Spin-orbit coupling in fluorinated graphene

Susanne Irmer, Tobias Frank, Sebastian Putz, Martin Gmitra, Denis Kochan, and Jaroslav Fabian
Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany

(Dated: November 4, 2014)

We report on theoretical investigations of the spin-orbit coupling effects in fluorinated graphene. First-principles density functional calculations are performed for the dense and dilute adatom coverage limits. The dense limit is represented by the single-side semifluorinated graphene, which is a metal with spin-orbit splittings of about 10 meV. To simulate the effects of a single adatom, we also calculate the electronic structure of a 10 × 10 supercell, with one fluorine atom in the top position. Since this dilute limit is useful to study spin transport and spin relaxation, we also introduce a realistic effective hopping Hamiltonian, based on symmetry considerations, which describes the supercell bands around the Fermi level. We provide the Hamiltonian parameters which are best fits to the first-principles data. We demonstrate that, unlike for the case of hydrogen adatoms, fluorine’s own spin-orbit coupling is the principal cause of the giant induced local spin-orbit coupling in graphene. The sp3 hybridization induced transfer of spin-orbit coupling from graphene’s σ bonds, important for hydrogenated graphene, contributes much less. Furthermore, the magnitude of the induced spin-orbit coupling due to fluorine adatoms is about 1000 times more than that of pristine graphene, and 10 times more than that of hydrogenated graphene. Also unlike hydrogen, the fluorine adatom is not a narrow resonant scatterer at the Dirac point. The resonant peak in the density of states of fluorinated graphene in the dilute limit lies 260 meV below the Dirac point. The peak is rather broad, about 300 meV, making the fluorine adatom only a weakly resonant scatterer.

I. INTRODUCTION

Functionalizing graphene with adatoms and adolecules is very attractive for spintronics research, as it offers new tools to tailor spin and magnetic properties of this unique two-dimensional material. On the one hand, adatoms—in particular paramagnetic ones such as hydrogen and organic molecules—can provide the mechanism for the ultrafast spin relaxation seen in spin injection experiments. On the other hand, even light adatoms such as hydrogen can induce giant spin-orbit coupling (SOC) which makes novel spin transport phenomena such as the spin Hall effect observable in graphene.

A particularly interesting adatom is fluorine. Being the most electronegative element, fluorine forms a strong covalent bond with carbon, affecting the stability of possible fluorine-graphene conformations. Even before the synthesis of graphene there were theoretical studies of fluorinated graphite surfaces. Magnetization measurements show that fluorinated graphene can induce spin 1/2 paramagnetic moments. Magnetic moments also seem to be deduced from magnetotransport and weak localization measurements. However, theoretically the case for induced magnetic moments due to fluorine is controversial. Some density functional calculations predict a spin unpolarized ground state while other calculations seem to predict a spin polarized one. The difficulty seems to stem from the self-interaction error in the exchange-correlation functionals that tends to delocalize electronic states. It may be that the standard density functional approximations will not be able to resolve this case, calling perhaps for more advanced quantum chemistry approaches.

Here we focus on spin-orbit coupling induced by fluorine adatoms in graphene. We perform first-principles density functional calculations in the dense and dilute limits of fluorine coverage, to quantify the spin-orbit splitting of the relevant energy bands. Our dense limit is given by the single-side semifluorinated graphene (C2F) which can be experimentally prepared by the chemical reduction of oxidized graphite surfaces. Our study focuses on the chain conformation of C2F which is metallic within DFT, as well as within GW calculations. The computed phonon spectrum also shows the dynamical stability of this structure. It is predicted that the ground state of C2F should be a Néel antiferromagnet.

Our main finding is a giant enhancement of spin-orbit coupling, compared even to hydrogenated graphene. The spin-orbit splitting reaches 30 meV. Such a splitting cannot come from graphene itself, as the σ bonds are split by about 10 meV, which is the native spin-orbit splitting of the carbon atom. Instead, the splitting comes from the fluorine adatom. This conclusion is further confirmed by investigating the dilute limit, represented here by a 10 × 10 supercell. For this limit we also derive an effective minimal hopping orbital and spin-orbit Hamiltonian, with parameters obtained by fitting to our first-principles calculations. This realistic Hamiltonian should be useful for model calculations of spin transport and spin relaxation in fluorinated graphene. In particular, it shows that fluorine adatoms in the top position are not resonant scatterers at the Dirac point. We present tight-binding calculations for a large, 40 × 40, supercell, as well as analytical results for a single adatom, to show that fluorine leads to a very broad, indeed weak or marginal resonant scattering off the Dirac point: the peak lies 260...
meV below the Dirac point, having the full width at half maximum of 300 meV.

Our first-principles results, for both the dense and dilute limits, were performed with the full potential linearized augmented plane wave method, within density functional theory (DFT). We work with spin unpolarized ground states, to identify spin-orbit effects in the band structures. To model different concentrations of F adatoms we chose different supercells. The dense (1 × 1 supercell) and intermediate (5 × 5 supercell) coverages were calculated with the Wien2k code using a vacuum spacing of 15 Å. The dilute limit (10 × 10 supercell) was calculated with FLEUR in the film geometry. Spin-orbit coupling in these codes is included within the second-variational step in the muffin-tin spheres for valence electrons while the core electrons are treated fully relativistically. All our first-principles calculations are well converged for fully relaxed structures.

The paper is organized as follows. In Sec. II we present DFT results of the electronic band structure calculation and specifically the spin-orbit coupling induced spin splitting of the bands for a semifluorinated graphene (50% coverage), representing our dense limit case. Sec. III. A. brings the same, but for a larger supercell, 10 × 10 supercell (0.5% coverage) representing our dilute limit. The dilute limit is then analyzed using a symmetry derived effective hopping Hamiltonian in Sec. III.B. The model parameters of the Hamiltonian are fitted to the first-principles results. In Sec. III.C we answer the question whether or not fluorine adatoms on graphene are resonant scatterers. Finally, a comparative analysis with hydrogenated graphene is provided in the Appendix, using an intermediate size 5 × 5 supercell.

II. DENSE LIMIT: SINGLE-SIDE SEMIFLUORINATED GRAPHENE C2F

The unit cell of C2F contains two carbon atoms and one fluorine which chemisorbs preferentially in the top position, see Fig. 1. Our calculated Bader charges show a transfer of about 0.45 e from graphene to fluorine. The charged fluorine adatoms repel each other, stretching graphene whose lattice constant grows by about 4.1% in comparison to the bare graphene lattice constant (aGr = 2.46 Å). The graphene σ bonds resist stretching, resulting in a regular sp3-like corrugation; fluorinated carbon atoms (C_F) are pulled out of the graphene plane by about 0.312 Å. In addition, our structural relaxation reveals that F − C_F bond length increases to 1.475 Å in comparison to the typical carbon fluorine bond length of 1.35 Å. The local corrugation allows for sp3-hybridization and hence for admixture of carbon π and σ states. This is expected to significantly enhance local spin-orbit coupling, in analogy to hydrogenated graphene. On the other hand, the fine structure of the fluorine atom shows a splitting of 50 meV (2P0 spectroscopic term five times larger than in the carbon atom. This should further enhance SOC in fluorinated graphene due to the intrinsic fluorine contribution. In fact, as we show below, this contribution dominates the local enhancement of spin-orbit coupling.

In Fig. 2 we show the calculated electronic band structure of C2F. The fully occupied valence bands range in energies from −23 eV to −1 eV. There are seven such bands which are occupied by 14 of the 15 valence electrons (the two carbons contribute 4 electrons each, and fluorine has 7 valence electrons). The band crossing the Fermi level, labeled as (b) in Fig. 2, is only partially occupied. The lowest valence band, at about −23 eV (not shown in the figure) stems from the fluorine 2s orbitals; this band is only weakly dispersive. In the energy region from −18 to −8 eV the band structure of C2F is dominated by the almost intact carbon σ bonds, resembling the band structure of pristine graphene at those energies. However, in the region from −8 to −6 eV we observe anticrossings in the band structure when moving away from the Γ point. At these energies the orbital resolved DOS (see Fig. 3) on the fluorinated carbon C_F shows the presence of both pz and px + py orbitals. This is the manifestation of the structural sp3 hybridization—the C_F atom is pulled out of the plane, the associated p orbitals start to overlap and their interaction causes anticrossings.

Comparing the orbital resolved DOS for F and C_F atoms in Fig. 2, we see two energy windows (−8, −6) eV and (5.5, 7) eV in which both atoms contribute dominantly pz orbitals. These are the bonding and antibonding states made of pz orbitals on F and C_F. On the other hand, the px orbitals on the nearest neighbor carbon, C_nn, form the band at the Fermi level that is partially occupied [indicated by (b) at Fig. 2]. This band is weakly dispersive (ca. 2 eV bandwidth) since the geometrically allowed interaction among different C_nn carbons is of the next-nearest-neighbor type. Finally, fluo-
spin $p_x + p_y$ orbitals span the energy interval from -5 eV to -1.5 eV. These orbitals hybridize, due to their geometry, only weakly with others. Contributions of different orbitals are indicated by the labeled lines.

Spin-orbit splittings for the three bands around the Fermi level are shown in Fig. 3. The splittings vanish at the time reversal points Γ and M and reach values up to 30 meV for the “valence” band (c). The splitting is smallest for the “conduction” band (a), which is formed by the p_z orbitals on the fluorinated carbon C_F and fluorine, and has only a weak p_x and p_y component. As we turn off the spin-orbit coupling on F in our first-principles calculations, this band still shows a significant splitting, in contrast to the “midgap” band (b) and “valence” band (c), whose splitting drops to less than 1 meV. This demonstrates that band (a) has a significant part of its splitting due to sp^3 deformation alone. On the other hand, bands (b) and (c) are formed to a large extent by fluorine p_x and p_y orbitals, whose atomic fine structure is imprinted in the bands as the spin-orbit splitting.

III. DILUTE LIMIT

A. DFT results for 10×10 supercell

To describe chemisorption of an isolated fluorine on graphene we need to consider a large enough supercell with a single fluorine adatom to avoid interactions between periodic images of fluorine. For hydrogenated graphene already a 5×5 supercell is sufficient to capture the essential features of the dilute limit. In the case of fluorinated graphene this supercell size is not enough as there is still a significant overlap between the fluorine-derived states. We treat this intermediate case in the Appendix. Here we focus on a 10×10 supercell (0.5% of adatom coverage) as a representative of the dilute limit for fluorine adatoms.

Our structural relaxation shows that for the 10×10 supercell the $F - C_F$ bond length equals 1.607 Å, the nearest-neighbor $C_F - C_{nn}$ bond length equals 1.469 Å and the next-nearest-neighbor C_{nnn} distance equals 2.488 Å, see Fig. 1. The fluorinated carbon C_F is pulled out of the graphene plane by about 0.423 Å, which is more than in the dense limit (0.312 Å).

In Fig. 4 we show the calculated electronic band structure and local DOS for selected atoms in the 10×10 fluorinated graphene supercell. We again focus on three bands—(a), (b), and (c)—near the Fermi level which, in the following, we call the conduction, midgap, and valence bands, respectively. The midgap band extends over the energy window from -0.1 eV to 0.3 eV and its bandwidth is by 0.2 eV smaller than in the associated 5×5 system (see Appendix). This implies that the midgap state becomes more localized and that the interaction among the fluorine adatoms is significantly weakened as compared to the more dense cases. From the DOS it is apparent that the main contribution to the electron density of conduction, midgap, and valence bands comes from the p_z orbitals on fluorine F and nearest neighbor C_{nn} carbon atoms. The orbital decomposition of the C_F DOS contains besides the large amount of p_z also s and even d orbitals. The situation here resembles the orbital decomposition in the 5×5 system, see Appendix.

The above orbital structure analysis suggests that a tight-binding model with only p_z orbitals should be able to describe the electronic structure in the vicinity of the Fermi level, i.e., the conduction, midgap, and valence states.
bands in the energy window from -0.8 to 0.8 eV. Such a model is introduced in the following section.

B. Effective Hamiltonian with spin-orbit coupling

1. Orbital part

Employing local symmetries we derive and analyze an effective p_z orbital tight-binding Hamiltonian including SOC relevant in the vicinity of the fluorine adatom in the top position, see Fig. 5. While we focus on fluorine to obtain realistic hopping parameters, the form of our Hamiltonian is transferable to other top-position adatoms on graphene.

Our first-principles analysis shows that the relevant states around the Fermi level originate from p_z orbitals on carbon and fluorine atoms. To describe the orbital part of the band structure (without spin effects) we employ a local hybridization Hamiltonian \(\hat{H} \), which consists of an on-site energy ε_i term on the fluorine adatom and of the orbital hopping T term between the F adatom and the fluorinated carbon $A = C_F$:

\[
\hat{H}' = \varepsilon_i \sum_\sigma \hat{F}_\sigma^\dagger \hat{F}_\sigma + T \sum_\sigma \left(\hat{F}_\sigma^\dagger \hat{A}_\sigma + \hat{A}_\sigma^\dagger \hat{F}_\sigma \right) .
\]

The rest is described by the standard nearest-neighbor hopping Hamiltonian for graphene,

\[
\hat{H}_0 = -t \sum_{\langle i,j \rangle} \sum_\sigma \left(\hat{c}_i^{\dagger} \sigma \hat{c}_{j,\sigma} + \hat{c}_{j,\sigma} \hat{c}_i^{\dagger} \sigma \right),
\]

with the orbital hopping $t = 2.6$ eV; summation over $\langle i,j \rangle$ runs over all pairs of graphene nearest neighbors.

FIG. 4. (Color online) Calculated electronic properties of fluorinated graphene in the dilute limit represented by a 10×10 supercell with a single fluorine adatom. Band structure (left) along high symmetry lines in first Brillouin zone and orbital resolved atomic density of states (right) are shown. The labels correspond to conduction (a), midgap (b), and valence bands (c). Contribution of different orbitals is indicated by the labeled lines.

Operator \hat{F}_σ (\hat{F}_σ^\dagger) annihilates (creates) an electron with spin σ in the atomic p_z orbital on fluorine F. Similarly, $\hat{c}_i^{\dagger \sigma}$ (\hat{c}_i^{σ}) are the annihilation (creation) operators for p_z orbitals on graphene carbon atoms. We also introduce \hat{A}_σ (\hat{A}_σ^\dagger) and \hat{B}_σ (\hat{B}_σ^\dagger), $i = 1, 2, 3$, as the annihilation (creation) operators on fluorinated carbon site A, as well as on its three nearest neighbors B_1, B_2, B_3. Our notation is illustrated in Fig. 5. Labels A and B derive from the corresponding sublattice; operators are typographically distinguished to avoid confusion.

Hamiltonian \hat{H}', Eq. (1), is consistent with the structural C_{3v} symmetry that emerges locally due to fluoro-top-position chemisorption. We recall that the point group C_{3v} is generated by C_3-rotations around the fluorine-carbon bond (principal axis) and σ_v-vertical reflections containing the principal axis and the $A - B_i$ bond, where A stands for the fluorinated carbon and B_i for its nearest neighbors. Using the full orbital Hamiltonian $\hat{H}_0 + \hat{H}'$ we have fitted our first-principles band structure of the 10×10 supercell. To find the optimal values of two tight-binding parameters T and ε_i we have focused on conduction, midgap, and valence bands around the Fermi level, see bands (a), (b), and (c) in Fig. 6 as only those have a dominant p_z character. Minimization of the least-square differences between the first-principles and model-computed band structures gives $T = 5.5$ eV and $\varepsilon_i = -2.2$ eV. The near perfect agreement with the first-principles data is shown in Fig. 6. This figure also shows the model calculated DOS, using the triangle method.

2. Spin-orbit part

We now use symmetry arguments to derive the spin-orbit Hamiltonian \hat{H}_{SO} which gives the fine splittings of the bands around the Fermi level. Again, only p_z orbitals
will be used in the description. We identify non-zero matrix elements \(\langle i, \sigma | H_{\text{SO}} | j, \sigma' \rangle \) between atomic \(p_z \) orbitals at sites \(i \) and \(j \) hosting spins \(\sigma \) and \(\sigma' \) using invariance

\[
\begin{align*}
\Lambda_A^3 &= \frac{3\sqrt{3}}{2} \langle A, \uparrow | H_{\text{SO}} | a_1, \uparrow \rangle, & \Lambda_B^3 &= -\frac{3\sqrt{3}}{2} \langle B_2, \uparrow | H_{\text{SO}} | B_3, \uparrow \rangle, & \Lambda_{\text{PIA}} &= \frac{2}{3} \langle B_2, \uparrow | H_{\text{SO}} | B_3, \downarrow \rangle, & \Lambda_{\text{FC}} &= \frac{2}{3} \langle F, \uparrow | H_{\text{SO}} | B_1, \downarrow \rangle. \\
\Lambda_{\text{PIA}} + i\Lambda_{\text{PIA}}^* &= \frac{3}{2} \langle A, \uparrow | H_{\text{SO}} | a_1, \downarrow \rangle.
\end{align*}
\]

Before we discuss the resulting hoppings, we make two technical comments. First, to obtain the actual phase factors for the matrix elements that correspond to similar atomic orbital configurations, e.g., for \(\langle A, \uparrow | H_{\text{SO}} | a_2, \downarrow \rangle \), one needs to employ appropriate symmetry operations. This is already accounted for in the SOC Hamiltonian \(H_{\text{SO}} \) provided below. Second, the numerical prefactors are chosen such that the expansion of the SOC Hamiltonian near the K point is numerical prefactor-free, when considering a system coated by adatoms periodically (forming a supercell).

Let us discuss the first two terms in Eqs. (4a). Those are sublattice-resolved local intrinsic SOCs: \(\Lambda_A^3 \) mediates spin-conserving hopping between fluorinated carbon \(A \) and its six next-nearest neighbors \(C_{\text{nn}} = \{a_1, \ldots, a_6\} \), while \(\Lambda_B^3 \) does the same for the nearest carbon atoms \(C_{\text{nn}} = \{B_1, B_2, B_3\} \); refer to Fig. 5 for the labeling. The third term in Eqs. (4a) is the local Rashba coupling that mediates the spin-flip hopping between fluorinated carbon \(A \) and its three nearest neighbors \(C_{\text{nn}} \). The origin of the Rashba coupling, and hence of the fixed orientation of the perpendicular \(z \)-axis stems from a local dipolar electric field that appears due to charge redistribution caused by the fluorine chemisorption. The induced dipolar field can also affect the spin-flip coupling between the nearest and next-nearest neighbor sites, \(C_{\text{nn}} \) and \(C_{\text{nn}} \), but we do not consider terms like \(\langle B_1, \uparrow | H_{\text{SO}} | a_0, \downarrow \rangle \) in what follows.

The three terms in Eqs. (4a) are specific for systems with \(C_{3v} \) structural symmetry. They are describing spin-flip hoppings which connect the next-nearest neighbor sites. The first two terms in Eqs. (4b) are sublattice-resolved PIA-SOC terms, introduced already for hydrogenated graphene\(^{13}\) and silicene\(^{13}\). The acronym PIA stands for \textit{pseudospin-inversion-asymmetry} induced SOC; compared to pristine graphene, sublattices \(A \) and \(B \) are, close to the impurity site, not equivalent. The generally complex matrix element \(\langle A, \uparrow | H_{\text{SO}} | a_0, \downarrow \rangle \) connects fluorinated carbon \(A \) with its six next-nearest neighbors \(C_{\text{nn}} \). We have checked that the imaginary part of this

\[
H_{\text{SO}} = \frac{\hbar}{4m^2c^2} \hat{s} \cdot (\nabla \tilde{V} \times \hat{p}),
\]
matrix element plays only a minor role in the energy band splittings, so we set \(\Lambda_{\text{PIA}}^A \sim \frac{3}{2} \langle A, \uparrow | H_{\text{SO}} | a_1, \downarrow \rangle \) to be real in what follows. (In the dense limit, corresponding to the fully fluorinated sublattice, this approximation becomes exact, since the restored translational symmetry prohibits the imaginary part \(\Lambda_{\text{PIA}}^A \).)

Similarly, the real SOC \(\Lambda_{\text{PIA}}^B \) mediates spin-flip hoppings among three nearest neighbors \(B_1, B_2, \) and \(B_3 \). Our analysis shows that this term is crucial for explaining the fine band structure splittings due to adatom induced SOC. Finally, parameter \(\Lambda_{\text{FC}} \) describes allowed spin-flip hoppings among the fluorine \(F \) and three \(C_{nn} \) carbon atoms \(B_1, B_2, \) and \(B_3 \). In our fitting procedure we find that for fluorine adatoms this term is negligible.

We now give a minimal SOC Hamiltonian for a top-position chemisorbed adatom:

\[
\begin{align*}
\mathcal{H}_{\text{SO}} &= \frac{1}{3\sqrt{3}} \sum_{\sigma} \sum_{i<j \in \text{nn}} \left[\hat{A}_{ij} \nu_{ij} (\hat{s}_z)_{\sigma\sigma} \hat{c}_{j,\sigma} + \text{h.c.} \right] \\
+ &\frac{1}{3\sqrt{3}} \sum_{\langle i,j \rangle} \sum_{\sigma \neq \sigma'} \left[\hat{B}_{ij} \nu_{ij} (\hat{s}_z)_{\sigma\sigma'} \hat{B}_{j,\sigma'} + \text{h.c.} \right] \\
+ &\frac{2}{3} \sum_{B_j \in C_{nn}} \left[\hat{A}_{ij} \nu_{ij} (\hat{s} \times D_{ij})_{z,\sigma\sigma'} \hat{c}_{j,\sigma'} + \text{h.c.} \right] \\
+ &\frac{2}{3} \sum_{B_j \in C_{nn}} \left[\hat{F}_{ij} \nu_{ij} (\hat{s} \times D_{ij})_{z,\sigma\sigma'} \hat{c}_{j,\sigma'} + \text{h.c.} \right] \\
+ &\frac{i}{3\sqrt{3}} \sum_{\langle i,j \rangle} \left[\hat{c}_{i,\sigma} \nu_{ij} \hat{c}_{j,\sigma} \right].
\end{align*}
\]

The creation and annihilation operators are defined in the discussion after Eq. 3. Symbol \(\hat{s} \) represents the array of Pauli matrices acting on the spin space; the sign factor \(\nu_{ij} \) equals +1 if the next-nearest neighbor hopping path \(j \rightarrow k \rightarrow i \) via a common neighbor \(k \) is counterclockwise (−1 for clockwise). Vectors \(d_{ij} \) and \(D_{ij} \) are unit vectors in the \(xy \)-plane (perpendicular to the \(F-A \) bond) pointing from the projected site \(j \) to \(i \). The last term in Eq. 4 is the intrinsic SOC of pristine graphene for which \(\lambda_1 = 12 \mu eV \), see Ref. [55]. We have implemented this term for all next-nearest neighbors not participating in SOC hoppings with the coupling constants \(\Lambda_{\text{PIA}}^A \) and \(\Lambda_{\text{PIA}}^B \); this fact is indicated by the prime at the corresponding summation symbol.

3. Fits to first-principles results

The fit of our tight-binding model to the first-principles calculations of the \(10 \times 10 \) supercell of fluorinated graphene is given in Fig. 7. Spin-orbit splittings of bands (a), (b), and (c) from Fig. 4 are shown. The splittings reach maxima of 0.1, 0.35, and 0.3 meV for the three (a), (b), and (c) bands, respectively. Keeping the orbital parameters fixed we focused on reproducing SOC induced splittings employing the full model Hamiltonian \(H_{0} + H' + H_{SO} \). We tried various combinations of \(\Lambda \)'s to have a reasonable set of parameters capable to explain the observed SOC splittings. Minimizing the sum of least-square differences for SOC splittings for conduction, midgap, and valence bands along the full \(M-K-\Gamma-M \) line, we have obtained \(\Lambda_{\text{PIA}}^B = 3.3 \text{ meV}, \Lambda_{\text{PIA}}^B = 7.3 \text{ meV} \), and \(\Lambda_{R} = 11.2 \text{ meV} \) as the best fit, see Fig. 7. For the valence and conduction bands near the \(\Gamma \) point we observe marked discrepancies between the tight-binding model and first-principles calculations. The reason is the admixture of 2s and 3d orbitals that contribute to DOS as much as \(2p_z \) orbitals near \(\Gamma \), i.e., at energies below \(-0.6 \text{ eV} \) for the valence band and above \(0.9 \text{ eV} \) for the conduction band, see Fig. 4. Since our symmetry inspired effective SOC Hamiltonian accounts for \(p_z \) orbitals, discrepancies such as those around \(\Gamma \) are to be expected. Nevertheless, it is rather remarkable that with only three SOC parameters we are able to near-perfectly match all the characteristic features accompanying SOC splittings along the whole \(M-K-\Gamma-M \) line for all three bands around the Fermi level. Such a close agreement with first-principles results is to some extent fortuitous, given by the almost sole \(p_z \) character of the bands around the Fermi level.

At the same time it gives us confidence in our minimal phenomenological orbital and SOC hopping model, whose graphical representation is in Fig. 4.
In addition to the 10×10 supercell, we have also calculated a smaller, 7×7, supercell from first principles. The best-fit tight-binding model parameters in this case are $T = 6.1$ eV, $\varepsilon_B = -3.3$ eV, and $\Lambda_B = 3.2$ meV, $\Lambda_{PIA} = 7.9$ meV and $\Lambda_R = 11.3$ meV. These values are very close to those of the 10×10 supercell, further evidencing the robustness and consistency of our tight-binding model. The spin-orbit parameters seem to be less sensitive to the supercell size than the orbital ones. Both supercells results are summarized in Table I. The intermediate case of a 5×5 supercell, which we find to be insufficient to describe the dilute limit, and so unsuitable for our tight-binding analysis here, is treated in the Appendix.

As in the dense limit, there are two principal causes of the enhanced spin-orbit coupling due to fluorine adatom: sp^3 hybridization of carbon orbitals (with spin-orbit from the σ bonds) and the native spin-orbit coupling of fluorine. In order to separate and quantify these two contributions, we turned off the intra-atomic SOC on fluorine in the first-principles calculation, see Fig. 7. The splitting is significantly reduced, by an order of magnitude. We conclude that sp^3 distortion gives spin-orbit splitting in magnitude a decade smaller than what is induced by the native spin-orbit coupling of graphene. The giant enhancement of spin-orbit coupling in graphene due to fluorine adatoms comes almost solely from the spin-orbit coupling of fluorine and hybridization of fluorine p orbitals with those of carbon. To understand the microscopic mechanism of this SOC transfer one should build a multi-orbital tight-binding model with all relevant orbitals on F, A, and B1, B2, B3 sites and then down-fold the Hamiltonian matrix to the p_z orbital sector, as was done for graphene. Such an analysis is beyond the scope of the present paper which aims at presenting an effective single-orbital model, given by Hamiltonian H_{SO}, Eq. (5), that can be used for transport and spin relaxation studies.

In contrast, in hydrogenated graphene the microscopic physics behind the giant enhancement of spin-orbit coupling is sp^3 bonding, as shown by first-principles calculations. The spin-orbit coupling comes from the carbon σ bonds, which are split by about 10 meV at Γ. Part of this splitting is transferred to the π band upon sp^3 hybridization as a hydrogen is added on top of a carbon atom. In fact, spin-orbit splittings induced by hydrogen are similar in magnitude as what is represented by the dashed lines in Fig. 7, compare with Ref. 13. The effective SOC Hamiltonian H_{SO}, Eq. (5), can be also employed in the hydrogenated case, for which the most dominant SOC couplings are $\Lambda_A = -0.21$ meV, $\Lambda_{PIA} = -0.77$ meV, and $\Lambda_R = 0.33$ meV. Comparing spin-orbit coupling in pristine, hydrogenated, and fluorinated graphene, the magnitude grows roughly from 10μeV, 1 meV, to 10 meV, respectively, reflecting different microscopic mechanisms behind the coupling in these systems.

C. “Is fluorine on graphene a resonant scatterer?”

Hydrogen chemisorbed on graphene acts as a resonant scatterer giving a narrow pronounced peak in the DOS close to the Dirac point. In Fig. 5 we plot the tight-binding bands and DOS for hydrogenated graphene using a 40×40 supercell with a single hydrogen in the top position. The midgap band, formed of p_z orbitals on the nearest-neighbor C_{nn} carbon is very narrow, developing the resonance peek seen in the DOS. As the supercell size grows, the valence and conduction bands merge towards the Dirac cone structure of pristine graphene, leaving the flat midgap band almost intact. Such resonances are predicted to have profound effects on spin relaxation and spin transport.

Fluorinated graphene in the dilute limit looks qualitatively different from hydrogenated graphene. The calculated tight-binding band structure of a 40×40 supercell is shown in Fig. 9. We have used the same parameters as

Table I. Orbital and SOC tight-binding parameters that fit the electronic band structure of fluorinated graphene in 7×7 and 10×10 supercell configurations, respectively. The corresponding values are relatively close for both supercells, confirming the reliability and robustness of our phenomenological tight-binding model.

$n \times n$	T [eV]	ε_B [eV]	Λ_B [meV]	Λ_{PIA} [meV]	Λ_R [meV]
7×7	6.1	-3.3	3.2	7.9	11.3
10×10	5.5	-2.2	3.3	7.3	11.2

FIG. 8. (Color online) Extrapolated band structure and DOS of pristine (dashed) and hydrogenated (solid) graphene for a 40×40 supercell. The left panel shows tight-binding model-calculated band structures along $M-K-\Gamma-M$ lines. The right panel shows the corresponding DOS. Tight-binding orbital parameters for hydrogenated graphene, $T_h = 7.5$ eV and $\varepsilon_h = 0.16$ eV, are taken from Ref. 13. The band structure of hydrogenated graphene shows a narrow resonant peak in the vicinity of the Dirac point.
for the 10×10 supercell in Tab. I which we believe are representative for the dilute limit. The valence and conduction bands look similar to the corresponding bands of pristine graphene. The Dirac structure is almost intact! What used to be the midgap band (b) merges together with the conduction band (a), creating close to the K point a superimposed band structure with linear dispersion. The linear behavior is clearly seen at small energies in the DOS for which the gap at K is gradually decreasing. No resonant level is observed close to the Dirac point. However, there are significant changes in the Dirac cone structure occurring at energies below -0.1 eV, as seen in Fig. [9]. Here DOS shows a multiplet structure due to anticrossings of the bands.

The question arises what would be the ultimate limit of a single fluorine adatom on an infinite graphene sheet. The above 40×40 supercell calculations indicate a broad resonance peaked somewhere below -0.2 eV. Fortunately, the orbital-hopping part of our Hamiltonian is analytically solvable in the single-adatom limit, and we can calculate the change $\Delta \nu(E)$ of the DOS due to a single fluorine adatom. Considering a very low concentration η (just a prefactor) of adatoms, a typical change in the unperturbed DOS per atom and spin—ignoring multiple-scattering interference among different adatom scatterers—would be given by $\eta \Delta \nu(E)$. The tight-binding Hamiltonian \cite{BM} can be effectively downfolded, eliminating the fluorine p$_z$ orbitals by means of the Löwdin-Schrieffer-Wolff transformation. As a result \mathcal{H}' produces an energy dependent delta-like interaction $\mathcal{H}_{\text{fold}}(E)$ localized at the fluorinated carbon C$_F$,

$$\mathcal{H}_{\text{fold}}(E) = \sum_\sigma \alpha(E) \hat{A}_\sigma \hat{A}_\sigma^\dagger,$$

where $\alpha(E) = \frac{T^2}{E - \epsilon_i}$. Following Ref. \cite{BM} we obtain,

$$\Delta \nu(E) = \frac{1}{\pi} \Im \left[\frac{\alpha(E)}{1 - \alpha(E) G_0(E) \partial E G_0(E)} \right].$$

Here, $G_0(E)$ is the Green’s function per atom and spin for the unperturbed pristine graphene, which, within the energy range from -0.5 eV up to 0.5 eV, can be very well approximated by

$$G_0(E) \simeq \frac{E}{D^2} \ln \left| \frac{E^2}{D^2 - \epsilon_i^2} \right| - i \pi \sgn(E) \Theta(D - |E|),$$

with the graphene bandwidth $D = \sqrt{3\pi t} \simeq 6$ eV, see for example Refs. \cite{BM} and \cite{BM1}.

Our analytical results are shown in Fig. [10], in which we plot $\Delta \nu(E)$ as well as the full DOS per atom and spin, $\nu(E) = \nu_0(E) + \eta \Delta \nu(E)$, as functions of energy, for fluorinated graphene at very low concentrations. To visualize the changes in DOS we take an unrealistically large concentration (whose effect is purely multiplicative) of $\eta = 0.5\%$. From Fig. [10] we see that fluorine dominantly affects the DOS at energies around $E \simeq -0.26$ eV which corresponds to a pronounced peak in $\Delta \nu(E)$ with the FWHM $\simeq 0.3$ eV. This gives the energy window (-0.4 eV, -0.1 eV) where we expect dominant orbital effects of fluorine chemisorption. There is a recent experimental evidence\cite{BM2} based on electron-hole asymmetry in transport, indicating resonant scattering due to fluorination, but further studies are certainly called for.

\section{IV. CONCLUSIONS}

We studied, from first principles, the electronic structure and spin-orbit splitting of spin unpolarized fluorinated graphene. Two important limits were covered: a dense limit, represented by a 1×1 supercell with a single fluorine in the top position in the cell, and a dilute limit, represented by a 10×10 supercell, also with a single top-positioned fluorine adatom. We further looked at the intermediate case of a 5×5 supercell, to contrast differences with the case of hydrogenated graphene. All our investigated structures were structurally relaxed.

For the dilute limit we introduced a single-orbital tight-binding (hopping) Hamiltonian that very nicely reproduces the first-principles results. The orbital part of the Hamiltonian is based on the changes of the adatom energy and includes also hopping between the fluorine and fluorinated carbon. The spin-orbit part includes the usual intrinsic (spin-conserving next-nearest neighbor) and Rashba (spin-flip nearest neighbor) hoppings, as well as new PIA hoppings which describe spin-flip paths.
between next-nearest neighbors. We give a specific description of the Hamiltonian and the complex phases of the hoppings, as well as best fits to the DFT obtained spin-orbit spin splittings. We also use our tight-binding Hamiltonian to investigate superlarge supercells (40 supercell is already large enough to represent dilute coverage. Our 5 \times 5 supercell is fully relaxed, with the lattice constant 12.297 Å, which differs by 0.2\% from the same-size pure graphene supercell lattice constant (12.3 Å). Bader charge analysis shows that fluorine acquires a negative charge of 0.518 e. In contrast, for the hydrogenated case there is almost zero charge transfer to hydrogen. In Fig. 11 we show the calculated electronic band structures for the fluorinated and hydrogenated graphene for comparison. In both cases one sees a formation of the midgap states around the Fermi level. However, the band width of 0.6 eV for the fluorinated graphene is much larger than for hydrogenated graphene, for which the bandwidth is less than 0.1 meV.

The DOS for selected atoms in the vicinity of fluorine are shown in Fig. 12. Orbital resolved analysis shows the spatial distribution of the orbitals to the states in the studied energy window around the Fermi level. The spatial distribution of the p z orbitals can be visualized by a significant contribution of p z orbitals to the states in the studied energy window around the Fermi level. The spatial distribution of the p z orbitals can be visualized by

![Diagram](image-url)

FIG. 10. (Color online) Left panel: Change $\Delta \nu(E)$ in DOS per atom and spin, see Eq. (7), computed for the single-impurity model employing orbital tight-binding parameters $T = 5.5$ eV and $\varepsilon_l = -2.2$ eV. The pronounced maximum appears at $E \simeq -0.26$ eV with FWHM $\simeq 0.3$ eV. Right panel: Perturbed DOS per atom and spin $\nu(E) = \nu_0(E) + \eta \Delta \nu(E)$ as functions of energy for the fluorine impurity concentration $\eta = 0.5\%$ (solid line). The dashed line shows the unperturbed DOS per atom and spin near the graphene neutrality point.

FIG. 11. Calculated electronic band structures of fluorinated (left panel) and hydrogenated (right panel) graphene within 5 \times 5 supercell configurations. Three bands (a), (b), and (c) correspond to the conduction, midgap, and valence band, respectively, as in the main text. Formation of the midgap state around the Fermi level dominates both band structures. However, for hydrogenated graphene this band is hardly dispersive, giving the pronounced resonance at the Dirac point.

ACKNOWLEDGMENTS

We thank Jun Zhu for stimulating discussions. This work was supported by the DFG SFB 689 and GRK 1570, and by the European Union Seventh Framework Programme under Grant Agreement No. 604391 Graphene Flagship.

Appendix A: Intermediate limit: 5 \times 5 supercell

In what follows we summarize our findings for the intermediate limit of a 5 \times 5 supercell, which lies in between the dense and dilute ones. For hydrogenated graphene, such a supercell is already large enough to represent dilute coverage. Our 5 \times 5 supercell is fully relaxed, with the lattice constant 12.297 Å, which differs by 0.2\% from the same-size pure graphene supercell lattice constant (12.3 Å). Bader charge analysis shows that fluorine acquires a negative charge of 0.518 e. In contrast, for the hydrogenated case there is almost zero charge transfer to hydrogen. In Fig. 11 we show the calculated electronic band structures for the fluorinated and hydrogenated graphene for comparison. In both cases one sees a formation of the midgap states around the Fermi level. However, the band width of 0.6 eV for the fluorinated graphene is much larger than for hydrogenated graphene, for which the bandwidth is less than 0.1 meV.

The DOS for selected atoms in the vicinity of fluorine are shown in Fig. 12. Orbital resolved analysis shows...
the electronic density $\rho(r) = \sum_{n,k} |\phi_n^k(r)|^2$. In Fig. 13 we show a top view of the electronic density summed over the Kohn-Sham eigenstates ϕ_n^k including eigenstates with energies ε_n^k lying within the energy window $\varepsilon_{\text{min}} = -0.2$ eV and $\varepsilon_{\text{max}} = 0.6$ eV with respect to the Fermi level. The dashed line in the main figure corresponds to the cross-sectional view shown in Fig. 13. From the plot one sees that the midgap state represents a strongly delocalized state mostly situated on the “non-fluorinated” sublattice (i.e., sublattice B, fluorinated carbon C_F on sublattice A). The appearance of such a delocalized state indicates that a 5 x 5 supercell is not large enough to represent the dilute fluorination limit, since there is still significant fluorine interaction among the periodic images.

We find that sublattice B is the main contributor to the midgap DOS (80%). The fluorine atom and the carbon atoms at sublattice A account for only 10% each. In the valence band at -0.6 eV, sublattice B represents 54%, sublattice A 36%, and fluorine 10% of the local DOS. This decomposition can be seen in Fig. 12 where the orbital resolved DOS for F, C_F, and all carbon atoms (C_{nn}, C_{nnn}, and C_{nnnn}) up to the third nearest neighbors of C_F are provided.

A large—predominantly p_z—contribution to the midgap states comes from the fluorine atom with 0.5 states/eV, see the first panel in Fig. 12. Atoms C_{nn} and C_{nnn} belonging to the sublattice B, both carry mainly p_z character and contribute equally to the valence band edge at -0.6 eV and the midgap level. Their DOS is very similar in shape and value. The DOS at fluorinated carbon C_F has a more complex composition (visible also in the inset of Fig. 13), where p_z, s, and d characters are identified, but they sum up only to 0.09 states/eV. The overall contribution of C_F within the energy region from -2 eV to 2 eV is very low. The DOS contribution from C_{nnn} carbons at sublattice A is negligible for the midgap and the valence band edge and also possesses mainly p_z character. The conduction band at energies above 0.8 eV has mainly p_z character for all the atoms analyzed in Fig. 12.

Finally, Fig. 14 shows the absolute values of spin-orbit splittings for the conduction (a), midgap (b), and valence (c) bands. The largest splittings range from 0.26 meV for the conduction band, via 0.6 meV for the midgap band, up to 1.1 meV for the valence band. If we turn off the intra-atomic SOC on fluorine, the splittings are drastically reduced, essentially to the hydrogenated graphene level. This nicely demonstrates the limit of what spin-orbit splittings can be achieved by sp^3 bonding. If a larger splitting is observed, the spin-orbit coupling comes most likely from the adatom itself, not from the host graphene lattice.

1. I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
2. W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Nature Nanotechnology 9, 794 (2014).
3. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 192 (2012).
4. O. Yazyev, Reports on Progress in Physics 73, 056501 (2010).
5. E. J. G. Santos, A. Ayuela, and D. Sánchez-Portal, New J. Phys. 14, 043022 (2012).
6. D. Kochan, M. Gmitra, and J. Fabian, Phys. Rev. Lett. 112, 116602 (2014).
FIG. 14. (Color online) SOC splittings for the conduction (a), midgap (b), and valence (c) bands with respect to the Fermi level of the intermediately fluorinated 5×5 system. Dashed lines are representing the SOC splittings without the intra-atomic SOC contributions from the F atom. For comparison the SOC splittings of the hydrogenated 5×5 system are provided by the dashed-dotted lines.

7 D. V. Tuan, F. Ortmann, D. Soriano, S. O. Valenzuela, and S. Roche, Nature Phys., http://dx.doi.org/10.1038/nphys3083 (2014).
8 N. Tombros, C. Józsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature 448, 571 (2007).
9 T.-Y. Yang, J. Balakrishnan, F. Volmer, A. Avsar, M. Jaiswal, J. Samm, S. R. Ali, P. Choudhuri, M. Zeng, M. Popinciuc, G. Güntherodt, B. Beschoten, and B. Özyilmaz, Phys. Rev. Lett. 107, 047206 (2011).
10 W. Han and R. K. Kawakami, Phys. Rev. Lett. 107, 047207 (2011).
11 B. Dlubak, M. Martin, C. Deranlot, B. Servet, S. Xavier, R. Mattana, M. Sprinkle, C. Berger, W. D. Heer, F. Petroff, A. Anane, P. Seneor, and A. Fert, Nature Physics 8, 557 (2012).
12 A. H. Castro Neto and F. Guinea, Phys. Rev. Lett. 103, 026804 (2009).
13 M. Gmitra, D. Kochan, and J. Fabian, Phys. Rev. Lett. 110, 246602 (2013).
14 J. Balakrishnan, G. K. W. Koon, M. Jaiswal, A. H. Castro Neto, and B. Özyilmaz, Nature Physics 9, 284 (2013).
15 O. Leenaerts, H. Peelaers, A. D. Hernández-Nieves, B. Paròtons, and F. M. Peeters, Phys. Rev. B 82, 195436 (2010).
16 J.-C. Charlier, X. Gonze, and J.-P. Michenaud, Phys. Rev. B 47, 16162 (1993).
17 Y. Takagi and K. Kusakabe, Phys. Rev. B 65, 121103 (2002).
18 R. R. Nair, M. Sepioni, I.-L. Tsai, O. Lehtinen, J. Keinonen, A. V. Krasheninnikov, T. Thomson, A. K. Geim, and I. V. Grigorieva, Nat. Phys. 8, 199 (2012).
19 X. Hong, S.-H. Cheng, C. Herding, and J. Zhu, Phys. Rev. B 83, 085410 (2011).
20 X. Hong, K. Zou, B. Wang, S.-H. Cheng, and J. Zhu, Phys. Rev. Lett. 108, 226602 (2012).
21 H.-J. Kim and J.-H. Cho, Phys. Rev. B 87, 174435 (2013).
22 P. Moris-Sanchez, A. J. Cohen, and W. Yang, Phys. Rev. Lett. 100, 146401 (2008).
23 S. Casolo, E. Flagle-Larsen, O. M. Lvvik, G. R. Darling, and G. F. Tantardini, Phys. Rev. B 81, 205412 (2010).
24 A. V. Okotrub, I. P. Asanov, N. F. Yudanov, K. S. Babin, A. V. Gusel’nikov, T. I. Nedoseikina, P. N. Gveko, L. G. Bulusheva, Z. Osval’t, and L. P. Biró, Phys. Status Solidi B 246, 2545 (2009).
25 D. O’Hagan, Chem. Soc. Rev. 37, 308 (2008).
26 C. E. Moore, in Nat. Stand. Ref. Data Ser., NSRDS-NBS 35 Vol. I (Reprint of NBS Circ. 467, Vol. I, 1949) (Nat. Bur. Stand., U.S., 1971).
27 J. P. Robinson, H. Schomerus, L. Oroszlány, and V. I. Fal’ko, Phys. Rev. Lett. 101, 196803 (2008).
28 T. O. Wehling, S. Yuan, A. I. Lichtenstein, A. K. Geim, and M. I. Katsnelson, Phys. Rev. Lett. 105, 056802 (2010).
29 S. Konschuh, M. Gmitra, and J. Fabian, Phys. Rev. B 82, 245412 (2010).
30 F. Geissler, J. C. Budich, and B. Trauzettel, New J. Phys. 15, 085030 (2013).
31 M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, Phys. Rev. B 80, 245412 (2010).
32 A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, 1993).
33 K. Tahara, T. Iwasaki, S. Furuyama, A. Matsutani, and M. Hatano, Appl. Phys. Lett. 103, (2013).