MSSM with Yukawa Quasi-Unification

M. E. Gómez1 and C. Pallis2

1 Departamento de Física and Grupo Teórico de Física de Partículas, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

2 Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Via Beirut 2-4, 34013 Trieste, Italy.

ABSTRACT

We consider the constrained minimal supersymmetric standard model which emerges from one theory with a small deviation from Yukawa unification which is adequate for $\mu > 0$. We show that this model possesses a wide and natural range of parameters which is consistent with the data on $b \to s\gamma$, the muon anomalous magnetic moment, the cold dark matter abundance in the universe, and the Higgs boson masses.

1 Introduction

We study the phenomenological consequences of imposing on the constrained MSSM (CMSSM) an asymptotic relation for the Yukawa couplings at the GUT scale. This assumption (Yukawa unification) naturally restricts [1] the t-quark mass to large values compatible with the data. Also, the emerging model is highly predictive [2]. Despite of its appealing, the simple scheme of a single Yukawa for the three third generations at the GUT scale leads to an unacceptable b-quark mass. This fact excludes minimal versions of GUT groups with this property, such as Pati–Salam unification ($G_{PS} = SU(4)_c \times SU(2)_L \times SU(2)_R$), $SO(10)$ or E_6.

We consider the SUSY GUT model described in Ref.[3] which is based in the G_{PS} as described in Refs.[4] and establish an ‘asymptotic’ relation for the Yukawa couplings that depends on a single complex parameter c:

$$h_t : h_b : h_\tau = |1 + c| : |1 - c| : |1 + 3c|,$$

(1)

For simplicity, we will restrict our analysis to real values of $0 < c < 1$. The relative splitting of the Yukawa couplings becomes: $\delta h \equiv -(h_b - h_t)/h_t = (h_\tau - h_t)/h_t = 2c/(1+c)$. This means that the bottom and tau Yukawa couplings split from the top Yukawa coupling by the same amount but in opposite directions, with h_b becoming smaller than h_t.
2 The MSSM with Quasi-Yukawa Unification

This model, below M_{GUT}, reduces to the MSSM supplemented by the ‘asymptotic’ Yukawa coupling quasi-unification condition in Eq.(1). We will assume universal soft SUSY breaking terms at M_{GUT}, i.e., a common mass for all scalar fields m_0, a common gaugino mass $M_{1/2}$ and a common trilinear scalar coupling A_0. In the present work, we will concentrate on the $\mu > 0$. The case $\mu < 0$ is phenomenologically less interesting, it will be presented in [5]. We follow the notation as well as the RG and radiative electroweak breaking analysis of Ref.[6] for the CMSSM with the improvements of Refs.[7, 3] (recall that the sign of μ in Refs.[6, 7] is opposite to Ref.[3], which is the one adopted here).

For any given $m_b(M_Z)$ in its 95% c.l. range ($2.684 - 3.092$ GeV for $\alpha_s(M_Z) = 0.1185$), we can determine the parameters c and $\tan \beta$ at $M_{\text{SUSY}} = (m_{\tilde{t}_1} m_{\tilde{t}_2})^{1/2}$ ($\tilde{t}_{1,2}$ are the stop mass eigenstates) so that the ‘asymptotic’ condition in Eq.(1) is satisfied. We use fixed values for the running top quark mass $m_t(m_t) = 166$ GeV and the running tau lepton mass $m_\tau(M_Z) = 1.746$ GeV and incorporate not only the SUSY correction to the bottom quark mass but also the SUSY threshold correction to $m_\tau(M_{\text{SUSY}})$ from the approximate formula of Ref.[8]. After imposing the conditions of gauge coupling unification, successful electroweak breaking and Yukawa quasi-unification in Eq.(1), we are left with three free input parameters m_0, $M_{1/2}$ and A_0. In order to make the notation physically more transparent, we replace m_0 and $M_{1/2}$ equivalently by the mass m_{LSP} (or $m_{\tilde{\chi}}$) of the lightest supersymmetric particle (LSP), which turns out to be the lightest neutralino ($\tilde{\chi}$), and the relative mass splitting $\Delta_{\tilde{\tau}_2} = (m_{\tilde{\tau}_2} - m_{\tilde{\chi}})/m_{\tilde{\chi}}$ between the lightest stau mass eigenstate ($\tilde{\tau}_2$) and the LSP. In Fig.1 we display the changes on M_{SUSY} and the mass of the pseudo-scalar Higgs, m_A, for several values of $\Delta_{\tilde{\tau}_2}$ and $m_b(M_Z)$. These changes will help us to understand the corresponding predictions for $\Omega_{\text{LSP}} h^2$ in the presence of resonant annihilation channels for values of $m_A \approx 2 \cdot m_{\text{LSP}}$.

![Figure 1](image.png)

Figure 1: The mass parameters m_A and M_{SUSY} as functions of m_{LSP}, with $\alpha_s(M_Z) = 0.1185$ and $A_0 = 0$. On the panel of the left we display various values of $\Delta_{\tilde{\tau}_2}$ (indicated on the curves) for $m_b(M_Z) = 2.888$ GeV. On the right panel we fix $\Delta_{\tilde{\tau}_2} = 1$ and show the curves for $m_b(M_Z) = 2.684$ GeV (dashed lines), 3.092 GeV (dotted lines) or 2.888 GeV (solid lines).
Figure 2: The LSP relic abundance $\Omega_{LSP} h^2$ versus m_{LSP} for various $\Delta_{\tilde{\tau}_2}$'s (indicated on the curves) and with $A_0 = 0$, $m_b(M_Z) = 2.888$ GeV, $\alpha_s(M_Z) = 0.1185$. The solid lines (crosses) are obtained by micrOMEGAs (our alternative method). The upper bound on $\Omega_{LSP} h^2 (=0.22)$ is also depicted.

Here, the LSP ($\tilde{\chi}$) is an almost pure bino. Its relic abundance will be calculated by micrOMEGAs [9], which is the most complete code available. It includes all the coannihilations [10] of neutralinos, charginos, sleptons, squarks and gluinos since it incorporates automatically all possible channels by using COMPHEP [11] (A similar calculation has appeared in Ref.[12].) Also, poles and thresholds are properly handled and one-loop QCD corrected Higgs decay widths [13] are used, which is the main improvement provided by Ref.[9]. The SUSY corrections [14] to these widths are, however, not included. Fortunately, in our case, their effect is much smaller than that of the QCD corrections. From the recent results of DASI [15], one finds that the 95% c.l. range of $\Omega_{CDM} h^2$ is 0.06 − 0.22. Therefore, we require that $\Omega_{LSP} h^2$ does not exceed 0.22.

In order to have an independent check of micrOMEGAs, we also use the following alternative method for calculating $\Omega_{LSP} h^2$ in our model. In most of the parameter space where coannihilations are unimportant, $\Omega_{LSP} h^2$ can be calculated by using DarkSUSY [16] 1. Its neutralino annihilation part is in excellent numerical agreement with the recent exact analytic calculation of Ref.[18], the main defect of its current version is that it uses the tree-level Higgs decay widths. This can be approximately corrected if, in evaluating the Higgs decay widths, we replace $m_b(m_b)$ by m_b at the mass of the appropriate Higgs boson in the couplings of the b-quark to the Higgs bosons (see Ref.[9]). In the region of the parameter space where coannihilations come into play, the next-to-lightest supersymmetric particle (NLSP) turns out to be the $\tilde{\tau}_2$ and the only relevant coannihilations are the bino-stau ones [6, 19] (we do not find bino-stop cannihilations [20], potencially important when A is negative). In this region, which is given by $\Delta_{\tilde{\tau}_2} < 0.25$, we calculate $\Omega_{LSP} h^2$ by using an improved version of the analysis of Ref.[6, 7, 21, 23]. The list of bino-stau coannihilation channels appropriate for all $\tan \beta$’s given Ref. [6] has been completed with some additional channels as described in [3](see also Refs.[19, 22]). Their corresponding cross sections are

1 An updated version of this code is now available [17].
Figure 3: Restrictions on the $m_{\text{LSP}} - \Delta \tau_{\tilde{\tau}}$ plane for $A_0 = 0$, $\alpha_s(M_Z) = 0.1185$. From left to right, the dashed (dotted) lines depict the lower bounds on m_{LSP} from $m_A > 110$ GeV, BR($b \to s\gamma$) > 1.9×10^{-4} and $\delta a_\mu < 58 \times 10^{-10}$, and the upper bound on m_{LSP} from $\Omega_{\text{LSP}} h^2 < 0.22$ for $m_b(M_Z) = 2.684$ GeV (3.092 GeV). The left (right) solid line depicts the lower (upper) bound on m_{LSP} from $m_h > 114.1$ GeV ($\Omega_{\text{LSP}} h^2 < 0.22$) for $m_b(M_Z) = 2.888$ GeV. The allowed area for $m_b(M_Z) = 2.888$ GeV is shaded.

combined with the results of DarkSUSY as described in [3]. The results presented in Fig. 2 show an impressive agreement of the two methods.

We calculate BR($b \to s\gamma$) using the formalism of Ref.[24], where the SM contribution is factorized out. This contribution includes the next-to-leading order (NLO) QCD and the leading order (LO) QED corrections. The charged Higgs boson contribution to BR($b \to s\gamma$) is evaluated by including the NLO QCD corrections from Ref.[25]. The dominant SUSY contribution includes the NLO QCD corrections from Ref.[26], which hold for large $\tan \beta$. With the considerations of [3] the 95% c.l. range of this branching ratio then turns out to be about $(1.9 - 4.6) \times 10^{-4}$.

According with the latest measurement [27] of the anomalous magnetic moment of the muon $a_\mu \equiv (g_\mu - 2)/2$, the deviation of from its predicted value in the SM [28], δa_μ, is found to lie, at 95% c.l., in the range from -4.7×10^{-10} to 56×10^{-10} when the SM calculations based in e^+e^- data and in τ data are both taken into account. The calculation of δa_μ in the CMSSM is performed here by using the analysis of Ref.[29], the updating of the experimental bounds does not introduce significant differences respect the results presented in [3].

We will also impose the 95% c.l. LEP bound on the lightest CP-even neutral Higgs boson mass $m_h > 114.1$ GeV. In the CMSSM, this bound holds almost always for all $\tan \beta$’s, at least as long as CP is conserved. The CP-even neutral Higgs boson mass matrix by using FeynHiggsFast [30]. Finally, for the values of $\tan \beta$ which appear here (about 60), the CDF results yield the 95% c.l. bound $m_A > 110$ GeV [31].
3 The Allowed Parameter Space

The restrictions on the $m_{LSP} - \Delta_{\tilde{t}_2}$ plane, for $A_0 = 0$ and with the central value of $\alpha_s(M_Z) = 0.1185$, are shown in Fig. 3. The dashed (dotted) lines correspond to the 95\% c.l. lower (upper) experimental bound on $m_b(M_Z)$ which is 2.684 GeV (3.092 GeV), while the solid lines correspond to the central experimental value of $m_b(M_Z) = 2.888$ GeV. From left to right, the dashed (dotted) lines depict the lower bounds on m_{LSP} from the constraints $m_A > 110$ GeV, $\text{BR}(b \rightarrow s\gamma) > 1.9 \times 10^{-4}$ and $\delta a_\mu < 58 \times 10^{-10}$, and the 95\% c.l. upper bound on m_{LSP} from $\Omega_{LSP} h^2 < 0.22$. The constraints $\text{BR}(b \rightarrow s\gamma) < 4.6 \times 10^{-4}$ and $\delta a_\mu > -6 \times 10^{-10}$ do not restrict the parameters since they are always satisfied for $\mu > 0$. The left solid line depicts the lower bound on m_{LSP} from $m_h > 114.1$ GeV which does not depend much on $m_b(M_Z)$, while the right solid line corresponds to $\Omega_{LSP} h^2 = 0.22$ for the central value of $m_b(M_Z)$. We see that m_A is always smaller than $2m_{LSP}$ but close to it. Thus, generally, the neutralino annihilation via the s-channel exchange of an A-boson is by far the dominant (co)annihilation process. We also observe that, as m_{LSP} or $\Delta_{\tilde{t}_2}$ increase, we move away from the A-pole, which thus becomes less efficient. As a consequence, $\Omega_{LSP} h^2$ increases with m_{LSP} or $\Delta_{\tilde{t}_2}$ (see Fig. 2).

In the allowed (shaded) area of Fig. 3 which corresponds to the central value of $m_b(M_Z)$, the parameter c (tan β) varies between about 0.15 and 0.20 (58 and 59). For $m_b(M_Z)$ fixed to its lower or upper bound, we find that, in the corresponding allowed area, the parameter c (tan β) ranges between about 0.17 and 0.23 (59 and 61) or 0.13 and 0.17 (56 and 58). We observe that, as we increase $m_b(M_Z)$, the parameter c decreases and we get closer to exact Yukawa unification. This behavior is certainly consistent with the fact that the value of $m_b(M_Z)$ which corresponds to exact Yukawa unification lies well above its 95\% c.l. range. The LSP mass is restricted to be higher than about 138 GeV for $A_0 = 0$ and $\alpha_s(M_Z) = 0.1185$, with the minimum being practically $\Delta_{\tilde{t}_2}$-independent. At this minimum, $c \approx 0.16 - 0.20$ (c \approx 0.13 - 0.23) and $\tan \beta \approx 59$ (tan $\beta \approx 58 - 61$) for $m_b(M_Z) = 2.888$ GeV ($m_b(M_Z) = 2.684 - 3.092$ GeV).

In Fig. 3, we present the restrictions on the $m_{LSP} - A_0/M_{1/2}$ plane for $m_b(M_Z) = 2.888$ GeV, $\alpha_s(M_Z) = 0.1185$ and fixed values of $\Delta_{\tilde{t}_2}$. The most significant restriction on the allowed area are due to the displacement of the $\Omega_{LSP} h^2 = 0.22$ line as $\Delta_{\tilde{t}_2}$ increases, showing clearly the effect of the bino-stau coannihilations on the left panel. On the right panel we can observe that the allowed area becomes narrower as $|A_0/M_{1/2}| \neq 0$.

4 Conclusions

We showed that, in the particular model with Yukawa quasi-unification considered, there exists a wide and natural range of CMSSM parameters which is consistent with all the above constraints. We found that, within the investigated part of the overall allowed parameter space, the parameter $\tan \beta$ ranges between about 58 and 61 and the ‘asymptotic’ splitting between the bottom (or tau) and the top Yukawa couplings varies in the range $26 - 35\%$ for central values of $m_b(M_Z)$ and $\alpha_s(M_Z)$.

Acknowledgements. This work was supported by European Union under the RTN contracts HPRN-CT-2000-00148 and HPRN-CT-2000-00152. M.E.G. acknowledges support
Figure 4: Restrictions on the $m_{\text{LSP}} - A_0/M_{1/2}$ plane for $\Delta \tilde{\tau}_2 = 0$ (left) and 1 (right), $m_b(M_Z) = 2.888$ GeV, $\alpha_s(M_Z) = 0.1185$. The solid, dashed, dot-dashed and dotted lines correspond to the lower bounds on m_{LSP} from $m_A > 110$ GeV, $\text{BR}(b \to s\gamma) > 1.9 \times 10^{-4}$, $\delta a_\mu < 58 \times 10^{-10}$ and $m_h > 114.1$ GeV respectively. The upper bound on m_{LSP} from $\Omega_{\text{LSP}} h^2 < 0.22$ does not appear in the left panel since it lies at $m_{\text{LSP}} > 500$ GeV. The allowed area is shaded. For comparison, we also display on the left panel the bounds from $\Omega_{\text{LSP}} h^2 < 0.22$ (double dot-dashed lines) for $\Delta \tilde{\tau}_2 = 0.1$ and 0.03, as indicated. The upper bound on m_{LSP} from the cosmological constraint $\Omega_{\text{LSP}} h^2 < 0.22$ corresponds to the double dot-dashed line on the left panel.

from the ‘Fundação para a Ciência e Tecnologia’ under contract SFRH/BPD/5711/2001 and project CFIF-Plurianual (2/91).

References

[1] B. Ananthanarayan, G. Lazarides and Q. Shafi, Phys. Rev. D 44 (1991) 1613; Phys. Lett. B 300 (1993) 245; U. Sarid, hep-ph/9610341.

[2] M. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Nucl. Phys. B 426 (1994) 269; M. Carena and C.E.M. Wagner, hep-ph/9407209.

[3] M.E. Gómez, G. Lazarides and C. Pallis, Nucl. Phys. B 638 (2002) 165.

[4] R. Jeannerot, S. Khalil, G. Lazarides and Q. Shafi, JHEP 0010 (2000) 012; R. Jeannerot, S. Khalil and G. Lazarides, hep-ph/0106035; G. Lazarides hep-ph/0011130.

[5] M.E. Gómez, G. Lazarides and C. Pallis, hep-ph/0301064; C. Pallis and M.E. Gómez, hep-ph/0303098.

[6] M.E. Gómez, G. Lazarides and C. Pallis, Phys. Rev. D 61 (2000) 123512.

[7] M.E. Gómez, G. Lazarides and C. Pallis, Phys. Lett. B 487 (2000) 313.

[8] D. Pierce, J. Bagger, K. Matchev and R. Zhang, Nucl. Phys. B 491 (1997) 3.

[9] G. Bélandier, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Commun. 149 (2002) 103.
[10] K. Griest and D. Seckel, Phys. Rev. D 43 (1991) 3191.
[11] A. Pukhov et al., hep-ph/9908288.
[12] H. Baer, C. Balázs and A. Belyaev, JHEP 0203 (2002) 042.
[13] A. Djouadi, M. Spira and P.M. Zerwas, Z. Phys. C 70 (1996) 427; A. Djouadi, J. Kalinowski and M. Spira, Comput. Phys. Commun. 108 (1998) 56.
[14] C. Balázs, J.L. Diaz-Cruz, H.-J. He, T. Tait and C.-P. Yuan, Phys. Rev. D 59 (1999) 055016; M. Carena, S. Mrenna and C.E.M. Wagner, Phys. Rev. D 60 (1999) 075010; M. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Nucl. Phys. B 577 (2000) 88.
[15] C. Pryke et al., Astrophys. Journal 568 (2002) 46.
[16] P. Gondolo, J. Edsjo, L. Bergström, P. Ullio and E.A. Baltz, astro-ph/0012234.
[17] J. Edsjo, M. Schelke, P. Ullio and P. Gondolo, hep-ph/0301106.
[18] T. Nihei, L. Roszkowski and R. Ruiz de Austri, JHEP 0105 (2001) 063 and JHEP 0203 (2002) 031.
[19] J. Ellis, T. Falk and K.A. Olive, Phys. Lett. B 444 (1998) 367; J. Ellis, T. Falk, K.A. Olive and M. Srednicki, Astropart. Phys. 13 (2000) 181, (E) ibid. 15 (2001) 413; J. Ellis, T. Falk, G. Ganis, K. Olive and M. Srednicki, Phys. Lett. B 510 (2001) 236; J. Ellis, T. Falk, K.A. Olive and Y. Santoso, hep-ph/0210205.
[20] C. Boehm, A. Djouadi and M. Drees, Phys. Rev. D 62 (2000) 035012.
[21] S. Khalil, G. Lazarides and C. Pallis, Phys. Lett. B 508 (2001) 327.
[22] R. Arnowitt, B. Dutta and Y. Santoso, Nucl. Phys. B 606 (2001) 59.
[23] M.E. Gómez and J.D. Vergados, Phys. Lett. B 512 (2001) 252; hep-ph/0105115; J. D. Vergados and M. E. Gomez, hep-ph/0105114.
[24] A.L. Kagan and M. Neubert, Eur. Phys. J. C 7 (1999) 5.
[25] M. Ciuchini, G. Degrassi, P. Gambino and G. Giudice, Nucl. Phys. B 527 (1998) 21.
[26] G. Degrassi, P. Gambino and G.F. Giudice, JHEP 0012 (2000) 009.
[27] G. W. Bennett et al. [Muon g-2 Collaboration], Phys. Rev. Lett. 89 (2002) 101804 [Erratum-ibid. 89 (2002) 129903].
[28] M. Davier, S. Eidelman, A. Hocker and Z. Zhang, hep-ph/0208177; K. Hagiwara, A. D. Martin, D. Nomura and T. Teubner, hep-ph/0209187.
[29] T. Ibrahim and P. Nath, Phys. Rev. D 61 (2000) 015004; S.P. Martin and J.D. Wells, Phys. Rev. D 64 (2001) 035003.
[30] S. Heinemeyer, W. Hollik and G. Weiglein, hep-ph/0002213.
[31] J.A. Valls (CDF Collaboration), FERMILAB-CONF-99/263-E.