Monitoring of forage and nutrition before and after reintroduction of banteng (Bos javanicus d’Alton, 1823) to Salakphra Wildlife Sanctuary, Thailand

Rattanawat Chaiyarat1*, Poomate Sakchan1, Gunn Panprayun1, Nikorn Thongthip2,3,4 & Seree Nakbun5

Banteng (Bos javanicus) are susceptible to hunting and habitat destruction. Banteng were successfully reintroduced in Salakphra Wildlife Sanctuary, Thailand. Thus, understanding their adaptation to natural forage species and nutrition is important to enhance the chance for successful reintroduction of the banteng. We studied the adaptation of banteng to natural forages and nutrition before and after the reintroduction in Salakphra Wildlife Sanctuary between November 2015 and November 2017. Four individuals in 2015 and three individuals in 2016 were reintroduced. We analyzed nutritional values before release and after release into the natural habitat. Twenty-four forage species were identified and the ratio of monocots to dicots was 20:80. The highest energy was found in Dalbergia cultrate (17.5 MJ kg⁻¹) in the wet season and Wrightia arborea (19.9 MJ kg⁻¹) in the dry season (p < 0.001). Nutritional values were significantly different among experiments (p < 0.001). Moreover, the macro nutrients including N and Ca in natural forages were the highest in the dry season. In the wet season, micro-nutrients were the highest in dung collected while banteng were in captivity. Our research improves our understanding of how banteng adapt their foraging after release into the wild, helps in evaluation of the reintroduction, and informs adaptive management of the banteng to support the long term survival of the population.

Reintroduction is a program in which animals are translocated to areas inside their historic range where the species has been extirpated1 and their habitat had been designated as a protected area. The role of captive breeding and reintroduction programs has increased dramatically2 since the early 1990s3. In 2013, the International Union for the Conservation of Nature (IUCN) introduced an updated guideline to improve reintroduction success rates4. Such techniques require an understanding of the fundamental ecological requirements and life history of the species concerned5 as well as the identification of appropriate areas for species restoration6. Recently, promising reintroductions of banteng (Bos javanicus) have occurred at the Khao Kheow Open Zoo, Chonburi7 and Salakphra Wildlife Sanctuary8, Thailand.

Banteng, family Bovidae, is globally endangered9, and protected under the Thai Reserved and Protected Animals Act, B.C.256210. Habitat loss, degradation11,12 and human disturbances13,14 have significantly affected banteng and reduced their population, as has commercial hunting15 and disease transmitted by domestic cattle (B. taurus and B. indicus) that still occurs in some protected areas16.

1Wildlife and Plant Research Center, Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand. 2Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand. 3Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand. 4Center of Excellence on Agricultural Biotechnology, Science and Technology Postgraduate Education and Research Department Commission on Higher Education, Ministry of Education (AG-BIO/PERDO-CHE), Nakhon Pathom 73170, Thailand. 5Kho Nampu Nature and Wildlife Education Centre, Department of National Parks, Wildlife and Plant Conservation, Kanchanaburi 71250, Thailand. *email: rattanawat.cha@mahidol.ac.th
Corbett and Hill reported that banteng are distributed in Myanmar, Laos, Vietnam, Cambodia, Borneo, Java, Bali, and Thailand. The global population is estimated at between 5,000 and 8,000 and only 470 was estimated in Thailand at the 1990s, although the population has increased in Thailand's Western Forest Complex. Banteng prefer more open dry deciduous forests and secondary forest formations, and enter tracts of sub-humid forest of Java and Borneo. However, tropical lowland dipterocarp forest is the predominant habitat type in Sabah.

In Salakphra Wildlife Sanctuary, banteng were locally extinct. In 2015, the first group (two males and two females) was reintroduced during the dry season, while the second group (two males and one female) was reintroduced in the wet season of 2016. The food selection and physiology of banteng can be altered after reintroduction into a new environment, especially by the change of diet to natural foraging. It is important to understand the health status of the population by studying forage species and nutrition of both macro nutrients and micro nutrients as a measure of the success for the program.

Knowledge about adaptive feeding in the natural habitat is important for supporting the long-term conservation of reintroduced banteng. Therefore, monitoring forage species and nutrition in both captivity and their natural habitat will help to understand the forage selection and nutritional requirements of the banteng population for future reintroduction efforts in the other areas. The purpose of our research was to monitor the nutrition in the sera, forages, and dung of banteng to assess the overall success rate of reintroduction and promote the conservation of this endangered bovid.

Materials and methods

Sample collection. All samples were taken from Salakphra Wildlife Sanctuary with the permission from the Department of National Parks, Wildlife and Plant Conservation (DNP), the approval number DNP 0907.4/4411. A research ethics statement was granted by the Mahidol University-Institute Animal Care and Use Committee (MU-IACUC 2016/026).

Salakphra Wildlife Sanctuary (14°8′37.09″N, 99°20′33.51″E, area: ~ 860 km²) is located in Mueang, Bo Phloi, Si Sawat and Nong Prue district, Kanchanaburi province, Thailand (Fig. 1). ArcView V.12 and WEFCOM’s topographic data were used to generate the study area map. The height above sea level is between 700 and 1,000 m. The average rainfall is 1,071 mm year⁻¹ with an average temperature of 28 °C. The vegetation cover is mixed deciduous forest (60%), dry dipterocarp forest (30%), and disturbed areas (10%). The dominant species in the habitat area are Lagerstroemia tomentosa, Terminalia alata, T. triptera, T. bellirica, and Afzelia xylocarpa.

Systematic reintroduction of banteng. Data were collected as previously protocols described in Chaiyarat et al. as methods and protocols from Chaiyarat et al. (2019) for systematic reintroduction of bateng (Bos javanicus) V.2.
Training of the banteng before reintroduction. During their time in captivity, the banteng underwent general medical checkups and received minimal human contact. Seven captive-purebred banteng were kept in a 302 ha enclosure. Four adult males and three adult females between five and seven years old were trained to be habituated with transportation boxes (1 m × 2.5 m × 1.8 m, width × long × high) individually in a 0.2 ha cage for six months at the Khao Nampu Nature and Wildlife Education Center for eight months before being translocated into a soft release cage at Salakphra Wildlife Sanctuary, for four months before release. In soft release cage, they were kept in groups prior to release. In captivity, the captive-breeds banteng were provided with *Zea mays* Linn., *Hymenachne pseudointerrupta* C. Muell., *Hewittia malabarica* (L.) Suresh., *Trichosanthes cucumerina* L., fresh water and artificial salt licks. While in the training cage, the captive-breeding banteng were fed a diet composed of the natural plants that were found in the cage. After reintroduction, the natural food plants and salt-licks were the main nutritional resources of the reintroduced banteng that may influence the body condition scoring and physiological states of the animals.

Systematic reintroduction of banteng. All banteng were immobilized with anesthetic drugs: (1) Thiadental Oxalate 0.015 mg kg⁻¹ (Thiafentil, Wildlife Pharmaceuticals (Pty) Ltd., South Africa) and (2) Medetomidine HCl 0.015 mg kg⁻¹ (Kyron Laboratories (Pty) Ltd., South Africa); and reversal drugs: (1) Naltrexone 30 times of Thiadental Oxalate (Thianil, Wildlife Pharmaceuticals (Pty) Ltd., South Africa) and (2) Atipamizole HCl 5 times of Medetomidine HCl (Kyron Laboratories (Pty) Ltd., South Africa), ATIPAM (Eurovet Animal Health, the Netherlands) by veterinarians of DNP and The Zoological Park Organization under the Royal Patronage of His Majesty the King (ZPO) and fitted with radio collars (<3% of body weight, very high frequency (VHF) transmitter; Advanced Telemetry Systems (ATS), Isanti, MN) using standard capture and marking practices prior to transport to Salakphra Wildlife Sanctuary. Radio collar signals were tested in the soft release cage before the banteng were reintroduced. First, collar signals were examined for one week after reintroduction to reduce the bias when the banteng were initially released to their new habitat. The radio collared banteng were monitored periodically every 4 weeks ground tracking, using homing in and triangulation techniques via VHF signals. As described in Chaiyarat et al., four individuals of captive-bred banteng were reintroduced in December 2015 (dry season is between November and April) and the other three individuals were reintroduced in July 2016 (wet season between May and October) for six-month gap chosen in part to reduce the potential risk of losing reintroduced banteng.

Samples from forage species (*Zea Mays* L. and *Broussonetia papyrifera* (L.) L’ Hér. ex Vent.) and salt lick blocks were collected from the banteng diet during captivity in 2016. Natural forage species were collected for fecal analysis. Thirty dung samples per season were collected (100 g sample⁻¹) after the banteng were reintroduced into their natural habitat. Samples were boiled with tap water for 30 min, followed by the addition of concentrated NHO₃ (90%) and boiled for another 10 min. After boiling, the samples were drained and the extracts adjusted with tap water to have a volume of 50 ml. Five drops of Xylene were added to preserved the extracts. Ten pieces of forage in each sample were examined using a 40X lens under a light-microscope. Photos of all samples were taken and compared with references slides in both wet and dry seasons.

The sera of three banteng (20 ml per individual) were collected by veterinarians of DNP and ZPO during immobilization before being translocated into the training cage in 2016. The sera were kept at room temperate (25°C) for 24 h before centrifuged. Sera were centrifuged at 3,000 rpm for 15 min and stored in eppendorf tubes 1.5 ml) at -20°C before being analyzed.

The dung of three banteng was collected in an encroacher (30 dung samples) and in the natural forest after release (30 dung samples per season) in 2016. Dung was aliquoted into 30 g samples and dried in a hot air oven at 60°C for 24 h. The samples were ground in a Wiley mill and filtered using a 0.05–0.1 mm sieve.

Nutritional analysis. Seras, dungs, forage and salt-lick blocks were analyzed according to the guidelines of the Food and Agriculture Organization of the United Nations (FAO). Samples were analysed by placing 2 g aliquots into a Kjeldal flask along with 0.1 g of CuSO₄ and 2 g of NaSO₄. Then, 25 g of concentrated sulfuric acid was added and shaken. The samples were digested using a temperature gradient starting at 50°C and rising to 400°C. Samples were digested until the color of the digest was bright and clear. After digestion, 15 ml of deionized water and 50 ml of 40% NaOH was mixed in a receiving flask with 25 ml of 4% boric acid. added 4 drop of indicator until the color of solvent was bright pink. Solvent was titrated with 0.1 N HCl until sovent changed color from green to middle purple and doing the blank of sample.

Ascorbic Acidemolybdate method was used to analyse P in seraus, dungs, and forages. Samples weighing 2.0 g were placed in a 125 ml Erlenmeyer flask with 10 ml of HNO₃ and 5 ml of HClO₄. Samples were digested on a hot plate until the color of the solution was bright and clear. After cooling to room temperature, the volume of the solution was increased to 50 ml using deionized water. The solution was passed through a no. 42 filter into a 100 ml volumetric flask, shaken and waited. A 1 ml aliquot of sample extract was mixed with 5 ml of vanadomolybdate, shaken and kept at 25°C for 20 min. The optical density of the resulting solution was measured at 420 nm by UV–Spectrophotometer. The concentration of P in samples was calculated by comparison with standard solutions.

Atomic Absorption Spectroscopy (AAS) was used to analyse K and Ca in seraus, dungs, and forages. Samples weighing 2 g were placed in a 200 ml Erlenmeyer flask with 10 ml of HNO₃ and 5 ml of HClO₄. Samples were digested on hot plate until the color of the digest was bright and clear, the cooled to room temperature. Digests were filtered using no. 42 filter paper and kept in 25 ml volumetric flasksuntill assayed by Atomic Absorption Spectroscopy (AAS). Standard solutions of potassium at concentration 0, 2, 4, 6, 8 and 10 ppm were prepared. Measurements of potassium by Flame-Atomic Absorption Spectroscopy (FAAS) were performed at the Salaya Central Instrument Facility (SCIF), Mahidol University.
Micro nutrients, Fe, Cu, and Zn were measured by Graphite-Atomic Absorption Spectroscopy (GAAS). Sample aliquots weighing 0.5 g were placed in a 75 ml Erlenmeyer flask with 5 ml of HNO₃:HClO₄ (2:1). The sample was digested on hot plate for 3 h and cooled to room temperature, filtered using Whatmann paper No. 42, and adjusted to a total volume of 25 ml with deionized water. The concentrations of Fe, Cu, and Zn were determined using GAAS at the SCIF, Mahidol University.

Statistical analysis. Mineral compositions of seras, dung samples, and forage species before and after reintroduction were compared using one-way ANOVA. Chi-square test was used to compare the significant differences among forage species between the wet and dry seasons. All significant differences are reported at p < 0.05 by using Statistical Product and Service Solutions (SPSS).

Results

Nutrition in captivity. Before the reintroduction of banteng into their natural habitat, banteng received macro- and micro-nutrition from two forage species (Zea mays L. and Broussonetia papyrifera (L.) L' Hér. ex Vent.) supplemented with an artificial salt lick block. The forage species in the captivity contained higher amounts of macronutrients (K, Ca, and P) and micronutrients (Cu, Zn, and Fe) in the wet season than in the dry season (p < 0.05), while N levels were not significantly different (Table 1). The supplementary artificial salt lick blocks contained higher levels of Fe and Ca than in forage species (p < 0.05), while other nutritional values were similar or lower than in the forage species (Table 1).

After identifying the mineral content in sera (Table 1) and dung samples (Table 2), most of mineral concentrations in the dungs were higher than in the sera (p < 0.05) except for K which was not significantly different. When comparing values in dung between wet and dry seasons, N was higher in the dry season (p < 0.05), while Cu, Zn, and Fe in were higher in wet season (p < 0.05), and other nutrients were not significantly different (Table 1).

Minerals (mg g⁻¹, n = 3)	Wet	Dry	F	df	p-value
N	2.06 ± 0.00	2.06 ± 0.00	0.2	1, 5	0.67**
Sera	1.03 ± 0.10		479.6	2, 8	0.001***
Artificial salt-lick block	0.01 ± 0.00	N/A			
P	0.03 ± 0.00	< 0.01 ± 0.00	441	1, 5	0.001***
Sera	0.02 ± 0.00		36.3	2, 8	0.001***
Artificial salt-lick block	< 0.01 ± 0.01	N/A			
K	0.97 ± 0.07	0.08 ± 0.01	490.4	1, 5	0.001***
Sera	0.03 ± 0.00		43.4	2, 8	0.001***
Artificial salt-lick block	0.01 ± 0.00	N/A			
Ca	0.51 ± 0.02	0.38 ± 0.03	44.4	1, 5	0.003**
Sera	0.01 ± 0.00		3.5	2, 8	0.09**
Artificial salt-lick block	0.73 ± 0.17	N/A			
Cu	< 0.01 ± 0.00	< 0.01 ± 0.00	90.3	1, 5	0.001***
Sera	< 0.01 ± 0.00		N/A	2, 8	N/A
Artificial salt-lick block	< 0.01 ± 0.00	N/A			
Zn	< 0.01 ± 0.00	< 0.01 ± 0.00	43.1	1, 5	0.003**
Sera	< 0.01 ± 0.00		13	2, 8	0.007**
Artificial salt-lick block	< 0.01 ± 0.00	N/A			
Fe	0.06 ± 0.00	0.02 ± 0.01	60.4	1, 5	0.001***
Sera	< 0.01 ± 0.00		1,147	2, 8	0.001***
Artificial salt-lick block	0.31 ± 0.02	N/A			

Table 1. Mineral compositions in banteng forages, artificial salt-lick blocks and seras in the breeding cage of Khao Nam Phu Natural and Wildlife Study Center, Thailand. Sera were analysed before reintroduction, Artificial salt-lick blocks were used at the same company, significantly different *p < 0.05; **p < 0.01; ***p < 0.001; ns not significantly; N/A not analyse.
Forage species of reintroduced banteng. From field surveys, a total of 74 species were found in both mixed deciduous forest and seasonal dipterocarp forest (Supplementary Table S1). After reintroduction, a total of 24 forage species were found in dung samples. Seventeen of those species were present during the wet season and 21 species were present in the dry season. Five species (20.9%) were monocots and 19 species (79.1%) were dicots (Table 2 and Fig. 2).

Mineral (mg g⁻¹)	Wet	Dry	F	df	p-value
Dung (n = 9)					
Breeding cage	1.77 ± 0.16	2.01 ± 0.11	13.5	1, 17	0.002**
Natural habitat	1.19 ± 0.14	1.68 ± 0.11	72.2	1, 17	0.001***
Forage					
Natural habitat	2.72 ± 0.86	2.85 ± 0.61	0.67	1, 92	0.41**
P (n = 9)					
Breeding cage	0.04 ± 0.01	0.04 ± 0.01	0.0	1, 17	0.86**
Natural habitat	0.03 ± 0.01	0.03 ± 0.01	0.8	1, 17	0.37**
Forage					
Natural habitat	0.03 ± 0.02	0.02 ± 0.01	9.40	1, 92	0.003**
K (n = 9)					
Breeding cage	0.08 ± 0.01	0.09 ± 0.03	2.5	1, 17	0.13**
Natural habitat	0.61 ± 0.20	1.45 ± 0.41	30.3	1, 17	0.001***
Forage					
Natural habitat	1.90 ± 1.02	1.16 ± 0.31	20.30	1, 92	0.000***
Ca (n = 9)					
Breeding cage	0.33 ± 0.16	0.24 ± 0.10	2.3	1, 17	0.14**
Natural habitat	0.81 ± 0.24	0.86 ± 0.29	0.2	1, 17	0.69**
Forage					
Natural habitat	0.93 ± 0.75	1.00 ± 0.74	0.24	1, 92	0.62**
Cu (n = 9)					
Breeding cage	<0.01 ± 0.00	<0.01 ± 0.00	12.9	1, 17	0.002**
Natural habitat	<0.01 ± 0.00	<0.01 ± 0.00	4.4	1, 17	0.05**
Forage					
Natural habitat	<0.01 ± 0.00	<0.01 ± 0.00	5.50	1, 92	0.02*
Zn (n = 9)					
Breeding cage	<0.01 ± 0.00	<0.01 ± 0.00	56.5	1, 17	0.001***
Natural habitat	<0.01 ± 0.00	<0.01 ± 0.00	2.0	1, 17	0.17**
Forage					
Natural habitat	<0.01 ± 0.00	<0.01 ± 0.00	26.42	1, 92	0.000***
Fe (n = 9)					
Breeding cage	0.39 ± 0.14	0.16 ± 0.04	20.7	1, 17	0.001***
Natural habitat	0.09 ± 0.03	0.16 ± 0.06	10.0	1, 17	0.006**
Forage					
Natural habitat	0.03 ± 0.02	0.01 ± 0.00	23.51	1, 92	0.000***

Table 2. Mineral compositions in bantengs’ dungs in the breeding cage of Khao Nam Phu Natural and Wildlife Study Center, and dungs and forages in natural habitat of Salakpra Wildlife Sanctuary, Thailand. Forage in wet and dry season: n = 51 and 42 respectively, significantly different *p < 0.05; **p < 0.01; ***p < 0.001; ns not significantly.
Grasses were significantly higher in banteng dung in wet season than dry season \((p < 0.05)\), while perennial plants and shrubs were significantly higher in dry season than wet season \((p < 0.05)\) (Fig. 2). The highest relative frequency of perennial plants were *Diospyros rhodocalyx* Kurz., *Dalbergia cultrate* Graham ex Benth, *Millettia*
Family	Scientific name	Parameter	Wet	Dry	χ^2	df	p-value
Apocynaceae	Wrightia arborea (Dunnst.) Mabberly	RF	N/A	N/A	N/A	N/A	
		Energy	3,972.0 ± 22.5				
			4,763.9 ± 24.8				
			N/A	0.415**			
Caesalpinioideae	Bauhinia pottii G. Don var. decipiens (Crabbe) K. Larsen & S. S. Larsen	RF	0.87	N/A	0.66	2	0.415**
		Energy	4,177.9 ± 10.2				
			4,137.4 ± 92.3				
			N/A	0.291**			
	Bauhinia saccocalyx Pierre	RF	3.04	1.67	1.11	11	0.291**
		Energy	4,195.3 ± 10.3				
			4,326.4 ± 21.5				
			N/A	0.002**			
	Dalbergia cultrate Graham ex Benth	RF	8.24	17.72	9.79	71	0.002**
		Energy	4,648.7 ± 22.6				
			4,177.6 ± 19.8				
			N/A	N/A			
Convolvulaceae	Hewittia malabarica (L.) Suresh	RF	2.60	2.68	0.002	13	0.967**
		Energy	4,056.9 ± 39.5				
			N/A	N/A			
Cucurbitaceae	Trichosanthes cucumerina L.	RF	N/A	1.01	2.31	2	0.129**
		Energy	3,753.5 ± 7.4				
			3,618.6 ± 15.8				
			N/A	N/A			
Ebenaceae	Diospyros rhodcalyx Kurz	RF	4.35	34.45	73.68	115	N/A
		Energy	4,084.9 ± 38.8				
			4,335.0 ± 27.6				
			N/A	N/A			
Leguminosae	Dendrolobium lanceolatum (Dunn.) Schindl	RF	1.31	7.67	11.28	25	0.01**
		Energy	4,071.4 ± 40.5				
			4,272.4 ± 2.0				
			N/A	N/A			
Malvaceae	Abutilon indicum (L.) Sweet.†	RF	N/A	N/A	N/A	N/A	
		Energy	3,643.9 ± 18.8				
			3,904.0 ± 114.2				
			N/A	N/A			
Moraceae	Broussonetia papyrifera (L.) L’Hér. ex Vent.†	RF	N/A	N/A	N/A	N/A	
		Energy	3,635.4 ± 28.6				
			2,832.6 ± 24.3				
			N/A	N/A			
Moraceae	Streblus asper Lour.	RF	4.79	0.72	20	0.397**	
		Energy	3,344.3 ± 31.0				
			3,272.7 ± 61.2				
			N/A	N/A			
Poaceae	Hymenachne pseudointerrupta C. Muell	RF	19.99	58.97	47	N/A	
		Energy	3,508.9 ± 24.7				
			3,994.0 ± 114.2				
			N/A	N/A			
Poaceae	Poaceae	RF	2.60	2.68	6.22	7	0.013*
		Energy	3,581.9 ± 234.9				
			4,070.4 ± 13.3				
			N/A	N/A			
Poaceae	Zea mays L.†	RF	N/A	N/A	N/A	N/A	
		Energy	3,933.0 ± 109.0				
			3,983.6 ± 30.0				
			N/A	N/A			
Simaroubaceae	Harrisonia perforata (Blanco) Merr	RF	N/A	3.35	12.63	15	0.000***
		Energy	4,255.6 ± 39.5				
			4,372.7 ± 11.0				
			N/A	N/A			
Unknown sp. 1	RF	4.79	0.34	11.62	11	0.001***	
	Energy	N/A	N/A	N/A	N/A	N/A	
Unknown sp. 2	RF	13.91	1.01	35.13	34	0.000***	
	Energy	N/A	N/A	N/A	N/A	N/A	
Unknown sp. 3	RF	3.04	0.34	6.42	7	0.011*	
	Energy	N/A	N/A	N/A	N/A	N/A	
Unknown sp. 4	RF	4.35	2.00	2.45	15	0.118**	
	Energy	N/A	N/A	N/A	N/A	N/A	
Unknown sp. 5	RF	0.44	N/A	1.30	0	0.253**	
	Energy	N/A	N/A	N/A	N/A	N/A	
Unknown sp. 6	RF	1.33	0.34	1.64	3	0.201**	
	Energy	N/A	N/A	N/A	N/A	N/A	
Unknown sp. 7	RF	N/A	1.01	2.31	2	0.129**	
	Energy	N/A	N/A	N/A	N/A	N/A	
Unknown sp. 8	RF	N/A	1.33	3.08	3	0.079**	
	Energy	N/A	N/A	N/A	N/A	N/A	
Unknown sp. 9	RF	N/A	3.01	7.01	8	0.008**	
	Energy	N/A	N/A	N/A	N/A	N/A	
Unknown sp. 10	RF	N/A	2.00	4.64	5	0.031*	
	Energy	N/A	N/A	N/A	N/A	N/A	

Table 3. Relative frequency (RF, %) in banteng dung in natural habitat of Salakpra Wildlife Sanctuary, and energy content (MJ kg$^{-1}$) in forages in both breeding cage and natural habitat, Thailand. † Forage in breeding cage, different letters in energy indicated that F-tests were significantly different = $p < 0.05$, significantly different $* p < 0.05; ** p < 0.01; *** p < 0.001; ns not significantly; N/A not analyse due to they were not found in the dung samples.
Mineral (mg l⁻¹, n=3)

Mineral	Wet	Dry	df	F	p-value
N	Breeding cage				
Sera	1.02 ± 0.09 ⁰	9, 146 20.1 0.001***			
Artificial saltlick	0.01 ± 0.00 ⁰				
Forage	2.06 ± 0.00 ⁻⁴	2.06 ± 0.00 ⁻⁴			
Dung	1.77 ± 0.16 ⁻²	2.01 ± 0.11 ⁻²			
Natural habitat					
Forage	2.72 ± 0.86 ⁻⁴	2.85 ± 0.61 ⁻⁴			
Dung	1.19 ± 0.14 ⁻⁰	1.68 ± 0.11 ⁻⁰			
P	Breeding cage				
Sera	0.02 ± 0.00 ⁻⁰	9, 146 5.11 0.001***			
Artificial saltlick	< 0.01 ± 0.00 ⁻⁰				
Forage	0.03 ± 0.00 ⁻⁴	<0.01 ± 0.00 ⁻⁴			
Dung	0.04 ± 0.01 ⁻¹	0.04 ± 0.01 ⁻¹			
Natural habitat					
Forage	0.03 ± 0.02 ⁻⁰	0.02 ± 0.01 ⁻⁰			
Dung	0.03 ± 0.01 ⁻⁰	0.03 ± 0.01 ⁻⁰			
K	Breeding cage				
Sera	0.03 ± 0.00 ⁻⁰	9, 146 18.5 0.001***			
Artificial saltlick	0.01 ± 0.00 ⁻⁰				
Forage	0.97 ± 0.07 ⁻⁴	0.08 ± 0.01 ⁻¹			
Dung	0.08 ± 0.01 ⁻¹	0.09 ± 0.03 ⁻¹			
Natural habitat					
Forage	1.90 ± 1.02 ⁻¹	1.16 ± 0.31 ⁻²			
Dung	0.61 ± 0.20 ⁻⁰	1.45 ± 0.41 ⁻¹			
Ca	Breeding cage				
Sera	0.01 ± 0.00 ⁻⁰	9, 146 4.01 0.001***			
Artificial saltlick	0.73 ± 0.17 ⁻⁴				
Forage	0.51 ± 0.02 ⁻⁴	0.38 ± 0.03 ⁻⁴			
Dung	0.33 ± 0.16 ⁻⁴	0.24 ± 0.10 ⁻⁴			
Natural habitat					
Forage	0.93 ± 0.75 ⁻⁰	1.00 ± 0.73 ⁻³			
Dung	0.81 ± 0.24 ⁻⁰	0.86 ± 0.29 ⁻⁰			
Cu	Breeding cage				
Sera	< 0.01 ± 0.00 ⁻⁰	9, 146 41.7 0.001***			
Artificial saltlick	< 0.01 ± 0.00 ⁻⁰				
Forage	< 0.01 ± 0.00 ⁻⁴	<0.01 ± 0.00 ⁻⁴			
Dung	< 0.01 ± 0.00 ⁻⁰	<0.01 ± 0.00 ⁻⁰			
Natural habitat					
Forage	< 0.01 ± 0.00 ⁻⁴	<0.01 ± 0.00 ⁻⁴			
Dung	< 0.01 ± 0.00 ⁻⁰	<0.01 ± 0.00 ⁻⁰			
Zn	Breeding cage				
Sera	< 0.01 ± 0.00 ⁻⁰	9, 146 22.4 0.001***			
Artificial saltlick	< 0.01 ± 0.00 ⁻⁰				
Forage	< 0.01 ± 0.00 ⁻⁴	<0.01 ± 0.00 ⁻⁴			
Dung	< 0.01 ± 0.00 ⁻⁰	<0.01 ± 0.00 ⁻⁰			
Natural habitat					
Forage	< 0.01 ± 0.00 ⁻⁴	<0.01 ± 0.00 ⁻⁴			
Dung	< 0.01 ± 0.00 ⁻⁰	<0.01 ± 0.00 ⁻⁰			
Fe	Continued				
banteng in the natural habitat. The number of forage species varies depending on forest types, vegetation diversity and distribution, precipitation, seasonal variation, and soil types. Natural salt-licks are also present in the habitat areas and provide supplemental nutrition when high quality forages are in short supply.

Discussion

The results showed that mineral values in seras, dungs, and forages are reliable indices of diet quality before and after reintroduction of balateng. The sera mineral values, such as K, Ca, P, Fe, Cu, and Zn, were higher than the requirement values recommended for domestic cows, but less than the normal values measured in the domestic cows of Thailand. This information can be used to improve the food quality of balateng in captivity. For balateng in captivity, dietary minerals were supplemented using artificial salt-lick blocks. But these salt-lick mineral contents, such as K, Ca, Cu, Zn, and Fe, were lower than the artificial salt-licks used by elephants in Salakphra Wildlife Sanctuary, Kanchanaburi province and Kui Buri National Park, Prachuap Khiri Khan province. Natural salt-licks are also present in the habitat areas and provide supplemental nutrition when high quality forages are in short supply.

Table 4. Nutritional values of minerals in forages, dungs, and seras of reintroduced banteng in enclosure and natural habitat before and after reintroduction in Salakphra Wildlife Sanctuary, Thailand. Sera were analysed before reintroduction, Artificial salt-lick blocks were used at the same company, different letters in each mineral indicated that F-tests were significantly different (*p < 0.05; **p < 0.01; ***p < 0.001, same of alphabet was not significantly different.}

Table 4. Nutritional values of minerals in forages, dungs, and seras of reintroduced banteng in enclosure and natural habitat before and after reintroduction in Salakphra Wildlife Sanctuary, Thailand. Sera were analysed before reintroduction, Artificial salt-lick blocks were used at the same company, different letters in each mineral indicated that F-tests were significantly different (*p < 0.05; **p < 0.01; ***p < 0.001, same of alphabet was not significantly different.}

Mineral (mg l⁻¹, n = 3)	Wet	Dry	df	F	p-value
Breeding cage					
Sera	<0.01 ± 0.00*		9, 146	100	0.001***
Artificial saltlick	0.31 ± 0.02*				
Forage	0.06 ± 0.00*	0.02 ± 0.01*	2	5, 9	0.027*
Dung	0.39 ± 0.14*	0.16 ± 0.04*	2	5, 9	0.018*
Natural habitat					
Forage	0.03 ± 0.02*	0.01 ± 0.00*	2	5, 9	0.027*
Dung	0.09 ± 0.03*	0.16 ± 0.06*	2	5, 9	0.018*

Nutrition in forage species and dung of reintroduced banteng. Many of the minerals in the forage species such as P (F = 9.40, df = 1, 92, p < 0.01), K (F = 20.20, df = 1, 92, p < 0.001), Cu (F = 5.50, df = 1, 92, p < 0.05), Zn (F = 26.42, df = 1, 92, p < 0.001) and Fe (F = 23.51, df = 1, 92, p < 0.001) were significantly different between wet and dry seasons, while N and Ca were not significantly different (p > 0.05) (Table 4).

The nutritional content in dungs of reintroduced balateng as N (F = 72.23, df = 1, 17, p < 0.001), K (F = 30.30, df = 1, 17, p < 0.001) and Fe (F = 10.02, df = 1, 17, p < 0.01) were significantly different between wet and dry seasons, while P, Ca, Cu, and Zn were not significantly different (p > 0.001) (Table 4).

Energy in forage species of banteng. In captivity, energy contained in Zea mays L. and Broussonetia papyrifera (L.) L’Hérit. ex Vent. were not significantly different between wet and dry seasons (Table 3). This was also true in the natural forage species (p > 0.05). After reintroduction, balateng had a better opportunity to select among many forage species. In wet season, Diospyros rhodocalyx Kurz., Dalbergia cultrata Graham ex Benth, Harrisonia perforate (Blanco) Merr., Bauhinia pottsii G. Don var. decipiens (Crab) K. Larsen & S. S. Larsen, Family Poaceae, Bauhinia saccocalyx Pierre., Hewittia malabarica (L.) Suresh., Millettia brandisiana Kurz., Dendrolobium lanceolatum (Dunn.) Schindl. contained higher energy than forage species in captivity (Table 3).

In dry season, Diospyros rhodocalyx Kurz., Hyrsostachys siamensis Gamble, Dalbergia cultrata Graham ex Benth, Harrisonia perforate (Blanco) Merr., Abutilon indicum (L.) Sweet., Bauhinia pottsii G. Don var. decipiens (Crab) K. Larsen & S. S. Larsen, Sida acuta Burm. F., Bauhinia saccocalyx Pierre., Millettia brandisiana Kurz., Dendrolobium lanceolatum (Dunn.) Schindl. and Wrightia arborea (Dennst.) Mabb. contained higher energy than forage species in captivity (Table 3).

After reintroduction in Salakphra Wildlife Sanctuary, the number of forage species and nutrition quality in forages, dungs, and seras were significantly different from those in the domestic cows in the other regions. This may be influenced by the differences in diet quality and quantity supply related to the habitat. For reintroduced balateng, the ratio between dicotyledons and monocotyledons species eaten by balateng (3.8:1) after reintroduction was lower than the ratios of serow (Capricornis sumatraensis) in Phu Khieo Wildlife Sanctuary (49:1) and gaur in Khlong Pla Kang Buffer Zone of KhaoYai National Park (4.4:1) in the Khao Khaeng Wildlife Sanctuary and Chaiyarat et al. in the Khao Khaeng—Khao Chomphu Wildlife Sanctuary. Moreover, the characteristics of topography between Huai Kha Khaeng Wildlife Sanctuary and Salakphra Wildlife Sanctuary were similar as they both contained mixed deciduous forest and seasonal dipterocarp forest.
Nitrogen content in plants did not change between seasons which may be because the plant cells in dry season contained higher water content than wet season which affected the total N or crude protein. Therefore, the N of banteng dung in the breeding cage and natural habitat in both dry and wet seasons was not different. For minerals, such as P, K, Ca, Cu, Zn, and Fe, values in wet season forages were higher than in dry season. Shukla and I Khare reported that gaur (Bos gaurus) and other domestic ungulates hardly discriminated between low and high food quality during severe seasons. They browsed on severe forage species during dry season as green grasses and herbaceous resources dry up. Furthermore, the highest energy in forages was Dalbergia cilarut Graham ex Benth in wet season and Wrightia arborea (Dennst.) Mabb. in dry season, respectively. This places these species and other similar plants as desirable in terms of abundance of forages in natural sources.

This study found that mineral compositions in natural forage species after reintroduction were higher than the diet before reintroduction. This result indicates that the long term survival of banteng after reintroduction depends on a suitable habitat. Protection of forages that provide quality nutrition can support the reintroduction program and ensure the sustainability of the reintroduced population.

Received: 14 January 2020; Accepted: 17 June 2020
Published online: 07 July 2020

References

1. Conant, S. Saving endangered species by translocation. Bioscience 38, 254–257 (1988).
2. Robert, A. et al. Defining reintroduction success using IUCN criteria for threatened species: a demographic assessment. Anim. Conserv. 18, 397–406 (2015).
3. Seddon, P. J. et al. Developing the science of reintroduction biology. Conserv. Biol. 21, 303–312 (2007).
4. IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0 (IUCN Species Survival Commission, 2013).
5. Sutherland, W. J. et al. Standards for documenting and monitoring bird reintroduction projects. Conserv. Lett. 3, 229–235 (2010).
6. Shugart, H. H. et al. Detection of vegetation change using NDVI Glob. Chang. Biol. 7, 247–252 (2001).
7. Chaiyarat, R., Saengpong, S., Tunwattana, W. & Dunriddach, P. Habitat and food utilization by banteng (Bos javanicus d’Alton, 1823) accidentally introduced into the Khao Khieo - Khao Chomphu Wildlife Sanctuary, Thailand. Mammal 82(1), 23–34 (2018).
8. Chaiyarat, R., Youngpoy, N., Kongsurakan, P. & Nakbun, S. Habitat preferences of reintroduced banteng (Bos javanicus d’Alton, 1823) into the Salakphra Wildlife Sanctuary, Thailand. Wildl. Res. 46(7), 573–586 (2019).
9. Gardner, P. C., Hedges, S., Pudyatmoko, S., Gray, T. N. E. & Timmins, R. Bos javanicus. The IUCN Red List of Threatened Species T2888A46362970. https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T2888A46362970.en (2018).
10. Royal Thai Government Gazette, 2019. Wildlife Preservation and Protection Act, B.E.2562 (2019) of Thailand www.ratchakitcha.soc.go.th (2019, In Thai).
11. Srikosamatara, S. Density and biomass of large herbivores and other mammals in a dry-tropical forest, western Thailand. J. Trop. Ecol. 9, 33–43 (1993).
12. Prayurasidhi, T. The Ecological Separation of Gaur (Bos gaurus) and Banteng (Bos javanicus) in Huai Kha Khaeng Wildlife Sanctuary, Thailand. Ph.D. Dissertation, University of Minnesota (1997).
13. Gardner, P. C. The Natural History, Non-invasive Sampling, Activity Patterns and Population Genetic Structure of the Bornean Banteng Bos javanicus lowi in Sabah, Malaysian Borneo. Ph.D. Thesis, Cardiff University (2014).
14. Srikosamatara, S. & Suteethorn, V. Populations of gaur and banteng and their management in Thailand. Nat. Hist. Bull. SIAM Soc. 43, 55–83 (1995).
15. Chaiyarat, R. & Srikosamatara, S. Populations of domesticated cattle and buffalo in the Western Forest Complex of Thailand and their possible impacts on the wildlife community. J. Environ. Manag. 90(3), 1448–1453 (2009).
16. Corbett, G. B. & Hill, J. E. The Mammals of the Indomalayan Region: A Systematic Review Natural History Museum Publications (Oxford University Press, Oxford, 1992).
17. Pudyatmoko, S. Does the banteng (Bos javanicus) have a future in Java? Challenges of the conservation of a large herbivore in a densely populated island (The 3rd IUCN World Conservation Congress, IUCN 2004).
18. Trisurat, Y., Pattanavibool, A., Gale, G. A. & Reed, D. H. Improving the viability of large-mammal populations by using habitat and landscape models to focus conservation planning. Wildl. Res. 37(5), 401–412 (2010).
19. Wharton, C. H. Man, fire and wild cattle in Southeast Asia. In Tall Timbers Fire Ecology Conference Proceedings, Vol. 8, 107–167 (1968).
20. Gardner, P. C. et al. Banteng Bos javanicus. In Ecology, Evolution and Behaviour of Wild Cattle: Implications for Conservation (eds Melletti, M. & Burton, I.) (Cambridge University Press, Oxford, 2014).
21. CICIM, Curriculum and Instructional Materials Center https://www.okca-reeretech.org/ed-cators/cimc/free-samples/agcluster/pdffiles/ag2student.pdf (2015).
22. ESRI. ESRI Data & Maps 2006 www.esri.com/index.html (2007).
23. WECOM (Western Forest Complex). GIS Database and Its Applications for Ecosystem Management, Bangkok (Department of National Park, Wildlife, and Plant Conservation, Kanchanaburi, 2004).
24. Salakphra Wildlife Sanctuary. Master plan of Salakphra Wildlife Sanctuary BC 2554–2558, Kanchanaburi Province (Areas Regional Office 3 (Ban Pong), Department of National Park, Kanchanaburi, 2011).
25. Chaiyarat, R., Youngpoy, N., Kongsurakan, P. & Nakbun, S. Methods and protocols from Chaiyarat et al. (2019) for systematic reintroduction of banteng (Bos javanicus) V.2. Protocols.io. https://doi.org/10.17504/protocols.io.ba82kzhx (2020).
26. Kongsurakan, P., Chaiyarat, R., Nambun, S., Thonghin, N. & Anuracpreeda, P. Monitoring body condition score of reintroduced banteng (Bos javanicus D’Alton, 1923) into Salakphra Wildlife Sanctuary, Thailand. PeerJ, 8, e9041. https://doi.org/10.7717/peerj.9041 (2020).
27. Prakophon, N. Behaviour of Banteng (Bos javanicus) in Chiang Mai Zoo Chiangwat Chiang Mai and Khoa Khew Open Zoo Chiangwat Chomburi. M.S. Thesis, Chiang Mai University (1988).
28. Sankar, K. et al. Home range, habitat use and food habits of re-introduced gaur (Bos gaurus gaurus) in Bandhavgarh Tiger Reserve, Central India. Trop. Conserv. Sci. 6(1), 50–69 (2013).
29. Polkareel, S. S., Seshagiri, P. B. & Sukumar, R. Assessment of season-dependent body condition scores in relation to faecal gluco-corticoid metabolites in free-ranging Asian elephants. Conserv. Physiol. https://doi.org/10.1093/conphys/cox039 (2017).
30. Powell, R. A. & Proulx, G. Trapping and marking terrestrial mammals for research: integrating ethics, performance criteria, techniques, and common sense. Inst. Lab. Anim. Res. J. 4(4), 259–276 (2003).
31. White, G. C. & Garrott, R. A. Analysis of Radio Tracking Data (Academic Press, London, 1990).
32. Chambers, J. C. & Brown, R. W. Methods for Vegetation Sampling and Analysis on Reverted Mined Lands (General Technical Report INT-151, U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment, 1983).
Author contributions
R. C. and P. S. conceived the research and designed the experiments. R. C. and P. S. analyzed the data. R. C. wrote the article. G. P. and N. T. edited the manuscript. G. P., N. T. and R. C. and P. S. conceived the research and designed the experiments. P. S. and S. N. performed the experiments. S. N. supervised and edited the manuscript. All authors read and approved the final manuscript and agree to authorship and submission of the manuscript for peer review.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-67942-2.

Correspondence
and requests for materials should be addressed to R.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020