Clique in C_4-free graphs of large minimum degree

András Gyárfás1 · Gábor N. Sárközy1,2

Abstract A graph G is called C_4-free if it does not contain the cycle C_4 as an induced subgraph. Hubenko, Solymosi and the first author proved (answering a question of Erdős) a peculiar property of C_4-free graphs: C_4-free graphs with n vertices and average degree at least cn contain a complete subgraph (clique) of size at least $c'n$ (with $c' = 0.1c^2$). We prove here better bounds ($\frac{c'^2n}{2+c}$ in general and $(c - 1/3)n$ when $c \leq 0.733$) from the stronger assumption that the C_4-free graphs have minimum degree at least cn. Our main result is a theorem for regular graphs, conjectured in the paper mentioned above: $2k$-regular C_4-free graphs on $4k + 1$ vertices contain a clique of size $k + 1$. This is the best possible as shown by the kth power of the cycle C_{4k+1}.

Keywords C_4-free graphs · Large cliques · Regular graphs

1 Introduction

A graph is called here C_4-free, if it does not contain cycles on four vertices as an induced subgraph. The class of C_4-free graphs have been studied from many points of view, for example they appear in the theory of perfect graphs (as families containing chordal graphs). Sometimes the complements of C_4-free graphs are investigated, they are the graphs that do not contain $2K_2$ as an induced subgraph, sometimes called a strong matching of size two. Extremal properties of these graphs emerged in works of Bermond et al. [1,2] on
interconnection networks, popularized by Erdős and Nesetril, and generated extremal results, many on the strong chromatic index, for example [3–7].

In this paper we revisit [5] where the following problem (raised by Erdős) was investigated: how large is $\omega(G)$, the size of the largest complete subgraph (clique) in a dense C_4-free graph G? It was proved in [5] that in a C_4-free graph with n vertices and at least cn^2 edges, $\omega(G) \geq c'n$, where c' depends on c only. The interest in this result is that as shown in [5], C_4 is the only graph with this property (apart from subgraphs of C_4). Let $f(c)$ denote the largest c' for which every C_4-free graph with n vertices and at least cn^2 edges contains a clique of size at least $c'n$. There is no conjecture on $f(c)$, apart from the question in [5] whether $f(1/4) = 1/4$ which is still open. Our main result, Theorem 1.1 gives a positive answer to the the special case of this question for regular graphs (asked also in [5]).

Theorem 1.1 Every $2k$-regular C_4-free graph on $4k + 1$ vertices contains a clique of size $k + 1$.

As shown in [5], Theorem 1.1 is sharp, the cycle on $4k + 1$ vertices with all diagonals of length at most k is a $2k$-regular C_4-free graph where the largest clique is of size $k + 1$.

The proof of Theorem 1.1 follows from understanding the work of Paoli et al. [7] on regular $2K_2$-free graphs.

Our other results are improvements over the estimates of [5] under the stronger assumption that the minimum degree $\delta(G)$ is given instead of the average degree.

Theorem 1.2 For C_4-free graphs $\omega(G) \geq \frac{\delta^2(G)}{2n + \delta(G)}$.

Theorem 1.2 improves the estimate $\omega(G) \geq \frac{0.1a^2}{n}$ in [5] where a is the average degree of G. For a certain range of $\delta(G)$, one can do better.

Theorem 1.3 Suppose that G is a C_4-free graph with $\delta(G) \leq \frac{11n}{15} \approx 0.733n$. Then $\omega(G) \geq \delta(G) - \frac{n}{3}$.

Note that for $\delta(G) \geq n/2$, Theorem 1.2 gives $\omega(G) \geq n/12$ while Theorem 1.3 gives $\omega(G) \geq n/6$. It seems that the remark “the best estimate we know is $n/6$” in [5] comes from this and it seems an open problem whether $\omega(G) \geq n/6$ follows from $|E(G)| \geq n^2/4$. We also note that for $0.382n \approx \frac{2n}{3+\sqrt{3}} \leq \delta(G)$ the bound of Theorem 1.3 is better than that of Theorem 1.2.

Our last estimate of $\omega(G)$ is for the case when G has a large independent set.

Theorem 1.4 For every $\varepsilon > 0$ the following holds. Let G be a C_4-free graph on n vertices with minimum degree at least δ. Furthermore, let us assume that G contains an independent set of size $t \geq \frac{n^2 - \delta^2}{e\delta^2} + 1$. Then G contains a clique of size at least $(1 - \varepsilon)\delta^2/n$.

Thus we get the following corollary for Dirac graphs (graphs with minimum degree at least $n/2$).

Corollary 1.5 For every $\varepsilon > 0$ the following holds. Let G be a C_4-free graph on n vertices with minimum degree at least $n/2$. Furthermore, let us assume that G contains an independent set of size $t \geq \frac{n}{\varepsilon} + 1$. Then G contains a clique of size at least $(1 - \varepsilon)n/4$.

Corollary 1.5 probably holds in a stronger form: C_4-free graphs with n vertices and with minimum degree at least $n/2$ contain cliques of size at least $n/4$.

Springer
2 Properties of C_4-free graphs

The following easy lemma can be essentially found in [3, 4, 7] but we prove it to be self contained. Let W_5 denote the 5-wheel, the graph obtained from a five-cycle by adding a new vertex adjacent to all vertices. A clique substitution into a graph G is the replacement of cliques into vertices of G so that between substituted vertices all or none of the edges are placed, depending whether they were adjacent or not in G. Substituting an empty clique is accepted as a deletion of the vertex. Clique substitutions into C_4-free graphs result in C_4-free graphs.

Lemma 2.1 Suppose that G is a C_4-free graph with $\alpha(G) \leq 2$. Then one of the following possibilities holds.

- the complement of G is bipartite
- G can be obtained from W_5 by clique substitution

Proof If \overline{G}, the complement of G is not bipartite then we can find an odd cycle C in G. Since C cannot be a triangle, $|C| \geq 5$. However, $|C| \geq 7$ is impossible since G is C_4-free. Thus $|C| = 5$. Since G is C_4-free and $\alpha(G) = 2$, any vertex not on C must be adjacent to exactly three consecutive vertices of C or to all vertices of C. This procedure naturally allows to place all vertices not on C into one of six groups and one can easily check that the groups must be cliques forming the claimed structure. \Box

Corollary 2.2 Suppose that G is a C_4-free graph with $\alpha(G) \leq 2$. Then $\omega(G) \geq \frac{2n}{5}$.

In the proof of Theorem 1.1 we shall use the following result which is a special case of a more general result on regular C_4-free graphs (in [7, Theorem 4 and Lemma 7]). A set $S \subset V(G)$ is dominating if every vertex of $V(G) \setminus S$ is adjacent to some vertex of S.

Theorem 2.3 [7] Suppose that G is a $2k$-regular C_4-free graph on $4k + 1$ vertices with $\alpha(G) \geq 3$. Then G contains a pair (u, w) of non-adjacent vertices forming a dominating set.

3 Proofs

Proof of Theorem 1.1 The proof comes from Theorem 2.3 and the analysis of Theorem 3 in [7]. We may suppose that $\alpha(G) \geq 3$, otherwise Corollary 2.2 gives a clique of size $\frac{8k+2}{5} \geq k + 1$. Theorem 2.3 ensures a dominating non-adjacent pair (u, w) in G. Let X be the set of common neighbors of u, v. Then

$$4k - |X| = d(u) + d(w) - |X| = |V(G)| - 2 = 4k - 1,$$

implying that $|X| = 1$. Set $X = \{x\}$, $U = N(u) - \{x\}$, $W = N(w) - \{x\}$, $U_1 = N(x) \cap U$, $W_1 = N(x) \cap W$, $U_2 = U - U_1$, $W_2 = W - W_1$. \Box

Claim U_1, W_1 span cliques in G.

Proof of Claim By symmetry, it is enough to prove the claim for U_1. Note that for $w_2 \in W_2, u_1 \in U_1$ we have $(w_2, u_1) \notin E(G)$ otherwise (w_2, u_1, x, w, w_2) would be an induced C_4.

Suppose that $y, z \in U_1$ and $(y, z) \notin E(G)$. Let N be the number of non-adjacent pairs (p, q) such that $p \in \{y, z\}, q \notin U_1$.

\diamond Springer
• every $w_1 \in W_1$ contributes at least one to N, otherwise (w_1, y, u, z, w_1) is a C_4
• every $u_2 \in U_2$ contributes at least one to N, otherwise (u_2, y, x, z, u_2) is a C_4
• every $w_2 \in W_2$ contributes two to N since $(w_2, u_1) \notin E(G)$ for every $u_1 \in U_1$
• w contributes two to N

Therefore we have

$$N \geq |W_1| + |U_2| + 2|W_2| + 2$$

$$= (|W_1| + |W_2|) + (|U_2| + |W_2|) + 2 = (2k - 1) + 2k + 2 = 4k + 1.$$

However, since $(y, z) \notin E(G)$, $N \leq 2(d_G(y) - 1) = 2(2k - 1) = 4k - 2$, a contradiction, proving that U_1 spans a clique in G and the claim is proved. □

Now the two cliques $U_1 \cup \{u, x\}$ and $W_1 \cup \{w, x\}$ cover $A = V(G) \setminus (U_2 \cup W_2)$. Since $|A| = 4k + 1 - 2k = 2k + 1$ and the two cliques intersect in $\{x\}$, one of the cliques has size at least $k + 1$, finishing the proof. □

Proof of Theorem 1.2 Here we follow the proof of the corresponding theorem in [5] with replacing average degree by minimum degree. Fix an independent set $S = \{x_1, x_2, \ldots, x_t\}$. Let A_i be the set of neighbors of x_i in G and set $m = \max_{i \neq j}|A_i \cap A_j|$. Since G is C_4-free, all the subgraphs $G(A_i \cap A_j)$ are complete graphs, and thus $m \leq \omega(G)$. Using that $|A_i| \geq \delta$, we get

$$t \delta \leq \sum_{i=1}^{t} |A_i| < n + \sum_{1 \leq i < j \leq t} |A_i \cap A_j|,$$

implying that

$$\omega(G) \geq m \geq \frac{t \delta - n}{(\frac{t}{2})}.$$

If $\alpha(G) \geq \frac{2n}{\delta}$ then set $t = \lceil \frac{2n}{\delta} \rceil$ and we get

$$\omega(G) \geq \frac{\left\lceil \frac{2n}{\delta} \right\rceil \delta - n}{\left(\frac{\left\lceil \frac{2n}{\delta} \right\rceil}{2}\right)} \geq \frac{n}{\left(\frac{\left\lceil \frac{2n}{\delta} \right\rceil}{2} + 1\right)}.$$

If $\alpha(G) \leq \frac{2n}{\delta}$ then of course $\alpha(G) \leq \lceil \frac{2n}{\delta} \rceil$ as well. Now we shall use the following claim:

$$\omega(G) \geq \frac{n}{(\alpha(G) + 1)}.$$

This follows by selecting an independent set S with $|S| = \alpha(G) = \alpha$.

Using the notation introduced above, the $\left(\frac{\alpha}{2}\right)$ sets $A_i \cap A_j$ and the α sets $\{x_i\} \cup B_i$ cover the vertex set of G where B_i denotes the set of vertices whose only neighbor in S is x_i. All of these sets span complete subgraphs because G is C_4-free and S is maximal. Now we have

$$\omega(G) \geq \frac{n}{(\alpha(G) + 1)} \geq \frac{n}{\left(\frac{\alpha}{2} + 1\right)}.$$

Therefore in both cases we have

$$\omega(G) \geq \frac{n}{\left(\frac{\left\lceil \frac{2n}{\delta} \right\rceil}{2} + 1\right)} \geq \frac{n}{\left(\frac{\left\lceil \frac{2n}{\delta} \right\rceil}{2} + 1\right)} = \frac{\delta^2}{2n + \delta}.$$

□
Proof of Theorem 1.3 If $\alpha(G) \leq 2$ then by Lemma 2.1 and by the upper bound on $\delta(G)$,

$$\omega(G) \geq \frac{2n}{S} \geq \delta(G) - \frac{n}{3}.$$

If $\alpha(G) \geq 3$, then select an independent set $\{v_1, v_2, v_3\}$ and let A_i denote the set of neighbors of x_i. Then

$$3\delta(G) \leq \sum_{i=1}^{3} |A_i| < n + \sum_{1 \leq i < j \leq 3}|A_i \cap A_j|,$$

implying that for some $1 \leq i < j \leq 3$, the clique induced by $A_i \cap A_j$ is larger than $\delta(G) - \frac{n}{2}$. \hfill \Box

Proof of Theorem 1.4 Let $S = \{x_1, x_2, \ldots, x_t\}$ be an independent set in G of size $t \geq \frac{n^2 - \delta^2}{\varepsilon \delta} + 1$. Let A_i be the set of neighbors of x_i in G. Note that being induced C_4-free implies that for every $i, j, i \neq j$ the set $A_i \cap A_j$ induces a clique in G. Thus if we show that there are $i, j, i \neq j$ such that $|A_i \cap A_j| \geq (1 - \varepsilon)\delta^2/n$, then we are done. Assume indirectly, that for every $i, j, i \neq j$ we have $|A_i \cap A_j| < (1 - \varepsilon)\delta^2/n$ and from this we will get a contradiction.

Consider an auxiliary bipartite graph G_b between the sets S and $V = V(G)$, where we connect each x_i with its neighbors in G. We will give both a lower and an upper bound for the quantity $\sum_{v \in V} \deg_{G_b}(v)^2$. To get a lower bound we apply the Cauchy–Schwarz inequality and the minimum degree condition:

$$\sum_{v \in V} \deg_{G_b}(v)^2 \geq n \left(\sum_{v \in V} \deg_{G_b}(v) \right)^2 \geq n \left(\sum_{i=1}^{t} \frac{|A_i|}{n} \right)^2 \geq n \left(\frac{t \delta}{n} \right)^2 = \frac{t^2 \delta^2}{n}.$$

To get the upper bound we use the indirect assumption:

$$\sum_{v \in V} \deg_{G_b}(v)^2 = \sum_{i=1}^{t} \sum_{j=1}^{t} |A_i \cap A_j| = \sum_{i=1}^{t} |A_i| + \sum_{i \neq j} |A_i \cap A_j|$$

$$\leq nt + (1 - \varepsilon)\frac{\delta^2 t (t - 1)}{n} = \frac{t^2 \delta^2}{n} + nt - \frac{\delta^2 t (t - 1)}{n} - \varepsilon \frac{\delta^2 t (t - 1)}{n} \leq \frac{t^2 \delta^2}{n}$$

(using $t \geq \frac{n^2 - \delta^2}{\varepsilon \delta^2} + 1$), a contradiction. \hfill \Box

Acknowledgements The authors are grateful to József Solymosi for conversations and to Xing Peng for his interest in the subject. Research of A. Gyárófás was supported in part by the OTKA Grant No. K104343. Research of G. N. Sárközy was supported in part by the National Science Foundation under Grant No. DMS-0968699 and by OTKA Grant No. K104343.

References

1. J.C. Bermond, J. Bond, M. Paoli, C. Peyrat, Surveys in Combinatorics, London Mathematical Society Lecture Notes Series, vol. 82, Graphs and interconnection networks: diameter and vulnerability (Cambridge University Press, Cambridge, 1983), pp. 1–29
2. J.C. Bermond, J. Bond, C. Peyrat, Bus interconnection networks with each station on two buses. Proc. Coll. Int. Alg. et Arch. Paralleles (Marseilles) 155–167 (North Holland, 1986)
3. F.R.K. Chung, A. Gyárófás, W.T. Trotter, Zs Tuza, The maximum number of edges in $2K_2$-free graphs of bounded degree. Discret. Math. 81, 129–135 (1990)
4. R.J. Faudree, A. Gyárófás, R.H. Schelp, Zs Tuza, The strong chromatic index of graphs. Ars Comb. 29 B, 205–211 (1990)
5. A. Gyárfás, A. Hubenko, J. Solymosi, Large cliques in C_4-free graphs. Combinatorica 22, 269–274 (2002)
6. M. Molloy, B. Reed, A bound on the strong chromatic index of a graphs. J. Comb. Theory Ser. B 69, 103–109 (1997)
7. M. Paoli, G.W. Peck, W.T. Trotter, D.B. West, Large regular graphs with no induced $2K_2$. Graph Comb. 8, 165–192 (1992)