ON THE BACKWARD EULER APPROXIMATION OF THE
STOCHASTIC ALLEN-CAHN EQUATION

MIHÁLY KOVÁCS, STIG LARSSON, AND FREDRIK LINDGREN

Abstract. We consider the stochastic Allen-Cahn equation perturbed by
smooth additive Gaussian noise in a spatial domain with smooth boundary
in dimension \(d \leq 3\), and study the semidiscretization in time of the equation
by an implicit Euler method. We show that the method converges pathwise
with a rate \(O(\Delta t^\gamma)\) for any \(\gamma < \frac{1}{2}\). We also prove that the scheme converges
uniformly in the strong \(L^p\)-sense but with no rate given.

1. Introduction

Let \(D \subset \mathbb{R}^d, d \leq 3,\) be a spatial domain with smooth boundary \(\partial D\) and consider
the stochastic partial differential equation written in the abstract Itô form
\[
(1.1) \quad du + Au \, dt + f(u) \, dt = dW, \quad t \in (0, T]; \quad u(0) = u_0,
\]
where \(\{W(t)\}_{t \geq 0}\) is an \(L^2(D)\)-valued \(Q\)-Wiener process on a filtered probability
space \((\Omega, \mathcal{F}, \mathbb{P}, \{\mathcal{F}_t\}_{t \geq 0})\) with respect to the normal filtration
\(\{\mathcal{F}_t\}_{t \geq 0}\). We use
the notation \(H = L^2(D)\) with inner product \(\langle \cdot, \cdot \rangle\) and induced norm \(\| \cdot \|\) and
\(V = H^1_0(D)\). Moreover, \(A: V \rightarrow V'\) denotes the linear elliptic operator
\(Au = -\nabla \cdot (\kappa \nabla u)\) for \(u \in V\), where \(\kappa(x) > \kappa_0 > 0\) is smooth. As usual we consider the bilinear form
\(a: V \times V \rightarrow \mathbb{R}\) defined by \(a(u, v) = \langle Au, v \rangle\) for \(u, v \in V\), and \(\langle \cdot, \cdot \rangle\) denotes the
duality pairing of \(V'\) and \(V\). We denote by \(\{E(t)\}_{t \geq 0}\) the analytic semigroup in \(H\)
generated by the realization of \(-A\) in \(H\) with \(D(A) = H^2(D) \cap H^1_0(D)\). Finally,
\(f: D_f \subset H \rightarrow H\) is given by \((f(u))(x) = F'(u(x))\), where \(F(s) = c(s^2 - \beta^2)^2\)
\((c > 0)\) is a double well potential. Note that \(f\) is only locally Lipschitz and does
not satisfy a linear growth condition. It does, however, satisfy a global one-sided
Lipschitz condition, which is a key property for proving uniform moment bounds.

We consider a fully implicit Backward Euler discretization of (1.1) via the iteration
\[
(1.2) \quad u^j - u^{j-1} + \Delta t Au^j + \Delta t f(u^j) = \Delta W^j, \quad j = 1, 2, \ldots, N; \quad u^0 = u_0,
\]
where \(\Delta t > 0\). Note that this scheme is implicit also in the drift term \(f\). In return,
the scheme preserves key qualitative aspects of the solution of (1.1) such as moment
bounds.

The following two results constitute the main results of the paper. For notation
we refer to Section 2. Let \(N \in \mathbb{N}, T = N\Delta t\) and \(t_n = n\Delta t, n = 1, 2, \ldots, N\). In
Theorem 5.3 (pathwise convergence) we show that if \(\| A_t^{1+r} Q_{t_s}^{1/2} \|_{HS} < \infty\) for some

2000 Mathematics Subject Classification. 65M60, 60H15, 60H35, 65C30.

Key words and phrases. stochastic partial differential equation, Allen-Cahn equation, additive
noise, Wiener process, Euler method, pathwise convergence, strong convergence, factorization
method.
small $\varepsilon > 0$, $\mathbb{E}\|u_0\|_1^2 < \infty$, and $0 \leq \gamma < \frac{1}{2}$, then there are finite random variables $K \geq 0$ and $\Delta t_0 > 0$ such that, almost surely,

$$\sup_{t_n \in [0,T]} \|u(t_n) - u^n\| \leq K \Delta t^\gamma, \quad \Delta t \leq \Delta t_0.$$

In Theorem 5.4 (strong convergence) we prove that if $p \geq 1$ and $\mathbb{E}\|u_0\|_1^p < \infty$, then

$$\lim_{\Delta t \to 0} \mathbb{E} \sup_{t_n \in [0,T]} \|u(t_n) - u^n\|^p = 0.$$

Since the method of proof uses a priori bounds obtained via energy arguments together with a pathwise error analysis based on the mild formulation of the equation, a strong rate cannot be obtained via this line of argument. We would like to point out that the strong convergence of the Backward Euler scheme is somewhat surprising given the superlinearly growing character of f, see also the discussion in [12]. We do not know of any results where strong convergence results, with or without rates, are obtained for a time-discretization scheme for an SPDE with non-global Lipschitz nonlinearity without linear growth (for SODEs, we refer to [11]). There are many results on pathwise and strong convergence of the Backward Euler scheme (usually explicit in the drift term f) under global Lipschitz conditions (or local Lipschitz with linear growth conditions), see, for example, [4, 8, 9, 10] and the references therein. For non-global Lipschitz nonlinearities the relatively recent method developed in [12] uses a scheme which is based on the mild formulation of the SPDE. This is also employed, for example, in [2]. In that setting pathwise error estimates are derived but strong convergence results would be rather difficult to obtain as the method loses the information about the one-sided Lipschitz condition on f, which can only be exploited in a variational or weak solution approach. We also mention [23] where convergence in probability is obtained without global Lipschitz conditions for the Backward Euler scheme.

Spatial pathwise convergence results for certain semilinear SPDEs with non-global Lipschitz f without linear growth are obtained in [1, 2], both using spectral Galerkin approximation. Concerning spatial strong convergence we only know of [17] and [24], both with rates, based on a spectral Galerkin method and a finite difference method, respectively. In the latter two papers the authors use energy type arguments, and hence they can fully exploit the one-sided Lipschitz character of f.

Finally, we would like to note that [12] is also referred to as Rothe’s method. Since we can prove both pathwise and strong convergence, one can set up a nonlinear wavelet-based adaptive algorithm to solve the elliptic equation in each time-step and obtain a implementable scheme, which converges both path-wise and strongly in a similar way as in [3] and [15].

The paper is organized as follows. In Section 2 we collect frequently used results from infinite dimensional analysis and introduce some notation. In Section 3 we discuss the spatial Sobolev regularity of the solution and the Hölder regularity in time. In Section 4 we prove maximal type p-th moment bounds on u^n (Propositions 4.1 and 4.2), which are in fact the exact analogues of the ones on $u(t)$ (Proposition 3.1). Here we highlight that for $p = 2$ the bounds only grow linearly in T, while for $p > 2$ exponentially because of a Gronwall argument. In Section 5 we state and prove the main results of the paper on the convergence of (1.2). An important part
of the proof is a maximal type error estimate for the linear part (Proposition 5.1), where we employ a discrete version of the celebrated factorization method.

2. Preliminaries

Throughout the paper we will use various norms for linear operators on a Hilbert space. We denote by $\mathcal{L}(H)$, the space of bounded linear operators on H with the usual operator norm denoted by $\| \cdot \|$. If for a positive semidefinite operator $T : H \to H$, the sum

$$\text{Tr} T := \sum_{k=1}^{\infty} \langle T e_k, e_k \rangle < \infty$$

for an orthonormal basis (ONB) $\{e_k\}_{k \in \mathbb{N}}$ of H, then we say that T is trace-class. In this case $\text{Tr} T$, the trace of T, is independent of the choice of the ONB. If for an operator $T : H \to H$, the sum

$$\|T\|_{\text{HS}}^2 := \sum_{k=1}^{\infty} \|Te_k\|^2 < \infty$$

for an ONB $\{e_k\}_{k \in \mathbb{N}}$ of H, then we say that T is Hilbert-Schmidt and call $\|T\|_{\text{HS}}$ the Hilbert-Schmidt norm of T. The Hilbert-Schmidt norm of T is independent of the choice of the ONB. We have the following well-known properties of the trace and Hilbert-Schmidt norms, see, for example, [6, Appendix C],

$$\begin{align*}
(2.1) \quad & \|T\| \leq \|T\|_{\text{HS}}, \quad \|TS\|_{\text{HS}} \leq \|T\|_{\text{HS}} \|S\|, \quad \|ST\|_{\text{HS}} \leq \|S\| \|T\|_{\text{HS}}, \\
(2.2) \quad & \text{Tr} Q = \|Q^{\frac{1}{2}}\|_{\text{HS}}^2 = \|T\|_{\text{HS}}^2 = \|T^*\|_{\text{HS}}^2, \quad \text{if } Q = TT^*.
\end{align*}$$

Next, we introduce fractional order spaces and norms. It is well known that our assumptions on A and on the spatial domain D imply the existence of a sequence of nondecreasing positive real numbers $\{\lambda_k\}_{k \geq 1}$ and an orthonormal basis $\{e_k\}_{k \geq 1}$ of H such that

$$A e_k = \lambda_k e_k, \quad \lim_{k \to +\infty} \lambda_k = +\infty.$$

Using the spectral functional calculus for A we introduce the fractional powers A^s, $s \in \mathbb{R}$, of A as

$$A^s v = \sum_{k=1}^{\infty} \lambda_k^s (v, e_k)e_k, \quad D(A^s) = \left\{ v \in H : \|A^s v\|^2 = \sum_{k=1}^{\infty} \lambda_k^{2s} (v, e_k)^2 < \infty \right\}$$

and spaces $\dot{H}^\beta = D(A^{\beta/2})$ with inner product $\langle u, v \rangle_\beta = \langle A^{\frac{\beta}{2}} u, A^{\frac{\beta}{2}} v \rangle$ and induced norms $\|v\|_\beta = \|A^{\beta/2} v\|$. It is well-known that if $0 \leq \beta < 1/2$, then $\dot{H}^\beta = H^\beta$ and if $1/2 < \beta \leq 2$, then $\dot{H}^\beta = \{ u \in H^\beta : u|_{\partial D} = 0 \}$, where H^β denotes the standard Sobolev space of order β.

We recall the fact that the semigroup $\{E(t)\}_{t \geq 0}$ generated by $-A$ is analytic and therefore it follows from [21, Theorem 6.13] that for $t > s > 0$,

$$\begin{align*}
(2.3) \quad & \|A^\beta E(t) v\| \leq C t^{-\beta} \|v\|, \quad \beta \geq 0, \\
(2.4) \quad & \|A^\beta (E(t) - E(s)) v\| \leq Cs^{-\beta(\gamma+\rho)} |t-s|^{\gamma+\rho} \|A^\rho v\|, \quad \beta \geq 0, \quad 0 \leq \gamma + \rho \leq 1.
\end{align*}$$

We will also use Itô’s Isometry and the Burkholder-Davies-Gundy inequality for Itô-integrals of the form $\int_0^t (\eta(s), d\tilde{W}(s))$, where \tilde{W} is a \tilde{Q}-Wiener process. For this
kind of integral, Itô’s Isometry, \cite{6} Proposition 4.5] reads as
\begin{equation}
\mathbb{E}\left|\int_0^t \langle \eta(s), dW(s) \rangle\right|^2 = \mathbb{E}\int_0^t \| \tilde{Q}^{\frac{3}{2}} \eta(s) \|^2 \, ds,
\end{equation}
and the Burkholder-Davies-Gundy inequality, \cite{6} Lemma 7.2, takes the form
\begin{equation}
\mathbb{E} \sup_{t \in [0, t_0]} \left|\int_0^t \langle \eta(s), dW(s) \rangle\right|^p \leq C_p \mathbb{E} \left(\int_0^t \| \tilde{Q}^{\frac{3}{2}} \eta(s) \|^2 \, ds \right)^{\frac{p}{2}}, \quad p \geq 2.
\end{equation}

Finally, if \(Y \) is an \(H \)-valued Gaussian random variable with covariance operator \(\tilde{Q} \), then, by \cite{5} Corollary 2.17, we can bound its \(p \)-th moments via its covariance operator as
\begin{equation}
\mathbb{E}\|Y\|^2p \leq C_p(\mathbb{E}\|Y\|^2) = C_p(\text{Tr } \tilde{Q})p = \| \tilde{Q}^{\frac{3}{2}} \|^2p_{\text{HS}}.
\end{equation}

3. Regularity of the solution

The following existence, uniqueness, and regularity result can essentially be found in \cite{19} Example 3.5] for \(D = [0, 1] \), where it is stated with \text{ess sup} instead of \text{sup} for the second term in (3.1). It is remarked there, \cite{19} Remark 3.4], that the result can be proved in higher dimensions by using \cite{20} Example 3.2], where domains with smooth boundary are considered. Finally, by \cite{18} Theorem 1.1], the \text{ess sup} can be replaced by \text{sup} in the second term as stated below in (3.1). We also note that for the equation considered in this paper, this result can be obtained by using the deterministic Ljapunov functional \(J(u) = \| \nabla u \|^2 + \int_D F(u) \, dx \) and Itô’s formula in a way analogous to \cite{14} Theorem 3.1 and Corollary 3.2], see also \cite{5}.

For the definition of \textit{variational solution} we refer to \cite{22} Definition 4.2.1].

\textbf{Proposition 3.1.} If \(\| A^{\frac{3}{2}} \tilde{Q}^{\frac{3}{2}} \|_{\text{HS}} < \infty \) and \(\mathbb{E}\|u_0\|^2_1 < \infty \) for some \(p \geq 2 \), then there is a unique variational solution \(u \) of (1.1). Furthermore, there is \(C_T > 0 \) such that
\begin{equation}
\mathbb{E}\sup_{t \in [0, T]} \| u(t) \|^p + \mathbb{E}\sup_{t \in [0, T]} \| u(t) \|^2_1 \leq C_T.
\end{equation}

In this case, \(u \) is also a mild solution, see \cite{22} Proposition F.0.5 and Remark F.0.6]; that is, \(u \) satisfies the integral equation
\begin{equation}
u(t) = E(t)u_0 + \int_0^t E(t-s)f(u(s)) \, ds + W_A(t), \quad t \in [0, T],
\end{equation}
almost surely, where the stochastic convolution \(W_A \) is defined by
\[W_A(t) = \int_0^t E(t-s) \, dW(s). \]

This ultimately follows from the fact that the noise is additive trace class and that, by Sobolev’s inequality,
\begin{equation}
\| f(u(t)) \| \leq C(\|u(t)\| + \|u(t)\|^2_1) \leq C(\|u(t)\| + \|u(t)\|^2_1),
\end{equation}
which is bounded almost surely for \(t \in [0, T] \) by Proposition 3.1. Note that here, in order to be able to use Sobolev’s inequality, it is crucial that \(d \leq 3 \) and that the nonlinearity \(f \) is at most cubic.

Next we look at the pathwise Hölder regularity of \(u \). First we consider the stochastic convolution \(W_A \).
Lemma 3.2. Let $0 < \beta \leq 1$, $\|A^{\frac{\beta}{2}}Q^\frac{1}{2}\|_{HS} < \infty$ and $p > \frac{2}{\beta}$. Then, there is a nonnegative real random variable K with $\mathbb{E}K^p < \infty$ such that, almost surely,

$$\sup_{t \neq s \in [0, T]} \frac{\|W_A(t) - W_A(s)\|}{|t-s|^\gamma} \leq K$$

for $0 \leq \gamma < \frac{\beta p}{2} - 1$.

Proof. Let $t > s \geq 0$. Note that the stochastic integrals below are Gaussian random variables and hence we can use (2.7) to bound their p-th moments. Therefore,

$$\mathbb{E}\|W_A(t) - W_A(s)\|^p \leq C_p \mathbb{E}\left\| \int_s^t (E(t-\sigma) - E(s-\sigma)) dW(\sigma) \right\|^p$$

$$\leq C_p \left(\int_s^t \|E(t-\sigma)Q^\frac{1}{2}\|^2_{HS} d\sigma \right)^{\frac{p}{2}}$$

$$+ C_p \left(\int_s^t \|E(t-\sigma) - E(s-\sigma)Q^\frac{1}{2}\|^2_{HS} d\sigma \right)^{\frac{p}{2}} \leq C|t-s|^\frac{p}{2},$$

where the last inequality is shown in the proof of [15] Theorem 4.2]. Then the statement follows from Kolmogorov’s criterion, see, for example, [16] Theorem 1.4.1].

With the above preparations, we now prove the Hölder continuity of u. Note that the result is suboptimal compared to the corresponding result for W_A in Lemma 3.2 which requires only $\beta = 1$ to get the same Hölder exponent, while here we assume $\beta = 2$. This is a consequence of the fact that we use the mild formulation here and hence cannot exploit the one-sided Lipschitz condition on f but only its cubic growth.

Proposition 3.3. Let $\|A^\frac{1}{2}Q^\frac{1}{2}\|_{HS} < \infty$, $\|w_0\|^2 < \infty$ and $T > 0$. Then, for all $\gamma \in [0, \frac{1}{2})$, there is a finite nonnegative random variable K such that, almost surely,

$$\sup_{t \neq s \in [0, T]} \frac{\|u(t) - u(s)\|}{|t-s|^\gamma} \leq K.$$

Proof. Let $T > 0$, $0 \leq s < t \leq T$, and $0 \leq \gamma < \frac{1}{2}$. We use the mild formulation (3.2) to represent $u(t) - u(s)$ as follows:

$$u(t) - u(s) = (E(t) - E(s))u_0 + \int_s^t E(t-r)f(u(r)) dr$$

$$+ \int_0^s (E(t-r) - E(s-r))f(u(r)) dr + W_A(t) - W_A(s).$$

The estimate in (2.1), with $\beta = \gamma = 0$ and $\rho = \frac{1}{2}$, implies that $\|(E(t) - E(s))u_0\| \leq C|t-s|^\frac{1}{2}\|u_0\|_1$. The second term can be bounded, using Proposition 3.1 and (3.3),

$$\left\| \int_s^t E(t-r)f(u(r)) \right\| \leq \int_s^t \|E(t-r)\| \|f(u(r))\| dr$$

$$\leq C|t-s| \sup_{r \in [0, T]} (\|u(r)\| + \|u(r)\|_1^2) \leq K|t-s|.$$
In a similar fashion, using this time (2.4) with $\beta = \rho = 0$ and $\frac{1}{2} \leq \gamma < 1$,
\[
\left\|\int_0^s (E(t-r) - E(s-r)) f(u(r)) \, dr\right\| \\
\leq \int_0^s \| (E(t-r) - E(s-r)) \| \, dr \sup_{r \in [0,T]} (\|u(r)\| + \|u(r)\|_1^3) \\
\leq K|t-s|^{\gamma} \int_0^s r^{-\gamma} \, dr \leq KT^{1-\gamma}|t-s|^\gamma.
\]

Finally, we note that $\|Q^2\|_{HS} \leq C\|A\frac{1}{2} Q^2\|_{HS} < \infty$ by (2.1) as $A^{-\frac{1}{2}} \in \mathcal{L}(H)$, so that we can use Lemma 3.2 with $\beta = 1$ to conclude the proof. \hfill \Box

4. A Priori Moment Bounds

Our first result bounds the second moment of the Euler iterates in (1.2). The proof uses a kind of bootstrapping argument and as a result we avoid Gronwall’s lemma. Therefore, we are able to obtain bounds that only grow linearly with T instead of exponentially. Since these bounds will be used in the Gronwall step in the pathwise convergence analysis, the constants appearing there will grow exponentially instead of double-exponentially. We have to use test functions in the energy arguments below that are different from the ones used in the deterministic setting, for example in [7], because of the presence of a non-differentiable right hand side. This ultimately forces the choice of a scheme implicit also in the drift in order to be able to use the one-sided Lipschitz property of f.

Proposition 4.1. Let $I_N = \{1, 2, \ldots, N\}$ and $T = N\Delta t$. If $\|A\frac{1}{2} Q^2\|_{HS} < \infty$ and $E\|u_0\|_1^2 < \infty$, then there is $C > 0$ independent of T such that

$$
E \sup_{l \in I_N} \|u_l^1\|^2 + E \sup_{l \in I_N} \|u_l^1\|_1^2 \leq C(1 + T).
$$

Proof. First note that it is enough to bound the second term on the left hand side since $\| \cdot \| \leq C\| \cdot \|_1$. Taking the inner product of (1.2) with w^l, we get

$$
\langle u^l - u^{l-1}, w^l \rangle + \Delta t \|w^l\|^2_1 + \Delta t \langle f(w^l), w^l \rangle = \langle \Delta W^j, u^l \rangle.
$$

Using the identity $\langle x - y, x \rangle = \frac{1}{2}(\|x\|^2 - \|y\|^2) + \frac{1}{2}\|x - y\|^2$ and the fact that for some $C > 0$ we have $sf(s) \geq -C$ for all $s \in \mathbb{R}$ we get

$$
\frac{1}{2}(\|w^j\|^2 - \|w^{j-1}\|^2) + \frac{1}{2}\|w^j - w^{j-1}\|^2 + \Delta t \|w^j\|_1^2 \\
\lesssim C \Delta t + \langle \Delta W^j, u^j - u^{j-1} \rangle + \langle \Delta W^j, u^j - u^{j-1} \rangle.
$$

Using a kick back with the second term on the right and summing from 1 to n ($1 \leq n \leq N$) gives

$$
\|u^n\|^2 + \sum_{j=1}^n \|u^j - u^{j-1}\|^2 + \Delta t \sum_{j=1}^n \|w^j\|^2_1 \\
\lesssim C \left(T + \|u_0\|^2 + \sum_{j=1}^n (\|\Delta W^j\|^2 + \langle \Delta W^j, u^{j-1} \rangle) \right).
$$
Hence, since we conclude (4.3),
\[
E \left(\|u^n\|^2 + \sum_{j=1}^n \|u^j - u^{j-1}\|^2 + \Delta t \sum_{j=1}^n \|u^j\|^2 \right)
\leq C \left(T + E\|u_0\|^2 + T\|Q^n\|_{\text{HS}}^2 \right).
\] (4.1)

Next, we take the inner product of (1.2) with \(E\) and obtain similarly as above
\[
\frac{1}{2}(\|u^j\|_1^2 - \|u^{j-1}\|_1^2) + \frac{1}{2}\|u^j - u^{j-1}\|_1^2 + \Delta t \|u^j\|_2^2 + \Delta t \langle f(u^j), u^j \rangle_1
= \langle \Delta W^j, u^j \rangle_1.
\]

Since \(f'(s) \geq -C\), we have
\[
\langle f(u^j), u^j \rangle_1 = \langle \nabla f(u^j), \nabla u^j \rangle = \langle f'(u^j)\nabla u^j, \nabla u^j \rangle \geq -C\|u^j\|_1^2.
\]

Hence,
\[
\frac{1}{2}(\|u^j\|_1^2 - \|u^{j-1}\|_1^2) + \frac{1}{2}\|u^j - u^{j-1}\|_1^2 + \Delta t \|u^j\|_2^2
\leq \Delta t C\|u^j\|_1^2 + \langle \Delta W^j, u^j - u^{j-1} \rangle_1 + \langle \Delta W^j, u^{j-1} \rangle_1.
\]

Thus, using a kick back with the second term, we obtain
\[
\|u^j\|_1^2 + \sum_{j=1}^{l} \|u^j - u^{j-1}\|_1^2 + \Delta t \sum_{j=1}^{l} \|u^j\|_2^2
\leq C \left(\|u_0\|^2 + \sum_{j=1}^{l} (\Delta t \|u^j\|_1^2 + \|\Delta W^j\|_1^2 + \langle \Delta W^j, u^{j-1} \rangle_1) \right).
\] (4.2)

Therefore,
\[
E \sup_{t \in I_N} \left(\|u^j\|_1^2 + \sum_{j=1}^{l} \|u^j - u^{j-1}\|_1^2 + \Delta t \sum_{j=1}^{l} \|u^j\|_2^2 \right)
\leq C E\|u_0\|^2 + C E \sup_{t \in I_N} \left(\sum_{j=1}^{l} (\Delta t \|u^j\|_1^2 + \|\Delta W^j\|_1^2 + \langle \Delta W^j, u^{j-1} \rangle_1) \right)
\leq C E\|u_0\|^2 + C E \left(\sum_{j=1}^{N} (\Delta t \|u^j\|_1^2 + \|\Delta W^j\|_1^2) \right) + C E \sup_{t \in I_N} \sum_{j=1}^{l} \langle \Delta W^j, u^{j-1} \rangle_1.
\] (4.3)

Since \(A^\perp \Delta W^j\) is a Gaussian random variable with covariance operator
\[
\tilde{Q} := \Delta t A^\perp Q^n (A^\perp Q^n)^*,
\]

it follows, by (2.2), that
\[
E\|\Delta W^j\|_1^2 = \Delta t \Tr \tilde{Q} = \Delta t \|A^\perp Q^n\|_{\text{HS}}^2.
\]

Next note that \(\sum_{j=1}^{N} \langle \Delta W^j, u^{j-1} \rangle_1\) is an Itô integral of the form \(\int_0^t \eta(t) \, dA^\perp W(t)\), where \(\eta\) is a piecewise continuous process, and hence also a martingale. Then, using
Hölder’s inequality, the martingale inequality [6, Theorem 3.8], Itô’s Isometry (2.5), bounds on the solution from Proposition 3.1.

since our approach does not provide rates for the strong error, this is not a major drawback. This will be achieved via a discrete Gronwall th power of the time discretization. This will be achieved via a discrete Gronwall

Therefore, by (4.3), using also (4.1), we conclude that

\[\left(\mathbb{E} \sup_{t \in I_N} \left(\sum_{j=1}^{l} \langle \Delta W^j, u^{j-1} \rangle_1 \right)^2 \right) \leq \mathbb{E} \sup_{t \in I_N} \left(\sum_{j=1}^{l} \langle \Delta W^j, u^j \rangle_1 \right)^2 \]

\[\leq 4 \mathbb{E} \left(\sum_{j=1}^{l} \langle \Delta W^j, u^{j-1} \rangle_1 \right)^2 = 4 \mathbb{E} \Delta t \sum_{j=1}^{N} \| \tilde{Q}^j A^j u^{j-1} \|^2 \]

\[\leq 4 \| \tilde{Q}^j \|^2 \Delta t \sum_{j=1}^{N} \mathbb{E} \| u^{j-1} \|^2_1 \leq 4 \| \tilde{Q}^j \|^2_{\text{HS}} \Delta t \sum_{j=1}^{N} \mathbb{E} \| u^{j-1} \|^2_1 \]

\[\leq C \| A^j \| Q^j \|^2_{\text{HS}} (T + \mathbb{E} \| u_0 \|^2 + T \| Q^j \|^2_{\text{HS}}). \]

Therefore, by (4.3), using also (4.1), we conclude that

\[\mathbb{E} \sup_{t \in I_N} \left(\| u^j \|^2_1 + \sum_{j=1}^{l} \| u^j - u^{j-1} \|^2_1 + \Delta t \sum_{j=1}^{l} \| u^j \|^2_2 \right) \leq C (1 + T) \]

and the proof is complete.

When proving strong convergence, even without rate, one needs bounds on higher moments of the time discretization. This will be achieved via a discrete Gronwall inequality, resulting in a bound that grows exponentially with time. However, since our approach does not provide rates for the strong error, this is not a major drawback. Note also, that this result is the exact time-discrete analogue of the bounds on the solution from Proposition 3.1.

Proposition 4.2. Let \(p \geq 2 \), \(I_n = \{1, 2, \ldots, n\} \), \(1 \leq n \leq N \), and \(T = N \Delta t \). If \(\| A^j \| Q^j \|^2_{\text{HS}} < \infty \), \(\mathbb{E} \| u_0 \|^p < \infty \), and \(T^{p-1} \Delta t \leq \frac{1}{2} \), then

\[\mathbb{E} \sup_{t \in I_n} \| u^j \|^p + \mathbb{E} \sup_{t \in I_n} \| u^j \|^p_t \leq C (T, p, u_0). \]

Proof. As noted in the proof of the previous proposition it is enough to bound the second term on the left hand side. We start from (4.2) and take the \(p \)-th power of both sides for \(p \geq 1 \) to get

\[\| u^j \|^p_1 \leq C \left(\| u_0 \|^2_p + \left(\sum_{j=1}^{l} \Delta t \| u^j \|^2_1 \right)^p \right) \]

\[+ \left(\sum_{j=1}^{l} \| \Delta W^j \|^2_1 \right)^p + \left(\sum_{j=1}^{l} \langle \Delta W^j, u^{j-1} \rangle_1 \right)^p \]

\[\leq C \left(\| u_0 \|^2_p + \Delta t^{p-1} \| u^j \|^2_1 \right) \]

\[+ \| u^j \|^p_1 + \left(\sum_{j=1}^{l} \langle \Delta W^j, u^{j-1} \rangle_1 \right)^p. \]
Therefore,
\[
E \sup_{t \in I_n} \| u^t \|_1^{2p} \leq C \left(E \| u_0 \|_1^{2p} + T^{p-1} \Delta t \sum_{j=1}^{n} E \sup_{t \in I_j} \| u^t \|_1^{2p} \right)
\]
\[+ n^{p-1} \sum_{j=1}^{n} E \| \Delta W_j \|_1^{2p} + E \sup_{t \in I_n} \left(\sum_{j=1}^{l} \langle \Delta W_j, u^{j-1} \rangle_1 \right)^p \]
\tag{4.4}
Next, we bound the last two terms in (4.4). We already noted that \(A^{\frac{1}{2}} \Delta W_j \) is a Gaussian random variable with covariance operator \(\tilde{Q} = \Delta t A^{\frac{1}{2}} Q^{\frac{1}{2}} (A^{\frac{1}{2}} Q^{\frac{1}{2}})^* \). Hence we use (2.2) and (2.7) to conclude that
\[
E \| \Delta W_j \|_1^{2p} \leq C_p (\text{Tr} \tilde{Q})^p = C_p \Delta t^p \| A^{\frac{1}{2}} Q^{\frac{1}{2}} \|_{\text{HS}}^{2p}.
\]
Therefore, it follows that
\[
n^{p-1} \sum_{j=1}^{n} E \| \Delta W_j \|_1^{2p} \leq C_p n^{p-1} \Delta t^p \sum_{j=1}^{n} \| A^{\frac{1}{2}} Q^{\frac{1}{2}} \|_{\text{HS}}^{2p} \leq C_p T^p \| A^{\frac{1}{2}} Q^{\frac{1}{2}} \|_{\text{HS}}^{2p}.
\]
\tag{4.5}
For the last term in (4.4) we use the Burkholder-Davies-Gundy inequality (2.6), (2.1), and (2.2) to conclude that
\[
E \sup_{t \in I_n} \left(\sum_{j=1}^{l} \langle \Delta W_j, u^{j-1} \rangle_1 \right)^p \leq C_p \Delta t^p \sum_{j=1}^{n} \| \hat{Q}^{\frac{1}{2}} A^{\frac{1}{2}} u^{j-1} \|_1^2 \]
\[
\leq C \| \hat{Q}^{\frac{1}{2}} \|_{\text{HS}}^p \Delta t^{p/2} n^{p/2-1} \sum_{j=1}^{n} \| u^{j-1} \|_1^p
\]
\leq C \| \hat{Q}^{\frac{1}{2}} \|_{\text{HS}}^p T^{p/2-1} \Delta t \sum_{j=0}^{n-1} \left(\frac{1}{2} + \frac{1}{2} E \sup_{t \in I_j} \| u^t \|_1^{2p} \right)
\]
\[
= C \| A^{\frac{1}{2}} Q^{\frac{1}{2}} \|_{\text{HS}}^p T^p / 2 + C \| A^{\frac{1}{2}} Q^{\frac{1}{2}} \|_{\text{HS}}^p T^{p/2-1} \Delta t \sum_{j=0}^{n-1} \left(E \sup_{t \in I_j} \| u^t \|_1^{2p} \right).
\]
Finally, substituting (4.5) and (4.6) into (4.4) yields the desired bound by using the discrete Gronwall inequality. Before applying the discrete Gronwall inequality we kick back the last term from the sum \(T^{p-1} \Delta t \sum_{j=1}^{n} E \sup_{t \in I_j} \| u^t \|_1^{2p} \) in (4.4) using the condition \(T^{p-1} \Delta t \leq \frac{1}{2} \). \(\square \)

5. THE CONVERGENCE RESULTS

We begin by showing a maximal type error estimate for the linear problem. Define the Backward Euler approximation of the stochastic convolution \(W_A(t_n) \) by
\[
W_A^n := \sum_{k=1}^{n} E^{n-k+1} \Delta W^k = \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} E^{n-k+1} dW(s), \text{ where } E^n = (I + \Delta t A)^{-n}.
\]

The following result has been proved in a larger generality for multiplicative noise in Banach spaces using heavy machinery in the range \(0 \leq \beta < 1 \). This would be enough for the purposes of the semilinear problem with additive noise. However, it is possible to obtain the range \(0 \leq \beta \leq 2 \) because the noise is additive and the approximation of the noise is exact at the mesh points. Since this result is
interesting on its own, and the proof presented here is rather elementary based on a discrete version of the factorization method, we present the result and the proof for the full range $0 \leq \beta \leq 2$.

Proposition 5.1. Let $\varepsilon \in (0, \frac{1}{2})$, $p > \frac{1}{2}$, $0 \leq \beta \leq 2$, and $T = N \Delta t$. Then there is $C = C(p, \varepsilon, T)$ such that
\[
\left(\mathbb{E} \sup_{t_n \in [0,T]} \| W_n(t_n) - W^n_n \|^p \right)^{\frac{1}{p}} \leq C \Delta t^{\frac{\beta}{2}} \| A^{\frac{\beta}{2} - \varepsilon} Q^\frac{\varepsilon}{2} \|_{\text{HS}}, \quad t_n = n \Delta t.
\]

Proof. Define the deterministic error operator F_n by $F_n = E(t_n) - E^n$. It is well known that the following error estimate holds
\[
\| A^{\frac{\beta}{2}} F_n v \| \leq C \Delta t^{\frac{\beta}{2}} \| A^{\frac{\beta}{2}} v \|, \quad 0 \leq \gamma \leq \beta + \rho, \quad \rho, \gamma \geq 0, \quad \beta \in [0, 2].
\]

Next, we consider the decomposition
\[
W_n(t_n) - W^n_n = \sum_{k=1}^n \int_{t_{k-1}}^{t_k} (E(t_n - \sigma) - E^{n-k+1}_\sigma) dW(\sigma)
\]
\[
= \sum_{k=1}^n \int_{t_{k-1}}^{t_k} (E(t_n - \sigma) - E(t_{n-k+1})) dW(\sigma)
\]
\[
+ \sum_{k=1}^n \int_{t_{k-1}}^{t_k} (E(t_{n-k+1}) - E^{n-k+1}_\sigma) dW(\sigma) =: e_1^n + e_2^n.
\]

To estimate e_1 we first write
\[
e_1^n = \sum_{k=1}^n \int_{t_{k-1}}^{t_k} E(t_n - \sigma)(I - E(\sigma - t_{k-1})) dW(\sigma) = \int_0^{t_n} E(t_n - \sigma) \Psi(\sigma) dW(\sigma)
\]
with $\Psi(\sigma) = (I - E(\sigma - t_{k-1}))$ for $\sigma \in (t_{k-1}, t_k]$. Next we use the factorization method from [6, Chapter 5] to write
\[
e_1^n = c_\alpha \int_0^{t_n} E(t_n - \sigma) \int_\sigma^{t_n} (t_n - s)^{-1+\alpha}(s - \sigma)^{-\alpha} ds dW(\sigma)
\]
\[
= c_\alpha \int_0^{t_n} (t_n - s)^{-1+\alpha} E(t_n - s) \int_0^{s} (s - \sigma)^{\alpha} E(s - \sigma) dW(\sigma) ds
\]
\[
= c_\alpha \int_0^{t_n} (t_n - s)^{-1+\alpha} E(t_n - s) Y(s) ds,
\]
where $\alpha \in (0, \frac{1}{2}), \quad c_\alpha^{-1} = \int_0^t (t - s)^{-1+\alpha}(s - \sigma)^{-\alpha} ds$ and
\[
Y(s) = \int_0^{s} (s - \sigma)^{\alpha} E(s - \sigma) dW(\sigma).
\]

Therefore, by Hölder’s inequality and that $\| E(t) \| \leq 1$ for all $t \geq 0$,
\[
\mathbb{E} \sup_{t_n \in [0,T]} \| e_1^n \|^p \leq c_\alpha \left(\int_0^{T} (s^{\alpha - 1+\alpha})^{\frac{p}{p-\alpha}} ds \right)^{p-1} \int_0^{T} \mathbb{E} \| Y(s) \|^p ds.
\]

The first integral is finite for $p > \frac{1}{\alpha}$. To bound the second integral, notice that $Y(s)$ is a Gaussian random variable for all $s \in [0, T]$ and therefore, we use (2.4) to
bound its p-th moment, (2.1), (2.3) with $\beta = \frac{1}{2} - \varepsilon$, and (2.4) with $\beta = \gamma = 0$ and $\rho = \frac{\beta}{2}$, to obtain

$$E\|Y(s)\|^p \leq C_p \left(\int_0^s (s - \sigma)^{-2\alpha} \|\Psi(\sigma)E(s - \sigma)Q^\frac{1}{2}\|^2_{\text{HS}} \, d\sigma \right)^\frac{p}{2}$$

$$= C_p \left(\int_0^s (s - \sigma)^{-2\alpha} \|\Psi(\sigma)A^{-\frac{\beta}{2}}A^\frac{1}{2}E(s - \sigma)A^{\frac{\beta}{2} - \varepsilon}Q^\frac{1}{2}\|^2_{\text{HS}} \, d\sigma \right)^\frac{p}{2}$$

$$\leq C_p \|A^{\frac{\beta}{2} - \varepsilon}Q^\frac{1}{2}\|_{\text{HS}}^p \left(\int_0^s (s - \sigma)^{-2\alpha + 2\varepsilon} \|\Psi(\sigma)A^{-\frac{\beta}{2}}\|^2 \, d\sigma \right)^\frac{p}{2}$$

$$\leq C \Delta t^{\frac{p}{2}} \|A^{\frac{\beta}{2} - \varepsilon}Q^\frac{1}{2}\|_{\text{HS}}^p \left(\int_0^s (s - \sigma)^{-2\alpha + 2\varepsilon} \, ds \right)^\frac{p}{2}$$

$$\leq C_{T,p,\alpha,\varepsilon} \Delta t^{\frac{p}{2}} \|A^{\frac{\beta}{2} - \varepsilon}Q^\frac{1}{2}\|_{\text{HS}}^p,$$

provided that $\alpha < \varepsilon$. Given $p > 1/\varepsilon$, we thus need to choose $\alpha \in \left(\frac{1}{p}, \varepsilon\right)$. We conclude

$$\int_0^T E\|Y(s)\|^p \, ds \leq TC_{T,p,\alpha,\varepsilon} \Delta t^{\frac{p}{2}} \|A^{\frac{\beta}{2} - \varepsilon}Q^\frac{1}{2}\|_{\text{HS}}^p,$$

which proves the bound on e^n_2. To bound e^n_2 we use a discrete version of the factorization method. First introduce the constants

$$c_{n,k} := \left(\Delta t \sum_{l=k}^{n} t_{n-l+1}^{-1+\alpha} t_{l-k+1}^{-\alpha} \right)^{-1}.$$

It is not difficult to see that $c_{n,k} \leq C$ for all $1 \leq k \leq n$. Then we have

$$e^n_2 = \sum_{k=1}^{n} E(t_{n-k+1})c_{n,k} \left(\Delta t \sum_{l=k}^{n} t_{n-l+1}^{-1+\alpha} t_{l-k+1}^{-\alpha} \right) \Delta W^k$$

$$- \sum_{k=1}^{n} E^{n-k+1} \ c_{n,k} \left(\Delta t \sum_{l=k}^{n} t_{n-l+1}^{-1+\alpha} t_{l-k+1}^{-\alpha} \right) \Delta W^k$$

$$= \Delta t \sum_{l=1}^{n} t_{n-l+1}^{-1+\alpha} E(t_{n-l}) \sum_{k=1}^{l} c_{n,k} t_{l-k+1}^{-\alpha} E(t_{l-k+1}) \Delta W^k$$

$$- \Delta t \sum_{l=1}^{n} t_{n-l+1}^{-1+\alpha} E^{n-l} \sum_{k=1}^{l} c_{n,k} t_{l-k+1}^{-\alpha} E^{l-k+1} \Delta W^k$$

$$= \Delta t \sum_{l=1}^{n} t_{n-l+1}^{-1+\alpha} E(t_{n-l}) Y^l - \Delta t \sum_{l=1}^{n} t_{n-l+1}^{-1+\alpha} E^{n-l} \tilde{Y}^l$$

$$= \Delta t \sum_{l=1}^{n} t_{n-l+1}^{-1+\alpha} E_{n-l} Y^l + \Delta t \sum_{l=1}^{n} t_{n-l+1}^{-1+\alpha} E^{n-l} (Y^l - \tilde{Y}^l) =: e^n_{21} + e^n_{22},$$

where

$$Y_l = \sum_{k=1}^{l} c_{n,k} t_{l-k+1}^{-\alpha} E(t_{l-k+1}) \Delta W^k, \quad \tilde{Y}_l = \sum_{k=1}^{l} c_{n,k} t_{l-k+1}^{-\alpha} E^{l-k+1} \Delta W^k.$$
Next, we bound e_{21}^n, by Hölder’s inequality and (5.1) with $\rho = 0$ and $\gamma = \beta$, as follows

$$
\mathbb{E} \sup_{t_n \in [0,T]} \|e_{21}^n\|^p \leq \left(\Delta t \sum_{l=1}^{N} \left(t_l^{-1+\alpha} \|F_l A^{-\frac{\beta}{2}}\| \right)^{p - \frac{1}{p}} \mathbb{E} \Delta t \sum_{l=1}^{N} \|A^{\frac{\beta}{2}} Y_l^t\|^p \right)^{p-1} \mathbb{E} \Delta t \sum_{l=1}^{N} \|A^{\frac{\beta}{2}} Y_l^t\|^p,
$$

where the first sum is finite if $p > \frac{1}{\alpha}$. To estimate the last sum, note that $A^{\frac{\beta}{2}} Y_l^t$ is a Gaussian random variable and hence, as before, we use (2.7) to bound its p-th moment. Therefore, using also (2.1) and (5.1),

$$
\mathbb{E} \Delta t \sum_{l=1}^{N} \|A^{\frac{\beta}{2}} Y_l^t\|^p = \Delta t \sum_{l=1}^{N} \mathbb{E} \left(\sum_{k=1}^{l} c_{n,k} t_{l-k+1}^{-\alpha} A^{\frac{\beta}{2}} E(t_{l-k+1}) \Delta W_k \right)^{\frac{p}{2}} \leq C \Delta t \sum_{l=1}^{N} \left(\Delta t \sum_{k=1}^{l} t_k^{-2\alpha} \|E(t_k) A^{\frac{\beta}{2}} Q_{k+1}^{\frac{1}{2}}\|^2 \right)^{\frac{p}{2}} \leq C T \|A^{\frac{\beta}{2}} Q_{k+1}^{\frac{1}{2}}\|^p,
$$

provided that $\alpha < \varepsilon$. Finally, we estimate e_{22}^n. By Hölder’s inequality we first get

$$
\mathbb{E} \sup_{t_n \in [0,T]} \|e_{22}^n\|^p \leq \left(\Delta t \sum_{l=1}^{N} \left(t_l^{-1+\alpha} \|E_l\| \right)^{p - \frac{1}{p}} \mathbb{E} \sum_{l=1}^{N} \|Y(l) - \tilde{Y}(l)\|^p \right)^{p-1} \mathbb{E} \sum_{l=1}^{N} \|Y(l) - \tilde{Y}(l)\|^p \leq C_{\alpha,p} \sum_{l=1}^{N} \|Y(l) - \tilde{Y}(l)\|^p,
$$

if $p > \frac{1}{\alpha}$. To estimate the last term, we use (2.7) to bound the p-th moment of a Gaussian random variable and also (2.1) and (5.1) with $\rho = 1 - 2\varepsilon$ and $\gamma = \beta$ to
get

\[\sum_{l=1}^{N} \| Y(l) - \tilde{Y}(l) \|^p = \sum_{l=1}^{N} \left\| \sum_{k=1}^{l} c_{n,k} t_{l-k+1}^{-\alpha} F_{l-k+1} \Delta W^k \right\|^p \]
\[\leq C_p \sum_{l=1}^{N} \left(\Delta t \sum_{k=1}^{N} t_k^{-2\alpha} \| F_k Q^\frac{1}{2} \|_{HS}^2 \right)^{\frac{p}{2}} \]
\[= C_p \sum_{l=1}^{N} \left(\Delta t \sum_{k=1}^{N} t_k^{-2\alpha} \| A^{\frac{1}{2}-\epsilon} F_k A^{-\frac{1}{2}} A^{-1+\epsilon} Q^\frac{1}{2} \|_{HS}^2 \right)^{\frac{p}{2}} \]
\[\leq C_p \Delta t^{\frac{p}{4}} \left(\Delta t \sum_{k=1}^{N} t_k^{-1-2\alpha+2\epsilon} \right)^{\frac{p}{4}} \| A^{\frac{1}{2}+\epsilon} Q^\frac{1}{2} \|_{HS}^p, \]

whenever \(\alpha < \epsilon \), which finishes the proof. \(\square \)

Next we state a Lipschitz estimate for \(f(u) \). Here we use Sobolev’s inequality and, similarly to (3.3), it is crucial that \(d \leq 3 \) and that the nonlinearity \(f \) is at most cubic. For a proof we refer to [14] Lemma 2.5.

Lemma 5.2. For all \(u, v \in \dot{H}^1 \) we have

\[\| A^{-\frac{1}{2}} (f(u) - f(v)) \| \leq C(\| u \|_1^2 + \| v \|_1^2) \| u - v \|. \]

We are now ready to state and prove the pathwise convergence of the Backward Euler scheme defined in (1.2).

Theorem 5.3. Let \(\epsilon > 0 \), \(\| A^{\frac{1}{2}+\epsilon} Q^\frac{1}{2} \|_{HS} < \infty \), \(E\| u_0 \|_1^2 < \infty \), \(0 \leq \gamma < \frac{1}{2} \), and \(T = N \Delta t \). Then, there are finite random variables \(K \geq 0 \) and \(\Delta t_0 > 0 \) such that, almost surely,

\[\sup_{t_n \in [0,T]} \| u(t_n) - u^n \| \leq K \Delta t^\gamma, \quad t_n = n \Delta t, \quad \Delta t \leq \Delta t_0. \]

Proof. Since the arguments are pathwise and hence basically deterministic, we omit standard details. Let \(e^n = u(t_n) - u^n \) and \(0 \leq \gamma < \frac{1}{2} \). We decompose the error, using the mild formulation of (1.2) and (3.2), as follows

\[e^n = (E(t_n)u_0 - E^n u_0) + (W_A(t_n) - W_A^n) \]
\[+ \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} E(t_n - s) f(u(s)) - E^{n-k+1} f(u^k) \, ds =: e_1^n + e_2^n + e_3^n. \]

By (5.1) we may estimate \(e_1 \) as

\[\| e_1^n \| \leq C \Delta t^{\frac{1}{2}} \| u_0 \|_1 \]

For \(e_2^n \), by Proposition 5.1 with \(\beta = 2 \), we have that

\[\| e_2^n \| \leq L \Delta t \| A^{\frac{1}{2}+\epsilon} Q^\frac{1}{2} \|_{HS} \]
almost surely for some finite nonnegative random variable \(L \). Next, we can further decompose \(e_3 \) as

\[
e_3^n = \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} E^{n-k+1}(f(u(t_k)) - f(u^k)) \, ds
\]

\[
+ \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} (E(t_{n-k+1}) - E^{n-k+1}) f(u(t_k)) \, ds
\]

\[
+ \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} E(t_{n-k+1})(f(u(s)) - f(u(t_k))) \, ds
\]

\[
+ \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} (E(t_n - s) - E(t_{n-k+1})) f(u(s)) \, ds
\]

\[=: e_{31}^n + e_{32}^n + e_{33}^n + e_{34}^n.
\]

To bound \(e_{31}^n \) we use Propositions 3.1 and 4.1 together with Lemma 5.2 to conclude that for some finite nonnegative random variable \(L_1 \) we have, almost surely,

\[
\|e_{31}^n\| = \left\| \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} A^{\frac{3}{2}} E^{n-k+1} A^{-\frac{1}{2}} (f(u(t_k)) - f(u^k)) \, ds \right\|
\]

\[
\leq L_1 \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} t_k^{-\frac{1}{2}} \|e^k\| \, ds = L_1 \Delta t \sum_{k=1}^{n} t_k^{-\frac{1}{2}} \|e^k\|,
\]

where we used the well known fact that \(\|A^{1/2} E^k\| \leq C t_k^{-\frac{1}{2}} \) (see, for example, [23 Lemma 7.3]). Next we use Proposition 3.1 Lemma 5.2 and (5.1) with \(\gamma = 0, \rho = 1 \) and \(\beta = 2\gamma \) to estimate \(e_{32}^n \) as

\[
\|e_{32}^n\| = \left\| \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} A^{\frac{3}{2}} (E(t_{n-k+1}) - E^{n-k+1}) A^{-\frac{1}{2}} f(u(t_k)) \, ds \right\|
\]

\[
\leq \Delta t^\gamma L_2 \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} t_k^{-\frac{1}{2} - \gamma} \, ds = \Delta t^\gamma L_2 \Delta t \sum_{k=1}^{n} t_k^{-\frac{1}{2} - \gamma},
\]

almost surely for some finite nonnegative random variable \(L_2 \). For \(e_{33}^n \), we use the Hölder continuity of \(u \) from Proposition 4.3 together with Proposition 4.1 Lemma 5.2 and (2.3) with \(\beta = \frac{1}{2} \), and obtain

\[
\|e_{33}^n\| = \left\| \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} A^{\frac{3}{2}} E(t_{n-k+1}) A^{-\frac{1}{2}} (f(u(s)) - f(u(t_k))) \, ds \right\|
\]

\[
\leq \Delta t^\gamma L_3 \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} t_k^{-\frac{1}{2}} \, ds = \Delta t^\gamma L_3 \Delta t \sum_{k=1}^{n} t_k^{-\frac{1}{2}},
\]

almost surely for some finite nonnegative random variable \(L_3 \). Finally, by Proposition 3.1 Lemma 5.2 and (2.3) with \(\beta = \frac{1}{2} \) and \(\rho = 0 \), we have

\[
\|e_{34}^n\| = \left\| \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} A^{\frac{3}{2}} (E(t_n - s) - E(t_{n-k+1})) A^{-\frac{1}{2}} f(u(s)) \, ds \right\|
\]

\[
\leq \Delta t^\gamma L_4 \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} t_k^{-\frac{1}{2} - \gamma} \, ds = \Delta t^\gamma L_4 \Delta t \sum_{k=1}^{n} t_k^{-\frac{1}{2} - \gamma},
\]
almost surely for some finite nonnegative random variable L. Putting together the estimates and using a generalized discrete Gronwall lemma [7, Lemma 7.1] finishes the proof.

Finally, we show strong convergence in L^p, albeit without rate.

Theorem 5.4. Let $\varepsilon > 0$, $p \geq 1$, and $N\Delta t = T$. If $\|A^{1/2+\varepsilon}Q^{1/2}\|_{HS} < \infty$ and $\mathbb{E}\|u_0\|_{L^p}^{2p} < \infty$, then

$$
\lim_{\Delta t \to 0} \mathbb{E} \sup_{t_n \in [0,T]} \|u(t_n) - u^n\|^p = 0, \quad t_n = n\Delta t.
$$

Proof. Let

$$
Y_N := \sup_{t_n \in [0,T]} \|u(t_n) - u^n\|^p.
$$

By Theorem 5.3 it follows that $Y_N \to 0$ almost surely, and hence in probability, as $N \to \infty$. By Propositions 3.1 and 4.2, there is $M > 0$ such that, for $T^{2p-1}\Delta t \leq \frac{1}{2}$,

$$
\mathbb{E} Y_N^2 \leq C \mathbb{E} \sup_{t_n \in [0,T]} (\|u(t_n)\|^{2p} + \|u^n\|^{2p}) \leq M.
$$

Therefore, it follows that $\{Y_N\}_{N \in \mathbb{N}}$ is uniformly integrable. Being convergent in probability and uniformly integrable, it converges in L^1; that is,

$$
\lim_{\Delta t \to 0} \mathbb{E} \sup_{t_n \in [0,T]} \|u(t_n) - u^n\|^p = \lim_{N \to \infty} \mathbb{E} Y_N = 0,
$$

see [13, Proposition 3.12].

References

[1] D. Blömker and A. Jentzen, *Galerkin approximations for the stochastic Burgers equation*, SIAM J. Numer. Anal. **51** (2013), 694–715.
[2] D. Blömker, M. Kamrani, and S. M. Hosseini, *Full discretization of the stochastic Burgers equation with correlated noise*, IMA J. Numer. Anal. **33** (2013), 825–848.
[3] P.A. Cioca, S. Dahlke, N. Doering, U. Friedrich, S. Kinzel, F. Lindner, T. Raasch, K. Ritter, and R. Schilling, *On the convergence analysis of Rothe’s method*, Preprint Nr. 124, DFG-Schwerpunktprogramm 1324 “Extraktion Quantifizierbarer Information aus Komplexen Systemen” (2012).
[4] S. Cox and J. van Neerven, *Pathwise Hölder convergence of the implicit-linear Euler scheme for semi-linear SPDEs with multiplicative noise*, Numer. Math. **125** (2013), 259–345.
[5] G. Da Prato and A. Debussche, *Stochastic Cahn-Hilliard equation*, Nonlinear Anal. **26** (1996), 241–263.
[6] G. Da Prato and J. Zabczyk, *Stochastic Equations in Infinite Dimensions*, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992.
[7] C. M. Elliott and S. Larsson, *Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation*, Math. Comp. **58** (1992), 603–630, S33–S36.
[8] I. Gyöngy and A. Millet, *On discretization schemes for stochastic evolution equations*, Potential Anal. **23** (2005), 99–134.
[9] E. Hausenblas, *Numerical analysis of semilinear stochastic evolution equations in Banach spaces*, J. Comput. Appl. Math. **147** (2002), 485–516.
[10] ———, *Approximation for semilinear stochastic evolution equations*, Potential Anal. **18** (2003), 141–186.
[11] D. J. Higham, X. Mao, and A. M. Stuart, *Strong convergence of Euler-type methods for nonlinear stochastic differential equations*, SIAM J. Numer. Anal. **40** (2002), 1041–1063 (electronic).
[12] A. Jentzen, *Pathwise numerical approximation of SPDEs with additive noise under non-global Lipschitz coefficients*, Potential Anal. **31** (2009), 375–404.
[13] O. Kallenberg, *Foundations of Modern Probability*, Springer series in statistics, Probability and its applications, Springer Verlag New York Berlin Heidelberg, 1997.

[14] M. Kovács, S. Larsson, and A. Mesforush, *Finite element approximation of the Cahn-Hilliard-Cook equation*, SIAM J. Numer. Anal. 49 (2011), 2407–2429.

[15] M. Kovács, S. Larsson, and K. Urban, *On Wavelet-Galerkin methods for semilinear parabolic equations with additive noise*, Monte Carlo and Quasi-Monte Carlo Methods 2012 (J. Dick, F. Y. Kuo, G. W. Peters, and I. H. Sloan, eds.), Springer-Verlag, 2014, pp. 459–476, to appear, arXiv:1208.0433 [math.NA].

[16] H. Kunita, *Stochastic Flows and Stochastic Differential Equations*, Cambridge Studies in Advanced Mathematics, vol. 24, Cambridge University Press, Cambridge, 1990.

[17] D. Liu, *Convergence of the spectral method for stochastic Ginzburg-Landau equation driven by space-time white noise*, Commun. Math. Sci. 1 (2003), 361–375.

[18] W. Liu, *Invariance of subspaces under the solution flow of SPDE*, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13 (2010), 87–98.

[19] ———, *Well-posedness of stochastic partial differential equations with Lyapunov condition*, J. Differential Equations 255 (2013), 572–592.

[20] W. Liu and M. Röckner, *SPDE in Hilbert space with locally monotone coefficients*, J. Funct. Anal. 259 (2010), 2902–2922.

[21] A. Pazy, *Semigroups of Linear Operators and Applications to Partial Differential Equations*, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983.

[22] C. Prévôt and M. Röckner, *A Concise Course on Stochastic Partial Differential Equations*, Lecture Notes in Mathematics, vol. 1905, Springer, Berlin, 2007.

[23] J. Printems, *On the discretization in time of parabolic stochastic partial differential equations*, M2AN Math. Model. Numer. Anal. 35 (2001), 1055–1078.

[24] M. Sauer and W. Stannat, *Lattice approximation for stochastic reaction diffusion equations with one-sided Lipschitz condition*, arXiv:1301.6350 [math.PR].

[25] V. Thomée, *Galerkin finite element methods for parabolic problems*, second ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006.

Department of Mathematics and Statistics, University of Otago, P.O. Box 56, Dunedin, New Zealand
E-mail address: mkovacs@maths.otago.ac.nz

Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE–412 96 Gothenburg, Sweden
E-mail address: stig@chalmers.se

Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE–412 96 Gothenburg, Sweden
E-mail address: fredrik.lindgren@chalmers.se