A TREE-ARROWING GRAPH

S. SHELAH
Hebrew University,
Jerusalem, Israel.

AND

E. C. MILNER
University of Calgary,
Calgary, Canada.

Dedicated to the memory of Eric Milner

Abstract. We answer a variant of a question of Rödl and Voigt by showing that, for a given infinite cardinal \(\lambda \), there is a graph \(G \) of cardinality \(\kappa = (2^\lambda)^+ \) such that for any colouring of the edges of \(G \) with \(\lambda \) colours, there is an induced copy of the \(\kappa \)-tree in \(G \) in the set theoretic sense with all edges having the same colour.

Keywords: Partition relation, graph, tree, cardinal number, stationary set, normal filter.

AMS Subject Classification (1991): 03, 04

1. Introduction

\(G = (V, E) \) is a graph with vertex set \(V \) and edge set \(E \), where \(E \subseteq [V]^2 \). The graph \(\mathcal{H} = (W, F) \) is a subgraph of \(G \) if \(W \subseteq V \) and \(F \subseteq E \), it is an induced subgraph if \(F = E \cap [W]^2 \). If \(\lambda \) is a cardinal, the partition relation

\[G \rightarrow (\mathcal{H})^2_\lambda, \]

(1)

means that if \(c : E \rightarrow \lambda \) is any colouring of the edges of \(G \) with \(\lambda \) colours, then there is an induced copy of \(\mathcal{H} \) in \(G \) in which all the edges have the same colour. There is a related notion \(G \rightarrow (\mathcal{H})^1_\lambda \), for vertex colourings of graphs. However, there is an essential difference since, for any given graph \(\mathcal{H} \) and any \(\lambda \), there is

\(^1\)Paper Sh 578 in Shelah’s publication list. Research supported by “The Israel Science Foundation” administered by The Israel Academy of Sciences and Humanities.

\(^2\)Research supported by NSERC grant #69-0982.
some \(G \) such that \(G \to (H)^1_{\lambda} \) holds. This is not true for edge-colourings; Hajnal and Komjath \([2]\) proved the consistency of a negative answer, and Shelah \([5]\) proved that a positive answer is also consistent. It is therefore of some interest to have instances of graphs \(H \) such that (1) holds for some \(G \), and then, of course, one can ask for the smallest such \(G \).

Rödl and Voigt \([4]\) (see also \([3]\)) proved a result of this kind by showing that for any infinite cardinal \(\lambda \) and a suitably large \(\kappa \), there is a graph \(G_\kappa \) of cardinality \(\kappa \) such that \(G_\kappa \to (T_{\kappa})^2_{\lambda} \) holds, where \(T_{\kappa} \) is the tree in which every vertex has degree \(\kappa \) (see below). More precisely, ‘suitably large’ means that the ordinary partition relation

\[
\text{cf}(\kappa) \to (\omega)^3_{\lambda}
\]

holds so that, by \([1]\), \(\kappa \geq (2^\lambda)^+ \); in fact, they showed in this case that the ubiquitous shift-graph on \(\kappa \) works. Rödl and Voigt \([4]\) then asked, what is the smallest cardinal \(\kappa \) such that (2) holds? It is easily seen that (2) is false if \(\kappa \leq 2^\lambda \), and they conjectured that it holds (for some suitable graph \(G_\kappa \)) if \(\kappa = (2^\lambda)^+ \). In this paper we prove that (2) holds with \(T_\kappa \) replaced by \(T(\kappa) \), a related graph which we call the transitive \(\kappa \)-tree defined in the next section.

2. Preliminaries

For an infinite cardinal \(\kappa \) we denote by \(<^\omega \kappa \) the set of all increasing finite sequences of ordinals in \(\kappa \). The length of an element \(s = \langle s_0, \ldots, s_{n-1} \rangle \in <^\omega \kappa \) is denoted by \(\ell n(s) = n \). Also, we define

\[
\max(s) = \begin{cases}
-1 & \text{if } s = \langle \rangle, \text{ the empty sequence}, \\
 s_{\ell n(s) - 1} & \text{if } \ell n(s) > 0.
\end{cases}
\]

If \(s = \langle s_0, \ldots, s_{n-1} \rangle \) and \(t = \langle t_0, \ldots, t_{m-1} \rangle \) are two elements of \(<^\omega \kappa \), we write \(s \triangleleft t \) to denote the fact that \(s \) is a proper initial segment of \(t \), that is \(n < m \) and \(s_i = t_i \) for \(i < n \), and in this case we write \(s = t|n \). We also write \(s = t_* \) if \(m = n + 1 \) and \(s \triangleleft t \). If \(s, t \) are distinct and \(\triangleleft \)-incomparable we write \(s \perp t \). The \(\kappa \)-tree of height \(\omega \) is the graph \(T_\kappa \) on \(<^\omega \kappa \) with edge set

\[
E_\kappa = \{ \{ s, t \} : s, t \in <^\omega \kappa \land s = t_* \}.
\]

We shall also consider a related graph, the transitive \(\kappa \)-tree of height \(\omega \), which is the graph \(T(\kappa) \) on \(<^\omega \kappa \) with edge set

\[
F_\kappa = \{ \{ s, t \} : s, t \in <^\omega \kappa \land s \triangleleft t \}.
\]

We shall prove the following theorem.
Theorem 2.1. Let \(\lambda \) be an infinite cardinal, and let \(\kappa = (2^\lambda)^+ \). Then there is a graph \(G_\kappa \) of cardinality \(\kappa \) such that

\[
G_\kappa \to (T)^2_\kappa,
\]

where \(T \) is \(T(\kappa) \).

Remark. Instead of \(\kappa = (2^\lambda)^+ \), it is enough that \(\kappa \) be any regular cardinal such that \(|\alpha|^\lambda < \kappa \) holds for all \(\alpha < \kappa \). The same proof works.

The construction of a suitable \(G_\kappa \) depends upon the following (slightly weaker version of a) theorem of Shelah [7] (or more [8, 3.5]):

(●) Let \(\lambda \) be an infinite cardinal, \(\kappa = (2^\lambda)^+ \), \(S = \{ \alpha < \kappa : \text{cf}(\alpha) = \lambda^+ \} \). Then there are a sequence \(C = \langle C_\delta : \delta \in S \rangle \) and a sequence \(h^*_\delta : C_\delta \to 2 \) and such that, for any club \(K \) in \(\kappa \), there is a stationary subset \(B_K \) of \(S \cap K \) such that for each \(\delta \in B_K \) and each \(i < \lambda \), \(\min(C_\delta \setminus (\alpha + 1)) \in K \) is cofinal in \(\delta \).

Remarks. 1. The result is also true if 2, the range of each \(h^*_\delta \), is replaced by \(\lambda \); also, if \(\kappa = \lambda^{++} \), we can also require that \(D_K(\delta, i) \) be a stationary subset of \(\delta \) for each \(\delta \in B_K \) and each \(i < \lambda \) (see [8]).

2. If \(2^\lambda > \lambda^+ \), then the following stronger assertion is true (see Shelah [6]):

(●●) There is a sequence \(C = \langle C_\delta : \delta \in S \rangle \) such that \(C_\delta \) is a club in \(\delta \) having order type \(\lambda^+ \) and, for any club \(K \) in \(\kappa \) and any stationary subset \(S' \subseteq S \), there is a stationary subset \(B_K \subseteq S' \cap K \) such that \(C_\delta \subseteq K \) for each \(\delta \in B_K \). Using this result instead of (●), the proof of Theorem 2.1 for the case when \(2^\lambda > \lambda^+ \) may be slightly simplified.

We will prove that Theorem 2.1 holds with the graph \(G_\kappa = (\kappa, E) \), where

\[
E = \{ \{ \alpha, \beta \} : \beta \in S \land \min(C_\beta) < \alpha < \beta \land h^*_\beta(\sup(\alpha \cap C_\beta)) = 0 \},
\]

and the \(C_\beta \) and \(h^*_\beta \) are as described in (●).

3. The case \(T = T(\kappa) \)

We prove the result for the case of the transitive tree \(T(\kappa) \).

Proof: Let \(c : E \to \lambda \) be any \(\lambda \)-colouring of the edges of \(G_\kappa \). For each \(\zeta \in \lambda \) consider the following two-person game \(G_\zeta \). The game has \(\omega \) moves. At the \(n \)-th stage the first player \(P_1 \) chooses ordinals \(\alpha_n, \beta_n \), and then the second player \(P_2 \) chooses two ordinals \(\gamma_n, \delta_n \) so that

\[
\alpha_n < \beta_n < \gamma_n < \delta_n < \kappa, \tag{3}
\]

\[
\delta_m < \alpha_n \quad (m < n). \tag{4}
\]
The player P_2 is declared the winner in a play of the game if he succeeds in choosing the γ_n so that

$$\{\gamma_m, \gamma_n\} \in E, \quad c(\{\gamma_m, \gamma_n\}) = \zeta \quad (m < n < \omega), \quad \text{(5)}$$

and

$$\{\xi, \gamma_n\} \notin E \quad \text{for} \quad \xi \in (\alpha_m, \beta_m) \quad \text{and} \quad m \leq n < \omega. \quad \text{(6)}$$

(As usual, (α, β) denotes the open interval $\{\xi : \alpha < \xi < \beta\}$ and $[\alpha, \beta]$ is the corresponding closed interval.)

The proof of the theorem depends upon the following two facts:

Fact A: For some $\zeta < \lambda$, P_2 has a winning strategy for the game G_ζ.

Fact B: If P_2 can win G_ζ, then the graph G_κ contains an induced copy of $T(\kappa)$ with all edges coloured ζ.

Proof of Fact B. We assume that $\zeta < \lambda$ and that the second player P_2 has a winning strategy σ_ζ for the game G_ζ. We shall define ordinals $\alpha_s, \beta_s, \gamma_s, \delta_s$ for s a vertex of $T(\kappa)$ so that the following conditions are satisfied:

(a) For each s the sequence

$$\langle (\alpha_{s|i}, \beta_{s|i}, \gamma_{s|i}, \delta_{s|i}) : i < \ell_n(s) \rangle$$

consists of the first $2\ell_n(s)$ moves in a proper play of the game G_ζ in which P_2 uses the winning strategy σ_ζ.

(b) $\gamma_s \neq \gamma_t$ if $s \neq t$.

(c) If $s \perp t$, then $\{\gamma_s, \gamma_t\} \notin E$.

Since (5) holds, these conditions imply that the map $s \mapsto \gamma_s$ is an embedding of the tree $T(\kappa)$ into the graph G_κ and all the edges of the image have colour ζ.

In fact, we shall choose the $\alpha_s, \beta_s, \gamma_s, \delta_s$ so that (a) holds and so that the following condition is satisfied:

(d) For any vertices s, t of $T(\kappa)$, if $s \perp t$, then

EITHER

(i) $[\gamma_s, \delta_s] \subset \bigcup_{i \leq \ell_n(t)} (\alpha_{t|i}, \beta_{t|i})$,

OR

(ii) $[\gamma_t, \delta_t] \subset \bigcup_{i \leq \ell_n(s)} (\alpha_{s|i}, \beta_{s|i})$.

The conditions (a) and (d), and the fact that P_2 is using the winning strategy σ_ζ, ensure that (b) and (c) also hold.

We define $\alpha_s, \beta_s, \gamma_s, \delta_s$ by induction on $\max(s)$. Let $\alpha_0 = 0, \beta_0 = 1$, and then let (γ_0, δ_0) be P_2’s response in the game G_ζ using his winning strategy σ_ζ. Now let $0 \leq \xi < \kappa$, and suppose that we have suitably defined $\alpha_s, \beta_s, \gamma_s, \delta_s$ for all vertices s of $T(\kappa)$ such that $\max(s) < \xi$. We need to define these when $\max(s) = \xi$.

Let \((t_i : i < \theta(\xi))\) be an enumeration of all the nodes \(s\) of \(T(\kappa)\) with \(\max(s) = \xi\). Then \(1 \leq \theta(\xi) \leq 2^\lambda < \kappa\). Now inductively choose the \(\alpha_{t_i}, \beta_{t_i}, \gamma_{t_i}, \delta_{t_i}\) for \(i < \theta(\xi)\) so that
\[
\alpha_{t_i} = \delta_{t_i} + 1,
\]
and if \(i = 0\), \(\beta_{t_0} = \alpha_{t_0} + 1\) and if \(i > 0\)
\[
\beta_{t_i} = \sup\{\delta_s + 2 : \max(s) < \xi \text{ or } s = t_j \text{ for some } j < i\}.
\]
The corresponding pairs \((\gamma_{t_i}, \delta_{t_i})\) are determined by the strategy \(\sigma_{t_i}\). With these choices it is easily seen that (a) continues to hold; we have to check that (d) also holds when \(s \perp t\) and \(\max(s) = \xi\) or \(\max(t) = \xi\).

If \(\max(s) = \max(t) = \xi\), then \(s = t_i\) and \(t = t_j\), where say \(i < j\). Then
\[
\alpha_t = \delta_{t_*} + 1 < \beta_s < \gamma_s < \delta_s < \beta_t,
\]
and so (d)(i) holds.

Suppose \(\max(s) < \xi = \max(t)\). Then by the induction hypothesis, either (i) or (ii) of (d) holds when we replace \(t\) by \(t_*\). Suppose first that (d)(i) holds. Then for some \(m \leq \ell n(t_*\rangle\) we have that
\[
\alpha_{t_*\mid m} < \gamma_s < \delta_s < \beta_{t_*\mid m}.
\]
It follows that (d)(i) also holds for \(s\) and \(t\) since \(t\mid m = t_*\mid m\). Now suppose that (d)(ii) holds so that, for some \(m \leq \ell n(s)\),
\[
\alpha_{s\mid m} < \gamma_{t_*} < \delta_{t_*} < \beta_{s\mid m}.
\]
Then, by the definitions of \(\alpha_t\) and \(\beta_t\), it follows that
\[
\alpha_t = \delta_{t_*} + 1 \leq \beta_s < \gamma_s < \delta_s < \beta_t,
\]
so that again (d)(i) holds for \(s\) and \(t\). Similarly, if \(\max(t) < \xi = \max(s)\).

Proof of Fact A. We have to show that \(P_2\) wins the game \(G_{t_i}\) for some \(\xi < \lambda\). Suppose for a contradiction that this is false. Since the games are open and hence determined, it follows that \(P_1\) has a winning strategy, say \(\tau_{t_i}\), for the game \(G_{t_i}\) for every \(\xi < \lambda\).

For convenience we write \(c(\{\alpha, \beta\}) = -1\) if \(\{\alpha, \beta\} \notin E\), so that \(c\) is defined on all pairs \(\{\alpha, \beta\} \in [\kappa]^2\). For each bounded subset \(X \subseteq \kappa\) define an equivalence relation \(\varepsilon_X\) on \(S \setminus (\sup(X) + 1)\) so that \(\beta \varepsilon_X \gamma\) holds if and only if
(i) \(\beta, \gamma \in S\) and \(\sup(X) < \beta, \gamma < \kappa\);
(ii) \(c(\{\alpha, \beta\}) = c(\{\alpha, \gamma\})\) for all \(\alpha \in X\);
(iii) \(X \cap C_{\beta} = X \cap C_{\gamma}\), (iv) for \(\alpha \in X\), \(\alpha \leq \min(C_{\beta}) \iff \alpha \leq \min(C_{\gamma})\),
\[
\text{tp}(\alpha \cap C_{\beta}) = \text{tp}(\alpha \cap C_{\gamma}) \text{ and } \text{h}_{\beta}(\sup(\alpha \cap C_{\beta})) = \text{h}_{\gamma}(\sup(\alpha \cap C_{\gamma}))\] (for \(\alpha > \min(C_{\beta})\)).
Note that the equivalence relation e_X has at most $(\lambda^+)^{|X|} \leq 2^{|X|}$ classes. Also, if $Y \subseteq X$, then $\beta e_X \gamma \Rightarrow \beta e_Y \gamma$.

Since $\kappa = (2^\lambda)^+$, there is a continuous increasing sequence of ordinals $(\rho_\eta : \eta < \kappa)$ in κ such that the following two conditions hold:

(o) If $X \subseteq \rho_\eta$, $|X| \leq \lambda$ and $\rho_\eta < \beta < \kappa$, then there is some $\gamma \in (\rho_\eta, \rho_{\eta+1})$ such that $\beta e_X \gamma$

(oo) ρ_η is closed under τ_ζ for all $\zeta < \lambda$. In other words, if at the n-th stage of a play in the game G_ζ, player P_2 chooses $\gamma_0 < \delta_0 < \rho_\eta$, then P_1’s response using τ_ζ is to choose $\alpha_{n+1}, \beta_{n+1}$ so that $\delta_n < \alpha_{n+1} < \beta_{n+1} < \rho_\eta$.

Since $K = \{\rho_\eta : \eta < \kappa\}$ is a club in κ, there is some $\delta \in S$ such that $\min(C_\delta) \in K$ and, for $\varepsilon \in \{0, 1\}$,

$$A_\varepsilon = \{\alpha \in C_\delta \cap K : h_\delta^\varepsilon(\alpha) = \varepsilon \land \min(C_\delta \setminus (\alpha + 1)) \in K\}$$

is an unbounded subset of δ. Let $C_\delta = \{i_\sigma : \sigma < \lambda^+\}$, where $i_0 < i_1 < \cdots$.

We claim that the following assertion holds for some $\zeta < \lambda$.

(*) ζ: If $X \subseteq \delta$, $|X| \leq \lambda$, then there are $\sigma < \lambda^+$ and γ such that (a) $\sup(X) < i_\sigma < \gamma < i_{\sigma+1}$, (b) $i_\sigma \in A_0$, (c) $\gamma e_\delta \delta$, and (d) $c(\gamma, \delta) = \zeta$.

For suppose the claim is false. Then, for each $\zeta < \lambda$ there is a counter-example X_ζ. Let $X = \bigcup \{X_\zeta : \zeta < \lambda\}$. Then $X \subseteq \delta$ and $|X| \leq \lambda$ and so, for some $\alpha \in A_0$, $\sup(X) < \alpha < \delta$. There are $\eta < \kappa$ and $\sigma < \lambda^+$ such that $\alpha = \rho_\eta = i_\sigma$, and therefore, by the choice of $\rho_{\eta+1}$, there is γ such that $\rho_\eta < \gamma < \rho_{\eta+1}$ and $\gamma e_\delta \delta$.

Since $\alpha = i_\sigma \in A_0$, $i_{\sigma+1} = \min(C_\delta \setminus (\alpha + 1)) \in K$. So $\rho_{\eta+1} \leq i_{\sigma+1}$. Therefore, $\sup(C_\delta \cap \gamma) = i_\sigma$, and since $\alpha = i_\sigma \in A_0$, we have that $h_\delta^\varepsilon(\sup(C_\delta \cap \gamma)) = 0$. Therefore, $\{\gamma, \delta\}$ is an edge of G and there is some $\zeta \in \lambda$ such that $c(\gamma, \delta) = \zeta$.

But this contradicts the choice of $X_\zeta \subseteq X$, and hence (**) holds for some $\zeta < \lambda$.

By induction on $n < \omega$ we now choose ordinals $\alpha_n, \beta_n, \gamma_n, \delta_n$ in δ and $\sigma(n) < \lambda^+$ so that the following conditions are satisfied:

A: $\{(|\alpha_m, \beta_m, \gamma_m, \delta_m| : m \leq n\}$ is an initial segment of a play in the game G_ζ in which P_1 uses the winning strategy τ_ζ.

B: $\alpha_0, \beta_0 < \min(C_\delta)$.

C: $\gamma_n = \min\{\gamma : \gamma > i_{\sigma(2n)} \land \gamma e_\delta \delta \land c(\gamma, \delta) = \zeta\}$, where

$$X_n = \bigcup \{\{\alpha_\ell, \beta_\ell, \gamma_\ell, \delta_\ell\} : \ell < n\} \cup \{\alpha_n, \beta_n\} \cup \bigcup \{\{i_{\sigma(\ell)}, i_{\sigma(\ell)+1}\} : \ell < 2n\}.$$

D: $\delta_n = i_{\sigma(2n+1)}$.

E: For $n > 0$, $[\alpha_n, \beta_n] \subseteq (\delta_{n-1}, i_{\sigma(2n-1)+1})$.

F: $i_{\sigma(n)}$ belongs to A_0 or A_1 according as n is even or odd and $\sigma(n)+1 < \sigma(n+1)$.

We have to prove that it is possible to choose the α_n etc., so that these conditions are satisfied. Clearly (B) holds since, by (oo), the first moves by P_1 using the statey τ_ζ are $\alpha_0 < \beta_0 < \rho_0$ and $\rho_0 \leq \min(C_\delta) \in K$. By (**) there are $\sigma(0) < \lambda^+$
and γ such that $i_{\sigma(0)} \in A_0$, $i_{\sigma(0)} < \gamma < i_{\sigma(0)+1}$, $\gamma \in X_0 \delta$, where $X_0 = \{\alpha_0, \beta_0\}$ and $c(\gamma, \delta) = \zeta$; let γ_0 be the least such γ. Now let $\sigma(1) > \sigma(0) + 1$ be minimal so that $i_{\sigma(1)} \in A_1$, and put $\delta_0 = i_{\sigma(1)}$. Now suppose that $n > 0$ and that the $\alpha_m, \beta_m, \gamma_m, \delta_m, \sigma(2m)$ and $\sigma(2m + 1)$ have been suitably defined for all $m < n$. Let $\rho \in K$ be minimal such that $\rho > \delta_{n-1}$. P_1 chooses α_n, β_n using the strategy τ_{ζ} so that $\delta_{n-1} < \alpha_n < \beta_n < \rho$. Since $\delta_{n-1} = i_{\sigma(2n-1)} \in A_1$, it follows that $i_{\sigma(2n-1)+1} \in K$ and hence $\rho \leq i_{\sigma(2n-1)+1}$. Now by (*)$\zeta$, there are $\sigma(2n)$ and γ so that $i_{\sigma(2n)} \in A_0$, $i_{\sigma(2n)} < \gamma < i_{\sigma(2n)+1}$, $\gamma \in X_n \delta$ (where X_n is as described in (C)), and $c(\gamma, \delta) = \zeta$; let γ_n be the least such γ. Note that, since $i_{\sigma(2n)} \in A_0$, $i_{\sigma(2n)+1} = \min(C_{\delta} \setminus (i_{\sigma(2n)+1} + 1)) \in K$. Finally, choose a minimal ordinal $\sigma(2n+1) > \sigma(2n) + 1$ so that $\delta_n = i_{\sigma(2n+1)} \in A_1$. This completes the definition of the α_n etc., so that (A)-(F) hold.

By (C) it follows that $c(\gamma_n, \delta) = \zeta$ for all $n < \omega$, and hence $c(\gamma_m, \gamma_n) = \zeta$ holds for all $m < n < \omega$ since $\gamma_m \in X_n$ and $\gamma_n \in X_n \delta$. There is no edge of G_κ from δ to (α_0, β_0) since $\beta_0 < \min(C_{\delta})$. Since $\gamma_n \in X_n \delta$ and $\beta_0 \in X_n$, it follows that $\beta_0 < \min(C_{\gamma_n})$ also, and so there is no edge from γ_n to (α_0, β_0) either. By the construction, for $0 < m < \omega$, $i_{\sigma(2m-1)} < \alpha_m < \beta_m < i_{\sigma(2m-1)+1}$, and hence $C_{\delta} \cap (\alpha_m, \beta_m) = \emptyset$. Therefore, for any $\xi \in (\alpha_m, \beta_m)$, $h^*_{\gamma_n}(\sup(\xi \cap C_\delta)) = h^*_{\gamma_n}(i_{\sigma(2m-1)+1}) = 1$ by (F), and so there is no edge of G from δ to (α_m, β_m). If $0 < m < n < \omega$, then $\gamma_n \notin X_n \delta$ and therefore,

$$\text{tp}(\alpha_m \cap C_{\gamma_n}) = \text{tp}(\alpha_m \cap C_{\delta}) = \text{tp}(\beta_m \cap C_{\delta}) = \text{tp}(\beta_m \cap C_{\gamma_n}).$$

Therefore, for any $\xi \in (\alpha_m, \beta_m)$, it follows that

$$h^*_{\gamma_n}(\sup(\xi \cap C_{\gamma_n})) = h^*_{\gamma_n}(\sup(\alpha_m \cap C_{\gamma_n})) = h^*_{\gamma_n}(\sup(\alpha_m \cap C_{\delta})) = 1$$

and so there are no edges of G from γ_n to (α_m, β_m) either.

Thus we have produced a play in the game G_ζ in which P_1 uses the strategy τ_{ζ} but the second player P_2 wins! This contradicts the assumption that σ_{ζ} is a winning strategy for the first player, and completes the proof. \(\square\)

References

1. P. Erdős and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956) 427-489.
2. A. Hajnal and P. Komjath, Embedding graphs into colored graphs, Trans. Amer. Math. Soc. 307 (1988), 395-409; Corrigendum: 332 (1992), 475.
3. P. Komjath and E.C. Milner, On a conjecture of Rödl and Voigt. J. Combin. Theory, Ser. B 61 (1994), 199-209.
4. V. Rödl and B. Voigt, Monochromatic trees with respect to edge partitions, J. Combin. Theory Ser. B 58 (1993), 291-298.
5. Saharon Shelah [Sh: 289]. Consistency of positive partition theorems for graphs and models, in: Set theory and its applications (Toronto, ON, 1987), Lecture Notes in Mathematics 1401, (J. Steprans and S. Watson, eds.), Springer, Berlin-New York, (1989) 167–193.
6. Saharon Shelah [Sh: 365], There are Jonsson algebras in many inaccessible cardinals, in: *Cardinal Arithmetic*, *Oxford Logic Guides* 29 chapter III, Oxford University Press, 1994.

7. Saharon Shelah [Sh: 413], More Jonsson Algebras and Colourings, *Archive for Mathematical Logic*, to appear.

8. Saharon Shelah [Sh: 572], Colouring and \mathfrak{a} not productive, *Annals of Pure and Applied Logic*, 84 (1997), 153-174.