Detection of T lymphocyte subsets and mIL-2R on surface of PBMC in patients with hepatitis B

Ke-Xia Wang, Jiang-Long Peng, Xue-Feng Wang, Ye Tian, Jian Wang, Chao-Pin Li

INTRODUCTION
Hepatitis B virus (HBV) parasitizing in hepatocytes is a pathogen of viral hepatitis B, which easily develops into hepatic fibrosis and cirrhosis, even hepatocellular carcinoma. But the pathogenesis of hepatitis B is very complex and has not been clarified until now. Generally, it is not HBV itself that damages hepatocytes directly, but the results of function disorder of cell-mediated immunity[1-10]. Peripheral blood mononuclear cells (PBMCs), which are aggregation of abundant immunologically competent cells, such as T lymphocytes, natural killer cells and lymphokine activated killer, likely play an important role in anti-HBV infection. Interleukin-2 (IL-2) has a crucial role in several immunologic functions. Its effect is dependent on the conjugation with membrane interleukin-2 receptor (mIL-2R) expressed on surface of activated T lymphocytes and other immunocompetent cells and can release from them. Biotin-streptavidin (BSA) has a high specificity and sensitivity. In order to study possible changes of T lymphocyte subsets and mIL-2R on surface of peripheral blood mononuclear cells (PBMC) of patients with hepatitis B and its role in the pathogenesis of hepatitis B, 196 cases of hepatitis B were detected by the BSA methods in this study. The results suggest that there is a state of depression rather than of activation of T lymphocyte subsets and mIL-2R system in viral hepatitis B, and that the pathogenesis of viral hepatitis B is related to the cellular and humoral immune function of patients.

MATERIALS AND METHODS
Subjects
According to the diagnostic criteria passed by the 10th National Conference on Viral Hepatitis and Hepatopathy 2000 (Xi’an), 196 patients with hepatitis B (male 113 and female 83), aged 19-52 years (average 34.52±4.54), were chosen from our affiliated teaching hospitals. Among them, 24 patients were HBsAg-positive without symptoms, 22 with acute hepatitis B, 46 with slight chronic hepatitis, 37 with moderate chronic hepatitis, 26 with severe chronic hepatitis, 15 with severe hepatitis, 18 with posthepatitic cirrhosis and 8 with hepatocellular carcinoma. In addition, the controls were selected from HBsAb-positive volunteers (n=10) and normal blood donors from the local central blood bank (n=20), aged 10-45 years (average 32.6 years).

Reagents and instruments
Antibodies against T lymphocyte subsets were provided by Shanghai Jing’an Medical Institute, Ficoll-Hypaque sedimentation gradients were offered by Shanghai Second Reagent Factory, and HBV-DNA reagents were made in Shanghai Middle Asia Gene Institute. Carbon dioxide incubator (MDF-135) was made in Japan.

Samples
Five mL peripheral vein blood 5 mL from each patient with hepatitis B and the controls was collected at 8:00 a.m., and 2.5 mL was distributed in a sterile test tube and 2.5 mL into an anticoagulant test tube with heparin.

Separation of PBMC and detection of T cell subsets, mIL-2R
After the heparinized anticoagulant blood was mixed with equal volume of Hanks’ liquid without Ca2+ and Mg2+, PBMC were harvested from heparinized whole blood by centrifugation.

RESULTS: In patients with hepatitis B, the levels of CD4+, CD8+ cells, and the ratio of CD4+ cells/CD8+ cells were lower, but the level of CD19+ cells was higher than those in normal controls (42.20±6.01 vs 65.96±6.54, 36.17±5.93 vs 41.73±6.40, 0.91±0.28 vs 1.44±0.31, 39.86±6.36 vs 30.02±4.54, P<0.01). The total expression level of mIL-2R in PBMC before and after being stimulated with PHA was also lower than those in normal controls (3.47±1.55 vs 4.52±1.49, 34.03±2.94 vs 37.95±3.00, P<0.01). In all the patients with hepatitis B, the levels of T lymphocyte subsets and mIL-2R in PBMC with HBV-DNA (+) were lower than those with HBV-DNA (-), which were significantly different (39.57±7.11 vs 44.36±5.43, 34.36±7.16 vs 40.75±5.87, 37.82±6.54 vs 41.72±6.21, 0.88±0.33 vs 0.99±0.27, 2.82±1.62 vs 3.85±1.47, 31.56±3.00 vs 35.84±2.83, P<0.01). In addition, the levels of CD4+ cells/CD8+ cells, CD4+ cells, the ratio of CD4+ cells/CD8+ cells and mIL-2R among different courses of hepatitis B were all significantly different (F=3.723, P<0.01, F=130.43, P<0.01, F=54.01, P<0.01, F=2.99, P<0.05, F=7.16, P<0.01).

CONCLUSION: Both cellular and humoral immune functions are obviously in disorder in patients with hepatitis B, which might be closely associated with the chronicity in patients.

Wang KK, Peng JL, Wang XF, Tian Y, Wang J, Li CP. Detection of T lymphocyte subsets and mIL-2R on surface of PBMC in patients with hepatitis B. World J Gastroenterol 2003; 9(9): 2017-2020. http://www.wjgnet.com/1007-9327/9/2017.asp
Detection of T lymphocyte subsets and mL-2R in PBMC of patients with hepatitis B (x ±%,)

Group	n	CD3⁺	CD4⁺	CD8⁺	CD4⁻/CD8⁻	mL-2R	
Control	30	65.96±6.54	41.73±6.40	30.02±6.54	1.44±0.31	4.52±1.49	37.95±3.00
Anti-HBs (+)	10	66.34±5.16	42.82±6.52	29.03±4.50	1.51±0.27	5.06±0.45	40.26±3.10
NBD	20	65.80±6.92	41.20±6.36	30.45±6.62	1.39±0.33	4.24±1.52	36.30±2.95
Hepatitis B	196	42.20±6.01	38.17±5.93	39.86±6.36	0.91±0.28	3.47±1.55	34.03±2.94
A HBsAg (+)	24	58.83±7.44	41.34±5.16	35.34±7.15	1.20±0.33	3.94±1.75	35.05±3.05
AH	22	57.38±7.39	40.21±6.12	39.47±6.25	1.01±0.30	3.67±1.68	34.22±2.25
SCH	48	38.54±5.56	39.56±6.44	41.10±7.64	0.98±0.31	3.44±1.40	31.96±8.00
MCH	37	40.14±6.58	37.22±5.38	41.45±6.29	0.88±0.29	3.25±1.50	32.81±7.76
SH	20	40.01±6.23	35.51±4.33	42.86±5.58	0.81±0.22	3.06±1.56	33.82±5.32
PC	18	38.72±6.22	36.11±4.23	41.89±8.98	0.90±0.19	3.31±1.60	31.55±2.34
HC	8	39.44±6.78	34.15±5.50	43.46±7.88	0.83±0.24	3.36±1.68	30.38±2.15

Statistical analysis was made by t and F tests.

RESULTS

The results showed that the percentages of CD3⁺ and CD4⁺ cells, and the ratio of CD4⁺/CD8⁻ cells were lower, the percentage of CD8⁻ cells was higher, and the levels of mL-2R before and after stimulation with PHA were lower in patients with hepatitis B than those in normal controls ($P<0.01$). Among different courses of hepatitis B, T lymphocyte subsets and mL-2R were all significantly different from each other. The detailed results are shown in Tables 1 and 2.

DISCUSSION

Recently, studies have shown that patients with hepatitis B are usually accompanied by disorder of immune function, and hepatocytic damage is mainly caused by immunological...
infecting PBMC, HBV can interfere with the normal metabolism eliminating HBV and contribute to chronicity of hepatitis B. The body’s immune function and the course of illness. While humoral immune functions, and a close relationship between according to the above findings, it is concluded that in patients which suggested that there is a close correlation between levels CD4+ cells were lower in patients with hepatitis B. The levels of CD4+ cells /CD8+ cells decreased, and CD8+ cells increased, suggesting that disorders of cellular immune function and pathologic damages occurred in the 196 patients with hepatitis B detected by the method of BSA. PBMCs are easily infected by HBV[48,49]. When entering into PBMCs, HBV can integrate with host cells and interfere with metabolism of cells, and can depress the expression of CD4+ and CD8+. As seen in this study, the expression levels of T lymphocyte subsets between positive and negative HBV-DNA and HBV-DNA in PBMC were significantly different (P<0.01).

mIL-2R plays a key role in biologic effect of IL-2 and its expression levels can reflect the course of T cell activity and the immune situation of body[50]. From this study, we can see the expression levels of mIL-2R in PBMCs in silence and induction were lower in hepatitis B patients than in normal controls (P<0.01), and the expression levels of mIL-2R in PBMCs were lower in HBV-DNA positive patients than in HBV-DNA negative patients (P<0.01). After stimulation with PHA, the levels of mIL-2R obviously increased, which showed that mIL-2R could be induced by PHA, but its expression levels were still significantly lower than those in normal controls (P<0.001). In addition, due to deterioration and chronicity of hepatitis B, the expression levels of mIL-2R had a tendency of descent in the patients. These also showed that T cell activity was interfered and humoral immune function was decreased in patients with hepatitis B.

The levels of CD4+, CD8+, CD4+ /CD8+ cells (P<0.01), the ratio of CD4+ cells /CD8+ cells (P<0.01) and mIL-2R (P<0.05) among different courses of hepatitis B were all significantly different, which suggested that there is a close correlation between levels of T lymphocyte subsets and different courses of hepatitis B. According to the above findings, it is concluded that in patients with hepatitis B, there is an obvious disorder of cellular and humoral immune functions, and a close relationship between the body’s immune function and the course of illness. While infecting PBMC, HBV can interfere with the normal metabolism of these cells, and prevent lymphocytic membranes from accepting signals from antigen presenting cells (APC), and depress the expression of mIL-2R. All of these do no good to eliminating HBV and contribute to chronicity of hepatitis B.

REFERENCES
1. Wei J, Wang YQ, Lu ZM, Li GD, Wang Y, Zhang ZC. Detection of anti-preS3 antibodies for recovery of hepatitis B patients by immunoblot. World J Gastroenterol 2002; 8: 276-281.
2. Liu DX. A new hypothesis of pathogenetic mechanism of viral hepatitis B and C. Med Hypotheses 2001; 56: 405-408.
3. Tennant BC, Gerin JL. The woodchuck model of hepatitis B virus infection. ILAR J 2001; 42: 89-102.
4. Kao JH, Chen DS. Global control of hepatitis B virus infection. Lancet Infect Dis 2002; 2: 395-403.
5. Bernardi M, Bisel M, Gramenzi A. Chronic hepatitis B. Recent advances in diagnosis and treatment. Recent Prog Med 2002; 93: 394-402.
6. Torbenson M, Thomas DL. Occult hepatitis B. Lancet Infect Dis 2002; 2: 479-486.
7. Ohkubo K, Kato Y, Ichikawa T, Kajiyama Y, Takeda Y, Higashi S, Hamasaki K, Nakao K, Nakata K, Eguchi K. Viral load is a significant prognostic factor for hepatitis B virus-associated hepatocellular carcinoma. Cancer 2002; 94: 2663-2668.
8. Tai DI, Lo SK, Kuo CH, Du JM, Chen CJ, Hung CS, Chu CM. Replication of hepatitis B virus in HBsAg-positive siblings. J Viral Hepat 2002; 9: 272-279.
9. Marusawa H, Osaki Y, Kimura T, Ito K, Yamashita Y, Eguchi T, Kudo M, Yamamoto Y, Kojima H, Seno H, Moriyasu F, Chiba T. High prevalence of anti-hepatitis B virus serological markers in patients with hepatitis C virus related chronic liver disease in Japan. Gastroenterology 1999; 116: 284-288.
10. Izzo F, Cremone F, Ruffolo F, Palaia R, Parisi V, Curley SA. Outcome of 67 patients with hepatocellular cancer detected during screening of 1125 patients with chronic hepatitis C. Ann Surg 1998; 227: 513-518.
11. Sing G, Butterworth L, Chen X, Bryant A, Cocksley G. Composition of peripheral blood lymphocyte populations during different stages of chronic infection with hepatitis B virus. J Viral Hepat 1998; 5: 83-93.
12. Berzotto A, Ferrari C, Fiaccardori F. Role of the cell-mediated immune response in the pathogenesis of hepatitis B virus infection: possible immune-therapeutic strategies. Atta Biomed Ateno Parmense 1996; 67: 87-93.
13. Michalak Ti, Hodgson PD, Churchill ND. Posttranscriptional inhibition of class I major histocompatibility complex presentation on hepatocytes and lymphoid cells in chronic woodchuck hepatitis virus infection. J Virol 2000; 74: 4463-4494.
14. Tulek N, Saglam SK, Saglam M, Turkyilmaz R, Yildiz M. Soluble interleukin-2 receptor and interleukin-10 levels in patients with chronic hepatitis B infection. Hepatogastroenterology 2000; 47: 828-831.
15. Helvaci M, Ozkaya B, Ozbal E, Ozinel S, Yaprak I. Efficacy of interferon therapy on serum fibronectin levels in children with chronic hepatitis B infection. Pediatr Int 1999; 41: 270-273.
16. Park YN, Han KH, Kim KS, Chung JP, Kim S, Park C. Cytoplasmic expression of hepatitis B core antigen in chronic hepatitis B virus infection: role of precore stop mutants. Liver 1999; 19: 199-205.
17. Ilan Y, Chowdhury JR. Induction of tolerance to hepatitis B virus: can we ‘eat the disease’ and live with the virus? Med Hypotheses 1999; 52: 505-509.
18. Khetry U, Anand N, Gordon FD, Jenkins RL, Tahan SR, Loda M, Lewis WD. Recurrent hepatitis B, hepatitis C, and combined hepatitis B and C in liver allografts: a comparative pathologic study. Hum Pathol 2000; 31: 103-108.
19. Webster GJ, Regnath S, Maini MK, Whalley SA, Ogg GS, King A, Brown D, Amlot PL, Williams R, Vergani D, Dusheiko GM, Torbenson M, Ilan Y, Chisari FV, Wild CP. Altered expression of hepatic carcinogen metabolizing enzymes with liver injury in HBV transgenic mouse lineages expressing various amounts of hepatitis B surface antigen. Liver 1999; 19: 81-87.
20. Chomarat P, Rice JM, Stagle BL, Wild CP. Hepatitis B virus-induced liver injury and altered expression of carcinoembryonic proteins: the role of the HBx protein. Toxicol Lett 1998; 102-103: 595-601.
21. Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV. Immune pathogenesis of hepatocellular carcinoma. J Exp Med 1998; 188: 341-350.
22. Hayashi N, Mita E. Fas system and apoptosis in viral hepatitis. J Gastroenterol Hepatol 1997; 12: S223-S226.
23. Sarin SK, Thakur V, Gupta RC, Saigal S, Malhotra V, Thyagarajan SP, Das BC. Profile of hepatocellular carcinoma in India: an insight into the possible etiologic associations. J Gastroenterol Hepatol 2001; 16: 666-673.
B virus infection and its role in response to therapeutic vaccinat-
ion therapy activates T-cell response in patients with chronic
hepatitis B virus infection. [47]

Nondeletional T-cell receptor transgenic mice: model for the CD4
subsets during combined prednisolone and interferon-alpha
therapy in patients with chronic hepatitis B. J Viral Hepat 1999; 6:
219-227

Polat Eyigun C, Yasar Avci I, Sengul A, Hadibeektasoglu O, Van
Thiel DH. Immune status of individuals with differing clinical
courses of HBV infection. Hepatogastroenterology 1999; 46: 1890-1894

Im EH, Lee BS, Sung JK, Lee SO, Lee KT, Lee SM, Kim SH, Seo
KS, Kim JH, Kim SG, Kim NJ, Lee HY. T cell subsets in chronic
hepatitis B and the effect of prednisolone withdrawal and interferon-
alpha-2b. J Gastroenterol Hepatol 2003; 18: 1-8

Schrimbbeck R, Wild J, Reimann J. Similar as well as distinct MHC
class I-binding peptides are generated by exogenous and endog-
enous processing of hepatitis B virus surface antigen. Eur J
Immunol 1998; 28: 4149-4161

Bertoletti A, D’Elios MM, Boni C, De Carli M, Zignego AL,
Durazzo M, Missale G, Penna A, Fiaccadori F, Del Prete G, Ferrari
C. Different cytokine profiles of intraphepatic T cells in chronic
hepatitis B and hepatitis C virus infections. Gastroenterology 1997;
112: 193-199

Chen M, Salberg M, Thung SN, Hughes J, Jones J, Milich DR.
Modeling the T-helper cell response in acute and chronic hepatitis
B virus infection using T-cell receptor transgenic mice. Antiviral
Res 2001; 52: 99-111

Jiang R, Feng X, Guo Y, Lu Q, Hou J, Luo K, Fu N. T helper cells in
patients with chronic hepatitis B virus infection. Chin Med J
2002; 115: 422-424

Sobay Y, Tomiyama H, Sugi K, Tokunaga M, Ueno T, Saito S,
Fujiyama S, Morimoto M, Tanaka K, Takiguchi M. The role of
hepatitis B virus-specific memory CD8 T cells in the control of
viral replication. J Hepatol 2002; 36: 105-115

Wang JP, Li XH, Zhu Y, Wang AL, Lian QJ, Jia ZS, Xie YM. De-
tection of serum sIL-2R, IL-6, IL-8, TNF-a and lymphocytes
subsets, mIL-2R in patients with chronic hepatitis B. Shijie Huaren
Xiaohua Zazhi 2000; 8: 763-766

Edited by Zhang JZ and Wang XL