On (p, q)-Appell Polynomials

P. Njionou Sadjang*†

December 6, 2017

Abstract

We introduce polynomial sets of (p, q)-Appell type and give some of their characterizations. The algebraic properties of the set of all polynomial sequences of (p, q)-Appell type are studied. Next, we give a recurrence relation and a (p, q)-difference equation for those polynomials. Finally, some examples of polynomial sequences of (p, q)-Appell type are given, particularly, a set of (p, q)-Hermite polynomials is given and their three-term recurrence relation and a second order homogeneous (p, q)-difference equation are provided.

1 Introduction

Let $P_n(x)$, $n = 0, 1, 2, \cdots$ be a polynomial set, i.e. a sequence of polynomials with $P_n(x)$ of exact degree n. Assume that $\frac{dP_n(x)}{dx} = P'_n(x) = nP_{n-1}(x)$ for $n = 0, 1, 2, \cdots$. Such polynomial sets are called Appell sets and received considerable attention since P. Appell \[2\] introduced them in 1880.

Let q and p be two arbitrary real or complex numbers and define the (p, q)-derivative \[8\] of a function $f(x)$ by means of

$$D_{p,q}f(x) = \frac{f(px) - f(qx)}{(p - q)x},$$

which furnishes a generalization of the so-called q-derivative (or Hahn derivative)

$$D_qf(x) = \frac{f(x) - f(qx)}{(1 - q)x},$$

which itself is a generalization of the classical differential operator $\frac{d}{dx}$.

The purpose of this paper is to study the class of polynomial sequences $\{P_n(x)\}$ which satisfy

$$D_qP_n(x) = [n]_{p,q}P_{n-1}(px), \quad n = 0, 1, 2, 3, \cdots$$

where $[n]_{p,q}$ is defined below. We note that when $p = 1$, \[3\] reduces to $D_qP_n(x) = [n]_qP_{n-1}(x)$ so that we may think of (p, q)-Appell sets as a generalization of q-Appell sets (see [11]).

2 Preliminary results and definitions

2.1 (p, q)-number, (p, q)-factorial, (p, q)-binomial coefficients, (p, q)-power.

Let us introduce the following notations (see [5,6,8])

$$[n]_{p,q} = \frac{p^n - q^n}{p - q}, \quad 0 < q < p$$

*Faculty of Industrial Engineering, University of Douala, Cameroon
†pnjionou@yahoo.fr
for any positive integer \(n \in \mathbb{N} \). The twin-basic number is a natural generalization of the \(q \)-number, that is
\[
\lim_{p \to 1} [n]_{p,q} = [n]_{q}.
\]
The \((p,q)\)-factorial is defined by (see \([6,8]\))
\[
[n]_{p,q}! = \prod_{k=1}^{n} [k]_{p,q}!, \quad n \geq 1, \quad [0]_{p,q}! = 1.
\]
Let us introduce also the so-called \((p,q)\)-binomial coefficients
\[
\binom{n}{k}_{p,q} = \frac{[n]_{p,q}!}{[k]_{p,q}! \cdot [n-k]_{p,q}!}, \quad 0 \leq k \leq n.
\]
Note that as \(p \to 1 \), the \((p,q)\)-binomial coefficients reduce to the \(q\)-binomial coefficients.

It is clear by definition that
\[
\binom{n}{k}_{p,q} = \binom{n}{n-k}_{p,q}.
\]
Let us introduce also the so-called falling and raising \((p,q)\)-powers, respectively \([8]\)
\[
(x \ominus a)^n_{p,q} = (x - a)(px - aq) \cdots (xp^{n-1} - aq^{n-1}),
\]
\[
(x \oplus a)^n_{p,q} = (x + a)(px + aq) \cdots (xp^{n-1} + aq^{n-1}).
\]
These definitions are extended to
\[
(a \ominus b)^\infty_{p,q} = \sum_{k=0}^{\infty} (ap^k - q^k b),
\]
\[
(a \oplus b)^\infty_{p,q} = \sum_{k=0}^{\infty} (ap^k + q^k b),
\]
where convergence is required.

2.2 The \((p,q)\)-derivative and the \((p,q)\)-integral
Let \(f \) be a function defined on the set of the complex numbers.

Definition 1 (See \([8]\)). The \((p,q)\)-derivative of the function \(f \) is defined as
\[
D_{p,q} f(x) = \frac{f(px) - f(qx)}{(p - q)x}, \quad x \neq 0,
\]
and \((D_{p,q} f)(0) = f'(0)\), provided that \(f \) is differentiable at 0.

Proposition 2 (See \([8]\)). The \((p,q)\)-derivative fulfills the following product and quotient rules
\[
D_{p,q} (f(x)g(x)) = f(px)D_{p,q} g(x) + g(qx)D_{p,q} f(x),
\]
\[
D_{p,q} (f(x)g(x)) = g(px)D_{p,q} f(x) + f(qx)D_{p,q} g(x).
\]

2.3 \((p,q)\)-exponential and \((p,q)\)-trigonometric functions.
As in the \(q\)-case, there are many definitions of the \((p,q)\)-exponential function. The following two \((p,q)\)-analogues of the exponential function (see \([5]\)) will be frequently used throughout this paper:
\[
e_{p,q}(z) = \sum_{n=0}^{\infty} p^{(2)}_{n} \frac{z^n}{[n]_{p,q}!}, \quad (4)
\]
\[
E_{p,q}(z) = \sum_{n=0}^{\infty} q^{(2)}_{n} \frac{z^n}{[n]_{p,q}!}.
\]
Proposition 3. The following equation applies:
\[e_{p,q}(x)E_{p,q}(-x) = 1. \] (6)

Proof. The result is proved in [5] using \((p, q)\)-hypergeometric series. We provide here a direct proof. From (4) and (5), and the general identity (which is a direct consequence of the Cauchy product)
\[
\left(\sum_{n=0}^{\infty} \frac{a_n}{[n]_{p,q}} \right) \left(\sum_{n=0}^{\infty} \frac{b_n}{[n]_{p,q}} \right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k}[k]_{p,q} a_k b_{n-k} \right) \frac{t^n}{[n]_{p,q}},
\] (7)
it follows that
\[
e_{p,q}(x)E_{p,q}(-x) = \left(\sum_{n=0}^{\infty} \frac{p^{(n)}}{[n]_{p,q}!} x^n \right) \left(\sum_{n=0}^{\infty} \frac{q^{(n)}}{[n]_{p,q}!} (-x)^n \right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k}[k]_{p,q} (-1)^k q^{(k)} p^{(n-k)} \right) \frac{x^n}{[n]_{p,q}!}.
\]

It remains to prove that
\[
\sum_{k=0}^{n} \binom{n}{k}[k]_{p,q} (-1)^k q^{(k)} p^{(n-k)} = \delta_{n,0}.
\]

It is not difficult to prove that for every polynomial \(f_n(x)\) of degree \(n\), the Taylor formula
\[
f_n(x) = \sum_{k=0}^{n} \frac{(D_{p,q}f)(0)}{[k]_{p,q}!} x^n,
\]
holds true. Applying this formula to \(f_n(x) = (a \odot x)^n_{p,q}\) it follows that
\[
(a \odot x)^n_{p,q} = \sum_{k=0}^{n} \binom{n}{k}[k]_{p,q} q^{(k)} p^{(n-k)} (-x)^k a^{n-k}.
\]

Taking finally \(x = a = 1\), the result follows. \(\square\)

The next proposition gives the \(n\)-th derivative of the \((p, q)\)-exponential functions.

Proposition 4. Let \(n\) be a nonnegative integer, \(\lambda\) a complex number, then the following equations hold
\[
D_{p,q}^{n} e_{p,q}(\lambda x) = \lambda^n p^{(n)}_{p,q} e_{p,q}(\lambda p^n x), \quad (8)
\]
\[
D_{p,q}^{n} E_{p,q}(\lambda x) = \lambda^n q^{(n)}_{p,q} E_{p,q}(\lambda q^n x). \quad (9)
\]

Proof. The proof follows by induction from the definitions of the \((p, q)\)-exponentials and the \((p, q)\)-derivative. \(\square\)

3 \((p, q)\)-Appell polynomials

Definition 5. A polynomial sequence \(\{f_n(x)\}_{n=0}^{\infty}\) is called a \((p, q)\)-Appell polynomial sequence if and only if
\[
D_{p,q} f_{n+1}(x) = [n + 1]_{p,q} f_n(px), \quad n \geq 0.
\] (10)

It is not difficult to see that the polynomial sequence \(\{f_n(x)\}_{n=0}^{\infty}\) with \(f_n(x) = (x \odot a)^n_{p,q}\) is a \((p, q)\)-Appell polynomial sequence since (see [8])
\[
D_{p,q} (x \odot a)^n_{p,q} = [n]_{p,q} (px \odot a)^{n-1}_{p,q}, \quad n \geq 1.
\]
Remark 6. Note that when \(p = 1 \), we obtain the classical \(q \)-Appell polynomial sequences known in the literature \([1] \). When \(q = 1 \), we obtain the new basic Appell polynomial sequences of type II introduced and extensively studied in \([10] \).

Next, we give several characterizations of \((p, q) \)-Appell polynomial sequences.

Theorem 7. Let \(\{f_n(x)\}_{n=0}^\infty \) be a sequence of polynomials. Then the following are all equivalent:

1. \(\{f_n(x)\}_{n=0}^\infty \) is a \((p, q) \)-Appell polynomial sequence.

2. There exists a sequence \((a_k)_{k \geq 0} \), independent of \(n \), with \(a_0 \neq 0 \) and such that

\[
f_n(x) = \sum_{k=0}^{n} \binom{n}{k} p^{(\frac{n-k}{2})} a_k x^{n-k}.
\]

3. \(\{f_n(x)\}_{n=0}^\infty \) is generated by

\[
A(t)e_{p,q}(xt) = \sum_{n=0}^{\infty} f_n(x) \frac{t^n}{[n]_{p,q}!},
\]

with the determining function

\[
A(t) = \sum_{n=0}^{\infty} a_n \frac{t^n}{[n]_{p,q}!}.
\]

4. There exists a sequence \((a_k)_{k \geq 0} \), independent of \(n \) with \(a_0 \neq 0 \) and such that

\[
f_n(x) = \left(\sum_{k=0}^{\infty} a_k p^{(\frac{n-k}{2})} \frac{x^k}{[k]_{p,q}!} D_{p,q}^k \right) x^n.
\]

Proof. First, we prove that \((1) \implies (2) \implies (3) \implies (1) \).

\((1) \implies (2) \). Since \(\{f_n(x)\}_{n=0}^\infty \) is a polynomial set, it is possible to write

\[
f_n(x) = \sum_{k=0}^{n} a_{n,k} \binom{n}{k} p^{(\frac{n-k}{2})} x^{n-k}, \quad n = 1, 2, \ldots,
\]

where the coefficients \(a_{n,k} \) depend on \(n \) and \(k \) and \(a_{n,0} \neq 0 \). We need to prove that these coefficients are independent of \(n \). By applying the operator \(D_{p,q} \) to each member of \((12) \) and taking into account that \(\{f_n(x)\}_{n=0}^\infty \) is a \((p, q) \)-Appell polynomial set, we obtain

\[
f_{n-1}(px) = \sum_{k=0}^{n-1} a_{n,k} \binom{n-1}{k} p^{(\frac{n-k-1}{2})} (px)^{n-1-k}, \quad n = 1, 2, \ldots,
\]

since \(D_{p,q} x^0 = 0 \). Shifting the index \(n \to n + 1 \) in \((13) \) and making the substitution \(x \to xp^{-1} \), we get

\[
f_n(x) = \sum_{k=0}^{n} a_{n+1,k} \binom{n}{k} p^{(\frac{n-k}{2})} x^{n-k}, \quad n = 0, 1, \ldots,
\]

Comparing \((12) \) and \((14) \), we have \(a_{n+1,k} = a_{n,k} \) for all \(k \) and \(n \), and therefore \(a_{n,k} = a_k \) is independent of \(n \).
(2) \implies (3). From (2), and the identity (7), we have

\[\sum_{n=0}^{\infty} f_n(x) \frac{t^n}{[n]_{p,q}!} = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} p^{(n-k)}_{p,q} a_k x^{n-k} \right) \frac{t^n}{[n]_{p,q}!} = \left(\sum_{n=0}^{\infty} a_n \frac{t^n}{[n]_{p,q}!} \right) \left(\sum_{n=0}^{\infty} [p]_{p,q}^{(n)} t^n \right) = A(t)e_{p,q}(xt). \]

(3) \implies (1). Assume that \(\{f_n(x)\}_{n=0}^{\infty} \) is generated by

\[A(t)e_{p,q}(xt) = \sum_{n=0}^{\infty} f_n(x) \frac{t^n}{[n]_{p,q}!}. \]

Then, applying the operator \(D_{p,q} \) (with respect to the variable \(x \)) to each side of this equation, we get

\[tA(t)e_{p,q}(pxt) = \sum_{n=0}^{\infty} D_{p,q}f_n(x) \frac{t^n}{[n]_{p,q}!}. \]

Moreover, we have

\[tA(t)e_{p,q}(pxt) = \sum_{n=0}^{\infty} f_n(px) \frac{t^{n+1}}{[n]_{p,q}!} = \sum_{n=0}^{\infty} [n]_{p,q} f_{n-1}(px) \frac{t^n}{[n]_{p,q}!}. \]

By comparing the coefficients of \(t^n \), we obtain (1).

Next, (2) \iff (4) is obvious since \(D_{p,q}^{k} t^n = 0 \) for \(k > n \). This ends the proof of the theorem. \(\square \)

4 Algebraic structure

We denote a given polynomial set \(\{f_n(x)\}_{n=0}^{\infty} \) by a single symbol \(f \) and refer to \(f_n(x) \) as the \(n \)-th component of \(f \). We define (as done in [2] [12]) on the set \(P \) of all polynomials sequences the following three operations +, ., and *. The first one is given by the rule that \(f + g \) is the polynomial sequence whose \(n \)-th component is \(f_n(x) + g_n(x) \) provided that the degree of \(f_n(x) + g_n(x) \) is exactly \(n \). On the other hand, if \(f \) and \(g \) are two sets whose \(n \)-th components are, respectively,

\[f_n(x) = \sum_{k=0}^{n} \alpha(n,k) x^k, \quad g_n(x) = \sum_{k=0}^{n} \beta(n,k) x^k, \]

then \(f * g \) is the polynomial set whose \(n \)-th component is given by

\[(f * g)_n(x) = \sum_{k=0}^{n} \alpha(n,k) p^{-\binom{k}{2}} g_k(x). \]

If \(\lambda \) is a real or complex number, then \(\lambda f \) is defined as the polynomial sequence whose \(n \)-th component is \(\lambda f_n(x) \). We obviously have

\[f + g = g + f \quad \text{for all} \quad f, g \in P, \]
\[\lambda f * g = (f * \lambda g) = \lambda (f * g). \]

Clearly, the operation * is not commutative (see [12]). One commutative subclass is the set \(A \) of all Appell polynomials (see [2]).

In what follows, \(A(p,q) \) denotes the class of all \((p,q)\)-Appell sets.

In \(A(p,q) \) the identity element (with respect to *) is the \((p,q)\)-Appell set \(I = \{ p^{(2)} x^n \} \). Note that \(I \) has the determining function \(A(t) = 1 \). This is due to identity (4). The following theorem is easy to prove.
Theorem 8. Let $f, g, h \in \mathcal{A}(p, q)$ with the determining functions $A(t), B(t)$ and $C(t)$, respectively. Then

1. $f + g \in \mathcal{A}(p, q)$ if $A(0) + B(0) \neq 0$,
2. $f + g$ belongs to the determining function $A(t) + B(t)$,
3. $f + (g + h) = (f + g) + h$.

The next theorem is less obvious.

Theorem 9. If $f, g, h \in \mathcal{A}(p, q)$ with the determining functions $A(t), B(t)$ and $C(t)$, respectively, then

1. $f \ast g \in \mathcal{A}(p, q)$
2. $f \ast g = g \ast f$,
3. $f \ast g$ belongs to the determining function $A(t)B(t)$,
4. $f \ast (g \ast h) = (f \ast g) \ast h$.

Proof. It is enough to prove the first part of the theorem. The rest follows directly. According to Theorem 7 we may put

$$f_n(x) = \sum_{k=0}^{n} \binom{n}{k} p^{(x)}_{k,p,q} a_k x^{n-k} = \sum_{k=0}^{n} \binom{n}{k} p^{(x)}_{k,p,q} a_{n-k} x^k,$$

so that

$$A(t) = \sum_{n=0}^{\infty} a_n \frac{t^n}{[n]_{p,q}^!}.$$

Hence

$$\sum_{n=0}^{\infty} (f \ast g)_n(x) \frac{t^n}{[n]_{p,q}^!} = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} a_{n-k}g_k(x) \right) \frac{t^n}{[n]_{p,q}^!} = \left(\sum_{n=0}^{\infty} a_n \frac{t^n}{[n]_{p,q}^!} \right) \left(\sum_{n=0}^{\infty} g_n(x) \frac{t^n}{[n]_{p,q}^!} \right) = A(t)B(t) e_{p,q}(xt).$$

This ends the proof of the theorem.

Corollary 10. Let $f \in \mathcal{A}(p, q)$, then f has an inverse with respect to \ast, i.e. there is a set $g \in \mathcal{A}(p, q)$ such that

$$f \ast g = g \ast f = I.$$

Indeed g belongs to the determining function $(A(t))^{-1}$ where $A(t)$ is the determining function for f.

In view of Corollary 10 we shall denote this element g by f^{-1}. We are further motivated by Theorem 9 and its corollary to define $f^0 = I$, $f^n = f \ast (f^{n-1})$ where n is a non-negative integer, and $f^{-n} = f^{-1} \ast (f^{n-1})$. We note that we have proved that the system $(\mathcal{A}(p, q), \ast)$ is a commutative group. In particular this leads to the fact that if

$$f \ast g = h$$

and if any two of the elements f, g, h are (p, q)-Appell then the third is also (p, q)-Appell.
Proposition 11. If f is a (p,q)-Appell sequence with the determining function $A(t)$, and if we set
\[
A^{-1}(t) = \sum_{n=0}^{\infty} b_n \frac{t^n}{[n]_{p,q}!}
\]
then
\[
x^n = p^{-(2)} \sum_{k=0}^{n} \binom{n}{k} p_k f_{n-k}(x).
\]

Proof. Since f is a (p,q)-Appell sequence, we have
\[
\sum_{n=0}^{\infty} p^{(2)} x^n \frac{t^n}{[n]_{p,q}!} = (A(t))^{-1} A(t) e_{p,q}(xt)
\]
\[= \left(\sum_{n=0}^{\infty} b_n \frac{t^n}{[n]_{p,q}!} \right) \left(\sum_{n=0}^{\infty} f_n(x) \frac{t^n}{[n]_{p,q}!} \right)
\]
\[= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} b_k f_{n-k}(x) \right) \frac{t^n}{[n]_{p,q}!}.
\]
The result follows by comparing the coefficients of t^n.

5 (p,q)-difference and (p,q)-recurrence relations for (p,q)-Appell polynomials

In this section, we derive a recurrence relation and a (p,q)-difference equation for the (p,q)-Appell polynomials.

Theorem 12. Let $\{f_n(x)\}_{n=0}^{\infty}$ be the (p,q)-Appell polynomial sequences generated by
\[
A(x,t) = A(t) e_{p,q}(xt) = \sum_{n=0}^{\infty} f_n(x) \frac{t^n}{[n]_{p,q}!}.
\]

Then the following linear homogeneous recurrence relation holds true:
\[
f_n(px/q) = \frac{1}{[n]_{p,q}} \sum_{k=0}^{n} \binom{n}{k} \alpha_k f_{n-k}(x) + p^n q^{-1} x f_{n-1}(x).
\]

where
\[
D_{p,q}^{(t)} A(t) = \sum_{n=0}^{\infty} \alpha_n \frac{t^n}{[n]_{p,q}!}.
\]

Proof. Applying the (p,q)-derivative $D_{p,q}$ (with respect to the variable t) to each
\[
A(px,t) = A(t) e_{p,q}(ptx) = \sum_{n=0}^{\infty} f_n(px) \frac{t^n}{[n]_{p,q}!}
\]
and multiplying the obtained equation by t, we get the following equations
\[
t D_{p,q}^{(t)} A(px,t) = t \sum_{n=0}^{\infty} [n]_{p,q} f_n(px) \frac{t^{n-1}}{[n]_{p,q}!} = \sum_{n=0}^{\infty} [n]_{q} f_n(px) \frac{t^n}{[n]_{p,q}!},
\]
From the assumption (16), it follows that

\[tD_{p,q}^{(t)} A(px,t) = t \left[D_{p,q}^{(t)} (A(t)e_{p,q}(pxt)) \right] \]

\[= t \left[A(pt)D_{p,q}^{(t)} e_{p,q}(pxt) + e_{p,q}(pqt)D_{p,q}^{(t)} A(t) \right] \]

\[= tpxA(pt)e_{p,q}(pqt) + tD_{p,q}A(t)e_{p,q}(pqt) \]

\[= A(pt)e_{p,q}(pqt) \left(tpx + t \frac{D_{p,q}^{(t)} A(t)}{A(pt)} \right) \]

\[= A(qx,pt) \left(tpx + t \frac{D_{p,q}^{(t)} A(t)}{A(pt)} \right) \]

From Theorem 12, we know that the \(A \) is valued around the point \(t = 0 \).

Proof. From Theorem 12, we know that the \(f_n \)'s satisfy the recursion formula (15). Since \(\{f_n(x)\}_{n=0}^{\infty} \) is a \((p,q) \)-Appell polynomial sequence, we have

\[D_{p,q}^{(t)} A(t) \]

\[= \sum_{n=0}^{\infty} \alpha_n \frac{t^n}{[n]_{p,q}!} \]

is valued around the point \(t = 0 \). Then the \(f_n \)'s satisfy the \((p,q) \)-difference equation

\[\left(\sum_{k=0}^{n} \frac{\alpha_k}{[k]_{p,q}!} L_p^{-k} D_{p,q}^k + p^n q^{-1} x L_p^{-1} D_{p,q} \right) f_n(x) - [n]_{p,q} f_n(px/q) = 0, \]

with

\[L_p^k f_n(x) = f_n(p^k x), \quad k \in \mathbb{Z}. \]

Proof. From Theorem 12, we know that the \(f_n \)'s satisfy the recursion formula (15). Since \(\{f_n(x)\}_{n=0}^{\infty} \) is a \((p,q) \)-Appell polynomial sequence, we have

\[D_{p,q}^k f_n(x) = \frac{[n]_{p,q}!}{[n-k]_{p,q}!} f_{n-k}(p^k x), \quad 0 \leq k \leq n. \]

It follows that

\[f_{n-k}(x) = \frac{[n-k]_{p,q}!}{[n]_{p,q}!} L_p^{-k} D_{p,q}^k f_n(x), \quad 0 \leq k \leq n. \]
Then (15) becomes

\[f_n(px/q) = \frac{1}{[n]_{p,q}} \sum_{k=0}^{n} \binom{n}{k}_{p,q} \alpha_k \frac{[n-k]_{p,q}!}{[k]_{p,q}!} \mathcal{L}_{p,q}^{-k}D_{p,q}^k f_n(x) + p^n q^{-1} x f_{n-1}(x) \]

which, when simplified, yields

\[= \frac{1}{[n]_{p,q}} \sum_{k=0}^{n} \frac{\alpha_k}{[k]_{p,q}!} \mathcal{L}_{p,q}^{-k}D_{p,q}^k f_n(x) + p^n q^{-1} x f_{n-1}(x) \]

\[= \frac{1}{[n]_{p,q}} \left(\sum_{k=0}^{n} \frac{\alpha_k}{[k]_{p,q}!} \mathcal{L}_{p,q}^{-k}D_{p,q}^k + p^n q^{-1} x \mathcal{L}_{p,q}^{-1}D_{p,q} \right) f_n(x) \]

and the result follows \(\Box\)

6 Some \((p, q)\)-Appell polynomial sequences

In this section, we give four examples of \((p, q)\)-Appell polynomial sequences and prove some of their main structure relations. The bivariate \((p, q)\)-Bernoulli, the bivariate \((p, q)\)-Euler and the bivariate \((p, q)\)-Genocchi polynomials are introduced in [3] and some of their relevant properties are given. Without any lost of the generality, we will restrict ourselves to the case \(y = 0\). Also, we introduce a new generalization of the \((p, q)\)-Hermite polynomials.

6.1 The \((p, q)\)-Bernoulli polynomials

The \((p, q)\)-Bernoulli polynomials are \((p, q)\)-Appell polynomials for the determining function

\[A(t) = \frac{t}{e_{p,q}(t)} \]

Thus, the \((p, q)\)-Bernoulli polynomials are defined by the generating function

\[\frac{t}{e_{p,q}(t)} - 1 = \sum_{n=0}^{\infty} B_n(x; p, q) \frac{t^n}{[n]_{p,q}!} \]

Let us define the \((p, q)\)-Bernoulli numbers \(B_{n, p, q}\) by the generating function

\[\frac{t}{e_{p,q}(t)} - 1 = \sum_{n=0}^{\infty} B_{n, p, q} \frac{t^n}{[n]_{p,q}!} \]

so that

\[B_n(0; p, q) = B_{n, p, q} \quad (n \geq 0). \]

Proposition 14. The \((p, q)\)-Bernoulli polynomials \(B_n(x; p, q)\) have the representation

\[B_n(x; p, q) = \sum_{k=0}^{n} \binom{n}{k}_{p,q} \mathcal{L}_{p,q}^{-k} \mathcal{E}_{p,q}^{-k} B_{k, p, q} x^{n-k}. \] (17)

Proof. The proof follows from Theorem [7] \(\Box\)

6.2 The \((p, q)\)-Euler polynomials

The \((p, q)\)-Euler polynomials are \((p, q)\)-Appell polynomials for the determining function

\[A(t) = \frac{2}{e_{p,q}(t) + 1} \]

Thus, the \((p, q)\)-Euler polynomials are defined by the generating function

\[\frac{2}{e_{p,q}(t) + 1} e_{p,q}(xt) = \sum_{n=0}^{\infty} E_n(x; p, q) \frac{t^n}{[n]_{p,q}!} \]

Let us define the \((p, q)\)-Euler numbers \(E_{n, p, q}\) by the generating function

\[\frac{2}{e_{p,q}(t) + 1} = \sum_{n=0}^{\infty} E_{n, p, q} \frac{t^n}{[n]_{p,q}!} \]
so that
\[\mathcal{E}_n(0; p, q) = \mathcal{E}_{n, p, q}, \quad (n \geq 0). \]

Proposition 15. The \((p, q)\)-Euler polynomials \(\mathcal{E}_n(x; p, q)\) have the representation
\[\mathcal{E}_n(x; p, q) = \sum_{n=0}^{\infty} \left[\begin{array}{c} n \\ k \end{array} \right]_{p, q} p^{(n-k)} \mathcal{E}_{k, p, q} x^{n-k}. \quad (18) \]

Proof. The proof follows from Theorem 7.

\[\square \]

6.3 The \((p, q)\)-Genocchi polynomials

The \((p, q)\)-Genocchi polynomials are \((p, q)\)-Appell polynomials for the determining function
\[A(t) = \frac{2t}{e_{p, q}(t) + 1}. \]
Thus, the \((p, q)\)-Genocchi polynomials are defined by the generating function
\[\frac{2t}{e_{p, q}(t) + 1} e_{p, q}(xt) = \sum_{n=0}^{\infty} \mathcal{G}_n(x; p, q) \frac{t^n}{[n]_{p, q}!}. \]

Let us define the \((p, q)\)-Genocchi numbers \(\mathcal{G}_{n, p, q}\) by the generating function
\[\frac{2t}{e_{p, q}(t) + 1} = \sum_{n=0}^{\infty} \mathcal{G}_{n, p, q} \frac{t^n}{[n]_{p, q}!} \]
so that
\[\mathcal{G}_n(0; p, q) = \mathcal{G}_{n, p, q}, \quad (n \geq 0). \]

Proposition 16. The \((p, q)\)-Genocchi polynomials \(\mathcal{G}_n(x; p, q)\) have the representation
\[\mathcal{G}_n(x; p, q) = \sum_{n=0}^{\infty} \left[\begin{array}{c} n \\ k \end{array} \right]_{p, q} p^{(n-k)} \mathcal{G}_{k, p, q} x^{n-k}. \quad (19) \]

Proof. The proof follows from Theorem 7.

\[\square \]

6.4 The \((p, q)\)-Hermite polynomials

In this section we construct \((p, q)\)-Hermite polynomials and give some of their properties. Also, we derive the three-term recurrence relation as well as the second-order differential equation satisfied by these polynomials.

We define \((p, q)\)-Hermite polynomials by means of the generating function
\[F_{p, q}(x, t) := \frac{2t}{e_{p, q}(t) + 1} e_{p, q}(xt) = \sum_{n=0}^{\infty} H_n(x; p, q) \frac{t^n}{[n]_{p, q}!}. \quad (20) \]

where
\[F_{p, q}(t) = \sum_{n=0}^{\infty} (-1)^n p_n^{(n-1)} \frac{t^{2n}}{[2n]_{p, q}!!}, \quad \text{with} \quad [2n]_{p, q}!! = \prod_{k=1}^{n} [k]_{p, q}, \quad [0]_{p, q}!! = 1. \quad (21) \]

It is clear that
\[\lim_{p, q \to 1} F_{p, q}(x, t) = e^{xt} \lim_{p, q \to 1} \sum_{n=0}^{\infty} (-1)^n p_n^{(n-1)} \frac{t^{2n}}{[2n]_{p, q}!!} = e^{xt} \sum_{n=0}^{\infty} (-1)^n \frac{t^{2n}}{(2n)(2n-2)\cdots 2} \]
\[= e^{xt} \sum_{n=0}^{\infty} (-1)^n \frac{t^{2n}}{2^nn!} = \exp \left(tx - \frac{t^2}{2} \right). \]
Moreover,
\[D_{p,q}^{(t)}F_{p,q}(t) = \sum_{n=1}^{\infty} (-1)^n p^n (n-1) \frac{t^{2n-1}}{(2n-2)!!} \frac{p^{n(n-1)+2n}}{(2n-2)!!} = tF_{p,q}(pt), \]
Hence
\[\frac{D_{p,q}^{(t)}F_{p,q}(t)}{F_{p,q}(pt)} = -t. \]

Theorem 17. The \((p, q)\)-Hermite polynomials \(H_n(x; p, q)\) have the following representation
\[H_n(x, p, q) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{(-1)^k p^{n-k} (n-k)!!}{(2k)^{n-k}!!} x^n. \]

Proof. Indeed, expanding the generating function \(H_{p,q}(x, t)\), we have
\[H_{p,q}(x, t) = \left(\sum_{k=0}^{\infty} (-1)^k t^k \frac{x^k}{k!!} \right) \left(\sum_{n=0}^{\infty} \frac{p^n x^n}{[n]_{p,q}!!} \right) = \sum_{n=0}^{\infty} \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{(-1)^k t^k (n-k)!!}{(2k)^{n-k}!!} x^n. \]
The result follows by using the series manipulation formula (7) of Lemma 11 in [11].

Theorem 18. The following linear homogeneous recurrence relation for the \((p, q)\)-Hermite polynomials holds true
\[H_{n+1}(px, p, q) = p^{n+1}x H_n(qx, p, q) - p^{n-1} [n]_{p,q} H_{n-1}(qx, p, q), \quad (n \geq 1). \]

Proof. The result comes from Theorem 12 using the fact that \(\frac{D_{p,q}^{(t)}F_{p,q}(t)}{F_{p,q}(pt)} = -t. \)

Theorem 19. The \((p, q)\)-Hermite polynomials \(H_n(x; p, q)\) satisfy the \((p, q)\)-difference equation
\[\mathcal{L}_p^{-2} D_{p,q}^2 H_n(x; p, q) - p^2 q^{-1} x \mathcal{L}_p^{-1} D_{p,q} H_n(x; p, q) + p^{2-n} [n]_{p,q} H_n(px/q) = 0. \quad (22) \]

Proof. The proof follows from Theorem 13.

Note that as \(p \) and \(q \) tend to 1, Equation (22) reduces to the second order differential equation satisfied by the Hermite polynomials.

Concluding remarks

In this work we have introduced \((p, q)\)-Appell sequences and have given several characterizations of these sequences. Also, by a suitable choose of the determining functions, we have recovered the \((p, q)\)-Bernoulli and the \((p, q)\)-Euler polynomials already given in [3]. It worth noting that we could set the problem of defining a new set of \((p, q)\)-Appell sequences by changing the small \((p, q)\)-exponential function \(e_{p,q}\) by the big \((p, q)\)-exponential function \(E_{p,q}\). But, this problem is useless since it is not difficult to see that \(e_{p,q} = E_{q,p} \). Note also that the \((p, q)\)-Appell defined here generalized both \(q\)-Appell functions of type I and of type II already found in the literature and can be viewed as a unified definition.

Acknowledgements

This work was supported by the Institute of Mathematics of the University of Kassel to whom I am very grateful.
References

[1] W. A. Al-Salam, *q-Appell polynomials*, Ann. Mat. Pura Appl., 4 (1967), pp. 31–45.

[2] P. Appell, *Une classe de polynomes*, Annalles scientifique, Ecole Normale Sup., ser. 2, vol. 9 (1880), pp. 119–144.

[3] U. Duran, M. Acikgoz, S. Araci, *On (p,q)-Bernoulli, (p,q)-Euler and (p,q)-Genocchi polynomials*, Preprint available at http://openaccess.hku.edu.tr/bitstream/handle/20.500.11782/86/Araci15.pdf?sequence=1

[4] R. Jagannathan, *P, Q-Special Functions*, arXiv:math/9803142v1, 1998.

[5] R. Jagannathan, K. Srinivasa Rao, *Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series*, in: Proceedings of the International Conference on Number Theory and Mathematical Physics, Srinivasa Ramanujan Centre, Kumbakonam, India, 20-21 December 2005

[6] R. Jagannathan, R. Sridhar, *p,q-Rogers-Szegö Polynomials and the (p,q)-Oscillator*, K. Alladi et al. (eds.), The Legacy of Alladi Ramakrishnan in the Mathematical Sciences, 2010.

[7] V. Kac, P. Cheung, *Quantum calculus*, Springer, (2001).

[8] P. Njionou Sadjang, *On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor theorems*, http://arxiv.org/abs/1309.3934 (2013), Submitted.

[9] P. Njionou Sadjang, *On two (p,q)-analogues of the Laplace transform*, J. Difference. Equ. Appl. DOI: 10.1080/10236198.2017.1340469, (2017)

[10] P. Njionou Sadjang, *On a new q-analogue of Appell polynomials*, Submitted.

[11] E. D. Rainville: *Special Functions*, The Macmillan Company, New York, (1960).

[12] I. M. Sheffer, *On sets of polynomials and associated linear functional operator and equations*, Amer. J. Math. 53 (1931), pp. 15–38