Preliminary Study of Synthesis of Sodium Manganese Oxide using Sol-Gel Method as Sodium Ion Battery Material

Susanto Sigit Rahardi¹, Muhamad Ilham Bayquni¹, Bambang Sunendar Purwasasmita²
¹Balai Besar Bahan dan Barang Teknik (B4T), Ministry of Industry, Sangkuriang Street No.14 Bandung City 40135, Indonesia
²Program Studi Teknik Fisika, Institut Tekologi Bandung, Ganesha Street No.10 Bandung City, Indonesia

ARTICLE INFO
Article history:
Received 22 August 2020
Received in revised form 29 September 2020
Accepted 29 September 2020
Available online 19 November 2020

ABSTRACT
Sodium ion battery is one of the promising alternatives to lithium ion battery. Sodium manganese oxide as the sodium ion battery cathode material has been synthesized by modifying the sol-gel method used to obtain lithium manganese oxide. The precursors used were table salt and manganese chloride. The sol-gel process used was water solvent, citric acid as a chelating agent and chitosan as the template. Thermal decomposition and formation zone obtained from simple thermal analysis using furnace and digital scales. Calcination was carried out at 600°C and 850°C for 2 hours. Crystal properties and morphology were analyzed using XRD and SEM. Based on the analysis of XRD pattern, sodium manganese oxide crystals (Na₀.7MnO₂.05 JCPDS 27-0751) have been formed at both of the calcination temperature. Observed morphology of the sample showed the domination Mn₃O₄ JCPDS 18-0803 in accordance with crystalline phase identification. These results demonstrate that the modified sol-gel method could be used to obtain sodium manganese oxide as sodium ion battery cathode material.

Keywords:
Sodium manganese oxide
Sol-gel method
Salt

1. INTRODUCTION

As the base material for this sol-gel method, lithium manganese oxide or commonly known as LMO is one of the active lithium ion battery cathode materials that is widely used in the industrial world (Lee et al., 2014; Nishi, 2001; Nitta et al., 2015). Research on LMOs has been carried out for more than 20 years (Armstrong & Bruce, 1996; Sun, 1997; Thackeray & Rossouw, 1994), it is known that local structure and composition of LiMn₂O₄ cathode materials which affect the electrochemical properties of materials could be controlled using sol-gel method (Danks, Hall, & Schneppe, 2016; Liu, Neale, & Cao, 2016; W. Liu et al., 1996; Pegeng et al., 2006). The abundance of manganese resources give LMO some advantages: availability of materials, cost and environmentally friendly processing (Nitta et al., 2015). Indonesia itself has abundant high-quality manganese reserves in East Nusa Tenggara which are potential for LMO research (Supriadi et al., 2017).

As a consideration, it was reported on several previous study that LiMn₂O₄ (JCPDS 35-0782) was successfully synthesized through the sol-gel method using chitosan as a template (Rahardi, 2016). In addition, research on LMO production using the sol gel method on an augmented lab scale has also been successfully carried out along with the stages of LMO crystal formation which are observed in more detail so that they can be used as a reference procedure for mass production (Balai Besar Bahan dan Barang Teknik, 2020). However, the Geological Agency through the Center for Mineral, Coal and Geothermal Resources (PSDMBP) stated that lithium has not been found in the country even though we have nickel and cobalt reserves which are spread across
several islands (Ernowo, Sunuhadi, & Awaludin, 2020). Various studies have been carried out to find alternatives to lithium ion batteries (Hwang, Myung, & Sun, 2017; Parker et al., 2017; Xiao, Mcculloch, & Wu, 2017), one of which is sodium manganese oxide (NMO) which is analogous to the LMO, cathode of lithium ion battery (Adamczyk & Pralong, 2017; Gu et al., 2020; Guo et al., 2014; Hou et al., 2015; Lu et al., 2020; Song et al., 2019; Zheng et al., 2020). Na_{0.7}MnO_{2.05} (JCPDS 27-0751) which was successfully synthesized through the sol-gel method is known to have a high capacity retention of 90% after 1200 cycles (Gu et al., 2020). Furthermore, the raw material used to synthesize NMO similar to LMO, even sodium resources as the substitute of lithium provided abundantly in Indonesia (Salim & Munadi, 2016).

In this study, we conducted an investigation on the active material of the sodium ion battery cathode to determine whether sodium manganese oxide (NMO) could be synthesized by the sol-gel method referring to the LMO synthesis process carried out in previous studies (Rahardi, 2016). We expect that NMO can be synthesized by the sol-gel method as was done to obtain LMO by slightly modifying the synthesis process based on initial identification, including visual inspection and simple thermal gravimetry to determine the calcination temperature. Through this journal, we would like to report the results of the initial study regarding the synthesis of sodium manganese oxide through sol-gel method and post-thermal treatment.

2. MATERIAL AND METHOD

2.1. Materials

Technical grade of sodium chloride (NaCl), manganese (II) chloride dihydrate (MnCl₂.2H₂O) and citric acid (C₆H₈O₇) were used as raw material, purchased from the local market in Bandung, Indonesia. Ammonia solution 25% was purchased from MERCK. Chitosan with deacetylation degree of 85-95% (C₆H₁₁NO₄)n was purchased from Biotech Surindo Cirebon, Indonesia. Distilled water was purchased from PT Alkin Global Bandung, Indonesia.

2.2. Methods

The procedure used in this study referred to thesis research about LMO synthesis (Rahardi, 2016). Synthesis of sodium manganese oxide (NMO) was carried out in a series of steps, started from dissolving of precursors and other compounds using distilled water and then mixed to obtain sol. Afterwards, sol was stirred to obtain gel, the gel was dried overnight to remove solvent to obtain xerogel, then xerogel was heated and calcined to obtain NMO crystalline powder. The NMO samples obtained from various calcination temperature of 600°C and 800°C were abbreviated as N1 and N2 respectively. NMO samples were synthesized using precursors and chelating agent with concentration of 1 M and stoichiometric molar ratio of the precursors and also pH adjustment to assist the gelling process. The solution was prepared using magnetic stirrer hotplate NESCO LAB MS-H280-Pro, gel drying and calcination process was carried out in KBO-90M oven and KOEHLER K24110 furnace box respectively.

Visual inspections of NMO samples were initially carried out over a certain temperature range, including 200°C, 400°C, 600°C, and 675°C, to compare the physical appearance of NMO with LMO samples from previous study (Balai Besar Bahan dan Barang Teknik, 2020). Thermogravimetric and differential thermal analysis (TG/DTA) were used to investigate the thermal behavior of samples, carried out with simplified measurement using the KOEHLER K24110 box furnace and analytical balance HAND-20152348 Fuzhou minheng electronic instrument, at the Center for Materials and Technical Products (B4T), Ministry of Industry, Republic of Indonesia. The samples were heated in crucibles from 200°C to 800°C, with a heating rate of 10°C/min in air atmosphere. The structure and phase composition of the crystalline sodium manganese oxide (NMO) was determined by x-ray diffractometry (XRD) using BRUKER-D8 Advance at the Laboratory of Electron Microscopy, Center for Nanoscience and Nanotechnology Research (PPNN) Bandung Institute of Technology, with Cu x-ray tube, Kα at 1,54060 Å, 40 kV and 40mA, with a scan rate of 0.06° (2θ)/min over a 2θ range of 10°–90°. The obtained diffraction patterns were compared with the Joint Committee on Powder Diffraction Standards (JCPDS) and processed using the Xpowder program. The surface morphology of the samples was observed by scanning electron microscopy (SEM) using HITACHI SU-3500, at the Electron Microscope Laboratory, Center for Nanoscience and Nanotechnology Research (PPNN) Bandung Institute of Technology.
3. RESULT AND DISCUSSION

Initially, the NMO sample was synthesized using NaCl and MnCl₂ precursors as well as chelating agents citric acid and chitosan as a template. The behavior of NMO samples during the synthesis process was observed and compared with LMOs through gradual visual inspection as in Figure 1. It was previously known that LMO samples experienced swelling at 200°C, while the NMO samples experienced swelling at 400°C. Based on a visual inspection of the LMO sample at 600°C, a bluish-black powder was found to indicate the formation of LMO crystals (Balai Besar Bahan dan Barang Teknik, 2020). Unlike the NMO sample, a bluish-black powder was not observed even after calcination both at temperature of 600°C and 850°C. We inferred that the color of the NMO powder was not the same with LMO powder as the structure and phase compositions of the crystals were different.

The NMO samples showed different behavior from LMO as long as they were subjected to thermal treatment, which will be discussed further with thermogravimetry analysis. We supposed that the different precursors used in the sol gel method could lead to different thermal behaviour of the samples while calcined. Based on the heat treatment of the NMO sample up to 675°C, it was found that the mass of the NMO sample decreased along with the increasing temperature given as in Table 1, including the LMO samples weight loss from previous study (Balai Besar Bahan dan Barang Teknik, 2020) as comparison. It was known that the NMO samples experienced auto-combustion at about 520°C.

Table 1. Weight loss of NMO sample along with the heat treatment

	Initial	250°C	400°C	600°C
NMO Sample				
Mass (gr)	58.9	18.4	14.37	(finding: auto-combustion)
Weight Loss (%)	-	68.76	75.60	(finding: auto-combustion)
LMO Sample				
Mass (gr)	72.556	28.84	26.35	22.65
Weight Loss (%)	-	60.25	63.68	68.78

3.1. Thermal analysis

Thermogravimetric (TG) measurements were carried out on NMO xerogel samples ranging from 200°C to 800°C, while the DTA curve obtained from the derivative of the TG curve as in Figure 2. As comparison, thermogravimetric of LMO samples from previous study (Balai Besar Bahan dan Barang Teknik, 2020) was also featured. All volatile compounds completely decomposed at 400°C, indicated by a large mass loss up to 35% of the initial total mass. Based on the TG/DTA curve of the NMO sample, it is known that there is exothermic reaction of around 450°C to 700°C, with an estimated formation zone between 580°C and 600°C, also between 660°C and 720°C, and also started from 760°C to more than 800°C. Therefore, the calcination temperature of the NMO samples were chosen at 600°C and 850°C.

Figure 1. Visual inspection of NMO samples compared to LMO samples
The TG/DTA profile of this NMO sample resembles the thermogravimetric profile of the LMO sample. However, there is a shift in the temperature range of the exothermic reaction zone, about 50°C and 135°C, respectively, for the start and end of the exothermic region. This is consistent with the facts found based on the visual inspection mentioned above.

3.2. Structure analysis

XRD tests were carried out to check the phase composition of the NMO sample powder obtained after calcination at the predicted formation zone, the diffraction pattern is shown in Figure 3. NMO samples were calcined at 600°C (N1) and 850°C (N2) for 2 hours.

Based on phase identification of N1 sample, at least six different phases were found, namely Mn₃O₄ (JCPDS 18-0803), NaCl (JCPDS 05-0628), Mn₂O₃ (JCPDS 02-0896), BaCl₂H₂O (JCPDS 39-1305), Na₁₀Mn₂O₉ (JCPDS 70-0725), and Na₇.₇MnO₂.₅₇ (JCPDS 27-0751). The desired phase is Na₇.₇MnO₂.₅₇ (JCPDS 27-0751) with hexagonal layered structure and main diffraction pattern around 2θ = 15.9° (Hou et al., 2015), or at 2θ = 15.8°, 36.0°, 39.7°, 49.0°, 64.8° were respectively, assigned to crystallographic plane (002), (100), (102), (104) and (110) (Gu et al., 2020).

As a note there is an alternative phase of sodium manganese oxide, Na₂Mn₃O₇ (JCPDS 78-0193), which has similar diffraction pattern with the desired phase. Na₇.₇MnO₂.₅₇ (JCPDS 27-0751) was preferred in the phase identification of N1 because it generated higher weight percentage than the alternative phase. With the Scherrer method, it is known that the crystallite size of Na₇.₇MnO₂.₅₇ (JCPDS 27-0751) of sample N1 is 148 nm (Miller index 002) as shown in Table 2.

Table 2. Identification of the diffraction pattern of N1

JCPDS Number	2θ (deg)	Miller index	Phase	Crystal system, Space group	Crystallite size (nm)
27-0751	15.944	002	Na₀.₇MnO₂.₅₇	Hexagonal axis	148
39-1305	21.165	102	BaCl₂H₂O	Orthorhombic, Pnma	135
18-0803	28.924	112	Mn₃O₄	Tetragonal, I41/amd	56
05-0628	31.671	200	NaCl	Cubic, Fm3m	287
18-0803	32.364	004	Mn₂O₃	Tetragonal, I41/amd	94
02-0896	32.897	222	Mn₂O₃	Cubic, Ia3	87
70-0725	32.999	112	Na₁₀Mn₂O₉	Hexagonal axis, P-3	96
18-0803	36.095	211	Mn₂O₄	Tetragonal, I41/amd	129
05-0628	45.409	220	NaCl	Cubic, Fm3m	359
Table 3. Identification of the diffraction pattern of N2

JCPDS Number	2θ (deg)	Miller index	Phase	Crystal system, Space group	Crystallite size (nm)
27-0751	16.227	002	Na0.7MnO2.05	Hexagonal axis	176
70-0725	18.024	011	Na14 Mn2 O9	Hexagonal axis, P-3	89
39-1305	20.04	102	BaCl2.H2O	Orthorhombic, Pnma	154
18-0803	28.94	112	Mn3O4	Tetragonal, I41/amd	241
05-0628	31.647	200	NaCl	Cubic, Fm3m	63
18-0803	32.425	004	Mn3O4	Tetragonal, I41/amd	192
70-0725	32.506	112	Na14 Mn2 O9	Hexagonal axis, P-3	113
02-0896	32.918	222	Mn3O3	Cubic, Ia3	88
18-0803	36.111	211	Mn3O4	Tetragonal, I41/amd	513
05-0628	45.410	220	NaCl	Cubic, Fm3m	46

Figure 4. Morphology of N1 samples at 600°C

At first, it is inferred that the peak of Na0.7MnO2.05 (JCPDS 27-0751) which has not yet dominated the diffraction pattern of the sample because of the calcination temperature given is still too low to provide sufficient energy for the crystallization of Na0.7MnO2.05 (JCPDS 27-0751). It is expected that increasing the calcination temperature may increase the crystallinity and weight percentage of Na0.7MnO2.05 (JCPDS 27-0751) of sample N2 as shown in Table 3. Based on the analysis of the diffraction pattern of the samples at higher calcination temperature, it could be inferred that the crystallinity of sodium manganese oxide was increased, besides the growing of the crystallite occurred, yet higher weight percentage of Na0.7MnO2.05 (JCPDS 27-0751) was not gained. Instead, weight percentage of Mn3O4 (JCPDS 18-0803) and Mn2O3 (JCPDS 02-0896) getting higher. Based on this observation, it could be inferred that previous step, sol gel method, should be investigated further to obtain the desired phase with high purity, one of which is adjustment of molar ratio of the precursors.

3.3. Morphology analysis

SEM test was carried out to determine the morphology of the calcined NMO sample at 600°C, as shown in Figure 4. Truncated tetragonal solids were observed. Based on the XRD pattern of the N1 sample in Figure 4, it is known that the form of this truncated tetragonal is a Mn3O4 (JCPDS 18-0803) crystal which still dominates the N1 sample at 600°C. This truncated shape may occurred as the preferred orientation of the manganese oxide phase. This sample morphological in accordance with diffraction pattern identification mentioned above, while the regular hexagonal-platelet morphology of Na0.7MnO2.05 (Hou et al., 2015) was not observed as well.

4. CONCLUSION

Sodium manganese oxide has been synthesized from table salt using sol gel and calcination methods based on simple thermogravimetry measurements, while the purity of the desired phase was too low regarding several phases of other compounds still dominate the diffraction pattern. Based on the
structural and morphological analysis, it was found that two temperature ranges that were formerly thought to be NMO formation zones were not significant to obtain pure Na$_{0.7}$MnO$_{2.05}$ without modification of sol-gel method. In other words, further investigation should be carried out on sol-gel method instead of thermal treatment. We suggested to adjust the molar ratio of the precursor and also use other precursors to obtain the desired phase.

ACKNOWLEDGMENT

The authors would like to express their deepest gratitude to the Head of B4T for the direction, financial support, facilities, opportunities, and all other support given, especially regarding to collaborative research and downstreaming of sodium ion batteries with Prof. Bambang Sunendar, Lab. Advanced Material Processing, Engineering Physics ITB.

REFERENCE

Adamczyk, E., & Pralong, V. (2017). Na$_2$Mn$_3$O$_7$: A Suitable Electrode Material for Na-Ion Batteries? American Chemical Society, 29, 4645–4648. https://doi.org/10.1021/acs.chemmater.7b01390

Armstrong, A. R., & Bruce, P. G. (1996). Synthesis of layered LiMnO$_2$ as an electrode for rechargeable lithium batteries. Nature.

Guo, S., Yu, H., Jian, Z., Liu, P., Zhu, Y., & Guo, X. (2014). A High-Capacity , Low-Cost Layered Sodium Manganese Oxide Material as Cathode for Sodium-Ion Batteries. ChemSusChem, 210093, 2115–2119. https://doi.org/10.1002/cssc.201402138

Hou, Y., Tang, H., Li, B., Chang, K., Chang, Z., Yuan, X., & Wang, H. (2015). Hexagonal-layered Na$_{0.7}$MnO$_{2.05}$ via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors. Materials Chemistry and Physics, 1–8. https://doi.org/10.1016/j.matchemphys.2015.12.009

Hwang, J., Myung, S., & Sun, Y. (2017). Sodium-ion batteries: present and future. Chemical Society Reviews. https://doi.org/10.1039/c6cs00776g

Lee, M., Lee, S., Oh, P., Kim, Y., & Cho, J. (2014). High Performance LiMn$_2$O$_4$ Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-Ion Batteries. American Chemical Society, 14, 993–999.

Liu, C., Neale, Z. G., & Cao, G. (2016). Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials Today, 19(2), 109–123. https://doi.org/10.1016/j.mattod.2015.10.009

Liu, W., Farrington, G. C., Chaput, F., & Dunn, B. (1996). Synthesis and Electrochemical Studies of Spinel Phase LiMn$_2$O$_4$ Cathode Materials Prepared by the Pechini Process Synthesis and Electrochemical Studies of Spinel Phase LiMn$_2$O$_4$ Cathode Materials Prepared by the Pechini Process. Journal of The Electrochemical Society, 143(3), 879–884. https://doi.org/10.1149/1.1836552

Lu, D., Yao, Z. J., Li, Y. Q., Zhong, Y., Wang, X. L., Xie, D., Tu, J. P. (2020). Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries. Colloid and Interface Science, 565, 218–226. https://doi.org/10.1016/j.jcis.2020.01.023

Nishi, Y. (2001). Lithium ion secondary batteries; Past 10 years and the future. Journal of Power Sources, 100(1–2), 101–106. https://doi.org/10.1016/S0378-7753(01)00887-4

Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: Present and future. Materials Today, 18(5), 252–264. https://doi.org/10.1016/j.mattod.2014.10.040

Parker, J. F., Chervin, C. N., Pala, I. R., Machler, M., Burz, M. F., Long, J. W., & Rolison, D. R. (2017). Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion (Vol. 418).
Peng, Z., Huiqing, F. A. N., Yunfei, F. U., Zhuo, L. I., & Yongli, D. (2006). Synthesis and electrochemical properties of sol-gel derived LiMn₂O₄ cathode for lithium-ion batteries, 25, 0–4.

Rahardi, S. S. (2016). Sintesis litium mangan oksida melalui metode sol gel dengan bio template selulosa bakteri sebagai bahan katoda baterai ion litium (Thesis Master). Institut Teknologi Bandung.

Salim, Z., & Munadi, E. (2016). Info Komoditi Garam. Jakarta: Badan Pengkajian dan Pengembangan Perdagangan, Kementerian Perdagangan Republik Indonesia. Retrieved from http://bppp.kemendag.go.id/media_content/2017/08/Isi_BRIK_Garam.pdf

Song, B., Tang, M., Hu, E., Borkiewicz, O. J., Wiaderek, K. M., Hu, Y., Liu, J. (2019). Understanding the Low-Voltage Hysteresis of Anionic Redox in Na₂Mn₃O₇. American Chemical Society, 31, 3756–3765. https://doi.org/10.1021/jacs.9b00772

Sun, Y. (1997). Synthesis of Spinel LiMn₂O₄ by the Sol-Gel Method for a Cathode-Active Material in Lithium Secondary Batteries. American Chemical Society, 4839–4846. https://doi.org/10.1021/ie970227b

Supriadi, A., Sunarti, Kencono, A. W., Kurniasih, T. N., Prasetyo, B. E., Kurniawan, F., Anggraeni, D. (2017). Kajian Dampak Hilirisasi Mineral Mangan Terhadap Perekonomian Regional. Jakarta: Pusat Data dan Teknologi Informasi Energi dan Sumber Daya Mineral.

Thackeray, M. M., & Rossouw, M. H. (1994). Synthesis of Lithium-Manganese-Oxide Spinels: A Study by Thermal Analysis. Journal of Solid State Chemistry, 441–443. https://doi.org/10.1006/jssc.1994.1393

Xiao, N., Mcculloch, W. D., & Wu, Y. (2017). Reversible Dendrite-Free Potassium Plating and Stripping Electrochemistry for Potassium Secondary Batteries. American Chemical Society, 0–3. https://doi.org/10.1021/jacs.7b04945

Zheng, P., Su, J., Wang, Y., Zhou, W., Song, J., Su, Q., Guo, S. (2020). A high-performance primary nanosheet heterojunction cathode composed of Na₀.₄₄MnO₂ tunnels and layered Na₂Mn₃O₇ for Na-ion batteries. Chemuschem. https://doi.org/10.1002/cssc.201903543