On D-Wave Meson Spectroscopy and the $K^*(1410) - K^*(1680)$ Problem

L. Burakovsky* and T. Goldman†

Theoretical Division, MS B285
Los Alamos National Laboratory
Los Alamos, NM 87545, USA

Abstract

The mass spectrum of D-wave mesons is considered in a nonrelativistic constituent quark model. The results show a common mass degeneracy of the isovector and isodoublet states of the 1^3D_1 and 1^3D_3 nonets, and suggest therefore that the $K^*(1680)$ cannot be the $I = 1/2$ member of the 1^3D_1 nonet. They also suggest that the $\eta_2(1870)$, presently omitted from the Meson Summary Table, should be interpreted as the $I = 0$ $s\bar{s}$ state of the 1^1D_2 nonet.

Key words: quark model, potential model, D-wave mesons
PACS: 12.39.Jh, 12.39.Pn, 12.40.Yx, 14.40.Cs

1 Introduction

The existence of a gluon self-coupling in QCD suggests that, in addition to the conventional $q\bar{q}$ states, there may be non-$q\bar{q}$ mesons: bound states including gluons (gluonia and glueballs, and $q\bar{q}g$ hybrids) and multiquark states [1]. Since the theoretical guidance on the properties of unusual states is often contradictory, models that agree in the $q\bar{q}$ sector differ in their predictions about new states. Among the naively expected signatures for gluonium are

*E-mail: BURAKOV@PION.LANL.GOV
†E-mail: GOLDMAN@T5.LANL.GOV
i) no place in $q\bar{q}$ nonet,
ii) flavor-singlet coupling,
iii) enhanced production in gluon-rich channels such as $J/\Psi(1S)$ decay,
iv) reduced $\gamma\gamma$ coupling,
v) exotic quantum numbers not allowed for $q\bar{q}$ (in some cases).

Points iii) and iv) can be summarized by the Chanowitz S parameter 2

$$S = \frac{\Gamma(J/\Psi(1S) \to \gamma X)}{\text{PS}(J/\Psi(1S) \to \gamma X)} \times \frac{\text{PS}(X \to \gamma\gamma)}{\Gamma(X \to \gamma\gamma)},$$

where PS stands for phase space. S is expected to be larger for gluonium than for $q\bar{q}$ states. Of course, mixing effects and other dynamical effects such as form-factors can obscure these simple signatures. Even if the mixing is large, however, simply counting the number of observed states remains a clear signal for non-exotic non-$q\bar{q}$ states. Exotic quantum number states ($0^{--}, 0^{+-}, 1^{--}, 2^{+-}, \ldots$) would be the best signatures for non-$q\bar{q}$ states. It should be also emphasized that no state has yet unambiguously been identified as gluonium, or as a multiquark state, or as a hybrid.

In this paper we shall discuss D-wave meson states, the interpretation of which as members of conventional quark model $q\bar{q}$ nonets encounters difficulties 3. We shall be concerned with the four meson nonets which have the following $q\bar{q}$ quark model assignments, according to the most recent Review of Particle Physics 4:
1) $1^1D_2 J^{PC} = 2^{--}, \pi_2(1670), \eta_2(\ ? \), \eta_2(\ ? \), K_2(1770)$
2) $1^3D_1 J^{PC} = 1^{--}, \rho(1700), \omega(1600), \phi(\ ? \), K^*(1680)$
3) $1^3D_2 J^{PC} = 2^{--}, \rho_2(\ ? \), \omega_2(\ ? \), \phi_2(\ ? \), K'_2(1820)$
4) $1^3D_3 J^{PC} = 3^{--}, \rho_3(1690), \omega_3(1670), \phi_3(1850), K^*_3(1780)$

and start with a discussion of the corresponding two problems associated with the isodoublet channel of these nonets. One of them is related to the $K^*(1410) - K^*(1680)$ problem, the other to possible $1^1D_2 - 3^1D_2$ mixing in the $I = 1/2$ channel.

The two mesons, $K^*(1680)$ (with mass 1714 ± 20 MeV and width 323 ± 110 MeV) and $K^*(1410)$ (1412 ± 12 MeV, 227 ± 22 MeV) are currently assigned to the 1^3D_1 and 2^3S_1 nonets, respectively (the latter, $2^3S_1 J^{PC} = 1^{--}, \rho(1450), \omega(1420), \phi(1680), K^*(1410)$, has the same flavor quantum numbers as the former), although, as the Particle Data Group (PDG) states, “the $K^*(1410)$ could be replaced by the $K^*(1680)$ as the 2^3S_1 state” 4. The problem with these mesons is that the $K^*(1410)$ seems too light to be the 2^3S_1 state, even if one takes into account possible $2^3S_1 - 1^3D_1$ mixing. Similarly, the $K^*(1680)$ seems too light to be the 1^3D_1. One may doubt even the existence of the $K^*(1410)$, as suggested first by Törnqvist 5, since it (as well as the $K^*(1680)$) has been observed by only one group, LASS 6, although with superior statistics, in partial wave analyses under the much stronger $K^*_0(1430)$ and $K^*_0(1430)$. Two older experiments $^6, ^7$ quote a considerably higher mass, $\simeq 1500$ MeV. In addition, its $K\pi$ branching ratio is suspiciously small, only $(6.6 \pm 1.3)\%$. On the other hand, the $K^*(1680)$ has a suspiciously large total width (~ 400 MeV), much larger than typical hadron widths, and a natural suspicion would be that it is really composed of two states of normal width ($\sim 150 - 200$ MeV) 6, quite analogously to what has been suggested to be the case for the $\rho(1600)$ and $\omega(1600)$ which have been
resolved into \(\rho(1450) \) plus \(\rho(1700) \) and \(\omega(1420) \) plus \(\omega(1600) \) \[10\]. The masses of the two states contained in the \(K^*(1680) \) were determined in ref. \[6\] to be \(2 \, ^3S_1(\approx 1608) \) and \(1 \, ^3D_1(\approx 1784) \). This is in agreement with the values obtained by Godfrey and Isgur in a relativized quark model \[11\], \(2 \, ^3S_1(1580) \), \(1 \, ^3D_1(1780) \). An older experiment on the \(K^*(1680) \) quotes a mass of the same order, \(\sim 1800 \text{ MeV} \) \[8\].

Theoretically, for the four \((n, L)\)-wave meson nonets, the isoscalar and isovector members of the \(n \, ^3L_L \) and \(n \, ^1L_L \) nonets with the same charge cannot mix, since they have opposite \(C\)- and \(G\)-parity, as long as one neglects \(SU(2) \) breaking. However, their isodoublet counterparts (strange, charmed, ... mesons) do not possess definite \(C\)-parity and, therefore, can in principle mix when only \(SU(3) \) flavor symmetry is broken. This type of mixing can take place for all \(L \geq 1 \) mesons, as follows,

\[
\begin{pmatrix}
Q_{\text{high}} \\
Q_{\text{low}}
\end{pmatrix}
= \begin{pmatrix}
\cos \theta_{nL} & \sin \theta_{nL} \\
-\sin \theta_{nL} & \cos \theta_{nL}
\end{pmatrix}
\begin{pmatrix}
\rho \, ^1L_L \\
\rho \, ^3L_L
\end{pmatrix},
\]

where \(Q \) stands for the \(K, D, D_s, \ldots \). It is known that this mixing actually takes place for the \(P\)-wave mesons where the \(I = 1/2 \) \(K_{1A} \) and \(K_{1B} \) states of the \(1 \, ^3P_1 \) and \(1 \, ^1P_1 \) nonets, respectively, mix, leading to the physical \(K(1270) \) and \(K(1400) \) states \[12, 13\]. If such a mixing is also the case for the \(D\)-wave mesons, a question suggests itself regarding the physical masses of the \(I = 1/2 \) states of the \(3 \, ^3D_2 \) and \(1 \, ^3D_2 \) nonets, which we call \(K_{2A} \) and \(K_{2B} \), respectively, in the following.

If the assumption of Törnqvist about the \(K^*(1680) \) \[6\] is correct, one would have simultaneous mass near-degeneracy of the \(1 \, ^3D_1 \) and \(1 \, ^3D_3 \) meson nonets in the isovector and isodoublet channels, since in this case \(M(\rho(1700)) \approx M(\rho_3(1690)) \), \(M(K^*(1780)) \approx M(K_3^*(1780)) \). As shown in our previous paper \[14\], similar degeneracy of the \(1 \, ^3P_0 \) and \(1 \, ^3P_2 \) nonets is an intrinsic property of \(P\)-wave meson spectroscopy and may be straightforwardly understood in a nonrelativistic constituent quark model. We now wish to apply this model to the \(D\)-wave mesons in order to show that near-degeneracy of the \(3 \, ^3D_3 \) and \(1 \, ^3D_1 \) nonets mentioned above also takes place. We note that this result is a direct consequence of the nonrelativistic constituent quark model which we discuss below; this mass near-degeneracy of the two nonets does not depend on the values of the input parameters, and cannot be considered as a numerical coincidence, as the results of, e.g., Godfrey and Isgur \[11\], may be viewed (their model finds the values \(M(K^*) = 1780 \text{ MeV} \), \(M(K_3^*) = 1790 \text{ MeV} \) for the \(I = 1/2 \) \(1 \, ^3D_1 \) and \(1 \, ^3D_3 \) meson masses). We also expect our model to provide relevant information on possible \(K_{2A} - K_{2B} \) mixing.

2 Nonrelativistic constituent quark model

In the constituent quark model, conventional mesons are bound states of a spin \(1/2 \) quark and spin \(1/2 \) antiquark bound by a phenomenological potential which has some basis in QCD \[13\]. The quark and antiquark spins combine to give a total spin
0 or 1 which is coupled to the orbital angular momentum \(L \). This leads to meson parity and charge conjugation given by \(P = (-1)^{L+1} \) and \(C = (-1)^{L+S} \), respectively. One typically assumes that the \(q\bar{q} \) wave function is a solution of a nonrelativistic Schrödinger equation with the generalized Breit-Fermi Hamiltonian\(^1\)

\[
H_{BF} \psi_n(\mathbf{r}) \equiv (H_{kin} + V(\mathbf{p}, \mathbf{r})) \psi_n(\mathbf{r}) = E_n \psi_n(\mathbf{r}),
\]

where \(H_{kin} = m_1 + m_2 + \mathbf{p}^2/2\mu - (1/m_1^2 + 1/m_2^2) \mathbf{p}^4/8, \mu = m_1 m_2/(m_1 + m_2), m_1 \) and \(m_2 \) are the constituent quark masses, and to first order in \((v/c)^2 = \mathbf{p}^2 c^2/E^2 \simeq \mathbf{p}^2/m^2 c^2\), \(V(\mathbf{p}, \mathbf{r}) \) reduces to the standard nonrelativistic result,

\[
V(\mathbf{p}, \mathbf{r}) \simeq V(r) + V_{SS} + V_{LS} + V_T, \tag{3}
\]

with \(V(r) = V_V(r) + V_S(r) \) being the confining potential which consists of a vector and a scalar contribution, and \(V_{SS}, V_{LS} \) and \(V_T \) the spin-spin, spin-orbit and tensor terms, respectively, given by \([3]\)

\[
\begin{align*}
V_{SS} &= \frac{2}{3m_1 m_2} \mathbf{s}_1 \cdot \mathbf{s}_2 \Delta V_V(r), \\
V_{LS} &= \frac{1}{4m_1^2 m_2^2} \left(\left[(m_1 + m_2)^2 + 2m_1 m_2 \right] \mathbf{L} \cdot \mathbf{S}_+ + (m_2^2 - m_1^2) \mathbf{L} \cdot \mathbf{S}_- \right) \frac{dV_V(r)}{dr} \\
&\quad - \left[(m_1^2 + m_2^2) \mathbf{L} \cdot \mathbf{S}_+ + (m_2^2 - m_1^2) \mathbf{L} \cdot \mathbf{S}_- \right] \left(\frac{dV_S(r)}{dr} \right), \\
V_T &= \frac{1}{12m_1 m_2} \left(\frac{1}{r} \frac{dV_V(r)}{dr} - \frac{d^2V_V(r)}{dr^2} \right) S_{12}. \tag{5}
\end{align*}
\]

Here \(\mathbf{s}_+ \equiv \mathbf{s}_1 + \mathbf{s}_2, \mathbf{s}_- \equiv \mathbf{s}_1 - \mathbf{s}_2, \) and

\[
S_{12} \equiv \frac{3}{r^2} \left(\frac{(\mathbf{s}_1 \cdot \mathbf{r})(\mathbf{s}_2 \cdot \mathbf{r})}{r^2} - \frac{1}{3} \mathbf{s}_1 \cdot \mathbf{s}_2 \right). \tag{7}
\]

For constituents with spin \(s_1 = s_2 = 1/2, S_{12} \) may be rewritten in the form

\[
S_{12} = 2 \left(3\left(\frac{\mathbf{S} \cdot \mathbf{r}}{r^2} \right)^2 - \mathbf{S}^2 \right), \quad \mathbf{S} = \mathbf{S}_+ \equiv \mathbf{s}_1 + \mathbf{s}_2. \tag{8}
\]

Since \((m_1 + m_2)^2 + 2m_1 m_2 = 6m_1 m_2 + (m_2 - m_1)^2, m_1^2 + m_2^2 = 2m_1 m_2 + (m_2 - m_1)^2,\) the expression for \(V_{LS} \), Eq. (5), may be rewritten as follows,

\[
V_{LS} = \frac{1}{2m_1 m_2} \frac{1}{r} \left[\left(\frac{3}{r} \frac{dV_V(r)}{dr} - \frac{dV_S(r)}{dr} \right) + \frac{(m_2 - m_1)^2}{2m_1 m_2} \left(\frac{dV_V(r)}{dr} - \frac{dV_S(r)}{dr} \right) \right] \mathbf{L} \cdot \mathbf{S}_+. \]

\(^1\)The most widely used potential models are the relativized model of Godfrey and Isgur \([1]\) for the \(q\bar{q} \) mesons, and Capstick and Isgur \([2]\) for the \(qqq \) baryons. These models differ from the nonrelativistic quark potential model only in relatively minor ways, such as the use of \(H_{kin} = \sqrt{m_1^2 + \mathbf{p}_1^2} + \sqrt{m_2^2 + \mathbf{p}_2^2} \) in place of that given in (2), the retention of the \(m/E \) factors in the matrix elements, and the introduction of coordinate smearing in the singular terms such as \(\delta(r) \).
\[
+ m_2^2 - m_1^2 \frac{1}{4m_1^2m_2^2} \left(\frac{dV_V(r)}{dr} - \frac{dV_S(r)}{dr} \right) \mathbf{L} \cdot \mathbf{S}_- \equiv V_{LS}^+ + V_{LS}^-.
\]

Since two terms corresponding to the derivatives of the potentials with respect to \(r \) are of the same order of magnitude, the above expression for \(V_{LS}^+ \) may be rewritten as

\[
V_{LS}^+ = \frac{1}{2m_1m_2} \frac{1}{r} \left(3\frac{dV_V(r)}{dr} - \frac{dV_S(r)}{dr} \right) \mathbf{L} \cdot \mathbf{S} \left[1 + \frac{(m_2 - m_1)^2}{2m_1m_2} O(1) \right].
\]

3 D-wave spectroscopy

We now wish to apply the Breit-Fermi Hamiltonian to the D-wave mesons. By calculating the expectation values of different terms of the Hamiltonian defined in Eqs. (4),(8),(9), taking into account the corresponding matrix elements \(\langle s_1 \cdot s_2 \rangle \), \(\langle \mathbf{L} \cdot \mathbf{S} \rangle \) and \(S_{12} \), one obtains relations similar to those for the P-wave mesons \(14, 17 \).

\[
M(3D_1) = M_0 + \frac{1}{4} \langle V_{SS} \rangle - 3\langle V_{LS}^+ \rangle - \frac{1}{2}\langle V_T \rangle,
\]

\[
M(3D_3) = M_0 + \frac{1}{4} \langle V_{SS} \rangle + 2\langle V_{LS}^+ \rangle - \frac{1}{7}\langle V_T \rangle,
\]

\[
M(\rho_2) = M_0 + \frac{1}{4} \langle V_{SS} \rangle - \langle V_{LS}^+ \rangle + \frac{1}{2}\langle V_T \rangle,
\]

\[
M(\pi_2) = M_0 - \frac{3}{4} \langle V_{SS} \rangle.
\]

\[
\begin{pmatrix}
M(K'_2) \\
M(K_2)
\end{pmatrix} = \begin{pmatrix}
M_0 + \frac{1}{4} \langle V_{SS} \rangle - \langle V_{LS}^+ \rangle + \frac{1}{2}\langle V_T \rangle & \sqrt{2}\langle V_{LS}^- \rangle \\
\sqrt{2}\langle V_{LS}^- \rangle & M_0 - \frac{3}{4} \langle V_{SS} \rangle
\end{pmatrix} \begin{pmatrix}
K_{2A} \\
K_{2B}
\end{pmatrix},
\]

where \(M_0 \) stands for the sum of the constituent quark masses in either case. The \(V_{LS}^- \) term acts only on the \(I = 1/2 \) singlet and triplet states giving rise to the spin-orbit mixing between these states\(^2\), and is responsible for the physical masses of the \(K_2 \) and \(K'_2 \). Let us assume, for simplicity, that

\[
\sqrt{2}\langle V_{LS}^- \rangle(K_{2B}) \simeq -\sqrt{2}\langle V_{LS}^- \rangle(K_{2A}) \equiv \Delta.
\]

The masses of the \(K_{2A}, K_{2B} \) are then determined by relations similar to those for the \(\pi_2, \rho_2 \) above, and

\[
M(K'_2) \simeq M(K_{2A}) + \Delta, \quad M(K_2) \simeq M(K_{2B}) - \Delta, \quad \text{or} \]

\[
\Delta \simeq M(K'_2) - M(K_{2A}) \simeq M(K_{2B}) - M(K_2). \tag{11}
\]

\(^2\)The spin-orbit \(3D_2 - 1D_2 \) mixing is a property of the model we are considering; the possibility that another mechanism contributes to this mixing, such as mixing via common decay channels \(13 \), should not be ruled out, but is not included here.

\(^3\)Actually, as follows from Eq. (28) below,

\[
\frac{M(K'_2) - M(K_{2A})}{M(K_{2B}) - M(K_2)} = \frac{M(K_2) + M(K_{2B})}{M(K'_2) + M(K_{2A})} \approx \frac{2M(K_{2B})}{2M(K_{2A})} \approx 1,
\]

when both the deviations \(M(K_{2B}) - M(K_2), M(K'_2) - M(K_{2A}) \) and the mass difference \(M(K_{2A}) - M(K_{2B}) \) are small compared to \(M(K_{2A}), M(K_{2B}) \).
We thus obtain the following formulas for the masses of all eight $I = 1, 1/2$ D-wave mesons, $\pi_2, \rho, \rho_1, \rho_2, K_{2B}, K^*, K_{2A}, K^*_3$:

\[
M(1D_2) = m_1 + m_2 - \frac{3}{4\,m_1m_2}a, \quad (12)
\]
\[
M(3D_1) = m_1 + m_2 + \frac{1}{4\,m_1m_2} - \frac{3b}{m_1m_2} - \frac{c}{2m_1m_2}, \quad (13)
\]
\[
M(3D_2) = m_1 + m_2 + \frac{1}{4\,m_1m_2} - \frac{b}{m_1m_2} + \frac{c}{2m_1m_2}, \quad (14)
\]
\[
M(3D_3) = m_1 + m_2 + \frac{1}{4\,m_1m_2} + \frac{2b}{m_1m_2} - \frac{c}{7m_1m_2}, \quad (15)
\]

where a, b and c are related to the matrix elements of V_{SS}, V_{LS} and V_T (see Eqs. (4), (6), (10)) and assumed to be the same for all of the D-wave states, and we have ignored the correction to V_{LS}^+ in the formula (10) that is due to the difference in the masses of the n and s quarks. These masses, as calculated from (12)-(15), are (in the following, π_2 stands for the mass of the π_2, etc., and we assume $SU(2)$ flavor symmetry, $n = m_u = m_d$, $s = m_s$)

\[
n = \frac{5\pi_2 + 3\rho + 5\rho_2 + 7\rho_3}{40},
\]

\[
s = \frac{10K_{2A} + 6K^* + 10K_{2B} + 14K^*_3 - 5\pi_2 - 3\rho - 5\rho_2 - 7\rho_3}{40}.
\]

With the physical values of the meson masses (in GeV), $\pi_2 \cong 1.67, \rho \cong \rho_2 \cong \rho_3 \cong 1.70, \ K_{2A} \cong K_{2B} \cong 1.80, \ K^* \simeq K^*_3 \cong 1.77$, the above relations give

\[
n \cong 850 \text{ MeV}, \quad s \cong 940 \text{ MeV},
\]

so that the abovementioned correction, according to (10), is $\sim 90^2/(2 \cdot 850 \cdot 940) \cong 0.5\%$, i.e., completely negligible. It follows from (12)-(15) that

\[
\frac{15a}{m_1m_2} = 3M(3D_1) + 5M(3D_2) + 7M(3D_3) - 15M(1D_2), \quad (18)
\]
\[
\frac{60b}{m_1m_2} = 14M(3D_3) - 5M(3D_2) - 9M(3D_1), \quad (19)
\]
\[
\frac{30c}{7m_1m_2} = 5M(3D_2) - 2M(3D_3) - 3M(3D_1). \quad (20)
\]

By expressing the ratio n/s in four different ways, viz., directly from (16),(17) and dividing the expressions (18)-(20) for the $I = 1/2$ and $I = 1$ mesons by each other, one obtains the three relations,

\[
\frac{5\pi_2 + 3\rho + 5\rho_2 + 7\rho_3}{10K_{2A} + 6K^* + 10K_{2B} + 14K^*_3 - 5\pi_2 - 3\rho - 5\rho_2 - 7\rho_3} = \frac{3K^* + 5K_{2A} + 7K^*_3 - 15K_{2B}}{3\rho + 5\rho_2 + 7\rho_3 - 15\pi_2}.
\]
\[
\frac{3K^* + 5K_{2A} + 7K_3^* - 15K_{2B}}{3\rho + 5\rho_2 + 7\rho_3 - 15\pi_2} = \frac{14K_3^* - 5K_{2A} - 9K^*}{14\rho_3 - 5\rho_2 - 9\rho},
\]
\[
\frac{14K_3^* - 5K_{2A} - 9K^*}{14\rho_3 - 5\rho_2 - 9\rho} = \frac{5K_{2A} - 2K_3^* - 3K^*}{5\rho_2 - 2\rho_3 - 3\rho}.
\]

First consider Eq. (23) which may algebraically be rewritten as
\[
(K_3^* - K^*)(\rho_3 - \rho_2) = (K_3^* - K_{2A})(\rho_3 - \rho).
\]

Since the \(\rho\) and \(\rho_3\) states are mass near-degenerate, \(\rho \approx \rho_3\) (their masses are 1700\pm20 MeV and 1691 \pm 5 MeV, respectively [4]), it then follows from (24) that either \(\rho_2 \approx \rho \approx \rho_3\), or \(K^* \approx K_3^*\). The first possibility leads, through the relations (19),(20) applied to the \(I = 1\) mesons, to \(b \approx c \approx 0\), which would in turn, from the same relations for the \(I = 1/2\) mesons, imply \(K^* \approx K_{2A} \approx K_3^*\). Although this case may not be excluded on the basis of current experimental data on the meson masses, we consider simultaneous disappearance of both the spin-orbit and tensor terms as dubious. We believe, therefore, that the physical case corresponds to
\[
K^* \approx K_3^*,
\]
so that, the mass near-degeneracy of the \(1\,^3D_1\) and \(1\,^3D_3\) meson nonets in the \(I = 1\) channel, \(\rho \approx \rho_3\), implies similar near-degeneracy also in the \(I = 1/2\) channel. This result is a direct consequence of the model we are considering; the equality \(K^* = K_3^*\) follows from Eq. (24), independent of the values of the input parameters \(a, b, c, n, s\), with the proviso that the result \(\rho = \rho_3\) is borne out experimentally.

With \(K^* = K_3^*\) and \(\rho = \rho_3\), Eqs. (21) and (22) may be rewritten as
\[
(\rho - \rho_2 + K^* - K_{2A})(\pi_2 + \rho_2 + 2\rho) = 2(K^* - K_{2A})(K_{2A} + K_{2B} + 2K^*),
\]
\[
(K_{2A} - K_{2B})(\rho - \rho_2) = (K^* - K_{2A})(\rho_2 - \pi_2).
\]

One now has to determine the values of \(\rho_2\), \(K_{2A}\) and \(K_{2B}\). The remaining equation is obtained from the mixing of the \(K_{2A}\) and \(K_{2B}\) states which results in the physical \(K_2\) and \(K'_2\) mesons. Independent of the mixing angle,
\[
K_{2A}^2 + K_{2B}^2 = K_2^2 + K_2^{'2}.
\]

With (in MeV) \(\pi_2 = 1670 \pm 20\), \(\rho = \rho_3 \cong 1690\), \(K^* = K_3^* \cong 1780\), \(K_2 = 1773\), \(K'_2 = 1816\), the solution to (26)-(28) is
\[
\rho_2 = 1741 \pm 19\text{ MeV}, \quad K_{2A} = 1827 \pm 17\text{ MeV}, \quad K_{2B} = 1762 \pm 18\text{ MeV}.
\]

For this solution, we observe the sum rule
\[
K_{2A}^2 - \rho_2^2 = 0.307\text{ GeV}^2 \simeq K_{2B}^2 - \pi_2^2 = 0.316\text{ GeV}^2,
\]
which may be further generalized to include the near-degenerate \(\rho \approx \rho_3 \cong 1690\text{ MeV}\) and \(K^* \approx K_3^* \cong 1780\text{ MeV}\):
\[
K^{*2} - \rho^2 \approx K_3^{*2} - \rho_3^2 \cong 0.312\text{ GeV}^2.
\]
Relations of the type (30),(31) could have been expected by analogy with the formulas

\[K^{*2} - \rho^2 = K^2 - \pi^2, \quad K_2^{*2} - a_2^2 = K^2 - \pi^2, \quad \text{etc.}, \]

provided by either the algebraic approach to QCD \[18\] or phenomenological formulas

\[m_{1/2}^2 = 2Bn + C, \quad m_{1/2}^2 = B(n + s) + C \]

(where \(B \) is related to the quark condensate, and \(C \) is a constant within a given meson nonet) motivated by the linear mass spectrum of a nonet and the collinearity of Regge trajectories of the corresponding \(I = 1 \) and \(I = 1/2 \) states, as discussed in ref. \[19\].

Note from (29) that both the \(K_{2A} \) and \(K_{2B} \) lie in the mass intervals provided by current experimental data on the \(K_2^* \) and \(K_2 \) states, respectively. This simply means that the mixing between these states is negligible (within uncertainties provided by data), or \(\sqrt{2}\langle V_{LS} \rangle << K_{2A} - K_{2B} \). As we will see in Eqs. (32)-(34) below, this is entirely consistent with reasonable expectation based on the decrease of such matrix elements with increasing partial wave (see the corresponding \(P \)-wave results \[14\]).

Thus, the nonrelativistic constituent quark model we are considering suggests the following \(q\bar{q} \) assignments for the isovector and isodoublet states of the \(D \)-wave meson nonets:

\[
\begin{align*}
\pi_2 &\simeq 1680 \text{ MeV}, \quad K_{2B} \simeq 1770 \text{ MeV}, \\
\rho &\simeq 1690 \text{ MeV}, \quad K^* \simeq 1780 \text{ MeV}, \\
\rho_2 &\simeq 1730 \text{ MeV}, \quad K_{2A} \simeq 1820 \text{ MeV}, \\
\rho_3 &\simeq 1690 \text{ MeV}, \quad K^* \simeq 1780 \text{ MeV}.
\end{align*}
\]

Let us now extract the matrix elements of the spin-spin, spin-orbit, and tensor interaction in our model. As follows from (18)-(20) and the above relations for the masses of the \(I = 1, 1/2 \) mesons,

\[
\begin{align*}
\langle V_{SS} \rangle &\simeq \frac{a}{n^2} \simeq \frac{a}{ns} \simeq 23.3 \text{ MeV}, \quad (32) \\
\langle V_{LS}^+ \rangle &\simeq \frac{b}{n^2} \simeq \frac{b}{ns} \simeq -3.3 \text{ MeV}, \quad (33) \\
\langle V_T \rangle &\simeq \frac{c}{n^2} \simeq \frac{c}{ns} \simeq 46.7 \text{ MeV}. \quad (34)
\end{align*}
\]

Also, \(\langle V_{LS}^- \rangle \simeq 0 \), since the \(K_{2A} - K_{2B} \) mixing angle is close to zero. Therefore, the spin-spin and tensor terms of the Hamiltonian (2) are of the same order of magnitude, and the spin-orbit terms are negligibly small.

One may now estimate the masses of the isoscalar mesons of the four nonets assuming that they are pure \(s\bar{s} \) states. Applying (12)-(15) with \(m_1 = m_2 = s \), we find

\[
\eta_2 \simeq 1860 \text{ MeV}, \quad \phi \simeq \phi_3 \simeq 1870 \text{ MeV}, \quad \phi_2 \simeq 1910 \text{ MeV}. \quad (35)
\]

The value 1870 is within 1% of the physical value of the \(\phi_3 \) mass, \(1854 \pm 7 \text{ MeV} \) \[1\]. There exists an experimental candidate for the \(\eta_2(1860) \) but it was omitted from the
recent Meson Summary Table as “needs confirmation”. This state indicated in PDG as the $\eta_2(1870)$\cite{PDG} has been seen by the Crystal Ball collaboration in the final state $\eta \pi^0 \pi^0$ of a $\gamma \gamma$ reaction as a resonant structure having mass and width $1881 \pm 32 \pm 40$ MeV, $221 \pm 92 \pm 44$ MeV, respectively\cite{CrystalBall}, and as a similar structure in $\gamma \gamma \to \eta \pi^+ \pi^-$ by the CELLO collaboration, with mass and width 1850 ± 50 MeV, ~ 360 MeV, respectively\cite{CELLO}.

The masses of the remaining isoscalar $n\bar{n}$ states of the four nonets may be calculated by assuming that all four nonets are ideally mixed and using the Sakurai mass formula for an ideally mixed nonet\cite{Sakurai}.

$$M^2(I = 1) + M^2(I = 0, n\bar{n}) + 2M^2(I = 0, s\bar{s}) = 4M^2(I = 1/2).$$

(36)

In this way, one obtains

$$\eta_2' \simeq 1670 \text{ MeV}, \quad \omega \simeq \omega_3 \simeq 1680 \text{ MeV}, \quad \omega_2 \simeq 1720 \text{ MeV}.$$

(37)

The value 1680 is within 1\% of the physical value of the ω_3 mass, 1667 \pm 4 MeV, and 2\% of that of the ω, 1649 \pm 24 MeV\cite{PDG}.

4 Concluding remarks

We have shown that a nonrelativistic constituent quark model displays a common mass near-degeneracy of the 1^3D_1 and 1^3D_3 meson nonets in the isovector and isodoublet channels, and suggests therefore that the $K^*(1680)$ cannot be the $I = 1/2$ member of the 1^3D_1 nonet. The mass of the true member of the latter is estimated to be $\simeq 1780$ MeV. This may support the assumption of Tornqvist that the $K^*(1680)$ should resolve into two separate resonances which are the $I = 1/2$ members of the 1^3D_1 and 2^3S_1 nonets. The analysis of the LASS data on the reaction $K^-p \to \bar{K}^0\pi^-p$ done by Bird\cite{Bird} reveals a resonant structure with mass 1678 ± 64 MeV and a huge width of 454 ± 270 MeV; the two abovementioned states may be associated with its upper- and lower-mass parts, respectively.

The conclusion that the $K^*(1410)$ does not belong to the 2^3S_1 nonet agrees with the results obtained by one of the authors in ref.\cite{Ko} on the basis of the linear spectrum of a meson nonet discussed in\cite{Carlstroem}, which does not support the $K^*(1410)$ meson being the member of the 2^3S_1 nonet. (In\cite{Ko}, out of the two, $K^*(1410)$ and $K^*(1680)$, the preference being the $2^3S_1 I = 1/2$ state was given to the latter). If this is actually the case, and the true member of the 2^3S_1 nonet is, e.g., the low-mass part of the broad $K^*(1680)$, in agreement with Tornqvist, the question immediately arises as to what the real nature of this state is, if it does exist. A possible answer to this question may be the subject of subsequent investigation.

We close with briefly summarizing our findings:

1. A nonrelativistic constituent quark model displays a common mass near-degeneracy of the 1^3D_1 and 1^3D_3 meson nonets in the $I = 1$ and $1/2$ channels, and suggests therefore that the $K^*(1680)$ cannot be the $I = 1/2$ member of the 1^3D_1 nonet.
2. When matched to current experimental data on the meson masses, this model shows no mixing between the $I = 1/2$ states of the 1^3D_2 and 1^1D_2 nonets. The spin-orbit terms of the Hamiltonian appear to be negligibly small.

3. The results suggest a sum rule

$$M^2(I = 1/2) - M^2(I = 1) \approx \text{const} \simeq 0.31 \text{ GeV}^2,$$

which holds for all four D-wave meson nonets.

4. The results also suggest that the $\eta_2(1870)$ which is at present omitted from the Meson Summary Table, is the $I = 1 s\bar{s}$ state of the 1^1D_2 nonet.

5. The $q\bar{q}$ assignments for the P-wave nonets obtained on the basis of the results of the work, are

- $1^1D_2 \; J^{PC} = 2^{--}$, $\pi_2(1680), \eta_2'(1670), \eta_2(1860), K_{2B}(1770)$
- $1^3D_1 \; J^{PC} = 1^{--}$, $\rho(1690), \omega(1680), \phi(1870), K^*(1780)$
- $1^3D_2 \; J^{PC} = 2^{--}$, $\rho_2(1730), \omega_2(1720), \phi_2(1910), K_{2A}(1820)$
- $1^3D_3 \; J^{PC} = 3^{--}$, $\rho_3(1690), \omega_3(1680), \phi_3(1870), K^*_3(1780)$

Acknowledgments

Correspondence of one of the authors (L.B.) with L.P. Horwitz during the preparation of this work is greatly acknowledged.

References

[1] For a review, see S. Meshkov, in Proceedings of the Aspen Winter Physics Conference, Aspen, CO, Jan 5-18, 1986; C.A. Heusch, in Proceedings of the 27th International Symposium on Multiparticle Dynamics, Seewinkel, Austria, June 16-20, 1986; S. Cooper, in Proceedings of the 23rd International Conference on High Energy Physics, Berkeley, CA, July 16-23, 1986; F.E. Close, Rep. Prog. Phys. 51 (1988) 833

[2] M.S. Chanowitz, Phys. Lett. B 187 (1987) 409

[3] M.R. Pennington, Nucl. Phys. B (Proc. Suppl.) 21 (1991) 37

[4] Particle Data Group, Phys. Rev. D 54 (1996) 1

[5] Ref. [4], p. 99

[6] N.A. Törnqvist, Nucl. Phys. B (Proc. Suppl.) 21 (1991) 196

[7] D. Leith and B. Ratcliff, in Proceedings of the 3rd International Conference on Hadron Spectroscopy, “Hadron 89”, Ajaccio, France, 1989; ed. F. Binon et al., Editions Frontieres (Gif-sur-Yvette) C29 (1990) 3, 15
[8] A. Etkin et al., Phys. Rev. D 22 (1980) 42
[9] M. Baubillier et al., Nucl. Phys. B 202 (1982) 21
[10] A. Donnachie and H. Mirzaie, Z. Phys. C 33 (1987) 693
A. Donnachie and A. Clegg, Preprint CERN TH-5210/88
[11] S. Godfrey and N. Isgur, Phys. Rev. D 32 (1985) 189
[12] G.W. Brandenburg et al., Phys. Rev. Lett. 36 (1976) 703
R.K. Carnegie et al., Nucl. Phys. B 127 (1977) 509
M.G. Bowler, J. Phys. G 3 (1977) 775
[13] H.J. Lipkin, Phys. Lett. B 72 (1977) 249
[14] L. Burakovsky and T. Goldman, Towards resolution of the enigmas of P-wave meson spectroscopy, to be published
[15] W. Lucha, F.F. Schöberl and D. Gromes, Phys. Rep. 200 (1991) 127
[16] S. Capstick and N. Isgur, Phys. Rev. D 34 (1986) 2809
[17] H.G. Blundell, S. Godfrey and B. Phelps, Phys. Rev. D 53 (1996) 3712
[18] S. Oneda and K. Terasaki, Prog. Theor. Phys. Suppl. 82 (1985) 1
[19] L. Burakovsky and L.P. Horwitz, Found. Phys. Lett. 9 (1996) 561, ibid. in press; Nucl. Phys. A 609 (1996) 585, ibid. in press
[20] K. Karch et al. Phys. Lett. B 249 (1990) 353
K.H. Karch, Observation of a new $\eta\pi^0\pi^0$ resonance at 1900 MeV/c2 in two photon reactions (in German), DESY-Internal Rep. F31-91-01
K. Karch et al., Z. Phys. C 54 (1992) 33
[21] M. Feindt, Some snapshots of new CELLO and Crystal Ball results on gamma gamma reactions, Preprint DESY-90-128; presented in a talk at 25th Int. Conf. on High Energy Physics, Singapore, Aug. 2-8, 1990
[22] J.J. Sakurai, Currents and Mesons, (University of Chicago Press, Chicago, 1969)
[23] F. Bird, Report SLAC-332 (1989)
[24] L. Burakovsky and L.P. Horwitz, Nucl. Phys. A 609 (1996) 585