Transgenic mice overexpressing human G972R IRS-1 show impaired insulin action and insulin secretion.

Marta L. Hribal a, b , F. Tornei b , A. Pujol c , R. Menghini b , D. Barcaroli d , D. Lauro b , R. Amoruso b , R. Lauro b , F. Bosch c , G. Sesti a, * , M. Federici b

a Department of Clinical and Experimental Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
b Laboratory of Molecular Medicine, Department of Internal Medicine, University of Rome “Tor Vergata”, Rome, Italy
c Center for Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
d Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy

Received: October 5, 2007; Accepted: January 12, 2008

Abstract
Molecular scanning of human insulin receptor substrate (irs) genes revealed a single Irs1 prevalent variant, a glycine to arginine change at codon 972 (G972R); previous in vitro studies had demonstrated that the presence of this variant results in an impaired activation of the insulin signalling pathway, while human studies gave controversial results regarding its role in the pathogenesis of insulin resistance and related diseases. To address in vivo the impact of this IRS-1 variant on whole body glucose homeostasis and insulin signalling, we have generated transgenic mice overexpressing it (Tg972) and evaluated insulin action in the liver, skeletal muscle and adipose tissue and assessed glucose homeostasis both under a normal diet and a high-fat diet. We found that Tg972 mice developed age-related glucose and insulin intolerance and hyperglycaemia, with insulin levels comparatively low. Glucose utilization and insulin signalling were impaired in all key insulin target tissues in Tg972 mice. There were no differences in pancreatic morphology between Tg972 and wild-type mice, however when insulin secretion was evaluated in isolated islets, it was significantly reduced in Tg972 mice islets at any glucose concentration tested. Under a high-fat diet, Tg972 mice had increased body and adipose tissue weight, and were more prone to develop diet-induced glucose and insulin intolerance. So, we believe that Tg972 mice may represent a useful model to elucidate the interaction between genetic and environmental factors in insulin resistance pathogenesis. Furthermore, they may become an important tool to test novel tailored therapies.

Keywords: Mouse model • insulin signalling • insulin resistance • glucose intolerance

Introduction
Insulin receptor substrate (IRS) molecules are key intracellular signalling mediators, which transduce insulin action on cell metabolism and growth, via recruitment and activation of cytosolic kinases such as PI3-kinase [1, 2]. Molecular scanning of human Irs genes revealed a single Irs1 prevalent variant, a glycine to arginine change at codon 972 (G972R) [3, 4]. A first in vitro study demonstrated that G972R IRS1 variant expression in 32D cells causes an impairment of insulin-stimulated association between G972R IRS-1 and the p85 subunit of phosphatidylinositol 3-kinase (PI 3-kinase) [5]. Subsequently, cell culture studies revealed that this weakened association results in impaired glucose metabolism in skeletal muscle cells [6], reduced insulin secretion and cell survival in both islets and pancreatic β cells [7, 8], and altered regulation of endothelial nitric oxide synthase activation in endothelial cells [9]. More recently it has been observed that the introduction of the G972R variant in a recombinant peptide comprising amino acids 925-1008 from IRS-1 causes in vitro a reduction of Tyr phosphorylation on two specific residues Tyr941 and Tyr989, which are known binding sites for the p85 regulatory subunit, and acts as a competitive inhibitor for insulin receptor phosphorylation.

doi:10.1111/j.1582-4934.2008.00246.x

© 2007 The Authors
Journal compilation © 2007 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
autophosphorylation (10). On the whole, the data obtained in vitro and in cellular models confirm that the presence of the G972R variant is detrimental for insulin signalling, thus suggesting that it may contribute to insulin resistance in human carriers. Data from human studies, however, are more controversial, with some earlier reports describing an association of the G972R variant with type 2 diabetes [3, 4, 11] and subsequent larger studies not confirming these findings [12–15]. Interestingly one of this studies [15] has shown that while the presence of the R allele had no independent effect on type 2 diabetes risk, it increased the risk in subjects with elevated fasting glucose and body mass index, thus hinting to the possibility that the G972R variant may have an additive effect with other, genetic or environmental, risk factors in determining the susceptibility to type 2 diabetes and related diseases. To address in vivo the impact of the G972R IRS-1 variant on whole body glucose homeostasis and insulin signalling, we have generated transgenic mice with a generalized overexpression of this IRS-1 form.

Materials and methods

Animal husbandry, genotyping and analytical procedures

The human G972R IRS-1 variant was subcloned into a pCAGGS vector and Tg972 mice were generated on an FVB background according to standard procedures [16]. Founders were identified by Southern Blot of tail DNA and the presence of the G972R variant was confirmed by PCR amplification of the same DNA samples and subsequent digestion with MvaI restriction enzyme (Roche Applied Science, Basel, Switzerland) as described [4]. Routine genotyping was then carried out by PCR using specific primers for the human IRS-1 transgene (forward 5’- CTCTGTCAGGTGGTCCAATCC-3’, and reverse 5’- TGCCAGGTGTCCACSTAGC-3’). High Fat Diet (60%Kcal from fat, 20%Kcal from carbohydrates, 20%Kcal from proteins) and normal chow were purchased from Research Diets (NY,USA). Weight gain was measured weekly. Three-to-six months-old male mice were used for the experiments described. Animal studies were approved by the University of Rome ‘Tor Vergata’ Animal Care and Use Committee and were in accordance to the Principles of Laboratory Animals Care (NIH publication no. 85–23, revised 1985) and to Italian law 116 of January 27, 1992 and follow-ing amendments.

Glucose tolerance tests and measurement of plasma insulin levels

Blood for plasma glucose and insulin levels was obtained by retro-orbital bleeds. Glucose levels were determined using a Glucometer Elite (Bayer Health Care, Tarrytown, NY, USA). Plasma was separated by centrifugation at 4°C and stored at –20°C until assayed. For calculation of plasma glucose/insulin (G/I) ratios, plasma fast glucose (mg/dl) was divided by plasma fast insulin (ng/ml). For intraperitoneal glucose tolerance tests (IPGTT), Tg972 mice and their wild-type (WT) littermates were fasted for 15 hrs and injected intraperitoneally with 2 g/Kg body weight of D-glucose. Blood samples were taken from the tail vein immediately before and 30, 60, 90 and 120 min. after injection. Immunoreactive insulin levels were measured using a commercial ELISA kit (Merckodia, Uppsala, Sweden).

For insulin tolerance tests (ITT) Tg972 mice and their WT littermates were fasted for 4 hrs and injected intraperitoneally with 0.75 units per Kg body weight with human crystalline insulin (Lilly Research Laboratories, Indianapolis, Indiana, USA). Blood was taken from the tail vein immediately before and 10, 30 and 60 min. after injection.

In vivo insulin stimulation

After 6-hrs fasting, WT and Tg972 mice were anaesthetized by pentobarbi-tal intraperitoneal injection (40 mg per Kg body weight). Insulin stimulation was carried out as described [17], briefly SU of regular human insulin were injected into the inferior vena cava, 3 min. later tissues were har-vested and frozen in liquid nitrogen.

Western blots

Lysates from white adipose tissue, liver and muscle were prepared and western blots performed as previously described [17]. For immunoprecip-itation, tissue lysates were incubated for 16 hrs at 4°C with anti-IRS-1 or anti-IRS-2 antibody. Immunocomplexes were collected with incubation with Protein A-Sepharose for 2 hrs at 4°C. Immunoprecipitated proteins or tissue lysates were then re-suspended in Laemmli buffer, resolved on SDS-PAGE, transferred onto nitrocellulose membranes, and probed with the appropriate antibodies. The following antibodies were used: anti-IRS1, anti-phospho-Tyr941 IRS-1 (Biosource International, Camarillo, CA, USA), anti-phospho-Tyr989 IRS-1 (Santa Cruz Biotechnologies, Santa Cruz, CA, USA), anti-IRS-2, anti PI3K p85 subunit (Upstate Biotechnology, Billerica, MA, USA), anti-phospho-Ser473Akt, anti-Akt, anti-phospho-Ser21/ser9 GSK3 (Cell Signalling Technology, Inc. Danvers, MA, USA), anti total phosphotyrosine (Becton and Dickinson, Franklin Lakes, NJ, USA).

RNA extraction and real time quantitative PCR analysis

Total RNA was extracted from adipose tissue or liver using Trizol reagents (Invitrogen Corp., Carlsbad, CA, USA). Real-time PCR was carried out on individual samples from adult mice using an ABI PRISM 9700 System and TaqMan reagents (Applied Biosystems, Foster City, CA, USA). Each reaction was carried out in triplicate using standard reaction conditions, the relative quantity of each target transcript was normalized to message for β-actin, which was amplified simultaneously with target genes, but in separate triplicate-reaction tubes. Primers sequences are available upon request.

In vivo tissue glucose transport during a glucose tolerance test

2-Deoxy-D-[1, 2-3H]-glucose (Amersham Biosciences, Piscataway, NJ, USA) was mixed with 20% dextrose before intraperitoneal injection (2 g/kg body weight, 10 µCi/mouse) into weight-matched 6-month-old male mice [17]. Blood samples were obtained from tail veins at 0, 15, 30, 45, 60 and
120 min. and used to determine glucose-specific activity as described previously. At 120 min., mice were killed and tissues were snap-frozen in liquid nitrogen. To determine tissue accumulation of 2-deoxyglucose-6-phosphate (2-DOG-6-phosphate), 100–500 mg tissue (triceps and periglandular adipose tissue) was homogenized and processed as described previously. To calculate the 2-DOG uptake, the counts (degenerations per minute) were divided by the integrated glucose-specific activity area under the curve and normalized to the sample protein content [18].

2-DOG incorporation into liver glycogen and liver glycogen measurement during a glucose tolerance test

Frozen liver (50–75 mg) was pulverized with mortar and pestle in liquid nitrogen and digested. Macromolecules were then allowed to precipitate and used to determine radioactivity incorporation as described previously. To determine 2-Deoxy-Glucose (2-DOG) incorporation into liver glycogen, $[^3H]$radioactivity in glycogen counts (degenerations per minute) was divided by the integrated glucose-specific activity area under the curve and corrected for sample protein content [18].

Pancreata histological analysis and morphometry

Pancreata were fixed overnight in 4% paraformaldehyde and embedded in paraffin using standard techniques [19]. Sections were then placed on glass slides, depaaffinized with xylene and stained with haematoxylin and eosin. Immunostaining for insulin or glucagon was carried out with the Histomouse-SP kit (Zymed Laboratories Inc., South San Francisco, California, USA) according to the manufacturers’ instructions. Six sections for each pancreas were imaged at a 20x magnification and quantified for surface areas. Areas corresponding to the β-cells were measured by dividing the area of insulin-positive immunoreactivity by whole pancreas area.

Pancreatic insulin content

To assess insulin content, pancreata were extracted in 400 µl of acid ethanol extraction medium overnight at 4°C [20]. All extracts were stored at −20°C for subsequent insulin levels detection.

Islet isolation and insulin secretion

Islets were isolated using the intraductal collagenase technique as described [21]. Briefly, the common bile duct was cannulated in the anterograde direction and the pancreas distended with collagenase type P (4 mg in 5 ml, Boehringer Mannheim, Mannheim, Germany), dissected free and incubated at 37°C for 13 min. Islets of similar sizes (100-150 µm) were handpicked from WT and Tg972 mice. All experiments were carried out with islets from a single harvest pool. Islets were washed in M199 medium with Fetal Bovine Serum (FBS) and cultured for 48 hrs at 37°C. Secretion experiments were carried out in 12-well plates (15–25 islets per well). After incubation, the media was collected, centrifuged and stored at −20°C for subsequent insulin levels detection. Insulin secretion levels were normalized for insulin content.

Statistics

Results of the experimental studies are expressed mean ± standard deviation (SD). Statistical analyses were performed using the ANOVA or unpaired Student’s t test as indicated. Values of $P<0.05$ were considered statistically significant.

Results

To investigate in vivo the impact of the human G972R IRS-1 variant on insulin resistance and glucose homeostasis, a cDNA containing this mutant form was subcloned into a pCAGGS vector and used to generate transgenic mice (Tg972). IRS-1 protein overexpression was confirmed by Western Blot in protein lysates from liver (Fig. 1A), skeletal muscle (Fig. 1B), adipose tissue (Fig. 1C), heart (Fig. 1D), pancreas (Fig. 1E) and purified pancreatic islets (Fig. 1F) in two transgenic lines, indicated as L1 and L2. These two lines were subjected to a preliminary metabolic characterization and they showed no major differences, thus L1 mice were used for subsequent experiments. Tg972 mice were born at the predicted Mendelian frequency and were not significantly different from their WT littermates in length and weight, at up to 6 months of age (data not shown). To evaluate the effect of the G972R variant on whole body glucose metabolism, we determined fed and fasting glucose and insulin levels in Tg972 mice and their WT littermates at 3 and 6 months of age (Table 1). Fed and fasting glucose levels were slightly, but not significantly increased in 3-months-old Tg972 mice compared with their WT littermates. However, by 6-months of age, Tg972 mice showed significantly higher fed and fasting glucose levels ($P<0.01$) with insulin levels inadequately low for their degree of hyperglycaemia (Table 1 and Fig. 1G, $P<0.0001$).

IPGTT and ITT tests confirmed these observations (Fig. 1H–M), showing that Tg972 mice develop glucose intolerance and insulin resistance that worsen with age ($P<0.01$ and $P<0.0001$ at 3 and 6 months, respectively).

Reduced insulin secretion and altered insulin sensitivity may both play a role in the observed phenotype. To explore the first possibility, we evaluated islets morphology and insulin content in 4- to 6-months-old male mice. We did not observe any difference either in islets number and size or in the structure of the islets, as assessed by insulin and glucagon staining, (Fig. 2A–E) or in the total pancreatic insulin content (3.445±2.41 and 3.875±2.49 ng insulin/ microgram protein for WT and Tg972 mice, respectively) of Tg972 mice compared with their WT littermates. However, when we assessed insulin secretion in isolated islets, we observed that insulin release was significantly reduced in Tg972 islets at any glucose concentration tested (Fig. 2F, $P<0.0001$). Then, we proceeded to evaluate peripheral insulin resistance and observed a 42% ($P<0.01$) and a 40% ($P<0.05$) reduction in glucose uptake in skeletal muscle and adipose tissue of Tg972 mice, respectively, as compared with WT littermates (Fig. 3A and B) and a 42% reduction in glucose incorporation.
into glycogen, an index of glycogen synthesis, (Fig. 3C, P<0.0001) in the liver of Tg972 mice.

These data suggest that the phenotype of 6-months-old Tg972 mice was indeed due to reduced insulin secretion, paralleled by increased demand from insulin resistant peripheral tissues. To further elucidate the molecular mechanisms underlying this phenotype, we assessed the activation of key steps in insulin signalling in peripheral target tissues from 3-4-months-old mice. We observed that, despite the increased IRS-1 expression and total IRS-1 tyrosine phosphorylation (Fig. 4A and B), the amount of PI3-kinase regulatory subunit, p85, co-precipitated with IRS-1 was significantly reduced in liver lysates from Tg972 mice (Fig. 4A and C, P<0.0001). Furthermore, using liver lysates from Tg972 mice we were able to demonstrate for the first time in vivo a reduction in the phosphorylation levels of Tyr941 and Tyr989, two tyrosine residues that play a pivotal role in p85 binding to IRS-1 (75% and 73% for Tyr941 and
To exclude the possibility of compensatory mechanisms, we evaluated the expression and insulin-stimulated phosphorylation of the second insulin receptor substrate IRS-2 and observed that there were no difference between Tg972 mice and their WT littermates (Fig. 4F).

The reduced activation of the upstream insulin signalling steps observed in Tg972 mice was paralleled by a decreased phosphorylation of Akt, a key transducer of downstream insulin signalling in the liver (Fig. 5A, P<0.01), skeletal muscle (Fig. 5B, P<0.01) and adipose tissue (Fig. 5C, P<0.05). Furthermore in the liver, we observed also a 56% reduction of the phosphorylation of glycogen synthase kinase-3 (GSK-3), an Akt substrate, which plays a pivotal role in the regulation of glycogen synthesis (Fig. 5D, P<0.05).

Table 1 Metabolic parameters of 3- and 6-months-old WT and Tg972 mice fed either ND or HFD.

Samples	3 m ND	6 m ND	3 m HFD	6 m HFD	3 m ND	6 m ND	3 m HFD	6 m HFD
Fed glucose (mg/dl)	120±30 (n = 30)	140±20 (n = 25)	213±28 (n = 19)	320±45 (n = 12)	132±42.92 (n = 25)	165±43 (n = 30)	232±27 (n = 17)	370±65* (n = 10)
Fed Insulin (ng/ml)	1.1±0.25 (n = 20)	1.2±0.6 (n = 15)	2.41±0.51 (n = 10)	3.1±0.45 (n = 7)	0.95±0.43 (n = 22)	0.75±0.4† (n = 12)	0.75±0.4 (n = 10)	0.75±0.4 (n = 7)
Fasting glucose (mg/dl)	75±21 (n = 45)	85±22 (n = 20)	114±31 (n = 21)	120±22 (n = 11)	82±20 (n = 40)	115±34 (n = 28)	137±39 (n = 27)	160±17§ (n = 8)
Fasting insulin (ng/ml)	0.65±014 (n = 15)	0.75±0.4 (n = 18)	1.96±0.34 (n = 10)	2.2±0.4 (n = 6)	0.55±0.4 (n = 17)	0.52±0.4 (n = 16)	2.1±0.34 (n = 12)	2.1±0.3^ (n = 7)

Samples were collected in fed or overnight fasted male mice. Data are expressed as mean ±SD. ‡P<0.01, †P<0.05 for ND Tg972 mice versus ND WT mice at 6 months of age, §P<0.05 for HFD Tg972 mice versus HFD WT mice at 3 months of age, *P<0.05, ^P<0.001 for HFD Tg972 mice versus HFD WT mice at 6 months of age by Student’s t-test.

![Fig. 2 Pancreatic morphology and insulin secretion in Tg972 and WT mice.](image)

Pancreatic morphology and insulin secretion in Tg972 and WT mice. Representative images of pancreatic sections from 4- to 6-months-old male WT (A, B, n = 4) and Tg972 mice (C, D, n = 4) stained with anti-insulin (A, C) or anti-glucagon antibody (B, D) are shown at a 20x magnification. Six sections were examined for each mouse. (E) Morphometric analysis of β-cell area. β-cell area is expressed as percentage of the total pancreatic area surveyed. Values are derived from six separate sections for each animal and four animals for each genotype and are expressed as mean ±SD. (F) Glucose stimulated insulin secretion in islet isolated from 4- to 6-months-old WT and Tg972 mice. Data are mean ±SD from two different experiments, each performed in quadruplicate. *** P<0.001 Tg972 versus WT by 2-way ANOVA.
Finally, to study the effects of environmental factors, we characterized the metabolic phenotype of Tg972 under a high-fat diet (HFD) as a model of environmental challenge [22]. Under HFD, weight gain was significantly increased in Tg972 mice compared with their WT littermates (Fig. 6A, P<0.0001). Consistently, epididymal adipose tissue weight was significantly increased in HFD Tg972 mice compared with WT littermates (P<0.05, Fig. 6B). The increased adipose tissue weight was mirrored by altered expression of genes involved in adipose tissue function such as leptin, resistin, peroxisome proliferator activated receptor-γ (PPAR-γ) and adiponectin (P<0.05, Fig. 6C–F). Interestingly, HFD accelerated the insurgence of hyperglycaemia (Table 1) and glucose intolerance in Tg972 mice; indeed transgenic mice show a significantly reduced glucose tolerance (P<0.0001, Fig. 6G) and insulin sensitivity (P<0.0001, Fig. 6H) at 3 months of age as compared with their WT littermates. At variance with the phenotype observed under a normal diet, Tg972 mice did not show reduced insulin levels compared with their WT littermates (Table 1), suggesting that under HFD peripheral insulin resistance may be the prevalent defect responsible of the observed metabolic alterations. However, when HFD was prolonged until the mice were 6-months-old, Tg972 mice showed significantly lower fed and fasting insulin levels (Table 1) paralleled by significantly increased glucose levels (Table 1), suggesting that, at this stage, they have developed a deficiency in insulin secretion. This hypothesis was sustained by the observation that serum insulin levels 120 min. after glucose injection were significantly lower in Tg972 mice than in their WT littermates (P<0.0001, Fig. 6L), and the Tg972 mice were therefore unable to counteract the rise in glucose levels after a glucose load (P<0.0001, Fig. 6I).

Discussion

To assess the impact of the G972R variant on whole-body glucose homeostasis and insulin signalling, we have generated transgenic mice with a generalized overexpression of this IRS-1 form. We observed that key insulin target tissues from Tg972 mice, such as skeletal muscle, liver and adipose tissues, showed reduced activation of the insulin signalling pathway downstream of IRS-1, similarly to what has been previously showed in primary and immortalized cell lines. Indeed, it has been known for several years that in a number of different cellular systems the presence of the R residue at position 972 in the IRS-1 molecules causes a reduced binding of IRS-1 with PI3-kinase, however until recently the molecular mechanism underlying this phenomenon was not elucidated. Kahn and coworkers demonstrated in *in vitro* experiments with IRS-1 fragments that the R residue caused a reduction of insulin-stimulated phosphorylation of two flanking tyrosine phosphorylation sites, Tyr 941 and Tyr 989, that play a pivotal role in IRS-1 binding to PI3-kinase [10]. Here, we were able to confirm for the first time *in vivo* that in the presence of G972R IRS-1 molecules a reduced glucose-stimulated insulin secretion, suggesting that the two defects, decreased insulin sensitivity and decreased insulin secretion, develop in parallel in the Tg972 mice and contribute to the progression of the disease. Interestingly, HFD accelerates the insurgence of glucose intolerance and insulin resistance in Tg972 mice, thus sustaining the hypothesis that the G972R variant may act as a modifier gene, increasing the risk for type 2 diabetes in individuals that present an unfavourable phenotype [15]. Indeed, the observation that obese carriers of the G972R IRS-1 variant...
Fig. 4 G972R IRS-1 variant alters upstream insulin signalling. After a 6 hrs fast, 3–4-months-old male WT and Tg972 mice were injected with 5 U of insulin and livers were collected as indicated in methods. For upstream insulin signalling analysis, insulin-stimulated IRS-1 total tyrosine phosphorylation (pTyr) (A, upper panel), its association with PI3K p85 subunit (A, middle panel), and IRS-1 phosphorylation on Tyrosine 941 and Tyrosine 989 (A, lower panels) were determined by immunoprecipitating with antibody against IRS-1 and immunoblotting with the indicated antibodies. Band intensities were quantified by densitometry; and the values obtained for IRS-1 total tyrosine phosphorylation (B), IRS-1 associated p85 (C) and IRS-1 Tyr941 (D) and Tyr989 (E) phosphorylation were normalized for IRS-1 overexpression and reported as mean ± SD. Images from 1 out of 5 experiments are shown. *P<0.05, ***P<0.0001 for insulin-stimulated Tg972 versus insulin-stimulated WT by Student’s t-test (n = 4 per genotype) (F) Protein extracts were immunoprecipitated with antibodies against IRS-2 and immunoblotted with antibodies against IRS-2 and anti-phosphotyrosine. Band intensities were quantified by densitometry and expressed as mean ±SD. Images from 1 out of 3 experiments are shown (n = 3 per genotype).
are characterized by decreased insulin sensitivity associated with a cluster of metabolic alterations, including elevated fasting levels of plasma glucose, had led to hypothesize that this variant amplifies obesity-linked insulin resistance [15, 23, 24]. The molecular mechanism underlying this interaction however has not been explained yet, therefore the Tg972 mice can represent a useful tool to address this issue. Of note, adipose tissue from Tg972 obese mice express higher mRNA levels of leptin and resistin; interestingly results from microarray studies on adipose tissue obtained from human obese subjects showed that G972R carriers have increased expression of obesity-related genes, including leptin and resistin, as compared with weight-matched WT individuals [25]. This observation suggests that the G972R IRS-1 variant may affect insulin sensitivity through multiple mechanisms, including regulation of gene expression, that have not been exhaustively addressed.

Fig. 5 G972R IRS-1 variant alters downstream insulin signalling. After a 6 hrs fast, 3-4-months-old male WT and Tg972 mice were injected with 5 U of insulin and livers (A, D), skeletal muscle (B) and adipose tissue (C) were collected as indicated in methods (n = 4–8 per genotype). To detect insulin action in peripheral tissues, protein extracts were immunoblotted with antibodies against phosphorylated Akt (A, B, C, upper panels) or phosphorylated GSK3 (D, upper panel). Levels of total Akt (A, B, C, lower panels) and total GSK3 (D, lower panel) were determined by bloting the original lysates. Band intensities were quantified by densitometry and expressed as mean ± SD. Images from one out of five experiments are shown. *P<0.05, **P<0.01 for insulin-stimulated Tg972 vs insulin-stimulated WT by Student’s t-test.
In conclusion, we believe that the humanized mouse model we have generated in this study is an ideal model to further elucidate the interaction between genetic and environmental factors in the pathogenesis of type 2 diabetes. Additionally, we have previously shown that type 2 diabetic carriers of the G972R variant had an increased risk for secondary failure to sulfonylureas [26]; thus providing a first evidence that this variant may influence treatment response in carriers. More recently, Haring and coworkers found cerebrocortical insulin resistance in individuals carrying the G972R IRS-1 variant [27]. Therefore, in light of the recent developments in the field of pharmacogenetics [28], the Tg972 mice may become a useful tool to test tailored therapies.

Acknowledgement

This study was supported in part by the European Community’s FP6 EUGENE2 n° LSHM-CT-2004-512013 grant to GS, by the Ministero dell’Istruzione,dell’Università e della Ricerca grant n° 2005060899 to RL and by the EFSD/Servier Programme on Vascular Complications of Type 2 Diabetes 2005 and the Telethon Grant GGP04073 to MF.

References

1. Taniguchi CM, Emmanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006; 7: 85–96.
2. Sesti G, Federici M, Hribal ML, Lauro D, Shracci P, Lauro R. Defects of the insulin receptor (IRS) system in human metabolic disorders. Faseb J. 2001; 15: 2099–111.
3. Almind K, Bjorbaek C, Vestergaard H, Hanset T, Echwald S, Pedersen O. Aminoacid polymorphism of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus. Lancet. 1993; 342: 828–32.
4. Imai Y, Fusco A, Suzuki Y, Lesniak MA, D’Allfonso R, Sesti G, Bertoli A, Lauro R, Accili D, Taylor SI. Variant sequences of IRS-1 in patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1994; 79: 1655–8.
5. Almind K, Inoue G, Pedersen O, Kahn CR. A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling. Evidence from transgene studies. J Clin Invest. 1996; 97: 2569–75.
6. Hribal ML, Federici M, Porzio O, Lauro D, Borboni P, Accili D, Lauro R, Sesti G. The Gly->Arg amino acid polymorphism in insulin receptor substrate-1 affects glucose metabolism in skeletal muscle cells. J Clin Endocrinol Metab. 2000; 85: 2004–13.
7. Porzio O, Federici M, Hribal ML, Lauro D, Accili D, Lauro R, Borboni P, Sesti G. The Gly 972->Arg amino acid polymorphism in IRS-1 impairs insulin secretion in pancreatic β cells. J Clin Invest 1999; 104: 357–64.
8. Federici M, Hribal ML, Ranalli M, Marselli L, Porzio O, Lauro D, Borboni P, Lauro R, Marchetti P, Melino P, Sesti G. The common Arg972 polymorphism in insulin receptor substrate-1 causes apoptosis of human pancreatic islets. FASEB J. 2001; 15: 22–4.
9. Federici M, Pandolli A, De Filippis EA Pellegrini G, Menghini R, Lauro D, Cardellini M, Romano M, Sesti G, Lauro R, Consoli A. G972R IRS-1 variant impairs insulin regulation of endothelial nitric oxide synthase in cultured human endothelial cells. Circulation. 2004; 109: 399–405.
10. McGretrick AJ, Feeners EP, Kahn CR. Human Insulin Receptor Substrate-1 (IRS-1) Polymorphism G972R Causes IRS-1 to Associate with the Insulin Receptor and Inhibit Receptor Autophosphorylation. J Biol Chem. 2005; 280: 641–6.
11. Jellena A, Zeegers MP, Feskens EJ, Dagnelle PC, Mensink RP. Gly972Arg variant in the insulin receptor substrate-1 gene and association with Type 2 diabetes: a meta-analysis of 27 studies. Diabetologia. 2003; 46: 990–5.
12. van Dam RM, Hoebbe B, Seidell JC, Schaap, MM, Blaak EE, Feskens EJ. The insulin receptor substrate-1 Gly972Arg polymorphism is not associated with Type 2 diabetes mellitus in two population-based studies. Diabetes Med. 2004; 21: 752–8.
13. Florez JC, Sjogren M, Burtt N, Orho-Melander M, Schayer S, Sun M, Almgren P, Lindblad U, Tuomi T, Gaudet D, Hudson TJ, Daly MJ, Ardile KG, Hirschhorn NJ, Althuuser D, Groop L. Association testing in 9,000 people fails to confirm the association of the insulin receptor substrate-1 G972R polymorphism with type 2 diabetes. Diabetes. 2004; 53: 3315–8.
14. Laukkanen O, Pihlajamaki J, Lindstrom J, Eriksson J, Valle TT, Hamalainen H.
Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Tuomilehto J, Uusitupa M, Laakso M.
Common polymorphisms in the genes regulating the early insulin signalling pathway:
effects on weight change and the conversion from impaired glucose tolerance to
Type 2 diabetes. The Finnish Diabetes Prevention Study. Diabetologia. 2004; 47:
871–7.

15. Lyssenko V, Almgren P, Anevski D Orho-Melander M, Sjogren M, Saloranta C,
Tuomi T, Groop L. Genetic prediction of future type 2 diabetes Plos Med. 2005;
2:e345.

16. Riu E, Mas A, Ferre T, Pujol A, Gros L, Otaegui P, Montoliu L, Bosch F.
Counteraction of Type 1 diabetic alterations by engineering skeletal muscle to
produce insulin. Insights from transgenic mice. Diabetes. 2002; 51: 704–11.

17. Federici M, Hribal ML, Menghini R, Kanno H, Marchetti V, Porzio O,
Sunnarborg SW, Rizza S, Serino M, Consolo V, Lauro D, Mauriello A,
Smokler DS, Sbraccia P, Sesti G, Lee DC, Khokha R, Accili D, Lauro R.
Timp3 deficiency in insulin receptor-haploinsufficient mice promotes diabetes and vascular
inflammation via increased TNF-α. J Clin Invest. 2005; 115: 3494–505.

18. Zisman, A. Peroni OD, Abel ED, Michael MD, Mauvais-Jarvis F, Lowell BB,
Wojtaszewski JF, Hirshman MF, Virkamaki A, Goodyear LJ, Kahn CR,
Kahn BB. Targeted disruption of the glucose transporter 4 selectively in muscle
causes insulin resistance and glucose intolerance. Nat. Med. 2000; 6: 924–8.

19. Okamoto H, Hribal ML, Lin HV, Bennet WR, Ward A, Accili D. Role of the fork-
head protein FoxO1 in beta cell compensation to insulin resistance. J Clin Invest.
2006; 116: 775–82.

20. Hansotia T, Maida A, Flock G, Yamada Y, Tsukiyama K, Seino Y, Drucker DJ.
Extrapancreatic incretin receptors modulate glucose homeostasis, body weight,
and energy expenditure. J Clin Invest. 2007; 117: 143–52.

21. Kulkami RN, Winnay JN, Daniels M, Brüning JC, Flier SN, Hanahan D, Kahn
CR. Altered function of insulin receptor substrate-1 deficient mouse islets and cul-
tured β-cell lines. J Clin Invest. 1999; 104: R69–75.

22. Martin TL, Alquier T, Asakura K, Furukawa N, Prentner F, Kahn BB. Diet-
duced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. J
Biol Chem. 2006; 281: 18933–41.

23. Clausen JD, Hansen T, Bjøbaek C, Eychaud SM, Uhrhammer SA, Rasmussen
S, Andersen CB, Hansen L, Almind K, Wh인터 K, Haraldsdöttir J, Borch-
Johnsen K, Pedersen O. Insulin resistance: interactions between obesity and a
common variant of insulin receptor sub-
strate-1. Lancet 1995; 346: 397–402.

24. Baroni MG, Leonetti F, Sentinelli F, Romeo S, Filippi E, Fanelli M, Ribaldo
MC, Zappaterreno A, Fallarono M, Di
Mario U. The G972R variant of the insulin
receptor substrate-1(IRS-1) gene is asso-
ciated with insulin resistance in “uncompli-
cated” obese subjects evaluated by hyper-
insulinemic-euglycemic clamp. J
Endocrinol Invest. 2004; 27: 754–9.

25. Hribal ML, Perego L, Cardellini M, Paganeli M, Andreozzi P, Pontiroli A,
Foli F, Sesti G. Gene expression profiling in adipose tissue of G972 IRS-1 carriers.
Diabetes. 2005; 54, Suppl.1: A270.

26. Sesti G, Marini MA, Cardellini M, Sciacqua A, Frontoni S, Andreozzi F,
Irace C, Lauro D, Gnasso A, Federici M,
Perticone, Lauro R. The Arg972 variant in
insulin receptor substrate-1 is associated
with an increasing risk of secondary failure
to sulfonylurea in patients with type 2 dia-
betes. Diabetes Care. 2004; 27: 1394–8.

27. Tschritter O, Preisil H, Hennige AM,
Stumvoll M, Porubska K, Frost R, Marx
H, Klosel B, Lutzenberger W, Birbaumer
N, Haring HU, Fritsche A. The cerebrocorti-
cal response to hyperinsulinemia is
reduced in overweight humans: a magne-
toencephalographic study. Proc Natl Acad
Sci USA. 2006, 103: 12103–6.

28. Woodcock J. The prospects for “personal-
ized medicine” in drug development and drug therapy. Cln Pharmacol Ther. 2007;
81: 164–9.