Plant-parasitic nematodes secrete CLAVATA3 (CLV3)/ESR (CLE)-like proteins, which are suggested to function in the process of nematode infection. Here we examined the infection rate of root-knot nematode Meloidogyne incognita by using tomato, Solanum pennellii, S. peruvianum, and seven varieties of S. lycopersicum as host plants. S. lycopersicum variety Micro-Tom, S. peruvianum, and S. pennellii showed obvious resistance to nematode infection. CLV3 receptors, CLV2 and CORYNE (CRN)/Suppressor of LLP1 2 (SOL2), are known to be responsible for nematode infection in Arabidopsis; therefore, we examined SNPs of putative CLV receptor sequences of CLV2, CRN/SOL2, CLV1, and RECEPTOR LIKE PROTEIN KINASE 2 (RPK2) in tomato to look for a potential contribution of CLV3 signaling in an Mi resistance gene-independent manner. We found many SNPs in the CLV receptors, which might be related to resistance to nematode infection in tomato. Nematol. Res. 41 (2), 35-40 (2011).

Key words: CLV receptors, nematode infection, tomato

INTRODUCTION

Plant-parasitic nematodes are biotrophs that mainly attack the roots of plants and cause over $100 billion in crop damage annually (Sasser and Freckman, 1987). Root-knot nematodes are one of the most economically damaging nematodes; thus it is important to know the molecular mechanisms involved in the nematode infection process. Some of the tomato varieties, for example, Solanum lycopersicum, show resistance to nematode infection. The causal gene for this resistance was reported to be Mi-1, which encodes a protein with a nucleotide binding site and a leucine-rich repeat region (Milligan et al., 1998). The presence of the Mi-1 gene has been a classical example of the use of host resistance to reduce the need for pesticide application (Medina-Filho and Stevens, 1980; Roberts and Thomason, 1986). Mi-1 was introduced into cultivated tomatoes from their wild relative Lycopersicon peruvianum in the early 1940s (Smith, 1944).

To gain insight into the establishment of nematode parasitic interactions with host plants, many efforts to identify “parasitic genes” have been carried out with different nematode species (Davis et al., 2000; Davis et al., 2008). In general, parasitic effector proteins produced in the esophageal gland cells of nematodes are secreted from the nematode through its stylet into the plant tissue (Davis et al., 2008). Attempts to target secretory proteins from the esophageal gland cells of the soybean cyst nematode Heterodera glycines at the parasitic stage identified HgCLE1 (formerly known as 2B10 and identical to HgSYV46) and HgCLE2 (known as 4G12), which encode a protein that harbors the C-terminal CLE domain (Wang et al., 2001; Gao et al., 2003; Wang et al., 2010). Members of the CLE gene family encode small (about 100 amino-acid) proteins that share a conserved structure of a putative N-terminal secretory signal peptide and a conserved 14-amino-acid CLE domain at the C-terminus (Cock and McCormick, 2001; Sharma et al., 2003; Sharma et al., 2005; Strabala et al., 2006; Sawa et al., 2006; Kinoshita et al., 2007; Sawa et al., 2008; Miwa et al., 2009a, b; Sawa and Tabata, 2011; Tabata and Sawa, 2011). CLE genes have been found in many plants; however, so far in the animal kingdom, the CLD genes have been found only the plant-parasitic nematode. HgCLE genes in the nematode encode proteins of about 140 amino-acids with N-terminal signal peptides and their 12-amino-acid CLE domains (Wang et al., 2001; Gao et al., 2003; Wang et al., 2010). A nother CLE-like nematode gene, 16D10, was isolated from a cDNA library derived from the esophageal gland cells of the root-knot nematode Meloidogyne incognita at the parasitic stage (Huang et al., 2006a, b). Furthermore, Arabidopsis mutants of CLV3 receptors, clv2 and crn/sol2, showed obvious resistance to nematode infection (Replogle et al., 2010). These results indicate that the CLV3 signaling molecules are responsible for successful nematode infection in plants.

To examine a potential contribution of CLV3 signaling...
to the efficiency of nematode infection, tomatoes, S. pennellii, S. peruvianum, and seven varieties of S. lycopersicum were used as host plants for M. incognita infection. We report here our findings that S. lycopersicum variety Micro-Tom, S. peruvianum, and S. pennellii showed obvious resistance to nematode infection. Furthermore, we sequenced putative CLV3 receptor genes in the tomato, and found many SNPs that might be related to the resistance to nematode infection in tomato.

MATERIALS AND METHODS

Root-knot nematode infection assay:

Meloidogyne incognita collected from Koshi (Kumamoto, Japan) was cultivated and used for infection assays. The nematode population was propagated for two to three months on tomato variety, Pritz, in pots under continuous light conditions at 27°C to obtain nematode-containing soil. Tomato seedlings of S. pennellii, S. peruvianum, and seven varieties of S. lycopersicum (Pritz, Micro-Tom, Moneymaker, Aichi-first, Ailsa Craig, M82, and Ponterosa) were grown for four weeks after germination in a soil without nematodes and then transplanted to the well-mixed nematode-containing soil. Transplantation may affect the root growth rate and the balance of such plant hormones as Methyl Jasmonate (MeJa), which affects the nematode infection rate. Our aim here, however, is to compare the nematode infection rate among various tomato species; therefore, we transplanted the tomato plants that had been growing in healthy conditions before nematode infection. After four weeks of growth in the nematode-containing soil, the tomato root systems were recovered from the pots and carefully washed. The root systems were immersed in an aqueous solution of 0.5% Phloxine B for several seconds to stain nematode egg masses. After the roots were washed well with running tap water to rinse off excess dye, the egg masses produced on each root system were counted.

DNA Sequencing:

DNA fragments were amplified with a thermal cycler (DNA Engine Tetrads 1 PT C-240, BioRAID). Cycle conditions for the polymerase chain reaction: 94°C 4 min; [35 cycles: 94°C 30 sec; 55°C 1 min; 72°C 1 min]; 72°C 10 min. KOD DNA polymerase (TOYOBO, Japan) was used. DNA sequencing was conducted by FASMAC Co., Ltd. (Kanagawa, Japan).

Accession numbers:

The ORFs of the putative CLV3 receptors in tomato have been submitted to DDBJ. Sip, Sml, Spn, and Spr represent the S. lycopersicum varieties Pritz and Micro-Tom, S. pennellii, and S. peruvianum, respectively.

A accession numbers: SlpCLV1 A B645826; SlmCLV1 A B645823; SpnCLV1 A B645824; SprCLV1 A B645825; SlpCLV2 A B645830; SlmCLV2 A B645827; SpnCLV2 A B645828; SprCLV2 A B645829; SlpSOL2 A B645838; SlmSOL2 A B645835; SpnSOL2 A B645836; SprSOL2 A B645837; SlpRPK2 A B645834; SlmRPK2 AB645831; SpnRPK2 A B645832; SprRPK2 A B645833.

RESULTS AND DISCUSSION

Solanum pennellii, S. peruvianum, and seven varieties of S. lycopersicum, (Pritz, Micro-Tom, Moneymaker, Aichi-first, Ailsa Craig, M82, and Ponterosa) were examined for their susceptibility to the root-knot nematode M. incognita. Among them, Pritz was the most susceptible to M. incognita (Table 1); whereas, Micro-Tom showed strong resistance to the nematode infection (Table 1). Micro-Tom is one variety of S. lycopersicum, which is well known to have an Mi-1 nematode resistance gene (Smith, 1944). The reduced infection rate in Micro-Tom may be due either to a novel resistance gene or the presence of an Mi-like gene. S. peruvianum also showed strong resistance (Table 1). The nematode resistance loci Mi-3 in S. peruvianum was mapped on chromosome 12 (Yaghoobi et al., 2005), but has not yet been cloned. We also found that S. pennellii showed weak resistance to root-knot nematode infection (Table 1).

Mutations of CLV2 and CRN/SOL2 in Arabidopsis conferred resistance against plant parasitic nematode infection; their products CLV2 and CRN/SOL2 are known as CLV3 peptide hormone receptors (Replogle et al., 2010). CLV1 and RPK2 are also known as CLV3 receptors (Miwa et al., 2008; Kinoshita et al., 2010; Betsuyaku et al., 2011). To examine whether the CLV3 receptors are responsible for the regulation of nematode infection rates in tomato, the CLV1, CLV2, CRN/SOL2, and RPK2 gene homologs of S. pennellii, S. pennellii, S. peruvianum, and S. lycopersicum were examined for their susceptibility to M. incognita.

Table 1. Egg mass number in Tomato plant infected by Meloidogyne incognita.

Solanum lycopersicum	exp1	exp2
Pritz	1174	708
Micro-Tom	3	9
Moneymaker	235	417
Aichi-first	287	112
Ailsa Craig	382	264
M82	77	16
Ponderosa	343	735

| Solanum pennellii | 12 | 35 |
| Solanum peruvianum | 0 | 1 |

Tomato plants were exposed to Meloidogyne incognita twice independently, and egg mass number was counted at four weeks after transfer to nematode-infected soil.
S. peruvianum, and two varieties of S. lycopersicum, Pritz and Micro-Tom were sequenced.

The full amino-acid sequences of Arabidopsis CLV1, CLV2, CRN/SOL2, and RPK2 were used as queries for a TBLASTN search in the tomato genome database (http://solgenomics.net/tools/blast/index.pl). We then constructed phylogenetic trees (Fig. 2). Tomato homologs of CLV2, SOL2, and RPK2 were integrated into the main clade; however, the CLV1 homolog was categorized outside of the main clade. As the amino acid sequence of SlpCLV1 showed the highest similarity with that of Arabidopsis CLV1, here we used the SlpCLV1 as a tomato CLV1 homolog. It is possible, however, that other tomato CLV1 ortholog may be encoded in the tomato genome.

As shown in Table 2, we found SNPs in the receptor sequences. These SNPs were compared with the sequence of Pritz (S. lycopersicum). Pritz and Micro-Tom showed opposite responses regarding their susceptibility to nematode infection. Nevertheless, the sequences of their putative CLV3 receptors were almost the same. Only one SNP was detected. This indicates that CLV3 signaling might not contribute to the nematode infection resistance in Micro-Tom.

In contrast, S. pennellii and S. peruvianum have many SNPs in comparison with the susceptible lines (Table 2). Forty-six out of the 159 (about 30%) SNPs in S. pennellii and S. peruvianum shown in Table 2 were nonsynonymous. Interestingly, only S. pennellii has a nonsynonymous SNP in the SOL2 homolog in tomato (Table 2, Fig. 1). The nonsynonymous SNPs shown in Table 2 and Fig. 1 may be responsible for the resistance to the nematode infection in both S. pennellii and S. peruvianum. Further genetic analysis by using this SNP’s information would contribute to our understanding about nematode infection/resistance mechanisms in the tomato.

![Diagrams of CLV2, RPK2, SOL2, and CLV1 proteins](Fig. 1. Nonsynonymous SNPs in putative CLV3 receptors in tomato. SNPs were detected by comparison with the amino acid sequences of the Pritz tomato (Solanum lycopersicum). SNP points are shown as arrowheads. There are few or no nonsynonymous SNPs in the kinase or transmembrane domain, respectively. TM: transmembrane domain; LRR: leucine rich repeat domain; SP: signal peptide.)
Fig. 2. Comparison of CLV1, CLV2, SOL2, RPK2, and their homologs Phylogenetic relationships of (A) CLV1, (B) CLV2, (C) SOL2, and (D) RPK2 to their counterparts from other plant species, Solanum lycopersicum Pritz, Arabidopsis thaliana, rice, Populus trichocarpa, Vitis vinifera, Ricinus communis, Lotus japonicus, and Brassica napus. The phylogenetic tree was calculated and drawn with the MEGA3.1 program from an alignment of complete protein sequences, with gap deletion. Bootstrap values from the neighbor-joining method with Kimura’s correction are shown. The amino-acid sequences of Arabidopsis TDR were used as an outgroup. The scale bar indicates the number of amino-acid substitutions per site.
Molecular Plant-Microbe from tomato is a member of the

Plant Disease and December, 2011

Kinoshita, A., Nakamura, Y., Sasaki, E., Kyozuka, J., Huang, G., Dong, R., Allen, R., Davis, E. L., Baum, T. J. and Hussey, R. S., Mitchum, M. G. and Baum, T. J. (2001) A large family of genes that share homology with CLAVATA3. Plant and Cell Physiology 38, 365-396.

Davis, E. L., Hussey, R. S., Mitchum, M. G. and Baum, T. J. (2008) Parasitism proteins in nematode-plant interactions. Current Opinion in Plant Biology 11, 360-366.

Gao, B. L., Allen, R., Maier, T., Davis, E. L., Baum, T. J. and Hussey, R. S. (2003) The parasitome of the phytonematode Heteroderda glycines. Molecular Plant-Microbe Interactions 16, 720-726.

Huang, G., Allen, R., Davis, E. L., Baum, T. J. and Hussey, R. S. (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences of the United States of America 103, 14302-14306.

Huang, G., Dong, R., Allen, R., Davis, E. L., Baum, T. J. and Hussey, R. S. (2006) A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Molecular Plant Microbe Interaction 19, 463-470.

Kinoshita, A., Nakamura, Y., Sasaki, E., Kyozuka, J., Fukuda, H. and Sawa, S. (2007) Gain-of-function phenotypes of chemically synthetic CLAVATA3/ESR-related (CLE) peptides in Arabidopsis thaliana and Oryza sativa. Plant and Cell Physiology 48, 1821-1825.

Kinoshita, A., Betsuyaku, S., Osakabe, Y., Mizuno, S., Nagawa, S., Stahl, Y., Simon, R., Yamaguchi-Shinozaki, K., Fukuda, H. and Sawa, S. (2010) RPK2 is an essential receptor-like kinase transmitting the CLV3 signalling in Arabidopsis. Development 137, 3911-3920.

Medina-Filho, H. P. and Stevens, M. A. (1980) Tomato breeding for nematoderesistance: survey of resistance varieties for horticultural characteristics and genotype of acid phosphatase. Acta Horticulture 100, 383-391.

Milligan, S. B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P. and Williamson V. M. (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10, 1307-1319.

Miwa, H., Betsuyaku, S., Iwamoto, K., Kinoshita, A., Fukuda, H. and Sawa, S. (2008) The receptor-like kinase SOL2 mediates CLE signaling pathway in Arabidopsis. Plant and Cell Physiology 49, 1752-1757.

Miwa, H., Kinoshita, A., Fukuda, H. and Sawa S. (2009) Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. Journal of Plant Research 122, 31-39.

Miwa, H., Tamaki, T., Fukuda, H. and Sawa, S. (2009) Evolution of CLE signaling: origins of the CLV1 and SOL2/CRN receptor diversity. Plant Signaling and Behavior 4, 477-481.

Reploge, A., Wang, J., Bleckmann, A., Hussey, R. S., Baum, T. J., Sawa, S., Davis, E. L., Wang, X., Simon, R. and Mitchum, M. G. (2011) Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE. Plant Journal 65, 430-440.

Roberts P. A. and Thomason I. J. (1986) Variability in reproduction of isolates of Meloidogyne incognita and M. javanica on resistant tomato genotypes. Plant Disease 70, 547-551.

Sasser, J. N. and Freckman, D. W. (1987) A world perspective on nematology: The role of the society. In: Vistas on nematology (Veech, J. A. and Dickson, D. W. eds.), Society of Nematologists, Hyattsville, 7-14.

Sawa, S., Kinoshita, A., Nakanomyo, I. and Fukuda, H. (2006) CLV3/ESR-related (CLE) peptides as intercellular signaling molecules in plants. Chemical Records 6, 303-310.

Sawa, S., Kinoshita, A., Betsuyaku, S. and Fukuda, H. (2008) A large family of genes that share homology with CLE domain in Arabidopsis and rice. Plant Signaling and Behavior 3, 337-339.

Sawa, S. and Tabata, R. (2011) RPK2 functions in diverged CLE signaling. Plant Signaling and Behavior 6, 86-88.
Sharma, V. K., Ramirez, J., and Fletcher, J. C. (2003) The Arabidopsis CLV3-like (CLE) genes are expressed in diverse tissues and encode secreted proteins. Plant Molecular Biology 51, 415-425.

Sharma, U. C., Pokharel, S., Evelo, C. T. A. and Maessen, J. G. (2005) A systematic review of large scale and heterogeneous gene array data in heart failure. Journal of Molecular and Cellular Cardiology 38, 425-432.

Smith, P. G. (1944) Embryo culture of a tomato species hybrid. Proceedings of the American Society for Horticultural Science 44, 413-416.

Strabala, T. J., O’donnell, P. J., Smit, A. M., Ampomah-Dwamena, C., Martin, E. J., Netzler, N., Nieuwenhuizen, N. J., Quinn, B. D., Foote, H. C. C. and Hudson, K. R. (2006) Gain-of-function phenotypes of many CLAVATA3/ESR genes, including four new family members, correlate with tandem variations in the conserved CLAVATA3/ESR domain. Plant Physiology 140, 1331-1344.

Tabata, R. and Sawa, S. (2011) Diverse roles of CLE peptides in plant development and environmental response. Current Topics in Plant Biology 12, 35-40

Wang, X., Allen, R., Ding, X., Goellner, M., Maier, T., de Boer, J. M., Baum, T. J., Hussey, R. S. and Davis, E. L. (2001) Signal peptide-selection of cDNA cloned directly from the esophageal gland cells of the soybean cyst nematode Heterodera glycines. Molecular Plant Microbe Interaction 14, 536-544.

Wang, J., Lee, C., Replogle, A., Joshi, S., Korkin, D., Hussey, R., Baum, T. J., Davis, E. L., Wang, X. and Mitchum, M. G. (2010) Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins. New Phytologist 187, 1003-1017.

Yaghoobi, J., Yates, J. L. and Williamson, V. M. (2005) Fine mapping of the nematode resistance gene Mi-3 in Solanum peruvianum and construction of a S. lycopersicum DNA contig spanning the locus. Molecular Genetics and Genomics 274, 60-69.

Received: 27 September, 2011