Genotyping of carbapenem resistant *Acinetobacter baumannii* isolated from tracheal tube discharge of hospitalized patients in intensive care units, Ahvaz, Iran

Saeed Shoja1, Mojtaba Moosavian1*, Amir Peymani2, Mohammad Amin Tabatabaiefar1, Soodabeh Rostami1, Nasim Ebrahimi1

1Department of Microbiology, School of Medicine, Infectious & Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 2Department of Microbiology, Qazvin University of Medical Sciences, Qazvin, Iran. 3Genetic Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Received: June 2013, Accepted: August 2013.

ABSTRACT

Background and Objectives: Carbapenem resistant *A. baumannii* is an emerging cause of nosocomial infections. The aims of this study were identification of the most prevalent of carbapenem resistant genes, molecular typing and antimicrobial evaluation of *A. baumannii* in intensive care units.

Materials and Methods: Two hundred and six *A. baumannii* were isolated from tracheal tube discharge of hospitalized patients at different intensive care units in Ahvaz, Iran. Antimicrobial susceptibility test was done on all isolates. Multiplex and singleplex PCR were performed for detection of *bla*OXA-23-like*, bla*OXA-24-like*, *bla*OXA-51-like*, *bla*VIM, *bla*IMP, *bla*SPM and *bla*NDM genes. Genetic relationship of all isolates was determined by REP-PCR method.

Results: Out of 206 examined isolates, 198 (96.1%) isolates were resistant to imipenem and meropenem. However 3.9% isolates were sensitive to these antibiotics. The *bla*OXA-23-like* and *bla*OXA-24-like* genes were detected in 85% and 8.7% of strains, respectively. No *bla*OXA-58-like*, *bla*IMP, *bla*VIM, *bla*SPM and *bla*NDM were detected. REP-PCR results showed that isolates were belonged to five genotypes: Genotype A was the most prevalent (P-value < 0.001): it was observed in 75 of 206 strains (36.4%). Genotype B, and C were found in 28.6% and 27.7%, respectively. The rate of other genotypes was as follows: D (2.4%), E (1%).

Conclusion: Based on the obtained results, the rate of carbapenem resistance was high among of *A. baumannii* which was isolated from intensive care units patients and oxacillinase genes were the most prevalent carbapenem resistant genes. These results revealed that three clones, A, B and C of *A. baumannii* are common in our hospitals.

Keywords: *Acinetobacter baumannii*, Carbapenem resistant, Intensive Care Units

INTRODUCTION

Acinetobacter baumannii has been recognized over the last decades as a major pathogen that responsible for severe infections, especially in the Intensive Care Units (ICU) patients (1, 2). Ventilator-associated pneumonia (VAP) occurs in critically ill patients who admitted to ICU and *A. baumannii* frequently isolated in respiratory specimens of these patients (2, 3). VAP complications are increased mortality rate, prolonged hospitalization and high medical costs (4, 5). Although, previously, most of *A. baumannii* isolates were sensitive to carbapenems, and imipenem was the gold standard treatment for *A. baumannii* pneumonia.
SHOJA ET AL.

(1, 5), widespread use of carbapenems has led to an emergence of resistant strains (6). Nowadays, carbapenem resistant A. baumannii (CRAB) has been reported worldwide, and it has become a global problem (7). In addition, an important concern is nosocomial infection causing by multidrug resistant A. baumannii (MDRAB) isolates (8). Due to increasing resistance, selection of an appropriate therapeutic option is difficult (9). The main mechanisms of carbapenem resistance in A. baumannii, is the production of carbapenem-hydrolyzing enzymes, mostly OXA types carbapenemases such as blaOXA-23-like, blaOXA-24-like, blaOXA-58-like and blaOXA-143-like, and less common by metallo-β-lactamas (7, 10). In order to control and prevention of spread of resistant isolates, it is necessary to use a molecular method for typing of MDRAB A. baumannii (8). Because no study has been performed independently solely on A. baumannii tracheal isolates in Ahvaz, this study was planned with the following objectives: (i) to study the antimicrobial susceptibility pattern (ii) to identify the most prevalent OXA types and metallo-β-lactamase genes and (iii) To characterize clonal relationship among A. baumannii isolates collected from the tracheal tube discharge in Ahvaz, south west of Iran using repetitive sequence-based polymerase chain reaction (REP-PCR).

MATERIALS AND METHODS

Bacterial isolates. This study was conducted at the 8 ICUs of 2 teaching hospitals, Imam Khomeyni and Golestan, associated to Ahvaz Jundishapur University of Medical Sciences from March 2010 to November 2012. A total of 206 A. baumannii isolates were collected from a tracheal tube discharge of ICUs patients which were colonized or infected by these bacteria. The patients were hospitalized in ICU sections such as: ICU internal, surgery, A & B, neurosurgical ICU (NSICU), general 1, general 2, cardiovascualar ICU (CVICU). Initial identifications of A. baumannii were performed using standard laboratory tests (11).

Antimicrobial susceptibility test. All isolates were subjected to antimicrobial susceptibility testing by standard disk diffusion method according to Clinical and Laboratory Standard Institute (CLSI) guidelines (12). The tested antimicrobial agents were as follows: imipenem 10 µg, meropenem 10 µg, polymyxin B 300 unit, gentamicin 10 µg, ceftriaxone 30 µg, colistin 10 µg, piperacillin 100 µg, piperacillin-tazobactam 100/10 µg, cefepime 30 µg tobramycin 10 µg, tigecyclin 15 µg, amikacin 30 µg, tetracycline 30 µg, ciprofloxacin 5 µg, trimethoprism-sulfamethoxazole 1.25/25.75 µg, ceftazidine 30 µg, rifampin 5 µg, aztreonam 30 µg and ampicillin-sulbactam (10/10 µg), (MAST, Group Ltd, Merseyside, UK). Reference strains include Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were used for quality control testing (12). The results of disk diffusion were interpreted by CLSI. The US Food and Drug Administration-approved criteria for enterobacteriaceae used for tigecycline breakpoint (13).

Extraction of DNA. DNA was extracted by phenol–chloroform method with some modification. After growth of bacteria on Mueller-Hinton’s agar plates, 2 or 3 colonies were suspended in 180 µl of distilled water. Then, 20 µl of proteinase K (1 mg/ml) was added and after adding 200µl of buffer solution (0.5% SDS, 0.005 M EDTA and 0.01 M Tric-Cl, pH 7.8) mixture was incubated at 55°C for 2 hours. Then 200 µl of phenol and 200 µl of chloroform were added and gently mixed. After centrifugation at 11000 rpm for 5 minutes at 4°C, the supernatant was collected and transferred to a new tube carefully. To precipitate of DNA, 50µl of ammonium acetate 7.5 M and 200 µl of absolute ethanol were added. DNA was removed and transferred to a new tube. After washing three times with 70% ethanol, DNA was placed at 30°C overnight. Dried DNA was dissolved in 100µl of TE buffer (14). The DNA purity of extracted was measured by photobiometer (Eppendorf, Germany) in 260/280 nm UV long waves.

Detection of blaOXA-51-like. To confirm the identity of A. baumannii, blaOXA-51-like gene was sought by PCR assay using specific primers listed in Table 1 (15). To amplify this gene, each reaction was carried out in a final volume of 25 µl containing 1x PCR buffer, 1U Taq polymerase, 1.5 mM MgCl₂, 200 µM of dNTP, 10 pmol of each primer (Eurofins MWG Operon, Germany) and 1 µl of extracted DNA. Amplification conditions were programmed in Mastercycler Eppendorf (Eppendorf, Germany) as follows: Initial denaturation at 94°C for 3 min; 35 cycles of 94°C for 45 s, annealing 57°Cfor 45 s, extension 72°C for 1min and final extension 72°C for 5 min. PCR products
were separated on 1.5% agarose gel (CinnaGen, Iran) by electrophoresis, stained with ethidium bromide (CinnaGen, Iran) and then visualized under UV gel documentation system. A. baumannii NCTC 12156 (ATCC 19606) was used as positive control. A negative control was included in each PCR reaction, containing all components except the DNA template which was replaced by distilled water (15, 16).

Multiplex PCR for detection of oxacillinase genes. *bla*_{OXA-23-like}, *bla*_{OXA-24-like} and *bla*_{OXA-58-like} were sought for all isolates by multiplex PCR according to protocol as described previously (15). Each PCR reaction was performed in a final volume of 25 µl with 1x PCR buffer, 1U Taq polymerase, 2 mM MgCl₂, 200 µM of dNTP (CinnaGen, Iran), 0.2 µM of each primer (TAG, Copenhagen A/S Denmark) and 1 µl of template DNA. PCR conditions were programmed in Mastercycler Eppendorf (Eppendorf, Germany) as follows: Initial denaturation at 94°C for 10 min; followed by 30 cycles at 94°C for 30 s, 53°C for 40 s and 72°C for 50 s and final extension at 72°C for 6 min. PCR products were separated with electrophoresis on 1.5% agarose gel (CinnaGen, Iran) and after staining with ethidium bromide, visualized under UV gel documentation system. *A. baumannii* reference strains including NCTC 13304, NCTC 13302, NCTC 13305 used as positive control for *bla*_{OXA-23-like}, *bla*_{OXA-24-like} and *bla*_{OXA-58-like} respectively (15).

Detection of metallo β-lactamase genes. The presence of different metallo β-lactamase encoding genes such as: *bla*_{IMP}, *bla*_{VIM}, *bla*_{SPM} and *bla*_{NDM} were investigated by PCR with specific primers that were listed in (Table 1) and protocol from two previous studies (16, 17).

REP-PCR. In order to determine genetic relationship of carbapenem resistant *A. baumannii*, REP-PCR was carried out on all isolates with specific primers previously described (18) and are listed in (Table 1). Amplification condition was performed based on the method of Bou et al. with some modifications (14). Each reaction mixture was done in volume of 25 µl with 1x PCR buffer, 3.5 mM of MgCl₂, 300 µM of dNTP, 3% DMSO (Cinna Gen, Iran), 0.5 µM of each primer (TAG, Copenhagen A/S Denmark), and 1U of Taq polymerase and 1 µl of genomic DNA, PCR conditions were as follows: 94°C for 10 min; 30 cycles of 94°C for 1 min, annealing temperatures 45°C for 1 min and 72°C for 2 min and 72°C for 16

Table 1. Primers sequences used in this study.

Primer name	Sequence (5'-3')	Amplicon size (bp)	Reference	
bla_{OXA-51-like}-F	TAATGCTTTGATCGGCCTTG	353	(16)	
bla_{OXA-51-like}-R	TGGATGCTCCTGCTCGGTTG			
bla_{OXA-23-like}-F	GATCGGATTGGAGAACCAGA	501		
bla_{OXA-23-like}-R	ATTTCTGACCGCATTTCCAT			
bla_{OXA-24-like}-F	GGTTAGTTGGCCCCCTTAAA	249		
bla_{OXA-24-like}-R	AGTTGACGCGAAAAAGGGGATT			
bla_{OXA-58-like}-F	AAGTATTTGGGCTTGTGCTG	599		
bla_{OXA-58-like}-R	CCCCTCCTGCGCTCTCACATA			
bla_{IMP}-F	TCGTTTGAAGGAATGTTAACGG	568		
bla_{IMP}-R	ATGTAAGTTCTCAAGAGTATGTC			
bla_{VIM}-F	GGTGGTGGTCGTCATCGGC	502		
bla_{VIM}-R	GTTCAGCCAGATCGCATCGGC			
bla_{NDM}-F	CCGAATGGCTCATCAGATC	624		
bla_{NDM}-R	AAAATCTGCGGCTAGAAACG			
bla_{SPM}-F	ACATTTATCGCGGTAACGG	271		
bla_{SPM}-R	CACATTATCGCGGTAACGG			
REP-1	IIIGCCCGGICATCAGGC			
REP-2	AGCTTCTATACGCGCTAC			

http://ijm.tums.ac.ir
min. Products were separated with electrophoresis on 1.2% agarose gel (Cinna Gen, Iran); after staining with ethidium bromide, they were visualized under UV gel documentation system; then they were photographed and compared together with visual inspection (14). All fingerprints were observed by one observer. Fingerprints were interpreted according to previous studies (18, 19).

Statistical analysis. The results were analyzed using the SPSS version 16 to obtain frequencies and comparison among clones. Non parametric Chi-square test was used ($X^2 = 156.6, df = 5$). A P-value < 0.001 was considered statistically significant.

RESULTS

Bacterial isolates and antimicrobial susceptibility pattern. The rates of isolation from different wards were as follows: ICU Internal (41.3%), Surgery (14.1%), B (13.1%), Neurosurgical Intensive Care Unit NICU (9.2%), A (7.8%), General 1 (5.3%), General 2 (7.8%), Cardiovascular Intensive Care Unit (CVICU) (1.5%). All 206 studied isolates contained blaOxa-51-like gene and were known as A. baumannii. All isolates (100%) were susceptible to colistin and polymyxin B. Maximum resistance rate was observed for aztreonam and rifampin with 98.5% and 98.1%, respectively. The rate of resistance to antimicrobial agents is shown in Table 2.

Detection of Oxacillinase and Metallo-β-lactamase. Results of multiplex PCR showed the blaOXA-23-like and blaOXA-24-like genes were detected in 85% and 8.7%, respectively (Fig. 1). Six isolates were carbapenem resistant but these isolates were negative for blaOXA-58-like, blaIMP, blaVIM, and blaNDM were detected. blaOXA-23-like, blaOXA-24-like, and blaOXA-58-like were not detected in carbapenem susceptible A. baumannii (CSAB) isolates.

REP-PCR. To determine the genetic relationship, all isolates were analyzed by REP-PCR. According to the REP-PCR results, carbapenem resistant isolates were grouped into five clones. The first prevalent genotype was named genotype A and was observed in 75 (36.4%) of 206 isolates (P-value < 0.001), thereafter 59 isolates (28.6%) and 57 isolates (27.7%).

Table 2. The results of antibiogram test for A. baumannii isolates.

Antibiotic	Sensitive (%)	Intermediate (%)	Resistant (%)
Imipenem 10 µg	8 (3.9)	-	198 (96.1)
Meropenem 10 µg	8 (3.9)	-	198 (96.1)
Ceftazidime 30 µg	7 (3.4)	1 (0.5)	198 (96.1)
Cefepime 30 µg	8 (3.9)	-	198 (96.1)
Ceftriaxone 30 µg	1 (0.5)	7 (3.4)	198 (96.1)
Colistin 10 µg	206 (100)	-	0
Piperacillin 100 µg	6 (2.9)	1 (0.5)	199 (96.6)
Piperacillin-tazobactam 100/10 µg	8 (3.9)	0	198 (96.1)
Polymyxin B 300 unit	206 (100)	0	0
Gentamicin 10 µg	33 (16)	2 (1)	171 (83)
Tobramycin 10 µg	44 (21.4)	0	162 (78.6)
Amikacin 30 µg	13 (6.3)	10 (4.9)	183 (88.8)
Tetracycline 30 µg	15 (7.3)	16 (7.8)	175 (85)
Ampicillin-sulbactam 10/10 µg	34 (16.5)	29 (14.1)	143 (69.4)
Ciprofloxacin 5 µg	7 (3.4)	0	199 (96.6)
Trimethoprim-sulfamethoxazole 1.25/23.75 µg	16 (7.8)	5 (2.4)	185 (89.8)
Rifampin 5 µg	0	4 (1.9)	202 (98.1)
Aztreonam 30 µg	0	3 (1.5)	203 (98.5)
Tigecycline 15 µg	13 (6.3)	66 (32)	127 (61.7)

All antibiotics and antimicrobial susceptibility pattern. The rates of isolation from different wards were as follows: ICU Internal (41.3%), Surgery (14.1%), B (13.1%), Neurosurgical Intensive Care Unit NICU (9.2%), A (7.8%), General 1 (5.3%), General 2 (7.8%), Cardiovascular Intensive Care Unit (CVICU) (1.5%). All 206 studied isolates contained blaOxa-51-like gene and were known as A. baumannii.

http://ijm.tums.ac.ir
belonged to genotypes B and C, respectively (Fig. 2). The rates of other genotypes were as follows: D: 5 (2.4%), E: 2 (1%). All clones were distributed throughout the study period. Albeit bla\textsubscript{OXA-23-like} was found in all clones, bla\textsubscript{OXA-24-like} was seen only in clones A, B, C and D, but clones E was negative for this gene. Eight isolates (3.9%) were carbapenem susceptible and showed different REP pattern from each other. Frequency of each clone in different ICUs was presented in Table 3.

DISCUSSION

A. baumannii is the third causative agent of infection at ICUs patients with mortality rates of 26-68% (20). Increasing rate of carbapenem resistant *A. baumannii* is an important concern (7). Production of Class D oxacillinase which is distributed worldwide is the main mechanism of resistance to carbapenems in this organism. The major carbapenemase genes involved in carbapenem resistance are *bla*\textsubscript{OXA-24-like}*, *bla*\textsubscript{OXA-23-like}, *bla*\textsubscript{OXA-51-like} respectively.

Table 3. Frequency of each clone of carbapenem resistant and carbapenem susceptible isolates in different ICUs.

Clone	Internal	Surgery	A	B	NICU*	General 1	General 2	CVICUb	Total
A	36	7	5	9	6	1	9	2	75
B	31	10	1	3	4	6	3	1	59
C	11	8	9	14	8	4	3	0	57
D	2	2	0	0	0	0	1	0	5
E	1	1	0	0	0	0	0	0	2
Sensitive	4	1	1	1	1	0	0	0	8
Total	85	29	16	27	19	11	16	3	206

*Neurosurgical ICU
Cardiovascular ICU
24). Despite some authors reported bla\textsubscript{OXA-51-like} from 2% to 84.92% in A. baumannii (8, 23, 25, 26) but we did not find any bla\textsubscript{OXA-51-like} gene in accordance with previous studies (6, 10, 24). Interestingly, we identified 6 isolates that were resistant to imipenem and meropenem that possessed only the intrinsic bla\textsubscript{OXA-51-like} but other investigated genes were negative. Resistance to carbapenems in these isolates may be in related to other mechanisms including decreased permeability, alteration of penicillin-binding proteins, AmpC stable derepression and overexpression of efflux pump (27). In A. baumannii, metallo-β-lactamase genes such as: bla\textsubscript{IMP}, bla\textsubscript{VIM}, bla\textsubscript{SPM}, and bla\textsubscript{NDM} have been reported sporadically (28-32) but we did not find any of these genes in our isolates. Similar to our results, negative finding for bla\textsubscript{IMP}, bla\textsubscript{VIM}, bla\textsubscript{SPM}, and bla\textsubscript{NDM} has been reported by some authors (6, 8, 24, 33). REP-PCR revealed three main genotypes are present in our hospitals and 92.7% of isolates belonged to three genotypes A, B and C. Nosocomial outbreaks of carbapenem resistant A. baumannii were reported worldwide and in most cases one or two epidemic isolates were involved (34) and certain clones are disseminated in the hospitals (8, 24, 35). Since, the majority of our isolates belonged to three main genotypes, it is possible that cross-transmission with similar organisms has been occurred between patients. Therefore, it seems that these clones are circulating in our hospitals. Yan et al. reported that multidrug resistant A. baumannii from same genotype can be transferred between hospitals and even cities (8). Albeit bla\textsubscript{Oxa-23-like} was found among all resistant clones, Interestingly only genotypes A, B, C and D were positive for bla\textsubscript{Oxa-23-like} and this gene was negative in genotypes E. Of note, each sensitive isolates had unique REP-PCR patterns that were different from carbapenem resistant isolates and it is assumed that probable source of this isolates were outside of the studied hospitals. However, it has been reported that carbapenem susceptible isolates may have highly similar or different REP pattern from the carbapenem resistant isolates (35). Our finding revealed that in addition to carbapenems, the rates of resistance to other antimicrobial agents were high. Dizbay et al. 2008 in Turkey studied on susceptibility pattern of 66 isolates of A. baumannii collected from endotracheal aspirate and found resistance rate to imipenem, and meropenem was 80.3% and 71.2%, respectively. Different rate of resistance to other tested antibiotics were reported by Dizbay et al. (9).

The rates of resistance to all antimicrobial agents in our study are higher than reported by Dizbay et al. In conclusion, REP-PCR revealed that three main genotypes involved in the two studied hospitals. In order to prevent the spread of resistant isolates between different wards and patients, we suggest it is necessary to monitor and improve infection-control procedures. Although the research was carefully performed and was reached its aims, but there was one limitation. In our study, difference between colonization and infection was not clear and it suggested that in future studies this subject be surveyed.

ACKNOWLEDGEMENTS

This study was granted an approved research plan (NO.90126) and was financially supported by deputy vice-chancellor for research affairs of Ahvaz Jundishapur University of Medical Sciences, and Infectious & Tropical Disease Research Center, and we thank all of them. We acknowledge especially Research Consultation Center (RCC) for technical support.

REFERENCES

1. Kempf M, Rolain JM. Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: clinical impact and therapeutic options. Int J Antimicrob Agents 2012; 39:105-114.
2. Peymani A, Higgins PG, Nahaei MR, Farajnia S, Seifert H. Characterisation and clonal dissemination of OXA-23-producing Acinetobacter baumannii in Tabriz, northwest Iran. Int J Antimicrob Agents 2012; 39: 526-528.
3. Garnacho-Montero J, Ortiz-Leyba C, Fernandez-Hinojosa E, Aldabo-Pallas T, Cayuela A, Marquez-Vacaro JA, et al. Acinetobacter baumannii ventilator-associated pneumonia: epidemiological and clinical findings. Intensive Care Med 2005; 31: 649-655.
4. Joseph NM, Sistla S, Dutta TK, Badhe AS, Parija SC. Ventilator-associated pneumonia: role of colonizers and value of routine endotracheal aspirate cultures. Int J Infect Dis 2010; 14: 723-729.
5. Shete VB, Ghadage DP, Muley VA, Bhore AV. Multi-drug resistant Acinetobacter ventilator-associated pneumonia. Lung India 2010; 27 : 217-220.
6. Managero V, Jones-Dias D, Ferreira E, Louro D, Canica M. Genetic diversity and clonal evolution of carbapenem-resistant Acinetobacter baumannii isolates from Portugal and the dissemination of ST118. Int J Antimicrob Agents 2012; 40: 398-403.
7. Lee HY, Chen CL, Wang SB, Su LH, Chen SH, Liu SY, et al. Imipenem heteroresistance induced by imipenem
in multidrug-resistant *Acinetobacter baumannii*: mechanism and clinical implications. Int J Antimicrob Agents 2011; 37: 302-308.

8. Yan ZQ, Shen DX, Cao JR, Chen R, Wei X, Lui LP, et al. Susceptibility patterns and molecular epidemiology of multidrug-resistant *Acinetobacter baumannii* strains from three military hospitals in China. Int J Antimicrob Agents 2010; 35: 269-73.

9. Dizbay M, Altunekic A, Sezer BE, Ozdemir K, Arman D. Colistin and tigecycline susceptibility among multidrug-resistant *Acinetobacter baumannii* isolated from ventilator-associated pneumonia. Int J Antimicrob Agents 2008; 29-32.

10. Irfan S, Turton JF, Mehraj J, Siddiqui SZ, Haider S, Zafar A, et al. Molecular and epidemiological characterisation of clinical isolates of carbapenem-resistant *Acinetobacter baumannii* from public and private sector intensive care units in Karachi, Pakistan. J Hosp Infect 2011; 78: 143-148.

11. Winn W, Allen S, Janda W, Koneman E, Procop G, Schreckenberger P, Woods G (2006). *Koneman’s Color Atlas and Textbook of Diagnostic Microbiology* 6 ed. Lippincott Williams & Wilkins, Philadelphia.

12. Clinical and Laboratory Standards Institute. 2011. Performance standards for antimicrobial susceptibility testing: 21th informational supplement. CLSI document M100-S21. CLSI, Wayne, Pa.

13. Wyeth Pharmaceuticals. Tygacil (tigecycline) for injection [Package insert]. 2005. Wyeth Pharmaceuticals Inc., Philadelphia, PA.

14. Bou G, Cervero G, Dominguez MA, Quereda C, Martinez-Beltran J. PCR-based DNA fingerprinting (REP-PCR, AP-PCR) and pulsed-field gel electrophoresis characterization of a nosocomial outbreak caused by imipenem- and meropenem-resistant *Acinetobacter baumannii*. Clin Microbiol Infect 2000; 6: 635-643.

15. Woodford N, Ellington NJ, Coelho JM, Turton JF, Ward ME, Brown S, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 2006; 27: 551-3.

16. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011; 70: 119-123.

17. Zong Z, Lu X, Valenzuela JK, Partridge SR, Iredell J. An outbreak of carbapenem-resistant *Acinetobacter baumannii* producing OXA-23 carbapenemase in western China. Int J Antimicrob Agents 2008; 31: 50-4.

18. Martin-Lozano D, Cisneros JM, Becerril B, Cuberos L, Prados T, Ortiz-Leyba C, et al. Comparison of a repetitive extragenic palindromic sequence-based PCR method and clinical and microbiological methods for determining strain sources in cases of nosocomial *Acinetobacter baumannii* bacteremia. J Clin Microbiol 2002; 40: 4571-4575.

19. Snelling AM, Gerner-Smidt P, Hawkey PM, Heritage J, Parnell P, Porter C, et al. Validation of use of whole-cell repetitive extragenic palindromic sequence-based PCR (REP-PCR) for typing strains belonging to the *Acinetobacter calcoaceticus-Acinetobacter baumannii* complex and application of the method to the investigation of a hospital outbreak. J Clin Microbiol 1996; 34: 1193-1202.

20. Nomanpour B, Ghodousi A, Babaei A, Abtahi H, Tabrizi M, Feizabadi M. Rapid, cost-effective, sensitive and quantitative detection of Acinetobacter baumannii from pneumonia patients. Iran J Microbiol 2011; 3: 162-9.

21. D’Arezzo S, Principe L, Capone A, Petrosillo N, Petruccka A, Visca P. Changing carbapenemase gene pattern in an epidemic multidrug-resistant *Acinetobacter baumannii* lineage caused by multiple outbreaks in central Italy. J Antimicrob Chemother 2011; 66: 54-61.

22. Feizabadi MM, Fathollahzadeh B, Taherikalani M, Rasoolinejad M, Sadeghifard N, Aligholi M, et al. Antimicrobial susceptibility patterns and distribution of blaOXA genes among Acinetobacter spp. Isolated from patients at Tehran hospitals. Jpn J Infect Dis 2008; 61: 274-278.

23. Touati M, Diene SM, Racherache A, Dekhil M, Djahoudi A, Rolain J. Emergence of blaOXA-23 and blaOXA-58 carbapenemase-encoding genes in multidrug-resistant *Acinetobacter baumannii* isolates from University Hospital of Annaba, Algeria. Int J Antimicrob Agents 2012; 40: 89-91.

24. Carvalho KR, Carvalho-Assel AP, Peirano G, Santos LC, Pereira MJ, Asensi MD. Dissemination of multidrug-resistant *Acinetobacter baumannii* genotypes carrying bla(OXA-23) collected from hospitals in Rio de Janeiro, Brazil. Int. J Antimicrob Agents 2009; 34: 25-8.

25. Ergin A, Hascelik G, Eser OK. Molecular characterization of oxacillinas and genotyping of invasive *Acinetobacter baumannii* isolates using repetitive extragenic palindromic sequence-based polymerase chain reaction in Ankara between 2004 and 2010. Scand J Infect Dis 2013; 45: 26-31.

26. Ben RJ, Yang MC, Hsu YC, Shiang JC, Chien ST. Molecular characterisation of multiple drug-resistant *Acinetobacter baumannii* isolates in southern Taiwan. Int J Antimicrob Agents 2011; 38: 403-408.

27. Kulah C, Mooij MJ, Comert F, Aktas E, Celebi G, Ozlu N, et al. Characterisation of carbapenem-resistant *Acinetobacter baumannii* outbreak strains producing OXA-58 in Turkey. Int J Antimicrob Agents 2010; 36: 114-118.

28. Hrabak J, Stolbova M, Studentova V, Fridrichova M, Chadackova E, Zemlickova H. NDM-1 producing *Acinetobacter baumannii* isolated from a patient repatriated to the Czech Republic from Egypt, July 2011.Euro Surveill 2012; 17: 1-3.

29. Peymani A, Nabaie MR, Farajnia S, Hasani A, Mirsalehian A, Sohrabi N, et al. High prevalence of metallo-beta-lactamase-producing *Acinetobacter baumannii* in a teaching hospital in Tabriz, Iran. Jpn J Infect Dis 2011; 64: 69-71.

30. Karthikeyan K, Thirunarayan MA, Krishnan P. Coexistence of blaOXA-23 with blaNDM-1 and armA in clinical isolates of *Acinetobacter baumannii* from India. J Antimicrob Chemother 2010; 65: 2253-2254.

31. Mohamed NM, Rafat FA. Phenotypic and Genotypic
Detection of Metallo-beta-lactamases in Imipenem-resistant Acinetobacter baumannii Isolated from a Tertiary Hospital in Alexandria, Egypt. Res J Microbiol 2011; 6: 750-760.

32. Shahcheraghi F, Abbasislipour M, Feizabadi M, Ebrahimipour G, Akbari N. Isolation and genetic characterization of metallo-β-lactamase and carbapenamase producing strains of Acinetobacter baumannii from patients at Tehran Hospitals. Iran J Microbiol 2011; 3: 68-74.

33. Netsvyetayeva I, Sikora M, Golas M, Swoboda-Kopeck E, de Walthoffen SW, Dembicka O, et al. Acinetobacter baumannii multidrug-resistant strain occurrence in liver recipients with reference to other high-risk groups. Transplant Proc 2011; 43: 3116-3120.

34. Zarrilli R, Giannouli M, Tomasone F, Triassi M, Tsakris A. Carbapenem resistance in Acinetobacter baumannii: the molecular epidemic features of an emerging problem in health care facilities. J Infect Dev Countries 2009; 3: 335-341.

35. Huang L, Sun L, Xu G, Xia T (2008). Differential susceptibility to carbapenems due to the AdeABC efflux pump among nosocomial outbreak isolates of Acinetobacter baumannii in a Chinese hospital. Diagn Microbiol Infect Dis 2008; 62: 326-332.