We show results for the B meson decay constant calculated both for B mesons at rest and those with non-zero momentum and using both the temporal and spatial components of the axial vector current. It is an important check of lattice systematic errors that all these determinations of f_B should agree. We also describe how well different smearings for the B meson work at non-zero momentum - the optimal smearing has a narrow smearing on the b quark.

1. Introduction

Matrix elements involving moving B and D mesons are important for studies of $B \to D$ and $B \to \pi$ decay. It is necessary to understand the systematic errors in lattice QCD that come from the presence of non-zero momenta and the optimal way in which to handle such mesons on the lattice. An easy place to study these effects is in the determination of the B meson decay constant, f_B.

In the absence of discretisation errors it should be true that

$$<0| A_\mu |B > = f_B p_\mu .$$

(1)

We use both A_0 and A_k with all current corrections and renormalisation through α_s/M_b.

Results shown are for an ensemble of 278 $12^3 \times 24$ lattices at $\beta = 5.7$. Clover light quarks are used with $\kappa = \kappa_s$ and NRQCD heavy quarks are used with masses in lattice units of 2 and 8 ($m_{Q_a} = 4.0$). All momenta are considered up to $(pa)^2$ of 16 in units of $(2\pi/L)^2$, i.e. roughly 4 GeV2 at this lattice spacing.

2. Smearing

We generated heavy and light quark propagators with 3 different smearings: a delta function, a narrow Gaussian (width 1) and a broad Gaussian (width 3). We combined these smearings together to make 6 different smearings for the heavy-light meson and analysed the resulting smeared-smeared meson correlators using the constrained curve fitting methods described in [3]. The results are shown in Figure 1, which plots the amplitude of the ground state B meson as a function of squared momentum for some of these smearings. It is clear that the optimal smearing for a moving heavy-light meson is one in which the smearing on the heavy quark is a narrow one and the smearing on the light quark is a broad one. This is not surprising if one considers that the heavy quark is carrying almost all of the meson momentum. The overlap as a function of momentum is maximized if the heavy quark has a delta function smearing, but in that case the statistical noise is large because of the well-known problem that an unsmeared heavy quark has a poor signal/noise ratio [4]. At zero momentum this has led to the received wisdom that the heavy quark should have a broad smearing - Figure 1
Figure 1. The amplitude for the ground state in various heavy-light smeared-smeared correlators as a function of \vec{p}^2 in units of $(2\pi/L)^2$. The heavy mass was $m_a = 8$.

shows that this is not correct at non-zero momentum.

Figure 2 amplifies this point by showing the rapid plateau and consequent small error on the kinetic energy possible with a good finite-momentum smearing, in contrast to that obtained with a smearing that might have been considered a good one at zero momentum.

3. f_B from A_0

We used smearing ‘5’ from the above analysis and the constrained curve fitting methods to determine f_B for moving B mesons and the temporal axial current. Matrix elements for A_0 are obtained from a simultaneous fit to all A_0^i (i=0,1,2) and A_i^k (i=0,1,2,3,4) current correlators at a given momentum. The construction of the continuum A_0 from A_0^{latt} is described in [2].

Figure 3 shows results for the ratio:

$$R(p) = \frac{\langle 0|A_0|B(p)\rangle/\sqrt{E}}{\langle 0|A_0|B(0)\rangle/\sqrt{M}}$$ \hspace{2cm} (2)
for $ma=8$ using $\alpha_s(2/a)$ in the renormalisation. The expected curve $\sqrt{E/M}$ is also shown. No disagreement is seen until the highest momentum. At $ma=2$, larger discrepancies appear [5].

4. f_B from A_k

The matrix elements for the spatial axial current behave rather differently to those for the temporal axial current since they must vanish when there is no component of \vec{p} along the direction of the current. Even the leading order current, $A^0_k = \vec{\gamma}_5 \gamma_k Q$ then has a matrix element $O(p_k/M)$ with respect to A^0. This is of the same order as the ‘$1/M$’ suppressed current contributions from $A^1_k = 7\gamma_5 \gamma_k (\vec{\gamma} \cdot \vec{D})/2M)Q$ and $A^3_k = \vec{\gamma}_5 (\vec{D}/2M)Q$. A^1_k contributes at tree level and A^3_k at one-loop to the final result for A_k. To understand the size of different current contributions it is important to use a power-counting in both the external velocity and in Λ_{QCD}/M [5].

Figure 4 shows results for the ratio:

$$R_k(p) = \frac{\langle 0|A_k|B(p)\rangle}{\langle 0|A_0|B(p)\rangle}$$

as a function of p_k for a range of values of \vec{p}^2, for $ma=8$. The line shown is p_k/E (variation with \vec{p}^2 of this line is not significant). Good agreement with the line is found for $p_k a = 1.2 \times 2\pi/L$ at all \vec{p} except for $p_k a = 3, 4$ which show signs of deviation, presumably from missing current corrections that are higher order in the external velocity.

Figure 4 shows agreement between f_B from A_0 and A_k which resolves a long-standing problem. Ref. [1] found a disagreement of $O(10\%)$ when comparing the tree-level matrix elements for clover fermions. This ignores the contribution of A^3_k and does not allow for the clover equivalent of the different renormalisation of $A^0_{0,k}$ and $A^0_{0,k}$. Both these effects are included here.

5. Conclusions

We have demonstrated the usefulness of optimal (i.e. narrow) smearing for heavy quarks in moving heavy-light mesons, and of constrained curve fitting in extracting results out to much higher momenta than have previously been attempted. Good agreement is found for f_B at zero and non-zero momentum. For the temporal axial current at large ma this holds out to the highest momenta studied. To understand the behaviour of the currents at non-zero momentum it is important to use a power-counting appropriate to moving heavy-light mesons.

Acknowledgements SC, GC, CD and JH are members of the UKQCD collaboration. We are grateful to the following bodies for support of this work: PPARC, DoE, NSF and the EU under HPRN-2000-00145 Hadrons/Lattice QCD.

REFERENCES

1. J. Simone, Nucl. Phys. B (Proc. Suppl. 53) 1997 386.
2. C. Morningstar and J. Shigemitsu, PRD 59 (1999) 094504.
3. G. P. Lepage, these Proceedings.
4. G. P. Lepage, NPB (Proc. Suppl. 26) 45 1992.
5. S. Collins et al, in preparation.