INTRODUCTION

Healthcare workers are particularly vulnerable to this infection\(^1\). The virus that causes Covid19 was initially called 2019-nCoV and was then termed as syndrome Coronavirus-2 by the international committee on taxonomy of viruses (ICTV)\(^2\). It is a strain discovered in 2019 which was not found previously in humans\(^3\). Previously, the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV) have been known to affect humans\(^4\).

Outbreaks of respiratory disease caused by these viruses originated in animals before moving into other hosts such as humans\(^5\). MERS-CoV was found to be transmitted from Arabian camels to humans, whereas SARS-CoV was transmitted from civet cats to humans\(^6\). SARS-CoV-2 seems to have originated from bats, and the first reports of cases where from Wuhan\(^7\). Hubei Province in China, suggesting animal to person spread from a live animal market\(^8\). The virus spread to the entire world and it became a pandemic\(^9\). Several countries have now reported community spread. The world health organization WHO declared the coronavirus disease as a pandemic on March 11, 2020\(^10\).

With this mode of transmission, healthcare workers are one among the highest risk of being infected\(^11\). That highly contagious SARS-CoV-2 is an additional hazard for the healthcare system apart from the burden of extended work hours, physical and physiological stress, burn out, and fatigue\(^12\).

The aim of this study is to assess the awareness of the role of healthcare workers in COVID-19 disease and its related infection control practices among healthcare professionals in the Indian healthcare scenario.

MATERIALS AND METHODS

The study setting is a prospective observational study. The advantages of this study are economical, easy to create, wide
RESULTS AND DISCUSSION

66.34% are female and 33.66% are male (figure 1). About 17.82% are using hand sanitizer to protect from the COVID-19 virus, 25.74% are maintaining social distance, 10.89% are taking a proper nutritious diet (Figure 2). 44.55% agreed that coronavirus can enter the human body through nostrils (Figure 3). 69.31% of participants agreed that healthcare workers are at risk of COVID-19 (Figure 4). 58.42% of participants are aware of the diagnostic tests for COVID-19 (Figure 5). 73.27% of participants agreed that COVID-19 pandemic caused stress with its rapid spread (Figure 6). 65.35% of the participants reported that pandemic will be stress among healthcare workers (Figure 7). COVID-19 might be transmitted from person-to-person showing symptoms like fever, shortness of breath, cough, fatigue which was supported by 48.51% of the participants (Figure 8). 70.30% of the participants are aware of the symptoms of COVID-19 (Figure 9). 75.25% of participants responded that they maintain social distancing after they come back from the hospital (Figure 10).

We have seen the association between gender (X-axis) and responses to awareness on entry point of coronavirus (Figure 11), responses to awareness on the risk of COVID-19 to health care workers (Figure 12), responses to awareness on the diagnostic tests for COVID-19 (Figure 13), responses to awareness on symptoms of COVID-19 (Figure 14).

Since its initial outbreak in China in December 2009, the COVID-19 disease has had a cascading effect worldwide. According to the ICMR update on March 23, 2020, more than 400 individuals have been confirmed positive in India. Isolation of a COVID infected patient is the first step in curbing the spread of COVID-19. In our study, less than half of the responders are aware of COVID-19. Risk assessment and management of healthcare workers with exposure in a healthcare setting to patients with coronavirus disease is evaluated.

Proper hand hygiene practices play a crucial role in preventing the spread of infection. However, the question in our survey was focused on the recommended hand hygiene technique for visibly soiled hands which is hand washing with soap and water for at least 20 seconds with the whole process lasting for up to 40-60 seconds. Awareness of the use of personal protective equipment for suspected/ COVID-19 Cases was high among all groups of healthcare professionals. A facemask /N95 respirator should be used when entering the patient room. The N95 respirator is preferred over face mask when performing or presents for aerosol-generating procedures.

Disposal of used face masks and hand hygiene should be followed throughout. A sterilized dress with disposable face shield and clean non-sterile gloves are recommended upon entry to the patient room area. The patient’s isolation and aerosol performing procedures should be carried out in the airborne infection isolation room. Air from these rooms should be filtered and proper ventilation should be available.

Physicians and nurses had significantly better knowledge when compared with other healthcare workers. The current situation requires urgent development of strategies to prevent infection among high-risk populations including pre-exposure and post-exposure prophylaxis.

Numerous studies in silico analysis, natural compounds, nanomaterials, and oncology research improved my passion for research towards epidemiological surveys. The idea for this survey from the current interest in our community.
Figure 2: Pie chart showing the percentage distribution of responses about awareness on protective measures for the COVID-19 virus. 25.74% - Maintaining social distance (green), 10.89% - proper nutritious diet (purple), 17.82% - Sanitizing hand (pale yellow), and 45.54% - all the above (blue).

Figure 3: Pie chart showing the percentage distribution of responses about awareness on risk factors for COVID-19. 34.65% - through mouth (green), 13.86% - through nostril (pale yellow), 44.55% - through scratch (blue), and 6.93% - none of the above (purple).

Figure 4: Pie chart showing the percentage distribution of responses about awareness on health care workers at risk from COVID-19. 69.31% - Yes (blue) and 30.69% - No (green).

Figure 5: Pie chart showing the percentage distribution of responses about awareness on diagnostic tests for COVID-19. 58.42% - Yes (blue) and 41.58% - No (green).

Figure 6: Pie chart showing the percentage distribution of responses about awareness on COVID -19 pandemic and its rapid spread. 73.27% - Yes (blue) and 26.73% - No (green).

Figure 7: Pie chart showing the percentage distribution of responses about awareness on pandemic to be stress among health care workers. 65.35% - Yes (blue) and 34.65% - No (green).
Sri et al.: Awareness on the role of health care workers in covid-19 - need of the hour

Figure 8: Pie chart showing the percentage distribution of response about awareness on the transmission of COVID-19 from person to person. 4.95% - fever (yellow), 18.81% - cough (green), 14.85% - shortness of breath (pale yellow), 12.87% - breathing difficulties (purple), and 48.51% - all the above (blue).

Figure 9: Pie chart showing the percentage distribution of response about awareness on symptoms of COVID - 70.30% - Yes (blue) and 29.70% - No (green).

Figure 10: Pie chart showing the percentage distribution of responses about awareness on social distancing from family members after a hospital visit. 75.25% - Yes (blue) and 24.75% - No (green).

Figure 11: Bar graph represents the association between gender (X-axis) and responses of awareness on routes of entry of the virus into the system (Y-axis). 16.83% of males and 27.72% of females reported through open wounds. Blue color denotes through an open wound, green color denotes through the mouth, Yellow color denotes through the nostril, Brown color denotes none of the above. Both males and females were aware of routes of entry of the virus into the system, but in analysis, there was no statistical significance. Majority of the participants in the female population agreed that (27.72%) they had good knowledge and awareness on routes of entry of the virus into the system. Chi-square value = 1.623; p-value = 0.654 (p>0.05, statistically not significant).

Figure 12: Bar graph represents the association between gender (X-axis) and responses to the awareness on the risk of COVID-19 to health care workers (Y-axis). 28.71% of males reported Yes and 40.59% of females reported Yes. Blue color denotes Yes and green color denotes No. Both males and females were aware of the risk factors of COVID-19 to healthcare workers, but in analysis there was no statistical significance. The majority of the participants in the female population agreed that (40.59%) they had good awareness on risk of COVID-19 to health care workers. Chi-square value = 6.158; p-value = 0.13 (p>0.05 statistically not significant).
CONCLUSION

It is important for an individual to have awareness and knowledge about COVID-19, the reasons behind measures like social distancing and the mode of transmission of the virus. It is important to ensure the safety of frontline workers. Moreover, it is important to reduce the risk of infection among healthcare workers. It can be done by implementing policies and educating the people to convey the importance and the consequences of the virus transmission, we can conclude that adequate awareness can be created on the role of healthcare workers in COVID-19. This study shows the strong need to implement periodic educational programs and training programmes for COVID-19.

ACKNOWLEDGEMENT

We thank Saveetha Dental College for providing us the support to conduct the study.

Conflict of Interest

All the authors declare no conflict of interest in the study.

Funding Information

None

REFERENCES

1. Langade D, Modi PD, Sidhwa YF, Hishikar NA, Gharpure AS, Wankhede K, et al. Burnout Syndrome Among Medical Practitioners Across India: A Questionnaire-Based Survey [Internet]. Cureus. 2016. Available from: http://dx.doi.org/10.7759/cureus.771

2. Cascella M, Cuomo A, Viscardi D. Features and Management of the Pelvic Cancer Pain [Internet]. 2016. Available from: http://dx.doi.org/10.1007/978-3-319-33587-2

3. Modi PD, Kumar P, Solanki R, Modi J, Chandramani S, Gill N. Hand Hygiene Practices Among Indian Medical Undergraduates: A Questionnaire-Based Survey [Internet]. Cureus. 2017. Available from: http://dx.doi.org/10.7759/cureus.1463

4. Feng S, Shen C, Xia N, Song W, Fan M, Cowling BJ. Rational use of face masks in the COVID-19 pandemic [Internet]. Vol. 8, The Lancet Respiratory Medicine. 2020. p. 434–6. Available from: http://dx.doi.org/10.1016/s2213-2600(20)30134-x

5. Abbag HF, El-Mekki AA, Al Bshabshe AAA, Mahfouz AA, Al-Dosry AA, Mirdad RT, et al. Knowledge and attitude towards the Middle East respiratory syndrome coronavirus among healthcare personnel in the southern region of Saudi Arabia [Internet]. Vol. 11, Journal of Infection and Public Health. 2018. p. 720–2. Available from: http://dx.doi.org/10.1016/j.jiph.2018.02.001

6. Alsahafi A, Cheng A. Knowledge, Attitudes and Behaviours of Healthcare Workers in the Kingdom of Saudi Arabia to MERS Coronavirus and Other Emerging Infectious Diseases [Internet]. Vol. 13, International Journal of Environmental Research and Public Health. 2016. p. 1214. Available from: http://dx.doi.org/10.3390/ijerph13121214

7. Mitjá O, Clotet B. Use of antiviral drugs to reduce COVID-19 transmission [Internet]. Vol. 8, The Lancet Global Health. 2020.
18.-process Engineering. 2019. p. 646–52. Available from: http://

16. Lines (FTC-133) [Internet]. Vol. 24, Biotechnology and Bio

15. Ma Y, Karunakaran T, Veeraraghavan VP, Mohan SK, Li S. Ses

14. Abebe TB, Bhagavathula AS, Tefera YG, Ahmad A, Khan

12. Rubin GJ, Amlot R, Page L, Wessely S. Public perceptions, anxi

11. Khatri DAK, MGM Medical College Indore, India MP. Health

10. McCloskey B, Zumla A, Ippolito G, Blumberg L, Arbon P, Cic

9. Johnson EJ, Harirahan S. Public health awareness: knowledge,
attitude and behaviour of the general public on health risks during
the H1N1 influenza pandemic [Internet]. Vol. 25, Journal of Public Health. 2017. p. 333–7. Available from: http://dx.doi.org/10.1080/103839-017-0790-7

8. Ilesanmi O, Alele FO. Knowledge, Attitude and Perception of Ebola Virus Disease among Secondary School Students in Ondo State, Nigeria, October, 2014 [Internet]. PLoS Currents. 2016. Available from: http://dx.doi.org/10.1371/currents.outbreaks.c04b88cd5cd03cccb99e125657eeced76

7. Jainu M, Priya V, Mohan S. Biochemical evidence for the anti

6. Menon A, V VP, Gayathri R. Preliminary phytochemical analys
sis and cytotoxicity potential of pineapple extract on oral cancer

5. Mala M, Srividya S. Partial purification and properties of a

4. G R, Ramya G, V VP, Gayathri R. Cytotoxicity of strawberry ex
tract on oral cancer cell line [Internet]. Vol. 11, Asian Journal of Pharmaceutical and Clinical Research. 2018. p. 353. Available from: http://dx.doi.org/10.22159/ajpcr.2018.v11i9.25955

3. Mala M, Srividya S. Partial purification and properties of a

2. Menon A, V VP, Gayathri R. Preliminary phytochemical analys
sis and cytotoxicity potential of pineapple extract on oral cancer

1. Moghul SK, Veeraraghavan VP, Jainu M. Effect of pioglitazone, quercetin, and hydroxy citric acid on vascular endothelial growth factor messenger RNA (VEGF mRNA) expression in experimentally induced nonalcoholic steatohepatitis (NASH) [Internet]. Vol. 45, Turkish journal of medical sciences.2015. p. 542–6. Available from: http://dx.doi.org/10.3906/sag-1404-136

20. Li Z, Veeraraghavan VP, Mohan SK, Bolla SR, Lakshmanan H, Kumaran S, et al. Apoptotic induction and anti-metastatic activity of eugenol encapsulated chitosan nanopolymer on rat glioma C6 cells via alleviating the MMP signaling pathway [Internet]. Vol. 203, Journal of Photochemistry and Photobiology B: Biology. 2020. p. 111773. Available from: http://dx.doi.org/10.1016/j.jphotobiol.2019.111773

19. Ma Y, Karunakaran T, Veeraraghavan VP, Mohan SK, Li S. Sesame Inhibits Cell Proliferation and Induces Apoptosis through Inhibition of STAT-3 Translocation in Thyroid Cancer Cell Lines (FTC-133) [Internet]. Vol. 24, Biotechnology and Bioprocess Engineering. 2019. p. 646–52. Available from: http://dx.doi.org/10.1016/s12257-019-0151-1

18. Sri et al.: Awareness on the role of health care workers in covid-19 - need of the hour

17. Chen F, Tang Y, Sun Y, Veeraraghavan VP, Mohan SK, Cui C. 6-shogaol, a active constituents of ginger prevents UV radiation mediated inflammation and oxidative stress through modulating Nrf2 signaling in human epidermal keratinocytes (HaCaT cells) [Internet]. Vol. 197, Journal of Photochemistry and Photobiology B: Biology. 2019. p. 111518. Available from: http://dx.doi.org/10.1016/j.jphotobiol.2019.111518

16. Wang Y, Zhang Y, Guo Y, Lu J, Veeraraghavan VP, Mohan SK, et al. Synthesis of Zinc oxide nanoparticles from Marsdenia tenacissima inhibits the cell proliferation and induces apoptosis in laryngeal cancer cells (Hep-2) [Internet]. Vol. 201, Journal of Photochemistry and Photobiology B: Biology. 2019. p. 111624. Available from: http://dx.doi.org/10.1016/j.jphotobiol.2019.111624

15. Gan H, Zhang Y, Zhou Q, Zheng L, Xie X, Veeraraghavan VP, et al. Zingerone induced caspase-dependent apoptosis in MCF-7 cells and prevents 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in experimental rats [Internet]. Vol. 33, Journal of Biochemical and Molecular Toxicology. 2019. Available from: http://dx.doi.org/10.1002/jbt.22387

14. Rengasamy G, Venkataraman A, Veeraraghavan VP, Jainu M. Cytotoxic and apoptotic potential of Myristica fragrans Hoult. (mace) extract on human oral epithelial carcinoma KB cell lines [Internet]. Vol. 54, Brazilian Journal of Pharmaceutical Sciences. 2018. Available from: http://dx.doi.org/10.1590/1516-00312016000318028

13. Yao H, Chen J-H, Xu Y-F. Rethinking online mental health ser

12. Rubin GJ, Amlot R, Page L, Wessely S. Public perceptions, anx

11. Khatri DAK, MGM Medical College Indore, India MP. Health

10. McCloskey B, Zumla A, Ippolito G, Blumberg L, Arbon P, Cic

9. Johnson EJ, Harirahan S. Public health awareness: knowledge,
attitude and behaviour of the general public on health risks during
the H1N1 influenza pandemic [Internet]. Vol. 25, Journal of Public Health. 2017. p. 333–7. Available from: http://dx.doi.org/10.1080/103839-017-0790-7

8. Ilesanmi O, Alele FO. Knowledge, Attitude and Perception of Ebola Virus Disease among Secondary School Students in Ondo State, Nigeria, October, 2014 [Internet]. PLoS Currents. 2016. Available from: http://dx.doi.org/10.1371/currents.outbreaks.c04b88cd5cd03cccb99e125657eeced76

7. Jainu M, Priya V, Mohan S. Biochemical evidence for the anti