Election Decision Support System Based on the Best Teacher Performance Assessment in State Smp 2 One Roof SAW Method Using STM Hilir

Tengku Afan Adhar¹, Bosker Sinaga², Sulindawaty³

¹,²,³Informatics Engineering Study Program, STMIK Pelita Nusantara Medan, Jl. Iskandar Muda 1 Medan, North Sumatra 20154, Indonesia

E-mail: tengkuafan02@gmail.com

Abstract- The process of teacher performance assessment Effectively, precisely, Objectively, and transparently is the important point in selecting the best teacher assessment based on their performance. This assessment was Carried out in SMP Negeri 2 One Roof STM Hilir to avoid the accusations of Injustice and family relationship with the assessor in the school, both the Headmaster and the teacher selection committee. Therefore, a decision system is needed in selecting the decision. One method is the which can be used in solving the problem of Multiple Criteria Decision Making (MADM) is by using Simple Additive weighting (SAW) method, Because The method concept is so easy to understand, simple, effective computationally and has ability in measuring the relative performance of alternative decisions in mathematical form. In addition, Also the design application used UML (Unified Modeling Language) is implemented a system roomates in the software by using Web Programming and MySQL as its database. Finally, based on the design of this application, it can be seen that the decision system by using SAW method is very effective, fast, computerized and transparent accurately in Determining the teacher performance in SMPN 2 One Roof STM Hilir.

Keywords: Decision System, Teacher Performance Assessment, Simple Additive weighting (SAW), Unified Modeling Language (UML)

1. Introduction

Today many teachers either local unit level, the provincial level in the selection of the best teachers based on performance appraisal is not transparent, such young ages teachers and fewer working age gets good ratings because of the element of nepotism and kinship with the penilaan. There are also teachers who actually have work experience longer but not chosen to be the best teacher, Many people who pointed this injustice caused adannya collusion and nepotism factor circulating among the Department of Education both the principal and the best teacher of the election committee. This will not happen if the related offices and schools have been using an effective method of determining the best teacher,

This is similar to what happened at SMAN 15 Tangerang, where the Teacher Performance Assessment (PKG) is done now is done manually on the assessment sheet which is subjective, because there has been no effective assessment aspects of the Teacher Performance Assessment. (Source: Rohmat Taufik, Chandra Adi Saputra, SISFOKOM Journal Volume 07, Number 1, 2018)

The problem is the decision making process of finding the best options in determining the best teacher of all alternatives. Multiple criteria decision making is part of the decision-making is complex. Which in this case would be excluded from some people to make decisions by using a variety of criteria that have a certain weight value and should be considered in order to obtain the optimal solution of a problem. And one of the methods used in assessing the performance of the best teachers in SMPN 2 One Roof STM Hilir is Simple Additive weighting method (SAW).

2. Theory

Based Irwanto (2012: 35), the system can be defined as a set of components that interact in order to implement the model and functional transform given inputs into outputs for actors. And Murdick and Ross (2011: 56) also defines the system is a set of elements that are joined together for a common goal. Therefore it can be disimpulkan that the system is a network that consists of components that are interconnected in order to accomplish a goal in specific activities. In this case the need to do a good cooperation so that the system can work as specified and produced a perfect target.

Decision support system is a concept of computer-based interactive system that can be used to support and assist in decision making structured and unstructured. Which in this case all activity must follow various stages, which starts from identifying the problem, choose the relevant data, determine the approach to evaluating alternative choice in the decision-making process.
2.1 Simple Additive weighting method (SAW)

Simple Additive weighting method (SAW) is one method that can help to solve the problem of Multiple Attribute Decision Making (MADM). According to Dicky Nofriansyah (2014: 12), this method is known as a weighted summation method that has a basic concept, namely: to seek a weighted sum of rating performance on each alternative. In designing this method, the process of normalizing the decision matrix is also needed to scale with all the ratings of existing alternatives. There are several steps to resolve the Simple Additive weighting method (SAW), as follows:

a. Determine the criteria to be used as a reference in the decision.
b. Determine the suitability of alternative rating on each criterion.
c. Make decisions based on criteria matrix (Ci) and normalized matrix.
d. Obtain the final results of the ranking process is the summation of the normalized R matrix multiplication with the weight vector in order to obtain the greatest value is selected as the best alternative (Ai) as a solution.

\[r_{ij} = \begin{cases} \frac{x_{ij}}{\text{Max } x_{ij}} & \text{if j adalah atribut keuntungan (benefit)} \\ \frac{x_{ij}}{\text{Min } x_{ij}} & \text{if j adalah atribut biaya (cost)} \end{cases} \]

Where:
- \(R_{ij} \) = Normalized performance rating
- \(\text{Max}_{ij} \) = Maximum value of each row and columns
- \(\text{Min}_{ij} \) = Minimum value of each row and columns
- \(X_{ij} \) = Rows and columns of a matrix

With \(r_{ij} \) is the normalized performance rating of alternatives on attribute \(A_i C_j \); \(i = 1, 2, \ldots m \) and \(j = 1, 2, \ldots, n \). Preference value for each alternative \(V_i \) is given as:

\[V_i = \sum_{j=1}^{n} w_j r_{ij} \]

Where:
- \(V_i \) = The final value of the alternative
- \(w_j \) = The weights have been determined
- \(r_{ij} \) = Normalization matrix

Vi larger value indicates that the alternative is selected.

3. Analysis

Step-by-step research methodology follows the determination of the object, the object of the research restriction, data collection, data analysis and conclusions. In this study, researchers used the approach to R & D (Research and Development), namely:

a. to study literature
b. conduct interviews and debriefing in data collection by Drs, Suliano Best Teacher on the criteria and the procedures Assessment,
c. designing Design Systems are classified into sections UML Use Case Diagrams, Activity Diagrams and Class Diagrams and design of the application form,
d. implement the system in the form of software using Web programming language and MySQL as the database is.

3.1 Data analysis

The data analysis consisted into three, namely, system requirements analysis, system analysis are built, and research.

Here is a flowchart of a system that is built:
3.2 Analysis Methods

SAW method is selected because this method determines the weight values for each attribute, and then continued with the process of ranking which shall be to select the best alternative from a number of alternatives. Dalam hal this alternative question is yang memiliki teacher Teacher Performance Assessment (PKG) is the highest based on the criteria that have been determined. With the method of ranking the diharapkan penilaian would be more appropriate because it is based on the value of the criteria and weighting that have been specified. There are several stages in the calculation of SAW algorithm is as follows:

a. Determining factors and weighting factors where the total weighting must be equal to 1
b. Filling objectively value between 0-1 for each factor in the decision.
c. Calculating the weight evaluation of weight calculation between factorweight and evaluation factor and the sum of all the results of the evaluation to obtain a total weight of evaluation results.

The steps of the algorithm SAW, namely:

a. determine the criteria and values
b. perform data normalization
c. preference weights, and
d. perengkingan alternative determination.

This can be seen in the description below.

In the process of determining penilaian teacher performance on SMP Negeri 2 One Roof STM Hillir assessed based on the criteria that have been determined using the SAW to set up a variable that will be used to conduct the performance appraisal process, then steps should be taken to determine the value of the alternative beforehand as follows this:

Table 1
Criteria Information
No.
1
2
3
4
No.
1
2
3
4
No.
1
2
3
4
No.
1
2
3
4

a. weights Pendagogik

No.	Description	Weight
1	Very good	4
2	Well	3
3	Enough	2
4	moderate	1
b. **Weight Personality**

No.	Description	Weight
1	Very good	4
2	Well	3
3	Enough	2
4	moderate	1

c. **Weight Social**

No.	Description	Weight
1	Very good	4
2	Well	3
3	Enough	2
4	moderate	1

d. **Weight Professional**

No.	Description	Weight
1	Very good	4
2	Well	3
3	Enough	2
4	moderate	1

Once the alternative data and data predetermined criteria then set up a table of criteria such as the table below:

Table 2

No.	Name	C1	C2	C3	C4
1	Yayuk sustainable, S.Pd	SB	B	S	C
2	Tarin Rastika S.Pd	B	SB	S	B
3	Erita Sipayung S.Pd M, Si	S	S	B	SB
4	Canra Robert sitanggang S.Pd	C	S	C	SB
5	Muhammad Lukman S.Pd.I	B	SB	S	C
6	Heri christian Sitepu S.Pd	SB	S	C	B
7	Br Ginting Liasta S.Si	S	B	SB	S
8	Ika Juwita Prihatini S.Pd	C	SB	B	SB

Information:

- SB : very good
- B : well
- C : enough

Once established criteria table, then the next step is formed a weight value based on the predetermined criteria, then the results can be seen the value of the criteria in the table below:

Table 3

No.	Name	C1	C2	C3	C4
1	Yayuk sustainable, S.Pd	0.75	0.25	0.5	
2	Tarin Rastika S.Pd	0.75	0.25	0.75	
3	Erita Sipayung S.Pd M, Si	0.25	0.25	0.75	0.25
4	Canra Robert sitanggang S.Pd	0.5	0.25	0.5	0.25
5	Muhammad Lukman S.Pd.I	0.75	0.25	0.5	0.25

From the data table 3.3 above then be calculated by first normalizing the data for each participant criteria Max value penilaan teacher performance in SMPN 2 One Roof STM Hillir as below:

a. Normalization Value Max Pedagogic (C1)

\[
\begin{align*}
 r_{11} &= \frac{x_{11}}{\max\{x_{11}, x_{21}, x_{31}, x_{41}\}} = \frac{4}{\{4; 3; 1; 2\}} = \frac{4}{4} = 1 \\
 r_{12} &= \frac{x_{12}}{\max\{x_{12}, x_{22}, x_{32}, x_{42}\}} = \frac{3}{\{3; 4; 1; 3\}} = \frac{3}{4} = 0.75
\end{align*}
\]
\[r_{13} = \frac{x_{13}}{\max\{x_{13}, x_{23}, x_{33}, x_{43}\}} = \frac{1}{\{1; 1; 3; 4\}} = \frac{1}{4} = 0.25 \]
\[r_{14} = \frac{x_{14}}{\max\{x_{14}, x_{24}, x_{34}, x_{44}\}} = \frac{2}{\{2; 1; 2; 4\}} = \frac{2}{4} = 0.5 \]
\[r_{15} = \frac{x_{15}}{\max\{x_{15}, x_{25}, x_{35}, x_{45}\}} = \frac{3}{\{3; 4; 1; 2\}} = \frac{3}{4} = 0.75 \]

b. Normalization Personality value (C2)
\[r_{21} = \frac{x_{21}}{\max\{x_{11}, x_{21}, x_{31}, x_{41}\}} = \frac{3}{\{4; 3; 1; 2\}} = \frac{3}{4} = 0.75 \]
\[r_{22} = \frac{x_{22}}{\max\{x_{12}, x_{22}, x_{32}, x_{42}\}} = \frac{1}{\{3; 4; 1; 3\}} = \frac{1}{4} = 0.25 \]
\[r_{23} = \frac{x_{23}}{\max\{x_{13}, x_{23}, x_{33}, x_{43}\}} = \frac{1}{\{1; 1; 3; 4\}} = \frac{1}{4} = 0.25 \]
\[r_{24} = \frac{x_{24}}{\max\{x_{14}, x_{24}, x_{34}, x_{44}\}} = \frac{4}{\{2; 1; 2; 4\}} = \frac{4}{4} = 1 \]
\[r_{25} = \frac{x_{25}}{\max\{x_{15}, x_{25}, x_{35}, x_{45}\}} = \frac{4}{\{3; 4; 1; 2\}} = \frac{4}{4} = 1 \]
c. Normalization of Social Value (C3)
\[r_{31} = \frac{x_{31}}{\max\{x_{11}, x_{21}, x_{31}, x_{41}\}} = \frac{1}{\{4; 3; 1; 2\}} = \frac{1}{4} = 0.25 \]
\[r_{32} = \frac{x_{32}}{\max\{x_{12}, x_{22}, x_{32}, x_{42}\}} = \frac{3}{\{3; 4; 1; 3\}} = \frac{3}{4} = 0.75 \]
\[r_{33} = \frac{x_{33}}{\max\{x_{13}, x_{23}, x_{33}, x_{43}\}} = \frac{3}{\{1; 1; 3; 4\}} = \frac{3}{4} = 0.75 \]
\[r_{34} = \frac{x_{34}}{\max\{x_{14}, x_{24}, x_{34}, x_{44}\}} = \frac{2}{\{2; 1; 2; 4\}} = \frac{2}{4} = 0.5 \]
\[r_{35} = \frac{x_{35}}{\max\{x_{15}, x_{25}, x_{35}, x_{46}\}} = \frac{1}{\{3; 4; 1; 2\}} = \frac{1}{4} = 0.25 \]
d. Normalization Value Professional (C4)
\[r_{41} = \frac{x_{41}}{\max\{x_{11}, x_{21}, x_{31}, x_{41}\}} = \frac{2}{\{4; 3; 1; 2\}} = \frac{2}{4} = 0.5 \]
\[r_{42} = \frac{x_{42}}{\max\{x_{12}, x_{22}, x_{32}, x_{42}\}} = \frac{3}{\{3; 4; 1; 2\}} = \frac{3}{4} = 0.75 \]
\[r_{43} = \frac{x_{43}}{\max\{x_{13}, x_{23}, x_{33}, x_{43}\}} = \frac{1}{\{1; 1; 3; 4\}} = \frac{1}{4} = 0.25 \]
\[r_{44} = \frac{x_{44}}{\max\{x_{14}, x_{24}, x_{34}, x_{44}\}} = \frac{1}{\{2; 1; 2; 4\}} = \frac{1}{4} = 0.25 \]
\[r_{45} = \frac{x_{45}}{\max\{x_{15}, x_{25}, x_{35}, x_{45}\}} = \frac{2}{\{3; 4; 1; 2\}} = \frac{2}{4} = 0.5 \]

After receiving the results of the calculation of the normalized decision matrix of each indicator, then the result of the normalization Max (Benefit) above can be seen in the table below.

Table 4.

No.	Name	C1	C2	C3	C4
1	Yayuk sustainable, S.Pd	1	0.75	0.25	0.5
2	Tarin Rastika S.Pd	0.75	1	0.25	0.75
3	Erita Sipayung S.Pd M, Si	0.25	0.25	0.75	0.25
4	Canra Robert sitanggang S.Pd	0.5	0.25	0.5	0.25
5	Muhammad Lukman S.Pd.I	0.75	1	0.25	0.5

From the above table data is then converted into a decision matrix as shown below:
Matrix Max (benefit) =

\[
\begin{bmatrix}
1 & 0.75 & 0.25 & 0.5 \\
0.75 & 1 & 0.25 & 0.75 \\
0.25 & 0.25 & 0.75 & 0.25 \\
0.5 & 0.25 & 0.5 & 0.25 \\
0.75 & 1 & 0.25 & 0.5
\end{bmatrix}
\]

After normalizing the data on the next steps for policy makers is to provide the weights for each alternative criteria for teacher participants who do assessment work by Admin as in the table below:

Table 5

Criteria name	Weight	Value
C1 Pendagogik	25%	0.25
C2 Personality	35%	0.35
C3 Social	20%	0.20
C4 Professional	20%	0.20
Total	100%	1

Preferences of the above described weight that the weight of each of the following criteria, for Pendagogik = 25%; Personality = 35%; Social = 20%; Professionals = 20%. After giving the value of each weight further criteria to calculate the value perengkingan preference for each alternative (Vi). Thus a calculated above it can be concluded that the value becomes the largest value berperas teacher conducted penilaan by Admin in transparency and accountability by using the system SAW algorithm as in the table below.

Table 6.

No.	Name	Vi	Information
1	Yayuk sustainable, S.Pd	0.6625	ranking 3
2	Tarin Rastika S.Pd	0.7375	ranking 1
3	Erita Sipayung S.Pd M, Si	0.3625	-
4	Canra Robert sitanggang S.Pd	0.0375	-
5	Muhammad Lukman S.Pd.I	0.7	ranking 2

From the above data it can be concluded that the SAW method has an accurate calculation, therefore the valuation team or Admin executor can make a reference in the subsequent assessment by using SAW method of doing penilaan teacher performance on SMP Negeri 2 One Roof STM Hilir.

4. Conclusion

Based on the description and discussion analysis testing has been done, it can be concluded against the decision support system of performance appraisal of the best teachers in Junior High School 2 One Roof STM Hilir using Simple Additive weighting method (SAW) as follows:

a. Decision support system for determining the performance of the best teachers in Junior High School 2 One Roof STM Hilir with SAW method can be applied quickly and accurately.

b. SAW method has a working system to perform penilaan in komputerlisasi and transparansi based on data criteria that have been determined in advance.

c. Applications designed very well be used in determining the outcome of the performance of the best teachers in Junior High School 2 One Roof STM Hilir with SAW method because of easy use by research and is also easier because all the data penilaan will be stored into the database system.

5. Reference

[1] Kusrini, M.Kom. (2010). Concepts and Applications of Decision Support Systems. Yogyakarta: ANDI.
[2] Kusumadewi, S et al. (2008) Multiattribute Fuzzy Decision Making. Yogyakarta: Graha Science.
[3] Rosa USA, (2014) Modeling Systems Software Engineering. Jakarta: PT, Elex Media Komputindo
[4] Dicky Nofriansyah M.Kom (2016) Decision Support System. Yogyakarta: Cv Budi Utama.
[5] Sri Winiarti, Ulfa Yuriadi, (2009). “Application of Decision Support System Establishment figuring Siting SAW Method”. Informatics Journal (Vol. 3, No. 2).
[6] Adi Nugroho "Object Oriented RPL" 2010.
[7] Word Gunawan. (2015) "Decision Support System Selection of Best Teacher In Smp 2 Kutacane with Saw Method" Informatics Journal (Vol. 9, No. 3).

[8] Basyaib, Fachmi. (2011). Decision Making Theory. Jakarta: Grasindo.