Fast cross-staining alignment of gigapixel whole slide images with application to prostate cancer and breast cancer analysis

Ching-Wei Wang1,2*, Yu-Ching Lee1, Muhammad-Adil Khalil1, Kuan-Yu Lin2, Cheng-Ping Yu3,4 & Huang-Chun Lien5,6

Joint analysis of multiple protein expressions and tissue morphology patterns is important for disease diagnosis, treatment planning, and drug development, requiring cross-staining alignment of multiple immunohistochemical and histopathological slides. However, cross-staining alignment of enormous gigapixel whole slide images (WSIs) at single cell precision is difficult. Apart from gigantic data dimensions of WSIs, there are large variations on the cell appearance and tissue morphology across different staining together with morphological deformations caused by slide preparation. The goal of this study is to build an image registration framework for cross-staining alignment of gigapixel WSIs of histopathological and immunohistochemical microscopic slides and assess its clinical applicability. To the authors’ best knowledge, this is the first study to perform real time fully automatic cross-staining alignment of WSIs with 40× and 20× objective magnification. The proposed WSI registration framework consists of a rapid global image registration module, a real time interactive field of view (FOV) localization model and a real time propagated multi-level image registration module. In this study, the proposed method is evaluated on two kinds of cancer datasets from two hospitals using different digital scanners, including a dual staining breast cancer data set with 43 hematoxylin and eosin (H&E) WSIs and 43 immunohistochemical (IHC) CK(AE1/AE3) WSIs, and a triple staining prostate cancer data set containing 30 H&E WSIs, 30 IHC CK18 WSIs, and 30 IHC HMCK WSIs. In evaluation, the registration performance is measured by not only registration accuracy but also computational time. The results show that the proposed method achieves high accuracy of 0.833 ± 0.0674 for the triple-staining prostate cancer data set and 0.931 ± 0.0455 for the dual-staining breast cancer data set, respectively, and takes only 4.34 s per WSI registration on average. In addition, for 30.23% data, the proposed method takes less than 1 s for WSI registration. In comparison with the benchmark methods, the proposed method demonstrates superior performance in registration accuracy and computational time, which has great potentials for assisting medical doctors to identify cancerous tissues and determine the cancer stage in clinical practice.

Monitoring of multi-modal molecular and cellular interactions, tumor growth and tissue morphology is critical for cancer diagnosis, drug development and biological research and usually performed by analyzing multiple microscopic slides with various staining simultaneously. That is joint analysis of a hematoxylin and eosin (H&E) slide to assess the cellular morphology and multiple immunohistochemical (IHC) slides to monitor various protein expression patterns together at single-cell microscopic resolution1. In practice, H&E staining is adopted as a gold standard to analyze tissue morphology. On the other hand, IHC staining is widely utilized to detect antigens, namely proteins, in diagnosis of abnormal cells such as those found in cancerous tissues, enabling biologists and medical doctors to observe the distribution of proteins in different parts of biological tissue. In neuroscience, IHC allows scientists to closely inspect protein expressions within specific brain structures2–4. In

1Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan. 2Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan. 3Department of Pathology, Tri-Service General Hospital, Taipei, Taiwan. 4Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan. 5Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan. 6Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan. *email: cweiwang@mail.ntust.edu.tw
drug development, IHC has been applied to test drug efficacy by monitoring certain protein expressions and analyzing the active levels of disease targets. In clinical diagnosis, with the knowledge of tumor marker and IHC tools, medical professionals and scientists are able to diagnose tumors as benign or malignant, determine the cancer stage and identify the cell type and origin of a metastasis in order to find the site of the primary tumor.

However, to align, compare, and quantify protein expressions of tissues of interest from multiple whole slide images (WSIs) with different stainings is difficult due to the enormous dimensions of gigapixel images to analyze, nonrigid distortions and deformations introduced during slide preparation and dissimilar cell appearance and tissue morphology across stainings. Figure 1a shows challenges induced from individual data preparation steps for cross staining WSI analysis in cancer diagnosis. Serial sections are firstly cut from a patient donor block and mounted onto glass slides, causing nonrigid deformations and distortions across slides. Secondly, slides are processed with various kinds of stainings. As each staining highlights specific substances in tissues, the image appearances of cells and tissue layouts across various stainings become distinctively dissimilar. Thirdly, slides are digitized into enormous gigabyte-sized WSIs at single-cell microscopic resolution, including a H&E WSI and multiple IHC WSIs to observe tissue morphology and various protein expression patterns together. Typically, WSIs are stored in a gigabyte-sized multi-resolution pyramid data structure from low to high magnification with a general size of around 100,000 × 200,000 pixels at the highest resolution level. In addition to the enormous dimensions of data to process, there are large variations on stain colors, cell appearance, and tissue morphology across WSIs.

Due to the advancement of computing power, many computer algorithms have been developed for automatic alignment of biological microscopic images. The bUnwarpJ tool by Arganda-Carreras et al. is developed for biological section alignment, allowing bi-directional image registration. Saalfeld et al. presented a least square based registration method using linear feature correspondences and an elastic registration approach based on non-linear block correspondences. Song et al. extended Roberts's approach for tissue reconstruction of histological sections with different stains. Song et al. developed an unsupervised content classification method that produces multichannel probability images from images of different stains to increase the similarity of the two images and integrated the classification method into the multi-resolution-block-matching-based framework. Lotz et al. first computes nonlinear registration on low-resolution images to correct global large-scale deformations occurring in tissues, and the results of this nonlinear registration is then used as an initial guess for a patch-wise registration. In this study, the above-mentioned approaches are adopted as benchmark methods.

From the literature review, previously many studies performed image alignment by directly applying image transformation to entire images. Later, several approaches have been developed with a more efficient scheme such as hierarchical frameworks to deal with large microscopic datasets. Due to the advancement of imaging technology, image alignment is required in application to enormous gigabyte-sized images such as WSIs. The above-mentioned methods are however too memory costly and slow to be applied to WSI alignment. For dealing with the enormous size of WSIs, several tile-based approaches have been built. Roberts et al. presented a multi-resolution-block-matching-based nonrigid registration framework. Song et al. and Lotz et al. extended Roberts's approach for tissue reconstruction of histological sections with different stains. Song et al. developed an unsupervised content classification method that produces multichannel probability images from images of different stains to increase the similarity of the two images and integrated the classification method into the multi-resolution-block-matching-based framework. Lotz et al. first computes nonlinear registration on low-resolution images to correct global large-scale deformations occurring in tissues, and the results of this nonlinear registration is then used as an initial guess for a patch-wise registration. In this study, the three tile-based approaches for WSI alignment are adopted as benchmark methods for run time analysis.

Prostate cancer is the second leading cause of cancer related death in men in the United States. In 2018, prostate cancer has caused 358,989 deaths worldwide and 307,410 deaths in the United States. In clinical diagnosis, with the knowledge of tumor marker and IHC tools, medical professionals and scientists are able to diagnose tumors as benign or malignant, determine the cancer stage and identify the cell type and origin of a metastasis in order to find the site of the primary tumor.
provide adequate treatment and to improve the survival rate. The prognosis of breast cancer patients is mainly
determined by the extent of the cancer evaluated using the TNM staging system that assesses the size of the
tumour (T), the status of axillary lymph nodes (N) and the status of metastasis (M). The status of axillary lymph

Figure 1. (a) Challenges caused by individual data preparation steps for cross staining WSI analysis. Sample
results by the proposed method in (b) triple-staining WSI alignment of H&E, HMCK and CK18 slides for
prostate cancer diagnosis and in (c) dual-staining WSI alignment of H&E and CK(AE1/AE3) slides for breast
cancer diagnosis.
nodes could be estimated by evaluating the sentinel lymph node, which is the first lymph node to receive the afferent lymphatic drainage from the primary cancer and is thus the first node to be involved by metastasis. Therefore, patients whose sentinel lymph node is negative for breast cancer metastasis could be spared for more extensive axillary lymph node dissection. Alternatively, axillary lymph node dissection may be performed on breast cancer patients, particularly for patients with high suspicion of axillary lymph nodes metastasis.

Metastatic foci to lymph nodes have been classified into macrometastases (metastatic size greater than 2.0 mm), micrometastases (metastatic size greater than 0.2 mm, but none greater than 2.0 mm), and isolated tumour cells (ITCs, metastatic size no greater than 0.2 mm). It is difficult for human to identify ITCs due to their tiny size, particularly in cases with many axillary lymph nodes, leading to under-treatment of the patients. Furthermore, the routine examination of H&E slides of lymph nodes, particularly for axillary lymph node dissection, which may contain many lymph nodes, is time consuming and pathologists are at the risk of missing tiny metastatic foci. The MIRROR (Micrometastases and Isolated tumour cells: Relevant, Robust or Rubbish) trial emphasized the need for additional therapy in cases of invasive breast carcinoma with ITCs or micrometastases40–43, supporting the identification of ITCs or micrometastases is urgently needed in the management of breast cancer patients. IHC staining for cytokeratin on lymph node section could be used to detect ITCs. In this study, we illustrate automatic cross-staining alignment of WSIs of H&E and IHC CK(AE1/AE3) slides help screen all the lymph nodes and identify tiny metastatic foci to improve the accuracy of pathological assessment of lymph node as shown in Fig. 1c.

In this paper, we present a real time interactive fully automatic hierarchical registration framework that is able to perform cross-staining alignment of gigapixel WSIs of histopathological and immunohistochemical microscopic slides in real time and also overcome the major speed bottleneck for assisting medical doctors to identify cancerous tissues and determine the stage and grade of a tumor. The proposed hierarchical registration framework is described in detail in “Methods” section. The effectiveness and robustness of the proposed fully automatic hierarchical registration framework is validated using two datasets, including a dual staining breast cancer dataset with 43 H&E slides and 43 IHC CK(AE1/AE3) slides and a triple staining prostate cancer dataset with 30 H&E slides, 30 IHC CK18 slides, and 30 IHC HMCK slides. Figure 1b,c presents the automatic WSI alignment result of triple-staining prostate cancer samples and dual-staining breast cancer samples by the proposed method, respectively. Figure 2 illustrates the flowchart for the proposed method in cross staining WSI analysis in clinical usage. In addition, an online web-based system of the proposed method has been created for live demonstration of real time cross staining alignment of whole slide images. Please see the supplementary video at https://www.youtube.com/watch?v=0Uc6-s_Cllg&ab_channel=ProfChing-WeiWang.
studies45,46, the traditional evaluation approach based on sum of squared differences of image intensities between a workstation with an Intel Xeon Gold 6134 CPU processor and 64GB RAM. i.e bUnwarpJ7. The third experiment was performed to produce run time analysis on the 43 pairs of dual-staining we further compare the proposed method with the best benchmark approach performed in the first experiment, including bUnwarpJ7, LeastSquares8, Elastic9 and CwR10. The second evaluation was performed on 43 pairs of dual-staining breast cancer slides, including 43 H&E slides and 43 IHC slides with CK(AE1/AE3) antigen, and we further compare the proposed method with the best benchmark approach performed in the first experiment, i.e bUnwarpJ7. The third experiment was performed to produce run time analysis on the 43 pairs of dual-staining breast cancer slides. We compare the computational time in WSI registration of the proposed method and the best benchmark approach performed in the first experiment, i.e bUnwarpJ7, Roberts et al.27, Song et al.28 and Lotz et al.29. All statistical analysis was performed using SPSS software44, and all experiments were performed on a workstation with an Intel Xeon Gold 6134 CPU processor and 64GB RAM.

Regarding the evaluation method to measure the registration accuracy, as pointed out in the previous studies45,46, the traditional evaluation approach based on sum of squared differences of image intensities between the target and the transformed source could be inaccurate in biological image applications as the pixel intensity in the target and the intensity of the accurately registered pixel in the transformed source are generally different due to stain variation. As a result, the quantitative evaluation approach of the previous works45,46 is adopted where five corresponding landmarks between target images and associated transformed source images by each registration method were firstly manually marked by experienced pathologists, and an automatic matching system is applied to compare the coordinates of the corresponding manual annotations, producing registration accuracy scores for each image pair based on the matching successful rate over the corresponding annotations (within a five pixel distance). The final registration accuracy score of each registration method is computed using the averaged accuracy over all image pairs as shown in Fig. 3.

Quantitative evaluation on the triple-staining prostate cancer dataset. Figure 4a presents the evaluation results on triple-staining prostate cancer tissue images by the proposed method and four benchmark approaches, including bUnwarpJ7, LeastSquares8, Elastic9 and CwR10. In addition, four transformation models, including affine, rigid, similarity and translation, are applied in testing of the benchmark approaches except for the CwR10. As shown in Fig. 4, the proposed method consistently performs well and significantly outperforms benchmark methods. Detailed quantitative results could be found in Table 2. In addition, we further conduct the statistical analysis, and the result shows that the proposed method is significantly better than the benchmark methods (p < 0.01) for triple-staining prostate cancer tissue image registration. Figure 3 shows some sample results of registration outputs of the proposed method and benchmark approaches.

Quantitative evaluation on the dual-staining breast cancer dataset. Figure 4b compares the evaluation results on dual-staining breast cancer tissue images by the proposed method and the best benchmark approach performed in the first experiment, i.e. bUnwarpJ7. The proposed method achieves high averaged registration accuracy (93.49%) while the bUnwarpJ approach7 obtains averaged accuracy only 25.58%. Detailed quantitative results

Table 1. Information of the experimental datasets.

Datasets	Staining	WSIs	Size (mm²)	Size (pixels)	Scanner (File format)/Hospital	Obj. Mag.
Prostate Cancer	H&E	30	29.02 × 22.93	117095 × 92537	Leica AT Turbo (.mrxs)/Tri-service General Hospital, Taiwan	20x
	HMCK	30	23.45 × 22.09	113501 × 88140	Leica AT Turbo (.mrxs)/Tri-service General Hospital, Taiwan	20x
	CK18	30	28.94 × 21.85	113501 × 88159	3DHISTECH Pannoramic SCAN II (.mrxs)/National Taiwan University Hospital	20x
Breast Cancer	H&E	43	25.11 × 50.63	113501 × 228816	3DHISTECH Pannoramic SCAN II (.mrxs)/National Taiwan University Hospital	20x
	CK (AE1/AE3)	43	25.11 × 50.63	113501 × 228816	3DHISTECH Pannoramic SCAN II (.mrxs)/National Taiwan University Hospital	20x
Figure 3. Registration results of the proposed method and benchmark approaches7–10 in triple-staining prostate cancer samples. The blue rectangles represent the locations of the selected landmarks defined by experienced pathologists in the target image; the red boxes represent mismatches of corresponding landmarks in the transformed source image (IHC1); the yellow boxes represent mismatches of corresponding landmarks in the transformed source image (IHC2); the green boxes represent matches of corresponding landmarks in the transformed source image.
could be found in Table 3. Using SPSS software, the result shows that the proposed method significantly performs better than bUnwarpJ (p < 0.001).

Run time analysis. For run time analysis, the breast cancer dataset is used, and the computational time of WSI registration of the proposed method is compared with the best benchmark approach performed in the first experiment, i.e. bUnwarpJ approach, and three additional benchmark approaches, including Roberts et al., Song et al. and Lotz et al. In testing of WSI registration, as the system of bUnwarpJ approach tends to fail due to out of memory, we therefore perform a regression analysis to estimate the computing time for WSI registration using least squares. Detailed quantitative results could be found in Table 4. The proposed method only takes 4.34 s per WSI registration on average. In comparison, bUnwarpJ approach costs 55162.4 s (15.3 hours) per WSI registration on average. Roberts et al. and Song et al. take more than 400 s (6.67 minutes) per WSI registration on average, and Lotz et al. costs 76.42 s per WSI registration on average. Figure 4c displays the distributions of the WSI registration computational time by individual methods, showing that the proposed method takes much less time than all benchmark approaches. By conducting LSD test, the proposed method is significantly faster than the benchmark approaches with p < 0.001 in WSI registration. In addition, the proposed method is able to finish WSI registration within 1 s for 30.23% WSI pairs of the experimental dataset. A demonstration of real time cross staining WSI registration by the proposed method is presented in the supplementary video. (https://www.youtube.com/watch?v=0Uc6-s_CIlg&ab_channel=ProfChing-WeiWang).
Cross-staining alignment and joint analysis of multiple IHC and H&E slides are important for disease diagnosis, drug development and biological research, enabling simultaneous assessment of multiple kinds of protein expressions for tissue types of interests at single-cell resolution. Taking the diagnosis of invasive prostate carcinoma case, in clinical practice serial sections of prostate cancer donor are stained with three different stains, including HMCK, CK18 and H&E as shown in Fig. 1b. To identify cancerous tissues, medical doctors have to compare

| Table 2. Quantitative evaluation results on the triple staining prostate cancer dataset. Methods: (A) Proposed method, (B) CwR10, (C) bUnwarpJ-affine7, (D) bUnwarpJ-rigid7, (E) bUnwarpJ-similarity7, (F) bUnwarpJ-translation7, (G) Elastic-affine9, (H) Elastic rigid9, (I) Elastic-similarity9, (J) Elastic-translation9, (K) LeastSquare-affine8, (L) LeastSquare-rigid8, (M) LeastSquare-similarity8, and (N) LeastSquare-translation8. The proposed method is significantly better than the benchmark approaches (p < 0.01).

Method	Mean	Std. deviation	Std.error	Lower bound	Upper bound
Proposed method	83.33	6.74	0.67	46.67	123.67
CwR10	60.67	9.26	0.92	42.00	78.76
bUnwarpJ-affine	43.15	10.92	1.09	22.96	63.30
bUnwarpJ-rigid	43.15	10.92	1.09	22.96	63.30
bUnwarpJ-similarity	43.15	10.92	1.09	22.96	63.30
bUnwarpJ-translation	43.15	10.92	1.09	22.96	63.30
Elastic-affine	52.67	18.14	1.81	34.59	70.72
Elastic rigid	52.67	18.14	1.81	34.59	70.72
Elastic-similarity	52.67	18.14	1.81	34.59	70.72
Elastic-translation	52.67	18.14	1.81	34.59	70.72

LSD test analysis of the proposed method and benchmark approaches

Method	Mean difference	P	Lower bound	Upper bound
Proposed method—CwR10	74.67*	<.01	54.74	81.08
Proposed method—bUnwarpJ-affine	36.67*	<.01	19.55	53.78
Proposed method—bUnwarpJ-rigid	24.67*	<.01	7.55	41.78
Proposed method—bUnwarpJ-similarity	22.67*	<.01	5.55	39.78
Proposed method—bUnwarpJ-translation	30.67*	<.01	13.55	47.78
Proposed method—Elastic-affine	83.33*	<.01	86.8	99.51
Proposed method—Elastic rigid	82.67*	<.01	81.29	94.02
Proposed method—Elastic-similarity	78*	<.01	65.26	78.09
Proposed method—Elastic-translation	32.67*	<.01	55.95	69.68
Proposed method—LeastSquare-affine	33.33*	<.01	15.55	30.33
Proposed method—LeastSquare-rigid	38*	<.01	16.22	30.89
Proposed method—LeastSquare-similarity	38*	<.01	20.89	48.89
Proposed method—LeastSquare-translation	66.00*	<.01	55.11	83.11

Table 3. Results on the breast cancer dataset in comparison of the proposed method and the best performed benchmark approach in the first experiment. *The proposed method is significantly better than the benchmark approach (p < 0.001).

Method	Mean	Std. deviation	Std.error	Lower bound	Upper bound
Proposed method	93.15	4.55	3.13	86.8	99.51
bUnwarpJ7	55.16	4.04	4.04	39.78	68.45

LSD test analysis of the proposed method and benchmark approaches

Method	Mean difference	P	Lower bound	Upper bound
Proposed method—bUnwarpJ7	67.91*	<.001	54.74	81.08

Table 4. Run time analysis in cross-staining WSI registration. *The proposed method performs significantly faster than the benchmark approaches (p < 0.001).

Method	Mean (Unit: second)	Std. deviation	Std.error	Lower bound	Upper bound
Proposed method	4.34	2.45	0.38	3.57	5.11
bUnwarpJ7	55162.40	3784.17	577.68	53997.81	56327.00
Robert et al.27	799.89	86.79	13.23	773.17	826.59
Song et al.28	484.33	152.47	23.25	437.40	531.25
Lotz et al.29	76.42	6.98	1.06	74.27	78.57

LSD test analysis of the proposed method and benchmark approaches

Method	Mean difference	Std. error	P	Lower bound	Upper bound
Proposed method—bUnwarpJ7	−55158.06*	−576.74	<.001	−56321.98	−53994.15
Proposed method—Robert et al.27	−795.54*	13.26	<.001	−822.29	−768.89
Proposed method—Song et al.28	−479.98*	23.27	<.001	−526.94	−433.02
Proposed method—Lotz et al.29	−70.33*	1.29	<.001	−72.93	−67.73

Discussion

Cross-staining alignment and joint analysis of multiple IHC and H&E slides are important for disease diagnosis, drug development and biological research, enabling simultaneous assessment of multiple kinds of protein expressions for tissue types of interests at single-cell resolution. Taking the diagnosis of invasive prostate carcinoma case, in clinical practice serial sections of prostate cancer donor are stained with three different stains, including HMCK, CK18 and H&E as shown in Fig. 1b. To identify cancerous tissues, medical doctors have to compare...
those three different slides, which is time-consuming, subject and difficult to quantify tumors. Automatic cross-staining biological image alignment helps medical doctor to identify cancerous tissues, quantify the amount of cancerous tissues and determine the cancer stage. Figure 1b shows triple-staining alignment on prostate cancer tissue sample results performed by the proposed method.

In the experiment, the proposed method was carried out in accordance with relevant guidelines and regulations. The experimental protocols were approved by the research ethics committees of the National Taiwan University Hospital (with ethical approval number: NTUH-REC 201810082RINB) and the Tri-Service General Hospital, Taipei, Taiwan ((with ethical approval number: TSGHRI107-05-171). Informed patient consent forms were formally waived by the research ethics committees of the National Taiwan University Hospital and Tri-Service General Hospital, and the data were de-identified and used for a retrospective study without impacting patient care.

Methods

In this study, we present a real-time, fully automatic and robust cross-staining registration system for aligning multiple IHC slides and histopathological H&E slides to assist assessment of tissue morphology and various protein expressions together, using two different digital scanners, i.e. Leica and 3DHISTECH, on two different cancer samples, i.e. breast cancer and prostate cancer, and from two different hospitals. The proposed method is not limited for cross-staining analysis but could also be used for single-staining serial section comparison.

Rapid global image registration. Let \(\{ J^t \} \) be a pair of digital WSI, containing a target WSI \(J^t \) and a source WSI \(J^s \) for alignment where \(t \) represents the target, and \(s \) represents the source, respectively. We formulate a set of digital WSIs \(\{ J^t_{i,j} \} \) into multi-level pyramid tile-based data structure \(\{ I^t_{i,j} \} \) with multiple

\[
I^t_{i,j} = \begin{cases} \xi & \text{if } I^t_{i,j} \in J^t, \\ \eta & \text{otherwise} \end{cases}
\]

where I^t_{i,j} represents the target, and I^s_{i,j} represents the source.
layers from low to high magnification, where \(i \) and \(j \) represent the column and row number of a tile in level \(l \), respectively, and the unit of the tile size is \(m \times m \), where \(m = 256 \) in this study. Low-level target and source tile-images \(I_{\text{low}}^\text{target} \) and \(I_{\text{low}}^\text{source} \) are extracted from target and source WSIs at level \(l_{\text{low}} \), and \(l_{\text{low}} = \sum l_i \leq (2m)^2 \). \(I_{\text{low}}^\text{target} \) and \(I_{\text{low}}^\text{source} \) are used for the rapid global image registration process.

To obtain the global transformation parameters and low-level image registration result, low-level image registration process comprises four parts as shown in Fig. 5a. (1) Using colour deconvolution technique with an orthonormal transformation matrix, stain separation is performed on the low-level target and source tile-images to extract the cytoplasm features of the target and source. (2) Corresponding landmark detection is applied to the

Figure 5. Flowchart of the proposed real time interactive cross staining WSI alignment framework, consisting of (a) a rapid global image registration module and (b) a real time propagated multi-level image registration. For (a) rapid global registration, (a.i) a stain separation model is built to extract the cytoplasm features; (a.ii) Corresponding landmarks are detected using the cytoplasm features; (a.iii) Based on the corresponding landmarks, global transformation parameters are generated; (a.iv) A global image registration result is obtained by applying the global transformation parameters onto the low-level image. For (b) multi-level image registration, a tile set of the source WSI corresponding to the Field of View (FOV) of the target WSI are fetched using the global transformation parameters. (b.i) The fetched tile set as the source FOV highlighted in green is used as input, and each tile is selected as the center, which is colored in red, to obtain an enlarged area highlighted in orange. After that, each enlarged area is scaled and then rotated clockwise by the rotation anchor as center. (b.ii) The top left tile highlighted in blue is translated; (b.iii) The tile is then cropped and stitched into the registration output image; (b.iv) The registered source FOV is produced.
cytoplasm features images obtained from the previous step for establishing pairwise correspondences between the target and the source. (3) By aligning pairwise correspondences, global transformation parameters (rotation matrix, scaling factor and translation vector) are generated based on the corresponding landmarks detection. (4) The low-level source image is aligned to the target using the transformation parameters obtained from step 3, producing a low-level registered source. The low-level global transformation parameters is then used for real-time interactive FOV localization and real-time multi-level image registration.

Cytoplasm feature extraction model. In RGB colour, each colour can be represented as \(\bar{c} \equiv (c_1, c_2, c_3) \). To model the colour in an image as the vector addition of a desired (D), undesired (U) and a background (P), a new vector model is defined as follow:

\[
\begin{align*}
\bar{u} &= \bar{P}U \\
\bar{d} &= \bar{P}D \\
\bar{n} &= \bar{u} \times \bar{d}
\end{align*}
\]

Then, colour \(\bar{c} \) is transformed to the new unit vector \(\tilde{c} = \frac{u\bar{u} + d\bar{d} + n\bar{n} + \bar{p}}{\|ar{u}\|} \). By setting \(u = 0 \), the undesired component is removed, generating new colour \(\tilde{c} = \frac{d\bar{d} + n\bar{n} + \bar{p}}{\|ar{u}\|} \). In three channel images, a colour system is described as a matrix form \(\mu \) with every row representing a specific stain and every column representing the Optical Density (OD) as detected by \(c_1, c_2 \) and \(c_3 \) for each stain, respectively.

\[
\mu = \begin{bmatrix}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{bmatrix}
\]

In this study, a normalized OD matrix, \(\hat{\mu} \), to describe the colour system for orthonormal transformation is defined as follows:

\[
\hat{\mu} = \begin{bmatrix}
0.6442 & 0.7166 & 0.2668 \\
0.0928 & 0.9541 & 0.2831 \\
0 & 0 & 0
\end{bmatrix}
\]

Let \(G = [g_0, g_1, g_2] \) be denoted as a \(3 \times 1 \) vector for the amount of stains at the specific pixel, where \(g_0, g_1 \) and \(g_2 \) represent the first, second and third channel, respectively. The OD levels at individual pixels could be formulated as \(O = G\hat{\mu} \). Therefore, multiplication of the OD image with the inverse of the OD matrix results in orthogonal representation of the stains forming the image \(G = \hat{\mu}^{-1} O \). Then, the cytoplasm features, \(g_1^c \) and \(g_0^c \), of the target image and the source image are extracted for further corresponding landmark detection.

Corresponding landmark detection. Given a pair of cytoplasm features, \(g_1^c \) and \(g_0^c \), a set of possible transformations \(T \) between \(g_1^c \) and \(g_0^c \) and a mapping function \(H_T(g_0^c) \), we aim to obtain the optimal transformation \(\tau' = \arg \min_{\tau \in T} ||H_T(g_0^c) - g_1^c||^2 \). The optimal transformation \(\tau' \) can be achieved using the shortest distance of the transformation invariant \(\theta(g_0^c, g_1^c) = ||H_T(g_0^c) - g_1^c||^2 \), which corresponds to the Euclidean distance in \(L^2 = \{ \gamma : \mathbb{R} \to \mathbb{R} : \int_{-\infty}^{\infty} |\gamma(u)|^2 |\gamma'(u)|^2 \text{d}u < \infty \} \). However, the optimal transformation \(\tau' \) and the shortest distance \(\theta(g_0^c, g_1^c) \) are not easy to achieve as the objective function, because it is non-convex and local minima trapped solution might occur. To cope with the aforementioned issues, we apply a set of geometric features \(\Gamma = \{ \psi_{\gamma,1} : \gamma^1 \in T_0 \} \subset L^2 \), which is constructed by transforming a generating function \(\psi \in L^2 \), where \(T_0 \subset T \) represents a finite discretization of the transformations \(T \) and \(\psi_{\gamma,1} = U_{\gamma,1}(\psi) \) represents the transformation of the generating function \(\psi \) by \(\gamma^1 \).

Let \(P = \{ p_k \}_{k=0}^K \) and \(Q = \{ q_k \}_{k=0}^K \) be two sets of pairwise correspondences between \(g_0^c \) and \(g_1^c \) in \(\Gamma \), respectively,

\[
P = \sum_{k=0}^{K} a_k \psi_{\gamma_1,k} \\
Q = \sum_{k=0}^{K} \beta_k \psi_{\gamma_2,k}
\]

where \(a_k \) and \(\beta_k \) are not negative coefficients.

Two sets of pairwise correspondences \(P \) and \(Q \) are obtained by the following steps: (1) key point sets \(E^1 \) and \(E^2 \) are detected by applying Difference of Gaussian (DoG) detector\(^a\), (2) the corresponding landmarks \(P \) and \(Q \) are selected as geometric consensus between keypoint sets \(E^1 \) and \(E^2 \) by applying Random Sample Consensus (RANSAC)\(^b\). The corresponding feature detection \(P \) and \(Q \) are then used to compute a set of global transformation parameters.
Computation of global transformation parameters. By aligning two sets of pairwise correspondences, \(P = \{ p_k \}_{k=0}^K \) and \(Q = \{ q_k \}_{k=0}^K \), the task is to compute a set of global transformation parameters rapidly at low resolution level, including scaling factor \(S \), the rotation matrix \(R \) and the translation vector \(T \). Firstly, to compute the scaling factor \(S \), the centroids of each set are calculated, then both of the centroids are translated to its origin (the centred vectors). Let \(\bar{p} = \frac{1}{K}\sum_{k=0}^K p_k \) and \(\bar{q} = \frac{1}{K}\sum_{k=0}^K q_k \) be the centroids of each set, and \(p'_k = p_k - \bar{p} \) and \(q'_k = q_k - \bar{q} \) be the centred vectors, the scaling factor \(S \) can be computed as follows:

\[
S = \frac{\sum_{k=0}^K \sigma(q'_k)}{\sigma(p'_k)} \tag{8}
\]

where \(\sigma \) represents the variance.

Next, \(d \times d \) covariance matrix \(C \) is computed: \(C = \sum_{k=0}^K (q'_k \times p'_k)^T \), and \(tr \) is matrix transpose operator. Then using Jacobi Singular Value Decomposition (SVD) algorithm, the SVD matrix \(X \) is computed: \(X = \delta(C) \). To obtain the rotation matrix \(R \), the SVD matrix \(X \) is decomposed, \(U \Sigma V^T = X \), where \(U, V \) are rotation matrices and \(Z \) is a diagonal matrix. The rotation matrix \(R \) can be computed by the following expression:

\[
R = \begin{bmatrix}
R_{00} & R_{01} & R_{02} \\
R_{10} & R_{11} & R_{12} \\
R_{20} & R_{21} & R_{22}
\end{bmatrix} = \begin{cases}
\text{VEU}_{tr}, & \det(VU^T) > 0 \\
VU^T, & \text{otherwise}
\end{cases}
\tag{9}
\]

where \(E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \) is a \(3 \times 3 \) diagonal identity matrix.

After computing scaling factor \(S \) and rotation matrix \(R \), the translation vector \(T \) can be computed by:

\[
T = (\bar{p} - R\bar{q}) \tag{10}
\]

\(S, R \) and \(T \) are then used for aligning low-level source image \(I_{low}^t \) to the target \(I_{low}^b \), real-time interactive FOV localization and real-time multi-level image registration processes.

Global image transformation. After obtaining a set of transformation parameters from the previous section, next step is to align the low-level source image \(I_{low,(x,y,w,h)}^t \) to the target image and to produce a low-level registered-source \(I_{low,(x',y',w,h)}^t \), where \((x, y)\) is the coordinate of \(I_{low,(x,y,w,h)}^t \) and \((x', y')\) is the coordinate of \(I_{low,(x',y',w,h)}^t \). The mapping relationship is formulated as follows:

\[
\begin{bmatrix}
y' \\
x'
\end{bmatrix} = \mathcal{Z}(R, S, T, x, y) = \begin{bmatrix}
y \\
x
\end{bmatrix} + T \tag{11}
\]

Propagated multi-level image registration. Real-time interactive FOV localization module is devised to locate and fetch the associated tile set of the source WSI corresponding to the FOV of the target WSI as shown in Fig. 5b. Let \(F^t = I_{(x',y',w,h)} \) be the FOV of the target WSI, where \((u', v')\) is the global coordinate of \(F^t \); \(n_1 \times n_2 \) is the number of tiles containing \(F^t \). Firstly, the global coordinate \((u, v)\) of the top left tile of the FOV in the source WSI corresponding to the target FOV \(F^t \) is computed,

\[
\begin{bmatrix}
u' \\
v' \\
u \\
v
\end{bmatrix} = \begin{pmatrix}
\mathcal{S}R \end{pmatrix}^{-1} \begin{bmatrix}
u' \\
v' \\
u \\
v
\end{bmatrix} - \Delta T \tag{12}
\]

where \(\Delta = I - I_{low} \) is used for level calibration.

Secondly, the associated tile set of the source WSI corresponding to \(F^t \) is fetched: \(G : \{ g_{i,j,k} \}_{i=0}^{n_1} \times_{j=0}^{n_2} = \begin{bmatrix} k_a & k_b & \ldots & k_j \end{bmatrix} \) \(k_{a,j} = k_{a,j} + h \). The associated tile set is then used to compute registration outputs. Next, transformation is applied to each enlarged area of every tile \(g_{i,j,k} \) in the fetched tile set, producing a transformed enlarged area. Afterwards, the top left tile of each transformed enlarged area is selected and then integrated into an image as the registration output, i.e. the corresponding FOV of the source WSI (see Fig. 5b). Detailed registration process of the proposed method are described as follows. Let \(B_{G_{i,j,k}}(x,y,w,h) \) be an enlarged area containing \(q \times q \) tiles of each \(g_{i,j,k} \) as the center tile, where \(k = a, \ldots, a + n_1, o = b, \ldots, b + n_2, x = (k - \frac{q}{2})m, y = (o - \frac{q}{2})m, w \times h = (qm)^2 \), and \(q = 5 \) in this study. Firstly, the translation factor is computed for each enlarged area \(B_{G_{i,j,k}}(x,y,w,h) \) at level \(k \):

\[
T_{G_{i,j,k}} = \begin{pmatrix}
-o - \frac{q}{2} \\
-k - \frac{q}{2}
\end{pmatrix}
\tag{13}
\]

Secondly, each enlarged area \(B_{G_{i,j,k}}(x,y,w,h) \) is transformed in parallel by the following formula:
\[
B_{\text{Gl},o} = \{ b_{i,j} \}_{i=0}^{k-1}, j=0, \ldots, o-1 = \{ b_{i,j} \}_{i=0}^{k-1} \}\]
\[
= \{ I_{1}^{h}(x,y,q,m,q_{m}) \}_{(k-\lfloor \frac{1}{2} \rfloor)m \leq x \leq (k+\lfloor \frac{1}{2} \rfloor)m, (o-\lfloor \frac{1}{2} \rfloor)m \leq y \leq (o+\lfloor \frac{1}{2} \rfloor)m} \]
\[
T'_{\text{Gl},o} = \begin{bmatrix}
-(m - 2\lambda_{x}) \ast \frac{1}{2} & 0 \\
-(m - 2\lambda_{y}) \ast \frac{1}{2} & 1
\end{bmatrix} + T_{\text{Gl},o}
\]
\[
B'_{\text{Gl},o}(x',y',w,h) = \{ I_{1}^{h}(x',y',q,m,q_{m}) \}_{(k-\lfloor \frac{1}{2} \rfloor)m \leq x' \leq (k+\lfloor \frac{1}{2} \rfloor)m, (o-\lfloor \frac{1}{2} \rfloor)m \leq y' \leq (o+\lfloor \frac{1}{2} \rfloor)m}
\]

where \(B'_{\text{Gl},o}(x',y',w,h) \) represents a set of transformed enlarged areas, \(\lambda_{x} \) and \(\lambda_{y} \) means the overlapping part between each tiles.

Thirdly, a tile from each transformed enlarged area \(B'_{\text{Gl},o}(x',y',w,h) \) is selected as the registration output tile:

\[
z_{\text{Gl},o} = I_{1}^{h}(x',y',q,m,q_{m,q_{m}}) \]

Finally, \(n_{1} \times n_{2} \) tiles are integrated as the corresponding FOV of the source WSI: \(Z = \{ z_{\text{Gl},o} \} \).

Supplementary Video

An online web-based system of the proposed method has been created for live demonstration of real time cross staining alignment of whole slide images. Please see the supplementary video at https://www.youtube.com/watch?v=0Uc6-s_CIlg&ab_channel=ProfChing-WeiWang.

Received: 30 November 2021; Accepted: 1 July 2022
Published online: 08 July 2022

References

1. Pittot, A. & Guimond, A. Geometrical regularization of displacement fields for histological image registration. Med. Image Anal. 12, 16–25 (2008).
2. Utal, A., Stopka, A., Roy, M. & Coleman, P. Pep-19 immunohistochemistry defines the basal ganglia and associated structures in the adult human brain, and is dramatically reduced in huntington’s disease. Neuroscience 86, 1055–1063 (1998).
3. Eriksdotter-Nilsson, M., Björklund, H. & Olson, L. Laminin immunohistochemistry: a simple method to visualize and quantitate the adult human brain, and is dramatically reduced in huntington’s disease. Brain Res. 1527, 1–14 (2013).
4. de Gooyer, J. M. et al. Hot protein and protein in rat brain parenchyma from early postnatal development into adulthood. Neurosci. Methods 465–483 (2006).
5. Saalfeld, S., Cardona, A., Hartenstein, V. & Tomanáček, P. As-rigid-as-possible mosaicking and serial section registration of large lumen datasets. Bioinformatics 57–63 (2010).
6. de Gooyer, J. M. et al. Immunohistochemical selection of biomarkers for tumor-targeted image-guided surgery of myxofibrosarcoma. Sci. Rep. 10, 1–8 (2020).
7. Angand-Carreras, I. et al. Consistent and elastic registration of histological sections using vector-spline regularization. In Computer Vision Approaches to Medical Image Analysis, vol. 4241 of Lecture Notes in Computer Science, Springer, 2006.
8. Saalfeld, S., Cardona, A., Hartenstein, V. & Tomanáček, P. As-rigid-as-possible mosaicking and serial section registration of large lumen datasets. Bioinformatics 57–63 (2010).
9. Saalfeld, S., Fetter, R., Cardona, A. & Tomanáček, P. Elastic volume reconstruction from series of ultra-thin microscopy sections. Nat. Methods 9, 717–720 (2012).
10. Wang, C., Gosmo, E. & Li, Y. Fully automatic and robust 3D registration of serial-section microscopic images. Sci. Rep. 5, 15051 (2015).
11. Huang, K., Cooper, L., Sharma, A. & Pan, T. Fast automatic registration algorithm for large microscopes images. In 2006 IEEE/NLM Life Science Systems and Applications Workshop, 1–2 (2006).
12. Kurien, T. et al. Three dimensional reconstruction of a human breast carcinoma using routine laboratory equipment and immunohistochemistry. J. Clin. Pathol. 58, 968–972 (2005).
13. Ma, B., Lin, Z., Winkelbach, S., Lindenmaier, W. & Dittmar, K. Automatic registration of serial sections of mouse lymph node by using Image-Reg. Micron 39, 387–396 (2008).
14. Magee, D., Trenor, D. & Quirke, P. A new image registration algorithm with application to 3D histopathology. In Microscopic Image Analysis with Applications in Biology. New York, NY (2008).
15. Fengaligi, A. et al. Registration and 3d visualization of large microscopic images. In Medical imaging 2006: Image processing, vol. 6144, 61442V (International Society for Optics and Photonics, 2006).
16. Pittot, A., Bardinet, E., Thompson, P. M. & Malandain, G. Piecewise affine registration of biological images for volume reconstruction. Med. Image Anal. 10, 465–483 (2006).
17. Ruiz, A., Ujaldon, M., Cooper, L. & Huang, K. Non-rigid registration for large sets of microscopic images on graphics processors. J. Signal Processing Syst. 55, 229–250 (2009).
18. Cooper, L., Saida, S., Leine, G., Salz, J. & Huang, K. Registering high resolution microscopic images with different histochemical stainings-a tool for mapping gene expression with cellular structures. In Proceedings of the Workshop on Microscopic Image Analysis with Applications in Biomedicine (2007).
19. Cooper, L. et al. Feature-based registration of histopathology images with different stains: An application for computerized follicular lymphoma prognosis. Comput. Methods Programs Biomed. 96, 182–194 (2009).
20. du Bois d’Aische, A. et al. Efficient multi-modal dense field non-rigid registration: Alignment of histological and section images. Med. Image Anal. 9, 538–546 (2005).
21. Feuerstein, M., Heibel, H., Gardiàzabal, J., Navah, N. & Groher, M. Reconstruction of 3-D histology images by simultaneous deformable registration. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 582–589 (Springer, 2011).
24. Trahearn, N., Epstein, D., Cree, I., Snead, D. & Rajpoot, N. Hyper-stain inspector: A framework for robust registration and localised
23. Rossetti, B. J.
institutional affiliations.
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and
Correspondence
and requests for materials should be addressed to C.-W .W .
Author contributions
Y .C.L., M.A.K. and K.Y .L. wrote the manuscript. All authors reviewed and approved the final version.
Competing interests
The authors declare no competing interests.
Additional information
Correspondence and requests for materials should be addressed to C.-WW.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
© The Author(s) 2022