MODELING COMPETITION BETWEEN TWO PHARMACEUTICAL DRUGS USING INNOVATION DIFFUSION MODELS

BY RENATO GUSEO AND CINZIA MORTARINO

University of Padova

The study of competition among brands in a common category is an interesting strategic issue for involved firms. Sales monitoring and prediction of competitors’ performance represent relevant tools for management. In the pharmaceutical market, the diffusion of product knowledge plays a special role, different from the role it plays in other competing fields. This latent feature naturally affects the evolution of drugs’ performances in terms of the number of packages sold. In this paper, we propose an innovation diffusion model that takes the spread of knowledge into account. We are motivated by the need of modeling competition of two antidiabetic drugs in the Italian market.

1. Introduction. The diffusion of an innovation often has to cope with the rise of many competitors that generate huge competitive effects, expansion or contraction in the market’s potential size, changes in the evolutionary dynamics of certain brands, increases or decreases in life cycle length, and anticipation of the time of entry of additional products in the market. These effects can be modeled only if they are included in a single complex system that can correctly identify competition and contextual forces.

We cannot observe the complex system in which single agents (consumers) may interact and share information regarding alternative technologies, comparable solutions, similar devices, and so on. Instead, we observe the resulting aggregate emergent dynamics (level reached by diffusion; e.g., number of packages sold), and we base our analysis upon this level of observability.

Usually, the diffusion of products in a marketplace has a limited time horizon defining particular finite life cycles with different internal dynamics. We observe poor performance at the beginning of the process after launch due to limited acceptance of a newcomer to the market that interacts with previous knowledge and consumers’ lifestyles. Similarly, but for different reasons, we notice a pronounced decrease in sales at the end of the commercial life cycle, when the product is perceived as an old, inefficient solution. Previous competing processes are nonstationary and nonlinear due to chilling and saturating effects within their life spans. Following this qualitative reasoning, for modeling and predictive purposes, we may

Received March 2015; revised July 2015.

1Supported by Università degli Studi di Padova, Progetto di Ricerca di Ateneo CPDA118082/11: “Competition among Innovation Diffusion Processes.”

Key words and phrases. Competition, innovation diffusion, dynamic market potential, communication network, nonlinear regression.

2073
exclude the direct use of ARMA-like (or VARMA) processes, which are strongly based on weak stationary conditions after some differencing.

The pharmaceutical market is an important example of competition among alternative drugs. The products can differ to a great extent when they are based on different active compounds, or they can differ only at the commercial level when the same active compound is sold by competing firms. Moreover, this market differs from other markets, since in many countries the cost of essential/vital drugs is paid through a welfare system. To some extent, pricing does not directly influence physicians’ prescriptions. In addition, in Italy, the Ministry of Health and pharmaceutical firms negotiate the price to be paid by the national health service.

The aim of this paper is to build and apply a competition model for pharmaceutical drugs (source: IMS Health Italy). In particular, we focus on a pair of drugs with the same active compound, based on glimepiride. This is a situation of substitute products (brands) competing for the same patients. The results will be compared with the outcomes obtained by applying alternative models. In this case, we emphasize that an “explicative” model, in addition to describing the data and providing reliable forecasts, should highlight the key features of the competition among the analyzed drugs. This is a further reason, beyond nonstationarity, not to rely on traditional time series approaches.

A specific method for studying the dynamics of these special markets is based on two steps. First, to detect the mean trajectory of the processes, we use the diffusion of innovation methodology, which is strongly related to system analysis and epidemiological modeling tools. Second, to take into account seasonal autoregressive or moving average effects, we perform an analysis of residuals, thereby improving short-term prediction.

The models due to Bass and colleagues [Bass (1969), Bass, Krishnan and Jain (1994)] represent an essential step for the development of aggregate univariate diffusion patterns, and a huge number of extensions have originated from them [see, among others, Meade and Islam, (2006), Peres, Muller and Mahajan (2010)].

Conversely, the main contributions pertaining to competition modeling are rather sparse. Krishnan, Bass and Kumar (2000), Savin and Terwiesch (2005) and, recently, Guseo and Mortarino (2012) and Guseo and Mortarino (2014b) have described competition with a differential representation admitting a closed-form solution. The differential representation is typical of the models proposed in quantitative marketing literature, where an aggregate parsimonious description of real adoption processes, based on interpretable parameters, is essential to capture relevant features, deduce related managerial implications, and predict the future evolution of the market under study. The simplicity of the model’s structure is obtained by introducing plausible assumptions regarding the behavior of the agents playing a role within the market. In addition, a tractable solution for estimation and prediction makes it easy to validate the model through aggregate sales data. The relevant issue in this research topic is to build an adequately large set of models to describe the different characteristics of the diffusion process. Confirmation
or rejection of the assumptions underlying each model is then attained by fitting available observed data and comparing the models’ performances.

Models available in the literature to describe diffusion of competing products in a common market assume that the asymptotic market potential—that is, the total number of adoptions a product will ultimately reach at the end of its life cycle—is invariant throughout the life cycle from the products’ launch. However, this assumption is almost always unrealistic. In general, knowledge and awareness of a product are not immediately disseminated throughout eligible adopters upon the entrance of a pioneering brand into the market. Moreover, new brands are often followed by competitors, whose launch may affect awareness of the earlier products. The topic arises from the consideration that awareness of a product and adoption are themselves diffusion processes. Awareness is a latent prerequisite for adoption, and the degree of penetration of a product into the market is limited by the degree of diffusion of knowledge regarding its existence and properties. For this reason, the market potential would be better described as a dynamic process than as a fixed constant, as discussed in Guseo and Guidolin (2009) for the univariate case without competition effects.

In Section 2 we briefly illustrate the standard Bass model [Bass (1969)] with its extension [Guseo and Guidolin (2009)], that introduces a dynamic market potential. The underlying reasons motivating this extension are also presented. In Section 3 we discuss how the competition model proposed in Guseo and Mortarino (2014b) can be extended to incorporate dynamic market potential. In Section 4 we illustrate the application of the new model to the description of competition between two antidiabetic drugs. In Section 5 we discuss the improvement obtained for these data with the proposed dynamic potential model and contrast it with the more common constant hypothesis and with alternative dynamic structures. In Section 6 we present concluding remarks.

2. A possible form for dynamic market potential. The simpler form of a univariate diffusion of an innovation model is given by the Bass model [Bass (1969)]. The differential representation is defined through the following equation:

\[
\frac{dz(t)}{dt} = m \left[p + \frac{z(t)}{m} \right] \left[1 - \frac{z(t)}{m} \right] = \left[p + \frac{z(t)}{m} \right] [m - z(t)].
\]

where \(z(t) \) and \(z'(t) = \frac{dz(t)}{dt} \) represent the mean cumulative sales and the mean instantaneous sales at time \(t \), respectively. Parameter \(m \) is the fixed market potential (the asymptotic level of cumulative sales or the total number of adoptions at the end of the life cycle), that is, \(m = \lim_{t \to \infty} z(t) \).

Equation (2.1) makes explicit that, at each time point, the increase in instantaneous mean sales is proportional to the residual market, \(m - z(t) \). The proportionality factor is affected by a fixed effect, \(p \), and by a time-varying effect, \(q z(t)/m \). The former, called the innovative coefficient, is independent of the degree of diffusion reached. The higher the value of \(p \), the more rapid the takeoff of
the life cycle, describing a process in which exogenous factors, such as advertising or institutional communication efforts, push a product’s diffusion. The latter effect, \(qz(t)/m \), depends upon the degree of saturation of the market and describes, through the interaction \(z(t)[m - z(t)] \), how word-of-mouth from previous sales promotes further diffusion. The coefficient \(q \) is called the imitative coefficient. The higher the value of \(q \), the more important word-of-mouth is in increasing diffusion. As \(z(t) \) approaches \(m \), the residual market, \(m - z(t) \), collapses and instantaneous mean sales, \(z'(t) \), reduces to zero.

Under the initial condition \(z(0) = 0 \), and defining \(z(t) = 0 \) for \(t < 0 \), the explicit solution of equation (2.1) is

\[
(2.2) \quad z(t) = m \frac{1 - e^{-(p+q)t}}{1 + (q/p)e^{-(p+q)t}} = mw(t; p, q), \quad t > 0, p, q > 0,
\]

where

\[
(2.3) \quad w(t; p, q) = \frac{1 - e^{-(p+q)t}}{1 + (q/p)e^{-(p+q)t}}.
\]

Continuous-time modeling is a common choice throughout the diffusion of innovation literature, even when models are fitted to weekly, monthly or quarterly data. This is partially because the involved variables are measured continuously over time, even if, for administrative reasons, data are recorded at discrete times. In addition, Putsis (1996) conducts a detailed comparison and emphasizes that using seasonally adjusted quarterly data results in better estimates than using annual data. In contrast, moving from quarterly to monthly data produces only marginal statistical improvement. Boswijk and Franses (2005) indicate that the values of \(p \) and \(q \) in their discretized version of the Bass model correspond to those of the continuous time model used here whenever equally spaced data are available.

Although model (2.1) and its successive extensions proved to be extremely valuable in describing innovation diffusion processes, all are limited by the fact that market potential, \(m \), is a fixed constant, and hence cannot evolve over time. This assumption conflicts with the common perception that knowledge may be time dependent. Some attempts have been proposed in the literature to overcome this limitation. In some papers, the dynamic market potential is modeled as a function of exogenous observed variables [see, e.g., Kim, Bridges and Srivastava (1999), and the included references]. In other cases, it is assumed to be a function of time only [e.g., Sharif and Ramanathan (1981), Centrone, Goia and Salinelli (2007), Meyer and Ausubel (1999)].

Here, we follow the approach proposed in Guseo and Guidolin (2009). In principle, the market potential can be any function \(m(t) \) that defines an upper bound for cumulative sales \(z(t) \), that is, \(z(t) \leq m(t) \) for all \(t \). However, a parsimonious and intuitive method for specifying the form of \(m(t) \) arises when we examine the communication network spreading information about the product in question. The number of potential adopters of a product can be thought of, at each time
point, as the size of the aware agents’ group. We describe awareness of the product
as knowledge transmitted through a network that describes the specific contacts
among agents who eventually “speak” about the product. This approach is linked
to the literature on social networks, often represented with random graph models
where nodes denote individual social actors (agents) and edges denote specific re-
lationships between two actors [Handcock and Gile (2010)]. Many contributions to
the literature assume observability of the edges, either complete or partial, through
sample data.

In our approach, conversely, the communication network evolving over time is
latent and does not have to be observed or described in detail; this is also due to the
high costs of reliable relational data collection. The focus is instead on the number
of informed agents (active nodes). This is a key aspect, since we want to deal with
all the situations where the communication network is product-specific (people
usually choose to talk with someone—and not with someone else—according to
the topic of the conversation). In these situations, the content-driven network is
totally unobservable, or it is very difficult to obtain reliable pertinent data.

The formalized structure of such a network is described in Guseo and Guidolin
(2009), where the authors explain in detail how this interpretation may lead to the
following dynamic market potential function:

\[m(t) = K \sqrt{\frac{1 - e^{-(p_c + q_c)t}}{1 + (q_c / p_c)e^{-(p_c + q_c)t}}} \]

\[= K \sqrt{w(t; p_c, q_c)}, \quad K, p_c, q_c > 0, t > 0, \]

where \(K \) is the upper asymptotic potential (directly related to the network’s size),
\(K = \lim_{t \to \infty, a n d \ p_c, q_c > 0, t > 0} \), and \(p_c \) and \(q_c \) are evolutionary parameters describing how fast
communication spreads through the network. In particular, for large values of \(p_c \)
and \(q_c \), the dynamic market potential \(m(t) \) rapidly approaches \(K \).

The expression under the square root in equation (2.4) represents the core of the
Bass model [Bass (1969)] describing the latent diffusion process of communica-
tion. This is an S-shaped curve, a distribution function, whose peakedness varies
according to the product’s communication features.

The model proposed by Guseo and Guidolin (2009) extends the Bass model
(2.2) in the following manner:

\[z'(t) = m(t) \left[p_s + q_s \frac{z(t)}{m(t)} \right] \left[1 - \frac{z(t)}{m(t)} \right] + \frac{z(t)m'(t)}{m(t)}, \]

\[p_s, q_s > 0, t \geq 0, \]

where \(z(t) \) represents the mean cumulative sales, as in equation (2.1), and \(m(t) \geq
z(t) \) may be defined as in (2.4). The new parameters \(p_s \) and \(q_s \) are evolutionary
parameters that describe how fast the product is adopted (whereas, as mentioned
above, \(p_c \) and \(q_c \) are related to knowledge spread).
The final term of equation (2.5) requires close examination to understand its meaning. This component enables us to take into account a self-reinforcing effect that is common within marketing behavioral studies [see, e.g., Sydow and Schreyögg (2013), a recent contribution on self-reinforcing processes]. The standard adoption process described in the first part of the equation is enhanced whenever the market is growing faster. In other words, an acceleration of the number of informed people [the network’s size, \(m(t) \)] further induces people to adopt. More generally, excluding assumption (2.4), \(m'(t) \) may be negative when \(m(t) \) is non-monotonic, thereby introducing a shrinking effect on instantaneous sales due to a decreasing market potential.

3. The proposed model.

The proposed model describes the diffusion of two competing brands. They are supposed to be sufficiently similar to share a common market potential, whose size grows in time as described in Section 2. The assumption of a common market potential is suitable in situations where the products are substitutes competing for the same adopters. Whenever competition concerns products that are sufficiently different to preserve product-specific market potentials, the Lotka–Volterra models should be preferred, although these structures do not allow a closed-form solution [Abramson and Zanette (1998)].

We denote the mean cumulative sales at time \(t \) of brand \(i \) by \(z_i(t) \), \(i = 1, 2 \), and the instantaneous mean sales by \(z'_i(t) = \frac{\partial z_i(t)}{\partial t} \), \(i = 1, 2 \). We now describe the category sales, \(z(t) = z_1(t) + z_2(t) \), by separately describing the two brands constituting the category. The model is given by

\[
\begin{align*}
 z'_1(t) &= m(t) \left[p_1 + (q_1 + \delta) \frac{z_1(t)}{m(t)} + q_1 \frac{z_2(t)}{m(t)} \right] \left[1 - \frac{z(t)}{m(t)} \right] + z_1(t) \frac{m'(t)}{m(t)}, \\
 z'_2(t) &= m(t) \left[p_2 + (q_2 - \delta) \frac{z_1(t)}{m(t)} + q_2 \frac{z_2(t)}{m(t)} \right] \left[1 - \frac{z(t)}{m(t)} \right] + z_2(t) \frac{m'(t)}{m(t)},
\end{align*}
\]

where \(z(t) \leq m(t) \), for all \(t \).

To obtain an equivalent formulation of model (3.1), that may be more comparable with the univariate Bass model, we can rearrange the terms in the following manner:

\[
\begin{align*}
 z'_1(t) &= m(t) \left[p_1 + q_1 \frac{z(t)}{m(t)} + \delta \frac{z_1(t)}{m(t)} \right] \left[1 - \frac{z(t)}{m(t)} \right] + z_1(t) \frac{m'(t)}{m(t)}, \\
 z'_2(t) &= m(t) \left[p_2 + (q_2 - \delta) \frac{z(t)}{m(t)} + \delta \frac{z_2(t)}{m(t)} \right] \left[1 - \frac{z(t)}{m(t)} \right] + z_2(t) \frac{m'(t)}{m(t)}.
\end{align*}
\]

In equation (3.1), we may observe innovators’ effects (parameters \(p_1 \) and \(p_2 \)) and word-of-mouth effects (parameters \(q_1, q_2 \) and \(\delta \)). These parameters may be different for the two competitors to describe products with different strengths in the market. Observe that this structure is similar to the model used in Guseo and Mortarino (2014b), allowing for within-brand word-of-mouth (\(q_1 + \delta \) and \(q_2 \) for
the two brands, resp.) that may be different from cross-brand word-of-mouth (q_1 and $q_2 - \delta$). In other words, this model is able to deal with situations in which word-of-mouth functions asymmetrically for the two products. In Guseo and Mortarino (2014b), however, unlike the proposed model, $m(t)$ was supposed to be constant throughout the life cycle: $m(t) = m$ for all t.

The final additive terms in equation (3.1)—which would obviously vanish for a constant $m(t)$—represent a self-reinforcing component, as described in the previous section. The mean sales of both products are accelerated when $m(t)$ grows faster, that is, when awareness of the product category spreads rapidly based on the collective behavior of agents. Conversely, the mean sales are further reduced by a shrinking potential induced by unfavorable signals. In the latter case, $m(t)$ could also be a nonmonotonic function, and the self-reinforcing term could be negative when the market potential undergoes a contraction.

Notice that the sum of the equations in (3.1) is equal to model (2.5). Moreover, this model can also be used with an expression for $m(t)$ that is different from equation (2.4).

Let us define $p_s = p_1 + p_2$ and $q_s = q_1 + q_2$. Through $w(t; p_s, q_s)$, defined in (2.3), and

$$y(t) = 1 + \frac{q_s}{p_s} w(t; p_s, q_s) = \frac{1 + q_s/p_s}{1 + (q_s/p_s)e^{-(p_1+q_2)t}},$$

it is proven in Appendix 1 [Guseo and Mortarino (2015)] that, for any $m(t)$, the closed-form solution of the system (3.1) is

$$z_1(t) = m(t) \left\{ \frac{q_1}{q_s - \delta} w(t; p_s, q_s) + \left[\frac{p_1}{p_s} - \frac{q_1}{q_s - \delta} \right] y(t)^{\delta/q_s} - 1 \right\},$$

$$z_2(t) = m(t) \left\{ \left[\frac{(q_2 - \delta)}{q_s - \delta} \right] w(t; p_s, q_s) + \left[\frac{p_2}{p_s} - \frac{q_2 - \delta}{q_s - \delta} \right] y(t)^{\delta/q_s} - 1 \right\},$$

when $\delta \neq 0$ and $\delta \neq q_s$. When $\delta = q_s$, the solution reduces to

$$z_1(t) = m(t) \left[\left(\frac{p_1}{p_s} - \frac{q_1}{q_s} \right) w(t; p_s, q_s) + \frac{q_1 p_s}{q_s^2} - y(t) \ln y(t) \right],$$

$$z_2(t) = m(t) \left[\left(1 - \frac{p_1}{p_s} + \frac{q_1}{q_s} \right) w(t; p_s, q_s) - \frac{q_1 p_s}{q_s^2} - y(t) \ln y(t) \right],$$

while in the special case $\delta = 0$, we obtain

$$z_1(t) = m(t) \left[\frac{q_1}{q_s} w(t; p_s, q_s) + \frac{p_1}{p_s} \left(\frac{p_1}{p_s} - \frac{q_1}{q_s} \right) \ln y(t) \right],$$

$$z_2(t) = m(t) \left[\frac{q_2}{q_s} w(t; p_s, q_s) + \frac{p_2}{p_s} \left(\frac{p_2}{p_s} - \frac{q_2}{q_s} \right) \ln y(t) \right].$$

The solutions for the mean cumulative sales enable us to use a nonlinear regression model with dependent variables given by the observed cumulative sales
of the two brands.\(^2\) A reasonable and robust inferential methodology for estimating and testing the performance of this structure may be implemented through the regression model

\[v_i(t) = z_i(t) + \epsilon_i(t), \quad i = 1, 2, \]

where \(v_i(t) \) represents the observed cumulative sales data for each of the two products and \(z_i(t; \beta) \) denotes the mean cumulative functions (3.3) depending on the vector of parameters \(\beta = \{ K, p_c, q_c, p_1, q_1, p_2, q_2, \delta \} \) and on time \(t \). Henceforth, we use either the notation \(z_i(t) \) or \(z_i(t; \beta) \) to make explicit the dependence of the functions (3.3) upon \(\beta \) parameters. Here, we assume that \(m(t) \) is modeled as in (2.4). In the rest of the paper, we will denote model (3.6)—with \(m(t) \) specified as in (2.4)—with the expression Competition Dynamic Market Potential (CDMP) model. The residual term \(\epsilon_i(t) \) is usually a white noise or a more complex stationary process if seasonality or autoregressive aspects are included as stochastic components. The joint estimate of \(\beta \) is obtained with a single model where \(v_1(t) \) and \(v_2(t) \) are stacked. This estimate could be generated using the Beauchamp and Cornell technique [Beauchamp and Cornell (1966)]. However, recent results show that it is advisable to use ordinary nonlinear least squares [Guseo and Mortarino (2014a)]. Note that estimation through nonlinear least squares does not require assumptions regarding the distribution of \(\epsilon_i(t) \). The nonlinear predicted values describe the mean trajectories of the competing processes, that is, \(z_1(t) \) and \(z_2(t) \).

We propose a detailed simulation study in Appendix 5 [Guseo and Mortarino (2015)] to assess the performance of the CDMP model under different values of the noise-to-signal ratio when the latent market potential is correctly specified. We also consider a further improvement in the analysis of the robustness of the CDMP model for alternative \(m(t) \) structures.

A different approach, based on a stochastic version of equation (3.1) including an error term with suitable assumptions, may be extremely complex. This approach is tractable, to our knowledge, only for simpler models such as the Bass model [Boswijk and Franses (2005)]. However, as mentioned in Section 2, the Bass model is too simple a structure to describe complex markets. Jha, Chaudhary and Gutpa (2011) propose a stochastic differential equation model to describe the adoption of newer successive technologies. However, their work does not present a comparison with existing deterministic models. The comparison is essential to evaluate the effective gain of the stochastic approach, whose results are obtained through non-negligible assumptions regarding the stochastic component of the model, which may be inappropriate for real (not simulated) data sets.

\(^2\)An alternative approach using instantaneous sales is described in Appendix 2 [Guseo and Mortarino (2015)].
4. Antidiabetic drug sales case study. Amaryl (Sanofi–Aventis) and Solosa (Lab. Guidotti) are two glimepiride-based drugs used by people with type 2 diabetes. Glimepiride belongs to the class of drugs known as sulfonylureas. It lowers hyperglycemia by causing the body to release its natural insulin. These drugs, at a dose of 2 mg, were launched in the Italian market in January 1999 and were for many years duopolists in the glimepiride market. Figure 1 shows monthly sales data (available until August 2014, for a total of 188 data points) for the two drugs separately. In addition, the figure depicts the series of the sum of all the sales of alternative products (12 generic drugs) commercialized since 2006. The more recent products have never represented an actual threat to the two oldest brands.

These two drugs are perfect substitutes from the medical viewpoint, and thus a model with a common market potential appears to be an adequate solution. Moreover, in 1999, glimepiride represented a radical novelty in the Italian market, since it was the first type of sulfonylurea available. Other dosages of the same drugs were launched much later, in 2006. These considerations suggest that awareness of the properties and efficacy of these drugs perhaps was not widespread among Italian physicians in 1999. A dynamic market potential seems conceivable for these data. The complete impossibility of observing the communication network that spread knowledge about glimepiride beginning in 1999 finally suggests that the Guseo–Guidolin model (2.4) could be an appropriate tentative solution. Of course, only good agreement between the available data and functions (3.3), which incorporate these features, could confirm or lead to rejection of these assumptions.

Joint nonlinear regression of the two main competitors’ cumulative sales on functions (3.3)—that is, the CDMP model, (3.6)—gives rise to the parameter estimates shown in Table 1.

The huge value of $R^2 = 0.99996$ is unsurprising, given that we are working with cumulative data and any S-shaped fitting produces high determination indexes. A standard approach advises the use of the R^2 measure only for comparative purposes, as will be described at the beginning of Section 5. In addition, the evaluation
TABLE 1

	Estimate	Standard error	95% confidence interval
K	4.8669×10^7	2.5771×10^5	$(4.81621 \times 10^7, 4.9176 \times 10^7)$
p_c	2.3837×10^{-3}	6.6814×10^{-5}	$(2.2523 \times 10^{-3}, 2.5151 \times 10^{-3})$
q_c	4.5235×10^{-2}	4.6993×10^{-4}	$(4.4311 \times 10^{-2}, 4.6159 \times 10^{-2})$
p_1	3.2004×10^{-3}	6.5762×10^{-5}	$(3.0711 \times 10^{-3}, 3.3297 \times 10^{-3})$
q_1	1.4277×10^{-2}	3.2663×10^{-4}	$(1.3635 \times 10^{-2}, 1.4920 \times 10^{-2})$
p_2	-7.9208×10^{-4}	3.6160×10^{-5}	$(-8.6318 \times 10^{-4}, -7.2097 \times 10^{-4})$
q_2	1.2709×10^{-3}	5.5915×10^{-4}	$(1.7135 \times 10^{-4}, 2.3704 \times 10^{-3})$
δ	-2.2248×10^{-2}	9.6448×10^{-4}	$(2.4145 \times 10^{-2}, -2.0351 \times 10^{-2})$

$R^2 = 0.99996$

of the squared linear correlation coefficient between observed instantaneous sales and fitted instantaneous sales yields a value of 0.9673, which is extremely high.

The agreement between the observed and fitted values can also be assessed by examining Figure 2. The two estimated profiles follow the observations very well, and discrepancies (essentially due to seasonal effects) could easily be modeled using a SARMAX approach characterizing the second step refinement for short-term prediction [see Appendix 4, Guseo and Mortarino (2015)]. The analysis of residuals is depicted in Figure 3.

Because we deal with consumables (i.e., repeatedly purchased goods), \hat{K} (49 million) represents an estimate of the total number of packages of the two drugs that could be sold. Figure 4 depicts the estimated evolution of the common dynamic market potential, $m(t)$. It is very far from a fixed m pattern, since knowledge of these drugs seems to have spread slowly among physicians. This could be explained by the observation that a new active compound (as glimepiride was in

Fig. 2. Comparison of the monthly number of packages sold and fitted values of instantaneous sales using CDMP model, (3.6).
the Italian market in 1999) is accepted with caution until side effects are entirely disclosed.

If we focus on innovation parameters, it is evident that this component did not play a significant role for Solosa, and this may explain its slow start. Lab. Guidotti, which launched Solosa, is a big Italian company; however, its promotional strength could not compete with the promotional efforts exerted by the international company Sanofi–Aventis, which promoted Amaryl.

Imitative parameters have to be interpreted with reference to the proposed model. If we substitute the estimates in model (3.1), we obtain the following equations:

\[
\begin{align*}
\hat{z}_1'(t) - z_1(t) & \frac{m'(t)}{m(t)} \propto 0.0032 - 0.0080 \frac{z_1(t)}{m(t)} + 0.0143 \frac{z_2(t)}{m(t)}, \\
\hat{z}_2'(t) - z_2(t) & \frac{m'(t)}{m(t)} \propto -0.0008 + 0.0235 \frac{z_1(t)}{m(t)} + 0.0013 \frac{z_2(t)}{m(t)}.
\end{align*}
\]

Amaryl was sustained by a stronger innovation effect, and its cycle began much more rapidly than its competitor’s cycle (0.0032 vs. −0.0008). Sanofi–Aventis is a much larger company than Lab. Guidotti, and the former’s promotional strength
enabled an impressive start to Amaryl’s sales. However, Amaryl experienced a negative within-brand word-of-mouth effect, in contrast with Solosa’s positive effect (−0.0080 vs. 0.0013). Both products were sustained by a positive cross-brand word-of-mouth effect from the competitor, but the effect of this was to increase Solosa’s sales more strongly (0.0235 vs. 0.0143). This ultimately led Solosa to outsell Amaryl. Both drugs now appear to be in a declining phase of their life cycle, due to the appearance of other active compounds in the type 2 diabetes market.

Figure 5 illustrates predictive confidence bands for the future sales of the two products. Details regarding their construction are given in Appendix 3 [Guseo and Mortarino (2015)].

5. Comparison with alternative models. The efficacy of the proposed model in this application must be proven with reference to alternative models. As mentioned in the Introduction, we will examine a set of models to identify which one performs better with available observations. The first alternative to be considered is a simpler model with constant market potential. As mentioned above, it is plausible that knowledge of the properties of the new active compound did not arise immediately at the products’ launch. However, this hypothesis should be tested by examining whether a model with dynamic market potential, \(m(t) \), really improves the fitting.

The model proposed in Guseo and Mortarino (2014b) fits this purpose since it can be obtained by (3.3) with the only restriction \(m(t) = m \). All other features related to the evolution of the process are the same for the two models. Thus, we can claim that if model (3.6) shows a significantly better performance than Guseo and Mortarino’s model (2014b), this proves that the market potential for this category evolved in a manner that differs significantly from the constant path. Note, too, that other models [e.g., those by Krishnan, Bass and Kumar (2000), Savin and Terwiesch (2005), Libai, Muller and Peres (2009), Guseo and Mortarino (2012)] are nested within the Guseo and Mortarino (2014b) model. The \(R^2 \) value for the Guseo and Mortarino (2014b) model equals 0.9988. Since this model is
FIG. 6. Comparison of the fitted values for the monthly number of packages sold using the CDMP model, (3.6), and the model used in Guseo and Mortarino (2014b).

nested within model (3.6), an F test can be used to detect whether the gain from the simpler model to the more complex model is significant. As the first step, the squared multiple partial correlation coefficient

$$\tilde{R}^2 = \frac{R_{M_1}^2 - R_{M_2}^2}{1 - R_{M_2}^2}$$

is calculated (here, $R_{M_2}^2$ denotes the determination index of the reduced model that has to be compared to model M_1). A possible test to verify the significance of the s parameters of the M_1 model that are not included in model M_2 may be given by

$$F = \frac{[\tilde{R}^2(N - k)]/[1 - \tilde{R}^2)s]}{[1 - \tilde{R}^2]}$$

where N denotes the number of observations used to fit the models and k is the number of parameters included in model M_1. Under the null hypothesis of equivalence between models M_1 and M_2, (5.2) is distributed as a Snedecor’s F with (s, $N - k$) degrees of freedom, if the stochastic component of the regression model is normal i.i.d. This may not be true for our case. Nevertheless, the F ratio (5.2) can be used as an approximate robust criterion for comparing model M_2 nested in M_1, by considering the well-known common robust threshold 4. Here, the test comparing model (3.1) with Guseo and Mortarino’s (2014b) model assigns a huge value of $F = 5474.78 (\tilde{R}^2 = 0.9675)$, demonstrating the relevance of the extended (3.6) model.

In Figure 6, the fitted values of model (3.6) and Guseo and Mortarino’s (2014b) model are compared. The rigidity of a fixed market potential makes the latter model inadequate to describe these data; even worse, for larger t values, it shows a heavy underestimation that makes forecasts totally unreliable.

Both the result of the F test and the graphical comparison prove that a constant market potential is not adequate to describe this market. Given that conclusion, it could be interesting to see whether alternative market potential functions might perform better than (2.4).

Table 2 shows the R^2 and the corresponding ρ^2 between observed and fitted values of instantaneous sales for alternative models. In detail, the formulations

$m(t)$	R^2	ρ^2
(2.4)	0.999960	0.967295
Constant market potential	0.998766	0.877826
(5.3)	0.999930	0.964444
(5.4)	0.999931	0.964347

The values presented in Table 2 confirm that a constant market potential assumption is not adequate to describe these data. The structures (5.3) and (5.4) perform slightly worse than the proposed structure (2.4). However, the main difference is that a Gamma distribution or a structure similar to (5.3) only serves the purpose of representing a flexible monotonic function. Conversely, (2.4) has been proposed essentially because it represents the size of an informed network spreading information regarding the product category. Thus, this model structure has a substantial interpretative content. The proposed model is shown to perform best in this application. In light also of the results of the simulation study proposed in Appendix 5 [Guseo and Mortarino (2015)], our opinion is that the CDMP model represents a useful contribution in the field of competition diffusion of innovation models.

6. **Concluding remarks.** Diffusion of innovation methodologies have faced and are facing new challenges in parsimonious model-building in terms of incorporating the major effects that can modify the evolutionary shapes of these methodologies over time.

This paper highlights the key features of the competition between Amaryl and Solosa. These two drugs differ essentially in the persuasion effects exerted by the two companies that launched the drugs and in their acceptance through the community of physicians spreading word-of-mouth about their efficacy.
The initial novelty of the active compound of these drugs in the market suggested to us that the existing models of competition must be enriched with the introduction of dynamic market potential. This extension rests on the concept that awareness is a fundamental prerequisite for adoption. We can imagine that, at the individual level, awareness and adoption are two sequential states that subjects (here, physicians) may undergo. The first state, awareness, is latent. In addition, since individual data are unavailable in this case, the description is aggregated (as a mean profile) and leads to equation (2.4).

Similarly, although in a very different context, note that the Guseo and Guidolin (2009) paper inspired the approach followed by Furlan and Mortarino (2012) to describe and predict the death toll due to pleural mesothelioma contracted through exposure to asbestos fibers in a residential area close to a big plant. In that case, contamination (state 1)—that is, contact with lethal asbestos fibers—was the latent prerequisite for developing the disease (state 2).

Finally, we would emphasize that our proposed model is useful specifically for analyzing competition between two products. The tractability of the model, in terms of the estimation of the involved parameters, enables us to deal with a higher number of competitors only if they have entered the market simultaneously. Diachronic competition, that is, among products launched at different times, generally requires model structures with multiple regimes (a change-point in the evolution of existing products occurs whenever a new competitor appears). In this case, for more than three products, the parameter cardinality becomes too high to obtain reliable estimates, unless each regime is covered by an adequate observation period.

Acknowledgments. The authors are grateful to the Associate Editor and to the anonymous reviewers for their helpful suggestions that improved the quality of the manuscript.

SUPPLEMENTARY MATERIAL

Supplementary materials (DOI: 10.1214/15-AOAS868SUPP; .pdf). In Appendix 1 we provide details regarding the closed-form solution of the proposed model. In Appendix 2 we propose an alternative estimation method to deal with monthly sales data instead of cumulative observations. In Appendix 3 we discuss the construction of predictive confidence bands. In Appendix 4 we present a SAR-MAX refinement for the first-order model fitting for short-term forecasting purposes. Finally, in Appendix 5 we show the results of a simulation study to assess the reliability of inferences.

REFERENCES

Abramson, G. and Zanette, D. H. (1998). Statistics of extinction and survival in Lotka–Volterra systems. Phys. Rev. E (3) 57 4572–4577.
BASS, F. M. (1969). A new product growth model for consumer durables. *Management Science* **15** 215–227.

BASS, F., KRISHNAN, T. and JAIN, D. (1994). Why the Bass model fits without decision variables. *Marketing Science* **13** 203–223.

BEAUCHAMP, J. J. and CORNELL, R. G. (1966). Simultaneous nonlinear estimation. *Technometrics* **8** 319–326. MR0205364

BOSWIJK, H. P. and FRANSES, P. H. (2005). On the econometrics of the Bass diffusion model. *J. Bus. Econom. Statist.* **23** 255–268. MR2159678

CENTRONE, F., GOIA, A. and SALINELLI, E. (2007). Demographic processes in a model of innovation diffusion with dynamic market. *Technological Forecasting and Social Change* **74** 247–266.

FURLAN, C. and MORTARINO, C. (2012). Pleural mesothelioma: Forecasts of the death toll in the area of Casale Monferrato, Italy. *Stat. Med.* **31** 4114–4134. MR3041797

GUSEO, R. and GUIDOLIN, M. (2009). Modelling a dynamic market potential: A class of automata networks for diffusion of innovations. *Technological Forecasting and Social Change* **76** 806–820.

GUSEO, R. and MORTARINO, C. (2012). Sequential market entries and competition modelling in multi-innovation diffusions. *European J. Oper. Res.* **216** 658–667. MR2845865

GUSEO, R. and MORTARINO, C. (2014a). Multivariate nonlinear least squares: Robustness and efficiency of standard versus Beauchamp and Cornell methodologies. *Comput. Statist.* **29** 1609–1636. MR3279009

GUSEO, R. and MORTARINO, C. (2014b). Within-brand and cross-brand word-of-mouth for sequential multi-innovation diffusions. *IMA J. Manag. Math.* **25** 287–311. MR3226506

HANDCOCK, M. S. and GILE, K. J. (2010). Modeling social networks from sampled data. *Ann. Appl. Stat.* **4** 5–25. MR2758082

JHA, P. C., CHAUDHARY, K. and GUTPA, A. (2011). On the development of adoption of newer successive technologies using stochastic differential equation. In *IEEE International Conference on Industrial Engineering and Engineering Management* 1853–1858. IEEE, Singapore.

KIM, N., BRIDGES, E. and SRIVASTAVA, R. K. (1999). A simultaneous model for innovative product category sales diffusion and competitive dynamics. *International Journal of Research in Marketing* **16** 95–111.

KRISHNAN, T. V., BASS, F. M. and KUMAR, V. (2000). Impact of a late entrant on the diffusion of a new product/service. *Journal of Marketing Research* **XXXVII** 269–278.

LIBAI, B., MULLER, E. and PERES, R. (2009). The role of within-brand and cross-brand communications in competitive growth. *Journal of Marketing* **73** 19–34.

MEADE, N. and ISLAM, T. (2006). Modelling and forecasting the diffusion of innovation—A 25-year review. *International Journal of Forecasting* **22** 519–545.

MEYER, P. S. and AUSUBEL, J. H. (1999). Carrying capacity: A model with logistically varying limits. *Technological Forecasting and Social Change* **61** 209–214.

PERES, R., MULLER, E. and MAHAJAN, V. (2010). Innovation diffusion and new product growth models: A critical review and research directions. *International Journal of Research in Marketing* **27** 91–106.

PUTSIS, W. P. (1996). Temporal aggregation in diffusion models of first-time purchase: Does choice of frequency matter? *Technological Forecasting and Social Change* **51** 265–279.

SAVIN, S. and TERWIESCH, C. (2005). Optimal product launch times in a duopoly: Balancing lifecycle revenues with product cost. *Oper. Res.* **53** 26–47. MR2131098

SHARIF, M. N. and RAMANATHAN, K. (1981). Binomial innovation diffusion models with dynamic potential adopter population. *Technological Forecasting and Social Change* **20** 63–87.
SYDOW, J. and SCHREYÖGG, G. (2013). *Self-Reinforcing Processes in and Among Organizations.* Palgrave MacMillan, New York.

Department of Statistical Sciences
University of Padova
via Cesare Battisti, 241
35128 Padova
Italy
E-mail: renato.guseo@unipd.it; mortarino@stat.unipd.it