1. 緒言

薄板ならびに厚板向け高品質スラブを高能率で製造する
ことは連続鍛造プロセスにおいて重要な課題である。近年、
鍛造速度の高速化にともない、浸漬ノズルからの溶鋼吐
出流の影響による凝固シェルの再溶解（凝固遅れ）に起因
したブレーカアウト（以下BOと記す）や、短辺パルジング
の発生が操業上の課題の一つにあげられている。BOの種
類には、拘束性BO、弾性凝固シェル再溶解性BO（凝固遅
れ性BO）、異物呑込み性BO、割れ性BOなどがある。

BO検知方法については、(1) 鍛型鋼板に埋設させた熱電
対（以下鍛型熱電対と記す）温度測定に基づく検知法、(2)
鍛片／鍛型鋼板間の摩擦力測定に基づく検知法、(3) シン
セレーション振動波形に基づく検知法、(4) 超音波探傷によ
る検知法など様々な手法が開発されてきている。長期間
での安定測定が可能でコスト面で有利な鍛型熱電対温度の
利用が広く用いられている。鍛型熱電対温度からBOを検
知する方法として、モールドパラナーの潤滑不良や湯面変
動により凝固シェルが鍛型鋼板に直接触れることに起因す
る拘束性BOについてはメタンスカス付近の温度挙動より検
知する方法が提案されており、現在では連続鍛造機で
一般的に採用されている。

しかしながら鍛造速度の高速化にあたり、浸漬ノズルか
らの吐出流が短辺凝固シェルに衝突する際に凝固シェルを
再溶解させる凝固遅れ性BOやスラグリングやモールドパラ
ナー、介在物などの異物を呑込んだ場合にはその後の鍛型内
での凝固シェル成長が阻害されることによる異物呑込み性
BO発生についても危険性が高くなるのに対して、その検
知技術は鍛型熱電対温度を用いて思考錯誤的な経験に基づ
くものが多く、広く確立されているとはいえない。

再溶解性BO、異物呑込み性BO、短辺パルジングなどに
共通する問題としては、鍛型下端における凝固シェルが
通常部に対して薄くなることに起因している場合が多く、
実操業においてオンラインで鍛型出側の凝固シェル厚を予
測、推定する技術の開発が望まれる。

本研究では鍛型鋼板に埋設させた多点熱電対を用いるこ
とで鍛型下端での凝固シェル厚を推定する方法について、
試験的に評価を行った。推定方法のロジックの詳細とオ
ラインでの凝固シェル測定の評価結果について報告す

平成30年3月23日受付 平成30年3月7日受理 (Received on Jan. 23, 2018; Accepted on Mar. 7, 2018)
1) JFEスチール (株) スチール研究所 (Steel Research Laboratory, JFE Steel Corporation, 1 Kokanscho Fukuyama Hiroshima 721-8510)
2) JFEスチール (株) スチール研究所 (現: 三島合金属 (株)) (Steel Research Laboratory, JFE Steel Corporation, now Mizushima Ferroalloy Co. Ltd.)
3) JFEスチール (株) スチール研究所 (現: JFEスチール (株) 知的財産部) (Steel Research Laboratory, JFE Steel Corporation, now Intellectual Property Department, JFE Steel Corporation)
4) Corresponding author: E-mail: yo-ito@jfe-steel.co.jp
DOI: http://dx.doi.org/10.2355/etsh.2018-008
2. 凝固シェル厚測定の目的

2・1 ブレーキアウト発生状況

鋳造速度の高速化に伴う操業上の課題の一つにBO発生があげられる。BO発生要因の一つとして、凝固シェルの再溶解によるシェル厚の薄肉化に起因したものがあり、鋳型下端での凝固シェル厚の確保の重要性が高まっている。

Fig.1に再溶解性BO発生時の残鍛片から測定した凝固シェル厚分布を示す。メニスカス位置から300〜400 mm付近の短辺部において、凝固シェル厚が薄くなっており、浸漬ノズルからの吐出流により、短辺凝固シェルの再溶解、成長阻害が発生していると思われる。このように、短辺再溶解性BOは、狭幅のスラブにおいて鋳造速度の高速化に伴い短辺凝固シェルへの浸漬ノズルからの吐出流銅の衝突速度の増加により、凝固シェル成長が停滞することに起因することが考えられ、鋳型下端の凝固シェル厚の最適化ならびに監視可能な技術の確立が望まれる。

2・2 凝固シェル厚推定の目的

前述したように再溶解性BO、噴込み性BO、短辺パルジング等の検知には鋳型下端の凝固シェル厚を精度良く推定する技術が望まれる。鋳型熱電対を用いて凝固シェル厚を推断する方法の開発を目指した。鋳型熱電対を用いた凝固シェル厚計算についてはいくつかの報告がみられるが、計算方法は凝固伝熱計算との連成、ニューラルネットワークと連成させて熱抵抗を予測して計算するモデルなど種々である。本研究では深さ方向に位置が異なる個々の熱電対を幅方向、鋳造方向に多数埋設し、純鉄に局所熱流束から凝固シェル厚を算出する方法を目指すとともに、近年の計算機の進歩を生かして大量データをリアルタイムに解析可能とする方法の確立を目指した。

本研究の目標は以下の2点である。

1) 鋳型内に多点式熱電対を埋め込み、埋め込み深さの異なる2点間の熱電対による局所熱流束から鋳型下端での凝固シェル厚を推定するモデルの構築
2) 上記モデルを用いた実機連続鋳造機による検証

3. 実験方法

3・1 凝固シェル厚推定モデルの概要

凝固シェル厚推定モデルの概要をFig.2に示す。鋳型鋼板に埋設した熱電対で凝固流束束を測定し、鋳造方向の熱流束プロファイルを積分することにより鋳型下端での凝固シェル厚を算出するモデルであり、ロジックとしては大きく分けて以下の①〜⑤の算出過程から構成される。

①熱電対温度差ΔT(i)の算出
②凝固冷却による局所熱流束q(i)の算出
③凝固界面流による平均凝固界面熱流束q(i)の算出

Fig.1. Shell thickness obtained by measuring the breakout shell.

Fig. 1. Shell thickness obtained by measuring the breakout shell.

Fig. 2. Schematic of evaluation model.
銅型下端での凝固シェルのエンタルピー落差 ΔHの算出

3銅型下端での凝固シェル厚 Dの算出（凝固過度率考慮）
なお計算の時間刻みは0.5秒とし、Fig.3に模式図を示したように銅型収縮 Vc (m/min) と銅型間の熱電対距離からトラッキングして計算することで銅型下端の凝固シェル厚を0.5秒ピッチでリアルタイムに計算可能なモデルとした。

凝固シェル厚推定ロジックの詳細を以下に示す。

①熱電対温度差 ΔT(i) の算出
銅型方向にi段のベアの熱電対を埋め込んだ場合を想定しており、i番目位置の銅板冷却水側の銅熱電対温度 Tc,m(i)、銅板スリット冷却水側の Tc,n(i) とする熱電対温度差 ΔT(i) は下式で示される。

\[ΔT(i) = T_{c,m}(i) - T_{c,n}(i) \] （1）

②銅型冷却による局所熱流束 q(i) の算出
銅型方向i番目位置の局所熱流束 q(i) は（2）式で与えられる。

\[q(i) = \frac{\lambda_c \cdot ΔT(i)}{d_{c,n}} \] （2）

ここで、\(\lambda_c \) (J/s·m·K) は銅板の熱伝導率 (=250.0) 、ΔT(i) (K) はi番目位置の銅型熱電対温度差、d_{c,n} (m) は熱電対間の銅板厚方向の距離 (=0.005) である。

銅型冷却による局所熱流束 q(i) は、凝固シェルへの局所熱流束 q(i) と平均的な銅溶流による凝固界面入熱 q(i) から構成され、（3）式で与えられる。

\[q(i) = q_e(i) + q_m(i) \] （3）

③凝固界面流による平均凝固界面入熱 q_m(i) の算出
銅型方向i番目位置の凝固界面流による平均的な凝固界面入熱 q_m(i) は、（4）式で与えられる。

\[q_m(i) = h(i) \cdot Δθ \] （4）

ここで h(i) (J/s·m²·K) はi番目位置の熱伝達係数、Δθ (℃) は銅型内銅温過熱度である。

熱伝達係数 h(i) は、（5）式に示すIsobeらが求めた凝固前面溶銅流速との関係式\(^{10}\)を用いて計算する。

\[h(i) = 1.22 \times 10^5 \cdot V(i)^{0.8} \] （5）

ここで V(i) (m/s) はi番目位置の凝固前面の銅溶流速である。V(i) は、みずの銅型銅型速度条件に対して採取した銅板サンプルからディフライアブ刺を測定し、Okanoらの式\(^{11}\)を用いて変換することで求め、銅型方向位置X (m)、銅型速度 Vc との関係式を作成して算出した。

また銅型内銅温過熱度 Δθは銅型内温度を一定として（6）式から計算した。

\[Δθ = T_{0} - T_{IL} \] （6）

ここで T_{0} (℃) は銅型内銅温温度、T_{IL} (℃) は液相銅温度である。

銅型内銅温温度 T_{0} は直接測定することが困難であるため、予めタンポニッシュ内銅溶流温温度 T_{TD} (℃) と銅板幅 W (m)、銅型内平均銅型速度 Vc (m/min) との間の回帰式を作成して算出した。

①銅型下端での凝固シェルのエンタルピー落差の算出
銅型内銅のエンタルピー落差は（7）式より算出した。

\[DH = H_s - H_{ML} - ΔH_{sw} \] （7）

ここで、ΔH (J/kg) は銅型下端での凝固シェルの単位重量当たりのエンタルピー落差、H_s (J/kg) は銅型内銅のエンタルピー、H_{ML} (J/kg) は銅型下端凝固シェルのエンタルピー、ΔH_{sw} (J/kg) は湯面からの放熱量である。

銅型下端でのシェルのエンタルピーH_{ML} (J/kg) は凝固伝熱計算から1次近似により算出した銅型下端でのシェル平均温度 T_{ML} (℃) を用いて、経験的に（8）式として求めた。

\[H_{ML} = 670.3 \cdot T_{ML} - 11958 \] （8）

また、湯面からの放熱分ΔH_{sw} (J/kg) は銅型中のモールド本体上方への放熱流エネルギを用い、銅型速度の関数とした。

銅型内銅のエンタルピーH_s (J/kg) は、銅型内銅温温度 T_{s} (℃) から、その温度での純銅のエンタルピー\(^{12}\)を用い、（9）式の回帰式として求めた。

\[H_s = (1.0 \times 10^{-20} \cdot T_s^4 - 4.0 \times 10^{-5} \cdot T_s^3 + 5.0 \times 10^{-4} \cdot T_s^2 - 9.8 \times 10^{-2} \cdot T_s + 4.5) \cdot 19 \times 1000 \] （9）

③銅型下端での凝固シェル厚 Dの算出
以上の計算式から、以下の概念式に示す銅型下端での凝固
固シェル厚Dを求める。
凝固シェルへの局所熱流束は、(3)，(4)式より(10)式で与えられる。

\[q_i(i) = q_i(i-1) - q_i(i) - h(i+1) \Delta \theta \]

(10)

ここで、凝固シェルへの局所熱流束の鋳造方向の総括熱量 \(Q \) (J/m²) は隣接する2点間の積分 (台形面積で近似) から算出する。

\[Q = \int q_i(i) \, dt = \Sigma [(q(i+1) - h(i+1) \Delta \theta) + (q(i) - h(i) \Delta \theta)] / 2 \]

(11)

また、Fig.4に模式図を示すように、局所熱流束が下降か
ら上昇に転じる局所熱流束値と鋳型下端での局所熱流束値の2点間(A-B)においてその積分値を \(Q_L(i) \) として、鋳型下端での凝固シェル溶熱+顕熱 \(Q_s \) と溶液流衝突による入熱 \(Q_v \) に分解する。Fig.4に示す鋳造方向に8段の熱電対を
設置した場合の例を(12)-(14)に示す。

\[Q = Q(1) + Q(2) + Q(3) + Q(4) + Q(5) + Q(6) + Q(7) - 12 \]

(12)

\[Q_L = Q(1) + Q(2) + Q(3) + Q(4) + Q_L(5) + Q_L(6) + Q_L(7) \]

(13)

\[Q_v = Q - Q_L \]

(14)

ここで \(Q \) (J/m²) は凝固シェルへの局所熱流束の鋳造方向の総括熱量。 \(Q_L \) (J/m²) は鋳型下端での凝固シェル溶熱+顕熱、 \(Q_v \) (J/m²) は溶液流衝突による入熱である。

凝固遅れを考慮しない場合の凝固シェル厚 \(D_i \) は、鋳型下端での凝固シェル溶熱+顕熱 \(Q_s \) を用いて(15)式で算出できる。

\[D_i = Q_s / (\Delta H \cdot \rho_i) \]

(15)

ここで \(\Delta H \) (J/kg) は鋳型下端での凝固シェルの単位重量当
たりのエンタルピー差、 \(\rho_i \) (kg/m³) は鋳型下端での凝固シェ
ル密度である。

ここで、 \(\rho_i \) (kg/m³) は純鉄における温度依存性データ
値13)を回帰し、鋳型下端でのシェル平均温度 \(T_{\text{ms}} \) (℃) を
用いることで(16)式として示した。

\[\rho_i = (-1.69 \times 10^{-16} T_{\text{ms}}^2 + 2.71 \times 10^{-17} T_{\text{ms}}^2 - 5.29 \times 10^{-15} T_{\text{ms}} + 7.91 \times 10^6) \]

(16)

一方、溶液流衝突による入熱 \(Q_v \) (J/m²)、溶液流衝突位置
における熱伝達係数 \(h_v \) (J/s/m²/℃)、および、溶液流衝突区
間の時間 \(t_v \) (s) と上述した(4), (5)式を用いて溶液流衝突
流速 \(V_s \) (m/s) は(17)式のように計算できる。

\[V_s = \left(Q_v / (1 \cdot \Delta H \cdot 1.22 \times 10^5) \right)^{1/2} \]

(17)

(21)式から求めた \(V_s \) を用い、凝固遅れ度 RS (Retardation
of Solidification) を(18)式として求める。

\[RS = \alpha \times \left(V_s^n \cdot \Delta \theta \right) + b \]

(a,b: 定数)

(18)

ここで \(V_s \) (m/s) は溶液流衝突流速、 \(\Delta \theta \) (℃) は溶液流過度度
である。

(16), (18)式から溶液流衝突による入熱 \(Q_v \) を用いて凝
固遅れを考慮し、凝固シェル厚 \(D \) を求める最後(19)
式で算出できる。

\[D = D_i (1 - RS) = Q_s (1 - RS) / (\Delta H \cdot \rho_i) \]

(19)

ここで、 \(D_i \) (mm) は \(Q_s \) から求めた凝固シェル厚、 \(D \) (mm)
は \(Q_s \) による凝固遅れを考慮した凝固シェル厚、RS (－) は
凝固遅れ度である。

オンライン計算のフローチャートをFig.5に示す。

3.2 鋳型熱電対設置条件

多段鋳型熱電対による凝固シェル厚推定の実機実験は当
社西日本製鉄所倉敷地区第4連鋳機にて実施した。倉敷第
4連鋳機は、機長45 m を有しており、最大鋳造速度は220
mm/min の高速鋳造連鋳機である。

凝固シェル厚推定用の多段熱電対の配置図をFig.6に示
す。自由側長辺幅方向7列、鋳造方向7段と片側短辺厚中央
位置1列、鋳造方向8段の合計114本 (長辺98本、短辺16本)
の熱電対を溶接接触表面から10 mm深さ、15 mm深さのペ
アとなるように設置した。尚、ペアの熱電対は厳密には鋳
造方向に10 mm離して設置したが、(1)，(2)式の局所熱流
束は鋳造方向の補正は実施せずに算出した。
4. 実験結果

4・1 オンライン凝固シェル厚測定結果

Fig.7に広幅の中炭素鋼における幅方向分布の例を示した。多少のパラッキはあるが幅方向の凝固シェル厚が同様の値となっており、鍛造速度の変化に対しても同様の挙動での変化が確認できたことから、手法で鍛造周方向の凝固シェル厚の分布を計測可能と判断した

また、オンライン計算は単体の計算用パソコン（Windows Server、CPU：Xeon x3330）を用いて実施したが、数ヶ月間の連続的な稼働に対し異常終了等の問題なくリアルタイム計算が達成できることも確認できた。

4・2 FeS添加結果との対応

鍛型熱電対を用いたオンライン測定による鍛型下端の凝固シェル厚の推定値と実際の凝固シェル厚の対応について、鍛型内にFeS添加することで確認実験を実施した。

Fig.8にFeS添加法による凝固シェル厚測定値を、熱電対による鍛型下端凝固シェル厚推定値と比較して示す。それより、両者の値には良い対応がみられることが確認でき、凝固シェル厚Dと凝固時間tの間には(20)式の関係が得られた。

\[D = K \sqrt{t} \quad (\text{凝固数} K) \] （20）

Fig.9に低炭素鋼における熱電対による鍛型下端凝固シェル厚推定結果を示す。データは14日間の期間で凝固シェル厚計算対象のトラッキング区間において、鍛造速度や鍛造幅の変化が無かった箇所を抽出したものである。高鍛造速度側で凝固数が若干低めにシフトする傾向がみられるが、概ね前述した凝固数K = 23 mm/min54の関係式に近い鍛型下端凝固シェル厚が得られており、今回の多点熱電対を用いた計算システムによりリアルタイムな凝固シェル厚推定の可能性を確認できた。

4・3 ノズル吐出流による凝固シェル再溶解に関する検討

狭幅材を高速鍛造する場合には、浸漬ノズルからの吐出溶鋼が短幅凝固シェルに高速で衝突し、再溶解や凝固遅れをもたらすことが懸念される。短幅の凝固遅れ度RSと

![Fig. 5. Flow chart of the evaluation model.](image)

![Fig. 6. Thermocouple layout.](image)

![Fig. 7. Width distribution of calculated solidified shell thickness at the mold outlet position.](image)
Fig. 8. Comparisons between calculated and measured solidified shell thickness obtained by FeS addition.

Fig. 9. Relations between calculated solidified shell thickness in the exit of a mold and casting velocity.

Fig. 10. Effect of slab width, casting velocity on retardation of solidification.

Fig. 11. Relation between local heat flux and submerged entry nozzle (SEN) port angle.
た場合には急増することが考えられ、再溶解性BOの検知に有益な指標となる可能性を認めた。

4・4 異物喰込みによる凝固シェル厚低下に関する検討

異物喰込みによる凝固シェル厚低下は変動させる要因の一つにスラグリムやモールドパウダー、介在物等の異物を凝固シェルが喰込むことにより凝固シェル成長が抑制されることによる異物喰込み性BOがあげられる。異物喰込み性BOの発生メカニズムの探索図をFig.13に示す。異物喰込みによる凝固シェル厚低下の特徴としては、スラグリムなどが凝固シェルに捕捉されて凝固シェル／鉄型間を鋳造速度と同等の速度で下方に移動することにより、鉄型熱電対温度の低下点（コールドスポット）の推移から異常検知できる可能性が報告されている19）。

しかしながら、熱電対温度はメニスカス付近では湯面変動の影響を受けやすく、さらに使用するモールドパウダー物性、鉄型鋼板厚等で絶対値が大きく変化するため、異物喰込み現象と熱電対温度のみで精度良く検知するのには課題が残る。本システムでは2点間の熱電対による局所熱流束測定値を用いるため、異物喰込み性BO検知の精度向上が期待される。

Fig.14に示す低下点（コールドスポット）が鉄型下方に推移した凝固シェルへの異物喰込み現象の例を示す。図中のTC1～TC8はFig.13中の熱電対位置に対応するものであり、局所熱流束低下点が332秒付近から鉄型上方から下方に移動する様子を確認できた。Fig.15にFig.14に示した局所熱流束値より算出された鉄型下段での凝固シェル厚の時間推移を示す。それより鉄型下端凝固シェル厚は、局所熱流束の低下に伴い、14.5 mm → 8.2 mm に低下した。凝固シェル厚低下が推算された箇所の鋳片にはスラグリム喰込
みに起因するとみられる凹みを確認できており、Fig.13に示した異物挿込みによる凝固遅れ現象を実証できた。鉄型下方に上述したような凝固遅れ部が到達し溶鋼静圧に耐えられない場合には、溶鋼が漏出し最悪BOに至るものと考えられる。鉄型熱電対の幅方向設置間隔を鉄型下端部で凝固シェル破断に至る凝固遅れサイズ以下に設定し、適正な閾値を設定することで本システムにより凝固シェル厚オンライン計算を用いた異物挿込み性BOの検知が可能となるものとみられる。

今回開発したオンライン鉄型下端凝固シェル厚の計算システムでは、鉄型下端凝固シェル厚推算値とあわせて各位置の凝固遅れ度RSについてもリアルタイムに計算表示することが可能である。今後、モデル精度アップや熱電対の最適配置、実操業に適した閾値設定などの検討を進め、再溶解性BO、異物挿込み性BO等を含めた総合的なBO検知方法への展開へつなげる。

5. 結言

多点熱電対を用いてオンラインで鉄型直下凝固シェル厚を予測、推定する技術の開発として、計算ロジックの構築ならびに実機オンラインでの検証実験を行った。

(1) 鉄型鋼板深さ位置の異なる2本の熱電対から得られる局所熱流束値を基礎とし、浸漬ノズル吐出流の溶鋼流衝突隔熱による凝固遅れ量を考慮した新たな鉄型下端凝固シェル厚の推算モデルを構築した。

(2) 連続鉄造実機において長辺幅方向7列、短辺幅中央1列の計114本の熱電対を埋設させた鋼板鉄型を用いた上記の推算モデルのオンライン検証を実施した。

(3) FeS添加法による凝固シェル厚実績値と上記モデルより算出した鉄型下端凝固シェル厚推算値は比較的良く対応することを確認した。

(4) 高鍛造速度、スラブ幅が狭い場合には短片側の凝固遅れ度RSが増大し、短辺端凝固シェル厚が薄くなることを確認した。

(5) 凝固シェルにモールドバウダーやスラグリム等の異物が捕捉された場合の凝固シェル厚低下をオンライン計算で認識できることを確認した。

文 献

1) S.Nanbu, H.Uehara, H.Yamasaki, K.Ooshima, S.Nakajima and K.Nanba: CAMP-ISIJ, 15(2002), 167.
2) M.Suzuki, M.Suzuki and M.Nakada: ISIJ Int., 41(2001), 670.
3) T.Hayashi, K.Matsuoka, Y.Tanaka, T.Takeda, K.Ooshima and K.Kameyama: CAMP-ISIJ, 23(2010), 904, CD-ROM.
4) S.Itoyama, Y.Habu, K.Sorimachi, A.Kawaharada and T.Yabe: Tetsuto-Hagane, 60(1982), 784.
5) K.Blazek and I.Saucedo: ISIJ Int., 30(1990), 435.
6) M.Kawamoto, K.Nakajima and T.Kanazawa: ISIJ Int., 34(1994), 593.
7) A.Krasilnikov, D.Lieftucht, M.Reifferscheid, E.Hovestadt, T.Schramm, D.Kirsch and P.Scheller: Proc. 5th Int. Cong. on Science and Technology of Steelmaking, ENGICOM GmbH, Radebeul, (2012), 1261.
8) S.Kim, Y.Choi, J.Hwang and S.Lee: Proc. Int. Conf. of AISTech 2015, Vol.2, AIST, Warrandale, PA, (2015), 2507.
9) X.Wang, M.Yao, H.Yin and L.Guo: Ironmaking Steelmaking, 36(2009), 149.
10) K.Isobe: CAMP-ISIJ, 18(2005), 944.
11) S.Okano, T.Nishimura, I.Ooi and T.Chino: Tetsuto-Hagane, 61(1975), 2982.
12) 第3版鉄鋼便覧 Ⅰ、日本鉄鋼協会発、丸善、東京、(1980), 213.
13) S.Watanabe, Y.Tsu, K.Takano and Y.Shiraiishi: J. Jpn. Inst. Met., 45(1981), 242.
14) T.Miyake and H.Nakata: CAMP-ISIJ, 20(2007), 189.
15) I.Sohn, T.Piccone, T.Natarajan, R.Matina and R.Danik: Proc. 6th European Continuous Casting Conf., AIM, Milano, (2008).