A new measurement of kaonic hydrogen X-rays

INFN-LNF Shinji Okada
on behalf of SIDDHARTA collaboration

13 June 2011, Hadron 2011 at Munich
A New Measurement of Kaonic Hydrogen X rays

M. Bazzia, G. Beerb, L. Bombellic, A.M. Bragadireanua,d, M. Cargnellie,*, G. Corradie, C. Cureanu (Petrascu)a, A. d’Uffizia, C. Fiorinib, T. Frizzif, F. Ghiof, B. Girolamif, C. Guaraldoa, R.S. Hayanog, M. Iliescua,d, T. Ishiwatarie, M. Iwasakie, P. Kienlei, P. Levi Sandria, A. Longonic, V. Lucherinie, J. Martoni, S. Okadaa,*, D. Pietranaa, T. Pontaa, A. Rizzoa, A. Romero Vidala, A. Scorzoa, H. Shib, D.L. Sirghia,d, F. Sirghia,d, H. Tatsunob, A. Tudorached, V. Tudorached, O. Vazquez Docea, E. Widmanne, J. Zmeskalb

aINFN, Laboratori Nazionali di Frascati, Frascati (Roma), Italy
bDep. of Phys. and Astro., Univ. of Victoria, Victoria B.C., Canada
cPolitecnico di Milano, Sez. di Elettronica, Milano, Italy
dIFIN-HH, Magurele, Bucharest, Romania
eStefan-Meyer-Institut für subatomare Physik, Vienna, Austria
fINFN Sez. di Roma I and Ist. Superiore di Sanità, Roma, Italy
gUniv. of Tokyo, Tokyo, Japan
iTech. Univ. München, Physik Dep., Garching, Germany

Abstract

The $\overline{K}N$ system at threshold is a sensitive testing ground for low energy QCD, especially for the explicit chiral symmetry breaking. Therefore, we have measured the K-series x rays of kaonic hydrogen atoms at the DAΦNE electron-positron collider of Laboratori Nazionali di Frascati, and have determined the most precise values of the strong-interaction energy-level shift and width of the $1s$ atomic state. As x-ray detectors, we used large-area silicon drift detectors having excellent energy and timing resolution, which were developed especially for the SIDDHARTA experiment. The shift and width were determined to be $\epsilon_{1s} = -283 \pm 36$(stat) ± 6(syst) eV and $\Gamma_{1s} = 541 \pm 89$(stat) ± 22(syst) eV, respectively. The new values will provide vital constraints on the theoretical description of the low-energy $\overline{K}N$ interaction.

*Corresponding authors.
Email addresses: michele.cargnelli@oeaw.ac.at (M. Cargnelli), shinji.okada@lnf.infn.it (S. Okada)

Preprint submitted to Physics Letters B May 17, 2011
Introduction
X-ray spectroscopy of kaonic atoms

The last orbit

$1s$ (only Coulomb)

$2p - 1s$ X-ray (~ 6 keV)

Width: Γ_{1s}

Shift: ε_{1s}

Nuclear absorption

Kanoic hydrogen case

due to strong int.
Kaonic atoms for $Z \geq 3$

Batty, Friedman and Gal, Phys. Rep. 287 (1997) 385

Shift [eV]

Atomic Number	Shift [eV]
$Z=3$ (Li)	$n=2$, $n=3$, $n=4$, $n=5$, $n=6$, $n=7$
$Z=92$ (U)	$n=2$, $n=3$, $n=4$, $n=5$, $n=6$, $n=7$, $n=8$

Width [eV]

Atomic Number	Width [eV]
$Z=3$ (Li)	$n=2$, $n=3$, $n=4$, $n=5$, $n=6$, $n=7$
$Z=92$ (U)	$n=2$, $n=3$, $n=4$, $n=5$, $n=6$, $n=7$, $n=8$

Global fit with optical potential for $Z \geq 3$

- Imaginary part: large ($W_0 \sim 70$ MeV)
- Real part (depth): allowed to be both deep and shallow
| Z=1 | Kaonic atoms | transition | energy | status |
|-----|--------------------|------------|--------|--------|
| K-hydrogen | 2p-1s | 6.5 keV | | |
| K-deuterium | | 7.8 keV | | |

Z=2	Kaonic atoms	transition	energy	status
K-³He	3d-2p	6.2 keV		
K-⁴He		6.4 keV		
Kaonic atoms for $Z = 1$ & 2

Z	Kaonic atoms	transition	energy	status
1	K-hydrogen	2p-1s	6.5 keV	several data
	K-deuterium		7.8 keV	No data so far
2	K-3He	3d-2p	6.2 keV	No data so far
	K-4He		6.4 keV	several data
Kaonic atoms for $Z = 1$ & 2

$Z=1$	Kaonic atoms
	K-hydrogen
	K-deuterium

$Z=2$	Kaonic atoms
	K-3He
	K-4He

ALL measured in SIDDHARTA
Kaonic atoms	<- this talk
Z=1	
K-hydrogen	
K-deuterium	
Z=2	
K-3He	<- previous talk
K-4He	
Deser-Truman Formula

\[\Delta E_1^s - \frac{i}{2} \Gamma_1 = -2\alpha^3 \mu_c^2 a_{K-p} \]

S-wave scattering length “a_{K-p}” expressed with isospin dependent scattering lengths \(a_0\) \((l=0)\), \(a_1\) \((l=1)\)

\[a_{K-p} = \frac{1}{2} (a_0 + a_1) \]

\(-\) Together with shift & width of K-d atom, \(a_0\) and \(a_1\) can be disentangled by taking into account higher order contributions associated with the K-d three-body interaction.

\[\Delta E_n^s - \frac{i}{2} \Gamma_n = -\frac{\alpha^3 \mu_c^3}{2\pi M_{K+n}^3} \]

\[\times T_{KN} \left\{ 1 - \frac{\alpha \mu_c^2}{4\pi M_{K+}} T_{KN}(s_n(\alpha) + 2\pi i) + \delta_{n}^{\text{vac}} \right\} \]

U.-G. Meißner et al, Eur Phys J C35 (2004) 349
\[QCD \text{ predictions} \]

\[\pi\text{-H system} \]: successfully described by the chiral perturbation theory

\[\rightarrow \text{but NOT with } K\text{-H system} \]

due to the presence of \(\Lambda(1405) \) resonance only 25 MeV below threshold

Chiral SU(3) effective theory
in combination with a relativistic coupled-channels approach

Strong elastic K-p amplitude

\[
 f^{\text{str}}_{K^-p\rightarrow K^-p} = \frac{1}{(8\pi\sqrt{s})} T^{\text{str}}_{K^-p\rightarrow K^-p}.
\]

DEAR exp. ('95)

with correction of isospin braking effect

Kaon-nucleus deeply-bound state ?

\[\rightarrow \text{Kaon condensation in dense matter.} \]

\[B. \text{ Borasoy, R. Nißler & W. Weise} \]

\[PRL 94, 213401 (2005) \]
History
70-80’s : Kaonic hydrogen puzzle

J. D. Davies et al., Phys. Lett. 83B, 55 (1979)
M. Izycki et al., Z. Phys. A 297, 11 (1980)
P. M. Bird et al., Nucl. Phys. A404, 482 (1983)

EM value
K-p Kα

Attractive shift

theory shows repulsive ...

Liquid target
The first distinct peak @ KEK
2005: Repulsive shift again @ LNF

G. Beer et al., PRL 94, 212302 (2005)
Kaonic hydrogen: Shift vs. Width

- Repulsive shift
- Attractive shift

KEK (1997)

DEAR (2005)

Davies (1979)

Bird (1983)

Izycki (1980)
Kaonic hydrogen: Shift vs. Width

Recent exp.

The data from KEK and DEAR do not agree perfectly ... (despite their relatively large errors)

Davies, Bird, Izycki
do not agree perfectly ... (despite their relatively large errors)

SIDDHARTA : KH measurement again at LNF (after DEAR)

with x-ray detector having excellent timing and energy resolution

drastically improved S/N ratio
Experiment
Silicon Drift Detector - SDD

	KpX, 1998	DEAR, 2005	SIDDHARTA
Detector	Si(Li)	CCD	SDD
Energy Resolution	360 eV	180 eV	150 eV
Thickness	sub 10 mm	sub mm	sub mm
Effective area	120 cm²	116 cm²	114 cm²
Time resolution	sub μsec	~ 30 sec	sub μsec
Efficiency @ 6keV	~ 100 %	~ 60 %	~ 100 %
Difficulty of KH measurement

Density-dependent yield due to Stark mixing

Kaonic Hydrogen

Dipole field

proton

Mixture between ℓ and $\ell + 1$

induces transition between different angular momentum state with the same principal quantum number.

-> When target density is high, the high n-state absorption rate will increase.

→ Low density gaseous hydrogen target

→ Low energy Kaon with small energy spread
Φ → K^- K^+ (49.1\%)

Monochromatic low-energy K^- (∼127MeV/c)

Less hadronic background due to the beam
(compare to hadron beam line : e.g. KEK)

Suitable for Kaonic atom exp.
Detect @ Kaon detector
Detect @ SDD

Detect @ Kaon detector
Kapton: $C_{22}H_{10}O_{5}N_{2}$ (polyimide film)

stopped Kaons in Kapton wall

\rightarrow K-C, K-O and K-N are produced (background)
Analysis
Kaon identification

Timing of coincidence signals with respect to the RF signal from DAFNE (~ 368.7 MHz)

two scintillators
Timing on SDDs

Time difference spectrum between kaon arrival and x-ray detection

two scintillators
Energy vs. Timing on SDDs

After slewing correction

KH dataset

Counts $\times 10^2$

Counts $\times 10^3$

Energy vs. Timing on SDDs

Kaon

BG

Kaon gate

Background gate (asynchronous background)
Kaonic Kapton X-rays

K-p and K-d spectra

Hydrogen

Counts / 50 [eV]

Energy [keV]

Deuterium

Counts / 50 [eV]

Energy [keV]

Clearly observed!

Not visible

small signal wide width

Fluorescence X-ray

Kaonic Kapton X-rays

Kapton

C_{22}H_{10}O_{5}N_{2}
Kaonic hydrogen

$K\alpha$ $K\beta$ higher

EM value $K-\rho K\alpha$

Background estimation

Hydrogen

Deuterium

simultaneous fit
Residuals of K-p x-ray spectrum after subtraction of fitted background
The higher transitions contribute dominantly to the total intensity of KH x-rays. However, the intensity pattern of those transitions is only poorly known from cascade calculation (\(\geq K\gamma \)).
determining the shift and width primarily from the $K\alpha$ and $K\beta$ lines

- iterative fit -

	2p-1s	3p-1s	4p-1s	5p-1s	6p-1s	7p-1s	8p-1s
	Kα	Kβ	Kγ	Kδ	Kϵ	Kζ	Kη
intensity	free						

Shift & Width

Shift & Width	1st fit	2nd fit	3rd fit	...	final fit
1st fit	free				
2nd fit	free	fixed with previous values			
3rd fit	free	fixed with previous values			
...					
final fit	free	fixed with previous values			

until the shifts and widths converged

The statistical errors of the shift and width come predominantly from the statistics of the $K\alpha$ and $K\beta$ lines.
Result
Result

\[\epsilon_{1s} = -283 \pm 36 \text{(stat)} \pm 6 \text{(syst)} \text{ eV} \]
\[\Gamma_{1s} = 541 \pm 89 \text{(stat)} \pm 22 \text{(syst)} \text{ eV} \]

SIDDHARTA

KEK-PS E228

DEAR
With a recent theoretical value

B. Borasoy et al., PRC 74, 055201 (2006)

solely from K-p scattering data!!

Chiral SU(3) unitary approaches

B. Borasoy et al., PRC 74, 055201 (2006)

solely from K-p scattering data!!
Conclusion

reached a quality which will demand refined calculations of the low-energy KN interaction

new constraints on theories
Summary
measured Kaonic x-ray spectra with several gaseous targets (Z = 1 and 2):

- K-p: provided the most precise values (submitted) arXiv:1105.3090
 \[\varepsilon_{1s} = -283 \pm 36 \text{(stat)} \pm 6 \text{(syst)} \text{ eV} \]
 \[\Gamma_{1s} = 541 \pm 89 \text{(stat)} \pm 22 \text{(syst)} \text{ eV} \]

- K-d: first-time “exploratory” measurement -> small signal (large width)

- K-³He (L-series): first-time measurement (published) PLB 697(2011)199

- K-⁴He (L-series): measured in gaseous target for the first time (published) PLB 681(2009)310

planing the extension “SI DDHARTA2” with improved technique for re-measurement of K-d and other Kaonic atoms
SIDDHARTA Collaboration

M. Bazzi A, G. Beer B, L. Bombelli C, A.M. Bragadireanu A,D, M. Cargnelli E, G. Corradi A, C. Curceanu (Petrascu) A, A.d’Uffizi A, C. Fiorini C, T. Frizzi C, F. Ghio F, B. Girolami F, C. Guaraldo A, R. S. Hayano G, M. Iliescu A,D, T. Ishiwatari E, M. Iwasaki H, P. Kienle E,I, P. Levi Sandri A, A. Longoni C, V. Lucherini A, J. Marton E, S. Okada A, D. Pietreanu A, T. Ponta D, A. Rizzo A, A. Romero Vidal A, A. Scordo A, H. Shi G, D. L. Sirghi A,D, F. Sirghi A,D, H. Tatsuno G, A. Tudorache D, V. Tudorache D, O. Vazquez Doce A, E. Widmann E, J. Zmeskal E

INFN(LNF) A, Univ.Victoria B, Politecnico Milano C, IFIN-HH D, SMI E, INFN Sezione di Roma I and Istituto Superiore di Sanita' F, Univ.Tokyo G, RIKEN H, TUM I