Design of the two-gap superconducting re-buncher*

M Gusarova1,2, W A Barth1,3,4, S Yaramyshev1,3, M Miski-Oglu1,
M Basten5, M Busch5

1MEPhI National Research Nuclear University, Moscow, Russia
2Joint Institute for Nuclear Research, Dubna, Russia
3GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
4HIM Helmholtz Institute Mainz, Germany
5IAP University of Frankfurt am Main, Germany

* Work supported by FRRC

E-mail: magusarova@mephi.ru

Abstract. A new design of a spoke cavity for low relative velocities of heavy ions has been elaborated. Simulation results for a 2-gap spoke cavity with a resonance frequency of 216.816 MHz and a relative velocity of 0.07c are presented.

1. Introduction

The ongoing UNILAC upgrade program at GSI has to provide for high current heavy ion beams [1-4] as well as proton [5] beams for the Facility of Antiproton and Ion Research (FAIR) [6] at Darmstadt. Due to the low duty factor requirements for FAIR injector operation, a use of the UNILAC for super heavy element (SHE) research at GSI will be strongly limited.

The dedicated standalone superconducting (sc) continuous wave (cw) Linac HELIAC (HElmholtz LInear ACcelerator) is assumed to meet the demands of the experimental program best. The cw mode of the machine operation significantly increases the SHE production rate. The beam dynamics concept [7-9] for the HELIAC is based on multi cell CH-DTL cavities, operating at 216.816 MHz. The first superconducting CH-DTL cavity of HELIAC was successfully commissioned with beam [10,11] at GSI in summer 2017. Figure 1 shows the layout of the first cryomodule [12, 13], which comprises three CH-DTL cavities, two solenoids and a short re-buncher-cavity. In this paper the design of a two-gap spoke re-buncher cavity with geometrical limitations of length and diameter is presented.

![Figure 1. Layout for the first HELIAC cryo module with three CH-DTLs, two solenoids and one re-buncher cavity. The total length is 4.5 m.](image)

2. RF design and RF optimization

The main parameters of the re-buncher (Table 1) are determined by the fixed operating frequency of 216.816 MHz and the space limitation inside the given cryostat layout.
Table 1. Required re-buncher parameters

Parameter	Designation	Value
Frequency	f, MHz	216.816
Rel. Velocity	β	0.07
Number of gaps	Ng	2-3
Drift tube aperture	Ra, mm	30-35
Length	L, mm	<300
Diameter	D, mm	410-500

According to Figure 2 for the given parameters, the use of a quarter-wave structure is effective, however, in order to unify the existing equipment of the first HELIAC cryo module (cryostat, frequency-tuning elements, etc.), the possibility of creating a compact two-gap spoke re-buncher that allows the use of already developed devices is being considered. As illustrated in Figure 2, the superconducting spoke resonators are usually used as accelerating structures for particle velocities above 0.2c and up to 0.7c in the frequency range from 300 MHz to 900 MHz [14]. The main features of the newly developed design are the low frequency $f = 216.816$ MHz and the low relative velocity $\beta = 0.07c$, which are below the typical values.

![Figure 2. Practical superconducting cavity geometries spanning the full range of velocities.](image-url)

The shape of the spoke and the length of the accelerator gap g is chosen to adjust the frequency of the cavity to 216.816 MHz, while the cavity diameter D is limited to 410 mm and the overall length L to 300 mm.

Figure 3 shows classical shapes of spokes for RF-cavities. At first these resonators were designed with a cylindrical spoke (see Figure 3(a)). When the diameter of the spoke became comparable to the aperture, the spokes design was equipped with a flattening (Figure 3(b)) [15].

![Figure 3. Cross section of a simple two-gap spoke cavity structure (a) and two versions of the spoke geometry (b), (c).](image-url)
According to [16] the optimal ratio of the length of the accelerating gap \(g \) and the length between the gaps of the two-gap cavity \(d = \beta \lambda / 2 \) (in order to obtain the maximum transmission factor at the dedicated speed) is \(g/d = 0.3 \); the gap length \(g \) is 16 mm. For the cylindrical spoke (b), the CST studio [17] calculation of electromagnetic fields results in a drift tube aperture which is close to the diameter of the spoke. The variant with an elliptical spoke exceeds the resonance frequency of 216.816 MHz for the given geometrical constrains.

To reduce the operating frequency, the inductance \(L \) or the capacitance \(C \) has to be increased:

\[
f = \frac{1}{2\pi\sqrt{LC}}
\]

Figure 4 shows the proposed geometry of the outer tank and the spoke: strong limitations in diameter \(D \) of the structure and the top area of the spoke (parameters \(a \) and \(b \)) prohibit a further increase of the inductance. An increase of the capacitance could be performed by reducing the accelerating gap width below 16 mm and by increasing the surface area in transversal direction (parameter \(x \)).

![Figure 4. Proposed tank geometry of the two-gap spoke cavity; with parameters \(a, b \) and \(x \).](image)

A parametric study of the structure with an increased capacitance has been performed, taking the minimization of the peak values of the electric and magnetic fields on the surface of the structure into account. In Figure 5 CST studio simulations of the el. field distribution (a), as well as the longitudinal field \(E_z(z) \) along the beam axis \(z \) (b) is depicted. Table 2 summarizes the main RF parameters of the two-gap spoke re-buncher, designed for a resonance frequency of 216.816 MHz and for a relative velocity of 0.07c.

The dependence of frequency and \(Bp/Eacc \) on the form of the top of the spoke has been investigated, as shown in Figure 6 for different shapes. In Table 3 dimensions and RF parameters for different shapes of the spoke are listed.

As depicted in Table 3, acceptable values of \(Bp/Eacc \) are achieved using a cylindrical shape of the top of the spoke (variants d and e).

![Figure 5. CST studio simulation of the electrical field in the cross section of the two-gap spoke re-buncher (a), and \(E_z(z) \) (b).](image)
Table 2. RF parameters of the two-gap spoke re-buncher, calculated with a stored energy of 1 Joule.

Parameter	Value 1 (a)	Value 2 (b)
$a = b$, mm	30	29
f, MHz	217.9	216.8
U, kV	391	396
E_p, MV/m	27	27.5
B_p, mT	38	40
$E_{acc} = U_{total}/\beta \lambda$, MV/m	4	4
E_p/E_{acc}	6.6	6.5
B_p/E_{acc}, mT/[MV/m]	9.5	10
R/Q	110	114

![Image of RF parameters](image.png)

Figure 6. Different shape of the top of the spoke.

Table 3. Geometrical dimensions for different shapes of the top of the spoke and RF parameters

Dimension	(a)	(b)	(c)	(d)	(e)
a, mm	17.7	10	30	30	25
b, mm	50	30	10	30	25
B_p/E_{acc}, mT/[MV/m]	17.9	24.2	21.4	9.4	10
f, MHz	225	206	203	218	212

3. Simulations of tuning system

The dynamic tuner (Figure 7), positioned perpendicularly to the beam direction, provides for frequency tuning during operation. The geometrical design of the bellow is comparable to the dynamic tuner for the CH- cavities of HELIAC [18]. Table 4 summarizes the calculations of the resonance frequency for different tuner lengths h and corresponding values of E_p/E_{acc}.

A tuner with a length of 134 mm provides for a frequency shift of 80-90 kHz/mm, while the minimum ratio of $E_p/E_{acc} \sim 6.6$ is maintained.
4. Mechanical simulations
The primary estimation of the frequency shift due to pressure and cooling to temperature 4.2 was carried out by an iterative method using the electromagnetic and mechanical solvers of the CST Studio [17]. The frequency shift with a uniform increase in the vacuum volume of the structure by 0.1 mm was 750 kHz. This means that the structure will have a high sensitivity to etching. The largest contribution to the frequency shift is made by the change in the size of the accelerating gap. The frequency shift during cool down to 4.2 K is about 2 MHz. As a boundary condition this study of mechanical properties was carried out with the fixed drift tube.

The simulations of the pressure sensitivity df/dp stiffeners are shown in Figure 8, data are presented in Table 5.

5. Multipacting analysis
Computer simulations of the multipacting discharge have been performed by means of the MultP-M code [19] without taking additional tuners into account. The tuner is potentially a source of multipactor barriers at low field values, due to narrow gaps inside the bellow. The long narrow
accelerating gap is another risk of multipacting at low field levels. Figure 9 illustrates the growth rates of secondary electrons after 10 (a) and 40 (b) RF periods for a voltage level U_N from 0 to 1. The value $U_N = 1$ corresponds to an accelerating voltage of 380 kV.

![Figure 9. Number of secondary electrons after 10 (a) and (40) RF periods for different value UN.](image)

The multipactor trajectories are located on the outer surface of the structure for a wide range of accelerating voltages, while the trajectories are damped. As shown in [15, 20] for similar spoke cavities multipacting barriers potentially could be overcome by a dedicated RF-conditioning process.

6. Conclusion

The possibility of creating a two-gap compact re-buncher of the spoke design, calculated for a frequency of 216.816 MHz with tuning by an internal dynamic tuner, has been presented. This work is important for the cw linac HELIAC at GSI, which is one of the new developments in accelerators [21 - 27]. The two-gap compact re-buncher of the spoke design simultaneously ensure the preservation of the minimum length of the first module, and to reduce the costs associated with the development of the cryostat for designs of other types and frequency tuning systems.

References

[1] Barth W et al 2015 28-intensity record applying a H2-gas stripper cell Phys. Rev. ST Accel. Beams 18 040101 URL https://link.aps.org/doi/10.1103/PhysRevSTAB.18.040101

[2] Barth W et al 2007 Upgrade program of the high current heavy ion UNILAC as injector for FAIR Nucl. Instrum. Methods Phys. Res. A 577 211 URL https://doi.org/10.1016/j.nima.2007.02.054

[3] Groening L et al 2008 Benchmarking of measurement and simulation of transverse rms-emittance growth Phys. Rev. ST Accel. Beams 11 094201 URL https://link.aps.org/doi/10.1103/PhysRevSTAB.11.094201

[4] Adonin A and Hollinger R 2014 Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility Rev. Sci. Instrum. 85 02A727 URL https://doi.org/10.1063/1.4833931

[5] Barth W et al 2015 Heavy ion linac as a high current proton beam injector Phys. Rev. ST Accel. Beams 18 050102 URL https://link.aps.org/doi/10.1103/PhysRevSTAB.18.050102

[6] Barth W et al 2017 High brilliance uranium beams for the GSI FAIR Phys. Rev. ST Accel. Beams 20 050101 URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.050101

[7] Podlech H et al 2007 Superconducting CH structure Phys. Rev. ST Accel. Beams 10, 080101, URL https://link.aps.org/doi/10.1103/PhysRevSTAB.10.080101

[8] Butenko A V et al 2014 Development of NICA injection complex Proc. IPAC’14 Dresden Germany 2103–05 ISBN: 978-395450132-8

[9] Barth W et al 2017 A superconducting CW-LINAC for heavy ion acceleration at GSI EPJ Web Conf. 138 01026 URL https://doi.org/10.1051/epjconf/201713801026

[10] Dziuba F et al 2016 First cold tests of the superconducting cw demonstrator at GSI Proc. RuPAC’16 St. Petersburg Russia 84–86
[11] Barth W et al 2018 First heavy ion beam tests with a superconducting multigap CH cavity Phys. Rev. Accel. Beams 21 020102 URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.020102
[12] Schwarz M et al 2016 Further steps towards the superconducting CW-linac for heavy ions at GSI Proc. IPAC’16 Busan South Korea 896-898
[13] Barth W et al 2017 Further Investigations for a Superconducting cw-LINAC at GSI Proc. IPAC2017 Copenhagen Denmark 2197-2200
[14] Kelly M 2013 Tutorial program at the SRF’13
[15] Krawczyk F L 2002 Report of the Workshop on the Advanced Design of Spoke Resonators Los Alamos USA
[16] Zvyagintcev V L 2012 Theoretical and Experimental Studies of Superconducting Coaxial Resonators for Linear Accelerators of Ions PhD thesis NRNU MEPhI
[17] https://www.cst.com/
[18] Basten M et al 2016 Status of the First CH-Cavities for the New Superconducting CW Heavy Ion Linac@GSI Proc. IPAC’16 Busan Korea 886-888
[19] Gusarova M A et al 2014 New possibilities of MultiP-M code Proc. IPAC’14 Dresden Germany 433-435
[20] Awida M H et al Development of Low β Single Spoke Resonators for the Front End of the Proton Improvement Plan-II at Fermilab IEEE Trans.Nucl.Sci. 64 2450-64 URL https://doi.org/10.1109/TNS.2017.2737560
[21] Laxdal R 2006 Recent progress in the superconducting RF Program at TRIUMF/ISAC Physica (Amsterdam) 441C 13 URL https://doi.org/10.1016/j.physc.2006.03.096
[22] Aksent'ev A E et al 2015 Conceptual Development of a 600–1000 MeV Proton Beam Accelerator-Driver with Average Beam Power >1 MW Atomic Energy 117 4 pp 270–277 URL https://doi.org/10.1007/s10512-015-9921-9
[23] Aliev K A et al 2016 On application of superconducting resonators for reconstruction of proton injector for nuclotron complex Phys. Part. Nuclei Lett. 13 911-914 URL https://doi.org/10.1134/S1547477116070049
[24] Aliev K A et al Study of superconducting accelerating structures for megawatt proton driver linac Proc. RuPAC’14 Obninsk Russia 318-320
[25] Gusarova M A et al 2016 Research and design of a new RFQ injector for modernization of the LU-20 drift-tube linac Phys. Part. Nuclei Lett. 13 915-918 URL https://doi.org/10.1134/S1547477116070256
[26] Solyak N et al 2010 The concept design of the CW linac of the Project X Proc. IPAC’10 Kyoto Japan 654–656 ISBN: 978-929083352-9
[27] Butenko A V et al 2014 Development of NICA injection complex Proc. IPAC’14 Dresden Germany 2103–05 ISBN: 978-395450132-8