Optimal control for a fractional tuberculosis infection model including the impact of diabetes and resistant strains

N.H. Sweilam a,*, S.M. AL-Mekhlaf b, D. Baleanu c,d

a Cairo University, Faculty of Science, Mathematics Department, 12613 Giza, Egypt
b Sana’a University, Faculty of Education, Mathematics Department, Sana’a, Yemen
c Cankaya University, Department of Mathematics, 06530, Ankara, Turkey
d Institute of Space Sciences, P.O. Box MG 23, Magurele, 077125 Bucharest, Romania

ABSTRACT

The objective of this paper is to study the optimal control problem for the fractional tuberculosis (TB) infection model including the impact of diabetes and resistant strains. The governed model consists of 14 fractional-order (FO) equations. Four control variables are presented to minimize the cost of interventions. The fractional derivative is defined in the Atangana-Baleanu-Caputo (ABC) sense. New numerical schemes for simulating a FO optimal system with Mittag-Leffler kernels are presented. These schemes are based on the fundamental theorem of fractional calculus and Lagrange polynomial interpolation. We introduce a simple modification of the step size in the two-step Lagrange polynomial interpolation to obtain stability in a larger region. Moreover, necessary and sufficient conditions for the control problem are considered. Some numerical simulations are given to validate the theoretical results.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

A new study suggests that millions of people with high blood sugar may be more likely to develop tuberculosis (TB) than previously expected. TB is a severe infection that is caused by bacteria in the lungs and kills many people each year, in addition to HIV/AIDS and malaria, according to the Daily Mail website [1]. In 2017, according to the World Health Organization nearly 10 million people were infected with TB [2]. Experts are concerned that a global explosion in the number of diabetes cases will put millions of people at risk [3].

Many mathematical models have been proposed to elucidate the patterns of TB [4–7]. Recently, Khan et al., [8], presented a new fractional model for tuberculosis. In addition, several papers considered modeling TB with diabetes; see, for example, [9–12]. Recently, Carvalho and Pinto presented non-integer-order analysis of the impact of diabetes and resistant strains in a model of TB infection [13]. Fractional-order (FO) models provide more accurate and deeper information about the complex behaviors of various diseases than can classical integer-order models. FO systems are superior to integer-order systems due to their hereditary properties and description of memory [14–28]. Fractional optimal control problems (FOCPs) are optimal control problems associated with fractional dynamic systems. Fractional optimal control theory is a very new topic in mathematics. FOCPs may be defined in terms of different types of fractional derivatives. However, the most important types of fractional derivatives are the Riemann-Liouville and Caputo fractional derivatives [29–40]. In addition, the theory of FOCPs has been under development. Recently, some interesting real-life models of optimal control problems (OCPs) were presented elsewhere [41–52].

A new concept of differentiation was introduced in the literature whereby the kernel was converted from non-local singular to non-local and non-singular. One of the great advantages of this new kernel is its ability to portray fading memory as well as the well-defined memory of the system under investigation. A new FO derivative, based on the generalized Mittag fading memory as well as the well-defined memory of the system under investigation. A new FO derivative, based on the generalized Mittag-Leffler function, is defined as in [14]:

\[
\mathcal{B}_0^\alpha \mathcal{D}_t^\gamma g(t) = \frac{\mathcal{B}(t)}{(1 - \alpha)} \int_0^t (t - q)^{\gamma - 1} g(q) dq, \quad 0 < \alpha \leq 1.
\]

\[(1) \]

Definition 1. The Liouville-Caputo FO derivative is defined as in [53]:

\[
\mathcal{B}_0^\alpha \mathcal{D}_t^\gamma g(t) = \frac{B(x)}{(1 - \alpha)} \int_0^t (E_x(-x)(t - q)^{\gamma - 1} g(q)) dq.
\]

\[(2) \]

where \(B(x) = 1 - x + \frac{x}{1!} \) is the normalization function.

Definition 2. The Atangana-Baleanu fractional derivative in the Liouville-Caputo sense is defined as in [14]:

\[
\mathcal{A}_0^\alpha D_t^\gamma g(t) = \frac{\mathcal{B}(x)}{B(x)} \int_0^t (t - q)^{\gamma - 1} g(q) dq.
\]

They found that when \(\alpha \) is zero, they recovered the initial function, and if \(\alpha \) is 1, they obtained the ordinary integral. In addition, they computed the Laplace transform of both derivatives and obtained the following:

\[
\mathcal{L}\{\mathcal{A}_0^\alpha D_t g(t)\} = \frac{B(x)g(p)^{p^\alpha} - p^{\alpha - 1} g(0)}{(1 - \alpha)(p^{\alpha} + \frac{\alpha}{\Gamma(x)})}.
\]

Theorem 1. For a function \(g \in C[a, b] \), the following result holds [9]:

\[
\|\mathcal{A}_0^\alpha D_t^\gamma g(t)\| < \frac{B(x)}{(1 - \alpha)} \|g(t)\|, \text{ where } \|g(t)\| = \max_{t \in [a, b]} |g(t)|.
\]

Further, the Atangana–Baleanu-Caputo derivatives fulfill the Lipschitz condition [9]:

\[
\|\mathcal{A}_0^\alpha D_t^\gamma g_1(t) - \mathcal{A}_0^\alpha D_t^\gamma g_2(t)\| < \frac{\alpha}{\Gamma(x)} \|g_1(t) - g_2(t)\|.
\]

Fractional model for TB infection including the impact of diabetes and resistant strains

In this section, we study fractional optimal control for TB infection including the impact of diabetes and resistant strains, as given in Carvalho and Pinto [13]. So that the reader can make sense of the model, Fig. 1 shows the flowchart of the model as given in Carvalho and Pinto [13]. The fractional derivative here is defined in the ABC sense. We add four control functions, \(u_1, u_2, u_3 \) and \(u_4 \), and four real positive model constants, \(c_0 i = 1.2.3.4 \) and \(c_0 i e (0, 1) \). These controls are given to prevent the failure of treatment in \(I_1, I_2, I_3 \) and \(I_4 \), e.g., patients’ health care providers encourage them to complete the treatments by taking TB and diabetes medications regularly. This model consists of fourteen classes. Let us consider the population to be divided into diabetic (index 1) and non-diabetic
(index 2). Then, we have susceptible individuals (S_2 and S_1), individuals exposed and sensitive to TB (E_2 and E_1), individuals exposed and resistant to TB (E_{2R} and E_{1R}), individuals infected with and sensitive to TB (I_2 and I_1), individuals infected with and resistant to TB (I_{2R} and I_{1R}), individuals recovering from and sensitive to TB (R_2 and R_1), and individuals recovering from and resistant to TB (R_{2R} and R_{1R}). All the parameters for the modified model in Table 1, depend on the FO because the use of the constant parameter α instead of an integer parameter can lead to better results, as one has an extra degree of freedom [40]. The main assumption of this model is that the total population N is a constant in time, i.e., the birth and death rates are equal and $\alpha_0^2 = 0$. The resulting model with four controls is given as follows:

$$\begin{align*}
\text{ARC } D^\alpha_0 I_{21} &= (1 - \xi)P_2 \theta_2 S_2 + (1 - r_2) (k_{21}^P + \sigma_2 \theta_2) E_2 + \tau_1 x_2^2 I_{12} + \delta_2^1 R_2 - (\eta_2^2 + \gamma_2^2 + \mu^2 + d_2^2 + \omega d_2) I_{21}, \\
\text{ARC } D^\alpha_0 I_{2R} &= \xi P_2 \theta_2 S_2 + (1 - r_2) (k_2^P + \sigma_2 \theta_2) E_{2R} + \eta_2^I I_{22} + \tau_1 x_2^2 I_{1R} + \delta_2^2 R_{2R} - (\gamma_2^2 + \mu^2 + d_2^2 + \omega d_2 u_2) I_{2R}, \\
\text{ARC } D^\alpha_0 R_{11} &= \gamma_1^0 I_{11} + \omega d_1 u_1 I_{11} - \sigma_1 (1 - \delta_1^1) \lambda_1 R_{11} - (\delta_1^1 + \xi + \delta_1^2 + \mu^2) R_{11}, \\
\text{ARC } D^\alpha_0 R_{1R} &= \gamma_1^2 I_{1R} + \omega d_1 u_1 I_{1R} - \sigma_1 (1 - \delta_1^1) \lambda_1 R_{1R} - (\delta_1^1 + \xi + \mu^2) R_{1R},
\end{align*}$$

where

$$\lambda_t = \frac{\beta I_{1s} + \mu_1 I_{1s} + \mu d_1 I_{1R}}{N}.$$

Control problem formulation

Let us consider the state system presented in Eqs. (3)–(16), in R^{14}, with the set of admissible control functions

$$\Omega = \{(u_1(\cdot), u_2(\cdot), u_3(\cdot), u_4(\cdot)) | u_i \text{ is Lebesgue measurable on } [0, 1],$$

$$0 \leq u_1(\cdot), u_2(\cdot), u_3(\cdot), u_4(\cdot) \leq 1, \forall t \in [0, T_f], \quad i = 1, 2, 3, 4,$$

where T_f is the final time and $u_1(\cdot), u_2(\cdot), u_3(\cdot)$ and $u_4(\cdot)$ are controls functions.
subject to the constraint

\begin{align*}
&\sum_{a} a^{*} D^{*}_{i} S_{1} = \xi_{1}, \quad \sum_{a} a^{*} D^{*}_{i} S_{2} = \xi_{2}, \quad \sum_{a} a^{*} D^{*}_{i} E_{1s} = \xi_{3}, \\
&\sum_{a} a^{*} D^{*}_{i} E_{IR} = \xi_{4}, \quad \sum_{a} a^{*} D^{*}_{i} E_{2s} = \xi_{5}, \quad \sum_{a} a^{*} D^{*}_{i} E_{2s} = \xi_{6}, \\
&\sum_{a} a^{*} D^{*}_{i} I_{1s} = \xi_{7}, \quad \sum_{a} a^{*} D^{*}_{i} I_{1s} = \xi_{8}, \quad \sum_{a} a^{*} D^{*}_{i} I_{1s} = \xi_{9}, \\
&\sum_{a} a^{*} D^{*}_{i} I_{2s} = \xi_{10}, \quad \sum_{a} a^{*} D^{*}_{i} I_{2s} = \xi_{11}, \quad \sum_{a} a^{*} D^{*}_{i} R_{1s} = \xi_{12}, \\
&\sum_{a} a^{*} D^{*}_{i} R_{2s} = \xi_{13}, \quad \sum_{a} a^{*} D^{*}_{i} R_{2s} = \xi_{14}.
\end{align*}

where

\[
\xi_{i} = \xi_{1}(S_{1}, S_{2}, E_{1s}, E_{1s}, E_{2s}, I_{1s}, I_{1s}, I_{2s}, I_{2s}, R_{1s}, R_{1s}, R_{2s}, R_{2s}, u_{1}, u_{2}, u_{3}, u_{4}, t).
\]

For $i = 1, \ldots, 14$, and the following initial conditions are satisfied:

\[
S_{1}(0) = S_{01}, \quad S_{2}(0) = S_{02}, \quad E_{1s}(0) = E_{10}, \quad E_{1s}(0) = E_{10}, \quad E_{2s}(0) = E_{20}, \quad E_{2s}(0) = E_{20}, \quad I_{1s}(0) = I_{10}, \quad I_{1s}(0) = 1_{10}, \quad I_{2s}(0) = I_{20}, \quad I_{2s}(0) = I_{20}, \quad R_{1s}(0) = R_{10}, \quad R_{1s}(0) = R_{10}, \quad R_{2s}(0) = R_{20}.
\]

To define the FOCM, consider the following modified cost function [31]:

\[
J = \int_{0}^{T_{f}} \left[H_{0}(S_{1}, S_{2}, E_{1s}, E_{1s}, E_{2s}, I_{1s}, I_{1s}, I_{2s}, I_{2s}, R_{1s}, R_{1s}, R_{2s}, R_{2s}, u_{1}, u_{2}, u_{3}, u_{4}, t) \\
- \sum_{i=1}^{14} \left(i_{i} \xi_{i}(S_{1}, S_{2}, E_{1s}, E_{1s}, E_{2s}, I_{1s}, I_{1s}, I_{2s}, I_{2s}, R_{1s}, R_{1s}, R_{2s}, R_{2s}, u_{1}, u_{2}, u_{3}, u_{4}, t) \right) \right] dt.
\]

(19)

where $j = 1, 2, 3, 4, \text{ and } i = 1, \ldots, 14$.

The Hamiltonian is given as follows:

\[
H_{0}(S_{1}, S_{2}, E_{1s}, E_{1s}, E_{2s}, I_{1s}, I_{1s}, I_{2s}, I_{2s}, R_{1s}, R_{1s}, R_{2s}, R_{2s}, u_{1}, u_{2}, u_{3}, u_{4}, t) = \eta_{1}(S_{1}, S_{2}, E_{1s}, E_{1s}, E_{2s}, I_{1s}, I_{1s}, I_{2s}, I_{2s}, R_{1s}, R_{1s}, R_{2s}, R_{2s}, u_{1}, u_{2}, u_{3}, u_{4}, t)
\]

\[
+ \sum_{i=1}^{14} \left(i_{i} \xi_{i}(S_{1}, S_{2}, E_{1s}, E_{1s}, E_{2s}, I_{1s}, I_{1s}, I_{2s}, I_{2s}, R_{1s}, R_{1s}, R_{2s}, R_{2s}, u_{1}, u_{2}, u_{3}, u_{4}, t) \right) \right] dt.
\]

(20)

The objective function is defined as follows:

\[
J(u_{1}, u_{2}, u_{3}, u_{4}) = \int_{0}^{T_{f}} \left[I_{1s}(I_{1s} + I_{1s}) + I_{2s} + I_{2s} \right] B_{1}\sum_{i}^{14} \left(i_{i} \xi_{i}(S_{1}, S_{2}, E_{1s}, E_{1s}, E_{2s}, I_{1s}, I_{1s}, I_{2s}, I_{2s}, R_{1s}, R_{1s}, R_{2s}, R_{2s}, u_{1}, u_{2}, u_{3}, u_{4}, t) \right) dt.
\]

(17)

where B_{1}, B_{2}, B_{3}, and B_{4} are the measure of the relative cost of the interventions associated with the controls u_{1}, u_{2}, u_{3}, and u_{4}.

Then, we find the optimal controls u_{1}, u_{2}, u_{3}, and u_{4} that minimize the cost function

\[
J(u_{1}, u_{2}, u_{3}, u_{4}) = \int_{0}^{T_{f}} \left[\eta_{1}(S_{1}, S_{2}, E_{1s}, E_{1s}, E_{2s}, I_{1s}, I_{1s}, I_{2s}, I_{2s}, R_{1s}, R_{1s}, R_{2s}, R_{2s}, u_{1}, u_{2}, u_{3}, u_{4}, t) \right] dt.
\]

(18)

(22)

The parameters of systems (3)-(16) and their descriptions [13].

Parameter	Description	Values
A^{*}	Recruitment rate	667,685
x^{0}	Diabetes acquisition rate	0.58 yr⁻¹
γ	Effective contact rate for TB infection	(5, 8, 9)
ε	Modification parameter	1.1
ε	Modification parameter	1.1
ω	Modification parameter	2
μ	Rate of natural death	+∞ yr⁻¹
δ	Rate of TB infection among diabetic individuals	0.04
P_{1}	Rate of TB infection among non-diabetic individuals	0.03
P_{2}	Rate of TB infection among diabetic individuals	0.06
R_{1}	Non-diabetic individuals’ chemoprophylaxis rate	0 yr⁻¹
R_{2}	Diabetic individuals’ chemoprophylaxis rate	0 yr⁻¹
σ_{1}	Non-diabetic individuals’ degree of immunity	0.75 P
σ_{2}	Diabetic individuals’ degree of immunity	0.7 P
k_{1}	Non-diabetic individuals’ rate of endogenous reactivation	0.0013 yr⁻¹
k_{2}	Diabetic individuals’ rate of endogenous reactivation	2 yr⁻¹
γ_{11}	Non-diabetic individuals’ sensitive TB infection recovery rate	0.7372 yr⁻¹
γ_{12}	Non-diabetic individuals’ resistant TB infection recovery rate	0.7372 yr⁻¹
γ_{21}	Diabetic individuals’ sensitive TB infection recovery rate	0.7372 yr⁻¹
γ_{22}	Diabetic individuals’ resistant TB infection recovery rate	0.7372 yr⁻¹
δ_{1}	Rate of death due to TB	0 yr⁻¹
δ_{2}	Rate of death due to TB and diabetes	0 yr⁻¹
τ_{1}	Modification parameter	1.01
τ_{2}	Modification parameter	1.01
Δ_{1}	Non-diabetic individuals of partial immunity	0.0986 yr⁻¹
Δ_{11}	Non-diabetic individuals’ partial immunity for sensitive recovered	0.0986 yr⁻¹
Δ_{2}	Non-diabetic individuals’ partial immunity after resistant recovery	0.0986 yr⁻¹
σ_{3}	Diabetic individuals’ partial immunity	0.1 yr⁻¹
σ_{31}	Sensitive recovered diabetic individuals’ partial immunity	0.73 P
σ_{32}	Resistant recovered diabetic individuals’ partial immunity	0.73 P
σ_{33}	Sensitive recovered non-diabetic individuals’ degree of immunity	0.71 P
σ_{34}	Resistant recovered non-diabetic individuals’ degree of immunity	0.71 P
σ_{35}	Sensitive recovered diabetic individuals’ degree of immunity	0.71 P
σ_{36}	Recovered diabetic individuals’ degree of immunity	0.71 P
optimal controls. Then, there exists co-state variables satisfying the following:

\[D_t^0 S_1 = \frac{\partial h_a}{\partial \lambda_1} \]

Moreover,

\[D_t^R = \frac{\partial h_a}{\partial \lambda_1} \]

Moreover, \(\lambda_i(T_f) = 0 \), \(\lambda_1, \lambda_2, \ldots, \lambda_{14} \). (23)

are the Lagrange multipliers. Eqs. (21) and (22) describe the necessary conditions in terms of a Hamiltonian for the optimal control problem defined above. We arrive at the following theorem:

Theorem 2. Let \(S_i, E_{1i}, E_{2i}, E_{1R}, E_{2R}, E_{1R}, E_{2R}, \ldots \) be the solutions of the state system and \(u_i, i = 1, \ldots, 4 \) be the given optimal controls. Then, there exists co-state variables \(\lambda_i, j = 1, \ldots, 14 \) satisfying the following:

(1) Co-state equations:

\[D_t^\lambda \lambda_1 = \left(\left(-\lambda_2^2 + \lambda_2 - \lambda_3 \right) \lambda_1 + \lambda_2^3 \lambda_2 + \left(\lambda_3 + \lambda_2 - \lambda_3 \lambda_2 \right) \right) + \left(\lambda_1 \lambda_2 \lambda_3 \right) \lambda_2 + \left(\lambda_2 \lambda_2 \lambda_3 \right) \lambda_2 \]

\[D_t^\lambda \lambda_2 = \left(\left(-\lambda_2^2 + \lambda_2 - \lambda_3 \right) \lambda_2 + \left(\lambda_3 + \lambda_2 - \lambda_3 \lambda_2 \right) \right) + \left(\lambda_1 \lambda_2 \lambda_3 \right) \lambda_2 + \left(\lambda_2 \lambda_2 \lambda_3 \right) \lambda_2 \]

\[D_t^\lambda \lambda_3 = \left(\left(-\lambda_2^2 + \lambda_2 - \lambda_3 \right) \lambda_2 + \left(\lambda_3 + \lambda_2 - \lambda_3 \lambda_2 \right) \right) + \left(\lambda_1 \lambda_2 \lambda_3 \right) \lambda_2 + \left(\lambda_2 \lambda_2 \lambda_3 \right) \lambda_2 \]

\[D_t^\lambda \lambda_4 = \left(\left(-\lambda_2^2 + \lambda_2 - \lambda_3 \right) \lambda_2 + \left(\lambda_3 + \lambda_2 - \lambda_3 \lambda_2 \right) \right) + \left(\lambda_1 \lambda_2 \lambda_3 \right) \lambda_2 + \left(\lambda_2 \lambda_2 \lambda_3 \right) \lambda_2 \]

\[D_t^\lambda \lambda_5 = \left(\left(-\lambda_2^2 + \lambda_2 - \lambda_3 \right) \lambda_2 + \left(\lambda_3 + \lambda_2 - \lambda_3 \lambda_2 \right) \right) + \left(\lambda_1 \lambda_2 \lambda_3 \right) \lambda_2 + \left(\lambda_2 \lambda_2 \lambda_3 \right) \lambda_2 \]

(30)
\[1 + (1 - P_2) \beta_{21} S_2 z_1' + \beta_{21} \xi_1' \sigma_{21} - (1 - r_2') \sigma_1 \beta_{12} E_{2j} z_1' + \]

\[(1 - \xi) P_1 \beta_{21} S_3 z_1' + (1 - r_2') \sigma_1 \beta_{12} E_{3j} z_1' + \xi P_1 \beta_{21} S_3 z_1' + \]

\[(1 - r_2') \beta_{21} E_{2j} z_1' \sigma_1 + (1 - \xi) P_2 \beta_{21} S_2 z_2' + \xi P_2 \beta_{21} S_2 z_2' + \]

\[+ (\eta_2' \xi + \gamma_2' + \mu r + d_2' + \omega_2 u_2(t) \xi)' z_2' + (1 - r_2') \sigma_2 \beta_{21} E_{2j} z_1' + \]

\[+ (1 - r_2') \sigma_2 \beta_{21} E_{2j} z_1' + \xi \beta_{21} S_2 z_3' + \]

\[\sigma_{31} (1 - \delta_1') \beta_{21} R_{1j} z_1' + \sigma_{32} (1 - \delta_2') \beta_{21} R_{2j} z_1' + \]

\[+ \beta_{21} E_{1j} \xi_1' + \xi P_1 \beta_{21} S_3 z_1' + (1 - r_2') \beta_{21} E_{1j} \xi_1' + \xi P_1 \beta_{21} S_3 z_1' + \]

\[+ (1 - \xi) (1 - P_2) \beta_{21} S_2 z_2' + \xi P_2 \beta_{21} S_2 z_2' + \]

\[+ (1 - r_2') \sigma_2 \beta_{21} E_{2j} z_1' + \xi \beta_{21} S_2 z_3' + \]

\[(1 - \xi) P_3 \beta_{21} S_3 z_1' + (1 - r_2') \sigma_3 \beta_{21} E_{3j} z_1' + \xi P_3 \beta_{21} S_3 z_1' + \]

\[+ \beta_{21} R_{1j} z_1' \sigma_1 + (\gamma_2' + \mu r + d_2' + \omega_2 u_2(t) \xi)' z_2' + \]

\[+ \sigma_{41} (1 - \delta_1') \beta_{21} R_{1j} z_1' + \sigma_{42} (1 - \delta_2') \beta_{21} R_{2j} z_1' + \]

\[+ \beta_{21} R_{1j} \xi_1' \sigma_1 + (1 - \xi) P_1 \beta_{21} S_3 z_1' + \]

(ii) Transversality conditions:

\[\xi_j(T_f) = 0, \ j = 1, 2, ..., 14. \]

(iii) Optimality conditions:

\[H_u(S_i, S_j, E_1, E_2, E_3, r_1, r_2, r_3, r_4, u_1, u_1, u_2, u_2, \gamma) = \min_{0 < t < T} \{ H(S_i, S_r, E_1, E_2, E_3, r_1, r_2, r_3, r_4, u_1, u_1, u_2, u_2, \gamma) \} \]

\[u_1' = \min \{ 1 \max \{ 0, \frac{(\omega_2 u_2(t)/(\gamma_{11} - \gamma_{12}))}{B_1} \} \} \]

\[u_2' = \min \{ 1 \max \{ 0, \frac{(\omega_2 u_2(t)/(\gamma_{12} - \gamma_{11}))}{B_2} \} \} \]

\[u_3' = \min \{ 1 \max \{ 0, \frac{(\omega_2 u_2(t)/(\gamma_{11} - \gamma_{12}))}{B_3} \} \} \]

\[u_4' = \min \{ 1 \max \{ 0, \frac{(\omega_2 u_2(t)/(\gamma_{12} - \gamma_{11}))}{B_4} \} \} \]

Proof. We find the co-state system Eqs. (24)-(37), from Eq. (21), where

\[H_u = \frac{1}{2} u_1^2 + \frac{1}{2} u_2^2 + \frac{1}{2} u_3^2 + \frac{1}{2} u_4^2 \]

\[+ \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) \]

\[+ \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) \]

\[+ \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) \]

\[+ \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) \]

\[+ \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) \]

\[+ \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) \]

\[+ \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) + \frac{1}{2} u_2^2(t) \]
\[a^\alpha \frac{d^p}{dt^p} y(t) = g(t, y(t)), \quad y(0) = y_0. \]

Applying the fundamental theorem of FC to Eq. (59), we obtain
\[y(t) - y(0) = \frac{1 - \alpha}{\Gamma(\alpha)} g(t, y(t)) + \frac{\alpha}{\Gamma(\alpha)\Gamma(1-\alpha)} \int_0^t g(\theta, y(\theta))(t - \theta)^{\alpha-1}\,d\theta, \]
where \(\Gamma(x) = 1 - \alpha + \frac{\alpha}{\Gamma(\alpha)} \) is a normalization function, and at \(t_{n+1} \), we have
\[y_{n+1} - y_0 = \frac{\Gamma(\alpha)(1 - \alpha)}{\Gamma(\alpha)\Gamma(1-\alpha)} g(t_n, y(t_n)) + \frac{\alpha}{\Gamma(\alpha)\Gamma(1-\alpha)} \times \sum_{m=0}^{n} g(t_{n+1} - \theta)^{\alpha-1}\,d\theta. \]

Now, \(g(\theta, y(\theta)) \) will be approximated in an interval \([t_n, t_{n+1}] \) using a two-step Lagrange interpolation method. The two-step Lagrange polynomial interpolation is given as follows [22]:
\[P = \frac{g(t_{n+1}, y_{n+1})}{h}(\theta - t_{n+1}) - \frac{g(t_{n+1}, y_{n+1})}{h}(t_n - \theta). \]

Eq. (62), is replaced in Eq. (61), and by performing the same steps in [22], we obtain

\[a^\alpha \frac{D^p}{dt^p} R_{1R} = \frac{\alpha}{\Gamma(\alpha)\Gamma(1-\alpha)} \int_0^t g(\theta, y(\theta))(t - \theta)^{\alpha-1}\,d\theta, \]
where
\[B(x) = 1 - \alpha + \frac{\alpha}{\Gamma(\alpha)} \]

is a normalization function, and at \(t_{n+1} \), we have
\[y_{n+1} - y_0 = \frac{\Gamma(\alpha)(1 - \alpha)}{\Gamma(\alpha)\Gamma(1-\alpha)} g(t_n, y(t_n)) + \frac{\alpha}{\Gamma(\alpha)\Gamma(1-\alpha)} \times \sum_{m=0}^{n} g(t_{n+1} - \theta)^{\alpha-1}\,d\theta. \]

Now, \(g(\theta, y(\theta)) \) will be approximated in an interval \([t_n, t_{n+1}] \) using a two-step Lagrange interpolation method. The two-step Lagrange polynomial interpolation is given as follows [22]:
\[P = \frac{g(t_{n+1}, y_{n+1})}{h}(\theta - t_{n+1}) - \frac{g(t_{n+1}, y_{n+1})}{h}(t_n - \theta). \]

Eq. (62), is replaced in Eq. (61), and by performing the same steps in [22], we obtain

\[a^\alpha \frac{D^p}{dt^p} R_{1R} = \frac{\alpha}{\Gamma(\alpha)\Gamma(1-\alpha)} \int_0^t g(\theta, y(\theta))(t - \theta)^{\alpha-1}\,d\theta, \]
where
\[B(x) = 1 - \alpha + \frac{\alpha}{\Gamma(\alpha)} \]

is a normalization function, and at \(t_{n+1} \), we have
\[y_{n+1} - y_0 = \frac{\Gamma(\alpha)(1 - \alpha)}{\Gamma(\alpha)\Gamma(1-\alpha)} g(t_n, y(t_n)) + \frac{\alpha}{\Gamma(\alpha)\Gamma(1-\alpha)} \times \sum_{m=0}^{n} g(t_{n+1} - \theta)^{\alpha-1}\,d\theta. \]

Now, \(g(\theta, y(\theta)) \) will be approximated in an interval \([t_n, t_{n+1}] \) using a two-step Lagrange interpolation method. The two-step Lagrange polynomial interpolation is given as follows [22]:
\[P = \frac{g(t_{n+1}, y_{n+1})}{h}(\theta - t_{n+1}) - \frac{g(t_{n+1}, y_{n+1})}{h}(t_n - \theta). \]
\[
y_{n+1} - y_0 = \frac{\Gamma(x)(1-x)}{\Gamma(x)(1-x) + x^a g(t_n, y(t_n))} + \frac{1}{(x+1)(1-x)^2} \times \sum_{m=0}^{n} h^a g(t_m, y(t_m))(n+1-m)^a
\]

\[
(n - m + 2 + a) - (n - m)^2(n - m + 2 + 2a)
\]

\[
(n - m + 2 + a) - (n - m)^2(n - m + 1 + a).
\]

To obtain high stability, we present a simple modification in Eq. (63). This modification is to replace the step size \(h \) with \(\phi(h) \) such that

\[
\phi(h) = h + O(h^2), \quad 0 < \phi(h) \leq 1.
\]

For more details, see [54]. Then, the new scheme is called the nonstandard two-step Lagrange interpolation method (NS2LIM) and is given as follows:

\[
y_{n+1} - y_0 = \frac{\Gamma(x)(1-x)}{\Gamma(x)(1-x) + x^a g(t_n, y(t_n))} + \frac{1}{(x+1)(1-x)^2} \times \sum_{m=0}^{n} \phi(h)^a g(t_m, y(t_m))
\]

\[
(n + 1 - m)^a(n - m + 2 + a) - (n - m)^2(n - m + 2 + 2a)
\]

\[
(n + 1 - m)^a(n - m + 2 + a) - (n - m)^2(n - m + 1 + a).
\]

Then, we use the new scheme in Eq. (64) to numerically solve the state system in Eqs. (45)–(58), and we use the implicit finite difference method to solve the co-state system Eqs. (24)–(37) with the transversality conditions in Eq. (38).

Numerical simulations

In this section, we present two new schemes in Eqs. (63) and (64) to numerically simulate the fractional-order optimal system in Eqs. (45)–(58) and Eqs. (24)–(37) with the transversality condition in Eq. (38) using the parameters given in Table 1 and \(\phi(h) = Q(1 - e^{-h}) \), where \(Q \) is a positive number less than or equal to 0.01. The initial conditions are \(S_1(0) = 8741400, S_2(0) = 200000, E_{1i}(0) = 557800, E_{2i}(0) = 7800, E_{1f}(0) = 4500, E_{2f}(0) = 3000, I_{1s}(0) = 20000, I_{2s}(0) = 2000, I_{1e}(0) = 1800, I_{2e}(0) = 800, R_{1i}(0) = 800, R_{2i}(0) = 800, R_{2i}(0) = 200, \) and \(R_{2f}(0) = 100 \). For computational purposes, we use MATLAB on a computer with the 64-bit Windows 7 operating system and 4 GB of RAM. We now show some numerical aspects of the simulation of the proposed model in Eqs. (3)–(16). Fig. 2 shows that the summation of all the unknown of variables in the proposed model in Eqs. (3)–(16) is strictly constant during the studied time in the controlled case when using the scheme in Eq. (64). This result indicates that the proposed method is efficient. Fig. 3 shows the numerical solutions of \(I_{1s}, I_{2s}, I_{1e}, \) and \(I_{2e} \) using the scheme in Eq. (64) when \(T_f = 200 \) in the controlled case. We note that the solutions for different values of \(\alpha \) vary close to the integer-order solution, i.e., the FO model is a generalization of the integer-order model and the FOCP systems and is more suitable for describing the real world. In Figs. 4–6, we examined the numerical results of \(I_{1s}, I_{2s}, I_{1e}, \) and \(I_{2e} \) in the case \(\alpha = 0.95, 1 \), and we note that there are fewer infected individuals

![Fig. 4. Numerical simulations of \(I_{1s}, I_{2s}, I_{1e}, \) and \(I_{2e} \) with \(\alpha = 0.95 \) and \(\beta = 9 \) without control cases using NS2LIM.](image)
in the control case. These results agree with the results given in Table 2. Fig. 7 illustrates the behaviour of relevant variables from the proposed model in Eqs. (3)–(16) for different values of α using the scheme in Eq. (64). We note that the relevant variables change under different values of α following the same behaviour. Fig. 8 shows the behaviours of the relevant variables from the proposed model in Eqs. (3)–(16) for $\alpha = 0.8$ using the scheme in Eq. (63). We note that the relevant variables exhibit the same behaviour. Fig. 9
shows the behaviour of the control variables u_2 and u_3 at different values of a and $T_f = 200$ using NS2LM. We note that the control variables exhibit the same behaviour in the integer and fractional cases. Fig. 10 shows that the proposed scheme in Eq. (64) is more stable than the scheme in Eq. (63). Table 2 shows a comparison of the value of the objective function system using Eq. (64) with and without control cases when $T_f = 50$ and under different values of a. We note that the values of the objective function system with the control cases are lower than the values of the objective function system without the controls for all values of $0.6 < \alpha \leq 1$.

Table 2
Comparison of the values of the objective function system using NS2LM and $T_f = 50$ with and without control cases.

α	$J(u_1, u_2, u_3)$ with control	$J(u_1, u_2, u_3)$ without controls
1	8.7371×10^5	1.0721×10^5
0.98	8.6240×10^5	1.0581×10^5
0.95	8.4617×10^5	1.0383×10^5
0.90	8.2138×10^5	1.0082×10^5
0.80	7.8340×10^5	9.6373×10^5
0.75	7.7330×10^5	9.5414×10^5
0.60	8.2733×10^5	1.0502×10^5

Table 3 shows a comparison of the two proposed schemes in Eqs. (64) and (63) under different values of α with the control case. The solutions for the scheme in Eq. (64) appear to be slightly more accurate than those for the scheme in Eq. (63).

Conclusions
In this article, an optimal control for a fractional TB infection model that includes the impact of diabetes and resistant strains is presented. The fractional derivative is defined in the ABC sense. The proposed mathematical model utilizes a non-local and non-singular kernel. Four optimal control variables, u_1, u_2, u_3, and u_4, are introduced to reduce the number of individuals infected. It is concluded that the proposed fraction-order model can potentially describe more complex dynamics than can the integer model and can easily include the memory effects present in many real-world phenomena. Two numerical schemes are used: 2LIM and NS2LIM. Some figures are given to demonstrate how the fractional-order model is a generalization of the integer-order model. Moreover, we numerically compare the two methods. It is found that NS2LIM is more accurate, more efficient, more direct and more stable than 2LIM.
Fig. 8. Dynamics of relevant variables of the system in Eqs. (45)–(58) when $B_1 = B_2 = B_3 = B_4 = 100$ and $\beta = 5$, with control cases using 2LIM.

Fig. 9. Numerical simulations of the control variables using NS2LIM.
Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Conflict of interest

The authors have declared no conflict of interest.

References

[1] Global Tuberculosis Report 2014, Geneva, World Health Organization, 2014, http://www.who.int/tb/publications/global report/en/.
[2] World Health Organization. The dual epidemic of TB and diabetes. http://www.who.int/tb.
[3] Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol 1999;26(3-4):259–65.
[4] Sweilam NH, Soliman IA, Al-Mekhlafi SM. Nonstandard finite difference method for solving the multi-strain TB model. J Egyp Mathe Soc 2017;25(2):129–38.
[5] Yang Y, Wu J, Lu J, Xu X. Tuberculosis with relapse: a model. Math Popul Stud 2017;24(1):3–20.
[6] Wallis RS. Mathematical models of tuberculosis reactivation and relapse. Front Microbiol 2016;7:669.
[7] Castillo-Cávez C, Feng Z. To treat or not to treat: the case of tuberculosis. J Math Biol 1997;35(6):629–56.
[8] Khan MA, Ullah S, Farooq M. A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative. Chaos Solitons Fractals 2018;116:227–38.
[9] Coll C, Herrero A, Sanchez E, Thome N. A dynamic model for a study of diabetes. Math Comput Model 2009;50(5–6):713–6.
[10] Appuhamy JA, Kebreab E, France J. A mathematical model for determining age-specific diabetes incidence and prevalence using body mass index. Ann Epidemiom. 2013;23(5):248–54.
[11] Delavari H, Heydarnejad H, Baleanu D. Adaptive fractional order blood Glucose regulator based on high order sliding mode observer. IET Syst Biol 2018:1–13.
[12] Moulaee DP, Bowong S, Tewa JJ, Emvudu Y. Analysis of the impact of diabetes on the dynamical transmission of tuberculosis. Math Model Nat Phemon 2012;7(3):117–46.
[13] Carvalho ARM, Pinto CMA. Non-integer order analysis of the impact of diabetes and resistant strains in a model for TB infection. Commun Nonlinear Sci Numer Simulat 2018:61:104–26.
[14] Atangana A, Baleanu D. New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Therm Sci 2016;20(2):763–9.
[15] Kumar D, Singh J, Baleanu D. A new analysis of Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler type kernel. Eur J Phys Plus 2018;133(2):70. doi: https://doi.org/10.1186/s13662-018-11934-4.
[16] Singh J, Kumar D, Baleanu D. On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag-Leffler type kernel. Chaos 2017;27:103113.
[17] Singh J, Kumar D, Baleanu D. On the analysis of fractional diabetes model with exponential law. Adv Diff Equat 2018. doi: https://doi.org/10.1186/s13662-018-1680-1.
[18] Kumar D, Singh J, Baleanu D, Rathore S. Analysis of a fractional model of Ambartsumian equation. Eur J Phys Plus 2018;133:259.
[19] Singh J, Kumar D, Baleanu D, Rathore S. An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation. Appl Math Comput 2018;335:12–24.
[20] Kumar D, Agarwal RP, Singh J. A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation. J Comp Appl Mathe 2018;339:405–13.
[21] Singh J, Kumar D, Hammouch Z, Atangana A. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl Math Comput 2018;316:504–15.
[22] Solís-Pérez JE, Gómez-Aguilar JF, Atangana A. Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws. Chaos Solitons Fractals 2018;114:175–85.
[23] Ullah S, Khan MK, Farooq M. Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative. Eur Phys J Plus 2018:133–313.
[24] Oldham K, Spanier J. The fractional calculus: theory and application of differentiation and integration to arbitrary order. New York: Academic Press; 1974.
[25] Mitkowski, Kacprzyk J, Baranowski J. Advances in the theory and applications of non-integer order systems. Cham Heidelberg New York Dordrecht London: Springer; 2013. p. 275.

Table 3

Comparison of 2LIM and NS2LIM in the controlled case with $T_f = 10$, $h = 0.1$ and $\beta = 5$

Variables	2LIM	NS2LIM	x
l_{1R}	6.0500×10^3	1.9694×10^3	0.8
l_{2s}	1.7822×10^3	1.5554×10^3	0.7
l_{1R}	4.0922×10^3	1.9382×10^3	0.6
l_{2s}	3.1513×10^3	1.6662×10^3	0.6
l_{1R}	2.9203×10^3	1.9168×10^3	0.6
l_{2s}	6.2351×10^3	2.3815×10^3	0.6

Fig. 10. Numerical simulations of R_t when $B_1 = B_2 = B_3 = B_4 = 100$ and $x = 0.9$, $h = 1$ with control case using NS2LIM and 2LIM.
Khan MA, Ullah S, Okosun KO, Shah K. A fractional order pine wilt disease model with Caputo-Fabrizio derivative. Adv Diff Equat 2018;2018:410.

Ullah S, Khan MA, Farooq M. Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative. Eur Phys J Plus 2018;133(8):313.

Yildiz TA. A fractional dynamical model for honeybee colony population. Int J Biomathe 2018:11(4):1–23.

Salati AB, Shamsh M, Torres DFM. Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems. Commun Nonlinear Sci Numer Simul 2018.

Sweilam NH, AL-Mekhlafi SM. Optimal control for a time delay multi-strain tuberculosis fractional model: a numerical approach. IMA J Math Control Inf 2017:1–24.

Sweilam NH, AL-Mekhlafi SM. Optimal control for a nonlinear mathematical model of tumor under immune suppression: A numerical approach. Optim Control Appl Meth 2018;39:1581–96.

Sweilam NH, AL-Mekhlafi SM. Legendre spectral-collocation method for solving fractional optimal control of HIV infection of CD4+T cells mathematical model. J Defense Model Simul 2017;14(3):273–84.

Denysuk R, Silva CJ, Torres DFM. Multi objective optimization to a TB-HIV/AIDS coinfection optimal control problem. Comp Appl Math 2018:37:2112–28.

Agrawal OP. On a general formulation for the numerical solution of optimal control problems. Int J Control 2004;28(1–4):323–37.

Agrawal OP. A formulation and numerical scheme for fractional optimal control problems. IFAC Proc Vol 2006;39(1):68–72.

Agrawal OP, Delfterli O, Baleanu D. Fractional optimal control problems with several state and control variables. J Vib Control 2010;16(13):1967–76.

Bhrawy AH, Zaky MA. Shifted fractional-order Jacobi orthogonal functions: Application to a system of fractional differential equations. Appl Mathe Model 2016;40:832–45.

Baleanu D, Diethelm K, Scalas E, Trujillo JJ. Fractional calculus models and numerical methods. Series on complexity, nonlinearity and chaos. Hackensack, NJ, USA: World Scientific Publishing Co. Pte. Ltd., 2012.

Dabiri A, Moghaddam BP, Tenreiro Machado JA. Optimal variable-order fractional PID controllers for dynamical systems. J Comput Appl Mathe 2018;339:40–8.

Khan MA, Islam S, Zaman G. Media coverage campaign in Hepatitis B transmission model. Appl Math Comput 2018;331:378–93.

Khan A, Zaman G. Optimal control strategy of SEIR endemic model with continuous age-structure in the exposed and infectious classes. Optim Control Appl Meth 2018:1–12.

Agusto FB, Khan MA. Optimal control strategies for dengue transmission in pakistan. Math Biosci 2018;305:102–21.

Khan MA, Khan R, Khan Y, Islam S. A mathematical analysis of Pine Wilt disease with variable population size and optimal control strategies. Chaos Solitons Fractals 2018;108:205–17.

Khan MA, Islam S, Valverde JC, Khan SA. Control strategies of hepatitis B with three control variables. J Biolog Syst 2018;26(01):1–21.

Khan MA, Khan Y, Islam S. Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment. Phys A: Stat Mech Appl 2017;493:210–27.

Bonyah E, Khan MA, Okosun KO, Islam S. A theoretical model for Zika virus transmission. PloS One 2017;12(10):e0185540.

Okosun KO, Khan MA, Bonyah E, Oguluade ST. On the dynamics of HIV-AIDS and cryptosporidiosis. Eur Phys J Plus 2017;132(8):363.

Khan MA, Ali K, Bonyah E, Okosun KO, Islam S, Khan A. Mathematical modeling and stability analysis of Pine Wilt Disease with optimal control. Sci Rep 2017;7(1):3115.

Zaky MA. A Legendre collocation method for distributed-order fractional optimal control problems. Nonlinear Dyn 2018:91:2667–81.

Butcher EC, Dabiri A, Nazari M. Stability and control of fractional periodic time-delayed systems. Springer International Publishing AG, 2017. p. 7.

Zaky MA, Tenreiro Machado J. On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun Nonlinear Sci Numer Simul 2017:217.

Moghaddam BF, Yaghoobi S, Machado JT. An extended predictor-corrector algorithm for variable-order fractional delay differential equations. J Comput Nonlinear Dyn 2016;1:1–11.

Patidar KC. Nonstandard finite difference methods: recent trends and further developments. J Diff Equat Appl 2016. doi: https://doi.org/10.1080/10236198.2016.1144748. 22(0), 817-849.