Aggregate size and glucose level affect priming sources: A three-source-partitioning study

Jing Tian a,b,* , Johanna Pausch b , Guirui Yu a , Evgenia Blagodatskaya b , d,** , Yakov Kuzyakov b , c

a Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), 100101, Beijing, China
b Department of Soil Science of Temperate Ecosystems, University of Göttingen, 37077, Göttingen, Germany
c Department of Agricultural Soil Science, University of Göttingen, 37077, Göttingen, Germany
d Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, 142290, Pushchino, Russia

A R T I C L E I N F O

Article history:
Received 12 January 2016
Received in revised form
22 March 2016
Accepted 24 March 2016

Keywords:
Aggregate size classes
Priming effect
Isotopic approach
14C-labeled glucose
C4/C3 vegetation change
C sequestration

A B S T R A C T

Decomposition of soil organic matter (SOM) protected within aggregates can be accelerated via priming effect (PE) by the addition of fresh substrates. However, the knowledge of the sources of mineralization and PE in aggregate size classes is absent. We applied the three-source-partitioning isotopic (14C + δ13C) approach to determine how aggregate size classes affect the contribution of three C sources (substrate added, recent and old SOM) to CO2 efflux and PE depending on the amount of added primer. Soil from a field with 3 years of maize cropping (C4 plants) after long-term C3 vegetation was used to differentiate between recent C (C4eC; < 3 years) and old C (C3eC; > 3 years). Soil samples were separated into three aggregate size classes (>2 mm, 2–0.25 mm macroaggregates and <0.25 mm microaggregates) and were incubated for 49 days after being amended with two levels of 14C labeled glucose.

The proportion of glucose mineralized to CO2 increased with decreasing aggregate size, but 14C incorporation into microbial biomass decreased, indicating higher C use efficiency in macroaggregates compared with microaggregates. The short-time PE was positive and was accompanied by a rapid reduction of dissolved organic C. After 49 days, the PE was higher in macro-versus microaggregates at both glucose levels. Positive PE induced by a low glucose level was observed only in large macroaggregates (>2 mm), but was observed in both macroaggregates (>0.25 mm) and microaggregates (<0.25 mm) after high glucose amendment. These results indicate that SOM pools are more decomposable in macro-versus microaggregates and that the SOM pools are involved in PE according to their biochemical availability. More primed CO2 originated from recent C4eC than old C3eC in larger macroaggregates under a low glucose level. The relative contribution of recent C4eC to primed CO2 increased from macroaggregates (37.8%) to microaggregates (100%) after high glucose amendment. Therefore, increasing glucose addition stimulated the decomposition of old C3eC in macroaggregates, but not in microaggregates. This indicates that microaggregates protect SOM against decomposition better than macroaggregates, and consequently, microaggregates can be considered as a potential reservoir for long-term C sequestration.

Concluding, aggregate size is crucial for SOM decomposition, and it determines the source of PE and thus the protection of sequestered C. The effects of the added primer on C sources involved in PE depend on the aggregate size.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The input of readily available substrates to the soil can alter carbon (C) sequestration by modifying the mineralization of the native soil organic matter (SOM) pool via priming effect (PE) (Kuzyakov, 2010). The SOM is not chemically uniform and consists
of various pools with varying levels of degradability and turnover rates (Stevenson, 1994; Von Lützow et al., 2007). Therefore, it is important to consider the contribution of individual SOM pools to CO₂ release and to investigate the extent to which various pools are involved in PE.

Soil organic matter occlusion within aggregates is one of the most important physical preservation mechanisms because there are physical barriers between microorganisms, enzymes and their substrates (Six et al., 2002). Using the “aggregate hierarchy” hypothesis, it is generally accepted that microaggregates (<0.25 mm) can afford the most protection to associated SOM. This is because the SOM associated with microaggregates is formed by primary particles coupled together by plant and microbial debris and by humic or polysaccharide polymers, which better protect SOM against decomposition than macroaggregates (>0.25 mm) (Elliott, 1986; Six et al., 2002; Denef et al., 2007; Kimura et al., 2012). Additionally, SOM preferentially stabilized in micro-aggregates can be better protected against decomposition within stable macroaggregates (Six et al., 2000; Six and Paustian, 2013). Turnover of SOM is assumed to be more rapid in macroaggregates than in microaggregates (Besnard et al., 1998; Six et al., 2002; Gunina and Kuzyakov, 2014). This assumption was confirmed with more SOM mineralized from macroaggregates (>0.25 um) versus microaggregates (<0.25 mm) (Gregoric et al., 1989; Mutuo et al., 2006), with higher PE also observed in macroaggregates (>0.25 um) compared with microaggregates (<0.25 mm) (Tian et al., 2015). However, there is no consensus on the effects of aggregate size classes on SOM decomposition because the greatest CO₂ production is from the microaggregates (Seech and Beauchamp, 1988; Drury et al., 2004; Sey et al., 2008), and no differences between macro- and microaggregates have been reported (Rabbi et al., 2014). Furthermore, an increase in PE intensity with decreasing particle size has been observed, which has shown not only that the labile pools in aggregates are affected but also that more stable pools are characterized by higher 14C ages (Ohm et al., 2007; Negassa et al., 2015).

To identify the SOM pools responsible for mineralization and PE, more than two C sources should be labeled (Kuzyakov, 2010). Despite recent progress in the partitioning of three C sources (added substrate, recent and old C) in SOM (Kuzyakov and Bol, 2006; Fontaine et al., 2007; Blagodatskaya et al., 2011, 2014; Derrien et al., 2014), there is still a lack of information on such partitioning within aggregate size classes.

Generally, a positive correlation between the amount of an added labile substance and its microbial mineralization has been observed (Bremer and van Kessel, 1990; Mary et al., 1993; Schneckenberger et al., 2008). In addition, it has been shown that the priming of SOM decomposition increased with the increased addition of labile substrates until saturation of the microbial utilization capacity (Blagodatskaya and Kuzyakov, 2008; Paterson and Sim, 2013). However, it is not only the labile pools of SOM that are easily affected by PE, but also the SOM pools with low degradability (Hamer and Marschner, 2005). The SOC fractions with low degradability can be affected by PE after repeated substrate inputs (Fontaine et al., 2007; Mau et al., 2015) and high amounts of a plant root and leaves (Blagodatskaya et al., 2011, 2012). In addition to the recalcitrance of SOM pools, all these studies have suggested that the availability of the primer is a limitation for the degrading microorganisms and that this is a major factor controlling the extent of SOM decomposition.

We hypothesized that (1) more C would be mineralized and a higher PE would be observed in macroaggregates because SOM is less recalcitrant and more easily decomposable than in micro-aggregates (Elliott, 1986; Six et al., 2002; Denef et al., 2007) and, consequently, the SOM pools involved in PE vary according to their biochemical availability (Blagodatskaya et al., 2011); (2) compared with macroaggregates, the PE in microaggregates would require higher levels of primer addition; (3) the relative contribution of recent C sources to the PE would be greater in macro-versus microaggregates. This hypothesis is because macroaggregates have more easily decomposable C (e.g., recent C) (Elliott, 1986; Six et al., 2002; Denef et al., 2007) and microorganisms will preferentially utilize labile substrate (Paterson et al., 2007; Kuzyakov, 2010), but the extent may depend on the primer amount. To test these hypotheses, we combined the recently developed isotopic approach for three-C-source-partitioning (substrate added, recent and old SOM) with fractionation of aggregate size classes and measured three fluxes and pools: CO₂, microbial biomass C (MBC) and dissolved organic C (DOC).

2. Materials and methods

2.1. Soil sampling and aggregate preparation

Soil (loamy Haplic Luvisol originated from loess) was sampled in April 2012 from the upper layer (0–10 cm) of a maize field as well as from an adjacent wheat field located northwest of Göttingen, Germany. The soil had 5.8% sand, 87.2% silt and 7.0% clay according to the German classification system. The C₄ plant maize (Zea mays) was grown for three years after long-term C₃ cropping with wheat (Triticum aestivum). The experimental design was described in detail by Kramer et al. (2012) and Pausch and Kuzyakov (2012).

The soil samples were transported to the laboratory, where plant roots and leaves were carefully removed by hand picking, and the soil samples were then stored at 4 °C for no longer than one week before aggregate processing. The soil was sieved to separate large macroaggregates (>2 mm), small macroaggregates (2–0.25 mm) and microaggregates (<0.25 mm) according to Tian et al. (2015). Soil was first gently manually crumbled to approximately 5 mm pieces, transferred to two sieves (2 and 0.25 mm), and shaken for 2 min. Thereafter, the aggregates remaining on top of the sieves were collected. Large macroaggregates were collected from the 2 mm sieve, small macroaggregates from the 0.25 mm sieve, and microaggregates that passed through the 0.25 mm sieve. The soil aggregates were then spread out in a thin layer and air-dried. Preliminary tests showed that the sieving duration was sufficient to separate the various aggregates size classes while minimizing aggregate abrasion during the sieving process (Dorodnikov et al., 2009).

The vegetation change from C₃ to C₄ crops caused a shift in the δ¹³C values of soil and of the aggregates (Table 1). Hence, through the vegetation change from C₃ to C₄ crops, a distinct isotopic signal was introduced into the soil that allowed for partitioning of old SOM (C₃–C) and recent SOM (C₄–C). Hereafter, C₄-derived C is referred to as “recent” C (<3 years), and C₃-derived C, which entered the soil before maize cropping, is referred to as “old” C (>3 years).

Soil type	Aggregate size classes	SOC (g kg⁻¹)	TN (g kg⁻¹)	δ¹³C value (%)
C₁ reference soil	>2 mm	13.0	1.29	−26.45
	2–0.25 mm	13.6	1.39	−26.51
	<0.25 mm	12.4	1.27	−26.34
C₁–C₄ soil	>2 mm	12.3	1.26	−23.81
	2–0.25 mm	13.7	1.30	−23.87
	<0.25 mm	11.5	1.20	−23.20
2.2. Incubation and sampling

Soil samples (20 g dry weight) of each aggregate size class from both maize (C3MACROBUTTON Ins Glyph eC4) and wheat (C3) plots were placed in a thin and loose layer on the bottom of 250 ml jars. The moisture content was adjusted to 50% of the water holding capacity (WHC), and the soil was then pre-incubated at 22 °C for one week because sieving affects the availability of SOM for microorganisms (Hartley et al., 2007) and may cause a temporal respiration flush (Blagodatskaya and Anderson, 1999). The following levels of glucose were added: 1) without glucose (control, addition of water only), 2) low glucose (GL, corresponding to 20.4 μg C g−1 soil), and 3) high glucose (HG, corresponding to 204 μg C g−1 soil). The added glucose was prepared from unlabeled glucose mixed with uniformly labeled 14C-glucose (99 530 DPM per μg) and water (GO). The appropriate glucose solutions were then added to the pre-incubated soils, which reached a final soil moisture content of 70% WHC. The water content was maintained at 70% WHC throughout the experiment. In total, a 3 × 3 × 2 factorial experiment was established corresponding to three levels of aggregate sizes, three levels of glucose addition and two soils. Each treatment had three replicates. The C content was 12.3 g kg−1 in the >2 mm aggregate size, 13.7 g kg−1 in the 2−0.25 mm aggregate size and 11.5 g kg−1 in the <0.25 mm aggregate size before incubation (Table 1).

Small vials with 3 ml of 1 M NaOH were placed in the incubation jars to trap CO2 after adding distilled water (control treatment) or the glucose solution (GL and GH treatments) to the soil. The jars were immediately sealed air-tight and were incubated for 49 days at 22 °C and at 70% WHC. The NaOH solution was exchanged 6 h, 1, 3, 7, 14, 21, 36 and 49 days after glucose addition. Each time after changing the NaOH solution, the incubation jars were kept open for 30 min to maintain an adequate O2 level. In addition, three incubation jars containing only NaOH were used as blanks to correct for the CO2 trapped from the air inside the vessels. Another three vials of NaOH for each treatment were used for sampling 13CO2 at 3, 14 and 49 days of incubation. Three replicates of each treatment were destructively sampled at days 3, 14 and 49 to analyze the microbial biomass C and dissolved organic C and their 13C signatures.

2.3. Chemical analyses

The amount of trapped CO2 was determined by the titration of 1 ml of the NaOH solution with 0.1 M HCl against phenolphthalein after adding 1 ml of 0.5 M BaCl2 solution. Another 1 ml of the NaOH solution was added to 6 ml Rothscint scintillation cocktail (Roth Company, Germany) and was well mixed by vortexing. After the decay of chemiluminescence (after 24 h), the 14C activity of the added glucose (14Cglucose, DPM), the amount of added glucose (Cglucose) and the current 14C radioactivity of the corresponding pool (14Ccurr, DPM):

\[C_{glucose} = C_{glucose} \times \frac{14C_{curr}}{14C_{glucose}} \]

(2)

The SOM-derived C was then calculated as follows:

\[C_{SOM-derived} = C_{total} - C_{glucose-derived} \]

(3)

where Ctotal is the total amount of C in the corresponding pool (CO2, MBC and DOC).

Second, we calculated the δ13C value of SOM-derived C in each pool (δ13C_{SOM-derived}) based on a mass balance equation. Therefore, the δ13C signature of glucose-derived C was subtracted from the δ13C signature of each pool:

\[\delta^{13}C_{SOM-derived} = (\delta^{13}C_{total} \times \delta^{13}C_{C3-ref} \times \delta^{13}C_{C-glucose}) / (C_{total} - C_{glucose-derived}) \]

(4)

where \(\delta^{13}C_{total} \) and \(\delta^{13}C_{C-glucose} \) are the δ13C values of the total and glucose-derived C, respectively, \(\delta^{13}C_{C3-ref} \) are the measured values of the corresponding pool (CO2, MBC and DOC). The \(\delta^{13}C_{C-glucose} \) was assumed to be equal to δ13C of glucose (~9.905‰).

The contribution of recent C and old C to each pool of the C3–C4 soil was then calculated based on the glucose-corrected δ13C signature of each pool. The amount of recent C4-derived C in each pool was:

\[C_{C4-derived} = \frac{C_{SOM-derived} \times (\delta^{13}C_{SOM-derived} - \delta^{13}C_{C3-ref})}{(\delta^{13}C_{C4} - \delta^{13}C_{C3})} \]

(5)

where \(\delta^{13}C_{C3-ref} \) is the δ13C value of the corresponding pool in the reference C3 soil at the corresponding sampling data calculated according to Eq. (3).

The C4 source (\(\delta^{13}C_{C4} \)), i.e., soil CO2, MBC and DOC, developed under permanent C4 vegetation, was calculated based on the assumption of an equal isotopic fractionation within permanent C4
and C$_3$ systems (Werth and Kuzyakov, 2010). The isotopic fractionation factor for the C$_3$ system was:

$$F_{\text{SOM}} = \delta^{13}\text{C}_{\text{C3-plant}} - \delta^{13}\text{C}_{\text{C3}}$$

(6)

$$\delta^{13}\text{C}_{\text{C4}} = \delta^{13}\text{C}_{\text{C4-plant}} - F_{\text{SOM}}$$

(7)

where $\delta^{13}\text{C}_{\text{C3-plant}}$ was equal to -27.893% and $\delta^{13}\text{C}_{\text{C4-plant}}$ was equal to -12.221% in this study.

Third, the C$_3$-derived in each pool was then calculated by subtracting the C$_4$-derived from the total amount of C in the corresponding pool.

Fourth, the PE and contributions of recent and old C to the PE were calculated based on the changes in the δ^{13}C signature and the amount of extra C in the three pools after 14C-glucose addition.

The cumulative PE was calculated as the difference of SOM-derived C (in CO$_2$, MBC and DOC) from soil with a glucose addition and from soil without glucose addition (Blagodatskaya et al., 2007):

$$\text{PE (}\mu\text{g C g}^{-1} \text{ soil}) = \text{SOM-derived C}_{\text{amended}} - \text{SOM-derived C}_{\text{unamended}}$$

(8)

where SOM-derived C$_{\text{amended}}$ was SOM-derived C (in CO$_2$, MBC and DOC) from the jar with glucose addition, and SOM-derived C was from the jar without glucose addition.

The changes in the δ^{13}C signature caused by preferential substrate utilization of easily available and 13C-enriched recent C (compared with 13C-depleted old C), were considered for the correct assessment of PE in all pools (Connin et al., 2001; Crow et al., 2006; Blagodatskaya et al., 2011; Ngao and Cotrufo, 2011). The dynamic changes in δ^{13}C caused by preferential utilization were estimated in control C$_3$–C$_4$ soil treated solely with H$_2$O. Therefore, for each pool (CO$_2$, MBC and DOC), the PE was calculated separately for C$_3$ and C$_4$ carbon sources (C$_3$ PE and C$_4$ PE, respectively) considering the changes in the contribution of old and recent C in controls for each sampling data:

$$\text{C}_3\text{ PE} = \text{C}_3\text{ C}_{\text{amended}} - \text{C}_3\text{ C}_{\text{unamended}}$$

(9)

$$\text{C}_4\text{ PE} = \text{C}_4\text{ C}_{\text{amended}} - \text{C}_4\text{ C}_{\text{unamended}}$$

(10)

The data were analyzed using a two-way or three-way analysis of variance (ANOVA) with SAS (SAS Inc. 1996). Differences were considered significant at $p < 0.05$, with a separation of mean values by a least significant difference (LSD) test.

Fig. 1. CO$_2$ dynamics and priming effects during incubation for individual aggregate size classes (>2 mm, 2–0.25 mm, <0.25 mm) after amendment with low (left) and high (right) glucose levels in C$_3$–C$_4$ soil. Error bars represent standard error of the means ($n=3$).
3. Results

3.1. Sources partitioning for C pools in aggregate size classes depending on glucose levels

3.1.1. CO₂ efflux

The total CO₂ efflux during the intensive decomposition stage (the first 3 days) was mainly affected by the level of glucose addition (accounting for 96% variance; \(p < 0.05 \); Fig. 1 and Table S1). In contrast, the effect of aggregate size classes on total CO₂ production increased over 49 days compared with the first 3 days (\(p < 0.05 \); Fig. 1 and Table S1).

CO₂ originating from glucose increased with the glucose addition rate but decreased with time (\(p < 0.05 \); Fig. 2; Table S2). The glucose-derived CO₂ production was 26% higher for the GH treatment than for the GL treatment after day 3, while it was 14% higher after day 49 (\(p < 0.05 \); Fig. 1; Table 2; Table S1 and S2). The glucose-derived CO₂ increased with decreasing aggregate size classes (\(p < 0.05 \); Fig. 2; Table S2). Glucose-derived CO₂ production after 3 days was 16.4% higher in the microaggregates (<0.25 mm) than in the macroaggregates (>0.25 mm), while it was 11.5% higher after day 49 (\(p < 0.05 \); Fig. 1; Table 2; Table S1).

The CO₂ originating from recent C₄-C was affected by aggregate size classes, while CO₂ originating from old C₃-C was influenced by glucose levels (\(p < 0.05 \); Fig. 2; Table S2). The CO₂ originating from recent C₄-C and old C₃-C were both influenced by the interactions between aggregate size classes and glucose levels (\(p < 0.05 \); Table S2). The contribution of recent C₄-C to CO₂ was 45.7–58.7% higher in the macroaggregates (>0.25 mm) than in the microaggregates (<0.25 mm; \(p < 0.05 \); Fig. 2; Table S2). The contribution of old C₃-C to CO₂ was 10.3–31.1% higher under GH than GL levels (\(p < 0.05 \); Fig. 2; Table S2). The contribution of recent C₄-derived CO₂ after day 49 (\(p < 0.05 \); Table 2; Table S1 and S2). The glucose-derived CO₂ increased with decreasing aggregate size classes (\(p < 0.05 \); Table S2). Glucose-derived CO₂ production after 3 days was 16.4% higher in the microaggregates (<0.25 mm) than in the macroaggregates (>0.25 mm), while it was 11.5% higher after day 49 (\(p < 0.05 \); Fig. 1; Table 2; Table S1).

Table 2

Treatments	Glucose-derived CO₂	C₄-derived CO₂	C₃-derived CO₂	C₄-derived CO₂	C₃-derived CO₂
	(μg C g⁻¹ aggregate)				
>2 mm	59.0(28.7)b	234(2.71)b	392(15.0)	1.91(0.02)b	3.19(0.12)ab
2–0.25 mm	60.9(29.6)b	319(22.5)a	404(35.7)	2.33(0.16)a	2.95(0.26)b
<0.25 mm	66.3(32.1)a	128(2.70)c	397(15.7)	1.12(0.02)c	3.45(0.14)a
GL	9.87(0.28)b	216(29.9)	367(11.7)b	1.70(0.19)	2.96(0.17)b
GH	11.4(5.2a)	239(41.2)	429(13.7)a	1.87(0.27)	3.44(0.07)a

Numbers in bracket represent standard error of the means (\(n = 3 \)).
GL: low glucose addition, GH: high glucose addition.
Different low-case letters indicate significant differences among across aggregate size classes or glucose amendment treatments.
Fig. 3. The contribution of three C sources to microbial biomass C in individual aggregate size classes (>2 mm, 2–0.25 mm, <0.25 mm) after amendment with low (top) and high (bottom) glucose levels. Error bars represent standard error of the means (n = 3).

Fig. 4. The contribution of three C sources to dissolved organic C in individual aggregate size classes (>2 mm, 2–0.25 mm, <0.25 mm) after amendment with low (top) and high (bottom) glucose levels. Error bars represent standard error of the means (n = 3).
CO₂ and old C₃-derived CO₂ to SOC in aggregate size classes followed a similar trend as that to total CO₂ (Table 2).

3.1.2. Microbial biomass C

The level of glucose addition explained most of the differences in glucose-derived microbial biomass C, accounting for 73.1% variation (p < 0.05; Table S2). The glucose-derived microbial biomass C was 5.3 times higher under GH than GL levels (p < 0.05; Fig. 3; Table S2). When averaged across all glucose levels and sampling dates, glucose-derived microbial biomass C was 29.9% higher in the macroaggregates (>0.25 mm) than in the microaggregates (<0.25 mm; p < 0.05; Fig. 3; Table S2).

The microbial biomass C originated from old C₃ (66.3%) nearly doubled recent C₄ (33.7%) before adding glucose (Fig. 3). Adding glucose did not increase the microbial biomass after day 3 but resulted in a 13.17.3% increase in the microbial biomass C in the 0.25 mm aggregate size class after day 14 (p < 0.05; Fig. 3).

Initially, the dissolved organic C pool consisted mainly of old C₃ (89.4%), while recent C₄ was only 19.6% (Fig. 4). The dissolved organic C content after glucose amendment was always lower than before adding glucose (p < 0.05; Fig. 4). For example, dissolved organic C decreased almost 39.2% during the first 3 days after glucose addition (Fig. 4). This decrease was due to 20.1% and 34.9% reduction of recent C₄ and old C₃, respectively, under GL, while the decrease was 60.9% and 43.1% under GH, respectively (Fig. 4). The portion of recent C₄ in dissolved organic matter decreased by 69.0% after 49 days of incubation compared to day 0, while old C₃ was decreased by 61.8%.

3.2. Sources of priming effects

The cumulative PE in CO₂ was mainly positive during the experiment for all treatments, except for the 0.25 mm aggregate size classes with GL addition, where negative PE was detected (Figs. 1 and 5). The cumulative PE in CO₂ increased with glucose levels (p < 0.05; Fig. 5, Table S3). The positive PE during the first 3 days originated mainly from the C₃. However, the portion of recent C₄ increased during the course of further incubation, except the 0.25 mm aggregate size classes with GL addition, where a negative PE was measured (Fig. 5).

The increase in microbial biomass after glucose addition after day 14 originated by 84.4–96.1% from SOC. This resulted in increased PE in MBC (Fig. 6). This increased PE was mainly due to old C₃ under GH, while both recent C₄ and old C₃ contributed to PE under GL. At the end of incubation, the portion of

![Fig. 5. The contribution of recent (C₄) and old (C₃) SOM to the cumulative priming effects in CO₂ efflux in individual aggregate size classes (>2 mm, 0.25 mm, <0.25 mm) after amendment with low (top) and high (bottom) glucose levels. Error bars represent standard error of the means (n = 3).](image-url)
C₄–C in PE of microbial biomass C was higher in the macroaggregates (>0.25 mm) than in the microaggregates (<0.25 mm) under both glucose levels (p < 0.05; Fig. 6; Table S3).

The reduction in DOC content after glucose addition resulted in positive PE (Fig. 7). The portions of C₄–C and C₃–C in PE of DOC were both influenced by aggregate size classes, incubation time and the interactions between them (p < 0.05, Table S3). The portions of C₄–C and C₃–C in PE of DOC were both higher in the macroaggregates (>0.25 mm) than in the microaggregates (<0.25 mm) before day 14 (p < 0.05, Fig. 7; Table S3). The contribution of old C₃–C in PE of DOC in all aggregates size classes decreased from day 3 to day 49 (p < 0.05, Fig. 7).

4. Discussion

4.1. CO₂ efflux as affected by aggregate size class and the amount of primer

The level of glucose had the greatest effect on the total and glucose-derived CO₂ production during the intensive decomposition stage (before day 3, Table S1). This finding is in line with previous studies (Saggar et al., 1999; Ohm et al., 2007; Hill et al., 2008). Generally, high amounts of glucose can stimulate more microorganisms to grow and mineralize the “new” added C to CO₂ (Schneckenberger et al., 2008). As microbial biomass did not increase after day 3 (Fig. 3), the higher proportion of mineralized ¹⁴C-glucose under high versus low glucose treatments may indicate decreased C use efficiency (CUE) (Creamer et al., 2014). Indeed, we found that the CUE was 1.4–2.0 times higher under low versus high glucose treatment in individual aggregates and across all aggregate size classes (Table S4), showing that CUE increased with rising C limitations (Nguyen and Guckert, 2001; Bremer and Kuikman, 1994).

The influence of aggregate size classes on total CO₂ and glucose-derived CO₂ emission increased by a factor of 10 after 49 days compared with 3 days (Fig. 1 and Table S1), indicating that the starving microorganisms switched to utilization of SOM after the easily available glucose was consumed (Dungait et al., 2012). The observed increase in total CO₂ in the macro- versus microaggregates can be explained by stronger protection of SOC within microaggregates (Elliott, 1986; Six et al., 2002; Denef et al., 2007; Kimura et al., 2012). This is inconsistent with a greater CO₂ production observed from the smallest aggregates (Seech and Beauchamp, 1988; Drury et al., 2004; Sey et al., 2008) or with no difference between macro- and micro-aggregates (Rabbi et al., 2014). The observed inconsistency on the effects of aggregate sizes on mineralization may be due to differences in the organic C content or the microbial community composition in various soils (Kimura et al., 2012). In addition, according to the aggregate hierarchy model, because microaggregates form inside macroaggregates (Six et al., 2000; Six and Paustian, 2014), the SOC mineralization in macroaggregates also includes C mineralization from the microaggregates that are embedded in them. Thus, macro- and micro-aggregates in the same soil could have similar chemically stable SOC, leading to no difference of mineralization between them (Rabbi et al., 2014).

The lower proportion of mineralized ¹⁴C-glucose, along with the higher proportion of added glucose incorporated into the microbial biomass in macro-versus microaggregates (Figs. 1 and 3), indicates greater CUE with increasing aggregate size. The higher...
CUE in macro-versus microaggregates may be explained by differences in the microbial community structures in various aggregate size classes. Generally, the fungal population utilizes the substrate more efficiently than bacteria (Otten et al., 2001; Keiblinger et al., 2010), while fungi occur mainly in macro-aggregates (Guggenberger et al., 1999; Zhang et al., 2014). Differences in nutrient availability between macro- and microaggregates can also affect the CUE because soil organic materials can decompose more efficiently (i.e., less CO2 is emitted per unit of C incorporated in microbial biomass) in N and P amended soil (Li et al., 2014). Macroaggregates usually represent an important site of nutrient (e.g., N, P) accumulation (Green et al., 2005; Fonte et al., 2014).

4.2. Priming effect as affected by aggregate size class and primer amount

The short-term positive PE in CO2 accompanied by a rapid DOC reduction (Figs. 4 and 5) is in line with the pattern observed after application of either easily available substrates (Blagodatskaya et al., 2011) or less available cellulose (Blagodatskaya et al., 2014). Despite glucose being incorporated within 3 days, microbial biomass only increased 14 days after glucose amendment (Fig. 3), reflecting faster microbial turnover. The microbial loop phenomenon, i.e., grazing of bacterial cells by protozoans in short-term soil amendment with substrate, may be another reason for the remaining constant level of microbial biomass (Clarholm, 1985; Coleman, 1994; Blagodatskaya et al., 2014). As the increase in SOM-derived microbial biomass and in primed CO2 induced by glucose was higher than the decline in SOM-derived DOC, the PE in CO2 originated not only from DOC but also from SOM. This also corresponds well with the finding that primed CO2 mainly originated from old C3-C.

Positive PE was observed only in larger macroaggregates (>2 mm) over 49 days at a low glucose level (Fig. 8), thus supporting our first hypothesis that SOM pools are involved in PE according to their biochemical availability. This result indicates that SOM is less recalcitrant and more decomposable in macro-versus microaggregates (Elliott, 1986; Six et al., 2000; Denef et al., 2007; Gunina and Kuzyakov, 2014). Microaggregates are formed during
macroaggregates turnover, so they contained a relatively stable mixture of highly processed organic matter and secondary materials (Six et al., 2000; Six and Paustian, 2014). However, under high glucose amendment, positive PE was observed in all aggregate size classes but was lowest in microaggregates (<0.25 mm; Fig. 8). This confirms our second hypothesis stating that the amount of primer was also responsible for PE. Therefore, old SOM mineralization can be fueled by a larger amount of energy-rich substrates due to stimulation of higher enzyme production to meet microbial nutrient demands or higher bacterial diversity (Paterson et al., 2007; Mau et al., 2015). This result agrees with studies showing that the SOM fractions with low degradability can be affected by PE after repeated substrate inputs (Hamers and Marschner, 2005; Fontaine et al., 2007; Mau et al., 2015) and high amounts of primer (Blagodatskaya et al., 2011). As the lowest positive PE was observed in microaggregates, our results confirm that microaggregates afford the most biochemical protection to associated SOM and can be considered a potential reservoir for C sequestration (Kramer and Gleixner, 2000) or higher bacterial diversity (Mau et al., 2015). However, mineralization of old SOC can be fueled by a larger amount of energy-rich substrates due to stimulation of higher enzyme production to meet microbial nutrient demands (Paterson et al., 2007; Fischer et al., 2010) and so the low contribution of recent C to the DOC pool. In the same field, one year after conversion, 27% of recent C4-derived C was observed in CO2 fluxes, while this level was 5% in bulk soil, which indicates that the recently introduced C4–C in the soil was more available for microorganisms than old C3–C (Pausch and Kuzyakov, 2012).

The observation that there is more primed CO2 from recent C4–C than old C3–C under low glucose level (Fig. 8) is in line with previous isotope tracer studies, which demonstrated that more recent fresh plant-derived C was initially incorporated in larger macroaggregates (>2 mm) (Tian et al., 2013a). This effect can be promoted by the presence of Lumbricid earthworms (Bossuyt et al., 2005; Yavitt et al., 2015), which were abundant at the study site. Therefore, microorganisms preferentially use recent plant material consisting of relatively labile organic matter (Kramer and Gleixner, 2008; Salomé et al., 2010; Tian et al., 2013b). The high glucose stimulated the decomposition of old C1–C in macroaggregates that contributed 66.7% to the total PE over 49 days in larger macroaggregates (>2 mm) and 57.8% in aggregates of 0.25–2.0 mm. This showed that mineralization of old SOC can be fueled by a larger amount of energy-rich substrates due to stimulation of higher enzyme production to meet microbial nutrient demands (Paterson et al., 2007) or higher bacterial diversity (Mau et al., 2015). However, the relative contribution of recent C4–C in primed CO2 increased from macroaggregates (37.8%) to microaggregates (100%) after high glucose input, suggesting that it was still not sufficient to trigger the

4.3. The contribution of recent and old C to PE in aggregate size classes as dependent on primer amount

Partitioning of C sources revealed that a higher contribution of recent C4–C to CO2 efflux and microbial biomass, and a lower contribution to DOC, was independent of glucose levels and aggregate size classes (Figs. 2–4). These results clearly illustrate the rapid uptake of easily available substrates by microorganisms (Bol et al., 2009; Fischer et al., 2010) and so the low contribution of recent C to the DOC pool. In the same field, one year after conversion, 27% of recent C4-derived C was observed in CO2 fluxes, while this level was 5% in bulk soil, which indicates that the recently introduced C4–C in the soil was more available for microorganisms than old C3–C (Pausch and Kuzyakov, 2012).

The observation that there is more primed CO2 from recent C4–C than old C3–C under low glucose level (Fig. 8) is in line with previous isotope tracer studies, which demonstrated that more recent fresh plant-derived C was initially incorporated in larger macroaggregates (>2 mm) (Tian et al., 2013a). This effect can be promoted by the presence of Lumbricid earthworms (Bossuyt et al., 2005; Yavitt et al., 2015), which were abundant at the study site. Therefore, microorganisms preferentially use recent plant material consisting of relatively labile organic matter (Kramer and Gleixner, 2008; Salomé et al., 2010; Tian et al., 2013b). The high glucose stimulated the decomposition of old C1–C in macroaggregates that contributed 66.7% to the total PE over 49 days in larger macroaggregates (>2 mm) and 57.8% in aggregates of 0.25–2.0 mm. This showed that mineralization of old SOC can be fueled by a larger amount of energy-rich substrates due to stimulation of higher enzyme production to meet microbial nutrient demands (Paterson et al., 2007) or higher bacterial diversity (Mau et al., 2015). However, the relative contribution of recent C4–C in primed CO2 increased from macroaggregates (37.8%) to microaggregates (100%) after high glucose input, suggesting that it was still not sufficient to trigger the
decomposition of old SOM in microaggregates. Overall, our findings agree well with observations that the biochemical recalibration of SOM is proportional to decreasing aggregate size class (Poirier et al., 2005; Sohi et al., 2005; Zimmermann et al., 2007) and that large amounts of C with old radiocarbon ages occur in association with size fractions < 0.02 mm (Marschner et al., 2008).

5. Conclusions

Aggregate size has a fundamental effect on the sources of CO₂ released and the PE. The quantity of primer available is an important factor influencing the intensity of mineralized C sources in PE with in the aggregate size classes. At the end of the incubation, positive PE at a low glucose level was induced only in large macroaggregates (>2 mm). With increasing primer amount, positive PE was initiated in both large and small macroaggregates (>2 and 2−0.25 mm) and also in microaggregates (<0.25 mm). High primer amounts increased the contribution of old C₃-derived C to primed CO₂ in macroaggregates (>0.25 mm). Future studies are required to investigate how the soil microbial community structure and the PE sources change under the influence of aggregate size classes and primer addition.

Acknowledgments

We thank Major Program of National Natural Science Foundation of China (Grant No. 314020103917) and National Natural Science Foundation of China (Grant No. 314040460 and 30290221) for generous financial support. The contribution of EB was supported by Russian Scientific Foundation (project No. 14-14-00625). The authors also thank the China Scholarship Council for providing financial support. We thank Major Program of National Natural Science Foundation of China (Grant No. 314020103917) and National Natural Science Foundation of China (Grant No. 314040460 and 30290221) for generous financial support. The contribution of EB was supported by Russian Scientific Foundation (project No. 14-14-00625). The authors also thank the China Scholarship Council for providing financial support. The contribution of EB was supported by Russian Scientific Foundation (project No. 14-14-00625). The authors also thank the China Scholarship Council for providing financial support.
Malik, A., Blagodatskaya, E., Gleixner, G., 2013. Soil microbial carbon turnover decreases with increasing molecular size. Soil Biol. Biochem. 62, 115–118.

Marschner, B., Brodowski, S., Drevs, A., Gleixner, G., Cude, A., Grotes, P.M., Hamer, U., Heim, A., Jandl, G., Ji, R., Kaiser, K., Kalbitz, K., Kramer, C., Leinweber, P., Rethemeyer, J., Schaffer, A., Schmidt, M.W.I., Schwark, L., Wiesen, G.L.B., 2008. How relevant is recalcitrance for the stabilization of organic matter in soils? J. Plant Nutr. Soil Sci. 171, 91–110.

Mary, B., Fresneau, C., Morel, J.L., Mariotti, A., 1993. C and N cycling during decomposition of root mucilage, roots and glucose in soil. Soil Biol. Biochem. 25, 1005–1014.

Mau, R.L., Liu, C.M., Aziz, M., Schwartz, E., Dijkstra, P., Marks, J.C., Price, L.B., Keim, P., Hungate, B.A., 2015. Linking soil bacterial biodiversity and soil carbon stability. ISME J. 9, 1477–1480.

Mutuo, P.K., Shepherd, K.D., Albrecht, A., Cadisch, G., 2006. Prediction of carbon mineralization rates from different soil physical fractions using diffuse reflectance spectroscopy. Soil Biol. Biochem. 38, 1658–1664.

Negassa, W.C., Guber, A.K., Kravchenko, A.N., Marsh, T.L., Hildebrandt, B., Rivers, M.L., 2015. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria. PLoS ONE 10 (4), e0123999.

Ngao, J., Cotrufo, M.F., 2011. Carbon isotope discrimination during litter decomposition can be explained by selective use of substrate with differing 13C. Biogeoosciences Discuss. 8, 51–82.

Nguyen, C., Guckert, A., 2001. Short-term utilisation of 14C-[U] glucose by soil microorganisms in relation to carbon availability. Soil Biol. Biochem. 33, 53–60.

Ohno, H., Hamer, U., Marschner, B., 2007. Priming effects in soil size fractions of a podzol Bi horizon after addition of fructose and alanine. J. Plant Nutr. Soil. 170, 551–559.

Otten, W., Hall, D., Harris, K., Ritz, K., Young, L.M., Gilligan, C.A., 2001. Soil physics, fungal epidemiology and the spread of Rhizoctonia solani. New Phytopathol. 151, 459–468.

Paterson, E., Gebbing, T., Abel, C., Sim, A., Telfer, G., 2007. Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytopathol. 173, 600–610.

Paterson, E., Sim, A., 2013. Soil-specific response functions of organic matter mineralization to the availability of labile carbon. Glob. Change Biol. 19, 1562–1571.

Pausch, J., Blagodatskaya, E., 2012. Soil organic carbon decomposition from recently added and older sources estimated by 13C values of CO2 and organic matter. Soil Biol. Biochem. 55, 40–47.

Poirier, N., Sohi, S., Gaunt, J.L., Mahieu, N., Randall, E.W., Powudson, D.S., Evershed, R.P., Poirier, N., Sohi, S., Gaunt, J.L., Mahieu, N., Randall, E.W., Powudson, D.S., Evershed, R.P., 2005. The chemical composition of measurable soil organic matter pools. Org. Geochem. 36, 1174–1189.

Rabhi, S.M.F., Wilson, B.R., Lockwood, P.V., Daniel, H., Young, L.M., 2014. Soil organic carbon mineralization rates in aggregates under contrasting land uses. Geoderma 216, 10–18.

Sagar, S., Parshotam, A., Hedley, C., Salt, G., 1999. 14C-labelled glucose turnover in New Zealand soils. Soil Biol. Biochem. 31, 2025–2037.

Salomé, C., Nunan, N., Pouteau, Y., Lerch, T.Z., Chenu, C., 2010. Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob. Change Biol. 16, 416–426.

Schneckenberger, K., Demin, D., Stahr, K., Kuzyakov, Y., 2008. Microbial utilization and mineralization of [14C] glucose added in six orders of concentration to soil. Soil Biol. Biochem. 40, 1981–1988.

Sree, A.G., Beauchamp, E.G., 1988. Denitrification in soil aggregates of different sizes. Soil Sci. Soc. Am. J. 52, 1616–1621.

Sey, B.K., Manceur, A.M., Whalen, J.K., Gregorich, E.G., Rochette, P., 2008. Small-scale heterogeneity in carbon dioxide, nitrous oxide and methane production from aggregates of a cultivated sandy-loam soil. Soil Biol. Biochem. 40, 2468–2473.

Six, J., Elliott, E.T., Paustian, K., 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103.

Six, J., Conant, R.T., Paul, E.A., Paustian, K., 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155–176.

Six, J., Paustian, K., 2014. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol. Biochem. 68, A4–A9.

Sohi, S., Mahieu, N., Powson, D.S., Madari, B., Smittenberg, R.H., Gaunt, J.L., Sohi, S., Mahieu, N., Powson, D.S., Madari, B., Smittenberg, R.H., Gaunt, J.L., 2005. Investigating the chemical characteristics of soil organic matter fractions suitable for modeling. Soil Sci. Soc. Am. J. 69, 1248–1255.

Stevenson, F.J., 1994. Humus Chemistry: Genesis, Composition, Reactions. John Wiley & Sons, New York, p. 466.

Tian, J., Pausch, J., Fan, M.S., Li, X.L., Tang, Q.Y., Kuzyakov, Y., 2013a. Allocation and dynamics of assimilated carbon in rice-soil system depending on water management. Plant Soil 363, 273–285.

Tian, J., Dippold, M., Pausch, J., Blagodatskaya, E., Fan, M., Li, X., Kuzyakov, Y., 2013b. Microbial response to rhizodeposition depending on water regimes in paddy soils. Soil Biol. Biochem. 65, 195–203.

Tian, J., Pausch, J., Yu, G., Blagodatskaya, E., Gao, Y., Kuzyakov, Y., 2015. Aggregate size and their disruption affect 14C-labeled glucose mineralization and priming effect. Appl. Soil Ecol. 90, 1–10.

Vance, E.D., Brooks, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707.

Von Lützow, M., Kögel-Knabner, I., Eischmied, K., Flesa, H., Guggenberger, G., Matzner, E., Marschner, B., 2007. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 39, 2183–2207.

Werth, M., Kuzyakov, Y., 2010. 13C fractionation in transformations at the interface between roots, microorganisms, and soil: a review and synthesis. Soil Biol. Biochem. 42, 1372–1384.

Wu, J., Joergensen, R.G., Pommering, B., Chassrod, R., Brooks, P.C., 1990. Measurement of soil microbial biomass C by fumigation-extraction - an automated procedure. Soil Biol. Biochem. 22, 1167–1169.

Yavitt, J.B., Fahey, T.J., Sherman, R.E., Groffman, P.M., 2015. Luminbric earthworm effects on incorporation of root and leaf litter into aggregates in a forest soil, New York State. Biogeochemistry 125, 261–273.

Zhang, H.J., Ding, W.X., He, X.H., Yu, H.Y., Fan, J.L., Liu, D.Y., 2014. Influence of 20-year organic and inorganic fertilization on organic carbon accumulation and microbrial community structure of aggregates in an intensively cultivated sandy loam soil. Plos One 9, e92733.

Zimmermann, M., Leifeld, J., Schmidt, M.W.I., Smith, P., Fuhrer, J., 2007. Measured soil organic matter fractions can be related to pools in the RothC model. Eur. J. Soil Sci. 58, 658–667.