On the Quantization of the Null-Surface Formulation of GR

Simonetta Frittelli*, Carlos N. Kozameh†, Ezra T. Newman‡, Carlo Rovelli§, Ranjeet S. Tate∗∗

* Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
† FaMAF, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
‡ e-mail: simo@artemis.phyast.pitt.edu
† e-mail: kozameh@fis.uncor.edu
‡ e-mail: newman@vms.cis.pitt.edu
§ e-mail: rovelli@pitt.edu
∗∗ e-mail: rstate@minerva.phyast.pitt.edu

(October 1, 2018)

We define and discuss various quantum operators that describe the geometry of spacetime in quantum general relativity. These are obtained by combining the Null-Surface Formulation of general relativity, recently developed, with asymptotic quantization. One of the operators defined describes a “fuzzy” quantum light cone structure. Others, denoted “spacetime-point operators”, characterize geometrically-defined physical points. We discuss the interpretation of these operators. This seems to suggest a picture of quantum spacetime as made of “fuzzy” physical points. We derive the commutation algebra of the quantum spacetime point operators in the linearization around flat space.

I. INTRODUCTION

The problem of finding and understanding the relationship between quantum theory and gravitation is an extremely difficult one (that has defied solution for close to seventy years) and is simultaneously such a profound problem that it has attracted a great deal of attention. Its resolution could easily be a major stepping stone to a more complete understanding of our physical world. The difficulties, however, are such that we might well need radical changes in our views or completely new ideas before the problem can be solved (See, for instance, [1]). Even if this is the case, this does not mean that we should necessarily abandon the exploration of more traditional approaches, since even if they fail, they could indicate possible directions to explore in the search for the unification of gravity with quantum theory.

In this paper we present a new approach to this issue which, although based on many of the standard ideas, differs from other approaches in several substantial ways. In some sense our formulation lies between the conventional and non-conventional approaches [2].

The first issue we discuss is our view towards classical general relativity (GR). At the classical level, a clear distinction can be made between GR and other field theories. Only in GR does the geometry play a dynamical role. Though often noted, this distinction has been reemphasized in a recent series of papers by presenting GR as a theory of characteristic hypersurfaces [3–5] rather than as a theory of the metric field. From this point of view the spacetime metric and associated connection are derived concepts: the basic variables are families of 3-surfaces and a scalar function (a conformal factor) from which a metric can be derived. The surfaces are automatically the characteristic surfaces of the metric and the metric automatically satisfies the Einstein field equations. This reformulation of GR has been referred to as the Null Surface Formulation of GR or simply as the NSF. It appears that no other physically relevant field theory can be stated as such a theory of surfaces.

Here, we study the quantization of the linearized version of this approach. From this quantization of the NSF, we appear to be led to new ideas and results on the form a quantum theory of gravity might take. The new view essentially says that the null surfaces become operators that obey commutation relations. Furthermore, since there is a prescription for locating points of spacetime using foliations by families of null surfaces, the spacetime points themselves become operators.

Roughly speaking, our formalism is a union between the Ashtekar asymptotic quantization of the gravitational field and the NSF. In our formalism, the Bondi free data at future null infinity $$I^+$$ play a very important role. They enter as a source in the NSF field equations. Thus, for each data set, the solution to our classical equations represents a regular radiative spacetime. On the other hand, the formalism developed by Ashtekar gives a kinematic quantization of the radiative degrees of freedom of the gravitational field at $$I^+$$. By promoting the classical Bondi data to quantum
operators and introducing a Fock space of asymptotic states (modulo technical difficulties addressed in detail by Ashtekar) one is left with the “in” (or “out”) states of quantum theory. What is missing in the Ashtekar approach is the dynamical part of the quantum theory, which would relate the asymptotic states to the geometry of the interior of spacetime.

In this paper we adopt Ashtekar’s asymptotic quantization in its simplest form (avoiding infra-red issues) by promoting the free Bondi data to quantum operators. The solutions to the classical NSF equations determine families of null surfaces in terms of this free data. It follows that in the “quantum theory” the null surfaces become operator functions of the operator data. Furthermore, since the spacetime points are themselves determined by the intersections of the null surfaces (and are expressible in terms of the surfaces) they can also be thought of as operator functions of the data, with implied non-trivial commutation relations. We emphasize that we neither give equal time commutation relations nor use a Hamiltonian to obtain the “evolution” of the operators: appropriate commutation relations for the operator data are given on \mathbb{I}^+, and the information about the dynamics (i.e. the full spacetime) is implicitly determined by the NSF equations. We emphasize that we are not discussing a field theory on spacetime; our variables are not fields; they are surfaces composed of spacetime points. The surfaces and associated points become the operators. It is this feature of our point of view that appears to us most novel.

We point out that there is no Hamiltonian for a Schrödinger evolution; rather the operator “evolution” is given by the NSF equations. The formalism is most closely tied to a Heisenberg representation.

In Section II we will review some relevant aspects of the Null Surface Formulation (NSF) of GR. (Note that we use signature $(+,−,−,−)$.) In Section III we discuss what happens when we implement the Ashtekar quantization procedure. In Section IV we summarize our main results and we discuss possible meanings and ramifications of these ideas. An outline of our results and a more detailed discussion of their physical interpretation has appeared in [7]. We relegate many of the technical details, which can become complicated, to appendices. In Appendix A, as an example, we apply our methods to the quantization of the Maxwell theory, obtaining the standard quantization in the Coulomb gauge.

II. NULL-SURFACE FORMULATION OF GR

In this section we review a new formulation, the Null Surface Formulation of classical general relativity [3–8], where the emphasis has been shifted away from more standard type of field variable (metric, connection, holonomy, curvature, etc.) to, instead, families of three-dimensional surfaces on a four-manifold M^4. These surfaces eventually turn out to be the characteristic surfaces of a metric. On the sphere bundle over M^4, topologically $M^4 \times S^2$, with no further structure, there are given differential equations for the determination of these surfaces. From the surfaces themselves, by differentiation and algebraic manipulation, a (conformal) metric tensor can be obtained. These surfaces, which play the role of the basic geometric quantities, are then automatically the characteristic surfaces of this conformal metric. Furthermore, the equations allow for a choice of conformal factor that makes the conformal metric into a metric which automatically satisfies the vacuum Einstein equations. In other words the vacuum Einstein equations are formulated as equations for families of surfaces and a single (scalar) conformal factor. All geometric quantities, the metric, the connection, spin-coefficients, Weyl and Ricci tensors, can be expressed in terms of the surfaces and the conformal factor. In our present discussion we will be mainly concerned with these characteristic surfaces (i.e., the conformal structure), though of course in the full theory the conformal factor plays an essential role.

Since the details of the differential equations are relatively complicated [3–8] and we do not need them for the present work, we will adopt the following strategy. We will assume that the differential equations for the surfaces (and conformal factor) have been solved explicitly and then attempt to understand the meaning of the solutions and what can be derived from them.

First of all, we have the explicit expression for the conformal factor $\Omega = \Omega(x^a, \zeta, [\text{data}])$, where the x^a are some local pseudo-Riemannian coordinates on the manifold M^4, while the ζ is a complex stereographic coordinate on the sphere, S^2, and [data] is the Bondi shear $[\sigma, \bar{\sigma}]$. We will have little further use here for $\Omega(x^a, \zeta)$. Of fundamental importance to us are the families of surfaces given as solutions to our equations, with specific free data. They take the form

$$Z(x^a, \zeta, [\text{data}]) = u = \text{constant}. \quad (1)$$

For fixed values of (u, ζ) the above is a single function of the four coordinates x^a and thus describes a particular three-surface. As the value of u varies (for fixed ζ) we have a one-parameter foliation (of a local region) by the surfaces. The ζ then label a sphere’s worth of these foliations, i.e., a sphere’s worth of surfaces passes through each spacetime point. Assuming that the Z satisfies the NSF differential equations, one can then, in a simple and straightforward fashion, obtain a conformal metric in terms of Z [4]. Symbolically we thus have...
where there is an overall undetermined conformal factor, essentially Ω. Note that while Z is a function of the ζ, the metric g_{ab} is independent of ζ.

The details of this construction are not of importance here. What is important is that automatically there is a (conformal) metric, $g^{ab}(x^a)$ such that

$$g^{ab}Z_{,a}Z_{,b} = 0 \quad (2)$$

for all ζ, i.e., the surfaces $Z = constant$, are characteristic surfaces of this metric. For simplicity, we can then choose (in a natural fashion) a special member of the conformal class yielding an explicit metric in terms of Z. (The “naturalness” arises from the fact that a simple function (see below) of Z is an affine parameter for this special member of the conformal class.) We emphasize that all conformal information about the spacetime is contained in knowledge of $Z(x^a, \zeta, \cdot]$. For each fixed value of ζ the level surfaces of Z describe a foliation by (null) surfaces: Treating Z simply as a sphere’s worth of scalar functions on M^4, we can construct other scalar functions by differentiating Z several times in both the ζ and $\bar{\zeta}$ directions and then holding ζ constant afterwards. \footnote{Note that differentiating Z with respect to ζ is equivalent to finding the intersections of adjacent null surfaces. For a detailed discussion, see \cite{4}.} Particularly useful to us are the two first derivatives and the mixed second derivative. Together with the $Z(x^a, \zeta)$, these are the four functions:

$$u = Z(x^a, \zeta, [data]), \quad \omega = \partial Z(x^a, \zeta, [data]), \quad \bar{\omega} = \bar{\partial}Z(x^a, \zeta, [data]), \quad R = \bar{\partial}\bar{\partial}Z(x^a, \zeta, [data]). \quad (3a,b,c,d)$$

where ∂ and $\bar{\partial}$ are (essentially) the ζ and $\bar{\zeta}$ derivatives. \footnote{With the definitions}

$$\theta^i = (\theta^0, \theta^+, \theta^-, \theta^1) = (u, \omega, \bar{\omega}, R)$$

we have

$$\theta^i = \theta^i(x^a, \zeta, [data]). \quad (4)$$

These four scalar functions (parametrized by ζ) have a simple geometric meaning.

1. $\theta^0 = u = Z(x^a, \zeta, [data]) = const.$, for fixed ζ, describes a null surface. Changing u leads to a 1-parameter foliation of M^4 by null surfaces.

2. $\theta^+ = \omega = \partial Z(x^a, \zeta, [data]) = const.$ and $\theta^- = \bar{\omega} = \bar{\partial}Z(x^a, \zeta, [data]) = const.$ chooses a null geodesic on that surface. Finally,

3. $\theta^1 = R = \bar{\partial}\bar{\partial}Z(x^a, \zeta, [data])$ parametrizes points on that null geodesic.

(In fact R is an affine parameter along the null geodesics for the special member of our conformal class mentioned earlier.) The four θ^i, for fixed ζ, thus locate spacetime points. They define a sphere’s worth of null coordinate systems, and Equation (\ref{5}) gives the coordinate transformation between the θ^i and x^a for each fixed ζ.

Since $Z(x^a, \zeta, [data])$ contains all the conformal information of the spacetime, so do the θ^i.

An important conceptual issue is that Eq. (\ref{5}) can, in principle, be (locally) algebraically inverted into the form

$$x^a = x^a(u, \omega, R; \zeta, [data]). \quad (5)$$

Since Eq. (\ref{5}) is equivalent to (\ref{3}) it too contains the full information about the solutions to the conformal Einstein equations; i.e. from knowledge of Equation (\ref{5}), a metric conformal to an Einstein metric can be obtained analytically \footnote{The information about the conformal structure of spacetime, originally encoded in Z can now be extracted in an alternate manner from (\ref{5}); a manner that is, at the moment, of direct interest to us. If values of the (u, ω, ζ) are...}. The information about the conformal Einstein space is coded into the functional dependence on the data.
chosen arbitrarily but kept constant and \(R \) is allowed to vary, Eq. (3) is the description of a null geodesic of the spacetime. The five-dimensional space of null geodesics is coordinatized by the \((u, \omega, \zeta)\), with \((\omega, \zeta)\) complex, while \(R \) parametrizes the individual geodesics. The conformal structure is determined by the knowledge of all null geodesics through each spacetime point, and the dependence of these on the \([\text{data}]\) encodes the particular spacetime. Note the dual role equations Equations (1) and (2) play; Equation (1) describes null surfaces, its null geodesics and points on the geodesics in terms of some “standard” coordinates \(x^a\), while Equation (2) describes, in parametric form, all the null geodesics of the space. Though at first they appeared to describe the coordinate transformations between some null coordinates and an arbitrary set of coordinates, \(x^a\), they now have a coordinate independent meaning. We return to Eq. (2) later.

Asymptotically Flat Vacuum Spacetimes

Before we proceed further we make the specialization from a description of any (local) Einstein spacetime to the study of asymptotically flat vacuum spacetimes. In this case the geometrical meanings of the various quantities become clearer. We begin with the fact that null infinity, \(\mathcal{I}^+ \), exists. It can be coordinatized by a Bondi coordinate system,

\[(u, \zeta, \bar{\zeta})\]

with \(u \) the Bondi retarded time, and \((\zeta, \bar{\zeta}) \in S^2\) labeling the null generators of \(\mathcal{I}^+ \). With this notation we can give a precise meaning to the null surfaces described by \(u = Z(x^a, \zeta, \text{[data]}); \) they are the past null cones of the points \((u, \zeta, \bar{\zeta})\) of \(\mathcal{I}^+ \). With this meaning to \(Z \) we have a dual interpretation of \(Z(x^a, \zeta, \text{[data]}); \) \(u \) is the “stereographic angle” that the lightcone cuts make with the Bondi coordinate \(x^a \). We have a geometric interpretation, not only of \(Z(x^a, \zeta, \text{[data]}); \) \(\omega = \partial Z(x^a, \zeta, \text{[data]}); \) and \(R = \partial \bar{\partial} Z(x^a, \zeta, \text{[data]}); \) \(\omega \) is the “affine distance” \(f \) r trom \(\mathcal{I}^+ \) to \(x^a \). \(R \) is a measure of the curvature of the cut and thus a measure of the “affine distance” from \(\mathcal{I}^+ \) to \(x^a \) along the null geodesic.

We have a geometric interpretation, not only of \(Z(x^a, \zeta, \text{[data]}); \) \(u \), but also of \(\omega = \partial Z(x^a, \zeta, \text{[data]}); \) \(\omega \) is the “stereographic angle” that the lightcone cuts make with the Bondi \(u \) \(= \) const. cuts \(\) (i.e., it labels the backward direction of the null geodesics from the point \((u, \zeta) \in \mathcal{I}^+ \) \(\to x^a \)). \(R \) is a measure of the “affine distance” from \(\mathcal{I}^+ \) to \(x^a \) along the null geodesic.

The four functions \(\theta^a(x^a, \zeta, \text{[data]}); \) \(\zeta \), which are defined geometrically on \(\mathcal{I}^+ \), describe the interior of the spacetime. They can, be inverted (see Eq. (3)), leading to

\[x^a = x^a(\theta^a; \zeta; \text{[data]}),\]

which gives the location of spacetime points in terms of (geometrical) information on \(\mathcal{I}^+ \), i.e., the \(\theta^a \).

Linearization of the NSF

With this (asymptotically flat) point of view, we now consider the linearization of the Null Surface Formulation of the Einstein equations, the coordinates used here and subsequently are the standard cartesian coordinates \(x^a \) of the background Minkowski spacetime. We will make extensive use of this later. In this case the conformal factor can be taken as one; i.e.,

\[\Omega(x^a, \zeta, \text{[data]}); \]

and the differential equation for \(Z \) becomes

\[\delta^2 \delta^2 Z = \delta^2 \sigma_R(x^a, \zeta) + \delta^2 \sigma_{\bar{R}}(x^a, \zeta) \equiv D(x^a, \zeta, [\sigma]); \]

The data is given by a complex valued spin-weight-2 function on \(\mathcal{I}^+ \), namely \(\sigma(u, \zeta); \) and its complex conjugate \(\bar{\sigma}(u, \zeta); \) which can be given freely. The data is then restricted to the Minkowski lightcone cut, \(S^2(x^a); \) described by (see [10])

\[u(\zeta) = Z_0(x^a, \zeta) \equiv x^a \ell^a(\zeta), \quad \ell^a(\zeta) \ell^a(\zeta) = 0\]

where \(\ell^a = \frac{1}{\sqrt{2}}(1, \frac{\zeta + \bar{\zeta}}{1 + \zeta \bar{\zeta}}, -i \frac{\zeta - \bar{\zeta}}{1 + \zeta \bar{\zeta}}, \frac{-1 + \zeta \bar{\zeta}}{1 + \zeta \bar{\zeta}}) \) satisfies \(\delta^2 \ell^a = \bar{\delta} \ell^a = 0 \) and \(Z_0(x^a, \zeta) = Z(x^a, \zeta, [0]); \) i.e. \(Z_0 \) is the Minkowski \(Z - \) function satisfying (4) with zero characteristic data. Note that \(\ell^a \) and hence \(Z_0 \) are constructed from
the first four spherical harmonics. Equation (11), in turn, leads to the restriction, to the lightcone cuts, of the data \(\sigma(u, \zeta); \) i.e.,

\[
\sigma_\pi(x^a, \zeta) = \sigma(Z_0(x^a, \zeta), \zeta). \tag{11}
\]

(Note that \(\sigma_\pi \) can be viewed in two different ways. It is the pullback or restriction of \(\sigma \) to a cut of \(\mathcal{I}_+ \) labelled by the spacetime points \(x^a \), but it can also be directly viewed as a function on the sphere bundle over spacetime.) Eqs. (8) and (11) are equivalent to the linearized vacuum Einstein equations. The general regular solution to (11) is obtained as the sum of a particular solution plus the general solution \(Z \) and (9) are equivalent to the linearized vacuum Einstein equations. The general regular solution to (9) is obtained as

\[
Z(x^a, \zeta; \text{data}) = Z_0(x^a, \zeta) + \int_{S^2} G(\zeta, \eta) D(x^a, \eta, [\sigma]) dS^2_\eta \tag{12}
\]

where \(dS^2_\eta \) is the standard metric on the two sphere and \(G(\zeta, \eta) \) is a simple Green’s function of the operator \(\partial^2 \bar{\partial}^2 \), given by

\[
G(\zeta, \eta) = \frac{1}{4\pi} \ell(\zeta) \cdot \ell(\eta) \ln \left(\ell(\zeta) \cdot \ell(\eta) \right). \tag{13}
\]

We want to point out and emphasize an important aspect of this solution (12). The \(Z_0(x^a, \zeta) \) consists of only \(l=0,1 \) spherical harmonics; the second term (the particular solution) has been chosen so that its spherical harmonic expansion contains no \(l=0,1 \) harmonics. One could have chosen other particular solutions with \(l = 0 \) or \(l = 1 \) harmonics having as coefficients four arbitrary functions of the \(x^a \). These four functions would constitute an arbitrary gauge transformation in the linear theory. Our choice for them to vanish is equivalent to a particular gauge choice. The implied gauge is the equivalent of the Coulomb gauge of Maxwell theory, namely, for \(g^{ab} = \eta^{ab} + h^{ab}, \) we have \(h^{0i} = 0 \). The analogous gauge choice for Maxwell theory is described in Appendix A3.

For later use, Eq. (12) can be rewritten as

\[
Z(x^a, \zeta; [\sigma]) = Z_0(x^a, \zeta) + \int_{S^2} \left(\bar{\partial}^2 G(\zeta, \eta) \sigma_\pi(x^a, \eta) + \partial_0^2 G(\zeta, \eta) \bar{\sigma}_\pi(x^a, \eta) \right) dS^2_\eta
\]

\[
\equiv Z_0(x^a, \zeta) + Z_1(x^a, \zeta; [\sigma]) \tag{14}
\]

This expression is obtained from Equation (12) by using properties of the Green’s function \(G(\zeta, \eta) \) (see Appendix C), and from the assumption that \(\sigma_\pi \) is a regular function on the sphere. By differentiation (with respect to \(\zeta \)) of (12) it is a simple matter to construct the full set of \(\partial^2 \), i.e., Eqs. (3a-3d), and invert them explicitly to obtain Equations (3). The explicit linearized inversion is given in Section III D.

Simply for completeness, we mention that the full set of Einstein equations are a generalization of Equations (8) and (4); Equation (6) for the conformal factor becomes more complicated, while (11), the equation for \(Z \), retains the same form; it has an additional, rather complicated term added to the right-hand side that does depend on \(\Omega \).

III. QUANTIZATION OF LINEARIZED GR

In the previous section we described how the classical data on \(\mathcal{I}_+ \) can be used to reconstruct various geometrical structures in the interior of the spacetime: null surfaces, null geodesics and the locations of spacetime points in a given local chart. In this section, by analogy, we begin with an asymptotic quantum theory at \(\mathcal{I}_+ \), and subsequently extend it into the interior of the spacetime. We implement this idea by constructing quantum operators corresponding to the various geometrical entities described in the previous section. We finally compute various physically interesting commutation relations obtained from the free-field commutation relations on the data at \(\mathcal{I}_+ \).

While most of our calculations are formal, all quantities (in the linearized case) can be defined rigorously on the asymptotic Fock space. Alternatively, we can think of all quantities as abstract operators subject to non-trivial commutation relations.

In the first subsection we briefly introduce the asymptotic quantum theory (done in detail for the free Maxwell field in Appendix A1), essentially the quantization of the characteristic free data at \(\mathcal{I}_+ \), and describe the construction of the asymptotic Fock space (the details are given in Appendix A2). We describe Ashtekar’s asymptotic quantization in, differing only in notational details. In addition, we ignore infra-red sectors.

The remaining subsections contain the construction of the new quantum operators. Since all of them have a functional dependence on the data through the \(Z \) function, our first result is the quantization of the null surfaces, in subsection III B. The commutator for the \(Z \) function at two different points is, then, of fundamental importance to the remainder of the section, in which we construct the quantum analogs of the various geometrical quantities (subsection III C) and quantum spacetime points (subsection III D).
A. Asymptotic quantum theory

As is quite well-known, the radiative degrees of freedom of the gravitational field are specified by the characteristic initial data on \(I^+ \). The space of characteristic initial data is a phase space coordinatized by either the Bondi shear \(\sigma_{ab}(u, \zeta) = \sigma(u, \zeta) \dot{m}_a \dot{m}_b + \tilde{\sigma}(u, \zeta) m_a m_b \), or the complex Bondi news \(N_{ab} = N(u, \zeta) \dot{m}_a \dot{m}_b + \bar{N}(u, \zeta) m_a m_b \). The complex Bondi shear \(\sigma(u, \zeta) \) serves as a potential for the complex Bondi news \(N = i \sigma \partial \sigma/\partial u \). The action of the symplectic form on two vectors (infinitesimal news scalars) \(\delta N_1 \) and \(\delta N_2 \) tangent to the phase space of characteristic data is

\[
\Omega(\delta N_1, \delta N_2) = \frac{1}{2\pi} \int_{I^+} du \, dS^2 \, \delta^2(\zeta - \zeta') \Delta(u - u') \left(\delta N_1(u, \zeta) \delta N_2(u', \zeta') - \delta N_2(u, \zeta) \delta N_1(u', \zeta') \right),
\]

where \(\Delta(u) = \frac{1}{2} \text{sgn}(u) \) is the skew-symmetric anti-derivative of \(\delta(u) \), so that \(\delta(u) = \partial \Delta(u)/\partial u \) (as distributions); and \(du \, dS^2 = -2i \, du \wedge d\zeta \wedge d\bar{\zeta}/(1 + \zeta \bar{\zeta})^2 \) is the volume element on \(I^+ \). Note that this phase space is analogous to the phase space for source-free Maxwell theory, with \(\sigma, N \) playing the roles of \(A, E \) respectively. Thus the asymptotic aspects of the quantization are identical to the construction detailed in Appendix A.

Consider the space \(S \) of \(C^\infty \) spin-weight-2 complex scalar fields \(N \) on \(I^+ \), all of whose components in a \((u, \zeta) \) chart and all their derivatives fall-off faster than \(1/|u|^n \) for any \(n \), for large values of \(|u| \). On the positive frequency (with respect to \(u \)) subspace \(S^+ \) of news functions, one can introduce a Hermitian inner product analogous to (12). One can then Cauchy complete this space to obtain the one particle Hilbert space, on which one constructs the asymptotic Fock space of the characteristic data for the radiative modes of GR. In a fashion analogous to that for the free Maxwell field, one then constructs operator-valued distributions corresponding to the Bondi news, and the Bondi shear \(\sigma(u, \zeta) \).

These operator-valued distributions satisfy the formal commutation relations given by

\[
[\hat{\sigma}(u, \zeta), \hat{\sigma}(u', \zeta')] = -2\pi i \hbar \Delta(u - u') \delta^2(\zeta - \zeta') \hat{1},
\]

where \(\delta^2(\zeta - \zeta') \) has spin weight 2 in \(\zeta \) and \(-2 \) in \(\zeta' \), and is defined such that \(\int_{S^2} \delta^2(\zeta - \zeta') f(\zeta') dS^2 = f(\zeta) \) for all spin weight +2 functions \(f \) (see for the treatment of \(\delta \) functions in the context of spin-\(s \) spherical harmonics). These are the fundamental commutation relations for the data on \(I^+ \). Since all the other operators are constructed via their functional dependence on the data, these commutation relations are critical to obtaining the commutation relations between the interesting geometrical operators.

B. Quantum hypersurfaces

We now present a construction that extends the quantization available at \(I^+ \) into the interior of the spacetime. In a rather non-standard fashion, we proceed to the quantization of hypersurfaces and spacetime points, instead of the more traditional approach of quantizing the metric fields or connections. This construction is based on the null-surface formulation of GR and a (classical) dynamical prescription to specify a location in the interior manifold. In Section 1, we had two dynamical prescriptions, with different meanings: Equation (3), \(\theta = \theta(x^a, \zeta, [\sigma]) \), for which for given \(x^a, \zeta \) and \(\sigma \) define four null-geodesic quantities; or Equation (4), \(x^a = x^a(\theta^i, \zeta, [\sigma]) \), which for given values of \(\theta^i \) and \(\zeta \) (fixed \(\sigma \)) locates an interior spacetime point.

Both alternatives require the explicit expression for the function \(Z(x^a, \zeta, [\sigma]) \), obtained in Section 2 (14). \(Z \) can be viewed as describing null hypersurfaces of the spacetime by setting \(Z(x^a, \zeta, [\sigma]) = \text{const.} \). Therefore, we will first develop the formal quantization of \(Z(x^a, \zeta, [\sigma]) \), without attempting to give it a meaning immediately.

We define the operator \(\hat{Z} \) by simple substitution, in (14), of the classical variables \(\sigma \) with their quantum analogs \(\hat{\sigma} \); i.e.,

\[
\hat{Z}(x^a, \zeta) \equiv Z(x^a, \zeta, [\hat{\sigma}])
= Z_0(x^a, \zeta) \hat{1} + \int_{S^2} \left(\bar{\delta}^2 G(\zeta, \eta) \hat{\sigma}(Z_0(x^a, \eta, \eta) + \delta^2 G(\zeta, \eta) \hat{\sigma}(Z_0(x^a, \eta, \eta)) \right) d^3S_\eta
\]

The operator \(\hat{Z} \) is manifestly linear in the free data \(\hat{\sigma} \). The free-data commutation relations (14) imply the following integral representation of the commutation relations for \(\hat{Z} \)

\[
[\hat{Z}, \hat{Z}'] \equiv [\hat{Z}(x^a, \zeta), \hat{Z}(x'^a, \zeta')]
= -2\pi i \hbar \int_{S^2} \left(\bar{\delta}_\eta^2 G(\zeta, \eta) \delta^2 G(\zeta', \eta) + \delta^2 G(\zeta, \eta) \bar{\delta}_\eta^2 G(\zeta', \eta) \right) \Delta(y, \ell(\eta)) d^3S_\eta \hat{1}
\]
where we use the notation $v \cdot w \equiv v^a \eta_{ab} u^b$ for vectors v^a and u^a on Minkowski space, $y^a \equiv x^a - x'^a$ and the vector ℓ^a was introduced in equation (14).

The commutator $[\hat{Z}, \hat{Z}']$ is symmetric under interchange of only ζ with ζ' and antisymmetric under interchange of only x^a with x'^a. The latter antisymmetry implies that $[\hat{Z}, \hat{Z}]$ and its ζ derivatives vanish identically, a property that has important consequences in the following two subsections.

The evaluation of the commutator (18) in closed form is a cumbersome calculation. In the case of timelike y^a the closed-form commutator is:

$$[\hat{Z}, \hat{Z}'] = -2\pi i \hbar \left(\ell \cdot \ell' \ln(\ell \cdot \ell') + \frac{1}{3} - \frac{1}{6} \ell \cdot \ell' \right) \Delta(y^0 - y'^0) \hat{1}$$

where x^0 and x'^0 are the time components of x^a and x'^a respectively. The calculation follows essentially the same steps as in the analogous case of Maxwell fields, which we include in Appendix A.4. This calculation is considerably simpler than the case of spacelike separation because, in the timelike case, the step function $\Delta(y^0)$ takes a constant value on the sphere ($+1$ if y^0 is future pointing, or -1 if y^0 is past pointing). If the step function changes sign on the sphere, as in the spacelike case, there is a non-vanishing line integration on the boundary where the sign change takes place. This line integral becomes lengthy and cumbersome (though straightforward) to evaluate (see Appendix A.4 for a very similar calculation in the case of Maxwell fields). Though this calculation has not yet been completed, it is not clear that the closed form will shed light on the discussion that follows.

In the remainder of this section, we turn our attention to the interpretations of two of the several alternate quantum descriptions which arise from the fact that Z is quantized.

C. Quantum lightcone cuts and associated geometric quantities

Consider Eqs. (3). At the classical level, they define four geometric quantities associated with null surfaces (see Section I). In the linearization, they are explicitly given by

$$u = Z_0 + Z_1 = x^a \ell^a_a + Z_1(x^a, \zeta, [\sigma])$$

$$\omega = \partial Z_0 + \partial Z_1 = x^a m_a + \partial Z_1(x^a, \zeta, [\sigma])$$

$$\bar{\omega} = \partial \bar{Z}_0 + \partial \bar{Z}_1 = x^a \bar{m}_a + \partial \bar{Z}_1(x^a, \zeta, [\sigma])$$

$$R = \partial \bar{Z}_0 + \partial \bar{Z}_1 = x^a(n_a - \ell_a) + \partial \bar{Z}_1(x^a, \zeta, [\sigma])$$

where $m_a \equiv \partial \ell_a, n_a \equiv \partial \bar{\ell}_a + \ell_a$, or

$$\theta^i = x^a \lambda^i_a(\zeta) + \theta^i_1(x^a, \zeta, [\sigma])$$

where $\theta^i_1(x^a, \zeta, [\sigma]) \equiv (Z_1, \partial Z_1, \partial \bar{Z}_1, \partial \bar{Z}_1)$ and $\lambda^i_a(\zeta) \equiv (\ell_a, m_a, \bar{m}_a, n_a - \ell_a)$. For future reference we recall that the four vectors $\ell_a, m_a, \bar{m}_a, n_a$ satisfy $\ell_a n^a = -m_a \bar{m}^a = 1$, while the remaining scalar products among any two of them are zero. Furthermore, $n^a + \ell^a = \sqrt{2} Z_0^a$.

We now define a set of quantum operators, in the following way

$$\hat{\theta}^i(x^a, \zeta) \equiv \theta^i(x^a, \zeta, [\sigma])$$

Explicit expressions of these in terms of the data can be obtained from (24) and (14), namely

$$\hat{u} \equiv x^a \ell_a(\zeta) \hat{1} + Z_1(x^a, \zeta, [\sigma])$$

$$\hat{\omega} \equiv x^a m_a(\zeta) \hat{1} + \partial Z_1(x^a, \zeta, [\sigma])$$

$$\hat{\bar{\omega}} \equiv x^a \bar{m}_a(\zeta) \hat{1} + \partial \bar{Z}_1(x^a, \zeta, [\sigma])$$

$$\hat{R} \equiv x^a(n_a(\zeta) - \ell_a(\zeta)) \hat{1} + \partial \bar{Z}_1(x^a, \zeta, [\sigma])$$

They are manifestly linear in $\hat{\sigma}$.

$\hat{\theta}^i(x^a, \zeta)$ constitute a set of four quantum operators depending on (x^a, ζ). Therefore, in this picture, the interior points x^a are considered as c-numbers, whereas $\hat{\theta}^i$, the geometric structures at I^+, are quantum variables, subject to possible fluctuations.

The commutator $[\hat{u}, \hat{u}'] \equiv [\hat{u}(x^a, \zeta), \hat{u}(x'^a, \zeta')]$ is simply $[\hat{Z}, \hat{Z}']$, obtained earlier; i.e., Equation (18). The other commutators $[\hat{\theta}^i, \hat{\theta}^j] \equiv [\hat{\theta}^i(x^a, \zeta), \hat{\theta}^j(x'^a, \zeta')]$ can be obtained by differentiation of $[\hat{Z}, \hat{Z}']$:
It can be inferred from (18) that these commutators are, generically, non-vanishing functions of x^a, x'^a, ζ and ζ' (the closed forms are lengthy and complicated). The immediate consequence of the non-vanishing of the commutators is that the four geometric operators θ^i do not have a complete set of common eigenstates. Furthermore, since a generic state is not an eigenstate of any of the four operators, in a generic state, all four geometric quantities will fail to have well-defined values. In this sense, the lightcone cut (u), its curvature (R) and the angle of emittance (ω) of the null geodesics at I^+ are “fuzzy”.

D. Quantum spacetime points

We now consider the “dual” picture, which arises from the inversion (3). Classically, the lightcone cut interior spacetime point which can be reached from I^+ by specifying the values of: i) the observation point (u, ζ) at I^+, ii) the angle ω of the null geodesic emitted inwardly from (u, ζ), aimed at x^a, and iii) the focusing distance R along the null geodesic (u, ζ, ω) at which the point x^a is located. The linearized version of (1) can be obtained from (24) in the form

$$x^a(\theta^k, \zeta, [\sigma]) = \lambda^a_i(\zeta) \theta^i - \lambda^a_i(\zeta) \hat{\theta}^i(\lambda^a_i(\zeta)\theta^j, \zeta, [\sigma]),$$

where by $\lambda^a_i(\zeta)$ we denote the inverse matrix to $\lambda^a_i(\zeta)$, namely $\lambda^a_i(\zeta)\lambda^a_i(\zeta) = \delta^i_j$, explicitly given by

$$\lambda^a_i(\zeta) = (\lambda^a_0, \lambda^a_1, \lambda^a_2, \lambda^a_3) = (n^a + t^a, -\bar{m}^a, -\bar{m}^a, -\bar{m}^a) .$$

We now define the operators associated with the spacetime points x^a as

$$\tilde{x}^a(\theta^i, \zeta) \equiv x^a(\theta^i, \zeta, [\bar{\sigma}]) = \lambda^a_i(\zeta) \theta^i - \lambda^a_i(\zeta) \hat{\theta}^i(\lambda^a_i(\zeta)\theta^j, \zeta, [\bar{\sigma}])$$

and obtain a quantized description of the interior spacetime points x^a. Now the surface quantities θ^i remain c-numbers. $\tilde{x}^a(\theta^i, \zeta)$ constitute a set of four operators dependent on the six parameters (θ^i, ζ).

Since the spacetime-point operators \tilde{x}^a are functions of the fundamental operators $\hat{\sigma}$, they also are subject to commutation relations $[\tilde{x}^a, \tilde{x}^b] \equiv [\tilde{x}^a(\theta^i, \zeta), \tilde{x}^b(\theta^i, \zeta')]$ which can be derived from $[\hat{\sigma}, \hat{\sigma}']$. The commutators are

$$[\tilde{x}^a, \tilde{x}^b] = \lambda^a_i \lambda^b_j [\theta^i_1(\lambda^b_j \theta^k, \zeta, [\bar{\sigma}]), \theta^i_1(\lambda^a_i \theta^k, \zeta', [\bar{\sigma}])],$$

where the commutators $[\theta^i_1(\lambda^b_j \theta^k, \zeta, [\bar{\sigma}]), \theta^i_1(\lambda^a_i \theta^k, \zeta', [\bar{\sigma}])]$ are found from (18) by using (30). Explicitly, we have

$$[\tilde{x}^a, \tilde{x}^b] = 2\delta^a_i \delta^b_i [\hat{Z}, \hat{Z}] + \sqrt{2}\delta^a_i \ell^b \hat{\sigma} \hat{\sigma}' [\hat{Z}, \hat{Z}'] - \sqrt{2}\delta^b_i \sqrt{\ell^b} \hat{\sigma} \hat{\sigma}' [\hat{Z}, \hat{Z}'] - \sqrt{2}\delta^a_i \sqrt{\ell^a} \hat{\sigma} \hat{\sigma}' [\hat{Z}, \hat{Z}]$$

$$\quad + \sqrt{2}\delta^a_i \delta^b_i \sqrt{\ell^a} \hat{\sigma} \hat{\sigma}' [\hat{Z}, \hat{Z}] - \sqrt{2}\delta^a_i \sqrt{\ell^a} \hat{\sigma} \hat{\sigma}' [\hat{Z}, \hat{Z}] - \sqrt{2}\delta^b_i \sqrt{\ell^b} \hat{\sigma} \hat{\sigma}' [\hat{Z}, \hat{Z}']$$

$$\quad - \sqrt{2}\delta^b_i \delta^a_i \sqrt{\ell^b} \hat{\sigma} \hat{\sigma}' [\hat{Z}, \hat{Z}'] - \sqrt{2}\delta^b_i \delta^a_i \sqrt{\ell^a} \hat{\sigma} \hat{\sigma}' [\hat{Z}, \hat{Z}] + \sqrt{2}\delta^b_i \delta^a_i \sqrt{\ell^b} \hat{\sigma} \hat{\sigma}' [\hat{Z}, \hat{Z}] + \sqrt{2}\delta^b_i \delta^a_i \sqrt{\ell^a} \hat{\sigma} \hat{\sigma}' [\hat{Z}, \hat{Z}],$$

where $[\hat{Z}, \hat{Z}]$ is given by (18) evaluated at $x^a = \lambda^a_k \theta^k = u(n^a + \ell^a) + R\ell^a - \omega \bar{m}^a - \bar{\omega} m^a$ and $x'^a = \lambda^a_k \theta^k = u'(n^a + \ell^a) + R'\ell^a - \omega' \bar{m}^a - \bar{\omega}' m^a$. We have thus obtained non-trivial commutators for operators which correspond to the coordinates of spacetime points. A series of conceptual issues arise from the existence of the non-trivial commutators. In this quantum picture, we would like to define the notion of spacetime point. Classically, a spacetime point can be specified by giving a 4-tuple of numbers, the values of the coordinates x^a on a 4-manifold. In the quantum description, however, an operator \tilde{x}^a (fixed a) takes a well-defined value only when acting on an eigenstate and a set of operators (all \tilde{x}^a) have a complete set of simultaneous eigenstates if and only if all pairs mutually commute. Let us explore what kind of an analog of a spacetime point we can construct.

Let us fix the values of the classical parameters $\theta^i; \zeta$. Classically, these define the spacetime point whose coordinates are $x^a_{cl} = x^a(\theta^i; \zeta)$ (see (1)). An important question at this juncture is whether the set of four operators $\tilde{x}^a(\theta^i; \zeta)$ form a commuting set. It can be checked by inspection, setting $\theta^k = \theta^k$ and $\zeta' = \zeta$ in (3), that all four operators
\(\hat{x}^a(\theta^i; \zeta) \) do commute with each other, as a consequence of the vanishing of \([\hat{Z}, \hat{Z}]\) and all its \(\zeta\)-derivatives (see the discussion after (13)). Therefore we can define the quantum analog of a spacetime point as a common eigenstate of the four coordinates \(\hat{x}^a\). Let us denote this eigenstate by \(\{x^a_{\theta^i; \zeta}\}\). Now note that the eigenvalues of the operators \(\hat{x}^a(\theta^i; \zeta)\), which are denoted by \(x^a_{\theta^i; \zeta}\), can in general take a wide range of values and need not be equal to \(x^a_{\theta^i; \zeta}\). Thus, in any state of quantum gravity, there is a “probability of finding” the spacetime point defined by \((\theta^i; \zeta)\) at values other than the classical value \(x^a_{\theta^i; \zeta} = x^a(\theta^i; \zeta)\).

Next let us consider whether all spacetime points can simultaneously be assigned values. This would require that the right hand side of (22) vanish identically. However, if \(\theta^i \neq \theta^k\) and \(\zeta \neq \zeta\), the commutator between two separate spacetime-point operators \(\hat{x}^a\) and \(\hat{x}^b\) is generically non-vanishing. Thus there are no common eigenstates of all the distinct spacetime points, and as a consequence, we have no candidate for a quantum analog of the spacetime manifold.

Another way to see this is that in a common eigenstate of a particular spacetime-point set of operators, only that one point in the manifold is well-defined, while the rest of the manifold becomes “fuzzed” out. In our second quantum picture, then, the interior spacetime is lost as a distinct classical manifold.

On the technical side, the commutators (12) display a singular behavior at the points \(\zeta = \zeta'\), which makes the exploration of the ideas in the preceding paragraph a complicated task. Removal of the \(S^2\)’s degrees of freedom from the commutators has been tried by means of double integration on the sphere, with the unsatisfactory result that the commutators (13) vanish upon integration.

IV. REMARKS

In this final section we will summarize our results and discuss their relevance to the issues of quantum spacetime.

By combining Ashtekar’s asymptotic quantization of the gravitational field with the Null Surface Formulation of GR we have (in the linear version) constructed certain non-standard operators on the quantum state-space. The classical variables (to which these operators correspond) are not, in any conventional sense, the usual or standard field variables: they are families of point sets, specifically, families of three-dimensional surfaces. Though the surfaces are described by functions, it is the surfaces themselves which are fundamentally important, not the numerical values associated with them. Thus, it is not important if the functions that describe the surfaces are “large” or “small” or even whether they “vanish”. From knowledge of these surfaces, all null geodesics, light-cones and the conformal structure of a space-time can be constructed. By analyzing the intersections of these surfaces one could even “pick out” or choose space-time points (3). It is possible to even think of these surfaces as being the primitive elements of the theory with the surface-points and light-cones as derived concepts. One thus sees that the associated operators are not, in any obvious fashion, standard field operators. Instead, we have operators that correspond to null surfaces, null geodesics and field “points”. The novelty of this approach to quantum gravity lies in this feature. It appears to be saying that it is the spacetime itself, i.e., the manifold structure, that is undergoing the quantization process and not, as in the more standard approaches, some metric or connection field.

More specifically, the first and most important of our operators is \(\hat{Z}(x^a, \zeta)\), defined in (17). The classical analog \(Z(x^a, \zeta)\) determines the characteristic surfaces in the NSF. In the “presumed” quantum theory, only the average position of the surfaces (whatever interpretation one might give to that) is determined for any given quantum state, by the expectation value of the operator. The “observed” position can be predicted only probabilistically.

The other operators of the set \(\hat{\theta}^i\), i.e., Eq.(17-29), for asymptotically flat spaces, correspond to simple classical geometric objects, angles at \(I^+\) labelling null geodesics (directions of sight) and curvatures of light-cone cuts (focus distances) at \(I^+\). One again, as quantum operators they are non-conventional; nevertheless “observed” values are probabilistically determined.

The third, and perhaps most interesting, family of operators is given by the “spacetime point” operators \(\hat{x}^a(\theta^i; \zeta)\), defined in (13). Let us discuss an aspect of their classical physical meaning. In order to fix ideas physically, imagine that we wish to describe a gravitational phenomenon localized in a certain spacetime region \(\mathcal{R}\), which we consider to be small. Consider the classical quantities \(x^a(\theta^i; \zeta) = x^a(u, \omega, R; \zeta; \{\text{data}\})\). The three independent variables \(u, \zeta\) determine a point on future (null) infinity \(I^+\). Recall that \(\zeta\) coordinates the celestial sphere, and \(u\) the Bondi time. One may think of \(u, \zeta\) as labeling asymptotic observers. Imagine that these observers look into the region \(\mathcal{R}\). Each of them can vary the direction of sight, labelled by the independent variable \(\omega\). Finally, using a focussing distance labelled by the variable \(R\) each of them can determine the distance to a point in \(\mathcal{R}\). Thus, the set \((u, \omega, R; \zeta)\) determines the locations of observers and the direction of sight and focus distance of their observations, looking into \(\mathcal{R}\) from a surrounding region. Now, since the trajectories of light rays are determined by the gravitational field, the actual point \(x^a\) seen by the observer at \((u, \zeta)\) looking at a distance \(R\) in the direction \(\omega\) depends on the gravitational field. For a given spacetime, the quantities \(x^a(u, \omega, R; \zeta; \{\text{data}\})\) determine this point.
It is a rather remarkable fact that these quantities, $x^a = x^a(u, \omega, R; \zeta; \{data\})$, specify the conformal space-time geometry uniquely. Let us describe them in slightly more detail before returning to the quantum case. Consider the 6-dimensional “observation space” defined by the three coordinates (u, ζ) of an observer’s position on \mathcal{I}^+, the two angles of observation, ω, and the focus distance R. On this observation space consider a four parameter family of two dimensional surfaces, topologically S^2 – each two-surface will be referred to as a leaf and the leaves foliate the observation space. Our equations $x^a = x^a(u, \omega, R; \zeta)$ are precisely of this form, i.e., each spacetime point x^a is equivalent to a leaf. (Notice furthermore, that it is the family of leaves that defines the space-time points geometrically even if we change the gauge arbitrarily to $y^a = f^a(x^b)$.) Physically, this amounts to saying that a spacetime point can be viewed as the collection of points in observation space, i.e., (locations, directions of sight, focus-distances) from which surrounding observers see it. Remarkably, this foliation by the equivalence classes of points in the observation space that “see” the same space-time point is equivalent to giving the conformal pseudo-Riemannian geometry $\hat{\mathcal{R}}$.

In the quantum domain, it is worth asking what validity this picture might have even when the spacetime geometry undergoes “quantum fluctuations”. The equations that define the leaves become operator equations, i.e. $\hat{x}^a = x^a(u, \omega, R; \zeta; \{data\})$. Now imagine that we are in the realm of quantum gravity. Then it is difficult to imagine how we could identify points physically inside $\hat{\mathcal{R}}$. However the construction partially survives. The “observation space” remains classical and hence we still have a family of observers surrounding \mathcal{R} and looking in: specifically, the observers’ locations, their directions of sight and focus distances are still labelled by the classical parameters $(u, \omega, R; \zeta)$. What changes is that for a fixed quantum state, we will not have a sharply defined value for the operator \hat{x}^a (the leaf) - except when it is in an eigenstate - but only a probability distribution of values. We are thus lead to a “fuzzy” nature to quantum space-time points by this asymptotic construction. Note thus that the question of whether two observations $(u, \omega, R; \zeta)$ and $(u', \omega', R'; \zeta')$ “see” the same point can only be determined probabilistically.

As we just mentioned, there are equivalence classes (topological 2-spheres) of observation points, i.e. points in the 6-dimensional observation space, which correspond to the same spacetime point. In the quantum theory, we could raise the following question: Are there sets of observation points which are equivalent in the above sense, i.e. define the “same” \hat{x}^a? While we have no conclusive answers yet, there are possible directions in which to explore this question. For example, we could consider a collection of observation points to be “equivalent” if the corresponding spacetime point operators mutually commute. Weaker alternatives would be to look for sets of $(u, \omega, R; \zeta)$ such that the $\hat{x}^a = x^a(u, \omega, R; \zeta; \{data\})$ possess some common eigenstates with the same eigenvalues, or the same expectation values in some quantum states. These are only some of the questions that remain to be thought about and explored.

Finally, the algebraic structure of the “quantum spacetime” defined in this way is characterized by the commutation relations between the spacetime point operators. These are given in (25). We suspect that some relevant physical or mathematical result is hidden in these relations; but we have not been able, so far, to get to a fully convincing understanding of them. Two ideas may be relevant in this context. First, as the classical dynamics of a particle is fully determined by its gravitational interactions, one is tempted to speculate that its quantum properties can be derived from quantum geometry as well, and therefore might be hidden in (25). Second, the commutation relations (25) could be relevant to the present efforts towards understanding quantum spacetime in terms of noncommutative geometry (26). In that context, the commutative algebra of smooth functions over the manifolds is replaced by some noncommutative algebra, but it is difficult to find guidelines for guessing this noncommutative algebra. The commutation relations (25) define a noncommutative algebra that, if the Planck constant goes to zero, is equivalent to the commutative algebra of smooth functions over the manifold. Notice that this noncommutative algebraic structure is not assumed here, rather, it is derived from quantum general relativity. We leave the analysis of these suggestions for future investigations.

Notice that the picture of quantum gravity presented here is very far from conventional local quantum field theory where one assumes that physical points and the spacetime manifold are well defined to start with. It is therefore also very far from any approach to quantum gravity based on conventional quantum field theoretical ideas.

ACKNOWLEDGMENTS

We would like to thank Abhay Ashtekar for helpful discussions. This research was supported in part by the National Science Foundation under grants No. PHY 89-04035 and PHY 92-05109.
APPENDIX A: ASHTEKAR’S ASYMPTOTIC QUANTIZATION OF THE FREE MAXWELL FIELD
AND APPLICATIONS

In the main text, we are interested in the asymptotic quantization of linearized GR. Since the asymptotic phase spaces of GR and the free Maxwell theory are very similar, in this appendix we describe the asymptotic quantization of the free Maxwell field. The quantization follows very closely the usual construction of the Maxwell Fock space for initial data on a Cauchy surface [13]. Our aim here is to derive the standard covariant commutation relations between the Maxwell tensor in the interior at two different spacetime points, from the commutation relations on the asymptotic fields, which themselves are represented on a Hilbert space. Our description of linearized GR in the main text is completely analogous to this. (In fact, in the absence of IR sectors, we simply make the substitution $A \leftrightarrow \sigma$ and $E \leftrightarrow N$.)

The material in Appendices A1 and A2 is quite well-known and is simply Ashtekar’s asymptotic quantization of the Maxwell field and GR [3]. We present it here for the sake of completeness. We differ from [3] in one notable detail, namely the definitions of the distributional field operators [A21]-[A22]. Finally, in Appendices A3 and A4 we construct respectively, an integral representation and then the closed form of the covariant commutation relations for the Maxwell field.

1. Phase space and algebra of observables

Let γ denote the connection field in the interior of Minkowski space. The Maxwell tensor is then obtained by $F_{ab} = 2\nabla_{[a}\gamma_{b]}$. On \mathcal{I}^+, with null generators n^a, we define $A_a := \gamma_a$ as the restriction of γ to \mathcal{I}^+, and $E_a := \partial A_a/\partial u = L_n A_a$, the electric field on \mathcal{I}^+.

The space of solutions to Maxwell’s equations is a linear phase space Γ, and we can introduce as coordinates on Γ the electric fields $E_a(u, \zeta)$ on \mathcal{I}^+. Note that $E_a(u, \zeta)$ is a gauge invariant quantity, and it is normal to the null generators of \mathcal{I}^+, namely $E_a(u, \zeta)n^a = 0$. Thus $E_a(u, \zeta)$ is completely defined by the complex scalar $E(u, \zeta) = -m^a E_a(u, \zeta)$; i.e., $E_a(u, \zeta) = Em_a + \bar{E}m_a$.

For the purposes of easing later calculations, let us introduce some new notation [14]. Let α, β, γ be infinite dimensional abstract indices on Γ which take values in the continuous set $(u, \zeta) \in \mathcal{I}^+$. Thus, $\{\delta/\delta E(u, \zeta)\}_\alpha, (\delta/\delta \bar{E}(u, \zeta))_\alpha\}$ (respectively $\{\mathcal{D}_\alpha E(u, \zeta), \mathcal{D}_\alpha \bar{E}(u, \zeta)\}$) is a complex vector (covector) coordinate basis on Γ (since Γ is a linear space, we do not make a distinction between Γ and its tangent space at a point). Thus, for example, a complex scalar field on \mathcal{I}^+ is a vector V^α in Γ, with “components” $(V(u, \zeta), \bar{V}(u, \zeta))$. In the index notation we have introduced, a vector is represented by $V^\alpha = \int_{\mathcal{I}^+} du dS^2 (V(u, \zeta)(\delta/\delta E(u, \zeta))_\alpha + \bar{V}(u, \zeta)(\delta/\delta \bar{E}(u, \zeta))_\alpha)$. We follow the abstract index “summation” convention, which, in our case, since the index takes a continuum of values, leads to an integral. The action of a covector $W_\alpha = \int_{\mathcal{I}^+} du dS^2 (W(u, \zeta)\mathcal{D}_\alpha E(u, \zeta) + \bar{W}(u, \zeta)\mathcal{D}_\alpha \bar{E}(u, \zeta))$ on a vector V^α is given by

$$W_\alpha V^\alpha = \int_{\mathcal{I}^+} du dS^2 (V(u, \zeta)W(u, \zeta) + \bar{V}(u, \zeta)\bar{W}(u, \zeta)). \quad (A1)$$

In this notation, the symplectic structure on the phase space Γ is given by

$$\Omega_{\alpha\beta} = \frac{1}{2\pi} \int \int_{\mathcal{I}^+} du dS^2 du' dS^{2'} \delta^2(\zeta - \zeta')\Delta(u - u') \mathcal{D}_\alpha E(u, \zeta) \mathcal{D}_\beta \bar{E}(u', \zeta'), \quad (A2)$$

where $\Delta(u) = 1/2\text{sgn}(u)$ is the skew-symmetric antiderivative of $\delta(u)$, so that $\delta(u) = \partial\Delta(u)/\partial u$. Note that the symplectic structure is a constant real two-form on Γ, and its action $\Omega(V, W)$ on two vectors V^α and W^α is given by

$$\Omega_{\alpha\beta} V^\alpha W^\beta = \frac{1}{2\pi} \int \int_{\mathcal{I}^+} du dS^2 du' dS^{2'} \delta^2(\zeta - \zeta')\Delta(u - u') \left(V(u, \zeta)\bar{W}(u', \zeta') - \bar{V}(u', \zeta')W(u, \zeta) \right). \quad (A3)$$

There are two other naturally defined constant tensors on Γ which are useful. Since the electric fields on \mathcal{I}^+ are orthogonal to the null generators of \mathcal{I}^+, the (degenerate) metric on \mathcal{I}^+ defines a non-degenerate metric tensor on Γ itself:

$$Q_{\alpha\beta} = \int \int_{\mathcal{I}^+} du dS^2 du' dS^{2'} \delta^2(\zeta - \zeta') \delta(u - u') \left(\mathcal{D}_\alpha E(u, \zeta) \mathcal{D}_\beta \bar{E}(u', \zeta') + \mathcal{D}_\alpha \bar{E}(u, \zeta) \mathcal{D}_\beta E(u', \zeta') \right)$$

$$= 2 \int_{\mathcal{I}^+} du dS^2 \mathcal{D}_\alpha E(u, \zeta) \mathcal{D}_\beta \bar{E}(u, \zeta), \quad (A4)$$

$$f_{\alpha\beta} = \frac{1}{2\pi} \int \int_{\mathcal{I}^+} du dS^2 du' dS^{2'} \delta^2(\zeta - \zeta') \delta(u - u') \left(\mathcal{D}_\alpha E(u, \zeta) \mathcal{D}_\beta \bar{E}(u', \zeta') + \mathcal{D}_\alpha \bar{E}(u, \zeta) \mathcal{D}_\beta E(u', \zeta') \right)$$

$$= \frac{1}{2\pi} \int_\mathcal{I}^+ du dS^2 \mathcal{D}_\alpha E(u, \zeta) \mathcal{D}_\beta \bar{E}(u, \zeta). \quad (A5)$$

$$g_{\alpha\beta} = \frac{1}{2\pi} \int \int_{\mathcal{I}^+} du dS^2 du' dS^{2'} \delta^2(\zeta - \zeta') \delta(u - u') \left(\mathcal{D}_\alpha \bar{E}(u, \zeta) \mathcal{D}_\beta \bar{E}(u', \zeta') + \mathcal{D}_\alpha \bar{E}(u, \zeta) \mathcal{D}_\beta E(u', \zeta') \right)$$

$$= \frac{1}{2\pi} \int_\mathcal{I}^+ du dS^2 \mathcal{D}_\alpha \bar{E}(u, \zeta) \mathcal{D}_\beta \bar{E}(u, \zeta). \quad (A6)$$

$$\tilde{g}_{\alpha\beta} = \frac{1}{2\pi} \int \int_{\mathcal{I}^+} du dS^2 du' dS^{2'} \delta^2(\zeta - \zeta') \delta(u - u') \left(\mathcal{D}_\alpha \bar{E}(u, \zeta) \mathcal{D}_\beta \bar{E}(u', \zeta') + \mathcal{D}_\alpha \bar{E}(u, \zeta) \mathcal{D}_\beta E(u', \zeta') \right)$$

$$= \frac{1}{2\pi} \int_\mathcal{I}^+ du dS^2 \mathcal{D}_\alpha \bar{E}(u, \zeta) \mathcal{D}_\beta E(u, \zeta). \quad (A7)$$

$$\tilde{Q}_{\alpha\beta} = \frac{1}{2\pi} \int \int_{\mathcal{I}^+} du dS^2 du' dS^{2'} \delta^2(\zeta - \zeta') \delta(u - u') \left(\mathcal{D}_\alpha \bar{E}(u, \zeta) \mathcal{D}_\beta \bar{E}(u', \zeta') + \mathcal{D}_\alpha \bar{E}(u, \zeta) \mathcal{D}_\beta \bar{E}(u', \zeta') \right)$$

$$= \frac{1}{2\pi} \int_\mathcal{I}^+ du dS^2 \mathcal{D}_\alpha \bar{E}(u, \zeta) \mathcal{D}_\beta \bar{E}(u, \zeta). \quad (A8)$$

11
whose action on two vectors V^α and W^α is given by
\[Q_{\alpha\beta} V^\alpha W^\beta = \int_{I^+} du dS^2 \left(V(u, \zeta) \hat{W}(u, \zeta) + \hat{V}(u, \zeta) W(u, \zeta) \right), \tag{A5} \]

Next, consider the linear operator corresponding to the u derivative of fields on I^+: $\hat{V}(u, \zeta) \equiv \partial V(u, \zeta)/\partial u$. This is a $(1, 1)$ tensor, defined by
\[T^{\alpha\beta} V^\beta := \hat{V}^\alpha \equiv \int_{I^+} du dS^2 (\hat{V}(u, \zeta)(\delta/\delta E(u, \zeta))^\alpha + \hat{V}(u, \zeta)(\delta/\delta \bar{E}(u, \zeta))^\alpha). \tag{A6} \]

It is straightforward to check that the u derivative operator satisfying (A6) can be written as
\[T^{\alpha\beta} = \int \int_{I^+} du dS^2 du' dS'^2 \delta^2(\zeta - \zeta') \frac{\partial}{\partial u'} \delta(u - u') \left(\left(\frac{\delta}{\delta E(u, \zeta)} \right)^\alpha \bar{d}_\beta E(u', \zeta') + \left(\frac{\delta}{\delta \bar{E}(u, \zeta)} \right)^\alpha d_\beta E(u', \zeta') \right). \tag{A7} \]

In relation to the analogy with the linearized NSF of GR, we are interested in considering the connections as characteristic free data on I^+, rather than the electric fields. The connections are now determined, with respect to the electric fields, as the corresponding elements $A^\alpha = \int_{I^+} du dS^2 (A(u, \zeta)(\delta/\delta E(u, \zeta))^\alpha + \bar{A}(u, \zeta)(\delta/\delta \bar{E}(u, \zeta))^\alpha)$ of Γ such that
\[E^\alpha = T^{\alpha\beta} A^\beta. \tag{A8} \]

Defined in this way, the connections are completely determined by a single complex scalar field $A(u, \zeta)$. This single complex scalar is related to the standard real A_a (introduced earlier) by $A = -m^a A_a$ and represents the two degrees of freedom of the Maxwell fields. In order to stay away from infra-red sectors, the remaining component of A_a is chosen to vanish, namely $A_a n^a = 0$ (in this gauge, the Maxwell connection is equivalently represented by either A_a or A). Note that $T^{\alpha\beta}$ is degenerate, since it annihilates fields which do not depend on u: thus, it has no unique inverse. However, the ambiguity in defining A^α by (A8) is precisely the remaining gauge freedom, that of an additive field which depends only on ζ.

The three tensors $\Omega_{\alpha\beta}, Q_{\alpha\beta}, T^{\alpha\beta}$ on Γ are not all independent. In order to derive the relation between them, note first that the inverse $\Omega^{\alpha\beta}$ of the symplectic structure, defined by $\Omega^{\alpha\beta} \Omega_{\beta\gamma} = \Pi^{\alpha\gamma}$ is given by
\[\Omega^{\alpha\beta} = 4 \pi \int \int_{I^+} du dS^2 du' dS'^2 \delta^2(\zeta - \zeta') \frac{\partial}{\partial u'} \delta(u - u') \left(\left(\frac{\delta}{\delta E(u, \zeta)} \right)^\alpha \left(\frac{\delta}{\delta \bar{E}(u, \zeta)} \right)^\beta \right), \tag{A9} \]

and that the inverse of the metric (A4) is given by
\[Q^{\alpha\beta} = 2 \int_{I^+} du dS^2 \left(\frac{\delta}{\delta E(u, \zeta)} \right)^\alpha \left(\frac{\delta}{\delta \bar{E}(u, \zeta)} \right)^\beta. \tag{A10} \]

Now, combining Eqs. (A7), (A9) and (A10), a short calculation shows that
\[\Omega^{\alpha\beta} = 2\pi T^{\alpha\gamma} Q^{\beta\gamma}. \tag{A11} \]

This relationship will be useful later for defining distributional operators corresponding to the connections.

We now want to construct the Poisson-bracket algebra of elementary functions on the phase space, which are to be represented in the quantum theory by quantum operators. Since the phase space is a linear space, it will be most convenient to consider the space of all (sufficiently smooth) linear functions on Γ, together with the constant functions. This space can be parametrized in the following manner. Let $S \subset \Gamma$ be the space of complex covector test fields on I^+. Let $V^\alpha \in S$, and define a function F_V on Γ, whose value, evaluated at the point $E^\alpha \in \Gamma$ is given by
\[F_V[E] := \Omega_{\alpha\beta} E^\alpha V^\beta. \tag{A12} \]

This is a linear function on Γ. Its gradient is given by $\nabla_\alpha F_V = \Omega_{\alpha\beta} V^\beta$. The Poisson bracket between any two such functions is
\[\{ F_V[E], F_W[E] \} \equiv \Omega^{\alpha\beta} \nabla_\alpha F_V \nabla_\beta F_W = -\Omega_{\alpha\beta} V^\alpha W^\beta, \tag{A13} \]
where $\Omega^{\alpha\beta}$ is the inverse of the symplectic structure, defined in (A9). Since the function on the RHS of (A13) is independent of E^α, the algebra is closed under Poisson brackets. This defines the algebra of elementary classical functions.

From the linear functions (A12), the classical distributional electric fields can be obtained via

$$E^\alpha = -\Omega^{\alpha\beta} \frac{\delta}{\delta V^\beta} F_V[E] = -2\pi T^\gamma_{\alpha} Q^{\delta\gamma} \frac{\delta}{\delta V^\beta} F_V[E],$$

where we have used (A11). Comparing (A14) with (A3) and making the same gauge choice for the connection as before, we see that the distributional connection field is given by

$$A^\alpha = -2\pi Q^{\beta\alpha} \frac{\delta}{\delta V^\beta} F_V[E].$$

From (A13) and the definition (A17) of the classical distributional connection field on \mathcal{I}^+, we can obtain the fundamental Poisson bracket between two connections:

$$\{A^\alpha, A^\beta\} = 4\pi^2 Q^{\gamma\alpha} Q^{\delta\beta} \frac{\delta}{\delta V^\gamma} \frac{\delta}{\delta W^\delta} \{F_V[E], F_W[E]\}
\Rightarrow
= 4\pi^2 Q^{\gamma\alpha} Q^{\delta\beta} \Omega_{\gamma\delta}
\Rightarrow
= -4\pi \int_{\mathcal{I}^+} du dS^2 du' dS'^2 \Delta(u-u') \left(\frac{\delta}{\delta E(u,\zeta)} \right)^{[\alpha} \left(\frac{\delta}{\delta E(u',\zeta')} \right)^{\beta]} (A16)$$

On the other hand, in terms of components we have

$$\{A^\alpha, A^\beta\} = \int_{\mathcal{I}^+} du dS^2 du' dS'^2 \{A(u,\zeta), A(u',\zeta')\} \left(\frac{\delta}{\delta E(u,\zeta)} \right)^{\alpha} \left(\frac{\delta}{\delta E(u',\zeta')} \right)^{\beta}
\Rightarrow
+ \{\bar{A}(u,\zeta), \bar{A}(u',\zeta')\} \left(\frac{\delta}{\delta E(u,\zeta)} \right)^{\alpha} \left(\frac{\delta}{\delta E(u',\zeta')} \right)^{\beta}
\Rightarrow
+ 2 \{A(u,\zeta), \bar{A}(u',\zeta')\} \left(\frac{\delta}{\delta E(u,\zeta)} \right)^{[\alpha} \left(\frac{\delta}{\delta E(u',\zeta')} \right)^{\beta]} (A17)$$

By comparing (A16) and (A17) (or more directly) we obtain

$$\{A(u,\zeta), \bar{A}(u',\zeta')\} = -2\pi \Delta(u-u') \delta^2(\zeta-\zeta').$$ (A18a)

and

$$\{A(u,\zeta), A(u',\zeta')\} = \{\bar{A}(u,\zeta), \bar{A}(u',\zeta')\} = 0$$ (A18b)

These are the fundamental distributional Poisson brackets on the data on \mathcal{I}^+.

Let us summarize what we have done so far. First we have shown that the linear space of free data of the Maxwell field can be parametrized by the characteristic data $A(u,\zeta)$ on \mathcal{I}^+. The data satisfies the Poisson bracket relations (A18). From the characteristic data $A(u,\zeta)$, we can obtain the Maxwell fields in the interior of the spacetime (see subsection A3), and their corresponding Poisson brackets. From the point of view of quantization, the characteristic data are not convenient elementary observables, since they correspond to distributions on Γ and cannot be directly represented on a Hilbert space as bounded self-adjoint operators. However, since the phase space is linear, we introduced the space of linear functionals on Γ in a particularly convenient way, as the space of smeared electric fields $F_V[E]$ (Eq. (A12)). These smeared fields satisfy the elementary Poisson bracket relations (A13). From the smeared electric fields $F_V[E]$, the characteristic data $A(u,\zeta)$ can be re-obtained by the functional derivative with respect to the test fields, via (A13).

Now in the quantum theory, the elementary operator algebra that one works with corresponds to the Poisson bracket algebra of the smeared fields. Following Ashtekar [6], in the next subsection we construct a representation of this algebra on an asymptotic Fock space. We are primarily interested in the distributional connections on \mathcal{I}^+, and these can be obtained from the smeared electric field operators via the quantum analog of (A13). The distributional operators corresponding to the Maxwell fields in the interior can be constructed from the distributional connections by analogy with the classical construction (subsection A3).
Hence, to begin with, let us construct the algebra of elementary operators which we wish to represent in the quantum theory. We want to construct operators \(\hat{E}(V) \) corresponding to the classical functions \(F[V] \). These smeared field operators are defined to satisfy the standard commutation relations corresponding to the Poisson brackets (A13)

\[
[E(V), E(W)] = i\hbar [F[V], F[W]] = -i\hbar \Omega_{\alpha\beta} V^\alpha W^\beta i.
\]

As we noted, we are primarily interested in operator valued distributions corresponding to the electric fields and the connections at a point on \(I^+ \). Thus, in analogy with the classical fields (see (A14)), let us define an operator valued distributional electric field \(\hat{E}_\alpha \equiv (\hat{E}(u, \zeta), \hat{\bar{E}}(u, \bar{\zeta})) \) by

\[
\hat{E}_\alpha = -\Omega^{\alpha\beta} \frac{\delta}{\delta V^\beta} \hat{E}(V).
\]

By contracting (A20) with \(\Omega^{\gamma\alpha} V^\gamma \), one can see that the smeared field operators are obtained from the distributional operators in the same manner as the linear functions are smeared with the test fields:

\[
\hat{E}(V) =: \Omega_{\alpha\beta} \hat{E}_\alpha V^\beta.
\]

(Compare (A21) with (A12)).

Similarly, in analogy with (A15), we define an operator valued distribution corresponding to the connection fields as follows:

\[
\hat{A}_\alpha = -2\pi Q^{\alpha\beta} \frac{\delta}{\delta V^\beta} \hat{E}(V).
\]

Using this definition and the commutator (A19), we compute the commutator between the connection operators

\[
[\hat{A}_\alpha, \hat{A}_\beta] = 4\pi^2 Q^{\gamma\alpha} Q^{\delta\beta} \frac{\delta}{\delta V^\gamma} \delta V^\beta \hat{E}(V), \hat{E}(W)] = 4\pi^2 i\hbar 1 Q^{\gamma\alpha} Q^{\delta\beta} \Omega_{\delta\gamma}.
\]

Evaluating the components of \(Q^{\gamma\alpha} Q^{\delta\beta} \Omega_{\delta\gamma} \), as in the classical case, finally leads to

\[
[\hat{A}(u, \zeta), \hat{A}(u', \zeta')] = -2\pi i\hbar \Delta(u - u')\delta^2(\zeta - \zeta') i.
\]

and

\[
[\hat{A}(u, \zeta), \hat{\bar{A}}(u', \zeta')] = [\hat{\bar{A}}(u, \zeta), \hat{\bar{A}}(u', \zeta')] = 0
\]

These are the fundamental free-data commutators [13], on which the commutators for the interior fields are based. They will be of use in subsection A.4. In the following subsection we describe the space of states on which the operators act.

2. Asymptotic Fock space

We are going to construct the (standard) antiholomorphic representation [3] of the free data on \(I^+ \) for the free Maxwell field. Let \(S \subset \Gamma \) be the Schwartz space of complex spin-1 test fields on \(I^+ \). For any \(V(u, \zeta) \in S \), define the Fourier transform

\[
\mathcal{V}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} du V(u) e^{i\omega u},
\]

and the positive frequency part of \(V \)

\[
\mathcal{V}^+(u) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} d\omega \mathcal{V}(\omega) e^{-i\omega u},
\]

where the dependence on \((\zeta, \bar{\zeta}) \) is understood. On \(S \) (or \(S^+ \)), the symplectic structure (A2) can be expressed as

\[
\Omega_{\alpha\beta} = \frac{1}{2\pi} \int d^2S \int_{-\infty}^{\infty} d\omega \frac{1}{i\omega} \mathbf{d}_\alpha \mathbf{E}(\omega, \zeta) \wedge \mathbf{d}_\beta \mathbf{E}(-\omega, \zeta).
\]
On S^+, define a Hermitian inner product
\begin{equation}
\langle \,^+V \,^+W \rangle := \frac{i}{\hbar} \Omega(\overline{V}, \,^+W) = \frac{1}{2\pi \hbar} \int d^2 S \int_0^\infty \frac{d\omega}{\omega} V(\omega, \zeta) \,^+W(\omega, \zeta). \tag{A28}
\end{equation}

By inspection, this is positive definite. Note that it can be written in the more familiar form
\begin{equation}
\langle \,^+V \,^+W \rangle := \mu(V, W) - \frac{i}{2\hbar} \Omega(V, W) \tag{A29}
\end{equation}
where $\mu(V, W) = \frac{1}{\hbar} Im(\,^+V, \,^+W)$ is a real inner product on S.

Let us take the Cauchy completion of S^+ under this inner product; denote it $\mathcal{H} = \overline{S^+}$. As we will see, \mathcal{H} is the one-particle Hilbert space. The inner product (A28) defines a Hermitian metric on \mathcal{H}:
\begin{equation}
G_{\alpha \alpha} \overline{V}^\alpha \,^+W^\alpha := \langle \,^+V \,^+W \rangle. \tag{A30}
\end{equation}

The introduction of this metric will be useful in what follows.

Consider the space $\mathcal{F} = \bigoplus_{n=1}^\infty \otimes S \mathcal{H}^n \oplus \mathbb{C}$, where \otimes_S stands for the symmetric tensor product. This consists of kets of the form $| T \rangle$:
\begin{equation}
| T \rangle = | T_0, T_1^{\alpha_1}, \ldots, T_n^{\alpha_1 \cdots \alpha_n}, \ldots \rangle, \tag{A31}
\end{equation}
where $T_0 \in \mathbb{C}$ and $T_n^{\alpha_1 \cdots \alpha_n} = T_n^{(\alpha_1 \cdots \alpha_n)} \in \otimes \mathcal{H}_n = \mathcal{H} \otimes \mathcal{H} \cdots (n \text{ times}) \otimes \mathcal{H}$ is an element of the symmetric tensor product of n copies of \mathcal{H}.

On this space of states, there is the inner product obtained by extending the inner product on \mathcal{H}:
\begin{equation}
\langle T | W \rangle = \overline{T_0 W_0} + \sum_{n=1}^\infty G_{\alpha_1 \alpha_1} \ldots G_{\alpha_n \alpha_n} \overline{T_1^{\alpha_1} \ldots T_n^{\alpha_1 \cdots \alpha_n}} W_n^{\alpha_1 \cdots \alpha_n}. \tag{A33}
\end{equation}

The Cauchy completion of \mathcal{F} defines the desired asymptotic Fock space.

Now that we have the space of states, let us define the creation and annihilation operators $\hat{c}(\,^+V)$ and $\hat{a}(\,^+V)$ respectively. Given an element $\,^+V \in S^+$, define
\begin{equation}
\hat{c}(\,^+V) \circ | T \rangle := | 0, \,^+V^\alpha T_0, \ldots, \sqrt{n} + 1 \,^+V^{(\alpha} T_n^{\alpha_1 \cdots \alpha_n)}, \ldots \rangle \tag{A34}
\end{equation}
and
\begin{equation}
\hat{a}(\,^+V) \circ | T \rangle := | G_{\alpha_1 \alpha_1} \overline{V}^\alpha T_1^{\alpha_1} \ldots, \sqrt{n} G_{\alpha_n \alpha_n} \overline{V}^\alpha T_n^{\alpha_1 \cdots \alpha_n}, \ldots \rangle. \tag{A35}
\end{equation}

Using (A30), a straightforward calculation shows that these operators satisfy the commutation relations
\begin{equation}
[\hat{a}(\,^+V_1), \hat{c}(\,^+V_2)] = \langle \,^+V_1 | \,^+V_2 \rangle \hat{1}, \tag{A36}
\end{equation}
all other commutators vanishing. One can show that these operators are Hermitian adjoints of each other, i.e.,
\begin{equation}
\hat{a}^\dagger(\,^+V) = \hat{c}(\,^+V). \tag{A37}
\end{equation}

In this representation, let us define the smeared electric field operators
\begin{equation}
\hat{E}(V) := \hbar (\hat{c}(\,^+V) + \hat{a}(\,^+V)). \tag{A38}
\end{equation}

From the commutator (A36), we easily see that

\footnote{The antiholomorphic representation can be easily constructed. For example, the one particle state is represented by
\begin{equation}
\psi_{T_1}[Z] := (Z | T) = G_{\alpha \alpha} Z^\alpha T^\alpha, \tag{A32}
\end{equation}
where $Z^\alpha := \,^+E^\alpha$.}
where we have used the form of the inner product \((A29)\). It follows that the operators we have defined above in \((A38)\) satisfy the desired commutation relations \((A11)\). Furthermore, from the Hermiticity relations \((A37)\) between the creation and annihilation operators, we see that the electric field operators \((A38)\) are themselves Hermitian.

Thus, we have constructed a Hermitian representation of the smeared electric field operators defined in Appendix A1. From these, via Eq. \((A22)\) we can obtain the distributional connection operators \(\hat{\cal A}(u, \zeta)\), which satisfy the commutation relations \((A24)\). Recall that the connections \(A(u, \zeta)\) on \(\cal I^+\) serve as data for the Maxwell fields in the interior of the spacetime. In the next section, we will use the commutation relations \((A24)\) between the distributional connection field operators on \(\cal I^+\) to compute the commutation relations between the field operators in the interior of the spacetime.

3. Integral representations of the covariant commutation relations

The fields in the interior of the spacetime can be reconstructed from knowledge of the fields at \(\cal I^+\). The following is a reconstruction of the Maxwell fields based on the null-surface formulation of the background Minkowski spacetime \([17]\).

In Minkowski space, the intersection of the future lightcone of an interior point \(x^a\) with \(\cal I^+\) is a two-surface \(S^2(x^a)\), denoted as the lightcone cut of \(x^a\). In coordinates \((u, \zeta)\), the lightcone cut of a fixed point \(x^a\) is a two-surface \(u = u(x^a, \zeta)\) in \(\cal I^+\) given by:

\[
u = Z_0(x^a, \zeta) = x^a \ell_a(\zeta) = x^a \eta_{ab} \ell^b,
\]
where \(\ell^b(\zeta)\) is a constant null vector in Minkowski space (see \((A5)\)). At any fixed point, \(\ell^b(\zeta)\) defines the null cone by varying \(\zeta\). \(Z_0\) denotes the \(Z\)-function for Minkowski space.

If the (otherwise free) data \(A(u, \zeta)\) is restricted to the lightcone cut of a particular point \(x^a\), it defines a function \(A_R(x^a, \zeta) = A(Z_0(x^a, \zeta), \zeta)\). By giving asymptotic data \(A_R\) on a lightcone cut, the Maxwell field and connection at the interior point \(x^a\) can be found, essentially by differentiation, from the knowledge of a real non-local superpotential \(F(x^a, \zeta)\) which satisfies the following differential equation on the sphere:

\[
\overline{\partial} \overline{\partial} F = \overline{\partial} A_R(x^a, \zeta) + \overline{\partial} A_R(x^a, \zeta) = D_{\cal I}(x^a, \zeta)[A].
\]

Regular solutions to this equation from given data can be found in integral form

\[
F(x^a, \zeta; [A]) = \int_{S^2} dS^2 G_{\cal M}(\zeta, \eta) D_{\cal M}(x^a, \eta)[A],
\]
where \(dS^2 = -2i d\eta \wedge d\bar{\eta} / (1 + \eta \bar{\eta})^2\) is the area form for \(S^2\). \([A]\) indicates the functional dependence of the solution on the free data, and \(G_{\cal M}(\zeta, \eta)\) is a known Green’s function \([18]\), given by

\[
G_{\cal M}(\zeta, \eta) = \frac{1}{4\pi} \ln \left(\frac{(\zeta - \bar{\eta})(\bar{\zeta} - \eta)}{(1 + \zeta \bar{\zeta})(1 + \eta \bar{\eta})} \right) = \frac{1}{4\pi} \ln(\ell^a(\zeta) \ell_a(\eta)).
\]

Note that any function of only \(x^a\) can be added to \((A42)\) to obtain another solution of \((A41)\) with the same datum. This gauge freedom of the solutions to \((A41)\) is equivalent to leaving free the \(l=0\) term in their spherical-harmonic expansion. The Green’s function \((A43)\) has the property that if \(F\) is given by \((A42)\), then \(\int_{S^2} F = 0\), hence \(F\) has no \(l=0\) term in an expansion in spherical harmonics. Eq. \((A42)\) thus gives an integral representation of the superpotential \(F(x^a, \zeta)\) in the \(l=0\) gauge.

In a general gauge, the Maxwell connection \(\gamma_a(x^c)\) is related to \(F(x^a, \zeta)\) by

\[
\ell^a(\zeta) \nabla_a F(x^c, \zeta) = \ell^a(\zeta) \gamma_a(x^c).
\]
By differentiation of \((A44)\) with respect to \(\zeta\) and by algebraic procedures we can reconstruct \(\gamma_a(x^c)\), and \(F_{ab} = 2 \nabla_{[a} \gamma_{b]}\).

Explicitly:

\[
\gamma_a = \gamma_i \lambda^i_a,
\]
and

\[
F_{ab} = 2 \lambda^i_{[a} \nabla_{b]} \gamma_i,
\]
where, by definition,
\[
\gamma_i \equiv \ell^a \nabla_a F \quad \text{(A47)}
\]
\[
\gamma_+ \equiv -m^a \nabla_a F - \ell^a \nabla_a \delta F = \partial(\ell^a \nabla_a F) \quad \text{(A48)}
\]
\[
\gamma_- \equiv -\bar{m}^a \nabla_a F - \ell^a \nabla_a \bar{\delta} F = \partial(\ell^a \nabla_a F) \quad \text{(A49)}
\]
\[
\gamma_\alpha \equiv -(\alpha_3 - \ell^a) \nabla_a F - m^a \nabla_a \delta F - \ell^a \nabla_a \bar{\delta} F = \partial \bar{\delta}(\ell^a \nabla_a F) \quad \text{(A50)}
\]

and \(\lambda_i(x) \equiv (\ell_m, m_a^a, m_a, n_a - \ell_a), i = 0, +, -, 1\). If \(F(x^\alpha, \zeta)\) satisfies \(\text{(A41)}\), then \(F_{ab}(x^\alpha)\) is automatically a solution to the Maxwell equations \(\nabla^a F_{ab} = 0\). It is worth noticing that our \(l = 0\) gauge implies that the connection \(\gamma_\alpha\) is fixed in the Coulomb gauge, being explicitly given by
\[
\gamma_\alpha = \int_{S^2_\eta} dS^2_\eta \left(\hat{A}(x^b \ell_b(\eta), \eta) \eta_m(\eta) + \hat{A}(x^b \ell_b(\eta), \eta) \eta_m(\eta) \right). \quad \text{(A52)}
\]

We return to the gauge issue at the end of this subsection.

In the quantization, we define the operators simply by replacing the classical variables with their quantum versions, i.e.\(^3\)
\[
\hat{F}(x^\alpha, \zeta; [\hat{A}]) = \int_{S^2_\eta} dS^2_\eta \ G_{S^2_\eta}(\zeta, \eta) \hat{D}_{S^2}(x^\alpha, \eta) [\hat{A}] \quad \text{(A53)}
\]

In the following, we find integral representations of the commutation relations of \(\hat{F}, \hat{\gamma}_a\) and \(\hat{F}_{ab}\) at different values of their arguments. These follow from the fundamental commutators \(\text{(A24)}\) for the free data.

Using the notation \([\hat{F}, \hat{F}'] = [\hat{F}(x^\alpha, \zeta), \hat{F}(x'^\alpha, \zeta')]\), from \(\text{(A53)}\) and \(\text{(A24)}\) we obtain
\[
[\hat{F}, \hat{F}'] = -2 \int_{S^2_\eta} \left(\partial_{\eta} G_{S^2_\eta}(\zeta, \eta) \partial_{\eta'} G_{S^2_\eta}(\zeta', \eta') + \partial_{\eta'} G_{S^2_\eta}(\zeta, \eta) \partial_{\eta} G_{S^2_\eta}(\zeta', \eta') \right) \]
\[
\quad \quad \cdot \ d^2S_\eta d^2S_{\eta'} \quad \quad \text{where} \quad y^\ell(\eta) \equiv y^\ell \ell_a(\eta) \quad \text{and} \quad y'^\alpha \equiv x'^\alpha - x^\alpha. \quad \text{(A54)}
\]

In order to find the commutator of \(\hat{\gamma}_a\), we take two gradients \(\nabla_a \nabla_b\) in the spacetime arguments of \(\text{(A55)}\) and then contract with \(\ell^a(\zeta)\ell^b(\zeta')\) since
\[
\ell^a \ell^b \nabla_a \nabla_b \hat{F} = [\ell^a \nabla_a \hat{F}, \ell^b \nabla_b \hat{F}] = [\ell^a \hat{\gamma}_a, \ell^b \hat{\gamma}_b] = \ell^a \ell^b [\hat{\gamma}_a, \hat{\gamma}_b] \quad \text{(A56)}
\]
\[
\ell^a \ell^b \nabla_a \nabla_b \hat{F} = -8\pi i h \int_{S^2_\eta} \frac{\ell^a(\zeta)\ell^b(\zeta')}{\ell(\zeta)\ell(\zeta')\ell} \Delta(y^\ell(\eta)) \ d^2S_\eta \quad \text{(A55)}
\]

where we use the notation \(\hat{f}(x) = df(x)/dx\). Since the integral in the right-hand side of \(\text{(A57)}\) is not a function of \((\zeta, \zeta')\), then, from \(\text{(A56)}\) and \(\text{(A57)}\), it follows that

\(^3\)We assume, as appears to be done for evolution from Cauchy data, that the operators corresponding to the restrictions of the connections on \(I^+\) to the cuts of \(x^\alpha\) exist on the Fock space.
\[
[\hat{\gamma}_a, \hat{\gamma}'_b] = -8\pi i\hbar \int_{S^2} m(a)m(b)\delta(y \cdot \ell) \, d^2S \quad \hat{1}
\]

(A58)

This is an integral representation of the commutator of \(\hat{\gamma}_a\) at two different points, in the interior of the spacetime. The reason why it does not resemble the standard commutators for the Maxwell connection is that we have not made the standard gauge choice, namely the Lorentz gauge, \(\nabla^a \gamma_a = 0\). Instead, by choosing the superpotential \(F\) as \(\Phi\) we have picked the Coulomb gauge, i.e., \(\nabla^a \gamma_a = 0\) and \(\gamma_0 = 0\). Interestingly, these gauge conditions are consistent with \(\Phi\). Namely, if the operators \(\hat{\gamma}_a\) are constrained by \(\nabla^a \hat{\gamma}_a = 0\) and \(\hat{\gamma}_0 = 0\), then it should also be true that \(\nabla^a \hat{\gamma}_a, \hat{\gamma}'_b = 0\) and \(\hat{\gamma}_0, \hat{\gamma}'_b = 0\). By taking a gradient \(\nabla^a\) and observing that \(m \cdot \ell = 0\), it is straightforward to see that \(\Phi\) implies \(\nabla^a \hat{\gamma}_a, \hat{\gamma}'_b = 0\), whereas \(\hat{\gamma}_0, \hat{\gamma}'_b = 0\) holds trivially, since \(m_a\) has a vanishing timelike component (c.f. equation \(\Phi\)).

4. Closed form commutators

In this section we evaluate in closed form the integral representation of the commutator of the non-local potential \(F(x^a, \zeta),\) Eq. \(\Phi\).

In the first place, we rewrite the integrand into two terms (by “flipping” an \(\partial_\eta\) derivative from the Green’s functions over to the step function \(\Delta\) while keeping the so-called boundary terms):

\[
(\partial_\eta G \partial_\eta G' + \partial_\eta G' \partial_\eta G) \Delta(y \cdot \ell) = \\
\partial_\eta \left((G \partial_\eta G' + G' \partial_\eta G + \bar{R} + \bar{R}') \Delta(y \cdot \ell)\right) - (G \partial_\eta G' + G' \partial_\eta G + \bar{R} + \bar{R}') y \cdot m \delta(y \cdot \ell)
\]

(A59)

where \(\bar{R}\) and \(\bar{R}'\) are assumed to satisfy \(\partial_\eta G = \bar{R}\) and \(\partial_\eta G' = \bar{R}'\), respectively (\(\bar{R}\) and \(\bar{R}'\) are not unique). The integration variable on the sphere is \(\eta\). The other parameters \((y^a, \zeta, \zeta')\), are fixed. With the integrand written in this way, the integral in Eq. \(\Phi\) splits into two terms:

\[
[F, F'] = -2\pi i\hbar \int_{S^2} \partial_\eta \left((G \partial_\eta G' + G' \partial_\eta G + \bar{R} + \bar{R}') \Delta(y \cdot \ell)\right) d^2S - \int_{S^2} (G \partial_\eta G' + G' \partial_\eta G + \bar{R} + \bar{R}') y \cdot m \delta(y \cdot \ell) \, d^2S .
\]

(A60)

The first term is a volume integral on the sphere which can be evaluated by a method that combines Stokes’ theorem and the theorem of residues for complex variable [19]. The second term in \(\Phi\) either vanishes (if \(y \cdot \ell \neq 0\)) or is a line integral, since the integrand has support only on the line defined by \(y \cdot \ell = 0\). These two distinctions correspond to \(y^a\) being timelike or spacelike, respectively.

For timelike future-pointing \(y^a\) the step function \(\Delta(y \cdot \ell)\) takes the constant value \(+1/2\). We will first evaluate \(\Phi\) in this case, and then extend the result to timelike past-pointing \(y^a\) by simply multiplying by an overall minus sign.

The commutator \(\Phi\) is reduced to

\[
[F, F'] = -\pi i\hbar \int_{S^2} \partial_\eta (G \partial_\eta G' + G' \partial_\eta G + \bar{R} + \bar{R}') d^2S .
\]

(A61)

From \(\Phi\), the following are obtained:

\[
\bar{R}(\zeta, \eta) = \frac{1}{4\pi} \frac{\ell(\zeta) \cdot \ell(\eta)}{\ell(\zeta) \cdot m(\eta)} \left(\ln(\ell(\zeta) \cdot \ell(\eta)) - 1\right)
\]

(A62)

and

\[
\partial_\eta G' = \partial_\eta G(\zeta', \eta) = \frac{1}{4\pi} \frac{\ell(\zeta') \cdot m(\eta)}{\ell(\zeta') \cdot \ell(\eta)} .
\]

(A63)

Notice that \(G, \bar{R}\) and \(\partial_\eta G'\) are singular at certain values of \((\eta, \bar{\eta})\). This implies that the integral in \(\Phi\) must be defined by a limiting process; the integral is performed on a domain \(D = S^2 - B\) that excludes small neighborhoods of the singular points, which are eventually shrunk to zero. By Stokes’ theorem, the integral \(\Phi\) on \(D\) can be converted into contour integrations around the singular points. Furthermore, due to the theorem of residues (with an overall minus sign), the contour integrals can finally be evaluated by computing the residues at the simple poles inside \(B\) (\(B\) consists of a disjoint union of neighborhoods around singular points)
In the evaluation by residues, the variables \((\eta, \bar{\eta})\) are considered independent of each other, the singular points that affect the integration being those on the variable \(\bar{\eta}\). We are thus interested in accounting for all the singular points \(\bar{\eta} = \bar{\eta}_k\) which are simple poles, while the variable \(\eta\) is considered fixed, taking the limiting value \(\eta = \eta_k\). Using the explicit expressions of the scalar products between \(\ell^a\) and \(m^a\) [17]

\[
\ell(\zeta) \cdot \ell(\eta) = \frac{(\eta - \zeta)(\bar{\eta} - \bar{\zeta})}{(1 + \zeta \bar{\zeta})(1 + \eta \bar{\eta})},
\]

\[
\ell(\zeta) \cdot m(\eta) = \frac{(\eta - \zeta)(1 + \zeta \bar{\eta})}{(1 + \zeta \bar{\eta})(1 + \eta \bar{\eta})},
\]

we see that the integrand in (A64) is singular at \(\bar{\eta} = \bar{\zeta}, \zeta', -1/\zeta, -1/\zeta'\). These are simple poles. (The apparent pole at \(\bar{\eta} = -1/\eta\) is ignored, since it does not affect the value of the integral.) A careful calculation gives the only non-zero residues

\[
\text{Res} \left(\frac{G\bar{\partial}_a G'}{1 + \eta \bar{\eta}} \right) \bigg|_{\bar{\eta} = \zeta'} = \text{Res} \left(\frac{G'\bar{\partial}_a G}{1 + \eta \bar{\eta}} \right) \bigg|_{\bar{\eta} = \zeta} = \frac{1}{4\pi} \ln(\ell \cdot \ell')
\]

and

\[
\text{Res} \left(\frac{\bar{R}}{1 + \eta \bar{\eta}} \right) \bigg|_{\bar{\eta} = -1/\zeta} = \text{Res} \left(\frac{\bar{R}'}{1 + \eta \bar{\eta}} \right) \bigg|_{\bar{\eta} = -1/\zeta'} = \frac{1}{4\pi}.
\]

Therefore the commutator for the non-local potential \(F\) for future-pointing timelike separation \(y^a\) in closed form is

\[
[F, F'] = 2\pi i\hbar \left(\ln(\ell \cdot \ell') + 1 \right).
\]

Likewise, the commutator for the non-local potential \(F\) for past-pointing timelike separation \(y^a\) in closed form is

\[
[F, F'] = -2\pi i\hbar \left(\ln(\ell \cdot \ell') + 1 \right).
\]

For spacelike separation \(y^a\), the condition \(y \cdot \ell = 0\) defines a closed contour on the sphere. This has two immediate consequences. On one hand, the step function \(\Delta(y \cdot \ell)\) changes sign across the contour, which implies that, in the evaluation by residues, there will be some likely cancellations, depending on whether the poles are all located on the same side or are scattered on both sides of the contour. On the other hand, there is a non-vanishing contour term that needs to be evaluated explicitly, in addition to the contribution of the residues.

We will first evaluate (A60) for spacelike separation of the form

\[
y^a = (t, 0, 0, z).
\]

This has the considerable advantage of orienting the contour \(y \cdot \ell(\eta) = 0\) around the \(z\)-axis; i.e., the contour is a horizontal circle on the sphere, not necessarily at the equator. Once we obtain the result, we will generalize it to an arbitrary spacelike \(y^a\) by means of a general 3-dimensional rotation.

The first term in (A60) consists of a combination of the residues (A66) and (A67), with appropriate signs depending on whether the pole is above or below the contour. The step function \(\Delta\) is negative above the contour. The second term in (A60) requires a cumbersome calculation, which we outline in the following.

Using standard spherical coordinates \((\theta, \phi)\) on \(S^2\), with \(\theta = 0\) at the north pole, the stereographic coordinates are given by \(\eta = \cot(\theta/2)e^{i\phi}\), and the condition \(y \cdot \ell(\eta) = 0\) reads

\[
t - z \cos \theta = 0,
\]

defining a circle at a latitude \(\theta_a\) given by \(\cos \theta_a = t/z\). The second term in (A60) takes the form

\[
\int_{S^2} \left(G\bar{\partial}_a G' + G'\bar{\partial}_a G + \bar{R} + \bar{R}' \right) y \cdot m \delta(y \cdot \ell) d^2S = -\int_0^{2\pi} \left(G\bar{\partial}_a G' + G'\bar{\partial}_a G + \bar{R} + \bar{R}' \right) \frac{2\rho_a}{(1 + \rho_a^2)} e^{-i\phi} d\phi,
\]
where we have used the notation \(\rho_{\theta} \equiv \cot(\theta_{\theta}/2) \). Notice that \(\rho_{\theta} \) increases from 0 at the south pole to \(\infty \) at the north pole, taking the value 1 at the equator. The line integral in (A72) can be written as the following contour integral around the unit circle in the complex plane:

\[
\int_{0}^{2\pi} \left(G\bar{\eta}G' + G'\bar{\eta}G + \bar{R} + R' \right) \frac{2\rho_{\theta}}{(1+\rho_{\theta}^2)} e^{-i\phi} d\phi = \oint_{|v|=1} \left(G\bar{\eta}G' + G'\bar{\eta}G + \bar{R} + R' \right) \frac{2\rho_{\theta}}{(1+\rho_{\theta}^2)} \frac{dv}{iv^2} \equiv I
\]

(A73)

where

\[
G\bar{\eta}G' = \frac{1}{4\pi} \ln \left[\frac{(\rho_{\theta}v - \zeta)(\rho_{\theta}/v - \zeta)}{(1+\rho_{\theta}^2)(1+\zeta)} \right] \frac{(1+\zeta')\rho_{\theta}v}{(\rho_{\theta}/v - \zeta')}
\]

(A74)

and

\[
\bar{R} = \frac{1}{4\pi} \frac{(\rho_{\theta}v - \zeta)}{(1+\rho_{\theta}^2/v)} \left(\ln \left[\frac{(\rho_{\theta}v - \zeta)(\rho_{\theta}/v - \zeta)}{(1+\rho_{\theta}^2)(1+\zeta)} \right] - 1 \right).
\]

(A75)

With (A73) and (A74), the contour integral I is explicitly

\[
I = \frac{\rho_{\theta}}{2\pi i(1+\rho_{\theta}^2)} \oint_{|v|=1} \ln \left[\frac{(\rho_{\theta}v - \zeta)(\rho_{\theta}/v - \zeta)}{(1+\rho_{\theta}^2)(1+\zeta)} \right] \frac{(1+\rho_{\theta}^2)(1+\zeta')}{(\rho_{\theta}/v - \zeta')v} + \ln \left[\frac{(\rho_{\theta}v - \zeta')(\rho_{\theta}/v - \zeta')}{(1+\rho_{\theta}^2)(1+\zeta')} \right] \frac{(1+\rho_{\theta}^2)(1+\zeta)}{(\rho_{\theta}/v - \zeta')v} \frac{dv}{(v+\rho_{\theta}v)}
\]

(A76)

Technically, the contour integral I, Eq. (A76), can not be evaluated by residues as it stands, because of the branch cut of the logarithm at \(v = 0 \). One can rewrite the integrand as a rational function by introducing a parameter \(\tau \) in the argument of the logarithm, and then differentiating with respect to \(\tau \), in the following fashion:

\[
I = J(\tau = 1) = \int_{0}^{1} \frac{dJ(\tau)}{d\tau} d\tau + J(\tau = 0)
\]

(A77)

where \(J(\tau) \) is a generalization of I defined by introducing \(\tau \), for convenience, as

\[
J(\tau) = \frac{\rho_{\theta}}{2\pi i(1+\rho_{\theta}^2)} \oint_{|v|=1} \ln \left[\frac{(\tau \rho_{\theta}v - \zeta)(\tau \rho_{\theta}/v - \zeta)}{(1+\rho_{\theta}^2)(1+\zeta)} \right] \frac{(1+\rho_{\theta}^2)(1+\zeta')}{(\tau \rho_{\theta}/v - \zeta')v} + \ln \left[\frac{(\tau \rho_{\theta}v - \zeta')(\tau \rho_{\theta}/v - \zeta')}{(1+\rho_{\theta}^2)(1+\zeta')} \right] \frac{(1+\rho_{\theta}^2)(1+\zeta)}{(\tau \rho_{\theta}/v - \zeta')v} \frac{dv}{(v+\rho_{\theta}v)}
\]

(A78)

Notice that (A78) is equal to (A73) if \(\tau \) is set equal to 1. On the other hand, if \(\tau \) is set equal to zero then the \(v \)-dependence of the logarithm in the integrand of \(J \) dissapears; consequently the term \(J(\tau = 0) \) in (A77) can be integrated by residues.

The derivative \(dJ/d\tau \) is the following:

\[
\frac{dJ}{d\tau} = \frac{\rho_{\theta}^2}{2\pi i(1+\rho_{\theta}^2)} \oint_{|v|=1} \left(\frac{v}{(\tau \rho_{\theta}v - \zeta)} + \frac{1}{(\tau \rho_{\theta}/v - \zeta)v} \right) \frac{(1+\rho_{\theta}^2)(1+\zeta')}{(\tau \rho_{\theta}/v - \zeta')v} + \left(\frac{v}{(\tau \rho_{\theta}v - \zeta')} + \frac{1}{(\tau \rho_{\theta}/v - \zeta')v} \right) \frac{(1+\rho_{\theta}^2)(1+\zeta)}{(\tau \rho_{\theta}/v - \zeta')v} dv
\]

(A79)

The simple poles that are relevant to the evaluation of \(dJ/d\tau \) as a function of \(\tau \) are

\[
v = \frac{\rho_{\theta}}{\zeta}, \ \ \frac{\rho_{\theta}}{\zeta}, \ \ \frac{\zeta}{\tau \rho_{\theta}}, \ \ \frac{\zeta'}{\tau \rho_{\theta}}, \ \ \frac{\tau \rho_{\theta}}{\zeta}, \ \ \frac{\tau \rho_{\theta}}{\zeta'}, \ \ -\rho_{\theta} \zeta, \ \ -\rho_{\theta} \zeta'.
\]

(A80)

Care must be taken to correctly account for the simple poles that are inside the unit circle at different values of \(\tau \).

After the evaluation by residues, \(dJ/d\tau \) can be seen to be an explicit linear combination of terms of the form \(1/(a + b\tau) \), which can be integrated in \(\tau \) immediately as a logarithmic function. The procedure is rather lengthy but entirely straightforward.

In this way, we have given an outline of the main technical steps necessary to the evaluation of the second term in (A60). By combining the results obtained separately from the first and second terms in (A60), the following final expression for the commutator of the non-local potential \(F \) at spacelike separation \(y^n \) of the form (A70) is obtained, which we present split into four different cases:
• If ζ and ζ' are both above the contour then

\[
[F,F'] = -2\pi i h \left[\ln(\ell \cdot \ell') - \ln \left(\frac{(\rho_\alpha^2 - \zeta \zeta')(\rho_\alpha^2 - \zeta' \zeta')}{(1 + \rho_\alpha^2 \zeta \zeta')^2} \right) + \frac{(1 - \rho_\alpha^2)}{(1 + \rho_\alpha^2)} \right]
\] \hspace{1cm} (A81)

• If ζ is above and ζ' is below the contour then

\[
[F,F'] = -2\pi i h \left[\ln \left(\frac{(1 + \zeta' \zeta)(\rho_\alpha^2 - \zeta' \zeta)}{(1 + \zeta \zeta)} \right) + \frac{(1 - \rho_\alpha^2)}{(1 + \rho_\alpha^2)} \right]
\] \hspace{1cm} (A82)

• If ζ is below and ζ' is above the contour then

\[
[F,F'] = -2\pi i h \left[\ln \left(\frac{\zeta' \zeta(1 + \zeta \zeta')}{(1 + \zeta' \zeta')} \right) + \frac{(1 - \rho_\alpha^2)}{(1 + \rho_\alpha^2)} \right]
\] \hspace{1cm} (A83)

• If ζ and ζ' are both below the contour then

\[
[F,F'] = -2\pi i h \left[-\ln(\ell \cdot \ell') + \ln \left(\frac{(\rho_\alpha^2 - \zeta \zeta')(\rho_\alpha^2 - \zeta' \zeta')}{(1 + \rho_\alpha^2 \zeta \zeta')^2} \right) + \frac{(1 - \rho_\alpha^2)}{(1 + \rho_\alpha^2)} \right]
\] \hspace{1cm} (A84)

The results (A81) and (A84) have a regular limit as the contour is shrunk to zero (unlike (A82) and (A83), in which one of the points ζ or ζ' would disappear as the contour is shrunk to zero). The contour is shrunk to zero by taking the limits $\rho_\alpha \to 0$ (in which case the contour flies off the sphere at the south pole), and $\rho_\alpha \to \infty$ (in which case the contour flies off the sphere at the north pole). The limiting values $\rho_\alpha = 0, \infty$ correspond to $t = +z, -z$, i.e., the null boundaries between the timelike and spacelike regions. Therefore, it is expected that (A81) has (A68) for a limit as $\rho_\alpha \to 0$, whereas (A84) should have (A68) for a limit as $\rho_\alpha \to \infty$. This is actually the case, as can be verified by inspection of (A81) and (A84).

In order to generalize to an arbitrary spacelike separation y^α, in the following we rewrite the relevant quantities as invariants under general spatial rotations, keeping the time axis fixed.

We define the unit timelike vector

\[
T^a \equiv (1,0,0,0)
\]

which is invariant under spatial rotations. We also have at our disposal the vectors ℓ^a and m^a given by:

\[
\ell^a = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & \zeta + \bar{\zeta} & -\zeta - \bar{\zeta} & -1 + \zeta \bar{\zeta} \end{pmatrix},
\]

\[
m^a \equiv \bar{\sigma} \ell^a = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 - \zeta^2 & -1 + \zeta^2 & 2\bar{\zeta} \end{pmatrix}.
\]

In terms of these vectors, the relevant quantities in (A81), (A82), (A83) and (A84) take the form

\[
t = y \cdot T
\]

\[
z = \sqrt{(y \cdot T)^2 - y \cdot y}
\]

\[
1 + \zeta \bar{\zeta} = \frac{2z}{z - y \cdot T + \sqrt{2}y \cdot \ell}
\]

\[
\rho_\alpha^2 = \frac{z + y \cdot T}{z - y \cdot T}
\]

\[
\frac{(\rho_\alpha^2 - \zeta \bar{\zeta})(\rho_\alpha^2 - \zeta' \bar{\zeta'})}{(1 + \rho_\alpha^2 \zeta \zeta')^2} = \frac{-y \cdot y \ell \cdot \ell'}{(z - y \cdot T + \sqrt{2}y \cdot T)(z - y \cdot T + \sqrt{2}y \cdot T')},
\]

where every scalar product is invariant with respect to spatial rotations. By substituting (A88) into (A81-A84), the commutators are generalized to an arbitrary spacelike separation y^α.

21
APPENDIX B: EVALUATION OF THE NULL-SURFACE COMMUTATOR IN THE CASE OF TIMELIKE SEPARATION

In this appendix we evaluate (18) in closed form for a special range of the parameters \(y^a\). As a first step, however, we rewrite (18) in the following form:

\[
[\hat{Z}, \hat{Z}'] = -2\pi i \hbar \int_{S^2} \partial_\eta (V \Delta) - V \partial_\eta \Delta \, d^2 S_\eta \tag{B1}
\]

where \(V = V(\eta, \zeta, \zeta')\) is given by

\[
V = \partial_\eta G \bar{\partial}_\eta G + \partial_\eta G \bar{\partial}_\eta^2 G - G' \partial_\eta \bar{\partial}_\eta G - G \partial_\eta \bar{\partial}_\eta^2 G - Q' \bar{\partial}_\eta \bar{\partial}_\eta^2 G + Q \bar{\partial}_\eta^2 \bar{\partial}_\eta G - R \bar{\partial}_\eta \bar{\partial}_\eta^2 G' \tag{B2}
\]

and the functions \(Q\) and \(R\) are (non unique) first and second primitives of \(G\) respectively, in the sense that \(G = \partial_\eta^2 Q\) and \(G = \bar{\partial}_\eta^2 R\). A choice of the functions \(Q\) and \(R\) is given in Appendix C.

If \(y^a\) is timelike and future pointing, then \(y \cdot \ell > 0\) and thus \(\Delta(y \cdot \ell) = +\frac{1}{2}\), constant on the sphere, whereas \(\partial_\eta \Delta(y \cdot \ell) = \delta(y \cdot \ell) \partial_\eta (y \cdot \ell) = 0\) everywhere on the sphere. Therefore, for this range of the parameters \(y^a\) the commutator reduces to

\[
[\hat{Z}, \hat{Z}'] = -2\pi i \hbar \int_{S^2} \partial_\eta \left(\frac{1}{2}V\right) \, d^2 S_\eta \tag{B3}
\]

which can be evaluated by residues (see [19]):

\[
[\hat{Z}, \hat{Z}'] = 4\pi \hbar \sum_j \oint_j \frac{V}{2(1 + \eta \bar{\eta})} \, d\bar{\eta} = 8\pi^2 \hbar \sum_j \text{Res} \left(\frac{V}{2(1 + \eta \bar{\eta})}\right) \bigg|_{\eta = \bar{\eta}_j}. \tag{B4}
\]

The poles \(\bar{\eta}_j\) are \(\zeta, \zeta', (\zeta)^{-1}\) and \((\zeta')^{-1}\). This can be deduced by inspection of the explicit expression of \(V\) which is obtained from the information about the Green’s function that we give in Appendix C. The evaluation of the residues at these poles is straightforward, and gives the final expression

\[
[\hat{Z}, \hat{Z}'] = -2\pi i \hbar \left(\ell \cdot \ell' \ln(\ell \cdot \ell') - \frac{1}{6} \ell \cdot \ell' + \frac{1}{3}\right). \tag{B5}
\]

APPENDIX C: PROPERTIES OF THE GREEN’S FUNCTION

The function (13) gives solutions to the following differential equation for functions \(F\) of spin weight 0 on the sphere, with given spin-weight-0 source \(J\):

\[
\bar{\partial}^2 \bar{\partial}^2 F = J \tag{C1}
\]

One of the properties of this Green’s function is that, aside from possible distributional behaviors at \(\zeta = \eta\), it is annihilated by application of the operation \(\bar{\partial}^2 \bar{\partial}^2\) for all values of \(\zeta \neq \eta\):

\[
\bar{\partial}_\eta G(\zeta, \eta) = \frac{1}{4\pi} \ell(\zeta) \cdot \bar{m}(\eta) \left(\ln \left(\ell(\zeta) \cdot \ell(\eta)\right) + 1\right) \tag{C2},
\]

\[
\bar{\partial}_\eta^2 G(\zeta, \eta) = \frac{1}{4\pi} \left(\ell(\zeta) \cdot \bar{m}(\eta)\right)^2 \tag{C2},
\]

\[
\bar{\partial}_\eta \bar{\partial}_\eta G(\zeta, \eta) = \frac{1}{4\pi} \ell(\zeta) \cdot \bar{m}(\eta) \left(\frac{1}{\ell(\zeta) \cdot \ell(\eta)} - 3\right), \tag{C2}
\]

\[
\bar{\partial}_\eta^2 \bar{\partial}_\eta G(\zeta, \eta) = \frac{1}{2\pi} (3\ell(\zeta) \cdot \ell(\eta) - 2), \tag{C2}
\]

\[
\bar{\partial}_\eta^3 \bar{\partial}_\eta^2 G(\zeta, \eta) = \frac{3}{2\pi} \ell(\zeta) \cdot m(\eta) \tag{C2},
\]

\[
\bar{\partial}_\eta^4 \bar{\partial}_\eta^3 G(\zeta, \eta) = 0. \tag{C2}
\]
This property allows for the rewriting of (18) in the form (B1) in the preceding Appendix.

Another useful property of the Green’s function is that, up to free constants of integration, its primitives \(Q_n \) defined by \(\nabla Q_n = G \) can be found recursively. In general

\[
Q_n(\zeta, \eta) = \frac{H_n(\ell(\zeta) \cdot \ell(\eta))}{(\ell(\zeta) \cdot m(\eta))^n}
\]

where \(H_n(x) \) satisfies

\[
\frac{d^n H_n(x)}{dx^n} = H_0(x) = \frac{1}{4\pi x} \ln x \quad \text{or} \quad \frac{dH_n(x)}{dx} = H_{n-1}(x) .
\]

Equation (C4) can be solved by making the ansatz

\[
H_n(x) = x^{n+1} (C_n \ln x - B_n) .
\]

By imposing (C4) we find that the parameters \(C_n \) and \(B_n \) need to satisfy

\[
C_{n-1} = (n+1)C_n
\]

\[
B_{n-1} = (n+1)B_n - C_n
\]

which are solved by

\[
C_n = \frac{C_0}{(n+1)!}
\]

\[
B_n = \frac{C_0}{(n+1)!} \sum_{i=0}^{n-1} \frac{1}{(n+1-i)} ;
\]

where \(C_0 = \frac{1}{4\pi} \). In this way, we have found a choice of the generic primitive of \(G \) to any desired order (note that the primitives are not unique).

Here we show explicitly the first and second primitives:

\[
Q(1)(\zeta, \eta) = \frac{1}{8\pi} \left(\frac{\ell(\zeta) \cdot \ell(\eta)}{\ell(\zeta) \cdot m(\eta)} \right)^2 \left(\ln (\ell(\zeta) \cdot \ell(\eta)) - \frac{1}{2} \right)
\]

\[
Q(2)(\zeta, \eta) = \frac{1}{24\pi} \left(\frac{\ell(\zeta) \cdot \ell(\eta)}{\ell(\zeta) \cdot m(\eta)} \right)^3 \left(\ln (\ell(\zeta) \cdot \ell(\eta)) - \frac{5}{6} \right)
\]

In Appendix B, we have used the notation \(Q \equiv Q(1) \) and \(R \equiv Q(2) \).

A third and essential property of the Green’s function can be stated in terms of the solutions of (C1). A solution to (C1) can be found by

\[
F_P = \int_{S^2} G(\zeta \eta)J(\eta) \, d^2S_\eta
\]

(any other solution can be found by adding to \(F_P \) a solution to the homogeneous equation \(\nabla^2 \hat{\nabla}^2 F = 0 \)). It can be shown that \(F_P \) has no \(l=0,1 \) terms in an expansion in spherical harmonics. Thus the Green’s function (B1) provides a decomposition of a generic solution into its \(l=0,1 \) part and its \(l \geq 2 \) part. This third property holds as a consequence of the kernel exclusion property of the Green’s functions for \(\nabla^2 \) acting on spin-weight-s functions; namely, they yield no spherical harmonics of order \(l \in \{s, \cdots, s+n-1\} \) upon integration on the sphere against a given source [18].

[1] R. Penrose, Gen. Rel. Grav. 28, 581 (1996).

[2] For various current ideas on quantum geometry, see the Special Issue Quantum Geometry and Diffeomorphism Invariant Quantum Field Theory, J. Math. Phys. 36 (1995).
[3] S. Frittelli, C. N. Kozameh, and E. T. Newman, J. Math. Phys. 36, 4975 (1995).
[4] S. Frittelli, C. N. Kozameh, and E. T. Newman, J. Math. Phys. 36(9), 4984 (1995).
[5] S. Frittelli, C. N. Kozameh, and E. T. Newman, J. Math. Phys. 36, 5005 (1995).
[6] A. Ashtekar, Asymptotic quantization (Bibliopolis, Naples, 1987).
[7] S. Frittelli, C. N. Kozameh, E. T. Newman, C. Rovelli, R. S. Tate, Fuzzy spacetime from a null-surface version of GR, gr-qc/9603061.
[8] S. Frittelli, C. N. Kozameh, and E. T. Newman, J. Math. Phys. 36(11), 6397 (1995).
[9] E. T. Newman and R. Penrose, J. Math. Phys. 5, 863 (1966).
[10] S. L. Kent and E. T. Newman, J. Math. Phys. 24(4), 949 (1983).
[11] S. Frittelli and E. T. Newman, Pseudo-Minkowskian coordinates in asymptotically flat spacetimes, in preparation.
[12] A. Chamseddine, A. Connes, hep-th/9606001; J. Madore, “Fuzzy spacetime”, LPTHE Orsay 96/64. B., gr-qc/9607065; Iochum, D. Kastler, T. Schücker, hep-th/9607158; S. Doplicher, K. Fredenhagen, J.E. Roberts, Commun. Math. Phys. 172, 187 (1995). A. Chamseddine, J. Fröhlich “Some elements of Connes’ non-commutative geometry, and spacetime geometry”, ETH Zürich Preprint, 1996.
[13] R. M. Wald, General Relativity (The University of Chicago Press, Chicago, 1984).
[14] R. S. Tate, in Quantum gravity, gravitational radiation and large scale structure in the universe (IUCAA, Pune, 1993).
[15] An independent derivation of these commutators has been given by C. N. Kozameh, in Lecture Notes in Physics, edited by A. O. Barut and H. D. Doebner (Springer-Verlag 261, New York, 1986).
[16] R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (The University of Chicago Press, Chicago, 1994).
[17] S. L. Kent, C. N. Kozameh, and E. T. Newman, J. Math. Phys. 26, 300 (1985).
[18] J. Ivancovich, C. N. Kozameh, and E. T. Newman, J. Math. Phys. 30, 45 (1989).
[19] C. N. Kozameh, E. T. Newman, and J. Porter, Foundations of Physics 14, 1061 (1984).