Thicknes-induced metal to insulator transition in Ru nanosheets probed by photoemission spectroscopy: Effects of disorder and Coulomb interaction

Daiki Ootsuki1*, Kenjiro Kodera1, Daiya Shimonaka1, Masashi Arita2, Hirofumi Namatame2, Masaki Taniguchi3, Makoto Minohara3, Koji Horiba3, Hiroshi Kumigashira3, Eiji Ikenaga4, Akira Yasui5, Yoshiharu Uchimoto1, Satoshi Toyoda5, Masahito Morita6, Katsutoshi Fukuda6 & Teppei Yoshida1*

We investigated the electronic structures of mono- and few-layered Ru nanosheets (N layers (L) with N = 1, ~6, and ~9) on Si substrate by ultra-violet and x-ray photoemission spectroscopies. The spectral density of states (DOS) near E_f of ~6 L and 1 L is suppressed as it approaches E_f in contrast to that of ~9 L, which is consistent with the Ru 3 d core-level shift indicating the reduction of the metallic conductivity. A power law g(ε) ∝ |ε − ε_F|^α well reproduces the observed spectral DOS of ~6 L and 1 L. The evolution of the power factor α suggests that the transition from the metallic state of ~9 L to the 2-dimensional insulating state with the soft Coulomb gap of 1 L through the disordered 3-dimensional metallic state of ~6 L.

The discovery of 2-dimensional crystal composed of a carbon monolayer, so called graphene, has evoked much attention to the physical properties in the atomic layer limit as well as applied researches for the electronic and photonic devices. What is interesting about atomic layer crystals such as graphene, silicene, germanene, and stanene is the different physical properties from the bulk nature. Recently, 2-dimensional material Ru nanosheet consisting of a single element Ruthenium was successfully synthesized by topotactic reaction method. The schematics of the mono- and few layerd Ru nanosheets are displayed in Fig. 1. The optical absorption spectra of Ru nanosheets highly depend on the number of layers, indicating the disappearance of the metallic conductivity in mono-layered (1 L) and bi-layered Ru nanosheets (2 L). Toyoda et al. suggested that the ligancy-driven covalency and the metallicity abruptly occur between bilayer (2 L) and trilayer (3 L) Ru nanosheets. Controlling the metallicity by the number of layers is promising applications associated with microelectronics. However, the mechanism responsible for the non-metallic behavior in the mono-layered Ru nanosheets is unknown.

In this work, we investigated how the electronic structure evolves from the mono-(1 L) to few layered Ru nanosheets ~6 and ~9 L on Si substrate by performing photoemission spectroscopy in order to clarify the mechanism of the disappearance of the metallic conductivity. We observed the chemical shifts of Ru 3 d core-level spectra and the suppression of the spectral weight at Fermi-level (E_F) with decreasing the number of stacking layers.

1Graduate School of Human and Environmental Studies, Kyoto University, Sakyoku, Kyoto, 606-8501, Japan. 2Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-hiroshima, 739-0046, Japan. 3Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan. 4Institute of Materials Science and Engineering, Kyoto University, Sakyoku, Kyoto, 606-8501, Japan. 5Office of Society-Academia Collaboration for Innovation, Kyoto University, Sakyoku, Kyoto, 606-8501, Japan. *email: ootsuki.daiki.4z@kyoto-u.ac.jp; yoshida.teppei.8v@kyoto-u.ac.jp
These indicate the disappearance of the metallic conductivity in the mono-layered Ru nanosheets. Moreover, we reproduced the spectral weight near E_F using a power law $g(\varepsilon) \propto |\varepsilon - E_F|^{\alpha}$. The evolution of the power factor α suggests that the transition from the metallic state of ~9 L to the 2-dimensional insulating state with the soft Coulomb gap of 1 L through the disordered 3-dimensional metallic state of ~6 L.

Methods

Ru nanosheets were prepared following the previously described an electrostatic self-assembly method in Refs. These indicate the disappearance of the metallic conductivity in the mono-layered Ru nanosheets. Moreover, we reproduced the spectral weight near E_F using a power law $g(\varepsilon) \propto |\varepsilon - E_F|^{\alpha}$. The evolution of the power factor α suggests that the transition from the metallic state of ~9 L to the 2-dimensional insulating state with the soft Coulomb gap of 1 L through the disordered 3-dimensional metallic state of ~6 L.

Ru nanosheets were prepared following the previously described an electrostatic self-assembly method in Refs. These indicate the disappearance of the metallic conductivity in the mono-layered Ru nanosheets. Moreover, we reproduced the spectral weight near E_F using a power law $g(\varepsilon) \propto |\varepsilon - E_F|^{\alpha}$. The evolution of the power factor α suggests that the transition from the metallic state of ~9 L to the 2-dimensional insulating state with the soft Coulomb gap of 1 L through the disordered 3-dimensional metallic state of ~6 L.

A tapping-mode atomic force microscopy (AFM; Innova, Bruker Inc.) was used to obtain Ru nanosheets images. The AFM images of the fabricated Ru nanosheets for 1 L, ~6 L, and ~9 L are displayed in Fig. 1. The AFM image of 1 L shows single-crystal arrays, overlapped patches, and a bare surface. The total coverage is estimated to be approximately 82.5% and the fraction of the overlapping region to be 33.7%. For the few-layered Ru nanosheets, the number of layers is basically determined by the cycles of the fabrication process used to prepare the RuO$_2$ nanosheets. In our fabrication process, the few-layered Ru nanosheets have variations of the number of layers. Assuming the thickness of 0.72 nm for 1 L from the difference between 1 L and the overlapped region (2 L), we obtained the variations for ±3.1 L for 6 L and ±3.0 for 9 L, respectively. The large variations of the few-layered Ru nanosheets suggest the acceleration of crystallization and/or the existence of the stacking fault by large motion of atom. Photoemission spectroscopy measurements were performed at BL47XU of SPring-8, BL2A of Photon Factory (PF), and BL9A of Hiroshima Synchrotron Radiation Center (HiSOR) equipped the VG-Scienta R4000 electron analyzer. The electron analyzers are placed at 90° for SPring-8 BL47XU, 40° for PF BL2A, and 50° for HiSOR BL9A to the incident beam. The incident angles relative to the sample surface are set to at 12° for SPring-8 BL47XU, 50° for PF BL2A, and 40° for HiSOR BL9A. Linearly polarized photon of the incident beam was used at all beamlines. The beam sizes are about 40 μm \times 30 μm for SPring-8 BL47XU, 100 μm \times 1 mm for PF BL2A, and 1.5 mm \times 1.0 mm2 for HiSOR BL9A. The photoemission data were collected at $T = 300$ K for $h\nu = 7940$ eV at SPring-8 BL47XU, $T = 15$ K for $h\nu = 800$ eV at PF BL2A, and $T = 28$ K for $h\nu = 20$ eV at HiSOR BL-9A, respectively. By fitting of the gold spectrum to the Fermi-Dirac function convoluted with the Gaussian function corresponding to the total-energy resolution, we obtained the total-energy resolutions of 265 meV for $h\nu = 7940$ eV, 203 meV for $h\nu = 800$ eV, and 19 meV for $h\nu = 20$ eV, respectively. The base pressures of the spectrometer for each beamline were better than 1.0 \times 10$^{-10}$ Torr. The probability of a primary photoelectron escaping from the depth z is...
proportional to \(\exp(-z/\lambda) \) where \(\lambda \) is an inelastic scattering mean free path (IMFP) for electrons in solid. Here, \(\lambda \) is about 7.4 nm for \(h\nu = 7940 \text{ eV} \), 1.3 nm for \(h\nu = 800 \text{ eV} \), and 1.0 nm for \(h\nu = 20 \text{ eV} \) estimated from refs. 10,11.

The band structure calculation was carried out using the code WIEN2k\(^{10}\) based on the full-potential linearized augmented plane wave method. The calculated results were obtained the generalized gradient approximation for electron correlations, where we used the exchange-correlation potential\(^{11}\). The spin-orbit interaction is not taken into account.

Results and Discussion

Figure 2(a,b) show the valence-band photoemission spectra of RuO\(_2\) and Ru nanosheets (1, ~6, and ~9 L) on Si substrate. The dotted curve indicates the photoemission spectrum of Si substrate without RuO\(_2\) and Ru nanosheets. The intensity from the Si substrate as well as that from the nanosheets is certainly observed in RuO\(_2\) and Ru nanosheets, because of the large IMFP \(\lambda \) of 7.44 nm for the hard x-ray photons \(h\nu = 7940 \text{ eV} \). The data were collected at \(T = 300 \text{ K} \) without surface treatment because of the large probing depth of hard x-ray. The spectra were normalized to the intensity around \(-8 \text{ eV}\).

![Figure 2](image-url)

Figure 2. Valence-band photoemission spectra of (a) RuO\(_2\) and (b) Ru nanosheets (1, ~6, and ~9 L) taken at \(h\nu = 7940 \text{ eV} \). The dotted curve shows the spectrum of Si substrate without RuO\(_2\) and Ru nanosheets. (c) The valence band spectrum of the Ru nanosheets (~9 L) compared with the band structure calculation of bulk Ru metal. The data were collected at \(T = 300 \text{ K} \) without surface treatment because of the large probing depth of hard x-ray. The spectra were normalized to the intensity around \(-8 \text{ eV}\).
thick-layered Ru nanosheets. Thus, the spectral difference between the RuO$_2$ and Ru nanosheets indicates that the Ru nanosheets are successfully elaborated from the RuO$_2$ nanosheets by the hydrogen reduction method.

In order to discuss the conductivity from the electronic structure near E_F, we performed the high resolution ultraviolet photoemission spectroscopy. Since the ultraviolet photoemission spectroscopy is the surface sensitive probe (λ-1.0 nm)12, we heated the Ru nanosheets up to 300 °C for 15–30 min to obtain the clean surface. Figure 3 shows the number-of-layers dependence of the near- E_F photoemission spectra before and after annealing. The near-E_F photoemission spectra before annealing exhibit the absence of the spectral weight at E_F even in the thick Ru nanosheets (~9 L), suggesting the contamination of the sample surfaces. After annealing, we observed the sharp Fermi cutoff in the spectrum of the thick Ru nanosheets (~9 L) and confirmed that the clean surfaces are obtained by annealing. However, the spectral weight at E_F of the mono-layered Ru nanosheets (1 L) is completely suppressed, indicating the non-metallic behavior as shown in the inset of Fig. 3(b). Interestingly, the spectral weight close to E_F for the thick Ru nanosheets of ~6 L diminishes in contrast to that of ~9 L.

In Fig. 4, the number of layers dependence of the photoemission spectra for Ru nanosheets (1, ~6, and ~9 L) are taken at $hv = 800$ eV. The samples were annealed to obtain the clean surface as the same processing in Fig. 3. Figure 4(a) shows the Ru 3d core-level photoemission spectra of the mono- and few-layered Ru nanosheets (1, ~6, and ~9 L). Note that the C 1s signal is completely absent in ~9 L sample, which indicates that clean surface was obtained by annealing process. On the other hand, the intensity of C 1s starts to be observed from ~6 L and the intensity ratio of C 1s to Ru 3d core-levels increases in going from ~6 L to 1 L. This trend can be seen in the Si 2p/2 s of the substrate and the O 2p signals (see Supplementary Fig. S1). These suggest that the C 1s feature derives from the cationic coblock polyvinyl alcohol and polyvinyl amine polymers29 which mainly exist in between Ru nanosheets and Si substrate. Actually, the thickness of ~0.72 nm for 1 L is smaller than the escape depth $\lambda = 1.22$ nm for $hv = 800$ eV, consistent with the observation of the remarkable intensity of C 1s in 1 L. In contrast, the thickness of ~4.32 nm for ~6 L is larger than λ and is correspond to 3 λ–4 λ ($\lambda = 1.22$ nm for $hv = 800$ eV), which explains the small intensity of C 1s in ~6 L.

Figure 4(b) shows an enlarged view of the Ru 3d$_{5/2}$ core-levels. The peak positions of Ru 3d$_{5/2}$ core-level shift toward higher binding energy with decreasing the number of layers. This behavior is also observed in the previous photoemission study of the Ru nanosheets8. The observed shift of the Ru 3d core-levels from ~9 L to 1 L results from the reduction of the screening effect corresponding to the number of conduction electrons. Indeed, the spectral weight near E_F decreases in going from ~9 L to 1 L and that of the mono-layered Ru nanosheets shows the insulating gap as shown in Fig. 4(c). Here, it should be noted that the peak width of Ru 3d$_{5/2}$ core-level becomes broad in going from ~9 L to 1 L. The Ru 3d core-level broadening is probably due to the enhancement of disordered effect, which is reported in many alloys system such as Cu$_{1-x}$ Pd$_x$, Cu$_{1-x}$ Pt$_x$, and Pd$_{1-x}$ Ag$_x$13,17. Another possibility is that the increase of the Coulomb interaction induces the core-level broadening proposed by Davis and Feldkamp18,19.

Figure 5 shows the symmetrized near-E_F photoemission spectra of the Ru nanosheets (1, ~6, and ~9 L) taken at $hv = 20$ eV and 800 eV in order to visualize the spectral density of states near E_F. The spectral density of states (DOS) of the mono-layer (1 L) and the thick layers (~6 L) depletes as it approaches E_F, in contrast to that of ~9 L. The spectral DOS at E_F is completely suppressed in the mono-layered Ru nanosheets (1 L), while that of N = 6 L shows the cusp-like shape. These indicate the metal-insulator transition according to the thickness of Ru nanosheets. To address the mechanism of the metal-insulator transition of the Ru nanosheets, we simulate our data taken at $hv = 20$ eV using a power law $g(\epsilon) \propto |\epsilon - E_F|^{1/2}$ convoluted with the energy resolution 19 meV. The spectral DOS near E_F are well reproduced using the power factor $\alpha = 0.53$ for 6 L and 1.28 for 1 L as indicated the solid curves in the insets of Fig. 5(c,d). In Fig. 5(c,d), we rescale the energy axis as a function of $\alpha = 0.53$ and 1.28.

Figure 3. Near- E_F photoemission spectra of Ru nanosheets (1, ~6, and ~9 L) taken at $hv = 20$ eV (a) before annealing and (b) after annealing. Inset shows an enlarged view close to E_F The data were obtained at $T = 28$ K.
The power factor $\alpha = 0.53$ of ~6 L is comparable to a singularity of $\alpha = 0.5$, which is estimated to consider the electron-electron interaction in three-dimensional disordered metals such as Ge$_{1-x}$Au$_x$. On the other hand, the energy dependence $\alpha = 1.28$ in the mono-layered Ru nanosheets is close to $\alpha = 1$. The power law with the exponent $\alpha = 1$ indicates a soft Coulomb gap due to the disorder and the long-range Coulomb interaction, which is predicted in the 2-dimensional insulator by Efros and Shklovskii. Therefore, our data suggest the transition from the metallic state of ~9 L to the 2-dimensional insulating state with the soft Coulomb gap of 1 L through the disordered 3-dimensional metallic state of ~6 L.

Here, we consider two main possibilities for the deviation from the power factor 1.0 to 1.28 in the mono-layered Ru nanosheets. On the basis of Efros-Shuklovskii theory, the spectral weight at E_F vanishes and the spectral weight near E_F follows the power law with the exponent $\alpha = 1.0$ for the 2 dimensional system. In the numerical calculation including the disorder effect and Coulomb interaction, the spectral weight near E_F is described by the power law with $\alpha = 1.2$. Moreover, the Coulomb gap is filled at finite temperature. In any cases, the power factor α can be larger than 1.0. Alternatively, the deviation comes from the overlap region between the mono-layered Ru nanosheets. Since the electronic structure in the overlap region is not the 2-dimensional but the 3-dimensional, the power factor α would deviate from 1.0. Actually, we estimated the distribution of the mono-layered region and the overlap region from the AFM images as shown in Fig. 1. The AFM image of the mono-layered Ru nanosheets exhibits the overlap region between the Ru nanosheets. The AFM image of the mono-layered Ru nanosheets exhibits the overlap region between the Ru nanosheets. Since the electronic structure in the overlap region is not the 2-dimensional but the 3-dimensional, the power factor α would deviate from 1.0. Actually, we estimated the distribution of the mono-layered region and the overlap region from the AFM images as shown in Fig. 1. The distribution of the mono-layered region is 83.8% and that of the overlap region is 16.2%. On the basis of the Efros-Shuklovskii theory, the power factor α should be 2.0 for the 3-dimensional system. Considering the sum of the power factor α for each regions, the power factor α can be estimated $\alpha = 1.16$.

Although the origin of enhancement of the disorder effects in ~6 and 1 L is still covered, the cusp-like spectral DOS near E_F is observed in ~6 L, which is a peculiar feature in the disordered metals. The increase of the disorder effect may induce the Ru 3d core-level broadening as mentioned in Fig. 4. In addition to the disorder effect, the band width is reduced with decreasing the dimensionality. The Ru - Ru distance also extends from ~6 L to 1 L reported in the in-plane x-ray diffraction studies. The resultant reduction of the band width would drive the enhancement of the effective Coulomb interaction in the mono-layered Ru nanosheets. Therefore, the disorder effect observed in ~6 L is more prominent in the mono-layered Ru nanosheets and the electron-electron correlation increases due to the band width narrowing from ~6 L to 1 L. In consequence, the interplay between the disorder and the Coulomb repulsion would form the soft Coulomb gap and the mono-layered Ru nanosheets become insulator. Our results suggest that the electric conductivity depending on the disorder and Coulomb interaction can be controlled by the number of stacking layers. Thus, the tunable electric conductivity using the Ru nanosheets will lead to the design of the multi-level resistance states for the electronic devices such as non-volatile storage devices. Here, the nanosheets...
in the present study have statistical dispersion of the number of layers. To further verify the precise dependence of the power factor on the number of layers and the critical thickness for the metal to insulator transition, it would be desirable to synthesize Ru nanosheets with more accurate thickness in future studies.

Conclusion
In summary, we have performed the photoemission spectroscopy of the mono-layered and few-layered Ru nanosheets (1, ~6, and ~9 L) on Si substrate in order to reveal the electronic structure depending on the thickness of Ru nanosheets. The spectral DOS near \(E_F \) of 1 L and ~6 L depletes as it approaches \(E_F \), while that of ~9 L shows the clear Fermi cutoff. These are consistent with the chemical shifts of Ru 3d core-level spectra. To verify the origin of the spectral weight suppression near \(E_F \) of ~6 L and 1 L, we reproduced the spectral DOS by using the power law. The power factor \(\alpha \) increases in going from ~6 L to 1 L, indicating the enhancement of the disorder effect. We found that the transition from the metallic state of ~9 L to the 2-dimensional insulating state with the soft Coulomb gap of 1 L through the disordered 3-dimensional metallic state of 6 L.

Received: 24 June 2019; Accepted: 2 January 2020; Published online: 30 January 2020

References
1. Novoselov, K. S. Electric field effect in atomically thin carbon films. Sci. 306, 666–669, https://doi.org/10.1126/science.1102896 (2004).
2. Vogt, P. et al. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108 https://doi.org/10.1103/physrevlett.108.155501 (2012).
3. Fleurence, A. et al. Experimental evidence for epitaxial silicene on diboride thin films. Physical Review Letters 108 https://doi.org/10.1103/physrevlett.108.245501 (2012).
4. Dávila, M. E., Xian, L., Cahangirov, S., Rubio, A. & Lay, G. L. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. N. J. Phys. 16, 095002, https://doi.org/10.1088/1367-2630/16/9/095002 (2014).
1. Efros, A. L. & Shklovskii, B. I. Coulomb gap and low temperature conductivity of disordered systems.
2. Möbius, A., Richter, M. & Drittler, B. Coulomb gap in two- and three-dimensional systems: Simulation results for large samples.
3. Sarvestani, M., Schreiber, M. & Vojta, T. Coulomb gap at finite temperatures.
4. McMillan, W. L. & Mochel, J. Electron tunneling experiments on AmorphousGe1-xAux.
5. Altshuler, B. & Aronov, A. Zero bias anomaly in tunnel resistance and electron-electron interaction.
6. Davis, L. C. Photoemission from transition metals and their compounds.
7. Underwood, T. L., Ackland, G. J. & Cole, R. J. Probing atomic environments in alloys by electron spectroscopy.
8. Medicherla, V. & Drube, W. Electronic structure of PdAg(100) ordered surface alloys using synchrotron radiation.
9. Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths.
10. Marten, T., Olovsson, W., Simak, S. I. & Abrikosov, I. A. Ab initio study of disorder broadening of core photoemission spectra in random Cu-Pd and Ag-Pd alloys. Physical Review B 72, 054210 (2005).
11. Underwood, T. L., Ackland, G. J. & Cole, R. J. Probing atomic environments in alloys by electron spectroscopy. Physical Review B 90, 115103 (2014).
12. Davis, L. C. & Feldkamp, L. A. Effect of electron correlations on photoemission from narrow-band metals. J. Appl. Phys. 50, 1944–1949, https://doi.org/10.1063/1.327119 (1979).
13. Davis, L. C. Photoemission from transition metals and their compounds. J. Appl. Phys. 59, R25–R64, https://doi.org/10.1063/1.363213 (1986).
14. Alshuler, B. & Aronov, A. Zero bias anomaly in tunnel resistance and electron-electron interaction. Solid. State Commun. 30, 115–117, https://doi.org/10.1016/0038-1098(79)90067-0 (1979).
15. McMillan, W. L. & Mochel, J. Electron tunneling experiments on AmorphousGe1-xAux. Phys. Rev. Lett. 46, 556–557, https://doi.org/10.1103/physrevlett.46.556 (1981).
16. Efros, A. L. & Shklovskii, B. I. Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C: Solid. State Phys. 8, L49–L51, https://doi.org/10.1088/0022-3719/8/4/003 (1975).
17. Möbius, A., Richter, M. & Drittler, B. Coulomb gap in two- and three-dimensional systems: Simulation results for large samples. Phys. Rev. B 45, 11568–11579, https://doi.org/10.1103/physrevb.45.11568 (1992).
18. Esna Ashk, B. & Vojta, T. Coulomb gap at finite temperatures. Phys. Rev. B 52, R3820–R3823, https://doi.org/10.1103/physrevb.52.r3820 (1995).

Acknowledgements

The authors would like to thank S. Yamamoto, D. Shibata, M. Kawamoto for experimental supports. This work was supported by Grants-in-Aid for Science Research (C) from the Japan Society for the Promotion of Science (16K05445), the Murata Science Foundation, and the Kyoto University Foundation. The synchrotron radiation experiments were performed with the approvals of SPring-8 (Proposal No. 2015B1462, 2017A1406), Hiroshima Synchrotron Radiation Center (Proposal No. 14-A-13), and Photon Factory (proposal No. 2015G704, 2016G196).

Author contributions

D.O., K.K., D.S. performed the photoemission measurements. M.A., H.N., M.T., M.M., K.H., H.K., E.I., A.Y. supported the synchrotron photoemission experiments. M.M. performed the AFM characterization. Y.U., S.T., M.M., K.F. provided the samples. D.O., K.K. analyzed the photoemission data. D.O. and T.Y. wrote the paper. K.F. and T.Y. designed the project. All authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-58057-9.

Correspondence and requests for materials should be addressed to D.O. or T.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020