Global and Specific Translational Control by Rapamycin in T Cells Uncovered by Microarrays and Proteomics

Received for publication, February 28, 2002
Published, JBC Papers in Press, April 9, 2002, DOI 10.1074/jbc.M202014200

Annabelle Grolleau‡, Jessica Bowman‡, Bérengère Pradet-Balade§, Eric Puravṣ, Samir Hanash¶, Jose A. Garcia-Sanz§, and Laura Beretta‡¶

From the ‡Department of Microbiology and Immunology, and the §Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109 and the ¶Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid E-28049, Spain

Rapamycin has been shown to affect translation. We have utilized two complementary approaches to identify genes that are predominantly affected by rapamycin in Jurkat T cells. One was to compare levels of polysome-bound and total RNA using oligonucleotide microarrays complementary to 6,300 human genes. Another was to determine protein synthesis levels using two-dimensional PAGE. Analysis of expression changes at the polysome-bound RNA levels showed that translation of most of the expressed genes was partially reduced following rapamycin treatment. However, translation of 136 genes (6% of the expressed genes) was totally inhibited. This group included genes encoding RNA-binding proteins and several proteasome subunit members. Translation of a set of 159 genes (7%) was largely unaffected by rapamycin treatment. These genes included transcription factors, kinases, phosphatases, and members of the RAS superfamily. Analysis of [35S]methionine-labeled proteins from the same cell populations using two-dimensional PAGE showed that the integrated intensity of 111 of 830 protein spots changed in rapamycin-treated cells by at least 3-fold (70 increased, 41 decreased). We identified 22 affected protein spots representing protein products of 16 genes. The combined microarray and proteomic approach has uncovered novel genes affected by rapamycin that may be involved in its immunosuppressive effect and other genes that are not affected at the level of translation in a context of general inhibition of cap-dependent translation.

Rapamycin is a macrolide antibiotic originally isolated from Streptomyces hygroscopicus (1). It is a potent immunosuppressant with therapeutic applications in the prevention of organ allograft rejection and in the treatment of autoimmune disease (2–6). The importance of rapamycin as an immunosuppressant is not limited to T cells, since this drug inhibits the proliferation of many mammalian cell types as well as that of yeast cells (7).

Rapamycin blocks progression of the cell cycle at the G₁ phase by binding to FKBP12 (FK506-binding protein) (10, 11). The rapamycin-FKBP12 complex inhibits mTOR (mammalian target of rapamycin), also referred to as FRAP (FKBP-rapamycin-associated protein) (9). Targets of mTOR include 4E-BP1 and the 40 S ribosomal protein S6 kinase, p70s6k (12–16). tor-associated protein) (9). Targets of mTOR include 4E-BP1 and the 40 S ribosomal protein S6 kinase, p70s6k (12–16).

To determine rapamycin-sensitive transcripts, we used a methodology based on the separation of polysomes from mRNPs using sucrose gradient centrifugation followed by oligonucleotide microarray hybridization. This technology has been recently adapted for studies of translational control (21–23) and is based on the assumption that translationally inactive mRNAs are present as free cytoplasmic mRNPs, whereas actively translated mRNAs are contained within polysomes. This enables identification of mRNAs specifically mobilized from free mRNPs onto polysomes and vice versa in T cells in response to rapamycin. A complementary approach used proteomic analysis to systematically analyze gene expression in T cells in response to rapamycin.

EXPERIMENTAL PROCEDURES

Cell Culture—The human Jurkat T cell clone E6–1 (American Type Culture Collection, Manassas, VA) was grown in the presence of 10% heat-inactivated fetal calf serum, using RPMI 1640 medium supplemented with 2 mM l-glutamine, 10 mM Hepes buffer, and gentamycin (20 μg/ml). The day prior to performing the polysome profiles, the cells

* This work was supported by National Institutes of Health Grant 1RO1-AI50896 (to L. B.) and an EU TMR network grant (Contract ERBFMRXCT980197 (to J. A. G. S.)). The Department of Immunology and Oncology was founded and is supported by the Spanish Research Council (Consejo Superior de Investigaciones Científicas) and Ame- sham Biosciences. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109. Tel.: 734-615-5964; Fax: 734-615-6150; E-mail: beretta@umich.edu.

‡ The abbreviations used are: IL, interleukin; eIF4E, eukaryotic initiation factor 4E; IRES, internal ribosome entry site; MAP, mitogen-activated protein.
and total protein extract was analyzed by Western blotting using polyclonal antibody to 4E-BP1 followed by monoclonal anti-actin.

1.5

the cell proliferation assay, cells were seeded at an initial density of 1.5 × 10⁵ cells/ml without or with 20 ng/ml of rapamycin and were cultured for the indicated times without any change of media. Viable cells were counted after 24, 48, and 72 h of culture. The shown concentrations are the mean of three separate experiments, and the error bars indicate the S.D. B, protein synthesis rates in T cells. T cells (2 × 10⁶) were preincubated 1 h in methionine-free medium. Rapamycin was added to the cells together with [35S]methionine (100 µCi). Cells were harvested at 4 and 8 h, and radioactivity incorporated into trichloroacetic acid–precipitable material was measured. The effect of rapamycin is expressed as percentage of the control. The experiment was carried out three times, and the error bars indicate S.D. C, effect of rapamycin in 4E-BP1 phosphorylation. After 1- and 4-h exposure to rapamycin, T cells were lysed, and total protein extract was analyzed by Western blotting using polyclonal antibody to 4E-BP1 followed by monoclonal anti-actin.

were seeded in fresh medium at a density of 10⁵ cells/ml. When indicated, cells were incubated with 20 ng/ml rapamycin (Calbiochem). For the cell proliferation assay, cells were seeded at an initial density of 1.5 × 10⁵ cells/ml with or without rapamycin and cultured for 3 days without any change of media. Cell proliferation was monitored every 24 h by determining cell number with a Coulter counter ZM equipped with a Coultronic 256 channelizer (Hialeah, FL).

Metabolic Labeling—Jurkat cells were preincubated at 37 °C for 1 h in methionine-free RPMI 1640 medium. Rapamycin and [35S]methionine (100 µCi; PerkinElmer Life Sciences) were added together for the indicated times, and the cells were either lysed in 20 mM Tris-HCl, pH 7.5, buffer containing 5 mM EDTA and 100 mM KCl for the measure of radioactivity incorporation rates after trichloroacetic acid precipitation or were processed for two-dimensional PAGE analysis.

Western Blotting Analysis of 4E-BP1—Untreated and rapamycin-treated Jurkat cells were rinsed twice with ice-cold phosphate-buffered saline and lysed by successive freeze-thaw cycles, in 20 mM Tris-HCl, pH 7.5, buffer containing 5 mM EDTA and 100 mM KCl. The homogenate was centrifuged at 6000 × g for 10 min, and the supernatant was collected. Proteins (100 µg) were loaded onto a 15% polyacrylamide gel, separated, and transferred onto a 0.22-µm nitrocellulose membrane (Schleicher and Schuell). Following transfer, membranes were incubated for 2 h in blocking buffer containing 5% milk in 10 mM Tris-HCl, pH 7.5; 2.5 mM EDTA, pH 8; 50 mM NaCl. The membranes were incubated for 2 h with rabbit polyclonal antisera against 4E-BP1 (TEBU, Le Peray-en-Yvelines, France) and actin (ICN Biomedical, Aurora, OH) at a dilution of 1:1000. The membranes were then incubated for 1 h with horseradish peroxidase-conjugated anti-rabbit antibodies, at a 1:2000 dilution. Immunodetection was realized by ECL (Amersham Biosciences).

Two-dimensional PAGE—The procedure followed was as previously described (24). Cells were solubilized in 200 µl of lysis buffer containing 9.5 M urea (Bio-Rad), 2% Nonidet P-40, 2% β-mercaptoethanol, 2% carrier ampholytes, pH 4–8 (Gallard/Schlessinger, Carle Place, NY), and 10 mM phenylmethanesulfonyl fluoride. Aliquots containing 5 × 10⁶ cells were applied onto isofocusing gels. Isoelectric focusing was conducted using pH 4–8 carrier ampholytes at 700 V for 16 h, followed by 1000 V for an additional 2 h. The first dimension gel was loaded onto the second dimension gel, after equilibration in 125 mM Tris, pH 6.8, 10% glycerol, 2% SDS, 1% dithiothreitol, and bromphenol blue. For the second dimension separation, a gradient of 11–14% of acrylamide (Serva; Crescent Chemicals, Hauppauge, NY) was used. Gels were then either silver-stained or dried and exposed to an x-ray film. The gels were digitized at 1024 × 1024-pixel resolution using an Eastman Kodak Co. CCD camera. Spots were detected and quantified with Visage software (Genomic Solutions, Ann Arbor MI) as described (25).

RNA Isolation and Polysome Fractionation—Total RNA was isolated using Trizol reagent (Invitrogen) and quantitated by absorbance at 260 nm. Cytoplasmic RNA was obtained by lysing cells in 1 ml of polysome buffer containing 10 mM Tris-HCl, pH 8.0, 140 mM NaCl, 1.5 mM MgCl₂, 0.5% Nonidet P-40, and a ribonuclease inhibitor, RINasIn (500 units/ml; Promega, Madison, WI). After the removal of nuclei, the cytosolic supernatant was supplemented with 150 µg/ml cycloheximide, 665 µg/ml heparin, 20 mM dithiothreitol, and 1 mM phenylmethanesulfonyl fluoride. Mitochodria and membrane debris were removed by centrifugation, and postmitochondrial supernatant was applied directly to sucrose gradient for polysome separation as described previously (26). Briefly, 1 ml of postmitochondrial supernatant was overlaid onto a 15–40% sucrose gradient and spun at 38,000 rpm for 2 h at 4 °C in a SW41Ti rotor (Beckman Instruments, Inc.). Fractions (500 µl) were collected from the bottom of each gradient and deproteinized with 100 µg of proteinase K in presence of 1% SDS and 10 mM EDTA. After Trizol extraction, the amount of RNA in each fraction was determined photometrically, and RNA integrity was controlled by electrophoresis analysis on denaturing 1.2% formaldehyde-agarose gels and subsequent Northern blot. After RNA transfer to nylon membranes (GeneScreen; PerkinElmer Life Sci-
ences) and UV cross-linking, the distribution of 18 and 28 S rRNAs was visualized by methylene blue staining of the membranes (see Fig. 2). Fractions 10–19 and fractions 1–9 corresponding to polysome-bound and nonpolysome RNA, respectively, were pooled from each sucrose gradient according to the distribution profile. Poly(A+/-H11001) RNA was isolated from total and polysome-bound RNA by using oligo(dT) resin (Oligotex; Qiagen, Chatsworth, CA).

Preparation of cRNA, Gene Chip Hybridization, and Data Analysis—Preparation of cRNA, hybridization, and scanning of the HuGeneFL arrays were performed according to the manufacturer’s protocol (Affymetrix, Santa Clara, CA) and as previously described (27). Briefly, 5 μg of poly(A+) from both total and polysome-bound RNA were converted into double-stranded cDNA by reverse transcription using a cDNA synthesis kit (Superscript Choice System; Invitrogen). Following second

GenBank™ accession no.	Gene description	-fold change
Up-regulated		
Signaling/Growth control		
Z36714	Cyclin F	~11.6
U47414	Cyclin G2	6.1
U41804	IL-1 receptor-like 1 ligand	~4.6
U53174	RAD9	~3.8
X61123	BTG1	~3.4
U68485	Bridging integrator 1	~2.9
U53822	MAD 1-like 1	2.7
Z15065	CENPE	2.6
Z22630	Protein-tyrosine kinase Syk	2.4
X77909	Iκ-B-like 1	2.1
Nuclear proteins		
U15655	Ets2 repressor factor	~3.3
U64675	BS-63	2.5
Membrane proteins		
X83492	Fas/Apo-1	3.3
M58286	Tumor necrosis factor receptor	~3.2
U97502	Butyrophilin	3.1
X7351	Interferon-induced transmembrane protein 2	2.5
M62762	Vacular H+ ATPase proton channel subunit	2.1
Metabolism/Structure		
Z14093	Branched chain decarboxylase α-subunit	6.8
L60704	Dynamin 1	~5.9
Down-regulated		
Signaling/Growth control		
D13639	Cyclin D2	~3.3
AB000449	Vaccinia related kinase 1 (VRK1)	~2.5
M15353	Translation initiation factor 4E (eIF4E)	~2.4
AB003103	26 S proteosome subunit p55	~2.4
D21090	RAD23B	~2.3
X83368	Phosphatidylinositol 3-kinase γ	~2.3
AB003698	Cdc7-related kinase	~2.1
D11428	Peripheral myelin protein 22 (PMP22)	~2.1
M74524	Ubiquitin-conjugating enzyme E2A	~2.1
AB003102	26 S proteosome subunit p44.5	~2
AB000177	26 S proteosome subunit p27	~2
Nuclear proteins		
M85085	Cleavage stimulation factor CSTF2	~3
Y12393	Karyopherin α-4	~2.9
D88003	RAP250	~2.6
AB000468	Ring finger protein 4	~2.3
D87448	Topoisomerase (DNA) II-binding protein	~2.3
X79200	Synovial sarcoma, X breakpoint 2 (SSX2)	~2.3
U80669	NKX3A	~2.1
Secreted proteins		
M60278	Heparin-binding EGF-like growth factor (DTR)	~2

TABLE I
Transcriptionally regulated mRNAs in rapamycin-treated T cells
Rapamycin-modulated genes were classified according to their known function and -fold change and represented in clusters containing functionally related genes. ~, -fold change calculation for which the smaller value is replaced by an estimate of the minimum value for detectable transcripts.
and RNA transcript levels for different genes were determined using oligonucleotide arrays. Transcripts for ~2,800 genes (44%) of the 6,300 unique genes assessed were expressed in Jurkat T cells. We identified a small subset of genes (51) that differed in their expression levels during rapamycin treatment, by 2-fold or greater, in both experiments. The genes identified are presented in Table I, with 19 up-regulated and 32 down-regulated genes. Regulated genes included several growth-related genes that may contribute to the antiproliferative effect of rapamycin. Indeed, negative regulators of cell growth such as cyclin G2, MADI-like 1, BTG1, bridging integrator 1, Syk, and CENPE were up-regulated, with a concomitant decrease in genes involved in cell cycle progression such as cyclin D2, Cdc7-related kinase, phosphatidylinositol 3-kinase γ, CSTF2, and eIF4E. Up-regulation of IκB-like 1, Fas, and tumor necrosis factor receptor was also observed. Remarkably, expression of three subunits of the 26S proteasome was decreased.

Identification of Translationally Regulated Genes by Rapamycin, Using Oligonucleotide Arrays—To identify genes whose expression is translationally regulated, we combined a sucrose gradient separation of polysomes from mRNPs with microarray analysis. Polysome-bound mRNAs (Fig. 2, fractions 10–19) were purified from Jurkat cells untreated or treated with rapamycin for 4 h, and poly(A)− mRNAs were isolated. Two independent experiments were performed, and polysome-bound RNA transcript levels were determined using oligonucleotide arrays. Translation of the large majority of the genes was partially reduced following rapamycin treatment. However, translation of 136 genes was strongly inhibited (by 90% or more) in both experiments (Table II). Genes known to be highly repressed by rapamycin changed their expression accordingly in our analysis. This group included numerous ribosomal proteins and elongation factor proteins. However, for most of the 136 genes uncovered, their high sensitivity to rapamycin was unknown. These novel changes included other RNA-binding proteins such as translation initiation factors 4A and 5A and four genes encoding for nuclear ribonucleoproteins. Remarkably, translation of seven genes encoding proteasome subunits was fully inhibited following rapamycin treatment. Translation of prothymosin α, a gene associated with proliferation of T cells, was also strongly repressed by rapamycin. Microarray analysis of the non-polysome gradient fractions (Fig. 2, fractions 1–9) were also performed for both experiments and demonstrated that the 136 strongly repressed transcripts were not lost or degraded during rapamycin treatment or polysome separation.

Transcripts levels for 159 genes remained bound to polysome following rapamycin treatment, suggesting that translation of these genes was not affected by rapamycin. Table III lists the genes whose mRNAs were associated with polysomes from both untreated and rapamycin-treated cells. Notably, this list includes mRNAs encoding a large number of kinases and phosphatases as well as DNA-binding proteins. Transcription factors and genes involved in DNA and RNA synthesis included AR1, TFID, TIFFE, TFIIF, E2F, c-MYB, YY1, CREBP1, HSF1, Rb1, ILF1, LIM domain only 4, RNA polymerase II, DNA polymerase α-subunit, and replication factors C1 and C5. Translation of several genes encoding for kinases and phosphatases, such as four members of the mitogen-activated protein kinase family, the PI-3 kinase regulatory subunit, protein kinase C-ε, p72vck, and protein phosphatases 1, 2, and 4, was unaffected by rapamycin. Finally, transcripts for nine members of the Ras superfamily including N-Ras, Rap1a, Rap1b, Rap4, Rap5c, Rac1, and RhoG remained bound to polysomes in rapamycin-treated cells.
Table II

GenBank™ accession no.	Gene description	GenBank™ accession no.	Gene description
Signaling/Growth control			
D00761	Proteasome subunit, β type, 1	Z26876	Ribosomal protein L38
D26598	Proteasome subunit, β type, 3	Z12962	Ribosomal protein L41
D26600	Proteasome subunit, β type, 4	M14199	Lamin receptor 1 (67 kDa, ribosomal protein SA) (LAMR1)
D29012	Proteasome subunit, β type, 6	X56997	Ubiquitin ribosomal protein fusion product 1
D38048	Proteasome subunit, γ type, 7	D13748	Translation initiation factor 4A, isoform 1 (eIF4A1)
D00763	Proteasome subunit, α type, 4	J04617	Translation elongation factor 1 α 1
X59417	Proteasome subunit, α type, 6	X03689	Translation elongation factor TU
D38047	Proteasome 2S subunit, non-ATPase, 8	X12517	Small nuclear ribonucleoprotein polypeptide C (snRNP)
D23662	Ubiquitin-like protein	U15008	Small nuclear ribonucleoprotein D2 (snRNP2)
M31469	RAN, RAS oncogene family member	M25372	Small nuclear ribonucleoprotein polypeptide F (snRNP)
L20688	Rho GDP dissociation inhibitor	D13413	Heterogeneous nuclear ribonucleoprotein U (hnRPU)
L32866	Apoptosis inhibitor 4 (survivin)	D28423	Pre-mRNA splicing factor SRp20
M31303	Oncoprotein 18 (Op18), stathmin	X71428	Fus
M22382	Heat shock 60-kDa protein 1	M68058	Nucleolin
X15183	Heat shock 90-kDa protein 1, α	M25613	Nuclearum (nucleolar phosphoprotein B23, numatin)
J04988	Heat shock 90-kDa protein 1, β	U50839	RNA binding motif protein 6
U48296	Protein-tyrosine phosphatase, type IVA,		
X52479	Protein kinase C		
M17733	Thymosin β-4		
X52851	Cyclophilin A		
RNA metabolism			
M17885	Ribosomal protein, large, P0	U09477	p53-binding protein
X17206	Ribosomal protein S2	M14483	Prothymosin α member 1
M54711	Ribosomal protein S3A	D17268	Wiln tumor-related protein
X55715	Ribosomal protein S3	J05614	Proliferating cell nuclear antigen (PCNA)
E8876	Casein kinase II	D16851	S-Oxo-dGTPase
M52668	MAP kinase kinase kinase kinase 5 (MAPK5)	U96915	Sin3-associated polypeptide p18 (SAP18)
U77129	MAP kinase kinase kinase 5	D63874	High-mobility group, protein 1 (HMGI)
M84332	ADP-ribosylation factor 1	D21205	Zinc finger protein 147
L38490	ADP-ribosylation factor 4-like	U86602	Nucleolar protein
M17733	Thymosin β-4	U18271	Thymopoietin
X52851	Cyclophilin A		
Cell surface proteins			
M21498	Guanine nucleotide-binding protein (G protein), β polypeptide 2-like 1	M21498	\(5^±\)-binding protein
D15057	Defender against cell death 1 (DAD1)	S71824	Neural cell adhesion molecule 1 (NCAM1)
D29963	CD151	CD151	
M31525	Major histocompatibility complex, class II, DN α (HLA-DNA)	M31525	Major histocompatibility complex, class II, DN α (HLA-DNA)
D49824	Major histocompatibility complex, class I, B (HLA-B)	U11370	Proteasocerin 1 (cathderin-like 1)
Secreted proteins			
S86297	β-2-Microglobulin	D14838	Fibroblast growth factor 9 (FGF9)
U50839	RNA binding motif protein 6	M37435	Colony-stimulating factor 1 (CSF1)
Metabolism/Structure			
M13934	Laminin receptor 1 (67 kDa, ribosomal protein SA)	X73460	Ribosomal protein L3
L11566	ATP synthase		
L39522	ATP synthase		
L19739	ATP synthase		
U14971	Ribosomal protein S9		
U19147	Ribosomal protein S10		
L01124	Ribosomal protein S13		
M58458	Ribosomal protein S4, X-linked		
U14970	Ribosomal protein S5		
M77232	Ribosomal protein S6		
Z25749	Ribosomal protein S7		
X57247	Ribosomal protein S8		
U14971	Ribosomal protein S9		
U14972	Ribosomal protein S10		
L01124	Ribosomal protein S13		
M58458	Ribosomal protein S4, X-linked		
U14970	Ribosomal protein S5		
M77232	Ribosomal protein S6		
Z25749	Ribosomal protein S7		
X57247	Ribosomal protein S8		
Translationally repressed mRNAs in rapamycin-treated T cells			
Not classified			
D21261	KIAA0120		
D31885	KIAA0069		
D23673	KIAA0864		
D23673	KIAA0864		

Translational Control by Rapamycin

22179
TABLE III
Translational Control by Rapamycin

GenBank™ accession no.	Gene description	GenBank™ accession no.	Genesescription
Signaling/Growth control			
X16901	General transcription factor II F, polypeptide 2		
M64673	Heat shock transcription factor 1 (HSF1)		
M77988	Transcription factor YY1		
M98853	Transcription factor FLI-1		
U24576	Translation factor LIM domain only 4		
M13666	c-Myb		
X15875	ATF2/CREBP1		
M19701	Retinoblastoma 1		
X64229	DEK oncoprotein		
U15655	Ets2 repressor factor		
X26039	Centeronin		
M11507	Transcription factor 20 (AR1)		
X05276	Tropomyosin 4		
M37197	CCAAT-box-binding transcription factor		
M11058	3-Hydroxy-3-methylglutaryl-coenzyme A reductase		
X83928	Transcription factor TFIID		
X01691	Annexin V		
M34181	cAMP-dependent protein kinase catalytic subunit		
U58522	Ubiquitin-conjugating enzyme E2D 1		
X65362	Sodium channel 1 isoform 2		
D88378	Proteasomal inhibitor subunit 8		
X78140	Ubiquitin-conjugating enzyme E2		
M74091	Cyclin C		
X61587	Rho G		
M19845	Bip/GPR78		
D38873	Protein-tapsole phosphatase, non-receptor type 2		
X78140	Ubiquitin-conjugating enzyme E2D 1		
M38282	Sdc-c4 like		
X82554	S-phase response (cyclin-related)		
Y08915	Irunamgulin binding protein 1		
D90070	RNA-binding protein 1 Nova		
U18242	Calcium-modulating cyclophilin ligand		
D26069	Centaurin β 2		
U16811	BCL2-antagonist factor 1 (BAX1)		
S78085	Programmed cell death 2		
U85410	Mad2		
X17576	NCK-α		
U40038	GTP-binding protein α q		
U23435	Abl-binding protein 3		
Z38851	S100 calcium-binding protein A10		
RNA metabolism			
X64707	Ribosomal protein L13		
U23946	RNA binding motif protein 5		
U26032	Translation initiation factor eIF-2α		
L19161	Translation initiation factor eIF-2γ		
U94855	Translation initiation factor 3 subunit 5		
M75715	Translation termination factor 1		
X95384	Translation inhibitor protein p14.5		
X85237	Splicing factor 3a, subunit 1 (SAP14)		
M90104	Splicing factor SC35		
U77664	Ribonuclease P		
M67468	Fringe X mental retardation 1 (FRMI)		
Y11651	RNA 3′-terminal phosphate cyclase		
Nuclear proteins			
Y08765	Zinc finger protein 162		
U09825	Zinc finger protein 173		
U37251	Zinc finger protein 177		
X95808	Zinc finger protein 261		
X38779	Zinc finger protein, X-linked		
M37197	CCAT2-box-binding transcription factor		
U19345	Translation factor 20 (AR1)		
X83928	Translation factor TFID		
X63469	Translation factor TFIIE β		
U15641	Translation factor E2F4		

Translationally unaffected mRNAs in rapamycin-treated T cells

- **Membrane proteins**
 - Z17227 | Interleukin-10 receptor, β |
 - M58286 | Tumor necrosis factor receptor |
 - X68397 | TPR (translocated) |
 - U05237 | Fetα/APO-1 |
 - U14680 | BRCA1 |
 - U17898 | Nuclear autoantigen |
 - X86998 | Adenovirus 5 E1a-binding protein |
 - U90547 | Ro/SBA ribonucleoprotein homolog |
 - X85133 | Retinoblastoma-binding protein 6 |
 - D80000 | SMC1-like 1 |

- **Secreted proteins**
 - M32904 | Metalloproteinase inhibitor 2 |
 - U41745 | Platelet-derived growth factor-associated protein 1 |

- **Metabolism/Structure**
 - M98045 | Polyproline synthase |
 - M34335 | Spermidase synthase |
 - X09825 | Sphingosine synthase |
 - M11507 | Transferrin receptor (CD71) |
 - X64647 | T cell receptor α |
 - U51857 | Golgi autoantigen |
 - U51840 | Lysozyme-associated membrane protein 2 |
 - U01691 | Annexin V |
 - X65362 | Sodium channel 1 |
 - U18009 | Vesicle amine transporter protein 1 |
 - S98753 | Lysosomal-associated membrane protein 2 |
 - X92396 | Synaptophysin 1 |
 - X68194 | Synaptophysin-like protein |
 - X92098 | Repression 5-phosphate isomerase |
 - L25441 | Protein geranylgeranyltransferase type I |

- **RNA metabolism**
 - X64707 | Ribosomal protein L13 |
 - U23946 | RNA binding motif protein 5 |
 - U26032 | Translation initiation factor eIF-2α |
 - L19161 | Translation initiation factor eIF-2γ |
 - U94855 | Translation initiation factor 3 subunit 5 |
 - M75715 | Translation termination factor 1 |
 - X95384 | Translation inhibitor protein p14.5 |
 - X85237 | Splicing factor 3a, subunit 1 (SAP14) |
 - M90104 | Splicing factor SC35 |
 - U77664 | Ribonuclease P |
 - M67468 | Fringe X mental retardation 1 (FRMI) |
 - Y11651 | RNA 3′-terminal phosphate cyclase |

- **Nuclear proteins**
 - Y08765 | Zinc finger protein 162 |
 - U09825 | Zinc finger protein 173 |
 - U37251 | Zinc finger protein 177 |
 - X95808 | Zinc finger protein 261 |
 - X38779 | Zinc finger protein, X-linked |
 - M37197 | CCAT2-box-binding transcription factor |
 - U19345 | Translation factor 20 (AR1) |
 - X83928 | Translation factor TFID |
 - X63469 | Translation factor TFIIE β |
 - U15641 | Translation factor E2F4 |
Of the 19 mRNAs whose intracellular levels increased in rapamycin-treated cells, five (cyclin F, Ets2 repressor factor, Apo-1/Fas, tumor necrosis factor receptor, and Syk) were found to be greatly enriched in the polysomal fractions from rapamycin-treated cells.

Proteomic Profiling of Rapamycin-treated T Cells—Protein changes during rapamycin treatment of the Jurkat T cells were investigated by proteomics. Metabolic labeling was performed in untreated and rapamycin-treated Jurkat cells, and equal amounts of total [35S]methionine-labeled proteins were separated by two-dimensional gel electrophoresis. Following exposure to films, the autoradiograms were digitized, and two-dimensional protein patterns were matched by computer analysis. In this study, 830 protein spots were matched and quantitated. Whereas the overall two-dimensional patterns of untreated and rapamycin-treated cells were largely similar, some protein changes were reproducibly detected. We selected protein spots whose intensities changed in all experiments by 3-fold or greater in response to rapamycin. A set of 111 protein spots was identified, with 70 up-regulated and 41 down-regulated by rapamycin. Interestingly, prothymosinα was strongly repressed. Translation of prothymosinα was also strongly repressed by rapamycin. Interestingly, prothymosinα has been reported to enhance cell-mediated immunity as well as proliferative and cytotoxic responses of T cells (30–33). In vivo, prothymosinα has been shown to exert a potentiating effect on human CD4+ T cell proliferation in response to antigens, which was associated with a prothymosin-induced increase in IL-2 production. It was also demonstrated that prothymosinα, in combination with IL-2, can render cell to cell interactions more effective, resulting in increased killing of autologous tumors (34).

Remarkably, translation of seven genes encoding proteasome subunit members was abolished, which would explain in molecular terms the reported inhibition of proteasome activator expression and proteasome activity by rapamycin (35). The proteasome-mediated degradation pathway regulates a wide variety of cellular activities, including cell growth and immune and inflammatory responses. Within the immune system, the proteasome is essential for production of peptides for major histocompatibility complex class I antigen presentation. More recent studies have suggested a possible role for the proteasome in regulating the levels of cell surface receptors. In particular, a functional proteasome is required for optimal endocytosis of the IL-2 receptor-ligand complex and is essential for the subsequent lysosomal degradation of IL-2, possibly by regulating trafficking to the lysosome (36). In addition, several studies have implicated the proteasome in the regulation of Jak-STAT signal transduction, including IL-2-induced activation of STAT5 (37, 38). Adhesion molecules are essential in interaction between T cells and antigen-presenting cells, between T help cells and T effector cells, and between T cells and endothelial cells. It has been recently demonstrated that proteasome inhibitors repress T lymphocyte aggregation and then potentially cell-cell interactions in the immune system (39). Finally, a role of proteasomes in T cell activation, proliferation, and apoptosis has been reported (40, 41) including a requirement of the proteasome activity for T cells to progress from the G0 to S phase. Most interestingly, inhibition of proteasome activity is a common feature of immunosuppressant drugs such as cyclosporin A and FK506 (42). This raised the intriguing possibility that the proteasome is one of the common downstream targets of these drugs. In addition, our data elucidated the mechanisms by which rapamycin is inhibiting the expression of some proteasome proteins. Therefore, we identified important downstream targets of rapamycin such as prothymosinα and proteasome subunits that may modulate the immune response following rapamycin treatment and mediate the immunosuppressive effects of this drug.

DISCUSSION

To develop a better understanding of rapamycin’s molecular mechanism in T cells, we utilized two complementary approaches to identify specific genes regulated by rapamycin in T cells. One relies on the quantitative analysis of translated mRNAs by DNA microarrays. The other relies on quantitative analysis and identification of proteins by proteomics. In addition, we quantitated polysome-bound mRNAs as a measure of their translation efficiency (29). Ribosomal proteins and elongation factors contain a polypyrimidine tract at the 5'-end of their mRNAs and have been described as translationally repressed by rapamycin (17). Indeed, translation of a large number of ribosomal proteins and elongation factors was found to be strongly repressed by rapamycin in our study. We have uncovered a large number of additional genes. Part of the regulated genes have functions related to RNA processing and translation. Translation initiation factors 4A and 5A were strongly repressed. Translation of prothymosinα was also strongly repressed by rapamycin. Interestingly, prothymosinα has been reported to enhance cell-mediated immunity as well as proliferative and cytotoxic responses of T cells (30–33). In vivo, prothymosinα has been shown to exert a potentiating effect on human CD4+ T cell proliferation in response to antigens, which was associated with a prothymosin-induced increase in IL-2 production. It was also demonstrated that prothymosinα, in combination with IL-2, can render cell to cell interactions more effective, resulting in increased killing of autologous tumors (34).

Remarkably, translation of seven genes encoding proteasome subunit members was abolished, which would explain in molecular terms the reported inhibition of proteasome activator expression and proteasome activity by rapamycin (35). The proteasome-mediated degradation pathway regulates a wide variety of cellular activities, including cell growth and immune and inflammatory responses. Within the immune system, the proteasome is essential for production of peptides for major histocompatibility complex class I antigen presentation. More recent studies have suggested a possible role for the proteasome in regulating the levels of cell surface receptors. In particular, a functional proteasome is required for optimal endocytosis of the IL-2 receptor-ligand complex and is essential for the subsequent lysosomal degradation of IL-2, possibly by regulating trafficking to the lysosome (36). In addition, several studies have implicated the proteasome in the regulation of Jak-STAT signal transduction, including IL-2-induced activation of STAT5 (37, 38). Adhesion molecules are essential in interaction between T cells and antigen-presenting cells, between T help cells and T effector cells, and between T cells and endothelial cells. It has been recently demonstrated that proteasome inhibitors repress T lymphocyte aggregation and then potentially cell-cell interactions in the immune system (39). Finally, a role of proteasomes in T cell activation, proliferation, and apoptosis has been reported (40, 41) including a requirement of the proteasome activity for T cells to progress from the G0 to S phase. Most interestingly, inhibition of proteasome activity is a common feature of immunosuppressant drugs such as cyclosporin A and FK506 (42). This raised the intriguing possibility that the proteasome is one of the common downstream targets of these drugs. In addition, our data elucidated the mechanisms by which rapamycin is inhibiting the expression of some proteasome proteins. Therefore, we identified important downstream targets of rapamycin such as prothymosinα and proteasome subunits that may modulate the immune response following rapamycin treatment and mediate the immunosuppressive effects of this drug.

TABLE III—continued

GenBank accession no.	Gene description
U11313	Sterol carrier protein 2
M27891	Cystatin C
M14219	Decorin
M20469	Chitin, light polypeptide
D67120	Predichotost bone protein
X79537	Glycogenin
U77718	Desmosome-associated protein pinin
L19783	Phosphatidylinositol glycan, class H
Z22551	Kinesin receptor
U55946	Secretory protein Sec10-like 1
U53115	β-crystallin-like protein
X90905	UV radiation resistance-associated gene
D87459	WASP family, member 1
Not classified	
M92439	Leucine-rich protein
X99961	Novel protein (HSNOV1)

Remarkably, translation of seven genes encoding proteasome subunit members was abolished, which would explain in molecular terms the reported inhibition of proteasome activator expression and proteasome activity by rapamycin (35). The proteasome-mediated degradation pathway regulates a wide variety of cellular activities, including cell growth and immune and inflammatory responses. Within the immune system, the proteasome is essential for production of peptides for major histocompatibility complex class I antigen presentation. More recent studies have suggested a possible role for the proteasome in regulating the levels of cell surface receptors. In particular, a functional proteasome is required for optimal endocytosis of the IL-2 receptor-ligand complex and is essential for the subsequent lysosomal degradation of IL-2, possibly by regulating trafficking to the lysosome (36). In addition, several studies have implicated the proteasome in the regulation of Jak-STAT signal transduction, including IL-2-induced activation of STAT5 (37, 38). Adhesion molecules are essential in interaction between T cells and antigen-presenting cells, between T help cells and T effector cells, and between T cells and endothelial cells. It has been recently demonstrated that proteasome inhibitors repress T lymphocyte aggregation and then potentially cell-cell interactions in the immune system (39). Finally, a role of proteasomes in T cell activation, proliferation, and apoptosis has been reported (40, 41) including a requirement of the proteasome activity for T cells to progress from the G0 to S phase. Most interestingly, inhibition of proteasome activity is a common feature of immunosuppressant drugs such as cyclosporin A and FK506 (42). This raised the intriguing possibility that the proteasome is one of the common downstream targets of these drugs. In addition, our data elucidated the mechanisms by which rapamycin is inhibiting the expression of some proteasome proteins. Therefore, we identified important downstream targets of rapamycin such as prothymosinα and proteasome subunits that may modulate the immune response following rapamycin treatment and mediate the immunosuppressive effects of this drug.

Translation of the majority of eukaryotic mRNAs is initiated through a cap. Some mRNAs, however, are translated by a cap-independent mechanism, mediated by ribosome binding to internal ribosome entry site (IRES) elements located in the 5'-untranslated region. So far, only a handful of cellular IRES have been described (43). We previously demonstrated that rapamycin inhibits specifically cap-dependent translation, whereas cap-independent translation is unaffected or slightly increased (12, 20). We identified 159 genes that are still translated in the presence of rapamycin. These genes are candidates for IRES-driven mRNAs. Remarkably, these genes included...
FIG. 3. Two-dimensional profiles of T cells. A, up-regulated (white arrows) and down-regulated (black arrows) protein spots are reported on a representative silver-stained two-dimensional gel corresponding to the protein expression profile in rapamycin-treated T cells. These results are representative of three independent experiments. B, close-up sections of [35S]methionine protein labeling two-dimensional gels from untreated (left panel) and rapamycin-treated (right panel) T cells, corresponding to boxed sections in A, are shown for comparison.
translational control by rapamycin.

References

1. Sehal, S. N., Baker, H., and Vezina, C. (1975) *J. Antibiot. (Tokyo)* 28, 727–732.
2. Saunders, R. N., Metcalf, M. S., and Nicholson, M. L. (2001) *Kidney Int.* 59, 53–66.
3. Ponticelli, C., and Tarantino, A. (1999) *Drugs R D* 1, 55–60.
4. Ingle, G. R., Sievers, T. M., and Holt, C. D. (2000) *Ann. Pharmacother.* 34, 1044–1055.
5. Carlson, R. P., Baeder, W. L., Casasco, R. G., Warner, L. M., and Seegal, S. N. (1993) *Ann. N. Y. Acad. Sci.* 685, 86–113.
6. Forre, O., Haugen, M., and Hassfeld, W. G. (2000) *Scand. J. Immunol.* 52, 75–84.
7. Morris, R. R. (1991) *Immunol. Today* 12, 137–140.
8. Dumont, F. J., Staruch, M. J., Koprak, S. L., Melino, S. M., and Sigal, N. H. (1990) *J. Immunol.* 144, 251–258.
9. Schmelele, T., and Hall, M. N. (2000) *Cell* 103, 253–262.
10. Koltin, Y., Faucette, L., Bergsma, D. J., Levy, M. A., Cafferkey, R., Koser, P. L., Johnson, R. K., and Livi, G. P. (1991) *Mol. Cell. Biol.* 11, 1718–1723.
11. Frueman, D. A., Wood, M. A., Gjertson, C. K., Katz, H. R., Burakoff, S. J., and Bierer, B. E. (1995) *Eur. J. Immunol.* 25, 563–571.
12. Beretta, L., Gingras, A. C., Svitkin, Y. V., Hall, M. N., and Sonenberg, N. (1990) *EMBO J.* 9, 6553–6562.
13. Chung, J., Kuo, C. J., Crabtree, G. R., and Bien, J. (1992) *Cell* 69, 1227–1236.
14. Calvo, V., Eagles, C. M., Vik, T. A., and Bierer, B. E. (1992) *Proc. Natl. Acad. Sci. U. S. A.* 89, 7571–7575.
15. Brunson, G. J., Hudson, C. C., Sekulic, A., Williams, J. M., Hosoi, H., Houghton, P. J., Lawrence, J. C. Jr., and Abraham, R. T. (1997) *Science* 277, 99–101.
16. Burnett, P. E., Barrow, R. K., Cohen, N. S., Snyder, S. H., and Sabatini, D. M. (1998) *Proc. Natl. Acad. Sci. U. S. A.* 95, 1432–1437.
17. Jefferies, H. B., Reinhard, C., Kozma, S. C., and Thomas, G. (1994) *Proc. Natl. Acad. Sci. U. S. A.* 91, 4441–4445.
18. Lin, T. A., Kong, X., Haystead, T. A., Pause, A., Belsham, G., Sonenberg, N., and Lawrence, J. C., Jr. (1994) *Science* 266, 653–656.
19. Pause, A., Belsham, G. J., Gingras, A. C., Denze, O., Lin, T. A., Lawrence, J. C. Jr., and Sonenberg, N. (1994) *Nature* 371, 762–767.
20. Beretta, L., Svitkin, Y. V., Sonenberg, N. (1996) *J. Biol. Chem.* 70, 6893–6896.
21. Johannes, G., Carter, M. S., Eisen, M. B., Brown, P. O., and Sarnow, P. (1999) *Proc. Natl. Acad. Sci. U. S. A.* 96, 13118–13123.
22. Zong, Q., Schummer, M., Risold, P., and Morris, D. R. (1999) *Proc. Natl. Acad. Sci. U. S. A.* 96, 10362–10363.
23. Mikulitis, W., Pradet-Balade, B., Habermann, B., Beug, H., Garcia-Sanz, J. A., and Mullner, E. W. (2000) *FASEB J.* 14, 1614–1622.
24. Strahler, J. R., Kuick, R., and Sonenberg, N. (2000) *Biology of the Proteasomal System: A Practical Approach* (Creighton, T. E., ed) pp. 65–92, IRL Press, Oxford, UK.
25. Kuick, R. D., Skolnick, M. M., Hanash, S. M., and Neel, J. V. (1991) *Electrophoresis* 12, 736–746.
26. Mullner, E. W., Garcia-Sanz, J. A. (1997) in *Manual of Immunological Methods* (Letkovits, ed) pp. 457–462, Academic Press, London.
27. LeCaer, P., Hohenkirk, L., Groelle, A., Miske, D. E., Lespere, P., Geiger, J. D., Hanash, S., and Beretta, L. (2001) *Biochem. J.* 358, 17920–17931.
28. Hanash, S. M., Strahler, J. R., Chan, Y., Kuick, R., Teichroew, D., Neel, J. V., Hallai, N., Keim, D. R., Gratiot-Deans, J., Ungar, D., Melhem, R., Zho, X., X., Andrews, P., Eckerks, P., Long, E. A., Ali, I., Fox, D. A., Richardson, B. C., and Turka, L. A. (1993) *Proc. Natl. Acad. Sci. U. S. A.* 90, 3314–3318.
29. Pradet-Balade, B., Boulme, F., Mullner, E. W., and Garcia-Sanz, J. A. (2001) *BioTechniques* 30, 1352–1357.
30. Bustelo, X. R., Otero, A., Gomez-Marquez, J., and Freire, M. (1991) *J. Biol. Chem.* 266, 1443–1447.
31. Vuckovic-Delic, L., and Stanjevic-Bakic, N. (1997) *Int. J. Immunol.* 5, 399.
32. Baveyvanis, C. N., Reclos, G. J., Paneerselvam, M., and Pamahimich, M. (1988) *Immunopharmacology* 15, 73–84.
33. Cordero, O. J., Sarandrea, P., Lopez, J. L., and Nogueira, M. (1992) *Lymphokine Cytokine Res.* 11, 277–285.
34. Grunberg, E., Eckert, K., and Maurer, H. R. (1997) *Int. J. Immunol.* 5, 415.
35. Wang, X., Omura, S., Seweda, L. L., Yang, Y., Berard, J., Seminare, J., and Wu, J. (1997) *Eur. J. Immunol.* 27, 2781–2786.
36. Yu, A., and Malek, T. R. (2001) *J. Biol. Chem.* 276, 381–385.
37. Kuick, R., and Manniatis, T. (1996) *Science* 273, 1717–1719.
38. Yu, A. L., and Burch, S. J. (1997) *J. Biol. Chem.* 272, 14017–14020.
39. Kanaan, N., Luo, H., Wu, J. (2001) *J. Cell. Biochem.* 81, 347–356.
40. Wang, X., Luo, H., Chen, H., Duguid, W., and Wu, J. (1998) *J. Immunol.* 15, 788–801.
Global and Specific Translational Control by Rapamycin in T Cells Uncovered by Microarrays and Proteomics
Annabelle Grolleau, Jessica Bowman, Bérengère Pradet-Balade, Eric Puravs, Samir Hanash, Jose A. Garcia-Sanz and Laura Beretta

J. Biol. Chem. 2002, 277:22175-22184.
doi: 10.1074/jbc.M202014200 originally published online April 9, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M202014200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 55 references, 22 of which can be accessed free at http://www.jbc.org/content/277/25/22175.full.html#ref-list-1