BECK-TYPE IDENTITIES: NEW COMBINATORIAL PROOFS
AND A THEOREM FOR PARTS CONGRUENT TO $t \mod r$

CRISTINA BALLANTINE AND AMANDA WELCH

ABSTRACT. Let $O_r(n)$ be the set of r-regular partitions of n, $D_r(n)$ the set of partitions of n with parts repeated at most $r - 1$ times, $O_{1,r}(n)$ the set of partitions with exactly one part (possibly repeated) divisible by r, and let $D_{1,r}(n)$ be the set of partitions in which exactly one part appears at least r times. If $E_{r,t}(n)$ is the excess in the number of parts congruent to $t \mod r$ in all partitions in $O_r(n)$ over the number of different parts appearing at least t times in all partitions in $D_r(n)$, then $E_{r,t}(n) = |O_{1,r}(n)| = |D_{1,r}(n)|$. We prove this analytically and combinatorially using a bijection due to Xiong and Keith. As a corollary, we obtain the first Beck-type identity, i.e., the excess in the number of parts in all partitions in $O_r(n)$ over the number of parts in all partitions in $D_r(n)$ equals $(r - 1)|O_{1,r}(n)|$ and also $(r - 1)|D_{1,r}(n)|$. Our work provides a new combinatorial proof of this result that does not use Glaisher’s bijection. We also give a new combinatorial proof based of the Xiong-Keith bijection for a second Beck-Type identity that has been proved previously using Glaisher’s bijection.

Keywords: partitions, Beck-type identities, parts in partitions
MSC 2010: 05A17, 11P83

1. INTRODUCTION

Let n be a non-negative integer. A partition λ of n is a non-increasing sequence of positive integers $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$ that add up to n, i.e., $\sum_{i=1}^{\ell} \lambda_i = n$. The numbers λ_i are called the parts of λ and n is called the size of λ. The number of parts of the partition is called the length of λ and is denoted by $\ell(\lambda)$.

We will also use the exponential notation for parts in a partition. The exponent of a part is the multiplicity of the part in the partition. For example, $(5^2, 4^3, 3^1, 2^1)$ denotes the partition $(5, 5, 4, 3, 3, 3, 1, 1)$. Mostly, we will use the exponential notation when referring to rectangular partitions, i.e., partitions in which all parts are equal. Thus, we write (m^i) for the partition consisting of i parts equal to m.

The Ferrers diagram of a partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$ is an array of left justified boxes such that the ith row from to top contains λ_i boxes. For example, the Ferrers diagram of the partition $(5, 5, 3, 3, 2, 1)$ is shown below.
We define several operations on partitions. Given partitions $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_{\ell(\lambda)})$ and $\mu = (\mu_1, \mu_2, \ldots, \mu_{\ell(\mu)})$, we define partitions $\lambda \cup \mu$, $\lambda + \mu$, and $\lambda \mu$.

The partition $\lambda \cup \mu$ is the partition whose parts are precisely the parts of λ and μ, i.e., $\lambda_1, \lambda_2, \ldots, \lambda_{\ell(\lambda)}, \mu_1, \mu_2, \ldots, \mu_{\ell(\mu)}$, arranged in non-increasing order.

The partition $\lambda + \mu$ is the partition $(\lambda_1 + \mu_1, \lambda_2 + \mu_2, \ldots, \lambda_k + \mu_k)$, where $k = \max(\ell(\lambda), \ell(\mu))$ and, if $\ell(\lambda) < k$ or $\ell(\mu) < k$, the respective partition is padded with parts equal to 0.

If $\ell(\mu) \leq \ell(\lambda)$ and $\mu_i \leq \lambda_i$ for all $1 \leq i \leq \ell(\lambda)$, we define the partition $\lambda - \mu$ as the partition $(\lambda_1 - \mu_1, \lambda_2 - \mu_2, \ldots, \lambda_k - \mu_k)$, where, if $\ell(\mu) < \ell(\lambda)$, the partition μ is padded with parts equal to 0, i.e., $\mu_{\ell(\mu)+1} = \cdots = \mu_{\ell(\lambda)} = 0$.

For a non-negative integer n, a composition α of n is a sequence of positive integers $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_k)$ that add up to n. Thus $(3, 2, 3, 1)$ and $(3, 1, 3, 2)$ are different compositions of 9. The sum of compositions is defined analogous to the sum of partitions.

Throughout the article, we make use of the following notation.

$O_r(n)$ is the set of r-regular partitions of n, i.e., partitions in which no part is divisible by r.

$D_r(n)$ is the set of partitions in which no part appears more than $r - 1$ times.

$F_r(n)$ is the set of r-flat partitions of n, i.e., partitions $(\lambda_1, \lambda_2, \ldots, \lambda_k)$ such that for $1 \leq i \leq k$ we have $\lambda_i - \lambda_{i+1} \leq r - 1$. Here, we set $\lambda_{k+1} = 0$. We refer to $\lambda_i - \lambda_{i+1}$ as a difference of consecutive parts.

$O_{1,r}(n)$ is the set of partitions in which the set of parts divisible by r has exactly one element (i.e., there is one part divisible by r, possibly repeated).

$D_{1,r}(n)$ is the set of partitions in which exactly one part appears at least r times.

$F_{1,r}(n)$ is the set of partition in which exactly one difference of consecutive parts is at least r and all other differences of consecutive parts are at most $r - 1$.

The notation is meant to remind the reader that the partitions in a set with subscript 1, r have a single violation of the rule describing the partitions in the corresponding set with subscript r.

For $1 \leq t \leq r - 1$, we denote by $E_{r,t}(n)$ the excess in the number of parts congruent to $t \pmod{r}$ in all partitions in $O_r(n)$ over the number of different parts that appear at least t times in a partition, counted in all partitions in $D_r(n)$.

Given a partition λ, let $\ell_t(\lambda)$ be the number of parts congruent to $t \pmod{r}$ in λ, and let $\overline{\ell}_t(\lambda)$ be the number of different parts that appear at least t times in λ (each counted with multiplicity 1). Then

$$E_{r,t}(n) = \sum_{\lambda \in O_r(n)} \ell_t(\lambda) - \sum_{\lambda \in D_r(n)} \overline{\ell}_t(\lambda).$$

In [5], George Beck conjectured a companion identity to Euler’s partition identity. Recall that Euler’s partition identity states that

$$|O_2(n)| = |D_2(n)|.$$

Beck conjectured that

$$|O_{1,2}(n)| = |D_{1,2}(n)| = b(n),$$

where $b(n)$ is the difference between the number of parts in all partitions in $O_2(n)$ and the number of parts in all partitions in $D_2(n)$. Andrews proved these identities in [1] using generating functions. Since then, in a fairly short time, many articles appeared giving generalizations of this result as well as combinatorial proofs in
A THIRD BECK-TYPE IDENTITY 3

many cases. See for example [7, 13, 3, 8, 9, 10, 2, 4]. Some authors have started referring to these companion identities as Beck-type identities.

Some of the earlier generalizations [13] gave companion identities to Glaisher’s identity

\[(2) \quad |O_r(n)| = |D_r(n)|.\]

The Beck-type identity is

\[(3) \quad |O_{1,r}(n)| = |D_{1,r}(n)| = \frac{1}{r-1} b_r(n),\]

where \(b_r(n)\) is the difference between the number of parts in all partitions in \(O_r(n)\) and the number of parts in all partitions in \(D_r(n)\), i.e.,

\[b_r(n) = \sum_{\lambda \in O_r(n)} \ell(\lambda) - \sum_{\lambda \in D_r(n)} \ell(\lambda).\]

We refer to these identities as first Beck-type identities.

In [7], Fu and Tang gave two generalizations of (1). For one of the generalizations, Fu and Tang gave a combinatorial proof and, as a particular case, they obtained a combinatorial proof for

\[|O_{1,r}(n)| = |D_{1,r}(n)|.\]

So far, all combinatorial proofs of Beck-type identities rely on variations of Glaisher’s bijection used to prove (2).

The second generalization of (1) provided in [7], for which the authors give a proof using generating functions, is the following theorem.

Theorem 1.1 (Fu-Tang). For all \(n \geq 0\) and \(r \geq 2\),

\[|O_{1,r}(n)| = |D_{1,r}(n)| = E_{r,1}(n).\]

In this article we give a more general theorem of which Theorem 1.1 is a particular first case. Our main theorem is given below. If \(t = 1\) we obtain the statement of Theorem 1.1.

Theorem 1.2. For all integers \(n, r, t\) with \(n \geq 0\), \(r \geq 2\) and \(1 \leq t \leq r-1\), we have

\[(4) \quad |O_{1,r}(n)| = |D_{1,r}(n)| = E_{r,t}(n).\]

We refer to (4) as a third Beck-type identity. We provide analytic and combinatorial proofs of the theorem. Our combinatorial proof uses a recent bijection of Xiong and Keith [12] for Glaisher’s identity (2). Their proof is a variant of a bijection due to Stockhofe [11].

Importantly, the first Beck-type identity (3) follows directly from Theorem 1.2. Thus, the work of this article provides a new combinatorial proof for (3) that does not use Glaisher’s bijection.

The article is organized as follows. In section 2, we use generating functions to prove Theorem 1.2. In section 3 we introduce Xiong and Keith’s bijection and give a combinatorial proof of Theorem 1.2. We also show combinatorially how (3) follows from our main theorem. Finally, in section 4, we give a new combinatorial proof of a second conjecture of George Beck [6] which was proved analytically in [1] and generalized in [13].
2. Analytic Proof of Theorem 1.2

The generating functions for $|\mathcal{O}_r(n)|$ and $|D_r(n)|$ are

$$
\sum_{n=0}^{\infty} |\mathcal{O}_r(n)|q^n = \prod_{n=0}^{\infty} \frac{1}{(1-q^n+1)(1-q^n+2)\ldots(1-q^n+r-1)} = \prod_{n=1}^{\infty} \frac{1-q^n}{1-q^n};
$$

$$
\sum_{n=0}^{\infty} |\mathcal{D}_r(n)|q^n = \prod_{n=1}^{\infty} (1+q^n+q^{2n}+\ldots+q^{(r-1)n}) = \prod_{n=1}^{\infty} \frac{1-q^n}{1-q^n}.
$$

The generating functions for $|\mathcal{O}_{1,r}(n)|$ and $|\mathcal{D}_{1,r}(n)|$ are

$$
\sum_{n=0}^{\infty} |\mathcal{O}_{1,r}(n)|q^n = \sum_{n=0}^{\infty} |\mathcal{D}_{1,r}(n)|q^n = \sum_{m=1}^{\infty} \frac{q^{mr}}{1-q^{mr}} \prod_{n=1}^{\infty} \frac{1-q^n}{1-q^n}.
$$

The generating function for the number of parts congruent to $t \pmod{r}$ in all partitions in $\mathcal{O}_r(n)$ is

$$
\frac{\partial}{\partial z} \bigg|_{z=1} \prod_{n=0}^{\infty} \frac{1}{(1-q^n+1)(1-q^n+2)\ldots(1-q^n+r-1)}.
$$

The generating function for the number of different parts that appear at least t times in all partitions in $\mathcal{D}_r(n)$ is

$$
\frac{\partial}{\partial z} \bigg|_{z=1} \prod_{n=1}^{\infty} (1+q^n+q^{2n}+\ldots+q^{(t-1)n}+q^{(t-1)n}+\ldots+q^{(r-1)n}).
$$

Then

$$
\sum_{n=0}^{\infty} E_{r,t}(n)q^n = \prod_{n=1}^{\infty} \frac{1-q^n}{1-q^n} \sum_{n=0}^{\infty} \frac{q^{rn+t}}{1-q^{rn+t}} - \prod_{n=1}^{\infty} \frac{1-q^n}{1-q^n} \sum_{n=1}^{\infty} \frac{q^t}{1-q^t} \sum_{n=1}^{\infty} \frac{q^n}{1-q^n}.
$$

We have

$$
\sum_{n=0}^{\infty} q^{rn+t} = \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} q^{rn+t} = \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} q^{rn+t} = \sum_{m=1}^{\infty} \frac{q^m}{1-q^m};
$$

therefore,

$$
\sum_{n=0}^{\infty} E_{r,t}(n)q^n = \prod_{n=1}^{\infty} \frac{1-q^n}{1-q^n} \sum_{n=1}^{\infty} \frac{q^n}{1-q^n}.
$$

3. Combinatorial Proof of Theorem 1.2

Recall that the partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_{\ell(\lambda)})$ is called r-flat if $\lambda_i - \lambda_{i+1} \leq r - 1$ for all $1 \leq i \leq \ell(\lambda) - 1$ and $\lambda_{\ell(\lambda)} \leq r - 1$. I.e., in an r-flat partition differences of consecutive parts as well as the smallest part are strictly less than r. To make explanations less cumbersome, we set $\lambda_{\ell(\lambda)+1} = 0$. As mentioned in the introduction, $\mathcal{F}_r(n)$ is the set of all r-flat partitions of n. Conjugation gives a bijection (and, in fact, an involution) from $\mathcal{F}_r(n)$ to $\mathcal{D}_r(n)$.
Next, we introduce a beautiful bijection between the set of r-flat partitions and the set of r-regular partitions given by Xiong and Keith in [12]. We denote this transformation by $\xi : \mathcal{F}_r(n) \rightarrow \mathcal{O}_r(n)$ and for the remainder of the article we refer to ξ as the Xiong-Keith bijection. This bijection will be an important building block in the combinatorial proof of Theorem 1.2.

Step 1. Let (μ, ν) be a pair of partitions such that $\lambda = \mu \cup \nu$, $\nu = r\eta$ for some partition η, μ is r-flat, and removing any part of μ congruent to $0 \pmod{r}$ leaves a partition that is not r-flat. If μ is r-regular, let $\beta^* = \emptyset$ and go to step 3.

Step 2. Let (α, β) be a pair of partitions such that $\mu = \alpha \cup \beta$, α is r-regular and $\beta = r\gamma$ for some partition γ. For $1 \leq i \leq \ell(\alpha)$, let u_i be the number of parts in β that are less than α_i. For $1 \leq i \leq \ell(\beta)$, let v_i be the number of parts in α that are greater than β_i. Consider the partition $u = (u_1, u_2, \ldots, u_{\ell(\alpha)})$ and the composition $v = (v_1, v_2, \ldots, v_{\ell(\beta)})$. Let $\alpha^* = \alpha - ru$ and $\beta^* = \beta + rv$.

Step 3. Write the partition $\nu \cup \beta^*$ as ra and define $\xi(\lambda) = \alpha^* + ra^* \in \mathcal{O}_r(n)$.

In [12], the authors prove that that $\sigma_1 \leq \ell(\alpha^*)$ and they show that ξ is a bijection. Moreover, λ and $\xi(\lambda)$ have the same number of parts congruent to $t \pmod{r}$.

In view of this discussion, $E_{r,t}(n)$ equals the number of parts congruent to $t \pmod{r}$ in all partitions in $\mathcal{F}_r(n)$ minus the number of differences of consecutive parts that are at least t in all partitions in $\mathcal{F}_r(n)$. Given a partition λ, denote by $d_t(\lambda)$ the number of differences of consecutive parts of λ that are at least t. Then

$$E_{r,t}(n) = \sum_{\lambda \in \mathcal{F}_r(n)} (\ell_t(\lambda) - d_t(\lambda)).$$

Note that it is possible for $\lambda \in \mathcal{F}_r(n)$ to have $\ell_t(\lambda) - d_t(\lambda) < 0$.

For example, if $r = 4$, $t = 2$ and $\lambda = (10, 7, 7, 5, 4, 3) \vDash 36$, we have $\ell_2(\lambda) = 1$ and $d_2(\lambda) = 3$ and thus $\ell_2(\lambda) - d_2(\lambda) = -2$.

When considering examples for fairly large n and r, it is often easier to work with r-modular Ferrers diagrams.

Definition 1. The r-modular Ferrers diagram of a partition λ is a diagram in which, if $\lambda_i = q_i r + s_i$ with $1 \leq s_i \leq r$, then the ith row has q_i boxes filled with r and the last box is filled with s_i. Note that, if λ_i is not divisible by r, then s_i is the remainder of λ_i upon division by r. If λ_i is divisible by r, then $s_i = r$.

Example 1. The 4-modular diagram of $\lambda = (10, 7, 7, 5, 4, 3)$ is

```
4 1 2
4 3
4 1
4
3
```

Before proving Theorem 1.2, we show combinatorially that the sets of partitions involved in the theorem are equinumerous with the partitions in $\mathcal{F}_{1,r}(n)$.

Theorem 3.1. For all $n \geq 0$, we have $|\mathcal{D}_{1,r}(n)| = |\mathcal{F}_{1,r}(n)|$ and $|\mathcal{F}_{1,r}(n)| = |\mathcal{O}_{1,r}(n)|$.

Corollary 3.2. For all $n \geq 0$, we have $|\mathcal{D}_{1,r}(n)| = |\mathcal{O}_{1,r}(n)|$.

Proof of Theorem 3.1. Conjugation is a bijection between $\mathcal{D}_{1,r}(n)$ and $\mathcal{F}_{1,r}(n)$. Thus $|\mathcal{D}_{1,r}(n)| = |\mathcal{F}_{1,r}(n)|$.
Next, we adapt the Xiong-Keith bijection to obtain a bijection \(\varphi : \mathcal{F}_{1,r}(n) \rightarrow \mathcal{O}_{1,r}(n) \).

Begin with a partition \(\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_l) \) in \(\mathcal{F}_{1,r}(n) \). Then there is exactly one consecutive difference in \(\lambda \) that is greater than or equal to \(r \), say \(\lambda_i - \lambda_{i+1} \geq r \). Write \(\lambda_i - \lambda_{i+1} = rk + d \) where \(0 \leq d < r \) and let \(\tilde{\lambda} = \lambda - ((rk)^i) \). Then \(\tilde{\lambda} \in \mathcal{F}_r(n - irk) \).

The partition \(\tilde{\lambda} \) is \(r \)-flat because all of the consecutive differences in \(\tilde{\lambda} \) are equal to the corresponding consecutive differences in \(\lambda \) except \(\tilde{\lambda}_j - \tilde{\lambda}_{j+1} = d < r \).

Using the Xiong-Keith bijection, we map \(\tilde{\lambda} \in \mathcal{F}_r(n - irk) \) to \(\tilde{\mu} = \xi(\tilde{\lambda}) \in \mathcal{O}_r(n - irk) \). Finally, let \(\mu = \tilde{\mu} \cup ((rk)^i) \), i.e., insert \(i \) parts equal to \(rk \) into \(\tilde{\mu} \). Set \(\varphi(\lambda) = \mu \).

Then \(\varphi(\lambda) \in \mathcal{O}_{1,r}(n) \). We illustrate the mapping \(\varphi \) in Example 2 below.

To obtain the inverse map, we simply reverse the process. Begin with \(\mu \in \mathcal{O}_{1,r}(n) \). Then there is one part of \(\mu \) that is divisible by \(r \). Suppose the part divisible by \(r \) is \(rk \) with \(k > 0 \) and it occurs \(j > 0 \) times in \(\mu \). Let \(\tilde{\mu} \) be the partition obtained from \(\mu \) by removing all \(j \) parts equal to \(rk \). Then \(\tilde{\mu} \in \mathcal{O}_r(n-jrk) \).

Using the inverse of the Xiong-Keith bijection, we map \(\tilde{\mu} \in \mathcal{O}_r(n-jrk) \) to \(\tilde{\lambda} = \xi^{-1}(\tilde{\mu}) \in \mathcal{F}_r(n - ijk) \). Finally, let \(\lambda = \tilde{\lambda} + ((rk)^i) \), i.e., add \(rk \) to each of the first \(j \) parts of \(\tilde{\lambda} \). Since \(\lambda_j - \lambda_{j+1} \geq r \), we have \(\lambda \in \mathcal{F}_{1,r}(n) \). Then \(\varphi^{-1}(\mu) = \lambda \). □

Example 2. Consider \(\lambda = (27, 24, 20, 15, 13, 10, 6, 5, 2) \in \mathcal{F}_{1,5}(122) \) with \(i = 3 \). We show the 5-modular diagram of \(\lambda \) below along with the highlighted cells that will be removed to obtain \(\tilde{\lambda} \).

\[
\lambda =
\begin{array}{ccccccccc}
5 & 5 & 5 & 5 & 2 \\
5 & 5 & 5 & 4 & \\
5 & 5 & 5 & 3 & \\
5 & 5 & 5 & \\
5 & 1 & \\
5 & \\
5 & \\
5 & \\
\end{array}
\]

Then \(\lambda \) maps to \(\tilde{\lambda} = (22, 19, 15, 15, 13, 10, 6, 5, 2) \in \mathcal{F}_5(107) \) after the block removal.

As can be seen in [12, pg. 562-563], under the Xiong-Keith bijection, \(\tilde{\lambda} \) maps to \(\tilde{\mu} = \xi(\tilde{\lambda}) = (32, 24, 23, 16, 12) \in \mathcal{O}_5(107) \). Finally, add 3 parts of size 5 to \(\tilde{\mu} \) to obtain \(\mu \in \mathcal{O}_{1,5}(122) \).

\[
\mu =
\begin{array}{ccccccccc}
5 & 5 & 5 & 5 & 5 & 2 \\
5 & 5 & 5 & 4 & \\
5 & 5 & 5 & 3 & \\
5 & 5 & 5 & 1 & \\
5 & 5 & 2 & \\
5 & & \\
5 & & \\
\end{array}
\]

We are now ready to complete the combinatorial proof of Theorem 1.2.
Combinatorial Proof of Theorem 1.2. We prove that $E_{r,t}(n) = |F_{1,r}(n)|$. Then, Theorem 3.1 implies that $E_{r,t}(n) = |D_{1,r}(n)| = |O_{1,r}(n)|$.

Recall that $E_{r,t}(n)$ is the excess in the number of parts congruent to $t \pmod{r}$ in all partitions in $O_r(n)$ over the number of different parts that appear at least t times in a partition, counted in all partitions in $D_r(n)$.

Denote by $O_{r,t}^*(n)$ the set of partitions in $O_r(n)$ with exactly one part congruent to $t \pmod{r}$ marked. Note that if $\lambda \in O_r(n)$ with $\lambda_i = \lambda_j \equiv t \pmod{r}$ and $i \neq j$, then the partition with with the part λ_i marked is different from the partition with part λ_j marked.

Denote by $\mathcal{F}_{r,t}(n)$ the set of partition in $F_r(n)$ with exactly one part overlined and part λ_i may be overlined only if $\lambda_i - \lambda_{i+1} \geq t$ (where $\lambda_{i+1} = 0$ if λ_i is the last part). Note that the overlining marks a consecutive difference greater than or equal to t. Via conjugation, the overlining marks the last occurrence of a part that is repeated at least t times in the corresponding partition in $D_r(n)$.

Then

$$|O_{r,t}^*(n)| = \sum_{\lambda \in O_r(n)} \ell_t(\lambda) \quad \text{and} \quad |\mathcal{F}_{r,t}(n)| = \sum_{\lambda \in D_r(n)} \ell_t(\lambda).$$

To prove that $E_{r,t}(n) = |F_{1,r}(n)|$, we create a bijection between $O_{r,t}^*(n)$ and $\mathcal{F}_{r,t}(n) \cup F_{1,r}(n)$. We achieve this by creating bijections

$$\psi_1 : \mathcal{F}_{r,t}(n) \cup F_{1,r}(n) \rightarrow P_{r,t}(n)$$

and

$$\psi_2 : O_{r,t}^* \rightarrow P_{r,t}(n),$$

where

$$P_{r,t}(n) = \{(\mu, ((ar + t)i)) \mid \mu \in F_r(n - i(ar + t)), a \geq 0, i > 0\}.$$

To define ψ_1, start with $\nu \in \mathcal{F}_{r,t}(n) \cup F_{1,r}(n)$. Then we have two cases.

Case 1: $\nu \in \mathcal{F}_{r,t}(n)$. Suppose the overlined part is ν_i. Then $\nu_i - \nu_{i+1} \geq t$. Let $\mu = \nu - (t^i)$. Note that μ is r-flat and $\mu_i - \mu_{i+1} < r - t$. Define $\psi_1(\nu) = (\mu, (t^i))$.

For example, if $\nu = (4,3,1) \in \mathcal{F}_{3,2}(8)$, then $\mu = (2,1,1)$ and $(t^i) = (2^i)$. We show the mapping below, highlighting the removed cells.

![Mapping](image1)

Case 2: $\nu \in F_{1,r}(n)$. Then there is a single consecutive difference $\nu_i - \nu_{i+1}$ that is greater than or equal to r. Write $\nu_i - \nu_{i+1} - t$ as $ar + d$ where $a \geq 0$ and $0 \leq d < r$. Then, $\nu_i - \nu_{i+1} = ar + t + d$. Let $\mu = \nu - ((ar + t)i)$. Note that μ is r-flat, and if $a = 0$, then $\mu_i - \mu_{i+1} \geq r - t$. Define $\psi_1(\nu) = (\mu, (ar + t)i)$.

For example, if $\nu = (5,2,1) \in F_{1,3}(8)$ and $t = 2$, then $\mu = (3,2,1)$ and $(t^i) = (2^i)$. We show the mapping below, highlighting the removed cells.

![Mapping](image2)
Since in case 1 we have $\mu_i - \mu_{i+1} < r - t$ and in case 2, if $a = 0$, $\mu_i - \mu_{i+1} \geq r - t$, it follows that $\psi_1(F_{r, t}(n)) \cap \psi_1(F_{1, r}(n)) = \emptyset$.

The inverse of ψ_1 maps $(\mu, (ar + t)) \in P_{r, t}(n)$ to $\nu = \mu + ((ar + t))$. If $a \neq 0$, then $\nu_i - \nu_{i+1} \geq r$ and $\nu \in F_{1, r}(n)$. If $a = 0$, then either $t \leq \nu_i - \nu_{i+1} < r$ and we overline ν_i to obtain $\nu \in F_{r, t}(n)$, or $\nu_i - \nu_{i+1} \geq r$ and $\nu \in F_{1, r}(n)$.

To define ψ_2, start with $\lambda \in O_{r, t}^*(n)$. Then there is one marked part of size $ar + t$ with $a \geq 0$. Suppose the marked part is the ith part of size $ar + t$. Let η be the partition obtained from λ by removing i parts equal to $ar + t$ (including the marking). Then $\eta \in O_r(n - i(ar + t))$. Let $\mu = \xi^{-1}(\eta)$ be the image of η under the inverse of the Xiong-Keith bijection. Then $\mu \in F_r(n - i(ar + t))$ and $(\mu, ((ar + t)^i)) \in P_{r, t}(n)$.

Example 3. Consider $\lambda = (32, 24, 23, 16, 12, 7, 7^*) \in O_{5, 2}^*(121)$.

\[
\begin{align*}
\lambda &= \begin{array}{cccccccc}
5 & 5 & 5 & 5 & 5 & 5 & 2 \\
5 & 5 & 5 & 5 & 4 \\
5 & 5 & 5 & 5 & 3 \\
5 & 5 & 5 & 1 \\
5 & 5 & 2 \\
5 & 2 \\
5^* & 2^* \\
\end{array} \\
\eta &= \begin{array}{cccccccc}
5 & 5 & 5 & 5 & 5 & 5 & 2 \\
5 & 5 & 5 & 5 & 4 \\
5 & 5 & 5 & 5 & 3 \\
5 & 5 & 5 & 1 \\
5 & 5 & 2 \\
\end{array} \\
\mu &= \begin{array}{ccccccc}
5 & 5 & 5 & 5 & 5 & 2 \\
5 & 5 & 5 & 4 \\
5 & 5 & 5 \\
5 & 5 & 3 \\
5 & 5 \\
5 & 1 \\
5 \\
2 \\
\end{array}
\end{align*}
\]

Then $\lambda \mapsto \eta = (32, 24, 23, 16, 12) \in O_5(107)$.

As can be seen in [12, pg. 562-563], under the Xiong-Keith bijection, $\eta \mapsto \mu = \xi^{-1}(\eta) = (22, 19, 15, 15, 13, 10, 6, 5, 2) \in F_5(107)$.

So $\lambda \mapsto (\mu, (7^2)) \in P_{5, 2}(121)$.
The inverse of ψ_2 maps $(\mu, ((ar + t)^i)) \in \mathcal{P}_{r,t}(n)$ to $\nu = \mu \cup ((ar + t)^i)$. Then, the partition obtained by marking the ith part equal to $ar + t$ in ν is in $\mathcal{O}_{r,t}(n)$.

Therefore, $|\mathcal{O}_{r,t}(n)| = |\mathcal{P}_{r,t}(n)| = |\mathcal{F}_{r,t}(n)|$, which finishes the combinatorial proof of the theorem.

Next, we show combinatorially that the first Beck-type identity (3) follows from Theorem 1.2. Therefore, we obtain a new combinatorial proof of (3).

Corollary 3.3. For all $n \geq 0$ and $r \geq 2$ we have

$$|\mathcal{O}_{1,r}(n)| = |\mathcal{D}_{1,r}(n)| = \frac{1}{r - 1} b_r(n).$$

Proof. We have

$$r^{-1} \sum_{t=1}^{r-1} E_{r,t}(n) = r^{-1} \left(\sum_{\lambda \in \mathcal{O}_r(n)} \ell_t(\lambda) - \sum_{\lambda \in \mathcal{D}_r(n)} \ell_t(\lambda) \right) = \sum_{\lambda \in \mathcal{O}_r(n)} \ell(\lambda) - \sum_{t=1}^{r-1} \sum_{\lambda \in \mathcal{D}_r(n)} \ell_t(\lambda).$$

Given a partition $\lambda \in \mathcal{D}_r(n)$, each part of λ is counted in $\sum_{t=1}^{r-1} \sum_{\lambda \in \mathcal{D}_r(n)} \ell_t(\lambda)$ as many times as its multiplicity. Thus $\sum_{t=1}^{r-1} \sum_{\lambda \in \mathcal{D}_r(n)} \ell_t(\lambda) = \sum_{\lambda \in \mathcal{D}_r(n)} \ell(\lambda)$ and

$$r^{-1} \sum_{t=1}^{r-1} E_{r,t}(n) = b_r(n).$$

On the other hand, from Theorem 1.2,

$$r^{-1} \sum_{t=1}^{r-1} E_{r,t}(n) = (r - 1)|\mathcal{O}_{1,r}(n)| = (r - 1)|\mathcal{D}_{1,r}(n)|.$$
Proof. Denote by $O_r(n)$, respectively $D_r(n)$, the set of partitions in $O_r(n)$, respectively $D_r(n)$, with exactly one part overlined. Only the last occurrence of a part may be overlined. Then

$$|O_r(n)| = \sum_{\lambda \in O_r(n)} t(\lambda)$$

and

$$|D_r(n)| = \sum_{\lambda \in D_r(n)} t(\lambda).$$

Next, we create bijections between $O_r(n)$, $D_r(n)$ and $T_r(n)$ respectively, and certain sets of pairs of partitions $(\mu, (1^i))$, where μ is an r-flat partition.

Start with $\lambda \in O_r(n)$ and suppose the overlined part is equal to $i \not\equiv 0 \pmod{r}$. Let ν be the partition obtained from λ by removing the overlined part. Define $\mu = \xi^{-1}(\nu) \in F_r(n-i)$. Set $\psi_o(\lambda) = (\mu, (1^i))$. This gives a bijection

$$\psi_o : O_r(n) \to A_o(n) := \{ (\mu, (1^i)) \mid \mu \in F_r(n-i), i \not\equiv 0 \pmod{r} \}.$$

Example 4. Consider $\lambda = (32, 24, 23, 16, 16, 12) \in O_5(123)$.

Then $i = 16$ and $\nu = (32, 24, 23, 16, 12) \in O_5(107)$.

As can be seen in [12, pg. 562-563], under the Xiong-Keith bijection, ν maps to $\mu = \xi^{-1}(\nu) = (22, 19, 15, 13, 10, 6, 5, 2) \in F_5(107)$. So $\lambda \mapsto (\mu, (1^{16})) \in A_o(123)$.

Similarly, start with $\lambda \in D_r(n)$ and suppose the overlined part is equal to i. Let ν be the partition obtained from λ by removing the overlined part. Define $\mu = \nu'$, the conjugate of ν. It follows that $\mu \in F_r(n-i)$ and $\mu_i - \mu_{i+1} < r - 1$. Set $\psi_d(\lambda) = (\mu, (1^i))$. This gives a bijection

$$\psi_d : D_r(n) \to A_d(n) := \{ (\mu, (1^i)) \mid \mu \in F_r(n-i), \mu_i - \mu_{i+1} < r - 1 \}.$$

Example 5. Consider $\lambda = (20, 20, 20, 17, 13, 10, 10, 3) \in D_5(123)$.

Then $\lambda = \begin{array}{cccccccc} 5 & 5 & 5 & 5 & 5 & 2 \\ 5 & 5 & 5 & 5 & 4 \\ 5 & 5 & 5 & 5 & 3 \\ 5 & 5 & 5 & 5 & 1 \\ 5 & 5 & 5 & 5 & 1 \\ 5 & 5 & 2 \end{array}$
Then \(i = 20 \) and \(\nu = (20, 20, 17, 13, 10, 10, 10, 3) \in D_5(103) \). Under conjugation, \(\nu \) maps to \(\mu = \nu' = (8^3, 7^7, 4^3, 3^4, 2^3) \in F_5(103) \). So \(\lambda \mapsto (\mu, (1^{20})) \in A_d(123) \).

Finally, start with \(\lambda \in T_r(n) \) and suppose that the part occurring more than \(r \) times but less than \(2r \) times. Let \(\nu \) be the partition obtained from \(\lambda \) by removing \(r \) parts equal to \(j \). Let \(i = rj \). Define \(\mu = \nu' \), the conjugate of \(\nu \). It follows that \(\mu \in F_r(n - i) \) and \(0 < \mu_j - \mu_{j+1} \). Set \(\psi_\ell(\lambda) = (\mu, (1^i)) \). This gives a bijection \(\psi_\ell : T_r(n) \to A_\ell(n) := \{(\mu, (1^i)) \mid \mu \in F_r(n - i), i \equiv 0 \pmod{r}, 0 < \mu_{i/r} - \mu_{(i/r)+1}\} \).

Example 6. Consider \(\lambda = (20, 17, 13, 10, 10, 10, 10, 10, 3) \in T_5(123) \).

\[
\lambda = \begin{array}{cccc}
5 & 5 & 5 & 5 \\
5 & 5 & 5 & 2 \\
5 & 5 & 3 \\
5 & 5 \\
5 & 5 \\
5 & 5 \\
5 & 5 \\
5 & 5 \\
3 \\
\end{array}
\]

Then \(j = 10, i = 5(10) = 50 \), and \(\nu = (20, 17, 13, 10, 10, 3) \in D_5(73) \). Under conjugation, \(\nu \) maps to \(\mu = \nu' = (6^3, 5^7, 3^4, 2^3, 1^3) \in F_5(73) \). So \(\lambda \mapsto (\mu, (1^{50})) \in A_\ell(123) \).

Our goal is to show that \(|A_\ell(n)| + |A_o(n)| = |A_d(n)| \). Notice that \(A_\ell(n) \cap A_o(n) = \emptyset \) and

\[
A_\ell(n) \cup A_o(n) = \{(\mu, (1^i)) \mid \mu \in F_r(n - i)\} \setminus \{(\mu, (1^i)) \mid \mu \in F_r(n - i), i \equiv 0 \pmod{r}, \mu_{i/r} - \mu_{(i/r)+1} = 0\}.
\]

Thus, to show that \(|A_\ell(n)| + |A_o(n)| = |A_d(n)| \), we need to show that the sets

\[
A := \{(\mu, (1^i)) \mid \mu \in F_r(n - i), \mu_i - \mu_{i+1} = r - 1\}
\]

and

\[
B := \{(\mu, (1^i)) \mid \mu \in F_r(n - i), i \equiv 0 \pmod{r}, \mu_{i/r} - \mu_{(i/r)+1} = 0\}
\]

are equinumerous.

We create a bijection \(\zeta : A \to B \) as follows. Start with \((\mu, (1^i)) \in A \). Then \(\mu_j - \mu_{j+1} = r - 1 \). Let \(\nu = \mu - ((r - 1)^2) \). We have \(\nu_j - \nu_{j+1} = 0 \). Let \(\zeta((\mu, (1^i))) = (\nu, (1^{i/r})) \in B \).

Conversely, if \((\nu, (1^i)) \in B \), then \(i = rj \) for some \(j > 0 \) and \(\nu_j - \nu_{j+1} = 0 \). Let \(\mu = \nu + ((r - 1)^2) \in F_r(n - j) \) and \(\mu_j - \mu_{j+1} = r - 1 \). Then \(\zeta^{-1}(\nu, (1^i)) = (\mu, (1^i)) \in A \).

This completes the combinatorial proof of Theorem 4.1.
References

[1] G. E. Andrews, *Euler’s partition identity and two problems of George Beck*, Math. Student 86 (2017), no. 1-2, 115–119.
[2] G. E. Andrews and C. Ballantine, *Almost partition identities*, Proc. Natl. Acad. Sci. USA 116 (2019), no. 12, 5428–5436.
[3] C. Ballantine and R. Bielak, *Combinatorial proofs of two Euler-type identities due to Andrews*, Ann. Comb. 23 (2019), no. 3-4, 511–525.
[4] C. Ballantine and A. Welch, *Beck-type identities for Euler pairs of order r*, to appear.
[5] The On-Line Encyclopedia of Integer Sequences, oeis: A090867.
[6] The On-Line Encyclopedia of Integer Sequences, oeis: A265251.
[7] S. Fu and D. Tang, *Generalizing a partition theorem of Andrews*, Math. Student 86 (2017), no. 3-4, 91–96.
[8] R. Li and A. Y. Z. Wang, *Composition analogues of Beck’s conjectures on partitions*, European J. Combin. 81 (2019), 210–220.
[9] R. Li and A. Y. Z. Wang, *Generalization of two problems of George Beck*, Discrete Math. 343 (2020), no. 5, 111805, 12 pp.
[10] R. Li and A. Y. Z. Wang, *Partitions associated with two fifth-order mock theta functions and Beck-type identities*, Int. J. Number Theory (2020), to appear.
[11] D. Stockhofe, *Bijektive Abbildungen auf der Menge der Partitionen einer natürlichen Zahl*. Ph.D. thesis, Bayreuth, Math. Schr. 10, 1–59 (1982).
[12] X. Xiong and W. J. Keith, *Euler’s partition theorem for all moduli and new companions to Rogers-Ramanujan-Andrews-Gordon identities*, Ramanujan J. 49 (2019), no. 3, 555–565.
[13] Jane Y. X. Yang, *Combinatorial proofs and generalizations of conjectures related to Euler’s partition theorem*, European J. Combin. 76 (2019), 62–72.

Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, MA 01610, USA,

Email address: cballant@holycross.edu

Email address: awelch@holycross.edu