Arakelov theory of noncommutative arithmetic surfaces

Thomas Borek

March 24, 2008

Abstract

The purpose of the present article is to initiate Arakelov theory of noncommutative arithmetic surfaces. Roughly speaking, a noncommutative arithmetic surface is a noncommutative projective scheme of cohomological dimension 1 of finite type over $\text{Spec } \mathbb{Z}$. An important example is the category of coherent right \mathcal{O}-modules, where \mathcal{O} is a coherent sheaf of \mathcal{O}_X-algebras and \mathcal{O}_X is the structure sheaf of a commutative arithmetic surface X. Since smooth hermitian metrics are not available in our noncommutative setting, we have to adapt the definition of arithmetic vector bundles on noncommutative arithmetic surfaces. Namely, we consider pairs (\mathcal{E}, β) consisting of a coherent sheaf \mathcal{E} and an automorphism β of the real sheaf $\mathcal{E}_\mathbb{R}$ induced by \mathcal{E}. We define the intersection of two such objects using the determinant of the cohomology and prove a Riemann-Roch theorem for arithmetic line bundles on noncommutative arithmetic surfaces.

Keywords: Arakelov theory; noncommutative algebraic geometry; arithmetic surfaces.

1991 MSC: 14G40; 14A22.
1 Introduction

In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry. For instance, Consani and Marcolli show how noncommutative (differential) geometry à la Connes provides a unified description of the archimedean and the totally split degenerate fibres of an arithmetic surface. We refer the interested reader to [6], [7], [8], and [14]. Until now, only ideas and methods of noncommutative geometry in the form developed by Connes [5] have been applied to number theory and arithmetic geometry. But as Marcolli mentions in the last chapter of her book [14], in which she addresses the question “where do we go from here?”, it would be interesting to consider more algebraic versions of noncommutative geometry in the context of number theory and arithmetic geometry. Our work is intended as a first step in this direction.

In a preceding paper [4], we have established a version of Arakelov theory of noncommutative arithmetic curves. The present article continues our work on noncommutative arithmetic geometry by introducing a version of Arakelov theory of noncommutative arithmetic surfaces. To define noncommutative arithmetic surfaces, we use the well developed theory of noncommutative projective schemes. The standard reference for noncommutative projective schemes is the article [3] of Artin and Zhang. Noncommutative algebraic geometry was mainly developed by Artin, Tate and van den Bergh [2], by Manin [13], and by Kontsevich and Rosenberg [21]. The general philosophy of noncommutative algebraic geometry is that noncommutative spaces are made manifest by the modules that live on them in the same way that the properties of a commutative scheme \(X \) are manifested by the category of (quasi)-coherent \(\mathcal{O}_X \)-modules. The modules over a noncommutative space form, by definition, an abelian category. The category is the basic object of study in noncommutative algebraic geometry. In short, a noncommutative space is an abelian category.

Noncommutative projective schemes are determined by specific abelian categories. Let \(A \) be an \(\mathbb{N} \)-graded right noetherian algebra over a commutative noetherian ring \(k \), let \(\text{Gr} \ A \) be the category of graded right \(A \)-modules and \(\text{Tors} \ A \) its full subcategory generated by the right bounded modules. The noncommutative projective scheme associated to \(A \) is the pair \(\text{Proj} \ A = (\text{QGr} \ A, \mathcal{A}) \), where \(\text{QGr} \ A \) is the quotient category \(\text{Gr} \ A / \text{Tors} \ A \) and \(\mathcal{A} \) the image of \(A \) in \(\text{QGr} \ A \). This definition is justified by a theorem of Serre [23], which asserts that if \(A \) is a commutative graded algebra generated in degree 1 and \(X = \text{Proj} \ A \) the associated projective scheme, then the category of quasi-coherent \(\mathcal{O}_X \)-modules is equivalent to the quotient category \(\text{QGr} \ A \). Thus the objects in \(\text{QGr} \ A \) are the noncommutative geometric objects analogous to sheaves of \(\mathcal{O}_X \)-modules.

Working with the Grothendieck category \(\text{QGr} \ A \) allows to define a lot of useful tools known from the theory of commutative projective schemes, such as ample sheaves, twisting sheaf, cohomology, dualizing object, Serre duality and so on. However, equating noncommutative schemes with abelian categories has drawbacks: most notably there are no points, so the powerful tool of localization is not available. This forces to search for equivalent global definitions of objects which are usually defined locally. Secondly, at present there is almost no connection between noncommutative algebraic geometry con-
A module $M \rightarrow A$ is a finitely generated k-graded right A-module, and an integer d, degree zero; thus if $Zf \in A$, the notation T_{or} $M' \rightarrow A$, a graded Z-module, the following, "graded" without any prefix will mean k-algebra. In this category homomorphisms are of degree zero; thus if $M = \bigoplus_{i \in Z} M_i$ and $N = \bigoplus_{i \in Z} N_i$ are Z-graded right A-modules and $f \in \text{Hom}_{Gr A}(M, N)$, then $f(M_i) \subset N_i$ for all integers i. Given a Z-graded A-module M and an integer d, the A_0-module $\bigoplus_{i \geq d} M_i$ is denoted by $M_{\geq d}$. If A is N-graded, then $M_{\geq d}$ is a Z-graded A-submodule of M, and $A_{\geq d}$ is an N-graded two-sided ideal of A. In the following, "graded" without any prefix will mean Z-graded.

For a graded A-module $M = \bigoplus_{i \in Z} M_i$ and any integer d, we let $M[d]$ be the graded A-module defined by $M[d]_i = M_{i+d}$ for all $i \in Z$. It is clear that the rule $M \mapsto M[d]$ extends to an automorphism of $\text{Gr} A$. We call $[1]$ the \textit{degree-shift functor}. Note $[d] = [1]^d$.

Let A be a right noetherian N-graded k-algebra. We say that an element x of a graded right A-module M is \textit{torsion} if $xA_{\geq d} = 0$ for some d. The torsion elements in M form a graded A-submodule which we denote by $\tau(M)$ and call the \textit{torsion submodule} of M. A module M is called \textit{torsion-free} if $\tau(M) = 0$ and \textit{torsion} if $M = \tau(M)$. For all short exact sequences $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ in $\text{Gr} A$, M is torsion if and only if M' and M'' are, so the torsion modules form a dense subcategory of $\text{Gr} A$ for which we will use the notation $\text{Tors} A$. We set $Q \text{Gr} A$ for the quotient category $\text{Gr} A / \text{Tors} A$; the formal

2 Preliminaries

Firstly, we introduce the terminology and notation from graded ring and module theory which we will use throughout. In this paper k will denote a noetherian commutative ring. A Z-graded k-module $M = \bigoplus_{i \in Z} M_i$ is called \textit{locally finite} if each component M_i is a finitely generated k-module. Let $A = \bigoplus_{i \in Z} A_i$ be a Z-graded k-algebra. If each component A_i is a finitely generated k-module, then A is called a.

The category of Z-graded right A-modules is denoted by $\text{Gr} A$. In this category homomorphisms are of degree zero; thus if $M = \bigoplus_{i \in Z} M_i$ and $N = \bigoplus_{i \in Z} N_i$ are Z-graded right A-modules and $f \in \text{Hom}_{\text{Gr} A}(M, N)$, then $f(M_i) \subset N_i$ for all integers i. Given a Z-graded A-module M and an integer d, the A_0-module $\bigoplus_{i \geq d} M_i$ is denoted by $M_{\geq d}$. If A is N-graded, then $M_{\geq d}$ is a Z-graded A-submodule of M, and $A_{\geq d}$ is an N-graded two-sided ideal of A. In the following, “graded” without any prefix will mean Z-graded.

For a graded A-module $M = \bigoplus_{i \in Z} M_i$ and any integer d, we let $M[d]$ be the graded A-module defined by $M[d]_i = M_{i+d}$ for all $i \in Z$. It is clear that the rule $M \mapsto M[d]$ extends to an automorphism of $\text{Gr} A$. We call $[1]$ the \textit{degree-shift functor}. Note $[d] = [1]^d$.

Let A be a right noetherian N-graded k-algebra. We say that an element x of a graded right A-module M is \textit{torsion} if $xA_{\geq d} = 0$ for some d. The torsion elements in M form a graded A-submodule which we denote by $\tau(M)$ and call the \textit{torsion submodule} of M. A module M is called \textit{torsion-free} if $\tau(M) = 0$ and \textit{torsion} if $M = \tau(M)$. For all short exact sequences $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ in $\text{Gr} A$, M is torsion if and only if M' and M'' are, so the torsion modules form a dense subcategory of $\text{Gr} A$ for which we will use the notation $\text{Tors} A$. We set $Q \text{Gr} A$ for the quotient category $\text{Gr} A / \text{Tors} A$; the formal.
definition of this category can be found in [10] or [18], but roughly speaking, QGr A
is an abelian category having the same objects as Gr A but objects in Tors A become
isomorphic to 0.

As for every quotient category there is a quotient functor π from Gr A to QGr A. Since
the category Gr A has enough injectives and Tors A is closed under direct sums, there
is a section functor σ from QGr A to Gr A which is right adjoint to π, cf. [18], Section
4.4. Hence Tors A is a localizing subcategory of Gr A. The functor π is exact and the
functor σ is left exact.

We will modify the notation introduced above by using lower case to indicate that
we are working with finitely generated A-modules. Thus gr A denotes the category of
finitely generated graded right A-modules, tors A denote the dense subcategory of gr A
of torsion modules, and qgr A the quotient category gr A/tors A. The latter is the full
subcategory of noetherian objects of QGr A, cf. [3], Proposition 2.3.

We proceed with a review of the construction of noncommutative projective schemes,
and we fix the notation we will use throughout. The standard reference for the theory
of noncommutative projective schemes is the article [3] of Artin and Zhang. In his
fundamental paper [23], Serre proved a theorem which describes the coherent sheaves on
a projective scheme in terms of graded modules as follows. Let A be a finitely generated
commutative N-graded k-algebra and X = Proj A the associated projective scheme, let
coh X denote the category of coherent sheaves on X, and let O X(n) denote the n-th
power of the twisting sheaf of X. Define a functor Γ∗ : coh X → Gr A by

\[\Gamma^*(\mathcal{F}) = \bigoplus_{n \in \mathbb{Z}} H^0(X, \mathcal{F} \otimes \mathcal{O}_X(n)) \]

and let π : Gr A → QGr A be the quotient functor. Then Serre proved

Theorem 1 ([23], Proposition 7.8). Suppose that A is generated over k by elements of
degree 1. Then π ◦ Γ∗ defines an equivalence of categories coh X → qgr A.

Since the categories QGr A and qgr A are also available when A is not commutative,
this observation provides a way to make a definition in a more general setting. Let
A be a right noetherian N-graded k-algebra, let QGr A be the quotient category intro-
troduced above and let π : Gr A → QGr A be the quotient functor. The associated
noncommutative projective scheme is the pair Proj A = (QGr A, A) where A = π(A).
The subcategory Tors A is stable under the degree-shift functor because M is a torsion
module if and only if M[1] is. Hence, by the universal property of quotient categories
(see [10], Corollaire III.2) there is an induced automorphism s of QGr A defined by the
equality s ◦ π = π ◦ [1]. We call s the *twisting functor* of Proj A. Given an object \(\mathcal{M} \) of
QGr A, we will often write \(\mathcal{M}[i] \) instead of \(s^i(\mathcal{M}) \).

There is a representing functor Γ : QGr A → Gr A constructed as follows. For an
object \(\mathcal{M} \) in QGr A, we define

\[\Gamma(\mathcal{M}) = \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{QGr A}(A, \mathcal{M}[i]) \].
If \(a \in \Gamma(A)_i = \text{Hom}_{\text{QGr}A}(A, A[i]) \), \(b \in \Gamma(A)_j = \text{Hom}_{\text{QGr}A}(A, A[j]) \) and \(m \in \Gamma(M)_d = \text{Hom}_{\text{QGr}A}(A, M[d]) \), we define multiplications by
\[
ab = s^i(a) \circ b \quad \text{and} \quad ma = s^i(m) \circ a.
\]

With this law of composition, \(\Gamma(A) \) becomes a graded \(k \)-algebra and \(\Gamma(M) \) a graded right \(\Gamma(A) \)-module. Moreover there is a homomorphism \(\varphi : A \to \Gamma(A) \) of graded \(k \)-algebras sending \(a \in A \) to \(\pi(\lambda_a) \in \Gamma(A)_i \), where \(\lambda_a : A \to A \) is left multiplication by \(a \). So each \(\Gamma(M) \) has a natural graded right \(A \)-module structure, and it is clear that \(\Gamma \) defines a functor from \(\text{QGr}A \) to \(\text{Gr}A \). The following lemma summarizes some important properties of the representing functor \(\Gamma \).

Lemma 1. Let \(\text{Proj} A \) be a noncommutative projective scheme. Then the following statements hold:

(i) The representing functor \(\Gamma : \text{QGr} A \to \text{Gr} A \) is isomorphic to the section functor \(\sigma : \text{QGr} A \to \text{Gr} A \);

(ii) \(\Gamma \) is fully faithful;

(iii) \(\pi \Gamma \cong \text{id}_{\text{QGr} A} \).

Proof. (i) Given an object \(M \) of \(\text{QGr} A \), we let \(F \) denote the contravariant left exact functor \(\text{Hom}_{\text{QGr}A}(\pi(-), M) \) from \(\text{Gr} A \) to the category of \(k \)-modules. It follows from Watt’s Theorem (see [25], Theorem 1.3) that \(F = \text{Hom}_{\text{Gr} A}(-, F(A)) \), where
\[
F(A) = \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{\text{QGr} A}(\pi(A[i]), M) \cong \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{\text{QGr} A}(\pi(A), M[i]) = \Gamma(M).
\]

Note that the original version of [25], Theorem 1.3 holds for functors from \(\text{gr} A \) to the category of \(k \)-modules. But in our situation where the functor \(F \) converts direct sums into direct products (quotient functors preserve direct sums), the restriction to noetherian objects can be omitted. Hence we obtain a natural isomorphism
\[
\text{Hom}_{\text{QGr} A}(\pi(-), M) \cong \text{Hom}_{\text{Gr} A}(-, \Gamma(M)).
\]

This is true for every object \(M \) of \(\text{QGr} A \), thus \(\Gamma \) is right adjoint to the quotient functor \(\pi \), whence \(\Gamma \cong \sigma \) as claimed.

The statements (ii) and (iii) follow from the respective properties of the section functor \(\sigma \), c.f. [10], Lemme III.2.1, Lemme III.2.2, and Proposition III.2.3.a. \(\square \)

Being defined in terms of natural isomorphisms between Ext groups, also for noncommutative projective schemes there is a well-defined notion of Serre duality. Here we only want to give the relevant definitions; for more details we refer to [25], [11], and [22].

The **cohomological dimension** of a noncommutative projective scheme \(\text{Proj} A \) is defined to be
\[
\text{cd}(\text{Proj} A) = \max \{ i \mid \text{Ext}_{\text{QGr} A}^i(A, M) \neq 0 \text{ for some } M \in \text{QGr} A \}.
\]
Following Yekutieli and Zhang [25], we say that a noncommutative projective scheme $\text{Proj} A$ of cohomological dimension $d < \infty$ has a dualizing object, if there exists an object ω in $\text{qgr} A$ and a natural isomorphism

$$\theta : \text{Ext}^d_{\text{qgr} A}(A, -)^\vee \longrightarrow \text{Hom}_{\text{qgr} A}(-, \omega).$$

Here the dual is taken in the category of k-modules. Clearly, the dualizing object is unique, up to isomorphism, if it exists. Furthermore, if $\text{Proj} A$ has a dualizing object ω, then for each $0 \leq i \leq d = \text{cd}(\text{Proj} A)$, there is a natural transformation

$$\theta^i : \text{Ext}^i_{\text{qgr} A}(-, \omega) \longrightarrow \text{Ext}^{d-i}_{\text{qgr} A}(A, -)^\vee,$$

where θ^θ is the inverse of the natural isomorphism in (1). We say that $\text{Proj} A$ satisfies Serre duality if θ^i are isomorphisms for all i.

Next, we are going to introduce invertible objects. Let X be a projective scheme. Recall that a coherent \mathcal{O}_X-module L is called invertible if $L \otimes L^\vee \cong \mathcal{O}_X$. This means that the functor $L \otimes -$ is an autoequivalence of the category of coherent sheaves on X. Moreover

$$L[1] = L \otimes \mathcal{O}_X[1] \cong \mathcal{O}_X[1] \otimes L.$$

Hence the autoequivalence $L \otimes -$ commutes, up to natural isomorphism, with the twisting functor $\mathcal{O}_X[1] \otimes -$. This motivates

Definition 1. Let $\text{Proj} A$ be a noncommutative projective scheme. An object L of $\text{qgr} A$ is called invertible if there exists an autoequivalence t of $\text{qgr} A$ such that $t(A) \cong L$ and which commutes with the twisting functor s, i.e. $s \circ t \cong t \circ s$.

Invertible objects are characterized in

Theorem 2. Let $\text{Proj} A$ be a noncommutative projective scheme and let L be an object of $\text{qgr} A$. Then, L is invertible if and only if $\Gamma(L)$ is a graded A-bimodule and $t' = \pi (\Gamma(-) \otimes_A \Gamma(L))$ is an autoequivalence of $\text{qgr} A$ such that $t'(A) \cong L$.

Proof. Suppose that $L = \Gamma(L)$ is a graded A-bimodule and that $t' = \pi (\Gamma(-) \otimes_A L)$ is an autoequivalence of $\text{qgr} A$ such that $t'(A) \cong L$. In order to prove that L is invertible, it remains to show that t' commutes with the twisting functor s. We have

$$\Gamma(s(-)) \otimes_A L = \Gamma(-)[1] \otimes_A L \cong (\Gamma(-) \otimes_A L)[1],$$

where the last isomorphism is a basic property of the graded tensor product. This leads to

$$t' \circ s = \pi (\Gamma(s(-)) \otimes_A L) \cong \pi ((\Gamma(-) \otimes_A L)[1]) = (\pi (\Gamma(-) \otimes_A L))[1] = s \circ t'.$$

To prove the other implication, we suppose that L is invertible and that t is an autoequivalence of $\text{qgr} A$ such that $t(A) \cong L$. Firstly, we show that $L = \Gamma(L)$ is a graded A-bimodule. As we do not want to overload the notation, we assume that $t \circ s = s \circ t$; if
the natural isomorphism $\epsilon : t \circ s \to s \circ t$ is not the identity, the forthcoming arguments work as well, unless one always has to take ϵ into account.

If $a \in \Gamma(A)_i = \text{Hom}_{QGr_A}(A, A[i])$, $b \in \Gamma(A)_j = \text{Hom}_{QGr_A}(A, A[j])$ and $x \in L_d = \text{Hom}_{QGr_A}(A, t(A)[d])$, we define multiplications by

$$ax = t(s^d(a)) \circ x \text{ and } xb = s^j(x) \circ b.$$

Since $t \circ s = s \circ t$, these operations induce a graded $\Gamma(A)$-bimodule - and particularly also a graded A-bimodule - structure on L.

Secondly we are going to prove that the functors t and $t' = \pi(\Gamma(-) \otimes_A L)$ from $\text{gr} A$ to $\text{qgr} A$ are isomorphic. Let \mathcal{E} be any object of $QGr A$. Since both functors

$$F = \text{Hom}_{QGr_A} (t \circ \pi(-), \mathcal{E}) \text{ and } G = \text{Hom}_{QGr_A} (\pi(- \otimes_A L), \mathcal{E})$$

are contravariant left exact functors from $\text{gr} A$ to $\text{Mod}-k$, we may apply Watts’ Theorem for $\text{gr} A$ ([25], Theorem 1.3) to conclude

$$F \cong \text{Hom}_{\text{gr} A} (-, F(A)) \text{ and } G \cong \text{Hom}_{\text{gr} A} (-, G(A)).$$

Note

$$F(A) = \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{QGr_A} (t \circ \pi(A[-i]), \mathcal{E}) \cong \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{QGr_A} (t(A)[-i], \mathcal{E})$$

and

$$G(A) = \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{QGr_A} (\pi(A[-i] \otimes_A L), \mathcal{E}) \cong \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{QGr_A} (\pi(L)[-i], \mathcal{E}).$$

Recall $L = \Gamma(L) \cong \Gamma(t(A))$ and $\pi \circ \Gamma \cong \text{id}_{\text{gr} A}$ (Lemma 1(iii)), which shows $\pi(L) \cong t(A)$. So, $F(A) \cong G(A)$ and thus $F \cong G$. As this holds for every object \mathcal{E} of $QGr A$, the functors $t \circ \pi$ and $\pi(- \otimes_A L)$ are isomorphic. Therefore $t \cong t \pi \Gamma \cong \pi(\Gamma(-) \otimes_A L) = t'$, which completes the proof of the theorem.

At the end of this section we are concerned with base change. Let K be a k-algebra, let A be an \mathbb{N}-graded k-algebra, and let A_K denote the \mathbb{N}-graded k-algebra $A \otimes_k K$. If K is a flat k-module, then the functor $- \otimes_k K : \text{Gr} A \to \text{Gr} A_K$ is exact. The quotient functor $\pi_K : \text{Gr} A_K \to \text{QGr} A_K$ is also exact, so is their composition. Clearly, if a graded right A-module M is torsion, the graded right A_K-module $M_K = M \otimes_k K$ is torsion as well. Therefore $\pi_K(M_K) = 0$ whenever M is torsion. Hence the universal property of quotient categories, see [10], Corollaire III.2, ensures the existence of a unique functor $F : \text{QGr} A \to \text{QGr} A_K$ such that $\pi_K \circ (\otimes_k K) = F \circ \pi$, where, as usual, π denotes the quotient functor from $\text{Gr} A$ to $\text{QGr} A$. Given an object \mathcal{M} of $\text{QGr} A$, we will usually write \mathcal{M}_K instead of $F(\mathcal{M})$. With this notation, the following base change lemma holds:

Lemma 2. Suppose that A and A_K are right noetherian and that K is a flat k-module. Let \mathcal{M} and \mathcal{N} be two objects of $\text{QGr} A$. If \mathcal{N} is noetherian, then for all $i \geq 0$,

$$\text{Ext}^i_{\text{QGr} A_K}(\mathcal{N}_K, \mathcal{M}_K) \cong \text{Ext}^i_{\text{QGr} A}(\mathcal{N}, \mathcal{M}) \otimes_k K.$$
Proof. Let M and N be graded right A-modules such that $\mathcal{M} = \pi(M)$ and $\mathcal{N} = \pi(N)$ respectively. Since $qgr A$ is a quotient category of the noetherian objects of $Gr A$, we may assume that N is noetherian. Then $[3]$, Proposition 7.2(1), asserts that for all $i \geq 0$,

\[\text{Ext}^i_{QGr A}(\mathcal{N}, \mathcal{M}) \cong \lim_{\to n} \text{Ext}^i_{Gr A}(N_{\geq n}, M). \]

Recall $\mathcal{N}_K = \pi_K(N_K)$ and $\mathcal{M}_K = \pi_K(M_K)$. Since N is noetherian, the graded right A_K-module N_K is finitely generated too, and A_K is right noetherian by assumption, so we may apply $[3]$, Proposition 7.2(1), once again to conclude that for all $i \geq 0$,

\[\text{Ext}^i_{QGr A_K}(\mathcal{N}_K, \mathcal{M}_K) \cong \lim_{\to n} \text{Ext}^i_{Gr A_K}((N_{K})_{\geq n}, M_K) = \lim_{\to n} \text{Ext}^i_{Gr A_K}((N_{\geq n})_K, M_K). \]

But $[16]$, Proposition I.2.12, tells us that $\text{Ext}^i_{Gr A_K}((N_{\geq n})_K, M_K) = \text{Ext}^i_{A_K}((N_{\geq n})_K, M_K)$. Since K is flat over k, it follows from a change of ring theorem, cf. $[20]$, Theorem (2.39), that for all i and n,

\[\text{Ext}^i_{A_K}((N_{\geq n})_K, M_K) \cong \text{Ext}^i_{A}((N_{\geq n}, M) \otimes_k K). \]

Combining (2), (3), (4) and the fact that the tensor product commutes with direct limits, leads to

\[\text{Ext}^i_{QGr A_K}(\mathcal{N}_K, \mathcal{M}_K) \cong \text{Ext}^i_{QGr A}(\mathcal{N}, \mathcal{M}) \otimes_k K. \]

Taking degree zero parts yields the claim.

3 Noncommutative arithmetic surfaces and arithmetic vector bundles

3.1 Noncommutative arithmetic surfaces: definition and examples

Following Soulé $[24]$, an arithmetic surface is a regular scheme X, projective and flat over $\text{Spec } \mathbb{Z}$ of Krull dimension two. We now isolate the conditions that we want to be satisfied by our noncommutative analogues of the homogeneous coordinate ring S of X and of $\text{coh}(X)$, the category of coherent sheaves on X. They clearly satisfy the following conditions:

- S is noetherian and locally finite, and the associated graded real algebra $S_\mathbb{R}$ is noetherian too.
- $\text{coh}(X)$ is H-finite. In other words, for every coherent \mathcal{O}_X-modules \mathcal{F} and all integers $i \geq 0$, the cohomology groups $H^i(X, \mathcal{F})$ are finitely generated;
- $\text{coh}(X)$ has cohomological dimension 1 in the sense that $H^i(X, \mathcal{F}) = 0$ for every coherent \mathcal{O}_X-module \mathcal{F} and all $i > 1$;
- $\text{coh}(X)$ has a dualizing sheaf ω_X.

8
This motivates

Definition 2. A *noncommutative arithmetic surface* is a noncommutative projective scheme $\text{Proj} A$, which satisfies the following conditions:

- A is an \mathbb{N}-graded right noetherian locally finite \mathbb{Z}-algebra such that the associated real algebra $A_\mathbb{R} = A \otimes_{\mathbb{Z}} \mathbb{R}$ is also right noetherian;
- $\text{qgr} A$ is H-finite and has cohomological dimension 1, i.e. for every object \mathcal{M} in $\text{qgr} A$ and all $i \geq 0$, the Ext groups $\text{Ext}^i_{\text{qgr} A}(A, \mathcal{M})$ are finitely generated and $\text{Ext}^i_{\text{qgr} A}(A, \mathcal{M}) = 0$ whenever $i > 1$;
- $\text{qgr} A$ has a dualizing object ω.

We are going to provide some examples of noncommutative arithmetic surfaces.

Example 1 (Noncommutative arithmetic surfaces derived from commutative ones). Let X be a commutative arithmetic surface, let \mathcal{O} be a coherent sheaf of \mathcal{O}_X-algebras, and let $\text{coh}(\mathcal{O})$ denote the category of coherent sheaves with a structure of right \mathcal{O}-module. We claim that $\text{coh}(\mathcal{O})$ is a noncommutative arithmetic surface. To verify this, we have to check the several conditions that are imposed in the definition of a noncommutative arithmetic surface.

Firstly, the homogeneous coordinate ring of $\text{coh}(\mathcal{O})$ is defined to be

$$B = \bigoplus_{n \in \mathbb{N}} H^0(X, \mathcal{O}[n]),$$

where $\mathcal{O}[n] = \mathcal{O} \otimes_{\mathcal{O}_X} \mathcal{O}_X[n]$. For every object \mathcal{M} of $\text{coh}(\mathcal{O})$, we have $\text{Hom}_{\mathcal{O}}(\mathcal{O}, \mathcal{M}) = H^0(X, \mathcal{M})$, therefore the fact that X — or more precisely the triple $(\text{coh}(\mathcal{O}_X), \mathcal{O}_X, - \otimes_{\mathcal{O}_X} \mathcal{O}_X[n])$ — satisfies the conditions (H1), (H2), and (H3) of Corollary 4.6 of [3] implies that the triple $(\text{coh}(\mathcal{O}), \mathcal{O}, - \otimes_{\mathcal{O}} \mathcal{O}[n])$ fulfills them as well. Hence [3], Corollary 4.6, tells us that B is a right noetherian locally finite \mathbb{Z}-algebra and the pair $(\text{coh}(\mathcal{O}), \mathcal{O})$ is isomorphic to the noncommutative projective scheme $\text{Proj} B$. In particular, the categories $\text{coh}(\mathcal{O})$ and $\text{qgr} B$ are equivalent. Since the homogeneous coordinate ring S of X is noetherian and \mathcal{O} is a coherent \mathcal{O}_X-module, it follows that B is a finitely generated \mathbb{N}-graded S-module. After tensoring with \mathbb{R}, $S_\mathbb{R}$ is still noetherian and $B_\mathbb{R}$ finitely generated over $S_\mathbb{R}$, so also $B_\mathbb{R}$ is right noetherian.

Secondly, let M be a finitely generated graded right B-module and denote by \mathcal{M} and \mathcal{M}_S the corresponding objects of $\text{qgr} B$ and $\text{qgr} S$. Combining Proposition 3.11(3) and Theorem 8.3(2),(3) of [3] shows that for all $i \geq 0$,

$$\text{Ext}^i_{\text{qgr} B}(B, \mathcal{M}) \cong \text{Ext}^i_{\text{qgr} S}(S, \mathcal{M}_S).$$

On the other hand it follows from Serre’s Theorem, see Theorem [4] that the categories $\text{qgr} S$ and $\text{coh}(X)$ are equivalent, therefore $\text{qgr} S$ is H-finite and has cohomological dimension one. The isomorphism in (5) shows that $\text{Proj} B$ inherits these properties from $\text{qgr} S$.

9
It remains to prove that $\text{coh} (\mathcal{O})$ has a dualizing object. If ω_X denotes the dualizing sheaf of X, then there are natural isomorphism

$$\text{Ext}^1_\mathcal{O} (\mathcal{O}, -)^\vee = H^1 (X, -)^\vee \cong \text{Hom}_X (-, \omega_X)$$

of functors from $\text{coh} (\mathcal{O})$ to the category of abelian groups. This implies that the $\mathcal{H}om$ sheaf $\mathcal{H}om_\mathcal{O}_X (\mathcal{O}, \omega_X)$ is a representing object of the functor $\text{Ext}^1_\mathcal{O} (\mathcal{O}, -)^\vee$ and therefore a dualizing object of $\text{coh} (\mathcal{O})$.

All together this shows that $\text{coh} (\mathcal{O})$ is indeed a noncommutative arithmetic surface. The noncommutative projective scheme $\text{coh} (\mathcal{O})$ is an example of what Artin and Zhang \cite{3} call classical projective schemes.

Example 2 (Maximal orders). We now specialize the last example a little bit. Let K be the function field of a commutative arithmetic surface X and let \mathcal{O} be a sheaf of maximal \mathcal{O}_X-orders in a finite dimensional semisimple K-algebra A. Then, the dualizing sheaf $\omega = \mathcal{H}om_\mathcal{O}_X (\mathcal{O}, \omega_X)$ is an invertible \mathcal{O}-module. Since $\mathcal{H}om_\mathcal{O}_X (\mathcal{O}, \omega_X) \cong \mathcal{H}om_\mathcal{O}_X (\mathcal{O}, \mathcal{O}_X) \otimes_{\mathcal{O}_X} \omega_X$ and ω_X is an invertible sheaf, it suffices to show that $\mathcal{O} = \mathcal{H}om_\mathcal{O}_X (\mathcal{O}, \mathcal{O}_X)$ is an invertible \mathcal{O}-module. We prove this locally. So let $x \in X$. Then $\mathcal{O}_x \cong \mathcal{H}om_{\mathcal{O}_{X,x}} (\mathcal{O}_x, \mathcal{O}_{X,x})$. Since \mathcal{O}_x is an $\mathcal{O}_{X,x}$-order in the semisimple K-algebra A, it follows that \mathcal{O}_x is isomorphic to the inverse different $\{ a \in A \mid tr_{A/K} (a \mathcal{O}_x) \subset \mathcal{O}_x \}$, which, according to \cite{20}, Section 25, is an invertible \mathcal{O}_{x}-module because \mathcal{O}_x is a maximal order in A.

In other words, may view \mathcal{O} as the canonical bundle of the extension $\text{coh} (\mathcal{O}) \to X$.

Example 3 (Projective lines). Let R be a ring and let $R[T_0, T_1]$ be the polynomial ring in two indeterminates over R. If R is finitely generated as abelian group, then $\text{Proj} (R[T_0, T_1])$ is a noncommutative arithmetic surface. We will show that it is a special case of Example 1.

To do so, we consider the projective line $X = \mathbb{P}^1_{\mathbb{Z}}$ over the integers. Then $\mathcal{O} = R \otimes_{\mathbb{Z}} \mathcal{O}_X$ is a coherent sheaf of \mathcal{O}_X-algebras and the homogeneous coordinate ring $B = \bigoplus_{n \in \mathbb{N}} H^0 (X, \mathcal{O}[n])$ is isomorphic to $R[T_0, T_1]$. Indeed, since X is noetherian, cohomology commutes with arbitrary direct sums, thus

$$B \cong H^0 (X, \bigoplus_{n \in \mathbb{N}} \mathcal{O}[n]) \cong H^0 (X, R \otimes_{\mathbb{Z}} \bigoplus_{n \in \mathbb{N}} \mathcal{O}_X[n]) \cong R \otimes_{\mathbb{Z}} \Gamma_+ (\mathcal{O}_X),$$

where $\Gamma_+ (\mathcal{O}_X) = \bigoplus_{n \in \mathbb{N}} H^0 (X, \mathcal{O}_X[n]) \cong \mathbb{Z}[T_0, T_1]$. This shows $B \cong R \otimes_{\mathbb{Z}} \mathbb{Z}[T_0, T_1] \cong R[T_0, T_1]$. So it follows from Example 1 that the categories $\text{coh} (\mathcal{O})$ and $\text{qgr} (R[T_0, T_1])$ are equivalent and that $\text{Proj} (R[T_0, T_1])$ is a noncommutative arithmetic surface.

In the polynomial ring $R[T_0, T_1]$ the indeterminates T_0 and T_1 lie in the center. Of course this is quite a strong restriction in a noncommutative setting, but fortunately it can be omitted by considering twisted polynomial rings. They are obtained as follows. Let σ be a graded automorphism of the polynomial ring $R[T_0, T_1]$. A new multiplication on the underlying graded R-module $R[T_0, T_1]$ is defined by

$$p \ast q = p \sigma (q),$$

10
where \(p \) and \(q \) are homogeneous polynomials and \(\deg(p) = d \). The graded ring thus obtained is called twisted polynomial ring and is denoted by \(R[T_0, T_1]^\sigma \). Zhang [26] proved that the categories \(\text{Gr} \, R[T_0, T_1] \) and \(\text{Gr} \, R[T_0, T_1]^\sigma \) are equivalent whence \(\text{Proj} \left(R[T_0, T_1] \right) \cong \text{Proj} \left(R[T_0, T_1]^\sigma \right) \). So, twisted polynomial rings in two indeterminates over a noncommutative ring \(R \) all define the same noncommutative arithmetic surface.

Example 4 (Plane projective curves). Let \(R \) be a ring and let \(p \in R[T_0, T_1, T_2] \) be a homogeneous normal polynomial of positive degree. Recall that an element of a ring is called normal if the principal ideal generated by this element is two-sided. This allows to form the factor ring \(A = R[T_0, T_1, T_2]/(p) \). If \(R \) is finitely generated as abelian group and \((p') = (p) \cap \mathbb{Z}[T_0, T_1, T_2] \) is a prime ideal of \(\mathbb{Z}[T_0, T_1, T_2] \), then \(\text{Proj} A \) is a noncommutative arithmetic curve.

In order to prove this, we set \(S = \mathbb{Z}[T_0, T_1, T_2]/(p') \). Then \(X = \text{Proj} S \) is an arithmetic surface. Moreover we have a natural homomorphism \(\phi : S \to A \) of noetherian \(\mathbb{N} \)-graded \(\mathbb{Z} \)-algebras, and \(A \) is finitely generated as \(S \)-module. Hence the sheaf \(\tilde{A} \) associated to \(A \) is a coherent sheaf of \(O_X \)-algebras, and according to Example 1, \(\text{coh}(\tilde{A}) \) is a noncommutative arithmetic surface. If \(B \) denotes the homogeneous coordinate ring of \(\text{coh}(\tilde{A}) \), the categories \(\text{qgr} \, B \) and \(\text{coh}(\tilde{A}) \) are equivalent. But the category \(\text{qgr} \, B \) is also equivalent to the category \(\text{qgr} \, A \), which shows that \(\text{Proj} A \) is a noncommutative arithmetic surface.

As in Example 3, we may consider twisted algebras to omit the restriction that the indeterminates lie in the center.

3.2 Arithmetic vector bundles

Next, we are concerned with arithmetic vector bundles on noncommutative arithmetic surfaces. Recall that a hermitian vector bundle on an arithmetic variety \(X \) is a pair \(E = (E, h) \) consisting of a locally free sheaf \(E \) on \(X \) and a smooth hermitian metric on the holomorphic vector bundle \(E_C \) induced by \(E \) on the associated complex algebraic variety \(X_C \).

Unfortunately we are not able to adapt this definition of a hermitian vector bundle to our noncommutative setting. The main problem is that we do not know what should be the differential structure on a noncommutative complex algebraic variety. This problem was also mentioned by other authors, for example Polishchuk [17] writes: “However, it is rather disappointing that at present there is almost no connection between noncommutative algebraic varieties over \(\mathbb{C} \) and noncommutative topological spaces, which according to Connes are described by \(C^* \)-algebras.”

The lack of smooth hermitian metrics on vector bundles on noncommutative algebraic varieties forces us to substitute the infinite part of a hermitian vector bundle on an arithmetic variety. We replace the hermitian metric by an automorphism of the induced real bundle. In this manner, we obtain objects \(\tilde{E} = (E, \beta) \) consisting of a locally free sheaf \(E \) on \(X \) and an automorphism \(\beta \) of the real vector bundle \(E_{\mathbb{R}} \) induced by \(E \) on the associated real algebraic variety \(X_{\mathbb{R}} \). Since the automorphism group of a finite dimensional real vector space \(V \) and the group of nondegenerate \(\mathbb{R} \)-bilinear forms \(V \times \mathbb{R} \rightarrow \mathbb{R} \)
V → ℝ are isomorphic, the pairs \tilde{E} and hermitian vector bundles are closely related. For example, if L is an invertible \mathbb{Z}-module then $L_\mathbb{R}$ is a one-dimensional real vector space. Therefore every automorphism α of $L_\mathbb{R}$ is given by multiplication by some nonzero $r \in \mathbb{R}$. Let x be a basis of L over \mathbb{Z} and let h_α denote the scalar product on $L_\mathbb{R}$ which is defined by the equation $h_\alpha(x, x) = r^2$. Note that h_α does not depend on the choice of the basis x of L because the only other basis of L is $-x$. This allows to associate in a well-defined manner the arithmetic line bundle $\tilde{L} = (L, h_\alpha)$ to the pair $\widetilde{\mathcal{L}} = (L, \alpha)$, and we may note the following

Remark 1. Let $\tilde{L} = (L, \alpha)$ and $\tilde{M} = (M, \beta)$ be two pairs consisting of an invertible \mathbb{Z}-module and an automorphism of the induced real vector space. The associated arithmetic line bundles $\tilde{L} = (L, h_\alpha)$ and $\tilde{M} = (M, h_\beta)$ are isomorphic if and only if $|\det \alpha| = |\det \beta|$. Moreover, $\widetilde{\deg} \tilde{L} = -\log |\det \alpha|$.

So at least for arithmetic curves, we obtain essentially the same theory whether the infinite part is given by a scalar product or by an automorphism. Let us now consider hermitian vector bundles on arithmetic surfaces. If X is an arithmetic surface, the associated complex variety $X_\mathbb{C}$ is a Riemann surface. It is possible to endow every line bundle L with a distinguished hermitian metric g. This metric is defined via the Green’s function for the Riemann surface $X_\mathbb{C}$ and is therefore called the Green’s metric. Already Arakelov [1] observed that the Green’s metric is admissible and that every other admissible metric h on L is a scalar multiple of the Green’s metric, i.e. there is some positive real number α such that $h = \alpha g$.

On the other hand for every line bundle L on the arithmetic surface X, we have

$$\text{Hom}_{X_\mathbb{R}}(L_\mathbb{R}, L_\mathbb{R}) \cong \text{Hom}_{X_\mathbb{R}}(\mathcal{O}_{X_\mathbb{R}}, \mathcal{O}_{X_\mathbb{R}}) \cong H^0(X_\mathbb{R}, \mathcal{O}_{X_\mathbb{R}}) \cong \mathbb{R}.$$

This shows that the set of admissible hermitian line bundles on X embeds into the set of pairs (L, α) consisting of a line bundle and an automorphism of the real line bundle $L_\mathbb{R}$.

All these considerations motivate

Definition 3. An *arithmetic vector bundle* on a noncommutative arithmetic surface $\text{Proj} A$ is a pair $\mathcal{E} = (\mathcal{E}, \beta)$ consisting of a noetherian object \mathcal{E} of $\text{QGr} A$ and an automorphism $\beta : \mathcal{E}_\mathbb{R} \to \mathcal{E}_\mathbb{R}$. If \mathcal{E} is an invertible object, then \mathcal{E} is called an *arithmetic line bundle* on $\text{Proj} A$.

4 Arithmetic intersection and Riemann-Roch theorem

To compute the intersection of two arithmetic line bundles on a noncommutative arithmetic surface, we follow Faltings original approach involving the determinant of the cohomology, see [9]. Recall that the determinant of the cohomology of a vector bundle E on an arithmetic surface X is defined to be the invertible \mathbb{Z}-module

$$\lambda(E) = \det H^0(X, E) \otimes_\mathbb{Z} (\det H^1(X, E))^{-1}.$$
If the finitely generated abelian group $H^i(X, E)$ has nontrivial torsion part with cardinality $n > 0$ then $\det H^i(E, X) = \frac{1}{n} \det H^i$, where H^i is the free part of $H^i(X, E)$. Given two line bundles L and M on X, one puts

$$\langle L, M \rangle = \lambda(L \otimes M) \otimes \lambda(\mathcal{O}_X).$$

This is again an invertible \mathbb{Z}-module and its norm equals the intersection number of L and M.

Now, let \mathcal{L} and \mathcal{M} be two hermitian line bundles on an arithmetic surface X and let $\mathcal{N} = (N, h)$ be a hermitian line bundle on a Riemann surface Y. Quillen [19] and Faltings [9] developed two different methods to endow the determinant of the cohomology $\lambda(N)$ with a hermitian metric which is naturally induced by the given metric h. The two metrics differ by a constant which only depends on the Riemann surface Y but is independent of the particular hermitian line bundle \mathcal{N}, cf. [24], Section 4.4. However, both approaches have been used to equip the complex vector space $\langle L, M \rangle$ with a suitable hermitian metric and thus obtaining a hermitian line bundle $\langle \mathcal{L}, \mathcal{M} \rangle$ on Spec \mathbb{Z} which, in view of (7), is a natural generalization of the intersection of L and M.

In this vein, we are now going to define arithmetic intersection on noncommutative arithmetic surfaces. Let $\text{Proj} A$ be a noncommutative arithmetic surface and fix some automorphism α of the dualizing object ω_R. Let $\mathcal{L} = (L, \beta)$ be an arithmetic line bundle and $\mathcal{E} = (E, \gamma)$ be an arithmetic vector bundle on $\text{Proj} A$. Recall that β induces homomorphisms

$$\beta_n^* : \text{Ext}^n_{\text{qgr} A_R}(\mathcal{L}_R, \mathcal{E}_R) \rightarrow \text{Ext}^n_{\text{qgr} A_R}(\mathcal{L}_R, \mathcal{E}_R), \quad n \geq 0.$$

Likewise γ induces homomorphisms

$$(\gamma_n) : \text{Ext}^n_{\text{qgr} A_R}(\mathcal{L}_R, \mathcal{E}_R) \rightarrow \text{Ext}^n_{\text{qgr} A_R}(\mathcal{L}_R, \mathcal{E}_R), \quad n \geq 0.$$

We set $\beta^* = \beta_0^*$ and $\gamma^* = (\gamma_*)_0$. To avoid ambiguities, we sometimes write $\text{Ext}^n_{\text{qgr} A_R}(\beta, \mathcal{E}_R)$ instead of β_n^* and similarly for (γ_n).

Inspired by the above considerations in the commutative case, we define two arithmetic line bundles on Spec \mathbb{Z}, namely

$$\det \text{Hom}(\mathcal{L}, \mathcal{E}) = (\det \text{Hom}_{\text{qgr} A}(\mathcal{L}, \mathcal{E}), \det ((\beta^{-1})^* \circ \gamma_*))$$

and

$$\det \text{Ext}(\mathcal{L}, \mathcal{E}) = (\det \text{Ext}^1_{\text{qgr} A}(\mathcal{L}, \mathcal{E}), \det ((\beta^{-1})_1^* \circ (\gamma_*)_1) \det(\alpha_*))^{-1},$$

where $\alpha_* = \text{Hom}_{\text{qgr} A_R}(t^{-1}_R(\mathcal{E}_R), \alpha)$ and t_R is an automorphism of $\text{QGr} A_R$ associated to the invertible object \mathcal{L}_R. By definition of a noncommutative arithmetic surface, all the Ext groups occurring above are finitely generated. Moreover the base change lemma, Lemma [2], ensures that this remains true after tensoring with \mathbb{R}, i.e. the Ext groups $\text{Ext}^n_{\text{qgr} A_R}(\mathcal{L}_R, \mathcal{E}_R)$ are finite dimensional real vector spaces, therefore the determinants are reasonable and everything makes sense.
The expression $\det((\alpha_*)^{-1})$ occurs for the following reason. If $\mathcal{A} = (\mathcal{A}, \text{id})$ is the trivial arithmetic bundle on $\text{Proj} \, A$, then

$$(\det \text{Ext}(\mathcal{A}, \mathcal{A}))^{-1} = \left((\det \text{Ext}_{\text{qgr}}^1(\mathcal{A}, \mathcal{A}))^{-1}, \det(\alpha_*) \right)$$

$$\cong \left(\det \text{Hom}_{\text{qgr}}(\mathcal{A}, \omega), \det(\alpha_*) \right)$$

$$= \det \text{Hom}(\mathcal{A}, \omega),$$

which is a natural condition that is imposed also in the definition of the Faltings metric, see [9]. In other words, the expression $\det(\alpha_*)$ is necessary in order that the natural isomorphism between Ext groups given by the dualizing sheaf induces an isomorphism of the corresponding arithmetic line bundles. For more details we refer to Theorem 3 below.

Definition 4. Let \mathcal{L} be an arithmetic line bundle and \mathcal{E} be an arithmetic vector bundle on a noncommutative arithmetic surface $\text{Proj} \, A$. We set

$$\lambda(\mathcal{L}, \mathcal{E}) = \det \text{Hom}(\mathcal{L}, \mathcal{E}) \otimes_{\mathbb{Z}} (\det \text{Ext}(\mathcal{L}, \mathcal{E}))^{-1}.$$

If $\mathcal{L} = \mathcal{A}$ is the trivial arithmetic bundle, then we write $\lambda(\mathcal{E})$ instead of $\lambda(\mathcal{A}, \mathcal{E})$ and call it the determinant of the cohomology of \mathcal{E}.

Recall that for every \mathcal{O}_X-module \mathcal{E} on a commutative scheme X and every $i \geq 0$, the Ext group $\text{Ext}_X^i(\mathcal{O}_X, \mathcal{E})$ and the cohomology group $H^i(X, \mathcal{E})$ are naturally isomorphic. Hence in view of [10], our definition of the determinant of the cohomology is a natural generalization of the definition in the commutative case.

In order to prove that the determinant of the cohomology is compatible with Serre duality, we need the following

Lemma 3. Let A be a finite dimensional simple algebra over a field k, and let M be a finitely generated A-bimodule. Given $a \in A$, let λ_a and ρ_a denote left and right multiplication by a on M, respectively. Then for every $a \in A$,

$$\det_k(\lambda_a) = \det_k(\rho_a).$$

Proof. Let K denote the center of the simple k-algebra A and A^\diamond its opposite ring. If A has dimension r over K, then it follows from [20], Theorem (7.13), that the enveloping algebra $A^e = A \otimes_K A^\diamond$ is isomorphic to the algebra $M_r(K)$ of $r \times r$-matrices over the field K. We may view every A-bimodule N as a left A^e-module, by means of the formula

$$(a \otimes b^\diamond)n = anb, \quad \text{for all} \ a \in A, b^\diamond \in A^\diamond, n \in N.$$

Since $A^e \cong M_r(K)$, every minimal left ideal V of A^e is isomorphic to the left A-module of r-component column vectors with entries in K, and hence has dimension r over K. Moreover, every finitely generated left A^e-module is isomorphic to a finite direct sum of copies of V. In particular, this applies to the left A^e-module A, whence $A \cong V$ for dimensional reasons. This implies that there is a natural number m such that $M \cong A^m$.

14
as A-bimodules. Hence for every $a \in A$, \(\det_k(\lambda_a) = m \det_k(f_a) \) and \(\det(\rho_a) = m \det_k(g_a) \), where \(f_a : A \to A \) is left multiplication and \(g_a : A \to A \) is right multiplication by \(a \). Finally, it follows from [20], Theorem (9.32), that \(\det_k(f_a) = N_{A/k}(a) = \det_k(g_a) \) which completes the proof. \(\square \)

For further use, we note the following straightforward observation:

Remark 2. Let \(k \) be a field, let \(F, G : C \to \text{mod-}k \) be two functors from any category \(C \) to the category of finite dimensional \(k \)-vector spaces, let \(\eta : F \to G \) be a natural transformation, and let \(A \) be an object of \(C \). If \(\eta_A \) is an isomorphism, then \(\det F(f_a) = \det G(g_a) \) for every endomorphism \(f : A \to A \).

Now we are ready to prove

Theorem 3. Let \(\overline{L} \) be an arithmetic line bundle on a noncommutative arithmetic surface \(\text{Proj} A \). Suppose that \(\text{Proj} A_R \) satisfies Serre duality. If \(\text{Hom}_{\text{QGr}}(A_R, -) \) is a simple ring, then the determinant of the cohomology is compatible with Serre duality, that is, \(\lambda_L = \lambda_{\overline{L}} \).

Proof. Recall

\[
\lambda_{(\overline{L}, \overline{w})} = \det \text{Hom}(\overline{L}, \overline{w}) \otimes (\det \text{Ext}(\overline{L}, \overline{w}))^{-1}
\]

and

\[
\lambda_{\overline{L}} = \det \text{Hom}(\overline{A}, \overline{L}) \otimes (\det \text{Ext}(\overline{A}, \overline{L}))^{-1}.
\]

If \(\overline{L} = (L, \beta) \) and \(\overline{w} = (\omega, \alpha) \) then

\[
det \text{Hom}(\overline{L}, \overline{w}) = (\det \text{Hom}_{\text{qgr}}(L, \omega), \det ((\beta^{-1})^* \det(\alpha_1))
\]

and

\[
(det \text{Ext}(\overline{A}, \overline{L}))^{-1} = \left((\det \text{Ext}_{\text{qgr}}^1(A, L))^1, \det(\beta_1)^{-1} \det(\alpha_1) \right),
\]

where \((\beta^{-1})^* = \text{Hom}_{\text{qgr}}(\beta^{-1}, \omega) \), \((\beta_1) = \text{Ext}_{\text{qgr}}^1(A, L) \) and \(\alpha_1 = \text{Hom}_{\text{qgr}}(\mu, \alpha) \).

By definition of the dualizing object, the functors \(\text{Ext}_{\text{qgr}}^1(A, L) \) and \(\text{Hom}_{\text{qgr}}(-, \omega) \) are isomorphic, so according to Remark 2

\[
det((\beta^{-1})^*) = det((\beta_1)^{-1}).
\]

Moreover,

\[
det((\beta^{-1})_1^{-1}) = det((\beta^{-1})_1) = det(\beta_1)^{-1}.
\]

Combining (8), (9), (10) and (11) yields

\[
det \text{Hom}(\overline{L}, \overline{w}) \cong (\det \text{Ext}(\overline{A}, \overline{L}))^{-1}.
\]

15
It remains to prove

\[(13) \det \text{Hom}(\mathcal{A}, \mathcal{L}) \cong (\det \text{Ext}(\mathcal{L}, \omega))^{-1}.\]

By definition,

\[(14) \det \text{Hom}(\mathcal{A}, \mathcal{L}) = (\det \text{Hom}_{\text{gr}}(\mathcal{A}, \mathcal{L}), \det(\beta_*))\]

and

\[(15) (\det \text{Ext}(\mathcal{L}, \omega))^{-1} = \left((\det \text{Ext}_{\text{gr}}^1(\mathcal{L}, \omega))^{-1}, \det(\beta_*^1) \circ (\alpha_*^1)^{-1} \det(\alpha_*) \right),\]

where \(\alpha_* = \text{Hom}_{\text{gr}}(t_{\mathbb{R}}^{-1}(\omega_{\mathbb{R}}), \alpha)\) and \(t_{\mathbb{R}}\) is an autoequivalence associated to the invertible object \(\mathcal{L}_{\mathbb{R}}\). Since \(\text{Proj} \mathcal{A}_{\mathbb{R}}\) satisfies Serre duality, the functors \(\text{Ext}_{\text{gr}}(\mathcal{L}_{\mathbb{R}}, \omega_{\mathbb{R}})\) and \(\text{Hom}_{\text{gr}}(\mathcal{A}_{\mathbb{R}}, -)^{\vee}\) are isomorphic, hence Remark [2] yields

\[(16) \det(\beta_*^1) = \det((\beta_*)^{\vee}).\]

But \(\det((\beta_*^1))^{-1} = \det(\beta_*^1)\) and \(\det((\beta_*)^{\vee}) = \det(\beta_*^{\vee})\), so we may combine (14), (15) and (16) to see that

\[\det \text{Hom}(\mathcal{A}, \mathcal{L}) \cong \left((\det \text{Ext}_{\text{gr}}^1(\mathcal{L}, \omega))^{-1}, \det((\beta_*^1))^{-1}\right).\]

Hence in order to prove (13), it suffices to show

\[(17) \det((\alpha_*^1))^{-1} \det(\alpha_*) = 1.\]

Since \(\mathcal{L}_{\mathbb{R}}\) is invertible, we have natural isomorphisms

\[\text{Ext}_{\text{gr}}^1(\mathcal{L}_{\mathbb{R}}, -) \cong \text{Ext}_{\text{gr}}^1(\mathcal{A}_{\mathbb{R}}, \mathcal{L}_{\mathbb{R}}), \cong \text{Ext}_{\text{gr}}^1(\mathcal{A}_{\mathbb{R}}, \mathcal{L}_{\mathbb{R}}).\]

In combination with the natural isomorphism

\[\text{Ext}_{\text{gr}}^1(\mathcal{A}_{\mathbb{R}}, t_{\mathbb{R}}^{-1}(-))^{\vee} \cong \text{Hom}_{\text{gr}}(t_{\mathbb{R}}^{-1}(\omega_{\mathbb{R}}), \omega_{\mathbb{R}}),\]

which is provided by definition of the dualizing object, we obtain a natural isomorphism

\[\text{Ext}_{\text{gr}}^1(\mathcal{L}_{\mathbb{R}}, -)^{\vee} \cong \text{Hom}_{\text{gr}}(t_{\mathbb{R}}^{-1}(\omega_{\mathbb{R}}), \omega_{\mathbb{R}}).\]

Applying Remark [2] leads to

\[(18) \det((\alpha_*^1)) = \det((\alpha_*)^{\vee}) = \det(t_{\mathbb{R}}^{-1}(\alpha)^*).\]

Let \(E\) denote the endomorphism ring \(\text{End}_{\text{gr}}(\mathcal{A}_{\mathbb{R}}, \omega_{\mathbb{R}})\) of the dualizing object \(\omega_{\mathbb{R}}\). There is an \(E\)-bimodule structure on the abelian group \(G = \text{Hom}_{\text{gr}}(t_{\mathbb{R}}^{-1}(\omega_{\mathbb{R}}), \omega_{\mathbb{R}})\) defined by

\[e \varphi f = e \circ \varphi \circ t_{\mathbb{R}}^{-1}(f), \quad \text{for all } e, f \in E, \varphi \in G.\]
In terms of this E-bimodule structure, applying the homomorphism $\alpha_* = \text{Hom}_{qgr} A_R (t_R^{-1}(\omega_R), \alpha)$ is simply left multiplication by α. Analogously, applying $t_R^{-1}(\alpha)^*$ is right multiplication by α. Therefore, if E is a finite dimensional simple R-algebra, then it follows from Lemma \[\text{[3]}\] that $\det(\alpha_*) = \det(t_R^{-1}(\alpha)^*)$, which together with (18) establishes (17). It thus remains to show that E is simple and finite dimensional over R.

Since Proj A_R satisfies Serre duality, there exist two natural isomorphisms
\[
\theta^i : \text{Ext}^i_{qgr} A_R (-, \omega_R) \to \text{Ext}^{1-i}_{qgr} A_R (\omega_R, -), \quad i = 0, 1.
\]

Therefore
(19) \[E = \text{Hom}_{qgr} A_R (\omega_R, \omega_R) \cong \text{Ext}^1_{qgr} A_R (\omega_R, \omega_R) \cong \text{Hom}_{qgr} A_R (\omega_R, A_R) . \]

By assumption, $B = \text{Hom}_{qgr} A_R (A_R, A_R)$ is a simple \mathbb{R}-algebra, whose dimension over \mathbb{R} is finite because Proj A_R is H-finite. The isomorphism in (19) is an isomorphism of real vector spaces, so it only implies that E has the same finite dimension as B, but it does not ensure that $E \cong B$ as rings.

To verify this last point, we first note that left multiplication λ_b on $\Gamma_R(\omega_R)$ induces the ring homomorphism
\[
\lambda : B \to E' = \text{End}_{Gr A_R} (\Gamma_R(\omega_R))^\circ, \quad b \mapsto \lambda_b .
\]

Since $E' \neq 0$, the two-sided ideal $\ker \lambda$ of the simple ring B is proper. This implies that λ is injective. On the other hand, according to Lemma \[\text{[1]}(ii)\], the representing functor $\Gamma_R : \text{QGr} A_R \to \text{Gr} A_R$ is fully faithful, thus the rings E and E' are isomorphic. But λ is also a homomorphism of real vector spaces, so it follows from (19) that λ is in fact an isomorphism, which shows that the rings E and B are isomorphic. Hence E is indeed a finite dimensional simple \mathbb{R}-algebra, and the theorem is established.

We proceed now with the definition of the intersection of arithmetic bundles on non-commutative arithmetic surfaces.

Definition 5. Let \mathcal{L} be an arithmetic line bundle and \mathcal{E} be an arithmetic vector bundle on a noncommutative arithmetic surface Proj A. We set
\[
\langle \mathcal{L}, \mathcal{E} \rangle = \lambda(\mathcal{L}, \mathcal{E}) \otimes_{\mathbb{Z}} \lambda(\mathcal{E}, \mathcal{A})^{-1} \otimes_{\mathbb{Z}} \lambda(\mathcal{A})^{-1} \otimes_{\mathbb{Z}} \lambda(\mathcal{A})
\]
and call it the intersection of \mathcal{L} with \mathcal{E}. Moreover,
\[
\langle \mathcal{L}, \mathcal{E} \rangle = -\deg (\langle \mathcal{L}, \mathcal{E} \rangle)
\]
is called the intersection number of \mathcal{L} with \mathcal{E}.

Note that $\langle \mathcal{L}, \mathcal{E} \rangle$ is an arithmetic line bundle on Spec \mathbb{Z} and $\langle \mathcal{L}, \mathcal{E} \rangle$ is the negative of its arithmetic (or Arakelov) degree. The minus sign occurs for the following reason. If \mathcal{L} and \mathcal{M} are two arithmetic line bundles on a commutative arithmetic surface X, then
\[
\lambda(\mathcal{L}, \mathcal{M}) \cong \lambda(\mathcal{O}_X, \mathcal{L}^{-1} \otimes \mathcal{M}) = \lambda(\mathcal{L}^{-1} \otimes \mathcal{M}) .
\]
Putting this into (20) yields
\[
\langle \mathcal{L}, \mathcal{M} \rangle \cong \lambda(\mathcal{L}^{-1} \otimes \mathcal{M}) \otimes \lambda(\mathcal{L}^{-1})^{-1} \otimes \lambda(\mathcal{M})^{-1} \otimes \lambda(\mathcal{O}_X).
\]

Comparing the right hand side with (7), we see that it computes the intersection of \mathcal{L}^{-1} and \mathcal{M}. Since $\deg(\langle \mathcal{L}^{-1}, \mathcal{M} \rangle) = -\deg(\langle \mathcal{L}, \mathcal{M} \rangle)$, this explains the minus sign in (21).

Finally, we are able to prove the following Riemann-Roch theorem:

Theorem 4. Let \mathcal{L} be an arithmetic line bundle on a noncommutative arithmetic surface $\text{Proj} \, A$, and suppose that $\text{Proj} \, A_\mathbb{R}$ satisfies Serre duality. If $\text{Hom}_{\text{QGr}}(A_\mathbb{R}, A_\mathbb{R})$ is a simple ring, then there is an isomorphism

\[
\lambda(\mathcal{L}) \otimes \lambda(\mathcal{A}) \cong \lambda(\mathcal{L}) \otimes \lambda(\mathcal{A})^{-1}.
\]

Proof. Once

\[(23) \quad \lambda(\mathcal{L}, \mathcal{A}) \cong \lambda(\mathcal{A})\]

is established, the theorem follows immediately. Indeed, if (23) holds then

\[(24) \quad \langle \mathcal{L}, \mathcal{L} \rangle = \lambda(\mathcal{L}, \mathcal{L}) \otimes \lambda(\mathcal{L}, \mathcal{A})^{-1} \otimes \lambda(\mathcal{L})^{-1} \otimes \lambda(\mathcal{A}) \cong \lambda(\mathcal{A}) \otimes \lambda(\mathcal{L}, \mathcal{A})^{-1} \otimes \lambda(\mathcal{L})^{-1} \otimes \lambda(\mathcal{A}).\]

On the other hand, according to Theorem 3, we have $\lambda(\mathcal{L}, \mathcal{A}) \cong \lambda(\mathcal{L})$ and $\lambda(\mathcal{L}) \cong \lambda(\mathcal{A})$, whence

\[(25) \quad (\mathcal{L}, \mathcal{L})^{-1} = \lambda(\mathcal{L}, \mathcal{A})^{-1} \otimes \lambda(\mathcal{L}, \mathcal{L}) \otimes \lambda(\mathcal{L}) \otimes \lambda(\mathcal{A})^{-1} \cong \lambda(\mathcal{L})^{-1} \otimes \lambda(\mathcal{L}, \mathcal{A}).\]

Combining (24) and (25) yields (22).

So let us prove (23). Since $\mathcal{L}_\mathbb{R}$ is invertible, there is an autoequivalence $t_\mathbb{R}$ of $\text{QGr} \, A_\mathbb{R}$ such that $t_\mathbb{R}(A_\mathbb{R}) \cong \mathcal{L}_\mathbb{R}$. But every equivalence is a fully faithful functor, therefore the rings $E = \text{End}_{\text{qgr}}(A_\mathbb{R})$ and $\text{End}_{\text{qgr}}(A_\mathbb{R})$ are isomorphic, which shows that E is a finite dimensional simple \mathbb{R}-algebra. If $\mathcal{L} = (\mathcal{L}, \beta)$ then, in terms of the ring structure of E, $\beta_* : E \to E$ is left and β^* is right multiplication by β. Hence it follows from Lemma 3 that $\det(\beta_*) = \det(\beta^*)$, whence $\det((\beta_*)^*) = 1$, which shows

\[(26) \quad \det \text{Hom}(\mathcal{L}, \mathcal{L}) \cong \det \text{Hom}(\mathcal{A}, \mathcal{A}).\]

The same argument also applies to the bundle $\text{Ext}(\mathcal{L}, \mathcal{L})$. More precisely, the abelian group $\text{Ext}_{\text{qgr}}(A_\mathbb{R})$ has a natural E-bimodule structure for which $((\beta_*)_1$ is left and β_1^* is right multiplication by β. And since E is a finite dimensional simple \mathbb{R}-algebra, it follows from Lemma 3 that $\det((\beta_*)_1) = \det((\beta_1^*)$, whence

\[(27) \quad \det ((\beta^{-1})_1^*) = 1.\]

On the other hand there is a natural isomorphism

$$\text{Hom}_{\text{qgr}}(A_\mathbb{R} \langle t_\mathbb{R}^{-1}(\mathcal{L}_\mathbb{R}) \rangle, -) \cong \text{Hom}_{\text{qgr}}(A_\mathbb{R}, -),$$
and applying Remark 2 to the automorphism $\alpha : \omega_R \to \omega_R$ yields

\[(28) \quad \det \Hom_{\text{qgr}} A_R \left(t^{-1}_R (L_R), \alpha \right) = \det \Hom_{\text{qgr}} A_R \left(A_R, \alpha \right).\]

Combining (27) and (28) shows

\[\det \Ext \left(\mathcal{L}, \mathcal{L} \right) \cong \det \Ext \left(\mathcal{A}, \mathcal{A} \right),\]

which together with (26) establishes (23) and thus completes the proof.

To get a Riemann-Roch formula, we still have to introduce the Euler characteristic of an arithmetic vector bundle on a noncommutative arithmetic surface. Let M be a finitely generated \mathbb{Z}-module and suppose that M has a volume. Recall the Euler characteristic

\[\chi(M) = -\log \vol(M_R/M) + \log |M_{tor}|.\]

Hence, if E is a hermitian vector bundle on $\text{Spec} \mathbb{Z}$, then $\chi(E) = \hat{\deg} E$. Now, in analogy with [12], page 112, we define the Euler characteristic of an arithmetic vector bundle \mathcal{E} on a noncommutative arithmetic surface $\text{Proj} A$ to be

\[\chi(\mathcal{E}) = \chi \left(\Hom(\mathcal{A}, \mathcal{E}) \right) - \chi \left(\Ext(\mathcal{A}, \mathcal{E}) \right) = \hat{\deg} \lambda(\mathcal{E}).\]

Using this notion, taking degrees in (22) yields the Riemann-Roch formula

\[\chi(\mathcal{L}) = \frac{1}{2} \left((\mathcal{L}, \mathcal{L}) - (\mathcal{L}, \omega) \right) + \chi(\mathcal{A}).\]

Note that this formula looks exactly like the Riemann-Roch formula for hermitian line bundles on commutative arithmetic surfaces, cf. [15], Theorem 6.13.

References

[1] S. J. Arakelov, Intersection theory of divisors on an arithmetic surface (Russian), Izv. Akad. Nauk. SSSR Ser. Mat. 38 (1974), 1179-1192, transl. Math. USSR Izv. 8(1974) (1976), 1167-1180.

[2] M. Artin, J. Tate, M. Van den Bergh, Modules over regular algebras of dimension 3, Invent. Math. 106 (1991), 335-389.

[3] M. Artin, J. J. Zhang, Noncommutative projective schemes, Adv. in Math. 109 (1994), 228-287.

[4] T. Borek, Arakelov theory of noncommutative arithmetic curves, submitted to the Journal of Number Theory.

[5] A. Connes, Noncommutative Geometry, Academic Press, 1994.
[6] C. Consani, M. Marcolli, Noncommutative geometry, dynamics, and ∞-adic Arakelov geometry, Selecta Math. (New Ser.) 10 No. 2 (2004), 167-251.

[7] C. Consani, M. Marcolli, New perspectives in Arakelov geometry, CRM Proc. Lecture Notes 36 (2004), Amer. Math. Soc., 81-102.

[8] C. Consani, M. Marcolli, Noncommutative geometry and number theory: where arithmetics meets geometry and physics, Aspects of Math. E 37, 2006.

[9] G. Faltings, Calculus on arithmetic surfaces, Ann. Math. 119 (1984), 387-424.

[10] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448.

[11] P. Jørgensen, Serre-Duality for Tails(A), Proc. Amer. Math. Soc. 125 No. 3 (1997), 709-716.

[12] S. Lang, Introduction to Arakelov Theory, Springer, 1988.

[13] Y. I. Manin, Topics in noncommutative geometry, M. B. Porter Lectures, Princeton University Press, 1991.

[14] M. Marcolli, Arithmetic noncommutative geometry, University Lecture Series 36, Amer. Math. Soc., 2005.

[15] L. Moret-Bailly, Métriques permises, Astérisque 127 (1985), 29-87.

[16] C. Nastasescu, F. Van Oystaeyen, Graded Ring Theory, North-Holland, 1982.

[17] A. Polishchuk, Noncommutative two-tori with real multiplication as noncommutative projective varieties, J. Geom. Phys. 50 No. 1-4 (2004), 162-187.

[18] N. Popescu, Abelian Categories with Applications to Rings and Modules, L.M.S. Monographs, Academic Press, 1973.

[19] D. Quillen, Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. Anal. Appl. 19 (1986), 31-34.

[20] I. Reiner, Maximal Orders, 2nd edition, Oxford University Press, 2003.

[21] A. L. Rosenberg, Noncommutative schemes, Comp. Math. 112 (1998), 93-125.

[22] I. Reiten, M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 No. 2 (2002), 295-366.

[23] J.-P. Serre, Faisceaux algébriques cohérents, Ann. of Math. 61 (1955), 197-278.

[24] C. Soulé, Géométrie d’Arakelov des surfaces arithmétiques, Astérisque 177-178 (1989), 327-343.
[25] A. Yekutieli, J. J. Zhang, Serre Duality for Noncommutative Projective Schemes, Proc. Amer. Math. Soc. 125 (1997), 697-707.

[26] J. J. Zhang, Twisted graded algebras and equivalences of graded categories, Proc. Lond. Math. Soc. III. Ser. 72 No. 2 (1996), 281-311.

Departement Mathematik
ETH Zürich
Rämistrasse 101
8092 Zürich
Switzerland
Phone: +41 44 632 4442
Fax: +41 44 632 1570
Email: borek@math.ethz.ch