SUPPLEMENTARY MATERIAL

A new sesquiterpene from the South China Sea gorgonian coral *Subergorgia suberosa*

Mu-Wu Xu, Yuan-Tao Hao*

School of Public Health, Sun Yat-Sen University, Guangzhou 510275, P.R.China

Corresponding author. E-mail: hytsunys@163.com
A new sesquiterpene from the South China Sea gorgonian coral

Subergorgia suberosa

A new sesquiterpene, namely suberosoid (1), was isolated from the South China Sea gorgonian coral *Subergorgia suberosa*. The chemical structure of 1 was established as an unusual sesquiterpene containing 4-methylenecyclohex-2-enone system, by extensive analyses of NMR spectroscopy and high-resolution mass spectrometry. Suberosoid (1) exhibited cytotoxic effect against HeLa cell lines with IC₅₀ value being 10.6 μM.

Keywords: Gorgonian coral; *Subergorgia suberosa*; Sesquiterpene; Cytotoxicity
Table S1: 1H (500 MHz), 13C (125 MHz) data of compound 1 in CD$_3$OD

No.	δC (mult.)	δH (mult., J in Hz)
1	207.1 (C)	
2	125.8 (CH)	5.86 (d, $J = 10.0$ Hz)
3	149.3 (CH)	7.21 (d, $J = 10.0$ Hz)
4	144.1 (C)	
5	24.7 (CH$_2$)	2.19 (ddd, $J = 14.0, 2.0, 1.5$)
6	43.7 (CH)	1.70 (ddd, $J = 14.0, 12.0, 1.5$)
7	22.2 (CH$_2$)	1.61 (m)
8	33.9 (CH$_2$)	1.52 (m), 1.34 (m)
9	47.0(C)	
10	44.0 (CH)	2.74 (dd, $J = 2.0, 1.5$)
11	122.9 (CH$_2$)	5.65 (s), 5.54 (s)
12	73.2 (C)	
13	27.2 (CH$_3$)	1.19 (s)
14	26.8 (CH$_3$)	1.20 (s)
15	20.0 (CH$_3$)	1.26 (s)
Figure legends

Figure S1. Key 1H-1H COSY and HMBC correlations of 1

Figure S2. Key NOESY correlations of 1

Figure S3. 1H NMR (500 MHz, CD$_3$OD) of 1

Figure S4. 13C NMR (125 MHz, CD$_3$OD) of 1

Figure S5. COSY (500 MHz, CD$_3$OD) of 1

Figure S6. HSQC (500 MHz, CD$_3$OD) of 1

Figure S7. HMBC (500 MHz, CD$_3$OD) of 1

Figure S8. HMBC (500 MHz, CD$_3$OD) of 1 (part 1)

Figure S9. HMBC (500 MHz, CD$_3$OD) of 1 (part 2)

Figure S10. HMBC (500 MHz, CD$_3$OD) of 1 (part 3)

Figure S11. NOESY (500 MHz, CD$_3$OD) of 1

Figure S12. NOESY (500 MHz, CD$_3$OD) of 1 (part 1)

Figure S13. NOESY (500 MHz, CD$_3$OD) of 1 (part 2)

Figure S14. HRMS of 1
Figure S1. Key 1H-1H COSY and HMBC correlations of 1

Figure S2. Key NOESY correlations of 1
Figure S3. 1H NMR (500 MHz, CD$_3$OD) of compound I.
Figure S4. 13C NMR (125 MHz, CD$_3$OD) of compound I.
Figure S5. 1H-1H COSY (500 MHz, CD$_3$OD) of compound 1.
Figure S6. HSQC (500 MHz, CD$_3$OD) of compound 1.
Figure S7. HMBC (500 MHz, CD$_3$OD) of compound 1
Figure S8. HMBC (500 MHz, CD$_3$OD) of compound 1 (part 1)
Figure S9. HMBC (500 MHz, CD$_3$OD) of compound 1 (part 2)
Figure S10. HMBC (500 MHz, CD$_3$OD) of compound 1 (part 3)
Figure S11. NOESY (500 MHz, CD3OD) of compound 1
Figure S12. NOESY (500 MHz, CD$_3$OD) of compound 1 (part 1)
Figure S13. NOESY (500 MHz, CD$_3$OD) of compound 1 (part 2)
Figure S14. HRMS of compound 1.