THREE-DIMENSIONAL REP-TILES

RYAN BLAIR, ZOE MARLEY AND ILIANNA RICHARDS

Abstract. A 3D rep-tile is a compact 3-manifold X in \mathbb{R}^3 that can be decomposed into finitely many pieces, each of which are similar to X, and all of which are congruent to each other. In this paper we classify all 3D rep-tiles up to homeomorphism. In particular, we show that a 3-manifold is homeomorphic to a 3D rep-tile if and only if it is the exterior of a connected graph in S^3.

1. Introduction

A set $X \subset \mathbb{R}^n$ with non-empty interior is an n-dimensional k-index rep-tile if there are sets X_1, X_2, \ldots, X_k with disjoint interiors and with $X = \bigcup_{i=1}^{k} X_i$ that are mutually congruent and similar to X. Rep-tiles have been well-studied since 1963, when they were introduced by Gardner and Golomb [11], [12]. Much of the study of rep-tiles has focused on 2-dimensional rep-tiles from the perspective of fractal geometry. There are robust methods for constructing rep-tiles [4]. However, these methods usually result in rep-tiles that are not piecewise linear manifolds. Various authors have explored the basic topological properties of rep-tiles. For example, a rep-tile X has a hole if the complement of the closure of some component of the interior of X has a bounded component. John Conway asked if there exists a 2-dimensional rep-tile with a hole, and Grünbaum answered this question in the affirmative by providing a 36-index rep-tile example [9] (also see [14]). The topology of 2-dimensional rep-tiles is limited. In particular, Bandt and Wang [3] and Luo et al. [17] proved that if the interior of a 2-dimensional rep-tile is connected, then the rep-tile is a topological disk.

In this paper we apply 3-manifold techniques to study the topology of 3-dimensional rep-tiles. To this end, we restrict to 3D rep-tiles, 3-dimensional k-index rep-tiles that are piecewise linear embeddings of compact connected 3-manifolds in \mathbb{R}^3 with $k > 1$. Examples of 3D rep-tiles that are homeomorphic to the 3-ball are prevalent. For example, a cube is an 8-index 3D rep-tile homeomorphic to a 3-ball, see Figure 2. Additionally, various authors have investigated which tetrahedra are 3D rep-tiles [16], [18], [15], [13]. However, examples homeomorphic to other 3-manifolds have been more challenging to generate. In 1998,
Goodman-Strauss asked if there exists a 3D rep-tile with a hole. This was answered by Van Ophysen, who generated an example homeomorphic to a solid torus. See Figure 1 for an example of a 3D rep-tile homeomorphic to a solid torus. Furthermore, a description of an infinite family of 3D rep-tiles homeomorphic to any genus \(n \) handlebody is given in [19]. In [5], the authors use a computer search to generate an 8-index 3D rep-tile homeomorphic to a solid torus. This was the unique 8-index 3D rep-tile not homeomorphic to the 3-ball among the one million examples they generated.

In this paper we classify all 3D rep-tiles up to homeomorphism. In particular, we give a method of constructing a 3D rep-tile of any suitable homeomorphism type.

Theorem 1.1. A set \(X \) in \(\mathbb{R}^3 \) is a 3D rep-tile if and only if \(X \) is homeomorphic to the exterior of a finite connected graph in \(S^3 \).

The concept of self-affine tile is related to that of rep-tile. A self-affine tile is defined by a finite collection of contractions (not necessarily similarities) that are affine translates of a single linear contraction. In [8], the authors generate the first examples of 3-dimensional self-affine tiles which are topological 3-manifolds with boundary. In particular, they show that every handlebody is homeomorphic to a 3-dimensional self-affine tile. However, the embeddings they generate are not piecewise linear and not 3D rep-tiles. They conjecture that all 3-dimensional self-affine tiles which are topological 3-manifolds are homeomorphic to handlebodies. We wonder if the examples of rep-tiles which are not homeomorphic to handlebodies generated in the current paper can be modified to provide counterexamples to the conjecture posed in [8].

Rep-tiles are a model for topological self-replication in that a rep-tile is an object that can be decomposed into finitely many copies each of which is homeomorphic to the original. Previous models of self-replication in low-dimensional topology have focused on idempotents (i.e. morphisms with the property that \(f \circ f = f \)) in the appropriate topological category. Such idempotents are manifolds that can be decomposed along embedded surfaces into two copies of themselves. In particular, idempotents have been classified in the Temperley-Lieb category [1], the tangle category [7], and the (2+1)-cobordism category [6]. Models based on idempotents inherently model 1-to-2 self-replication. In contrast, 3D rep-tiles model 1-to-many self-replication. See Figure 2.

In Section 2 we introduce useful 3-manifold and lattice terminology. In Section 3 we prove the backward direction of Theorem 1.1. In Section 4 we prove the forward direction of Theorem 1.1.
Figure 1. An example of a polycube and a 3D rep-tile homeomorphic to \(D^2 \times S^1 \). It is constructed by removing the two cubes corresponding to \([-1,0] \times [0,1] \times [0,2]\) from \([-2,2] \times [-2,2] \times [0,2]\) and then adding two cubes corresponding to \([-1,0] \times [-1,0] \times [2,4]\).

2. Preliminaries

We begin with a discussion of useful classes of manifolds and submanifolds. A handlebody is a compact orientable 3-manifold with boundary homeomorphic to the closed regular neighborhood of a connected finite graph embedded in a 3-manifold. The genus of the boundary of a handlebody uniquely determines the homeomorphism class of the handlebody. We say a handlebody is genus \(g \) if its boundary is homeomorphic to a genus \(g \) surface.

Definition 2.1. Given manifold \(M \) with submanifold \(N \), the exterior of \(N \) in \(M \) is \(E_M(N) := M \setminus \eta(N) \) where \(\eta(N) \) is an open tubular neighborhood of \(N \) in \(M \). When \(M \) is understood to be \(S^3 \), we will write the exterior as \(E(N) \).
Here we introduce terminology related to cubic lattices in \mathbb{R}^3 that will be relevant to our construction. We will denote the standard embedding of the unit cubic lattice in \mathbb{R}^3 as

$$Z^3 = \bigcup_{(i,j) \in \mathbb{Z}^2} (\{i\} \times \{j\} \times \mathbb{R}) \cup (\{i\} \times \mathbb{R} \times \{j\}) \cup (\mathbb{R} \times \{i\} \times \{j\}).$$

Suppose $\lambda > 0$ and let $f_\lambda : \mathbb{R}^3 \to \mathbb{R}^3$ denote the scaling function given by $f(x) = \lambda x$. Let $Z^3_\lambda = f(Z^3)$.

Sometimes it will be useful to refer to the 3-complex structure induced by each of the cubic lattices mentioned above on \mathbb{R}^3 (i.e. the decomposition \mathbb{R}^3 into the union of vertices, edges, squares and cubes). Given the lattice Z^3_λ, the corresponding 3-complex structure on \mathbb{R}^3 will be denoted $C(Z^3_\lambda)$. Ultimately, our construction of 3D rep-tiles will be based on polycubes. A polycube is a subset of \mathbb{R}^3 that is similar to a finite union of 3-cells in $C(Z^3)$. See Figure 1 for an example of a polycube consisting of 32 cubes and homeomorphic to $D^2 \times S^1$.

3. Graph exteriors as 3D rep-tiles

In [2] Adams shows that for any 3-dimensional compact submanifold M of \mathbb{R}^3 with a single boundary component, a 3-ball can be decomposed into four congruent tiles, each homeomorphic to M. The following theorem generalizes Adams’ results and then applies the generalization
to 3D rep-tiles. In particular, the following proof implies that for any 3-dimensional compact submanifold M of \mathbb{R}^3 with a single boundary component, a cube can be decomposed into two congruent tiles such that each is a polycube and each is homeomorphic to M. For example, two copies of the polycube in Figure 1 tile the $4 \times 4 \times 4$ cube. We can see this by rotating the polycube in Figure 1 by π about the line that passes through the points A and B. This observation implies that this polycube is a rep-tile since each of its 32 cubes can be decomposed into a total of 64 polycubes which are all congruent to each other and similar to the original.

Theorem 3.1. If M is the exterior of a connected graph in S^3, then M is homeomorphic to a 3D rep-tile.

Proof. Let $M = E(\Gamma)$ for some connected graph Γ embedded in S^3. We begin by showing that $E(\Gamma)$ is homeomorphic to a cube-with-holes (i.e. the exterior of a collection of properly embedded arcs in a cube). Preform edge contractions on Γ to produce an embedded graph Γ_1 with a single vertex and n edges. Note that $E(\Gamma)$ is homeomorphic to $E(\Gamma_1)$. See Figure 3 for an example of an embedded graph in S^3 with a single vertex. Let V be a 3-ball corresponding to a small closed regular neighborhood of the vertex of Γ_1. Let B be the 3-ball $S^3 \setminus int(V)$. The 3-ball B meets in Γ_1 in a collection of n properly embedded arcs $\alpha_1, \alpha_2, ..., \alpha_n$. Note that $E_B(\bigcup_{i=1}^{n} \alpha_i)$ is homeomorphic to $E(\Gamma_1)$. Label the boundary of each arc by $\partial \alpha_i = \{a_i, b_i\}$. Identify the three ball B with the unit cube $C = [0,1] \times [0,1] \times [0,1]$ in \mathbb{R}^3 via a homeomorphism that takes the set $\{a_1, a_2, ..., a_n\}$ to the interior of the square $[0,1] \times [0,1] \times \{0\}$ and takes the set $\{b_1, b_2, ..., b_n\}$ to the interior of the square $[0,1] \times [0,1] \times \{1\}$. See Figure 4. Through an abuse of notation, we continue to refer to the image of the arcs properly embedded in C as $\alpha_1, \alpha_2, ..., \alpha_n$. Thus, $E_C(\bigcup_{i=1}^{n} \alpha_i) \cong E_B(\bigcup_{i=1}^{n} \alpha_i)$.

![Figure 3](image-url)

Figure 3. A graph with a single vertex embedded in S^3.

Next, we show the cube-with-holes we just generated is homeomorphic to a polycube. Note that for every positive integer m, $C(\mathbb{Z}_m^3)$
induces a cell structure on C. Moreover, by choosing m sufficiently large and possibly preforming an small proper isotopy of $\cup_{i=1}^{n} \alpha_i$, we can assume $\cup_{i=1}^{n} \alpha_i$ is disjoint from the Z_3 and, if A is the union of all 3-cells in C with non-trivial intersection with $\cup_{i=1}^{n} \alpha_i$, then A is isotopic to a closed tubular neighborhood of $\cup_{i=1}^{n} \alpha_i$ in C. Let $i(A)$ denote the interior of all cells in C with non trivial intersection with $\cup_{i=1}^{n} \alpha_i$. Then $i(A)$ is isotopic to an open tubular neighborhood of $\cup_{i=1}^{n} \alpha_i$ in C and $C \setminus i(A)$ is a polycube homeomorphic to $E_C(\cup_{i=1}^{n} \alpha_i) \cong E(\Gamma)$. See Figure 5.

We now modify $C \setminus i(A)$ to generate a polycube homeomorphic to $C \setminus i(A)$ which tiles the cube using two congruent copies. Let $C_1 = [0, 1] \times [-1, 0] \times [0, 1]$, $C_2 = [-1, 0] \times [-1, 0] \times [0, 1]$ and $C_3 = [-1, 0] \times [0, 1] \times [0, 1]$. Note that $(C \setminus i(A)) \cup C_1 \cup C_2 \cup C_3$ is again a polycube homeomorphic to $E(\Gamma)$. Let $r : \mathbb{R}^3 \to \mathbb{R}^3$ be a rotation of π about the line parameterized by $< t, 0, 1 >$. Let $X = (C \setminus i(A)) \cup (C_1 \cup C_2 \cup C_3) \cup r(A)$. The polycube X is homeomorphic to $(C \setminus i(A)) \cup C_1 \cup C_2 \cup C_3$ since it is the boundary connected sum of $(C \setminus i(A)) \cup C_1 \cup C_2 \cup C_3$ with a collection of n 3-balls. See Figure 6. Hence, $X \cong E(\Gamma)$. By construction, $X \cup r(X) = [-1, 1] \times [-1, 1] \times [0, 2]$ and int($r(X)$) \cap
Figure 5. The exterior of the graph in Figure 3 represented as a polycube.

\[\text{int}(X) = \emptyset. \] Hence, two congruent copies of \(X \) with disjoint interiors tile the cube \([-1, 1] \times [-1, 1] \times [0, 2] \). Since \(X \) is a polycube consisting of \(4m^3 \) cubes of side length \(\frac{1}{m} \), then \(X \) is a 3-dimensional \(8m^3 \)-index rep-tile.

\[\square \]

4. Classification

In order to show that every 3D rep-tile is homeomorphic to the exterior of a connected graph, we will require the following reimbedding theorem due to Fox.

Theorem 4.1. [10] Every compact connected 3-dimensional sub-manifold \(X \) of \(S^3 \) can be reimbedded in \(S^3 \) so that the exterior of the image of \(X \) is a union of handlebodies, i.e. regular neighborhoods of embedded graphs.

The idea behind the following proof is to show that if a 3D reptile \(X = \bigcup_{i=1}^{k} X_i \) has two boundary components, then a “minimal” boundary component over all \(X_i \) must also be a boundary component for \(X \). This leads to a contradiction.

Theorem 4.2. If \(X \) is a 3D rep-tile, then \(\partial X \) is connected.
Figure 6. A 3D rep-tile homeomorphic to the exterior of the graph in Figure 3.

Proof. Suppose X is a 3D rep-tile such that ∂X is not connected. Then $X = \bigcup_{i=1}^{k} X_i$ such that, X_i is congruent to X_j for any $i, j \in \{1, ..., k\}$, $\text{int}(X_i) \cap \text{int}(X_j) = \emptyset$ if $i \neq j$, and X_1 is similar to X. Moreover, each X_i has at least two connected boundary components.

Note that every closed connected surface in \mathbb{R}^3 separates. Hence, any such surface G is the boundary of some finite volume region $R_G \subset \mathbb{R}^3$. Let F be a connected boundary component of some X_m such that R_F has the least volume over all finite volume regions bounded by any connected boundary component of any X_i.

Suppose the interior of R_F has nontrivial intersection with X. Then there exists some X_n embedded in R_F. Since X_n has at least two boundary components and R_F has one boundary component, then $X_n \neq R_F$. So, some boundary component of X_n bounds a finite volume region which is a proper subset of R_F and has volume strictly less than R_F. This is a contradiction to the minimality of the volume of R_F. Thus, the interior of R_F is disjoint from X. This implies that F is a boundary component of X.

However, if $X = \bigcup_{i=1}^{k} X_i$ is a rep-tile and v is the volume of R_F, then the least volume of any finite volume region bounded by a connected boundary component of X is kv. Since F is a boundary component of X, then $kv = v$. Since $v > 0$, then $k = 1$, a contradiction. Hence, ∂X must be connected.

Theorems 4.1 and 4.2 immediately imply the following result.
Theorem 4.3. Every 3D rep-tile is homeomorphic to the exterior of a connected graph.

Theorem 1.1 follows from Theorems 3.1 and 4.3.

Acknowledgements. All three authors were partially supported by NSF grant DMS-1916494. The first author was partially supported by NSF grant DMS-1821254. We would like to thank Florence Newberger for helpful conversations and Chaim Goodman-Strauss for helpful comments on an early draft.

References

[1] Samson Abramsky, Temperley-Lieb algebra: from knot theory to logic and computation via quantum mechanics, Mathematics of quantum computation and quantum technology, 2007, pp. 515–558.
[2] Colin C. Adams, Knotted tilings, The mathematics of long-range aperiodic order (Waterloo, ON, 1995), 1997, pp. 1–8. MR1460017
[3] C. Bandt and Y. Wang, Disk-like self-affine tiles in \mathbb{R}^2, Discrete Comput. Geom. 26 (2001), no. 4, 591–601. MR1863811
[4] Christoph Bandt, Self-similar sets. V. Integer matrices and fractal tilings of \mathbb{R}^n, Proc. Amer. Math. Soc. 112 (1991), no. 2, 549–562. MR1036982
[5] Christoph Bandt and Dmitry Mekhontsev, Computer geometry: rep-tiles with a hole, Math. Intelligencer 42 (2020), no. 1, 1–5. MR4068835
[6] Ryan Blair and Ricky Lee, Self-replicating 3-manifolds, arXiv:2107.04528.
[7] Ryan Blair and Joshua Sack, Idempotents in tangle categories split, J. Knot Theory Ramifications 28 (2019), no. 5, 1950025, 9. MR3943699
[8] Gregory R. Conner and Jörg M. Thuswaldner, Self-affine manifolds, Adv. Math. 289 (2016), 725–783. MR3439698
[9] HT Croft, KJ Falconer, and RK Guy, Unsolved problems in geometry, Springer, 1991 (English).
[10] Ralph H. Fox, On the imbedding of polyhedra in 3-space, Ann. of Math. (2) 49 (1948), 462–470. MR26326
[11] Martin Gardner, On rep-tiles, polygons that can make larger and smaller copies of themselves, Scientific Amer. 208 (1963), 154–164.
[12] S. W. Golomb, Replicating figures in the plane, Math.Gaz. 48 (1964), 403–412.
[13] Herman Haverkort, No acute tetrahedron is an 8-reptile, Discrete Math. 341 (2018), no. 4, 1131–1135. MR3764364
[14] Francis Jordan and Sze-Man Ngai, Reptiles with holes, Proc. Edinb. Math. Soc. (2) 48 (2005), no. 3, 651–671. MR2171191
[15] Jan Kynčl and Zuzana Patáková, On the nonexistence of k-reptile simplices in \mathbb{R}^3 and \mathbb{R}^4, Electron. J. Combin. 24 (2017), no. 3, Paper No. 3.1, 44. MR3691518
[16] Anwei Liu and Barry Joe, On the shape of tetrahedra from bisection, Math. Comp. 63 (1994), no. 207, 141–154. MR1240660
[17] Jun Luo, Hui Rao, and Bo Tan, Topological structure of self-similar sets, Fractals 10 (2002), no. 2, 223–227. MR1910665
[18] Jiří Matoušek and Zuzana Safernová, *On the nonexistence of k-reptile tetrahedra*, Discrete Comput. Geom. 46 (2011), no. 3, 599–609. MR2826971

[19] G. van Ophuysen, *Problem 19*, Tagungsbericht 20 (1997).