Yang-Baxter basis of Hecke algebra and Casselman’s problem (extended abstract)

Maki Nakasuji and Hiroshi Naruse

Abstract
We generalize the definition of Yang-Baxter basis of type A Hecke algebra introduced by A.Lascoux, B.Leclerc and J.Y.Thibon (Letters in Math. Phys., 40 (1997), 75–90) to all the Lie types and prove their duality. As an application we give a solution to Casselman’s problem on Iwahori fixed vectors of principal series representation of p-adic groups.

1 Introduction
Yang-Baxter basis of Hecke algebra of type A was defined in the paper of Lascoux-Leclerc-Thibon [LLT]. There is also a modified version in [Las]. First we generalize the latter version to all the Lie types. Then we will solve the Casselman’s problem on the basis of Iwahori fixed vectors using Yang-Baxter basis and Demazure-Lusztig type operator. This paper is an extended abstract and the detailed proofs will appear in [NN].

2 Generic Hecke algebra
2.1 Root system, Weyl group and generic Hecke algebra
Let $\mathcal{R} = (\Lambda, \Lambda^*, R, R^*)$ be a (reduced) semisimple root data cf. [Dem]. More precisely $\Lambda \simeq \mathbb{Z}^r$ is a weight lattice with rank $\Lambda = r$. There is a pairing $\langle , \rangle: \Lambda^* \times \Lambda \to \mathbb{Z}$. $R \subset \Lambda$ is a root system with simple roots $\{\alpha_i\}_{1 \leq i \leq r}$ and positive roots R^+. $R^* \subset \Lambda^*$ is the set of coroots, and there is a bijection $R \to R^*$, $\alpha \mapsto \alpha^*$. We also denote the coroot $\alpha^*_i = h_{\alpha_i}$. The Weyl group W of \mathcal{R} is generated by simple reflections $S = \{s_i\}_{1 \leq i \leq r}$. The action of W on Λ is given by $s_i(\lambda) = \lambda - \langle \alpha_i^*, \lambda \rangle \alpha_i$ for $\lambda \in \Lambda$. We define generic Hecke algebra $H_{t_1, t_2}(W)$ over $\mathbb{Z}[t_1, t_2]$ with two parameters t_1, t_2 as follows. Generators are $h_i = h_{\alpha_i}$ with relations $(h_i - t_1)(h_i - t_2) = 0$ for $1 \leq i \leq r$ and the braid relations $h_i h_j \cdots = h_j h_i \cdots$, where $m_{i,j}$ is the order of $s_i s_j$ for $1 \leq i < j \leq r$.

We need to extend the coefficients to the quotient field of the group algebra $\mathbb{Z}[\Lambda]$. An element of $\mathbb{Z}[\Lambda]$ is denoted as $\sum_{\lambda \in \Lambda} c_{\lambda} e^\lambda$. The Weyl group acts on $\mathbb{Z}[\Lambda]$.

by \(w(e^{\lambda}) = e^{w\lambda} \). We extend the coefficient ring \(\mathbb{Z}[t_1, t_2] \) of \(H_{t_1, t_2}(W) \) to
\[
Q_{t_1, t_2}(\Lambda) := \mathbb{Z}[t_1, t_2] \otimes Q(\mathbb{Z}[\Lambda])
\]
where \(Q(\mathbb{Z}[\Lambda]) \) is the quotient field of \(\mathbb{Z}[\Lambda] \).

\[
H^{Q(\Lambda)}_{t_1, t_2}(W) := Q_{t_1, t_2}(\Lambda) \otimes_{\mathbb{Z}[t_1, t_2]} H_{t_1, t_2}(W).
\]

For \(w \in W \), an expression of \(w = s_{i_1} s_{i_2} \cdots s_{i_\ell} \) with minimal number of generators \(s_{i_\ell} \in S \) is called a reduced expression in which case we write \(\ell(w) = \ell \) and call it the length of \(w \). Then \(h_w = h_{i_1} h_{i_2} \cdots h_{i_\ell} \) is well defined and \(\{ h_w \}_{w \in W} \) forms a \(Q_{t_1, t_2}(\Lambda) \)-basis of \(H^{Q(\Lambda)}_{t_1, t_2}(W) \).

2.2 Yang-Baxter basis and its properties

Yang-Baxter basis was introduced in the paper [LLT] to investigate the relation with Schubert calculus. There is also a variant in [Las] for type \(A \) case. We generalize that results to all Lie types.

For \(\lambda \in \Lambda \), we define \(E(\lambda) = e^{-\lambda} - 1 \). Then \(E(\lambda + \nu) = E(\lambda) + E(\nu) + E(\lambda)E(\nu) \). In particular, if \(\lambda \neq 0 \), \(\frac{1}{E(\lambda)} + \frac{1}{E(-\lambda)} = -1 \).

Proposition 1. For \(\lambda \in \Lambda \), if \(\lambda \neq 0 \), let \(h_i(\lambda) := h_i + \frac{h_{i+1} t_2}{E(\lambda)} \). Then these satisfy the Yang-Baxter relations, i.e. if we write \([p, q] := p\lambda + q\nu \) for fixed \(\lambda, \nu \in \Lambda \), the following equations hold. We assume all appearance of \([p, q]\) is nonzero.

\[
\begin{align*}
&h_i([0, 1]) h_j([0, 1]) = h_j([0, 1]) h_i([0, 1]) & \text{if } m_{i,j} = 2 \\
&h_i([0, 1]) h_j([1, 1]) h_i([0, 1]) = h_j([0, 1]) h_i([1, 1]) h_j([1, 0]) & \text{if } m_{i,j} = 3 \\
&h_i([0, 1]) h_j([1, 1]) h_i([0, 1]) = h_j([0, 1]) h_i([1, 2]) h_j([1, 1]) h_i([1, 0]) & \text{if } m_{i,j} = 4 \\
&h_i([0, 1]) h_j([1, 2]) h_i([0, 1]) = h_j([0, 1]) h_i([3, 2]) h_j([1, 2]) & \text{if } m_{i,j} = 6
\end{align*}
\]

Proof. We can prove these equations by direct calculations. \(\square \)

Remark 1. In [Che] I. Cherednik treated Yang-Baxter relation in more general setting. There is also a related work [Kat] by S. Kato and the proof of Theorem 2.4 in [Kat] suggests a uniform way to prove Yang-Baxter relations without direct calculations.

We use the Bruhat order \(x \leq y \) on elements \(x, y \in W \) (cf. [Hum]). Following [Las] we define the Yang-Baxter basis \(Y_w \) for \(w \in W \) recursively as follows.

\[
Y_e := 1, \quad Y_w := Y_{w'}(h_i + \frac{1}{w^E(\alpha_i)}) \quad \text{if } w = w's_i > w'.
\]

Using the Yang-Baxter relation above it is easy to see that \(Y_w \) does not depend on a reduced expression of \(w \). As the leading term of \(Y_w \) with respect to the Bruhat order is \(h_w \), they also form a \(Q_{t_1, t_2}(\Lambda) \)-basis \(\{ Y_w \}_{w \in W} \) of \(H^{Q(\Lambda)}_{t_1, t_2}(W) \).
We are interested in the transition coefficients \(p(w,v) \) and \(\tilde{p}(w,v) \in Q_{t_1,t_2}(\Lambda) \) between the two basis \(\{Y_w\}_{w \in W} \) and \(\{h_w\}_{w \in W} \), i.e.

\[
Y_v = \sum_{w \leq v} p(w,v)h_w, \quad \text{and} \quad h_v = \sum_{w \leq v} \tilde{p}(w,v)Y_w.
\]

Take a reduced expression of \(v \) e.g. \(v = s_{i_1} \cdots s_{i_\ell} \) where \(\ell = \ell(v) \) is the length of \(v \) (cf. [Hum]). Then \(Y_v \) is expressed as follows.

\[
Y_v = \prod_{j=1}^\ell \left(h_{\beta_j} + \frac{t_1 + t_2}{E(\beta_j)} \right)
\]

where \(\beta_j := s_{i_1} \cdots s_{i_{j-1}}(\alpha_{i_j}) \) for \(j = 1, \ldots, \ell \). The set \(R(v) := \{\beta_1, \ldots, \beta_\ell\} \subset R^+ \) is independent of the reduced expression of \(v \). The Yang-Baxter basis defined in [LLT] is normalized as follows.

\[
Y_v^{LLT} := \left(\prod_{j=1}^\ell \frac{E(\beta_j)}{t_1 + t_2} \right) Y_v = \prod_{j=1}^\ell \left(\frac{E(\beta_j)}{t_1 + t_2} h_{\beta_j} + 1 \right).
\]

Remark 2. The relation to \(K \)-theory Schubert calculus is as follows. If we set \(t_1 = 0, t_2 = -1 \) and replacing \(\alpha_i \) by \(-\alpha_i \). Then the coefficient of \(h_w \) in \(Y_v^{LLT} \) is the localization \(\psi^w(v) \) at \(v \) of the equivariant \(K \)-theory Schubert class \(\psi^w \) (cf. [LSS]).

Let \(w_0 \) be the longest element in \(W \). Define \(Q_{t_1,t_2}(\Lambda) \)-algebra homomorphism \(\Omega : H^Q_{t_1,t_2}(\Lambda) \to H^Q_{t_1,t_2}(\Lambda) \) by \(\Omega(h_w) = h_{w_0w_0w_0} \). Let \(\ast \) be the ring homomorphism on \(\mathbb{Z}[\Lambda] \) induced by \(\ast(e^\lambda) = e^{-\lambda} \) and extend to \(Q_{t_1,t_2}(\Lambda) \).

Proposition 2. (Lascoux [Las] Lemma 1.8.1 for type A case) For \(v \in W \),

\[
\Omega(Y_{w_0v_0}) = \ast[w_0(Y_v)]
\]

where \(W \) acts only on the coefficients.

Proof. When \(\ell(v) > 0 \) there exists \(s \in S \) such that \(v = v's > v' \). Using the induction assumption on \(v' \), we get the formula for \(v \). \(\square \)

Taking the coefficient of \(h_w \) in the above equation, we get

Corollary 1.

\[
p(w_0w_0w_0, w_0v_0v_0) = \ast[w_0p(w,v)].
\]

2.3 Inner product and orthogonality

Define inner product \((\ ,)^H \) on \(H^Q_{t_1,t_2}(W) \) by \((f,g)^H := \text{the coefficient of } h_{w_0} \) in \(fg' \), where \(g' = \sum c_w h_{w^{-1}} \) if \(g = \sum c_w h_w \). It is easy to see that \((fh_s, g)^H = (f, gh_s)^H \) for \(f, g \in H^Q_{t_1,t_2}(W) \) and \(s \in S \). There is an involution \(\hat{\ast} : H^Q_{t_1,t_2} \to \)}
$H_{t_1,t_2}^{Q(\Lambda)}$ defined by $\hat{h}_i = h_i - (t_1 + t_2), \hat{t}_1 = -t_2, \hat{t}_2 = -t_1$. It is easy to see that $\hat{h}_s h_s = -t_1 t_2$ for $s \in S$.

The following proposition is due to A.Lascoux for the type A case [Las] P.33.

Proposition 3. For all $v, w \in W$,

$$(\hat{h}_v, \hat{w}_0) = \delta_{v,w}.$$

Proof. We can use induction on the length $\ell(v)$ of v to prove the equation.

We have another orthogonality between Y_v and $w_0(Y_{w_0}w)$.

Proposition 4. (Type A case was due to [LLT] Theorem 5.1, [Las] Theorem 1.8.4.)

For all $v, w \in W$,

$$(Y_v, w_0(Y_{w_0}w)) = \delta_{v,w}.$$

Proof. We use induction on $\ell(v)$ and use the fact that if $s \in S$ and $u \in W$, then $Y_u h_s = aY_{us} + bY_s$ for some $a, b \in \mathbb{Q}_{t_1,t_2}(\Lambda)$.

2.4 Duality between the transition coefficients

Recall that we have two transition coefficients $p(w, v), \tilde{p}(w, v) \in \mathbb{Q}_{t_1,t_2}(\Lambda)$ defined by the following expansions.

$$Y_v = \sum_{w \leq v} p(w, v) h_w$$

$$\hat{h}_v = \sum_{w \leq v} \tilde{p}(w, v) Y_w$$

Below gives a relation between them.

Theorem 1. (Lascoux [Las] Corollary 1.8.5 for type A case) For $w, v \in W$,

$$\tilde{p}(w, v) = (-1)^{\ell(v)-\ell(w)} p(vw_0, ww_0).$$

Proof. We will calculate $(\hat{h}_v, w_0(Y_{w_0}w))$ in two ways. As $\hat{h}_v = \sum_{w \leq v} \tilde{p}(w, v) Y_w$,

$$(\hat{h}_v, w_0(Y_{w_0}w)) = \tilde{p}(w, v)$$

by the orthogonality on Y_v (Proposition 4). On the other hand, as $h_i + \frac{t_1 + t_2}{E(\beta)} = \hat{h}_i - \frac{t_1 + t_2}{E(\beta)}$ for $\beta \in R$, we can expand Y_v in terms of \hat{h}_w as follows.

$$Y_v = \sum_{w \leq v} (-1)^{\ell(v)-\ell(w)} \ast [p(w, v)] \hat{h}_w.$$
So we have
\[
 w_0(Y_{w_0w}) = \sum_{w_0v \leq w_0w} (-1)^{\ell(v) - \ell(w)} w_0[*p(w_0v, w_0w)]h_{w_0v}.
\]

Then using the orthogonality on \(h_v \) (Proposition 3) and Corollary 1,
\[
(h_v, w_0(Y_{w_0w}))^H = (-1)^{\ell(v) - \ell(w)} w_0[*p(w_0v, w_0w)] = (-1)^{\ell(v) - \ell(w)} p(vw_0, vw_0).
\]
The theorem is proved.

2.5 Recurrence relations

Here we give some recurrence relations on \(p(w, v) \) and \(\tilde{p}(w, v) \).

Proposition 5. (left \(p \)) For \(w \in W \) and \(s \in S \), if \(sv > v \) then
\[
p(w, sv) = \begin{cases}
\frac{1}{E(\alpha_s)} [p(w, v) - t_1 t_2 s[p(sw, v)]] & \text{if } sw > w \\
(t_1 + t_2)(\frac{1}{E(\alpha_s)} + 1) s[p(w, v)] + s[p(sw, v)] & \text{if } sw < w.
\end{cases}
\]

Proof. By the definition we have \(Y_{sv} = Y_s Y_v \) from which we can deduce the recurrence formula.

We note that by this recurrence we can identify \(p(w, v) \) as a coefficient of transition between two bases of the space of Iwahori fixed vectors cf. Theorem 3 below.

Proposition 6. (right \(p \)) For \(w \in W \) and \(s \in S \), if \(vs > v \) then
\[
p(w, ws) = \begin{cases}
\frac{1}{E(\alpha_s)} p(w, v) - t_1 t_2 p(ws, v) & \text{if } ws > w \\
(t_1 + t_2)(\frac{1}{E(\alpha_s)} + 1) p(w, v) + p(ws, v) & \text{if } ws < w.
\end{cases}
\]

Proof. We can use the equation \(Y_{vs} = Y_s Y_v \) and taking the coefficient of \(h_w \), we get the formula.

Proposition 7. (left \(\tilde{p} \)) For \(w \in W \) and \(s \in S \), if \(sv > v \) then
\[
\tilde{p}(w, sv) = \begin{cases}
-\frac{1}{E(\alpha_s)} \tilde{p}(w, v) + (t_2 + \frac{1}{E(\alpha_s)}) (t_2 + \frac{1}{E(-\alpha_s)}) s[\tilde{p}(sw, v)] & \text{if } sw > w \\
-\frac{1}{E(\alpha_s)} \tilde{p}(w, v) + s[\tilde{p}(sw, v)] & \text{if } sw < w.
\end{cases}
\]

Proof. We can prove the recurrence relation using Corollary 2 below.

Proposition 8. (right \(\tilde{p} \)) For \(w \in W \) and \(s \in S \), if \(vs > v \) then
\[
\tilde{p}(w, vs) = \begin{cases}
-\frac{1}{E(\alpha_s)} \tilde{p}(w, v) + (t_2 + \frac{1}{E(\alpha_s)}) (t_2 + \frac{1}{E(-\alpha_s)}) \tilde{p}(ws, v) & \text{if } ws > w \\
-\frac{1}{E(\alpha_s)} \tilde{p}(w, v) + \tilde{p}(ws, v) & \text{if } ws < w.
\end{cases}
\]

Proof. We can prove the recurrence relation using Corollary 2 below.
3 Kostant-Kumar’s twisted group algebra

Let $Q_{t_1,t_2}^{KK}(W) := Q_{t_1,t_2}(A)\#\mathbb{Z}[W]$ be the (generic) twisted group algebra of Kostant-Kumar. Its element is of the form $\sum_{w \in W} f_w \delta_w$ for $f_w \in Q_{t_1,t_2}(A)$ and the product is defined by

$$\left(\sum_{w \in W} f_w \delta_w \right) \left(\sum_{u \in W} g_u \delta_u \right) = \sum_{w,u \in W} f_w(w) \delta_{wu}.$$

Define $y_i \in Q_{t_1,t_2}^{KK}(W)$ ($i = 1, \ldots, r$) by

$$y_i := A_i \delta_i + B_i \quad \text{where} \quad A_i := \frac{t_1 + t_2 e^{-\alpha_i}}{1 - e^{\alpha_i}}, \quad B_i := \frac{t_1 + t_2}{1 - e^{-\alpha_i}}.$$

Proposition 9. We have the following equations.

1. $(y_i - t_1)(y_i - t_2) = 0$ for $i = 1, \ldots, r$.
2. $y_i y_j \cdots y_{i_{m_{i,j}}} y_{j \cdots} = y_{j \cdots} y_{i \cdots}$, where $m_{i,j}$ is the order of $s_i s_j$.

Proof. These equations can be shown by direct calculations. \square

By this proposition we can define $y_w := y_{i_1} \cdots y_{i_\ell}$ for a reduced expression $w = s_{i_1} \cdots s_{i_\ell}$. These $\{y_w\}_{w \in W}$ become a $Q_{t_1,t_2}(A)$-basis of $Q_{t_1,t_2}^{KK}(W)$.

Remark 3. This operator y_i can be seen as a generic Demazure-Lusztig operator. When $t_1 = -1, t_2 = q$, it becomes $y_{s_i}^q$ in Kumar’s book [Kum] (12.2.E(9)). We can also set A_i which satisfies

$$A_i A_{-i} = \frac{(t_1 + t_2 e^{\alpha_i})(t_1 + t_2 e^{-\alpha_i})}{(1 - e^{\alpha_i})(1 - e^{-\alpha_i})}.$$

For example, if we set $A_i = \frac{t_1 + t_2 e^{\alpha_i}}{1 - e^{\alpha_i}}$ and $t_1 = q, t_2 = -1$ and replace α_i by $-\alpha_i$, it becomes Lusztig’s T_{s_i} [Lu1]. If we set $A_i = -\frac{t_1 + t_2 e^{\alpha_i}}{1 - e^{\alpha_i}}$ and $t_1 = -1, t_2 = v$ and replace α_i by $-\alpha_i$, it becomes T_{s_i} in [BBL].

We can define a $Q_{t_1,t_2}(A)$-module isomorphism $\Phi : Q_{t_1,t_2}^{KK}(W) \to H_{t_1,t_2}(\mathbb{A}(W))$ by $\Phi(y_w) = h_w$. Let $\Delta_{s_i} := A_i \delta_i$. Define $A(w) := \prod_{\beta \in R(w)} \frac{t_1 + t_2 e^{-\beta}}{1 - e^{\beta}}$ and $\Delta_w := A(w) \delta_w$. Then it becomes that $\Delta_{s_{i_1}} \cdots \Delta_{s_{i_\ell}} = A(w) \delta_w = \Delta_w$. In particular, $\Delta_{s_{i_\ell}}$’s satisfy the braid relations. We can show below by induction on length $\ell(w)$.

Theorem 2. For $w \in W$, we have

$$\Phi(\Delta_w) = Y_w.$$
Proof. If \(w = s_i, \Delta_{s_i} = A_i\delta_i = y_i - B_i \). Therefore \(\Phi(\Delta_{s_i}) = h_i - B_i = h_i + \frac{t_i + s_i}{2} = Y_{s_i} \). If \(s_i w > w \), by induction hypothesis we can assume \(\Phi(\Delta_{u}) = Y_{u} = \sum_{u \leq w} p(u, w)h_u \). As \(\Phi \) is a \(Q_{t_1, t_2}(\Lambda) \)-isomorphism, it follows that \(\Delta_{u} = \sum_{u \leq w} p(u, w)y_u \). Then \(\Delta_{s_i w} = \Delta_{s_i} \Delta_{w} = A_i\delta_i \sum_{u \leq w} p(u, w)y_u = \sum_{u \leq w} s_i[p(u, w)]A_i\delta_i y_u = \sum_{u \leq w} s_i[p(u, w)][y_i - B_i]y_u = \sum_{u \leq s_i w} p(u, s_i w)y_u \). We used the recurrence relation (Proposition 5) for the last equality. Therefore \(\Phi(\Delta_{s_i w}) = \sum_{u \leq s_i w} p(u, s_i w)h_u = Y_{s_i w} \). The theorem is proved.

Corollary 2. (Explicit formula for \(\tilde{p}(w, v) \))

Let \(v = s_{i_1} \cdots s_{i_k} \) be a reduced expression. Then we have

\[
\tilde{p}(w, v) = \frac{1}{A(w)} \sum_{\epsilon = (\epsilon_1, \cdots, \epsilon_k) \in \{0, 1\}^k, s_i^{\epsilon_i} \cdots s_i^{r_i} = w} \prod_{j=1}^\ell C_j(\epsilon)
\]

where for \(\epsilon = (\epsilon_1, \cdots, \epsilon_k) \in \{0, 1\}^k \),
\[
C_j(\epsilon) := s_i^{\epsilon_i} s_i^{r_i} \cdots s_{i_{j-1}}^{r_{i_{j-1}}} (\delta_{i_{j-1}} A_i + \delta_{i_{j-1}} B_i).
\]

Proof. Taking the inverse image of the map \(\Phi \), the equality \(h_v = \sum_{w \leq v} \tilde{p}(w, v)Y_w \) becomes
\[
y_v = \sum_{w \leq v} \tilde{p}(w, v)\Delta_w = \sum_{w \leq v} \tilde{p}(w, v)A(w)\delta_w.
\]

As \(v = s_{i_1} \cdots s_{i_k} \) is a reduced expression, \(y_v = y_{s_{i_1}} \cdots y_{s_{i_k}} = (A_i\delta_i + B_i\delta_i) \cdots (A_i\delta_i + B_i\delta_i) \). By expanding this we get the formula.

\[\square\]

Remark 4. Using Theorem 1, we also have a closed form for \(p(w, v) \). We have another conjectural formula for \(p(w, v) \) using \(\lambda \)-chain cf. [Nar].

Example 1. Type \(A_2 \). We use notation \(A_{-1} = \ast(A_1), B_{-1} = \ast(B_1), B_{12} = \frac{t_1 + t_2}{1 - (t_1 + t_2)} \).

When \(v = s_1s_2s_1, w = s_1, \) then \(\epsilon = (1, 0, 0), (0, 0, 1) \) and

\[
\tilde{p}(s_1, s_1s_2s_1) = (A_1B_12B_{-1} + B_1B_2A_1)/A_1 = B_12B_{-1} + B_1B_2 = B_2B_{12}.
\]

When \(v = s_1s_2s_1, w = s_2, \) then \(\epsilon = (0, 1, 0) \) and

\[
\tilde{p}(s_2, s_1s_2s_1) = (B_1A_2B_{12})/A_2 = B_1B_{12}.
\]

When \(v = s_1s_2s_1, w = e, \) then \(\epsilon = (0, 0, 0), (1, 0, 1) \) and

\[
\tilde{p}(\epsilon, s_1s_2s_1) = B_1B_2B_1 + A_1B_{12}A_{-1}.
\]
4 Casselman’s problem

In his paper [Cas] B. Casselman gave a problem concerning transition coefficients between two bases in the space of Iwahori fixed vectors of a principal series representation of a p-adic group. We relate the problem with the Yang-Baxter basis and give an answer to the problem.

4.1 Principal series representations of p-adic group and Iwahori fixed vector

We follow the notations of M. Reeder [Re1, Re2]. Let G be a connected reductive p-adic group over a non-archimedian local field F. For simplicity we restrict to the case of split semisimple G. Associated to F, there is the ring of integer O, the prime ideal p with a generator w, and the residue field with $q = |O/p|$ elements. Let P be a minimal parabolic subgroup (Borel) of G, and A be the maximal split torus of P so that $A \simeq (F^*)^r$ where r is the rank of G. For an unramified quasi-character τ of A, i.e. a group homomorphism $\tau : A \to \mathbb{C}^*$ which is trivial on $A_0 = A \cap K$, where $K = G(O)$ is a maximal compact subgroup of G. Let $T = \mathbb{C}^* \otimes X^*(A)$ be the complex torus dual to A, where $X^*(A)$ is the group of rational characters on A, i.e. $X^*(A) = \{\lambda : A \to F^*, \text{ algebraic group homomorphism}\}$. We have a pairing $\langle, \rangle : A/A_0 \times T \to \mathbb{C}^*$ given by $\langle a, z \otimes \lambda \rangle = z^{\val(\lambda(a))}$. This gives an identification $T \simeq X_{nr}(A)$ of T with the set of unramified quasi-characters on A (cf. [Bum] Exercise 18,19).

Let $\Delta \subset X^*(A)$ be the set of roots of A in G, Δ^+ be the set of positive roots corresponding to P and $\Sigma \subset \Delta^+$ be the set of simple roots. For a root $\alpha \in \Delta$, we define $e_\alpha \in X^*(T)$ by

$$e_\alpha(\tau) = \langle h_\alpha(w), \tau \rangle$$

for $\tau \in T$ where $h_\alpha : F^* \to A$ is the one parameter subgroup (coroot) corresponding to α.

Remark 5. As the definition shows, e_α is defined using the coroot $\alpha^* = h_\alpha$. So it should be parametrized by α^*, but for convenience we follow the notation of [Re1]. Later we will identify $e_\alpha (\alpha \in \Delta = R^*)$ with $e^\alpha (\alpha \in R = \Delta^*)$ by the map $*: \Delta \to R$ of root data.

W acts on right of $X_{nr}(A)$ so that $\tau^w(a) = \tau(aww^{-1})$ for $a \in A$, $\tau \in T$ and $w \in W$. The action of W on $X^*(T)$ is given by $(we_\alpha)(\tau) = e_{w\alpha}(\tau) = e_\alpha(\tau^w)$ for $\alpha \in \Delta$, $\tau \in T$ and $w \in W$.

The principal series representation $I(\tau)$ of G associated to an unramified quasicharacter τ of A is defined as follows. As a vector space over \mathbb{C} it consists of locally constant functions on G with values in \mathbb{C} which satisfy the left relative invariance properties with respect to P where τ is extended to P with trivial value on the unipotent radical N of $P = AN$.

$$I(\tau) := \text{Ind}_P^G(\tau) = \{f : G \to \mathbb{C} \text{ loc. const. function } |f(pg) = \tau^{\val(p)} f(g) \text{ for } \forall p \in P, \forall g \in G\}.$$
Here δ is the modulus of P. The action of G on $I(\tau)$ is defined by right translation, i.e. for $g \in G$ and $f \in I(\tau)$, $(\pi(g)f)(x) = f(xg)$.

Let B be the Iwahori subgroup which is the inverse image $\pi^{-1}(P(\mathbb{F}_q))$ of the Borel subgroup $P(\mathbb{F}_q)$ of $G(\mathbb{F}_q)$ by the projection $\pi : G(\mathbb{O}) \to G(\mathbb{F}_q)$. Then we define $I(\tau)^B$ to be the space of Iwahori fixed vectors in $I(\tau)$, i.e.

$$I(\tau)^B := \{ f \in I(\tau) \mid f(bg) = f(g) \text{ for } \forall b \in B, \forall g \in G \}.$$

This space has a natural basis $\{ \varphi^\tau_w \}_{w \in W}$. $\varphi^\tau_w \in I(\tau)^B$ is supported on PwB and satisfies

$$\varphi^\tau_w(pwb) = \tau \delta^{1/2}(p) \text{ for } \forall p \in P, \forall b \in B.$$

4.2 Intertwiner and Casselman’s basis

From now on we always assume that τ is regular i.e. the stabilizer $W_\tau = \{ w \in W \mid \tau^w = \tau \}$ is trivial. The intertwining operator $A^\tau_w : I(\tau) \to I(\tau^w)$ is defined by

$$A^\tau_w(f)(g) := \int_{N_w} f(wng)dn$$

where $N_w := N \cap w^{-1}Nw$, with N_- being the unipotent radical of opposite parabolic P_- which corresponds to the negative roots Δ^-. The integral is convergent when $|e_\alpha(\tau)| < 1$ for all $\alpha \in \Delta^+$ such that $w\alpha \in \Delta^-$ (cf. [Bum] Proposition 63), and may be meromorphically continued to all τ. It has the property that for $x, y \in W$ with $\ell(xy) = \ell(x) + \ell(y)$, then

$$A^\tau_y A^\tau_x = A^\tau_{xy}.$$

The Casselman’s basis $\{ f^\tau_w \}_{w \in W}$ of $I(\tau)^B$ is defined as follows. $f^\tau_w \in I(\tau)^B$ and

$$A^\tau_y f^\tau_w(1) = \begin{cases} 1 & \text{if } y = w \\ 0 & \text{if } y \neq w. \end{cases}$$

M. Reeder characterizes this using the action of affine Hecke algebra (cf. [Re2] Section 2). The affine Hecke algebra $\mathcal{H} = \mathcal{H}(G, B)$ is the convolution algebra of B bi-invariant locally constant functions on G with values in \mathbb{C}. By the theorem of Iwahori-Matsumoto it can be described by generators and relations. The basis $\{ T_w \}_{w \in \mathbb{W}_uf}$ consists of characteristic functions $T_w := ch_{BwB}$ of double coset BwB. Let \mathcal{H}_W be the Hecke algebra of the finite Weyl group W generated by the simple reflections s_α for simple roots $\alpha \in \Sigma$. As a vector space \mathcal{H} is the tensor product of two subalgebras $\mathcal{H} = \Theta \otimes \mathcal{H}_W$. The subalgebra Θ is commutative and isomorphic to the coordinate ring of the complex torus T with a basis $\{ \theta_a \mid a \in A / A_0 \}$, where θ_a is defined as follows (cf. [Lan2]). Define $A^- := \{ a \in A \mid |\alpha(a)|_F \leq 1 \forall \alpha \in \Sigma \}$. For $a \in A$, choose $a_1, a_2 \in A^-$ such that $a = a_1a_2^{-1}$. Then $\theta_a = q^{(\ell(a_1) - \ell(a_2))/2}T_{a_1}T_{a_2}^{-1}$ where for $x \in G$, $\ell(x)$ is the length function defined by $q^{\ell(x)} = [BxB : B]$ and $T_x \in \mathcal{H}$ is the characteristic function of BxB.

9
By Lemma (4.1) of \cite{Re1}, there exists a unique $f^\tau_w \in I(\tau)_w \cap I(\tau)^B$ for each $w \in W$ such that

1. $f^\tau_w(w) = 1$ and
2. $\sigma(\theta_a)f^\tau_w = \tau^w(a)f^\tau_w$ for all $a \in A$.

Here $I(\tau)_w \coloneqq \{ f \in I(\tau) \mid \text{support of } f \text{ is contained in } \bigcup_{x \geq w} PxP \}$.

4.3 Transition coefficients

Let

$$f^\tau_w = \sum_{w \leq v} a_{w,v}(\tau) \varphi^\tau_v$$

and

$$\varphi^\tau_v = \sum_{w \leq v} b_{w,v}(\tau) f^\tau_w.$$

The Casselman’s problem is to find an explicit formula for $a_{w,v}(\tau)$ and $b_{w,v}(\tau)$.

To relate the results in Sections 2 and 3 with the Casselman’s problem, in this subsection we specialize the parameters $t_1 = -q^{-1}$, $t_2 = 1$ and take tensor product with the complex field \mathbb{C}. For example, the Yang-Baxter basis Y_w will become a $Q_{t_1,t_2}(\Lambda) \otimes \mathbb{C}$ basis in $H_{t_1,t_2}(W) _{\mathbb{C}} = H_{t_1,t_2}(W) \otimes \mathbb{C}$. The generic Demazure-Lusztig operator defined in Section 3 will become

$$y_i = A_i \delta_i + B_i \text{ where } A_i := \frac{-q^{-1} + e^{-\alpha_i}}{1 - e^{\alpha_i}}, B_i := \frac{-q^{-1} + 1}{1 - e^{\alpha_i}}.$$

Then $(y_i + q^{-1})(y_i - 1) = 0$.

Theorem 3. We identify e^α with e_α (cf. Remark 4). Then,

$$a_{w,v}(\tau) = \tilde{p}(w,v)(\tau)|_{t_1 = -q^{-1}, t_2 = 1}$$

and

$$b_{w,v}(\tau) = p(w,v)(\tau)|_{t_1 = -q^{-1}, t_2 = 1}.$$

Proof. $b_{w,v}$’s satisfy the same recurrence relation (Proposition 5 with $t_1 = -q^{-1}, t_2 = 1$) as $p(w,v)$’s (cf. \cite{Re2} Proposition (2.2)). The initial condition $b_{w,w} = p(w,w) = 1$ leads to the second equation. The first equation then also holds. Note that the $b_{y,y}$ in \cite{Re2} is our $b_{w,y}$.

Remark 6. There is also a direct proof that does not use recurrence relation cf. \cite{NN}.

Corollary 3. We have a closed formula for $a_{w,v}(\tau)$ and $b_{w,v}(\tau)$ by Corollary 2 and Theorem 1.
Corollary 4. For \(v \in W \), we have

\[\sum_{w \leq v} b_{w,v} = \prod_{\beta \in R(e)} \frac{1 - q^{-1} e^\beta}{1 - e^\beta}, \]

and

\[\sum_{w \leq v} b_{w,v}(-q^{-1})^\ell(w) = \prod_{\beta \in R(v)} \frac{1 - q^{-1}}{1 - e^\beta}. \]

Proof. When \(t_1 = -q^{-1}, t_2 = 1 \), we can specialize \(h_i \) to 1 and we get the first equation from the definition of \(Y_v \), since \(1 + \frac{(1-q^{-1}) e^\beta}{1-e^\beta} = \frac{1-q^{-1} e^\beta}{1-e^\beta} \). We can also specialize \(h_i \) to \(-q^{-1}\) and \(-q^{-1} + \frac{(1-q^{-1}) e^\beta}{1-e^\beta} = \frac{1-q^{-1}}{1-e^\beta} \) gives the second equation. \(\Box \)

Remark 7. The left hand side of the first equation in Corollary 4 is \(m(e, v^{-1}) \) in \([BN]\). So this gives another proof of Theorem 1.4 in \([BN]\).

4.4 Whittaker function

M.Reeder \([Re2]\) specified a formula for the Whittaker function \(W_\tau(f^\pi_v) \) and using \(b_{w,v} \), he got a formula for \(W_\tau(\varphi^\pi_w) \). For \(a \in A \), let \(\lambda_a \in X^*(T) \) be

\[\lambda_a(z \otimes \mu) = z^{val(\mu(a))} \text{ for } z \in \mathbb{C}^*, \mu \in X^*(A). \]

Formally the result of M.Reeder \([Re2]\) Corollary (3.2) is written as follows. For \(w \in W \) and \(a \in A^- \),

\[W(\varphi_w)(a) = \delta^{1/2}(a) \sum_{w \leq y} b_{w,y} y \left[\lambda_a \prod_{\beta \in R^+ - R(y)} \frac{1 - q^{-1} e^\beta}{1 - e^\beta} \right] \in \mathbb{C}[T]. \]

Then using Corollary 3, we have an explicit formula of \(W(\varphi_w)(a) \).

4.5 Relation with Bump-Nakashuji’s work

Now we explain the relation between this paper and Bump-Nakashuji \([BN]\). First of all, the notational conventions are slightly different. Especially in the published \([BN]\) the natural base and intertwiner are differently parametrized. The natural basis \(\phi_w \) in \([BN]\) is our \(\varphi_{w^{-1}} \). The intertwiner \(M_w \) in \([BN]\) is our \(A_{w^{-1}} \) so that if \(\ell(w_1 w_2) = \ell(w_1) + \ell(w_2), M_{w_1, w_2} = M_{w_1} \circ M_{w_2} \) while \(A_{w_1, w_2} = A_{w_2} A_{w_1} \).

In the paper \([BN]\), another basis \(\{ \psi_w \}_{w \in W} \) for the space \(I(\tau)^B \) was defined and compared with the Casselman’s basis. They defined \(\psi_w := \sum_{v \geq w} \varphi_v \) and expand this as \(\psi_w = \sum_{v \geq w} m(w, v) f_v \) and conversely \(f_w = \sum_{v \geq w} \tilde{m}(w, v) \psi_v \). They observed that the transition coefficients \(m(w, v) \) and \(\tilde{m}(w, v) \) factor under certain condition. Let \(S(w, v) := \{ \alpha \in R^+ | w \leq s_{\alpha} v < v \} \) and \(S'(w, v) := \{ \alpha \in R^+ | w < s_{\alpha} w \leq v \} \). Then the statements of the conjectures are as follows.
Conjecture 1. (BN Conjecture 1.2) Assume that the root system R is simply-laced. Suppose $w \leq v$ and $|S(w, v)| = \ell(v) - \ell(w)$, then

$$m(w, v) = \prod_{\alpha \in S(w, v)} \frac{1 - q^{-1}z^\alpha}{1 - z^\alpha}.$$

Conjecture 2. (BN Conjecture 1.3) Assume that the root system R is simply-laced. Suppose $w \leq v$ and $|S'(w, v)| = \ell(v) - \ell(w)$, then

$$\tilde{m}(w, v) = (-1)^{\ell(v) - \ell(w)} \prod_{\alpha \in S'(w, v)} \frac{1 - q^{-1}z^\alpha}{1 - z^\alpha}.$$

Proposition 10. Conjecture 1.2 and Conjecture 1.3 in BN are equivalent.

Proof. We can show $m(w, v) = \sum_{w \leq z \leq v} p(z, v)$ and $\tilde{m}(w, v) = \sum_{w \leq z \leq v} (-1)^{\ell(v) - \ell(z)} \tilde{p}(w, z)$. Then it follows by the Theorem 1 that $\tilde{m}(w, v) = (-1)^{\ell(v) - \ell(w)} m(vw_0, wv_0)$. As $S'(w, v) = S(vw_0, wv_0)$ we get the desired conclusion. \hfill \square

Acknowledgements

We would like to thank Shin-ichi Kato for valuable comments on the first version of this paper. We also would like to thank the referees for careful reading and point out the significantly related paper [Che]. This work was supported in part by JSPS Research Fellowship for Young Scientists and by Grant-in-Aid for Scientific Research.

References

[BBL] B. Brubaker, D. Bump and A. Licata, Whittaker functions and Demazure operators, J. of Number Th. 146 (2015), 41–68.

[Bum] D. Bump, “Hecke Algebras,” May 11, 2010.
http://sporadic.stanford.edu/bump/math263/hecke.pdf

[BN] D. Bump and M. Nakasuji. Casselman’s basis of Iwahori vetors and the Bruhat order, Canadian Journal of Mathematics, Vol.63, 1238–1253, (2011).

[Cas] W. Casselman, The unramified principal series of p-adic groups I. The spherical function, Comp. Math. 40 (1980), 387–406.

[Che] I. Cherednik, A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), 411–431.

[Dem] M. Demazure, Donnees Radicielles, 85–155, SGA3 Exp. 21. Springer Lect. Notes in Math. 153, (1970).
[Hum] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge studies in adv. math. 29 (1990).

[Kat] S. Kato, R-matrix arising from affine Hecke algebras and its application to Macdonald’s difference operators, Comm. Math. Phys. 165 (1994), 533–553.

[Kum] S. Kumar, Kac-Moody Groups, their Flag Varieties and Representation Theory, Progress in Math. Birkhauser 2002.

[Las] A. Lascoux. Polynômes. [http://phalanstere.univ-mlv.fr/~al/ARTICLES/CoursYGKM.pdf]

[LSS] T. Lam, A. Schilling and M. Shimozono, K-theory Schubert calculus of the affine Grassmannian, Comp. Math. 146 (2010), 811–852.

[LLT] A. Lascoux, B. Leclerc and J.Y. Thibon, Flag varieties and the Yang-Baxter Equation, Letters in Math. Phys., 40 (1997), 75–90.

[Lu1] G. Lusztig, Equivariant K-theory and representations of Hecke algebras, Proc. Amer. Math. Soc., 94 (1985), 337–342.

[Lu2] G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc., 2 (1989), 599–635.

[NN] M. Nakasuji and H. Naruse, Casselman problem and duality for intertwiner, in preparation.

[Nar] H. Naruse, Schubert calculus and hook formula, in preparation.

[Re1] M. Reeder, On certain Iwahori invariants in the unramified principal series, Pacific J. of Math. 153 (1992), 313–342.

[Re2] M. Reeder, p-adic Whittaker functions and vector bundles on flag manifolds, Comp. Math. 85 (1993), 9–36.