Evaluation the effect of lime on the plastic and hardened properties of cement mortar and quantified using Vipulanandan model

Abstract: In this study, the effect of lime content (L %) on the plastic properties such as water-cement ratio (w/c), setting times, flowability, compressive, flexural and bond strengths of cement mortar were investigated. Based on the information in the literature the amount of lime varied between 0 to 45% (by weight of cement). The experimental results were compared with the data collected from different research studies and quantified using two different models. The plastic and hardened properties of the cement mortar modified with different percentage of lime were conducted according to the ASTM and BS standards. Based on the literature data the water to cement ratio (w/c) ranged between 0.3-0.74 percent, the w/c of 0.5 was selected in this study. The compressive and flexural strengths of cement mortar modified with lime up to 28 days of curing were ranged between 3 MPa to 65 MPa and 2 MPa to 12 MPa respectively. The compressive, flexural and bond strengths of the cement mortar decreased with increasing lime content. Vipulanandan correlation model was used to correlate the relationship between lime with consistency, setting times, flowability and compressive strength of cement mortar. Compressive and flexural strengths of cement mortar modified with lime were quantified very well as a function of w/c, lime content and curing time using nonlinear relationship.

Keywords: Lime content, Curing time, Strengths, Tensile bonding, Statistical analysis, Modeling

1 Introduction

The mortar is a composite material consisting of a mixture of cementitious material (cement), fine aggregates (sand), an amount of water required for hydration reactions. Mineral admixtures, such as fly ash, lime, and silica fume have been widely used for the manufacture of cement mortar. The addition of mineral additive improved the performance, mechanical properties and durability of cement mortar also, the addition of mineral additives decrease CO₂ emission and may also reduce the adverse environmental effect caused by cement production [1–8].

The Limestone is calcareous sedimentary rock mainly consisting of calcium carbonate (CaCO₃), commonly called calcite. Limestone is used in cement and mortar for various purposes, as a raw material for clinker production and as coarse or fine aggregate. Lime is produced by finely grinding limestone in quarrying operations and has been suggested for use as an additive in Ordinary Portland Cement. Replacing of limestone into Ordinary Portland Cement has been studied [4, 9, 10]. Lime has been considering as an inert filler material that improves the hydration rate of cement compounds and consequently increases the strength at early ages. The incorporation of limestone powder with Portland cement has many advantages on initial compressive strength, durability, and workability. Workability, strength, and durability are three basics properties of cement mortar [11–16]. The increase in w/c reduced the value of mechanical properties and increased the workability. Several research studies have been performed to understand the effect of lime on the physical and mechanical properties of cement mortar (Table 1). Compressive and bonding strengths are the most critical property of cement mortar that describes its quality and performance for construction works. In addition, most of the other features such as flexural strength was improved in parallel with the increase in the compressive strength. In terms of compressive strength, the addition of hydrated lime to cement based mortars shows that lime-rich mortars are able to withstand a higher degree of deformation before fail-
The observations made, indicate that the lime additions allow for some accommodation of movement either under compressive loads or shear loading, and unlike the brittle failure of cement rich mortars, those with high lime content (where volume of lime is twice that of cement, e.g. 1:2:9 mortar) some elastic-plastic deformation is observed prior to brittle failure with increased lime content.

Although a reduction in compressive strength may be viewed as a negative result of hydrated lime addition to a mortar, the resulting performance does provide some accommodation from minor movement of the masonry, thus reducing the associated cracking, as typically seen with high strength (cement rich) mortars which although strong are more "brittle" [17–24].

In this study, the effect of lime on the workability, setting times and mechanical strength of cement mortar were performed based on experimental and collected data from the literature. The influence of water to cement ratio, curing time and lime content on the compressive, flexural strengths of cement mortar were quantified using a non-linear model.

1.1 Objectives

The primary objective of this study is to investigate and quantify the effect of lime on the properties of plastic and hardened properties of cement mortar using experimental and collected data from the literature. The specific objectives are as follows:

1. Statistical variations of the compressive and flexural strengths, water to cement ratio and lime content of cement mortar.
2. Investigate the effect of lime on the consistency, setting times, flowability and strength properties of cement mortar.
3. Develop a non-linear relationship to predict the compressive and flexural strengths of cement mortar as a function of w/c, lime content and curing time using the experimental data and data collected from the literature.
4. Develop the relationship between compressive and flexural strengths of the cement mortar modified with lime up to 28 days of curing.
5. To evaluate the relationship between the tensile bonding strength of cement mortar with lime content at seven days of curing.

2 Materials and methods

2.1 Materials

The type of cement used in this study was Gasin Portland Cement from the Gasin Cement Company (Iraq, Kurdistan-Region, Sulaymaniyah City, and 35° 33′26″N 45° 26′08″E). Lime is typically used in the form of quicklime (CaO) or hydrated lime (Ca(OH)₂). Quicklime (CaO) is manufactured by chemical processes that transform calcium carbonate (limestone – CaCO₃) into calcium oxide (CaO). When quicklime reacts with water, it turns into hydrated lime.

Tap water was used in this study.

The sand used in the study was CEN standard sand which is well graded rounded particles having a silica content of 98% as specified in EN 196-1 standard requirements [8, 25].

2.2 Methodology

The plastic and hardened properties of cement mortar modified with lime were tested according to ASTM and BS standard. At least three samples were tested for each condition.

X-ray diffraction (XRD) analyses were performed to determine the chemical composition of cement and lime at 25°C. The powder (2 g) was placed in an acrylic sample holder (3 mm) depth. The samples were analyzed by using parallel beam optics with CuKα radiation at 40 kV and 30 mA. The samples were scanned for reflections (2θ) from 0° to 90° in steps of 0.02° and a 2 sec count time per step. A similar procedure was conducted by [26]. The chemical composition of the cement and lime are illustrated in Table 2 and Table 3.

Standard consistency test (BS EN 196-3:2016)

This test aims to determine the minimum quantity of mixing water to initiate a chemical reaction between water and cement. Cement is one of the materials which the right amount of water leads to attaining required cement strength. The standard consistency was carried out according to the EN 196-3 standard using the Vicat apparatus. The cement paste was prepared by putting 500 g of cement into the bowl of the mixer. The amount of water was added to the cement. Firstly, the mixing was left for 10 seconds for absorption. Then the mixing apparatus was put at a low
Table 1: Summary properties of cement mortar modified with lime

Reference	Country	Lime, L (%)	w/c	Curing time, t (Day)	Compressive strength, σ_c (MPa)	Flexural strength, σ_f (MPa)	Test(s)
[3]	Canada	0-10	0.33	1,3,7 and 28	29-64	-	Compressive strength
[5]	Turkey	0 and 30	0.5	2, 7 and 28	16-60	4-11	Compressive and flexural strengths
[6]	China	0 and 30	0.5	3 and 28	17-60	-	Compressive strength
[11]	Ethiopia	0-35	0.5	2 and 28	6-7-62	-	Compressive strength
[12]	Italy	0-20	0.6	3, 7 and 28	3-33	2-12	Compressive and flexural strengths
[24]	China	0 and 30	0.43	3, 7 and 28	46-65	-	Compressive strength
[56]	China	0-45	0.3-0.5	7 and 28	18-65	4-12	Compressive and flexural strengths
[57]	Croatia	0-15	0.5	3, 7 and 28	15-40	-	Compressive strength
[58]	China	0-30	0.74	7 and 28	5-32	-	Compressive strength
[59]	Norway	0-35	0.5	1 and 28	14-47.5	3.4-7.9	Compressive and flexural strengths
[60]	China	0-30	0.5	3, 7 and 28	18-54	4-11	Compressive and flexural strengths
Current study	Iraq	0-20	0.5	1,3,7 and 28	13.6-45	3.4-9.2	Compressive and flexural strengths
Remarks	8 countries	Up to 45% of lime was used	Varied between 0.3 to 0.74	Tested up to 28 days of curing	Varied between 3 to 65 MPa	Varied between 2 to 12 MPa	Compressive and flexural strengths are mainly used
Evaluation the effect of lime on the plastic and hardened properties

Figure 1: Experimental program presentation of cement mortar modified lime (a) mixing, (b) setting time, (c) cube samples for strength tests (d) flexural test and (e) shape of failure

Cement mortar preparation (BS EN 196-1:2016)

After mixing the materials, the mortar filled cubic molds with a dimension of (4 x 4 x 16) cm. The mortar put into the mold in two layers and by applying to the mold 60 shocks each time using the shock device. After that, the mold was leveled and covered with a plastic bag and stored in the room temperature. After 24 h from the of the mixing procedure, the specimens removed from the mold and stored in water at 23°C ± 2°C and 95% of humidity until the time of the test. The samples were tested at 1, 3, 7 and 28 days for the compressive strength. Bending test machine is used to divide the specimen into two halves, and each part was subjected to the compressive strength using the compressive testing machine. The layout of the tested sample for flexural and compressive strengths are shown in Fig. 2.

Flowability (ASTM C1437)

The flowability of cement mortar was determined by using the flow table method as described in ASTM C1437. After mixing the cement mortar the mixing material was placed in the mold in two layers. Each layer was compacted 25 blows using the rod during the 15 sec. Additional lime content decreased the flowability of cement mortar.

Tensile Bonding strength (CIGMAT CT-3, modified ASTM C321)

Sandwiched samples were prepared to study the bonding strength according to CIGMAT CT-3 standard [29–31]. Different samples were prepared by using concrete brick. The bonding material was cement mortar and cement mortar modified with lime content up to 20%. The concrete brick was marked to ensure that the crossed concrete brick is placed in middle and at right the angle to each other. The second brick was placed on the mortar and the oriented correctly. The specimens were allowed to cure at room condition 25 ± 2 °C and 95% of humidity till the time of the test. Samples were tested by subjecting to tensile loading (Fig. 3). Stationary jaws held one brick while the other block was pushed by moving jaws creating a bond force on the bonding.

2.3 Data collection

In this study, more than 500 data were collected from the different research studies as summarized in Table 1 to characterize and evaluate the effect of lime content on the plastic properties such as consistency, flowability and setting times and hardened properties such as compressive, tensile bonding and flexural strengths of cement mortar.
Nonlinear relationships between the compressive strength, flowability, setting times and consistency with lime were performed using the Vipulanandan correlation model [32–54]. The model was proposed as follows:

\[Y = Y_0 + \frac{X}{(A + B \cdot X)} \]

where:

- \(Y \) = Cement mortar property (dependent variable, i.e. consistency, flowability and setting time, compressive strength)
- \(Y_0 \), A and B = model parameters (Table 6)
- X = cement mortar property (independent variables, i.e. lime content).

Nonlinear model (NLM)

The compressive strength (\(\sigma_c \)) and flexural strength (\(\sigma_f \)) of cement mortar modified with lime (L) was influenced by the curing time (t) and water-to-cement ratio (w/c %) [35–38]. The effects L, t and w/c % of the cement mortar were separated as follows:

Compressive strength or flexural strength of cement mortar (L=0%):

\[\sigma_c \text{ or } \sigma_f = a(w/c)^b (t)^c \]

Compressive strength or flexural strength of cement mortar modified with lime (L ≥ 0%):

\[\sigma_c \text{ or } \sigma_f = a(w/c)^b (t)^c + d(w/c)^e (t)^f (L)^g \]

Based on experimental data and data collected from various research studied in the literature the model parameters (a, b, c, d, e, f, and g) were obtained from multiple regression analysis using the least square method (Table 7).
Table 6: Model parameters of plastic and hardened properties of cement mortar modified lime

Depended Variable (Y-axis)	In depended Variable (X-axis)	Yo	A	B	RMSE	R²	No. of Data	Fig. No.
Consistency, C (%)		24.4	-3.51	-0.545	0.07 %	0.98	38	8(a)
Initial setting time, t₁ (min)		165	-0.33	-0.005	2.44 min.	0.97	43	8(b)
Final setting time, t₂ (min)		209	-0.70	0.000	1.23 min.	0.98	38	8(c)
Flow, F (%)		108	-0.96	-0.05	0.24 %	0.99	6	9
Compressive strength (σc) for 1 day of curing	Lime, L (%)	17.06	-5.95	0.17 MPa	0.99	17	10(a)	
Compressive strength (σc) for 3 days of curing	Lime, L (%)	28.18	-3.23	0.35 MPa	0.97	15	10(b)	
Compressive strength (σc) for 7 days of curing	Lime, L (%)	36.91	-2.43	0.72 MPa	0.92	12	10(c)	
Compressive strength (σc) for 28 days of curing	Lime, L (%)	49.24	-1.43	0.56 MPa	0.98	15	10(d)	
Flexural strength (σf)	Compressive strength (σc)	0.97	5.84	0.49 MPa	0.93	24	13	
Bond strength (σb)	Lime, L (%)	1.2	-8.95	-1.05	0.01 MPa	0.99	6	14

Table 7: Non-linear model (NLM) parameters for the compressive and flexural strengths of cement mortar modified with lime

Effect of lime	w/c and t effect	a	b	c	d	e	f	g	RMSE (MPa)	R²	No. of data	Eq. No.	Fig. No
σc		8.76	-1.22	0.25	-0.27	-0.025	0.15	1.02	2.68	0.88	476	3	11
σf		3.47	-0.53	0.20	-0.04	-0.250	0.23	0.86	0.88	0.87	69	4	12

3 Results and analyses

3.1 Statistical analysis

3.1.1 Water to cement ratio, (w/c)

Based on the total of 199 of water to cement (w/c) data for the cement mortar collected from the literature (Table 1), the w/c for the cement mortar varied between 0.3 to 0.74% with a mean of 0.47%, the standard deviation of 0.07% and the coefficient of variation (COV) of 17.63 % (Table 4). Almost 85 % of the total of w/c data was ranged between 0.44 and 0.52% (Fig. 4(b)).

3.1.2 Lime content, (L (%))

Based on the total 71 lime percent used to modify the cement mortar in the literature, the data varied from 3 % to 45% (by dry weight of cement) with the standard deviation of 11.5 % and the coefficient of variation (COV) of 58%. Almost 70 % of the total of lime content was ranged between 3 % and 20 % (Fig. 5).
474/ bar two
Warzer Qadir, Kawan Ghafor, and Ahmed Mohammed

Figure 4: Histogram of the water to cement ratio (w/c) for (a) cement mortar and (b) cement mortar modified with lime used in the literature

Figure 5: Histogram of percent of lime used in the literature

Figure 6: Statistical distribution of the compressive strength for (a) cement mortar and (b) cement mortar modified with lime up to 28 days of curing

3.2 Mechanical properties

Compressive strength
1. Cement mortar: A total of 318 compressive strengths (σ_c) data for the cement mortar collected from the literature (Table 1) the compressive strength (σ_c) of the cement mortar up to 28 days of curing ranged from 3 MPa to 65 MPa with a mean of 30 MPa, the standard deviation of 12 MPa and the coefficient of variation (COV) of 40% (Table 4). Different distribution tests for the compressive strength of cement mortar was performed. Based on the Anderson–Darling statistic (AD) and P value (hypothesis testing), Weibull frequency distribution for the compressive strength of cement mortar was observed as shown in Fig. 6(a).

2. Cement mortar modified with Lime: A total of 68 compressive strengths (σ_c) data for cement mortar modified with lime were collected from the literature (Table 1), the σ_c ranged from 6.7 MPa to 65 MPa with a mean of 32.9 MPa, the standard deviation of 16.2 MPa and the coefficient of variation (COV) of 49.1% (Table 4). Based on the Anderson–Darling statistic (AD) and P value (hypothesis testing), the probability distribution was Weibull distribution as shown in Fig. 6(b).

3.3 Flexural strength

3. Cement mortar: Based on a total of 43 flexural strengths (σ_f) data for cement mortar up to 28 days
of curing were collected from the literature (Table 1), the flexural strength σ_f varied from 2 MPa to 12 MPa with a mean of 7.2 MPa, the standard deviation of 2.58 MPa and the COV of 35% as summarized in Table 4. In this study, the statistical details and the histograms were performed for each flexural strength data set to identify the distribution. Different distribution tests for the σ_f of cement mortar were performed. Based on the Anderson–Darling statistic (AD) and P value (hypothesis testing), Gamma frequency distribution for the flexural strength of cement mortar was selected (Fig. 7(a)).

4. **Cement mortar modified with Lime:** A total of 25 flexural strengths (σ_f) data for cement mortar modified with lime were collected from the literature (Table 1), the flexural strength varied from 4 MPa to 11 MPa with a mean of 7.1 MPa while the standard deviation was 1.78 MPa and the coefficient of variation (COV) of 25.3% as summarized in Table 4. Based on the Anderson–Darling statistic (AD) and P value (hypothesis testing), 3-parameter lognormal Distribution for the flexural strength of cement mortar modified with lime was selected (Fig. 7(b)).

3.4 Property correlation

Consistency

The consistency of cement decreased as the lime increased. Adding of lime content decreased consistency of cement. The consistency of cement with lime was predicted using Vipulanandan correlation model (Eq. 1). The model parameters, R^2 and RMSE are summarized in Table 6. Adding 20% of lime decreased the consistency of cement by 6% as shown in Fig. 8(a).

Setting times

Additional of lime accelerate the initial setting time and final setting time of cement. The variation of initial and final setting times of cement modified with lime was predicted using Vipulanandan correlation model (Eq. 1). The model parameters, the coefficient of determination (R^2) and root mean square error (RMSE) are summarized in Table 6. Additional of 20% of lime decreased the initial and final setting times by 27% and 16% respectively as shown in Fig. 8(b and c). The reduction could be because of that the lime acts as a nucleation matrix of C-S-H, and accelerates the hydration of cement. Due to the crystal core effect of lime, the hydration of Tricalcium silicates C_3S accelerated at an early age [39].

Flowability

The flow table test was conducted to evaluate the effect of lime on the fluidity of cement mortar. The fluidity of cement decreased as the lime content increased. The variation of flow of cement mortar with lime was predicted using Vipulanandan correlation model (Eq. 1). The model parameters Y_0, A, B, R^2, and RMSE were 108, -0.96, -0.05, 0.99 and 0.24 % respectively (Table 6). Additional of 20% of lime decreased the fluidity of cement mortar by 4% (Fig. 9). A reduction in the flow of cement mortar could be because of the lime disperses the cement particles more efficiently. The ability of lime is thus probably caused by lower reactivity than cement and less gel formation [40, 41].

Compressive strength

The lime decreased the compressive strength (σ_c) of cement mortar up to 28 days of curing. With the increase in the lime content, the σ_c of cement mortar is nonlinearly decreased (Fig. 10). The variation of σ_c versus dL was represented using Vipulanandan correlation model (Eq. 1). The model parameters, R^2, and RMSE are summarized in Table 6. Additional of 20% of lime decreased the compressive strength of cement mortar by 20% at 1 day of curing.
Additional of 16% of lime decreased the σ_c of cement mortar by 20% at 3 days of curing. Additional of 12% of lime decreased the σ_c of cement mortar by 19% at 28 days of curing (Fig. 10). Addition of lime decreased the compressive strength of cement mortar because of the fineness of the lime, the lime with large particle has a lower fineness than a small particle which cannot fill the void (filling effect) as a result the strength reduced. The reason lies in the reduction of hydraulically active clinker fraction of cement upon the lime replacement [15]. A multiple linear regression analysis was used to investigate the effect of lime on the compressive strength of cement mortar, the compressive strength (σ_c) was correlated to the independent variables such as w/c, curing time and lime using a non-linear relationship (Eq. 2(b)) as shown in Fig. 11. The model parameters were obtained from multiple regression analyses using the least square method (Table 7). Based on the non-linear model parameter ($d = -0.27$) in Eq. 3 the lime has the highest effect in decreasing the compressive strength of cement mortar compared to water to cement ratio and curing time.

$$
\sigma_c = 8.7 \times \left(\frac{t^{0.25}}{w/c^{1.22}} \right) - 0.27 \times \left(\frac{L^{0.15}}{w/c^{0.025}} \right)
$$

No. of data = 476, $R^2 = 0.88$ (3)

Flexural strength

Nonlinear Regression Analysis was used to study the effect of lime on the bending strength (modulus of rupture) of cement mortar, the flexural strength (σ_f) was correlated to the independent variables such as w/c, curing time and lime content using a non-linear relationship (Eq. 2(c)) as shown in Fig. 12. The equation parameters were obtained from multiple regression analyses using the least square method (Table 7). Based on the non-linear model parameter ($d = -0.04$) in Eq. 4 the lime has also the highest effect in decreasing the flexural strength of cement mortar compared to water to cement ratio and curing time.

$$
\sigma_f = 3.47 \times \left(\frac{t^{0.20}}{w/c^{0.57}} \right) - 0.04 \times \left(\frac{L^{0.232}}{w/c^{0.86}} \right)
$$

No. of data = 69, $R^2 = 0.88$ (4)
Evaluation the effect of lime on the plastic and hardened properties

The Relationship between compressive strength (σ_c) and flexural strength (σ_f) of cement mortar modified with lime

Based on the total of 24 experimental cement mortar data modified with lime content. The variation of σ_f and σ_c was represented using the Vipulanandan correlation model (Eq. 1). The model parameters Y_0, A, B, the coefficient of determination (R^2) and root mean square error (RMSE) were 0.969, 5.84, 0.93 and 0.49 MPa respectively (Table 6). The flexural strength of cement mortar increased from 4 to 9 MPa when the compressive strength increased from 15 to 45 MPa for cement mortar (Fig. 13).

$$\sigma_f = 0.97 + \frac{\sigma_c}{5.84} \quad \text{No. of data} = 24, R^2 = 0.93 \quad (5)$$

Tensile bonding strength

The addition of lime decreased the bond strength (σ_b) of cement mortar at 7 days of curing. The variation of σ_b and L was represented using the Vipulanandan correlation model (Eq. 1). The model parameters Y_0, A, B, the coefficient of determination (R^2) and root mean square error (RMSE) were 1.2, −8.95, −1.05, 0.99 and 0.01 MPa respectively (Table 6). The bond strength of cement mortar without lime content was 1.2 MPa at 7 days of curing. Addition of 20% of lime content decreased the bond strength by 131% (Fig. 14). Different type and shape of failure were proposed by CIGMAT CT-3 as summarized in Table 5. The type...
of failure between the mortar and concrete bricks were type 2 failure based on CIGMAT CT-3 standard [29, 31] as shown in Fig. 15.

\[
\sigma_b = 1.2 - \frac{L}{(-8.95 - 1.05 \times L)} \quad \text{No. of data} = 6, R^2 = 0.99
\]

(6)

4 Conclusions

The focus of this study was to investigate and quantify the effect of lime on the setting times, consistency, flowability and strengths properties of cement mortar. Based on experimental and collected data the following conclusions are advanced:

1. Additional of lime to cement mortar decreased the consistency, initial and final setting times of cement mortar by 5%, 27%, and 16% respectively.
2. Additional of 20% of lime as a replacement of cement in cement mortar reduced the flowability by 4%.
3. Based on the experimental data additional of 20% of lime decreased the compressive strength of cement mortar at 1, 3, 7 and 28 days of curing. Based on NLM the lime content had the highest effect on reducing the compressive strength of cement mortar compared with w/c and curing time.
4. Additional of 20% of lime reduced the bond strength of cement mortar by 138% at 7 days of curing.
5. The Compressive strength (CS) of the cement mortar modified with different percentage of lime was predicted well as a function of w/c, curing time, lime content. From the NLM parameter effect of curing time on the CS of cement mortar was much higher than the effect of w/c and lime content.
6. The CS and workability of cement mortar modified with different percentage of lime (up to 20%) was less than unmodified cement mortar by 8% and 25% respectively.

Acknowledgment: The Civil Engineering Department, University of Sulaimani and Gazin Cement Co. supported this study.
References

[1] El Youbi, M. S., & Ahmed, E. (2017). Development and study of physical, chemical and mechanical properties of a new formulation of cement of a varying percentage of natural pozzolan. J. Chem. Technol. Met, 52(5), 873-884.

[2] Abed, Z. M. (2018). The Effect of Using Lightweight Aggregate on Some Properties of Cement Mortar. Iraqi Journal of Civil Engineering, 12(1), 1-9.

[3] Nehdi, M., Mindess, S., & Aïtcin, P. C. (1996). Optimization of high strength limestone filler cement mortars. Cement and Concrete Research, 26(6), 883-893.

[4] Bonavetti, V., Donza, H., Rahhal, V., & Iressar, E. (2000). Influence of initial curing on the properties of concrete containing limestone blended cement. Cement and Concrete Research, 30(5), 703-708.

[5] Türkel, S., & Altuntaş, Y. (2009). The effect of limestone powder, fly ash and silica fume on the properties of self-compacting repair mortars. Sadhana, 34(2), 331-343.

[6] Hang, M. Y., Gao, M., & Lan, Y. J. (2013). Study on the Influence of Limestone Dust on Performance of Cement Mortar. In Applied Mechanics and Materials (Vol. 368, pp. 992-996). Trans Tech Publications.

[7] Muttar, A. A., & Salman, M. M. (2011). Mechanical Properties of Acrylic Mortar. Journal of Engineering and Sustainable Development, 15(3), 152-162.

[8] Demir, İ., Güzelkücük, S., & Sevim, Ö. (2018). Effects of sulfate on cement mortar with hybrid pozzolan substitution. Engineering Science and Technology, an International Journal, 21(3), 275-283.

[9] Matschei, T., Lothenbach, B., & Glasser, F. P. (2007). The role of calcium carbonate in cement hydration. Cement and Concrete Research, 37(4), 551-558.

[10] Lothenbach, B., Le Saout, G., Gallucci, E., & Scrivener, K. (2008). Influence of limestone on the hydration of Portland cements. Cement and Concrete Research, 38(6), 848-860.

[11] Gudissa, W., & Dinku, A. (2010). The use of limestone powder as an alternative cement replacement material: An experimental study. Zede Journal, 27, 33-43.

[12] Corinaldesi, V., Mazzoli, A., & Moriconi, G. (2011). Mechanical and physical properties of cement mortars containing plastic waste particles. Journal of Materials and Design, 32, 1646-1650.

[13] Thongsanitgarn, P., Wongkeo, W., Sinthusinyo, S., & Chaipanich, A. (2012). Effect of limestone powders on compressive strength and setting times of Portland-limestone cement pastes. In Advanced Materials Research (Vol. 343, pp. 322-326). Trans Tech Publications.

[14] Yang, H. S., Fang, K. H., & Tu, S. J. (2011). The influence of limestone powder on fluidity, strength and hydration of cement mortar. In Advanced Materials Research (Vol. 168, pp. 512-517). Trans Tech Publications.

[15] Sezer, G. İ. (2012). Compressive strength and sulfate resistance of limestone and/or silica fume mortars. Construction and Building Materials, 26(1), 613-618.

[16] Autier, C., Azema, N., Taulemesse, J. M., & Clerc, L. (2013). Mesostructure evolution of cement pastes with addition of superplasticizers highlighted by dispersion indices. Powder technology, 249, 282-289.

[17] Nehdi, M., Duquette, J., & El Damatty, A. (2003). Performance of rice husk ash produced using a new technology as a mineral admixture in concrete. Cement and concrete research, 33(8), 1203-1210.

[18] Erdogdu, S. (2005). Effect of retempering with superplasticizer admixtures on slump loss and compressive strength of concrete subjected to prolonged mixing. Cement and Concrete Research, 35(5), 907-912.

[19] Plank, J., & Hirsch, C. (2007). Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cement and concrete research, 37(4), 537-542.

[20] Zingg, A., Winnefeld, F., Holzer, L., Pakusch, J., Becker, S., & Gauckler, L. (2008). Adsorption of polyelectrolytes and its influence on the rheology, zeta potential, and microstructure of various cement and hydrate phases. Journal of Colloid and Interface Science, 323(2), 301-312.

[21] Ferrari, L., Kaufmann, J., Winnefeld, F., & Plank, J. (2011). Multi-method approach to study influence of superplasticizers on cement suspensions. Cement and Concrete Research, 41(10), 1058-1066.

[22] Matias, D., De Brito, J., Rosa, A., & Pedro, D. (2013). Mechanical properties of concrete produced with recycled coarse aggregates–Influence of the use of superplasticizers. Construction and building materials, 44, 101-109.

[23] Liu, X., Wang, Z., Zheng, Y., Cui, S., Lan, M., Li, H., & Liang, X. (2014). Preparation, characterization and performances of powder polycarboxylate superplasticizer with bulk polymerization. Materials, 7(9), 6169-6183.

[24] Erdem, R. T., Ozurt, A. U., & Güçüyen, E. (2016). Estimarea rezistentei la compramare a mortarelor de cement/estimation of compressive strength of cement mortars. Revista Romana de Materiale, 46(3), 313.

[25] Ismail, M. R., Ali, M. A. M., El-Miligy, A. A., & Affifi, M. S. (1999). Acid resistance of polyester-impregnated modified cement mortar. Journal of applied polymer science, 73(5), 685-693.

[26] Vipulanandan, C., & Mohammed, A. (2015). XRD and TGA, swelling and compacted properties of polymer treated sulfate contaminated CL soil. Journal of Testing and Evaluation, 44(6), 2270-2284.

[27] W Qadir, K Ghafor and A. Mohammed (2019). Characterizing and Modeling the Mechanical Properties of the Cement Mortar Modified with Fly Ash for Various Water-to-Cement Ratios and Curing Times Advances in Civil Engineering, Vol.2019, Article ID 7013908, 11 pages.

[28] Mohammed, A., Raof, H., & Salih, A. (2018). Vipulanandan Constitutive Models to Predict the Rheological Properties and Stress–Strain Behavior of Cement Grouts Modified with Metakaolin. Journal of Testing and Evaluation, 48(5).

[29] Liu, J., & Vipulanandan, C. (2005). Tensile bonding strength of epoxy coatings to concrete substrate. Cement and concrete Research, 35(7), 1412-1419.

[30] Moturi, S. V. (2010). Evaluating the Performance of Cementitious and Epoxy Coatings for Concrete Under Acidic Environment (Master dissertation, University of Houston).

[31] Pakeetharan, S. (2012). Characterization of Sensing Repair Materials (Master dissertation, University of Houston).

[32] Mohammed, A. S. (2017). Effect of temperature on the rheological properties with shear stress limit of iron oxide nanoparticle modified bentonite drilling muds. Egyptian journal of petroleum, 26(3), 791-802.
[33] Mohammed, A., & Mahmood, W. (2018). Statistical Variations and New Correlation Models to Predict the Mechanical Behavior and Ultimate Shear Strength of Gypsum Rock. Open Engineering, 8(1), 213-226.

[34] Mohammed, A., & Mahmood, W. (2018). Vipulanandan failure models to predict the tensile strength, compressive modulus, fracture toughness and ultimate shear strength of calcium rocks. International Journal of Geotechnical Engineering, 1(1).

[35] Mohammed, A. S. (2018). Vipulanandan model for the rheological properties with ultimate shear stress of oil well cement modified with nanoclay. Egyptian Journal of Petroleum, 27(3), 335-347.

[36] Vipulanandan, C., & Mohammed, A. S. (2014). Hyperbolic rheological model with shear stress limit for acrylamide polymer modified bentonite drilling muds. Journal of Petroleum Science and Engineering, 122, 38-47.

[37] Vipulanandan, C., Mohammed, A., & Samuel, R. G. (2018). Smart Cement Performance Enhancement with NanoAl₂O₃ for Real Time Monitoring Applications Using Vipulanandan Models. In Offshore Technology Conference. Offshore Technology Conference.

[38] Vipulanandan, C., Mohammed, A., & Ganpatye, A. S. (2018). Smart Cement Performance Enhancement with NanoAl₂O₃ for Real Time Monitoring Applications Using Vipulanandan Models. In Offshore Technology Conference. Offshore Technology Conference.

[39] Mohammed, Ahmed S., and Cumaraswamy Vipulanandan. "Compressive and tensile behavior of polymer treated sulfate contaminated CL soil." Geotechnical and Geological Engineering 32, no. 1 (2014): 71-83.

[40] Mohammed, Ahmed, and Cumaraswamy Vipulanandan. "Testing and Modeling the Short-Term Behavior of Lime and Fly Ash Treated Sulfate Contaminated CL Soil." Geotechnical and Geotechnical Engineering 33, no. 4 (2015): 1099-1114.

[41] Mohammed, A. S. (2018). Vipulanandan models to predict the electrical resistivity, rheological properties and compressive stress-strain behavior of oil well cement modified with silica nanoparticles. Egyptian Journal of Petroleum, 27(4), 1265-1273.

[42] Vipulanandan, C., and A. Mohammed. "Smart cement modified with iron oxide nanoparticles to enhance the piezoresistive behavior and compressive strength for oil well applications." Smart Materials and Structures 24, no. 12 (2015 b): 125020.

[43] Vipulanandan, C., and A. Mohammed. "Smart cement rheological and piezoresistive behavior for oil well applications." Journal of Petroleum Science and Engineering 135 (2015 c): 50-58.

[44] Vipulanandan, C., Krishnamoorti, R., Mohammed, A., Boncan, V., Narvaez, G., Head, B., & Pappas, J. M. (2015). Iron nanoparticle modified smart cement for real time monitoring of ultra Deepwater oil well cementing applications. In Offshore Technology Conference. Offshore Technology Conference.

[45] Vipulanandan, C., & Mohammed, A. (2015). Effect of nanoclay on the electrical resistivity and rheological properties of smart and sensing bentonite drilling muds. Journal of Petroleum Science and Engineering, 130, 86-95.

[46] Vipulanandan, C., & Mohammed, A. (2017). Rheological properties of piezoresistive smart cement slurry modified with iron oxide nanoparticles for oil-well applications. Journal of Testing and Evaluation, 45(6), 2050-2060.

[47] Vipulanandan, C. & Mohammed, A. (2018). Smart cement compressive piezoresistive, stress-strain, and strength behavior with nanosilica modification. Journal of Testing and Evaluation, 47(2).

[48] Vipulanandan, C., Mohammed, A., & Samuel, R. G. (2018). Fluid loss control in smart bentonite drilling mud modified with nanoclay and quantified with Vipulanandan fluid loss model. In Offshore Technology Conference. Offshore Technology Conference.

[49] Mohammed, A., & Vipulanandan, C. (2019). Magnetic Field Strength and Temperature Effects on the Behavior of Oil Well Cement Slurry Modified with Iron Oxide Nanoparticles and Quantified with Vipulanandan Models. Journal of Testing and Evaluation, 48(6).

[50] Mohammed, A., & Mahmood, W. (2019). New Vipulanandan pq Model for Particle Size Distribution and Groutability Limits for Sandy Soils. Journal of Testing and Evaluation, 48(5).

[51] Vipulanandan, C., & Mohammed, A. (2018). New Vipulanandan failure model and property correlations for sandstone, shale and limestone rocks. IFCEE, 2018, 365-376.

[52] Vipulanandan, C., & Mohammed, A. (2017). Rheological properties of piezoresistive smart cement slurry modified with iron-oxide nanoparticles for oil-well applications. Journal of Testing and Evaluation, 45(6), 2050-2060.

[53] Mohammed, A. S. (2018). Electrical resistivity and rheological properties of sensing bentonite drilling muds modified with lightweight polymer. Egyptian Journal of Petroleum, 27(1), 55-63.

[54] Mohammed, A. S. (2018). Property correlations and statistical variations in the geotechnical properties of (CH) clay soils. Geotechnical and Geotechnical Engineering, 36(1), 267-281.

[55] Bonavetti, V., Donza, H., Menendez, G., Cabrera, O., & Irassar, E. F. (2003). Limestone filler cement in low w/c concrete: A rational use of energy. Cement and Concrete Research, 33(6), 865-871.

[56] Zhang, J., & Li, Z. (2012). Impact of the Limestone Powder on the Properties of Cement Paste and Mortar. In Applied Mechanics and Materials (Vol. 174, pp. 236-240). Trans Tech Publications.

[57] Zelić, J., Rušić, D., Veža, D., & Krstulović, R. (2000). The role of silica fume in the kinetics and mechanisms during the early stage of cement hydration. Cement and Concrete Research, 30(10), 1655-1662.

[58] Zhang, X. Z., Han, C. S., & Yin, X. (2011). Influence of Limestone Powder on Performance of the Pre-Mixed Cement Mortar. In Advanced Materials Research (Vol. 306, pp. 1096-1100). Trans Tech Publications.

[59] De Weerdt, K., Haha, M. B., Le Saout, G., Kjellsen, K. O., Justnes, H., & Lothenbach, B. (2011). Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 41(3), 279-291.

[60] Xu, G. Q., You, Z. G., Gao, L., & Han, D. L. (2013). The Influence of Combined Admixture of Super-Fine Limestone Powder and Low-Quality Fly Ash on the Performance of Cement Mortar. In Advanced Materials Research (Vol. 652, pp. 1181-1184). Trans Tech Publications.