Abstract

Background: Several lines of evidence suggest that chemokines and cytokines play an important role in the inflammatory development and progression of systemic lupus erythematosus. The aim of this study was to evaluate the relevance of functional genetic variations of RANTES, IL-8, IL-1α, and MCP-1 for systemic lupus erythematosus.

Methods: The study was conducted on 500 SLE patients and 481 ethnically matched healthy controls. Genotyping of polymorphisms in the RANTES, IL-8, IL-1α, and MCP-1 genes were performed using a real-time polymerase chain reaction (PCR) system with pre-developed TaqMan allelic discrimination assay.

Results: No significant differences between SLE patients and healthy controls were observed when comparing genotype, allele or haplotype frequencies of the RANTES, IL-8, IL-1α, and MCP-1 polymorphisms. In addition, no evidence for association with clinical sub-features of SLE was found.

Conclusion: These results suggest that the tested functional variation of RANTES, IL-8, IL-1α, and MCP-1 genes do not confer a relevant role in the susceptibility or severity of SLE in the Spanish population.

Background

Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease with a complex pathogenesis involving multiple genetic and environmental factors. The disease is characterized by autoantibody production, abnormalities of immune-inflammatory system function and inflammatory manifestation in several organs. Although the pathogenesis of SLE is unknown, the
Table 1: Taqman probes part number used for genotyping.

Polymorphisms	Part number
RANTES -403 G/A (rs2107538)	C_15874407_10
RANTES R3 C/T (rs2306630)	C_26625663_10
IL-8 -353 A/T (rs4073)	C_11748116_10
IL-8 +781 C/T (rs2227306)	C_11748169_10
IL-1α -889 C/T (rs1800587)	C_9546481_20
MCP-1 -2518 G/A (rs1024611)	C_2590362_10

In addition to these three genes, IL-1α also constitutes a strong candidate gene for SLE, since it is a proinflammatory cytokine that plays and important role in initiating and modulating the immune responses. There is a functional polymorphism in the promoter region of IL-1α gene at position -889 C/T (rs1800587), and the -889 C homozygous genotype has been associated with significantly lower transcriptional activity of the IL-1α gene and lower levels of IL-1α in plasma compared with the TT genotype [18].

This polymorphism was genotyped using TaqMan allelic discrimination assay. The PCR amplification was carried out with mixes consisting of 8 ng of genomic DNA, 2.5 µl of Taqman master mix, 0.125 µl of 20x assay mix and ddH2O up to 5 µl of final volume. The following amplification protocol was used: denaturation at 95°C for 10 min, followed by 40 cycles of denaturation...

Overall, the chemokines RANTES, IL-8, MCP-1 and cytokine IL-1α are strong candidate genes for which genetic association studies can shed light on the underlying mechanisms causing the immune dysregulation, such as inappropriate T cell activation or trafficking in SLE.

Methods

Patients

Peripheral blood samples were obtained after written informed consent from 500 SLE patients meeting the American College of Rheumatology (ACR) criteria for SLE [19]. These patients were recruited from five Spanish hospitals: Hospital Virgen de las Nieves and Hospital Clinico (Granada), Hospital Virgen del Rocio (Seville) and Hospital Carlos-Haya and Hospital Virgen de la Victoria (Malaga). Similarly, blood was taken from 481 blood bank and bone marrow donors of the corresponding cities that were included as healthy individuals. Both patient and control groups were of Spanish Caucasian origin and were matched for age and sex. Eighty seven percent of the SLE patients were women, the mean age of SLE patients at diagnosis was 43 ± 13.3 years and the mean age at disease onset of SLE symptoms was 32 ± 15 years. The SLE clinical manifestations studied were articular involvement (76%), renal affection (37%), cutaneous lesions (62%), hematopoietic alterations (73%), photosensitivity (51%), neurological disease (17%) and serositis (28%). The study was approved by all local ethical committees from the corresponding hospitals.

Genotyping

For all the considered SNPs, samples were genotyped using a pre-developed TaqMan allelic discrimination assay. Table 1 shows the part number and reference of each SNP (Applied Biosystems, Foster City, CA, USA). PCR was carried out with mixes consisting of 8 ng of genomic DNA, 2.5 µl of Taqman master mix, 0.125 µl of 20x assay mix and ddH2O up to 5 µl of final volume. The following amplification protocol was used: denaturation at 95°C for 10 min, followed by 40 cycles of denaturation...
at 92°C for 15 sec and annealing and extension at 60°C for 1 min. After PCR, the genotype of each sample was attributed automatically by measuring the allelic specific fluorescence on the ABI PRISM 7900 Sequence Detection Systems using the SDS 2.2.2 software for allelic discrimination (Applied Biosystems, Foster City, CA, USA).

Statistical analysis
Allele and genotype frequencies were obtained by direct counting. Hardy-Weinberg equilibrium and statistical analysis to compare allelic and genotypic distributions were performed using the chi-square test. Odds ratio (OR) with 95% confidence intervals (95%CI) were calculated according to Woolf's method. The software used was StatCalc program (Epi Info 2002; Centers of Disease Control and Prevention, Atlanta, GA, USA). For the haplotype analysis, pair-wise linkage disequilibrium measures were investigated and haplotypes were constructed using the expectation-maximization (EM) algorithm implemented in UNPHASED software [20]. P values below 0.05 were considered statistically significant. The power of the study to detect an effect of a polymorphism in disease susceptibility was estimated using the Quanto v 0.5 software (Department of Preventive Medicine University of Southern California, CA, USA).

Results
Table 2 shows the allele and genotype distribution of the RANTES, IL-8, IL-1α, and MCP-1 polymorphisms. For all polymorphisms, the distribution of genotypes did not deviate from that expected from populations in Hardy-Weinberg equilibrium.

RANTES typing
Genotyping of RANTES -403 G/A and R3 T/C was performed in 500 and 442 SLE patients and 481 and 438 healthy controls, respectively (table 2). No statistically significant differences were observed when the allele and genotype distribution was compared between SLE patients and healthy controls. Also, we found no association for the two marker haplotypes (table 3).

IL-8 typing
IL-8 -353 T/A and +781 C/T was genotyping in 439 and 467 SLE patients and 412 and 429 healthy controls, respectively for each polymorphism. We found a similar distribution in the allele and genotype frequencies between SLE patients and controls for both genetic variants. The haplotype estimation for the -353 T/A and +781 C/T IL-8 polymorphisms revealed a strong degree of linkage disequilibrium between the two variants (D' = 0.9) and showed a slight but non-significant increase of the -353T/+781C haplotype in SLE patients (8.5% vs 6.2%, P = 0.08, OR = 1.41, 95%CI = 0.94–2.10) (Table 3).

IL-1α typing
IL-1α -889 was typing in 417 SLE patients and 420 healthy controls. We did not find any significant difference when allele and genotype frequencies were compared between SLE patients and healthy controls.

MCP-1 typing
Table 2 show the allele and genotype distribution of the MCP-1 -2518 A/G polymorphism in 450 SLE patients and 427 controls. No significant differences in the allele and genotype frequencies of the MCP-1 -2518 A/G polymorphism were found between SLE patients and controls.

In addition, available clinical features of patients with SLE were analysed for possible association with the different alleles or genotypes of these polymorphisms. When we stratified SLE patients according to the presence of renal involvement, no statistically significant differences were observed in the distribution of RANTES -403, RANTES R3, IL-1α -889 and MCP-1 -2518 polymorphisms between SLE patients with and without lupus nephritis (table 4). Regarding IL-8 polymorphisms, the AT -353 genotype and the -353T/+781C haplotype showed an increased among lupus patients without nephritis compared with patients with nephritis (39.2% vs 49.4%, P = 0.03, OR = 0.66, 95%CI = 0.44–0.99 for AT -353 genotype) (5.7% vs 10%, P = 0.05, OR = 0.55, 95%CI = 0.28–1.05 for -353T/+781C haplotype) (table 4). Similarly, no significant differences were observed between all these genetic variants and the following variables: sex, age at onset, articular involvement, cutaneous lesions, photosensitivity, hematological alterations, neurological disorders and serositis (data not shown).

Discussion
In this work, we have tested six functional polymorphisms of four strong candidate genes for association with SLE. No evidence of association was detected for RANTES (-403 G/A, R3 T/C), IL-8 (-353 A/T, +781 C/T), IL-1α (-889 C/T), and MCP-1 (-2518 G/A) polymorphisms. However, a significant association was observed for the IL-8 haplotype with SLE nephritis, which cannot be considered as significant after correction for multiple comparisons.

All these genes have been previously associated with susceptibility and development to several autoimmune disorders, included SLE [16,21–27]. For example, recent studies in Asian populations found another RANTES polymorphism (-28C/G) to be associated with increased risk of developing SLE, but failed to detect any association of RANTES -403 polymorphisms with SLE [22,23]. We did not test the -28C/G variant as -28G allele is relatively uncommon in Caucasians [28].
Table 2: Allele and genotype frequencies of RANTES, IL-8, MCP-1 and IL-1α polymorphisms in SLE patients and healthy controls.

Allele/Genotype	SLE patients	Controls	P	OR (95%CI)		
RANTES -403						
Genotypes						
GG	369	73.8	333	69.3	0.1	
GA	113	22.6	135	28	0.04	0.75 (0.55–1.01)
AA	18	3.6	13	2.7	0.4	
Alleles						
G	851	85	801	83.3		
A	149	15	161	16.7	0.2	
RANTES R3						
Genotypes						
CC	326	73.8	340	77.6	0.06	
CT	104	23.5	90	20.6	0.3	
TT	12	2.7	8	1.8	0.4	
Alleles						
C	756	85.5	770	88		
T	128	14.5	106	12	0.1	
IL-8 -353						
Genotypes						
AA	126	28.7	125	30.3	0.6	
AT	215	49	194	47.1	0.5	
TT	98	22.3	93	22.6	0.9	
Alleles						
A	467	53.2	444	53.8		
T	411	46.8	380	46.2	0.7	
IL-8 +781						
Genotypes						
CC	164	35	143	33.3	0.6	
CT	238	51	221	51.5	0.8	
TT	65	14	65	15.2	0.6	
Alleles						
C	566	60.6	507	59.1		
T	368	39.4	351	40.9	0.5	
IL-1α -889						
Genotypes						
CC	220	52.7	209	49.7	0.4	
CT	164	39.3	166	39.5	0.9	
TT	33	7.9	45	10.7	0.2	
Alleles						
C	604	72.4	584	69.5		
T	230	27.6	256	30.5	0.2	
MCP-1 -2518						
Genotypes						
AA	238	57.2	250	58.5	0.6	
AG	173	35	154	36	0.7	
GG	39	7.8	23	5.4	0.1	
Alleles						
A	739	74.6	654	76.6		
G	251	25.4	200	23.4	0.3	
The genetic variant IL-8 -845C showed a high association to severe lupus nephritis (LN) in an African American population [16], but also this allele has a very low frequency in Caucasian populations [16,29]. The trend of association that we have found between the haplotypes and LN and the reported association of other IL-8 variants this African American population, shows that variants in this chemokine may have a minor influence on the risk of developing nephritis in SLE patients.

Similar observation could be made for the reported association of the IL-1α -889C/T variant to SLE in a White and African American populations from United States, which we failed to replicate [30]. With regard to the MCP-1 -2518 polymorphism, an American study showed that an A/G or G/G genotype may predispose to the development of SLE and further indicated that SLE patients with these genotypes may be at higher risk of developing LN [3].

The fact that we do not observe an association and fail to confirm some previous studies may be caused by a Type II error (false-negative). This is however unlikely because our sample has more than 80% power to detect the relative risk similar to the other studies at the 5% significance level. Furthermore, the genotype frequencies did not differ from Hardy-Weinberg expectations, and allele and genotype frequencies in our Spanish population are similar to those reported previously in other Caucasian populations [16,26,31,32]. The failure to replicate reported associations is a common event in the search for genetic determinants of complex diseases, due either to genuine population heterogeneity or a different sort of bias [33]. The lack of replication in our population may alternatively be explained by a different racial composition of that study from ours, or that presence of environmental factors to which the Asian, American, and African populations, but not the Spanish population, are exposed. In addition, genetic differences are known to exist between the different ethnic groups, such as, African American and Caucasians.

Conclusion
In conclusion, our results suggest that functional genetics variation in RANTES, IL-8, IL-1α, and MCP-1 do not play a major role in SLE susceptibility in the Spanish population.

Competing interests
The author(s) declare that they have no competing interests.

Authors’ contributions
ES carried out the genotyping and statistical analysis and drafted the manuscript, JMS collected the samples, JLC collected the samples, EDR collected the samples, RGP collected the samples, FJGH collected the samples, JJA collected the samples, MFGE collected the samples, JM participated in the manuscript design and coordination and helped to draft the manuscript, BK participated in the manuscript design, reviewed the statistical analysis and helped to draft the manuscript.

Acknowledgements
This work was supported by grant SAF03-3460 from Plan Nacional de I+D+I, and in part by the Junta de Andalucía, grupo CTS-180. We thank Sasha Zhernakova for her excellent technical assistance. Finally, we thank Cisca Wijmenga for support.

Table 3: Haplotype frequencies for RANTES and IL-8 polymorphisms in SLE patients and controls.

Gene	Haplotype	SLE patients	Healthy controls	P_value	OR (95%CI)
RANTES	-403A/R3C	25 (5.7)	25 (5.8)	ns	
	-403A/R3T	50 (11.3)	40 (9.3)	ns	
	-403G/R3C	355 (80.7)	356 (83.4)	ns	
	-403G/R3T	10 (2.3)	6 (1.5)	ns	
IL-8	-353T/+781C	69 (8.6)	48 (6.2)	0.08	1.41 (0.94–2.10)
	-353T/+781T	316 (39.2)	303 (39.4)	ns	
	-353A/+781C	403 (50)	406 (52.7)	ns	
	-353A/+781T	18 (2.2)	13 (1.7)	ns	
Table 4: Relationship between RANTES, IL-8, MCP-1 and IL-1α polymorphisms and the presence of nephritis in SLE Spanish patients.

	SLE with nephritis	SLE without nephritis	P	OR (95%CI)	
RANTES -403					
Genotypes					
GG	136	73.5	230	73	0.9
GA	44	23.8	71	22.5	0.7
AA	5	2.7	14	4.4	0.3
Alleles					
G	54	14.6	99	15.7	
A	316	85.4	531	84.3	0.6
RANTES R3					
Genotypes					
CC	89	77.4	225	68.8	0.08
CT	23	20	92	28.1	0.1
TT	3	2.6	10	3	0.8
Alleles					
C	201	87.4	542	82.9	
T	29	12.6	112	12.1	0.1
IL-8 -353					
Genotypes					
AA	47	26.7	59	22.4	0.3
AT	69	39.2	130	49.4	0.03
TT	60	34.1	74	28.2	0.2
Alleles					
A	163	46.3	248	47.2	
T	189	53.7	278	52.8	0.8
IL-8 +781					
Genotypes					
CC	74	39.6	99	35.3	0.3
CT	85	45.4	151	54	0.07
TT	28	15	30	10.7	0.2
Alleles					
C	233	62.3	349	62.3	
T	141	37.7	211	37.7	0.9
IL8 -353T/+781C					
Haplotypes					
-353T/+781C	15	5.7	39	10	0.05
-353T/+781T	104	39.7	149	38.2	0.7
-353A/+781C	140	53.4	193	49.5	0.3
-353A/+781T	3	1.2	9	2.3	0.3
IL-1α -889					
Genotypes					
CC	72	49.3	138	50.9	0.7
CT	59	40.4	115	42.4	0.7
TT	15	10.3	18	6.7	0.2
Alleles					
C	203	69.5	391	72.1	
T	89	30.5	151	27.9	0.4
Table 4: Relationship between RANTES, IL-8, MCP-1 and IL-1α polymorphisms and the presence of nephritis in SLE Spanish patients.

MCP-1 -2518
Genotypes
AA
AG
GG
Genotype frequency

References

1. Wakeland EK, Liu K, Graham RR, Behrens TV: Delineating the genetic basis of systemic lupus erythematosus. *Immunity* 2001, 15(3):397-408.
2. Cantor RM, Yuan J, Najafian N, Kono N, Grossman JM, Bao BP: Systemic lupus erythematosus genome scan: support for linkage at 1q23, 2q32, 16q12-13, and 17q21-23 and novel evidence at 2p24, 10q23-24, 13q32, and 18q22-23. *Arthritis Rheum* 2004, 50(10):3209-3210.
3. Tucci M, Barnes EY, Sobel ES, Croker BP, Segal MS, Reeves WH, Richards HB: Strong association of a functional polymorphism in the monocyte chemoattractant protein 1 promoter gene with lupus nephritis. *Arthritis Rheum* 2004, 50(6):1842-1849.
4. Prokunina L, Alarcon-Riquelme M: The genetic basis of systemic lupus erythematosus—knowledge of today and thoughts for tomorrow. *Hum Mol Genet* 2004, 13 Spec No 1:R143-8.
5. Kim HL, Lee DS, Yang SH, Lim CS, Chung JH, Kim S, Lee JS, Kim YS: The polymorphism of monocyte chemoattractant protein 1 promoter is associated with the renal disease of SLE. *Am J Kidney Dis* 2002, 40(6):1146-1152.
6. Gibson AW, Edberg JC, Wu J, Westendorp RG, Huizinga TW, Kimberly RP: Novel single nucleotide polymorphisms in the distal IL-10 promoter affect IL-10 production and enhance the risk of systemic lupus erythematosus. *J Immunol* 2001, 166(4):3915-3922.
7. Mehrian R, Quismorio FPJ, Strassmann G, Stimmmer MM, Horwitz DA, Kritidou RC, Gauderman WJ, Morrison J, Brautbar C, Jacob CO: Synergistic effect between IL-10 and bcl-2 genotypes in determining susceptibility to systemic lupus erythematosus. *Arthritis Rheum* 1998, 41(4):596-602.
8. Andersen LS, Petersen J, Svenson M, Bendtsen K: Production of IL-1β, IL-1 receptor antagonist and IL-10 by mononuclear cells from patients with SLE. *Autoimmunity* 1999, 30(4):235-242.
9. Li LC, Wong CK, Tam LS, Li EK, Lam CW: Raised plasma concentration and expression of IL-1α in patients with systemic lupus erythematosus. *Ann Rheum Dis* 2006, 65(2):209-215.
10. Aoki M, Pawankar R, Niimi Y, Kawana S: Mast cells in basal cell carcinoma express VEGF, IL-8 and RANTES. *Int Arch Allergy Immunol* 2003, 130(3):16-23.
11. Tesh GH, Schwarting A, Kinoshita K, Lan HY, Rollins BJ, Kelley VR: Monocyte chemoattractant protein-I promotes macrophage-mediated tubular injury, but not glomerular injury, in nephrotoxic serum nephritis. *J Clin Invest* 1999, 103(1):73-80.
12. Rovin BH, Phan LT: Chemotactic factors and renal inflammation. *Am J Kidney Dis* 1998, 31(6):1065-1084.
13. Kelley VR, Rovin BH: Chemokines: therapeutic targets for autoimmune and inflammatory renal disease. *Springer Semin Immunopathol* 2002, 24(4):411-421.
14. Rovin BH, Song H, Birmingham DJ, Hebert LA, Yu CY, Nagaraja NH: Urine chemokines as biomarkers of human systemic lupus erythematosus activity. *J Am Soc Nephrol* 2005, 16(2):467-473.
15. Liu H, Chao D, Nakayama EE, Taguchi H, Goto M, Xin X, Takamatsu JK, Saito H, Ishikawa Y, Akaia T, Jusu T, Takebe Y, Ohishi T, Fukutake K, Maruyama Y, Yashiki S, Sonoda S, Nakamura T, Nagai Y, Yamamoto A, Shioda T: Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. *Proc Natl Acad Sci U S A* 1999, 96(8):4581-4585.
16. Rovin BH, Lu L, Zhang X: A novel interleukin-8 polymorphism is associated with severe systemic lupus erythematosus nephritis. *Kidney Int* 2002, 62(1):261-265.
17. Rovin BH, Lu L, Saxena R: A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. *Biochem Biophys Res Commun* 1999, 259(2):346-348.
18. Dominici R, Cattaneo M, Malferri G, Archi D, Mariani C, Grimaldi LM, Biunno I: Cloning and functional analysis of the allelic polymorphism in the transcription regulatory region of interleukin-1 alpha. *Immunogenetics* 2002, 54(2):82-86.
19. Hochberg MC: Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. *Arthritis Rheum* 1997, 40(9):1725.
20. Dudbridge F: Pedigree disequilibrium tests for multilocus haplotypes. *Genet Epidemiol* 2003, 25(2):115-121.
21. Wang CR, Guo HR, Liu MF: RANTES promoter polymorphism as a genetic risk factor for rheumatoid arthritis in the Chinese. *Clin Exp Rheumatol* 2005, 23(3):379-384.
22. Liao CH, Yao TC, Chung HT, See LC, Kuo ML, Huang JL: Polymorphisms in the promoter region of RANTES and the regulatory region of monocyte chemoattractant protein-1 among Chinese children with systemic lupus erythematosus. *J Rheumatol* 2004, 31(10):2062-2067.
23. Ye DQ, Yang SG, Li XP, Hu YS, Yin J, Zhang GQ, Liu HH, Wang Q, Zhang KC, Dong MX, Zhang YJ: Polymorphisms in the promoter region of RANTES in Han Chinese and their relationship with systemic lupus erythematosus. *Arch Dermatol Res* 2005, 297(3):108-113.
24. Makki RF, al Sharif F, Gonzalez-Gay MA, Garcia-Porrua C, Ollier WE, Hajeer AH: RANTES gene polymorphism in polymyalgia rheumatica, giant cell arteritis and rheumatoid arthritis. *Clin Exp Rheumatol* 2000, 18(3):391-393.
25. Chen RH, Chang WC, Wang TY, Tsai CH, Tsai FJ: Lack of association between pro-inflammatory cytokine (IL-6, IL-8 and TNF-alpha) gene polymorphisms and Graves’ disease. *Int J Immunogenet* 2005, 32(6):343-347.
26. Sciaccia FL, Ferri C, Veglia F, Andreotta F, Mantegazza R, Cornelio F, Franciotta D, Piccolo G, Cosis V, Batocchi AP, Evoli A, Grimaldi LM: IL-1 genes in myasthenia gravis: IL-1α -889 polymorphism associated with sex and age of disease onset. *Neurommunol* 2002, 122(1-2):94-99.
27. Yang B, Houlberg M, Millward A, Demaine A: Polymorphisms of chemokine and chemokine receptor genes in Type 1 diabetes mellitus and its complications. *Glycobiology* 2004, 14(3):114-121.
28. McDermott DH, Beebeecraft MJ, Kleeberger CA, Al-Sharif FM, Ollier WE, Zimmermann PA, Boatin BA, Leitman SF, Detels R, Hajeer AH, Murphy PM: Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS Cohort Study. *Aids* 2000, 14(17):2671-2678.
29. Renzoni E, Lympamy P, Sestini P, Pantelidis P, Wells A, Black C, Welsh K, Bunn C, Knight C, Foley P, du Bois RM: Distribution of novel polymorphisms of the interleukin-8 and CX3C receptor 1 and 2 genes in systemic sclerosis and cryptogenic fibrosing alveolitis. *Arthritis Rheum* 2000, 43(7):1633-1640.
30. Parks CG, Cooper GS, Dooley MA, Treadwell EL, St Clair EW, Gilkeson GS, Pandey JP: Systemic lupus erythematosus and genetic variation in the interleukin 1 gene cluster: a population
based study in the southeastern United States. *Ann Rheum Dis* 2004, 63(1):91-94.

31. Huerta C, Alvarez V, Mata IF, Coto E, Ribacoba R, Martinez C, Blazquez M, Guissola LM, Salvador C, Lahoz CH, Pena J. Chemokines (RANTES and MCP-1) and chemokine-receptors (CCR2 and CCR5) gene polymorphisms in Alzheimer's and Parkinson's disease. *Neurosci Lett* 2004, 370(2-3):151-154.

32. Aguilar F, Gonzalez-Escribano MF, Sanchez-Roman J, Nunez-Roldan A. MCP-1 promoter polymorphism in Spanish patients with systemic lupus erythematosus. *Tissue Antigens* 2001, 58(5):335-338.

33. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. *Nat Genet* 2001, 29(3):306-309.

Pre-publication history

The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-2350/7/48/prepub