A PCR based method to detect *Russula* spp. in soil samples and *Limodorum abortivum* roots in Mediterranean environments

Eduardo Larriba¹, Antonio Belda² and Luis Vicente Lopez-Llorca¹

¹ Multidisciplinary Institute for Environmental Studies (MIES) “Ramón Margalef”, Department of Marine Sciences and Applied Biology, University of Alicante, Ap. 99, 03080 Alicante, Spain. ² Department of Environment and Earth Sciences, University of Alicante, Aptdo. 99, 03080 Alicante, Spain.

Abstract

Aim of study: Orchidaceae has the largest number of species of any family in the plant kingdom. This family is subject to a high risk of extinction in natural environments, such as natural parks and protected areas. Recent studies have shown the prevalence of many species of orchids to be linked to fungal soil diversity, due to their myco-heterotrophic behaviour. Plant communities determine fungal soil diversity, and both generate optimal conditions for orchid development.

Area of study: The work was carried out in the two most important natural parks in Alicante (Font Roja and Sierra Mariola), in South-eastern of Spain.

Material and Methods: We designed a molecular tool to monitor the presence of *Russula* spp. in soil and orchid roots, combined with phytosociological methods.

Main results: Using a PCR-based method, we detected the presence in the soil and *Limodorum abortivum* orchid roots of the mycorrhizal fungi *Russula* spp. The species with highest coverage was *Quercus rotundifolia* in areas where the orchid was present.

Research highlights: We present a useful tool based on PCR to detect the presence of *Russula* spp. in a natural environment. These results are consistent with those obtained in different studies that linked the presence of the mycorrhizal fungi *Russula* spp. in roots of the species *Limodorum* and the interaction between these fungal species and *Quercus ilex* trees in Mediterranean forest environments.

Key words: Detection; GIS; *Russula* spp.; *Limodorum abortivum*; PCR.

Citation: Larriba, E., Belda, A., Lopez-Llorca, L.V. (2015). A PCR based method to detect *Russula* spp. in soil samples and *Limodorum abortivum* roots in Mediterranean environments. Forest Systems, Volume 24, Issue 1, e-019, 5 pages. http://dx.doi.org/10.5424/fs/2015241-06249.

This work has one Supplementary Figure and three Supplementary Tables.

Copyright © 2015 INIA. This is an open access article distributed under the Creative Commons Attribution License (CC by 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Funding: This research was funded by the Spanish Ministry of Science and Innovation Grant AGL2008-00716/AGR and the Instituto Alicantino de Cultura Juan Gil-Albert.

Competing interests: The authors have declared that no competing interests exist.

Correspondence should be addressed to: Antonio Belda: antonio.belda@ua.es.

Introduction

Orchidaceae has the largest number of species of any family in the Plant Kingdom (ca. 20,000 species). There is evidence that many orchids are subject to a high risk of extinction due to natural or anthropogenic causes (Kindlmann et al., 2002, Nicol et al., 2005, Hutchings, 2010). Mediterranean forests are rich in endemic species, over 3% of the Valencian endemic plants are typical of forest ecosystems. *Limodorum abortivum* and *L. trabutianum* are very significant species in Mediterranean forests and it has been demonstrated that they depend on mycorrhizal fungi for seed germination and growth (Selosse et al., 2010, Selosse & Rousset, 2011, Tĕšitelová et al., 2012). *Limodorum* spp. present in the Font Roja Natural Park, also tend to associate with *Russula* spp. (Girlanda et al., 2006) in Italy and France Mediterranean forests. Molecular techniques have been applied successfully to the study of relationships between plants and fungi (Leake & Cameron, 2012, Sun & Guo, 2012). The main goal of this study is the development of molecular tools for detection of fungal presence in the Font Roja and Sierra Mariola Natural Parks (Alicante, SE Spain). This aims to create a useful tool for the study of presence and distribution of *Russula* spp., which is of vital im-
importance for the conservation of these Mediterranean orchids.

Materials and methods

Study site and sampling

The first study site was located in the Font Roja Natural Park, in the district of l’Alcoià (Alicante, SE Spain). The second site is the Sierra Mariola, a mountainous formation located between the provinces of Valencia and Alicante (Belda et al., 2009). Soil samples and small fragments of the roots of some L. abortivum individuals were taken from different sampling sites (Figure 1. and Suppl. Table S1 [pdf on line]). Each of the sampling points were defined by at least 10 random plots (200 m²) and vegetation was sampled according to the methodology, based on transects, called “quadrat technique” (Grant, 1981). The measure of total plant cover was also taken on the methodology of Braun-Blanquet (1965). Point samples were marked with a Trimble® GPS unit, using a spatial resolution of 1:5000. Georeferenced points were exported to ArcView® format (*.shp), to edit a localization map of the sampling points (Figure 1).

Isolation of total DNA from soil

For the isolation of total DNA from core soils, 5 g of core soil were suspended in 5 ml of T.E. 1X (10 mMTris-HCl, 1 mM EDTA; pH 7.5). This soil suspension was sonicated for 10 min at 4°C and centrifuged for 1 min at 2,500 rpm. Supernatants were recovered and this process was repeated twice, each time obtaining supernatants, which were pooled and centrifuged for 30 min at 11,000 rpm at 4°C. After centrifugation, the supernatant was discarded and we added 2 ml of CTAB-PVP lysis buffer (2% CTAB, 20 mM EDTA, 100 mMTris-HCl, 4 mM NaCl and 2% Polyvinylpyrrolidone) with 2 μl of 1:10 dilution protein K (Fluka) to the pellet obtained. The lysis mixture was incubated for 1 h at 65°C. After incubation, the samples were sequentially extracted with an equal volume of phenol, chloroform and isoamyl alcohol (1:1:24 V/V), centrifuged for 10 min at 14,000 rpm, the supernatant was extracted with an equal volume of chloroform, centrifuged for 10 min at 14,000 rpm, and precipitated with 2.5 V of 100% ethanol. The pellet was washed with 70% ethanol, air dried, and finally dissolved in 50 μl of nuclease free water.

Isolation of DNA from fungi and roots

CTAB-PVP based extraction method was used for the isolation of genomic DNA from 100 mg basidiospores of Russula spp. and from 500 mg orchid roots. Frozen tissues were crushed in a mortar, using liquid nitrogen and suspended in the lysis buffer and then incubated for 1 h at 65°C. Samples were subjected to phenol-chloroform extraction and isopropanol precipitation. The pellet obtained was washed with cold 70% ethanol, air dried and dissolved in 200 μl of TNE buffer (10 mMTris-HCl, 0.1 MNaCl, 1 mM EDTA, pH 7.5). Extracts were then treated with 1 μl of RNaseA (Sigma, www.sigmaaldrich.com) incubated at 37°C for 30 min, extracted with phenol-chloroform and finally precipitated with ethanol. The pellet was washed with cold 70% ethanol, air dried and finally dissolved in 50 μl of TE buffer. DNA from soil, roots and fungi was purified using a GeneClean spin kit (Q-Biogene Inc., Carlsbad, California).

Primer design for detecting Russula species

The primer design for specificity detection of Russula spp. was performed with PRISE (Fu et al., 2008). We used an ITS region of R. delica (Genbank acc. number: AF345250) as seed sequence. The hit table was generated using this seed sequence as a query in the BLAST server (http://www.ncbi.nlm.nih.gov/blast/), obtaining a 500 sequences for generation Hit table. The PRISE software generated 100 primer pairs, and we selected the primer pairs RusPrise1F-RusPrise1R (5’-
CACCCCTTTGTGCATCAC -3´ - 5´- CTTCATCGAT-

of having a Tm greater than 55 °C, a length of 18 mer

GCGAGAGC -3´) because it was satisfied the criteria

naturation step at 94 °C for 5 min, followed by 35 cy-

www.promega.es). Reactions were started with a de-

at 72 °C for 5 min.

30 s and 94 °C for 30 s, and finally by an extension step

42, 44, 47 and 50) for 20 s, and elongation at 72 °C for

clones each with a gradient of annealing temperature (40,

Macrogen sequence service (Macrogen Inc., Southern

were sequenced by automated DNA sequencing at

(Suppl. Table S2 [pdf on line]). The species with high-

plants and richness of species for each sampling point

S1 and S2 [pdf on line]). We determined the dominant

vegetative communities (Suppl. Table S1) was used to make an estimate of abundance and degree

plant communities and Braun-Blanquet’s methodology

be described above, except for the melting tempera-

Menetries, 1990). To verify that the bands obtained

samples, except for those soils without presence in

vegetation of Quercus ilex subsp. ballotula and L. abortivum

The different protocols based on the CTAB Buffer

used to obtain DNA from different tissues (roots and

soil) allowed us to obtain sufficient quality DNA for subsequent PCR amplification. Fast

and cheap protocols, used to obtain quality DNA for

PCR, enabled us to process high volumes of diverse

environmental samples.

A gradient PCR was carried out to verify the speci-

fity and annealing temperature of primers selected in

silico. Figure 2A showed the amplifications patterns

obtained from RusPrise primers. Using these primers

we obtained a 158 bp band at the annealing temperature

(Tm) of 55 °C, the Tm that was to detect the genus

Russula spp. At this Tm no amplifications between 100

and 200 bp, when a mixture of DNA from other fungi

were found.

Detection of the presence of Russula genus in the

different sampling points (Figure 1) is shown in

Figures 2B and 2C. We obtained a single band for most

samples, except for those soils without presence in

the different areas (Suppl. Table S1 [pdf on line]). Thus, Font Roja

has a climax community of holm-oak (Quercus ilex

subsp. ballotula), although this is unusual in Mediterr-

anean environments (Richard et al., 2011).

We performed a gradient PCR using DNA from Rus-

sula basidiocarps, which was carried out using 5 µl of

1:10 dilution of DNA, and a mixture of DNA as a control from soil fungus: Beauveria bassiana, Pochon-

nia chlamydosporia and Pochonia rubescens (50 ng

each). PCR reactions contained, in a volume of 40 µl,

the four dNTPs at 0.2 mM each (Fermentas, www.

thermoscientificbio.com/fermentas/), two primers at 20

pmol each, 2 mM MgCl₂, and 1 U of GoTaq (Promega,

www.promega.es). Reactions were started with a de-

naturation step at 94 °C for 5 min, followed by 35 cy-

cles each with a gradient of annealing temperature (40,

42, 44, 47 and 50) for 20 s, and elongation at 72 °C for

30 s and 94 °C for 30 s, and finally by an extension step

at 72 °C for 5 min.

Detection of Russula species in roots and soils.

To detect Russula spp. in roots from orchids and in

different soils we used 1 µl of purified DNA from each

sample with the RusPrise1F-RusPrise1R and ITS1F-

ITS4 primers. PCR conditions and product detection

were described above, except for the melting tempera-

ture (Tm) which was fixed at 55 °C. PCR products from

basidiocarps, Limodorum roots and soil from Font Roja

were sequenced by automated DNA sequencing at

Macrogen sequence service (Macrogen Inc., Southern

Korea). Comparative sequence analyses were performed

using the BLAST algorithm (http://blast.ncbi.

nlm.nih.gov/Blast.cgi) and were deposited in the Gen-

Bank (JF415931-JF415933).

Results and discussion

We located L. abortivum populations and associated

plant communities and Braun-Blanquet’s methodology

was used to make an estimate of abundance and degree

of coverage of vegetative communities (Suppl. Table

S1 and S2 [pdf on line]). We determined the dominant

plants and richness of species for each sampling point

(Suppl. Table S2 [pdf on line]). The species with high-
est coverage was Quercus rotundifolia in areas where

the orchid was present (RM1, RM2, FR1, FR2 and

FR3). In contrast, Quercus cocciferae presented the

major degree of coverage in areas where L. abortivum

was absent (FRc and Mc). The dominant tree species

was the only vegetation variable found in the different

areas (Suppl. Table S1 [pdf on line]). Thus, Font Roja

has a climax community of holm-oak (Quercus ilex

subsp. ballotula), although this is unusual in Mediterr-

anean environments (Richard et al., 2011).

In this study we present a useful tool based on PCR

to detect the presence of Russula spp. in a natural e-

vironment. These results are consistent with those

obtained by the group of Girlanda et al., (2006), who

linked the presence of R. delica in roots of the species

Limodorum and the interaction between these fungal
species and *Quercus ilex* trees in Mediterranean forest environments.

Acknowledgments

Thanks to Dr. Andreu Bonet (Font Roja Natura Research Station - University of Alicante) for helping in this work.

References

Belda A, Arques J, Martínez JE, Peiró V, Seva E, 2009. Análisis de la biodiversidad de fauna vertebrada en el Parque Natural de la Sierra de Mariola mediante fototrampeo. Mediter 20: 7-34.

Braun-Blanquet J, 1965. Plant sociology: the study of plant communities. Translated, revised and edited by Fuller GD, Conard HS, Hafner Publishing Co, New York and London. 439 pp.

Fu Q, Ruegger P, Bent E, Chrobak M, Borneman J, 2008. PRISE (PRImerSElector): Software for designing sequence-selective PCR primers. J Microbiol Meth 72: 263-267. http://dx.doi.org/10.1016/j.mimet.2007.12.004

Girlanda M, Selosse MA, Cafasso D, Brilli F, Delfine S, Fabbian R, Ghignone S, Pinelli P, Segreto R, Loreto F, Cozzolino S, Perotto S, 2006. Inefficient photosynthesis in the Mediterranean orchid *Limodorum abortivum* is mirrored by specific association to ectomycorrhizal *Russulaceae*. Mol Ecol 15: 491-504. http://dx.doi.org/10.1111/j.1365-294X.2005.02770.x

Grant SA, 1981. Sward components. In: Sward measurement handbook (Hodgson J, Baker RD, Davies A, Laidlaw AS, Leaver JD, eds). British Grassland Society, Hurley, Maidenhead, Berkshire, UK. pp: 71-92.
Selosse MA, Martos F, Perry BA, Padamsee M, Roy M, Pail-
er T, 2010. Saprotrophic fungal mycorrhizal symbionts in achlorophyllous orchids: finding treasures among the ‘molecular scraps’? Plant Signal Behav 5: 349-353. http://dx.doi.org/10.4161/psb.5.4.10791
Selosse MA, Rousset F, 2011. Evolution. The plant-fungal marketplace. Science 333: 828-829. http://dx.doi. org/10.1126/science.1210722
Sun X, Guo LD, 2012. Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 3: 65-76.
Tĕšitelová T, Tĕšitel J, Jersáková J, RÍhová G, Selosse MA, 2012. Symbiotic germination capability of four Epipactis species (Orchidaceae) is broader than expected from adult ecology. Am J Bot 99: 1020-32. http://dx.doi.org/10.3732/ajb.1100503
White TJ, Bruns T, Lee S, Taylor J, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols, a guide to methods and applications. (Innis MA, Gelfand DH, Sninsky JJ, White TJ, Eds), Academic Press, San Diego, USA. pp: 315-322. http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1