Patients with obstructive sleep apnoea (OSA) have a higher incidence of cardiovascular morbidity and mortality1,2. Recent data suggest that OSA may be associated with a number of cardiovascular risk factors, such as hypertension, insulin resistance, impaired glucose tolerance, and dyslipidaemia, which together comprise the metabolic syndrome (MS)1,3. A growing recognition of the presence of various metabolic abnormalities in subjects with OSA has been observed during the past two decades, and the association of OSA and MS was highlighted as “syndrome Z” in the late 1990s4. There are multiple potential mechanistic pathways potentially involved in the interaction between OSA and MS. Chronic intermittent hypoxia and sleep fragmentation with sleep loss present in OSA can lead to generation of reactive oxygen species and neurohumoral changes, respectively. These key triggers likely initiate or contribute to a low grade inflammation, a prominent phenomenon of OSA and a shared feature with MS1,3,5,6. Furthermore, intermittent hypoxia and oxidative stress have been implicated in the upregulation of the transcription factors related with the sterol regulatory element binding protein (SREBPs), contributing to the development of hyperlipidaemia7,8, an abnormality seen in MS. Despite the rather prolific data that suggest a contributing role of OSA towards the various components of MS and the entity itself, the exact relationship between OSA and MS remains controversial, since obesity constitutes a powerful confounding factor. Some studies have already showed that OSA is associated with metabolic abnormalities even in non obese patients9, however, others have shown that obese OSA patients may have an increased rate of MS and more pronounced metabolic dysfunction10,11. Prevalence of MS in OSA patients is high, varying approximately between 60 and 90 per cent12-15. However, this prevalence differs according to MS diagnostic criteria applied and type of the populations studied concerning demographics (age, gender, ethnicity, tertiary and primary care health services) and OSA features, such as severity, determined by apnoea-hypopnoea index (AHI), respiratory disturbance index (RDI) and desaturation index (DI).

In this issue Agrawal et al16 contribute to our understanding of the burden of MS in OSA patients in a hospital-based population of a tertiary health care centre in New Delhi, India. In this prospective cross-sectional study, the authors have analyzed 227 consecutive patients who underwent an overnight 16-channel polysomnography for evaluation of excessive daytime somnolence and snoring. From the total of patients enrolled 187 (82\%) had OSA. Anthropometry, body composition analysis, blood pressure (BP), fasting blood glucose, insulin resistance by homeostasis model assessment (HOMA-IR) and fasting blood lipid profile measures were performed. They found that diastolic BP, fasting plasma insulin, HOMA-IR, waist circumference and waist-hip ratio were higher in patients with OSA, with a trend towards higher systolic BP, fasting blood glucose, triglycerides and LDL cholesterol. Body composition analysis showed higher fat mass, per cent body fat and skin fold thicknesses in patients with OSA. These findings are in accordance with previous studies showing OSA to be associated with higher BP, insulin resistance and deranged lipid profile and body composition13,17-19.

MS was defined using the National Cholesterol Education Program Adult treatment panel III criteria20. Prevalence of MS in OSA group was 4-fold higher as compared to non-OSA group (79 versus 48\%).
Despite within the aforementioned range, Agrawal et al16 pointed out some methodological issues which could explain the different prevalences found in other studies. The lower prevalences described by Sharma et al13 (77 versus 40\%) and Lam et al13 (58 versus 21\%) can be explained by the fact that these were community-based studies, emphasizing the referral bias, and participants had a lower BMI compared to this study16.

On the other hand, a higher prevalence was reported by Coughlin et al12 in a previous hospital-based study reporting prevalence of MS in OSA, probably due to ethnic differences of the populations (Europeans versus Asians) and a much higher BMI of participants in the study by Coughlin et al. In another study, Mota et al14 found 63.5 per cent prevalence of MS in an OSA tertiary hospital population. Once again methodological heterogeneity, concerning main objectives, sample size and existence of a control group, can be used to explain the differences found.

Agrawal et al16 also showed that prevalence of MS increased with severity of OSA (mild: 66\%; moderate: 72\%; severe: 86\%), suggesting the positive association between the severity of OSA and the presence of MS, already described in previous studies14,21. However, as Agrawal et al16 fairly signaled, a causative relationship between OSA and MS cannot be established since obesity, a major risk factor for both conditions, that acts as a significant confounder, was not matched in both groups in the present study.

In conclusion, the scientific evidence provided by Agrawal & colleagues16, as the first prospective hospital-based study performed in Asia which enrolled a large sample size, is of an additional value for supporting the higher prevalence of MS and its components in OSA patients, and the importance of ruling out presence of MS in OSA and vice versa, in order to an early detection and adequate treatment of both conditions. Matching for obesity in future studies will be important to better clarify the interaction between sleep disturbance and metabolic abnormalities in Asian populations.

Patrícia Caetano Mota
Department of Pulmonology
Centro Hospitalar de São João
Alameda Professor Hernâni Monteiro
4200-319 Porto, Portugal
patmota@net.sapo.pt

References

1. McNicholas WT, Bonsigore MR, Management Committee of EU COST ACTION B26. Sleep apnea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. *Eur Respir J* 2007; 29: 156-78.

2. Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Javier Nieto F, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the sleep heart health study. *Am J Respir Crit Care Med* 2001; 163: 19-25.

3. Jean-Louis G, Zizi F, Clark LT, Brown CD, McFarlane SI. Obstructive sleep apnea and cardiovascular disease: role of the metabolic syndrome and its components. *J Clin Sleep Med* 2008; 4: 261-72.

4. Wilcox I, McNamara SG, Collins FL, Grunstein RR, Sullivan CE. Syndrome “Z”: the interaction of sleep apnea, vascular risk factors and heart disease. *Thorax* 1998; 53 (Suppl 3): S25-8.

5. Tasali E, Ip MS. Obstructive sleep apnea and metabolic syndrome: alterations in glucose metabolism and inflammation. *Proc Am Thorac Soc* 2008; 5: 207-17.

6. Calvin AD, Albuquerque FN, Lopez-Jimenez F, Somers VK. Obstructive sleep apnea, inflammation, and the metabolic syndrome. *Metab Syndr Relat Disord* 2009; 7: 271-8.

7. Li J, Thorne LN, Punjabi NM, Sun CK, Schwartz AR, Smith PL, et al. Intermittent hypoxia induces hyperlipidemia in lean mice. *Circ Res* 2005; 97: 698-706.

8. Li J, Grigoryev DN, Ye SQ, Thorne L, Schwartz AR, Smith PL, et al. Chronic intermittent hypoxia upregulates genes of lipid biosynthesis in obese mice. *J Appl Physiol* 2005; 99: 1643-8.

9. Lin QC, Zhang XB, Chen GP, Huang DY, Din HB, Tang AZ. Obstructive sleep apnea syndrome is associated with some components of metabolic syndrome in non obese adults. *Sleep Breath* 2011 (in press).

10. Basoglu OK, Sarac F, Sarac S, Uluer H, Yilmaz C. Metabolic syndrome, insulin resistance, fibrinogen, homocysteine, leptin, and C-reactive protein in obese patients with obstructive sleep apnea syndrome. *Ann Thorac Med* 2011; 6: 120-5.

11. Gasa M, Salord N, Fortuna AM, Mayos M, Vilarrasa N, Dorca J, et al. Obstructive sleep apnea and metabolic impairment in severe obesity. *Eur Respir J* 2011 (in press).

12. Coughlin SR, Mawdsley L, Mugarza JA, Calverley PM, Wilding JP. Obstructive sleep apnea is independently associated with an increased prevalence of metabolic syndrome. *Eur Heart J* 2004; 25: 735-41.

13. Lam JC, Lam B, Lam CL, Fong D, Wang JK, Tse HF, et al. Obstructive sleep apnea and the metabolic syndrome in community-based Chinese adults in Hong-Kong. *Respir Med* 2006; 100: 980-7.

14. Mota PC, Drummond M, Winck JC, Santos AC, Almeida J, Marques JA. APAP impact on metabolic syndrome in obstructive sleep apnea patients. *Sleep Breath* 2011; 15: 665-72.
15. Sharma SK, Reddy EV, Sharma A, Kadhira N T, Mishra HK, Sreenivas V, et al. Prevalence and risk factors of syndrome Z in urban Indians. *Sleep Med* 2010; 11: 562-8.

16. Agrawal S, Sharma SK, Sreenivas V, Lakshmy R. Prevalence of metabolic syndrome in a north Indian hospital-based population with obstructive sleep apnoea. *Indian J Med Res* 2011; 134: 639-44.

17. Davies CW, Crosby JH, Mullins RL, Barbour C, Davies RJ, Stradling JR. Case-control study of 24 hour ambulatory blood pressure in patients with obstructive sleep apnea and normal matched control subjects. *Thorax* 2000; 55: 736-40.

18. Ip MS, Lam B, Ng MM, Lam WK, Tsang KW, Lam KS. Obstructive sleep apnea is independently associated with insulin resistance. *Am J Respir Crit Care Med* 2002; 165: 670-6.

19. Ip MS, Lam KS, Ho C, Tsang KW, Lam W. Serum leptin and vascular risk factors in obstructive sleep apnea. *Chest* 2000; 118: 580-6.

20. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National, Heart, Lung and Blood Institute Scientific Statement. *Circulation* 2005; 112: 2735-52.

21. Parish JM, Adam T, Facchiano L. Relationship of metabolic syndrome and obstructive sleep apnea. *J Clin Sleep Med* 2007; 3: 467-72.