Justifying Optimal Play via Consistency

Felix Brandt
(joint work with Florian Brandl)

Sorbonne Economics Centre, Paris, March 2021
Why should one play maximin strategies in two-player zero-sum games?

- Von Neumann’s minimax theorem (1928) shows that the best outcome that the row player can guarantee coincides with the best outcome the column player can guarantee.
 - All pairs of maximin strategies are Nash equilibria, which furthermore yield the same payoff.
 - The set of Nash equilibria is convex.
 - Nash equilibria of zero-sum games can be efficiently computed.
 - “Every two-person zero-sum game is determined [...] it has precisely one individually rational payoff vector” (Aumann, 1987)
- Yet, providing normative foundations for maximin play turns out to be surprisingly difficult.
Related Work

- **Epistemic approaches**
 - Bayesian belief hierarchies, which capture players’ knowledge about each other (e.g., Aumann & Brandenburger, 1995; Aumann & Drèze, 2008)

- **Characterizations of the value**
 - Typically not motivated on normative grounds; value is devoid of any strategic content (e.g., Vilkas, 1963; Tijs, 1981; Hart et al., 1994; Norde & Voorneveld, 2004)

- **Characterizations of Nash equilibrium**
 - Consistency axiom for variable number of players (Peleg & Tijs, 1996, Norde et al., 1996)
Summary

‣ **Our approach**: Characterize maximin strategies via decision-theoretic axioms that require players to behave coherently across hypothetical games.

‣ **Our result**: A rational and consistent consequentialist who ascribes the same properties to his opponent must play maximin strategies.

‣ The result can be turned into a characterization of Nash equilibrium in unrestricted (non-zero-sum) games.
The Model

- \(U \): Infinite universal set of actions
 - \(\mathcal{F}(U) \): set of finite subsets of \(U \)
- \(M \in \mathbb{Q}^{A \times B} \): zero-sum game with action sets \(A, B \in \mathcal{F}(U) \)
- \(\Delta(A) \): set of rational-valued strategies over \(A \in \mathcal{F}(U) \)
- \(f \): solution concept mapping a game \(M \) to a set of recommended strategies \(f(M) \subseteq \Delta(A) \) for the row player
 - \(\text{maximin}(M) = \arg \max_{p \in \Delta(A)} \min_{q \in \Delta(B)} p^t M q \)

\[
U = \{a, b, c, \ldots\} \\
A = \{a, b\} \in \mathcal{F}(U) \\
M = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \\
p = (\frac{1}{2}, \frac{1}{2}) \in \Delta(A) \\
\text{maximin}(M) = \{(\frac{2}{3}, \frac{1}{3})\}
Consequentialism

Players do not distinguish between payoff-equivalent actions.

- Decision-theoretic precursors
 - Chernoff (1954)’s Postulate 6 (cloning of player’s actions) and Postulate 9 (cloning of nature’s states)
 - Column duplication (Milnor, 1954)
 - Deletion of repetitious states (Arrow and Hurwicz, 1972; Maskin, 1979)

- Implies invariance w.r.t. permutations of actions
 - Chernoff (1954)’s Postulate 3
 - Symmetry (Milnor, 1954)
Consequentialism

Players do not distinguish between payoff-equivalent actions.

- Let \(A, B \in \mathcal{F}(U) \), \(\hat{A} \subseteq A \), \(\hat{B} \subseteq B \), \(M \in \mathbb{Q}^{A \times B} \), and \(\hat{M} \in \mathbb{Q}^{\hat{A} \times \hat{B}} \) such that there exist surjective functions
 \(\alpha : A \to \hat{A} \) and
 \(\beta : B \to \hat{B} \) with
 \(M_{ab} = \hat{M}_{\alpha(a)\beta(b)} \) for all \((a, b) \in A \times B\).

- Then,
 \[
 f(M) = \bigcup_{\hat{p} \in f(\hat{M})} \{ p \in \Delta(A) : \sum_{a \in \alpha^{-1}(\hat{a})} p(a) = \hat{p}(\hat{a}) \text{ for all } \hat{a} \in \hat{A} \}.
 \]
• Let $A, B \in \mathcal{F}(U)$, $\hat{A} \subseteq A$, $\hat{B} \subseteq B$, $M \in \mathbb{Q}^{A \times B}$, and $\hat{M} \in \mathbb{Q}^{\hat{A} \times \hat{B}}$ such that there exist surjective functions
 \(\alpha : A \to \hat{A} \) and
 \(\beta : B \to \hat{B} \)
with
\[
M_{ab} = \hat{M}_{\alpha(a)\beta(b)} \text{ for all } (a, b) \in A \times B.
\]

• Then,
\[
f(M) = \bigcup_{\hat{p} \in f(\hat{M})} \{ p \in \Delta(A) : \sum_{a \in \alpha^{-1}(\hat{a})} p(a) = \hat{p}(\hat{a}) \text{ for all } \hat{a} \in \hat{A} \}.
\]

• Example:

\[
M = \begin{pmatrix}
1 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 2
\end{pmatrix} \quad \hat{M} = \begin{pmatrix}
1 & 0 \\
0 & 2
\end{pmatrix}
\]

\[
f(M) = \{(\frac{2}{3}, \lambda, \frac{\sqrt{3}}{3} - \lambda) : \lambda \in [0, \frac{\sqrt{3}}{3}]\} \quad f(\hat{M}) = \{(\frac{2}{3}, \frac{\sqrt{3}}{3})\}
\]
Consistency

A strategy recommended for two different games will also be recommended if there is uncertainty which of the games will be played.

- Let $A, B \in \mathcal{F}(U)$, and $\hat{M}, \bar{M} \in \mathbb{Q}^{A \times B}$, $\lambda \in [0,1] \cap \mathbb{Q}$.
- If $f(\hat{M}) \cap f(\bar{M}) \neq \emptyset$ and $f(-\hat{M}^t) \cap f(-\bar{M}^t) \neq \emptyset$, then

$$f(\hat{M}) \cap f(\bar{M}) \subseteq f(\lambda \hat{M} + (1 - \lambda)\bar{M}).$$
Consistency

- Let $A, B \in \mathcal{F}(U)$, and $\hat{M}, \tilde{M} \in \mathbb{Q}^{A \times B}$, $\lambda \in [0,1] \cap \mathbb{Q}$.

- If $f(\hat{M}) \cap f(\tilde{M}) \neq \emptyset$ and $f(-\hat{M}^t) \cap f(-\tilde{M}^t) \neq \emptyset$, then

 $$f(\hat{M}) \cap f(\tilde{M}) \subseteq f(\lambda \hat{M} + (1 - \lambda) \tilde{M}).$$

- Example:

 $$\hat{M} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 0 & 4 \end{pmatrix}, \quad \tilde{M} = \begin{pmatrix} 2 & 4 & 0 \\ 0 & 0 & 4 \\ 4 & 0 & 0 \end{pmatrix}, \quad \frac{1}{2} \hat{M} + \frac{1}{2} \tilde{M} = \begin{pmatrix} 3 & 2 & 0 \\ 0 & 2 & 3 \\ 2 & 0 & 2 \end{pmatrix}$$

 $$f(\hat{M}) = f(\tilde{M}) = \{(\frac{2}{5}, \frac{2}{5}, \frac{1}{5})\}$$

 $$f(-\hat{M}^t) = f(-\tilde{M}^t) = \{(\frac{2}{5}, \frac{1}{5}, \frac{2}{5})\}$$

 $$(\frac{2}{5}, \frac{2}{5}, \frac{1}{5}) \in f(\frac{1}{2} \hat{M} + \frac{1}{2} \tilde{M})$$
Strictly dominated actions are not recommended.

- Classic axiom from decision theory
 - *Strong domination* (Milnor, 1954)
 - *Property (5)* (Maskin, 1979)
 - weaker than Chernoff (1954)’s *Postulate 2*
Strictly dominated actions are not recommended.

- Let $A, B \in \mathcal{F}(U)$ and $M \in \mathbb{Q}^{A \times B}$.
- $f(M) \subseteq \{ p \in \Delta(A) : \forall a \in A \, \exists \hat{a} \in A \, \forall b \in B, M_{ab} < M_{\hat{a}b} \Rightarrow p(a) \neq 1 \}$
- Example:

$$M = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \quad f(M) \subseteq \{ (\lambda, 1 - \lambda) : \lambda \in (0,1] \}$$
The Result

- If f satisfies consequentialism, consistency, and rationality, then $f(M) \subseteq \text{maximin}(M)$ for all $A, B \in \mathcal{F}(U), M \in \mathbb{Q}^{A \times B}$.

- Proof idea:
 - If one of the players does not play a maximin strategy, their strategies do not constitute a Nash equilibrium.
 - Use consequentialism and consistency to construct a game in which the player who has a profitable deviation plays a dominated action with probability 1.
 - This contradicts rationality.
Proof Sketch

Justifying Optimal Play via Consistency
Independence of Axioms

- All axioms are required for the characterization of \textit{maximin}.
 - The solution concept that returns all lotteries violates \textit{rationality}.
 - \textit{maximax} (returns all randomizations over rows that contain a maximal entry of the game matrix) violates \textit{consistency}.
 \[\hat{M} = \begin{pmatrix} 5 & 1 & 0 \\ 4 & 4 & 0 \end{pmatrix}, \quad \bar{M} = \begin{pmatrix} 1 & 5 & 0 \\ 4 & 4 & 0 \end{pmatrix}, \quad \frac{1}{2} \hat{M} + \frac{1}{2} \bar{M} = \begin{pmatrix} 3 & 3 & 0 \\ 4 & 4 & 0 \end{pmatrix}\]
 - \textit{average} (all randomizations over rows with maximal average payoff) violates \textit{consequentialism}.
 \[\hat{M} = \begin{pmatrix} 0 & 2 & 2 \\ 3 & 0 & 0 \end{pmatrix}, \quad \bar{M} = \begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix}\]
Strong Consistency

• *maximin* violates strong consistency: \(f(\hat{M}) \cap f(\bar{M}) \neq \emptyset \) implies \(f(\hat{M}) \cap f(\bar{M}) \subseteq f(\lambda \hat{M} + (1 - \lambda)\bar{M}) \).

 • (Consistency additionally requires \(f(-\hat{M}^t) \cap f(-\bar{M}^t) \neq \emptyset \).)

\[
\hat{M} = \begin{pmatrix} 0 & 4 \\ 2 & 0 \end{pmatrix}, \quad \bar{M} = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}, \quad M = \frac{1}{2} \hat{M} + \frac{1}{2} \bar{M} = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}
\]

• The characterization also holds in the domain of symmetric zero-sum games (via a simpler proof).

 • In this case, consistency and strong consistency coincide.
Extensions

- Assuming that f is upper hemi-continuous allows to
 - extend the result to games with real-valued payoffs,
 - show that $f(M) = \text{maximin}(M)$,
 - weaken consistency by fixing $\lambda = \frac{1}{2}$, and
 - weaken rationality by restricting it to 2x1 games.

- When considering general (non-zero-sum) multi-player games and solution concepts that return strategy profiles, one obtains a characterization of Nash equilibrium.
 - However, recommendations are not independent anymore!