Nuclear structure in the neutron-deficient Sn nuclei

TKEL effects on lifetime measurements

Marco Siciliano1,2,*, José-Javier Valiente-Dobón2, and Alain Goasduff3,4

1Irfu/CEA, Université de Paris-Saclay, Gif-sur-Yvette, France.
2INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy.
3Dipartimento di Fisica e Astronomia, Università di Padova, Padova, Italy.
4INFN, Sezione di Padova, Padova, Italy.

Abstract. The presence of seniority-like isomers along the $Z=50$ isotopic chain have been an experimental limitation to the investigation of the electromagnetic properties of the low-lying states in the light Sn nuclei. Combining a multi-nucleon transfer reaction with the Recoil-Distance Doppler-Shift technique, the lifetimes of the 2^+_1 and 4^+_1 excited states have been directly measured in the neutron-deficient 106,108Sn isotopes for the very first time. The emitted γ rays were detected by the AGATA array, while the reaction products were uniquely identified by the VAMOS++ magnetic spectrometer. The control of the direct feeding of the states by gating on the Total Kinetic Energy Loss, together with the unique capabilities of the two spectrometers, was crucial for the measurement in 108Sn.

1 Introduction

The investigation of nuclear structure close to $Z=50$ shell closure have been a hot and discussed topic for both theoretical and experimental groups. The Sn region is the longest isotopic chains between two experimentally accessible neutrons shell closures, namely $N=50$ and $N=82$. Hence, it provides a unique opportunity for systematic studies of the evolution of basic nuclear properties when going from very neutron-deficient to very neutron-rich species.

In this context, the Sn nuclei have been considered a paradigm of pairing dominance. As shown in Fig. 1, the excitation energies of the first 2^+ and 4^+ states are rather constant along the Sn isotopic chain, while the low-lying isomeric states have features in common with seniority isomers due to the break of a $g_7/2$ and a $h_{11/2}$ neutron pair for the neutron-deficient and neutron-rich isotopes, respectively. Moreover, for isotopes with $A>116$ the $B(E2; 2^+_1 \to 0^+_1)$ values present a parabolic behavior, that is expected for the seniority scheme. On the other hand, as presented in Fig. 2, for the lighter Sn nuclei, experimental results on transition probabilities are scarce. In fact, such a neutron-deficient region cannot be investigated with the typical combination of fusion-evaporation reactions with lifetime measurement because of the presence of low-lying isomeric states, which hindered direct measurements of lifetimes below them. Only with the advent of radioactive ion-beam facilities, Coulomb-excitation measurements have allowed to extract the reduced transition probabilities between the first excited 2^+ state and the ground state [1–8]. Within experimental uncertainties, the results suggest a rather-constant behavior for $106 \leq A \leq 110$, instead of the expected parabolic trend. Unfortunately, the lack of information on the $B(E2; 4^+_1 \to 2^+_1)$ strengths in light Sn nuclei [9], combined with large experimental uncertainties on the $B(E2; 2^+_1 \to 0^+_1)$ values, prevents firm conclusions on the shell evolution in the vicinity of the heaviest proton-bound doubly-magic nucleus 100Sn.

To remedy such an experimental limitation, the first lifetime measurement in neutron-deficient Sn isotopes was carried out using the Recoil Distance Doppler-Shift (RDDS) technique, providing a complementary informa-

Figure 1. Excitation energy of the low-lying states along the Sn isotopic chain. The rather constant energy of the 2^+_1 and 4^+_1 excited states and the low-lying isomers, whose features can be attributed to seniority isomers, suggest the presence of pairing dominance. Adapted from Ref. [1].

*e-mail: marco.siciliano@cea.fr
tion to the previous Coulomb-excitation studies. Thanks to the unusual application of a Multi-Nucleon Transfer (MNT) reaction, that is commonly used to investigate neutron-rich nuclei [20–22], together with unprecedented capabilities of the powerful AGATA and VAMOS++ spectrometers, the lifetimes of the 2^+_1 and 4^+_1 states in 106,108Sn have been directly measured for the very first time [23]. The employment of a MNT reaction not only allowed to directly populate the excited states below the isomers, but permitted also to control such a feeding by an appropriate gate on the Total Kinetic Energy Loss (TKEL) [24, 25].

In this contribution the features of this unconventional procedure are investigated by showing the effects of the TKEL gate on the lifetime measurements.

2 Experiment

The light Sn isotopes were obtained in the collision of a 106Cd beam, provided by the separated-sector cyclotron of the GANIL facility at an energy of 770 MeV, and a 0.7 mg/cm2 92Mo. The lifetime measurement was performed with the Recoil Distance Doppler-Shift (RDDS) technique [26, 27] by mounting the target and a 1.6 mg/cm2 thick nat Mg degrader on the differential Cologne plunger. The complete (A,Z) identification of the projectile-like reaction products was obtained on an event-by-event basis using the VAMOS++ spectrometer [28, 29]. In coincidence with the magnetic spectrometer, the γ rays were detected by the AGATA array [30, 31], consisting of 8 triple-cluster detectors placed at backward angles. More details about the ion identification and the analysis procedure can be found in Refs. [23, 32, 33].

Thanks to the fine position sensitivity of both the spectrometers, Doppler correction was applied on an event-by-event basis. Such a sensitivity was essential for performing the measurement because for each γ-ray transition two peaks were observed, related to its emission before and after the Mg foil. The γ rays emitted after the degrader are properly Doppler corrected (I_d), while those emitted before are shifted to lower energies (I) because of the different velocity of the reaction fragment. The relative intensities of the peaks area as a function of the target-degrader distance are related to the lifetime of the state of interest [26, 27].

3 Results

Thanks to the simultaneous measurement of the angle (θ_{bl}) and of the energy (E_{bl}) of the beam-like reaction fragments entering in VAMOS++, the TKEL of the reaction can be extracted under the assumption of a binary reaction without particle evaporation. For the reconstruction it was assumed, that the reaction occurs in the centre of the target: the energy of the beam ion at the centre of the target (E_r) was calculated by taking into account the energy loss in the 92Mo material and the same procedure was adopted to calculate the energy E_{bl} at the centre of the target. The TKEL of the reaction was obtained by using the non-relativistic formula [34]

\[
TKEL = \frac{m_t - m_b}{m_t} E_r - \frac{m_t + m_d}{m_t} E_{bl} + \frac{2 E_{bl}}{m_t} \sqrt{m_t m_d E_{bl} \cos \theta_{bl}} \tag{1}
\]

where m_t, m_b and m_d are the target, the target-like and beam-like masses respectively.

![Figure 2. Experimental reduced transition probabilities $B(E2)$ for the (top) $4^+_1 \rightarrow 2^+_1$ and (bottom) $2^+_1 \rightarrow 0^+_1$ transitions along the Sn isotopic chain. Data taken from Refs. [1–19].](image)

![Figure 3. Doppler-corrected γ-ray energy spectra of 108Sn with (bottom) and without (top) the TKEL \leq 21 MeV condition, obtained by summing up the statistics of all the distances. The shifted (dashed lines) and unshifted (solid lines) components of $8^+_1 \rightarrow 6^+_1$ (green) and $2^+_1 \rightarrow 0^+_1$ (red) are marked. In the inset the TKEL distribution and the required condition are shown.](image)
For the lifetime measurement of the low-lying states in 108Sn, the adoption of the TKEL-gate procedure was crucial. Indeed, as shown in the spectra of Fig. 3, for this nucleus the energies of $8^+_1 \rightarrow 6^+_1$ and $2^+_1 \rightarrow 0^+_1$ transitions are very similar and their different components cannot be distinguished, so traditional methods cannot be used to measure the lifetime of the 2^+_1 state. However, since the population of higher (lower) excited states in the final nucleus correspond to higher (lower) values of TKEL, it is possible to reduce the population of the excited states above the 6$^+$ isomer by imposing the TKEL ≤ 21 MeV condition: the two peaks related to the $8^+_1 \rightarrow 6^+_1$ transition became negligible. Such a procedure allowed us to take into account just the 6^+_1, 4^+_1 and 2^+_1 states in the lifetime measurement via the Decay-Curve Method [23].

4 Conclusion

In this work deep-inelastic collisions, in the specific multi-nucleon transfer reactions, have shown to be a powerful tool to investigate not only the neutron-rich nuclei but also the neutron-deficient species. Indeed, the employment of a multi-nucleon transfer reaction with the plunger device allowed to investigate the electromagnetic properties of the low-lying states close to 108Sn, overcoming the experimental limitations caused by the presence of low-lying isomers. Moreover, thanks to the combination of such technique with the capabilities of both the AGATA and VA-MOS++ spectrometers, the Total Kinetic Energy Loss can be reconstructed and then used to control the feeding from higher-lying states, simplifying the considered decay cascade while measuring the lifetime with the Decay Curve Method.

REFERENCES

[1] R. Kumar, P. Doornenbal, A. Jhingan, R.K. Bhowmik, S. Muralithar, S. Appannababu, R. Garg, J. Gerl, M. Górska, J. Kaur et al. Physical Review C 81, 024306 (2010).
[2] A. Banu, J. Gerl, C. Fahlander, M. Górska, H. Grawe, T. R. Saito, H.-J. Wollersheim, E. Caurier, T. Engeland, A. Gniady et al. Physical Review C 72, 061305(R) (2005).
[3] C. Vaman, C. Andreoiu, D. Bazin, A. Becerril, B.A. Brown, C. M. Campbell, A. Chester, J.M. Cook, D.C. Dinca, A. Gade et al. Physical Review Letters 99, 162501 (2007).
[4] J. Cederkäll, A. Ekström, C. Fahlander, A.M. Hurst, M. Hjorth-Jensen, F. Ames, A. Banu, P.A. Butler, T. Davinson, U. Datta Pramanik et al. Physical Review Letters 98, 172501 (2007).
[5] A. Ekström, J. Cederkäll, C. Fahlander, M. Hjorth-Jensen, F. Ames, P.A. Butler, T. Davinson, J. Eberth, F. Fincke, A. Görgen et al. Physical Review Letters 101, 012502 (2008).
[6] V.M. Bader, A. Gade, D. Weisshaar, B.A. Brown, T. Baugher, D. Bazin, J.S. Berryman, A. Ekström, M. Hjorth-Jensen, S.R. Stroberg et al. Physical Review C 88, 051301(R) (2013).
[7] P. Doornenbal, S. Takeuchi, N. Aoi, M. Matsushita, A. Obertelli, D. Steppenbeck, H. Wang, L. Audirac,
[8] H. Baba, P. Bednarczyk et al. Physical Review C 90, 061302(R) (2014).
[9] N. Jonsson, A. Bäcklin, J. Kantele, R. Julin, M. Luontama, A. Passoja. Nuclear Physics A 371, 333 (1981).
[10] D.C. Radford et al. Nuclear Physics A 746, 83 (2004).
[11] J.N. Orce, S.N. Choudry, B. Crider, E. Elhami, S. Mukhopadhyay, M. Scheck, M.T. McEllistrem, S.W. Yates. Physical Review C 76, 021303(R) (2007).
[12] P. Doornenbal, P. Reiter, H. Grawe, H. J. Wollersheim, P. Bednarczyk, L. Caceres, J. Cederkäll, A. Ekström, J. Gerl, M. Górska et al. Physical Review C 78, 031303(R) (2008).
[13] J.M. Allmond, D.C. Radford, C. Baktash, J.C. Batchelder, A. Galindo-Uribarri, C.J. Gross, P.A. Hausladen, K. Lagergren, Y. Larochelle, E. Padilla-Rodal et al. Physical Review C 84, 061303(R) (2011).
[14] A. Jungclaus, J. Walker, J. Leske, K.H. Speidel, A.E. Stuchbery, M. East et al. Physics Letters B 695, 110 (2011).
[15] G. Kumbartzki et al. Physical Review C 86, 034319 (2012).
[16] G. Guastalla, D.D. Di Julio, M. Górska, J. Cederkäll, P. Boutachkov, P. Golubev, S. Pietri, H. Grawe, F. Nowacki, K. Sieja et al. Physical Review Letters 110, 172501 (2013).
[17] J.M. Allmond, A.E. Stuchbery, A. Galindo-Uribarri, E. Padilla-Rodal, D.C. Radford, J.C. Batchelder, C.R. Bingham, M.E. Howard, J.F. Liang, B. Manning et al. Physical Review C 92, 041303(R) (2015).
[18] G.J. Kumbartzki, N. Benczer-Koller, K.-H. Speidel, D.A. Torres, J.M. Allmond, P. Fallon, I. Abramovic, L.A. Bernstein, J.E. Bevins, H.L. Crawford et al. Physical Review C 93, 044316 (2016).
[19] M. Spieler, P. Petkov, E. Litvinova, C. Müller-Gatermann, S. G. Pickstone, S. Prill, P. Scholz, A. Zilges. Physical Review C 97, 054319 (2018).
[20] S. Szilner, C. A. Ur, L. Corradi, N. Marginean, G. Pollarolo, A. M. Stefanini, S. Bughini, B.R. Bétera, E. Fiotretto, A. Gadea et al. Physical Review C 76, 024604 (2007).
[21] L. Corradi, G. Pollarolo, and S. Szilner. Journal of Physics G 36, 113101 (2009).
[22] J.J. Valiente-Dobón. Basic Concepts in Nuclear Physics: Theory, Experiments and Applications 182, 87 (2016).
[23] M. Siciliano, J.J. Valiente-Dobón, A. Gousdaff, F. Nowacki, A.P. Zakeri. arXiv:1905.10313v2 (2019).
[24] J.J. Valiente-Dobón, D. Mengoni, A. Gadea, E. Farnea, S.M. Lenzi, S. Lunardi, A. Dewald, T. Pissulla, S. Szilner, R. Broda et al. Physical Review Letters 102, 242502 (2009).
[25] D. Mengoni, J.J. Valiente-Dobón, E. Farnea, A. Gadea, A. Dewald, A. Latina. European Physics Journal A 42, 387 (2009).
[26] A. Dewald, S. Harissopulos, and P. Von Brentano. Zeitschrift für Physik A 334, 163 (1989).
[27] A. Dewald, O. Möller, P. Petkov. Progress in Particle and Nuclear Physics 67, 786 (2012).
[28] S. Pullanhiotan, A. Chatterjee, B. Jacquot, A. Navin, M. Rejmund. Nuclear Instruments and Methods in Physics Research B 266, 4148 (2008).
[29] M. Rejmund, B. Lecornu, A. Navin, C. Schmitt et al. Nuclear Instruments and Methods in Physics Research A 646, 184 (2011).
[30] S. Akkoyun et al., Nuclear Instruments and Methods in Physics Research A 668, 26 (2012).
[31] E. Clément, C. Michelagnoli, G. de France, H. J. Li, A. Lemasson, C. B. Dejean, et al. Nuclear Instruments and Methods in Physics Research A 855, 1 (2017).
[32] M. Siciliano, J. J. Valiente-Dobón, A. Gousdaff, D. Bazzacco et al. Acta Physica Polonica B 48, 331 (2017).
[33] M. Siciliano. Nuovo Cimento C 40, 84 (2017).
[34] A.B. Brown, C.W. Snyder, W.A. Fowler and C.C. Lauritsen. Physical Review 82, 159 (1951).