Efficacy of biopesticide Protecto (Bacillus thuringiensis) (BT) on certain biochemical activities and histological structures of land snail Monacha cartusiana (Muller, 1774)

Omhashim Abdelazeim Gaber1*, Abd Elmawgoud Abdalla Asran2, Fatma Kamel Khider2, Gamal El-Shahawy1, Heba Abdel-Tawab1 and Hoda M. K. Elfayoumi1

Abstract

Background: The investigation aimed to show the effect of two concentrations of (Protecto 9.4% commercial formulation of Bacillus thuringiensis kurstaki (Bt)) on some biochemical changes of the land snail Monacha cartusiana at three different experimental periods (24, 48 and 72 h). Also, some histobiological alterations of the snail at a lethal experimental period of 96 h were studied.

Results: Pathogenicity effect of two sub-lethal concentrations of biopesticide Protecto; LC20 (6.72 × 10^6 IU/mg) and LC40 (17.28 × 10^6 IU/mg) were studied on the land snail M. cartusiana at 3 different exposure periods (24, 48, and 72 h). Some biochemical parameters such as Alkaline phosphatase (ALP), Alanine amino transaminase (ALT), Aspartate amino transaminase (AST), and Total protein (TP) were investigated. These observations cleared that; a significant elevation of ALP, ALT, and AST increased with increasing the sub-lethal concentration of protecto (LC20 and LC40) against the exposed snail. Also, the activity of enzymes significantly increased with increasing the time of exposure (24, 48, and 72 h), respectively. Conversely, the level of TP in the snail was significantly decreased under pathogenic exposure for both (LC20 and LC40) concentrations of Protecto at the same three treated periods (24, 48 and 72 h). The histobiological examinations at LC20 and LC40 for the exposure period 96 h, showed that the digestive gland with vacuolated degenerated, ruptured digestive cells and hemocyte infiltration. Moreover, the foot was observed with necrotic changes, vacuolated connective tissue, as well as, deformation in muscle fiber, and rupture the outer layer.

Conclusions: Final results showed that protecto B. thuringiensis had a pathogenic effect on land snail enzymatic activities and histobiological structures of land snail.

Keywords: Monacha cartusiana—Protecto—Bacillus thuringiensis (Bt)—Land snails, Biochemical parameters, Histobiological alterations

Background

Nowadays, the use of environmental safety microbial in pest management received more significant attention from many authors (Kumar et al. 2021). B. thuringiensis is a Gram-positive soil bacteria that do not have a cytotoxic effect on mammalian cells (Ohba et al. 2009). Instead of infecting most invertebrates pests, and secrete either toxic proteins by bacteria or soluble toxins produced by vegetative cells, which are toxic (Malovichko et al. 2019). During the last years, several studies on biological control of land snails using microbial agents such as B. thuringiensis have been carried out (Said and Ali 2018). Land
gastropods belonging to phylum Mollusca are a wide sector of the fauna around the world (Diaz et al. 2017). Recently, land snails, considered the only one between the phylum Mollusca attacking most agricultural fields in Egypt, causing great damage to; greenhouses, nurseries, fruit crops, orchards, ornamentals, vegetables, medical, navel orange, and apple trees (Ali and Robinson 2020). M. cartusiana (Muller) is a widespread land snail in the Egyptian agricultural fields and caused economic losses (Rady et al. 2019).

The present work studied the effect of protecto (B. thuringiensis) on some biochemical changes of M. cartusiana land snail under laboratory conditions. Also, histobiological investigations of the land snail at sub-lethal concentrations after exposure to 96 h. were studied.

Methods
Experimental snails
Adults land snails M. cartusiana with a shell size about (9–12 mm) and (weight 3.1 g) were collected manually from infested field crops of Yosef El Sedek district, El Fayoum Governorate (29°22’ N: 30°51’ E), middle Egypt, during the spring season of 2020. The collected adult snails were transferred to the laboratory at Fayoum Agric. Res. Station, Agricultural Research Center, Egypt, in a muslin bags, then they were washed with distal water. The experimental snails were transferred into rearing plastic boxes, each (30 × 30 × 25 cm³ in size), used as housing, filled with moist sterilized loamy soil at 25 ± 2 °C and 75% ± 5% soil moisture. The experimental housing was covered with a muslin cloth to prevent snails from escaping. The snails were fed on leaves of lettuce daily for 14 days.

Tested bactericide
Protecto: a commercial formulation of B. thuringiensis about 32,000 I.U/mg, received from biocide, production Unit, Plant Protection, Research, Institute Agriculture, Research Centre, Dokki, Giza, Egypt. The active ingredient constituted 9.4%.

Laboratory experiment
Bioassay
The preliminary studies were conducted to estimate the lethal concentrations of protecto on land snails M. cartusiana. 4 concentrations of the tested coinpound were prepared using dechlorinated tap water based on weight/volume (Osman et al. 2011; Osman and Mohamed 1991) as follows; (8 × 10⁶, 16 × 10⁶, 32 × 10⁶, and 48 × 10⁶ IU/mg. The experiments took place by the leaf-dipping technique. About 30 snails were placed into rearing plastic boxes and starved for 2 days (Souza 2003) then feeding the snails by dipping the leaves of lettuce in the tested concentrations for 30 s (Ghamry 1994) then outside left it for 1 min for dryness before treatment. Fresh lettuce was used as control, five replicates each of contained 30 snails were used for each concentration. The mortality percentages of snails were recorded and computed for 48, 72, and 96 h.

Biochemical parameters
Snails were treated with calculated LC₂₀ and LC₄₀ of protecto at the periods achieved mortality between 20–80% then the tested snails from each group of control and both sub-lethal concentrations were removed and dissected out from the shell and quickly weighed, homogenized in saline (0. 9%) at a ratio of 1:9 (w:v) (Yang et al. 2015), then centrifuged at 8000 × g for 10 min at 4 °C in the refrigerated centrifuge (El-Gohary and Genena 2011). The deposits were discarded, and the supernatants were used to determine the levels of biochemical parameters; ALP (U/L) was determined by commercially available diagnostic kits supplied by Biosystems company, Egypt, ALT (U/L) and AST (U/L) were estimated kinetically by Biomed using the method of (Young 2001), and TP (mg/dl) was determined by using Diamond company according to the method reported by (Burtis and Ashwood 1999).

Histological studies
Adult snails of M. cartusiana were tested as control; another 2 groups were exposed to 2 sub-lethal concentrations of B. thuringiensis LC₂₀ and LC₄₀. After 96 h of exposure, the tested snails were dissected out carefully and fixed in Bouin’s fluid, dehydrated in 70% ethyl alcohol, cleared in xylene, and embedded in paraffin wax. Histological Sections (4 µm) were cut and were stained with hematoxylin and eosin (H&E) stain (Banchroft et al. 1996). Finally, they were investigated by a light microscope and photographed.

Statistical analysis
Statistical analysis was performed using IBM SPSS (Statistical Package for the Social Sciences, SPSS, version 20). ANOVA was applied to compare the activity of enzymes at the effect of 2 sub-lethal concentrations of B. thuringiensis concerning the corresponding control at each experimental period. Lethal concentration values (LC₂₀ & LC₄₀) were determined according to probit statistical analysis (Finney 1971).
Table 2: Effect of *Bacillus thuringiensis* on some biochemical parameters of land snail *Monacha cartusiana* exposed to LC20 and LC40 at 96 h after interval periods of exposure

Biochemical parameters	Sub lethal Concentrations (IU/mg)	Exposure period	24 h	48 h	72 h					
		Control	Mean	Change %	Control	Mean	Change %	Control	Mean	Change %
ALP (U/I)										
6.72 × 10⁶		38.48 ± 1.61	40.38 ± 1.28	(+ 4.94%)¹	38.08 ± 1.18	48.38 ± 0.82 ²A	(+ 27.05%)¹	38.28 ± 0.66	51.5 ± 0.82 ²A	(+ 34.5%)¹
17.28 × 10⁶		55.02 ± 1.96 ²b	(+ 42.98%)¹		56.5 ± 1.42	(+ 48.37%)¹		66.4 ± 1.81 ²bAB	(+ 73.46%)¹	
ALT (U/I)		631 ± 0.97	72 ± 1.5	(+ 14.7%)¹	635 ± 0.63	84.0 ± 1.3 ³A	(+ 32.3%)¹	64.3 ± 0.61	112.9 ± 2.0AAB	(+ 75.6%)¹
6.72 × 10⁶		84.3 ± 1.5 ³b	(+ 33.6%)¹		97.0 ± 0.91 ³bA	(+ 53.9%)¹		118.6 ± 1.9abA	(+ 84.4%)¹	
17.28 × 10⁶		603.3 ± 1.80	616.2 ± 6.32	(+ 2.1%)¹	604.7 ± 1.66	626.1 ± 4.05 ³A	(+ 3.5%)¹	603.3 ± 1.28	738.6 ± 5.42AAB	(+ 22.4%)¹
AST (U/I)		684.1 ± 4.12 ³b	(+ 13.4%)¹		787.0 ± 6.93 ³bA	(+ 30.1%)¹		871.8 ± 6.13 ³bAB	(+ 44.5%)¹	
6.72 × 10⁶		0.77 ± 0.018 ³b	(− 33.62%)¹		0.75 ± 0.041 ³A	(− 35.34%)¹		0.62 ± 0.058 ³b	(− 45.61%)¹	
17.28 × 10⁶		0.59 ± 0.026 ³b	(− 49.13%)¹		0.38 ± 0.019 ³bA	(− 67.24%)¹		0.35 ± 0.002.dA	(− 69.30%)¹	

Data are represented as mean ± SE

- **a, b:** In the same column, the significant difference of enzyme activity at LC20 (6.72 × 10⁶ IU/mg) and LC40 (17.28 × 10⁶ IU/mg) in comparison to the corresponding control
- ¹ In the column, percentage of change in relation to control
- **A, B:** In the same row, the significant difference compared to the pathogenic time 24 and 48 h of the experimental periods at α = 0.05 (P < 0.05)

Percentage of change in enzyme activity % = \(\frac{\text{level of enzyme activity in treated snail} - \text{level of enzyme activity in control snail}}{\text{level of enzyme activity in control snail}} \times 100 \)
presented in Table 1 cleared that the mortality percentage of the snail increased with increasing the concentration of *B. thuringiensis* and the time of exposure. Also, the results indicated that the LC\textsubscript{20} and LC\textsubscript{40} values were 6.72 × 10^6 IU/mg and 17.28 × 10^6 IU/mg, respectively, at the experimental exposure period of 96 h.

Biochemical parameters

In order to investigate the biochemical activities of (ALP, U/l), (ALT, U/l), (AST, U/l), and (TP, mg/dl) of *M. cartusiana* exposed to 2 sub-lethal concentrations of *B. thuringiensis*, LC\textsubscript{20} and LC\textsubscript{40} were analyzed and computed by one-way ANOVA for the 2 concentrations comparing to the tested control at each corresponding exposure period. A significant difference at (P < 0.05) was confirmed as shown in Table 2, at 24 h, where the activity of ALP has non-significant difference between LC\textsubscript{20} and the tested control but it was significantly increased at the tested concentration LC\textsubscript{40} than the control. After 48 and 72 h, the activity of the enzyme was significantly increased at the LC\textsubscript{20} value (48.38 ± 0.82, and 51.5 ± 0.82, respectively) and at LC\textsubscript{40} value (56.5 ± 1.42 and 66.4 ± 1.81, respectively) than the corresponding control (38.08 ± 1.18 and 38.28 ± 0.66). In addition, the activity of ALP was not only computed by one-way ANOVA but also by Post hoc analysis which compared the activity of the enzyme at the 3 different periods; which increased at 48 and 72 h in relation to 24 h. Furthermore, ALTactivity was significantly high at exposure the snail to LC\textsubscript{20} and LC\textsubscript{40} comparing to control at the different tested periods (Table 2). Additionally, the activity of the AST enzyme increased significantly after exposing the snail to LC\textsubscript{40} value as compared those of control at the 3 exposure times. As well as, after exposing to LC\textsubscript{20} values, the enzyme activity significantly increased only at the exposure periods (48 and 72 h) as compared to those of control. For comparison, the enzyme activity at the three periods, 24, 48, and 72 h, post hoc analysis cleared that it was significantly increased at 72 h than the periods of 24 and 48 h after LC\textsubscript{20} and LC\textsubscript{40} values’ treatments. On the other hand, the total protein (TP) level was significantly decreased after LC\textsubscript{20} and LC\textsubscript{40} exposure compared to control at the 3 different exposure times. The post hoc analysis showed that the level of TP at lethal concentration LC\textsubscript{40} had a significant reduction at 48 and 72 h with relation to lethal time 24 h only.

Histological studies

Digestive gland

In the present study, the digestive gland of the control *M. cartusiana* snail showed a normal structures without histopathological alterations under a light microscope (Fig. 1a). It consists of highly—branched numerous, compressed digestive tubules (DT) separated by lost connective tissues. Each tubule has a narrow lumen (L), all surrounded by a circular thin muscle layer consisting of 3 different cells; Digestive cells (DC) with columnar shape and containing basally nuclei, Calcium cells, Excretory cells (EC). Histological alterations were observed in *M. cartusiana* treated with LC\textsubscript{20} of *B. thuringiensis* after 96 h of exposure observed in (Fig. 1b), the lumen of the digestive tubule enlarged and increased, the cells lining the tubules were irregularly arranged and extremely indistinguishable.The excretory cells become vacuolated (V), rupture and degeneration of digestive cells were reported. Additionally, histopathological observations were observed at exposure to LC\textsubscript{40} hemocyte infiltration (HI), the digestive tubule, and their constituents lining cells; digestive, calcium, and excretory cells showed complete rupture (Fig. 1c).

Foot

The foot tissue of control *M. cartusiana* snail was found composed of a simple columnar epithelium layer (E), followed by a layer of connective tissue containing mucous gland (MG). The innermost layer was formed of muscle fiber (MF), as illustrated in (Fig. 2a). The foot tissue of snail exposed to LC\textsubscript{20} was observed with necrotic changes in the mucous gland (N), the connective tissue containing empty spaces vacuoles (V). Additionally, the muscle fiber layer suffered from the cells deformation (Fig. 2b). Meanwhile, at snail exposure to LC\textsubscript{40}, the foot tissue contained vacuoles in the muscle fiber layer as long as deformation occurs in this layer. Also, the outer epithelial layer contained undifferentiated necrotic epithelial cells and ruptured the outer layer (Fig. 2c).

Discussion

Obtained data indicated that the mortality of the snail *M. cartusiana* after protecto treatments increased with increasing the concentration and the exposure time. The
sub-lethal concentrations (LC_{20}, LC_{10}, and LC_{25}) reduced the survival and growth rates of *S. mansoni* snails after 12 weeks of *B. thuringiensis* treatment in relation to the corresponding control (Osman et al. 2011). The snail *Physa marmorata* was found more sensitive to the lethal concentration of the biocide *B. thuringiensis* (LC_{50}) at 24, 48, and 72 h (Mansouri et al. 2013). This finding was in accordance with that obtained by Genena and Mostafa (2008), who found out that *B. thuringiensis* showed high pathogenicity against land snail *M. cantina*, with mortality increasing with an increase in the concentration of bacteria.

The gained results in this study indicated that the commercial formulations of tested biopesticide protecto increased the activity of enzymes ALT, AST, and ALP at the two sub-lethal concentrations LC_{20} and LC_{40} at the 3 different tested periods 24, 48 and 72 h in comparison to the control. Also, the results showed a significant decrease in the level of total protein in the snail at both concentrations for 3 lethal times. Those enzymes are located in hepatocytes and in many organs, lungs, and hurt (Abd-El-Haleem et al. 2021). The commercial formulations of *B. thuringiensis* var kurstaki "Agerin, Dipel 2X and Dipel DF" significantly affected activities of ALT and AST enzymes of larvae of cotton leafworm *Spodoptera littoralis* (Kamel et al. 2010). Also, (Kramarz et al. 2007) showed that *Bt* toxin does not affect the survival rates of *Helix aspersa* snails. The obtained results are incorporated with those cleared by (Abdel-Halim et al. 2006), who showed that the activities of AST and ALT were decreased in *M. cartusiana* snail exposed to LC_{50} and 0.5 LC_{50} of *B. thuringiensis* with different intervals time. Also, (El-Gohary and Genena 2011) revealed that the molluscicides, Gastrotox, Molotov, and Mesurol caused a significant decrease in ALT activity. At the same time, they have an insignificant increase in AST activity.
and TP level tested on land snail E. vermiculata. Also, they increased the AST and Alt activities but decreased TP level in land snail M. cantina. The results agree with (Banaee et al. 2016), who cleared that ALT, AST, and ALP activities increased significantly in carp exposed to sub-lethal concentrations of paraquat but decreased the level of total protein of the carp at the same conditions. The activities of AST, ALT, and ALP of C. punctatus increased during toxic exposure to Triazophos concentrations. The total protein level decreased during toxic exposure to sub-lethal concentrations at time intervals may be attributed to involving the proteins in the metabolic purposes of the cell, which led to the breakdown of protein for utilization in metabolism (Naveed et al. 2010). The enhanced activities of AST and ALT in land snails caused by the toxic stress of B. thuringiensis may be attributed to insufficient additional energy that resulted from the deprivation of snails from food (Samanta et al. 2014). The activities of hemolymph enzymes AST and ALT of E. vermiculata when exposed the snail to sub-lethal concentrations of Lannet were increased significantly than control, but ALP activity and TP level were decreased at all tested concentrations (Khalil 2016). These results support the finding of (Awadalla et al. 2017) which showed that the total protein decreased highly in the larvae of S. littoralis treated with Protecto. The sub-lethal concentration LC25 of Ginger extract caused AST and ALT enzymes elevation in M. carthusia land snail (Abd El-Atti et al. 2019).

Obtained results cleared that B. thuringiensis caused histological alterations in M. carthusia tissues; digestive glands, foot, and mantle at both sub-lethal concentrations LC25 (6.72 × 10⁶ IU/mg) and LC40 (17.28 × 10⁶ IU/mg). The digestive cells lining the tubule are irregular and indistinguishable. The cell contained vacuoles, degenerated and ruptured. Those observations agree with that cleared by (Said and Ali (2018), who stated that the digestive tubule has fragmentation.

Fig. 2 Light micrograph of the foot of Monacha carthusia snails. a Normal foot, b Snails exposed to LC20 of Protecto, c Snails exposed to LC40 of Protecto E: epidermis, MG: mucus gland, MF: Mussel fiber, DMF: Deformed Mussel fiber, N: necrosis, V: vacuoles. H&E; × 10
cells and disorganization in cells components in Land snail Eobania vermiculata treated by B. thuringiensis. (Attia 2021) exposed E. vermiculata to inorganic fertilizer and observed histological alterations in the digestive gland as; distinguished the epithelium lining and increased in a number of excretory cells. Caselio (plant fertilizer) has a pathological effect on the fresh- water snail, Lanistes carinatus, which causes necrosis for the basement membrane of the digestive tubule, degenerated, and disintegration for connective tissue in the digestive gland (Sheir 2015). Ali and Said (2019) stated that the epithelial cells in the digestive tubule of Monacha obtuercata land snail lost their normal shape after exposure to UV A radiation. Cofone et al. (2020) observed that the outer epithelial layer in treated E. vermiculata foot showed darker in color, a significant decrease in mucus gland, and an increase in vacuoles number within a sub-epithelial layer of the tissue. The foot of B.alexandrina snails occurring in pollutants aquatic environment was observed with shrinkage in unicellular glands, atrophy, and increased vacuoles. Also, the digestive gland shows histological alterations (El-Khayat 2018). The histological alterations in the digestive gland were necrotic changes of digestive cells and loss of cell organizations. The alterations in the foot were disruption of muscle fibers and decreased in Mucous cells and protein cells (Cengiz 2005).

Furthermore, the foot of M. cartusiana study showed histological changes as; deformed in Mussel fiber, necrosis, and increased in vacuoles numbers. These observations were in congruence with the results of (Parvate and Thayil 2017), who recognized that the foot in Achatina fulica land snail with increasing the vacuoles and infiltration in myoepithelial cells layer at exposed to clove oil. Furthermore, the foot of snails had histological alterations under toxic exposure, shrinkage, rupture of muscular tissue, distortion of epithelial covering, and accumulation of the pigment cells (Abdel-Rahman 2020).

Conclusions
It was concluded that Protecto had a significant pathogenic effect on mortality and biochemical activities of land snail M. cartusiana at both sublethal concentrations of exposure, LC20 and LC40 values at 3 different experimental periods (24, 48, and 72 h). Also, the bactericide had a lethal effect on the histological structures of the snail.

Abbreviations
BT: Bacillus thuringiensis; LC20: Lethal concentration of protecto required to kill 20% of exposed snails; LC40: Lethal concentration of protecto required to kill 40% of exposed snails; ALP: Alkaline phosphatase; ALT: Alanine amino transaminase; AST: Aspartate amino transaminase; TP: Total protein; DT: Digestive tubule; DC: Digestive cells; EC: Excretory cells; L: Lumen; CC: Calcium cell; RDC: Ruptured digestive cells; DDC: Degenerated digestive cells; HI: Hemocyte infiltration; RDT: Ruptured digestive tube; H&E: Hematoxylin and eosin; E: Epidermis; MG: Mucus gland; MF: Mussel fiber; DMF: Deformed Mussel fiber; N: Necrosis; V: Vacuoles.; ANOVA: Analysis of variance; SE: Standerd error.

Acknowledgements
Not applicable.

Author contributions
AA and OA designed the study, OA and FK conducted the experiment. GE, AA and HM provided research material and helped in conducting the experiments. OA, AA and HA helped in reviewing and editing the manuscript. All authors read and approved the final manuscript.

Funding
Non-funding received by the authors.

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Declarations

Ethics approval and consent to participate
All of the authors participate in preparing the manuscript and agree to submit the manuscript.

Consent for publication
All of the authors agree to submit the manuscript in the Egyptian Journal of Biological Pest control.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Faculty of Science, Department of Zoology, Beni-Suef University, Beni-Suef, Egypt. 2Plant Protection Research Institute, Agricultural Research Center, Dokki-Giza, Egypt.

Received: 8 December 2021 Accepted: 6 April 2022
Published online: 15 April 2022

References
Abd El-Atti M, Elsheakh AA, Khalil AM, Elgohary WS (2019) Control of the glassy snail M. cartusiana using Zingiber officinale extract as an ecofriendly molluscicide. Afr J Biol Sci 12(1):101–115
Abd-El-Haleem SAE, Mohana AH, Farag MFNG, Kandeel MMHM, Sheikh AA (2021) The utilization of biochemical indicators to assessing the toxicity of some pesticides baits to the glassy clover snail, Monacha cartusiana (Müller). Res J Pharm Biocem Sci 12(1):118–127
Abdel-Halim KY, Abou-Elkheir RK, Hussein AA (2006) Molluscicidal efficacy and toxicity of some pesticides under laboratory and field conditions. Arab Unj J Agric Sci Ain Shams Univ Cairo 14(2):861–870
Abdel-Rahman AHE (2020) Histopathological alterations in the foot and digestive gland of the land snail, Monacha sp. (Gastropoda: Helicidae) treated with some plant oils and neomyol. Egypt J Plant Prot Res Inst 3(4):1255–1270
Ali RF, Robinson DG (2020) Four records of new to Egypt gastropod species including the first reported tropical leatherleaf slug (aevicaulis alba (D’a. de Férussac, 1822) (pulmonata: Veronicellidae). Zool Ecol 30(2):138–156
Ali S, Said S (2019) Histological and scanning electron microscopic study of the effect of UV-A radiation on the land snail Monacha obtuercata. J Basic Appl Zool 80(8):1–8
Attia L, Tine S, Tine Djebbar F, Soltan N (2021) Potential hazards of an inorganic fertilizer (weatfert) for the brown garden snail (Eobania Vermiculata Mül, 1774): growth, histological and biochemical changes and biomarkers. App Ecol Environ Res 19(3):1719–1734
Awadalla SS, El-Mezayen GA, Bayoumy MH (2017) Bioinsecticidal activity of some compounds on the cotton leafworm, spodoptera littoralis (boisd) under laboratory conditions. J Plant Prot Path 8(10):525–528

Banaei M, Nemadoust Haghi B, Tahery S, Shafavi S, Vaziniyan M (2016) Effects of sub-lethal toxicity of paraquat on blood biochemical parameters of common carp, cyprinus carpio (Linnaeus, 1758). Iran J Toxicol 10(6):1–5

Banchroft JD, Stevens A, Turner DR (1996) Theory and practice of histological techniques, 4th edn. Churchill Livingstone, New York

Burtis AC, Ashwood RC (1999) Tietz Textbook of Clinical chemistry, 3rd edn

Cengiz EI, Yildirim MZ, Otludil B, Ünlü E (2005) Histopathological effects of Thi-odan® on the freshwater snail, Galba truncatula (Gastropoda, Pulmonata). J Appl Toxicol 25(6):466–469

Cofone R, Carraturo F, Capriello T, Libralato G, Siciliano A, Del Giudice C, Maio N, Samanta P, Pal S, Mukherjee AK, Senapati T, Ghosh AR (2014) Effects of almix herbicide on metabolic enzymes in different tissues of three teleostean fishes Anabas testudineus, Heteropneustes fossilis and Oreochromis niloticus. Int J Sci Res Environ Sci 2(5):156–163

Curtis C, Fraser ML (1998) A comparative study of the effects of antibiotics on the cells of sporeling and larval form of Bacillus thuringiensis var. israelensis. Appl Soil Ecol 42:236–242

Cynamon J, Koczor J (2015) The role of Caselio (plant fertilizer) exposure on digestive gland histology and heavy metal accumulation in the freshwater snail, Lanistes carinatus. J Biosci App Res 1(5):223–233

Souza HE (2003) Atividade molusccida e fagoinibidora da cafeína edo timol sobre três espécies de moluscos gastrópodes terrestres em condições de laboratório. Dissertação de Mestrado, Universidade Federal de Juiz de Fora, Juiz de Fora, Brasil

Yang Y, Chen X, Cheng L, Cao F, Romies J, Li Y, Peng Y (2015) Toxicological and biochemical analyses demonstrate no toxic effect of Cry1C and Cry2A to Folsomia candida. Sci Rep 5:1–10

Young D (2001) Effect of diseases on clinical Laboratory tests, 4th edn. American Association for Clinical Chemistry Inc., Washington

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen journal and benefit from:

► Convenient online submission
► Rigorous peer review
► Open access: articles freely available online
► High visibility within the field
► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com