Lumbar Facet Cyst as a Rare Cause of L5 Radiculopathy: A Case Report

Salim AL Habsia Khalifa AL Ghafria Mansour Elsaida Abdulrahman AL Subhia Hunaina AL Kindib Kaouthar AL Baccoucheb

aDepartment of Orthopedics, Khoula Hospital, Muscat, Sultanate of Oman; bDepartment of Pathology, Khoula Hospital, Muscat, Sultanate of Oman

Keywords
Facet cyst · Radiculopathy · Lumbar spine

Abstract
Lumbar facet cysts arise from zygapophyseal joints and are commonly associated with spondylosis. They are a rare cause of symptomatic nerve root compression. We are presenting a rare case of L4/5 lumbar facet cyst compressing the nerve root in a patient presenting with L5 radiculopathy. The clinical picture of a facet cyst in this case is similar to intervertebral disc disease.

Introduction
Intraspinal extradural synovial cysts arising from spine facet joints are most commonly associated with degenerative spondylosis of the facet joints [1]. They are frequently seen in the lumbar spine, but it can arise in the thoracic and cervical spine as well [2]. Spinal facetal cysts are usually asymptomatic and found incidentally; however, they may rarely present with long-standing low back pain, radiculopathy, or symptoms of neurogenic claudication [3, 4].

Keywords
Facet cyst · Radiculopathy · Lumbar spine

Abstract
Lumbar facet cysts arise from zygapophyseal joints and are commonly associated with spondylosis. They are a rare cause of symptomatic nerve root compression. We are presenting a rare case of L4/5 lumbar facet cyst compressing the nerve root in a patient presenting with L5 radiculopathy. The clinical picture of a facet cyst in this case is similar to intervertebral disc disease.

Introduction
Intraspinal extradural synovial cysts arising from spine facet joints are most commonly associated with degenerative spondylosis of the facet joints [1]. They are frequently seen in the lumbar spine, but it can arise in the thoracic and cervical spine as well [2]. Spinal facetal cysts are usually asymptomatic and found incidentally; however, they may rarely present with long-standing low back pain, radiculopathy, or symptoms of neurogenic claudication [3, 4].
Here, we present a rare case of a facet cyst causing compression of right L5 nerve root in a patient with right lower limb radiculopathy.

Case Report

A 61-year-old man presented with right-sided lower limb radiculopathic pain lasting for 6 months and related to activity. It increased in severity for the last 3 months. His medical history included diabetes, dyslipidemia, and benign prostatic hyperplasia. Clinically he has no neurological deficits. Straight leg raising test was positive on the right side at 40°.

Plain anterior-posterior and lateral radiograph of the lumbosacral region revealed mild degenerative changes. MRI showed an extradural cystic lesion arising from the right side L4/5 facet and causing compression of the right L5 nerve root (Fig. 1, Fig. 2). Inflammatory markers were normal.

Conservative treatments, including analgesic medications and physiotherapy, were attempted, but with no significant improvement. The patient underwent resection of the facet cyst under general anesthesia in a prone position through the posterior approach. Intraoperatively, an extradural cyst of approximately 1.5 cm located along the medial border of the facet joint was found. It was arising from the L4/5 facet joint which was moderately degenerated. The cyst was compressing the thecal sac and the right side L5 nerve root which was under tension (Fig. 3). During release of the cyst from the dura, it got ruptured and mucoid-like fluid came out (Fig. 4). The cyst was resected in pieces and a sample was sent for histopathology examination (Fig. 5). On microscopy, a fibrocollagenous cyst wall was seen with dense granulation tissue. The cyst was lined by fibrinous material; no obvious epithelial lining was identified. On the whole, the features were in keeping with a facet cyst.

Postoperatively, the patient’s symptoms of radiculopathy improved and he was mobilized full weight bearing. He was sent home on day 1 postoperatively. He was reviewed in the outpatient clinic 3 months after surgery and remained asymptomatic.

Discussion

Spinal facet cysts are usually common in an older population with an average age of 66 years and frequencies ranging from 0.6 to 7.3% [5]. Bilateral lumbar facet cysts are rare, with reported frequency of 4% in surgically treated patients for lumbar facet cyst at the Mayo clinic over 24 years [5].

In the lumbar spine, synovial facet cysts are most commonly found at the L4–L5 level (68.4%) followed by the L5–S1 level (21.1%) [6, 7]. Generally, the L4–L5 level has the most movements at the lumbar spine predisposing to facet joint osteoarthritis and cyst formation [7, 8]. Their etiopathogenesis is poorly understood, but they are often associated with degenerative facet disease, spondylolisthesis and spinal trauma [9–11].

Spinal facet cysts are usually asymptomatic and found incidentally on MRI; however, they may present with back pain, radicular pain, neurogenic claudication, and rarely with caude equina syndrome and myelopathy [3, 4, 12, 13]. In our case, the patient presented with right-sided L5 radicular pain typical of lumbar disc disease. However, his MRI revealed right-sided L4/5 facet cyst compressing the right side L5 root which could explain his symptom. Motor deficit can occur in (12–37.2%) of the patients, sensory loss in (26–43%), and reflex changes in (35–57%) [14–16].
The differential diagnosis for nondiscogenic sciatica includes lumbar radicular herpes zoster, lumbar instability, nerve root schwannoma, sacroilitis, sciatic neuritis, facet cyst, and hypertrophy, piriformis syndrome, and intrapelvic mass or coxarthrosis [17].

The differential diagnosis of soft tissue mass in the intraspinal lumbar epidural space includes facet cyst, extruded or sequestered disc fragment, metastatic tumor, meningioma, schwannoma, neurofibroma with cystic degeneration, arachnoid cyst, perineural cyst, and dermoid cyst [7].

There are many radiological tools which help in making a diagnosis of intraspinal facet cysts including myelography, CT scan, facet arthrogram, and MRI [18]. However, magnetic resonance imaging is known to offer the best means of diagnosing and visualizing the cyst, especially with the use of contrast agent [7, 18]. Typically, facet cyst are characterized by their low-intensity signal in T1-weighted images on MR imaging and a high-intensity signal in T2-weighted images [15].

Extensive nonsurgical treatment can be considered as the first therapeutic option, especially in patients without neurological deficits as spontaneous regression of these cysts are possible [19]. The nonsurgical management consists of analgesics, physiotherapy, bracing, facet injection, and cyst aspiration [5]. Many studies have reported cases of spontaneous resolution of facet cyst with conservative treatment with complete remission of clinical and radiological findings [19–21].

The fluoroscopic or CT-guided direct lumbar facet synovial cyst aspiration technique is a usually safe and minimally invasive procedure. It has good short-term results in terms of pain relief; however, a review of studies utilizing these techniques reveals a high long-term failure rate, which is around 50–100% [9–22]. The high-failure rate contributed to failure of complete decompression of these cysts, since they contain thick gelatinous nonabsorbable materials and also it leaves the cyst capsule behind which may still compress the neurological structures leading to lack of complete symptom relief [22]. In addition, failure of complete removal of synovial tissue and cyst capsule may lead to recurrences.

There have been reports in the literature that image guided percutaneous steroid injection into facet cyst may result in regression and resolution of the cyst both clinically and radiologically [23, 24]. In a retrospective report of 44 consecutive patients with symptomatic lumbar facet cyst received primary treatment with CT-guided synovial cyst rupture with intra-articular steroid injection reported improvement in pain medications, numeric rating scale, Oswestry Disability Index, and 12-item short form health survey (SF-12 PCS) [25].

A recent study described the use of targeted radiofrequency ablation to manage facet cyst [26]. In this technique the cyst is percutaneously drained under image guidance and then cauterized along with the associated facet capsule and facet joint, where the original cyst developed. The outcomes from this study and long-term follow-up demonstrated that this technique reduces the frequency of cyst recurrence compared to simple aspiration and steroid injection or cyst rupture [26].

Surgical treatment is the gold standard due to high recurrence rate and poor outcome with conservative therapy. Surgical resection of the cyst is indicated in cases not responding to conservative therapy, recurrent cysts, patient with intractable pain or neurological deficit. Instrumented spinal fusion surgery can be performed in cases of spinal instability [27].

Facet cysts can be effectively and safely excised with minimally invasive surgical techniques. MIS approach decreases soft-tissue injury, blood loss, length of the incision, resulting in earlier ambulation and short hospital stay [28, 29]. In addition, MIS minimizes disruption of ligamentous and bony structures and could decrease the risk of progressive instability and the need for fusion, particularly in the presence of preexisting spondylolisthesis [28, 29].
Some studies have compared outcomes of different surgical treatment methods in patients with synovial cysts. Synovial cyst recurrence occurs in 1.8 to 3% after decompression and excision of synovial cysts but it has never been reported in patients after decompression and fusion, although hospital stay and blood loss is more in patients treated with decompression and fusion [30, 31].

Our patient was managed initially with non-surgical therapy with analgesics and physiotherapy. However, he showed no improvement with non-surgical therapy and underwent excision of the cyst through medial facetectomy.

In conclusion, intraspinal lumbar synovial cysts arising from facet joint are infrequent cause of sciatic pain. MRI is the gold standard in diagnosing facet cysts. Surgical decompression and excision result in clinical improvement. We presented a case of lumbar spine L4/5 facet cyst in young man and treated with surgical excision. Patient has a complete relief of his symptoms after the surgery.

Acknowledgement

The authors would like to acknowledge the patient, who was informed that data and images concerning the case would be submitted for publication. He provided consent.

Statement of Ethics

The authors have no ethical conflicts to disclose.

Disclosure Statement

There are no conflicts of interest to declare.

Funding Sources

No specific funding was received for this study.

Author Contributions

S.H.: Manuscript writing, literature review, preparing the figures. K.G.: Operating surgeon, reviewed the manuscript. M.E.: Idea of the study. A.S.: Literature review. H.K.: Pathologist. K.B.: Pathologist.

References

1 Kurz LT, Garfin SR, Unger AS, Thorne RP, Rothman RH. Intraspinal synovial cyst causing sciatica. J Bone Joint Surg Am. 1985 Jul;67(6):865–71.
2 Freidberg SR, Fellows T, Thomas CR, et al. Experience with symptomatic spinal epidural cysts. Neurosurgery 1994;34:989–93; discussion 993.
Yarde WL, Arnold PM, Kepes J, O'Boynick PL, Wilkinson SB, Batnitzky S. Synovial cysts of the lumbar spine: diagnosis, surgical management, and pathogenesis. Report of eight cases. Surg Neurol. 1995 May;43(5):459–64.

Khan AM, Girardi F. Spinal lumbar synovial cysts. Diagnosis and management challenge. Eur Spine J. 2006 Aug; 15(8):1176–82.

Lyons MK, Atkinson JL, Wharen RE, Deen HG, Zimmerman RS, Lemens SM. Surgical evaluation and management of lumbar synovial cysts: the Mayo Clinic experience. J Neurosurg. 2000 Jul;93(1 Suppl):53–7.

Salmon BL, Deprez MP, Stevenaert AE, Martin DH. The extraforaminal juxtafacet cyst as a rare cause of L5 radiculopathy: a case report. Spine. 2003 Oct;28(19):E405–7.

Hsu KY, Zucherman JF, Shea WJ, Jeffrey RA. Lumbar intraspinal and ganglion cysts (facet cysts). Ten-year experience in evaluation and treatment. Spine (Phila Pa 1976). 1995 Jan;20(1):80–9.

Budris DM. Radiologic case study. Intraspinal lumbar synovial cyst. Orthopedics. 1991 May;14(5):613, 618–20.

Shah RV, Lutz GE. Lumbar intraspinal synovial cysts: conservative management and review of the world’s literature. Spine J Off J North Am Spine Soc 2003;3:479–88.

Howington JU, Connolly ES, Voorhies RM. Intraspinal synovial cysts: 10-year experience at the Ochsner Clinic. J Neurosurg 1999;91:193–99.

Reust P, Wendling D, Lagier R, et al. Degenerative spondylolisthesis, synovial cyst of the zygapophysial joints, and sciatic syndrome: report of two cases and review of the literature. Arthritis Rheum 1988;31:288–94.

Kim DS, Yang JS, Cho YJ, et al. Acute myelopathy caused by a cervical synovial cyst. J Korean Neurosurg Soc 2014;56:55–7.

Janjua MB, Smith ML, Shenoy K, et al. Thoracic juxtafacet cyst (JFC): a cause of spinal myelopathy. J Spine Surg Hong Kong 2017;3:294–99.

Boviatsis EJ, Staurinou LC, Kouyialis AT, et al. Spinal synovial cysts: pathogenesis, diagnosis and surgical treatment in a series of seven cases and literature review. 2008;17:831–37.

Métei C, Fuentes S, Adelchessi T, et al. Retrospective study of 77 patients harbouring lumbar synovial cysts: functional and neurological outcome. Acta Neurochir (Wien) 2006;148:47–54; discussion 54.

Hsu KY, Zucherman JF, Shea WJ, et al. Lumbar intraspinal synovial and ganglion cysts (facet cysts). Ten-year experience in evaluation and treatment. Spine 1995;20:80–9.

Kuku DG, Naderi S. Differential diagnosis of intraspinal and extraspinal non-disocogenic sciatica. J Clin Neurosci. 2008 Nov;15(11):1246–52.

Kusakabe T, Kasama F, Aizawa T, Sato T, Kokubun S. Facet cyst in the lumbar spine: radiological and histopathological findings and possible pathogenesis. J Neurosurg Spine. 2006 Nov;5(5):398–403.

Ewald C, Kalff R. Resolution of a synovial cyst of the lumbar spine without surgical therapy – a case report. Zentralbl Neurochir. 2005;66:147–151.

Sinha P, Panbehchi S, Lee M-T, et al. Spontaneous resolution of symptomatic lumbar synovial cyst. J Surg Case Rep; 2016. Epub ahead of print 31 October 2016. DOI: 10.1093/jscr/rjw166.

Pulhorn H, Murphy M. Spontaneous resolution of a symptomatic synovial cyst of the lumbar spine. Br J Neurosurg 2012; 26:123–124.

Epstein NE, Baisden J. The diagnosis and management of synovial cysts: Efficacy of surgery versus cyst aspiration. Surg Neurol Int 2012; 3:517–166.

Parker-Cuau C, Wybier M, Nizard R, et al. Symptomatic lumbar facet joint synovial cysts: clinical assessment of facet joint steroid injection after 1 and 6 months and long-term follow-up in 30 patients. Radiology 1999;210:509–513.

Bureau NJ, Kaplan PA, Dussault RG. Lumbar facet joint synovial cyst: percutaneous treatment with steroid injections and distention–clinical and imaging follow-up in 12 patients. Radiology 2001; 221:179–85.

Haider SJ, Na NR, Eskey CJ, et al. Symptomatic Lumbar Facet Synovial Cysts: Clinical Outcomes Following Percutaneous CT-Guided Cyst Rupture with Intra-articular Steroid Injection. J Vasc Interv Radiol JVIR 2017;28:1083–89.

Hatgi J, Granville M, Berti A, et al. Targeted Radiofrequency Ablation as an Adjunct in Treatment of Lumbar Facet Cysts. Cureus 2017;9:e1318.

Khan AM, Synnot K, Cammisa FP, Girardi FP. Lumbar synovial cysts of the spine: an evaluation of surgical outcome. J Spinal Disord Tech. 2005 Apr;18(2):127–31.

Denis DR, Hirli JR, Shah S, et al. Minimally invasive surgery for lumbar synovial cysts with coexisting degenerative spondylolisthesis. Int J Spine Surg 2016;10:37.

Sandhu FA, Santiago P, Fessler RG, et al. Minimally invasive surgical treatment of lumbar synovial cysts. Neurosurgery 2004; 54:107–111; discussion 111–112.

Xu R, McGirt MJ, Parker SL, et al. Factors associated with recurrent back pain and cyst recurrence after surgical resection of one hundred ninety-five spinal synovial cysts: analysis of one hundred sixty-seven consecutive cases. Spine (Phila Pa 1976) 2010 May;35(10):1044–35. https://www.ncbi.nlm.nih.gov/pubmed/20173680.
31 Bydon A, Xu R, Parker SL, et al. Recurrent back and leg pain and cyst reformation after surgical resection of spinal synovial cysts: systematic review of reported postoperative outcomes. Spine J Off J North Am Spine Soc 2010; 10: 820–826.

Fig. 1. T2 sagittal MRI showing a hyperintense cystic lesion (white arrow) at the L4/5 level.

Fig. 2. Axial MRI T2 image showing cystic lesion (white arrow) arising from the right L4/5 facet joint (black arrow) causing narrowing of the right neural foramina. It also shows bilateral facet joint arthritis and hypertrophy.
Fig. 3. Schematic illustration of intraoperative findings. A Facet cyst. B Dura. C Right L5 root. D Degenerated facet joint.

Fig. 4. Resected facet cyst.
Fig. 5. Microscopy (H&E, 10×). Cyst wall composed of granulation tissue (right) and lined by fibrinous material (left).