The prolongation of pulse transit time after a stellate ganglion block: An objective indicator of a successful block

Young Uk Kim MD1, Yuseon Cheong MD2, Yu Gyeong Kong MD3, Jonghyuk Lee MD4, Sehun Kim MD3, Hong Gyu Choi MD4, Jeong Hun Suh MD4

BACKGROUND: An objective marker of successful stellate ganglion block (SGB) does not exist. Horner syndrome, which is currently used to determine the effect of SGB, is sometimes ambiguous.

OBJECTIVE: To investigate the change in pulse transit time (PTT) after SGB, and to evaluate the utility of PTT as an objective measure of successful SGB.

METHODS: Eight patients (34 to 62 years of age) underwent SGB for diagnosis or treatment of sympathetically mediated pain of the upper extremities. The success of the SGB was determined according to the presence of Horner syndrome. Electrocardiography, noninvasive blood pressure measurements and pulse oximetry were used to monitor all patients. PTT was measured using data saved on the WinDaq waveform browser.

RESULTS: PTT was measured at baseline and 3 min, 5 min and 10 min after the injection of a local anesthetic. At 3 min after SGB, the mean (± SD) PTT was 624.6±20.5 ms. At 5 min after injection, the mean PTT was 630.8±17.5 ms. Prolonged PTT at 5 min was found to return to the baseline value at 10 min (613.6±14.7 ms). According to the Friedman test, the differences from baseline values were significant (P=0.008).

CONCLUSION: Measurement of PTT at 5 min after local anesthetic injection can help to objectively determine the success of SGB.

Key Words: Horner syndrome; Objective measurement tool; Pulse transit time; Stellate ganglion block

The prolongation du temps de transit des impulsions après un bloc du ganglion stellaire : un indicateur objectif de la réussite de l’intervention

HISTORIQUE : Il n’y a pas de marqueur objectif de réussite du bloc du ganglion stellaire (BGS). Le syndrome de Horner, utilisé pour déterminer l’effet du BGS, est parfois ambigu.

OBJECTIF : Examiner le changement du temps de transit des impulsions (TTI) après un BGS et évaluer son utilité comme mesure objective de réussite de l’intervention.

MÉTHODOLOGIE : Huit patients de 34 à 62 ans ont subi un BGS pour diagnostiquer ou traiter une douleur à médiation sympathique des membres supérieurs. La réussite du BGS était déterminée en fonction de la présence du syndrome de Horner. Tous les patients étaient surveillés par électrocardiographie, mesures non invasives de la tension artérielle et saturométrie. Le TTI était mesuré au moyen de données sauvegardées dans le navigateur en forme d’onde WinDaq.

RÉSULTATS : Le TTI était mesuré avant, puis trois minutes, cinq minutes et dix minutes après l’injection d’un anesthésique local. Trois minutes après le BGS, l’augmentation moyenne du TTI était de 624,6±20,5 ms. Cinq minutes après l’injection, elle était de 630,8±17,5 ms. Le TTI prolongé au bout de cinq minutes retrouvait la valeur de départ au bout de dix minutes (613,6±14,7 ms). D’après le test de Friedman, les différences étaient significatives par rapport aux valeurs de départ (P=0,008).

CONCLUSION : La mesure du TTI cinq minutes après l’injection locale d’anesthésique peut contribuer à déterminer la réussite objective du BGS.

The prolongation of pulse transit time after a stellate ganglion block: an objective indicator of a successful block

BACKGROUND: There is no objective marker of successful stellate ganglion block (SGB). Horner syndrome, which is currently used to determine the success of SGB, is sometimes ambiguous.

OBJECTIVE: To investigate the change in pulse transit time (PTT) after SGB, and to evaluate the utility of PTT as an objective measure of successful SGB.

METHODS: Eight patients (34 to 62 years of age) underwent SGB for diagnosis or treatment of sympathetically mediated pain of the upper extremities. The success of the SGB was determined according to the presence of Horner syndrome. Electrocardiography, noninvasive blood pressure measurements and pulse oximetry were used to monitor all patients. PTT was measured using data saved on the WinDaq waveform browser.

RESULTS: PTT was measured at baseline and 3 min, 5 min and 10 min after the injection of a local anesthetic. At 3 min after SGB, the mean (± SD) PTT was 624.6±20.5 ms. At 5 min after injection, the mean PTT was 630.8±17.5 ms. Prolonged PTT at 5 min was found to return to the baseline value at 10 min (613.6±14.7 ms). According to the Friedman test, the differences from baseline values were significant (P=0.008).

CONCLUSION: Measurement of PTT at 5 min after local anesthetic injection can help to objectively determine the success of SGB.

Key Words: Horner syndrome; Objective measurement tool; Pulse transit time; Stellate ganglion block

La prolongation du temps de transit des impulsions après un bloc du ganglion stellaire : un indicateur objectif de la réussite de l’intervention

HISTORIQUE : Il n’y a pas de marqueur objectif de réussite du bloc du ganglion stellaire (BGS). Le syndrome de Horner, utilisé pour déterminer l’effet du BGS, est parfois ambigu.

OBJECTIF : Examiner le changement du temps de transit des impulsions (TTI) après un BGS et évaluer son utilité comme mesure objective de réussite de l’intervention.

MÉTHODOLOGIE : Huit patients de 34 à 62 ans ont subi un BGS pour diagnostiquer ou traiter une douleur à médiation sympathique des membres supérieurs. La réussite du BGS était déterminée en fonction de la présence du syndrome de Horner. Tous les patients étaient surveillés par électrocardiographie, mesures non invasives de la tension artérielle et saturométrie. Le TTI était mesuré au moyen de données sauvegardées dans le navigateur en forme d’onde WinDaq.

RÉSULTATS : Le TTI était mesuré avant, puis trois minutes, cinq minutes et dix minutes après l’injection d’un anesthésique local. Trois minutes après le BGS, l’augmentation moyenne du TTI était de 624,6±20,5 ms. Cinq minutes après l’injection, elle était de 630,8±17,5 ms. Le TTI prolongé au bout de cinq minutes retrouvait la valeur de départ au bout de dix minutes (613,6±14,7 ms). D’après le test de Friedman, les différences étaient significatives par rapport aux valeurs de départ (P=0,008).

CONCLUSION : La mesure du TTI cinq minutes après l’injection locale d’anesthésique peut contribuer à déterminer la réussite objective du BGS.

METHODS

The protocol for the present prospective pilot study was approved by the Institutional Review Board of the Asan Medical Center (Seoul, Republic of Korea) and was registered at the University of Ulsan (Seoul, Republic of Korea) under the number S2013-0866-0002. Patients between 34 and 62 years of age on whom SGB was performed for the diagnosis or treatment of sympathetically mediated neuropathic pain of the upper extremities were enrolled in the Pain Clinic at Asan Medical Center. All eligible patients were able to understand the study...
The patients had a cervical herniated intervertebral disc with sympathetically maintained pain (burning dysesthetic pain, swelling, hyperhidrosis) (n=3); postherpetic neuralgia (n=2); complex regional pain syndrome (n=2); central neuropathic pain (n=1). The SGBs were successful in eight (100%) cases (Table 1). An average PTT value was obtained, which was measured from five consequent waves. PTT was measured at baseline (PTT0) and 3 min (PTT3), 5 min (PTT5) and 10 min (PTT10) after the injection of lidocaine (Table 2).

At 3 min after SGB (PTT3), the mean PTT was 624.6±20.5 ms. At 5 min after injection (PTT5), the mean PTT was 630.8±17.5 ms. Prolonged PTT at 5 min returned to baseline at 10 min (613.6±14.7 ms).

According to the Friedman test, the differences from baseline were significant (P=0.008) (Figure 2).

DISCUSSION

To our knowledge, changes in PTT after SGB have not previously been studied. We investigated the relationship between the change of PTT and the presence of clinical signs after SGB in patients with sympathetically mediated pain of the upper extremities to determine whether PTT could be used to verify the success of SGB. We found that changes in PTT can objectively predict a successful SGB after only 5 min. This highly significant correlation was achieved with no complications. No patients dropped out of the present pilot study.

Thestellate ganglion is part of the cervical sympathetic trunk and lies immediately anterior to the anterior tubercle of the C7 vertebrae. The sympathetic supply to the head, neck and upper limb is derived from the thoracic segments 1 to 9 and passes through the stellate ganglion (1,3). An SGB is an injection of local anesthetic for pain located in the arm, chest, neck or head that is caused by sympathetically maintained pain resulting from reflex sympathetic dystrophy, postherpetic neuralgia, herpes zoster, causalgia or intractable angina (10). SGB also has an established use in treating patients with disorders mediated by the sympathetic nervous system such as vascular or valvular disease; use of antihypertensive medicine; and the presence of arrhythmia, diabetes or Raynaud's phenomenon. Patients with an essential tremor in the upper extremity or a history of adverse reactions to local anesthetics were also excluded.

 protocol, provide informed consent and participate in outcome measurements. Exclusion criteria were: diseases that can influence the vascular system such as vascular or valvular disease; use of antihypertensive medicine; and the presence of arrhythmia, diabetes or Raynaud's phenomenon. Patients with an essential tremor in the upper extremity or a history of adverse reactions to local anesthetics were also excluded.

SGB was performed under ultrasound guidance by one pain specialist at Asan Medical Center. Although the stellate ganglion is located at the C7-T1 vertebral level, SGB was performed at the C6 vertebral level because the vertebral artery is located in front of the anterior tubercle of C7. The cricoid cartilage is a landmark of the level of the C6 vertebra in the neutral supine position, and the target using the ultrasound-guided approach is the anterior tubercle of the C6 transverse process. The tip of the needle is located in the fascial plane where the stellate ganglion runs and is superficial to the fascia investing the longus colli muscle. Subsequently, 8 mL of 1% lidocaine was injected to produce a sympathetic block. After completion of the procedure, each patient was assessed for any signs of complications after the block. The sympatholytic effect after SGB was measured by examining for the presence of Horner syndrome (ptosis, miosis, red conjunctiva and facial anhidrosis).

Electrocardiography (ECG), noninvasive blood pressure measurements and a pulse oximeter were used in all patients. All monitoring values measured by a patient monitor (IntelliVue MP 60; Philips, Netherlands) were recorded automatically in real time on an interleaving computer program (version 1.0, Leomedics, Korea). Pulse transit time was measured using the saved data on the WinDaq® waveform browser. SGB Stellate ganglion block; USG Ultrasound

RESULTS

A total of eight patients (seven female, one male) were included. The patients had a cervical herniated intervertebral disc with sympathetically maintained pain (burning dysesthetic pain, swelling, hyperhidrosis) (n=3); postherpetic neuralgia (n=2); complex regional pain syndrome (n=2); or central neuropathic pain (n=1). The SGBs were successful in eight (100%) cases (Table 1). An average PTT value was obtained, which was measured from five consequent waves. PTT was measured at baseline (PTT0) and 3 min (PTT3), 5 min (PTT5) and 10 min (PTT10) after the injection of lidocaine (Table 2).

At 3 min after SGB (PTT3), the mean PTT was 624.6±20.5 ms. At 5 min after injection (PTT5), the mean PTT was 630.8±17.5 ms. Prolonged PTT at 5 min returned to baseline at 10 min (613.6±14.7 ms).

According to the Friedman test, the differences from baseline were significant (P=0.008) (Figure 2).

DISCUSSION

To our knowledge, changes in PTT after SGB have not previously been studied. We investigated the relationship between the change of PTT and the presence of clinical signs after SGB in patients with sympathetically mediated pain of the upper extremities to determine whether PTT could be used to verify the success of SGB. We found that changes in PTT can objectively predict a successful SGB after only 5 min. This highly significant correlation was achieved with no complications. No patients dropped out of the present pilot study.

The stellate ganglion is part of the cervical sympathetic trunk and lies immediately anterior to the anterior tubercle of the C7 vertebrae. The sympathetic supply to the head, neck and upper limb is derived from the thoracic segments 1 to 9 and passes through the stellate ganglion (1,3). An SGB is an injection of local anesthetic for pain located in the arm, chest, neck or head that is caused by sympathetically maintained pain resulting from reflex sympathetic dystrophy, postherpetic neuralgia, herpes zoster, causalgia or intractable angina (10). SGB also has an established use in treating patients with disorders mediated by the sympathetic nervous system such as vascular or valvular disease; use of antihypertensive medicine; and the presence of arrhythmia, diabetes or Raynaud's phenomenon. Patients with an essential tremor in the upper extremity or a history of adverse reactions to local anesthetics were also excluded.

SGB was performed under ultrasound guidance by one pain specialist at Asan Medical Center. Although the stellate ganglion is located at the C7-T1 vertebral level, SGB was performed at the C6 vertebral level because the vertebral artery is located in front of the anterior tubercle of C7. The cricoid cartilage is a landmark of the level of the C6 vertebra in the neutral supine position, and the target using the ultrasound-guided approach is the anterior tubercle of the C6 transverse process. The tip of the needle is located in the fascial plane where the stellate ganglion runs and is superficial to the fascia investing the longus colli muscle. Subsequently, 8 mL of 1% lidocaine was injected to produce a sympathetic block. After completion of the procedure, each patient was assessed for any signs of complications after the block. The sympatholytic effect after SGB was measured by examining for the presence of Horner syndrome (ptosis, miosis, red conjunctiva and facial anhidrosis). Electrocardiography (ECG), noninvasive blood pressure measurements and a pulse oximeter were used in all patients. All monitoring values measured by a patient monitor (IntelliVue MP 60; Philips, Netherlands) were recorded automatically in real time on an interleaving computer program (version 1.0, Leomedics, Korea). Monitoring began before performing the procedure and continued for 10 min after the injection of local anesthetics. The success of SGB was determined by confirming the presence of Horner syndrome. PTT was measured using saved data on the WinDaq® waveform browser (DATAQ Instruments, USA). It was defined as the time between the appearance of the R wave on the ECG and the highest point of the corresponding wave on a plethysmogram, and was presented in milliseconds (Figure 1).

Data analysis

SPSS version 21 (IBM Corporation, USA) for Windows (Microsoft Corporation, USA) was used for data analysis; mean ± SD and inferential statistics were obtained using the nonparametric Friedman test. P<0.05 was considered to be statistically significant.

RESULTS

A total of eight patients (seven female, one male) were included. The patients had a cervical herniated intervertebral disc with sympatheically maintained pain (burning dysesthetic pain, swelling, hyperhidrosis) (n=3); postherpetic neuralgia (n=2); complex regional pain syndrome (n=2); or central neuropathic pain (n=1). The SGBs were successful in eight (100%) cases (Table 1). An average PTT value was obtained, which was measured from five consequent waves. PTT was measured at baseline (PTT0) and 3 min (PTT3), 5 min (PTT5) and 10 min (PTT10) after the injection of lidocaine (Table 2).

At 3 min after SGB (PTT3), the mean PTT was 624.6±20.5 ms. At 5 min after injection (PTT5), the mean PTT was 630.8±17.5 ms. Prolonged PTT at 5 min returned to baseline at 10 min (613.6±14.7 ms).

According to the Friedman test, the differences from baseline were significant (P=0.008) (Figure 2).

DISCUSSION

To our knowledge, changes in PTT after SGB have not previously been studied. We investigated the relationship between the change of PTT and the presence of clinical signs after SGB in patients with sympathetically mediated pain of the upper extremities to determine whether PTT could be used to verify the success of SGB. We found that changes in PTT can objectively predict a successful SGB after only 5 min. This highly significant correlation was achieved with no complications. No patients dropped out of the present pilot study.

The stellate ganglion is part of the cervical sympathetic trunk and lies immediately anterior to the anterior tubercle of the C7 vertebrae. The sympathetic supply to the head, neck and upper limb is derived from the thoracic segments 1 to 9 and passes through the stellate ganglion (1,3). An SGB is an injection of local anesthetic for pain located in the arm, chest, neck or head that is caused by sympathetically maintained pain resulting from reflex sympathetic dystrophy, postherpetic neuralgia, herpes zoster, causalgia or intractable angina (10). SGB also has an established use in treating patients with disorders mediated by circulatory insufficiency such as Raynaud's phenomenon or CREST syndrome. We performed a total of eight SGBs using our ultrasound-guided approach. The ultrasound-guided approach is a safe and valuable tool for confirming the spread of local anesthetics in the adequate fascial plane without risking exposure to radiation, and for guiding needle advancement (11). The stellate ganglion lies on the longus colli muscle at the C7-T1 vertebral level (12). Several studies have suggested that the local anesthetic solution would be discharged around and within the longus colli muscle during SGB (13). However, if the local anesthetic is not injected into the proper location, the sympatholytic effect cannot be identified in the upper limbs (6). We believe that the strength of PTT measurement can detect these misplaced blocks in the upper limb using a pulse oximeter sensor placed over the ipsilateral index finger.
Ipsilateral Horner syndrome (facial anhidrosis, ptosis, miosis and red conjunctiva) is well known in patients after a successful SGB (14). However, Horner syndrome can only subjectively predict a successful block. Also, in some patients, these signs can be ambiguous for the evaluation of a successful block and there are no concrete defined criteria (6). In particular, it is known that the sympathetic function of the upper extremity is not blocked successfully by SGB, although the presence of clinical signs, such as anhidrosis, miosis, hypohidrosis, enophthalmos and bloodshot conjunctiva can be used as criteria (7,15,16). Another conventional method for evaluating SGB is the change in temperature. Sympatholysis was measured in terms of the increase in temperature in the ipsilateral extremity after the block, and the increase in temperature was compared with that of the contralateral extremity (17). However, Krumova et al (7) reported that a skin temperature measurement is required to verify ipsilateral sympatholysis at least 90 min after the intervention. To address the weak points of previous measurements, many recent clinical trials have been introduced to verify the efficacy of SGB. Yamazaki et al (6) reported that continuous measurements of the perfusion index using pulse oximetry could be useful in the determination of the efficacy of SGB. Murakawa et al (18) examined blood flow in the common carotid artery using an ultrasonic blood flow meter. They demonstrated that the common carotid artery blood flow increased after blocking SGB. Rogowski et al (19) reported that thermographic examination of the upper extremity on the ipsilateral side of stellate blockade is a useful diagnostic tool for the assessment of SGB. Compared with these measurement tools, PTT measurement is easy to use, inexpensive, and rapid and safe for assessing SGB objectively. To measure PTT, only three artifacts in photoplethysmography signals. Fluctuations in the arousal state can lead to fluctuations in PTT and, thus, false scoring. The third limitation was that we did not compare the prolongation of the PTT with thermography in clinical trials, although thermography is a useful tool for the assessment of SGB effectiveness. In future studies, the correlation between PTT changes and thermographic changes should be elucidated in patients undergoing SGB. The fourth limitation was that we could not measure the response in the contralateral side as a control because our monitoring and recording system supported only one channel for the plethysmography. To overcome this point, we measured baseline PTT and considered this value as a control. The fifth limitation was that patients with Raynaud’s phenomenon were excluded. Raynaud’s phenomenon is associated with excessively reduced blood flow in response to emotional stress, causing discoloration of the fingers, and is believed to be the result of vasospasm that decreases blood supply to the extremities. Thus, we assumed Raynaud’s phenomenon could affect experimental outcomes during PTT measurements. Further investigation will be required to determine the time for redistribution.

Table 2

Patient	PTT0 (ms)	PTT3 (ms)	PTT5 (ms)	PTT10 (ms)
1	592	646.55	642	632
2	616.8	612.7	624.3	619.6
3	590.7	615.7	629	611
4	559.7	598	603.3	591.3
5	626.8	613.6	635.2	622.4
6	655.6	658	664.4	610.8
7	587.2	614	622.8	594.4
8	606.8	638.4	625.6	627.2

PTT values presented in milliseconds. PTT0 PTT at baseline; PTT3 PTT 3 min after the injection of the local anesthetic; PTT5 PTT 5 min after the injection of the local anesthetic; PTT10 PTT 10 min after the injection of the local anesthetic.
Despite these limitations, the present study suggests that measurement of PTT at 5 min after local anesthetic injection can help to objectively determine whether SGB was successful.

CONCLUSION

To our knowledge, the present study was the first to measure the effect of SGB on PTT. The results of our study showed that the change in PTT during the 5 min after local anesthetic injection can help to determine whether SGB has been successful. This would allow PTT to be a potential measurement tool that is noninvasive, safe, easy to use and a rapid method of objectively assessing the success of SGB. However, comparisons with other tests, such as thermography, would be needed to support the clinical validity of these results.

REFERENCES

1. Guttuso T, Jr. Stellate ganglion block for treating hot flashes: A viable treatment option or sham procedure? Maturitas 2013;76:221-4.
2. Karnwal A, Liao W, Jalka IS, Kakanu CZ. Stellate ganglion block for postoperative analgesia in patients with upper extremity orthopaedic injuries. Anaesthesia 2011;66:1052-3.
3. Kulkarni KR, Kadam AI, Namani IJ. Efficacy of stellate ganglion block with an adjuvant ketamine for peripheral vascular disease of the upper limbs. Indian J Anaesth 2010;54:546-51.
4. Bhatia A, Flamer D, Peng PW. Evaluation of sonoanatomy relevant to performing stellate ganglion blocks using anterior and lateral simulated approaches: An observational study. Can J Anaesth 2012;59:1040-7.
5. Moon HS, Chon JY, Lee SH, et al. Stellate ganglion block as a treatment for severe postmenopausal flushing. Climacteric 2013;16:41-7.
6. Park JS, Kim KJ, Lee YW, et al. Estimation of stellate ganglion block injection point using the cricoid cartilage as landmark through x-ray review. Korean J Pain 2011;24:141-5.
7. Ojeda A, Sala-Blanch X, Moreno LA, Busquets C. Ultrasound-guided stellate ganglion block: What about the phrenic nerve? Reg Anesth Pain Med 2013;38:170.
8. Ojeda A. Cervical sympathetic and stellate ganglion blocks. Pain Physician 2010;3:294-304.
9. Honma M, Murakami G, Sato TJ, Namiki A. Spread of injectate during C6 stellate ganglion block and fascial arrangement in the prevertebral region: An experimental study using donated cadavers. Reg Anesth Pain Med 2000;25:573-83.
10. van Gastel P, Kallewaard JW, van der Zanden M, de Boer H. Stellate-ganglion block as a treatment for severe postmenopausal flushing. Climacteric 2013;16:41-7.
11. Erickson SJ, Hogan QH. CT-guided injection of the stellate ganglion: Description of technique and efficacy of sympathetic blockade. Radiology 1993;188:707-9.
12. Schurmann M, Gradl G, Wirgal I, et al. Clinical and physiologic evaluation of stellate ganglion blockade for complex regional pain syndrome type I. Clin J Pain 2001;17:94-100.
13. Toshniwal G, Sunder R, Thomas R, Dureja GP. Management of complex regional pain syndrome type I in upper extremity- evaluation of continuous stellate ganglion block and continuous infraclavicular brachial plexus block: A pilot study. Pain Med 2012;13:96-106.
14. Murakawa K, Ishimoto E, Noma K, Ishida K, Nishijima M, Izumi R. [Circulatory effects of stellate ganglion block in idiopathic facial palsy]. Masui 1994;43:356-60.
15. Rogowski J, Mroziński P, Jagielak D, Lango R, Narkiewicz M, Wujtewicz M. Thermographic assessment of stellate ganglion block effectiveness during cardiosurgical procedures. Med Sci Monit 2002;6:407-10.
16. Nitzan M, Khanokh B, Slovik Y. The difference in pulse transit time to the toe and finger measured by photoplethysmography. Physiol Meas 2002;23:85-93.
17. Sharwood-Smith G, Bruce J, Drummond G. Assessment of pulse transit time to indicate cardiovascular changes during obstetric spinal anaesthesia. Br J Anaesth 2006;96:100-5.
18. Kortekaas MC, Niehof SP, van Velzen MH, Galvin EM, Huysgen FJ, Stolker RJ. Pulse transit time as a quick predictor of a successful axillary brachial plexus block. Acta Anaesthesiol Scand 2012;56:1228-33.
