Ferroelectric BaTiO$_3$/SrTiO$_3$ multilayered thin films for room-temperature tunable microwave elements

Ming Liu1,2, Chunrui Ma2, Gregory Collins2, Jian Liu2, Chonglin Chen2*, Andy D Alemayehu3, Guru Subramanyam3, Ying Ding4, Jianghua Chen4, Chao Dai5, Yuan Lin5 and Melanie W Cole6

Abstract

Ferroelectric BaTiO$_3$/SrTiO$_3$ with optimized c-axis-oriented multilayered thin films were epitaxially fabricated on (001) MgO substrates. The microstructural studies indicate that the in-plane interface relationships between the films as well as the substrate are determined to be (001)$_{\text{SrTiO}_3}$(001)$_{\text{BaTiO}_3}$(001)$_{\text{MgO}}$ and [100]$_{\text{SrTiO}_3}$(100)$_{\text{BaTiO}_3}$(100)$_{\text{MgO}}$. The microwave (5 to 18 GHz) dielectric measurements reveal that the multilayered thin films have excellent dielectric properties with large dielectric constant, low dielectric loss, and high dielectric tunability, which suggests that the as-grown ferroelectric multilayered thin films can be developed for room-temperature tunable microwave elements and related device applications.

Keywords: BaTiO$_3$/SrTiO$_3$; Multilayer; Ferroelectric thin films; Epitaxial behavior; Microwave dielectric properties

Background

Ferroelectric perovskite oxide materials have fascinated considerable attention both in scientific research and technology development due to their interesting physical properties and important application prospects in various areas such as electric, optical, and microwave devices in control systems and wireless communications. In the past two decades, the nonlinear dielectric property of ferroelectric oxides has been utilized for various devices in tunable wireless microwave communications, such as room-temperature tunable microwave phase shifters, oscillators, filters, antennas, etc. [1-12]. Especially, ferroelectric barium strontium titanate (Ba$_x$Sr$_{1-x}$TiO$_3$ or BST) thin films have been considered to be one of the most important candidates for the development of tunable microwave components. However, the relatively large dielectric insertion loss, soft mode effect, and limited figure of merit at high-frequency microwave regions still restrict practical applications in tunable microwave elements. Therefore, optimizing the microwave dielectric properties by lowering the dielectric loss tangent and enhancing dielectric tunability has become an important issue for device applications [13-19].

Multifunctional tunable ferroelectric BaTiO$_3$/SrTiO$_3$ (BTO/STO) heterostructures with artificial multilayer and/or superlattice structures have achieved a great enhancement on physical properties compared to the single-crystal epitaxial films of BTO, STO, and BST [20-27]. Especially, the interface and nanosize effects have been found to significantly enhance the dielectric properties from the BTO/STO multilayer system at low frequency range [28-33]. However, there are quite a few reports on high-frequency microwave properties in the gigahertz range. Recently, we have systematically studied [(BaTiO$_3$)$_{0.4}$/(SrTiO$_3$)$_{0.6}$]$_N$ multilayered thin films and found that the high-frequency microwave dielectric properties and related physical properties can be significantly improved by optimizing the growth conditions. The optimized dielectric performance was achieved with the best value for the loss tangent (0.02) at approximately 18 GHz with each BTO layer thickness near 7.0 nm [34]. However, the high dielectric constant of near 1,600 achieved from the [(BaTiO$_3$)$_{0.4}$/(BaTiO$_3$)$_{0.6}$]$_N$ multilayer is too high to meet the device requirements for impedance matching which is normally less than 500 [35]. To reduce the dielectric constant for meeting the impedance matching requirement,
we have redesigned and further investigated a new combination of BTO/STO multilayer systems of the optimized \([(\text{BaTiO}_3)_{0.5}/(\text{BaTiO}_3)_{0.5}]_{16}\) based on our above optimized multilayered structure. Here, we report our recent achievements on the microstructural studies and high-frequency microwave (5 to 18 GHz) dielectric measurements of \([(\text{BaTiO}_3)_{0.5}/(\text{SrTiO}_3)_{0.5}]_{16}\) on (001) MgO substrates.

Methods

A KrF excimer pulsed laser deposition system with a wavelength of 248 nm was employed to fabricate the ferroelectric BTO/STO multilayered thin films on (001) MgO substrates. Single-phase pure BTO and STO targets were employed for the fabrication. The single-crystal MgO substrates were selected for the epitaxial growth of the superlattices because of their low frequency-dependent dielectric constant (approximately 9.7) and low loss tangent values (approximately 3.3 \(\times\) 10\(^{-7}\)). The optimal growth conditions were found at a temperature higher than 840°C with an oxygen pressure of 250 mTorr under a laser energy density of about 2 J/cm\(^2\) with a repetition rate of 4 Hz. The BTO and STO layers have been designed to have the same thickness with a stacking periodic number \((N)\) of 16, as seen in Figure 1. The microstructure, crystallinity, and epitaxial behavior of the as-grown multilayer were characterized by X-ray diffraction (XRD) and cross-sectional electron microscopy. The microwave dielectric properties were characterized using a coplanar waveguide (CPW) test structure consisting of an 8720C Vector Network Analyzer (Agilent Technologies, Inc., Santa Clara, CA, USA) and an on-wafer probe station. After the thru-reflect-line calibration, the swept frequency response of the \(S\) parameters can be obtained from the reference (CPW lines on bare MgO substrates) and test samples (CPW lines on BTO/STO multilayer-coated substrates). Details of the measurement technique can be found in the literature [36,37].

Results and discussion

Figure 2 is the typical XRD pattern of the as-grown \([(\text{BaTiO}_3)_{0.5}/(\text{SrTiO}_3)_{0.5}]_{16}\) multilayered thin films on the (001) MgO substrate with a total thickness about 500 nm. Only (00 \(l\)) peaks appear in the \(\theta-2\theta\) scans for the multilayer and substrate, indicating that the multilayer is \(c\)-axis oriented or perpendicular to the substrate surfaces. The rocking curve measurements from the (002) reflection of the multilayer show that the full width at half maximum is about 0.9°, indicating that it has good single crystallinity and epitaxial quality. However, three additional peaks at \(2\theta \approx 22.04\), \(2\theta \approx 22.28\), and \(2\theta \approx 22.79\) appeared, which were identified as the satellite peaks of the (002) reflection. Thus, the multilayer thickness can be estimated from these satellite peaks using the standard formula

\[
L = \frac{\lambda_{\text{Cu(Ka)}}(\sin\theta_n + 1 - \sin\theta_n)}{n} - \frac{\sin\theta_n}{\sin\theta_n + 1 - \sin\theta_n}
\]

[38], where \(\lambda_{\text{Cu(Ka)}}\) is the wavelength of the Cu(Ka) radiation and \(n\) corresponds to the \(n\)th satellite peak. Therefore, the thickness of every periodic layer \((L)\) was found to be about 35 nm, giving the overall multilayer thickness of about 560 nm. This result is in good agreement with the multilayer design. The \(\phi\) scans were also employed to study the epitaxial quality and the in-plane relationships between the multilayer and the substrate. The insets of Figure 2 are the \(\phi\) scans taken from the \{101\} planes of the superlattices and MgO substrate. Only fourfold symmetric \{101\} reflections with sharp peaks were presented in the scans, suggesting that the multilayer has good single crystallinity and epitaxial quality. The in-plane interface relationships between the multilayer and the MgO substrate are therefore determined to be [100]\(\text{STO}||[100]\text{BTO}||[100]\text{MgO}\) and (001)\(\text{STO}||(001)\text{BTO}||(001)\text{MgO}\). These interface relationships indicate that the multilayer has the cube-on-cube epitaxial growth nature.

To further understand the epitaxial nature and interface structures of the as-grown multilayer, high-resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) were employed to study the interface microstructure of the BTO/STO multilayer on (001) MgO substrates. Figure 3a is a bright-field TEM image of the ferroelectric BTO/STO multilayer grown on the (001) MgO substrate. The multilayered structures can be clearly seen from HRTEM images. The inset is a selected area electron diffraction pattern taken at the film/
substrate interface with the electron beam direction parallel to the [100]MgO. The interface relationship of the as-grown BTO/STO multilayer was determined to be (001)BTO/STO//(001)MgO and [100]BTO/STO//[100]MgO with respect to the MgO substrate. Figure 3b is the HAADF-STEM image showing the multilayered structure with sharp interface structures. The electron diffraction, HRTEM, and HAADF-STEM studies on the as-grown multilayer suggest that the films have good single crystallinity and epitaxial quality.

The CPW test structure was used to determine the high-frequency microwave dielectric properties of the BTO/STO superlattices on (001) MgO. The test structures were fabricated on the bare MgO substrate (reference sample or ‘Ref’) and the multilayer (test sample or ‘Test’) to determine the attenuation and phase constants with and without the film test samples, which were used to compare the propagation characteristics between the reference and test samples. Figure 4a shows the swept frequency responses for the reference and test samples from 5 to 18 GHz. It can be seen that the insertion loss contribution from the multilayer is only about approximately 0.17 dB at 5 GHz and approximately 0.45 dB at

![Figure 2](image1.png)

Figure 2 A typical X-ray diffraction pattern of the as-grown BTO/STO superlattices on MgO substrate. The insets are the ϕ scans taken around the {101} planes of the superlattices and MgO substrate, displaying that the films have excellent epitaxial behavior.

![Figure 3](image2.png)

Figure 3 Cross-sectional bright-field and high-angle annular dark-field image of BTO/STO superlattice thin film. (a) Bright-field image. (b) HAADF-STEM image. Bar = 200 nm.
18 GHz, indicating that the films have low insertion loss at these frequencies. The inset of Figure 4a is the plot of the relative insertion phase of S_{21} for the reference and test samples. The total relative phase of S_{21} in degrees can be obtained by adjusting the phase of S_{21} to a lagging phase. From the magnitude and the relative phase of S_{21}, we can obtain the attenuation and phase constant for the reference and test samples. Figure 4b shows the calculated and the measured conductor loss and dielectric loss in the sample. It is clearly seen that the calculated and measured total losses are well matched.

Once the capacitance of the films was determined, the relative dielectric constant of the film $\varepsilon_{\text{film}}$ can be obtained by conformal mapping technique [33], $C_{\text{film}} \cong \varepsilon_p \left(\varepsilon_{\text{film}} - \varepsilon_{\text{sub}} \right) 2 t/s$, if the limit of film thickness $t \ll s$, where s is the spacing distance between the center conductor and the ground line for the CPW line, and ε_{sub} is the relative dielectric constant of the substrate. Figure 5a shows the frequency dependence of the relative dielectric constant and the loss tangent for the multilayer. The relative dielectric constant and the loss tangent are varying from 340 to 445 and from 0.001 to 0.04, respectively. A maximum dielectric constant of approximately 445 at 10.65 GHz and a minimum dielectric loss of approximately 0.001 at 7.15 and 16.425 GHz were found. Figure 5b is the plot of the tunability versus the frequency of the multilayer, showing that a large dielectric tunability of 12% to 35% has been achieved from 5 to 18 GHz with a bias voltage of 200 V or an applied field of 200 kV/cm. These results indicate that the optimized dielectric performance for such a designed multilayer occurs at 10 to 12 GHz with an optimized dielectric constant of 445, a dielectric loss of 0.01, and a dielectric tenability of 35%. Overall, the microwave dielectric property of the BTO/STO multilayer on (001) MgO suggests that this system can be developed for room-temperature tunable microwave elements and related device applications.

Conclusions

In summary, ferroelectric BTO/STO multilayers have been epitaxially grown on (001) MgO by pulsed laser deposition. The microstructural studies from X-ray diffraction show that the as-designed multilayers are c-axis oriented with good epitaxial nature. The high-frequency microwave (5 to 18 GHz) dielectric measurements reveal that the multilayers have excellent microwave dielectric properties with very low dielectric loss and high dielectric tenability, which suggests that the BTO/STO multilayers on (001) MgO have great potential for the development of room-temperature tunable microwave elements and related applications.
Competing interests
The authors declare that they have no competing interests.

Authors' contributions
GC and CC designed and set up the experimental system. ML and CC planned the experiments. ML fabricated the films with the assistance of CM, GC, and JL. ADA and GS conducted the measurement of high-frequency microwave dielectric properties. YD and JC performed the electron microscopy studies. CD and YL performed the X-ray diffraction characterizations. MWC assisted in the data analysis. ML and CC wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This research was partially supported by the National Science Foundation under NSF-NIRT-0709293 and the Natural Science Foundation of China. This research was partially supported by the National Science Foundation of China.

Received: 15 May 2013 Accepted: 17 July 2013

References
1. Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N: Ferroelectric materials for microwave tunable applications. J Electroceramics 2003, 11:5–66.

2. Lin Y, Chen CL: Interface effects on highly epitaxial ferroelectric thin films. J Mat Sci 2009, 44:5274–5287.

3. Chen CL, Shen J, Chen SY, Luo GP, Chu CW, Miranda FA, Van Keuls FW, Jiang JC, Meletis E, Chang H: Epitaxial growth of dielectric Ba0.6Sr0.4TiO3 thin film on Mo for room temperature microwave phase shifter. Appl Phys Lett 2001, 78:6552–6554.

4. Srinam S, Bhaskaran M, Mitchell DG, Mitchell A: Lattice guiding for low temperature crystallization of rhombohedral perovskite-structured oxide thin films. Crystal Growth & Des 2010, 10:761–764.

5. Liu M, Ma CR, Collins G, Li J, Chen CL, Shui L, Wang H, Dai C, Lin Y, He J, Jiang JC, Meletis E, Zhang QY: Microwave dielectric properties with optimized Mn-doped Ba0.6Sr0.4TiO3 highly epitaxial thin films. Crystal Growth & Des 2010, 10:4221–4223.

6. Xu J, Zhai JW, Yao X: Growth and characterization of Ba1−xSr2xTiO3 films derived by a low-temperature process. Crystal Growth & Des 2006, 6:2197–2199.

7. Chen CL, Chen HH, Zhang Z, Bazeedike A, Huang Z, Chu WK, Chu CW, Miranda FA, Van Keuls FW, Romanofsky RR, Liu Y: Epitaxial ferroelectric Ba0.6Sr0.4TiO3 thin films for room-temperature tunable element applications. Appl Phys Lett 1999, 75:412–414.

8. Kim WJ, Chang W, Qadir SB, Pond MJ, Kirchoffew SW, Chrisey DB, Horwitz JS: Microwave properties of tetragonally distorted (Ba0.6Sr0.4)TiO3 thin films. Appl Phys Lett 2000, 76:1185–1187.

9. Lin Y, Chen C, Liu SW, Chen CL, Lee JS, Li Y, Jia QX, Bhalla A: Anisotropic in-plane strains and dielectric properties in (Pb, Sr)TiO3 thin films on NodaO3 substrates. Appl Phys Lett 2004, 84:577–579.

10. Liu SW, Lin Y, Weaver J, Donner W, Chen C, Chen CL, Jiang JC, Meletis E, Bhalla AS: High-dielectric-tunability of ferroelectric (Pb, Sr)TiO3 thin films on (001) LaAlO3. Appl Phys Lett 2005, 85:3202–3204.

11. Liu M, Liu J, Collins G, Ma CR, Chen CL, Alemayehu G, Subramanyam G, Dai C, Lin Y, He J, Jiang JC, Meletis E, Zhang QY: High epitaxial ferroelectric relaxor Mn-doped BaZr TiO3 thin films on MgO substrates. J Adv Dielectrics 2011, 1:383–387.

12. Aldredge LMB, Chang W, Kirchoffew SW, Pond JW: Microwave dielectric properties of BaTiO3 and Ba0.5Sr0.5TiO3 thin films on (001) MgO. Appl Phys Lett 2009, 95:222902.

13. Kanuss LA, Pond JW, Horwitz JS, Chrisey DB: The effect of annealing on the structure and dielectric properties of BaSr2−xTiO3 thin films. Appl Phys Lett 1996, 69:25–27.

14. Chang WT, Horwitz JS, Caster AC, Pond JM, Kirchoffew SW, Gilmore CM, Chrisey DB: The effect of annealing on the microwave properties of Ba0.6Sr0.4TiO3 thin films. Appl Phys Lett 1999, 74:1033–1035.

15. Takebasa K, Sakuma T, Miyaoka Y: High dielectric constant (Ba, Sr)TiO3 thin films prepared on RuO2/sapphire. Appl Phys Lett 1994, 64:2967–2969.

16. Yuan Z, Lin Y, Weaver J, Chen C, Chen CL, Subramanyam G, Jiang JC, Meletis E: Large dielectric tunability and microwave properties of Mn-doped (Ba, Sr)TiO3 thin films. Appl Phys Lett 2003, 87:152901–152903.

17. Cole MW, Jotish PC, Ervin MH, Wood MC, Pfeiffer BL: The influence of Mg doping on the materials properties of Ba0.6Sr0.4TiO3 thin films for tunable device applications. Thin Solid Films 2000, 374:34–41.

18. Jain M, Majumder SB, Katari RS, Agrawal DC, Bhalla AS: Dielectric properties of sol–gel-derived MgBa0.6Sr0.4TiO3 thin film composites. Appl Phys Lett 2002, 81:3212–3214.

19. Cole MW, Weiss CV, Ngo E, Hirsch S, Correy SL, Alpay SP: Dielectric properties of MgO-doped compositionally graded multilayer barium strontium titanate films. Appl Phys Lett 2008, 92:182906.

20. Zhong S, Alpay SP, Cole MW, Ngo E, Hirsch S, Dernarei JH: Highly tunable and temperature insensitive multilayer barium strontium titanate films. Appl Phys Lett 2007, 90:092901.

21. Nakagawara O, Shintuma T, Makino T, Arai S: Epitaxial growth and dielectric properties of (111) oriented BaTiO3/SrTiO3 superlattices by pulsed-laser deposition. Appl Phys Lett 2000, 77:3257–3259.

22. Lee J, Kim L, Kim J, Jung D: Waghmare UV: Dielectric properties of BaTiO3/SrTiO3 ferroelectric thin film artificial lattice. J Appl Phys 2006, 100:031613.

23. Ge SB, Ning ZY, Dong ZG, Shen WR: Investigation on dielectric properties of polycrystalline BT/ST multilayer thin films. J Phys D: Appl Phys 2002, 35:906–910.

24. Xu R, Shen MR, Ge SB, Gan ZQ, Gao WW: Dielectric enhancement of sol–gel derived BaTiO3/SrTiO3 multilayered thin films. Thin Solid Films 2002, 406:113–117.

25. Qu BD, Evstigneev M, Johnson DJ, Prince RH: Dielectric properties of BaTiO3/SrTiO3 multilayered thin films prepared by pulsed laser deposition. Appl Phys Lett 1998, 73:1394–1396.

26. Kim L, Junq DG, Kim JY, Kim S, Lee J: Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity. Appl Phys Lett 2003, 82:2118–2120.

27. Tabata H, Tanaka H, Kawai T: Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties. Appl Phys Lett 1994, 65:1970–1972.

28. Christen HM, Krauss LA, Harshavardhan KS: Field-dependent dielectric permittivity of paraelectric superlattice structures. Mater Sci Eng B 1998, 56:200–203.

29. Harigai T, Tsurumi T: Dielectric properties of perovskite-type artificial superlattices. Ferroelectrics 2007, 349:56–63.

30. Kim J, Kim Y, Kim YS, Lee J, Kim L, Jung D: Large nonlinear dielectric properties of artificial BaTiO3/SrTiO3 superlattices. Appl Phys Lett 2002, 80:3581–3583.

31. Zhong S, Alpay P, Mantese JV: High dielectric tunability in ferroelectric–paraelectric bilayers and multilayer superlattices. Appl Phys Lett 2006, 88:152904.

32. Okatan MB, Mantese JV, Alpay P: Polarization coupling in ferroelectric multilayers. Phys Rev B 2009, 79:224113.

33. Liu M, Ma CR, Collins G, Li J, Chen CL, Dai C, Lin Y, Shui L, Xiang F, Wang H, He L, Jiang JC, Meletis E, Cole MW: Interface engineered BaTiO3/SrTiO3 heterostructures with optimized high-frequency dielectric properties. ACS Appl Mater & Interface 2012, 4:5761–5765.

34. Subramanyam G, Cole M, Sun N, Srinivasan G, Kulkar T, Stroccy N, Tompa G, Guo X, Chen CL, Alpay P, Rosetti G, Dayal K, Chen LQ, Schönh D.
Challenges and opportunities for multi-functional oxide thin films for voltage tunable RF/microwave components. *J Appl Phys* 2013, in press.

36. Subramanyam G, Heckman E, Grote J, Hopkins F. Microwave dielectric properties of DNA based polymers between 10 and 30 GHz. *IEEE Microwave Components Lett* 2005, 15:232–234.

37. Subramanyam G, Heckman E, Grote J, Hopkins F, Neidhard R, Nykiel E. Microwave dielectric properties of marine DNA based polymers. *Microw Opt Technol Lett* 2005, 46:278–282.

38. Marssi ME, Marec FL, Lukyanchuk IA, Karkut MG. Ferroelectric transition in an epitaxial barium titanate thin film: Raman spectroscopy and x-ray diffraction study. *J Appl Phys* 2003, 94:3307–3312.

doi:10.1186/1556-276X-8-338

Cite this article as: Liu et al. Ferroelectric BaTiO3/SrTiO3 multilayered thin films for room-temperature tunable microwave elements. *Nanoscale Research Letters* 2013 8:338.

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at springeropen.com