Green Tea Epigallocatechin-3-Gallate Regulates Autophagy in Male and Female Reproductive Cancer

Sze Wan Hung†, Yiran Li†, Xiaoyan Chen†, Kai On Chu3, Yiwei Zhao†,†, Yingyu Liu†,†, Xi Guo†, Gene Chi-Wai Man†,5* and Chi Chiu Wang†,6*

†Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China, 2Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China, 3Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, The Chinese University of Hong Kong, Hong Kong, China, 4Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China, 5Department of Orthopaedics and Traumatology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China, 6Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China

With a rich abundance of natural polyphenols, green tea has become one of the most popular and healthiest nonalcoholic beverages being consumed worldwide. Epigallocatechin-3-gallate (EGCG) is the predominant catechin found in green tea, which has been shown to promote numerous health benefits, including metabolic regulation, antioxidant, anti-inflammatory, and anticancer. Clinical studies have also shown the inhibitory effects of EGCG on cancers of the male and female reproductive system, including ovarian, cervical, endometrial, breast, testicular, and prostate cancers. Autophagy is a natural, self-degradation process that serves important functions in both tumor suppression and tumor cell survival. Naturally derived products have the potential to be an effective and safe alternative in balancing autophagy and maintaining homeostasis during tumor development. Although EGCG has been shown to play a critical role in the suppression of multiple cancers, its role as autophagy modulator in cancers of the male and female reproductive system remains to be fully discussed. Herein, we aim to provide an overview of the current knowledge of EGCG in targeting autophagy and its related signaling mechanism in reproductive cancers. Effects of EGCG on regulating autophagy toward reproductive cancers as a single therapy or cotreatment with other chemotherapies will be reviewed and compared. Additionally, the underlying mechanisms and crosstalk of EGCG between autophagy and other cellular processes, such as reactive oxidative stress, ER stress, angiogenesis, and apoptosis, will be summarized. The present review will help to shed light on the significance of green tea as a potential therapeutic treatment for reproductive cancers through regulating autophagy.

Keywords: green tea, EGCG, autophagy, reproductive cancers, anticancer
INTRODUCTION

Male and female reproductive cancers remain one of the biggest health concerns worldwide due to the high prevalence, yet therapeutic management remains a great challenge. A low survival rate reflects the lack of efficient treatments and risks of recurrence (Garcia-Aranda and Redondo, 2019; Hanna et al., 2020; Hawasawi et al., 2020). Current treatments for reproductive cancers bring fertility-related side effects. The risk of infertility associated with gynecologic malignancies is high, with a successful pregnancy rate of only above 40% (Poorthu et al., 2019). Hysterectomy is one of the most common management of ovarian and endometrial cancers, removing the critical reproductive organs. In breast cancer, a negative impact on the reproductive system has been reported after chemotherapy (Hickey et al., 2009). Radiation therapy that is directed to the reproductive organs disturbs hormone production and imposes fertility risk. Adjuvant therapy for testicular cancer affects fecundity (Kim et al., 2010; Poorthu et al., 2019). Recently, modulation of autophagy is proposed as a novel approach to tackle cancer. In this review article, we will report the therapeutic effects of green tea, particularly EGCG, on female and male reproductive cancers and its possible mechanisms behind it. In addition, this review will emphasize the crosstalk of EGCG between its regulated anti-carcinogenic properties with autophagy on highlighting its role as an autophagy modulator toward reproductive cancer. Importantly, we hope to provide a perspective on green tea catechins and EGCG as potential autophagy modulator for the treatment of reproductive cancer.

Incidence, Mortality, and Prevalence of Reproductive Cancer

Cancer is a major leading burden of disease worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six deaths. In 2050, an estimated 6.9 million new cancers will be diagnosed in adults aged 80 years or older worldwide (20.5% of all cancer cases) (Pilleron et al., 2021). Among both male and female, reproductive cancer contributes to a high incidence and mortality on the causes of death worldwide (Garcia-Aranda and Redondo, 2019; Hawasawi et al., 2020). The following cancers are exclusive to the female reproductive system including cancer originating at the ovary (ovarian cancer), cervix uteri (cervical cancer), and corpus uteri (endometrial cancer). While these cancers are exclusive to the male reproductive system, these include cancer originating at the prostate gland (prostate cancer) and the testis (testicular cancer). As for breast cancer, this can affect both males and females.

Ovarian cancer cells arise from epithelial, stromal, or germ cells of the ovary (Horowitz et al., 2020). The cells disseminate through the perineal cavity and metastasize to the omentum (Yeung et al., 2015). On the first hand, cancer cells from primary tumor cells can passively be disseminated to a newly established site, with enhanced cancer cells adhesion, invasiveness, motility, and a supportive microenvironment. On the other hand, it can undergo a hematogenous metastatic mechanism via epithelial-mesenchymal transition (Yeung et al., 2015). In 2020, ovarian cancer accounts for 313,959 new cases, and 207,252 deaths. The crude death rate of ovarian cancer was 5.4 per 100,000 female population. The age-standardized death rate of ovarian cancer was 4.2 per 100,000 standard population (WHO, 2022). Diagnosis of ovarian cancer is often delayed; it could be more treatable if it is diagnosed earlier (Evans et al., 2007).

For cervical cancer, it has been widely accepted that Human papillomavirus (HPV) infection is an attributable factor (Walboomers et al., 1999). HPV oncoproteins E6 and E7 block p53 and retinoblastoma protein, which function as tumor suppressors, as well as engage in multiple-step carcinogenesis such as viral DNA replication and proliferation, leading to invasive cervical cancer development (Walboomers et al., 1999; Yugawa and Kiyono, 2009; Den Boon et al., 2015; Gupta and Mania-Pramanik, 2019). Worldwide, cervical cancer is reportedly the fourth most incident cancer and the fourth leading cause of cancer-related death, with 604,127 new cases and 341,831 deaths in women in 2020. Early on, typically no symptoms are seen. Later, symptoms may include abnormal vaginal bleeding, pelvic pain, or pain during sexual intercourse (WHO, 2022).

Endometrial cancer can be endometrioid (type 1), arising from excess stimulation of estrogen and atypical glandular hyperplasia; or non-endometrioid (type 2) (Lu and Broaddus, 2020; Terzic et al., 2021). Type 1 tumors are associated with significantly enhanced onco gene mutations and tumor suppressor genes; hence, it resembles proliferative endometrium (Hecht and Mutter, 2006; Morice et al., 2016). Type 2 tumors are mainly associated with enhanced TP53 and HER2/neu mutations (Morice et al., 2016; Terzic et al., 2021). In 2020, endometrial cancers newly occurred in 417,367 women and caused 97,370 deaths. This makes it the third most common cause of death in cancers which only affect women, behind cervical and ovarian cancer. Endometrial cancer arises from the endometrium (the lining of the uterus or womb) and is associated with excessive estrogen exposure, high blood pressure, and diabetes. And often, regular screening in those at normal risk is not common.

Breast cancer originates within the inner lining of ducts or the lobules, then disseminates to lymph nodes or other nearby sites. The major cause of mortalities includes metastasis with enhanced cells, or with dysregulated immune responses (Zheng et al., 2017). In 2020, breast cancer is the most diagnosed cancer, with 2.3 million cases and 685,000 deaths globally (Sung et al., 2021). It affects 1 in 7 (14%) women worldwide, making it the world’s most prevalent cancer (Balasubramanian et al., 2019). Breast cancer occurs in every country of the world in women at any age after puberty but with increasing rates in later life (WHO, 2021).

Genetic and environmental factors contribute to the development of testicular germ cell tumors, supported by ethical and geographic evidence (Al-Obaidy et al., 2020). It is also reported that isochromosome 12p alternation is especially associated with the progression and invasiveness of the tumors; and it can be related to abnormalities in malignant transformation, oxidative damage, and DNA repairing (Reuter, 2005; Cheng et al., 2017; Al-Obaidy et al., 2020). Globally, testicular cancer affected about 74,458 new cases in 2020, which resulted in 9,334 deaths in 2020. As found, rates are
lower in the developing than the developed world. Onset most commonly occurs in males 20–34 years old, rarely before 15 years old (Hayes-Lattin and Nichols, 2009). Most often, treatment outcomes are better when the disease remains localized.

Prostate cancer development can be via intraepithelial neoplasia which is the hyperplasia of luminal cells and progressive loss of basal cells. On the other hand, it is also reported as an androgen-dependent adenocarcinoma, that is characterized by the strong phenotype of lumina cells but without basal cells. In contrast, it can also be castration-resistant and independent of androgens (Testa et al., 2019; Tong, 2021). Prostate cancer is the fourth most incident cancer worldwide, with 1,414,259 new cases and 375,304 deaths in 2020. In males, it was the second most common cancer and had the highest prevalence in 2020. Factors that increase the risk of prostate cancer include older age, family history, and race. About 99% of cases occur after age 50 (Rawla, 2019).

Overall, reproductive cancers comprised 28.11% of incidence, 17.34% of mortality, and 38.05% of prevalence (5 years) of all cancers in the world in 2020, demonstrating its relevance as a public health problem (Table 1). The molecular mechanism of reproductive related cancers had been extensively reviewed, which is a complex carcinogenesis process accompanied by related pathophysiology (Zheng et al., 2017; Gupta and Mania-Pramanik, 2019; Testa et al., 2019; Al-Obaidy et al., 2020; Horowitz et al., 2020; Terzic et al., 2021). These include enhanced growth factors and oncogenes but resisting apoptotic factors and tumor suppressors, as a result of enhanced invasiveness and metastasis. These processes are regulated by different signal transduction systems such as the cell cycle and DNA repair system (Torgovnick and Schumacher, 2015; Li et al., 2020). Noteworthy, there is a rapid growth of research that focuses on the autophagy roles in cancer pathophysiology. Our team previously conducted a comprehensive and systematic analysis on the roles of autophagy in cervical, endometrial, and ovarian cancer progression and chemoresistance (Tam et al., 2021). We agreed with the argumentative roles of autophagy, which are inconsistent with those proposed in previous cancer studies (Janku et al., 2011; Mowers et al., 2017; Lim and Murthy, 2020). In this review, we extend the research to explore autophagy modulators in reproductive cancer.

THE ROLE OF AUTOPHAGY IN REPRODUCTIVE CANCER

In normal physiological conditions, autophagy typically would be maintained at a minimal level of activity. Mainly, cells utilize basal levels of autophagy to aid in the maintenance of biological function, homeostasis, quality-control of cell contents, and elimination of old proteins and damaged organelles for cell survival (Levine and Yuan, 2005; Mizushima et al., 2008). Autophagy happens in lysosome which has a membrane to limit the leakage of the degradative enzyme. There are micro- and macro-autophagy. The former engulfs the cytosolic compound directly by lysosomes, and the latter involves the sequestration of cargoes within an autophagosome, which is a double membrane cytosolic vesicle formed from a phagophore. Macro-autophagy can be specific and targets organelles or invasive microbes, as well as can be nonspecific. The degradation process of autophagosome happens in autolysosome and macromolecules will be released back into the cytosol (Levine and Kroemer, 2008; Mizushima et al., 2008; Mizushima and Levine, 2020). Additionally, the regulation of autophagy can modulate cancer cells’ growth or death.

During the initiation stage of autophagy, phagophore assembly site (PAS) is formed, along with UNC51-like kinase (ULK)1/2 and autophagy-related protein (ATG)13 which translocate to the endoplasmic reticulum to facilitate the formation of class III PI3K-Beclin1-VPS34 complex as phagophore. Phagophore undergoes elongation to form autophagosome, which requires two ubiquitin-like conjugate systems: ATG12-ATG5-ATG16 multimeric system and Phosphatidylethanolamine (PE) to microtubule-associated protein 1 light chain (LC)3 conjugate system. ATG7 and ATG4 facilitate the binding of LC3-PE, which are essential for the expansion of the autophagosome membrane to recognize autophagic cargos. During the maturation stage, the cargo sequestration is completed. The resulting autophagosome fuses

Cancer	Incidence (total new cases of all cancers: 18,094,716)	Proportion mortality/incidence		
Cause of cancer-related death	Number of cases	%		
Prostate	1st	2,261,419	12.50	0.30
Testicular	7th	504,127	2.89	0.27
Endometrial	18th	319,959	1.74	0.66
Cervical	17th	823,315	1.87	0.66
Ovarian	14th	207,252	2.09	0.66
Breast	1st	7,790,717	28.11	0.30

Table 1 | Incidence, mortality, and prevalence of male and female reproductive cancers worldwide in 2020.

Information collected from data published at https://gco.iarc.fr/today, accessed on 21st March 2022.

TABLE 1 | Incidence, mortality, and prevalence of male and female reproductive cancers worldwide in 2020.

Cancer	Prevalence, 5 years (total cases of all cancers: 44,091,402)	Mortality (total deaths of all cancers: 9,894,402)	Incidence (total new cases of all cancers: 18,094,716)	Proportion mortality/incidence					
	Prevalence in cancer occurrence	Number of cases	%	Cause of cancer-related death	Number of cases	%	Cancer most frequently diagnosed	Number of cases	%
Breast	1st	7,790,717	17.67	5th	684,996	6.92	1st	2,261,419	12.50
Cervical	9th	1,496,211	3.39	9th	341,831	3.45	7th	604,127	3.34
Ovarian	1oth	1,415,213	3.21	19th	97,570	0.98	15th	417,367	2.31
Prostate	17th	853,315	1.87	14th	207,252	2.09	18th	319,959	1.74
Testicular	23rd	296,686	0.67	8th	375,304	3.79	4th	1,414,259	7.82
Total	—	16,778,043	35.21	—	4,176,087	17.34	27th	74,158	0.41

Table 1 | Incidence, mortality, and prevalence of male and female reproductive cancers worldwide in 2020.

Information collected from data published at https://gco.iarc.fr/today, accessed on 21st March 2022.
with a lysosome to form an autolysosome; meanwhile, lysosomal enzyme degrades the autophagosome contents. At last, the cargo is broken down and released into the cytosol. The lysosome is recycled during the degradation stage (Levine and Kroemer, 2008; Mizushima et al., 2008; Feng et al., 2014; Kaur and Debnath, 2015; Mizushima and Levine, 2020). Based on our previous findings, we reported that several autophagy regulators, consisting of ULK1, Beclin1, ATG5, p62, and LC-3BII, were related to the growth of cervical, endometrial, and ovarian cancer (Tam et al., 2021). Similarly, these autophagy regulators, including Beclin1 and LC-3B, were also shown to modulate prostate adenocarcinoma and breast cancer (Naponelli et al., 2015; Tyutyuny-Massey and Gewirtz, 2020) while p62, LC3B, and Beclin1 played critical roles in the survival of testicular cancer (Nakkas et al., 2021). Therefore, by targeting these autophagy regulatory factors directly or indirectly, it could potentially be used to inhibit the progression of reproductive cancer tumors.

Promotion of Cancer Growth

Autophagy is a physiological cellular process for the degradation and elimination of misfolded proteins and damaged organelles that function in adaptation to starvation, development, cell death, and tumor suppression (Klionsky et al., 2021). This process allows unneeded proteins to be degraded and the amino acids recycled for the synthesis of proteins that are essential for survival. Toward cancer survival, autophagy plays dual roles in contributing to the growth of cancer as well as tumor suppression (Klionsky et al., 2021). Such that, the growth of cancer can be promoted by maintaining the survival of tumor cells that have been starved, or to degrade apoptotic mediators, through autophagy (Su et al., 2013). This can be induced by cytotoxic and metabolic stresses, including hypoxia and nutrient deprivation, to activate autophagy for recycling of ATP and to maintain cellular biosynthesis and survival, which promotes HIF-1α-dependent and -independent activation (Semenza, 2010). This activation would increase the expression of angiogenic factors, such as vascular endothelial growth factor (VEGF), platelet-derived growth factor, and nitric oxide synthase. Also, the induction of autophagy by miRNA-4673 has been found to improve the resistance of cancer cells to radiation (Dokumcu et al., 2018). In addition, suppression of autophagy by deletion of Beclin 1 enhances cell death (Degenhardt and White, 2006; White and Dipaola, 2009). Autophagy presents the cytoprotective ability to cancer cells and favors cell survival by coping with the intracellular and environmental stress. Therefore, potent inhibitors to limit the progression of autophagy can be an alternative strategy (Amaravadi et al., 2019; Mizushima and Levine, 2020), such as Metformin in prostate cancer (Farrow et al., 2014); Chloroquine in prostate, breast, and endometrial cancer (Solomon and Lee, 2009; Farrow et al., 2014; Nunez-Olvera et al., 2019); Bortezomib and HDAC6 inhibitor Panobinostat in breast cancer (Maycotte and Thorburn, 2014); Elaophyl in ovarian cancer (Zhao et al., 2015) etc. Autophagy inhibitors should be used only if cancer cells are more reliant on autophagy than normal cells (Mizushima and Levine, 2020).

Promotion of Cancer Cell Death

Various studies have shown the regulation of autophagy would contribute to the expression of tumor suppressor proteins or oncogenes (Avalos et al., 2014). The previous study has shown xenografts with a lowered expression of Beclin1, a protein that regulates autophagy, to be tumor-prone (Qu et al., 2003). However, another study demonstrated when Beclin1 was overexpressed, the tumor development was inhibited (Liang et al., 1999). Likewise, autophagy can indirectly prevent the release of proinflammatory HMGB1 by limiting necrosis and chronic inflammation to protect against tumorigenesis (Tang et al., 2010). Autophagy brings cytotoxicity effects to promote tumor cell death, which can be completed through degradation of oncogenic proteins (Janku et al., 2011), or via reducing metabolic stress, regulation of oxidative stress, or metastasis during tumorigenesis. DNA would be damaged and lead to genomic instability (Mathew et al., 2009; Mizushima and Levine, 2020). It responds to a range of cellular stresses, including nutrient deprivation, organelle damage, and abnormal protein accumulation. Autophagy inducers may be beneficial when there are excess abnormal macromolecules and organelles (Mizushima and Levine, 2020), for example, Rapamycin in breast cancer (Danko et al., 2021); Trastuzumab in HER2 positive breast cancer (Maycotte and Thorburn, 2014); Atorvastatin in prostate cancer (Farrow et al., 2014); Metformin in cervical, breast and endometrial cancer (Lu et al., 2021), etc.

As mentioned, some anticancer drugs have been shown to regulate autophagy (Cuomo et al., 2019). However, targeting these autophagy modulators as a therapeutic strategy remains a huge obstacle (Levy et al., 2017; Amaravadi et al., 2019). Different side effects were reported, ranging from diarrhea, and sensitization to chemotherapy and anemia (Buzun et al., 2021). Autophagy inhibitors had also been reported to sensitize immune response in therapy, as well as influence tumor stroma and normal cell function (Gewirtz, 2016; Noguchi et al., 2020). Hence, natural product as autophagy modulator has been proposed, owing to their safe proles whilst showing high effectiveness to diminish tumor cells (Zhang Q. Y. et al., 2018; Rahman et al., 2020; Al-Bari et al., 2021). Natural product to regulate autophagy is also a novel therapeutic approach in improving fertility (Zhu et al., 2019; Park et al., 2021). In addition, natural products can be used to target multiple pathways, thus providing greater flexibility and potential for a variety of cancer types and stages.

GREEN TEA

Tea is brewed from the leaves and buds of the plant *Camellia sinensis*. With extreme popularity particularly in Asia, it is ranked the second most common beverage consumed worldwide (behind water) (Graham, 1992). In general, teas from this plant can be grouped into green, black, or oolong tea. Among the tea consumption, approximately 20% is in the form of green tea. As green tea has not undergone the same withering and oxidation consumption, approximately 20% is in the form of green tea. Approximately 20% is in the form of green tea.
natural polyphenols (catechins) (around 5–7 mg/g in green tea; while that in black tea is only around 0–3 mg/g). These catechins account for approximately 30–40% of the extractable solids of dried green tea leaves, alkaloids (such as caffeine and theobromine), carbohydrates, tannins, and minerals (such as fluoride and aluminum) (Kochman et al., 2020). These catechins have been shown to be more powerful antioxidants, both in vitro and in vivo, when compared to vitamins C and E (Cabrera et al., 2006; Khan and Mukhtar, 2008; Chacko et al., 2010). The four-major green tea catechins include (−)-epicatechin (EC), (−)-epigallocatechin (EGC), (−)-epicatechin-3-gallate (ECG), and (−)-epigallocatechin-3-gallate (EGCG), which EGCG is the most abundant and biologically active (Schramm, 2013) (Supplementary Figure S1). Green tea has been shown to regulate a range of health issues such as improves digestive and brain function, promotes metabolism, as well as fights and protects against cardiovascular disease, diabetes, cancer and others (Cabrera et al., 2006; Khan and Mukhtar, 2008; Chacko et al., 2010; Kochman et al., 2020). Based on previous studies, the consumption of green tea daily was found to be correlated with a slightly lower risk of death from cardiovascular causes (Xi et al., 2015) and a reduced risk of stroke (Zhang et al., 2015). As EGCG is a powerful antioxidant, it is believed to be an important determinant in the therapeutic qualities of green tea. As the structure of EGCG possessed a gallic acid, the presence of the gallate moiety and the extra phenol ring on EGCG enhance its anticancer property, which traps electrons, as a scavenger of free radicals and reduces oxidative stress (Du et al., 2012; Chu et al., 2017). This powerful antioxidant property of EGCG can suppress neovascularization and regulating vessel permeability, thereby cutting off the blood supply to cancerous cells (Maiti et al., 2003). EGCG also regulated various transcription factors, protein kinases, and inflammatory cytokines to mediate the invasion, metastasis, and progression of cancerous cells (Shirakami and Shimizu, 2018; Kochman et al., 2020). The summary of the anticancer properties of green tea is shown in Figure 1.

Potential Anticancer Effect of Green Tea

Green tea catechin was shown to target cell cycle regulatory proteins, inhibit cell division, stimulate cell cycle arrest mechanism and promote apoptosis, thus is effective against the progression of the tumor. As green tea catechins, in particular, EGCG, are powerful antioxidants, it is believed they are important determinants in the therapeutic qualities of green tea. As the structure of EGCG possessed a gallic acid, the presence of the gallate moiety and the extra phenol ring on EGCG enhance its anticancer property, which traps electrons, as a scavenger of free radicals and reduces oxidative stress (Du et al., 2012; Chu et al., 2017). This powerful antioxidant property of EGCG can suppress neovascularization and regulate vessel permeability, thereby cutting off the blood supply to cancerous cells (Maiti et al., 2003).

Experimental Studies

Toward ovarian cancer, experimental studies uncovered the mechanisms of green tea, which are mainly involved in regulating cell proliferation and apoptosis in cells or xenograft models. Green tea targeted CD44 as a safe nanomedicine treatment, thus inhibiting tumor progression and recurrence (Bae et al., 2017). It had been demonstrated that EGCG efficacies via targeting a number of genes including proliferative related genes JUN, FADD, NFKB1, HIF1α, and matrix metalloproteinases (MMPs) (Xinqiang et al., 2017), apoptotic related genes Bcl-2, Bax, caspases (Panji et al., 2021a) as well as downregulated PTEN/AKT/mTOR pathway to inhibit proliferation in vitro and in vivo (Qin et al., 2020). EGCG promoted DNA damage response, reduced DNA synthesis, and enhanced oxidative stress to induce apoptosis in cells (Mazumder et al., 2012) (Rao and Pagidas, 2010) (Chan et al., 2006).

Towards cervical cancer, green tea extract was reported to suppress TGF-β induced epithelial–mesenchymal transition via reactive oxygen species (ROS) generation, as well as inhibited proliferation and induced apoptosis via VEGF, NF-KB, and Akt pathways in cell lines or mice with HeLa xenografts (Singh et al., 2011; Panji et al., 2021b; Khojaste and Ahmadizadeh, 2021). EGCG reduced DNMT to regulate DNA hypomethylation (Khan et al., 2015), induced cell cycle arrest (Ahn et al., 2003), and downregulated p53 expression to regulate proliferation and...
apoptosis (Muthusami et al., 2013). EGCG inhibited hypoxia-induced HIF-1α to inhibit VEGF, thus regulating angiogenesis (Zhang et al., 2006). Toward endometrial cancer, the effect of the prodrug of EGCG (ProEGCG) exhibited anti-proliferative, pro-apoptotic, and anti-tumor actions via ERK/JNK, Akt and PI3K/ AKT/mTOR/HIF1α signaling pathway (Wang Q. et al., 2018; Man et al., 2020).

Toward breast cancer, the anti-proliferative and pro-apoptotic effects of green tea catechins were achieved via inhibiting VEGF transcription (Sartippour et al., 2002), increasing Bax/Bcl-2 ratio (Li W. et al., 2016) or inducing p27 (kip1) CK1α (Kavanagh et al., 2007), cell cycle arrest (Liu et al., 2017), caspases (Mbuthia et al., 2017) and p53 (Santos et al., 2021). In particular, EGCG mediated multiple signaling pathways to inhibit cell proliferation, migration, and invasion, thus limiting tumor progression, which included PI3K, Akt, NF-κB pathway not only regulated the cell cycle and apoptosis but also controlled autophagy (Verzella et al., 2020). These will be discussed further in section 4.

Clinical Trials
Currently, there are very few clinical trials performed to validate whether green tea possesses chemo-preventive or curative activity in significantly reducing cancer development. In clinical trials on prostate cancer, the majority of studies showed significant beneficial effects of green tea extracts on reducing cancer progression than placebo (Bettuzzi et al., 2006; Brausi et al., 2008; Mclarty et al., 2009; Ram Kumar and Schor, 2018). While in breast cancer, the studies by Samavat et al. demonstrated the consumption of green tea extracts significantly reduced breast tumors in female patients ((Samavat et al., 2017; Samavat et al., 2019). However, it showed no significant effects when conducted by another study group (Crew et al., 2012; Crew et al., 2015)). These results remained inconsistent owing to the presence of numerous confounding variables in these study designs, such as diet and population differences. In addition, prospective and case-control studies had demonstrated the potential of green tea in reducing the risk of ovarian cancer (Zhang et al., 2002; Yoon et al., 2008; Lee et al., 2013), cervical cancer (Jia et al., 2012; Paul et al., 2019), endometrial cancer (Bandera et al., 2010), breast cancer (Dai et al., 2010; Iwasaki et al., 2010; Iwasaki et al., 2014; Li M. et al., 2016; Yuan et al., 2017), and prostate cancer (Kurashiki et al., 2008; Erdrich et al., 2015; Lassed et al., 2016; Lee et al., 2017; Sawada, 2017; Beynon et al., 2019). A summary of studies based on clinical trials about the anti-cancer effects of EGCG and green tea catechins on reproductive cancers can be found in Table 3.

REGULATION OF AUTOPHAGY BY EGCG AND GREEN TEA CATECHINS IN REPRODUCTIVE CANCER

As autophagy is regulated by different autophagy-related proteins that could be potential molecular targets in reproductive cancers. Likewise, EGCG has demonstrated its potential to modulate these factors in current literatures. EGCG restored autophagic flux via downregulating Beclin1, Atg5, and p62 in myocardial ischemia/reperfusion injury rats (Xuan and Jian, 2016). Also, EGCG was reported to inhibit dimerization of LC-3BI, promoted LC3B-II production, and activated autophagy in hepatocellular carcinoma (Zhao et al., 2017). By promoting the upregulation of Atg5, Beclin-1, and LC3B-II protein levels, EGCG induced apoptosis and autophagy in cisplatin-resistant oral cancer (Yuan et al., 2017). Whereas, it regulated Atg5 and Beclin-1 to induce autophagy in subarachnoid hemorrhage (Chen et al., 2018). This regulation of EGCG on the protein level of Atg5 was essentially critical in governing the autophagy and apoptosis switch, as lysosomes would not be able to fuse with phagosome when it was absent (Yousefi et al., 2006). However, the concrete evidence on the modulating effect of EGCG and green tea catechin on autophagy regulation remained controversial. Their role in determining the
Types	Animal models	Type of green tea	Duration	Positive control	Negative control	Dosage of green tea type/treatment	Outcome measures	Results	Ref
Ovarian Cancer	Subcutaneous human ovarian cancer cells SKOV-3 xenograft in BALB/c nude mice (4–5 weeks old)	EGCG (n = 7)	21 days	Paclitaxel (n = 7)	Saline (n = 7)	10, 30 or 50 mg/kg	Tumor weight: EGCG (reduced by 71.25%, compared to control) and paclitaxel (reduced by 39.62%, compared to control)	EGCG significantly inhibited tumor growth	Qin et al. (2020)
	Subcutaneous human ovarian cancer cells SKOV-3 xenograft in female NOD mice (4–5 weeks old)	HA-EGCG (n = 10) (intravenous injection)	2 weeks (Twice/week)	Free-capsule (n = 10) and Micellar nano complexes (n = 10)	An isotonic dextrose solution (n = 10)	19.6 mg/kg	Tumor weight: NM (reduced by 59%; p = 0.001, compared to control)	NM group significantly inhibited tumor growth	Roomi et al. (2016a)
		EGCG (n = 4)	30 days	NA	Water (n = 6)	35 mM	Tumor volume: Control (22.5 mm3) and EGCG (7.5 mm3)	EGCG significantly reduced tumor growth and delayed tumor formation	Amini et al. (2020)
Endometrial Cancer	Subcutaneous human EC cell lines FL59.2–6 and AN-3 CA xenografts in nude mice (5–6 weeks old)	ProEGCG (n = 5) (oral)	3 weeks	Olive oil (n = 5)	Olive oil (n = 5)	50 mg/kg	Tumor weight: 1.0 ± 0.1 mm3, ProEGCG (0.33 ± 0.16 g), 2.0 AN-3 CA xenograft model: Control (1.40 ± 0.19, ProEGCG (0.80 ± 0.03)	ProEGCG significantly inhibited tumor growth and promoted the apoptotic activity of tumors	Men et al. (2020)
	Subcutaneous endometrial cancer cells xenograft in nude mice	ProEGCG (n = 5) (intragastric)	35 days	NA	Olive oil (n = 5)	50 mg/kg	No tumor size measurement	ProEGCG significantly inhibited tumor growth and angiogenesis in xenograft	Wang et al. (2018a)
Breast Cancer	Female Sprague-Dawley rat breast cancer carcinogen model (4-week-old)	Green tea powder (n = 15) (oral)	9 weeks	Water (n = 15)	0.3% (w/v)	Tumor weight: control (8.3 ± 6.9 g), green tea (2.3 ± 4.5 g)	Green tea significantly inhibited tumor growth	Kavanagh et al. (2001)	
	Subcutaneous human breast cancer cells MDA-MB-231 xenograft in female scid mice (6–10 weeks old)	Green tea extracts (n = 35) (oral)	35 days	Water (n = 12)	2.5 g/L	No tumor size measurement	GTE significantly inhibited tumor growth and vessel density	Sarpourpour et al. (2001)	
	Breast cancer MDA-MB-231 cells xenograft in female athymic nude mice (5-week-old)	Nutrient mixture (NM) containing epigallocatechin gallate in regular diet (n = 6)	64 days	Tannic acid	Water (n = 30)	2.5 g/L	Tumor volume: green tea (341.1 ± 48.5 mm3), tannic acid (177.8 ± 31.6 mm3), control (222.2 ± 163.3 mm3), dual therapy with green tea and tannic acid (116.5 ± 31.9 mm3)	Green tea and tannic acid-treated significantly inhibited growth and promoted apoptosis of tumor	Sarpourpour et al. (2008)
	Subcutaneous human breast cancer cells MCF-7 xenograft in nude mice	Green tea extracts (oral)	4 weeks	NA	Water (n = 13)	3 mg GTP/1 ml of EGCG	Tumor volume: EGCG (reduced by 45%, compared to control), GTP (reduced by 61%, compared to control)	GTP and EGCG significantly inhibited tumor growth, and proliferation and induced apoptosis of tumors	Thangapazham et al. (2007)
	Breast cancer MDA-MB-231 cells xenograft in female athymic nude mice (4-week-old)	Green tea polyphenols or EGCG (n = 7) (oral)	10 weeks	Water (n = 13)	3 mg GTP/1 ml of EGCG	Tumor volume: EGCG (reduced by 37.1 ± 4.4%, compared to control), tumor weight (reduced by 31.23 g), GTP (11.15 g), Tumor weight (reduced by 46.3 g)	GTP and EGCG significantly inhibited tumor growth, and proliferation and induced apoptosis of tumors	Sarpourpour et al. (2008)	
	Heterozygous C3 (1)/SHR Tj antigen (Tag) transgenic female mice (4-week-old)	Green tea catechins (n = 16) (oral)	15 weeks	Water (n = 16)	0.01 or 0.05% (w/v)	Tumor weights: control 1.93 g, GTC 1.85 g	GSTC significantly inhibited tumor growth	GSTC significantly inhibited tumor growth	Kaushal et al. (2007)
	Subcutaneous murine breast cancer cells 4T1 in BALB/c nude mice (6–7 weeks old)	EGCG (n = 6) (j.p.)	24 days	Taxol (n = 8)	Saline (n = 8)	30 mg/kg	Tumor volume: control (830 mm3), EGCG (700 mm3), Taxol (650 mm3), Combo of EGCG and Taxol (250 mm3), Tumor weight: control (12.25 g), EGCG (11.15 g), Taxol (1 g), Combo of EGCG and Taxol (6.65 g)	EGCG alone had little effect on tumor growth but the combination of EGCG and taxol significantly inhibited tumor growth	Luo et al. (2010)
	Breast cancer cells SUM-149 xenograft in female NOD/SCID mice (8-week-old)	EGCG (n = 8) (j.p.)	42 days	PBS (n = 6)	16.5 mg/kg	No tumor size measurement	EGCG significantly inhibited tumor growth	Mineva et al. (2013)	
	Subcutaneous murine breast cancer cells 4T1 in BALB/c nude mice	EGCG (j.p.)	3 days	PBS	10 mg/kg	No tumor size measurement	EGCG significantly inhibited tumor growth	Jiang et al. (2010)	
	Subcutaneous murine breast cancer cells 4T1 in BALB/c nude mice (5-week-old)	Nutrient mixture (NM) containing epigallocatechin gallate in regular diet (n = 7)	4 weeks	Regular Purina mouse chow (n = 7)	20 mg NM	Tumor weight: NM/0.1 ± 0.43 g, Control (1.83 ± 0.81 g)	NM group significantly inhibited tumor growth	Roomi et al. (2014)	
	An orthotopic xenograft mouse model by injecting with early transformed breast cancer (SHR) cells in nude mice (4–6-week-old)	Green tea polyphenols (Sunphenon 90D) (n = 5) (oral)	9 weeks	NA	Regular diet	5 mg/ml	Tumor volume: Control (1200 mm3), GTP (300 mm3), Tumor weight: Control (1100 mg), GTP (300 mg)	GTPs significantly inhibited tumor growth and the proliferation rate of tumor growth	Li et al. (2016a)
	An orthotopic xenograft mouse model by injecting with MDA-MB-231 cell in nude mice (4-week-old)	Green tea polyphenols diet (n = 5) (oral)	8 weeks	Tannic acid	Regular diet	3 mg/ml	Tumor volume: Control (1200 mm3), TAM (1000 mm3), Tumor weight: Control (0.4 ng), GTP (1.1 g), TAM (1.2 g)	GTPs alone significantly suppressed tumor growth	Li et al. (2017)
	Subcutaneous murine breast cancer cells 4T1 in nude BALB/c mice (6–8 weeks old)	ProEGCG (n = 5) (oral)	Pre-treatment for 1 month	Water (n = 5)	250, 500, 1000 and 2000 µg/ml	Tumor volume: Control (800 mm3), EGCG250 (0.05 µg/ml), EGCG500 (0.1 µg/ml), EGCG1000 (0.2 µg/ml), EGCG2000 (0.4 µg/ml)	EGCG in a low concentration of 0.250 µg/ml can significantly inhibit tumor growth	Xu et al. (2020)	
TABLE 2 | Continued Effects of Green tea on reproductive cancers in animal models.

Types	Animal models	Type of green tea	Duration	Positive control	Negative control	Dosage of green tea type/treatment	Outcome measures	Results	Ref
Prostate Cancer	Male TRAMP mice (8-week-old)	Green tea polyphenols (oral)	24 weeks	NA	Water	0.1% (v/v)	No tumor size measurement	GTP significantly inhibited tumor growth, inhibited angiogenesis and metastasis in tumor	Adhami et al. (2004)
	Male TRAMP mice (8-week-old)	Green tea polyphenols (oral)	24 weeks (thrice a week)	NA	Water	0.1% (v/v)	No tumor size measurement	GTP significantly inhibited tumor growth	Seki et al. (2005)
	inoculation of human prostate cancer cells PC-3 xenograft in male nude mice	Nutrient mixture (IM) containing epigallocatechin gallate in regular diet (diet)	4 weeks	NA	Regular diet	Nutrient formulation	Tumor weight: NM (reduced by 47%, compared to control); Mean tumor volume: NM (reduced by 53%, compared to control)	NM significantly inhibited tumor growth, MIP-9 and VEGF secretion, and metastasis in tumor	Roomi et al. (2009)
	Male TRAMP mice (8-week-old)	Green tea catechins (oral)	16 weeks	NA	Water (n = 9)	0.3% (v/v)	No tumor size measurement	GTP significantly inhibited tumor growth	Saleem et al. (2007)
Subcutaneous human prostate cancer cells CWR22Rv1 xenografts in male athymic nude mice (6-8 week-old)	Green tea polyphenols (n = 10) (oral)	28 days	Celecoxib (n = 10)	Water (n = 10)	0.1% (v/v)	Tumor growth: GTP (reduced by 42%, compared to control), celecoxib (reduced by 57%, compared to control), combination (reduced by 81%, compared to control)	EGCG significantly inhibited the tumor growth, but the combination of EGCG and celecoxib had greater effects	Adhami et al. (2007)	
	Male TRAMP mice (8-week-old)	Green tea polyphenols (oral)	24 weeks (thrice a week)	NA	Water	0.1% (v/v)	No tumor size measurement	GTP significantly inhibited tumor growth	Saleem et al. (2007)
	Male TRAMP mice (8-week-old)	Green tea catechins (oral)	16 weeks	NA	Water (n = 9)	0.3% (v/v)	No tumor size measurement	GTP significantly inhibited tumor growth	Saleem et al. (2007)
	subcutaneous CWR22Rv1 xenografts in male nude mice (4-5-week-old)	EGCG (n = 8), percentate of EGCG (n = 8) (p.p.)	20 days	NA	DMSO (n = 9)	EGCG 50 mg/kg, EGCG-P 86.7 mg/kg	Tumor size: EGCG (reduced by 36.3%, compared to control), EGCG-P (reduced by 62.9%, compared to control)	EGCG significantly inhibited tumor growth, and included apoptotic in tumor	Lee et al. (2008)
	Male TRAMP mice (8-week-old)	Green tea polyphenols (n = 20) (oral)	24 weeks (thrice a week)	NA	Water (n = 20)	0.1% (v/v)	No tumor size measurement	Green tea polyphenols induced apoptosis by inhibuting cell proliferation and NF-cB signaling in TRAMP mice	Skidziuk et al. (2006)
Subcutaneous human prostate carcinoma cell line LNCap 104 RT xenografts in castration male BALB/c nu/nu mice	EGCG (p.p.)	11 weeks	NA	Water	1 mg	Tumor volume: EGCG (reduced by 40%, compared to control), suppressed cell proliferation of tumors	EGCG significantly inhibited tumor growth and metastasis	Chiu et al. (2003)	
Male TRAMP mice (8-week-old)	Green tea polyphenols (n = 18) (oral)	4 weeks (thrice a week)	NA	Water (n = 18)	0.1% (v/v)	Tumor volume and weight: GTP significantly the parameters compared with the control	GTP significantly inhibited cancer development	Adhami et al. (2009)	
Subcutaneous 1 × 106 PC-3 cells in nude mice (6-8-week old)	TBS-101 (n = 8) (oral)	28 days (once every other day)	Celecoxib	5% DMSO in PBS	80 mg/kg	Tumor growth: TBS-101 significantly inhibited	TBS-101 containing green tea significantly inhibited tumor growth and invasion	Evans et al. (2009)	
	EGCG (n = 4) (g.)	12 h	PEG 400 aqueous solution	100 mg/kg	No tumor size measurement	EGCG significantly downregulated Nrf2 in tumors	EGCG significantly downregulated Nrf2 in tumors	Nair et al. (2011)	
Male TRAMP mice after weaning	Green tea polyphenols (oral)	25 weeks (thrice a week)	NA	Water	0.05% (v/v)	No tumor size measurement	No significant differences between GTP and control	Techert et al. (2010)	
Human prostate cancer cells 22Rv1 xenografts in male nude mice (8-6-week-old)	EGCG (p.p.)	6 weeks	NA	Water	1 mg	No tumor size measurement	EGCG significantly inhibited tumor growth	Skidziuk et al. (2011)	
Male rat (10-week-old)	Green tea (oral)	4 weeks (over 30 weeks long duration)	Soy diet	Water	2% (v/v)	No tumor size measurement of green tea	Green tea and soy in combination significantly inhibited tumor growth and inflammation	Hsu et al. (2011)	
Subcutaneous 5 × 106 LAPC-4 cells in male SCID mice (fed AIN-93G diet)	Green tea bag (n = 12) (oral)	6 weeks (thrice a week)	Q (quercetin)	Water (n = 12)	One tea bag in 240 ml of water for 5 min	Tumor size: 0.2% Q (reduced by 3%), 0.4% Q (reduced by 15%), GT (reduced by 21%), GT + 0.2% Q (reduced by 28%) and GT + 0.4% Q (reduced by 45%), all compared to control	Green tea and quercetin in combination significantly improved chemoprevention and suppressed proliferation	Hsu et al. (2011)	
Subcutaneous 1 × 106 22Rv1 cells in 4 weeks old male athymic nude mice	Chi-nanoEGCG (n = 13), EGCG (n = 12) (oral)	Five times a week, until tumors reached a targeted volume of 1200 mm³	NA	Void chitosan nanoparticles (n = 12)	Chi-nanoEGCG 3 or 6 mg/kg, EGCG 40 mg/kg	Tumor volume: Control (107.5 ± 60.1 mm³), Polyphephon E E1 at 200 mg/kg (50.0 ± 78.0 mm³), 500 mg/kg (92.4 ± 53.9 mm³), 1000 mg/kg (80.2 ± 36.3 mm³)	EGCG significantly inhibited tumor growth, but Chi-nanoEGCG had significantly greater effects	Khan et al. (2014)	
Male TRAMP mice (5-week-old)	Polyphenon E (n = 11-16) (oral)	3 weeks (over 25 weeks long duration)	NA	Water (n = 11-16)	250, 500, and 1,000 mg/kg	Tumor volume: Control (19.4 ± 0.22 g), training (1.38 ± 0.25 g, GTE (0.99 ± 0.08 g), GTE + training (1.03 ± 0.11 g)	Polyphenon E significantly inhibited tumor growth and metastases with no evidence of toxicity	Kim et al. (2014)	
Male Water rats (received an intake of caffeine, caffeine acetate, testosterone propionate, and N-Nitroso-N-methylurea) (2 months old)	Green tea extract (n = 10) (g.)	Eight weeks (three times per week)	Exercise training	Water (n = 10)	0.1%	Tumor weight: Control (2.04 ± 0.08 g), EGCG (1.09 ± 0.06 g), GTE + training (1.14 ± 0.11 g)	GTE significantly inhibited tumor growth	Saeidmocheshi et al. (2016)	
Adult male Water rats (received an intake of caffeine, caffeine acetate, testosterone propionate, and N-Nitroso-N-methylurea) (45 days old)	Green tea extract (n = 8) (oral)	8 weeks	Exercise training	Water (n = 8)	0.1%	Tumor weight: Control (2.05 ± 0.06 g), training (1.38 ± 0.25 g), training-GTE (1.06 ± 0.11 g)	GTE significantly inhibited tumor growth	Vahabzadeh et al. (2020)	
Injection of human prostate cancer cells PC3 cells xenografts through the tail vein in Male NOD-SCID mice (6-8 weeks old)	L-theanine (isolated from green tea leaves) (p.s.)	10 weeks	NA	Saline	80 mg/kg	No tumor size measurement	L-theanine significantly suppressed invasion, migration, and adhesion in tumors	Fan et al. (2021)	
onset of autophagy might also be dependent on the integration of signaling networks, in which autophagy and cell growth often shared a series of direct or indirect signaling pathways (Neufeld, 2012; Rizzi et al., 2014).

MAPK had been shown to act as a prognostic factor to regulate the incidence of several reproductive cancers (Eritija et al., 2017; Lim et al., 2019). EGCG inhibited various transcriptional factors of mitogen-activated protein kinase (MAPK), including c-Jun, and ERK1/2, to inhibit proliferation, and migration and promote apoptosis (Katiyar et al., 2001; Maeda-Yamamoto et al., 2003). As matrix metalloproteinases (MMPs) were correlated with tumor invasion via MAPK, MMPs were reduced upon the treatment with EGCG to revoke the activation of ERK and JNK, which prevented fibrosis, invasion, and migration of cancer cells (Kim et al., 2004; Zhen et al., 2006; Ho et al., 2007; Zeng and Harris, 2014). Autophagy also acts as an adaptive resistance mechanism upon the inhibition of MAPK (Lee et al., 2021). MAPK signaling pathway did not solely regulate autophagy (Raufi et al., 2021). The significance of autophagy against MAPK inhibition was also dependent to the cell’s ability to produce autolysosomes (Kochetkova et al., 2017). Autophagic mechanism was activated dependent on MAPK/JNK pathway after therapeutic stress in endometrial cancer (Eritija et al., 2017). In ovarian cancer, the stimulation of tumor cell proliferation via the MAPK/ERK1/2/mTor pathway induced autophagy (Lim et al., 2019). Likewise, the promotion of autophagy was found to inhibit tumor cell growth in a breast cancer study via the inhibition of MAPK-regulated mTOR activity, and the phosphorylation of ERK was hindered (Sun et al., 2013). Moreover, the downregulation of p-ERK1/2 protein via the MAPK/ERK pathway induced early autophagy and apoptosis for anti-tumor activities in breast and cervical cancer (Hanyu et al., 2020; Liu et al., 2020). On the contrary, the promotion of MAPK/ERK pathway was shown to inhibit autophagy on promoting metastasis (Li et al., 2021).

In another aspect, EGCG targeted PI3K/AKT/mTOR pathway via inhibiting phosphorylation of AKT and mTOR to exert anti-proliferation and pro-apoptosis effects (Liu et al., 2013; Liu et al., 2016). EGCG also inhibited the binding of EGF to EGFR by reducing receptor dimerization and inhibiting EGFR phosphorylation (Adachi et al., 2007). These regulations indirectly inhibited AKT activities to induce cell cycle arrest (Sah et al., 2004; Hou et al., 2005; Shimizu et al., 2005) As a result, EGCG was shown to increase caspasers and anti-apoptotic proteins level, and decrease AKT and pro-apoptotic levels (Moradzadeh et al., 2017). The inhibition of the PI3K/AKT/mTOR pathway promoted autophagy for the anti-proliferation activity in endometrial cancer cells (Lin et al., 2019). The blockade of the AKT/mTOR pathway activated the compensatory MEK/ERK pathway to promote autophagy and apoptosis induced cell death and cell cycle arrest in prostate, cervical and ovarian cancers (Zhou et al., 2015; Xu et al., 2016; Butler et al., 2017; Qin et al., 2018). Another study also showed that the downregulation of p-AKT inhibited cancer cell survival, along with the upregulation of p-JNK1/2-induced apoptosis, synergistically lead to autophagy-induced cell death in the breast cancer cells (Innajak et al., 2016). The promotion of apoptosis and autophagic cell death via inhibiting the PI3K/AKT/mTOR signaling pathway could have induced stress to attenuate MAPK/ERK activity in autophagy inhibition (Reddy et al., 2020).

In addition, EGCG also suppressed anti-apoptotic related protein through the inhibition of the NF-κ B pathway (Hastak et al., 2003). EGCG mediated the cleavage of NF-κ B p65 subunit and deregulated the cell cycle. This further inhibited NF-κ B nuclear translocation and activated caspases for pro-apoptotic activities (Ahmad et al., 2000; Gupta et al., 2004; Kitamura et al., 2012). Typically, It was shown that NF-κ B induced autophagy-related genes, including Beclin1 and ATG5, directly trigger autophagy (Salminen et al., 2012). On the other hand, it inhibited autophagocytotic via limiting autophagy inducers (including p53 and ROS) or enhancing autophagy repressors (e.g., Bcl-2) (Djavaheri-Mergny et al., 2006; Salminen et al., 2012; Verzella et al., 2020). Hence, the crosstalk between the NF-κ B pathway and autophagy in the cancer was proposed. Given the mutual upstream regulators of the interplay, therefore, they could control each other via positive and negative feedback loops (Trocoli and Djavaheri-Mergny, 2011). The complex interconnections of these pathways were demonstrated in breast cancer as both NF-κ B and autophagy regulated cell death. Inhibition of the NF-κ B pathway downregulated autophagy-induced DNA damage (Vequaud et al., 2015). However, the inhibition of the NF-κ B pathway induced ER stress and autophagy, which showed the potential to regulate both cancer cells and cancer stem cells to avoid tumor recurrence in breast and prostate cancers (Lu C. et al., 2021). Although an enhanced interaction between NF-κ B p50 and annexin A4 fucosylation promoted autophagy and progressed ovarian clear cell carcinoma malignancy, the interaction and progression were mainly to be associated with clinical stage and chemotherapy resistance (Wang et al., 2017).

EGCG can work like various chemotherapeutic drugs, which enhanced autophagy-induced cancer cell death (Denton et al., 2015). Currently, EGCG as an autophagy inducer was only studied in breast, cervical, and prostate cancers. The summary on the finding of EGCG and green tea catechins on autophagy is shown in Table 4. In breast cancer, EGCG inhibited tumor growth in vitro and in vivo via activating autophagy directly, thus regulating glucose metabolism (Wei et al., 2018). Another study in the breast cancer cell line showed that EGCG induced autophagy via enhancing autophagosome formation, hence inhibiting proinflammatory mediators HMGB1 (Li et al., 2011). The regulated stages of autophagy in breast cancer were shown to be dependent on the EGCG concentration. EGCG in low concentration upregulated Beclin1, Atg5, and LC3B-II/LC3B-I levels, promoting autophagosomes; However, when EGCG is under high concentration, it would only upregulate Beclin1 and Atg5 to enhance the fusion of the autophagosome with lysosomes to form autolysosomes, which resulted in a downregulated LC3B-II/LC3B-I levels. Whereas, high concentrations of EGCG were shown to activate later stages of autophagy in breast cancer cells (Wei et al., 2018).

In cervical cancer, the combination of EGCG and Doxorubicin, which is chemotherapy, was investigated as an
TABLE 3 | Effects of Green tea on reproductive cancers in clinical trials.

Type	Study design	Subject	Intervention group	Control group	Length of intervention	Time points	Outcome measures	Results	Ref
Ovarian Cancer	Phase II clinical trial	16	Double-brewed green tea (SBGT; 500 mg epigallocatechin gallate (EGCG)-enriched tea drink)	NA	Minimum <100 days; Maximum 1.5 years	Every 3 months; Endpoint: recurrence starts	Time of recurrence: 5 pF have an absence of recurrence at 18 months	No significant maintenance in women with advanced-stage ovarian cancer after standard treatment	Trudel et al. (2013)
Cohort study	244 (Green tea (104); Control (140))	Green tea (2.1 g ± 1.75 g) Non-tea drinking	Minimum <1 year; Maximum >3 years	Endpoint: death of participants	The survival rate after 3 years: GT 77.9% vs control 47.9%	Green tea enhanced epithelial ovarian cancer survival dose-response relationships	Zhang et al. (2004)		
Breast Cancer	Cohort study	390 (4 cups/day (181), 5–7 cups/day (131), and 8-9 cups/day (181))	Green tea (consumption levels of <4 cups, 5–7 cups, and ≥8 cups; 30–40 mg EGCG per cup)	NA	6.5 ± 3 years	Endpoint: recurrence starts	Mean expression of ER (fmol/mg protein): <4 cups/day (72.8 ± 5.9), 5–7 cups (53.4 ± 13.8), and ≥8 cups/day (109.7 ± 21.8) (p = 0.05); Recurrence Rates: <4 cups/day (28.8%), ≥5 cups/day (23.6%) (p = 0.05)	Increased consumption of green tea was correlated with decreased recurrence of stage I and II breast cancer	Nakachi et al. (1998)
Randomized Phase II Dose Escalation Study	34 (control (3), 800 mg EGCG (14), 1200 mg EGCG (11), 1600 mg EGCG (10))	EGCG (800, 1200, or 1600 mg)	Placebo	6 months	Baseline, 2, 4, and 6 months	No significant change in serum hormone levels including oestradiol, testosterone, IGF-1, IGFBP-3, and SHBG; target tissue effects including Ki-67 proliferation index or mammographic density; and quality of life	Serum HGF levels: Poly E: decreased by 12.7% vs placebo increase of 6.3% (p = 0.04); at 2 months, but no statistically significant at 4 and 6 months; serum VEGF levels: Poly E: decreased by 11.5% at 2 months (p = 0.02) and 13.9% at 4 months (p = 0.05), but no significant difference compared to placebo. Biomarkers of oxidative damage or inflammation, total cholesterol: Poly E treatment: no statistical significance decreased, compared to placebo;		
EGCG significantly reduced PMD for women 50–55 years old	Crew et al. (2012)								
Randomized Phase II Dose Escalation Study	34 (control (3), 800 mg EGCG (14), 1200 mg EGCG (11), 1600 mg EGCG (10))	EGCG (800, 1200, or 1600 mg)	Placebo	6 months	Baseline, 2, 4, and 6 months	No significant difference in outcome measures between the intervention and placebo group, but this study obtained preliminary data on the biological effects of Poly E to benefit other ongoing trials	Serum HGF levels: Poly E: decreased by 12.7% vs placebo increase of 6.3% (p = 0.04); at 2 months, but no statistically significant at 4 and 6 months; serum VEGF levels: Poly E: decreased by 11.5% at 2 months (p = 0.02) and 13.9% at 4 months (p = 0.05), but no significant difference compared to placebo. Biomarkers of oxidative damage or inflammation, total cholesterol: Poly E treatment: no statistical significance decreased, compared to placebo;		
EGCG significantly reduced PMD for women 50–55 years old	Crew et al. (2012)								
Randomized phase II clinical trial	922 (control (470); GTF (462))	GTE capsule with 328.8 mg total catechins and 210.7 mg EGCG	Placebo	1 year	Baseline and 12 months	Percentage mammographic density of women aged 50-55 years: GTE: reduced by 4.40% vs placebo increase of 1.02% (p = 0.05); Overall PMD and modifying effect of COMT genotype: no significant difference in overall blood total extracted and bioavailable extracted GTE: increase of 16% (p = 0.02) and 21% (p = 0.03), compared to placebo at month 12	GTE significantly increased circulating extracted catechin concentrations and prevented breast cancer	Samavat et al. (2019)	
Randomized phase II clinical trial	1075/Placebo (537); GTE-COMT (538)	Green Tea extract catechin-O-methyltransferase (GTE-COMT)	Placebo	1 year	Baseline, 6 and 12 months	Percentage mammographic density of women aged 50-55 years: GTE: reduced by 4.40% vs placebo increase of 1.02% (p = 0.05); Overall PMD and modifying effect of COMT genotype: no significant difference in overall blood total extracted and bioavailable extracted GTE: increase of 16% (p = 0.02) and 21% (p = 0.03), compared to placebo at month 12	GTE significantly increased circulating extracted catechin concentrations and prevented breast cancer	Samavat et al. (2019)	
Prostate Cancer	Prospective single-arm clinical trial	19	Green tea extract (500 mg)	NA	Minimum 2 months; Maximum 6 months	Endpoint: A rise of either a relative prostate-specific antigen, or two largest dimensions of measurable disease on CT scan, or intensity of abnormal bone activity of greater than 25% over baseline over a 2-month period	Prostate-specific antigen: percentage change: GTE: slowed down disease progression in six patients	GTE produced no discernible clinical activity against hormone-refractory prostate cancer	Choa et al. (2005)
Placebo-controlled study	60/Placebo (30); GTC (30)	GTC (600 mg)	Placebo	1 year	Baseline, 3, 6, and 12 months	Prevalence of prostate cancer: GTCs: 90% chemoprevention efficacy in men subjected to high risk for developing CaP (p < 0.01); Total serum PSA values: GTCs: lower, at all time points, compared to control. Changes in LUTS as assessed by IPSS and QoL scores: GTCs: decrease for 3 months, compared with control (p < 0.05); Incidence of tumors: GTC (9%), placebo (30%); cancer progression onset time: GTC (23.3 months), placebo (19.1 months)	GTCs bring significant potent chemoprevention activity to cancer patients	Beruzzo et al. (2006)	
Placebo-controlled study	60/Placebo (30); GTC (30)	GTC (600 mg)	Placebo	1 year	2 years later following the GTC administration	Prevalence of prostate cancer: GTCs: 90% chemoprevention efficacy in men subjected to high risk for developing CaP (p < 0.01); Total serum PSA values: GTCs: lower, at all time points, compared to control. Changes in LUTS as assessed by IPSS and QoL scores: GTCs: decrease for 3 months, compared with control (p < 0.05); Incidence of tumors: GTC (9%), placebo (30%); cancer progression onset time: GTC (23.3 months), placebo (19.1 months)	GTC significantly reduced Prostate cancer diagnosis	Brausi et al. (2008)	

Continued on following page
Autophagy modulator that further improved the therapeutic efficacy of photothermal therapy (Chen et al., 2020). Photothermal therapy solely induced hyperthermia damage to intracellular components and activated autophagy which inhibited apoptotic-induced cancer cell death (Zhang Y. et al., 2018; Li et al., 2019; Chen et al., 2020). However, an autophagy inhibited apoptotic-induced cancer cell death (Zhang Y. et al., 2018). Photothermal therapy solely induced hyperthermia damage to intracellular components and activated autophagy which inhibited apoptotic-induced cancer cell death (Zhang Y. et al., 2018).

In prostate cancer, Bortezomib is an effective proteasome inhibitor against tumor growth via induction of apoptosis in vitro and in vivo (Papandreou and Logothetis, 2004), followed by activation of unfolded protein regulator, ER stress, and autophagy (Modernelli et al., 2015; Takenokuchi et al., 2015). The proteasome is mechanistically related to autophagy as both pathways act as protein degradation systems and maintain intracellular proteostasis (Zhu et al., 2010). EGCG potently suppressed proteasome activity in prostate cancer (Kazi et al., 2020), and could potentially induce autophagy as Bortezomib. A study hence showed that co-treatment of Bortezomib with EGCG exacerbated autophagy via induction of LC3B transition and an autophagic flux in prostate cancer cells (Modernelli et al., 2015). The therapeutic efficacy of green tea as an autophagy inducer depended on the stage of cancer. Green tea polyphenol activated autophagy in the initial stage of prostate cancer in vitro, demonstrated by an increased interconversion of LC3B-I to LC3B-II, which indicated the accumulation of inactivated autophagosomes (Rizzi et al., 2014). However, in advanced stages of prostate cancer in vitro, although green tea increased

TABLE 3 | (Continued) Effects of Green tea on reproductive cancers in clinical trials.

Type	**Study design**	**Subject**	**Intervention group**	**Control group**	**Length of intervention**	**Time points**	**Outcome measures**	**Results**	**Ref**
Single-arm Phase II clinical trial | 25 | Polyphenon E (800 mg) | NA | 6 weeks | 4, 8 weeks | Serum levels of HGF, VEGF, PSA, IGF-1, and IGFBP-3; EGCG reduced the biomarkers significantly [all \(p < 0.009 \)] | Polychroni et al. (2018) | Mokary et al. (2003)
Randomized controlled trial | 50 | Polyphenon E of 85-95% total catechins, with 56-72% as EGCG | Placebo | 3-6 weeks | Baseline, 3 days before surgery, and during surgery | Systemic biomarker (8HOO/ d8, IGF-1, KIFBP-3, IGF-1, Caspase-3, microvesicle density; PSA value; Polyphenon E group: no significant decrease in the level of PSA | Nguyen et al. (2012) | Nguyen et al. (2012)
Randomized controlled trial | 97 | Poly E (49) | Placebo | 1 year | Baseline, 6 and 12 months | Toxicity Symptoms, Lower Urinary Tract Symptoms, and Quality of Life scores: Poly E brings significant symptoms unrelated to the study agent, and no other significant difference compared to control | Kumar et al. (2016) |

EGCG, Epigallocatechin gallate, GTCs, green tea catechins

![Figure 2](https://example.com/figure2.png)

Figure 2. Diagram of the chemo-preventive mechanisms of EGCG and green tea catechins.

POSSIBILITIES OF EGCG AS AN AUTOPHAGY MODULATOR IN REPRODUCTIVE CANCER

Pharmacological actions of autophagy modulator are not tumor-selective, which could impose a risk of healthy tissue being transformed into malignant tissue (Gewirtz, 2016; Noguchi et al., 2020). Although autophagy was shown to induce cancer cell death, the anti-oxidative properties of green tea polyphenols inhibited stress-induced autophagy cell death in healthy ovarian granulosa cells. Activities and concentrations of antioxidant SOD and GSH-PX were upregulated. MDA levels, Beclin1, as well as

Subject Intervention
--- | --- | --- | --- | --- | --- | --- | --- | --- | ---
Single-arm Phase II clinical trial | Control | Polyphenon E | Placebo | 6 weeks | Baseline, 3 and 6 months | Lipid peroxidation and antioxidants status: GSH (mg/dl) before (15.29 ± 1.75), after 6 months (14.36 ± 3.64), \(p < 0.0001 \); MDA (nmol/gHb): before (99.52 ± 12.49), after 6 months (45.16 ± 7.45), \(p < 0.0001 \); CAT (fu/ml/kg): before (15.29 ± 1.75), after 6 months (22.19 ± 1.78), \(p < 0.0001 \) | Green tea significantly improved overall the antioxidative status in patients | Lassalle et al. (2017) |

Randomized controlled trial

Poly E (49) | Placebo | 6 weeks | Baseline, 3 and 6 months | Poly E (49), Urinary Tract Symptoms, and Quality of Life scores: Poly E brings significant symptoms unrelated to the study agent, and no other significant difference compared to control | Kumar et al. (2016) |

Single-arm Phase II clinical trial

Green tea (10 g w/v) | NA | 6 months | Baseline, 3 and 6 months | Polyphenon E of 85-95% total catechins, with 56-72% as EGCG | All placebo groups: no significant differences, suggested longer-term interventions should be used for future studies | EGCG was safe to be administered for prostate cancer prevention or other indications | Kumar et al. (2016) |

Randomized controlled trial

Polyphenon E (25) | Placebo (25), Placebo (48) | 97 | Polyphenon E of 85-95% total catechins, with 56-72% as EGCG | Placebo | 3-6 weeks | Baseline, 3 days before surgery, and during surgery | Systemic biomarker (8HOO/ d8, IGF-1, KIFBP-3, IGF-1, Caspase-3, microvesicle density; PSA value; Polyphenon E group: no significant decrease in the level of PSA | Nguyen et al. (2012) | Nguyen et al. (2012)

Randomized controlled trial

Poly E (49) | Placebo | 1 year | Baseline, 6 and 12 months | Poly E (49), Urinary Tract Symptoms, and Quality of Life scores: Poly E brings significant symptoms unrelated to the study agent, and no other significant difference compared to control | Kumar et al. (2016) |
the autophagic vacuoles in cytoplasmic were reduced (Yang et al., 2020). EGCG reduced ROS to limit the enzyme that cleaved LC3-I to form LC3-II, and inhibited LC3-II formation, indicating a reduced level of autophagosome formation and autophagy in healthy ovarian cells (Zhang S. et al., 2020; Yang et al., 2020). Autophagy was induced by environmental stress such as

Type of cancer	Compound	Study models	Autophagy modulation	Combination strategy	Ref
Breast cancer	EGCG	Cell lines: 4T1 and 4T1 Mouse xenograft model	Modulating the levels of the autophagy-related proteins Beclin1, ATG5, and LC3B to induce apoptosis and suppresses glucose metabolism	NA	Wei et al. (2018)
Cervical cancer	EGCG	Cell lines: MDA-MB-361 and MCF-7	Stimulated LC3-II production and autophagosome formation, and inhibited LPS-induced HMGB1 up-regulation and extracellular release	NA	Li et al. (2011)
Cervical cancer	EGCG palmitate	Cell line: HeLa	Down-regulated p62 and up-regulated Beclin 1 and LC3 to induce apoptosis	Combined with Doxorubicin in chemo-photothermal synergistic therapy Encapsulated in ZIF-8 nanoparticles with functionalization of folic acid	Chen et al. (2020)
Prostate cancer	Polyphenon E®	Cell lines: PNT1a and PC3	Down-regulated p62 and up-regulated Beclin 1 and LC3 to induce apoptosis	Combined with Doxorubicin in chemo-photothermal synergistic therapy Encapsulated in ZIF-8 nanoparticles with functionalization of folic acid	Chen et al. (2020)
Prostate cancer	EGCG	Mouse xenograft model	Induces ER stress and unfolded protein response	NA	Rizzi et al. (2014)
Prostate cancer	Tea polyphenols	Cell lines: PC3 and DU145	Induces ER stress and unfolded protein response	Combined with Bortezomib	Modernelli et al. (2015)

EGCG, epigallocatechin gallate; ER stress, endoplasmic reticulum stress; ROS, reactive oxygen species; VEGF, vascular endothelial growth factors

FIGURE 2 The schematic diagram of potential chemopreventive mechanisms of EGCG and green tea catechins to regulate autophagy. The schematic diagram was created using BioRender.com.
chemicals and toxins (Lee et al., 2011). EGCG shows the potential to regulate autophagy and protect healthy cells against death from chemotherapy.

Reproductive cancer treatments could interfere with the reproductive processes and fertility. EGCG was shown to improve fertility and protect it from reproductive cancers. Its molecular mechanism against infertility is based on regulating ROS, enhancing the antioxidant enzymes’ expression and activity (Roychoudhury et al., 2017; Zhang Y. et al., 2020). From the male fertility aspect, EGCG was able to protect germ cell loss, as well as diminish testes lesions (Ge et al., 2015), sperm deformity (Spinaci et al., 2008), and spermatogenic cell apoptosis (Ge et al., 2015). EGCG in a low concentration improved motility and capacitation of sperm. The addition of EGCG in thawing sperm for in-vitro fertilization after chemotherapy significantly increased penetration rate and fertilization efficiency (Rahman et al., 2018). DNA damage on semen from ROS was protected, and the fertility rate was significantly increased. While on the other hand, from the female fertility aspect, EGCG improved developmental capacity and the porcine oocytes’ maturation quality in vitro. EGCG in premature cultures of oocytes delayed oxidation and reduced ROS in vitro (Roth et al., 2008; Balazi et al., 2019). EGCG inhibitory actions of AMPK, cAMP, calciumium, and ferric iron prevented chromosome impairment, low-density lipoprotein oxidation, and spontaneous mutation. This reduced ROS and regulated gene expression to improve fertility (Rahman et al., 2018).

CURRENT LIMITATION AND FUTURE PERSPECTIVES OF EGCG DEVELOPMENT

Autophagy modulators can act as tumor activators or suppressors, which complicates the discovery stage in terms of pharmacological, technical, and experimental natures. It must be solved before implement as a chemotherapeutic modulator in the clinic. The autophagy strategy should be customizable and used depending on cancer cell types and tumorigenesis stages. Natural products such as cancer therapies attract growing attention due to their high effectiveness to diminish tumor cells and low toxicity to normal cells (Zhang Q. Y. et al., 2018). Their autophagy roles have been put forward (Rahman et al., 2020; Al-Bari et al., 2021). We reviewed and proposed the use of green tea EGCG as an autophagy modulator in reproductive cancer studies. EGCG exerts extraordinary anti-carcinogenic properties, attributes to its multi-targets and multi-pathways functional properties from anti-proliferative, proapoptotic, anti-invasive, anti-angiogenesis, and anti-oxidative effects (Chacko et al., 2010; Gan et al., 2018; Kochman et al., 2020). It was tested with a safe profile and benefited the preservation of fertility (Rahman et al., 2018; Opuwari and Monsees, 2020), yet it still requires more validation using animal studies and clinical trials to prove the efficacies of EGCG. Fertility-related side effects of EGCG for reproductive cancers in clinical use also needs to be investigated further.

However, the hydroxyl group on EGCG brings low bioavailability in the human body (Du et al., 2012; Chu et al., 2017). EGCG is not stable and is readily oxidized in a neutral or alkaline environment. A basic environment disfavors the protons on phenol groups, causing it to generate phenoxide anion which acts on electrophilic agents such as free radicals in the body (Lam et al., 2004). With innovations and technologies, this could be overcome via different delivery methods including prodrug and encapsulation approaches. Lam et al., team’s derived a prodrug of EGCG (ProEGCG) with enhanced EGCG stability by replacing the -OH hydroxyl groups of EGCG into -COOCH3 acetyl acetoxy groups of ProEGCG (Lam et al., 2004) (Figure 3). ProEGCG showed greater bioavailability and stability than EGCG on breast cancer in vitro and in vivo (Landis-Piwowar et al., 2005; Landis-Piwowar et al., 2007). Its potency to inhibit tumor growth was to a greater extent than EGCG, with an enhanced inhibitory effect on proteasome and induction abilities of caspase3/7 and PARP proteins, thus to inducing apoptosis. In prostate cancer, ProEGCG limited tumor progression and angiogenesis, as well as induced apoptosis in vivo (Lee et al., 2008). Besides these, ProEGCG was shown to enhance the sensitization of leukemia to
chemotherapy via caspase 3 activity and cleavage of PARP (Davenport et al., 2010). More recently, our team reported that ProEGCG acts as an angiogenesis inhibitor in endometrial cancer models in vitro and in vivo, and downregulated HIF-1α and VEGFA via PI3K/AKT/mTOR pathway (Wang J. et al., 2018). ProEGCG in low doses could inhibit cancer activity in endometrial cancer cells. Based on our finding, it was shown to upregulate the phosphorylation of JNK and p38 MAPK and downregulate that of AKT and ERK to ultimately inhibit tumor cell proliferation, micro-vessels formation and promote apoptotic activity in vitro and in vivo (Man et al., 2020). Importantly, this anticancer effect was significantly superior when compared with EGCG, with no toxicity being found.

On the other hand, a nanostructure-based drug delivery system improves the bioavailability of even low doses of EGCG. Chitosan nanoparticles (Dube et al., 2010; Li et al., 2009), liposomes (Fang et al., 2006; Dag and Oztop, 2017), nanoliposomes (De Pace et al., 2013) encapsulation material were used as the carriers of EGCG in different studies. Improved chemical structure stability via sustainable release of bioactive and the enhanced permeability of chemicals through the cellular membrane were resulted (Cai et al., 2018). In breast cancer, EGCG nanoparticles FA-NPS-PEG and FA-PEG-NPS were synthesized. It showed improved cellular uptake and anti-proliferation effect in vitro (Zeng et al., 2017). In cervical cancer, EGCG was delivered in a photothermal responsive zeolitic imidazolate framework using polydopamine-PEG nanoparticles (ZIF-PDA-PEG). Infrared laser irradiation assisted the releases of drugs, solving co-loading and multiple drug resistance problems, as well as showed higher efficiency in inducing apoptosis and autophagy (Chen et al., 2020).

Future studies can also focus on combining EGCG with other anticancer drugs to achieve a synergistic enhancement of the anti-cancer effects (Suganuma et al., 2011; Fujiki et al., 2015). In ovarian cancer, green tea with Paclitaxel or other nutrients as combination evidence strongly suggests the biologically active ingredients of EGCG Regulation of Reproductive Cancers

REFERENCES

Adachi, S., Nagao, T., Ingolfsson, H. I., Maxfield, F. R., Andersen, O. S., Kopelowich, L., et al. (2007). The Inhibitory Effect of (+)-epigallocatechin Gallate on Activation of the Epidermal Growth Factor Receptor Is Associated with Altered Lipid Order in HT29 Colon Cancer Cells. Cancer Res. 67, 6493–6501. doi:10.1158/0008-5472.CAN-07-0411

Adhami, V. M., Malik, A., Zaman, N., Sarfaraz, S., Siddiqui, I. A., Syed, D. N., et al. (2007). Combined Inhibitory Effects of Green Tea Polyphenols and Selective Cyclooxygenase-2 Inhibitors on the Growth of Human Prostate Cancer Cells Both In Vitro and In Vivo. Clin. Cancer Res. 13, 1611–1619. doi:10.1158/1078-0432.CCR-06-2269

Adhami, V. M., Siddiqui, I. A., Ahmad, N., Gupta, S., and Mukhtar, H. (2004). Oral Consumption of Green Tea Polyphenols Inhibits Insulin-like Growth Factor-I-Induced Signaling in an Autochthonous Mouse

CONCLUSION

The role of autophagy has been shown to play a dual role in cancer. On one hand, autophagy may help to protect against cancer, while on the other hand, it may promote the growth of cancer. As autophagy plays an important role in cell death, these autophagy modulators may be a potential target to induce tumor cell death in a manner independent of necrosis or apoptosis. However, targeting these autophagy modulators as therapeutic strategy remained a huge obstacle. Thus, natural products can be used to target multiple pathways, which provide greater flexibility and potential for a variety of cancer types and stages. Green tea catechins and EGCG have been shown to play an important role in modulating autophagy in reproductive cancer cells. A number of in vitro and in vivo studies have confirmed the anti-inflammatory and antioxidant properties of polyphenolic compounds to induce autophagic death in reproductive cancer cells. However, it still required more validation using animal studies and clinical trials. Nevertheless, the current evidence strongly suggests the biologically active ingredients of green tea, namely EGCG, to be a valuable and promising agent in reproductive cancer chemoprevention.

AUTHOR CONTRIBUTIONS

SH, YL, GC-WM, and CW wrote the first draft of the manuscript. XC, KC, YZ, YL, and XG contributed sections of the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2022.906746/full#supplementary-material

Supplementary Figure S1 | Chemical structures of the four-major green tea catechins include (+)-epicatechin (EC), (+)-epigallocatechin (EGC), (+)-epicatechin-3-gallate (ECG), and (+)-epigallocatechin-3-gallate (EGCG).
Fan, X., Zhou, J., Bi, X., Liang, J., Lu, S., Yan, X., et al. (2021). L-theanine Suppresses the Metastasis of Prostate Cancer by Downregulating MMP9 and Snail. J. Nutr. Biochem. 89, 108556. doi:10.1016/j.jnutbio.2020.108556

Fang, J. Y., Lee, W. R., Shen, S. C., and Huang, Y. L. (2006). Effect of Liposome Encapsulation of Tea Catechins on Their Accumulation in Basal Cell Carcinomas. J. Dermatol. Sci. 42, 101–109. doi:10.1016/j.jdermsci.2005.12.010

Farrow, J. M., Yang, J. C., and Evans, C. P. (2014). Autophagy as a Modulator and Target in Prostate Cancer. Nat. Rev. Urol. 11, 508–516. doi:10.1038/nrurrol.2014.196

Feng, Y., He, D., Yao, Z., and Klionsky, D. J. (2014). The Machinery of Macroautophagy. Cell Res. 24, 24–41. doi:10.1038/cr.2013.168

Fujiki, H., Swooka, E., Watanabe, T., and Suganuma, M. (2015). Synergistic Enhancement of Anticancer Effects on Numerous Human Cancer Lines Treated with the Combination of EGCG, Other Green Tea Catechins, and Anticancer Compounds. J. Cancer Res. Clin. Oncol. 141, 1511–1522. doi:10.1007/s00432-014-1899-5

Gan, R. Y., Li, H. B., Sui, Z. Q., and Corke, H. (2018). Absorption, Metabolism, Anti-cancer Effect and Molecular Targets of Epigallocatechin Gallate (EGCG): An Updated Review. Crit. Rev. Food Sci. Nutr. 58, 924–941. doi:10.1080/10408398.2016.1231168

García-Aranda, M., and Redondo, M. (2019). Immunotherapy: A Challenge of Breast Cancer Treatment. Cancers (Basel) 11, 1822. doi:10.3390/cancers1107225

Ge, J., Han, B., Hu, H., Liu, J., and Liu, Y. (2015). Epigallocatechin-3-O-Gallate Protects against Hepatic Damage and Testicular Toxicity in Male Mice Exposed to Di(-2-ethylhexyl) Phthalate. J. Med. Food 18, 753–761. doi:10.1089/jmf.2014.3247

Gewirtz, D. A. (2016). The Challenge of Developing Autophagy Inhibition as a Therapeutic Strategy. Cancer Res. 76, 5610–5614. doi:10.1158/0008-5472.CAN-16-0722

Graham, H. N. (1992). Green Tea Composition, Consumption, and Polyphenol Content. Rev. Med. 21, 334–350. doi:10.1006/rmed.1992.7435(92)90041-f

Guo, S., Lu, J., Subramanian, A., and Sonenshein, G. E. (2006). Microarray-assisted Pathway Analysis Identiﬁes Mitogen-Activated Protein Kinase Signaling as a Mediator of Resistance to the Green Tea Polyphenol Epigallocatechin 3-gallate in Her-2/neu-Overexpressing Breast Cancer Cells. Cancer Res. 66, 5322–5329. doi:10.1158/0008-5472.CAN-05-4287

Gupta, S., Hastak, K., Afaq, F., Ahmad, N., and Mukhtar, H. (2004). Essential Role of Caspases in Epigallocatechin-3-Gallate-Mediated Inhibition of Nuclear Factor Kappa B and Induction of Apoptosis. Oncogene 23, 2507–2522. doi:10.1038/sj.onc.1207353

Gupta, S. M., and Mania-Pramanik, J. (2019). Molecular Mechanisms in Progression of HPV-Associated Cervical Carcinogenesis. J. Biomed. Sci. 26, 28. doi:10.1186/s12929-019-0520-2

Han, Z., Liu, D., Chen, L., He, Y., Tian, X., Qi, L., et al. (2021). PNO1 Regulates Autophagy and Apoptosis of Hepatocellular Carcinoma via the MAPK Signaling Pathway. Cell Death Dis. 12, 552. doi:10.1038/s41419-021-03837-y

Hanna, T. P., King, W. D., Thibodeau, S., Jalink, M., Paulin, G. A., Harvey-Jones, E., et al. (2020). Mortality Due to Cancer Treatment Delay: Systematic Review and Meta-analysis. BMJ 371, m4087. doi:10.1136/bmj.m4087

Hanyu, X., Lanyue, L., Miao, D., Wentao, C., Cangran, C., and Hui, S. (2020). Effect of Genodermatosis Apallapan Plasycarciardes on MAPK/ERK Pathway Affecting Autophagy in Breast Cancer MCF-7 Cells. Int. J. Biol. Macromol. 146, 353–362. doi:10.1016/j.ijbiomac.2020.01.010

Harper, C. E., Patel, B. B., Wang, J., Eltoum, I. A., and Lamartiniere, C. A. (2007). Epigallocatechin-3-Gallate Suppresses Early Stage, but Not Late Stage Prostate Cancer in TRAMP Mice: Mechanisms of Action. Prostate 67, 1576–1589. doi:10.1002/pros.20643

Hastak, K., Gupta, S., Ahmad, N., Agarwal, M. K., Agarwal, M. L., and Mukhtar, H. (2003). Role of P53 and NF-kappaB in Epigallocatechin-3-Gallate-Induced Apoptosis of LNCaP Cells. Oncogene 22, 4851–4859. doi:10.1038/sj.onc.1206708

Hawaswi, Y. M., Zailaie, S. A., Oyouni, A. A. A., Alzahrani, O. R., Alamer, O. M., and Aljohani, S. A. S. (2020). Prostate Cancer and Therapeutic Challenges. J. Biol. Res. Thessal. 27, 20. doi:10.1016/j.rjbt.2009.02.0012B-2

Hayes-Lattin, B., and Nichols, C. R. (2009). Testicular Cancer: a Prototypic Tumor of Young Adults. Semin. Oncol. 36, 432–438. doi:10.1053/j.seminoncol.2009.07.006
Kavanagh, K. T., Hafer, L. J., Kim, D. W., Mann, K. K., Sherr, D. H., Rogers, A. E., et al. (2001). Green Tea Extracts Decrease Carcinogen-Induced Mammary Tumor Burden in Rats and Rate of Breast Cancer Cell Proliferation in Culture. J. Cell Biochem. 82, 387–398. doi:10.1002/jcb.1164

Kazi, A., Wang, Z., Kumar, N., Falletti, S. C., Chan, T. H., and Dou, Q. P. (2004). Structure-activity Relationships of Synthetic Analogues of (-)-Epigallocatechin-3-Gallate as Proteasome Inhibitors. Anticancer Res. 24, 943–954.

Khan, M. A., Hussain, A., Sundaram, M. K., Alalami, U., Gunasekera, D., Ramesh, L., et al. (2015). (-)-Epigallocatechin-3-gallate Reverses the Expression of Various Tumor-Suppressor Genes by Inhibiting DNA Methylation and Histone Deacetylases in Human Cervical Cancer Cells. Oncol. Rep. 33, 1976–1984. doi:10.3892/or.2015.3802

Khan, N., Bharali, D. J., Adhami, V. M., Siddiqui, I. A., Cui, H., Shabana, S. M., et al. (2014). Oral Administration of Naturally Occurring Chitosan-Based Nanoformulated Green Tea Polyphenol EGCG Effectively Inhibits Prostate Cancer Cell Growth in a Xenograft Model. Carcinogenesis 35, 415–423. doi:10.1093/carcin/bgk321

Khan, N., and Mukhtar, H. (2008). Multitargeted Therapy of Cancer by Green Tea Polyphenols. Cancer Lett. 269, 269–280. doi:10.1016/j.canlet.2008.04.014

Khojaste, E., and Ahmadzadeh, C. (2021). Catechin Metabolites along with Curcumin Inhibit Proliferation and Induce Apoptosis in Cervical Cancer Cells by Regulating VEGF Expression In-Vitro. Nutr. Cancer 74 (3), 1048–1057. doi:10.1080/00982707.2021.1936082

Klici, U., Sahin, K., Tuzcu, M., Basak, N., Orhan, C., Elbil-Can, B., et al. (2015). Enhancement of Cisplatin Sensitivity in Human Cervical Cancer: Epigallocatechin-3-Gallate. Front. Nutr. 1, 28. doi:10.3389/fnut.2014.00028

Kim, C., Menguy, K. A., McCorkle, R., Zheng, T., Erickson, R. L., Niebuhr, D. W., et al. (2010). Fertility Among Testicular Cancer Survivors: a Case-Control Study in the U.S. J. Cancer Surviv 6, 266–273. doi:10.1111/j.1756-4891.2010.00134-x

Kim, H. S., Kim, M. H., Jeong, M., Hwang, Y. S., Lim, S. H., Shin, B. A., et al. (2004). EGCG Blocks Tumor Promoter-Induced MMP-9 Expression via Suppression of MAPK and AP-1 Activation in Human Gastric AGS Cells. Anticancer Res. 24, 747–753.

Klionsky, D. J., Abdelmohsen, K., Abe, A., Abедин, M. J., Abeliovich, H., Acevedo-Arozena, A., et al. (2021). Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy. Autophagy 17, 1–382. doi:10.1002/aut.2015.1100356

Kochelkova, E. Y., Blinova, G. I., Bystrova, O. A., Martynova, M. G., Pospelov, V. A., and Pospelova, T. V. (2017). Targeted Elimination of Senescent Ras-Transformed Cells by Suppression of MEK/ERK Pathway. Aging (Albany NY) 9, 2352–2375. doi:10.18632/aging.101325

Kochman, J., Jakubczyk, K., Antoniewicz, J., Mruk, H., and Janda, K. (2020). Health Benefits and Chemical Composition of Matcha Green Tea: A Review. Molecules 26, 85. doi:10.3390/molecules2610085

Kumar, N. B., Pow-Sang, J., Spiess, P. E., Park, J., Salup, R., Williams, C. R., et al. (2016). Randomized, Placebo-Controlled Trial Evaluating the Safety of One-Year Administration of Green Tea Catechins. Oncotarget 7, 70794–70802. doi:10.18632/oncotarget.12222

Kurahashi, N., Sasazuki, S., Iwakawa, T., Inoue, M., Tsugane, S., et al. (2004). Green Tea Consumption and Prostate Cancer Risk in Japanese Men: A Prospective Study. Am. J. Epidemiol. 167, 71–77. doi:10.1093/aje/kwh249

Lam, W. H., Kazi, A., Kuhn, D. J., Chow, L. M., Chan, A. S., Dou, Q. P., et al. (2004). A Potential Prodrug for a Green Tea Polyphenol Proteasome Inhibitor: Evaluation of the Peracetylated Ester of (-)-epigallocatechin Gallate ([(-)EGCG]). Biorg Med. Chem. 12, 5587–5593. doi:10.1016/j.bmc.2004.08.002

Landis-Piwowar, K. R., Kuhn, D. J., Chen, D., Milacic, V., Shi, G., Chen, T. H., et al. (2007). A Novel Prodrug of the Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate as a Potential Anticancer Agent. Cancer Res. 67, 4303–4310. doi:10.1158/0008-5472.CAN-06-4699

Landis-Piwowar, K. R., Kuhn, D. J., Wan, S. B., Chen, D., Chan, T. H., and Dou, Q. P. (2005). Evaluation of Proteasome-Inhibitory and Apoptosis-Inducing Potencies of Novel (-)-EGCG Analogs and Their Prodrugs. Int. J. Mol. Med. 15, 735–742. doi:10.3892/ijmm.15.4.735
Mazumder, M. E. H., Beale, P., Chan, C., Yu, J. Q., and Huq, F. (2012). Epigallocatechin Gallate Acts Synergistically in Combination with Cisplatin and Designed Trans -palladiums in Ovarian Cancer Cells. Anticancer Res. 32, 4851–4860.

Mbrutha, K. S., Mireje, P. O., Nguere, R. M., Stomoe, F., Kyallo, M., Muoki, C., et al. (2017). Tea (Camellia Sinensis) Infusions Ameliorate Cancer in 4T1 Metastatic Breast Cancer Model. BMC Complementary Altern. Med. 17, 202. doi:10.1186/s12906-017-1683-6

Mccarthy, S., Caporali, A., Enkemann, S., Scarchil, M., Eschrich, S., Davalli, P., et al. (2007). Green Tea Catechins Suppress the DNA Synthesis Marker MCM7 in the TRAMP Model of Prostate Cancer. Mol. Oncol. 1, 196–204. doi:10.1016/j.molonc.2007.05.007

McDonnell, A. M., Pyles, H. M., Diaz-Cruz, E. S., and Barton, C. E. (2019). Epigallocatechin-3-gallate (EGCG) Act Synergistically to Inhibit the Growth of Cervical Cancer Cells in Culture. Molecules 24, 1580. doi:10.3390/molecules24081580

Mclarty, J., Bigelow, R. L. H., Smith, M., Elmajian, D., Ankem, M., and Cardelli, J. A. (2009). Tea Polyphenols Decrease Serum Levels of Prostate-specific Antigen, Hepatocyte Growth Factor, and Vascular Endothelial Growth Factor in Prostate Cancer Patients and Inhibit Production of Hepatocyte Growth Factor and Vascular Endothelial Growth Factor in V. Cancer Prev. Res. 2, 673–682. doi:10.1186/940-6270-7-0167

Mizushima, N., Levine, B., Cuervo, A. M., and Klionsky, D. J. (2008). Autophagy Fights Disease through Cellular Self-Digestion. Nature 451, 1069–1075. doi:10.1038/nature06639

Mizushima, N., and Yoshimori, T. (2007). How to Interpret LC3 Immunoblotting. Autophagy 3, 542–545. doi:10.4161/auto.6068

Mizushima, N., Ponnappan, V., Giovanova Troglio, M., Bonacini, M., Ramazzina, L., Bettuzzi, S., et al. (2015). EGCG Antagonizes Bortezomib Cytotoxicity in Prostate Cancer Cells by an Autophagic Mechanism. Sci. Rep. 5, 15270. doi:10.1038/srep15270

Moradzadeh, M., Hossaini, A., Erfanian, S., and Rezaei, H. (2017). Epigallocatechin-3-gallate Promotes Apoptosis in Human Breast Cancer T47D Cells through Down-Regulation of PI3K/AKT and Telomerase. Pharmacol. Rep. 69, 924–928. doi:10.1016/j.pharep.2017.04.008

Morice, P., Leary, A., Creutzberg, C., Abu-Rustum, N., and Darai, E. (2016). Endometrial Cancer. Lancet 387, 1094–1108. doi:10.1016/s0140-6736(15)00130-0

Mowers, E. E., Sharifi, M. N., and Macleod, K. F. (2017). Autophagy in Cancer Metastasis. Oncogene 36, 1619–1630. doi:10.1038/onc.2016.333

Mukherjee, S., Siddiqui, M. A., Dayal, S., Ayoub, Y. Z., and Malathi, K. (2014). Epigallocatechin-3-gallate Suppresses Proinflammatory Cytokines and Chemokines Induced by Toll-like Receptor 9 Agonists in Prostate Cancer Cells. J. Inflamm. Res. 7, 89–101. doi:10.2147/JIR.S61365

Muthusami, S., Prabakaran, D. S., An, Z., Yu, J. R., and Park, W. Y. (2013). EGCG Suppresses Fused Toes Homolog Protein through PS3 in Cervical Cancer Cells. Mol. Biol. Rep. 40, 5587–5596. doi:10.1007/s11033-013-2660-x

Nair, S., Barve, A., Khor, T. O., Shen, G. X., Lin, W., Chan, J. Y., et al. (2010). Regulation of Nrf2-And AP-1-Mediated Gene Expression by Epigallocatechin-3-Gallate and Sulforaphane in Prostate of Nrf2-Knockout or C57Bl/6j Mice and PC-3 A-1 Human Prostate Cancer Cells. Acta Pharmocol. Sin. 31, 1223–1240. doi:10.1007/s10571-010-0174-z

Nakaki, K., Suesmasu, K., Suga, K., Takeo, T., Imai, K., and Higashi, Y. (1998). Influence of Drinking Green Tea on Breast Cancer Malignancy Among Japanese Patients. Jpn. J. Cancer Res. 89, 254–261. doi:10.1111/j.1349-7006.1998.tb00556.x

Nakkas, H., Ocal, B. G., Kiple, S., Akcan, G., Sahin, C., Ardicoglu, A., et al. (2021). Ubiquitin Proteasome System and Autophagy Associated Proteins in Human Testicular Tumors. Tissue Cell 71, 101513. doi:10.1016/j.tice.2021.101513

Naponelli, V., Moderrnelli, A., Bettuzzi, S., and Rizzi, F. (2015). Roles of Autophagy Induced by Natural Compounds in Prostate Cancer. Biomed. Res. Int. 2015, 121826. doi:10.1155/2015/121826
Modulation by Natural Products for Cancer Stem Cells. Front. Cell Dev. Biol. 8, 283. doi:10.3389/fcell.2020.00283
Rahman, S. U., Huang, Y., Zou, L., Feng, S., Khan, I. M., Wu, J., et al. (2018). Therapeutic Role of Green Tea Polyphenols in Improving Fertility: A Review. Nutrients 10, 834. doi:10.3390/nu10070834
Ram Kumar, R. M., and Schor, N. F. (2018). Methylation of DNA and Chromatin as a Mechanism of Oncogenesis and Therapeutic Target in Neuroblastoma. Onco-target 9, 22184–22193. doi:10.18632/oncotarget.25094
Rao, S. D., and Pagidas, K. (2010). Epigallocatechin-3-gallate, a Natural Polyphenol, Inhibits Cell Proliferation and Induces Apoptosis in Human Ovarian Cancer Cells. Anticancer Res. 30, 2519–2523.
Raufi, A. G., Liguori, N. R., Carlens, L., Parker, C., Hernandez Borroto, L., Zhang, S., et al. (2021). Therapeutic Targeting of Autophagy in Pancreatic Ductal Adenocarcinoma. Front. Pharmacol. 12, 751568. doi:10.3389/fphar.2021.751568
Rawla, P. (2019). Epidemiology of Prostate Cancer. World J. Oncol. 10, 63–89. doi:10.14740/wjon1191
Reddy, D., Kumavath, R., Tan, T. Z., Ampasala, D. R., and Kumar, A. P. (2020). Peruvoside Targets Apoptosis and Autophagy through MAPK Wnt/beta-Catenin and PI3K/AKT/mTOR Signaling Pathways in Human Cancers. Life Sci. 241, 117147. doi:10.1016/j.lfs.2019.117147
Reuter, V. E. (2005). Origins and Molecular Biology of Testicular Germ Cell Tumors. Med. Pediatr. Oncol. 38 (Suppl. 2), S51–S60. doi:10.1088/msopms.38.03090
Rizzi, F., Napoloni, V., Silva, A., Modernelli, A., Ramazzina, I., Bonacini, M., et al. (2014). Polyphenol ER(2), a Standardized Green Tea Extract, Induces Endoplasmic Reticulum Stress, Leading to Death of Immortalized PNT1a Cells by Anoikis and Tumorigenic PC3 by Necrosis. Carcinogenesis 35, 828–839. doi:10.1093/carcin/bg481
Roomi, M. W., Cha, J., Kalinovsky, T., Roomi, N., Niedzwiecki, A., and Rath, M. (2015a). Effect of a Nutrient Mixture on the Localization of Extracellular Matrix Proteins in HeLa Human Cervical Cancer Xenografts in Female Nude Mice. Exp. Ther. Med. 10, 901–906. doi:10.3892/etm.2015.2591
Roomi, M. W., Ivanov, V., Kalinovsky, T., Niedzwiecki, A., and Rath, M. (2005a). Molecular Structure and Biological Activity of a Mixture of Lysine, Proline, Ascorbic Acid, and Green Tea Extract on Human Breast Cancer Lines MDA-MB-231 and MCF-7. Med. Oncol. 22, 129–138. doi:10.1085/mo.22.02:129
Roomi, M. W., Ivanov, V., Kalinovsky, T., Niedzwiecki, A., and Rath, M. (2005b). In Vivo and in Vitro Antitumorigenic Activity of a Mixture of Lysine, Proline, Ascorbic Acid, and Green Tea Extract on Human Breast Cancer Lines MDA-MB-231 and MCF-7. J. Carcinog. Mutagen 4, 2210–2218. doi:10.4172/2157-2518.1000142
Sartippour, M. R., Heber, D., Ma, J., Lu, Q., Go, V. L., and Nguyen, M. (2001). Green Tea and its Catechins Inhibit Breast Cancer Xenografts. Nutr. Cancer 40, 149–156. doi:10.1080/0148616019001121
Sartippour, M. R., Pietras, R., Marquez-Garban, D., Chen, H. W., Heber, D., Henning, S. M., et al. (2006). The Combination of Green Tea and Tamoxifen Is Effective against Breast Cancer. Carcinogenesis 27, 2424–2433. doi:10.1093/carcin/bgl066
Sartippour, M. R., Shao, Z. M., Heber, D., Beatty, P., Zhang, L., Liu, C., et al. (2002). Green Tea Inhibits Vascular Endothelial Growth Factor (VEGF) Induction in Human Breast Cancer Cells. J. Nutr. 132, 2307–2311. doi:10.1093/jn/132.8.2307
Sawada, N. (2017). Risk and Preventive Factors for Prostate Cancer in Japan: The Japan Public Health Center-based Prospective (IPHI) Study. J. Epidemiol. 27, 2–7. doi:10.1016/j.jjepidem.2016.09.001
Scaltriti, M., Belloni, L., Caporalii, A., Davalli, P., Remondini, D., Rizzi, F., et al. (2006). Molecular Classification of Green Tea Catechin-Sensitive and Green Tea Catechin-Resistant Prostate Cancer in the TRAMP Mice Model by Quantitative Real-Time PCR Gene Profiling. Carcinogenesis 27, 1047–1053. doi:10.1093/carcin/bgl093
Schramm, L. (2013). Going Green: The Role of the Green Tea Component EGCG in Chemoprevention. J. Caregic. Mutagen. 4, 800142. doi:10.4172/2157-2518.1000142
Semenza, G. L. (2010). HIF-1: Upstream and Downstream of Cancer Metabolism. Curr. Opin. Genet. Dev. 20, 51–56. doi:10.1016/j.gde.2009.10.009
Shan, L., Gao, G., Wang, W., Tang, W., Wang, Z., Yang, Z., et al. (2019). Self-assembled Green Tea Polyphenol-Based Coordination Nanomaterials to Improve Chemotherapy Efficacy by Inhibition of Carbonyl Reductase 1. Biomaterials 210, 62–69. doi:10.1016/j.biomaterials.2019.04.032
Shimidzu, M., Deguchi, A., Lim, J. T., Moriwaki, H., Kopelowich, L., and Weinstein, I. B. (2005). (-) Epigallocatechin Gallate and Polyphenon E Inhibit Growth and Activation of the Epidermal Growth Factor Receptor and Human Epidermal Growth Factor Receptor 2 Signaling Pathways in Human Colon Cancer Cells. Clin. Cancer Res. 11, 2375–2376. doi:10.1158/1078-0432.CCR-04-2014
Shirakami, Y., and Shimizu, M. (2018). Possible Mechanisms of Green Tea and its Constituents against Cancer. Molecules 23, 2284. doi:10.3390/molecules23092284
Siddiqui, I. A., Adhami, V. M., Afaq, F., Ahmad, N., and Mukhtar, H. (2004). Modulation of Phosphatidylinositol-3-Kinase/protein Kinase B- and Mitogen-Activated Protein Kinase Pathways by Tea Polyphenols in Human Prostate Cancer Cells. J. Cell. Biochem. 91, 252–242. doi:10.1002/jcb.10737
Siddiqui, I. A., Asim, M., Hafeez, B. B., Adhami, V. M., Tarapore, R. S., and Mukhtar, H. (2011). Green Tea Polyphenol EGCG Blunts Androgen Receptor Transcriptional Activity by Inhibition of carbonyl reductase 1. Int. J. Cell Biol. 2011, 718. doi:10.1158/1940-6207.CAPR-11-0187
Siddiqui, I. A., Shukla, Y., Adhami, V. M., Sarfaraz, S., Asim, M., Hafeez, B. B., et al. (2008). Suppression of NFkB and its Regulated Gene Products by Oral Administration of Green Tea Polyphenols in an Autochthonous Mouse
Xu, L., Zhang, X., Li, Y., Lu, S., Lu, S., Li, J., et al. (2016). Neferine Induces Autophagy of Human Ovarian Cancer Cells via P38 MAPK/INK Kinase Activation. *Tumour Biol.* 37, 8721–8729. doi:10.1007/s13277-015-4737-8

Xu, P., Yan, F., Zhao, Y., Chen, X., Sun, S., Wang, Y., et al. (2020). Green Tea Polyphenol EGCG Attenuates MDSCs-Mediated Immunosuppression through Canonical and Non-canonical Pathways in a 4T1 Murine Breast Cancer Model. *Nutrients* 12, 1042. doi:10.3390/nu12041042

Xuan, F., and Jian, J. (2016). Epigallocatechin Gallate Exerts Protective Effects against Myocardial Ischemia/reperfusion Injury through the PI3K/Akt Pathway-Mediated Inhibition of Apoptosis and the Restoration of the Autophagic Flux. *Int. J. Mol. Med.* 38, 328–336. doi:10.3892/ijmm.2016.2615

Yang, K., Gao, Z. Y., Li, T. Q., Song, W., Xiao, W., Zheng, J., et al. (2019). Anti-tumor Activity and the Mechanism of a Green Tea (Camellia Sinensis) Polysaccharide on Prostate Cancer. *Int. J. Biol. Macromol.* 122, 95–103. doi:10.1016/j.ijbiomac.2018.10.101

Yang, S., Shao, S., Huang, B., Yang, D., Zeng, L., Gan, Y., et al. (2020). Tea Polyphenols Alleviate Tri-ortho-creosyl Phosphate-Induced Autophagy of Mouse Ovarian Granulosa Cells. *Environ. Toxicol.* 35, 478–486. doi:10.1002/tox.22883

Yeung, T. L., Leung, C. S., Yip, K. P., Au Yeung, C. L., Wong, S. T., and Mok, S. C. (2015). Cellular and Molecular Processes in Ovarian Cancer Metastasis. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. *Ann. J. Physiol. Cell Physiol.* 309, C444–C456. doi:10.1152/ajpcell.00188.2015

Yoon, J. S., Kristal, A. R., Wicklund, K. G., Cushing-Haagen, K. L., and Rossing, M. A. (2008). Coffee, Tea, Colas, and Risk of Epithelial Ovarian Cancer. *Cancer Epidemiol. Biomarkers Prev.* 17, 712–716. doi:10.1158/1055-9965.EPI-07-2511

Yousefii, S., Perozzi, R., Schmid, I., Ziemiekci, A., Schaffner, T., Scapozza, L., et al. (2016). Calpain-mediated Cleavage of Atg5 Switches Autophagy to Apoptosis. *Nat. Cell Biol.* 18, 1124–1132. doi:10.1038/ncb3482

Yuan, Ch. H., Horng, C. T., Lee, C. F., Chiang, N. N., Tsai, F. J., Lu, C. C., et al. (2017). Epigallocatechin Gallate Sensitizes Cisplatin-Resistant Oral Cancer Cell Apoptosis and Autophagy through Stimulating AKT/STAT3 Pathway and Suppressing Multidrug Resistance 1 Signaling. *Environ. Toxicol.* 32, 845–855. doi:10.1002/tox.22284

Yugawa, T., and Kiyono, T. (2009). Molecular Mechanisms of Cervical Carcinogenesis by High-Risk Human Papillomavirus: Novel Functions of E6 and E7 Oncoproteins. *Rev. Med. Virol.* 19, 97–113. doi:10.1002/rmv.605

Zeng, F., and Harris, R. C. (2014). Epidermal Growth Factor, from Gene Organization to E6 and E7 Oncoproteins. *Carcinogenesis by High-Risk Human Papillomaviruses: Novel Functions of E6 and E7 Oncoproteins. Rev. Med. Virol.* 19, 97–113. doi:10.1002/rmv.605

Zhen, M. C., Huang, X. H., Wang, Q., Sun, K., Liu, Y. J., Li, W., et al. (2006). Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate Down-Regulates VASP Expression and Inhibits Breast Cancer Cell Migration and Inhibition by Attenuating Rac1 Activity. *Eur. J. Pharmacol.* 606, 172–179. doi:10.1016/j.ejphar.2008.12.033

Zhang, Y., Lin, H., Liu, C., Huang, J., and Liu, Z. (2020b). A Review for Physiological Activities of EGCG and the Role in Improving Fertility in Humans/mammals. *Biomed. Pharmacother.* 127, 110186. doi:10.1016/j.biopharm.2020.110186

Zhang, Y., Sha, R., Zhang, L., Zhang, W., Jin, P., Xu, W., et al. (2018b). Harnessing Copper-Palladium Alloy Tetrapod Nanoparticle-Induced Pro-survival Autophagy for Optimized Photothermal Therapy of Drug-Resistant Cancer. *Nat. Commun.* 9, 4236. doi:10.1038/s41467-018-06529-y

Zhang, Y., Yang, N. D., Zhou, F., Shen, T., Duan, T., Zhou, J., et al. (2012). (-)-Epigallocatechin-3-gallate Induces Non-apoptotic Cell Death in Human Cancer Cells via ROS-Mediated Lysosomal Membrane Permeabilization. *PloS One* 7, e46749. doi:10.1371/journal.pone.0046749

Zhao, L., Liu, S., Xu, J., Li, W., Duan, G., Wang, H., et al. (2017). A New Molecular Mechanism Underlying the EGCG-Mediated Autophagic Modulation of AFP in HepG2 Cells. *Cell Death Dis.* 8, e3160. doi:10.1038/cddis.2017.563

Zhao, X., Fang, Y., Yang, Y., Qin, Y., Wu, P., Wang, T., et al. (2015). Erlotinib, a Novel Autophagy Inhibitor, Exerts Antitumor Activity as a Single Agent in Ovarian Cancer Cells. *Autophagy* 11, 1849–1863. doi:10.1080/15548627.2015.1017185

Zhen, M. C., Huang, X. H., Wang, Q., Sun, K., Liu, Y. J., Li, W., et al. (2006). Green Tea Polyphenol Epigallocatechin-3-gallate Suppresses Rat Hepatic Stellate Cell Inhibition by Induction of MMP-2 Expression and its Activation. *Acta Pharmacol. Sin.* 27, 1600–1607. doi:10.1111/j.1745-7254.2006.00439.x

Zheng, T., Wang, A., Hu, D., and Wang, Y. (2017). Molecular Mechanisms of Breast Cancer Metastasis by Gene Expression Profile Analysis. *Mol. Med. Rep.* 16, 4671–4677. doi:10.3892/mmr.2017.7157

Zhou, Z. W., Li, X. X., He, Z. X., Pan, S. T., Yang, Y., Zhang, X., et al. (2015). Induction of Apoptosis and Autophagy via Sirtuin1- and PI3K/Akt/mTOR-Mediated Pathways by Plumbagin in Human Prostate Cancer Cells. *Drug Des. Devel Ther.* 9, 1511–1554. doi:10.2147/DDDT.S75976

Zhu, K., Dunner, K., Jr., and Mcconkey, D. J. (2010). Proteasome Inhibitors Activate Autophagy as a Cytoprotective Response in Human Prostate Cancer Cells. *Oncogene* 29, 451–462. doi:10.1038/onc.2009.343

Zhu, Y., Yin, Q., Wei, D., Yang, Z., Du, Y., and Ma, Y. (2019). Autophagy in Male Reproduction. *Syst. Biol. Reprod. Med.* 65, 265–272. doi:10.1080/19396368.2019.1606361

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Hung, Li, Chen, Chu, Zhao, Liu, Guo, Man and Wang, This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.