Recomendações de suporte intensivo para pacientes graves com infecção suspeita ou confirmada pela COVID-19

Intensive support recommendations for critically-ill patients with suspected or confirmed COVID-19 infection

Thiago Domingos Corrêa¹, Gustavo Faissol Janot de Matos¹, Bruno de Arruda Bravim¹, Ricardo Luiz Cordioli¹, Alejandra del Pilar Garrido ¹, Murillo Santucci Cesar de Assuncao¹, Carmen Silvia Valente Barbosa¹, Kanna Tavares Timenetsky¹, Roseny dos Reis Rodrigues¹, Hélio Penna Guimarães¹, Roberto Rabello Filho¹, Frederico Polito Lomar¹, Farah Christina de La Cruz Scarin¹, Carla Luciana Batista¹, Adriano José Pereira¹, João Carlos de Campos Guerra¹, Bárbara Vieira Carneiro¹, Ricardo Kenji Nawa¹, Rodrigo Martins Brandão¹, Antônio Eduardo Pereira Pesaro¹, Moacyr Silva Júnior¹, Fabricio Rodrigues Torres de Carvalho¹, Cílene Saghabi de Medeiros Silva¹, Ana Claudia Ferraz de Almeida¹, Marcelo Liliane Pesavento¹, Raquel Afonso Caserta Eid¹, Leonardo José Rolim Ferraz²

¹ Hospital Israelita Albert Einstein, São Paulo, SP, Brasil.
DOI: 10.31744/einstein_journal/2020AE5793

RESUMO
Em dezembro de 2019, uma série de pacientes com pneumonia grave foi identificada em Wuhan, província de Hubei, na China. Esses pacientes evoluíram para síndrome respiratória aguda grave e síndrome do desconforto respiratório agudo. Posteriormente, a COVID-19 foi atribuída a um novo betacoronavírus, o coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). Cerca de 20% dos pacientes com diagnóstico de COVID-19 desenvolvem formas graves da doença, incluindo insuficiência respiratória aguda hipoxêmica, síndrome respiratória aguda grave, síndrome do desconforto respiratório agudo e insuficiência renal aguda e requerem admissão em unidade de terapia intensiva. Não há nenhum ensaio clínico randomizado controlado que avalie potenciais tratamentos para pacientes com infecção confirmada pela COVID-19 no momento da publicação destas recomendações de tratamento. Dessa forma, essas recomendações são baseadas predominantemente na opinião de especialistas (grau de recomendação de nível C).

Descritores: Coronavirus; COVID-19; Insuficiência respiratória; Síndrome do desconforto respiratório do adulto; Unidades de terapia intensiva

ABSTRACT
In December 2019, a series of patients with severe pneumonia were identified in Wuhan, Hubei province, China, who progressed to severe acute respiratory syndrome and acute respiratory distress syndrome. Subsequently, COVID-19 was attributed to a new betacoronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Approximately 20% of patients diagnosed as COVID-19 develop severe forms of the disease, including acute hypoxemic respiratory failure, severe acute respiratory syndrome, acute respiratory distress syndrome and acute renal failure and require intensive care. There is no randomized controlled clinical trial addressing potential therapies for patients with confirmed COVID-19 infection at the time of publishing these treatment recommendations. Therefore, these recommendations are based predominantly on the opinion of experts (level C of recommendation).

Keywords: Coronavirus; COVID-19; Respiratory insufficiency; Respiratory distress syndrome, adult; Intensive care units
INTRODUÇÃO

Em dezembro de 2019, em Wuhan, província de Hubei, na China, uma série de pacientes evoluiu com pneumonia grave e apresentou síndrome respiratória aguda grave (SARS) e síndrome do desconforto respiratório agudo (SDRA). Posteriormente, essa doença disseminou-se para outras regiões da China e diversos países em diferentes continentes, caracterizando uma pandemia. Essa doença foi atribuída a um novo betacoronavírus, nomeado coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). Recentemente, a doença causada por esse vírus recebeu o nome de coronavírus disease 2019 (COVID-19).

Os pacientes com COVID-19 apresentam, principalmente, febre, tosse, dispneia, mialgia e fadiga. Embora a maioria deles apresente evolução favorável, aproximadamente 20% dos pacientes desenvolvem formas graves da doença, incluindo insuficiência respiratória aguda hipoxémica (IRpA), SARS, SDRA e insuficiência renal aguda (IRA) com necessidade de admissão em unidade de terapia intensiva (UTI). Também já foi demonstrado que alguns grupos, especialmente os idosos e os portadores de outras patologias de base, têm maior risco de desenvolver disfunção de múltiplos órgãos (DMOS) e, por final, irem a óbito.

No momento da publicação destas recomendações, nenhum ensaio clínico randomizado e controlado (ECR) avaliava potenciais terapias para pacientes com infecção confirmada pela COVID-19. Uma busca no ClinicalTrials.gov utilizando o descriptor “COVID-19” resultou em 179 ECR em fase de recrutamento de pacientes. Foi publicada recentemente uma revisão narrativa detalhada sobre as terapias específicas utilizadas para tratamento da COVID-19.

Dessa forma, o material contido nestas recomendações é baseado predominantemente na opinião de especialistas. Assim, estas recomendações devem ser consideradas com cautela por profissionais de saúde, tendo em vista Grau de Recomendação de nível C (relato de casos, incluindo estudos de coorte ou caso-controle de menor qualidade).

CRITÉRIOS PARA ADMISSÃO NA UNIDADE DE TERAPIA INTENSIVA

É necessário apresentar pelo menos um dos critérios abaixo para internação em UTI:

- Pacientes com necessidade de oxigênio suplementar (cateter nasal de oxigênio – CNO >3,0L/minuto) para manter saturação periférica de oxigênio (SpO2) >94% ou frequência respiratória (FR) ≤24rpm.

- Pacientes que necessitam de ventilação não invasiva (VNI) para manter SpO2 >94% ou FR ≤24rpm.

- Insuficiência respiratória aguda com necessidade de ventilação mecânica (VM) invasiva.

- Pacientes com instabilidade hemodinâmica ou choque, definidos como hipotensão arterial (pressão arterial sistólica – PAS <90mmHg ou pressão arterial média – PAM <65mmHg), ou sinais de má perfusão orgânica ou periférica (alteração da consciência, oligúria, lactato ≥36mg/dL, entre outros), com ou sem utilização de vasopressores.

- Sepse com hipotensão arterial, necessidade de vasopressor ou lactato ≥36mg/dL.

- Chocoe séptico de acordo com os critérios Sepsis-3.

SUPORTE VENTILATÓRIO

Ventilação não invasiva e cateter nasal de alto fluxo:

- A utilização de VNI em modalidades de pressão positiva em vias aéreas em dois níveis de pressão (BiPAP) e de cateter nasal de alto fluxo (CNAF) está contraindicada pela grande produção de aerossol.

- Um teste curto de VNI (30 minutos) pode ser realizado para pacientes com IRpA. O teste de VNI deve ser realizado com parâmetros máximos de fração inspirada de oxigênio (FiO2) 50%, ou pressão positiva (PP) com delta 10cmH2O e pressão positiva expiratória na via aérea (EPAP) 10cmH2O (Figura 1).
Recomendações de suporte intensivo para pacientes graves com infecção suspeita ou confirmada pela COVID-19

Para permitir a utilização da interface de VNI com segurança, recomendamos a utilização de máscara orofacial não ventilada (sem válvula exalatória) acoplada a um circuito duplo, específico de VM, e conectado ao ventilador mecânico.

Utilizar filtro barreira na saída expiratória dos ventiladores mecânicos.

Critérios de sucesso na VNI: paciente tolerar interface e melhora do desconforto respiratório (FR <24rpm e SpO₂ ≥94% com FiO₂ ≤50%) após 30 minutos de VNI.

Definição de dependência da VNI: necessidade de permanência em VNI superior ou igual a 4 horas em um período de 6 horas para manutenção da FR <24rpm e da SpO₂ ≥94%.

Pacientes dependentes da VNI devem ser transferidos para UTI precocemente, para realização de intubação orotraqueal (IOT) imediata.

CRITÉRIOS PARA INTUBAÇÃO OROTRAQUEAL

- Pacientes que apresentam necessidade de oxigênio suplementar através de CNO₂ >5L/minuto ou VNI com FiO₂ >50% ou PP com delta >10cmH₂O ou EPAP >10cmH₂O para manter SpO₂ >94% ou FR ≤24rpm.
- Pacientes que não se adaptaram ou toleraram a interface de VNI.
- Pacientes dependentes de VNI.

PROCEDIMENTOS PARA INTUBAÇÃO OROTRAQUEAL

- Paramentação da equipe durante o procedimento de IOT: avental impermeável, luva estéril, máscara N95, óculos de proteção e máscara protetora facial (face shield).
- Permanecer dentro do leito apenas os profissionais que participarão ativamente do procedimento. Recomendamos que um profissional capacitado permaneça na porta do quarto para eventual suporte durante a IOT.
- Preparar todo material para IOT, incluindo cânula orotraqueal com aspiração subglótica e sistema de aspiração fechado em todos os pacientes submetidos à IOT e à VM.
- Todos os procedimentos de IOT devem ser realizados com videolaringoscopia direta.
- Todas as medidas aplicadas à interface, mascarilla e circuito VNI devem ser mantidas e utilizadas para a IOT.

AJUSTES INICIAIS DO VENTILADOR MECÂNICO

Recomendamos os seguintes parâmetros iniciais de VM imediatamente após a IOT:

- Modo pressão controlada (PCV).
- Volume corrente (VC) de 6mL/kg de peso predito.(13)
- Pressão positiva expiratória final (PEEP) inicial de 15cmH₂O.
- Freqüência respiratória de 20 a 24rpm, para manter volume-minuto (VM) entre 7 e 10L/minuto.
- Pressão de distensão (driving pressure; pressão de plató menos PEEP) 15cmH₂O.
- Alvo inicial de SpO₂ entre 92 e 96%.
• Alvo inicial de dióxido de carbono de final de expiração (EtCO_2) entre 30 e 45.
• Sugerimos realização de gasometria arterial 1 hora após IOT, para eventuais ajustes nos parâmetros iniciais de VM.

ESTRATÉGIA DE VENTILAÇÃO MECÂNICA PROTETORA

A estratégia de VM empregada em pacientes com diagnóstico suspeito ou confirmado de COVID-19 encontra-se detalhada na figura 2.

* Se aumento da pressão parcial de CO$_2$ arterial e pH < 7,20, avaliar possibilidade de reduzir a PEEP em 2cmH$_2$O e reavaliar; † minitimulação da PEEP com os parâmetros PEEP 25cmH$_2$O e delta de pressão 15cmH$_2$O durante 5 minutos. Otimizar sedação e BNM; ‡ seguir protocolo de VM prona. Caso não responda, realizar minitimulação da PEEP novamente. Ajustar PEEP em 20cmH$_2$O.

Figura 2. Fluxograma para ventilação mecânica em pacientes com diagnóstico suspeito ou confirmado de COVID-19.
CRITÉRIOS PARA INÍCIO DE DESMAME VENTILATÓRIO

- Após 24 horas estável com PEEP inicialmente ajustada conforme figura 2, tentar reduzir PEEP de 1 em 1cmH₂O, a cada 8 horas, para relação entre pressão arterial parcial de oxigênio e fração inspirada de oxigênio (PaO₂/FiO₂) >300.
- Se paciente for hipoxêmico crônico, utilizar PaO₂/FiO₂ > 250 para reduzir PEEP.
- Modificar o modo ventilatório controlado para espontâneo apenas quando PEEP ≤15cmH₂O, FiO₂ <50% e escala de agitação e sedação de Richmond (RASS) >-5.¹⁴

CRITÉRIOS PARA INÍCIO DE TESTE DE RESPIRAÇÃO ESPONTÂNEA

Para realização do teste de respiração espontânea (TRE), recomenda-se (Figuras 3 e 4):
- Permanecer por 24 horas em modo ventilatório por pressão de suporte (PSV) com PEEP=10cmH₂O, FiO₂ <40% e pressão de suporte (PS) ≤10cmH₂O e manter a pressão de oclusão das vias aéreas durante os primeiros 100 milissegundos (P0,1) ≤4cmH₂O.
- Apresentar nível de consciência adequado: RASS 0-2¹⁴ ou próximo ao basal.
- Apresentar estabilidade hemodinâmica, definida pela não necessidade de vasopressores ou necessidade de dose de noradrenalina <0,2mcg/kg/minuto ou dose estável de dobutamina ou em desmame e presença de marcadores de perfusão tecidual adequados.
- Após as 24 horas com os parâmetros de VM acima descritos e adequada troca gasosa, caracterizada por pH 7,3 com pressão arterial de dióxido de carbono (PaCO₂) <55mmHg; PaO₂ ≥60mmHg com FiO₂ <40%; PEEP ≤10cmH₂O; PaO₂/FiO₂ ≥250; SpO₂ ≥90%, iniciar TRE (Figuras 3 e 4).
- Não realizar teste de escape do balonete (cuff leak test)¹⁵ antes de extubar os pacientes devido ao risco de aerossolização.

VM: ventilação mecânica; TRE: teste de respiração espontânea; VNI: ventilação não invasiva; CNO2: cateter nasal de oxigênio; Bag 100%: máscara de oxigênio com reservatório (não reinalante); PS: pressão de suporte; PEEP: pressão positiva expiratória final; FiO₂: fração inspirada de oxigênio; SaO₂: saturação periférica de oxigênio; PaCO₂: pressão parcial de dióxido de carbono; FC: frequência cardíaca; PA: pressão arterial; FR: frequência respiratória.

Figura 3. Fluxograma para desmame da ventilação mecânica em pacientes com diagnóstico suspeito ou confirmado de COVID-19
A associação entre propofol (dose máxima de 3,0mg/kg/hora) EV e fentanil (dose de 25 a 50mcg/hora; dose máxima 100mcg/hora) EV é a primeira escolha para sedação e analgesia de pacientes submetidos à VM por COVID-19.

Na presença de propofol em dose superior a 3mg/kg/hora, recomenda-se associar midazolam, na dose de 0,02 a 0,2mg/kg/hora EV.

Alvo de sedação recomendado durante as primeiras 48 horas de VM: RASS -5.

Alvo de sedação recomendado após as primeiras 48 horas de VM:
- Relação PaO$_2$/FiO$_2$ ≥250 e PEEP ≥15cmH$_2$O: RASS -4 a -5.
- Caso seja necessário, realizar doses adicionais para controle de agitação durante a VM:
 - Propofol: 10 a 40mg EV em bólus.
 - Midazolam: 3 a 5mg EV em bólus.

Na presença de propofol em dose superior a 3mg/kg/hora, recomenda-se associar midazolam, na dose de 0,02 a 0,2mg/kg/hora EV.

ANALGESIA E SEDAÇÃO

- Propofol: 10 a 40mg EV em bólus.
- Midazolam: 3 a 5mg EV em bólus.
- Para controle adicional da dor (analgesia) durante a VM, recomendamos doses adicionais de fentanil em bólus (50mcg EV) e associação com analgésicos comuns (exemplo: dipirona ou paracetamol) com objetivo de poupar a utilização de opioides.

Em relação à utilização de bloqueador neuromuscular (BNM), recomenda-se administração de cis-tracúrio 0,15mg/kg EV em bólus, seguida de infusão em bomba de infusão contínua (BIC) de 1 a 4mcg/kg/minuto, quando houver:
- Assincronia grave persistente, caracterizada por piora da oxigenação e da ventilação, após ajuste da VM e de sedação, em pacientes com PaO$_2$/FiO$_2$ entre 150 e 200;
- PaO$_2$/FiO$_2$ <150 com PEEP >15cmH$_2$O.

Em pacientes recebendo BNM, com base nas diretrizes vigentes, recomenda-se:
- Índice bispectral (BIS) com alvo de 40 a 60, com taxa de supressão de surtos (SR) > zero.
- **Train of four (TOF):** alvo zero (avaliar uma vez por dia, se possível).
- Na impossibilidade de monitorização com BIS, deve-se garantir sedação profunda (RASS-5) antes do início da infusão do BNM.

Em pacientes recebendo sedação contínua, recomenda-se rever diariamente a possibilidade de diminuição da sedação, se pH >7,30 e:
- Se PaO$_2$/FiO$_2$ >200, tentar trocar midazolam por propofol, caso esteja em uso de midazolam.
- Se PaO$_2$/FiO$_2$ >300, tentar trocar propofol por dexmedetomidina (0,3 a 1,3mcg/kg/hora).
- Tentar, concomitantemente, reduzir progressivamente a dose de fentanil administrada.
- Se durante tentativa de diminuição da sedação, o paciente apresentar assincronia com queda da SpO$_2$ e/ou instabilidade hemodinâmica, sugere-se:
 - Administrar 10 a 40mg de propofol EV em bólus e 25 a 50mcg de fentanil EV em bólus.
 - Administrar uma dose de neuroléptico (Quetiapina 25 a 50mg via sonda nasoenteral – SNE – ou, se não puder via SNE, utilizar haloperidol EV).
- Se não houver melhora após 20 minutos, aprofundar a sedação, diminuindo em -2 na RASS, ou até RASS -5, e reavaliar em 24 horas. Se necessários dois ou mais bólus em um período de 6 horas, considerar aprofundar a sedação e reavaliar em 24 horas.

- Após 48 horas de sedação, em pacientes em uso crônico de drogas psicoativas, realizar reconciliação medicamentosa, antes de considerar reduzir sedação contínua.

SUPORTE CLÍNICO GERAL

- Higienização das mãos sempre. Instituir precauções de contato e aerossol durante toda permanência na UTI.
- Evitar drogas que alargam o intervalo QT (exemplo: zofran, bromoprida, fluconazol, metoclopramida antiarrítmicos), sobretudo em uso de antibióticos macrófídeos e cloroquina.
- Não realizar inaloterapia, objetivando-se evitar aerosolização. Utilizar broncodilatadores com espacador em caso de broncoespasmo.

ANTIBIOTICOTERAPIA

- Recomenda-se a administração de antibióticos empíricos para pacientes que evoluem para SARS ou choque séptico associado à COVID-19 como se segue:
 - Tratamento empírico inicial de casos sem hipoxemia documentada:
 - Oseltamivir 75mg via oral (VO) ou via SNE a cada 12 horas, por 5 dias. Aguardar resultado do painel viral para suspensão da medicação antes do quinto dia.
 - Tratamento empírico inicial de casos com hipoxemia documentada:
 - Oseltamivir conforme orientação acima;
 - Ceftriaxone 1g, a cada 12 horas EV, por 7 dias em associação à azitromicina 500mg VO ou SNE uma vez ao dia, por 5 dias. Na suspeita de infecção por *Staphylococcus aureus* resistente à meticilina (MRSA), ceftarolinos 600mg a cada 12 horas EV por 7 dias (ou outro antibiótico com cobertura mais ampla para bactérias *Gram*-negativas, em caso de suspeita de bactérias multirresistentes) em associação com azitromicina 500mg VO ou SNE uma vez por dia, por 5 dias.

SUPORTE HEMODINÂMICO

O algoritmo para suporte hemodinâmico de pacientes com COVID-19 está apresentado na figura 5.

- Sugerem-se a monitorização da pressão arterial invasiva e a inserção de cateter venoso central em pacientes recebendo noradrenalina em dose >1mcg/kg/minuto e em ascensão. Se dose de noradrenalina >1mcg/kg/minuto, sugerimos iniciar adrenalinha 0,05mcg/kg/minuto. Iniciar hidrocortisona 200mg em infusão contínua, se noradrenalina >0,2mcg/kg/minuto ao final de 6 horas de ressuscitação.
- Monitorizar débito cardíaco se dois ou mais parâmetros de perfusão estiverem alterados.
- Verificar balanço hídrico a cada 6 horas e ajustar dose de diurético conforme a meta (balanço hídrico zerado ou negativo). Considerar balanço hídrico zerado/positivo caso de aumento de vasopressor, alterações dos marcadores de perfusão, sinais laboratoriais de desidratação (hipernatremia ou alcalose metabólica), alterações do sangue e perdas não mensuráveis (febre e/ou diarreia).

- PAS: pressão arterial sistólica; PAM: pressão arterial média; GapCO2: diferença entre a pressão parcial de dióxido de carbono venosa e arterial; TEC: tempo de enchimento capilar; DVA: drogas vasoativas; BH: balanço hídrico; DIA: drogas vasoativas.

Figura 5. Algoritmo para suporte hemodinâmico de pacientes com COVID-19
PROFILAXIAS
- Profilaxia para úlcera de estresse: pantoprazol 40mg EV uma vez ao dia.
- Profilaxia para trombose venosa profunda (TVP):
 - Compressor pneumático (sem meias elásticas);
 - Iniciar heparina não fracionada, na dose de 5.000UI por via subcutânea (SC), a cada 8 horas para todos os pacientes, salvo contraindicações absolutas.
- O valor do dímero D não alterará a conduta em relação à profilaxia medicamentosa para tromboembolismo venoso (TEV).

ANTICOAGULAÇÃO
- Não instituir anticoagulação plena, com base no valor isolado do dímero D.
- Indicar anticoagulação plena apenas se evento tromboembólico confirmado ou nos casos em que exista indicação formal – por exemplo, fibrilação atrial crônica.

UTILIZAÇÃO DE CORTICOIDE
- Se paciente apresentar choque séptico, administrar hidrocortisona 200mg EV em BIC, a cada 24 horas, conforme descrito anteriormente (Figura 5).
- Se paciente evoluir para necessidade de VM e não estiver em uso de hidrocortisona devido a choque séptico, iniciar metilprednisolona 0,5mg/kg/dia EV, conforme descrito anteriormente (Figura 5).
- Retirada do corticoide: início após 7 dias completos de tratamento. Redução para 50% da dose no D8 e para 25% da dose no D9.

CONTROLE GLICÊMICO
- Realizar glicemia capilar a cada 6 ou 4 horas, conforme protocolo de controle glicêmico institucional.
- Evitar utilização de insulina em BIC, com o objetivo de minimizar exposição da equipe assistencial. Administrar insulina de longa duração precocemente conforme controle glicêmico das 24 horas anteriores. Entretanto, se paciente com noradrenalina >0,2mcg/kg/minuto, evitar administrar insulina SC.

DROGAS ESPECÍFICAS PARA TRATAMENTO DA COVID-19
- Hidroxicloroquina: recomenda-se a utilização na dose de 400mg SNE a cada 12 horas por 10 dias. Realizar eletrocardiograma (ECG) basal e seriado para controle do intervalo QT. Se QT corrigido >500ms (ou incremento >60ms), reavaliar risco-benefício, suspender todos os fármacos adicionais que alargam QT, incluindo a azitromicina. Manter níveis séricos de potássio >4,0mEq/L e de magnésio >2,0mEq/L.
- Macrolídeos: recomenda-se utilização de azitromicina 500mg por via SNE por 10 dias ou claritromicina 500mg EV, a cada 12 horas, se paciente em uso de droga vasoativa. Notadamente, no uso concomitante à hidroxicloroquina, recomenda-se monitorar íons e alargamento do intervalo QT (QT corrigido).
- Tocilizumabe: sugere-se sua utilização apenas em casos selecionados, como de pacientes com nível sérico de interleucina 6 (IL-6) dez vezes acima do limite superior da normalidade ou mais, dímero D elevado, tromboelastometria sugestiva de hipercoagulabilidade e escore *sequential organ failure assessment* (SOFA) ≥4, além de ausência de infecção bacteriana secundária presumível, e de disfunção hepática (razão normalizada internacional – RNI >2,0 ou bilirrubina total – BT >2,0). A função hepática deve ser monitorada. A dose deve ser de 4 a 8mg/kg (dose máxima unitária: 800mg), sendo no máximo três doses, com intervalo de 12 horas entre elas.
- A utilização de lopinavir + ritonavir, remdesivir, soro convalescente, nitazoxanida, ivermectina e arbidol está restrita a protocolos de pesquisa clínica.

EXAMES SUBSIDIÁRIOS
- Recomenda-se considerar a coleta diária durante a permanência na UTI dos seguintes exames laboratoriais: hemograma completo; função renal (creatinina – Cr – e ureia – Ur); electrolíticos incluindo sódio, potássio, magnésio, cálcio iônico e fósforo; gasometria arterial e lactato (se em VM hipoxêmica e/ou choque); lactato e troponina, peptídeo natriurético do tipo B (BNP), fosfatase alcalina e troponina; eletrocardiograma (se em VM hipoxêmica e/ou choque) e/ou gasometria venosa central (se sem PAI, ou se em desmane de VM, ou fora da VM e sem hipoxemia e sem choque) e proteína C-reativa (PCR).
- Se suspeita de infecção bacteriana secundária, colher culturas e seriar os biomarcadores PCR e procalcitonina (PCT).
- Coletar dímero D a cada 48 horas (serve como marcador de gravidade).
- Realizar radiografia de tórax se piora clínica e sempre após procedimentos (IOT, passagem de CVC etc.).
- Considerar ECG diário se paciente em uso de anti-bióticos macrolídeos e hidroxicloroquina.
- Recomenda-se, no momento da admissão na UTI, a coleta dos exames diários descritos anteriormente e troponina, peptídeo natriurético do tipo B (BNP), função hepática, desidrogenase láctica (DHL), ferritina, dímero D, tempo de protrombina (TP), RNI, tempo de tromboplastina parcial ativada (TPPa), entre outros.
fibrinogênio, tromboelastograma, PCT culturas, ECG e radiografia de tórax. Realizar ecocardiograma transtorácico nas primeiras 24 horas de admissão na UTI.

CONCLUSÃO

O manejo clínico de pacientes com diagnóstico de COVID-19 que desenvolvem formas graves da doença e necessitam de cuidados intensivos é complexo. Devido à complexidade dos pacientes, ao crescimento exponencial de novos casos, e à alta demanda de insumos, recursos humanos e profissionais capacitados, pacientes graves com COVID-19 representam um grande desafio para equipes assistenciais e os sistemas de saúde. As evidências disponíveis na literatura para tratamento de pacientes com COVID-19 são escassas e limitadas a estudos não controlados. As recomendações apresentadas neste documento foram desenvolvidas para direcionar os profissionais de saúde que estão envolvidos diretamente na assistência de pacientes com COVID-19, para elaborar predominantemente a partir da opinião de especialistas. Evidências robustas provenientes de ensaios clínicos randomizados e controlados são necessárias para que possamos oferecer tratamentos mais efetivos e seguros para pacientes com COVID-19.

INFORMAÇÃO DOS AUTORES

Corrêa TD: http://orcid.org/0000-0001-9546-3910
Matos GF: http://orcid.org/0000-0001-9996-7040
Bravim BA: http://orcid.org/0000-0001-8290-8554
Cordioli RL: http://orcid.org/0000-0001-7521-399X
Garrido AG: http://orcid.org/0000-0002-2469-185X
Assuncao MS: http://orcid.org/0000-0002-0741-4869
Barbas CS: http://orcid.org/0000-0002-3922-6256
Timenetsky KT: http://orcid.org/0000-0002-4176-2445
Rodrigues RR: http://orcid.org/0000-0002-3796-5952
Guimaraes HP: http://orcid.org/0000-0001-5523-1015
Rabello Filho R: http://orcid.org/0000-0001-7018-224X
Lomar FP: http://orcid.org/0000-0002-7856-0716
Scarín FC: http://orcid.org/0000-0001-5724-6448
Batista CL: http://orcid.org/0000-0001-8628-0792
Pereira AJ: http://orcid.org/0000-0002-9467-6516
Guerra JC: http://orcid.org/0000-0002-4156-529X
Nawa RK: http://orcid.org/0000-0002-0852-7013
Brandão RM: http://orcid.org/0000-0003-1442-9097
Pesaro AE: http://orcid.org/0000-0003-3133-4989
Silva Júnior M: http://orcid.org/0000-0002-6479-1708
Carvalho FR: http://orcid.org/0000-0001-8712-269X
Silva CS: http://orcid.org/0000-0003-3544-6646
Almeida AC: http://orcid.org/0000-0002-5339-0415
Franken M: http://orcid.org/0000-0002-4286-8559
Pesarotto ML: http://orcid.org/0000-0001-7391-8208
Eid RA: http://orcid.org/0000-0002-8241-3241
Ferraz LJ: http://orcid.org/0000-0003-1822-1568

REFERÊNCIAS

1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. Erratum in: Lancet. 2020 Jan 30.
2. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He XY, Liu J, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZL, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS, China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720.
3. World Health Organization (WHO). Coronavirus disease 2019 (COVID-19). Situation Report – 88. Data as received by WHO from national authorities by 10:00 CEST, 17 April 2020 [Internet]. Geneva: WHO; 2020 [cited 2020 Apr 28]. Available from: https://www.who.int/docs/default-source/coronavirus-situation-reports/20200417-sitrep-88-covid-1916ccc94f9b4f2f19377ff55719d6.pdf?sfvrsn=ebe78315_62020
4. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33.
5. World Health Organization (WHO). Clinical management of severe acute respiratory infection when COVID-19 is suspected. Interim guidance [Internet]. Geneva: WHO; 2020 [cited 2020 Apr 26]. Available from: https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected
6. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13.
7. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-481. Erratum in: Lancet Respir Med. 2020;8(4):e26.
8. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091.
9. Sanders JM, Monogue ML, Jofflowitz T, Cuthrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020 Apr 13. doi: 10.1001/jama.2020.6019. [Epub ahead of print].
10. ClinicalTrials.gov [Internet]. Bethesda (MD): U.S. National Library of Medicine; 2020 [cited 2020 Apr 23]. Available from: https://clinicaltrials.gov/ct2/home
11. Associação Médica Brasileira (AMB). Diretrizes AMB: COVID-19 [Internet]. São Paulo: AMB; 2020 [cited 2020 Abr 23]. Disponível em: https://amb.org.br/diretrizes-amb-covid-19/
12. Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Angus DC, Rubenfeld GD, Singer M, Sepsis Definitions Task Force. Developing a New Definition and Assessing New Clinical Criteria for Sepsis: Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):775-87. Review.
13. Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-8.
14. Ely EW, Truman B, Shintani A, Thomason JW, Wheeler AP, Gordon S, et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA. 2003;289(22):2983-91.
15. Richmond Agitation-Sedation Scale (RASS). JAMA. 2003;289(22):2983-91.
16. Murray MJ, Delblock H, Erstad B, Gray A, Jacobi J, Jordan C, et al. Clinical Practice Guidelines for Sustained Neuromuscular Blockade in the Adult Critically Ill Patient. Crit Care Med. 2016;44(11):2079-103. Review.
17. Ely EW, Truman B, Shintani A, Thomason JW, Wheeler AP, Gordon S, et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA. 2003;289(22):2983-91.
18. Ochoa ME, Marin Mdcl C, Frutos-Vivar F, Gordo F, Latour-Perez J, Calvo E, et al. Cuff-leak test for the diagnosis of upper airway obstruction in adults: a systematic review and meta-analysis. Intensive Care Med. 2008;35(7):1171-9. Review.
19. Murray MJ, Delblock H, Erstad B, Gray A, Jacobi J, Jordan C, et al. Clinical Practice Guidelines for Sustained Neuromuscular Blockade in the Adult Critically Ill Patient. Crit Care Med. 2016;44(11):2079-103. Review.
20. Devlin JW, Skribor Y, Gelinas C, Needham DM, Slooter AJ, Pandharipande P, et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit Care Med. 2018;46(9):e825-e73.