A Third Strike Against Perfect Phylogeny

LEO VAN IERSEL1, MARK JONES1−3,∗, AND STEVEN KELK2

1Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE, Delft, The Netherlands. 2Department of Data Science and Knowledge Engineering (DKE), Maastricht University, Paulusstraat 8-10 6211 LH, Maastricht, The Netherlands

∗Correspondence to be sent to: Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE, Delft, The Netherlands.
E-mail: M.E.L.Jones@tudelft.nl.

Received 22 November 2018; reviews returned 28 January 2019; accepted 4 February 2019

Associate Editor: David Bryant

Abstract.—Perfect phylogenies are fundamental in the study of evolutionary trees because they capture the situation when each evolutionary trait emerges only once in history; if such events are believed to be rare, then by Occam’s Razor such parsimonious trees are preferable as a hypothesis of evolution. A classical result states that 2-state characters permit a perfect phylogeny precisely if each subset of 2 characters permits one. More recently, it was shown that for 3-state characters the same property holds but for size-3 subsets. A long-standing open problem asked whether such a constant exists for each number of states. More precisely, it has been conjectured that for any fixed number of states \(r\) there exists a constant \(f(r)\) such that a set of \(r\)-state characters \(C\) has a perfect phylogeny if and only if every subset of at most \(f(r)\) characters has a perfect phylogeny. Informally, the conjecture states that checking fixed-size subsets of characters is enough to correctly determine whether input data permits a perfect phylogeny, irrespective of the number of characters in the input. In this article, we show that this conjecture is false. In particular, we show that for any constant \(r\), there exists a set \(C\) of size-3 characters such that \(C\) has no perfect phylogeny, but there exists a perfect phylogeny for every subset of at most \(t\) characters. Moreover, there already exists a perfect phylogeny when ignoring just one of the characters, independent of which character you ignore. This negative result complements the two negative results (“strikes”) of Bodlaender et al. (1992, 2000). We reflect on the consequences of this third strike, pointing out that while it does close off some routes for efficient algorithm development, many others remain open. [Four gamete condition, local obstructions conjecture, maximum parsimony, perfect phylogeny, phylogenetic tree.]

The traditional model for capturing the evolution of a set \(X\) of contemporary species or taxa is the phylogenetic tree. In such trees, internal nodes represent hypothetical (common) ancestors. The central goal in phylogenetics is to infer phylogenetic trees given only data obtained from (or observed at) \(X\) for example DNA sequences, amino acid sequences, or morphological features (Felsenstein 2004). The data observed at a taxon \(x\) in \(X\) is typically represented as an ordered length-\(m\) vector of discrete states, where the states are elements of some size-\(r\) alphabet. For example, if we have a length-200 sequence of aligned DNA data for each of the \(X\) taxa, where \(X\) denotes the number of taxa in \(X\), this can be summarized as a matrix \(M\) on \(X\) rows and 200 columns, where each entry of the matrix is an element from \(\{A, G, C, T\}\), so \(r=4\). Each of the 200 columns is then known as a character.

Given such data, how do we quantify the “goodness of fit” of the data on a given tree \(T\)? A classical optimality criterion for \(T\) is the parsimony score of \(T\). Informally, this is the minimum number of state-changes that would necessarily be incurred along the branches of \(T\) if the data observed at \(X\) had evolved following the topology of the tree. If, for each character, each state is introduced at most once along the branches of the tree, we say that \(T\) is a perfect phylogeny for the data (Semple and Steel 2003). If such a tree \(T\) exists, we say that the data permit a perfect phylogeny. The parsimony score of each character is then equal to the number of observed states (i.e., number of distinct states in the corresponding column) minus one. Perfect phylogeny is thus the best case for phylogenetic trees constructed under the popular maximum parsimony optimality criterion, where (motivated by Occam’s Razor) trees are preferred that explain the observed data with as few evolutionary changes as possible (Felsenstein 2004).

Determining whether the input data permits a perfect phylogeny is a fundamental combinatorial problem in phylogenetics, with a long history [see Lam et al. (2011) and Shutters et al. (2013) for excellent overviews], and it has also attracted substantial attention from the discrete optimization community (Bodlaender et al. 1992; Fernández-Baca 2001; Gramm et al. 2008; Lam et al. 2011; Misra et al. 2011). The latter is due to links with the literature on (variously) graph triangulations, parameterized complexity, and Steiner Trees. For binary data (\(r=2\)) a classical result from Buneman from 1971 states that the data permit a perfect phylogeny if and only if every pair of characters (i.e., every pair of columns) permits a perfect phylogeny (Buneman 1971). A consequence of this is that, for binary data, looking only “locally” at the data is sufficient to determine the presence or absence of perfect phylogeny; Is testing pairs of characters also sufficient for \(r≥3\)? In 1975, Fitch refuted this claim by showing data which does not permit a perfect phylogeny, but where every pair of characters does (Fig. 1) (Fitch 1975, 1977). However, later it was shown that for \(r=3\) the data permit a perfect phylogeny if and only if all size-3 subsets of the characters do (Lam et al. 2011).
The intriguing question thus arises: is it true that, for every number of states \(r \geq 2 \), there exists a number \(f(r) \) such that \(r \)-state data permits a perfect phylogeny if and only if every size-\(f(r) \) subset of the characters does? To make this more concrete: could it be true that \(r \)-state data, irrespective of the number of characters in the input, permits a perfect phylogeny if and only if every subset of characters of size at most, say, \(r^2 \) permits a perfect phylogeny? How about \(2^r \)? Or is it the case that, however large we choose this function \(f(r) \), at some point a sufficiently large input will be encountered whereby focusing only on size \(f(r) \) subsets will deceive us into thinking that the input permits a perfect phylogeny—when in fact it does not? A conjecture, which has thus been circulating in various forms for approximately 50 years [see Habib and To (2011) for a recent treatment], states that such a constant \(f(r) \) does indeed exist for each \(r \geq 2 \). This would mean that, provided \(f(r) \) is chosen to grow quickly enough, there is no danger that we will be deceived: we can always determine perfect phylogeny by restricting our attention to subsets of characters of size at most \(f(r) \). Here, we refer to this as the local obstructions conjecture for perfect phylogeny. Note that \(f(r) \) should depend only on \(r \) and no other parameters (such as \(X \) or the number of characters in the input). We know that \(f(2) = 2 \) and \(f(3) = 3 \), but what about larger \(r \)? If the local obstructions conjecture is true, how fast does \(f(r) \) grow?

In the absence of positive progress—it is still unknown whether \(f(4) \) exists—various authors have described lower bounds on \(f(r) \), if it exists. It is known that \(f(4) \geq 5 \) (if it exists) (Habib and To 2011) and the currently strongest general lower bound is given in Shutters et al. (2013), where it is shown that for \(r \geq 2, f(r) \geq \lceil \frac{r}{2} \rceil + 1 \) (if it exists). Such results do not, however, disprove the local obstructions conjecture, since \(f(r) \) might still exist but grow at least quadratically.

Here we show emphatically that the local obstructions conjecture is false, forming a third strike against perfect phylogeny. [Figure 1] shows a perfect phylogeny for each pair of characters. However, no perfect phylogeny exists for the full character set (this can easily be observed by checking that each of the three perfect phylogenies is the unique solution for its respective pair of characters). a) \((x_1, x_2)\); b) \((x_2, x_3)\); c) \((x_1, x_3)\).

Figure 1. The example of Fitch (1975, 1977), showing that \(f(3) > 2 \). The five leaves \(x_1, \ldots, x_5 \) have sequences AAA, ACC, CCG, CCG, and GAG, respectively. In our notation, the character set is \(C = \{x_1, x_2, x_3, x_4, x_5\} \), where \(x_1 = x_2 = x_3 = x_4 = x_5 \), \(x_2 = x_3 = x_4 = x_5 = x_1 \), and \(x_3 = x_5 = x_4 = x_2 \). For example, \(x_1 = x_2 = x_3 = x_4 = x_5 \) indicates that, at the first position, \(x_1 \) and \(x_2 \) have the same state, \(x_3 \) and \(x_4 \) have the same state, and \(x_5 \) has a third state. The figure shows a perfect phylogeny for each pair of characters. However, no perfect phylogeny exists for the full character set (this can easily be observed by checking that each of the three perfect phylogenies is the unique solution for its respective pair of characters). a) \((x_1, x_2)\); b) \((x_2, x_3)\); c) \((x_1, x_3)\).
states. Another negative consequence of our result is the following. If we allow gaps/indels in the input, we can reduce the number of states in our construction from 8 to 4. This shows that the conjecture also fails for the practical case of aligned DNA data (without relying on any complexity assumption).

On the positive side, $f(r)$ might still exist for $r \in \{4, 5, 6, 7\}$ (which includes the case of DNA data without gaps, i.e., $r = 4$). Also, although our result is negative for algorithmic approaches that look only at small subsets of the input in isolation, this is certainly not a case of three strikes and out! In particular, it does not exclude algorithmic approaches that analyze the input data in a more sophisticated way. For example, the question “does the input permit a perfect phylogeny,” although NP-hard in general (Bodlaender et al. 1992), can be answered in time $O(2^{n_2} |X|)$ using dynamic programming (Kannan and Warnow 1997), which for fixed r becomes $O(n^2 |X|)$. Similarly, it is still possible that fixed parameter tractable algorithms exist to solve the near-perfect phylogeny problem, but more advanced algorithmic approaches will be required. Despite the refutation of the local obstructions conjecture, perfect phylogeny will continue to play a central role in both applied and theoretical phylogenetics.

The structure of the article is as follows. We start by giving an informal description of an example of the construction for 8 taxa. After that, we give formal mathematical definitions. In “Main Results,” we first describe the most important parts of the construction of the general counter example and explain the main ideas behind the construction. We then provide the full construction, and finally prove that this gives a counterexample to the local obstructions conjecture for perfect phylogeny.

Example for Eight Taxa

In this section, we describe our counter example for the case of 8 taxa, the smallest number of taxa for which the construction works. We describe four (6-state) characters that are incompatible, that is, they do not permit a perfect phylogeny, while any three of the four characters do permit a perfect phylogeny. Note that this example is not a new result in itself, because it was already known that, for 6-state characters, we would need to consider at least $\lceil \frac{2^6}{2} \rceil + 1 = 10$ characters simultaneously (Shutters et al. 2013). Nevertheless, the example is of interest because it can be generalized to higher numbers of taxa and characters, as we will show in the remaining sections, thus proving that the local obstructions conjecture is false.

Consider eight taxa named $a_1,a_2,a_3,a_4,b_1,b_2,b_3,b_4$ and the following four characters:

$$
\Omega_4 = a_1|b_1|a_2|b_2|a_3|b_3|a_4|b_4
$$

$$
\Phi_3 = a_1|b_1|b_2|a_3|a_4|b_4
$$

$$
\Omega_2 = a_1|b_1|b_2|b_3|a_3|a_4|b_4.
$$

The names of the characters might seem odd, but they correspond to the names used in the general counter example, where they will make more sense. Also note that it actually does not matter for the problem which states taxa have. The only thing that matters is which taxa have the same state, this is indicated in the characters by separating blocks of taxa with the same state by .

For example, in the first character Ω_4, taxa a_1,b_1, and b_2 all have the same state while a_2,b_3,a_4, and b_4 have a different state. In Φ_3, we have six states: a_2 and a_3 have one state, b_1 and b_4 have a second state, and the remaining four taxa all have their own unique state. The fact that we have only 6 character states is due to the small number of taxa. The general example will have 8 character states.

Figure 2 shows that any combination of three of the four characters does permit a perfect phylogeny.

We now argue that the combination of all four characters is incompatible, which is a bit more work. First we look at the characters Ω_4 and Ω_2. In character Ω_4, taxa a_1,b_1, and b_2 all have the same state, while all other taxa have a different state. Hence, in any perfect phylogeny, there must be a branch with the taxa a_1,b_1, and b_2 on one side and the remaining taxa on the other side. Similarly, character Ω_2 says that there must be a branch with the taxa a_2,a_4, and b_4 on one side and the remaining taxa on the other side. What the parts of the tree containing a_1,b_1,b_2 and a_3,a_4,b_4 look like is not important. What is important is what happens in the middle part of the tree, which contains the remaining taxa a_2 and b_3.

Basically, characters Ω_2 and Φ_3 give us contradictory information about the order of taxa a_2 and b_3, see Figure 3. First look at character Φ_3. Because taxa a_1 and a_2 have the same state, and taxa b_1 and b_4 have another state, we know that the path connecting a_1 and a_2 may not overlap with the path connecting b_1 and b_4. Hence, a_2 must be on the side of a_1 and b_3 on the side of b_4, as indicated in Figure 3a. In a similar way, character Ω_2 tells us exactly the opposite, that is, that b_3 is on the side of b_2 (and a_1) and a_2 is on the side of a_2 (and b_4), as indicated in Figure 3b. Hence, a perfect phylogeny would need to simultaneously look like Figure 3a and like Figure 3b, which is impossible. We can therefore conclude that no perfect phylogeny exists.

In the remaining sections, we show how to generalize this example to more taxa, thereby also increasing the number of characters. We note that the proofs for the general case will be more involved.

Mathematical Definitions

Let X be a set of labels. For any positive integer r, an r-state character on X is a partition $X = S_1|S_2|\ldots|S_{r'}$, where X is the union of $S_1,\ldots,S_{r'}$ and $r' \leq r$. We refer to the sets $S_1,\ldots,S_{r'}$ as states. For the sake of brevity, in this context we will sometimes write $x_1 \ldots x_3$ as shorthand for a set
FIGURE 2. Four trees showing that, for eight taxa, ignoring one character of \(\Omega_1, \Omega_2, \) and \(\Omega_3 \) makes the remaining three characters compatible.

- **a)** Tree \(T_1 \) displaying \(x_2, x_3, \) and \(x_4. \)
- **b)** Tree \(T_2 \) displaying \(x_1, x_3, \) and \(x_4. \)
- **c)** Tree \(T_3 \) displaying \(x_1, x_2, \) and \(x_4. \)
- **d)** Tree \(T_4 \) displaying \(x_1, x_2, \) and \(x_3. \)

FIGURE 3. Illustration of the proof that, for eight taxa, characters \(\Omega_1, \Omega_2, \) and \(\Omega_3 \) are incompatible.

- **a)** Structure of a perfect phylogeny implied by \(\Omega_1, \Omega_3, \) and \(\Omega_5. \)
- **b)** Structure of a perfect phylogeny implied by \(\Omega_1, \Omega_2, \) and \(\Omega_5. \)

\(\{x_1, \ldots, x_8\} \). Thus for example, if \(X = \{x_1, \ldots, x_8\} \) then \(\chi = x_1 x_2 x_3 x_4 | x_5: i \geq 5 \) is a character on \(X. \) (Note that some states may be empty; in such cases we may treat these states as nonexistent. Thus for example if \(S_i = \emptyset \) then \(S_1 S_2 \ldots S_r \) is equivalent to \(S_1 S_2 \ldots S_{i-1} S_{i+1} \ldots S_r. \))

A tree \(T \) on \(X \) is an unrooted tree with leaves bijectively labelled with the elements of \(X. \) Given a subset \(S \subseteq X, \) let \(T[S] \) denote the minimal subtree of \(T \) whose vertices contain \(S. \) We note that degree-2 vertices are usually not allowed in phylogenetic trees; however our definition of \(T[S] \) allows for degree-2 vertices, as this makes certain proofs simpler and does not affect the results.

For any positive integer \(n, [n] \) denotes the set \(\{1, \ldots, n\}. \) We say \(T \) displays a character \(\chi = S_1 \ldots S_r \) on \(X \) if there exists a partition \(V_1 \ldots V_r \) of the vertices of \(T, \) such that the subtree of \(T \) induced by \(V_i \) is connected and \(V_i \cap X = S_i \) for each \(i \in [r]. \) Equivalently, \(T \) displays \(\chi \) if the subtrees \(T[S_i] \) and \(T[S_j] \) are vertex-disjoint for \(i \neq j. \)
We say T is compatible with a set C of characters (or equivalently, C is compatible with T) if T displays C for each $x \in C$. If this is the case, we also say that T is a perfect phylogeny for C. We say a set C of characters is compatible if there exists a perfect phylogeny for C.

In this article, we show that the following conjecture is false:

Conjecture 1.1. For each positive integer r, there exists an integer $f(r)$ such that for any finite set X and any set C of r-state characters on X, C is compatible if and only if every subset of at most $f(r)$ characters in C is compatible.

MAIN RESULTS

Counterexample: Main Concepts

In this section, we outline the main concepts and ideas used in the construction of our counterexample to Conjecture 1.1. We also define the label set X and two trees on X that will be used to show that most subsets of characters are compatible.

In what follows, let n be any positive even integer.

Definition 2.1. Given a positive even integer n, let $X = \{a_1, \ldots, a_n, b_1, \ldots, b_n\}$. For any $i \in [n]$, let $X_{\leq i} = \{a_j, b_j : 1 \leq j \leq i\}$, and $X_{> i} = \{a_j, b_j : m \geq j \geq i\}$.

![Diagram of trees A and B](https://example.com/tree-diagram.png)

Figure 4. The lobsters A and B. The middle part of each figure shows some of the vertices near u_i, for i even, and near v_j, for $j \geq i$ and j odd.

a) Lobster A. b) Lobster B.

We now define two trees A and B on X. These trees appear quite similar on a large scale—they are both lobsters (trees in which every vertex is of distance at most 2 from a central path), with leaves of smaller index closer to one end of the central path than leaves of larger index. However, on a local scale they appear quite different—for example, each $x \in X$ has a different sibling in A than in B.

Informally, A consists of a number of cherries that are attached as pendant subtrees to a central path. The endpoints of the path are a_1 and a_n. Starting at a_1 and walking along the path, the first cherry attached is (b_1, b_2), then (a_2, a_3), and so on. The definition of tree B is similar to A, but with the roles of the a and b leaves reversed. (Fig. 4.)

We give a more formal definition below.

Definition 2.2. The tree A on X is defined as follows: A has leaves a_1, \ldots, a_n, b_1, \ldots, b_n, and internal nodes $u_{n-1}, v_1, v_2, \ldots, u_1, a_1$. A contains a central path $a_1, u_1, a_2, u_2, \ldots, u_{n-1}, a_n$. For each $i \in [n-1]$, there is an edge $u_i v_i$. For odd $i \in [n-1]$, the vertex v_i is adjacent to leaves b_i and b_{i+1}. For even $i \in [n-2]$, the vertex v_i is adjacent to leaves a_i and a_{i+1}.

The tree B on X is defined as follows: B has leaves a_1, \ldots, a_n, b_1, \ldots, b_n, and internal nodes $u_{n-1}, v_1, v_2, \ldots, u_1, a_1$. B contains a central path $b_1, u_1, b_2, u_2, \ldots, u_{n-1}, b_n$. For each $i \in [n-1]$, there is an edge $u_i v_i$. For odd $i \in [n-1]$, the vertex v_i...
is adjacent to leaves \(a_i \) and \(a_{i+1} \). For even \(i \in \{n-2\} \), the vertex \(v_i \) is adjacent to leaves \(b_i \) and \(b_{i+1} \).

We next describe a set of characters \(\chi_i \) for each \(i \) such that \(2 \leq i \leq n-2 \) (we note that this is not the full set of characters that will be used in the complete example). Informally, each character \(\chi_i \) can be thought of as caring about a small local part of the tree. It roughly enforces that if one segment of the tree looks like \(A \), then so does the next segment along.

For each \(2 \leq i \leq n-2 \), define

\[
\chi_i = X_{2i-2} a_{i-1} [b_{i-1}] [a_i, a_{i+1}] [b_i, b_{i+1}] [a_{i+2}, b_{i+2}] \]

(Note that for \(i=2 \) the set \(X_{2i-2} \) is empty; thus \(X_2 \) could be equivalently written as \(a_1 [b_2] [a_2] [b_3] \). Similarly, for \(i=n-2 \) the set \(X_{2i-2} \) is empty and so \(X_{2i-2} \) can be written as \(X_{2i-2} = \emptyset \).

Observe that both \(A \) and \(B \) display \(\chi_i \) for each \(2 \leq i \leq n-2 \), but the structure of the subtrees involved is quite different between the two. In particular, assuming \(i \) is even, in \(A \) the path from \(a_i \) to \(a_{i+1} \) has length 2, whereas in \(B \) the same path has length 6, and similarly in \(A \) the path from \(b_i \) to \(b_{i+1} \) has length 6, whereas in \(B \) it has length 2. (See Figure 5 for an example when \(i \) is even.)

With the addition of further characters (to be described in the next section), we will be able to enforce that \(A \) and \(B \) are in fact the only trees compatible with all those characters. In order to make the full set of characters incompatible, we will add two more characters \(\Omega_A \) and \(\Omega_B \), defined as follows:

\[
\Omega_A = a_1 [b_2] [a_2] [b_3] \cup X_{2i-2} \]
\[
\Omega_B = X_{2n-2} \cup [b_{n-1}] \cup a_{n-1} [b_n]
\]

Observe that \(\Omega_A \) is displayed by \(A \) but not by \(B \), while \(\Omega_B \) is displayed by \(B \) but not by \(A \).

We will claim that every strict subset of this set of characters is compatible. In order to show this, we will prove that for each integer \(i \) between 2 and \(n-2 \), there is a tree displaying all characters except \(\chi_i \). The intuition here is as follows: \(\chi_i \) enforces something about the local structure of a perfect phylogeny; in particular it is the only character in the constructed set requiring that the path from \(a_i \) to \(a_{i+1} \) and the path from \(b_i \) to \(b_{i+1} \) are vertex-disjoint. Removing \(\chi_i \) allows us to consider \(X \) as being made of two parts: \(X_A \) and \(X_{S_{ij}} \). We can construct a tree which is isomorphic to \(A \) when restricted to \(X_A \), and isomorphic to \(B \) when restricted to \(X_{S_{ij}} \). Such a tree is denoted \(A \) and is defined below (Fig. 6).

Definition 2.3. For \(2 \leq i \leq n-2 \), the tree \(A \) on \(X \) is defined as follows: \(A \) has leaves \(a_i, a_{i+1}, b_i, b_{i+1} \) and internal nodes \(u_1, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{n-1} \), \(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n-1} \), \(u_{i+1} \), \(\ldots, u_{i-1} \), \(u_{i+1} \), \(u_{i-1} \), \(u_{i+1} \), \(u_{i-1} \), \(u_{i+1} \), \(u_{i-1} \). \(A \) contains a central path \(a_i, u_1, u_2, \ldots, u_{i-1}, a_i, u_i, u_{i+1} \), \(u_{i+1} \), \(\ldots, u_{i-1} \), \(b_i \). For each \(j \in \{n-1 \} \setminus \{i\} \), there is an edge \(u_jv_j \). If \(i \) is even then \(u_A \) is adjacent to \(a_i \) and \(u_B \) is adjacent to \(b_{i+1} \). On the other hand, if \(i \) is odd then \(u_A \) is adjacent to \(b_i \) and \(u_B \) is adjacent to \(a_{i+1} \). For \(j < i \), the vertex \(v_i \) is adjacent to \(b_i \) and \(b_{i+1} \) if \(i \) is odd, and adjacent to \(a_i \) and \(a_{i+1} \) if \(j \) is even.

Observe that \(A \) does not display \(\chi_j \) but it does display \(\Omega_{A} \). Each \(A \) for \(j < i \) (by a similar argument to how \(A \) displays those characters), and it does display \(\Omega_B \) and \(\chi_j \) for each \(j > i \) (by a similar argument to how \(B \) displays those characters).

It follows that any strict subset of characters in the set is compatible (since any subset missing \(\Omega_A \) is compatible with \(B \), any subset missing \(\Omega_B \) is compatible with \(A \), and any subset missing \(\chi_j \), for some \(2 \leq j \leq n-2 \) is compatible with \(A \).)

In the next section, we make the concepts described above more formal. The main work will be to define additional characters (used to enforce that any tree compatible with all characters except \(\Omega_B \) must have a similar structure to \(A \)), and then to prove formally that the observations outlined above (that the full set of characters is incompatible, and that it becomes compatible if any character is removed) hold when the new characters are considered.

Full Counterexample

We now describe the full set of 8-state characters on \(X \). \(C \) will be a set that is incompatible, but such that every strict subset of \(C \) is compatible. In what follows we assume that \(n \) is a positive even integer, and that \(n \geq 6 \).
(as we already gave a counterexample with $n=4$ in the Introduction).

(In order to avoid tedious repetition of definitions, for some values of j the characters below may be described as containing elements a_h or b_h for $h \not\in [n]$. Such elements should be treated as nonexistent, as they are not in X.)

Note that certain states of some characters will be empty as a result.)

Definition 2.4. For each $2 \leq j \leq n-2$, define the following character on X:

$$x_j = X_{j-2} \cup \{a_1, b_1\} \cup \{a_{j+2}, b_{j+2}\} \cup \{a_j, b_j\} \cup \{a_{j+1}, b_{j+1}\}. $$

For $3 \leq j \leq n-1$, define the following characters:

$$\phi_j = \begin{cases} X_{j-3} \cup \{a_1, b_1\} \cup \{a_{j-1}, b_{j-1}\} \cup \{a_{j+1}, b_{j+1}\} & \text{if } j \text{ is even} \\ X_{j-3} \cup \{a_1, b_1\} \cup \{a_{j-1}, b_{j-1}\} \cup \{a_{j+1}, b_{j+1}\} & \text{if } j \text{ is odd} \end{cases}$$

Finally define the two characters:

$$\Omega_A = a_1b_1 \cup X_{2,3}$$

$$\Omega_B = X_{2,n-2} \cup \{b_{n-1}\} \cup a_0b_0.$$

Let C be the set of all $2n-4$ characters described above.

Observe that the construction of C is the same as in the section “Counterexample: Main Concepts” with the addition of characters ϕ_j for $3 \leq j \leq n-1$. We give a full proof that C is incompatible and that every strict subset of C is compatible in the Appendix.

DISCUSSION

First note that we have only described a counter example for the case that there are $2n$ taxa with $n \geq 4$ even. However, we can easily create examples for any number of taxa, that is at least 8, by “copying” taxa. More precisely, we can replace, say, a_1 by any number of taxa that all have the same state as a_1 in all characters.

Secondly, we describe how our counter example can be seen as a counter example with four different states and gaps. Considering Definition 2.4, observe that each of the characters has at most four states that contain more than one taxon. The remaining states contain just one taxon and can therefore be replaced by gaps (indicating that we do not know which state the taxon has in that character). This gives a counter example with four different states and gaps. One can argue that the local obstruction conjecture is anyway unlikely to be true even for binary characters with gaps, because if it were true we would then be able to solve the quartet compatibility problem [see, e.g., Semple and Steel (2003)] in polynomial time, which would in turn imply that the complexity classes P and NP would coincide. However, one appealing feature of our counter example is that it does not rely on any assumptions on complexity classes.
We conclude the paper by reiterating that, if we do not allow gaps, the local obstructions conjecture restricted to characters with 4, 5, 6, or 7 states is still open.

FUNDING
This work was supported by the Netherlands Organization for Scientific Research (to L.v.I.; Vidi grant 639.072.602 to L.v.I. and M.J.); and by the 4TU Applied Mathematics Institute (to L.v.I.).

REFERENCES

Bodlaender H.L., Fellows M.R., Warnow T.J. (1992) Two strikes against perfect phylogeny. In: Kach W., editor. Automata, Languages and Programming. ICALP 1992. Lecture Notes in Computer Science, vol 623. Berlin, Heidelberg. Springer.

Bodlaender H., Fellows M., Hallett M., Wareham H., Warnow T. 2000. The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs. Theor. Comput. Sci. 244:167–188.

Buneman P. (1971). The Recovery of Trees from Measures of Dissimilarity in Mathematics the the Archeological and Historical Sciences: Proceedings of the Anglo-Romanian Conference, Mamaia, 1970. Edinburgh University Press. p. 387-395.

Cygan M., Fomin F., Kowalik L., Lokshtanov D., Marx D., Pilipczuk M., Pilipczuk M., Saurabh S. 2015. Parameterized algorithms. Cham. Springer.

Felsenstein J. 2004 Inferring phylogenies. Sunderland (MA): Sinauer Associates, Incorporated.

Fernández-Baca D. 2001. The perfect phylogeny problem. In: Cheng X.Z., Du D-Z., editors. Steiner trees in industry. Boston (MA): Springer. p. 203–234.

Fitch W. 1975. Toward finding the tree of maximum parsimony. In: Estabrook G.F., editor. Proc. 8th Int. Conf. Numerical Taxonomy. Vol. 189. San Francisco: WH Freeman. p. 230.

Fitch W. 1977. On the problem of discovering the most parsimonious tree. Am. Nat. 111:223–257.

Graham J., Nickelsen A., Tantar T. 2008. Fixed-parameter algorithms in phylogenetics. Comput. J. 51:79–101.

Habib M., To T.H. 2011. On a conjecture about compatibility of multi-states characters. In: Przytycka T. and Sagot M.-F., editors. In: Proceedings of the 9th Workshop on Algorithms and Computation, WAC 2010, LNCS 6353, Berlin, Heidelberg. Springer Berlin Heidelberg. p. 116–127.

Kannan S., Warnow T. 1997. A fast algorithm for the computation and enumeration of perfect phylogenies. SIAM J. Comput. 26:1749–1763.

Lam F., Gusfield D., Sridhar S. 2001. Generalizing the splits equivalence theorem and four gamete condition: perfect phylogeny on three-states characters. In: Przytycka T. and Sagot M.-F., editors. In: Proceedings of the 9th Workshop on Algorithms and Computation, WAC 2010, LNCS 6353, Berlin, Heidelberg. Springer Berlin Heidelberg. p. 116–127.

Misra N., Biloeh C., Ravi R., Schwartz R. 2011. Generalized Buneman pruning for inferring the most parsimonious multi-state phylogeny. J. Comput. Biol., 18:445–457.

Sempere C., Steel M. Phylogenetics. Oxford University Press, 2003.

Shutters B., Vakati S., Fernández-Baca D. 2013. Incompatible quartets, triplets, and characters. Algorithms Mol. Biol. 8:11.

Sridhar S., Dhamdhere K., Billoeh G., Halperin E., Ravi R., Schwartz R. 2007. Algorithms for efficient near-perfect phylogenetic tree reconstruction in theory and practice. IEEE/ACM Trans. Comput. Biol. Bioinform. 4:561–571.

APPENDIX

COUNTEREXAMPLE PROOF

In this section, we show that every strict subset of C is compatible and that C itself is incompatible. We begin by proving formally that the lobster A displays every character in C except for ΩB.

Compatibility of C | {ΩB} — Before continuing, we note that if a state S of some character χ consists of a single element of X, then for any tree T on X, the subtree T[S] is automatically vertex-disjoint from T[S′] for any other state S′ of χ. This is because T[S] consists only of a single leaf in T, and as S and S′ are disjoint, T[S′] does not contain that leaf. Therefore, when showing that a tree displays a particular character, we may focus on the states of size at least 2 in that character.

Lemma A.5. Lobster A displays ΩA.

Proof. Observe that cutting the edge u1u2 separates A into two trees, one with leaves a1, b1, b2 and one with leaf set {a2}∪X−3. It follows that the subtrees of AB spanning these two sets are vertex-disjoint, and so A displays ΩA.

Lemma A.6. For each 2 ≤ j ≤ n−2, lobster A displays ωj.

Proof. The nonsingleton states of ωj are Xj−2, {aj,aj+1}, {bj,bj+1}, and Xj−3. Cutting the edge u1−2u1−1 separates Xj−2 from the other nonsingleton states. Similarly, cutting the edge u1−2u1−1 separates Xj−3 from the other nonsingleton states. It remains to show that the trees A[aj,aj+1], A[bj,bj+1] are vertex disjoint. This can be seen by cutting the edge u1−2 (as u1−2 is adjacent either to the leaves aj and aj+1, or to the leaves bj and bj+1, depending on whether j is even or odd).

Lemma A.7. For each 3 ≤ j ≤ n−1, lobster A displays ωj.

Proof. The character ωj has two nonsingleton states. If j is even, then the nonsingleton states are Xj−3∪{b1−2,b1−1} and {aj,aj+1}∪Xj+2. Note that in this case b1−2 is adjacent to vj−3, b1−1 is adjacent to vj−1, and aj and aj+1 are both adjacent to vj. It follows that cutting the edge u1−1vj (which separates vj from vj−1 and vj−3) will separate the two nonsingleton states from each other.

If j is odd, then the nonsingleton states are Xj−3∪{aj−2,aj−1} and {bj,bj+1}∪Xj+2. In this case, aj−2 is adjacent to vj−3 (unless j=3, in which case aj−2=aj1 is adjacent to u1−2, aj−1 is adjacent to vj−1, and bj and bj+1 are adjacent to vj. Thus, we again have that cutting the edge u1−1vj will separate the two nonsingleton states from each other.

The next lemma follows from Lemmas A.5, A.6, and A.7.

Lemma A.8. Lobster A is compatible with C \ {ΩB}.

Compatibility of C \ {ΩA} — We next prove formally that the lobster B displays every character in C except for ΩA. The proofs here are very similar to those for A.

Lemma A.9. Lobster B displays ΩB.
Proof. Observe that cutting the edge \(u_{n-2}h_{n-1} \) separates \(B \) into two trees, one with leaves \(a_{n-1}, a_n, b_n \) and one with leaf set \(X_{\leq n-2} \cup \{b_{n-1}\} \). It follows that the subtrees of \(B \) spanning these two sets are vertex-disjoint, and so \(B \) displays \(\Omega_B \).

Lemma A.10. For each \(2 \leq j \leq n-2 \), lobster \(B \) displays \(\chi_j \).

Proof. The nonsingleton states of \(\chi_j \) are \(X_{\leq j-2} \cup \{a_j, a_{j+1}\} \) and \(\{b_j, b_{j+1}\} \). Cutting the edge \(u_{j-2}u_{j-1} \) separates \(X_{\leq j-2} \) from the other nonsingleton states. Similarly, cutting the edge \(u_{j+1}u_{j+2} \) separates \(X_{\leq j+3} \) from the other nonsingleton states. It remains to show that the trees \(B[\{a_j, a_{j+1}\}], B[\{b_j, b_{j+1}\}] \) are vertex disjoint. This can be seen by cutting the edge \(u_{j+1}b_j \) (as \(b_j \) is adjacent either to the leaves \(a_j \) and \(a_{j+1} \), or to the leaves \(b_{j+1} \) and \(b_{j+2} \), depending on whether \(j \) is even or odd).

Lemma A.11. For each \(3 \leq j \leq n-1 \), lobster \(B \) displays \(\phi_j \).

Proof. The character \(\phi_j \) has two nonsingleton states. If \(j \) is even, then the nonsingleton states are \(X_{\leq j-3} \cup \{b_j, b_{j+1}\} \) and \(\{a_j, a_{j+1}\} \). Note that in this case \(b_{j-2} \) and \(b_{j-1} \) are adjacent to \(v_j \), \(a_{j-1} \) is adjacent to \(v_{j-1} \), and \(a_{j+1} \) is adjacent to \(v_{j+1} \). It follows that cutting the edge \(u_{j-2}u_{j-1} \) (which separates \(v_{j-2} \) from \(v_{j-1} \) and \(v_{j+1} \)) will separate the two nonsingleton states from each other.

If \(j \) is odd, then the nonsingleton states are \(X_{\leq j-3} \cup \{a_j, a_{j+1}\} \) and \(\{b_j, b_{j+1}\} \). In this case, \(a_{j-2} \) and \(a_{j-1} \) are adjacent to \(v_{j-1} \), \(b_{j+2} \) and \(b_{j+1} \) are adjacent to \(v_{j+1} \) (unless \(j = n-1 \), in which case \(b_{j+1} = b_j \)). Thus, we again have that cutting the edge \(u_{j-2}u_{j-1} \) will separate the two nonsingleton states from each other.

The next lemma follows from Lemmas A.9, A.10, and A.11.

Lemma A.12. Lobster \(B \) is compatible with \(C \setminus \{\Omega_A\} \).

Compatibility of \(C \setminus \{\chi_j\} \) for each \(2 \leq j \leq n-2 \). We now show that for any \(2 \leq j \leq n-2 \), the set \(C \setminus \{\chi_j\} \) is compatible. Recall the definition of Lobster \(A \),\(B \) (Definition 2.3 and Fig. 6). We will show that \(A \),\(B \) displays every character in \(C \) except for \(\chi_j \).

Recall that \(A,B \) restricted to \(X_{\leq i} \) is isomorphic to \(A[X_{\leq i}] \), while \(A,B \) restricted to \(X_{>i} \) is isomorphic to \(B[X_{>i}] \).

Lemma A.13. For any \(2 \leq i \leq n-2 \), lobster \(A,B \) displays \(\Omega_A \) and \(\Omega_B \).

Proof. To see that \(A,B \) displays \(\Omega_A \), observe that cutting the edge \(u_{i-2}u_i \) (or \(u_{i+2}u_{i+3} \)) separates \(A,B \) into two trees, one with leaves \(a_i, b_i, b_{i+1} \) and one with leaf set \(\{a_{i+2}\} \cup X_{>i} \). It follows that the subtrees of \(A,B \) spanning these two sets are vertex-disjoint, and so \(A,B \) displays \(\Omega_B \). Similarly, to see that \(A,B \) displays \(\Omega_B \), observe that cutting the edge \(u_{n-2}h_{n-1} \) (or \(u_{m}h_m \), if \(i = m \)) separates \(A,B \) into two trees, with leaf sets \(X_{\leq n-2} \cup \{b_{n-1}\} \) and \(\{a_{n-1}, b_{n-1}\} \), respectively.

Lemma A.14. For any \(2 \leq i, j \leq n-2 \) such that \(i \neq j \), lobster \(A,B \) displays \(\chi_j \).

Proof. The nonsingleton states of \(\chi_j \) are \(X_{\leq j-2} \cup \{a_j, a_{j+1}\}, \{b_j, b_{j+1}\} \), and \(X_{\leq j-3} \). Cutting the edge \(u_{j-2}u_{j-1} \) separates \(X_{\leq j-2} \) from the other nonsingleton states. Similarly, cutting the edge \(u_{j+1}u_{j+2} \) separates \(X_{\leq j+3} \) from the other nonsingleton states. It remains to show that the trees \(B[\{a_j, a_{j+1}\}], B[\{b_j, b_{j+1}\}] \) are vertex disjoint. This can be seen by cutting the edge \(u_{j+1}b_j \) (as \(b_j \) is adjacent either to the leaves \(a_j \) and \(a_{j+1} \), or to the leaves \(b_{j+1} \) and \(b_{j+2} \), depending on whether \(j \) is even or odd).

Lemma A.15. For any \(2 \leq i \leq n-2 \) and for each \(3 \leq j \leq n-1 \), lobster \(A,B \) displays \(\phi_j \).

Proof. The character \(\phi_j \) has two nonsingleton states; these are either \(X_{\leq j-3} \cup \{b_j, b_{j+1}\} \) and \(\{a_j, a_{j+1}\} \cup X_{\geq j+2} \) (if \(j \) is even) or \(X_{\leq j-3} \cup \{a_j, a_{j+1}\} \) and \(\{b_j, b_{j+1}\} \cup X_{\geq j+2} \) (if \(j \) is odd).

We first consider the case when \(j \notin \{i, i+1, i+2\} \). In this case, there are four possibilities to consider:

- If \(j \) is even and \(j < i \), then cutting the edge \(u_{j-1}u_{j} \) separates \(X_{\leq j-3} \cup \{b_{j-2}, b_{j-1}\} \) from \(\{a_j, a_{j+1}\} \cup X_{\geq j+2} \).
- If \(j \) is even and \(j > i+2 \), then cutting the edge \(u_{j-2}u_{j-1} \) separates \(X_{\leq j-3} \cup \{b_{j-2}, b_{j-1}\} \) from \(\{a_j, a_{j+1}\} \cup X_{\geq j+2} \).
- If \(j \) is odd and \(j < i \), then cutting the edge \(u_{j-1}u_{j} \) separates \(X_{\leq j-3} \cup \{a_j, a_{j+1}\} \) from \(\{b_j, b_{j+1}\} \cup X_{\geq j+2} \).
- If \(j \) is odd and \(j > i+2 \), then cutting the edge \(u_{j-2}u_{j-1} \) separates \(X_{\leq j-3} \cup \{a_j, a_{j+1}\} \) from \(\{b_j, b_{j+1}\} \cup X_{\geq j+2} \).

We now consider the case when \(j \in \{i, i+1, i+2\} \), and suppose first that \(i \) is even.

- If \(j = i \), then cutting \(u_{i-1}u_{i} \) separates \(X_{\leq j-3} \cup \{b_{j-2}, b_{j-1}\} \) from \(\{a_j, a_{j+1}\} \cup X_{\geq j+2} \).
- If \(j = i+1 \), then cutting the edge \(u_{i+2}u_{i+3} \) separates \(X_{\leq j-3} \cup \{a_j, a_{j+1}\} \) from \(\{b_j, b_{j+1}\} \cup X_{\geq j+2} \).
- If \(j = i+2 \), then cutting \(u_{i+3}u_{i+4} \) separates \(X_{\leq j-3} \cup \{a_j, a_{j+1}\} \) from \(\{b_j, b_{j+1}\} \cup X_{\geq j+2} \).

Finally, consider the case when \(j \in \{i, i+1, i+2\} \), and \(i \) is odd.
• If \(j = i \), then \(u_{i-1} u_A \) separates \(X_{S|j-3} \cup \{a_{i-2}, a_{j-1}\} \) from \(\{b_j, b_{j+1}\} \cup X_{S|j+2} \).

• If \(j = i + 1 \), then cutting the edge \(u_A u_B \) separates \(X_{S|j-2} \cup \{b_j, b_{j+1}\} \) from \(\{a_{i+1}, a_{i+2}\} \cup X_{S|j+2} \).

• If \(j = i + 2 \), then cutting \(u_B u_{i+1} \) separates \(X_{S|j-1} \cup \{a_{i+1}, a_{i+2}\} \) from \(\{b_{j+1}, b_{j+2}\} \cup X_{S|j+2} \).

Thus in each case, we have that \(A_i B \) displays \(\phi_j \).

The next lemma follows from Lemmas A.13, A.14, and A.15.

Lemma A.16. For any \(i \in \{n-1\} \), lobster \(A_i B \) is compatible with \(C \setminus \{\phi_i\} \).

Compatibility of \(C \setminus \{\phi_i\} \) for each \(3 \leq i \leq n-1 \). — We now show that for any \(3 \leq i \leq n-1 \), the set \(C \setminus \{\phi_i\} \) is compatible. To this end, we need to define a new type of tree \(A_i B \), which we will show is compatible with \(C \setminus \{\phi_i\} \).

This tree will be isomorphic to \(A_i \) restricted to \(X_{S|j-1} \), and isomorphic to \(B \) when restricted to \(X_{S|j+2} \). This property is also true of \(A_{i-1} B \), but the structure of \(A_i B \) is slightly different (Fig. A.1).

Definition A.17. For \(2 \leq i \leq n-2 \), the tree \(A_i B \) on \(X \) is defined as follows: \(A_i B \) has leaves \(a_1, a_2, a_3, b_1, b_2, b_3 \) and internal nodes \(u_{i-1}, u_{i+1}, v_1, \ldots, v_2, a_i, u_B \) (note that \(A_i B \) does not have vertices \(u_i \) or \(v_i \) but instead has \(u_A \) and \(u_B \)). \(A_i B \) contains a central path \(a_1, a_2, a_3, b_1, b_2, b_3 \). For each \(j \in \{n-1\} \setminus \{i, i+1\} \), there is an edge \(u_i v_j \). If \(i \) is even then \(u_A \) is adjacent to \(a_i \) and \(u_B \) is adjacent to \(b_{i+1} \). On the other hand, if \(i \) is odd then \(u_A \) is adjacent to \(b_i \) and \(u_B \) is adjacent to \(a_{i+1} \). For \(j \neq i \), the vertex \(v_j \) is adjacent to \(b_i \) and \(b_{i+1} \) if \(j \) is odd, and adjacent to \(a_i \) and \(a_{i+1} \) if \(j \) is even. For \(j = i \), \(v_i \) is adjacent to \(a_i \) and \(a_{i+1} \) if \(j \) is odd, and adjacent to \(b_i \) and \(b_{i+1} \) if \(j \) is even.

Observe that for \(i \) even, \(A_i B \) is equivalent to \(A_{i-1} B \) with the leaves \(a_i \) and \(b_{i+1} \) swapped; for \(i \) odd, \(A_i B \) is equivalent to \(A_{i-1} B \) with the leaves \(a_{i-1} \) and \(b_i \) swapped. We are now ready to show that \(A_i B \) displays every character in \(C \) except for \(\phi_i \).

Lemma A.18. For any \(3 \leq i \leq n-1 \), lobster \(A_i B \) displays \(\Omega_A \) and \(\Omega_B \).

Proof. To see that \(A_i B \) displays \(\Omega_A \), observe that cutting the edge \(u_i v_{i-1} \) (or \(u_i a_i \) if \(i = 3 \)) separates \(A_i B \) into two trees, one with leaves \(a_1, b_1, b_2 \) and one with leaf set \(\{a_2\} \cup X_{S|3} \).

It follows that the subtrees of \(A_i B \) spanning these two sets are vertex-disjoint, and so \(A_i B \) displays \(\Omega_A \).

Similarly, to see that \(A_i B \) displays \(\Omega_B \), observe that cutting the edge \(u_{i-2} u_{i-3} \) (or \(u_B u_{i-1} \) if \(i = n-1 \)) separates \(A_i B \) into two trees, with leaf sets \(X_{S|j-2} \cup \{b_{j+1}\} \) and \(\{a_{i-2}, a_i\} \cup \{b_i\} \), respectively.

Lemma A.19. For any \(3 \leq i \leq n-1 \) and for each \(2 \leq j \leq n-2 \), lobster \(A_i B \) displays \(\chi_j \).

Proof. The non-singleton states of \(\chi_j \) are \(X_{S|j-2} \cup \{a_{j-1}\} \cup \{b_j, b_{j+1}\} \) and \(X_{S|j+3} \cup \{a_j, a_{j+1}\} \). Cutting the edge \(u_i v_j \) (or \(u_B u_{i+1} \) if \(j = i+1 \)) separates \(X_{S|j-2} \) from the other non-singleton states. Similarly, cutting the edge \(u_{i+1} u_{i+2} \) (or \(u_A u_{i+2} \) if \(j = i-2 \)) separates \(X_{S|j+3} \) from the other non-singleton states.

It remains to show that the trees \(A_i B \) isomorphic to \(A_i B \) are vertex-disjoint. For \(j \neq i \), this can be seen by cutting the edge \(u_i v_j \) (as \(v_j \) is adjacent either to the leaves \(a_i \) and \(a_{i+1} \), or to the leaves \(b_i \) and \(b_{i+1} \)). For \(j = i-1 \), this can be seen by cutting the edge \(u_B u_{i+1} \).
For any Lemma A.21.
and A.20.
Lemma A.22.
For any C the following lemma.
deleting any edge on the path from
displaying a quartet, in which each of the sets
that this notion is a generalization of the usual notion of

Thus in each case, we have that A'B displays \(\phi_i \).

The next lemma follows from Lemmas A.18, A.19, and A.20.
Lemma A.21. For any \(3 \leq i \leq n - 1 \), lobster A'B is compatible with \(C \setminus \{ \phi_i \} \).

Combining Lemmas A.8, A.12, A.16, and A.21, we have the following lemma.
Lemma A.22. For any \(C' \subseteq C \) with \(C' \neq C \), \(C' \) is compatible.

Incompatibility of C.— Let \(S_1|S_2||S_3|S_4 \) be a partition of \(X' \subseteq X \). We say a tree \(T \) on \(X \) displays the quartet \(S_1|S_2||S_3|S_4 \) if there exist internal vertices \(u \) and \(v \), such that deleting any edge on the path from \(u \) to \(v \) separates \(S_1 \cup S_2 \) from \(S_3 \cup S_4 \), and in addition deleting \(u \) separates \(S_1 \) from \(S_2 \), and deleting \(v \) separates \(S_3 \) from \(S_4 \) (Fig. A.2). Note that this notion is a generalization of the usual notion of displaying a quartet, in which each of the sets \(S_1, \ldots, S_4 \) consists of a single leaf.

Definition A.23. Given a tree \(T \) on \(X \) and a leaf \(x \notin X' \subseteq X \), we say that \(x \) meets \(T[X'] \) at a vertex \(v \) if \(v \) is a vertex in \(T[X'] \) and there is a path from \(v \) to \(x \) in \(T \) that is edge-disjoint from \(T[X'] \). We say \(x \) meets \(T[X'] \) between \(u \) and \(v \) if \(u \) and \(v \) are two vertices in \(T[X'] \) and \(x \) meets \(T[X'] \) at \(v' \) for some vertex \(v' \) on the path from \(u \) to \(v \).

To prove that \(C \) is incompatible, we will prove that any tree compatible with \(C \setminus \{ \phi_i \} \) must display certain quartets. In particular, it must display a quartet that cannot be displayed by a tree displaying \(\Omega B \). This implies that there is no tree compatible with \(C \). The next lemma gives the base case, and the following two lemmas give the inductive step of this proof.

Lemma A.24. If \(T \) is a tree on \(X \) that displays \(\Omega A, \chi_2, \phi_3, \chi_4 \), and \(\chi_4 \), then \(T \) displays \(X_{i2} \cup [a_2] | a_4 | b_3 | b_4 \).

Proof. Let \(u_1 \) be the vertex in \(T \) at which \(a_2 \) joins the subtree \(T[a_1, b_1, b_2] \). Let \(u_2 \) be the vertex at which \(b_3 \) joins \(T[a_1, b_1, b_2, b_3] \). Observe that since \(T \) displays \(\Omega A, u_2 \) must be between \(u_1 \) and \(u_2 \). Indeed, if this is not the case then the path from \(u_2 \) to \(b_3 \) must pass through \(u_1 \), which is also part of the subtree \(T[a_1, b_1, b_2] \).
contradicting the fact that $T[a_1, a_2, a_3, a_4]$ is vertex-disjoint (Fig. A.3a).

Now let v_2 be the vertex at which a_3 joins $T[a_1, a_2, a_3, a_4]$. As T displays X_2, v_2 must be between a_2 and a_3, since otherwise the subtrees $T[a_1, a_2, a_3]$ and $T[a_3, a_4]$ both contain v_2. Next let v_3 be the vertex at which b_3 joins $T[X_{3 \leq 3}]$. As T displays X_3, v_3 must be between b_2 and b_3, since otherwise the subtrees $T[a_1, a_2]$ and $T[b_2, b_3] \cup X_{3 \leq 3}$ both contain v_3 (Fig. A.3b).

Now in order to show that T displays $X_{3 \leq 3} \cup [a_1 | a_4]$ on $b_2 | b_4$, it remains to determine the relative position of a_4. In order to do this, we need to consider a_3, although we will not determine the position of a_3 itself. As T displays X_3, the subtrees $T[a_1, a_2]$ and $T[b_2, b_3] \cup X_{3 \leq 3}$ are vertex-disjoint, and in particular the path from b_2 to a_3 must not contain a_2. Also as T displays X_3, the path from a_3 to a_4 does not contain v_2. As neither of the paths $T[b_2, a_2]$ and $T[a_3, a_4]$ contain a_2, it follows that the path $T[a_3, a_4]$ does not contain a_2 either (note that the path $T[a_1, a_2]$ is a subgraph of the union of $X_{3 \leq 3}$). This implies that a_4 meets $T[X_{3 \leq 3} \cup \{\{\} \}]$ in one of three places: either between v_3 and b_2, between v_3 and b_3, or between a_2 and v_3. However, as T displays X_3 (and thus $T[a_1, a_2, a_3, a_4]$ and $T[b_2, b_3]$ are vertex-disjoint), the path $T[a_3, a_4]$ cannot contain v_3. This implies that a_4 must meet $T[X_{3 \leq 3} \cup \{b_2 \}]$ between a_2 and v_3. Let u_1 be the vertex at which a_2 meets $T[X_{3 \leq 3} \cup \{b_2 \}]$ (Fig. A.3c).

Now observe that deleting the edge $u_1 v_3$ separates $X_{3 \leq 3} \cup [a_1 | a_4]$ from $[b_2, b_4]$, that deleting u_2 separates $X_{3 \leq 3} \cup [a_2 | a_3]$ from a_4, and that deleting v_3 separates b_2 from b_4. Thus, T displays $X_{3 \leq 3} \cup [a_1 | a_4] \cup [b_2, b_4]$.

Lemma A.25. Let $i \in [n-2]$ such that $i \geq 4$ and i is even. If T is a tree on X such that T displays $X_{3 \leq 3} \cup [a_1 | a_4]$ on $b_2 | b_4$ and T displays $X_{3 \leq 3} | x_i$ and ϕ_i, then T displays $X_{3 \leq 3} | b_2 | b_4$.

Proof. Let u_{i-1}, v_{i-1} be internal vertices in T such that deleting any edge on the path from u_{i-1} to v_{i-1} separates $X_{3 \leq 3} \cup [a_1 | a_4]$ from $\{b_2, b_4\}$, deleting u_{i-1} separates $X_{3 \leq 3} \cup [a_1 | a_4]$ from $[a_i]$, and deleting v_{i-1} separates b_2 from b_4 (Fig. A.4a).

As T displays ϕ_i, it must be that a_{i+1} meets $X_{3 \leq 3}$ between u_{i-1} and v_{i-1}, as otherwise the subtrees $T[X_{3 \leq 3} \cup \{b_2, b_4\}]$ and $T[a_1, a_{i+1}] \cup X_{3 \leq 2}$ are not vertex-disjoint (in particular, the paths $T[b_2, b_{i-1}]$ and $T[a_1, a_{i+1}]$).
both contain u_{i-1}). Let v_i be the vertex at which a_{i+1} meets $T[X_{i-1}]$ (Fig. A.4b).

Now consider b_{i+1}. As T displays X_{i-2}, the paths $T[b_{i+1}, a_{i-1})$ and $T[a_{i+1}, b_{i+1}]$ are vertex-disjoint. It follows that $T[a_{i+1}, b_{i+1}]$ cannot contain u_{i-1}, and so b_{i+1} joins $T[X_{i-1}]$ at one of three places: either between v_i and a_{i+1}, between v_i and a_i or between u_{i-1} and v_i. Furthermore as T displays X_{i-2} the paths $T[a_{i-1}, a_{i+1}]$ and $T[b_{i+1}, b_{i+1}]$ are vertex disjoint, and in particular $T[b_{i+1}, b_{i+1}]$ cannot contain v_i. It follows that b_{i+1} joins $T[X_{i-1}]$ at one of three places: either between v_i and a_{i+1}, between v_i and a_i or between u_{i-1} and v_i. Let u_i be the vertex at which b_{i+1} joins $T[X_{i-1}]$ (Fig. A.4c).

Now observe that deleting uv_i separates $X_{i-1} \cup (b_i, a_{i+1})$ from a_{i+1}, and that deleting v_i separates a_{i+1} from a_i. Thus, T displays $X_{i-1} \cup (b_i, a_{i+1})$ from a_i.

Lemma A.26. Let $i \in [n-2]$ such that i is odd. If T is a tree on X such that T displays $X_{i-2} \cup (b_i, a_{i+1})$ from a_i, and T displays $X_{i-2} \cup (b_i, a_{i+1})$ from a_i, then T displays X_{i-1} from a_{i+1}.

Proof. The proof is symmetric to that of Lemma A.25. Let u_i, v_i be internal vertices in T such that deleting any edge on the path from u_i to v_i separates $X_{i-2} \cup (b_i, a_{i+1})$ from a_{i+1} and T displays $X_{i-2} \cup (b_i, a_{i+1})$ from a_{i+1}. Thus, T displays X_{i-1} from a_{i+1}.

Lemma A.27. For any $3 \leq i \leq n-2$, if a tree T is compatible with Ω_i and with χ for all $2 \leq j \leq i$ and ϕ_j for all $3 \leq j \leq i$, then T displays $X_{i-2} \cup (b_i, a_{i+1})$ from a_{i+1} if i is even, and T displays $X_{i-2} \cup (b_i, a_{i+1})$ from a_{i+1} if i is odd. In particular, if T is compatible with $C \setminus \{\phi_{i-2}, \phi_{i-1}\}$ then T displays X_{i-2} from a_{i-2}.

Proof. The claim follows by induction on i. For $i = 3$, the claim follows from Lemma A.24. For larger values of i, if i is even then the claim follows from Lemma A.25 and the fact that the claim holds for $i-1$. If i is odd, the claim follows from Lemma A.26 and the fact that the claim holds for $i-1$.

Lemma A.28. If T is a tree on X such that T displays $X_{i-3} \cup (b_{n-2}, a_{n-1})$ from a_{n-1}, then either T does not display ϕ_{n-1} or T does not display Ω_{n}.

Proof. Let u_{n-2}, v_{n-2} be internal vertices in T such that deleting any edge on the path from u_{n-2} to v_{n-2} separates $X_{i-3} \cup (b_{n-2}, a_{n-1})$ from a_{n-2}, deleting u_{n-2} separates $X_{i-3} \cup (b_{n-2}, a_{n-1})$ from a_{n-1}, and deleting v_{n-2} separates a_{n-2} from a_{n-1} (Fig. A.6).
If T displays ϕ_{n-1}, then the subtrees $T[\{X \leq n-4 \cup \{a_{n-3}, a_{n-2}\}\}]$ and $T[\{b_{n-1}, b_{n}\}]$ are vertex-disjoint, and in particular $T[\{a_{n-1}, a_{n}, b_{n}\}]$ is the path $T[\{b_{n-1}, b_{n}\}]$ does not contain a_{n-2}. It follows that b_{n} joins $T[\{X \leq n-1\}]$ between a_{n-2} and b_{n-1}. On the other hand, if T displays Ω_{B}, then the subtrees $T[\{X \leq n-2 \cup \{b_{n-1}\}\}]$ and vertex-disjoint, and in particular the path $T[\{a_{n-1}, b_{n}\}]$ does not contain v_{n-2}. It follows that b_{0} joins $T[\{X \leq n-1\}]$ between v_{n-2} and a_{n-1}. As b_{0} cannot join $T[\{X \leq n-1\}]$ in two different locations, T either does not display ϕ_{n-1} or does not display Ω_{B}.

Lemma A.29. C is not compatible.

Proof. This follows immediately from Lemmas A.27 and A.28.

By choosing n such that $2n-4 > t$, Lemmas A.22 and A.29 give us the following theorem, which shows that Conjecture 1.1 is false.

Theorem A.30. For any integer t, there exists a set C of 8-state characters such that C is incompatible but every subset of at most t characters in C is compatible.