Microbiological Aspects of Ethylene Oxide Sterilization

IV. Influence of Thickness of Polyethylene Film on the Sporicidal Activity of Ethylene Oxide

K. KERELUK, R. A. GAMMON, AND R. S. LLOYD

Research Department, American Sterilizer Company, Erie, Pennsylvania 16512

Received for publication 16 September 1969

Spores of Bacillus subtilis var. niger, dried on nonhygroscopic and hygroscopic surfaces, were enclosed in one of four thicknesses of low-density polyethylene film (2, 4, 6, and 20 mils). The surfaces were then placed in a specially designed thermochemical death rate apparatus and exposed to an ethylene oxide concentration of 600 mg/liter (at 54.4°C) and 50% relative humidity. Survival data, including both spore survivor curves and decimal reduction values (expressed as D values at 54.4°C-600 mg of ethylene oxide per liter), demonstrated similar survivor patterns when the B. subtilis var. niger spores were enclosed in low-density polyethylene films 2, 4, and 6 mils thick. A comparison of these patterns with those of spores enclosed in glassine and subjected to identical exposure conditions revealed only slight variations. The use of 20-mil polyethylene film greatly increased the time required to kill B. subtilis var. niger spores under the exposure conditions.

Because of the increased usage of plastic films for packaging articles to be gas sterilized, we present this report of spore-inoculated carriers enclosed in polyethylene film of various thicknesses and exposed to ethylene oxide.

MATERIALS AND METHODS

Spore preparation and carriers. Bacillus subtilis var. niger spores dried on hygroscopic and nonhygroscopic carriers were used. Preparation of the spore suspension and inoculated carriers was described in the preceding papers (4–6).

Polyethylene film. Four thicknesses of polyethylene film, 2, 4, 6, and 20 mils (Zendel Polyethylene Film, Union Carbide Corp., Carterville, Ga.), were used. Two and 1.27-cm squares of the plastic film were cut and folded to form envelopes. These were heat sealed on three sides. The envelopes were placed in open glass jars and sterilized with ethylene oxide. After sterilization, the glass jars were loosely capped and the plastic envelopes were allowed to degas for at least 48 hr. The spore-inoculated carriers were then aseptically transferred to the sterile plastic envelopes and the envelope openings were heat sealed.

Ethylene oxide exposure. The thermochemical death rate apparatus and exposure procedures previously described (4) were employed. The exposure conditions were as follows: ethylene oxide concentration, 600 mg/liter; relative humidity, 50%; temperature, 54.4 ± 3°C. The exposure periods varied.

Recovery and enumeration of survivors. The recovery and plating procedures were described in previous publications (4, 5).
gas as a result of the plastic film barrier was found. This was demonstrated by similar survival patterns for B. subtilis var. niger spores with and without (6) the film enclosure. However, if a thick polyethylene film (20 mils) is used, its thickness must be compensated for by a longer exposure period to allow complete diffusion of the sterilant.

Information concerning the suitability of a packaging material for gas sterilization (whether it is permeable to ethylene oxide and moisture

RESULTS AND DISCUSSION

When B. subtilis var. niger spores, dried on nonhygroscopic and hygroscopic surfaces, were enclosed in polyethylene films 2, 4, and 6 mils thick and were exposed to the aforementioned conditions, the spore survival patterns (Fig. 1) varied little from one another. This was also reflected in the decimal reduction values (expressed as D at 54.4 C-600 mg of ethylene oxide per liter) shown in Table 1.

If one compares the survival patterns of B. subtilis var. niger spores dried on the same surface types but enclosed in glassine envelopes and exposed to the same conditions (6), only slight variations will be noted. This supports the findings (1) that the low-density grade film does not appreciably affect the diffusion or sporicidal effect of ethylene oxide. The recommendations of other authors (1, 2) to use polyethylene film, approximately 1 to 4 mils thick, are readily appreciated when one notes the extended survival times (Fig. 2) and higher decimal reduction values for B. subtilis var. niger spores sterilized in 20-mil polyethylene film.

This investigation confirmed the permeability of polyethylene film to ethylene oxide, and no radical alteration in the sterilizing ability of the

TABLE 1. Decimal reduction values of B. subtilis var. niger spores dried on nonhygroscopic and hygroscopic surfaces enclosed in various thicknesses of polyethylene film

Thickness of polyethylene film	Nonhygroscopic surface	Hygroscopic surface
mils	min	min
0	3.75	2.15
2	3.00	3.40
4	3.30	3.45
6	3.10	3.84
20	15.00	13.10

* Values are expressed as D at 54.4 C-600 mg of ethylene oxide per liter.
* Glassine envelope.
and whether it can be employed as a wrapping material) should be sought from the manufacturer. Such information should be readily available from all manufacturers of packaging materials for sterilization applications.

ACKNOWLEDGMENTS

We gratefully acknowledge the capable assistance of Margaret Chase, Jean Woodrow, Jane Lego, and Barbara Lindsay.

LITERATURE CITED

1. Conte, E. A. 1966. How to sterilize with ethylene oxide gas. Mod. Hosp. 102:122-124.
2. Dick, M., and C. E. Feazel. 1966. Resistance of plastics to ethylene oxide. Mod. Plastics 35:148-150.
3. Gould, G. A. 1964. Gas sterilization of packaged dried ingredients. Food Proc. 38(8):96-97.
4. Kereluk, K., R. A. Gammon, and R. S. Lloyd. 1969. Microbiological aspects of ethylene oxide sterilization. I. Experimental apparatus and methods. Appl. Microbiol. 19:146-151.
5. Kereluk, K., R. A. Gammon, and R. S. Lloyd. 1969. Microbiological aspects of ethylene oxide sterilization. II. Microbial resistance to ethylene oxide. Appl. Microbiol. 19:152-156.
6. Kereluk, K., R. A. Gammon, and R. S. Lloyd. 1969. Microbiological aspects of ethylene oxide sterilization. III. Effects of humidity and water activity on the sporidical activity of ethylene oxide. Appl. Microbiol. 19:157-162.
7. Kereluk, K., and R. S. Lloyd. 1969. Ethylene oxide sterilization: a current review of principles and practices. The J. Hosp. Res. 7:8-75.
8. Lebovitz, A. 1966. Permeability of polymer to gases, vapor, and liquids. Mod. Plastics 43(7):139-146.
9. Masoero, M. G. 1967. Permeability of plastic materials to gases, vapors, and liquids. Pharm. Acta Helv. 42(11):647-657.
10. Prickett, E. A. 1965. Wrappings for sterilization (SFH). Hospital 39:40.
11. Waack, R., N. H. Alex, N. L. Frisch, V. Stannett, and M. Szwarc. 1955. Permeability of polymer films to gases and vapors. Ind. Eng. Chem. 47:2524-2527.
12. Walter, C. W., and D. W. Errera. 1963. Packaging materials. Hosp. Topics 41(9):84.