Robust chaos is defined as the inexistence of periodic windows and coexisting attractors in the neighborhood of parameter space. This characteristic is desired because a chaotic system with robust chaos can overcome the chaos disappearance caused by parameter disturbance in practical applications. However, many existing chaotic systems fail to consider the robust chaos. This article introduces an exponential chaotic model (ECM) to produce new one-dimensional (1-D) chaotic maps with robust chaos. ECM is a universal framework and can produce many new chaotic maps employing any two 1-D chaotic maps as base and exponent maps. As examples, we present nine chaotic maps produced by ECM, discuss their bifurcation diagrams and prove their robust chaos. Performance evaluations also show that these nine chaotic maps of ECM can obtain robust chaos in a large parameter space. To show the practical applications of ECM, we employ these nine chaotic maps of ECM in secure communication. Simulation results show their superior performance against various channel noise during data transmission.
Author Information

Corresponding Address: Hua, Zhongyun (corresponding author)

- Harbin Inst Technol Shenzhen, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China

Corresponding Address: Zhou, Yicong (corresponding author)

- Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China

Addresses:

1. Harbin Inst Technol Shenzhen, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
2. Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China

E-mail Addresses: huazyum@gmail.com; yicongzhou@um.edu.mo

Categories/Classification

Research Areas: Automation & Control Systems; Computer Science

Topics:
- Electrical Engineering, Electronics & Computer Science
- Security, Encryption & Encoding
- Image Encryption

Web of Science Categories

Automation & Control Systems; Computer Science, Cybernetics

Funding

Funding agency	Grant number	Show All Details
National Key Research and Development Program of China	2018YFB1003800	
	2018YFB1003805	
National Natural Science Foundation of China (NSFC)	61701137	Show details
Shenzhen Science and Technology Program	JCYJ20170307150704051	
	JCYJ20170811160212033	

View funding text

Journal information

IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS

ISSN 2168-2216

eISSN 2168-2232

Current Publisher

IEEE-INSTITUTION OF ELECTRICAL ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855-4141

Journal Impact Factor ™ (2022) 8.7

Journal Citation Indicator ™ (2022) 2.18
Exponential Chaotic Model for Generating Robust Chaos-Web of Science Core Collection

Journal Impact Factor

Research Areas
Automation & Control Systems; Computer Science

Web of Science Categories
Automation & Control Systems; Computer Science, Cybernetics

Citation Network

In Web of Science Core Collection
72 Citations

Highly Cited Paper

72 Times Cited in All Databases

48 Cited References

Use in Web of Science

23 144

Last 180 Days Since 2013

Learn more →

This record is from:

Web of Science Core Collection

- Science Citation Index Expanded (SCI-EXPANDED)

Suggest a correction
If you would like to improve the quality of the data in this record, please Suggest a correction

You may also like...

Zhang, J; Zhu, XP;