Unilateral adrenal tuberculosis whose computed tomography imaging characteristics mimic a malignant tumor: A case report

Hui Liu, Tian-Jiao Tang, Zhen-Mei An, Ye-Rong Yu

Specialty type: Endocrinology and metabolism
Provenance and peer review: Unsolicited article; Externally peer reviewed.
Peer-review model: Single blind

Hui Liu, Department of General Practice, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
Tian-Jiao Tang, The Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
Zhen-Mei An, Ye-Rong Yu, Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China

Corresponding author: Ye-Rong Yu, MD, Chief Doctor, Professor, Endocrinology and Metabolism, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, Sichuan Province, China. yerongyu@scu.edu.cn

Abstract

BACKGROUND
Adrenal tuberculosis usually presents with bilateral involvement. It has special characteristics in computed tomography (CT) images, such as small size, low attenuation in the center, and peripheral rim enhancement, which differ from those of primary tumors.

CASE SUMMARY
A 42-year-old female presented to the hospital with low back pain. She had been diagnosed with hypertension as well as pulmonary and cerebral tuberculosis but denied having any fever, fatigue, anorexia, night sweats, cough, or weight loss. Abdominal CT revealed an irregular 6.0 cm × 4.5 cm mass with uneven density in the right adrenal gland, while the left adrenal gland was normal. No abnormalities were observed in plasma total cortisol (8 am), adrenocorticotropic hormone, aldosterone/renin ratio, blood catecholamines, or urine catecholamines. A fine-needle aspiration biopsy of the right adrenal gland provided evidence of tuberculosis. After three years of anti-tuberculosis treatments, the large mass in the right adrenal gland was reduced to a slight enlargement.

CONCLUSION
This is a case of unilateral adrenal tuberculosis with CT imaging characteristics mimicking those of a malignant tumor. Extended anti-tuberculosis therapy is recommended in such cases.

Key Words: Adrenal incidentaloma; Adrenal tuberculosis; Fine-needle aspiration biopsy;
Anti-tuberculosis therapy; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In this report, we report a female patient with unilateral adrenal tuberculosis whose CT image characteristics mimic those of a malignant tumor. After a long-term anti-tuberculosis regimen, the large mass in the right adrenal gland was reduced.

Citation: Liu H, Tang TJ, An ZM, Yu YR. Unilateral adrenal tuberculosis whose computed tomography imaging characteristics mimic a malignant tumor: A case report. World J Clin Cases 2022; 10(17): 5783-5788
URL: https://www.wjgnet.com/2307-8960/full/v10/i17/5783.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i17.5783

INTRODUCTION
Tuberculosis (TB) is known to present with varied clinical features, but involvement of the adrenal glands in TB is rare[1]. Isolated adrenal TB accounts for under 2% of adrenal incidentalomas[2], while 75%-100% of patients with adrenal TB have bilateral involvement[3-5]. As a result, unilateral adrenal TB is considered a rare clinical entity. The computed tomography (CT) imaging characteristics of adrenal TB are significantly different from those of primary tumors, such as small size, low attenuation in the center, and peripheral rim enhancement[3,6,7]. Herein, we report an unusual case of unilateral adrenal TB whose imaging characteristics were extremely atypical and suggested a high likelihood of a malignant tumor. Fine-needle aspiration biopsy (FNAB) was used to confirm TB, and prolonged anti-TB treatment was given to stabilize her condition.

CASE PRESENTATION

Chief complaints
A 42-year-old female was admitted to our department after presenting with a half-year history of osphyalgia.

History of present illness
A 42-year-old female had low back pain for a half year, which was exaggerated when taking a deep breath or lying flat and relieved when standing. She denied frequent micturition, painful urination, fever, hematuria, or pyuria.

History of past illness
The patient had a remote history of hypertension. She had been diagnosed with pulmonary and cerebral TB four months before presentation, and she had started a regimen of anti-TB drugs (isoniazid 0.3 g QD, rifampicin 0.45 g QD, ethambutol 0.75 g QD, and ofloxacin 0.5 g QD) upon diagnosis.

Personal and family history
Her personal and family history were insignificant.

Physical examination
Physical examination showed nothing special despite percussive pain in the right kidney area.

Laboratory examinations
Laboratory tests yielded the following results: plasma total cortisol (8 am), 594.6 nmol/L (reference, 147.3-609.3 nmol/L); adrenocorticotropic hormone, 48.30 ng/L (reference, 5.0-78 ng/L); and aldosterone/renin ratio, 16.92 ng/dL per ng/mL/h. No abnormalities were observed in the blood and urine catecholamines. Routine blood tests, routine urine tests, and biochemical tests were roughly in the normal range. CT-guided Fine needle aspiration biopsy (FNAB) of the right adrenal gland was performed, and pathological examination detected granulomas and necrosis (Figure 1A and B).

Imaging examinations
Four months prior to presentation, the patient had undergone an abdominal CT scan, which revealed a
1.5 cm isointense mass in the right adrenal gland (Figure 2A). On presentation to our department, she underwent another abdominal CT scan, which revealed a 6.0 cm × 4.5 cm irregular mass with uneven density in the right adrenal gland, while the left adrenal gland was normal (Figure 2B).

FINAL DIAGNOSIS

Unilateral adrenal tuberculosis.

TREATMENT

Treatment with 4 anti-TB drugs was continued.

OUTCOME AND FOLLOW-UP

The patient’s low back pain was relieved, and abdominal CT (Figure 2C) demonstrated a significant reduction of the mass in the right adrenal gland (2.7 cm × 2.4 cm) after 15 mo of anti-TB therapy. Three years later, abdominal CT (Figure 2D) showed a slight enlargement of the right adrenal gland.

DISCUSSION

Extrapulmonary TB constitutes about 15%-20% of all TB patients[8]. The most frequent sites of extrapulmonary TB include the lymph nodes (19%), pleural cavity (7%), gastrointestinal tract (4%), bone (6%), central nervous system (3%), and genitourinary system (1%)[9]. Of the 370 reports of extrapulmonary TB in a systematic review spanning 10 years[1], only one case was shown to involve the adrenal gland, which demonstrated adrenal TB as a rare clinical entity. Bilateral involvement usually occurs because of hematogenous and lymph spread from the site of the primary mycobacterial infection to both adrenal glands, which are equally susceptible[10]. In our case, adrenal TB (lesions of 1.5 cm to 5 cm) was aggravated while the anti-TB regimen was continued. It is necessary to distinguish adrenal masses from adrenal tumors. Adrenal incidentalomas, adenomas, metastases, adrenocortical carcinomas, myelolipomas, and pheochromocytomas accounted for 41%, 19%, 10%, 9%, and 8%, respectively. The etiologies of these partly depend on the size, such that larger tumors are more likely to be malignant. Adrenal carcinomas and metastases comprise 25% and 18% of lesions and are larger than 6 cm, while adenomas account for only 18%[11]. For tumors smaller than 4 cm, adrenal carcinomas comprise 2% and adenomas comprise 65%[11]. Untreated TB lesions were smaller than primary tumors (2.8 cm ± 1.3 cm vs 3.5 cm ± 2.4 cm)[6], while the diameters of benign, malignant pheochromocytoma and adrenocortical carcinoma were 5.7 cm ± 2.3 cm, 8.3 cm ± 4.1 cm[12] and 11 cm ± 4 cm[13], respectively. It is difficult to provide evidence with regard to TB based on size (6.0 cm × 4.5 cm) in this case. The CT value, attenuation measurement, and reduced central area (7 ± 4 HU) compared to the peripheral area (32 ± 14 HU) were
Figure 2 These were contrast-enhanced axial computed tomography images of the abdomen. A: Showed an isointense mass of 1.5 cm in the right adrenal gland; B: Showed an irregular mass of 6.0 cm × 4.5 cm with uneven density (20-30 HU in the central and 80-90 HU in the peripheral) in the right adrenal gland, while the left one was normal; C: Showed that the mass became smaller (2.7 cm × 2.4 cm) after anti-TB therapy for a total of 15 mo; D: Showed a slight enlargement of the right adrenal gland after about three years’ anti-TB therapy.

observed between unenhanced and contrast-enhanced scans in adrenal TB[3]. This characteristic of central necrosis surrounded by fibrous and granulomatous inflammatory tissue is much less common in primary adrenal tumors[6], owing to sufficient blood supply in the central area. Pheochromocytoma always has a high enhancement of > 110 HU in the arterial phase[14], while adrenocortical carcinoma is less likely to show an enhancement of >100 HU. In the present case, evidence from images could not rule out a malignant tumor in the adrenal gland. In addition, calcification preferentially occurred in the later stages of adrenal TB than in adrenal tumors (59% vs 8%), which helped with a proper diagnosis[6].

In addition to the ineffectiveness of FNAB in distinguishing adrenal adenoma from adenocarcinoma[11], it is considered advantageous due to its ease, cost-effectiveness, reduced time consumption, low complication rates, and high accuracy[15-17]. It is often used for suspected nonfunctional and nonneoplastic adrenal gland lesions, but not employed for pheochromocytomas[11,17] due to the risk of hemodynamic instability. In the present case, blood pressure was well controlled and had no abnormalities in blood and urine catecholamines, indicating a lower possibility of pheochromocytoma. Therefore, FNAB was performed to obtain histological evidence, which subsequently provides clear evidence regarding targeted therapy.

Patients with adrenal TB are usually treated with standard quadruple antitubercular treatment (such as isoniazid, rifampicin, pyrazinamide, and ethambutol)[18-20] for nearly 12 mo or longer. Adverse reactions to anti-TB drugs and their interactions with corticosteroids that are administered for replacement therapy remain challenging[21,22]. Firstly, rifampicin increases cortisol catabolism while isoniazid produces increased levels of cortisol via an opposite effect on the enzyme activity 6-Bhydroxylase; secondly, hepatitis, induced by isoniazid and worsened by rifampicin, leads to failure of 11-B-oxo-reductase, which converts cortisone to cortisol; and finally, tuberculous Addison’s disease might require increased amounts of hydrocortisone due to rifampicin administration[23]. Up to 70% of patients with active TB have subclinical adrenal insufficiency[24]. Anti-TB treatment might cause adrenal crisis[18], and patients should be closely monitored when starting this treatment. Most of the cases demonstrated a good response to anti-TB treatment. Early diagnosis and no delay in treatment initiation contributed to minimizing the high mortality rate[22,25]. Addison’s disease usually occurs
when more than 90% of adrenal tissue has been destroyed\cite{26}. Only a few patients with tuberculous Addison's disease showed recovery of adrenal function\cite{27}.

CONCLUSION

Unilateral adrenal tuberculous infection, although rare, should be considered in patients with unilateral adrenal mass but without Cushing syndrome, primary aldosteronism, or pheochromocytoma. FNAB assists in diagnosing TB, and early initiation and longer duration of anti-TB therapy are crucial to treating patients with unilateral adrenal tuberculous infection.

FOOTOTES

Author contributions: Yu YR and An ZM contributed to the conceptualization; Liu H and Tang TJ collected the information; Liu H wrote the original draft; Yu YR reviewed and edited the manuscript; all authors issued final approval for the version to be submitted.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Hui Liu 0000-0002-9352-3358; Tian-Jiao Tang 0000-0002-4817-2907; Zhen-Mei An 0000-0003-1435-8209; Ye-Rong Yu 0000-0003-0103-0807.

S-Editor: Xing YX

L-Editor: A

P-Editor: Xing YX

REFERENCES

1. Edlin GP. Active tuberculosis unrecognised until necropsy. *Lancet* 1978; 1: 650-652 [PMID: 76179 DOI: 10.1016/s0140-6736(78)91149-2]

2. Lam KY, Lo CY. A critical examination of adrenal tuberculosis and a 28-year autopsy experience of active tuberculosis. *Clin Endocrinol (Oxf)* 2001; 54: 633-639 [PMID: 11380494 DOI: 10.1046/j.1365-2265.2001.01266.x]

3. Ma ES, Yang ZG, Li Y, Guo YK, Deng YP, Zhang XC. Tuberculous Addison's disease: morphological and quantitative evaluation with multidetector-row CT. *Eur J Radiol* 2007; 62: 352-358 [PMID: 17466476 DOI: 10.1016/j.ejrad.2006.12.012]

4. Gupta P, Bhalia A, Sharma R. Bilateral adrenal lesions. *J Med Imaging Radiat Oncol* 2012; 56: 636-645 [PMID: 23210583 DOI: 10.1111/j.1754-9485.2012.02435.x]

5. Guo YK, Yang ZG, Li Y, Ma ES, Deng YP, Min PQ, Yin LL, Hu J, Zhang XC, Chen TW. Addison's disease due to adrenal tuberculosis: contrast-enhanced CT features and clinical duration correlation. *Eur J Radiol* 2007; 62: 126-131 [PMID: 17192208 DOI: 10.1016/j.ejrad.2006.11.025]

6. Yang ZG, Guo YK, Li Y, Min PQ, Yu JQ, Ma ES. Differentiation between tuberculosis and primary tumors in the adrenal gland: evaluation with contrast-enhanced CT. *Eur Radiol* 2006; 16: 2031-2036 [PMID: 16435135 DOI: 10.1007/s00330-005-0096-y]

7. Asgharzadeh MA, Bin Saeedan M, Alkhuanaizan T, Aljohani IM, Azzumeaa FM. Bilateral adrenal abnormalities: imaging review of different entities. *Abdom Radiol (NY)* 2019; 44: 154-179 [PMID: 29938331 DOI: 10.1007/s00261-018-1670-5]

8. Sharma SK, Mohan A, Kohli M. Extrapulmonary tuberculosis. *Expert Rev Respir Med* 2021; 15: 931-948 [PMID: 33966561 DOI: 10.1080/17476348.2021.1927718]

9. Houston A, Macallan DC. Extrapulmonary tuberculosis. *Medicine* 2014; 42: 18-22

10. Kissane, John M. Anderson’s Pathology. 1985

11. Aron D, Terzolo M, Cawood TJ. Adrenal incidentalomas. *Best Pract Res Clin Endocrinol Metab* 2012; 26: 69-82 [PMID: 22507780]
Liu H et al. Unilateral adrenal tuberculosis imaging malignant tumor

DOI: 10.1016/j.beem.2011.06.012

Khadilkar K, Sarathi V, Kasaiwal R, Pandit R, Goroshi M, Malhotra G, Dalvi A, Bakshi G, Bhansali A, Rajput R, Shivane V, Lilà A, Bandgar T, Shah NS. Predictors of malignancy in patients with pheochromocytomas/paragangliomas: Asian Indian experience. *Endocr Connect* 2016; 5: 89-97 [PMID: 27852633 DOI: 10.1016/j.endcr.2016.02.016]

Zhang HM, Perrier ND, Grubbs EG, Sircar K, Ye ZX, Lee JE, Ng CS. CT features and quantification of the characteristics of adrenocortical carcinomas on unenhanced and contrast-enhanced studies. *Clin Radiol* 2012; 67: 38-46 [PMID: 21783181 DOI: 10.1016/j.crad.2011.03.023]

Khadilkar K, Sarathi V, Kasaiwal R, Pandit R, Goroshi M, Malhotra G, Dalvi A, Bakshi G, Bhansali A, Rajput R, Shivane V, Lilà A, Bandgar T, Shah NS. Predictors of malignancy in patients with pheochromocytomas/paragangliomas: Asian Indian experience. *Endocr Connect* 2016; 5: 89-97 [PMID: 27852633 DOI: 10.1016/j.endcr.2016.02.016]

Khadilkar K, Sarathi V, Kasaiwal R, Pandit R, Goroshi M, Malhotra G, Dalvi A, Bakshi G, Bhansali A, Rajput R, Shivane V, Lilà A, Bandgar T, Shah NS. Predictors of malignancy in patients with pheochromocytomas/paragangliomas: Asian Indian experience. *Endocr Connect* 2016; 5: 89-97 [PMID: 27852633 DOI: 10.1016/j.endcr.2016.02.016]

Northcutt BG, Raman SP, Long C, Oshmyansky AR, Siegelman SS, Fishman EK, Johnson PT. MDCT of adrenal masses: Can dual-phase enhancement patterns be used to differentiate adenoma and pheochromocytoma? *AJR Am J Roentgenol* 2013; 201: 834-839 [PMID: 24059372 DOI: 10.2214/AJR.12.9753]

Patel S, Jinjuvadia R, Devara A, Naylor PH, Anees M, Jinjuvadia K, Al-Haddad M. Performance characteristics of EUS-FNA biopsy for adrenal lesions: A meta-analysis. *Endosc Ultrasound* 2019; 8: 180-187 [PMID: 30880721 DOI: 10.4103/eus.eus.42.18]

Kerimaa P, Marttila A, Hyvönen P, Ojala R, Lappi-Blanco E, Tervonen O, Blanco Sequeiros R. MRI-guided biopsy and fine needle aspiration biopsy (FNAB) in the diagnosis of musculoskeletal lesions. *Eur J Radiol* 2013; 82: 2328-2333 [PMID: 24099641 DOI: 10.1016/j.ejrad.2013.09.005]

Patil R, Ona MA, Papafragkakis C, Duddempudi S, Anand S, Jamil LH. Endoscopic ultrasound-guided fine-needle aspiration in the diagnosis of adrenal lesions. *Ann Gastroenterol* 2016; 29: 307-311 [PMID: 27366030 DOI: 10.20524/aog.2016.0047]

Denny N, Raghunath S, Bhatia P, Abdelaziz M. Rifampicin-induced adrenal crisis in a patient with tuberculosis: a therapeutic challenge. *BMJ Case Rep* 2016; [PMID: 27899384 DOI: 10.1136/bcr-2016-216302]

Shrestha B, Omran A, Rong P, Wang W. Successfully treated unusual case of primary adrenal and spinal tuberculosis with three years follow up. *Pan Afr Med J* 2014; 17: 108 [PMID: 25018843 DOI: 10.11604/pamj.2014.17.108.2575]

Manso MC, Rodeia SC, Rodrigues S, Domingos R. Synchronous presentation of two rare forms of extrapulmonary tuberculosis. *BMJ Case Rep* 2016; [PMID: 27990538 DOI: 10.1136/bcr-2015-212917]

Thijis E, Wierckx K, Vandecasteele S, Van den Bruel A. Adrenal insufficiency, be aware of drug interactions! *Endocrinol Diabetes Metab Case Rep* 2019; 2019 [PMID: 31581123 DOI: 10.1530/EDM-19-0062]

Shah M, Reed C. Complications of tuberculosis. *Curr Opin Infect Dis* 2014; 27: 403-410 [PMID: 25028786 DOI: 10.1097/QCO.0000000000000090]

Kusuki K, Watanabe S, Mizuno Y. Tuberculous Addison's disease with increased hydrocortisone requirements due to administration of rifampicin. *BMJ Case Rep* 2019; 12 [PMID: 30872343 DOI: 10.1136/bcr-2018-228293]

Sarin BC, Sibia K, Kukreja S. Study of adrenal function in patients with tuberculosis. *Indian J Tuberc* 2018; 65: 241-245 [PMID: 29933867 DOI: 10.1016/j.ijtb.2017.08.033]

Zhao N, Gao Y, Ni C, Zhang D, Zhao X, Li Y, Sun B. An autopsy case of unexpected death due to Addison's disease caused by adrenal tuberculosis. *Eur J Med Res* 2021; 26: 137 [PMID: 34863306 DOI: 10.1186/s40001-021-00611-w]

Alevritis EM, Sarubbi FA, Jordan RM, Peiris AN. Infectious causes of adrenal insufficiency. *South Med J* 2003; 96: 888-890 [PMID: 14513986 DOI: 10.1097/01.SMJ.0000073269.49575.DF]

Penrice J, Nussey SS. Recovery of adrenocortical function following treatment of tuberculous Addison's disease. *Postgrad Med J* 1992; 68: 204-205 [PMID: 1589379 DOI: 10.1136/pgmj.68.797.204]
