Lonicera japonica flos and Lonicerae flos: a systematic review of ethnopharmacology, phytochemistry and pharmacology

Yuke Li · Wen Li · Chaomei Fu · Ying Song · Qiang Fu

Received: 25 May 2019 / Accepted: 11 November 2019 / Published online: 22 November 2019 © Springer Nature B.V. 2019

Abstract Lonicerae japonicae flos (called Jinyin-hua, JYH in Chinese), flowers or flower buds of Lonicera japonica Thunberg, is an extremely used traditional edible-medicinal herb. Pharmacological studies have already proved JYH ideal clinical therapeutic effects on inflammation and infectious diseases and prominent effects on multiple targets in vitro and in vivo, such as pro-inflammatory protein inducible nitric oxide synthase, toll-like receptor 4, interleukin-1 receptor. JYH and Lonicerae flos [called Shanyninhua, SYH in Chinese, flowers or flower buds of Lonicera hypoglauca Miquel, Lonicera confusa De Candolle or Lonicera macrantha (D.Don) Spreng] which belongs to the same family of JYH were once recorded as same herb in multiple versions of Chinese Pharmacopoeia (ChP). However, they were listed as two different herbs in 2005 Edition ChP, leading to endless controversy since they have close proximity on plant species, appearances and functions, together with traditional applications. In the past decades, there has no literature regarding to systematical comparison on the similarity concerning research achievements of the two herbs. This review comprehensively presents similarities and differences between JYH and SYH retrospectively, particularly proposing them the marked differences in botanies, phytochemistry and pharmacological activities which can be used as evidence of separate list of JYH and SYH. Furthermore, deficiencies on present studies have also been discussed so as to further research could use for reference.

Keywords Lonicera japonica Thunberg · Lonicerae flos · Phenolic acids · Macranthoside B · Toll-like receptor 4 · Interleukin-1 receptor

Introduction

Lonicera japonica Thunberg (Caprifoliaceae), the medicine food homology herb (Hou and Jiang 2013) which has long been applied in treating inflammation and infectious diseases, is pervasively cultivated in eastern Asia, such as China, Japan and Korea (http://www.efloras.org/) and was initially introduced to
America as a horticultural plant with windbreaker and sand-fixation properties (He et al. 2017). However, it is now believed as a bio-invasion in North America, South America and Oceania (Lloyd et al. 2003). According to ‘Ben Cao Gang Mu’ (AD 1552–1578), the herbalism masterpiece which was known as the ancient Chinese encyclopedia, JYH was described as a commonly used herb to treat fever, phyma and sore. Modern pharmacological study has confirmed the antiviral, antibacterial and anti-inflammatory activities of JYH, supporting the traditional applications (Kang et al. 2004; Kao et al. 2015; Shi et al. 2016). Likewise, pharmacological study showed antioxidative, anti-tumour, liver protective and hypoglycemic activities of JYH (Jiang et al. 2014; Kong et al. 2017; Zhao et al. 2018; Park et al. 2012a). So far, more than 300 compounds have been isolated and identified from JYH, including phenolic acids, flavonoids, saponins, iridoids, etc. (Yang et al. 2016; Ni 2017; Lin et al. 2008).

JYH is one of the 70 most valuable herbs declared by the State Council of China. There are 312 Chinese patent medicines (CPMs) and 163 domestic health food containing JYH according to the data of National Scientific Data Sharing Platform for Population and Health (http://www.ncmi.cn/) and China Food and Drug Administration (CFDA, www.sfda.gov.cn/). The standard of JYH was first recorded in Chinese Pharmacopoeia (ChP) in 1963, limiting JYH medicinal part to dried flower buds of *Lonicera japonica* Thunberg. In 1977 Edition ChP, JYH had four plant origins, including *L. japonica*, *Lonicera hypoglauca* Miquel, *Lonicera confusa* DeCandolle and *Lonicera dasystyla* Rehder. Meanwhile, the medicinal parts were dried flower buds or initial flowers. This standard did not change in the subsequent 1985, 1990, 1995, and 2000 Edition ChP. In 2005 Edition ChP, JYH and Lonicerae flos (called Shanyinhua, SYH in Chinese) were listed as two herbs. The plant origin of JYH was changed to be consistent with that of 1963 Edition ChP, being *L. japonica*, while SYH was a multi-origins herb and plant origins were *L. hypoglauca*, *L. confusa* and *Lonicera macranthoides* Handel-Mazzetti. In 2010 Edition ChP, *Lonicera fulvotomentosa* Hsu et Cheng was listed as a new plant origin of SYH. Since then, there have been four plant origins of SYH.

Since JYH and SYH were listed as two herbs, controversies on their quality standards and interchangeability are ceaselessly due to their close proximity on plant species and appearances, together with traditional applications and great homogeneity regarding their medicinal uses. Meanwhile, owing to higher price of JYH, JYH is often adulterated with SYH motivated by economic interests. Furthermore, pharmaceutical companies need to provide scientific evidence to the Pharmacopoeia Committee if they want to change crude materials in CPMs from JYH to SYH (http://samr.cfda.gov.cn/WS01/CL0844/10570.html). Last but not least, there is a synonymy problem of SYH plant origins that was not mentioned in ChP. According to ThePlantList and eFloras, *L. macranthoides* and *L. fulvotomentosa* are synonyms of *Lonicera macrantha* (D.Don) Spreng, and *L. dasystyla* is actually a synonymy of *L. confusa* (http://flora.huh.harvard.edu/china/mss-volume19/Flora_of_China_Volume_19_Caprifoliaceae.pdf, http://www.theplantlist.org/tpl1.1/record/kew-2339927). Hence, a complete review on similarities and differences of JYH and SYH is timely. In this review, we introduce botanies and ethnopharmacology of JYH and SYH, and discuss their similarities and differences with respect of phytochemistry, pharmacological activities and toxicology by systematically reviewing studies performed on JYH and SYH in recent decades. A critical evaluation of pharmacological studies in terms of their relation to ethnopharmacology is also provided. We generalize factors that affect their qualities and present quality control methods. Meanwhile, bioavailability of major compounds and clinical uses of JYH productions have also been mentioned. Above all, we provide an accurate cognition of JYH and SYH, and propose deficiencies on present studies so as to further research can use for reference.

Botany and ethnopharmacology

Botany

The order Dipsacales comprises a monophyletic taxon with two major lineages, namely Caprifoliaceae (including Valerianaceae, Dipsacaceae, Diervilliae, Caprifoliaceae, Linnaeae and Morinaceae) and Adoxaceae (Fan et al. 2018; Group et al. 2016). In addition, Caprifoliaceae clade contains *Leycesteria* (6 species), *Lonicera* (about 200 species), *Symphoricarpos* (about...
15 species) and *Triosteum* (6 species) (Theis et al. 2008), among which the genera *Lonicera* and *Triosteum* have a very close relationship (Fan et al. 2018). There are two subgenera in *Lonicera*, namely *Chamaecerasus* (or *Lonicera*) and *Periclymenum* (or *Caprifolium*) with approximately 150 and 20 species, respectively (Rehder 1903).

SYH

SYH is semi-evergreen climbers with fragrant and paired flowers. Botanical traits of inflorescences and bracts are strategic points to differentiate four origins of SYH (Table 1; Fig. 1). Its flowering phase is April to September.

Four origins of SYH are widely cultivated in southern provinces of China. Wild plants grow in forests of mountain valleys or slopes, scrub, riversides, streamside or roadsides at an altitude of 200–2900 m (http://www.efloras.org/). Among them, *L. macranthoides* is the most cultivated one and dominates the current market, even popular than JYH. *L. confusa* is cultivated rarely and barely used (Chen et al. 2015a).

On the basis of ‘*Ben Cao Gang Mu*’ and ‘*Zhi Wu Ming Shi Tu Kao*’ (AD 1841–1846), the plant origin of JYH was typical climber with paired and opposite flowers axillary toward apices of branchlets. Ovate leaves were adaxially hairy along veins. Only *L. japonica* complies with the ancient records of JYH, whereas four origins of SYH are markedly different.

In sharp contrast with explicitly mono origin of JYH, a gap exists in the synonyms confusion of SYH origins. *L. dasystyla* is a synonym of *L. confusa* (www.theplantlist.org/, http://www.efloras.org/). However, they are regarded as different herbs by not a few researchers nowadays (Ou et al. 2011; Lim 2014). This is possibly due to they were once listed as two herbs in ChP for quite a long time. Moreover, *L. macranthoides* and *L. fulvotomentosa* were listed as two different plants in 2010 and 2015 Edition ChP, while they were synonyms of *L. macrantha* according to The Plant List and eFloras (www.theplantlist.org/, http://www.efloras.org/). As far as current research is concerned, it is difficult to point out their similarities or differences. Thereby studies on genetic diversity and relationships should be conducted. An evaluation of pharmacological studies of them should also be highlighted.

Ethnopharmacology

Lonicerae japonica was first recorded in ‘*Shen Nong Ben Cao Jing*’ in the Eastern Han Dynasty (AD 25–220) and stems were used medicinally at that time. In ‘*Ben Cao Shi Yi*’ (the Tang Dynasty, AD 618–709), stems of *L. japonica* were used to treat bloody dysentery. In ‘*Su Shen Liang Fang*’ (the Northern
Table 1 Botanical traits comparison of four origins of SYH (http://www.efloras.org/)

Botanical traits	L. macranthoides (L. macrantha)	L. hypoglauca	L. confusa (L. dasystyla)	L. fulvotomentosa (L. macrantha)
Color and glandular hairs	Yellow or yellow–green	Yellow–white to yellow–brown,	Gray–brown to yellow–brown,	Pale yellow–brown or yellow–brown,
		glabrous or sparse	densely gray–white hairs	densely yellow hairs
Flower branches	Conical-like inflorescences of	Short raceme inflorescences,	Short raceme inflorescences,	Short raceme inflorescences,
	paired flowers, densely in axils	single-paired flowers in axils	single-paired flowers in axils	single-paired flowers in axils
Bracts	Lanceolate	Lanceolate	Lanceolate	Filate
Texture of leaves	Leathery	Papery	Papery	Papery
Leaves	Orange–yellow glandular hairs	Abaxially large sessile	Dense glandular hairs	Densely filemot glandular hairs
Medicinal part	Rod-shaped, slightly curved,	orange glandular hairs		
	3–4.5 cm long, upper diameter			
	about 2 mm, lower 1 mm			

Fig. 1
* a L. japonica, b L. macranthoides, c L. hypoglauca, d L. confusa, e L. fulvotomentosa (www.sfda.gov.cn/)
Song Dynasty, AD 960–1127), stems were considered as anti-inflammatory agents. Based on ‘Dian Nan Ben Cao’ (the Ming Dynasty, AD 1368–1644), the main function of stems was to cure ulcer and sore. In ‘Ben Cao Gang Mu’ (the Ming Dynasty, written later than ‘Dian Nan Ben Cao’), flowers were used as medicine for the first time. Besides, flowers, stems and leaves of L. japonica had the same efficacy when it comes to treatment of swelling and scabies (Table 2).

Nowadays, flowers as well as other parts, particularly stems and leaves, of the five Lonicera species are applied to clean heat and toxic, expel wind and cool blood in traditional Chinese medicine, while JYH and SYH actually concern dried flower buds or initial flowers only. According to 2015 Edition ChP, stems of L. japonica are used medicinally, called Lonicera Japonica Caulis. Yet leaves, non-medicinal part of L. japonica, have not been fully utilized. Modern studies have confirmed that flowers, stems and leaves of L. japonica have similar chemical compounds with a variety of pharmacological activities. Flavonoids in L. japonica were degressively abundant in leaves, flowers and stems, and leaves showed the highest antioxidative intensity than those of flowers or stems (Seo et al. 2012). Tian found that phenolic acids in flowers and leaves were similar and both were higher than that in stems (Tian et al. 2019), and these results could also be found in SYH (Chen et al. 2015b; Yuan et al. 2014). Meanwhile, powder of SYH leaves has already been used as dietary supplementation in animal diets (Long et al. 2016). In China, JYH has been used as tea for a long time. The sales of Wanglaoji (trade name), a tea beverage containing JYH, exceeded that of Coca-Cola in 2018. The supply of JYH is not adequate to the demand (http://www.sohu.com), while leaves of L. japonica are wasted greatly despite having a long history as tea (Wang et al. 2008). Leaves of L. japonica have been considered as medicinal part in

Table 2 Traditional uses of L. japonica

No.	Prescription name	Main herbs/used part	Traditional use	Administration and application area	Reference
1	Yinju Baihu Decoction	JYH, dried capitulum of Chrysanthemum indicum Linnaeus, Gypsum	Clearing heat and toxic, and expelling superficial evils	Oral	‘Qianjin Miaofang’
2	Yinqiao Powder	JYH, dry fruits of F. suspensa	Curing headache, fever and cough	Oral	‘Wenbing Tiaobian’
3	Yinhua Decoction	JYH, dried roots of Astragalus membranaceus (Fisch.) Bunge or A. membranaceus (Fisch.) Bunge var. mongolicus (Bunge) Hsiao	Curing phyma and relieving pain	Oral	‘Zhulin Nvke Zhengzhi’
4	Jinyin Powder	JYH	Curing carbuncle and sore	External use	‘Yangshi Jiachang Fang’
5	Jinyin Jiedu Decoction	JYH, dried bulbs of Fritillaria thunbergii Miquel	Curing acne and scab	Poultice	‘Youke Zhiyan’
6	Simiao Yongan Decoction	Dried roots of Scrophularia ningpoensis Hemsley, JYH	Promoting blood circulation and relieving pain	Oral	‘Yanfang Xinbian’
7	Liuwu Jiedu Decoction	Dried roots of Smilax glabra Roxburgh, JYH, dried roots of Ligusticum chuanxiong hortulanorum	Curing sore, distending pain	Oral	‘Meili Xinshu’
8	Wushen Decoction	Dried sclerotia of Poria cocos Wolf, dried ripe fruits of Plantago asiatica Linnaeus or Plantago depressa Willdenow, JYH	Curing carbuncle	Oral	‘Bianzheng Lu’
9	Xiaohua Decoction	JYH, Begonia fimbristipula, dried roots of Trichosanthes kirilowii Maximowicz or Trichosanthes rosthornii Harms	Clearing heat and toxic, promoting blood circulation and eliminating phlegm	Oral	‘Waike Milu’
Japan and Korea according to the Japanese Pharmacopoeia and the Korean Pharmacopoeia. Therefore, in China, leaves of *L. japonica* and SYH origins should be valued in further studies.

JYH is typically matched with *Forsythia suspensa* (Thunberg) Vahl (Oleaceae) to clear heat and toxic, thereby curing seasonal febrile disease and sore. Another combination of JYH and *Scutellaria baicalensis* Georgi (Lamiaceae) is commonly used for the treatment of cough caused by lung fire. Shuang–Huang–Lian (SHL), a combination of JYH, *F. suspensa* and *S. baicalensis*, is the most typical formula to explain the traditional use of JYH. As a classic formula, SHL has been used for the treatment of cough, sore throat and fever, acting by dispelling wind, clearing heat and detoxification (Han et al. 2018; Tang et al. 2018; Tian et al. 2018). Till now, SHL has also been used extensively, and its preparations involve granules, oral liquid, injection, etc.

According to 2015 Edition ChP, JYH is developed into 87 CPMs in dosage form of pill, granules and liquid pharmaceutical preparations for oral consumption and multiple external preparations such as suppositories, eye drops, electuary, injection, etc. Additionally, 14 CPMs containing SYH are recorded, which are in dosage form of 13 oral preparations and 1 external spraying agent (Table 3).

In brief, JYH recorded in ancient books should be *L. japonica* rather than any four origins of SYH according to the classical Chinese medical treatises. Genetic diversity and pharmacological studies of *L. macranthoides* and *L. fulvotomentosa* should be highlighted.

L. japonica has been successfully used medicinally in China for over 2000 years. Nowadays stems and flowers of *L. japonica* are traditionally and ethnobotanically used to cure sore, carbuncle, scab, erysipelas, distending pain, etc., generally, while leaves have similar efficacy with flowers based on the reported literature but are not utilized well, which need to be further investigated for solving the ongoing short supply of JYH.

Table 3 Preparations of JYH and SYH listed in 2015 Edition ChP

Name	Type	Main herbs	Function						
JYH									
Yinhuang	Oral liquid	JYH, Scutellariae Radix	Curing acute and chronic tonsillitis and upper respiratory tract infection						
Jinyinhua	Distilled liquid	JYH	Clearing heat and toxic. Curing pimples and sore throat						
Xiaoer Yanbian	Granule	JYH, Belamcandae Rhizoma	Curing sore throat, cough and phlegm						
Jingqi Jiangtang	Tablet	JYH, Belamcandae Rhizoma, Coptidis Rhizoma, Astragali Radix, JYH	Curing light and moderate Type 2 diabetes						
Niuhuang Jingnai	Tablet	Bovis Calculus Artifectus, JYH	Curing mania and dizziness caused by excessive heat						
Lianhua Qingwen	Granule	Forsythiae Fructus, JYH	Curing influenza						
Shuanghu Qinggan	Granule	JYH, Polygoni Cuspidati Rhizoma et Radix	Curing nausea, anorexia and chronic hepatitis B						
Shuanghuanglian	Suppository	JYH, Forsythiae Fructus, Scutellariae Radix	Curing cold caused by exogenous wind and heat						
SYH									
Fengreqing	Oral liquid	SYH, Bear bile powder	Curing colds, headache, cough, thirst						
Fufang Zhenzhu Anchuang	Tablet	SYH, Taraxaci herba	Curing acne						
Yinqiao Shangfeng	Capsule	SYH, Forsythiae Fructus	Curing exogenous wind-heat, febrile disease at the beginning						
Yinpujiedu	Tablet	SYH, Taraxacherbac	Curing wind-heat acute pharyngitis and damp-heat pyelonephritis						
Qinggan Lidan	Oral liquid	Artemisiae Scopariae Herba, SYH	Curing dumbness and hypochondriac pain induced by damp-heat congestion of liver and gallbladder						
No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
-----	--------------------------------	-----------	----------------	----------------------------------	----------------	----------------	---------	-----------------------------------	-------------
1	Chlorogenic acid	Whole plant	Distilled water	Peng et al. (2000)	Flower buds	n-Butyl alcohol	1, 2, 3, 4	Yang et al. (2016)	1794427
2	Neochlorogenic acid	Flower buds	95% ethanol	Jin-qian et al. (2016)	Flowers/flower buds	Distilled water	1	Yang et al. (2016)	5280633
3	Isochlorogenic acid A	Unknown	Unknown	Chang and Hsu (1992)	Flowers/flower buds	Distilled water	1, 2, 3, 4	Yao et al. (1986), Dan et al. (2008)	6474310
4	Isochlorogenic acid B	Unknown	Unknown	Chang and Hsu (1992)	Flowers/flower buds	Distilled water	1, 2, 3, 4	Yao et al. (1986), Dan et al. (2008)	5281780
5	Isochlorogenic acid C	Unknown	Unknown	Chang and Hsu (1992)	Flowers/flower buds	Distilled water	1	Yao et al. (1986)	6474309
6	Cryptochlorogenic acid	Flower buds	95% ethanol	Jin-qian et al. (2016)	Flowers/flower buds	Distilled water	1	Yao et al. (1986)	9798666
7	Cynarin	Unknown	Unknown	Iwahashi et al. (1986)	Flower buds	Distilled water	1	Zhang et al. (2016)	5281769
8	Methyl chlorogenate	Flower buds	Ethanol	Lee et al. (2010a)	Flower buds	n-Butyl alcohol	4	Chai et al. (2004b)	6476139

Phenolic acids

Chlorogenic acids derivatives common for JYH and SYH

1. Chlorogenic acid
2. Neochlorogenic acid
3. Isochlorogenic acid A
4. Isochlorogenic acid B
5. Isochlorogenic acid C
6. Cryptochlorogenic acid
7. Cynarin
8. Methyl chlorogenate

Chlorogenic acids derivatives only for JYH

9. 1,5-O-Dicaffeoylquinic acid
10. 1,4-O-Dicaffeoylquinic acid
11. 5-p-Coumarylquinic acid
12. Feruloylcaffeoylquinic acid
13. Chlorogenic acid butyl ester
14. Methyl 3,5-di-O-caffeoylquinic acid
| No. | Compound | JYH Parts | Extraction | Reference | SYH Parts | Extraction | Origins | References | PubChem CID |
|-----|---|---------------------|------------|--|---------------------|------------|---------|-------------|-------------|
| 15 | Methyl 3,4-di-O-caffeoylquinic acid | Whole plant | Unknown | Chang et al. (1995) | | | | | 5319160 |
| 16 | 3-O-Caffeoylquinic acid ethyl ester | Flower buds | Ethanol | Lee et al. (2010a) | | | | | |
| 17 | 5-O-Caffeoylquinic acid butyl ester | Flower buds | Ethanol | Lee et al. (2010a) | | | | | |
| 18 | 5-O-Caffeoylquinic acid methyl ester | Flower buds | Ethanol | Lee et al. (2010a) | | | | | 54585255 |
| 19 | 3,5-O-Dicaffeoylquinic acid methyl ester | Flower buds | Unknown | Peng et al. (2000) | | | | | |
| 20 | 3,5-O-Dicaffeoylquinic acid butyl ester | Flower buds | Unknown | Peng et al. (2000) | | | | | |
| 21 | 3,5-O-Dicaffeoylquinic acid ethyl ester | Flower buds | Boiling water | Zheng et al. (2012) | | | | | |
| 22 | 3,4-O-Dicaffeoylquinic acid methyl ester | Flower buds | Boiling water | Zheng et al. (2012) | | | | | |
| 23 | 3,4-O-Dicaffeoylquinic acid ethyl ester | Flower buds | Boiling water | Zheng et al. (2012) | | | | | |
| 24 | 4,5-O-Dicaffeoylquinic acid methyl ester | Flower buds | Boiling water | Zheng et al. (2012) | | | | | |
| 25 | (−)4-O-(4-O-β-D-glucopyranosylcaffeoyl) quinic acid | Flower buds | Unknown | Yu et al. (2015a) | | | | | |
| 26 | (−)3-O-(4-O-β-D-glucopyranosylcaffeoyl) quinic acid | Flower buds | Unknown | Yu et al. (2015a) | | | | | |
| 27 | (−)5-O-(4-O-β-D-glucopyranosylcaffeoyl) quinic acid | Flower buds | Unknown | Yu et al. (2015a) | | | | | |

Chlorogenic acids derivatives only for SYH

No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID	
28	5-O-Caffeoyl quinic acid butyl ester	Flower buds	n-butyl alcohol	4	Chai et al. (2004b)					6481825
29	3,4-Dicaffeoylquinic acid methyl ester	Flower buds	Ethyl acetate	2	Tang et al. (2007)					
30	4,5-Dicaffeoylquinic acid methyl ester	Flower buds	Ethyl acetate	2	Tang et al. (2007)					
31	Ethyl-3-O-caffeoylquinate	Flower buds	n-butanol	1	Hu et al. (2016)					
No.	Compound	JYH Parts	Extraction Parts	SYH Parts	Extraction Parts	Origins	References	PubChem CID		
-----	---------------------------------------	-----------	------------------	-----------	------------------	--------------------	--------------------	-------------		
32	Butyl 5-caffeoyl quinine	Unknown	Unknown	Unknown	Unknown	Chai et al. (2004b)				
33	3,4,5-tri-O-Caffeoylquinic acid	Flower buds	n-butanol	1	Hu et al. (2016)	6440783				
34	Ethyl-4,5-di-O-caffeoylquinate	Flower buds	Distilled water	1	Zhang et al. (2016)					
35	Caffeoylshikimic acid	Flower buds	Distilled water	1	Zhang et al. (2016)					
36	2-Caffeoylshikimic acid	Flower buds	Distilled water	1	Zhang et al. (2016)					
37	3-Caffeoylshikimic acid	Flower buds	Distilled water	1	Zhang et al. (2016)					
38	4-Caffeoylshikimic acid	Flower buds	Distilled water	1	Zhang et al. (2016)					
39	5-Caffeoylshikimic acid	Flower buds	Distilled water	1	Zhang et al. (2016)					
40	6-Caffeoylshikimic acid	Flower buds	Distilled water	1	Zhang et al. (2016)					
41	3,4,5-tri-O-Caffeoylshikimic acid	Flower buds	Distilled water	1	Zhang et al. (2016)					
42	3-O-p-Coumaroylquinic acid	Flower buds	Distilled water	1	Zhang et al. (2016)			9945785		
43	4-O-p-Coumaroylquinic acid	Flower buds	Distilled water	1	Zhang et al. (2016)			101639422		
44	Ethyl-3,5-di-O-Caffeoylquinate	Flower buds	Distilled water	1	Zhang et al. (2016)					
45	p-Coumaroyl-cafeoylquinic acid	Flower buds	Distilled water	1	Zhang et al. (2016)					
46	Methyl 3-O-cafeoylquinate	Flower buds	Distilled water	1	Zhang et al. (2016)					
47	Methyl 1-O-cafeoylquinate	Flower buds	Distilled water	1	Zhang et al. (2016)					
48	Methyl 4-O-cafeoylquinate	Flower buds	Distilled water	1	Zhang et al. (2016)					
49	3-Feruloyl-4-cafeoylquinic acid	Flower buds	Distilled water	1	Zhang et al. (2016)			91617958		
No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID	
-----	---------------------------	-----------	----------------	-----------	-----------	------------	---------	-----------------	-------------	
50	3-Caffeoyl-4-feruloylquinic acid	Flower buds	Distilled water	1	Zhang et al. (2016)	131752147				
51	3-Feruloyl-5-cafeoylquinic acid	Flower buds	Distilled water	1	Zhang et al. (2016)	101710864				
52	3-Caffeoyl-5-feruloylquinic acid	Flower buds	Distilled water	1	Zhang et al. (2016)	101710863				
53	4-Feruloyl-5-cafeoylquinic acid	Flower buds	Distilled water	1	Zhang et al. (2016)	9936820				
54	4-Caffeoyl-5-feruloylquinic acid	Flower buds	Distilled water	1	Zhang et al. (2016)	92135801				
55	Methyl 1,3-di-O-caffeoylquininate	Flower buds	Distilled water	1	Zhang et al. (2016)	131752148				
56	Methyl-3,4-di-O-caffeoylquininate	Flower buds	Distilled water	1, 2	Zhang et al. (2016), Guan et al. (2011)	10075681				
57	Methyl-3,5-di-O-caffeoylquininate	Flower buds	Distilled water	1, 2	Zhang et al. (2016), Guan et al. (2011)	10554540				
58	Methyl-1,4-di-O-caffeoylquininate	Flower buds	Distilled water	1	Zhang et al. (2016)	131752148				
59	Methyl-4,5-di-O-caffeoylquininate	Flower buds	Distilled water	1	Zhang et al. (2016)	131752148				
60	Methyl-1,5-di-O-caffeoylquininate	Flower buds	Distilled water	1	Zhang et al. (2016)	131752148				
61	Ethyl-3,4-di-O-caffeoylquininate	Flower buds	Distilled water	1	Zhang et al. (2016)	131752148				

Cinnamic acids derivatives common for JYH and SYH

No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
62	Caffeic acid	Flowers	Methanol	Choi et al. (2007)	Flower buds	Ethyl acetate	4	Chai et al. (2004b)	689043
63	3-O-Feruloylquinic acid	Leaves/Flowers/Stems	70% methanol	Iwahashi et al. (1986)	Flower buds	Distilled water	1	Zhang et al. (2016)	10133609
64	4-O-Feruloylquinic acid	Flowers/Flower buds	Ethanol	Institute (1975)	Flower buds	Distilled water	1	Zhang et al. (2016)	4635494
The table continues as follows:

No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
65	5-O-Feruloylquinic acid	Unknown	Unknown	Iwahashi et al. (1986)	Flower buds	Distilled water	1	Zhang et al. (2016)	9799386
66	1-O-Caffeoylquinic acid	Unknown	Unknown	Chang and Hsu (1992)	Flower buds	n-butyl alcohol	1	Xu et al. (2006)	131751066
67	Trans-Cinnamic acid	Flowers/Flower buds	Ethyl acetate	Wang et al. (2013a)	Flowers/Flower buds	Ethyl acetate	4	Wen et al. (2015)	444539
68	Trans-Ferulic acid	Whole plant	95% ethanol	Jeong et al. (2015)	Flowers/Flower buds	Ethyl acetate	3	Yao et al. (2014)	445858

Cinnamic acids derivatives only for JYH

No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
69	Caffeic acid methyl ester	Unknown	Unknown	Chang and Hsu (1992)					689075
70	Methyl 4-caffeoylquinate	Flowers/Flower buds	Distilled water	Yu et al. (2015b)					71720840
71	Ethyl cinnamate	Flower buds	95% ethanol	Jiang (2015)					637758
72	Caffeoylglycerol	Leaves/Flowers/ Stems	70% methanol	Seo et al. (2012)					129728050
73	Methyl 4-O-β-D-glucopyranosyl caffeate	Flowers/Flower buds	Distilled water	Yu et al. (2015b)					
74	Caffeic acid ethyl ester	Flower buds	95% ethanol	Jiang (2015)					5317238
75	4-Hydroxycinnamic acid	Flower buds/ Leaves	Acetone	Feng et al. (2011), Wang (2013)					637542
76	Methyl 4-hydroxycinnaminate	Flower buds	Acetone	Feng et al. (2011)					5319562
77	Isoferulic acid	Leaves	Ethanol	Wang (2013)					736186
78	3-(3,4-Dihydroxyphenyl) propionic acid	Flower buds	Acetone	Feng et al. (2011)					348154

Cinnamic acids derivatives only for SYH

No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
79	1-O-Dimethoxycinnamoylquinic	Flower buds	Distilled water	1					
80	3-O-Dimethoxycinnamoylquinic	Flower buds	Distilled water	1					
81	4-O-Dimethoxycinnamoylquinic	Flower buds	Distilled water	1					
No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
-----	----------	-----------	------------	-----------	-----------	------------	---------	------------	-------------
82	2,5-Dihydroxybenzoic acid-5-O-β-D-glucopyranoside	Flowers/Flower buds	Ethyl acetate	Wang et al. (2013a)	Flowers/Flower buds	Ethyl acetate	4	Wen et al. (2015)	
83	Vanillic acid	Flower buds	Ethanol	Lee et al. (2010a)					
84	Vanillic acid 4-O-β-D-(6-O-benzoylglucopyranoside)	Flower buds	Ethanol	Lee et al. (2010a)					
85	Vanillic acid 4-O-β-D-(6-O-benzoylpyranoside)	Flower buds	Ethanol	Lee et al. (2010a)					
86	Protocatechuic acid	Flowers	Methanol	Choi et al. (2007)					
87	4-Hydroxybenzoic acid	Flower buds	Ethanol	Li and Li (2005)					
88	Cynaroside	Flower buds	Ethyl acetate	Shuang-Cheng (2006)	Flower buds	Methanol	1, 2, 3, 4	Zhang et al. (2015)	44258205
89	Luteolin	Flowers	Methanol	Choi et al. (2007)	Flower buds	Ethyl acetate	4	Chai et al. (2004a)	5280445
90	Chrysoeriol 7-O-neohesperidoside	Flowers	Methanol	Choi et al. (2007)	Flower buds	n-butyl alcohol	4	Chai et al. (2004a)	44593486
91	Chrysoeriol 7-O-glucoside	Flowers	Methanol	Choi et al. (2007)	Flower buds	Ethyl acetate	1	Jia et al. (2008)	11294177
92	Lonicerin	Whole plant	n-butanol	Lee et al. (1995)	Flower buds	Petroleum ether	1, 3, 4	Chai et al. (2004c), Chen et al. (2007)	5282152
93	Tricin	Flower buds	n-butyl alcohol	Chai et al. (2004a)	Flower buds	n-butyl alcohol	4	Chai et al. (2004a)	5281702
94	Tricin 7-O-glucoside	Flower buds	Unknown	Ren et al. (2008)	Flower buds	n-butyl alcohol	4	Chai et al. (2004a)	44258267
95	Tricin 7-O-neohesperidoside	Flower buds	n-butyl alcohol	Huang et al. (2005)	Flower buds	n-butyl alcohol	4	Chai et al. (2004a)	44258269
96	Chrysoeriol	Dried flowers	Methanol	Choi et al. (2007)					
97	Rhoifolin	Aerial parts	Methanol	Son et al. (1992)					
98	Flavoyadorinin B	Flower buds	Ethanol	Lee et al. (2010a)					
No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
-----	--------------------------------	-----------	------------	-----------	-----------	------------	---------	-------------	-------------
99	Cupressuflavone	Unknown	Unknown	Choi et al. (2007)					5281609
100	Diosmetin	Unknown	Unknown	Choi et al. (2007)					5281612
101	5,3'-Dimethoxyluteolin	Flower buds	Acetone	Feng et al. (2011)					
102	5-Hydroxy-7,4'-dimethoxyflavone	Flower buds	Petroleum ether	Xing et al. (2002)					
103	Luteolin 7-O-β-D-galactoside	Flowers	Methanol	Choi et al. (2007)					5488493
104	Luteolin 3'-rhamnoside	Flowers/Flower buds	Ethyl acetate	Wang et al. (2013a)					44258072
105	Chrysin	Leaves	80% methanol	Kumar et al. (2005)					5281607
106	Diosmetin 7-O-β-D-glucoside	Leaves	Ethanol	Wang (2013)					11016019
107	Apigenin	Aerial parts	Ethyl acetate	Zhang et al. (2006)					5280443
108	Apigenin-7-O-α-L-rhamnopyranoside	Flowers/Flower buds	Ethyl acetate	Wang et al. (2013a)					
109	Corymbosin	Flowers/Flower buds	Alcohol	Huang et al. (1996)					10970376
110	5-Hydroxy-3',4',7'-Trimethoxyflavone	Flowers/Flower buds	Alcohol	Huang et al. (1996)					5272653
111	Ochnaflavone	Aerial parts	Ethyl acetate	Son et al. (1992)					5492110
112	Ochnaflavone 4'-O-methylether	Aerial parts	Ethyl acetate	Son et al. (1992)					
113	5,3'-Dimethoxy luteolin	Flower buds	50% aqueous acetone	Feng et al. (2011)					
114	Luteolin-5-O-β-D-glucopyranoside	Flower buds	50% aqueous acetone	Feng et al. (2011)					5317471
115	5-Hydroxy-6,7,8,4'-tetramethoxy flavone	Flower buds	95% ethanol	Jiang (2015)					
116	5-Hydroxy-7,4'-dimethoxyflavone	Flower buds	Ethyl acetate	Xing et al. (2002)					
117	5-Hydroxy-7,3',4',S'-tetramethoxyflavone	Flower buds	Ethyl acetate	Xing et al. (2002)					
118	5,7,3',4',5'-pentamethoxyflavone	Flowers/Flower buds	Ethyl acetate	Cui et al. (2012)					493376
119	5,4'-Dihydroxy3',5'-dimethoxy-7-O-β-D-glucopyranoside	Flowers/Flower buds	30% ethanol	Zhen (2010)					
No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
-----	-------------------------------	----------------------------	----------------	--------------------	----------------------------	----------------	---------	------------------------------	-------------
120	Luteolin O-dihexoside	Leaves/Flowers/Stems	70% methanol	Seo et al. (2012)					
121	Apigenin 7-O-hexoside	Leaves/Flowers/Stems	70% methanol	Seo et al. (2012)					
122	Apigenin 7-O-rutinoside	Leaves/Flowers/Stems	70% methanol	Seo et al. (2012)					5377847
123	Trihydroxymethoxyflavone	Leaves/Flowers/Stems	70% methanol	Seo et al. (2012)					

Flavone only for SYH

No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
124	Chrysoeriol-7-O-xyloside	Flower buds	n-butanol	Hu et al. (2016)					

Flavonols common for JYH and SYH

No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
125	Rutin	Unknown	Unknown	Chang and Hsu (1992)	Flower buds	n-butanol	1, 4	Chai et al. (2004c), Chai et al. (2004a)	5280343
126	Quercetin	Aerial parts	Methanol	Son et al. (1992)	Flower buds	Ethyl acetate	3, 4	Chai et al. (2004c), Chai et al. (2004a)	5280343
127	Astragalin	Aerial parts	Methanol	Son et al. (1992)	Unknown	Unknown	Unknown	Unknown	5282102
128	Isoquercurtin	Aerial parts	Methanol	Son et al. (1992)	Flower buds	Ethyl acetate	1	Jia et al. (2008)	5280804
129	Isohorhamnetin 3-O-glucoside	Flowers	Methanol	Choi et al. (2007)	Flower buds	n-butyl alcohol	1	Chen et al. (2008a)	5318645
130	Hyperoside	Flower buds	Ethyl acetate	Ni (2017)	Flower buds	Methanol	1, 3, 4	Huang et al. (2005)	5281643

Flavonols only for JYH

No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
131	3-Methoxyluteolin	Flower buds	Acetone	Feng et al. (2011)					
132	Isohorhamnetin 3-O-rutinoside	Flowers	Unknown	Wang (2010)					5481663
133	Kaempferol 3-O-β-d-rutinoside	Flower buds	Unknown	Wang (2010)					5318767
134	Kaempferol 3-O-hexoside	Flower buds	Ethyl acetate	Ni (2017)					
No.	Compound	JYH parts	SYH parts	Extraction	PubChem CID				
-----	-----------	-----------	-----------	------------	------------				
135	Quercetin-7-O-b-D-glucopyranoside	Flowers/Flower buds	Flowers/Flower buds	n-butyl alcohol	5282160				
136	Quercetin 3-O-hexoside	Leaves/Flowers/Stems	Leaves/Flowers/Stems	70% methanol	5489114				
137	Kaempferol	Flowers/Flower buds	Flowers/Flower buds	Ethyl acetate	5280865				
138	Flavone	Aerial parts	Aerial parts	Ethyl acetate	5489114				
139	Eriodictyol	Aerial parts	Aerial parts	Ethyl acetate	5489114				
140	3-O-Methyl loniflavone [5,5',7,7',3'-tetrahydroxy 4',4'-biflavonyl ether]	Leaves	Leaves	80% methanol	440735				
141	Loniflavone [5,5',7,7',3'-pentahydroxy 4',4'-biflavonyl ether]	Leaves	Leaves	80% methanol	440735				
142	Loganin	Flowers	Flowers	Ethyl acetate	87691				
143	Sweroside	Flowers/Flower buds	Flowers/Flower buds	Ethanol	1, 2, 3, 4				
144	Secologanoside	Flower buds	Flower buds	Ethanol	644698				
145	Ethyl secologanoside	Flower buds	Flower buds	Ethanol	644698				
146	Centaurin	Leaves/Flowers buds/Stems	Flower buds	Ethanol	443343				
147	7-Epiloganin	Flower buds	Flower buds	Ethanol	443343				
No.	Compound	JYH Parts	JYH Extraction	Reference	SYH Parts	SYH Extraction	Origins	SYH References	PubChem CID
-----	-------------------------------	-------------	----------------	--	-------------	----------------	---------	----------------	-------------
148	Secoxyloganin	Flower buds	Ethyl acetate	Ma et al. (2006)	Flower buds	Ethyl acetate	1, 3, 4	Chen et al. (2007), Lee (2004)	162868
149	Secologanic acid	Flower buds	Ethyl acetate	Ni (2017)					5321213
150	Secologanin	Flowers	Butanol	Tomassini et al. (1995)					161276
151	7-Epi vogeloside	Flowers/Flower buds	Chloroform	Bi et al. (2007)					
152	Morroniside	Flower buds	Unknown	Kakuda et al. (2000)					11304302
153	Loganin aglycone	Roots	95% ethanol	Jin-qian et al. (2016)					
154	7-Dimethyl-secologanoside	Leaves	Ethanol	Wang (2013)					
155	Secologanin dimethyl acetal	Leaves/Flower buds	Ethyl acetate	Machida and Asano (1995), Lee et al. (2010b)					157140
156	7-O-Butylsecologanic acid	Flowers	Butanol	Tomassini et al. (1995)					101687692
157	Secologanin dibutylacetal	Flowers	Butanol	Tomassini et al. (1995)					
158	Kingside	Flower buds	Unknown	Kakuda et al. (2000)					12304884
159	Vogeloside	Flower buds	n-butyl alcohol	Song et al. (2008)					14192588
160	Epi-vogeloside	Flower buds	n-butyl alcohol	Song et al. (2008)					14192590
161	Ketologanin	Flower buds	Distilled water	Song (2008)					
162	7α-Morroniside	Flower buds	Distilled water	Song (2008)					
163	7β-Morroniside	Flower buds	Distilled water	Song (2008)					
164	Lonijaposide A	Flower buds	Distilled water	Liu et al. (2015)					24879108
165	Lonijaposide A1	Flowers	Methanol	Kumar et al. (2006)					
166	Lonijaposide A2	Flowers	Methanol	Kumar et al. (2006)					
167	Lonijaposide A3	Flowers	Methanol	Kumar et al. (2006)					
No.	Compound	JYH Parts	JYH Extraction	SYH Parts	SYH Extraction	Reference	Origins	References	PubChem CID
-----	------------------------------	-----------	----------------	-----------	----------------	----------------------------	---------	------------	-------------
168	Lonijaposide A4	Flowers	Methanol			Kumar et al. (2006)			
169	Lonijaposide B	Flower buds	Distilled water			Liu et al. (2015)			24879110
170	Lonijaposide B1	Flowers	Methanol			Kumar et al. (2006)			
171	Lonijaposide B2	Flowers	Methanol			Kumar et al. (2006)			
172	Lonijaposide C	Flower buds	Distilled water			Liu et al. (2015)			
173	Lonijaposide D	Flower buds	Distilled water			Song (2008)			56599664
174	Lonijaposide E	Flower buds	Distilled water			Song (2008)			56599666
175	Lonijaposide F	Flower buds	Distilled water			Song (2008)			56599668
176	Lonijaposide G	Flower buds	Distilled water			Song (2008)			56599669
177	Lonijaposide H	Flower buds	Distilled water			Song (2008)			56599868
178	Lonijaposide I	Flower buds	Distilled water			Song (2008)			56598336
179	Lonijaposide J	Flower buds	Distilled water			Song (2008)			56599869
180	Lonijaposide K	Flower buds	Distilled water			Song (2008)			56599871
181	Lonijaposide L	Flower buds	Distilled water			Song (2008)			56599872
182	L-Phenylalaninosecologanin	Stems/leaves	Methanol			Machida et al. (2003)			101189142
183	7-O-(4-β-D-Glucopyranosyl-3-methoxy-benzoyl) secologanolic acid	Stems/leaves	Methanol			Machida et al. (2003)			
184	6’-O-(7α-Hydroxyxwersosyloxy) loganin	Stems/leaves	Methanol			Machida et al. (2003)			45783101
185	(E)-Aldosecologanin	Stems/leaves	Methanol			Machida et al. (2003)			
186	Loniceracetalide A	Flower buds	Ethyl acetate			Kakuda et al. (2000)			
187	Loniceracetalide B	Flower buds	Ethyl acetate			Kakuda et al. (2000)			
188	8-Epiloganin	Flower buds	Boiling water			Liu et al. (2015)			10548420
189	Loganic acid	Flower buds	Boiling water			Liu et al. (2015)			89640
190	8-Epiloganic acid	Flower buds	Boiling water			Liu et al. (2015)			158144
No.	Compound	JYH Parts	JYH Extraction	Reference	SYH Parts	SYH Extraction	Origins	References	PubChem CID
-----	---	--------------	----------------	----------------------------------	--------------	----------------	-------------	-----------------------------	-------------
191	Secologanoside-7-methyl ester	Flower buds	Ethyl acetate	Kakuda et al. (2000)					14038297
192	8-Epikingiside	Flower buds	Boiling water	Liu et al. (2015)					12304886
193	7-Hydroxy-methyl-vogeloside	Unknown	Unknown	Tian (2007)					
194	Loniaceticiridoside	Flower buds	Distilled water	Song et al. (2015a)					
195	Lonimalondialiridoside	Flower buds	Distilled water	Song et al. (2015a)					
196	6'-O-Acetylvogeloside	Flowers/Flower buds	95% ethanol	Xu et al. (2012)					
197	6'-O-Acetyllecoxylloganin	Flowers/Flower buds	95% ethanol	Xu et al. (2012)					
198	Adinoside A	Flowers/Flower buds	Ethyl acetate	Wang et al. (2013a)					11144737
199	Stryspinoside	Flowers/Flower buds	Ethyl acetate	Wang et al. (2013a)					76331806
200	Dimethylsecologanoside	Flower buds	Ethyl acetate	Ma et al. (2006)					14105070
201	Loniphenyruviridoside A	Unknown	Unknown	Yu et al. (2011)					57395335
202	Loniphenyruviridoside B	Unknown	Unknown	Yu et al. (2011)					56598467
203	Loniphenyruviridoside C	Unknown	Unknown	Yu et al. (2011)					57398873
204	Loniphenyruviridoside D	Unknown	Unknown	Yu et al. (2011)					56598469
205	Loniceranan A	Dried flower buds	75% ethanol	Liu et al. (2015)					
206	Loniceranan B	Dried flower buds	75% ethanol	Liu et al. (2015)					
207	Loniceranan C	Dried flower buds	75% ethanol	Liu et al. (2015)					
208	Demethylsecologanol	Dried flower buds	75% ethanol	Liu et al. (2015)					
209	Harpagide	Dried flower buds	75% ethanol	Liu et al. (2015)					10044294
210	Harpagoside	Dried flower buds	75% ethanol	Liu et al. (2015)					5281542
211	6''-O-β-Glcopyranosylharpagoside	Dried flower buds	75% ethanol	Liu et al. (2015)					
No.	Compound	JYH Parts	SYH Parts	Reference	SYH Extraction Parts	SYH Extraction	Origins	SYH References	PubChem CID
-----	---	----------------------	----------------------	-------------------------	----------------------	-----------------	----------	----------------	------------
212	(7β)-7-O-Methyl morroniside	Dried flower buds	75% ethanol	Liu et al. (2015)					
213	Serinosecologanin	Flower buds	Distilled water	Song et al. (2014)					
214	Threoninosecologanin	Flower buds	Distilled water	Song et al. (2014)					
215	Lonijapospiroside A	Flower buds	70% ethanol	Zheng et al. (2012)					
216	L-Phenylalaninosecologanin B	Flower buds	70% ethanol	Zheng et al. (2012)					
217	L-Phenylalaninosecologanin C	Flower buds	70% ethanol	Zheng et al. (2012)					
218	Dehydroprolinoylloganin A	Flower buds	70% ethanol	Zheng et al. (2012)					
219	Lonijaposide M	Unknown	Unknown	Yu et al. (2011)					56599874
220	Lonijaposide N	Unknown	Unknown	Yu et al. (2011)					56600069
221	Lonijaposide O	Flower buds	Distilled water	Yu et al. (2013)					
222	Lonijaposide P	Flower buds	Distilled water	Yu et al. (2013)					
223	Lonijaposide Q	Flower buds	Distilled water	Yu et al. (2013)					
224	Lonijaposide R	Flower buds	Distilled water	Yu et al. (2013)					
225	Lonijaposide S	Flower buds	Distilled water	Yu et al. (2013)					
226	Lonijaposide T	Flower buds	Distilled water	Yu et al. (2013)					
227	Lonijaposide U	Flower buds	Distilled water	Yu et al. (2013)					
228	Lonijaposide V	Flower buds	Distilled water	Yu et al. (2013)					
229	Lonijaposide W	Flower buds	Distilled water	Yu et al. (2013)					
230	7-O-Ethyl sweroside	Flower buds	Methanol	Song et al. (2006)					
231	Secoxyloganin 7-butyl ester	Flower buds	Methanol	Song et al. (2006)					
232	Grandifloroside	Roots	95% ethanol	Jin-qian et al. (2016)					20056012
233	7-Dehydrologanin	Flower buds	70% ethanol	Lee et al. (2010b)					443349
234	6'-O-α-L-Arabinopyranosyl demethylsecologanol	Flower buds	Methanol	Liu et al. (2012)					

Saponins

No.	Compound	JYH Parts	SYH Parts	Reference	SYH Extraction Parts	SYH Extraction	Origins	SYH References	PubChem CID
235	α-Hederin	Flower buds	Ethanol	Chen et al. (2000)	Unknown	Unknown	Unknown	Unknown	Chen et al. (2000)
236	Loniceroside A	Aerial parts	Methanol	Ho Son et al. (1994)	Flowers/Flower buds	Ethyl acetate	Unknown	Unknown	Lin et al. (2008)
237	Loniceroside B	Aerial parts	Methanol	Ho Son et al. (1994)	Flowers/Flower buds	Ethyl acetate	Unknown	Unknown	Lin et al. (2008)
No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
-----	---	--------------------	--------------	----------------------------	--------------------	--------------	-------------	------------------------	-------------
238	Loniceroside C	Aerial parts	Butanol	Kwak et al. (2003)	Flowers/Flower buds	Ethyl acetate	Unknown	Lin et al. (2006)	
239	Loniceroside D	Flowers/Flower buds	Ethanol	Lin et al. (2008)	Flowers/Flower buds	Ethyl acetate	Unknown	Lin et al. (2008)	
240	Loniceroside E	Flowers/Flower buds	Ethanol	Lin et al. (2008)	Flowers/Flower buds	Ethyl acetate	Unknown	Lin et al. (2008)	
241	3-O-α-L-Arabinopyranosyl-28-O-β-D-glucopyranosyl(1→6)-β-D-glucopyranosyl oleanolic acid	Aerial parts	Methanol	Kawai et al. (1988)	Flower buds	n-butyl alcohol	1	Chen et al. (2006)	
242	3-O-α-L-Rhamnopyranosyl(1→2)-α-L-arabinopyranosyl-28-O-β-D-glucopyranosyl(1→6)-β-D-glucopyranosyl oleanolic acid	Aerial parts	Boiling water	Kawai et al. (1988)	Flower buds	Ethyl acetate	1	Jia et al. (2007)	
243	Hederagenin 3-O-α-L-arabinopyranoside	Flowers	Ethyl acetate	Choi et al. (2007)					
244	Hederagenin	Whole plant	Butanol	Yu et al. (2015a)					73299
245	Oleanolic acid	Flower buds	Unknown	Wang (2010)					10494
246	Ursolic acid	Flowers/Flower buds	95% ethanol	Xu et al. (2012)					64945
247	Nortirucallane A	Flowers/Flower buds	80% ethanol	Wang et al. (2017b)					
248	Saponin 1	Flower buds	Methanol	Qi et al. (2009)					482163
249	Saponin 4	Flower buds	Methanol	Qi et al. (2009)					
250	Daucosterol	Flowers/Flower buds	Ethyl acetate	Wang et al. (2013a)					5742590
251	Oleanolic acid 28-α-L-rhamnopyranosyl-(1→2)-β-D-xylpyranosyl(1→6)-β-D-glucopyranosyl ester	Flowers	Methanol	Choi et al. (2007)					
No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
-----	--	-----------	------------	--------------------	-----------	------------	---------	-------------	-------------
252	Hederagenin-3-O-α-L-rhamnopyranosyl→2-α-L-arabinopyranoside	Flower buds	Ethanol	Chen et al. (2000)					
253	Hederagenin-3-O-α-L-rhamnopyranosyl(1→2)-α-L-arabinopyranoside	Flower buds	Ethanol	Chen et al. (2000)					
254	3-O-α-L-Rhamnopyranosyl(1→2)-α-L-arabinopyranosyl-28-O-β-D-glucopyranosyl hederagenin	Aerial parts	Methanol	Kawai et al. (1988)					
255	3-O-α-L-Rhamnopyranosyl(1→2)-α-L-arabinopyranosyl-28-O-[6-acetyl-β-D-glucopyranosyl(1→6)-β-D-glucopyranosyl] hederagenin	Aerial parts	Boiling water	Kawai et al. (1988)					
256	3-O-α-L-Arabinopyranosyl hederagenin 28-O-β-D-rahmnoypyransyl(1→2) [β-D-xylopyranosyl(1→6)-β-D-glucopyranosyl ester]	Flower buds	95% ethanol	Lou et al. (1996)					
257	3-O-α-L-Rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl hederagenin 28-O-β-D-xylopyranosyl(1→6)-β-D-glucopyranosyl ester	Flower buds	95% ethanol	Lou et al. (1996)					
258	3-O-α-L-Rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl hederagenin 28-O-β-D-Rhamnopyranosyl(1→2) [β-D-xylopyranosyl(1→6)-β-D-glucopyranosylester]	Flower buds	95% ethanol	Lou et al. (1996)					
No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
-----	---	-----------	------------	-------------------------	-----------	------------	---------	----------------	-------------
259	3-**O-β-D-Glucopyranosyl**-(1 → 4) **-β-D-glucopyranosyl**(1 → 3) **-α-L-rhamnopyranosyl**(1 → 2) **-α-L-arabinopyranosyl hederagenin**28-**O-β-D-glucopyranosyl**(1 → 6)-**β-D-glucopyranosyl ester**	Flower buds	Ethanol	Chen et al. (2000)					
260	3-**O-α-L-Rhamnopyranosyl**-(1 → 2) **-α-L-arabinopyranosyl hederagenin**28-**O-β-D-glucopyranosyl**(1 → 6)-**β-D-glucopyranosyl ester**	Flower buds	Ethanol	Chen et al. (2000)					
261	3-**O-β-D-Glucopyranosyl**-(1 → 3) **-α-L-rhamnopyranosyl**(1 → 2) **-α-L-arabinopyranosyl hederagenin**28-**O-β-D-glucopyranosyl**(1 → 6)-**β-D-glucopyranosyl ester**	Flower buds	Ethanol	Chen et al. (2000)					
262	3-**O-β-D-Glucopyranosyl**-(1 → 2) **-α-L-arabinopyranosyl oleanolic acid**28-**O-β-D-glucopyranosyl**(1 → 6)-**β-D-glucopyranoside**	Unknown	Unknown	Xing et al. (2002)					
263	3-**O-β-D-Glucopyranosyl**-(1 → 4)-**β-D-glucopyranosyl**(1 → 3)-**α-L-rhamnopyranosyl**(1 → 2) **-α-L-arabinopyranosyl hederagenin**28-**O-β-D-glucopyranosyl**(1 → 6)-**β-D-glucopyranosyl ester**	Flower buds	Ethanol	Chen et al. (2000)					
264	3-**O-α-L-Rhamnopyranosyl**-(1 → 2) **-α-L-arabinopyranosyl hederagenin**28-**O-β-D-xylopyranosyl**(1 → 6)-**β-D-glucopyranosyl ester**	Flower buds	Ethanol	Chen et al. (2000)					
No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
-----	-------------------	-----------	------------------	---	-----------	------------------	-----------------------------	--	-------------
265	Macranthoidin A	Flowers	Ethanol	Ren et al. (2008), Mao et al. (1993)	1, 2, 3, 4	Ethanol	1	Ren et al. (2008), Mao et al. (1993)	14564503
266	Macranthoidin B	Flowers	Ethanol	Ren et al. (2008), Mao et al. (1993)	1, 2, 3, 4	Ethanol	1	Ren et al. (2008), Mao et al. (1993)	119025667
267	Macranthoside B	Flowers	Ethanol	Chai et al. (2005), Mao et al. (1993)	1, 3, 4	Ethanol	1	Chai et al. (2005), Mao et al. (1993)	135396862
268	Macranthoside A	Flowers	Ethanol	Chai et al. (2005), Mao et al. (1993)	1, 3, 4	Ethanol	1	Chai et al. (2005), Mao et al. (1993)	176534
269	Dipsacoside B	Flowers	Ethanol	Ren et al. (2008), Mao et al. (1993)	1, 2, 3, 4	Ethanol	1	Ren et al. (2008), Mao et al. (1993)	21627940
270	Dipsacoside VI	Unknown	Unknown	Huang et al. (2017)	Unknown	Unknown	Unknown	Huang et al. (2017)	
271	Hederagenin-3-O-α-L-arabinopyranosyl (2 → 1)-O-α-L-rhamnopyranoside	Flowers	Methanol	Chai et al. (2005)	1, 3, 4	Methanol	1	Chai et al. (2005)	
272	Hederagenin-28-O-β-D-glucopyranosyl (6 → 1)-O-β-D-glucopyranosyl ester	Flower buds	50% methanol	Chen et al. (2007)	1	50% methanol	1	Chen et al. (2007)	
273	Thalictoside VI	Flower buds	70% ethanol	Chen et al. (2015a)	1	70% ethanol	1	Chen et al. (2015a)	23815408
274	Asiatic acid	Flower buds	70% ethanol	Chen et al. (2015a)	1	70% ethanol	1	Chen et al. (2015a)	119034
275	Leiyemudanoside A	Flower buds	Methanol	Liu et al. (2013)	1	Methanol	1	Liu et al. (2013)	
276	Lonimacranthoide I	Flower buds	50% ethanol	Chen et al. (2012a)	1	50% ethanol	1	Chen et al. (2012a)	
277	Lonimacranthoide II	Flower buds	50% ethanol	Chen et al. (2012a)	1	50% ethanol	1	Chen et al. (2012a)	
278	Lonimacranthoide III	Flower buds	50% ethanol	Chen et al. (2008b)	1	50% ethanol	1	Chen et al. (2008b)	
279	Lonimacranthoide IV	Flower buds	Ethanol	Yu et al. (2012)	1	Ethanol	1	Yu et al. (2012)	
No.	Compound	JYH Parts	JYH Extraction	SYH Parts	SYH Extraction	Origins	References	PubChem CID	
-----	----------	------------	----------------	-----------	----------------	--------	------------	------------	
280	Lonimacranthoide V	Flower buds	Ethanol	1	Yu et al. (2012)				
281	Lonimacranthoide VI	Flower buds	Unknown	1	Guan et al. (2014a)				
282	2α, 24-dihydroxy-23-nor-ursolic acid	Flower buds	70% ethanol	1	Chen et al. (2015a)				
283	2α, 4α-dihydroxy-23-nor-ursolic acid	Flower buds	70% ethanol	1	Chen et al. (2015a)				
284	Akebia saponin D	Flower buds	70% ethanol	1	Chen et al. (2015a)				
285	3β-O-β-D-Glucopyranosyl(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosyl-hederagenin-28-O-β-D-glucopyranosyl ester	Flower buds	70% ethanol	1	Chen et al. (2015a)				
286	3β-O-α-L-Rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosyl-28-O-β-D-glucopyranosyl ester	Flower buds	70% ethanol	1	Chen et al. (2015a)				
287	3-O-β-D-Glucopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosyl-23-hydroxyolean-18-en-28-oic acid O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranosyl ester	Flower buds	Methanol	1	Liu et al. (2013)				
288	3-O-β-D-Glucopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosyl-23-hydroxyolean lup-(2029)-en-28-oic acid O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranosyl ester	Flower buds	Methanol	1	Liu et al. (2013)				
No.	Compound	JYH Parts	JYH Extraction	SYH Parts	SYH Extraction	Origins	Reference(s)	PubChem CID	
-----	---	-----------	----------------	-----------	----------------	---------	-----------------------------	-------------	
289	3-O-β-D-Glucopyranosyl-					Flower buds	Methanol	Liu et al. (2013)	
	(1→4)-β-D-glucopyranosyl-								
	(1→3)-α-L-rhamnopyranosyl-								
	(1→2)-β-D-xylopyranosyl-23-hydroxyolean								
	hederagenin O-β-D-glucopyranosyl-(1→6)-								
	-β-D-glucopyranosyl ester								
	Essential oils								
290	9,12,15-Octadecatrienoic acid methyl ester	Flowers	Absolute ether		Flower buds	Distilled water	1	Wu et al. (2015a)	9316
291	Hexadecane	Flowers	Absolute ether		Flower buds	Ethyl acetate	1	Wu et al. (2015a)	11006
292	Nonadecane	Flowers	Absolute ether		Flower buds	Distilled water	1	Wu et al. (2015a)	12401
293	Dibutyl phthalate	Flowers/Flower buds	Absolute ether		Flower buds	Distilled water	1	Wu et al. (2015a)	3026
294	Hexadecanoic acid methyl ester	Flowers	Absolute ether		Flower buds	Distilled water	1	Wang et al. (1999)	8181
295	Linalool	Flowers/Flower buds	Absolute ether		Flower buds	Ethyl acetate	1	Tong et al. (2005)	6549
296	Octadecanal	Flowers	Absolute ether		Flower buds	Distilled water	1	Wang et al. (2009c)	12533
297	Phytool	Flowers	Absolute ether		Flower buds	Distilled water	1	Wang et al. (2009c)	5280435
298	α-Terpineol	Flowers	Absolute ether		Flower buds	Distilled water	1	Wang et al. (2009c)	17100
299	5-(Prop-2-enoyloxy)pentadecane	Flowers	Absolute ether		Flower buds	Distilled water	1	Wang et al. (2009c)	543288
300	Eicosane	Flowers	Absolute ether		Flower buds	Distilled water	1	Wang et al. (2009c)	8222
301	Triacontane	Flowers	Absolute ether		Flower buds	Distilled water	1	Wang et al. (2009c)	12535
302	2,6,10-Trimethyltetradecane	Flowers	Absolute ether		Flower buds	Distilled water	1	Wang et al. (2009c)	85785
303	Octadecane	Flowers	Absolute ether		Flower buds	Distilled water	1	Wang et al. (2009c)	11635
No.	Compound	JYH Parts	SYH Parts	JYH Reference	SYH Reference	PubChem CID			
-----	---------------------------------	-----------	-----------	---------------------	---------------------	-------------			
304	Heptadecane	Flowers	Absolute ether	Wang et al. (2009c)		12398			
305	Pentadecane	Flowers	Absolute ether	Wang et al. (2009c)		12391			
306	Hexane	Flowers	Absolute ether	Wang et al. (2009c)		8058			
307	Linalool oxide	Flowers	Absolute ether	Wang et al. (2009c)		6431477			
308	Methyl linolenate	Flower buds	Distilled water	Du et al. (2015)		5319706			
309	α-Muurolene	Flower buds	Distilled water	Du et al. (2015)		520461			
310	α-Curcumene	Flower buds	Distilled water	Du et al. (2015)		92139			
311	Carvacrol	Flowers/Flower buds	Absolute ether	Yang and Zhao (2006)		10364			
312	Farnesol	Flowers	Distilled water	Guan et al. (2014b)		445070			
313	Ascorbyl dipalmitate	Flowers	Distilled water	Guan et al. (2014b)		5472209			
314	Nonacosane	Flowers	Distilled water	Guan et al. (2014b)		12409			
315	Benzenepropanal	Flower buds	Distilled water	Du et al. (2015)		7707			
316	Ethylbenzene	Flower buds	Distilled water	Du et al. (2015)		7500			
317	Linalool oxide trans	Flower buds	Distilled water	Du et al. (2015)		6432254			
318	Isophytol	Flower buds	Distilled water	Du et al. (2015)		10453			
319	Cyclohexanol	Flower buds	Distilled water	Du et al. (2015)		7966			
320	Oxalic acid	Flower buds	Distilled water	Du et al. (2015)		971			
321	Cyclohexyl isobutyl ester	Flower buds	Distilled water	Du et al. (2015)		6421303			
322	(Cyclopentylmethyl)cyclohexane	Flower buds	Distilled water	Du et al. (2015)		20490			
323	(Cyclohexylmethyl)benzene	Flower buds	Distilled water	Du et al. (2015)		20490			
324	Aromadendrene	Unknown	Unknown	Wang (2010)		91354			
325	Geraniol	Unknown	Unknown	Wang (2010)		637566			
326	(Z)-Jasmonate	Flowers	Hexane	Ikeda et al. (1994)		1549018			
327	(Z)-Jasmin lactone	Flowers	Hexane	Zhang (2014)		5281929			
328	Methyl jasmonate	Flowers	Hexane	Zhang (2014)		5367719			
329	Methyl epi-jasmonate	Flowers	Hexane	Zhang (2014)		5367719			
330	Benzaldehyde	Flowers/Stems/Leaves	Distilled water	Wu et al. (2009)		240			
No.	Compound	JYH Parts	Reference	SYH Parts	Extraction	Origins	References	PubChem CID	
-----	---------------------------------	--------------------	------------	--------------------	------------	---------	----------------------	-------------	
331	Diethyl phthalate	Flowers/Stems/Leaves	Distilled water	Wu et al. (2009)				6781	
332	Propylbenzene	Flowers	Diethyl ether	Du et al. (2009)				7668	
333	Translinalool	Flowers	Diethyl ether	Du et al. (2009)					
334	Cyclohexylisoxalic ester	Flowers	Diethyl ether	Du et al. (2009)					
335	Methylecyclohexane	Flowers	Diethyl ether	Du et al. (2009)					
336	1-Octanol	Flowers	Absolute ether	Wang et al. (2009c)				967	
337	5-Octen-1-ol	Flowers	Absolute ether	Wang et al. (2009c)				62231	
338	1-Octadecanol	Flowers	Absolute ether	Wang et al. (2009c)				8221	
339	Heptanal	Flowers	Absolute ether	Wang et al. (2009c)				8130	
340	Octanone	Flowers	Absolute ether	Wang et al. (2009c)				8093	
341	Acetic acid ethyl ester	Flowers	Absolute ether	Wang et al. (2009c)				8857	
342	Benzeneacetic acid methyl ester	Flowers	Absolute ether	Wang et al. (2009c)				7559	
343	Docosanoic acid methyl ester	Flowers	Absolute ether	Wang et al. (2009c)				13584	
344	Tetracosanoic acid methyl ester	Flowers	Absolute ether	Wang et al. (2009c)				75546	
345	Benzyl benzoate	Flowers	Absolute ether	Wang et al. (2009c)				2345	
346	6,10,14-Trimethyl-2-pentadecanol	Flower buds	Distilled water	1	Wang et al. (1999)			530418	
347	Dimethyl phthalate	Flower buds	Distilled water	1	Wu et al. (2015a)			8554	
348	Octadecanoic acid	Flower buds	Distilled water	1	Wu et al. (2015a)			5281	
349	1,2,3-Propanetriol, monoacetate	Flower buds	Ethyl acetate	1	Wu et al. (2015a)			33510	
No.	Compound	SYH Parts	SYH Extraction	Origins	SYH References	PubChem CID			
-----	---	-----------	----------------	---------	----------------	-------------			
350	9,12-Octadecadien-1-ol	Flower buds	Ethyl acetate	1	Wu et al. (2015a)	5462912			
351	10-Nonadecanol	Flower buds	Ethyl acetate	1	Wu et al. (2015a)	85611			
352	Heneicosane	Flower buds	Ethyl acetate	1	Wu et al. (2015a)	12403			
353	Hexadecanoic acid butyl ester	Flower buds	Distilled water	1	Wu et al. (2015a)	8090			
354	3,7,11,15-Tetramethyl-2-hexadecen-1-ol	Flower buds	Ethyl acetate	1	Wu et al. (2015a)	5366244			
355	Phenylethyl alcohol	Flower buds	Distilled water	1	Wu et al. (2015a)	6054			
356	1-Hexadecanol	Flower buds	Distilled water	1	Wu et al. (2015a)	2682			
357	Heptadecane,2,6,10,15-tetramethyl-3-Hydroxy-2,2,6-trimethyl-6-vinyltetrahydropyran	Flower buds	Distilled water	1	Wu et al. (2015a)	3650815			
358	Nerol	Flower buds	Distilled water	1	Wu et al. (2015a)	643820			
359	Benzoic acid, 4-formyl methyl ester	Flower buds	Distilled water	1	Wu et al. (2015a)	15294			
360	Undecanoic acid	Flower buds	Distilled water	1	Wu et al. (2015a)	8180			
361	12,15-Octadecadienoic acid, methyl ester	Flower buds	Distilled water	1	Wu et al. (2015a)	5365571			
362	9,12,15-Octadecatrienoic acid, methyl ester	Flower buds	Distilled water	1	Wu et al. (2015a)	5367462			
363	9,12,15-Octadecatrien-1-ol	Flower buds	Distilled water	1	Wu et al. (2015a)	5367327			
364	1-Heptacosanol	Flower buds	Ethyl acetate	1	Wu et al. (2015a)	74822			
365	Pentatriacontane	Flower buds	Ethyl acetate	1	Wu et al. (2015a)	12413			
Table 4 continued

No.	Compound	JYH	SYH	Origins	References	PubChem CID			
		Parts	Extraction						
366	Pentanoic acid ethyl ester	Flower buds	Ethyl acetate	1	Wu et al. (2015a)	10882			
367	Hexanoic acid	Flower buds	Ethyl acetate	1	Wu et al. (2015a)	8892			
368	Di-isobutyl phthalate	Flower buds	Ethyl acetate	1	Wu et al. (2015a)	6782			
369	2-Nonadecanone	Flower buds	Ethyl acetate	1	Wu et al. (2015a)	69423			
370	Tetracosane	Flower buds	Ethyl acetate	1	Wu et al. (2015a)	12592			
371	Octadecanoic acid butyl ester	Flower buds	Ethyl acetate	1	Wu et al. (2015a)	31278			
372	Acetic acid octadecyl ester	Flower buds	Ethyl acetate	1	Wu et al. (2015a)	69968			
373	Citronellyl isobutyrate	Flower buds	Ethyl acetate	1	Wu et al. (2015a)	60985			
374	Eicosanoic acid	Flower buds	Ethyl acetate	1	Wu et al. (2015a)	10467			
	Others								
	Aliphatics								
375	Linoleic acid	Flower buds	Diethyl ether	Du et al. (2015)	Flower buds	Distilled water	1	Wu et al. (2015a)	5280450
376	Tetradecanoic acid	Flowers/Flower buds	Absolute ether	Wang et al. (2009c)	Flower buds	Distilled water	1	Wu et al. (2015a)	11005
377	Ethyl laurate	Flower buds	95% ethanol	Jiang (2015)	Flower buds	Distilled water	1	Wu et al. (2015a)	7800
378	Nonacontane	Flower buds	Unknown	Wang (2008)	Flower buds	Distilled water	1	Wu et al. (2015a)	18980672
379	2(E)-3-ethoxyacrylic acid	Flowers/Flower buds	Chloroform	Bi et al. (2007)	Flower buds	Distilled water	1	Wu et al. (2015a)	5709609
	Phenols								
380	Lonicerjaponin A	Flower buds	Methanol	Kashiwada et al. (2013)	Flower buds	Methanol	Kashiwada et al. (2013)	102497708	
381	Lonicerjaponin B	Flower buds	Methanol	Kashiwada et al. (2013)	Flower buds	Methanol	Kashiwada et al. (2013)	102497709	
382	3,4-Dihydroxybenzaldehyde	Flowers/Flower buds	Alcohol	Huang et al. (1996)	Flower buds	Alcohol	Huang et al. (1996)	8768	
No.	Compound	JYH Parts	Extration	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
-----	---------------------------------	-----------------	---------------	----------------------------	-----------------	---------------	---------------	----------------------------	-------------
383	p-Hydroxybenzaldehyde	Flowers/Flower buds	Ethyl acetate	Wang et al. (2013a)					126
384	P-Hydroxy-phenol	Flower buds	Acetone	Feng et al. (2011)					785
385	1,2,4-Benzentriol	Flower buds	Acetone	Feng et al. (2011)					10787
							Nucleosides		
386	5'-O-Methyladenosine	Flower buds	Distilled water	Song et al. (2008)					6480505
387	Guanosine	Flower buds	Distilled water	Song et al. (2008)					135398635
388	Adenosine	Flower buds	Distilled water	Song et al. (2008)					60961
389	Uracil	Flowers/Flower buds	Ethyl acetate	Wang et al. (2013a)					1174
390	5-Methyluracil	Flowers/Flower buds	Ethyl acetate	Wang et al. (2013a)					1135
391	Guanosinyl-(3' → 5')-adenosine monophosphate	Flowers/Flower buds	Distilled water	Yu et al. (2015b)					
392	2'-O-Methyladenosine	Flowers/Flower buds	Distilled water	Yu et al. (2015b)					102213
							Alkaloids		
393	Lonijaponinicotinonesides A	Flower buds	Distilled water	Jiang et al. (2015)					
394	Lonijaponinicotinonesides B	Flower buds	Distilled water	Jiang et al. (2015)					
395	(+)-N-(3-Methylbut-2-enoyl-β-D-glucopyranosyl)-nicotinate	Flower buds	Distilled water	Song (2008)					
396	(+)-N-(3-Methylbut-2-enoyl-β-D-glucopyranosyl)-nicotinate	Flower buds	Distilled water	Song (2008)					
397	6-Hydroxymethyl-3-pyridinol	Flowers/Flower buds	Distilled water	Yu et al. (2015b)					
							Triterpenoids		
398	Limonin	Unknown	Unknown	Zhen (2010)					179651
							Sesquiterpenoids		
399	Abscisic acid	Flowers/Flower buds	Ethyl acetate	Wang et al. (2013a)					5375199
							Sterols		
400	β-Sitosterol	Flowers/Flower buds	Alcohol	Huang et al. (1996)					222284
No.	Compound	JYH Parts	Extraction	Reference	SYH Parts	Extraction	Origins	References	PubChem CID
-----	---	------------	--------------	-----------	------------	------------	---------	-------------	-------------
401	Sucrose	Flower buds	70% ethanol	Lee et al. (2010b)					5988
402	(−)-Lyoniresinol 9-O-β-D-glucopyranoside	Flowers/Flower buds	Ethyl acetate	Wang et al. (2013a)					
403	(+)-Lyoniresinol 9-O-β-D-glucopyranoside	Flowers/Flower buds	Ethyl acetate	Wang et al. (2013a)					
404	(−)-2-Hydroxy-5-methoxybenzoic acid 2-O-β-D-(6-O-benzoyl-glucopyranoside)	Flower buds	Ethyl acetate	Wang et al. (2013b)					
405	(−)-4-Hydroxy-3,5-dimethoxybenzoic acid 4-O-β-D-(6-O-benzoyl) -glucopyranoside	Flower buds	Ethyl acetate	Wang et al. (2013b)					
406	(−)-E-3,5-Dimethoxyphenylpropenoic acid 4-O-β-D-(6-O-benzoyl) -glucopyranoside	Flower buds	Ethyl acetate	Wang et al. (2013b)					
407	(−)-(7S,8R)-4-Hydroxyphenylglycerol 9-O-β-D-[6-O-(E)-4-hydroxy-3,5-dimethoxyphenylpropenoyl] -glucopyranoside	Flower buds	Ethyl acetate	Wang et al. (2013b)					
408	(−)-(7S,8R)-4-Hydroxyphenylglycerol 9-O-β-D-[6-O-(E)-4-hydroxy-3,5-dimethoxyphenylpropenoyl] -glucopyranoside	Flower buds	Ethyl acetate	Wang et al. (2013b)					
409	(−)-4-hydroxy-3-Methoxyphenol β-D-[6-O-[4-O-(7S,8R)-(4-hydroxy-3-methoxyphenylglycerol-8-yl)-3-methoxybenzoyl]] -glucopyranoside	Flower buds	Ethyl acetate	Wang et al. (2013b)					
410	Benzyl alcohol β-D-glucoside	Flowers/Flower buds	Ethyl acetate	Wang et al. (2013a)					
No.	Compound	JYH	SYH	Origin	Reference				
-----	---	----------	----------	-----------------	---				
		Parts	Extraction						
411	Benzyl 2-O-β-D-glucopyranosyl-2, 6-dihydroxy benzoate	Flowers/Flower buds	Ethyl acetate	Flowers/Flower buds	Wang et al. (2013a)				
412	Gentisic acid 5-O-β-D-glucopyranoside	Flowers/Flower buds	Ethyl acetate	Flowers/Flower buds	Wang et al. (2013a)				
413	Eugenyl β-D-glucopyranoside	Flowers/Flower buds	Ethyl acetate	Flowers/Flower buds	Wang et al. (2013a)				
414	Eugenyl β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside	Flowers/Flower buds	Ethyl acetate	Flowers/Flower buds	Wang et al. (2013a)				
	Miscellaneous								
415	2-Butanol	Unknown	Unknown	Unknown	Wang et al. (2009c)				
416	1-O-Methyl-myo-inositol	Flower buds	Unknown	Unknown	Wang (2008)				
417	Syringin	Flowers/Flower buds	Distilled water	Flowers/Flower buds	Yu et al. (2015b)				
418	Coniferin	Roots	95% ethanol	Unknown	Jin-qian et al. (2016)				
419	5-Hydroxymethyl-2-furfural	Flowers/Flower buds	Methanol	Flowers/Flower buds	Choi et al. (2007)				
420	Shuangkangsu	Flowers	Unknown	Unknown	Wang (2008)				
421	Citric acid	Flowers/Flower buds	Distilled water	Flowers/Flower buds	Zhang et al. (2012)				

1—*L. macranthoides*, 2—*L. fulvotomentosa*, 3—*L. hypoglauca*, 4—*L. confusa
Phytochemistry

Previous phytochemical studies have indicated JYH and SYH multiplicate composition, predominantly phenolic acids, flavonoids, iridoids and saponins. Both of the two herbs contain a lot of essential oils. To date, a total of 326 compounds and 148 compounds have been isolated and identified from JYH and SYH (Yang et al. 2016; Ni 2017; Lin et al. 2008; Wu et al. 2016). Compounds presenting in JYH and SYH are summarized in Table 4, and the major ones are illustrated in Figs. 2, 3, 4, 5. Moreover, the differences on contents of major compounds are exhibited in Table 5. To expound advances in pharmacological study, the bioactive compounds of JYH and SYH are reviewed in Table 6.

Phenolic acids

JYH and SYH contain similar phenolic acids that are important bioactive compounds in JYH and SYH (Duan et al. 2018). There are 16 phenolic acids presenting in both JYH and SYH, most of which are caffeic acid derivatives. According to 2015 Edition ChP, the content of chlorogenic acid (1, CGA) in JYH must be no less than 1.5%, while the content of CGA (1) in any origin of SYH must be no less than 2.0%. SYH total phenolic acids content is also higher than that of JYH (Yang et al. 2016). Four origins of SYH contain similar chlorogenic acids derivatives. May be the cause of insufficient researches of SYH, L. macranthoides contains more phenolic acids than the other three origins.

The antioxidative property is closely related to the structure, in particular to electron delocalization of the aromatic nucleus (Cuvelier et al. 2014). As it is widely known, a number of naturally occurring molecules known for their antioxidative potency are phenolic acids which react with the free radicals and generate a new radical stabilized by the resonance effect of the aromatic nucleus (Larson 1988). Meanwhile, the presence of a second hydroxy group in the ortho or para position of phenolic acids could increase their antioxidant capacity. A wide range of researches demonstrate that changes of antioxidant intensity are always closely associated with the variation of the contents of phenolic acids (Porter et al. 2010; Farhat et al. 2014; Ben Farhat et al. 2015).

CGA (1) and caffeic acid (62, CA) are the two most studied compounds in JYH and SYH, which have already been confirmed to possess potent activities against inflammation and oxidation via removing harmful free radicals from body in vitro and in vivo (Feng et al. 2005; Chen et al. 2010a; Sato et al. 2011).

![Phenolic acids](image)

Fig. 2 The major phenolic acids presenting in both JYH and SYH
CGA containing an O-hydroquinone moiety is the most abundant phenolic acid in JYH and SYH, and it has been used as a marker to evaluate chemical qualities of JYH and SYH according to 2015 Edition ChP (Chen et al. 2017; Li et al. 2015; Iwahashi et al. 1986). CGA is an ester of CA and quinic acid, and CA showed the strongest anti-inflammatory activity among 1–6, 62 and 69 in vitro (50 μg mL⁻¹) (Song et al. 2015b). In addition, both CGA and CA can inhibit nitric oxide (NO) production, tumor necrosis
factor-α (TNF-α) and IL-6 secretion below 100 μg mL⁻¹, and exert effects on multiple targets, such as pro-inflammatory protein inducible nitric oxide synthase (iNOS), toll-like receptor 4, interleukin (IL)-1 receptor, matrix metalloproteinase-2 and 9 in vitro and in vivo, suggesting developing values (shown in Fig. 6) (Lee et al. 2012; Shi et al. 2013; Hou et al. 2017; Kim et al. 2014; Rubio et al. 2013). By reinforcing immune-resistance to bacteria and stimulating the activity of lysozym, CA affects the growth of some Gram-negative bacteria directly, such as Pseudomonas fluorescens (Ferrazzano et al. 2009).

Zhou investigated the pharmacokinetics and tissue distribution of CGA via oral administration. Employing noncompartment model, profile revealed CGA the low oral bioavailability (tmax = 0.58 ± 0.13 h, Cmax = 1490 ± 0.16 μg L⁻¹), and tissue study showed that the highest level of CGA was in liver (Zhou et al. 2014). To study the bioavailability of CGA that extracted from JYH, Zhou gave 42 rats 400 mg kg⁻¹ JYH 85% ethanol extractions (yielding an extraction with the content of 16.7% CGA) by intravenous (i.v), intramuscular (i.m) and intragastrical (i.g) administration. t₁/₂ of i.v, i.m and i.g administration were 0.44, 0.50 and 0.38 h, and AUC₀⁻→∞ were 6931.62, 6550.34 and 2591.87 μg h L⁻¹. The absolute bioavailability of CGA by i.g administration was only 37.39% (Ting et al. 2014). Chen developed a self-microemulsifying drug delivery system (SMEDDS) to improve the oral bioavailability of CGA. Compared with control group (CGA alone, tmax = 0.1 h, Cmax = 82.6 μg mL⁻¹), CGA-SMEDDS group had a peak concentration of 47.6 μg mL⁻¹ and the peak time was delayed to 2.4 h (Chen et al. 2017).

Phenolic acids are typically regarded as actives in a variety of bioassays as the above said, yet it should be stressed that orthoquinone substances readily display false-positive activities and act as interference in unrelated biological activities. The orthoquinone motif is characteristic of Pan Assay INterference compoundS, or PAINS (Baell 2016). CA and its derivatives, for instance, containing the recognizable PAINS motif (catechol), have a tendency to cause assay artifacts. Compounds with such functional group could undergo redox cycling, chelatesmetal, perturb membranes and appeared with signs of early structure–activity relationship (SAR) (Jasial et al. 2017; Baell and Holloway 2010), thus attracting attention of researchers and inevitably leading all efforts to be in vain.
Fig. 5 The chemical structures of main saponins in SYH

Macranthoidin A

Macranthoside B

Macranthoidin B

Macranthoside A

Dipsicoside B

Loniceroside A
Flavonoids

Flavonoids are a group of structurally diverse natural or synthetic compounds which include parent cyclic structures and their O- and C-glycosylated derivatives (Rauter et al. 2018). So far, 52 and 16 flavonoids have been found in JYH and SYH, 14 of which are identical. Researches on flavonoids in SYH should be further developed. In view of the current limited research, *L. confusa* has more flavonoids than the other three origins of SYH.

This class of compounds is mainly flavonols and flavones, and most of them are glycosides. Their health benefits are particularly associated with the prevention of chronic degenerative diseases such as cancer, diabetes and cardiovascular disease (Scalbert et al. 2005; Ramassamy 2006). Luteolin (89) is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3’, 4’, 5 and 7. It has been reported to possess anti-angiogenic activity in human umbilical vein endothelial cells and human retinal microvascular endothelial cells (below 5 μM, in vitro), which contributed to the inhibition on the pathogenesis of retinopathy of prematurity and tumor growth (Eleni et al. 2004; Park et al. 2012b). Luteolin (89), as well as cynaroside (88) a derived glycoside of luteolin that is substituted by a β-D-glucopyranosyl moiety at the position 7 via a glycosidic linkage of luteolin, is active against inflammation. Odontuya reported that the anti-inflammatory effect of luteolin and cynaroside was dependent on their molecular structures, that is to say the presence of ortho-
Dihydroxy groups at the B ring and hydroxy substitution pattern at C-5 position of the A ring could significantly contribute to anti-inflammatory and antioxidant activities of flavones (Odontuya et al. 2010).

Iridoids

Iridoids are the main water-soluble compounds in JYH and SYH, mostly presenting as glycosides (Yang et al. 2016). So far, 92 and 8 iridoids have been isolated and identified from JYH and SYH. JYH and SYH contain similar iridoids (7 out of 8 SYH iridoids could be isolated from JYH). Compared to the other three SYH plant origins, L. fulvotomentosa contains relatively few iridoids and only sweroside (143) has been isolated. Iridoid glycosides in JYH include loganin (142), loganic acid (189), 8-epiloganic acid (190), among others. Secoiridoids in JYH are sweroside (143), secoxyloganin (148), secologanin (150), among others, and they are the main iridoids in SYH. In addition, JYH and SYH also contain a dimer iridoid glycoside centauroside (146), with structure linked by a C–C double bond.

Secoxyloganin (148) and dimethylsecologanoside (200, both at 100 µg mL⁻¹) displayed inhibitory activities (53.1% and 49.3%, respectively) against influenza A virus (H1N1), while the positive control oseltamivir carboxylate (100 µg mL⁻¹) showed 45.5% inhibitory rate (Kashiwada et al. 2013). Lonijaposides O, R, T and W (221, 224, 226, 229) were also reported antiviral activities against H1N1 with half maximal inhibitory concentration (IC₅₀) values of 6.8–11.6 µM. The positive control, oseltamivir, gave an IC₅₀ value of 1.3 µM (Yu et al. 2013). Centauroside (146) and (E)-aldosecologanin (185) exhibited much more potent NO inhibitory activities than the positive control minocycline in vitro (IC₅₀ = 20.07 ± 0.37 µM), with IC₅₀ values of 7.96 ± 0.47 and 12.60 ± 1.50 µM, respectively.

Compound	Extraction	JYH	SYH	Refs
L. macranthoides	Methanol	2.931 ± 0.010	5.657 ± 0.010	Yang et al. (2016)
L. hypoglauca	Methanol	0.472 ± 0.010	0.060 ± 0.010	Zhang et al. (2015)
L. confusa	Methanol	0.951 ± 0.008	0.081 ± 0.003	Xiong et al. (2005)
L. fulvotomentosa	Methanol	0.093 ± 0.001	nd	Xiong et al. (2005)
70% methanol	nd	0.242 ± 0.010	0.120 ± 0.010	Li et al. (2003), Zhang et al. (2015)
70% methanol	nd	0.242 ± 0.010	0.120 ± 0.010	Zhang et al. (2015)
70% methanol	nd	0.242 ± 0.010	0.120 ± 0.010	Zhang et al. (2015)
70% methanol	nd	0.242 ± 0.010	0.120 ± 0.010	Zhang et al. (2015)
70% methanol	nd	0.242 ± 0.010	0.120 ± 0.010	Zhang et al. (2015)
70% methanol	nd	0.242 ± 0.010	0.120 ± 0.010	Zhang et al. (2015)
70% methanol	nd	0.242 ± 0.010	0.120 ± 0.010	Zhang et al. (2015)

tr trace, nd not detect, nr no record
Effect	Origins	Compounds	Model/targets	Positive control	Formulation/dosage	Result/mechanism/method	References	
Anti-inflammatory activity	JYH	1–6, 62, 69	LPS-induced macrophage	Reference compounds prednisolone showed potent inhibition of 57.9% NO production, TNF-α and IL-6 secretion	In vitro, 50 μg mL⁻¹	Inhibited NO production, TNF-α and IL-6 secretion	Song et al. (2015b)	
		238	Croton oil-induced ear edema mouse	In vivo, 100 mg kg⁻¹	Inhibited ear edema 31%	Kwak et al. (2003)		
		1	RAW264.7 macrophages	The presence of Indomethacin only produced a significant reduction	In vitro, 10 and 100 μmol L⁻¹	Inhibited mRNA expression and COX-2 activity in a dose-dependent manner. Only high concentration of 100 μmol L⁻¹ reduced COX-1 expression	Guan et al. (2014a)	
		281	LPS-activated RAW264.7 cells	Betamethasone, 30 μmol L⁻¹ only produced a significant reduction of COX-2 mRNA expression	In vitro, 30 μmol L⁻¹	Inhibited expression of pro-inflammatory proteins iNOS and NO releasing	Mei et al. (2019)	
Bacteriostatic activity	JYH	1, 4	P. aeruginosa	Lamivudine	In vitro, 0.14 to (1000) μg L⁻¹	The most correlated compounds against antibacterial activities assayed by canonical correlation analysis	Shi et al. (2016)	
	SYH							
Antiviral activity	JYH	1, 62 and quinic acid	HepG2.2.15 cells cultured for 8 days in the presence or absence of 1, 62 and quinic acid	Lamivudine	In vitro	1 and 62 inhibited HBsAg secretion at an IC₅₀ value of 242 μM and 13 μM, but showed little inhibition of HBeAg secretion at a dose up to (1000) μM	Wang et al. (2009a)	
	JYH	1–4, 6	H1N1 virus	Ribavirin, 20 mg kg⁻¹	In vitro			
	JYH	148, 200	H1N1 virus	Oseltamivir carboxylate, 100 μg mL⁻¹	45.5% inhibition	148 and 200 had inhibitory activities against H1N1 replication inhibitory rates were 53.1% and 49.3%, respectively	Kashiwada et al. (2013)	
Effect	Origins	Compounds	Model/targets	Positive control	Formulation/dosage	Result/mechanism/method	References	
------------------------	---------	-----------	---	---	--	---	------------	
Anti-tumour activity	1	267	Tumour cell lines of different histogenetic origins four leukaemia types, HL-60, U-937, Jurkat and K-562. Two solid tumour-derive types, LoVo and Hep G2		In vitro	Inhibited cell growth of six cancer cell lines, especially human acute promyelocytic leukaemia HL-60 cells, with an IC₅₀ value of 3.8 mmol. After 24 h and 48 h treatment, a hypodiploid cells assay and an annexin-V-FITC/PI double staining assay showed that there was a significant increase of apoptosis on HL-60 cells in a dose-dependent manner through caspase-mediated pathway, by activation of caspase-3	Guan et al. (2011)	
	1	267	Human ovarian cancer A (2780) cells		In vitro	induced apoptosis and autophagy via reactive oxygen species ROS which could activate caspase-3 and caspase-9, cleave polyadenosinediphosphate-ribose polymerase, regulate adenylate-activated protein kinase, and inhibited mammalian target of rapamycin. Inhibits 70% colony formation at the concentration of 20 μmol L⁻¹	Shan et al. (2016)	
	1	267	Human hepatoma HepG2 cells		In vitro	In vitro With concentration increasing, the inhibitory rates increased 2.58, 23.21, 55.89, 86.55 and 98.14%, with IC₅₀ value of 10.10 ± 0.93 μM	Wang et al. (2009b)	
	1	267	Female athymic BALB/c nude mouse		In vivo	The volume and weight of xenograft tumors in mice were decreased remarkably \(P < 0.05 \)		

1—*L. macranthoides*
What’s more, neither of them showed significant cytotoxicity at the concentration of 100 µM (Liu et al. 2015). In this literature, it also mentioned that secoiridoid glycosides had a more positive effect on α-glucosidase inhibition than other iridoid glycosides, while the presence of a methoxy group at C-7 or a double bond at C-6 or C-7 appeared to reduce the inhibition markedly.

Saponins

A large number of studies indicate that saponins contented in JYH are fewer than those in SYH (Li et al. 2003; Chai et al. 2005; Zhang et al. 2015; Yang et al. 2016). Saponins are the most compounds in SYH (Fig. 5), and most of them belong to the oleanane type or hederagenin type. Although most researches focus on L. macranthoides, macranthoidin A (265), macranthoidin B (266) and dipsacoside B (269) which are the representative saponins in SYH, have been isolated from all four origins of SYH. It was relatively easy to distinguish L. fulvotomentosa from the other three SYH origins for L. fulvotomentosa having a relative low content of macranthoidin B (266) (Zhang et al. 2015; Chen et al. 2007; Zhou et al. 2014; Gao et al. 2012). Macranthoidin B (266) and dipsacoside B (269) have been used as markers to evaluate the chemical quality of SYH, whereas they are trace in JYH.

Studies showed that these saponins have anti-tumour and anti-inflammatory activities in vitro and in vivo (Kwak et al. 2003; Mei et al. 2019; Shan et al. 2016). In recent years, macranthoside B (267) has provoked mounting attention due to its anti-tumour activity both in vitro and in vivo with IC50 values in the range of 3.8–20 µM, and it could inhibit growth of various tumour cells through caspase-3 and caspase-9 pathways (shown in Fig. 7) (Guan et al. 2011; Shan et al. 2016; Wang et al. 2009b). Lonicerose C (238), adenosine 5′-monophosphate-activated protein kinase, mTOR mammalian target of rapamycin, S6K1 p70 S6 kinase 1, Bcl-2 B cell lymphoma-2, Bax B-cell lymphoma-2 associated X protein, ROS reactive oxygen species

Fig. 7 Proposed molecular mechanisms of anti-tumour activity of macranthoside B (267). TNF tumor necrosis factor, IAP immunosuppressive acidic protein, PARP poly adenosinediphosphate-ribose polymerase, APAF-1 apoptotic protease activating factor-1, Cyt-c cytochrome c, AMPK

Phytochem Rev (2020) 19:1–61 41
macranthoside A (268), dipsacoside B (269) and dipsacoside VI (270) have been reported anti-inflammatory activities both in vitro and in vivo (Kwak et al. 2003; Lee et al. 1995; Guan et al. 2014a; Mao et al. 1993), associating with many targets, such as prostaglandin E2 (PGE2), cyclooxygenase (COX)-1, COX-2, etc. In RAW264.7 macrophages, over-production of PGE2 was induced by lipopolysaccharide (LPS). Measuring COX activity and mRNA expression, the results showed that lonimacranthoide VI (281, 10 μmol L\(^{-1}\)) from \(L.\) macranthoides could inhibit mRNA expression and COX-2 activity in vitro, indicating lonimacranthoide VI (281) an important anti-inflammatory compound of SYH (Guan et al. 2014a). However, available evidence indicates that saponins have the potentiality to trigger cytotoxicity, and the sequence \(\alpha\)-L-Rhap-(1 \rightarrow 2)-\(\alpha\)-L-Arap in oleanolic acid or hederagenin is the characteristic of a more cytotoxic saponin (Park et al. 2001; Barthomeuf et al. 2002; Chwalek et al. 2006). This part will be discussed in Toxicology.

Essential oil

The aromas of JYH and SYH are unique and they both contain a large amount of essential oils which are edible natural perfume used in food, cigarettes and cosmetics (Wang et al. 2008). Essential oils of JYH and SYH are mainly composed of acids, aldehydes, alcohols, ketones and their esters, such as hexadecane (291), nonadecane (292), hexadecanoic acid methyl ester (294). The content of acids in essential oils of JYH is relatively high, reaching 8.53% (Wu et al. 2009), while the content of linalool (295) in essential oils of SYH is the highest (Tong et al. 2005).

Others

Nucleosides, alkaloids, triterpenoids, etc. have also been isolated from JYH. Citric acid (421) has been isolated from SYH. In 2008, Li isolated a new compound with an unusual 1,2-dioxine skeleton, Shuangkangsu (420). It has prominent antiviral activity against influenza B virus and influenza A3 virus with treatment index (TI) greater than 32 (\(P < 0.5\)), and inhibits respiratory syncytial virus significantly with an IC\(_{50}\) value of 0.9 mg mL\(^{-1}\) (Li 2008).

Pharmacological activities

Modern pharmacological studies have revealed that JYH and SYH exhibit extensive range of biological activities. According to 2015 Edition ChP, they have same therapeutic actions. However, the reported studies indicated that some of their pharmacological effects are different, especially the discrepant intensities caused by the variation of bioactive compounds. This section describes the pharmacological activities of JYH and SYH, and presents their differences and similarities by reviewing their pharmacological studies (Table 7).

Anti-inflammatory activity

TNF-\(\alpha\), a major inflammatory mediator exerts systemic inflammatory properties such as fever and tissue damage, and possesses a broad spectrum of biologic activities on many different targets. NO has a significant role in homeostasis and host defense, and is tumoricidal and microbicidal along with its metabolites, NO\(^2\) and NO\(^3\). However, over-production of NO becomes a key mediator of tissue damage (Nathan 1992; Pendino et al. 1993; Kroencke et al. 1991). JYH and SYH could inhibit TNF-\(\alpha\), nuclear factor (NF)-\(\kappa\)B, IL-(1\(\beta\), 6, 8) secretion and NO production significantly and enhance IL-10 expression below 0.4 mg kg\(^{-1}\) in vitro and in vivo, thereby showing anti-inflammatory activities (Kao et al. 2015; Li et al. 2016; Feng and Li 2008). However, reported pharmacological studies showed no significant difference in anti-inflammatory activity of JYH and SYH.

In trypsin-induced mast cell, Kang confirmed that water extraction of JYH (10, 100 and 1000 μg mL\(^{-1}\)) could inhibit trypsin-induced extracellular signal-regulated kinase (ERK) phosphorylation and did not affect the trypsin activity even at the concentration of 1000 μg mL\(^{-1}\), indicating JYH inhibition of trypsin-induced mast cell activation through inhibiting ERK phosphorylation rather than trypsin activity in vitro (Kang et al. 2004). Li compared the inflammatory activities of water extractions of JYH and SYH with 1 μM Dexamethasone (DEX) as positive control. Both JYH (0.1532, 1.532, 15.32, 153.19, 306.38, 612.77 μg mL\(^{-1}\)) and \(L.\) macranthoides (0.1645, 1.645, 16.45, 164.54, 329.08, 658.16 μg mL\(^{-1}\)) exerted anti-inflammatory activity, but \(L.\) macranthoides showed a stronger inhibitory intensity of TNF-
Effect	Origins	Extracts	Model	Formulation/dosage	Result/method	Reference
Anti-inflammatory activity	JYH	Water	Trypsin-induced mast cell	In vitro	Inhibits TNF-α secretion in a dose-dependent manner and trypsin-induced ERK phosphorylation. At the concentration of 100 μg mL⁻¹, significantly inhibits TNF-α secretion. At the concentration of 1000 μg mL⁻¹, inhibits TNF-α secretion up to 71%	Kang et al. (2004)
			LPS-induced rat liver sepsis	In vitro	Inhibits the increase of NF-κBp65 and the degradation of I-κBα	Lee et al. (2001)
			Macrophage-like cell line (RAW 264.7 cells)	In vitro	Inhibits 66% NO production and 70% TNF-α secretion. Even at low concentration (0.0625 mg mL⁻¹), TNF-α secretion is also significantly inhibited (P < 0.05)	Park et al. (2005)
			LPS-induced acute lung inflammation mouse	In vivo	Enhances the expression of IL-10 and decreases the NF-κB binding activities by increasing the nuclear Sp1 binding activity (the up-regulation of Sp1 activity is through incremental phosphorylation of ERK). Therefore, inhibits the expressions of TNF-α, IL-1β and IL-6, and the protein concentrations and nitrite/nitrate ratios in BALFs of mouse exposed to LPS are significantly suppressed	Kao et al. (2015)
JYH and SYH	Cigarette smoke extract-induced acute stomatitis KB cells	In vitro	JYH: 0.1532, 1.532, 15.32, 153.19, 306.38, 612.77 μg mL⁻¹, SYH: 0.1645, 1.645, 16.45, 164.54, 329.08, 658.16 μg mL⁻¹	Inhibits the expressions of TNF-α, IL-6 and IL-8, and improve low expression of IL-10 in a dose-dependent manner	Li et al. (2016)	
Total saponins of 2	Unknown	Ovalbumin-induced inflammation mouse	In vivo	200 mg kg⁻¹	Effectively reduce the over expressions of IL-6 and IL-17A, and significantly enhance the expressions of CD4⁺ and CD25⁺, and make T cell specific transcription factor Foxp3 regularity	Feng and Li (2008)
Table 7 continued

Effect	Origins	Extracts	Model	Formulation/dosage	Result/method	Reference
Bacteriostatic activity	JYH	Water	In vitro	40 mg mL\(^{-1}\)	Against Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Salmonella anatum (intensity: E. coli > S. aureus > B. cereus > S. anatum > L. monocytogenes)	Shan et al. (2007)
					Gram-positive bacteria are generally more sensitive than Gram-negative bacteria to JYH	
				10 mg mL\(^{-1}\)	Against oral pathogenic microorganisms	Bi et al. (2014)
	3, 4		In vitro	20 g kg\(^{-1}\)	Against S. aureus, Typhoid bacillus and Dysentery bacillus.	Li and Cui (1999)
	JYH and 1		In vivo	100 mg mL\(^{-1}\)	Prolong the survival time of S. aureus-infected mouse significantly (\(P < 0.01\))	Lei et al. (2005)
Antiviral activity	JYH				Against human immunodeficiency virus, adenovirus, herpes simplex virus-1 (HSV-1), HSV-2 and H1N1	Zhou et al. (2017), Ou et al. (2015)
	SYH				Against NDV, PRV	Wang et al. (2011a), Wang et al. (2011b)
Liver protective activity	JYH		In vivo	350 mg kg\(^{-1}\)	Inhibits the increase of AP-induced alanine and aspartate transaminases (ALT/AST) enzymatic activities, as well as total bilirubin (TB) amount	Jiang et al. (2014)
					Liver fibrosis is significantly reduced	Sun et al. (2010)
	2		In vivo	200 mg mL\(^{-1}\)	Enhances the detoxification of liver to AM and alleviates mouse liver injury	Shi and Liu (1995)
	JYH and SYH		In vivo	100 mg kg\(^{-1}\)	Decrease serum glutamic-pyruvic transaminase, liver triglyceride and MDA levels significantly (\(P < 0.05\))	Tang et al. (2016)
Effect	Origins	Extracts	Model	Formulation/dosage	Result/method	Reference
------------------------	---------	---------------------------	--------------------------------	--------------------	--	--------------------------
Antioxidative activity	JYH	High pressure steam-scalded mouse	In vivo	1 g mL\(^{-1}\)	Polymorphonuclear (PMN) lysyme release rate reduces significantly	Luo et al. (1994)
	SYH		In vitro	250 μg mL\(^{-1}\)	Scavenges O2\(^{-}\) and -OH effectively.	Wu et al. (2015b), Xu et al. (2014)
Hypoglycemic activity	JYH	polysaccharides	STZ-induced diabetic rats	In vivo	800 mg kg\(^{-1}\)	Wang et al. (2017a), Zhao et al. (2018)
	SYH	polysaccharide	STZ-induced diabetic rats	In vivo	800 mg kg\(^{-1}\)	
		Administered orally				
Anti-tumour activity	JYH	polyphenolic	Human hepatoma HepG2 cell line	In vitro	10 mg mL\(^{-1}\)	Park et al. (2012a)

1—L. macranthoides, 2—L. fulvotomentosa, 3—L. hypoglauca, 4—L. confusa
and IL-6 secretion than JYH did ($P < 0.05$) (Li et al. 2016). However, this study lacked content consistency, which further compromised the accuracy of results.

In another study, LPS-induced acute lung inflammation mice were administered with different concentrations of JYH water extraction (0.4 mg kg$^{-1}$, 4 mg kg$^{-1}$ and 40 mg kg$^{-1}$) orally for 24 h. Then, the cytokine concentrations (TNF-α, IL-1β, IL-10 and IL-6) in the bronchoalveolar lavage fluids (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). The results showed that JYH had protective activity against LPS-induced lung inflammatory cytokine releasing in vivo (Kao et al. 2015). All these studies suggested that both JYH and SYH could inhibit inflammatory reaction, but few studies compared them systematically and then told their similarities or differences.

The studies regarding anti-inflammatory activity of JYH in preparations are abundant, while studies of that on SYH are limited. Cheng studied anti-inflammatory activities of a traditional herbal formula which was consisted of Rosae Multiflorae Fructus and JYH (50:30, V/V) in LPS-stimulated RAW 264.7 macrophages. Ethanol extraction of this formula (containing JYH 5 mg mL$^{-1}$) dose-dependently inhibited NO, IL-6, TNF-α productions and cellular iNOS protein, COX-2 expressions by the NF-κB and mitogen-activated protein kinases (MAPKs) signalling pathways in vitro (Cheng et al. 2014). Gingyo-san (1 mg kg$^{-1}$, water extraction), a traditional Chinese medicinal formula which includes JYH could reduce acute lung inflammation in LPS-induced lung inflammation mice compared with the control mice ($P < 0.05$) by reducing the infiltration of activated polymorphonuclear neutrophils in the airways, decreasing pulmonary edema, reducing nitrosative stress, and improving lung morphology in vivo through administered it orally. The mechanism of anti-inflammatory activity of Gingyo-san was attenuating expressions of TNF-α, IL-1, IL-6, and activating NF-κB in BALF and lung tissue. Particularly, Gingyo-san also enhanced the expression of IL-10 (Yeh et al. 2007).

Bacteriostatic activity

JYH and SYH have similar antibacterial spectrum, and their water extractions could inhibit Escherichia coli, Shigellosis, Bordetella pertussis, Sarcina lutea, Bacillus subtilis, Mycobacterium tuberculosis, Staphylococcus, Pseudomonas aeruginosa, Streptococcus, Diplococcus pneumoniae, etc. effectively (40 g kg$^{-1}$) (Lei et al. 2005). However, the antibacterial intensity of JYH was stronger than that of SYH (Shi et al. 2016; Lei et al. 2005), and there was a highly positive relationship ($R^2 = 0.73–0.93$) between antibacterial activity and the content of phenolic acids (Shan et al. 2007). What’s more, phenolic acids, reaching the highest concentration in the tissues of digestive tract, particularly the oral mucosa, have strong effect to prevent oral diseases (Petti and Scully 2009). Thereby, regular consumption of JYH and SYH may help prevent oral diseases.

Using a bacterial model ($P. aeruginosa$), the relationship of antibacterial activities between JYH and SYH (70% ethanol extractions) was evaluated. The antibacterial activities of JYH and SYH should be divided into two clusters by multivariate statistical analysis, and the results supported the disaggregation of JYH and SYH by the Pharmacopoeia Committee. Meanwhile, the inhibition effects of JYH (100 mg mL$^{-1}$) on $P. aeruginosa$ were similar regardless of geographical origins. In contrast, the inhibition effects of SYH (100 mg mL$^{-1}$) on $P. aeruginosa$ were not stable, indicating JYH a more stable quality and activity (Shi et al. 2016).

Antiviral activity

JYH was the most popular herb used in treatments of severe acute respiratory syndromes (SARS) and influenza A in 2003 and 2009 (Yang et al. 2017a). Phenolic acids were regarded as main antiviral compounds of JYH and SYH. According to Wang’s study, 60% ethanol extractions of both JYH (1 mg mL$^{-1}$) and SYH (1 mg mL$^{-1}$) could inhibit the infection of Newcastle Disease Virus (NDV), but there was no significant difference between them ($P > 0.05$). Flavonoid extractions (extracted by 70% ethanol) of JYH (1 mg mL$^{-1}$) and SYH (1 mg mL$^{-1}$) had significant antiviral activities against pseudorabies virus (PRV) in vitro, between which SYH had stronger inhibitory effect on PRV (Wang et al. 2011a; Wang et al. 2011b).
Liver protective activity

Acetaminophen (AP)-induced hepatotoxicity was the most common acute liver injury in both the United States and the United Kingdom (Lee 2004; Zhou et al. 2017). To date, JYH, L. macranthoides and L. fulvotomentosa have already been confirmed liver protective activities through various in vitro and in vivo trials (Jiang et al. 2014; Sun et al. 2010; Shi and Liu 1995), and there was no significant difference in liver protective activities between them (Tang et al. 2016).

One study, by TdT-mediated biotin-dUTP nick-end labeling (TUNEL) assay, Jiang found that AP increased the number of apoptotic hepatocytes in mice ($P < 0.001$), while JYH (350 mg kg$^{-1}$, water extraction, administered orally) obviously decreased this tendency ($P < 0.001$). N-Acetylcysteine (NAC, 600 mg/kg as positive control) could also obviously ameliorate AP-induced liver injury. Detected by cell viability (CV) assay, AP-induced cytotoxicity in human normal liver L-02 cells could be reversed by CGA (1), isochlorogenic acid A–C (3–5) and CA (62) of JYH, while flavonoids [cynaroside (88), luteolin (89), hyperoside (130)], iridoids (swertiamarin) and essential oils [linalool (295) and geraniol (325)] had no protective activities against AP-induced hepatotoxicity. Thus, JYH could prevent AP-induced liver injury in vivo by inhibiting apoptosis, and phenolic acids may be the main hepato-protective active compounds in JYH (Jiang et al. 2014). What’s more, phenolic acids alleviating AP-induced hepatotoxicity could also prevent liver injury induced by various chemical compounds such as carbon tetrachloride and thioacetamide (Wu et al. 2007; Mancini-Filho et al. 2009). On the other study, SYH saponins were reported to exert protective activities on liver injury in vitro and in vivo caused by acetaminophen, Cd, and CCl$_4$ distinctly (Ferrazzano et al. 2009; Ji et al. 2013). In δ-aminogalactose and CCl$_4$-induced liver injury rats, water extractions of both L. macranthoides and L. fulvotomentosa (150 mg kg$^{-1}$) showed liver protective activities (Shi et al. 1999). These results revealed that JYH and SYH had potential to be developed as a new drug against liver injury. However, these studies lacked positive control and further studies require more in-depth, including exploring the related pathways and searching for the targets.

Antioxidative activity

Phenolic acids are well-known antioxidants used as nutritional supplements to enhance the antioxidative capacity of body (Jiang et al. 2014). CGA (1) and CA (62) are powerful antioxidants in vitro and in vivo (Wang et al. 2009a). Flavonoids, especially cynaroside (88) which can remove free radicals of ultra oxygen ions in body could increase immunity and delay senescence (Yang et al. 2017a). Antioxidative activity of JYH presented a significant positive correlation with the content of CGA (1), cynaroside (88), rutin (125) and hyperoside (130) (Kong et al. 2017). Studies on antioxidative activity of SYH also focus on its phenolic acids and flavonoids (Xu et al. 2014). So far, various pharmacological studies have confirmed potent antioxidative activities of JYH and SYH in vitro and in vivo (Chen et al. 2013; Shang et al. 2011; Guo et al. 2014; Xu et al. 2014). What’s more, SYH may have higher antioxidative intensity than that of JYH according to the current research (Xiao et al. 2019). 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic) acid (ABTS+) scavenging assay is the most frequently used antioxidative activity assay for it could measure antioxidative activity in a rapidly and directly simple manner (Lee et al. 2011).

JYH

Seo measured antioxidative activities of 70% methanol extractions of JYH (25, 50, 100, 250, 500, and 1000 mg L$^{-1}$) by ABTS+ and reducing power (RP) assays, with butylated hydroxytoluene (BHT, 25, 50, 100, 250, 500, and 1000 mg L$^{-1}$) as a positive control. The ABTS+ assay suggested JYH a significantly stronger antioxidative activity than BHT in vitro ($P < 0.05$) (Seo et al. 2012). Injectable SHL has been demonstrated antioxidative activity. In LPS-induced acute lung injury mouse, superoxide dismutase (SOD) and catalase (CAT) activities were markedly decreased, while malondialdehyde (MDA) was over-production. In contrast, injectable SHL (5 and 10 mL kg$^{-1}$) could decrease MDA content and the over-production of pro-inflammatory cytokines (TNF-α IL-1β, and IL-6) in vivo. What’s more, 10 mL kg$^{-1}$ SHL increased the SOD and CAT activities ($P < 0.05$). Histological studies demonstrated that SHL attenuated LPS-induced interstitial edema,
hemorrhage, and the infiltration of neutrophils into lung tissue (Fang et al. 2015).

SYH

Employing pyrogallol autoxidation and Fenton assays, Xu determined the free radicals scavenging ability of SYH flavonoids (extracted by 70% ethanol) in vitro, and measured the protective activity of SYH flavonoids on hydrogen peroxide-induced (H₂O₂-induced) oxidative injury endothelial cells and cardiomyocytes by methyl thiazolyl tetrazolium assay. The scavenging rates of superoxide anion free radical (O₂⁻) and hydroxy free radical (·OH) were 42.40% and 64.99% respectively when the concentration of SYH flavonoids was 250 μg mL⁻¹. With SYH flavonoids pre-treating, the survival rates of H₂O₂-induced oxidative injury endothelial cells and cardiomyocytes were upgraded to 60.45% and 69.98% (Xu et al. 2014), showing high antioxidative activities in vitro, similar conclusion with (Wu et al. 2015b; Xiao et al. 2019).

Using different solvents, the antioxidative activities of SYH may be different. Hu used in vitro antioxidative assays, ABTS⁺ and O₂⁻· assays, as well as FRAP assay being selected to obtain complementary results, to evaluate different antioxidative activities of L. macranthoides (100 g L⁻¹) extracted by different solvents. The results showed n-butanol fraction had the highest ABTS⁺ and O₂⁻· scavenging activities among water extraction, petroleum ether, ethyl acetate and n-butanol fractions (Hu et al. 2016).

The above studies show that both JYH and SYH possess potent antioxidative activities, suggesting them potential natural antioxidants in scavenging biologically relevant radicals. However, further researches should focus on evaluating their antioxidative activities in vivo and elucidating the antioxidant mechanism. Moreover, the differences of their antioxidative intensities are also worthy of further study.

Hypoglycemic activity

Diabetes mellitus (DM) a chronic metabolic disorder has become one of the world’s most serious health concerns. Clinically, there are four types of DM, and type 2 diabetes mellitus (T2DM) is the most common form that causes many severe secondary complications, such as atherosclerosis, renal dysfunction and failure, cardiac abnormalities and ocular disorders (Rengasamy et al. 2013; Wang et al. 2015; Guo et al. 2015). Shin’s study showed that CGA (1) (10 and 20 mg kg⁻¹, intraperitoneal injection) effectively preserved the expression of tight junction protein and attenuated STZ-induced diabetic retinopathy in mice (Shin et al. 2013). Nowadays, JYH has already been an ingredient of hypoglycemic CPMs for T2DM, and SYH has also been mentioned to be a potential therapy for T2DM.

In streptozocin (STZ)-induced diabetic rats, the food and water intake and the levels of sugar and insulin were drastically decreased after orally administrating with water extraction of JYH or SYH (all 800 mg kg⁻¹). What’s more, the contents of liver and skeletal muscle glycogen and the concentrations of hepatic pyruvate kinase and hexokinase increased, together with significant declining of total cholesterol, total triglyceride, low-density and very-low-density lipoprotein-cholesterin and significant rising of high-density lipoprotein-cholesterin, indicating JYH and SYH notable hypoglycemic activities in vivo (Wang et al. 2017a; Zhao et al. 2018).

Present studies showed that JYH and SYH exerted similar hypoglycemic activities, inspiringly, future researches asking more exploring of their differences and bringing into positive control.

Anti-tumour activity

JYH and SYH have already been confirmed anti-tumour activities on human hepatoma HepG2 cell, HL-60, U-937, Jurkat, ovarian cancer A2780, K-562 in vitro and in vivo (Park et al. 2012a; Guan et al. 2011; Shan et al. 2016). CA (62) and its derivatives could suppress tumor angiogenesis and retard tumor growth (Jung et al. 2007). Among them, CGA (1), a well-known anti-tumour agent could up-regulate cellular antioxidant enzymes and suppress the ROS-mediated activation of NF-κB, activator protein-1, and MAPK (Feng et al. 2005). By inhibiting Akt and activating MAPKs, JYH polyphenolic extraction (10 mg mL⁻¹, extracted by 70% methanol) could inhibit proliferation of human hepatoma HepG2 cell line in vitro in a dose-dependent manner (Park et al. 2012a). In recent years, macranthoside B (267), a hederagenin saponin in SYH showed great potential to be an anti-tumour agent for its capability of blocking cell proliferation and inducing cell death in several types of cancer cells through the caspase-mediated
pathways, such as caspase-3 and caspase-9 in vitro and in vivo (Shan et al. 2016; Guan et al. 2011; Wang et al. 2009b). Employing cell proliferation and xenograft tumor growth assays, Wang confirmed the anti-tumour activity of macranthoside B (267) both in vitro and in female athymic BALB/cA nude mouse, with IC$_{50}$ value of 10.10 ± 0.93 μM.

Other activities

In addition to the pharmacological activities described above, JYH and SYH displayed other activities. Water extraction of JYH (100, 200 mg kg$^{-1}$, orally administered) could inhibit the increasing retinal vessels in both outer and inner plexiform layers in STZ-induced diabetic mice. Furthermore, it could reduce the increasing cell proliferation and tube formation induced by vascular endothelial growth factor (VEGF) in FR/6A cells with no cytotoxicity, showing inhibition property of JYH against VEGF-induced retinal angiogenesis in vitro (Zhou et al. 2016). Conversely, anti-angiogenic activity of SYH needed to be explored further. Xanthine oxidase (XO) is an enzyme related to hyperuricaemia. Employing enzymatic assay, Peng evaluated the XO inhibition activity of L. macranthoides water extraction in vitro. L. macranthoides extraction showed inhibition activity on XO with an IC$_{50}$ value of 58.2 μg mL$^{-1}$. Isochlorogenic acid A–C (3–5) with dicaffeoyl groups exhibited effective XO inhibition with IC$_{50}$ values of 189.6 ± 7.9, 96.2 ± 3.1 and 75.3 ± 2.6 μM, while compounds (1, 2, 6) with monocaffeoyl group showed weak XO inhibitory activities (10–15% inhibition at the concentration of 200 μM) (Peng et al. 2016).

Clinical use

Clinical indications of JYH and SYH are mainly related to inflammation, bacterial and virus infection. There are numerous clinical trials on JYH products and most of them focus on SHL. On the contrary, clinical studies on SYH remain rare.

Significant therapeutic effects on oral ulcer were taken by a standard double therapy with Ranitidine (0.15 g × 4/day) and Vitamins (20 mg × 3/day Vitamin B, 200 mg × 3/day Vitamin C) (RcV) or SHL Oral Liquid (20 mL × 3/day, equivalent to JYH crude drug 7.5 g/day) (RcS) (120 cases). Patients with RcS treatment showed to achieve higher rates of effectiveness ($P < 0.05$) than those with RcV. Immunoglobulin G and secretary immunoglobulin A levels of patients treated with RcS were better than those treated with RcV, promoting a healing of ulcer and improving the clinical symptoms of patients (Ying et al. 2019). The effect of JYH decoction combined with penicillin on the treatment of syphilis was assessed. In this study, a total of 92 syphilis patients were divided into two groups to treat with either penicillin injection$_{an}$ (2,400,000 U kg$^{-1}$ d$^{-1}$, 1 times/week) or a combination of JYH decoction (30 g/day) and penicillin injection (PcJ) for 3 weeks. After the 3 months of treatment, the Th1/Th2 levels of PcJ group were significantly improved and IL-2, IL-8 and IL-10 were significantly decreased. These changes were statistically significant in comparison with the penicillin group (Zhao and Li 2018). Gao took SHL Oral Liquid (for children. 1–3 years old, 10 mL, tid; >3–7 years old, 20 mL) combined with Recombinant Human Interferon α-2b injection (RHi, 100,000 U kg$^{-1}$ d$^{-1}$) to treat children viral pneumonia (7 days of treatment, 55 cases). In comparison to using RHi alone, a combination with SHL Oral Liquid possessed higher effective rates, and antipyretic time as well as cough disappearance time was significantly shortened. What’s more, the adverse reaction rates of them two showed no significant differences ($P > 0.05$) (Gao 2018). Wu took Fusidic Acid Cream (2 mm) as the control group and JYH decoction (30 g) combined with Fusidic Acid Cream (2 mm) as experimental group to analyze the clinical efficacy of JYH decoction in the treatment of targeted drugs-induced rash (80 cases). After treatment, the effective rates of experimental group (95.00%) were higher than those of control group (77.50%) ($P < 0.05$), and no statistical differences of adverse reaction rates were found between the two groups ($P > 0.05$) (Wu et al. 2017).

The above results showed JYH a high clinical application value. It could relieve the clinical symptoms effectively, and improve the quality of life. However, are these satisfactory clinical traits a placebo effect? Further study involving placebo group might help in the identification of work effort for JYH.
Quality control

Quality control of herbs is essential to ensure their efficiency and safety. According to 2015 Edition ChP, the content of CGA (1) and cynaroside (88) in JYH must be no less than 1.5% and 0.05%, and the content of CGA (1) and the total amount of macranthoidin B (266) and dipsacoside B (269) in SYH must be no less than 2.0% and 5.0% on the basis of high performance liquid chromatography (HPLC) calibration Standard Operating Procedure. However, current studies suggested that habitats, harvest time, extract methods may bring about differences in quality of herbs to some extent (Table 8). According to Table 8, GCD has a stable quality, and high-yield harvest phases of JYH should be S3-S5, just before the beginning of summer. Meanwhile, tetraploid JYH is an excellent breed for agricultural cultivation with high yields, stress tolerance and good quality. In daily storage of JYH and SYH, environment should keep cool due to some of their chemical compounds are thermosensitive (Lei et al. 2006; Wang et al. 2011c; Ji et al. 1990).

Traditionally, herbs are identified by morphological characteristics which primarily depend on human expertise. In some case, it is extremely difficult to definitively identify plant origins. With the development of chemical analysis, measuring an herb or CPMs rapidly and multi-content has become a consensus. Previous studies have provided JYH numerous reliable quality control methods. Yang used near infrared (NIR) spectroscopy technique combined with synergy interval partial least squares and genetic

Factors	JYH	SYH	Likely reasons	References
Habitats	GCD has a stable quality	May relate to the sunshine	Li et al. (2013), Chen et al. (2007), Yang et al. (2017a)	
Ploidy	Tetraploid JYH has higher polyphenol contents, biomass yields, stronger resistance to drought and higher antioxidant activities than those in diploid JYH	Increases in gene dosage follow the plant genome duplications in nucleus. This process may not only bring about significant changes in morphology and physiology, but also increase the cell size and the content of secondary metabolites because of whole genome duplications. Herbs are especially significant, with growth rates enhancing and genetic quality improving	Lavania (2007), Sun et al. (2011), Van Laere et al. (2010), Kaensaksiri et al. (2011), Lavania et al. (2012), Kong et al. (2017), Gao et al. (2017), Li et al. (2011), Li et al. (1996), Li et al. (2009), Xiong et al. (2006)	
Harvest time	The content of essential oils reaches the highest at S5, while the content of flavonoids reaches the highest at S3, and CGA is at S3 and S4	Hydrodistillation is the best choice to extract pure volatile fraction Ethyl acetate fraction exhibited the highest content of total phenolic acids and total flavonoids	Yang et al. (2017b), Kong et al. (2017)	
Extraction methods	Extraction yields of phenolic acids in JYH are associated with ethanol concentration		Duan et al. (2018), Hu et al. (2016), Wu et al. (2015a)	
algorithm to monitor extraction process of JYH. This method reliably monitored changes in the content of online extract process (Yang et al. 2017b). NIR spectra could also reflect the differences between batches. Li built an NIR fingerprint method, and proposed to use it in consistency check between batches, beneficial to industrial production (Li et al. 2013). Nevertheless, studies of quality control in SYH are limited, and most of them focus on distinguishing SYH from JYH, lacking researches on SYH exclusively.

JYH and SYH could be distinguished by normal light microscopy combined fluorescence microscopy. Under normal light microscopy, JYH and three origins of SYH (except L. confusa) could be distinguished by their traits of glandular hairs. By means of fluorescence microscopy, L. confusa was further identified with its transverse section partially distributing fluorescence materials (Chu et al. 2011). Through ultra HPLC with triple quadrupole mass spectrometry technology, cynaroside (88), sweroside (143), macranthoidin A (265), macranthoidin B (266) and dipsacoside B (269) have been quantified as internal standard substances to check SYH adulterated in JYH preparations. The results showed that JYH could be easily distinguished from SYH by the total amount of saponins (0.067 mg g\(^{-1}\) for JYH and > 45.8 mg g\(^{-1}\) for SYH).

Han used DNA barcoding, a molecular diagnostic technology identifying species by a short genomic sequence (Hebert et al. 2003), to investigate the varieties and proportions of adulterant species. The results indicated that ITS2 barcodes could be used to identify adulterants and JYH was one of the most adulterant species. Notably, given that some samples were heavily processed and there was no DNA barcoding in artificial adulterant sample, DNA barcoding technology was not sufficient to identify any given samples. In other words, DNA barcoding technology could be used to establish the authenticity of herbs or CPMs, but could not be used to evaluate the quality of herbs or CPMs (Han et al. 2016). Employing the modified cetyl trimethyl ammonium bromide method, genomic DNA was isolated from Fu Fang Yu Xing Cao Tablet, Lin Yang Gan Mao Tablet and Yin Qiao Jie Du Tablet (names of CPMs), which all contained JYH. Jiang used sequence and phylogenetic analyses to detect the species in prescriptions and the results showed that the above three CPMs were actually adulterated with SYH. Jiang’s method was reproducibility and had characteristic of non-reliance on morphology, so it could be used in authenticating preparations so as to evaluate their quality (Jiang et al. 2013).

Nowadays, SYH adulterated in JYH is common. According to Zhang’s study, eighteen of twenty one JYH preparations were adulterated with SYH in proportions of 11.3–100% (Zhang et al. 2015). Gao checked twenty extractions and 47 CPMs. The results showed that only 12 extractions and 33 CPMs were authentic. What’s more, Gao’s study revealed that some CPMs containing SYH were actually adulterated with high commercial value JYH, which indicated that the manufacturers may not distinguish JYH and SYH, giving a risk to a loss of revenue (Gao et al. 2017). Above all, future research should value SYH in order to identify JYH and SYH better both in crude materials or CPMs.

Toxicology

To date, the toxicity studies on JYH are seldom reported, while those on SYH are relatively more. Studies on the toxicology of JYH and SYH are mainly focused on saponins. However, neither JYH nor SYH water extractions have significant toxicity on breathing, blood pressure or urine output (the half lethal dose (LD\(_{50}\)) > 110 g kg\(^{-1}\)), far higher than their biologically active dose (Jiang et al. 2015; Thanabhorn et al. 2006). According to 2015 Edition ChP, the clinical administrations of JYH or SYH in an adult are suggested to be 6–15 g daily, indicating them low-toxicity herbs.

Wang researched hemolysis of macranthoidin B (266) and dipsacoside B (269) in vitro and in vivo. By observing hemolysis of them in rabbit red blood cells at the concentration of 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 mg L\(^{-1}\), no hemolysis occured compared to the control group (\(P > 0.05\)). In vivo, macranthoidin B (266) (0.110 and 0.055 mg g\(^{-1}\)) and dipsacoside B (269) (0.020 and 0.010 mg g\(^{-1}\)) did not cause hemolysis (continuous tail vein administration for 7 days) (Wang et al. 2016). In another study, loniceroside A (236), loniceroside B (237) (the major saponins in JYH), macranthoidin A (265), dipsacoside B (269) and dipsacoside VI (270) (the major saponins in SYH) all did not cause hemolysis at the concentration of 1.0 mg mL\(^{-1}\) in vitro. The hemolysis rate of
macranthoidin A (265) rose with its concentration increasing. No hemolysis occurred when the concentration of macranthoidin A (265) was 0.6 mg mL\(^{-1}\), and the hemolysis rate was 50.4% when the concentration of macranthoidin A (265) reached 1.0 mg mL\(^{-1}\). When comes to the hemolysis of JYH compounds, the strength decreased as the following order, saponins, phenolic acids, iridoids. When the concentrations of iridoids were 0.1–1.2 mg mL\(^{-1}\) or phenolic acids was less than 1.0 mg mL\(^{-1}\), no hemolysis occurred. However, hemolysis occurred when the concentration of saponins was 0.6 mg mL\(^{-1}\), and the hemolysis rate rose rapidly with the concentration further increasing. The hemolysis rate was 55.3% when the concentration of saponins in JYH reached 1.2 mg mL\(^{-1}\). Last but not least, the results showed that there were no significant differences in hemolysis between JYH representative compounds and SYH representative compounds in rabbit red blood cells \((P > 0.05)\) (Huang et al. 2017).

Additionally, \(L.\) macranthoides 70% ethanol extraction (5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 mg L\(^{-1}\)) and JYH extraction (0.5 g mL\(^{-1}\)) did not cause hemolysis in vitro (Wang et al. 2016; Dai et al. 2016). In brief, hemolysis of JYH and SYH may be closely related to saponins, although the hemolysis strength of saponins was not strong \((P > 0.05)\). The hemolysis of SYH may be related to the inclusion of macranthoidin A (265) in some of its plant origins.

However, there are contrary opinions about their toxicology. SYH contains more saponins than JYH. The potential security risk of SYH should be higher than that of JYH. The release rate of \(\beta\)-hexosaminidase of SYH water extraction (1.46 g kg\(^{-1}\)) was higher than that of JYH water extraction (1.25 g kg\(^{-1}\)) in vitro. SYH water extraction was more likely to stimulate the degranulation of basophilic mast cells than JYH water extraction. Thereby, the allergic reaction of SYH water extraction was more severe than that of JYH water extraction (Zhang 2014). Additionally, about four hundred million patients are treated with traditional Chinese medicine injections (TCMI) in China per year. Among TCMI, intravenous SHL has the highest risk of injection-induced immediate hypersensitivity reactions (IHRs). IHRs were attributed to the intermediate fraction F2 coming from JYH and Forsythiae Fructus in SHL injection. In Gao’s study, Balb/c mice were intravenously injected with the SHLI (0.5 mL/mouse), F1 (the extraction of Scutellariae Radix, 4.81 mg/mouse), or F2 (16.5 mg/mouse), respectively. Thirty minutes later, the rectal temperature was measured. F2 contributed to obvious hypothermia, while F1 has no effect on the mouse’s temperature. After intravenously injecting with 5 mg mL\(^{-1}\) Evans Blue (1 mL), a representative image of Evans Blue extravasation of mouse paw was observed in F2 group. In brief, JYH for injection use exerts a safety risk (Gao et al. 2018).

In summary, JYH and SYH were found to be fairly nontoxic, for such above high concentrations no longer having toxicological meaning.

Conclusion

\(L.\) japonica (also known as JYH, honeysuckle and Rendong) was traditionally utilized for clearing heat, detoxicating and expelling exopathogenic wind-heat. According to TCM theory, the above functions are closely associated with the treatment of inflammation or various infectious diseases. From the view of TCM, JYH belongs to cold nature, and it is the main drug to cure sore, heat-toxin and seasonal febrile disease, suggesting JYH an herb of treating inflammation. In light of its long traditional use to cool blood and relieve dysentery, the relationship between the traditional use and modern therapy of JYH against virus has also been established. However, SYH is more likely for local use only. The correlation between modern usage and traditional use of SYH remains unclear. More investigations of ethnomedicinal remedies of SYH should been conducted. These findings are crucial for a better understanding of the alternative strategy of JYH and SYH and to help in the authentication of them. In brief, the traditional uses of JYH have already been substantiated by modern pharmacological studies. In Asia, JYH and SYH are often used as tea. As the above said, bioactive components (especially CGA) of them have already been deeply explored. Due to the good and positive related anti-inflammatory, antiviral and antibacterial activities, CGA was used as marker to evaluate the chemical quality of JYH and SYH. However, CGA was not specificity or even ubiquitous. Thereby employing CGA to control the quality of JYH and SYH is really exclusive or accurate? This should be studied further.
In this review, we systematically summarize knowledge on botanies, ethnopharmacology, phytochemistry, pharmacological activities, clinical use, quality control and toxicology of JYH and SYH. To date, 326 and 148 compounds have been found in JYH and SYH, respectively. Phenolic acids, the major compounds presenting in JYH and SYH are similar and bioactive, with multiple bioactivities being revealed. However, reported literature showed that the main chemical differences between JYH and SYH are concentrated on saponins, such as macranthoidin A–B (265, 266), macranthoside A–B (267, 268) and dipsacoside B (269), and this cluster of compounds is anticipated to get more in-depth studies in anti-tumour compounds exploitation. As far as pharmacological studies of JYH and SYH, many in vitro and in vivo experiments demonstrate that they are pharmacologically similar, but also differ in some aspects. For instance, JYH is more powerful in antibacterial activity than SYH, while SYH possesses a higher intensity than JYH in antioxidative activity. What’s more, neither JYH nor SYH exert significant toxicity, but some studies indicated that the hemolysis of JYH and SYH was closely related to saponins, thereby SYH showing a higher safety risk. Given that SYH contains a large amount of saponins and the toxicological mechanism remains unclear, careful consideration should be given to the use of SYH in high-risk preparations.

However, gaps still exist in the scientific studies on them. Therefore, we provide several topics which should have priority for further detailed investigation. Firstly, there are not enough phytochemistry studies on SYH. Although phenolic acids and saponins are considered as the major bioactive compounds in SYH, the investigation of other ingredients like iridoids and flavonoids is still in a shortage, which severely limited the application diversity of SYH, and the chemical difference between JYH and SYH remains unclear. Secondly, current pharmacological studies on JYH are not available to validate its difference with JYH, bringing about continuing debate. Further investigation should be performed preferentially with comparing their activity intensities in vitro and in vivo, and introduced positive control. Finally, JYH and SYH are recognized as nontoxic herbs, but few toxicological studies support the safety of them in patients with underlying diseases, especially in elderly, children and pregnant women. The potential hemolysis risk of SYH should not be ignored, and it is worth investigating its interchangeability with JYH in injection.

In conclusion, it is necessary to accelerate the phytochemistry and pharmacological studies of SYH, and figure out its difference and similarity with JYH more in-depth. Future direction of research should pay attention to accurate and rapid authentication of JYH and SYH for it is crucial to ensure the safety and function of medicinal or edible herbs as well as their preparations. Additionally, more efforts deserve to gain insights into the toxicological actions of JYH and SYH.

References

Baell JB (2016) Feeling nature’s PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). J Nat Prod 79(3):616–628

Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740

Barthomeuf C, Debuton E, Mshvididze V, Kemertelidze E, Balansard G (2002) In vitro activity of hederaocolchisid A1 compared with other saponins from Hedera colchica against proliferation of human carcinoma and melanoma cells. Planta Med 68(08):672–675

Ben Farhat M, Jordán MJ, Chaouch-Hamada R, Landoulsi A, Sotomayor JA (2015) Changes in phenolic profiling and antioxidant capacity of Salvia aegyptiaca L. by-products during three phenological stages. LWT Food Sci Technol 63(1):791–797. https://doi.org/10.1016/j.lwt.2015.03.015

Bi Y, Tian Y, Pei S, Zhang C, Liu H (2007) Chemical constituent analysis of honeysuckle. J Zhongzhou Univ 39(2):184–186

Bi X, Wang X, Zhang Q, Kuang H (2014) Simultaneous determination of Forsythiae Fructus and detection of Lonicerae flos in serial Shuanghuanglian preparations by HPLC-UV-ELSD. Chin J Pharm Anal 1:104–107

Chai X-Y, Wang L, Song Y (2004a) Study on flavonoids in Lonicerae Flos. J China Pharm Univ 35(4):299–302

Chai X, Dou J, He Q, Li P (2004b) Study on phenolic acids in Lonicera flos. Chin J Nat Med 2(6):339–340

Chai X, Li P, Tang L (2004c) Study on chemical constituents of Lonicerae Flos. Chin J Nat Mater Med 29(09):865

Chai X-Y, Li S-L, Li P (2005) Quality evaluation of Flos Lonicerae through a simultaneous determination of seven saponins by HPLC with ELSD. J Chromatogr A 1070(1–2):43–48. https://doi.org/10.1016/j.chroma.2005.02.031

Chang WC, Hsu FL (1992) Inhibition of platelet activation and endothelial cell injury by polyphenolic compounds isolated from Lonicera japonica Thunb. Prostaglandins Leukot Essent Fatty Acids 45(4):307–312
Chen CY, Peng WH, Wu LC, Wu CC, Hsu SL (2010a) Luteolin from "Phyllanthus myrtifolius". Antiviral Res 72(4):367–374
Chen-juan L, Si-ping C (2010) Studies on chemical constituents of Lonicera japonica. Chin J Exp Tradit Med Formule 16(17):90–93. https://doi.org/10.13422/j.cnki.syfjx.2010.17.034
Chen C, Wang W, Ni W, Chen N, Zhou J (2000) New triterpenoid saponsins in honeysuckle flower buds. J Plant Taxon Resour 22(2):201–208
Chen J, Xu X, Chai X, Li P (2006) Chemical composition of Lonicera macranthoides flower bud. Chin J Nat Med 4(5):347–351
Chen CY, Qi LW, Li HJ, Li P, Yi L, Ma HL, Tang D (2007) Simultaneous determination of iridoids, phenolic acids, flavonoids, and saponins in Flos Lonicerae and Flos Lonicerae Japonicae by HPLC-DAD-ELSD coupled with principal component analysis. J Sep Sci 30(18):3181–3192. https://doi.org/10.1002/jssc.200700204
Chen Y, Feng X, Jia X, Dong Y, Liang J, Wang M, Sun H (2008a) Study of chemical constituents of honeysuckle. Chin J Nat Med 4(5):823–825
Chen Y, Xu F, Jia X, Wang M, Liang J, Dong Y (2008b) Triterpene glycosides from Lonicerae genitalis and structural determination of seven glycosides from flower buds of Loniceraceae. Chin Chem Lett 19(1):39–43
Chen CY, Peng WH, Wu LC, Hu CC, Hsu SL (2010a) Luteolin ameliorates experimental lung fibrosis both in vivo and in vitro: implications for therapy of lung fibrosis. J Agric Food Chem 58(22):11653–11661. https://doi.org/10.1021/jf1031668
Chen Q, Lin R, Wang G, Li F (2010b) Study on chemical constituents of Lonicera macranthoides flower buds. J Chin Med Mater 33(6):920–922
Chen Y, Zhao Y, Wang M, Sun H, Dong Y, Feng X (2012a) The first chlorogenic acid ester saponin from Loniceraceae. Chin J Nat Med 10:187–189. https://doi.org/10.1007/s10600-012-0109-4
Chen Y, Zhao Y, Wu S, Wang M, Feng X, Liang J (2012b) Study on water soluble chemical constituents of Lonicera macranthoides. Chin J Nat Med Mater 35(2):231–234
Chen YS, Liou HC, Chan CF (2013) Tyrosinase inhibitory effect and antioxidative activities of fermented and ethanol extracts of Rhodiola rosea and Lonicera japonica. Sci World J 1:612739
Chen DX, Li LY, Zhang X, Wang Y (2015a) Genetic structure and genetic diversity of single-variety Lonicera macranthoides populations in China, as indicated by ScOT markers. Genet Mol Res 14(3):8058–8067. https://doi.org/10.4238/2015.July.17.14
Chen Z, Tang N, You Y, Lan J, Liu Y, Li Z (2015b) Transcriptome analysis reveals the mechanism underlying the production of a high quantity of chlorogenic acid in young leaves of Lonicera macranthoides Hand.-Mazz. PLoS ONE 10(9):e0137212. https://doi.org/10.1371/journal.pone.0137212
Chen L, Liu CS, Chen QZ, Wang S, Xiong YA, Jing J, Lv J (2017) Characterization, pharmacokinetics and tissue distribution of chlorogenic acid-loaded self-microemulsifying drug delivery system. Eur J Pharm Sci 100:102–108. https://doi.org/10.1016/j.ejps.2017.01.011
Cheng BC, Ma XQ, Kwan HY, Tse KW, Cao HH, Su T, Shu X, Wu ZZ, Yu ZL (2014) A herbal formula consisting of Rosae Multiflorae Fructus and Lonicerae Japonicae Flos inhibits inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. J Ethnopharmacol 153(3):922–927. https://doi.org/10.1016/j.jep.2014.02.029
Choi C, Ah Jung H, Sik Kang S, Sue Choi J (2007) Antioxidant constituents and a new triterpenoid glycoside from Flos Lonicerae. Arch Pharm Res. https://doi.org/10.1007/bf02977770
Chu C, Liu HJ, Qi LW, Liu EH, Li P (2011) Combination of normal light and fluorescence microscopy for authentication of five Loniceraceae flower buds. Microsc Res Technol 74(2):133–141. https://doi.org/10.1002/jemt.20882
Chwalek M, Lalun N, Bobichon H, Pié K, Voutquant-Nazabadioko L (2006) Structure–activity relationships of some hederagenin diglycosides: Haemolysis, cytotoxicity and apoptosis induction. Biochim Biophys Acta 1760(9):1418–1427
Cui C, Liu Z, Zhou M, Su D, Tang X, Wei W (2012) Study on chemical constituents of honeysuckle. J Guangxi Univ 37(3):530–533
Cuvelier M-E, Richard H, Berset C (2014) Comparison of the antioxidative activity of some acid-phenols: structure–activity relationship. Biosci Biotechnol Biochem 56(2):324–325. https://doi.org/10.1271/bbb.56.324
Dai B, Li S, Sheng Y, Zhang G, Ma L, Ye Z (2016) Comparative study on Hemolysis and cohesion effects of Lonicerae Japonicae Flos and Lonicerae Flos extracts in vitro test. Mod Chin Med 18(11):1458–1462
Dan T, Hui-Jun L, Ping L, Xiao-Dong W, Zheng-Ming Q (2008) Interaction of bioactive components caffeoylquinic acid derivatives in Chinese medicines with bovine serum albumin. Chem Pharm Bull 56(3):360–365
Du H, Zhang Y, Weng D, Yang D (2009) Study on different extraction methods of fresh honeysuckle volatile oil by GC–MS. Res Chongqing Chin Herb Med 2:13–17
Du C, Feng X, Wang H, Wu L, Li P (2015) GC-MS analysis of volatile components of honeysuckle from different habitats. Agric Sci Technol 42(5):1081–1083
Duan MH, Fang T, Ma JF, Shi QL, Peng Y, Ge FH, Wang XL (2015) Comparative study on Hemolysis and cohesion effects of Lonicerae Japonicae Flos. J Chromatogr B Anal Technol Biomed Life Sci 1097–1098(2018):119–127. https://doi.org/10.1016/j.jchromb.2018.07.032
Duan MH, Fang T, Ma JF, Shi QL, Peng Y, Ge FH, Wang XL (2015) Comparative study on Hemolysis and cohesion effects of Lonicerae Japonicae Flos. J Chromatogr B Anal Technol Biomed Life Sci 1097–1098(2018):119–127. https://doi.org/10.1016/j.jchromb.2018.07.032
Duan MH, Fang T, Ma JF, Shi QL, Peng Y, Ge FH, Wang XL (2015) Comparative study on Hemolysis and cohesion effects of Lonicerae Japonicae Flos. J Chromatogr B Anal Technol Biomed Life Sci 1097–1098(2018):119–127. https://doi.org/10.1016/j.jchromb.2018.07.032
Duan MH, Fang T, Ma JF, Shi QL, Peng Y, Ge FH, Wang XL (2015) Comparative study on Hemolysis and cohesion effects of Lonicerae Japonicae Flos. J Chromatogr B Anal Technol Biomed Life Sci 1097–1098(2018):119–127. https://doi.org/10.1016/j.jchromb.2018.07.032
Elemi B, Maria S, Lucia M, Marina Z, Konstantinos P, Carol M, Theodore F (2004) Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3'-kinase activity. Can Res 64(21):7936
Fan WB, Wu Y, Yang J, Shahzad K, Sue Choi J (2018) Comparative chloroplast genomics of dispaces species: insights into sequence variation, adaptive evolution, and phylogenetic relationships. Front Plant Sci 9:689
Fang L, Gao Y, Liu F, Hou R, Cai RL, Qi Y (2015) Shuang–Huang–Lian attenuates lipopolysaccharide-induced acute

Springer
Feng B, Li H (2008) Anti-allergic effect of total saponins in Lonicerae fulvotomentosa Hsu et S.C. Cheng on ovalbumin-sensitized mouse. In: Chinese Medical Association national pediatrics young and middle-aged academic exchange conference

Feng R, Lu Y, Bowman LL, Qian Y, Castranova V, Ding M (2005) Inhibition of activator protein-1, NF-kappaB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem 280(30):27888–27895. https://doi.org/10.1074/jbc.M503347200

Feng W, Chen X, Zheng X, Zhang C, Li D (2011) Study on chemical constituents of honeysuckle. Chin Pharm J 46(5):338–340

Ferrazzano GF, Amato I, Ingenito A, De Natale A, Pollio A (2009) Anti-carcinogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea). Fitoterapia 80(5):255–262. https://doi.org/10.1016/j.fitote.2009.04.006

Gao Y (2018) Shuanghuanglian oral liquid (for children only). Evid Based Complement Alternat Med 2015:1–9. https://doi.org/10.1155/2015/283939

Gao Y, Hou R, Han Y, Fei Q, Cai R, Qi Y (2018) Shuang–Hu-Liang injection induces an immediate hypersensitivity reaction via C5a but not IgE. Sci Rep 8(1):3572. https://doi.org/10.1038/s41598-018-21360-7

Gao Z, Liu Y, Wang X, Song J, Chen S, Ragupathy S, Han J, Newmaster SG (2017) Derivative technology of DNA barcoding (nucleotide signature and SNP double peak methods) detects adulterants and substitution in Chinese patent medicines. Sci Rep 7(1):5858. https://doi.org/10.1038/s41598-017-05892-y

Gao Y, Hou R, Han Y, Fei Q, Cai R, Qi Y (2018) Shuang–Hu-Liang injection induces an immediate hypersensitivity reaction via C5a but not IgE. Sci Rep 8(1):3572. https://doi.org/10.1038/s41598-018-21360-7

Group TAP, Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181(1):1–20. https://doi.org/10.1111/boj.12385

Guan F, Shan Y, Zhao X, Zhang D, Wang M, Peng F, Xia B, Feng X (2011) Apoptosis and membrane permeabilisation induced by macranthoside B on HL-60 cells. Nat Prod Res 25(4):332–340. https://doi.org/10.1080/14786410.2010.5752086

Guan F, Wang H, Shan Y, Chen Y, Wang M, Wang Q, Yin M, Zhao Y, Feng X, Zhang J (2014a) Inhibition of COX-2 and PGE2 in LPS-stimulated RAW264.7 cells by lonimiracan-thoide VI, a chlorogenic acid ester saponin. Biomed Rep 2(5):760–764. https://doi.org/10.3892/br.2014.314

Guan R, Wang L, Qu Y, Zhou J, Du X, Lin H, Lin J (2014b) GC–MS analysis of volatile oils components from Jifueng No.1 honeysuckle. Chin Tradit Patent Med 36(11):2367–2371

Guo AL, Chen LM, Wang YM, Liu XQ, Zhang QW, Gao HM, Wang ZM, Xiao W, Wang ZZ (2014) Influence of sulfur fumigation on the chemical constituents and antioxidant activity of buds of Lonicera japonica. Molecules 19(10):16640–16651

Guo Z, Niu X, Xiao T, Lu J, Wei L, Zhao Y (2015) Chemical profile and inhibition of α-glycosidase and protein tyrosine phosphatase 1B (PTP1B) activities by flavonoids from lonicere (Glycyrrhiza uralensis Fisch). J Funct Foods 14(2015):324–336

Han J, Pang X, Liao B, Yao H, Song J, Chen S (2016) An authenticity survey of herbal medicines from markets in China using DNA barcoding. Sci Rep 6:18723. https://doi.org/10.1038/srep18723

Han J, Zhao Y, Zhang Y, Li C, Yi Y, Pan C, Tian J, Yang Y, Cui H, Wang L (2018) RhoA/ROCK signaling pathway mediates Shuanghuanglian injection-induced pseudo-allergic reactions. Front Pharmacol 9(87):1–14

He L, Qian J, Li X, Sun Z, Xu X, Chen S (2017) Complete chloroplast genome of medicinal plant Lonicera japonica: genome rearrangement, intron gain and loss, and implications for phylogenetic studies. Molecules 22(2):249

Hebert PD, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270(1512):313–321. https://doi.org/10.1098/rspb.2002.2218

Ho Son K, Young Jung K, Chang H, Pyo Kim H, Sik Kang S (1994) Triterpenoid saponins from the aerial parts of Lonicera japonica. Phytochemistry. https://doi.org/10.1016/s0031-9422(94)00043-0

Hou Y, Jiang JG (2013) Origin and concept of medicine food homology and its application in modern functional foods. Food Funct 4(12):1727–1741

Hou N, Liu N, Han J, Yan Y, Li J (2017) Chlorogenic acid induces reactive oxygen species generation and inhibits the viability of human colon cancer cells. Anticancer Drugs 28(1):59–65. https://doi.org/10.1097/CAD.0000000000000430

Hu X, Chen L, Shi S, Cai P, Liang X, Zhang S (2016) Antioxidant activity of buds of Lonicerae flos and Lonicerae Flos in vitro. Chin J Exp Tradit Med Formulae 12:6–12

Huang L, Lv Z, Li J, Zhou B (1996) Study on the chemical constituents of honeysuckle. Chin Tradit Patent Med 36(11):2367–2371

Huang N, Gao H, Chen L, Zhang Y, Zhu J, Liu X, Wang Z, Feng H (2018) RhoA/ROCK signaling pathway mediates Shuanghuanglian injection-induced pseudo-allergic reactions. Front Pharmacol 9(87):1–14

Huang X, Chen L, Shi S, Cai P, Liang X, Zhang S (2016) Antioxidant activity of buds of Lonicerae flos and Lonicerae Flos in vitro. Chin J Exp Tradit Med Formulae 12:6–12

Ikeda N, Ishihara M, Tsukada T, Katsume M, Yoda M, Suzuki Y, Komaki R, Inui M (1994) Volatile components of honeysuckle (Lonicera japonica Thunb.) flowers. Flavour Fragr J 9:9. https://doi.org/10.1002/ffj.2730090609

Institute SPIR (1975) Preliminary study on the active constituents of honeysuckle. Chin J Pharm 7(8):24–27
Iwahashi H, Negoro Y, Ikeda A, Morishita H, Kido R (1986) Inhibition by chlorogenic acid of haematin-catalysed retinoic acid 5,6-epoxidation. Biochem J 239(3):641–646

Jasial S, Hu Y, Bajorath J (2017) How frequently are pan-assay interference compounds active? Large-scale analysis of screening data reveals diverse activity profiles, low global hit frequency, and many consistently inactive compounds. J Med Chem 60(9):3879–3886. https://doi.org/10.1021/acs.jmedchem.7b00154

Jeong YT, Jeong SC, Hwang JS, Kim JH (2015) Modulation effects of sweroside isolated from the Lonicera japonica on melanin synthesis. Chem Biol Interact 238(2015):33–39. https://doi.org/10.1016/j.cbi.2015.05.022

Ji L, Pan J, Xu Z (1990) GC–MS analysis of volatile oil from Lonicera Japonica. China J Chin Med Mater 15(11):40–42

Ji L, Jiang P, Lu B, Sheng Y, Wang X, Wang Z (2013) Chlorogenic acid, a dietary polyphenol, protects acetaminophen-induced liver injury and its mechanism. J Nutr Biochem 24(11):1911–1919. https://doi.org/10.1016/j.jnutbio.2013.05.007

Jia X, Feng X, Dong Y, Zhao X, Wang M, Zhao Y, Sun H (2007) Study on the saponins in Lonicera macranthoides. Chin Tradit Her Drugs 39(10):1452–1455

Jia X, Feng X, Zhao X, Wang M, Sun H, Dong Y (2008) Study on chemical constituents of Lonicera macranthoides. Chin Tradit Her Drugs 39(11):1635–1636

Jiang N (2015) Study on chemical constituents of honeysuckle. J Chin Med Mater 38(2):315–317

Jiang C, Yuan Y, Chen M, Huang L (2013) Molecular authentication of multi-species honeysuckle tablets. Genet Mol Res 12(4):4827–4835. https://doi.org/10.4238/2013.October.22.2

Jiang P, Sheng YC, Chen YH, Ji LL, Wang ZT (2014) Protection of Flos Lonicerae against acetaminophen-induced liver injury and its mechanism. Environ Toxicol Pharmacol 38(3):991–999. https://doi.org/10.1016/j.etap.2014.10.019

Jiang ZB, Song WX, Shi JG (2015) Two 1-(6′-O-acetyl-β-D-glucopyranosyl)pyridinium-3-carboxylates from the flower buds of Lonicera japonica. Chin Chem Lett 26(1):69–72

Jin-qian Y, Zhao-ping W, Heng Z, Gang L, Xiao W (2016) Chemical constituents of Lonicera japonica roots and their anti-inflammatory effects. Acta Pharm Sin 51(07):1110–1116. https://doi.org/10.1643/j.0513-4870.2016-0208

Jung JE, Kim HS, Lee CS, Park DH, Kim YN, Lee MJ, Lee JW, Park JW, Kim MS, Ye SK, Chung MH (2007) Caffeic acid and its synthetic derivative CADP suppress tumor angiogenesis by blocking STAT3-mediated VEGF expression in human renal carcinoma cells. Carcinogenesis 28(8):1780–1787. https://doi.org/10.1093/carcin/bgm130

Kaensaksiri T, Soontornchainaesaeng P, Soonthornchareon N, Prathanturarug S (2011) In vitro induction of polyolipid in Centella asiatica (L.) urban. Plant Cell Tissue Organ Cult 107(2):187–194. https://doi.org/10.1007/s11240-011-9969-8

Kakuda R, Imai M, Yaito Y, Machida K, Kikuchi M (2000) Secoiridoid glycosides from the flower buds of Lonicera japonica. Phytochemistry 55(8):879–881

Kang OH, Choi YA, Park HH, Lee JY, Kim DK, Choi SC, Kim TH, Nah YH, Yun KJ, Choi SJ (2004) Inhibition of trypsin-induced mast cell activation by water fraction of Lonicera japonica. Arch Pharm Res 27(11):1141–1146

Kao ST, Liu CJ, Yeh CC (2015) Protective and immunomodulatory effect of flos Lonicerae japonicae by augmenting IL-10 expression in a murine model of acute lung inflammation. J Ethnopharmacol 168(2015):108–115. https://doi.org/10.1016/j.jep.2015.03.012

Kashiwada Y, Omichi Y, Kurimoto S, Shibata H, Miyake Y, Kirimoto T, Takashii Y (2013) Conjugates of a secoiridoid glucoside with a phenolic glucoside from the flower buds of Lonicera japonica Thunb. Phytochemistry 96(2013):423–429. https://doi.org/10.1016/j.phytochem.2013.09.021

Kawai H, Kuroyanagi M, Umehara K, Ueno A, Satake M (1988) Studies on the saponins of Lonicera japonica Thunb. Chem Pharm Bull 36(12):4769

Kim SR, Jung YR, Kim DH, An HJ, Kim MK, Kim ND, Chung HY (2014) Caffeic acid regulates LPS-induced NF-kappaB activation through NIK/JNK and c-Src/ERK signaling pathways in endothelial cells. Arch Pharm Res 37(4):539–547. https://doi.org/10.1007/s12272-013-0211-6

Kong D, Li Y, Bai M, Deng Y, Liang G, Wu H (2017) A comparative study of the dynamic accumulation of polyphenol components and the changes in their antioxidative activities in diploid and tetraploid Lonicera japonica. Plant Physiol Biochem 112(2016):87–96. https://doi.org/10.1016/j.plaphy.2016.12.027

Kroencke KD, Kolb-Bachofen V, Berschick B, Burkart V, Kolb H (1991) Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation. Biochem Biophys Res Commun 175(3):752

Kumar N, Singh B, Bhandari P, Gupta AP, Uniyal SK, Kaul VK (2005) Biflavonoids from Lonicera japonica. Phytochemistry 66(23):2740–2744. https://doi.org/10.1016/j.phytochem.2005.10.002

Kumar N, Singh B, Gupta AP, Kaul VK (2006) Lonijaposides, novel cerebrosides from Lonicera japonica. Tetrahedron 62(18):4317–4322. https://doi.org/10.1016/j.tet.2006.02.070

Kwak WJ, Chang KH, Chang HW, Kim HP, Kang SS, Son KH, Loniceroside C (2003) An antiinflammatory saponin from Lonicera japonica. Chem Pharm Bull 51(3):333

Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27(4):969–978

Lavania UC (2007) Genomic and ploidy manipulation for enhanced production of phyto-pharmaceuticals. Plant Genet Resour Charact Util 3(02):170–177. https://doi.org/10.1079/pgr200576

Lavania UC, Srivastava S, Lavania S, Basu S, Misra NK, Mukai Y (2012) Autopolyploid differentiation influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J 71(4):539–547. https://doi.org/10.1111/j.1365-313X.2012.05006.x

Lee WM (2004) Acetaminophen and the U.S. Acute Liver Failure Study Group: lowering the risks of hepatic failure. Hepatology 40(1):6–9. https://doi.org/10.1002/hep.20293

Lee SJ, Shin EJ, Son KH, Chang HW, Kang SS, Kim HP (1995) Anti-inflammatory activity of the major constituents of Lonicera japonica. Arch Pharm Res 18(2):133–135

Lee JH, Ko WS, Kim YH, Kang H-S, Kim HD, Choi BT (2001) Anti-inflammatory effect of the aqueous extract from
Lonicera japonica flower is related to inhibition of NF-kappaB activation through reducing I-kappaBalpha degradation in rat liver. Int J Mol Med. https://doi.org/10.3892/ijmm.17.1.79

Lee EJ, Kim JS, Kim HP, Lee J-H, Kang SS (2010a) Phenolic constituents from the flower buds of Lonicera japonica and their 5-lipoxygenase inhibitory activities. Food Chem 120(1):134–139. https://doi.org/10.1016/j.foodchem.2009.09.088

Lee EJ, Kim LJS, Kang SS (2010b) Phytochemical studies on Lonicerae Flos (I)—isolation of iridoid glycosides and other constituents. Nat Prod Sci 16(1):32–38

Lee JH, Lee SJ, Park S, Kim HK, Jeong WY, Choi JY, Sung N-J, Lee WS, Lim C-S, Kim G-S, Shin SC (2011) Characterization of flavonoids in Orostachys japonicus. A. Berger using HPLC–MS/MS: contribution to the overall antioxidant effect. Food Chem 124(4):1627–1633. https://doi.org/10.1016/j.foodchem.2010.08.031

Lee K, Lee JS, Jang HJ, Kim SM, Chang MS, Park SH, Kim KS, Bae J, Park JW, Lee B, Choi HY, Jeong CH, Bu Y (2012) Chlorogenic acid ameliorates brain damage and edema by inhibiting matrix metalloproteinase-2 and 9 in a rat model of focal cerebral ischemia. Eur J Pharmacol 689(1–3):89–95. https://doi.org/10.1016/j.ejphar.2012.05.028

Lei Z, Zhou R, He Y, Zeng R (2005) Compare on antibacterial action between large flower-like honeysuckle flower and the certified honeysuckle. Guid J TCM 11(9):8–9

Lei Z, Zhou R, Tong Q, He Y (2006) Comparison for the safety and chemometrics. J Pharm Biomed Anal 72(2013):33–39. https://doi.org/10.1016/j.jpba.2012.09.012

Li Y, Cai W, Weng X, Li Q, Wang Y, Chen Y, Zhang W, Yang Q, Guo Y, Zhu X, Wang H (2015) Lonicerae japonicae flos and Lonicerae Flos: a systematic pharmacology review. Evid Based Complement Alternat Med 2015:1–16. https://doi.org/10.1155/2015/905063

Li P, He L, Li C, Bai Y, Wang D, Liao Y, Li P, Wu Z, Su W (2016) Comparison of anti-inflammatory effects between Lonicerae japonicae flos and Lonicerae Flos using an acute stomatitis model. Acta Scientiarum Naturalium Universitatis Sunyatseni 55(4):118–122

Lim TK (2014) Lonicera confusa. In: Edible medicinal and nonmedicinal plants: flowers, vol 7. Springer, Netherlands, Dordrecht, pp 653–655. https://doi.org/10.1007/978-94-007-7395-0_45

Lin LM, Zhang XG, Zhu JJ, Gao HM, Wang ZM, Wang WH (2008) Two new triterpenoid saponins from the flowers and buds of Lonicera japonica. J Asian Nat Prod Res 10(9–10):925–929. https://doi.org/10.1080/122210802017366

Liu J, Zhang J, Wang F, Chen X (2012) New secoiridoid glycosides from the buds of Lonicera macranthoides. Nat Prod Commun 7(12):1561–1562

Liu J, Zhang J, Wang F, Zou YF, Chen XF (2013) Isolation and characterization of new minor triterpenoid saponins from the buds of Lonicera macranthoides. Carbohydr Res 370:76–81. https://doi.org/10.1016/j.carres.2013.01.019

Liu Z-X, Liu C-T, Liu Q-B, Ren J, Li L-Z, Huang X-X, Wang Z-Z, Song S-J (2015) Iridoid glycosides from the flower buds of Lonicera japonica and their nitric oxide production and α-glucosidase inhibitory activities. J Funct Foods 18(2015):512–519. https://doi.org/10.1016/j.jff.2015.08.017

Lloyd L, Forest S, Kim S (2003) Lonicera japonica. Caprifoliaceae. United States Geological Survey-Biological Resources Division

Long C, Zhou X, Wang Q, Xie C, Li F, Fan Z, Zhang B, Ruan Z, Chen X, Wu X, Yin Y (2016) Dietary supplementation of Lonicera macranthoides leaf powder improves amino acid profiles in serum and longissimus thoracis muscle of growing-finishing pigs. Anim Nutr 2(4):271–275. https://doi.org/10.1016/j.aninu.2016.08.006

Lou H, Lang W, Lv M (1996) Isolation and structure determination of water soluble compounds in honeysuckle. Chin Tradit Her Drugs 4:195–199

Luo Z, Huang W, Liu J, Zhou X, Ye B, Chen Q (1994) Effects of several traditional Chinese medicines on neutrophil granulocyte in scalded mice. Med J Chin PlA 4:271–273

Ma S, Liu Y, Hay PBP, Yang Y, Chun WOE (2006) Antiviral activities of iridoids isolated from Lonicera japonica. Chin J Pharm Anal 26(8):1039–1043

Machida K, Asano JM (1995) Analysis of components of Lonicera species. 3. Caeruleosides a and B, bis-iridoid glucosides from Lonicera Caerulea. Phytochemistry 39(1):111–114

Machida K, Sasaki H, Iijima T, Kikuchi M (2003) Studies on the constituents of Lonicera species. XVII. Determination of water soluble compounds in honeysuckle. Chin Tradit Her Drugs 4:195–199

Mancini-Filho J, Novoa AV, Gonzalez AEB, Andrade-Warth ErSD, Silva AMDOE, Pinto JR, Mancini DAP (2009) Free phenolic acids from the Seaweed Halimeda monile with
antioxidant effect protecting against liver injury. Zeitschrift Fur Naturforschung Sect C 64(9–10):657–663
Mao Q, Cao D, Jia X (1993) Study on chemical constituents of Lonicera mrocanthoide Hand. -Mazz. Acta Pharm Sin 4:273–281
Mei Y-D, Zhang N, Zhang W-Y, Tang J-S, Zhou H, Yu Y, Yao X-S (2019) Two new ursane-type nortriterpenoids from Lonicera macranthoides and their INOS-inhibitory activities. Chin J Nat Med 17(1):27–32. https://doi.org/10.1016/S1875-5364(19)30006-8
Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. Faseb J Off Publ Fedr Am Soc Exp Biol 6(12):3051–3064
Ni F (2017) Chemical constituents from flower buds of Lonicera japonic. Chin Tradit Her Drugs 48(18):3689–3692
Odontuya G, Hoult JRS, Houghton PJ (2010) Structure–activity relationship for antiinflammatory effect of luteolin and its derived glycosides. Phytother Res 19(9):782–786
Ou SS, Su GH, Xie EB, Tan LH, Xie EB, Lee WS, Shin SC, Hah YS, Kim GS (2012a) Antiviral phenolic acids and flavonoids between Lonicerae japonicae flos and Lonicerae Flos. China Pharm 26(33):4750–4752
Park HJ, Kwon SH, Lee JH, Lee KH, Miyamoto K, Lee KT (2001) Kalopanaxsaponin A is a basic saponin structure for the anti-tumor activity of hedegeran monodesmosides. Planta Med 67(02):118–121
Park E, Kwon SH, Lee JH, Kim LH, Miyamoto K, Lee KT (2001) Kalopanaxsaponin A is a basic saponin structure for the anti-tumor activity of hedegeran monodesmosides. Planta Med 67(02):118–121
Park HS, Park KI, Lee DH, Kang SR, Nagappan A, Kim JA, Kim EH, Lee WS, Shin SC, Hah YS, Kim GS (2012a) Polyphenolic extract isolated from Korean Lonicera japonica Thunb. induce G2/M cell cycle arrest and apoptosis in HepG2 cells: involvement of PI3K/Akt and MAPKs. Food Chem Toxicol 50(7):2407–2416. https://doi.org/10.1016/j.fct.2012.04.034
Park SW, Cho CS, Jun HO, Ryu NH, Kim JH, Yu YS, Kim JS, Kim JH (2012b) Anti-angiogenic effect of luteolin on retinal neovascularization via blockade of reactive oxygen species production. Invest Ophthalmol Vis Sci 53(12):7718–7726. https://doi.org/10.1167/iovs.11-8790
Pendino KJ, Laskin JD, Shuler RL, Punjabi CJ, Laskin DL (1993) Enhanced production of nitric oxide by rat alveolar macrophages after inhalation of a pulmonary irritant is associated with increased expression of nitric oxide synthase. J Immunol 151(12):7196–7205
Peng LY, Mei SX, Jiang B, Zhou H, Sun HD (2000) Constituents from Lonicera japonica. Fitoterapia 71(6):713–715
Peng MJ, Shi SY, Chen L, Zhang SH, Cai P, Chen XQ (2016) Online coupling solid-phase ligand-fishing with high-performance liquid chromatography-diode array detector-tandem mass spectrometry for rapid screening and identification of xanthine oxidase inhibitors in natural products. Anal Bioanal Chem 408(24):6693–6701. https://doi.org/10.1007/s00216-016-9784-5
Petti S, Scully C (2009) Polyphenols, oral health and disease: a review. J Dent 37(6):413–423. https://doi.org/10.1016/j.jdent.2009.02.003
Porter WL, Levasseur LA, Henick AS (2010) Evaluation of some natural and synthetic phenolic antioxidants in linoleic acid monolayers on Silica. J Food Sci 42(6):1533–1535
Qi L-W, Chen C-Y, Li P (2009) Structural characterization and identification of iridoid glycosides, saponins, phenolic acids and flavonoids in Flos Lonicerae japonicae by a fast liquid chromatography method with diode-array detection and time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 23:19. https://doi.org/10.1002/rcm.4245
Ramassamy C (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 545(1):51–64. https://doi.org/10.1016/j.ejphar.2006.06.025
Rauter AP, Ennis M, Hellwich K-H, Herold BJ, Horton D, Moss GP, Schomburg I (2018) Nomenclature of flavonoids (IUPAC recommendations 2017). Pure Appl Chem 90(9):1429–1486. https://doi.org/10.1515/pac-2013-0919
Rehder A (1903) Synopsis of the genus Lonicera. Mo Bot Garden Annu Rep 1903:27–232
Ren MT, Chen J, Song Y, Sheng LS, Li P, Qi LW (2008) Identification and quantification of 32 bioactive compounds in Lonicera species by high performance liquid chromatography coupled with time-of-flight mass spectrometry. J Pharm Biomed Anal 48(5):1351–1360. https://doi.org/10.1016/j.jpba.2008.09.037
Rengasamy KRR, Aderogba MA, Amoo SO, Stirk WA, Staden RD, Port CW, Levasseur LA, Henick AS (2010) Evaluation of some natural and synthetic phenolic antioxidants in linoleic acid monolayers on Silica. J Food Sci 42(6):1533–1535
Scalbert A, Morand C, Remesy C, Jimenez L (2005) Polyphenolic components in Lonicera species by high performance liquid chromatography–tandem mass spectrometry. Rapid Commun Mass Spectrom 23:19. https://doi.org/10.1002/rcm.4245
Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T, Sugawara M, Iseki K (2011) In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 403(1–2):136–138
Scalbert A, Manach C, Morand C, Remesy C, Jimenez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45(4):287–306. https://doi.org/10.1080/1040869050906
Seo ON, Kim G-S, Park S, Lee JH, Kim Y-H, Lee WS, Lee SJ, Kim CY, Jin JS, Choi SK, Shin SC (2012) Determination of polyphenol components of Lonicera japonica Thunb. using liquid chromatography–tandem mass spectrometry: contribution to the overall antioxidant activity. Food Chem 134(1):572–577. https://doi.org/10.1016/j.foodchem.2012.02.124
Shan B, Cai YZ, Brooks JD, Corke H (2007) The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int J Food Microbiol 117(1):112–119. https://doi.org/10.1016/j.ijfoodmicro.2007.03.003
Wang L (2008) Antiviral and immunopotentiating activities of Lonicera Japonica flos and Lonicera flos. Henan Agricultural University, Zhengzhou

Wang L (2010) Research progress on honeysuckle. Med Inf 5(8):2293–2295

Wang D (2013) Study on chemical constituents of Lonicera japonica and its capability of anti-H5 subtype avian influenza virus. Shandong Agricultural University, Tai’an

Wang T, Li Y, Wang Z (1999) Study on the volatile oil constituents of Lonicera macranthoides. Chin Tradit Her Drugs 31(11):657–658

Wang Z, Clifford MN, Sharp P (2008) Analysis of chlorogenic acids in beverages prepared from Chinese health foods and investigation, in vitro, of effects on glucose absorption in cultured Caco-2 cells. Food Chem 108(1):369–373. https://doi.org/10.1016/j.foodchem.2007.10.083

Wang GF, Shi LP, Ren YD, Liu HF, Zhang RJ, Li Z, Zhu FH, He PL, Tang W, Tao PZ, Li C, Zhao WM, Zuo JP (2009a) Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res 83(2):186–190. https://doi.org/10.1016/j.antiviral.2009.05.002

Wang J, Zhao ZX, Qi Q, Tao L, Zhao Q, Mu R, Gu HY, Wang M, Feng X, Guo QL (2009b) Macranthoside B, a hederagenin saponin extracted from Lonicera macranthoides and its anti-tumor activities in vitro and in vivo. Food Chem 108(1):369–373. https://doi.org/10.1016/j.foodchem.2007.10.083

Wang L, Cui B, Zhang H (2011a) Study on anti-psorriases virus effect of Lonicera japonicae flos and Lonicerae Flos. J China Anim Sci Vet 38(3):183–188

Wang L, Zhang H, Cui B, Li W, Li K (2011b) Study on anti-NDV effect of extracts from Lonicera japonicae flos and Lonicerae Flos. Chin Agric Sci Bull 27(19):277–282

Wang Y, Xiao C, Zheng Q, Tian L (2011c) Processing methods and commercial specifications of honeysuckle. Cenpal South Pharm 09(1):75–77

Wang F, Jiang Y, Wang X, Lin S, Bo P, Zhu C, Wang S, Yang Y, Shi J (2013a) Study on chemical constituents of honeysuckle. China J Chin Mater Med 38(9):1378–1385

Wang F, Jiang YP, Wang XL, Wang SJ, Bu PB, Lin S, Zhu CG, Shi JG (2013b) Aromatic glycosides from the flower buds of Lonicera japonica. J Asian Nat Prod Res 15(5):492–501. https://doi.org/10.1002/jnpr.785531

Wang LJ, Jiang B, Wu N, Wang SY, Shi DY (2015) Natural and semisynthetic protein tyrosine phosphatase 1B(PTP1B) inhibitors as anti-diabetic agents. In: The 9th national conference on marine biotechnology and innovative medicine, vol 5 (no 60), p 166

Wang H, Wang H, He R, Wu J, Xu X (2016) Hemolytic study of Lonicera macranthoides flower bud extract and its two main saponins. Chin Pharmacol Bull 32(1):43–48

Wang D, Zhao X, Liu Y (2017a) Hypoglycemic and hypolipidemic effects of a polysaccharide from flower buds of Lonicera japonica in streptozotocin-induced diabetic rats. Int J Biol Macromol 102(2017):396–404. https://doi.org/10.1016/j.ijbiomac.2017.04.056

Wang X, Zhang J, Li YQ, Du BX, Sun QH, Cao YJ, Jiang HQ, Liu YH, Zhou HL, Rong R (2017b) Nortircuclalane A, a new tirucallane-type nortriterpenoid isolated from Lonicerae japonicae flos. Nat Prod Res 31(19):2250–2255. https://doi.org/10.1080/14786419.2017.1299731

Wen J, Ni F, Zhao W, Huang W, Wang Z, Xiao W (2015) Chemical constituents of Lonicera macranthoides buds. Chin Tradit Her Drugs 46(13):1883–1886

Wu Y, Yang L, Wang F, Wu X, Zhou C, Shi S, Mo J, Zhao Y (2007) Hepatoprotective and antioxidative effects of total phenolics from Lagerra pterodonata on chemical-induced injury in primary cultured neonatal rat hepatocytes. Food Chem Toxicol 45(8):1349–1355. https://doi.org/10.1016/j.fct.2007.01.011

Wu C, Wang J, Kang W (2009) Component analysis on the volatile oil in different medicinal part of Lonicera japonica Thunb from Henan Province. China Pharm 18:1412–1414

Wu C, Wang F, Liu J, Zou Y, Chen X (2015a) A comparison of volatile fractions obtained from Lonicera macranthoides via different extraction processes: ultrasound, microwave, Soxhlet extraction, hydrodistillation, and cold maceration. Integr Med Res 4(3):171–177. https://doi.org/10.1016/j.imr.2015.06.001

Wu Z, Li H, Yang Y, Tan H (2015b) Ultrasonic extraction optimization of L. macranthoides polysaccharides and its physicochemical properties. Int J Biol Macromol 74(2015):224–231. https://doi.org/10.1016/j.ijbiomac.2014.12.010

Wu J, Wang XC, Liu Y, Du H, Shu QY, Su S, Wang LJ, Li SS, Wang LS (2016) Flavone synthases from Lonicera japonica and L. macranthoides reveal differential flavone accumulation. Sci Rep 6:19245. https://doi.org/10.1038/srep19245

Wu H, Li Y, Ning X, Ma H, Zhang M, Tian T (2017) Clinical efficacy of compound honeysuckle decoction hot and humid joint fusidic acid cream in treatment of targeted drugs-induced rash. Prog Mod Biomed 17(27):5258–5261. https://doi.org/10.13241/j.cnki.pmb.2017.27.014

Xiao Z, Xie M, Gan L, Fang M, Zhou X, Zhou Y, He W, Chen L, Huang J (2019) Determination of chlorogenic acid and total flavonoids content and antioxidant activity in Lonicerae japonicae flos and Lonicerae Flos. Chin Tradit Her Drugs 50(1):210–216

Xing J, Li H, Li P, Liu Y (2002) Study on chemical constituents of honeysuckle flower bud. Chin J New Drugs 11(11):856–859

Xiong H, Song L, Ping L, Hui-jun L (2005) Smultaneous determination of eight main flavonoids in Flos lonicerae by high performance liquid chromatography. Acta Pharm Sin 40(3):285–288

Xiong YC, Li FM, Zhang T (2006) Performance of wheat crops with different chromosome ploidy: root-sourced signals, drought tolerance, and yield performance. Planta 224(3):710–718. https://doi.org/10.1007/s00425-006-0425-x

Xu X, Li H, Li P, Feng X, Yuan C (2006) Chemical constituents of Lonicerae macranthoides. Chin J Nat Med 4(1):45–48

Xu D, Jiang X, Gao Y, Zheng W, He M, Gao Q (2012) Study on the chemical constituents of honeysuckle inhibiting the active site of Escherichia coli biofilm. Chin J Exp Tradit Med Formulae 18(20):122–125
Xu W, Li Y, Sun L, Tang L, Xie Y, Guo Y (2014) In vitro observation of antioxidant activity of crude extracts of Flos Lonicerae. Chin Tradit Patent Med 36(6):1292–1294

Yang M, Zhao Y (2006) GC–MS analysis of volatile components from Ningxia honeysuckle. J Zhengzhou Univ 38(1):95–97

Yang M, Zhao Y (2007) Analysis and comparison of volatile oil components of honeysuckle in Yuanzhou District of Ningxia in different months. J Ningxia Univ 28(2):140–146

Yang J, Zhao Y, Hao J, Li W (2016) Research progress on chemical constituents and their differences between Lonicerae japonicae flos and Lonicerae Flos. China J Chin Mater Med 41(7):1204–1211

Yang X, Liu Y, Hou A, Yang Y, Tian X, He L (2017a) Systematic review for geo-authentic Lonicerae Japonicae Flos. Front Med 11(2):203–213. https://doi.org/10.1007/s11684-017-0504-0

Yang Y, Wang L, Wu Y, Liu X, Bi Y, Xiao W, Chen Y (2017b) On-line monitoring of extraction process of Flos Lonicerae Japonicae using near infrared spectroscopy combined with synergy interval PLS and genetic algorithm. Spectrochim Acta A Mol Biomol Spectrosc 182(2017):73–80. https://doi.org/10.1016/j.saa.2017.04.004

Yao SC, Wang LL, Yeung CS (1986) Jinyinhua. In: Chang H-M, Yang Y, Wang L, Wu Y, Liu X, Bi Y, Xiao W, Chen Y (2017b) Jinyinhua. In: Chang H-M, Yang Y, Wang L, Wu Y, Liu X, Bi Y, Xiao W, Chen Y (2017b) Comprehensive profiling of chlorogenic acids in the buds of Lonicerae macranthoides. Anal Bioanal Chem 408(13):3659–3672

Zhang Y, Yu Y, Song W, Zhong M, Luo S (2012) Identification of the chemical constituents of the aqueous extract of lonicera flos by high performance liquid chromatography-tandem mass spectrometry. Chin Med Rep 9(24):113–114

Zhang, Yang X, Guo Q, Yu B (2015) Rapid quantitative analysis of adulterant Lonicera species in preparations of Lonicerae Japonicae Flos. J Sep Sci 38(23):4014–4020. https://doi.org/10.1002/jssc.201500917

Zhang, Zhao X, Li X (2018) Effect of Jinyinhua prescription combined with penicillin on the efficacy and prognosis of syphilis. Shaanxi J Tradit Chin Med 39(12):1760–1763

Zhao X, Wang D, Qin L, Yang X, Gao C (2018) Comparative investigation for hypoglycemic effects of polysaccharides from four substitutes of Lonicera japonica in Chinese medicine. Int J Biol Macromol 109(2018):12–20. https://doi.org/10.1016/j.ijbiomac.2017.12.073

Zhen C (2010) Study on chemical constituents and biological activities of honeysuckle and chicken mulberry. Peking Union Medical College, Beijing

Zheng ZF, Zhang QJ, Chen RS, Yu DQ (2012) Four new N-contained iridoid glycosides from flower buds of Lonicerae japonica. J Asian Nat Prod Res 14(8):729–737. https://doi.org/10.1080/10286020.2012.688038

Zhou Y, Zhou T, Pei Q, Liu S, Yuan H (2014) Pharmacokinetics and tissue distribution study of chlorogenic Acid from lonicerae japonicae flos following oral administrations in rats. Evid Based ComplementAlternat Med 2014:1–7. https://doi.org/10.1155/2014/979414

Zhou L, Zhang T, Lu B, Yu Z, Mei X, Abulizi P, Ji L (2016) Lonicerae japonicae flos attenuates diabetic retinopathy by inhibiting retinal angiogenesis. J Ethnopharmacol 189(2016):117–125. https://doi.org/10.1016/j.ethnov.2016.05.039

Zhou W, Yin A, Shan J, Wang S, Cai B, Di L (2017) Study on the rationality for antiviral activity of Flos Lonicerae Japonicae-Fructus Forsythiae Herb couple preparations improved by chito-oligosaccharide via integral pharmacokinetics. Molecules 22(4):654. https://doi.org/10.3390/molecules22040654

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.