IKZF1 Deletions with COBL Breakpoints Are Not Driven by RAG-Mediated Recombination Events in Acute Lymphoblastic Leukemia

Abstract

IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in both childhood and adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Previously, we revealed that COBL is a hotspot for breakpoints in leukemia and could promote IKZF1 deletions. Through an international collaboration, we provide a detailed genetic and clinical picture of B-ALL with COBL rearrangements (COBL-r). Patients with B-ALL and IKZF1 deletion (n = 133) were included. IKZF1 1-8 were associated with large alterations within chromosome 7: monosomy 7 (18%).
isochromosome 7q (10%), 7p loss (19%), and interstitial deletions (53%). The latter included COBL-r, which were found in 12% of the IKZF1 1-8 cohort. Patients with COBL-r are mostly classified as intermediate cytogenetic risk and frequently harbor ETV6, PAX5, CDKN2A/B deletions. Overall, 56% of breakpoints were located within COBL intron 5. Cryptic recombination signal sequence motifs were broadly distributed within the sequence of COBL, and no enrichment for the breakpoint cluster region was found. In summary, a diverse spectrum of alterations characterizes ΔIKZF1 and they also include deletion breakpoints within COBL. We confirmed that COBL is a hotspot associated with ΔIKZF1, but these rearrangements are not driven by RAG-mediated recombination.

Translational Oncology (2019) 12, 726–732

Introduction

B-cell precursor acute lymphoblastic leukemia (B-ALL) comprises multiple subtypes defined by structural and numerical chromosomal alterations. These initiating lesions include aneuploidy and chromosomal rearrangements, leading to expression of ectopic fusion proteins and/or to deregulation of gene expression. During the evolution of B-ALL, a series of secondary genomic alterations, such as DNA copy number alterations (CNAs) and sequence mutations, usually emerges [1]. These secondary events commonly involve deletions of genes that encode regulators of cell-cycle (CDKN2A/B) and/or to deregulation of gene expression. During the evolution of B-ALL, multiple subtypes defined by structural and numerical chromosomal alterations. These initiating lesions include aneuploidy and chromosomal rearrangements, leading to expression of ectopic fusion proteins and/or to deregulation of gene expression. During the evolution of B-ALL, a series of secondary genomic alterations, such as DNA copy number alterations (CNAs) and sequence mutations, usually emerges [1]. These secondary events commonly involve deletions of genes that encode regulators of cell-cycle (CDKN2A/B) and/or to deregulation of gene expression. During the evolution of B-ALL, a series of secondary genomic alterations, such as DNA copy number alterations (CNAs) and sequence mutations, usually emerges [1]. These secondary events commonly involve deletions of genes that encode regulators of cell-cycle (CDKN2A/B) and/or to deregulation of gene expression. During the evolution of B-ALL, a series of secondary genomic alterations, such as DNA copy number alterations (CNAs) and sequence mutations, usually emerges [1]. These secondary events commonly involve deletions of genes that encode regulators of cell-cycle (CDKN2A/B) and/or to deregulation of gene expression. During the evolution of B-ALL, a series of secondary genomic alterations, such as DNA copy number alterations (CNAs) and sequence mutations, usually emerges [1]. These secondary events commonly involve deletions of genes that encode regulators of cell-cycle (CDKN2A/B) and/or to deregulation of gene expression. During the evolution of B-ALL, a series of secondary genomic alterations, such as DNA copy number alterations (CNAs) and sequence mutations, usually emerges [1]. These secondary events commonly involve deletions of genes that encode regulators of cell-cycle (CDKN2A/B) and/or to deregulation of gene expression. During the evolution of B-ALL, a series of secondary genomic alterations, such as DNA copy number alterations (CNAs) and sequence mutations, usually emerges [1]. These secondary events commonly involve deletions of genes that encode regulators of cell-cycle (CDKN2A/B) and/or to deregulation of gene expression.

Material and Methods

Patients

This study included 146 patients diagnosed with B-ALL and IKZF1 deletions. This patient cohort comprised two independent groups. The first one included 133 patients with 1) IKZF1 complete deletion, Δ1-8 (n = 104); or 2) intragenic deletion of IKZF1 including exon 8, Δn-8 (n = 29). The second group referred to 13 patients already diagnosed with IKZF1 deletions and COBL-r at collaborating centers [8–10]. Patient samples and information were obtained through the cooperative efforts of nine centers worldwide, and the project was conducted in accordance with the declaration of Helsinki.

Detection of IKZF1 Deletions and CNAs

IKZF1 deletions and CNAs in EBF1, JAK2, CDKN2A, CDKN2B, PAX5, ETV6, BTF1, RBL1, and the pseudoautosomal region 1-PAIR (SHOX, CRLF2, C2F2RA, IL3Rα, and P2RY8) were determined by either multiplex ligation-dependent probe amplification (MLPA), or single nucleotide polymorphism (SNP) array analyses. The SALSA MLPA P335-(A3-B2) and/or SALSA MLPA P202-B1 (MRC Holland) were used for MLPA experiments, and the data analyses were performed using Coffalyser software. The CytoScan HD Array (Affymetrix) assessed the occurrence of CNAs in the Brazilian (partially), British, and French cohorts. Data were analyzed with Chromosome Analysis Suite software, version 3.2 (Applied Biosystems), and the GRCh38/hg38 build of the Human Genome Assembly.

Characterization of COBL Breakpoints

We developed customized MLPA assays for the screening of CNAs within chromosome 7. The probes’ design and assay conditions have been previously described [9]. To validate our SNP array and MLPA findings, we performed either multiplexed long-distance PCR (M-PCR) or long-distance inverse (LDI)-PCR. These PCR approaches allowed us to confirm COBL-r and to determine the breakpoints at nucleotide level.

Patient Data and Survival Analyses

For the comparison of laboratory and clinical data between patients with or without COBL-r, we used the Pearson χ² test. Overall survival (OS) was defined as the time in months from the date of diagnosis to death or to the last follow-up assessment for patients alive. Kaplan-Meier method was used to estimate OS rates of patients according to COBL status with differences compared by the log-rank test. Statistical analyses were performed using R software, version 3.5.2, and P values < .05 were considered statistically significant.

Analysis of Activation-Induced Deaminase (AID) or RAG Recognition Signal Sequences in Recombined COBL Alleles

An agnostic search for motifs located within fragments spanning 50 bp from the breakpoint junctions of COBL-r was performed using MEME. The limit of output motifs was set to 5, and width ranged from 2 to 15 bp. The FIMO (Find Individual Motif Occurrences) tool was used for the analysis of WGCW and CG sequences, and the recombination signal sequence (RSS) consensus sequence was used to search for cryptic RSS sequences [11,12].
Results
Most of the deletions encompassing \(\text{IKZF1}\) exon 8 were classified as whole-gene deletions (\(\Delta 1-8: 78\%\) vs. \(\Delta n-8: 22\%\)). The CNAs found in the cohort were associated with monosomy 7 (14\%; \(n = 16\)), isochromosome 7q, i(7q); 7p loss (15\%; \(n = 17\)), and interstitial deletions within 7p (66\%; \(n = 76\)) (Figure 1A). Among the \(\Delta n-8\) group, most of the alterations (93\%) were \(\text{IKZF1}\) deletions detectable by the M-PCR, i.e., \(\Delta 2-8\) or \(\Delta 4-8\) (Figure 1B). Alternatively, 47\% of the \(\Delta 1-8\) group presented with aberrations involving loss of the whole 7p, such as monosomy 7 (18\%; \(n = 19\)), isochromosome 7q (10\%; \(n = 10\)), and 7p loss (19\%; \(n = 20\)). The remaining 55 patients (53\%) harbored interstitial deletions; \(\text{COBL}\)-r were found in 12\% of the \(\Delta 1-8\) cohort (Figure 1C).

We identified \(\text{COBL}\)-r in 25 B-ALL cases with \(\text{IKZF1}\) deletions (Figure 1D). \(\text{COBL}\)-r were detected by MLPA screening in 133 patients with B-ALL and \(\text{IKZF1}\) deletions (\(n = 12\)) or SNP array/NGS investigation performed at collaborating centers (\(n = 13\)), as described in the methodology. The loss of genes located within 9p locus — \(\text{PAX5}\) (\(n = 11\)), \(\text{CDKN2A}\) (\(n = 10\)), and \(\text{CDKN2B}\) (\(n = 7\)) — and \(\text{ETV6}\) deletions (\(n = 10\)) were the most recurrent additional alterations among these patients (Figure 1E). Demographic and laboratory data for the 25 patients with \(\text{COBL}\)-r showed they included 17 males and 8 females who were mainly children and adolescents (\(n = 21\)), with a median age at diagnosis of 5.5 years (range 1-59 years) and a median white blood cell count of 7.5 × 10⁹/l (range 1.5-459.6 × 10⁹/l) (Table 1). The patients were treated on diverse therapy protocols (Table 2). Seven patients relapsed within a median of 5.5 years (range 1.4-16.3 years), and six of them experienced isolated disease recurrence in the bone marrow (\(n = 5\)) or testes (\(n = 1\)). One patient relapsed at both sites: bone marrow and central nervous system. The median follow-up was 5.1 years (range 0.3-16.3 years), and the five deaths (mainly in patients with early relapse) occurred at a median 4.2 years (range 0.3-5.5 years) following diagnosis. In addition, the comparison between patients...
Table 1. Demographic and Laboratory Characteristics of B-ALL Cases with COBL Rearrangements.*

Patient	Age (Years)	Gender	WBC (×10⁹/l)	Blasts at BM	5' Breakpoint	3' Breakpoint	Detection Method	Karyotype
P004	1	F	96.000	95%	ELMO1 intron 14	Upstream COBL	SNP array	46XX, +2(13)(p13;q12), +del(4)(q22), +12(12)(q11), del(11)(q13), del(12)(q12), +14(q10), +15(q22), +16(q22), +18, +mar1, +mar2
P034	1	M	3.400	98%	RAD500 intron 5	COBL intron 5	LDI-PCR	NA
P086	1	M	5.000	95%	7pter	COBL intron 7	MLPA/LDI-PCR	NA
P120	1	F	459.600	80%	7pter	COBL intron 5	SNP array/M-PCR	NA
P056	2	F	1.600	98%	STAT1 intron 1	COBL intron 5	LDI-PCR	46XX
P122	2	M	13.400	97%	7pter	COBL intron 7	MLPA	NA
P145	2	F	92.000	98%	TCRG2C intron 1	COBL intron 13	SNP array	47XX, del(7)(p11), +10, +add(12)(p13), del(12)(p12) [4]
P022	4	F	7.500	85%	7pter	COBL 2-5	MLPA	46XX
P005	16	M	10.000	95%	IKZF1 intron 3	COBL intron 5	SNP array/M-PCR	46XY
P074	5	M	16.400	78%	7pter	COBL intron 5	LDI-PCR	NA
P079	5	F	5.700	88%	7pter	COBL 8-13	SNP array/M-PCR	NA
P121	5	F	7.470	7%	7pter	COBL intron 5	SNP array	NA
P144	5	M	31.000	7pter	7pter	COBL intron 5	SNP array	47XX, +2(13)(p13), +del(4)(q22), del(11)(q13), del(12)(q12), +14(q10), +15(q22), +16(q22), +18, +mar1, +mar2

* Patient had COBL rearrangement and 7p12-3;GRB10 intron 5 deletion.

Table 2. Clinical Characteristics and Outcome of B-ALL Cases with COBL Rearrangements

Patient	Clinical Trial	CNS Disease	MRD Day 33	MRD Day 78	PR	CMR Day 33	Relapse	Outcome	Follow-Up (Months)
P147	AALL20232_J	NA	NA	NA	NA	NA	NA	NA	NA
P068	AALL0331/UKALLR3	No	Negative	Negative	NA	Yes	BM	Dead	45
P034	AIEOP-BFM ALL2000	No	Negative	Negative	NA	Yes	BM	Dead	45
P022	AIEOP-BFM ALL2000	No	Negative	Negative	NA	Yes	BM	Dead	45
P114	AIEOP-BFM ALL2000	No	NA	NA	NA	Yes	BM	Dead	45
P120	AIEOP-BFM ALL2000	No	Positive	Positive	NA	Yes	BM	Dead	45
P104	ALL 1C 2009	Yes	Negative	Negative	NA	Yes	BM	Dead	45
P145	UKALL2003	No	Negative	Negative	NA	Yes	BM	Dead	45
P146	UKALL2003	No	Negative	NA	NA	Yes	BM, CNS	Dead	45
P144	UKALL97	No	NA	NA	NA	Yes	NA	No	1st CR 26
P143	UKALL97	No	NA	NA	NA	Yes	BM	Dead	45
P003	CAALLF01	No	Negative	NA	NA	Yes	NA	No	1st CR 167
P079	COALL 05-92	No	NA	NA	NA	Yes	BM	Dead	45
P008	COALL 06-97	No	Negative	NA	NA	Yes	NA	Testes	2nd CR 195
P074	COALL 06-97	No	Negative	NA	NA	Yes	BM	Dead	45
P069	COALL 07-03	No	NA	NA	NA	Yes	NA	No	1st CR 123
P004	EORTC 58081	No	Negative	Negative	NA	Yes	NA	No	1st CR 49
P090	EsPhALL	No	Negative	Positive	NA	Yes	NA	Dead	45
P006	FRALEL 93	No	Positive	Positive	NA	Yes	NA	Relapse	219
P002	FRALEL 93	No	Positive	Negative	NA	Yes	NA	No	1st CR 15
P112	GBTLIALL99	No	NA	NA	NA	Yes	NA	Alive	NA
P121	GBTLIALL99	No	Negative	Negative	NA	Yes	NA	Alive	NA
P005	GAAAPH	No	Positive	Positive	NA	Yes	NA	No	Alive 27
P056	NA	No	NA	NA	NA	Yes	BM	Lost follow-up	17
P001	NA	F	50%	88%	NA	Yes	NA	No	SCL, alive 9

BM, bone marrow; CNS, central nervous system; CMR, complete morphological remission; MRD, minimal residual disease; NA, not available; PR, prednisone response; SCT, stem-cell transplantation; WBC, white blood cell count. MRD-negative status was defined as <0.01% leukemic cells in bone marrow and peripheral blood.
with COBL-r vs. COBL wild-type revealed that both groups presented similar laboratory and clinical characteristics (Table 3). Among the B-ALL cytogenetic abnormalities, TCF3-PBX1 and ETV6-RUNX1 were exclusively found in patients without or with COBL-r, respectively (Figure 1F). Although we did not observe any significant difference in the frequency of additional gene deletions when comparing patients with vs. without COBL-r, it is worthy of note that CDKN2A, ETV6, and PAX5 deletions were more frequent in patients with COBL-r (Figure 1G). Follow-up data were available for 111 B-ALL patients with (n = 20) or without COBL-r (n = 91). The OS of patients with COBL-r was similar to those with IKZF1 deletion only (hazard ratio, 1.278; 95% CI, 0.35-4.68; P = .646) (Figure 1H).

The breakpoints of the COBL-r were determined at nucleotide level in 11 of the 25 cases, and 56% of breakpoints were located within COBL intron 5 (Figure 2B). To address the possible causes of these breakpoints, we first performed an agnostic motif search. This analysis identified the motif CASWGTGG (E-value = 0.87) within all 22 breakpoint sequences of COBL-r (Figure 2A; Supplementary Table S1). CASWGTGG is similar to the heptamer of the RAG RSS, which is composed of a heptamer (5′-CAGCTG-3′) and a nonamer (5′-ACAAAACC-3′) sequence, interspaced by 12 or 23 random nucleotides associated to RAG-type rearrangements. Since the nonamer was absent in our first analysis, we then investigated the presence of complete motifs associated with the occurrence of rearrangements in leukemia: cryptic RSS sequence (RAG-type fusions), WGCW (AID-type fusions), and CG sequences. WGCW rearrangements in leukemia: cryptic RSS sequence (RAG-type fusions), WGCW (AID-type fusions), and CG sequences. WGCW and CG sequences were not found; however, we identified cryptic RSS in 5 out of 22 breakpoint regions, although none of them were spanning breakpoints within COBL (Supplementary Table S2).

Additionally, we performed a robust analysis for the identification of cryptic RSSs within the whole sequence of COBL (Figure 2, C-D). The results revealed a broad distribution of this motif throughout the gene and no enrichment for the breakpoint cluster located in intron 5 of COBL.

Discussion

In this study, among the Δ-8 group, the majority of the alterations were IKZF1 deletions which had already been detected by the M-PCR method [8]. Since the remaining Δ-8 samples harbored deletions restricted to IKZF1, either they had DNA fusions outside the breakpoint cluster region of IKZF1 or M-PCR failed to detect them. Among the Δ1-8 group, COBL-r were found in 12% of the patients. This result revealed that COBL-r are more frequent among Δ1-8 but rarely related to Δ-8. Although COBL-r were not detected within the Δ-8 group for the cases included in the current proposal, we found these deletions in patients with COBL-r from a previous study [9]. These patients had IKZF1-COB1 fusions, which involved IKZF1 intron 1 (n = 1) or intron 3 (n = 2) and COBL intron 5.

Confirming the idea that COBL represents a genomic hotspot for IKZF1 deletions in B-ALL [9], we identified COBL-r in 25 B-ALL cases with IKZF1 deletions. Although either good (ETV6-RUNX1, high hyperdiploid) or high-risk (BCR-ABL1) cytogenetic groups have been observed in some of these patients, most of them had the so-called “B-other” subclassification with either normal or other abnormal (BCR-JAK2, IGH-EPOR) cytogenetic profile. In the current genetic risk stratification, many cases with COBL-r would then be classified as intermediate cytogenetic risk. We found that these patients also presented other secondary abnormalities commonly identified in B-ALL, such as PAX5 and CDKN2A/B and ETV6 deletions. This combination is of special interest because these patients could benefit from the newly proposed combined risk stratification strategies, such as IKZF1plus or the UKALL-CNA classifiers [13–15]. Considering that patients with B-ALL share similar laboratory and clinical characteristics regardless of COBL involvement, IKZF1 deletions may play a major role on risk stratification for these patients.

Regarding the breakpoints of the COBL-r, it is remarkable that 56% of them were located within COBL intron 5, although this region represents only 16% (47,770 out of 300,587 bp) of the entire gene. Based on this observation, we formulated two hypotheses to explain the presence of a hotspot for breakpoints within COBL: 1) the production of a truncated COBL protein, encoded by exons 1-5 only, could have a role on leukemogenesis, or 2) there is a breakage mechanism involving COBL intron 5, thus enriching this area for gene rearrangements.

COBL protein has three Wiskott-Aldrich syndrome protein homology 2 domains for actin binding. It shows substantial expression in neurons and muscle cells, although levels are low in blood [16]. COBL functions as an actin nucleator, controlling neuronal morphology and development [17]. Considering that COBL does not play a direct role in lymphoid development, the enrichment of COBL-r in B-ALL is more likely to be related to mechanisms controlling DNA breakage and promotion of genetic fusions.

Usually, genetic rearrangements in lymphoid malignancies are caused by either AID or the RAG complex. Therefore, we searched for motifs located within the breakpoint junctions of COBL-r, which could potentially provide a rational explanation for the observed

Table 3. Demographic and Laboratory Data of Patients with B-ALL∗

Parameter	COBL Rearrangement	P Value		
	No	Yes		
	n = 121	n = 25		
	n (%)	n (%)		
Gender	Male	48 (39.7)	8 (32.0)	0.473
	Female	73 (60.3)	17 (68.0)	
Age at diagnosis	<1 year	2 (1.7)	0 (0.0)	0.701
	1-9 years	49 (41.5)	12 (48.0)	
	≥10 years	67 (56.8)	13 (52.0)	
WBC (×10⁹/μL)	<50	85 (70.2)	16 (69.6)	0.948
	≥50	36 (29.8)	7 (30.4)	
NCI risk	Standard	69 (58.0)	14 (60.9)	0.797
	High	50 (42.0)	9 (39.1)	
CNS disease	No	96 (94.1)	23 (95.8)	0.741
	Yes	6 (5.9)	1 (4.2)	
Prednisone response	Good	66 (91.7)	11 (78.6)	0.143
	Poor	6 (8.3)	3 (21.4)	
Relapse	No	75 (70.8)	13 (65.0)	0.607
	Yes	31 (29.2)	7 (35.0)	
Outcome	Alive	94 (77.7)	20 (83.3)	0.604
	Dead	27 (22.3)	4 (16.7)	

WBC, white blood cell count; NCI, National Cancer Institute of US; CNS, central nervous system.

* Pearson χ² calculation.
chromosomal rearrangements. RSSs are recognized by RAG enzymes during V(D)J recombination, and previous studies have located cryptic RSS immediately internal to the breakpoints of intragenic deletions of \textit{IKZF1}. Although the mutual motif within sequences spanning the breakpoints was similar to the heptamer sequence, our results do not support the idea that aberrant RAG-mediated recombination is the mechanism responsible for \textit{IKZF1} and \textit{COBL} codeletions.

Figure 2. Identification of motifs within the breakpoint sequences. (A) An agnostic motif search using MEME identified the sequence CASWGTGG (E-value = 0.87) among 22 breakpoint sequences. (B) The map of 19 deletion breakpoints (red triangles) within \textit{COBL} revealed a hotspot located at intron 5. Three breakpoints were detected within a downstream region of 7p12.1. The sequences highlight two breakpoint clusters located at \textit{COBL} intron 5. The mapped cryptic recombination signal sequences were not statistically significant. The cryptic recombination signal sequences (cRSS) with a spacer of 12-bp (c) and 23-bp (d) were mapped along \textit{COBL} gene. The highest RIC scores represent cRSS (blue dots) associated with RSS functionality. The gray area highlights the \textit{COBL} intron 5 and breakpoint cluster regions.
In summary, our results highlight COBL as a hotspot for interstitial deletions within chromosome 7, especially for deletions including the IKZF1 gene. Most of the COBL-r arose within COBL intron 5, leading to complete deletion of IKZF1; nevertheless, we also observed fusions between both genes. The analysis of the breakpoint sequences revealed a common motif resembling the heptamer of recombination signal sequence, but the analysis of the whole consensus sequence did not provide evidence for RAG-mediated recombination. Lastly, our study demonstrates that patients with IKZF1 deletions are associated with worse outcome regardless of COBL-r.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tranon.2019.02.002.

Funding
This research was funded by CNPq (PQ-2017#305529/2017-0) and FAPERJ-JCNE (E_26/201.539/2014 and E_26/203.214/2017) awarded to M. E. B. A. L. was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and the Alexander von Humboldt Foundation. G. C. was supported by the Italian Association for Cancer Research (AIRC).

Conflict of Interest
The authors declare no conflict of interest.

Author Contribution
Conception and design: B. A. L., C. M., R. M., M. E. Experiments, data analysis, and interpretation: B. A. L., C. M., T. C. B., C. P. P., N. D., M. B., U. S., C. P., N. C. V., R. M., M. E. Provision of samples, data collection, and assembly: B. A. L., M. B. M., N. D., C. J.H., U. S., M. H., M. S. P. O., G. C., R. S., C. N. A., G. T., S. G., S. B. Writing and/or revision of the manuscript: B. A. L., R. M., M. B. M., C. J. H., G. C., R. S., C. N. A., M. E. Final manuscript approval: all authors.

References
[1] Greaves M (2018). A causal mechanism for childhood acute lymphoblastic leukaemia. Nat Rev Cancer 18, 471–484.
[2] Barbosa TC, Terra-Granado E, Quezado Magalhaes IM, Neves GR, Gadelha A, Guedes Filho GE, Souza MS, Melaragno R, Emerenciano M, and Pombo-de-Oliveira MS (2015). Frequency of copy number abnormalities in common genes associated with B-cell precursor acute lymphoblastic leukemia cytogenetic subtypes in Brazilian children. Cancer Genet 208, 492–501.
[3] Mullighan CG, Goorha S, Radtke I, Miller CB, Costant-Smooth E, Dalton JD, Girtman K, Mathew S, Ma J, and Pounds SB, et al (2007). Genome-wide analysis of genetic alterations in acute lymphoblastic leukemia. Nature 446, 758–764.
[4] Dorge P, Meissner B, Zimmermann M, Moricke A, Schraudner A, Bouquin JP, Schewe D, Harbott J, Teigler-Schlegel A, and Ratei R, et al (2013). IKZF1 deletion is an independent predictor of outcome in pediatric acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica 98, 428–432.
[5] Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, Ma J, Liu W, Cheng C, and Schulman BA, et al (2009). Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 360, 470–480.
[6] Boer JM, van der Veer A, Rizopoulos D, Fiocco M, Sonneveld E, de Groot-Kruiseman HA, Kuiper RP, Hoogerbrugge P, Horstmann M, and Zaliova M, et al (2016). Prognostic value of rare IKZF1 deletion in childhood B-cell precursor acute lymphoblastic leukemia: an international collaborative study. Leukemia 30, 32–38.
[7] Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, White D, Hughes TP, Le Beau MM, and Pui CH, et al (2008). BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114.
[8] Meyer C, Zur Stadt U, Escherich G, Hofmann J, Binaro R, Barbosa TC, Emerenciano M, Pombo-de-Oliveira MS, Horstmann M, and Marschalek R (2013). Refinement of IKZF1 recombination hotspots in pediatric BCP-ALL patients. Am J Blood Res 3, 165–173.
[9] Lopes BA, Meyer C, Barbosa TC, Zur Stadt U, Horstmann M, Venn NC, Heatley S, White DL, Surton R, and Pombo-de-Oliveira MS, et al (2016). COBL is a novel hotspot for IKZF1 deletions in childhood acute lymphoblastic leukemia. Oncotarget 7, 53064–53073.
[10] Duployez N, Nibourel O, Ducourneau B, Grardel N, Boyer T, Bories C, Darre S, Coiteux V, Berthon C, and Preudhomme C, et al (2016). Acquisition of genomic events leading to lymphoblastic transformation in a rare case of myeloproliferative neoplasm with BCR-JAK2 fusion transcript. Eur J Haematol 97, 399–402.
[11] Bailey TL, Johnson J, Grant CE, and Noble WS (2015). The MEME suite. Nucleic Acids Res 43, W39–W49.
[12] Grant CE, Bailey TL, and Noble WS (2011). FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018.
[13] Hamadeh L, Enshaei A, Schwab C, Alonso CN, Attarbaschi A, Barbany G, den Boer ML, Boer JM, Braun M, and Dalla Pozza L, et al (2019). Validation of the United Kingdom copy-number alteration classifier in 3239 children with B-cell precursor ALL. Blood Adv 3, 148–157.
[14] Mookman AV, Emskai A, Schwab C, Wade R, Chilton L, Eliott A, Richardson S, Hancock J, Kinsey SE, and Mitchell CD, et al (2014). A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia. Blood 124, 1434–1444.
[15] Stanulla M, Dagdan E, Zaliova M, Moricke A, Palmi C, Cazzaniga G, Eckert C, Te Kronnie G, Bourquin JP, and Bornhauser B, et al (2018). IKZF1(plus) defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric B-cell precursor acute lymphoblastic leukemia. J Clin Oncol 36, 1240–1249.
[16] G.T. Consortium (2013). The Genotype-Tissue Expression (GTEx) project. Nat Genet 45, 580–585.
[17] Altuja R, Pinyol R, Reichenbach N, Custer L, Klingensmith J, Kessels MM, and Qualmann B (2007). Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Celf 131, 337–350.