Molecular Evolution of Genes Involved in Quinic Acid Utilization in Fungi

David K. Asch, Janett Ziegler, Xiang Jia Min

Department of Chemical and Biological Sciences, Youngstown State University, Youngstown, OH 44555, USA

Corresponding author email: dkasch@ysu.edu; xjm1@ysu.edu

Computational Molecular Biology, 2021, Vol.11, No.5
doi: 10.5376/cmb.2021.11.0005

Received: 08 May, 2021
Accepted: 22 Jun., 2021
Published: 02 Jul., 2021

Copyright © 2021 Asch et al., This is an open access article published under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract Fungi use diverse organic compounds for their growth and development. *Neurospora crassa* can use quinic acid as its sole carbon source for its growth because of the presence of a quinic acid utilization (QUT) cluster of genes in its genome. Using bioinformatics methods we examined a total of 285 completely sequenced fungal genomes comprised of 282 unique species and found there were 117 fungal species having all 7 QUT genes in their genomes. Most species in the classes of Dothideomycetes, Eurotiomycetes, Leotiomycetes and Sordariomycetes have QUT genes, however, among 53 species in Saccharomycetes only 3 species have all 7 QUT genes. There were lineage specific losses of QUT genes, such as species in Eurotiomycetes class Ochrysosphaeraceae order lacked most of QUT utilization genes. Our survey revealed that species in Agaricomycetes, Basidiomycota, Chytridiomycetes, Exobasidiomycetes, Malasseziomycetes, Microsporidia, Schizosacharomyces, and Tremellomycetes did not have QUT utilization genes. Using concatenated protein sequences encoded by these 7 QUT genes, a robust phylogenetic tree to infer the evolution of the QUT cluster genes was constructed. In addition, we also found QUT genes from recently sequenced genome of cork oak (*Quercus suber*), however, our analysis suggests that these QUT sequences are likely from a contaminated fungal species.

Keywords Fungi; Quinic acid; Gene; Protein; Phylogeny; *Neurospora crassa*

1 Introduction

Microorganisms play many diverse roles in the environment. The kingdom Fungi consists of a very diverse group of heterotrophic, eukaryotic organisms which primarily depend on organic biomolecules made by plants and animals for food sources (Willis et al., 2018). Based on lifestyles, fungi are divided into saprobes or decomposers of the dead remains of other organisms, pathogenic, symbiotic, or parasitic fungi, living with living plants or animals (Blackwell, 2011). To live in such diverse environments, it has been advantageous for fungi to be able to utilize a wide variety of sources for basic nutrients such as carbon and nitrogen. The genes encoding enzymes involved in metabolic pathways needed to utilize these diverse compounds are sometimes organized into metabolic gene clusters (MGCs). These gene clusters are often localized in the same region on a fungal chromosome (Wisecaver et al., 2014; Wisecaver and Rokas, 2015). These MGGs are found in many fungal species (Wisecaver et al., 2014). The quinic acid utilization (QA or QUT) clusters found in *Neurospora crassa* and *Aspergillus nidulans* are among the earliest and best characterized of these gene clusters (Giles et al., 1985; Hawkins et al., 1988).

The quinic acid gene cluster (QGC) consists of seven genes that span 17.3 kb on chromosome VII in *N. crassa* (Giles et al., 1985; Galagan et al., 2003). These 7 genes include five structural genes (*qa-X*, *qa-2*, *qa-3*, *qa-4*, and *qa-Y*) and two regulatory genes (*qa-1S* and *qa-1F*). Three of the structural genes encode enzymes, *qa-2* gene encodes catabolic 3-dehydroquinase, *qa-3* encodes shikimate/quinate 5-dehydrogenase, *qa-4* encodes 3-dehydroshikimate (DHS) dehydrogenase. One structural gene *qa-Y* encodes a transporter, the quinic acid permease. The *qa-X* gene encodes a protein with unknown function. The other two genes encode proteins involved in gene regulation. The *qa-1S* gene encodes a repressor and *qa-1F* encodes an activator which stimulates expression of all the genes of the cluster (Giles et al., 1985). The QA-1F protein may activate expression of genes outside the *qa* gene cluster as well (Logan et al., 2007; Tang et al., 2011). A similar gene cluster consisting of all 7 QUT genes but having slightly different physical organization from *N. crassa* was identified in *A. nidulans* (Hawkins et al., 1988; Grant et al., 1988). The genes in the cluster were named as *qutE*, *qutB*, *qutC*, *qutG*, *qutD*, *qutA*, and *qutR*,
which were homologs of qa-2, qa-3, qa-4, qa-X, qa-Y, qa-1F, and qa-1S in N. crassa, respectively (Hawkins et al., 1988; Giles et al., 1985). For the convenience of description in this work we use the gene names of N. crassa to represent these gene homologs in fungi, and for protein sequences we use the upper case letters.

The birth, evolution and death of MGCs in fungi were recently comprehensively reviewed by Rokas et al. (2018). In this work, using computational methods the existence of QGCs was examined in completely sequenced fungal genomes and a molecular evolutionary analysis of QGCs in representative fungal species was performed. In addition, we also identified the QUT genes are spread into a plant species, which may represent a case of horizontal gene transfer from fungi to plants, if these genes are proved not to be resulted from fungal contamination.

2 Materials and Methods
2.1 Data collection
The QA gene cluster consists of seven genes that span 17.3 kb on chromosome VII in N. crassa (strain OR74A; Accession number: NC_0265.7.1). The accession numbers of the protein sequences used for downstream BLAST searches were: XP_959612.1 (QA-X), XP_959613.1 (QA-2), XP_959615.3 (QA-3), XP_959614.1 (QA-4), XP_959616.1 (QA-Y), XP_959617.2 (QA-1S), and XP_959618.1 (QA-1F).

Protein BLAST (BLASTP) was carried out with N. crassa protein sequence of each qa gene product in the QA cluster as a query to search the non-redundant fungal protein sequences which were downloaded from the RefSeq database (March 1, 2019) in the National Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/refseq/) with a limit on fungi (taxid:4751). The E-value cutoff was set to 1e-5. In the data collection process, we found that there was only one copy for qa-2, qa-3 and qa-1F gene in N. crassa genome. However, there were two or more paralogs existed for other genes, including two paralogs for qa-X, qa-4, and qa-1S, and four paralogs of qa-Y genes in N. crassa genome. The details for these paralogs were described further in the section of results. To prevent false positives, the retrieved probable QA homologs in the RefSeq fungal database were used as queries for reciprocal BLASTP search against all protein sequences from N. crassa (strain OR74A) as a database. Only the QA protein sequences from each species having a best hit being one of the QA proteins including all QA paralogs in N. crassa in the reciprocal BLASTP were treated as real QA homologs. Thus, gene copy numbers of each QUT gene in each fungal species were estimated based on the reciprocal BALSTP of all these paralogs of N. crassa QA proteins. The list consists of 285 complete genomes from 282 species (Table 1).

2.2 Phylogenetic tree construction
The MEGA package (version 6) was used for phylogenetic analysis and tree construction (https://www.megasoftware.net/) (Tamura et al., 2013). To make the tree to be easily visualized, we selected protein sequences from 43 representative species. The selected protein sequences were aligned using MUSCLE with default parameters. We have constructed individual protein trees for all 7 QA genes. The individual protein trees did not reveal a consistent phylogenetic relationship among the species due to the long divergence time. Thus, we selected one homologous protein for each of the 7 genes in the QA cluster from each species and constructed a 7-protein tree. The 7-protein tree was constructed using the concatenated pre-aligned homologous protein sequences in each species. For species having multiple copies of QA genes, the protein sequence having the highest similarity to the protein encoded by one of the 7 QA cluster genes in N. crassa was selected for the phylogenetic tree construction. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous amino residues were allowed at any position. There were a total of 2761 positions in the final dataset. The initial trees for the heuristic search were obtained automatically by applying Neighbor-Joining and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology as the original tree with superior log likelihood value using the Maximum Likelihood method (Jones et al., 1992). The bootstrap consensus tree that was inferred from 500 replicates was taken to represent the evolutionary history of the taxa analyzed (Felsenstein, 1985).
Species	Proteins	qa-1F	qa-1S	qa2	qa3	qa4	qaX	qaY
Agaricomycetes								
Agaricus bisporus var. bisporus H97	10448	0	0	0	0	1	8	
Agaricus bisporus var. burnetii JB137-S8	11278	0	0	0	0	1	8	
Coniophora puteana RW-64-598 SS2	13758	0	0	0	0	1	8	
Coprinopsis cinerea okayama78130	13356	0	0	0	0	1	3	
Dichomitus squalens LYAD-421 SS1	12287	0	0	0	1	1	7	
Fibroporia radiculos a	9262	0	0	0	1	1	6	
Fomitiporia mediterranea MF3/22	11338	0	0	0	2	2	6	
Gloeophyllum trabeum ATCC 11539	11755	0	0	0	2	1	7	
Heterobasidion irregular TC 32-1	13275	0	0	0	1	0	7	
Laccaria bicolor S238N-H82	18215	0	0	0	0	1	3	
Phanerochaete carnosus HHB-10118-sp	13925	0	0	0	1	1	7	
Postia placenta MAD-698-R-SB12	12539	0	0	0	1	1	3	
Punctularia strigosozonata HHB-11173 SS5	11540	1	0	0	0	1	6	
Schizophyllum commune H4-8	13194	0	0	0	1	1	12	
Serpula lacrymans var. lacrymans S7.9	12925	0	0	0	1	1	7	
Sparassis crispa	13157	1	0	0	0	1	4	
Stereum hirsutum FP-91666 SS1	14066	0	0	1	1	1	7	
Trametes versicolor FP-101664 SS1	14302	0	0	0	1	1	4	
Chytridiomycetes								
Batrachochytrium dendrobatidis JAM81	8700	1	0	0	0	1	0	
Spizellomyces punctatus DAOM BR117	9422	1	0	0	0	1	0	
Dothideomycetes								
Alternaria alternata	13466	3	2	1	1	2	3	
Aureobasidium namibiae CBS 147.97	10259	1	1	1	3	3		
Aureobasidium subglaciale EXP-2481	10792	1	1	2	3			
Baudoinia panamericana UAMH 10762	10508	1	1	1	2	2		
Bipolaris maydis ATCC 48331	12705	2	2	1	1			
Bipolaris oryzae ATCC 44560	12002	2	2	1	1			
Bipolaris sorokiniana ND90Pr	12214	2	2	1				
Bipolaris victoriae F13	12882	2	2	1				
Bipolaris zeicola 26-R-13	12853	2	2	1				
Cercospora beticola	12463	1	1	1				
Coniothyrium apollinis CBS 100218	9308	1	1	2				
Diplodia corticola	10839	1	1	1				
Exserohilum turcica Et28A	11698	2	2	1				
Leptosphaeria maculans JN3	12469	1	1	0				
Paraphaeosphaeria sporulosa	14734	1	1	1				
Parastagonospora nodorum SN15	15994	2	2					
Pseudocercospora fijensis CIRAD86	13066	1						
Pyrenophora tritici-repentis Pt-1C-BFP	12169	2						
Ramularia collo-cynni	11612	1						
Sphaerulina musiva SO2202	10156	1						
Verruconis gallopava	11357	2						
Zymoseptoria tritici IPO323	10963	0	1					
Species	Proteins	qa-1F	qa-1S	qa2	qa3	qa4	qaX	qaY
--	----------	-------	-------	-----	-----	-----	-----	-----
Eurotiomycetes								
Aspergillus aculeatinus CBS 121060	12028	3	3	1	2	4	1	24
Aspergillus aculeatus ATCC 16872	10843	4	3	1	2	5	1	25
Aspergillus bombycis	12263	5	4	3	4	7	2	28
Aspergillus brunneoviolaceus CBS 621.78	12073	3	3	1	1	5	1	25
Aspergillus campestris IBT 28561	9756	2	2	1	1	3	1	11
Aspergillus candidus	9639	1	2	1	1	3	1	11
Aspergillus clavatus NRRL 1	9121	2	2	1	1	4	2	14
Aspergillus costaricaensis CBS 115574	11966	3	3	1	1	6	2	27
Aspergillus eucalyptica CBS 122712	11933	3	3	1	2	5	2	23
Aspergillus fischeri NRRL 181	10395	3	2	2	2	4	2	17
Aspergillus flavus NRRL3357	13485	2	3	2	3	4	2	27
Aspergillus fumigatus AF293	9630	3	3	2	2	5	2	15
Aspergillus glauca CBS 516.65	11255	3	3	2	2	5	2	15
Aspergillus heteromorphus CBS 117.55	11130	3	2	1	1	5	1	16
Aspergillus homomorphus CBS 101889	11361	2	2	1	1	4	1	18
Aspergillus ibericus CBS 121593	11680	2	2	1	2	4	1	24
Aspergillus japonicus CBS 114.51	12022	3	3	0	2	5	1	25
Aspergillus lacticoffeatus CBS 101883	13082	3	3	1	1	5	2	25
Aspergillus mulundensis	11603	3	3	1	2	3	1	27
Aspergillus neoerg CBS 115656	11939	3	3	1	2	5	2	26
Aspergillus nidulans FGSC A4	9556	2	2	1	1	3	1	22
Aspergillus niger CBS 513.88	10593	4	3	1	2	5	2	25
Aspergillus nomius NRRL 13137	11904	3	4	2	4	6	2	30
Aspergillus novofumigatus IBT 16806	11534	2	2	2	1	3	2	17
Aspergillus oryzae RIB40	12074	2	3	1	3	5	2	27
Aspergillus piperis CBS 112811	12071	3	3	1	1	6	2	27
Aspergillus saccharolyticus JOP 1030-1	10064	3	3	1	2	4	1	17
Aspergillus sclerotioring CBS 115572	12338	3	3	1	2	5	1	23
Aspergillus steynii IBT 23096	13197	3	3	1	1	4	1	24
Aspergillus terreus NIH2624	10401	2	3	2	1	6	2	26
Aspergillus thermomutatus	9702	2	3	1	1	5	2	18
Aspergillus uravum CBS 121591	12014	4	3	1	2	5	1	23
Aspergillus vadensis CBS 113365	12132	3	3	1	1	6	2	25
Aspergillus welwitschiae	13684	3	3	1	1	5	2	25
Blastomyces gilchristi SLHI4081	9587	1	0	0	0	3	1	2
Capronia coronata CBS 617.96	9231	1	1	1	1	2	2	5
Capronia epymycses CBS 606.96	10469	3	3	2	4	5	3	8
Cladophialophora bantiana CBS 173.52	12762	1	1	1	3	8	2	17
Cladophialophora carrionii CBS 160.54	10373	1	1	1	2	4	2	12
Cladophialophora immunda	14033	1	1	1	3	4	2	17
Cladophialophora psammophila CBS 110553	13421	1	1	1	3	7	2	19
Cladophialophora yegresii CBS 114405	10118	1	1	1	2	3	2	12
Coccidioides immittis RS	9910	1	1	0	0	0	1	1
Coccidioides posadasii C735 delta SOWgp	7226	1	1	0	0	0	1	1
Cyphellophora europaea CBS 101466	11094	3	3	2	4	4	2	12
Endocarpon pusillum Z07020	9238	1	1	1	1	3	1	0
Species	Proteins	qa-1F	qa-1S	qa2	qa3	qa4	qaX	qaY
------------------------------	----------	-------	-------	-----	-----	-----	-----	-----
Exophiala aquamarina CBS 119918	13118	2	2	2	3	7	3	23
Exophiala dermatitidis NIH/UT8656	9578	0	0	0	0	1	1	5
Exophiala mesophila	10347	1	0	1	0	1	2	5
Exophiala oligosperma	13234	3	4	2	1	5	1	18
Exophiala spinifera	12049	4	3	2	4	7	3	22
Exophiala xenobiotica	13187	2	2	1	2	5	3	16
Fonsecaea erecta	12090	1	1	1	3	5	2	23
Fonsecaea monophora	11984	1	1	0	1	3	2	22
Fonsecaea polymorpha CBS 102226	12369	4	4	1	5	8	3	21
Fonsecaea rubica	11681	1	1	0	1	3	1	19
Fonsecaea rubicola CBS 271.37	12527	1	1	0	1	3	2	24
Histoplasma capsulatum NAm1	9313	1	0	0	0	1	1	2
Microsporum canis CBS 113480	8765	0	0	0	0	0	1	2
Nannizzia gypsea CBS 118893	8921	0	0	0	0	0	1	3
Paracoccidioides brasiliensis Pb18	8390	0	0	0	0	1	1	2
Paracoccidioides lutzii Pb01	8826	0	0	0	0	1	1	2
Penicilliopsis zonata CBS 506.65	9870	2	2	1	1	3	2	13
Penicillium arizense	12200	2	3	1	2	8	2	34
Penicillium digitatum Pd1	8946	2	3	1	1	3	2	11
Penicillium expansum	11060	2	2	1	1	6	2	19
Penicillium rubens Wisconsin 54-1255	12791	2	2	1	1	6	2	23
Phialophora attae	11848	1	4	1	3	6	2	23
Rasamsonia emersonii CBS 393.64	9843	2	2	0	1	2	2	13
Rhinocladiella mackenzie CBS 650.93	11382	2	2	1	6	6	2	18
Talaromyces atroroseus	9523	2	2	1	2	3	1	16
Talaromyces marneffei ATCC 18224	10638	2	2	1	2	3	2	11
Talaromyces stipitatus ATCC 10500	13252	2	2	0	2	3	2	13
Trichophyton benhamiae CBS 112371	7974	0	0	0	0	0	1	3
Trichophyton rubrum CBS 118892	8706	0	0	0	0	0	1	3
Trichophyton verrucosum HKI 0517	8028	0	0	0	0	0	1	3
Uncinocarpus reesii 1704	7760	1	1	0	0	2	1	1

Exobasidiomycetes

Acaromyces ingoldii | 8026 | 0 | 0 | 1 | 0 | 2 | 1 | 12 |
Ceraceosorus guamensis | 7822 | 0 | 0 | 1 | 0 | 1 | 2 | 2 |
Jaminiaea rosea | 6858 | 0 | 0 | 0 | 0 | 0 | 1 | 5 |
Meira miltonrushii | 7452 | 1 | 0 | 1 | 0 | 3 | 2 | 8 |
Pseudomicrostroma glucosiphilum | 6681 | 0 | 0 | 1 | 1 | 1 | 2 | 5 |
Tilletiaria anomala UBC 951 | 6808 | 0 | 0 | 1 | 1 | 1 | 2 | 5 |
Tilletiopsis washingtonensis | 7007 | 0 | 0 | 1 | 0 | 1 | 1 | 4 |

Glomeromycetes

Rhizophagus irregularis DAOM 181602 | 26147 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

Leotiomycetes

Amorphotheca resinae ATCC 22711 | 9642 | 1 | 1 | 0 | 0 | 1 | 1 | 6 |
Botrytis cinerea B05.10 | 13703 | 1 | 1 | 1 | 1 | 3 | 2 | 15 |
Species Proteins qa-1F qa-1S qa2 qa3 qa4 qaX qaY

Species	Proteins	qa-1F	qa-1S	qa2	qa3	qa4	qaX	qaY
Glarea lozoyensis ATCC 20868	13083	1	1	1	1	3	2	9
Marssonina brunnea f. sp. 'multigerntubi' MB_m1	10027	1	1	1	2	1	2	9
Meliilomyces bicolor E	18617	1	1	0	1	4	2	21
Phialocephala scopiformis	18567	1	1	1	3	4	2	20
Pseudogymnoascus destructans	9420	1	1	0	0	1	1	5
Pseudogymnoascus verrucosus	10573	2	2	1	1	3	2	24
Sclerotinia sclerotiorum 1980 UF-70	14490	1	1	1	1	2	2	10

Malasseziomycetes

Species	Proteins	qa-1F	qa-1S	qa2	qa3	qa4	qaX	qaY
Malassezia globosa CBS 7966	4286	0	0	0	0	0	1	0
Malassezia pachydermatis	4202	0	0	0	0	0	1	0
Malassezia restricta	4406	0	0	0	0	0	1	0
Malassezia sympodialis ATCC 42132	3318	0	0	0	0	0	1	0
Rhodotorula graminis WP1	7278	0	0	1	2	2	2	5
Rhodotorula toruloides NP11	8140	0	0	1	2	3	2	6

Microsporidia

Species	Proteins	qa-1F	qa-1S	qa2	qa3	qa4	qaX	qaY
Encephalitozoon cuniculi GB-M1	1971	0	0	0	0	0	0	0
Encephalitozoon hellem ATCC 50504	1847	0	0	0	0	0	0	0
Encephalitozoon intestinalis ATCC 50506	1938	0	0	0	0	0	0	0
Encephalitozoon romaleae SJ-2008	1831	0	0	0	0	0	0	0
Mitosporidium daphniae	3330	0	0	0	0	0	1	0
Nematocida parisi ERTm1	2661	0	0	0	0	0	0	0
Nosema ceranae	3209	0	0	0	0	0	0	0
Ordospora colligata OC4	1820	0	0	0	0	0	0	0
Vavraia culicis subsp. floridensis	2773	0	0	0	0	0	0	0
Vittaforma cornae ATCC 50505	2239	0	0	0	0	0	0	0

Mixiomycetes

Species	Proteins	qa-1F	qa-1S	qa2	qa3	qa4	qaX	qaY
Mixia osmundae IAM 14324	6858	0	0	0	0	1	2	0

Mortierellomycetes

Species	Proteins	qa-1F	qa-1S	qa2	qa3	qa4	qaX	qaY
Lobosporangium transversale	11822	0	0	0	0	1	0	0

Mucoromycetes

Species	Proteins	qa-1F	qa-1S	qa2	qa3	qa4	qaX	qaY
Phycomyces blakesleeanus NRRL 1555(+)	16543	0	0	0	0	0	1	6
Rhizopus microsporus ATCC 52813	10891	0	0	0	0	0	1	4

Orbiliomycetes

Species	Proteins	qa-1F	qa-1S	qa2	qa3	qa4	qaX	qaY
Arthrobotrys oligospora ATCC 24927	11479	0	0	0	0	2	6	0

Pezizomycetes

Species	Proteins	qa-1F	qa-1S	qa2	qa3	qa4	qaX	qaY
Tuber melanosporum Mel28	7496	0	0	0	0	1	1	0

Pneumocystidomycetes

Species	Proteins	qa-1F	qa-1S	qa2	qa3	qa4	qaX	qaY
Pneumocystis carinii B80	3646	0	0	0	0	0	0	1
Pneumocystis jiroveci RU7	3761	0	0	0	0	0	0	1
Pneumocystis murina B123	3623	0	0	0	0	0	0	1
Species	Proteins	qa-1F	qa-1S	qa2	qa3	qa4	qaX	qaY
---------	----------	-------	-------	-----	-----	-----	-----	-----
Pucciniozymes								
Melampsora larici-populina 98AG31	16372	0	0	0	1	1	2	
Puccinia graminis f. sp. tritici CRL 75-36-700-3	15979	0	0	0	1	1	1	
Saccharomyces								
Ascoidea rubescens DSM 1968	6787	0	0	0	1	0	0	
Babjeviella inositovora NRRL Y-12698	6399	1	1	1	1	1	3	
Candida albicans SC5314	6043	0	0	1	0	0	4	
Candida auris	7461	0	0	1	1	0	0	
Candida dubliniensis CD36	5859	0	0	1	0	0	4	
Candida duobushaemulonis	5173	0	0	1	1	0	0	
Candida glabrata	5202	0	0	0	0	2	0	
Candida haemulonid	5249	0	0	1	1	0	0	
Candida orthopsilosis Co 90-125	5678	1	0	0	0	0	3	
Candida pseudoaemulonid	5134	0	0	1	1	0	0	
Candida tropicalis MYA-3404	6254	0	0	1	0	0	6	
Candida viswanathii	10857	0	0	2	0	0	1	
Clavispora lusitaniae ATCC 42720	5936	0	0	1	0	0	3	
Cyblerindinae jadinii NRRL Y-1542	6032	0	0	1	1	0	1	
Debaryomyces fabryi	6027	1	1	1	1	1	8	
Debaryomyces hanseni CBS767	6268	1	1	1	1	1	8	
Eremothecium cymbalariae DBVPG#7215	4432	0	0	0	0	0	0	
Eremothecium gossypii ATCC 10895	4776	0	0	0	0	0	0	
Eremothecium sinecaudum	4536	0	0	0	0	0	0	
Hyphopichia burtonii NRRL Y-1933	5996	0	0	1	1	0	0	
Kazachstania africana CBS 2517	5375	0	0	0	0	2	0	
Kazachstania naganishii CBS 8797	5319	0	0	0	0	2	0	
Klyveromyces lactis	5085	0	0	0	0	0	0	
Klyveromyces marxianus DMKU3-1042	4952	0	0	0	0	0	0	
Komagataella phaffii GS115	5040	0	0	0	0	1	1	
Kuraishia capsulata CBS 1993	5989	0	0	0	0	1	3	
Lachancea lantarotensis	5056	0	0	0	0	2	1	
Lachancea thermotolerans CBS 6340	5092	0	0	0	0	2	1	
Lodderomyces elongisporus NRRL YB-4239	5799	0	0	0	0	0	2	
Metschnikowia bicuspidata var. bicuspidata NRRL YB-4993	5838	0	0	1	0	0	1	
Meyerozyma guilliermondii ATCC 6260	5920	0	0	1	0	0	3	
Naumovozyma castellii CBS 4309	5589	0	0	0	0	2	0	
Naumovozyma dairenensis CBS 421	5546	0	0	0	0	2	0	
Ogataea parapolymorpha DL-1	5325	0	0	0	1	0	2	
Ogataea polymorpha	5173	0	0	0	1	0	2	
Pichia kudriavzevii	5385	0	0	0	0	0	0	
Pichia membranifaciens NRRL Y-2026	5542	0	0	0	0	0	0	
Saccharomyces cerevisiae S288C	6002	0	0	0	0	2	0	
Saccharomyces eubayanus	5377	0	0	0	0	2	0	
Scheffersomyces stipitis CBS 6054	5818	1	1	1	1	0	6	
Spasthaspora passalidarum NRRL Y-27907	5983	1	0	1	0	0	4	
Sugiyamaella lignohabitans	5135	2	1	0	0	1	3	
Species	Proteins	qa-1F	qa-1S	qa2	qa3	qa4	qaX	qaY
-------------------------------	----------	-------	-------	-----	-----	-----	-----	-----
Suhomyces tanzawaensis NRRL Y-17324	5885	0	0	1	0	0	0	3
Tetrapispora blattae CBS 6284	5388	0	0	0	0	0	2	0
Tetrapispora phaffii CBS 4417	5252	0	0	0	0	0	2	0
Torulaspora delbrueckii	4978	0	0	0	0	0	1	1
Vanderwaltozyma polyspora DSM 70294	5367	0	0	0	0	0	2	0
Wickerhamiella sorbophila	4740	0	0	0	0	0	1	0
Wickerhamomyces anomalous NRRL Y-366-8	6421	1	0	2	3	1	2	6
Wickerhamomyces ciferri	6702	0	0	1	1	0	1	5
Yamadazyma tenuis ATCC 10573	6985	0	0	1	1	0	0	6
Yarrowia lipolytica CLIB122	6448	0	0	0	0	0	1	4
Zygosaccharomyces rouxii	4991	0	0	0	0	0	2	0
Schizosaccharomycesetes								
Schizosaccharomyces cryophilus OY26	5180	0	0	0	0	0	0	0
Schizosaccharomyces japonicus yFS275	4878	0	0	0	0	0	1	0
Schizosaccharomyces octosporus yFS286	4986	0	0	0	0	0	0	0
Schizosaccharomyces pombe	5132	0	0	0	0	0	0	0
Sordariomycetes								
Beauveria bassiana ARSEF 2860	10364	0	0	0	1	3	1	8
Chaetomium globosum CBS 148.51	11048	1	2	0	1	2	2	6
Chaetomium thermophilum var. thermophilum DSM 1495	7179	0	2	1	1	1	2	4
Colletotrichum graminicola M1.001	12020	1	1	1	1	2	2	16
Colletotrichum higginsianum IMI 349063	14650	1	1	1	1	2	2	22
Colletotrichum orchidophilum	14453	1	2	1	1	1	2	15
Cordyceps fumosorosea ARSEF 2679	10061	1	1	1	1	1	1	10
Cordyceps militaris CM01	9651	1	1	1	1	2	1	8
Fusarium fujikuroi IMI 58289	14810	2	2	1	2	3	2	24
Fusarium graminearum PH-1	13313	1	2	1	3	3	3	18
Fusarium oxysporum f. sp. lycopersici 4287	27347	3	4	3	1	3	2	20
Fusarium pseudograminearum CS3096	12397	2	2	1	3	3	3	17
Fusarium venenatum	13932	2	2	1	3	3	2	21
Fusarium verticillioides 7600	20553	2	2	0	2	3	2	24
Gaeumannomyces tritici R3-111a-1	14650	1	2	1	1	1	2	12
Grosmaniella claviger aki1407	8312	0	1	0	0	0	1	6
Metarhizium acridum CQMa 102	9849	1	1	1	1	3	2	9
Metarhizium brunneum ARSEF 3297	10689	1	1	1	1	2	2	7
Metarhizium robertsi ARSEF 23	11688	1	1	1	1	3	2	7
Nectria haematococca mpV1 77-13-4	15708	4	3	2	2	5	2	23
Neurospora crassa OR74A	10812	1	2	1	1	2	2	4
Neurospora tetrasperma FGSC 2508	10380	1	2	1	1	2	2	4
Pestalotiopsis fici W106-1	15413	2	3	1	3	5	2	24
Phaeoacremonium minimum UCRPA7	8834	0	1	0	0	0	1	18
Pochonia chalmydosporia 170	14204	1	1	1	1	4	2	15
Podospora anserina S mat+	10518	1	2	1	1	2	2	4
Purpureocillium lilacinum	11763	1	1	1	1	1	2	14
Pyricularia oryzae 70-15	12989	1	2	1	1	1	2	11
Species	Proteins	qa-1F	qa-1S	qa2	qa3	qa4	qaX	qaY
---------------------------------	----------	-------	-------	-----	-----	-----	-----	-----
Scedosporium apiospermum	8375	0	1	0	1	1	1	7
Sordaria macrospora k-hell	9896	1	2	1	1	2	2	4
Sporothrix schenckii 1099-18	10293	1	2	0	2	4	2	8
Thermotheomyces thermophilus ATCC 42464	9097	1	2	1	1	2	2	5
Thielavia terrestris NRRL 8126	9802	1	2	1	1	2	2	7
Trichoderma asperellum CBS 433.97	12557	1	1	1	1	2	1	13
Trichoderma atroviride IMI 206040	11816	1	1	1	1	2	1	16
Trichoderma citrinoviride	9735	1	3	1	1	2	1	12
Trichoderma gamsii	11189	0	1	1	1	3	1	15
Trichoderma harzianum CBS 226.95	14065	1	1	1	1	3	1	15
Trichoderma reeset QM6a	9115	1	1	1	1	2	1	12
Trichoderma virens Gr29-8	12406	1	1	1	1	2	2	13
Verticillium alfalfae VaMs.102	10237	1	1	1	1	2	1	14
Verticillium dahliae VdLs.17	10535	0	1	1	1	2	2	14
Taphrinomycotina								
Saitoella complicata NRRL Y-17804	7034	0	0	0	1	1	2	2
Tremellomycetes								
Cryptococcus amyloleustus CBS 6039	10306	0	0	0	0	2	2	8
Cryptococcus gattii WM276	6561	0	0	0	0	5	2	14
Cryptococcus neoformans var. grubii H99	7826	0	0	0	0	6	3	17
Cryptococcus neoformans var. neoformans B-3501A	6578	0	0	0	0	3	2	16
Cryptococcus neoformans var. neoformans JEC21	6863	0	0	0	0	4	2	14
Cutaneotrichosporon oleaginosum	8320	0	0	1	0	1	2	6
Kockovaella imperatae	7392	0	0	1	0	0	1	5
Kwoniiella bestiolar CBS 10118	9133	0	0	1	0	3	2	8
Kwoniiella dejecticola CBS 10117	8602	0	0	0	0	2	2	9
Kwoniiella mangroviensis CBS 8507	8422	0	0	0	0	2	2	7
Kwoniiella pini CBS 10737	7829	0	0	0	0	1	2	4
Tremella mesenterica DSM 1558	8308	0	0	0	0	0	1	1
Trichosporon asahii var. asahii CBS 2479	8311	0	0	0	0	0	0	7
Tsuchiyaea wingfieldii CBS 7118	8094	0	0	0	0	2	2	4
Ustilaginomycetes								
Anthracocystis floculosa PF-1	6877	0	0	1	1	2	2	6
Kalmanomyza brasiliensis GHG001	5765	0	0	0	0	1	1	6
Moesziomyces antarcticus	6766	0	0	1	0	2	1	7
Pseudozyma hubeiensis SY62	7472	0	0	1	0	3	1	8
Ustilago maydis 521	6782	1	0	1	0	2	1	4
Wallemiomycetes								
Wallemia ichthyophaga EXF-994	4863	0	0	0	0	1	0	1
Wallemia mellicola CBS 633.66	5277	0	0	0	0	1	0	1
Xylonomycetes								
Xylona heveae TC161	8201	0	0	0	0	1	1	2
3 Results

3.1 A bioinformatics survey of quinic acid utilization (QUT) genes in fungi

Using the predicted protein sequences of the products of the QA cluster genes located on chromosome VII in *N. crassa* as queries to search *N. crassa* proteome, we found that qa-2, qa-3 and qa-1F genes have only a single copy, however, more than one copy of genes homologous to qa-X, qa-4, qa-Y and qa-1S exist in the genome.

The qa-X gene in *N. crassa* encodes a protein (XP_959612.1, 340 amino acids) that shares homology with inositol monophosphatase (IMPase) and other proteins with related domains (domain architecture ID 10108155). IMPase catalyzes the hydrolysis of several inositol monophosphates and the artificial substrate p-nitrophenyl-phosphate to inorganic phosphate and inositol. A gene located on chromosome IV encoding a QA-X homologous protein sequence (XP_962382.1, 305 amino acids) was identified, which was annotated as myo-inositol-1-monophosphatase, also contains IMPase domain. Strains of *N. crassa* containing a disruption of the qa-X gene are still capable of growing on quinic acid as a sole carbon source and have no detectable phenotype except production of a brown pigment during growth on quinic acid (Case et al., 1992).

The qa-3 gene encodes shikimate/quinate 5-dehydrogenase (XP_959615.3), with a length of 339 amino acids. There is only a single copy in *N. crassa* genome. However, BLASTP search revealed that XP_956000.1, encoded by *aro-1* gene, has 1563 amino acids, shares 33% identity and 49% similarity in its carboxyl terminal end of 281 residues with QA-3 protein sequences. This region (1274-1548) contains a domain of shikimate-5-dehydrogenase, fungal AROM-type (conserved domain accession: cl36977). In addition, QA-3 also shares similarities with two repressor proteins in their carboxyl residues, XP_959617.2 (918 amino acids, 27% identity and 40% similarity over 340 aligned residues) and XP_955830.2 (803 amino acids, 24% identity and 40% similarity over 330 aligned residues). XP_959617.2 is encoded by qa-1S gene, XP_955830.2 is a homolog of XP956167.2. Both of them have a Type I 3-dehydroquinase (3-dehydroquinate dehydratase or DHQase) domain and a shikimate 5-dehydrogenase domain in their carboxyl terminus. The gene (locus tag NCU04358) encoding XP_955830.2 is located on chromosome IV. These results suggest qa-3, aro-1, qa-1S, and NCU04358 might be evolutionarily related in *N. crassa*.

The qa-4 gene encodes 3-dehydroshikimate dehydratase (DHS dehydratase) (XP_959614.1) with a length of 359 amino acids. A homologous gene (locus tag: NCU00838), located on chromosome I, also encodes 3-DHS dehydratase (XP_963958.1), with a length of 340 amino acids. These two proteins share 29% identity, 48% similarity, and 15% gaps over 378 aligned residues in a global alignment.

There are four homologous QA-Y protein sequences. qa-Y gene, located on chromosome VII, encodes quinate permease (XP_959616.1) with a length of 537 amino acids. Other three homologs include XP_963898.1 (537 AAs, quinate transporter, on chromosome I), XP_960000.1 (583 AAs, quinate permease, on chromosome VII), and XP_960547.2 (565 AAs, MFS quinate transporter, on chromosome VI). These four homologs share ~30% identity and ~50% similarity in their alignment. However, deletion of the qa-Y gene prevents growth on quinic acid as a sole carbon source (Case et al., 1992).

In the fungal dataset of the RefSeq database, there were a total of 285 completely sequenced fungal genomes, consisting of 282 unique species. There were 117 fungal species having homologs for all seven QA genes, i. e. at least one homolog for each of the seven QA genes (Table 1). The retrieved protein sequences for each QUT/QA gene were available for downloading (http://proteomics.ysu.edu/publication/data/QAClusters/).

The presence or absence of QUT genes in different fungi were summarized based on the classification of Classes and Orders (Table 2). Species having QUT genes all belong to Ascomycota phylum. Among 21 species in Dothideomycetes, 19 species have genes homologous to all 7 QA genes, except *Zymoseptoria tritici* only lacked qa1F, and *Leptosphaeria maculans* lacked qa2 and qa3. In Eurotiomycetes, 40 species out of 43 species in Eurotiales order have all 7 QA utilization genes including 32 *Aspergillus* species, 4 *Penicillium* species, 2 *Talaromyces* species; 16 species out of 19 species in the order of Chaetothyriomycetidae have gene homologous to all 7 QA utilization genes. It is noted that a few fungal genomes in this Class are only lacking one of the seven
genes, such as three *Fonsecaea* species, *Aspergillus japonicas*, *Rasamsonia emersonii*, *Talaromyces stipitatus*, had all other 6 genes but lacked qa2 genes, and *Endocarpon pusillum* only lacked qaY gene. Whether the missing gene is in an un-sequenced gap of their genomes or resulting from gene losses needs to be further examined. Most of the species in the class of Leotiomycetes and Sordariomycetes have all or most of the 7 QA utilization genes (Table 1; Table 2). However, among 53 species in Saccharomycetes only 3 species have all 7 QUT genes. We have noted that there were lineage-specific QA gene losses, such as species in Onygenales order of Eurotiomycetes class lacked most of QA utilization genes, including the genes encoding metabolic enzymes, i.e. QA-2, QA-3, and QA-4, these species most likely could not utilize QA. Based on the bioinformatics survey with currently sequenced genomes, we can infer that species belonging to Schizosacharomyces, Pneumocystidomycetes, and most species in Sordariomycetes in Ascomycota, species in Basidiomycota, Microsporidia, Mucoromycota did not have QUT genes, thus, were expected not being able to utilize QA as a carbon source (Table 1; Table 2).

Table 2 Summary of distribution of quinic acid utilization genes in different class of fungal species

Phylum	Class	Orders	Total Species	7 QA genes	6 QA genes	5 QA genes
Ascomycota	Eurotiomycetes	4	77	56	7	4
	Chaetothyriomycetida	21	16	3	1	
	Eurotiales	43	40	3	0	
	Onygenales	12	0	0	3	
	Verrucariales	1	0	1	0	
	Dothideomycetes	5	22	20	1	1
	Leotiomycetes	4	9	6	1	2
	Orbiliomycetes	1	1	0	0	
	Pezizomycetes	1	1	0	0	
	Pneumocystidomycetes	1	3	0	0	
	Saccharomycetes	1	53	3	2	1
	Schizosacharomyces	1	4	0	0	
	Sordariomycetes	8	42	32	6	0
	Glomerellales	5	4	1	0	
	Hypocreales	22	19	2	0	
	Magnaporthales	2	2	0	0	
	Microascales	1	0	0	0	
	Ophiostomatales	2	0	1	0	
	Sordariales	8	6	2	0	
	Sordariomycetida	1	0	0	0	
	Xylariales	1	1	0	0	
Basidiomycota	Taphrinomycotina	1	1	0	0	
	Xylonomycetes	1	1	0	0	
	Agaricomycetes	7	18	0	0	
	Exobasidiomycetes	5	7	0	0	2
	Malasseziomycetes	1	4	0	0	0
	Microbotryomycetes	1	2	0	0	2
	Mixiomyctes	1	1	0	0	0
	Pucciniomycetes	1	1	0	0	0
	Tremellomycetes	2	14	0	0	0
	Ustilaginomycetes	1	5	0	0	0
	Wallemiomyctes	1	2	0	0	0
Chytridiomycota	Chytridiomycetes	2	2	0	0	0
Microsporidia	Microsporidia	5	10	0	0	0
Mucoromycota	Glomeromycetes	1	1	0	0	0
	Mortierellomycetes	1	1	0	0	0
	Mucoromycetes	1	2	0	0	0
3.2 Phylogenetic analysis of protein sequences encoded by the QA utilization genes

We have constructed a phylogenetic tree using protein sequences for each QA gene from selected 43 species. However, due to long divergent time periods and relative short sequence lengths, the phylogenetic trees built with proteins encoded by individual QA utilization genes were not consistent to infer the evolution history of the QA genes. As using concatenated sequences from multiple genes or proteins proved to be a reliable method for phylogenetic analysis (Min and Hickey, 2007), thus, we concatenated the pre-aligned protein sequences encoded by the 7 QA genes in each species and constructed a 7-protein phylogenetic tree (Figure 1). The original tree and the bootstrap consensus tree were shown as Figure 1A and Figure 1B, respectively. The original tree shows the genetic distances among species of the concatenated 7-protein sequences with robust bootstrap values. All the selected species belong to Phylum Ascomycota. The overall phylogenetic tree topology was consistent with recent trees of Ascomycota trees constructed 6-genes (James et al., 2006; Schoch et al., 2009). However, it should be noted that while species in Sordariomycetes form a monophylogenetic group, species in Dothideomycetes and Eurotiomycetes have two phylogenetic groups (Figure 1A; Figure 1B).

![phylogenetic tree](image)

Figure 1 Molecular phylogenetic analysis of concatenated 7-protein sequences encoded by quinic acid utilization genes in fungi by Maximum Likelihood method

Note: (A) Original trees show the genetic distances with bootstrap values. (B) Bootstrap consensus tree to represent the inferred evolution history of the genes in selected taxa

3.3 QA utilization genes in a plant species – most likely a case of contamination

Using each of the 7 protein sequence encoded by QUT cluster genes in *N. crassa* as a query to search the non-redundant protein database with a limit to plant kingdom (Viridiplantae) at the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/), to our surprise, we identified all 7 QUT homologous proteins from recently sequenced cork oak (*Quercus suber*) plant (Ramos et al., 2018). The identified homologous proteins include 1 copy of QA2 (accession number: XP_023917533.1), 2 copies of QA3 (XP_023910457.1, ...
Molecular experimentally of species. Not.

(XP_023917535.1, 4 copies of QA4 (XP_023910453.1, XP_023917539.1, XP_023899702.1, XP_023890620.1), 2 copies of QAX (XP_023917534.1, XP_023910117.1), 3 copies of QAY (XP_023917536.1, XP_023910455.1, XP_023897749.1), QA1F (XP_023877214.1, XP_023917541.1, XP_023910451.1), and QA1S (XP_023917540.1, XP_023877217.1, XP_023910452.1), respectively. We then constructed a phylogenetic tree using the 7 concatenated protein sequences from the plant and the fungal species (Figure 2). The tree is exactly identical with the original fungal tree (Figure 1A), except with the data added from the plant species. The phylogenetic analysis showed the protein sequences of QA utilization genes in cork oak plant were clustered with protein sequences of Baudoinia panamericana, a fungal species belonging to Class Dothideomycetes.

Figure 2 Phylogentic tree constructed with 7-protein sequences encoded by quinic acid utilization genes in fungi and a plant species

Note: The tree was constructed as Figure 1A with addition of data from a plant species Quercus suber

As there is no QA utilization genes found in other plant species, we suspected that these protein sequences from cork oak plant were from a contaminated fungal species. Using the whole set of proteins from cork oak plant to search non-redundant protein databases, we found over ten thousands of proteins have a top hit with proteins from fungi. Thus, it is most likely the recently released genome sequences of cork oak plant were contaminated by a fungal species belonging to Class Dothideomycetes, although we could not determine the exact species currently. Using PCR to amplify these QA genes from uncontaminated plant tissue will be able to verify if these QA genes are present in the plant genome or not. However, if these QA genes are really part of the plant genome, it would represent a recent horizontal gene transfer from a fungus to a plant species.

4 Discussion

We performed a survey of QUT genes in 285 completely sequenced fungal genomes and found there were 117 fungal species having all 7 QUT genes in their genomes. Most species in the classes of Dothideomycetes, Eurotiomycetes, Leotiomycetes and Sordariomycetes have QUT genes, however, among 53 species in Saccharomycetes only 3 species have all 7 QUT genes. However, whether these species are able to utilize QA as a carbon source for their growth needs to be examined experimentally. Our survey revealed that species in Agaricomycetes, Basidiomycota, Chytridiomycetes, Exobasidiomycetes, Malasseziomycetes, Microsporidia, Schizosacharomycetes, and Tremellomycetes did not have QA utilization genes.
Using concatenated protein sequences encoded by 7 QUT genes, a robust phylogenetic tree to infer the evolution of the QUT cluster genes was constructed. Since there were no QA utilization genes present in Phylum Chytridiomycota, which often is used as a root for fungal phylogenetic analysis (Min and Hickey, 2007), we are not certain the exact origin of the QA utilization cluster genes in fungi. However, based on the robust bootstrap values of the concatenated 7-protein trees, it most likely reflects the evolutionary history of the QA utilization genes in fungi. In addition, we also found QUT genes from the recently sequenced genome of cork oak (Quercus suber), however, our analysis suggests that these QUT sequences are likely from a contaminated fungal species.

In summary, we identified all probable homologous protein sequences involved in utilizing QA from completely sequenced fungal genomes. These sequences can be used for further experimentally verifying those fungal species being able to utilize QA as their carbon source or not. The phylogenetic reconstruction revealed that the evolutionary history of QUT genes, which may be useful in understanding evolution of the lifestyles and metabolic gene clusters in fungi.

Authors’ contributions
DA and XM conceived the study and prepared the manuscript. JZ and XM collected the data. DA and XM performed data analysis. All authors read and approved the final manuscript.

Acknowledgements
XM is supported by the Youngstown State University Research Professorship.

References
Blackwell M., 2011, The fungi: 1, 2, 3 … 5.1 million species? Am J Bot., 98(3):426-38
https://doi.org/10.3732/ajb.1000298
PMId:21613136
Case M.E., Geever R.F., and Asch D.K., 1992, Use of gene replacement transformation to elucidate gene function in the qa gene cluster of Neurospora crassa, Genetics, 130(4): 729-736
https://doi.org/10.1093/genetics/130.4.729
PMId:1553844 PMCid:PMC1204924
Felsenstein J., 1985, Confidence limits on phylogenies: An approach using the bootstrap, Evolution, 39:783-791
https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
PMId:28561359
Galagan J.E., Calvo S.E., Borkovich K.A., et al., 2003, The genome sequence of the filamentous fungus Neurospora crassa, Nature, 422(6934):859
Giles N.H., Case M.E., Baum J., Geever R., Huiet L., Patel V., and Tyler B., 1985, Gene organization and regulation in the qa (quinic acid) gene cluster of Neurospora crassa, Microbiol. Rev., 49(3):338-358
https://doi.org/10.1128/MMBR.49.3.338-358.1985
PMId:2931582 PMCid:PMC373038
Grant S., Roberts C.F., Lamb H., Stout M., and Hawkins A.R., 1988, Genetic regulation of the quinic acid utilization (QUT) gene cluster in Aspergillus nidulans, J. Gen. Microbiol., 134(2):347-358
https://doi.org/10.1099/00221287-134-2-347
PMId:3049934
Hawkins A.R., Lamb H.K., Smith M., Keyte J.W., and Roberts C.F., 1988, Molecular organisation of the quinic acid utilization (QUT) gene cluster in Aspergillus nidulans, Mol. Gen. Genet., 214(2):224-231
https://doi.org/10.1007/BF00337715
PMId:2976880
James T.Y., Kauff F., Schoch C.L., et al., 2006, Reconstructing the early evolution of Fungi using a six-gene phylogeny, Nature, 443(7113):818
Jones D.T., Taylor W.R., and Thornton J.M., 1992, The rapid generation of mutation data matrices from protein sequences, Computer Appl. Biosci., 8:275-282
https://doi.org/10.1093/bioinformatics/8.3.275
PMId:1633570
Logan, D.A., Koch A.L., Dong W., Griffith, J., Nelsen, R., Case, M.E., Schuttler, and Arnold. J., 2007, Genome-wide expression anlaysis of genetic networks in Neurospora crassa, Bioinformation, 1:390-395
https://doi.org/10.6026/97320630001390
PMId:17597928 PMCid:PMC1896053
Min X.J., and Hickey D.A., 2007, Assessing the effect of varying sequence length on DNA barcoding of fungi, Molec. Ecol. Notes, 7:365-373
https://doi.org/10.1111/j.1471-8286.2007.01698.x
PMId:18784789 PMCid:PMC1890918
