A CMOS Image Sensor Pixel Combining Deep Sub-Electron Noise With Wide Dynamic Range

Assim Boukhayma, Antonino Caizzone, Graduate Student Member, IEEE, and Christian Enz, Fellow, IEEE

Abstract — This letter introduces a 5-transistors (5T) implementation of CMOS Image Sensors (CIS) pixels enabling the combination of deep sub-electron noise performance with wide dynamic range (DR). The 5T pixel presents a new technique to reduce the sense node capacitance without any process refinements or voltage level increase and features adjustable conversion gain (CG) to enable wide dynamic imaging. The implementation of the proposed 5T pixel in a standard 180 nm CIS process demonstrates the combination of a measured high CG of 250 μV/e$^-$ and low CG of 115 μV/e$^-$ with a saturation level of about 6500 e$^-$ offering photo-electron counting capability without compromising the DR and readout speed.

Index Terms — CMOS, 4T, 5T, CIS, conversion gain, sub-electron noise, wide dynamic.

I. INTRODUCTION

PHOTOELECTRON counting capability emerges as the ultimate limit to reach for CMOS image sensors (CIS). Indeed, CIS performance has been dramatically increased since their first development [1] on several aspects including speed, resolution or power consumption. The sensitivity of CIS has been, also, significantly improved in terms of quantum efficiency, dark current and fill-factor [1]. Recently, remarkably low noise pixels have been presented [2]–[5]. Photon counting capability has been reached in [3], [4] using process refinements resulting in lower sense node (SN) capacitance increasing the pixel conversion gain. This has been achieved by shaping the potential profile along the signal path in a way that isolates the SN from the transfer gate (TG) overlap capacitance and reducing the overlap with the reset transistor by shrinking its channel width from the SN side. These process modifications resulted in high conversion gains exceeding 300 μV/e$^-$ which is at the origin of the low read noise performance. But this improvement comes at the cost of additional process refinements and a low full-well capacity of only 200 e$^-$. The same idea of isolating the SN capacitance from the transfer and reset gates overlaps has been exploited in [5]. But in this case, the reset transistor has been completely removed and replaced by an implant generating the reset with a punch-through effect. This technique resulted in a read noise of 0.27 e$_{\text{RMS}}$ after cooling the sensor to -10°C with a conversion gain of 220 μV/e$^-$. The downside of this technique is the fairly high required reset voltage of 25 V incompatible with standard CMOS and therefore generated off-chip. In addition, this technique involves some process modifications since additional implants are used and also leads to a relatively low full-well capacity of 1500 e$^-$. In this letter, we present a novel 5T pixel, integrated in a standard 180 nm CIS process, without any process refinements and offering photo-electron counting capability without dynamic range (DR) penalty thanks to a dual conversion gain feature. The proposed pixel demonstrates a conversion gain (CG) adjustable between 250 μV/e$^-$ and 115 μV/e$^-$ with a saturation level of 6500 e$^-$. The low SN capacitance is achieved by isolating the SN from the reset and TG overlap capacitances thanks to an additional gate. That same gate is also used to tune the CG. The low SN capacitance
is then complemented with a low readout noise achieved by implementing an in-pixel thin oxide PMOS source follower (SF) with an optimal sizing as suggested in [6], [7].

II. THE PROPOSED 5T PIXEL ARCHITECTURE AND WORKING PRINCIPLE

Fig. 1 shows a schematic view of the proposed 5T pixel and its corresponding timing diagram. Compared to a conventional 4T scheme, this pixel features an intermediate node (IN) that can be isolated from the SN by means of an additional gate allowing an important reduction of the SN capacitance. The reset phase consists in three steps. First, the RST switch is closed connecting IN to VRST. While VRST is set to VDD, the potential barrier between IN and SN is lowered by setting TX2 to a voltage VTX2H2 in order to pump the charge from the SN as depicted in Fig. 2. TX2 is set back to 0 in order to split the IN and SN and freeze the SN voltage at its maximum level. VRST is then switched to a lower voltage VRSTL between the pin voltage of the PPD Vpin and VSN,max. After this step, the reset switch is opened again to freeze the IN voltage at a value VIN as depicted in Fig. 2. The last step of the reset phase consists in setting TX2 to a voltage VTX2H1 in order to dump the charge from the barrier between the IN and SN equal or slightly higher than VIN as shown in Fig. 2. In this way, any excess charge transferred to IN would diffuse towards the SN. After lowering back TX2, the SN reset voltage VSN,rst is sensed. Transferring the charge integrated in the PPD to the SN takes place by pulsing both TX1 and TX2 as depicted in Fig. 2. TX1 is pulsed to a value VTX1H in order to set the voltage under the TG between the PPD pin voltage Vpin and the intermediate node voltage VIN while TX2 is pulsed again to transfer this charge to the SN. The signal corresponds to the difference between the SN voltage after reset VSN,rst and the one sensed after the transfer VSN,transfer.

III. TEST AND CHARACTERIZATION

The proposed pixel is implemented in a 240 by 80 array fabricated in a 180 nm CIS process. The pixel layout features a pitch of 10 µm with a fill factor of 60% mainly limited by the minimum distance between the PPD and the PMOS SF wells imposed by the layout rules. Note that multiple gated PPDs can share the same IN, TX2 gate and SF stage in order to reduce the pixel pitch. The chip embeds analog buffers to drive the output voltage of the pixel to an external ADC. In order to assess the impact of the proposed technique on the conversion gain, the pixels are characterized using the photon transfer curve (PTC) by plotting the signal variance as a function of the mean value for different light exposures [8]. The PTC shows linear when the shot noise dominates and the slope of this linear part corresponds to the conversion gain. Fig. 3 shows the measured PTC of the 5T pixel for both high and low CG configurations. The high CG configuration is performed by controlling the pixel following the timing diagram of Fig. 1 and setting VRSTL to 1.76 V, VTX1H to 1.2 V, VTX2H1 to 2.2 V and VTX2H2 to 1.5 V. The low CG configuration is performed by connecting the IN with SN. Fig. 3 shows that the PTC curve follows a linear trend demonstrating a shot noise dominance in both modes. The high CG curve deviates from its linear trend for higher charge transfers suggesting that other noise mechanisms like kTC noise take place when the TX2 transistor goes out of saturation regime. The split of IN from SN allows a successful increase of the CG to about 250 µV/e− compared to 115 µV/e− in low CG mode. The high CG corresponds to an SN total capacitance of 0.64 fF. The contribution of the thin oxide minimum size PMOS SF is estimated from calculation and simulation to be 0.4 fF accounting for an oxide capacitance density of 9 fF/µm², a width and length of 0.2 µm. Hence the SN remaining contribution related to the parasitic coupling with the neighboring metal lines, the junction capacitance of the n+ implant an the overlap with the splitting gate is as low as 0.24 fF, making the SF gate contribution to the SN capacitance the dominant component. This gives another reason for implementing a thin oxide SF. Indeed the minimum thick oxide SF width and length allowed by the foundry for the used process are 0.45 µm and 0.6 µm, with a gate oxide capacitance density of 4.5 fF/µm², resulting in larger minimum SF gate capacitance of about 0.81 fF which is close to the double of the gate capacitance of a minimum size thin oxide transistor. In order to verify the full well capacity of the proposed pixel for this test configuration, Fig. 3 shows...
Fig. 4. Measured response to LED light for low and high CG modes demonstrating linear response to light for both configurations.

Fig. 5. PCH obtained at room temperature without amplification.

Fig. 6. Bright to dark lag measurement showing the outputs of 4 consecutive readouts, normalized to the first readout, in the dark after a bright exposure for both the proposed pixel and a reference 4T pixel.

IV. DISCUSSION

The proposed pixel involves charge diffusion through the IN during the transfer. This may give rise to possible limitations related to excess noise, incomplete charge transfer or pixel-to-pixel non-uniformity especially if the control voltages are not set properly. Regarding the noise during the charge transfer, the TX2 transistor operates in saturation regime and therefore behaves as a current source pumping the charge from the source node (IN) to the drain node (SN). After the transient charge transfer, an approximately stationary regime is reached in which both kTC noise and shot noise related to TX2 become negligible. Concerning the incomplete charge transfer, Fig. 6 shows the lag measurements for both the proposed 5T pixel and a reference 4T pixel present on the same chip and implementing the same PPD. The 5T pixel exhibits higher lag due to the lower voltage applied on TX1 and the additional diffusion path separating the IN from the SN. However this lag increase is not dramatic since the charge transfer in standard CIS 4T pixels is already limited either by internal diffusion or the presence of a potential barrier underneath the TG [9], [10]. Regarding the photo-response non-uniformity (PRNU), a measurement in HCG mode have been performed on a subset of 1500 pixels. The dynamic PRNU corresponds to 0.8% which is similar to the one obtained on standard 4T pixels from the same foundry implementing similar SFs. This suggests that this CG variation is mainly due to the SF gate size spatial variation. Future research should cover the impact on the saturation level and consider larger pixel arrays.

V. CONCLUSION

High CG is key for deep-subelectron noise pixels based on PPD and in-pixel SF. A new PPD based 5T pixel scheme enhancing the conversion gain is presented. It enables reaching CG as high as 250 μV/e$^-$ in a standard 180 nm CIS process without any process refinements for SN capacitance reduction, fully operating at 3.3 V without the need of any high voltage source and without compromising the DR or readout speed. This pixel has also the advantage of featuring an in-pixel adjustable conversion gain allowing for DR extension without degrading the noise performance.

REFERENCES

[1] N. Teranishi, “Required conditions for photon-counting image sensors,” IEEE Trans. Electron Devices, vol. 59, no. 8, pp. 2199–2205, Aug. 2012, doi: 10.1109/TED.2012.2200487.
[2] A. Boukhayma, A. Peizerat, and C. Enz, “A 0.4 e-rms temporal readout noise 7.5 μm pitch and a 66% fill factor pixel for low light CMOS image sensors,” in Proc. Int. Image Sensors Workshop, Jun. 2015, pp. 1–4.

[3] J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc., vol. 3, no. 6, pp. 472–480, Nov. 2015, doi: 10.1109/JEDS.2015.2480767.

[4] J. Ma, S. Masoodian, D. A. Starkey, and E. R. Fossum, “Photon-number-resolving megapixel image sensor at room temperature without avalanche gain,” Optica, vol. 4, no. 12, pp. 1474–1481, Dec. 2017, doi: 10.1364/OPTICA.4.001474.

[5] M. Seo, S. Kawahito, K. Kagawa, and K. Yasutomi, “A 0.27e-rms read noise 220-μV/e-conversion gain reset-gate-less CMOS image sensor with 0.11-μm CIS process,” IEEE Electron Device Lett., vol. 36, no. 12, pp. 1344–1347, Dec. 2015, doi: 10.1109/LED.2015.2496359.

[6] A. Boukhayma, A. Peizerat, and C. Enz, “Temporal readout noise analysis and reduction techniques for low-light CMOS image sensors,” IEEE Trans. Electron Devices, vol. 63, no. 1, pp. 72–78, Jan. 2016, doi: 10.1109/TED.2015.2434799.

[7] A. Boukhayma, A. Peizerat, and C. Enz, “A sub-0.5 electron read noise VGA image sensor in a standard CMOS process,” IEEE J. Solid-State Circuits., vol. 51, no. 9, pp. 2180–2191, Sep. 2016, doi: 10.1109/JSSC.2016.2579643.

[8] J. R. Janesick, Photon Transfer. Bellingham, WA, USA: SPIE, 2007, doi: 10.1117/3.725073.

[9] R. Capoccia, A. Boukhayma, F. Jazaeri, and C. Enz, “Compact modeling of charge transfer in pinned photodiodes for CMOS image sensors,” IEEE Trans. Electron Devices, vol. 66, no. 1, pp. 160–168, Jan. 2019, doi: 10.1109/TED.2018.2875946.

[10] L. Han, S. Yao, and A. J. P. Theuwissen, “A charge transfer model for CMOS image sensors,” IEEE Trans. Electron Devices, vol. 63, no. 1, pp. 32–41, Jan. 2016, doi: 10.1109/TED.2015.2451593.