BEHAVIOR OF THE BERGMAN KERNEL
AND METRIC NEAR CONVEX BOUNDARY POINTS

NIKOLAI NIKOLOV AND PETER PFLUG

(Communicated by Mei-Chi Shaw)

Abstract. The boundary behavior of the Bergman metric near a convex boundary point z_0 of a pseudoconvex domain $D \subset \mathbb{C}^n$ is studied. It turns out that the Bergman metric at points $z \in D$ in the direction of a fixed vector $X_0 \in \mathbb{C}^n$ tends to infinity, when z is approaching z_0, if and only if the boundary of D does not contain any analytic disc through z_0 in the direction of X_0.

For a domain $D \subset \mathbb{C}^n$ we denote by $L^2_0(D)$ the Hilbert space of all holomorphic functions f that are square-integrable and by $\|f\|_D$ the L^2-norm of f. Let $K_D(z)$ be the restriction on the diagonal of the Bergman kernel function of D. It is well known (cf. [5]) that

$$K_D(z) = \sup\{|f(z)|^2 : f \in L^2_0(D), \|f\|_D \leq 1\}.$$

If $K_D(z) > 0$ for some point $z \in D$, then the Bergman metric $B_D(z; X)$, $X \in \mathbb{C}^n$, is well defined and can be given by the equality

$$B_D(z; X) = \frac{M_D(z; X)}{\sqrt{K_D(z)}},$$

where

$$M_D(z; X) = \sup\{|f'(z)X| : f \in L^2_0(D), \|f\|_D = 1, f(z) = 0\}.$$

We say that a boundary point z_0 of a domain $D \subset \mathbb{C}^n$ is convex if there is a neighborhood U of this point such that $D \cap U$ is convex.

In [4], Herbort proved the following

Theorem 1. Let z_0 be a convex boundary point of a bounded pseudoconvex domain $D \subset \mathbb{C}^n$ whose boundary contains no nontrivial germ of an analytic curve near z_0. Then

$$\lim_{z \to z_0} B_D(z; X) = \infty$$

for any $X \in \mathbb{C}^n \setminus \{0\}$.

Herbort’s proof is mainly based on Ohsawa’s ∂-technique. The main purpose of this note is to generalize Theorem 1 using more elementary methods.

Received by the editors January 21, 2002.

2000 Mathematics Subject Classification. Primary 32A25.

Key words and phrases. Bergman kernel, Bergman metric.
For a convex boundary point \(z_0 \) of a domain \(D \subset \mathbb{C}^n \) we denote by \(L(z_0) \) the set of all \(X \in \mathbb{C}^n \) for which there exists a number \(\varepsilon_X > 0 \) such that \(z_0 + \lambda X \in \partial D \) for all complex numbers \(\lambda, |\lambda| \leq \varepsilon_X \). Note that \(L(z_0) \) is a complex linear space.

Then our result is the following one.

Theorem 2. Let \(z_0 \) be a convex boundary point of a bounded pseudoconvex domain \(D \subset \mathbb{C}^n \) and let \(X \in \mathbb{C}^n \). Then
(a) \(\liminf_{z \to z_0} K_D(z) \text{ dist}^2(z, \partial D) \in (0, \infty) \);
(b) \(\lim_{z \to z_0} B_D(z; X) = \infty \) if and only if \(X \notin L(z_0) \). Moreover, this limit is locally uniform in \(X \notin L(z_0) \);
(c) if \(L(z_0) = \{0\} \), then (a) and (b) are still true without the assumption that \(D \) is bounded.

Proof of Theorem 2. To prove (a) and (b) we will use the following localization theorem for the Bergman kernel and metric [2].

Theorem 3. Let \(D \subset \mathbb{C}^n \) be a bounded pseudoconvex domain and let \(V \subset \subset U \) be open neighborhoods of a point \(z_0 \in \partial D \). Then there exists a constant \(C \geq 1 \) such that
\[
\hat{C}^{-1} K_{D \cap U}(z) \leq K_D(z) \leq K_{D \cap U}(z),
\]
\[
\hat{C}^{-1} B_{D \cap U}(z; X) \leq B_D(z; X) \leq \hat{C} B_{D \cap U}(z; X)
\]
for any \(z \in D \cap V \) and any \(X \in \mathbb{C}^n \). (Here \(K_{D \cap U}(z) \) and \(B_{D \cap U}(z; \cdot) \) denote the Bergman kernel and metric of the connected component of \(D \cap U \) that contains \(z \).)

So, we may assume that \(D \) is convex.

To prove part (a) of Theorem 2, for any \(z \in D \) we choose a point \(\tilde{z} \in \partial D \) such that \(||z - \tilde{z}|| = \text{dist}(z, \partial D) \). We denote by \(l \) the complex line through \(z \) and \(\tilde{z} \). By the Oshawa-Takegoshi extension theorem for \(L^2 \)-holomorphic functions [2], it follows that there exists a constant \(C_1 > 0 \) only depending on the diameter of \(D \) (not on \(l \)) such that
\[
K_D(z) \geq C_1 K_{D \cap l}(z).
\]
Since \(D \cap l \) is convex, it is contained in an open half-plane \(\Pi \) of the \(l \)-plane with \(\tilde{z} \in \partial \Pi \). Then
\[
K_{D \cap l}(z) \geq K_{\Pi}(z) = \frac{1}{4\pi \text{dist}^2(z, \partial \Pi)}.
\]
Now, part (a) of Theorem 2 follows from the inequalities (1), (2) and the fact that \(\text{dist}(z, \partial \Pi) \leq ||z - \tilde{z}|| = \text{dist}(z, \partial D) \).

To prove part (b) of Theorem 2, we denote by \(N(z_0) \) the complex affine space through \(z_0 \) that is orthogonal to \(L(z_0) \). Set \(E(z_0) = D \cap N(z_0) \). Note that \(E(z_0) \) is a nonempty convex set. So, part (b) of Theorem 2 will be a consequence of the following:

Theorem 4. Let \(z_0 \) be a boundary point of a bounded convex domain \(D \subset \mathbb{C}^n \). Then:
(i) \(\lim_{z \to z_0} B_D(z; X) = \infty \) locally uniformly in \(X \notin L(z_0) \);
(ii) for any compact set $K \subset E(z_0)$ there exists a constant $C > 0$ such that
$$B_D(z; X) \leq C||X||, \quad z \in K^0, \ X \in L(z_0),$$
where $K^0 := \{z_0 + tz : z \in K, \ 0 < t \leq 1\}$ is the cone generated by K.

Proof of Theorem 4. To prove (i) we will use the well-known fact that the Carathéodory metric $C_D(z; X)$ of D does not exceed $B_D(z; X)$. On the other hand, we have the following simple geometric inequality [1]:
$$C_D(z; X) \geq \frac{1}{2d(z; X)},$$
where $d(z; X)$ denotes the distance from z to the boundary of D in the X-direction, i.e., $d(z; X) := \sup\{r : z + \lambda X \in D, \ \lambda \in \mathbb{C}, \ |\lambda| < r\}$. So, if we assume that (i) does not hold, then we may find a number $a > 0$ and sequences $D \supset (z_j)$, $z_j \to z_0$, $z_{j+1} \in X$ such that $d(z_j; X_j) \geq a$ which implies that for $|\lambda| \leq a$ the points $z_0 + \lambda X$ belong to \hat{D} and, in view of convexity, they belong to ∂D. This means that $X \in L(z_0)$, a contradiction.

To prove part (ii) of Theorem 4, we may assume that $z_0 = 0$ and $L := L(0) = \{z \in \mathbb{C}^n : z_1 = \ldots = z_k = 0\}$ for some $k < n$. Then $N := N(0) = \{z \in \mathbb{C}^n : z_{k+1} = \ldots = z_n = 0\}$. From now on we will write any point $z \in \mathbb{C}^n$ in the form $z = (z', z'')$, $z' \in \mathbb{C}^k$, $z'' \in \mathbb{C}^{n-k}$. Note that $L \subseteq \partial D$ near 0, i.e., there exists a $c > 0$ such that
$$\{0'\} \times \Delta''_c \in \partial D,$$
where $\Delta''_c \subset \mathbb{C}^{n-k}$ is the polydisc with center at the origin and radius c. Since $K \subset E := E(0)$ and since E is convex, there exists an $\alpha > 1$ such that $K \subset E_\alpha$, where $E_\alpha := \{z : az \in E\}$. Note that $K^0 \subset E_\alpha$. Using (3), the equality
$$(z', z'') = \frac{1}{\alpha}(\alpha z', 0') + (1 - \frac{1}{\alpha})(0', (1 - \frac{1}{\alpha})^{-1} z''),$$
and the convexity of D, it follows that
$$F_\alpha \times \Delta''_c \subset D,$$
where $\varepsilon := c(1 - \frac{1}{\alpha})$ and where F_α is the projection of E_α in \mathbb{C}^k (we can identify E_α with F_α). For $\delta := c(\alpha - 1)$ we obtain in the same way that
$$\hat{D} := D \cap (\mathbb{C}^k \times \Delta''_c) \subset F_\alpha \times \Delta''_\delta.$$

Now, let $(z, X) \in K^0 \times L$. Note that $z = (z', 0')$ and $X = (0', X'')$. Then, using (4) and the product properties of the Bergman kernel and metric, we have
$$M_D(z; X) \leq M_{F_\alpha \times \Delta''_c}(z; X) \leq M_{\Delta''_\delta}(0' ; X'') \sqrt{K_{F_\alpha}(z')} \leq C_1||X|| \sqrt{K_{F_\alpha}(z')}$$
for some constant $C_1 > 0$. On the other hand, since $K^0 \subset \subset \mathbb{C}^k \times \Delta''_\delta$, by virtue of Theorem 3 there exists a constant $\tilde{C} > 1$ such that
$$K_D(z) \geq \tilde{C}^{-1} K_{\hat{D}}(z).$$
Moreover, in view of (5), we have
$$K_{\hat{D}}(z) \geq K_{F_\alpha \times \Delta''_c}(z) K_{\Delta''_\delta}(0')$$
and hence
\begin{equation}
K_D(z) \geq (C_2)^2 K_{F_1}(z')
\end{equation}
for some constant $C_2 > 0$. Now, by (6) and (7), it follows that
\begin{equation}
B_D(z; X) = \frac{M_D(z; X)}{\sqrt{K_D(z)}} \leq \frac{C_1}{C_2} ||X|| \sqrt{\frac{K_{F_1}(z')}{K_{F_2}(z')}}.
\end{equation}

Note that $z' \to \alpha^{-2}z'$ is a biholomorphic mapping from F_1 onto F_2 and, therefore,
\begin{equation}
K_{F_1}(z') = \alpha^{-4k} K_{F_2}(\alpha^{-2}z').
\end{equation}

In view of (8) and (9), in order to finish (ii) we have to find a constant $C_3 > 0$ such that
\begin{equation}
K_{F_2}(z') \leq C_3 K_{F_2}(\alpha^{-2}z')
\end{equation}
for any $z' \in H^0$ with $H^0 := \{tz': z' \in H, 0 < t \leq 1\}$, where H is the projection of K into \mathbb{C}^k (we can identify K with H).

To do this, note first that $\gamma := \text{dist}(H, \partial F_0) > 0$ since $K \subset E_{\alpha}$. Fix $\tau \in (0, 1]$ and $z' \in H^0$, and denote by $T_{\tau, z'}$ the translation that maps the origin in the point $\tau z'$. It is easy to check that
\begin{equation}
T_{\tau, z'}(\bar{F}_\alpha \cap B_\gamma) \subset F_\alpha,
\end{equation}
where B_γ is the ball in \mathbb{C}^k with center at the origin and radius γ. To prove (10), we will consider the following two cases:

Case I. $z' \in H^0 \setminus B_2$: Then
\begin{equation}
K_{F_\alpha}(z') \leq \frac{m_1}{m_2} K_{F_\alpha}(\alpha^{-2}z'),
\end{equation}
where $m_1 := \sup_{H^0 \setminus B_2} K_{F_\alpha}$ and $m_2 := \inf K_{F_\alpha}$.

Case II. $z' \in H^0 \cap B_2$: By Theorem 3 there exists a constant $\tilde{C}_3 \geq 1$ such that
\begin{equation}
\tilde{C}_3 K_{F_\alpha} \geq K_{F_\alpha \cap B_\gamma} \text{ on } F_\alpha \cap B_2.
\end{equation}
In particular,
\begin{equation}
\tilde{C}_3 K_{F_\alpha}(\alpha^{-2}z') \geq K_{F_\alpha \cap B_\gamma}(\alpha^{-2}z').
\end{equation}

On the other hand, by (11) with data $T := T_{1-\alpha^{-2}, z'}$ it follows that
\begin{equation}
K_{F_\alpha \cap B_\gamma}(\alpha^{-2}z') = K_{T(F_\alpha \cap B_\gamma)}(z') \geq K_{F_\alpha}(z').
\end{equation}

Now, (12), (13), and (14) imply that (10) holds for $C_3 := \max\{\frac{m_1}{m_2}, \tilde{C}_3\}$. This completes the proofs of Theorem 4 and part (b) of Theorem 2. \hfill \Box

Remark. The approximation (5) of the domain $D \cap (\mathbb{C}^k \times \Delta^0_N)$ by the domain $E_1 \times \Delta^0_N$ can be replaced by using the Oshawa-Takegoshi theorem \[7\] with the data D and N.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Finally, part (c) of Theorem 2 will be a consequence of the following two theorems.

Theorem 5 [8]. Let $D \subset \mathbb{C}^n$ be a pseudoconvex domain and let U be an open neighborhood of a local (holomorphic) peak point $z_0 \in \partial D$. Then
\[
\lim_{z \to z_0} \frac{K_D(z)}{K_{D \cap U}(z)} = 1
\]
and
\[
\lim_{z \to z_0} \frac{B_D(z; X)}{B_{D \cap U}(z; X)} = 1
\]
locally uniformly in $X \subset \mathbb{C}^n \setminus \{0\}$.

Theorem 6. Let z_0 be a boundary point of a bounded convex domain $D \subset \mathbb{C}^n$. Then the following conditions are equivalent:

1. z_0 is a (holomorphic) peak point;
2. z_0 is the unique analytic curve in \bar{D} containing z_0;
3. $L(z_0) = \{0\}$.

Note that the only nontrivial implication is (3) \implies (1). It is contained in [8]. Now, part (c) of Theorem 2 is a consequence of this implication, Theorem 5, and part (b) of Theorem 2.

Proof of Theorem 6. The implication (2) \implies (3) is trivial.

The implication (1) \implies (2) easily follows by the maximum principle and the fact that there are a neighborhood U of z_0 and a vector $X \subset \mathbb{C}^n$ such that $(\bar{D} \cap U) + (0, 1]X \subset D$ (cf. (11)).

Denote by $A^0(D)$ the algebra of holomorphic functions on D which are continuous on \bar{D}. Now, following [8] we shall prove the implication (3) \implies (1); namely, (3) implies that z_0 is a peak point with respect to $A^0(D)$. This is equivalent to the fact (cf. [3]) that the point mass at z_0 is the unique element of the set $A(z_0)$ of all representing measures for z_0 with respect to $A^0(D)$, i.e. $\text{supp } \mu = \{z_0\}$ for any $\mu \in A(z_0)$.

Let $\mu \in A(z_0)$. Since D is convex, we may assume that $z_0 = 0$ and $D \subset \{z \in \mathbb{C}^n : \text{Re}(z_1) < 0\}$. Note that if a is a positive number such that $a \inf_{z \in D} \text{Re}(z_1) > -1$ (D is bounded), then the function $f_1(z) = \exp(z_1 + az_1^2)$ belongs to $A^0(D)$ and $|f_1(z)| < 1$ for $z \in \bar{D} \setminus \{z_1 = 0\}$. This easily implies (cf. [3]) that $\text{supp } \mu \subset D_1 := \partial D \cap \{z_1 = 0\}$. Since $L(0) = 0$, the origin is a boundary point of the compact convex set D_1. As above, we may assume that $D_1 \subset \{z \in \mathbb{C}^n : \text{Re}(z_2) \leq 0\}$ (z_2 is independent of z_1) and then construct a function $f_2 \in A^0(D)$ such that $|f_2(z)| < 1$ for $z \in D_1 \setminus \{z_2 = 0\}$. This implies that $\text{supp } \mu \subset D_1 \cap \{z_2 = 0\}$. Repeating this argument we conclude that $\text{supp } \mu = \{0\}$, which completes the proofs of Theorems 6 and 2. \hfill \Box

Acknowledgments

This paper was written during the stay of the first author at the University of Oldenburg, supported by a grant from the DAAD. He thanks both institutions, the DAAD and the Mathematical Department of the University of Oldenburg.
References

[1] E. Bedford, S. Pinchuk, Convex domains with noncompact automorphism groups, Sb. Math. 82 (1995), 1-20. MR 95e:32037

[2] K. Diederich, J.E. Fornaess, G. Herbort, Boundary behavior of the Bergman metric, Proc. Symp. Pure Math. 41 (1984), 59-67. MR 85j:32039

[3] T.W. Gamelin, Uniform algebras, Chelsea, New York, 1984. Originally published by Prentice-Hall, Englewood Cliffs, NJ, 1969. MR 53:14137

[4] G. Herbort, On the Bergman metric near a plurisubharmonic barrier point, Prog. Math. 188 (2000), 123-132. MR 2001g:32079

[5] M. Jarnicki, P. Pflug, Invariant distances and metrics in complex analysis, Walter De Gruyter, Berlin, New York, 1993. MR 94k:32039

[6] N. Nikolov, Localization of invariant metrics, Arch. Math. 79 (2002), 67-73.

[7] T. Ohsawa, K. Takegoshi, Extension of L^2 holomorphic functions, Math. Z. 195 (1987), 197-204. MR 88g:32029

[8] N. Sibony, Une classe de domaines pseudoconvexes, Duke Math. J. 55 (1987), 299-319. MR 88g:32036

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
E-mail address: nik@math.bas.bg

Fachbereich Mathematik, Carl von Ossietzky Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany
E-mail address: pflug@mathematik.uni-oldenburg.de