Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO$_2$ and their interaction

Sjannie Lefevre*

Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo NO-0316, Norway

*Corresponding author: Department of Biosciences, University of Oslo, Blindernveien 31, Postbox 1066 Blindern, Oslo NO-0316, Norway.
Email: sjannie.lefevre@imbv.uio.no

With the occurrence of global change, research aimed at estimating the performance of marine ectotherms in a warmer and acidified future has intensified. The concept of oxygen- and capacity-limited thermal tolerance, which is inspired by the Fry paradigm of a bell-shaped increase–optimum–decrease-type response of aerobic scope to increasing temperature, but also includes proposed negative and synergistic effects of elevated CO$_2$ levels, has been suggested as a unifying framework. The objectives of this meta-analysis were to assess the following: (i) the generality of a bell-shaped relationship between absolute aerobic scope (AAS) and temperature; (ii) to what extent elevated CO$_2$ affects resting oxygen uptake MO2rest and AAS; and (iii) whether there is an interaction between elevated temperature and CO$_2$. The behavioural effects of CO$_2$ are also briefly discussed. In 31 out of 73 data sets (both acutely exposed and acclimated), AAS increased and remained above 90% of the maximum, whereas a clear thermal optimum was observed in the remaining 42 data sets. Carbon dioxide caused a significant rise in MO2rest in only 18 out of 125 data sets, and a decrease in 25, whereas it caused a decrease in AAS in four out of 18 data sets and an increase in two. The analysis did not reveal clear evidence for an overall correlation with temperature, CO$_2$ regime or duration of CO$_2$ treatment. When CO$_2$ had an effect, additive rather than synergistic interactions with temperature were most common and, interestingly, they even interacted antagonistically on MO2rest and AAS. The behavioural effects of CO$_2$ could complicate experimental determination of respiratory performance. Overall, this meta-analysis reveals heterogeneity in the responses to elevated temperature and CO$_2$ that is not in accordance with the idea of a single unifying principle and which cannot be ignored in attempts to model and predict the impacts of global warming and ocean acidification on marine ectotherms.

Key words: Aerobic scope, climate change, fish, invertebrates, oxygen- and capacity-limited thermal tolerance, oxygen uptake

Editor: Steven Cooke

Received 11 October 2015; Revised 15 February 2016; accepted 19 February 2016

Cite as: Lefevre S (2016) Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO$_2$ and their interaction. Conserv Physiol 4: doi:10.1093/conphys/cow009.
Introduction

The influence of environmental temperature on the physiology of aquatic ectothermic animals has been extensively studied and, in most cases, the results are consistent with predictable effects of temperature on biological and chemical processes (e.g. Bělehrádek, 1930; Dell et al., 2011). With the realization that Earth’s climate is changing—that global warming is happening—the focus on temperature in animal physiology research has obviously not subsided. One aspect that has received particular attention in this context is the capacity for aerobic metabolism, also referred to as scope for activity or simply aerobic scope. The absolute aerobic scope (AAS) is defined as the difference between the minimal and maximal rates of aerobic metabolism (Fry, 1971). Given that most processes occurring in an animal require ATP and that the most efficient ATP-producing pathway requires oxygen, AAS is regarded as an indicator of whole-animal performance that links directly to the capacity for activity, growth and reproduction and, thereby, ultimately fitness (Pörtner and Knust, 2007; Wang and Overgaard, 2007). Furthermore, the aerobic capacity is hypothesized to have an optimal temperature, below and above which AAS is reduced (Fry and Hart, 1948; Fry, 1971), and it follows then that the optimal temperature for AAS (T_{optAAS}) will coincide with the optimum for other measures of performance and thereby overall fitness (T_{optFIT}). According to this view, the decline in AAS that occurs above T_{optAAS} (Fig. 1A) is the result of an inability of the cardiorespiratory system to increase the maximal oxygen supply to tissues, MO_{2max} (Pörtner and Farrell, 2008; Steinhäuser et al., 2008; Munday et al., 2012), at a rate that keeps pace with the expected exponential increase in basic oxygen demands (Clarke and Johnston, 1999) reflected by the resting oxygen uptake, MO_{2rest} (Fig. 1A). This is a perfectly valid hypothesis that intuitively makes sense for many physiologists, while also being attractive from a modelling perspective (e.g. Farrell et al., 2008, Del Raye and Weng, 2015).

![AAS Diagram](Image)

Figure 1: Proposed effects of temperature and CO$_2$ on aerobic performance. (A) The Fry paradigm (continuous lines), where resting oxygen uptake (MO_{2rest}) is predicted to increase exponentially with temperature, whereas maximal oxygen uptake (MO_{2max}) reaches an optimum and then declines. As a result, the absolute aerobic scope ($AAS = MO_{2max} - MO_{2rest}$) is represented by a bell-shaped curve, and the optimum for AAS (T_{optAAS}) is assumed to reflect the overall optimum for fitness (T_{optFIT}). Alternatively (dashed lines), it can be proposed that the increase in MO_{2rest} may be less pronounced, because of acclimation, and that MO_{2max} is not limited to the same degree at higher temperature (Clark et al., 2013; Schulte, 2015), resulting in a scope that continues to increase until the critical temperature CT_{max} (that is, where the animal eventually will die). In this case, it is unlikely that T_{optAAS} coincides with T_{optFIT} (B). Elevated CO$_2$ in the water (PCO_{2out}) has been proposed by some authors to cause a reduction in aerobic scope through ‘reduced tissue functional capacity’ (Pörtner, 2012) or by causing an elevation in MO_{2rest} (loading stress) and/ or a decrease in MO_{2max} (limiting stress; Heuer and Grosell, 2014). (C) Change in the aerobic scope curve if simultaneous exposure to elevated temperature and hypercapnia has a synergistic effect, where the isolated effect of CO$_2$ (ΔAAS_{CO2}) at the thermal optimum is small, or zero, but exacerbated when temperature rises, causing further reduction in aerobic scope (e.g. Pörtner et al., 2005). The combined effect (ΔAAS_{T+CO2}) is thus larger than expected from the sum of the two isolated effects (ΔAAS_T and ΔAAS_{CO2}). (D) Alternatively, hypercapnia can cause a reduction in AAS (ΔAAS_{CO2}) independent of temperature, and the combined effect of the two stressors is then additive.
Although it is unlikely that Fry was concerned about the potential implications for global-warming research, his model did form the basis for a more recently developed framework that presents the Fry paradigm and aerobic-scope curve in a perspective more applicable to climate change, namely the concept of ‘oxygen- and capacity-limited thermal tolerance’ (OCLTT; e.g. Pörtner, 2001, 2010, 2014; Pörtner et al., 2004a; Pörtner and Knust, 2007; Pörtner and Lannig, 2009; Bozinovic and Pörtner, 2015). This framework has, for example, formed the basis for conclusions drawn in the most recent report from the Intergovernmental Panel on Climate Change (IPCC), particularly regarding future biodiversity (Pörtner et al., 2014). This framework has been presented as a ‘unifying concept’ (e.g. Farrell, 2016) and is used as an argument to correlate temperature-related shifts in distributions of animals with one specific variable, namely aerobic scope (Pörtner and Farrell, 2008). Indeed, AAS has, for example, been used to predict spawning success or to explain failure in migrating salmon populations (Farrell et al., 2008; Elison et al., 2011), to compare habitat suitability between native and invasive fish species (Marras et al., 2015), to compare seasons (Cucco et al., 2012) and to predict the impact of climate change on the distribution and abundance of yellowfin tuna (Del Raye and Weng, 2015).

The generality of a compromised oxygen delivery that limits \(M_{\text{O}2_{\text{max}}} \) at higher temperatures has been questioned, because in some species \(M_{\text{O}2_{\text{max}}} \) and AAS continue to increase until temperatures close to the critical or incipient lethal limits, \(C_{\text{Tmax}} \) (Fig. 1A; Clark et al., 2013; Ern et al., 2014; Schulte, 2015). To be fair, Farrell (2009) did present a broader variety of AAS curves, and Farrell (2013) also argued that the ‘alternatively’ shaped curve was indeed recognized by Fry. This is true, as Fry (1947) in fact presented unpublished data from thermally acclimated brown bullhead catfish (Ameiurus nebulosus), where AAS clearly did not decline, even at 35°C, which is close to \(C_{\text{Tmax}} \) of that species. This recognition, however, is not apparent from the papers describing the OCLTT hypothesis. Furthermore, it can be questioned whether the underlying assumption that \(M_{\text{O}2_{\text{rest}}} \) increases exponentially is true for all species, when they are given sufficient time to acclimate (e.g. Sandblom et al., 2014). In any event, the result is an AAS curve that continues to increase until just before \(C_{\text{Tmax}} \). For OCLTT, \(C_{\text{Tmax}} \) is assumed to coincide with the point where AAS is zero, anaerobic metabolism is assumed to be invoked at this point (e.g. Frederich and Pörtner, 2000; Pörtner, 2001; Sokolova and Pörtner, 2003), and \(C_{\text{Tmax}} \) is thus determined entirely by the capacity for oxygen delivery (van Dijk et al., 1999). However, this view has been challenged (e.g. Ern et al., 2014, 2015; Wang et al., 2014; Verberk et al., 2016), and it has been suggested that \(C_{\text{Tmax}} \) may be limited by other processes, such as the loss of neurological function (Prosser and Nelson, 1981; Prosser, 1991; Ern et al., 2015). Nevertheless, an animal can survive at \(C_{\text{Tmax}} \) for only a limited amount of time. Therefore, if AAS continues to increase until very close to \(C_{\text{Tmax}} \), \(T_{\text{optAAS}} \) will be at the very boundary of the thermal window, at temperatures that might not even be within the ecologically relevant range of the animal, and it is likely that the performance of other processes (e.g. growth and reproduction), and thus fitness, have reached their optima at lower temperatures (Clark et al., 2013). Thus, \(T_{\text{optAAS}} \) is unlikely to coincide with \(T_{\text{optTT}} \) and is therefore unlikely to guide the distribution of that species.

The Fry paradigm (Fry, 1971) considered temperature a controlling factor, hypoxia a limiting factor, and other factors, such as salinity, masking. The role of temperature and hypoxia in the OCLTT model is based on the Fry paradigm. Fry also considered hypercapnia a limiting factor, but only in special conditions and predominantly in combination with hypoxia. The OCLTT hypothesis, in contrast, incorporates CO₂ more directly, as could be considered necessary from a future perspective involving both continued global warming and ocean acidification (IPCC, 2013). It has been predicted that elevated CO₂ (and thereby reduced pH) will act as a limiting factor much in the same manner as hypoxia (e.g. Pörtner et al., 2005; Pörtner and Farrell, 2008). Briefly, it is proposed that elevated external CO₂ leads to internal accumulation of CO₂, which in turn leads to a reduction in internal pH and reduced ‘tissue functional capacity’ (Pörtner et al., 2005; Pörtner, 2012; neither provides a more specific definition of the expression) and, lastly, a reduction in whole-animal AAS (Fig. 1B). Physiologically, it is difficult to understand why the relatively modest increase in the partial pressure of CO₂ (PCO₂) that comes with ocean acidification should have an impact on AAS of marine ectotherms. Many of these animals, particularly fish, have evolved mechanisms to maintain internal pH, despite an increase in external PCO₂ and decrease in pH (e.g. Heisler, 1984; Claiborne et al., 2002; Heuer and Grosell, 2014), at levels many times higher (e.g. Brauner and Baker, 2009) than what is projected for the future. It is not obvious why these modest changes should not be compensated for fully, even after prolonged exposure, because studies have shown acclimatory changes in, for example, mRNA expression of many of the channels and transporters involved in acid-base regulation (e.g. Deigweher et al., 2008; Heuer and Grosell, 2014). In contrast, it has been argued that the new steady-state levels of pH, PCO₂ and HCO₃⁻ resulting from the compensatory regulation may interfere with aerobic capacity (Pörtner et al., 2004b), possibly by reducing \(M_{\text{O}2_{\text{max}}} \) (limiting stress; Fry, 1971; Farrell, 2016). Although it can be argued that any type of regulation will have an energetic cost (loading stress; Fry, 1971; Farrell, 2016), and hence potentially impair AAS, the question is whether the cost of compensating for the modest changes in external PCO₂ are great enough to cause an energetic deficit. That is to say, why would it cost more to regulate internal pH in tomorrow’s pH 7.8 ocean compared with today’s pH 8.2 ocean? Nonetheless, in the early descriptions of the hypothesis (Pörtner et al., 2005), it was proposed that CO₂ would cause reductions in AAS at the thermal extremes, thereby narrowing the thermal tolerance window (Pörtner et al., 2005; Metzger et al., 2007; Wittmann and Pörtner, 2013). In other
words, it was suggested that elevated temperature and elevated CO₂ would act synergistically (Fig. 1C). The possibility that a reduction in AAS is induced by CO₂ itself has also been included (Pörtner and Farrell, 2008; Pörtner et al., 2014), in which case the effect of temperature and CO₂ would simply be additive (Fig. 1D).

Several reviews have been written on the subject of ocean acidification and its effect on animal physiology and/or behaviour, either alone (e.g. Heuer and Grosell, 2014; Clements and Hunt, 2015; Nikinmaa and Anttila, 2015) or in combination with elevated temperature (e.g. Hofmann and Todgham, 2010; Harvey et al., 2013; Parker et al., 2013; Wittmann and Pörtner, 2013; Przeslawski et al., 2015), but none of these included, in detail, MO₂rest or AAS. With regard to temperature and the shape of the aerobic performance curve, Clark et al. (2013), Schulte (2015) and Farrell (2016) presented excellent discussions of the subject, but with focus on a few examples, and not a quantitative assessment of the available data. Likewise, a recent review by Verberk et al. (2016) limited their discussion of OCLTT to arthropods.

The objective of the present review is therefore to evaluate quantitatively the current knowledge on the effects of temperature, CO₂ and their possible interaction on MO₂rest and AAS, to see how well the data fit the predictions described above. Specifically, the following questions are asked. Does AAS in general follow a bell-shaped curve, i.e. is there always an optimum temperature? Does CO₂ in general cause an increase in MO₂rest, and thereby, reduce AAS? And is the combined effect of CO₂ and temperature on MO₂rest and AAS generally larger than expected from their sum, i.e. is the interaction synergistic? In addition, the behavioural alterations caused by CO₂, and implications thereof, are briefly discussed. It is important to clarify that this review is not about proving or disproving the OCLTT hypothesis per se, because that would require more studies with a mechanistic approach than what is currently available, but rather put it into the perspective of the data that exist and discuss the implications for future research on how global change may affect animal physiology.

General approach

To answer the questions outlined above, a meta-analysis approach was adopted, similar to analyses by Harvey et al. (2013), Przeslawski et al. (2015) and Steckbauer et al. (2015). The log response ratio (lnRR) was chosen because it is intuitive, while also ensuring that effect sizes for different data sets are spread more evenly along a scale, making it easier to visualize graphically. A meta-analysis in the strictest sense has as output a single mean effect size for a given variable (Harvey et al., 2013), or even combining several variables (Przeslawski et al., 2015). This mean effect size can then be tested statistically against a hypothetical value (commonly zero), or between different animal groups and life stages. Although this approach is attractive because it gives straightforward ‘yes or no’ answers, it also introduces the risk that potentially interesting patterns and range of responses are overlooked. Given that many species are studied (unlike the situation in medical meta-analyses), the breadth of responses may reflect biological diversity. Therefore chose to examine the diversity of responses by presenting data graphically, rather than focusing only on mean effect sizes.

Three categories of studies were considered for the analyses. To be included, studies had to present data on one or more of the following three overall categories.

Category A. The AAS, calculated as the difference between MO₂rest (fasted animals showing minimal activity) and MO₂max (during swimming or another form of maximal activity, or after being chased or stressed to exhaustion), measured using respirometry, three or more temperatures. In total, 206 data sets on MO₂rest (from 78 papers on 83 species) and 20 data sets on AAS (from 14 papers on 16 species) were included in this category.

Category B. The MO₂rest or AAS at two or more CO₂ levels (one control and a minimum of one elevated). In total, 206 data sets on MO₂rest (from 78 papers on 83 species) and 20 data sets on AAS (from 14 papers on 16 species) were included in this category.

Category C. The MO₂rest or AAS at two or more CO₂ levels (one control and a minimum of one elevated) in combination with two or more temperatures. In total, 70 data sets on MO₂rest (from 32 papers on 43 species) and 12 data sets on AAS (from seven papers on eight species) were included in this category.

For studies reporting effects of three (or more) temperatures in combination with CO₂, or vice versa, lnRR was calculated for each control–treatment contrast. As the primary goal of the analysis was not to calculate a mean effect size across studies, but also to explore the diversity and potential causes of variation, this method was chosen over calculation of an aggregate within-study lnRR (Lajeunese, 2011). The goal was to include studies on both fish and invertebrates, irrespective of time frame, temperature ranges and CO₂ regimes, but only if sample size and some form of variance estimate for each experimental group were reported or could be extracted from figures. The literature on fish, however, turned out to be dominated by studies on teleosts, whereas the literature on invertebrates was dominated by molluscs (gastropods, cephalopods and bivalves), echinoderms, cnidarians and crustaceans. These marine invertebrates are all calcifying to some extent. Data were extracted from papers using WebPlotDigitizer 3.8 (http://arohatgi.info/WebPlotDigitizer/citation.html). Details of each study, raw values (MO₂rest, MO₂max and AAS for category A, or MO₂rest and AAS for categories B and C), calculated lnRR and reference details, are collected in a Microsoft Excel spread sheet made available as online Supplementary Material. Data were plotted and analysed in GraphPad Prism 6.07 (GraphPad Software Inc., www.graphpad.com).
Calculations

Comparison of Fry aerobic-scope curves (category A)

Species differ in their AAS and hence the magnitude of change with temperature, and it was therefore necessary to express the changes with temperature in relative terms to be able to compare the shape of the curve between different species. The relative aerobic scope (RAS), relative resting oxygen uptake (\(\text{RMO}_{\text{2rest}} \)) and relative maximal oxygen uptake (\(\text{RMO}_{\text{2max}} \)), at different measurement temperatures (\(T_i \)) within each data set, were therefore calculated as a percentage of the maximum:

\[
\text{RX} = \frac{X_T}{X_{\text{max}}} \times 100, \tag{1}
\]

where \(X_T \) is AAS, \(\text{MO}_{\text{2rest}} \) or \(\text{MO}_{\text{2max}} \) at \(T_i \) and \(X_{\text{max}} \) is the highest value of AAS, \(\text{MO}_{\text{2rest}} \) or \(\text{MO}_{\text{2max}} \) within each data set. A similar approach has previously been adopted by other authors (Brett, 1971; Tirsgaard et al., 2015a). Furthermore, the temperature coefficient (\(Q_{10} \)) for \(\text{MO}_{\text{2rest}} \) was calculated for each data set according to equation 2:

\[
Q_{10} = \left(\frac{\text{MO}_{\text{2rest},2}}{\text{MO}_{\text{2rest},1}} \right)^\frac{10}{(T_2 - T_1)}, \tag{2}
\]

where \(\text{MO}_{\text{2rest},1} \) is the resting oxygen uptake at the lowest temperature, \(T_1 \), whereas \(\text{MO}_{\text{2rest},2} \) is the resting oxygen uptake at the temperature where it was highest, \(T_2 \), thus excluding the highest temperatures if \(\text{MO}_{2} \) was reduced.

In all cases, the raw values from each study were used for calculations, although data were also converted to a standardized unit (milligrams of \(\text{O}_2 \) per kilogram per hour) and body mass (100 g). The raw as well as standardized values (\(\text{MO}_{\text{2rest}} \) and \(\text{MO}_{\text{2max}} \)) and calculated values (AAS, RAS, \(\text{RMO}_{\text{2rest}} \) and \(\text{RMO}_{\text{2max}} \)) are shown in Supplementary Table ST1.

It was then determined for each data set whether a thermal optimum for aerobic scope (\(T_{\text{optAAS}} \)) could be identified clearly or not. To use an objective criterion, \(T_{\text{optAAS}} \) was considered to be absent in a data set if RAS did not fall below 90%, to take variation and measurement error into account. To examine the effect of acclimation on the outcome, data were first divided into acute studies (0–5.5 days) and acclimation studies (7–365 days), and a two-by-two contingency table of the outcome (‘\(T_{\text{optAAS}} \) yes’ vs. ‘\(T_{\text{optAAS}} \) no’) and duration (acute vs. acclimation) was analysed by Fisher’s exact test. Additionally, to examine whether the outcome was significantly influenced by the methodology used to estimate \(\text{MO}_{\text{2max}} \), a two-by-two contingency table of outcome (‘\(T_{\text{opt}} \) yes’ vs. ‘\(T_{\text{opt}} \) no’) and methodology (\(\text{MO}_{\text{2max}} \) measured after chasing vs. \(\text{MO}_{\text{2max}} \) measured during maximal activity) was analysed by Fisher’s exact test. To avoid bias, more than one data set on the same species from the same research group was included only if it differed in outcome or methodology, and the number of data sets used in these analyses (73) was therefore lower than the total number of data sets (87).

To examine whether the rate at which \(\text{MO}_{\text{2rest}} \) increased with temperature affected the presence or absence of \(T_{\text{optAAS}} \), a Mann–Whitney \(U \)-test was used to determine whether the mean \(Q_{10} \) of data sets with different outcome (‘\(T_{\text{opt}} \) yes’ vs. ‘\(T_{\text{opt}} \) no’) and group (acute vs. acclimation) was significantly different. Given that raw data for \(\text{MO}_{\text{2rest}} \) and \(\text{MO}_{\text{2max}} \) were not presented for three species [hapuku wreckfish (\(\text{Polyprion oxygeneios} \)), salemia (\(\text{Sarpa salpa} \)) and marbled spinefoot (\(\text{Siganus rivulatus} \)), 84 data sets out of 87 were included in this analysis. Additionally, a Mann–Whitney \(U \)-test was used to determine whether the mean duration of studies with different outcome (‘\(T_{\text{opt}} \) yes’ vs. ‘\(T_{\text{opt}} \) no’) and group (acute vs. acclimation) was significantly different. Given that acclimation time was not specified in one case (brown bullhead), 86 data sets out of 87 were included in this analysis.

Isolated effects of elevated CO\(_2\) on resting oxygen uptake and absolute aerobic scope (category B)

For each dataset, the effect size was calculated as the log response ratio, \(\ln RR \), between the measured value (\(Y \)) of a given variable (\(\text{MO}_{\text{2rest}} \) or AAS) in a control condition, \(Y_{\text{ctrl}} \), and an experimental condition, \(Y_{\text{exp}} \), as described by equation 3 (Hedges et al., 1999; Lajeunesse, 2011):

\[
\ln RR = \ln \left(\frac{Y_{\text{exp}}}{Y_{\text{ctrl}}} \right). \tag{3}
\]

For each effect size, where SD is the standard deviation and \(n \) is the sample size from each group, the variation of \(\ln RR \), \(\nu(\ln RR) \), was calculated according to Hedges et al. (1999):

\[
\nu(\ln RR) = \frac{(SD_{\text{exp}})^2}{n_{\text{exp}} \times (Y_{\text{exp}})^2} + \frac{(SD_{\text{ctrl}})^2}{n_{\text{ctrl}} \times (Y_{\text{ctrl}})^2}. \tag{4}
\]

The 95% confidence interval (CI) was estimated based on \(\nu(\ln RR) \) as suggested by Hedges et al. (1999):

\[
\ln RR - 1.96 \times \sqrt{\nu(\ln RR)} \leq \ln RR \leq \ln RR + 1.96 \times \sqrt{\nu(\ln RR)}. \tag{5}
\]

Given that there were both positive and negative values for \(\ln RR \), it was decided to present all values graphically, as opposed to presenting only a (weighted) mean effect size. Data were divided into different groups of invertebrates (bivalves, cephalopods, cnidarians, crustaceans, echinoderm and gastropods) and fish (teleosts and elasmobranchs) and plotted separately as a function of life stage (adult and non-adult), temperature, \(\text{PCO}_2 \) in the experimental treatment and length of \(\text{CO}_2 \) treatment, to investigate the degree of correlation (assessed by linear regression and Pearson’s \(r \)) between \(\ln RR \) and these variables. Data points were also given different symbols to indicate taxonomic class, and different colours.
to indicate life stages (adult and non-adult). The data sets are available as Supplementary Tables ST2_MO2rest and ST2_AAS.

To examine whether methodology had a significant impact on the outcome, studies on MO2rest were divided into those where MO2rest was measured during a truly resting state (‘resting’) and those where some routine activity could not be ruled out (‘routine’), whereas studies on AAS were divided into those where MO2max was estimated immediately after exhaustive exercise (‘post-chase’) and those where it was measured during maximal activity (‘during exercise’). The lnRR values in different data sets were categorized as ‘no effect’ if the 95% CI overlapped zero and as ‘effect’ if the 95% CI did not overlap zero. Data sets in the latter group were then categorized further as ‘decrease’ if the lnRR was negative and ‘increase’ if lnRR was positive. More than one data set from the same research group on the same species was included only if it differed in outcome or methodology; therefore, 125 out of 206 data sets on MO2rest and 18 out of 20 data sets on AAS were included in these analyses. The resulting two-by-two contingency tables of the outcomes (effect vs. no effect, and decrease vs. increase) were then analysed using Fisher’s exact test.

Combined effects of elevated temperature and CO2 (category C)

For both MO2rest and AAS in each data set, lnRR was calculated for each of the isolated effects of temperature and CO2 (lnRRT and lnRRCO2, respectively), as well as the combined effect (lnRRT+CO2), as described in equations 3, 4 and 5. To examine the nature of the interaction between temperature and CO2, the expected combined effect size for each data set, assuming a simple additive effect (lnRRadd), was calculated as described by equation 6:

\[
\ln RR_{add} = \ln \left(\frac{Y_{add}}{Y_{ctrl}} \right) = \ln \left(\frac{Y_{ctrl} + (Y_{temp} - Y_{ctrl}) + (Y_{CO2} - Y_{ctrl})}{Y_{ctrl}} \right) = \ln \left(\frac{Y_{temp} + Y_{CO2} - 2Y_{ctrl}}{Y_{ctrl}} \right).
\]

(6)

More specifically, the additive effect was interpreted as the sum of the control value (Yctrl), the change caused by temperature (Ytemp − Yctrl) and the change caused by elevated CO2 (YCO2 − Yctrl). The observed lnRRT+CO2 for MO2rest and AAS in each data set could then be plotted as a function of the expected lnRR to visualize the range and direction of effects. From these plots, the presence of a synergistic, additive or antagonistic interaction could be determined for each point (i.e. study or data set), and also from the slope of the line fitted by linear regression (a similar approach was used by Steckbauer et al., 2015). A slope of 1.0 would indicate perfect additivity; a slope <1 would indicate an antagonistic effect, and a slope >1 would indicate synergism. Data from invertebrates and fish were plotted separately, and data points were given different symbols to indicate taxonomic group and different colours to indicate life stages (adult and non-adult). The data sets are available as Supplementary Tables ST3_MO2rest and ST3_AAS.

Results

Aerobic-scope curves

The changes in relative aerobic scope (RAS) with temperature across different gastropod, bivalve and crustacean invertebrates are shown in Fig. 2A and B, whereas the changes in RAS with temperature across different teleost fish species are shown in Fig. 2C–H.

The first group of invertebrates (Fig. 2A) all showed a clear ToptAAS even when only three temperatures were investigated. It is noteworthy that only one of these studies used thermally acclimated individuals (Shiba shrimp, Metapenaeus joyneri). The second group (Fig. 2B), in contrast, consists of invertebrates where a clear ToptAAS was not identified within the temperature range measured. In these cases, all but two [Atlantic blue crab (Callinectes sapidus) and common periwinkle (Littorina littorea)] were acute studies, and most studies [except common cockle (Cerastoderma edule) and Atlantic blue crab] used a temperature range that might not have reflected the tolerance of the species.

The teleost fish were divided into six panels according to similarities in duration, temperature range or response curves. Two main patterns emerged: species where a ToptAAS was clearly evident (Fig. 2C–E) and species where RAS did not decrease or only slightly so (remaining above 90% in most cases) at the highest temperature used (Fig. 2F–H). These two patterns were present across different types of fishes (cold-water, Fig. 2C, 2D and 2F; warm-water, Fig. 2E, G and H; and freshwater, Fig. 2H) and different time frames (acute, Fig. 2C, G and H; and acclimated, Fig. 2D–H). Some species showed a clear ToptAAS over a broad temperature range (ΔT = 10–20°C; Fig. 2C and 2D), whereas others, particularly the coral reef fish and the bald notothen (Pagothenia borchgrevinki), did so over a narrower temperature range (Fig. 2C and E; ΔT = 4–7°C). For the coral reef fish, it was evident that the temperature window of a given species was not fixed, because it was right shifted in populations from warmer areas. Most of the studies where only minor decreases in RAS were observed were carried out on thermally acclimated individuals and covered the relevant temperature range for each species, such that the highest temperature used was slightly below the temperature where mortality occurred or the maximal temperature found in the habitat.

As expected, the relative resting oxygen uptake (RMO2rest) increased over the entire temperature range in most species, both invertebrates (Fig. 3A and B) and fish (Fig. 3C–H). In robust shell (Littoraria undulata; Fig. 3A), common cockle (Fig. 3B) and mummichog (Fundulus heteroclitus; Fig. 3D and H), RMO2rest declined at the highest temperature. The Q10 was...
Figure 2: Relative aerobic scope as a function of temperature in different invertebrates and teleost fish. Aerobic scope was set to 100% at the temperature where it was highest. Only studies where measurements of absolute aerobic scope (AAS, measured as the difference between maximal and minimal oxygen uptake) were conducted at three or more temperatures are included. Data were not available for marine invertebrate groups other than gastropods (upright triangles), crustaceans (inverted triangles), bivalves (hexagons) and cephalopods (circled crosses) and for fish other than teleosts (circles). Continuous lines represent acclimated individuals (minimum of 7 days at each temperature), whereas dashed lines represents acute measurements (from 30 min to 5.5 days). Multiple lines of the same colours represent different studies on the same species or studies on different populations of the same species. Symbol size reflects sample size at each temperature (<5 = small, 5–10 = medium and >10 = large). For most species, the temperature range over which aerobic scope was measured is representative for the temperatures at which the species occurs, or even up to critical temperatures. Species for which the relevance of the tested temperature range is unclear are indicated by ‘•’. Species, where routine rather than resting oxygen uptake was measured are indicated by ‘©’. (A) Invertebrate species that appear to have an optimal temperature for AAS (T_{optAAS}). (B) Invertebrate species where AAS increases over the entire investigated temperature range. However, in only two cases (Atlantic blue crab and common cockle) was the highest temperature also used close to the upper limit of the species. (C) Studies on cold-water or temperate fish species acutely exposed to elevated temperature. All have a clear T_{optAAS}. (D) Studies on primarily temperate fishes after acclimation at different temperatures, where T_{optAAS} is evident. (E) Coral reef fishes that have a much narrower thermal range than the fishes in (D), but also showing declines in AAS with temperature (one exception being the maroon clownfish) and thus clear T_{optAAS}. Also, there was an intraspecific effect of latitude, with warmer populations (continuous lines; Lizard Island and Papua New Guinea) showing a rightward shift in their thermal range and a greater decline in aerobic scope with temperature compared with the less warm populations (dotted lines; Heron Island). (F) Studies on temperate fish species after acclimation where T_{optAAS} is not clearly evident. (G) Studies on fish species with a slightly wider temperature range than species in (F), where T_{optAAS} is not clearly evident. (H) Freshwater fishes where a T_{optAAS} is not evident, except for mummichog (relative aerobic scope only declines from 100 to 75% at the highest temperature, which is the highest at which fish could be kept without mortality). The complete data set and reference details are available in Supplementary Table ST1. Note that several independent (but very similar) data sets exist for the coral reef fishes, but to enhance visual clarity of the graph only data from Rummer et al. (2014) and Gardiner et al. (2010) are shown.
between 1 and 3 in most studies and was slightly, but significantly, lower in data sets on acclimated individuals in which a T_{optAAS} was absent (i.e. RAS never decreased below 90%; Fig. 4A; Mann–Whitney U-test, $P = 0.0246$). The highest Q_{10} values, above 4 and as high as 7, were found in the warmest coral reef fish populations (Papa New Guinea and Lizard Island), such as yellowstriped cardinalfish ($Ostorhinchus cyanosoma$), fourline cardinalfish ($Ostorhinchus doederleini$), lemon damsel ($Pomacentrus moluccensis$) and black-axil chromis ($Chromis atripectoralis$), regardless of acclimation time. The cardinalfishes were also the ones showing the largest decrease in RAS (Fig. 4E). Overall, there was no difference in the outcome of the studies (presence vs. absence of a thermal optimum for aerobic scope, T_{optAAS}) between acute and acclimated (Fisher’s exact test, $P = 0.345$). However, the mean duration in studies on acclimated individuals where T_{optAAS} was absent was significantly longer (Fig. 4B; Mann–Whitney U-test, $P = 0.0004$) than in the studies in which a T_{optAAS} was identified.

Figure 3: Relative resting oxygen uptake as a function of temperature in different invertebrates and teleost fish. Resting oxygen uptake was set to 100% at the temperature where it was highest. Data are from the same data sets and grouped as in the panels of Fig. 2. Different symbols represent gastropods (upright triangles), crustaceans (inverted triangles), bivalves (hexagons), cephalopods (circled crosses) and teleost fish (circles), because these were the only taxonomic groups for which data were available. Continuous lines represent acclimated individuals (minimum of 7 days at each temperature), whereas dashed lines represent acute measurements (from 30 min to 5.5 days). Multiple lines of the same colours represent different studies on the same species or studies on different populations of the same species. Symbol size reflects sample size at each temperature (<5 = small, 5–10 = medium and >10 = large). For most species, the temperature range over which aerobic scope was measured is representative for the temperatures at which the species occurs, or even up to critical temperatures. Species for which the relevance of the tested temperature range is unclear are indicated by ‘•’. Species for which routine rather than resting oxygen uptake was measured are indicated by ‘©’. The complete data set and reference details are available in Supplementary Table ST1.
Unlike RMO$_{2rest}$, but similar to RAS, there were different responses of the relative maximal oxygen uptake (RMO$_{2max}$) with increased temperature. In most species of both invertebrates (Fig. 5A and B) and fish (Fig. 5C–H), RMO$_{2max}$ increased over most of the temperature range measured, showing no or only a minor decline at the upper temperature. Other species showed declines in RMO$_{2max}$ above mid-range temperatures (Fig. 5D). The coral reef fishes (Fig. 5E) again showed the most pronounced declines, despite having a much narrower thermal range, and this was also the group that showed the largest declines in RAS (Fig. 2E). When studies were divided into ones where MO$_{2max}$ was measured immediately after chasing or other exhaustive exercise (’post-chase’) and ones where MO$_{2max}$ was measured during swimming or other maximal activity (’during exercise’; Fig. 6), there was no difference in the outcome (presence vs. absence of T$_{optAAS}$), in studies using either acute exposure (Fisher’s exact test, $P = 0.383$) or acclimation (Fisher’s exact test, $P = 0.336$).

Isolated and combined effects of temperature and CO$_2$

The mean log response ratio for the isolated effect of temperature (lnRR$_T$) was significantly larger than zero (as judged by the 95% CI) in both calcifying invertebrates (Fig. 7A; except cephalopods and cnidarians, the groups with fewest studies) and fish (Fig. 7B), although the magnitude of the effect varied (mostly in invertebrates), and there were cases where MO$_{2opt}$ was unchanged. Only in invertebrates were reductions in MO$_{2rest}$ observed with elevated temperature. There was no clear distinction in responses between different taxonomic groups, except that response magnitude and variation seemed smaller within the crustaceans. Generally, the effects of CO$_2$ on MO$_{2rest}$ were smaller than the effects of temperature, and more evenly distributed between positive and negative effects, generally resulting in a mean lnRR$_{CO2}$ that was not different from zero. Exceptions to this included cephalopods and elasmobranchs, where MO$_{2rest}$ was mostly reduced (note that all were non-adults in these two groups), and crustaceans and echinoderms, where MO$_{2rest}$ increased in most cases. In both invertebrates (except cephalopods) and teleosts, the combined effect of temperature and CO$_2$ on MO$_{2rest}$ resembled the isolated effect of temperature.

The lnRR for the isolated effect of temperature on AAS in both calcifying invertebrates (Fig. 7C) and fish (Fig. 7D) was variable. In contrast, CO$_2$ seemed to affect the AAS of invertebrates negatively in some cases, or not at all, whereas the response was more variable for fish (at least if the studies that investigated only CO$_2$ are also included). For invertebrates, the combined effect of temperature and CO$_2$ again resembled that of temperature, whereas it was more variable for fish.

Examination of the variability in responses to CO$_2$

The effect of CO$_2$ (lnRR$_{CO2}$) on MO$_{2rest}$ tended to be more variable in adults than non-adults of both calcifying invertebrates (Fig. 8A) and fish (Fig. 8B), although data were lacking for adult cephalopods and elasmobranchs. Overall, differences in life stage explained only 1.75% of the total variation (two-way ANOVA, $F_{1,86} = 3.58$, $P = 0.060$). The lnRR$_{CO2}$ was dominantly negative in non-adult compared with adult bivalves (Sidak’s multiple comparisons test, $P = 0.050$) but did not differ between life stages of the other taxonomic groups ($P > 0.8$ for all). The difference between the taxonomic groups explained only 6.92% of the total variation (two-way ANOVA, $F_{3,186} = 2.84$, $P = 0.017$), as lnRR$_{CO2}$ of non-adult bivalves was more negative than that of non-adult gastropods (Sidak’s multiple comparisons test, $P = 0.047$) but did not differ between other groups of either non-adults ($P = 0.223$ for teleosts, $P > 0.5$ for all others) or adults ($P > 0.5$ for all).

Overall, temperature did not explain much of the variation in lnRR$_{CO2}$ of either invertebrates (Fig. 8C) or fish (Fig. 8D). There was a weak positive relationship between lnRR$_{CO2}$ and the temperature at which the experiment was conducted in cnidarians (Pearson correlation, $r = 0.456$; linear regression, $R^2 = 0.208$, $P = 0.011$) and a weak negative relationship in echinoderms (Pearson correlation, $r = -0.361$; linear regression,
When data were pooled across groups and life stages, there was a weak negative relationship between lnRR$_{CO2}$ and temperature in invertebrates (Pearson correlation, $r = -0.170$; linear regression, $R^2 = 0.025$, $P = 0.029$) and a slightly stronger negative relationship in fish (Pearson correlation, $r = -0.455$; linear regression, $R^2 = 0.207$, $P = 0.010$).

The treatment PCO$_2$ did not explain much of the variation in lnRR$_{CO2}$ of either invertebrates (Fig. 8E) or fish (Fig. 8F), because there was only a weak negative relationship in crustaceans (Pearson correlation, $r = -0.494$; linear regression, $R^2 = 0.244$, $P = 0.008$) and in invertebrates altogether (Pearson correlation, $r = -0.202$; linear regression, $R^2 = 0.041$, $P = 0.008$), but not in fish (Pearson correlation, $r = -0.040$; linear regression, $R^2 = 0.002$, $P = 0.830$). Likewise, lnRR$_{CO2}$ seemed to be unrelated to the duration of the CO$_2$ exposure in both invertebrates (Fig. 8G; Pearson correlation, $r = 0.089$; linear regression, $R^2 = 0.008$, $P = 0.242$) and fish (Fig. 8H; $r = -0.086$; $R^2 = 0.007$, $P = 0.644$).

Figure 5: Relative maximal oxygen uptake as a function of temperature in different invertebrates and teleost fish. Maximal oxygen uptake was set to 100% at the temperature where it was highest. Data are from the same data sets and grouped as in the panels of Fig. 2. Different symbols represent gastropods (upright triangles), crustaceans (inverted triangles), bivalves (hexagons) and cephalopods (circled crosses) and teleost fish (circles). Continuous lines represent acclimated individuals (minimum of 7 days at each temperature), whereas dashed lines represent acute measurements (from 30 min up to 5.5 days). Multiple lines of the same colours represent different studies on the same species or studies on different populations of the same species. Symbol size reflects the sample size at each temperature (<5 = small, 5–10 = medium and >10 = large). For most species, the temperature range over which aerobic scope was measured is representative for the temperatures at which the species occurs, or even up to critical temperatures. Species for which the relevance of the tested temperature range is unclear are indicated by ‘•’. Species for which routine rather than resting oxygen uptake was measured are indicated by ©. The complete data set and reference details are available in Supplementary Table ST1.
In the studies on the effect of CO$_2$ on AAS invertebrates, only one was conducted on a non-adult life stage (jumbo squid, *Dosidicus gigas*), and in this study elevated CO$_2$ affected AAS negatively, whereas the effect on adults of other groups varied (Fig. 9A). In fish, the non-adult life stages appeared mostly unaffected by elevated CO$_2$, whereas the responses in adults were both positive and negative (Fig. 9B), although data for adult elasmobranchs were not available. The difference between non-adult and adult teleosts was not significant (Student’s unpaired *t*-test, *P* = 0.610). There was no overall relationship between the effect of CO$_2$ on AAS and the temperature at which the experiment was conducted in either invertebrates (Fig. 9C; Pearson correlation, *r* = 0.316; linear regression, R^2 = 0.100, *P* = 0.542) or fish (Fig. 9D; *r* = −0.083; R^2 = 0.007, *P* = 0.778). Likewise, there was no relationship with the treatment PCO$_2$ in either invertebrates (Fig. 9E; Pearson correlation, *r* = −0.151; linear regression, R^2 = 0.023, *P* = 0.572) or fish (Fig. 9F; *r* = −0.165; R^2 = 0.027, *P* = 0.772). In invertebrates, there was a small tendency for the effect to diminish with increased duration of the exposure (Fig. 9G; Pearson correlation, *r* = 0.699; linear regression, R^2 = 0.489, *P* = 0.122), but this was not the case in fish (Fig. 9H; *r* = 0.200; R^2 = 0.040, *P* = 0.493).

In invertebrates (Fig. 10A), the relationship between the effect of CO$_2$ on MO$_2$rest (lnRR$_{MO2rest}$) and the effect of CO$_2$ on AAS (lnRR$_{AAS}$) was positive and marginally significant (linear regression, R^2 = 0.665, *P* = 0.0479). The relationship appeared to be opposite for fish (Fig. 10B; linear regression,
$R^2 = 0.242$, $P = 0.0741$), although this pattern was driven by one case (yellowstriped cardinalfish) where $MO_{2\text{rest}}$ was strongly elevated by CO$_2$ exposure, and the relationship was not significant when this point was excluded (linear regression, $R^2 = 0.011$, $P = 0.736$).

When dividing studies according to the methodology used to estimate $MO_{2\text{rest}}$ (‘resting’ vs. ‘routine’) and AAS (‘post-chase’ vs. ‘during exercise’) and comparing the outcome (effect vs. no effect) of elevated-CO$_2$ treatment (Fig. 11A), there was no difference in the proportions for either $MO_{2\text{max}}$ (Fisher’s exact test, $P = 0.543$) or AAS ($P = 0.620$). Likewise, in studies where an effect was found was there no differences in the proportion finding a decrease vs. an increase (Fig. 11B) when comparing either ‘resting’ with ‘routine’ (Fisher’s exact test, $P = 0.543$) or ‘post-chase’ with ‘during exercise’ ($P = 0.467$).

Nature of the interaction between temperature and CO$_2$

For $MO_{2\text{rest}}$, there was a positive significant relationship between measured and expected additive lnRR for both invertebrates (Fig. 12A; linear regression, $R^2 = 0.838$, $P < 0.0001$, measured-lnRR$_{T,CO2} = 0.87 \times$ expected-lnRR$_{T,CO2} + 0.007$) and fish (Fig. 12B; $R^2 = 0.657$, $P < 0.0001$, measured-lnRR$_{T,CO2} = 0.66 \times$ expected-lnRR$_{T,CO2} + 0.104$). In both
invertebrates and fish, the slope was significantly smaller than 1 (non-linear regression fit of straight line, rejecting the null hypothesis that slope $= 1.0$ with $P = 0.0142$ and $P = 0.004$, respectively), indicating—if anything—antagonistic rather than synergistic interactions between temperature and CO$_2$. This was also the case when different taxonomical groups were analysed individually, so there did not appear to be a particular correlation of taxonomic group or life stage with the nature of the interaction.

For AAS, there was no significant relationship between measured and expected additive lnRR for invertebrates (Fig. 12C; $R^2 = 0.581, P = 0.134$, measured-$\text{lnRR}_{T+\text{CO}_2} = 0.415 \times \text{expected-}\text{lnRR}_{T+\text{CO}_2} + 0.034$), but there was a positive significant relationship for vertebrates (Fig. 12D; $R^2 = 0.870, P = 0.002$, measured-$\text{lnRR}_{T+\text{CO}_2} = 0.776 \times \text{expected-}\text{lnRR}_{T+\text{CO}_2} + 0.076$). In both invertebrates and vertebrates, the slope was smaller but not significantly different from 1 (non-linear regression fit of straight line, not rejecting the null hypothesis that slope $= 1.0$ with $P = 0.155$ and $P = 0.064$, respectively), indicating—if anything—an additive rather than synergistic interaction. As for MO$_{2\text{rest}}$, there did not appear to be a particular correlation between taxonomic group and the nature of the interaction, although the smaller sample size for AAS of invertebrates and the lack of data on elasmobranchs should be kept in mind. In contrast, it is noteworthy that for the teleosts investigated,
the juvenile life stages seemed to display additive effects, whereas the adults showed more antagonistic effects, although this could also be a result of all the four adults being coral reef fish, whereas the juveniles were temperate species.

Discussion

Aerobic-scope curves across species and time frames

The diversity in the shape of the aerobic-scope curves, and particularly, the apparent absence of T_{optAAS} in many species, is difficult to reconcile with a single unifying model for how temperature affects respiratory variables in marine ectothermic animals. The main impression is that studies on the effect of temperature on AAS yield divergent results, and that this may be related to the diversity in physiology and habitats of the species, and to the time frame of the study. The present analysis therefore supports the responses outlined in the reviews by Clark *et al.* (2013) and Schulte (2015); that is, some species show an increase–optimum–decrease-type response, as predicted by the Fry paradigm and the OCLTT hypothesis, whereas others seem able to maintain or continue to increase AAS with rising temperature, and a clear T_{optAAS} is not evident. These patterns were observed in the data on both teleosts and invertebrates (of which only gastropods, crustaceans, cephalopods and bivalves have been investigated). For the species that show bell-shaped curves, the data support the widely accepted notion that thermal reaction norms reflect the variability of habitat temperatures (e.g. Tewksbury *et al.*, 2008), so that animals from variable temperate climates have broad thermal windows, whereas polar or equatorial species, e.g. the coral reef fish, display narrow windows.

As outlined in the Introduction, the underlying cause of the increase in AAS with temperature at the lower end of the thermal window must be that $M_{O_{2}}$ increases faster than
MO$_{2\text{rest}}$ (Fig. 1A). Presumably, this difference arises because MO$_{2\text{rest}}$ increases owing to the temperature dependence of underlying chemical processes (following the Arrhenius equation), whereas MO$_{2\text{max}}$ can be enhanced actively by adjustments in the circulatory and respiratory systems, which benefits from increased temperature (e.g. Gräns et al., 2014). At the other side of T_{optAAS}, MO$_{2\text{rest}}$ is assumed to increase inexorably, virtually until the animal dies, while the cardiorespiratory system is unable to support further increases in MO$_{2\text{max}}$, resulting in a decrease in scope. The predicted increase in MO$_{2\text{rest}}$ is generally found in all species, as is the predicted initial increase in MO$_{2\text{max}}$, although the suggested eventual decline is not found in all species. Species with a temperature effect on MO$_{2\text{rest}}$ (high Q_{10}), combined with an inability to increase MO$_{2\text{max}}$, may therefore be more likely to suffer from reductions in aerobic scope, whereas species with a more moderate Q_{10} and where the MO$_{2\text{max}}$ does not seem to be limited at high temperatures, will also show a continuous increase in AAS. Although the aerobic scope curve is obviously shaped by a combination of the temperature effect on MO$_{2\text{rest}}$ and MO$_{2\text{max}}$, the ultimate outcome seems to be most closely reflected by MO$_{2\text{max}}$. Importantly, the method used to estimate MO$_{2\text{max}}$ does not seem to influence the shape of the curve. Another methodological aspect that is important to keep in mind is the possibility that some species may increase spontaneous activity as temperature rises (Reynolds and Casterlin, 1982; Forstner and Wieser, 1990; Castonguay and Cyr, 1998; Stoner et al., 2006), whereas others may not (Peterson and Anderson, 1969; Stevens and Fry, 1972; Schurmann and Steffensen, 1994; Crocker and Cech, 1997; Johansen et al., 2014). If routine rather than resting MO$_2$ levels are measured and used as MO$_{2\text{rest}}$ to calculate AAS, one may observe an increase in MO$_2$ caused by activity rather than an increase in basal oxygen demand, and hence a decrease in aerobic scope that reflects differences in activity rather than aerobic capacity. The majority of studies included in the present analysis measured MO$_{2\text{rest}}$ in conditions that can be considered resting, but there was no obvious bias in the outcome of the few studies using routine rates, because two studies found AAS to increase continually with temperature (Clark et al., 2005; Vagner et al., 2015), whereas three studies found a clear T_{optAAS} (Lee et al., 2003; Dissanayake and Ishimatsu, 2011; Healy and Schulte, 2012a).

There is no doubt that an increase in MO$_{2\text{rest}}$ and limitation of MO$_{2\text{max}}$ may act within an acute scenario (minutes, hours and maybe days, at a new temperature), where the animal is not given time to adjust its metabolic processes and thereby its costs. This is also supported by the data, as several of the acutely performed measurements of AAS reveal a typical bell-shaped increase–optimum–decrease-type response [robust shell (Littoraria undulata; Patnai et al., 1985); bald notothen (Lowe and Davison, 2006); sockeye salmon (Onchorhynchus nerka; Eliason et al., 2011); short-horn sculpin (Myxocephalus scorpius), Arctic sculpin (Myxocephalus scorpioides) and Arctic staghorn sculpin (Gymnocanthus tricuspis; Seth et al., 2013); goldfish
(Carassius auratus; Ferreira et al., 2014); rainbow trout (Oncorhynchus mykiss; Chen et al., 2015); European crayfish (Astacus astacus) and giant tiger prawn (Penaeus monodon; Ern et al., 2015); humpback conch (Gibberula gibberula gibbosus; Lefèvre et al., 2015); and bonefish (Albula vulpes; Nowell et al., 2015). Intriguingly, a study on a high-Arctic population of blue mussel (Mytilus edulis) acclimated to 1°C (Thyring et al., 2015) found that AAS during an acute temperature challenge was highest at 7°C, even though this population probably never experiences a temperature higher than 5°C during the warmest month of the year. Likewise, there are species that under acute temperature challenges continue to increase AAS up to CT_{max} (barramundi (Lates calcarifer; Norin et al., 2014); and pink salmon (Oncorhynchus gorbuscha; Clark et al., 2011)) or up to the highest temperatures they may experience in their habitats (jumbo squid (Rosa and Seibel, 2008); Murray cod (Maccullochella peelli; Clark et al., 2005); and golden grey mullet (Liza aurata; Vagner et al., 2015). These cases are difficult to reconcile with the view that a limitation of the capacity for oxygen delivery is the main driver of thermal tolerance.

The concept of OCLTT has, however, not only been applied to acute circumstances, but is also suggested to explain species distribution limits and hence predict changes in distributions under global warming and ocean acidification (e.g. Bozinovic and Pörtner, 2015), processes occurring at a much slower pace than what can be mimicked in the laboratory. This automatically introduces a contradiction with the well-established paradigm that animals, given enough time, will down-regulate their basal oxygen demand and may even compensate fully for the elevated temperature (Bullock, 1955; Segal, 1961; Hazel and Prosser, 1974; Johnston and Dunn, 1987; Sandblom et al., 2014; Seebacher et al., 2015), presumably to minimize energy demand. Although this makes sense, at least if it is assumed that animals are generally energy restricted, it does conflict with the assumption that MO_{2max} increases exponentially, which contributes to the shape of the aerobic performance curve under the Fry paradigm and hence the OCLTT hypothesis. The ability to acclimate could thus explain why several species appear to show increases [common cockle (Newell, 1966); cutthroat trout (Oncorhynchus clarkii; Dwyer and Kramer, 1975); smooth plough shell (Bulla rhodostoma; Brown and da Silva, 1984); Atlantic blue crab (Booth and McMahon, 1992); European sea bass (Dicentrarchus labrax; Claireaux et al., 2006); southern blue catfish (Ictalurus meridionalis; Pang et al., 2010); largemouth bronze gudgeon (Coreius guichenoti; Tu et al., 2012); and nine-spined stickleback (Pungitius sinensis; Bruneaux et al., 2014)] or only minor decreases [sockeye salmon (Brett, 1964); common periwinkle (Newell and Pye, 1970, 1971); rainbow trout (Dickson and Kramer, 1971); finger plough shell (Bulla digitalis; Brown and da Silva, 1983); turbot (Scophthalmus maximus; Mallek and Lagardere, 2002); mummichog (Healy and Schulte, 2012a); common triplefin (Forsterbygion lapillum; Khan and Herbert, 2012; Khan et al., 2014a); Atlantic halibut (Hippoglossus hippoglossus; Gräns et al., 2014); salema and marbled spinefoot (Marras et al., 2015)] in AAS after acclimation to an increased temperature.

It is clear that acute studies can yield temperature response curves that are different from those obtained in the same species after acclimation to the different temperatures. This is, for example, illustrated by different studies on Atlantic cod (Gadus morhua). Sylvestre et al. (2007) found that RAS was already reduced to 78% at 13°C, whereas Tirsgaard et al. (2015a) found that RAS had not yet decreased at 15°C, in individuals of a similar size, after 2–3 weeks of acclimation. Perhaps even more extreme is the case of rainbow trout, where acute studies by Chen et al. (2015) showed severe decreases in RAS to 45% at 25°C, whereas Dickson and Kramer (1971) found RAS to be maintained at 94% after 2 weeks of acclimation at 25°C. The maximal AAS was similar in the two studies (550 and 498 mg O_2 kg^{-1} h^{-1}, respectively). In both Atlantic cod and rainbow trout, the T_{optAAS} with acute temperature changes coincided with the temperature at which the fish were acclimated. Another illustrative example of the importance of acclimation, and even transgenerational acclimation for MO_{2max} (and presumably also AAS), comes from rearings studies. In their first study, Donelson et al. (2011) showed that spiny chromis damselfish (Acanthochromis polyacanthus), reared from the larval stage (30 days post-hatch) at a 3°C higher temperature than the natural temperature in their habitat, partly compensated for the rise in MO_{2max} that was displayed by conspecifics acutely exposed to the same temperature. Subsequently, it was shown (Donelson et al., 2012) that offspring of spiny chromis damselfish kept at the +3°C regime also displayed MO_{2max} values that were fully compensated, revealing transgenerational acclimation. Overall, these examples and the present analysis show that studies of shorter duration (i.e. no or little acclimation) may be more likely to identify a T_{optAAS}, indicating a difference in the physiological effects between acute and long-term exposures. Such a difference is obviously important to keep in mind when interpreting aerobic scope data and using it for modelling.

One can, of course, argue that studies failed to reveal a decline in AAS because temperatures were not high enough, i.e. if one had continued to increase the temperature one would eventually see a decline in AAS. But the majority of the studies finding that AAS does not decline have used a range of temperatures matching the distributional temperature range (except lemon sole (Microstomus kitt), common dab (Limanda limanda; Duthie, 1982); Atlantic cod (Claireaux et al., 2000); qingbo (Spinibarbus sinensis; Pang et al., 2013); and goldfish (Ferreira et al., 2014)) and still show that AAS within these more ecologically relevant temperatures is not compromised. Thus, in these cases it is unlikely that AAS is the factor restricting the distribution of that species, and alternative mechanisms must be investigated to identify factors that can be used in the prediction of distributional changes with climate change. That is, even if AAS is not limited at the upper temperature range of a species, there may be
other important performance measures that have a T_{opt} such as reproduction and growth. One example is the barramundi, where AAS is the same at 38°C as at 29°C (after acclimation), but where the optimal temperature for growth and even the preferred temperature is 31°C (Norin et al., 2014). In Atlantic cod, evolutionary bioenergetics modelling suggested AAS to be a poor predictor of optimal temperature for fitness as a whole (Holt and Jørgensen, 2015). Furthermore, a recent meta-analysis revealed that the acclimatory plasticity characteristic of aerobic metabolism is not observed to the same extent for lethal temperature limits (Gunderson and Stillman, 2015). For species living in environments with increased likeliness of short but extreme temperature peaks (e.g. tidepools and streams), a limited plasticity of critical temperature may be more important than AAS in determining future success, because extreme climatic events are expected to be more common in the future (Rahmstorf and Coumou, 2011; Fey et al., 2015).

The number of examples that do not follow the predictions by the Fry paradigm, and where the OCLTT hypothesis is therefore not supported, has grown to a proportion that can hardly be classified as exceptions to a rule. But nonetheless, these cases cannot be considered as arguments for completely abandoning the concept either (or ‘throw out the baby with the bathwater’, as it was put by Farrell, 2016). It cannot be ruled out that OCLTT guides the performance of such animals that, even when given time to acclimate, still have a T_{optAAS} or at least a decline in AAS at elevated temperatures, also within the ecologically relevant temperature range (sockeye salmon (Lee et al., 2003); common sole (Solea solea; Lefrancois and Claireaux, 2003); bald notothen (Lowe and Davison, 2006); hapuku wreckfish (Khan et al., 2014b); and various coral reef fish (Nilson et al., 2009; Gardiner et al., 2010; Johansen and Jones, 2011; Rummer et al., 2014)). In these cases, the acclimated response resembles the acute response, and this may be a direct result of an elevation in MO_{3sat} and/or limitation of MO_{2sat} that cannot be alleviated through acclimation. This may even be the expected outcome for species that are adapted to a narrow temperature range and are lacking or have lost the genes necessary for acclimation outside this range. Many coral reef fish and polar species appear to be good examples of animals with a thermal history that has led to a narrow thermal window for physiological performance. A recent study found a good correlation between performance data from the field (activity and growth) and from the laboratory (AAS; Payne et al., 2016), but notably, this correlation was obtained after excluding all the species where AAS did not decline at high temperature. In any case, finding that T_{optAAS} and T_{optIT} correlate does not prove causal relationship between the two, and as such, a more mechanistic experimental approach is necessary to demonstrate OCLTT in a species (e.g. Healy and Schulte, 2012b; Overgaard et al., 2012; Ellis et al., 2013; Verberk et al., 2013; Wang et al., 2014; Brijs et al., 2015; Em et al., 2015), even if evidence both for and against the predictions from the hypothesis exists.

Does elevated CO$_2$ in general cause resting oxygen uptake to increase?

Hypercapnia has for long been used in fish physiology research as a tool for studying the regulation of respiration and control of acid–base balance, and much of our basic understanding of pH regulation in fish is based on such experiments. These studies involved exposure to levels of CO$_2$ many times higher than those relevant from an ocean acidification perspective. In some cases, these high CO$_2$ levels interfered directly with ventilation (e.g. Kinkead and Perry, 1991; Crocker and Cech, 2002; Vulesevic et al., 2006; Perry and Abdallah, 2012), and thereby, possibly MO$_2$ and AAS. To evaluate the effects of future ocean acidification, it is much lower CO$_2$ levels that matter, because the current predictions are in the 1000 µatm range (Meinhausen et al., 2011; Doney et al., 2012).

It can be argued that CO$_2$ exposure could cause an increase in MO$_{2sat}$, either through direct increases in costs associated with adjusting to elevated internal CO$_2$, or alternatively, by inducing a general stress reaction. Indeed, for some animals in some conditions, MO$_{2sat}$ has been shown to be elevated significantly during prolonged CO$_2$ exposure [yellowstriped cardinalfish (Munday et al., 2009); Atlantic oyster (Crassostrea virginica; Beniash et al., 2010); Pacific oyster (Crassostrea gigas; Lannig et al., 2010); serpent star (Ophiura ophiura; Wood et al., 2010); Schayer’s brittlestar (Ophionereis schayeri; Christensen et al., 2011); purple sea urchin (Paracentrotus lividus; Catarino et al., 2012); dwarf cushion star (Parusulastra exigua; McElroy et al., 2012); green sea urchin (Strongylocentrotus droebachiensis; Dorey et al., 2013); bald notothen, emerald rockcod (Trematomus bernacchii) and striped rockcod (Trematomus bamsontii; Enzor et al., 2013)]. Nevertheless, in most of the published experiments, elevated CO$_2$ did not significantly affect MO$_{2sat}$ [e.g. Atlantic cod (Melzner et al., 2009; Tirsgaard et al., 2015b); an Arctic pteropod (Limacina helicina; Comeau et al., 2010); Shibay shrimp (Metapeneaus joyneri; Dissanayake and Ishimatsu, 2011); Acesta excavata (Hammer et al., 2011); Zhiokong scallop (Chlamys farreri; Mingliang et al., 2011); burrowing shrimp (Upogebia deltata; Donohue et al., 2012); various copepods (Li and Gao, 2012; Hildebrandt et al., 2014; Zervoudaki et al., 2014; Thor and Dupont, 2015); the bivalves Chlamys nobilis, Perna viridis and Pinctada fucata (Liu and He, 2012); marbled rockcod (Notothenia rossii; Strobel et al., 2012); Northern shrimp (Pandalus borealis; Arnberg et al., 2013); porcelain crab (Petrolisthes cinctipes; Carter et al., 2013); common starfish (Asterias rubens; Collard et al., 2013); hard-shelled clam (Mercenaria mercenaria; Dickinson et al., 2013; Matteo et al., 2013); the brittlestars Opbithrix fragilis and Amphiura filiformis (Carey et al., 2014); the sea cucumbers Holothuria parva and Holothuria scabra (Collard et al., 2014); small-spotted catshark (Scyliorhinus canicula; Green and Jutfelt, 2014); Atlantic halibut (Gráns et al., 2014); European sea bass (Pope et al., 2014); white-spotted bamboo shark (Chiloscyllium punctatum; Rosa et al., 2014a); Pacific
sea urchins (Echinometra sp. A; Uthicke et al., 2014); rainbow abalone (Haliotis iris; Cunningham et al., 2015); red drum (Sciaenops ocellatus; Esbaugh et al., 2016); various coral reef fish (Couturier et al., 2013; Ferrari et al., 2013); Antarctic dragonfish (Gymnodraco acuticeps; Flynn et al., 2015); humpbacked conch (Lefevre et al., 2015); common slipper shell (Crepidula fornicata; Noisette et al., 2015, 2016); European lobster (Homarus gammarus; Small et al., 2015); Norway lobster (Nephrops norvegicus; Wood et al., 2015); and cone-shaped Nassa (Nassarius cornoidalis; Zhang et al., 2015) or even caused a reduction [e.g. peanut worm (Sipunculus nudus; Pörtner et al., 1998); velvet swimming crab (Necora puber; Small et al., 2010); grooved carpet shell (Ruditapes decussatus; Fernández-Reiriz et al., 2011); Chilean blue mussel (Mytilus chilensis; Navarro et al., 2013); spiny chromis damselfish (Rummer et al., 2013); common dolphinfish (Coryphaena hippurus; Pimentel et al., 2014); European squid (Loligo vulgaris; Rosa et al., 2014b); and hard-shelled mussel (Mytilus coruscus; Wang et al., 2015)].

A decreased $\text{MO}_{2\text{rest}}$ could be interpreted as something positive because, all else being equal, it would imply reduced maintenance costs and potentially higher AAS. The mechanism behind a CO$_2$-induced reduction in $\text{MO}_{2\text{rest}}$ is rarely discussed, but has nonetheless often been interpreted as something negative. It has been suggested that ‘uncompensated extracellular pH might be the trigger for these reductions’ [quote from Stumpp et al. (2011); based on Langenbuch and Pörtner (2002) and Pörtner et al. (2005)]. Melatunan et al. (2011) observed a reduction in $\text{MO}_{2\text{rest}}$ in common periwinkle that appeared to be compensated for by an increase in anaerobic metabolism, which is not a sustainable strategy and therefore likely to be negative for fitness or even survival, but the mechanism behind a CO$_2$-induced reduction in respiratory capacity was not discussed. In embryos of common cuttlefish (Sepia officinalis), the observed reduction in $\text{MO}_{2\text{rest}}$ was interpreted as a form of adaptive short-term metabolic depression invoked to conserve energy (Rosa et al., 2013). Carbon dioxide has also previously been linked to metabolic depression, although this may apply to very high CO$_2$ levels, where it has anaesthetic effects (e.g. Guppy and Withers, 1999).

The absolute value of $\text{MO}_{2\text{rest}}$, and the way it is influenced by one stressor in a given situation, is not necessarily straightforward to interpret. Factors that could contribute to variation in the response are the duration of the CO$_2$ exposure, PCO$_2$ level and temperature. Firstly, one can expect that the longer the animals are exposed to a certain condition, the likelier they are to have compensated for the challenge through acid–base regulation; general stress responses should have subsided, and the harder it might be to detect a remaining effect. In contrast to this reasoning, the few studies using an exposure time of less than a day found no effect of elevated CO$_2$ (Rosa and Seibel, 2008; Rivest and Hofmann, 2014), whereas the outcome of long-term experiments (more than a months to a year) were reductions (Fernández-Reiriz et al., 2011; Rosa et al., 2014a), no effect (Melzner et al., 2009; Dickinson et al., 2013; Gräns et al., 2014; Hildebrandt et al., 2014; Uthicke et al., 2014; Cunningham et al., 2015; Noisette et al., 2016; Strahl et al., 2015; Thor and Dupont, 2015) or increases (Beniash et al., 2010; Enzor et al., 2013; Matoo et al., 2013) in $\text{MO}_{2\text{rest}}$. Overall, it was not possible to detect a direct effect of the exposure times used, of which most were 4 days or more.

Secondly, it could be expected that higher CO$_2$ levels led to larger increases in $\text{MO}_{2\text{rest}}$, because the loading stress would be higher. Curiously, of the few studies that used a high CO$_2$ level (5000–33 000 µatm), most found no change in $\text{MO}_{2\text{rest}}$ (Deigweir et al., 2008; Melzner et al., 2009; Dissanayake and Ishimatsu, 2011; Hammer et al., 2011; Tirsgaard et al., 2013b), whereas others found a decrease (Christensen and Colacino, 2000; Small et al., 2010; Mingliang et al., 2011; Hu et al., 2014; Sun et al., 2016). Other than that, most of the recent studies have been concerned with climate change, and a relatively narrow range of CO$_2$ levels have been used, around 800–1200 µatm, because this is the current RCP8.5 predicted level for the year 2100 (Meinshausen et al., 2011; Doney et al., 2012). As these levels are low in a classic physiological sense and cover a narrow range, it is not surprising that they do not explain the wide variation observed in $\text{MO}_{2\text{rest}}$ response ratios.

Lastly, temperature obviously has a strong influence on physiological performance, and it could be argued that animals at higher temperatures with higher metabolic demands may be more susceptible to possible stressors, such as CO$_2$. Unlike the uniform range of CO$_2$ treatment levels, animals from a wide range of temperatures have been studied, making it more likely to detect a relationship between temperature and the response to elevated CO$_2$ if one existed. But again, negative, neutral and positive effects were spread evenly across the temperature range. Notably, only one of the experiments conducted at the highest temperatures (25–30°C) showed a significant increase in $\text{MO}_{2\text{rest}}$ (Munday et al., 2009), whereas three studies showed a decrease with CO$_2$ treatment (Rummer et al., 2013; Rosa et al., 2014b; Wang et al., 2015).

But still, it cannot be ruled out that some of the studies, which measured routine rather than resting MO_{2}, failed to detect a difference because a truly resting state was not obtained. A truly resting state may, however, be difficult to confirm in some types of animals, such as corals and bivalves. Importantly, the direction (decrease vs. increase) of responses was not affected by overall methodology, indicating that the divergence in the CO$_2$ effects, when these are found, may in fact be a result of different physiological mechanisms. A more obvious difference between studies is, of course, that they have been conducted on different species, and identifying the mechanistic background for each of the outcomes will require further and more detailed studies on those particular species. Only a few species have been investigated multiple times but in slightly different experimental conditions. In Atlantic oysters, Beniash et al. (2010) found an increase in $\text{MO}_{2\text{rest}}$ at
elevated CO₂ in juveniles, but no effect in adults, as did Matoo et al. (2013). In the purple sea urchin (Strongylocentrotus purpuratus), Stumpf et al. (2011) found an increase after 21 days, whereas both Stumpf et al. (2011) and Padilla-Gamiño et al. (2013) found no effect after 4 days. In the Chilean abalone (Concholepas concholepas), Manriquez et al. (2013) found no effect in adults, whereas Lardies et al. (2014) found an increase in MO₂rest in juveniles, although with a higher PCO₂ and temperature and shorter treatment duration. In adult blue mussels, Zittler et al. (2015) and Sun et al. (2016) found no effect of elevated CO₂ at 15°C, whereas Thomsen and Melzner (2010) found an increase in MO₂rest at 8°C. Lastly, in the king scallop (Pecten maximus) an increase in MO₂rest was found after 50 days (Schalkhauser et al., 2014), but not after 30 days, of high-CO₂ treatment (Schalkhauser et al., 2013). There may even be differences in the response between different populations of a species, because, for example, Thor and Oliva (2015) found MO₂rest to be elevated after high-CO₂ exposure in the copepod Pseudocalanus acuspes from Skagerrak, whereas the same treatment did not have an effect on individuals from Svalbard.

Does elevated CO₂ in general reduce aerobic scope?

The variability detected in the response in MO₂rest to elevated CO₂ is also reflected in AAS, which decreases in some studies [jumbo squid (Rosa and Seibel, 2008); yellowstriped and fourline cardinalfish (Munday et al., 2009); and Shiba shrimp (Dissanayake and Ishimatsu, 2011)], but not in others [ammon damsel (Pomacentrus ambioensis), lemon damsel, brown dottyback (Pseudochromis fuscus; Couturier et al., 2013); European sea bass (Pope et al., 2014); red drum (Esbaugh et al., 2016); small-spotted catshark (Green and Jutfelt, 2014); and humpbacked conch (Lefevre et al., 2015)].

Overall, these outcomes were not influenced by methodology, because the proportion of studies finding an effect vs. no effect, and an increase vs. a decrease, was the same for studies measuring MO₂max during exercise or after chasing. The relationship between the effect of elevated CO₂ on MO₂rest and the effect of elevated CO₂ on AAS was weak, which does not support the hypothesis that it is an increase in MO₂rest that causes AAS to decrease. Why, therefore, is AAS sometimes affected by CO₂? Obviously, if it is not because MO₂rest changes, it must be MO₂max that changes. It has been hypothesized that CO₂ acts as a limiting stressor, reducing MO₂max by, for example, interfering with respiratory pigments [Heuer and Grosell (2014) cites Pörtner et al. (2004b), who cites Tamburini et al. (1998)], but no further studies appear to have examined this hypothesis. For the cases of CO₂-induced reductions of MO₂max, it has been suggested that it is changes in metabolic pathways, specifically a shift in the balance between anaerobic and aerobic pathways (as reported by Michaelidis et al., 2007), that suppress AAS and/or MO₂max (Munday, et al., 2009). Schalkhauser et al. (2013) found that MO₂max and AAS were reduced in the king scallop, but these findings were not replicated in a later study (Schalkhauser et al., 2014), and the authors did not attempt to explain either the decreased MO₂max or the discrepancy between their experiments. In the cases where elevated CO₂ had no effect, this was attributed to a sufficient capacity for acid–base regulation (Melzner et al., 2009), also with long-term exposure. Maybe for good reasons, i.e. to avoid unfounded speculation, some studies reflect little or only vaguely upon the mechanistic cause for the observed response, whether it was a reduction (e.g. Rosa and Seibel, 2008; Dissanayake and Ishimatsu, 2011; Tirsgaard et al., 2015b) or no change (Schalkhauser et al., 2013; Lefevre et al., 2015).

Given the hypothesis that CO₂ acts as a limiting factor, it is counterintuitive to find that MO₂max increases in some animals exposed to elevated CO₂. In the Atlantic halibut, increased MO₂max appeared to be associated with increased maximal pumping ability of the heart (Grâns et al., 2014), although it is unclear why CO₂ would have that effect. Rümmer et al. (2013) suggested that increased respiratory surface area contributed to an increased MO₂max, and even hypothesized that an interaction between acidosis and stress could have led to catecholamine release, which increased oxygen delivery to the muscles by reducing the affinity of haemoglobin for oxygen. Couturier et al. (2013) suggested increased swimming speed as a possible explanation for increased MO₂max when measured in a swim respirometer, which in turn was hypothesized to be associated with behavioural alterations caused by high CO₂. In other words, it could be that neural effects of exposure to elevated CO₂ either increase the drive to swim fast or take away any behavioural inhibition that may suppress maximal exercise efforts. In addition, Couturier et al. (2013) pointed towards the interesting possibility that elevated CO₂ does indeed incur energetic costs, which are not measurable in resting conditions, but become evident when the fish are pushed to the limit of their capacity, forcing them to increase MO₂max. If this suggestion is correct, then an increased MO₂max or AAS should not necessarily be interpreted as something promoting survival and fitness, a notion also put forward by Di Santo (2015), although the latter study did not measure MO₂max per se.

As a result of the difficulty (or reluctance) of publishing negative results, it may even be that counting the number of studies showing positive or negative effects of elevated CO₂ on aerobic performance variables gives an overestimation of the general effects that expected future CO₂ may have on marine animal respiration and metabolism. One may make the general reflection that the degree of ocean acidification caused by a projected future PCO₂ of ~1000 ppm does not make the ocean acidic (i.e. pH < 7.0) but will reduce pH from today's pH ~7.8. At least with regard to teleost fish, this will bring the water pH closer to the blood pH, and if there is any energetic cost involved in maintaining a pH gradient between blood and water, then this cost would be reduced. One may also reflect upon the fact that a pH of 7.8 would be readily tolerated by virtually all freshwater fish, because this
is a very ‘average’ freshwater pH. Thus, effective mechanisms needed to handle variations in water pH do exist in teleost fish, although it could be argued that they may have been lost in many marine teleosts living in stable pH conditions. Consequently, there are no obvious reasons to expect that the acidification as such would pose a serious problem, at least for fish, and this may be part of the explanation for the divergent results.

Calcifying invertebrates could be another matter, although results vary even within this group. Although one might have expected MO_2rest to be increased more generally by elevated CO_2 in calcifying organisms, the few existing studies on adult tropical coral do not show an effect of CO_2 on MO_2 (dark respiration; Takahashi and Kurihara, 2013; Strahl et al., 2015; Comeau et al., 2016), whereas MO_2 was reduced in a cold-water coral (Hennig et al., 2014). Likewise, studies on coral larvae have not found an effect of CO_2 on MO_2 (Nakamura et al., 2011; Putnam et al., 2012; Cumbo et al., 2013; Edmunds et al., 2013; Rivest and Hofmann, 2014). However, the elevation of CO_2 in itself can still be expected to be problematic for growth and calcification of calcifying organisms (e.g. Fabry, 2008; Ries et al., 2009; Gutowska et al., 2010; Mingliang et al., 2011; Bramanti et al., 2013; Kaplan et al., 2013; Wolfe et al., 2013; Byrne et al., 2014; Watson, 2015) and also for fish (e.g. Baumann et al., 2012; Frommel et al., 2012; Chambers et al., 2014) on the background of the increasing number of studies revealing neural effects of relatively modest rises in PCO_2 (see Beyond aerobic scope: behavioural effects of CO_2).

Combined effects of temperature and CO_2 on resting aerobic metabolism

As discussed in Aerobic scope curves across species and time frames, the expectation that elevated temperature causes MO_2rest to increase, the magnitude of which will be dependent on the acclimatory ability, is well founded from decades of research. It is much less so for CO_2, and data seem to reflect this. Putting the two together, which is inevitable from a global change perspective, does not make matters clearer. A prediction could be that CO_2 is a stressor, which causes an increase in MO_2rest that simply adds on top of the increase caused by temperature. Indeed, the combined effect of elevated temperature and CO_2 on respiration seems to be additive, when looking at it quantitatively. Notably, in several cases the combined outcome is additive simply because there was no measurable effect of CO_2 on MO_2rest (Comeau et al., 2010; Dissanayake and Ishimatsu, 2011; Strobel et al., 2012; Arnegger et al., 2013; Padilla-Gamiño et al., 2013; Carey et al., 2014; Rivest and Hofmann, 2014; Schalkhauser et al., 2014; Cunningham et al., 2015; Lefèvre et al., 2015; Noisette et al., 2016; Small et al., 2015; Zhang et al., 2015), whereas in other cases either temperature or CO_2 alone had an effect (Rosa and Seibel, 2008; Munday et al., 2009; McElroy et al., 2012; Matoo et al., 2013; Hildebrandt et al., 2014; Flynn et al., 2015; Kreiss et al., 2015). There are only a few cases suggesting synergistic effects, where the change during combined exposure is significantly higher than expected from the sum of the isolated effects, one example being a coral reef cardinalfish (fourline cardinalfish; Munday et al., 2009), the other being an Antarctic fish (bald notothen; Enzor et al., 2013). The mechanism behind these synergistic effects, however, is not clear. It is also worth noting that several of the studies failing to show a significant interaction fall below the additive line (Fig. 10A and C). That is, in many cases temperature causes an increase in MO_2rest as expected, but when the two environmental stressors are applied together, the increase is significantly lower than expected from an additive response [purple sea urchin (Catarino et al., 2012); dwarf cushion star (McElroy et al., 2012); cauliflower coral (Cumbo et al., 2013); striped rockcod, dusky rockcod (Trematomus neunesi; Enzor et al., 2013); Amphiura filiformis (Carey et al., 2014); and white-spotted bamboo shark (Rosa et al., 2014a)].

Obviously, there can be arguments both for and against an increase in MO_2rest being negative for survival or fitness (depending, for example, on nutritional status and food availability), but if one assumes that saving energy is an adaptive strategy for the average animal, an antagonistic interaction can be interpreted such that CO_2 alleviates some of the costs associated with increased temperature. In contrast, in the few instances where temperature causes a decrease in MO_2rest, CO_2 seems to have the opposite effect and causes an increase in MO_2rest despite the expected decrease from temperature alone [sea urchin (Echinometra sp.; Uthicke et al., 2014); and Atlantic cod (Kreiss et al., 2015)] or at least causing the decrease to be smaller than expected [common periwinkle (Melatunan et al., 2011); and hard-shelled mussel (Wang et al., 2015)], which is probably not beneficial (again, if it is assumed that low MO_2rest is beneficial). A decrease in MO_2rest with increased temperature is clearly not the expected outcome, and it is noteworthy that it is observed only in invertebrates, whereas the majority of the teleosts investigated show no change or the expected increase in MO_2rest.

Combined effects of temperature and CO_2 on absolute aerobic scope

The predictions from the OCLTT hypothesis for how elevated temperature and CO_2 in combination affect AAS are relatively straightforward (Fig. 1C and D). Two scenarios are commonly depicted; one where interaction between CO_2 and temperature is additive (CO_2 reduces AAS over the entire temperature range), and one where it is synergistic (CO_2 narrows the thermal windows, by causing a further reduction in AAS with increased or decreased temperature). Synergistic effects will only be worse than additive effects in a global warming scenario if it is assumed that the animal is presently living near T_{optAAS} (which most animals will strive to do, according to the OCLTT). Although there is currently a limited number of studies that have looked at the effect of both temperature and CO_2 on AAS, the data seem to support an additive outcome [jumbo
Beyond aerobic scope: behavioural effects of CO$_2$

Aerobic scope is a conceptually attractive measure of performance, because in theory it represents the overall capacity, that is, the amount of energy that can be devoted to different activities at any given point. This capacity is nonetheless still theoretical, because it is difficult to know how and when an animal uses this capacity in nature, where many other factors are at play (e.g. food availability and conspecifics; Farrell, 2013, 2016). A recent meta-analysis on reproduction and survival concluded synergistic effects to be dominant (Harvey et al., 2013), which contrasts with the dominantly additive effect on respiratory performance found in the present analysis, indicating that the underlying mechanisms may differ.

When it comes to the effect of climate change on variables beyond AAS, there is an additional twist to the story, namely behaviour. So far, behavioural studies on the interaction between warming and acidification are limited to a recent study by Ferrari et al. (2015) on coral reef fish [ambon damsel and Nagasaki damsel (Pomacentrus nagasakiensis)]. Strikingly, they found the interactive effect on predation rate to be synergistic (i.e. there was no effect of CO$_2$ or temperature by themselves, but there was an effect when the two were combined), whereas prey selectivity was antagonistically affected (i.e. both temperature and CO$_2$ by themselves reversed prey preference, and any preference was completely abolished when both stressors were combined). Behavioural effects of CO$_2$ or low pH were reviewed in detail by Briffa et al. (2012) and more recently by Clements and Hunt (2015) and Nagelkerken and Munday (2016), who found that the majority of published studies find an effect of elevated CO$_2$. However, these direct effects of CO$_2$ on behaviour are not part of the OCLTT framework and were judged to have ‘low confidence’ in the most recent edition of the IPCC report (Pörtner et al., 2014).

For some species, it is not surprising that CO$_2$ does not have an effect. The epaulette shark (Hemiscyllium ocellatum), which is a shallow-reef species, is exposed to rather severe hypoxia and hypercapnia on a diurnal basis, and in addition to being hypoxia tolerant (e.g. Speers-Roesch et al., 2012a,b) it is therefore likely to be tolerant of elevated CO$_2$, and accordingly, it is not behaviourally affected (Heinrich et al., 2014, 2016). This may also be the case for Atlantic cod, which is known to feed in hypoxic–hypercapnic waters (Strand and Huse, 2007; Neuenfeldt et al., 2009) and which is also not behaviourally affected by elevated CO$_2$ (Jutfelt and Hedgärde, 2015). The behavioural changes seen in other cases can easily be interpreted as negative, such as being attracted to predators, the wrong habitat or the wrong food (e.g. Vargas et al., 2013; Munday et al., 2014; Sundin and Jutfelt, 2016), failing to learn (Chivers et al., 2014), altered prey handling (Dodd et al., 2015) and loss of the ability to respond to important cues (e.g. Dixon et al., 2010; Simpson et al., 2011; Lönnstedt et al., 2013; Munday et al., 2013; Allan et al., 2014; Manriquez et al., 2013, 2014; Watson et al., 2014; Sui et al., 2015). The interpretation can be more difficult when it comes to something like lateralization (e.g. Jutfelt et al., 2013) or activity (e.g. Pimentel et al., 2014; Green and Jutfelt, 2014; Spady et al., 2014). Although a ‘hard-wired’ preference for left or right might decrease response time, it can also be argued that it limits the options and makes an individual predictable. The benefit of being more or less active depends on the situation; if an animal is more active it might be more likely to find food or conspecifics, but it might also be more visible and thereby vulnerable to predation. Importantly, in the present context, behavioural changes related to elevated PCO$_2$ could affect measurements of MO$_{2\text{rest}}$ and MO$_{2\text{max}}$ and could explain the elevation of these variables seen in some studies.

In contrast to the limited understanding of whether and how elevated PCO$_2$ affects MO$_{2\text{rest}}$ and AAS, there is now an increasing understanding of the mechanism that underlies the behavioural alterations. Since first suggested from experiments showing that the effects of CO$_2$ on olfaction and lateralization can be reversed by treatment with the GABA$_A$ receptor antagonist gabazine (Nilsson et al., 2012), several studies have linked these clearly neurological changes to an altered function of this major inhibitory neurotransmitter receptor. Thus, Chivers et al. (2014) showed that high-CO$_2$-induced learning deficiency in ambon damselfish could be reversed by gabazine treatment, and the direct neuronal effect of continuous CO$_2$ exposure on retinal function in spiny chromis damselfish was also reversed by gabazine (Chung et al., 2014). Subsequently, similar results have been seen in temperate marine teleosts [three-spined stickleback (Gasterosteus aculeatus; Lai et al., 2013); and split-nose rockfish (Sebastes diploproct; Hamilton et al., 2014)], and maybe more surprisingly, in the early freshwater life stage of pink salmon (Ou
and AAS appear to be rare; instead, additive effects and change on whole-organism and ecosystem functioning'. In the future ecological and evolutionary effects of climate existing and future findings in a coherent way and for project

Conclusions

Over the last few years, it has thus become clear that neural functions of many marine species are vulnerable to ocean acidification. Although reduced AAS may reduce fitness in the long run, it can be acutely detrimental for an animal not to respond with an appropriate behaviour to cues in its environment. Likewise, it does not matter how large and unaffected AAS is by ocean acidification, if behaviour becomes severely maladaptive. As an example, a study on humpbacked conch showed that AAS per se was not impaired by elevated CO2, whereas it had a negative impact on behaviour, so that a larger proportion of snails failed to elicit an escape response when exposed to odour from a predator (Watson et al., 2014). In this case, one would arrive at two completely different predictions for the future of these snails, had only one of the variables been investigated. It is therefore crucial to implement both physiology and animal behaviour, and the consequences of alterations caused by warming and acidification, in attempts to predict the impact of climate change (Nagelkerken and Munday, 2016).

From an experimental point of view, care has also to be taken to assure that measurements of MO2rest and MO2max, in ocean acidification conditions, are not confounded by behavioural alterations, including changes in activity or drive to exercise. Even more worryingly, although studies have shown negative effects of temperature and CO2 on oxygen uptake to be alleviated through developmental or transgeneration acclimation (Donelson et al., 2011, 2012; Donelson and Munday, 2012; Donelson, 2015), this may not be the case for behavioural abnormalities induced by elevated CO2 (Allan et al., 2014; Munday, et al., 2014; Welch et al., 2014). Interestingly, a recent study on three-spined stickleback showed that offspring from parents exposed to high CO2 had lower survival when reared in control conditions compared with offspring reared in high-CO2 water (Schade et al., 2014), but the effect appeared to be opposite for growth. Obviously, more studies are warranted to characterize these seemingly complex relationships.

Supplementary material

Supplementary material is available at Conservation Physiology online.

Acknowledgements

The author is grateful for insightful and constructive comments given by Göran E. Nilsson on the drafts of the manuscript. Furthermore, the author wishes to thank the three referees for providing useful suggestions that significantly improved the paper.

Funding

This work was supported by the Research Council of Norway, the University of Oslo, and the European Cooperation in
Science and Technology (COST) action ‘Conservation Physiology of Marine Fishes’ [FA1004].

References

Allan BJM, Miller GM, McCormick MI, Domenici P, Munday PL (2014) Parental effects improve escape performance of juvenile reef fish in a high-CO₂ world. Proc Biol Sci 281: 20132179.

Arnberg M, Calosi P, Spicer J, Tandberg A, Nilsen M, Westerlund S, Bechmann R (2013) Elevated temperature elicits greater effects than decreased pH on the development, feeding and metabolism of Northern shrimp (Pandalus borealis) larvae. Mar Biol 160: 2037–2048.

Baumann H, Talmage SC, Gobler CJ (2012) Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nature Clim Change 2: 38–41.

Bělehrádek J (1930) Temperature coefficients in biology. Science and Technology (COST) action ‘Conservation Physiology’ [FA1004].

Bennett CE, McMahon BR (1992) Aerobic capacity of the blue crab, Callinectes sapidus. Physiol Zool 65: 1074–1091.

Bélehrádek J (1930) Temperature coefficients in biology. Biol Rev 5: 30–58.

Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM (2010) Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar Ecol Prog Ser 419: 95–108.

Booth CE, McMahon BR (1992) Aerobic capacity of the blue crab, Callinectes sapidus. Physiol Zool 65: 1074–1091.

Bozinovic F, Pörtner H-O (2015) Physiological ecology meets climate change. Ecol Evol 5: 1025–1030.

Bramanti L, Movilla J, Guron M, Calvo E, Gori A, Dominguez-Carrió C, Briffa M, de la Haye K, Munday PL (2012) High CO₂ levels from contrasting thermal environments. Proc Biol Sci 279: 1897–1908.

Braithwaite A, Baker D (2009) Patterns of acid–base regulation in fish. In Glass M, Wood SC, eds, Cardio-respiratory Control in Vertebrates: Comparative and Evolutionary Aspects. Springer-Verlag, Berlin, pp 43–63.

Breitwieser HJ (1964) The respiratory metabolism and swimming performance of young sockeye salmon. J Fish Res Board Can 21: 1183–1226.

Bret JR (1971) Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am Zool 11: 99–113.

Briffa M, de la Haye K, Munday PL (2012) High CO₂ and marine animal behaviour; potential mechanisms and ecological consequences. Mar Pollut Bull 64: 1519–1528.

Brijs J, Jutfelt F, Clark TD, Gräns A, Ekström A, Sandblom E (2015) Experimental manipulations of tissue oxygen supply do not affect warming tolerance of European perch. J Exp Biol 218: 2448–2454.

Brown AC, da Silva FM (1983) Acute metabolic-rate: temperature relationships of intact and homogenized Bully digitalis (Gastropoda, Nannariidae). T Roy Soc S Afr 45: 91–96.

Brown AC, da Silva FM (1984) Effects of temperature on oxygen-consumption in two closely-related whelks from different temperature regimes. J Exp Mar Biol Ecol 84: 145–153.

Bruneaux M, Nikinmaa M, Laine VN, Lindström K, Primmer CR, Vasmägi A (2014) Differences in the metabolic response to temperature acclimation in nine-spined stickleback (Pungitius pungitius) populations from contrasting thermal environments. J Exp Zool A 321: 550–565.

Bullock TH (1955) Compensation for temperature in the metabolism and activity of poikilotherms. Biol Rev 30: 311–342.

Byrne M, Smith AM, Wes S, Collard M, Dubois P, Grab-landry A, Dvorjanyn SA (2014) Warming influences Mg²⁺ content, while warming and acidification influence calcification and test strength of a sea urchin. Environ Sci Technol 48: 12620–12627.

Carey N, Dupont S, Lundve B, Sigwart J (2014) One size fits all: stability of metabolic scaling under warming and ocean acidification in echinoderms. Mar Biol 161: 2131–2142.

Carter HA, Ceballos-Osuna L, Miller NA, Stillman JH (2013) Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes. J Exp Biol 216: 1412–1422.

Castonguay M, Cyr DG (1998) Effects on temperature on spontaneous and thyroxine-stimulated locomotor activity of Atlantic cod. J Fish Biol 53: 303–313.

Catarino A, Bauwens M, Dubois P (2012) Acid–base balance and metabolic response of the sea urchin Paracentrotus lividus to different seawater pH and temperatures. Environ Sci Pollut Res Int 19: 2344–2353.

Chambers RC, Candelmo AC, Habecott EA, Poach ME, Wieczorek D, Cooper KR, Greenfield CE, Phelan BA (2014) Effects of elevated CO₂ in the early life stages of summer flounder, P. smithii, and potential consequences of ocean acidification. Biogeosciences 11: 1613–1626.

Chen Z, Snow M, Lawrence CS, Church AR, Narum SR, Devlin RH, Farrell AP (2015) Selection for upper thermal tolerance in rainbow trout (Oncorhynchus mykiss Walbaum). J Exp Biol 218: 803–812.

Chivers DP, McCormick MI, Nilsson GE, Munday PL, Watson S-A, Meekan MG, Mitchell MD, Corkill KC, Ferrari MCO (2014) Impaired learning of predators and lower prey survival under elevated CO₂. J Exp Biol 217: 515–522.

Christensen AB, Colacino JM (2000) Respiration in the burrowing brittle star, Ophiothrix fragilis. J Exp Zool A 286: 182–186.

Christensen AB, Nygaard HD, Byrne M (2011) Thermotolerance and the effects of hypercapnia on the metabolic rate of the Ophiothrix ophiuroid Schayeri: inferences for survivorship in a changing ocean. J Exp Mar Biol Ecol 403: 31–38.

Chung W-S, Marshall NJ, Watson S-A, Munday PL, Nilsson GE (2014) Ocean acidification slows retinal function in a damselfish through interference with GABA receptors. J Exp Biol 217: 323–326.

Claiborne JB, Edwards SL, Morrison-Shetlar AI (2002) Acid-base regulation of fish. Cellular and molecular mechanisms. J Exp Zool 293: 302–319.
Claireaux G, Webber DM, Lagardère J-P, Kerr SR (2000) Influence of water temperature and oxygenation on the aerobic metabolic scope of Atlantic cod (Gadus morhua). J Sea Res 44: 257–265.

Claireaux G, Couturier C, Groison AL (2006) Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax). J Exp Biol 209: 3420–3428.

Clark TD, Ryan T, Ingraham BA, Woakes AJ, Butler PJ, Frappell PB (2005) Factorial aerobic scope is independent of temperature and primarily modulated by heart rate in exercising murray cod (Maccullochella peelli peelli), Physiol Biochem Zool 78: 347–355.

Clark TD, Jeffries KM, Hinck SG, Farrell AP (2011) Exceptional aerobic scope and cardiovascular performance of pink salmon (Oncorhynchus gorbuscha) may underlie resilience in a warming climate. J Exp Biol 214: 3074–3081.

Clark TD, Sandblom E, Jutfelt F (2013) Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J Exp Biol 216: 2771–2782.

Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68: 893–905.

Clements J, Hunt H (2015) Marine animal behaviour in a high CO\textsubscript{2} ocean. Mar Ecol Prog Ser 536: 259–279.

Collard M, Catarino AI, Bonnet S, Flammang P, Dubois P (2013) Effects of CO\textsubscript{2}-induced ocean acidification on physiological and mechanical properties of the starfish Asterias rubens. J Exp Mar Biol Ecol 446: 355–362.

Collard M, Eckhaut I, Dehairs F, Dubois P (2014) Acid–base physiology response to ocean acidification of two ecologically and economically important holothuroids from contrasting habitats, Holothuria scabra and Holothuria parva. Environ Sci Pollut Res Int 21: 13602–13614.

Comeau S, Jeffree R, Teysie J-L, Gattuso J-P (2010) Response of the Arctic pteropod Limacina helicina to projected future environmental conditions. PLoS ONE 5: e11362.

Comeau S, Carpenter RC, Edmunds PJ (2016) Effects of pCO\textsubscript{2} on photosynthesis and respiration of tropical scleractinian corals and calcified algae. ICES J Mar Sci fsv267. doi:10.1093/icesjms/fsv267.

Couturier CS, Stecky JAW, Rummer JL, Munday PL, Nilsson GE (2013) Species-specific effects of near-future CO\textsubscript{2} on the respiratory performance of two tropical prey fish and their predator. Comp Biochem Physiol A Mol Integr Physiol 166: 482–489.

Crocker CE, Cech JJ (1997) Effects of environmental hypoxia on oxygen consumption rate and swimming activity in juvenile white sturgeon, Acipenser transmontanus, in relation to temperature and life intervals. Environ Biol Fishes 50: 383–389.

Crocker CE, Cech JJ (2002) The effects of dissolved gases on oxygen consumption rate and ventilation frequency in white sturgeon, Acipenser transmontanus. J Appl Ichthyol 18: 338–340.

Cucco A, Sinerchia M, Lefrançois C, Magni P, Ghezzo M, Umgjesser G, Perilli A, Domenici P (2012) A metabolic scope based model of fish response to environmental changes. Ecol Model 237&238: 132–141.

Cumbo VR, Fan TY, Edmunds PJ (2013) Effects of exposure duration on the response of Pocillolpora damicornis larvae to elevated temperature and high pCO\textsubscript{2}. J Exp Mar Biol Ecol 439: 100–107.

Cunningham SC, Smith AM, Lamare MD (2015) The effects of elevated pCO\textsubscript{2} on growth, shell production and metabolism of cultured juvenile abalone, Haliotis iris. Aquac Res 12684. doi:10.1111/are.12684.

Deigweifer K, Koschnick N, Pörtner H-O, Lucassen M (2008) Acclimation of ion regulatory capacities in gills of marine fish under environmental hypercapnia. Am J Physiol Regul Integr Comp Physiol 295: R1660–R1670.

Dell AI, Pawar S, Savage VM (2011) Systematic variation in the temperature dependence of physiological and ecological traits. Proc Natl Acad Sci USA 108: 10591–10596.

Del Raye G, Weng KC (2015) An aerobic scope-based habitat suitability index for predicting the effects of multi-dimensional climate change stressors on marine teleosts. Deep-Sea Res Pt II 113: 280–290.

Dickinson GH, Matoo OB, Tourek RT, Sokolova IM, Beniash E (2013) Environmental salinity modulates the effects of elevated CO\textsubscript{2} levels on juvenile hard-shell clams, Mercenaria mercenaria. J Exp Biol 216: 2607–2618.

Dickson IW, Kramer RH (1971) Factors influencing scope for activity and active and standard metabolism of rainbow trout (Salmo gairdneri). J Fish Res Board Can 28: 587–596.

Di Santo V (2015) Ocean acidification exacerbates the impacts of global warming on embryonic little skate, Leucoraja erinacea (Mitchell). J Exp Mar Biol Ecol 463: 72–78.

Dissaneayake A, Ishimatsu A (2011) Synergistic effects of elevated CO\textsubscript{2} and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri, Crustacea: Penaeidae). ICES J Mar Sci 68: 1147–1154.

Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13: 68–75.

Dodd LF, Grabowski JH, Piehler MF, Westfield I, Ries JB (2015) Ocean acidification impairs crab foraging behaviour. Proc Biol Sci 282: 20150333.

Donelson JM (2015) Development in a warm future ocean may enhance performance in some species. J Exp Mar Biol Ecol 472: 119–125.

Donelson JM, Munday PL (2012) Thermal sensitivity does not determine acclimation capacity for a tropical reef fish. J Anim Ecol 81: 1126–1131.

Donelson JM, Munday PL, McCormick MI, Nilsson GE (2011) Acclimation to predicted ocean warming through developmental plasticity in a tropical reef fish. Glob Change Biol 17: 1712–1719.

Donelson JM, Munday PL, McCormick MI, Pitcher CR (2012) Rapid generational acclimation of a tropical reef fish to climate change. Nature Clim Change 2: 30–32.

Doney SC, Ruckelshaus M, Emmett Duffy J, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N et al. (2012)
Climate change impacts on marine ecosystems. *Ann Rev Mar Sci* 4: 11–37.

Donohue P, Calosi P, Bates AH, Laverock B, Rastrick S, Mark FC, Strobel A, Widdicombe S (2012) Impact of exposure to elevated pCO$_2$, on the physiology and behaviour of an important ecosystem engineer, the burrowing shrimp *Upogebia deltarua*. *Aquat Biol* 15: 73–86.

Dorey N, Lançon P, Thornycke M, Dupont S (2013) Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. *Glob Change Biol* 19: 3355–3367.

Dwyer WP, Kramer RH (1975) The influence of temperature on scope for activity in cutthroat trout, *Salmo clarkii*. *T Am Fish Soc* 104: 552–554.

Edmunds PJ, Cumbo VR, Fan TY (2013) Metabolic costs of larval settlement and metamorphosis in the coral *Seriatopora caliendrum* under ambient and elevated pCO$_2$. *J Exp Mar Biol Ecol* 443: 33–38.

Elison EJ, Clark TD, Hague MJ, Hanson LM, Gallagher ZS, Jeffries KM, Gale MK, Patterson DA, Hinch SG, Farrell AP (2011) Differences in thermal tolerance among sockeye salmon populations. *Science* 332: 109–112.

Ellis LE, Sacobie CFD, Kieffer JD, Benfey TJ (2013) The effects of dissolved oxygen and triploidy on critical thermal maximum in brook char (*Salvelinus fontinalis*). *Comp Biochem Physiol A Mol Integr Physiol* 166: 426–433.

Enzor LA, Zippay ML, Place SP (2013) High latitude fish in a high CO$_2$ world: synergistic effects of elevated temperature and carbon dioxide on the metabolic rates of Antarctic notothenioids. *Comp Biochem Physiol A Mol Integr Physiol* 164: 154–161.

Ern R, Huong DTT, Phuong NT, Wang T, Bayley M (2014) Oxygen delivery does not limit thermal tolerance in a tropical eurythermal crustacean. *J Exp Biol* 217: 809–814.

Ern R, Huong DTT, Phuong NT, Madsen PT, Wang T, Bayley M (2015) Some like it hot: thermal tolerance and oxygen supply capacity in two eurythermal crustaceans. *Sci Rep* 5: 10743.

Esbaugh A, Ern R, Nordi W, Johnson A (2016) Respiratory plasticity is insufficient to alleviate blood acid–base disturbances after acclimation to ocean acidification in the estuarine red drum, *Sciaenops ocellatus*. *J Comp Physiol B* 186: 97–109.

Fabry VJ (2008) Marine calcifiers in a high-CO$_2$ ocean. *Science* 320: 1020–1022.

Farrell AP (2009) Environment, antecedents and climate change: lessons from the study of temperature physiology and river migration of salmonids. *J Exp Biol* 212: 3771–3780.

Farrell AP (2013) Aerobic scope and its optimum temperature: clarifying their usefulness and limitations – correspondence on *J. Exp. Biol*. 216: 2771-2782. *J Exp Biol* 216: 4493–4494.

Farrell AP (2016) Pragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning. *J Fish Biol* 88: 322–343.

Farrell AP, Hinch SG, Cooke SJ, Patterson DA, Crossin GT, Lapointe M, Mathes MT (2008) Pacific salmon in hot water: applying aerobic scope models and biotelemetry to predict the success of spawning migrations. *Physiol Biochem Zool* 81: 697–709.

Fernández-Reiriz MJ, Range P, Álvarez-Salgado XA, Labarta U (2011) Physiological energetics of juvenile clams *Ruditapes decussatus* in a high CO$_2$ coastal ocean. *Mar Ecol Prog Ser* 433: 97–105.

Ferrari MCO, Munday PL, Rrummer JL, McCormick MI, Corkill K, Watson SA, Allan BJM, Meekan MG, Chivers DP (2015) Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities. *Glob Change Biol* 21: 1848–1855.

Ferreira EO, Anttila K, Farrell AP (2014) Thermal optima and tolerance in the eurythermic goldfish (*Carassius auratus*): relationships between whole-animal aerobic capacity and maximum heart rate. *Physiol Biochem Zool* 87: 599–611.

Fey SB, Siepielski AM, Nusslé S, Cervantes-Yoshida K, Hwan JL, Huber ER, Fey MJ, Catenazzi A, Carlson SM (2015) Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. *Proc Natl Acad Sci USA* 112: 1083–1088.

Flynne EE, Bjelde BE, Miller NA, Todgham AE (2015) Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish. *Conserv Physiol* 3: doi:10.1093/conphys/cov033.

Forstner H, Wieser W (1990) Patterns of routine swimming and metabolic rate in juvenile cyprinids at three temperatures: analysis with a respirometer-activity-monitoring system. *J Comp Physiol B* 160: 71–76.

Frederich M, Pörtner H-O (2000) Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, *Maja squinado*. *Am J Physiol Regul Integr Comp Physiol* 279: R1531–R1538.

Frommel A, Maneja R, Lowe D, Malzahn AM, Geffen AJ, Folkvord A, Frommel A, Maneja R, Lowe D, Malzahn AM, Geffen AJ, Folkvord A, Frommel A, Maneja R, Lowe D, Malzahn AM, Geffen AJ, Folkvord A (2016) Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. *Nature Clim Change* 2: 42–46.

Fry FEJ (1947) Effects of the environment on animal activity. *Publications of the Ontario Fisheries Research Laboratory* 68: 1–62.

Fry FEJ (1971) The effect of environmental factors on the physiology of fish. In Hoar WS, Randall DJ, eds, *Fish Physiology, Vol 6, Environmental Relations and Behavior*. Academic Press, New York, London, pp 1–98.

Fry FEJ, Hart JS (1948) The relation of temperature to oxygen consumption in the goldfish. *Biol Bull* 94: 66–77.

Gardiner NM, Munday PL, Nilsson GE (2010) Counter-gradient variation in respiratory performance of coral reef fishes at elevated temperatures. *Proc Natl Acad Sci USA* 107: 13299.

Gräns A, Jutfelt F, Sandblom E, Jönsson E, Wiklander K, Seth H, Olsson C, Fey MJ, Catenazzi A, Carlson SM (2015) Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. *Proc Natl Acad Sci USA* 112: 1083–1088.

Fry FEJ, Hart JS (1948) The relation of temperature to oxygen consumption in the goldfish. *Biol Bull* 94: 66–77.

Gardiner NM, Munday PL, Nilsson GE (2010) Counter-gradient variation in respiratory performance of coral reef fishes at elevated temperatures. *Proc Natl Acad Sci USA* 107: 13299.
Gunderson AR, Stillman JH (2015) Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc Biol Sci 282: 20150401.

Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev 74: 1–40.

Gutowska MA, Melzner F, Pörtner HO, Meier S (2010) Cuttlebone calcification increases during exposure to elevated seawater pCO$_2$ in the cephalopod Sepia officinalis. Mar Biol 157: 1653–1663.

Hamilton TJ, Holcombe A, Tresguerres M (2014) CO$_2$-induced ocean acidification increases anxiety in rockfish via alteration of GABA$_A$ receptor functioning. Proc Biol Sci 281: 2013.2509.

Hammer KM, Kristiansen E, Zachariaassen KE (2011) Physiological effects of hypercapnia in the deep-sea bivalve Acesta excavata (Fabricius, 1779) (Bivalvia; Limidae). Mar Environ Res 72: 135–142.

Harvey BP, Gwynn-Jones D, Moore PJ (2013) Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol Evol 3: 1016–1030.

Hazel JR, Prosser CL (1974) Molecular mechanisms of temperature compensation in poikilotherms. Physiol Rev 54: 620–677.

Healy TM, Schulte PM (2012a) Thermal acclimation is not necessary to maintain a wide thermal breadth of aerobic scope in the common killifish (Fundulus heteroclitus). Physiol Biochem Zool 85: 107–119.

Healy TM, Schulte PM (2012b) Factors affecting plasticity in whole-organism thermal tolerance in common killifish (Fundulus heteroclitus). J Comp Physiol B 182: 49–62.

Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80: 1150–1156.

Heinrich DDU, Rummel JL, Morash AJ, Watson S-A, Simpfendorfer CA, Heupel MR, Munday PL (2014) A product of its environment: the epaulette shark (Hemiscyllium ocellatum) exhibits physiological tolerance to elevated environmental CO$_2$. Conserv Physiol 2: doi:10.1093/conphys/cou047.

Heinrich DDU, Watson S-A, Rummel JL, Brandl SJ, Simpfendorfer CA, Heupel MR, Munday PL (2016) Foraging behaviour of the epaulette shark Hemiscyllium ocellatum is not affected by elevated CO$_2$. ICES J Mar Sci 73: 633–640.

Heisler N (1984) Acid-base regulation in fishes. In Hoar WS, Randall DJ, eds, Fish Physiology, Vol 10, Part A, Gill – Anatomy, Gas Transfer, and Acid-Base Regulation. Academic Press, New York, pp 315–401.

Hennige SJ, Wicks LC, Kamenos NA, Bakker DCE, Findlay HS, Dumousseaud C, Roberts JM (2014) Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep-Sea Res Pt II 99: 27–35.

Heuer RM, Grosell M (2014) Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am J Physiol Regul Integr Comp Physiol 307: R1061–R1084.

Hildebrandt N, Niehoff B, Sartoris FJ (2014) Long-term effects of elevated CO$_2$ and temperature on the Arctic calanoid copepods Calanus glacialis and C. hyperoecus. Mar Pollut Bull 80: 59–70.

Hofmann GE, Todgham AE (2010) Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Ann Rev Physiol 72: 127–145.

Holt RE, Jorgensen C (2015) Climate change in fish: effects of respiratory constraints on optimal life history and behaviour. Proc Biol Sci 11: 2014.1032.

Hu MY, Casties I, Stumpf M, Ortega-Martinez O, Dupont S (2014) Energy metabolism and regeneration are impaired by seawater acidification in the infaunal bivalve Amphiura filiformis. J Exp Biol 217: 2411–2421.

Intergovernmental Panel on Climate Change (IPCC) (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

Johansen JL, Jones GP (2011) Increasing ocean temperature reduces the metabolic performance and swimming ability of coral reef damselfishes. Glob Change Biol 17: 2971–2979.

Johansen JL, Messmer V, Coker DJ, Hoey AS, Pratchett MS (2014) Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish. Glob Change Biol 20: 1067–1074.

Johnston IA, Dunn J (1987) Temperature acclimation and metabolism in ectotherms with particular reference to teleost fish. Symp Soc Exp Biol 41: 67–93.

Jutfelt F, Hedgärde M (2015) Juvenile Atlantic cod behaviour appears robust to near-future CO$_2$ levels. Front Zool 12: 11.

Jutfelt F, Bresolin de Souza K, Vuylsteke A, Sturve J (2013) Behavioural disturbances in a temperate fish exposed to sustained high-CO$_2$ levels. PLoS ONE 8: e65825.

Kaplan MB, Mooney TA, McCorkle DC, Cohen AL (2013) Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii). PLoS ONE 8: e63714.

Khan JR, Herbert NA (2012) The behavioural thermal preference of the common triplefin (Forsterygion lapillum) tracks aerobic scope optima at the upper thermal limit of its distribution. J Therm Biol 37: 118–124.

Khan JR, Iftikar FI, Herbert NA, Gnaiger E, Hickey AJR (2014a) Thermal plasticity of skeletal muscle mitochondrial activity and whole animal respiration in a common intertidal triplefin fish, Forsterygion lapillum (family: Tripterygiidae). J Comp Physiol B 184: 991–1001.

Khan JR, Pether S, Bruce M, Walker SP, Herbert NA (2014b) Optimum temperatures for growth and feed conversion in cultured hapuku (Polyprion oxygeneios)—is there a link to aerobic metabolic scope and final temperature preference? Aquaculture 430: 107–113.

Kinkead R, Perry SF (1991) The effects of catecholamines on ventilation in rainbow trout during hypoxia or hypercapnia. Respir Physiol 84: 77–92.

Kreiss CM, Michael K, Lucassen M, Jutfelt F, Motykia R, Dupont S, Pörtner HO (2015) Ocean warming and acidification moderate energy budget and gill ion regulatory mechanisms in Atlantic cod (Gadus morhua). J Comp Physiol B 185: 767–781.
Lai F, Jutfelt F, Nilsson GE (2015) Altered neurotransmitter function in CO\textsubscript{2}-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research. Conserv Physiol 3: doi:10.1093/conphys/cov018.

Lajeunesse MJ (2011) On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology 92: 2049–2055.

Langenbuch M, Pörtner HO (2002) Changes in metabolic rate and N excretion in the marine invertebrate Spisula solidissima under conditions of environmental hypercapnia: identifying effective acid–base variables. J Exp Biol 205: 1153–1160.

Lannig G, Eilers S, Pörtner HO, Sokolova IM, Bock C (2010) Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas—changes in metabolic pathways and thermal response. Mar Drugs 8: 2318–2339.

Lardies MA, Arias MB, Poupon MJ, Manriquez PH, Torres R, Vargas CA, Navarro JM, Lagos NA (2014) Differential response to ocean acidification in physiological traits of Concholepas concholepas populations. J Sea Res 90: 127–134.

Lee CG, Farrell AP, Lotto A, MacNutt M, Hinch S, Healey M (2003) The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks. J Exp Biol 206: 3239–3251.

Lefevre S, Watson S-A, Munday PL, Nilsson GE (2015) Will jumping snails prevail? Influence of near-future CO\textsubscript{2} levels on coral reef fishes: what hope for the future? J Exp Biol 218: 2991–3001.

Lefrancois C, Claireaux G (2003) Influence of ambient oxygenation and temperature on metabolic scope and scope for heart rate in the common sole Solea solea. Mar Ecol Prog Ser 259: 273–284.

Li W, Gao K (2012) A marine secondary producer respires and feeds more in a high CO\textsubscript{2} ocean. Mar Pollut Bull 64: 699–703.

Liu W, He M (2012) Effects of ocean acidification on the metabolic rates of three species of bivalve from Southern coast of China. Chin J Oceanol Limn 30: 204–216.

Lowe CJ, Davison W (2006) Thermal sensitivity of scope for activity in Pagotenia borchgrevinki, a cryopelagicantarctic notothenioid fish. Polar Biol 29: 971–977.

Lönnstedt OM, Munday PL, McCormick MI, Ferrari MCO, Chivers DP (2013) Ocean acidification and responses to predators: can sensory redundancy reduce the apparent impacts of elevated CO\textsubscript{2} on fish? Ecol Evol 3: 3565–3575.

McElroy DJ, Nguyen HD, Byrne M (2012) Respiratory response of the intertidal seastar Parawoilastra exigua to contemporary and near-future pulses of warming and hypercapnia. J Exp Mar Biol Ecol 416–417: 1–7.

Mallek R, Lagardere JP (2002) Effect of temperature and dissolved oxygen concentration on the metabolic rate of the turbot and the relationship between metabolic scope and feeding demand. J Fish Biol 60: 1105–1115.

Manriquez PH, Jara ME, Mardones ML, Navarro JM, Torres R, Lardies MA, Vargas CA, Duarte C, Widdicombe S, Salisbury J et al. (2013) Ocean acidification disrupts prey responses to predator cues but not net prey shell growth in Concholepas concholepas (Leco). PLoS ONE 8: e68643.

Matoo OB, Ivanina AV, Ullstad C, Beniash E, Sokolova IM (2013) Interactive effects of elevated temperature and CO\textsubscript{2} levels on metabolism and oxidative stress in two common marine bivalves (Crassostrea virginica and Mercenaria mercenaria). Comp Biochem Physiol A Mol Integr Physiol 164: 545–553.

Melzner F, Göbel S, Langenbuch M, Gutowska MA, Pörtner H-O, Lucassen M (2009) Swimming performance in Atlantic cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated seawater. Aquat Toxicol 92: 30–37.

Metzger R, Sartoris FJ, Langenbuch M, Pörtner H-O (2007) Influence of elevated CO\textsubscript{2} concentrations on thermal tolerance of the edible crab Cancer pagurus. J Therm Biol 32: 145–151.

Michaelidis B, Spring A, Pörtner H-O (2007) Effects of long-term acclimation to environmental hypercapnia on extracellular acid–base status and metabolic capacity in Mediterranean fish Sparus aurata. Mar Biol 150: 1417–1429.

Mingliang Z, Jianguang F, Jihong Z, Bin L, Shengmin R, Yuze M, Yaping G (2011) Effect of marine acidification on calcification and respiration of Chlamys farrei. J Shellfish Res 30: 267–271.

Munday PL, Crawley NE, Nilsson GE (2009) Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Mar Ecol Prog Ser 388: 235–242.

Munday PL, McCormick MI, Nilsson GE (2012) Impact of global warming and rising CO\textsubscript{2} levels on coral reef fishes: what hope for the future? J Exp Biol 215: 3865–3873.

Munday P, Pratchett M, Dixon D, Donelson J, Endo GK, Reynolds A, Knuckey R (2013) Elevated CO\textsubscript{2} affects the behavior of an ecologically and economically important coral reef fish. Mar Biol 160: 2137–2144.
Munday PL, Cheal AJ, Dixson DL, Rummer JL, Fabricius KE (2014) Behavioural impairment in reef fishes caused by ocean acidification at CO₂ seeps. *Nature Clim Change* 4: 487–492.

Nagelkerken I, Munday PL (2016) Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. *Glob Change Biol* 22: 974–989.

Nakamura M, Ohiki S, Suzuki A, Sakai K (2011) Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. *PLoS ONE* 6: e14521.

Navarro JM, Torres R, Aucuña K, Duarte C, Manriquez PH, Lardies M, Lagos NA, Vargas C, Aguilera V (2013) Impact of medium-term exposure to elevated pCO₂ levels on the physiological energetics of the mussel *Mytilus chilensis*. *Chemosphere* 90: 1242–1248.

Neuenfeldt S, Andersen KH, Hinrichsen HH (2009) Some Atlantic cod *Gadus morhua* in the Baltic sea visit hypoxic water briefly but often. *J Fish Biol* 75: 290–294.

Newell RC (1966) Effect of temperature on the metabolism of poikilotherms. *Nature* 212: 426–428.

Newell RC, Pye VI (1970) The influence of thermal acclimation on the relation between oxygen consumption and temperature in *Littorina littorea* (L.) and *Mytilus edulis* L. *Comp Biochem Physiol* 34: 385–397.

Newell RC, Pye VI (1971) Quantitative aspects of the relationship between metabolism and temperature in the winkle *Littorina littorea* (L.). *Comp Biochem Physiol* 28: 635–650.

Nilsson GE, Crawley N, Lunde IG, Munday PL (2009) Elevated temperature reduced the respiratory scope of coral reef fishes. *Glob Change Biol* 15: 1405–1412.

Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sorensen C, Watson SA, Munday PL (2012) Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. *Nature Clim Change* 2: 201–204.

Noisette F, Richard J, Le Fur I, Peck LS, Davout D, Martin S (2015) Metabolic responses to temperature stress under elevated pCO₂ in *Crepidula fornicata*. *J Mollus Stud* 81: 238–246.

Noisette F, Bordeyne F, Davout D, Martin S (2016) Assessing the physiological responses of the gastropod *Crepidula fornicata* to predicted ocean acidification and warming. *Limnol Oceanogr* 61: 430–444. doi:10.1002/lno.10225.

Norin T, Malte H, Clark TD (2014) Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures. *J Exp Biol* 217: 244–251.

Nowell L, Brownscombe J, Gutowsky LG, Murchie K, Suski C, Danylchuk A, Shultz A, Cooke S (2015) Swimming energetics and thermal ecology of adult bonefish (*Albula vulpes*): a combined laboratory and field study in Eleuthera, the Bahamas. *Environ Fish Biol* 98: 2133–2146.

Ou M, Hamilton TJ, Eom J, Lyall EM, Gallup J, Jiang A, Lee J, Close DA, Yun S-S, Brauner CJ (2015) Responses of pink salmon to CO₂-induced aquatic acidification. *Nature Clim Change* 5: 950–955.

Overgaard J, Andersen JL, Finsen A, Pedersen PBM, Hansen K, Ozolina K, Wang T (2012) Aerobic scope and cardiovascular oxygen transport is not compromised at high temperatures in the toad *Rhinella marina*. *J Exp Biol* 215: 3519–3526.

Padilla-Gamiño JL, Kelly MW, Evans TG, Hofmann GE (2013) Temperature and CO₂ additively regulate physiology, morphology and genomic responses of larval sea urchins, *Strongylocentrotus purpuratus*. *Proc Biol Sci* 280: 2013.0155.

Pang X, Cao ZD, Peng JL, Fu SJ (2010) The effects of feeding on the swimming performance and metabolic response of juvenile southern catfish, *Silurus meridionalis*, acclimated at different temperatures. *Comp Biochem Physiol A Mol Integr Physiol* 155: 253–258.

Pang X, Yuan X-Z, Cao Z-D, Fu S-J (2013) The effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis). *J Comp Physiol B* 183: 99–108.

Parker L, Ross P, Connor W, Pörtner H, Scanes E, Wright J (2013) Predicting the response of molluscs to the impact of ocean acidification. *Biolog* 2: 651–692.

Patnaik SK, Rao YP, Rao DGVP (1985) Studies on the standard and active rates of metabolism of a tropical intertidal gastropod *Littorina (Littoraria) undulata* (Gray): effect of body size and temperature. *Ital J Zool* 19: 101–109.

Payne NL, Smith JA, van der Meulen DE, Taylor MD, Watanabe YY, Takahashi A, Marzullo TA, Gray CA, Cadiou G, Suthers IM (2016) Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. *Funct Ecol* 26:1813. doi:10.1111/1365-2435.12618.

Perry SF, Abdallah S (2012) Mechanisms and consequences of carbon dioxide sensing in fish. *Respir Physiol Neurobiol* 184: 309–315.

Petersen RH, Anderson JM (1969) Influence of temperature change on spontaneous locomotor activity and oxygen consumption of Atlantic salmon, *Salmo salar*, acclimated to two temperatures. *J Fish Res Board Can* 26: 93–109.

Pimentel M, Pegado M, Repolho T, Rosa R (2014) Impact of ocean acidification in the metabolism and swimming behavior of the dolphinfish (*Coryphaena hippurus*) early larvae. *Mar Biol* 161: 725–729.

Pope EC, Ellis RP, Scolamacchia M, Scolding JWS, Keay A, Chingombe P, Shields RJ, Wilcox R, Spiers DC, Wilson RW et al. (2014) European sea bass, *Dicentrarchus labrax*, in a changing ocean. *Biogeosciences* 11: 2519–2530.

Pörtner H-O (2001) Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. *Naturwissenschaften* 88: 137–146.

Pörtner H-O (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. *J Exp Biol* 213: 881–893.
Pörtner H-O (2012) Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. *Mar Ecol Prog Ser* 470: 273–290.

Pörtner H-O (2014) How and how not to investigate the oxygen and capacity limitation of thermal tolerance (OCLTT) and aerobic scope – remarks on the article by Gränz et al. *J Exp Biol* 217: 4432–4433.

Pörtner H-O, Farrell AP (2008) Physiology and climate change. *Science* 322: 690–692.

Pörtner H-O, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. *Science* 315: 95–97.

Pörtner H-O, Lannig G (2009) Oxygen and capacity limited thermal tolerance. In Jeffrey GR, eds. *Fish Physiology, Vol 27, Hypoxia*. Academic Press, New York, pp 143–191.

Pörtner H-O, Reippschläger A, Heisler N (1998) Acid–base regulation, metabolism and energetics in *Sipunculus nudus* as a function of ambient carbon dioxide level. *J Exp Biol* 201: 43–55.

Pörtner H-O, Mark FC, Bock C (2004a) Oxygen limited thermal tolerance in fish?: Answers obtained by nuclear magnetic resonance techniques. *Respir Physiol Neurobiol* 141: 243–260.

Pörtner H-O, Langenbuch M, Reippschläger A (2004b) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. *J Oceanogr* 60: 705–718.

Pörtner H-O, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from earth history to global change. *J Geophys Res* 110: C09S10.

Pörtner H-O, Karl DM, Boyd PW, Cheung WWL, Lluch-Cota SE, Nojiri Y, Schmidt DN, Zavialov PO (2014) Ocean systems. In Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC et al. eds. *Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 411–484.

Prosser CL (1991) Temperature. In Prosser CL ed. *Environmental and Metabolic Animal Physiology*, Ed 4. Wiley-Liss, Inc., New York, NY, USA, pp 109–165.

Prosser CL, Nelson DO (1981) The role of nervous systems in temperature adaptation of poikilotherms. *Annu Rev Physiol* 43: 281–300.

Przeslawski R, Byrne M, Mellin C (2015) A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. *Glob Change Biol* 21: 2122–2140.

Putnam HM, Mayfield AB, Fan TY, Chen CS, Gates RD (2012) The physiological and molecular responses of larvae from the reef-building coral *Pocillopora damicornis* exposed to near-future increases in temperature and pCO2. *Mar Biol* 160: 2157–2173.

Rahmstorff S, Coumou D (2011) Increase of extreme events in a warming world. *Proc Natl Acad Sci USA* 108: 17905–17909.

Regan MD, Turko AJ, Heras J, Andersen MK, Lefevre S, Wang T, Bayley M, Brauner CJ, Huong DTT, Phuong NT et al. (2016) Ambient CO2, fish behaviour and altered GABAergic neurotransmission: exploring the mechanism of CO2-altered behaviour by taking a hypercapnia dweller down to low CO2 levels. *J Exp Biol* 219: 109–118.

Reynolds WW, Casterlin ME (1982) Thermoregulatory behaviour, diel activity and the relationship of spontaneous locomotor activity to temperature in the sea raven, *Hemitripterus americanus* (Gmelin). *J Fish Biol* 20: 1–4.

Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. *Geology* 37: 1131–1134.

Rivest EB, Hofmann GE (2014) Responses of the metabolism of the larvae of *Pocillopora damicornis* to ocean acidification and warming. *PLoS ONE* 9: e96172.

Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. *Proc Natl Acad Sci USA* 105: 20776–20780.

Rosa R, Trübenbach K, Repolho T, Pimentel M, Faleiro F, Boavida-Portugal J, Baptista M, Lopes VM, Dioníssio G, Leal MC et al. (2013) Lower hypoxia thresholds of cuttlefish early life stages living in a warm acidified ocean. *Proc Biol Sci* 280: 20131695.

Rosa R, Baptista M, Lopes VM, Pegado MR, Paula JR, Trübenbach K, Leal MC, Calado R, Repolho T (2014a) Early-life exposure to climate change impacts tropical shark survival. *Proc Biol Sci* 281: 20141738.

Rosa R, Trübenbach K, Pimentel MS, Boavida-Portugal J, Faleiro F, Baptista M, Dioníssio G, Calado R, Pörtner H-O, Repolho T (2014b) Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (*Loligo vulgaris*). *J Exp Biol* 217: 518–525.

Rummer JL, Stecyk JAW, Couturier CS, Watson S-A, Nilsson GE, Munday PL (2013) Elevated CO2 enhances aerobic scope of a coral reef fish. *Conserv Physiol* 1: doi:10.1093/conphys/cot023.

Rummer JL, Couturier CS, Stecyk JAW, Gardiner NM, Kinch JP, Nilsson GE, Munday PL (2014) Life on the edge: thermal optima for aerobic scope of Equatorial reef fishes are close to current day temperatures. *Glob Change Biol* 20: 1055–1066.

Sandblom E, Gränz A, Axelsson M, Seth H (2014) Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future. *Proc Biol Sci* 281: 20141490.

Schade F, Clemmesen C, Wegner KM (2014) Within- and transgenerational effects of ocean acidification on life history of marine three-spined stickleback (*Gasterosteus aculeatus*). *Mar Biol* 161: 1667–1676.

Schalkhauser B, Bock C, Stemmer K, Brey T, Pörtner H-O, Lannig G (2013) Impact of ocean acidification on escape performance of the king scallop, *Pecten maximus*, from Norway. *Mar Biol* 160: 1995–2006.

Schalkhauser B, Bock C, Pörtner H-O, Lannig G (2014) Escape performance of temperate king scallop, *Pecten maximus* under ocean warming and acidification. *Mar Biol* 161: 2819–2829.
Schulte PM (2015) The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J Exp Biol 218: 1856–1866.

Schurmann H, Steffensen JF (1994) Spontaneous swimming activity of Atlantic cod Gadus morhua exposed to graded hypoxia at three temperatures. J Exp Biol 197: 129–142.

Seebacher F, White CR, Franklin CE (2015) Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Clim Change 5: 61–66.

Segal E (1961) Acclimation in molluscs. Am Zool 1: 235–244.

Seth H, Gräns A, Sandblom E, Olsson C, Wiklander K, Johnsson JI, Axelsson M (2013) Metabolic scope and interspecific temperature responses in sculpins of Greenland are influenced by increased temperatures due to climate change. PLoS ONE 8: e62859.

Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY (2011) Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett 7: 917–920.

Small D, Calosi P, White D, Spicer JI, Widdicombe S (2010) Impact of medium-term exposure to CO₂ enriched seawater on the physiological functions of the velvet swimming crab Necora puber. Aquat Biol 10: 11–21.

Small DP, Calosi P, Boothroyd D, Widdicombe S, Spicer JI (2015) Stage-specific changes in physiological and life-history responses to elevated temperature and pCO₂ during the larval development of the European lobster Homarus gammarus (L.). Physiol Biochem Zool 88: 494–507.

Sokolova IM, Pörtner HO (2003) Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (Littorina saxatilis, Gastropoda: Littorinidae) from different latitudes. J Exp Biol 206: 195–207.

Spady BL, Watson S-A, Chase TJ, Munday PL (2014) Projected near-future CO₂ levels increase activity and alter defensive behaviours in the tropical squid Idiosepio pygmaeus. Biol Open 3: 1063–1070.

Speers-Roesch B, Brauner CJ, Farrell AP, Hickey AJR, Renshaw GCM, WangYS, Richards JG (2012a) Hypoxia tolerance in elasmobranchs. II. Cardiovascular function and tissue metabolic responses during progressive and relative hypoxia exposures. J Exp Biol 215: 103–114.

Speers-Roesch B, Richards JG, Brauner CJ, Farrell AP, Hickey AJR, WangYS, Renshaw GCM (2012b) Hypoxia tolerance in elasmobranchs. I. Critical oxygen tension as a measure of blood oxygen transport during hypoxia exposure. J Exp Biol 215: 93–102.

Steckbauer A, Ramajo L, Hendriks IE, Fernandez M, Lagos N, Prado L, Duarte CM (2015) Synergistic effects of hypoxia and increasing CO₂ on benthic invertebrates of the central chilean coast. Front Mar Sci 2: 49. doi:10.3389/fmars.2015.00049.

Steinhausen MF, Sandblom E, Eliasen EJ, Verhille C, Farrell AP (2008) The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming sockeye salmon (Oncorhynchus nerka). J Exp Biol 211: 3915–3926.

Stevens ED, Fry FEJ (1972) The effect of changes in ambient temperature on spontaneous activity in skipjack tuna. Comp Biochem Physiol A Comp Physiol 42: 803–805.

Stoner AW, Ottmar ML, Hurst TP (2006) Temperature affects activity and feeding motivation in pacific halibut: implications for bait-dependent fishing. Fish Res 81: 202–209.

Strahl J, Stolz I, Uthicke S, Vogel N, Noonan SHC, Fabricius KE (2015) Physiological and ecological performance differs in four coral taxa at a volcanic carbon dioxide seep. Comp Biochem Physiol A Mol Integr Physiol 184: 179–186.

Strand E, Huse G (2007) Vertical migration in adult Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 64: 1747–1760.

Strobel A, Bennecke S, Leo E, Mintenbeck K, Pörtner H, Mark FC (2012) Metabolic shifts in the antarctic fish Nototthenia rossii in response to rising temperature and PCO₂. Front Zool 9: 28.

Stumpp M, Wren J, Melzner F, Thorsnyke MC, Dupont ST (2011) CO₂ induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Physiol A Mol Integr Physiol 160: 331–340.

Sui Y, Hu M, Huang X, Wang Y, Lu W (2015) Anti-predatory responses of the thick shell mussel Mytilus coruscus exposed to seawater acidification and hypoxia. Mar Environ Res 109: 159–167.

Sun T, Tang X, Zhou B, Wang Y (2016) Comparative studies on the effects of seawater acidification caused by CO₂ and HCl enrichment on physiological changes in Mytilus edulis. Chemosphere 144: 2368–2376.

Sundin J, Jutfelt F (2016) 9–28 d of exposure to elevated pCO₂ reduces avoidance of predator odour but had no effect on behavioural lateralization or swimming activity in a temperate wrasse (Ctenolabrus rupestris). ICES J Mar Sci 73: 620–632.

Sylvestre E-L, Lapointe D, Dutil J-D, Guderley H (2007) Thermal sensitivity of metabolic rates and swimming performance in two latitudinally separated populations of cod, Gadus morhua L.. J Comp Physiol B 177: 447–460.

Takahashi A, Kurihara H (2013) Ocean acidification does not affect the physiology of the tropical coral Acropora digitifera during a 5-week experiment. Coral Reefs 32: 305–314.

Tamburrini M, Romano M, Carratore V, Kunzmann A, Coletta M, di Prisco G (1998) The hemoglobins of the Antarctic fishes Arctedichroa oriana and Pagonophryne scotti: amino acid sequence, lack of cooperativity, and ligand binding properties. J Biol Chem 273: 32452–32459.

Tewksbury J, Huey R, Deutsch C (2008) Putting the heat on tropical animals. Science 320: 1296.

Thomsen J, Melzner F (2010) Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar Biol 157: 2667–2676.

Thor P, Dupont S (2015) Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob Change Biol 21: 2261–2271.
Thor P, Oliva EO (2015) Ocean acidification elicits different energetic responses in an Arctic and a boreal population of the copepod _Pseudocalanus acuspes_. _Mar Biol_ 162: 799–807.

Thyring J, Rysgaard S, Blücher M, Sejr M (2015) Metabolic cold adaptation and aerobic performance of blue mussels (_Mytilus edulis_) along a temperature gradient into the high Arctic region. _Mar Biol_ 162: 235–243.

Tirsgaard B, Behrens JW, Steffensen JF (2015a) The effect of temperature and body size on metabolic scope of activity in juvenile Atlantic cod _Gadus morhua_. _Comp Biochem Physiol A Mol Integr Physiol_ 179: 89–94.

Tirsgaard B, Moran D, Steffensen JF (2015b) Prolonged SDA and reduced digestive efficiency under elevated CO2 may explain reduced growth in Atlantic cod (_Gadus morhua_). _Aquat Toxicol_ 158: 171–180.

Tu Z, Li L, Yuan X, Huang Y, Johnson D (2012) Aerobic swimming performance of juvenile largemouth bronze gudgeon (_Coreius guichenoti_) in the Yangtze river. _J Exp Zool A_ 317: 294–302.

Uthicke S, Liddy M, Nguyen HD, Byrne M (2014) Interactive effects of near-future temperature increase and ocean acidification on physiology and gonad development in adult Pacific sea urchin, _Echinometra sp. A._ _Coral Reefs_ 33: 831–845.

Vagner M, Lacoue-Labarthe T, Zambonino Infante J-L, Mazurais D, Dubillot E, Le Delliou H, Quazuguel P, Lefrançois C (2015) Depletion of essential fatty acids in the food source affects aerobic capacities of the golden grey mullet _Liza aurata_ in a warming seawater context. _PLoS ONE_ 10: e0126489.

van Dijk PL, Tesch C, Hardewig I, Pörtner H-O (1999) Physiological disturbances at critically high temperatures: a comparison between stenothermal Antarctic and eurythermal temperature eelpouts (_Zoarcidae)._ _J Exp Biol_ 202: 3611–3621.

Vargas CA, de la Hoz M, Aguilera V, Martin VS, Manriquez PH, Navarro JM, Torres R, Lardies MA, Lagos NA (2013) CO2-driven ocean acidification reduces larval feeding efficiency and changes food selectivity in the mollusk _Conchopas conoidalis_. _J Plankton Res_ 35: 1059–1068.

Verberk WCJP, Sommer U, Davidson RL, Viant MR (2013) Anaerobic metabolism at thermal extremes: a metabolomic test of the oxygen limitation hypothesis in an aquatic insect. _Integr Comp Biol_ 53: 609–619.

Verberk WCJP, Overgaard J, Enn R, Bayley M, Wang T, Boardman L, Terblanche JS (2016) Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. _Comp Biochem Physiol A Mol Integr Physiol_ 192: 64–78.

Vulesevic B, McNeill B, Perry SF (2006) Chemoreceptor plasticity and respiratory acclimation in the zebrafish _Danio rerio_. _J Exp Biol_ 209: 1261–1273.

Wang T, Overgaard J (2007) The heartbreak of adapting to global warming. _Science_ 315: 49–50.

Wang T, Lefevre S, Iversen NK, Findorf I, Buchanan R, McKenzie DJ (2014) Anaemia only causes a small reduction in the upper critical temperature of sea bass: is oxygen delivery the limiting factor for tolerance of acute warming in fishes? _J Exp Biol_ 217: 4275–4278.

Wang Y, Li L, Hu M, Lu W (2015) Physiological energetics of the thick shell mussel _Mytilus coruscus_ exposed to seawater acidification and thermal stress. _Sci Total Environ_ 514: 261–272.

Watson S-A (2015) Giant clams and rising CO2: light may ameliorate effects of ocean acidification on a solar-powered animal. _PLoS ONE_ 10: e0128405.

Watson S-A, Lefevre S, McCormick MI, Domenici P, Nilsson GE, Munday PL (2014) Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels. _Proc Biol Sci_ 281: 20132377.

Welch MJ, Watson S-A, Welsh JQ, McCormick MI, Munday PL (2014) Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. _Nature Clim Change_ 4: 1086–1089.

Wittmann AC, Pörtner H-O (2013) Sensitivities of extant animal taxa to ocean acidification. _Nature Clim Change_ 3: 995–1001.

Wolfe K, Dworjanyn SA, Byrne M (2013) Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (_Heliocidaris erythrogramma_). _Glob Change Biol_ 19: 2698–2707.

Wood H, Spicer Ji, Lowe DM, Widdicombe S (2010) Interaction of ocean acidification and temperature; the high cost of survival in the brittlestar _Ophiura ophiura_. _Mar Biol_ 157: 2001–2013.

Wood HL, Eriksson SP, Nordborg M, Styf HK (2015) The effect of environmental stressors on the early development of the Norway lobster _Nephrops norvegicus_ (L.). _J Exp Mar Biol Ecol_ 473: 35–42.

Zervoudaki S, Frangoulis C, Giannoudi L, Krasakopoulou E (2014) Effects of low pH and raised temperature on egg production, hatching and metabolic rates of a Mediterranean copepod species (_Acartia clausi_) under oligotrophic conditions. _Mediterranean Mar Sci_ 15: 74–83.

Zhang H, Shin PKS, Cheung SG (2015) Physiological responses and scope for growth upon medium-term exposure to the combined effects of ocean acidification and temperature in a subtidal scavenger _Nassarius consolidaudis_. _Mar Environ Res_ 106: 51–60.

Zittler ZMC, Bock C, Lannig G, Pörtner H-O (2015) Impact of ocean acidification on thermal tolerance and acid–base regulation of _Mytilus edulis_ (L.) from the North Sea. _J Exp Mar Biol Ecol_ 473: 16–25.