A short note on the curvature perturbation at second order

Adam J Christopherson1,2, Ellie Nalson3 and Karim A Malik3

1 Department of Physics, University of Florida, Gainesville, FL32611, USA
2 School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
3 Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS, UK

E-mail: achristopherson@gmail.com

Received 29 September 2014, revised 21 November 2014
Accepted for publication 9 January 2015
Published 9 March 2015

Abstract

Working with perturbations about a Friedmann–Lemaître–Robertson–Walker spacetime, we compute the gauge-invariant curvature perturbation to second order solely in terms of scalar field fluctuations. Using the curvature perturbation on uniform density hypersurfaces as our starting point, we give our results in terms of field fluctuations in the flat gauge, incorporating both large and small scale behaviour. For ease of future numerical implementation, we give our result in terms of the scalar field fluctuations and their time derivatives.

Keywords: cosmology, perturbation theory, curvature perturbation

1. Introduction

The first detection of the anisotropies in the cosmic microwave background by the COBE satellite [1] paved the way for the predictions of the standard cosmological model to be tested. In the decades since, experiments have tremendously increased in their sophistication, enabling us to put ever stronger constraints on our theory of the early Universe [2, 3]. The most recent experimental success was the detection of B-mode polarization by the BICEP experiment [4]. Although a large fraction of this signal is now explained by galactic foregrounds [5], there is still room for a signal of primordial gravitational waves from inflation. This would be a huge success for inflationary cosmology.

The initial inhomogeneities in the density field are generated by quantum fluctuations during inflation. In the simplest models this is a single field slowly rolling down a potential, but there are a plethora of models with multiple fields, fields with complicated kinetic terms, non-minimally coupled fields, etc (see e.g. [6]). In order to model the inhomogeneities in the
Universe we use cosmological perturbation theory. This involves taking the homogeneous Friedmann–Lemaître–Robertson–Walker (FLRW) solution as a background spacetime and adding small, inhomogeneous perturbations on top (e.g. [7–9]). The linear theory is a huge success, matching the CMB and large scale structure excellently, however given the quality of the data that we are now fortunate to obtain, we can use higher order theory to put more restrictive constraints on models, and aim to rule out large classes of models.

In this article we focus on one particular quantity: the curvature perturbation on uniform density hypersurfaces, ζ. This gauge invariant quantity is the variable of choice when computing say, the bispectrum of inflationary fluctuations. We derive the expression giving the curvature perturbation at second order in perturbation theory, ζ₂, in terms of scalar field variables, allowing for multiple minimally coupled scalar fields. Previous studies have either focused on large scales or have included a limited number of fields, either using perturbation theory or the δN formalism (for a non-exhaustive list of references see [10–21]). We envisage our calculation to be of particular use for future numerical computations of bispectra or other inflationary parameters and, to that end, ensure that the resultant expression is in a closed form, containing only field fluctuations and their single time derivative.

The paper is structured as follows: in the next section we present the governing equations for perturbations up to second order. In section 3 we define the curvature perturbation, and present our main result. Then, in section 4, we specialise to the case of a single field in the slow-roll limit. We close with a discussion in section 5. We assume an FLRW background spacetime with zero spatial curvature, and use conformal time, η, throughout. Greek indices, μ, ν, λ cover the entire spacetime range, from 0, …3, while we use lower case Latin, i, j, k to denote spatial indices running from 1, …3. Upper case Latin indices, I, J, K denote different scalar fields.

2. Governing equations

In this section we review the governing equations for the cosmological perturbations up to second order that we will use when computing the curvature perturbation for a system containing multiple scalar fields. We follow the notation and definitions of e.g., [22, 23] throughout. In this paper we consider on scalar perturbations to FLRW, for which the line element takes the form

\[ds^2 = a^2(\eta) \left[-(1 + 2\phi)d\eta^2 + 2aB_{ij}dx^i dx^j + \left((1 - 2\psi)\delta_{ij} + 2E_{ij} \right)dx^i dx^j \right], \]

(2.1)

where perturbed quantities are then expanded, order by order, as e.g., \(\phi = \phi_1 + \frac{1}{2}\phi_2 \). In the uniform curvature gauge, \(E = \psi = 0 \), and the two scalar degrees of freedom in the metric are \(\phi \) and \(B \).

2.1. The field equations

The governing field equations are obtained by perturbing the Einstein equation \(G_{\mu\nu} = 8\pi GT_{\mu\nu} \), and truncating at the required order. In the background, we obtain the usual Friedmann and acceleration equations:

\[H^2 = \frac{8\pi G}{3} \left(\sum_k \frac{1}{2} \phi_0 k^2 + a^2 U_0 \right), \]

(2.2)
\[\left(\frac{a'}{a} \right)^2 - 2 \frac{a''}{a} = 8\pi G \left(\sum_k \frac{1}{2} \rho_{0k}^2 - a^2 U_0 \right). \] (2.3)

In the following, we will now present the linear and second order field equations in the uniform curvature gauge.

2.1.1. First order. The 0−0 component of the Einstein equations at first order is
\[2a^2 U_0 \phi_1 + \sum_k \rho_{0k}^i \delta \phi_{1k} = + a^2 \delta U_1 + \frac{H}{4\pi G} \nabla^2 B_1 = 0, \] (2.4)
where we have used the background equations from above to simply the expression. The 0−i part gives
\[H \phi_1 - 4\pi G \sum_k \rho_{0k}^i \delta \phi_{1k} = 0. \] (2.5)

Although they are not needed in the following, for completeness we also give, from the spatial component of the Einstein equations, the trace free equation
\[B'_i + 2HB_1 + \phi_i = 0, \] (2.6)
governing the evolution of the shear, and, using equation (2.6) and the background field equations, the first order trace in its simplest form is
\[H \phi'_1 + 4\pi G \left[a^2 \delta U_1 + 2a^2 U_0 \phi_1 - \sum_k \rho_{0k}^i \delta \phi_{1k} \right] = 0. \] (2.7)

Equations (2.4) and (2.5) above can then be combined to give
\[\nabla^2 B_1 = -\frac{4\pi G}{H} \sum_k \left(X_k \delta \phi_{1k} + \rho_{0k}^i \phi_{1k} \right), \] (2.8)
where, following [24], we have defined
\[X_k \equiv a^2 \left(\frac{8\pi G}{H} U_0 \rho_{0k} + U_{0k} \right). \] (2.9)

2.1.2. Second order. Using the first order and background 0−0 equations, equations (2.2) and (2.4), the 0−0 component of the second order Einstein equation is
\[8\pi Ga^2 U_0 \left(\rho_2 + B_{1k} B_{1k} \right) + H \nabla^2 B_2 + \frac{1}{2} \left(\delta B_{1kl} B_{1kl} - \left(\nabla^2 B_1 \right)^2 \right) - 2H \phi_{1k} B_{1k}^k \]
\[+ 4\pi G \sum_k \left[\rho_{0k}^i \delta \phi_{2k} + a^2 \delta U_2 + 4a^2 \delta U_1 \phi_1 + \delta \phi_{1k}^2 + \delta \phi_{1k} \delta \phi_{1k} \right] = 0, \] (2.10)
while the 0−i Einstein equation is given by
\[H \phi_{2j} - 4H \phi_1 \phi_{1i} + 2HB_{1k} B_{1k}^k + B_{1k} \phi_{1k}^i - \nabla^2 B_1 \phi_{1j} \]
\[- 4\pi G \sum_k \left[\rho_{0k}^i \delta \phi_{2kj} + 2\delta \phi_{1k} \phi_{1kj} \right] = 0. \] (2.11)
We then use equation (2.5), rewrite equation (2.11) and take the trace, to obtain

\[
\mathcal{H}\left(\phi_2 - 2\phi_1^2 + B_{1,\epsilon}B_{1,\epsilon}^k\right) - 4\pi G \sum_k \phi_{1,k} \delta\phi_{2,k} + V^{-2}\left(\phi_{1,k} B_{1,\epsilon}^k - V^2 B_1 \nabla^2 \phi_1\right)
\]

\[
- 8\pi G \sum_k V^{-2}\left(\delta\phi_{1,k} \nabla^2 \delta\phi_{1,k} + \delta\phi_{1,k,\epsilon} \delta\phi_{1,k,\epsilon}\right) = 0,
\]
(2.12)

where we have introduced the inverse Laplacian, defined as \(V^{-2}(V^2 X) = X \), and have utilized the following identities

\[V^2\left(\phi_1^2\right) = 2\left(\phi_1 V^2\phi + \phi_{1,\epsilon} \phi_{1,\epsilon}^k\right), \]

\[V^2\left(B_{1,\epsilon} B_{1,\epsilon}^k\right) = 2\left(B_{1,\epsilon} V^2 B_{1,\epsilon}^k + B_{1,\epsilon,\epsilon} B_{1,\epsilon,\epsilon}^k\right). \]
(2.13)

2.2. The Klein–Gordon equation

The evolution of the scalar fields is given by the Klein–Gordon equation, obtained from energy–momentum conservation. In the background, this gives

\[
\phi_{1,l}'' + 2\mathcal{H}\phi_{1,l}'' + a^2 U_{\phi_{1,l}} = 0,
\]
(2.14)

and for linear scalar field fluctuations is

\[
\delta\phi_{1,l}'' + 2\mathcal{H}\delta\phi_{1,l}' + 2a^2 U_{\phi_{1,l}} = V^2 \delta\phi_{1,l} - \phi_{1,l}' V^2 B_1 - \phi_{1,l}'' B_{1,\epsilon} B_{1,\epsilon}^k = 0.
\]
(2.15)

The latter can then be written in a closed form, using the linear Einstein equations (see e.g. [24]), as

\[
\delta\phi_{1,l}'' + 2\mathcal{H}\delta\phi_{1,l}' - V^2 \delta\phi_{1,l}
\]

\[
+ a^2 \sum_k \left(U_{\phi_{1,l}} + \frac{8\pi G}{\mathcal{H}} \left(\phi_{1,l} U_{\phi_{1,l}} + \phi_{1,k} U_{\phi_{1,k}} + \phi_{1,k} \phi_{1,\epsilon} U_{\phi_{1,\epsilon}} \right) \right) \delta\phi_{1,k} = 0.
\]
(2.16)

For completeness, we present the Klein–Gordon equation at second order in the appendix.

3. The curvature perturbation

In order to arrive at meaningful calculations within cosmological perturbation theory, we have to consider gauge invariant quantities. There are several gauge invariant curvature perturbations, including the comoving curvature perturbation, \(\zeta \) [25], the Newtonian curvature perturbation \(\Psi \) [7, 9] and the curvature perturbation on uniform density hypersurfaces, \(\zeta \) [26]. In this article we will focus on the latter, and in this section will present our major result of the paper and compute \(\zeta \) in terms of scalar field fluctuations.

3.1. The curvature perturbation, \(\zeta \) in terms of the energy density

The curvature perturbation on uniform density hypersurfaces, \(\zeta \) is given, at first order in terms of fluid variables as
\[-\zeta_1 \equiv \psi_1 + H \frac{\delta \rho_1}{\rho_0}, \quad (3.1) \]

which, when the RHS is evaluated in the uniform curvature gauge, simply gives

\[\zeta_1 = -H \frac{\delta \rho_1}{\rho_0}. \quad (3.2) \]

At second order the expression is more complicated and, expressed in the uniform curvature gauge, is

\[-\zeta_2 = \frac{H}{\rho_0} \delta \rho_2 - 2H^2 \left(s + 3\varepsilon^2 \right) \frac{\delta \rho_1}{\rho_0^2} + \frac{1}{H} \frac{\delta \rho_{1,k}}{\rho_0^2} \delta \rho_{1,k} + \frac{1}{\rho_0} B_{1,k} \delta \rho_{1,k}
- \frac{1}{2} V^{-2} \left\{ \frac{\delta \rho_{1,i} \delta \rho_{1,j}}{\rho_0^2} + \frac{2}{\rho_0} B_{1,i} (B_{1,j}) \right\}. \quad (3.3) \]

Note that there are different definitions for \(\zeta \). In this work we follow the review by Malik and Wands [22], which can be related to the definition of \(\zeta \) introduced by Salopek and Bond [27] through

\[\zeta_{MW} = \zeta_{SB} + \zeta_{SB}^2. \quad (3.4) \]

3.2. Relating fluid to field variables

In this section we present the relationship between the fluid variables and scalar field variables. We simply quote the results here, which are obtained by comparing the energy–momentum tensor components for a perfect fluid and a collection of minimally coupled scalar fields, see [22, 24].

In the background the relationships are

\[\rho_0 = \sum_k \frac{1}{2a^2} \varphi_{0,k}^2 + U_0, \quad (3.5) \]

\[R_0 = \sum_k \frac{1}{2a^2} \varphi_{0,k}^2 - U_0. \quad (3.6) \]

Considering now perturbations in the uniform curvature gauge, we find that the density perturbation at first order is in terms of the field fluctuations

\[\delta \rho_1 = \frac{1}{a^2} \sum_k \left(\varphi_{0,k}' \delta \varphi_{1,k}' - \varphi_{0,k}'^2 \delta \varphi_1 \right) + \delta U_1. \quad (3.7) \]
while the equivalent expression at second order is
\[
\delta \rho_2 = \frac{1}{a^2} \sum_k \left[\phi_{0k} \delta \phi_{2k} - 4 \phi_{0k} \phi_1 \delta \phi_{1k} - \phi_{0k}^2 \phi_2 + 4 \phi_{0k}^2 \phi_1^2 \right. \\
+ \left. \delta \phi_{1k}^2 + a^2 \delta U_2 + \delta \phi_{1k} \delta \phi_{1k} - 4 \phi_{0k}^2 B_{1k} B_{1k} \right] \\
- \frac{2}{a^2} \sum_k \phi_{0k} \delta \phi_{1k} \left[\sum_L \left(\frac{\phi_{0L} \delta \phi_{1L}}{a^2} \right) + 4 \frac{\pi G}{H} \sum_L \left(X_L \delta \phi_{1L}^L + \phi_{0L} \delta \phi_{1L}^L \right) \right].
\]

where we have defined
\[
\delta U_1 = \sum_k U_{0k} \delta \phi_{1k}, \quad (3.9)
\]
\[
\delta U_2 = \sum_{k,L} U_{xk} \delta \phi_{1k} \delta \phi_{1L} + \sum_k U_{yk} \delta \phi_{2k}. \quad (3.10)
\]

The energy density perturbations can be written in terms of only scalar field quantities by using the Einstein field equations at first and second order. This gives
\[
\delta \rho_1 = \frac{1}{a^2} \sum_k \phi_{0k} \left(\delta \phi_{1k} - \phi_{0k} \frac{4 \pi G}{H} \sum_l \phi_{0l} \delta \phi_{1L} \right) + \delta U_1, \quad (3.11)
\]

and
\[
\delta \rho_2 = \frac{1}{a^2} \sum_{k,l,m} \left[\phi_{0k} \delta \phi_{2k} + a^2 \delta U_2 + \delta \phi_{1k}^2 + \delta \phi_{1k} \delta \phi_{1k} \right] - \frac{16 \pi G}{H} \phi_{0k} \phi_{0L} \delta \phi_{1k}^L \delta \phi_{1L} \\
- \frac{4 \pi G}{H} \phi_{0k} \left(\phi_{0L} \delta \phi_{2L} - \frac{8 \pi G}{H} \phi_{0L} \phi_{0M} \delta \phi_{1L} \delta \phi_{1M} \right. \\
+ \left. 2 \frac{\pi G}{H} \delta \phi_{1L} \left(\delta \phi_{1L} \delta \phi_{1L} \right) \right] \\
- \frac{4 \pi G}{H} \left(\phi_{0L} \delta \phi_{1L} \delta \phi_{1L} \delta \phi_{1L} \right) \\
- \left. \frac{2}{a^2} \sum_k \phi_{0k} \delta \phi_{1k} \left[\sum_L \frac{\phi_{0L} \delta \phi_{1L}}{a^2} \right] \sum_m \phi_{0m}^2 \right] \\
- \frac{4 \pi G}{H} \delta \phi_{1L} \left(\phi_{0L} \delta \phi_{1L} \delta \phi_{1L} \right). \quad (3.12)
\]

3.3. The curvature perturbation, ζ in terms of the scalar fields

We now have the tools at hand to express the gauge-invariant curvature perturbation on uniform density hypersurfaces in terms of the scalar field fluctuations. Substituting equation (3.7) into equation (3.1), and using equation (2.5) to relate the metric perturbation ϕ_1 to the scalar fields as
\[\phi_1 = \frac{4\pi G}{H} \sum_k \phi'^{i}_{0k} \delta \phi_{1k}, \quad (3.13) \]

we obtain

\[\zeta_1 = \frac{1}{a^2} \left[\frac{\sum_k (\phi'^{i}_{0k} \delta \phi_{1k}^{i'} + a^2 U_{,\phi'} \delta \phi_{1k}^{i'})}{3 \sum_l (\phi'^{i}_{0l} \delta \phi_{1l}^{i'})^2} - \frac{H \sum_k \phi'^{i}_{0k} \delta \phi_{1k}^{i'} + 2a^2 U_0}{\sum_l (\phi'^{i}_{0l} \delta \phi_{1l}^{i'})^2} \right] \quad (3.14) \]

At second order, the expression is again more complicated, but we follow the same procedure, by substituting for the metric perturbations from sections 2.1.1 and 2.1.2 and the energy density perturbations in equations (3.7) and (3.8) into equation (3.3). We also use the Klein–Gordon equations in section 2.2 to substitute for \(\phi''_{0k} \) and \(\delta \phi_{1k}^{i''} \). This results in the following expression for \(\zeta_2 \) in terms of only scalar field perturbations

\[\zeta_2 = \frac{1}{3 \sum_{i} \phi'^{2}_{0i}} \sum_k \left[\frac{\phi'^{i}_{0k} \delta \phi_{2k}^{i'} - 4 \delta \phi_{1k}^{i'} Y_k + 2 Y_k^2 - \frac{4\pi G}{H} \phi'^{i}_{0k} \sum_{M} \phi_{OM}^{i'} \delta \phi_{2M}^{i'}}{\sum_l (\phi'^{i}_{0l} \delta \phi_{1l}^{i'})^2} \right] \]

\[- \frac{4\pi G}{H^2} \sum_{i} \phi'^{i}_{0i} V^{-2} \sum_{M} \left(Y_{k,M} Y^{-1} \left(X_{M} \delta \phi_{1M}^{i'} + \phi_{OM}^{i'} \delta \phi_{1M}^{i'} \right) \right) \]

\[- V^2 Y_k \left(X_{M} \delta \phi_{1M}^{i'} + \phi_{OM}^{i'} \delta \phi_{1M}^{i'} \right) \]

\[- \frac{8\pi G}{H} \sum_{i} \phi'^{i}_{0i} V^{-2} \left(\delta \phi_{1M}^{i'} V^{-2} \delta \phi_{1M}^{i'} + \delta \phi_{1M}^{i'} \delta \phi_{1M}^{i'} \right) \]

\[+ \delta \phi_{1k}^{i''} + a^2 \delta U_2 + \delta \phi_{1k}^{i''} \]

\[- \frac{2}{3 \sum_{i} \phi'^{2}_{0i}} \sum_{M} \phi'^{i}_{0M} \delta \phi_{2M}^{i'j} \left[\frac{\sum_{k} \phi'^{i}_{0k} \delta \phi_{1k}^{i,j}}{\sum_l (\phi'^{i}_{0l} \delta \phi_{1l}^{i'})^2} \right] \]

\[- \frac{4\pi G}{H} V^{-2} \sum_{i} \left(X_{k} \delta \phi_{1k}^{i'} + \phi_{0k} \delta \phi_{1k}^{i'} \right) \]

\[+ \frac{2}{9H} \left(\sum_{i} \phi'^{2}_{0i} \right) \sum_{k,M,N} \left[V^2 \delta \phi_{1k}^{i'} \phi_{0k} - 6H \phi_{0k}^{i'} \left(\delta \phi_{1k}^{i'} - Y_k \right) \right] \]

\[- \frac{8\pi G}{H} \phi'^{i}_{0k} \left(X_{M} \phi_{0k}^{i'} + a^2 U_{,k} \phi_{0M}^{i'} \right) \delta \phi_{1M}^{i'} \]

\[+ 2a^2 U_{,M} Y_M + \frac{4\pi G}{H} \left(a^2 \phi_{0k}^{i'} \delta \phi_{1M}^{i'} + 2a^2 U_{,k} \phi_{0k}^{i'} \right) \]

\[- \sum_{L} \phi'^{2}_{0k} \phi_{0L}^{,i'} \delta \phi_{1L}^{i'} \left[\phi_{0N}^{i'} \left(\delta \phi_{1N}^{i'} - Y_N \right) + a^2 \delta U_L \right] \]

\[+ \frac{(5 + 3c_s^2)}{9 \sum_{i} (\phi'^{2}_{0i})} \sum_{k,L} \phi'^{i}_{0k} \phi_{0L}^{,i'} \left(\delta \phi_{1k}^{i'} - Y_k \right) \left(\delta \phi_{1L}^{i'} - Y_L \right) \]
where we have introduced, for ease of presentation, the quantity
\[\Phi = \pi \sum_{\phi} \delta \phi \pi \delta \phi \]
and the adiabatic sound speed is given by (see, for example, [28, 29])
\[c_s^2 = 1 + \frac{2}{3} \frac{\sum_{L} U_{\phi L} \delta \phi_{0 L}}{\sum_{L} \delta \phi_{0 L}}. \]

Thus, we have achieved our goal of obtaining the expression for \(\zeta_2 \) solely in terms of scalar field variables. While this may appear cumbersome, we should stress that this is valid for multiple scalar fields and, for the ease of numerical computation, we have reduced the expression to include only scalar field fluctuations and their first time derivative. Although in this paper we have presented our results in real space, this can be readily translated into Fourier space using, for example, the methods described in [24].

4. Single field, slow roll approximation

In this section, we will assume a single field. The slow roll approximation then allows us to relate the scalar field’s potential and its derivative to the Hubble parameter and background field derivative through
\[2 \mathcal{H} \phi' \approx -a^2 U_\phi, \]
and
\[\mathcal{H}^2 \approx \frac{8 \pi G}{3} a^2 U, \]
while \(c_s^2 = -1 \) and \(X = \mathcal{H} \phi_0' \). Using these relationships, we can simplify equation (3.15) to give
\[
\zeta_2 = \frac{1}{3\psi_0} \left[\delta \varphi^2_2 - \frac{4\pi G}{H} \varphi^2_0 \delta \varphi_2 \right] + \frac{1}{3\psi_0^2} \left(\delta \varphi_{1,2}^2 + a^2 U_{,\varphi\varphi} \delta \varphi_1^2 + \delta \varphi_{1,2}^{1,2} \right) + \frac{4}{9\psi_0^2} \left\{ \left(\delta \varphi_{1,1}' - \frac{4\pi G}{H} \varphi^2_0 \delta \varphi_1 \right)^2 + 9H^2 \delta \varphi_1^2 - 6H \delta \varphi_1 \left(\delta \varphi_1 - \frac{4\pi G}{H} \varphi^2_0 \delta \varphi_1 \right) \right\} + \frac{4\pi G}{3H} \left(8\pi G \varphi^2_0 \delta \varphi_1^2 - 4\delta \varphi_1 \delta \varphi'_1 - \frac{4\pi G}{H^2} \varphi^2_0 \delta \varphi_1 \right) - \frac{4\pi G}{H^2} \varphi^2_0 V^{-2} \left(\delta \varphi_{1,1,1} V^{-2} \delta \varphi_{1,1}^{1,2} - V^{-2} \delta \varphi_1 \delta \varphi_1 \right) - 2V^{-2} \left(\delta \varphi_1 V^{-2} \delta \varphi_1 + \delta \varphi_{1,1} \delta \varphi_{1,1} \right) - \frac{1}{18H^2} V^{-2} \left[\left(\delta \varphi_{1,1}' - \frac{4\pi G}{H} \varphi^2_0 \delta \varphi_1 - 3H \delta \varphi_1 \right)^2 \right] \left(\delta \varphi_{1,1}' - \frac{4\pi G}{H} \varphi^2_0 \delta \varphi_1 - 3H \delta \varphi_1 \right) \right\} \]
\]

Taking the large scale limit of this expression, where \(V^{-2} \to 0 \), gives

\[
\zeta_2 = \frac{1}{3\psi_0} \left[\delta \varphi^2_2 - \frac{4\pi G}{H} \varphi^2_0 \delta \varphi_2 \right] + \frac{1}{3\psi_0^2} \left(\delta \varphi_{1,2}^2 + a^2 U_{,\varphi\varphi} \delta \varphi_1^2 + \delta \varphi_{1,2}^{1,2} \right) + \frac{4}{9\psi_0^2} \left\{ \left(\delta \varphi_{1,1}' - \frac{4\pi G}{H} \varphi^2_0 \delta \varphi_1 \right)^2 + 9H^2 \delta \varphi_1^2 - 6H \delta \varphi_1 \left(\delta \varphi_1 - \frac{4\pi G}{H} \varphi^2_0 \delta \varphi_1 \right) \right\} + \frac{4\pi G}{3H} \left(8\pi G \varphi^2_0 \delta \varphi_1^2 - 4\delta \varphi_1 \delta \varphi'_1 - \frac{4\pi G}{H^2} \varphi^2_0 \delta \varphi_1 \right) - \frac{4\pi G}{H^2} \varphi^2_0 V^{-2} \left(\delta \varphi_{1,1,1} V^{-2} \delta \varphi_{1,1}^{1,2} - V^{-2} \delta \varphi_1 \delta \varphi_1 \right)
\]
In this article, we have focused on the curvature perturbation in the uniform density gauge, \(\zeta \) at second order in perturbation theory. We have presented, for the first time, the expression for \(\zeta^2 \) in terms of scalar fields, computed using full cosmological perturbation theory. Using the relevant Einstein field equations, we have replaced all metric perturbations, and so the resultant expression contains only the scalar field, its fluctuations and single time derivatives.

This expression will likely be useful for future numerical computations of inflationary observables, such as the bispectrum; we have presented the final expression in such a way to make the numerical implementation as simple as possible. Additionally, we have presented the case for a single, slowly-rolling scalar field, and have then taken the large scale limit of this expression. We can see the benefit of using full perturbation theory from this expression, equation (4.4), where we obtain terms containing inverse Laplacians, which would not be present in the corresponding expression from the \(\delta N \) approach. These terms can be removed, on assuming that the metric perturbation \(B \) is decaying at both first and second order, allowing one to use the momentum equation to replace the inverse Laplacian terms. However, this is only the case on scales much larger than the horizon. We present the more general equation, valid on all scales, in this work.

While this project was in its final stages we became aware of a study obtaining similar results, where comparison is possible [30].

Acknowledgments

AJC is funded by the Sir Norman Lockyer Fellowship of the Royal Astronomical Society, KAM is supported, in part, by STFC grant ST/J001546/1 and EN is funded by an STFC studentship. Cadabra [31, 32] was used in the derivation of some equations. The authors are grateful to Laila Alabidi and Ian Huston for early ideas on this topic, to David Mulryne for useful discussions, and to Pedro Carrilho for comments on an early draft of the manuscript. AJC thanks the Astronomy Unit at QMUL for hospitality at various stages of the project.

Appendix A. Second order Klein–Gordon equation

In this section, for completeness, we present the Klein–Gordon equation for the second order scalar field, in a close form, from [24]
\[
\delta \phi_{2I}'' + 2H \delta \phi_{2I}' - V'' \delta \phi_{2I} \\
+ a^2 \sum_K \left[U_{\phi \psi} \phi + \frac{8\pi G}{H} \left(\phi_{0l} U_{\phi \psi} + \phi_{0k} U_{\psi \phi} + \phi_{0k} \phi_{0l} \frac{8\pi G}{H} U_{0l} \right) \right] \delta \phi_{2K} \\
+ \frac{16\pi G}{H} \left[\phi_{0l} \sum_K X_K \delta \phi_{1K} + \left(\phi_{0k} \delta \phi_{1K} \sum_K a^2 U_{\phi \psi} \delta \phi_{1K} \right) \right] \\
+ \left(\frac{8\pi G}{H} \right)^2 \sum_K \phi_{0k} \phi_{0l} \left[a^2 U_{\phi \psi} \phi_{0k} \delta \phi_{1K} + \phi_{0l} \sum_K a^2 U_{\phi \psi} \delta \phi_{1K} \right] \\
- 2 \left(\frac{4\pi G}{H} \right)^2 \phi_{0l} \phi_{0l} \sum_K X_K \delta \phi_{1K} \sum_K \left(X_K \delta \phi_{1K} + \phi_{0k} \delta \phi_{1K} \right) + \frac{4\pi G}{H} \phi_{0l} \sum_K \delta \phi_{1K}^2 \\
+ a^2 \sum_{K,L} \left[U_{\phi \psi} \phi_{0k} \phi_{0l} + \frac{8\pi G}{H} \phi_{0l} U_{\psi \phi} \right] \delta \phi_{1K} \delta \phi_{1L} + F \left(\delta \phi_{1K}^{'}, \delta \phi_{1K} \right) = 0, \quad (A.1)
\]

where \(F \left(\delta \phi_{1K}^{'}, \delta \phi_{1K} \right) \) contains gradients and inverse gradients quadratic in the field fluctuations and is defined as

\[
F \left(\delta \phi_{1K}^{'}, \delta \phi_{1K} \right) = \left(\frac{8\pi G}{H} \right)^2 \delta \phi_{1l,l} V^{-2} \sum_K \left(X_K \delta \phi_{1K} + \phi_{0k} \delta \phi_{1K} \right) I \left(\phi_{0k} \phi_{0l} \left[a^2 U_{\phi \psi} \delta \phi_{1K} + \phi_{0l} \sum_K a^2 U_{\phi \psi} \delta \phi_{1K} \right] \right) \\
- \frac{16\pi G}{H} V^2 \delta \phi_{1l} \sum_K \phi_{0k} \delta \phi_{1K} \\
+ 2 \left(\frac{4\pi G}{H} \right)^2 \sum_K \left(X_K \delta \phi_{1K} + \phi_{0k} \delta \phi_{1K} \right) V^{-2} \sum_K \left(X_K \delta \phi_{1K} + \phi_{0k} \delta \phi_{1K} \right) I \left(\sum_K \phi_{0k} \delta \phi_{1K} \right) \left(\sum_K \phi_{0k} \delta \phi_{1K} \right) \\
+ \frac{4\pi G}{H} \left[\phi_{0l} \sum_K \delta \phi_{1k,l} \delta \phi_{1K,l} \right] \\
+ 4X_1 V^{-2} \left(\sum_K \left(X_K \delta \phi_{1K} + \phi_{0k} \delta \phi_{1K} \right) I \left(\sum_K \phi_{0k} \delta \phi_{1K} \right) \right) \left(\sum_K \phi_{0k} \delta \phi_{1K} \right) \\
+ \left(\frac{4\pi G}{H} \right)^2 \phi_{0l} \left[V^{-2} \sum_K \left(X_K \delta \phi_{1K} + \phi_{0k} \delta \phi_{1K} \right) I \left(\sum_K \phi_{0k} \delta \phi_{1K} \right) \right] \\
- \frac{\phi_{0l}}{H} V^{-2} \left(8\pi G \sum_K \left(\delta \phi_{1k,l} V^{-2} \delta \phi_{1K,l} + V^{-2} \delta \phi_{1K} V^{-2} \delta \phi_{1K} \right) \right)
\]
\[
+ \delta \phi_{1K} V^{2} \sum_{j} \left(\sum_{i} \phi_{1jK} \right)^{i} \left(\sum_{i} \phi_{1iK} \right)^{i} \\
- \left(\frac{4 \pi G}{H} \right)^{2} \left(\sum_{K} \left(X_{K} \delta \phi_{1K} + \phi_{0jK} \delta \phi_{1jK} \right)^{i} \sum_{K} X_{K} \delta \phi_{1K} \\
+ \sum_{K} \phi_{0jK} \phi_{1jK} \right)^{i} \right) \right).
\]

(A.2)

References

[1] Bennett C L et al 1994 Cosmic temperature fluctuations from two years of COBE differential microwave radiometers observations Astrophys. J. \textbf{436} 423–42
[2] Komatsu E et al 2011 Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation Astrophys. J. Suppl. S \textbf{192} 18
[3] Ade P A R et al 2014 Planck 2013 results. XXII. Constraints on inflation Astron. Astrophys. \textbf{571} A22
[4] Ade P A R et al 2014 BICEP2 I: detection of b-mode polarization at degree angular scales Phys. Rev. Lett. \textbf{112} 241101
[5] Ade P A R et al A joint analysis of BICEP2 Keck array and Planck data arXiv:1502.00612
[6] Baumann D 2009 TASI lectures on inflation arXiv:0907.5424
[7] Bardeen J M 1980 Gauge invariant cosmological perturbations Phys. Rev. D \textbf{22} 1882–905
[8] Kodama H and Sasaki M 1984 Cosmological perturbation theory Prog. Theor. Phys. Suppl. \textbf{78} 1–166
[9] Mukhanov V F, Feldman H A and Brandenberger R H 1992 Theory of cosmological perturbations: I. Classical perturbations: II. Quantum theory of perturbations: III. Extensions Phys. Rep. \textbf{215} 203–333
[10] Starobinsky A A 1985 Multicomponent de Sitter (inflationary) stages and the generation of perturbations JETP Lett. \textbf{42} 152–5
[11] Sasaki M and Stewart E D 1996 A general analytic formula for the spectral index of the density perturbations produced during inflation Prog. Theor. Phys. \textbf{95} 71–78
[12] Sasaki M and Tanaka T 1998 Superhorizon scale dynamics of multiscalar inflation Prog. Theor. Phys. \textbf{99} 763–82
[13] Wands D, Malik K A, Lyth D H and Liddle A R 2000 A new approach to the evolution of cosmological perturbations on large scales Phys. Rev. D \textbf{62} 043527
[14] Rigopoulos G I and Shellard E P S 2003 The separate Universe approach and the evolution of nonlinear superhorizon cosmological perturbations Phys. Rev. D \textbf{68} 123518
[15] Lyth D H, Malik K A and Sasaki M 2005 A general proof of the conservation of the curvature perturbation J. Cosmol. Astropart. Phys. JCAP05(2005)004
[16] Malik K A and Wands D 2004 Evolution of second-order cosmological perturbations Class. Quantum Grav. \textbf{21} 65–72
[17] Lyth D H and Rodriguez Y 2005 Non-Gaussianity from the second-order cosmological perturbation Phys. Rev. D \textbf{71} 123508
[18] Malik K A 2005 Gauge-invariant perturbations at second order: multiple scalar fields on large scales J. Cosmol. Astropart. Phys. JCAP11(2005)005
[19] Langlois D and Vernizzi F 2005 Conserved nonlinear quantities in cosmology Phys. Rev. D \textbf{72} 103501
[20] Nakamura K 2010 Second-order gauge-invariant cosmological perturbation theory: current status Adv. Astron. \textbf{2010} 576273
[21] Tzavara E and van Tent B 2012 Gauge-invariant perturbations at second order in two-field inflation J. Cosmol. Astropart. Phys. JCAP08(2012)023
[22] Malik K A and Wands D 2009 Cosmological perturbations Phys. Rep. \textbf{475} 1–51
[23] Christopherson A J 2011 Applications of cosmological perturbation theory PhD Thesis University of London arXiv:1106.0446
[24] Malik K A 2007 A not so short note on the Klein–Gordon equation at second order J. Cosmol. Astropart. Phys. JCAP03(2007)004
[25] Lyth D H 1985 Large scale energy density perturbations and inflation Phys. Rev. D 31 1792–8
[26] Bardeen J M, Steinhardt P J and Turner M S 1983 Spontaneous creation of almost scale-free density perturbations in an inflationary Universe Phys. Rev. D 28 679
[27] Salopek D S and Bond J R 1990 Nonlinear evolution of long wavelength metric fluctuations in inflationary models Phys. Rev. D 42 3936–62
[28] Christopherson A J and Malik K A 2009 The non-adiabatic pressure in general scalar field systems Phys. Lett. B 675 159–63
[29] Huston I and Christopherson A J 2012 Calculating non-adiabatic pressure perturbations during multi-field inflation Phys. Rev. D 85 063507
[30] Dias M, Elliston J, Frazer J, Mulryne D and Seery D The curvature perturbation at second order in preparation arXiv:1410.3491
[31] Peeters K 2007 Introducing Cadabra: a symbolic computer algebra system for field theory problems arXiv:hep-th/0701238
[32] Peeters K 2007 A Field-theory motivated approach to symbolic computer algebra Comput. Phys. Commun. 176 550–8