Historical contingency and productivity effects on food-chain length

Hideyuki Doi1,2 & Helmut Hillebrand1,3,4

Food-chain length (FCL) is a fundamental ecosystem attribute, integrating information on both food web composition and ecosystem processes. It remains untested whether FCL also reflects the history of community assembly known to affect community composition and ecosystem functioning. Here, we performed microcosm experiments with a copepod (top predator), two ciliate species (intermediate consumers), and bacteria (producers), and modified the sequence of species introduction into the microcosm at four productivity levels to jointly test the effects of historical contingency and productivity on FCL. FCL increased when the top predator was introduced last; thus, the trophic position of the copepod reflected assembly history. A shorter FCL occurred at the highest productivity level, probably because the predator switched to feeding at the lower trophic levels because of the abundant basal resource. Thus, we present empirical evidence that FCL was determined by historical contingency, likely caused by priority effects, and by productivity.
Food-chain length (FCL), a measure of the number of trophic levels in a system\(^1\)-\(^4\), is a property of food web structure with connection to community composition\(^1\)-\(^3\) and ecosystem processes, such as energy and matter flows in ecosystems\(^2,3,5\), and CO\(_2\) exchange between freshwater systems and the atmosphere\(^6\). Also, FCL determines the level and timing of disturbance hypotheses\(^12\), which is also termed as the disturbance hypothesis, also predicts that FCL increases with increasing ecosystem size, such as lake volume\(^12\). The disturbance hypothesis, also termed as the disturbance hypothesis, predicts that FCL increases with increasing productivity, because higher energy availability at the base of the food web allows for the existence of higher trophic levels, given the transfer efficiencies between trophic levels\(^11,13-17\). However, Kondoh and Nino-miya\(^15\) suggested that FCL could be shorter with increasing productivity when adaptively foraging predators switch their diet to a more basal resource and thus to a lower trophic position. No change in, or shortening of, FCL\(^16\), with enrichment of productivity, can also occur if food web structure changes because of different functional responses\(^17\) or if productivity relates to higher instability of the community\(^18\). The ecosystem size hypothesis predicts that FCL increases with increasing ecosystem size, such as lake volume\(^12\). The disturbance hypothesis, also termed as the dynamic constraints hypothesis, predicts that more frequent or more intense disturbance in ecosystems would shorten FCL, because longer chains are less resilient and thus unlikely to persist in disturbed habitats\(^13\). Still, among the common FCL hypotheses, the productivity hypothesis has been tested most frequently but with incongruent results from field and laboratory studies\(^13,14,19,20\).

Recently, nitrogen stable isotope measurements have become the technique most often used for FCL determination, next to gut content analyses\(^12,15,20,21\). Nitrogen stable isotope composition reflects the trophic position of consumers\(^22\). Nitrogen isotopes provide a measure of realized FCL, integrating the assimilation of energy or mass flow through all the trophic pathways leading to top predators\(^22\).

In large lakes, FCL was shown to increase in older lakes, probably indicating that the ecosystem’s history of species immigration and evolution affected FCL\(^23\). The effect of species immigration history on FCL suggests that colonization sequence may affect community structure\(^24\). Historical contingency has frequently been considered in ecology\(^24\) in the context of community structure, species diversification, and productivity–diversity relationships\(^24-29\). Despite the accepted role of historical contingency with regard to community composition and ecosystem functioning\(^24-28\), its importance as a determinant of FCL has, to our knowledge, never been tested.

Here we provide an experimental test of historical contingency on FCL, specifically colonization order, along a gradient of productivity using microcosm experiments. We find that FCL is determined by historical contingency, via priority effects and productivity.

Results

FCL of the microcosm systems. We combined four colonization sequences and four productivity levels in a fully factorial design with five replicates (80 microcosms in total). Such replicated microcosm experiments have been widely used to test hypotheses in ecology and evolutionary biology\(^30\). The productivity gradient was established by protozoan pellet concentration. We inoculated our microcosms with bacteria, ciliates, and zooplankton, allowing for a food web structure including bacteria as a basal resource, a primary consumer (the bacterivore ciliate *Tetrahymena* sp., abbreviated T), an intra-guild predator (the bacterivore/intra-guild predator ciliate *Blepharisma* sp., abbreviated B), and a copepod (*Cyclops* sp., abbreviated C) as the top predator. The groups were added in four specific sequences into the microcosm at each of four productivity levels. Then we measured the stable nitrogen isotope of the top predator zooplankton to estimate the FCLs in the microcosms. We also evaluated the abundance and body mass of the species to show the shifts in community structure in the microcosms.

With the results from microcosm experiment (Fig. 1), the calculated FCLs remarkably varied with productivity and species sequences (BCT, TCB, BTC, TBC, see Table 1; Fig. 2), reflected by significant main effects of the factor in the general linear model (GLM; Table 2). These effects were independent, as the interaction was not significant (Table 2). The sequences BTC and TBC, at which copepods were introduced last, had significantly higher FCLs than sequences with earlier introduction of the copepod (Table 2). The differences in FCLs correspond to a shift of 0.5 trophic level in these treatments, indicating that the trophic position of the top predator was substantially changed. Thus later entry by the top predator led to a more vertical organization of the food web. At the highest productivity (0.78 g pellet L\(^{-1}\)), the FCLs were significantly shorter than at the other productivity level (Table 2).

Abundance and body mass of species. The abundance of ciliate consumers varied among productivity levels and introduction sequences (Supplementary Fig. 1 and 2, Supplementary Table 1). The abundance of *Tetrahymena* was not different between the
sequences, thus the food source for both intraguild predator and

top predator probably was not limiting during the experiment.

However, the abundance of Tetrahymena significantly increased

with productivity (Supplementary Table 1). The abundance ratio

of Blepharisma/Tetrahymena varied correspondingly not only

between productivity levels but also with introduction sequences.

The ratios were higher in the BTC sequence, where

Blepharisma was introduced before Tetrahymena (Fig. 3). The individual body

mass (Supplementary Fig. 3) and the number of surviving indi-

viduals (mean = 23.4 ± 0.5 individuals at the final experimental

day) of copepods were not significantly different between the

treatments (Supplementary Table 1). The survival rates of cope-

pods were very high (94% remained) such that the predator

population was almost completely maintained to the final day of

the experiment.

Discussion

FCL varied between 3 and 4 with species inoculation sequence

and productivity in our microcosm systems. In natural systems,

FCL generally ranges between 3 and 6.13,14. The effect of intro-

ducing the copepod last corresponded to an increase in FCL by

0.5 trophic positions, whereas the FCL reduction in the highest

productivity level corresponded to 0.3–0.4 trophic positions. Thus

our microcosms provided first evidence for a variability of FCL

with community assembly history and novel insights in the

relationship between productivity and FCL.

When the top predator invaded in the food web later, it per-

formed as a top predator mainly feeding on the intraguild pre-

dator (Blepharisma), and consequently the system had a longer

FCL. When the top predator copepods were introduced before

the intraguild predator (Blepharisma), they only fed on the

intraguild prey (Tetrahymena) feeding on bacteria, thereby

depressing the population level of Tetrahymena. Therefore, Ble-

pharisma had a trophic level of ~2, similar to Tetrahymena. The

Table 1 The introduction sequences for the FCL experiments

Treatment name	First sequence	Second sequence	Third sequence
BCT	Blepharisma (B)	Cyclops copepod (C)	Tetrahymena (T)
TCB	Tetrahymena (T)	Cyclops copepod (C)	Blepharisma (B)
BTC	Blepharisma (B)	Tetrahymena (T)	Cyclops copepod (C)
TBC	Tetrahymena (T)	Blepharisma (B)	Cyclops copepod (C)

Table 2 Results of GLM for sequence (BCT, TCB, BTC, and TBC) and productivity (0.1, 0.2, 0.39, and 0.78 g L⁻¹ of protozoan pellets) effects on FCLs

Factors	t Value	p Value	Comparisons
Sequence	2.05	0.045	0.1, 0.2, 0.39: BTC > TBC > TCB = BCT
			0.78: BCB > TBC = TCB = BCT
Productivity	-2.85	0.006	0.78 < 0.1, 0.2, 0.39
Sequence×productivity	-1.26	0.212	

The comparisons means significant difference (α = 0.05) by Turkey multiple comparisons among the treatments.
copepod, whether it fed on *Tetrahymena* or *Blepharisma*, would then have a trophic level of ~3.

When *Blepharisma* primarily feeds on *Tetrahymena*, the copepod fed on a prey with a trophic level >2. Therefore, another mechanism can be assumed that the intraguild predator did not successfully compete for the bacteria with the intraguild prey and consequently had lower abundances. Moreover, lower *Blepharisma/Tetrahymena* ratios were observed at TCB sequence, which may also reduce the trophic position of the top predator due to lowered relative abundance of the intraguild predator.

Our experiment therefore highlights the role of priority effects of consumer introduction and top predator’s adaptive foraging for defining maximum FCL. We found such priority effects on FCL in a reduced web with three consumer species only, therefore it will be important to analyze historical contingencies in real ecosystems, in order to see whether our results can be transferred to natural ecosystems with more complex network structures.

Productivity is generally supposed to lengthen FCL in aquatic systems, but in this study, the highest productivity, the FCL were shorter. The food-web model by Kondoh and Ninomiya suggested that FCL can be shorter with increasing productivity when considering adaptive foraging of consumers. This requires that some of the predators are generalists able to feed on different food sources. Predators may switch from higher trophic levels to lower ones at higher productivity if especially the basal species becomes more abundant. In fact, the abundance of the primary consumer *Tetrahymena* increased at highest productivity, which may explain the shortened FCL we found at high productivity levels, if the top predator fed more on the more abundant primary consumer, *Tetrahymena*. We have no evidence whether the intraguild predator (*Blepharisma*) also changed its foraging to bacteria with productivity as we did not measure the isotopic composition of the ciliates in our experiment. Some of the previous studies reported the lack of a positive correlation between productivity and FCL, which could be explained by historical contingency masking the productivity effect on FCL. If the adaptive foraging of top predator changed the food web structure along with historical contingency, the predator would maximize the food-web stability according to the expectation by the mathematical model of Kondoh. Also, the adaptive foraging of top predator in food web may minimize the destabilizing effects of productivity enrichment in natural habitats. We did not directly test such changes, but see such analyses as potential future advance to more fundamentally understand the historical contingency effects on food web structure.

In conclusion, we obtained evidence from microcosms that FCL varies with historical contingency of community assembly and productivity of system. If these results from a small-scale experimental study prove to be valid in more complex natural systems, these results represent an initial step to understand the lasting impact of food-web assembly on food-web structure in an immigration context.

Methods

Microcosm experiment. We used a two-way factorial design with four productivity levels and four species-introduction sequences (Table 1) as treatments. Each of the 16 unique treatment combinations (4 productivity levels × 4 sequences) was established in five replicates, totaling 80 microcosms. As microcosms, we used 250-ml Pyrex glass flasks, filled with 100 ml of medium. The different productivity levels were established by different concentrations of protozoan pellets (Carolina Biological Supply [CBS], Burlington, NC, USA): 0.1, 0.2, 0.39, and 0.78 g L⁻¹ of protozoan pellets were added to natural spring water (Volvic, from Clairvic Spring, Auvergne Regional Park, France). With regards to the previous microcosm studies, we set the weight of protozoan pellets for the gradient of productivity levels. Flasks with medium were autoclaved and then inoculated with the basal producer in the form of four bacteria cultures (*Bacillus subtilis, Bacillus cereus, Proteus vulgaris, Serratia marcescens*, from CBS).

The bacteria were allowed to grow for 7 days before we added the other species in four sequences (Table 1). These species comprised two ciliates (*Tetrahymena sp.*, *Blepharisma sp.*) and a copepod (*Cyclops* sp.). *Tetrahymena* is a bacterivore and represented the primary consumer (Fig. 1). *Blepharisma* is an interguild predator able to feed on bacteria and *Tetrahymena*, and *Cyclops* was added as top predator feeding on ciliates. Also, *Cyclops* can adaptively alter their diets in experimental...
Stable isotope analysis

We preweighted tip cups. The body mass of copepod was determined by weighing the copepod immediately after collection. The body mass of ciliates was calculated from the ciliate stocking cultures. As a result, the nitrogen stable isotope values were not expected to alter the FCL data from the species-level analysis using a Leitz DML microscope.

Stable isotope analysis

The nitrogen stable isotope (δ15N) of the samples were determined using a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon, Cheshire, UK) at Stable Isotope Facility of the University of California Davis. Nitrogen isotopic data are reported using the conventional δ notation, where δ15N = (Nsample/Nstd × 1000) − 1 (‰). Air N2 were used as international standard for δ15N. We did not measure the δ13C of the samples due to limited sample mass.

Calculation of FCL

FCL is defined as the trophic position of the top predator (copepod) in each microcosm. We assumed a trophic fractionation value of 3.4‰ to calculate FCL based on previous studies on food webs and FCLs.6,24 The value has widely been used for FCL studies on metazoans, and also the trophic enrichment of ciliate was close to this general enrichment value (Supplementary Information, Table 1). All analyses were performed using R 3.3.1.46 with ggplot2 and glm packages for graphics and GLMs, respectively. All the data are available in Dryad (https://doi.org/10.5061/dryad.2m9w762).

Data availability

All data, including the abundance of species and FCL in this study, are available via the Dryad Digital Repository (https://doi.org/10.5061/dryad.2m9w762).

Received: 18 June 2018 Accepted: 27 December 2018
Published online: 28 January 2019

References

1. Elton, C. Animal Ecology (Sidgwick and Jackson, London, 1927).
2. Pimm, S. L. Food Web (Chapman and Hall, London, 1982).
3. Schoener, T. W. Food webs from the small to the large. Ecology 70, 1559–1589 (1989).
4. Pimm, S. L. & Lawton, J. H. The number of trophic levels in ecological communities. Nature 275, 542–544 (1977).
5. Cross, W. F. et al. Food-web dynamics in a large river discontinuum. Ecol. Monogr. 83, 311–337 (2013).
6. Schindler, D. E., Carpenter, S. R., Cole, J. J., Kitchell, J. F. & Pace, M. L. Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277, 248–251 (1997).
7. Zhang, D., Xie, P., Liu, Y. & Qiu, T. Transfer, distribution and bioaccumulation of microcystins in the aquatic food web in Lake Taihu, China, with potential risks to human health. Sci. Total Environ. 407, 2191–2199 (2009).
8. Doi, H., Takahara, T. & Tanaka, K. Trophic position and metabolic rate predict the long-term decay process of radioactive cesium in fish: a meta-analysis. PLoS ONE 7, e2925 (2012).
9. Cohen, J. E. & Newman, C. M. Community area and food-chain length: theoretical predictions. Am. Nat. 138, 1542–1554 (1992).
10. Jenkins, B., Kitching, R. L. & Pimm, S. L. Productivity, disturbance and food web structure at a local spatial scale in experimental container habitats. Oikos 65, 249–255 (1992).
11. Slabodkin, L. B. Energy in animal ecology. Adv. Ecol. Res. 1, 69–101 (1962).
12. Post, D. M., Pace, M. L. & Hairston, N. G. Ecosystem size determines food-chain length in lakes. Nature 405, 1047–1049 (2000).
13. Takimoto, G. & Post, D. M. Environmental determinants of food-chain length: a meta-analysis. Ecol. Res. 28, 675–681 (2013).
14. Sabo, J. L., Finlay, J. C. & Post, D. M. Food chains in freshwaters. Ann. NY Acad. Sci. 1162, 187–220 (2009).
15. Kondoh, M. & Minamiya, K. Food-chain length and adaptive foraging. Proc. R. Soc. B 276, 3113–3121 (2009).
16. Post, D. M. The long and short of food-chain length. Trends Ecol. Evol. 17, 269–277 (2002).
17. Ball, C. H., Brose, U. & pile, F. Food web connectance and predator interference dampen the paradox of enrichment. Oikos 117, 202–213 (2008).
18. Roy, S. & Chattopadhayay, J. The stability of ecosystems: a brief overview of the paradox of enrichment. J. Biosci. 32, 421–428 (2007).
19. Doi, H. et al. Resource availability and ecosystem size predict food chain length in pond ecosystems. Oikos 118, 138–144 (2009).
20. Young, H. S. et al. The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems. Ecosystems 16, 692–701 (2013).
21. McHugh, P. A., McIntosh, A. R. & Jelleyman, P. G. Dual influences of ecosystem size and disturbance on food chain length in streams. Ecol. Lett. 13, 881–890 (2010).
22. Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).
23. Doi, H., Vander Zanden, M. J. & Hillebrand, H. Shorter food chain length in tropical terrestrial ecosystems. Oikos 118, 138–144 (2009).
24. Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).
25. Fukami, T., Beaumont, H. J., Zhang, X. X. & Rainey, P. B. Immigrant history controls diversification in experimental adaptive radiation. Nature 446, 436–439 (2007).
26. Fukami, T. et al. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol. Lett. 13, 675–684 (2010).
27. Fukami, T. & Morin, P. J. Productivity-biodiversity relationships depend on the history of community assembly. Nature 424, 423–426 (2003).
28. Pagaling, E. et al. Community history affects the predictability of microbial ecosystem development. ISME J. 8, 19–30 (2014).
29. Tan, J., Pu, Z., Ryberg, W. A. & Jiang, L. Species phylogenetic relatedness, priority effects, and ecosystem functioning, Ecology 93, 1164–1172 (2012).
30. Allertmann, F. et al. Big answers from small worlds: a user’s guide for protist microcosms as a model system in ecology and evolution. Methods Ecol. Evol. 6, 218–231 (2015).
31. Layman, C. A. et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools. *Biol. Rev.* **87**, 545–562 (2012).

32. Holt, R. D. & Polis, G. A. A theoretical framework for intraguild predation. *Am. Nat.* **149**, 745–764 (1997).

33. Kondoh, M. Foraging adaptation and the relationship between food-web complexity and stability. *Science* **299**, 1388–1391 (2003).

34. Neutel, A. M. et al. Reconciling complexity with stability in naturally assembling food webs. *Nature* **449**, 599 (2007).

35. Fukami, T. Assembly history interacts with ecosystem size to influence species coexistence. *Ecology** **97**, 2061–2066 (2016).

36. Jiang, L. & Morin, P. J. Productivity gradients cause positive diversity–invisibility relationships in microbial communities. *Ecol. Lett.* **7**, 1047–1057 (2004).

37. Lainhart, W., Stolfa, G. & Koudelka, G. B. Shiga toxin as a bacterial defense against a eukaryotic predator *Tetrahymena thermophila*. *J. Bacteriol.* **191**, 5116–5122 (2009).

38. Diehl, S. & Feissel, M. Intraguild prey suffer from enrichment of their resources: a microcosm experiment with ciliates. *Ecology** **82**, 2977–2983 (2001).

39. Wickham, S. A. Cyclops predation on ciliates: species, specific differences and functional responses. *J. Plankton Res.* **17**, 1633–1646 (1995).

40. Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. *Limnol. Oceanogr.* **46**, 2061–2066 (2001).

41. Doi, H., Kikuchi, E., Takagi, S. & Shikano, S. Changes in carbon and nitrogen stable isotopes of chironomid larvae during growth, starvation and metamorphosis. *Rapid Commun. Mass Spect.* **21**, 997–1002 (2007).

42. Gamboa-Delgado, J. & Le Vay, L. Natural stable isotopes as indicators of the relative contribution of soy protein and fish meal to tissue growth in Pacific white shrimp (*Litopenaeus vannamei*) fed compound diets. *Aquaculture* **291**, 115–123 (2009).

43. Larsen, T. et al. Contrasting effects of nitrogen limitation and amino acid imbalance on carbon and nitrogen turnover in three species of *Collembola*. *Soil Biol. Biochem.* **43**, 749–759 (2011).

44. Overmyer, J. P., MacNeil, M. A. & Fisk, A. T. Fractionation and metabolic turnover of carbon and nitrogen stable isotopes in black fly larvae. *Rapid Commun. Mass Spec.* **22**, 694–700 (2008).

45. Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, R. C. Stable isotope turnover and half-life in animal tissues: a literature synthesis. *PLoS ONE* **10**, e0116182 (2015).

46. R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).

Acknowledgements

We thank Stefanie Moorlin, Izumi Katano, and Teruhiko Takahara, who supported the experimental set-up; Maren Striebel, Michio Kondoh, and Naoto F. Ishikawa, who commented on an earlier draft of the manuscript, and Mariko Nagano, who drew the illustrations in Fig. 1. This research was supported by a grant from the Japan Society for the Promotion of Science to H.D.

Author contributions

H.D. and H.H. designed the experiment, H.D. performed the experiment and analyzed the samples. H.D. analyzed the data, and H.D. and H.H. wrote the manuscript.

Additional information

Supplementary information accompanies this paper at https://doi.org/10.1038/s42003-019-0287-8.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.