Research article

A decoupled finite element method for a modified Cahn-Hilliard-Hele-Shaw system

Haifeng Zhang, Danxia Wang*, Zhili Wang and Hongen Jia

College of Mathematics, Taiyuan University of Technology, 030024, Tai’yuan, China

* Correspondence: Email: 2621259544@qq.com; Tel: 13603587523.

Abstract: In this paper, a decoupled finite element method for a modified Cahn-Hilliard-Hele-Shaw system with double well potential is constructed. The proposed scheme is based on the convex splitting of the energy functional in time and uses the mixed finite element discretization in space. The computation of the velocity $u$ is separated from the computation of the pressure $p$ by using an operator-splitting strategy. A Possion equation is solved to update the pressure at each time step. Unconditional stability and error estimates are analyzed in detail theoretically. Furthermore, the theoretical part is verified by several numerical examples, whose results show that the numerical examples are consistent with the results of the theoretical part.

Keywords: decoupled; modified Cahn-Hilliard-Hele-Shaw system; double well potential; convex splitting

Mathematics Subject Classification: 35Q30, 74S05

1. Introduction

The Cahn-Hilliard-Hele-Shaw system is a very important mathematical model which describes the motion of a viscous incompressible fluid between two closely spaced parallel plates and can be viewed as the simplification of the Cahn-Hilliard-Navier-Stokes system [1–3]. The model are widely applied in different fields, such as simulations of nonlinear tumor growth and neovascularization [4–7], spinodal decomposition in a Hele-Shaw cell [8], and two-phase flow in porous medium [9,10], etc.

The Cahn-Hilliard-Hele-Shaw system is a gradient system coupled with fluid motion, which is difficult to solve because of its complex form. For this model, purely explicit methods are limited by strict time step constraints for stability, and completely implicit numerical methods must contend with potentially large systems of nonlinear algebraic equations [11]. There have been many effective numerical schemes for the Cahn-Hilliard-Hele-Shaw system. Guo et al. proposed a semi-implicit time integration scheme based on convex splitting technique, and proved the unconditional stability of the
fully discrete scheme of the Cahn-Hilliard-Hele-Shaw system [12]. S.M. Wise put forward an unconditionally stable finite difference scheme for the Cahn-Hilliard-Hele-Shaw [13]. Chen et al. established a finite difference simulation of Gagliardo-Nirenberg-type inequalities to analyze stability and convergence [14]. Liu et al. developed a mixed finite element numerical scheme for the Cahn-Hilliard-Hele-Shaw system and proved its unconditional stability [15]. Guo carried out a numerical analysis for the Cahn-Hilliard-Hele-Shaw system with variable mobility and logarithmic Flory-Huggins potential [16]. The above mentioned works are numerical methods to solve the Cahn-Hilliard-Hele-Shaw system. However, there are few researches on the modified Cahn-Hilliard-Hele-Shaw system.

The modified Cahn-Hilliard equation (also named Cahn-Hilliard-Oono equation) used to suppress phase coarsening in [17] is as follows

$$\begin{align*}
\dot{\phi} + \Delta (\epsilon \Delta \phi - \frac{1}{\epsilon} f(\phi)) + \theta (\phi - \bar{\phi}_0) &= 0, \quad x \in \Omega, \quad 0 < t \leq T, \\
\frac{\partial \phi}{\partial n} &= \frac{\partial (\nu \Delta \phi - f(\phi))}{\partial n}, \quad x \in \partial \Omega, \\
\phi(x,0) &= \phi_0(x), \quad x \in \Omega,
\end{align*}$$

where $\bar{\phi}_0 := \frac{1}{|\Omega|} \int_{\Omega} \phi_0(x) dx$. More works on the modified Cahn-Hilliard equation can be found in [18–21]. For the modified Cahn-Hilliard equation, when $\theta = 0$, the equation becomes the classical Cahn-Hilliard equation[22-24]. When the modified Cahn-Hilliard is coupled with the Darcy equation, the modified Cahn-Hilliard-Hele-Shaw equation can be obtained. Jia et al. introduced a novel finite element method for the modified Cahn-Hilliard-Hele-Shaw system [25], in which the time discretization was based on the convex splitting of the energy functional in the modified Cahn-Hilliard equation. Of course, the above numerical methods are directly solved based on the coupling equation, and the solving process is complicated. To solve this kind of problem, many decoupled methods have been proposed to solve the Cahn-Hilliard-Hele-Shaw system in recent years. Han [26] presented a decoupled unconditionally stable numerical scheme for the Cahn-Hilliard-Hele-Shaw system with variable viscosity, in which the operator-splitting strategy and the pressure-stabilization technique were used to completely decouple the nonlinear Cahn-Hilliard equation from pressure. Similar strategies were also adopted in [27]. Then, Gao [28] studied the fully decoupled numerical scheme of the Cahn-Hilliard-Hele-Shaw model, in which the scalar auxiliary variable method was used to deal with the nonlinear term in the free energy. Similarly, decoupled schemes are also effectively used in other systems and models recently. Zhao et al. [29] developed an energy-stable scheme for a binary hydrodynamic phase field model of mixtures of nematic liquid crystals and viscous fluids. A second-order decoupled energy-stable schemes for Cahn-Hilliard-Navier-Stokes equations was suggested in [30]. For thermodynamically consistent models, Zhao [31] investigated a general numerical framework for designing linear, energy stable, and decoupled numerical algorithms. However, to the best of our knowledge, there are few researches on decoupling methods of the modified Cahn-Hilliard-Hele-Shaw system, it will be the purpose of our paper.

Based on Eqs (1.1)–(1.3), the modified Cahn-Hilliard-Hele-Shaw system with double well potential is given by

$$\partial_t \phi + \nabla \cdot (\phi \mathbf{u}) = \Delta \mu, \quad \text{in } \Omega \times (0, T),$$

where
The double well potential is given by

\[ \mu = f(\phi) - \epsilon^2 \Delta \phi + \xi, \quad \text{in } \Omega \times (0, T), \]  

\[ - \Delta \xi = \theta (\phi - \bar{\phi}_0), \quad \text{in } \Omega \times (0, T), \]  

\[ \mathbf{u} = - (\nabla p + \gamma \phi \nabla \mu), \quad \text{in } \Omega \times (0, T), \]  

\[ \nabla \cdot \mathbf{u} = 0, \quad \text{in } \Omega \times (0, T), \]  

\[ \phi|_{t=0} = \phi_0, \quad \text{in } \Omega, \]  

\[ \partial_t \phi = \partial_n \mu = 0, \quad \mathbf{u} \cdot \mathbf{n} = 0, \quad \text{on } \partial \Omega \times (0, T). \]  

where \( \Omega \in \mathbb{R}^d (d = 2, 3) \). \( \phi \) is the concentration field, \( \mathbf{u} \) is the advective velocity, \( \epsilon > 0 \) is the constant to measure the thickness of the transition layer between the two phases, and \( \mu \) is the chemical potential. \( f(\phi) \) is the derivative of the double well potential \( F(\phi) \). \( \xi \) is an auxiliary variable. \( p \) and \( \gamma \) represent the pressure and the dimensionless surface tension parameter, respectively. \( \mathbf{n} \) is the unit outer normal of the boundary \( \partial \Omega \). When \( \theta = 0 \), the equation becomes the classical Cahn-Hilliard-Hele-Shaw’s equation.

With regard to the double well potential corresponding to \( f(\phi) \) in Eq (1.2), the following \( \tilde{F}(\phi) \) can be taken [32–34]

\[ \tilde{F}(\phi) = \tilde{F}_1(\phi) + \tilde{F}_2(\phi) := (\phi^2 + \frac{1}{4}) \begin{cases} 
-2\phi + \frac{3}{4}, & \phi \geq 1, \\
\frac{3}{2} \phi^2 + \frac{1}{4} \phi^4, & \phi \in [-1, 1], \\
2\phi + \frac{3}{4}, & \phi \leq -1.
\end{cases} \]  

Correspondingly, the derivatives of \( \tilde{F}(\phi) \) can be split as follows

\[ \tilde{f}(\phi) = \tilde{f}_1(\phi) + \tilde{f}_2(\phi) = 2\phi + \begin{cases} 
-2, & \phi \geq 1, \\
-3\phi + \phi^3, & \phi \in [-1, 1], \\
2, & \phi \leq -1.
\end{cases} \]  

\( F(\phi) \) and \( f(\phi) \) are replaced by \( \tilde{F}(\phi) \) and its derivative \( \tilde{f}(\phi) \), which are still recorded as \( F \) and \( f \) for simplicity. Typically, the free energy functional of a modified Cahn-Hilliard-Hele-Shaw system with double well potential is given by

\[ E(\phi) = \int_\Omega \left( \frac{\epsilon^2}{2} \|
abla \phi\|^2 + F(\phi) \right) dx. \]  

In this paper, a decoupled finite element scheme for a modified Cahn-Hilliard-Hele-Shaw system with double well potential is proposed. The temporal discretization is based on the convex splitting of the energy functional in the modified Cahn-Hilliard equation, and the spatial discretization is carried out by the mixed finite element method. The computation of the velocity \( \mathbf{u} \) is separated from the computation of the pressure \( p \) by using an operator-splitting strategy. A Possion equation is solved to update the pressure at each time step. We prove that the proposed scheme is unconditionally stable in energy, and the error analyses are obtained. Finally, the numerical results verify the theoretical analysis. The rest of this article is structured as follows: The finite element discrete scheme of the Cahn-Hilliard-Hele-Shaw system combing with the convex splitting is given in Section 2; The theoretical preparations and stability of the proposed numerical scheme are proved in Section 3; The error analyses of the proposed scheme are addressed in Section 4; Some numerical examples are given to verify the previous theory in Section 5, and the conclusion is given in Section 6.
2. Mathematical model

2.1. Semi-discrete scheme

Let $L^2(\Omega)$ is a space of square integrable function and $H^k(\Omega), H^k_0(\Omega)$ denote the usual Sobolev spaces. $L^2(\Omega)$ inner product and its norm are denoted by $(u, v) = \int_\Omega u(x)v(x)dx$, $\|\phi\| = \|\phi\|_{L^2(\Omega)} = \sqrt{\langle \phi, \phi \rangle}$. The weak formulation of the modified Cahn-Hilliard-Hele-Shaw system with double well potential can be written as

\[
\begin{aligned}
(\partial_t \phi, v) + (\nabla \cdot (\phi u), v) + (\nabla \mu, \nabla v) &= 0, \quad \forall v \in H^1(\Omega), \\
(\mu, w) - (f_1(\phi) + f_2(\phi), w) - \epsilon^2(\nabla \phi, \nabla w) - (\xi, w) &= 0, \quad \forall w \in H^1(\Omega), \\
(\nabla \xi, \nabla \psi) - \theta(\phi - \xi, \psi) &= 0, \quad \forall \psi \in H^1(\Omega), \\
(\nabla p + \gamma \phi \nabla \mu, \nabla q) &= 0, \quad \forall q \in H^1(\Omega).
\end{aligned}
\]  

(2.1)

where,

\[
f_1(\phi) = 2\phi, \quad f'_1(\phi) = 2, \quad f_2(\phi) = \begin{cases} -2, & \phi \geq 1 \\ -3\phi + \phi^3, & \phi \in [-1, 1], \quad f'_2(\phi) = 3(\phi^2 - 1) \leq 0. \\ 2, & \phi \leq -1 \end{cases}
\]

Let $N$ be a positive integer and $0 = t_0 < t_1 < \cdots < t_N = T$ be a uniform partition of $[0, T]$, where $t_i = i\tau$, $i = 0, 1, \cdots, N - 1$, $\tau = \frac{T}{N}$.

The semi-discrete scheme of the modified Cahn-Hilliard-Hele-Shaw system with double well potential is as follows. For $n \geq 0$, find \(\phi^{n+1}, \mu^{n+1}, \xi^{n+1}, p^{n+1}\) such that

\[
\begin{aligned}
\left(\frac{\phi^{n+1} - \phi^n}{\tau}, v\right) - (\phi^n u^{n+1}, \nabla v) + (\nabla \mu^{n+1}, \nabla v) &= 0, \quad \forall v \in H^1(\Omega), \\
(\mu^{n+1}, w) - (f_1(\phi^{n+1}) + f_2(\phi^n), w) - \epsilon^2(\nabla \phi^{n+1}, \nabla w) - (\xi^{n+1}, w) &= 0, \\
(\nabla \xi^{n+1}, \nabla \psi) - \theta(\phi^{n+1} - \xi^{n+1}, \psi) &= 0, \\
(\nabla (p^{n+1} - p^n), \nabla q) &= (u^{n+1}, \nabla q),
\end{aligned}
\]  

(2.2)–(2.5)

where the velocity is given by

\[
u^{n+1} = -(\nabla p^n + \gamma \phi^n \nabla \mu^{n+1}).
\]  

(2.6)

Combing with the idea of the literatures [26,35], the computation of the modified Cahn-Hilliard equations (2.2)–(2.4) are decoupled from Eq (2.5) after substituting $\mathbf{u}^{n+1}$ into Eq (2.2), since the pressure is explicit in Eq (2.6). The velocity $\mathbf{u}^{n+1}$ is regarded as an intermediate velocity by using the incremental projection method similar to the Navier-Stokes equation. The real velocity $\tilde{\mathbf{u}}^{n+1}$ is obtained from the intermediate velocity and satisfies

\[
\tilde{\mathbf{u}}^{n+1} - \mathbf{u}^{n+1} = -(\nabla p^{n+1} - \nabla p^n), \quad \nabla \cdot \tilde{\mathbf{u}}^{n+1} = 0.
\]  

(2.7)

Then Eq (2.6) and Eq (2.7) are added together to obtain the original Eq (1.7). If the divergence operator is applied to both side of Eq (2.7), the real velocity $\tilde{\mathbf{u}}^{n+1}$ will vanished. We have

\[
\nabla \cdot (\nabla p^{n+1} - \nabla p^n) = \nabla \cdot \mathbf{u}^{n+1}.
\]  

(2.8)
2.2. Fully discrete scheme

Let $T_h = \{K\}$ be a regular partition of the domain $\Omega$ that is divided into triangles with the size $h = \max h_k$. $S_h$ is a piecewise polynomial space, which is defined as

$$S_h = \{v_h \in C^0(\Omega)|v_h|_K \in P_h(x, y), K \in T_h\} \subset \mathbb{H}^1(\Omega),$$

where $P_h(x, y)$ is a polynomial of degree at most $r$.

Let us denote

$$L^2_0 := \{u \in L^2(\Omega)|(u, 1) = 0\}, \quad \hat{S}_h := S_h \cap L^2_0,$$

$$\hat{H}^1 := H^1(\Omega) \cap L^2_0, \quad \hat{H}^{-1} := \{v \in H^{-1}(\Omega)|(v, 1) = 0\}.$$

The corresponding fully discrete scheme have the following expression, find 

$$\{\phi_h^{n+1}, \mu_h^{n+1}, \xi_h^{n+1}, p_h^{n+1}\} \in S_h \times S_h \times \hat{S}_h \times \hat{S}_h,$$

such that

$$\begin{align*}
(\frac{\phi_h^{n+1} - \phi_h^n}{\tau}, v_h) - (\nabla \phi_h^{n+1}, \nabla v_h) + (\nabla \mu_h^{n+1}, \nabla v_h) &= 0, \quad (2.9) \\
(\mu_h^{n+1}, w_h) - (f_1(\phi_h^{n+1}) + f_2(\phi_h^n), w_h) - \mu_h^{n+1}(\nabla \phi_h^{n+1}, \nabla w_h) - \mu_h^{n+1}(\xi_h^{n+1}, w_h) &= 0, \quad (2.10) \\
(\nabla \xi_h^{n+1}, \nabla \psi_h) - \theta(\phi_h^{n+1} - \phi_0, \psi_h) &= 0, \quad (2.11) \\
(\nabla (p_h^{n+1} - p_h^n), \nabla q_h) &= (u_h^{n+1}, \nabla q_h), \quad (2.12)
\end{align*}$$

where the velocity is given by

$$u_h^{n+1} = -(\nabla p_h^n + \gamma \phi_h^n \nabla \mu_h^{n+1}). \quad (2.13)$$

3. The analysis of stability

**Definition 3.1.** [36] The Ritz projection operator $R_h(\Omega)$: $\phi \in H^1(\Omega) \rightarrow S_h$ satisfies

$$(\nabla (R_h \phi - \phi), \nabla \chi) = 0, \quad \forall \chi \in S_h, \quad (R_h \phi - \phi, 1) = 0. \quad (3.1)$$

and have the following estimates,

$$\begin{align*}
||R_h \phi||_{H^1(\Omega)} &\leq C||\phi||_{H^1}, \quad \forall \phi \in H^1(\Omega), \quad (3.2) \\
||\phi - R_h \phi|| + h||\phi - R_h \phi||_{H^1(\Omega)} &\leq Ch^{r+1}||\phi||_{H^{r+1}}, \quad \forall \phi \in H^{r+1}(\Omega). \quad (3.3)
\end{align*}$$

**Definition 3.2.** [36] Define the operator $T_h : \hat{H}^{-1} \rightarrow \hat{H}^1$ through the following variational problems, given $\zeta \in \hat{H}^{-1}$, find $T_h(\zeta) \in \hat{H}^1$ such that

$$(\nabla T_h(\zeta), \nabla \chi) = (\zeta, \chi), \quad \forall \chi \in \hat{H}^1. \quad (3.4)$$

**Lemma 3.1.** [12,15] Let $\zeta, \varphi \in \hat{H}^{-1}$ and set

$$(\zeta, \varphi)_{-1,h} := (\nabla T_h(\zeta), \nabla T_h(\varphi)) = (\zeta, T_h(\varphi)) = (T_h(\zeta), \varphi), \quad (3.5)$$

where $(\cdot, \cdot)_{-1,h}$ defines an inner product on the $\hat{H}^{-1}$ and its corresponding $H^{-1}$ norm is written as

$$||\zeta||_{-1,h} = \sqrt{(\zeta, \zeta)_{-1,h}} = \sup_{0 \neq \chi \in \hat{H}^{-1}} \frac{(\zeta, \chi)}{||\chi||}. \quad (3.6)$$
Consequently, for \( \forall \chi \in \hat{H}^1, \zeta \in \hat{H}^{-1} \),

\[
|\langle \zeta, \chi \rangle| \leq \| \zeta \|_{-1,h} \| \nabla \chi \|.
\]  

(3.7)

Furthermore, the following Poincaré inequalities holds,

\[
\| \zeta \|_{-1,h} \leq C \| \zeta \|, \quad \forall \zeta \in L^2_0.
\]  

(3.8)

**Definition 3.3.** [12,15] Define \( W := \{ u \in L^2(\Omega) | (u, \nabla q), \forall q \in H^1(\Omega) \} \). The projection operator \( P : w \in L^2(\Omega) \rightarrow W \) is defined as

\[
P(w) = \nabla p + w,
\]  

where \( p \in \hat{H}^1 := \{ \phi \in H^1(\Omega) | (\phi, 1) = 0 \} \) is the unique solution to

\[
(\nabla p + w, \nabla q) = 0, \quad \forall q \in H^1(\Omega).
\]  

(3.9)

**Lemma 3.2.** [12,15] Projection operator \( P \) is linear and satisfies the following properties

\[
(P(w) - w, v) = 0, \quad \forall v \in W,
\]  

and

\[
\| P(w) \| \leq \| w \|. 
\]  

(3.10)

**Definition 3.4.** [12,15] Define \( W_h := \{ u_h \in L^2(\Omega) | (u_h, \nabla q_h) = 0, \forall q_h \in S_h \} \). The projection operator \( P_h : w \in L^2(\Omega) \rightarrow W_h \) is defined as

\[
P_h(w) = \nabla p_h + w,
\]  

where \( p_h \in \hat{S}_h \) is the unique solution to

\[
(\nabla p_h + w, \nabla q_h) = 0, \quad \forall q_h \in \hat{S}_h(\Omega).
\]  

(3.11)

**Lemma 3.3.** [14,15] Projection operator \( P_h \) is linear and satisfies the following properties

\[
(P_h(w) - w, v) = 0, \quad \forall v_h \in W_h,
\]  

and

\[
\| P_h(w) \| \leq \| w \|. 
\]  

(3.12)

**Lemma 3.4.** [12,15] Suppose that \( w \in H^q(\Omega) \) with the compatible boundary condition \( w \cdot n = 0 \) on \( \partial \Omega \) and \( q \in H^{q + 1}(\Omega) \), then

\[
\| P_h(w) - P(w) \| = \| \nabla (p - p_h) \| \leq C h^q |p|_{H^{q+1}}.
\]  

(3.13)
Theorem 3.1. Let \( \{\phi_h^{\nu+1}, \mu_h^{\nu+1}, p_h^{\nu+1}, \xi_h^{\nu+1}\} \) be the unique solution of Eqs (2.9–2.12). Define
\[
\Xi(\phi_h^{\nu+1}) := E(\phi_h^{\nu+1}) + \frac{\theta}{2} ||\phi_h^{\nu+1}||^2 + \frac{\tau}{2\gamma} ||\nabla p_h^{\nu+1}||^2.
\] (3.18)

Then for any \( h, \tau, \varepsilon > 0, n \geq 0 \), scheme (2.9)–(2.12) satisfies the following property,
\[
\Xi(\phi_h^{\nu+1}) + \tau ||\nabla \mu_h^{\nu+1}||^2 + ||\phi_h^{\nu+1} - \phi_h^{\nu}||^2 + \frac{\varepsilon^2}{2} ||\nabla \phi_h^{\nu+1} - \nabla \phi_h^{\nu}||^2
\]
\[
+ \frac{\theta}{2} ||\phi_h^{\nu+1} - \phi_h^{\nu}||^2 + \frac{\tau}{2\gamma} ||u_h^{\nu+1}||^2 \leq \Xi(\phi_h^{\nu}).
\] (3.19)

Proof. Taking \( v_h = \tau \mu_h^{\nu+1} \) in Eq (2.9), one has
\[
(\phi_h^{\nu+1} - \phi_h^{\nu}, \mu_h^{\nu+1}) - \tau (\phi_h^{\nu} u_h^{\nu+1}, \mu_h^{\nu+1}) + \tau ||\nabla \mu_h^{\nu+1}||^2 = 0.
\] (3.20)

In Eq (2.10), \( f_1(\phi_h^{\nu+1}) = 2\phi_h^{\nu+1}, f_2(\phi_h^{\nu}) = (\phi_h^{\nu})^3 - 3\phi_h^{\nu} \). For \( f_2(\phi_h^{\nu}) \), through Taylor expansion
\[
F_2(\phi_h^{\nu+1}) = F_2(\phi_h^{\nu}) + f_2(\phi_h^{\nu})(\phi_h^{\nu+1} - \phi_h^{\nu}) + \frac{f_2'(\eta)}{2}(\phi_h^{\nu+1} - \phi_h^{\nu})^2.
\]
where \( \eta \) is a number between \( \phi_h^{\nu} \) and \( \phi_h^{\nu+1} \), we have
\[
f_2(\phi_h^{\nu})(\phi_h^{\nu+1} - \phi_h^{\nu}) = (F_2(\phi_h^{\nu+1}) - F_2(\phi_h^{\nu}), 1) - \frac{f_2'(\eta)}{2}(\phi_h^{\nu+1} - \phi_h^{\nu})^2.
\]

Then, choosing \( w_h = -(\phi_h^{\nu+1} - \phi_h^{\nu}) \) and using the fact that \( (a, a - b) = \frac{1}{2}[a^2 - b^2 + (a - b)^2] \) give
\[
-(\mu_h^{\nu+1}, \phi_h^{\nu+1} - \phi_h^{\nu}) + (||\phi_h^{\nu+1}||^2 - ||\phi_h^{\nu}||^2 + ||\phi_h^{\nu+1} - \phi_h^{\nu}||^2) + (F_2(\phi_h^{\nu+1}) - F_2(\phi_h^{\nu}), 1)
\]
\[
- \frac{f_2'(\eta)}{2} ||\phi_h^{\nu+1} - \phi_h^{\nu}||^2 + \frac{\varepsilon^2}{2} ||\nabla \phi_h^{\nu+1}||^2 - ||\nabla \phi_h^{\nu}||^2 + ||\nabla \phi_h^{\nu+1} - \nabla \phi_h^{\nu}||^2
\]
\[
+ (\xi_h^{\nu+1}, \phi_h^{\nu+1} - \phi_h^{\nu}) = 0.
\] (3.21)

Replacing \( \psi \) by \( -T_h(\phi_h^{\nu+1} - \phi_h^{\nu}) \) in Eq (2.11). By Eq (3.1) in definition 3.1, Eq (3.5) in lemma 3.1 and \( (a, a - b) = \frac{1}{2}[a^2 - b^2 + (a - b)^2] \), one obtains
\[
-(\xi_h^{\nu+1}, \phi_h^{\nu+1} - \phi_h^{\nu}) + \frac{\theta}{2} (||\phi_h^{\nu+1} - \phi_h^{\nu}||^2 - ||\phi_h^{\nu} - \phi_h^{\nu}||^2) = 0.
\] (3.22)

Next, we take inner product of Eq (2.13) with \( \frac{\tau}{\gamma} u_h^{\nu+1} \) to get
\[
\frac{\tau}{\gamma} ||u_h^{\nu+1}||^2 + \frac{\tau}{\gamma} (\nabla p_h^{\nu}, u_h^{\nu+1}) = -\tau (\phi_h^{\nu}, \mu_h^{\nu+1}, u_h^{\nu+1}).
\] (3.23)

Now, taking \( q_h = \frac{\tau}{\gamma} p_h^{\nu} \) and using the fact that \( (a - b, 2b) = a^2 - b^2 - (a - b)^2 \) in Eq (2.12), we arrived at
\[
\frac{\tau}{2\gamma} (||\nabla p_h^{\nu+1}||^2 - ||\nabla p_h^{\nu}||^2 - ||\nabla p_h^{\nu+1} - \nabla p_h^{\nu}||^2) = \frac{\tau}{\gamma} (u_h^{\nu+1}, \nabla p_h^{\nu}).
\] (3.24)
The proof is completed. □

Summing the Eq (3.19) from Proof, the following estimation can be obtained

\[ \|\nabla p_h^{n+1} - \nabla p_h^n\|^2 \leq \|u_h^{n+1}\|^2. \]  

(3.25)

Combining Eqs (3.23)–(3.25), it can be written as

\[ \frac{\tau}{2\gamma}\|u_h^{n+1}\|^2 + \frac{\tau}{2\gamma}(\|\nabla p_h^{n+1}\|^2 - \|\nabla p_h^n\|^2) = -\tau(\phi_h^{n+1}, u_h^{n+1}). \]  

(3.26)

Summing Eqs (3.20)–(3.26), one concludes that

\[ \tau\|\nabla \mu_h^{n+1}\|^2 + (\|\phi_h^{n+1}\|^2 - \|\phi_h^n\|^2) + (F_2(\phi_h^{n+1}) - F_2(\phi_h^n)) \]
\[ - \frac{f_2'(\eta)}{2}\|\phi_h^{n+1} - \phi_h^n\|^2 + \frac{\tau}{2\gamma}(\|\nabla \phi_h^{n+1}\|^2 - \|\nabla \phi_h^n\|^2) \]
\[ + \frac{\theta}{2}\|\phi_h^{n+1} - \phi_h^n\|^2 \]
\[ + \frac{\tau}{2\gamma}(\|\nabla p_h^{n+1}\|^2 - \|\nabla p_h^n\|^2) = 0. \]  

(3.27)

Since \( f_2'(\phi) = 3(\phi^2 - 1) \leq 0, \phi \in [-1, 1] \), there is \( \frac{f_2'(\eta)}{2}\|\phi_h^{n+1} - \phi_h^n\|^2 \leq 0 \) by Taylor expansion. Therefore,

\[ \Xi(\phi_h^{n+1}) - \Xi(\phi_h^n) + \tau\|\nabla \mu_h^{n+1}\|^2 + (\|\phi_h^{n+1}\|^2 - \|\phi_h^n\|^2) + \frac{\tau}{2\gamma}(\|\nabla \phi_h^{n+1}\|^2 - \|\nabla \phi_h^n\|^2) \]
\[ + \frac{\theta}{2}\|\phi_h^{n+1} - \phi_h^n\|^2 \]
\[ + \frac{\tau}{2\gamma}(\|\nabla p_h^{n+1}\|^2 - \|\nabla p_h^n\|^2) \leq 0. \]  

(3.28)

The proof is completed. □

**Corollary 3.1.** Suppose that \( \Xi(\phi_h^n) \leq C_0 \), there is a constant \( C > 0 \) independent of \( \tau \) and \( h \), such that the following estimates hold for any \( \tau, h > 0 \),

\[ \max_{0 \leq n \leq N} (\|\nabla \phi_h^{n+1}\|^2 + \|\phi_h^{n+1}\|^2 + \|\phi_h^{n+1} - \phi_0\|^2) \leq C, \]  

(3.29)

\[ \max_{0 \leq n \leq N} \|\nabla p_h^{n+1}\|^2 \leq C, \]  

(3.30)

\[ \sum_{i=0}^{N} (\|\phi_h^{i+1} - \phi_h^i\|^2 + \|\nabla \phi_h^{i+1} - \nabla \phi_h^i\|^2 + \|\phi_h^{i+1} - \phi_h^i\|^2) \leq C, \]  

(3.31)

\[ \sum_{i=0}^{N} \tau(\|\nabla \mu_h^{i+1}\|^2 + \|\nabla u_h^{i+1}\|^2) \leq C. \]  

(3.32)

**Proof.** Summing the Eq (3.19) from \( i = 0 \) to \( N \), we get

\[ \Xi(\phi_h^N) + \tau \sum_{i=0}^{N} (\|\nabla \mu_h^{i+1}\|^2 + \|\phi_h^{i+1}\|^2 + \|\phi_h^{i+1} - \phi_0\|^2) + \frac{\tau}{2\gamma} \sum_{i=0}^{N} (\|u_h^{i+1}\|^2 + \|\phi_h^{i+1} - \phi_h^i\|^2) \]
\[ + \frac{\gamma^2}{2} \sum_{i=0}^{N} (\|\nabla \phi_h^{i+1} - \nabla \phi_h^i\|^2 + \frac{\theta}{2} \sum_{i=0}^{N} (\|\phi_h^{i+1} - \phi_h^i\|^2) \leq \Xi(\phi_h^0) \leq C. \]  

The proof is completed. □

\[ AIMS \ Mathematics \]
\[ Volume 6, Issue 8, 8681–8704. \]
4. Error estimates

In this section, we assume that the weak solution \( \{ \phi, \mu, \xi, p \} \) satisfies the following regularity

\[
\phi \in H^1(0, T; H^{q+1}(\Omega)) \cap L^\infty(0, T; H^1(\Omega)) \cap L^\infty(0, T; H^{q+1}(\Omega)), \\
\mu \in L^\infty(0, T; H^1(\Omega)) \cap L^2(0, T; H^{q+1}(\Omega)), \\
\xi \in L^2((0, T; H^{q+1}(\Omega))), \\
u \in L^\infty(0, T; H^q(\Omega)), \\
\phi \nabla \mu \in L^\infty(0, T; H^q(\Omega)).
\]

For the convenience of subsequent analysis, we introduce some notations,

\[
\phi^{n+1} = \phi(t_{n+1}), \\
\delta_t \phi^{n+1} = \frac{\phi^{n+1} - \phi^n}{\tau}, \\
\tilde{e}_\phi^{n+1} = \phi^{n+1} - R_h \phi^{n+1}, \\
\tilde{\phi}^{n+1} = R_h \phi^{n+1} - \phi_h^{n+1}, \\
\tilde{e}_\mu^{n+1} = \mu^{n+1} - R_h \mu^{n+1}, \\
\tilde{\mu}^{n+1} = R_h \mu^{n+1} - \mu_h^{n+1}, \\
\tilde{e}_\xi^{n+1} = \xi^{n+1} - R_h \xi^{n+1}, \\
\tilde{\xi}^{n+1} = R_h \xi^{n+1} - \xi_h^{n+1}, \\
\tilde{e}_p^{n+1} = p^{n+1} - R_h p^{n+1}, \\
\tilde{\rho}^{n+1} = R_h p^{n+1} - \rho_h^{n+1}, \\
\sigma(\tilde{\phi}^{n+1}) = \delta_t R_h \phi^{n+1} - \partial_t \phi^{n+1}.
\]

**Lemma 4.1.** [36] Suppose the \( \{ \phi, \mu, \xi, p \} \) is the solution to Eq (2.1), the following estimate holds

\[
\|\sigma(\phi^{n+1})\|^2 \leq C h^{2q+2} + C \tau^2. \tag{4.1}
\]

**Theorem 4.1.** Suppose the solutions of the initial problem Eq (2.1) and the fully discrete scheme Eqs (2.9)–(2.12) are \( \{ \phi^{n+1}, \mu^{n+1}, \xi^{n+1}, p^{n+1} \} \), respectively. Then for any \( h, \tau > 0 \), the following estimate holds

\[
\sum_{i=0}^n \tau \| \nabla e^{i+1}_\mu \|^2 + \epsilon^2 \| \nabla \tilde{e}^{i+1}_\phi \|^2 + \theta \| \tilde{e}^{i+1}_\phi \|_{-1,h}^2 + \sum_{i=0}^n \tau \gamma \| \nabla \tilde{e}^{i+1}_p \|^2 \\
+ \sum_{i=0}^n \tau \gamma \| (P_h(\phi^i, \nabla \tilde{e}^{i+1}_\mu)) \|^2 \leq C \tau^2 + C h^{2q}. \tag{4.2}
\]

**Proof.** Subtracting Eqs (2.9)–(2.12) from Eq (2.1) at \( t = n + 1 \), one has

\[
-\sigma(\phi^{n+1}), v_h) + (\delta_t \tilde{e}^{n+1}_\phi, v_h) + (\tilde{e}^{n+1}_\phi (\nabla p^{n+1} + \gamma \phi^{n+1} \nabla \mu^{n+1}), \nabla v_h) \tag{4.3}
\]

\[
-(\phi^{n+1} (\nabla p^{n+1} + \gamma \phi^{n+1} \nabla \mu^{n+1}), \nabla v_h) + (\tilde{e}^{n+1}_\phi, \nabla v_h) + (f_1(\phi^{n+1}_{h}) + f_2(\phi^{n+1}_{h}), w_h) - (f(\phi^{n+1}), w_h) \tag{4.4}
\]

\[
-\epsilon^2(\nabla \tilde{e}^{n+1}_\phi, \nabla w_h) - (\tilde{e}^{n+1}_\phi, w_h) - (\tilde{\phi}^{n+1}, w_h) = 0, \tag{4.5}
\]

\[
(\nabla \tilde{e}^{n+1}_\phi, \nabla \psi_h) + (\nabla \tilde{\phi}^{n+1}, \nabla \psi_h) - \theta (\tilde{\phi}^{n+1}, \psi_h) - \theta (\tilde{\phi}^{n+1}, \psi_h) = 0, \tag{4.6}
\]

\[
(\nabla \tilde{e}^{n+1}_\phi, \nabla \psi_h) + (\nabla \tilde{\phi}^{n+1}, \nabla \psi_h) - \theta (\tilde{\phi}^{n+1}, \psi_h) - \theta (\tilde{\phi}^{n+1}, \psi_h) = 0.
\]
We choose \( v_h = \hat{v}_\mu^{n+1} \) in Eq (4.3), \( w_h = -\delta_t \hat{e}_\phi^{n+1} \) in Eq (4.4), \( \psi_h = -T_h(\delta t \hat{e}_\phi^{n+1}) \) in Eq (4.5), \( q_h = \varepsilon \hat{e}_p^{n+1} \) in Eq (4.6) and sum them to get

\[
\frac{\| \nabla \hat{e}_\mu^{n+1} \|^2}{2\tau} + \frac{\varepsilon^2}{2\tau} (\| \nabla \hat{e}_\phi^{n+1} \|^2 - \| \nabla \hat{e}_\phi^{n} \|^2 + \| \nabla \hat{e}_\phi^{n+1} - \nabla \hat{e}_\phi^{n} \|^2)
+ \frac{\theta}{2\tau} (\| \hat{e}_\phi^{n+1} \|^2_{1,h} - \| \hat{e}_\phi^{n} \|^2_{1,h} + \| \hat{e}_\phi^{n+1} - \hat{e}_\phi^{n} \|^2_{1,h}) + \varepsilon \| \nabla \hat{e}_p^{n+1} \|^2
= \sigma(\phi^{n+1}, \hat{e}_\mu^{n+1}) + \delta_t \left( \frac{\partial}{\partial t} \hat{e}_\phi^{n+1} \right) - \theta(\hat{e}_\phi^{n+1}, T_h(\delta_t \hat{e}_\phi^{n+1}))
+ (f_1(\phi_h^{n+1}) + f_2(\phi_h^{n+1}), \delta_t \hat{e}_\phi^{n+1}) - (f(\phi^{n+1}), \delta_t \hat{e}_\phi^{n+1})
- (\phi^{n+1}(\nabla p_h^{n+1} + \gamma \phi^{n+1} \nabla \mu_h^{n+1}), \nabla \hat{e}_\mu^{n+1}) + (\phi_h^6(\nabla p_h^{n} + \gamma \phi_h^6 \nabla \mu_h^{n}), \nabla \hat{e}_\mu^{n+1})
- \varepsilon \gamma(\phi^{n+1} \nabla \mu_h^{n+1} - \phi_h^6 \nabla \mu_h^{n}, \nabla \hat{e}_p^{n+1}) = \sum_{i=1}^{6} M_i,
\]

where we denote

\[
M_1 = (\sigma(\phi^{n+1}, \hat{e}_\mu^{n+1}),
M_2 = (\hat{e}_\mu^{n+1}, \delta_t \hat{e}_\phi^{n+1}),
M_3 = -\theta(\hat{e}_\phi^{n+1}, T_h(\delta_t \hat{e}_\phi^{n+1})),
M_4 = (f_1(\phi_h^{n+1}) + f_2(\phi_h^{n+1}), \delta_t \hat{e}_\phi^{n+1}) - (f(\phi^{n+1}), \delta_t \hat{e}_\phi^{n+1}),
M_5 = -\phi^{n+1}(\nabla p_h^{n+1} + \gamma \phi^{n+1} \nabla \mu_h^{n+1}), \nabla \hat{e}_\mu^{n+1}) + (\phi_h^6(\nabla p_h^{n} + \gamma \phi_h^6 \nabla \mu_h^{n}), \nabla \hat{e}_\mu^{n+1}),
M_6 = -\varepsilon \gamma(\phi^{n+1} \nabla \mu_h^{n+1} - \phi_h^6 \nabla \mu_h^{n}, \nabla \hat{e}_p^{n+1}).
\]

Next, we estimate \( M_i \). According to the poincaré inequality, the Cauchy-Schwarz inequality, the Young inequality and lemma 4.1, one obtains

\[
M_1 = (\sigma(\phi^{n+1}, \hat{e}_\mu^{n+1})
\leq |(\sigma(\phi^{n+1}), \hat{e}_\mu^{n+1})|
\leq |(\sigma(\phi^{n+1}), \hat{e}_\mu^{n+1} - \hat{e}_\mu^{n+1})|
\leq ||\sigma(\phi^{n+1})|| ||\nabla \hat{e}_\mu^{n+1}||
\leq \frac{1}{M} ||\sigma(\phi^{n+1})||^2 + \frac{M}{4} ||\nabla \hat{e}_\mu^{n+1}||^2
\leq C \tau^2 + C h^2 + \frac{M}{4} ||\nabla \hat{e}_\mu^{n+1}||^2.
\]

Using Eq (3.7) in lemma 3.1, the Young inequality and Eq (3.3) in definition 3.1, we have

\[
M_2 = (\hat{e}_\mu^{n+1}, \delta_t \hat{e}_\phi^{n+1}) \leq |(\hat{e}_\mu^{n+1}, \delta_t \hat{e}_\phi^{n+1})|
\leq ||\nabla \hat{e}_\mu^{n+1}|| ||\delta_t \hat{e}_\phi^{n+1}||_{-1,h} \leq \frac{1}{\alpha} ||\nabla \hat{e}_\mu^{n+1}||^2 + \frac{\alpha}{4} ||\delta_t \hat{e}_\phi^{n+1}||^2_{-1,h}
\leq C h^2 + \frac{\alpha}{4} ||\delta_t \hat{e}_\phi^{n+1}||^2_{-1,h}.
\]
definition 3.1, we can estimate $M_3$ as follows,

$$
M_3 = -\theta(\tilde{e}_{\phi}^{n+1}, T_h(\delta \tilde{e}_{\phi}^{n+1})) \\
\leq \theta(\tilde{e}_{\phi}^{n+1}, T_h(\delta \tilde{e}_{\phi}^{n+1})) \\
\leq \theta(\|\tilde{e}_{\phi}^{n+1}\|\|T_h(\delta \tilde{e}_{\phi}^{n+1})\|) \\
\leq \theta(\|\tilde{e}_{\phi}^{n+1}\|\|\delta \tilde{e}_{\phi}^{n+1}\|)_{-1,h} \\
\leq \theta \frac{\alpha^2}{2} \|\tilde{e}_{\phi}^{n+1}\|^2 + \frac{\alpha}{4}\|\tilde{e}_{\phi}^{n+1}\|^2_{-1,h} \\
\leq C h^{2q+2} + \frac{\alpha}{4}\|\tilde{e}_{\phi}^{n+1}\|_{-1,h}.
$$

(4.11)

As for $M_4$, there is $f_1(\phi^{n+1}) - f_1(\phi_h^{n+1}) = 2(\phi^{n+1} - \phi_h^{n+1})$ for $f_1(\phi) = 2\phi$, and $f_2(\phi^{n+1}) - f_2(\phi_h^{n+1}) \leq C(\phi^{n+1} - \phi_h^{n+1})$ for $f_2(\phi) = \phi^3 - 3\phi$. Then, according to lemma 3.1, the Young inequality, definition 3.1 and Taylor extension $\|\nabla \tau \delta, \phi(t)\|^2 \leq C \tau^2$, the following inequality is established

$$
M_4 = (f_1(\phi_h^{n+1}) + f_2(\phi_h^{n+1}), \delta \tilde{e}_{\phi}^{n+1}) - (f(\phi^{n+1}), \delta \tilde{e}_{\phi}^{n+1}) \\
\leq |(f_1(\phi_h^{n+1}) - f_1(\phi_h^{n+1}), \delta \tilde{e}_{\phi}^{n+1}) + (f_2(\phi_h^{n+1}) - f_2(\phi_h^{n+1}), \delta \tilde{e}_{\phi}^{n+1})| \\
\leq 2\|\nabla \phi - \phi_h\|\|\delta \tilde{e}_{\phi}^{n+1}\|_{-1,h} + L\|\nabla \phi - \phi_h\|\|\delta \tilde{e}_{\phi}^{n+1}\|_{-1,h} \\
\leq \frac{16}{\alpha}\|\nabla \tilde{e}_{\phi}^{n+1}\|^2 + \frac{4}{\alpha}\|\nabla \tilde{e}_{\phi}^{n+1}\|^2 + \frac{16L}{\alpha}\|\nabla \phi - \phi_h\|^2 \\
+ \frac{16L}{\alpha}\|\nabla \tilde{e}_{\phi}^{n+1}\|^2 + \frac{\alpha}{2}\|\delta \tilde{e}_{\phi}^{n+1}\|^2_{-1,h} \\
\leq C \tau^2 + Ch^{2q} + \frac{4}{\alpha}\|\nabla \tilde{e}_{\phi}^{n+1}\|^2 + C\|\nabla \tilde{e}_{\phi}^{n+1}\|^2 + \frac{\alpha}{2}\|\delta \tilde{e}_{\phi}^{n+1}\|^2_{-1,h}.
$$

(4.12)

To deal with $M_5$, we denote $b(\phi, u, v) := (\phi u, \nabla v)$. Referring to the method in [15], $M_5$ can be analyzed as

$$
M_5 = -(\phi u^{n+1}, \nabla \rho^{n+1}) + \gamma \phi u^{n+1}, \nabla u^{n+1}, \nabla e^{n+1}) + (\phi_h u_p^{n+1}, \nabla u_p^{n+1}, \nabla e^{n+1}) \\
= -b(\phi u^{n+1}, e^{n+1}) + b(\phi_h u_p^{n+1}, e^{n+1}) \\
= -b(\phi u^{n+1}, e^{n+1}) - b(\phi_h u_p^{n+1}, e^{n+1}) - b(\nabla u^{n+1}, e^{n+1}) - b(\nabla e^{n+1}, e^{n+1}) \\
\leq b(\phi u^{n+1}, e^{n+1}) + b(\nabla u^{n+1}, e^{n+1}) + b(\phi_h u_p^{n+1}, e^{n+1}) + b(\nabla e^{n+1}, e^{n+1}) \\
\leq CD(\tau^2 + h^{2q}) + CD\|\nabla \tilde{e}_{\phi}^{n+1}\|^2 + \frac{1}{4}\|\nabla \phi^{n+1}\|^2 - \gamma \|P(\phi_{\phi}^{n+1})\|^{2},
$$

(4.13)

where $D := \|\phi_{\phi}^{n+1}\|_{L^2}^4 + 1 \leq C$. Therefore,

$$
M_5 \leq C \tau^2 + Ch^{2q} + \frac{1}{4}\|\nabla \tilde{e}_{\phi}^{n+1}\|^2 + \frac{1}{4}\|\nabla \phi^{n+1}\|^2 - \gamma \|P(\phi_{\phi}^{n+1})\|^{2}.
$$

(4.14)
According to the definition 3.3, definition 3.4, lemma 3.4, Taylor expansion $\|\nabla \tau \phi_T p^{n+1}\|^2 \leq C\tau^2$, the Cauchy-Schwarz inequality and the Young inequality, the following error estimation formulation holds

\[
M_h = -\varepsilon \gamma (\phi^{n+1} \nabla \mu^{n+1} - \phi^h \nabla \mu^h, \nabla \phi^{n+1}) \\
= -\varepsilon \gamma (\nabla p^{n+1} + \phi^{n+1} \nabla \mu^{n+1}, \nabla \phi^{n+1}) + \varepsilon \gamma (\nabla p^{n+1} - \nabla p^n, \nabla \phi^{n+1}) \\
+ \varepsilon \gamma (\nabla p^n - \nabla p^n_\mu, \nabla \phi^{n+1}) + \varepsilon \gamma (\nabla p^n_\mu + \phi^h \nabla \mu^h, \nabla \phi^{n+1}) \\
\leq \varepsilon \gamma \|\nabla (p^{n+1} - p^n)\|\|\nabla \phi^{n+1}\| + \varepsilon \gamma \|\nabla (p^n - p^n_\mu)\|\|\nabla p^{n+1}\| \\
\leq \frac{\varepsilon \gamma}{2} \|\nabla \tau \delta \phi_T p^{n+1}\|^2 + \frac{\varepsilon}{2} \|\nabla (p^n - p^n_\mu)\|^2 + \varepsilon \gamma \|\nabla \phi^{n+1}\|^2 \\
\leq C\tau^2 + C h^2 + \varepsilon \gamma \|\nabla \phi^{n+1}\|^2.
\]  

(4.15)

Combining Eqs (4.7)–(4.15) gives

\[
\frac{1}{2} \|\nabla \phi^{n+1}\|^2 + \frac{\varepsilon^2}{2\tau} (\|\nabla \phi^{n+1}\|^2 - \|\nabla \phi^{n}\|^2 - \|\nabla \phi^{n+1} - \nabla \phi^{n}\|^2) \\
+ \frac{\theta}{2\tau} (\|\nabla \phi^{n+1}\|_{L^1}^2 - \|\nabla \phi^{n}\|_{L^1}^2 + \|\nabla \phi^{n+1} - \nabla \phi^{n}\|_{L^1}^2) + \varepsilon \gamma \|\nabla \phi^{n+1}\|^2 \\
+ \gamma \|P_h (\phi^h \nabla \phi^{n+1})\|^2 \\
\leq C\tau^2 + C h^2 + C ||\nabla \phi^{n+1}\|^2 + \frac{4}{\alpha} \|\nabla \phi^{n+1}\|^2 + \varepsilon \gamma \|\nabla \phi^{n+1}\|^2 \\
+ \alpha \|\delta \phi \|_{L^1}^2 h.
\]  

(4.16)

For $||\delta \tau \phi^{n+1}\|_{L^1}^2$, taking $\lambda v_h = T_h (\delta \tau \phi^{n+1})$ in Eq (4.3) and using a similar idea as $M_5$, the following inequality can be obtained,

\[
\alpha \|\delta \phi \|_{L^1}^2 h = \alpha (\sigma (\phi^{n+1}), T_h (\delta \tau \phi^{n+1})) - \alpha (\nabla \phi^{n+1}, \nabla T_h (\delta \tau \phi^{n+1})) \\
- \alpha (\phi^{n+1} (\nabla p^{n+1} + \gamma \phi^{n+1} \nabla \mu^{n+1}), \nabla T_h (\delta \tau \phi^{n+1})) \\
+ \alpha (\phi^h_\mu (\nabla p^n_\mu + \gamma \phi^h \nabla \mu^h), \nabla T_h (\delta \tau \phi^{n+1})) \\
\leq \alpha \|\sigma (\phi^{n+1})\|\|T_h (\delta \tau \phi^{n+1})\| + \alpha \|\nabla \phi^{n+1}\| ||T_h (\delta \tau \phi^{n+1})|| \\
+ \alpha \|\phi^{n+1} (\nabla p^{n+1} + \gamma \phi^{n+1} \nabla \mu^{n+1})\| + \alpha \|\phi^h_\mu (\nabla p^n_\mu + \gamma \phi^h \nabla \mu^h)\| \\
\leq 2\alpha \|\sigma (\phi^{n+1})\|^2 + \frac{\alpha}{8} \|\delta \tau \phi\|_{L^1}^2 \|\nabla \phi^{n+1}\|^2 + \alpha \|\nabla \phi^{n+1}\|^2 + \alpha \|\delta \tau \phi\|_{L^1}^2 \|\nabla \phi^{n+1}\|^2 \\
+ CD (\tau^2 + h^2) - \frac{\gamma}{\alpha} \|P_h (\phi^h \nabla \phi^{n+1})\|^2 + CD ||\nabla \phi_{\nabla}^{n+1}||^2 + \frac{\alpha}{8} \|\delta \tau \phi\|_{L^1}^2 \|\nabla \phi^{n+1}\|^2 \\
\leq C\tau^2 + C h^2 + CD (\tau^2 + h^2) - \frac{\gamma}{\alpha} \|P_h (\phi^h \nabla \phi^{n+1})\|^2 \\
+ \alpha \|\nabla \phi_{\nabla}^{n+1}||^2 + CD ||\nabla \phi_{\nabla}^{n+1}||^2 + \frac{\alpha}{2} \|\delta \tau \phi\|_{L^1}^2 \|\nabla \phi^{n+1}\|^2.
\]  

(4.17)

Therefore, it follows that

\[
\alpha \|\delta \tau \phi^{n+1}\|_{L^1}^2 \leq C\tau^2 + C h^2 + 2\alpha \|\nabla \phi_{\nabla}^{n+1}\|^2 + C ||\nabla \phi_{\nabla}^{n+1}||^2 - \frac{\gamma}{\alpha} \|P_h (\phi^h \nabla \phi^{n+1})\|^2.
\]  

(4.18)
Then, combining Eq (4.16) with Eq (4.18) and multiplying by $2\tau$, one has
\[
\tau||\nabla \hat{e}_{p+1}^\varepsilon||^2 + \varepsilon^2(||\nabla \hat{e}_{p+1}^\varepsilon||^2 - ||\nabla \hat{e}_{p}^\varepsilon||^2 + ||\nabla \hat{e}_{p+1}^\varepsilon - \nabla \hat{e}_{p}^\varepsilon||^2)
\]
\[
+ \theta(||\hat{e}_{p+1}^\varepsilon||^2_{-1,h} - ||\hat{e}_{p}^\varepsilon||^2_{-1,h} + ||\hat{e}_{p+1}^\varepsilon - \hat{e}_{p}^\varepsilon||^2_{-1,h}) + 2\tau\varepsilon||\nabla \hat{e}_{p+1}^\varepsilon||^2
\]
\[
+ 2\tau\varepsilon||\nabla \hat{e}_{p+1}^\varepsilon||^2 + 2\tau\varepsilon||\nabla \hat{e}_{p+1}^\varepsilon||^2
\]
\[
\leq C\tau r^2 + C\tau h^{2q} + C\tau\varepsilon||\nabla \hat{e}_{p+1}^\varepsilon||^2 + 2\tau\varepsilon||\nabla \hat{e}_{p+1}^\varepsilon||^2
\]
\[
+ 2\tau\varepsilon||\nabla \hat{e}_{p+1}^\varepsilon||^2 - 2\tau\varepsilon\gamma||\nabla \hat{e}_{p+1}^\varepsilon||^2.
\]
(4.19)

Finally, we take the appropriate $\alpha(0 < \alpha \leq \frac{1}{2})$ and add the above estimates from $i = 0$ to $n$. When $0 < \tau \leq \frac{\alpha\varepsilon^2}{8}$, according to the discrete Gronwall inequality, one concludes that
\[
\sum_{i=0}^{n} \tau||\nabla \hat{e}_{p+1}^\varepsilon||^2 + \varepsilon^2||\nabla \hat{e}_{p+1}^\varepsilon||^2 + \theta||\hat{e}_{p+1}^\varepsilon||^2_{-1,h} + \sum_{i=0}^{n} \tau\varepsilon||\nabla \hat{e}_{p+1}^\varepsilon||^2
\]
\[
+ \sum_{i=0}^{n} \tau\varepsilon||\nabla \hat{e}_{p+1}^\varepsilon||^2 \leq C\tau^2 + Ch^{2q}.
\]
(4.20)

The proof is completed. \hfill \Box

5. Numerical analysis

In this part, some numerical examples are used to verify the correctness and validity of the theoretical analysis. Next, let us take the initial conditions $\phi_0 = 0.24 \ast \cos(2\pi x)\cos(2\pi y) + 0.4 \ast \cos(\pi x)\cos(3\pi y)$, and the domain of the calculation is $[0, 1] \times [0, 1]$.

5.1. The spatial convergence order

For Tables 1 and 2, the parameters are chosen as follows, $\tau = 0.01$, $T = 0.1$, $\varepsilon = 0.14$ and mesh steps $h = \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \frac{1}{128}$. The spatial convergence orders of relative error $||\hat{e}_{p}||_{H1}$ are close to 1, which is consistent with the convergence order obtained from theoretical analysis. Moreover, different $\theta$ and $\gamma$ have little effect on the corresponding convergence order.

| $\gamma = 0.02$ | $h$ | $||\hat{e}_{p}||_{H1}$ | rate | $\gamma = 0.5$ | $||\hat{e}_{p}||_{H1}$ | rate |
|---------------|-----|----------------------|------|---------------|----------------------|------|
| $\frac{1}{16}$ | 0.114235 |                      |      | 0.112924      |                      |      |
| $\frac{1}{32}$ | 0.0538164 | 1.08589              |      | 0.0532056     | 1.08571              |      |
| $\frac{1}{64}$ | 0.0276215 | 0.962255             |      | 0.0272203     | 0.966891             |      |
| $\frac{1}{128}$ | 0.0137438 | 1.00701              |      | 0.0135257     | 1.00898              |      |
Table 2. The spatial convergence rate of \( \hat{e}_\varphi \) with \( \theta = 0.5 \).

| \( \gamma \) | \( h \) | \( ||\hat{e}_\varphi||_{H^1} \) | rate | \( \gamma = 0.5 \) | \( ||\hat{e}_\varphi||_{H^1} \) | rate |
|------|------|-----------------|------|-----------------|-----------------|------|
| 0.02 | \( \frac{1}{16} \) | 0.113003         |      | 0.113255        |                  |      |
| 0.01 | \( \frac{1}{32} \) | 0.05391          | 1.06774 | 0.0529089       | 1.09799         |      |
| 0.005 | \( \frac{1}{64} \) | 0.0275791        | 0.966978 | 0.0272109       | 0.959326        |      |
| 0.0025 | \( \frac{1}{128} \) | 0.0137206        | 1.00723 | 0.0134845       | 1.01288         |      |

5.2. The temporal convergence order

For Tables 3 and 4, the parameters are chosen as follows, \( \varepsilon = 0.01 \), \( T = 0.1 \), \( h = \tau = 0.0625 \), 0.03125, 0.015625. The temporal convergence orders of relative error \( ||\hat{e}_\varphi||_{H^1} \) are close to 1, which is consistent with the convergence order obtained from theoretical analysis.

Table 3. The temporal convergence rate of \( \hat{e}_\varphi \) with \( \theta = 0 \).

| \( \gamma \) | \( \tau \) | \( ||\hat{e}_\varphi||_{H^1} \) | rate | \( \gamma = 0.08 \) | \( ||\hat{e}_\varphi||_{H^1} \) | rate |
|------|------|-----------------|------|-----------------|-----------------|------|
| 0.01 | 0.0625 | 1.00089         |      | 1.14072         |                  |      |
|      | 0.03125 | 0.50614        | 0.983677 | 0.998929       | 0.981451        |      |
|      | 0.015625 | 0.259234       | 0.965282 | 0.505928       | 0.968364        |      |

Table 4. The temporal convergence rate of \( \hat{e}_\varphi \) with \( \theta = 0.01 \).

| \( \gamma \) | \( \tau \) | \( ||\hat{e}_\varphi||_{H^1} \) | rate | \( \gamma = 0.08 \) | \( ||\hat{e}_\varphi||_{H^1} \) | rate |
|------|------|-----------------|------|-----------------|-----------------|------|
| 0.01 | 0.0625 | 1.00089         |      | 1.14072         |                  |      |
|      | 0.03125 | 0.506139       | 0.983679 | 0.998926       | 0.981446        |      |
|      | 0.015625 | 0.259234       | 0.96528 | 0.505928       | 0.968365        |      |

5.3. Energy dissipation

Let us test the energy dissipation of our proposed scheme. The energy functional Eq (1.13) of the modified Cahn-Hilliard-Hele-Shaw system Eqs (1.4)–(1.10) can be discreteized as

\[
E(\phi^{n+1}_h) = \int_\Omega \left( \frac{\varepsilon^2}{2} |\nabla \phi^{n+1}_h|^2 + F(\phi^{n+1}_h) \right) dx.
\] (5.1)

Correspondingly, the modified energy of the fully discrete scheme Eqs (2.9)–(2.13) is defined as

\[
\Xi(\phi^{n+1}_h) := E(\phi^{n+1}_h) + ||\phi^{n+1}_h||^2 + \frac{\theta}{2} ||\phi^{n+1}_h - \phi_0||^2_{L^2,h} + \frac{\tau}{2\gamma} ||\nabla p^{n+1}_h||^2.
\] (5.2)

For the test, the parameters are chosen as follows: \( T = 5 \), \( \tau = 0.001 \), \( h = \frac{1}{64} \), \( \varepsilon = 0.4 \), \( \gamma = 0.5 \). In Figure 1, we can see that the energy functional is non-increasing for \( \theta = 0, 0.1, 1 \).
In this part, we present the phase separation dynamics that is called spinodal decomposition in the modified Cahn-Hilliard-Hele-Shaw system. In the simulation, the computational domain is chosen as $[0, 1] \times [0, 1]$, the parameters are chosen as follows: $\varepsilon = 0.05$, $\gamma = 0.45$, $\tau = 0.0001$. Then, let us take the initial condition

$$\phi_0 = 2 \times \text{rand}() - 1,$$

where $\text{rand}() \in [0, 1]$. The process of coarsening is shown in the following figures. From figures 2–19, we can see that the contours of $\phi$ are gradually coarsened over time. However, the profiles obtained by different $\theta$ are similar at the same time $T$. From left to right, the coarsening processes of $\theta = 50, 200$ are not obvious compared with the coarsening processes of $\theta = 0$. We know the bigger $\theta$ can suppress the coarsening process.

Figure 1. the evolutions of discrete energy.

5.4. Spinodal Decomposition

$\theta=0$  
$\theta=0.1$  
$\theta=1$
Figure 2. $T=0.0001$, $\theta = 0$.

Figure 3. $T=0.0001$, $\theta = 50$.

Figure 4. $T=0.0001$, $\theta = 200$. 
Figure 5. $T=0.0005$, $\theta = 0$.

Figure 6. $T=0.0005$, $\theta = 50$.

Figure 7. $T=0.0005$, $\theta = 200$. 
Figure 8. $T=0.001, \theta = 0$.

Figure 9. $T=0.001, \theta = 50$.

Figure 10. $T=0.001, \theta = 200$. 
Figure 11. $T=0.005$, $\theta = 0$.

Figure 12. $T=0.005$, $\theta = 50$.

Figure 13. $T=0.005$, $\theta = 200$. 
Figure 14. $T=0.01$, $\theta = 0$.

Figure 15. $T=0.01$, $\theta = 50$.

Figure 16. $T=0.01$, $\theta = 200$. 
Figure 17. $T=0.02$, $\theta = 0$.

Figure 18. $T=0.02$, $\theta = 50$.

Figure 19. $T=0.02$, $\theta = 200$. 
6. Summary

In this paper, a decoupled scheme of the modified Cahn-Hilliard-Hele-Shaw system is studied. In our scheme, the velocity and pressure are decoupled, and a Possion equation is solved to update the pressure at each time step. Unconditional stability of the scheme in energy is proved. The convergence analysis are addressed in the frame of finite element method. Furthermore, the theoretical part is verified by several numerical examples. The results show that the numerical examples are consistent with the results of the theoretical part.

Acknowledgments

The work is supported by the the Provincial Natural Science Foundation of Shanxi (No. 201901D111123) and Key Research and Development (R&D) Projects of Shanxi Province (No. 201903D121038).

Conflict of interest

The authors declare no conflicts of interest in this paper.

References

1. H. G. Lee, J. S. Lowengrub, J. Goodman, Modelling pinchoff and reconnection in a Hele-Shaw Cell I: The models and their calibration, *Physics of Fluids*, 14 (2002), 492–513.
2. H. G. Lee, J. S. Lowengrub, J. Goodman, Modeling pinchoff and reconnection in a Hele-Shaw cell II: Analysis and simulation in the nonlinear regime, *Phys. Fluids*, 14 (2002), 514–545.
3. A. E. Diegel, C. Wang, X. M. Wang, S. M. Wise, Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system, *Numer. Math.*, 137 (2017), 495–534.
4. S. M. Wise, J. S. Lowengrub, H. B. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth–I Model and numerical method, *J. Theor. Biol.*, 253 (2008), 524–543.
5. M. Ebenbeck, H. Garcke, Analysis of Cahn-Hilliard-Brinkman models for tumour growth, *PAMM*, 19 (2019), e201900021.
6. H. Garcke, K. F. Lam, E. Sitka, V. Styles, A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport, *Math. Models Methods Appl. Sci.*, 26 (2016), 1095–1148.
7. M. Ebenbeck, P. Knopf, Optimal medication for tumors modeled by a Cahn-Hilliard-Brinkman equation, *Calc. Var. Partial Dif.*, 58 (2019), 1–31.
8. A. Shinozaki, Y. Oono, Spinodal decomposition in a Hele-Shaw cell, *Phys. Rev. A*, 45 (1992), R2161.
9. L. Ded, H. Garcke, K. F. Lam, A Hele-Shaw-Cahn-Hilliard model for incompressible two-phase flows with different densities, *J. Math. Fluid Mech.*, 20 (2018), 531–567.
10. X. Wang, Z. Zhang, Well-posedness of the Hele-Shaw-Cahn-Hilliard system, *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 30 (2013), 367–384.

11. A. E. Diegel, W. Cheng, S. M. Wise, Stability and convergence of a second-order mixed finite element method for the Cahn-Hilliard equation, *IMA J. Numer. Anal.*, 36 (2016), 1867–1897.

12. R. Guo, Y. Xia, Y. Xu, An efficient fully-discrete local discontinuous Galerkin method for the Cahn-Hilliard-Hele-Shaw system, *J. Comput. Phys.*, 264 (2014), 23–40.

13. S. M. Wise, Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations, *J. Sci. Comput.*, 44 (2010), 38–68.

14. W. Chen, Y. Liu, C. Wang, S. M. Wise, Convergence analysis of a fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation, *Math. Comput.*, 85 (2016), 2231–2257.

15. Y. Liu, W. Chen, C. Wang, S. M. Wise, Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system, *Numer. Math.*, 135 (2017), 679–709.

16. Y. Guo, H. Jia, J. Li, M. Li, Numerical analysis for the Cahn-Hilliard-Hele-Shaw system with variable mobility and logarithmic Flory-Huggins potential, *Appl. Numer. Math.*, 150 (2020), 206–221.

17. H. Jia, H. Hu, L. Meng, A large time-stepping mixed finite method of the modified Cahn-Hilliard equation, *B. Iran. Math. Soc.*, 46 (2020), 1551–1569.

18. Y. Xian, Uncertainty quantification of modified Cahn-Hilliard equation for image inpainting, ArXiv: 1906.07264.

19. A. C. Aristotelous, O. Karakashian, S. M. Wise, A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver, *Discrete Cont. Dyn. B*, 18 (2013), 2211–2238.

20. T. T. Medjo, Unique strong and attractor of a three dimensional globally modified Cahn-Hilliard-Navier-Stokes model, *Appl. Anal.*, 96 (2017), 2695–2716.

21. H. Suzuki, Existence and stability of multi-layered solutions in modified Cahn-Hilliard systems, *Memoirs of the Faculty of Education Shiga University Natural Science*, 56 (2006), 97–108.

22. J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, *J. Chem. Phys.*, 28 (1958), 258–267.

23. J. W. Cahn, Free energy of a nonuniform system. II. Thermodynamic basis, *J. Chem. Phys.*, 30 (1959), 1121–1124.

24. J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system, III. Nucleation in a two component incompressible fluid, *J. Chem. Phys.*, 31 (1959), 688–699.

25. H. Jia, Y. Guo, J. Li, Y. Huang, Analysis of a novel finite element method for a modified Cahn-Hilliard-Hele-Shaw system, *J. Comput. Appl. Math.*, 376 (2020), 112846.

26. D. Han, A decoupled unconditionally stable numerical scheme for the Cahn-Hilliard-Hele-Shaw system, *J. Sci. Comput.*, 66 (2016), 1102–1121.

27. S. Minjeaud, An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model, *Numer. Meth. Part. D. E.*, 29 (2013), 584–618.
28. Y. Gao, R. Li, L. Mei, Y. Lin, A second-order decoupled energy stable numerical scheme for Cahn-Hilliard-Hele-Shaw system, *Appl. Numer. Math.*, **157** (2020), 338–355.

29. J. Zhao, X. Yang, J. Shen, Q. Wang, A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids, *J. Comput. Phys.*, **305** (2016), 539–556.

30. J. Zhao, Second-order decoupled energy-stable schemes for Cahn-Hilliard-Navier-Stokes equations, ArXiv: 2103.02210.

31. J. Zhao, A general framework to derive linear, decoupled and energy-stable schemes for reversible-irreversible thermodynamically consistent models: Part I Incompressible Hydrodynamic Models, ArXiv: 2103.02203.

32. J. Shin, H. G. Lee, J. Y. Lee, Convex splitting Runge-Kutta methods for phase-field models, *Comput. Math. Appl.*, **73** (2017), 2388–2403.

33. X. Wu, G. J. van Zwieten, K. G. van der Zee, Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models, *Int. J. Numer. Meth. Bio.*, **30** (2014), 180–203.

34. N. Alikatos, P. W. Bates, X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, *Arch. Ration. Mech. An.*, **128** (1994), 165–205.

35. J. L. Guermond, P. Minev, J. Shen, An overview of projection methods for incompressible flows, *Comput. Method. Appl. M.*, **195** (2006), 6011–6045.

36. A. E. Diegel, X. H. Feng, S. M. Wise, Analysis of a mixed finite element method for a Cahn-Hilliard-Darcy-Stokes system, *SIAM J. Numer. Anal.*, **53** (2015), 127–152.