Defining the resilience of the human salivary microbiota by a 520 days longitudinal study in confined environment: the Mars500 mission

Giovanni Bacci1, Alessio Mengoni1, Giovanni Emiliani2, Carolina Chiellini3, Edoardo Giovanni Cipriani1, Giovanna Bianconi4, Francesco Canganella4,5*, Renato Fani1*

1Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy
2Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
3Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
4Department of Biological, Agricultural and Forestry Sciences, Università della Tuscia, Via San Camillo de Lellis snC, I-01100 Viterbo, Italy
5Embassy of Italy, 98 Hannam-daero, Hannam-dong, Yongsan-gu, Seoul, South Korea

*Correspondence: renato.fani@unifi.it, canganella@unitus.it

Abstract

The human microbiota plays several roles in health and disease. However, it is often difficult to determine which part of the host-associated microbiota is in intimate relationships with the host versus the occasional presence. Mars500 mission was conducted simulating a flight to Mars for 520 days, were 6 crewmembers were kept in isolation and followed standardized diet regimes, constituting a unique experiment to determine, in a longitudinal study design, the composition and importance of the resident stable microbiota vs. a more variable microbiota (changing with time and environmental conditions) in humans. Here we report the characterization of the salivary microbiota from 88 samples taken during and after the mission for a total of 720 days. Amplicon sequencing of the V3-V4 region of 16S rRNA gene was performed and results were analyzed monitoring the diversity of the microbiota and evaluating the effect of the three main variables present in the experimental system, the time, the diet and individuality of each subject. Results though showing statistically significant effects of all three variables, highlighted a main
contribution of salivary microbiota personalized features, that is an individual-based resilience of the microbiota. Such findings open the way to consider salivary microbiota under the light of a personalized microbiome feature.

Introduction

The host-associated microbiota is stirring the attention from many fields of life science, including basic biology, evolutionary studies, biomedicine, and biotechnology. It is now well known that it plays several roles in modulating the host health and that changes in the composition of the microbiome in specific human body districts or organs (e.g. skin, gut, vagina, lung) may influence the correct functionality of other organs.\(^1\) The concept of holobiont reflects the intimate relationships between the host and the microbiota\(^2,3\) but it is often difficult to determine which part of the host-associated microbiota is in intimate relationships with the host versus an occasional presence. Cross-sectional studies have been used to decipher the more stable, core, microbiome, present in all individuals analyzed, in comparison with the fraction which is more variable, i.e. present in few individuals only (see for instance\(^4\)) and longitudinal analyses helped to understand the temporal stability of the microbiome.\(^5\)

The human microbiome is not a single entity but it may have different characteristics and roles. The gut microbiota is expected to be more stable over time than other cavities that are more exposed to the environment—the oral cavity represents one of the first entry point of our body and is thus massively influenced by environmental conditions. The salivary microbiota is known to be affected by both biotic and abiotic factors,\(^6,7\) including age, saliva chemical composition, tongue, and teeth.\(^8\) Consequently, it is still under debate how much of the oral microbiota is stable over time and if this stability can be considered as a tight association with the host.\(^7,9,10\)
Given its sensibility to external perturbations, the salivary microbiota could be a good model to inspect the temporal dynamics and subject-by-subject variations impacting the human microbiota, but this sensibility could be a double-edged sword. Even if the disclosure of salivary microbiota temporal stability, and/or subject individuality, could indeed impact on scientific fields spanning from personalized medicine to forensic microbiology, controlling environmental exposures of salivary microbiome is difficult especially during our every day life. Standardize these perturbations implies isolation procedures that are difficult to put in place.

Mars500 was the first long-term international study into interplanetary space flights. Managed by the European Space Agency and the Russian Space Agency, it was conducted in 2010-2011 when six male volunteers were kept for 520 days in a common confined environment established by the Institute of Biomedical Problems (IBMP) in Moscow, simulating a space flight to Mars. Data from Mars500 experiment were studied from various point of view, including behavior, effect of cultural background, cognitive performances, circadian rithms, hormone levels, and surface and gut microbiota. Mars500 hence constitutes a unique experiment to determine, in a longitudinal study design, the composition and importance of the resident microbiota vs. a more variable microbiota (changing with time and environmental conditions) in humans. Aim of the work was indeed to inspect the temporal dynamics of salivary microbiota, assessing the effect of diet regimes and individuality, using Mars500 as a unique long-term experiment where subjects were all confined in the same shared environment.
Results

Sample collection

Salivary samples were collected by crewmembers during and after the permanence in the isolation facility (Table 1): 42 samples were collected during the first simulated journey from Earth to Mars (seven time-points), 30 samples were collected during the simulated trip back home from Mars to Earth (five time-points), and other 16 samples were collected when crewmembers came back to their normal activities and were followed for additional 200 days (three time-points). Unfortunately, two samples collected in the latter stage gave no good quality DNA and were thus discharged. Crewmembers did not collect salivary samples during the simulated landing on Mars where three of them—which simulated the landing on a separate module—used a different food variant. For this reason the second food variant used was not reported in the work passing from the first food variant (FV) directly to the third food variant (TV). All phases of the mission were reported in Table S1 whereas the full sampling scheme was reported in Figure S1.

Salivary microbiota composition during the study

To inspect how the salivary microbiota reacts in a confined environment, we characterized samples collected during the entire duration of the Mars500 mission (720 days in total) by 16S rRNA gene amplicon sequencing of the variable region V3-V4 (for additional information about the Mars500 mission see Supplementary materials). Amplified sequences formed 1890 amplicon sequence variants (ASVs) with a median number of 172.00 ASVs per sample (ranging from 81 to 317). A total of 4,337,540 sequences specifically aligned to an ASV resulting in a sequencing depth ranging from 20,084 to 116,809 and a median value of 47,044 (for additional information about sequence analysis pipeline and the number of sequence obtained in each pre-processing...
step see Supplementary material, Supplementary Table S2, and Supplementary Figure S2). We estimated accuracy and correlation between technical replicates as described in Supplementary material section. All replicates reported an accuracy higher than 0.96 with a Spearman’s rank correlation (\(\rho \)) that ranged between 0.94 and 0.98 (Supplementary Table S3 and Supplementary Figure S3). Rarefaction curves reached a plateau above 15k reads suggesting an adequate sequencing depth for all samples (Supplementary Figure S4). After accuracy evaluation, one technical replicate for each sample was selected based on the number of reads assigned to ASVs and included in downstream analyses (Supplementary Table S4). Good’s coverage estimator ranged between 99.99% and 100.00% across all samples indicating that roughly 0.01% of the reads in a sample came from ASVs that appear only once in that sample (Supplementary Table S5).

Roughly, 99% of sequences aligned to variants that came from known bacterial taxa (Table S2). Supplementary Table S6 shows the overall taxonomic composition of samples whereas Figure S5 reports the phylogenetic tree reconstructed from ASVs. At phylum level Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Unknown accounted for more than 94% of the total number of reads assigned to taxonomically annotated ASVs (Figure 1a and Supplementary Table S6). The total bacterial diversity (namely the alpha diversity) remained constant during the mission with no significant differences detected between the isolation period and the follow-up, across different diets, and across subjects (Table S7 and Figure 1 panels b, c, and d). Also time did not impact bacterial diversity as showed by the random mixed model fitted using crewmembers as random intercept which reported a slope value lower than 0.002 (Figure 1e and Supplementary Table S8).
Effect of food and time on salivary microbiota

We inspected differences across samples (namely beta diversity) using non-metric multidimensional scaling (nMDS) on quantitative and qualitative indexes. Samples showed a similar distribution with both index types: Sorensen index and unweighted unifrac distance for qualitative analysis and Bray-Curtis index and weighted unifrac distance for quantitative analysis (Figure 2a). As opposed to alpha diversity, subjects, diets, and time significantly contributed to shape the salivary microbiome with different percentage of variant explained depending on the index but never exceeding 10% of the total variance (Figure 2b). For all diversity indexes (except for the Sorensen index which reported significant effect of subjects) all tested factors reported an homogeneous distribution of dispersion meaning that only the composition of samples varied among groups as highlighted by the permutational analysis of variance reported above.

To better explore the effect of time on bacterial diversity we used change-point analysis on both within-subject and between-subjects diversity. Within-subject diversity measured changes in the salivary microbiota of each crewmember through time, whereas between-subjects diversity compared the salivary microbiota of different crewmembers at each time point (Figure 3a and b). Three segments significantly divided within-subject diversity with two change-points at 123 days and 480 days. Between-subjects diversity was not segmented since the overall model gave better results than the segmented one according to the genetic algorithm used during optimization (Figure 3b). The overall between-subjects model had an effect size of -0.00004 which means that after 520 days of experiment the overall diversity decreased by 0.02179. The effect of time on within-subject diversity was indeed higher than the one observed for between-subjects diversity. During the first 123 days the effect modeled was 0.00103 reflecting an average increase of 0.12636 for all crewmembers. After the first change-point, within-subject diversity started to
decrease with a regression parameter of -0.00064 (average decrease during the second segment of -0.22835). After the second change point, which roughly matched the end of the isolation period (Figure 3c and d), the within-samples diversity started to increase again. At the end of the follow-up period diversity increased again of 0.29474 exceeding the average value detected in the first day of isolation.

Resilience of salivary microbiota

The average abundance of ASVs during the experiment correlates with their persistence—the number of subject in which a given ASV was detected at each time point. Figure 4a shows the increasing trend of log-transformed abundance with an R-squared value of 0.72 ($= 10.09$, 95% CI [9.81, 10.38]). Time-resolved clustering produced two groups of ASVs: one—called inconsistent microbiome (Cluster 1)—included variants detected in a small number of subject at each time point, whereas the other (Cluster 2)—called stable microbiome—included variants detected in the vast majority of subjects during the whole mission (Figure 4a and Figure S7, panel a and b). The inconsistent microbiome showed low average persistence in respect with the stable microbiome but it contained the largest amount of variants (1746 ASVs against 144 of stable microbiome). Unlike stable ASVs, subjects lost and acquired inconsistent ASVs both during and after the isolation period (Figure S7 panel b and c). Stable ASVs were detected in roughly 30% of all subjects at each time point (26 samples on 88) with sporadic losses and acquisitions (Figure 4a and Figure S8).

We represented the acquisition and loss of bacterial species during the whole mission using networks. At each time point we linked subjects to ASVs detected in their salivary microbiome forming a bipartite network structure which reflected the underlying bacterial community structure. The loss and acquisition of bacterial ASVs was shown in supplementary video S1.
where green squares represent subjects, red circles represent inconsistent microbiome, and light blue circles represent stable microbiome. As shown in the video, the topology of the networks did not change in time, but at each time point subjects acquire/release bacterial species from/into the environment, except for stable ASVs which are shared by most crewmembers and thus (almost) always present in central part of the network. The number of new edges formed and destroyed passing from one time point to another slightly decreased in time (mixed effect model 95% CI for formed edges [-0.08, -0.02] and destroyed edges [-0.08, -0.01] Table S9). The end of the isolation period significantly increased the average number of formed edges (namely acquired ASVs) of 28 but the trend was still negative (Figure 4b). The number of formed edges was independent from the number of lost edges (Spearman’s $\rho = -0.04$; p-value = 0.750). The salivary microbiome structure did not change both during and after the isolation period reporting a similar network topology even if we exclude lost ASVs (Figure 4c).

Discussion

Mars500 experiment evaluated the temporal dynamics of the human salivary microbiota in a controlled and confined environment. All samples from the 6 (male) crewmembers included Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Unknown as main phyla and conserved their taxonomic composition along time and among individuals, as previously reported by other studies (see for instance7,9,10,19). Despite this conservation, external factors significantly influenced the salivary microbiome composition but their influence was restricted to a low percentage of the community (less than 10% of total variance explained). We found that a great number of species intermittently passed through the salivary microbiome but they neither affected the overall microbiome structure nor its taxonomic composition. Despite their number, transient species struggle to thrive in human saliva reporting a low abundance during
the whole experiment. On the other hand, a hundred bacterial taxa dominated the salivary microbiome composition of all crewmembers rarely changing host and abundance even when isolation period ended. The isolation time affected bacterial diversity of single individuals but it did not alter the microbiome of the whole crew. The bacterial diversity of crewmembers decreased—if compared within consecutive time points of the same individual—but the effect ended immediately after the isolation period when it started to increase again. External perturbations, impossible to control outside the isolation facility, modulated the salivary microbiome composition when crew members got out the isolation facility and started eating different types of food, getting in touch with other people, or simply visiting different places.

This finding suggests that sharing the same confined environment—and possibly following the same diet regime with few variation—imbalanced the ecology of the salivary microbiota while reducing its complexity. Unfortunately, we do not know if this effect could—positively or negatively—affect the health of the hosts but, according to the holobiont theory of evolution, a loss of strains in the microbiome correspond to a loss of putative members that could be selected if environmental conditions changes.3,4,20 Extending this concept we could affirm that a depauperate microbiome is less reactive to sudden changes in external conditions weaken host defenses. However, between-subjects differences remained unaltered suggesting that individuals follow somewhat independent dynamics of their salivary microbiota (i.e. personalized dynamic).

The same evidence indicates that crew members, though sharing the same environment, did not exchange their salivary microbiota, leading to hypothesize that quite stable personal salivary microbiota features are present in humans and confirming the between-subject effect. The fecal microbiota of the same crew members showed an increasing trend of similarity among subjects, especially in relation to a sharing of rare taxa,17 indicating that salivary microbiota has a more
pronounced personalization than fecal microbiota. Indeed, from our data there are no evidences of an ecological successions, as those shown in the fecal microbiota of the same crewmembers.

Even if factors such as diet and time influenced the salivary microbiome composition of crewmembers, most details of the Mars500 missions are unknown. The mission was a military experiment and several outcomes are still sealed. The composition of diets for example is unknown and thus any speculation on the effect of particular food intake would not be grounded. Since participants to the study must remain isolated from the outer world, they collected samples inside the isolation facility affecting the reproducibility of the experiment and influencing the microbiota variation due to different subjects. Despite these limitations the use of a high-resolution technique, such as 16S rRNA gene sequencing, allowed us to detect key features of human salivary microbiome under a condition that is almost impossible to replicate. The complete isolation of the participants of the mission made possible the first observation of salivary microbiome composition minimizing the effect of external perturbations.

In conclusion, the reported longitudinal analysis of human salivary microbiota confirmed the stability of the microbiota over time and suggested the presence of resilient personalized taxonomic features, which may deserve further attention in the future. This study allowed clearly to determine the contribution of a stable and confined environment, as that of Mars500 experiment, in reducing the microbiota diversity and to show the effect of a controlled diet on salivary microbiota.
Methods

The Mars500 experiment

Mars500 experiment was conducted in 2010-2011 by Russia’s Institute of Biomedical Problems (IBMP), with extensive participation by the European Space Agency (ESA) as part of the European Programme for Life and Physical Sciences (ELIPS) to prepare for future human missions to the Moon and Mars. The whole project consisted of three isolation studies: a 14-day pilot study to test facilities and procedures used during the simulation, a 105-day pilot study involving six crewmembers, and a 520-day study that simulated a complete space flight to Mars and back. Mars500 crew was composed of six male volunteers. All crewmembers were confined in the same living space from the 3rd of June 2010 till the 4 of November 2011 when they finally stepped out of the isolation facility to come back to their normal activities. During the mission the crew was hermetically isolated from the rest of the IBMP facility. Crewmember received three type of diets, a so called “first variant” (FV), “third variant” (TV) and, after the experiment, returned to a normal (non supervised) diet regime (NR). Detailed information on the experiment are reported in Supplemental Information file. Further details are also reported in the companion Mars500 microbiology paper.

Collecting salivary samples

Saliva samples were collected individually, based on the scientific protocol and pre-confinement training, with 5ml sterile vials (Nalgene V5257-250EA). Upon completion of the saliva sampling all samples from one sampling event were put into the hatch. After that, they were removed by the responsible person of the IBMP and stored at -80°C. After being stored at -80°C in the laboratories of the IBMP for periods of at least 4 days up to 6 months, the samples were sent via World Courier. Shipping from Moscow to the University of Tuscia, Viterbo – Italy. The shipment
was performed in three batches on dry ice to avoid repeated freeze-thaw cycles which lead to reduction of microbial viability. Upon arrival, samples were kept at -80°C until processing.

Sequencing of salivary samples

DNA was extracted from salivary samples stored at -80°C using a conventional bead-beating protocol (DNeasy PowerSoil Kit, Mobio). After fluorimetry quantification (Qubit), 20 ng of environmental DNA were used as template for amplification of 16S rRNA gene using V3-V4 primers (341F and 785R) as previously reported. Libraries were constructed and sequenced on a MiSeq apparatus (Illumina) by BMR Genomics (Padua, Italy). Sequences are deposited at ENA database under the accession ERP119217.

Amplicon sequence variant reconstruction

The DADA2 pipeline (version 1.14.1) was used to reconstruct amplicon sequence variants (ASVs) from illumina reads. Both ASV reconstruction and statistical analyses were performed in the R environment version 3.4.3 (http://www.R-project.org). For a complete description of all the step performed see Supplementary material section. Briefly, primers used for V3-V4 amplification were detected and removed using cutadapt version 1.15. Low quality reads were discarded using the filterAndTrim function with an expected error threshold of two for both forward and reverse read pairs. Denoising was performed using the dada function after error rate modelling (learnErrors function). Denoised reads were then merged discarding those with any mismatches and/or an overlap length shorter than 20bp (‘mergePairs’ function). Chimeric sequences were removed using the removeBimeraDenovo function. Taxonomical classification was performed using DECIPHER package version 2.14.0 against the latest version of the pre-formatted Silva small-subunit reference database (SSU version 132 available at: http://www2.decipher.codes/Downloads.html). All sequences classified as chloroplasts,
mitochondria, Archaea and Eukarya were removed. A summary of retained reads in each step is reported in Table S1 and in Figure S1.

Diversity estimation

Bacterial diversity in each sample was computed using inverse Simpson index as implemented in the `diversity` function of vegan package. Differences according to crewmembers, permanence in the isolation facility, and food variants were inspected using one-way analysis of variance (ANOVA). The effect of time was modeled using linear mixed models with fixed slope and random intercept. Since alpha diversity was measured multiple times on the same statistical units, crewmembers were used as random intercept factor.

Diversity across samples was inspected using different approaches. Qualitative and quantitative indexes were used to infer pairwise distances between samples. Qualitative indexes are binary indexes which take into account presence/absence of species to compute distances between samples whereas quantitative indexes are mainly based on the abundance of species. Sørensen index and un-weighted UniFrac distance were used as qualitative indexes whereas Bray-Curtis dissimilarity and weighted UniFrac distance were used as quantitative indexes. UniFrac distances were computed using the `distance` function of the `phyloseq` R package version 1.30.0 whereas Sørensen and Bray-Curtis dissimilarity indexes were computed using the `vegdist` function of the R package vegan version 2.5-6. Differences between salivary microbiome composition of the same crewmember at consecutive time-points (within-subject diversity) were computed using the `TBI` function of the `adespatial` R package version 0.3-8. Packages vegan and adespatial use the same definition of Sørensen distance, defined as:

\[
\frac{(+) - 2}{(+) + (-)}
\]
where A and B are the numbers of ASVs on compared samples, and \(J \) is the number of the ASVs shared by both samples. Qualitative indexes rely on the assumption that all taxa are equally contributing to bacterial diversity independently from their abundance. For this reason, even extremely rare taxa may be relevant in shaping sample distribution. To relax this assumption ASVs detected in less than 5% of samples (4 samples overall) with an abundance lower than 10 were filtered out before diversity calculation.

Distances across samples were reported using non-metric multidimensional scaling (nMDS) as implemented in the `metaMDS` function of the vegan package, with 300 random starts and monotone regression.\(^{35,36}\) To test the effect of food variants, crewmembers, and time in shaping the salivary microbiome we used permutational multivariate analysis of variance on distance matrices obtained above (`adonis2` function of the vegan package with 1,000 permutations). The proportion of sum of squares from the total (namely the \(R^2 \) value of permutational analysis) was used to report the percentage of variance explained by each factor included in the analysis. Before testing for differences in bacterial composition among groups is advisable to make sure that groups are homogeneously dispersed, otherwise permutational tests (such as `adonis`) may report significant results entirely due to uneven dispersion. To distinguish between actual differences in composition or differences due to dispersion we used the `betadisper` and `anova` functions (vegan package). P-values obtained were corrected using Benjamini & Hochberg correction (also known as false discovery rate).\(^{37}\) To avoid possible biases induced by uneven sequencing depths, read counts were scaled using DESeq2 before diversity calculation (counts function)\(^{38}\). Scaled counts were additionally transformed using the square root of the Wisconsin double standardized counts (wisconsin function of the vegan package).
Influence of time on bacterial diversity

Salivary microbiome may be affected by several factors. Sharing the same environment for a prolonged period of time may alter the composition of salivary microbiome at different levels. The bacterial composition may be altered within the same individual taken at consecutive time points but even between multiple individuals at each time point. To inspect both of these components, bacterial diversity within and between subjects, calculated as reported above, was modeled through time. Change-point analysis was used to identify specific time points which led to a decrease/increase of diversity. The optimal positioning and number of change-points for each crewmember was identified using a non-parametric cost function as implemented in the \texttt{cpt.np} function of the \texttt{changepoint.np} R package, version 1.0.1.39 The pruned exact linear time algorithm (PELT)40 was used to detect temporal changes in diversity within the same subject and between different subjects. The PELT algorithm searches for an optimal solution by minimizing the cost of different segmentation. We used the modified Bayes information criterion penalty term (MBIC)41 as penalty function for cost minimization by the algorithm. Since PELT algorithm is exact, a solution is always found for each time series so, to avoid inflation of change-points due to the presence of data coming from six different subjects, a genetic algorithm was used to fine-tune the analysis. All change-points detected were used as starting point of the genetic algorithm and a fitness function was defined as:

\[
\frac{1}{\sum_{i=1}^{g} ()}
\]

where, () stands form the root mean square error the generalized linear model constructed on the segment and is the number of segments defined by change-point analysis. High error corresponds to a low fitness value whereas low error corresponds to a high fitness value. At each
step of iteration, the genetic algorithm will keep segmentation that lead to linear models with a low RMSE and discard those leading to high error models. We implemented this algorithm using the R package GA42 verison 3.2 with a population size of 200. Generalized linear model were fitted using crewmembers as random intercept and p-value were computed with the Satterthwaite’s degrees of freedom method as implemented in the package lmerTest43,44 version 3.1-1.

We assessed the persistence of the salivary microbiome across subjects using dynamic time warping algorithm implemented in the dtwclust R package (version 5.5.6)45. At each time point the number of subjects in which a given ASV was detected (namely the ASV’s persistence) was reported together with its abundance. Persistence matrix was scaled and centered before clustering. Centering was performed by subtracting the mean of each ASV from their persistence whereas scaling was performed by dividing each value by its standard deviation. The relation between persistence and abundance was tested by fitting a linear model (‘lm’ function of R stat package). All details about clustering and modelling were reported in Supplementary methods. Persistence across subjects was also used for network construction: at each time point we constructed a bipartite network by linking subjects with ASVs that were present in their salivary microbiota. Subjects were represented using squared nodes whereas ASVs were represented using round circles colored according to the groups defined above. Doing so, we generated twelve bipartite, acyclic, and undirected networks representing the salivary microbiota of all subjects at different time points. The network R package (version 1.16.0) was used for network reconstruction whereas the package ggnetwork (version 0.5.8) was used for plotting.46,47 The effect of time and the end of the isolation period on the number of formed/destroyed edges were tested using mixed effect models with random intercept. Subjects were taken as random
intercept whereas the time and the end of the isolation period as fixed effects. P-values were computed as discussed above.

Tables

Table 1: Number of salivary samples collected during the study.

Subject	Earth to Mars (First diet)	Mars to Earth (Third diet)	Follow-up (No diet)	Total
5001	7	5	3	15
5002	7	5	3	15
5003	7	5	3	15
5004	7	5	3	15
5005	7	5	2	14
5006	7	5	2	14
Total	42	30	16	88

The number of samples collected during each step of the study was reported for each crewmember. Marginal totals were added for subjects and simulated journeys together with the grand total that was reported in the bottom right corner of the table.

Table 2: Temporal changes of salivary microbiome.

Days	SE	t-value	df	p-value
Within-subject				
1 - 123	0.00103	3.86	12.00	.0023
124 - 480	-0.00064	-5.19	36.00	< .0001
481 - 720	0.00123	6.16	14.23	< .0001
Between-subjects				
1 - 720	-0.00004	-3.89	424.19	.0001

Within-sample diversity was divided into three segments following change-point analysis whereas between-samples diversity was modeled on the full time period since no change-points were detected. Results of mixed effect models fitted for each segment were reported in the table., regression parameter (slope of the model); SE, standard error; , t-value (also known as “standardized” regression parameter); , degrees of freedom; , p-value.
Figure 1: Salivary microbiota diversity along Mars500 mission and follow-up. a) Distribution of the main bacterial classes. Panels were divided according to crewmembers (vertically) and diets (horizontally). ASVs with a relative cumulative frequency lower than 5% in all samples were collapsed into a single group called “Other”. b) Differences in alpha diversity—reported using the inverse Simpson index just like panels c, d, and e—between samples collected during and after the isolation period. c) Differences across diets (FV, first variant; TV, third variant; NR, normal diet). d) Differences among subjects. e) Differences along the whole mission and during the follow-up. Points are the average diversity values among subjects whereas errorbars represent the 95% confidence interval around the mean. The red line represents the population effect of the linear mixed model whose coefficients are reported in Table S8.
Figure 2: Microbial assemblage variation according to diet, crewmembers, and time. a) Non-metric multidimensional scaling based on different beta-diversity indexes (reported on the top of each panel). Samples were colored according to crewmembers whereas the point shape represents the type of diet (FV, first variant; TV, third variant; NR, normal diet). The dispersion of groups was tested for homogeneity and results were reported on the top of each ordination (a p-value higher than 0.05 means that dispersions are homogeneous). b) Permutational multivariate analysis of variance using distance matrices based on the same indexes reported in panel a. The R^2 values associated with each factor used in the analysis is reported in the horizontal axis whereas asterisks report the significance level of each factor (*, p-value < 0.05; **, p-value < 0.01). Colors represent the different factors modeled in the analysis. For additional information about diets, sampling point and crewmembers see Supplementary information and Supplementary Figure S1.
Figure 3: Crewmembers' salivary microbiome composition in time. a) Sorensen index has been used to inspect distances between and within-subject during isolation and follow-up. Between-subjects diversity was computed by comparing the salivary microbiome of each subject at each timepoint (gray arrows); within-subject diversity was computed by comparing the salivary microbiome of the same subject over time (black arrows). b) Change-point analysis revealed changes in salivary microbiome composition of each subject (CP detection). Genetic algorithm and linear modelling detected increasing/decreasing patterns along time (GA optimization). Finally, we fit a linear mixed-model for each segment detected using crewmembers as random intercept (Modelling). c and d) Results obtained following the pipeline reported in “b” for within- and between-samples differences. Diets were reported in the bottom part of the plots using different colors (FV, fist food variant; SV, second food variant; TV, third food variant). Since crewmembers ate freely during the follow-up no diet was reported in the plot.
Figure 4: Bacterial community structure in time. a) Persistence and abundance of ASVs detected. Persistence was expressed as the number of subject in which an ASV was detected whereas abundance was expressed as log-normalized number of reads assigned to that ASV (the black line represent results of the linear fitting: 95% CI [9.81, 10.38], t(1926) = 70.27, p < 0.001). Cluster 1 (reported in red) was composed of ASVs with a lower persistence and abundance than Cluster 2 (reported in blue). b) Number of edges formed (green) and destroyed (red) at each time point. Lines represent the result of two linear mixed models with subject as random intercept (Table S9). The dashed line represents the effect at the end of the isolation—it was reported only for formed edges since the number of destroyed edges was not significantly impacted by the isolation. c) Community networks at each time point. Days are reported at the top of each network whereas nodes with no edges (namely ASVs not detected at a given time point) were not reported to save space for graphical representation.
Acknowledgements

The MARS500 Programme was financed by the European Programme for Life and Physical Sciences in Space (ELIPS). The financial support of the Italian Space Agency (contract I/011/11/0) is highly remarked and acknowledged. This work was partially supported by BMR Genomics for sequencing of salivary microbiota.

References

1. Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Medicine 8, 51 (2016).
2. Bordenstein, K. R., Seth R. AND Theis. Host biology in light of the microbiome: Ten principles of holobionts and hologenomes. PLOS Biology 13, 1–23 (2015).
3. Rosenberg, E. & Zilber-Rosenberg, I. Microbes drive evolution of animals and plants: The hologenome concept. mBio 7, (2016).
4. Theis, K. R. et al. Getting the hologenome concept right: An eco-evolutionary framework for hosts and their microbiomes. mSystems 1, (2016).
5. Clarke, S. F. et al. Targeting the microbiota to address diet-induced obesity: A time dependent challenge. PloS one 8, e65790–e65790 (2013).
6. Shaw, L. et al. The human salivary microbiome is shaped by shared environment rather than genetics: Evidence from a large family of closely related individuals. MBio 8, e01237-17 (2017).
7. Nasidze, I., Li, J., Quinque, D., Tang, K. & Stoneking, M. Global diversity in the human salivary microbiome. Genome research 19, 636–643 (2009).
8. Xu, X. et al. Oral cavity contains distinct niches with dynamic microbial communities. Environmental microbiology 17, 699–710 (2015).
9. Cameron, S. J. S., Huws, S. A., Hegarty, M. J., Smith, D. P. M. & Mur, L. A. J. The human salivary microbiome exhibits temporal stability in bacterial diversity. FEMS Microbiology Ecology 91, (2015).
10. Mukherjee, C., Beall, C. J., Griffen, A. L. & Leys, E. High-resolution isr amplicon sequencing reveals personalized oral microbiome. Microbiome 6, 153 (2018).
11. Tafforin, C. The mars-500 crew in daily life activities: An ethological study. Acta Astronautica 91, 69–76 (2013).
12. Tafforin, C. Time effects, cultural influences, and individual differences in crew behavior during the mars-500 experiment. Aviation, space, and environmental medicine 84, 1082–1086 (2013).
13. Schneider, S. et al. The influence of exercise on prefrontal cortex activity and cognitive performance during a simulated space flight to mars (mars500). *Behavioural brain research* **236**, 1–7 (2013).

14. Vigo, D. E. et al. Circadian rhythm of autonomic cardiovascular control during mars500 simulated mission to mars. *Aviation, space, and environmental medicine* **84**, 1023–1028 (2013).

15. Wang, Y. et al. During the long way to mars: Effects of 520 days of confinement (mars500) on the assessment of affective stimuli and stage alteration in mood and plasma hormone levels. *PloS one* **9**, e87087 (2014).

16. Schwendner, P. et al. Preparing for the crewed mars journey: Microbiota dynamics in the confined mars500 habitat during simulated mars flight and landing. *Microbiome* **5**, 129 (2017).

17. Turroni, S. et al. Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, mars500. *Microbiome* **5**, 39 (2017).

18. Belstrøm, P. A. B., Daniel AND Holmstrup. Temporal stability of the salivary microbiota in oral health. *PLOS ONE* **11**, 1–9 (2016).

19. Hall, M. W. et al. Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity. *npj Biofilms and Microbiomes* **3**, 2 (2017).

20. Leggat, W. et al. The holobiont theory disregards the coral holobiont. *Nature Reviews Microbiology* **5**, 826–826 (2007).

21. Perrin, E. et al. Furnishing spaceship environment: Evaluation of bacterial biofilms on different materials used inside international space station. *Research in Microbiology* **169**, 289–295 (2018).

22. Bacci, G. et al. Applying predictive models to decipher rhizobacterial modifications in common reed die-back affected populations. *Science of The Total Environment* **642**, 708–722 (2018).

23. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the illumina hiseq and miseq platforms. *The ISME Journal* **6**, 1621–1624 (2012).

24. Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. *Nature methods* **13**, 581 (2016).

25. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet journal* **17**, 10–12 (2011).

26. Wright, E. S. Using decipher v2.0 to analyze big biological sequence data in r. *R Journal* **8**, (2016).

27. Quast, C. et al. The silva ribosomal rna gene database project: Improved data processing and web-based tools. *Nucleic acids research* **41**, D590–D596 (2012).
28. Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative diversity measures lead to different insights into factors that structure microbial communities. *Appl. Environ. Microbiol.* **73**, 1576–1585 (2007).

29. Sørensen, T. J. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons. (I kommission hos E. Munksgaard, 1948).

30. Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: An effective distance metric for microbial community comparison. *The ISME journal* **5**, 169 (2011).

31. Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern wisconsin. *Ecological Monographs* **27**, 325–349 (1957).

32. McMurdie, P. J. & Holmes, S. Phylseq: An r package for reproducible interactive analysis and graphics of microbiome census data. *PLoS ONE* **8**, e61217 (2013).

33. Oksanen, J. *et al.* Vegan: Community ecology package. (2019).

34. Dray, S. *et al.* Adespatial: Multivariate multiscale spatial analysis. (2019).

35. Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. *Psychometrika* **29**, 1–27 (1964).

36. Kruskal, J. B. Nonmetric multidimensional scaling: A numerical method. *Psychometrika* **29**, 115–129 (1964).

37. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society. Series B (Methodological)* **57**, 289–300 (1995).

38. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for rna-seq data with deseq2. *Genome biology* **15**, 550 (2014).

39. Haynes, K. & Killick, R. Changepoint.np: Methods for nonparametric changepoint detection. (2019).

40. Killick, R., Fearnhead, P. & Eckley, I. A. Optimal detection of changepoints with a linear computational cost. *Journal of the American Statistical Association* **107**, 1590–1598 (2012).

41. Zhang, N. R. & Siegmund, D. O. A modified bayes information criterion with applications to the analysis of comparative genomic hybridization data. *Biometrics* **63**, 22–32 (2007).

42. Scrucca, L. GA: A package for genetic algorithms in R. *Journal of Statistical Software* **53**, 1–37 (2013).

43. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. ImerTest package: Tests in linear mixed effects models. *Journal of Statistical Software* **82**, 1–26 (2017).

44. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. *Journal of Statistical Software* **67**, 1–48 (2015).
45. Sardá-Espinosa, A. Time-series clustering in r using the dtwclust package. *The R Journal* (2019). doi: 10.32614/RJ-2019-023

46. Briatte, F. *Ggnetwork: Geometries to plot networks with 'ggplot2'.* (2020).

47. Butts, C. T. *Network: A package for managing relational data in r.* *Journal of Statistical Software* 24, (2008).