Human neutralising antibodies elicited by SARS-CoV-2 non-D614G variants offer cross-protection against the SARS-CoV-2 D614G variant

Cheryl Yi-Pin Lee¹², Siti Naqiah Amrun¹², Rhonda Sin-Ling Chee¹², Yun Shan Goh¹², Tze-Minn Mak³⁴, Sophie Octavia³⁴, Nicholas Kim-Wah Yeo¹², Zi Wei Chang¹², Matthew Zirui Tay¹², Anthony Torres-Ruesta¹²⁵, Guillaume Carissimo¹², Chek Meng Poh¹², Siew-Wai Fong¹²⁶, Wang Bei², Sandy Lee², Barnaby Edward Young³⁷⁸, Seow-Yen Tan⁹, Yee-Sin Leo³⁷⁸¹⁰, David C Lye³⁷⁸¹¹, Raymond TP Lin⁴¹¹, Sebastien Maurer-Stroh¹³⁴⁶¹², Bernett Lee², Cheng-I Wang², Laurent Renia¹² & Lisa FP Ng¹²⁵¹³¹⁴

¹A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
²Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
³National Centre for Infectious Diseases, Singapore
⁴National Public Health Laboratory, National Centre for Infectious Diseases, Singapore
⁵Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
⁶Department of Biological Sciences, National University of Singapore, Singapore
⁷Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
⁸Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
⁹Department of Infectious Diseases, Changi General Hospital, Singapore
¹⁰Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
¹¹Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
¹²Bioinformatics Institute, Agency for Science Technology and Research (A*STAR), Singapore
¹³National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
¹⁴Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK

Correspondence
LFP Ng and L Renia, A*STAR ID Labs, A*STAR, 8A Biomedical Grove, Immunos #04-06, Singapore 138648, Singapore.
E-mails: lisa_ng@immunol.a-star.edu.sg; renia_laurent@immunol.a-star.edu.sg

Received 20 November 2020; Revised 21 December 2020; Accepted 23 December 2020

doi: 10.1002/cti2.1241

Clinical & Translational Immunology 2021; 10: e1241

Abstract

Objectives. The emergence of a SARS-CoV-2 variant with a point mutation in the spike (S) protein, D614G, has taken precedence over the original Wuhan isolate by May 2020. With an increased infection and transmission rate, it is imperative to determine whether antibodies induced against the D614 isolate may cross-neutralise against the G614 variant. Methods. Antibody profiling against the SARS-CoV-2 S protein of the D614 variant by flow cytometry and assessment of neutralising antibody titres using pseudotyped lentiviruses expressing the SARS-CoV-2 S protein of either the D614 or G614 variant tagged with a luciferase reporter were performed on plasma samples from COVID-19 patients with known D614G status (n = 44 infected with D614, n = 6 infected with G614, n = 7 containing all other clades: O, S, L, V, G, GH or GR). Results. Profiling of the anti-SARS-CoV-2 humoral immunity reveals similar neutralisation profiles against both S protein variants, albeit waning neutralising antibody capacity at the later phase of infection. Of clinical importance, patients infected with
either the D614 or G614 clade elicited a similar degree of neutralisation against both pseudoviruses, suggesting that the D614G mutation does not impact the neutralisation capacity of the elicited antibodies. **Conclusions.** Cross-reactivity occurs at the functional level of the humoral response on both the S protein variants, which suggest, that existing serological assays will be able to detect both D614 and G614 clades of SARS-CoV-2. More importantly, there should be negligible impact towards the efficacy of antibody-based therapies and vaccines that are currently being developed.

Keywords: clade, COVID-19, cross-reactivity, D614G variant, neutralising antibodies, SARS-CoV-2

INTRODUCTION

Coronavirus disease 2019 (COVID-19) is the consequence of an infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged in Wuhan, China, in December 2019. The rapid expansion of the COVID-19 pandemic has affected 213 countries and territories, with a global count of more than 80 million laboratory-confirmed human infection cases to date. An inevitable impact of this pandemic is the accumulation of immunologically relevant mutations among the viral populations due to natural selection or random genetic drift, resulting in enhanced viral fitness and immunological resistance. For instance, antigenic drift was previously reported in other common cold coronaviruses, OC43 and 229E, as well as in SARS-CoV. In early March 2020, a non-synonymous mutation from aspartic acid (D) to glycine (G) at position 614 of SARS-CoV-2 spike (S) protein was identified. This variant, G614, rapidly became the dominant SARS-CoV-2 clade in Europe by May 2020, suggesting a higher transmission rate over the original isolate, D614. In vitro and animal studies have also indicated that the G614 variant may have an increased infectivity and may be associated with higher viral loads and more severe infections. Notably, single point mutations have been shown to induce resistance to neutralising antibodies in other coronaviruses, including SARS-CoV and Middle East respiratory syndrome (MERS-CoV). More importantly, mutations in the S protein of SARS-CoV-2 have been shown to induce conformational modifications that alter antigenicity. Hence, determining any cross-neutralising capability of antibodies developed against the earlier G614 variant is of paramount importance to validate the therapeutic efficacy of developing immune-based interventions.

RESULTS

Antibody profiling against the SARS-CoV-2 S protein was first assessed using plasma samples collected from COVID-19 patients (n = 57) during the Singapore outbreak between January and April 2020, across the early recovery phase [median 31 days post-illness onset (pio)] and a later post-recovery time point (median 98 days pio) (Table 1, Figure 1a and b). All patients showed a decrease in IgM response (Figure 1a), and a prolonged IgG response over time (Figure 1b). Although one recent study has demonstrated similar neutralisation profiles against both D614 and G614 SARS-CoV-2 pseudoviruses, the virus clade by which the six individuals were infected with was not identified. According to Singapore’s SARS-CoV-2 clade pattern from December 2019 till July 2020 based on n = 736 cases with genome availability, the D614G mutation, indicated as G clade following the GISAID clade nomenclature, only appeared in March 2020 (Figure 1c). Hence, with knowledge on the D614G status of a subset of COVID-19 patients (n = 44 infected with D614, n = 6 infected with G614, n = 7 containing all other clades: O, S, L, V, G, GH or GR; Table 1, Figure 1c), the neutralising capacity of these anti-SARS-CoV-2 antibodies was assessed using pseudotyped lentiviruses expressing the SARS-CoV-2 S protein tagged with a luciferase reporter as a surrogate...
of live virus.17 The neutralisation EC\textsubscript{50} values of each patient were interpolated from the respective dose–response neutralisation titration curves (Table 2, Figure 1d and e, Supplementary figure 1). Notably, these antibodies were able to neutralise both SARS-CoV-2 D614 and G614 pseudoviruses at similar levels, despite having a significantly lower neutralisation capacity at median 98 days pio in all COVID-19 patients (Figure 1d and e, Supplementary figures 1 and 2). Corroborating other studies, severe patients have a higher and persisting level of neutralising antibodies as compared with both mild and moderate patients (Table 2, Supplementary figure 2).18,19 Of clinical importance, all the patients infected with either the D614 or G614 clade elicited a similar degree of neutralisation against both D614 and G614 pseudoviruses (Figure 1f), suggesting that the D614G mutation does not impact the neutralisation capacity of the elicited antibodies. Our results support the notion that the locus where the point mutation occurred is not critical for antibody-mediated immunity and may not have an impact on virus resistance towards antibody-based interventions.4,20

DISCUSSION

The emergence of a new virus clade due to random mutations could heavily deter the therapeutic outcome of treatments and vaccines. Majority of the current immunoassays developed against SARS-CoV-2 are based on the S antigen of the original Wuhan reference sequence.21,22 Moreover, pioneer batches of therapeutics and candidate vaccines were mostly designed based on earlier infections. As a result, mutations in the dominant variant sequence could potentially alter the viral phenotype and virulence, thereby rendering current immune-based therapies less efficient and effective.23,24 Fortunately, a recent pre-print reported no observable difference in IgM, IgG and IgA profiles against either the D614 or G614 S variant in an antigen-based serological assay,25 providing preliminary findings on the effectiveness of current diagnostic approaches to detect SARS-CoV-2 G614 infections.

In addition, determining the level of cross-reactivity is essential for immunosurveillance, as well as to identify broadly neutralising antibodies or epitopes.26 Here, we confirm that cross-reactivity occurs at the functional level of the humoral response on both the S protein variants. Of note, the stronger neutralising capacity observed during the early recovery phase may be due to the higher level of IgM response at median 31 days pio, as plasma IgM has been shown in a recent pre-print to contribute towards SARS-CoV-2 neutralisation.27 While IgA has also been reported to mediate neutralising activities during SARS-CoV-2 infection at a lower potency,27 investigations on the IgA levels and neutralising capacity in patients infected by the G614 clade would be needed to confirm earlier findings.

Regarding clinical outcomes, it appears that patients infected with the G614 clade, albeit small patient numbers, appear to have a lower log\textsubscript{10} EC\textsubscript{50} value (Figure 1d–f). While it remains elusive, this observation may be associated to the lower IgM and IgG levels in these patients. Nonetheless, our results, together with the recent serological evaluation,25 strongly suggest that existing serological assays will be able to detect both D614 and G614 clades of SARS-CoV-2 with a similar sensitivity. Recent studies have also demonstrated an overall equivalent sensitivity against both the D614 and G614 pseudotyped
Figure 1. Timeline of events during the SARS-CoV-2 outbreak in Singapore, and the antibody profiles of COVID-19 patients and their neutralising capacity against both D614 and G614 variants of SARS-CoV-2. Plasma samples of COVID-19 patients \((n = 57) \) at median 31 and median 98 days post-illness onset (pio) were assessed for anti-SARS-CoV-2 IgM and IgG antibody response. Plasma samples (1:100 dilution) were incubated with transduced HEK293T cells expressing SARS-CoV-2 spike protein, and (a) anti-IgM and (b) anti-IgG levels were quantified by flow cytometry. Percentage binding indicates the percentage of cells with antibody binding. Data are shown as mean ± SD of two independent experiments. Dotted line indicates mean + 3SD of healthy controls \((n = 22) \). Statistical analysis was carried out with the Wilcoxon signed-rank test \((*) P < 0.05, ***P < 0.001 \). (c) Percentage of COVID-19 cases with genome available \((n = 736) \) during the Singapore outbreak from December 2019 to July 2020, segregated by the clade with which the patients were infected following GISAID clade nomenclature. (d–f) Anti-SARS-CoV-2 neutralising antibodies were assessed using luciferase expressing lentiviruses pseudotyped with SARS-CoV-2 spike (S) protein of either the original strain, D614, or the mutant variant, G614. Log10 neutralisation EC50 profiles against D614 and G614 pseudoviruses across both time points. Data represent the mean of two independent experiments, and statistical analysis was carried out using the paired t-test \((***) P < 0.001 \). (f) Comparison of log10 neutralisation EC50 values between D614 and G614 pseudoviruses during both time points. Data represent the mean of two independent experiments, and statistical analysis was carried out using the paired t-test. All data points are non-significant (ns).
viruses, suggesting that the D614G mutation is not expected to hinder current vaccine development.10–12,28 However, it is of clinical relevance to assess if cross-reactivity between the variants may enhance viral infection when neutralising antibodies are present at suboptimal concentrations.29 More importantly, further studies using monoclonal antibodies are necessary to validate the cross-reactivity profiles between both SARS-CoV-2 S variants.

Overall, our study shows that the D614G mutation on the S protein does not impact SARS-CoV-2 neutralisation by the host antibody response, nor confer viral resistance against the humoral immunity. Hence, there should be negligible impact towards the efficacy of antibody-based therapies and vaccines that are currently being developed.

METHODS

Ethical approval

Written informed consent was obtained from participants in accordance with the tenets of the Declaration of Helsinki. The study design protocol was approved by National Healthcare Group (NHG) Domain Specific Review Table 2.

Patient	Days post-illness onset (pio)	Recovery phase	Infection by SARS-CoV-2 strain*	D614 (EC50)
#1	39 Early Others	93.821	1.97230058	27.088
#2	95 Late	36.481	1.562066734	ND
#3	152 Early D614	59.67	1.77575038	59.527
#4	111 Early D614	84.26	1.925621455	100.33
#5	92 Late	36.216	1.558900481	20.109
#6	100 Early D614	264.7	2.422759341	371.63
#7	107 Late	85.178	1.930327439	101.03
#8	100 Early D614	401.03	2.603176862	229.98
#9	88 Late	93.083	1.968870372	42.272
#10	88 Late	59.156	1.7719988	46.489
#11	96 Late	59.156	1.7719988	46.489
#12	92 Late	84.26	1.925621455	100.33
#13	96 Late	36.216	1.558900481	20.109
#14	92 Late	264.7	2.422759341	371.63
#15	100 Early D614	85.178	1.930327439	101.03
#16	100 Early D614	401.03	2.603176862	229.98
#17	96 Late	93.083	1.968870372	42.272
#18	92 Late	59.156	1.7719988	46.489
#19	96 Late	84.26	1.925621455	100.33
#20	92 Late	36.216	1.558900481	20.109

(Continued)
Patient	Days post-illness onset (pio)	Recovery phase	Infection by SARS-CoV-2 strain^a	D614 (EC50) Dilution factor	D614 (Log 10 EC50) Dilution factor	G614 (EC50) Dilution factor	G614 (Log 10 EC50) Dilution factor
#19	39 Early	G614	18.721	1.272329043	24.532	1.389732956	
#20	35 Early	D614	941.37	2.973760354	856.37	2.932661445	
#21	35 Early	D614	312.28	2.494544171	150.83	2.17847731	
#22	32 Early	D614	17.385	1.921415932	74.848	1.8741802	
#23	62 Early	G614	36.553	1.562912306	31.281	1.495280628	
#24	38 Early	D614	10.477	1.020236944	ND	ND	
#25	18 Early	D614	849.23	2.92052328	ND	ND	
#26	105 Late	D614	601.69	2.779372794	ND	ND	
Moderately (Pneumonia, without hypoxia)							
#1	29 Early	D614	325.6	2.512684396	311.41	2.49332555	
#2	29 Early	Others	50.013	1.699082906	40.54	1.60783744	
#3	37 Early	D614	17.385	1.921415932	74.848	1.8741802	
#4	29 Early	D614	406.93	2.609519708	394.6	2.596157081	
#5	29 Early	D614	188.21	2.753248123	412.73	2.61566037	
#6	25 Early	D614	2349.4	3.209519708	2000.3	3.01051353	
#7	34 Early	D614	96.242	1.983664369	110.53	2.04348017	
#8	28 Early	D614	227	2.356025857	215.24	2.33292983	
#9	31 Early	D614	792.61	2.899059547	601.93	2.77954589	
#10	32 Early	D614	541.77	2.733814953	399.85	2.6018971	
#11	29 Early	D614	164.37	2.215822555	152.3	2.18269903	
#12	32 Early	D614	241.37	2.38268329	267.15	2.42675519	
#13	58 Early	D614	84.158	1.925095406	51.315	1.71042433	
#14	25 Early	D614	220.86	2.344117068	171.07	2.23317385	
#15	36 Early	D614	200.82	2.344117068	171.07	2.23317385	
#16	27 Early	D614	308.07	2.488649409	201.4	2.30405946	
#17	34 Early	D614	1079.6	3.033262876	1039.5	3.01682449	
#18	42 Early	D614	90.322	1.955793546	56.963	1.75592854	
#19	30 Early	G614	214.79	2.332014058	186.07	2.26967658	
#20	104 Late	D614	24.869	1.395638322	29.766	1.47372047	
#21	99 Late	D614	10.11	1.04751156	17.581	1.245043754	
#22	32 Early	G614	38.602	1.586609806	19.899	1.29831252	
#23	99 Late	D614	17.385	1.240174695	18.098	1.257630584	
#24	35 Early	D614	82.448	1.921415932	74.848	1.8741802	
#25	99 Early	G614	18.721	1.272329043	24.532	1.389732956	
#26	99 Early	G614	38.602	1.586609806	19.899	1.29831252	

(Continued)
COVID-19 patients and sample collection

Fifty-seven patients who tested PCR-positive for SARS-CoV-2 in nasopharyngeal swabs in Singapore were recruited into the study from January to March 2020\(^\text{30,31}\) (Table 1). Patients were categorised into three groups based on clinical severity during hospitalisation: mild (no pneumonia on chest radiographs (CXR), \(n = 25\)), moderate (pneumonia on CXR without hypoxia, \(n = 19\)) and severe (pneumonia on CXR with hypoxia (desaturation to \(\leq 94\%)\), \(n = 13\)). Whole blood of patients was collected in BD VacutainerTMCPTTM tubes (BD Biosciences, Franklin Lakes, NJ, USA) and centrifuged at 1700 \(\text{g}\) for 20 min to obtain plasma fractions. Plasma samples were either heat-inactivated at 56°C for 30 min,\(^\text{17}\) or treated with TritonTM X-100 (Thermo Fisher Scientific, Waltham, MA, USA) to a final concentration of 1% for 2 h at room temperature (RT) for virus inactivation.\(^\text{31,32}\)

Determining D614G mutation status of COVID-19 patients

Residual clinical RNA was subjected to tiled amplicon PCR using ARTIC nCoV-2019 version 3 panel.\(^\text{33}\) Sequencing libraries were prepared using the Nextera XT and sequenced on MiSeq (Illumina, San Diego, California, USA) to generate 300 bp paired-end reads. The reads were subjected to a hard-trim of 50 bp on each side to remove primer artefacts using BBMap\(^\text{34}\) prior to consensus sequence generation by Burrows-Wheeler Aligner-MEM v0.7.17. Sequences with nucleotide mutation A23403G were assigned as D614G.

Cells

Human embryonic kidney (HEK) 293T (ATCC, Manassas, VA, USA) cells were maintained in DMEM (Cytiva Life Sciences, Marlborough, MA USA) with 10% heat-inactivated foetal bovine serum (FBS; Cytiva Life Sciences). CHO cells expressing human ACE2 (CHO-ACE2; kindly gifted by Professor Yee-Joo Tan, Department of Microbiology, NUS & IMCB, A*STAR, Singapore) were cultured in DMEM with

Table 2. Continued.

Patient	Days post-illness onset (pio)	Recovery phase	Infection by SARS-CoV-2 strain\(^a\)	D614 (EC50) Dilution factor	D614 (Log 10 EC50) Dilution factor	G614 (EC50) Dilution factor	G614 (Log 10 EC50) Dilution factor
Severe (Pneumonia, with hypoxia)							
#1	31 Early G614	740.24	2.869372549	548.74	2.739366619		
#2	92 Late	154.05	2.187661703	92.754	1.967332648		
#3	33 Early Others	940.91	2.973548084	967.53	2.98566444		
#4	97 Late	250.17	2.398235229	199.92	2.300856243		
#5	29 Early D614	1597.5	3.20440867	1443.9	3.159537116		
#6	96 Late	173.92	2.40349527	236.97	2.374693369		
#7	29 Early D614	970.61	2.987044761	651.53	2.81394418		
#8	34 Early D614	755.31	2.878125235	822.44	2.915104224		
#9	113 Late	71.959	1.857085119	74.804	1.873924822		
#10	33 Early Others	2042.2	3.10098272	2007.9	3.30274208		
#11	110 Late	100.71	2.003072596	108.06	2.033664963		
#12	30 Early D614	1291.7	3.111116166	3109.8	3.492732459		
#13	87 Late	420.78	2.624050589	996.85	2.99862981		
#14	28 Early D614	1298.1	3.11330815	1391.8	3.143576832		
#15	109 Late	224.08	2.350403096	246.4	2.391640703		
#16	37 Early Others	466.49	2.668842338	383.24	2.583470831		
#17	92 Late	156.93	2.195705795	140.67	2.148201487		
#18	39 Early Others	4453.3	3.648681953	3528.8	3.547627045		
#19	116 Late	1024.2	3.010384771	1072.7	3.03478281		
#20	40 Early D614	529.25	2.723660867	730.88	2.863846078		
#21	60 Late	253.5	2.403977964	419.99	2.62323895		
#22	31 Early D614	891.98	2.950355117	1016.9	3.007278247		
#23	93 Late	136.02	2.133602771	108.15	2.03406524		
#24	40 Early Others	1595.2	3.202815141	1691.3	3.228220649		
#25	60 Late	612.24	2.7869217	702.75	2.84800854		

COVID-19: Coronavirus Disease 2019; Early: median 31 days post-illness onset (pio); Late: median 98 days pio; ND: not determined.

\(^a\)Others: O, S, L, V, G, GH or GR clades.

© 2021 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.

2021 | Vol. 10 | e1241
Page 7

C Y-P Lee et al.

Cross-neutralising antibodies against the SARS-CoV-2 D614G mutant
10% FBS, 1% MEM non-essential amino acid solution (Thermo Fisher Scientific), and 0.5 mg mL⁻¹ of Genetin selective antibiotic (Thermo Fisher Scientific). Surface expression of ACE2 on CHO-ACE2 cells was confirmed using anti-human ACE2 Alexa Fluor 647 (Santa Cruz Biotechnology, Dallas, TX, USA). All cells were maintained at 37°C with 5% CO₂.

S-flow assay

Full-length SARS-CoV-2 Spike (S) protein of the D614 variant-expressing HEK293T cells was produced by transduction with lentiviral particles. Cells were seeded at 1.5 × 10⁵ per well in 96-well plates and incubated with Triton X-100 inactivated plasma samples (1:100 dilution) in 10% FBS in PBS (FACS blocking buffer), followed by a secondary incubation of Alexa Fluor 647-conjugated anti-human IgM or IgG (1:500 dilution; Thermo Fisher Scientific) and propidium iodide (1:2500 dilution; Sigma-Aldrich, St. Louis, MO, USA). Cells were acquired on BD™ LSR II laser (BD Biosciences), and results were analysed with FlowJo (version 10, Tree Star Inc. Becton Dickinson, Ashland, OR). Results are presented as percentage of binding, which indicates the percentage of cells with antibody binding.

SARS-CoV-2 pseudovirus production

The pseudotyped lentiviruses were produced as previously described. Briefly, using the third-generation lentivirus system, pseudotyped viral particles expressing SARS-CoV-2 D614 strain or G614 variant S proteins were generated by reverse transfection of 3 × 10⁵ of HEK293T cells with 12 µg pMDLg/PRRE (Addgene, Watertown, Massachusetts, USA), 6 µg pRSV-Rev (Addgene), 12 µg pPTSLnX-cov-SP (SARS-CoV-2 wildtype S), a kind gift from Dr Brendon John Hanson, DSO National Laboratories, Singapore) or pPTSLnX-cov-SP-D614G (SARS-CoV-2 mutant D614G S), and 24 µg pHIV-Luc-ZsGreen (Addgen) using Lipofectamine 2000 transfection (Invitrogen, Carlsbad, California, USA). Cells were cultured for 3 days, before viral supernatant was harvested by centrifugation to remove cell debris and filtered through a 0.45 µm filter unit (Sartorius, Gottingen, Germany). Viral titres were quantified with Lenti-X™ p24 Rapid Titre Kit (Takara Bio, Kusatsu, Shiga, Japan).

Pseudovirus neutralisation assay

The pseudotyped lentivirus neutralisation assay was performed as previously described, with slight modifications. CHO-ACE2 cells were seeded at 3.2 × 10⁴ per well in a 96-well black microplate (Corning, New York, NY) in culture medium without Geneticin. Serially diluted heat-inactivated plasma samples (1:10 to 1:31 250 dilutions) were incubated with equal volume of pseudovirus expressing SARS-CoV-2 S proteins of either original wildtype or D614G mutant strain (0.4 ng p24) at 37°C for 1 h, before being added to pre-seeded CHO-ACE2 cells. Cells were refreshed with culture media after 1 h incubation. After 48 h, cells were washed with PBS and lysed with 1× Passive Lysis Buffer (Promega, Madison, Wisconsin, USA) with gentle shaking at 125 rpm for 30 min at 37°C. Luciferase activity was subsequently quantified with Luciferase Assay System (Promega) on a GloMax Luminometer (Promega).

Data and statistical analysis

Data were analysed using GraphPad Prism (version 8.4.3; GraphPad Software, San Diego, CA) and Microsoft Excel (version 16.39; Microsoft). The Wilcoxon signed-rank test and the paired t-test were carried out to compare the antibody and neutralisation profiles of COVID-19 patients at median of 31 and 98 days’ post-illness onset (pio). P-values less than 0.05 are considered to be statistically significant.

ACKNOWLEDGMENTS

The authors thank the study participants who donated their blood samples to this project and the healthcare workers caring for the COVID-19 patients. The authors also wish to thank Ding Ying and the Singapore Infectious Disease Clinical Research Network (SCRN) for their help in patient recruitment and the staffs at the National Centre for Infectious Diseases (NCID) who assisted with data analysis on viral sequences and determination of the D614G status.

All authors declare no conflicts.

AUTHOR CONTRIBUTIONS

Cheryl Lee: Data curation; Formal analysis; Investigation; Methodology; Validation; Writing-original draft; Writing-review & editing. Siti Naqiah Amrun: Data curation; Formal analysis; Investigation; Methodology; Validation; Writing-review & editing. Rhonda Chee: Data curation; Formal analysis; Investigation; Methodology; Validation; Writing-review & editing. Yun Shan Goh: Data curation; Formal analysis; Investigation; Methodology; Writing-review & editing. Tze-Minn Mak: Data curation; Formal analysis; Investigation; Methodology; Writing-review & editing. Sophie Octavia: Data curation; Formal analysis; Investigation; Methodology; Writing-review & editing.
Nicholas Yeo: Data curation; Formal analysis; Investigation; Methodology; Validation; Writing-review & editing. Ziweei Chang: Data curation; Investigation; Methodology; Writing-review & editing. Matthew Tay: Data curation; Investigation; Methodology; Writing-review & editing. Anthony Torres-Ruesta: Data curation; Formal analysis; Investigation; Methodology; Validation; Writing-review & editing. Guillaume Carissimo: Formal analysis; Validation; Writing-review & editing. Guillaume Carissimo: Formal analysis; Validation; Writing-review & editing. Sandy Lee: Methodology; Validation; Writing-review & editing. Siew-Wai Fong: Data curation; Investigation; Methodology; Validation; Writing-review & editing. Yee Sin Leo: Resources; Supervision; Writing-review & editing. Bernett Lee: Conceptualization; Funding acquisition; Methodology; Project administration; Supervision; Writing-review & editing. Lisa FP Ng: Conceptualization; Funding acquisition; Methodology; Project administration; Supervision; Writing-review & editing.

REFERENCES

1. Cohen J, Normile D. New SARS-like virus in China triggers alarm. Science 2020; 367: 234–235.
2. Worldometer. Dover, Delaware, USA. Available from: https://www.worldometers.info/coronavirus/.
3. Sevajol M, Subissi L, Decroly E, Canard B, Imbert I. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Res 2014; 194: 90–99.
4. Grubaugh ND, Hanage WP, Rasmussen AL. Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear. Cell 2020; 182: 794–795.
5. Ren L, Zhang Y, Li J et al. Genetic drift of human coronavirus OC43 spike gene during adaptive evolution. Sci Rep 2015; 5: 11451.
6. Chibò D, Birch C. Analysis of human coronavirus 229E spike and nucleoprotein genes demonstrates genetic drift between chronologically distinct strains. J Gen Virol 2006; 87: 1203–1208.
7. Song H-D, Tu C-C, Zhang G-W et al. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci USA 2005; 102: 2430.
8. Zhang L, Jackson CB, Mou H et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv 2020: 2006.2012.148726.
9. Korber B, Fischer WM, Gnanakaran S et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 2020; 182: 812–827.e19.
10. Hou YJ, Chiba S, Halfmann P et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 2020; 370: 1464–1468.
11. Plante JA, Liu Y, Liu J et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 2020. https://doi.org/10.1038/s41586-020-2895-3
12. Zhang L, Jackson CB, Mou H et al. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun 2020; 11: 6013.
13. Sui J, Aird DR, Tamin A et al. Broadening of neutralization activity to directly block a dominant antibody-driven SARS-coronavirus evolution pathway. PLoS Pathog 2008; 4: e1000197.
14. Tang X-C, Agnihotram S5, Jiao Y et al. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. Proc Natl Acad Sci USA 2014; 111: E2018.
15. Eaaawarkanth M, Al Madhoun A, Al-Mulla F. Could the D614G substitution in the SARS-CoV-2 spike (S) protein be associated with higher COVID-19 mortality? Int J Infect Dis 2020; 96: 459–460.
16. Phan T. Genetic diversity and evolution of SARS-CoV-2. Infection, Genetics and Evolution 2020; 81: 104260.
17. Poh CM, Carissimo G, Wang B et al. Two linear epitopes on the SARS-CoV-2 spike protein that elicit neutralising antibodies in COVID-19 patients. Nat Commun 2020; 11: 2806.
18. Wang X, Guo X, Xin Q et al. Neutralizing antibody responses to severe acute respiratory syndrome coronavirus 2 in coronavirus disease 2019 inpatients and convalescent patients. Clin Infect Dis 2020; 71: 2688–2694.
19. Zhao J, Yuan Q, Wang H et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis 2020; 71: 2027–2034.
20. Barnes CO, West AP, Huey-Tubman KE et al. Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies. Cell 2020; 182: 828–842. e816.
21. Lee CY-P, Lin RTP, Renia L, Ng LFP. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Front Immunol 2020; 11: 879.
22. Wang C, Gao Z, Shen K et al. Safety and efficiency of endoscopic resection versus laparoscopic resection in gastric gastrointestinal stromal tumours: a systematic review and meta-analysis. Eur J Surg Oncol 2020; 46: 667–674.
23. Sanjuán R, Neboit MR, Chirico N, Mansky LM, Belshaw R. Viral mutation rates. J Virol 2010; 84: 9733.
24. Ojosnegros S, Beerenwinkel N. Models of RNA virus evolution and their roles in vaccine design. Immunome research 2010; 6(Suppl 2): 55.
25. Klumpp-Thomas C, Kalish H, Hicks J et al. D614G spike variant does not alter IgG, IgM, or IgA spike serosay assay performance. medRxiv 2020. 2020.07.2023.20147371.
26. Hicks J, Klumpp-Thomas C, Kalish H et al. Serologic cross-reactivity of SARS-CoV-2 with endemic and seasonal Betacoronaviruses. medRxiv the preprint server for health sciences 2020. 2020.06.2022.20137695.
27. Klinger J, Weiss S, Itri V et al. Role of IgM and IgA antibodies in the neutralization of SARS-CoV-2. medRxiv 2020. 2020.08.18.20177303.
28. Weissman D, Alameh MG, de Silva T et al. D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 2020. https://doi.org/10.1016/j.chom.2020.11.012

29. Arvin AM, Fink K, Schmid MA et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature 2020; 584: 353–363.

30. Pung R, Chiew CJ, Young BE et al. Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. Lancet 2020; 395: 1039–1046.

31. Amrun SN, Lee CY-P, Lee B et al. Linear B-cell epitopes in the spike and nucleocapsid proteins as markers of SARS-CoV-2 exposure and disease severity. EBioMedicine 2020; 58: e102911.

32. Darnell ME, Taylor DR. Evaluation of inactivation methods for severe acute respiratory syndrome coronavirus in noncellular blood products. Transfusion 2006; 46: 1770–1777.

33. Quick J.nCoV-2019 sequencing protocol v1 protocols.io. [updated 26 August 2020]. Available from: https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-locost-bh42j8ye/metadata

34. Bushnell B. BBMap: A fast, accurate, splice-aware aligner. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA. Conference: 9th Annual Genomics of Energy & Environment Meeting, Walnut Creek, CA. 2014. Report No. LBNL-7065E. Available from: https://www.osti.gov/servlets/purl/1241166.

35. Goh YS, Chavatte JM, Lim JLA et al. Sensitive detection of total anti-spike antibodies and isotype switching in asymptomatic and symptomatic COVID-19 patients. Cell Rep Med 2021. https://doi.org/10.2139/ssrn.3713507 (in press).

Supporting Information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.