A complete data processing workflow for cryo-ET and subtomogram averaging

Muyuan Chen¹, James M. Bell¹,², Xiaodong Shi¹,³, Stella Y. Sun⁴, Zhao Wang⁵,⁶ and Steven J. Ludtke⁵,⁶*¹

Electron cryotomography is currently the only method capable of visualizing cells in three dimensions at nanometer resolutions. While modern instruments produce massive amounts of tomography data containing extremely rich structural information, data processing is very labor-intensive and the results are often limited by the skills of the personnel rather than the data. We present an integrated workflow that covers the entire tomography data processing pipeline, from automated tilt series alignment to subnanometer resolution subtomogram averaging. Resolution enhancement is made possible through the use of per-particle per-tilt contrast transfer function correction and alignment. The workflow greatly reduces human bias, increases throughput and more closely approaches data-limited resolution for subtomogram averaging in both purified macromolecules and cells.

Our integrated pipeline substantially increases the throughput of cryo-ET data processing and is capable of achieving the state-of-the-art subtomogram averaging results on both purified and in situ samples. We demonstrate subnanometer resolution from previously published in vitro datasets¹,³, and cellular tomography of whole *Escherichia coli* overexpressing a double-layer-spanning membrane protein at 14 Å resolution.

Results

Automated tilt series alignment and tomogram reconstruction. The first stage of the tomogram processing workflow is tilt series alignment. Our method uses an iterative 3D landmark-based approach with progressive downsampling (binning) and outlier elimination (Fig. 1b). It works well on a wide range of tomograms with or without fiducials and without any human intervention.

The method begins with a coarse cross-correlation-based alignment of downsampled tilt series, and a rough estimate of the orientation of the tilt axis. The input tilt series are downsampled to 512×512 pixels irrespective of their original size or sampling. Based on the coarse alignment, an initial tomogram is generated, despite the likelihood of large alignment errors, and 3D landmarks are selected from the resulting volume to use in the next stage of alignment. These landmarks are simply the N darkest voxels in the downsampled map, with a minimum distance constraint (Fig. 2b). When fiducials are present in the data, they will tend to be selected as landmarks, as long as they are sufficiently well-separated, but they are not explicitly identified as fiducials. Selecting landmarks as localized high-contrast points in 3D rather than identifying them in two dimensions (2D) is critical to the success of this procedure.

The next step is iterative alignment. This includes two stages: refinement of landmark coordinates and optimization of the tilt image transforms. First, 3D coordinates of the selected landmarks are projected back to the tilt series, and corresponding 2D patches are extracted from the tilt images. The 2D patches corresponding to each landmark form a subtilt series that is then reconstructed.

To expedite cryo-ET data processing, we present a complete tomography workflow as part of the EMAN2 environment that performs all steps, from raw tilt series alignment through high-resolution subtomogram averaging. While many of these tools are based on knowledge gained from decades of development by many groups¹⁻¹⁴, numerous innovations have been introduced to reduce the need for human intervention and improve the resolution of the final averaged structure. These include a fully automated tilt series alignment method not requiring fiducials, rapid 3D reconstruction using direct Fourier methods with tiling, an optimization-based strategy for per-particle per-tilt contrast transfer function (CTF) correction, robust initial model generation and per-particle per-tilt orientation refinement (Fig. 1a). In addition to algorithm development, this protocol also includes a user-friendly graphical interface and a specially designed book-keeping system for cellular tomography that allows users to study multiple features/objects within one cell, and to keep track of particle locations to correlate structural findings with their location in the cellular environment.

*Verna Marrs and McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA. ¹Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX, USA. ²Jiangsu Province Key Laboratory of Anaesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China. ³Department of Bioengineering, Stanford University, Stanford, CA, USA. ⁴CryoEM Core at Baylor College of Medicine, Houston, TX, USA. *e-mail: sludtke@bcm.edu
Articles NaTuRE METhods

into a local 3D volume of the landmark, to provide a more accurate center of mass. Next, 2D patches are re-extracted from the tilt images using the refined landmark positions, and the translational alignment that centers each landmark in each extracted 2D patch is calculated. A global optimization algorithm is used to adjust the 3D tilt transforms such that the centers of all landmarks in 2D patches match the projected coordinates of the landmarks to the greatest possible extent. With these improved alignment parameters, a new tomogram is generated with better alignment, which is used during the next round of reprojection and alignment. To improve convergence and increase the speed of alignment, the process begins with highly downsampled images and gradually increases sampling as alignment error decreases, finishing with the unbinned tilt series in the final iteration. A specified fraction of the worst-matching landmarks is normally excluded in each iteration, and this is critical to obtaining a self-consistent consensus alignment.

In the past, center of mass-based alignment algorithms have suffered problems with identifying fiducials directly from the tilt series, where overlapping densities can produce many false positives. By identifying only well localized features in 3D, not 2D, and including aggressive outlier elimination to identify only a set of self-consistent landmarks, this algorithm achieves a remarkable level of success. In testing it has been able to achieve accurate automated tilt series alignments on virtually every tomogram. The only exceptions have been tomograms with severe data collection issues, such as ½ frame alignment shifts in the middle of the tilt series and so on.

In most noncellular tomograms it is convenient for slice-wise visualization and annotation if the x–y plane is parallel to the ice surface. It is assumed that on average the landmarks will be coplanar with the ice, and thus this plane is rotated to become parallel to the x–y plane, using principal component analysis of the landmark coordinates (Fig. 2e).

Tomogram reconstruction is performed using direct Fourier inversion rather than real-space methods such as filtered back projection or simultaneous iterative reconstruction technique (SIRT). Fourier methods have gradually become the standard in single particle reconstruction. Although there have been a few descriptions of Fourier methods for tomography data processing, most tomography software still uses real-space methods due to the size of tomographic volumes, concerns about edge effects.
Fig. 2 | Results of iterative tomogram alignment and reconstruction. **a.** Cellular tomogram of an *E. coli* bacterium with gold fiducials. **b.** Selected landmark projections from **a**; (left) x–y plane; (middle) x–z plane after the first iteration of the iterative alignment; (right) x–z plane after iterative alignment. **c.** Tomogram of purified apoferritin without fiducials (EMPIAR-10171). **d.** Selected landmark projections from **c**. **e.** Automatic specimen plane positioning. Left, (top) x–y slice, (bottom) x–z slice, both before specimen plane rotation; right, the specimen becomes flat in the tomogram after automated rotation.
and image anisotropya,19. We have adopted a Fourier reconstruction approach using overlapping cubic tiles. While this method requires twofold more computation, it improves reconstruction quality substantially by correcting edge effects, and dramatically reduces memory requirements. For convenience, the tile size is defined by the reconstruction thickness, such that each reconstructed tile is a cube. While the algorithm can perform reconstructions on noncubic volumes correctly, interpolation anisotropy can cause artifacts that are avoided through use of cubic volumes. The overlapping tiles are individually reconstructed, then averaged using a radial Gaussian weight (Supplementary Fig. 1).

Although the tilt series alignment is performed using the original full-sized images, the reconstructed tomograms are normally downsampled to provide sufficient resolution for visual inspection, annotation and particle selection, while dramatically improving interactivity and decreasing system requirements. For subtomogram averaging, the downsampled particle locations are automatically rescaled, and the particle data are extracted from the tilt series at full sampling. The entire iterative alignment and reconstruction algorithm is quite fast, typically requiring only \(\sim 10\) min (12-core workstation) for full-resolution alignment of a 60-image \(4,096 \times 4,096\) tilt series with a \(2,048 \times 2,048 \times 512\) reconstruction (Supplementary Table 1). Since this is comparable to the time required for tilt series acquisition, it would be straightforward to include automated tomogram reconstruction as part of the data collection process in real time.

To demonstrate, we reconstructed a cellular tomogram of \textit{E. coli} overexpressing AcrAB-ToIC (Fig. 2a and Supplementary Video 1)17 with gold fiducials. The improved alignment after the iterative process can be observed by comparing the reconstructions of fiducials before and after the iterative process. Internal cellular features are also clearly visible in the reconstruction. In fiducial-less reconstructions, the program usually chooses small pieces of ice contamination or other localized high-density 3D objects as landmarks (Fig. 2d). However, even for a fiducial-less apoferritin dataset (EMPIAR-10171)18, which contained few obvious features to use as landmarks, the program produced high-quality reconstructions where individual proteins were clearly visible (Fig. 2c and Supplementary Video 2).

Multiple methods for particle localization. Earlier versions of EMAN2 included a graphical program for manually selecting 3D particles using orthogonal slices20. This particle-picking interface has now been reworked, enabling users to simultaneously select and visualize particles of multiple types and different sizes within each tomogram (Fig. 3a,c). Each type is then extracted into a separate stack of 3D particles and accompanying 2D tilt series, with the original location metadata retained for later per-particle processing.

In addition to the manual 3D picking interface, two semi-automatic tools are provided for annotation and selection. For purified macromolecules imaged by tomography, a template-matching algorithm can be used to rapidly locate particles. For more complex tomograms, our convolutional neural network-based tomogram annotation tool can be used to identify features21, followed by a second stage that converts annotations into subtomogram coordinates. For globular particles such as ribosomes, the program locates and centers isolated annotations. For continuous structures such as microtubules and protein arrays on membranes, the program randomly samples coordinates within the set of annotated voxels, with a specified minimum distance between boxes. The parameters of these semi-automatic tasks can then be tuned by visualizing results in the manual particle-picking tool.

Per-particle per-tilt CTF correction. Accurate CTF measurement and correction is critical for obtaining high-resolution structures through subtomogram averaging. The most commonly used method in tomographic CTF correction is the simple tiled CTF correction of rectangular strips within each tilt series12. This method is effective in getting past the first CTF zero-crossing when working with thin layers of purified macromolecules; however, when working with cellular data or other thicker specimens, the error in defocus due to the \(Z\) position of the particle within the ice becomes substantial and requires more accurate correction on a per-particle per-tilt basis.

In our CTF estimation strategy, the entire tilt image is used to determine its central defocus, by splitting the image into tiles and summing the information from the entire image to estimate the defocus. Instead of fitting one defocus value for each strip, we calculate the relative defocus difference from the center of each tile to the center of the image based on the geometry of the tilt, and search for one defocus value for the center of the image that optimizes the fitting of theoretical CTF curves in all tiles. With this approach, the information in the full tilt image is used to estimate one scalar...
Fig. 4 | Subtomogram refinement. a, Subtomogram averaging of ribosome (EMPIAR-10064) before subtilt refinement. b, Subtomogram averaging after subtilt refinement. c, Zoomed-in view of b with yellow arrows pointing to RNA helices and cyan arrows pointing to resolved α-helices. d, Gold-standard FSC curves of the ribosome subtomogram averaging before (red) and after (blue) subtilt refinement. e, Subtomogram averaging of the AcrAB-TolC drug pump. f, Location and orientation of the drug pump particles mapped back to a tomogram.
defocus value, and to achieve more robust defocus estimation under low-signal-to-noise-ratio conditions.

At high tilt, the signal-to-noise ratio in an individual image is typically so low, and the thickness of each tile so large, that even using all information in the image is not sufficient to provide an unambiguous defocus estimation without a starting estimate. Thus, for the higher tilts, we limit the defocus search to 3 s.d. around the mean defocus of the low-tilt images. With this additional constraint, sufficiently accurate defocus values can still be determined at high tilt.

After CTF determination, fully sampled CTF-corrected subtomograms are generated directly from the raw tilt series. Since we have the alignment parameters for each micrograph in the tilt series and the coordinates of particles in the tomogram, we can extract per-particle tilt series (a ‘set of subtilts’) from 2D micrographs. The center of each subtilt is determined by projecting the 3D coordinates of the particle using the transform of the micrograph calculated from tilt series alignment, so that each subtilt series can be reconstructed to an unbinned 3D particle using the corresponding tilt image transforms. From these defocus values at the center of each tilt, the defocus of each tilt for each particle can be determined from the 3D location of the particle and the tilt series geometry (Supplementary Fig. 2). After subtilt images are extracted from the tilt series, we flip the phase of each subtilt according to its determined defocus before reconstructing the subtilt into CTF-corrected 3D subtomograms.

Initial model generation via stochastic gradient descent (SGD).
In many cellular tomography projects, the identities of extracted particles are unknown before subtomogram averaging. While it is possible to use catalogs of potential candidate structures and exhaustively compare particles to each of these for purposes of identification20, there are many shortcomings to this approach, including the need for a complete catalog, the problem of model bias and the difficulty of handling complexes. An unbiased approach would be to classify particles de novo and generate independent initial models for each class from the raw particles. Our previous subtomogram averaging methods offered several different strategies for handling this issue20, as the failure rate was substantial, and user guidance was always required. We have found that similar problems plague other subtomogram averaging software. We have now developed a SGD-based initial model generation protocol21, which produces reliable initial models even from cell-derived particles.

SGD is an optimization technique widely used in training for machine learning, offering advantages in both speed and avoidance of local minima. We begin with an effectively randomized map, produced by averaging a random subset of particles in random orientations, low-pass filtered to 100 Å. In each iteration, a batch of randomly selected particles are aligned to the reference map, and a new map is generated. This new map is updated to use the reference using an adjustable learning rate. To avoid overfitting, the reference is filtered to a user-specified resolution (usually 30–50 Å) after each update. The alignment, average and map update steps are repeated until the reference map converges to a consistent initial model. As only a low-resolution initial model is needed, it is not critical that all particles be used. The program can typically produce good initial models within 1 h on a typical workstation (Supplementary Table 1).

This method has performed well in testing on more than 20 structures with very distinct shapes from a variety of sources. This includes globular structures such as ribosomes, linear structures such as microtubules and even double-membrane-spanning proteins (Fig. 3b,d). While it is impossible to guarantee that any algorithm will be universally successful, we have found this method to work in the vast majority of cases.

Subtomogram alignment and averaging. There are two stages in producing a final high-resolution subtomogram average: traditional subtomogram alignment and averaging22 and per-particle per-tilt refinement (Fig. 1c). The initial stage makes use of our existing subtomogram alignment and averaging algorithms that automatically detect and compensate for the missing wedge23. The alignment algorithm employs an extremely efficient hierarchical method, which scales well with particle dimensions. The overall refinement process follows ‘gold-standard’ procedures similar to single particle analysis24, in which even- and odd-numbered particles are processed completely independently with unique, phase-randomized starting models, with a Fourier shell correlation (FSC) used to filter the even and odd maps, assess resolution and measure iteration-to-iteration convergence.

In the second stage, rather than working with subtomograms, we work instead with subtilt series. When full frame tilt series are aligned, we assume that each tilt is a projection of a single rigid body volume. With beam-induced motion, charging and radiation damage effects, the assumption that the specimen remains globally rigid across a 1 µm span with the largest acceptable motion <10 Å is an extremely stringent requirement. Local deviations are common and can produce misalignments of individual objects within individual tilts. To compensate for this resolution-limiting effect, we have developed a strategy for refinement on a per-particle per-tilt basis, where the alignment and quality assessment of each tilt of each particle are individually refined. Effectively, this is a hybridization of subtomogram averaging approaches with traditional single particle analysis. Some of these techniques are similar to those recently implemented in EMClarity.

Our subtilt refinement procedure starts from an existing 3D subtomogram refinement, preferably with a resolution of 25 Å or better. Subtilt series for each particle were already extracted as part of the CTF correction process above. The iterative refinement process is a straightforward orientation optimization for each tilt image of each particle. All five orientation parameters are refined independently per-particle per-tilt. It is quite common for some images in a tilt series to be bad, either due to excessive motion or to charging. To compensate for this, the quality of each tilt for each particle is assessed, and weighted correspondingly, with the very worst excluded entirely. All of the realigned particles are used to compute a new weighted average 3D map, which is then used for the next iteration of the refinement.

The subtilt refinement protocol substantially improves map quality and resolution for purified samples in thin ice, where relatively little density is present above and below each particle. In the EMPIAR-10064 dataset (purified ribosomes)25, without subtilt refinement, subtomogram averaging achieved 13 Å gold-standard resolution (FSC > 0.143) using 3,000 particles from four tomograms. With subtilt refinement, the resolution improved dramatically to 8.5 Å (Fig. 4a–d and Supplementary Video 3). In the averaged map, the pitch of RNA helices is clearly visible and long α-helices are separated. Similarly, in the case of EMPIAR-10005 (ref. 17), our standard subtomogram averaging algorithm resolved the 80S ribosome structure to 16 Å, and subtilt refinement extended this to 9.3 Å. A more detailed comparison between our results and those from other software packages is included in the Methods.

We did not initially expect subtilt refinement to work well in a cellular context, due to the presence of so much confounding cellular mass in each subtilt image. Surprisingly, we found that an in situ dataset of the double-membrane-spanning AcrAB-TolC complex in *E. coli* reached 19 Å in initial averaging, which improved to 14 Å resolution after subtilt alignment21,25 (Fig. 4e and Supplementary Video 4).

Discussion
The entire protocol outlined above has been integrated into the graphical workflow in EMAN2.3 (e2projectmanager.py). This...
presents the process as a sequence of steps (Fig. 1), and an online tutorial can be found at http://eman2.org/Tutorials. Graphical tools are also provided for evaluating tomogram reconstructions and subtomogram refinements, which are useful for managing projects involving a large amount of data. Unlike single particle analysis where it is possible to transition data from other tools into EMAN2 at virtually any stage of processing, the stringent requirements for all of the metadata generated at each stage of processing make it challenging to, for example, import a reconstructed tomogram from other software, then proceed. While some tools will be usable on imported data, such as the deep learning-based annotation10 and simple subtomogram alignment and averaging, other approaches such as subtilt refinement are simply not possible unless the complete EMAN2 pipeline is followed.

With per-particle CTF correction and subtilt refinement, it is now relatively straightforward to achieve ~10 Å resolution using 1,000–2,000 particles from a few good tilt series. This method can also be used with phase-plate data, though the difficulty of collecting Volta phase-plate tilt series and determining per-tilt CTF parameters with continuously varying phase shift is substantial. While we do optimize both the defocus and phase shift, particularly at high tilt, there is insufficient information available for simultaneous determination of both parameters. Our suggested approach is to target 0.5–1 Å underfocus with such tilt series, to put the first zero in a range where correcting beyond the second zero is not necessary to achieve slightly better than 10 Å resolution.

One difficulty in subtomogram averaging in situ is masking and filtration of the averaged map after each iteration of refinement. In the cellular environment, proteins of interest are often surrounded by other strong densities and masking can have a strong impact on the final achieved resolution. To address this issue, we introduce the option of masking the averaged map with a large soft mask and filter it using the local resolution determined from even and odd submaps. This allows us to keep high-resolution information of the protein of interest for the next round of refinement and reduces misalignment caused by other densities surrounding the protein.

The algorithmic improvements we have discussed make it possible to perform data-driven cellular-structural biology research with cryo-ET. Researchers can take tomograms of cells or purified organelles, manually select a few features of unknown identity and automatically annotate similar features in the whole dataset. Reliable, de novo initial models of the features of interest can be generated from raw particles without previous knowledge of the proteins. With per-particle CTF correction and subtilt refinement, averaged maps at 10–15 Å resolutions can be achieved in a matter of days (Supplementary Table 1) with a few thousand subtomogram particles, so one can make reasonable hypotheses of the identity and composition of the proteins based solely on their structural features, and validate these hypotheses with biochemical experiments. Furthermore, the position and orientation of each protein particle can be mapped back to the tomogram to study the organization of proteins in cells (Fig. 4f).

While we believe that the pipeline is a substantial improvement over existing practice, more work is still required to deal with the compositional variability to be found in complexes within a cell. These problems will require new computational methods for classification and characterization of individual particles, and may require alterations to current data collection practices. Particularly in cells, this technique still lags far behind electron cryomicroscopy single particle analysis in terms of resolution, leaving many opportunities for future improvement.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, statements of code and data availability and associated accession codes are available at https://doi.org/10.1038/s41592-019-0591-8.

Received: 10 February 2019; Accepted: 4 September 2019; Published online: 14 October 2019

References
1. Asano, S., Engel, B. D. & Baumeister, W. In situ cryo-electron tomography: a post-reductionist approach to structural biology. J. Mol. Biol. 428, 332–343 (2016).
2. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).
3. Frangakis, A. S. et al. Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc. Natl Acad. Sci. USA 99, 14153–14158 (2002).
4. Amat, F. et al. Markov random field based automatic image alignment for electron tomography. J. Struct. Biol. 161, 260–275 (2008).
5. Hrube, T. et al. PyTom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J. Struct. Biol. 178, 177–188 (2012).
6. Galar-Montoya, J. G. et al. Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography. J. Struct. Biol. 194, 390–394 (2016).
7. Bharat, T. A. M. & Scheres, S. H. W. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat. Protoc. 11, 2054–2065 (2016).
8. Himes, B. A. & Zhang, P. eMC:Clarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat. Methods 15, 955–961 (2018).
9. Mastronarde, D. N. & Held, S. R. Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol. 197, 102–113 (2017).
10. Noble, A. J. & Stagg, S. M. Automated batch fiducial-less tilt-series alignment in Appion using Protons. J. Struct. Biol. 192, 270–278 (2015).
11. Khoshouei, M., Pfeffer, S., Baumeister, W., Förster, F. & Daney, R. Subtomogram analysis using the Volta phase plate. J. Struct. Biol. 197, 94–101 (2017).
12. Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117 (1972).
13. Penczek, P. A. Image restoration in cryo-electron microscopy. Methods Enzymol. 482, 35–72 (2010).
14. Taylor, K. A., Tang, J., Cheng, Y. & Winkler, H. The use of electron tomography for structural analysis of disordered protein arrays. J. Struct. Biol. 120, 372–386 (1997).
15. Bernard Heymann, J., Cardone, G., Winkler, D. C. & Steven, A. C. Computational resources for cryo-electron tomography in Bsoft. J. Struct. Biol. 161, 232–242 (2008).
16. Chen, Y. et al. FJR1: filtered iterative reconstruction technique with information restoration. J. Struct. Biol. 195, 49–61 (2016).
17. Du, D. et al. Structure of the AcrAB-ToLC multidrug efflux pump. Nature 509, 512–515 (2014).
18. Noble, A. J. et al. Reducing effects of particle adsorption to the air–water interface in cryo-EM. Nat. Methods 15, 793–795 (2018).
19. Galar-Montoya, J. G., Flanagan, J., Schmid, M. F. & Ludtke, S. J. Single particle tomographic reconstruction in EMAN2. J. Struct. Biol. 190, 279–290 (2015).
20. Chen, M. et al. Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat. Methods 14, 983–985 (2017).
21. Xiong, Q., Morphey, M. K., Schwartz, C. L., Hoenger, A. H. & Mastronarde, D. N. CTF determination and correction for low dose tomographic tilt series. J. Struct. Biol. 168, 378–387 (2009).
22. Bohm, J. et al. Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc. Natl Acad. Sci. USA 97, 14245–14250 (2000).
23. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
24. Henderson, R. et al. Outcome of the first electron microscopy validation task force meeting. Structure 20, 205–214 (2012).
25. Shi, X. et al. In situ structure and assembly of the multidrug efflux pump AcrAB-ToLC. Nat. Commun. 10, 2635 (2019).

Acknowledgements
This work was partially supported by NIH grant nos. R01GM080139 and R01GM121203, the Welch Foundation (grant no. Q-1967-20180324), BCM BMB department seed funds and a Houston Area Molecular Biophysics Program training grant from the Keck Center.
of the Gulf Coast Consortium (NIH grant no. T32 GM008280-30). We also thank early
users for testing the workflow and providing valuable feedback.

Author contributions
M.C., J.M.B. and S.J.L. designed and implemented the protocol. X.S., Z.W. and S.Y.S.
provided test datasets. M.C., J.M.B. and S.Y.S. tested and refined the protocol. M.C.,
J.M.B. and S.J.L. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41592-019-0591-8.

Correspondence and requests for materials should be addressed to S.J.L.
Peer review information Rita Strack was the primary editor on this article and managed
its editorial process and peer review in collaboration with the rest of the editorial team.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
Methods

Tomogram reconstruction. To seed the iterative tilt series alignment, a coarse alignment is first performed. First, the unaligned tilt series is downsampled to 512 × 512 pixels, subjected to a real-space ramp filter and Fourier bandpass filter, and normalized to mean value of zero and standard deviation of one. A coarse alignment is then performed under a circular mask with soft Gaussian falloff. The alignment begins with the center tilt image (typically near untilted) and propagates sequentially in both directions. After the coarse translational alignment, the approximate tilt axis is identified by computing a coherent sum of the tilt series in Fourier space. The tilts will approximately share one Fourier common-line without any rotational alignment. This can be readily identified by simply performing a coherent sum after translational alignment and looking for the axis with maximum intensity (Supplementary Fig. 3). Only angles 0–180° degrees are permitted in this process to ensure that no handedness flips occur between different tomograms within the same set. Although the handedness is thus consistent throughout the dataset, a not uncommon correct, due to the 180° ambiguity in the tilt direction. If the correct orientation of the tilt axis in the images has already been determined for the microscope, it can be specified as a fixed parameter instead of performing a search.

Finally, the tilt series is reconstructed to produce the preliminary tomogram using EMAN2’s normal direct Fourier inversion reconstruction algorithm. The 512 × 512 box size is small enough that direct Fourier inversion can be used for this purpose without tilting. Since higher tilt images include information outside the frame of the zero-tilt image, a soft mask is applied at the edges of each image parallel to the tilt axis as appropriate for each tilt just before reconstruction. The exact amount of required masking depends on the thickness of the specimen to achieve optimal results, but this can be ignored for purposes of tilt series alignment.

After the initial tomogram reconstruction, an iterative alignment–reconstruction process is performed, beginning with 512 × 512 images and gradually reducing downsampling until the fully sampled images are being used (typically 4,000 × 4,000). Each iteration begins with landmark selection in the tomogram from the previous iteration, followed by multiple rounds of landmark location refinement and tilt parameter refinement as described above, and ends with the final downsampled tomogram reconstruction along with the optimized alignment parameters. By default, we perform two iterations at 512 × 512, and one iteration at 1,024 × 1,024, 2,048 × 2,048, and 4,096 × 4,096. When the input tilt series is larger than 4,096 × 4,096, such as DE-64 or K2 super-resolution images, we only perform alignments from 512 × 512 to 4,096 × 4,096. It is worth noting that in all reconstructions, reconstruction of the full tomogram is always done using the prefiltered 512 × 512 tilt series. These tomograms are used only for selection of landmarks, whose locations are later refined in subtomograms using the appropriate downsampling.

To select landmarks, the 512 × 512 × 256 tomogram is further binned by 4 by taking the minimal value of each 4 × 4 × 4 cube, and the result is highpass filtered to remove the impact of ice gradient in the tomogram. In this stage of processing, it is important to note that higher densities have lower values in raw tomograms, which is opposite from the normal EMAN2 convention. Voxels in the tomogram are sorted and the program picks voxels separated by a minimal distance as landmarks. By default, 20 landmarks are selected with a minimal spacing between landmarks of one-eighth of the longest axis of the tomogram.

Multiple rounds of landmark location refinement and tilt parameter refinement are performed with landmark selection in the tomogram to produce the 3D location of landmarks and one of the alignment parameters, including translation, tilt axis rotation, tilt angle and off-axis tilt. Because uncertainties vary for the determination of each parameter, we begin with refinements of tilt image translation and global tilt axis rotation, then refine on- and off-axis tilt angles.

In landmark location refinement, we first extract subtilet series of the landmarks from the tilt series and restrict the landmarks at the current level of binning. By default, we use box size of 32 for bin-by-8 and bin-by-4 tilt series, 1.5x box size for bin-by-2 and 2x box size for unbinned iterations. We locate the centers of landmarks by the coordinate of the voxel with minimal value for bin-by-8 and bin-by-4 iterations and by the center of mass for bin-by-2 and unbinned iterations. This uses the center of mass rather than aligning features within each landmark region might seem that it could reduce alignment accuracy. However, a common problem with tomographic alignments is that it is possible to have self-consistent alignments with an incorrect translation orthogonal to the tilt axis, producing distorted features in reconstructions when viewed along the tilt axis. Using of center of mass for alignment seems to largely avoid this problem, particularly when combined with exclusion of landmarks that are outliers in the alignment process.

To refine the alignment parameters, we first project landmark coordinates to each tilt using currently determined alignment, and extract 2D particles of the same box size at current binning. The center of each 2D particle is determined in the same way that 3D landmarks are centered, and the distance from the center of the 2D particle to the projection of 3D landmarks is computed. For each tilt, a local minimization routine (Powell optimizer from Scipy25) is used to refine alignment parameters and minimize the averaged distance from all landmarks. By default, 10% of landmarks with the highest average alignment distance in each tilt are ignored during the optimization. The averaged error per tilt is also used in the following round of landmark location refinement and tomogram reconstruction where 10% of tilt images with highest error are excluded.

After all of the refinement iterations are finished, the final tomogram is reconstructed. When reconstructing the tomogram by tilting, we use a tilt length of one-quarter the tomogram length and pad the 3D cube by an extra 40% during reconstruction. The step size between the tiles is one-eighth tomogram length, and overlapping tiles are shifted by half a tile in x and y. 2D tiles are subjected to an edge decay mask along the x axis similar to the mask used in the full tomogram reconstruction. After reconstruction of each tile, a mask with Gaussian falloff is applied to subvolumes before they are inserted into the final reconstruction. The mask is described by

$$f = 1 + 10^{-10(x^2+y^2)} - 10^{-10((x+0.5)^2+(y+0.5)^2)}$$

where x and y are the coordinates of the voxel from the center of the tile, ranging from −1 to 1. This specific shape of mask is used so the summed weight in each voxel in the tomogram is a constant, and the soft Gaussian falloff reduces the edge artifacts from the reconstruction of each tile. A Gaussian interpolation on a 2 × 2 × 2 voxel grid is used for tomogram reconstruction. After reconstruction, the tiles are clipped and added to the final volume to produce the final tomogram. This entire process requires in the order of 10 min per tomogram (Supplementary Table 1).

CTF correction. To determine the defocus for an image in a tilt series, overlapping 256 × 256 tiles are sampled on the raw micrograph and the power spectrum of each tile is computed. Power spectrum curves from tiles with the same distance to the tilt axis are coherently averaged to increase the signal-to-noise ratio. Using a global search, we find the defocus value f that maximizes

$$\sum_i S_i(\Delta f, x_i, \sin(\theta))$$

where x_i is the position of the ith tile (y is the tilt axis, \(\Delta f\) is the tilt angle and S(p,\(\Delta z\)) is the score function represented by the normalized dot product between a theoretical CTF curve with defocus \(\Delta f\) and the coherent background subtracted power spectrum, p, of the ith strip of tiles parallel to the tilt axis.

Basic operations, including generation of theoretical CTF curves, computing power spectrum from image tiles and background subtraction are implemented using the same strategy as in the single particle analysis protocol from the EMAN2 package.

Initial model generation for subtomogram averaging. Comparing with the classical gradient descent algorithm that calculates the gradient using the full dataset at every iteration, SGD breaks the training set into random small batches, calculates the gradient from each batch and updates the model incrementally. The fluctuation introduced from the small batches makes it easier to pass local minimums and achieves better convergence for high dimensional, nonlinear functions.

In the SGD-based initial model generation process, we use a very small batch size (12 particles per batch by default) and a learning rate of 0.1 to introduce enough fluctuations into the system. The list of input particles is shuffled before grouping into batches. Particles may be optionally downsampled and lowpass filtered before alignment. Particles in the first batch are averaged in random orientations to produce a map that is then filtered to 100 Å and used as the initial alignment reference, which will have roughly the correct radial density profile, but meaningless azimuthal information. In each subsequent batch, particles are aligned to the reference and an average is generated. Any empty region remaining in Fourier space is filled with information from corresponding Fourier regions in the theoretical CTF curve with defocus \(\Delta f\) and the coherent, background subtracted power spectrum, p, of the ith strip of tiles parallel to the tilt axis.

When symmetry is specified, the map needs to be aligned to the symmetry axis before symmetry can be imposed. Because of the way that the initial reference is generated, at the beginning of the initial model generation process, the reference is often radially symmetric. Applying the symmetry too early in the process will trap the refinement in a local minimum and make it more difficult to get to the correct structure. So the program always starts the initial model generation with C1 symmetry, when symmetry is specified. After the first 20 batches, the program searches for the symmetry axis of the reference and aligns the reference to that axis. The symmetry search is performed in a similar way to a 3D alignment, except that at each orientation tested, instead of computing the similarity between the rotated map and a reference, the similarity between the rotated map and its symmetrized version is used as the objective function for the alignment. The symmetrized map is used as the reference for later batches and the orientation of symmetry axis is refined after every ten batches.

Subtilet refinement. The first step of subtilet refinement is to compute the orientation of each subtilet using the orientation of the subtomogram and the alignment of tilt images in the tomogram. The refinement starts from 32 randomly distributed orientations centered around the previous orientation. One of the initial positions is always the previously determined orientation so the worst-case answer is no change. From these positions, an iterative search is performed starting from Fourier box size 64 to full box size, similar to the subtomogram refinement.
During the refinement, the reference map is projected using Fourier space slicing with Gaussian interpolation. The comparison between the projection and the 2D particle is scored with CTF-weighted Fourier ring correlation adapted from the single particle analysis protocol in EMAN2 (ref. 26).

We refine even/odd particle sets independently in the subtilt refinement. By default, the program uses all tilt images and removes the 50% of particle images with the worst score. Generally, the low-scoring images correlate with tilt angle, such that higher tilts are most often excluded. There is also an option provided to explicitly exclude a single tilt image. We also improve subtomogram particle with scores beyond 2 s.d. around the mean, because practically, particles with very high alignment scores often contain high-contrast objects such as gold fiducials, and low-score particles are often at the edge of the micrograph and have little signal. Before inserting the images to the 3D Fourier volume, we normalize their scores to (0,1) and weight the particles by their scores when reconstructing the 3D average. The 3D volume is padded by 2 to avoid edge effects, and reconstruction is performed with Gaussian interpolation with variable width with respect of Fourier radii. The averaged map is filtered by the gold-standard FSC.

Processing example datasets. We processed the four ‘mixedTEM’ tilt series from the EMPIAR-10064 purified ribosome dataset. The tomograms were reconstructed from the tilt series automatically, using default parameters. Defocus values were calculated using default options and the resulting defocus values range from 2.4 to 3.7 µm. CTF-corrected subtomograms were generated with a box size of 180. An initial model was produced using all particles as input, with 3x downsampling and a target resolution of 30 Å. Then, 3,239 particles were selected via template matching using the initial model as a template, followed by manual bad-particle removal. Next, four rounds of subtomogram refinement and three rounds of subtilt refinement were performed to arrive at the final map, which was sharpened using a one-dimensional structure factor calculated from EMD-5592, masked via EMAN2 auto-masking and filtered by the local gold-standard FSC.

Tomograms of the AcrAB-ToIC pump in E. coli cells were collected on a JEOL32000 X Getter K2 camera. Subtomogram reconstruction and CTF determination were performed in EMAN2 using default parameters. The unbinned particle data was collected at 3.365 Å per pixel, and a box size of 140 pixels was used during particle extraction. Channel-shaped densities crossing both inner and outer membranes that are not present in the control cells are identified as particles of AcrAB-ToIC pumps. Twenty-five high-signal-to-noise-ratio particles were used to refine the initial model. For structures with symmetry, applying the C3 symmetry before the initial model generation converges tends to trap the SGD in a local minimum and not achieve the optimal result. So here a two-step approach was used to build the initial model. First, five iterations of our SGD routine were performed, imposing C3 symmetry. After aligning the result to the symmetry axis, we performed five more iterations with C3 symmetry. Subtomogram averaging was then performed using 1,321 particles from nine tomograms while applying C3 symmetry. To focus on the protein while preserving information from the membrane for improved alignment, a mask with values ranging from 0.5 to 1 around the pump and 0 to 0.5 covering a larger cylinder was applied to the map at each iteration. This mask was filtered by the local FSC and sharpened using a one-dimensional structure factor obtained from a high-resolution single particle structure of the purified AcrAB-ToIC complex.

Comparison with other software packages. Although it is difficult to find a good metric to compare the accuracy of an individual tilt series alignment from different software packages, when processing datasets of hundreds of tilt series using automated protocols, it is easy to spot ‘failed’ cases of alignment from the successful cases visually. Very often there are some artifacts present in those ‘failed’ cases (large area of ice contamination, large drift between tilt images and so on), making the automated alignment protocol unable to align the tilt series at all. In many of those datasets, with some manual tracking, it is still possible to align the tilt series properly and retrieve meaningful information from the reconstructed tomograms. In our automated pipeline, our goal was to minimize the occurrence of those problems in the tilt series alignment. To compare our automated approach with existing tilt series alignment pipelines, we obtained a sampling of ‘failed’ tilt series from three different research groups, and found that our algorithm successfully aligned all of these tilt series, with the exception of a small handful with egregious data collection problems (useful tomograms cannot be reconstructed with even manual alignment). One example comes from the ETDB-Caltech database, which contains more than 11,000 publicly available tilt series. For the tilt series that were aligned successfully with IMOD, our alignment algorithm produced similar results. We also tested an assortment of tilt series where IMOD had failed to produce good results, and our alignment tool succeeded on these (Supplementary Fig. 4).

Since they do not share a common set of markers, we have found no good way to make quantitative comparisons of alignment quality between different algorithms beyond global success/failure. While having an alignment quality metric would be desirable, it is a somewhat academic exercise, as in the end, the global alignment only needs to be good enough to permit 3D localization of particles. The final models are redetermined on a per-particle basis as part of subtilt refinement, so even if present, slight inaccuracies in the initial alignments would not limit final resolutions.

To assess the quality of the tilted Fourier reconstruction method, we compare the reconstruction results with other common techniques, including back projection, SIRT and direct Fourier transform without tiling. Here, the alignment and rendering of back projection and SIRT are performed with IMOD, while Fourier reconstructions with and without tiling are done in EMAN2. While the differences between different reconstruction methods are generally subtle, some visible differences can be observed at the edges of the tomogram, both in real and Fourier space. In Fourier space, real-space reconstruction methods such as back projection and SIRT create reflection artifacts at the edge of the Fourier tomogram, unless the tilt images are lowpass filtered before reconstruction. In real space, the reconstruction quality tends to decrease at the boundary of the tomogram or near high-contrast objects. To better visualize the differences, we zoom in on a small region containing a cellular ribosome at the edge of the tomogram next to a piece of carbon edge to compare the results (Supplementary Fig. 5). Visual, the tilted Fourier method produces better features than the Fourier method without tilting and back projection, similar to the result from SIRT. It also does not have the low-resolution artifacts along the x axis that appear in the SIRT reconstruction.

To evaluate our subtomogram averaging results, we compare the structure we obtained with the EMPIAR-10045 dataset and other software on the same datasets. In both EMPIAR-10064 and -10045 datasets, we achieved structures with higher measured resolution and better real-space features (Supplementary Figs. 6 and 7) than the original publication that produced the datasets. For EMPIAR-10064, the resolution reported in the original publication11 is 11.2 Å, and EMAN2 is 9.6 Å. In EMPIAR-10045, the resolution reported by Relion6 is 13 Å and the measured resolution of the EMAN2 structure is 9.3 Å. A more recent software package, EMCliarity9, also uses the two EMPIAR datasets as benchmarks, and reported 8.6 Å resolution for EMPIAR-10064 and 7.8 Å for EMPIAR-10045. Since the EMCliarity result for EMPIAR-10064 is not publicly available, we can only make comparisons with the EMPIAR-10045 dataset (Supplementary Fig. 7). Although the front view of the EMCliarity structure on EMPIAR-10045 shows high-resolution features, strong anisotropic artifacts are visible from other orientations, showing the real-space features to be clearly worse than the EMAN2 result. According to the EMCliarity authors, unpublished software improvements have largely resolved this anisotropy, but we have been unable to reproduce these results ourselves using EMCliarity. As all of these software packages undergo continuous changes and improvements, any comparison among them has limited use beyond a narrow window of time.

It is also worth noting that in both cases, unlike in other software packages, tomogram reconstruction and most other processes in EMAN2 are performed automatically. That is, high-resolution subtomogram averaging results can be achieved in EMAN2 with little manual effort in the entire process.

Finally, we compare the EMAN2 tomography pipeline with the currently commonly used IMOD/PEET pipeline using the EMPIAR-10064 dataset. We performed this test ourselves, and, since the process has many manual steps, it is possible that our results are typical but not optimal. The tilt series were aligned using automated fiducial tracking, and CTF-corrected using the strip-wise CTF correction from IMOD. Tomograms were reconstructed using back projection, and ribosome particles were selected using template matching in EMAN2. The subtomogram refinement started from the same initial model used in and generated by EMAN2, using particles from bin-by-4 tomograms. Three rounds of alignment search were performed on the bin-by-4 tomograms using PEET: a full rotational search with 30-degree step size, followed by two rounds of local search with range of 30 and 10 degrees and step size 10 and 3 degrees. We then switched to the bin-by-2 tomograms for two more rounds of refined rotation search with search range 3 and 1 degrees, starting from the orientation determined from the bin-4 tomograms. Finally, we performed two rounds of rotation search with search range 3 and 1 degrees and step size 1 and 0.5 degrees on the unbinned tomogram. In the end, we were able to obtain a subtomogram average with ~13Å resolution, close to the original result from PyTOM, again as compared with 8.5 Å resolution with clearly improved features in EMAN2. This comparison suggests that the EMAN2 pipeline can achieve better result from the same data and also requires much less human effort.

Visualization. Rendering of 2D images is performed in EMAN2, and rendering of 3D density maps is performed with UCSF Chimera and ChimeraX (ref. 30). Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The subtomogram averages are deposited in the Electron Microscopy Data Bank (EMDB): EMD-0529 and EMD-0530.

Code availability. EMAN2 is a free and open source software available from http://eman2.org with source code on GitHub (https://github.com/cryoem/eman2).

NATURE METHODS | www.nature.com/naturemethods
References
26. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. *J. Struct. Biol.* **157**, 38–46 (2007).
27. Powell, M. J. D. An efficient method for finding the minimum of a function of several variables without calculating derivatives. *Comput. J.* **7**, 155–162 (1964).
28. Oliphant, T. E. Python for scientific computing. *Comput. Sci. Eng.* **9**, 10–20 (2007).
29. Ortega, D. R., Oikonomou, C. M., Ding, H. J., Rees-Lee, P. & Jensen, G. J. ETDB-Caltech: a blockchain-based distributed public database for electron tomography. *PLoS ONE* **14**, e0215531 (2019).
30. Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. *J. Struct. Biol.* **157**, 281–287 (2007).
31. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. *Protein Sci.* **27**, 14–25 (2018).
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
 - *Only common tests should be described solely by name; describe more complex techniques in the Methods section.*
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) and variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 - *Give P values as exact values whenever suitable.*
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

A portion of the data used is from the public EMPIAR data repository as discussed in the text, and that database maintains information about the corresponding data. Data collected directly for this study was collected using SerialEM 3.7.0b for automation. The software does not directly modify the data as provided by the instrument, it simply automates the sequential acquisitions.

Data analysis

Data analysis was performed using EMAN2.3, FOSS software available from http://eman2.org with source code on GitHub (https://github.com/cryoem/emana2). UCSF Chimera 1.13.1 and ChimeraX 0.8.0 are used to render 3D structures.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The presented subtomogram averages are deposited to the EMDatabank. EMD-0529: averaged structure of purified ribosome. EMD-0530: averaged structure of Acetobacter torulosa C2 from cellular tomogram. According to wwPDB policy, EMD-0529 is currently in IRES (re-refinement) status and will be available once the manuscript is published. The raw data used for the purified ribosome is available as EMPIAR-10004, and is used by the tutorial available at http://eman2.org.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-list.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size: For the subtomogram averaging examples, all available tilt series in each dataset are used for reconstruction, and all particles in the tomograms are used for subtomogram averaging.

Data exclusions: In subtomogram averaging, a fraction of particles (10%) are routinely excluded based on their consistency with the averaged structures.

Replication: The computational methods reported are largely deterministic, and should produce virtually same results when repeating the processes with the same input.

Randomization: N/A

Blinding: N/A

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	Methods
n/a	n/a
☒ Antibodies	☒ ChIP-seq
☒ Eukaryotic cell lines	☒ Flow cytometry
☒ Palaeontology	☒ MRI-based neuroimaging
☒ Animals and other organisms	
☒ Human research participants	
☒ Clinical data	