Inflammatory bowel diseases (IBDs) are a group of chronic conditions of the gastrointestinal tract in which nationwide studies have revealed a higher risk of hematological malignancies (HMs). Clonal hematopoiesis (CH) is a premalignant condition defined by the presence of an acquired somatic mutation characterized by a variant allele frequency (VAF) of ≥2%, in a gene frequently associated with HMs. A growing body of evidence suggests a correlation between inflammation and CH; its occurrence in the context of IBD has been previously demonstrated. With the aim to assess CH possible co-occurrence in patients with an IBD associated with HMs, we performed a targeted next-generation sequencing analysis in a cohort of thirteen patients who were referred to our center with IBD associated with HMs. Eleven (85%) patients showed one or more mutations in CH-associated genes; DNMT3A was the most frequently mutated gene, followed by ASXL1 and JAK2. These results may suggest that the mechanisms at the basis of the inflammatory environment could potentially select for the growth of hematopoietic clones harboring specific mutations. In this context, CH emergence may be boosted by the proinflammatory IBD environment, thus acting as a biological link between IBD and the HM onset. If these data are confirmed, IBD patients screened and positive for CH should undergo a hematologic follow-up to assess the risk of developing HM. Future study will clarify the relationship between these conditions.

Keywords: clonal hematopoiesis, inflammatory bowel diseases, hematological malignancies, DNMT3A, ASXL1, JAK2
INTRODUCTION

The term inflammatory bowel diseases (IBDs) define a group of chronic conditions of the gastrointestinal tract. Crohn’s disease (CD) and ulcerative colitis (UC) are the most common types. These two conditions differ slightly, both histologically and clinically. IBDs are thought to arise due to host genetics, environmental factors, and immune system function, ultimately resulting in chronic inflammation and consequent clinical symptoms (1). Nationwide studies have revealed a higher risk of hematological malignancies (HMs) in these patients (2–4). In particular, IBDs are associated with the onset of lymphoproliferative disorders. The hypothetical causal link relies on the iatrogenic effect of novel immunosuppressive drugs (such as thiopurines, methotrexate, and biologic agents) adopted to treat IBDs. Notwithstanding, no clear evidence related to specific drugs has emerged (5).

Clonal hematopoiesis (CH) is a premalignant condition defined by the presence of an acquired somatic mutation characterized by a variant allele frequency (VAF) of ≥2%, in a gene frequently associated with HMs, without fulfillment of other diagnostic criteria for a hematologic neoplasm diagnosis (6). CH incidence is age-related, showing a prevalence of about 10% in persons aged > 70 years, while it is less frequent in young and young adults. A growing body of evidence suggests a correlation between CH and CH. On the one hand, an inflammatory state may favor the selection and consequent emergence of the mutated hematopoietic clone (7), thus acting as a stress factor on hemopoiesis. On the other hand, the mutated clone itself may increase the expression of inflammatory genes in innate immune cells (8).

IBD patients have an underlying pro-inflammatory state, whose potential effects could intersect the roads of CH, as already demonstrated in atherosclerosis and autoimmune disorders, such that these diseases could boost the emergence of CH (9, 10). Recently, experimental data are unveiling ever more profound interactions between a pro-inflammatory milieu and mutated hematopoietic stem cells (HSCs). These latter show a sort of adaptive capacity, not only conferring resistance to inflammation but ultimately enhancing their ability to outgrow normal HSCs (11).

All this premised, a reflection is needed to investigate the link between IBDs and HMs. Conversely, an iatrogenic trigger (i.e., drugs) could be enough to cause a neoplastic evolution. Moreover, the interplay between the hematopoietic system and inflammation could be more than a supporting cast.

METHOD

From February 2011 to May 2021, 13 cases (median age 58 years, range 47 – 70) were referred to our center with IBD associated with HMs; their main clinical data are reported in Table 1. In all cases, the IBD diagnosis was confirmed by histological analysis. Before the HM onset, they were all treated with mesalazine except case #5. The study was approved by the local ethics committee “Azienda Ospedaliero Universitaria Policlinico di Bari”. Written, informed consent was obtained from all patients before enrolment in accordance with the Declaration of Helsinki. Their records/information were anonymized and de-identified before analysis.

Next-generation sequencing (NGS) analysis with an AmpliSeq customized panel (Thermo Fisher Scientific), encompassing 26 target genes that are frequently mutated in myeloid malignancies, was performed on genomic DNA extracted from bone marrow (BM) (cases #3 - #13) or peripheral blood (PB) (cases #1, #2) samples, as previously described (12). Quality control reads alignment to the human genome (hg19) and variant calling (using the somatic workflow for single samples and the default parameters) were performed using Torrent Suite Software v5.16 (Thermo Fisher Scientific). Variants were annotated using Ion Reporter Software v5.16 (Thermo Fisher Scientific). Variants located in intronic regions (not in splice sites) or synonymous or present with ≥1% global minor allele frequency (MAF) in the healthy population, according to the Genome aggregation database (gnomAD) v2.1.1, were filtered out. Only variants affecting the CH-associated genes (13), with ≥2% VAF (6), and with a depth of coverage >500x were considered. Selected variants were investigated for a potential pathogenic role using the Catalogue of Somatic Mutations in Cancer (COSMIC v95) and dbSNP databases.

RESULTS

The median latency time between IBD and HM was 71 months (range 4 – 312 months). Overall, 20 variants affecting 9 genes (DNMT3A, ASXL1, JAK2, GATA2, TET2, ETV6, SF3B1, EZH2, KIT) were detected in our cohort (Table and Figure 1); 11/13 (85%) patients showed one or more mutations, with a VAF ranging from 2.6% to 53.0%. Moreover, cases #6 and #7 showed variants of CH-associated genes but in the absence of a BM lymphoma localization. Five variants (25.0%) showed a VAF<10%, whereas, in the 15 others identified (75.0%), the clone was dominant. In accordance with previously published data in the IBD context, DNMT3A was the most frequently mutated gene (4/20, 20.0%) (13, 14), with ASXL1 (4/20, 20.0%), followed by JAK2 (3/20, 15.0%). All mutations are single nucleotide variants (SNV) with different functions: missense variants (13/20, 65.0%), nonsense variants (4/20, 20.0%), and unknown variants affecting a splice site or an untranslated region (3/20, 15.0%). Five cases (45.5%) carried just one variant, whereas the other six (54.5%) showed two or more mutations.

DISCUSSION

Individuals with CH have a higher incidence of HM, coronary heart disease, ischemic stroke, and heart failure (15). Recent works demonstrated that chronic infection, UC and atherosclerosis, can drive the gene loss of function associated with CH (14, 16, 17). In particular, chronic infection and UC may promote the selection of
the DNMT3A gene mutation associated with CH by the IFNγ signaling induced in the course of these disorders (14, 16). It is worthy of note that four (36.4%) cases in our series bore DNMT3A gene mutations. According to data previously shown in UC patients (14), this fact may be considered to demonstrate that the mechanisms at the basis of the inflammatory environment potentially select for the growth of CH specific mutations. Thus, CH may act as a possible biological link between IBD and the HMs that CH may be fed by the IBD inflammatory stimuli, and in turn, feed the IBD inflammation. This context can also explain the low median age of our patient series compared to that expected in healthy individuals with CH.

Our main study limitation is that it was not possible to demonstrate that the CH-associated genes variant was present before the onset of the HMs, since no genomic data were available at that time. Notwithstanding, the low median age of our patients, the prevalence of lymphoproliferative disorders before the onset of the HMs, since no genomic data were available at that time. Notwithstanding, the low median age of our patient series compared to that expected in healthy individuals with CH.

Interestingly, in our observation 4 patients (#4, #5, #6, and #7) showed a very low VAF of the CH-associated genes. This situation could suggest that there may be a distinct role between CH promoted and selected by inflammation and the genomic alterations that drive tumorigenesis and control the HM pathogenesis. Particularly, the low VAF of DNMT3A gene in cases #6 and #7, both patients without evidence of BM lymphoma involvement, is strongly suggestive of CH promoted by IBD. It’s noteworthy that DNMT3A mediated CH should not be seen as an inactive player in the immune system. In fact, it has been shown to alter T cells’ homeostasis and be associated with enhanced T cell activity in recipients of allografts harboring a DNMT3A mutation (18, 19).

Furthermore, cases #1, #2, #8, #10, #11 showed CH-associated gene variants usually rare in chronic myeloid and lymphoid leukemia. It’s noteworthy that we didn’t include two cases of JAK2 V617F myeloproliferative neoplasms in our analysis, preceded by IBD. Both patients were aged <70 and had a multiannual story of IBD at the time of HM onset. In this context, we should consider that, on the one hand, JAK2 is undoubtedly “driving” the disease; on the other hand, it accounts for 3% of CH in the general population (20). Therefore, even in these circumstances, the interplay between IBD, CH and HM cannot be a priori excluded.

In conclusion, our report suggests that CH may be seen as a biological link at the crossroads of IBDs and HMs, whose role is yet to be fully elucidated. Nonetheless, if these data are confirmed, IBD patients screened and positive for CH should undergo hematologic follow-up to assess the risk of developing HM. Further studies are warranted to characterize the biological relationship between IBDs, CH, and HMs.

TABLE 1 | Annotation of variants identified in IBD cohort.

Case	Sex/ Age	IBD	HM	Time from IBD to HM (months)	Gene	Locus	Protein	Location	Function	VAF (%)	MAF	COSMICv95	dbSNP
#1	M/65	UC	CML	19	GATA2	chr3:128204930G>C	p.Leu170Val	exon 3	missense	44.12	0	6939682	//
#2	M/65	UC	CML	75	EZH2	chr7:148624370C>T	p.Arg162Gln	exon 7	missense	38.46	0.000007	6657582	rs747029069
#3	M/59	UC	AML	26	DNMT3A	chr2:25467449C>A	p.Gly343Cys	exon 14	missense	48.82	0.000461	29107	rs139654737
#4	M/65	UC	CML	74	DNMT3A	chr2:25462023C>T	p.Trp795Ter	exon 20	nonsense	3.07	0	//	rs752222356
#5	M/47	CD	MDS	4	ASXL1	chr2:201022835A>T	p.Arg74Ter	exon 12	nonsense	29.36	0	4385101	764604832
#6	F/70	UC	DLBCL	48	DNMT3A	chr2:25469028C>T	p.	exon 11	splice site	3.82	0	5945645	//
#7	F/50	UC	T-NHL	12	ASXL1	chr9:45569341G>A	p.Tyr910Cys	exon 6	nonsense	6.75	0	//	//
#8	F/49	CD	CML	156	GATA2	chr3:128198983G>C	p.Arg74Ter	exon 7	nonsense	13.36	0	5748387	//
#10	F/66	UC	CML	10	ASXL1	chr3:12037412T>A	p.Leu434Ter	exon 13	nonsense	53.05	0	87002	//
#11	M/50	UC	CML	71	JAK2	chr9:51263433G>A	p.Tyr709His	exon 22	nonsense	48.52	0.000594	1155	72550822
#12	M/58	CD	NHL	17	TET2	chr9:5123108A>G	p.	exon 23	nonsense	48.72	0.0000041	3864410	1349849518

*Diagnosis of IBD was made after that of hematological disease; symptoms of IBD were present before the HM diagnosis. Case#9 and #13, reporting no gene variants, were not included in this table.

IBD, inflammatory bowel disease; UC, ulcerative colitis; CD, Crohn’s disease; HM, hematological malignancy; CML, chronic myeloid leukemia; CLL, chronic lymphocytic leukemia; AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; DLBCL, diffuse large B-cell lymphoma; T-NHL, T-cell non-Hodgkin’s lymphoma; NHL, non-Hodgkin’s lymphoma; VAF, variant allele frequency; MAF, minor allele frequency (gnomAD v2.1.1).
FIGURE 2 | Possible link between IBDs and HMs. As demonstrated, an IBD may promote the CH onset (14). The clone selected could evolve in a subsequent HM or favor the insurgence of an HM. In both cases, the inflammatory milieu of the HM may, in turn, feed the IBD. IBD, inflammatory bowel disease; BM, bone marrow; CH, clonal hematopoiesis; HM, hematological malignancy.

FIGURE 1 | Oncoprinter visualization of all variants identified. For all cases (columns), the age, the hematological disease and the variants identified are reported. The percentage value associated to each gene, indicates its variants occurrence in the cohort analyzed. AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; DLBCL, diffuse large B-cell lymphoma; MDS, myelodysplastic syndrome; NH, non-Hodgkin’s lymphoma; T-NHL, T-cell non-Hodgkin’s lymphoma.
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA719027.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Local ethics committee “Azienda Ospedaliero Universitaria Policlinico di Bari”. The patients/participants provided their written informed consent to participate in this study.

REFERENCES

1. Khor B, Gardet A, Xavier RJ. Genetics and Pathogenesis of Inflammatory Bowel Disease. Nature (2011) 474:307–17. doi: 10.1038/nature10209
2. Cheddani H, Duchatel L, Fumery M, Charpentier C, Marie Bouvier A, Dupas JL, et al. Cancer in Elderly Onset Inflammatory Bowel Disease: A Population-Based Study. Am J Gastroenterol (2016) 111:1428–36. doi: 10.1038/ajg.2016.304
3. Jung YS, Han M, Park S, Kim WH, Cheon JH. Cancer Risk in the Early Stages of Inflammatory Bowel Disease in Korean Patients: A Nationwide Population-Based Study. J Cohrns Colitis (2017) 11:954–62. doi: 10.1093/ecco-ijcc/jtx040
4. Matsushita M, Fukata N, Omiya M, Okazaki K. Nationwide Studies of Lymphoproliferative Disorders in Inflammatory Bowel Disease. J Gastroenterol (2017) 112:1171–2. doi: 10.1038/ajg.2017.142
5. Lam GY. Lymphoproliferative Disorders in Inflammatory Bowel Disease Patients on Immunosuppression: Lessons From Other Inflammatory Disorders. World J Gastrointest Pathophysiol (2015) 6:181. doi: 10.4291/wjgp.v6.i4.181
6. Steensma DP, Bejar R, Jaiswal S, Rauh MJ. Clonal Hematopoiesis and Inflammation: Partners in Leukemogenesis and Comorbidity. Exp Hematol (2020) 83:85–94. doi: 10.1016/j.exphem.2020.01.011
7. Cook EK, Luo M, Rauh MJ. Clonal Hematopoiesis of Indeterminate Potential and its Distinction From Myelodysplastic Syndromes. Blood (2015) 126:9–16. doi: 10.1182/blood-2015-03-631747
8. Heyde A, Rohde D, McAlpine CS, Zhang S, Hoyer FF, Gerold JM, et al. Increased Stem Cell Proliferation in Atherosclerosis Accelerates Clonal Hematopoiesis. Cell (2021) 184:3438–61.e22. doi: 10.1016/j.cell.2021.01.049
9. Gibson CJ, Kim HT, Murdock HM, Hambly B, Zhao L, Green L, et al. DNMT3A Clonal Hematopoiesis in Older Donors Is Associated With Improved Survival in Recipients After Allogeneic Hematopoietic Cell Transplant. Blood (2020) 136:26–6. doi: 10.1182/blood-2020-142925
10. Abplanalp WT, Cremer S, John D, Hoffmann J, Schuhmacher B, Merten M, et al. Clonal Hematopoiesis-Driver DNMT3A Mutations Alter Immune Cells in Heart Failure. Circ Res (2021) 2:216–28. doi: 10.1161/CIRCRESAHA.120.317104
11. Sano S, Walsh K. Hematopoietic JAK2V617F-Mediated Clonal Hematopoiesis-Driver DNMT3A Mutations Alter Immune Cells in Heart Failure. Circ Res (2021) 2:216–28. doi: 10.1161/CIRCRESAHA.120.317104
12. Steensma DP, Bejar R, Jaiswal S, Rauh MJ. Clonal Hematopoiesis and Inflammation: Partners in Leukemogenesis and Comorbidity. Exp Hematol (2020) 83:85–94. doi: 10.1016/j.exphem.2020.01.011

AUTHOR CONTRIBUTIONS

CC, FT, and FA conceived and designed the study and wrote the manuscript. CC and AZ performed the main experiments. LA, CM, NC, GT, LI, EP, MC, and IR performed diagnostic molecular analysis. PC, MD, AG, MCL, TP, and AR provided clinical data. GS, PM, and FA reviewed and edited the manuscript. FA supervised the manuscript preparation. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by “Associazione Italiana contro le Leucemie (AIL)-BARI” and by the association for non-Hodgkin lymphoma research “Il sorriso di Antonio”, Corato – Italy.