FROBENIUS PROPERTY FOR FUSION CATEGORIES OF SMALL INTEGRAL DIMENSION

JINGCHENG DONG, SONIA NATALE, AND LEANDRO VENDRAMIN

Abstract. Let k be an algebraically closed field of characteristic zero. In this paper we prove that fusion categories of Frobenius-Perron dimensions 84 and 90 are of Frobenius type. Combining this with previous results in the literature, we obtain that every weakly integral fusion category of Frobenius-Perron dimension less than 120 is of Frobenius type.

1. Introduction and main results

A fusion category C is called of Frobenius type if for every simple object X of C, the Frobenius-Perron dimension of X divides the Frobenius-Perron dimension of C, that is, the ratio $\text{FPdim} C / \text{FPdim} X$ is an algebraic integer. A classical result of Frobenius asserts that if C is the category of finite-dimensional representations of a finite group, then C is of Frobenius type. Kaplansky conjectured that the representation category of every finite dimensional semisimple Hopf algebra is of Frobenius type; this is the sixth one of ten questions posed by Kaplansky in 1975 [11, Appendix 2]. In general, the conjecture is still open.

A more general related question was raised in [6, Question 1]: it was asked in that paper if there exists a fusion category C which does not have the strong Frobenius property, that is, such that there is a simple object in an indecomposable module category over C whose Frobenius-Perron dimension does not divide the Frobenius-Perron dimension of C. Recall from [6] that a fusion category C is called weakly group-theoretical if it is tensor Morita equivalent to a nilpotent fusion category. By [6, Theorem 1.5] every weakly group-theoretical fusion category does have the strong Frobenius property. Then every such fusion category is of Frobenius type.

In this paper we determine all possible types of integral fusion categories of Frobenius-Perron dimensions 84 and 90. See Theorems 1.1, 1.2. Combining this with the results of the paper [6] for fusion categories of Frobenius-Perron dimensions p^aq^b, pqr and 60, we obtain the following theorem.

Theorem 1.1. Let C be a fusion category of integer Frobenius-Perron dimension less than 120. Then C is of Frobenius type. Furthermore, if $\text{FPdim} C > 1$ and $C \not\cong \text{rep} \mathfrak{h}_5$, then C has nontrivial invertible objects.
Theorem will be proved in Section. Recall that, according to the definition given in [6], a fusion category is called simple if it has no nontrivial proper fusion subcategories. As a consequence of Theorem if $\text{FPdim} \leq 119$ and $\text{FPdim} \neq 60$ or \sqrt{p}, where p is a prime number, then \mathcal{C} is not simple as a fusion category. Combined with the results of the paper [6], the theorem implies that the only weakly integral simple fusion categories of Frobenius-Perron dimension ≤ 119 are the categories $\text{rep} A_5$ of finite-dimensional representations of the alternating group A_5 and the pointed fusion categories $\mathcal{C}(\mathbb{Z}_p, \omega)$ of finite-dimensional \mathbb{Z}_p-graded vector spaces, where p is a prime number, with associativity constraint determined by a 3-cocycle $\omega \in H^3(\mathbb{Z}_p, k^*)$.

The paper is organized as follows. In Section 2 we recall some basic definitions and results on fusion categories. Some useful lemmas are also contained in this section. In Section 3 we consider integral fusion categories and state several results on the possible simple Frobenius-Perron dimensions that will be used later. Most of them have appeared in the literature in the context of representations of semisimple Hopf algebras. In Section 4 we prove our main results on fusion categories of small dimension; the computations in this section are partly handled by a computer.

2. Preliminaries

Recall that a fusion category over k is a k-linear semisimple rigid tensor category \mathcal{C} with finitely many isomorphism classes of simple objects, finite-dimensional hom spaces, and such that the unit object 1 of \mathcal{C} is simple. We refer the reader to [5] for the main notions about fusion categories used throughout.

Let \mathcal{C} be a fusion category over k. Let also $\text{Irr}(\mathcal{C})$ and $\text{G}(\mathcal{C})$ denote the set of isomorphism classes of simple and invertible objects of \mathcal{C}, respectively. Then $\text{Irr}(\mathcal{C})$ is a basis of the Grothendieck ring $K_0(\mathcal{C})$ of \mathcal{C} and $\text{G}(\mathcal{C})$ is a subgroup of the group of units of $K_0(\mathcal{C})$.

The Frobenius-Perron dimension of $x \in \text{Irr}(\mathcal{C})$ is the Frobenius-Perron eigenvalue of the matrix of left multiplication by x in the Grothendieck ring of \mathcal{C}. Thus FPdim extends to a ring homomorphism $\text{FPdim} : K_0(\mathcal{C}) \to \mathbb{R}$. This is the unique ring homomorphism that takes positive values in all elements of $\text{Irr}(\mathcal{C})$. The Frobenius-Perron dimension of \mathcal{C} is the number $\text{FPdim} \mathcal{C} = \sum_{x \in \text{Irr}(\mathcal{C})} (\text{FPdim} x)^2$.

If X is an object of \mathcal{C}, $\text{FPdim} X$ is the Frobenius-Perron dimension of the class of X in $K_0(\mathcal{C})$. We have $\text{FPdim} X \geq 1$, for all objects X of \mathcal{C}. Moreover $\text{FPdim} X = 1$ if and only if X is an invertible object.

Let $y \in K_0(\mathcal{C})$ and write $y = \sum_{x \in \text{Irr}(\mathcal{C})} m(x, y)x$, where $m(x, y) \in \mathbb{Z}$. The integer $m(x, y)$ is called the multiplicity of x in y. This extends to a bilinear form $m : K_0(\mathcal{C}) \times K_0(\mathcal{C}) \to \mathbb{Z}$. If x and y represent the class of the objects X and Y of \mathcal{C}, respectively, then we have $m(x, y) = \dim \text{Hom}_\mathcal{C}(X, Y)$.

Let $x, y, z \in K_0(\mathcal{C})$. Then we have $m(x, y) = m(x^*, y^*)$, and

$$m(x, yz) = m(y^*, xz^*) = m(y, xz^*).$$

Let $x, y \in \text{Irr}(\mathcal{C})$. Then for each $g \in \text{G}(\mathcal{C})$ we have $m(g, xy) = 1$ if and only if $y = x^* g$ and 0 otherwise. In particular, $m(g, xy) = 0$ if $\text{FPdim} x \neq \text{FPdim} y$. Let $x \in \text{Irr}(\mathcal{C})$. Then for all $g \in \text{G}(\mathcal{C})$, $m(g, xx^*) > 0$ if and only if $m(g, xx^*) = 1$ if and only if $gx = x$. The set of isomorphism classes of such invertible objects will be denoted $G[x]$. Thus $G[x]$ is a subgroup of $\text{G}(\mathcal{C})$ of order at most $(\text{FPdim} x)^2$. In
particular, for all $x \in \text{Irr}(C)$, we have a relation

$$xx^* = \sum_{g \in G[x]} g + \sum_{y \in \text{Irr}(C), \text{FPdim } y > 1} m(y, xx^*)y.$$

In fact, the group $G(C)$ acts on the set $\text{Irr}(C)$ by left multiplication. This action preserves Frobenius-Perron dimensions and, for $x \in \text{Irr}(C)$, $G[x]$ is the stabilizer of x in $G(C)$.

For every $\alpha \in \mathbb{R}_+$, we shall use the notation $\text{Irr}_\alpha(C)$ to indicate the set of isomorphism classes of simple objects of C of Frobenius-Perron dimension α. So that $G(C) = \text{Irr}_1(C)$. Notice that, if $|\text{Irr}_\alpha(C)| = 1$ for some $\alpha \in \mathbb{R}_+$, and $x \in \text{Irr}_\alpha(C)$, then $G[x] = G(C)$.

A fusion subcategory of C is a full tensor subcategory D such that if X is an object of C isomorphic to a direct summand of an object Y of D, then X is in D. If D is a fusion subcategory of C, then D is in fact a fusion category and $\text{FPdim } D$ divides $\text{FPdim } C$, that is, the quotient $\text{FPdim } C / \text{FPdim } D$ is an algebraic integer.

Fusion subcategories of C correspond to fusion subrings of the Grothendieck ring of C, that is, subrings R with the property that for all $a \in R$ and for all $x \in \text{Irr}(C)$ such that $m(x, a) \neq 0$, we have $x \in R$. In other words, R is a subring which is spanned by a subset of $\text{Irr}(C)$. A subset X of $\text{Irr}(C)$ spans a fusion subring of $K_0(C)$ if and only if the product of elements of X decomposes as a sum of elements of X.

The group $G(C)$ of invertible objects of C generates a fusion subcategory C_{pt} of C, which is the unique largest pointed fusion subcategory of C. In particular, the order of $G(C)$ coincides with $\text{FPdim } C_{pt}$ and therefore it divides $\text{FPdim } C$.

Let G be a finite group. A fusion category C is called a G-extension of a fusion category D if it admits a faithful grading $C = \bigoplus_{g \in G} C_g$ by the group G, satisfying that the tensor product of C maps $C_g \times C_h \to C_{gh}$ and $(C_g)^* = C_{g^{-1}}$, and such that the trivial homogeneous component C_e is equivalent to D.

Recall from [9] that a fusion category C admits a canonical faithful grading $C = \bigoplus_{g \in U(C)} C_g$, whose trivial component C_e coincides with the adjoint fusion subcategory C_{ad}. The group $U(C)$ is called the universal grading group of C. Any faithful grading $C = \bigoplus_{g \in G} C_g$ by a group G comes from a group epimorphism $U(C) \to G$.

Lemma 2.1. Let C be a fusion category and let $Z(C)$ be its Drinfeld center. Consider the group homomorphism $F_0 : G(Z(C)) \to G(C)$ induced by the forgetful functor $F : Z(C) \to C$. Then the following hold:

(i) C is faithfully graded by the kernel of F_0.

(ii) Suppose $U(C) = 1$. Then the group homomorphism F_0 is injective.

Proof. (i) Observe that if $1 \neq g \in G(Z(C))$ is such that $F(g) \cong 1$, then the pointed fusion subcategory generated by g is Tannakian, by [2]. Then part (i) follows from [6] Proposition 2.9 (i).

(ii) The assumption implies that C admits no faithful group grading. Therefore (ii) follows from (i).

The fusion category C is called **weakly integral** if $\text{FPdim } C$ is a natural number. If $\text{FPdim } X \in \mathbb{Z}$, for all object X of C, C is called **integral**. Suppose C is a weakly integral fusion category. It follows from [9] Theorem 3.10 that either C is integral, or C is a \mathbb{Z}_2-extension of a fusion subcategory D. In particular, if $\text{FPdim } C$ is odd or if $C = C_{ad}$, then C is necessarily integral.
Lemma 2.2. Let $x \in \text{Irr}(\mathcal{C})$. Then the following hold:

(i) The order of $G[x]$ divides $(\text{FPdim } x)^2$.

(ii) The order of $G(\mathcal{C})$ divides $n(\text{FPdim } x)^2$, where n is the number of non-isomorphic simple objects of Frobenius-Perron dimension $\text{FPdim } x$.

Proof. It is enough to show (i). Consider the fusion subcategory $\mathcal{D} \subseteq \mathcal{C}_{\text{pt}}$ generated by $G[x]$. Regard \mathcal{C} as module category over \mathcal{D} with respect to the action given by the tensor product of \mathcal{C}. If X is a simple object of \mathcal{C} representing x, then the definition of $G[x]$ implies that $g \otimes X \cong X$, for all simple object g of \mathcal{D}. Therefore, the full abelian subcategory \mathcal{M} whose objects are isomorphic to direct sums of copies of X is an indecomposable \mathcal{D}-module subcategory of \mathcal{C}. Since X is the unique simple object of \mathcal{M} up to isomorphism, then $\text{FPdim } \mathcal{M} = (\text{FPdim } x)^2$. Part (i) now follows from [5] Proposition 8.15 and Remark 8.17. \qed

Corollary 2.3. Suppose that $G(\mathcal{C})$ is of prime order p. Assume in addition that $p > |\text{Irr}_\alpha(\mathcal{C})| > 0$, for some $\alpha \neq 1$. Then $G[x] = G(\mathcal{C})$, for all $x \in \text{Irr}_\alpha(\mathcal{C})$. In particular, p divides α^2.

Proof. Let $x \in \text{Irr}_\alpha(\mathcal{C})$. Decomposing the set $\text{Irr}_\alpha(\mathcal{C})$ into disjoint orbits under the action of $G(\mathcal{C})$, we get that $G[x] \neq 1$. Then necessarily $G[x] = G(\mathcal{C})$. It follows from Lemma 2.2 that p divides α^2. \qed

Remark 2.4. In the notation of the proof of Lemma 2.2, the rank-one module category \mathcal{M} corresponds to a fiber functor over \mathcal{D}. Being a pointed fusion category, this implies that \mathcal{D} is equivalent as a fusion category to the category $\mathcal{C}(G[x]) = \mathcal{C}(G[x], 1)$ of finite-dimensional $G[x]$-graded vector spaces.

The proof of Corollary 2.3 shows moreover that, under the assumptions of the lemma, we have an equivalence of fusion categories $\mathcal{C}_{\text{pt}} \cong \mathcal{C}(\mathbb{Z}/p)$.

Let $1 = d_0, d_1, \ldots, d_s$, $s \geq 0$, be positive real numbers such that $1 = d_0 < d_1 < \cdots < d_s$, and let n_1, n_2, \ldots, n_s be positive integers. We shall say that \mathcal{C} is of type $(d_0, n_0; d_1, n_1; \cdots ; d_s, n_s)$ if, for all $i = 0, \cdots, s$, n_i is the number of the non-isomorphic simple objects of Frobenius-Perron dimension d_i.

Hence, if \mathcal{C} is of type $(d_0, n_0; d_1, n_1; \cdots ; d_s, n_s)$, then n_0 equals the order of $G(\mathcal{C})$ and we have a relation

\begin{equation}
\text{FPdim } \mathcal{C} = n_0 + d_1^2 n_1 + \cdots + d_s^2 n_s.
\end{equation}

For each $i = 1, \ldots, s$, let $x_i^l \in \text{Irr}(\mathcal{C})$, $1 \leq l \leq n_i$, such that $\text{FPdim } x_i^l = d_i$. Decomposing the tensor product $x_i^l \otimes x_i^s$ into a direct sum of simple objects, and comparing dimensions, we get a relation

$$d_i^2 = |G[x_i^l]| + \sum_{j=1}^s m_j d_j,$$

where $m_j = \sum l m(x_j^l, x_i^l \otimes x_i^s)$, for all j. Hence $m_j \geq 0$, and in addition $m_j = \sum l m(x_j^l, x_i^l \otimes x_i^s) = \sum l m(x_i^l, x_i^s \otimes x_i^l) \leq \sum l \text{FPdim } x_i^l = n_j d_j$.

Lemma 2.5. Let $x, x' \in \text{Irr}(\mathcal{C})$. Then the following are equivalent:

(i) $x^* x' \in \text{Irr}(\mathcal{C})$.

(ii) For all $1 \neq y \in \text{Irr}(\mathcal{C})$, either $m(y, xx^*) = 0$ or $m(y, x'x^*) = 0$.

Proof. See [1] Lemma 6.1. \qed
We state the following lemma for future use. It is a consequence of the solvability of fusion categories of Frobenius-Perron dimension $p^a q^b$ [6, Theorem 1.6].

Lemma 2.6. Suppose $\text{FPdim} \mathcal{C} = p^a q^b$, where p and q are prime numbers, $a, b \geq 0$, such that $a + b \neq 0$. Then the group $G(\mathcal{C})$ is not trivial.

Proof. The proof is by induction on $\text{FPdim} \mathcal{C}$. The assumption implies that \mathcal{C} is solvable [6, Theorem 1.6]. Then \mathcal{C} is either a G-equivariantization or a G-extension of a fusion category \mathcal{D}, where G is a cyclic group of prime order. If \mathcal{C} is a G-equivariantization, then \mathcal{C} contains a fusion subcategory equivalent to $\text{rep} G$, hence the lemma follows in this case. Otherwise, \mathcal{C} has a faithful grading $\mathcal{C} = \bigoplus_{g \in G} \mathcal{C}_g$, where $\mathcal{C}_e = \mathcal{D}$. Since $\text{FPdim} \mathcal{D}$ divides $\text{FPdim} \mathcal{C}$, then either $\text{FPdim} \mathcal{D} = 1$ and \mathcal{C} is pointed, or $1 < \text{FPdim} \mathcal{D} = p^a q^b$, with $|G| \text{FPdim} \mathcal{D} = \text{FPdim} \mathcal{C}$. In the first case we are done. In the last case, \mathcal{D} has nontrivial invertible objects, by induction. Hence so does \mathcal{C}. This finishes the proof of the lemma. \blacksquare

3. Integral Fusion Categories

Along this section \mathcal{C} will denote an integral fusion category over k. We collect here some useful facts about the structure of \mathcal{C} that will be useful in the proof of our main results. Some of these results have been established in the literature in the case where \mathcal{C} is the category of finite-dimensional representations of a semisimple Hopf algebra, but their proofs only make use of the properties of the Grothendieck ring explained in Section 2. Therefore these proofs also work *mutatis mutandis* in the fusion category setting, and thus they are omitted in our exposition.

In what follows we assume that \mathcal{C} is of type $(1, n_0; d_1, n_1; \cdots; d_s, n_s)$.

Lemma 3.1. Let $d = \gcd(d_1, \cdots, d_s)$. Then d divides n_0.

In particular, if n_0 is a prime number and $d \neq 1$, then $d = p$. On the other hand, if \mathcal{C} is of type $(1, n_0; d, n)$, then d divides n_0 (see [3, Lemma 5.2], [12, Theorem 5.1 (b)]), hence in this case \mathcal{C} is of Frobenius type.

Proof. Let $x \in \text{Irr}(\mathcal{C})$ such that $\text{FPdim} x > 1$. Decomposing the product xx^* and taking Frobenius-Perron dimensions, we get that d divides the order of $G[x]$. This implies the lemma. \blacksquare

Lemma 3.2. Let \mathcal{C} be an integral fusion category. Suppose that one of the following conditions hold:

(a) $\text{Irr}_4(\mathcal{C}) = \emptyset$ and $G[x] \neq 1$, for all $x \in \text{Irr}_2(\mathcal{C})$, or

(b) $G[x] \cap G[x'] \neq 1$, for all $x, x' \in \text{Irr}_2(\mathcal{C})$.

Then \mathcal{C} has a fusion subcategory of type $(1, n_0; 2, n)$, where $n = |\text{Irr}_2(\mathcal{C})|$.

Proof. Assume first that (a) holds. Let $x, y \in \text{Irr}_2(\mathcal{C})$. Note that the invertible objects appearing in xy with positive multiplicity form a coset of the stabilizer $G[x]$ in $G(\mathcal{C})$, and therefore there is an even number of them. The remaining simple constituents (if any) of xy should therefore belong to $\text{Irr}_2(\mathcal{C})$.

In view of Lemma 2.5 assumption (b) also implies that the product of any two elements $x, y \in \text{Irr}(\mathcal{C})$ such that $\text{FPdim} x, \text{FPdim} y \leq 2$ decomposes a sum of elements of $\text{Irr}(\mathcal{C})$ of Frobenius-Perron dimension ≤ 2. See [13, Theorem 2.4.2].

Then we have shown that both assumptions (a) and (b) imply that the set $\{x \in \text{Irr}(\mathcal{C}) \mid \text{FPdim} x \leq 2\}$ spans a fusion subring of $K_0(\mathcal{C})$, corresponding to a fusion subcategory of the prescribed type. \blacksquare
Lemma 3.3. Suppose that $\text{Irr}_2(C)$ is odd and the order of $G(C)$ is divisible by 4. Then C has a non-pointed fusion subcategory of Frobenius-Perron dimension 8.

Proof. It follows from [13, Proposition 2.1.3]. □

The following theorem is a restatement of [15, Theorem 11] in the context of fusion categories. The theorem has found many applications in the classification of low-dimensional semisimple Hopf algebras, since such semisimple Hopf algebras often have irreducible characters of degree 2.

Theorem 3.4. Suppose $x \in \text{Irr}(C)$ is such that $\text{FPdim} x = 2$. Then at least one of the following holds:

(i) $G[x] \neq 1$.
(ii) C has a fusion subcategory D of type $(1, 2, 2, 2, 1; 2, 1, 3, 2)$, such that $x \notin \text{Irr}(D)$ which has an invertible object g of order 2 such that $gx \neq x$.
(iii) C has a fusion subcategory of type $(1, 3, 3, 1)$ or $(1, 1; 3, 3, 1, 4, 1; 5, 1)$. □

It follows that if $G[x] = 1$, then $\text{FPdim} C$ is divisible by 12, 24, or 60. In particular, $\text{FPdim} C$ is always even.

In the next lemmas we list some consequences of Theorem 3.4.

Lemma 3.5. (i) Suppose that the order of $G(C)$ is odd. Assume that $\text{Irr}_2(C) \neq \emptyset$. Then $\text{Irr}_3(C) \neq \emptyset$. Further, if $\text{Irr}_4(C) = \emptyset$ or $\text{Irr}_3(C) = \emptyset$, then C has a fusion subcategory of type $(1, 3, 3, 1)$ and hence 12 divides $\text{FPdim} C$.

(ii) Suppose that $G(C) = 1$ and $\text{Irr}_2(C) \neq \emptyset$. Then $\text{Irr}_3(C)$, $\text{Irr}_4(C)$ and $\text{Irr}_5(C)$ are non-empty and 60 divides $\text{FPdim} C$.

(iii) Suppose that $G(C)$ is of prime order $p \neq 3$ and $\text{Irr}_2(C) \neq \emptyset$. If $\text{Irr}_4(C) = \emptyset$, then $G(C)$ is of order 2 and C has a fusion subcategory of Frobenius-Perron dimension $2 + 4 | \text{Irr}_2(C) |$.

(iv) Suppose that $G(C)$ is of prime order p. Assume that $\text{Irr}_2(C) \neq \emptyset$ and $\text{FPdim} C$ is not divisible by 12. Then $p = 2$ and C has a fusion subcategory of Frobenius-Perron dimension $2 + 4 | \text{Irr}_2(C) |$.

Proof. (i) The assumption implies that $G[x] = 1$, for all $x \in \text{Irr}_2(C)$. Moreover, C cannot have fusion subcategories of type $(1, 2, 2, 2, 1; 3, 2)$ or $(1, 3, 3, 1)$. Part (i) then follows from Theorem 3.4.

(ii) Follows directly from Theorem 3.4.

(iii) Let $x \in \text{Irr}_2(C)$. Assume first that $G[x] = 1$. By [13, Remark 2.2.2 (i)], there exist $y \in \text{Irr}_3(C)$ such that $|G[y]| = 3$. Then 3 divides $|G(C)|$, which is a contradiction. Therefore $G[x] \neq 1$ and hence $G[x] = G(C)$ is of order 2. Since this holds for all $x \in \text{Irr}_2(C)$, part (iii) follows from Lemma 3.2.

(iv) Let $x \in \text{Irr}_2(C)$. Since 12 does not divide $\text{FPdim} C$, Theorem 3.3 implies that $G[x] \neq 1$. Hence $G[x] = G(C)$, for all $x \in \text{Irr}_2(C)$, and therefore $p = 2$. Part (iv) follows from Lemma 3.2. □

Lemma 3.6. Suppose that $\text{FPdim} x = 2$ for some $x \in \text{Irr}(C)$. Let n_0 be the order of $G(C)$ and let $s = | \text{Irr}_2(C) |$. Assume one of the following conditions hold:

(i) 12 does not divide $\text{FPdim} C$ and $\text{Irr}_4(C) = \emptyset$.
(ii) $n_0 = 2$ and $\text{FPdim} C$ is not divisible by 24 or 60.
(iii) $n_0 = 2$ and $\text{Irr}_3(C) = \emptyset$.
(iv) $\text{Irr}_3(C) = \text{Irr}_4(C) = \emptyset$.

Then \mathcal{C} has a fusion subcategory of type $(1, n_0; 2, s)$. In particular, $\text{FPdim}\mathcal{C}$ is divisible by $n_0 + 4s$.

Proof. (i) Suppose that 12 does not divide $\text{FPdim}\mathcal{C}$. Then Theorem 3.4 shows that $G[x] \neq 1$ for all $x \in \text{Irr}_2(\mathcal{C})$. Hence (i) follows from Lemma 3.2.

(ii) In this case \mathcal{C} cannot have fusion subcategories of type $(1, 3; 3, 1)$. It follows from Theorem 3.4 that $G[x] = G(\mathcal{C})$, for all $x \in \text{Irr}_2(\mathcal{C})$. Then (ii) follows from Lemma 3.2.

(iii) By Theorem 3.4, $G[x] \neq 1$, for all $x \in \text{Irr}_2(\mathcal{C})$. Hence (iii) follows from Lemma 3.2.

(iv) Since $\text{Irr}_2(\mathcal{C}) = \emptyset$, Theorem 3.4 implies that $G[x] \neq 1$, for all $x \in \text{Irr}_2(\mathcal{C})$. Then $G[x] = G(\mathcal{C})$, for all $x \in \text{Irr}_2(\mathcal{C})$, and (iv) follows also from Lemma 3.2.

The next proposition is a restatement of some results of this section as well as other results in the literature, in terms of fusion category types. It provides us with conditions that can be easily handled by a computer.

Proposition 3.7. Let \mathcal{C} be an integral fusion category over k.

(i) If 60 does not divide $\text{FPdim}\mathcal{C}$, then \mathcal{C} cannot be of type $(1, 1; 2, m; \cdots)$.

(ii) If 8 does not divide $\text{FPdim}\mathcal{C}$, then \mathcal{C} cannot be of type $(1, n_0; 2, m; \cdots)$, where n_0 is divisible by 4 and m is odd.

(iii) If n_0 does not divide $\text{FPdim}\mathcal{C}$ or $n_1d_i^2$, for some $2 \leq i \leq s$, then \mathcal{C} cannot be of type $(1, n_0; d_2, n_2; \cdots; d_s, n_s)$.

(iv) If t does not divide n_0, then \mathcal{C} cannot be of type $(1, n_0; t, n)$.

(v) If $s \leq 2$, then \mathcal{C} cannot be of type $(1, 1; d_1, n_1; \cdots, d_s, n_s)$.

(vi) If neither 24 nor 60 nor $2 + 4m$ divide $\text{FPdim}\mathcal{C}$, then \mathcal{C} cannot be of type $(1, 2; 2, m; \cdots)$.

(vii) If neither 12 nor $n_0 + 4m$ divide $\text{FPdim}\mathcal{C}$, and \mathcal{C} does not have simple objects of Frobenius-Perron dimension 4, then \mathcal{C} cannot be of type $(1, n_0; 2, m; \cdots)$.

(viii) If $n_0 + 4m$ does not divide $\text{FPdim}\mathcal{C}$ and $d \geq 5$, then \mathcal{C} cannot be of type $(1, n_0; 2, m; d, n; \cdots)$.

Proof. Part (i) follows from Theorem 3.4. Part (ii) follows from Lemma 3.8. Part (iii) follows from Lemma 2.2. Part (iv) follows from Lemma 3.1. Part (v) follows from [10] Lemma 11. Parts (vi), (vii), and (viii) follow from Lemma 3.6.

We end this section with some further applications of Theorem 3.4 that will be used later on (c.f. the proof of Theorem 3.2).

Proposition 3.8. Let $n \geq 1$ be an odd natural number and let \mathcal{C} be an integral fusion category such that $\text{FPdim}\mathcal{C} = 2n$. Assume in addition that $\text{Irr}_2(\mathcal{Z}(\mathcal{C})) \neq \emptyset$. Then \mathcal{C} is a \mathbb{Z}_p-extension or a \mathbb{Z}_p-equivariantization of a fusion category \mathcal{D}, for some prime number p.

Proof. It will be enough to show that $\mathcal{Z}(\mathcal{C})$ has a nontrivial Tannakian subcategory \mathcal{E}. In this case, $\mathcal{E} \cong \text{rep}\Gamma$ where the order of Γ divides $\text{FPdim}\mathcal{C} = 2n$: indeed, $\mathcal{E} \subseteq \mathcal{E}'$, where \mathcal{E}' denotes the M"{u}ger’s centralizer of \mathcal{E} in $\mathcal{Z}(\mathcal{C})$, and $\text{FPdim}\mathcal{E} \text{FPdim}\mathcal{E}' = (\text{FPdim}\mathcal{C})^2$. In particular, Γ is solvable (see e.g. [10] Theorem 1.35), and it follows that \mathcal{E}, and hence also $\mathcal{Z}(\mathcal{C})$, contains a Tannakian subcategory of prime dimension. By [6] Propositions 2.9 and 2.10, \mathcal{C} is an equivariantization or an extension of a fusion category \mathcal{D}.

Consider the forgetful functor $F : \mathcal{Z}(\mathcal{C}) \to \mathcal{C}$. It follows from Lemma 2.1 (ii) that F induces an injective group homomorphism $G(\mathcal{Z}(\mathcal{C})) \to G(\mathcal{C})$. Then the
order of $G(Z(C))$ cannot be divisible by 4 (since 4 does not divide $\text{FPdim } C$). By [6] Theorem 2.11, the Frobenius-Perron dimensions of simple objects of $Z(C)$ divide $\text{FPdim } C$. Hence $Z(C)$ has no simple objects of Frobenius-Perron dimension 4.

Suppose that $Z(C)$ has a fusion subcategory D of type $(1, 3; 3, 1)$. Let $Z_2(D) \subseteq D$ denote the Müger center of D. If $Z_2(D)$ is trivial, then D is non-degenerate and there is an equivalence of braided fusion categories $Z(C) \cong D \boxtimes D'$, where D' is the Müger centralizer of D. In particular, D' must have simple objects of Frobenius-Perron dimension 2. But this is impossible since $\text{FPdim } D'$ is odd [6 Theorem 2.11]. Hence $Z_2(D)$ is not trivial, and therefore $\text{rep } Z_3 \subseteq Z_2(D)$. But $\text{rep } Z_3$, being an odd-dimensional symmetric fusion category, is Tannakian. Hence we are done in this case. We may thus assume that $Z(C)$ has no fusion subcategory D of type $(1, 3; 3, 1)$.

Let $x \in \text{Irr}_2(Z(C))$. Since $\text{FPdim } Z(C)$ is not divisible by 24 and $\text{Irr}_4(Z(C)) = \emptyset$, it follows from Theorem 3.4 and the discussion in the previous paragraph, that $G[x] \neq 1$. Since the order of $G(Z(C))$ is not divisible by 4, then $G[x]$ is of order 2, for all $x \in \text{Irr}_2(Z(C))$. Furthermore, the abelian group $G(Z(C))$ has a unique subgroup of order 2, and therefore $G[x] = G[x'] \simeq Z_2$, for all $x, x' \in \text{Irr}_2(Z(C))$. Lemma 3.2 implies that $Z(C)$ has a fusion subcategory D of type $(1, n_0; 2, n)$, where $n_0 = |G(C)|$ and $n \geq 1$. Since D is braided, then D contains a Tannakian subcategory, namely, the Müger center of the fusion subcategory generated by a self-dual object of $\text{Irr}_2(D)$ (see [13] Lemma 4.7). This finishes the proof of the proposition.

Corollary 3.9. Let C be an integral fusion category such that $\text{FPdim } C = 90$. Suppose that C has a fusion subcategory D of Frobenius-Perron dimension 6. Then C is weakly group-theoretical.

Proof. By Proposition 3.8 we may assume that $\text{Irr}_2(Z(C)) = \emptyset$. Indeed, if $Z(C)$ had a simple object of Frobenius-Perron dimension 2, then C would be an equivariantization of an extension of a fusion category D, whose Frobenius-Perron dimension divides 90 and is less than 90. In view of the results of [6], the fusion category D (and then also C) must be weakly group-theoretical. As in the proof of Proposition 3.8, it will be enough to show that $Z(C)$ has a nontrivial Tannakian subcategory. To do this, we shall follow the lines of the proof of [6] Theorem 9.16.

Let $I : C \to Z(C)$ be the left adjoint of the forgetful functor $F : Z(C) \to C$. Then $A = I(1)$ is a commutative algebra in $Z(C)$ such that $C \cong Z(C)_A$ as fusion categories [6]. We may assume that A contains no nontrivial invertible object of $Z(C)$; indeed, if $m(g, A) \neq 0$, where $1 \neq g \in G(Z(C))$, then $m(1, F(g)) \neq 1$ and therefore $F(g) \cong 1$. Hence the fusion subcategory generated by g is Tannakian and we are done.

The fusion subcategory $D \subseteq C$ corresponds to a subalgebra B of A such that $\text{FPdim } B = \text{FPdim } C/\text{FPdim } D = 15$. In view of [6] Theorem 2.11, the Frobenius-Perron dimensions of simple objects of $Z(C)$ divide 90. Hence the possible decompositions of B as an object of $Z(C)$ are the following:

$$1 \oplus X_3 \oplus X_3' \oplus X_3'' \oplus X_3, \quad 1 \oplus X_3 \oplus X_5 \oplus X_6, \quad 1 \oplus X_5 \oplus X_9,$$

where X_3, X_3', X_3'' are simple objects of Frobenius-Perron dimension 3, and X_5, X_6, X_9 are simple objects of Frobenius-Perron dimensions 5, 6 and 9, respectively.

It follows that $Z(C)$ has simple objects of prime power dimension, and therefore it contains a nontrivial symmetric subcategory [6 Corollary 7.2]. We may assume
\(\mathcal{Z}(\mathcal{C}) \) has a unique nontrivial symmetric subcategory \(\mathcal{E} \), which is equivalent to the category of super vector spaces. Note that \(\mathcal{E} \subseteq \mathcal{Z}(\mathcal{C})_{\text{pt}} \) and \(\text{FPdim}(\mathcal{E}) = 2 \). Let \(\mathcal{Z} = \mathcal{E}' \subseteq \mathcal{Z}(\mathcal{C}) \) be the Müger centralizer of \(\mathcal{E} \). Then \(\mathcal{E} \subseteq \mathcal{Z} \), since \(\mathcal{E} \) is symmetric, and \(\mathcal{Z} \) is a slightly degenerate (as \(\mathcal{Z}_2(\mathcal{E}') = \mathcal{E} \)) fusion subcategory of Frobenius-Perron dimension \((\text{FPdim}\mathcal{C})^2/2 \).

In particular the group \(G = G(\mathcal{Z}(\mathcal{C})) \neq 1 \) and, since \(G(\mathcal{Z}(\mathcal{C})) \) is isomorphic to the universal grading group of \(\mathcal{Z}(\mathcal{C}) \) (Theorem 6.2), there is a faithful \(G \)-grading on \(\mathcal{Z}(\mathcal{C}) \), with trivial component \(\mathcal{Z}(\mathcal{C})_{\text{ad}} \). By [9] Corollary 6.9], we have \(\mathcal{Z}(\mathcal{C})'_{\text{ad}} = \mathcal{Z}(\mathcal{C})_{\text{pt}} \). Since \(\mathcal{E} \subseteq \mathcal{Z}(\mathcal{C})_{\text{pt}} \), then \(\mathcal{Z}(\mathcal{C})'_{\text{pt}} = \mathcal{Z}(\mathcal{C})_{\text{ad}} \subseteq \mathcal{Z} \).

Note that if the slightly degenerate integral braided category \(\mathcal{Z} \) has a simple object of odd prime power dimension, then it follows from [6, Proposition 7.4] that \(\mathcal{Z} \), and thus also \(\mathcal{Z}(\mathcal{C}) \), contains a nontrivial Tannakian subcategory. Then we are done in this case.

Consider first the case where \(\text{Irr}_3(\mathcal{Z}(\mathcal{C})) \neq 0 \) and let \(X \) be a simple object with \(\text{FPdim} X = 3 \). We have \(X \otimes X^* \in \mathcal{Z}(\mathcal{C})_{\text{ad}} \subseteq \mathcal{Z} \). Therefore we may assume that \(X \otimes X^* \) has no simple constituents of odd prime power dimension. This implies that \(X \otimes X^* = \bigoplus_{a \in G[\mathcal{C}]} a \bigoplus Y \), where \(|G[\mathcal{C}]| = 3 \) and \(Y \) is a simple object of Frobenius-Perron dimension 6.

In particular \(G[X] \subseteq G(\mathcal{Z}) \) we may assume that \(G(\mathcal{Z}) \) is of order 6; moreover, \(\mathcal{Z}_{\text{pt}} = \mathcal{E} \boxtimes B_0 \), where \(B_0 \) is the fusion subcategory generated by \(G[X] \). On the other hand, we may assume that \(B_0 \) is non-degenerate (otherwise it would be symmetric and hence Tannakian). Hence \(\mathcal{Z} = B_0 \boxtimes B'_0 \), implying that \((B'_0)_{\text{pt}} = \mathcal{E} \).

Since \(Y \in \mathcal{Z}(\mathcal{C})_{\text{ad}} \subseteq \mathcal{Z} \) is a simple object, then \(Y = g \boxtimes Z \), where \(g \) is an invertible \(Y \) and \(Z \) is a simple object of \(B'_0 \). Let \(\tilde{Y} = g^{-1} \otimes Y \). Then \(\tilde{Y} \in B'_0 \) and \(G[\tilde{Y}] = G[Y] \) is of order 3. This is a contradiction, since we have just seen that \(B'_0 \) has only two invertible objects.

We may therefore assume that \(\text{Irr}_3(\mathcal{Z}(\mathcal{C})) = 0 \). Then the Frobenius-Perron dimensions of simple objects of \(\mathcal{Z}(\mathcal{C}) \) are among the numbers 1, 5, 6, 9, 10, 15, 18, 30 and 45. Moreover, in view of the possible decompositions in [2], \(\text{Irr}_5(\mathcal{Z}(\mathcal{C})) \) and \(\text{Irr}_9(\mathcal{Z}(\mathcal{C})) \) are both non-empty.

Let \(X \in \mathcal{Z}(\mathcal{C}) \) be a simple object of Frobenius-Perron dimension 5 and let \(B \) denote the fusion subcategory generated by \(X \). We claim that \(B' \) is a nontrivial proper fusion subcategory of \(\mathcal{Z}(\mathcal{C}) \). Indeed, there must exist a simple object \(Y \) of Frobenius-Perron dimension not divisible by 5 such that \(X \) and \(Y \) projectively centralize each other. Otherwise \(S_{X,Y} = 0 \) for all such simple objects [6, Lemma 7.1]. As in the proof of [6, Corollary 7.2], the orthogonality of columns of the \(S \)-matrix imply a relation

\[
0 = \sum_{Y \in \text{Irr}(\mathcal{Z}(\mathcal{C}))} \frac{S_{X,Y}}{5} \text{FPdim} Y = 1 + \sum_{\substack{1 \neq Y \in \mathcal{Z}(\mathcal{C})_{\text{pt}} \\text{FPdim} Y,}} \frac{S_{X,Y}}{5} \text{FPdim} Y,
\]

which is impossible. Thus there exists a simple object \(Y \) with \(\text{FPdim} Y = 6, 9 \) or 18 such that \(X \) and \(Y \) projectively centralize each other. Then \(Y \otimes Y^* \in B' \) and the claim follows (note that \(B' \neq \mathcal{Z}(\mathcal{C}) \) since otherwise \(\text{Vec} = \mathcal{Z}(\mathcal{C})' = B' = B \)).

Let \(\mathcal{D} = B' \). If \(\mathcal{D} \) is degenerate, then its Müger center \(\mathcal{Z}_2(\mathcal{D}) \) is a symmetric fusion subcategory of \(\mathcal{Z}(\mathcal{C}) \) and therefore \(\mathcal{Z}_2(\mathcal{D}) = \mathcal{E} \subseteq \mathcal{D} \). But this implies that \(B = \mathcal{D}' \subseteq \mathcal{E}' = \mathcal{Z} \), thus \(X \) is a simple object of odd prime power dimension of \(\mathcal{Z} \) and we are done.
We may therefore assume that \(\mathcal{D} \) is non-degenerate. Hence \(\mathcal{Z}(\mathcal{C}) = \mathcal{D} \boxtimes \mathcal{D}' = \mathcal{D} \boxtimes \mathcal{B}, \) and \(\mathcal{B} \) is non-degenerate. Since \(\mathcal{B} \) has a simple object of prime dimension 5, it follows from [6] Corollary 7.2 that \(\mathcal{B} \) contains a symmetric fusion subcategory. Hence \(\mathcal{E} \subseteq \mathcal{B}. \) In particular, \(\mathcal{E} \nsubseteq \mathcal{D} \) and we obtain that \(\mathcal{D} \) has no simple objects of Frobenius-Perron dimension. This implies that all simple objects of Frobenius-Perron dimension 5 and 9 belong to \(\mathcal{B}. \)

Let \(Z \) be a non-invertible simple constituent of \(Y \otimes Y^* \), where \(Y \) is a simple object with \(\text{FPdim} Y = 6, 9 \) or 18 that projectively centralizes \(X \). Then \(Z \in \mathcal{D} \) and the Frobenius-Perron dimension of \(Z \) is either 6, 10, 15, 18, 30 or 45. On the other hand, if \(X_5, X_9 \in \mathcal{B} \) are simple objects of \(\mathcal{B} \) of Frobenius-Perron dimensions 5 and 9, respectively, then \(Z \boxtimes X_5 \) and \(Z \boxtimes X_9 \) are simple objects of \(\mathcal{Z}(\mathcal{C}) = \mathcal{D} \boxtimes \mathcal{B} \) of Frobenius-Perron dimension 5 \(\text{FPdim} Z \) and 9 \(\text{FPdim} Z \). This contradicts [6] Theorem 2.11 (i) because these numbers cannot both divide 90. This finishes the proof of the corollary. \(\square \)

4. Fusion categories of small dimension

The computations in this section were partly handled by a computer. Some of them were done using [7]. For example, it is easy to write a computer program by which one finds out all possible positive integers \(1 = d_1, d_2, \ldots, d_\nu \) and \(n_1, n_2, \ldots, n_\nu \) such that \(84 = \sum_{i=1}^\nu n_i d_i^2 \), and then one can exclude those which are not possible types by using Proposition [67]

Theorem 4.1. Let \(\mathcal{C} \) be an integral fusion category of Frobenius-Perron dimension 84. Then \(\mathcal{C} \) is of Frobenius type. Further, the group \(\text{G}(\mathcal{C}) \) is of order 2, 3, 4, 6, 12, 21 or 28 and \(\mathcal{C} \) is of one of the following types:

\[
\begin{align*}
(1, 2; 2, 3; 2; 4; 1; 6, 1), (1, 2; 2, 3; 3; 6; 4, 1), (1, 2; 3; 2; 4, 4), \\
(1, 3; 2; 18; 3, 1), (1, 3; 2; 9; 3, 5), (1, 3; 2; 9; 3; 1; 6, 1), \\
(1, 3; 2; 6; 3, 1; 4, 3), (1, 3; 3; 9), (1, 3; 3; 5; 6, 1), (1, 3; 3; 1; 6, 2), \\
(1, 4; 2; 20), (1, 4; 2; 16; 4, 1), (1, 4; 2; 12; 4, 2), (1, 4; 2; 8; 4, 3), (1, 4; 2; 4; 4, 4), \\
(1, 4; 2; 3; 8), (1, 4; 2; 2; 6, 2), (1, 4; 2; 2; 3; 4; 6, 1), (1, 4; 4; 5), \\
(1, 6; 2; 3; 2; 4; 3), (1, 6; 2; 6; 3; 2; 6, 1), (1, 6; 2; 15; 3, 2), \\
(1, 12; 2; 18), (1, 12; 3; 8), (1, 12; 6; 2), (1, 12; 3; 4; 6, 1), (1, 12; 2; 6; 4, 3), \\
(1, 21; 3, 7), (1, 28; 2; 14).
\end{align*}
\]

Proof. Assume first that \(\mathcal{C} \) is of Frobenius type. In view of the results in Section [8] a computer program gives the prescribed ones as the only possible types in dimension 84. In fact, using Proposition [3,7] the list of all possible types can be reduced to the type \((1, 1; 3, 2; 4, 1; 7, 1)\) and the types appearing in the claim. But the type \((1, 1; 3, 2; 4, 1; 7, 1)\) can be discarded as follows: Let \(x_3 \in \text{Irr}_3(\mathcal{C}) \). Then \(x_3^2 = 1 + 2x_4 \), where \(x_4 \in \text{Irr}_4(\mathcal{C}) \). From \(m(x_4, x_3^2) = m(x_3^2, x_4) = 2 \), we have \(x_4 x_3 = 2x_3 + 2x_3', \) where \(x_3 \neq x_3' \in \text{Irr}_3(\mathcal{C}) \). Then \(m(x_3', x_4 x_3) = m(x_4, x_3' x_3^2) = 2 \), which means that \(x_3' x_3^2 = 2x_4 + 1 \). So \(x_3 = x_3' \), a contradiction.

Now assume that \(\mathcal{C} \) is not of Frobenius type. It follows from Proposition [3,7] that \(\mathcal{C} \) has one of the following types: \((1, 1; 3, 1; 5, 1; 7, 1), (1, 2; 3, 2; 8, 1), (1, 4; 4; 1; 8, 1), (1, 2; 4; 2; 5, 2)\). We shall exclude these types below.
Type (1; 1; 3; 1; 5; 1; 7; 1). Let \(x_3, x_5, x_7 \in \text{Irr}(\mathcal{C}) \) of Frobenius-Perron dimensions 3, 5 and 7, respectively. From \(x_3 x_5^3 = 1 + x_3 + x_5 \), we have \(m(x_5, x_3 x_5^3) = m(x_3, x_5 x_3) = 1 \), which means that \(x_5 x_3 = x_3 + x_5 + x_7 \). Then \(m(x_5, x_3 x_5) = m(x_5, x_3 x_5) = m(x_5, x_5 x_3^2) = 1 \), which means that \(x_5^2 = 1 + x_3 + 3x_7 \). Then \(m(x_7, x_5^2) = m(x_3, x_7 x_5) = 3 \), which means that \(x_7 x_5 = 3x_5 + 2x_3 + 2x_7 \). Then \(m(x_3, x_7 x_3) = m(x_7, x_3 x_7) = 2 \), which means that \(x_3 x_5 = 2x_7 + 1 \). This contradicts Schur’s Lemma.

Type (1; 2; 3; 2; 8; 1). Let \(x_3 \in \text{Irr}(\mathcal{C}) \). Then \(x_3 x_3^2 = 1 + x_8 \), where \(x_8 \) is the unique simple object of Frobenius-Perron dimension 8. From \(m(x_8, x_3 x_3^2) = m(x_3, x_3 x_3) = 1 \), we have \(x_8 x_5 = x_3 + mx_3^2 + nx_8 \), where \(3m + 8n = 21 \) and \(x_3 \neq x_5 \in \text{Irr}(\mathcal{C}) \). From \(m(x_5^2, x_8 x_3) = m(x_8, x_5 x_3^2) = m \), we know that \(m \leq 1 \). Hence, the equation \(3m + 8n = 21 \) cannot hold true.

Type (1; 4; 4; 1; 8; 1). Let \(x_4, x_8 \in \text{Irr}(\mathcal{C}) \) of Frobenius-Perron dimensions 4 and 8, respectively, and \(G(\mathcal{C}) = \{1, g_1, g_2, g_3\} \). Then
\[
x_4^2 = x_4 x_4^3 = 1 + g_1 + g_2 + g_3 + 3x_4 \quad \text{or} \quad x_4 x_4^2 = 1 + g_1 + g_2 + g_3 + x_4 + x_8.
\]
If the first possibility holds, then the set \(G(\mathcal{C}) \cup \text{Irr}(\mathcal{C}) \) spans a fusion subring of \(K_0(\mathcal{C}) \). Hence, \(\mathcal{C} \) has a fusion subcategory of Frobenius-Perron dimension 20. This is impossible since 20 does not divide \(\text{FPdim} \mathcal{C} \). If the second possibility holds, then \(m(x_8, x_4 x_4^3) = m(x_4, x_8 x_4) = 1 \), which means that \(x_8 x_4 = x_4 + mx_8 \), where \(m \) is a non-negative integer. This is impossible.

Type (1; 2; 4; 2; 5; 2). Let \(x_4 \in \text{Irr}(\mathcal{C}) \) and let \(G(\mathcal{C}) = \{1, g\} \). Then there must exist \(z \in \text{Irr}(\mathcal{C}) \) such that \(m(z, x_4 x_4^3) = 1, 2 \) or 3.

If \(m(z, x_4 x_4^3) = 3 \) then \(m(x_4, z x_4) = 3 \). This means that \(z x_4 = 3x_4 + 2y \), where \(x_4 \neq y \in \text{Irr}(\mathcal{C}) \). Then \(m(y, z x_4) = m(z, y x_4) = 2 \). This means that \(y x_4^3 = 2z + u \), where \(u \in \text{Irr}(\mathcal{C}) \). Notice that, in our case, \(x_4 x_4^3 = 1 + 3z \), and hence \(y = gx_4 \). Hence, \(y x_4^3 = g x_4 x_4^3 = g(1 + 3z) \), which contradicts with \(m(z, y x_4) = 2 \).

If \(m(z, x_4 x_4^3) = 2 \) then \(m(x_4, z x_4) = 2 \). This means that \(z x_4 = 2x_4 + 3y \), where \(x_4 \neq y \in \text{Irr}(\mathcal{C}) \). Then \(m(y, z x_4) = m(z, y x_4) = 3 \). This implies that \(y x_4^3 = 3z + g \), and hence \(y = gx_4 \). Hence, \(y x_4^3 = gx_4 x_4^3 = 3z + g \), which means that \(x_4 x_4^3 = 3g x_4 + 1 \).

This contradicts the assumption that \(m(z, x_4 x_4^3) = 2 \).

If \(m(z, x_4 x_4^3) = 1 \) then \(m(x_4, z x_4) = 1 \). This means that \(z x_4 = x_4 + 4y \), where \(x_4 \neq y \in \text{Irr}(\mathcal{C}) \). Then \(m(y, z x_4) = m(z, y x_4) = 4 \). This is a contradiction. This completes the proof of the theorem.

\[\square \]

Theorem 4.2. Let \(\mathcal{C} \) be an integral fusion category of Frobenius-Perron dimension 90. Then \(\mathcal{C} \) is of Frobenius type. Moreover, the group \(G(\mathcal{C}) \) is of order 2, 6, 9, 10, 15, 18, 30 or 45 and \(\mathcal{C} \) is of one of the following types:

\[
(1; 2; 2; 4; 3; 8), (1; 2; 2; 4; 6; 2), (1; 2; 2; 4; 3; 4; 6; 1), (1; 2; 2; 22),
(1; 6; 2; 3; 3; 8), (1; 6; 2; 3; 6; 2), (1; 6; 2; 3; 3; 4; 6; 1), (1; 6; 2; 21),
(1; 9; 3; 9), (1; 9; 3; 1; 6; 2), (1; 9; 3; 5; 6; 1), (1; 9; 9; 1), (1; 10; 2; 20), (1; 15; 5; 3),
(1; 18; 2; 18), (1; 18; 3; 8), (1; 18; 3; 4; 6; 1), (1; 18; 6; 2), (1; 30; 2; 15), (1; 45; 5; 3).
\]

Proof. Assume first that \(\mathcal{C} \) is of Frobenius type. Besides of the types listed in the claim, a computer calculation combined with Proposition 3.7 yields the additional types \((1; 5; 2; 10; 3; 5), (1; 9; 2; 9; 3; 5), (1; 3; 2; 3; 5; 3), (1; 9; 2; 9; 3; 1; 6; 1) \). These four types can be excluded by Lemma 3.3.
Now assume that \mathcal{C} is not of Frobenius type. By Proposition 3.7, \mathcal{C} has one of the following types:

$(1, 1; 3, 1; 4, 1; 8, 1), (1, 2; 2, 2; 4, 1; 8, 1), (1, 2; 4, 1; 6, 2), (1, 2; 3, 8; 4, 1), (1, 6; 3, 4; 4, 3), (1, 2; 3, 4; 4, 1; 6, 1), (1, 2; 2, 2; 4, 5), (1, 2; 2, 1; 4, 3; 6, 1), (1, 2; 2, 1; 3, 2; 4, 1; 5, 2), (1, 2; 2, 1; 3, 4; 4, 3), (1, 3; 2, 3; 3, 3, 4, 3), (1, 6; 4; 3, 6, 1), (1, 6; 2, 9; 4, 3),

Note that the type $(1, 3, 2, 3, 3, 4, 3)$ is discarded by Lemma 5.5 (i). In addition, since every weakly group-theoretical fusion category is of Frobenius type, then the types $(1, 6; 3, 4; 4, 3), (1, 2; 2, 1; 4, 3; 6, 1), (1, 2; 2, 1; 3, 2; 4, 1; 5, 2), (1, 2; 2, 1; 3, 4; 4, 3), (1, 6; 4; 3, 6, 1)$ and $(1, 6; 2, 9; 4, 3)$ are discarded by Corollary 3.8. We shall exclude the remaining types below.

Type $(1, 1; 3, 1; 4, 1; 8, 1)$. Let $x_1, x_2, x_8 \in \text{Irr}(\mathcal{C})$ of Frobenius-Perron dimensions $3, 4$ and 8, respectively. Then $x_3x_3^* = 1 + 2x_4$ or $x_3x_3^* = 1 + x_8$. In the first case, $m(x_3, x_3x_3) = 2. This means that $x_4x_3 = 2x_3 + z$, where FPdim $z = 6$ and z is a sum of simple objects of Frobenius-Perron dimension 4 or 8, which is impossible. In the second case, $m(x_8, x_3x_3) = m(x_3, x_8x_3) = 1. This means that $x_8x_3 = x_3 + u$, where FPdim $u = 21$ and u is a sum of simple objects of Frobenius-Perron dimension 3 or 4. It is also impossible.

Type $(1, 2; 2, 2; 4, 1; 8, 1)$. Let $x_1 \in \text{Irr}_2(\mathcal{C})$. Then there exists $x_2 \in \text{Irr}_2(\mathcal{C})$ such that $m(x_2, x_2x_1) = 1$ or 2. If $m(x_2, x_2x_1) = 1$ then $x_2x_4 = x_4 + x_2' + x_2''$, where $x_2', x_2'' \in \text{Irr}_2(\mathcal{C})$. Then $m(x_2', x_2x_4) = m(x_2'' + x_2' + x_2') = m(x_2', x_2x_4) = 1. This means that $x_2' \neq x_2''$ and hence $m(x_2, x_2x_4) = 1$. Then $m(x_4, x_2x_4) = 1$, which is impossible. Therefore $m(x_2, x_2x_1) = 2$, for every $x_2 \in \text{Irr}_2(\mathcal{C})$. Then $x_4x_4^* = 1 + g + 2x_2 + y$, where FPdim $y = 10$ and $m(x_2, y) = 0$. Taking Frobenius-Perron dimensions, we see that this is impossible.

Type $(1, 2; 4; 1; 6, 2)$. Let x_4 be the unique element of $\text{Irr}_3(\mathcal{C})$. Then $x_4x_4^* = 1 + g + 2x_4 + x_6$, where $\{1, g\} = G(\mathcal{C}$) and $x_6 \in \text{Irr}_6(\mathcal{C})$. It follows that $m(x_6, x_4x_4^*) = m(x_4, x_6x_4) = 1$ and $x_6x_4 = x_4 + z$, where $m(x_4, z) = 0$ and FPdim $z = 20$. It is impossible.

Type $(1, 2; 3, 8; 4, 1)$. Let x_1 be the unique element of $\text{Irr}_3(\mathcal{C})$. Then there must exist an element x_3 of $\text{Irr}_3(\mathcal{C})$ such that $m(x_3, x_3x_1) = m(x_1, x_3x_4) = 1, 2$ or 3. If $m(x_4, x_3x_4) = 1$ or 2, then the decomposition of x_3x_4 gives rise to a contradiction. Therefore, $m(x, x_4x_4^*) = 3$ or 0, for every $x \in \text{Irr}_3(\mathcal{C})$. Then the decomposition of $x_4x_4^*$ gives rise to a contradiction.

Type $(1, 2; 3, 4; 4; 1; 6, 1)$. Let $x_4 \in \text{Irr}_4(\mathcal{C})$. If $m(x_4, x_4x_4^*) > 0$ for some $x_3 \in \text{Irr}_3(\mathcal{C})$, then $m(x_3, x_3x_4) = 1, 2$ or 3. If $m(x_4, x_3x_4) = 1$ or 2, then the decomposition of x_3x_4 gives rise to a contradiction. If $m(x_4, x_3x_4) = 3$ then $x_4x_4^* = 1 + g + 3x_3 + z$, where $\{1, g\} = G(\mathcal{C})$ and FPdim $z = 5$. It is impossible. Therefore, $x_4x_4^* = 1 + g + 2x_4 + x_6$, where $x_6 \in \text{Irr}_6(\mathcal{C})$. It follows that $m(x_6, x_4x_4^*) = m(x_4, x_6x_4) = 1$ and $x_6x_4 = x_4 + z$, where FPdim $z = 20$ and $m(x_4, z) = 0$. It is also impossible since z is the sum of elements of $\text{Irr}_3(\mathcal{C})$ and $\text{Irr}_6(\mathcal{C})$.

Type $(1, 2; 2; 2; 4, 5)$. Write $G(\mathcal{C}) = \{1, g\}$. Because $|\text{Irr}_4(\mathcal{C})| = 5$ is odd, there exists a self-dual $x_2 \in \text{Irr}_4(\mathcal{C})$. Moreover, $G[x_2] = G(\mathcal{C})$. Counting degrees, we find that there exists only one element of $\text{Irr}_2(\mathcal{C})$ appearing in the decomposition of $x_2x_2^*$ with multiplicity 1, say x_2. Clearly, x_2 is self-dual. Let $x_2 \neq x_2' \in \text{Irr}_2(\mathcal{C})$. Since $G[x_2] = G[x_2'] = G(\mathcal{C})$, Lemma 2.3 shows that $x_2x_2^*$ and $x_2'x_2$ are not irreducible. The fusion rules of elements of $\text{Irr}(\mathcal{C})$ show that $x_2x_2^* = x_2'x_2 = x_2 + x_2'^*$.
From $m(x_2, x_2^2) = m(x_2, x_2x_4) = 1$, we have $x_2x_4 \overset{(1)}{=} x_4 + x_4'$, where $x_4 \neq x_4' \in \text{Irr}_4(C)$. Then $m(x_4', x_2x_4) = m(x_2, x_4'x_4) \overset{(2)}{=} 1$. Counting degrees, $x_4'x_4 = x_2 + x_2' + \omega$ is the only possible decomposition of $x_4'x_4$, where $\text{FPdim}_D \omega = 12$ and $m(x_2', \omega) = 0$. Then $m(x_2', x_2'x_4) = m(x_2', x_2'x_4) = 1$, which means that $x_2'x_4 \overset{(3)}{=} x_4 + x_4''$, where $x_4' \neq x_4'' \in \text{Irr}_4(C)$. From $m(x_2', x_4'x_4) = m(x_4, x_2'x_4) = 1$, we have $x_2'x_4 = x_4 + x_4''$, where $x_4 \neq x_4'' \in \text{Irr}_4(C)$. Multiplying equality (1) on the left by x_2, we have $x_2^2x_4 = x_2x_4 + x_2x_4'$. If $x_2^2 = 1 + g + x_2$, then $(1 + g + x_2)x_4 = 2x_4 + x_2x_4 = x_2x_4 + x_2x_4' = x_4 + x_4' + x_2x_4'$. This shows that $x_2x_4' = 2x_4$. It follows that $m(x_4, x_2x_4') = m(x_2, x_4x_4'') = m(x_2, x_2x_4) = 2$. This contradicts equality (2).

If $x_2^2 = 1 + g + x_2'$, then $(1 + g + x_2')x_4 = 2x_4 + x_2'x_4 = 2x_4 + x_4$ and $x_2' = x_2x_4 + x_2x_4' = x_4 + x_4' + x_2x_4'$. This shows that $x_2x_4' = x_4 + x_4''$. Multiplying on the left by x_2, we have

\[
x_2^2x_4' = (x_2 + x_2')x_4' = x_2x_4' + x_2'x_4' = x_4 + x_4'' + x_4 + x_4'' = x_2x_4 + x_2'x_4' = x_4' + x_4'' + x_2'x_4'.'
\]

This shows that $x_4' + x_2'x_4'' = 2x_4$. Hence, $x_4' = x_4''$ and $x_2'x_4'' = 2x_4$. Then $m(x_4, x_2'x_4') = m(x_4, (x_4')^2x_2') = m((x_4')^2, x_4'x_2') = m(x_4', x_2'x_4) = 2$. This contradicts equality (3).

Proof of Theorem 1.1. Let C be a fusion category and suppose $\text{FPdim} C = N$ is a natural number and $N < 120$. In view of the results of [5], every fusion category of Frobenius-Perron dimension 60, p^aq^b or pqr, where p, q and r are prime numbers, $a, b \geq 0$, is weakly group-theoretical. Indeed, if $\text{FPdim} C = 60$, this is shown in [6, Theorem 9.16]. If $\text{FPdim} C = p^aq^b$, then C is solvable and thus weakly group-theoretical [3, Theorem 1.6]. If $\text{FPdim} C = pqr$, then either C is integral and thus group-theoretical [3, Theorem 9.2], or C is a \mathbb{Z}_2-extension of a fusion subcategory D and we may assume that $p = 2$ and $\text{FPdim} D = qr$. Then $\text{FPdim} D$ is odd and D is group-theoretical by [4]. Hence C is weakly group-theoretical also in this case. In particular, all such fusion categories have the strong Frobenius property [6, Theorem 1.5].

We may therefore assume that $N = 84 = 2^23.7$ or $90 = 2.3^2.5$. If C is not integral, then C is a \mathbb{Z}_2-extension of a fusion subcategory D [4, Theorem 3.10] with $\text{FPdim} D = 42$ or 45, respectively. By the previous discussion, D is weakly group-theoretical, and therefore so is C. Hence in this case C has the strong Frobenius property and in particular, it is of Frobenius type. Finally, if C is integral, then C is of Frobenius type, by Theorems 1.1 and 1.2.

Suppose next that $\text{FPdim} C > 1$ and $C \not\cong \text{rep} \mathbb{A}_5$. It follows from [5, Theorem 1.6], that if $\text{FPdim} C = p^aq^b$, where p and q are prime numbers, then C has nontrivial invertible objects (see Lemma 2.6). If $\text{FPdim} C = pqr$, where p, q and r are distinct prime numbers, then either C is a \mathbb{Z}_2-extension of a fusion subcategory D or C is group-theoretical. In the first case, we know that D has nontrivial invertible objects, whence so does C. Thus we may assume that C is group-theoretical, that is, C is equivalent as a fusion category to the category $C(G, \omega, H, \psi)$ of k_0H-bimodules in $C(G, \omega)$, where G is a group of order pqr, $H \subseteq G$ is a subgroup, $\omega \in Z^3(G, k^*)$ and $\psi \in C^2(H, k^*)$ are such that $\omega|_H = d\psi$. We may assume that $H \neq 1$ (otherwise C is pointed and we are done).
Then the group \hat{H} of linear characters on H is also nontrivial, and it follows from [3, Theorem 5.2] that $G(C) \neq 1$ also in this case.

Suppose that $\text{FPdim} C = 60$. Since, by assumption, $C \ncong \text{rep} A_5$, [4, Theorem 9.12] implies that C has a proper fusion subcategory D. The previous discussion shows that $G(D) \neq 1$ and therefore also $G(C) \neq 1$.

It remains to consider the cases where $\text{FPdim} C = 84$ or 90. As before, we may assume that C is integral. The result follows in this case from Theorems 4.1 and 4.2 respectively.

References

[1] Bichon J., Natale S., Hopf algebra deformations of binary polyhedral groups, Transform. Groups 16, 339–374 (2011).
[2] Deligne, P., Catégories tannakiennes, Progr. Math. 87, Birkhäuser, 1990.
[3] Dong J., Dai L., Further results on semisimple Hopf algebras of dimension p^2q^2, accepted for publication in Revista de la Unión Matemática Argentina (2012).
[4] Etingof P., Gelaki S., Ostrik, V., Classification of fusion categories of dimension pq, Int. Math. Res. Not. 2004 (57), 3041–3056 (2004).
[5] Etingof P., Nikshych D., Ostrik V., On fusion categories, Ann. Math. (2) 162, 581–642 (2005).
[6] Etingof P., Nikshych D., Ostrik V., Weakly group-theoretical and solvable fusion categories, Adv. Math. 226(1), 176–505 (2011).
[7] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.5.5; 2012, (http://www.gap-system.org).
[8] Gelaki S., Naidu, D., Some properties of group-theoretical categories, J. Algebra 322, 2631–2641 (2009).
[9] Gelaki S., Nikshych, D., Nilpotent fusion categories, Adv. Math. 217, 1053-1071 (2008).
[10] Isaacs M., Finite group theory, Graduate Studies in Mathematics 92, Amer. Math. Soc., Providence, 2008.
[11] Kaplansky I.(1975), Bialgebras, Chicago: University of Chicago Press.
[12] Larson, R. G., Radford, D. E., Semisimple Hopf algebras, J. Algebra 171, 5-35 (1995).
[13] Natale S., Semisolvability of semisimple Hopf algebras of low dimension, Mem. Amer. Math. Soc. 186 (874) (2007).
[14] Natale S., Plavnik, J., Solvability of a class of braided fusion categories. Preprint arXiv:1205.2394, (2012).
[15] Nichols W. D., Richmond M. B., The Grothendieck group of a Hopf algebra, J. Pure Appl. Algebra 106, 297–306 (1996).
[16] Zhu S., On finite dimensional semisimple Hopf algebras, Commun. Algebra 21(11), 3871–3885 (1993).