Evaluation of Ferroelectric Properties of Piezoelectric Ceramics
Based on Crystallographic Homogenization Method
and Crystal Orientation Analysis by SEM·EBSD Technique

Yasutomo UETSUJI*5, Toshihiro YOSHIDA, Takayuki YAMAKAWA,
Kazuyoshi TSUCHIYA, SeiUEDA and Eiji NAKAMACHI

*5Department of Mechanical Engineering, Osaka Institute of Technology,
5-16-1 Omiya, Asahi-ku, Osaka-shi, Osaka, 535-8585 Japan

Macroscopic ferroelectric properties of piezoelectric polycrystals are strongly affected by
microscopic non-homogeneous crystal structure. In our previous study, a multi-scale finite element
procedure based on crystallographic homogenization method has been developed to predict macro-
scopic properties by considering microscopic crystal morphology. In this study, a crystal orientation
distribution of polycrystalline barium titanate has been measured by SEM·EBSD technique, and it
has been introduced to the microscopic finite element model, which satisfies the periodicity. As the
prediction of macroscopic properties depends on the sampling conditions of the measured crystal
orientations, the effects of number of sampling points and sampling area have been investigated.
Additionally, the influence of dispersion of crystal morphology on macroscopic ferroelectric prop-
erties has been discussed.

Key Words: Computational Mechanics, Finite Element Method, Piezoelectric Ceramics, Homogen-
ization Method, Crystal Orientation, Electron Back Scatter Diffraction

1. 緒 言

圧電アクチュエータは、変位制御の精度、発生力、応答速度に優れるため、各種電子デバイスの構成要素として多くの分野で利用されている。近年では、マイクロ・ナノマシンなどの新規分野への適用も検討され、
ミクロ結晶構造制御による圧電特性の向上が要求されている。高性能化を考慮した材料創製技術の開発には、
結晶構造の特性を精度良く記述した上で、マクロ特性を予測する数値解析手法の開発が必要である。そこで
著者らは、これまでに結晶構造の不均質組織をミクロ構造（ユニットセル）と捉えた "結晶均質化手法" を提
案し、多結晶圧電材料に対するマルチスケール有限要素解析手法を開発した (1)

一方、多結晶材料のミクロ結晶構造の実験解析手法として、走査型電子顕微鏡（SEM：Scanning Electron
Microscope）の顕鏡内に設置した試料に電子線を照射し、発生した後方散乱電子回折（EBSD：Electron BackScatter
Diffraction）像から各結晶粒の方位を解析する SEM·
EBSD 法 (2,3) が開発された。SEM·EBSD 法は、空間分
解能に優れ、サブミクロンの結晶粒の方位解析が可能
である。これまでに、構造用金属材料やセラミックス
への適用例 (4,5) が報告され、今後は電子材料など広範
な分野への適用が期待されている。

本研究では、結晶構造の実験解析技術と融合したマ
ルチスケール解析手法の提案を目的として、圧電セラ
ミックスに対して SEM·EBSD 法を新規に適用し、得ら
れた結晶方位解析データをミクロ構造モデルに導入し
た結晶均質化手法によるマルチスケール有限要素解析
を試みる。特に本報では、SEM·EBSD 法により圧電セラ
ミックスの結晶粒の方位および形状とそれらの空間分
布を明らかにすると同時に、マクロ特性評価のための
SEM·EBSD 結晶方位解析データのサンプリング条件を
得るため、マクロ特性に及ぼすユニットセルのサンプ
リング点数および領域サイズの影響について検討する。
また，圧縮・焼結により作製したバルク材のサンプリング部位に起因するマクロ特性評価値のバラツキについても検討を加える．

2. 結晶均質化法に基づくマクロ特性予測手法

線形圧電弾性問題に対する均質化法に基づくマクロ特性評価の概要を示す，図1に示すように，3次元圧電性体Ωが，周期性を有する結晶構造ヤの集合体であると仮定する，マクロおよびミクロ構造を記述する座標をそれぞれxおよびyと定義する．

マクロおよびミクロ構造方程式は，両スケールの影響を考慮した全体構造に対する仮想仕事の原理式が任意のマクロおよびミクロな仮想変位と仮想静電ポテンシャルで定義する応力として得られる，ミクロ構造の方程式は次式で表される．

\[
\int \left(C_{ijkl} \frac{\partial \varepsilon_{ij}^m(x,y)}{\partial y_j} + \varepsilon_{lij}^s \frac{\partial \phi_{ij}^n(x,y)}{\partial y_j} \right) dY = - \int \varepsilon_{ij}^m \frac{\partial \varepsilon_{ij}^m(x,y)}{\partial y_j} dY
\]

\[
\int \left(\mu_{ij} \frac{\partial \varepsilon_{ij}^m(x,y)}{\partial y_j} + \varepsilon_{lij}^s \frac{\partial \phi_{ij}^n(x,y)}{\partial y_j} \right) dY = - \int \mu_{ij} \frac{\partial \varepsilon_{ij}^m(x,y)}{\partial y_j} dY
\]

\[
\int \left(\varepsilon_{ij}^m \frac{\partial \varepsilon_{ij}^m(x,y)}{\partial y_j} + \varepsilon_{lij}^s \frac{\partial \phi_{ij}^n(x,y)}{\partial y_j} \right) dY = - \int \varepsilon_{ij}^m \frac{\partial \varepsilon_{ij}^m(x,y)}{\partial y_j} dY
\]

\[
\int \left(\sigma_{ij} \frac{\partial \varepsilon_{ij}^m(x,y)}{\partial y_j} + \varepsilon_{lij}^s \frac{\partial \phi_{ij}^n(x,y)}{\partial y_j} \right) dY = - \int \sigma_{ij} \frac{\partial \varepsilon_{ij}^m(x,y)}{\partial y_j} dY
\]

ここで，\(C_{ijkl} \)，\(\varepsilon_{ijkl} \)および\(\phi_{ijk} \)は，それぞれ電界一定時の弾性係数テンソル，圧電応力定数テンソル，ひずみ一定時の誘電定数テンソルである．なお，境界条件に依存する物性に対して，電界およびひずみ一定時の意味する上記添字EおよびSを付記する．また，\(\delta u_i(x,y) \)および\(\delta \phi_{ij}(x,y) \)はミクロ構造における仮想変位ベクトルの成分および仮想静電ポテンシャルの摂動を意味する．さらに，\(\chi_{ij}^n(x,y) \)は仮想変位関数テンソル，\(R_i(x,y) \)は仮想静電ポテンシャル関数テンソル，\(\phi_{ij}^n(x,y) \)および\(\phi_{ij}^S(x,y) \)は仮想連成関数テンソルであり，周期境界条件下におけるミクロ構造の方程式が解となる．得られた仮想関数テンソルより，均質化されたマクロ構造に対する弹性係数テンソル\(C_{ijkl}^m \)，圧電応力定数テンソル\(e_{ij}^m \)，誘電定数テンソル\(e_{ij}^S \)は次式で与えられる．

\[
C_{ijkl}^m = \frac{1}{V} \int \left(C_{ijkl}^E + C_{ijkl}^S \frac{\partial \varepsilon_{ij}^m(x,y)}{\partial y_j} + \varepsilon_{ij}^s \frac{\partial \phi_{ij}^n(x,y)}{\partial y_j} \right) dY
\]

\[
\sigma_{ij} = \frac{1}{V} \int \left(e_{ij}^m \frac{\partial R_i(x,y)}{\partial y_j} + C_{ijkl}^m \frac{\partial \phi_{ij}^m(x,y)}{\partial y_j} \right) dY
\]

\[
\phi_{ij}^S = \frac{1}{V} \int \left(\phi_{ij}^m + e_{ij}^s \frac{\partial \phi_{ij}^m(x,y)}{\partial y_j} \right) dY
\]

ここで，上付添字Mは均質化された値であることを意味する．本研究では，ソリッド要素（8節点アイソパラメトリック線形要素）を用いて，マクロおよびミクロ構造に対する座標，変位および静電ポテンシャルを離散化した有限要素解析を実施し，均質化されたマクロ構造に対する特性を予測する．

3. 圧電セラミックスのSEM・EBSD解析

3-1. 供試材 供試材には，単結晶の物性が既知であるペロプスカイト型強誘電体のチタン酸バリウム（BaTiO₃）を用意し，圧粉成形によりバルク材を作製した．試料粉体としてBa と Ti のモル比が Ba / Ti = 0.999，純度が 0.999％である BaTiO₃粉末（フルウチ化学製 BAC-15224A）を用いた，試料粉体 2 g と純水 0.08 g を十分に混合して直径 20 mm の金型容器に充填した後，材料試験機（東京新製機械製造所 TK-12C）を用いて圧力 200 MPa で成形した．つぎに，成形体を電気炉（九州新制機知 HE15）において 2 時間 1420 ℃の条件で焼結した，焼結体の寸法を図2に示す，成形・焼結条件が安定した，

Fig.1 Macro-and micro-structures of piezoelectric ceramics.

Fig.2 Dimension of piezoelectric ceramic specimen.
していると考えられる試料内部の結晶方位を解析するため、焼結体を機械研磨（耐水研磨紙 200～2000 番、ダイヤモンドスラリー 3 μm）して、板厚 1.7 mm から 1.1 mm に加工した。続いて焼結体を分極処理するため、電極（Ag）を試料の上下面に塗布した後、160 ℃に加熱したシリコンオイル中で結晶方位解析面をマイナス電極にして直流電界 20 kV/cm を印加し、常温になるまで（約 2 時間）放置した。最後に電極を取り除き、SEM・EBSD 結晶方位解析面に対して再び機械研磨（コロイダルシリカ 0.04 μm）を施し、解析面を鏡面状態に仕上げた。

3-2 SEM・EBSD 結晶方位解析 作製した BaTiO₃ バルク試料に対して、走査型電子顕微鏡（日本電子データ社製 JSM-5410）内に設置した後方散乱電子回折装置（Oxford 社製 Link ISIS C.7272）により分極電極方向に垂直な面における結晶方位解析を実施した。結晶方位の測定部位は図 2 に示す A から H の 8 個域として、各領域に対して測定範囲を 600 × 466 μm² として自動走査を行った。

4. SEM・EBSD 結晶方位解析を導入したマクロ特性予測

4-1 結晶方位の有限要素モデリング SEM・EBSD 解析により試料測定面に対して 3 次元結晶方位の面内空間分布が得られる。そこで、図 3 に示すように結晶方位を導入するミクロ構造モデルとして、要素アスペクト比が 1 である規則分割メッシュを採用する。なお、板厚方向の分割数は、測定面内における結晶方位分布が板厚方向にも周期的に存在するものと仮定し、1 分割とする。各測定点における結晶方位は Euler 角 (φ, θ, ψ) で定義し、測定点の座標に対応する要素積分点（正規化座標 η, ζ = ±1/√3）に導入する。なお、図 2 に示すマクロ構造の座標軸 (x₁, x₂, x₃) の方向は、図 3 に示すミクロ構造の座標軸 (y₁, y₂, y₃) の方向に一致し、分極電界方向は座標軸の第 3 軸 x₃ および y₃ に対応する。さらに、結晶方位分布の定量的指標として、式(8)に示す分極電界方向（第 3 軸）に対する結晶格子の自発分極軸（結晶座標 c 軸）の配向度 Ŝ_{c} を用いる。

\[S_{y_{i}}^c = \frac{1}{n} \sum_{i=1}^{n} (\vec{e}_{i} \cdot \vec{e}_{y_{i}}) \] \hspace{1cm} (8)

ここで、\(\vec{e}_{i} \) は測定点（積分点）i におけるミクロ構造座標系で定義された結晶座標 c 軸の基底ベクトル、\(\vec{e}_{y_{i}} \) はミクロ構造座標 y₃ 軸の基底ベクトルを意味する。また、\(n \) は全測定点（積分点）数を表す。配向度 Ŝ_{c} は、結晶方位が完全にランダムである場合には 0、全結晶方位が分極電界方向の y₃ 軸に配向した場合には 1 となる。

4-2 サンプリング点数の影響 図 2 の領域 A に対して SEM・EBSD 結晶方位解析により得られた測定結果を図 4 に示す。図 4 では平均体積が 1040 μm² である結晶粒で構成された集合組織における結晶方位分布を把握することができる。このような結晶方位データをミクロ構造モデルに導入する場合、マクロ特性を精度良く予測するための結晶方位サンプリング条件を把握する必要がある。本節では、マクロ特性評価に必要な結晶方位のサンプリング点数について検討する。

Fig.3 Finite element modeling of crystal orientation distribution obtained by SEM-EBSD.

Fig.4 Crystal orientation distribution of region A obtained by SEM-EBSD.

図 4 に示す 50 × 50 μm² の正方形域（2.4 結晶粒）における結晶方位分布を対象として、要素アスペクト比が 1 であり平面内の分割数が異なる規則分割メッシュをミクロ有限要素モデルに採用し、マクロ特性の予測値に及ぼす要素分割数の影響を調査した。結晶方位はその座標に対応する要素内積分点に割り振るため、要素分割数に応じて結晶方位のサンプリング点数が増加する。本調査では、要素分割数が 2 × 2 × 1 = 4 分割から
14×14×1 = 196 分割まで変化させ、これに対応する結晶方位のサンプリング点数は 16 点から 784 点である。
なお、ミクロ構造の結晶粒には、BaTiO₃ 単晶体の物性値(1)を用いた。

図5に比誘電率、図6に圧電定数に対する解析結果を示す。両図では、横軸にマクロ特性予測値、縦軸にミクロ有限要素モデルの分割数を示す。両図から比誘電率および圧電定数とともに要素分割数が小さい場合にマクロ特性予測値にパラツキが生じるが、要素分割数が 8×8×1 = 64 エレメント数(256 点)以上では予測値が一定値に収束することが判る。マクロ特性とサンプリングした結晶方位分布の関係を把握するため、図 7 に分極電界方向(第 y₃ 軸)に対する結晶格子の自発分極軸(結晶座標 z-軸)の配向度 Sₚ とミクロ有限要素モデルの分割数の関係を示す。図7より、マクロ特性が一定値に収束する 64 原子数以上では、サンプリングされた結晶方位の配向も一定値に収束することが判る。これらの結果より、普通的なマクロ特性予測には有効なサンプリング点の密度は、0.1024 点/μm²であると考えられる。
また、結晶粒の平均サイズが 1040 μm²であることから観みてると、1つの結晶粒に対して約 107 点以上のサンプリング点が必要であると言える。単一の結晶粒内(または分域内)においてその方位は一定であるため、結晶方位のみのモデル化には 1 点/粒のサンプリングで十分であるが、結晶粒よりも細かく方位をサンプリングすることにより方位の空間分布領域、すなわち結晶形状も表現できたと考えられる。

4-3 サンプリング領域サイズの影響 マクロ特性を精度良く予測するための結晶方位サンプリング領域サイズについて検討する。図4に示す領域 A を対象として、50×50 μm²から 325×325 μm²の領域における結晶方位分布に対して、マクロ特性予測値に及ぼすサンプリング領域サイズの影響を調査した。領域サイズが異なるそれぞれの領域に対して、前節より見出したサンプリング点数の条件に基づいて 0.1024 点/μm²と 8×8×1 = 64 エレメントから 52×52×1 = 2704 エレメントの規則分割メッシュをミクロ構造モデルに採用した。

図8に比誘電率、図9に圧電定数に対する解析結果を示す。両図から比誘電率および圧電定数ともにサンプリング領域サイズが小さい場合には領域サイズに応じてマクロ特性予測値が変化するが、領域サイズが 225×225 = 50625 μm²以上では予測値が一定値に収束することが判る。また、供試材の作製条件から面内等方位で分極電界方向の y₃ 軸に異方位を有することが予想されるが、領域サイズが 225×225 = 50625 μm²以上のマクロ特性予測値でもこれに整合する結果を得た。すなわち、誘電率εᵣᵢₚ と ε₀ᵢₚ, 圧電定数dᵢₚ と dᵢₚ がほぼ一致することから、供試材の作製条件に整合する面内等方位を確認できる。一方、図10に示すサンプリングした結晶方位の配向度と領域サイズの関係においても、マクロ特性が一定値に収束する 225×225 = 50625 μm²以上で同様に
Fig. 8 采样区域对宏观介电常数的影响。

Fig. 9 采样区域对宏观压电常数的影响。

Fig. 10 原子排列度与采样区域的关系。

Fig. 11 SEM-EBSD 棒状物方位解析法による各区域の微細構造分布とそれに基づくの強誘電特性評価。

収束する傾向が確認できる。これらの結果より、普通的なマクロ特性予測に有効なサンプリング領域サイズは 225 225 = 50625 μm²以上が必要であると考える。また、結晶粒の平均サイズが 10微μm²であることから普通的なマクロ特性評価には約 48.7 結晶粒以上の集合体をミクロ構造モデルに導入する必要があると言える。
4-4 サンプリング部の影響
结晶方位のサンプリング部によるマクロ特性予測値のバラツキについて検討する。最初にミクロ構造モデルに導入する結晶方位分布の特性を把握するため、図 2 に示す 8 域域に対して SEM・EBSD 結晶方位解析より得られた結果を図 11 に示す、結晶方位分布を定量的に評価するため、分極電界方向の Z 軸に対する(001)方位指向と結晶方位の配向度 S_n も同図に示す。また、結晶形態の考察者として、結晶粒径 n、平均粒サイズ A および平均粒径 r を併せて示す。図 11 より計測面における結晶粒径 n は 241 から 406 個まで大きく変動し、結晶方位の配向度は平均値を基準として 11.6%程度変化することが確認できる。

図 11 に示す 8 域域の結晶方位分布に対して、同様にサンプリング点を 0.01042 点/μm² とした条件で、領域サイズを 50×50 μm² から 325×325 μm² まで変化させてサンプリング領域に起因するマクロ特性予測値のバラツキを検討した。ここで、マクロ特性予測値のバラツキを無次元で評価するため、次式で示す平均値で正规化した標準偏差 s を用いる。

$$ s = \frac{1}{X} \sum_{i=1}^{m} \left(X_i - \bar{X} \right)^2 $$

この途中、X_i はマクロ特性予測値、\bar{X} は平均予測値を意味する。図 12 に比誘電率および圧電定数の正規化標準偏差と結晶方位サンプリング領域サイズの関係を示す。本章から比誘電率および圧電定数とともにサンプリング領域サイズの増加に伴ってマクロ特性予測値のバラツキが軽減する傾向が確認できるが、マクロ特性予測値が集束する領域サイズ 225×225 = 50625 μm² 以上では予測値のバラツキも一定値に収束し、最大 11.1%のバラツキが生じることが判る。

マクロ特性予測値の妥当性を確認するために、図 13 に予測された圧電定数 d_{33} および d_{31} と実測値の比較を示す。圧電セラミックスの特性は非線形条件や添加物により大きく変化するため定量的な比較は困難であるが、図 13 に示した。

Fig. 12 Relation between normalized standard deviation of macro properties and sampling area.

Fig. 13 Comparison of piezoelectric constants between computational and experimental results.

5. 結 言

SEM・EBSD 結晶方位解析データをミクロ構造モデルに導入した結晶均質化法によるマクロ特性評価手法を提案し、適用例として BaTiO₃ パルク材のマクロ特性を精度よく表現するための結晶方位サンプリング条件を明らかにした。また、圧紡成形・焼結により作製した BaTiO₃ パルク材では部位により結晶方位の配向度が約 11%変化し、これに伴ってマクロ特性予測値に同程度のバラツキが生じることが判明した。なお、圧電セラミックスの結晶形態は、材料、添加物、成形・焼結条件により大きく変化するため、提案手法の適用には結晶形態に基づいたサンプリング条件を同様に調査した上で、マクロ特性を評価することが望まされる。

なお、本研究は、科学研究費助成金若手研究 (B) [No.15760071] および文部科学省「バイオベンチャー研究開発拠点整備事業」の助成を得て遂行した。

文 献

(1) 上村・中村・上田・仲町. 機論, 69-679, A (2003), 501-508.
(2) J. Venables and C. Harland, Phil., Mag., 27 (1973), 1193.
(3) D. Dingley and V. Randle, J. Mater. Sci., 27 (1992), 4545-4566.
(4) 佐藤・松本, 日本塑性加工学会誌, 43-503 (2002), 1135-1139.
(5) 近藤・阿部・多田. 機論, 69-682, A (2003), 972-979.
(6) 安富・瀧川. セラミックス, 37-2 (2002), 84-86.
(7) J. A. Pertsev, A. G. Zheligotov and R. Waser, J. Appl. Phys., 84 (1998), 1524-1529.
(8) PIEZOELECTRIC CERAMICS SENSORS, 村田製作所.
(9) 圧電セラミックス, 富士セラミックス.