Bayesian Integrals on Toric Varieties

Michael Borinsky, Anna-Laura Sattelberger, Bernd Sturmfels, Simon Telen

SIAM AG 2023
Minisymposium: Algebraic Invariants of Data

July 11, 2023
What to expect

Aim

Computation of marginal likelihood integrals

\[\int_{X > 0} p_0^{\mu_0} p_1^{\mu_1} \cdots p_m^{\mu_m} \Omega_X^{\text{prior}} \]

for statistical models that are parameterized by a toric variety.

How?

Tropical sampling algorithms.

Outline

1. Toric varieties and statistical models
2. Toric varieties as probability spaces
3. Tropical sampling

Michael Borinsky, Anna-Laura Sattelberger, Bernd Sturmfels, and Simon Telen. Bayesian Integrals on Toric Varieties. *SIAM J. Appl. Algebra Geom.*, 7:77–103, 2023.
Toric varieties and statistical models

Definition

A \textbf{discrete statistical model} with \(m + 1 \) states is a parameterized subset of the probability \(m \)-simplex

\[
\Delta_m = \left\{ (p_0, \ldots, p_m) \mid p_i \in (0, 1), \sum_{i=0}^{m} p_i = 1 \right\}.
\]

Definition

An algebraic variety \(X \) is \textbf{toric} if it contains a dense algebraic torus \(\mathbb{G}_m^n \) whose action on itself extends to \(X \).

Fact

Normal toric varieties of dimension \(n \) are encoded by complete fans in \(\mathbb{R}^n \).
Example: a coin model

\[X = \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \]
homogeneous coordinates \((x_0 : x_1), (s_0 : s_1), (t_0 : t_1)\)

\[X = X_\Sigma \]
\(\Sigma\) the inner normal fan of \([0, 1]^3\)

\[X_{>0} \cong (0, 1)^3 \]
the positive part of \(X\)

Model: image of \(X_{>0} \to \Delta_m, (x, s, t) \mapsto (p_\ell(x, s, t))_{\ell=0,\ldots,m}\),

\[x = x_0, \ x_1 = 1 - x, \ s = s_0, \ s_1 = 1 - s, \ t = t_0, \ t_1 = 1 - t \]

\[
p_\ell = \binom{m}{\ell} x^\ell (1 - s)^{m-\ell} + \binom{m}{\ell} (1 - x)^\ell (1 - t)^{m-\ell}, \quad \ell = 0, 1, \ldots, m.
\]

\(p_\ell\) probability for observing \(\ell\) times head

Marginal likelihood integral

For uniform prior on \((0, 1)^3\), data \(u = (u_0, \ldots, u_m)\), the **marginal likelihood integral** is

\[
I_u = \int_{X_{>0}} \frac{u_0^{u_0} \cdots u_m^{u_m}}{L_u \cdot \Omega_{X}^{unif}}.
\]

\[u_+ = u_0 + \cdots + u_m \]
many repetitions
Normal toric varieties

Example: complex projective plane

Σ the inner normal fan of Δ_2, $V = (v_1|v_2|v_3) = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$

$X_\Sigma = \mathbb{P}_\mathbb{C}^2 = (\mathbb{C}^3)^*/\mathbb{C}^* = (\mathbb{A}_\mathbb{C}^3 \setminus \mathcal{V}(x_0, x_1, x_2))/\mathbb{G}_m$

Homogeneous coordinates: $(x_0: x_1: x_2)$ \quad \text{Cox coordinates}

Three affine charts: $\{x_i \neq 0\}$ \quad \text{one for each maximal cone}

In general

Σ a complete fan in \mathbb{R}^n \quad \text{e.g. the inner normal fan of a polytope } P

\begin{itemize}
 \item $V = (v_1|\cdots|v_k)$ \quad \text{columns: primitive ray generators of the } \rho_i \in \Sigma(1)
 \item $\text{Cl}(X) = \mathbb{Z}^k/\text{im}(V^\top)$ \quad \text{divisor class group of } X
 \item $G = \text{Hom}(\text{Cl}(X), \mathbb{C}^*)$ \quad \text{the characters of } \text{Cl}(X)
 \item $S = \mathbb{C}[x_1, \ldots, x_k] = \bigoplus_{\gamma \in \text{Cl}(X)} S_\gamma$ \quad \text{Cox ring}
 \item $B = \langle \prod_{\rho \notin \sigma} x_\rho \mid \sigma \in \Sigma(n) \rangle \subset S$ \quad \text{the irrelevant ideal}
 \item $X_\Sigma = (\mathbb{C}^k \setminus \mathcal{V}(B))/G$ \quad \text{the toric variety of } \Sigma$
\end{itemize}
Positive toric varieties

Setup

\[\Sigma \quad \text{the inner normal fan of a polytope } P \]
\[X = X_\Sigma \quad \text{the toric variety of } \Sigma \]
\[P^\circ \quad \text{the interior of } P \]

Positive part of \(X_\Sigma = (\mathbb{C}^k \setminus \mathcal{V}(B)) / G \)

\[\diamond \quad \pi : \mathbb{C}^k \setminus \mathcal{V}(B) \longrightarrow (\mathbb{C}^k \setminus \mathcal{V}(B)) / G \quad \text{the projection} \]
\[\diamond \quad \pi(\mathbb{R}^k_{>0}) =: X_{>0} \quad \text{the positive part of } X_\Sigma \quad X_{\geq 0} \text{ its Euclidean closure} \]

Algebraic moment map

One identifies \(X_{>0} \) and \(P^\circ \) via the \textit{moment map}

\[X_{>0} \overset{\varphi}{\sim} \mathbb{R}^n_{>0} \overset{\varphi}{\sim} P^\circ, \]

with \(\varphi \) the affine moment map

\[\varphi(t) = \sum_{a \in \mathcal{V}(P)} \frac{c_a t^a}{q(t)} \cdot a, \quad q = \sum_{a \in \mathcal{V}(P)} c_a t^a \in \mathbb{R}_{>0}[t_1^\pm, \ldots, t_n^\pm]. \]
$X_{>0}$ as probability space

Definition

The **canonical form** of $(X, X_{>0})$ is the meromorphic differential n-form

$$\Omega_X = \sum_{l \in \Sigma(1), \ |l| = n} \text{det}(V_l) \bigwedge_{\rho \in l} \frac{dx_\rho}{x_\rho}$$

on X. The pair $(X, X_{>0})$ is a **positive geometry**.

Proposition

The pullback of $dy_1 \wedge \cdots \wedge dy_n$ on P° under the moment map $X_{>0} \to P^\circ$ is a positive rational function r times Ω_X. We obtain $r(x)$ from $|\det|$ of the **toric Hessian** of $\log(q(t))$

$$H(t) = (\theta_i \theta_j \cdot \log(q(t)))_{i,j} \quad \theta_i = t_i \partial_{t_i}$$

by replacing t_1, \ldots, t_n with Laurent monomials in x_1, \ldots, x_k given by the rows of V.

Observation: Scaled by a rational function $\frac{f}{g}$, Ω_X gives a probability measure on $X_{>0}$!

Integrals of interest:

$$\mathcal{I}_{f,g} = \int_{X_{>0}} \frac{f}{g} \Omega_X \quad f, g \in S \text{ homogeneous of the same degree}$$
Toric sector decomposition

Definition

The tropical approximation of \(f \in \mathbb{C}[x_1, \ldots, x_k] \) is the piecewise monomial function

\[
f^{\text{tr}} : \mathbb{R}_>^k \to \mathbb{R}_>, \quad x \mapsto \max_{\ell \in \text{supp}(f)} x^\ell.
\]

Proposition

Let \(\mathcal{F} \) be a simplicial refinement of the normal fan of \(\mathcal{N}(f) + \mathcal{N}(g) \). Then

\[
\mathcal{I}_{f, g} = \int_{X_0} \frac{f}{g} \Omega_X = \sum_{\sigma \in \mathcal{F}(n)} \int_{\text{Exp}(\sigma)} \frac{f^{\text{tr}}}{g^{\text{tr}}} \frac{f \cdot g^{\text{tr}}}{g \cdot f^{\text{tr}}} \Omega_X = \sum_{\sigma \in \mathcal{F}(n)} \mathcal{I}_\sigma \quad \text{sector integrals}
\]

\[
\quad \quad \quad =: h, \text{ positive and bounded on } X_0
\]

\[
\quad \quad \quad \diamond \text{ Exp: } \mathbb{R}^k/K \to X_0, \quad [y_1, \ldots, y_k] \mapsto \pi(e^y) \quad \diamond \text{ parameterization } x^\sigma : [0, 1]^n \to \text{Exp}(\sigma)
\]

Tropical detour

Also the tropical integral \(\mathcal{I}^{\text{tr}}_{f, g} = \int_{X_0} f^{\text{tr}}/g^{\text{tr}} \Omega_X \) decomposes as \(\mathcal{I}^{\text{tr}} = \sum_{\sigma \in \mathcal{F}(n)} \mathcal{I}^{\text{tr}}_\sigma \). Each tropical sector integral \(\mathcal{I}^{\text{tr}}_\sigma \) is an integral over a monomial encoded by data of \(\mathcal{F}! \)

\[
\mathcal{I}^{\text{tr}}_\sigma = \int_{\text{Exp}(\sigma)} x^{-(\nu_g - \nu_f)} \Omega_X
\]
Sampling from \((X_{>0}, d_{f,g}^{(tr)})\)

\[
\mu_{f,g} = \frac{1}{\mathcal{I}_{f,g}} \cdot \frac{f}{g} \Omega_X \quad \text{and} \quad \mu_{f,g}^{\text{tr}} = \frac{1}{\mathcal{I}_{f,g}^{\text{tr}}} \cdot \frac{f^{\text{tr}}}{g^{\text{tr}}} \Omega_X \quad \text{are probability measures on } X_{>0}!
\]

Goal: Evaluate \(\mathcal{I}_{f,g} = \int_{X_{>0}} \frac{f}{g} \Omega_X\).

Sampling from the tropical density

Input: \(\mathcal{F}, \mathcal{I}_{\sigma}^{\text{tr}},\) and \(\mathcal{I}^{\text{tr}}\).

Step 1. Draw an \(n\)-dimensional cone \(\sigma\) from \(\mathcal{F}(n)\) with probability \(\mathcal{I}_{\sigma}^{\text{tr}} / \mathcal{I}^{\text{tr}}\).

Step 2. Draw a sample \(q\) from the unit hypercube \([0, 1]^n\) using the uniform distribution.

Step 3. Compute \(x^{\sigma}(q) \in X_{>0}\).

Output: The element \(x^{\sigma}(q) \in X_{>0}\), a sample from \((X_{>0}, d_{f,g}^{\text{tr}})\).

Proposition

Let \(x^{(1)}, \ldots, x^{(N)}\) be tropical samples from \(X_{>0}\). Then

\[
h(x) = \frac{f(x) \cdot g^{\text{tr}}(x)}{g(x) \cdot f^{\text{tr}}(x)}
\]

\[
\mathcal{I}_{f,g} \approx \mathcal{I}_N = \frac{\mathcal{I}_{f,g}^{\text{tr}}}{N} \cdot \sum_{i=1}^{N} h\left(x^{(i)}\right).
\]
Bayesian inference

Toric polytope models \(c = (c_0, \ldots, c_m), \ c_i \in \mathbb{R}_{>0} \)
- \(Z = c_0 x_0^a + c_1 x_1^a + \cdots + c_m x_m^a \in S \) homogeneous of degree \(\gamma \in \text{Cl}(X) \)
 \(a_i \) lattice points of \(P \)
- \(p_i = c_i x_i^a / Z, \ i = 0, \ldots, m, \) are positive on \(X_{>0}, \ \sum_{i=0}^m p_i = 1 \)

Bayes’ factor for toric pentagon model

Prior: distribution \(\mu_{f,g} \) arising from the toric Hessian of \(\log(q(t)) \)
Data: \(u = (u_0, \ldots, u_5) = (1, 2, 4, 8, 16, 32) \quad u_+ = \sum u_i = 63 \)

Competing models: toric models \(\mathcal{M}_c \) for
- \(c^{(1)} = (2, 3, 5, 7, 11, 13) \quad \text{and} \quad c^{(2)} = (32, 16, 8, 4, 2, 1). \)

Marginal likelihood integrals:
\[
\mathcal{I}_u^{(i)} = \int_{X_{>0}} L_u^{(i)}(x) \mu_{f,g}, \quad i = 1, 2.
\]

Bayes’ factor: \(K = \mathcal{I}_u^{(1)}/\mathcal{I}_u^{(2)} \approx 21.06. \quad \mathcal{M}_{c^{(1)}} \) is a better fit for the data than \(\mathcal{M}_{c^{(2)}}! \)
In a nutshell

1. Statistical models parameterized by toric varieties occur naturally.
2. Positive toric varieties are probability spaces.
3. Bayesian inference via tropical methods.

Supplementary material

- code in Julia available at: https://mathrepo.mis.mpg.de/BayesianIntegrals
- painting inspired by the pentagon model: https://alsattelberger.de/painting/

Thank you for your attention!
Toric data of f, g

Theorem

Suppose that the Newton polytope of g is n-dimensional and contains that of the numerators f in its relative interior. Then the integral $\int_{X > 0} \frac{f}{g} \Omega_X$ converges.

Proposition

Let \mathcal{F} a simplicial refinement of $\mathcal{N}(f) + \mathcal{N}(g)$. Let σ be a cone of \mathcal{F}, ν_f and ν_g corresponding faces of $\mathcal{N}(f)$ and $\mathcal{N}(g)$. Then:

$$\frac{f^{\text{tr}(x)}}{g^{\text{tr}(x)}} = x^{-(\nu_g - \nu_f)}$$

for all $x \in \mathbb{R}^k$ such that $\pi(x) \in \text{Exp}(\sigma)$.

Then

$$I^{\text{tr}} = \sum_{\sigma \in \mathcal{F}(n)} I^{\text{tr}}_\sigma \quad \text{where} \quad I^{\text{tr}}_\sigma = \int_{\text{Exp}(\sigma)} \frac{f^{\text{tr}}}{g^{\text{tr}}} \Omega_X = \int_{\text{Exp}(\sigma)} x^{-\delta_\sigma} \Omega_X.$$

Write $\text{im}(V)^\top$ as $\ker(W)$. The tropical sector integral is equal to

$$I^{\text{tr}}_\sigma = \frac{\det(VW)}{\prod_{\ell=1}^n w_\ell \cdot \delta_\sigma}.$$
Sampling from \((X_{>0}, d_{f,g})\)

Setup

- \(d_1\) and \(d_2\) two densities on the same space with the same differential form e.g. on \((X_{>0}, \Omega_X)\)
- suppose it is hard to sample from \(d_1\), but easy to sample from \(d_2\)
- suppose there exists \(C \geq 1\) such that \(d_1(x)/d_2(x) \leq C\) for all \(x\)

Rejection sampling

Step 1. Draw a sample \(x \in X\) using \(d_2\), and \(\xi \in [0, C]\) with the uniform distribution.
Step 2. If \(\xi < d_1(x)/d_2(x)\), accept \(x\) as a sample. Otherwise, reject \(x\).

Output: A sample from \(d_2(x) \cdot d_1(x)/d_2(x)\), i.e., \(d_1(x)\).

Proposition

Suppose that \(f = \sum_{\ell \in \text{supp}(f)} f_\ell x^\ell\) has positive coefficients. Set \(C_1 = \min_{\ell \in \text{supp}(f)} f_\ell\) and \(C_2 = \sum_{\ell \in \text{supp}(f)} f_\ell\). Then

\[
0 < C_1 \leq \frac{f(x)}{f_{\text{tr}}(x)} \leq C_2 < \infty \quad \text{for all} \quad x \in X_{>0}.
\]

Sampling from \(d_{f,g}\) via rejection sampling with \(d_{f,g}^{\text{tr}}\)!
Error estimates

Let \(h(x) = \frac{f(x) \cdot g^{tr}(x)}{g(x) \cdot f^{tr}(x)} \). Then

\[
M_1 \leq h(x) \leq M_2 \quad \text{for all} \quad x \in X_{>0},
\]

where

\[
M_1 = \min_{\ell \in \text{supp}(f)} f_\ell \frac{\sum_{\ell \in \text{supp}(g)} g_\ell}{\sum_{\ell \in \text{supp}(g)} g_\ell}
\quad \text{and} \quad
M_2 = \frac{\sum_{\ell \in \text{supp}(f)} f_\ell}{\min_{\ell \in \text{supp}(g)} g_\ell}.
\]

Proposition

Let \(x^{(1)}, \ldots, x^{(N)} \) be tropical samples from \(X_{>0} \). Then

\[
\mathcal{I}_{f, g} \approx \mathcal{I}_N = \frac{\mathcal{I}_{f, g}^{tr}}{N} \cdot \sum_{i=1}^{N} h\left(x^{(i)}\right).
\]

Proposition

The standard deviation of the approximation above satisfies

\[
\sqrt{\mathbb{E} \left[(\mathcal{I} - \mathcal{I}_N)^2 \right]} \leq \mathcal{I}^{tr} \cdot \sqrt{\frac{M_2^2 - M_1^2}{N}}.
\]
The Wachspress model

$P \subset \mathbb{R}^n$ a polytope, Σ its inner normal fan, $V = (v_1|\cdots|v_k)$

Inequality representation of P

$$P = \{ y \in \mathbb{R}^n | \langle v_i, y \rangle + \alpha_i \geq 0, \ i = 1, 2, \ldots, k \}$$

with $\alpha_1, \ldots, \alpha_k \in \mathbb{Z}_{>0}$. The vertices q_l of P are indexed by cones $l \in \Sigma(n)$: the vertex $q_l \in \mathbb{Z}^n$ is the unique solution of $\langle v_i, y \rangle = -\alpha_i$ for $i \in l$.

Definitions

The adjoint of P is the polynomial in variables y_1, \ldots, y_n

$$A = \sum_{l \in \Sigma(n)} |\det(\tilde{V}_l)| \cdot \prod_{i \notin l} \left(1 + \frac{1}{\alpha_i} \langle v_i, y \rangle \right).$$

The Wachspress model of P is the image of $P \to \Delta_m, \ y \mapsto (p_l(y))_{l \in \Sigma(n)}$ with

$$p_l(y) = \frac{|\det(\tilde{V}_l)|}{A(y)} \cdot \prod_{l \in \Sigma(n)} \left(1 + \frac{1}{\alpha_i} \langle v_i, y \rangle \right).$$