The number of configurations in the full shift with a given least period

Alonso Castillo-Ramirez* and Miguel Sánchez-Álvarez†

Department of Mathematics, University Centre of Exact Sciences and Engineering, University of Guadalajara.

November 18, 2021

Abstract

For any group G and any set A, consider the shift action of G on the full shift A^G. A configuration $x \in A^G$ has least period $H \leq G$ if the stabiliser of x is precisely H. Among other things, the number of such configurations is interesting as it provides an upper bound for the size of the corresponding Aut(A^G)-orbit. In this paper we show that if G is finitely generated and H is of finite index, then the number of configurations in A^G with least period H may be computed by using the Möbius function of the lattice of subgroups of finite index in G. Moreover, when H is a normal subgroup, we classify all situations such that the number of G-orbits with least period H is at most 10.

Keywords: Full shift; periodic configurations; subgroup lattice; Möbius function.

MSC2020 codes: 37B10, 20D30.

1 Introduction

Let G be a group and let A be a set. Consider the set A^G of all functions from G to A equipped with the shift action of G, defined by

$$(g \cdot x)(h) := x(g^{-1}h),$$

for all $g, h \in G$ and $x \in A^G$. Although we shall not focus on this, the set A^G is usually seen as a topological space with the product topology of the discrete topology on A.

The G-space A^G is a fundamental object in areas such as symbolic dynamics and the theory of cellular automata (e.g. see [4, 10]). Following [4], we call the elements of A^G configurations. For any $x \in A^G$, the stabiliser G_x of x and the G-orbit Gx of x are defined as follows:

$$G_x := \{g \in G : g \cdot x = x\} \quad \text{and} \quad Gx := \{g \cdot x \in A^G : g \in G\}.$$

For a subgroup H of G, a configuration $x \in A^G$ has period H, or is H-periodic, if $h \cdot x = x$ for all $h \in H$, or, equivalently, if $H \leq G_x$. Denote by Fix(H) the subset of A^G consisting of all H-periodic configurations. It is known (see [4, Proposition 1.3.3]) that Fix(H) is in bijection with $A^{H \setminus G}$, where $H \setminus G = \{Hg : g \in G\}$ is the set of rights cosets of H in G. Hence, it follows that $|\text{Fix}(H)| = |A|^{[G:H]}$, where $[G : H] := |H \setminus G|$ is the index of H in G. In particular, the

*Email: alonso.castillor@academicos.udg.mx
†Email: miguel.sanchez1273@academicos.udg.mx
configurations whose period is the trivial subgroup of \(G \) are known as \textit{aperiodic points}, and have been used in \([6]\) as powerful tools to study the dynamics in \(A^G \) and its \textit{subshifts}, or \textit{subflows} (i.e. closed \(G \)-equivariant subsets of \(A^G \)).

We say that \(x \in A^G \) has \textit{least period}, or \textit{fundamental period}, \(H \) if \(G_x = H \) (c.f. [10] Definition 1.1.3.). In this paper we are interested in the number of subshifts of \(A^G \),\(\psi(G;A) \) of configurations with least period \(H \):\[\psi_H(G;A) := |\{ x \in A^G : G_x = H \}|. \]

If \(x, y \in A^G \) satisfy that \(y = g \cdot x \), then \(G_y = gG_xg^{-1} \); hence, it is sometimes convenient to consider the \(G \)-invariant set \(\{ x \in A^G : [G_x] = [H] \} \), where \([H] := \{ gHg^{-1} : g \in G \} \) is the conjugacy class of \(H \), and its cardinality
\[\psi_H(G;A) := |\{ x \in A^G : [G_x] = [H] \}|. \]

As \(\psi_H(G;A) = \psi_{gHg^{-1}}(G;A) \) for all \(g \in G \), we have
\[\psi_H(G;A) = |[H]| \psi_H(G;A). \]

Finally, we also consider the number of \(G \)-orbits whose stabiliser is conjugate to \(H \):
\[\alpha_H(G;A) := |\{ Gx : [G_x] = [H] \}|. \]

By the Orbit-Stabiliser Theorem ([14 Theorem 7.2.1]), all \(G \)-orbits inside \(\{ x \in A^G : [G_x] = [H] \} \) have size \(|G : H| \); therefore, we have
\[\alpha_H(G;A) |G : H| = \psi_H(G;A). \]

Besides being interesting for their own right, the above numbers have connections with the structure of the automorphism group of \(A^G \). Recall that a map \(\tau : A^G \to A^G \) is \textit{G-equivariant} if \(\tau(g \cdot x) = g \cdot \tau(x) \), for all \(g \in G \), \(x \in A^G \). Let \(\text{Aut}(A^G) \) the group of all \(G \)-equivariant homeomorphisms of \(A^G \). By the Curtis-Heldund Theorem ([4 Theorem 1.8.1]), \(\text{Aut}(A^G) \) is the same as the group of invertible cellular automata of \(A^G \). It follows by \(G \)-equivariance that for every \(\tau \in \text{Aut}(A^G) \), \(x \in A^G \), we have \(G_x = G_{\tau(x)} \). Thus, \(\psi_{G_x}(G;A) \) is an upper bound for the cardinality of the \(\text{Aut}(A^G) \)-orbit of \(x \). Moreover, if the group \(G \) is finite, the structure of \(\text{Aut}(A^G) \) was described in \([3\) Theorem 3\] as
\[
\text{Aut}(A^G) \cong \prod_{i=1}^{r}((N_G(H_i)/H_i) \wr \text{Sym}_{\alpha_i}),
\] (1)

where \([H_1], \ldots, [H_r] \) is the list of all different conjugacy classes of subgroups of \(G \), and \(\alpha_i = \alpha_{[H_i]}(G;A) \), as defined above. Hence, the structure of \(\text{Aut}(A^G) \) completely depends on the quotient groups \(N_G(H_i)/H_i \), which may be easily calculated by knowing the group \(G \), and the integers \(\alpha_i(G;A) \), which depend on \(\psi_H(G;A) \). Finally, in [11] [2], the sets of points of a given least period were shown in [3], in [3] [1], a fundamental tool of the automorphism groups of shifts of finite type, which include the group \(\text{Aut}(A^G) \).

As \(\psi_{G_x}(G;A) \) is finite if and only if \(|G : H| \) is finite (see Lemma [3] below), we shall focus on finite index subgroups of \(G \). In the first part of this paper, we prove that, when \(G \) is finitely generated, the poset \(L(G) \) of finite index subgroups of \(G \) is a locally finite lattice, so we use M"obius inversion to show that
\[
\psi_H(G;A) = \sum_{H \leq K \leq G} \mu(H,K)|A^[G,K],
\] (2)

where \(\mu \) is the M"obius function of \(L(G) \). In the second part of this paper, we note that if \(H \) is a normal subgroup, then \(\psi_H(G;A) = \psi_1(G/H;A) \) and \(\alpha_H(G;A) = \alpha_1(G/H;A) \). Hence, by
computing the M"obius function of the subgroup lattice of all finite groups of size up to 7, we classify under which situations we have $\alpha_H(G; A) \leq 10$.

Our work generalises previous results known in the literature. When $G = \mathbb{Z}_n$ is a cyclic group and $H = 1$ is the trivial subgroup, $\alpha_H(\mathbb{Z}_n; A)$ is equivalent to the number of aperiodic necklaces of length n, and equation (2) gives the so-called Moreau's necklace-counting function [12]. Moreover, $\alpha_H(\mathbb{Z}_n; A)$ is also equivalent to the number of Lyndon words of length n (see Sec. 5.1. in [11]). For a finite group G, this equation may be derived using the result of Sec. 4 in [9]. However, as far as we know, equation (2) had not been derived when G is an arbitrary finitely generated group.

2 Periodic configurations when G is finitely generated

For the rest of the paper, let A be a set with at least two elements and assume that $\{0, 1\} \subseteq A$. We begin by justifying our claim that $\psi_H(G; A)$ is finite if and only if $[G : H]$ is finite.

Lemma 1. Let G be a group and let H be a subgroup of G. Then $\psi_H(G; A)$ is finite if and only if $[G : H]$ is finite.

Proof. If $[G : H]$ is finite, then $\psi_H(G; A)$ is clearly finite, as every configuration with least period H is contained in $\text{Fix}(H)$ and $|\text{Fix}(H)| = |A|^{[G : H]} < \infty$.

Conversely, suppose that $[G : H]$ is infinite. Let $T \subseteq G$ be a transversal for the set of right cosets of H in G, i.e., T contains exactly one element from each right coset of H in G. It is clear that $|T| = [G : H]$. For each $s \in T$, consider the configuration $x_s \in A^G$ defined by

$$x_s(g) = \begin{cases} 1 & \text{if } g \in Hs \\ 0 & \text{otherwise} \end{cases},$$

for any $g \in G$. Given $h \in H$, then $h \cdot x_s(g) = x_s(h^{-1}g) = x_s(g)$, as $h^{-1}g \in Hs$ if and only if $g \in Hs$. Hence, $H \leq G_{x_s}$. On the other hand, if $k \in G_{x_s}$, then $k \cdot x_s = x_s$; in particular we have $(k \cdot x_s)(s) = x_s(k^{-1}s) = x_s(s) = 1$, which implies that $k^{-1}s \in Hs$. Therefore, $k \in H$, which shows that $G_{x_s} = H$. As $|T| = [G : H]$ is infinite, we have constructed infinitely many different configurations with least period H, which establishes that $\psi_H(G; A)$ is infinite. \qed

We shall recall some basic definitions on posets; for further details see [15, Ch. 3]. Recall that a partially ordered set, or a poset, is a set P equipped with a partial order relation \leq. Given $s, t \in P$ with $s \leq t$, define the closed interval $[s, t] := \{u \in P : s \leq u \leq t\}$. We say that P is locally finite if every closed interval of P is finite. A chain of P is a subposet S of P that is totally ordered, i.e., any two elements of S are comparable. For $t \in P$, the principal order ideal generated by t is $\Lambda_t := \{s \in P : s \leq t\}$, and the principal dual order ideal generated by t is $V_t := \{s \in P : s \geq t\}$.

A lattice is a poset L for which every pair of elements $s, t \in L$ has a least upper bound, denoted by $s \lor t$ and read s join t, and a greatest lower bound, denoted by $s \land t$ and read s meet t.

The M"obius function of a locally finite poset P is the map $\mu : P \times P \rightarrow \mathbb{Z}$ defined inductively by the following equations:

$$\mu(a, a) = 1, \; \forall a \in P,$$

$$\mu(a, b) = 0, \; \forall a \not\leq b,$$

$$\sum_{a \leq c \leq b} \mu(a, c) = 0, \; \forall a < b.$$

The M"obius function is the inverse of the zeta function of a locally finite poset, and it importantly satisfies the so-called M"obius inversion formula (see [15, Sec. 3.7]). In this section we shall use the dual form of the M"obius inversion formula [15, Proposition 3.7.2].
Theorem 1 (Möbius inversion formula, dual form). Let \(P \) be a poset for which every principal dual order ideal \(V_t \) is finite. Consider functions \(f, g : P \to K \), where \(K \) is a field. Then

\[
g(t) = \sum_{s \geq t} f(s), \quad \forall t \in P,
\]

if and only if

\[
f(t) = \sum_{s \geq t} g(s)\mu(t, s), \quad \forall t \in P.
\]

For any group \(G \), it is standard to consider the poset of all subgroups of \(G \) ordered by inclusion. Here, we shall consider the poset \(L(G) \) of all subgroups of \(G \) of finite index ordered by inclusion. The following is a key observation for this section.

Lemma 2. The poset \(L(G) \) is a lattice. Furthermore, if \(G \) is finitely generated, then for every \(H \in L(G) \), the principal dual order ideal \(V_H = \{ K \leq G : H \leq K \} \) is finite, so \(L(G) \) is a locally finite lattice.

Proof. We shall show that \(L(G) \) is a sublattice of the subgroup lattice of \(G \) by showing that it is closed under the join, given by \(H \vee J = \langle H \cup J \rangle \), and the meet, given by \(H \wedge J = H \cap J \).

Let \(H \) and \(K \) be subgroups of \(G \) such that \(H \leq K \). It is well-known (see, for instance [14, Theorem 3.1.3]) that the indices of \(H \) and \(K \) in \(G \) satisfy, as cardinal numbers, that

\[
[G : H] = [G : K][K : H].
\]

Hence, if \([G : H]\) is finite, then \([G : K]\) must be finite. This implies that for any \(H, J \in L(G) \), then \(\langle H \cup J \rangle \in L(G) \). On the other hand, it is also well-known (see, for instance [14, Theorem 3.1.6]) that the intersection of subgroups of finite index has finite index, so \(H \cap J \in L(G) \), and the first part of the lemma follows.

For the second part, for any \(H \in L(G) \) and \(K \in V_H \), the index of \(K \) in \(G \) must be a divisor of \([G : H]\). The result follows as in a finitely generated group there are only finitely many subgroups of a given finite index (this is a well-known theorem by M. Hall [7]; see also [14, Theorem 4.20]).

The previous lemma allows us to use the Möbius inversion formula for the poset \(L(G) \) when \(G \) is finitely generated. Let \(\mu \) be the Möbius function of \(L(G) \).

Theorem 2. Let \(G \) be a finitely generated group, let \(H \) be a subgroup of \(G \) of finite index, and let \(A \) be a finite set. Then,

\[
\psi_H(G; A) = \sum_{H \leq K \leq G} \mu(H, K)|A|^{[G : K]}.
\]

Proof. It follows from the definitions that

\[
|\text{Fix}(H)| = \sum_{K \geq H} \psi(K; G; A).
\]

By Lemma 2 this summation is finite and we may use Theorem 1 with \(g(H) = |\text{Fix}(H)| \) and \(f(K) = \psi_K(G; A) \). Therefore, we obtain

\[
\psi_H(G; A) = \sum_{K \geq H} \mu(H, K)|\text{Fix}(K)|.
\]

The result follows as \(|\text{Fix}(K)| = |A|^{[G : K]} \) by [4, Proposition 1.3.3].
Remark 1. Note that, for any $H, J \in L(G)$, the value of $\mu(H, J)$ only depends on the on the interval $[H, J]$. Hence, $\psi_H(G; A)$ may be calculated by only knowing the subposet $[H, G]$.

Corollary 1. With the notation of Theorem 2, suppose that the interval from H to G consists of a chain $H = H_0 < H_1 < \cdots < H_k = G$. Then,

$$\psi_H(G; A) = |A[G : H]| - |A[H_1 : H]|.$$

In particular, if H is a maximal subgroup of G, then

$$\psi_H(G; A) = |A[G : H]| - |A|.$$

Proof. By Theorem 2

$$\psi_H(G; A) = \sum_{i=0}^{k} \mu(H, H_i) |A[H_i : H]|.$$

Now, by the definition of the Möbius function,

$$\mu(H, H_0) = 1,$$
$$\mu(H, H_1) = -1,$$
$$\mu(H, H_i) = 0, \quad \forall i = 2, 3, \ldots, k.$$

The result follows.

Corollary 2. With the notation of Theorem 2

$$\psi_{[H]}(G; A) = |[H]| \sum_{H \leq K \leq G} \mu(H, K) |A[K : G]|,$$

$$\alpha_{[H]}(G; A) = \frac{|[H]|}{[G : H]} \sum_{H \leq K \leq G} \mu(H, K) |A[K : G]|.$$

3 Configurations with normal period

In this section we shall specialise on the case when H is a normal subgroup of G of finite index. In this case, the conjugacy class of H just contains H itself, so

$$\psi_H(G; A) = \psi_{[H]}(G; A).$$

Denote by 1 the trivial subgroup. The following result has been noted in [3, Lemma 6].

Lemma 3. Let G be any group and let H be a normal subgroup of G of finite index. Then,

$$\psi_H(G; A) = \psi_{[1]}(G/H; A) \quad \text{and} \quad \alpha_{[H]}(G; A) = \alpha_{[1]}(G/H; A).$$

Proof. By [4, Proposition 1.3.7.], there is a G/H-equivariant bijection between $A^{G/H}$ and $\text{Fix}(H)$. Hence, configurations in $A^{G/H}$ with trivial stabiliser are in bijection with the configurations in A^G with stabiliser equal to H.

The previous lemma allows to apply the machinery of Möbius functions of subgroup lattices which has been developed for a variety of finite groups (e.g. see [5, 8, 13]).

Recall that the classical Möbius function μ of the poset of natural numbers \mathbb{N} ordered by divisibility is given by

$$\mu(d) = \begin{cases}
0 & \text{if d has a squared prime factor} \\
1 & \text{if d is square-free with an even number of prime factors} \\
-1 & \text{if d is square-free with an odd number of prime factors.}
\end{cases}$$

Using Lemma 3, the following result gives the values of $\psi_H(G; A)$ in some particular cases when H is a normal subgroup of G.

Remark 1. Note that, for any $H, J \in L(G)$, the value of $\mu(H, J)$ only depends on the on the interval $[H, J]$. Hence, $\psi_H(G; A)$ may be calculated by only knowing the subposet $[H, G]$.

Corollary 1. With the notation of Theorem 2, suppose that the interval from H to G consists of a chain $H = H_0 < H_1 < \cdots < H_k = G$. Then,

$$\psi_H(G; A) = |A[G : H]| - |A[H_1 : H]|.$$

In particular, if H is a maximal subgroup of G, then

$$\psi_H(G; A) = |A[G : H]| - |A|.$$

Proof. By Theorem 2

$$\psi_H(G; A) = \sum_{i=0}^{k} \mu(H, H_i) |A[H_i : H]|.$$

Now, by the definition of the Möbius function,

$$\mu(H, H_0) = 1,$$
$$\mu(H, H_1) = -1,$$
$$\mu(H, H_i) = 0, \quad \forall i = 2, 3, \ldots, k.$$

The result follows.

Corollary 2. With the notation of Theorem 2

$$\psi_{[H]}(G; A) = |[H]| \sum_{H \leq K \leq G} \mu(H, K) |A[K : G]|,$$

$$\alpha_{[H]}(G; A) = \frac{|[H]|}{[G : H]} \sum_{H \leq K \leq G} \mu(H, K) |A[K : G]|.$$
Lemma 4. Let G be a finitely generated group, let H be a normal subgroup of G of finite index, and let A be a finite set. Let $n \in \mathbb{N}$, and let p and p' be two distinct primes.

1. If $G/H \cong \mathbb{Z}_n$, then $\psi_H(G; A) = \sum_{d|n} \mu(d)|A|^{n/d}$.

2. If $G/H \cong \mathbb{Z}_{p^k}$, then $\psi_H(G; A) = |A|^{p^k} - |A|^{p^k-1}$.

3. If $G/H \cong \mathbb{Z}_{pp'}$, then $\psi_H(G; A) = |A|^{pp'} - |A|^p - |A|^{p'} + |A|$.

4. If $G/H \cong \mathbb{Z}_p \oplus \mathbb{Z}_p$, then $\psi_H(G; A) = |A|^{p^2} - (p+1)|A|^p + p|A|$.

Proof. Parts (1), (2) and (3) follow as it is well-known that $\mu(1, \mathbb{Z}_n) = \tilde{\mu}(n)$ (as the subgroup lattice of \mathbb{Z}_n is isomorphic to the divisibility lattice of n). For part (4), just observe that the group $\mathbb{Z}_p \oplus \mathbb{Z}_p$ has $\frac{p^2-1}{p-1} = p+1$ subgroups isomorphic to \mathbb{Z}_p (as each of the p^2-1 nontrivial elements of $\mathbb{Z}_p \oplus \mathbb{Z}_p$ generates a subgroup with $p-1$ nontrivial elements), which account for all its proper nontrivial subgroups.

In the rest of this section, we shall focus on the exact determination of the small values of $\alpha_{|H|}(G; A)$. The inspiration for this question is Lemma 5 in [3], which established, without using the Möbius function, that $\alpha_{|H|}(G; A) = 1$ if and only if $[G : H] = 2$ and $|A| = 2$. In general, the classification of small values of $\alpha_{|H|}(G; A)$ is relevant as it classifies configurations with small $\text{Aut}(A^G)$-orbits, and, when G is finite, it classifies the small degrees of the symmetric groups appearing in the decomposition \mathcal{C} of $\text{Aut}(A^G)$.

For $x \in A^G$, we have $G_x = G$ if and only if x is a constant configuration. As we have precisely $|A|$ constant configurations in A^G, then $\alpha_{|G|}(G; A) = |A|$. Hence, we shall exclude the case $H = G$ in the following theorem. Moreover, we exclude the degenerate case $|A| = 1$.

\[
\begin{array}{c|cccc}
G/H & |A| & 2 & 3 & 4 & 5 \\
\hline
\mathbb{Z}_2 & 1 & 3 & 6 & 10 \\
\mathbb{Z}_3 & 2 & 8 & 20 & 40 \\
\mathbb{Z}_2^2 & 2 & 15 & 54 & 140 \\
\mathbb{Z}_4 & 3 & 18 & 60 & 150 \\
\mathbb{Z}_5 & 6 & 48 & 204 & 624 \\
S_3 & 7 & 108 & 650 & 2540 \\
\mathbb{Z}_6 & 9 & 116 & 670 & 2580 \\
\mathbb{Z}_7 & 18 & 312 & 2340 & 11160 \\
\end{array}
\]

Table 1: Small values for $\alpha_{|H|}(G; A)$ with H normal in G.

Theorem 3. Let G be a finitely generated group, let H be a proper normal subgroup of G of finite index, and let A a finite set with at least two elements.

1. $\alpha_{|H|}(G; A) = 1$ if and only if $|A| = 2$ and $[G : H] = 2$.

2. $\alpha_{|H|}(G; A) = 2$ if and only if $|A| = 2$ and $[G : H] = 3$, or $|A| = 2$ and $G/H \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$.
Figure 1: Subgroup lattice of S_3.

3. $\alpha_{[H]}(G; A) = 3$ if and only if $|A| = 3$ and $|G : H| = 2$, or $|A| = 2$ and $G/H \cong \mathbb{Z}_4$.
4. $\alpha_{[H]}(G; A) = 6$ if and only if $|A| = 2$ and $|G : H| = 5$, or $|A| = 4$ and $|G : H| = 2$.
5. $\alpha_{[H]}(G; A) = 7$ if and only if $|A| = 2$ and $G/H \cong S_3$.
6. $\alpha_{[H]}(G; A) = 8$ if and only if $|A| = 3$ and $|G : H| = 3$.
7. $\alpha_{[H]}(G; A) = 9$ if and only if $|A| = 2$ and $G/H \cong \mathbb{Z}_6$.
8. $\alpha_{[H]}(G; A) = 10$ if and only if $|A| = 5$ and $|G : H| = 2$.
9. $\alpha_{[H]}(G; A) \neq 4$ and $\alpha_{[H]}(G; A) \neq 5$.

Proof. By Corollary 1.7.2 in [6],

$$|A|^{-1} |H|^{-1} \leq \alpha_{[H]}(G/H, A) = \alpha_{[H]}(G; A).$$

(This lower bound has been improved in Theorem 5 in [3], but the above is enough for this proof). Hence, we see that $\alpha_{[H]}(G/H, A)$ is a strictly increasing function on both $|G : H|$ and $|A|$. Table 1 shows all values of $\alpha_{[H]}(G/H, A)$ with $|G : H| \leq 7$ and $|A| \leq 5$. Most of these values may be calculated by using the formulas of Lemma 1; the only exception is the case $G/H \cong S_3$, which may be directly computed using the Möbius function of the subgroup lattice of S_3 (see Figure 1). The result follows by inspection of Table 1.

Acknowledgments: We sincerely thank the anonymous referee for all his precise comments that improve the quality of our manuscript. The first author of this paper was supported by a CONACYT Basic Science Grant (No. A1-S-8013) from the Government of Mexico. The second author of this paper was supported by a CONACYT National Scholarship for PhD.

References

[1] Boyle, M., Krieger, W.: Periodic points and automorphisms of the shift. Trans. Amer. Math. Soc. 302, no. 1, (1987) 125–149.
[2] Boyle, M., Lind, D., Rudolph, D.: The Automorphism Group of a Shift of Finite Type. Trans. Amer. Math. Soc. 306, no. 1, (1988) 71–114.

[3] Castillo-Ramirez, A., Gadouleau, M.: Cellular automata and finite groups. Nat. Comput. 18 (2019) 445–458.

[4] Ceccherini-Silberstein, T., Coornaert, M.: Cellular Automata and Groups. Springer Monographs in Mathematics, Springer-Verlag Berlin Heidelberg (2010).

[5] Dalla Volta, F., Zini, G.: On two Möbius functions for a finite non-solvable group. arXiv:2004.02694 (2020).

[6] Gao, S., Jackson, S., Seward, B.: Group Colorings and Bernoulli Subflows. Mem. Am. Math. Soc. 241, no. 1141 (2016) 1–239.

[7] Hall, M.: A topology for free groups and related topics, Annals Math. 52 (1950) 127–139.

[8] Hawkes, T., Isaacs, I.M., Özyaydin, M.: On the Möbius Function of a Finite Group. Rocky Mt. J. Math. 19, no. 4 (1989) 1003–1034.

[9] Kerber, A.: Applied Finite Group Actions, 2nd ed. Algorithms and Combinatorics 19, Springer, 1999.

[10] Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, 1995.

[11] Lothaire, M.: Combinatorics on words, Cambridge University Press, 1997.

[12] Moreau, C.: Sur les permutations circulaires distinctes (On distinct circular permutations), Nouv. Ann. Math. 11 (1872) 309–331.

[13] Pahlings, H.: On the Möbius function of a finite group. Arch. Math. 60 (1993) 7–14.

[14] Roman, S.: Fundamentals of Group Theory: An Advanced Approach. Birkhäuser, Springer Science+Business Media, 2012.

[15] Stanley, R. P.: Enumerative Combinatorics, Vol. 1, Cambridge University Press, 2nd Edition, 2012.