Electronic Supplementary Information:

Effect of Lattice Mismatch and Shell Thickness on Strain in Core@Shell Nanocrystals

Jocelyn T.L. Gamler,a Alberto Leonardi,b Xiahan Sang,c Kallum M. Koczkur,a Raymond R. Unocic,c Michael Engel,b and Sara E. Skrabalak,a,*

a. Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States. E-mail: sskrabal@indiana.edu
b. Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 49b, 91052 Erlangen, Germany
c. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA

Figure S1. TEM images of (A) Pd cubes and (B) Rh cubes used as cores.
Figure S2. (A) GPA colors maps which correspond to the in-plane strain (ε_{xx}) field from Figure 3G. (B) is the line profile of the relative deformation determined by GPA with the line profile locations indicated by the arrow in A where the start of the line profile begins at the black dot and ends at the point of the arrow.

Figure S3. Transversal lattice parameter deformation in Rh@Pt nanocrystals. Variation of the transversal deformation of the lattice parameter along a central line section normal to the surface as a function of the distance from the center for a set of nanocrystals with increasing surface-shell thickness ca. from 0.5 to 9 nm. The profiles have been shifted by the deformation at the center of the nanocrystal, which is shown in the inset.