Public open space for disaster mitigation in Tangerang housing estates

M I R Winandari
Architecture Department, Faculty of Civil Engineering and Planning, Universitas Trisakti, Jakarta, Indonesia

Corresponding Author: mi.ririk@trisakti.ac.id

Abstract. Public open space in housing estates plays an important role particularly in disaster mitigation. In some housing, there are indications of shape and use of space changes post-handover to local government. The aim of this study is to explore the relationship between public open space condition and management related to disaster mitigation in Tangerang housing estates. Multiple case study method is used to analyse of 2 housing cases. Aspects of access and boundaries were used to evaluate the cases. The results showed that gated community housing type should have more than 1 access to facilitate evacuation by considering the farthest unit to the housing gate. This is necessary to provide open spaces that are easily accessible from all units as the first evacuation site during and post disaster.

Keywords: disaster, mitigation, public open space

1. Introduction
Indonesia is a disaster-prone country. According to world risk report 2016 [1], Indonesia was at 36th rank with 10.24% world risk index which is improved 2 levels compared to 2 years ago. Referring to this report, Indonesian exposure is in the very high risk [1]. This Exposure relates to natural disaster such as earthquakes, storms, droughts, floods, and sea level rise. Based on BNPB, there are 148.4 million people living in areas prone to earthquakes, 5 million in tsunami-prone areas, 1.2 million in volcanic eruption areas, 63.7 million in flood-prone areas, and 40.9 million in areas prone to landslides [2]. Indonesian Disaster Data and Information shows that the highest mortality caused by earthquake, tsunami, and eruption [3]. These condition need to be anticipated to reduce loss of life and property by providing public open spaces in housing estates.

Several research and paper on open spaces related to disaster mitigation has been done. Based on previous researches, public open spaces in housing estates functioned as green place, protective green belt, and disaster evacuation place [4], [7]. Those spaces were the first evacuation place when disaster strikes. There were several studies about the use of open space related to flooding disaster [5], to earthquake disaster [6], to tsunami [7], to disaster resilience [8]. Related to researched by [19], during floods, streets serve as boat evacuation route while square that should be located on higher ground serving as place for rescue camps, medical facilities, and dropping of supplies. On the contrary, open spaces with limited vegetation become a refuge from fire during fire.

Researchers [6] evaluated characteristics of urban open space in Tehran as places for the relief operation and crisis management during disaster incidence. Researcher [7] evaluated green open space in Banda Aceh post disaster reconstruction. Both previous studies explored cases directly at the studies area. On the contrary, Researchers [8] explored the potential uses of public open spaces for disaster
resilience through literature analysis. Based on library search, open space studies related to flood and fire in Tangerang have been no found.

Tangerang is a part of Banten Province, the fourth highest population density in Indonesia [9]. As seen in Figure 1, this area is vulnerable to disaster. This condition requires housing estates management in Tangerang to mitigate the disaster possibility. Stated by Vice Governor of Banten, Banten province is vulnerable to 14 types of disasters with fire and flooding as the most frequent disaster [10]. This study explored the role of open space for mitigation in housing estates. In this study, public open space condition in Tangerang housing estates evaluated to disaster mitigation especially flooding and fire.

Figure 1. Distribution of disaster event per district 1815 – 2017 [3].

1.1 Open Space for Mitigation

Regulation [11] stated that open space in disaster prone area functioned as evacuation place. In line with the regulation, researchers [12] stated that open space has an important role in mitigation strategies to climate change. Based on Ministerial Decree [13], the open space that must be provided for every 250 people is Neighbourhood Park with 0.3 m²/population, parking area with 3% of the total area, and Neighbourhood Street with a width of 2 m - 5 m. In housing estate, open spaces must provide to accommodate those requirement. Both square (Neighbourhood Park or parking area) and street should be clean, accessible, and well maintained [13].

According to mitigation, open spaces network play an important role in rescuing to safer place. Regulation of the National Disaster Management Agency No 11/2008 stated that the indicators of post-disaster restoration are access availability to housing units and adequate open spaces [14]. Researcher [7] confirmed that open space network is useful for the rescue in a short time as well as for the victim evacuation. Referring to researcher [18], street as an important evacuation path requires sufficient wide for the escape route. Disaster mitigation will be more successful using community-based disaster mitigation programs. This is essential so that people are able to control the situation in the event of a disaster [18]. It should be noted that the capacity, location, and open space connections are affected by the type of open space. The space should be usable in times of emergency and in everyday life rather than special mitigation rooms [8].

2. Research Method

Multiple case study method is used to analyse open spaces related to disaster mitigation in 2 housing cases namely Bumi Serpong Damai estate (Case 1) and Gading Serpong estate (Case 2) that located in South Tangerang. Both housings were middle-high income housing estates. The observation unit is a cluster located in both housing estates. Literature review is used to explore the role and standards of open space required for disaster mitigation. The analysis includes 4 aspects consisting of type, access, location, and boundaries. These aspects were used to evaluate public open space conditions in all cases.
related to disaster mitigation. The observation and interviews to the residents were conducted simultaneously. These activities have been done in sequence case after case.

2.1 Bumi Serpong Damai Estate and Gading Serpong Estate General Data
Bumi Serpong Damai Estate (Case 1) is located in Tangerang Municipality and South Tangerang Municipality. Most of these clusters areas are located in Serpong District, part of South Tangerang Municipality. Built around 1997 by Sinarmas Developer and Real Estate, this estate is developed on an area of approximately 6000 hectares [20]. This housing consists of several clusters one of which is Puspita Loka located in the middle of housing. One of Puspita Loka cluster that became the location observation is surrounded by main road and river that separate it with other clusters and located next to BSD City Park. This cluster has a grid pattern with half of units’ arrangement from Northeast to Southwest and the other half from East to West.

Gading Serpong Estate (Case 2) is located in Tangerang Municipality. Built around 1993 by Summarecon and Keris Group, this housing was developed on an area of approximately 1500 hectares [21]. As in Case 1, this housing consists of several clusters. One of the clusters that became the location of this observation was the Aquamarine cluster. This cluster is part of Pondok Hijau Golf area that adjacent to the golf course and separated with other clusters by walls and street. This cluster has a grid pattern with units’ arrangement from Northeast to Southwest.

3. Results and Discussion
Streets and squares in both cases are utilized by occupants in daily life and can be used during disaster. Based on researched by [8], this is in accordance with the use of space. This section describes housing and open spaces types, access, location, and boundaries. Based on the open space type, there are various types in both cases. Both cases consist of Neighbourhood Park and green housing boundaries. Besides these two types, Case 1 consists of river green barrier and street green barrier. In accordance with that researched [8], that various types of open spaces will affect the capacity and connection of space especially during a disaster, Case 1 is more responsive to disaster due to various types of open space. In addition to streets, Case 1 has river as an alternative evacuation route in flood time. The variety of open space types allows occupants to choose their most appropriate place during and after the disaster. Referring to Ministerial Decree [13], Case 1 has met the minimum standard that has not been fulfilled in Case 2. The fulfilment of open space minimum standards in Case 2 (clusters) is met through the provision of space in the housing scope.

In terms of access, both cases are gated housing type surrounded by high fences with 24-hours security guard. This condition reinforced our previous study which stated that most middle-high estates would have a restricted access entrance gate [15]. The difference between the two lies in the amount of housings access. Case 1 has 2 accesses with 24-hour guard that can be daily traversed and 2 others access that only opened at certain events. On the contrary, Case 2 has single access with 24-hour guard (Figure 2 and Figure 3). The street width in both cases already meets the minimum standards referring to researcher [18] even wider than the requirements stated in Ministerial Decree [13]. These conditions facilitate the evacuation vehicles access when disaster comes. The distance from the furthest unit to the housing gate is approximately 160 m in Case 1 whereas in Case 2 approximately 440 m. Referring to researcher’s [7] statement, the occupants in Case 2 had longer time to rescue and evacuate than the Case 1 during a disaster emergency. According to Ministerial Regulation No. 8, year 2008, the distance of open space as the first evacuation place is more adequate in Case 1 than in Case 2. The distance from the furthest unit to the nearest open space in Case 1 is approximately 90 m while in Case 2 is approximately 279 m. When the fire or flood comes, the nearest open space is needed as a buffer as well as a place to put goods and tents.

Based on location, in Case 1, Neighbourhood Parks is scattered in several places with mostly triangular shapes surrounded by house units. In Case 2, there is only one Neighbourhood Park located in the middle of the housing. Scattered parks make it easier for residents to reach a refuge place from their units. In housing scope (in Case 2), the golf course that located next to the cluster provides residents an alternative place for refuge especially during fire. Provision of more and scattered open spaces in the housing serves as a refuge place during disaster. Viewed from ground level, all parks in
both cases are in a slightly higher place from the street. Referring to researched by [19], this condition has not qualified as a temporary evacuation site in case of flooding. Open space network in both cases showed that linkage among park, street, and river in Case 1 has a clear path that connects between open spaces and residential entrances.

![Jogging track near river](image1)

![Side entrance](image2)

![Open space](image3)

![Figure 2. First case with double access and high fence [3].](image4)

![Open space without fence](image5)

![Entrance with high fence](image6)

![Figure 3. Second case with single access and high fence [3].](image7)

In relation to boundaries, open spaces in both cases have no divider to the street or to surrounding unit. When disaster strikes, those open spaces can easily accessible by occupants. Open spaces with no barrier in both cases facilitate resident access during disaster evacuation. Park territory is characterized by ground level that is reinforced by paving blocks around the park. These level differences are clearly
The occupant’s involvement in both cases limited to open space management and construction related to daily life not entered disaster mitigation. Referring to researcher [18], community-based disaster mitigation programs need to be done to control the situation during disaster.

4. Conclusion
Learning from both cases that were middle-high gated housing type, there are 3 things to note related to disaster mitigation especially during floods and fires. First, gated community housing should consider the easily housing access. Housing should have more than 1 access although it can only be passed at a certain time. Secondly, the distance of the farthest unit to the housing gate should be considered to facilitate and accelerate the evacuation process. Thirdly, providing open spaces that is easily accessible from all units as the first evacuation site during and post disaster is necessary in housing estate. Scattered parks in several places gives greater possibilities for occupants as a refuge place rather than centralized park.

References
[1] UNU-EHS and Alliance Development Works. World risk report 2014 Focus: The city as a risk area (Berlin: Bündnis Entwicklung Hilft). 2014.
[2] Ika. Millions of Indonesians Live in Disaster Prone Areas https://ugm.ac.id/id/berita/13340 (Yogyakarta: Public relation UGM) in Bahasa Indonesia [accessed on February 21th. 2017].
[3] DIBI 2017. Indonesian Disaster Data and Information. Jakarta: National Disaster Management Agency. http://dibi.bnpb.go.id accessed on May 4th. 2017.
[4] Winandari M I R. Pemanfaatan Ruang Terbuka Publik di Perumahan dengan Tingkat Pendapatran yang Berbeda Studi Kasus: Perumahan Menengah Atas dan Perumahan Menengah Bawah di Yogyakarta. Dissertation in Bahasa Indonesia. Gadjah Mada University, Yogyakarta, Indonesia, 2015.
[5] Katsuhamay Y. Capacity Building For Flood Management In Developing Countries Under Climate Change Dissertation. Colorado State University. Colorado, USA, 2010.
[6] Milanchi H, Rahimi M. 2014. The Role of Open Spaces in Reducing the Vulnerability of Urban Tissues Case Study: Region 17 of Tehran. MAGNT Research Report. 2 (7): 166-175.
[7] Mirza F. 2015. Disaster Mitigation Approach of Urban Green Structure Concept in Coastal Settlement Dimension. Journal of Architecture and Built Environment. 42(2): 51-58.
[8] Jayakody R R J C, Amarathunga D, Haigh R. 2016. The use of Public Open Spaces for Disaster Resilient Urban Cities. 12th International Conference of the International Institute for Infrastructure Resilience and Reconstruction, University of Peradeniya, Sri Lanka.
[9] BPS. Statistical Yearbook of Indonesia 2016, Jakarta: BPS-Statistics Indonesia, 2016.
[10] Rosarians F, 2014, Rano Karno : Banten Terancam 14 Jenis Bencana (Jakarta: Tempo) https://m.tempo.co/read/news/2014/03/05/058559703 [accessed on May 4th 2017].
[11] Permen 05 Peraturan Menteri Pekerjaan Umum Nomor : 05/Prt/M/2008 Tentang Pedoman Penyediaan dan Pemanfaatan Ruang Terbuka Hijau di Kawasan Perkotaan (Jakarta: Direktorat Jenderal Penataan Ruang Departemen Pekerjaan Umum) in Bahasa Indonesia. 2008.
[12] Vargas J C, Meece B, Emperador S. 2014, A Framework for Using Open Green Spaces for Climate Change Adaptation and Resilience in Barranquilla, Colombia Resilient Cities – ICLEI http://www.geoisadaptive.com [accessed on May 4th 2017].
[13] Kepmen “Keputusan Menteri Permukiman dan Prasarana Wilayah No. 534/KPTS/M/2001 tentang Pedoman Penentuan Standar Pelayanan Minimal Bidang Penataan Ruang, Perumahan dan Permukiman dan Pekerjaan Umum” (Jakarta: Kemen Kimpraswil). 2001.
[14] Perka “Peraturan Kepala Badan Nasional Penanggulangan Bencana Nomor 11 Tahun 2008

seen in Case 2 with almost 50 cm height difference. Associated with fires, a more open space with few trees is much safer than the lush spaces. In Case 1, lush trees along the river may lead to a higher possible spread of fires. The more open the space, the better they reduces the possibility of fire spreading. Open spaces condition in both cases qualified Ministerial decree [13] that should be clean [16], accessible, and well maintained [17].
tentang Pedoman Rehabilitasi dan Rekonstruksi Pasca Bencana” (Jakarta: BNPB). 2008.
[15] Winandari M I R, Wibisono B H, Djunaedi A, Ahimsa-Putra H S. 2014. The Occupant's Perception Toward Open Space in Two Different Types of Housing. Journal of Habitat Engineering and Design. 6(1):71-82.
[16] Firman T, Surbakti I M, Idroes I C, Simarmata H A. 2011. Potential climate-change related vulnerabilities in Jakarta: Challenges and current status Habitat International. 35(2): 372-378.
[17] Mohsin A. 2015. Jakarta Under Water: The 2007 Flood and The Debate on Jakarta’s Future Water Infrastructure. Jurnal Wilayah dan Lingkungan. 3(1): 39-57.
[18] Maskrey A. 1989. Disaster Mitigation: a Community Based Approach. (Development Guidelines No 3), Oxford: Oxfam.
[19] Saxena M R. 2016. Role of Open Spaces in Disaster Management. Conference Paper November 2016. https://www.researchgate.net/project/Role-of-Open-Spaces-in-Disaster-Mitigation [accessed on November 16th 2017]
[20] Bsdcity. 2016. BSD City. http://www.bsdcity.com [accessed on June 16th 2016].
[21] Summareconserpong. 2016. The Developer. http://www.summareconserpong.com [accessed on June 16th 2016].