Research

Enhanced muscarinic M1 receptor gene expression in the corpus striatum of streptozotocin-induced diabetic rats

G Gireesh, T Peeyush Kumar, Jobin Mathew and CS Paulose*

Address: Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Cochin University of Science and Technology, Cochin- 682 022, Kerala, India

Email: G Gireesh - giri_ganga2000@yahoo.co.in ; T Peeyush Kumar - peeyushchembio@yahoo.co.in; Jobin Mathew - eattathottu@gmail.com; CS Paulose* - cspaulose@cusat.ac.in

* Corresponding author

Abstract

Acetylcholine (ACh), the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR) have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS). Previous reports from our laboratory on streptozotocin (STZ) induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE) enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (V_max) of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (B_max) and affinity (K_d) of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors.

Background

The most and well known effects of diabetes mellitus on CNS is dysfunction of neurotransmitters, which is secondary to the metabolic disorders such as hyperglycemia and acidosis. It has been proposed that an unbalanced autonomic nervous system may be a major cause of the metabolic syndrome [1]. Diabetes mellitus have also been reported to be accompanied by a number of behavioral and hormonal abnormalities, including hyperphagia, reduced motor activity [2,3]. CNS abnormalities including neuronal atrophy and axonal degenerations [4,5] are also associated with diabetes. The altered levels of neurotransmitter in specific brain areas in patients with diabetes mellitus [6] and in animals with experimental diabetes [7-
Acetylcholine muscarinic receptors, members of the superfamily of G protein-coupled receptors, are classified pharmacologically into M1 to M5 subtypes, with M1, M3 and M4 receptors preferentially coupling to Gαq/11 proteins and M2 and M5 receptors to Gαi/o proteins [9]. All five muscarinic receptors are expressed by striatal neurons, with M1 and M4 receptors as the predominant subtypes, conforming together nearly 80% of the receptor population in the rat as shown by immunodetection [15,16] The main objective of the present study was to determine whether uncontrolled hyperglycemia, as a consequence of diabetes, altered the acetylcholine esterase enzyme activity, total and muscarinic M1 receptor binding parameters and muscarinic M1 receptor gene expression and the regulatory role of insulin in the rat corpus striatum.

Materials and methods
Biochemicals used in the present study were purchased from Sigma Chemical Co., St. Louis, USA. All other reagents were of analytical grade purchased locally. Quinuclidinyl benzilate, L-[Benzilic-4,4'-3H], ([3H] QNB)(Sp. Activity 42 Ci/mmol) was purchased from NEN life sciences products Inc., Boston, U.S.A. Tri-reagent kit was purchased from MRC, USA. Real Time PCR Taqman probe assays on demand were purchased from Applied Biosystems, Foster City, CA, USA.

Male adult Wistar rats of 180–240 g body weight were used for all experiments. They were housed in separate cages under 12 hour light and 12 hour dark periods. Rats have free access to standard food and water ad libitum. All animal care and procedures were in accordance with the Institutional and National Institute of Health guidelines. Diabetes was induced in rats by single intrafemoral injection of streptozotocin freshly dissolved in 0.1 M citrate buffer, pH 4.5, under anesthesia [17]. Streptozotocin was given at a dose of 55 mg/Kg body weight [18,19]. Animals were divided into the following groups: i) Control ii) diabetic iii) insulin-treated diabetic rats. Each group consisted of 6–8 animals. The insulin-treated diabetic group received subcutaneous injections (1 Unit/kg body weight) of Lente and Plain insulin (Boots India) daily during the entire period of the experiment. The last injection was given 24 hrs before sacrificing the rats. Rats were sacrificed on 15th day by decapitation. The corpus striatum was dissected out quickly over ice according to the procedure of Glowinski and Iversen 1966[20], the tissues were stored at -70°C until assayed.

Estimation of blood glucose
Blood glucose was estimated by the spectrophotometric method using glucose oxidase-peroxidase reactions. Blood samples were collected from the tail vein at 0 hours (Before the start of the experiment), 3rd day, 6th day, 10th day and 14th day and the glucose levels were estimated. Blood samples were collected 3 hrs after the administration of morning dose. The results were expressed in terms of milligram per deciliter of blood.

Acetylcholine Esterase Assay
Acetylcholine esterase assay was done using the spectrophotometric method of Ellman et al, (1961) [21]. The corpus striatum homogenate (10%) was prepared in sodium phosphate buffer (30 mM, pH-7). One ml of 1% Triton × 100 was added to the homogenate to release the membrane bound enzyme and centrifuged at 10,000 × g for 30 minutes at 4°C. Different concentrations of acetyltiocho line iodide were used as substrate. The mercapta formed as a result of the hydrolysis of the ester reacts with an oxidising agent 5,5′-dithiobis (2-Nitrobenzoate) absorbs at 412 nm.

Total Muscarinic and muscarinic M1 receptor binding studies in the corpus striatum
[3H]QNB binding assay in corpus striatum was done according to the modified procedure of Yamamura and Snyder (1981) [22]. Corpus striatum was homogenised in a poltron homogeniser with 20 volumes of cold 50 mM Tris-HCl buffer, containing 1 mM EDTA, pH7.4. The supernatant was then centrifuged at 30,000 × g for 30 minutes and the pellets were resuspended in appropriate volume of Tris-HCl-EDTA buffer.

Total muscarinic receptor binding parameter assays were done using different concentrations i.e., 0.1–2.5 nM of [3H] QNB in the incubation buffer, pH 7.4 in a total incubation volume of 250 μl containing appropriate protein concentrations (200–250 μg). Non-specific binding was determined using 100 μM atropine. Competition studies were carried out with 1 nM [3H]QNB in each tube with atropine concentrations varying from 10−9 – 10−4 M atropine. Tubes were incubated at 22°C for 60 minutes and filtered rapidly through GF/C filters (Whatman). The filters were washed quickly by three successive washing with 5.0 ml of ice cold 50 mM Tris-HCl buffer, pH 7.4. Bound radioactivity was counted with cocktail-T in a Wallac 1409 liquid scintillation counter. The non-specific binding determined showed 10% in all our experiments.
Muscarinic M1 receptor binding assays were done using different concentrations i.e., 0.1–2.5 nM of [3H]QNB in the incubation buffer, pH 7.4 in a total incubation volume of 250 μl containing appropriate protein concentrations (200–250 μg). Non-specific binding was determined using 100 μM pirenzepine. Competition studies were carried out with 1 nM [3H]QNB in each tube with pirenzepine concentrations varying from 10^{-9} – 10^{-4} M. Tubes were incubated at 22°C for 60 minutes and filtered rapidly through GF/C filters (Whatman). The filters were washed quickly by three successive washing with 5.0 ml of ice cold 50 mM Tris-HCl buffer, pH 7.4. Bound radioactivity was counted with cocktail-T in a Wallac 1409 liquid scintillation counter. The non-specific binding determined showed 10% in all our experiments.

Protein determination

Protein was measured by the method of Lowry et al., (1951) [23] using bovine serum albumin as standard. The intensity of the purple blue colour formed was proportional to the amount of protein, which was read in a spectrophotometer at 660 nm

Receptor data analysis

The receptor binding parameters were determined using Scatchard analysis [24]. The specific binding was determined by subtracting non-specific binding from the total. The binding parameters, maximal binding (B_max) and equilibrium dissociation constant (K_d), were derived by linear regression analysis by plotting the specific binding of the radioligand on X-axis and bound/free on Y-axis using Sigma plot software (version 2.0, Jandel GmbH, Erkrath, Germany). The maximal binding is a measure of the total number of receptors present in the tissue and the equilibrium dissociation constant is the measure of the affinity of the receptors for the radioligand. The K_d is inversely related to receptor affinity.

Displacement curve analysis

The displacement data were analysed by nonlinear regression using GraphPad PRISM™ software, GraphPad Inc., San Diego, USA. The concentration of the competing drug that competes for half the specific binding was defined as EC_{50} which is same as IC_{50}. The affinity of the receptor for the competing drug is designated as K_i and is defined as the concentration of the competing ligand that will bind to half the binding sites at equilibrium in the absence of radioligand or other competitors. The Hill slope was used to indicate a one or two-sited model of curve-fitting.

Analysis of gene expression by Real-Time PCR

RNA was isolated from the corpus striatum of experimental rats using the Tri reagent (MRC, USA). Total cDNA synthesis was performed using ABI PRISM cDNA archive kit in 0.2 ml microfuge tubes. The reaction mixture of 20 μl contained 0.2 μg total RNA, 10 × RT buffer, 25 × dNTP mixture, 10 × random primers, MultiScribe RT (50 U/μl) and RNase free water. The cDNA synthesis reactions were carried out at 25°C for 10 minutes and 37°C for 2 hours using an Eppendorf Personal Cycler. Real-time PCR assays were performed in 96-well plates in ABI 7300 real-time PCR instrument (Applied Biosystems). The primers and probes were purchased from Applied Biosystems, Foster City, California, USA. The TaqMan reaction mixture of 20 μl contained 25 ng of total RNA-derived cDNAs, 200 nM each of the forward primer, reverse primer, and TaqMan probe for Muscarinic M1 receptor gene and endogenous control (β-actin) and 12.5 μl of Taqman 2 × Universal PCR Master Mix (Applied Biosystems) and the volume was made up with RNase free water. The following thermal cycling profile was used (40 cycles): 50°C for 2 min, 95°C for 10 min, 95°C for 15 sec and 60°C for 1 min.

Fluorescence signals measured during amplification were considered positive if the fluorescence intensity was 20-fold greater than the standard deviation of the baseline fluorescence. The ΔΔCT method of relative quantification was used to determine the fold change in expression. This was done by first normalizing the resulting threshold cycle (CT) values of the target mRNAs to the CT values of the internal control β-actin in the same samples (ΔΔCT = CT_{Target} – CT_{β-actin}). It was further normalize with the control (ΔΔCT = ΔCT – CT_{Control}). The fold change in expression was then obtained as (2^{-ΔΔCT}) and the graph was plotted using log 2^{-ΔΔCT}.

Statistics

Statistical evaluations were done by ANOVA, expressed as mean ± S.E.M using InStat (Ver.2.04a) computer programme.

Results

Blood glucose level of all rats before streptozotocin administration was within the normal range. Streptozotocin administration led to a significant increase (p < 0.001) in blood glucose level of diabetic rats when compared to control rats. Insulin treatment was able to significantly reduce (p < 0.001) the increased blood glucose level to near the control value when compared to diabetic group (Table 1).

Acetylcholine esterase activity in the Corpus striatum of experimental rats

Acetylcholine esterase kinetics studies showed that V_{max} was significantly decreased (p < 0.001) in the corpus striatum of diabetic group with no significant change in K_{m}. Insulin treatment significantly reversed the V_{max} (p < 0.001) to near control value when compared to diabetic group (Table 2).
Total Muscarinic receptor analysis

Scatchard analysis of [3H] QNB binding against atropine in the corpus striatum of Control, Diabetic and Diabetic+Insulin treated diabetic rats

The Scatchard analysis showed that the Bmax and Kd of the [3H]QNB receptor binding decreased significantly (p < 0.001) in the corpus striatum of diabetic rats when compared to control group. In insulin treated diabetic group Bmax and Kd were significantly (p < 0.001) reversed back to near control value when compared to diabetic group. (Fig 1 & Table 3)

Displacement analysis of [3H]QNB using Atropine

In the displacement analysis, the competitive curve fitted to a one-sited model in all groups with Hill slope values were near to unity. The log (EC50) did not alter in all the experimental groups. The Ki decreased in diabetic condition (Fig 2 & Table 4).

Muscarinic M1 receptor analysis

Scatchard analysis of [3H]QNB binding against pirenzepine in the corpus striatum of Control, Diabetic, and Diabetic+Insulin treated diabetic rats

The Scatchard analysis showed that the Bmax of muscarinic M1 receptors of corpus striatum was increased significantly (p < 0.001) in diabetic condition when compared to control group while the Kd was decreased significantly when compared to control group (p < 0.001). In insulin treated diabetic rats Bmax was significantly (p < 0.001) reversed back to near control value when compared to diabetic group but Kd was not reversed back to near control value when compared to diabetic group (Fig 3 & Table 5).

Displacement analysis of [3H]QNB using pirenzepine

In the displacement analysis, the competitive curve fitted to a one-site model in all the experimental conditions. Hill slopes were near unity confirming the one-site model. There were no changes in the log (EC50) values. The Ki value was decreased in diabetic condition (Fig 4 & Table 6).

Real Time-PCR analysis

Real Time-PCR analysis showed that the muscarinic M1 receptor gene expression was increased significantly (p < 0.01) in diabetic condition and it reversed to near control value in insulin treated diabetic rats (Fig 5 & Table 7).

Discussion

The brain neurotransmitters receptor activity and hormonal pathways control many physiological functions in the body. The present study analyzed the changes of acetylcholine esterase enzyme activity, total muscarinic and muscarinic M1 receptors in the corpus striatum of STZ diabetic and insulin-treated diabetic rats. CNS mAChRs regulate a large number of important central functions including cognitive, behavioural, sensory, motor and autonomic processes [25-27]. A key feature of type 2 diabetes is that pancreatic β-cells fail to release sufficient amounts of insulin despite elevated blood glucose levels [28]. Glucose-stimulated insulin secretion (GSIS) is regulated by numerous hormones and neurotransmitters most of which act on specific G-protein-coupled receptors (GPCRs) expressed by pancreatic β-cells [29,30]. Many studies have shown that ACh, following its release from

Table 1: Blood glucose (mg/dl) level in Experimental rats

Animal status	0 day (Before STZ injection)	3rd day (Initial)	6th day	10th day	14th day (Final)
Control	86.2 ± 1.4	93.5 ± 1.6	89.4 ± 0.8	101.2 ± 2.2	97.7 ± 1.21
Diabetic	79.4 ± 1.5	253.1 ± 0.5	303.1 ± 0.8	309.7 ± 0.6	311.9 ± 1.4***
D + I	85.2 ± 0.8	256.8 ± 0.5	303.6 ± 0.7	190.9 ± 1.5	137.0 ± 1.3***

Values are mean ± S.E.M of 4–6 rats in each group. Each group consist of 6–8 rats

**P < 0.001 when compared to control, +P < 0.001 when compared to diabetic group, ||P < 0.001 when compared with initial reading

Table 2: Acetylcholine esterase activity in the corpus striatum of Control, Diabetic and D+I group rats

Animal status	Vmax (μmoles/min/mg protein)	Km (μM)
Control	2420.0 ± 11.5	51.0 ± 0.5
Diabetic	1631.3 ± 16.1***	51.3 ± 0.8
Diabetic + Insulin treated (D+I)	2647.0 ± 26.5**γγγγ	51.0 ± 0.5

Values are mean ± S.E.M of 4–6 separate experiments. Each group consist of 6–8 rats

**P < 0.001 when compared to control, +P < 0.001 when compared to diabetic group
Figure 1
Representative graph showing Scatchard analysis of [3H]QNB binding against atropine in the corpus striatum of Control, Diabetic and Diabetic+Insulin treated group rats. Control (black circle), Diabetic (open circle), Insulin treated diabetic rats (black triangle). Total muscarinic receptor binding parameter assays were done using different concentrations i.e., 0.1–2.5 nM of [3H]QNB in the incubation buffer, pH 7.4 in a total incubation volume of 250 µl containing appropriate protein concentrations (200–250 µg). Non-specific binding was determined using 100 µM atropine. Tubes were incubated at 22°C for 60 minutes and filtered rapidly through GF/C filters (Whatman). The filters were washed quickly by three successive washing with 5.0 ml of ice cold 50 mM Tris-HCl buffer, pH 7.4. Bound radioactivity was counted with cocktail-T in a Wallac 1409 liquid scintillation counter. The non-specific binding determined showed 10% in all our experiments.

Table 3: Scatchard analysis of [3H] QNB binding against atropine in the corpus striatum of Control, Diabetic, and Diabetic+Insulin treated group rats

Animal status	B\text{\textsubscript{max}} (fmoles/mg protein)	K\text{\textsubscript{D}} (nM)
Control	214.00 ± 3.05	0.19 ± 0.01
Diabetic	150.00 ± 5.77***	0.27 ± 0.05***
Diabetic + Insulin treated	184.00 ± 3.05vvvv	0.17 ± 0.05vvvv

Values are mean ± S.E.M of 4–6 separate experiments. Each group consist of 6–8 rats

*** P < 0.001 when compared to control, vvvv P < 0.001 when compared to diabetic group
intra-pancreatic parasympathetic nerve endings, can stimulate \(\beta \)-cell mAChRs, leading to enhanced GSIS in a strictly glucose-dependent fashion [29,30]. mAChRs are members of the superfamily of GPCRs. Molecular-cloning studies have revealed the existence of five molecularly distinct mammalian mAChR subtypes, M1-M5 [31,9]. Earlier studies from our laboratory have established the central neurotransmitter receptor subtypes functional regulation during diabetes, pancreatic regeneration and cell proliferation [32-37]. M1 mAChRs are abundantly expressed in all major regions of the forebrain, including striatum, hippocampus, and cerebral cortex [38-40,15]. It is therefore likely that M1 mAChRs play a role in the many central actions of ACh that involve the activity of forebrain mAChRs. Pharmacological evidence suggests that M1 receptors are involved in mediating higher cognitive processes, such as learning and memory [41,42,28]. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content [43]. The mRNA for M1 is present in more than 80% of striatal neurons [44] including cholinergic neurons, substance P neurons, enkephalin neurons, and somatostatin neurons [45]. Recent studies from our laboratory have showed the significance of muscarinic and muscarinic M1 receptors in the cerebral cortex, hypothalamus, brainstem, and pancreatic islets of STZ induced diabetic rats and its functional regulation in insulin secretion. [13,14]. ACh, through vagal muscarinic and non-vagal muscarinic pathways [46] increases insulin secretion [47]. They function through muscarinic receptors present on pancreatic islet cells. Receptor localization studies suggest that multiple muscarinic receptors (M1,

Table 4: Binding parameters of \([^{3}H]QNB\) against atropine in the corpus striatum of Control, Diabetic and Diabetic+Insulin treated group rats

Experimental Group	Best-fit model	Log (EC\(_{50}\))	\(K_i\)	Hill slope
Control	One-site	-7.076	2.10 \(\times\) 10\(^{-8}\)	0.9832
Diabetic	One-site	-6.818	3.80 \(\times\) 10\(^{-8}\)	0.9883
Insulin treated diabetic	One-site	-6.913	3.05 \(\times\) 10\(^{-8}\)	0.9889

Values are mean of 4–6 separate experiments. Each group consist of 6–8 rats.
Figure 3
Representative graph showing Scatchard analysis of [3H]QNB binding against pirenzepine in the corpus striatum of Control, Diabetic and Diabetic+Insulin treated group rats. Control (black circle), Diabetic (open circle), Insulin treated diabetic rats (black triangle). Muscarinic M1 receptor binding parameter assays were done using different concentrations i.e., 0.1–2.5 nM of [3H]QNB in the incubation buffer, pH 7.4 in a total incubation volume of 250 μl containing appropriate protein concentrations (200–250 μg). Non-specific binding was determined using 100 μM pirenzepine. Tubes were incubated at 22°C for 60 minutes and filtered rapidly through GF/C filters (Whatman). The filters were washed quickly by three successive washing with 5.0 ml of ice cold 50 mM Tris-HCl buffer, pH 7.4. Bound radioactivity was counted with cocktail-T in a Wallac 1409 liquid scintillation counter. The non-specific binding determined showed 10% in all our experiments.

Table 5: Scatchard analysis of [3H] QNB binding against pirenzepine in the corpus striatum of Control, Diabetic and Diabetic+Insulin treated group rats

Animal status	B_{max} (fmoles/mg protein)	K_d (nM)
Control	1460.00 ± 30.55	1.34 ± 0.02
Diabetic	2060.00 ± 30.55***	0.45 ± 0.02***
Diabetic + Insulin treated	1550.00 ± 28.86***	0.56 ± 0.01***

Values are mean ± S.E.M of 4–6 separate experiments. Each group consist of 6–8 rats
*** P < 0.001 when compared to control, >>> P < 0.001 when compared to diabetic group
M₃, M₄, and M₅) are expressed in pancreatic islets/β-cells [48]. From our previous studies it was observed that muscarinic M1 receptors were down-regulated during STZ diabetes [13]. The enzyme AChE indirectly plays an important role in transmission of nerve impulse. It hydrolyses the ACh released at the cholinergic synapse and thus terminates the action of this neurotransmitter. In addition to their role in cholinergic transmission, cholinesterases may also play a role during morphogenesis and neurodegenerative diseases [49,50]. We observed a significant decrease in Vₘₐₓ of acetylcholine esterase in the striatum of diabetic rats which was reversed to near control level by insulin treatment. Akmayev et al (1978) [51] showed that there is a difference in distribution of enzyme in the neurons of the central vagal nuclei in normal and adult male rats. It is suggested that the changes in the plasma glucose or insulin may be that stimulus that influence the activity of cholinergic neurons. Insulin treatment reversed the altered maximum velocity toward the control level. Corpus striatum is best known for its role in the planning and modulation movement pathways but also involved in a variety of cognitive process involving executive function. In corpus striatum total muscarinic receptor numbers and affinity were decreased during diabetes, whereas mus-

Table 6: Binding parameters of [³H]QNB against pirenzepine in the corpus striatum of Control, Diabetic and Diabetic+Insulin treated group rats

Experimental Group	Best-fit model	Log (EC₅₀)	Ki	Hill slope
Control	One-site	-7.107	2.23 × 10⁻⁸	0.7224
Diabetic	One-site	-6.459	9.92 × 10⁻⁸	0.7444
Insulin treated diabetic	One-site	-7.322	4.76 × 10⁻⁸	0.6826

Values are mean of 4–6 separate experiments. Each group consist of 6–8 rats.
carinic M1 receptors number was increased in STZ diabetic rats with decrease in affinity. The changes in the receptor number and affinity observed are due to the alterations of receptor protein and synthesis. Real-time PCR analysis showed an up-regulation of the muscarinic M1 receptor mRNA level in the striatum of diabetic rats, whereas it reversed to near control when treated with insulin. This is in accordance with our receptor binding studies. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. Based on physiological and pharmacological studies, several specific actions of ACh in the striatum have been suggested. ACh regulates its own release from cholinergic interneurons through presynaptic autoreceptors. Noncholinergic striatal neurons are directly affected by ACh through postsynaptic receptors and presynaptic heteroreceptors and the release of excitatory amino acids and dopamine by extrinsic striatal affer-

Table 7: Real Time amplification of Muscarinic M1 receptor mRNA from the Corpus striatum of Control, Diabetic, and Diabetic+Insulin treated group rats

Experimental group	RQ Value
Control	0
Diabetic	3.14 ± 0.25**
Diabetic + Insulin treated	0.86 ± 0.66***

Values are mean ± S.D of 4–6 separate experiments. Each group consist of 6–8 rats. Relative Quantification values and standard deviations are shown in the table. The relative ratios of mRNA levels were calculated using the ΔΔCT method normalized with β-actin CT value as the internal control and Control CT value as the calibrator.

** p < 0.01 when compared with control

*** p < 0.01 when compared with diabetic group

![Figure 5](image_url)

Figure 5
Representative graph showing Real-Time amplification of muscarinic M1 mRNA from the corpus striatum of control, diabetic and insulin treated diabetic rats. Control, Diabetic, Insulin treated diabetic rats. The ΔΔCT method of relative quantification was used to determine the fold change in expression. This was done by first normalizing the resulting threshold cycle (CT) values of the target mRNAs to the CT values of the internal control β-actin in the same samples (ΔCT = CT_Target – CT β-actin). It was further normalize with the control (ΔΔCT = ΔCT – CT_Control). The fold change in expression was then obtained (2^{-ΔΔCT}). The graph was plotted using log 2^{-ΔΔCT}. Values are mean ± S.D of 4–6 separate experiments. Relative Quantification values and standard deviations are shown in the table. The relative ratios of mRNA levels were calculated using the ΔΔCT method normalized with β-actin CT value as the internal control and Control CT value as the calibrator.
ents may be under presynaptic control of ACh through presynaptic heteroreceptors [52-54]. In diabetic corpus striatum total muscarinic receptors activities were decreased. The insulin treatment reversed these altered parameters to near control level. Muscarinic receptor subtypes other than M1 may also be affected by the diabetic condition. Further studies have to be carried out to elucidate the role of other subtypes. The present study suggests that drugs that can selectively activate muscarinic receptors may be of significant therapeutic benefit in the diabetes management. Thus our results revealed the significance of central muscarinic receptor changes during diabetes and the regulatory role of insulin on muscarinic receptors.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
GG and CSP designed research; GG performed experiments; PKT and JM helped GG in experiments; GG and CSP analyzed the data; GG and CSP wrote the paper. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by a research grant from KSCSTE, Govt. of Kerala, DST, and ICMR, Govt. of India to Dr. C.S. Paulose. Gireesh G thanks KSCSTE for JRF.

References
1. Kreier F, Yilmaz A, Kalsbeek A, Romijn JA, Sauerwein HP, Fliers E, Buĳs RM: Hypothesis: shifting the equilibrium from activity to food leads to autonomic unbalance and the metabolic syndrome. Diabetes 2003, 52:2652-2656.
2. Marshall JF, Friedman TG, Hefnner M: Reduced anorexic and locomotor – stimulant action of d-amphetamine in alloxan – diabetic rats. Brain Research 1976, 111:428-432.
3. Marshall JF: Further analysis of the resistance of the diabetic rat to d-amphetamine. Pharmacol Biochem Behav. 1978, 8(3):281-286.
4. Rossi GL, Bestetti G: Morphological changes in the hypothalamic-hypophyseal-gonadal axis of male rats after twelve months of streptozotocin induced diabetes. Diabetologia 1981, 21:476-481.
5. Reiske-Nielsen E, Lunbeak K: Diabetic encephalopathy. Diffuse and focal lesions of the brain in long-term diabetes. Acta Neuroal Scand Suppl. 1963, 39(Suppl 4):273-293.
6. Lackovic Z, Salkovic M, Kuci Z, Relja M: Dopamine, norepinephrine and serotonin in the brain of diabetic rats and man. Journal of Neurochemistry 1985, 44:94-98.
7. Bitar M, Koolu M, Rapoport SL, Linnoila M: Dibetes induced alterations in brain monoamine metabolism in rats. Journal of Pharmacology and Experimental Therapeutics 1986, 236:432-437.
8. Saller CF: Dopaminergic activity is reduced in diabetic rats. Neuroscience Letters 1984, 49:301-306.
9. Cauffield MP, Birdsall NJM: Classification of muscarinic acetylcholine receptors. Pharmacol Rev 1998, 50:279-290.
10. Kwok RPS, Walls EK, Juruaia AV: The concentrations of dopamine 5 hydroxytryptamine and some of their acid metabolites in the brain of genetically diabetic rats. Neurochemical Research 1985, 10:611-616.
11. Chen CC, Yang JC: Effects of short and long-lasting diabetes mellitus on mouse brain monoamines. Brain Research 1991, 552:175-179.
12. Tasaka Y, Matsumoto H, Inoue Y, Hirata Y: Brain catecholamine concentrations in hyperosmolar diabetic and diabetic rats. Diabetes Research 1992, 17:1.
13. Gireesh G, Kaimal SB, Kumar TP, Paulose CS: Decreased muscarinic M1 receptor gene expression in the hypothalamus, brainstem, and pancreatic islets of streptozotocin-induced diabetic rats. J Neurosci Res 2007.
14. Gireesh G, Reas SK, Jobin M, Paulose CS: Decreased muscarinic M1 receptor gene expression in the cerebral cortex of streptozotocin-induced diabetic rats and Aegle marmelos leaf extract’s therapeutic function. J Ethnopharmacol 2007.
15. Levey AI, Kicin CA, Simonds WF, Price DL, Brann MR: Identification and localization of muscarinic acetylcholine receptor protein expression in brain with subtype-specific antibodies. J Neurol Sci 1991, 11:3218-3226.
16. Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Saksus SA, Weisstein JS, Spagnola BV, Wolfe BB: Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distributions of m4 and m5 receptors in rat brain. 1993, 43:149-157.
17. Junod A, Lambert AE, Staufferacher W, Renold AE: Diabeticogenic action of Streptozotocin: Relationship of dose to metabolic response. J Clin Invest 1969, 48:2129-2139.
18. Hohenegger M, Rudas B: Dopaminergic activity is reduced in diabetic rats. J Neurosci Res 1998, 34:393-4353.
19. Arison RN, Ciaccio EL, Glitzer MS, Cassaro AV, Pruss M: Light and electron microscopy of lesions in rats rendered diabetic with streptozotocin. Diabetes 1967, 16:51-56.
20. Gloswinski J, Iversen LL: Regional studies of catecholamines in the rat brain: the disposition of [3H]norepinephrine, [3H] dopa in various regions of brain. J Neurochem 1966, 13:655-669.
21. Ellman GL, Courtney KD, Andres V, Featherstone RM: A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961, 7:88-95.
22. Yamamura HI, Snyder G: Binding of [3H]QNB in rat brain. Proc Natl Acad Sci 1981, 71:1725-1729.
23. Lowry OH, Roseborough NJ, Farr AL, Randall RJ: Protein measurement with Folin Phenol reagent. J Biol Chem 1951, 193:265-275.
24. Scatchard G: The attraction of proteins for small molecules and ions. Ann N Y Acad Sci 1949, 51:660-672.
25. Felder CC, Bymaster FP, Ward J, DeLapp N: Therapeutic opportunities for muscarinic receptors in the central nervous system. J Med Chem 2000, 43:393-4353.
26. Ahren B: Autonomic regulation of islet hormone secretion – implications for health and disease. Diabetologia 2000, 43:393-410.
27. Gilson P, Henquin JC: Mechanisms and physiological significance of the cholinergic control of pancreatic secretion. Endocr Rev 2001, 22:565-604.
28. Wess J: Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 1996, 10:69-99.
29. Eglen RM: Muscarinic receptor subtype pharmacology and physiology. Prog Med Chem 2005, 43:105-136.
30. Kaho SE: The importance of [3H]luciferin failure in the development and progression of type 2 diabetes. J Endocrinol Metab 2001, 86:4047-4058.
31. Kriss M, Altschule C: Neurodegenerative diseases and their potential role in the development of Alzheimer disease. Clin Geriatr Med 2001, 17:479-495.
32. Renuka TR, Ani DV, Paulose CS: Insulin resistance in the type 2 diabetes mellitus. Acta Neurol Scand 1998, 97:357-362.
33. Patwardhan AM, Prasad KB, Prabhu AV, Paulose CS: Hepatic GABA A receptor functional regulation during liver cell proliferation. Hepatol Res 2001, 21:253-254.
34. Renuka TR, Ani DV, Paulose CS: Alterations in the muscarinic M1 and M3 receptor gene expression in the brain stem during pancreatic regeneration and insulin secretion in weanling rats. J Neurosci Res 2005, 80:94-102.
37. Abraham A, Paulose CS: Age related alterations in noradrenergic function in brain stem of streptozotocin-diabetic rats. J Biochem Mol Biol Biophys 1999, 31:171-176.
38. Levey AI: Immunological localization of M1–M4 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 1993, 52:441-48.
39. Vilaró MT, Mengod G, Palacios JM: Advances and limitations of the molecular neuroanatomy of cholinergic receptors: the example of multiple muscarinic receptors. Prog Brain Res. 1993:95-101.
40. Wolfe BB, Yasuda RP: Development of selective antisera for muscarinic cholinergic receptor subtypes. Ann NY Acad Sci 1995, 757:186-93.
41. Quirion R, Aubert I, Lapchak PA, Schaum RP, Teolis S: Muscarinic receptor subtypes in human neurodegenerative disorders: focus on Alzheimer’s disease. Trends Pharmacol. Sci. 1989, 10:80-84.
42. Fisher A, Heldman E, Gurwitz D, Haring R, Karton Y: M1 agonists for the treatment of Alzheimer’s disease. Novel properties and clinical update. Ann NY Acad Sci 1996, 777:190-196.
43. Hoover DB, Muth EA, Jacobowitz DM: A mapping of the distribution of acetylcholine, choline acetyltransferase and acetylcholinesterase in discrete areas of rat brain. Brain Res 1978, 153:295-306.
44. Weiner DM, Levey AI, Brann MR: Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci USA 1990, 87:7050-7054.
45. Bernard V, Normand E, Bloch S: Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 1992, 12:3591-600.
46. Greenberg GR, Pokol-Daniel S: Neural modulation of glucose-dependent insulinotropic peptide (GIP) and insulin secretion in conscious dogs. Pancreas 1994, 9:331-335.
47. Tassava MT, Okuda T, Romos DR: Insulin secretion from ob/ob mouse pancreatic islets: effects of neurotransmitters. Am J Physiol 1992:262.
48. Ismaa TP, Kerr EA, Wilson JR, Carpenter L, Sims N, Biden Tj: Quantitative and functional characterization of muscarinic receptor subtypes in insulin-secreting cell lines and rat pancreatic islets. Diabetes 2000, 49:392-398.
49. Reyes AE, Perez DR, Alvarez A, Garrido J, Gentry MK, Doctor BP, Inestrosa NC: A monoclonal antibody against acetylcholinesterase inhibits the formation of amyloid fibrils induced by the enzyme. Biochem Biophys Res Commun 1997, 232:652-655.
50. Layer PG, Alber R, Sporns O: Quantitative development and molecular forms of acetylcholinesterase and butyrylcholinesterase during morphogenesis and synaptogenesis of chick brain and retina. J Neurochem 1987, 49:175-182.
51. Akmyayev IG, Rubberia E, Fiddina OV: CNS-endocrine pancreas system. IV. Evidence for the existence of a direct hypothalamic-vagal descending pathway. Endokrinologe 1978, 71:169-174.
52. Waelbroeck M, Tastenoy M, Camus J, Christophe J: Binding of selective antagonists to four muscarinic receptors (M1 – M4) in rat forebrain. Mol Pharmacol 1990, 38:267-273.
53. Elbert F, Tran LLP: Regional distribution of M1, M2 and non-M1, non-M2 subtypes of muscarinic binding sites in rat brain. J Pharmacol Exp Ther 1990, 255:1148-1157.
54. Sugita S, Chimura NU, Jiang ZG, North R: Distinct muscarinic receptors inhibit release of gamma-aminobutyric acid and excitatory amino acids in mammalian brain. Proc Natl Acad Sci USA 1991, 88:2608-2611.