Abstract—We propose a two-layer, semi-decentralized algorithm to compute a local solution to the Stackelberg equilibrium problem in aggregative games with coupling constraints. Specifically, we focus on a single-leader, multiple-follower problem, and after equivalently recasting the Stackelberg game as a mathematical program with complementarity constraints (MPCC), we iteratively convexify a regularized version of the MPCC as inner problem, whose solution generates a sequence of feasible descent directions for the original MPCC. Thus, by pursuing a descent direction at every outer iteration, we establish convergence to a local Stackelberg equilibrium. Finally, the proposed algorithm is tested on a numerical case study involving a hierarchical instance of the charging coordination of Plug-in Electric Vehicles (PEVs).

Index Terms—Stackelberg equilibrium, game theory, hierarchical systems, optimization.

I. INTRODUCTION

Stackelberg equilibrium problems are very popular within the system-and-control community, since they offer a multi-agent, decision-making framework that enables to model not only “horizontal” but also “vertical” interdependent relationships among heterogeneous agents, which are therefore clustered into leaders and followers. The application domains of Stackelberg equilibrium problems are, indeed, numerous, spanning from wireless networks, telecommunications [1], and network security [2], to demand response and energy management [3]–[5], economics [6], and traffic control [7].

In its most general setting, a Stackelberg equilibrium problem between a leader and a set of followers can be formulated as a mathematical program with equilibrium constraints (MPEC) [8, §1.2] or, in some specific cases, as an MPCC [9]. Both MPECs and MPCCs are usually challenging to solve. Specifically, they are inherently ill-posed, nonconvex optimization problems, since typically there are no feasible solutions strictly lying in the interior of the feasible set, which may even be disconnected, implying that any constraint qualification is violated at every feasible point [10]. It follows that, in this context, the basic convergence assumptions characterizing standard constrained optimization algorithms are not satisfied. Therefore, available solution methods are either tailored to the specific problem considered, or designed ad hoc for a sub-class of MPECs/MPCCs.

Algorithmic solution techniques for the class of games involving dominant and nondominant strategies, i.e. leaders and followers, date back to the 70s. For example, open-loop and feedback control policies for differential, hence continuous-time, unconstrained games were designed in [11], [12], while in [13] a comparison between finite/infinite horizon control strategies involving discrete-time dynamics was proposed. More recently, a single-leader, multi-follower differential game, modeling a pricing scheme for the Internet by basing on the bandwidth usage of the users, i.e., with congestion constraints, was solved in [14], and an iterative procedure to compute a Stackelberg-Nash-saddle point for an unconstrained, single-leader, multi-follower game with discrete-time dynamics was proposed in [15]. By relying on the uniqueness of the followers’ equilibrium for each leader’s strategy, standard fixed-point algorithms are also proposed in [16], [17]. A first attempt to solve an MPEC modelling a more elaborated multi-leader, multi-follower game, was investigated in [18]. Specifically, the authors established the equivalence to a single-leader, multi-follower equilibrium problem. In this latter case, for each leader, the authors proposed a single-leader, multi-follower game modelled as an MPEC. On the other hand, all these sub-games, which are parametric in the decisions of the followers, are coupled together through a game against the leaders themselves. However, in both papers the solution to the single-leader, multi-follower game remains to be dealt with, mainly due to the presence of nonconvexities and equilibrium/complementarity constraints which characterize MPEC/MPCC. Early algorithmic works on MPCCs to solve single-leader, multi-follower Stackelberg games, such as Gauss-Seidel or Jacobi [20], [21], are computationally expensive, especially for large number of followers. Additionally, they introduce several privacy issues, since they are designed by relying on diagonalization techniques. In [22], after relaxing the complementarity conditions, a solution to an MPCC is computed through nonlinear complementarity problems, towards driving the relaxation parameter to zero.

Our work aims at filling the apparent lack in the aforementioned literature of scalable and privacy preserving solution algorithms for equilibrium problems with nonconvex data and complementarity conditions, i.e., MPECs/MPCCs. Specifically, we leverage on the sequential convex approximation (SCA) to design a two-layer, semi-decentralized algorithm suitable to iteratively compute a local solution to the Stackelberg equilibrium problem involving a single leader and multiple followers in aggregative form with coupling constraints. The main contributions of the paper are summarized as follows:

• We reformulate the Stackelberg game as an MPCC by embedding it into the leader nonconvex optimization problem the equivalent KKT conditions to compute a generalized variational Nash equilibrium (v-GNE) [23] for the followers’ game (§II);
• We exploit a key result provided in [24] to locally relax the complementarity constraints, obtaining the MPCC-LICQ [25, Def. 3.1], i.e., the linear independent constraint qualification (LICQ) of all the points inside a certain neighborhood of the originally formulated MPCC (§III);
• Along the same lines of [26], [27], we propose to convexify the relaxed MPCC at every iteration of the outer loop, whose optimal solution, computed within the inner loop, points a descent direction for the cost function of the original MPCC. By pursuing such a descent direction, the sequence of feasible points generated by the outer loop directly leads to a local solution of the Stackelberg equilibrium problem (§III);
• We analyze the performance of the proposed algorithm applied

F. Fabiani is with the Department of Engineering Science, University of Oxford, OX1 3PJ, United Kingdom (filippo.fabiani@eng.ox.ac.uk). S. Grammatico is with the Delft Center for Systems and Control, TU Delft, The Netherlands (s.grammatico@tudelft.nl). M. A. Tajeddini and H. Kebriaei are with the School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Iran (m.a.tajeddini, kebriaei)@ut.ac.ir). This work was partially supported by the ERC under research project COSMOS (ERC-StG 802348).
to a numerical instance of the charging coordination problem for a fleet of PEVs, also investigating the behavior of the leader and the followers as the regularization parameter varies (§IV).

To the best of our knowledge, the proposed two-layer algorithm represents the first attempt to compute a local solution to the Stackelberg equilibrium problem involving nonconvex data and equilibrium constraints by directly exploiting (and preserving) the hierarchical, multi-agent structure of the original aggregate game.

Notation

\(\mathbb{N}, \mathbb{R} \) and \(\mathbb{R}_{\geq 0} \) denote the set of natural, real and nonnegative real numbers. 1 represents a vector with all elements equal to 1. For vectors \(v_1, \ldots, v_N \in \mathbb{R}^n \) and \(I = \{1, \ldots, N\} \), we denote \(\mathbf{v} := (v_1, \ldots, v_N)^T = \text{col}(\{v_i\}_{i \in I}) \) and \(\mathbf{v}_{-i} := \text{col}(\{v_j\}_{j \in I \setminus \{i\}}) \). We also use \(\mathbf{v} = (v_i, \mathbf{v}_{-i}) \), \(\mathbf{v} \perp \mathbf{w} \) means that \(\mathbf{v} \) and \(\mathbf{w} \) are orthogonal vectors. Given a matrix \(A \in \mathbb{R}^{m \times n} \), \(A^T \) denotes its transpose. \(\mathcal{A} \cap \mathcal{B} \) represents the Kronecker product between the matrices \(\mathcal{A} \) and \(\mathcal{B} \). For a function \(f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R} \), \(f(\mathbf{v}; \mathbf{w}) \) denotes the approximation of \(f \) at some \(\mathbf{v} \). A set \(S \) contains all the local stacks all the local decision variables except the \(i \)-th one. We postulate the following standard assumptions on the followers’ data in (1).

Standing Assumption 1: For each \(i \in I \), the function \(J_i(y_0, \cdot) \) is convex and continuously differentiable, for fixed \(y_0 \).

Standing Assumption 2: For each \(i \in I \), \(\text{rank}(F_i) = p_i \).

In (1), each matrix \(A_i \in \mathbb{R}^{m_i \times n_i} \) stacks \(m_i \) linear coupling constraints, while \(b \in \mathbb{R}^m \) is the vector of shared resources among the followers. Let \(\mathcal{A} := \{A_1 \ldots A_N\} \in \mathbb{R}^{m \times n} \). Then, we preliminarily define the sets \(\mathcal{X} := \prod_{i \in I} A_i \mathcal{X}_i \) and \(\Theta := \{x \in \mathcal{X} | Ax \leq b\} \).

For a fixed strategy of the leader, \(y_0 \), the followers aim to solve a generalized Nash equilibrium problem (GNEP). Specifically, by focusing on v-GNE, such problem is equivalent to solve \(\text{VI}(\Theta, H(y_0, \cdot)) \) [23], where, in view of Standing Assumption (1), \(H : \mathbb{R}^{n_0} \times \mathbb{R}^m \to \mathbb{R}^m \) is a continuously differentiable set-valued mapping defined as \((y_0, x) := \text{col}(\nabla x_i J_i(y_0, x_i))_{i \in I} \).

This fact, along with the properties of \(\Theta \), guarantee the nonemptiness of the set of v-GNE that, for any \(y_0, \mathbf{z} \in \mathcal{Y}_0 \), corresponds to the set

\[
S(y_0) := \{x \in \Theta | (\mathbf{z} - x)^T H(y_0, x) \geq 0, \forall \mathbf{z} \in \Theta\}.
\]

On the other hand, the optimization problem of the leader reads as:

\[
\begin{align*}
\min_{y_0, x} & \quad J_0(y_0, x) \\
\text{s.t.} & \quad (y_0, x) \in \text{gph}(S) \cap (\mathcal{Y}_0 \times \mathbb{R}^m),
\end{align*}
\]

for some cost function \(J_0 : \mathbb{R}^{n_0} \times \mathbb{R}^m \to \mathbb{R} \) and local constraint set \(\mathcal{Y}_0 \) characterized by the following standard conditions.

Standing Assumption 3: The set \(\mathcal{Y}_0 \) is nonempty, closed and convex.

Standing Assumption 4: The function \(J_0 \) is coercive, its gradient \(\nabla J_0 \) is Lipschitz continuous on \(\Phi := \mathcal{Y}_0 \times \mathcal{X} \) with constant \(\kappa_0 \).

We note that (3) defines an MPEC where \(x \) is not strictly within the leaders control, but it corresponds to an optimistic conjecture [18]. In view of [8, Th. 1.4.1], the MPEC in (3) admits an optimal solution, since the coerciveness of \(J_0 \) implies compactness of its level sets, and the feasible set, \(\text{gph}(S) \cap (\mathcal{Y}_0 \times \mathbb{R}^m) \), is closed under the postulated assumptions. Therefore, this ensures existence of a solution to the hierarchical game, according to the following notion of local generalized Stackelberg equilibrium, inspired by [18], [28].

Definition 1: A pair \((y_0^*, x^*) \in \text{gph}(S) \cap (\mathcal{Y}_0 \times \mathbb{R}^m) \), with \(S \) as in (3), is a local Stackelberg equilibrium \((\epsilon, SE)\) of the hierarchical game in (1)-(3) if there exist open neighborhoods \(\mathcal{O}_{y_0^*} \) and \(\mathcal{O}_{x^*} \) of \(y_0^* \) and \(x^* \), respectively, such that

\[
J_0(y_0, x^*) \leq \inf_{(y_0, x) \in \mathcal{O}_{y_0^*} \times \mathcal{O}_{x^*}} J_0(y_0, x),
\]

where \(\mathcal{O} := \mathcal{O}_{y_0^*} \cap \mathcal{O}_{x^*} \).

Informally speaking, at an \(\epsilon, SE \), the leader and the followers locally fulfill the set of mutually coupling constraints and none of them can gain by unilaterally deviating from their current strategy. Note that we refer to an SE if Definition 1 holds true with \(\mathcal{O} = \mathcal{Y}_0 \times \mathcal{X} \), i.e., \(\mathcal{O}_{y_0^*} = \mathcal{Y}_0 \) and \(\mathcal{O}_{x^*} = \mathcal{X} \), thus coinciding with [18, Def. 1.1].

B. Aggregative game formulation

For computational purposes, we consider the cost function of the followers and leader to be in aggregative form, i.e.,

\[
J_i := \frac{1}{2} x_i^T Q_i x_i + \left(\frac{1}{\kappa} \sum_{j \in I} C_{ij} x_j + C_{i0} \right)^T x_i, \quad \forall i \in I,
\]

\[
J_0 := f_0(y_0) + \left(\sum_{i \in I} f_i(x_i) \right)^T y_0,
\]

where \(\lambda_i \geq 0, \mathcal{C}_{ij} \in \mathbb{R}^{m_i \times n_j}, \) and \(C_{i0} \in \mathbb{R}^{m_i \times n_0} \). In view of Standing Assumption (1) given any feasible \(y_0 \in \mathcal{Y}_0 \), it follows from [29, Th. 3.1] that a set of strategies is a v-GNE of the followers game in (1) if and only if the following coupled KKT conditions hold true:

\[
\nabla x_i J_i(y_0, x, x_{-i}) + A_i^T \lambda + F_i^T \lambda = 0, \quad \forall i \in I, \quad 0 \leq \lambda \perp -(A x - \mathcal{B} z) \geq 0,
\]

\[
0 \leq \lambda_i \perp -(F_i x_i - \mathcal{B} z_i - \mathcal{G} j_i) \geq 0, \quad \forall i \in I,
\]

which, in our aggregative setup, can be compactly rewritten as

\[
\begin{align*}
Q x + C_{y0} & + A^T \lambda + F^T \lambda = 0, \\
0 & \leq \lambda \perp -(A x - \mathcal{B} z) \geq 0,
\end{align*}
\]

(5)

Finally, by substituting back the KKT conditions in (5) into the optimization problem of the leader in (3), the problem of finding an SE of the hierarchical game in (1)-(3) can be equivalently written as

\[
\begin{align*}
\min_{y_0, x, \lambda} & \quad J_0(y_0, x) \\
\text{s.t.} & \quad Q x + C_{y0} + A^T \lambda + F^T \lambda = 0, \\
& \quad 0 \leq \lambda_i \perp -(F_i x_i - \mathcal{B} z_i - \mathcal{G} j_i) \geq 0, \quad \forall i \in I,
\end{align*}
\]

(6)
C. Complementarity constraints relaxation

We note that the leader nonconvex optimization problem in (5) is an MPCC and, in general, it does not satisfy any standard constraint qualification. Therefore, we propose to study a regularized version by introducing slack variables $\mu \in \mathbb{R}^m_{\geq 0}$ and $\mu_i \in \mathbb{R}^2_{\geq 0}$, $i \in I$, together with parameters θ, $\theta_i > 0$, $i \in I$, which enable us to replace the complementarity constraints in (5) with the nonlinear constraints $\lambda^T \mu \leq \theta$ and $\lambda^T \mu_i \leq \theta_i$, for all $i \in I$ [24]. Thus, after defining $\nu := \text{col}(\lambda, \mu) \in \mathbb{R}^{2m}$, $\nu_i := \text{col}(\lambda_i, \mu_i) \in \mathbb{R}^{2}$, $y := \text{col}(x, \{\nu_i\}_{i \in I})$, the regularized version of (3) reads as:

$$R(\theta) : \begin{cases}
\min_{y_0, y, \nu} J_0(y_0, x) \\
\text{s.t. } A_1 y + A_2 y_0 + A_c \nu = d, \\
\lambda^T \mu \leq \theta, \lambda_i^T \mu \leq \theta_i, 0 \leq \nu_i, \forall i \in I, \\
\lambda^T \mu \leq \theta, \lambda \mu \geq y, y \in Y_0, \\
\end{cases}$$

(7)

where $d := \text{col}(0, b, g)$, $g := \text{col}(g_i)_{i \in I}$, $A_1 := \text{col}(C, 0, 0)$, and $A_2 := \text{col}(F, I)$, $A_c := \text{col}(A^T 0, 0 I)$.

For any given θ, $\theta_i > 0$, $i \in I$, let us now introduce the sets

$$C(\theta) := \{ \nu \in \mathbb{R}^{2m}_{\geq 0} : 1 \nu^T P \nu \leq \theta \},$$

$$C_i(\theta_i) := \{ \nu_i \in \mathbb{R}^{2}_\geq : 1 \nu_i^T P \nu_i \leq \theta_i \},$$

where $d := \text{col}(0, b, g)$, $g := \text{col}(g_i)_{i \in I}$, $A_1 := \text{col}(C, 0, 0)$, and $A_2 := \text{col}(F, I)$, $A_c := \text{col}(A^T 0, 0 I)$.

Here, each P and P_i, $i \in I$, is a symmetric matrix with identities of suitable dimension on the anti-diagonal. Furthermore, we define $\Omega(\theta) := Y_0 \times \mathcal{C}(\theta)$, where for brevity we omit the dependency from θ_i, explicated in $\mathcal{C}(\theta_i) := A_1 C_i(\theta_i)$. Finally, by introducing $\omega := \text{col}(y_0, y, \nu)$ and $A_2 := [A_1 A_2 A_c]$, the closed, nonconvex feasible set of $R(\theta)$ in (7) reads as

$$\mathcal{R}(\theta) := \{ \omega \in \Omega(\theta) : A_2 \omega = d \}.$$

We recall now the notion of MPCC-LICQ for the MPCC in (6), which is characterized by the result stated immediately below.

Definition 2: The MPCC in (6) satisfies the MPCC-LICQ at $\omega \in \mathcal{R}(\theta)$ if $R(\theta)$ in (7) satisfies the LICQ at ω.

Lemma 1: ([24, Lemma 2.1]) Let $\omega \in \mathcal{R}(\theta_0)$. If ω satisfies the MPCC-LICQ for the MPCC in (6), then there exists an open neighborhood \mathcal{O} of ω and scalars $\theta, \theta_i > 0$, for all $i \in I$, such that, for every $\theta \in (0, \theta)$ and $\theta_i \in (0, \theta_i)$, for all $i \in I$, the LICQ holds true at every point $\omega \in \mathcal{O}$ of $\mathcal{R}(\theta)$.

Then, let us introduce the following fundamental assumption.

Standing Assumption 5: There exists some $\omega \in \mathcal{R}(\theta_0)$ that satisfies the MPCC-LICQ for the MPCC in (6). The regularization parameters are chosen so that $\theta \in (0, \theta_0)$ and $\theta_i \in (0, \theta_i)$, for all $i \in I$.

In view of Standing Assumption 5 there exists a neighborhood such that $R(\theta)$ locally satisfies the LICQ. As shown in Section III-B the coefficients $\theta, \theta_i \in I$, play a trade-off role between the distance from a v-GNE for the followers and a lower cost for the leader. To conclude the section, we stress that an optimal solution to (7), whose existence follows by its local LICQ and the coerciveness of J_0, generates a pair (y_0^*, x^*) that corresponds to an ℓ-SE of the original hierarchical game in (1)-(3).

III. LOCAL STACKELBERG EQUILIBRIUM SEEKING VIA SEQUENTIAL CONVEX APPROXIMATION

A. A two-layer algorithm

In the spirit of [26], [27], we then investigate how to solve (7) in a decentralized fashion by means of a two-layer algorithm, while preserving the hierarchical structure of the game (1)-(3). First, we linearize the nonlinear terms appearing in the cost function around some $\omega \in \mathcal{R}(\theta)$. Specifically, with $\varphi := (y_0, x)$, J_0 is linearized by following a first order Taylor expansion as $J_0(\varphi) \approx J_0(\bar{\varphi}) + \nabla^T J_0(\bar{\varphi}) (\varphi - \bar{\varphi})$ where, for our aggregative game, we have:

$$\nabla J_0(\varphi) = \text{col}(\nabla y_0 f_0(y_0) + \sum_{j \in I} f_0_j(x_j), \{\nabla c_j f_0_j(x_j)\}_{j \in I}) : col(c_1(y_0, x), c_i(y_0, x)).$$

According to [27, §III.A], for the nonlinear constraints defining the sets in (6), we compute an upper approximation by observing that, e.g., $\frac{1}{2} \nu^T P \nu = \lambda^T \mu = \lambda (\mu + \mu)^T - \lambda (\lambda^T \mu \mu^T \mu)$, hence, after linearizing the concave term around some $\nu \in C(\theta)$, we define

$$\tilde{C}(\theta; \omega) := \{ \nu \in \mathbb{R}^{2m}_{\geq 0} : \nu^T (1 \nu^T - \nu \nu^T) \leq \theta \}.$$

The same procedure can be applied to each $C_i(\theta_i)$ to obtain $\tilde{C}_i(\theta_i; \omega)$. Accordingly, $\Omega(\theta)$ is approximated by $\Omega(\theta; \omega) := Y_0 \times \tilde{C}(\theta; \omega)$, with $\mathcal{Y}(\omega) := \mathcal{X} \times \prod_{i \in I} \tilde{C}_i(\theta_i; \omega)$, while $\mathcal{R}(\theta)$ by

$$\tilde{\mathcal{R}}(\theta; \omega) := \{ \omega \in \Omega(\theta; \omega) : A_2 \omega = d \}.$$

Finally, by discarding constant terms and introducing $c_{\omega}(\omega) := \text{col}(\nabla J_0(\varphi), 0)$, the convexified version of $R(\theta)$ in (7) reads as

$$\tilde{R}(\theta; \omega) : \begin{cases}
\min_{\omega \in \Omega(\theta; \omega)} c_{\omega}(\omega)^T \omega + \frac{\sigma}{2} \| \omega - \bar{\omega} \|^2 \\
\text{s.t. } A_2 \omega = d, \\
\end{cases}$$

(11)

where we add a "proximal-like" term to the linearized cost function in (7) with $\sigma > 0$. Hence, the cost function in (11) of $J_0(\omega)$, namely

$$\tilde{J}_0(\omega) := c_{\omega}(\omega)^T \omega + \frac{\sigma}{2} \| \omega - \bar{\omega} \|^2,$$

is characterized as follows.

Lemma 2: The following statements hold true:

(i) Given any $\omega \in \mathcal{R}(\theta)$, $\tilde{J}_0(\omega; \omega)$ is uniformly strongly convex on $\mathcal{X} \times \mathbb{R}^{2m+2}$, $p := \sum_{i \in I} p_i$, with coefficient σ.

(ii) Given any $\omega \in \mathcal{R}(\theta)$, $\nabla \tilde{J}_0(\omega; \omega)$ is uniformly Lipschitz continuous on $\mathcal{R}(\theta)$ with coefficient $\bar{\kappa}_0 := \kappa_0 + \sigma$.

Proof: (i) The statement directly follows by applying the definition of uniform strong convexity on the set $\mathcal{X} \times \mathbb{R}^{2m+2}$, $p := \sum_{i \in I} p_i$, with coefficient σ.

(ii) Let $\omega_1, \omega_2 \in \mathcal{R}(\theta)$. For any given $\omega \in \mathcal{R}(\theta)$, we have:

$$\| \nabla \tilde{J}_0(\omega_1; \omega) - \nabla \tilde{J}_0(\omega_2; \omega) \| = \| c_{\omega}(\omega_1) - c_{\omega}(\omega_2) + \sigma (\omega_2 - \omega_1) \|$$

$$\leq \| c_{\omega}(\nabla J_0(\varphi_1), 0) - c_{\omega}(\nabla J_0(\varphi_2), 0) + \sigma (\omega_2 - \omega_1) \|$$

$$\leq (\kappa_0 + \sigma) \| \omega_2 - \omega_1 \|.$$
B. Convergence analysis

First, we characterize the sequence \((\omega^k)_{k \in \mathbb{N}}\) generated by Algorithm 1 in terms of iterate feasibility. Then, we establish a key property of the mapping \(\hat{\omega}(\cdot)\), and finally we prove that \((\omega^k)_{k \in \mathbb{N}}\) converges to an optimal solution to \((\mathcal{P})\), generating an \(\ell\)-SE of the hierarchical aggregative game \((\mathcal{P})\) according to Definition 1.

Lemma 3: The following inclusions hold true:

(i) \(\mathcal{R}(\theta; \omega) \subseteq \mathcal{R}(\theta)\), for all \(\omega \in \mathcal{R}(\theta)\);
(ii) \(\omega^k \in \mathcal{R}(\theta)\).

Proof: (i) The upper approximation of the nonlinear constraints, which holds true for all \(\omega \in \mathcal{R}(\theta)\), implies \(\mathcal{C}(\theta; \omega) \supseteq \mathcal{C}(\theta)\) and \(\mathcal{C}_1(\theta; \omega) \subseteq \mathcal{C}_1(\theta)\), \(i \in T\). Therefore, \(\mathcal{R}(\theta; \omega) \subseteq \mathcal{R}(\theta)\), and in view of the definitions in \((\mathcal{P})\) and \((\mathcal{P})\), inclusion (i) can be deduced.

(ii) First, in view of the approximation of the constraints, note that \(\omega^k \in \mathcal{R}(\theta; \omega^k)\), for all \(k \in \mathbb{N}\), with \(\mathcal{R}(\theta; \omega^k)\) convex subset of \(\mathcal{R}(\theta)\). Then, the proof follows by induction by considering that \(\omega^{k+1}\) is a convex combination of \(\omega^k \in \mathcal{R}(\theta; \omega^k)\) and \(\omega^k\).

Lemma 4: For every \(\omega \in \mathcal{R}(\theta)\), the vector \((\phi(\omega) - \hat{\phi}(\omega))\) is a descent direction for \(J_0(\phi)\) in \(R(\theta)\), evaluated at \(\phi\), i.e., \(\phi(\omega) - \hat{\phi}(\omega) \perp \nabla J_0(\phi)\geq \sigma\|\phi(\omega) - \hat{\phi}(\omega)\|^2 > 0\).

Proof: Given any \(\omega \in \mathcal{R}(\theta)\), by definition, \(\hat{\phi}(\omega)\) satisfies the minimum principle for \(\mathcal{P}\), i.e., \((\phi(\omega) - \hat{\phi}(\omega)) \perp \nabla J_0(\omega(\phi)(\omega))\geq 0\) for all \(\phi \in \mathcal{R}(\theta; \phi)\). From Lemma 3(ii), we choose \(\zeta = \omega\), and by adding and subtracting the term \((\omega - \omega(\phi)))\perp \nabla J_0(\omega(\phi)\omega)\), we obtain

\[
(\omega - \omega(\phi)) \perp \nabla J_0(\omega(\phi)\omega) \geq (\omega - \omega(\phi)) \perp \nabla J_0(\omega(\phi)\omega) \geq \sigma\|\omega - \omega(\phi)\|^2.
\]

By directly replacing \(\nabla J_0(\omega(\phi)\omega)\) with \(c_0(\omega) = \det(\nabla J_0(\phi))(\phi)\), the term on the left-hand side is equal to \((\phi - \hat{\phi}(\omega)) \perp \nabla J_0(\phi)(\phi)\), while the one on the right-hand side, in view of Lemma 3(ii), is bounded from below by \(\sigma\|\omega - \omega(\phi)\|^2\), leading to

\[
(\phi(\omega) - \hat{\phi}(\omega)) \perp \nabla J_0(\phi(\phi)\omega) \geq \sigma\|\omega - \omega(\phi)\|^2.
\]

Before establishing the convergence to an \(\ell\)-SE for the sequence generated by Algorithm 1, we recall a key result provided in [27].

Lemma 5: ([27, Th. 14]) Let \((\omega^k)_{k \in \mathbb{N}}\) be the sequence generated by Algorithm 1 and assume that \(\lim_{k \to \infty} \|\omega(\omega^k) - \omega^k\| = 0\). Then, every limit point of \((\omega^k)_{k \in \mathbb{N}}\) generated by Algorithm 1 is a stationary solution to \(R(\theta)\).

Theorem 1: Let \(\alpha\) in Algorithm 1 be chosen so that \(\alpha \in (0, 2\sigma/\nu_0)\). Then, the sequence \((\omega^k)_{k \in \mathbb{N}}\) generated by Algorithm 1 converges to an optimal solution \(\omega^*\) to \(R(\theta)\) in \((\mathcal{P})\), which vector \((y_0^*, x^*)\) is an \(\ell\)-SE of the hierarchical game in \((\mathcal{P})\).

Proof: By combining the descent lemma [30, Prop. A.24] and Lemma 3, the step (3) in Algorithm 1 leads to:

\[
J_0(\phi^{k+1}) \leq J_0(\phi^k) + \alpha \nabla^\top J_0(\phi^k)(\phi(\omega^k) - \phi^k)
\]

\[
+ \alpha^2 \alpha_0 \frac{\sigma}{2} \|\phi(\omega^k) - \phi^k\|^2
\]

\[
\leq J_0(\phi^k) - \alpha \left(\sigma - \frac{\alpha_0 \sigma}{2}\right) \|\phi(\omega^k) - \omega^k\|^2.
\]

where the second inequality follows from \(\|\phi(\omega^k) - \omega^k\| \geq \|\phi(\omega^k) - \phi^k\|\). If \(\alpha < 2\sigma/\nu_0\), then \((\omega^k)_{k \in \mathbb{N}}\) shall converge to a finite value, since \(\omega^k \to -\infty\) cannot take place in view of Standing Assumption 4. Thus, the convergence of \((\omega^k)_{k \in \mathbb{N}}\) implies \(\lim_{k \to \infty} \|\omega(\omega^k) - \omega^k\| = 0\), and therefore the bounded sequence \((\omega^k)_{k \in \mathbb{N}} \in \mathcal{R}(\theta)\) in view of Lemma 4 has a limit point in \(\mathcal{R}(\theta)\). From Lemma 5, such a limit point is a stationary solution to \(R(\theta)\), and since \((\omega^k)_{k \in \mathbb{N}}\) is a strictly decreasing sequence, no limit point can be a local maximum of \(J_0\). Thus, \((\omega^k)_{k \in \mathbb{N}}\) converges to an optimal solution \(\omega^*\) in \((\mathcal{P})\), which vector \((y_0^*, x^*)\) is an \(\ell\)-SE of the original hierarchical game in \((\mathcal{P})\).

C. An augmented Lagrangian approach to solve the inner loop

A scalable and privacy-preserving algorithm, suitable to solve \((\mathcal{S})\) in Algorithm 1 by exploiting the hierarchical structure of the original game, is the accelerated distributed augmented Lagrangian (ADAL) method proposed in [31]. Since we are interested in finding the optimal solution to \(R(\theta; \omega^k)\), from now on we omit the dependence on \(\omega^k\) (unless differently specified) to alleviate the notation.

Thus, at every iteration \(k \in \mathbb{N}\) of the outer loop, the Lagrangian function associated to \((\mathcal{P})\) is defined as

\[
L^k(\omega, \nu) = \left(\epsilon^T_k\right)^\top \omega + \frac{\sigma}{2} \|\omega - \omega^k\|^2 + \eta^\top (A_w \omega - \nu),
\]

where \(\epsilon^k := \epsilon_0(\omega^k)\), and \(\nu \in \mathbb{R}^l, l := n + m + p\), is the dual variable associated with the linear equality constraints. Note that the Lagrangian in \((\mathcal{P})\) can be rewritten as the sum of terms associated to different entities, which happens to correspond to the leader, the set of followers, and a central coordinator, respectively. In details, we define \(L_1^k := \left(\epsilon^T_k\right)^\top y_0 + \frac{\sigma}{2} \|y_0 - y_0^k\|^2 + \eta^T A_y y_0^k, L_2^k := \left(\epsilon^T_k\right)^\top y + \frac{\sigma}{2} \|y - y^k\|^2 + \eta^T A_y y^k, L_3^k := \frac{\sigma}{2} \|\nu - \nu^k\|^2 + \eta^T A^\nu \nu\). In light of [31], we augment each one of these terms as, e.g., \(L_1^k := L_1^k + \frac{\sigma}{2} \|A_y y^k + A_y y - \nu^k\|^2\); \(L_2^k\) and \(L_3^k\) are identical, where \(\rho > 0\) is a penalty term to be designed freely.

The main steps of the proposed semi-decentralized procedure are summarized in Algorithm 2 where we emphasize that each
augmented Lagrangian term depends on the linearization at the current outer iteration \(k \in \mathbb{N} \). Specifically, at every iteration \(t \in \mathbb{N} \) of the inner loop, the ADAL requires that the followers, the leader and the central coordinator compute in parallel a minimization step of the local augmented Lagrangian. Here, \(x_k := A_k y_0 \), \(z_k := A_k r \) and \(z_k := A_k^\top v \) are auxiliary variables introduced for privacy purposes and, given some \(r > 0 \), are locally updated. Finally, the central coordinator, which in some practical applications may eventually coincide with the leader, gathers \(x_k(t+1) \) and \(z_k(t+1) \) from the leader and followers, and updates the dual variable.

Proposition 1: Let \(p > 0 \) be sufficiently large and \(\tau \in (0, r_{\text{max}}^{-1}) \), where \(r_{\text{max}} \) corresponds to the maximum degree among the constraints in (10). Then, the sequence \((\omega(t))_{t \in \mathbb{N}} \) generated by Algorithm 2 converges to the minimizer of \(R(\theta; \omega^k) \), for all \(k \in \mathbb{N} \).

Proof: The proof follows by noticing that \(R(\theta; \omega^k) \) satisfies the assumptions in [31, Th. 2], for all \(k \in \mathbb{N} \). Specifically, \(R(\theta; \omega^k) \) is a closed and convex set, \(J_0(\omega; \omega^k) \) is in-finite and each one of its terms is twice continuously differentiable. Finally, Lemma 1 provides the local LICQ for \(R(\theta) \), directly inherited by \(R(\theta; \omega^k) \).

Remark 3: For simplicity, we adopt a common \(\tau \) to update the auxiliary variables \(x_k, z_k \) and \(z_c \). In principle, each entity involved within the ADAL in Algorithm 2 can locally set its own step size according to the degree of each constraint in (11), see [31, §II.A].

IV. Numerical Case Study: Charging Coordination of Plug-in Electric Vehicles

A. Numerical simulation setup

We consider a set of PEVs (followers), \(I := \{1, 2, \ldots, N\} \), which has to be charged over a certain horizon \(T := \{1, \ldots, T\} \). All PEVs are connected to an aggregator (leader, e.g., a retailer), which manages the energy requirements of the fleet by purchasing the electricity from the wholesale energy market. Let us define the strategies in (10). Then, the sequence \((\theta(t))_{t \in \mathbb{N}} \) is twice continuously differentiable. Finally, Lemma 1 provides the local LICQ for \(R(\theta) \), directly inherited by \(R(\theta; \omega^k) \).

Remark 3: For simplicity, we adopt a common \(\tau \) to update the auxiliary variables \(x_k, z_k \) and \(z_c \). In principle, each entity involved within the ADAL in Algorithm 2 can locally set its own step size according to the degree of each constraint in (11), see [31, §II.A].

Proposition 1: Let \(p > 0 \) be sufficiently large and \(\tau \in (0, \tau_{\text{max}}^{-1}) \), where \(\tau_{\text{max}} \) corresponds to the maximum degree among the constraints in (10). Then, the sequence \((\omega(t))_{t \in \mathbb{N}} \) generated by Algorithm 2 converges to the minimizer of \(R(\theta; \omega^k) \), for all \(k \in \mathbb{N} \).

Proof: The proof follows by noticing that \(R(\theta; \omega^k) \) satisfies the assumptions in [31, Th. 2], for all \(k \in \mathbb{N} \). Specifically, \(R(\theta; \omega^k) \) is a closed and convex set, \(J_0(\omega; \omega^k) \) is in-finite and each one of its terms is twice continuously differentiable. Finally, Lemma 1 provides the local LICQ for \(R(\theta) \), directly inherited by \(R(\theta; \omega^k) \).

Remark 3: For simplicity, we adopt a common \(\tau \) to update the auxiliary variables \(x_k, z_k \) and \(z_c \). In principle, each entity involved within the ADAL in Algorithm 2 can locally set its own step size according to the degree of each constraint in (11), see [31, §II.A].

IV. Numerical Case Study: Charging Coordination of Plug-in Electric Vehicles

A. Numerical simulation setup

We consider a set of PEVs (followers), \(I := \{1, 2, \ldots, N\} \), which has to be charged over a certain horizon \(T := \{1, \ldots, T\} \). All PEVs are connected to an aggregator (leader, e.g., a retailer), which manages the energy requirements of the fleet by purchasing the electricity from the wholesale energy market. Let us define the strategies in (10). Then, the sequence \((\theta(t))_{t \in \mathbb{N}} \) is twice continuously differentiable. Finally, Lemma 1 provides the local LICQ for \(R(\theta) \), directly inherited by \(R(\theta; \omega^k) \).

Remark 3: For simplicity, we adopt a common \(\tau \) to update the auxiliary variables \(x_k, z_k \) and \(z_c \). In principle, each entity involved within the ADAL in Algorithm 2 can locally set its own step size according to the degree of each constraint in (11), see [31, §II.A].

Algorithm 3: Two-layer naïve method for \(\ell \)-SE computation

Initialization: \(y_0(0) \in \mathcal{Y}_0 \)

Iteration \((k \in \mathbb{N})\):

1. Compute an v-GNE, \(x(k) \), for the game in (1).
2. Compute \(y_0(k) \), solution to (3).
3. Update \(y_0(k) := (1 - \beta(k))y_0(k - 1) + \beta(k)y_0^*(k) \).

![Fig. 1. Comparison of the convergence behavior between Algorithm 1 (solid blue line) and Algorithm 3 (dotted red line).](image-url)

B. The trade-off between the leader and the followers

Finally, we highlight the trade-off role played by the relaxation parameter \(\theta \) in (7). In fact, for \(\theta \) sufficiently large, the leader has a larger feasible set while, on the other hand, the followers are farther away from an v-GNE, since the complementarity condition is not exactly satisfied. Therefore, the larger the \(\theta \), the lower the optimal cost of the leader, and possibly the larger the optimal cost of each follower. Vice versa, the smaller \(\theta \), the higher the optimal cost of the leader, because his feasible set shrinks, and possibly the lower the optimal cost of each follower, since the equilibrium condition is closer...
to being satisfied. This behavior is essentially confirmed in Fig. 2, where, for ease of visualization, we show the normalized benefit of the leader \(J^*_1(\theta) \) and the normalized maximum disadvantage among the followers \((\Delta J^*_i(\theta)) \) as \(\theta \) increases. Specifically, for each \(\theta \in [0, 1] \), we compute an \(\ell \)-SE, and we denote with \(J^*_i(\theta) \) the corresponding optimal cost for the leader. For the followers, we introduce and show the maximum relative disadvantage with respect to a near-equilibrium condition, i.e., \(\Delta J^*_i(\theta) := \max_{i \in \mathcal{I}} J^*_i(\theta) - J^*_1(\theta) \), where, for a given \(\theta \), \(J^*_i(\theta) \) is the optimal cost for the i-th follower, while in this case we set \(\bar{\theta} \) equal to \(10^{-6} \).

V. CONCLUSION

We have considered a multi-agent, hierarchical equilibrium problem with one leader and multiple followers, with possibly nonconvex data for the leader, convex-quadratic objective functions and linear constraints for the followers, and overall an aggregative structure. In this setup, a local Stackelberg equilibrium can be approximated arbitrarily close via the relaxation of the complementarity condition that represents the equilibrium among the followers. In turn, the relaxed problem can be solved via a two-layer algorithm, which - thanks to the aggregative structure - requires semi-decentralized computations and information exchange.

REFERENCES

[1] H. Liu, “SINR-based multi-channel power schedule under DoS attacks: A Stackelberg game approach with incomplete information,” Automatica, vol. 100, pp. 274–280, 2019.
[2] L. Yuze, S. Dawei, and C. Tongwen, “False data injection attacks on networked control systems: A Stackelberg game analysis,” IEEE Transactions on Automatic Control, vol. 63, no. 10, pp. 3503–3509, 2018.
[3] M. Motalleb, P. Siano, and R. Ghorbani, “Networked Stackelberg competition in a demand response market,” Applied Energy, vol. 239, pp. 680–691, 2019.
[4] J. Chen and Q. Zhu, “A Stackelberg game approach for two-level distributed energy management in smart grids,” IEEE Transactions on Smart Grid, 2017.
[5] F. G. Mendoza, D. Bauso, and G. Konstantopoulos, “Online pricing via Stackelberg and incentive games in a micro-grid,” in 2019 18th European Control Conference (ECC). IEEE, 2019, pp. 3520–3525.
[6] K. Hirose and T. Matsumura, “Comparing welfare and profit in quantity and price competition within Stackelberg mixed duopolies,” Journal of Economics, vol. 126, no. 1, pp. 75–93, 2019.
[7] N. Groot, G. Zaccour, and B. De Schutter, “Hierarchical game theory for system-optimal control: Applications of reverse Stackelberg games in regulating marketing channels and traffic routing,” IEEE Control Systems Magazine, vol. 37, no. 2, pp. 129–152, 2017.
[8] Z.-Q. Luo, J.-S. Pang, and D. Ralph, Mathematical programs with equilibrium constraints. Cambridge University Press, 1996.
[9] H. Scheel and S. Scholtes, “Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity,” Mathematics of Operations Research, vol. 25, no. 1, pp. 1–22, 2000.
[10] H. T. Jongen and G.-W. Weber, “Nonlinear optimization: characterization of structural stability,” Journal of Global Optimization, vol. 1, no. 1, pp. 47–64, 1991.
[11] M. Simaan and J. Cruz, “A Stackelberg solution for games with many players,” IEEE Transactions on Automatic Control, vol. 18, no. 3, pp. 322–324, 1973.
[12] F. Kydland, “Equilibrium solutions in dynamic dominant-player models,” Journal of Economic Theory, vol. 15, no. 2, pp. 307–324, 1977.
[13] ——, “Noncooperative and dominant player solutions in discrete dynamic games,” International Economic Review, pp. 321–335, 1975.
[14] T. Baár and R. Srikant, “A Stackelberg network game with a large number of followers,” Journal of Optimization Theory and Applications, vol. 115, no. 3, pp. 479–490, 2002.
[15] H. Kebriaei and L. Iannelli, “Discrete-time robust hierarchical linear-quadratic dynamic games,” IEEE Transactions on Automatic Control, vol. 63, no. 3, pp. 902–909, 2017.
[16] W. Tushar, W. Saad, H. V. Poor, and D. B. Smith, “Economics of electric vehicle charging: A game theoretic approach,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1767–1778, 2012.
[17] E. Zou, I. Hiskens, and Z. Ma, “Decentralized coordination of controlled loads and transformers in a hierarchical structure,” IFAC World Congress, vol. 50, no. 1, pp. 5560–5566, 2017.
[18] A. A. Kulkarni and U. V. Shanbhag, “An existence result for hierarchical Stackelberg v/s Stackelberg games,” IEEE Transactions on Automatic Control, vol. 60, no. 12, pp. 3379–3384, 2015.
[19] S. Leyffer and T. Munson, “Solving multi-leader-common-follower games,” Optimization Methods & Software, vol. 25, no. 4, pp. 601–623, 2010.
[20] B. Hobbs, “Linear complementarity models of Nash-Cournot competition in bilateral and POOLCO power markets,” IEEE Transactions on Power Systems, vol. 16, no. 2, pp. 194–202, 2001.
[21] A. Ehrenmann and K. Neuhoff, “A comparison of electricity market designs in networks,” Operations Research, vol. 57, no. 2, pp. 274–286, 2009.
[22] C.-L. Su, “A sequential NCP algorithm for solving equilibrium problems with equilibrium constraints,” Manuscript, Department of Management Science and Engineering, Stanford University, Stanford, CA, 2004.
[23] F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities and complementarity problems. Springer Science & Business Media, 2007.
[24] S. Scholtes, “Convergence properties of a regularization scheme for mathematical programs with complementarity constraints,” SIAM Journal on Optimization, vol. 11, no. 4, pp. 918–936, 2001.
[25] R. Fletcher, S. Leyffer, D. Ralph, and S. Scholtes, “Local convergence of SQP methods for mathematical programs with equilibrium constraints,” SIAM Journal on Optimization, vol. 17, no. 1, pp. 259–286, 2006.
[26] G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang, “Decomposition by partial linearization: Parallel optimization of multi-agent systems,” IEEE Transactions on Signal Processing, vol. 62, no. 3, pp. 641–656, 2014.
[27] G. Scutari, F. Facchinei, and L. Lampariello, “Parallel and distributed methods for constrained nonconvex optimization - Part I: Theory,” IEEE Transactions on Signal Processing, vol. 65, no. 8, pp. 1929–1944, 2017.
[28] X. Hu and D. Ralph, “Using EPECs to model bilevel games in structured electricity markets with locational prices,” Operations Research, vol. 55, no. 5, pp. 809–827, 2007.
[29] F. Facchinei, A. Fischer, and V. Piccialli, “On generalized Nash games and variational inequalities,” Operations Research Letters, vol. 35, no. 2, pp. 159–164, 2007.
[30] D. P. Bertsekas, “Nonlinear programming,” Journal of the Operational Research Society, vol. 48, no. 3, pp. 334–334, 1997.
[31] N. Chatzipanagiotis and M. M. Zavlanos, “On the convergence of a distributed augmented Lagrangian method for nonconvex optimization,” IEEE Transactions on Automatic Control, vol. 62, no. 9, pp. 4405–4420, 2017.
[32] M. A. Tajeddini and H. Kebriaei, “A mean-field game method for decentralized charging coordination of a large population of plug-in electric vehicles,” IEEE Systems Journal, vol. 13, no. 1, pp. 854–863, 2018.