Original article
Scand J Work Environ Health 1996;22(2):112-118
doi:10.5271/sjweh.119

Partition coefficients between human blood or adipose tissue and air for aromatic solvents
by Pierce CH, Dills RL, Silvey GW, Kalman DA

Key terms: floor cleaners; handworker; neurophysiology

This article in PubMed: www.ncbi.nlm.nih.gov/pubmed/8738889
Partition coefficients between human blood or adipose tissue and air for aromatic solvents

by Crispin H Pierce, PhD,1 Russell L Dills, PhD,1 Guy W Silvey, MS,2 David A Kalman, PhD1

Pierce CH, Dills RL, Silvey SW, Kalman DA. Partition coefficients between human blood or adipose tissue and air for aromatic solvents. Scand J Work Environ Health 1996;22:112—8.

Objectives The partitioning of lipophilic toxicants into blood and into adipose tissue plays an important role in the physiological distribution and toxicology of these substances. The partition coefficients between blood and air and adipose tissue and air were determined for widely used aromatic solvents in an in vitro test system using human tissue samples.

Methods Samples of whole venous blood (N=35) were drawn from 10 subjects. In addition, samples of perirenal and epididymal adipose tissue were obtained from F344 rats, along with subcutaneous, omental, or inguinal adipose tissue from 43 patients who had undergone surgery. Portions of each tissue were injected into vials for equilibration with atmospheres containing deuterated and nondeuterated organic solvents. Gas chromatographic headspace analysis was then used to determine the partition coefficients between blood and air and adipose tissue and air.

Results The mean partition coefficients between human blood and air or adipose tissue and air were 334 (SE 11) (adipose tissue) for benzene; 1764 (SE 49) (adipose tissue) for ethylbenzene; 3184 (SE 84) (adipose tissue) for styrene; 18.3 (SE 0.24) (blood) and 962 (SE 32) (adipose tissue) for toluene; 35.2 (SE 0.45) (blood) and 2460 (SE 63) (adipose tissue) for o-xylene; 31.9 (SE 0.45) (blood) and 1919 (SE 53) (adipose tissue) for m-xylene; and 39.0 (SE 0.70) (blood) and 2019 (SE 102) for p-xylene. Regression analyses revealed coefficients of determination of 0.88 (human) and 0.98 (rat) between blood and air and log tissue and air. A value of 0.98 was found for partition coefficients between rat and human adipose tissue.

Conclusions The partition coefficients between blood and air and adipose tissue and air were strongly correlated. The partitioning of aromatic solvents into rat adipose tissue is predictive of partitioning into human adipose tissue.

Key terms benzene, distribution, ethylbenzene, fat, physiologically based pharmacokinetics, styrene, toluene, toxicokinetics, xylene.

The distribution of lipophilic toxicants into adipose tissue plays a pivotal role in the kinetics of these substances (1). During the onset of systemic exposure, toxicants accumulate in all tissues that have partition coefficients between tissue and blood that are greater than one. After exposure ceases, toxicants are slowly released from these tissues into blood. The accumulation of lipophilic toxicants in adipose tissue thus results in prolonged internal exposure after external exposure ceases. Adipose tissue, blood, and all blood-perfused tissue concentrations of a lipophilic toxicant are therefore affected by the partition coefficient between adipose tissue and blood (2, 3). The partition coefficient between tissue and blood is commonly determined by dividing the tissue-air coefficient by the blood-air coefficient (4).

1 Department of Environmental Health, School of Public Health and Community Medicine, University of Washington, Seattle, Washington, United States.
2 Intel Corporation, Hillsboro, Oregon, United States.

Reprint requests to: Dr C Pierce, Department of Environmental Health, Box 357234, University of Washington, Seattle, WA 98195—7234, USA.
between adipose tissue and air, oil and air, and blood and air have been found to correlate with the narcotic potency of numerous chemicals, including chloroform, ether, and chlorinated aliphatic hydrocarbons (8, 9). General anesthetic agents with higher partition coefficients between blood and air are associated with a more rapid onset of narcosis and slower elimination through exhalation, while higher partition coefficients between adipose tissue and air produce narcosis at lower tissue concentrations (10). Geyer et al (11) found that partitioning of the lipophilic toxicants tetrachlorodibenzo-p-dioxin (TCDD) and dieldrin into adipose tissue is inversely correlated with toxicity in animal species; they suggested (3) that this relationship exists for many toxicants and species.

The partition coefficients between blood and air and adipose tissue and air are integral components of physiological models (12) that simulate blood and tissue levels of toxicants in test species and humans (13–15). Sensitivity analyses of such models, including those done in our own laboratory, have identified partitioning coefficients between both blood and air and adipose tissue and air as important determinants of toxicokinetics. A simulation study by Sato et al (17) found that the partitioning of organic solvents into adipose tissue had pronounced effects on the profiles of the blood and urinary concentration curves.

Human toxicokinetic analyses (4, 18) have relied on the determination of the partition coefficient between tissue and air using animal tissues (12, 19). The aim of our work was to determine the values of the partition coefficient between blood and air for toluene and the xylenes in human blood and to perform a comprehensive study of the tissue-air coefficients for benzene, ethylbenzene, styrene, toluene, and o-, m-, and p-xylene in human adipose tissues. Perdeuterated solvents were included in this analysis to provide information supporting their use in our laboratory as tracers of solvent kinetics following controlled human exposures.

Materials and methods

Atmosphere generation and vial equilibration

For determinations of the blood-air coefficients, the solvent atmosphere was produced by a commercial dynamic vapor generator (model 450 dynacalibrator, VICI Metronics, Santa Clara, California, United States). Because of the greater partitioning of solvent vapor into fat compared with blood, the initial solvent vapor concentrations for the tissue-air determinations had to be greater so as to remain above the quantitation limit after equilibration. As such, static test atmospheres were prepared for the tissue-air determinations by adding liquid solvents to an empty aluminum scuba tank (11.7 L). The tank was then pressurized to 700 psi (4.8 MPa) with nitrogen and then warmed to 50°C in a water bath. The temperature of the tank at the regulator was kept constant, and external surfaces were insulated. For determinations of both partition coefficients, the solvent-containing atmosphere from the dynacalibrator or tank was discharged at approximately 10 L · min⁻¹ through insulated tubing to a 5.1-L glove box. For the blood-air determinations, each atmosphere contained three solvents at concentrations of approximately 100 ppm; the tissue-air determinations used concentrations of approximately 1000 ppm for each of two to four solvents (20) at room temperature and pressure. The glove box contained uncapped autosampler vials (target style, 2.0 ml nominal volume; National Scientific Company, Lawrenceville, Georgia, United States) and was kept under positive pressure. After a 20-min equilibration period, the vials were capped with tetrafluoroethylene/chlorobutyl rubber crimp-top seals while inside the glove box. Because of nitrogen enrichment the atmosphere was kept below the lower explosion limits both in the tank and in the glove box in the tissue-air experiments (21). A flash arrestor was placed in line between the scuba tank and the glove box.

Tissue collection and preparation

Venous blood samples (5 ml, N=35) were collected from male volunteers (N=10) into Vacutainer® vials treated with citrate or ethylene-diamine-tetraacetic acid, and then stored at 5°C and analyzed within 4 h. Test vials for the blood-air determination were injected with 200 μl of blood using a glass intradural syringe (0.5 ml with 26 gauge needle, Becton, Dickinson & Company, Rutherford, New Jersey, United States). Both the reference (atmosphere only) and test vials (atmosphere and blood) were placed in an orbital shaker (220 rpm) for 10 min at 37°C. The blood-air values were determined from five replicates (aliquots) of each sample.

Perirenal and epididymal adipose tissues from male F344 rats were collected and pooled together so that a comparison could be made with previous tissue-air determinations (12) and with results found using human tissues. Samples of subcutaneous, omental, or inguinal adipose tissue (normally discarded) were obtained from 43 patients undergoing various surgical procedures. Each 10—100 g sample was drained of any residual liquid and homogenized with a Polynol PCU-2 tissue homogenizer (Kinematica, Lucerne, Switzerland). Portions (approximately 30 mg) of each homogenate were then loaded into syringes and injected into the vials containing the solvent atmosphere. Tissue sample mass was determined by weighing each vial before and after tissue injection. The sample volume was calculated using a nominal adipose tissue density of 0.908 g · ml⁻¹ (19). For human tissues, 3—12 replicate portions of each tissue homogenate from 5—16 subjects, resulting in a total of 21 to
84 vials, were used for each solvent. This study was approved by the University of Washington Human Subjects Division.

Gas chromatographic analysis

Initial experiments demonstrated that solvents equilibrated rapidly (<20 min) between the headspace and tissue at 37°C. Vials were allowed to equilibrate for 30 min and were maintained at this temperature during the analyses. Injections of vial headspace (125 μl) were performed by an autosampler, as previously described (20); solvent concentrations were measured using a Hewlett-Packard 5840 gas chromatograph with flame ionization detection. The gas chromatographic conditions were as follows: initial temperature 45°C, initial time 1 min, rate 10°C min⁻¹, final temperature 140°C, hydrogen carrier gas at 1.35 ml min⁻¹, and 30 m DB-20 wax column (inner diameter 0.25 mm). The coefficient of variation for repeated analyses of the analytes from the reference vials was 10–12%, and for those from the headspace of blood samples it was 12–15%. The variation of the measurement of the analyte concentration in vials containing adipose tissue was higher and showed more variation between compounds: toluene 6%, ethylbenzene and xylene 10–18%, and benzene 23%. The response was linear for all analytes over the measured range. No interfering peaks were found, as demonstrated by blank samples.

To check for solvent losses from the headspace during the course of the chromatographic analysis, five vials containing test atmosphere but no tissue homogenate were sampled at the beginning and end of each sequence; during the experiments with a large number of vials (≥75), five vials were analyzed in the middle of each sequence as well. To inspect further for analytic variability and partitioning equilibrium over the course of the analysis, 2–10 samples of homogeneous beef or rat adipose tissue were also sampled at the beginning and end of each sequence. No differences were detected in the blank or animal tissue standard vials over the course of the analyses. Moreover, no bias was found in an examination of the partition coefficient versus tissue mass.

Data and statistical analyses

Partition coefficients were determined using the mass balance-derived equation P_{ba} or $P_{bn} = \frac{[C_a(V_{ba}) - C_i(V_{na})]}{[C_a(V_{ba})]}$ (12), where P_{ba} is the partition coefficient between blood and air and P_{bn} is that between adipose tissue and air, C_a and C_i are the solvent concentrations in the reference and sample vial, respectively, and V_{na} and V_i are the volumes of the empty vial (2.07 ± 0.02 ml) and tissue sample, respectively.

Because deuterated and nondeuterated solvent isomers were simultaneously equilibrated with the same tissue samples, paired t-tests were used to determine the isomeric differences in the blood-air and tissue-air values. The differences between the individual tissue donors were assessed by an analysis of variance. The measured tissue-air values were compared with previously measured values, the blood-air values, and various measures of chemical polarity, including the dipole moment, the log octanol-water partition coefficient, and the dielectric constant, across solvents. Linear regression analysis was performed to determine possible correlations between these parameters and the tissue-air and log tissue-air values for both the human and rat tissues, and between the tissue-air values determined for human and rat tissues.

Results

The measured mean blood-air partition coefficients were 18.3 (SE 0.24) for 1H₆-toluene, 18.1 (SE 0.24) for 2H₆-toluene, 35.2 (SE 0.45) for 1H₆- o-xylene, 35.1 (SE 0.42) for 2H₆-o-xylene, 31.9 (SE 0.45) for 1H₆-m-xylene, 31.6 (SE 0.52) for 2H₆-m-xylene, 39.0 (SE 0.70) for 1H₆-p-xylene, and 38.4 (SE 0.72) for 2H₆-p-xylene. A comparison of these values with those determined previously for human blood is presented in figure 1. Using paired t-tests, we found differences between the perdeuterated versus nondeuterated blood-air values only for p-xylene ($P<0.003$). No interindividul differences in the blood-air values were detected with the analysis of variance.

The tissue-air data for benzene, 1H₆- and 2H₆-styrene, toluene, and o- and m-xylene are presented for the ex-
Table 1. Animal-derived partition coefficients between adipose tissue and air.

Solvent	Adipose tissue source	F344 Rats (this study)	F344 Rats (reference 12)	Rabbits (reference 19)					
	N	Mean	Standard error	N	Mean	Standard error	N	Mean	Standard error
Benzene	45	366	33	3-15	499	12	5	626	5*
t-H4-Styrene	20	3270	153*	3-15	3476	73
m-H4-Styrene	20	3180	164
Toluene	45	959	69	3-15	1021	11	5	1923	12*
m-Xylene	45	2930	260	3-15	1877	132
n-Xylene	46	2325	194	3-15	1859	93

*Calculated from P_{blood/air}. t-P_{blood/air} data in reference 19.

a Differences between individuals were significant in an analysis of variance (P < 0.05).

b Deuterated and nondeuterated isomers were different in the paired t-test (P < 0.005).

Table 2. Human adipose tissue-air partition coefficient data.

Chemical	Number of individuals	Total determinations	All determinations		
			Mean	Standard error	Coefficient of variation (%)
Benzene	8	69	334	11	27
t-H4-Ethylbenzene	71	71	1764	49	24
m-H4-Ethylbenzene	7	71	1630	59	31
t-H4-Styrene	7	40	3184	84	17
m-H4-Styrene	7	40	3111	82	17
*H4-Toluene	16	64	962	32	31
m-H4-Toluene	12	34	1017	29	16
*H4-o-Xylene	8	73	2460	63	22
m-H4-o-Xylene	5	52	2402	82	25
*H4-m-Xylene	5	50	1919	53	20
m-H4-p-Xylene	5	50	1785	80	24
*H4-p-Xylene	7	21	2019	102	23
m-H4-p-Xylene	7	21	1828	88	22

* Differences between individuals were significant in an analysis of variance (P < 0.05).

b Deuterated and nondeuterated isomers were different in the paired t-test (P < 0.05).
mers of ethylbenzene, styrene, toluene, \(\sigma\)-xylene, \(m\)-xylene, and \(p\)-xylene. Figure 3 presents a graphic comparison of the tissue-air values determined for human and rat tissues.

Two tissue samples obtained during liposuction procedures on the same individual, six months apart, were also used for partition coefficient determination. The mean partition coefficients for the \(\text{1}\text{H}\text{\textsubscript{10}}\)-ethylbenzene and \(\text{2}\text{H}\text{\textsubscript{10}}\)-ethylbenzene and \(\text{1}\text{H}\text{\textsubscript{10}}\)-\(\sigma\)-xylene and \(\text{2}\text{H}\text{\textsubscript{10}}\)-\(\sigma\)-xylene determined in these samples (\(N=11\)) [1338 (SE 46), 1451 (SE 57), 1959 (SE 103) 2044 (SE 92), respectively] were lower (\(P<0.05\), t-test) than those determined from other samples (table 2). The liposuction surgery yielded a mixture of adipose tissue with the blood-air partition coefficients were very closely associated with the log tissue-air values \(r^2 = 0.95\) (SE 0.05). An analysis of the values found by Gargas et al (12) showed a similar correlation \(r^2 = 0.94\) for blood-air versus tissue-air, and \(r^2 = 0.80\) for blood-air versus log tissue-air). This relationship was also reflected in the similarity of the slopes (0.024-0.036) and intercepts (2.4-2.5) of the regression lines. Among the measures of chemical polarity, the log octanol-water partition coefficients were the most closely associated with the log tissue-air coefficient \(r^2 = 0.73\) (SE 0.06). In contrast, Fiserova-Bergerova et al (9) examined 11 volatile \(C_5\) hydrocarbons and halogenated hydrocarbons, and found “no reasonable relationship” between the log octanol-water and the adipose tissue-air coefficients without the addition of a dummy constant in the regression equation. Across the parameters tested, the blood-air coefficient was the best predictor of rat and human tissue-air values.

Deuterated blood-air and tissue-air values were lower than nondeuterated values for the most lipophilic substances (styrene, \(m\)-xylene, and \(p\)-xylene). Deuterium substitution in these solvents may thus result in slightly increased volatility, decreased lipophilicity, or both.

Given the finding of interindividual differences for adipose tissue but not for blood, and the range of coefficients of variation of 16-31% for the tissue-air coefficient versus 7.2-11.1% for blood-air coefficients, adi-
pose tissue was found to be a more heterogeneous tissue between subjects. This finding is consistent with the knowledge that, as a fluid, blood is more homogeneous than adipose tissue, which is composed of several cell types (eg, adipocytes, endothelial cells) of varying proportions and of fatty acids with varying degrees of saturation. Interindividual differences in human tissue-air partition coefficients could thus be due to differences in the tissues between individuals, between sites of tissue removal, or both. However, the average tissue-air coefficient of variation for human values was 23%, compared with the value of 16% using F344 rat tissues, suggesting that although intersubject and sampling site differences do contribute, most variability is due to analytic procedures. This conclusion is also supported by the finding of a nonsignificant correlation (r² = 0.051) between the number of individuals sampled and the resulting coefficient of variation (table 2). If interindividual variability had contributed greatly to the average tissue-air value, a closer relationship between these variables would have been expected.

Higher solvent blood-air partition coefficients are associated with a more rapid onset of central nervous system effects, a longer time to reach steady-state blood levels during constant exposure, and a more gradual loss through exhaled air after the cessation of exposure. Based upon results of this study, these effects would be expected in the following order, given exposure at the same concentration: p-xylene > o-xylene = m-xylene > toluene. Higher partition coefficients between adipose tissue and air are associated with deeper anesthesia among anesthetic agents, a longer time to reach adipose tissue steady-state levels during constant exposure, and a more gradual loss from adipose tissue (and therefore from the entire body) after the cessation of exposure. Results found in this study indicate that these effects would be expected in the following order: styrene > o-xylene > p-xylene = m-xylene > ethylbenzene > toluene > benzene.

The determination of partition coefficient information using human blood and adipose tissues is essential to the understanding of solvent toxicokinetics. The close association between the tissue-air values of humans and F344 rats (slope of 1.09 and r² = 0.98) (figure 3), however, indicates similar solvent partitioning characteristics. These observations together provide refinement in the development of models to better predict human risk from organic solvent exposure, while offering assurance that previously used approaches have been useful.

Acknowledgments

We would like to thank the following persons for collecting the human adipose tissue samples: Judy Westby, Vicky Hughes, and surgeons E Patchen Dellinger, Martin Schreiber, W Scott Helton, Mica Sinanan, D Eugene Strandness, Alexander E Clowes, Roger E Moe, David R Byrd, Richard Rand, Carlos A Pellegrini, David Needle, and James D Perkins.

Financial support was provided by the Superfund Basic Research program, NIEHS ES 04696. Funding for G Silvey was provided by a Department of Energy Industrial Hygiene graduate fellowship.

References

1. Engström I, Björström R, Åstrand I, Övrum P. Uptake, distribution and elimination of styrene in man: concentration in subcutaneous adipose tissue. Scand J Work Environ Health 1978;4:315—23.
2. Pierce CH, Tozer TN. Styrene in adipose tissue of nonoccupationally exposed persons. Environ Res 1992;58:230—5.
3. Geyer H, Scheunert I, Rapp K, Gebeufi I, Steinberg C, Kettrup A. The relevance of fat content in toxicity of lipophilic chemicals to terrestrial animals with special reference to dieldrin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Ecotoxicol Environ Saf 1993;28(1):45—60.
4. Tardif R, Laparé S, Kishan K, Brodeur J. Physiologically based modeling of the toxicokinetic interaction between toluene and m-xylene in the rat. Toxicol Appl Pharmacol 1993;120:266—73.
5. Carlsson A, Ljungquist E. Exposure to toluene: concentration in subcutaneous adipose tissue. Scand J Work Environ Health 1982;8:56—62.
6. Nise G, Attwell R, Skerfving S, Örbeke P. Elimination of toluene from venous blood and adipose tissue after occupational exposure. Br J Ind Med 1989;46:407—11.
7. United States Environmental Protection Agency. Archive of human monitoring specimens: disposition to private sector or other governmental party; notice of availability. Fed Regist 1993;58(220):60625—8.
8. Sato A, Nakajima T. Partition coefficients of some aromatic hydrocarbons and ketones in water, blood and oil. Br J Ind Med 1979;36:231—4.
9. Fiserova-Bergerova V, Tichy M, Carlo FJD. Effects of bioavailability on pulmonary uptake and disposition of gases and vapors of lipophilic chemicals. Drug Metab Rev 1984;15(5&6):1033—70.
10. Gilman A, Goodman L, Rall T, Murad F, editors. Goodman and Gilman's the pharmacological basis of therapeutics. 7th edition. New York (NY): Macmillan Publishing Co, 1985.
11. Geyer H, Scheunert I, Rapp K, Kettrup A, Korte F, Grien H, et al. Correlation between acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin and total body fat content in mammals. Toxicology 1990;65(1—2):97—107.
12. Gargas ML, Burgess RJ, Voisard DE, Cason GH, Andersen ME. Partition coefficients of low-molecular-weight volatile chemicals in various liquids and tissues. Toxicol Appl Pharmacol 1989;98:87—99.
13. Ramsey JC, Andersen ME. A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol Appl Pharmacol 1984;73:159—75.
14. Fiserova-Bergerova V, editor. Modeling of inhalation exposure to vapors; uptake, distribution, and elimination; vol II.
Partition coefficient for aromatic solvents

Boca Raton (FL): CRC Press, 1983.
15. Fiserova-Bergerova V, Teisinger J. Pulmonary styrene vapor retention. Ind Med Surg 1965;34(8):620—2.
16. Hetrick D, Jaribek A, Travis C. Sensitivity analysis for physiologically based pharmacokinetic models. J Pharmacokinet Biopharm 1991;19(1):1—20.
17. Sato A, Endoh K, Kaneko T, Johanson G. A simulation study of physiological factors affecting pharmacokinetic behaviour of organic solvent vapours. Br J Ind Med 1991;48:342—7.
18. Clewell H III, Andersen M. Dose, species, and route extrapolation using physiologically based pharmacokinetic models. In: Subcommittee on Pharmacokinetics in Risk Assessment. Pharmacokinetics in risk assessment: workshop proceedings, Washington (DC): National Academy Press, 1987:159—82.
19. Sato A, Nakajima T, Fujwaza Y, Hirosawa K. Pharmacokinetics of benzene and toluene. Int Arch Arbeitsmed 1974;33:169—82.
20. Dills R, Ackerlund W, Kalman D, Morgan M. Blood/air partition coefficient determinations: automation and improvement of the equilibrium partitioning in closed systems method. J Ex Anal Environ Epidemiol 1994;4:229—45.
21. Coward H, Jones G. Limits of flammability of gases and vapors. Washington (DC): Bureau of Mines, 1952.
22. Sherwood R. Ostwald solubility coefficients of some industrially important substances. Br J Ind Med 1976;33:106—7.
23. Lindqvist T. Partition coefficients of blood/air and watert/air for some commonly used solvents. Amsterdam: Excerpta Medica 1978:16—167. International congress series, industrial and environmental xenobiotics, no 440.

Received for publication: 27 February 1995