A celebrated and controversial hypothesis suggests that some biological systems—parts, aspects, or groups of them—may extract important functional benefits from operating at the edge of instability, halfway between order and disorder, i.e. in the vicinity of the critical point of a phase transition. Criticality has been argued to provide biological systems with an optimal balance between robustness against perturbations and flexibility to adapt to changing conditions, as well as to confer on them optimal computational capabilities, huge dynamical repertoires, un paralleled sensitivity to stimuli, etc. Criticality, with its concomitant scale invariance, can be conjectured to emerge in living systems as the result of adaptive and evolutionary processes that, for reasons to be fully elucidated, select for it as a template upon which further layers of complexity can rest. This hypothesis is very suggestive as it proposes that criticality could constitute a general and common organizing strategy in biology stemming from the physics of phase transitions. However, despite its thrilling implications, this is still in its embryonic state as a well-founded theory and, as such, it has elicited some healthy skepticism. From the experimental side, the advent of high-throughput technologies has created new prospects in the exploration of biological systems, and empirical evidence in favor of criticality has proliferated, with examples ranging from endogenous brain activity and gene-expression patterns, to flocks of birds and insect-colony foraging, to name but a few. Some pieces of evidence are quite remarkable, while in some other cases empirical data are limited, incomplete, or not fully convincing. More stringent experimental set-ups and theoretical analyses are certainly needed to fully clarify the picture. In any case, the time seems ripe for bridging the gap between this theoretical conjecture and its empirical validation. Given the profound implications of shedding light on this issue, we believe that it is both pertinent and timely to review the state of the art and to discuss future strategies and perspectives.

CONTENTS

I. Introduction: Statistical physics of biological systems 2

II. Criticality and scale invariance
1. Scale-invariance and power laws 3
2. Criticality in equilibrium systems and beyond 3
3. Non-equilibrium phase transitions: an example 3
4. Self-organization to criticality 3
5. Classes of criticality 3
6. Criticality on complex networks 3
7. Generic scale invariance 3
8. Statistical criticality 3

III. Functional advantages of criticality
A. Criticality in the auditory and other sensory systems 3
B. Exploiting criticality 3
1. Maximal sensitivity and dynamic range 3
2. Large correlations 3
3. Statistical complexity and large repertoires 3
4. Computation exploiting criticality 3

IV. Alleged criticality and scaling in biological systems
A. Neural activity and brain networks 3
1. Spontaneous cortical activity 3
2. The edge of activity propagation: avalanches 3
3. The edge of neural synchronization 3
4. The edge of global stability 3
5. The edge of percolation 3
6. The edge of a thermodynamic transition 3
7. Large-scale cortical dynamics 3
8. Disruptions of criticality in pathological conditions 3
9. Mathematical models of neuro-criticality 3

B. Gene regulatory networks 3
1. Models of genetic regulatory networks 3
2. Gene knock-out and damage spreading 3
3. Networks from DNA microarray data 3
4. Zipf’s law in gene-expression data 3
C. Collective behavior of cells 3
1. Stem cell pluripotency 3
2. Morphogenesis I: Hydra regeneration 3
3. Morphogenesis II: Gap genes in Drosophila 3
D. Collective motion 3
1. Flocks of birds 3
2. Insect swarms 3
3. Mammal herds 3
4. Social-insect foraging strategies 3

V. Discussion 3

Acknowledgments 3

Appendix A: Generic Scale invariance 3
Appendix B: Probabilistic models and statistical criticality 3
Appendix C: Adaptation and evolution towards criticality 3
Appendix D: Other putatively critical living systems 3
References 3
I. INTRODUCTION: STATISTICAL PHYSICS OF BIOLOGICAL SYSTEMS

One of the greatest challenges of Science is to shed light on the essence of the phenomenon that we call “life”, with all its astonishing diversity and complexity. Cells –the basic building-blocks of life– are intricate dynamical systems consisting of thousand types of interacting molecules, being created, used and destroyed every minute; multicellular organisms rely on the perfectly orchestrated motion of up to trillions of interacting cells, and communities assemble dozens of individuals, interacting in countless ways, forming entangled ecosystems, and giving rise to a mind-blowing hierarchy of “complexity”.

The standard viewpoint in biology, stemming from the reductionist tradition, is that each molecular component (protein, nucleic acid, metabolite...) is specific and requires individualized scrutiny. This one-at-a-time approach has successfully identified and quantified most of the components and many of the basic interactions of life as we know it, as stressed by the rapid advance of the “omics” sciences (genomics, proteomics, metabolomics...). Still, unfortunately, it offers no convincing explanation of how systemic properties emerge [Sauer et al., 2007]. Questions such as “how are those myriads of elements and interactions coordinated together in complex living creatures?” or “how does coherent behavior emerge out of such a soup of highly heterogeneous components?” (Schrödinger, 1967) remain largely unanswered.

A complementary strategy consists in looking at complex biological problems from a global perspective, shifting the focus from specific details of the molecular machinery to integral aspects (Alon, 2006; Bialek et al., 2012; Goldenfeld and Woese, 2011; Hartwell et al., 1999; Kaneko, 2006; Sauer et al., 2007). System approaches to biology rely on the evidence that some of the most fascinating phenomena of living systems –such as memory and the ability to solve problems– are collective ones, stemming from the interactions of many basic units, and might not be reducible to the understanding of elementary components on an individual basis (Bialek, 2018). Theoreticians have long struggled to elucidate whether simple and general principles --such as those in physics-- could be of any help in tackling biological complexity.

As a matter of fact, phase transitions are a common theme in biology (Pollack and Chin, 2008; Sole, 2011), as illustrated by the following non-exhaustive list of examples: (i) synchronization phase transitions in collective biological oscillators such as circadian clocks (García-Ojalvo et al., 2004); (ii) percolation transitions of fibers in connective tissues such as collagen (Alvarado et al., 2013; Forgacs et al., 1991; Newman et al., 2004); (iii) melting phase transition in DNA strands (Li and Retzloff, 2006; Poland and Scheraga, 1970); and (iv) transitions between different dynamical regimes (oscillations, bursting,...) in neuronal networks (Freeman, 2013; Freeman and Holmes, 2005; Haken, 2013; Kelso, 1984; Rabinovich et al., 2006; Werner, 2007), etc.

Life –guided by evolution– has found its way to exploit very diverse types of order: crystalline structures (seashells, skeletons...), liquid states (blood, lymph, sap...), gels (vitreous humor, cell cytoplasm), etc. However, some aspects of biological systems –think e.g. of neural networks or flocks of birds– exhibit intermediate levels of organization, half way between order and disorder, less regular than perfect crystals but more structured than random gases. Remarkably, it has been conjectured that, under some circumstances, living systems –i.e. parts, aspects, or groups of them– could draw important functional advantages from operating right at the borderline between ordered and disordered phases, i.e. at the very edge of a (continuous) phase transition or critical point [Bak, 1996; Beggs, 2008; Chialvo, 2010; Chialvo et al., 2008; Kaufman, 1993; Plenz, 2013; Plenz, 2014].

1 The possibility that biological problems may stretch the frontier of physics by uncovering phenomena and mechanisms unknown in purely physical systems is also inspiring (Frauenfelder, 2014; Goldenfeld and Woese, 2011).

2 Phase transitions may occur in either a discontinuous/abrupt fashion (Binney et al., 1993) –with associate bistability of the two different phases and an abrupt/discontinuous jump at the transition point– or in continuous/progressive way with an asso...
For instance, rather generically, living systems need to achieve a tradeoff between robustness (resilience of the system state to external perturbations; which is a property of ordered phase), and flexibility (responsiveness to environmental stimuli, which is a feature of disordered phases). An optimal balance between these two conflicting tendencies can be accomplished by keeping the system dynamical state at the borderline of an order-disorder phase transition, i.e. at criticality. Signatures of criticality, such as the spontaneous emergence of long-range spatio-temporal correlations and the exquisite sensitivity to stimuli are also susceptible to be exploited for functional purposes, e.g. to create coordinated global behavior, as we shall discuss in what follows. The idea that—in some special circumstances—evolution might have favored states close to the edge of a phase transition is certainly tantalizing, as it suggests that operating near criticality could be an overarching strategy in biological organization (Bak, 1996; Beggs, 2008; Chialvo, 2010; Kauffman, 1993; Mora and Bialek, 2011; Plenz, 2013; Plenz and Niebur, 2014).

Critical points have long been appreciated to exhibit striking features. Still, given the need of careful fine tuning for them to be observed, they were long treated as rarities. The development of some of the most remarkable intellectual achievements of the second half of the 20th century, such as the scaling hypothesis and the renormalization group theory (Fisher, 1974; Wilson and Kogut, 1974), changed this view and led to an elegant and precise theory of criticality, with unsuspected implications in many fields, from particle physics to polymer science. A chief conclusion is that many features at critical points are quite robust and largely independent of small-scale details, giving rise to universality in the large-scale behavior. This has very important consequences for e.g. studies in biology, as criticality and its concomitant scale-invariance can be understood through simple stylized models—neglecting many irrelevant details of individual components and putting the emphasis on how they interact—paving the road to the understanding of collective aspects of living systems in relatively simple terms.

From the experimental side, the advent of high-throughput techniques and big-data analyses have created new prospects in the exploration of biological systems. This is true, for example, in neuroscience—where it is now possible to record activity from individual spiking neurons to entire brains with previously-unthinkable resolution (Sejnowski et al., 2014)—and, similarly, in genomics (Lesk, 2017) or in collective motion analyses (Cavagna et al., 2008). As a result, recent years have witnessed an upsurge of empirical works reporting on putative scale-invariance and/or criticality in diverse biological systems, supporting the above theoretical speculations. In some cases the evidence appears to be robust, while in others it is marginal, incomplete, or, to say the least, doubtful. In any case, time seems to be ripe for bridging the gap between the theoretical hypothesis and its empirical validation.

The purpose of the present Colloquium is to briefly review the main ideas and motivation behind the criticality hypothesis as a possible guiding principle in the collective organization of living systems and to scrutinize and discuss in a critical way the existing empirical evidence and prospects. It also aims at providing the reader with a self-consistent view of what is criticality and what it is not, as well as an overview of the literature on this active and fascinating research field with countless ramifications.

Let us remark that there exist excellent articles reviewing some of these topics to different extents; the list includes the very influential paper by Mora and Bialek (2011) which popularized the subject, and other focused on neural dynamics (Beggs, 2008; Chialvo, 2010; Chialvo et al., 2008; Coccii et al., 2017; Hesse and Gross, 2014; Massobrio et al., 2015; Plenz and Niebur, 2014; Shew and Plenz, 2013), gene networks (Roli et al., 2015), and collective motion (Vicsek and Zafeiris, 2012), respectively. The present paper aims at overviewing and complementing them, putting the emphasis on dynamical aspects, and discussing together empirical evidence and theoretical approaches.

II. CRITICALITY AND SCALE INVARIANCE

Many discussions about “criticality” are semantic ones. Depending on authors and fields rather diverse contents are assigned to terms such as “critical”, “quasi-critical”, “dynamically critical”, “generically critical”, or “self-organized critical”. Given the broad audience this paper is aimed at, we esteem that a section devoted to present a synthetic overview of basic concepts and to fix ideas and notation is necessary. Readers familiar with these concepts can skip it.

3 For a more exhaustive introduction to critical phenomena we refer to the standard literature; e.g. Binney et al. (1993), Christensen and Moloney (2005), Henkel et al. (2008), Marro and Dickman (1999), Sethna (2000), and Stanley (1987).
1. Scale-invariance and power laws

In a seminal paper entitled “Problems in Physics with many scales of length” K. Wilson emphasized that “one of the more conspicuous properties of nature is the great diversity of size or length scales”, and cited oceans as an example where phenomena at vastly disparate wavelengths coexist (Wilson, 1979). Different scales are usually decoupled and the “physics” at each one can be separately studied. However, there are situations—known as scale-invariant or scale-free—where broadly diverse scales make contributions of equal importance. A remarkable instance of this—just an example—are the critical points of continuous phase transitions where the microscopic, mesoscopic and macroscopic scales are all alike.

Power-law (or Pareto) distributions such as \(P(x) = Ax^{-\alpha} \), where \(\alpha \) is a positive real number and \(A \) a normalization constant, are the statistical trademark of scale-invariance or “scaling”. Actually, they are the only probability distribution functions for which a change of scale from \(x \) to \(\Lambda x \), for some constant \(\Lambda \), leaves the functional form of \(P(x) \) unaltered, i.e. \(P(\Lambda x) = A(\Lambda x)^{-\alpha} = A\Lambda^{-\alpha}x^{-\alpha} = \Lambda^{-\alpha}P(x) \), in such a way that the ratio \(P(\Lambda x)/P(x) = \Lambda^{-\alpha} \) does not depend on the variable \(x \), i.e. it is scale invariant (Newman, 2005; Sornette, 2006). As opposed to e.g. exponential distributions, power-laws lack a relevant characteristic scale, besides natural cut-offs.

Distributions with power-law tails appear in countless scenarios, including the statistics of earthquakes, solar flares, epidemic outbreaks, etc. (Mandelbrot 1983; Newman, 2005; Sornette, 2006; West, 2017). They are also a common theme in biology (Gisiger, 2001; Goldberger et al., 2002; Hu et al., 2012; West, 2010). For example, physiological and clinical time-series data have typically a spectrum that decays as a power of the frequency (Mandelbrot 2002) and mobility patterns often exhibit scale-free features (Barabási, 2005; Brockmann et al., 2006; Proekt et al., 2012). Moreover, a number of commonly-observed statistical patterns of natural-world data—such as Zipf’s law (Back et al., 2011; Marsili and Zhang, 1998; Mora and Bialek, 2011; Sonette, 2006; Visser, 2013), Benford’s law (Benford, 1938; Pietronero et al., 2001), and Taylor’s law (Cohen et al., 2012; Giometto et al., 2015; Taylor, 1961)—stem from underlying power-law distributions.

Disputes on the validity and possible significance of power-laws have a long history in diverse research fields. For some authors they reveal fundamental mechanisms, while some others perceive them as largely uninformative (Kello et al., 2010; Stumpf and Porter, 2012) or even “more-normal-than-normal” distributions (Willems et al., 2004). Still, in some cases, there is very robust evidence of scale invariance and it certainly provides valuable insight.

The detection and statistical characterization of power-law distributions in real-world data is often hindered by sampling problems since very rare but large events control the statistics. Accordingly, the quality of power-law fits to empirical data has been recently scrutinized, showing that many claims of scale-invariance actually lack statistical significance and, presently, more stringent statistical tests have become a must (Clauset et al., 2009).

5 A well-known example is the Gutenberg-Richter equation for the probability distribution of observing an earthquake of dissipated energy \(E \), \(P(E) \propto E^{-\alpha} \), (Corral 2004).

6 This states that the frequency with which a given pattern is observed declines as a negative power law of its rank, i.e. its position in the list of possible patterns ordered from the most frequent to the rarest one (Zipf 1935).

7 A very elegant and illuminating approach allowed Mora and Bialek to map the Zipf’s law to underlying statistical criticality in a very precise way (Mora and Bialek, 2011). Within this setting, it was observed, however, that the Zipf’s law (and its concomitant statistical criticality) may emerge rather generically if there is a fluctuating unobserved (hidden) variable that affects the system, such as e.g. a common input, even in systems not tuned to criticality (Aitchison et al., 2016; Schwab et al., 2014).

See also Tkačik et al. (2015) for a discussion of these issues and how can they influence the conclusions about statistical criticality of empirical data.

8 An important example are allometric scaling laws, which are power-law relationships between different measures of anatomy/physiology (Banavar et al., 2014; 2010b; Kleiber, 1932; West et al., 1997). These have been elegantly shown to stem from the constraint that living systems have an underlying optimal (e.g nutrient) transportation network (Banavar et al., 1999; Simini et al., 2010).
From the mathematical side, very diverse explanatory mechanisms for the emergence of scaling in empirical data have been put forward (Marković and Gros 2014, Mitzenmacher 2002, Newman 2005, Simkin and Roychowdhury 2011, Sornette 2009). For example, random walks give rise to power laws in the distribution of return times and “avalanche” sizes as illustrated in Fig.1. Other examples are: (i) Underlying multiplicative processes (Barabasi and Albert 1999, Simon 1955, Yule 1925). (ii) Preferential attachment processes (Barabasi and Albert 1999, Simon 1955, Yule 1925). (iii) Optimization and constrained optimization (Carlson and Doyle 2000, Seoane and Sokal 2015).

Even if—as the previous enumeration illustrates—empirical power-law distributions can in principle be ascribed to a handful of possible different generative mechanisms, in the forthcoming sections we discuss the most prominent and general mechanism, able to account for scale invariance both in space and time in a rather robust, powerful, and universal way: criticality.

2. Criticality in equilibrium systems and beyond

The concept of criticality was born in the context of systems at thermodynamic equilibrium. A paradigmatic example are ferromagnets. These exhibit a continuous/second-order phase transition at a critical temperature, T_c, below which the orientational symmetry of spins is spontaneously broken—i.e. a preferred direction emerges—and, progressively, more ordered/magnetized states emerge as the temperature is lowered. On the other hand, above T_c thermal fluctuations dominate and the system remains disordered. This change in the collective state is usually encoded in an order parameter (e.g. the overall magnetization) which measures the degree of order as the phase transition proceeds.

The described symmetry-breaking is a collective phenomenon that requires a system-wide coordination for the global re-organization to emerge. This implies that the correlation length among individual components needs to span the whole systems at criticality. Similarly, when the system is becoming incipiently ordered, it is highly fluctuating in the orientation to be chosen. For example, classical experiment with liquid-gas transitions (e.g. with CO$_2$) shows that, right at criticality, light of many different wavelengths scatters with internal structures of the mixture (i.e. there are density fluctuations of all possible length scales), causing the normally transparent liquid to appear cloudy in a phenomenon called critical opalescence (Binney et al. 1993, Stanley 1987).

Importantly, the concepts and methods developed in the context of equilibrium systems were soon extended to time-dependent and non-equilibrium problems (Henkel et al. 2008, Hinrichsen 2008, Kamenev 2011, Hohenberg and Halperin 1977, Täuber 2014, 2017). All along this paper, we adopt a view of criticality and phase transitions focused mostly on dynamical and non-equilibrium aspects. This seems to be the most natural choice to analyze living systems, which are dynamical entities kept away from thermal equilibrium by permanently exchanging energy and matter with their surroundings. It is important to underline that there exists an important alternative “statistical-criticality” approach to the analysis of biological data. It focuses on the statistics of existing configurations (without regard to the temporal order in which they appear, much as in equilibrium statistical mechanics) rather than on possible underlying dynamical processes, and it is only briefly discussed here where, as said above, we choose to focus on dynamical aspects.

3. Non-equilibrium phase transitions: an example

In order to turn the foregoing wordy explanations into a more formal approach, we describe in detail—as a guiding example—one of the simplest possible dynamical models exhibiting a non-equilibrium phase transition. The contact process (CP) is a prototypical toy model to study the dynamics of propagation of some type of “activity” (as e.g. infections in epidemic spreading; see Fig.2) (Harris 2002, Henkel et al. 2008, Hinrichsen 2000, Marro and Dickman 1999). At any given time, each of the nodes $i = 1, 2, \ldots N$ of a given network (which in particular can be a lattice, a fully connected network, or one with a more complex architecture, describing the pattern of connections among units/nodes) is in a state s_i that can be either occupied/active ($s_i = 1$) or empty/quiescent ($s_i = 0$). Occupied sites are emptied at rate $\mu = 1$ and new active nodes are created at (empty) randomly-selected nearest neighbors of active ones at rate λ. Considering, for the sake of simplicity, a fully connected network with N nodes and performing a large-N expansion of the corresponding Master equation (Van Kampen 1992), one readily obtains a “mean-field” or deterministic equation:

$$\dot{\rho}(t) = \lambda \rho(t)(1 - \rho(t)) - \rho(t) = (\lambda - 1) \rho(t) - \lambda \rho^2(t) \quad (1)$$

where the dot stands for time derivative of the activity density $\rho = \sum_{i=1}^{N} s_i / N$. This simple one-variable approximation already illustrates some of the essential features of criticality. Eq. (1) reveals the presence of a bifurcation at a value $\lambda_c = 1$, separating a subcritical (also called “absorbing” or “quiescent”) phase ($\lambda < 1$) in which transient activity decays to the only possible steady-state, $\rho_M = 0$, from a supercritical (or “active”) one ($\lambda > 1$) with a sustained activity $\rho_M = 1 - 1/\lambda$ (see Fig.2). Thus, defining $\delta = |\lambda - 1|$ as the distance to
FIG. 2 Sketch of the main aspects of the contact process. (A) Dynamical rules. (B) Phase diagram, including a critical point. (C) Temporal raster plots of activity (avalanches) in the different regimes, illustrating the complex patterns emerging at criticality, which involve many different scales. (D) Avalanches size distributions in the different phases (main) and, right at the critical point for different system sizes (inset), illustrating finite-size scaling, i.e. the emergence at criticality, of a straight line in a double-logarithmic plot, as corresponds to scale invariance (see also Fig.3).

criticality, \(\rho_{st} \sim \delta \) for small \(\delta \). In the quiescent (or absorbing) phase, an initial density decays exponentially, \(\rho(t) = \rho(0) \exp(-\delta t) \), implying that there is a characteristic time scale proportional to \(\delta^{-1} \). Note that such time diverges at criticality, i.e. it takes a huge time for the system to “forget” its initial state, reflecting a generic feature of criticality: the so-called “critical slowing down”. Indeed, right at the critical point, the activity decays asymptotically as a power-law, \(\rho(t) \sim t^{-\alpha} \).

Introducing an external field that creates activity at empty sites at rate \(h \), the overall response or “susceptibility”, defined as \(\Xi = \frac{\partial \rho_{st}}{\partial h} \bigg|_{h \to 0} \), is \(\Xi \propto \delta^{-1} \) that, again, diverges right at \(\delta = 0 \), (i.e. \(\lambda = 1 \)), illustrating the diverging response to infinitesimal perturbations, another important generic feature of criticality.

A useful tool to analyze this type of transitions consists in performing “spreading experiments” in which the evolution of a single localized seed of activity in an otherwise absorbing/quiescent state is monitored (see Fig.2C). In this case, given the small number of active sites, the dynamics is chiefly driven by fluctuations and cannot be analyzed within the deterministic approximation above. Stochastic cascades of spatio-temporal activity, or “avalanches” of variable sizes and durations can be generated from the initial seed before the system returns to the quiescent state (extinction). In this framework the critical point separates a regime of sure extinction (absorbing phase) from one of non-sure extinction (active phase). Right at the critical point, the sizes and durations of avalanches are distributed as power-laws with anomalously large (formally infinite) variance (Fig.2C).

To understand this mathematically, one needs the next-to-leading correction to Eq.(1) in the large-\(N \) expansion to include the effect of “demographic” fluctuations. This leads to an additional term \(+\sqrt{\eta(t)} \), where \(\eta(t) \) is a Gaussian white noise of variance \(\sigma^2 = (\lambda+1)/N \).

A simple analysis of the resulting stochastic equation shows that right at the critical point, the time required to return to the quiescent state, i.e. the avalanche-durations \(T \) are distributed as power laws: \(F(T) \sim T^{-\alpha} \) with \(\alpha = 2 \); similarly, avalanches sizes \(s \) obey \(P(S) \sim S^{-\tau} \), with \(\tau = 3/2 \). These mean-field exponents coincide with those of the (Galton-Watson) unbiased branching process [Harris 2002, Liggett 2004, Watson and Galton 1875], introduced to describe the statistics of family-names, and often employed to illustrate the statistics of

9 A similar argument holds in the active phase.
10 The large variability of possible patterns is a generic key feature of criticality. In particular, in systems at equilibrium, the divergence at criticality of the specific heat reflects the huge variability of possible internal states (Binney et al. 1995).
11 The square-root noise stems from the central limit theorem (Van Kampen 1992).
12 See di Santo et al. (2017b) for a pedagogical derivation of this.
critical avalanches. Away from criticality, as well as in finite systems, cut-offs appear in the avalanche distributions (see Fig. 2). In particular, as a reflection of the underlying scale-invariance at criticality, the finite-size cut-offs obey scaling laws such as

\[P(S, N) \sim S^{-\tau} G(S/N) \] (2)

where the power-law \(S^{-\tau} \) is cut-off by an unspecified function, \(G \), at an \(N \)-dependent scale (Binder, 1981; Binder et al., 1993; Stanley, 1987). This enforces that plotting \(P(S, N)S^\tau \) as a function of the rescaled variable \(S/N \) should give a unique curve into which all individual curves for different sizes \(N \) collapse. This finite-size scaling method constitutes an important tool for analyzing critical phenomena (both in computer simulations and in experiments) as perfect power-laws/divergences can only appear in the infinite-size limit, not reachable in biological problems. Indeed, while in finite systems true criticality does not exist, still, these may exhibit a progressive transition between order and disorder. This can be characterized by the existence of a peak in some quantity such as the susceptibility or the correlation length that usually diverge at (true) criticality; this is used as a proxy for “approximate” criticality in finite systems.

As a result of universality, all models exhibiting a phase transition analogous to an absorbing/quiescent phase (without any additional symmetry or conservation law) share the same set of critical exponents and scaling functions – i.e. the same type of scale-invariant organization – with the contact process (Henkel et al., 2008).

Even if the simple propagation model discussed above is not intended as a faithful description of the actual dynamics of any specific biological system, in some cases – such as neural and gene regulatory networks – it can constitute an adequate effective representation of “damage spreading” experiments, in which two identical replicas of the same system are considered; a localized perturbation in the state of one unit/node is introduced in one of the two, and the difference between both replicas is monitored as a function of time (Derrida and Pomeau, 1986). Depending on the the system's dynamical state, such perturbations may grow (active phase), shrink (quiescent phase), or fluctuate marginally (critical point), providing a practical tool to gauge the level of internal order.

4. Self-organization to criticality

As we have seen criticality requires of parameter fine tuning to a precise point to be observed. How it is possible that natural systems (such as earthquakes, Barkhausen noise, etc.) exhibit signatures of criticality, but without any apparent need for parameter tuning to settle them in at the edge of a phase transition? To answer this question P. Bak and collaborators introduced the important concept of “self-organized criticality” (SOC) through a series of archetypical models (Bak, 1996; Bak et al., 1999; Bak and Tang, 1989; Corral et al., 1995; Dhar, 1999; Drossel and Schwabl, 1992; Frette et al., 1996; Olami et al., 1992), among others. The sandpile model (Bak et al., 1987).

In the sandpile model a type of “stress” or “energy” (sandgrains) accumulates at a slow timescale at the sites of a (two-dimensional) lattice, and when the accumulated stress overcomes a local instability threshold, it is instantaneously redistributed among nearest neighbor sites – and, possibly, released/dissipated at the system boundaries. This can create a cascade or “avalanche” of further instabilities. Remarkably, the durations and sizes of such avalanches turn out to be distributed as power laws, i.e. the system becomes critical without any apparent need for parameter tuning.

To answer this question P. Bak and collaborators introduced the important concept of “self-organized criticality” (SOC) through a series of archetypical models (Bak, 1996; Bak et al., 1999; Bak and Tang, 1989; Corral et al., 1995; Dhar, 1999; Drossel and Schwabl, 1992; Frette et al., 1996; Olami et al., 1992), among others. The sandpile model (Bak et al., 1987).

In the sandpile model a type of “stress” or “energy” (sandgrains) accumulates at a slow timescale at the sites of a (two-dimensional) lattice, and when the accumulated stress overcomes a local instability threshold, it is instantaneously redistributed among nearest neighbor sites – and, possibly, released/dissipated at the system boundaries. This can create a cascade or “avalanche” of further instabilities. Remarkably, the durations and sizes of such avalanches turn out to be distributed as power laws, i.e. the system becomes critical without any apparent need for parameter tuning (Bak, 1996; Bak et al., 1999; Christensen and Moloney, 2005; Drossel and Schwabl, 1992; Bak et al., 1996; Bak et al., 1999). The mechanism for self-organization to criticality in sandpile models is described in Fig. 3. It can be seen that it is characterized by a dynamical feedback that acts differentially depending on the actual system state. This is just an example of a broader class that has been extensively analyzed in the context of control theory (Magnasco et al., 2009; Moreau and Sontag, 2003; di Santo et al., 2016; Sornette, 1994), which is very likely to emerge in biological systems, as we shall discuss. Two important variants of this mechanism are as follows:

(a) Self-organized quasi-criticality is analogous to SOC but occurs when the dynamics is non-conservative and/or when the separation of timescales is not perfect (relevant for biological problems). This self-organization mechanism drags the system back and forth around the critical state of one unit/node is introduced in one of the two, and the difference between both replicas is monitored as a function of time. Depending on the system's dynamical state, such perturbations may grow (active phase), shrink (quiescent phase), or fluctuate marginally (critical point), providing a practical tool to gauge the level of internal order. Even if the actual dynamics might be much more complicated, the resulting damage spreading process is susceptible to be described in simple terms if local effective error “propagation” and error “healing” rates can be estimated.

13 Similarly, systems in the presence of an external driving force are not truly critical; in these cases, the Widom line – signaling e.g. the position of maximal susceptibility or correlation– can be taken as a surrogate of criticality (Williams-García et al., 2014).

14 To study spatial effects one needs to replace \(\rho(t) \) in Eq. 1 by a field \(\rho(x,t) \) and to introduce a diffusive coupling term (Henkel et al., 2008; Hinrichsen, 2000; Odor, 2008).

15 The precise relationship between the damage spreading threshold and the system's actual critical point is an important and subtle issue (Comiglio et al., 1989; Grassberger, 1995; Hinrichsen and Domany, 1999).
Different variants of this idea have been proposed in the literature (Bonachela and Muñoz, 2009; Kinnou et al., 1995). Otherwise, the system is just self-organized to the neighborhood of the critical point with excursions around it, i.e., "self-organized quasi-criticality" (Bonachela and Muñoz, 2009; Dickman et al., 2000).

(b) Adaptive criticality is a variant of SOC from a network perspective, in which connections among nodes in a network are susceptible to be added, removed, or rewired depending on the system’s dynamical state, creating a feedback loop between network architecture and dynamics in a sort of co-adaptive process. This mechanism can drive the dynamics to criticality (Bianconi and Marsili, 2004; Dorogovtsev et al., 2008; Liu and Bassler, 2006) and, in parallel, the network architecture develops a highly non-random structure, thus capturing the feedback between dynamics and architecture in actual biological networks.

5. Classes of criticality

Not all dynamical phase transitions of relevance in biology occur between quiescent and active phases, nor can be described by an associated activity-propagation process, such as the contact process. Other important classes of phase transitions to be found across this paper are: (i) synchronization transitions, at which coherent behavior of oscillators emerges, as described by the prototypical Kuramoto model (Acebrón et al., 2005; Kuramoto, 1975; Pikovsky et al., 2003), (ii) transitions to collective ordered motion, as represented for instance by the Vicsek model (Vicsek et al., 1995; Vicsek and Zafeiris, 2012) and its variants; and (iii) percolation transitions (Christensen and Moloney, 2003), and (iv) even (thermodynamic) transitions such as that of the Ising model (Binney et al., 1993), to name but a few. Each of these classes has its own type of emerging ordering and its own scaling features. However, all of them share the basic features that constitute the fingerprints of criticality, such as diverging correlations and response, large variability, scale invariance, etc.

6. Criticality on complex networks

Thus far we have discussed criticality in homogeneous systems. However, in many biological problems the substrates on top of which dynamical processes run are highly heterogeneous (Albert and Barabási, 2002; Caldarelli, 2007; Newman, 2003, 2010). In particular, complex systems, including biological ones, can be described as networks, where nodes represent units (neurons, genes, proteins, ...) and links stand for allowed pairwise interactions among them. Such complex networks have been found to exhibit one or more of the following important architectural features: (i) large heterogeneity with a few highly connected nodes and many loosely connected ones; actually the distribution of connection can be scale free (Barabási and Albert, 1999), (ii) the small-world property (Watts and Strogatz, 1998), (iii) modular organization (i.e., hierarchical organization, etc. (Corominas-Murtra et al., 2013). These structural features usually entail profound implications on the dynamics of processes running on top of them (Barrat et al., 2008; Boccaletti et al., 2006; Dorogovtsev et al., 2008; Pastor-Satorras et al., 2015). For instance, synchronization transitions proceed in a stepped way on modular networks (Arenas et al., 2008), and broad critical-like phases can emerge in hierarchical modular networks (as discussed e.g. in

17 Different variants of this idea have been proposed in the literature (Bornholdt and Rohlf, 2000; Dorogovtsev and Mendes, 2002; Droste et al., 2013; Gros, 2008; Gross and Blasius, 2008; Kuehn, 2012; MacArthur et al., 2010; Meisel and Gross, 2009; Perotti et al., 2009; Rohlf, 2008; Rybarch and Bornholdt, 2014; Saito and Kikuchi, 2013; Solé et al., 2002).

18 Biology is “modular” in many aspects (Alon, 2006; Ravasz et al., 2002), meaning that some components in biological networks (nodes) are connected among themselves more often or more strongly that they do with others (Alon, 2003).
Moretti and Muñoz (2013) and Muñoz et al. (2010), Appendix A and in what follows).

7. Generic scale invariance

We have discussed the paradigm of a critical point—with its concomitant spatio-temporal scale-invariance—separating two alternative phases. However, in some systems with peculiar symmetries, conservation laws or structural disorder, critical-like features may appear in extended regions in the phase space and not just at a critical point. This is called generic scale invariance (Grinstein, 1991) and can account for empirically reported scale-invariance in some biological problems without the need to invoke precise tuning to criticality. Mechanisms for the emergence of generic scale invariance are discussed in Appendix A.

8. Statistical criticality

To end this introductory section, we briefly discuss an (already mentioned above) alternative perspective to criticality, particularly useful to analyze the wealth of high-quality data now available for living systems (Mora and Bialek, 2011). It relies on the idea that some fundamental questions in biology can be tackled within a probabilistic setting (for instance, analyzing the statistics of spiking patterns may help deciphering the way in which neurons encode information) (Rieke et al., 1995). Bialek and coworkers developed a data-driven maximum entropy (statistical physics) approach to biological problems, that consists in approximating the probability distribution of different patterns in a given dataset by a probabilistic model that consistently reproduces its main statistical features (e.g. mean values and pairwise correlations; see Appendix B). The resulting models are akin to the Ising models19. Rather remarkably, Bialek and collaborators observed that the emerging probabilistic models for a number of high-dimensional problems—including biological ones, from retinal neural populations (Schneidman et al., 2006; Tkačik et al., 2014, 2013, 2015) to flocks of birds (Bialek et al., 2012) and the immune system (Mora et al., 2010) for which excellent empirical data sets are available—have parameter values sitting close to the edge of a phase transition, i.e. the emerging probabilistic models seem to be critical in a very precise sense (Mora and Bialek, 2011) (see Appendix B).

III. FUNCTIONAL ADVANTAGES OF CRITICALITY

Having discussed basic aspects of criticality and scale invariance, we move on to ask: what are the potential virtues of them susceptible to be exploited by living systems to enhance their functionality? To shed light onto this, we first describe a well-understood case in which both theoretical and empirical evidence match, and where the essential and beneficial role played by criticality in a biological system is clear and illuminating. Later on we discuss a set of possible functional advantages of criticality from a general perspective.

A. Criticality in the auditory and other sensory systems

The inner ear of vertebrates is able to detect acoustic stimuli with extraordinary sensitivity and exquisite frequency selectivity across many scales (Hudspeth, 2014). At the basis of these exceptional features there are hair cells, the ear’s sensory receptors, which oscillate spontaneously even in the absence of stimuli, being able to resonate with acoustic inputs (Choe et al., 1998; Gold, 1948; Martin et al., 2001). Intrinsic oscillations are either damped or self-sustained depending on the concentration of Calcium ions, with a Hopf bifurcation separating these two regimes. Empirical evidence reveals that the ion concentration is regulated in such a way that hair cells operate in a regime very close to the Hopf bifurcation (Camalet et al., 2000; Ospeck et al., 2001). This has been argued to entail important consequences for signal processing (Choe et al., 1998; Egiluz et al., 2000; Hudspeth et al., 2010; Martin et al., 2001), as we discuss now.

In the simplest possible setting, a hair cell can be effectively described as Hopf oscillator (Strogatz, 2014):

\[\dot{\phi}(t) = (a + i\omega)\phi(t) - |\phi|^2\phi(t) \quad (3) \]

where the \(\phi \) is a complex number, \(\omega \) the resonance frequency, and \(a \) is the control parameter (ion concentration) setting the dynamical regime. Eq. (3) exhibits self-sustained oscillations of the form \(\phi(t) = R(t)e^{i\omega t} \) if \(a > 0 \), while if \(a < 0 \) oscillations are damped.20 Introducing stimuli of the characteristic frequency \(\omega = \tilde{\omega} \) and small amplitude \(F \) (i.e. adding \(+Fe^{i\omega t} \) to Eq. (3)), and writing \(\phi(t) = R(t)e^{i\omega t} \), one finds

\[\ddot{R}(t) = R(t)[a - R^2(t)] + F. \quad (4) \]

In the oscillatory regime, \(a > 0 \), the response \(R \) is proportional to the input amplitude \(F \). However, at the bifurcation (or critical) point, \(a = 0 \), the response \(R \) is strongly non-linear, as \(R = F^{1/3} \) and, consequently, the

19 And since the inferred interactions among “spins” have both signs, they are a sort of spin glasses (Tkačik et al., 2013; Tkačik et al., 2009).

20 See Kern and Stoop (2003) from where this discussion is adapted.
ratio response-to-signal \(R/F = F^{-2/3} \) diverges at \(F \to 0 \), leading to a huge response to tiny signals of the characteristic frequency. On the other hand, if the input has some other frequency \(\omega \neq \bar{\omega} \) the response is much smaller. This entails an extremely efficient frequency-selection and amplification mechanism, vividly illustrating the advantage of working close to the instability point.

The described phenomenon involves a single hair-cell with a specific intrinsic frequency and it is thus not a collective critical phenomenon. However, the Cochlea is arranged in such a way that it involves an (almost uni-dimensional) array of diverse and coupled hair cells. When coupling many different Hopf oscillators results in the emergence of a true phase transition –i.e. a critical point with scale-free avalanches– which entails sharpened frequency response (Duke and Jülicher 2003; Magnasco 2003) and enhanced input sensitivity (Gomez et al. 2015; Kern and Stoop 2003; Stoop and Gomez 2016).

Summing up, working at criticality has been shown to be essential to generate the extraordinary features of vertebrate hearing, even the most intricate ones (Stoop and Gomez 2016). Similar virtues of criticality have been explored in the olfactory system (Bushdid et al. 2014) and the visual cortex (Shew et al. 2015) (see also Chialvo 2006 and Friston et al. 2012).

B. Exploiting criticality

1. Maximal sensitivity and dynamic range

As discussed above, an important trademark of critical points is the divergence of the response (or susceptibility) which is likely to be exploited in biological sensing systems, needing to optimize their response to environmental cues. To better quantify this, a related quantity, dubbed dynamic range, was introduced in (Kinouchi and Copelli 2006). Consider a model for activity propagation (similar to the contact process) with a critical point \((\lambda_c = 1) \) running on a random network, under the action of an external stimulus, \(h \), able to create activity at empty nodes. The dynamic range, \(\Delta \) (see Fig.1) gauges the range of diverse stimuli intensities where variations in input \(h \) can be robustly coded by variations in the response, discarding stimuli that give almost indistinguishable outputs. \(\Delta \) turns out to exhibit a marked peak at \(\lambda_c = 1 \), indicating that, at criticality, discriminative outputs can be associated to a very large variety of inputs, with obvious functional advantages for signal detection and processing.

2. Large correlations

The emergence of arbitrarily large correlation lengths at criticality is an important feature susceptible to be exploited by living systems in order to induce coordinated behavior of individual units across space and time. This can be relevant for coordination purposes in e.g. neural systems where coherent behavior across extended areas is observed (Tagliazucchi et al. 2012), in flocks of birds (Cavagna et al. 2010) and in micro-organism colonies (De Palo et al. 2017). Similarly, the emergence of very large correlation times and critical slowing down may provide biological systems with a useful mechanism for the generation of long-lasting and/or slow-decaying memories at multiple timescales (see e.g. Deco and Jirsa 2012).

3. Statistical complexity and large repertoires

The variability of possible spatio-temporal patterns is maximal at criticality (as illustrated in Fig.2); this may allow biological systems to exhibit a very wide spectrum of possible responses, sometimes called “dynamical repertoire” (Rámó et al. 2007, 2006; Yang et al. 2012). This is consistent with the finding that e.g. models for brain activity reach highest signal complexity, with a variety of attractors and multistability when operating near criticality (Deco and Jirsa 2012; Haimovici et al. 2013). Similarly, (i) the number of metastable states (Haldeman and Beggs 2005), (ii) the variability of attractors to support memories (de Arcangelis and Herrmann 2010; Krawitz and Shimulovich 2007), and (iii) the diversity in structure-dynamics relationships (Nykter et al. 2008b) have been predicted to be maximized at criticality. All this suggests that in order to spontaneously generate complex patterns –required e.g. to store highly diverse tokens of information– operating near criticality can be an excellent solution for living systems. As a consequence of this, the capacity to store and process information is optimal at criticality, as we discuss in more depth in what follows.
4. Computation exploiting criticality

It was long-ago conjectured that the extraordinary “computational power” of living systems could be the result of collective behavior, emerging out of a large number of simple components (Amari, 1972; Carpenter and Grossberg, 2016; Grossberg, 1982; Hopfield, 1982). By “computation” it is usually meant an algorithm or system that—with the aim of performing some task—assigns outputs to inputs following some internal logic. Thus, the computational power of a given device is quantified by estimating the amount and diversity of associations of inputs to outputs that it can support. As first suggested in (Ashby, 1960; Turing, 1950) and much further developed in the context of machine learning (Crutchfield and Young, 1988; Langton, 1990; Li et al., 1990; Packard, 1988) networked systems operating at criticality can have exceptionally high computational capabilities. In particular, Langton formulated the question: under what conditions will physical systems support the basic operations of information transmission, storage, and modification, required to support computation? His answer was that systems operating at the “edge of chaos” are especially suitable to perform complex computations. The “edge of chaos” or critical point (as we rather call it here) is the borderline between two distinct phases or regimes: the chaotic/disordered one in which perturbations and noise propagate unboundedly (thereby corrupting information storage) and the frozen/ordered phase whereas changes are rapidly erased (hinder the capacity to react and transmit information). Therefore, the critical point confers on computing devices composed of equivalent units an optimal tradeoff between information storage and information transmission, two of the key ingredients proposed by Turing as indispensable for universal computing machines (Turing, 1950).

In artificial intelligence, criticality is exploited in so-called “reservoir computing” (Lukosevičius et al., 2012) that was developed independently in the fields of machine learning (“echo state networks” of Jaeger (2007)) and computational neuroscience (“liquid state machine” in Maass et al. (2002)). These machines consist of a network of nodes and links, “the reservoir”, where each node represents an abstract “neuron” and links between them mimic the connectivity of actual biological circuits. A series of seminal works showed that such machines can perform real-time computations—responding rapidly to time varying input signals—in a coherent yet flexible way if they operate near a critical point (Bertschinger and Natschlager, 2004; Boedecker et al., 2012; Legenstein and Maass, 2007; Legenstein, 2005; Maass et al., 2002).

These ideas are corroborated by information-theoretic analyses (Cover and Thomas, 1991), which have unveiled that the overall transmission of information between units in a network—as measured by diverse indicators—is maximal if the underlying dynamical process is critical.

Let us also mention that (i) state-of-the-art deep learning machines (LeCun et al., 2015) may rely on some form of intrinsic scale invariance or even criticality (Lin and Tegmark, 2017; Mehta and Schwab, 2014; Oprisa and Toth, 2017a,b; Ringel and de Bem, 2018; Song et al., 2017), opening exciting research avenues to understand how artificial-intelligence machines achieve their extraordinary performance, and (ii) from the empirical side, recent work has revealed that a mechanism akin to reservoir computing enables neuronal networks of the cerebellum to perform highly complex tasks in an efficient way by operating at criticality (Rössert et al., 2015).

IV. ALLEGED CRITICALITY AND SCALING IN BIOLOGICAL SYSTEMS

Having discussed putative virtues of critical dynamics, susceptible in principle to be exploited by biological systems, we now start a trip through some of the most remarkable existing empirical evidence revealing signatures of criticality in such systems. We warn the reader that—even if the aim is to present a collection as extensive and exhaustive as possible—the selection of topics as well as the extent in which they are discussed might be biased by our own experience. Also, importantly, even if some of the experiments and findings to be discussed are very appealing, evidence in many cases is not complete and conclusions should be always taken with caution. Indeed, for many of the forthcoming examples, we also discuss existing criticisms and potential technical or interpretative problems.

A. Neural activity and brain networks

1. Spontaneous cortical activity

The cerebral-cortex of mammalians is never silent, not even under resting conditions nor in the absence of stimuli; instead, it exhibits a state of ceaseless spontaneous

23 Such as the transfer entropy (Lizier et al., 2008a); Shriki and Yellin, 2016; Solé and Miramontes, 1995), Fisher information (Wang et al., 2011) and, more in general, statistical complexity (as discussed above) (Krawitz and Shmulevich, 2007; Lizier et al., 2008a; Ramo et al., 2007).
24 See Beggs (2008); Li et al., 1999; Luque and Ferrera, 2000; Prokopenko, 2013; and Ribeiro et al. (2008); and Barnett et al. (2013) and Toyozumi and Abbott (2011) for a discrepant view.
2. The edge of activity propagation: avalanches

In a remarkable breakthrough, Beggs and Plenz (2003) succeeded at resolving the internal spatio temporal organization of the above-mentioned outbursts of neuronal activity. They analyzed mature cultures as well as acute slices of rat cortex, and recorded spontaneous local field potentials (LFP) – which provide coarse-grained measurements of electrochemical activity – at different locations and times. Local events of activity are defined as (negative) peaks of the LFP signals, which are indicative of local population spikes (Beggs and Plenz, 2003). As illustrated in Fig. 5, events at different sites have a tendency to cluster in time, producing network spikes of activity. Each of these outbursts of activity when temporally resolved, consists in a cascade of successive local events, organized as neuronal avalanches interspersed by periods of quiescence (Beggs and Plenz, 2003; 2004). The avalanche sizes (i.e. number of local events each one includes) and durations were found to be distributed as power-laws with exponents $\tau \approx 3/2$ and $\alpha \approx 2$, respectively, with cut-offs that increase with system size in a scale-invariant way (i.e. the distributions obey finite-size scaling). See Beggs and Plenz (2003); Mazzoni et al. (2007), and Petermann et al. (2009). The observed exponents coincide with those of the (mean-field) critical contact/branching processes as described above and, thus, seem to describe a marginal activity-propagation process. Moreover, the mean temporal profile of neuronal avalanches of widely varying durations is quantitatively described by a single universal scaling function (Friedman et al. 2012; Sethna et al. 2001), and scaling relationships between the measured exponents are fulfilled (Friedman et al. 2012). Similar avalanches have been observed in vitro (Mazzoni et al. 2007; Pasquale et al. 2008) and in vivo for different species (Gireesh and Plenz, 2008; Hahn et al. 2010; Petermann et al. 2009; Ribeiro et al. 2010; Yu et al. 2011) and across resolution scales, from single neuron spikes to rather coarse-grained measurements. The fact that at quite different resolution

![FIG. 5 Sketch illustrating how neuronal avalanches are measured from Local field potential (LFP). (Top) LFPs are measured at different locations; negative peaks of the time series correlate with large population spikes of the underlying neurons within each local region. (Middle) Raster plot illustrating the times at which peaks of the LFP occurs for different sites, revealing a high degree of temporal clustering. (Bottom) Enhancing the temporal resolution, it is possible to resolve the spatio-temporal organization within apparently coherent large-scale events; it occurs in the form of “neuronal avalanches” (shaded columns) interspersed by periods of quiescence (white columns).](image-url)
scales similar results are reported if, by itself, strongly supportive of the existence of underlying scale-invariant dynamical processes27.

All this evidence regarding neuronal avalanches seems to make a strong case in favor of criticality. However, some caveats need to be made:

- (i) Thresholding: A source of ambiguities in extracting (discrete) events from (continuous) time-series analyses comes from thresholding: i.e. signals at any given spatio-temporal location need to overcome some threshold to be declared an “event” of activity. Petermann \textit{et al.} (2009) compared results for different thresholds in LFPs time-series and found that exponent values remain unchanged, suggesting the existence of a truly scale-invariant organization of events. However, a word of caution is still required as recent works have underlined the “perils” associated with thresholding, which in some controlled cases has been shown to generate spurious effects such as effective exponent values and correlations in the timings of consecutive avalanches \textsuperscript{(Font-Clos \textit{et al.} 2015; Janičević \textit{et al.} 2016; Laurson \textit{et al.} 2009)}. Further clarifying this issue is key to make solid progress in the empirical analysis of avalanching systems.

- (ii) Time binning: Avalanches can only be defined by employing a criterion to establish when an avalanche starts and when it ends. This requires setting a discrete time binning to be applied to the data: an avalanche starts when a time-bin with some activity within it follows a series of preceding consecutive quiescent ones, and ends when a new quiescent time-bin appears \textsuperscript{(Beggs and Plenz 2003; Haimovici \textit{et al.} 2013; Petermann \textit{et al.} 2009; Tagliazucchi \textit{et al.} 2012)}. This introduces some ambiguity, and the measured avalanche exponents have been shown to be sensitive to the choice of the time-bin. However, taking the time bin to coincide with the mean inter-event interval, the mean-field branching process exponents seem to be systematically recovered \textsuperscript{(Beggs and Plenz 2003; Haimovici \textit{et al.} 2013; Petermann \textit{et al.} 2009; Tagliazucchi \textit{et al.} 2012)}. As above, further work is needed to mathematically clarify this important issue.

- (iii) Sub-sampling: A related problem is that of subsampling as a result of observational and resolution limitations. Owing to these factors the statistic is not complete, and this might affect the shape of the observed distributions. Priesemann \textit{et al.} (2009; 2013; 2014) argued that—taking into consideration sub-sampling effects—empirical data are best characterized by a slightly sub-critical dynamics (additionally driven by external forces) rather than by a critical one.

- (iv) Limited scales: In general, no more than two, at most three, orders of magnitude in avalanche statistics have been reported which is somehow unsatisfactory. Obtaining much broader regimes of scale invariance is technically challenging, but would make a stronger case for actual scale-invariance \textsuperscript{(Yu \textit{et al.} 2014)}.

(v) Some authors support different interpretations of the observed power-laws, which are unrelated to criticality \textsuperscript{(Bédard \textit{et al.} 2006; Destexhe 2009; Touboul and Destexhe 2010; 2017)}. These series of observations, taken together, seem to shed some doubts on evidence in favor of criticality relying on avalanches. To further strengthen it, we now discuss other complementary experimental signatures of criticality from different perspectives.

3. The edge of neural synchronization

Much attention has been historically devoted to brain rhythms observed in EEG, MEG, and LFP measurements \textsuperscript{(Buzsáki 2000)}. Such rhythms emerge owing to the transient synchronization between different neural regions/circuits, and they play a key role in neural function \textsuperscript{(Steriade \textit{et al.} 1996)}. Clusters of neurons with coherent neural activity have a much stronger coordinated effect on other neuronal assemblies than asynchronous neurons do \textsuperscript{(Brunel and Hakim 2008; Kelso \textit{et al.} 1986; Scholz \textit{et al.} 1987)}. Thus, phase synchrony is essential for large-scale integration of information \textsuperscript{(Varela \textit{et al.} 2001)}, and abnormalities in the level of synchronization—either by excess or by deficit— are a signature of pathologies such as epilepsy, Parkinson’s disease, schizophrenia, or autism \textsuperscript{(Yang \textit{et al.} 2012)}. Empirically, the measured level of synchronization across (resting) brain regions and across time has been found to be highly variable and with strong long-range correlations. Such spatio-temporal variability can be interpreted as a template to codify vastly different tasks and to allow for a large dynamical repertoire \textsuperscript{(Arieli \textit{et al.} 1996)}, and has been observed to diminish when the subject is engaged in a specific task \textsuperscript{(Tinker and Velazquez 2014)}.

The role that criticality might play in keeping intermediate and variable levels of synchrony—which could for example be essential to achieve a good balance between integration and segregation \textsuperscript{(Tononi \textit{et al.} 1994)}—has been empirically analyzed as we discuss now. Analyzing spontaneous bursts of coordinated activity (as in Fig.5) \textsuperscript{(Segev and Ben-Jacob 2001; Segev \textit{et al.} 2001)}, the overall level of phase synchrony between different electrodes has been recorded under different pharmacological conditions, ranging from excitation-dominated to inhibition-dominated regimes. It was observed that the is a critical point at which excitation and inhibition

27 Some studies suggest that even single neurons can be intrinsically critical to optimize their inherent excitability \textsuperscript{(Gal and Marom 2013; Gollo \textit{et al.} 2013)}.
balance \cite{Yang et al. 2012}. At such a point – i.e. at “the edge of synchrony” \cite{Brunel 2000, Deco et al. 2014, Palmigiano et al. 2017} – the level of synchronization variability is maximal and scale-free avalanches of activity can be concomitantly observed \cite{Gireesh and Plenz 2008, Yang et al. 2012}. Actually, a recent theoretical work emphasizes that if the cortex operates at a critical point, it should be a synchronization critical point, where marginal synchronization and scale-free avalanches emerge together \cite{di Santo et al. 2017a}. Last but not least, the amazingly detailed computational model built within the large-scale collaborative Blue brain project \cite{Markram 2006}, also suggests that the cortical dynamics operates at the edge of a synchronization phase transition \cite{Markram et al. 2015}.

4. The edge of global stability

High temporal-resolution electrocorticography data from human reveal time-varying levels of activity across different spatial locations \cite{Magnasco et al. 2009, Solovey et al. 2012}. Representing the system’s state at a given time as a vector, its time evolution can be approximated as a series of linear (matricial) transformations between successive time-discrete vector states \cite{Akaike 1969}. By employing an eigenvector decomposition of each of such matrices, it is possible to monitor the temporal dynamics of the leading eigenvalues (Lyapunov exponents). In awake individuals, the leading eigenvalue turns out to oscillate closely around the threshold of instability, indicating that the dynamics is self-regulated at the edge of a phase transition between stable and unstable regimes. Quite remarkably, in anesthetized subjects eigenvalues become much more stabilized, suggesting that operating at the edge of stability is a property of functional brain and that deviations from such point can be used as a measure of loss of consciousness \cite{Alonso et al. 2014}.

5. The edge of percolation

Cortical dynamics can be viewed as a sort of percolation phenomenon. \cite{Tagliazucchi et al. 2012} analyzed functional magnetic resonance imaging (fMRI) time series at different regions of (resting) humans. By thresholding them they obtained discrete spatio-temporal maps of activity (much as in Fig.5). They found that –using the density of “active” sites at a given time as a control parameter, and the size of the largest connected cluster at each time as a percolation order parameter– there is a value of the control parameter nearby which the dynamics spends most of the time and, remarkably, it corresponds to the value for which the total number of different connected clusters as well as their size variability are maximal, as happens at the threshold of percolation transitions. These empirical data reveal that the dynamics is close to the critical percolation density value, but with broad excursions to both, sub- and super-critical phases, suggesting that regulatory mechanisms keep the system hovering around a percolation transition (much as suggested by the mechanism of “self-organized quasi-criticality” discussed in Sect.1). In other words, the resting brain spends most of the time near the point of marginal percolation of activity, neither too inactive nor exceedingly active.

6. The edge of a thermodynamic transition

The state of a neural network at a given small time window can be represented by a binary vector encoding whether each individual neuron has spiked or remained silent within it \cite{Tkačik et al. 2013}. Questions of interest are, how often does a given simultaneous (i.e. within a given time bin) spike pattern appear? What is the simplest probabilistic model (in the sense of equilibrium statistical mechanics) able to reproduce such statistical patterns?

Pioneering empirical studies obtained data from large-scale multicollector array recordings to determine the statistics of patterns of neural activity in large populations of retinal (ganglion) cells of salamander \cite{Marre et al. 2012}. Employing such high-resolution data and inferring from them maximum-entropy probabilistic (Ising-like) models \cite{Tkačik et al. 2013} observed that the associated specific heat diverges as a function of sample size as occurs in thermodynamic critical points. Furthermore, introducing an effective temperature they observed that empirical data are poised near the critical point of the (temperature-dependent) generalized model suggesting that the visual cortex might operate in a close-to-critical regime \cite{Mora and Bialek 2011, Mora et al. 2015, Tkačik et al. 2014, 2015}.

A possible interpretation of these results –backed by recent empirical evidence \cite{Gautam et al. 2015, Shew et al. 2015}– is that adaptation to sensory inputs has tuned the visual cortex to statistical criticality, thus optimizing its performance. A competing view is that the observed signatures of criticality could reflect an effective averaging over un-observed variables (such as common external inputs in the case of retinal populations), lacking thus any relationship with possible functional advantages \cite{Aitchison et al. 2016, Nonnenmacher et al. 2017} (see Appendix B). We refer to \cite{Tkačik et al. 2015} and \cite{Nonnenmacher et al. 2017} for a more thorough discussions on these alternative viewpoints.
7. Large-scale cortical dynamics

Large research initiatives have allowed for the measurement of network of physical (neuro-anatomical) connections between different regions of the human brain, i.e. the “human connectome network”.\(^{28}\)

On the other hand, functional magnetic resonance imaging (fMRI) studies performed in the resting-state –i.e., while the subject is awake not performing any specific task– reveal the emergence of spatio-temporal patterns of strongly coherent fluctuations in the level of activity at the large scale. This allows for the determination of so-called “resting state networks”, encoding pairwise correlations between different brain regions, or in words, brain regions that become active or inactive together, and that are consistently found in healthy individuals.\(^{29}\)

Diverse studies of simple dynamical models on top of the empirically determined human connectome network it was found that spatio-temporal correlations similar to those of the empirically-measured in the resting state are reproduced only if the models operate close to criticality. (Cabral et al., 2011; Fraiman et al., 2009; Haimovic et al., 2013; Plenz, 2013), suggesting that resting-state spatio-temporal patterns of activity emerge from the interplay between critical dynamics and the large-scale underlying architecture of the brain. Thus, resting state networks reflect structured/critical fluctuations among a set of possible attractors suggestive of a state of alertness facilitating rapid task-dependent shifts (Deco and Jirsa, 2012; Deco et al., 2013b; Ghosh et al., 2008).

On the other hand, one could expect that scale-invariance emerges in broad regions of parameter space and not just at critical points (see Appendix A), owing to the modular and highly heterogeneous architecture of structural brain networks. This has indeed been verified to be true for models of neural activity propagation (Moretti and Munoz, 2013) as well as for synchronization dynamics (Sadiek and Thurner, 2015; Shanahan, 2010; Villegas et al., 2014), and implies that cortical dynamics might not be required to be exactly critical to reproduce empirical findings, but just to be located in a broad region in parameter space exhibiting generic scale invariance (e.g. in a Griffiths phase; see Appendix A).

8. Disruptions of criticality in pathological conditions

Important pieces of evidence that scale invariance and criticality might be specific of awake and healthy brain activity emerge from experimental analyses of neural activity under pathology or modified physiological conditions. For example, signatures of criticality have been reported to fade away during epileptic seizures (Hobbs et al., 2010; Meisel et al., 2012) as well as during anomalously large periods of wakefulness (Meisel et al., 2013) or while performing simple tasks (Hahn et al., 2017; Tomen et al., 2014). Also, long-range temporal correlations characteristic of the awake state (Expert et al., 2011; He, 2011) — break down during anesthesia (Bellay et al., 2015; Ribeiro et al., 2010), unconsciousness (Tagliazucchi et al., 2016) or under deep sleep (Tagliazucchi et al., 2013), suggesting that critical dynamics is specific to the state of wakefulness. Interestingly, sleep has been interpreted as a mechanism to restore the overall dynamics to a critical state (Pearlmutter and Houghton, 2009).

By pharmacologically altering the ratio of excitation to inhibition, i.e. breaking the balance condition that characterizes functional neural networks (Barral and Reyes, 2001; Rosenbaum and Doiron, 2014; van Vreeswijk and Sompolinsky, 1996) – induces a tendency to super-critical propagation of activity, including many large system-spanning avalanches, clearly disrupting scale-invariant behavior (Beggs and Plenz, 2003; Mazzoni et al., 2007). Similarly, only during naturally balanced conditions the dynamic range (as defined above) is empirically observed to be maximal (Gautam et al., 2015; Shew et al., 2009).

There is also experimental evidence supporting the idea that developing cortical networks go through different stages in the process of maturing: they shift from being supercritical, to subcritical, and then finally, converge towards criticality only when they become mature (Stewart and Plenz, 2008; Tetzlaff et al., 2010).

Taken together, these observations suggest that criticality is the baseline state of mature, healthy, and awake neural networks and that deviations from criticality have profound functional consequences (Massobrio et al., 2015).

9. Mathematical models of neuro-criticality

Since the idea that the computational power of the brain could emerge out of collective properties of neuronal assemblies (Hertz et al., 1991; Hopfield, 1982), a large and disparate number of modeling approaches have been proposed to scrutinize neural dynamics (Amit, 1992; Amit and Brunel, 1997; Dayan and Abbott, 2001; Izhikevich, 2004, 2007; Kandel et al., 2000; Matthia and Sanchez-Vives, 2012). These models uncovered a large variety of phases and possible dynamical regimes such as up and down states (Hidalgo et al., 2012; Holcman and...
Tsodyks 2006; Mattia and Sanchez-Vives 2012; Mejias et al. 2010; Parga and Abbott 2007; synchronous and asynchronous phases (Abbott and van Vreeswijk 1993; Brunel 2000; Brunel and Hakim 2008), as well as phase transitions separating them. Our aim here is not to review them exhaustively but rather, to discuss those aimed at justifying the possible emergence of criticality in actual neural networks.

P. Bak and collaborators are to be acknowledged for first proposing that concepts of self-organization to criticality could play a role in neural dynamics.\(^\text{30}\) Herz and Hopfield (1995) realized that stylized (integrate-and-fire) models of neuronal networks were mathematically equivalent to SOC archetypes.

Short-time synaptic depression (Markram and Tsodyks 1996; Sussillo et al. 2007; Tsodyks and Markram 1997) was introduced in SOC-like neural-network models (in which some form of neural “stress” is accumulated and then released to connected units in a conserved way) as a mechanism to regulatory mechanism able to auto-organize them to the edge of a phase transition \(^{\text{(de Arcangelis et al. 2006; Gomez et al. 2008; Levin et al. 2007; 2009)}}\) synaptic resources become depleted owing to network activity and remain so for a characteristic recovery period, while they slowly recover to their baseline level. The alternation of these activity-dependent mechanisms (i.e. slow charging and fast dissipation) generates a feedback loop that, allegedly, guides the networks to criticality, much as in SOC (Fig.3).

Alternative regulatory \(^{\text{(homeostatic)}}\) mechanisms such as spike-timing dependent plasticity (Effenberger et al. 2015; Meisel and Gross 2009; Rubinov et al. 2011; Shin and Kim 2006), retro-synaptic signals (Hernandez-Urquina and Herrmann 2017), and Hebbian plasticity (de Arcangelis and Herrmann 2010; Uhlig et al. 2013), have been proposed to explain self-organization to criticality (Bienenstock and Lehmann 1998).

However, these SOC-like approaches might not be biologically plausible, as they rely on conservative or almost-conservative dynamics (while neurons and synapses are leaky) and, even more importantly, they require of an unrealistically large (infinite) separation of timescales between dissipation and recovering to actually self-tune the dynamics to a critical state \(^{\text{(de Andrade Costa et al. 2015; Bonachela et al. 2010)}}\). If the separation of timescales in these models is fixed to moderate (finite) values, critical self-organization is not achieved; instead, the system hovers around the critical point with excursions to both sides of it –as in the above-discussed self-organized quasi-criticality (Bonachela and Munoz 2009; Kinhochi et al. 2018) –or may become not critical at all (Bonachela et al. 2010).

To overcome these difficulties an influential model was proposed to explain self-organized criticality without assuming conservative dynamics nor an infinite separation of timescales (Millman et al. 2010). This model (consisting of a network of leaky integrate-and-fire neurons with synaptic plasticity) exhibits a discontinuous phase transition –rather than a continuous one with a critical point– between states of high and low activity, respectively. This is neurobiologically sound as similar “up” and “down” states are empirically known to emerge under deep sleep or anesthesia (Holcman and Tsodyks 2006; Steriade et al. 1993). Remarkably, the model was also found to display scale-free avalanches all across its active phase. This is puzzling from the viewpoint of models of activity propagation, which generate scale-free avalanches only at criticality.

This apparent paradox has been recently solved: avalanches in the model of Millman et al. are not the result of criticality; they appear owing to the existence of generic scale invariance, which is a consequence of an underlying neutral dynamics (see Appendix A). Importantly, such neutral avalanches are detected in computational models by employing information about causal relationships on which neuron triggers the firing of which other (Martinello et al. 2017), and this type of information is usually not accessible in experiments.\(^{\text{32}}\) Furthermore, if avalanches in the model of Millman et al. are measured as in experiments (employing a time binning) they are not scale-free (Martinello et al. 2017). Thus, this model –as well as some other similar ones (Stepp et al. 2015)– do not describe empirical temporally-defined scale-free avalanches. More generally, these results reveal a gap in the literature between time-binned defined avalanches (in experiments) and causally defined avalanches (in models).

All the above-discussed approaches have in common that they identify neural criticality with the edge of an activity-propagation phase transition. Recently, some other theoretical models have provided theoretical evidence that neural dynamics should exhibit a synchronization phase transition, at which neuronal avalanches and incipient oscillations coexist (Gireesh and Plenz 2008; Poil et al. 2012; di Santo et al. 2017a; Yang et al. 2012). However, these models provide no explanation

\(^{\text{30}}\) See e.g. Bak 1996; Bak and Chialvo 2000; Chialvo 2004; Chialvo and Bak 1999; and Stassinopoulos and Bak 1995. Also, early work by Haken, Kelso and coworkers brought about the role that critical fluctuations and critical slowing-down might play in neural dynamics (Haken 1977, 2013; Kelso et al. 1986; Scholz et al. 1987).

\(^{\text{31}}\) This opened the door to studies of the interplay between critical dynamics, memory and learning (de Arcangelis 2011; 2012; de Arcangelis and Herrmann 2010; 2012; de Arcangelis et al. 2014).

\(^{\text{32}}\) See, however, Williams-Garcia et al. 2017.
–other than a possible fine tuning– of why the dynamics should operate precisely at the edge synchronization.

Last but not least, the amazingly detailed computational model built within the large-scale collaborative Blue brain project [Markram, 2006] suggests that the cortical dynamics operates at the edge of a phase transition between an asynchronous phase and a synchronous one with emerging oscillations [Markram et al., 2015]. The regulation of calcium dynamics has been cited as a possible responsible mechanism for keeping the system close to such a critical state, operating at a point at which a whole set of empirical results can be quantitatively explained by the model [Markram et al., 2015].

Finally, let us comment on two theoretical approaches–not relying on criticality–proposed to account for scale-free neuronal avalanches. The first one is a mechanism called “stochastic amplification of fluctuations” which is able to produce highly variable avalanches with an (approximate but not perfect/critical) balance between excitatory and inhibitory couplings together with inherent stochasticity [Benayoun et al., 2010] Murphy and Miller [2009]. However, this mechanism is not able to reproduce the empirically observed exponent values [di Santo et al., 2018].

The second is a recent work, Touboul and Destexhe (2017), where it is proposed that scale-free avalanches can naturally emerge in networks of neurons (described e.g. as a balanced network with excitation and inhibition [Brunel, 2000], or even as simple Poissonian point processes) operating in synchronous irregular regimes away from criticality. In our opinion, further work needs to be done to understand how and under which circumstances this is true, and what are the corresponding values of the resulting avalanche exponents. Summing up, appealing empirical evidences as well as sound dynamical models supporting the idea of criticality in the brain exists; however, in many cases empirical results are not fully convincing and alternative theoretical interpretations are still under debate. Fully clarifying the nature of the overall cortical dynamical state remains an open challenge.

B. Gene regulatory networks

Leaving aside neural networks, we move on to another type of biological information-processing networks that also exhibit signatures of criticality: genetic networks.

Living cells exhibit stable characteristic features which are robust even under highly variable conditions. In parallel, they also exhibit flexibility to adapt to environmental changes. These two aspects are compatible owing to the fact that a given set of genes (i.e. a “genotype”) can give rise to different cellular states (“phenotypes”), consisting of diverse gene-expression patterns in which some genes are differentially expressed or silenced. Since the pioneering work of Kauffman [1993], cellular states have been identified as attractors of the dynamics of gene regulatory networks, where the genes are the network nodes and their mutual regulatory (activation/repression) interactions are represented as directed links between them. Cells can be thought as “machines” executing complex gene-expression programs that involve the coordinated expression of thousands of genes [Alon, 2006; Buchanan, 2010; Crick, 1970; Koonin, 2006; Koonin et al., 2001]. Consequently, the study of information processing in cells shifted progressively from single genes to increasingly complex circuits/networks of genes and regulatory interactions, shedding light on collective cellular states [Garcia-Ojalvo, 2011; Hartwell et al., 1999; Shumlevich and Dougherty, 2010]. The development of powerful experimental high-throughput technologies in molecular biology paved the way to the experimental investigation of gene-expression patterns in large regulatory networks [Filkov, 2005] and, in particular, provided empirical evidence that sequences of cell states (apoptosis, prolifer-

\[
\begin{array}{c|c|c|c}
\hline
i_1 & i_2 & i_3 & \text{OUT} \\
\hline
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\hline
\end{array}
\]

FIG. 6 The upper panels represent two gene regulatory networks: (Left) a large scale one (for E. Coli [Gama-Castro et al., 2015]) and (Right) a small-scale one (mouse embryonic stem-cell subnetwork [Parfitt and Shen, 2014]). In both cases, nodes stand for genes and links between them for regulatory interactions (see main text). The lower panel shows a sketch of random Boolean networks as simple models of gene regulation. For low (high) average connectivities they lie in the ordered (disordered) phase, with a critical point occurring close to \(K = 2 \). The table illustrates a set of logical operations (associating an output to a set of 3 different inputs) for a given node in a Boolean setting.
ation, differentiation, etc.) can be viewed as programs encoded in the dynamical attractors of gene regulatory networks (Albert and Othmer, 2003; Espinosa-Soto et al., 2004; Huang et al., 2005; Li et al., 2004).

1. Models of genetic regulatory networks

Many genes are empirically observed to exhibit bistability, i.e. their gene-expression levels can be approximated as either “high” (on) or very “low” (off) depending on conditions. Such binary states are believed to be the building blocks of genetic logical circuits (Tyson et al., 2003). Thus, genetic regulatory networks have been traditionally modeled as binary information-processing systems in which the expression level of each gene is represented by a Boolean (on/off) variable and their interactions are modeled as Boolean functions whose inputs are the states of other genes (see Fig. 6) (Kauffman, 1993; Shmulevich and Dougherty, 2010). Boolean descriptions constitute the most basic and crudest approach to gene regulatory networks; still, they are particularly adequate to analyze large networks as they reduce the overwhelming complexity of the real problem to a logical one, and they have been shown to successfully explain e.g. cell cycles (Aldana, 2003; Bornholdt, 2003; 2008; De Jong, 2002; Drossel, 2008; Gros, 2008; Kauffman, 1996; 1993; Serra et al., 2007).

In the simplest setup, the network architecture is described as a random directed network and regulatory interactions are described as random Boolean functions (Albert, 2004; Alon, 2006; De Jong, 2002; Gros, 2008; Kauffman, 1969, 1993) (see Fig. 6). So defined random Boolean networks (RBNs) can operate in different regimes, depending on e.g. their averaged connectivity. The ordered (low connectivity) is characterized by a small set of stable attractors which are largely robust to perturbations, while in the disordered phase (large connectivity) perturbations rapidly propagate and proliferate hindering the existence of truly stable states. Separating these two phases there is a critical point at which perturbations propagate marginally (Derrida and Pomeau, 1986). More complex models, with e.g. stochasticity and/or continuous levels of activity, exhibit also such two alternative phases (Rohlf and Bornholdt, 2002).

Kauffman conjectured that models operating at their critical point might provide the best possible representation of real gene regulatory networks (Kauffman, 1996), and that this might entail a large variety of essential functional advantages (Aldana et al., 2007; Kauffman et al., 2003; Krawitz and Shmulevich, 2007; Nykter et al., 2008b; Ribeiro et al., 2008; Torres-Sosa et al., 2012). In the ordered regime, convergence in state space implies that distinctions between different inputs are readily erased, precluding reliable discrimination of them. In the disordered phase, even small perturbations lead to a very large divergence of trajectories in state space precluding reliable action (Kauffman et al., 2003). Hence, criticality might confer on such networks an optimal trade-off between the robustness and accuracy that biological machinery demands and responsiveness to environmental clues (Kauffman et al., 2003). At larger evolutionary scales, criticality might provide networks with an optimal balance between robustness and evolvability under changing conditions (Aldana et al., 2007; Gershenson, 2012; Kaneko, 2012; Torres-Sosa et al., 2012; Wagner, 2005).

It remains to be clarified how could adaptive (Gell-Mann, 1994; Gros, 2008) and/or evolutionary (Nowak, 2006) mechanisms, specific of living systems, lead biological networks to operate close to criticality. Theoretical approaches tackling this question are discussed in Appendix C.

2. Gene knock-out and damage spreading

DNA microarrays or “DNA chips” are devices allowing to measure the expression levels of large numbers of genes within a cell as well as to quantify the differences in expression levels between two cells (Brown and Botstein, 1999). Also, novel technologies made it possible to perform gene knock-out experiments in which individual genes are silenced. Combining these two techniques it became possible to perform “damage spreading” experiments (Derrida and Pomeau, 1986; Rohlf et al., 2007) in which the difference in gene-expression levels between perturbed and unperturbed cells in quantitatively monitored. The statistics of the sizes of “avalanches” caused by single-gene knock-out experiments has been analyzed using empirical gene-expression data from the yeast (Sacccharomyces cerevisae) (Hughes et al., 2000), with the conclusion that the best correspondence between empirical results and (RBN) model predictions is obtained for the model operating close to its critical point (Rönng et al., 2006; Serra et al., 2007; 2004). However, as a word of caution, let us stress that, given that expression levels are noisy, it is necessary to introduce a threshold expression level to declare when a gene is differentially expressed.

34 Alternatively, it is also standard to use continuous approaches, based on reaction-kinetics differential equations (Furusawa and Kaneko, 2012; Kaneko and Hegami, 1992). See De Jong (2002) for a review.

35 More realistic network architectures including, for example, node heterogeneity and modularity have also been considered (Aldana, 2003; Poblano-Balp and Gershenson, 2011).

36 This is, beyond purely self-organization mechanisms, such as SOC, also exhibited by inanimate systems (Halley and Winkler, 2005).
expressed in the two cells. A caveat is that it is not clear what the influence of thresholding is on the definition of avalanches and on their associated (size and duration) probabilities. Thus, even if results are promising, more precise analyses are still much needed.

3. Networks from DNA microarray data

In a parallel endeavor, empirical analyses of hundreds of DNA microarray experiments allowed researchers to infer the whole network of regulatory interactions among genes, i.e. who regulates whom in a given cell (Filkov, 2005). It has been consistently found that the in-degree distribution of such regulatory networks is Poissonian, while the out-degree distribution is scale-free (see [Aldana, 2003, Drossel and Greil, 2009], and refs. therein). Performing damage-spreading computational analyses of dynamical RBN models running on top of such networks—with the empirically-determined architecture of diverse organisms such as S. cerevisiae and E. coli (Albert and Othmer, 2003)—it was concluded that they all are indeed very close to criticality, in the sense of marginality of information flow, i.e. who regulates whom in a given cell (Filkov, 2005)—algorithmic information theory has also been employed to assess the dynamical state directly from empirical measurements from DNA microarray data in a model-free way (Kauffman et al., 2003, Shmulevich et al., 2005). Analyses of empirical data (for, e.g. the macrophage) following these protocols produced results compatible with marginality in the information flow, i.e. with critical dynamics (Nykter et al., 2008).

4. Zipf’s law in gene-expression data

Inspection of gene expression databases of diverse unicellular organisms (such as yeast) reveals that the (continuous-valued) abundances of expressed genes are distributed as a power-law with exponent close to −1, obeying the Zipf’s law (Furusawa and Kaneko, 2003).37 Analyses of gene-expression time series in diverse microarrays, and computing how the difference between the information content of any two system states changes over time (Shmulevich et al., 2005).38

C. Collective behavior of cells

We have discussed the possibility of criticality within the internal networks of individual cells. But, also ensembles of cells—both in social unicellular organisms and in multicellular ones—may exhibit signatures of scale invariance and criticality in their collective behavior (Nadeil et al., 2013). For instance, in aggregates of the unicellular amoeba Dictyostelium discoideum (the “slime mold”), local cell-cell coupling via secreted chemicals may be tuned to a critical value (De Palo et al., 2017), resulting in emergent long-range communication and enhanced sensitivity. In the following we discuss some other examples in multicellular organisms.

1. Stem cell pluripotency

Large diversity in gene-expression levels has been observed in multipotent stem-cell populations of multicellular organisms (Goodell et al., 2015). Multipotent (hematopoietic) stem cells can differentiate onto either erythroid or myeloid blood cells—with rather different functionalities—depending on the expression level of a gene called Sca1 (Ridden et al., 2015). The empirically measured distribution of expression levels of Sca1 within a population of stem cells turns out to be very broad and with various local maxima. This has been modeled as a stochastic process, and it has been found that the model can exhibit two different regimes: either a stable low-Sca1 or a stable high-Sca1 regime. Separating these phases there is a line of discontinuous transitions (with bistability) finishing at a critical point. Remarkably, the best fit to gene-expression empirical data is obtained fixing model parameters close to criticality, where maximal variability of the two possible phenotypes is obtained. Thus, it seems that by adjusting near to criticality, the stem-cell population is prompt to react and produce either erythroid or myeloid cells in response to changing demands in an optimal way (Ridden et al., 2015). Similar ideas have been discussed in the more general context of collective cell decision making (Garcia-Ojalvo and Arias, 2008).
Morphogenesis is the biological process at the basis of the development of multicellular organisms. It is achieved by a precise control of cell growth, proliferation, and differentiation. As first suggested in the seminal work of Turing (1952), morphogenesis involves the creation of self-organized patterns and shapes in the embryo. A prototypical organism studied in this context is the Hydra polyp, which has a remarkable regeneration power, as an entire new individual can be spontaneously re-assembled even from dissociated cells from an adult individual (Bosch, 2007). Along such a regeneration process, first a cell bilayer is formed with a spherical (hollow) shape. How does the spherical symmetry break down to form a well-defined foot-head axis in adults? During this process, there is a gene called ks1 that becomes progressively expressed and that can be transferred to neighboring cells. It was empirically found that right at the time when the spherical symmetry is broken, the size distribution of ks1-rich domains of cells across the sphere becomes scale-free and that a spanning cluster emerges, much as in a percolation phase transition (Gamba et al., 2017; Soriano et al., 2006). Thus a critical percolation-like state with collective fluctuations of gene-expression levels is exploited to break the symmetry, defining a head-tail axis (Soriano et al., 2006, 2009).

3. Morphogenesis II: Gap genes in Drosophila

A set of so-called “gap” genes is responsible for the emergence of spatial patterns of gene-expression, that are at the origin of the formation of different segments along the head-tail axis in the development of the fruit-fly (Drosophyla) embryo. Empirical scrutiny of the expression levels of gap genes along the head-tail axis revealed a number of remarkable features that include: slow dynamics, correlations of expression-level fluctuations over large distances, non-Gaussianity in the distribution of such fluctuations, etc. Krotov et al. (2014) proposed a simple dynamical model in which the process is controlled by only two mutually repressing gap genes. Assuming that a fixed point exists, and performing a linear stability analysis to describe the fate of fluctuations, one readily finds that there is an instability point as the interaction strength between the two genes is varied. Krotov et al. (2014) argued that if the dynamics of the coupled system is tuned to operate at such an instability point, then it constitutes an excellent qualitative description of all the above-mentioned empirical findings, implying that the gene dynamics operates at criticality. This suggests that criticality helps defining patterns without a characteristic scale, as required for expanding/developing systems (see Bose and Pal (2017) and Pal et al. (2014) for a pedagogical discussion of these ideas in the general context of cell differentiation).

D. Collective motion

Collective motion of large groups of individuals is a phenomenon observed in a variety of social organisms such as flocks of birds, fish schools, insect swarms, herds of mammals, human crowds (Berdahl et al., 2013; Bonabeau et al., 1999; Couzin and Krause, 2003; Krause and Ruxton, 2002; Sumpter, 2010) and also, at smaller scales, in bacterial colonies (Nadell et al., 2013; Peruani et al., 2012; Ramaswamy, 2010; Sokolov et al., 2007), and groups of cells in general (Mehes and Vicsek, 2014). Flocking, schooling, swarming, milling, and herding constitute outstanding examples of collective phases where simple interactions between individuals give rise to fascinating emergent behavior at larger scales, even in the absence of central coordination. Flock of birds and fish schools behave as plastic entities able to exhibit coherent motion, including e.g. rapid escape manoeuvres when attacked by predators, which confers obvious fitness advantages to the group as a whole (Couzin, 2007, 2009).

Such collective phenomena have attracted the attention of statistical physicists who have tackled the problem employing: (i) individual-based models of self-propelled particles such as the one in Vicsek et al. (1995) which models collective motion by assuming that an individual in a group essentially follows the trajectory of its neighbors, with some deviations treated as noise40 and (ii) continuum (hydrodynamic) theories, more amenable to theoretical analysis (Toner and Tu, 1995; Toner et al., 2005). These approaches have in common the existence of phase transitions between phases of coherent and incoherent motion. For example, in the Vicsek model, a phase transition from an ordered “flocking phase” to a disordered “swarming phase” occurs when the density of individuals goes below a given threshold or, for a fixed density, when the level of stochasticity is large. This is consistent with experimental findings: e.g. Buhl et al. (2006) investigated the social behavior of locusts and reported on a density-driven phase transition from disordered movement of individuals to highly aligned collective motion as density is increased (Dyson et al., 2015). At a conceptual level, marginally coordinated (critical) motion can be hypothesized to constitute an optimal

40 See Chaté et al. (2008); Chaté et al. (2008); Ginelli (2016); and Grégoire and Chaté (2014) for detailed statistical-mechanics analyses of Vicsek models and variants of it.
tradeoff to deal with conflicting imperatives such as e.g. (i) the need to behave cohesively as a unique entity and (ii) being highly responsive to information from transitively well-informed individuals ([Coulon et al., 2011, 2005, De Vincenzo et al., 2017, Vanni et al., 2011]). Similar dichotomies exist in the empirical examples we discuss now.

1. Flocks of birds

On the empirical side, pioneering work by Cavagna, Giardina and collaborators ([Ballerini et al., 2008, Cavagna et al., 2010]) on starling flocks allowed to record individual trajectories (with purposely devised tracking technology). By analyzing the fluctuations in individual velocity with respect to the average velocity of the group, these studies provided remarkable evidence that long-range scale-invariant correlations may be a general feature in systems exhibiting collective motion. In particular, experimentally measured correlations—both in orientation and speed fluctuations—were found to grow with flock size in large flocks, suggesting that a correlation length much larger than the interaction range, could be a common trait of self-organized groups needing to achieve large-scale coordination ([Cavagna et al., 2010]).

Let us note that the scale-free correlations in the orientation might be attributed to the broken continuous (rotational) symmetry, which as discussed in Appendix A leads to generic scale-invariance. However, the presence of scale-free correlations in the (scalar) speed fluctuations cannot be explained in this way, suggesting that the flock might be tuned to a critical point with maximal susceptibility. Furthermore, experiments on starling flocks also allow to measure how the information of the turning of one individual propagates across the flock, revealing that this occurs in a very fast and efficient way, which can be taken as a direct evidence of the existence of scale-free correlations in flocks ([Attanasi et al., 2014a]).

Bialek et al. [2012] applied a maximum entropy method to construct a statistical model consistent with the empirically measured correlations (see Appendix B). They concluded that the interaction strength and the number of interacting neighbors do not change with flock size in the probabilistic model; and, more importantly, the model was able to reproduce scale-free correlations in velocity fluctuations. It was observed (i.e. inferred from data) that this occurs as a result of the effective model’s operating close to its critical point ([Bialek et al., 2014, Mora and Bialek, 2011, Mora et al., 2016]).

Furthermore, performed

2. Insect swarms

Extensive field analyses of insect (midge) swarms—which, unlike birds traveling in a flock, hover around a spot on the ground—have also been performed ([Attanasi et al., 2014b, Cavagna et al., 2017, Chaté and Muñoz, 2014]). By employing finite-size analyses of the data, Attanasi et al. showed that both the correlation length and the susceptibility grow with the swarm size, while the spacing between midges decreases. Moreover, such changes with swarm size occur as in the Vicsek model for finite-size systems sitting near the maximally correlated point of their transition region at each finite size. Thus, midges obey spatio-temporal scaling and, to achieve it, they seem to regulate their average distance or density (which acts as a control parameter) so as to function close to criticality ([Attanasi et al., 2014b, Cavagna et al., 2017, Chaté and Muñoz, 2014]). On the contrary, laboratory experiments of small swarms do not indicate critical behavior, which may signal that it only arises in “natural conditions” or for larger sizes ([Kelley and Ouellette, 2013, Puckett and Ouellette, 2014]).

3. Mammal herds

Social herbivores (Merino sheep) have also been studied in well-controlled environments, revealing the existence of two conflicting needs: (i) the protection from predators offered by being part of a large cohesive group and (ii) the exploration of foraging space by wandering individuals. Sheep resolve this conflict by alternating a slow foraging phase, during which the group spreads out, with fast packing events triggered by individual behavioral shifts, leading to intermittent collective dynamics with packing events of all accessible scales, i.e. a “near critical” state ([Ginelli et al., 2015]).

4. Social-insect foraging strategies

Studies of ant foraging strategies have been recently performed ([Beckman et al., 2001, Bhattacharya and Vicsek, 2014, Gallotti and Chialvo, 2017, Li et al., 2014, Loengarov and Tereshko, 2008, Solé, 2011]). For ant colonies to achieve an efficient foraging strategy, a tradeoff needs to be reached between exploratory behavior of some individuals and predominant compliance with the rules ([Feinerman and Korman, 2017]). It has been found by using

Similar results have been obtained for aggregates of a social amoeba (slime mold) ([De Palo et al., 2017]), as well as for colonies of the bacterium *Bacillus subtilis* in the experimental setup of Chen et al. [2012] (but not in that of Sokolov et al. [2007], which reveals only short-range correlations).

The Vicsek model exhibits, at least for not-too-large sizes, a wide regime where correlations peak at the transition and finite-size-scaling holds ([Baglietto et al., 2012, Chaté et al., 2008, Grégoire and Chaté, 2004, Vicsek et al., 1999]).
a combination of experiments and theory that some ant
groups optimize their overall performance by sitting at
the edge of a phase transition between random explo-
ration and gregarious strategies, thus resulting in effec-
tive criticality. This entails efficient group-level process-
ing of information emerging out of an optimal amplifica-
tion of transient individual information [Gelblum et al.
2015]. Similar ideas are being presently explored for the
design of artificial systems, i.e. in swarm robotics [Beni
2004 Erskine and Herrmann 2014].

To further enrich this bird’s-eye view over different as-
pects of criticality in biological systems, a miscellaneous
collection of other examples from the literature is pre-

V. DISCUSSION

The hypothesis that living systems may operate in the
vicinity of critical points, with concomitant scale-

criticality, has long inspired scientists. From a theoreti-
cal viewpoint this conjecture is certainly appealing, as it
suggests an overarching mechanism exploited by biolog-
ical systems to derive important functional benefits es-
etial in their strive to survive and proliferate. The list
of possible critical features susceptible to be harnessed
by living systems include the unparalleled sensitivity to
stimuli, the existence of huge dynamical repertoires, max-
imal transmission and storage of information, as well as
optimal computational capabilities, among others. When
living systems are interpreted as information-processing
devices –needing to operate robustly but, at the same
time, having to cope with diverse environmental changes–
the virtues of critical behavior are undeniable. Criticality
represents a simple strategy to achieve a balance between
robustness (order) and flexibility (disorder) needed to de-
rive functionality. Similar tradeoffs, as discussed along
the paper (e.g. between stability and evolvability) un-
derline the potential of operating at the edge between
different types of order.

Throughout this essay we focused dynamical aspects of
criticality, meaning that in most of the discussed
elements it is assumed –either directly or indirectly–
that there is an underlying dynamical process at work,
and that such a process –susceptible to be mathemati-
cally modeled– operates in the vicinity of a continuous
phase transition, at the borderline between two alterna-
tive regimes. Such a dynamical perspective is essentially
different from the purely statistical (or static) one, as de-
scribed e.g. in Mora and Bialek (2011). In this latter, the
focus is on analyzing the statistics of existing patterns; it
has the great advantage that it harnesses existing high-
quality empirical datasets. On the other hand, it disre-
gards the possible dynamical generative mechanisms be-

aspect is that the two alternative phases that the alleged criticality separates should be clearly identified in each case. From this view, we find particularly appealing pieces of evidence (e.g. in neuroscience) in which, by experimentally inducing alterations to standard conditions, deviations from criticality are measured in otherwise critical-looking systems.

A general criticism can be raised to some of the analyses discussed along this work, specifically, to those in which the evidence relies on the existence of a theoretical model that provides, when tuned close to its critical point, the best possible fit to empirical observations. The criticism is that, if feature-rich empirical data with structures spanning over broadly diverse scales are considered, then it seems almost a tautology to conclude that the best possible representation of them is obtained by fitting the proposed dynamical model to operate close its critical point, as this is typically the only region in parameter space where complex (feature-rich) patterns, with many scales, are generated. In contrast, from an opposite perspective, if actual biological data are structured across many scales, it does not seem too far fetched to assume –applying the Occam’s razor– that a general common mechanism may underlie the emergence of such a hierarchy of scales, and the main candidate mechanism for this consists in operating at the edge of a continuous phase transition, i.e. being close to criticality. Thus, we are confronted with a (epistemological) dichotomy: Is the putative criticality of living systems just a reflection of the limitation of our models which can possibly resemble large levels of “complexity” only at criticality? or, on the contrary, is criticality actually a common organizing principle at the roots of the generation of many levels of organization required for complex biological behavior to emerge? Providing a satisfactory answer to these questions is a problem of outmost importance to advance in the theoretical understanding and modeling of complex living systems.

Even if diverse biological systems were finally proved to be genuinely critical, some researchers might still retain this conclusion as largely uninformative or even irrelevant. It could be asked: “so what?” What practical implications could be derived from such a knowledge? In our opinion, the design of strategies to control neural/genetic networks –especially those aiming at resolving pathologies– based on notions of criticality, the construction of algorithms of artificial intelligence exploiting scale-invariance at different layers, or the application of ideas of collective motion/intelligence to the design of e.g. swarms of robots, could constitute important avenues to provide constructive answers to the above question.

Novel advances, both at the experimental and theoretical sides, will help elucidating what is the actual role played by criticality and scale invariance in biological systems; meanwhile the mere possibility remains as inspiring as ever and, definitely, worth pursuing.

ACKNOWLEDGMENTS

I am deeply indebted to the collaborators with whom I had the pleasure and privilege of studying some of the topics discussed here; among them: G. Grinstein, P.L. Garrido, J.A. Bonachela, A. Maritan, J. Marro, F. de los Santos, P.I. Hurtado, J.J. Torres, J. Cortés, S. Johnson, R. Burioni, S. Suweis, A. Gabrielli, C. Castellano, S. Pigolotti, M. Cencini, A. Vespignani, R. Dickman, S. Zapperi, Y. Tu, D. Plenz, as well as to H. Chaté for his collaboration and encouragement in the early stages of this project. I am especially thankful to P. Moretti, J. Hidalgo, P. Villegas, L. Seoane, J. Soriano, S. di Santo and V. Buendia, for extremely useful comments on early versions of the manuscript. I acknowledge the Spanish-MINECO, grant FIS2017-84256-P (FEDER funds) for financial support.

APPENDIX A: GENERIC SCALE INVARIANCE

There are situations in which spatio-temporal scaling may emerge without the need of parameter fine tuning (Grinstein 1991). (i) A well-known example is the breaking of a continuous symmetry in low-dimensional systems, as it happens e.g. in some models of magnetism in which each spin can point in any arbitrary direction in a plane (Binney et al. 1993). These systems, instead of the usual ordered phase at low temperature, exhibit a broad “quasi-ordered” phase characterized by local order together with generic power-law decaying correlations (Grinstein 1991). This type of ordering is relevant for bacterial-colony patterns (Ramos et al. 2008) as well as in the analysis of collective motion (see Sect. IV-C).

(ii) Generic scale invariance can also emerge in the presence of structural disorder or heterogeneity. In statistical physics, one refers to “quenched disorder” as the form of spatial-dependent heterogeneity which is intrinsic to the microscopic components and remains frozen in time, reflecting structural heterogeneities. Quenched disorder can alter the nature of phase transitions (Villa Martín et al. 2014, Vojta 2006) and can also induce novel phases absent in homogeneous systems. For instance, in the contact process, quenched disorder can be implemented by considering a lattice with some missing links, a more complex (disordered) network of connections, and/or a node-dependent propagation rate λ. In all these cases, a novel phase called a Griffiths phase –characterized by critical-like features appearing all across the phase and not just at a unique point– emerges (Cafero et al. 1998, Moreira and Dickman 1996, Muñoz et al. 2010, Vojta 2006).

(iii) Another mechanism that produces a type of generic scale-invariance relevant in biological systems (see e.g. Sect. IV-A7) is “neutral dynamics”. Neutral
Theories play a key role in population genetics [Kimura, 1984], population ecology [Azaele et al., 2016; Hubbell, 2001], epidemics [Pinto and Munoz, 2011], etc. They have in common the fact that differences among possible coexisting “species” (let them be alleles of a gene, types of trees, bacterial strains,...) are neglected. In other words, all “species” are dynamically equivalent or neutral [Blythe and McKane, 2007; Dornic et al., 2001; Liggett, 2004]. It has been recently shown that in a (“multispecies”) contact process that includes different types/species of activity, if a new species –neutral to the exiting ones– is introduced, it experiences a stochastic process in which its total population does not have a net tendency to either grow or shrink. This generates generally scale-free avalanches of the focal species unfolding in a sea of activity of the other species, without the need to invoke criticality [Martinello et al., 2017].

APPENDIX B: PROBABILISTIC MODELS AND STATISTICAL CRITICALITY

Probabilistic models can be constructed such that they match the statistics of observed empirical data [Rieke et al., 1995] Without loss of generality, an empirically observed pattern at a given time window can be codified as a sequence of binary variables of length N: \(s_i = 0, 1 \) for \(i = 1, 2, ..., N \). Denoting \(P(s) \) the (unknown) probability of finding the system in the state \(s = (s_1, s_2, ..., s_N) \) it is possible to approximate it by a distribution function with the constraint that it reproduces the empirically-measured mean values \(\langle s_i \rangle \) for all \(i \), as well as the covariances \(\langle s_i s_j \rangle \) for all \(i, j \). Imposing a maximum entropy principle (i.e. selecting the model with the smallest number of assumptions) it is straightforward to derive the explicit form of the optimal model

\[
P(s) = \frac{1}{Z} \exp \left[\sum_{i < j} J_{ij} s_i s_j + \sum_{i} h_i s_i \right]
\]

where \(Z \) ensures normalization and which coincides with the Boltzmann equilibrium distribution of the Ising-like model, and where the free parameters \(h_i \) and \(J_{ij} \) need to be fitted, so that the imposed constraints are satisfied [Ackley et al., 1985].

Bialek and coworkers introduced an effective parameter \(\beta \) —much as an inverse temperature in equilibrium statistical mechanics— multiplying each estimated parameter

\[
P(s) = \frac{1}{Z} \exp \left[-\beta \sum_{i < j} J_{ij} s_i s_j - \beta \sum_{i} h_i s_i \right]
\]

in the inferred model Eq.(5). Clearly, varying \(\beta \) a relative change of the weights assigned to different configurations is produced. In this way one generates a family of \(\beta \)-dependent probability distributions, \(P(s|\beta) \), interpolating between the low and high temperature phases. At some intermediate value, \(\beta_c \), there is a critical point (as identified e.g. by a peak in the susceptibility or the specific heat). It has been found that diverse inference problems (from retinal populations [Schneidman et al., 2006; Tkacik et al., 2014, 2013, 2015] to flocks of birds [Bialek et al., 2012], and the immune system [Mora et al., 2010]) produce models in which \(\beta_c \approx 1 \), –or converges to 1 as the system size is enlarged—it that inferred models appear to be close to the very critical point of the underlying Ising-like problem (see Mora and Bialek, 2011 for a clear and pedagogical discussion of these issues).

Let us also mention that there is an ongoing debate on the interpretation of these results. In particular, it has been shown that signatures of criticality may emerge naturally in inferred models if there is a marginalization over non-observed variables, such as e.g. correlated external inputs, even without the need for direct interactions among units [Aitchison et al., 2016] and Schwab et al., 2013. More in general, Marsili and collaborators pointed out that the alleged criticality of such models can be a rather general consequence of the inference procedure, meaning that inferred models fitting real-world (“feature-rich” or “informative”) data do, most likely, look critical when an effective probabilistic model is constructed [Haimovici and Marsili, 2015; Marsili et al., 2013; Mastromatteo and Marsili, 2011; Tyrcha et al., 2013]. We shall not delve further into the controversy about the meaning and significance of this type of purely statistical approaches to criticality (see also the Discussion section).

APPENDIX C: ADAPTATION AND EVOLUTION TOWARDS CRITICALITY

To shed light onto the general problem of how information-processing (living) systems tune themselves to operate near critical points, Goudarzi et al., 2012 considered an ensemble of individuals or “agents”, each represented as an internal RBN, including some input nodes (able to read information from the environment) and some readout nodes (providing outputs/responses). Such agents evolve though a genetic algorithm [Goldberg and Holland, 1988] that allocates larger “fitness” values to agents that perform better a series of computational tasks (each one consisting in assigning a given output to

43 In information theory, the entropy of a probability distribution quantifies the ignorance about the variable; thus, making no assumptions about the distribution is equivalent to maximizing the entropy [Banavar et al., 2010a; Cover and Thomas, 1991].

44 Obtaining the optimal parameter set –i.e. inferring effective interactions from correlations– is a computationally costly task, usually referred as “inverse Ising problem” [Aurell and Ekeberg, 2012; Cocco et al., 2009; Schneidman et al., 2006].

45 At \(\beta = 0 \) (infinite temperature) all configurations are equiprobable, while in the opposite limit all the weight concentrations on the most likely (fully ordered) configuration.
each specific input), which are alternated in time. The conclusion is that agents converge to a state close to criticality; i.e. critical dynamics emerge as the optimal solution under the combined selective pressures of having to learn different tasks and being able to readily shift among them, following changes in the tasks. Instead, in the presence of noise, optimal agents tend to be slightly subcritical, rather than critical, thus compensating for extrinsic sources of variability (Villegas et al., 2016). In a similar approach, Hidalgo et al. (2014) showed that communities of similar adaptive agents, whose task is to communicate with each other (inferring their respective internal states) in an efficient way, converge to quasi-critical states. This result constitutes a possible parsimonious explanation for the emergence of critical-like behavior in groups of individuals coordinating themselves as a collective entity (Hidalgo et al., 2016) (see also Iliopoulos et al. (2010)).

APPENDIX D: OTHER PUTATIVELY CRITICAL LIVING SYSTEMS

Here we briefly discuss, a sample of other biological systems for which empirical evidences of criticality exist.

Cell membranes. Cell membranes are not just rigid impenetrable walls separating the interior of cells from the outside environment; they regulate the kind, direction, and amount of substances that can pass across them. Cell membranes are permeable only at some locations and, for this, their local composition needs to be heterogeneous (Cicuta, 2013; Hyman and Simons, 2012; Lee et al., 2013). There is compelling empirical evidence that the mixture of lipids that constitute the skeleton of cell membranes operates very close to the (de-mixing) phase transition at which their different components segregate (Cicuta, 2013; Ehrlig et al., 2011; Honerkamp-Smith et al., 2008; Veatch et al., 2008; 2007). In this way, composition fluctuations are extremely large, enabling very diverse structural domains to appear, thus providing the membrane with a large spectrum of possible local structures, at which different processes may occur and, entailing a rich repertoire of functionalities.

RNA viruses. RNA viruses are believed to replicate at the edge of an “error catastrophe”. If the error rates for copying the viral genome were very small RNA viruses would have little variability, hindering adaptation and evolution. Instead, if they were too large then the viruses would have little variability, hindering adaptation rates for copying the viral genome were very small RNA cate at the edge of an “error catastrophe”. If the error occur, and entailing a rich repertoire of functionalities.

Physiological rhythms. The presence of temporal scale-invariance in physiological rhythms of healthy subjects, as well as its break-down in abnormal conditions, have been long explored (Bassingthwaighte et al., 1994; Goldberger et al., 2002; Losa, 1995). In particular, to mention one example, a specific connection between the complex fluctuations of human heart-rate variability and criticality has been put forward (Ivanov et al., 1999; Kiyono et al., 2004; 2005). In the related context of blood-pressure regulation, vaso-vagal syncopes have been identified as large “avalanches” in a self-organized cardiovascular regulatory system poised at criticality (Fortrat and Gharib, 2016). In general, such a regulation to scale-free behavior seems to impart health advantages, including system integrity and adaptability (Goldberger et al., 2002).

Miscellanea. Criticality has also been claimed to play a relevant role in the immune system (Burgos and Moreno-Tovar, 1996; Mora et al., 2010), cancer and carcinoogenesis (Davies et al., 2011; Rosenfeld, 2013; Solé and Deisboeck, 2004; Solé, 2008b), proteins (Phillips, 2009; Tang et al., 2017), mitochondria (Aon et al., 2004; Zampioni et al., 2018), etc. Also, quantum criticality and its relevance for the origin of life at the microscopic scale has been the subject of a recent proposal (Vattay et al., 2015). Finally, let us mention that ecosystems as a whole have been studied—from a macroevolutionary viewpoint—as dynamical structures lying at the edge of instability (Adami, 1995; Bak and Sneppen, 1993; Birolí et al., 2017; Neppen et al., 1995; Solé et al., 2002a; 1999; Suweis et al., 2013), illustrating that the ideas discussed here can be extended to larger scales in the hierarchy of biological complexity.

REFERENCES

Abbott, L., and C. van Vreeswijk (1993), Phys. Rev. E 48 (2), 1483.
Acebó, J. A., L. L. Bonilla, C. J. Pérez-Vicente, F. Ritort, and R. Spigler (2005), Rev. Mod. Phys. 77, 137.
Ackley, D., G. Hinton, and T. Sejnowski (1985), Cognitive Science 9 (1), 147.
Adami, C. (1995), Phys. Lett. A 203, 29.
Aitchison, L., N. Corradi, and P. Latham (2016), PLoS Comp. Biol. 12 (12), e1005110.
Akaïke, H. (1969), Ann. Inst. of Stat. Math. 21 (1), 243.
Albert, R. (2004), in Complex networks (Springer) pp. 459–481.
Albert, R., and A.-L. Barabási (2002), Rev. Mod. Phys. 74, 47.
Albert, R., and H. Othmer (2003), J.Theor.Biol. 223 (1), 1.

46 Error catastrophe has been considered for treatment of viral infections employing drugs that push the error rate beyond this threshold; see Summers and Litwin (2006) for a critical review.
Lukoševičius, M., H. Jaeger, and B. Schrauwen (2012), KI-Künstliche Intelligenz 26 (4), 365.
Luque, B., and A. Ferrera (2000), Complex Systems 12, 241.
Maass, W., T. Natschlager, and H. Markram (2002), Neural Comput. 14, 2531.
MacArthur, B. D., R. J. Sánchez-García, and A. Maayan (2010), Phys. Rev. Lett. 104 (16), 168701.
Magnasco, M. O. (2003), Phys. Rev. Lett. 90 (5), 058101.
Magnasco, M. O., O. Piro, and G. A. Cecchi (2009), Phys. Rev. Lett. 102 (25), 258102.
Mandelbrot, B. (2002), Gaussian self-affinity and fractals: Globality, the earth, 1/f noise, and R/S. Vol. 8 (Springer Science & Business Media).
Mandelbrot, B. B. (1983), The fractal geometry of nature, Vol. 173 (Macmillan).
Manna, S. (1991), J. of Phys. A: Mathematical and General 24 (7), L363.
Marković, D., and C. Gros (2014), Phys. Rep. 536 (2), 41.
Markram, H. (2006), Nature Rev. Neurosci. 7 (2), 153.
Markram, H., and M. Tsodyks (1996), Nature 382, 807.
Markram, H., et al. (2015), Cell 163 (2), 456.
Marre, O., D. Amodei, N. Desmukh, K. Sadeghi, F. Soo, T. E. Holy, and M. J. Berry (2012), J. Neurosci. 32 (43), 14859.
Marro, J., and R. Dickman (1999), Nonequilibrium Phase Transition in Lattice Models (Cambridge University Press).
Marsili, M., I. Mastromatteo, and Y. Roudi (2013), J. Stat. Mech. 2013 (09), P09003.
Marsili, M., and Y.-C. Zhang (1998), Phys. Rev. Lett. 80 (12), 2741.
Martin, P., A. Hudspeth, and F. Jülicher (2001), Proc. Natl. Acad. Sci. USA. 98 (25), 14380.
Martinello, M., J. Hidalgo, A. Maritan, S. di Santo, D. Plenz, and M. A. Muñoz (2017), Physical Review X 7 (4), 041071.
Massobrio, P., L. de Arcangelis, V. Pasquale, H. J. Jensen, and D. Plenz (2015), Criticality as a signature of healthy neuronal systems: multi-scale experimental and computational studies .4.
Mastromatteo, I., and M. Marsili (2011), J. Stat. Mech. 2011 (10), P10012.
Mattia, M., and M. V. Sanchez-Vives (2012), Cognitive neurodynamics 6 (3), 239.
Mazzoni, A., F. D. Brocard, E. Garcia-Perez, P. Bonifazi, M. E. Rauo, and V. Torre (2007), PloS One 2 (5), e439.
Méhes, E., and T. Vicsek (2014), Integrative Biol. 6 (9), 831.
Mehta, P., and D. J. Schwab (2014), arXiv:1410.3831.
Meisel, C., and T. Gross (2009), Phys. Rev. E 80 (6), 061917.
Meisel, C., E. Olbrich, O. Shriki, and P. Achermann (2013), J. Neurosci. 33 (44), 17363.
Meisel, C., A. Storch, S. Hallmeyer-Elgner, E. Bullmore, and T. Gross (2012), PloS Comput. Biol. 8 (1), e1002312.
Meister, M., R. Wong, D. A. Baylor, and C. J. Shatz (1991), Science 252 (5008), 939.
Mejias, J. F., H. J. Kappen, and J. J. Torres (2010), PLoS One 5 (11), e13651.
Melanie, M. (1993), Complexity: Metaphors, Models, and Reality.
Meunier, D., R. Lambiotte, and E. T. Bullmore (2010), Front. Neurosci. 4, 200.
Millman, D., S. Mihalas, A. Kirkwood, and E. Niebur (2010), Nat. Phys. 6 (10), 801.
Ming, L., and P. Vitányi (2014), Algorithms and Complexity, 187.
Mitznenmacher, M. (2002), Internet Mathematics 1, 226.
Mora, T., and W. Bialek (2011), J. Stat. Phys. 144 (2), 268.
Mora, T., S. Deny, and O. Marre (2015), Phys. Rev. Lett. 114 (7), 078105.
Mora, T., A. Walczak, W. Bialek, and C. Callan Jr (2010), Proc. Natl. Acad. Sci. USA. 107 (12), 5405.
Mora, T., A. M. Walczak, L. Del Castello, F. Cinelli, S. Melillo, L. Parisi, M. Viale, A. Cavagna, and I. Giardina (2016), Nat. Phys. 12 (12), 1153.
Moreau, L., and E. Sontag (2003), Phys. Rev. E 68 (2), 020901.
Moreira, A. G., and R. Dickman (1996), Phys. Rev. E 54 (4), R3090.
Moretti, P., and M. A. Muñoz (2013), Nature Comm. 4.
Muñoz, M. R., Juhász, C. Castellano, and G. Ódor (2010), Phys. Rev. Lett. 105, 128701.
Murphy, B. K., and K. D. Miller (2009), Neuron 61 (4), 635.
Nadell, C. D., V. Bucci, K. Drescher, S. A. Levin, and B. L. Bassler, and J. B. Xavier (2013), Proc. R. Soc. B 280 (1755), 20122770.
Newman, M. E. J. (2003), SIAM Review 45 (2), 167.
Newman, M. E. J. (2005), Contemp Phys 46 (5), 323 cond-mat/0412004.
Newman, M. E. J. (2010), Networks: An Introduction (Oxford University Press).
Newman, S. A., G. Forgacs, B. Hinner, C. W. Maier, and E. Sackmann (2004), Phys. Biol. 1 (2), 100.
Nemenman, M., C. Behrens, P. Berens, M. Bethge, and J. H. Macke (2017), PLoS Comp. Biol. 13 (10), e1005718.
Novikov, E. A., A. Novikov, D. Shannahoff-Khalsa, B. Schwartz, and J. Wright (1997), Phys. Rev. E 56 (3), R2387.
Nowak, M. A. (2006), Evolutionary dynamics (Harvard University Press).
Nykyter, M., N. D. Price, M. Aldana, S. A. Ramsey, S. A. Kauffman, L. E. Hood, O. Yli-Harja, and I. Shmulevich (2008a), Proc. Natl Acad. Sci. USA. 105 (6), 1897.
Nykyter, M., N. D. Price, A. Larjo, T. Aho, S. A. Kauffman, O. Yli-Harja, and I. Shmulevich (2008b), Phys. Rev. Lett 100 (5), 058702.
Ódor, G. (2008), Universality in Nonequilibrium Lattice Systems: Theoretical Foundations (World Scientific, Singapore).
Olami, Z., H. J. S. Feder, and K. Christensen (1992), Phys. Rev. Lett. 68 (8), 1244.
Oprisa, D., and P. Toth (2017a), arXiv:1702.08039.
Oprisa, D., and P. Toth (2017b), arXiv:1705.11023.
Ospeck, M., V. M. Eguíluz, and M. O. Magnasco (2013), Biophy. J. 106 (2), 2597.
Packard, N. H. (1988), Adaptation toward the edge of chaos (University of Illinois at Urbana-Champaign, Center for Complex Systems Research).
Pal, M., S. Ghosh, and I. Bose (2014), Phys. Biol. 12 (1), 016001.
Palmigiano, A., T. Geisel, F. Wolf, and D. Battaglia (2017), Nature Neurosci. 20 (7), 1014.
Palva, J. M., A. Zhigalov, J. Hirvonen, O. Korhonen, K. Linkenkaer-Hansen, and S. Palva (2013), Proc. Nat. Acad. Sci. USA 110 (9), 3585.
Parfitt, D.-E., and M. M. Shen (2014), Phil. Trans. R. Soc. B 369 (1657), 20130542.
Parga, N., and L. F. Abbott (2007), Front. Neurosci. 1, 4.
Parisi, G. (1993), Physics World 6 (9), 42.
Pasquale, V., P. Massobrio, L. Bologn, M. Chiappalone, and S. Martinoua (2008), Neuroscience 153 (4), 1354.
