Cellular events in alveolitis and the evolution of pulmonary fibrosis

A. Burkhardt and H. Cottier

1 Institute of Pathology, University of Berne, Freiburgstrasse 30, CH-3010 Bern
2 Central Laboratory, Swiss Red Cross Blood Transfusion Service, Wankdorfstrasse 10, CH-3000 Bern 22, Switzerland

Summary. "Alveolitis", as opposed to "pneumonia" sensu strictiori, is a term used to denote diffuse inflammatory changes of the pulmonary parenchyma, excluding those that result from local bacterial, fungal or other extracellular microbial growth. The various types of alveolitis are classified according to their histological characteristics and range from "luminal phagocytic" or "mural lymphoplasmacellular" and "exudative" to "fibrosing" alveolitis. In this overview, various exogenous and endogenous causes of different types of alveolitis, and the cellular events in their pathogenesis are briefly discussed to illustrate the complex mechanisms involved. Particular emphasis is placed on the possible transition from diffuse exudative to fibrosing alveolitis. It appears that pulmonary fibrosis, which is usually patchy rather than truly diffuse, does not have a uniform pathogenesis. Besides the possibility of a certain degree of a diffuse fibrosis three major pathways are evident: (1) granulation tissue budding into alveolar lumina (luminal fibrosis) (2) exudate incorporation into alveolar walls (mural fibrosis) and – at least equally important – (3) so-called collapse (atelectatic) induration (obliterative-interseptal fibrosis), a process that has largely been neglected so far.

Key words: Alveolitis - Pulmonary fibrosis - Diffuse alveolar damage - Pulmonary alveoli

Introduction

Pulmonary alveoli are superbly equipped to carry out their function of gas exchange during respiration. This is particularly evident from their ultrastructure (reviewed in Kuhn 1980). Flat type I pneumocytes, the fused epithelial and endothelial basement membranes and the endothelium constitute the respiratory membrane, which in humans is less than 0.5 μm thick at its thinnest parts (Bachofen and Weibel 1977). Type II pneumocytes which, after appropriate stimulation can enter the mitotic cycle, are able to transform into type I cells and thus to replace the latter when they are damaged and/or desquamate. Clearance of inhaled materials from the alveoli is predominantly the task of alveolar macrophages. A minute fraction of inhaled, nondigestible particles, usually within macrophages (Adamson and Bowden 1982), enters the pulmonary lymphatics and is passed to regional lymph nodes. Along this route the particles may accumulate, especially within lymphoid nodules in the lung (Cottier et al. 1987). So-called interstitial cells in the alveolar walls are usually mononuclear phagocytes on their way from the capillaries to the alveolar lumen. Lung tissue, particularly the extraalveolar interstitium, is extremely distensible due to the special arrangement of elastic and various types of collagen fibers (Amenta et al. 1988). The alveolar wall contains only a small number of fibroblasts/myofibroblasts, which helps to explain the limited capacity for fibroplasia inherent in the interalveolar septa per se unless fibroblasts or their precursors are attracted from neighboring structures.

Inflammatory changes in the pulmonary parenchyma are frequent and relevant clinical problems. Those caused by local growth of bacteria, fungi or animal parasites are commonly referred to as pneumonias. Inflammatory reactions not caused by extracellular microorganisms have traditionally been regarded as separate entities. There is, however, no generally accepted, uniform nomenclature to denote these disorders usually caused by a more or less "diffuse alveolar damage" (DAD, Katzenstein et al. 1976; reviewed in Burkhardt 1989).
scadding (1964, 1967, 1974, 1978) and fishman (1978) proposed the term “alveolitis” for the inflammatory consequences of DAD, a description which offers the advantage of a clear linguistic separation from “pneumonia”. It also corresponds to reality inasmuch as the pathologist is rarely in a position to actually see the true initial alveolar damage, while inflammatory sequelae are more easily detectable. It is well recognized that both pneumonia and alveolitis can result in a fibrosing process. However, since only alveolitis is defined as a diffuse inflammatory change in the lungs, pulmonary fibrosis, in the sense it is commonly used, originates from fibrosing alveolitis. If the causative agent or agents initiating the fibrosing process are unknown, we speak of “idiopathic pulmonary fibrosis” or “Hamman-Rich syndrome” (Hamman and rich 1944).

Most of our knowledge on alveolitis in humans is empirical. The site of initial damage – endothelium, pneumocytes, phagocytes, and/or other structural elements – is important for possible preventive measures but often can be deduced only from indirect evidence and for many agents remains speculative (review: Burkhardt 1989). Current concepts of pathogenesis are mainly based on experimental models or – as far as cellular phenomena are concerned – on findings in vitro.

In the following, various causes and types of alveolitis and their pathogenesis will be reviewed briefly, although the innumerable agents which may be responsible for such disorders will not be listed in detail. Rather some prototypes of alveolitis will be mentioned to exemplify the complexity of the cellular events initiating the disease process and the factors promoting the transition from alveolitis to pulmonary fibrosis, which includes the hitherto largely neglected process of so-called “collapse induration”, will be discussed.

Exogenous causes of alveolitis, with comments on possible sites of primary damage

Inhaled noxious agents

We need not emphasize that the human lung is exposed repeatedly to a vast array of potentially hazardous exogenous agents, in particular gases, vapors, fumes, dusts, poisons and microbes. This may in part be responsible for the fact that pulmonary function in Man deteriorates with age at a faster pace than that of other major organs (Astrand et al. 1973). With increasing air pollution and inhalation of potentially hazardous agents, particularly in industrialized countries, this phenomenon has gained great clinical relevance and one could question if a clear distinction can be made in this respect between health and disease.

Gaseous components of polluted air such as nitrogen oxides, ozone and sulfur dioxide constitute, even in low concentrations, a generally recognized health hazard (reviewed in cottier 1980). For obvious reasons, oxygen poisoning, in particular hyperoxic lung damage, has been studied in more detail, especially in animals (Kistler et al. 1967; Kapanci et al. 1969; Kaplan et al. 1969; Adamson et al. 1970; Weibel 1971; Bowden and adamsom 1974; Hayaadavoudi et al. 1981). Neutrophils do not seem to be needed to mediate this type of injury (Raj et al. 1985; Smith et al. 1988), so that most evidence points to direct damage to cellular components of the alveolar wall by the production of oxygen radicals (reviewed in Taylor et al. 1986). Many authors have gained the impression that in these animal model systems the capillary endothelium is the primary target cell (Porte et al. 1989). However, alveolar epithelial cells are also damaged to a considerable extent, directly or as a consequence of the endothelial lesions and hypoperfusion. Evidence for this is shown by the consequent marked regenerative activity of type II pneumocytes (“cuboid metaplasia”), which – at least in certain model systems – appears to originate near the first alveolar duct bifurcation (Brody and Overby 1989). In a cultured mouse lung system, which offers the advantage of avoiding the presence of blood components and of dealing with only a relatively small number of macrophages, hyperoxia produced marked damage and subsequent repair of the alveolar epithelium, sufficient to promote a “fibrotic process”. Less severe hyperoxia affected the endothelium only and was not associated with fibrosis (Adamson et al. 1988). Although this artificial system does not reflect the true situation in vivo since it largely circumvents the activation of inflammatory cascades, these findings stress the importance of partial alveolar denudation, due to the destruction of pneumocytes, in promoting the appearance of “thick fibrous septa”.

In the intact organism, hyperoxic lung damage involves, of course, much more complex mechanisms (see below). At this point, it may suffice to remember that the pathomorphic appearance of acute hyperoxic pulmonary lesions is a diffuse exudative alveolitis with edema, the appearance of hyaline membranes and – simultaneously or consecutively – “cuboid metaplasia”, which can be regarded as an expression of pneumocyte regeneration. After inhalation of highly toxic gases or aerosols, such as the ones used in chemical warfare, the damage is even more dramatic (“necrotizing
and hemorrhagic alveolitis”) than after exposure to pure oxygen.

Prolonged cigarette smoking, in addition to other, well known risks, is often associated with the accumulation of pulmonary alveolar macrophages that are larger than in nonsmokers (Müller and Hirschberg 1984), have an enhanced cytotoxic potential for normal lung parenchymal cells in vitro (Davis et al. 1988) and, mainly with the help of complement component C5 (Robbins et al. 1987), can attract (Hunninghake et al. 1978; Hunninghake and Crystal 1983) and activate (Pennington et al. 1985) neutrophils. It seems safe, therefore, to accept that cigarette smoking may damage the alveolar epithelium (Jones et al. 1980), at least in part, by the cytotoxic effects of phagocytes. The latter seem to include the damaging action of oxygen-derived radicals, which may be released from alveolar macrophages (see Cassatella et al. 1989). An imbalance between pro-inflammatory proteases and antiproteases, such as alpha-1-antitrypsin, may not only promote chronic obstructive pulmonary disease with consecutive chronic emphysema (Niewoehner 1988) but can also contribute to alveolitis and the evolution of fibrosis. In view of these findings, we could speak of a “chronic luminal phagocytic alveolitis”.

Inhalation of inorganic dusts in large amounts and over a prolonged period of time represents a well known hazard (reviewed in Walton and McGovern 1977) and may result in nodular fibrotic changes, known as pneumoconiosis (reviewed in Morgan 1986). Mechanisms of fibrogenesis in these lesions have best been studied in silicosis (Reiser and Last 1979) and asbestosis (Lemaire et al. 1986; Chang et al. 1988). It should be recognized, however, that a certain degree of “chronic luminal phagocytic alveolitis” due to dust inhalation is widespread. The medical relevance of such discrete changes may be difficult to assess. Translocation of the dust particles to septal lymphoid nodules (Cottier et al. 1987) may explain the typically focal distribution of fibrosis/scarring in pneumoconiosis, which is predominantly macrophage-mediated and essentially different from diffuse pulmonary fibrosis developing from alveolitis, as will be discussed later.

Inhalation of organic particles has divergent effects, depending on particle size, nature, amount, antigenicity and solubility of the material as well as the duration of exposure. Poorly soluble or insoluble, barely antigenic particles, such as vinyl and polyvinyl chlorides (Cardasco et al. 1980; Antti-Poika et al. 1986) or hairspray (Gebbers et al. 1979), may cause accumulation and a certain degree of stimulation of alveolar macrophages, similar to the changes mentioned above. If, however, the inhaled dust exhibits antigenic properties, as is the case with many materials of microbial, plant or animal origin, an immune reaction may be elicited, with the possible result of a “hypersensitivity alveolitis” or “extrinsic allergic alveolitis” (formerly “lymphocytic and/or plasmacellular interstitial pneumonia”, reviewed in Gaensler et al. 1972; Richerson 1983; Spencer 1985 and Fink and DeShazo 1987).

Blood-borne noxious agents

Another group of causative agents comprises toxic substances (toxons) that – at least in part – reach the lung by the blood stream rather than by inhalation, and appear to affect this organ preferentially. Under physiological conditions the lung is the only organ that is perfused by all the circulating blood. Furthermore, the pulmonary capillary system receives the bulk of venous blood without possessing a detoxifying capacity comparable to that of the liver.

Of particular interest in this context are certain drugs used for chemotherapy in humans, for instance the cytostatic antibiotic bleomycin, which has been recognized as pneumotoxic years ago (Delena et al. 1972; Krous and Hamlin 1973; Burkhardt et al. 1976; Burkhardt and Gebbers 1986). There are certain indications that pulmonary capillary endothelium may be the primary site of attack of bleomycin. Microthrombi appear in small blood vessels of the lung very early, and the damage can be mitigated by heparin therapy (Burkhardt et al. 1976, 1977). Pneumocytes also suffer severely, which leads to partial denudation of alveoli, the formation of hyaline membranes and, with a short latency, the development of “cuboid metaplasia”. These and additional lesions, characteristic of severe exudative alveolitis, can also be found after treatment with other “cytostatic” drugs, e.g. cyclophosphamide (see experiments in mice, Allalunis-Turner and Siemann 1988). Dog lungs perfused in situ with doxorubicin also exhibit dose-dependent damage to endothelial cells and alveolar epithelium (Minchin et al. 1988). Earlier postulates that cytostatic drugs, such as bleomycin, inhibit surfactant production by type II pneumocytes (Burkhardt et al. 1977), have been confirmed using hamster lung slices in vitro (Giri 1987).

Radiation

Penetrating ionizing radiation from external sources has long been known to cause a diffuse lung damage that – in its initial stage – may well
be termed alveolitis. The time course of these lesions has been studied in detail in animal experiments (Cottier 1956; reviewed in Cottier 1966; Watanabe et al. 1974; Penney et al. 1981; Maisin et al. 1982) and the importance of endothelial damage and repair has been stressed (Adamson and Bowerden 1983) as has the occurrence of alveolar collapse and induration (Cottier 1956, see also below).

Somewhat different patterns of lung injury may be expected from inhalation of radionuclides (International Commision on Radiological Protection 1980). Since human data are virtually lacking, our knowledge in this field originates essentially from animal experimentation. Long-term studies have been carried out to evaluate the effects of inhaled alpha-emitting particles, especially plutonium oxides and salts. In evaluating the results of such experiments, a number of variables must be taken into account, for example specific activity of radionuclide, the type of radiation emitted, radioactive decay, the concentration of radionuclides in particles, the size and degree of aggregation of particles, the solubility of the inhaled material, the presence or absence of other toxic substances, particle-tissue interactions, translocational events, and the characteristics of the tissue concerned. Although such studies focused mainly on carcinogenic action (Park et al. 1986), it became evident that these highly toxic particles also have non-stochastic effects, in particular progressive pulmonary fibrosis (International Commision on Radiological Protection 1980). Since the initial deposition of the radioactive material is diffuse, it is easily understood that – depending on the burden – a more or less severe alveolitis will ensue. Highly soluble compounds, such as plutonium nitrate, then rapidly gain access to the blood stream and are fixed to bone or other tissues and – to a considerable extent – finally excreted. Conversely, insoluble particles, e.g. 239PuO$_2$, translocate over the years mainly by the pulmonary lymphatics, where focal accumulations of radioactive material occur and are apt to create “hot spots” (reviewed in Cottier and Zimmermann 1986; see also Cottier et al. 1987).

Other extrinsic or presumably extrinsic causes

The question whether diffuse virus-induced pulmonary changes, that are associated with morphologic signs of immune reactions, should be included under the heading of “alveolitis”, is not yet settled. The same pertains to certain disorders of unknown etiology with considerable lymphocytic infiltration, e.g. the early phase of sarcoidosis (reviewed in Chrétien et al. 1983). It would certainly help international communication if a consensus in this field could be reached.

Endogenous, complex and/or unknown causes of alveolitis

The so-called adult respiratory distress syndrome (ARDS)

In terms of clinical relevance, causes of alveolitis other than the ones discussed so far are probably of greater importance. This may best be exemplified by the wide range of disorders or events that can lead to what is now commonly known as “adult respiratory distress syndrome (ARDS)” (Ashbaugh et al. 1967; review: Rinaldo and Rogers 1982; Simon and Ward 1988). The common features of this syndrome include rapid and progressive development of respiratory impairment. Autopsy studies on 301 individuals who died in the Intensive Care Unit of the University Hospital in Bern revealed that severe, fibrosing alveolitis developed mainly in patients requiring prolonged mechanical ventilation, and that among this group preceding abdominal complications were predominant (Ruchti 1986). This is in line with other observations that gram-negative rods are the most important infectious cause of ARDS (Hyers and Fowler 1986). It thus appears that endotoxin-containing bacteria play a particular role in the initiation of ARDS.

Prolonged shock as such, which may be defined as a condition resulting from critical hypoperfusion of vital organs, can injure the lungs (“shock lung”, see Bleyl and Büsing 1971; Schulz and Schnabel 1975; Heene and Lasch 1977; Sandritter et al. 1978; Riede et al. 1981), although progressive ARDS following acute hypovolemia does not appear to be a frequent event. Possibly, shock-induced damage to the intestinal barrier, comparable to ischemic colitis, could add an infectious component in such situations. Structural changes in the lungs in cases of uncomplicated shock may be viewed as mild variants of the severe alveolitis encountered in progressive ARDS. They include, among others, an early and often transient accumulation of neutrophils in pulmonary capillaries (Schlag et al. 1976; Heine 1981), endothelial swelling and injury at these sites (Gross 1967; Freudenberg 1978), microthrombi or -emboli (Saldeen 1983), alveolar epithelial damage, and the formation of hyaline membranes. Usually there is also a varying degree of luminal and interstitial edema, which ensues – at least in part – from increased vascular permeability and may cause the normally fused subendothelial and subepithelial basement membranes to separate (Riede et al. 1978; Riede et al. 1979, reviewed in Burkhardt and Gebbers 1983). It is thus understandable that a certain de-
gree of alveolo-capillary block can be observed in shock patients showing no overt ARDS.

The structural changes summarized above are much more pronounced and complicated by additional, progressive changes in patients with the so-called "septic shock syndrome". We write this term in parentheses because all these individuals show signs of severe infection, usually caused by gram-negative rods, but not all have sepsis sensu strictiori. There is most often a marked, although transient, aggregation of neutrophils in pulmonary capillaries (Tate and Repine 1983; Elliott et al. 1985), with at least a fraction of these cells in an activated state (Zimmermann et al. 1983). These cells can mediate tissue destruction (reviewed by Weiss 1989). Endothelial damage appears to be important (Tomasheski et al. 1983), however, it is probably of short duration due to a high regenerative capacity of the endothelium. In fact, ultrastructural studies on human lungs revealed astonishingly little vascular damage, platelet thrombi or neutrophil accumulation, while luminal and interstitial edema, partial destruction of pneumocytes (especially type I), the formation of hyaline membranes and the beginning cuboidal metaplasia are obvious 20–24 h after onset of ARDS (Bachofen and Weibel 1974, 1977). In these cases, actual lung damage was probably initiated before an overt ARDS developed.

The pathogenesis of severe, progressive alveolitis in the "septic shock syndrome" is obviously highly complex. Bacterial endotoxins seem to be of great importance. However, although these lipopolysaccharides (LPS) from gram-negative microorganisms, with their toxic component lipid A, are able to directly damage cellular constituents of the pulmonary alveolar wall (Meyrick 1986; Meyrick et al. 1989), this does not appear to be the only, or even the most important, mechanism responsible for alveolitis in "septic shock syndrome". Animal experiments have demonstrated that activation of complement (C), with the subsequent accumulation of neutrophils in pulmonary capillaries and the release of oxygen-derived free radicals, in particular OH⁺, can cause severe lung damage (Till and Ward 1986; Doherty et al. 1988). Leukotrienes, in particular LTB₄, appear to contribute to chemotaxis of neutrophils (Heidel et al. 1989), while adhesion molecules, such as the endothelial leukocyte adhesion molecule 1 (ELAM-1), seem to be instrumental in intracapillary sticking of these cells (Bevilacqua et al. 1989). Other factors, such as tumor necrosis factor (TNF; reviewed by Ziegler 1988), can serve as activators of granulocytes (Yuo et al. 1989) and endothelial cells (Cavender et al. 1989).

Since LPS is able to activate complement by both classical and alternate pathways (Morrison and Kline 1977) and to enhance neutrophil-mediated effects stimulated by chemotactic factors (Worthen et al. 1986), we have to reckon with more than one mechanism of endotoxin-induced injury to pulmonary alveoli. The problem became further complicated with the observation that ARDS may develop in patients with severe neutropenia (Ognibene et al. 1986; Ward and Johnson 1987; Heine et al. 1989), so that an accumulation of granulocytes in the lungs does not seem to be a strict prerequisite for shock-induced lung damage. Other mechanisms apt to contribute to injurious effects on alveolar wall constituents comprise activation of the coagulation system, as is often observed in intensive care patients (Wilde et al. 1988). Clotting of blood usually goes in parallel with a stimulation of the kinin system (reviewed in Kaplan and Silverberg 1987) and the appearance of serum factors that promote aggregation, adherence to endothelium and oxygen radical production by neutrophils (Lo et al. 1988). The mechanisms responsible for initiating coagulation in such conditions are not clear. Proteins of the contact system seem to be more extensively activated than proteins that contribute to later reactions in intravascular coagulation and fibrinolysis (Carvalho et al. 1988). It should also be mentioned that tissue factor (reviewed in Nemerson 1988) is liberated in such lesions, that LPS primes neutrophils for the production of platelet activating factor (PAF; Worthen et al. 1988), and that activated alveolar macrophages express a marked procoagulant activity, which may be important for fibrin deposition in hyaline membranes and in the interstitium (Tipping et al. 1988). The role of coagulation in the development of ARDS is still disputed. Treatment of mice with epsilon-aminocaproic acid, which inhibits the breakdown of fibrin clots, did not enhance cyclophosphamide-induced lung damage in mice (Allalunis-Turner and Siemann 1988). Conversely, the administration of recombinant alpha-1-antitrypsin Pittsburgh, a mutant with a loss in antielastase activity but a marked increase in antithrombin activity, to piglets attenuated the effects of septicemia induced with gram-negative bacteria (Colman et al. 1988). Little is known on the behavior of naturally occurring anticoagulant proteins (reviewed in High 1988) in "septic shock syndrome". The role of an inhibition of fibrinolysis in ARDS (Saldeen 1983) also remains to be further examined. Another group of mediators that appears to be instrumental in the development of "toxic shock syndrome" are products of local cellular arachidonic acid metabolism, i.e. certain pro-
staglandins (PG) and leukotrienes (LT). Monocytes/macrophages are among the cells that can be stimulated to enhanced production of such substances (Balter et al. 1989). As regards alveolitis, thromboxan B₂ (TXB₂), LTB₄ and LTC₄ are of special interest (Morganroth et al. 1988; Schönfeld et al. 1988). Although in certain animal models, nonsteroidal antiinflammatory drugs had a mitigating effect on the development of lung lesions (Begley et al. 1984), the relative importance of arachidonic acid products in the pathogenesis of lung damage discussed here should probably not be overestimated (Simon and Ward 1988).

More recently, interest has focused on certain cytokines as mediators of lung damage, in particular interleukin-1 (IL-1), TNF and interferon-γ (IFN-γ). For instance, monoclonal antibodies directed against TNFα abrogated TNF-mediated macrophage cytotoxicity (Lefkowitz et al. 1989), and prevented the development of septic shock in baboons if given 2 h before the injection of an LD 100 of live *E. coli* (Tracey et al. 1987). Similarly, monoclonal antibody to IFN-γ, which seems to enhance TNFα and IL-1 activities independently of cyclo-oxygenase products (Hart et al. 1989), protected mice against lethal effects of LPS injections (Billiau 1988). However, if we consider the vast number of cytokines known (reviewed in Hamblin 1988), their possibilities of autoregulation (e.g. IL-1; Manson et al. 1989), their in part antagonistic or synergistic actions (Sporn and Roberts 1988), and their divergent effects on different cell types (Warren et al. 1988), it is as yet impossible to assess their relative contribution to the pathogenesis of severe, exudative alveolitis in vivo. Experiments in vitro, for instance on the multitude of cytokine effects on cultured vascular endothelium (Pober 1988), support this view. Analogous difficulties arise if we try to evaluate actions of other substances released from cells, e.g. proteases (reviewed in Scher 1987), peroxidases (Shellito et al. 1987), peptide defensins (Lichtenstein et al. 1988), macrophage activation-associated proteins (MacKay et al. 1989), or vasoactive substances such as histamine (for lung mast cells, see Heard et al. 1989), PG₁₂, nitric oxide or endothelin, a vasoconstrictor factor (De Nucci et al. 1988). Furthermore, regulatory circuits, such as the one including the hypothalamus-pituitary-adrenal axis, have to be taken into account. In vitro, glucocorticoids reduce the LPS-induced monocyte IL-1 levels but have only minimal effects on endothelial cell IL-1 (Zuckerman et al. 1989).

To summarize the complex pathogenetic events leading to severe alveolitis in “septic shock syndrome”: there is no single agent that could be made responsible for all the damage caused, rather, an overwhelming activation of various inflammatory cascades appears to be important.

In ARDS caused by other events, e.g. thermal burns, disseminated intravascular coagulation, multiple injuries with or without fat embolism, pancreatitis and others, the pathogenesis may differ in certain respects; however, several of the mechanisms mentioned above are probably also relevant. Autoimmune processes (see Schwartz and Rose 1986) should also be considered, although their role in alveolitis and pulmonary fibrosis is as yet poorly understood.

Idiopathic or cryptogenic alveolitis

It should be remembered that in about 50% of human cases with diffuse fibrosis of the lungs no causative agent(s) could be identified. This condition, known as “Hamman-Rich syndrome” (Hamman and Rich 1935), “idiopathic pulmonary fibrosis” (Crystal 1976) or “cryptogenic fibrosing alveolitis” (Scadding and Hinson 1967), is thought to be associated with a chronic immune reaction of unknown origin and progresses from an early “cellular” to a late “fibrotic” stage (reviewed in Hance and Crystal 1983; Crystal et al. 1984). However, since the initial phase of this disorder – or group of disorders – is still obscure, the pathogenesis cannot be discussed based on the data available. Lung fibrosis in scleroderma most probably represents a separate entity, related to a defective collagen metabolism.

From alveolitis to pulmonary fibrosis, with special reference to collapse (atelectatic) induration

By comparing the various types of alveolitis and their pathogenesis, the impression is gained that the reaction pattern to injury depends more on the severity of damage than on the nature of causative agents. It seems that the further course of the process is to a great extent determined by the degree to which the alveolar epithelium has been impaired. Death of pneumocytes, in particular of the type I cells, results in a more or less pronounced alveolar denudation, an erosive lesion, concomitant with partial disintegration of the underlying basement membrane and fibrin deposition. If the blood flow through capillaries is reduced, e.g. by accumulation of leukocytes, endothelial swelling and/or microthrombi, hypoxic damage ensues. At this stage, and with limited initial damage, reconstruction of the alveolar structure by resolution of
the exudate and regeneration of pneumocytes by proliferation of type II cells and their transformation into type I cells still seems possible. An intact basement membrane rich in fibronectin may be relevant for epithelial regeneration (Vracko 1974; Torikata et al. 1985), and reperfusion of capillaries after dissolution of microthrombi and endothelial regeneration may ensue. Such minor reparative events are probably quite frequent. Conversely, pneumocytes can cover hyaline membranes and thus lead to incorporation of fibrin-rich material into the thickened septa. If, for one reason or another, such as secondary bacterial infection, larger amounts of fibrin-rich exudate within alveoli are not resolved in due time, organization by granulation tissue (“onion-scale type of fibrosing alveolitis”; Otto 1975) and focal scar formation follow. Such changes seem to occur more often in respiratory bronchioi (“alveolitis with bronchiolitis obliterans”; Katzenstein et al. 1986a) than in alveoli sensu strictiori. This particular localization of scars could in part be related to the initial impact site of exogenous noxious materials.

If the pulmonary parenchyma has undergone severe and/or repetitive damage, fibrosing alveolitis (diffuse pulmonary fibrosis) may develop. Observations made on humans and in animal experiments indicate that in most – if not all – such cases “cuboid metaplasia” of the alveolar epithelium is a prominent feature. This phenomenon, which can even lead to squamous epithelial metaplasia and dysplasia (Spencer 1968; Burkhardt et al. 1977; Wang 1983; Menne and Müller 1984; Katzenstein et al. 1986b; Hartmann et al. 1987) and/or ingrowth of bronchiolar epithelium (“bronchiolization”; Kawanami et al. 1982), must be regarded as a distinct sign of preceding pneumocyte type I necrosis, alveolar denudation and subsequent regeneration. It can also be assumed that in such conditions the alveoli have experienced an at least transient lack of surfactant and surfactant-associated proteins. Normally, type II pneumocytes and alveolar macrophages express high-affinity receptors for pulmonary surfactant protein A (Kuriki et al. 1988), which helps to prevent alveolar collapse and seems to also be instrumental in avoiding inappropriate immune and other inflammatory reactions (Catanzaro et al. 1988). Available information strongly suggests that the initiation of fibrosing alveolitis depends on the severity and the duration of exudative inflammatory processes in the pulmonary parenchyma, concomitant with alveolar denudation, inflammatory infiltrates and unresolved deposits of fibrin. It is of interest in this context that fibronectin (see review by Var-
documentation. There is thus a need to reconsider other possible causes of patchy fibrosis in such disorders. One mechanism has already been mentioned, i.e., the appearance of "onion-scale" type of granulation tissue ("intraluminal buds"; Basset et al. 1986) organizing excessive amounts of fibrinous exudate in an expanded alveolus. Another possibility is the incorporation of murally attached fibrinous masses into the denuded alveolar wall, which can then become covered by regenerating pneumocytes and elicit local fibroblastic responses (Spencer 1968; Katzenstein et al. 1985; Basset et al. 1986). Results of experiments on mice indicate that the transfer of macrophage-derived growth factor(s) to fibroblasts is more efficient when it occurs within the pulmonary interstitium than from alveolar macrophages (Adamson et al. 1986).

The third, and probably most important, mechanism resulting in focal septal fibrosis is the so-called collapse induration or atelectatic induration, a process that has largely been neglected in the international literature (reviewed in Burkhardt 1989). Yet as early as 1922, Kaufman, in a widely used textbook on pathology, wrote under the heading of "obliteration and fibrosis of atelectatic lung tissue, so-called collapse induration" the following: "If collapse of alveoli persists for some time, expansion may no longer be possible. The denuded alveolar walls stick together and coalesce. The alveoli are obliterated. In the interstitial tissue proliferation of fibrous tissue ensues, resulting in cicatricial induration". There have been only sporadic references to this mechanism in the literature (Lauche 1928; Cottier 1956, 1961, 1966, 1980; Heppleston 1956; Otto 1975; Cottier and Zimmermann 1986; Burkhardt 1986), although its importance for the evolution of lung fibrosis was stressed in the last edition of a German handbook of pathology (Burkhardt and Gebbers 1983). More recently, attention has been drawn to collapse induration in the United States (Katzenstein 1985) and in Japan (Fukuda et al. 1985, 1987). Katzenstein pointed out in 1985 that "other factors than collagen deposition may be important in producing the interstitial thickening... one, which was not reported previously, involves partial or complete collapse of alveoli and permanent apposition of their walls."

Recently Burkhardt et al. (1986) were able to demonstrate by means of morphometry the importance of collapse induration in experimental alveolitis induced by bleomycin: in the early stages (until day 60) an increase in the thickness of the alveolar walls and loss of surface area was not accompanied by a true increase in total alveolar wall volume or by an increase in the hydroxyproline content of lung tissue.

Strong evidence in favor of an important role of collapse induration in the pathogenesis of pulmonary fibrosis can also be taken from a number of observations reported in the literature (review: Burkhardt 1989), although these were not interpreted by the authors in terms of collapse induration. Thus Fulmer et al. (1980) concluded that in idiopathic pulmonary fibrosis, the lungs did not contain more collagen than normal lungs in spite of a histologically "unequivocal septal fibrosis".

Alveolar collapse in a lung with DAD may in part be reversible and does not necessarily result in atelectatic induration. For the latter to occur, as mentioned before, probably requires prior alveolar denudation, with loss of surfactant and deposition of fibrinous exudate at the eroded inner surface of alveoli. Fibrin may thus serve as an adhesive, apt to attach the walls of collapsed alveoli to each other. Fibrinectin, which accumulates in developing lung fibrosis (Torikata et al. 1985), could exert a similar function. Fibrin and fibronectin (Fukuda et al. 1987) are also candidates for attracting fibroblasts into the collapsed space and thus for contributing to fibrosis at this site, a process that may be termed "obliterative interseptal fibrosis".

Possible consequences of collapse induration and its recognition are manifold. They comprise a reduction of the intact inner respiratory surface and the exclusion from gas exchange of a considerable portion of pulmonary capillaries. These alterations may contribute as much or more to the respiratory insufficiency of patients with pulmonary fibrosis as than an "alveolo-capillary block" sensu strictiori. Since collapse induration results in patchy rather than diffuse fibrosis, the compliance of lung tissue cannot be expected to be uniformly reduced. For the same reason, the imbalance between ventilation and perfusion may vary markedly from one small area to another. Furthermore, alveoli not affected by collapse induration are apt to expand, producing a pattern of alternating small foci of emphysema change and fibrosis. It should be recognized, however, that even a lung with advanced fibrosis is subject to constant remodeling (reviewed in Murray and Laurent 1988). Macrophages stimulated to enhanced procollagenase production may be instrumental in this process (Curty et al. 1988), and mast cells, which accumulate in experimental, bleomycin-induced pulmonary fibrosis (Tomioka et al. 1989), probably also play a role. The structural
changes mentioned above may become exaggerated to form what is commonly known as "honeycomb lung". Attempts to explain the evolution of this cystic remodeling have alluded to various possible mechanisms (reviewed in Wittek 1970; Gross and Goodwin 1976), but not to collapse induration. The multifocal lung fibrosis resulting from the latter also offers one plausible explanation for the non-uniform particle deposition and clearance in fibrosing pulmonary disorders (Tryka et al. 1985). Another problem relates to the interpretation of small lung biopsy specimens in such diseases, as recommended for the diagnosis of pulmonary fibrosis (Crystal 1976): these may not be representative for the entire lung tissue. It seems desirable that the recently proposed systems for morphometry (Gil et al. 1988) or grading (Ashcroft et al. 1988) of pulmonary fibrosis will be modified to include an assessment of the type and degree of "patchiness" of the lesions.

From a clinical point of view, recognition of collapse induration as an essential mechanism in the pathogenesis of pulmonary fibrosis helps towards a better understanding of the beneficial effect of exogenous surfactant administration in children with ARDS (Davis et al. 1988). It is also apt to further encourage forced inspiratory breathing exercises to be included in the therapeutic program in such conditions, as some physicians have always done. These exercises should be continued for a long time, because fibrosing lung disorders have a tendency to progress with time even after cessation of the causative influence (Bleyle and Büsing 1971; Burkhardt et al. 1977; Burkhardt and Gebbers 1983; Burkhardt 1989). The mechanisms responsible for this phenomenon of protraction ("perpetuation") are not clarified. Persistent inflammation, hyperfusion and ischemic damage to lung tissue seem to be important. Other or additional possibilities are: remodeling of the diseased pulmonary parenchyma, prolonged imbalance of collagen turnover with predominance of fiber deposition over removal, frequent infectious complications, and others. It should be mentioned in this context that in progressive pulmonary fibrosis type I collagen is increasingly prevalent over the more elastic type III (reviewed in Laurent 1986). Finally, obstructive changes in pulmonary lymphatics with consecutive, possibly discrete, lymphedema, a pathogenetic factor rarely mentioned in the literature, should be considered. A longstanding edema may favor diffuse fibrosis ("lymphscelerema"). It also remains to be studied which mechanisms are responsible for the beneficial effects of polyinosinic-polycytidylic acid (Poly I:C), an inducer of interferons, on developing, bleomycin-induced lung fibrosis in hamsters (Giri and Hyde 1988).

References
Adamson IYR, Bowden DH (1982) Effects of irradiation on macrophagic response and transport of particles across the alveolar epithelium. Am J Pathol 106:40-46
Adamson IYR, Bowden DH (1983) Endothelial injury and repair in radiation-induced pulmonary fibrosis. Am J Pathol 112:224-230
Adamson IYR, Bowden DH, WYatt JP (1970) Oxygen poisoning in mice: ultrastructural and surfactant studies during exposure and recovery. Arch Pathol 90:463-472
Adamson IYR, Young L, Bowden DH (1988) Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis. Am J Pathol 130:377-383
Adamson IYR, Letourneau HL, Bowden DH (1989) Enhanced macrophage-fibroblast interactions in the pulmonary interstitium increases fibrosis after silica injection to monocytedepleted mice. Am J Pathol 134:411-418
Allalunis-Turner MJ, Siemann DW (1988) Modification of cyclophosphamide-induced pulmonary toxicity in normal mice. NCI Monogr 6:51-53
Amenta PS, Gil J, Martínez-Hernández A (1988) Connective tissue of rat lung II: Ultrastructural localization of collagen types III, IV and VI. J Histochem Cytochem 36:1167-1173
Aniti-Poika M, Nordman H, Nickels J, Keskinen H, Viljanen A (1986) Lung disease after exposure to polystyrene chloride dust. Thorax 41:566-567
Ashbaugh DG, Bigelow DB, Petty TL, Levine B (1967) Acute respiratory distress in adults. Lancet 2:319-323
Ashcroft T, Simpson JM, Timbrell V (1988) Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol 41:467-470
Astrand I, Astrand PO, Hallbäck I, Kilbom A (1973) Reduction in maximal oxygen uptake with age. J Appl Physiol 35:649-654
Bachofen M, Weibel ER (1974) Basic pattern of tissue repair in human lungs following unspecific injury. Chest 65:14-19S
Bachofen M, Weibel ER (1977) Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with sepsis. Am Rev Respir Dis 116:589-615
Bachofen M, Weibel ER (1982) Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med 3:35-56
Ballier MS, Toews GB, Peters-Golden M (1989) Different patterns of arachidonate metabolism in autologous human blood monocytes and alveolar macrophages. J Immunol 142:602-608
Basset F, Ferrans VJ, Soler P, Takemura T, Fukuda V, Crystal RG (1986) Intraluminal fibrosis in interstitial lung disorders. Am J Pathol 122:443-461
Begley CJ, Ogletree JL, Meyrick BO, Brigham KL (1984) Modification of pulmonary responses to endotoxemia in awake sheep by steroid and non-steroidal anti-inflammatory agents. Am Rev Respir Dis 130:1140-1146
Bevilacqua MP, Stengelin S, Gimbrone MA, Seed B (1989) Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243:1160-1165
Billiau A (1988) Not just cachectin involved in toxic shock. Nature 331:665
Fishman AP (1978) UIP, DIP, and all that (editorial). N Engl J Med 298:843-845
Freudenberg N (1978) Endothelium and shock. Pathol Res Pract 162:105-114
Fukuda Y, Ferrans VJ, Schoenberger CI, Rennard SI, Crystal RG (1985) Patterns of pulmonary structural remodeling after experimental paracetamol toxicity. The morphogenesis of intraalveolar fibrosis. Am J Pathol 118:452-475
Fukuda Y, Ishizaki M, Masuda Y, Kimura G, Kawanami O, Masugi Y (1987) The role of intraalveolar fibrosis in the process of pulmonary structural remodeling in patients with diffuse alveolar damage. Am J Pathol 126:171-182
Fulmer JD, Bienkowski RR, Cowan MJ, Breul SK, Bradley KM, Ferrans VJ, Roberts WC, Crystal RG (1980) Collagen concentration and rates of synthesis in idiopathic pulmonary fibrosis. Am Rev Respir Dis 122:289-301
Gaensler EA, Carrington CB, Coutu R (1972) Chronic interstitial pneumonias. Clin Notes Resp Dis 10:3-16
Gebbers J-O, Tetzner C, Burkhardt A (1979) Alveolitis due to hair spray. Ultrastructural observations in two patients and the results of experimental investigations. Virchows Arch [Pathol Anat] 382:323-338
Gill J, Marchevsley AM, Jeanty H (1988) Septal thickness in human lung assessed by computerized interactive morphometry. Lab Invest 58:466-472
Giri SN (1987) Effects of intratracheal instillation of bleomycin on phospholipid synthesis in hamster lung tissue slices (42621). Proc Soc Exp Biol Med 186:327-332
Giri SN, Hyde DM (1988) Ameliorating effect of an interferon inducer polyninosinic-polycytidylic acid on bleomycin-induced lung fibrosis in hamsters. Am J Pathol 133:525-536
Gross P, Goodwin N (1976) Tissue destruction in chronic pneumonia. Arch Pathol Lab Med 100:613-615
Hamblin AS (1988) Lymphokines and interleukins. Immunology [Suppl 1] 39-41
Hamman L, Rich AR (1935) Fulminating diffuse interstitial fibrosis of the lungs. Trans Am Clin Assoc 51:154-163
Hamman L, Rich AR (1944) Acute diffuse interstitial fibrosis of the lungs. Bull Johns Hopkins Hosp 74:177-212
Hammar SP, Winterbauer RH, Bockus D, Remington F, Friedmann L, Rich AR (1944) Acute diffuse interstitial fibrosis of the lungs. Trans Am Clin Assoc 51:1220-1231
Hammer SP, Winterbauer RH, Bockus D, Remington F, Friedmann S (1985) Idiopathic fibrosing alveolitis: a review with emphasis on ultrastructural and immunohistochemical features. Ultrastruct Pathol 9:345-372
Hance AJ, Crystal RG (1983) Idiopathic pulmonary fibrosis. In: Fleiner DC (ed) Recent advances in respiratory medicine. Churchill, Edinburgh, pp 249-287
Hart PH, Whitty GA, Piccoli DS, Hamilton JA (1989) Control by IFN- and PGE2 of TNF and IL-1 production by human monocytes. Immunology 66:376-383
Hartmann C-A, Weise I, Voigt D, Reichle G (1987) Gefahr zytologischer Fehlinterpretation bei Zytostatikapneumopathie. Prax Klin Pneumol 41:223-226
Hayatdavoudi G, O’Neill JI, Barry BE, Freeman BA, Crapo RG (1981) Pulmonary injury in rats following continuous exposure to 60% O2 for 7 days. J Appl Physiol 51:1220-1231
Heard BE, Nunn AJ, Kay AB (1989) Mast cells in human lung. J Pathol 157:59-63
Heene H (1981) Die initiale Granulozytose der Lunge nach Eintritt eines Schockereignisses. Ursachen und Entwicklungs. Med Welt 32:1352-1361
Heine M, Hauser G, Härle M, Brey U (1989) Das Schocklungen syndrom bei Agranulozytose-Patienten. Pathologe 10:16-20
Heppleston AG (1956) The pathology of honey comb lung. Thorax 11:77-93
High KA (1988) Antithrombin III, Protein C, and Protein S. Arch Pathol Lab Med 112:28
Hunninghake GW, Crystal RG (1983) Cigarette smoking and lung destruction. Accumulation of neutrophils in the lungs of cigarette smokers. Am Rev Respir Dis 128:833-838
Hunninghake GW, Gallin JL, Fauci AS (1978) Immunologic reactivity of the lung. The in vivo and in vitro generation of a neutrophil chemotactic factor by alveolar macrophages. Am Rev Respir Dis 117:15-23
Hunninghake GW, Hemken C, Brady M, Monick M (1986) Immune interferon is a growth factor for human lung fibroblasts. Am Rev Respir Dis 134:1025-1028
Hysers TM, Fowler AA (1986) Adult respiratory distress syndrome: causes, morbidity, and mortality. Fed Proc 45:25-29
International Commission on Radiological Protection (1980) Biological effects of inhaled radionuclides. Publication 31. Pergamon Press, Oxford
Jones AW, Reeve N-L (1978) Ultrastructural study by bleomycin-induced pulmonary changes in mice. J Pathol 124:227-233
Jones AG, Lawler P, Crawley J, Minty BD, Hulangs G, Veall N (1980) Increased alveolar permeability in cigarette smokers. Lancet 1:66-68
Kapanci Y, Weibel ER, Kaplan HP, Robinson FR (1969) Pathogenesis and reversibility of the pulmonary lesions of oxygen toxicity in monkeys. II. Ultrastructural and morphometric studies. Lab Invest 20:101-118
Kaplan HP, Robinson FR, Kapanci Y, Weibel ER (1969) Pathogenesis and reversibility of pulmonary lesions of oxygen toxicity in monkeys. I. Clinical and light microscopic studies. Lab Invest 20:94-100
Kaplan AP, Silverberg M (1978) The coagulation-kinin pathway of human plasma. Blood 70:1-15
Kaplan JE, Cardarelli PM, Roufe R, Weston K, Moon DG, Blumenstock FA (1989) Fibronectin augments binding of fibrin to macrophages. J Lab Clin Med 113:168-176
Katzenstein A-LA (1985) Pathogenesis of “fibrosis” in interstitial pneumonia: an electron microscopic study. Hum Pathol 16:1015-1024
Katzenstein A-LA, Bloor CM, Leibow AA (1976a) Bronchiolitis obliterans and usual interstitial pneumonia: causes, morbidity, and mortality. Fed Proc 35:25-29
Katzenstein A-LA, Bloor CM, Leibow AA (1976b) Diffuse alveolar damage. Am J Pathol 85:210-228
Katzenstein A-LA, Myers J, Prophett WD, Corley LS, J Tin MS (1986a) Bronchiolitis obliterans and usual interstitial pneumonia. A comparative clinicopathologic study. Am J Surg Pathol 10:373-381
Katzenstein A-LA, Myers J, Mazur MT (1986b) Acute interstitial pneumonia. A clinicopathologic, ultrastructural, and cell kinetic study. Am J Surg Pathol 10:256-267
Kaufmann E (1922) Lehrbuch der speziellen pathologischen Anatomie für Studierende und Ärzte. vol III, Teil 7, Pathologie der Lunge. Urban & Schwarzenberg, Berlin, Leipzig, pp 275-278
Kawanami O, Ferrans VJ, Crystal RG (1982) Structure of alveolar epithelial cells in patients with fibrotic lung disorders. Lab Invest 46:39-53
Kelley J, Trombley L, Kovacs EJ, Davis GS, Absher M (1981) Pulmonary macrophages alter the collagen phenotype of lung fibroblasts. J Cell Physiol 109:353-361
Kistler GS, Caldwell PRB, Weibel ER (1967) Development of...
fine structural damage to alveolar and capillary lining cells in oxygen-poisoned rat lungs. J Cell Biol 32:605–628
Krouse HF, Hamlin WB (1973) Pulmonary toxicity due to bleo-

cycin. Arch Pathol 95:407–410
Kuhn C (1980) The lung. In: Johannessen VJ (ed) Electron

microscopy in human medicine, vol 4. McGraw-Hill, New

York, pp 387–446
Kumar RK, Bennett RA, Brody AR (1988) A homologue of platelet-derived growth factor produced by rat alveolar macrophages. FASEB J 2:2272–2277
Kuroki Y, Mason RJ, Voelker DR (1989) Alveolar type II cells express a high-affinity receptor for pulmonary surfactant protein A. Proc Natl Acad Sci USA 85:5566–5570
Lauche A (1928) Die Entziindungen der Lunge und des Brust-

felles. III. Die Kollaps- und Stauungsinduration. In: Henke
F, Lubarsch O (eds) Handbuch Spez Pathol Anat Histol, vol III, part 1. Springer, Berlin, pp 843–845
Laurent GJ (1986) Lung collagen: more than scaffolding. Thorax 41:418–428
Lefkowitz DL, Mone J, Mills K, Hsieh TC, Lefkowitz SS (1989)

Eicosanoids are involved in the permeability changes but not the pulmonary hypertension after systemic activation of complement. Lab Invest 58:316–323
Morrison DC, Kline LF (1977) Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharide (LPS). J Immunol 118:362–368
Muller K-M, Hirschberg M (1984) Alveolar macrophages after chronic tobacco smoke inhalation and after artificial respiratory therapy for acute pulmonary failure. Klin Wochenschr 62:43–50
Murray JC, Laurent GJ (1988) What is pulmonary fibrosis? Thorax 43:9–11
Nemerson Y (1988) Tissue factor and hemostasis. Blood 71:1–8
Niewoehner DE (1988) Cigarette smoking, lung inflammation, and the development of emphysema. J Lab Clin Med 111:15–27
Ogniibene FP, Martin SE, Parker MM, Schlesinger T, Roach P, Burch C, Shelhamer JH, Parillo JE (1986) Adult respiratory distress syndrome in patients with severe neutropenia. N Engl J Med 315:547–551
Otto H (1975) Zur Morphologie des Endbildes und der behandlungsbedürftigen Frühphasen interstitieller Lungenfibrosen. In: Hamm J (ed) Interstitielle Lungenkrankungen – Lungenfibrosen. Thieme, Stuttgart, pp 1–9
Park JF, Apley GA, Buschbom RL, Dagle GE, Fisher DR, Gideon KM, Gilbert ES, Kashmitter JD, Powers GJ, Ragan HA, Weller RE, Wierman EL (1986) Inhaled plutonium oxide in dogs. Pacific Northwest Lab Ann Report 1985 to the DOE Office of Energy Res, part I, Biomedical Sciences. National Technical Inf. Service, Springfield, pp 3–17
Penney DP, Shapiro DL, Rubin P, Finkelstein J, Siemann DW (1981) Effects of radiation on the mouse lung and potential induction of radiation pneumonitis. Virchows Arch [Cell Pathol] 37:327–336
Pennington JE, Rossing TH, Boerth LW, Lee TH (1985) Isolation and partial characterization of a human alveolar macrophage-derived neutrophil-activating factor. J Clin Invest 75:1230–1237
Pober JS (1988) Warner-Lambert/Parke-Davis award lecture. Cytokine-mediated activation of vascular endothelium. Physiology and pathology. Am J Pathol 133:426–433
Porte A, Mantz J, Hindelang C, Asmarats L, Viragh S, Stoeckel ME (1989) Early bronchopulmonary lesions in rat lung after normobaric 100% oxygen exposure and their evolution. A light and electron microscopic study. Virchows Arch A [Pathol Anat] 414:135–145
Raj JU, Hazinski TA, Bland RD (1985) Oxygen-induced lung microvascular injury in neutropenic rabbits and lambs. J Appl Physiol 58:921–927
Richerson HB (1983) Hypersensitivity pneumonitis – pathology and pathogenesis. Clin Rev Allergy 1:469–486
Riede UN, Joachim H, Hassenstein J, Costabel U, Sandritter W, Auguin P, Mittermayer C (1978) The pulmonary air-blood barrier of human shock lungs (a clinical, ultrastructural and morphometric study). Pathol Res Pract 162:41–72
Riede UN, Mittermayer C, Friedburg H, Wybitul K, Sandritter W (1979) Morphologic development of human shock lung. Pathol Res Pract 165:269–286
Riede UN, Mittermayer C, Friedburg H, Sandritter W (1981) Pathologie und Pathophysiologie des Kreislaufschocks mit besonderer Berücksichtigung der Schocklunge. Unfallheururgie 7:97–104
Rinaldo JE, Rogers RM (1982) Adult respiratory-distress syndrome. Changing concepts of lung injury and repair. N Engl J Med 306:900–909
Robbins RA, Russ WD, Thomas KR, Rasmussen JK, Kay HD (1987) Complement component C5 is required for release of alveolar-macrophage-derived neutrophil chemotactic activity. Am Rev Respir Dis 135:659–664

not the pulmonary hypertension after systemic activation of complement. Lab Invest 58:316–323
Morrison DC, Kline LF (1977) Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharide (LPS). J Immunol 118:362–368
Muller K-M, Hirschberg M (1984) Alveolar macrophages after chronic tobacco smoke inhalation and after artificial respiratory therapy for acute pulmonary failure. Klin Wochenschr 62:43–50
Murray JC, Laurent GJ (1988) What is pulmonary fibrosis? Thorax 43:9–11
Nemerson Y (1988) Tissue factor and hemostasis. Blood 71:1–8
Niewoehner DE (1988) Cigarette smoking, lung inflammation, and the development of emphysema. J Lab Clin Med 111:15–27
Ogniibene FP, Martin SE, Parker MM, Schlesinger T, Roach P, Burch C, Shelhamer JH, Parillo JE (1986) Adult respiratory distress syndrome in patients with severe neutropenia. N Engl J Med 315:547–551
Otto H (1975) Zur Morphologie des Endbildes und der behandlungsbedürftigen Frühphasen interstitieller Lungenfibrosen. In: Hamm J (ed) Interstitielle Lungenkrankungen – Lungenfibrosen. Thieme, Stuttgart, pp 1–9
Park JF, Apley GA, Buschbom RL, Dagle GE, Fisher DR, Gideon KM, Gilbert ES, Kashmitter JD, Powers GJ, Ragan HA, Weller RE, Wierman EL (1986) Inhaled plutonium oxide in dogs. Pacific Northwest Lab Ann Report 1985 to the DOE Office of Energy Res, part I, Biomedical Sciences. National Technical Inf. Service, Springfield, pp 3–17
Penney DP, Shapiro DL, Rubin P, Finkelstein J, Siemann DW (1981) Effects of radiation on the mouse lung and potential induction of radiation pneumonitis. Virchows Arch A [Pathol Anat] 414:135–145
Raj JU, Hazinski TA, Bland RD (1985) Oxygen-induced lung microvascular injury in neutropenic rabbits and lambs. J Appl Physiol 58:921–927
Richerson HB (1983) Hypersensitivity pneumonitis – pathology and pathogenesis. Clin Rev Allergy 1:469–486
Riede UN, Joachim H, Hassenstein J, Costabel U, Sandritter W, Auguin P, Mittermayer C (1978) The pulmonary air-blood barrier of human shock lungs (a clinical, ultrastructural and morphometric study). Pathol Res Pract 162:41–72
Riede UN, Mittermayer C, Friedburg H, Wybitul K, Sandritter W (1979) Morphologic development of human shock lung. Pathol Res Pract 165:269–286
Riede UN, Mittermayer C, Friedburg H, Sandritter W (1981) Pathologie und Pathophysiologie des Kreislaufschocks mit besonderer Berücksichtigung der Schocklunge. Unfallheururgie 7:97–104
Rinaldo JE, Rogers RM (1982) Adult respiratory-distress syndrome. Changing concepts of lung injury and repair. N Engl J Med 306:900–909
Robbins RA, Russ WD, Thomas KR, Rasmussen JK, Kay HD (1987) Complement component C5 is required for release of alveolar-macrophage-derived neutrophil chemotactic activity. Am Rev Respir Dis 135:659–664
Ruchti C (1986) Pathomorphologische Befunde nach Intensivtherapie. Schweiz Med Wochenschr 116: 694–698
Saldeen T (1983) Clotting, microembolism, and inhibition of fibrinolysis in adult respiratory distress. Surg Clin North Am 63: 285–304
Sandritter W, Mittermayer C, Riede UN, Freudenberg N, Grimm H (1978) Shock lung syndrome (a general review). Pathol Res Pract 162: 7–23
Scadding JG (1964) Fibrosing alveolitis. Br Med J 2: 941
Scadding JG (1974) Diffuse pulmonary alveolar fibrosis. Thorax 29: 271–281
Scadding JG (1978) Talking clearly about diseases of the pulmonary acini. Br J Dis Chest 72: 1
Scadding JG, Hinson FKW (1967) Diffuse fibrosing alveolitis (diffuse interstitial fibrosis of the lungs): correlation of histology at biopsy with prognosis. Thorax 22: 291–304
Seher W (1987) Biology of disease. The role of extracellular proteases in cell proliferation and differentiation. Lab Invest 57: 607–633
Schlag G, Voigt W-H, Schnells G, Glätzl A (1976) Die Ultrastruktur der menschlichen Lunge im Schock. I. Anaesthesist 25: 512–521
Schönfield W, Schlüter B, Hilger R, König W (1988) Leukotriene generation and metabolism in isolated human lung macrophages. Immunology 65: 529–536
Schulz V, Schnabel KH (1975) Die Schocklunge. Pathogenetische Vorstellungen und therapeutische Möglichkeiten. Interner Med 15: 82–90
Schwartz RS, Rose NR (1975) Autoimmunity: experimental and clinical aspects. Ann NY Acad Sci USA 1986; 475: 1–427
Shelitto J, Sniezek M, Warnock M (1987) Acquisition of peroxidase activity by rat alveolar macrophages during pulmonary inflammation. Am J Pathol 129: 567–577
Simon RH, Ward PA (1988) Adult respiratory distress syndrome. In: Gallin JI, Goldstein IM, Snyderman R (eds) Inflammation: Basic principles and clinical correlates. Raven Press, New York, pp 815–827
Smith L, Friedman H, Anderson J (1988) Hypoxic lung injury in mice: effect of neutrophil depletion and food deprivation. J Lab Clin Med 111: 449–458
Snyder GL (1986) Interstitial pulmonary fibrosis. Chest [Suppl 89] 115–121
Spencer H (1968) Chronic interstitial pneumonia. In: Liebow AA, Smith DE (eds) The lung. Williams and Wilkins, Baltimore, pp 134–140
Spencer EI (1985) Pathology of the lung. 4th Edn. Pergamon Press, Oxford
Sporn MB, Roberts AB (1988) Peptide growth factors are multifunctional. Nature 332: 217–219
Tate RM, Repine JE (1983) Neutrophils and the adult respiratory distress syndrome. Am Rev Respir Dis 128: 552–559
Taylor AE, Matalon S, Ward P (1986) Physiology of oxygen radicals. Am Physiol Soc, Bethesda, Maryland
Till GO, Ward PA (1986) Systemic complement activation and acute lung injury. Fed Proc 45: 13–18
Tipping PG, Campbell DA, Boyce NW, Holdsworth SR (1988) Alveolar macrophage procoagulant activity is increased in acute hyperoxic lung injury. Am J Pathol 131: 206–212
Tomasehsi JF, Davies P, Boggis C, Greene R, Zapol WM, Reid LM (1983) The pulmonary vascular lesions of the adult respiratory distress syndrome. Am J Pathol 112: 112–126
Tomoka M, Goto T, Lee TDG, Bienstock J, Befus AD (1989) Isolation and characterization of lung mast cells from rats with bleomycin-induced pulmonary fibrosis. Immunology 66: 439–444
Torikata C, Villiger B, Kuhn C, McDonald JA (1985) Ultrastructural distribution of fibronectin in normal and fibrotic human lung. Lab Invest 52: 399–408
Tracey KJ, Fong Y, Hesse DG, Manogue KR, Lee AT, Kuo GC, Lowy SF, Cerami A (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330: 662–664
Tryka AF, Sweeney TD, Brain JD, Godleski JJ (1985) Short-term regional clearance of an inhaled-submicrometric aerosol in pulmonary fibrosis. Am Rev Respir Dis 132: 605–611
Vartio T (1983) Fibronectin: multiple interactions assigned to structural domains. Med Biol 61: 283–295
Vracko R (1974) Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol 77: 315–346
Wahl SM (1985) The role of lymphokines and monokines in fibrosis. Ann NY Acad Sci USA 460: 224–231
Walton WH, McGovern B (1977) Inhaled particles. Proc Int Symp Br Occupat Hyg Soc, Edinburgh 1975. Pergamon Press, Oxford
Wang N-S (1983) Applications of electron microscopy to diagnostic pulmonary pathology. Hum Pathol 14: 888–900
Ward PA, Johnson KJ (1987) Adult respiratory distress syndrome and neutropenia. N Engl J Med 316: 413–414
Warren JS, Kunkel SL, Cunningham TW, Johnson KJ, Ward PA (1988) Macrophage-derived cytokines amplify immune complex-triggered O-responses by rat alveolar macrophages. Am J Pathol 130: 489–495
Watanahe S, Watanabe K, Ohishi T, Aiba M, Kayeаема K (1974) Mast cells in the rat alveolar septa undergoing fibrosis after ionizing irradiation. Ultrastructural and histochemical studies. Lab Invest 31: 55–67
Weibel ER (1971) Oxygen effect on lung cells. Arch Int Med 128: 54–56
Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320: 365–376
Wilde JT, Roberts KM, Greaves M, Preston FE (1988) Association between necropsy evidence of disseminated intravascular coagulation and coagulation variables before death in patients in intensive care units. J Clin Pathol 41: 138–142
Witek F (1970) Cystische Lungenerkrankungen. Versuch einer Einteilung. Pneumologie 143: 112–122
Worthing GS, Haslett C, Smiddy LA, Rees AJ, Gumbay RS, Henson JE, Henson PM (1986) Lung vascular injury induced by chemotactic factors: enhancement by bacterial endotoxins. Fed Proc 45: 7–12
Worthing GS, Seccombe JF, Clay KL, Guthrie LA, Johnston RB (1988) The priming of neutrophils by lipopolysaccharide for production of intracellular platelet-activating factor. J Immunol 140: 3553–3559
Yno A, Kitagawa S, Suzuki I, Urabe A, Okabe T, Saito M, Takaku F (1989) Tumor necrosis factor as an activator of human granulocytes. Potentiation of the metabolisms triggered by the Ca2+-mobilizing agonists. J Immunol 142: 1678–1684
Ziegler EJ (1988) Tumor necrosis factor in humans (editorial). N Engl J Med 318: 1533–1535
Zimmermann GA, Renzetti AD, Hill HR (1983) Functional and metabolic activity of granulocytes from patients with adult respiratory distress syndrome. Evidence for activated neutrophils in the pulmonary circulation. Am Rev Respir Dis 127: 290–300
Zuckerman SH, Shellhaas J, Butler LD (1989) Differential regulation of lipopolysaccharide-induced interleukin 1 and tumor necrosis factor synthesis: effects of endogenous and exogenous glucocorticoids and the role of the pituitary-adrenal axis. Eur J Immunol 19: 301–305

Received May 18 / Accepted July 4, 1989