), we expand our investigations on the clustering of SDSS quasars. Using the same data as we examine here, Shen et al. study the dependence of quasar clustering on luminosity, virial black hole mass, quasar color, and radio loudness.

We assume the currently preferred flat, Lambda CDM (ΛCDM) cosmology where Ω_m = 0.042, Ω_b = 0.237, Ω_Λ = 0.763 (Sánchez et al. 2006; Spergel et al. 2007) and quote distances in units of h^{-1} Mpc to aid in ease of comparisons with previous results in the literature. Since we are measuring objects with redshifts resulting from the Hubble flow, all distances herein are given in comoving coordinates. Where a value of Hubble’s Constant is assumed, e.g., for absolute magnitudes, this will be quoted explicitly. Our magnitudes are based on the AB zero-point system (Oke & Gunn 1983).

2. DATA

Much care must be taken when constructing a data set that is valid for a statistical analysis. In this section and Appendix A, we describe the various samples we use to investigate potential systematic effects in our clustering measurements. Appendix A provides some of the relevant technical details of the SDSS, discussing the Catalog Archive Server (CAS) and the SDSS Survey geometry.

2.1. The Sloan Digital Sky Survey

The SDSS uses a dedicated 2.5 m wide-field telescope (Gunn et al. 2006) to collect light for 30 2k × 2k CCDs (Gunn et al. 1998) over five broad bands—ugriz (Fukugita et al. 1996)—in order to image ~π steradians of the sky. The imaging data are taken on dark photometric nights of good seeing (Hogg et al. 2001) and are calibrated photometrically (Smith et al. 2002; Ivezić et al. 2004; Tucker et al. 2006; Padmanabhan et al. 2008b), and astrometrically (Pier et al. 2003), and object parameters are measured (Lupton et al. 2001; Stoughton et al. 2002).

Using the imaging data, quasar target candidates are selected for spectroscopic observation based on their colors, magnitudes, and detection in the FIRST radio survey (Becker et al. 1995), as described by Richards et al. (2002). Unless stated otherwise, all quoted SDSS photometry has been corrected for Galactic extinction following Schlegel et al. (1998). Here we are concerned with only those quasars selected from the main quasar selection (Richards et al. 2002). Low-redshift, z ⩽ 3, quasar targets are selected based on their location in ugriz-color space and the high-redshift, z ⩾ 3, objects in giri-color space. Quasar candidates passing the ugriz-color selection are selected to a flux limit of i = 19.1, but since high-redshift quasars are rare, objects lying in regions of color-space corresponding to quasars at z > 3 are targeted to i = 20.2. Furthermore, if an unresolved, i ⩽ 19.1 SDSS object is matched to within 2″ of a source in the FIRST catalog, it is included in the quasar selection.

A tiling algorithm then assigns these candidates to specific spectroscopic plates, in order to maximize target completeness (Blanton et al. 2003). Each 3° diameter spectroscopic plate holds 640 fibers and quasar candidates are allocated at a density of approximately 18 fibers deg^{-2}. No two fibers can be placed closer than 55″, corresponding to ~0.7 h^{-1} Mpc at (z) = 1.27, the mean redshift of our sample (Figure 23). In the case of conflicts because of this 55″ constraint, the main quasar selection candidates were given targeting priority over the MAIN galaxy and LRG survey targets (Strauss et al. 2002; Eisenstein et al. 2001, respectively). Therefore, excluding subtle effects due to gravitational lensing (Scarton et al. 2005; Mountrichas & Shanks 2007), the LSS “footprint” of these foreground galaxies should not affect our LSS quasar measurements. Some targets, including brown dwarf and hot subdwarf calibration star candidates, were given higher priority than the main quasar candidates. However, since the surface density of these Galactic objects is very low (⩽0.1 deg^{-2}), this should not have any significant impact on our results. We investigate the effects of quasar–quasar fiber collisions in Appendix C.6.

2.2. Quasar Samples

For our analysis, we use the SDSS Data Release 5 (DR5; Adelman-McCarthy et al. 2007) and select quasars from the latest version of the quasar catalog (DR5Q; Schneider et al. 2007). This catalog consists of spectroscopically identified quasars that have luminosities larger than M_i = −22.0 (measured in the rest frame) and at least one emission line with FWHM larger than 1000 km s^{-1}. Every object in the DR5Q had its spectrum manually inspected. There are 77,429 confirmed quasars over the 5740 deg^{-2} spectroscopic DR5 footprint; the 65,660 DR5Q quasars with redshifts z ⩽ 2.2 will be the parent sample we use in this investigation.

At z ⩾ 2.2, the ultraviolet excess (UVX) method of selecting quasars begins to fail due to the Lyα-forest suppressing flux as it moves through the SDSS u-band, and quasars have colors similar to those of F-stars (Fan 1999). Thus, for 2.2 < z ⩽ 2.9, the completeness of the survey is dramatically lowered as is discussed in detail by Richards et al. (2006). A lower redshift limit of z = 0.30 is chosen to match that of the 2QZ. Therefore, although we will present results in the redshift ranges z < 0.30 and 2.2 < z ⩽ 2.9, we will not place strong significance on these data. The number of quasars used in this study is twice that of the previous largest quasar survey, the 2QZ (Boyle et al. 2000; Croom et al. 2005) and allows division of our sample in luminosity and redshift bins while retaining statistical power. As shown in Sections 4 and 5, these new data complement the existing 2QZ and 2SLAQ quasar survey results, and together improve constraints on theoretical models.

We construct two subsamples from DR5Q. The first is designated as the “PRIMARY” Sample, which will include those objects in the DR5Q which were targeted as primary quasar candidates (Richards et al. 2002), having satisfied one, or more, of the TARGET_QSO, TARGET_HIZ, or TARGET_FIRST selections (see Stoughton et al. 2002, Section 4.8, for more details on these flags). The SDSS quasar survey was designed to be complete in the primary sample, and no attempt was made at completeness for the quasars selected by other means. In total there are 55,577 quasars in the DR5Q that had their target flags set to one (or more) of these primary flags, with 46,272 quasars satisfying our high redshift limit (Table 1).
Table 1
The SDSS Spectroscopic Quasar Samples

Sample Description	Redshift	Area /deg²	Number in Sample	z_min	z_max	z_med
DR5 Q	≈ 5740	77,429	0.078	5.14	1.538	
	z ≤ 2.9	71,375	0.078	2.90	1.372	
	0.3 ≤ z ≤ 2.9	69,692	0.300	2.00	1.400	
	z ≤ 2.2	65,660	0.078	2.20	1.278	
	0.3 ≤ z ≤ 2.2	63,977	0.300	2.20	1.306	
PRIMARY	5713	55,577	0.080	5.14	1.543	
	z ≤ 2.9	50,062	0.080	2.90	1.326	
	0.3 ≤ z ≤ 2.9	48,526	0.300	2.90	1.360	
	z ≤ 2.2	46,272	0.080	2.20	1.234	
	0.3 ≤ z ≤ 2.2	44,736	0.300	2.20	1.268	
UNIFORM	4013	38,208	0.084	5.33	1.575	
	z ≤ 2.9	33,699	0.084	2.90	1.319	
	0.3 ≤ z ≤ 2.9	32,648	0.300	2.90	1.234	
	z ≤ 2.2	31,290	0.084	2.20	1.400	
	0.3 ≤ z ≤ 2.2	30,239	0.300	2.20	1.269	

Notes. The SDSS Spectroscopic Quasar Samples used in our analysis, with minimum, maximum, and median redshifts. The DR5Q is the catalog presented in Schneider et al. (2007), while the PRIMARY and UNIFORM samples are described in Section 2. The results for the UNIFORM sample indicated in boldface are given in Section 4.

Figure 1. SDSS DR5 Quasar L–z plane for the DR5Q (black points) and the UNIFORM sample (red points). The effect of the $i = 19.1$ mag limit can clearly be seen. M_i is the i-band absolute magnitude at the plotted redshift where we use the K-correction given by Table 4 of Richards et al. (2006).

(A color version of this figure is available in the online journal.)

The SDSS quasar selection algorithm was in flux in the early part of the survey, and was only finalized after DR1. We define the “UNIFORM” sample to be those primary objects selected with this final version. The UNIFORM sample is flux limited to $i = 19.1$ at $z \leq 2.9$ and contains 38,208 objects, dropping to 31,290 when a redshift cut of $z \leq 2.2$ is applied. We show the distribution of objects in the redshift–luminosity plane for the full DR5Q and $0.30 \leq z \leq 2.2$ UNIFORM sample in Figure 1. We will use both the PRIMARY and the UNIFORM samples in what follows, but will find inconsistent results between the two samples at scales $\gtrsim 60 h^{-1}$ Mpc. This is investigated further in Appendix C.

The quasar correlation function is sensitive to a number of potential systematic effects, including bad photometry and improperly corrected dust reddening. Since quasars are selected by their optical colors, we shall perform checks on both our PRIMARY and UNIFORM samples in Appendix C to see what effect regions with poor photometry (as defined by Richards et al. 2006; Shen et al. 2007) has on our clustering measurements.

While all selection for the quasar sample is undertaken using dereddened colors (Richards et al. 2001), if there remain systematic errors in the reddening model they can induce excess power into the clustering in a number of different ways. Appendix C describes how these effects affect our $\xi(s)$ measurements and the interpretations based thereon. Briefly, we find that the UNIFORM sample is the most stable sample for our studies, reddening and bad fields produce insignificant effects to our measurements, our results are insensitive to the choice of the upper bound of the integral in Equation (9) (π_{max}, see Section 3.2), and the comoving z_{max} and fiber collisions are not a concern on the scales we investigate.

3. TECHNIQUES

In this section, we describe the techniques we shall use to calculate the Quasar $z \leq 2.2$ 2PCF. The interested reader is referred to the comprehensive texts of Peebles (1980, 1993), Peacock (1999), Coles & Lucchin (2002), and Martínez & Saar (2002) for full details on the 2PCF.

3.1. Estimating the Two-Point Quasar Correlation Function

In practice, ξ is measured by comparing the actual quasar distribution to a catalog of “random” points, which have the same selection function, angular mask, and radial distribution as the data, but are spatially distributed in a “random” manner—i.e., are not clustered. The construction of this random sample shall be described in Section 3.2.
We use the estimator of Landy & Szalay (1993) to calculate ξ, as this has been found to be the most reliable estimator for 2PCF studies (Kerscher et al. 2000). Comparing our results to those using the estimators of Davis & Peebles (DP, 1983) and Hamilton (1992), we find the DP estimator causes systematic errors on large scales with too much power at $s \gtrsim 40 \, h^{-1} \, \text{Mpc}$, as this estimator is less robust to errors in the estimation of mean density. The LS estimator is given by

$$\xi_{LS}(s) = 1 + \left(\frac{N_d}{N} \right)^2 \frac{DD(s)}{RR(s)} - 2 \left(\frac{N_d}{N} \right) \frac{DR(s)}{RR(s)} \quad (4)$$

Here, N and N_d are the number of data and random points in the sample, $DD(s)$ is the number of data–data pairs with separation between s and $s + \Delta s$ in the given catalog, $DR(s)$ is the number of data–random pairs, and $RR(s)$ the number of random–random pairs. The angled brackets denote the suitably normalized pair counts, since we employ at least 20 times more normalized pair counts, since we employ at least 20 times more normalized pair counts.

The measurement of a quasar redshift will not only have a (large) component due to the Hubble expansion, but also components due to the intrinsic peculiar velocities and redshift errors associated with the individual quasar. The peculiar velocities can be seen in the redshift-space correlation function, both at small and large scales (see Section 4). However, as noted in Schneider et al. (2007) and discussed in detail in Shen et al. (2007, Appendix A), quasar redshift determination can have uncertainties of $\sigma_z = 500–1450 \, \text{km} \, \text{s}^{-1}$ and hence $\sigma_z = 0.003–0.01$, and these redshift errors will dominate any determination of the peculiar velocity signal.

The real-space correlation function, $\xi(r)$, is what would be measured in the absence of any redshift–space distortions. We can measure $\xi(r)$ by projecting out the effects of peculiar velocities and redshift errors along the line of sight.

One can resolve the redshift-space separation, s, between two quasars into two components, r_p and π, where r_p is the separation between two objects perpendicular to the line of sight and π is the separation parallel to the line of sight. Thus,

$$s^2 = r_p^2 + \pi^2 \quad (6)$$

where $\pi \equiv \sigma$ is also found in the literature). The “two-dimensional” redshift-space correlation function, $\xi(r_p, \pi)$, can be calculated as before,

$$\xi_{LS}(r_p, \pi) = \frac{(DD(r_p, \pi)) - 2 DR(r_p, \pi) + RR(r_p, \pi)}{RR(r_p, \pi)} \quad (7)$$

where the bin sizes are now chosen to be $\Delta \log(r_p/ \, h^{-1} \, \text{Mpc}) = \Delta \log(\pi/ \, h^{-1} \, \text{Mpc}) = 0.2$.

Redshift-space distortions affect only the radial component of $\xi(r_p, \pi)$; thus, by integrating along the line-of-sight direction, π, we obtain the projected correlation function,

$$w_p(r_p) = 2 \int_0^\infty \xi(r_p, \pi) \, d\pi. \quad (8)$$

In practice, we set the upper limit on the integral to be $\pi_{\text{max}} = 10^{1.8} = 63.1 \, h^{-1} \, \text{Mpc}$ and show that although varying this limit does cause some difference to the deduced $w_p(r_p)$, it does not cause significant changes to the 2PCF over the scales of interest for our studies (Appendix C.7).

The integral in Equation (8) can be rewritten in terms of $\xi(r)$ (Davis & Peebles 1983),

$$w_p(r_p) = 2 \int_0^\infty \frac{r \xi(r)}{\sqrt{(r^2 - r_p^2)}} \, dr. \quad (9)$$

If we assume that $\xi(r)$ is a power law of the form, $\xi(r) = (r/r_0)^{-\gamma}$ (which, as we shall find later, is a fair assumption), then Equation (9) can be integrated analytically, such that with $\pi_{\text{max}} = \infty$,

$$w_p(r_p) = r_0^\gamma r_p^{1-\gamma} \left[\frac{\Gamma(\frac{1}{\gamma}) \Gamma(\frac{2}{\gamma})}{\Gamma(1 + \frac{1}{\gamma})} \right] = r_0^\gamma r_p^{1-\gamma} A(\gamma). \quad (10)$$

where $\Gamma(\chi)$ is the Gamma function.

In linear theory and in the absence of small-scale velocities and redshift errors, the redshift-space and real-space correlation function can be related via

$$\xi(s) = \xi(r) \left(1 + \frac{2}{3} \beta(z) + \frac{1}{5} \beta^2(z) \right). \quad (11)$$

where

$$\beta(z) = \frac{\Omega_m(z)^{0.55}}{b(z)} \quad (12)$$

parameters the “flattening” at large scales of the correlation function due to the infall of matter from underdense to overdense regions. The value of $\beta(z)$ has traditionally been measured via fits to observed data (e.g., Kaiser 1987; Fisher et al. 1994; Peacock et al. 2001; Hawkins et al. 2003; Ross et al. 2007; Guzzo et al. 2008).

3.2. Construction of the Random Catalog

As mentioned above, to calculate ξ in practice, one needs to construct a random catalog of points that mimics the data in every way, but its clustering signal. The angular mask and completeness for the PRIMARY and UNIFORM sample is described in detail in Appendix A.

The radial distribution of the sample is measured from the data themselves. Figure 2 shows the $N(z)$ distribution of the DR5Q quasars from our samples. We fit a tenth-order polynomial to both the PRIMARY and UNIFORM samples, which we use to generate the random sample redshift distribution. This method has proved reliable in previous quasar clustering studies (e.g., Croton et al. 2005; da Angela et al. 2008).

3.3. Errors and Covariances

Recent studies (e.g., Scranton et al. 2002; Zehavi et al. 2002; Myers et al. 2006; Ross et al. 2007) have employed three main methods, Poisson, Field-to-Field, and Jackknife to estimate errors in correlation function measurements. The “simplest” of these is the Poisson error described by Peebles (1973); this is the Poisson noise due to the number of pairs in the sample,

$$\sigma_{\text{Poi}} = \frac{1 + \xi(s)}{\sqrt{DD(s)}}. \quad (13)$$

This expression should be valid at smaller scales where the number of pairs is small and most pairs are independent (i.e.,
few quasars are involved in more than one pair; Shanks & Boyle 1994; Croom & Shanks 1996). However, as reported in Myers et al. (2005) and Ross et al. (2007), the Poisson error underestimates measurement error when compared to, e.g., the field-to-field or Jackknife errors at larger scales, where quasar pairs are not independent. For this work, we will not report any field-to-field errors, but instead concentrate on a Jackknife resampling procedure in order to calculate the full covariance matrix, from which we will use just the diagonal elements. Full details of the Jackknife procedure, including the geometry of the subsamples used and the justification for using only the diagonal elements are given in Section 4 and Appendix B.

4. RESULTS

4.1. SDSS Quasar Redshift-Space Two-Point Correlation Function, $\xi(s) (0.30 \leq z \leq 2.2)$

The two-point redshift-space correlation function for the SDSS DR5Q UNIFORM sample over the redshift interval $0.3 < z < 2.2$ is given in Figure 3. As described in Appendix B, the error bars are Jackknife errors from the diagonal elements of the covariance matrix; i.e., $\sigma^2 = C_{ii}$. We justify this approach by considering that the covariance matrix is close to diagonal (Figure 16) and using just the diagonal elements of the covariance matrix produces results very close to that using the whole matrix, when fitting out to $25 \ h^{-1} $ Mpc. The off-diagonal elements of the covariance matrix are too noisy to be useful at large scales, and we therefore only use the diagonal elements in all the fits and plots that follow.

We start by fitting a simple, single power-law model of the form in Equation (2). We find that a single power law with a redshift-space correlation length of $s_0 = 5.95 \pm 0.45 \ h^{-1} $ Mpc and power-law slope of $\gamma_s = 1.16_{-0.08}^{+0.11}$ provides an adequate description of the data over the scales $1.0 \ h^{-1} $ Mpc $\leq s \leq 25.0 \ h^{-1} $ Mpc (solid line, Figure 3). Here a value of $\chi^2 = 11.5$ is obtained with 11 degrees of freedom (dof) giving P, the probability of acceptance (of our power-law model to the data) of 0.402. A less suitable fit is found at larger scales due to the data falling below the power law. Over the range $1.0 \ h^{-1} $ Mpc $\leq s \leq 100 \ h^{-1} $ Mpc, the best-fit model has a significantly steeper power-law slope, $\gamma_s = 1.57_{-0.05}^{+0.04}$ (dotted line, Figure 3). The χ^2 for this model is 32.8 with 15 dof and $P = 5 \times 10^{-3}$. The data systematically deviate from the power-law fit, possibly due to the effects of redshift-distortions (on small scales), with “flattening” of the data compared to the model at small, $s \leq 5 \ h^{-1} $ Mpc, scales and a steepening at large, $s \geq 40 \ h^{-1} $ Mpc, scales—though a decline below a power law at large scales is also expected from linear theory via the CDM real-space $\xi(r)$.

In Figure 4, we compare our results with the redshift-space correlation function $\xi(s)$ from two other recent studies, the 2QZ (Croom et al. 2005) and the 2SLAQ QSO (da Ângela et al. 2008) surveys. The analysis by da Ângela et al. (2008) uses data from both the 2QZ and 2SLAQ QSO surveys and thus the samples are not completely independent.

The 2QZ and 2SLAQ QSO surveys both cover very similar redshift ranges to our $z < 2.2$ sample. The 2QZ covers a much smaller area, ≈750 deg2, than the SDSS but has $2/3$ as many quasars as our sample, since it reaches to a deeper limiting magnitude of $b_J = 20.85$ (corresponding to $g \approx 20.80$ and $i \approx 20.42$). The 2SLAQ QSO survey has a smaller area yet, ≈180 deg2, and reaches a magnitude deeper than the 2QZ to $g = 21.85$ ($i \approx 21.45$) resulting in 8500 quasars with $0.3 < z < 2.2$.

The agreement in the correlation function between surveys over $1 \ h^{-1} $ Mpc $\leq s \leq 100 \ h^{-1} $ Mpc scales is impressive but not necessarily unexpected, since we are essentially sampling the same type of objects, i.e., luminous active galactic nucleus (AGN), powered by SMBHs accreting at or near their Eddington limits (Kollmeier et al. 2006; Shen et al. 2008), quite possibly in similar mass environments (see Section 5). However, the samples have different luminosities, with mean $L_{\text{Bol,SDSS}} = 3.4 \times 10^{46}$ erg s$^{-1}$ (Table 2) compared with mean $L_{\text{Bol,2QZ}} \approx 1.3 \times 10^{46}$ erg s$^{-1}$ (assuming $M_{b_J} = -24.6$ and...
Equation (27) from Croom et al. 2005, for the 2QZ QSOs), suggesting that variation in quasar luminosity is due to a variation in SMBH fueling, rather than a variation in SMBH mass (which maybe correlated to halo mass). We explore this luminosity dependence on clustering further in the companion paper (Shen et al. 2009).

Figure 5 displays the very large scale \(\xi(s) \) using the LS estimator. We see that apart from one data point at \(s \approx 400 \ h^{-1} \) Mpc, the redshift-space correlation function is within 1\(\sigma \) of 0 at scales greater than \(\sim 300 \ h^{-1} \) Mpc. A \(\chi^2 \) test comparing the data to \(\xi(s) = 0 \) over the range of \(100 \ h^{-1} \) Mpc \(\leq s \leq 1000 \ h^{-1} \) Mpc and \(100 \ h^{-1} \) Mpc \(\leq s \leq 3000 \ h^{-1} \) Mpc gives \(\chi^2 = 8.2 \) (18 dof, \(P = 0.975 \)) and \(\chi^2 = 25.3 \) (54 dof, \(P = 0.999 \)), respectively. Our rms scatter is \(\pm 0.001 \), which compares well to the 2QZ value of \(\pm 0.002 \); with a sample \(\sim 50\% \) larger, we have roughly doubled the pair counts at these very large scales. The dimensions of our sample do not allow us to probe separations beyond \(3000 \ h^{-1} \) Mpc.

4.2. SDSS Quasar Two-Dimensional Two-Point Correlation Function, \(\xi(r_p, \pi) \) (0.30 \(\leq z \leq 2.2 \))

Figure 6 shows the SDSS DR5 Quasar two-dimensional redshift-space correlation function \(\xi(r_p, \pi) \) for the UNIFORM sample, over \(0.3 \leq z \leq 2.2 \). The redshift-space distortions in the clustering signal—seen as deviations from isotropy—are immediately apparent. At small \(r_p \), the random peculiar motions and redshift errors of quasars cause an elongation of the clustering signal along the line-of-sight direction, \(\pi \). This is the well known “Fingers-of-God” effect (Jackson 1972). Cosmological information can be extracted from the Quasar two-dimensional \(\xi(r_p, \pi) \) measurement (e.g., Hoyle et al. 2002; da Ángela et al. 2005, 2008). However, full treatment of the separation of the effects of large-scale “squashing” in \(r_p \) (used to determine \(\beta(z) \) in Equation (12)) and the substantial contribution from the Fingers-of-God at small scales is left to a future paper.
4.3 SDSS Quasar Projected Two-Point Correlation Function

In Figure 7, we show the projected 2PCF, \(w_p(r_p) \), calculated using Equation (9). The reported error bars are jackknife errors, using the same jackknife area subsamples as for the \(\xi(s) \) calculation (Appendix B). Since we are fitting power laws of the form \(\xi(r) = (r/r_0)^\gamma \) (Equation (10)), we plot \(w_p(r_p)/r_p \) on the ordinate. We find the best-fitting single power law to the SDSS Quasar \(w_p(r_p)/r_p \) data to be \(r_0 = 5.48^{+0.35}_{-0.45} \text{ h}^{-1} \text{ Mpc} \) and \(\gamma = 1.90^{+0.04}_{-0.03} \) over our full range of scales, 0.1 h\(^{-1}\) Mpc < \(r_p < 130.0 \text{ h}^{-1} \text{ Mpc} \). This provides a somewhat poor fit, giving a value of \(\chi^2 = 22.02 \) with 12 dof \((P = 0.038) \). We remind the reader that due to fiber collisions, measurements at scales of \(r_p \lesssim 1 \text{ h}^{-1} \text{ Mpc} \) are biased low (Section C.6). Restricting the range to 4.0 h\(^{-1}\) Mpc < \(r_p < 130.0 \text{ h}^{-1} \text{ Mpc} \), we find the best-fit power law has an increased real-space correlation length of \(r_0 = 8.75^{+0.50}_{-0.56} \text{ h}^{-1} \text{ Mpc} \) and a steeper slope of \(\gamma = 2.40^{+0.07}_{-0.10} \). This power law is a more acceptable fit, having \(\chi^2 = 3.47 \) with 6 dof \((P = 0.748) \). We further suggest that the difference between the fitted results and their dependence on scale is due to a “break” in the \(w_p(r_p)/r_p \) measurements at \(r_p \sim 2–5 \text{ h}^{-1} \text{ Mpc} \). However, we are hesitant to offer an explanation of this behavior of our measurements in terms of, e.g., the transition from the 1-to 2-halo regime (compared to Porciani et al. 2004).

Comparisons of our \(w_p(r_p)/r_p \) results to those of Shen et al. (2007) for the \(z > 2.9 \) redshift quasar measurements show that the high-redshift SDSS quasars have a much larger clustering amplitude than the lower redshift sample. The consequences of this are discussed in detail in Shen et al. (2007).

4.4 Evolution of the SDSS Quasar Correlation Function

Figures 8 and 9 present the evolution of the redshift-space, \(\xi(s) \), and the projected, \(w_p(r_p) \), 2PCF, using the SDSS DR5 UNIFORM Quasar sample.

We plot both \(\xi(s) \) and \(w_p(r_p) \) for subsamples of the UNIFORM data, with the relevant redshift limits given in Table 2. Here we choose the redshift slices so that we match those of the 2QZ Survey given by Croom et al. (2005). Our survey generally has 50% more data in each redshift bin. However, since the 2QZ selects QSO candidates on the basis of their stellar appearance on photographic plates, low-redshift quasars with detectable host galaxies on the plate are preferentially rejected from the final 2QZ catalog, and the SDSS Quasar UNIFORM sample has a larger proportion of low, \(z \lesssim 0.5 \) redshift quasars.8

We fit power-law models of the form given by Equation (2), over the ranges 1.0 h\(^{-1}\) Mpc \(\leq s \leq 25.0 \text{ h}^{-1} \text{ Mpc} \) (except for our 2.02 \(\leq z \leq 2.20 \) bin, where to get finite constraints, we fit to

\[\text{Figure 8. SDSS DR5 Quasar redshift-space 2PCF, } \xi(s), \text{ and its evolution with redshift. All panels have the same scaling with the respective number of quasars, } N_Q, \text{ in each redshift range given. The thin (black) line in each panel is } \xi(s) \text{ for the full DR5Q UNIFORM sample, over } 0.30 < z < 2.20. \text{ The quoted error bars are Poisson (see the text for justification).} \]
Figure 9. SDSS DR5 Quasar projected 2PCF, $wp(r_p)$, and its evolution with redshift. The solid line in each panel is $wp(r_p)/r_p$ for the full DR5Q UNIFORM sample, over $0.30 < z < 2.20$. The quoted error bars are scaled jackknifes (see the text for details). The relevant power-law fits as given in Table 2 are shown by the dotted lines.

\[\frac{w(r_p)}{r_p} = s \frac{\gamma}{1 + \frac{r_p}{r_0}} \]

\[s = s_0 \left(1 + \frac{r_p}{r_0} \right)^{-\gamma} \]

Table 2

z-interval	\bar{z}	N_h	L_{bol} (10^{46} \text{ erg s}^{-1})	s_0 (h^{-1} \text{ Mpc})	γ	χ^2	ν	s_0 (h^{-1} \text{ Mpc})	r_0 (h^{-1} \text{ Mpc})
0.30-0.35	0.30	3023	3.43	5.95 (0.45)	2.16	11.5	11.2	5.95 (0.45)	5.45 (0.35)

Notes. Evolution of the redshift-space, s_0, and real-space, r_0, correlation lengths. For s_0, both the correlation length and power-law slope were allowed to vary. All redshift-space subsamples were fitted over the range 1.0 h^{-1} \text{ Mpc} \leq s \leq 25.0 h^{-1} \text{ Mpc}, unless otherwise noted with \ast, where the range was 1.0 h^{-1} \text{ Mpc} \leq s \leq 100.0 h^{-1} \text{ Mpc}. For s_0, we quote values both with floating and fixed ($r_0 = 1.16$) power laws. For the full sample, r_0 and γ are allowed to vary and fits were performed over the scales 1.0 h^{-1} \text{ Mpc} \leq r_p \leq 130.0 h^{-1} \text{ Mpc}. While for the real-space subsamples, the calculation of r_0 was made by fitting our $w_p(r_p)/r_p$ measurements using Equation (10), over the 1.0 h^{-1} \text{ Mpc} \leq r_p \leq 150.0 h^{-1} \text{ Mpc}, while keeping the power-law index fixed at $\gamma = 2.0$. The bolometric luminosities are from the catalog of Shen et al. (2008).

$s_{\text{max}} = 100$ h^{-1} \text{ Mpc}. The best-fit parameters and corresponding 1σ errors are given in Table 2.

In Figure 8, we show measurements for $\xi(s)$ for the redshift slices. The measurement of $\xi(s)$ for the full redshift range...
measurement is given by the thin line in each panel. We show Poisson errors as these are approximately equal to jackknife errors on scales where the number of quasars in the (sub)samples is large enough. Scales chosen as the redshift increases. Keep in mind the (blue) line gives the best-fit value for the whole sample with associated Poisson errors as these are approximately equal to jackknife measurements. We show Figure 10. No. 2, 2009 SDSS QUASAR CLUSTERING AT REDSHIFT \(z \leq 2.2 \)

Figure 10 shows the evolution of the redshift-space correlation length, \(s_0 \), up to redshift \(z = 2.9 \). The (black) filled circles are from the DR5Q UNIFORM sample and the (blue) line gives the best-fit value for the whole sample with associated 1sigma errors. The (green) filled squares are from the QUASAR CLUSTERING AT REDSHIFT \(z \leq 2.2 \) sample. The (red) filled star is from a measurement of AGN clustering at \(z < 0.2 \) by Wake et al. (2004). The (blue) filled triangle is the clustering measurement of Seyfert galaxies from Constantin & Vogel (2006). (A color version of this figure is available in the online journal.)

5. EVOLUTION OF GALAXY, AGN, AND QUASAR CLUSTERING

5.1. The Redshift-Space Evolution

In Figure 10, we compare our measurements of the evolution of the redshift-space correlation length, \(s_0 \), to those recently published in the literature. We calculate our values for \(s_0 \) by fitting our \(\xi(s) \) measurements using Equation (2). Motivated by the fits in Figure 3, we hold the power-law index fixed at \(\gamma_s = 1.16 \). The study of quasar clustering most comparable to our own is that presented by Croom et al. (2005) for the 2QZ survey. Our study using the SDSS DR5Q UNIFORM quasar sample and the 2QZ are in very good agreement over the full redshift range, given the associated uncertainties. However, in the SDSS DR5Q sample, we see very little, if any, evolution in the redshift-space correlation length even to \(z \approx 3 \), whereas the 2QZ does show marginal evolution in \(s_0 \). The similarity of these results again suggests that quasar clustering only weakly depends on luminosity for the dynamical ranges probed in these samples, a topic discussed further in Shen et al. (2009).

The filled (red) star in Figure 10 is from the study by Wake et al. (2004) who use a sample of 13,605 narrow-line AGNs in the redshift range \(0.055 < z < 0.2 \) from the first Data Release of the SDSS (Abazajian et al. 2003). They find that the AGN autocorrelation function is consistent with the observed galaxy autocorrelation function over \(s = 0.2–100 h^{-1} \) Mpc scales. Furthermore, they show that the AGN 2PCF is dependent on the luminosity of the narrow [O iii] emission line (\(L_{[OIII]} \)), with low \(L_{[OIII]} \) AGNs having a higher clustering amplitude than high \(L_{[OIII]} \) AGNs. This measurement suggests that lower activity AGNs reside in more massive DM halos than do higher activity AGNs, as \(L_{[OIII]} \) provides a good indicator of the AGN fueling rate (e.g., Miller et al. 2003; Kauffmann et al. 2003). As such, it is interesting to note that our lowest redshift quasar clustering data point is, within the uncertainties, consistent with the measurement from Wake et al. (2004). We use the term “quasar” here loosely, as for our lowest redshift bin, the mean bolometric luminosity is \(1.6 \times 10^{45} \) erg s^{-1}, a factor of 20 lower than our full sample (Table 2).

Constantin & Vogely (2006) study the clustering of specific classes of AGN, namely Seyfert galaxies and LINERs (low-ionization nuclear emission-line regions) with the classes being separated on the basis of emission-line diagnostic diagrams (e.g., Baldwin et al. 1981; Kewley et al. 2001). They find that LINERs, which show the lowest luminosities and obscuration levels, exhibit strong clustering (\(s_0 = 7.82 \pm 0.64 h^{-1} \) Mpc), suggesting that these objects reside in massive halos and thus presumably have relatively massive black holes that are weakly active or inefficient in their accretion, potentially due to the insufficiency of their fuel supply. Seyfert galaxies, however, have lower clustering, \(s_0 = 5.67 \pm 0.62 h^{-1} \) Mpc (Figure 10, 2008), who use large N-body simulations to investigate different error estimators and the 2PCF for galaxy clustering.

9 The interested reader is pointed toward recent work by Norberg et al. (2008), who use large N-body simulations to investigate different error estimators and the 2PCF for galaxy clustering.
blue triangle), are very luminous and show large emitting gas densities, suggesting that their black holes are less massive but accrete quickly and efficiently enough to dominate the ionization. Therefore, based on our lowest redshift clustering results, the stronger link for our low-luminosity “quasars” is to Seyfert galaxies rather than LINERs.

5.2. The Real-Space Evolution

In Figure 11, we compare our measurements (black circles) of the evolution of the real-space correlation length, r_0, to those recently published in the literature. We calculate our values for r_0 by fitting our $w_p(r_p)/r_p$ measurements using Equation (10), calculating an r_0 value at each separation where $w_p(r_p)/r_p$ is nonzero, and reporting the standard error on the mean for these values in Table 2. Motivated by the fits in Figure 7, we hold the power-law index fixed at $\gamma = 2.0$, thus setting $A(\gamma = 2) = \pi$ (Equation (10)). We caution again however, that as can be seen from inspecting Figure 9, the scatter in the points is small compared to the quoted error bars, and thus, this method may well underestimate the errors associated with the real-space correlation length.

Myers et al. (2006) reported a measurement of the clustering of quasars using $\sim 80,000$ SDSS quasars photometrically classified from the catalog of Richards et al. (2004). The r_0 measurements from Myers et al. (2006) are given by the filled (red) squares in Figure 11, and are in very good agreement with our own data (we plot the data from their Table 1, from the “De-projected r_0” section and the 0.75 h^{-1} Mpc $\leq r < 89 h^{-1}$ Mpc row).

Coil et al. (2007) calculate the cross-correlation between $\sim 30,000$ redshift 0.7 $< z < 1.4$ galaxies observed as part of the DEEP2 galaxy redshift survey (Davis et al. 2001, 2003), and quasars over the same redshift range. In total there are 36 SDSS quasars and 16 quasars identified from the DEEP2 survey itself over the 3 deg2 covered by the DEEP2. Coil et al. (2007) find that $r_0 = 3.4 \pm 0.7$ h^{-1} Mpc for the quasar–galaxy cross-correlation (ξ_GG). These authors measure $r_0 = 3.1 \pm 0.6$ h^{-1} Mpc for the inferred quasar clustering scale length, assuming that γ is the same for the galaxy and the quasar samples and the two samples trace each other perfectly, giving $\xi_{GG} = \sqrt{\xi_{GG} \times \xi_{GG}}$. We show this measurement as an open (purple) diamond in Figure 11. Although still consistent with the low-redshift measurement of Myers et al. (2006), it is at odds with our measurements. Determination of ξ_{GG} from the cross-correlation measurement assumes that the density fields traced by the galaxies and quasars, δ_G and δ_Q, respectively, are perfectly correlated spatially, i.e., the correlation coefficient between the two is $r = +1$ (e.g., Blanton et al. 1999; Swanson et al. 2008).

Thus, as is quite plausible, if $z \sim 1$ quasars and galaxies sample the underlying mass density field differently, then one can reconcile the difference in correlation lengths by invoking a correlation coefficient that is modestly different from unity.

Adelberger & Steidel (2005a, 2005b) studied the clustering of Lyman break galaxies (LBGs) around $2 \lesssim z \lesssim 3$ AGN. The dynamic range in luminosity for this sample is nearly 10 mag ($16 \lesssim G_{AB} \lesssim 26$; Adelberger & Steidel 2005a) and is thus much greater than for our SDSS DR5 UNIFORM sample. These authors report a value of $r_0 = 5.27^{+1.59}_{-1.36} h^{-1}$ Mpc for a sample of 38 AGNs with central SMBH masses of $10^{6.8} < M_{BH}/M_\odot < 10^{8}$ and $r_0 = 5.20^{+1.85}_{-1.65} h^{-1}$ Mpc for a sample of 41 AGNs with $10^{5} < M_{BH}/M_\odot < 10^{10.5}$. If we assume the correlation coefficient is $r = 1$ and the power-law slopes are constant between samples, we find (with $r_0, LBG-\text{LBG} = 4.0 \pm 0.6$ h^{-1} Mpc at $z = 2.9$, Adelberger et al. 2005) that $r_0, \text{AGN-AGN} \approx 6.9 h^{-1}$ Mpc. This result is very broadly consistent with Myers et al. (2006) but in tension with our SDSS DR5 UNIFORM results. Adelberger & Steidel (2005a) sample vastly different luminosity ranges than we do and find the clustering does not vary significantly with luminosity, immediately ruling out luminosity dependence as an explanation of the different clustering amplitudes. Again, the assumption of perfect correlation is called into question, with a nonunity correlation coefficient r potentially reconciling both these and the Coil et al. (2007) DEEP2 results.

We also compare our results with clustering measurements of recent deep X-ray surveys, which are particularly well suited to finding intrinsically less luminous, potentially obscured objects at high redshift (Brandt & Hasinger 2005). An immediate caveat we place in the following comparison is that the SDSS DR5 surveys ~ 4000 deg2, while the largest solid angle of the current deep X-ray surveys is of order 1 deg2 and therefore the X-ray results are much more susceptible to cosmic variance.

Basilakos et al. (2004) estimate r_0 using the angular auto-correlation function, $w(\theta)$, of hard (2–8 keV) X-ray selected sources detected in a ~ 2 deg2 field using a shallow ($\delta X[2–8$ keV] $\sim 10^{-14}$ erg cm$^{-2}$ s$^{-1}$) and contiguous XMM-Newton survey. The area surveyed consisted of 13 usable pointings, overlapping that of the 2QZ survey, and resulted in the detection of 171 sources. Various models for the redshift distribution are given in Basilakos et al. (2004, see their Table 1);

10 The simplest and frequently assumed relationship between δ_1 and δ_2 is $\delta_2 = \delta_1 b_2$ where b_2 is a constant parameter, $\delta_1 = b_1(\chi) / \delta_1 - 1$, e.g., Peebles (1980); Dekel & Lahav (1999); Swanson et al. (2008).
for our comparison, we adopt the r_0 values calculated using $(\Omega_m, \Omega_{\Lambda}) = (0.3, 0.7)$, which either assume “pure luminosity evolution” (PLE; Boyle et al. 1998) or “luminosity–dependent density evolution” (LDDE; Ueda et al. 2003). As such, the PLE and LDDE models produce different mean redshifts of $z = 0.45$ and $z = 0.75$, respectively, for the AGN sample. Baselakos et al. (2004) find $r_0 = 9.0 \pm 0.2$ h$^{-1}$ Mpc for the PLE model and $r_0 = 13.5 \pm 3$ h$^{-1}$ Mpc for the LDDE model, fixing the power-law slope at $\gamma = 2.2$. These observations are given by filled (dark red) pentagons in Figure 11.

Gilli et al. (2005) obtained a sample of nearly 260 AGNs in the Chandra Deep Field North (CDF-N; Alexander et al. 2003; Barger et al. 2003) and South (CDF-S; Rosati et al. 2002) with spectroscopic redshifts. They report that in both fields the AGNs have $z \sim 0.9$ and a median 0.5–10 keV luminosity of $L_X \sim 10^{43}$ erg s$^{-1}$, i.e., in the local Seyfert galaxy luminosity regime. Correlation lengths and slopes of $r_0 = 5.5 \pm 0.6$ h$^{-1}$ Mpc, $\gamma = 1.50 \pm 0.12$ and $r_0 = 10.3 \pm 1.7$ h$^{-1}$ Mpc, $\gamma = 5.5 \pm 0.6$ are found for the CDF-N and CDF-S, respectively (Gilli et al. 2005, their Table 2), shown as filled (green) stars in Figure 11.

Yang et al. (2006) for the Large Area Synoptic X-ray Survey, Miyaji et al. (2007) for their MED (2–4.5 keV) band, and da ˆAngela et al. (2008) to determine b using our redshift-space correlation function $\xi(s, z)$ measurements from Section 4.

In order to minimize nonlinear effects, e.g., redshift-space distortions, we shall use the volume-averaged correlation function, ξ, defined as

$$\xi = \frac{\int_{s_{\text{min}}}^{s_{\text{max}}} 4\pi s^2 \xi(s) ds}{\int_{s_{\text{min}}}^{s_{\text{max}}} 4\pi s^2 ds}$$

$$= \frac{3}{(s_{\text{max}}^3 - s_{\text{min}}^3)} \int_{s_{\text{min}}}^{s_{\text{max}}} \xi(s')s'^2 ds',$$

where $s_{\text{min}} = 1.0$ h$^{-1}$ Mpc is set in practice. Unless explicitly stated otherwise, s_{max} is always chosen to be 20 h$^{-1}$ Mpc, so that nonlinear effects in the sample should be small due to the s^2 weighting and for ease of comparison with Croom et al. (2005) and da ˆAngela et al. (2008). In the linear regime, the s-space and real-space correlation functions can be given by Equation (11). Thus, we combine Equations (1) and (11), and recognize that $\beta = \Omega_m^{0.5}/b$ leaves us with a quadratic equation in b. We are assuming a flat, cosmological-constant model and hence the effective exponent of Ω_m is 0.55 (Linder 2005; Guzzo et al. 2008) rather than 0.6, suggested by Peebles (1980), although we find this makes virtually no difference to our bias measurements. Solving the quadratic in b leads to

$$b(z) = \sqrt{\frac{\bar{\xi}_Q(s, z)}{\bar{\xi}_Q(r, z)}} \frac{4\Omega_m^{1.0}(z)}{\Omega_m^{0.55}(z) - \frac{45}{\alpha}}.$$

We now use our measured $\bar{\xi}_Q(s, z)$ together with a theoretical estimate of $\bar{\xi}_Q(r, z)$ and $\Omega_m(z)$ to determine the bias.

To estimate $\bar{\xi}_Q(r, z)$, we follow Myers et al. (2007a) and da ˆAngela et al. (2008), and use the nonlinear estimate of $P(k)$ given by Smith et al. (2003). The models of Smith et al. (2003) predict the nonlinear power spectrum of DM for a range of CDM cosmologies over a wide range of scale. We thus Fourier transform these $P(k)$ models and integrate over

11 The precise way in which galaxies/luminous AGN trace the underlying matter distribution is still poorly understood. Blanton et al. (2000), Schulz & White (2006), Smith et al. (2007), and Coles & Erdogdu (2007) all suggest that bias is potentially scale dependent. We do not take this into account in the current analysis.
The black circles are from the SDSS DR5Q UNIFORM sample (this work); the red squares, from the photometric SDSS quasar measurements (Myers et al. 2006); the green circles from the 2QZ Survey (Croom et al. 2005); the (black) stars are from the 2SLAQ QSO survey (da ˆAngela et al. 2008); the solid lines give dark halo masses from the models of Sheth et al. (2001) with \(\Omega_{\text{M}} \times 10^{12} M_{\odot} = 12.6, 12.3, \text{and } 11.7 \) from top to bottom. The dotted lines give dark halo masses from the models of Jing (1998) with \(\log h^{-1} M_{\odot} = 12.3, 12.0, \text{and } 11.7 \) from top to bottom.

(A color version of this figure is available in the online journal.)

\[
s = 1-20 \, h^{-1} \text{ Mpc to compute } \xi_{\rho}(r, z). \text{ The cosmological parameters used in our chosen model are } \Omega_{\Lambda}(z = 0) = 0.3, \Omega_{\text{M}}(z = 0) = 0.7, \Gamma = 0.17, \text{ and } \sigma_8 = 0.84. \text{ We find the simple form}
\]

\[
\xi_{\rho}(r, z) = [A \exp(B z) + C] \xi_{\rho}(r, z = 0),
\]

where \(A = 0.2041, B = -1.082, \text{ and } C = 0.018 \) models the evolution of \(\xi(r, z) \) extremely well, for \(1 \, h^{-1} \text{ Mpc} \leq s \leq 20 \, h^{-1} \text{ Mpc} \).

At the mean redshift of our survey, \(\Omega_{\text{M}}(z = 1.27) = 0.81 \), we find \(b_{\text{Q}}(z = 1.27) = 2.06 \pm 0.03 \) from the full SDSS DR5Q UNIFORM sample. The values for our redshift subsamples are shown as filled circles in Figure 12 and are given in Table 3. We estimate our errors by using the variations in \(\xi(z) \) from our 21 jackknife estimates, scaled using the number of \(DD \) pairs in each redshift slice subsample. Previous measurements from the 2QZ Survey (filled green circles; Croom et al. 2005), the 2SLAQ QSO Survey (open black stars; da ˆAngela et al. 2008) and photometrically selected SDSS quasars (filled red squares; Myers et al. 2007a) are again in excellent agreement with our data. We compare these bias estimates with various models in Section 5.4.

Having measured \(b(z) \) and assuming a cosmological model, we can infer the parameter \(\beta(z) \) using Equation (12). The space density of quasars is much smaller than that of galaxies, so the errors on the clustering measurement (e.g., \(\xi(r_p, \pi) \)) are much larger than for galaxy surveys (compared to Hawkins et al. 2003; Zehavi et al. 2005; Ross et al. 2007; Guzzo et al. 2008). Furthermore, as discussed in Section 4.2, we have not included the effects from the “Fingers-of-God” in the present calculation of \(\beta(z) \) but the peculiar velocities at small (transverse \(r_p \)) scales will very strongly affect the measured redshift distortion value of \(\beta \) (Fisher et al. 1994; da ˆAngela et al. 2005).

With \(b(z = 1.27) = 2.06 \pm 0.03 \) and \(\Omega_{\text{M}}(z = 1.27) = 0.81 \) we find \(\beta(z = 1.27) = 0.43 \), but for the reasons given above we present no formal error bar. This result is consistent with the values of \(\beta(z) \), measured from redshift-space distortions in the 2QZ survey, \(\beta(z = 1.4) = 0.45^{+0.09}_{-0.11} \) (Outram et al. 2004) and \(\beta(z = 1.4) = 0.50^{+0.13}_{-0.15} \) (da ˆAngela et al. 2005).

5.4. Models of Bias and Dark Matter Halo Mass Estimation

We now compare our bias measurements with those of recent models for the formation of quasars to their host halos.

The fitting formula of Jing (1998), which is derived from \(N \)-body simulations and assumes spherical collapse for the final formation of halos, is plotted in Figure 12 (dashed lines) with the assumed halo masses (top to bottom) \(M_{\text{DMH}} = 2.0 \times 10^{12} h^{-1} M_{\odot}, 1.0 \times 10^{12} h^{-1} M_{\odot} \) and \(5.0 \times 10^{11} h^{-1} M_{\odot} \), respectively. With the Jing (1998) model, we find the halo mass at which a typical SDSS quasar inhabits remains constant (given associated errors) with redshift, at a value of a \(M_{\text{DMH}} \sim 1 \times 10^{12} h^{-1} M_{\odot} \).

By incorporating the effects of nonspherical collapse for the formation of DMH, Sheth et al. (2001) provide fitting functions for the halo bias, which are also shown in Figure 12 (solid lines). Here, the three assumed halo masses of (top to bottom) \(M_{\text{DMH}} = 4.0 \times 10^{12} h^{-1} M_{\odot}, 2.0 \times 10^{12} h^{-1} M_{\odot} \) and \(5.0 \times 10^{11} h^{-1} M_{\odot} \), respectively, are plotted. Comparing our results to the Sheth et al. (2001) models, we again find the host DMH mass is constant with redshift, at a value of a \(M_{\text{DMH}} \sim 2 \times 10^{12} h^{-1} M_{\odot} \); this mass does not significantly change from \(z \sim 2.5 \) to the present day, i.e., over 80% of the assumed age of the universe. Therefore, as DMH masses generally grow with time, the ratio of the halo mass for a typical quasar to the mean halo mass at the same epoch drops as one approaches redshift \(z = 0 \). Since the “nonspherical collapse” model is likely to be more realistic, and for ease of comparison with previous results, we quote the Sheth et al. (2001) halo mass value from here on.

Our values of halo masses of \(M_{\text{DMH}} \sim 2 \times 10^{12} h^{-1} M_{\odot} \) found for the SDSS quasars compare very well to those of Padmanabhan et al. (2008a), who find a similar value for low \(z < 0.6 \) SDSS quasars. Croom et al. (2005) also find a constant, but slightly higher value of \(M_{\text{DMH}} = 3.0 \pm 1.6 \times 10^{12} h^{-1} M_{\odot} \), by using the Sheth et al. (2001) prescription, over the redshift range \(0.3 < z < 2.9 \) for the 2QZ. da ˆAngela et al. (2008) also find \(M_{\text{DMH}} \sim 3.0 \times 10^{12} h^{-1} M_{\odot} \) but recall this analysis uses data from both the 2QZ and 2SLAQ QSO surveys. Myers et al. (2007a) provide halo masses (also using the Sheth et al. 2001 prescription) for two cosmologies and we take their \(\Gamma = 0.15, \sigma_8 = 0.8 \) model as this is closer to our own assumed cosmology. Again no evolution in the halo mass is found from \(z \sim 2.5 \), but the Myers et al. (2007a) value of \(M_{\text{DMH}} = \)
The evolution of the linear bias of quasars, b_Q, with redshift to $z = 6$. Filled (black) circles, this work; filled (green) squares, Croom et al. (2005); open (red) squares, Myers et al. (2007a); filled (blue) circles, Shen et al. (2007); the thick solid line shows the behavior for all of the three Hopkins et al. (2007) models at $i = 20.2$, with these models having identical behavior for $b(z)$. The thick solid line shows the "Inefficient feedback" model for a magnitude-limited survey of $i = 30$, i.e., a truly "complete" survey. The dotted line is for the "Efficient feedback" model (at $i = 30$) and the "Maximal growth" model is given by the dashed line (also for $i = 30$). (A color version of this figure is available in the online journal.)

Figure 13. Evolution of the linear bias of quasars, b_Q, with redshift to $z = 6$. Filled (black) circles, this work; filled (green) squares, Croom et al. (2005); open (red) squares, Myers et al. (2007a); filled (blue) circles, Shen et al. (2007); the thick solid line shows the behavior for all of the three Hopkins et al. (2007) models at $i = 20.2$, with these models having identical behavior for $b(z)$. The thick solid line shows the "Inefficient feedback" model for a magnitude-limited survey of $i = 30$, i.e., a truly "complete" survey. The dotted line is for the "Efficient feedback" model (at $i = 30$) and the "Maximal growth" model is given by the dashed line (also for $i = 30$). (A color version of this figure is available in the online journal.)

(5.2±0.6) × 10^{12} h^{-1} M_{\odot} is appreciably higher than our results. Porciani et al. (2004) applying a halo occupation distribution (HOD) model to the 2QZ data, find $M_{\text{DMH}} = 1 \times 10^{13} h^{-1} M_{\odot}$. This is roughly an order of magnitude higher than the values we report and indeed at least double that of the other values found in the literature for luminous quasars. The Porciani et al. (2004) value is in line with $M_{\text{DMH}} \sim (1-2) \times 10^{13} h^{-1} M_{\odot}$, which is the halo mass found for both the most luminous quasars or those that are FIRST-detected (i.e., radio-loud) in the SDSS DR5Q at $z < 2.5$ (Shen et al. 2009). Thus, we suggest some caution should be taken in the Porciani et al. (2004) result but note that these authors use the halo bias formula from Sheth & Tormen (1999) which is likely to contribute to some of the discrepancy. Shen et al. (2007) find a minimum halo mass of $M_{\text{DMH}} = (2-3) \times 10^{12} h^{-1} M_{\odot}$, and $M_{\text{DMH}} = (4-6) \times 10^{12} h^{-1} M_{\odot}$, for the very luminous, higher clustered, high-redshift SDSS quasars at $2.9 \leq z \leq 3.5$ and $z \geq 3.5$, respectively.

Using semianalytic models for BH accretion and quasar emission developed on top of the Millennium Simulation (Springel et al. 2005), Bonoli et al. (2008) provide a direct theoretical companion work to our observational study and that of Shen et al. (2009). These authors reproduce our findings that luminous AGNs, i.e., the SDSS $z < 2.2$ quasars (with $L_{\text{Bol}} \sim L^*$), are hosted by DMH with a narrow mass range centered around a few $10^{12} h^{-1} M_{\odot}$. The results of Bonoli et al. (2008, e.g., their Figure 13) might however suggest a slightly stronger redshift evolution for the host halo mass at $z < 2$ than is given by our observational data, but this is hard to confirm given the associated errors on both the observational data and theoretical models.

We next compare with the models of Hopkins et al. (2007, e.g., their Figure 13). Here three models are described for the feeding of quasars. All the models have the same $z < 2$ behavior, as in each case quasars are said to “shut down,” i.e., there is no accretion onto the central SMBH at $z \lesssim 2$.

The first of the Hopkins et al. (2007) models is the “Inefficient Feedback” model, whose predictions are given by the solid lines in Figure 13. Here $z \sim 6$ quasars grow either continuously or episodically with their host systems until the epoch where “downsizing” begins (i.e., $z \sim 2$). Thus, at redshifts $z > 2$ feedback from quasar activity is insufficient to completely shut down the quasar, hence the term “inefficient feedback.”

The second of the Hopkins et al. (2007) models is the “Extreme Feedback” model, represented by the dotted line in Figure 13. Here each SMBH only experiences one episode of quasar activity, after which the quasar completely shuts down, even if this occurs at high ($z > 2$) redshifts. BH growth will cease after this one-off quasar phase. If objects cannot grow after their quasar epoch even at high redshifts, then the subsequent decline of the break in the QLF at $L = L^*$ traces a decline in characteristic active masses, and the linear bias of active systems “turns over.”

The third of the Hopkins et al. (2007) models is the “Maximal Growth” model, represented by the dashed line in Figure 13. In this model the BHs grow mass at their Eddington rate until $z = 2$. For example, $a \sim 10^9 M_{\odot}$ BH at $z = 6$ will grow to $\sim 5 \times 10^9 M_{\odot}$ at $z = 2$ at which point the growth ceases and the BH mass remains constant.

The limiting factor in our ability to discriminate between models is the dynamic range in luminosity and redshift. We thus extend our redshift baseline up to $z = 6$ in Figure 13 and now also plot the bias estimates for the $z > 2.9$ SDSS quasar clustering measurements of Shen et al. (2007), given by the filled blue circles, where we use their measured values of $\xi_Q(s, z = 3.2) = 1.23 \pm 0.35$ and $\xi_Q(s, z = 4.0) = 2.41 \pm 0.59$ with our Equation (16) to estimate the bias.

A magnitude limit of $m_i \leq 20.2$ is chosen for the models to match the SDSS high-redshift quasar selection. As can be seen in Figure 13, all models match the observational clustering data well at $z < 2$. However, at this magnitude limit the QLF break luminosity L^* is only marginally resolved at $z \sim 2-3$ (e.g., Richards et al. 2006); above this redshift surveys are systematically biased to more massive $L > L^*$ BHs with higher clustering and larger linear biases. Subsequently, the models with the $m_i \leq 20.2$ limit have no discriminating power at $z > 2$, and the predicted behavior for the linear bias from the “Inefficient,” “Efficient,” and “Maximal Growth” models is identical. To break this degeneracy, deeper observational data at high redshift will be needed. Fortunately, these data should be in hand within the next few years, which will be able to discriminate and test these models, such as those with an effectively infinitely deep flux limit of $i = 30$ that are also plotted in Figure 13. Therefore, further investigations into the link between AGN/quasar activity, the buildup of SMBH mass and the formation and evolution of quasars and galaxies using clustering measurements are left to future investigations.

6. CONCLUSIONS

We have calculated the 2PCF using a homogeneous sample of 30,239 quasars from the Fifth Data Release of the SDSS Quasar Survey, covering a solid angle of $\approx 4000 \text{deg}^2$, a redshift range of $0.3 \leq z \leq 2.2$ and thus representing a measurement over the largest volume of the universe ever sampled at $25 h^{-3} \text{Gpc}^3$ (comoving) assuming the current ΛCDM cosmology. We find the following.

1. The two-point redshift-space correlation function is adequately described by a single power law of the form
\[\xi = (s/s_0)^{-\gamma} \quad \text{where} \quad s_0 = 5.95 \pm 0.45 \ h^{-1} \ Mpc \quad \text{and} \quad \gamma_s = 1.16^{+0.11}_{-0.16} \quad \text{over} \quad 1 \leq s \leq 25 \ h^{-1} \ Mpc. \]

1. We see no evidence for significant clustering (\(\xi(s) > 0\)) at scales of \(s > 100 \ h^{-1} \ Mpc\).

2. There are strong redshift-space distortions present in the two-dimensional \(\xi(r_p, \pi)\) measurement, with “Fingers of God” seen at small scales. However, these are most likely primarily dominated by redshift errors.

3. We find no significant evolution of clustering amplitude of the SDSS quasars to \(z \sim 2.5\), though we note that the luminosity threshold of the sample also increases steadily with redshift and the clustering strength does increase at higher redshift. This is investigated further in Shen et al. (2009).

4. Comparing our results with recent deep X-ray surveys, our clustering measurements are in reasonable agreement in some cases, e.g., Gilli et al. (2005), Miyaji et al. (2007), and XMM-COSMOS (Gilli et al. 2009), but significantly lower correlation lengths in others. However, there is still much scatter in the deep X-ray data, potentially due to cosmic variance and the small samples used for these analyses.

5. The linear bias for SDSS quasars over the redshift range of \(0.3 \leq z \leq 2.2\) is \(b(z = 1.27) = 2.06 \pm 0.03\). Using this bias measurement and assuming \(\Omega_m(z = 1.27) = 0.81\), but not taking into account the effects of small-scale redshift-space distortions, we find \(\beta(z = 1.27) = 0.43\). Both these values are consistent with measurements from previous surveys, i.e., the 2QZ.

6. Using models which relate dark halo mass to clustering strength (e.g., Sheth et al. 2001), we find that the dark halo mass at which a “typical SDSS quasar” resides remains roughly constant with redshift at \(M_{DMH} \sim 2 \times 10^{12} \ h^{-1} M_\odot\). This nonevolution of quasar host halo mass agrees very well with previous studies by, e.g., Croom et al. (2005) and da Ángela et al. (2008). Therefore, as dark halo masses grow with time, the ratio of the typical halo mass for a quasar to other halos at the same epoch drops with redshift.

7. Using current clustering data, we are unable to discriminate between the “Inefficient Feedback,” “Efficient Feedback,” and “Maximal Growth” models proposed by Hopkins et al. (2007) at \(z < 2\). The measured evolution of the clustering amplitude is in reasonable agreement with recent theoretical models, although measurements to fainter limits will be needed to distinguish different scenarios for quasar feeding and black hole growth.

8. Shen et al. (2009) study the clustering properties of DR5 quasars as a function of luminosity, virial mass, color, and radio loudness.

The SDSS is now complete and the final quasar catalog from Data Release 7 (Abazajian et al. 2009) is being prepared. This catalog should be a ~60% increment over DR5, containing about 130,000 quasars with spectroscopic observations, and will almost double the number of quasars in the UNIFORM subsample. DR7 will not change the luminosity dynamic range of the SDSS quasar survey but with final analysis of data from, e.g., the 2SLAQ QSO Survey (Croom et al. 2009), and extension of the deep X-ray surveys (e.g., Extended CDF-S; Lehmer et al. 2005), connections between the “luminous” and “average” AGN luminosity regimes should begin to converge.

Looking further ahead, even with the dramatic increase in data that surveys such as the 2QZ and SDSS have provided, the desire to increase dynamic range continues. For instance, due to the steepness of the faint end of the QLF (Hopkins et al. 2007), low luminosity quasars should be relatively plentiful, as long as one can identify these objects. This will be a strong challenge for the next generation of quasar redshift surveys, e.g., the Baryon Oscillation Spectroscopic Survey (BOSS; Schlegel et al. 2007) but one that will lead to another significant increase in our understanding of quasars, SMBHs, galaxy formation and evolution, and the properties of the universe.

This work was partially supported by National Science Foundation grants AST-0607634 (N.P.R. and D.P.S.) and AST-0707266 (Y.S. and M.A.S.). We warmly thank S.M. Croom for providing the 2QZ data points, S. Basilakos, A. Lidz, and P. Hopkins for providing their model data shown in Section 5, and R. Gilli for allowing us to report the most recent XMM-Newton COSMOS results prior to publication. P. Allen, W. N. Brandt, A. D. Myers, and R. Nemmen provided very useful discussion. The JavaScript Cosmology Calculator was used whilst preparing this paper (Wright 2006). This research made use of the NASA Astrophysics Data System. The data and code used will become publicly available at http://www.astro.psu.edu/users/npr/DR5/ upon publication of this paper. We thank the anonymous referee for comments that improved this work.

Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

APPENDIX A

SDSS TECHNICAL DETAILS

A.1. The Catalog Archive Server

The SDSS database can be interrogated through the CAS\(^\text{12}\) using standard Structured Query Language (SQL) queries. When querying the CAS, one has a choice to query either the best or target database for a given Data Release (in our case, DR5). The former database contains information on all the photometric and spectroscopic objects obtained using the latest (and thus the “best”) versions of the data reduction and analysis pipelines (Section 3, Abazajian et al. 2004). The

\(^{12}\) http://cas.sdss.org
target database however, contains the information on objects available at the time that the targeting algorithm pipelines were run. An object’s magnitude or color can be subtly different between target allocation and the most recent data processing, and some objects change their target selection status between the two. More details regarding the CAS, beat, and target are given in the relevant SDSS Data Release papers (Stoughton et al. 2002; Abazajian et al. 2004; Adelman-McCarthy et al. 2007).

Figure 14. Histogram showing the completeness of the DR5 Quasar survey by sector. The solid (orange) line shows completeness distribution for all 7814 sectors, while the dotted (blue) line shows the completeness distribution for the 5831 sectors which have one or more POAs in them. The summed area of sectors with given completenesses is shown by the dashed line. (A color version of this figure is available in the online journal.)

A.2. SDSS Survey Geometry

As mentioned in Sections 3.1 and 3.2, in order to calculate the 2PCF, one needs to assemble a “random” sample which reproduces the angular selection function (the mask) and the radial distribution of the quasar data. In this section, we describe the steps required to define the mask over which our sample was defined.

The first SQL query we run simply asks the CAS to return all the objects in the Photometric database that were targeted as “primary” candidate quasars. When run on DR5, this returns 203,185 objects from the PhotoObjAll table.

We next calculate which primary “PhotoObjAll” objects (POAs) fall within the spectroscopic survey plate boundaries. We do not use any of the “Extra,” “Special,” or “ExtraSpecial” plates for our analysis as these plates were not targeted with the normal quasar algorithm, or are duplicates (Adelman-McCarthy et al. 2006). There are 145,524 POA objects that fall within 1° of a given DR5 plate center, noting that since plates overlap due to the tiling scheme, an object can be in more than one plate.

Of these 145,524 objects, 11,336 are duplicate objects, defined as being within 1° of another object in the catalog. Of these 134,188 unique objects, we would next like to know how many were (1) designated as spectroscopic (tileable) targets by the process of “Tiling” and (2) allocated fibers. A tile is a 1°49 radius circle on the sky which contains the locations of up to 592 tileable targets and other science targets (the other 48 fibers are assigned to calibration targets and blank sky). For each tile a physical aluminum plate is created. The plates will have holes drilled in them for fibers to be plugged, in order to observe the titled targets. The goal of the tiling procedure, described in detail by Blanton et al. (2003), is to maximize the total number of targets assigned fibers. Due to the LSS in the quasar/galaxy distribution, the procedure overlaps tiles with one other.

As described in Blanton et al. (2003), Tegmark et al. (2004), Blanton et al. (2005), and Percival et al. (2007), a “sector” is defined as a set of tile overlap regions (spherical polygons) observed by a unique combination of tiles and survey “chunks.” A “chunk” is a unit of SDSS imaging data and is a part of an SDSS “stripe”, which is a 2.5 wide cylindrical segment aligned along a great circle between the survey poles. These sectors are the natural areas on which to define the completeness of our sample. There are 7814 sectors for DR5, 5831 of which have one or more POA objects in them. Using the RegionID field in the target table (which gives the sector identification number if set, zero otherwise), we match the positions (R.A. and decl.) of objects in target to those that are in POA and the DR5Q.

The efficiency of the quasar targeting algorithm is ~95% (Vanden Berk et al. 2005). We can define two functions for the primary sample which have dependence on angular position in the sky only in order to calculate the completeness of the survey:

1. Coverage Completeness, s_0. The coverage completeness is the ratio of the number of quasar targets that are assigned a spectroscopic fiber to the total number of quasar candidates in a given sector. Fiber collisions will be one contributing factor in the coverage completeness.

2. Spectroscopic Completeness, $fQ(\theta)$. This is the ratio of the number of high-quality spectra obtained in a sector to the number spectroscopically observed. Due to the nature of the SDSS quasar survey, this ratio tends to be very high.

The “overall completeness”, f_0, is defined as $f_0 = fQ \times fL$, and the distribution of this overall sector completeness is shown in Figure 14.

APPENDIX B

JACKKNIFE ERRORS

Here we follow Scranton et al. (2002, Sections 3.4.5, 11.3 and their Equation (10)), Zehavi et al. (2002, Section 3.4 and Equation (7)), and Myers et al. (2007a, Appendix A) to calculate the jackknife error estimates on our quasar clustering data.

Myers et al. (2007a) estimate errors using an “inverse variance” weighted jackknife technique. This method divides the data into N subsamples and then recalculates the given statistic (e.g., $\xi(s)$) using the Landy–Szalay estimator (Equation (5)), leaving out one subsample area at one time. Following their convention we denote subsamples by the subscript L and recalculate $\xi(s)_L$ in each jackknife realization via Equation (5). The inverse-variance-weighted covariance matrix, $C_{ij} = C_{ij}$, is

$$C_{ij} = \sum_{L=1}^{N} \frac{RR_L(s_i) - RR(s_i)}{RR(s_i)} \frac{RR_L(s_j) - RR(s_j)}{RR(s_j)} \left[\xi_L(s_i) - \xi(s_i) \right] \left[\xi_L(s_j) - \xi(s_j) \right]$$

(1)

See also http://www.sdss.org/dr6/algorithms/tiling.html
Figure 15. Geometry of the SDSS DR5Q Jackknife areas, showing the location of the DR5Q PRIMARY (orange/gray dots) and the UNIFORM (black dots) samples. The jackknife areas were chosen to follow the overall geometry of the SDSS Quasar survey. The number of quasars in each area is approximately equal. Note the sparse coverage of the UNIFORM sample in the Southern Stripes.

(A color version of this figure is available in the online journal.)

where ξ denotes the correlation function for all data. Jackknife errors σ_i are obtained from the diagonal elements ($\sigma_i^2 = C_{ii}$), and the normalized covariance matrix, also known as the regression matrix, is

$$|C| = \frac{C_{ij}}{\sigma_i \sigma_j}. \quad \text{(B2)}$$

We divide the sample into 21 subsamples. The number of subdivisions is chosen such that each represents a cosmologically significant volume, while retaining sufficient numbers of objects that shot noise will not dominate any subsequent analysis. The detailed boundaries of the subsamples are given in Table 4 and described by Figure 15.

Given the smallness of the off-diagonal elements of the covariance matrix (Figure 16), we measure errors using the diagonal elements only. But here we carry out a check using the full covariance matrix. We fit the observed $\xi(s)$ to the power-law model using the full covariance matrix. We calculate χ^2 as

$$\chi^2 = \sum_{ij} \left[\frac{\xi(s_i) - \xi_{\text{mod}}(s_i)}{C_{ij}^{-1}} \right] \left[\frac{\xi(s_j) - \xi_{\text{mod}}(s_j)}{C_{ij}^{-1}} \right], \quad \text{(B3)}$$

where C_{ij}^{-1} is the inverse covariance matrix, and $\xi_{\text{mod}}(s) = (s/s_0)^{-\gamma_s}$ is our model, where we vary s_0 over the range $s_0 = 0.0–15.0 \ h^{-1} \ Mpc$ in steps of $0.05 \ h^{-1} \ Mpc$ and γ_s over the range $\gamma_s = 0.00–3.00$ in steps of 0.01, fitting $\xi(s)$ on scales from $1 \ h^{-1} \ Mpc < s < 25.0 \ h^{-1} \ Mpc$ scales.

Our estimates of the redshift-space correlation length and power-law slope are now $s_0 = 6.35^{+0.40}_{-0.35} \ h^{-1} \ Mpc$ and $\gamma_s = 1.11^{+0.14}_{-0.08}$, respectively (we found $s_0 = 5.95 \pm 0.45 \ h^{-1} \ Mpc$ and $\gamma_s = 1.16^{+0.11}_{-0.08}$ using the diagonal elements only). However, fitting over $1.0 \ h^{-1} \ Mpc < s < 100.0 \ h^{-1} \ Mpc$ scales, we find there is some tension between the best-fit values given in Section 4.1 of $s_0 = 5.90 \pm 0.30 \ h^{-1} \ Mpc$ and $\gamma_s = 1.57^{+0.04}_{-0.05}$ and the best-fit values using the covariance matrix of $s_0 = 6.95^{+0.45}_{-0.55} \ h^{-1} \ Mpc$ and $\gamma_s = 1.53 \pm 0.09$. We believe this is due to the noisy matrix inversion, where small values at large scales in the covariance matrix will dominate the signal in the inverse matrix. However, we are confident that using the diagonal elements of the covariance matrix only for our model fits does not change the interpretation of our results.
Table 4
Details of the Regions Used for the Jackknife Subsamples

Region	R.A. min	R.A. max	Decl. min	Decl. max	No. of Quasars	No. of Randoms
N01	120	140	−5	12	29,445	870,558
N02	140	168	−5	18	28,456	841,541
N03	168	196	−5	18	27,904	825,442
N04	196	225	−5	18	28,717	846,926
N05	225	256	−5	11	29,891	879,837
N06	108	136	14	23.5	29,614	873,778
N07	108	136	23.5	35	28,646	845,871
N08	136	186	22	40	26,942	798,307
N09	186	236	22	40	28,717	846,926
N10	236	265	12	35	29,891	879,837
N11	108	136	35	50	29,003	856,576
N12	136	161	40	50	28,875	855,021
N13	161	186	40	50	28,857	853,908
N14	186	211	40	50	28,817	854,055
N15	211	236	40	50	28,924	854,070
N16	236	265	35	50	29,246	863,221
N17	110	161	50	70	29,253	863,420
N18	161	186	50	70	28,899	853,792
N19	186	211	50	70	28,911	853,175
N20	211	268	50	70	29,404	868,561
S	0.3−305	70−360	−14	18	28,675	842,497

Note. The “No. of quasars” column gives the number of quasars left in the remaining regions when the given region is cut out.

Figure 17. Comparison of Poisson and Jackknife errors for the UNIFORM DR5 Quasar sample. The ratio between the Poisson and Jackknife errors (from the diagonal elements of the covariance matrix only) is very close to one at \(s \lesssim 70 h^{-1} \text{ Mpc} \), while at \(s \gtrsim 70 h^{-1} \text{ Mpc} \), the Poisson errors are \(\sim \) double that of the Jackknives.

We find, as in previous quasar clustering work (e.g., Shanks & Boyle 1994; Croom & Shanks 1996), that Poisson errors are a good description on scales where \(DDq \lesssim Nq \), where \(Nq \) is the number of quasars in a given sample and \(DDq \) is the number of quasar pairs in a given bin. On larger scales, the Poisson error tends to underestimate the Jackknife error, see Figure 17. The scale where \(Nq \approx DDq \) is \(\sim 70 h^{-1} \text{ Mpc} \) for the SDSS UNIFORM Quasar sample.

APPENDIX C
SYSTEMATICS IN THE SDSS QUASAR 2PCF

Here we explore the effects of how the various systematic effects in our data, and our methodology affect our correlation results. We shall determine the effects of different quasar samples (Section C.1), changing the high-redshift cut...
UNIFORM sample using the LS estimator. The two samples are in excellent agreement at small scales, \(s \leq 20 \, h^{-1} \, \text{Mpc} \), but the PRIMARY sample exhibits a higher clustering strength at large scales, \(s \geq 40 \, h^{-1} \, \text{Mpc} \). One possible explanation for this discrepancy is due to the differing radial distributions in PRIMARY and UNIFORM resulting from the different target selection used before DR2. This result provides our main motivation for using the UNIFORM sample exclusively in Sections 3 and 4.

C.2. High-Redshift Cutoff

Figure 19 shows the redshift-space 2PCF \(\xi(s) \) for the UNIFORM sample with the high-redshift cutoff being changed from \(z \leq 2.2 \) to \(z \leq 2.9 \). It is reassuring that the change between \(\xi(s) \) is minimal, though this is somewhat unexpected since our optical selection for the quasar sample is known to be affected between \(z = 2.2 \) and \(z = 2.9 \) (Richards et al. 2006).

C.3. The NGC Versus the SGC

Figure 20 shows the redshift-space 2PCF \(\xi(s) \) for the UNIFORM sample, split into quasars from the North Galactic Cap (NGC) and the South Galactic Cap (SGC). Note the data is heavily dominated by the NGC in the UNIFORM sample. There is no detectable signal in the SGC \(\xi(s) \) below \(s \approx 10 \, h^{-1} \, \text{Mpc} \) and the two measurements are in good agreement.

C.4. Bad Fields

In the SDSS, a “field” is an image in all five bands, with approximate dimensions of \(13' \times 10' \). Since the quasar target selection algorithm searches for outliers from the stellar locus in color space it is very sensitive to data with large photometric errors due to problems in photometric calibration or in point-spread function (PSF) determination (Richards et al. 2006). Thus, using the definitions of “bad fields” given by Richards et al. (2006) and Shen et al. (2007), based on the position of the stars in color–color space (Ivezić et al. 2004), we calculate the correlation function both including and excluding data from these areas.

C.5. Reddening

While all selection for the quasar sample is undertaken using dereddened colors (Richards et al. 2002) following the Galactic extinction model of Schlegel et al. (1998), any remaining systematic errors in the reddening model can induce excess power into the clustering in a number of different ways. The most obvious possibility comes from a modulation in the angular density.
of quasars as a function of position on the sky. In addition the color dependence of the reddening correction may preferentially exclude quasars at specific redshifts. As we currently assume a common $N(z)$ for all quasars in the UNIFORM sample, an $N(z)$ that is reddening-dependent can also induce excess clustering. For this analysis we will assume that any artificial signal that might be induced by the reddening correction will scale with the magnitude of the reddening correction itself. We therefore subdivide the UNIFORM quasar sample into two subsets, of approximately equal number, a low reddening sample, with $0.0028 < E(B-V) \leq 0.0217$, and a high reddening sample $0.0217 < E(B-V) \leq 0.2603$. The reddening estimates are derived from the maps of Schlegel et al. (1998).

Figure 22 shows the redshift-space 2PCF $\xi(s)$ for the full UNIFORM sample, with the reddening split subsamples. The low reddening component, dot-dashed (green) line and the high reddening component, dotted (red) line are consistent within the errors for all scales out to $\sim 250 h^{-1}$ Mpc. There is no evidence for a systematic difference in the clustering signal on large scales that might be induced by any modulation due to errors in the reddening correction.

C.6. Fiber Collisions

Due to the design of the SDSS fibers and plates, no two spectroscopic fibers can be separated by less than $55''$. As a result, there is a fiber-collision limit of the SDSS spectroscopy that we not observed due to fiber collisions (red, dotted line). We see very little difference on scales $s > 5 h^{-1}$ Mpc but do measure increased values of $\xi(s)$ at $\sim 1-5 h^{-1}$ Mpc.

As we can see from Figure 24, the inclusion of these collided objects makes very little difference to our measurement of $\xi(s)$ at scales $\geq 5 h^{-1}$ Mpc. However, we do measure increased values of $\xi(s)$ at $s = 1-5 h^{-1}$ Mpc. Therefore, we again fit a single power law to the data which has been corrected for fiber collisions using the photometric quasar redshifts, over the scales $1 < s < 25 h^{-1}$ Mpc and find $s_0 = 6.70^{+0.35}_{-0.39} h^{-1}$ Mpc and $\gamma_s = 1.29^{+0.12}_{-0.10}$ (compared to $s_0 = 5.95 \pm 0.45 h^{-1}$ Mpc and $\gamma_s = 1.16^{+0.11}_{-0.09}$ found in Section 4.1). With the inclusion of more data at small separations, the fiber-corrected $\xi(s)$ has a higher s_0 value and steeper slope, but we find these results

Figure 22. SDSS DR5 Quasar $\xi(s)$ for the UNIFORM sample with the sample split by $E(B-V)$. We see no systematic difference in the clustering signal between the two $\xi(s)$ measurements that might have been caused due to errors in the reddening correction model.

(A color version of this figure is available in the online journal.)

Figure 23. Transverse comoving separation corresponding to $55''$ as a function of redshift. This is the minimal projected comoving separation that can be probed with the SDSS spectroscopic quasar sample as a function of redshift, due to the fiber collision limit of the SDSS spectroscopy.

Figure 24. SDSS DR5 Quasar $\xi(s)$ for the UNIFORM sample: with no fiber collision correction (filled circles), using photometric redshifts for quasar candidates that we not observed due to fiber collisions (green, dot-dashed line), and using the redshifts from the nearest observed quasar for quasar candidates that we not observed due to fiber collisions (red, dotted line). We see very little difference on scales $s > 5 h^{-1}$ Mpc but do measure increased values of $\xi(s)$ at $\sim 1-5 h^{-1}$ Mpc.

(A color version of this figure is available in the online journal.)
are consistent with our measurement of \(\xi_0 \) varying \(\pi_{\max} \) from Equation (9). We vary \(\pi_{\max} \) in intervals of \(10^{0.2} \) over the range \(\pi_{\max} = 10^{1.4-2.0} = 25.1-100.0 \) h^{-1} Mpc. Although changing the \(\pi_{\max} \) cut does produce a noticeable effect in estimates of \(w_p(r_p)/r_p \), when fitting our single power law over the scales \(4.0 \) h^{-1} Mpc < \(r_p < 130.0 \) h^{-1} Mpc, we do not see a significant change in the best-fit \(r_0 \) or power-law slope values, with the former constant at \(r_0 \approx 8.3 \) h^{-1} Mpc and the latter constant at \(y \approx 2.3 \). We are therefore confident that the integration limit of \(\pi_{\max} = 63.1 \) h^{-1} Mpc provides a good balance between larger \(\pi \) values which would add noise to our \(w_p(r_p)/r_p \) estimate, and lower \(\pi \) values which might not recover the full signal at the largest separations.

Figure 25. Projected correlation function \(w_p(r_p)/r_p \) for the SDSS DR5Q UNIFORM sample with \(0.30 < z < 2.2 \) with no fiber collision corrections (filled circles), using photometric redshifts for quasar candidates that we not observed due to fiber collisions (red, dotted line). We see very little difference on scales \(r_p < 1 \) h^{-1} Mpc but do measure increased values of \(w_p(r_p)/r_p \) at \(r_p > 1 \) h^{-1} Mpc.

(A color version of this figure is available in the online journal.)

Figure 26. Projected correlation function \(w_p(r_p)/r_p \) for the SDSS DR5Q UNIFORM sample with \(0.30 < z < 2.2 \), varying \(\pi_{\max} \) from Equation (9). The lower panel has the data divided by the best-fit power law from Section 4, with \(r_0 = 8.75 \) h^{-1} Mpc and \(y = 2.40 \).

(A color version of this figure is available in the online journal.)

are consistent with our measurement of \(\xi_0 \) without the fiber collision corrections, given the errors.

By examining Figure 25, we see that fiber collisions do not account for the possible break in the slope of \(w_p(r_p)/r_p \) that was discussed in Section 4.3. We are thus satisfied that fiber collisions do not impact the results presented herein and refer the reader to Hennawi et al. (2006) and Myers et al. (2008) for more detailed investigations of quasar clustering and quasar binaries on these very small scales.

C.7. Varying \(\pi_{\max} \) Limits for \(w_p(r_p) \)

Figure 26 shows the projected correlation function \(w_p(r_p)/r_p \) for the SDSS DR5Q UNIFORM sample with \(0.30 < z < 2.2 \), varying \(\pi_{\max} \) from Equation (9). We vary \(\pi_{\max} \) in intervals of \(10^{0.2} \) over the range \(\pi_{\max} = 10^{1.4-2.0} = 25.1-100.0 \) h^{-1} Mpc. Although changing the \(\pi_{\max} \) cut does produce a noticeable effect in estimates of \(w_p(r_p)/r_p \), when fitting our single power law over the scales \(4.0 \) h^{-1} Mpc < \(r_p < 130.0 \) h^{-1} Mpc, we do not see a significant change in the best-fit \(r_0 \) or power-law slope values, with the former constant at \(r_0 \approx 8.3 \) h^{-1} Mpc and the latter constant at \(y \approx 2.3 \). We are therefore confident that the integration limit of \(\pi_{\max} = 63.1 \) h^{-1} Mpc provides a good balance between larger \(\pi \) values which would add noise to our \(w_p(r_p)/r_p \) estimate, and lower \(\pi \) values which might not recover the full signal at the largest separations.

REFERENCES

Abazajian, K., et al. 2003, AJ, 126, 2081
Abazajian, K., et al. 2004, AJ, 128, 502
Abazajian, K., et al. 2009, ApJS, in press (arXiv:0812.0649v2)
Adelberger, K. L., & Steidel, C. C. 2005a, ApJ, 627, L1
Adelberger, K. L., & Steidel, C. C. 2005b, ApJ, 630, 50
Adelberger, K. L., Steidel, C. C., Pettini, M., Shapley, A. E., Reddy, N. A., & Erb, D. K. 2005, ApJ, 619, 697
Adelman-McCarthy, J. K., et al. 2006, ApJS, 162, 38
Adelman-McCarthy, J. K., et al. 2007, ApJS, 172, 634
Alexander, D. M., et al. 2003, AJ, 126, 539
Arp, H. 1970, AJ, 75, 1
Baes, M., Bayle, P., Hau, G. K. T., & Dejonghe, H. 2003, MNRAS, 341, L44
Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5
Barger, A. J., et al. 2003, AJ, 126, 632
Basilakos, S., Georgakakis, A., Plionis, M., & Georgantopoulos, I. 2004, ApJ, 607, L79
Basilakos, S., Plionis, M., & Ragone-Figueroa, C. 2008, ApJ, 678, 627
Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559
Blanton, M., Cen, R., Ostriker, J. P., & Strauss, M. A. 1999, ApJ, 522, 590
Blanton, M. R., Eisenstein, D., Hogg, D. W., & Zehavi, I. 2006, ApJ, 645, 977
Blanton, M. R., Lin, H., Lupton, R. H., Maley, F. M., Young, N., Zehavi, I., & Loveday, J. 2003, AJ, 125, 2276
Blanton, M. R., et al. 2005, AJ, 129, 2562
Bonoli, S., Marulli, F., Springel, V., White, S. D. M., Branchini, E., & Moscardini, L. 2008, arXiv:0812.0003v1
Boyle, B. J., Georgantopoulos, I., Blair, A. J., Stewart, G. C., Griffiths, R. E., Shanks, T., Gunn, K. F., & Almaini, O. 1998, MNRAS, 296, 1
Boyle, B. J., Shanks, T., Croton, S. M., Smith, R. J., Miller, L., Loaring, N., & Heymans, C. 2000, MNRAS, 317, 1014
Brandt, W. N., & Hasinger, G. 2005, ARA&A, 43, 427
Coll, A., L., Hennawi, J. F., Newman, J. A., Cooper, M. C., & Davis, M. 2007, ApJ, 654, 115
Coles, P., & Erdogan, P. 2007, J. Cosmol. Astropart. Phys., JCAP10(2007)007
Coles, P., & Lucchin, F. 2002, Cosmology: The Origin and Evolution of Cosmic Structure (2nd ed.; New York: Wiley-VCH)
CONSTANTIN, A., & VOGELOFF, M. S. 2006, ApJ, 650, 727
Croom, S. M., & Shanks, T. 1996, MNRAS, 281, 893
Croom, S. M., Shanks, T., Boyle, B. J., Smith, R. J., Miller, L., Loaring, N. S., & Heymans, C. 2001, MNRAS, 325, 483
Croom, S. M., Smith, R. J., Boyle, B. J., Shanks, T., Miller, L., Outram, P. J., & Loaring, N. S. 2004, MNRAS, 349, 1397
Croom, S. M., et al. 2005, MNRAS, 356, 415
Croom, S. M., et al. 2009, MNRAS, 402, 19
-da Angela, J., Outram, P. J., Shanks, T., Boyle, B. J., Croton, S. M., Loaring, N. S., Miller, L., & Smith, R. J. 2005, MNRAS, 360, 1040
-da Angela, J., et al. 2008, MNRAS, 383, 565
Davis, M., Newman, J. A., Faber, S. M., & Phillips, A. C. 2001, in Deep Fields, ed. S. Cristiani, A. Renzini, & R. E. Williams (Berlin: Springer), 241
Davis, M., & Peebles, P. J. E. 1983, ApJ, 267, 465
Davis, M., et al. 2003, Proc. SPIE, 4834, 161
Dekel, A., & Lahav, O. 1999, ApJ, 520, 24
Eisenstein, D. J., et al. 2001, AJ, 122, 2267
Fan, X. 1999, AJ, 117, 2528
Fine, S., et al. 2006, MNRAS, 373, 613
Fisher, K. B., Davis, M., Strauss, M. A., Yahil, A., & Huchra, J. P. 1994, MNRAS, 267, 927
Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., & Schneider, D. P. 1996, AJ, 111, 1748

1654 ROSS ET AL. Vol. 697
