REVIEW

Targeting autophagy-related protein kinases for potential therapeutic purpose

Honggang Xianga,\dagger, Jifa Zhanga,†, Congcong Lina,†, Lan Zhangb,*, Bo Liua,*, Liang Ouyanga,c,*

aState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
bSchool of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
cState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China

Received 7 July 2019; received in revised form 6 August 2019; accepted 9 September 2019

KEY WORDS
Autophagy; Protein kinases; Autophagy-related kinase; Phosphorylation; Small-molecule kinase inhibitors/activators;

Abstract
Autophagy, defined as a scavenging process of protein aggregates and damaged organelles mediated by lysosomes, plays a significant role in the quality control of macromolecules and organelles. Since protein kinases are integral to the autophagy process, it is critically important to understand the role of kinases in autophagic regulation. At present, intervention of autophagic processes by small-molecule modulators targeting specific kinases has becoming a reasonable and prevalent strategy for treating several varieties of human disease, especially cancer. In this review, we describe the role of some autophagy-related kinase targets and kinase-mediated phosphorylation mechanisms in autophagy

Abbreviations: 4E-BP1, eukaryotic translation initiation factor 4E-binding protein; AKT1, AKT serine/threonine kinase 1; AMBRA1, autophagy/beclin-1 regulator 1; AMPK, AMP-activated protein kinase; ARF, auxin response factor gene; ATG, autophagy-related protein; CaMKK2, calcium/calmodulin-dependent protein kinase kinase 2; DAPK, death associated protein kinase; FIP200, FAK family kinase-interacting protein of 200 kDa; GAP, GTPase-activating protein; GO, gene ontology; GSK3\textalpha{}, glycogen synthase kinase 3 alpha; HMGB1, high mobility group protein B1; JNK1, C-Jun N-terminal kinase; LC3, microtubule-associated protein 1 light chain 3; LKB1, serine/threonine-protein kinase stk11; LPS, lipopolysaccharide; LRRK2, leucine rich repeat kinase 2; mTOR, mammalian target of rapamycin; mTORC1, mammalian target of rapamycin complex 1; PD, Parkinson’s disease; PI, phosphatidylinositol; PI3 kinase, phosphoinositide 3-kinase; PIP2, phosphatidylinositol-4,5-bisphosphate; PKAC\textalpha{}, a protein kinase cAMP-activated catalytic subunit alpha; PKCa, protein kinase C alpha type; PKD1, polycystin-1; PPIs, protein–protein interactions; PROTAC, proteolysis targeting chimeras; PTMs, post-translational modifications; Rheb, the RAS homolog enriched in brain; TAK1, transforming growth factor activated kinase-1; TFEB, transcription factor EB; TNBC, triple-negative breast cancer; TSC1/2, tuberous sclerosis complex proteins 1/2; ULK complex, ULK1–mATG13–FIP200–ATG101 complex; ULK1, uncle-51-like kinase 1; UVRAG, ultraviolet resistance-associated gene.

*Corresponding authors. State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China. Tel./fax: +86 28 85164063.
E-mail addresses: zhanglanx_9@126.com (Lan Zhang), liubo2400@163.com (Bo Liu), ouyangliang@scu.edu.cn (Liang Ouyang).
\dagger These authors made equal contributions to this work.
Peer review under the responsibility of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences.

https://doi.org/10.1016/j.apsb.2019.10.003
2211-3835 © 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).© 2020 Chinese
regulation. We also summarize the small-molecule kinase inhibitors/activators of these targets, highlighting the opportunities of these new therapeutic agents.

1. Introduction

Autophagy, first proposed in 1963 at the International Conference of Lysosomes by Belgian scientist Christian de Duve, refers to a highly conserved cellular self-digestion process by which cellular components are targeted for degradation via lysosomes. Autophagy in mammalian cells can be categorized into three main ways: macroautophagy, microautophagy, and chaperone-mediated autophagy\(^1\). Of these, macroautophagy (henceforth, autophagy) is the most intensively studied. In general, autophagy plays a Janus role and is significant autophagic initiator. ULK1 is the sole serine/threonine protein kinase in all known 38 autophagy-related proteins (ATGs). As an indispensable constituent of autophagy vesicles, ULK1 participates in different stages of autophagy. For example, a complex of PI3K kinase and ATG14 is involved in the formation of autophagy vesicles\(^7\). When combined with ultraviolet resistance-associated gene protein (UVRAG), PI3K participated in the maturation and transportation of autophagic vesicles\(^16\). These findings indicate that decrypting the regulatory role of kinases in autophagy can facilitate a deeper understanding of these important mechanisms.

In this review, 49 autophagy-related kinases were mined by gene ontology (GO) analysis. These kinases are involved in autophagy regulation, mainly in autophagy initiation and the formation of autolysosome. Furthermore, we have interpreted in detail the role of some kinases in autophagy, and summarized related small-molecule kinase inhibitors/activators for autophagy induction and inhibition.

Table 1. Autophagy-related kinases in different kinase families.

Family	Autophagy-related kinase
AGC	AKT1, ROCK1, PKACα, PKCα, PKCβ
CAMK	AMPKα1, AMPKα2, LKB1, MARK2, DAPK1, DAPK2, DAPK3, PIM2, PKD1
CK1	VRK1
CMGC	CDC2, CDK5, CK2α2, GSK3α, ERK1, ERK7, JNK1
TK	ABL1, ABL2, FAK, MET, SRC, KDR
TRL	LRRK2, TAK1, RIPK2
Other	CaMKK2, TBK1, IRE1, NEK6, NEK9, PINK1, NRB2, GCN2, PLK1, PLK2, PLK3, TLR2, ULK1, ULK2,ULK3, PIK3R4, FRAP, ATM

© 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
3. Autophagy-related protein kinases in autophagy regulation

Autophagic processes (Fig. 1), can be divided into five stages: autophagy initiation, membrane nucleation and phagophore formation, phagophore expansion, fusion with the lysosome to form autolysosome, and degradation of contents of the package. These processes correspondingly are regulated by multiple ATGs and kinases. However, kinase participation in autophagy mainly occurs during autophagy initiation and in the first stage of autolysosome formation. Therefore, we describe below the role of autophagy-related kinases in autophagic mechanisms from upstream to downstream of autophagy signaling transduction (from PI3K/AKT to ULK1). In addition, we separate the kinases that regulate beclin-1 and these aforementioned targets. The regulatory phosphorylation mechanisms in autophagy are underlined in Table 2.

3.1. PI3K/AKT

PI3K kinases, the most upstream molecules, act as triggers of autophagy signaling cascades, which are activated by tyrosine kinase receptors (RTKs), G protein-coupled receptors (GPCR) or Ras-like protein (RAS). Importantly, activation of PI3K leads to the generation of phosphatidylinositol-3,4,5-trisphosphate (PIP3), an anchor for phosphoinositide-dependent kinases 1 (PDK1), converted from phosphatidylinositol-4,5-bisphosphate (PIP2). Subsequently, PDKs phosphorylate AKT at Thr308. The activated AKT signaling pathway is thus directly phosphorylated and thereby inhibits tuberous sclerosis complex proteins 1/2 (TSC1/2), a GTPase-activating protein (GAP) for the Ras homolog enriched in brain (Rheb) GTPase. The AKT-dependent phosphorylation causes the dissociation of TSC1/2 from lysosome and resultant activation of Rheb. Since GTP-bound Rheb is a potent mTORC1 activator, suppression of TSC1/2 by AKT-dependent phosphorylation results in mTORC1 activation.

Figure 1 The relationship between autophagy processes and autophagy-related kinases. Autophagic processes can be divided into five stages: autophagy initiation, membrane nucleation and phagophore formation, phagophore expansion, fusion with the lysosome to form autolysosome, and degradation of contents of the package. Regulation of kinases in autophagy mainly occurs in autophagy initiation. During this step, several kinases are implicated in autophagy regulation, such as PI3K, AKT, AMPK, mTOR, and ULK1.

Table 2 Phosphorylation regulation of autophagy-related kinases.

Kinase	Substrate	Site	Function	Ref.
PKA	PIP2	—	Forms second messenger PIP3	15
PDK1	AKT	Thr308	Activates AKT signaling	22
AKT	TSC2	Ser939/Thr1462	Dissociates TSC1/2 from lysosome and activates Rheb	23
AMPK	TSC2	Thr1227/Ser1345	Regulates cell size and cell survival under energy starvation condition	24
Raptor	Ser722/Ser792	Mediates a metabolic checkpoint	25	
ULK1	Ser317/Ser555/Ser777	Induces autophagy under glucose starvation	26,27	
PRAS40	Thr246	Regulates the activity of mTORC1	28	
FOXO3a	Ser143/Ser588	Transcriptionally represses SKP2	29	
LKB1	AMPKa	Thr172	Mediates the prolonged and adaptive activation of AMPK following energy stress	30
CaMKKβ	AMPKa	Thr172	Activates AMPK in response to increase in cellular Ca²⁺	31
TAK1	AMPKα1/2	Thr183/Thr172	Activates AMPKα1/2	32
mTORC1	ULK1	Ser757	Disrupts the ULK1–AMPK interaction	26
DAP1	Ser3/Ser51	Inhibits autophagy indirectly	33	
AMBRA1	Ser52	Inhibits autophagy indirectly	33,34	
TFEB	Ser142	Inhibits autophagy indirectly	33,34	
ULK1	Beclin-1	Ser14	Induces autophagy	16
ATG9	Ser14	Promotes ATG9 trafficking in response to starvation	35	
ATG4B	Ser316	Inhibits ATG4B activity and LC3 processing	36	
AMBRA1	Ser465/Ser635	Regulates dissociation of AmpRa1—Vps34–beclin-1 from the dynexin complex	37	
Raptor	Ser855/Ser859/Ser792	Inhibits mTORC1 during starvation	38	
ATG13	Ser318	Promotes its release to damaged mitochondria	39	
PKCα	ULK1	Ser423	Prevents autolysosome formation	40
DAPK1	Beclin-1	Thr119	Liberates beclin-1 from BCL-2 and BCL-XL	41
DAPK3	Beclin-1	Ser90	Regulates autophagy in skeletal muscle	42
DAPK2	Raptor	Ser721	Modulates mTORC1 activity and autophagy level	43
JNK1	BCL-2	Thr69/Ser70/Ser87	Dissociates BCL-2 from beclin1	44
PIM2	TSC2	Ser1798	Relieves the suppression of TSC2 on mTORC1	45
BAD	Ser112	Prevents dissociation of BCL-2 from beclin-1	46	
GSK-3	Raptor	Ser859	Regulates mTORC1	47
LRRK2	EndoA	Ser75	Modulates the membrane curvature	48
PINK1	Parkin	Ser65	Liberates beclin-1 from BCL-2 and BCL-XL	49

— Not applicable.

3.2. AMPK/mTOR/ULK1

Another major mTOR-related signaling pathway is the AMPK–mTOR pathway. AMPKs are a type of evolutionarily conserved serine/threonine protein kinases which are composed of 13 members. The AMPKs serve as master sensors of cellular energy status that is of great significance in energy homeostasis. AMPK is activated by a low energy state and its role in autophagy initiation has been clearly shown. On the one hand, the activation of AMPK can phosphorylate TSC2 and subunit Raptor at Ser792 of mTORC1. On the other hand, AMPK initiates autophagy by direct phosphorylation of ULK1 at Ser317 and Ser777 under nutrient-deprived conditions, mTORC1 also can negatively regulate autophagy through AKT/mTORC1 mediated phosphorylation and suppressing ULK1 complex, which is required for autophagy initiation. Additionally, under nutrient-deprived conditions, mTORC1 also can negatively regulate autophagy via phosphorylating autophagy/beclin-1 regulator 1 (AMBRA1) at Ser52 and phosphorylating DAP1 at Ser3 and Ser51. Other work has shown a new link between mTORC1 and autophagy regulation: mTORC1 directly phosphorylates the transcription factor EB (TFEB) at Ser142, which is required for lysosome biogenesis. mTORC2 was reported to indirectly suppress autophagy through AKT/mTORC1 signaling axis activation.

As another pivotal node in autophagy, ULK1 is a component of the ULK1–ATG13–FIP200–ATG101 complex (ULK complex) required for autophagy induction. Specifically, under starvation conditions, as mentioned above, ULK1 is directly and indirectly activated by AMPK and subsequently phosphorylates beclin-1 on Ser14 and activates Vps34 lipid kinase. The latter is essential for full autophagic induction. Besides, ULK1 can...
phosphorylate ATG9 at Ser14 synergistically with the proto-oncogene tyrosine-protein kinase SRC, thus promoting translocation of ATG9-positive vesicles to the autophagy initiation sites. Also,ULK1 phosphorylates ATG4B at Ser316, and ATG4B phosphorylation is responsible for the conversion of pro-LC3 to LC3-I and LC3-II back into LC3-I\(^{96}\). Additionally, ULK1 also can modulate autophagy via phosphorylation of other substrates like AMBRA1 and Raptor\(^{13,38}\). Apart from phosphorylation of ULK1 by mTOR and AMPK, ULK1 activity is also fine-tuned by additional mechanisms and other kinases (e.g., PKCa and P38). PKCa phosphorylates ULK1 at Ser423 and prevents autophylosome formation without a direct change of ULK1 activity\(^{97}\). P38\(\alpha\)-dependent phosphorylation of ULK1 triggered by lipopolysaccharide (LPS) leads to the inhibition of ULK1, preventing it from binding to the downstream effector ATG13. This pathway was shown to eventually reduce autophagy in microglia\(^{64}\).

3.3. Kinases regulate autophagy via beclin-1 and its interactomes

Beclin-1 (the mammalian orthologue of yeast Atg6) is another key node of autophagy regulation in mammalian cells which interacts with several interactomes (such as ATG14L, UVRAG, BIF-1, Ambra1, HMGBl and PINK) to regulate Vps34 and promote formation of PI3KIII core complexes, thereby inducing autophagy\(^{65,66}\). Although not a kinase itself, beclin-1 and its interactomes are regulated by several kinase-mediated phosphorylation reactions in autophagy. The section below describes how other kinases regulate autophagy though beclin-1 and its interactomes, such as DAPKs and JNK1.

Death-associated protein kinase (also known as DAPK), a Ca\(^{2+}\)-calmodulin regulated kinase, was reported to stimulate autophagy and membrane blebbing by binding to LC3. Specifically, DAPK1 phosphorylates beclin-1 on Thr119 at the BH3 domain, thus liberating beclin-1 from BCL-2 and BCL-XL, and, in turn, promoting autophagy\(^{41,67}\). Also, DAPK1 stimulates autophagy via ARF-dependent accumulation of P53\(^{68}\). DAPK3 is also reported to control autophagy by directly phosphorylating beclin-1 at Ser90 in skeletal muscle tissues, providing an enhanced understanding for the mechanism through which metabolism and autophagy are linked\(^{62}\). Compared to DAPK1 and DAPK3, DAPK2 was shown to phosphorylate raptor at Ser721 to modulate mTORC1 activity and autophagy levels under stress and steady-state conditions\(^{33}\).

JNK1 controls autophagy via phosphorylating the anti-apoptotic protein BCL-2 at residues Thr69, Ser70 and Ser87 of the non-structured loop which causes dissociation of BCL-2 from beclin-1\(^{28}\). Moreover, this process has also been implicated in the induction of apoptosis. A model has been proposed to explain how cells balance the interaction between autophagy and apoptosis via JNK1-mediated BCL-2 phosphorylation\(^{39}\).

3.4. Other kinases in autophagy regulation

Previous work has shown that serine/threonine-protein kinase PIM-2 (one of three PIM kinases) is involved in autophagy regulation by activation of the mTOR pathway. Aberrant PIM-2 expression has been observed in a variety of malignancies. Evidence showed that PIM2 can directly phosphorylate TSC2 on Ser1798 and relieve the suppression of TSC2 on mTORC1\(^{45}\). Furthermore, PIM2 promotes autophagy and PIM2-suppression decreases the autophagic response and prevents dissociation of BCL-2 from beclin-1 and enhancing lysosomal acidification\(^{46}\). Other work demonstrated that phosphorylation of hexokinase-II by PIM2 was required for autophagy during glucose starvation\(^{39}\).

GSK-3, an ubiquitously expressed serine/threonine kinase, was initially discovered as a regulator of glycogen synthesis, has also been found to be involved in autophagy modulation. In MCF-7 cells, GSK-3\(\alpha/\beta\) overexpression activates mTORC1 and inhibits autophagy via phosphorylating Ser859 on raptor, resulting in reduced p70S6K1 and ULK1 phosphorylation along with increased autophagic flux\(^{77}\). In a prostate cancer cell model, GSK-3\(\beta\) was found to control autophagy by modulating the LKB1–AMPK pathway\(^{77}\). Thus, GSK-3\(\beta\) inhibition caused a rapid cellular ATP decline, and subsequently LKB1-dependent AMPK activation and mTOR pathway inactivation were associated with autophagy induction.

ERK1 (also known as p44MAPK or MAPK3), one isoform of extracellular signal-regulated kinase (ERK) that belongs to mitogen-activated protein kinases (MAPks), plays a role in autophagic regulation in various tumor cells\(^{72,73}\). ERK1 was phosphorylated and activated to regulate autophagy via the RAS–RAF–MEK axis\(^{74}\). Another lab reported that non-classic activation of MEK/ERK can also modulate beclin-1 expression to stimulate autophagy\(^{75}\). Acute activation of MEK/ERK causes cytoprotective autophagy by inhibition of either mTORC1 or mTORC2 with a moderate increase of beclin-1 expression. However, prolonged activation of MEK/ERK leads to dual inhibition of mTORC1 and mTORC2, with a definitive increase in beclin-1 expression and cytodestructive autophagy.

Leucine-rich repeat kinase 2 (LRRK2), a member of the leucine-rich repeat kinase family, has also been implicated in autophagy. LRRK2 regulates autophagy by phosphorylating EndoA at Ser75, which in turn modulates the membrane curvature, thus controlling the recruitment of the autophagy machinery to the nascent autophagosome\(^{48}\). Besides, prolonged LRRK2 kinase inhibition increases phosphorylation on Ser758 ULK1 via an unknown regulatory feedback loop\(^{78}\). Another lab found that membrane-associated LRRK2 inactivated beclin-1 and consequently inhibited autophagy, supporting LRRK2 as a primary inhibitor of autophagy\(^{77}\).

PTEN-induced putative kinase 1 (PINK1) and parkin RBR E3 ubiquitin protein ligase (Parkin/PARK2) mediate mitophagy, which can clear dysfunctional mitochondria. Mounting evidence has shown that PINK1 acts as a gatekeeper of mitochondrial quality control\(^{77}\). PINK1 directly phosphorylates Parkin at a highly conserved Ser65\(^{77}\), leading to the aggregation of parkin from cytoplasm to damaged mitochondria, and finally clears the organelles depending on mitophagy\(^{69}\).

4. Kinase inhibitors/activators for autophagy inhibition and induction

Modulation of the autophagy-related kinases discussed above has the potential to modify autophagy processes. Of note, autophagy inhibition and induction are achievable by small-molecule kinase inhibitors/activators. Therefore, in this following section, we review some kinase modulators applied to autophagy induction (Table 3\(^{41,76,80–116}\)) and inhibition (Table 4\(^{117–125}\)).
Name	Mechanism	Cell line	Disease	Clinical status	Ref.
GDC-0941	PI3K inhibition	MCF-7, T47D and ZR75-1 cells	ER+ breast cancer	Phase 1	80
Taselisib	PI3K inhibition	Human KPL-4 breast cancer cell	Advanced solid tumors	Phase 3	81
PX-866	PI3K inhibition	LNZ308 and LN229 cells	Glioblastoma	Phase 1	82
PKI-587	PI3K/mTOR inhibition	A431-CR and FaDu-CR cells	Breast cancer, non-small cell lung cancer, ovarian cancer, etc.	Phase 1/2	83
BEZ235	PI3K/mTOR inhibition	786-0 and Caki-1 cells	Metastatic renal cell carcinoma	Phase 1	84, 85
PF-04691502	PI3K/mTOR inhibition	A549 cells	Non-small cell lung cancer	Phase 1	86
Perifosine	AKT inhibition	T98G and U373MG cells	Glioblastoma, anaplastic astrocytoma, mixed glioma, etc.	Phase 2	87, 88
MK2206	AKT inhibition	UL cells	Colon mucinous adenocarcinoma, colon signet ring cell adenocarcinoma, rectal mucinous adenocarcinoma, etc.	Phase 2	89
BI-69A11	AKT inhibition	HT-29 cell	—	—	90
Metformin	AMPK activation	EC109 cells	Diabetes mellitus type 2	Phase 4	91
Salicylate	AMPK activation	HEK-293 cells	—	—	31
Hernandezine	AMPK activation	HeLa cells	—	—	92
Simvastatin	AMPK activation	Mouse coronary arterial myocytes	Coronary arterial myocytes	Phase 1/2	93
A-769662	AMPK activation	U373 cells	—	—	94
Rapamycin	mTOC1 inhibition	SK-N-SH and SH-SY5Y cells	Primitive neurotendal tumor and mast cell leukemia	—	95, 96
AZD8055	mTOC1 inhibition	H838 and A549 cells	Glioblastoma multiforme, advanced hepatocellular carcinoma, advanced solid malignancies, etc.	Phase 1	97
PP242	mTOC1 inhibition	HeLa cells	—	—	98
RapaLink-1	mTOC1 inhibition	MCF-7, RR1 and RR2 cells	—	—	99
LYN-1604	ULK1 activation	MDA-MB-231 cells	Triple negative breast cancer	—	100
BL-918	ULK1 activation	SH-SY5Y cells	Parkinson’s disease	—	101
JNK-IN-8	JNK1 inhibition	Primary hepatocytes and primary epithelial cells	—	—	102
HI-P101	PIM2 inhibition	MDA-MB-231 cells	—	—	103
SMI-4a	PIM2 inhibition	A375 and G361 cells	—	—	104
SGI-1776	PIM2 inhibition	MM.1S cells	Relapsed/refractory leukemias	Phase 1	105
AZD1208	PIM2 inhibition	Primary chronic lymphocytic leukemia cells	Primary chronic lymphocytic leukemia	Phase 1	106
SB216763	GSK3β inhibition	Human pancreatic cancer cells	—	—	107
CHIR99021	GSK3 inhibition	Human pancreatic cancer cells	—	—	108
TDZD8	GSK3β inhibition	PC-3 cells	—	—	109
9-ING-41	GSK3 inhibition	PC-3 cells	Lymphoma pancreatic cancer	Phase 1/2	110
SCH7 72984	ERK1 inhibition	HPAC and PANC-1 cells	—	—	111
BVD-523	ERK1 inhibition	HPAC and PANC-1 cells	Advanced solid tumors	Phase 1/2	111, 112
4.1. Kinase inhibitors/activators for autophagy induction

As discussed above, PI3K inhibition can lead to autophagy induction. In a case of ER\(^+\) breast cancer treatment, autophagy was induced by the PI3K inhibitor GDC-0941. Taselisib and PX-866 were also reported to induce autophagy respectively in ovarian cancer cells and in glioblastoma cells\(^{81,82,125}\). Additionally, since the catalytic subunit structure of mTOR resembles that of PI3K, many PI3K inhibitors can also potently inhibit mTOR. After the combination treatment of the dual PI3K/mTOR inhibitor PKI-587 with cetuximab, A431-CR and FaDu-CR cell lines displayed an increased Beclin-1 expression and a decrease in p62 levels\(^{126}\). Consistently, the dual PI3K/mTOR competitive inhibitor BEZ235 induced autophagy in human glioma and hepatocellular carcinoma cells\(^{84,127}\). Another study showed that dual PI3K/mTOR inhibitor PF-04691502 induced autophagy in non-small-cell lung cancer cell lines in vitro, demonstrated by upregulated LC3-II and beclin-1 expression\(^{86}\). These dual inhibitors were used to prevent drug resistance effectively in curing various cancers like breast cancer, T-cell acute lymphoblastic leukemia, gastric cancer and lymphomas\(^{83,85,128}\).

As an AKT inhibitor, the phosphatidylinositol analog perifosine\(^{87}\) induces protective autophagy and upregulation of ATG5 in human chronic myelogenous leukemia cells\(^{88}\). The allosteric inhibitor MK2206 was reported to induce autophagy\(^{89}\), which showed potent activity against multiple cancers in clinical trials\(^{129,130}\). In addition, a novel AKT inhibitor BI-69A11 was reported to induce autophagy at earlier time point through the inhibition of AKT/mTOR/p70S6 kinase pathway\(^{90}\).

Autophagy can also be induced by AMPK activation. To date, more than 100 different natural plant products and derivatives originating from traditional medicines can activate AMPK by several different mechanisms. Metformin and salicylate are the most successful and widely used AMPK activators\(^{31,91}\), both of which commonly appear in the autophagy-related research for AMPK activation\(^{131,133}\). Also, hernandezine, a novel AMPK activator, was reported to induce autophagic cell death in drug-resistant cancers such as HeLa cells\(^{92}\). Significant progress has been made in the development of direct small molecule AMPK activators over the last few years. For instance, an AMPK activator, simvastatin increases autophagy in coronary arterial myocytes via inhibiting the RAC1-mTOR pathway\(^{93}\). Another study has found that activation of AMPK by A-769662 led to an increased expression of the autophagosomal markers LC3 and P62/SQSTM, suggesting an efficient induction of autophagy\(^{94}\). Conversely, AMPK inhibitor dorsomorphin was reported to induce autophagy in T24 cells via AMPK-independent inhibition\(^{134}\).

It is well established that mTORC1 inhibition can induce autophagy. For example, rapamycin and its derivatives are well known as autophagy inducers by inhibiting mTORC1 and are widely used in autophagy related research\(^{95}\). Furthermore, many other mTOR inhibitors have been developed. In a variety of cancer cells like H838 and A549 cells, AZD8055 can induce the formation of acidic vesicles associated with LC3, consistent with the induction of autophagosome formation, suggesting an activation of autophagic flux\(^{97}\). The ATP competitive mTOR inhibitor pp242, a stronger autophagy inducer than rapamycin, is able to induce lysosomal activation via blockade of mTORC1 activity\(^{98}\).

RapaLink-1, a third-generation mTORC1 inhibitor, overcomes...
resistance to existing first- and second-generation inhibitors through exploiting the unique juxtaposition of two drug-binding pockets to create a bivalent interaction that allows inhibition of resistant mutants\(^2\). A recent study also found that Rapalynk-1 can activate autophagy, but the specific mechanism is unknown\(^3\). Additionally, LY-1604, the first ULK1 agonist, can induce cell death associated with autophagy in MDA-MB-231 cells by interfering with the formation of the ULK complex. This drug showed potential for good therapeutic effects on TNBC\(^{100}\), BL-918, a potent activator of ULK1, induced autophagy via the ULK complex, and displayed a cytoprotective effect on MPP\(^7\)-treated SH-SY5Y cells, which may be a candidate drug for Parkinson’s disease (PD) treatment\(^{101}\).

Treatment with the JNK1 inhibitor JNK-IN-8 increased the accumulation of LC3B-II following lysosomal inhibition and reduced the accumulation of SQSTM1, demonstrating increased autophagic flux\(^{102}\). Additionally, among the few PIM inhibitors identified by far, HJ-PI01 was able to induce autophagic death in MDA-MB-231 cells\(^{103}\). The pan-PIM inhibitor SMI-4a also induced autophagy through inhibition of the PI3K/AKT/mTOR axis in melanoma cells\(^{104}\). Induction of autophagy was also interrupted by the PIM inhibitor SIG-1776 in MM cell lines and bone marrow CD138\(^8\) cells\(^{105}\). The PIM kinase inhibitor AZD1208, inhibits protein translation by decreasing phosphorylation levels of eukaryotic translation initiation factor 4E-binding protein (4E-BP1) and induces autophagy in primary CLL cells\(^{106}\).

Modulation of other kinase targets can also alter autophagy. Inhibition of GSK3\(\beta\) with SB216763 promotes autophagy induced by starvation in vitro\(^{107}\). Also, GSK3 inhibition with SB216763 or CHIR99021 induces an autophagic response in human pancreatic cancer cells\(^{108}\). GSK-3\(\beta\) suppression by TDZD8, a non-ATP competitive small molecule, promotes autophagy during serum starvation\(^{109}\). In renal cancer cells, the GSK-3 inhibitor 9-ING-41 leads to AMPK activation and autophagy induction\(^{110}\). In a recent study, the ERK1-selective inhibitor SCH7 72984 (an analog of the clinical candidate MK-8353) and the clinical candidate BVD-523 were reported to elevate autophagic flux. These results suggest that concurrent blockade of both ERK and autophagic processes that are upregulated in response to ERK inhibition, may be an effective approach for treating pancreatic ductal adenocarcinoma\(^{111}\). GDC-0994 is also an ERK inhibitor, which suppressed ERK phosphorylation, and thus inhibiting p-mTOR and activating autophagy\(^{112}\). The LRRK2 inhibitor LRRK2-IN-1 was reported to stimulate autophagy in a non-canonical fashion. This mechanism was independent of mTOR and ULK1, but dependent upon the activation of class III PI3-kinase\(^{113}\). GSK2578215A also induces protective autophagy in SH-SY5Y cells\(^{114}\). Other p38a inhibitors like SB202190 and SB203580 can induce autophagy via different mechanisms; the former acts via p38a blockade\(^{115}\), whereas the latter activates AMPK and DAPK\(^{116}\).

4.2 Kinase inhibitors/activators for autophagy inhibition

In recent years, some small-molecule kinase inhibitors have been used to inhibit autophagy. For instance, Wortmannin, LY294002 and 3-MA, the first classical generation non-selective pan-PI3K inhibitors\(^{117,118}\), are known as autophagy suppressors. Dimeric quinacridines (DQ) were reported to concurrently inhibit both mTORC1 and autophagy as a unified approach to targeting lysosomes degradation and growth signaling roles\(^{119}\). These differ from normal mTOR inhibitors which induce autophagy. ULK1 inhibitors can also inhibit autophagy. For example, compound SBI0206965 exhibits good inhibitory potency of ULK1 and can be used as an autophagy inhibitor\(^{120}\). MRT67307 and MRT6892 share the same scaffold and the ability to inhibit ULK1 and ULK2 in vitro and subsequently block autophagy in cells\(^{121}\). Another inhibitor, ULK-101, exhibits a similar degree of ULK1 inhibition as MRT6892, and suppresses autophagy induction and autophagic flux in response to different stimuli such as nutrients, including amino acids and growth factors\(^{122}\). In addition, JNK inhibitors have also been used for autophagy inhibition. For instance, the first reported effective JNK inhibitor SP600125 inhibited autophagy via reduction of beclin-1\(^{123,124}\).

5. Conclusions and prospects

Both cell survival and cell death are regulated by autophagy. Precise positioning of autophagy in the specific disease context confers a rational basis for deciding the proper direction for modulation of autophagy. For example, numerous previous studies have indicated autophagy determines the fate of cancer cells depending on the type, stage and genetic context\(^{125-127}\). Autophagy inducers like rapamycin contribute to lower oncogenic risk caused by deficiencies in autophagy function required for the initiation of cancer\(^{128}\). However, when cancer is established, autophagy inhibition is needed to cope with the pro-survival effects of autophagy. For instance, a combination of autophagy inhibitors can sensitize tumor cells to metabolic stress induced by chemotherapy (e.g., angio-genesis inhibitors). Furthermore, as in the case of neurodegenerative disorders, activation of moderate protective autophagy for degradation of accumulated misfolded proteins serves as a reasonable therapeutic approach\(^{129,130}\). Thus the use of autophagy inducers is likely to have benefit in this situation.

Nearly all signal transduction processes are linked to phosphate transport cascades, suggesting that a true physiological response (autophagy and beyond) can be induced by changing the activity of kinases. Indeed, autophagy-related kinases are commonly multi-functional. For instance, mTOR, the gatekeeper of autophagy, is also implicated with cell growth, cell metabolism and protein synthesis\(^{131}\). Additionally, ULK1, as the autophagy initiator, not only regulates multiple steps in the autophagy pathways, but also modulates cellular processes such as ER-to-Golgi trafficking and axonal growth, as well as PARP1 activation related to programmed cell death\(^{132}\). Nevertheless, there is no doubt of the essential regulatory roles of these kinases in autophagy. In particular, mTOR and ULK1 play pivotal roles in autophagy induction and their kinase activities are closely associated with autophagy initiation. Although other autophagy-related kinases, such as AKT, PI3K, and AMPK, mainly act as important regulators of cell proliferation and metabolism, inhibition/activation of these kinases are also significant to autophagy signal transduction\(^{133,134}\). Whether other kinases (not emphasized in this review) have the potential to regulate autophagy and become drug targets need to be validated by future studies. Furthermore, as for the unknown side effects caused by kinase inhibition/activation, it has not been determined whether these autophagy-related kinases can be used as a breakthrough point of autophagy intervention.

Despite the potential therapeutic benefits of autophagy-related kinase inhibitors/activators in animal models of disease, their clinical development into useful drugs will be challenging. First of all, due to the lack of organ-specificity, utilization of
autophagy-related kinase inhibitors/activators may lead to unwanted and uncontrolled side effects, unless the side effects are tolerable for the duration of intended use. Considering the protective effects of autophagy on neurons, it is sensible to improve the brain-specificity of autophagy-related treatments for neurodegenerative diseases. To achieve the goal of organ-specificity, different delivery strategies and photodynamic chemotherapy are proposed. Additionally, these small-molecule autophagy-related kinase inhibitors/activators share the problems of resistance and target selectivity, as known for the common kinase drugs. The occurrence of drug resistance of autophagy-related kinase inhibitors/activators is a formidable obstacle to surmount because of factors such as gene mutation, kinase up-regulation, and compensatory mechanisms and bypass effects. New therapies are needed to approach these limitations and treat the evolving diseases, especially cancer. For instance, RapaLink-1, a third-generation mTOR inhibitor, exploits the unique juxtaposition of two drug-binding pockets to create a bivalent interaction that reverses the resistance to existing first- and second-generation inhibitors. So far, several strategies have been proposed to solve the problem of target selectivity. First, compared to target ATP sites shared in kinase family, targeting allosteric sites of kinases takes distinct advantages like enhanced specificity, reduced side effects, and lower toxicity. Another approach is covalent targeting of kinases, used to design reversible and irreversible covalent kinase inhibitors/activators with a better pharmacokinetic characteristics.

At present, mounting innovations contribute to a better use of small-molecule kinase inhibitors/activators. The popular proteolysis targeting chimeras (PROTAC) approach provides a new profile for the application of autophagy-related kinase inhibitors/activators. And new computational methods such as available 3D-e-Chem-VM help to predict selectivity profiles. Meanwhile, artificial intelligence holds great promise in discovery, transformation and application of kinase agents. Based on the current trends discussed above, we believe that autophagy-based kinase targeting therapy presents a fascinating direction of autophagy research and is a promising beneficial therapeutic approach.

Acknowledgments

This work was supported by grants from National Key R&D Program of China (Grants 2017YFC0909301 and 2017YFC0909302), National Natural Science Foundation of China (Grants 81874290, 81673290, 81673455, 81602953, and 81903502) and the Opening Foundation of State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, China (Grant KF-GN-201904).

Author contributions

Lan Zhang, Bo Liu, and Liang Ouyang were responsible for the conception and design of the review. Honggang Xiang, Jifa Zhang and Congcong analyzed the literatures, summarized the results and drafted the manuscript. Lan Zhang, Bo Liu, and Liang Ouyang revised the manuscript. All authors have read and approved the final manuscript.

Conflicts of interest

The authors claim that the researchers in this study have no conflict of interest.
22. Cen L, Hsieh FC, Lin HJ, Chen CS,Qualman SJ, Lin J. PDK-1/AKT pathway as a novel therapeutic target in rhabdomyosarcoma cells using OSU-03012 compound. Br J Cancer 2007;97:785–91.
23. Huang J, Manning Brendan D. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 2009;37:217–22.
24. Inoki K, Zhu T, Guan K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011;13:132.
25. Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy by protein phosphatase 2A (PP2A) pathway as a novel therapeutic target in rhabdomyosarcoma cells. Mol Cell 2010;37:331–29.
26. Wang Q, Liu S, Zhai A, Zhang B, Tian G. AMPK-mediated regulation of autophagy. Mol Cell 2011;66:135–45.
27. Zhou Y-Y, Li Y, Jiang W-Q, Zhou L-F. MAPK/JNK signalling: a novel regulator of mTORC1 activity and autophagy. Biosci Rep 2015;35:e00199.
28. Huang J, Manning Brendan D. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 2009;37:217–22.
29. Shin H-JR, Kim H, Oh S, Lee J-G, Kee M, Ko H-J, et al. AMPK–SKP2–CARM1 signaling cascade in transcriptional regulation of autophagy. Nature 2016;534:553–7.
30. Inoki K, Kim J, Guan K-L. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 2012;52:381–400.
31. Kim J, Yang G, Kim Y, Kim J, Ha J. AMPK activators: mechanisms of action and physiological actions. Exp Mol Med 2016;48:e224.
32. Wang Q, Liu S, Zhai A, Zhang B, Tian G. AMPK-mediated regulation of lipid metabolism by phosphorylation. Biochim Biophys Acta 2018;1812:985–93.
33. Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordin M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitination, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 2013;15:406.
34. Paquette M, El-Houjier L, Pause A. mTOR Pathways in cancer and autophagy. Cancers 2018;10:18.
35. Zhou C, Ma K, Gao R, Mu C, Chen L, Liu Q, et al. Regulation of mATG9 trafficking by Src- and ULK1-mediated phosphorylation in basal and starvation-induced autophagy. Cell Res 2016;26:178.
36. Pengo N, Agrotis A, Prak K, Jones J, Ketteler R. A reversible phospho-switch mediated by ULK1 regulates the activity of autophagy protein ATG4B. Nat Commun 2017;8:294.
37. Egan DF, Chun MGH, Vamos M, Zou H, Rong J, Miller CJ, et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell 2015;59:285–97.
38. Dunlop EA, Hunt DK, Acosta-Jaquez HA, Fingar DC, Tee AR. ULK1 inhibits mTORC1 signaling, promotes multisite raptor phosphorylation and hinders substrate binding. Autophagy 2011;7:737–47.
39. Foo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL, Mecastain L, et al. Hsp90-Cdc37 chaperone complex regulates ULK1 and Atg13-mediated mitophagy. Mol Cell 2011;43:572–85.
40. Wang C, Wang H, Zhang D, Luo W, Liu R, Xu D, et al. Phosphorylation of ULK1 affects autophagosome formation and links chaperone-mediated autophagy to macroautophagy. Nat Commun 2018;9:3492.
41. Zalckvar E, Berissi H, Eisenstein M, Kimchi A. Phosphorylation of beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 2009;5:720–2.
42. Fujiiwara N, Usui T, Ohama T, Sato K. Regulation of beclin 1 protein phosphorylation and autophagy by protein phosphatase 2A (PP2A) and death-associated protein kinase 3 (DAPK3). J Biol Chem 2016;291:10858–66.
43. Ber Y, Shilo R, Gilad Y, Degani N, Bialik S, Kimchi A. DAPK2 is a novel regulator of mTORC1 activity and autophagy. Cell Death Differ 2014;21:465.
44. Zhou Y-Y, Li Y, Jiang W-Q, Zhou L-F. MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep 2015;35:e00199.
Targeting autophagy-related protein kinases

66. Menon MB, Dhamija S, Beclin 1 phosphorylation—at the center of autophagy regulation. Front Cell Dev Biol 2018;6:137.

67. Grozniak D, Kimchi A. DAPK protein family and cancer. Autophagy 2006;2:74–9.

68. Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: current and future therapeutic outcomes. Med Res Rev 2019;39:349–85.

69. Liu T-J, Koul D, Lafortune T, Tiao N, Shen RJ, Maira S-M, et al. Dual specificity phosphatase-1 (DUSP1) inhibits multiple signaling pathways and autophagy through negative feedback regulation. Autophagy 2016;12:484–98.

70. Mckay MM, Morrison DK. Integrating signals from RTKs to ERK/MAPK. Oncogene 2007;26:3113.

71. Ellington AA, Berhow MA, Singletary KW. Inhibition of Akt signaling and enhanced ERK1/2 activity are involved in induction of macropautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis 2005;27:298–306.

72. Mckay MM, Morrison DK. Integrating signals from RTKs to ERK/MAPK. Oncogene 2007;26:3113.

73. Wang J, Whiteman MW, Lian H, Wang G, Singh A, Huang D, et al. A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J Biol Chem 2009;284:21412–24.

74. Manzoni C, Mamais A, Dihanich S, Soutar MPM, Plun-Favreau H, Bandopadhayay R, et al. mTORC1 inhibition in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition. Bioorg Rep 2018;38:BSR20171669.

75. Takagawa T, Kitani A, Fuss I, Levine B, Brant SR, Peter I, et al. An increase in LRRK2 suppresses autophagy and enhances Dectin-1-induced immunity in a mouse model of colitis. Sci Transl Med 2018;10:eaaan8162.

76. Leites EP, Morais VA. Mitochondrial quality control pathways: PINK1 acts as a gatekeeper. Biochem Biophys Res Commun 2018;500:45–50.

77. Mcwilliams Thomas G, Barini E, Pohjolan-Pirhonen R, Brooks Simon P, Singh F, Burel S, et al. Phosphorylation of Parkin at serine 65 is essential for its activation in vivo. Open Biol 2018;8:170108.

78. Yang W, Hosford SR, Traphagen NA, Shee K, Demidenko E, Liu S, et al. Autophagy promotes escape from phosphatidylinositol 3-kinase inhibition in estrogen receptor-positive breast cancer. FASEB J 2018;32:12223–35.

79. Juric D, Krop I, Ramanathan RK, Wilson TR, Ware JA, Sanabria Bohorquez SM, et al. Phase I dose-escalation study of taselisib, an oral PI3K inhibitor, in patients with advanced solid tumors. Cancer Discov 2017;7:704–15.

80. Gwak H-S, Shingu T, Chumbalkar V, Hwang Y-H, Dejournett R, Latha K, et al. Combined action of the dinuclear platinum compound BBR3610 with the PI3-K inhibitor PX-866 in glioblastoma. Int J Cancer 2011;128:787–96.

81. Gazi M, Moharram SA, Marhall A, Ju Kazi. The dual specificity PI3K/mTOR inhibitor PKI-587 displays efficacy against T-cell acute lymphoblastic leukemia (T-ALL). Cancer Lett 2017;392:9–16.

82. Liu T-J, Koul D, Lafortune T, Tiao N, Shen RJ, Maira S-M, et al. NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol Cancer Ther 2009;8:2204–10.

83. Chen D, Lin X, Zhang C, Liu Z, Chen Z, Li Z, et al. Dual PI3K/mTOR inhibitor BEZ235 as a promising therapeutic strategy against paclitaxel-resistant gastric cancer via targeting PI3K/Akt/mTOR pathway. Cell Death Dis 2018;9:123.
apoptosis and autophagic cell death in triple-negative human breast cancer. Acta Pharmacol Sin 2016;37:1237–50.

104. Chen L, Lv DL, Liu WB, Ding W, Zhang W, Wang HL, et al. Inhibition of autophagy enhances SMI-4a-induced growth inhibition and apoptosis of melanoma cells. Trop J Pharm Res 2018;17:401–7.

105. Cervantes-Gomez F, Chen LS, Orlowski RZ, Gandhi V. Biological effects of the Pim kinase inhibitor, SGI-1776, in multiple myeloma. Clin Lymph Myelom Leuk 2013;13:S317–29.

106. Cervantes-Gomez F, Stillrecht CM, Ayres ML, Keating MJ, Wierda WG, Gandi V. PIM kinase inhibitor, AZD1208, inhibits protein translation and induces autophagy in primary chronic lymphocytic leukemia cells. Oncotarget 2019;10:2793–809.

107. Ren F, Zhang L, Zhang X, Shi H, Wen T, Bai L, et al. Inhibition of glycogen synthase kinase 3β promotes autophagy to protect mice from acute liver failure mediated by peroxisome proliferator-activated receptor α. Cell Death Dis 2016;7:e2151.

108. Marchand B, Arsenault D, Raymond-Fleury A, Boisvert F-M, Marchand B, Arsenault D, Raymond-Fleury A, Boisvert F-M. Inhibition of autophagy enhances SMI-4a-induced growth inhibi-

109. Yang J, Takahashi Y, Cheng E, Liu J, Terranova PF, Zhao B, et al. GSK-3β promotes cell survival by modulating Bif-1-dependent autophagy and cell death. J Cell Sci 2010;123:861.

110. Sun A, Li C, Chen R, Huang Y, Chen Q, Cui X, et al. GSK-3β controls autophagy by modulating LKB1-AMPK pathway in prostate cancer cells. The Prostate 2016;76:172–83.

111. Bryant KL, Stellrecht CM, Ayres ML, Keating MJ, Wierda WG, Gandhi V. PIM kinase inhibitor, AZD1208, inhibits protein translation and induces autophagy in primary chronic lymphocytic leukemia cells. Oncotarget 2019;10:2793–809.

112. Saez-Atienzar S, Bonet-Ponce L, Blesa JR, Romero FJ, Murphy MP, Jordan J, et al. The LRRK2 inhibitor GSK2578215A induces pro-survival autophagic signals in human pancreatic cancer cells. The Prostate 2016;76:172–83.

113. Sullivan RJ, Infante JR, Janku F, Wong DJL, Bosman JA, Keely V, et al. First-in-Class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose-escalation and expansion study. Cancer Discov 2018;8:184.

114. Zhou M, Xu W, Wang J, Yan J, Shi Y, Zhang C, et al. Boosting mTOR-dependent autophagy via upstream TLR4-MYD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine 2018;35:345–60.

115. Saez-Atienzar S, Bonet-Ponce L, Blesa JR, Romero FJ, Murphy MP, Jordan J, et al. The LRRK2 inhibitor GSK2578215A induces pro-survival autophagic signals in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling. Cell Death Dis 2014;5:e1368.

116. Comes F, Matrone A, Lastella P, Nico B, Susca FC, Bagnulo R, et al. A novel cell type-specific role of p38α in the control of autophagy and cell death in colorectal cancer cells. Cell Death Differ 2006;14:693.

117. Zhang H, Chen G G, Zhang C Z, Chun S, Leung B, Lai P. Induction of autophagy in hepatocellular carcinoma cells by SB203580 requires activation of AMPK and DAPK but not p38 MAPK. Apoptosis 2011;17:325–34.

118. Ryabaya OO, Insahkov AN, Egorova AV, Emelyanova MA, Nasedkina TV, Zasedatev AS, et al. Autophagy inhibitors chloroquine and LY294002 enhance temozolomide cytotoxicity on cutaneous melanoma cell lines in vitro. Anti Cancer Drugs 2017;28:307–15.

119. Munafó DB, Colombo MI. A novel approach to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 2001;114:3619.

120. Wu Y-T, Tan H-L, Shui G, Baurv C, Huang Q, Wenk MR, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 2010;285:10850–61.

121. Tang F, Hu P, Yang Z, Xue C, Gong J, Sun S, et al. SBJ0209665, a novel inhibitor of ULK1, suppresses non-small cell lung cancer cell growth by modulating both autophagy and apoptosis pathways. J Thorac Oncol 2017;12:5449–58.

122. Lazarus MB, Shokat KM. Discovery and structure of a new inhibitor scaffold of the autophagy initiating kinase ULK1. Bioorg Chem 2015;23:5483–8.

123. Martin KR, Celano SL, Solitro AR, Gunaydin H, Scott M, O’hagan RC, et al. A potent and selective ULK1 inhibitor suppresses autophagy and sensitizes cancer cells to nutrient stress. iScience 2018;8:74–84.

124. Vasilevskaya IA, Selvakumaran M, Roberts D, O’dwyer PJ. JNK1 inhibition attenuates hypoxia-induced autophagy and sensitizes to chemotherapy. Mol Cancer Ther 2016;14:753–63.

125. Zorza J, Prasad M, Cohen L, Li N, Schefzik R, Ghosh S, et al. IGF1R upregulation confers resistance to isoform-specific inhibitors of PI3K in PIK3CA-driven ovarian cancer. Cell Death Dis 2018;9:944.

126. D’amato V, Rosa R, D’amato C, Formisano L, Marciano R, Nappi L, et al. The dual PI3K/mTOR inhibitor PKI-587 enhances sensitivity to cetuximab in EGFR-resistant human head and neck cancer models. Br J Cancer 2014;110:2887–95.

127. Thomas HE, Mercer CA, Carnevalli LS, Park J, Andersen JB, Conner EA, et al. mTOR inhibitors synergize on regression, reversal of gene expression, and autophagy in hepatocellular carcinoma. Sci Transl Med 2012;4:139ra48.

128. Blunt MD, Carter MJ, Larroyoz M, Smith LD, Aguilar-Hernandez M, Cox KL, et al. The PI3K/mTOR inhibitor PF-04691502 induces apoptosis and inhibits microenvironmental signaling in CLL and the Ej-TCL1 mouse model. Blood 2015;125:4032–41.

129. Ma CX, Sanchez C, Gao F, Crowder R, Naughton M, Pluard T, et al. A phase I study of the AKT inhibitor MK-2206 in combination with hormonal therapy in postmenopausal women with estrogen receptor-positive metastatic breast cancer. Cancer Clin Res 2016;22:2650–8.

130. Ma CX, Suman V, Goetz MP, Northfelt D, Burkard ME, Ademuyiwa F, et al. A phase II trial of neoadjuvant MK-2206, an AKT inhibitor, with anastrozole in clinical stage II or III PIK3CA-mutant ER-positive and HER2-negative breast cancer. Clin Cancer Res 2017;23:6823.

131. Dite TA, Ling NXY, Scott JW, Hoque A, Galic S, Parker BL, et al. The autophagy initiator ULK1 sensitizes AMPK to allosteric drugs. Nat Commun 2017;8:571.

132. Niu C, Chen Z, Kim KT, Sun J, Xue M, Chen G, et al. Metformin activates hyperglycemia-induced endothelial injury by down-regulating autophagy via the Hedgehog pathway. Autophagy 2019;15:843–70.

133. Pietrocola F, Castoldi F, Maiuri MC, Kroemer G. Aspirin—analogic-restriction mimetic. Autophagy 2018;14:1162–3.

134. Song Y, Zhang P, Sun Y, Li X, Chen L, Xiao Y, et al. AMPK activation-dependent autophagy compromises oleic acid-induced cytotoxicity in human bladder cancer cells. Oncotarget 2017;8:67942–54.

135. Wang S, Zhang D, Ye X, He Y, Cai Y, Xia Z. Activation of autophagy protects against myocardial ischemic reperfusion injury by inhibition of NLRP3 inflammasome-mediated pyroptosis and inflammatory responses in diabetic rats. FASEB J 2019;33:1396.

136. Manzoni C, Mamais A, Roosen DA, Dihanich S, Soutar MPM, Plum-Favier H, et al. mTOR independent regulation of macroautophagy by leucine rich repeat kinase 2 via beclin-1. Sci Rep 2016;6:35106.

137. Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer 2017;17:528–42.

138. Mathew R, Karantzis-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer 2007;7:961–7.

139. White E. The role for autophagy in cancer. J Clin Invest 2015;125:42–6.

140. Singh SS, Vats S, Chia AY-Q, Tan TZ, Deng S, Ong MS, et al. Dual role of autophagy in hallmarks of cancer. Oncogene 2018;37:1142–58.
141. Hippert MM, Toole PS, Thorburn A. Autophagy in cancer: good, bad, or both?. Cancer Res 2006;66:9349.

142. Nassour I, Radford R, Correia A, Fuste JM, Schoell B, Jauch A, et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 2019;565:659–63.

143. Nah J, Yuan J, Jung Y-K. Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cells 2015;38:381–9.

144. Guo F, Liu X, Cai H, Le W. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol 2018;28:3–13.

145. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell 2017;168:960–76.

146. Wang B, Kundu M. Canonical and noncanonical functions of ULK/Atg1. Curr Opin Cell Biol 2017;45:47–54.

147. Lien EC, Dibble CC, Toker A. PI3K signaling in cancer: beyond AKT. Curr Opin Cell Biol 2017;45:62–71.

148. Carling D. AMPK signalling in health and disease. Curr Opin Cell Biol 2017;45:31–7.

149. Ferguson FM, Gray NS. Kinase inhibitors: the road ahead. Nat Rev Drug Discov 2018;17:353.

150. Fischer PM. Approved and experimental small-molecule oncology kinase inhibitor drugs: a mid-2016 overview. Med Res Rev 2017;37:314–67.