A methyl jasmonate induced defensin like protein from *Panax notoginseng* confers resistance against *Fusarium solani* in transgenic tobacco

Q. WANG1,2, B.L. QIU1,2, S. LI1,2, Y.P. ZHANG1,2, X.M. CUI1,2, F. GE1,2, and D.Q. LIU1,2*

Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, P.R. China1
Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, P.R. China2

Abstract

Plant defensins and defensin like protein (DEFL) form a large family of small cysteine-rich proteins. They are major components of plant immune systems, being involved in host defenses against biotic and abiotic stresses. In this study, a novel defensin like protein (DEFL) gene *PnDEFL1* was isolated from *Panax notoginseng*, a traditional Chinese medicinal herb. The expression patterns of *PnDEFL1* after treatment with methyl jasmonate, salicylic acid, ethephon, and H$_2$O$_2$, as well as during *Fusarium solani* infection, were analyzed using reverse transcription qPCR. The up-regulated expression of *PnDEFL1* indicated that it responded to *F. solani* infection and all four defense-related signalling molecules. The *PnDEFL1* gene was further fused with the green fluorescent protein gene in a plant expression vector and transformed into onion (*Allium cepa*) epidermal cells. The laser scanning confocal microscope confirmed that the *PnDEFL1* protein localized to the extracellular region. In addition, the recombinant *PnDEFL1* protein was expressed in *Escherichia coli* and purified by affinity chromatography. It had antifungal activities against *F. solani*, *F. oxysporum*, *Botryosphaeria dothidea*, and *Sclerotinia sclerotiorum*. The *PnDEFL1* gene was transferred into tobacco (*Nicotiana tabacum*) to verify its function. The overexpression of *PnDEFL1* in tobacco conferred a high resistance to *F. solani* infection. Thus, the *PnDEFL1* gene is involved in the defense responses of *P. notoginseng* to *F. solani* infection.

Additional key words: *Allium cepa*, antifungal activity, *Escherichia coli*, ethephon, green fluorescent protein, H$_2$O$_2$, methyl jasmonate, *Nicotiana tabacum*, salicylic acid.

Introduction

In plants, biochemical and physiological responses, and even morphological lesions, occur under stress conditions, hindering normal growth and development, thereby seriously endangering agricultural production. In particular, plants are negatively affected by fungal diseases, and their large-scale occurrence usually leads to serious crop yield reductions. As a long-term response to biotic stresses, plants have gradually acquired a series of complex defense mechanisms, such as the production of plant antimicrobial peptides (AMPs) (De Souza et al. 2014). The main plant AMPs are defensins, thionins, lipid transfer proteins, cyclotides, snakins, and hevein-like proteins (Nawrot et al. 2014). Plant defensins were first isolated from the endosperm of wheat (*Triticum aestivum*) and initially classified as novel glucosinolates (Colilla et al. 1990). However, they were found to have antibacterial properties and structural similarities with mammalian and insect defensins (Terras et al. 1995), and were then renamed "plant defensins". Plant defensins are cysteine-rich cationic peptides with relative molecular mass of approximately 5 kDa, containing 45 - 50 amino acid residues (Lacerda et al. 2014). The typical tertiary structure of a defensin is a Cαβ motif that has an α-helix and three anti-parallel β-folds, and most plant defensins have eight conserved cysteine residues that form four intramolecular disulfide bonds to stabilize their tertiary structures (Funt et al. 1998, Gachomo et al. 2012). Plant defensins and defensin-like protein (DEFL) genes...
have been isolated from a variety of plants. A total of 13 defensin genes have been identified in the Arabidopsis thaliana genome (Thomma et al. 2002), and also 31 DEFs (Silverstein et al. 2005). In total, 93, 79, and 143 DEF1 genes have been characterized in rice (Oryza sativa), grapevine (Vitis vinifera), and wheat (Triticum kiharae), respectively (Silverstein et al. 2007, Giacomelli et al. 2012, Odintsova et al. 2019). In addition, the DEFs have the hallmarks of defensin genes, including the conserved cysteine residues, Cαβ motif or γ-core motif (Silverstein et al. 2005, Giacomelli et al. 2012). Moreover, the genomic organization of DEFs is highly similar to those of mammalian defensins and plant resistance genes, and the DEFs belong to the defensin supergene family (Silverstein et al. 2005).

The expressions of some defensin genes are regulated by pathogens, abiotic stressors, and several phytohormones. The transcription of the Capsicum annuum defensin CADEF1 is strongly induced by Xanthomonas campestris pv. vesicatoria (Do et al. 2004). V. vinifera DEF19 and DEF133 are significantly up-regulated after Botrytis cinerea infection (Giacomelli et al. 2012). ShyDF1 and ShyDF2, two Solanum lycopersicum defensin genes, were strongly induced at 1 and 2 d, respectively, after inoculation with Phytophthora infestans (Cui et al. 2018). The defensin gene PgD1 of Picea glauca is up-regulated by wounding and salicylic acid (SA) treatment (Pervieux et al. 2004). The Nicotiana benthamiana NbDef2.2 is induced by wounding and responds strongly to ethylene (ETH) treatment (Bahramnejad et al. 2009). The expression of T. aestivum defensin 1 (TAD1) is induced during cold acclimation (Sasaki et al. 2016). In addition, the defensin gene RiD from the wild cruciferous plant Rorippa indica is up-regulated by application of methyl jasmonate (MeJA) (Sarkar et al. 2017).

Plant defensins exist in various plant tissues, including tubers, leaves, flowers, and pods, but most have been found in seeds and roots. Moreover, defensins have broad-spectrum antifungal and antibacterial activities (Franco et al. 2006). The defensin protein AFP2 in Raphanus sativus has in vitro antibacterial activities against Fusarium graminearum and Rhizoctonia solani, and wheat plants overexpressing RsAFP2 have increased resistance to both pathogens (Li et al. 2011). The recombinant winter wheat defensin TAD1 protein inhibits the mycelial growth of Typhula ishikariensis in vitro, while transgenic wheat overexpressing TAD1 shows resistance to T. ishikariensis and F. graminearum (Sasaki et al. 2016). In addition, class I (NaD2) and class II (NaD1) defensins from Nepenthes alata flowers inhibit the germination of urediniospores and confer resistance to crown rust in oat seedlings when applied as a foliar spray (Dracatos et al. 2014). The Medicago sativa seed defensin MsDef1 inhibits the growth of F. graminearum in vitro, and its antifungal activity was significantly reduced in the presence of Ca²⁺ (Spellbrink et al. 2004).

Panax notoginseng is a traditional Chinese medicinal herb with various biological activities, such as reducing swelling, relieving pain, promoting blood circulation, and alleviating blood stasis (Zhang et al. 2016). P. notoginseng is mainly distributed in southwestern China, and Wenshan Prefecture of Yunnan Province is the main producing area. During the artificial cultivation of P. notoginseng, root rot, black spot, and other fungal diseases severely affect the production and quality of the medicinal materials generated from P. notoginseng. Among them, root rot, which is mainly caused by Fusarium solani, is the most serious disease (Miao et al. 2006, Fan et al. 2016). The pretreatment of P. notoginseng with 100 μM MeJA significantly increased its resistance to F. solani in our previous study. Therefore, the transcriptome sequencing of P. notoginseng roots pretreated with MeJA and then inoculated with F. solani was performed (the transcriptome data were submitted to the NCBI (SRA and TSA; accession numbers SRP149049 and GGPQ00000000, respectively). A differentially expressed gene encoding a DEF was induced by the MeJA treatment and responded to F. solani infection. Here, to gain a deeper understanding of the defensin’s function in the molecular interaction between P. notoginseng and F. solani, the full-length cDNA sequence of the defensin gene, named PnDEFL1 (GenBank accession number MK238492), was obtained. In addition, the expression profile, prokaryotic expression, and subcellular localization of PnDEFL1 were analyzed. PnDEFL1 was also overexpressed in tobacco to further investigate its function in response to F. solani infection.

Materials and methods

Plants, treatments, and inoculation: The Panax notoginseng (Burk) F.H. Chen seedlings used in the gene cloning and gene expression analysis were planted and grown in a greenhouse at a temperature of 25 °C and a relative humidity of 60%. Sterile seedlings of tobacco (Nicotiana tabacum L. cv Xanthi) were cultured in a climatic cabinet at a temperature of 25 °C and a 16-h photoperiod, and used for genetic transformation. Mycelia of F. solani, Botrosphaeria dothidea, Fusarium oxysporum, and Sclerotinia sclerotiorum that had been preserved at -4 °C were activated on potato dextrose agar (PDA) media before using in a constant temperature incubator (28°C).

For the chemical treatments, the concentrations of four stress-related signalling molecules, SA, MeJA, ethephon, and H₂O₂, were determined by referring to Lilium regale and Juglans sigillata treatment methods (Zhang et al. 2017, Liu et al. 2018), and then modified based on growth observations. The P. notoginseng seedlings were grown under normal conditions for 4 weeks after independent treatments with SA (200 μM), JA (100 μM), ethephon (1 mM), and H₂O₂ (1 mM). The roots of healthy one-year-old P. notoginseng seedlings were wounded with scissors, and then the wounded P. notoginseng seedlings were treated with signalling molecule solutions using the dip-root method for 30 min. The roots were collected after 4, 12, 24, 48, and 72 h after treatment. For the fungal inoculations, the wounded roots of healthy one-year-old P. notoginseng seedlings were soaked with a solution of MeJA (100 μM, treatment group) or sterile water (control group) for 30 min. At 24-h after the pretreatment, the two
groups of *P. notoginseng* seedlings were inoculated with fresh spore suspensions of *F. solani* (10⁵ spores dm⁻³) for 30 min. The roots were collected at 4, 12, 24, 48, and 72 h post-inoculation (hpi). Moreover, to eliminate individual differences, the root samples used for each chemical treatment and inoculation were collected from three different healthy *P. notoginseng* plants, and the roots were mixed and thoroughly ground in liquid nitrogen before RNA extraction.

Rapid-amplification of cDNA ends (RACE) and bioinformatics analysis: The full-length cDNA was amplified using a SMART RACE cDNA amplification kit (Clontech, Palo Alto, USA), and the gene-specific primers (Table 1 Suppl.) were designed based on the unique sequence of *DEFL* using Primer Premier 5 software. The mRNA was isolated from 100 μg of *P. notoginseng* total RNA using a NucleoTrap® mRNA midi kit (Macherey-Nagel, Düren, Germany), and the cDNA synthesis, as well as RACE-PCR, were performed according to the manufacturer’s protocols (Clontech). The PCR product was cloned into the pGEM-T easy vector (Promega, Madison, USA) and transformed into Escherichia coli DH5α competent cells. The recombinant plasmid was selected for bidirectional sequencing. The overlap and assembly of unigene sequence and RACE products, as well as the identification of open reading frame (ORF), were performed using the NCBI website (https://www.ncbi.nlm.nih.gov/). The other bioinformatics analysis methods used were previously described in Li et al. (2014).

Quantitative reverse transcription-PCR (RT-qPCR) was used to analyze the expression patterns of *PnDEF1* in *P. notoginseng* roots during *F. solani* infection and after MeJA, ETH, H₂O₂, and SA treatments. The *P. notoginseng* actin 2 gene (*PnACT2*, GenBank accession number KF815706.1) was used as the internal control for the standardization of different RNA samples. Gene-specific primers for the *PnDEF1* and *PnACT2* were designed based on the corresponding cDNA sequences using Primer Premier 5 software (Table 1). The detailed RT-qPCR scheme was the same as described in Liu et al. (2013a). Relative gene expressions were calculated using the 2⁻ΔΔCt method (Livak and Schmittgen 2001). The expression of the *PnDEF1* gene in wounded *P. notoginseng* roots without treatment or inoculation was considered as the control, and its relative expression value was designated as one. The RT-qPCR assay was carried out with three replicates.

Subcellular localization of *PnDEF1*: The pGEM-T easy-*PnDEF1* and pBIN m-gfp5-ER (Zhang et al. 2017) plasmids were digested with the restriction enzymes *NdeI* and *SmaI*, and then ligated with T4 DNA ligase (*Promega*). The *PnDEF1* gene was fused with the green fluorescent protein (GFP) gene present in the pBIN m-gfp5-ER vector under the control of the CaMV 35S promoter to generate the *PnDEF1*-GFP fusion protein. The pBIN m-gfp5-ER-*PnDEF1* recombinant plasmid was then transformed into the *Agrobacterium tumefaciens* strain EHA105 and plated onto Lurie brot (LB) solid medium containing 50 mg dm⁻³ kanamycin and 20 mg dm⁻³ rifampicin. The *A. tumefaciens* positive clones harbouring recombinant plasmids were confirmed by PCR and used for transient expression in onion (*Allium cepa*) epidermal cells. The detailed procedure of the *A. tumefaciens*-mediated genetic transformation and GFP observations with laser confocal microscopy (*AIR*, Nikon, Tokyo, Japan) were previously described in Liu et al. (2018).

Expression and purification of recombinant *PnDEF1* protein: The pGEM-T easy-*PnDEF1* plasmids were digested with *NdeI* and *SmaI*, and then the *PnDEF1* ORF, without the stop codon, was subcloned into the C-terminus of the pET-32a vector to generate a 6× His-tagged fusion protein in *Escherichia coli*. *E. coli* strain BL21 (DE3) containing the pET-32a-*PnDEF1* plasmid was grown in liquid LB medium supplemented with ampicillin (50 mg dm⁻³) in a shaker at 37 °C. When the absorbance at 600 nm reached 0.6 - 0.8, isopropyl-1-thio-β-D-galactopyranoside (IPTG, 1 mM final concentration) was added to the LB medium, and the *E. coli* cells were further cultured in a shaker at 25 °C. The *E. coli* cells were collected after induction for 8 h. The cells were first lysed by lysozyme, and then the supernatant and the precipitate were separately sampled. The recombinant *PnDEF1* protein was purified from the supernatant using a Ni-NTA column according to manufacturer’s instructions (Sangon, Shanghai, China).

Antifungal assay of recombinant *PnDEF1* protein: Four fungi, *F. solani*, *F. oxysporum*, *B. dothidea*, and *S. sclerotiorum* were activated on PDA solid medium at 28 °C. The activated mycelia were inoculated on the center of the PDA solid medium, and when the radii of the fungal colonies were ~2 cm, sterilized filter-paper discs (0.6 mm in diameter) were placed uniformly around the fungal colonies. Then, 5, 10, and 15 μg of purified recombinant *PnDEF1* protein were added independently to the filter paper. In addition, 0.01 cm³ of ddH₂O and buffer were added as blank controls. All the culture dishes were placed in an incubator at 28 °C for 3 d, and then, the antifungal activity of the *PnDEF1* recombinant protein against the four fungi was recorded using a digital camera (*Canon*, Tokyo, Japan). The zones of growth inhibition around the discs were calculated using *Adobe Photoshop v. 7.0*, and three replications of the antifungal assay were performed.

Overexpression vector construction and tobacco genetic transformation: The plant vector for overexpressing *PnDEF1* was constructed using the pCAMBIA2300s vector (Liu et al. 2013b). The ORF of *PnDEF1* was obtained by digesting pGEM-T easy-*PnDEF1* with BamHI and EcoRI and then ligated into the digested pCAMBIA2300s vector using the same restriction enzymes. The ligation product was transformed into *E. coli* DH5α competent cells, and positive clones harbouring the recombinant plasmid pCAMBIA2300s-*PnDEF1* were selected using PCR. The recombinant plasmid pCAMBIA2300S-*PnDEF1* was further
transformed into the competent cells of *A. tumefaciens* strain LBA4404 using the freeze-thaw method (Holsters et al. 1978). The tobacco (*N. tabacum* L. cv. Xanthi) leaf discs were transformed using the LBA4404 bacterial suspension containing the recombinant vector pCAMBIA23005-PnDEFL1 (Horsch et al. 1985).

Transgenic tobacco analysis: The tobacco seedlings were regenerated through tissue culture, and the positive transgenic tobacco plants were screened using PCR. The genomic DNA of T0 generation of tobacco plants was the template for PCR with PnDEFL1-specific primers (Table 1), and the wild type (WT) genomic DNA was the negative control. Moreover, the positive PnDEFL1 transgenic tobacco plants were cultured in a greenhouse to develop T2 generation tobacco lines, which were confirmed using PCR with PnDEFL1-specific primers. The expression of PnDEFL1 in the T2 generation transgenic tobacco was analyzed using RT-qPCR. The tobacco *actin* gene (AB158612.1) was used as the internal control for the standardization of different RNA samples, and WT tobacco was used as the negative control. The transgenic tobacco line with the highest Ct value was taken as a positive control, and the value of PnDEFL1 expression in the positive control was designated as one.

The sterile T2 tobacco lines, as well as the WT plants, were cultured in a half strength Murashige and Skoog medium for 2 months in an artificial climatic incubator (25 °C, a 16-h photoperiod), and several tobacco lines with relatively high PnDEFL1 transcription were selected to estimate the resistance to *F. solani* infection. The fully expanded tobacco leaves were wounded and inoculated with 0.02 cm³ of *F. solani* spore suspension (10⁶ spores cm⁻³). The infected leaves were placed on a damp filter paper and placed in a light incubator. One week after inoculation, the infected leaves were collected and lesions caused by *F. solani* infection were recorded. In addition, the wounded roots of sterile transgenic and WT tobacco were immersed in the *F. solani* spore suspension (2 × 10⁶ spore cm⁻³) for 30 min and then transferred into a half strength Murashige and Skoog culture medium. The tobacco symptoms were recorded at one week after inoculation.

Fig. 1. A multiple alignment and phylogenetic tree of the amino acid sequences of PnDEFL1 and several known defensins or defensin-like proteins (DEFLs). The multiple alignment was completed using ClustalX (A). The signal peptide is labeled with a horizontal line, and the highly conserved cysteine residues are labeled with triangles. Defensins included in the alignment are two *Nicotiana alata* defensins (NaD1 and NaD2) (Dracatos et al. 2014), four DEFLs from *Vitis vinifera* (VvDEFL1, VvDEFL13, VvDEFL22, and VvDEFL35) (Giacomelli et al. 2012), *Cucumis melo* CmDEFL1 (XP_008454663.1), and *Momordica charantia* McDEFL1 (XP_022139709.1), respectively. The phylogenetic tree was constructed using the Mega 6 software with the neighbour-joining method (B). The scale bar equals the distance of 10 changes per 100 amino acid positions, and the numbers on each node are bootstrap values of 1 000 replicates.
Statistical analyses: The above experiments were repeated three times. The relative expressions of PnDEFL1 in P. notoginseng and T2 tobacco lines and the zones of fungal growth inhibition are shown as means and standard deviations. The Student’s t-test was performed using the SPSS software to reveal statistical differences between the treatments or inoculations and controls.

Results

In this study, a DEFL gene PnDEFL1 was isolated from P. notoginseng. The 5’ and 3’ RACE PCR products were 301 bp and 487 bp, respectively, and the overlap and assembly of unigene sequence and RACE products generated a cDNA of 702 bp, in which an ORF of 234 bp was identified. Moreover, the ORF encodes a complete protein sequence of 77 amino acid residues that is highly homologous to plant DEFLs. The calculated molecular mass of the deduced protein PnDEFL1 is 8.63 kDa, with a theoretical pI of 7.51. At the nucleotide level, the PnDEFL1 gene shared a 74 % identity with the Helianthus annuus DEFL19 gene (XM_022160565.1). At the protein level, the deduced protein sequence of PnDEFL1 shared a 58 % identity with DEFL1 of Cucumis melo (XP_008454663.1) and a 54 % identity with Momordica charantia DEFL1 (XP_022139709.1).

The class I and II defensins derived from the flowers of N. alata (Dracatos et al. 2014), four kinds of DEFLs from V. vinifera (Giacomelli et al. 2012), and two homologous sequences (CmDEFL1 and McDEFL1) from the protein BLAST analysis were chosen for the multiple sequence alignment and phylogenetic tree analysis. PnDEFL1 had a predicted signal peptide positioned at its N-terminus like other defensins, and in addition, the hallmarks of defensins, the CSαβ and γ-core motifs, were present (Fig. 1A). The majority of the plant defensins or DEFLs contain eight highly conserved cysteine residues. For the phylogenetic tree, VvDEFL35 and NaD1 were grouped at the bottom of the tree, while PnDEFL1, the other DEFLs, and NaD2 clustered into another group (Fig. 1B). PnDEFL1 was more homologous with the class I defensin (NaD2) than the class II defensin (NaD1).

The transcriptions of PnDEFL1 in P. notoginseng roots after independent treatments with four different signaling molecules were analyzed using RT-qPCR. The expression of PnDEFL1 was rapidly induced by MeJA, ETH, H2O2, and SA treatments (Fig. 2A-D), but
the expressions of *PnDEFL1* were different. The greatest expression occurred after the ETH treatment, followed by MeJA, SA, and H$_2$O$_2$ treatments. Moreover, the highest relative expressions of *PnDEFL1* were reached at 24, 12, 24, and 12 h for the MeJA, SA, ETH, and H$_2$O$_2$ treatments, respectively. Compared with the sterile water treatment, the *PnDEFL1* expression was highly induced (~12 times) by the exogenous application of MeJA at 24 h. After *F. solani* inoculation, the *PnDEFL1* expression in the sterile water pre-treatment group rapidly increased; however, the *PnDEFL1* expression in MeJA pre-treatment group were even greater than that in the water pre-treatment group (Fig. 2E). In particular, at 24 h, the relative expression value in the MeJA pre-treatment group was ~2.1 times greater than in the water pre-treatment group (Fig. 2E). Furthermore, the overall *PnDEFL1* expressions were greater in the MeJA group than in the water group until 72 h.

Onion epidermal cells were independently infected with *A. tumefaciens* carrying the pBIN m-gfp5-ER-*PnDEFL1* and the empty pBIN m-gfp5-ER vector (positive control), and the green fluorescence signal was observed using a laser confocal microscope (Fig. 3). In the positive control, the green fluorescence was distributed throughout the onion cells harbouring the empty pBIN m-gfp5-ER vector. The green fluorescence of onion cells harbouring the pBIN m-gfp5-ER-*PnDEFL1* vector was specifically distributed in the cell wall, indicating that *PnDEFL1* is an extracellular protein that localized in the plant cell wall.

The *PnDEFL1* protein without a signal peptide was expressed in *E. coli*, and the size of the *PnDEFL1* recombinant protein was approximately 25 kDa, which was consistent with the predicted size of the histidine-tagged fusion protein (Fig. 4A). The *PnDEFL1* fusion protein was purified by nickel affinity chromatography. The antifungal assay showed that the *PnDEFL1* recombinant protein inhibited the mycelial growth of *F. solani*, *F. oxysporum*, *B. dothidea*, and *S. sclerotinia* in vitro (Fig. 4B-E). In addition, greater amount of the *PnDEFL1* protein exhibited more pronounced inhibitory effects on the four pathogenic fungi growth (Fig. 4F).

The positive *PnDEFL1* transgenic tobacco plants were grown in a greenhouse until T2 generations were obtained. No significant differences were observed between the *PnDEFL1* transgenic and WT tobacco in growth and morphogenesis. The expressions of *PnDEFL1* in T2 generation transgenic tobacco leaves were detected using RT-qPCR. The *PnDEFL1* transcripts only accumulated in nine transgenic tobacco lines (D-2, -4, -5, -7, -12, -16, -17, -18, and -23), but not in the WT, and the expressions in these transgenic lines differed (Fig. 5A). The expressions in the transgenic tobacco lines D-2, -7, -18, and -23 were relatively low, with values below 20; however, the expressions in the lines D-4, -5, -12, -16, and -17 were much greater than in other lines.

The *PnDEFL1* transgenic and WT tobacco leaves were inoculated with *F. solani* spore suspensions. After 7 d of incubation, the leaves of WT tobacco showed extremely severe chlorosis and decay over a large area; however, the *PnDEFL1* transgenic tobacco leaves showed almost no symptoms (Fig. 5B). In addition, the *F. solani* spore suspension was used to inoculate the wounded roots of *PnDEFL1* transgenic and WT tobacco. After being cultured in a climatic cabinet for 7 d after inoculation, the WT tobacco roots were seriously rotted and blackened, and the leaves were withered and yellowed (Fig. 5C). On the contrary, the roots of *PnDEFL1* transgenic tobacco exhibited limited blackening, and the plants showed...
TRANSGENIC TOBACCO RESISTANT AGAINST *FUSARIUM SOLANI*
almost healthy growth state (Fig. 5C). Thus, the \textit{PnDEFL1} transgenic tobacco lines were much more resistant to \textit{F. solani} infection than the WT tobacco, which suggested that the overexpression of \textit{PnDEFL1} in tobacco conferred a strong resistance to \textit{F. solani}.

Discussion

Plant defensins belong to the plant AMPs (Broekaert et al. 1997), which are important parts of the plant innate immune system. They have an inhibitory effect on pathogenic microorganisms, such as bacteria and fungi, and play an important role in plant defense responses (Zasloff 2002). In the present study, a novel defensin-like protein gene \textit{PnDEFL1} was investigated and isolated from \textit{P. notoginseng}. The full-length cDNA of \textit{PnDEFL1} is 702 bp and contains an ORF of 234 bp. The sequence analysis included several defensins and DEFLs from different plant species and showed that DEFLs have a diverse primary sequence. However, DEFLs contain the highly conserved structural features that are hallmarks of defensins, such as the CS\(\alpha\beta\) and \(\gamma\)-core motifs, and a specified number of cysteine residues. Previous genomic studies indicated that plant DEFLs and defensins constitute a supergene family, and the DEFLs are real defensins (Graham et al. 2004, Silverstein et al. 2005).

The bioinformatics analysis indicated that there is an N-terminal signal peptide predicted in the \textit{PnDEFL1} protein, and its subcellular localization was investigated using its fused expression with \textit{GFP}. Although the green fluorescence of the empty vector with \textit{GFP} was distributed throughout the cell wall and protoplasm, the fluorescence signal of the fusion gene \textit{PnDEFL1-GFP} was detected only in the cell wall, which indicated that \textit{PnDEFL1} is localized in the cell wall. Like \textit{PnDEFL1}, some other defensins and DEFLs are extracellular proteins. The two rice defensin genes \textit{OsDEF7} and \textit{OsDEF8} have been fused with \textit{GFP}, and the fusion proteins localized in the extracellular compartment (Weerawanich et al. 2018). In addition, the \textit{V. vinifera} defensin antibacterial peptide \textit{Vv-AMP1} fused with \textit{GFP} accumulated also in the extracellular region (De Beer and Vivier 2008). However, \textit{N. alata} \textit{NaD1} has been immunolocalized in vacuoles (Lay et al. 2003). The \textit{A. halleri} defensin \textit{AhPDF 1.1} remained in the intracellular rather than the extracellular compartment.

![Fig. 5. The \textit{PnDEFL1} expressions and resistance analyses of T2 generation \textit{PnDEFL1} transgenic tobacco. The \textit{PnDEFL1} expressions in the T2 generation of transgenic tobacco were detected by reverse transcription quantitative PCR, and the \textit{PnDEFL1} transcripts accumulated in all the transgenic tobacco plants but not in the wild type (WT) (A). The D-2, -4, -5, -7, -12, -16, -17, -18, and -23 are T2 generation transgenic tobacco lines. Leaf-inoculation-assay revealed the enhanced resistance of \textit{PnDEFL1} transgenic tobacco lines against \textit{Fusarium solani} (B). Root-inoculation-assay revealed the enhanced resistance of \textit{PnDEFL1} transgenic tobacco lines against \textit{Fusarium solani} (C).](image-url)
on the way to the lytic vacuole (Oomen et al. 2011). The different localization of defensins in plant cells suggest that defensins are involved in multiple physiological processes.

Plant defensins have been isolated from a variety of plants and expressed in different organs and tissues. Plant defensins are induced as a part of the systemic defense response during pathogenic attack and environmental stresses, and defensin genes respond to some signalling molecules, including MeJA, ETH, and SA. After inoculation with *F. oxysporum*, many DEFLs show enhanced expressions in induced resistance-displaying wheat seedlings (Odintsova et al. 2019). The OsDEF expressions are highly induced by *Aspergillus oryzae* infection (Weerawanich et al. 2018). Compared with uninoculated seedlings, defensin PDF1.2b was significantly up-regulated in the *A. thaliana* leaves after inoculation with *Alternaria brassicicola* or *Pseudomonas syringae* (Tesfaye et al. 2013). Moreover, AtPDF1 responds to *B. cinerea* through the activation of the ETH/ JA signalling pathway (Nguyen et al. 2014). In addition, the expression of a defensin gene J1-1 in pepper was induced by *Colletotrichum gloeosporioides* infection as well as an exogenous MeJA treatment (See et al. 2014). In this study, DEFLI from *P. notoginseng* was induced by applications of MeJA, SA, ETH, or H2O2 (Fig. 2A-D). In addition, PnDEFL1’s expression was further up-regulated in the MeJA pre-treated *P. notoginseng* during the response to *F. solani* infection, with a maximum expression at 24 hpi (Fig. 2E). Thus, PnDEFL1 is involved in the defense response of *P. notoginseng* to *F. solani*, which may be mediated by several signalling pathways, including JA.

Multicellular organisms produce small cysteine-rich AMPs as an innate defense against a broad range of pathogens. The plant defensins and DEFLs are cysteine-rich AMPs. Because of a large number of cysteines, it may be difficult to express defensin peptides at high activity in vitro; however, their antimicrobial activities have been successfully obtained using heterologous expression systems. Four recombinant VvDEFLs purified from *E. coli* inhibited the conidial germination and mycelial growth of *B. cinerea* (Giacomelli et al. 2012). The *Phaseolus vulgaris* defensin protein Pvd1 was expressed in *E. coli*, and the purified Pvd1 inhibited the growth of *Candida albicans* (Mello et al. 2014). Lacerda et al. (2016) expressed the recombinant *Pisum sativum* defensin Dr230a in *Saccharomyces cerevisiae*, and the recombinant protein Dr230a showed in vitro activities against the fungal growth and spore germination of *C. gossypii* var. *cephalosporioides*. The pepper defensin protein J1-1 inhibited the mycelial growth of *F. oxysporum* and *B. cinerea*, and the recombinant J1-1-GST fusion protein significantly inhibited the growth of *C. gloeosporioides* (See et al. 2014). In this study, the recombinant protein PnDEFL1 purified from *E. coli* significantly inhibited the mycelial growth of *F. solani*, *F. oxysporum*, *B. dothidea*, and *S. sclerotinia* (Fig. 4). *F. solani* and *F. oxysporum* are both important agents that cause root rot disease in *P. notoginseng*, and the antifungal activity of PnDEFL1 clearly indicated that PnDEFL1 plays a vital role in the defense against root rot disease in *P. notoginseng*.

In addition, the biological functions of plant defensins as natural antibiotics were confirmed using reverse genetics. The overexpression of AtPDF1.1 in *A. thaliana* reduced infection by the non-parasitic pathogen *Cercospora beticola* (De Coninck et al. 2010). *Petunia* floral defensins have an *in vitro* antifungal activity against *F. oxysporum*, and transgenic bananas overexpressing *PhDef1* and *PhDef2* increase resistance to *F. oxysporum* (Ghag et al. 2012). The plant defensin *NaD1* of *N. alata* has been overexpressed in cotton plants, compared with non-transgenic cv. Coker315, and the transgenic line D1 has enhanced the resistance to *F. oxysporum* and *Verticillium dahliae* (Gaspar et al. 2014). The constitutive expression of J1-1 endowed transgenic pepper plants with a strong resistance to the anthracnose fungus (See et al. 2014). Moreover, the expression of DeF4.2 from *M. truncatula* in transgenic wheat confers resistance to leaf rust caused by the biotrophic basidiomycete fungus *Puccinia triticina* (Kaur et al. 2017). Here, the PnDEFL1 transgenic tobacco exhibited a much greater resistance to *F. solani* infection than the WT (Fig. 5B,C), which is conferred by the overexpression of PnDEFL1.

In conclusion, PnDEFL1, a defensin-like protein gene, was isolated from *P. notoginseng* and characterized. PnDEFL1 expression was induced by *F. solani* infection and exogenous signalling molecules. In addition, the recombinant PnDEFL1 protein had significant antifungal activities against four pathogenic fungi. The overexpression of PnDEFL1 also conferred a high resistance to *F. solani* infection. PnDEFL1 appears to be a key component of the defense system in *P. notoginseng* during responses to root rot disease.

References

Bahramnejad, B., Erickson, L.R., Atnaseo, C., Goodwin, P.J.: Differential expression of eight defensin genes of *N. benthamiana* following biotic stress, wounding, ethylene, and benzoazinoid treatments. - Plant Cell Rep. 28: 703-717, 2009.

Broekhart, W.F., Cammue, B.P.A., Bolle, M.F.C.D., Thevissen, K., Samblanx, G.W.D., Osborn, R.W., Nielson, K.: Antimicrobial peptides from plants. - Crit. Rev. Plant Sci. 16: 297-323, 1997.

Cui, J., Jiang, N., Meng, J., Hou, X.X., Yang, G.L., Luan, Y.S.: Identification and characterization of defensin genes conferring *Phytophthora infestans* resistance in tomato. - Physiol. mol. Plant Pathol. 103: 28-35, 2018.

Colilla, F.J., Rocher, A., Mendez, E.; γ-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. - FEBS Lett. 270: 191-194, 1990.

De Beer, A., Vivier, M.A.: Vv-AMP1, a ripening induced peptide from *Vitis vinifera* shows strong antifungal activity. - BMC Plant Biol. 8: 75, 2008.

De Coninck, B.M., Sels, J., Venmans, E., Thys, W., Goderis, L.J., Carron, D., Delauré, S.L., Cammue, B.P., De Bolle, M.F., Mathys, J.: *Arabidopsis thaliana* plant defensin AtPDF1.1 is involved in the plant response to biotic stress. - New Phytol. 187: 1075-1088, 2010.

De Souza, C.E., Silva Cardoso, M.H., Sousa, D.A., Viana, J.C.,
De Oliveira Jr., N.G., Miranda, V., Franco, O.L.: The use of versatile plant antimicrobial peptides in agribusiness and human health. - Peptides 55: 65-78, 2014.

Do, H.M., Lee, S.C., Jung, H.W., Sohn, K.H., Hwang, B.K.: Differential expression and in situ localization of a pepper root-rot disease. (Colletotrichum falcatum) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. - Plant Sci. 166: 1297-1305, 2004.

Dracatos, P.M., Van der Weerden, N.L., Carroll, K.T., Johnson, E.D., Plummer, K.M., Anderson, M.A.: Inhibition of cereal rust fungi by both class I and II defensins derived from the flowers of Nicotiana alata. - Mol. Plant Pathol. 15: 67-79, 2014.

Fan, Z.Y., Miao, C.P., Qiao, X.G., Zheng, Y.K., Chen, H.H., Chen, Y.W., Xu, L.H., Zhao, L.X., Guan, H.L.: Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng. - J. Ginseng Res. 40: 97-104, 2016.

Fant, F., Vranken, W., Broekaert, W., Borremans, F.: Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR. - J. mol. Biol. 279: 257-270, 1998.

Franco, O.L., Murad, A.M., Leite, J.R., Mendes, P.A., Prates, M.V., Bich, C.J.: Identification of a cowpea gamma-thionin with bactericidal activity. - FEBS J. 273: 3489-3497, 2006.

Gachomo, E.W., Jimenez-Lopez, J.C., Kayode, A.P., Baba-Moussa, L., Kotchoni, S.O.: Structural characterization of plant defensin protein superfamily. - Mol. Biol. Rep. 39: 4461-4469, 2012.

Gaspar, Y.M., McKenna, J.A., McGinnness, B.S., Hinch, J., Poon, S., Connelly, A.A., Anderson, M.A., Heath, R.L.: Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1. - J. exp. Bot. 65: 1541-1550, 2014.

Ghagr, S.B., Shekhawat, U.K., Ganapathi, T.R.: Petunia floral defensins with unique prodomains as novel candidates for resistance to several pathogenic fungi in transgenic tobacco plant. - Eur. J. Plant Pathol. 135: 265-277, 2013a.

Liu, D.O., Qiao, X.G., Zheng, Y.K., Chen, H.H., Chen, Y.W., Xu, L.H., Zhao, L.X., Guan, H.L.: Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng. - J. Ginseng Res. 40: 97-104, 2016.

Fan, Z.Y., Miao, C.P., Qiao, X.G., Zheng, Y.K., Chen, H.H., Chen, Y.W., Xu, L.H., Zhao, L.X., Guan, H.L.: Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng. - J. Ginseng Res. 40: 97-104, 2016.
Brassica juncea. - Planta 246: 1029-1044, 2017.
Sasaki, K., Kuwabara, C., Umeki, N., Fujioka, M., Saburi, W., Matsui, H., Abe, F., Imai, R.: The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat. - J. Biotechnol. 228: 3-7, 2016.
Seo, H.H., Park, S., Park, S., Oh, B.J., Back, K., Han, O., Kim, J.I., Kim, Y.S.: Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper. - PLoS ONE 9: e97936, 2014.
Silverstein, K.A.T., Graham, M.A., Paape, T.D., Van den Bosch, K.A.: Genome organization of more than 300 defensin-like genes in Arabidopsis. - Plant Physiol. 138: 600-610, 2005.
Silverstein, K.A.T., Moskal, W.A., Wu, H.C., Underwood, B.A., Graham, M.A., Town, C.D., Van den Bosch, K.A.: Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. - Plant J. 51: 262-280, 2007.
Spelbrink, R.G., Dilmac, N., Allen, A., Smith, T.J., Shah, D.M., Hockerman, G.H.: Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. - Plant Physiol. 135: 2055-2067, 2004.
Terras, F.R., Eggermont, K., Kovaleva, V., Raikhel, N.V., Osborn, R.W., Kester, A., Rees, S.B., Torrekens, S., Van Leuven, F., Van der Leyden, J.: Small cysteine-rich antifungal proteins from radish: their role in host defense. - Plant Cell 7: 573-588, 1995.
Tesfaye, M., Silverstein, K.A., Nallu, S., Wang, L., Botanga, C.J., Gomez, S.K., Costa, L.M., Harrison, M.J., Samac, D.A., Glazebrook, J., Katagiri, F., Gutierrez-Marcos, J.F., Van den Bosch, K.A.: Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes. - PLoS ONE 8: e58992, 2013.
Thomma, B.P., Cammue, B.P., Thevissen, K.: Plant defensins. - Planta 216: 193-202, 2002.
Weerawanich, K., Webster, G., Ma, J.K., Phoolcharoen, W., Sirikantharamas, S.: Gene expression analysis, subcellular localization, and in planta antimicrobial activity of rice (Oryza sativa L.) defensin 7 and 8. - Plant Physiol. Biochem. 124: 160-166, 2018.
Zasloff, M.: Antimicrobial peptides of multicellular organisms. - Nature 415: 389–395, 2002.
Zhang, J.S., Zhang, B.X., Du, M.M., Wang, X.Y., Li, W.: Chinese preparation Xuesaitong promotes the mobilization of bone marrow mesenchymal stem cells in rats with cerebral infarction. - Neural Regen Res. 11: 292-297, 2016.
Zhang, N.N., Guan, R.P., Yang, Y., Bai, Z.W., Ge, F., Liu, D.Q.: Isolation and characterization of a Fusarium oxysporum-resistant gene LrGLP1 from Lilium regale Wilson. - In Vitro cell. dev. Biol. Plant. 53: 461-468, 2017.