Mutually unbiased weighing matrices

D. Best · H. Kharaghani · H. Ramp

Received: 17 July 2013 / Revised: 7 February 2014 / Accepted: 12 February 2014 / Published online: 4 March 2014 © Springer Science+Business Media New York 2014

Abstract Inspired by the many applications of mutually unbiased Hadamard matrices, we study mutually unbiased weighing matrices. These matrices are studied for small orders and weights in both the real and complex setting. Our results make use of and examine the sharpness of a very important existing upper bound for the number of mutually unbiased weighing matrices.

Keywords Weighing matrix · Unbiased weighing matrix · Hadamard matrix · Line sets

Mathematics Subject Classification 05B20

1 Introduction

A unit weighing matrix, W, with order n and weight w, denoted by $UW(n, w)$, is an $n \times n$ matrix with entries whose absolute value falls in $\{0, 1\}$ and $WW^* = wI_n$, where W^* is the usual conjugate transpose of W. This implies that the rows of W are mutually orthogonal under the standard inner product in \mathbb{C}^n and contain exactly w nonzero entries in each row and column. When $n = w$ (i.e., no zeroes in the matrix), W is a Hadamard matrix. A real weighing matrix is the one with entries in $\{0, \pm1\}$. Real weighing matrices have been well

Communicated by J. Jedwab.

D. Best · H. Kharaghani (✉)
Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
e-mail: hadi@cs.uleth.ca

D. Best
e-mail: darcy.best@uleth.ca

H. Ramp
Department of Physics, University of Alberta, Edmonton, AB T6G 2R3, Canada
e-mail: ramp@ualberta.ca

© Springer
studied for small weights (see [7]) and large weights (see [8]). Note that there is an error in [7] which is corrected by Harada and Munemasa in [11, Sect. 4].

This article contains results for weighing matrices in both the real and complex setting. Motivated by the applications of real weighing matrices, we have studied unit weighing matrices in [4]. Our aim in this paper is to complement the work that started in [4], and to introduce a new concept of unbiasedness.

Two unit weighing matrices \(UW(n, w) \), \(H \) and \(K \), are unbiased if \(HK^* = \sqrt{w} L \), where \(L \) is a unit weighing matrix \(UW(n, w) \). A set of pairwise unbiased unit weighing matrices are called mutually unbiased unit weighing matrices. In the special case of \(n = w \), these are termed mutually unbiased Hadamard matrices (MUHM), which are of great interest to people working in areas related to the quantum information theory and as such, there is extensive literature on these matrices. We refer the reader to the most comprehensive survey paper [10] on MUHM. Mutually unbiased unit weighing matrices have also seen some application in quantum information science, specifically in the context of zero-error classical communication [13].

In [4], we concerned ourselves with the existence of certain unit weighing matrices; here, we are concerned about how many pairwise unbiased unit weighing matrices there are. In the general unimodular case, where nonzero entries have an absolute value of one, we lose much of structure, and thus, some of the restrictions, that can be found in the real case (see Lemma 1 for one such example). This makes it very challenging to locate complete sets.

If the entries of matrices in a set of mutually unbiased unit weighing matrices are limited to certain roots of unity, then a condition similar to Lemma 1 is found (e.g., see [2]), but very few concrete bounds exist in general. Section 2 will deal with the unit weighing matrices in general by giving the few known upper bounds and lower bounds on the size of these sets.

In Sect. 3, we will outline some of our computer searches for small orders of unit weighing matrices. As an extension to mutually unbiased unit weighing matrices, we will examine sets of Hadamard matrices whose pairwise products satisfy specific conditions in Sect. 4.

2 General restrictions

This section includes preparatory steps necessary for the vast amount of computations required in the next two sections. For the sake of completeness we include essential details of all that is needed. In doing so, some of the results of this section are easy to obtain.

We begin by reiterating a very well known result, (see [2]).

Lemma 1 Let \(H \) and \(K \) be real unbiased weighing matrices with order \(n \) and weight \(w \). Then \(w \) must be a perfect square.

Proof Since \(H \) and \(K \) are integer matrices, \(HK^T = \sqrt{w} L \) must also be an integer matrix. \(\square \)

The next lemma will be derived through the utilization of the standard direct sum of matrices:

\[
W_1 \oplus W_2 \oplus \cdots \oplus W_k = \text{diag}(W_1, W_2, W_3, \ldots, W_k) = \begin{bmatrix}
W_1 & 0 & \cdots & 0 \\
0 & W_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & W_k
\end{bmatrix}
\]
Theorem 2 Let \(\{W_1, \ldots, W_k\} \) be a collection of sets of mutually unbiased weighing matrices of order \(n_i \) and weight \(w \). Then there exists at least

\[
\min_{1 \leq i \leq k} (|W_i|)
\]

mutually unbiased weighing matrices of order \(\sum_{i=1}^k n_i \) and weight \(w \).

Proof Let \(|W_i| = \ell_i \) and write \(W_i = \left\{ W_1^{(i)}, W_2^{(i)}, \ldots, W_{\ell_i}^{(i)} \right\} \) for each \(1 \leq i \leq k \). Let

\[
m = \min_{1 \leq i \leq k} (|W_i|) = \min_{1 \leq i \leq k} (\ell_i).
\]

Then the set

\[
\left\{ \left(W_1^{(1)} \oplus W_1^{(2)} \oplus \cdots \oplus W_1^{(k)} \right), \left(W_2^{(1)} \oplus W_2^{(2)} \oplus \cdots \oplus W_2^{(k)} \right), \ldots, \left(W_m^{(1)} \oplus W_m^{(2)} \oplus \cdots \oplus W_m^{(k)} \right) \right\}
\]

gives the desired result by noting that \((A \oplus B)(A \oplus B)^* = AA^* \oplus BB^* \). \(\square \)

Two weighing matrices, \(H \) and \(K \), are equivalent if \(H = PKQ \), where \(P \) and \(Q \) are unimodular permutation matrices (i.e., each row/column has exactly one nonzero unimodular entry). We use the notation \(H \cong K \).

Definition 3 Let \(W \) be a weighing matrix of order \(n \) and weight \(w \). If \(W = W_1 \oplus W_2 \) for some \(W_1 \) and \(W_2 \) of order strictly less than \(n \), then \(W \) is said to be decomposable\(^1\). We may write \(W \) in such a way that \(W = W_1 \oplus W_2 \oplus \cdots \oplus W_k \) where each \(W_i \) is indecomposable of order \(n_i \). The block structure of \(W \) is the \(k \)-tuple \((n_1, n_2, \ldots, n_k) \).

When two weighing matrices have exactly the same block structure, we will be able to utilize the following proposition.

Proposition 4 If two weighing matrices (say \(H \) and \(K \)) of the same weight have the same block structure, then \(H \) is unbiased with \(K \) if and only if each indecomposable block of \(H \) is unbiased with the corresponding indecomposable block of \(K \).

Proof This is easily seen by noting that

\[
(\sum_{i=1}^m H_i \oplus \cdots \oplus H_m)(\sum_{i=1}^m K_i \oplus \cdots \oplus K_m)^* = (\sum_{i=1}^m H_i^* \oplus \cdots \oplus H_m^* K_m^*).
\]

\(\square \)

The block structures of matrices is repeatedly used in our proofs throughout the paper by applying the following proposition.

Proposition 5 Let \(\{W_1, \ldots, W_k\} \) be a set of mutually unbiased weighing matrices, of order \(n \) and weight \(w \), with the same block structure, say \((n_1, \ldots, n_m) \). Then \(k \) is bounded above by the maximal size of a set of mutually unbiased weighing matrices of order \(n_i \) and weight \(w \), for \(1 \leq i \leq k \).

Proof This follows from Proposition 4. \(\square \)

\(^1\) The term decomposable matrix is sometimes used to describe a reducible matrix. The reader is warned to not confuse the two terms in this manuscript.
When we examine an arbitrary set of mutually unbiased weighing matrices, they may not be in a form where Propositions 4 and 5 may be used. However, we may be able to apply appropriate row and column permutations in such a way that we may utilize those propositions. For example,

\[
H_1 = \begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -0 & 0 \\
0 & 1 & 0 & -0
\end{pmatrix}
\quad \text{and} \quad
K_1 = \begin{pmatrix}
0 & 1 & 0 & i \\
1 & 0 & 0 & 0 \\
1 & 0 & -i & 0 \\
0 & 1 & 0 & -i
\end{pmatrix}
\]

are two indecomposable weighing matrices which are unbiased with one another. However, with appropriate row and column permutations\(^2\), we may examine

\[
H_2 = \begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 0 & -0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -0
\end{pmatrix}
\quad \text{and} \quad
K_2 = \begin{pmatrix}
1 & i & 0 & 0 \\
1 & i & 0 & 0 \\
0 & 0 & 1 & i \\
0 & 0 & 1 & -i
\end{pmatrix}
\]

which are also unbiased with one another, and where Propositions 4 and 5 may be used. We will call the block structure found in \(H_2\) and \(K_2\) suitable and the block structure found in \(H_1\) and \(K_1\) not suitable. Throughout the article, we will only concern ourselves with matrices that have a suitable block structure. To this end, we pose an algorithm to determine a matrix’s suitable block structure.

Lemma 6 The suitable block structure of a weighing matrix of order \(n\) can be determined in \(O(n^3)\) steps.

Proof Let \(W\) be a weighing matrix of order \(n\) and \(W'\) be the equivalent weighing matrix that has a suitable block structure. We define \(G_W\) be the graph on \(n\) vertices with an edge between vertices \(i\) and \(j\) if and only if at least one nonzero entry in row \(i\) is in the same column as a nonzero entry in row \(j\) in \(W\). Two rows of \(W\) are in the same indecomposable block of \(W'\) if and only if there is a path between the corresponding nodes in \(G_W\). Thus, an indecomposable block of \(W'\) can be found by taking the rows corresponding to all vertices in any connected component of \(G_W\) and removing all columns that only have zeroes. The number of indecomposable blocks of \(W'\) is the number of connected components of \(G_W\).

In total, this process involves two parts. First, to build the graph, we look at all pairs of rows and examining each column, for a time of \(O(n^3)\). Then, we determine the number of connected components, which takes \(O(n^2)\) via depth first search for an overall complexity of \(O(n^3)\) steps. \(\square\)

It is noteworthy to point out that the asymptotic bound in Lemma 6 is not tight. The construction of \(G_W\) in the proof of Lemma 6 can be done by multiplying \(|W|\) by \(|W|^T\), where \(|W|\) is the matrix \(W\) having had the modulus operation to each of its entries. The nonzero entries in \(|W||W|^T\) signify an edge in \(G\). As of today, matrix multiplication can be done in \(O(n^{2.3727})\) steps [15], but in general, due to the fact that we are only concerned with the fact that an entry is nonzero, we can apply bit operations to make the \(O(n^3)\) algorithm significantly faster in practice.

The following two theorems were originally found by Delsarte et al. [9] using Jacobi polynomials, and later on by Calderbank et al. [6] using a completely different method. They are very important results that we will be using.

\(^2\) Note that the column permutations must be the same for both matrices to ensure they are still unbiased with one another.
Theorem 7 ([6, Eq. 5.9]) Let $V \subset \mathbb{C}^n$ be a set of unit vectors. If $|\langle v, w \rangle| \in \{0, \alpha\}$ for all $v, w \in V, v \neq w$, where $\alpha \in \mathbb{R}$ and $0 < \alpha < 1$, then

$$|V| \leq n \left(\frac{n + 1}{2}\right).$$

Moreover,

$$|V| \leq \frac{n(n + 1)(1 - \alpha^2)}{2 - (n + 1) \alpha^2} \quad (1)$$

if the denominator is positive.

Theorem 8 ([6, Eqs. 3.7 and 3.9]) If all of the entries of V in Theorem 7 are real, then

$$|V| \leq \left(\frac{n + 2}{3}\right).$$

Moreover,

$$|V| \leq \frac{n(n + 2)(1 - \alpha^2)}{3 - (n + 2) \alpha^2} \quad (2)$$

if the denominator is positive.

It is important to note that in most cases, the second upper bound given in each theorem is smaller than the first, but not always. For example, if we are looking for real vectors with $n = 9$ and $\alpha = \frac{1}{2}$, the first bound gives us $|V| \leq 165$ whereas the second bound gives us $|V| \leq 297$.

The following are immediate corollaries to the previous two theorems.

Corollary 9 Let $W = \{W_1, \ldots, W_m\}$ be a set of mutually unbiased weighing matrices of order n and weight w. Then we have that

$$m \leq \frac{(n - 1)(n + 2)}{2}. \quad (3)$$

Moreover, if $2w - (n + 1) > 0$, then

$$m \leq \frac{w(n - 1)}{2w - (n + 1)}. \quad (4)$$

Proof Define V to be the set of all rows of $\frac{1}{\sqrt{w}}W_1, \ldots, \frac{1}{\sqrt{w}}W_m$ (note that $|V| = mn$). Since W is a set of mutually unbiased weighing matrices, we may set $\alpha = \frac{1}{\sqrt{w}}$. Moreover, note that since all vectors in V come from a weighing matrix of weight w, we may add the rows of the identity matrix to V without disrupting the bi-angularity. By applying Theorem 7 to V (with the rows of the identity matrix included), we obtain the desired results. \hfill \Box

Corollary 10 Let $W = \{W_1, \ldots, W_m\}$ be a set of real mutually unbiased weighing matrices of order n and weight w. Then we have that

$$m \leq \frac{(n - 1)(n + 4)}{6}. \quad (5)$$

Moreover, if $3w - (n + 2) > 0$, then

$$m \leq \frac{w(n - 1)}{3w - (n + 2)}. \quad (6)$$

Proof Similar to Corollary 9. \hfill \Box
We compare the theoretic upper bound given in Corollary 9 to the results of both our computer searches and any improved (i.e., smaller) upper bounds we have found.

Type	Upper bounds	Examples found
UW(2,2)	2	2, 4
UW(3,2)	5	0 (See [4])
UW(3,3)	3	3, 3
UW(4,2)	9	2 (Lemma 12)
UW(4,3)	9	9, 6
UW(4,4)	4	4, 4
UW(5,2)	14	0 (See [4])
UW(5,3)	14	0 (See [4])
UW(5,4)	8	5 (Theorem 17)
UW(5,5)	5	5, 5
UW(6,2)	20	2 (Lemma 12)
UW(6,3)	20	3 (Theorem 14)
UW(6,4)	20	20, 6
UW(6,5)a	25a	8a
UW(6,6)a	6a	2a
UW(7,2)	27	0 (See [4])
UW(7,3)	27	3 (Theorem 14)
UW(7,4)	27	8 (Theorem 21)
UW(7,5)	15	0 (See [4])
UW(7,6)a	9a	0a
UW(7,7)	7	7, 7

*Signify cases where the smallest upper bound and largest lower bound do not meet. Note that UW(6, 6) is the most highly sought after set of matrices [1].

3 Mutually unbiased weighing matrices

3.1 Computer search

In this section, we will be searching for sets of mutually unbiased weighing matrices. To aid in this search, we will be using the ideas explored in the previous section. In particular, each set that we look at will have a suitable block structure.

With unit weighing matrices, an exhaustive computer search is impractical, if not impossible, to perform since each nonzero entry in each matrix has infinitely many choices. To this end, we restricted the entries to small roots of unity in our computer searches. For each type of matrix, we searched for matrices over the mth roots of unity, with $m \leq 24$. Searches with higher m become increasingly impractical due to the algorithmic complexity. As one observes from Table 1, the 12th roots of unity seem to be the largest group needed to find some maximal sets. Many of the maximal sets that we found do not match the upper bound given in Corollary 9. For many cases, we prove smaller upper bounds.

Mutually unbiased unit Hadamard matrices have been extensively studied for prime power orders. In fact, at each prime power, a set can be constructed that meets the upper bound given in Corollary 9. A proof of the following Theorem can be found in [10].

Theorem 11 For any prime power q, there exists a set of q mutually unbiased (Butson) Hadamard matrices $UW(q, q)$.
3.2 Upper bound for mutually unbiased weighing matrices of weight 2

In [4, Theorem 10], we proved that $UW(n, 2)$ do not exist for odd orders. For n even, we have the following.

Lemma 12 Let n be even. Then there are at most two mutually unbiased weighing matrices of order n and weight 2.

Proof Assume that we have a set of mutually unbiased weighing matrices of the appropriate order and weight. From [4], we know that one of the matrices may be transformed into

$$
\left(\begin{array}{cc} 1 & 1 \\ 1 & - \\
\end{array} \right) \otimes I_{n/2},
$$

where “−” denotes “−1”. Permute the rows of the second matrix so that there is a nonzero in the top-left entry. The second entry in the top row must be nonzero, otherwise the inner product of the top row of the first and second matrices will be neither 0 nor $\sqrt{2}$. Continue this argument so that the block structure is the same between all matrices in the set of unbiased weighing matrices. By applying Corollary 9 to Proposition 5, we have our result. \(\square\)

3.3 Upper bound for mutually unbiased weighing matrices of weight 3

Lemma 13 A $UW(n, 3)$, H, is unbiased with K if and only if K has the same block structure as H.

Proof From [4, Theorem 12], we know that H may be transformed into a matrix of the following form:

$$
\begin{pmatrix}
1 & 1 & 1 \\
1 & \omega & \bar{\omega} \\
1 & \bar{\omega} & \omega
\end{pmatrix} \oplus \cdots \oplus
\begin{pmatrix}
1 & 1 & 1 \\
1 & \omega & \bar{\omega} \\
1 & \bar{\omega} & \omega
\end{pmatrix} \oplus
\begin{pmatrix}
1 & 1 & 1 & 0 \\
1 & - & 0 & 1 \\
1 & 0 & - & - \\
0 & 1 & - & 1
\end{pmatrix} \oplus \cdots \oplus
\begin{pmatrix}
1 & 1 & 1 & 0 \\
1 & - & 0 & 1 \\
1 & 0 & - & - \\
0 & 1 & - & 1
\end{pmatrix},
$$

where $\omega = e^{i \frac{2\pi}{3}}$.

We may assume that the first 3 rows of K have a 1 in the first column by means of normalization by a unit number, and appropriate row and column permutations.

Assume that the top left block in H is a $UW(3, 3)$. In the first row of K, if the first three entries are $(1, 0, 0)$, then the inner product of this row and the first row of H can obviously not be of the desired form. Moreover, if there are two nonzero entries (i.e., either $(1, a, 0)$ or $(1, 0, a)$), then there must be a third entry in columns 4 through n. The inner product of this row and three different rows in H will simply be a unimodular number (this is true by the structure of H), and thus, not in the desired form. This means that the first three entries must all be nonzero. This argument can be made for the second and third row of K, and thus, the top left corner of K is a $UW(3, 3)$, as desired.

Now assume that the top left block in H is a $UW(4, 3)$. If columns 2, 3 and 4 are all zero in any of the first 3 rows, then the inner product of row 1 in H and that row will give us a unimodular number. If there is exactly 1 nonzero in columns 2, 3 and 4, then the inner product of that row and the fourth row of H will be unimodular. Thus, we know that in the first 3 rows of K, all 3 nonzero entries must appear in the first four columns.

We will now show that the first zero in these rows will not be in the same column. Assume that one column has at least two zeroes. This means that at least one of columns 2, 3 and
will be complete (i.e., no more nonzero entries may go into that column). Column 1 is already complete, so in our fourth row, there is either 1 or 2 nonzeroes in the first 3 columns. By taking the inner product of the fourth row of K by the appropriate row in H, we will get a unimodular number. Thus, the first zero in the first 4 rows must be in different columns (note that the first zero in row 4 must be in column 1). Furthermore, through appropriate row permutations and negations, the second entry in row 4 must be a 1. The next two entries are clearly nonzero or there is 1-orthogonality (see [4]) within K. Thus, in the first 4 rows of K, the three nonzero entries must appear in the first 4 rows, with the first zeroes of the rows in different columns (i.e., a $UW(4, 3)$).

Once we know that the top left block of H and K are the same, if we examine the bottom right $(n - 3) \times (n - 3)$ or $(n - 4) \times (n - 4)$ block, we have a $UW(n - 3, 3)$ or $UW(n - 4, 3)$, and we can recursively use the same argument to obtain the desired result.

\[\begin{align*}
\text{Theorem 14} & \quad \text{The upper bound on the number of MUWM of the form } UW(n, 3) \text{ is:} \\
& = \begin{cases}
3 & \text{if } n \not\equiv 0 \mod 4 \\
9 & \text{if } n \equiv 0 \mod 4
\end{cases} \\
\text{where } n \in \{3, 4\} \cup \{k : k \geq 6\}.
\end{align*} \]

\[\text{Proof} \quad \text{Using Lemma 13 with Proposition 5 and the fact that the upper bound for } \text{UW}(3, 3) \text{ is 3 and } \text{UW}(4, 3) \text{ is 9 via Corollary 9, we have that if the matrix contains a } \text{UW}(3, 3) \text{ in its block structure, then it acts as a limiting factor, causing the upper bound to be 3. Otherwise, it is 9, which can only occur when } n \text{ is a multiple of 4. Noting that there is no } \text{UW}(5, 3) \text{ (Table 1), we have the upper bound for all values of } n. \]

\[\text{Corollary 15} \quad \text{The upper bound given in Theorem 14 is tight for all } n \in \{3, 4\} \cup \{k : k \geq 6\}. \]

\[\text{Proof} \quad \text{A computer search has shown the bounds to be tight for } \text{UW}(4, 3) \text{ (see Appendix 1, Table 3) and the bound for } \text{UW}(3, 3) \text{ is attained through Theorem 11. We may construct the } \text{UW}(n, 3) \text{ by adjoining the appropriate amount of } \text{UW}(4, 3) \text{ and } \text{UW}(3, 3) \text{ together along the main diagonals. If } n \text{ is a multiple of 4, use only } \text{UW}(4, 3)s \text{ along the main diagonal. Otherwise, it does not matter which blocks are used. A simple induction will show that every integer larger than 5 may be written in the form of } 3m + 4l. \]

3.4 Upper bound for mutually unbiased weighing matrices of weight 4

3.4.1 $UW(5,4)$

\[\text{Lemma 16} \quad \text{Let } W \text{ be a unit weighing matrix that is unbiased with} \\
W_5 = \begin{pmatrix}
1 & 1 & 1 & 0 \\
1 & \omega & \overline{\omega} & 0 & 1 \\
1 & \overline{\omega} & 0 & \omega & \overline{\omega} \\
1 & 0 & \omega & \overline{\omega} & \omega \\
0 & 1 & \overline{\omega} & \omega & \omega
\end{pmatrix},
\]

where $\omega = e^{i \frac{2\pi}{5}}$. Then every nonzero entry in W is a sixth root of unity, up to equivalence.

\[\text{Proof} \quad \text{Since } W_5W^* = 2L \text{ for some weighing matrix } L, \text{ we know that each row of } W \text{ must be orthogonal with exactly one row of } W_5. \text{ Moreover, we may permute the rows of } W \text{ so that row } i \text{ is orthogonal with row } i \text{ of } W_5. \text{ We know that the first nonzero entry in each row of } W\]

\[\text{Springer} \]
Mutually unbiased weighing matrices

may be a one. Using the definition of \(m \)-orthogonality and the results given in [4, Sect. 3], we can determine that there are at most 11 different rows that are orthogonal to each of the rows of \(W_5 \), each with exactly one free variable.

Let \(b \) be an arbitrary unimodular number and \(\alpha \) a primitive third root of unity (either \(\omega \) or \(\bar{\omega} \)). The four main observations that are used in each line of the proof are:

\[
\begin{align*}
(O1) & \quad |1 - \alpha + b| = 2 \implies b \in \{\pm \alpha\}, \\
(O2) & \quad |1 + \alpha + b| = 2 \implies b = -\alpha, \\
(O3) & \quad |3 + b| = 2 \implies b = -1, \\
(O4) & \quad 1 + \alpha + \alpha = 0.
\end{align*}
\]

We will examine all candidates for row 1 of \(W \). There are only 11 different candidates (up to a free variable), they are:

\[
\begin{align*}
(A) & \quad 1 - b - b 0 \\
(B) & \quad 1 b - -b 0 \\
(C) & \quad 1 b -b 0 \\
(D) & \quad 1 \omega \bar{\omega} 0 b \\
(E) & \quad 1 \bar{\omega} \omega 0 b \\
(F) & \quad 1 \omega 0 \bar{\omega} b \\
(G) & \quad 1 \bar{\omega} 0 \omega b \\
(H) & \quad 1 0 \omega \bar{\omega} b \\
(I) & \quad 1 0 \bar{\omega} \omega b \\
(J) & \quad 0 1 \omega \bar{\omega} b \\
(K) & \quad 0 1 \bar{\omega} \omega b
\end{align*}
\]

For each candidate, we will show that in order to be unbiased with the other four rows of \(W_5 \), the free variable must be a sixth root of unity. In some cases, we will show that the row cannot be unbiased with a specific row of \(W_5 \). To avoid a lengthy proof, we only give three examples.

(A) By taking the complex inner product with row 2 of \(W_5 \), we have that \(|1 - \omega + \bar{\omega} b| = 2 \).

By using \((O1)\), we have that \(\omega b = \pm \bar{\omega} \) which implies that \(b \in \{\pm 1\} \). Thus, all entries in the candidate row are sixth roots of unity.

(G) By taking the complex inner product with row 3 of \(W_5 \), we have that \(|1 + 1 + 1 + \bar{\omega} b| = 2 \).

By using \((O3)\), we have that \(\omega b = -1 \) which implies that \(b = -\bar{\omega} \). Thus, all entries in the candidate row are sixth roots of unity.

(J) By taking the complex inner product with row 5 of \(W_5 \), we have that \(|1 + \omega + \bar{\omega} + \omega b| = 2 \).

By using \((O4)\), we have that \(|\omega \bar{\omega}| = 2 \) which implies that \(|b| = 2 \), which is a contradiction since \(b \) is a unimodular number. Thus, \((J)\) cannot be unbiased with row 5, so it may not be the row that is orthogonal with row 1 of \(W_5 \).

For each of the five rows of \(W_5 \), there are 11 different candidates for per row (each with exactly one free variable). In every case, the free variable is shown to be a sixth root of unity or have absolute value 2 (as in the examples above).

\[\square\]

Theorem 17 The largest number of mutually unbiased weighing matrices of the form \(UW(5, 4) \) is 5.

Proof In [4, Lemma 15], it is proven that all \(UW(5, 4) \) are equivalent to \(W_5 \) given in Lemma 16. Thus, given a set of mutually unbiased weighing matrices, we may permute and multiply by a unit number the rows and columns of the matrices in such a way that one
of them is W_5. By Lemma 16, we know that any matrix that is unbiased with W_5 must only contain 0 and the sixth roots of unity, leaving just $5 \times 6^3 = 1,080$ rows to check (there are five locations for the zero, and we may set the first nonzero entry to be 1). An exhaustive computer search was done over these rows, which revealed that the maximal set of mutually unbiased weighing matrices contains five elements. One collection of these matrices is included in Table 4 in Appendix 1.

\[\square \]

3.4.2 UW(6,4)

This is the first case where the upper bound given in Corollary 9 seems unattainably high (20 mutually unbiased weighing matrices). However, relatively quickly, our computer program gave us the following.

Theorem 18 There are 20 mutually unbiased weighing matrices of order 6 and weight 4.

Proof A set of matrices attaining this bound can be found in Appendix 1, Table 5.

Each of the elements in the set of matrices given are over the sixth root of unity. One special feature of this set of matrices is that it attains the upper bounds given in both (3) and (4).

The first four matrices given in Table 5 are real matrices, which falls just short of the upper bound given in Corollary 10. This turns out to be an optimal set of real weighing matrices.

Theorem 19 There are no more than four mutually unbiased real weighing matrices of order 6 and weight 4.

Proof An exhaustive computer search over real weighing matrices was performed and found that there were no sets of mutually unbiased real weighing matrices of order 6 and weight 4.

\[\square \]

3.4.3 UW(7,4)

Lemma 20 Let W be a unit weighing matrix that is unbiased with

\[
W_7 = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0
\end{pmatrix},
\]

Then every nonzero entry in W is either 1 or -1, up to equivalence.

Proof We can easily see that there are only $\binom{7}{3} = 35$ possible zero placements that are valid in a row of W. Similar to the proof of Lemma 16, we will only show a couple cases, as the rest follow similarly. Let a, b, c be arbitrary unimodular numbers.

(A) \(\begin{pmatrix} 1 & a & b & c & 0 & 0 & 0 \end{pmatrix} \)

- Taking the complex inner product with row 2 of W_7, we have that $|1 + a| \in \{0, 2\}$ which implies $a \in \{\pm1\}$.

\[\square \]
have the same zero pattern as W.

Of particular note, the only rows that do not cause a contradiction are those seven rows which have the real weighing matrix W.

Similarly to the proof of Theorem 17, one matrix in the set may be transformed into the real weighing matrix W_7 given in Lemma 20, since every $UW(7, 4)$ is equivalent to this matrix (see [4, Sect. 3.4]). By Lemma 20, every weighing matrix equivalent to W_7 must also be real, so we may use Corollary 10 to provide us with this bound.

Using a computer search, we find eight real mutually unbiased weighing matrices $W(7, 4)$ given in Table 6 in Appendix 1. This achieves the real upper bound given by Corollary 10. By Theorem 21, this is also the maximal set of $UW(7, 4)$, despite not achieving the upper bound of 24 given by Corollary 9.

3.4.4 $UW(8,4)$

Theorem 22 The maximum number of real mutually unbiased weighing matrices of order 8 and weight 4 is 14.

Proof A set of 14 $W(8, 4)$ has been generated by a computer search and can be found in Table 7 in Appendix 1. This meets the upper bound given by Corollary 10. This set of matrices attain both the upper bounds in (5) and (6).
Table 3 Nine mutually unbiased weighing matrices of order 4 and weight 3, $UW(4, 3)$

$$
\begin{bmatrix}
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 0 & \omega \\
1 & 0 & \omega & 1 \\
1 & 0 & \omega & 1 \\
0 & 1 & \omega & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 0 & \bar{\omega} \\
1 & 0 & \bar{\omega} & 1 \\
1 & 0 & \bar{\omega} & 1 \\
0 & 1 & \bar{\omega} & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 0 & \omega \\
1 & 0 & \bar{\omega} & 1 \\
1 & 0 & \bar{\omega} & 1 \\
0 & 1 & \bar{\omega} & 1
\end{bmatrix}
$$

Table 4 Five mutually unbiased weighing matrices of order 5 and weight 4, $UW(5, 4)$

$$
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & \bar{\omega} & 0 & 1 & 0 \\
1 & 0 & \bar{\omega} & \bar{\omega} & 0 \\
0 & 1 & \bar{\omega} & \omega & 0
\end{bmatrix}
\begin{bmatrix}
1 & \omega & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & \omega & \bar{\omega} & \omega
\end{bmatrix}
\begin{bmatrix}
1 & \bar{\omega} & 0 & 0 & \omega \\
1 & 1 & 0 & 0 & \omega \\
1 & 0 & 1 & 1 & \omega \\
0 & 1 & \omega & \bar{\omega} & \bar{\omega}
\end{bmatrix}
\begin{bmatrix}
1 & 0 & \bar{\omega} & 0 & \omega \\
1 & 1 & \omega & \omega & 0 \\
1 & \omega & 1 & \omega & 0 \\
0 & \omega & \omega & 1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 0 & \omega & \bar{\omega} \\
1 & 0 & \bar{\omega} & \omega & 1 \\
1 & 0 & \omega & \bar{\omega} & 1 \\
0 & 1 & \omega & \bar{\omega} & 1
\end{bmatrix}
$$

Further investigations into $UW(8, 4)$ using large roots of unity have proven fruitless. Odd roots of unity produce maximal sets smaller than that of the real case, and even roots of unity become computationally unfeasible after the fourth root of unity, which returns the set of $W(8, 4)$ as the maximal set of mutually unbiased weighing matrices.

4 Unbiased hadamard matrices

So far, we have only examined a very special case of unbiasedness. Our selection of the values of n and α in (1) and (2), as well as imposing a certain structure to our matrices, make it possible to append the identity to the set of weighing matrices. More precisely, considering each row of all weighing matrices in a set of mutually unbiased weighing matrices of order n and the rows of the identity matrix of order n as vectors in \mathbb{R}^n or \mathbb{C}^n, they form a class of bi-angular vectors. We now make a different selection for the value of α in such a way that it is no longer possible to add the identity matrix and preserve the bi-angularity. In doing so, we are introducing a new concept of unbiasedness. Below, in Table 2, we give an example of a set of eight Hadamard matrices of order 8 that form a bi-angular set of vectors in \mathbb{R}^8, but no rows of the identity matrix can be added to the set and preserve bi-angularity. In the following set, $\alpha = \frac{1}{2}$, but if the identity is added, it would introduce the inner product of $\frac{1}{\sqrt{8}}$ (up to absolute value) and the bi-angularity of the lines would disappear.

The rows of these matrices are generated from the BCH-code [5,12] of length 7 with weight distribution $\{(0, 1), (2, 21), (4, 35), (6, 7)\}$ (see [14] for more information about BCH-codes). Once the codewords are generated, we append a column of zeroes, then perform the following operation onto each entry of the codewords:

$$f(i) = \begin{cases}
1 & \text{if } i = 0 \\
-1 & \text{if } i = 1.
\end{cases}$$

We were also able to generate 32 Hadamard matrices of order 32 which have inner products in $\{0, \pm 8\}$ through a similar process. The weight distribution of the order 32 matrices is...
We believe that this set of vectors contains the needed ingredients to make the Hadamard matrices required. Moreover, we pose the following questions in Tables 8, 9, 10 and 11 in Appendix 2.

In an attempt to continue this, we have generated the 128² codewords from the BCH-code of order 127, but were not able to partition them into the 128 Hadamard matrices needed due to computer memory restrictions. The inner products between the vectors are all in \{0, \pm 16\}. We do believe that this set of vectors contains the needed ingredients to make the Hadamard matrices required. Moreover, we pose the following

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
\hline
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
\hline
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
\hline
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
\hline
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
\hline
\end{tabular}
\caption{20 mutually unbiased weighing matrices of order 6 and weight 4, \textit{UW}(6, 4)\label{tab:uw6_4}}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
\hline
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
\hline
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
\hline
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}
\caption{Eight mutually unbiased real weighing matrices of order 7 and weight 4, \textit{W}(7, 4)\label{tab:w7_4}}
\end{table}
It is important to note that the number of vectors found through Conjecture 23 is usually less than the bound given in Theorem 8. We believe that the upper bound is too high in this case because the vectors are all flat (i.e., all the entries of the vectors have the same absolute value). In fact, we feel that the upper bounds given in Theorems 7 and 8 are rarely obtained if V is a set of flat vectors. It seems that finding a general bound for flat vectors is a challenging problem.

Using the terminology from [2], these matrices form a set of weakly unbiased Hadamard matrices. However, it is important to note that the matrices formed here are a very special kind of unbiased Hadamard matrices since the entire set of vectors forms a set of bi-angular lines (whereas the vectors from [2] give tri-angular lines). These matrices seem to form very nice combinatorial objects, which are discussed in further detail in a forthcoming paper [3].

Acknowledgments The authors wish to extend their gratitude to Professor Masaaki Harada for his help in locating the codes used in Sect. 4 and to Professor Kevin Grant for allowing the use of his NSERC funded computer, *hera*, for many of the computations carried out in this article. The authors also wish to thank the referees for their very valuable suggestions and comments which have immensely improved the presentation of this paper. D. Best was supported by NSERC CGS-M and Alberta Innovates—Technology Futures. H. Kharaghani was supported by an NSERC Discovery Grant.
Mutually unbiased weighing matrices

Note added during proof

It seems that Conjecture 23 has been resolved since submission. See H. Nozaki and S. Suda: “Association schemes related to weighing matrices”. arXiv:1309.3892v1 [math.CO], 2013.

Appendix 1: Sets attaining the smallest upper bound

This section includes a library of sets of weighing matrices whose size equal the smallest upper bound that is known. To save space, we define \(\omega := e^{2\pi i/3} \) and \(\overline{\omega} := -\omega \).

Appendix 2: Hadamard matrices of order 32

In Tables 8, 9, 10 and 11, we show the partition of the 32^2 vectors into 32 Hadamard matrices of order 32 (denoted by \(H_1, H_2, \ldots, H_{32} \)). Each section represents one Hadamard matrix, and each hexadecimal number represents one row of the matrix (where each digit represents four entries). The most significant binary digit represents the left-most entry of the 4-tuple and the least significant binary digit represents the right-most digit. For example, 4259F1BA represents 0100 0101 1111 0001 1011 1010. We then convert the binary string to a \(\pm 1 \) string using the function \(f \) defined by formula (7).
Table 8	H_1 through H_8	
00000000	4259F1BA 203AEB5 50967C6E 59F1BA84 47FC04A7 4E9BC24D 4B3E3750	
62631F0F	7C6EA12C 1E0DBE23 259F1BA8 32F56361 750967C6 176A78C9 67C6EA12	
62A12CF8	70AC92DB 55339793 0CC233F7 12CF8DD4 05A5F51D 3B92A58B 79CB5431	
1B8A4B3E	5C544F99 6B04D9E5 3E375096 2CF8DD42 0967C6EA 3750967C 29D5285F	
6EF49ECD	2D2FA8E1 755CD5F3 017C11CA 5F047280 236AD3AC 07770F92	
727B6854	4DCBF0F5 5663B46A 7819AEBE 129A3FE1 0055B235 24486E0B 44AC39BE	
0E19C978	38C29892 4AE94F23 15B88246 438E8419 514109CD 67935827 2AD51546	
69D6236A	3687E3DF 093274DF 1CDF44AC 60B1E580 5F047280 236AD3AC 07770F92	
47DBB9D5	1F0EC4C7 6A07A301 182C7960 0384325E 5CD5F2EB 5BF74F4C 529089A6	
636065EB	114B8FFA 7F8A9372 405F0472 71AEP83F 4E1AP73F 2AP799E60	
0AE3F4B4	0DC14913 35563B4B 20BB53C7 78C82ED5 29DC952D 768D5598 327DFE13	
1669022D	3C31A55E 4938C298 04A68FF9 6D251EA6 64428D4C 55B23401 3B13118F	
050E9174	10E3A107 191D05D8 475760CE 7935826D 20C438E9 6BAFBD8C 629DC953	
2E8143A4	3529089A 46514117 7770F920 52BA50BD 02799EE6 3C17C45 4026F5C	
5CFF2BF0	7EB428FF 27B3377B 29F64C36 65EA5C61 1E6ADA4A 084BEA93 325E0708	
3B6C73D7	5B824624 7007F6B2 49121B83 6CD8B21E 1794AB95 0C3CE5AB 55CD5F2F	
7357CBAB	66ABF9E8 7475760C 017C11CA 5F070DC7 2A67112F 3F342A7D 5FAF16E9	
14E4A9A7	3F4B143C 61B72DS1 4DLFF013 62C17C45 381697D5 4A3D4DB4 149128B9	
7328A085	740A12D2 0103A4E 66C590F6 2D84CC88 58F2C060 65EAE6C 4A42269A	
13CCF730	2DFBA7A6 3869FCFB 4D60B59D 2AD91A01 588DaB4E 1B39C1BE 619846F	
76595ADF	03503D19 5C641771 1CF8DD8 0515465B 0E3A0163 4CE6DE19 1DFADCB8	
288A5DFC	5EAC6COD 372FFD52 4109CC81 12B0E6FA 6496D70B 119FBCD4 4F487EE	
396A861F	007E62B7 50E91740 69FCA771 781C2192 5D833A3A 3400AB65 42629A49	
250E7086	75760CCE 3A450D28 2BA50BCB 26CF62B1 7B3777A5 67B9813C 6AD34CAE	
7A4F666F	0F4601A9 5195068A 7A300D41 56B7BB2D 238EDEB 4407DD7 3171513F	
24E30A62	56C8D003 0864BC0E 435AB5E 1DF6E753 1AA1B3DA 23C1B5C5 6880EBBB	
0F396A87	7D6DBC8 7D12B0E6 447836F9 4325E070 310E3A11 68FF0895 362CB876	
1A45F4A4	3653EC98 6FD3D32 249C614C 1089C7D 51E6DA41 081BD720 6FA2561C	
0BCA574B	621C7421 70864BC0 4993A6F1 723728A9 20B0FE6D 5B3EDCFC 32DBA7A	
5C79E682	7EC3308D 77F14452 3C9AC137 171513E7 10621C75 4EE4A963 1E276738	
058F2C06	195068AA 02F82394 3BEDCEA5 0CBD58D9 2045859B 5B099910 79B431F	
47D6DDBC	6567B7B3 554CE25D 6C590F6C 35AB5E8 62BE00FE 40A1D22E 297FF144	
Table 9	H_9 through H_{16}	
---------	----------------------	
09B3C9AD 7B9B13CC 7DC6BFA1	2C2CD205 2A727E68 513E62E3 74A1794B 13679359	
00D40F47 254B14EF	2315B882 3F9F4E1B 4DB4947A 44D35290 0FED65C0 1A0055B3	
614C93F8 5859A409 72FD0526	6712E555 068A32A 6E7523BF 36F888F1 1C5E9F0E	
30A6249C	5760CE8E 682B8FD2 428DFE9D 5E070864 4BEA3817 39C1E276 15393F34	
185132B	16166903 146FF7E5 4680156D 7B8745FB 0FC7B5DB 241DDC3E 1A2A8CA8	
266442D8 2A58A773	6F23EB6E 631F0EC5 3DCC09E6 3FBB5970 48C56E20 4ABFC70F	
61669023	6DA75788 0182C593 5D028748 3AC46D5A 1F5B76F2 6DB8E7AC 46ACAC76	
7623EB6E	03FB5970 5D858535 338972AB 31F0EC4D 7ACE9DBF 748B0A50 44F9B8B8	
1F5A50AE 2F78B75	117E00BF 347FC04B 5347FC05 789D9C09 46541A2A 04D0EB90	
48116167	216C2664 6D70AC93 5D028748 3AC46D5A 1F5B76F2 6DB8E7AC 46ACAC76	
0AB646B1	0A4890DD 539B2A59 48EF7B3B 2F295D29 76D8E7AD 3A3ABB06 6335D7DE	
2192F038	762631F1 04F33DCC 78634ABC 34811617 63CB0182 5DFC5114 11E0DEBE	
6C0CBD59	3BB87C90 1740A1D2 2E554CE3 47836F89 05DA9E33 35FD07DD 40F4601B	
5265E5FFA	201037AE 77A4F667 1E72D50D 2767383C 29224371 49C614C4 6249C614	
4E8B11B6	3CCF7702 5C2B2487 1037AE40 7E96828B 5B5C2B25 6B7BB2BC 02AD91A1	
0B9F57E	0CE8EAE3 653EC986 79E18D2A 70D3F9F5 1905DA9F 328A084F 55195068	
5017C11C	3D32DFBA 11CA02F8 7CEF15CE 415C7E96 784993A7 042732BE 37D12B0E	
6902C22D	4F1905DB 5E52B5A1 63B1D989 76D8E7AD 3A3ABB06 6335D7DE	
28DFEC9	223C1B7D 1B29F64C 269A9484 45FAF16F 0EC46C3F 2C796030 54B14EE5	
72AA6713	4BB8A222 67475760 3377A4F7 156CD9D0 6DA43A3D 0A6249C6 1F8F79B5	
7022DF9A	3DB362C8 0524486F 33F6198B 68564985 6CA7D930 41DCC3DE 34DA4A22	
261B29F6	0206F5C8 0B133220 0C438E85 1E8C0351 794AE943 53124E30 62E2A27D	
4F9B8B9A	770F9200 2F73E61C 5430F937 17EBC5BB 3A91DF6F 46FF7E43 65C01F0A	
7E6854E4	48BA0508 23199451 285E5BBB 19AEB6F6 10C9781C 5D73575D 5A7A58B0	
50C3CE5B	01D7753A 1A7F3E9D 37052449 08B03B49 3B62E2A3 39405F04 7DB9D4F8	
66119FB1	4C4938C2 2BBFD2D0 25CA99D9 6F76595B 74D1265 06F5C804 61332216	
302799EE	6854E4FC 4B6B5656 1318F877 73FCAFC2 7A969289 0F920EEE 1D5D833A	
452FEF28	59A408B1 22BE143A 5E86B516 143A5D0 57E173FC 420C438F 2CA66F77	
2DA21593	24C9D379 1DCC3E48 66902C3 61B29F64 442D844C 2ABCA834 58A77255	
430F396B	745FAP7 1AAE83EF 36065EAD 08310E3B 737D12B0 01568C00 0F13B39C	
3124E3A0	06745756 38432508 56E20918 23BE6EDE 68D5598E 7A1AD45A 13945050	
7D3869FD	14BBF8A2	51C0B4BF 4D4A4226 6FF7E429 4A68F8F1 3F619847 5F85CFF2
Table 10 H_{17} through H_{24}

H_{17}	H_{18}	H_{19}	H_{20}	H_{21}	H_{22}	H_{23}	H_{24}
22977F14	1CA02F82	7AB1B033	3FCAPC2E	2CD20459	580C163C	01FDAC8B	3E1D89B
7F4F4CB7E	132216C	4B14EE4B	0E6FA256	59DB639F	1D775A21	3058F2C0	579E18D2
0FB8D7F5	4486E0A5	67EC3309	23400A87	002AD91B	687E3DE7	12E554CF	2D0571FA
45519506	4AC79BE8	663B46A6	7523B8DD	69A94844	7B66C590	56496D71	31878673
25B5C2B3	60CE8EAE	7201037A	2A27CC5D	06DF111F	2462B710	377A4F67	427328A1
5F2EB899	2FB0FBBF	6E8BF5E3	094D1FF1	73D67D9	6F5C084D	1A557E86	36AD3AC4
089A6A52	1B822925	601BC57A	50BA75C9	516B0D06	43A45D02	7C478783	070864B3
14109CCB	15C7E968	4DE1264F	7D930D94	38E84189	4C3653EC	5E9FDE38	393F342A
13E62E2B	39BE958B	1DA35566	503D1807	0129A3FF	7A6B7F74	2216C266	571AFA50
4CB7EE9E	25347FC1	7D4702D3	37FBF215	45D02875	14C4938C	6F88F8F7	061C7DF4
2C53B92B	7302799E	0F6CD8B2	595ADEED	5E78634A	3E9273FF	4B955339	06B01E58
2B71048C	66EF49ED	1A818EC1	084E6515	68A3A320	30D94F5B	7420C439	42F295D3
028748BA	104C56E	0E457B4D	49B7F8FA	722BDA61	3CB0182C	0722B7A7	2E7F9F58
2BDA6E0E	35D7DEC6	7EE9E996	40DE9900	778E2F7C	6983915F	307220DB	3915E3D3
7B4C1C8B	5ED30723	60E457B5	6541A2A8	6C266AED	15ED0373	22BDA60F	27185312
4C1C8AF7	19F20384	0BE08E50	1C8AF699	457B4C1D	57B4C1C9	521134D4	5B76F23E
4B44D352	11B569D6	715156E3	0D3F9F4F	4F666E5F	64BC0E10	4601A81F	3D4D8494
18D2A5FC	21C7420D	2F823940	5DA9B321	697D471	7836F890	037A4E08	
5A8B5E86	045859A5	6DDBC8FA	6AF7955D	767383C4	412315B8	54CE25CB	1FF0129B
7F14452E	26E5FFAA	3308CF9D	3A6F0933	342A772E	53EC869C	28A084E7	0A1D228E
2F563607	4CE25CB	39EB3B6D	30BCFD87	48CB0E10	3EC986CA	75F7B19A	11661619
64680157	00BBAD11	42A727E6	1806A07B	099910B6	541A2A8C	07DC6BFB	7C907770
28748BA0	2631FE0D	5D7DEC66	1F241DDC	1643DB36	21134D4A	72D50C3D	6DF0CB8D
6A2D7A1A	00FED65C	7BB2CAD7	634ABC5F	5A5F3C1	45859A41	37AE402E	533892F5
78E2F7CE	1B569D62	4FB261B2	41F71AFF	22437053	76A7C838	2561CDF4	5E2DD17F
67383C4E	151362E2	2B428B69	697D4703	590F6CD8	035E93B5	4890DC15	574A1795
46D5A758	34FE7D39	0AC92DAF	12315B88	71853124	20C60B1E	6E5FFF4A	0DEB9008
601A81E9	048C56E2	3D989BD3	5068AA32	7FC04A69	1C7420C5	3ABB0674	33CC9C0E
075DD689	598ED1AA	332216C2	7F35EC35	0A37BF3C	0918AD4C	7254B14F	5A1A879D
609B3C9B	3D676D8F	4B415CC7	717BE778	15925B5D	21ED9B16	462B7104	7C11CA02
6DEB74D6	3E483BB8	22C2CD21	54E4FDCC	2C87B66C	4860EA49	18F87627	16BD066A
1BD72010	300D40F5	63B46AAC	57CBAE87	6DF111E1	45042733	047280BE	2F8A8E05B
Table 11

Mutual unbiased weighing matrices 255

H_{25} through H_{32}
16E8BF5F 597007F6 483BB87C 712E554D 2FFDF526E 5393F342 3A10621D 42D84CC8
251EA6DA 0D40F461 4C9D3785 3EB6EDE4 467EC331 7BCDA1F9 5DD6880F 6E20918A
6A861E73 57357CB9 12E30A6A 64C3653E 07A300D5 7F6B2E00 7588DB48 03058F2C
30F396E9 21B82923 1C0B4BE8 34551950 18ADC412 09E67B98 6065EAC7 2B5BDD97
47A9B692 27CC5C55 20E1F2E2 62B71048 3BC717BE 173FCAFE 02D2FA8F
775A203B 799E6D04 32216C26 4E4FC6DA 29089A6A 6C73D677 524A86E1 56563BF4
OC163CB0 0F40728A 1D775BFB 19F80B3B 034B227D 1ED9B164 5B404D0E
58737D12 69A155C6 4F7E7387 7F95F85C 3972A9A7 7DEC66BA 1F71AF9E 6A78C82F
4D9E4D61 2F038432 544F988B 71D83111 1AE2A8CA 02A07C31 0A9C9F9A
1B4D4A44 1134DA44 34ABC0F0 04D9E4D7 5636065F 2146FF7F
73A91DF7 36D251EA 43DB362C 0E85017C 233F6199 4A0E3F84 643BDB3B 2D71A1AD
2EAB9ABF 109CA29 274DE127 791F5B7E 4ECE7078 50C1F0AC 70F920EE 32A01514
55E78634 6CF26B05 0571FA5A 77DB9D49 49ECCDDF 47280B39 1E5B0C16 6BDD6A2A
206FC9B0 3B4A4ACC 5B23400B 6236AD3A 7E3E6D61 0C9781C2 6514109D 025347FD
29892715 52C53B93 197A1B1B 17BE778E 0BB53C65 400A6B47 3C64176B 35826CF3
4947A9B6 29A3F603 08163132 6BFA0FB9 27E6854E 5BD69657 320BB53D 1E3F687F
20918ADC 0222C2D3 4075D96D 62C87B66 5C9AA9C0 34CE7078 657F4F04 5598ED1A
70524487 79603058 7E173FCA 52EFE288 198467ED 3B39C1E2 0B1E580C 6C8D002B
357CBAAF 77254B15 055B23A1 2ED4F191 17C11CA0 4702D2FB 0C69579E 4E3A0624
0EE1EF24 239405F0 1C2192F0 6EA9A481 1546541A 4A179A4F 7E87E782 75A203AF
51BDF91 078D9C6E 3F1EF369 2AF3C31A 3158824 4542EFE2 6928F536 6D76D8E7
7CC55C54 09CCA283 2DD17EBD 7280B3E0 58D819B7 43706254 4D352908 2486BB57
604F3D3C 1B032F57 1264E989 36793583 00AB684E 5FFAA3DC 39C4E4CE 569D6236
5A203AEF 163CB018 64E9BC25 1879CB55 33A3ABB0 6AACC768 71048C56 06D6283A
5ADEECB3 7FBF2147 0D9F42B6 7F41F71B 4FCD0A9C 280BE0E8 71FAP0A0 4F33DC00
18871D09 26B04D9F 28F536D2 546541A2 031D806B 549B97FE 418871D0 023F5637
335D7DEC 31D806A1 26E9BC3C 16C26644 64176A79 417A678D 6A521134 3DBED60F
24370525 4A9629D9 08CFD867 3EE35FD1 50427329 561CDF44 3784993B 01A81E8D
2D50C3CF 6F759E18 75DD6811 7CBAEE6B 121B8293 73834EC4 0E91740A 1B7C4747
0F66B2E0 31DA5556 1D22E814 4CC8B580 6F093275 666E4F9F 592B5BC3 38BDF3BC
45AF435A 14452EFE 603058F2 43F1EF37 2269A948 5F7B19A6 7A40206 2B06F6A2

References

1. Bengtsson I., Bruzda W., Ericsson Å., Larsson J., Tadej W., Życzkowski K.: Mutually unbiased bases and Hadamard matrices of order six. J. Math. Phys. 48, 052106 (2007).
2. Best D., Kharaghani H.: Unbiased complex Hadamard matrices and bases. Cryptogr. Commun. 2(2), 199–209 (2010).
3. Best D., Kharaghani H.: Applications of biangular lines. In preparation (2013).
4. Best D., Kharaghani H., Ramp H.: On unit weighing matrices with small weight. Discrete Math. 313(7), 855–864 (2013).
5. Bose R.C., Ray-Chaudhuri D.K.: On a class of error correcting binary group codes. Inf. Control 3(1), 68–79 (1960).
6. Calderbank A.R., Cameron P.J., Kantor W.M., Seidel J.J.: \mathbb{Z}_4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets. Proc. Lond. Math. Soc. 75, 436–480 (1997).
7. Chan H.C., Rodger C.A., Seberry J.: On inequivalent weighing matrices. Ars Comb. 21, 299–333 (1986).
8. Craigen R.: The structure of weighing matrices having large weights. Des. Codes Cryptogr. 5(3), 199–216 (1995).
9. Delsarte P., Goethals J.M., Seidel J.: Bounds for systems of lines, and Jacobi polynomials. Philips Res. Rep. 30, 91 (1975).
10. Durt T., Englert B.G., Bengtsson I., Życzkowski K.: On mutually unbiased bases. Int. J. Quantum Inf. 8, 535–640 (2010).
11. Harada M., Munemasa A.: On the classification of weighing matrices and self-orthogonal codes. J. Combin. Des. 20(1), 40–57 (2012).
12. Hocquenghem A.: Codes correcteurs d’erreurs. Chiffres (in French). 2, 68–79 (1959).
13. Leung D., Mancinska L., Matthews W., Ozols M., Roy A.: Entanglement can increase asymptotic rates of zero-error classical communication over classical channels. Commun. Math. Phys. 311(1), 97–111 (2012).
14. van Lint J.H.: Introduction to Coding Theory. Springer, New York (1992).
15. Williams V.V.: Multiplying matrices faster than Coppersmith–Winograd. In: Proceedings of the 44th Symposium on Theory of Computing, pp. 887–898. ACM, New York (2012).