Abstract: Several observational studies have investigated the relation between cadmium exposure and risk of any fracture. However, the results from epidemiological studies for the association are inconsistent.

We conducted a meta-analysis to evaluate the relationship between cadmium exposure and risk of any fracture. The pertinent studies were identified by a search of PubMed and Embase databases from 1966 to June 2015.

Seven articles involving 21,941 fracture cases and 504,346 participants were included. The meta-analysis showed that the pooled relative risk of any fracture for the highest versus lowest category of cadmium concentration was 1.30 (95% confidence interval = 1.13–1.49). In subgroup analyses, the significant association remained consistent when stratified by study type, geographical region, method of cadmium exposure assessment, and gender.

Our meta-analysis showed that a high cadmium exposure may be a risk factor for any fracture. However, this result should be interpreted cautiously because of the heterogeneity among studies and existence of publication bias. Additional large, high-quality prospective studies are needed to evaluate the association between cadmium exposure and the risk of development of fracture.

(Medicine 95(10):e2932)

Abbreviations: BMD = bone mineral density, Cd = cadmium, CI = confidence interval, D-Cd = dietary Cd, Ery-Cd = erythrocyte Cd, HR = hazard ratio, NOS = Newcastle–Ottawa scale, OR = odds ratio, RR = relative risk, U-Cd = urinary Cd.

INTRODUCTION

Cadmium (Cd) is a persistent heavy metal with high toxicity and an elimination half-life of 10 to 30 years. Cd may have a wide range of negative effects on human health.1 In general, nonsmoking population, major sources of Cd exposure are smoking and diet because tobacco, grains, potatoes, and vegetables take up Cd from soil.2 In a public health context, the negative effect of Cd on bone in the general population is of great concern following the outbreak of Itai-itai disease in Japan more than 50 years ago.3 Recently, numerous observational studies were conducted to evaluate the effects of Cd exposure on any fracture risk. However, the results of those studies are inconsistent, with majority of the studies reporting positive effects,4–8 whereas other studies found mixed results.9–11 In addition, these studies have a modest sample size, and the magnitude of the association is variable among these studies, with relative risk (RR) varying from 0.99 (95% confidence interval [CI]: 0.93–1.05) to 4.10 (95% CI = 1.55––6.61), and thus the magnitude is limited by the low precision in risk estimates. These epidemiological studies lack comprehensive assessment of Cd exposure. Given the popularity of Cd exposure and poor prognosis of fracture, any risk factors for the development of fracture would have a substantial impact on public health. Therefore, we systematically performed a meta-analysis by combining all available data of observational studies to evaluate the association between Cd exposure and risk of fracture.

MATERIALS AND METHODS

The study was reported following the Preferred Reporting Items for Systematic Reviews.12 No ethical issues were involved in our study given that our data were based on published studies.

Literature Search

We identified studies examining the relation between Cd exposure and any fracture risk by systematically searching the database of PubMed and Embase for papers published from 1966 to June 20, 2015. The predefined keywords were used without any limitation: “fracture(s)” combined with “cadmium.” Furthermore, we reviewed the reference lists from retrieved articles for additional relevant studies.

Eligibility Criteria and Study Selection

Studies were considered acceptable for inclusion in the meta-analysis if they met the following criteria: study design was either cohort, case–control, or cross-sectional; the exposure was Cd exposure; the outcome was fracture risk; and hazard ratio (HR) or RR and odds ratio (OR), with corresponding 95% CI (or data to calculate these) were reported. Studies were excluded if they met the following criteria: they are editorial letters, historical reviews, and descriptive studies, such as case reports and case series, or laboratory studies; they did not contain enough data for calculating RR; and when multiple publications covered the same study population, only the study...
with the larger sample was included. Two authors (JKS and YXH) independently evaluated the eligibility of all retrieved studies and disagreements were resolved through discussion or consultation with a third author (HGL).

Data Extraction
Two authors (JKS and YXH) independently extracted data from the selected studies. The following data were extracted: first author, publication year, study design, country, sex, total number of cases and subjects, assessment methods for Cd exposure, and adjusted variables. The adjusted RR was extracted in preference to the nonadjusted RR; however, the unadjusted RR and CI were calculated when the RR was not provided. When more than 1 adjusted RR was reported, the ratio with the most number of adjusted variables was selected. Any disagreements were resolved through discussion and consensus.

Quality Evaluation
We evaluated the methodological quality of included studies using the Newcastle–Ottawa scale (NOS).13 The check list contains 9 items for case–control studies and cohort studies with every item accounts for 1 point. We allocated high-quality studies with a score >5.

Statistical Analysis
We used the RR with 95% CI as a common measure across all eligible studies. The differences among risk estimates (HR, RR, and OR) were ignored and the OR and HR were directly converted to RR because fracture is a relatively rare event. A random-effects model of the DerSimonian and Laird method, which is appropriate when the heterogeneity cannot readily be explained, was used to calculate summary RR comparing the highest versus lowest level of Cd across all included studies regardless of heterogeneity.14 If sex-specific estimates were available, then they were also regarded as 2 different studies.7–9

Given that patient characteristics, study design, and other confounding factors were inconsistent among studies, sensitivity analysis was performed to evaluate robustness and stability by sequentially omitting 1 study on each turn. Moreover, subgroup analyses were subsequently carried out by study type, geographical region, method of Cd exposure assessment, gender, and fracture site. We evaluated the potential publication bias using a funnel plot and Egger tests, with P < 0.1 indicating significant publication.15 All statistical analyses were carried out using Stata version 13.1 (Stata Corp., College Station, TX).

RESULTS

Literature Search
A diagram showing the details of study inclusion is shown in Figure 1. The search strategy yielded 187 citations, of which 60 articles, 7 studies were from the Europe,4–6,8–11 and 1 study was from China.7 Three articles were designed to evaluate the association between Cd exposure and hip fracture risk,6,8,11 and 4 articles evaluated the relation between Cd exposure and any fracture risk,5–7,9,10 2 articles evaluated the association between Cd exposure and forearm fracture.4,10 Four articles used urinary Cd (U-Cd) as biomarkers for long-term exposures to Cd,4,7,9,10 whereas 2 articles evaluated the Cd exposure levels by estimating the dietary Cd (D-Cd) using food frequency questionnaire.5,6,10 1 article examined the Cd exposure levels in drinking water,8 and 1 article investigated the Cd exposure levels in the erythrocytes (Ery-Cd).11 One article combined the assessment of dietary and U-Cd in relation to any fracture.5 Two studies were designed to evaluate the relationship between D-Cd exposure and fracture risk among nonsmoker populations.4,6 Six articles adjusted for a group of conventional risk factors for fracture,4–6,8–11 whereas 1 article did not control for other confounding factors,7 only 3 articles adjusted for smoking status.5,9,10 As shown in the Table 2, the quality scores ranged from 4 to 6, with mean of 5.

Quantitative Synthesis
A total of 10 studies from 7 articles5–11 with 22,336 cases and 507,034 participants were included, because 3 results (for male and female) were reported in 3 publications.7–9 The overall summary RR for fracture was 1.30 times (RR = 1.08–1.38) for the highest category of Cd exposure compared with the lowest category, with significant heterogeneity (P of heterogeneity = 0.000, I² = 80.8%; Figure 2; Table 3).

Sensitivity Analysis and Subgroup Analyses
To test the robustness and stability of the relation, we performed sensitivity analyses to omit 1 study at a time and to compute the combined RR for the remaining studies. The combined RR for fracture ranged from 1.22 (95% CI = 1.08–1.38) to 1.40 (95% CI = 1.16–1.68) in the sensitivity analyses after excluding 1 study at a time. In the sensitivity analysis, similar results were observed, which ranged from 1.22 (95% CI = 1.08–1.38) with low heterogeneity (I² = 76.4%, heterogeneity P = 0.000) (excluding the study
Study	Year	Country	Study Design	No. of Patients	No. of Subjects	Sex	Age, Median (Range), y	Exposure Assessment	Follow-Up	Adjustment for Covariates
Staessen	1999	Belgium	CadmiBel cohort study	44 cases of fracture	22,173	W and M	44.05 (NA)	U-Cd	6.6	Adjusted for age, BMI, calcium, physical activity, socioeconomic status, smoker, drinker, postmenopausal status, and treatment with diuretics
Alfven	2004	Sweden	Swedish OSCAR cohort	94 cases of forearm fracture	1012	W and M	NA (16–81)	U-Cd	NA	Adjusted for gender, weight (kg), calcium intake (g/d), smoker (never/current/former), and occupational exposure
Zhu	2004	China	Case–control study	50 cases of bone fracture	790	W and M	NA	U-Cd	NA	Unadjust
Engstrom	2011	Sweden	Cohort (Swedish Mammography Cohort)	395 first cases of any fracture, 248 cases of first osteoporotic fracture, and 137 cases of first fracture of the distal forearm occurred; 116 women had 2 or more fractures	2688	W	63.3 (60–69)	U-Cd	11.5	Adjusted for age (y), education (<9 and >9 y: yes/no), BMI (< or ≥ 20 kg/m²), parity (0–6), use of postmenopausal hormones (yes/no), ever use of corticosteroids (yes/no), total physical activity (metabolic equivalent hours (MET) hours per day), smoking status (never/every), alcohol intake (g ethanol/d), inflammatory joint diseases (yes/no), kidney diseases (yes/no), liver diseases (yes/no), and malabsorption (yes/no)
Thomas	2011	Sweden	A population-based prospective cohort (COSM)	2185 incident cases of any fracture and 374 hip fracture cases	22,173	W and M	59.7 (45–79)	D-Cd	10	Adjusted for attained age, height (tertiles), weight (tertiles), education (primary, secondary, tertiary), civil status (single, married/cohabiting, divorced/widowed), employment status (full-time work, part-time work/student, unemployed, disability pension/retired), alcohol intake (tertiles plus never drinker category), cortisone use (ever/never), walking/cycling (<40 min/d, >40 min/d), exercise (<1 h/wk, >1 h/wk), occupational activity (sitting down >50%, sitting down <50%), pack-years (tertiles plus never smoker category), liver disease (yes/no), kidney disease (yes/no), celiac disease (yes/no), inflammatory joint disease (yes/no), dietary intake of calcium (tertiles) and iron (tertiles), and tertiles of fruit and vegetable intake (g/d)
by Zhu et al\(^7\) to 1.40 (95% CI = 1.16–1.68) with significant heterogeneity \((I^2 = 82.9\%, \text{heterogeneity } P = 0.000)\) (excluding the study by Dahl et al\(^8\)). Furthermore, subgroup analysis was also performed (Figure 3; Table 3). In subgroup analyses for study design, the summary RR values of any fracture for the highest category of Cd exposure versus lowest category were 2.47 (95% CI = 1.51–4.03) and 1.15 (95% CI = 1.04–1.28) for the 2 case–control studies and 5 cohort studies, respectively. When stratified by method of Cd assessment, we found an increase of any fracture risk in both U-Cd \((RR = 1.60, 95\% \text{ CI} = 1.19–2.14)\) and D-Cd exposure \((RR = 1.21, 95\% \text{ CI} = 1.09–1.35)\). The combined RR for any fracture was 1.16 (95% CI = 1.05–1.28) for studies conducted in Europe and 2.95 (95% CI = 1.87–4.65) for that in Asia. When stratified by fracture site, Cd exposure significantly increased the risk of forearm fracture \((RR = 1.19, 95\% \text{ CI} = 1.03–1.37)\) and any fracture risk \((RR = 1.59, 95\% \text{ CI} = 1.19–2.12)\), but not the risk of hip fracture \((RR = 1.08, 95\% \text{ CI} = 0.97–1.20)\). Compared with the low NOS score \((OR = 2.16, 95\% \text{ CI} = 1.03–4.53)\), the association remained significant among studies with high NOS score \((OR = 1.16, 95\% \text{ CI} = 1.03–1.30)\). When stratified by gender, we found an increase of any fracture risk in both male \((OR = 1.26, 95\% \text{ CI} = 1.02–1.55)\) and female \((OR = 1.60, 95\% \text{ CI} = 1.07–2.39)\). Only 2 studies evaluated the effect of D-Cd exposure and risk of any fracture among nonsmoker populations; the overall RR was 1.30 (95% CI = 1.05–1.61), with low heterogeneity \((I^2 = 17.1\%, \text{heterogeneity } P = 0.272)\). For the

TABLE 1. (Continued)

Study	Year	Country	Study Design	No. of Patients	Sex	Age, Median (Range), y	Exposure Assessment Follow-Up	Adjustment for Covariates
Engstrom 2012	Sweden	Population-based prospective cohort study	2676	W	NA (56–69)	U-Cd, D-Cd	Adjusted for age (y), education (≤9, >9; yes/no), BMI (kg/m²), ever use of postmenopausal hormone (yes/no), total physical activity (yes/no), alcohol intake (g/week), current smoking, frailty status (yes/no), coronary artery disease (yes/no), and rheumatoid arthritis (yes/no)	
Dahl 2014	Norway	A NOREPOS cohort study	19,067	W and M	64.5 (50–85)	Cd in the drinking water	6	Adjusted for age, region, urbanization, degree, water source, pH, calcium, and magnesium
Sommar 2014	Sweden	A nested case–control study from the Northern Sweden Health and Disease Study (NSHDS) cohort	109	W and M	60.1 (NA)	Ery-Cd	NA	

TABLE 2. Quality Assessment of Eligible Studies Based on Newcastle–Ottawa Scale

Author	Year	Selection	Comparability	Exposure
Staessen	1999	2	1	2
Alfven	2004	2	1	1
Zhu	2004	2	0	2
Engstrom	2010	2	1	2
Thomas	2011	3	1	2
Engstrom	2012	2	1	2
Dahl	2014	3	1	1
Sommar	2014	3	1	2

FIGURE 2. Forest plot for the association between cadmium exposure and any fracture risk.
4 studies adjusted for smoking status, the pooled RR was 1.30 (95% CI = 1.10–1.54), with low heterogeneity ($I^2 = 20.3\%$, heterogeneity $P = 0.288$).

Publication Bias

Some asymmetry was observed in the funnel plot (Figure 4), with P values of 0.074 for Begg test and 0.001 for Egger test, suggesting the existence of publication bias.

DISCUSSION

To the best of our knowledge, this article presents the first meta-analysis to explore the role of exposure to Cd in patients with any form of fracture. The overall results of the present meta-analysis using a random-effects model provide evidence that a high Cd exposure may be a risk factor for increased risk of any fracture. The pooled estimates were robust according to sensitivity and subgroup analyses.

Cadmium is widely distributed in the environment through industrial and agricultural activities. A prospective cohort of CadmiBel study in Belgium found a higher risk of any fractures in women (RR = 1.73, 95% CI = 1.16–2.57) and a nonsignificant increase in risk of any fractures in men (RR = 1.20, 95% CI = 0.75–1.93) with a doubling of U-Cd.9 Similarly, a cohort study conducted in Sweden found an 18% (95% CI = 1.01–1.37) increase in risk of forearm fracture per unit increment in U-Cd (nmol Cd/mmol creatinine) in those over 50 years of age, but nonsignificant in those below 50 years old.10 A significant association between U-Cd exposure and any fracture risk was found among women and men in a case–control study conducted in China.4,5 In a same cohort in Sweden, the combination of the 2 biomarkers, U-Cd and D-Cd, showed Cd exposure increased the risk of any fracture in the general population.4,5 In another cohort study in Sweden, Sommar et al11 examined the effect of Cd in erythrocytes on risk of any fracture and found positive association among women, but not among men. In the present meta-analysis, we found a positive association between Cd exposure and risk of any fracture.

Results from subgroup analyses indicated that geographic region, study design, NOS scale, gender, fracture type, and method of Cd assessment are potential sources of heterogeneity. Despite intrinsic limitations of observational study, some results from subgroup analyses remain notable. When stratified by...
direct effect on the skeleton. Experimental data show a direct effect of Cd on bone with decreased bone formation and fracture. Fourth, the association of Cd exposure with risk of any fracture remains statistically significant according to sensitivity and subgroup analyses, which indicated that our main findings are robust and Cd exposure may be independent of conventional risk factors of any form of fracture.

Nevertheless, some limitations should be considered in the present meta-analysis. First, observational studies have inherent limitations, such as selective bias and recall or memory bias. Therefore, the findings should be interpreted with caution. Second, the evidence of publication bias was observed; the results could be biased by the publication bias because studies with small sample size and null results may have been rejected for publication. Third, the small number of studies included in the meta-analysis limits the ability to draw a reliable conclusion, especially in the subgroup analyses. Fourth, between-study heterogeneity is common in the meta-analysis, and exploring the potential sources of between-study heterogeneity is essential. Our sensitivity and subgroup analyses indicated the existence of heterogeneity. Fifth, given that the included studies used different methods to assess and categorize Cd exposure, our findings are likely influenced by the misclassification of exposure. Moreover, the potential for misclassification of exposure to Cd may contribute to the heterogeneity among all studies in the summary analysis. Therefore, this result should be considered with caution because of exposure misclassification. In general, the aforementioned limitations may affect our final conclusions.

In summary, the current meta-analysis demonstrates that a high Cd exposure may be a risk factor for any fracture. However, this result should be interpreted cautiously because of the heterogeneity among studies and existence of publication bias. Additional large, high-quality prospective studies are needed to evaluate the association between Cd exposure and the risk of development of fracture.

REFERENCES

1. Jarup L, Akesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009;238:201–208.
2. Amzal B, Julin B, Vahter M, et al. Population toxicokinetic modeling of cadmium for health risk assessment. Environ Health Perspect. 2009;117:1293–1301.
3. Nordberg GF. Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol. 2009;238:192–200.
4. Engstrom A, Michaelsson K, Suwazono Y, et al. Long-term cadmium exposure and the association with bone mineral density and fractures in a population-based study among women. J Bone Miner Res. 2011;26:486–495.
5. Engstrom A, Michaelsson K, Vahter M, et al. Associations between dietary cadmium exposure and bone mineral density and risk of osteoporosis and fractures among women. Bone. 2012;50:1372–1378.
6. Thomas LD, Michaelsson K, Julin B, et al. Dietary cadmium exposure and fracture incidence among men: a population-based prospective cohort study. J Bone Miner Res. 2011;26:1601–1608.
7. Zhu G, Wang H, Shi Y, et al. Environmental cadmium exposure and forearm bone density. Biometals. 2004;17:499–503.
8. Dahl C, Sogaard AJ, Tell GS, et al. Do cadmium, lead, and aluminium in drinking water increase the risk of hip fractures? A NOREPOS study. Biol Trace Elem Res. 2014;157:14–23.
9. Staessen JA, Roels HA, Emeljanov D, et al. Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. Public Health and Environmental Exposure to Cadmium (PheeCad) Study Group. Lancet (Lond, Engl). 1999;353:1140–1144.
10. Alfven T, Elinder CG, Hellsstrom L, et al. Cadmium exposure and distal forearm fractures. J Bone Miner Res. 2004;19:900–905.

11. Sommar JN, Pettersson-Kymmer U, Lundh T, et al. Hip fracture risk and cadmium in erythrocytes: a nested case–control study with prospectively collected samples. Calcif Tissue Int. 2014;94:183–190.

12. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Bmj. 2009;339:b2535.

13. Hartling L, Milne A, Hamm MP, et al. Testing the Newcastle–Ottawa Scale showed low reliability between individual reviewers. J Clin Epidemiol. 2013;66:982–993.

14. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–188.

15. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997;315:629–634.

16. Wang H, Zhu G, Shi Y, et al. Influence of environmental cadmium exposure on forearm bone density. J Bone Miner Res. 2003;18:553–560.

17. Nawrot T, Geusens P, Nulens TS, et al. Occupational cadmium exposure and calcium excretion, bone density, and osteoporosis in men. J Bone Miner Res. 2010;25:1441–1445.

18. Kang MH, Park SM, Oh DN, et al. Dietary nutrient and food intake and their relations with serum heavy metals in osteopenic and osteoporotic patients. Clin Nutr Res. 2013;2:26–33.

19. Bhattacharyya M, Bozorgnia S. Effects of cigarette smoke cadmium on urine calcium excretion in postmenopausal women. J Bone Miner Res. 2010;25:S198.

20. Lacka-Gazdzik B, Klosa Z, Gazdzik TS, et al. The impact of selected metallic elements in the environment on the occurrence of osteoporosis in the voivodeship of Silesia. Ortop Traumatol Rehabil. 2005;7:433–439.

21. Julin B, Vahter M, Amzal B, et al. Relation between dietary cadmium intake and biomarkers of cadmium exposure in premenopausal women accounting for body iron stores. Environ Health. 2011;10:105.

22. Engström A, Michaelsson K, Vahter M, et al. Combined assessment of dietary and urinary cadmium in relation to bone effects. Toxicol Lett. 2012;211:S103.

23. Jarup L, Alfven T. Low level cadmium exposure, renal and bone effects—the OSCAR study. Biometals. 2004;17:505–509.

24. Brzóska MM. Low-level chronic exposure to cadmium enhances the risk of long bone fractures: a study on a female rat model of human lifetime exposure. J Appl Toxicol. 2012;32:34–44.

25. Brzóska MM, Moniuszko-Jakoniuk J. Low-level exposure to cadmium during the lifetime increases the risk of osteoporosis and fractures of the lumbar spine in the elderly: studies on a rat model of human environmental exposure. Toxicol Sci. 2004;82:468–477.

26. Habeebu SS, Liu J, Liu Y, et al. Metallothionein-null mice are more susceptible than wild-type mice to chronic CdCl (2)-induced bone injury. Toxicol Sci. 2000;56:211–219.

27. Wilson AK, Bhattacharyya MH. Effects of cadmium on bone: an in vivo model for the early response. Toxicol Appl Pharmacol. 1997;145:68–73.

28. Bhattacharyya MH. Cadmium osteotoxicity in experimental animals: mechanisms and relationship to human exposures. Toxicol Appl Pharmacol. 2009;238:258–265.

29. Jarup L, Berglund M, Elinder CG, et al. Health effects of cadmium exposure—a review of the literature and a risk estimate. Scand J Work Environ Health. 1998;24(Suppl 1):1–51.

30. Alfven T, Elinder CG, Carlson MD, et al. Low-level cadmium exposure and osteoporosis. J Bone Miner Res. 2000;15:1579–1586.