CASE REPORT

Ventricular Tachycardia After Naloxone Administration: a Drug Related Complication? Case Report and Literature Review

Heleen Lameijer · Nasim Azizi · Jack J. M. Ligtenberg · Jan C. Ter Maaten

© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract

Objective To present a case of ventricular tachycardia following naloxone administration and to review current literature concerning ventricular tachycardia associated with naloxone.

Methods We present a case and review the literature concerning ventricular tachycardia (VT) as a complication of naloxone administration.

Results In our patient, a 44-year old male intoxicated multi-drug user, VT presented on the electrocardiogram shortly after naloxone (twice 0.4 mg intra-osseous) administration for suspected methadone overdose. After initial medical treatment he was treated with electrocardioversion because of hemodynamic instability. Our patient was subsequently stabilized and admitted to our intensive care unit (ICU). Eight comparable cases concerning VT after administration of naloxone were found in the literature, both in multi-drug uses as in patients receiving opiates for elective surgery.

Conclusion We suggest VT as a possible, but rarely reported serious complication of naloxone administration (Naranjo scale possible to probable). Patients who are multi-drug users or receive opiates in high doses may be prone to VT/VF due to acute (iatrogenic) opiate withdrawal or reduction of sympathetic suppression and therefore overstimulation. Also, antagonism of the protective mechanism of opioids against sympathetic excess (due to substance abuse, cardiac disease or hypoxia, as seen in all cases) may induce VT/VF. We suggest the use of small dosages (0.1 mg vs 0.4 mg), cardiac monitoring, and to have defibrillation devices stand-by.

Key Points

- Ventricular tachycardia is suggested to be a possible but rarely reported complication of naloxone administration.
- Multi-drug users or patients receiving iatrogenic high opiate doses may be prone to naloxone induced ventricular tachycardia.
- We suggest the use of small dosages, cardiac monitoring, and to have defibrillation devices stand-by when using naloxone in selected patients.

Introduction

Administration of naloxone, an opioid receptor antagonist frequently used in overdose with morphine (iatrogenic) or heroin, may not be as safe as previously considered. Known adverse events of naloxone administration are nausea, dizziness, headache and, in frequent opiate users, acute (iatrogenic) opiate withdrawal syndrome. We describe a patient who develops a ventricular tachycardia (VT) after administration of naloxone. Furthermore, we review the literature concerning VT following the use of naloxone.

Written informed consent was obtained from the patient for publication of this case report. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

H. Lameijer (✉) · N. Azizi · J. J. M. Ligtenberg · J. C. Ter Maaten
Department of Emergency medicine, University Medical Centre Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
E-mail: h.lameijer@umcg.nl

Published online: 25 October 2014

© The Author(s) 2014. This article is published with open access at Springerlink.com
Case Report

A 44 year old former intravenous drug addict was brought by ambulance to our emergency department with a reduced state of consciousness. His medical history reveals hay fever, chronic hepatitis C infection (hepatitis B and HIV negative) and arthritis of his right knee. Furthermore, an atrial septal defect had been discovered two years ago and was surgically corrected. Being a former drugs addict, he uses methadone 70 mg once a day, diazepam 10 mg three times a day and promethazine 25 mg once a day if needed. He uses no cardiovascular medication. Because of his reduced mental state and his medical history a methadone overdose or relapse in intravenous drug use, hence opioid overdose, was suspected and naloxone (twice 0.4 mg intravenous) was given following protocol by ambulance personnel before presentation at our emergency ward.

On arrival our patient was agitated but able to speak. His airway was clear. His breathing was compromised with a frequency of 40 breaths per minute (normal 14–20 per minute) and normal breath sounds. Because of agitation measuring saturation in this patient was difficult and therefore unreliable. Blood gas analysis showed a respiratory alkalosis with normal oxygen pressures (pH 7.51 (7.35–7.45); pCO2 2.5 kPa (4.6–6.0); pO2 11.9 kPa (9.5–13.5) HCO3 15 mmol/l (21–25)), oxygen saturation 98 % without oxygen administration. Because of tachypnea he received a non-rebreathing mask with 15 l O2/min. He tolerated ventilation without oxygen administration. Because of tachypnea he received a non-rebreathing mask with 15 l O2/min. He showed a blood pressure of 140/78 mmHg, a tachycardia of 160–180 beats per minute (normal 60–100 bpm) and a delayed capillary refill of 5 s (normal ≤ 2 s). No murmurs were heard at cardiac auscultation. Electrocardiography shows frequent episodes of VT. His Glasgow coma score is reduced (4–4–2, normal 4–6–5), both pupils were dilated. His temperature was 37 degrees Celsius, but rose to 39.6 degrees Celsius at secondary assessment half an hour later. Additional laboratory results showed Calcium level of 1.86 mmol/l (2.20–2.60), Albumin 35 g/l (35–50), Potassium 4.7 mmol/l (3.5–5.0) and Magnesium 0.97 (0.700–1.00). We concluded our patient to be in distributive shock. We ruled out myocardial infarction as a side effect of naloxone administration. One report described VT in a patient using Nalorphine. For comparison, see Table 1. The patient described by Cuss et al. suffered VT shortly after administration of Naloxone [2]. A second gift resulted in a second VT. Later, when readmitted, he again suffered VT twice, after 30 and 50 min. Two patients died, one due to VT, one due to asystole.

Discussion

We reviewed the current literature concerning VT/VF following the use of naloxone and contribute to this electrocardiograms and the pattern of serial cardiac enzymes. We contributed the initial rise in temperature to rhabdomyolysis due to agitation, which developed further during hospital stay (maximal CK-levels 91,716 U/l, normal 0–200 U/l; Myoglobin in urine 575 ug/l, normal 0–21 ug/l). Rhabdomyolysis was treated with intravenous fluid administration and forced diuresis. Because of mixed sympathomimetic and opioid toxidrome at presentation in our ward, multiple toxicology tests were performed once our patient was stabilized. These showed signs of both amphetamines, cannabis, benzodiazepine, opiate, methadone and cocaine.

Literature Review

Methods

We searched the MedLine database for Naloxone OR Narcan AND ventricular tachycardia, Naloxone OR Narcan AND “Tachycardia, Ventricular”[Mesh], Naloxone OR Narcan AND ventricular fibrillation, Naloxone OR Narcan AND “Ventricular Fibrillation”[Mesh], Naloxone OR Narcan AND sudden cardiac death, Naloxone OR Narcan AND “Death, Sudden, Cardiac”[Mesh], Date last searched was 13-02-2014. Articles were excluded based on abstract and title; studies describing only supraventricular arrhythmias, stress cardiomyopathy without cardiac arrhythmias, animal or in vitro studies were excluded. Articles not online available or directly available for the University Medical Centre Groningen were bought. Duplicates were removed. Articles considered significant were included by cross referencing. In addition, we searched the Dutch and European public pharmacovigilance databases (LAREB and Eudravigilance) for VT as a side effect of naloxone administration.

Results

Only 7 studies describing 8 cases were found matching our criteria, dating from 1974 to 2005. The Dutch and European public pharmacovigilance databases have not reported VT as a side effect of naloxone administration. One report described VT in a patient using Nalorphine. For comparison, see Table 1. The patient described by Cuss et al. suffered VT shortly after administration of Naloxone [2]. A second gift resulted in a second VT. Later, when readmitted, he again suffered VT twice, after 30 and 50 min. Two patients died, one due to VT, one due to asystole.
literature presenting our own case. The fact that we only
found 8 cases matching our search criteria indicated rarity
or underreporting. Of these, 6 described VT or ventricular
fibrillation (VF) following naloxone administration. Three
out of six patients suffering VT/VF were reported to be
frequent drug users (50 %), as was our patient. The use of
an opiate antagonist in frequent drug use may increase the
chance of acute opiate withdrawal syndrome, complicated
by VT/VF. Another two patients received high dose mor-
phine for cardiac surgery, which may as well trigger acute
opiate withdrawal syndrome when opiate antagonists are
used.

Our patient could have been more prone to arrhythmo-
genic events due to (late discovery and correction of) his
congenital heart disease and therefore structural cardiac
changes. Only two patients had a history with cardiac
disease, therefore susceptibility of the myocardium for
arrhythmogenic events could not be a sufficient explana-
tion for VT/VF in these patients.

Cocaine, as used by our patient, is known for its
arrhythmogenic and ischemic complications, and could
have contributed to the VT in our patient [8]. Cocaine
was used by only two of the other patients who suffered from
VT/VF; multi-drug use was seen in both patients. Cocaine
alone, multi-drug use or an interaction with naloxone, can
therefore not be solely responsible for VT/VF in all of
these patients, and contribution of naloxone to the VF/VF
could be suspected.

At presentation our patient showed signs of insufficient
respiration. It had previously been suggested that VT fol-
lowing the use of naloxone could have been triggered by
hypoxia alone and not by administration of naloxone itself
[1, 4, 9]. However, only 2 out of 6 patients with VT/VF had
signs of insufficient ventilation in this review. Notably, in
case VT/VF starts shortly after
administration of naloxone. However, short duration of this
interval suggests an association in these, cases, not per se
causality. The repeatability of VT in the case of Cuss et al.
[7] suggests an association as well, but could also be
attributed to ventricular irritability due to other mecha-
nisms in this patient despite lack of cardiac history.

Naloxone is suggested to increase or overstimulate
sympathetic activity by suddenly reducing the sympathetic
suppression of the administered opiate and therefore
increase the risk on VT/VF [2, 7]. Laboratory assessments
in dogs on morphine show only increased rate of ventric-
ular extra systoles after naloxone administration, but not
clearly increased ventricular irritability [6]. In all cases
sympathetic excess may have been caused by different
mechanisms, such as hypoxia, substance abuse or cardiac
disease. This combined with a sudden loss of the opioid
induced protection against arrhythmias due to naloxone
administration may have triggered sympathetic override

Table 1 Literature concerning ventricular tachycardia after naloxone administration

Author (Year)	Type	IR	FU	Age	CVH	Opiate	Iatrogenic	Co-ingestion	Timing	Arrhythmia	Survival
Andree R. A [1] 1980	Case series	No	No	23	No	Meperidine	Yes	No	4 min	Asystole	No
Cuss F. M. et al. [2] 1984	Case report	Yes	Yes	45	No	Morphine	No	Yes, cocaine	Immediately	VF	Yes
Hunter R [3] 2005	Case report	Yes	Yes	37	Yes	Heroin	No	No	21 s	VT	Yes
Lawrence J. R. et al. [4] 1975	Case report	Yes	Yes	46	No	Heroin	Yes	No	Shortly	VT	Yes
Merigian K. S. [5] 1993	Case report	No	Yes	36	No	Morphone	Yes	No	30 s	VT	Yes
Michaelis L. L. et al. [6] 1974	Case series	Yes	Yes	66	Yes	Heroin	Yes	Yes, cocaine, other opiates, cannabis	Immediately	VT	Yes
Osterwalder J. J. [7] 1996	Prospective clinical study, case report	Yes	Yes	21	Yes				Seconds	Asystole	Yes
in these patients. In addition, minor corrected QT interval prolongation due to relatively high dose naloxone infusion (40 μg/kg/min), and therefore possible susceptibility for cardiac arrhythmias, has been described in a very small population [10].

Worldwide accepted protocol administration of naloxone directs dosing of 0.4 mg, which may be repeated for insufficient response. Smaller dosages have been used in controlled settings (during anesthesiology) with sufficient response. Starting with a dose of 0.1 mg and increasing the dose slowly if needed may be the solution to prevent iatrogenic acute opiate withdrawal and therefore VT/VF in these patients [11]. Another solution could be to abandon administration of naloxone in opiate addicts, therefore acute withdrawal syndrome cannot take place, and have them intubated until awoken. However, this implicates higher healthcare costs due to hospital and ICU stays and should only be considered in patients at high risk for acute opiate withdrawal syndrome (as multi-drug users or patients who receive opiates in high doses). In other patients the lifesaving potential of naloxone overweighs the assumed risks, however, physicians need to be aware of them.

Conclusion

We suggest that VT/VF may possibly (Naranjo scale, even probable if previous reports are taken into account) be a serious complication of naloxone administration [12]. Patients who are multi-drug users or receive opiates in high doses may be prone to VT/VF due to acute (iatrogenic) opiate withdrawal or reduction of sympathetic suppression and therefore overstimulation. Also, antagonism of the protective mechanism of opioids against sympathetic excess (due to substance abuse, cardiac disease or hypoxia) may induce VT/VF. We propose to be careful with naloxone administration in these patients, and possibly choose not to use naloxone at all in this selected group of patients. If you do decide to administer naloxone, consider using small dosages (0.1 mg vs 0.4 mg) and have defibrillation devices stand-by. More research would help to determine the frequency and exactness of this possible complication, because, while highly interesting, current literature is scarce, evidence is little and our assumptions are made based on small proportions. However, ethical objections may preclude administration of naloxone in healthy individuals to prove causality for VT/VF as a complication of this opiate antagonist. Awareness and thereby more frequent reporting of this adverse event might also be important.

Acknowledgments Heleen LAMEIJER, MD: No funding, no financial interests, no conflicts of interest.
Nasim AZIZI, MD: No funding, no financial interests, no conflicts of interest.
Jack J.M. LIGTENBERG, MD PhD: No funding, no financial interests, no conflicts of interest.
Jan C. TER MAATEN, MD PhD: No funding, no financial interests, no conflicts of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Andree RA. Sudden death following naloxone administration. Anesth Analg. 1980;59(10):782–4.
2. Cuss FM, Colaco CB, Baron JH. Cardiac arrest after reversal of effects of opiates with naloxone. Br Med J (Clin Res Ed). 1984;288(6414):363–4.
3. Hunter R. Ventricular tachycardia following naloxone administration in an illicit drug misuse. J Clin Forensic Med. 2005;12(4):218–9.
4. Lawrence JR, Lee FR. Letter: Ventricular fibrillation after narcotic withdrawal. Lancet. 1975;2(7937):717.
5. Merigian KS. Cocaine-induced ventricular arrhythmias and rapid atrial fibrillation temporally related to naloxone administration. Am J Emerg Med. 1993;11(1):96–7.
6. Michaelis LL, Hickey PR, Clark TA, Dixon WM. Ventricular irritability associated with the use of naloxone hydrochloride. two case reports and laboratory assessment of the effect of the drug on cardiac excitability. Ann Thorac Surg. 1974;18(6):608–14.
7. Osterwalder JJ. Naloxone—for intoxications with intravenous heroin and heroin mixtures—harmless or hazardous? A prospective clinical study. J Toxicol Clin Toxicol. 1996;34(4):409–16.
8. Kloner RA, Hale S, Alker K, Rezgalla S. The effects of acute and chronic cocaine use on the heart. Circulation. 1992;85(2):407–19.
9. Clarke SF, Dargan PI, Jones AL. Naloxone in opioid poisoning: Walking the tightrope. Emerg Med J. 2005;22(9):612–6.
10. Oldroyd KG, Rankin AC, Gray CE, Harvey K, Borland W, Rae AP, et al. Failure to reproduce the in vitro cardiac electrophysiological effects of naloxone in humans. Br J Clin Pharmacol. 1994;37(3):289–94.
11. Bartlett D. The coma cocktail: Indications, contraindications, adverse effects, proper dose, and proper route. J Emerg Nurs. 2004;30(6):572–4.
12. Naranjo CA, Bust D, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981;30(2):239–45.