The purpose of this short note is to give a proof of the following identity between (logarithmic) Mahler measures

\begin{equation}
m(y^2 + 2xy + y - x^3 - 2x^2 - x) = \frac{5}{7} m(y^2 + 4xy + y - x^3 + x^2),
\end{equation}

which is one of many examples that arise from the comparison of Mahler measures and special values of L-functions [Bo], [De], [RV]. Let us recall that the logarithmic Mahler measure of a Laurent polynomial \(P \in \mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}] \) is defined as

\begin{equation}
m(P) = \int_0^1 \cdots \int_0^1 \log |P(e^{2\pi i \theta_1}, \ldots, e^{2\pi i \theta_n})| d\theta_1 \cdots d\theta_n.
\end{equation}

The conjecture of Bloch–Beilinson [Be], [BG] for elliptic curves predicts that both sides of (1) are rationally related to \(L'(E, 0) \) (and hence to each other), where \(E \) is the elliptic curve of conductor 37

\begin{equation}
E : \quad y^2 + y = x^3 - x,
\end{equation}

Support for this work was provided in part by a grant of the NSF and by a Sloan Research Fellowship.
and \(L(E, s) \) is its \(L \)-function. More precisely, we expect that the two numbers \(a \) and \(b \) defined by

\[
m(y^2 + 2xy + y - x^3 - 2x^2 - x) = a \, L'(E, 0), \\
m(y^2 + 4xy + y - x^3 + x^2) = b \, L'(E, 0)
\]

are rational. A proof of this fact is not without reach but will not be attempted here, we will prove instead that \(a/b = 5/7 \).

1. Computing in \(K_2(E) \)

We first recall the definition of the group \(K_2(A) \) of an elliptic curve \(A \). Given a field \(F \) the group \(K_2(F) \) can be defined as \(F^* \otimes F^* \) modulo the Steinberg relations \(x \otimes (1 - x) \) for \(x \neq 0, 1 \) in \(F \).

Given a discrete valuation \(v \) on \(F \) with maximal ideal \(\mathcal{M} \) and residue field \(k \) we have the tame symbol at \(v \) defined by

\[
(x, y)_v \equiv (-1)^{v(x)v(y)} \frac{x^{\nu(y)}}{y^{\nu(x)}} \mod \mathcal{M},
\]

which determines a homomorphism

\[
\lambda_v : K_2(F) \rightarrow k^*
\]

For an elliptic curve \(A \) defined over \(\mathbb{Q} \) we let \(K_2(A) \) be the elements of \(K_2(\mathbb{Q}(A)) \) annihilated by all \(\lambda_v \) with \(v \) the valuations associated to \(\mathbb{Q} \) points of \(A \).

Our \(E \) appears as a fiber in several of Boyd’s families of elliptic curves (see [Bo], [RV] for a discussion of these families). For example, in its original form \(y^2 + y = x^3 - x \), but also as the two Weierstrass equations

\[
(4) \quad E_1 : \quad y_1^2 + 4x_1y_1 + y_1 = x_1^3 - x_1^2
\]

and

\[
(5) \quad E_2 : \quad y_2^2 + 2x_2y_2 + y_2 = x_2^3 + 2x_2^2 + x_2.
\]
It is easy to check that

\[(6)\]
\[
x_1 = x - 1
\]
\[
y_1 = y - 2x + 2
\]

and

\[(7)\]
\[
x_2 = x - 1
\]
\[
y_2 = -x + y + 1
\]

give isomorphisms
\[E \simeq E_1, \quad E \simeq E_2.\]

It follows from [RV] therefore, that some integer multiple of each of

\[\xi = \{x, y\}, \quad \xi_1 = \{x_1, y_1\}, \quad \xi_2 = \{x_2, y_2\}\]

is in \(K_2(E)\).

The divisors of the six functions \(x, y, x_1, y_1, x_2, y_2\) are supported on \(E(\mathbb{Q})\), which is generated by the point \(P\) with \(x = 0, y = 0\). More precisely, we have

\[(x) = [P] + [-P] - 2[O]
\]
\[(y) = [P] + [2P] + [-3P] - 3[O]
\]

\[(8)\]
\[
(x_1) = [2P] + [-2P] - 2[O]
\]
\[
(y_1) = 2[2P] + [-4P] - 3[O]
\]
\[
(x_2) = [-2P] + [2P] - 2[O]
\]
\[
(y_2) = [2P] + 2[-P] - 3[O]
\]

where \([O]\) denotes the point at infinity on \(E\).

Given a pair of functions \(f\) and \(g\) on \(E\) with divisors supported on \(E(\mathbb{Q})\)

\[(f) = \sum_{n \in \mathbb{Z}} a_n [nP], \quad (g) = \sum_{n \in \mathbb{Z}} b_n [nP]\]
we define

\[(f) \triangle (g) = \sum_{m,n} a_n b_m [(n - m)P],\]

which we will view as an element of

\[\mathbb{Z}[E(\mathbb{Q})]^– = \mathbb{Z}[E(\mathbb{Q})]/\sim,\]

where \(\sim\) is the equivalence relation determined by

\[-nP \sim [nP], \quad n \in \mathbb{Z}.\]

We may and will represent elements of \(\mathbb{Z}[E(\mathbb{Q})]^–\) as vectors \([a_1, a_2, \ldots]\) with \(a_i \in \mathbb{Z}\) almost all zero where

\([a_1, a_2, \ldots] \leftrightarrow \sum_{n=1}^{\infty} a_n [nP]\)

In fact, we will only consider elements where \(a_n = 0\) for \(n > 6\) and hence simply write \([a_1, \ldots, a_6]\).

We now compute

\[(x) \triangle (y) = [1, 2, -3, 1, 0, 0]\]

\[(x_1) \triangle (y_1) = [0, 5, 0, -4, 0, 1]\]

\[(x_2) \triangle (y_2) = [-6, 2, 2, -1, 0, 0].\]

On the other hand, we also find

\[(-y) \triangle (1 + y) = [-8, -7, 8, 1, 0, -1]\]

\[(x - y) \triangle (1 - x + y) = [-9, 5, -5, 5, 0, -1]\]

and verify easily that

\[7(x) \triangle (y) + (x_1) \triangle (y_1) = -2(-y) \triangle (1 + y) + (x - y) \triangle (1 - x + y)\]

\[5(x) \triangle (y) + (x_2) \triangle (y_2) = -(-y) \triangle (1 + y) + (x - y) \triangle (1 - x + y).\]

2. The regulator
Let
\begin{equation}
 r : \quad K_2(E) \longrightarrow \mathbb{R}
\end{equation}
be the regulator map. It can be defined as follows. If \(f, g \) are two non-constant functions on \(E \) with \(\{ f, g \} \in K_2(E) \) then
\begin{equation}
 r(\{ f, g \}) = \int_\gamma \eta(f, g),
\end{equation}
where
\begin{equation}
 \eta(f, g) = \log |f| \, d \arg g - \log |g| \, d \arg f
\end{equation}
and \(\gamma \) is a closed path not going through poles or zeroes of \(f \) or \(g \) which generates the subgroup \(H_1(E, \mathbb{Z})^- \) of \(H_1(E, \mathbb{Z}) \) where complex conjugation acts by \(-1\), properly oriented. The fact that the integral only depends on the homology class of \(\gamma \) is a consequence of \(\{ f, g \} \in K_2(E) \), see [RV] for details. (However, note that in [RV] we inaccurately said \(\gamma \) should generate the cycles fixed by complex conjugation; we take the opportunity to correct this.)

The regulator may also be expressed in terms of the elliptic dilogarithm [BG], [Za]
\begin{equation}
 \mathcal{L} : \quad E(\mathbb{C}) \longrightarrow \mathbb{R}.
\end{equation}
In our context, this works as follows. We extend it by linearity to \(\mathbb{Z}[E(\mathbb{Q})]^- \) and since \(\mathcal{L} \) is odd it actually gives a map
\begin{equation}
 \mathcal{L} : \quad \mathbb{Z}[E(\mathbb{Q})]^- \longrightarrow \mathbb{R}.
\end{equation}
If \(f, g \) are two non-constant functions on \(E \) with divisors supported on \(E(\mathbb{Q}) \) and such that \(\{ f, g \} \in K_2(E) \) then
\begin{equation}
 r(\{ f, g \}) = c \, \mathcal{L} \left((f) \circ (g) \right),
\end{equation}
for some explicit non-zero constant \(c \), which is not relevant for our purposes. In particular, in the case that \(g = 1 - f \)
\begin{equation}
 \mathcal{L} \left((f) \circ (1 - f) \right) = 0.
\end{equation}
The above discussion extends naturally to $K_2(E) \otimes \mathbb{Q}$, which contains ξ, ξ_1 and ξ_2.

It follows from (12) therefore, that

$$
r(\xi_1) = -7r(\xi) \quad r(\xi_2) = -5r(\xi).
$$

3. The regulator and Mahler’s measure

In [RV] we showed that if $P_k(x, y) = 0$ is one of Boyd’s families of elliptic curves and k is such that P_k does not vanish on the torus $|x| = |y| = 1$ then

$$
r(\{x, y\}) = c_k \pi m(P_k)
$$

for some nonzero integer c_k. We will now make this precise for

$$P_k(x, y) = y^2 - kxy + y - x^3 + x^2.$$

We consider the region \mathcal{K} of $k \in \mathbb{C}$ such that P_k vanishes somewhere on the torus. It is the image of the torus under the rational map

$$R : \quad (x, y) \mapsto \frac{y^2 + y - x^3 + x^2}{xy}.$$

We can get a pretty good idea of what \mathcal{K} looks like by graphing the image of a grid under $(\theta_1, \theta_2) \mapsto R(e^{2\pi i \theta_1}, e^{2\pi i \theta_2})$. Dividing the square $0 \leq \theta_1 < 1, 0 \leq \theta_2 < 1$ in 40 equal parts we obtain

Figure 1. Region \mathcal{K}

It is not hard to verify directly that the boundary of \mathcal{K} meets the real axis at $k = -4$ and $k = 2$.

If $k \notin \mathcal{K}$ then as x moves counterclockwise on the circle $|x| = 1$ one root $y_1(x)$ of $P_k(x, y) = 0$ satisfies $|y_1(x)| < 1$ and the other $y_2(x)$ satisfies $|y_2(x)| > 1$ and in particular $y_1(x)$ and $y_2(x)$ do not meet. To see this, note
that when \(x = 1 \) the roots are 0 and \(k - 1 \). Hence, for \(|k|\) large these roots are one inside and the other outside the unit circle. The claim follows since the roots depends continuously on \(k \). We let \(\sigma_k \) be the resulting smooth closed path \((x, y_1(x))\) on the elliptic curve \(E_k \) determined by \(P_k(x, y) = 0 \).

Using Jensen’s formula we find that

\[
m(P_k) = \frac{1}{2\pi i} \int_{\sigma_k} \log |y| \frac{dx}{x}
\]

and note that since \(|x| = 1\) on \(\sigma_k \) we can write this identity as

\[
(22) \quad m(P_k) = \frac{1}{2\pi} \int_{\sigma_k} \eta(x, y).
\]

We now show that for real and \(k \notin K \) the homology class of \(\sigma_k \) generates \(H_1(E_k, \mathbb{Z}) \). We complete the square and write \(P_k = (2y - kx + 1)^2 - f(x) \), where \(f(x) = 4x^3 + (k^2 - 4)x^2 - 2kx + 1 \). The discriminant \(\Delta(k) = k^4 - k^3 - 8k^2 + 36k - 1 \) of \(f \) has two real roots \(\alpha = -3.7996\ldots \) and \(\beta = .3305\ldots \). Hence, for \(k < \alpha \) or \(k > \beta \), \(\Delta(k) > 0 \) and \(f \) has three real roots \(e_1 < e_2 < e_3 \). As \(|k|\) increases the roots of \(f \) tend to \(e_1 = -\infty \) and \(e_2 = e_3 = 0 \) and by continuity the circle \(|x| = 1\) encircles \(e_2 \) and \(e_3 \) once. Since \(f \) is negative in the interval \(e_2 < x < e_3 \) the period

\[
\int_{\sigma_k} \frac{dx}{2y - kx + 1}
\]

is purely imaginary and our claim follows.

Combined with (14) and (22) this proves that in fact

\[
(23) \quad r(\{x, y\}) = \pm 2\pi m(P_k), \quad k \in \mathbb{R}, \quad k \notin K.
\]

By continuity (23) also holds for \(k = -4 \) and \(k = 2 \), which are on the boundary of \(K \). In particular, in the notation of \(\S 2 \), we obtain the identity

\[
(24) \quad r(\xi_1) = \pm 2\pi m(y^2 + 4xy + y - x^3 + x^2).
\]

A completely analogous analysis yields

\[
(25) \quad r(\xi_2) = \pm 2\pi m(y^2 + 2xy + y - x^3 - 2x^2 - x)
\]
(and again $k = -2$ is on the boundary of the corresponding set K). Putting together (19), (24) and (25) (and a simple check for the right sign) we obtain (1).

Remarks

1. We should point out that we do not expect $m(y^2 + y - x^3 + x)$ to be rationally related to either side of (1) (and numerically it indeed does not appear to be). The reason is that $y^2 + y - x^3 + x$ vanishes on the torus and in fact $k = 0$ is in the interior of the region K corresponding to the Boyd family $y^2 - kxy + y - x^3 + x$. Hence the analogue of (22) gives the integral of $\eta(x, y)$ on a non-closed cycle.

2. One can prove in a similar way an identity relating either side of (1) with $m(y^2 + 2xy + y - x^3 + x^2)$.

References

[Be] A. Beilinson, *Higher regulators of modular curves*, Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., vol. 55, Amer. Math. Soc., Providence, R.I., 1986, pp. 1–34.

[Bo] D. W. Boyd, *Mahler’s measure and special values of L-functions*, Experiment. Math. 7 (1998), 37–82.

[BG] S. Bloch & D. Grayson, *K_2 and L-functions of elliptic curves: Computer Calculations*, Contemp. Math. 55 (1986), 79–88.

[De] C. Deninger, *Deligne periods of mixed motives, K-theory and the entropy of certain \mathbb{Z}^n-actions*, J. Amer. Math. Soc. 10 (1997), 259–281.

[RV] F. Rodriguez Villegas, *Modular Mahler measures I*, Topics in Number Theory (S.D. Ahlgren, G.E. Andrews & K. Ono, ed.), Kluwer, Dordrecht, 1999, pp. 17–48.

[Z] D. Zagier, *The Bloch–Wigner–Ramakrishnan polylogarithm function*, Math. Ann. 286 (1990), 613–624.