Pandemics and Sustainable Human Nature Relations: A Case study in Baduy Community, South Banten, Indonesia

Johan Iskandar 1*

1Lecturer staff at the Department of Biology, Faculty at Mathematics and Natural Sciences, Postgraduate Faculty of Environmental Sciences and Research Staff at CESS (Center for Environment and Sustainability Science), Padjadjaran University

Abstract. In the past, traditional people across cultures in the world in utilizing and managing natural resources and the environment were based on the local knowledge (LK) or Traditional Ecological Knowledge (TEK) and embedded with culture, so that the environment was avoided from damage. Today, as a result of changes in human behavior towards the environment, it has caused various environmental damages and the emergence of pandemic diseases, such as the Covid-19. This article elucidates the relationship between human and natures and environmental changes that have caused emergence of pandemic diseases, including Covid-19. Various efforts have been undertaken by the Indonesian government to cope Covid-19. For example, to prevent the widespread spread of Covid-19 in society, the Indonesian government has recommended every individual to implement the standard health protocols, such as by applying ‘three m’: menjaga jarak (physical distancing), mencuci tangan dengan sabun (washing hands with soap), and menggunakann masker (wearing masks). Culturally, most of the rural communities in Indonesia initially have a tradition of maintaining health in the family based on local knowledge and strongly embedded by culture, as shown by the traditional people of Baduy community who reside in Village of Kanekes, South Banten. Therefore, the authors suggest that various multidisciplinary and interdisciplinary studies, including the Ethnobiology study, should be carried out more intensively in Indonesia because the results of these studies can be useful for the development of science, and the practical results could be used to integrate with Western scientific knowledge to support various sustainable development programs, such as disaster management, including pandemics that are caused by viruses due to environmental changes..

1 Introduction

The ecosystem provides services to social system by moving materials, energy and information to social system to meet people’s needs. For example, various primary human needs, such as oxygen (O2) for breathing, water for drinking, and various foods from flora and fauna species are supplied by ecosystem services [39, 51]. In addition, ecosystems also provide various information services to humans. Information can be interpreted as something that gives knowledge to humans, in physical form, color, smell, weather, climate, flora conditions, animal behavior and others. Moreover, the information from the ecosystem by humans is perceived, interpreted, and can influence human decisions to act on the ecosystem. In other words, human actions towards ecosystems and the use of natural resources can be influenced by human knowledge, perceptions and understanding of ecosystems [8, 13, 14, 27, 39].

Actually the traditional communities or local communities in interacting with their environment are usually strongly based on local knowledge (LK) or traditional ecological knowledge (TEK), as well as cosmos or belief [4, 27, 54]. Based on the people’s belief that everything in nature is connected. They believe that many events are directly or indirectly a consequence of human actions, beyond human understanding. It is part of their culture to treat nature with careful respect in order to avoid adverse consequences [39].

Because the human population has swiftly increased, the market economic system has rapidly developed, and the flow of communication has quickly changed, it has caused changes in people's views of the environment, as well as changes in human actions towards the environment. Generally, humans have the view that the human self considers himself separate from nature and places himself above nature. They have a Cartesian based thinking, are mechanistic and reductionist modern science, which became the dominant practice of understanding the world [4, 32, 47]. The environment is seen by humans as objects and tools of human interest. Consequently, nature is exploited by humans unwise, and various environmental damages and the emergence of various ecological disasters, such as floods, landslides, forest fires, air pollution, water pollution, global warming, and the emergence of various infectious diseases globally, including Covid-19 have not been avoided [28, 34].

On the basis of ecological history or environmental history, it has been revealed that the number of disasters in many countries since the beginning of the twentieth.
century until now has tended to increase due to human activities that are not wise fronting the environment [7, 34]. For example, the emergence of various contagious diseases globally as a result of being infected with viruses, such as Dengue Fever, Ebola, SARS (Severe Acute Respiratory Syndrome) and the most recent Corona virus (Covid-19), the main causes are the result of human activities, such as destroying or converting forests, and transmission of pathogenic viruses to humans [43, 53].

Today with the spread of Covid-19, it has caused some health problems, and even caused death in humans, and caused serious disruption to the socioeconomic and cultural societies in many countries, including in Indonesia [10, 14]. Because of Covid-19, almost all people in urban areas in Indonesia, such as in Jakarta and others, in addition to preventing the transmission of the Covid-19 disease, by following the advice from the government, such as conducting ‘the three M’, namely ‘mencuci tangan dengan sabun’ (washing hands with soap), ‘menjaga jarak’ (maintaining distance), and ‘memakai masker’ (wearing masks).

In addition, some urban people of Indonesian in maintaining the personal human health and human immunity in the family have been trying to apply the traditional system that used to in the family in the past. For example, they used to drinking herbal medicine from the plant rhizomes of the Zingiberaceae family. Urban residents to meet the needs of Zingeberace's plant species, among others, by buying these plant species at the traditional markets, there are even urban residents who deliberately plant species of Zingiberaceae planted in their homegarden. The reason is, with the presence of Covid-19, they spend more time at home than outside by working from home. The case of urban residents again using traditional medicines, as if they wanted to restore the memory of traditions in society, especially rural communities in the past that to maintain physical health and body immunity for each individual in the family, among others, by drinking herbal medicine made of various plants of Zingiberaceae family, popularly called as herbal jamu.

Indeed, based on the traditions of the Indonesian rural communities in the past, such as the Sundanese people in rural West Java and Banten, to maintain human health and body immunity in each family, it is common to use herbal drinking and to treat illnesses in sick family members, using various medicinal plants, as complementary and alternative medicine (CAM) in society [2, 27, 8]. However, because modern medicines have predominantly traded, the traditional medicine habit uses of society, particularly urban society that is based the local knowledge and is embed with culture are lately eroded.

Today, however, with the emergence of the Covid-19 pandemic, many scholars have started to look and want to study the community's traditions in family medicine, such as using medicinal plants, as CAM in the community with the Ethnobiology study approach, so that the results are expected to be used to be integrated with Western scientific knowledge, in order to carry out disease management, such as Covid-19 in an integrated and holistic manner with community participation, to support sustainable development ([17,49].

This article elucidates the human nature relation with regarding with emergence of infectious diseases, including Covid-19 and the tradition of Sundanese people in maintaining the family health and body immunity based on a case study of Baduy community, South Banten, Indonesia.

2 Human Nature Relation

Ecosystem can provide various services for the human social system, in the form of energy, material and information to support the needs of human life. For example, for primary daily human needs, including the staple food, water, oxygen (O2), and so on are supplied from the ecosystem services [22, 51]. Because various primary human needs have been supplied by ecosystem, the human cannot be separated from the ecosystem or environment.

In addition to the flow of energy and matter, humans also obtain a flow of information from ecosystems, in the form of physical objects, colors, sounds, behavior, and others that are received through the human senses. This information is used by humans to manage ecosystems. Conversely, various human activities also flow energy, material and information on ecosystems that have an impact on the ecosystem.

In contrast to other creatures, such as animals, whose interactions with ecosystems are more based on instinct, humans interact with ecosystems using culture [22-41]. Various information from ecosystems by humans with their socio-cultural systems are usually analyzed and interpreted, and made into decisions to act on the ecosystem [39]. In other words, that human action on the environment or ecosystem depends on how the ecosystem is understood and perceived by humans. For local people or traditional people, their actions (praxis) towards the ecosystem are strongly influenced by corpus (knowledge), and cosmos or belief. Therefore, the actions of traditional people towards ecosystems are built by the highly complex system namely Corpus-Cosmos-Praxis ([4, 6, 22, 27, 54].

Generally since local people have utilized and manage natural resources based on local knowledge and is embedded with culture, the environment can be continuously maintained over time. The behavior of rural communities is also known as ecological wisdom. This ecological wisdom is basically a cultural adaptation of the human population that is obtained from the inheritance of their ancestors and the result of continuous mutual interactions with the ecosystem or its environment. Ecological wisdom is disseminated by people between generations in their communities using their mother language.

Nowadays, however, human actions towards the environment have undergone dramatically changes, so that human actions are not wise towards the environment due to rapid socioeconomic and cultural change and other circumstances affecting the lifestyles and livelihoods of the people [36]. As a result, various environmental damages arise and the emergence of
various infectious diseases globally caused by viruses [53,55].

3 Environment destruction and emergence of infectious virus diseases

Based on ecological history, in recent centuries various infectious diseases globally have emerged. For example, from 1880 to 2019, there were no less than 14 infectious diseases globally in the world, namely Malaria (1880), Rift Valley Fever / RVFV - disease of mostly livestock and humans (1931), Dengue Fever (1942), Crimean Congo. Hemorrhagic Fever – CCHV (1944), Zika Fever (1947), Lasa Fever Virus (1950), Chikungunya virus (1953), Marburg hemorrhagic fever (1967), Ebola Virus Disease - EVD (1976), Nipah virus (1998), Severe Acute Respiratory syndrome - SAR (2002), Rift Valley Fever (2010), Middle East Respiratory Syndrome – MERS (2012) and Covid-19 - Novel Coronavirus- Covid-19 (2019) [37, 42, 53].

The causes of fourteen global infectious diseases in the world are mainly caused by viruses, transmitted by wild animals, such as mosquitoes, bats, primates and others. These various diseases are transmitted to humans mainly due to human behavior that is not wise towards the environment, such as forest encroachment; destroying forests and being converted to other uses, such as agriculture and commercial plantations; and carrying out poaching [43, 53].

According to some scholars, there are various factors that cause viruses with animal reservoirs to infect humans, such as Covid-19 in China. This is partly because there is a tradition in Chinese society that Chinese people like to consume wild animals for their diet and it is also believed that various wild animals can be efficacious for traditional medicine systems. Therefore, it is not surprising that in China, it is known, for example, there is a fresh seafood market in Wuhan, Hubei Province, as well as a restaurant that serves various kinds of meat from pets and wildlife, such as poultry, rabbits, bats, snakes, pangolins, turtles, hedgehogs, badgers, and marmot marmots [15].

Some scholars have opinion that the practice of slaughtering and cooking wildlife in China is responsible for spreading the Coronavirus virus from wildlife to humans. This is because, based on the tradition of eating meat from wild animals in China, it is considered more nutritious. However, at the same time, humans may also be infected by various viruses that cause various types of diseases, such as SARS-CoV, Nipah virus, Avian Influenza virus, and others.

Human interactions with wildlife in the market or livestock industry are related to the production of domestic animals, and some time without paying attention to proper environmental biosecurity, have a high risk for humans to be infected by various zoonotic diseases, such as viruses from wildlife to humans in China, especially in the rural communities of southern China [53]. For example, SARS (Severe Acute Respiratory Syndrome) gained international attention during an outbreak that began sometime during November 2001 in China. Wet markets, a known source of influenza viruses since the 1970s, were found to be the source of the bulk of the infections. Live-animal markets, termed ‘wet markets,’ are common in most Asian societies and specialize in many varieties of live small mammals, poultry, fish, and reptiles. The majority of the earliest reported cases of SARS were of people who worked with the sale and handling of wild animals [53].

Based on the case in China, it can be revealed that the Betacorona virus genus has potential causes of zoonotic pathogens, such as SARS-CoV and MERS-CoV which have bats as primary host and palm civet cat and dromedary camels as intermediate hosts, respectively. The influence of humans destroying the forest environment and hunting wild animals in the forest has led to the spread of infectious diseases by viruses that are spread by wildlife. Almost the same case, based on ecological history, such as the Nipah virus in Malaysia which emerged in 1999 which killed many people. Actually the very dangerous virus Nipah disease arises from reservoir hosts, such as fruit bats and spreads to domestic animals such as pigs as amplifier hosts [43, 53] (Table 1). Forest and human damage is increasing. Activities in the forest for farming, opening commercial plantations and others cause human contact with wildlife, such as bats to intensify and have a high risk of spreading pathogenic viruses from animals to humans [43].
Table 1. Infection of diseases and mechanisms of potential changing incidence as related to ecosystem changes

Diseases	Cases per year	Geographical distribution	Emergence mechanism	Anthropogenic driver	Expected variation from ecological change
Malaria	350 million	Tropical (America, Asia, Africa)	Niche invasion; Vector expansion	Deforestation; Water projects	Very high
Japanese Encephalitis Rift Valley fever	30,000-50,000	Southeast Asia	Vector expansion	Irrigated rice field	High
Dengue fever	80 million	Tropical	Vector expansion	Urbanization, poor housing conditions	High
Ebola	-	Africa	Forest encroachment, bushmeat hunting	Forest encroachment	Low
Nipah Virus	-	Australia, Southeast Asia	Niche invasion	Industrial food production, deforestation, climate abnormalities	High
SARS	8,098	Global	Host transfer	Intensive livestock operations mixing wild and domestic animals	Low
Covid-19-Novel Coronavirus (Covid-19)*	-	Global	Host transfer	Intensive animal hunting and trading, animal farm, wild animal consumption and traditional medicines	High

Source: Adapted from Patz et al. (2020); *) Tiwari et al. (2020).

It can be seen from Table 1 that the main causes of contagious diseases are caused by human actions, such as destroying animal habitats, hunting and illegal trading of animal species. Today, the relationship between humans and the environment, especially in urban communities, has undergone dramatically changes. However, in some rural communities in Indonesia, there are still many who still care for the environment and maintain health in the family, having knowledge of various diseases and how to treat them, and managing infectious diseases.

The Baduy community, South Banten is one of the groups of traditional Sundanese people who still want to maintain a tradition like their ancestors, especially in the swidden farming (ngahuma). Some discussions about the practice of the Baduy community in managing the traditional swidden farming system and environmental conservation, especially the forest ecosystem, have been discussed anywhere [23, 26, 24, 30].

The Baduy community besides having a tradition of farming and conserving the forest environment, they also have a tradition of maintaining health and treating various diseases in the family based on Traditional Ecological Knowledge, embedded with culture. The Baduy community to maintain health for each family is generally undertaken by each family, as was generally the Sundanese people in the past. Mothers who are carrying babies and newborns to adulthood are very concerned about their health conditions in a cultural manner. The reason is, traditionally the purpose of life for the Sundanese people, including the Baduy community, has 5 main goals, namely ‘healthy’ (cageur); ‘kind-hearted, honest’ (bageur); ‘clever’...
Traditionally, the Baduy family mother who gives birth is actually assisted by the traditional Birth Attendant (paraji or indung beurang). Although currently some Baduy people, especially the Outer Baduy people, have started to adopt the village midwives (bidan) to help mothers who want to give birth. This is because based on the Indonesian government program that mothers in rural areas who give birth must be assisted by a 'village midwife' rather than being assisted by the traditional Birth Attendant [2, 12].

In the Baduy community, a mother who wants to give birth, during childbirth and after giving birth, is usually assisted by the traditional Birth Attendant. When a baby is 7 days old, a traditional ceremony in the form of 'selamat bayi' is usually held. At the ceremony, a family with has baby invites relatives and neighbors to attend the ceremony. In addition to having a symbolic meaning, the ceremony to celebrate the baby's age for seven days also has an important meaning to maintain the health of newborns and mothers who have just given birth to baby. For example, to help a newborn mother, during the ceremony a herbal concoction made from herbal medicinal herbs is provided, such as konéng gedé (Curcuma xanthorhiza Roxb), konéng leutik (Curcuma domestica), cikur (Kaempferia galangal L), sembung (Blumea balsamifera L (DC), pedes (Piper nigrum L) and cabé Jawa (Piper retrofictum Vahl).

The herbal plant ingredients are pounded, boiled with hot water, and the water (air godogan) is drunk by a new mother. Drinking herbs from these species of herbal plants is usually carried out by a mother giving birth consecutively for 7 days after giving birth. In general, Baduy people believe that new mothers who are given herbal medicine can help restore the health of the baby's mother (Iskandar 2018).

Scientifically, based on the bioactive ingredients contained in these species of herbs are quite beneficial for the health of the human body. For example, the main content of konéng besar (Curcuma xanthoriza Roxb) consists of starch (48.18 -59.64 %), protein (29-30 %), ash (5.26 -7.07 %), fiber (2.58-4.83 %), curcumin (1.6-2.2%) and essential oils (6-10%). Meanwhile, the various properties of Cucuma xanthoriza include starch which is useful for helping metabolic and physiological processes of the body's organs. The fiber has the benefit of restoring body freshness (tonic in nature). Curcumin to facilitate the body's digestive process. Meanwhile, essential oils can be beneficial for kidney function [3, 9].

In addition, the content of curcumiod in Curcuma xanthoriza can function as anti-bacterial, anti-cancer, anti-tumor, and contains antioxidants. The benefits of Curcuma xanthoriza extract include anti-bacterial properties of Staphylococcus aureus, Stapylococcus epidermis, Bacillus cereus, and Sterptococcus mutans [9]. Therefore, based on the scientific that the species of herbal plants, such as Curcuma xanthoriza which are commonly used by the Baduy people do contain substances that are useful for maintaining the health of the human body and can prevent the transmission of various germs, such as species of bacteria.

5 Various diseases and traditional treatment

On the basis of the Baduy people' perception, the cause of the illness is caused of various factors, such as due to an outbreak of various kinds of germs, such as viruses, fungi, and bacteria; natural factors such as weather; and caused by human behavior errors, such as violating customary rules (kawalat) (Kurnia and Sihabudin 2010; Iskandar 2018). Generally, the various causes of illness based on Baduy people are similar to other ethnics of Indonesia or Southeast Asia in that it has caused of the germs, natural, spiritual, emotion and psychological, and social causes [27, 31, 40].

Because based on the Baduy perception, the illnesses are considered to be influenced by various factors, the treatment of these diseases must be adjusted to the factors that cause the disease. For example, if someone is illness and the cause of the disease is considered to have violated customary rules, then the treatment needs to be carried out by praying or asking for help from the shaman (dukon) or traditional Baduy leader (Puu) to ask for forgiveness and forgiveness because he/she has violated customary rules. Meanwhile, if based on the Baduy's perception that the disease is caused by natural factors or germs, then the treatment can be done by being treated by various species of medicinal plants. Meanwhile, if the person's illness is considered severe, then the illness sufferer must be taken to the hospital.

Based on the results of the Ethnobiology study conducted in Baduy, it has been revealed 27 diseases/disturbances that commonly afflict the Baduy community (Table 2). To treat various diseases/disturbances, 132 species of medicinal plants, representing 57 families (5 unidentified scientific names) (Table 3).
Table 2. Various diseases/disturbances were documented of the Baduy community, South Banten, Indonesia

No	Vernacular term	Indonesian term	English common term
1	Batuk	Batuk	Cough
2	Bisul	Bisul	Ulcer
3	Buuk kotor	Rambut kotor	Dirty hair
4	Cacingceun	Sakit cacing perut	Intestinal worm
5	Conge, Fotoan	Congek	Ear infection
6	Depacok oray	Depatuk ular	Poisonous snake bite
7	Eugap, Hengek	Asma	Asthma
8	Ganggeun ngajuru	Peindaran iku melahirkan	Bleeding of women after giving birth
9	Hapal	Panu	Skin fungus infection
10	Henteu bisa leés	Susah tidar	Insomnia
11	Kasaleso saku	Kaki terkilir	Ankle sprain
12	Kulit kasap	Kulit tidak halus	Skin is not smooth
13	Kurang cai susu	Air susu iku kurang	Lack of breast milk
14	Lakenicis awak	Hadan leth	No appetite and exhaustion
15	Mimisan	Hidung berdarah	Suffer from nose-bleed
16	Muriang	Demam	Fever
17	Nyeri beuteng	Sakit perut, diarea	Stomachache, diarrhea
18	Nyeri hulu	Sakit kepala	Headache
19	Nyeri hunnu	Sakit gigi	Tootache
20	Nyeri panon	Sakit mata	Sore eyes
21	Panaas jern, Sartaowan, Baraun	Panar dalam, Sartaowan	Sprue
22	Panyakit koneng	Penyakit kuning, hepatitis	Hepatitis
23	Paregel awak	Reumatik	Rheumatism
24	Rahesu	Luka	Wound
25	Susah kih	Susah kencing	Diuretic problem
26	Sesereal	Mual	Trapped wind
27	Ubar kuut	Perangsang selk	Aprosodiac

Source: Iskandar and Iskandar (2005).
Table 3. List of Medical Plants to treat diseases and disturbances of the Baduy Community.

No	Vernacular name	Scientific name	Common name	Family	Treatment	Main part of plant
1	Angsana	Pteropus indicus Willd	Redsandal wood	Fabaceae	Toothache	Tap of stem
2	Antahan	Centella asiatica (L) Urb	Asiatic pennyworth	Aegracet	Diuretic	Leaf and stem
3	Areuy kasembang	Embelia ribes Burn.f	False Black Pepper	Primulaceae	Sore eyes	Tap of stem
4	Areuy kawao	Millettia sericea (Venth) Bornh	Creeper Arenga	Fabaceae	Fever	Leaf
5	Areuy kawao	Millettia sericea (Venth) Bornh	Creeper Arenga	Fabaceae	Fever	Leaf
6	Areuy konéng	Arcangelisia flava (L) Merr	Yellow-fruited moonseed	Menispermaceae	Trapped-wind	Stem
7	Areuy palungpung	Merremia hedaracea (Burm.f) Hallier.f	Ivi-like merremia	Convolvulaceae	Intestinal worms	Tap of stem
8	Areuy reuteum	Gigantochloa apus (Schult & Schult.f) Kurz	String bamboo	Poaceae	Cough	Tap of stem/inter-node
9	Awí apus	Gigantochloa atter (Hassk) Kurz	Black bamboo	Poaceae	Herbal cosmetic	Leaf
10	Awí gedé	Gigantochloa verticillata (Wild) Mearo	Giant stripy bamboo	Poaceae	Hair tonic	Tap of stem
11	Awí hidésung	Gigantochloa atrovioleacea Widjaja	Black bamboo	Poaceae	Hair tonic	Tap of stem
12	Awí tamiang	Schizostachyum silicatun Widjaja	Taming bamboo	Poaceae	Cough	Tap of stem
14	Barahulu	Acanthus corylifolius Roxb	Amomum	Zingiberaceae	Headache	Tap of stem
15	Bawang bodas	Allium sativum L.	Garlic	Liliaceae	Toothache	Bulb
16	Beremuk	Crescentia cujete L.	Calabash tree	Bignoniaceae	Fever	Leaf
17	Beunying	Ficus fistulosa Reisse ex Bl	Yellow stem-Fig	Moraceae	Ulcer	Stem
18	Bintina	Melochia umbellata (Houtt) Staf	Melochia	Sterculiaceae	Toothache	Tap of stem
19	Bisuoto	Ficus hirta Vahl	Fig	Moraceae	Rheumatism	Inner bark
20	Bonting	Cucumis sativus L.	Cucumber	Cucurbitaceae	Herbal cosmetic	Fruit
22	Bubuay	Pluchea oblongata Mari ex Blume	Giant Ratan Palm	Arecaceae	Cough	Tap of stem
23	Cabé Jawa	Piper retrofractum Val	Javanese long pepper	Piperaceae	No-appetite and Exhaustion	Stem
24	Cantír ketan	Gualtheria leucarpia Blumeau	Javanese long pepper	Eriaceae	Toothache/tartar on teeth	Stem
25	Capeu	Blumea balsamifera (L) DC	Sambong	Asteraceae	No-appetite and Exhaustion	Leaf
No.	Name	Scientific Name	Family	Part Used	Common Uses	
-----	----------	--	--------------	-----------------------	---	
26	Capeu pakcak	Ericretites valerianifolia Link ex Spreng	Asteraceae	Headache	Leaf	
27	Cariang	Homalonea cordifolia	Asteraceae	Wound	Stem, leaf	
28	Cariang ase	Homalonea pendula (Blume) Link f	Asteraceae	Fever	Leaf	
29	Carus	Eritada phaeostokes (L) Merr	Fabaceae	No-appetite and Exhaustion (Tonic)	Fruit	
30	Carulang	Spaltholobus ferrugineus (Zoll &Moritz) Benth	Fabaceae	Hair tonic	Leaf	
31	Cat ambon	Musa x paradisiaca L	Musaceae	No-appetite and Exhaustion (Tonic)	Flower	
32	Cat koi'	Musa x paradisiaca L	Musaceae	Antidote of poisonous snake bitten	Flower	
33	Congek	Capsicum frutescens L	Solanaceae	Headache	Leaf	
34	Cikur	Kavumpera palmera L	Zingiberaceae	Ankle sprain	Rhizome	
35	Dadap	Erythrina variagata f picta (L) Mahesh	Fabaceae	Sore eyes	Flower	
36	Durian	Duro x zibethinus L	Bombaceae	Darithea	Bark	
37	Emith	Imperata cylindrical (L) Rae-usch	Poaceae	Wound	Young stem	
38	Gadung	Dioscorea Insula Denat	Dioscoraceae	Insomnia	Leaf	
39	Gelgcam	Mimosa pudica	Fabaceae	Sprue	Root	
40	Ginngang	Lecera aequata L	Vitaceae	Ucer	Leaf	
41	Gintang	Bischoffia javanica Blume	Phyllanthaceae	Toothache	Sap of stem	
42	Hatagi	Sterculia javanica E. Hr	Sterculiaceae	Fever	Leaf	
43	Haremeng	Cretoxiyon clandestinium Bl	Gutiferae	Herbal cosmetic	Leaf	
44	Harendong	Clidemia hirta (L) D.Don	Melastomataceae	Cough	Sap of stem	
45	Harendong	Melastoma malabaricum (L) Smith	Melastomataceae	Ucer	Leaf	
46	Hareusus	Rubus rosaefolius Sm	Rosaceae	No-appetite and Exhaustion (Tonic)	Leaf	
47	Honjé	Ellingera speciosa (Blume) R.M Smith	Zingiberaceae	Skin Irritation-	Rhizome, Stem	
48	Ilat	Scleria parpucqescenl Steud	Cyperaceae	Dentic	Leaf	
49	Jabul	Zingiber officinal Rosce	Zingiberaceae	Cough	Rhizome	
50	Jabul	Areca catechu Burm f	Arecaceae	-Hair tonic	Stem	
51	Jambo batu	Pseudium guajaya L	Myrtaceae	Darithea	Leaf	
52	Jaringajo	Acorus calamus L	Acoraceae	Ankle sprain	Leaf	
53	Jawet kotok	Plectranthus galatus Vahl	Lamiaceae	-Hair tonic	Leaf	
54	Jeruk nipis	Citrus aurantiifolia (L.Christm) Swingle	Rutaceae	Sore eyes	Fruit	
No.	Local Name	Scientific Name	Family	Medical Uses	Part Used	
-----	--------------------	--	------------	---	---------------	
55	Jeungjing	Albizia chinensis (Osbeck) Merr	Fabaceae	Intestinal worm	Sap of stem	
56	Jongé	Emilia sonchifolia (L.) DC	Asteraceae	Ear infection	Leaf	
57	Jukut bau	Ageratum coryzoides L.	Asteraceae	Nosebleed	Leaf	
58	Jukut carulang	Eulisine indica (L.) Gaertn	Poaceae	-Wound	Leaf, stem	
59	Jukut galling	Umbrostylis globulosa (Retz) Kunth	Cyperaceae	Hair tonic	Leaf	
60	Jukut jampeang pant	Digtaria sanguinalis (Retz) Kunth	Cyperaceae	Wound	Leaf, Stem	
61	Jukut kabrauk	Passalum scrobilatum L.	Poaceae	Cough	All part	
62	Jukut pingping kast	Passalum scrobilatum L.	Poaceae	Diuretic	All part	
63	Jukut sarawuan	Ageratum conyzoides L.	Asteraceae	-Wound	Leaf, stem	
64	Jukut teling	Austrocephalorum inifolium (Kunth) R.M. King & H Rob	Asteraceae	Sore eyes	All part	
65	Jukut tis	Passalum distichum L.	Poaceae	Fever	All part	
66	Kacapi	Sandorticum koorjape (Burn.1) Merr	Meliaceae	No-appetite and Exhaustion (Tonic)	Leaf, Root	
67	Kacapiring	Gardenia augusta (L.) Merr	Rubiaceae	Fever	Leaf	
68	Kedondong	Spondias pinnata (L.) Kurz	Anacardiaceae	Herbal cosmetic	Leaf	
69	Kelapa haju	Cochinchinus nuscleter L.	Arecaceae	Diarrhea	Bark	
70	Kanyére	Bridelia mononica (Lou) Merr	Phyllantaeae	-Head ache	Leaf	
71	Kasungka	Gnetum latifolium Blume	Gnetaceae	Intestinal Worms	Sap of steam	
72	Katas tulang	Chloranthus erectus (Buch.Ham) Verde	Chloranthaceae	No-appetite and Exhaustation (Tonic)	Stem	
73	Katépéng	Campsis alata L.	Fabaceae	Skin irritation	Leaf	
74	Tisu endong	Saccharum edule Hasskrl	Poaceae	Tonic for baby	Inner Stem	
75	Kalayaran	Trichosanthes tricuspidata Lour	Cucurbitaceae	No-appetite and exhaustion (Tonic)	Leaf	
76	Kélor	Morinda olitiera Lam	Moringaceae	Increasing breast milk	Leaf	
77	Tangkur	Lophoterium gracil Brogn	Poaceae	Aphrodisiac	Root	
78	Kisaat	Naucle excels (Blume) Merr	Rubiaceae	To stop bleeding of women after giving birth	Leaf	
79	Kalangdeur	Bombax ceiba L.	Malvaceae	No-appetite and exhaustion (Tonic)	Stem	
80	Kirocek	Plumbago zeylanica L.	Plumbaginaceae	Rheumatism	Leaf	
No.	Name	Scientific Name	Family	Uses	Parts Used	
-----	------------	--	----------	---	-----------------------------------	
81	Kikoréjat	Isotoma longiflora	Campanulaceae	-Headache, -Cough	-Leaf, -Sap of stem	
82	Kilaja	Saurauia pendula Blume	Actinidiaceae	-Cough	-Sap of stem	
83	Kileho	Glochidion obscurum (Roxb.ex Wild.) Blume	Phyllanthaceae	-Headache, -Cough	Leaf	
84	Kopok	Pthoeclodium clipetria (Jack) Benth	Fabaceae	-Diarrhea	Leaf	
85	Kisiabung	Pironema concrenisc Jack	Lamiaceae	-No-appetite and exhaustion	Leaf, Stem	
86	Koestentah	Piper aduncum L.	Piperaceae	-Sore eyes	Tap of stem	
87	Kuangkhi	Chromolaena odorata L.R.M	Asteraeae	-Wound	Leaf	
88	Konéng	Curcuma longa L.	Zingiberaceae	-Common turmeric	Rhizome	
89	Konéng émbé	Curcuma purpurascens Blume	Zingiberaceae	-Herbal cosmetic	Rhizome	
90	Konéng gedé	Curcuma xanthorhiza Roxb.	Zingiberaceae	-No-appetite and exhaustion (Tonic)	Rhizome	
91	Konéng gedé	Fustiflora edulis	Passifloraceae	-Rheumatic	Leaf, Stem	
92	Konéng gedé	Fustiflora edulis	Passifloraceae	-No-appetite and exhaustion (Tonic)	Rhizome	
93	Kunci	Kaempfelia angustiolia	Zingiberaceae	-No-appetite and exhaustion	Leaf, Stem	
94	Laja	Languas galanga L.	Zingiberaceae	-Wound	Rhizome	
95	Lakaniguran	Wedelia bifora (L.) DC.	Asteraeae	-Sprue	Leaf	
96	Lamoé	Alstonia scholaris (L.) R.Br.	Apocynaceae	-Indian pulai	Stem	
97	Lempeyung	Zingiber odoriferum Blume	Zingiberaceae	-No-appetite and exhaustion (Tonic)	Rhizome	
98	Leuksa	Ficus septica Burm.f	Moraceae	-Sore eyes	Sap of stem	
99	Leungsir	Pomea pinata J.R. Forst & G.Forst	Sapindaceae	-Herbal cosmetic	Leaf	
100	Limus	Mangifera odorata Griff	Anacardiaceae	-No-appetite and exhaustion (Tonic)	Leaf	
101	Malai	Jasminum sambac (L.) Aton	Oleaceae	-Ankle sprain	Leaf	
102	Nangka walanda	Anonna muricata L.	Annonaceae	-Fever	Leaf	
103	Nangsi	Vallesitrea tubescens (Blume)	Urticaceae	-Fever	Leaf	
104	Pacing	Costus speciosus (J.R-Fiend & Sm)	Costaceae	-Antidote of poisonous	Leaf	
105	Paku kapal	Pleospermia irregularis (C.Persl) Holmut	Dryopterisida	-Sprue	Leaf	
106	Paku péarak	Angiopteris evecta	Maratiaceae	-Diarhea	Leaf	
Page	Plant Name	Scientific Name	Family	Use		
------	------------	-----------------	--------	-----		
107	Panglay	Zingiber cassumunar Roxb	Zingiberaceae	Rhizome		
108	Parünggëng	Croton aegyptius Blume	Euphorbiaceae	Sap of stem		
109	Pecah beling	Strobilanthes phyllostachys Kurz	Acanthaceae	Fever		
110	Pedes	Piper nigrum	Piperaceae	No-appetite and exhaustion (Tonic)		
111	Punggiuran	Mikania cordata (Burm.f)	Meliaceae	Bark		
112	Ranë	Selaginella plana (Desv.ex Poir) Hieron	Selaginellaceae	Wound		
113	Reundeu carat	Staurogyne elongata (Nees) Kuntze	Acanthaceae	Sprue		
114	Saga	Syzygium polyanthum (Wight) Walp	Myrtaceae	Sap of stem		
115	Sembung	Blumea balsamifera (L) DC	Asteraceae	No-appetite and exhaustion (Tonic)		
116	Sempur	Dilenia obovate	Verbenaceae	Inner bark		
117	Sereuh	Piper betle L	Piperaceae	-Nosebleed, Sore eyes		
118	Siajuk	Syzygium paniculatum (Blume) Choisy ex Zoll	Symplocaceae	Sprue		
119	Siajuk	Ficus elastica Roxb ex Hornem	Moraceae	Skin irritation		
120	Sioeurep	Zingiber spectabile Griff	Zingiberaceae	Cough		
121	Sioeurep	Saccharum officinarum L	Poaceae	Dierrete		
122	Sioeurep	Codiaeum variegatum (L)	Rumph ex. A.Juss	Stem		
123	Sioeurep	Malvaviscus arboreus (Oct)	Malvaceae	Max wallow		
124	Sioeurep	Malvaviscus arboreus (Oct)	Malvaceae	Fever, Cough		

Source: Field research (1994/1995); (2013); Ginanjar (1997)
Based on the number of species of medicinal plants commonly used by Baduy people, the species number is more than the number of commonly used by the Kesupuhan community, the traditional community of neighboring Baduy, who live around Mount Halimun National Park, Cisolok, South Sukabumi, West Java, was recorded 117 species of medicinal plants commonly used by the Kasepuhan community [20]. However, the number of medicinal plant species in Baduy is smaller than that of commonly used by the Dayak Kenyah Leppo'ke community, Pujungan sub-district, East Kalimantan (today North Kalimantan Province), with 192 medicinal plant species were recorded [19]. The number of medicinal plants in the Dayak Kenyah Leppo'ke community, Pujungan Sub-district may be higher because of its more remote location so that it is difficult for the rural people to get modern medicine from the city and the market economy influence from the city is very low, and the area still has quite extensive forests. Therefore, the forest area is still predominantly planted with medicinal plants.

Among the various species of medicinal plants in the Baduy community (Table 3), several species, including *Amomum aculeatum* Roxb, *Curcuma domestica* L, *Curcuma xanthoriza* Roxb, *Zingiber cassumunar* Roxb, *Zingiber odoriferum* Blume and *Zingiber officinale* Roscoe are belong to Zingiberaceae family that are predominantly used for herbal refreshments and body enhancers or body immunity, as well as the treatment of diseases, such as cough, hepatitis, and diarrhea (Table 4).

Table 4. Various medical plants of Zingiberaceae family are commonly used by the Baduy community

No	Scientific name	Vernacular name	Common name	Traditional use
1	*Amomum aculeatum* Roxb	Barahu	Amomum	For cough medicine, use the ‘bara haula’ taps of stem and its water is used for treating cough
2	*Curcuma domestica* L	Koneng	Common turmeric	For the drug hepatitis medicine, use rhizome of ‘koneng’ is pounded and boiled, and drink the water.
3	*Curcuma xanthoriza* Roxb	Javanese ginger	For body healthy herbs and to maintain and improve the health of mothers who have just giving birth. The technique of making is like making traditional herbal medicine, rubbing it on the body accompanied by a traditional ceremony when the baby is seven days old	
4	*Zingiber cassumunar* Roxb	Panglay	Cassumunar ginger	Panglay mixed with sweet-flag leaves, shallots, garlic, and black pepper is dried and ground until soft and becomes flour and used to be rubbed on the body for freshness.
5	*Zingiber odoriferum* Bl	Lempuyang	For refreshing herbs for tired bodies. The procedure for making it is mixed with other plants, such as ginger, see the next description of the use of ginger.	
6	*Zingiber officinale*	Jahé	Garden ginger	For cough medicine, how to use it ginger rhizome is crushed mixed with a little water and drunk by cough sufferers. In addition, it is used for refreshing herbs for tired bodies, the procedures for making it are in the form of rhizome ingredients of ginger mixed with capeu leaves (Blumea balsamifera Mast), and rhizomes of lempuyang (Zingiber odoriferum Bl), singguru leaves (Clerodendrum serratum Spreng), and cikar (Koamphferia galanga L.). koneng (*Curcuma domestica* L) are pounded and boiled and the water is drunk.

As mentioned earlier each Baduy family must maintain health, both physical health and spiritual health. They believe that in human life there is always a change and balance, such as sometimes human life is in a healthy condition, but there are also times when people suffer from illness. So, if a person is stricken with illness, the cause of the illness is sought. If the illness is due to wrong human behavior, such as violating customary rules. Thus, the illness cannot be treated, such as by types of traditional medicinal plants, but must be treated by the informal leader of the Baduy community (*Puun*) or a traditional healer. For example, people who violate the customs in Baduy, especially Inner Baduy, usually perform a ceremony led by *Puun* or his staff in Inner Baduy.

In addition, according to the Baduy tradition, in carrying out the life of the Baduy people, apart from maintaining health (*cageur*), they also have to behave properly based on customary law (*pikukuh*). Living right and the honest, among others, must obey various *pikukuh*. For example, based on the Baduy customary law, the Baduy community must conserve their environment, which the area considers as sacred land and is a deposit from their ancestors. Therefore, in Baduy there are various customary rules that must be obeyed by every Baduy people [25], as follow:

- They are not allowed to dig soil;
- They are prohibited to plant monoculture commercial crops, including clove;
- They are not allowed to raise buffalo, cattle, sheep and goat; and
- They are prohibited to apply synthetic chemical pesticides and inorganic fertilizers, poison fish and wildlife in their practicing the swidden cultivation.

As can be seen that the concept of the Baduy community to achieve human health, the need to protect the environment so that it is healthy, not damaged, also includes the need to protect animals and animal habitats (animal health), then this is very much in line with the scientific concept, namely to achieve healthy humans, the need for ‘one health system’, namely human health, environmental health, and animal health [55].
6 Traditional management of infectious diseases

Actually the Baduy community has a system of adaptation and mitigation to the risk of disasters of infectious diseases based on the traditional Ecological Knowledge (TEK) strongly embedded with culture, such as belief. According to informants of the Baduy community, it can be seen that in the 1960s, in some areas in West Java and Banten, malaria was spread due to the plasmodium parasite spread by the anopheles mosquito. At that time many people died as a result of contracting malaria. To eradicate the malaria disease, in 1963 the Indonesian government established a malaria eradication command program (KOPEM-Komando Pembasmi Malaria). Through the KOPEM program, the Anopheles mosquito, which is a vector of malaria, is mass eradicated by spraying with an organochlorine pesticide, Dichlordi Diphenyl Trichloroethane (DDT). Today, DDT is prohibited to be used in Indonesia. This is because DDT can pollute the environment because it is difficult to decompose in nature.

In 1964 the KOPEM program was generally successful in eliminating malaria in Indonesia. Although in general malaria was successfully eradicated, at that time there were other infectious diseases, such as smallpox that had not been eradicated, especially in the Baduy area. Therefore, West Java provincial KOMPEM officers came and interviewed the traditional leaders of the Baduy community in Kanekes Village to find out and at the same time eradicate the disease. Based on the results of interviews with KOPEM officers with Baduy traditional leaders (Puun), it can be seen that Baduy people have special management of smallpox contagious disease. Culturally, if there are Baduy people who are infected with smallpox (panyakit kuris in Baduy term). People suffering from smallpox must be quarantined or exiled to forest areas outside the settlement. The reason is, according to the perception of the Baduy community (emic's view), a person with smallpox is isolated in a forest area, while being exiled he/she will wage war against the evil creature that causes smallpox. If a person with smallpox who is being exiled in the forest does not die, it means that he/she has won against an evil creature, then he is allowed by the Baduy customary leader (Puun) to return to the village and reunite with his core family at home.

As can be seen at the practice of controlling smallpox by the Baduy people, it is quite in line with the principles of Western scientific knowledge (ethical view), that smallpox is caused by the Varicella zoster virus. To avoid spreading smallpox to other citizens, sufferers must be isolated, by being placed separately from other individuals.

The habit of managing infectious diseases of Baduy people is based on culture is similar that of commonly practiced by traditional hunters and gatherers, 'Suku Anak Dalam' community who live in the forest area of Jambi, Sumatra. Based on the tradition of the Suku Anak Dalam community, if a family member is illness and dies in their temporary house (dangau), they must move to a new area and set up a dangau in a new place [26]. In principle, moving places by the Suku Anak Dalam community if a family dies from an infectious disease can be interpreted as a forest people strategy so that the disease will not spread to other healthy people.

Meanwhile, in relation with the outbreak of Covid-19 in Indonesia since March 2019 [10], the Baduy community has developed a mitigation and adaptation strategy for the spread of Covid-19 to the Baduy area, South Banten. For example, the Baduy people discipline followed the orders of the Baduy traditional leaders (Puun) and the formal village head (Jaro Pamarentah). Based on orders from customary leaders and formal village leaders that during the outbreak of Covid-19, each Baduy person is prohibited from going to the city, especially cities known categorized as 'red zones', such as Jakarta, Tangerang, Bekasi, Depok and Bogor. Meanwhile, Baduy people who are wandering in the city are required to return home and before they return to their village in the Baduy area, Kanekes Village, they must have their health conditions checked at the Community Health Service Center (Puskesmas) (Wismabrat a 2020).

In addition, to mitigate and adapt to the Covid-19 pandemic, so that the disease does not enter the Baduy village, the Baduy community also implements traditional methods combined with scientific methods, namely implementing a model of Baduy lockdown system, closing the area visited by outsiders through kawalu ceremonies. Each year after the rice harvest, the Baduy people usually carry out the kawalu ceremony three times, on different months. The first kawalu is done in the month of Kasa (January-February), the second kawalu is held in the month of Karo (February-March), and the third kawalu is in the month of Katiga (March-April). During these months the Baduy people usually fast every time the kawalu ceremony, so they fast three days or three times, in 3 different months [26]. However, unlike the Muslim fast during Ramadan, the Baduy is embedded strongly in the practice of swidden cultivation. Baduy fast for only three days, after the harvesting of rice, rather than for the full month of the Muslim fast. The first, second and the third kawalu are called kawalu kahiji, kawalu tengah and kawalu tutug, respectively.

Two days before upacara kawalu in Outer Baduy (Baduy Luar), there are various preparatory activities for the ritual. For example, all family each hamlet work together to clean their houses, as well as underneath the houses. This is called 'bebereshi kampung'. Rubbish and dust are swept using rice stalk brooms (sapu pare) and a rag. Weed growth surrounding the house is removed using a bush knife (arit). All the rubbish is collected and thrown into a special place at the back of the house (kolomberan). In addition, the communal bathing place (pancuran) is repaired: old bamboo pipes are replaced with new ones, and footpaths leading to the pancuran improved and terraced using river stones. The rice barns are also improved in a similar way [23].

During the kawalu ceremony, visitors from outside Baduy, such as visitors from the city, are prohibited from visiting the Baduy area. Therefore, the tradition of closing the Baduy area during the kawalu ceremony was used by the Baduy community for mitigation and adaptation of the spread of Covid-19 to their village.
It can be seen the phenomenon in Ngablak Village, the concept of padasan that has been preserved since the past has continued to be interpreted by its supervisor, namely members of the Ngablak Village community until now. Even though the meaning of the function is still the same, the forms and procedures for cleaning oneself such as washing hands and washing feet continue to be interpreted as the conditions that occur today. In other words, mitigation procedures for the Covid-19 disease disaster are carried out by integrating local knowledge and Western scientific knowledge, which is considered appropriate with current conditions. Some studies cross-culture in the world also show that it is important to integrate local knowledge and Western scientific knowledge for natural resource management and the environment or disaster mitigation [5, 21, 28, 29, 45, 46, 56]. Therefore, multi-disciplinary and interdisciplinary studies, such as ethnobiology and ethnoecology, are important to do intensively, because the results are important for the development of science and practical results can be used to support the sustainable development programs, such as conservation of nature, adaptive agricultural development to various environmental changes, and management of infectious diseases [28].

7 Conclusion

This article discusses the case of changing the relationship between humans and their environment. In the past, the traditional population had a view of 'biocentrism' - respect for living things or eco-centrism - everything in nature is connected - with the use of natural resources and the environment based on 'local knowledge' and cosmos or beliefs. Nowadays, however, there is a change, some people, especially urban people, have a view of "anthropocentrism", namely environmental ethics that views humans as the center of the universal system. Humans and their interests are considered the most decisive in order with nature, either directly or indirectly [4, 32].

The effect of changing human's word view on nature which is anthropocentrism has caused human behavior towards the environment to change. Thus, the extinction or loss of local knowledge (LK) or traditional ecological knowledge (TEK) and the absence of a belief system or cosmos of the local people towards the environment, have resulted in natural resources being exploited intensively and have caused various environmental damage. The cause consequence of increase in various environmental damages is to raise various natural disasters, such as floods, landslides, droughts, extinction of flora and fauna, and the emergence of global infectious diseases, including Covid-19 [28].
Because the global infectious diseases have increased due to human bad behavior towards environment, such as destroying animal habitats, hunting and illegal trade in animal species, to maintain human health it is necessary to maintain healthy environmental and animal health conditions or “one health approach” [55].

An important factor for achieving a "one health approach" is the need for changes in human behavior, such as to achieve "human health" the need to change the behavior of individuals in the family to pay attention to the health of each individual and each family. In addition, to achieve 'environmental health' it is necessary to change human behavior in their interactions with the environment, namely the need to avoid various human behaviors that damage the environment. Meanwhile, to achieve "animal health", it is necessary to change human behavior in interacting with wild animal species, for example to avoid destroying the habitat of wild animal species and avoiding illegal hunting of wild species, as well as the need to pay attention to biosecurity.

In addition, for environmental management, including management of infectious disease disasters, the need to hybridize local knowledge and Western scientific knowledge, and it needs to actively involve local communities, and it should be integrated into sustainable development programs. Therefore, with efforts to manage disease disasters in an integrated manner in a sustainable development program, it will be more guaranteed to achieve the success of the program than a disease disaster management program that is top-down, partial, does not involve local people, and is more short-term project-based.

Conflict of interest: The author declares no conflict of interest.

8 Acknowledgments

This research has been supported in the part of the Academic Leadership Grand (ALG) of Prof. Johan Iskandar of Padjadjaran University. I would like to thank the Rector of Padjadjaran University who has supported the ALG Program. I also would like to thank to Baduy village leaders as well as the respondents of Baduy community who assisted and provided valuable information regarding traditional medicinal aspects of Baduy community.

References

1. Alfian RL. (2020). The Concept of padasan in Javanese homes in the past and present. Internal Report of ALG Program of Ethnobiology, the Department of Biology, Faculty of Mathematics and Natural Sciences, Unpad, Bandung [Indonesian].
2. Ambaretani P. (2012). Paraji and bidan in Rancaekek: integrated medicine for partnerships among traditional birth attendants and community midwives in the Sunda Region of West Java, Indonesia. Leiden Ethnosystems and Development Program (LEAD) Studies No.7, Leiden University, Leiden.
3. Anand P. (2007). Bioavailability of curcumin: problem and promises. J.Mol.Pharmaceutic 4 (6): 807-18.
4. Berkes F. (2012). Sacred ecology. Third Edition. Routledge, New York and London.
5. Bollard HL, Fernandez-Gimenez MF, Surtevant VE. (2008). Integration local ecological knowledge and conventional science: a study of seven community-based forestry organizations in the USA. Ecology and Society 13 (2):37. http://www.ecologyandsociety.org/vol13/iss2/art37/.
6. Carlson TJS, Maffi L. (2004). Introduction: ethnobotany and conservation of biocultural diversity. In Carlson and Maffi L (eds), Ethnobotany and conservation of biocultural diversity. The New York Botanical Garden Press, Bronx, New York, pp.1-6.
7. Collins AE. (2009). Disaster and development (Routledge Perspectives on Development). First Edition. Routledge, London.
8. Cotton CM. (1996). Ethnobotany: principles and applications. John Willey & Sons. Chichester, England.
9. Dermawati DE. (2015). Potential extract curcuma (Curcuma xahoriza L) as anti-bacterial. J.Majority 4 (1): 5-11.
10. Djalante R, Lassa J, Setiamarga D, Sudjatma A, Indrawan M, Haryanto B, Mahfud C, Sinapoy MS, Djalante.
11. S, Raffiana I, Gunawan L, Sutiari GAK, Warsilah. (2020). Review and analysis of current responses to COVID-19 in Indonesia: period of January to March 2020. Progress in Disaster Science 6 (2020) 100991.
12. Elgasani M, Iskandar BS, Iskandar J. (2020). Health services based on kinship in hamlet of Palintang, village of Cipanjalu, sub-district of Bandung, Province of West Java. Prolife 7 (2): 171-187 [Indonesian].
13. Ellen RF. (1994). Putting plants in their place: anthropological approaches to understanding the ethnobotanical knowledge of rainforest populations. Presentation, UBD-RGS Conference.
14. Ellen RF and Fukui K (eds). 1994. Beyond nature and culture: cognition, ecology and Domestication. Berg, London.
15. El Zowalty ME, Jarhult JD. (2020). From Sars to Covid-19: A previously unknown SARS-related coronaries (SARS-Cov-2) of pandemic potential interacting humans-call for a one health approach. One health 9 (2020) 100124. https://doi/10.1016/j.ohnelt.2020.100124.
16. Filho WL, Brandli L, Salvia AL, Rayman –Bachus LL, Platje J. (2020). Communication, Covid-19 and sustainable development goals: treat to
solidarity or an opportunity?. Sustainability 12: 1-14. doi:10.3390/su12135343.
17. Franco FM, Bussmann RW. (2020). Rising to occasion: outlining Ethnobiologists response to coronavirus (Covid-19) Pandemic. Ethnobotany research & applications 20:06 (2020). http://dx.doi.org/10.32859/era.20.06.1-4.
18. Ginanjari I. (1997). Study on plant diversity and uses as medicinal plants in forest of Baduy community, South Banten. Internal report of the Department of Biology, Faculty of Mathematics and Natural Sciences, Padjadjaran University (Indonesian).
19. Gollin LX. (2004). Subtle and profound sensory attributes of medicinal plants among the Kenyah Leppo’ke of East Kalimantan, Borneo. Journal of Ethnobiology 24 (2):173-201.
20. Harada K, Rahayu M, Muzakkir A. (2002). Medicinal plants of Gunung Halimun National Park, West Java, Indonesia. BPC-JICA, Bogor.
21. Hiwasaki L, Luna E, Syamsidik, Shaw R. (2014). Process for integrating local and indigenous knowledge with science for hydro-meteorological disaster risk reduction and climate change adaptation in coastal and small island communities. International Journal of Disaster Risk Reduction 10:15-27.
22. Ingold T. (2000). The Perception of the environment: essay on livelihood, dwelling and skill. Routledge, London and New York.
23. Iskandar J. (1998). Swidden cultivation as a form of cultural identity: The Baduy case. Ph.D. thesis, University of Kent at Canterbury (Unpublished).
24. Iskandar J. (2012). Baduy swidden farming ecology: based on sustainable customary-forest management. Penerbit Alumni, Bandung [Indonesian].
25. Iskandar J. (2017). Human ecology and sustainable development. PSMIL, Bandung, Indonesian.
26. Iskandar J. (2007). Response to environmental stress in the Baduy swidden system, South Banten, Java. In Ellen R (ed), Modern crises and traditional strategies: local knowledge in Island Southeast Asia. Berghahn Books, New York-Oxford, pp.112-132.
27. Iskandar J. (2018). Ethnobiology, ethnoecology and sustainable development. Plantaxia, Yogyakarta, Indonesian.
28. Iskandar J. 2020. Integrating local knowledge in disaster risk management for application in the Sustainable Development Programs. In Balia RL & Hendarmawan (eds), Pentahelix Collaboration in the Covid-19 Pandemic Period in an Environmental and Development Perspective. Unpad Press, Bandung [Indonesian].
29. Iskandar J and Ellen RF. (2007). Innovation, ‘hybrid’ Knowledge and the conservation of relict rainforest in upland Banten. In Ellen RF (ed), Modern crises and traditional strategies: local knowledge in Island Southeast Asia. Berghahn Books, New York-Oxford, pp.133-142.
30. Iskandar J, Iskandar BS. (2016). Ethnoastronomy-The Baduy agricultural calendar and prediction of environmental perturbations. Biodiversitas 17 (2): 694-703.
31. Jaspan M.A. (1976). The Social organization of indigenous and modern medicinal practices in Southwest Sumatra. In Lisley C (ed), Asian medical systems: a comparative study. California University Press, California, pp.227-242.
32. Kerf AS. (2002). Environmental ethic. Penerbit Buku Kompas, Jakarta, Indonesian.
33. Kurnia A and Sibabudin A. (2010). Saatnya Baduy Bicara. Bumi Aksara, Jakarta.
34. Lovejoy TE and Hannah. (2020). Changing the biosphere. In Lovejoy TE and Hannah L. (eds), Biodiversity and climate change: transforming the biosphere. Yale University Press, New Haven & London, pp.3-11.
35. Mackinson S. (2001). Integrating local and scientific knowledge: an example in fisheries science. Environmental Management 27 (4): 533-545.
36. Maffi L. (2004). Maintaining and restoring biocultural diversity: the evolution of a role for ethnobiology. In In Carlson and Maffi L. (eds), Ethnobotany and conservation of biocultural diversity. The New York Botanical Garden Press, Bronx, New York pp.9-35.
37. Malik YS, Sircar S, Bhat S, Vinodhukmar OR, Tiwari R, Sah R, Rabaan AA, Rodriguez-Mauroles
38. AJ, Dama K. (2020). Emerging coronavirus disease (Covid-19), a pandemic public health emergency with animal linkages: current status update. Preprint. Doi:10.20944/preprints202003.0343.v1.
39. Marten GG. (2001). Human ecology: basic concepts for sustainable development. Earthscan Publications Ltd, London.
40. Masanori Y. (1985). Indigenous healers and healing: their persistence and vitality in Southeast Asia. Journal of African Studies 29: 232-248.
41. Milton K. (1996). Environmentalism and cultural theory: exploring the role of anthropology in environmental discourse. Routledge, London and New York.
42. Ohimain EI. (2017). Research article: emerging pathogens global significance: priorities for attention and control. EC Microbiology 5.6: (2017):215-240.
43. Patz JA, Confalonieri EC, Amerasinghe FP, Daszak P, Hyatt AD, Molywenk, Thomson M, Yasnego L, Lazaro MM, Vasconcello SP, Rubio-Palis Y, Campbell-Lendrum D, Jaenish T, Mohamat H, Mutter, Walter-Toews D, Jaenish T, Mohamat H, Mutter, Walter—Toews D, Whitemen C. 2005. Ecosystem and human-
wellbeing: current state and trends Vol. I, Island Press, Washington.

45. Prasetyo N. (2019). The Role of traditional knowledge and practices for marine ecotourism development in Misool Raja Ampat, Indonesia. Ph.D., thesis, University Otago, New Zealand.

46. Raymond CM, Fazey I, Reed MS, Stringer LC, Robinson GM, Evely A. (2010). Integra local and scientific knowledge for environmental management. Journal of Environmental Management 91:1766-1777.

47. Shiva V. (2016). Who really feeds the world?. The failures of agribusiness and the promise of agroecology. North Atlantic Books, Berkeley, California.

48. Slikkerveer LJ. (2006). The Challenge of non-experimental validation of MAC plants: Towards a multivariate model of transcultural utilization of medicinal, aromatic and cosmetic plants. In Bogers RJ, Craker LE, Lange D (eds), Medicinal and Aromatic Plants: Agricultural, Commercial, Ecological, Legal, Pharmacological and Social Aspects. Springer, Dordrecht, pp.1-28.

49. Soldati GT and Barros FB. (2020). The COVID-19 Pandemic and future of ethnobiology.

50. Ethnobiology and Conservation (2020), 9:17(15 May 2020). doi:10.15451/ec2020-05-9.17-1-4.

51. Suparlan P. (2005). Culture and Development. In Rudito B, Salam A, Rahmiati L, Amini R, Nurlina R, Nuridin (eds), Sustainable Future. ICSD, Jakarta.

52. Takidin. (2014). Wisdom value local culture of Orang Rimba: Study in ethnic minority of Rimba community in Air Hitam Sub-district, Jambi Province. Sosio Didaktika 1 (2): 161-170.

53. Tiwari R, Dhama R, Sharun K, Yatoo MI, Malik YS, Sing R, Michalak I, Sah R, Bonilla-Aldana DK, Rodriguez-Morales AJ, 2020. Review Covid 19: Animals Veterinary and Zoonotic Links. Veterinary Quarterly 40 (1): 169-182.

54. Toledo VM. (2002). Ethnoecology: A Conceptual framework for the study of indigenous Knowledge of nature. In Stepp JR, Wyndham FS, and Zarger RK (eds), Ethnobiology and biocultural. The International Society of Ethnobiology, Georgia.

55. WWF International. 220. The Loss of nature and rise of epidemics: protecting human and planetary health. Gland, Switzerland.

56. Zalfadrim, Toyoda Y, Kaneg H. (2019). Integration of indigenous knowledge for disaster risk reduction practices through scientific knowledge: cases from Mentawai Islands, Indonesia. International Journal of Disaster Management 2 (1): 1-12.)