RESEARCH ARTICLE

TNF-alpha neutralizing antibody blocks thermal sensitivity induced by compound 48/80-provoked mast cell degranulation [version 2; peer review: 3 approved]

Devavani Chatterjea, Luisa Paredes*, Tijana Martinov*, Evelyn Balsells, Juliann Allen, Akilah Sykes, Alyssa Ashbaugh

Biology Department, Macalester College, St. Paul, MN 55015, USA

* Equal contributors

v2 First published: 21 Aug 2013, 2:178
https://doi.org/10.12688/f1000research.2-178.v1

Latest published: 27 Sep 2013, 2:178
https://doi.org/10.12688/f1000research.2-178.v2

Open Peer Review

Approval Status

	1	2	3
version 2 (update)	✔️	✔️	✔️
27 Sep 2013	view	view	view
version 1	✔️	✔️	✔️
21 Aug 2013	view	view	view

1. Peter D. Drummond, Murdoch University, Perth, Australia
2. Adrian Piliponsky, Seattle Children's Hospital, Seattle, USA
3. Rosa Torres, Autonomous University of Barcelona, Barcelona, Spain

Any reports and responses or comments on the article can be found at the end of the article.

Abstract

Background: Neuro-inflammatory circuits in the tissue regulate the complex pathophysiology of pain. Protective nociceptive pain serves as an early warning system against noxious environmental stimuli. Tissue-resident mast cells orchestrate the increased thermal sensitivity following injection of basic secretagogue compound 48/80 in the hind paw tissues of ND4 mice. Here we investigated the effects of pre-treatment with TNF-alpha neutralizing antibody on compound 48/80-provoked thermal hyperalgesia.

Methods: We treated ND4 Swiss male mice with intravenous anti-TNF-alpha antibody or vehicle 30 minutes prior to bilateral, intra-plantar compound 48/80 administration and measured changes in the timing of hind paw withdrawal observed subsequent to mice being placed on a 51°C hotplate. We also assessed changes in tissue swelling, TNF-alpha gene expression and protein abundance, mast cell degranulation, and neutrophil influx in the hind paw tissue.

Findings: We found that TNF-alpha neutralization significantly blocked thermal hyperalgesia, and reduced early tissue swelling. TNF-alpha neutralization had no significant effect on mast cell degranulation or neutrophil influx into the tissue, however. Moreover, no changes in TNF-alpha protein or mRNA levels were detected within 3 hours of administration of compound 48/80.

Interpretation: The neutralizing antibodies likely target pre-formed TNF-alpha including that stored in the granules of tissue-resident mast cells. Pre-formed TNF-alpha, released upon degranulation, has immediate effects on nociceptive signaling prior to the induction of neutrophil influx. These early effects on nociceptors are abrogated by TNF-alpha blockade, resulting in compromised nociceptive withdrawal responses to acute, harmful environmental stimuli.
Keywords
Mast cell degranulation, Thermal sensitivity, TNF-alpha
Introduction

Pain is one of the cardinal components of inflammation and tissue-resident immune cells are important players in the regulation of protective nociceptive responses. Compound 48/80 (c48/80)-provoked thermal hyperalgesic responses in the hind paw tissue of male ND4 Swiss mice are mediated by the degranulation of tissue-resident mast cells. The increased sensitivity to thermal stimulus is dependent, in part, on neutrophil influx into the affected tissue, and on histamine signaling; the response is completely abrogated in mast cell-deficient mice, and is substantially reduced by blocking neutrophil influx or treatment with histamine receptor antagonists. The importance of neutrophil influx in nociceptive cascades has been shown in different rodent models and the important regulatory roles of inflammatory cytokines including IL-1β, TNF-α, and IL-6 in pain signaling have also been demonstrated. Here we show that c48/80-induced early thermal sensitivity in ND4 Swiss mice is markedly reduced by pre-treatment with a neutralizing antibody against TNF-α. Anti-TNF-α antibody administration does not significantly affect levels of mast cell degranulation or neutrophil influx into the affected tissue. We also found no increase in protein and mRNA levels of TNF-α in the tissue within the first 3 hours following c48/80 administration suggesting that this blockade targets pre-formed TNF-α including that stored in the granules of tissue-resident mast cells. Our data suggest that pre-formed TNF-α may act rapidly on nociceptors that are known to reside in close proximity to mast cells and modulate nociceptor sensitization thresholds and function. TNF-α blockade therefore compromises the early, protective nociceptive withdrawal responses that normally act to protect tissues from further exposure to acute, injurious environmental stimuli.

Methods

Animals

Three-six month old male ND4 Swiss mice (Harlan Laboratories, Indianapolis, IN) were housed in Macalester College’s research animal facility with a 12-hour light/dark cycle and free access to food and water. A total of 73 mice were used for the experiments shown here (21 controls; 52 experimental) to ensure that appropriate statistical analysis could be performed on data acquired from these experiments. Macalester College’s Institutional Animal Care and Use Committee approved all experimental procedures (Protocol B08Su1).

Drug administration

All drugs were administered using 0.9% saline (VWR, Radnor, PA) vehicle or phosphate buffered saline (EMD Millipore, Billerica, MA). Mice received bilateral intra-plantar (i.pl.) treatments with c48/80 (1.5μg/paw; 10μl; Sigma-Aldrich, St. Louis, MO)) or saline alone as previously described. Either 200μg/kg of anti-TNF-α neutralizing antibody (R&D Systems, Minneapolis, MN, Polyclonal Goat IgG, Catalog #: AB-410-NA) or 200μl of vehicle was injected intravenously 30 minutes prior to c48/80 injection in a protocol adapted from Rocha et al. Rocha et al. administered anti-TNF-α antibodies i.v. 5 mins prior to carrageenan treatment in a mouse model of mechanical hyperalgesia.

Thermal sensitivity assessment

To assess thermal sensitivity, single mice treated with i.pl. c48/80 or vehicle were placed in a Plexiglas cylinder on a hotplate analgesia meter (Harvard Laboratories, Edenbridge, KY) maintained at 51.0 ± 0.5°C and removed when prolonged retraction, flipping/licking of the hind paw, or jumping with both hind paws off the hotplate were observed, but no later than 40 seconds, as previously described. Two baseline hotplate latencies were taken 24 and 48 hours before the experiment. Mice with >10 second differences between baselines or <15 second averages were excluded from the experiment. Nociceptive thermal sensitivity was quantified by subtracting the mean baseline thermal latency from the experimental thermal latency at each time point for each mouse.

Paw edema measurements

Change in hind paw width measured using digital calipers (±0.1mm; VWR, Radnor, PA) was calculated as an average of the left and right paw widths. Baseline paw widths for each mouse were taken pre-treatment and subtracted from post-treatment paw widths to calculate tissue edema as previously described.

Myeloperoxidase measurements

Footpads were extracted from hind paws of mice euthanized by CO₂ inhalation, weighed, frozen at -80°C in 5.6μl/mg tissue weight of 50mM K₂HPO₄ buffer (pH 6.0) (Sigma-Aldrich, St. Louis, MO) containing 0.05% hexadecyltrimethylammonium bromide (HTAB) (Sigma-Aldrich, St. Louis, MO), thawed, homogenized in 5x the storage volume of HTAB buffer, sonicated with a 550 Sonic Dismembrator (Fisher Scientific, Waltham, MA), freeze-thawed, and centrifuged (AllegraX-15R; Beckman Coulter, Inc., Pasadena, CA) as previously described. Absorbance was recorded using a BioTek PowerWave XS plate reader (BioTek, Winooski, VT) at 450nm after a 20-minute incubation in 50mM phosphate buffer (pH 6.0) with 0.025% hydrogen peroxide (Sigma Aldrich, St. Louis, MO) and 0.167mg/ml o-dianisidine-dihydrochloride (Sigma Aldrich, St. Louis, MO) at room temperature in the dark. Myeloperoxidase (MPO) levels were normalized to tissue weight and presented as OD/g of wet tissue.

TNF-α measurements

For protein and gene expression studies, hind paws were excised from mice euthanized by CO₂ inhalation, flash-frozen in liquid nitrogen and stored at -80°C.
For protein studies, flash-frozen paws were homogenized in Cell Lysis Buffer (Cell Signaling Technology, Beverly, MA) supplemented with protease inhibitor (Cocktail Set IV; EMD Biosciences, Billerica, MA) using a Tissue-Tearor (BioSpec; Model 985370). Homogenates were incubated on ice for 20 minutes, centrifuged at 2000 rpm for 10 minutes at 4°C, and lysate supernatants stored at -80°C. We quantified TNF-α cytokine levels by ELISA according to the manufacturer’s instructions (eBioscience, San Diego, CA).

To measure cytokine gene expression, total RNA was extracted from flash-frozen plantar tissue (Total RNA Mini Kit, Midwest Scientific, St. Louis, MO), quantified with Nanodrop ND-1000 Spectrophotometer (Thermo Scientific, Wilmington, DE), and reverse-transcribed in a 2720 Thermal Cycler (Life Technologies, Grand Island, NY) using the Superscript III First-Strand Synthesis System (Life Technologies, Grand Island, NY) with 100ng of RNA per reaction. Relative transcript abundance was determined by quantitative competitive reverse transcriptase PCR (qRT-PCR)4 using TaqMan Gene Expression Assay Primer/Probe Sets and TaqMan MasterMix (Life Technologies, Grand Island, NY) in a Bio-Rad iCycler (Bio-Rad, Hercules, CA) using β-2-microglobulin (β2m; Mm00437762_m1, Life Technologies, Grand Island, NY) and TNF-α (Mm00443260_g1, Life Technologies, Grand Island, NY) primer sets. Fold expression was normalized to β-2-microglobulin levels and calculated as previously described4,13.

Histology

Excised hind paws (from mice euthanized by CO₂ inhalation) were fixed in 10% buffered formalin (VWR, Radnor, PA) for 24 hours, transferred to 70% ethanol (Sigma-Aldrich, St. Louis, MO) and dehydrated for 1–2 weeks in 15% EDTA, hydrated, and embedded in paraffin. 4μm sagittal sections were stained with toluidine blue (Tb) at pH 2.3 for 3 minutes (Sigma-Aldrich, St. Louis, MO) or hematoxylin and eosin (H&E) (Sigma-Aldrich, St. Louis, MO) for the detection of mast cells or neutrophils, respectively, at 400x magnification with ≥3 biological replicates per treatment. Tissue samples were counted in 10 fields/section and degranulation was scored based on the number of granules observed outside the boundary of the cell: intact (0), mild (1–10), moderate (10–20), and extensive (20+) as previously described14. The same investigator performed all counts and was blinded to treatment groups. Neutrophils were imaged between the heel and the toes on the plantar side of the hind paw section using an Olympus CX21LED light microscope and camera (Olympus Corporation of the Americas, Center Valley, PA).

Statistical analysis

Data were processed using Microsoft Excel (Redmond, WA) and graphed with PRISM 5.0 (GraphPad, San Diego, CA). All statistical analyses were performed using JMP 9.0 (SAS, Cary, NC). All data are presented as the mean ±SEM. Data were analyzed using one-way ANOVA, and the Tukey-Kramer HSD post hoc test, at each time point. Statistical significance was defined as p<0.05. Thermal sensitivity and hind paw edema measurements included 15–18 mice per treatment group. Other analyses used 3–9 mice per treatment group. All data represent 2–3 independent experiments.

Results

TNF-α neutralizing antibody blocks thermal hyperalgesia and early tissue swelling induced by compound 48/80-provoked mast cell degranulation in the hind paw tissue of ND4 mice

Male ND4 Swiss mice bilaterally injected with 1500ng of c48/80 in the hind paws showed hyperalgesic withdrawal responses ~10 seconds sooner than their baseline withdrawal 30 minutes after treatment; these responses were resolved by 2.5 hours (Figure 1A). Pre-treatment with an intravenous injection of 200μg/kg TNF-α neutralizing antibody 30 minutes prior to c48/80 injection significantly abrogated these responses at 30 minutes and 1.5 hours after intra-plantar treatment with c48/80; pre-treated mice showed hyperalgesic withdrawal

Figure 1. Anti-TNF-α neutralizing antibody abrogates c48/80-induced thermal hyperalgesia. Mice were pre-treated with 200μg/kg anti-TNF-α neutralizing antibody or vehicle (200μl, i.v.) 30 minutes before bilateral intra-plantar c48/80 or 0.9% saline injections (1.5μg/paw; 10μl). The bars represent the mean change in thermal paw withdrawal latency (A) and the change in paw width (B) from baseline and error bars represent ± SEM. Anti-TNF-α administration abrogated thermal hyperalgesia at 0.5 and 1.5h after c48/80 injection (A) and reduced paw edema significantly at 0.5h (B). Significances are compared to Sal/Sal (## = p<0.05; ### = p<0.001) and Sal/c48/80 (∗ = p<0.05; ∗∗ = p<0.01). n = 12 in Sal/Sal; n = 18 for Sal/c48/80; n = 19 for anti-TNF/c48/80 treatment groups; data are pooled from 2 independent experiments.
Intra-plantar c48/80 administration does not induce changes in TNF-α protein or mRNA levels in the hind paw tissue of ND4 male mice

Mast cells contain pre-formed TNF-α in their granules that is released early upon degranulation. We analyzed TNF-α protein and mRNA levels in c48/80-treated and untreated hind paw tissue to determine whether there was new synthesis of TNF-α immediately following treatment with the basic mast cell secretagogue. We found that neither protein nor mRNA levels of the cytokine detectably increased in the tissue within 3 hours following intra-plantar c48/80 injection (Figure 3A–B). Thus, it is most likely that the anti-TNF-α neutralizing antibody treatment targets pre-formed, rather than newly synthesized, TNF-α molecules and this blockade contributes to the resulting decrease in thermal sensitivity in the hind paw tissue.

TNF-α neutralizing antibody pre-treatment does not affect early neutrophil recruitment in the tissue

Neutrophil influx into the affected tissue contributes to c48/80-provoked hind paw thermal sensitivity and TNF-α is a known neutrophil attractant. We have previously shown that the
Figure 4. Pre-treatment with anti-TNF-α does not prevent c48/80-provoked neutrophil influx. Mice that received c48/80 intra-plantar injections following anti-TNF-α pretreatment did not have significantly different levels of myeloperoxidase enzyme activity compared to mice that received vehicle pretreatment (A). Hind paws were harvested from euthanized mice and assayed for MPO activity; bars represent average MPO activity as OD/g wet tissue and error bars represent ±SEM (A). Mice were euthanized 2.5h after c48/80 administration, their hind paws were harvested, preserved in 10% buffered formalin and ethanol, and 4μm paraffin sections stained with hematoxylin & eosin for neutrophil visualization at 1000x. Similar to c48/80-treated mice (B), mice pre-treated with anti-TNF-α neutralizing antibody showed clear evidence of neutrophil influx (indicated by black arrowheads) into the affected hind paw tissue (C). n = 3 mice per treatment group for MPO assay; data are representative of 2 experiments.
blockade of neutrophil influx can abrogate mast cell-dependent
thermal sensitivity in the mouse hind paw. Therefore, we
investigated whether pre-treatment with the TNF-α neutralizing
antibody had an effect on neutrophil influx. We found that
levels of myeloperoxidase (an enzyme indicating the presence
of activated neutrophils) in the hind paw tissue of mice injected
bilaterally with 1500ng of c48/80 were not significantly reduced
with anti-TNF-α pre-treatment (Figure 4A). We further confirmed
this by examining the presence of neutrophils in 4μm paraffin
embedded hind paw tissue sections stained with H&E and found
that infiltrating neutrophils were present in the hind paws of mice
that received TNF-α neutralizing antibody (Figure 4B). Neutrophil
numbers in the hind paw tissue of mice following c48/80 injection
with and without anti-TNF-α pre-treatment were approximately
a total of ~150 neutrophils in 10 randomly chosen visualized
sections per paw (see Data File). Therefore, pre-treatment with
anti-TNF-α neutralizing antibody had little to no inhibitory effect
on the levels of tissue infiltrating neutrophils and myeloperoxidase
enzyme activity in the hind paw tissue of c48/80-treated mice.

Effect of TNF-α neutralizing antibody on thermal sensitivity

7 Data Files

http://dx.doi.org/10.6084/m9.figshare.773061

Discussion

Pain is a complex physiological and pathological phenomenon
with intricate underlying neuro-immune circuitry. Pain can be either
protective or maladaptive and in the former instance, serves as
an early warning system that prompts an organism to retreat from
noxious environmental stimuli.

We have previously shown that mast cells are required for enhanced
sensitivity to heat stimulus following c48/80 treatment in the hind paw
tissue of mice and blockade of neutrophil influx or histamine signaling
can abrogate these responses. Here we show that pre-treatment with
TNF-α neutralizing antibody just prior to c48/80 administration
significantly reduces early thermal hyperalgesic responses. TNF-α
neutralizing antibody treatment does not affect mast cell degranulation;
levels of mild, modest and extensive degranulation following c48/80
treatment were similar to those previously described. Mast cells
contain pre-formed TNF-α in their cytoplasmic granules and this
pro-inflammatory cytokine is one of the earliest mediators released
by these cells upon activation. We looked for evidence of changes in
TNF-α protein and mRNA levels shortly after c48/80 treatment
and found none, suggesting that the pre-formed TNF released by
mast cells may be the main source of this cytokine in these
experiments. As TNF-α is a known attractant of neutrophils, we expected
TNF-α blockade to result in a reduction of infiltrating neutrophils.
We have previously shown that blockade of neutrophil influx can
abrogate c48/80-provoked thermal sensitivity. However, we found
here that in the first 2.5 hours following c48/80 administration,
TNF-α neutralizing antibody pre-treatment had little to no effect
on recruitment of tissue neutrophils. The influx of neutrophils in the
presence of TNF-α neutralizing antibodies is supported by several
different kinds of evidence – myeloperoxidase activity in the tis-

ue, visualization of neutrophils by H&E staining and neutrophil
counts in H&E stained tissue sections. However, given our relatively
small sample size for these assays, it is possible that a reduction in
neutrophil influx can be seen with larger numbers of mice. Nev-
evertheless, our observations are in keeping with earlier studies
that show that mast cell mediators other than TNF-α can contribute to
the induction of neutrophil influx. In these experiments, pain was
significantly abrogated as early as 30 minutes after c48/80 treatment
despite the presence of neutrophils.

TNF-α is one of the early inflammatory cytokines with a known
role in various nociceptive cascades. Direct injection of TNF-α
in the hind paw tissue produces thermal and mechanical hyperal-
gesia in rodents, anti-TNF-α antibody administration shortly be-
fore challenge reduces the hyperalgesic responses to carrageenan
in mice and blockade of TNF-α induced neutrophil influx impairs
thermal carrageenan pain in rats. Our findings here add nuance to the prevailing model of mast cell and
neutrophil modulation of peripheral nociception with evidence
that TNF-α blockade can also abrogate very early thermal pain
responses without a proportional reduction in neutrophil influx. Hind
paw thermal pain provoked by c48/80 is markedly abrogated despite
the presence of infiltrating neutrophils in the tissue. In a model of
carrageenan-induced pain in rats, Cunha and colleagues have shown
that levels of TNF-α in the tissue are not affected by the absence of
infiltrating neutrophils i.e. these cells are not the primary sources of
TNF-α but rather the release of TNF-α and other cytokines such as
IL-1β in the tissue following an inflammatory insult serves to attract
infiltrating neutrophils that continue to fuel the nociceptive cascade.
In preliminary experiments, we have found that pre-treatment with
antibodies against IL-1β reduces neutrophil influx into the tissue but
does not abrogate c48/80-provoked thermal pain at early time points
(data not shown). Therefore, the rapid anti-hyperalgesic effect that we
observe here may be due to the blockade of earlier effects of TNF-α
on nociceptor sensitization mediated by cyclooxygenase (COX)
and p38 mitogen-activated protein (MAP) kinase activation or
effects of TNF-α on nociceptor ion channels. Our observations
here suggest that pre-formed TNF-α, e.g. from mast cell granules
in the skin mast cells, is the likely target of the TNF-α neutralizing
antibody that produces an early reduction of thermal sensitivity.
This is underscored by the documented proximity of nerves and
mast cells in the tissue and the known effects of mast cell-derived
TNF-α on nerve physiology - elongation of cutaneous nerves in
oxazolone contact hypersensitivity, and susceptibility of sensory
neurons to agents such as capsaicin, in a model of tracheal vascular
hyper-permeability. These known interactions further support the
idea that nociceptive neurons could be early downstream targets of
the first release of pre-formed TNF-α immediately after mast
cell degranulation. In this study, we show that early, protective,
nociceptive withdrawal responses to heat stimulus are compromised
by the blockade of TNF-α signaling. It has been documented that
individuals who use TNF-targeted biological therapeutics to
manage chronic autoimmune and inflammatory conditions can
experience a higher risk of bacterial and viral infections. Our
findings here suggest that the use of TNF-α blockade therapies
may also compromise the protective, nociceptive responses of such
individuals leaving them more vulnerable to tissue damage from
injurious environmental stimuli.
Author contributions
LP contributed to study design, conducted hyperalgesia, edema and histology experiments and analyzed the data. TM contributed to study design and data analyses, conducted protein analyses and co-wrote the manuscript. EB and LP conducted enzyme activity assays and data analyses. JA and AS performed histological analysis and imaging. AA performed gene expression studies. DC designed the study, supervised experiments, analyzed data and wrote the manuscript.

Competing interests
No competing interests were disclosed.

References
1. Ren K, Dubner R: Interactions between the immune and nervous systems in pain. Nat Med. 2010; 16(11):1267–78. PubMed Abstract | Publisher Full Text | Free Full Text
2. Chatterjea D, Wetzel A, Mack M, et al.: Mast cell degranulation mediates compound 48/80-induced hyperalgesia in mice. Biochem Biophys Res Commun. 2012; 428(2):237–43. PubMed Abstract | Publisher Full Text | Free Full Text
3. Cunha TM, Verri WA Jr, Schivo IR, et al.: Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J Leukoc Biol. 2008; 83(4):624–32. PubMed Abstract | Publisher Full Text
4. Guerrero AT, Verri WA Jr, Cunha TM, et al.: Involvement of LTβ4 in zymosan-induced joint nociception in mice: participation of neutrophils and PGE2. J Leukoc Biol. 2008; 83(1):122–30. PubMed Abstract | Publisher Full Text
5. Lavich TR, Siqueira Rde A, Farias-Filho FA, et al.: Neutrophil infiltration is implicated in the sustained thermal hyperalgesic response evoked by allergen provocation in actively sensitized rats. Pain. 2006; 126(1-2):180–7. PubMed Abstract | Publisher Full Text
6. Cunha FQ, Poole S, Lorenzetti BB, et al.: The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol. 1992; 107(3):660–4. PubMed Abstract | Publisher Full Text | Free Full Text
7. Verri WA Jr, Cunha TM, Parada CA, et al.: Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther. 2000; 112(1):116–38. PubMed Abstract | Publisher Full Text
8. component of physiologic and pathophysiologic responses. Chem Immunol Allergy. 2012; 98:196–221. PubMed Abstract | Publisher Full Text
9. Zhang XG, Kainz V, Bunsten R, et al.: Tumor necrosis factor-α induces sensitization of meningeal nociceptors mediated via local COX and p38 MAP kinase actions. Pain. 2011; 152(1):140–9. PubMed Abstract | Publisher Full Text | Free Full Text
10. Czeschik JC, Hagenacker T, Schäfers M, et al.: TNF-alpha differentially modulates ion channels of nociceptive neurons. Neurosci Lett. 2006; 434(3):293–8. PubMed Abstract | Publisher Full Text
11. Woolf CJ: What is this thing called pain? J Clin Invest. 2010; 120(11):3742–4. PubMed Abstract | Publisher Full Text | Free Full Text
12. Rocha AC, Fernandes ES, Quintão NL, et al.: Relevance of tumour necrosis factor-alpha for the inflammatory and nociceptive responses evoked by carrageenan in the mouse paw. Br J Pharmacol. 2006; 148(5):688–95. PubMed Abstract | Publisher Full Text | Free Full Text
13. Bradley PP, Pribat DA, Christensen RD, et al.: Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982; 78(3):206–9. PubMed Abstract | Publisher Full Text
14. Heid CA, Stevens J, Livak KJ, et al.: Real time quantitative PCR. Genom Res. 1996; 6(10):986–94. PubMed Abstract | Publisher Full Text
15. Lavik KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2 (Delta Delta CT) Method. Methods. 2001; 25(4):402–8. PubMed Abstract | Publisher Full Text
16. Gaini SJ, Kalesnikoff J, Grimbiedston MA, et al.: Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol. 2005; 23:743–85. Review. PubMed Abstract | Publisher Full Text
17. Malaviya R, Ikeda T, Ross E, et al.: Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature. 1996; 381(6577):77–80. PubMed Abstract | Publisher Full Text
18. Malaviya R, Abraham SN: Role of mast cell leukotrienes in neutrophil recruitment and bacterial clearance in infectious peritonitis. J Leukoc Biol. 2000; 67(6):841–6. PubMed Abstract
19. Cunha TM, Verri WA Jr, Silva JS, et al.: A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci U S A. 2005; 102(5):1755–60. PubMed Abstract | Publisher Full Text | Free Full Text
20. Junger H, Sorkin LS: Nociceptive and inflammatory effects of subcutaneous TNFalpha. Pain. 2000; 85(1–2):145–51. PubMed Abstract | Publisher Full Text
21. Richter F, Natura G, Löser S, et al.: Tumor necrosis factor causes persistent sensitization of joint nociceptors to chemical stimuli in rats. Arthritis Rheum. 2010; 62(12):3806–14. PubMed Abstract | Publisher Full Text
22. Kakurai M, Monteforte R, Suto H, et al.: Mast cell-derived tumor necrosis factor can promote nerve fiber elongation in the skin during contact hypersensitivity in mice. Am J Pathol. 2006; 168(5):1713–21. PubMed Abstract | Publisher Full Text | Free Full Text
23. van Houwelingen AH, Kool M, de Jager SC, et al.: Mast cell-derived TNF-alpha primes sensory nerve endings in a pulmonary hypersensitivity reaction. J Immunol. 2002; 168(10):5297–302. PubMed Abstract
24. Xie X, Li F, Chen JW, et al.: Risk of tuberculosis infection in anti-TNF-α biological therapy: From bench to bedside. J Microbiol Immunol Infect. 2013. pii: S1684-1182(13)00039-X. PubMed Abstract | Publisher Full Text

Grant information
DC is supported by Macalester College and NIH Academic Research Enhancement Award (Grant R15 NS067536-01A).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements
The Comparative Pathology Shared Resource at the University of Minnesota provided technical support. In the Chatterjea laboratory, we thank Grace Linder and Emily Ewan for assistance with protein and mRNA quantification studies, Kidist Zewdie and Elena Tone for logistical assistance, and all other lab members for their support.
Open Peer Review

Current Peer Review Status: ☑️ ☑️ ☑️

Version 2

Reviewer Report 07 October 2013

https://doi.org/10.5256/f1000research.2453.r1920

© 2013 Piliponsky A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

☑️ Adrian Piliponsky
Seattle Children's Hospital, Seattle, USA

Thank you for addressing my comments.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 30 September 2013

https://doi.org/10.5256/f1000research.2453.r1918

© 2013 Torres R. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

☑️ Rosa Torres
Department of Pharmacology of Therapeutics and Toxicology, Autonomous University of Barcelona, Barcelona, Spain

The paper is now more clear, and has improved after addressing the referees' comments.

Thank you and congratulations to the authors.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
Peter D. Drummond
Murdoch University, Perth, Australia

Thank you for addressing my previous comments. This paper makes an important contribution to the literature.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Rosa Torres
Department of Pharmacology of Therapeutics and Toxicology, Autonomous University of Barcelona, Barcelona, Spain

Chatterjea et al. show that TNF-alpha blockade reduced early tissue swelling in a mast cell-dependent thermal hyperalgesia model. The paper is well constructed and clear, and experiments have been well designed and conducted. There are minor questions that I mention below.

1. Anti-TNF-a neutralizing antibody dose is mainly expressed in the article as ul/Kg, please write it as ug/Kg.

2. Since toluidine blue staining is performed differently in different tissues please indicate pH and the time of incubation.

3. In the Methods for TNF-a expression measurements it is said “relative transcript abundance was determined by quantitative RT-PCR” but the technique used is semi-quantitative.
4. When explaining Figure 1A does not mention that at 30 minutes it is also significantly different when comparing the control and TNF treated groups.

5. Please comment more on the mast cells degranulation status of figure 2. Is 60% mild degranulation for this model an expected value? Have you seen or would you expect different percentages using different C4880 doses?

6. Pre-treatment with TNF-a antibody seems to have a small effect on MPO activity but not a significant one, probably because of the low n number (n = 3). This could be discussed as a possibility.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 24 Sep 2013

Devavani Chatterjea, Macalester College, St. Paul, USA

Dear Dr. Torres,

Thank you for reviewing our paper. Our responses to your comments follow:

1. We have now corrected this throughout the manuscript.

2. We have added this information to the relevant methods section.

3. We have clarified that our approach uses comparative quantitative PCR analysis and added an additional reference for this nomenclature.

4. We have added this to the description of the report of the results from Figure 1A.

5. We have added a sentence to the discussion indicating that the levels of degranulation seen here are similar to those we have previously observed.

6. We have added some clarifying language indicating that these findings are based on a relatively small sample size but that multiple lines of evidence indicate that at least in these experiments, treatment with anti-TNF neutralizing antibodies did not completely abrogate neutrophil influx into the c48/80-treated hind paw tissue.

Competing Interests: No competing interests were disclosed.
The study by Chatterjea D et al. is well-designed; its conclusions are balanced and justified based on the results shown. I think that it could be relevant to know whether TNF-alpha injections can mimic the effects of c48/80 injections in the model used: hyperalgesic withdrawal responses. Figure 4a leads to the conclusion that neutrophil influx is not affected by treatment with anti-TNFalpha antibodies and c48/80. Data is based on n=3 according to figure legend, though there is a trend for neutrophil numbers to be reduced by treatment with anti-TNFalpha antibodies. I am wondering whether the authors have considered increasing the number of mice for this experiment. If it is definitely not the case that neutrophils numbers are reduced, it remains unexplained why there is a discrepancy with a previous study, in which the authors demonstrated that neutrophils are an important component of the hyperalgesic response induced by c48/80.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 24 Sep 2013

Devavani Chatterjea, Macalester College, St. Paul, USA

Dear Dr. Piliponsky,

Thank you for reviewing our paper.

In our discussion of the finding in Figure 4A, we have now added some clarifying language indicating that these findings are based on a relatively small sample size but that multiple lines of evidence indicate that at least in these experiments, treatment with anti-TNF neutralizing antibodies did not completely abrogate neutrophil influx into the c48/80-treated hind paw tissue.

Competing Interests: No competing interests were disclosed.
This paper makes a strong case for the early involvement of mast cell-derived TNF-alpha in thermal hyperalgesia and oedema during inflammatory reactions. The only contentious issue is the suggestion that TNF-alpha acts directly on nociceptors, rather than via the cascade of inflammatory mediators triggered by TNF release. The references cited in support of this view either did not directly address this point, or did not provide the intended support. For example, Zhang et al. (2011) (reference 9 in the paper) proposed that TNF-alpha sensitizes meningeal nociceptors indirectly via local COX activity and the p38 MAPK signalling cascade, rather than by direct actions on nociceptors. Wang et al. (J Mol Neurosci 2007;32:207-216) reported that TNF receptors in the sciatic nerve were expressed primarily on Schwann cells rather than neurons, leaving open the possibility that Schwann cells are involved in the inflammatory cascade triggered by TNF-alpha.

One other minor point: I think this sentence in the first paragraph of the Results "Saline-treated control mice had no increase in thermal sensitivity and showed no tissue swelling after c48/80 treatment" should be "Saline-treated control mice had no increase in thermal sensitivity and showed no tissue swelling".

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 24 Sep 2013

Devavani Chatterjea, Macalester College, St. Paul, USA

Dear Dr. Drummond,

Thank you for reviewing our paper.

Following your suggestion, we have rephrased the sentence describing the effects of TNF-a on nociceptors as possibly mediated by inflammatory intermediates. We have also corrected the sentence in the first paragraph of the results section.

Competing Interests: No competing interests were disclosed.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com