Track based Alignment in CMS

Frank-Peter Schilling (CERN)
LHC Detector Alignment Workshop 05/09/2006

Contents:
• Data samples
• Alignment strategy
• Alignment algorithms
 • HIP
 • Kalman Filter
 • Millepede-II
• Muon alignment with tracks
Track based Alignment in CMS

- Large number of alignment parameters (~100,000 in tracker) requires novel techniques
- Three different alignment algorithms implemented in CMS reconstruction software (now transition from “ORCA” to “CMSSW”)
 - Kalman Filter, Millepede-II, HIP Algorithm
 - Cross check results using different algorithms with different approaches and systematics
 - Supported by common software infrastructure
- Alignment using different data sets (dedicated MC generators)
 - Muons from Z,W; Cosmics; beam halo; muons from J/ψ, B; high pt QCD tracks
- Reduced data format (AlCaReco)
 - Development of fast Alignment stream (Z,W) produced during prompt reconstruction at Tier-0
- Combine track based alignment with laser alignment and survey data
- Employ mass and vertex constraints; use of overlaps
- Develop observables sensitive to misalignment other than χ^2
 - Monitoring, fix χ^2 invariant mode
- CMS alignment group ~20 people from ~8 institutes
Data Samples

- High p_T muons from Z, W decays
 - Rate: $20k \ Z \rightarrow \mu\mu$, $100k \ W \rightarrow \mu\nu$ per day at $L=2\times10^{33}$
 - Gold plated for tracker alignment (small multiple scattering)
 - Exploit Z^0 mass constraint

- Cosmic Muons
 - ~ 400Hz after L1 and s.a. muon reco.

- Beam Halo Muons
 - ~ 5 kHz per side after L1 and s.a. muon
 - Problem: Muon endcap trigger outside tracker acceptance in R!
 - Potentially install scintillators (for startup) or use TOTEM T1

- Muons from J/ψ and inclusive B decays
 - J/ψ mass constraint

- Min. bias, high pt hadrons from QCD events
 - Potentially useful for pixel alignment
Simulation of Cosmics and Beam halo muons in CMS

- Cosmic muons: 400 Hz
- Beam halo muons: 5 kHz per side

Rates after L1 and standalone muon reconstruction

CMS Note 2006/012
Alignment Strategy

Basic sketch:

- **2007: Before beams:**
 - Cosmics (+laser alignment and survey measurements)
- **2007: single beams**
 - Add beam halo muons
- **2007: Pilot run, pixel detector not installed (except few test modules)**
 - Cosmics, beam halo muons
 - Add available high pt muons, tracks
 - Initial alignment of high level strip tracker structures (layers, rods)?

- **2008: Two-step approach:**
 - Add larger statistics of muons from Z, W
 - 1. Standalone alignment of pixel detector
 - 2. Alignment of strip tracker, using pixel as reference

- To be laid out in more detail …

See next slides for rate estimates
Expected event rates

- **Pilot run 2007 @ 900 GeV, L~10^{29}**

 - What data samples in 2007 ?
 - ATLAS preliminary
 - $\sqrt{s} = 900$ GeV, $L = 10^{29}$ cm$^{-2}$ s$^{-1}$

 - 30% data taking efficiency included (machine plus detector)
 - Trigger and analysis efficiencies included

 - F. Gianotti (ICHEP 2006)

 - Loads of min. bias, QCD jets
 - Not much of anything else …

- **Physics Run 2008 @ 14 TeV, L~10^{32...33}**

 - Large statistics of high pt muons within few weeks!

Luminosity	10^{32} cm$^{-2}$s$^{-1}$	2×10^{33} cm$^{-2}$s$^{-1}$
Time	few weeks 6 months	1 day few weeks one year
Int. Luminosity	100 pb$^{-1}$ 1 fb$^{-1}$	1 fb$^{-1}$ 10 fb$^{-1}$
$W^\pm \rightarrow \mu^\pm \nu$	700K 7M	100K 7M 70M
$Z^0 \rightarrow \mu^+ \mu^-$	100K 1M	20K 1M 10M
General Software Framework

- (MIs)alignment implemented at reconstruction level:
 - “Misalignment tools”, move and rotate modules or higher level structures
- Dedicated “Misalignment Scenarios”
 - Short term scenario
 - First data taking (few 100 pb⁻¹)
 - Pixel already aligned
 - Strip tracker misaligned, only survey and laser alignment
 - Long term scenario
 - Few fb⁻¹ accumulated
 - Full alignment performed, residual misalignments ~20μm
- Fast track refit (without redoing pattern recognition)
- Reduced data format containing only alignment tracks
 - Small file size, fast processing

- Algorithms implemented in standard CMS reconstruction software using a common layer of general functionality
 - Management of parameters and covariances
 - Derivatives wrt track and alignment parameters
 - I/O, Database connection
HIP Algorithm: Formalism

- Minimization of track impact point \((x)\)
 - hit \((m)\) residuals in local sensor plane as function of alignment parameters

\[
\begin{pmatrix}
\epsilon_u \\
\epsilon_v
\end{pmatrix} =
\begin{pmatrix}
u_x - u_m \\
v_x - v_m
\end{pmatrix}
\]

- \(\chi^2\) function to be minimized on each sensor (after many tracks per sensor accumulated)
 - \(V\): covariance matrix of measurement

- Linearized \(\chi^2\) solution:
 - \(\delta p\): vector of alignment parameters
 - \(\delta p = (\delta u, \delta v, \delta w, \delta \alpha, \delta \beta, \delta \gamma)\)
 - \(J_i\): derivative of residuals w.r.t. alignment parameters

\[
\delta p = \left[\sum_i J_i V_i^{-1} J_i^T \right]^{-1} \left[\sum_i J_i V_i^{-1} \epsilon_i \right]
\]

- Local solution on each “alignable object”
 - Only inversion of small (6x6) matrices, computationally light

CMS Note 2006/018
HIP Algorithm: Formalism (cont.)

- Formalism extended to alignment of composite detector structures (ladders, disks, layers etc.)
 - Minimize χ^2 using all tracks crossing sensors of composite object with respect to alignment parameters of composite object
 - Implemented using chain rule
- Correlations between modules not included explicitly
 - Implicitely included through iterations
- Large statistics \rightarrow parallel processing:
 - Run on N cpu’s processing 1/N of the full sample each
 - Combine results from all CPUs, compute alignment corrections
 - Start next iteration on N cpu’s

\[
\frac{\delta \varepsilon_i^S}{\delta p_i^C} = \frac{\delta \varepsilon_i^S}{\delta p_i^S} \times \frac{\delta p_i^S}{\delta p_i^C}
\]

- Example: 1M $Z \rightarrow \mu\mu$ events:
 - reduced DST format keeps only muon tracks
 - Refit track, don’t re-reconstruct
 - With 20 CPUs in parallel, one iteration: $\sim 45'$
HIP Algorithm studies

- Alignment of 720 CMS Pixel Barrel modules
- “First data taking” misalignment scenario
 - Includes correlated misalignments
- 200K $Z^0 \rightarrow \mu^+\mu^-$ events, 10 iterations
- Good convergence: RMS $\sim 7\mu$m in x,y, $\sim 23\mu$m in z
- Caveat: Alignment w.r.t ideal strip tracker

CMS Note 2006/018
HIP Algorithm studies

- Standalone alignment of pixel modules
- Minimize influence of misaligned strip detector:
 - refitting only pixel hits of the tracks
 - use momentum constraint from full track (significantly improves convergence)
- Two muons from $Z^0 \rightarrow \mu^+\mu^-$ are fitted to common vertex
- Flat misalignment $\pm 300 \mu m$ in x,y,z
- 500k events, 19 iterations
- Reasonable convergence, RMS $\sim 25 \mu m$ in all coordinates
Kalman Filter Alignment

- Method for global alignment derived from Kalman Filter
- Ansatz:
 - Measurements m depend via track model f not only on track parameters x, but also on alignment parameters d:
 $$ m = f(x, d) + \epsilon \quad \text{COV}(\epsilon) = V $$
 - Update equation of Kalman Filter:
 $$ \begin{pmatrix} \hat{d} \\ \hat{x} \end{pmatrix} = \begin{pmatrix} d \\ x \end{pmatrix} + K(m - c - Ad - Bx) $$
 - For details, see talk by R. Fruehwirth!
- Iterative: Alignment Parameters updated after each track
- Global: Update not restricted to modules crossed by track
 - Update can be limited to those modules having significant correlations with the ones in current trajectory
 - Requires some bookkeeping
 - No large matrices to be inverted!
- Possibility to use prior information (e.g. survey data, laser al.)
- Can add mass / vertex constraints
Kalman Filter Alignment (cont.)

- Wheel-like setup: (part of CMS tracker: 156 TIB modules)
- Pixel detector as reference
- Misalignment:
 - local $x, y \sigma = 100 \mu m$
- Update restricted to distance $d_{\text{max}} \leq 6$
- Single muons $p_T = 100$ GeV
- Convergence slower in outer layers (distance from reference system, less track statistics)

CMS Note 2006/022
Kalman Filter Alignment (cont.)

- Overall RMS $\sim 21\mu m$ after alignment

- Dependence of RMS and CPU time on d_{max}

d_{max}	1	2	3	4	5	6
$\sigma [\mu m]$	24.75	21.38	20.97	20.95	20.94	20.94
$T [s]$	472	604	723	936	1152	1319

- $d_{\text{max}}=6$ does not exclude modules with relevant correlations
Millepede II Algorithm

- For formalism, see talk of V. Blobel
- Original Millepede method solves matrix eqn. $A x = B$, by inverting huge matrix A. Can only be done for <12000 alignment parameters
- New Millepede II method instead minimises $|A x - B|$. Expected to work for ~ 100000 alignment parameters (i.e. for full CMS at sensor level)
- Both successfully aligned $\sim 12\%$ of tracker modules using $2M$ $Z \rightarrow \mu\mu$ events. Results identical, but new method 1500 times faster!

Matrix Inversion (12000×12000)
(t=$13h$)

MinRes
(t=$30s$, $1500x$ faster!)

CMS Note 2006/011
Millepede-II in CMS

- Alignment of the strip tracker at sensor level
- Barrel region, $|\eta|<0.9$, 12015 alignment parameters
- (Mis)alignment in $r\phi$, r, z, γ at half-barrel / layer / rod / module levels
CPU Requirements (Millepede-II)

CPU time in hours as a function of number of parameters

- New Millepede-II (iterative method) scaleable to full CMS problem
- Alternative: massively parallel algorithm (difficult to implement)
- Memory needs (dep. on sparseness of matrix) under study...

CPU Time for CMS (100k parameters):
- Diagonalization: ~10 year at one CPU
- Inversion: ~1 year at one CPU
- Iteration: ~1 h at one CPU
Importance of using “complete” datasets

1. Collision tracks and cosmics populate different parts of global covariance matrix → reduce global correlations!

2. Example: Alignment of CMS strip barrel rods and layers
 - Only one layer fixed
 - 500k $Z^0 \rightarrow \mu\mu$ with vertex constraint
 - 100k Cosmics

3. Use Z^0 tracks only:
 - No solution
 - Matrix singular

4. Use Z^0 and Cosmics:
 - Problem solvable
 - Resonable correlations

Simplified simulation and scenario, Now look at realistic study …
Global correlations: Realistic scenario

- Realistic alignment scenario of the CMS pixel and strip barrel studied

- Datasets and prior information:
 - 250k $Z^0 \rightarrow \mu\mu$ with vertex constraint
 - 500k Cosmics
 - Survey information

- Global correlations of alignment parameters high (can be >99%)
 - Independent of alignment algorithm!

- Cosmics (and beam halo, shifted vertex?!) very important to decrease global correlations!

M. Stoye (Hamburg)
Muon system Alignment with tracks

- 790 chambers ⇒ ”only” ~5000 alignment parameters

- Main differences w.r.t. Tracker Alignment:
 - Large amount of material for tracks crossing barrel-endcap
 - Chambers assumed as rigid body: provide vector information useable for alignment

- Two approaches
 - Alignment using tracks extrapolated from tracker
 - Standalone muon alignment

- Standalone muon alignment using $W \to \mu \nu$ events corresponding to 50h of data taking at 10^{34}

CMS Note 2006/016
Conclusions

• Alignment of the CMS tracker and muon system is a challenge
 - Large number of parameters (~100,000 in tracker)
 - High intrinsic resolution of devices

• A lot of ongoing work on track based alignment already now
 - Implementation and further development of algorithms
 - Initial results promising
 - Not yet demonstrated realistic alignment of full tracker at sensor level
 - Alignment studies using various MC data sets
 - Dedicated HLT alignment stream
 - Use of overlaps, mass and vertex constraints
 - How to combine with Laser Alignment and Survey?
 - Define monitoring observables other than χ^2 (“global modes”)
 - Condition Database infrastructure

• Alignment of test beam and cosmics data
 - Tracker “Cosmic Rack” test structure
 - Magnet Test & Cosmic Challenge (MTCC) data

• Aim for having all ingredients in place when data will arrive!