Exact Baker–Campbell–Hausdorff formula for the contact Heisenberg algebra

Alessandro Bravetti1, Angel Garcia-Chung2,4 and Diego Tapias3

1 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de Mexico, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
2 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Mexico, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
3 Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico

E-mail: alessandro.bravetti@iimas.unam.mx, angel.garcia@correo.nucleares.unam.mx and diego.tapias@nucleares.unam.mx

Received 18 September 2016, revised 3 January 2017
Accepted for publication 17 January 2017
Published 6 February 2017

Abstract
In this work we introduce the contact Heisenberg algebra which is the restriction of the Jacobi algebra on contact manifolds to the linear and constant functions. We give the exact expression of its corresponding Baker–Campbell–Hausdorff formula. We argue that this result is relevant to the quantization of contact systems.

Keywords: Baker–Campbell–Hausdorff formula, contact Heisenberg algebra, Jacobi algebra

1. Introduction

The Baker–Campbell–Hausdorff (BCH) formula is an exact result for the calculation of Z(X, Y) = ln(eXeY) whenever X and Y are elements of a Lie algebra. There are several equivalent ways of expressing the BCH formula (see [1, 2]). Here we use the integral form, which reads [2–4]

\[Z(X, Y) = X + Y - \int_0^1 \sum_{n=1}^{\infty} \frac{(I - e^{tX}e^{tY})^n}{n(n + 1)} Y, \]

(1)

where \(L_X Y := [X, Y]\) is the adjoint action \(ad_X Y\) [2] and the exponential \(e^{tX}\) is defined as

\[e^{tX} = \sum_{n=0}^{\infty} \frac{t^n X^n}{n!}. \]
In the case of finite dimensional Lie algebras, the expression (1) provides an explicit formula to compute \(Z(X, Y) \) given only the knowledge of the commutators of the Lie algebra. Therefore, it is of interest for several areas of mathematics and physics. For instance, the theory of Lie groups and Lie algebras, linear partial differential equations, numerical analysis, control theory, sub-Riemannian geometry, and in quantum and statistical mechanics as well as in quantum field theory [1, 3, 5].

Although the BCH formula (1) has been known for a long time, only few exact expressions have been found. The Heisenberg Lie algebra used in Quantum Mechanics is, perhaps, the most known example. In this case, the algebra is nilpotent [6] and (2) becomes \(e^{aY} = Y + [X, Y] \). Consequently (1) reduces to \(Z(X, Y) = X + Y + \frac{1}{2}[X, Y] \). For more general Lie algebras, (2) involves an infinite sum of nested commutators, making it difficult to derive an analytic expression for \(Z(X, Y) \).

During the last years several new results have been found and have generated a renewal of attention on this subject [7–10]. In [4] Van-Brunt and Visser obtained an explicit formula for the case \([X, Y] = uX + vY + cI \). Later on, Matone [11–13] found an algorithm to extend such formula to the case where there are two commutators of the above form. Recently, Van-Brunt and Visser [14] generalized their previous result to the case where the Lie algebra satisfies some general requirements.

In this work we introduce a different Lie algebra, named contact Heisenberg Algebra (CHA) and compute the exact closed form for the BCH formula (see equation (37)). The CHA is the Lie algebra of linear functions over a contact manifold with the commutator given by the Lagrange bracket [15]. This algebra is the analogue of the Heisenberg Lie algebra [6, 16] of linear functions over a symplectic manifold for the contact case. Moreover, it is a particular case of a Jacobi (or local Lie) algebra [17].

The motivation for this work comes from the fact that contact manifolds naturally extend symplectic manifolds and are used in a wide range of physical theories. For example, in mechanics [18–20], statistical mechanics [21, 22] and thermodynamics [23–28] (see also [29–37] for further applications). Besides, some attempts in order to quantize contact systems have been proposed within the formalisms of geometric and deformation quantization [38, 39]. Our calculation of the BCH formula paves the way for a standard quantization program based on linear operators [16].

2. The contact Heisenberg algebra

Contact manifolds are the object of extensive research both in mathematics and physics. Hence, for a detailed introduction we refer the reader to e.g. [15, 40, 41]. The relevant aspect for our purposes is the following: using the geometric (contact) structure one can define a natural bracket of functions over a contact manifold. In the standard (Darboux) coordinates \((s, p_i, q_i), i = 1, 2, \ldots, n\), the bracket reads

\[
\{g, f\} = \left(\frac{\partial g}{\partial S} \frac{\partial f}{\partial S} - \frac{\partial g}{\partial p_i} \frac{\partial f}{\partial p_i} - \frac{\partial g}{\partial q_i} \frac{\partial f}{\partial q_i} \right) + \left(\frac{\partial g}{\partial q_i} \frac{\partial f}{\partial p_i} - \frac{\partial g}{\partial p_i} \frac{\partial f}{\partial q_i} \right),
\]

where a sum over repeated indices is assumed here and below. The bracket (3) is called the Lagrange bracket [15]. It differs from the Poisson bracket in some important properties. For
instance, while it satisfies the Jacobi identity, it fails to satisfy the Leibniz rule and thus it is not a derivation.

Let us consider the space S of linear functions on the contact manifold, i.e. the space

$$S = \text{Span}\{z1 + a_i q^i + b_i p_i + cS\}, \quad z, a_i, b_i, c \in \mathbb{R}. \quad (4)$$

By definition, S is a vector space with the natural sum operation. We can identify a generic linear function $f = z1 + a_i q^i + b_i p_i + cS$ with a vector X_f and define a commutator between vectors in the following way

$$[X_f, X_g] = X_{(f,g)}. \quad (5)$$

It follows directly that $\mathcal{A} = (S, +, [\cdot, \cdot])$ is a (local) Lie algebra [17], that we call the contact Heisenberg algebra. Note that this algebra is the analogue of the Heisenberg Lie algebra for the case of a contact manifold. A natural basis for this algebra is (z, a_i, q^i, p_i), where the minus sign in X_p is chosen for convenience to simplify the calculations. Using (3) and (5) we find that the only non-vanishing commutators of the elements of the basis are

$$[X_i, X_j] = X_\epsilon, \quad [X_{q_i}, X_{q_j}] = X_{q_{\epsilon}}, \quad [X_{p_i}, X_{p_j}] = \delta_i^j X_i. \quad (6)$$

In the following we assume for simplicity that the contact manifold is 3-dimensional ($n = 1$) so that the index on q and p can be omitted. The generalization to the $(2n + 1)$-dimensional case is straightforward. Furthermore, it will be convenient to represent any vector X_f as $X_f(z, a, b, c)$, being (z, a, b, c) its four components with respect to the basis (z, q_i, p_i, X_f).

Remarks. First, we remind that the subspace $Z(\mathfrak{g})$ of elements $X \in \mathfrak{g}$ such that $[X, Y] = 0, \forall Y \in \mathfrak{g}$ is called the center (or centralizer) of the algebra \mathfrak{g} [6]. It is easy to check that for the contact Heisenberg algebra \mathcal{A}, the center $Z(\mathcal{A})$ is just the null vector $X_{(0,0,0,0)}$, i.e. it is trivial. Notice that this fact establishes a difference with both the Heisenberg Lie algebra and the generalization considered by Visser in [4]. In such cases the center is a 1-dimensional vector space.

Secondly, the sub-algebra $\tilde{\mathcal{A}} \subset \mathcal{A}$ defined by $\tilde{\mathcal{A}} = \text{Span}\{X_{(i,a,b,c)}\}$ is a (maximal) ideal of \mathcal{A} and its center is the 1-dimensional vector space $Z(\tilde{\mathcal{A}}) = \text{Span}\{X_{(i,0,0,0)}\}$. It can be checked that the sub-algebra $\tilde{\mathcal{A}}$ is isomorphic to the Heisenberg Lie algebra, that is, the Heisenberg Lie algebra is naturally contained in \mathcal{A}.

Finally, we stress that the study of the BCH formula for the CHA does not correspond to any of the cases considered previously in the literature (see e.g. [11, 12, 14]) and therefore it is a completely new problem.

3. BCH for the contact Heisenberg algebra

In this section we prove the main result of our work. We use the BCH formula (1) and the commutation relations (6) to find an exact formula for the element $Z(X, Y)$. As the CHA does not fall into any of the cases studied in previous works, we need to compute the infinite sum of nested commutators in (2) explicitly, which amounts to a rather lengthy calculation. Nevertheless, the final result has a very compact form. To simplify the presentation we split the calculation into three different steps.

3.1. Step 1: calculation of e^{X}

The goal of this step is to obtain an expression for $e^{L_{X_{(i,a,b,c)}}}X_{(i,a,b,c)}$ using the commutators (6). Let us start with the calculation of the first commutator, that is...
\[L_{X_{(z,a,b,c)}}X_{(z,a,b,c)} = [X_{(z,a,b,c)},X_{(z,a,b,c)}] = X_{(z,a_0,0,0)}, \]

(7)

where we have defined

\[z_1 := z\bar{c} - c\bar{z} + \bar{a}b - \bar{a}\bar{b}, \quad a_1 := a\bar{c} - c\bar{a}. \]

(8)

In the same way we can compute the second commutator

\[L_{X_{(z,a,b,c)}}L_{X_{(z,a,b,c)}}X_{(z,a,b,c)} = [X_{(z,a,b,c)}, [X_{(z,a,b,c)},X_{(z,a,b,c)}]] = [X_{(z,a,b,c)},X_{(z,a_0,0,0)}] = X_{(z,a_2,0,0)}, \]

(9)

where

\[z_2 := -c z_1 + a b, \quad a_2 := -c a_1. \]

(10)

From the above relations, we can infer the higher order commutators. Following the same notation, we write in general

\[(L_{X_{(z,a,b,c)}})^nX_{(z,a,b,c)} = X_{(z,a_{n-1},0,0)}, \]

(11)

being

\[z_n := -c z_{n-1} + a_{n-1} b, \quad a_n := -c a_{n-1}. \]

(12)

Thus we obtain a recursive relation that gives \(z_n \) and \(a_n \) in terms of \(z_{n-1} \) and \(a_{n-1} \). Proceeding by induction one can show that such relations imply the following

\[a_n = (-c)^{n-1} a_1, \quad z_n = (-c)^{n-2} (z_1 + (-c)^{n-1} (n-1) a_1 b). \]

(13)

Now we are ready to compute the action of \(e^{L_X} \). Let us rewrite explicitly the exponential as

\[e^{L_{X_{(z,a,b,c)}}} = \left[1 + L_{X_{(z,a,b,c)}} + \frac{1}{2!}(L_{X_{(z,a,b,c)}})^2 + \cdots + \frac{1}{n!}(L_{X_{(z,a,b,c)}})^n + \cdots \right] X_{(z,a,b,c)} \]

\[= X_{(z,a,b,c)} + X_{(z,a_0,0,0)} + \frac{1}{2!}X_{(z,a_2,0,0)} + \cdots + \frac{1}{n!}X_{(z,a_{n-1},0,0)} + \cdots \]

(14)

Next, we decompose each operator in the Lie algebra basis \((X_i, X_q, -X_p, X_3)\) and sum similar terms to obtain

\[e^{L_{X_{(z,a,b,c)}}} = \left(\bar{z} + z_1 + \frac{z_2}{2!} + \cdots + \frac{z_n}{n!} + \cdots \right) X_i + \left(\bar{a} + a_1 + \frac{a_2}{2!} + \cdots + \frac{a_n}{n!} + \cdots \right) X_q \]

\[- \bar{b} X_p + \bar{c} X_3, \]

(15)

where \(a_i \) and \(z_i \) are as in (13). First, let us consider the \(X_q \) component in the above formula. We write it as

\[a_{\infty} := \bar{a} + a_1 + \frac{a_2}{2!} + \cdots + \frac{a_n}{n!} + \cdots = \bar{a} + a_1 \left[1 + \frac{1}{2!}(-c) + \cdots + \frac{1}{n!}(-c)^{n-1} + \cdots \right] \]

\[= \bar{a} - \frac{\bar{a}}{c} \left[(-c) + \frac{1}{2!}(-c)^2 + \cdots + \frac{1}{n!}(-c)^n + \cdots \right] = \bar{a} e^{-c} + \frac{\bar{a} c}{c(1-e^{-c})}. \]

(16)

For as regards the \(X_1 \) component, we have
\[z_\infty = z + z_1 + \frac{z_2}{2!} + \cdots + \frac{z_n}{n!} + \cdots = z + z_1 + \frac{1}{2!} (-c z_1 + a_1 b) + \frac{1}{3!} (-c)^2 z_1 - 2 c a_1 b + \cdots + \frac{1}{n!} (-c)^{n-1} z_1 + (n - 1) (-c)^{n-2} a_1 b + \cdots \]

(17)

We notice that in the above formula we can collect \(\bar{z} \) and the terms in \(z_1 \) to obtain

\[z + z_1 + \frac{1}{2!} (-c) z_1 + \cdots + \frac{1}{n!} (-c)^{n-1} z_1 + (n - 1) (-c)^{n-2} a_1 b + \cdots = \bar{z} + \frac{z_1}{c} (1 - e^{-c}). \]

(18)

Now let us consider the remaining terms in (17), which can be rearranged as

\[\frac{a_1 b}{c^2} \left[\frac{1}{2!} (-c)^2 + \frac{2}{3!} (-c)^3 + \cdots + \frac{(n - 1)}{n!} (-c)^n + \cdots \right] = \frac{a_1 b}{c^2} [1 - c e^{-c} - e^{-c}], \]

(19)

where we made use of the identity

\[\frac{1}{2!} \alpha^2 + \frac{2}{3!} \alpha^3 + \cdots + \frac{(n - 1)}{n!} \alpha^n + \cdots = 1 + \alpha e^\alpha - e^\alpha. \]

(20)

Using (17), (18) and (19) we finally get the expression for the \(X_1 \) component, which reads

\[z_\infty = z + \frac{z_1}{c} (1 - e^{-c}) + \frac{a_1 b}{c^2} (1 - c e^{-c} - e^{-c}) \]

\[= \bar{z} e^{-c} + \bar{a} b e^{-c} - \frac{a_1 b}{c} (1 - e^{-c}) + \frac{\bar{c}}{c} \left[z (1 - e^{-c}) + \frac{a_1 b}{c} (1 - c e^{-c} - e^{-c}) \right]. \]

(21)

where the last equality follows by substituting \(a_1 \) and \(z_1 \) from (8).

Summing up, we were able to find out an analytic expression for the infinite series appearing in \(e^{L_{\infty}}X_{\alpha_\beta \gamma \delta} \). As a result the exponential operator acts as

\[e^{L_{\infty}X_{\alpha_\beta \gamma \delta}} = z_\infty X_1 + a_\infty X_2 + b_\infty X_3 + c_\infty X_4 \]

with \(a_\infty \) and \(z_\infty \) given in equations (16) and (21) respectively.

Since this is a linear operator, we can represent it as a matrix using the basis \((X_1, X_2, -X_3, X_4) \) as follows

\[e^{L_{\infty}X_{\alpha_\beta \gamma \delta}} = M(z, a, b, c) \]

3.2. Step 2: calculation of \((1 - e^{\gamma b}) \gamma\)

Taking advantage of the matrix representation (23), we can rewrite the product of the two exponentials involved in (1) as

\[e^{L_{\infty}X_{\alpha_\beta \gamma \delta}} e^{(1 - e^{\gamma b}) \gamma} = M(z, a, b, c) M(t_\gamma, t_z, t_\beta, t_\gamma) = M. \]

(24)
Using the structure of the matrix in (23), it is easy to check that M (and any of its powers) retains the same form
\[
M = \begin{pmatrix}
 e^m & M_{12} & M_{13} & M_{14} \\
 0 & e^m & 0 & M_{24} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix},
\]
where
\[
m = -c - tc, \quad M_{12} = e^m(b + t\hat{b}), \quad M_{13} = -\frac{a}{c}(1 - e^{-c}) - \frac{\hat{a}}{c}(1 - e^{-\hat{c}}),
\]
\[
M_{24} = \frac{a}{c}(1 - e^{-c}) + \frac{\hat{a}}{c}(e^{-c} - e^m),
\]
\[
M_{14} = -\frac{z}{c}(1 - e^{-ic})e^{-c} + \frac{z}{c}(1 - e^{-\hat{c}}) + \frac{ab}{e^c}(1 - t\hat{c}e^{-\hat{c}} - e^{-\hat{c}})e^{-c} + \frac{ab}{e^c}(1 - e^{-ic})e^{-c} + \frac{ab}{e^c}(1 - e^{-ic} - e^{-c}).
\]

Now we use these properties of M to write $(I - e^{L_{x_0,x_0}e^{L_{z_0,z_0}e^{L_{x_0,r_1}e^{L_{z_0,r_1}e^{L_{x_0,r_2}e^{L_{z_0,r_2}e^{L_{x_0,r_3}L_{z_0,r_3}L_{x_0,r_4}L_{z_0,r_4}}}}}}})^n$ in a compact form
\[
(I - e^{L_{x_0,x_0}e^{L_{z_0,z_0}e^{L_{x_0,r_1}e^{L_{z_0,r_1}e^{L_{x_0,r_2}e^{L_{z_0,r_2}e^{L_{x_0,r_3}L_{z_0,r_3}L_{x_0,r_4}L_{z_0,r_4}}}}}}})^n = (I - M)^n = \sum_{k=0}^{n} \frac{n!(-1)^k}{(n-k)!k!} M^k,
\]
from which we observe that we are interested in computing the powers of the matrix M. After some algebra, it can be shown that
\[
M^k = \begin{pmatrix}
 e^{km} & k e^{(k-1)m} M_{12} & \left(\frac{1 - e^{km}}{1 - e^m}\right) M_{13} & (M^k)_{14} \\
0 & e^{km} & 0 & \left(\frac{1 - e^{km}}{1 - e^m}\right) M_{24} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix},
\]
where
\[
(M^k)_{14} = \frac{(1 - e^{km})}{(1 - e^m)} M_{14} + \frac{1 - k e^{(k-1)m} + (k-1)e^{km}}{(1 - e^m)^2} M_{12} M_{24}.
\]
Finally, (27) and (28) imply that
\[
(I - M)^n = \begin{pmatrix}
 (1 - e^m)^n - n(1 - e^m)^{n-1} M_{12} & -(1 - e^m)^{n-1} M_{13} & \mathcal{M} \\
0 & (1 - e^m)^n & 0 & -(1 - e^m)^{n-1} M_{24} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix},
\]
where
\[
\mathcal{M} = \sum_{k=0}^{n} \frac{n!(-1)^k}{(n-k)!k!} (M^k)_{14} = -(1 - e^m)^{n-1} M_{14} + (n-1)(1 - e^m)^{n-2} M_{24} M_{24}.
\]
This result facilitates the calculation of the series inside the integral in the BCH formula, which will be done in the next step.

3.3. Step 3: calculation of the BCH formula

This last step is devoted to the calculation of the exact BCH formula for the CHA. Notice that using our notation we can rewrite (1) as

\[Z(X_{(c,a,b,e)\ldots},X_{(c,a,b,e)}) = X_{(c,a,b,e)\ldots} + X_{(c,a,b,e)} - \int_0^1 \sum_{n=1}^{+\infty} \frac{(I-M)^n}{n(n+1)} X_{(c,a,b,e)}. \] \hfill (32)

By considering (30) and (31) we compute the term inside the integral which takes the form

\[\sum_{n=1}^{+\infty} \frac{(I-M)^n}{n(n+1)} = \begin{pmatrix} 1 - e^m + me^m & M_1(1 + m - e^m) & -M_2(1 - e^m) \\ 1 - e^m & (1 - e^m)^2 & 0 \\ 0 & 1 - e^m & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{M}_1. \] \hfill (33)

where

\[m_{14} := \frac{(1 - e^m + me^m)M_{14}}{(1 - e^m)^3} - \frac{2(1 - e^m) + m(1 + e^m)}{(1 - e^m)^3}M_{12}M_{24}. \] \hfill (34)

Finally, we integrate (33) and obtain

\[\int_0^1 dt \text{M}_1 X_{(c,a,b,e)} = \begin{pmatrix} f(c,\bar{c})(\bar{c} - \bar{c}) + g(c,\bar{c}) - g_1(c,\bar{c}) \\ f(c,\bar{c})(\bar{c} - \bar{c}) \end{pmatrix}, \] \hfill (35)

with

\[f(c,\bar{c}) := \frac{1}{1 - e^{c+\bar{c}}} \left[\frac{(1 - e^c)}{\bar{c}} - \frac{e^c(1 - e^c)}{c} \right], \] \hfill (36)

\[g(c,\bar{c}) := \frac{(1 - e^c)}{\bar{c}} \left[\frac{1}{1 - e^{c+\bar{c}}} + \frac{(c + \bar{c})e^{c+\bar{c}}}{(1 - e^{c+\bar{c}})^2} \right], \] \hfill (37)

\[g_1(c,\bar{c}) := e^c \frac{(1 - e^c)}{c} \left[\frac{1}{1 - e^{c+\bar{c}}} + \frac{(c + \bar{c})}{(1 - e^{c+\bar{c}})^2} \right]. \] \hfill (38)

Using these relations, we arrive at our main result, the exact expression of the BCH formula (1) for the CHA, which reads

\[Z(X_{(c,a,b,e)\ldots},X_{(c,a,b,e)}) = X_{(c,a,b,e)\ldots} + X_{(c,a,b,e)} - f(c,\bar{c}) \left[X_{(c,a,b,e)\ldots} - f(c,\bar{c}) \right] X_{(1,0,0,0)}. \] \hfill (39)
Formula (39) provides the multiplication of the Lie group associated to the CHA. We notice that (39) is similar in form to the results obtained by Van-Brunt and Visser and by Matone [4, 11, 12, 14]. However, in our case there is an additional term, which is proportional to the generator $X_{(1,0,0,0)}$. Moreover, the functions $f(c, \bar{c})$ and $g(c, \bar{c})$ are different from those in [4, 11, 12, 14].

Recall that the parameters c and \bar{c} characterize the (contact) component X_S of the elements of the CHA (see (4)). Furthermore, the sub-algebra \tilde{A} of elements of the type $X_{(z,a,b,0)}$ is isomorphic to the Heisenberg Lie algebra (see the remarks in section 2). The same behavior can be expected at the level of the corresponding Lie groups. In fact, in the limit $c, \bar{c} \to 0$ the expression (39) reduces to

$$
\lim_{c,\bar{c}\to 0} Z(X_{(c,a,b,c)}, X_{(\bar{c},a,\bar{b},\bar{c})}) = X_{(c,a,b,c)} + X_{(\bar{c},a,\bar{b},\bar{c})} + \frac{1}{2} [X_{(c,a,b,c)}, X_{(\bar{c},a,\bar{b},\bar{c})}] = Z_H(X_{(c,a,b,0)}, X_{(\bar{c},a,\bar{b},0)}),
$$

(40)

where Z_H is the known BCH formula for the Heisenberg Lie algebra. To first order in c and \bar{c} we have the correction to Z_H, given as

$$
Z(X_{(c,a,b,c)}, X_{(\bar{c},a,\bar{b},\bar{c})}) = Z_H(X_{(c,a,b,0)}, X_{(\bar{c},a,\bar{b},0)}) - \frac{(c - \bar{c})}{12} [X_{(c,a,b,c)}, X_{(\bar{c},a,\bar{b},\bar{c})}]
$$

$$
- \frac{(\bar{a}c - ac)(b - \bar{b})}{12} X_{(1,0,0,0)} + \ldots
$$

(41)

This relation can be used to explore the linear deformation of the Heisenberg group coming from the Lie group associated to the CHA.

4. Conclusions

In this work we provide the exact expression of the BCH formula for the contact Heisenberg algebra (CHA), see (39), the analogue of the Heisenberg Lie algebra for contact manifolds. This formula gives the multiplication of the Lie group associated to the CHA.

Similarly to previous works [4, 11–14], our result depends only up to the first commutator. However, there is an additional term proportional to the constant function $X_{(1,0,0,0)}$. Moreover, the functions $f(c, \bar{c})$ and $g(c, \bar{c})$ are different from those in [4, 11–14].

Remarkably, in the limit $c, \bar{c} \to 0$, we recover the BCH formula for the Heisenberg Lie algebra. This result shows that in the same way as the Heisenberg Lie algebra is contained in the CHA, the Heisenberg group can be seen as a subgroup of the Lie group associated to the CHA. Additionally, we calculate the linear deformations of the Heisenberg group (41).

In the standard quantization program [16], the Heisenberg group is promoted to an algebra (the Weyl algebra) and its elements are represented (via the Gelfand–Naimark–Segal construction) as operators in a Hilbert space. We plan to follow the same route in the contact case. The present calculation of the BCH formula constitutes the first step in this direction.

Finally, as the CHA is a particular case of a Jacobi (or local Lie) algebra [17], we believe that our calculations can be useful to obtain a BCH formula for more general local Lie algebras.

Acknowledgments

The authors would like to thank José Figueroa-O’Farrill for his relevant comments on the first version of this work. AB is supported by a DGAPA-UNAM postdoctoral fellowship. Angel Garcia-Chung acknowledges the total support from DGAPA-UNAM fellowship and partial
support from CONACYT projects 237503 and 237351 and DGAPA-UNAM grant IN 103716. DT acknowledges financial support from CONACYT, CVU No. 442828.

References

[1] Bonfiglioli A and Fulci R 2011 *Topics in Noncommutative Algebra: the Theorem of Campbell, Baker, Hausdorff and Dynkin* vol 2034 (Berlin: Springer)
[2] Hall B C 2015 *Lie groups, Lie Algebras and Representations: an Elementary Introduction* vol 222 (Berlin: Springer)
[3] Achilles R and Bonfiglioli A 2012 The early proofs of the theorem of Campbell, Baker, Hausdorff, and Dynkin Arch. Hist. Exact. Sci. 66 295–358
[4] Van-Brunt A and Visser M 2015 Special-case closed form of the Baker–Campbell–Hausdorff formula J. Phys. A: Math. Theor. 48 225207
[5] Tung W-K 1985 *Group Theory in Physics* (Singapore: World Scientific)
[6] Dixmier J 1977 *Enveloping Algebras* vol 14 (Amsterdam: North-Holland) (Newnes)
[7] Reinsch M W 2000 A simple expression for the terms in the Baker–Campbell–Hausdorff series J. Math. Phys. 41 2343–42
[8] Casas F and Murua A 2009 An efficient algorithm for computing the Baker–Campbell–Hausdorff series and some of its applications J. Math. Phys. 50 033513
[9] Blanes S, Casas F, Oteo J and Ros J 2009 The Magnus expansion and some of its applications Phys. Rep. 470 151–238
[10] Van-Brunt A and Visser M 2016 Simplifying the Reinsch algorithm for the Baker–Campbell–Hausdorff series J. Math. Phys. 57 023507
[11] Matone M 2015 An algorithm for the Baker–Campbell–Hausdorff formula J. High Energy Phys. JHEP05(2015)113
[12] Matone M 2015 Classification of commutator algebras leading to the new type of closed Baker–Campbell–Hausdorff formulas J. Geom. Phys. 97 34–43
[13] Matone M 2016 Closed form of the Baker–Campbell–Hausdorff formula for the generators of semisimple complex Lie algebras Eur. Phys. J. C 76 610
[14] Van-Brunt A and Visser M 2015 Explicit Baker–Campbell–Hausdorff formulae for some specific Lie algebras (arXiv:1505.04505)
[15] Arnold V I and Novikov S P 2001 *Dynamical Systems IV: Symplectic Geometry and its Applications* (Berlin: Springer)
[16] Moretti V 2013 *Spectral Theory and Quantum Mechanics: with an Introduction to the Algebraic Formulation* (Berlin: Springer)
[17] Kirillov A A 1976 Local Lie algebras Russ. Math. Surv. 31 55
[18] Bravetti A, Cruz H and Tapia D 2016 Contact Hamiltonian mechanics Ann. Phys. 376 17–39
[19] Cariglia M, Duval C, Gibbons G and Horvathy P 2016 Eisenhart lifts and symmetries of time-dependent systems Ann. Phys. 373 631–54
[20] de León M and Sardón C 2016 A geometric approach to solve time dependent and dissipative Hamiltonian systems (arXiv:1607.01239)
[21] Bravetti A and Tapia D 2015 Liouville’s theorem and the canonical measure for nonconservative systems from contact geometry J. Phys. A: Math. Theor. 48 245001
[22] Bravetti A and Tapia D 2016 Thermostat algorithm for generating target ensembles Phys. Rev. E 93 022139
[23] Mrugala R 1978 Geometrical formulation of equilibrium phenomenological thermodynamics Rep. Math. Phys. 14 419–27
[24] Mrugala R, Nulton J D, Schön J C and Salamon P 1991 Contact structure in thermodynamic theory Rep. Math. Phys. 29 109–21
[25] Rajeev S 2008 A Hamilton–Jacobi formalism for thermodynamics Ann. Phys. 323 2265–85
[26] Quevedo H 2007 Geometrothermodynamics J. Math. Phys. 48 013506
[27] Bravetti A, Lopez-Monsalvo C and Nettel F 2015 Contact symmetries and Hamiltonian thermodynamics Ann. Phys. 361 377–400
[28] Bravetti A and Lopez-Monsalvo C 2015 Para-Sasakian geometry in thermodynamic fluctuation theory J. Phys. A: Math. Theor. 48 125206
[29] Eberard D, Maschke B and Van Der Schaft A 2007 An extension of Hamiltonian systems to
the thermodynamic phase space: towards a geometry of nonreversible processes Rep. Math. Phys. 60 175–98
[30] Favache A, Dochain D and Maschke B 2010 An entropy-based formulation of irreversible processes
based on contact structures Chem. Eng. Sci. 65 5204–16
[31] Wang L, Maschke B and van der Schaft A 2015 Stabilization of control contact systems IFAC-
PapersOnLine 48 144–9
[32] Kholodenko A L 2013 Applications of Contact Geometry and Topology in Physics (Singapore:
World Scientific)
[33] Grmela M 2014 Contact geometry of mesoscopic thermodynamics and dynamics Entropy 16 1652–86
[34] Goto S-I 2015 Legendre submanifolds in contact manifolds as attractors and geometric
nonequilibrium thermodynamics J. Math. Phys. 56 073301
[35] Goto S-I 2016 Contact geometric descriptions of vector fields on dually flat spaces and their
applications in electric circuit models and nonequilibrium statistical mechanics J. Math. Phys. 57 102702
[36] Martelli D and Sparks J 2006 Toric geometry, Sasaki–Einstein manifolds and a new infinite class
of AdS/CFT duals Commun. Math. Phys. 262 51–89
[37] Pan Y 2015 5d Higgs branch localization, Seiberg–Witten equations and contact geometry
J. High Energy Phys. JHEP1(2015)1
[38] Rajeev S 2008 Quantization of contact manifolds and thermodynamics Ann. Phys. 323 768–82
[39] Fitzpatrick S 2011 On the geometric quantization of contact manifolds J. Geom. Phys. 61 2384–99
[40] Arnold V I 1989 Mathematical Methods of Classical Mechanics vol 60 (Berlin: Springer)
[41] Geiges H 2008 An Introduction to Contact Topology vol 109 (Cambridge: Cambridge University
Press)