Controversies in the pathological assessment of colorectal cancer

Aoife Maguire, Kieran Sheahan

Abstract

Pathologic assessment of colorectal cancer specimens plays an essential role in patient management, informing prognosis and contributing to therapeutic decision making. The tumor-node-metastasis (TNM) staging system is a key component of the colorectal cancer pathology report and provides important prognostic information. However, there is significant variation in outcome of patients within the same tumor stage. Many other histological features such as tumor budding, vascular invasion, perineural invasion, tumor grade and rectal tumor regression grade may be of prognostic value but are not part of TNM staging. Assessment of extramural tumor deposits and peritoneal involvement contributes to TNM staging but is fraught with some difficulties with the definition of both of these features. Controversies in colorectal cancer pathology reporting include the subjective nature of some of the elements assessed, poor reporting rates and reproducibility and the need for standardized examination protocols and reporting. Molecular pathology is becoming increasingly important in prognostication and prediction of response to targeted therapies but accurate morphology still has a key role to play in colorectal cancer pathology reporting.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Colorectal cancer; Staging; Prognosis; Histopathology; Tumor-node-metastasis

INTRODUCTION

Pathologic assessment of the colorectal cancer (CRC) resection specimens plays a central role in patient management. The pathology report informs prognosis and contributes to decisions regarding adjuvant therapy. Currently, the primary method for assessing prognostic differences among patients is the tumor-node-metastasis (TNM) staging system, developed by the American Joint Committee on Cancer (AJCC) and the International Union Against Cancer (UICC). Controversies in colorectal cancer pathology reporting include the subjective nature of some of the elements assessed, poor reporting rates and reproducibility and the need for standardized examination protocols and reporting. Molecular pathology is becoming increasingly important in prognostication and prediction of response to targeted therapies but accurate morphology still has a key role to play in colorectal cancer pathology reporting.
significant variation in outcome of patients even within the same tumor stage\(^2\). Many promising prognostic and/or predictive molecular and immunohistochemical biomarkers are emerging but morphological parameters are still important predictors of patient outcome.

**PERITONEAL INVOLVEMENT**

Peritoneal involvement or serosal invasion is an important adverse prognostic factor in CRC associated with intraperitoneal recurrence and decreased overall survival\(^3\)\(^-\)\(^7\). Patients with stage II CRC and peritoneal involvement (pT4a according to TNM 7\(^[1]\)) and invasion into other structures/organs (pT4b according to TNM 7\(^[1]\)) may be considered for adjuvant chemotherapy.

It should be noted that the classification of peritoneal involvement is different in TNM 5 and TNM 7. The Royal College of Pathologists (RCPath) in the United Kingdom still recommends use of the TNM5 staging system\(^8\), while TNM 7 has been adopted in many other jurisdictions. In TNM 5 tumor directly invading other organs is staged as pT4a while tumor involving the visceral peritoneum is staged as pT4b\(^9\).

The assessment of peritoneal involvement and the distinction of pT3 tumors from pT4a tumors can be particularly challenging for pathologists and there is a wide variation in the reported incidence of peritoneal involvement, ranging from 5\% to 43\% in studies of stage II CRC\(^3\)\(^-\)\(^6\),\(^10\)\(^-\)\(^15\). A recent review by Stewart \et\[^1^4\] highlighted the practical difficulties in diagnosis and interpretation of criteria for peritoneal involvement. Peritoneal involvement may be difficult to identify both at gross examination and microscopy and extensive sampling and sectioning of blocks may be required to detect it. The serosal surface of the CRC resection specimen should be carefully examined macroscopically. Block selection may be focused in areas where there is peritoneal abnormality such as puckering (Figure 1A and B), inflammation or fibrosis. Detection of peritoneal involvement may be enhanced with careful sampling of areas with peritoneal clefts (Figure 1C) and where the peritoneal lining reflects off the bowel wall on to the mesentery.

There is currently no universally accepted pathologic definition of peritoneal involvement and this contributes to the difficulty in making the diagnosis. The current AJCC Cancer Staging Manual and the RCPath Dataset for Colorectal Cancer regards tumor penetration of the peritoneum as either colonic perforation by tumor or histological detection of cancer cells on the serosal surface or free in the peritoneal space (Figure 1C\(^8\),\(^1^7\)). Shepherd \et\[^5\],\(^1^8\] classified different histological patterns of local peritoneal involvement (LPI). LPI type 1 was defined as tumor well clear of the closest peritoneal surface; LPI type 2, mesothelial inflammatory reaction with tumor near but not at the peritoneal surface; LPI type 3, tumor at the peritoneal surface with inflammatory reaction, mesothelial hyperplasia, and/or ulceration; and LPI type 4 as tumor cells free in the peritoneum. LPI types 3 and 4 were associated with adverse patient outcomes whereas types 1 and 2 were not, and so only types 3

![Figure 1 Macroscopic and microscopic features of peritoneal involvement. A: Peritoneal puckering; B: Area with peritoneal puckering correlates with the invasive edge of the tumor on sectioning; C: Adenocarcinoma in a peritoneal cleft in a pT4a case; D: Invasion through peritoneal elastic lamina highlighted with an elastic stain.](image-url)
and 4 were considered to represent “true” peritoneal involvement. Many pathologists consider tumors associated with a pericolic abscesses that communicate with the peritoneum as pT4a even if malignant cells are not identified on the peritoneal surface. Some authors draw attention to a group of “occult” pT4 CRCs that have already breached the serosal surface and are associated with a “cap” of fibro-inflammatory tissue, which may inadvertently be classified as negative for peritoneal involvement.

Ancillary techniques may aid in pathologic diagnosis of peritoneal involvement. Cytological examination of serosal scrapings has been explored as a means of detection of peritoneal involvement, revealing malignant cells in 19% to 26% of tumor specimens staged as pT3 by histological examination alone. The peritoneal lining or serosa is composed of a mesothelial cell layer supported by a basement membrane with an underlying elastic lamina just beneath the subserosal layer. Immunohistochemical stains such as cytokeratin 7 highlight the mesothelial cells on the peritoneal surface and there are varied opinions as to their usefulness in the detection of peritoneal involvement. Elastic stains have been used to aid in the diagnosis of pleural involvement by lung cancer and have recently been applied in CRC to improve visualization of the peritoneal elastic lamina (Figure 1D). Four recent studies investigated the use of elastic stains to detect peritoneal elastic lamina invasion (ELI). Some studies have found that ELI is associated with adverse prognosis in pT3 CRCs. Conversely, ELI was not an adverse prognostic factor in pT3 CRC in the fourth study by Grin et al. Despite the recognized limitations associated with this approach such as variability in the detection and continuity of the peritoneal elastic lamina, ELI has been shown to be a useful means of risk stratification in pT3 CRC in some studies. Some pathologists have proposed that subdivision of pT3 tumors based on presence or absence of ELI should be considered for inclusion in future staging systems.

TUMOR DEPOSITS (DISCONTINUOUS EXTRAMURAL EXTENSION)

Tumor deposits (TDs) are focal aggregates of adenocarcinoma located in the pericolic or perirectal fat discontinuous with the primary tumor. Studies investigating the clinical significance of TDs in CRC have found that their presence is associated with a poorer prognosis and lower survival rate. Their origin has been shown to be heterogeneous. Studies using enhanced pathological assessment such as multiple step sections and histochemical stains have shown that some TDs represent venous invasion, lymphatic invasion, nerve sheath infiltration, and continuous growth. A recent classification assigns different prognostic significance to different types of deposits. TDs associated with large veins or nerves may represent “in transit” metastasis and are associated with a poor prognosis and distant metastasis while a second type is likely to represent tumor in lymphatic channels and is associated with nodal metastasis and a better prognosis.

Whether or not TDs should be considered lymph node metastases or satellite tumor nodules for the purposes of staging has been a topic of debate for many years, with changes in the approach to TD classification in the last three editions of the TNM staging system. In the TNM 5 classification, extramural deposits of tumor with no lymph node structure were regarded as lymph node deposits if they measured > 3 mm in diameter and were staged as pN1. This rule was changed in TNM 6, when the contour of the deposit became the diagnostic feature. Deposits with a round contour were classified as lymph node metastases (pN1) and deposits with an irregular outline were classified as venous invasion. There was criticism of the TNM 6 approach and the changes were not considered to be evidence-based or reproducible by some authors. In the United Kingdom, the Royal College of Pathologists (RCPath) recommended that TNM 5 should be used for the staging of CRC resection specimens instead of TNM 6. The TNM 7 classification proposed a new pN1c category for tumor deposits in the absence of lymph node metastases.

TUMOR GRADE

Tumor grade is another important variable shown to be a stage independent prognostic factor on multivariate analysis. One drawback of CRC tumor grading is that it is largely subjective. The WHO grading system is the most widely used and defines the histological grade of CRC based on the percentage of gland formation. Well differentiated tumors have > 95% glandular structures and are designated grade 1 (G1), moderately differentiated tumors with 50% to 95% gland formation are grade 2 (G2), poorly differentiated tumors with 5% to 50% gland formation are grade 3 (G3) and undifferentiated tumors with less than 5% gland formation are grade 4 (G4). The WHO also suggests dividing CRCs into low grade (G1 and G2) and high grade (G3 and G4) categories. The diagnosis of G3 and G4 is relatively consistent, but differentiation between G1 and G2 is associated with a more significant degree of inter-observer variability.

In an attempt to develop a more objective CRC grading system, Ueno et al. recently proposed a method based on the number of poorly differentiated clusters. This group defined poorly differentiated clusters as clusters of ≥ 5 cancer cells in the stroma, lacking a gland-like structure. The authors studied five hundred stage II and III CRCs. Poorly differentiated clusters were counted under a 20X objective lens in a field where they appeared to be concentrated. Tumors with < 5, 5 to 9, and ≥ 10 clusters were classified as G1, G2, and G3, respectively. The study showed that grading based on this method is more reproducible and provides more significant prognostic information compared with grading based on the extent of glandular component in the tumor. Barresi et al. found that this method is also more reproducible and
provides better prognostic stratification of stage I CRC patients than conventional grading.

**TUMOR BUDDING**

Tumor budding is observed at the invasive tumor front, where isolated or small clusters of tumor cells (up to five cells) become detached from the neoplastic epithelium and migrate a short distance into a desmoplastic stroma (Figure 2A) [40]. It is thought to represent epithelial-mesenchymal transition and to be an early step in tumor invasion and metastasis. Epithelial-mesenchymal transition is a process whereby cells undergo morphologic changes characterized by a transition from an epithelial to a mesenchymal phenotype, leading to increased migratory capacity and invasiveness [41]. The aim of tumor buds appears to be the degradation of the peritumoral connective tissue, evasion of host response and finally the invasion of the lymphatic and blood vessels with the consequence of local and distant metastasis [42]. Loss of membranous expression of the cell adhesion molecule e-cadherin facilitates detachment of buds from the main tumor. Up-regulation of proteins involved in extracellular membrane degradation, migration and angiogenesis, in tumor buds, enhances their ability to migrate and invade [43].

The majority of CRCs display some degree of tumor budding. Published scoring systems have attempted to identify a prognostically significant degree of budding, commonly termed “high-grade” budding or “high budding” [44]. The identification of tumor budding is facilitated by immunostaining with cytokeratin and it is particularly useful in cases where buds are obscured by peritumoral inflammatory cell infiltrates on H and E (Figure 2B).

Tumor budding has been found to be an independent adverse prognostic factor in CRC and is a strong predictor of lymph node involvement, venous and lymphatic invasion, local recurrence, metastases and poor disease free survival [45-51]. Tumor budding is of particular clinical interest in two subgroups of patients. Budding is an independent predictor of lymph node metastasis in patients with submucosal invasive or early pT1 CRC [52-55]. In the setting of polyp cancer, evaluation of tumor budding in combination with other prognostically significant clinical and pathological features aids in risk stratification and identification of patients who may need segmental resection with lymphadenectomy. Tumor budding has been associated with a poorer outcome in Stage II CRC [45,48,49] and may guide decisions regarding the use of adjuvant chemotherapy in these patients.

Two recently published studies investigated the value of assessing intra-tumoral budding in biopsies. Rogers et al [56] retrospectively evaluated tumor budding in diagnostic rectal biopsies from patients who had neoadjuvant chemoradiotherapy and found intra-tumoral budding at diagnosis of rectal cancer to be a poor prognostic marker and a predictor of poor response to neoadjuvant treatment. A 2012 study from Switzerland found that high intra-tumoral budding in preoperative CRC biopsies predicted high peri-tumoral budding at the invasive margin and lymph node metastasis in the subsequent resection.
specimens as well as distant metastasis\(^{37}\). Assessment of tumor budding in the preoperative setting shows some potential as a prognostic and predictive marker and if prospective studies confirm the value of this approach it may become routine practice in the future.

Despite the proven prognostic significance of tumor budding it has not yet become part of standard pathology reporting of CRC. The reasons for this are manifold. Although a large number of individual studies have demonstrated the association with adverse outcome, no clinical trials have assessed the contribution of tumor budding in the prospective setting, and in particular its potential impact among stage II patients\(^{63}\). Application of this promising parameter is hampered by the lack of a standardized scoring system and sufficient evidence of reproducibility. Several different methods of assessment (at least seven) have been published and there are currently no consensus criteria for quantitative and qualitative evaluation of tumor budding. Development of an internationally accepted scoring system to rapidly and reproducibly identify CRC specimens with prognostically significant levels of tumor budding is challenging. Finding the right balance between accuracy, reproducibility and practicality is crucial. Recent multicentre studies have begun to address these issues\(^{68,69}\).

### VASCULAR INVASION

Vascular invasion is associated with poor outcome in CRC\(^{36-62}\). Accurate assessment of vascular invasion is of particular importance in stage II CRC, identifying a high-risk group who may benefit from adjuvant treatment\(^{57,63,64}\). Vascular invasion in endoscopically resected pT1 cancer is seen in patients at higher risk of lymph node metastasis and may influence the decision to proceed to surgical resection\(^{61,63}\).

Vascular invasion has two distinct elements: blood vessel invasion (usually venous, rarely arterial) and lymphatic vessel invasion. Differentiating venous and lymphatic invasion is important as they have different clinical implications. Venous invasion is associated with the presence of visceral metastases\(^{65-67}\). Presence of lymphatic invasion has been shown to correlate well with lymph node metastasis\(^{66-70}\). There is also debate in the literature about the importance of the site of vascular invasion, that is, whether it is extramural or intramural. Vascular invasion in the submucosal and/or muscular layer is considered to be intramural invasion, and that beyond the muscularis propria is extramural invasion. Whilst extramural venous invasion is a well established predictor of adverse outcome\(^{21}\), incorporated in CRC reporting datasets, the clinical significance of intramural venous invasion is less clear. Some investigators have demonstrated an association between intramural venous invasion and distant metastases\(^{14,62,63}\), indicating that the presence of venous invasion may be more important than its site.

The reporting of vascular invasion is highly variable\(^{72}\); the incidence of venous invasion reported varies between 11% and 89.5%. Venous invasion is widely under-reported\(^{9}\). Interobserver variability also poses problems with only low to moderate agreement on reporting vascular invasion in CRC among pathologists\(^{4,73}\).

The RCPath use the definition originally proposed by Talbot et al\(^{4}\) in their CRC reporting dataset. This group defined venous invasion as “a rounded mass of tumor in an endothelium-lined space either surrounded by a rim of smooth muscle or containing red blood cells.” Venous invasion may also be suspected when a rounded or elongated tumor profile is identified adjacent to an artery, especially when no separate accompanying vein can be identified (the “orphan” artery sign), or where smooth tongues of tumor extend into pericolic/perirectal fat (“protruding tongue” sign) (Figure 2C and D). Diagnosis of vascular invasion can be difficult on H and E alone. Strategies to improve detection of venous invasion in particular have been the subject of many recent studies. Increasing the number of tumor blocks taken has been shown to increase rates of detection\(^{14,63}\). Tangential as opposed to perpendicular sectioning of the peritumoral mesocolic/mesorectal fat has also been proposed to facilitate detection of extramural venous invasion\(^{64}\). Ancillary techniques that aid identification of vascular invasion are used with increasing frequency. Immunohistochemical markers of endothelial cells such as CD31 and CD34 help in identification of lymphatic and small blood-vessel invasion\(^{68}\) but are less helpful for identifying venous invasion as the endothelium of many involved veins is destroyed. Specific lymphatic markers such as D2-40 and LYVE-1 can distinguish invasion of lymphatics from invasion of capillaries and small veins. Histochemical elastic stains highlight elastic fibres in the walls of veins (but not lymphatic vessels), allowing much more accurate identification of venous invasion. Studies have shown that use of elastic stains result in a 25%-53% increase in the proportion of cases with venous invasion compared with routinely stained sections\(^{66,72,74}\), and also improve inter-observer agreement\(^{75}\). Many pathologists now advocate the use of elastic stains in the routine pathological assessment of CRC. Others warn that over-diagnosis of venous invasion may occur with the use of elastic stains, highlighting the potential for misinterpretation of other histological features as venous invasion, e.g., tangentially sectioned suberosal elastic lamina, mucosal protrusion into the submucosa, periganglionic, perineural and perinodal elastic fibres or periglandular and perimuscular elastosis\(^{62}\).

### PERINEURAL INVASION

Perineural invasion (PNI) is an important prognostic marker in CRC and has been shown to be an independent poor prognostic factor on multivariate analysis in several studies\(^{83-87}\). Identification of PNI in CRC is variable with rates between 6% and 31% reported\(^{88,89}\). It is an under-reported parameter\(^{90}\). PNI is more frequent in the non-peritonealized rectum and colon and this is thought to be due to the relative abundance of nerve
plexuses in the retroperitoneum. PNI is associated with other pathological markers of poor prognosis such as lymphovascular invasion, poor differentiation and tumor budding.

There is no agreed definition of PNI. The most widely used definition of PNI is broad, including invasion of tumor cells in, around and through the nerves. Others have defined PNI according to the layers of nerve sheath involved by tumor. The nerve sheath is composed of 3 connective tissue layers; the outer epineurium, the perineurium and the inner endoneurium. Liebig et al defined PNI as the presence of tumor cells within any of the 3 layers of the nerve sheath (epineurium, perineurium and endoneurium) or tumor foci outside of the nerve with involvement of 33% of the nerve’s circumference. Some authors report PNI only when tumor cells are observed inside the perineurial layer.

Studies have evaluated the significance of the localization of PNI both within the neural structure itself and within the bowel wall. A German group developed a “Neural Invasion Severity Score” based on invasion of tumor cells into the epineurium, perineurium or endoneurium, with invasion of endoneurium being assigned the highest score. These authors found that increasing “Severity Scores” were associated with a worse prognosis in both rectal and colon cancer.

The Japanese Society for Cancer of the Colon and Rectum conducted a multi-institutional study involving 2845 patients. This group proposed a 3-tiered PNI grading system based on location of PNI within the bowel and classified cases as Pn0 (no PNI), Pn1a (intramural PNI only), and Pn1b (extramural PNI). Using this grading system the investigators determined 5-year disease-free survival as 88%, 70%, and 48%, for the three different categories. Multivariate analysis identified PNI grade as a significant prognostic marker independent of T or N stage.

**LYMPH NODES**

Briefly, lymph node metastasis is highly predictive of outcome for CRC patients and those with lymph node involvement are likely to be offered adjuvant treatment.

This topic has been the subject of a recent comprehensive review in the *World Journal of Gastroenterology*. An association between lymph node yield and survival has also been demonstrated. Adequate lymph node evaluation is crucial for accurate staging. Guidelines state that the minimum acceptable lymph node harvest is 12 nodes, but the number of nodes retrieved from CRC specimens is variable and often falls short of this recommendation. Factors such as age of the patient, body mass index, location of the tumor, neoadjuvant therapy, surgical technique, and pathologist’s handling of the specimen may influence the lymph node yield. Manual lymph node dissection is the standard technique used in most institutions. After formalin fixation the soft tissue around the specimen is serially sectioned and nodes sought by visual inspection and palpation. However, the identification of small nodes is limited by this approach.

Alternative techniques to improve lymph node detection have been proposed and a recently published meta-analysis and systematic review compared different pathological methods of lymph node retrieval from gastrointestinal cancer surgical specimens. Meta-analysis showed that fat clearing and methylene blue staining increased the mean lymph node yield from gastrointestinal cancer specimens. Despite an improved lymph node harvest these authors concluded that there was insufficient evidence to suggest that use of these techniques led to upstaging.

**TUMOR REGRESSION GRADING**

Preoperative neoadjuvant chemoradiotherapy (CRT) has become a standard treatment of locally advanced rectal cancer (clinically T3-4 or node positive rectal cancers). Rectal tumors from these patients may undergo regression. Careful macroscopic assessment of the resection specimen is necessary as tumors with a significant response to treatment may be difficult to recognize. Confirmation of the original site of the tumor will help in selecting tissue for histological examination. Many regressed tumors are firm, white and fibrotic, resembling mucosal ulcers or scars. There are different approaches to tumor sampling. Some pathologists will submit the entire fibrotic area for histology upfront while others will take 5 blocks in the first instance and submit further tissue for histology if there is no residual tumor on initial sections. Post-treatment histological changes include replacement of neoplastic glands by fibrosis or fibro-inflammatory change, presence of mucosal pools, necrosis, foamy macrophages, haemosiderin and calcification. For tumor staging following neoadjuvant therapy, only the presence of tumor cells in the surgical specimen is taken to determine the stage and cases with complete regression are staged as ypT0. Tumor regression grading (TRG) systems aim to measure response to neoadjuvant CRT. TRG systems are generally based on assessing the ratio of histological changes induced by CRT to residual tumor in the resected specimen. Several grading systems, some 5-tiered and some 3-tiered, have been published. The 3-tier system used in our own department is illustrated in Figure 3B-D.

Pathological complete response (pCR) is reported in 9%-27% of patients and is associated with improved clinical outcomes. A meta-analysis including 3105 patients treated with neoadjuvant CRT followed by surgery found that the group with pCR had improved disease free and overall survival, lower risk of local recurrence or distant metastasis, compared to those without pCR. The multicenter prospective MERCURY study designed to assess magnetic resonance imaging (MRI) and pathologic staging after neoadjuvant therapy for rectal cancer, found that a ypT0 resection following neoadjuvant CRT was associated with increased disease-free and overall survival, and decreased rates of local recurrence.

While it is now widely accepted that pCR predicts a
better prognosis, the clinical significance of “incomplete” or “partial” regression is not clear. Two recent studies from Asia have found lesser degrees of tumor regression to be prognostic factors on multivariate analysis \[114,115\], but further investigation is warranted. MacGregor et al\[116\] emphasized the importance of addressing this important clinico-pathological question in future research and stressed the need for a standardized approach to the analysis of post neoadjuvant CRT rectal cancer resection specimens and a universally accepted TRG reporting system. An “International Study Group on Rectal Cancer Regression Grading” also recognizes the need for standardization in order to elucidate the clinical importance of “partial regression”. The group demonstrated that there is a lack of consensus on pathological sampling of post treatment specimens and choice of TRG system\[117\]. Disappointingly, they also found that 17 experienced GI pathologists could not reach good concordance on TRG using 3 systems, with only fair kappa values (0.28-0.38) for all 3 systems\[118\]. These authors advocate the introduction of an internationally accepted, simplified and reproducible TRG system with well-validated correlates to clinical outcomes.

**MOLECULAR PATHOLOGY**

Molecular pathology can provide prognostic and predictive information for CRC patients and also aids in identification of hereditary CRC syndromes such as Lynch syndrome. In recent years there have been significant advances in our understanding of CRC biology, contributing to the development of targeted CRC therapies. The recognition that activating mutations of the KRAS oncogene can predict resistance to anti-epidermal growth factor receptor agents\[119\], has turned the spotlight on the clinical value of biomarkers in CRC. Investigation of the clinical utility of emerging biomarkers such as mutations of BRAF, PIK3CA and PTEN deletion is ongoing. CRC genomic profiling and the development of gene expression signature profiles such as ColoPrint® and Oncotype DX Colon Cancer Assay may also contribute to treatment planning decisions. There have been interesting developments in relation to biomarkers and the use of aspirin in CRC. A large 2012 molecular pathological epidemiology study analyzed data from 964 patients and found that regular use of aspirin after CRC diagnosis was associated with longer survival among those with mutated-PIK3CA tumors, but not among patients with wild-type PIK3CA tumors. These findings suggest that the PIK3CA mutation, present in 15% to 20% of CRCs, may be a useful predictive biomarker for adjuvant aspirin therapy in CRC patients\[120\].

Molecular pathology testing is a dynamic area with new biomarkers regularly reported. Many of the biomarkers require validation and are not yet clinically applicable. A National Comprehensive Cancer Network Task Force publication provides an overview of the role of molecular testing in oncology, an assessment of clinical and analytic validity of some of the tests available, and serves as a useful molecular biomarker guideline for healthcare providers\[121\].

The role of the surgical pathologist in the manage-
ment of CRC is evolving and while high quality morphol-
ogy remains central to CRC pathology reporting it needs to be integrated with results of molecular pathol-
ogy testing. It is essential that pathologists are involved in molecular testing to ensure proper tissue selection and interpretation of results in the context of the pathological findings.

REFERENCES
1 Sobin LH, Gospodarowik MK, Wittekind C, editors. International Union Against Cancer (UICC). TNM classification of malignant tumours. 7th ed. New York: Wiley-Blackwell, 2009
2 Pappa G, Sonzogni A, Colombari R, Pelosi G. TNM staging system of colorectal carcinoma: a critical appraisal of challenging issues. Arch Pathol Lab Med 2010; 134: 837-852 [PMID: 20524862 DOI: 10.1043/1543-2165-134.6.857]
3 Lennon AM, Mukahy HE, Hyland JM, Lowry C, White A, Fennelly D, Murphy JJ, O’Donoghue DP, Sheahan K. Peri-
toneal involvement in stage II colon cancer. Am J Clin Pathol 2003; 119: 108-113 [PMID: 12520705 DOI: 10.1309/16BTD-WM2M9T2N2V]
4 Ludeman L, Shephard NA. Serosal involvement in gastro-
intestinal cancer: its assessment and significance. Histopa-
thology 2005; 47: 123-131 [DOI: 10.1111/j.1365-2559.2005.02189.x]
5 Shephard NA, Baxter KJ, Love SB. The prognostic import-
ance of peritoneal involvement in colonic cancer: a prospec-
tive evaluation. Gastroenterology 1997; 112: 1096-1102 [PMID: 9097991]
6 Kojima M, Nakajima K, Iishi G, Saito N, Ochiai A. Perito-
neal elastic lamina invasion of colorectal cancer: the diag-
nostic utility and clinicopathologic relationship. Am J Surg Pathol 2010; 34: 1251-1360 [PMID: 20716999 DOI: 10.1097/PAS.0b013e3181e6f98]
7 Michka JR, Love SB, Baxter KJ, Shephard NA. How import-
ant is peritoneal involvement in rectal cancer? A prospective study of 331 cases. Histopathology 2010; 57: 671-679 [DOI: 10.1111/j.1365-2559.2010.03687.x]
8 Williams GT, Quirke P, Shephard NA. Dataset for Colorec-
tal Cancer. 2nd ed. London: The Royal College of Patho-
gists, 2007
9 Sobin LH, Wittekind CH, editors. International Union Against Cancer (UICC). TNM classification of malignant tumours. 7th ed. New York: Wiley-Liss Publications, 1997
10 Burdy G, Panis Y, Alves A, Nemeth J, Lavergne-Slove A, Hirsch R. Peritoneal elastic lamina invasion: limiting

tations in its use as a prognostic marker in stage II colorectal cancer. Hum Pathol 2013; 44: 2696-2705 [PMID: 24075434 DOI: 10.1016/j.humpath.2013.07.013]
16 Stewart CJ, Hillery S, Platell C, Pappa G. Assessment of Serosal Invasion and Criteria for the Classification of Patho-
logical (p) T4 Staging in Colorectal Carcinoma: Confusions, Controversies and Criticisms. Cancers (Basel) 2011; 3: 164-181 [PMID: 24212611 DOI: 10.3390/cancers3010164]
17 Edge S, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, editors. Colon and Rectum. AJCC Cancer Staging Manual. 7th ed. New York: Springer, 2010
18 Shephard NA, Baxter KJ, Love SB. Influence of local peri-
toneal involvement on pelvic recurrence and prognosis in rectal cancer. J Clin Pathol 1995; 48: 849-855 [PMID: 7490530 DOI: 10.1136/jcp.48.9.849]
19 Canney AL, Kevans D, Wang LM, Hyland JM, Mukahy HE, O’Donoghue DP, O’Sullivan J, Geragthy R, Sheahan K. Stage II colonic adenocarcinoma: a detailed study of pT4N0 with emphasis on peritoneal involvement and the role of tumour budding. Histopathology 2012; 61: 488-496 [PMID: 22463746 DOI: 10.1111/j.1365-2559.2012.04250.x]
20 Panarelli NC, Schreiner AM, Brandt SM, Shephard NA, Yantiss RK. Histologic features and cytologic techniques that aid pathologic stage assessment of colonic adenocarcinoma. Am J Surg Pathol 2013; 37: 1252-1258 [PMID: 23774176 DOI: 10.1097/PAS.0b013e318296067c]
21 Pappa G, Shephard NA, Sheahan K, Stewart CJ. Peritoneal elastic lamina invasion in colorectal cancer: the answer to a controversial area of pathology? Am J Surg Pathol 2011; 35: 465-468; author reply 468-469 [PMID: 21317719 DOI: 10.1097/PAS.0b013e3182a048a]
22 Stewart C, Hillery S, Hlavat M. Serosal involvement in colorectal carcinoma. Histopathology 2006; 49: 435-437 [PMID: 16978212 DOI: 10.1111/j.1365-2559.2006.02498.x]
23 Zeng Z, Cohen AM, Hajdu S, Sternberg SS, Sigurdson ER, Enker W. Serosal cytologic study to determine free meso-
thelial penetration of intraperitoneal colon cancer. Cancer 1992; 70: 737-740 [PMID: 1643666]
24 Liang WY, Chang WC, Hsu CY, Arnason T, Berger D, Hawkins AT, Sylla P, Lauwers GY. Retrospective evaluation of elastic stain in the assessment of serosal invasion of pT3N0 colorectal cancers. Am J Surg Pathol 2013; 37: 1565-1570 [PMID: 23774172 DOI: 10.1097/PAS.0b013e31828aa2de]
25 Shinto E, Ueno H, Hashiguchi Y, Hase K, Tsuda H, Mats-
ubara O, Mochizuki H. The subserosal elastic lamina: an anatomical landmark for stratifying pT3 colorectal cancer. Dis Colon Rectum 2004; 47: 467-473 [PMID: 14994112 DOI: 10.1016/s1035-003-0083-9]
26 Nagtegaal ID, Quirke P. Colorectal tumour deposits in the mesorectum and pericolic; a critical review. Histopathology 2007; 51: 141-149 [PMID: 17532768 DOI: 10.1111/j.1365-2559.2007.02720.x]
27 Belt EJ, van Stijn MF, Bril H, de Lange-de Klerk ES, Meijer GA, Meijer S, Stockmann HB. Lymph node negative colorec-
tal cancers with isolated tumor deposits should be classified and treated as stage III. Ann Surg Oncol 2010; 17: 3203-3211 [PMID: 20628541 DOI: 10.1245/s10434-010-1152-7]
28 Pappa G, Maisonneuve P, Sonzogni A, Masullo M, Capelli P, Chilosi M, Menestrina F, Viale G, Pelosi G. Pathological as-
seessment of pericolonic tumour deposits in advanced colonic cancer. Dis Colon Rectum 2004; 47: 467-473 [PMID: 14994112 DOI: 10.1016/s1035-003-0083-9]
29 Goldstein NS, Turner JR. Pericolonic tumour deposits in pa-
ients with TN3+MO colon adenocarcinomas: markers of reduced disease free survival and intra-abdominal metastases and their implications for TNM classification. Cancer 2000; 88: 2228-2238 [PMID: 1080343 DOI: 10.1002/(SICI)1097-0144(20000515)88:10<2228::AID-CNCR3>3.3.CO;2-T]
30 Wünsch K, Müller J, Jähnig H, Herrmann RA, Arnholdt

WJG | www.wjgnet.com 9857
August 7, 2014 | Volume 20 | Issue 29 |
Tumour budding in colorectal carcinoma: an analysis of prognostic factors for operable rectal cancer. Lancet 1984; 2: 733-736 [PMID: 6148452 DOI: 10.1016/S0140-6736(84)92636-9].

Barresi V, Ruggiani Bonetti L, Branca G, Di Gregorio C, Ponz de Leon M, Tuccari G. Colorectal cancer grading by grading of colorectal cancer. Virchows Arch 2012; 461: 621-628 [PMID: 23093109 DOI: 10.1007/s00428-012-1326-8].

Prall F. Tumour budding in colorectal cancer. Histopatology 2007; 50: 151-162 [PMID: 17204028 DOI: 10.1111/j.1365-2559.2006.02551.x].

Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003; 3: 362-374 [PMID: 12752434 DOI: 10.1038/nrc973].

Lugli A, Karamitopoulou E, Zlobec I. Tumour budding: a promising parameter in colorectal cancer. Br J Cancer 2012; 106: 1713-1717 [PMID: 22531633 DOI: 10.1038/bjc.2012.127].

Zlobec I, Lugli A. Epithelial mesenchymal transition and tumour budding in aggressive colorectal cancer: tumour budding as oncotarget. Oncotarget 2010; 1: 651-661 [PMID: 21371460].

Mitrovic B, Schaeffer DF, Riddell RH, Kirsch R. Tumor budding in colorectal carcinoma: time to take notice. Mod Pathol 2012; 25: 1315-1325 [PMID: 22790014 DOI: 10.1038/modpathol.2012.94].

Wang LM, Kevans D, Mulcahy H, O’Sullivan J, Fennelly D, Hyland J, O’Donoghue D, Sheahan K. Tumor budding is a strong and reproducible prognostic marker in T3N0 colorectal cancer. Am J Surg Pathol 2009; 33: 134-141 [PMID: 18971777 DOI: 10.1097/PAS.0b013e318194c455].

Choi HJ, Park KJ, Shin JS, Roh MS, Kwon HC, Lee HS. Tumor budding as a prognostic marker in stage-III rectal carcinoma. Int J Colorectal Dis 2007; 22: 863-868 [PMID: 17216219 DOI: 10.1007/s00384-006-0249-8].

Hase K, Shatney C, Johnson D, Trollope M, Vierra M. Prognostic value of tumor “budding” in patients with colorectal cancer. Dis Colon Rectum 1993; 36: 627-635 [PMID: 8348847 DOI: 10.1007/BF02238388].

Tanaka M, Hashiguchi Y, Ueno H, Hase K, Mochizuki H. Tumor budding at the invasive margin can predict patients at high risk of recurrence after curative surgery for stage II, T3 colon cancer. Dis Colon Rectum 2003; 46: 1054-1059 [PMID: 12907004 DOI: 10.1007/s00105-004-2720-x].

Okyayama T, Nakamura T, Yamaguchi M. Budding is useful to select high-risk patients in stage II well-differentiated or moderately differentiated colon adenocarcinoma. Dis Colon Rectum 2003; 46: 1400-1406 [PMID: 14530682 DOI: 10.1007/s00105-004-6757-0].

Nakamura T, Mitomi H, Kikuchi S, Ohnati Y, Sato K. Evaluation of the usefulness of tumor budding on the prediction of metastasis to the lung and liver after curative excision of colorectal cancer. Hepato-gastroenterology 2005; 52: 1432-1435 [PMID: 16201809].

Ueno H, Mochizuki H, Hashiguchi Y, Shimazaki H, Aida S, Hase K, Matsukuma S, Kenai T, Kurihara H, Ozawa K, Yoshimura K, Bekku S. Risk factors for an adverse outcome in early invasive colorectal carcinoma. Gastroenterology 2004; 127: 385-394 [PMID: 15300569 DOI: 10.1015/j.gastro.2004.04.022].

Choi DH, Sohn DK, Chang HJ, Lim SB, Choi HS, Jeong SY. Indications for subsequent surgery after endoscopic resection of submucosally invasive colorectal carcinomas: a prospective cohort study. Dis Colon Rectum 2009; 52: 438-445 [PMID: 19330343 DOI: 10.1017/S0012084208000927].

Park KJ, Choi HJ, Roh MS, Kwon HC, Kim C. Intensity of tumor budding and its prognostic implications in invasive colon carcinoma. Dis Colon Rectum 2005; 48: 1597-1602 [PMID: 15937264 DOI: 10.1016/s0010-5050-005-0066-6].

Tateishi Y, Nakashiyi Y, Taniguchi H, Shimeda T, Unemura S. Pathological prognostic factors predicting lymph node metastasis in submucosal invasive (TI) colorectal carcinomas. Mod Pathol 2010; 23: 1068-1072 [PMID: 20742727 DOI: 10.1038/modpathol.2010.88].

Kye BH, Jung JH, Kim HJ, Kang SG, Cho HM, Kim JG. Tumor budding as a risk factor of lymph node metastasis in submucosal invasive TI colorectal carcinoma: a retrospective study. BMC Surg 2012; 12: 16 [PMID: 22866826 DOI: 10.1186/1471-2482-12-16].

Rogers AC, Gibbons D, Hanly AM, Hyland JM, O’Connell PR, Winter DC, Sheahan K. Prognostic significance of tumor budding in rectal cancer biopsies before neoadjuvant therapy. Mod Pathol 2014; 27: 156-162 [PMID: 23887296 DOI: 10.1038/modpathol.2013.124].

Giger OT, Comtesse SC, Lugli A, Zlobec I, Kurrer MO. Intratumoral budding in preoperative biopsy specimens predicts lymph node and distant metastasis in patients with colorectal cancer. Mod Pathol 2012; 25: 1048-1053 [PMID: 22481282 DOI: 10.1038/modpathol.2012.56].

Hor ric MC, Koelzer VH, Karamitopoulou E, Terracciano L, Puppa G, Zlobec I, Lugli A. Tumor budding score based on 10 high-power fields is a promising basis for a standardized prognostic scoring system in stage II colorectal cancer. Hum Pathol 2013; 44: 697-705 [PMID: 23519516 DOI: 10.1016/j.humpath.2012.07.026].

Puppa G, Senore C, Sheahan K, Vieth M, Lugli A, Zlobec I, Pecori S, Wang LM, Langner C, Mitomi H, Nakamura T, Watanabe M, Ueno H, Chasle J, Conley SA, Herlin P, Lauwers GY, Risio M. Diagnostic reproducibility of tumour budding in colorectal cancer: a multicentre, multinational study using virtual microscopy. Histopathology 2012; 56: 562-575 [PMID: 22755314 DOI: 10.1111/j.1365-2559.2012.04270.x].

Washington MK. Colorectal carcinoma: selected issues in pathologic examination and staging and determination of prognostic factors. Arch Pathol Lab Med 2008; 132: 1600-1607 [PMID: 18834218].

Talbot IC, Ritchie S, Leighton MH, Hughes AO, Bussey HJ, Morson BC. The clinical significance of invasion of veins by rectal cancer. Br J Surg 1980; 67: 439-442 [PMID: 7388345].

Steinberg A, Aamar M, Alfici R, Groisman G. Conclusions
from a study of venous invasion in stage IV colorectal adenocarcinoma. J Clin Pathol 2002; 55: 17-21 [PMID: 11825918]

63 Desolneux G, Burtin P, Lermite E, Bergamaschi R, Hamy A, Arnaud JP. Prognostic factors in node-negative colorectal cancer: a retrospective study from a prospective database. Int J Colorectal Dis 2010; 25: 829-834 [PMID: 20405293 DOI: 10.1007/s00384-010-0394-5]

64 Betge J, Pollheimer MJ, Lindtner RA, Kornprat P, Schlemmer A, Rehak P, Vieth M, Hoefler G, Langner C. Intramural and extramural vascular invasion in colorectal cancer: prognostic significance and quality of pathology reporting. Cancer 2012; 118: 628-638 [PMID: 21751180 DOI: 10.1002/cncr.26310]

65 Suzuki A, Togashi K, Nokubi M, Koinuma K, Miyakura Y, Horie H, Lefor AT, Yasuda Y. Evaluation of venous invasion by Elasticia van Gieson stain and tumor budding predicts local and distant metastases in patients with T1 stage colorectal cancer. Am J Surg Pathol 2009; 33: 1601-1607 [PMID: 19574884 DOI: 10.1097/PAS.0b013e3181ea29de]

66 Sejben I, Bori R, Cserni G. Venous invasion demonstrated by ocrein staining of colorectal carcinoma specimens is associated with the development of distant metastasis. J Clin Pathol 2010; 63: 575-578 [PMID: 20501452 DOI: 10.1136/jcp.2010.075846]

67 Brown CF, Warren S. Visceral metastasis from rectal carcinoma. Surg Cancorol Obstet 1938; 66: 611-621

68 Liang P, Nakada I, Hong JW, Tabuchi T, Motohashi G, Burtin P, Lermite E, Bergamaschi R, Hamy A, Arnaud JP, Anderson JH, Murray D, Foulis AK. The value of an elastic tissue stain in detecting venous invasion in colorectal cancer. J Clin Pathol 2004; 57: 769-772 [PMID: 15220375]

69 Messenger DE, Driman DK, Kirsch R. Developments in the assessment of venous invasion in colorectal cancer: implications for future practice and patient outcome. Hum Pathol 2012; 43: 965-973 [PMID: 22406362 DOI: 10.1016/j.humpath.2011.11.015]

70 Howlett CJ, Tweedie EJ, Driman DK. Use of an elastic stain to show venous invasion in colorectal carcinoma: a simple technique for detection of an important prognostic factor. J Clin Pathol 2009; 62: 1021-1025 [PMID: 19861561 DOI: 10.1136/jcp.2009.065615]

71 Kingston EF, Goulding H, Bateman AC. Vascular invasion is underestimated in colorectal cancer using conventional hematoxylin and eosin staining. Dis Colon Rectum 2007; 50: 1867-1872 [PMID: 17665249]

72 Cserni G, Sejben I, Bori R. Diagnosing vascular invasion in colorectal carcinomas: improving reproducibility and potential pitfalls. J Clin Pathol 2013; 66: 543-547 [PMID: 23592798 DOI: 10.1136/jclinpath-2013-201587]

73 Liebic C, Ayala G, Wilks J, Verstovsek G, Liu H, Agarwal N, Berger DH, Albo D. Perineural invasion is an independent predictor of outcome in colorectal cancer. J Clin Oncol 2009; 27: 5131-5137 [PMID: 19738119 DOI: 10.1200/JCO.2009.22.449]

74 Fujita S, Shimoda T, Yoshimura K, Yamamoto S, Kasatou T, Moriya Y. Prospective evaluation of prognostic factors in patients with colorectal cancer undergoing curative resection. J Surg Oncol 2003; 84: 127-131 [PMID: 14595355 DOI: 10.1002/jso.10508]

75 Poeschl EM, Pollheimer MJ, Kornprat P, Lindtner RA, Schlemmer A, Rehak P, Vieth M, Langner C. Perineural invasion: correlation with aggressive phenotype and independent prognostic variable in both colon and rectum cancer. J Clin Oncol 2010; 28: e358-e360; author reply e361-e362 [PMID: 20385977 DOI: 10.1200/JCO.2009.22.3581]

76 Peng J, Sheng W, Huang D, Venook AP, Xu Y, Guan Z, Cai S. Perineural invasion in pT3N0 rectal cancer: the incidence and its prognostic effect. Cancer 2011; 117: 1415-1421 [PMID: 21425141 DOI: 10.1002/cncr.25620]

77 Ueno H, Shirozu K, Eishi Y, Yamada K, Kusumi T, Kushi- ma R, Ikegami M, Murata A, Okuno K, Sato T, Ajikou Y, Ochiai A, Shimazaki H, Nakamura T, Kawachi H, Kojima M, Akagi Y, Sugihara K. Characterization of perineural invasion as a component of colorectal cancer staging. Am J Surg Pathol 2013; 37: 1542-1549 [PMID: 24025524 DOI: 10.1097/PAS.0b013e3182976fe6]

78 Weiser MR, Landmann RG, Kattan MW, Gonen M, Shia J, Chou J, Paty PB, Guilmel JG, Temple BK, Schrag D, Saltz LB, Wong WD. Individualized prediction of colon cancer recurrence using a nomogram. J Clin Oncol 2008; 26: 380-385 [PMID: 18202413 DOI: 10.1200/JCO.2007.14.1291]

79 Liebl F, Demir IE, Rosenberg R, Boldis A, Yildiz E, Kujundzic K, Kehl T, Dischel D, Schuster T, Maak M, Becker K, Langer R, Laschinger M, Friess H, Ceyhan GO. The severity of neural invasion is associated with shortened survival in colorectal venous invasion is an excellent predictor of metastasis-free survival in colorectal carcinoma stage II–a study using tangential tissue sectioning. J Clin Pathol 2012; 65: 619-623 [PMID: 22554966 DOI: 10.1136/jclinpath-2011-200552]

80 Kirsch R, Messinger DE, Riddell RH, Polllett A, Cook M, Al-Haddad S, Streutker CJ, Diversar DX, Pandit R, Newell KJ, Liu I, Price RG, Smith S, Parfitt JR, Driman DK. Venous invasion in colorectal cancer: impact of an elastic stain on detection and interobserver agreement among gastrointestinal and nongastrointestinal pathologists. Am J Surg Pathol 2013; 37: 200-210 [PMID: 23108018 DOI: 10.1097/PAS.0b013e3182652d2c]

81 Vass DG, Ainsworth R, Anderson JH, Murray D, Foulis AK. Anti-CD34 and its prognostic effect. J Clin Pathol 2011-200156

82 Messenger DE, Driman DK. Extramural vascular invasion in colorectal cancer: correlation with aggressive phenotype and independent prognostic variable in both colon and rectum cancer. J Clin Pathol 2011; 64: 551-558 [PMID: 23592799 DOI: 10.1136/jclinpath-2012-201576]

83 Messenger DE, Driman DK, McLeod RS, Riddell RH, Kirsch R. Current practice patterns among pathologists in the assessment of venous invasion in colorectal cancer. J Clin Pathol 2011; 64: 983-989 [PMID: 21697290 DOI: 10.1136/jclinpath-2011-200156]

84 Harris EL, Lewin DN, Wang HL, Lauwers GY, Srivastava A, Shyr Y, Shakkour B, Revetta F, Washington MK. Lymphovascular invasion in colorectal cancer: an interobserver variability study. Am J Surg Pathol 2008; 32: 1816-1821 [PMID: 18779725 DOI: 10.1097/PAS.0b013e31816083]

85 Littleford SE, Baird A, Rotimi O, Verbeke CS, Scott N. Interobserver variation in the reporting of local peritoneal involvement and extramural venous invasion in colonic cancer. Histopathology 2009; 55: 407-413 [PMID: 19817891 DOI: 10.1111/j.1365-2559.2009.03597.x]

86 Dirschmid K, Sterlacci W, Oeldig F, Edlinger M, Jasarevic Z, Rhoenberg M, Dirschmid H, Offner F. Absence of extramural
After preoperative therapy in rectal cancer: acute toxicity, tumor response, and sphincter preservation in three consecutive studies. *Int J Radiat Oncol Biol Phys* 2001; 51: 371-383 [PMID: 11567811]

104 MacGregor TP, Maughan TS, Sharma RA. Pathological grading of regression following neoadjuvant chemoradia-

105 Dworak O, Keilholz L, Hoffmann A. Pathological features of rectal cancer after preoperative radiochemotherapy. *Int J Colorectal Dis* 1997; 12: 19-23 [PMID: 9112145 DOI: 10.1007/s003840050072]

106 Beddy D, Hyland JM, Winter DC, Lim C, White A, Moriarty M, Armstrong J, Fennelly D, Gibbons D, Sheahan K. A simplified tumor regression grade correlates with survival in locally advanced rectal carcinoma treated with neoadjuvant chemoradiotherapy. *Ann Surg Oncol* 2008; 15: 3471-3477 [PMID: 18846402 DOI: 10.1245/s10434-008-0149-y]

107 Wheeler JM, Warren BF, Mortensen NJ, Ekanyana N, Kula-coglu H, Jones AC, George BD, Kettlewell MG. Quantification of histologic regression of rectal cancer after irradiation: a proposal for a modified staging system. *Dis Colon Rectum* 2002; 45: 1051-1056 [PMID: 12195189 DOI: 10.1053/dcrc.2002.04-0359-x]

108 Janjan NA, Khoo VS, Abbazzerelle J, Pazdur R, Dubrow R, Cleary KR, Allen PK, Lynch PM, Glober G, Wolf R, Rich TA, Skibber J. Tumor downstaging and sphincter preservation with preoperative chemoradiation in locally advanced rectal cancer: the M. D. Anderson Cancer Center experience. *Int J Radiat Oncol Biol Phys* 1999; 44: 1027-1038 [PMID: 10421535 DOI: 10.1016/S0360-3016(99)00809-1]

109 Pucciarelli S, Toppan P, Friso ML, Russo V, Pasetto L, Urso E, Marino F, Ambrosi A, Lise M. Complete pathologic re-

110 Vecchio FM, Valentin V, Minsky BD, Padula GD, Venk-traman ES, Balducci M, Micciche F, Ricci R, Morganti AG, Gambacorta MA, Maurizi F, Coco C. The relationship of pathologic tumor regression grade (TRG) and outcomes after preoperative therapy in rectal cancer. *Int J Radiat Oncol Biol Phys* 2005; 62: 752-760 [PMID: 15936556 DOI: 10.1016/j.ijrobp.2004.11.017]

111 Valentin V, Coco C, Cellini N, Picciocchi A, Fares MC, Ros-seto ME, Mancini G, Morganti AG, Barbaro B, Cigliandolo S, Nuzzo G, Tedesco M, Ambesi-Impiombato F, Cosimelli M, Rotman M. Ten years of preoperative chemoradiation for extraspheral T3 rectal cancer: acute toxicity, tumor response, and sphincter preservation in three consecutive studies. *Int J Radiat Oncol Biol Phys* 2001; 51: 371-383 [PMID: 11567811]

112 Maas M, Nelmans Pj, Valentin V, Das P, Rödel C, Kuo LJ, Calvo FA, García-Agular J, Glyne-Jones R, Haustermans K, Mihoudiin M, Pucciarelli S, Small W, Suarez J, Theodoro-polous G, Biondo S, Beets-Tan RG, Beets GL. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. *Lancet Oncol* 2010; 11: 835-844 [PMID: 20692827 DOI: 10.1016/S1470-2045(10)70172-8]

113 Patel UB, Taylor F, Blomqvist L, George C, Evans H, Tekkis P, Quirkie P, Sebag-Montefiore D, Moran B, Heald R, Guthrie A, Bees N, Swift I, Pennert K, Brown G. Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY exper-

114 Min BS, Kim NK, Pyo JY, Kim H, Seong J, Keum KC, Sohn SK, Cho CH. Clinical impact of tumor regression grade after preoperative chemoradiation for locally advanced rectal cancer: subset analyses in lymph node negative patients. *J Korean Soc Coloproctol* 2011; 27: 31-40 [PMID: 21431005 DOI: 10.5393/jsc.2011.27.1.31]

115 Lin CY, Tian YF, Wu LC, Chen LT, Lin LC, Hsing CH, Lee SW, Sheu MJ, Lee HH, Wang YH, Shiue YL, Wu WR, Huang HY, Hsu HP, Li CF, Chen SH. RsF-1 expression in rectal cancer: with special emphasis on the independent prognostic value after neoadjuvant chemoradiation. *J Clin Pathol* 2012; 65: 687-692 [PMID: 22569540 DOI: 10.1136/jclinpath-2012-200786]

116 MacGregor TP, Maughan TS, Sharma RA. Pathological grading of regression following neoadjuvant chemoradia-

103 Wang LM, Sheahan K. Prognostic markers in colorectal pathology: is morphology enough? *Diag Histopathol* 2011; 17: 386-394 [DOI: 10.1016/j.dhpi.2011.03.006]

104 Manduzzo AM, Dalibard F, Mandard JC, Harnay J, Henry- Amar M, Petiot JF, Roussel A, Jacob JH, Segol P, Samama G. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinico-pathologic correlations. *Cancer* 1994; 73: 2680-2686 [PMID: 8194005]

105 Dworak O, Keilholz L, Hoffmann A. Pathological features of rectal cancer after preoperative radiochemotherapy. *Int J Colorectal Dis* 1997; 12: 19-23 [PMID: 9112145 DOI: 10.1007/s003840050072]
tion therapy: the clinical need is now. J Clin Pathol 2012; 65: 867-871 [PMID: 22734005]

117 Chetty R, Gill P, Govender D, Bateman A, Chang HJ, Driman D, Guthrie F, Gomez M, Jaynes E, Lee CS, Locketz M, Mescoli C, Rowseal C, Rullier A, Serra S, Shepherd N, Szentgyorgyi E, Vajpeyi R, Wang LM. A multi-centre pathologist survey on pathological processing and regression grading of colorectal cancer resection specimens treated by neoadjuvant chemoradiation.Virchows Arch 2012; 460: 151-155 [PMID: 22241181 DOI: 10.1007/s00428-012-1193-3]

118 Chetty R, Gill P, Govender D, Bateman A, Chang HJ, Deshpande V, Driman D, Gomez M, Greywood G, Jaynes E, Lee CS, Locketz M, Rowseal C, Rullier A, Serra S, Shepherd N, Szentgyorgyi E, Vajpeyi R, Wang LM, Bateman A. International study group on rectal cancer regression grading: interobserver variability with commonly used regression grading systems. Hum Pathol 2012; 43: 1917-1923 [PMID: 22575264 DOI: 10.1016/j.humpath.2012.01.020]

119 Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcberg JR. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359: 1757-1765 [PMID: 18946061 DOI: 10.1056/NEJMoa0804385]

120 Liao X, Lochhead P, Nishiara R, Morikawa T, Kuchiba A, Yamauchi M, Imamura Y, Qian ZR, Baba Y, Shima K, Sun R, Nosho K, Meyerhardt JA, Giovannucci E, Fuchs CS, Chan AT, Ogino S. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med 2012; 367: 1596-1606 [PMID: 23094721 DOI: 10.1056/NEJMoa1207756]

121 Febbo PG, Ladanyi M, Aldape KD, De Marzo AM, Hammond ME, Hayes DF, Iafrate AJ, Kelley RK, Marcucci G, Ogino S, Pao W, Sgroi DC, Birkeland ML. NCCN Task Force report: Evaluating the clinical utility of tumor markers in oncology. J Natl Compr Canc Netw 2011; 9 Suppl 5: S1-S32; quiz S33 [PMID: 22138009]
