DTS-SNN: Spiking Neural Networks With Dynamic Time-Surfaces

DONGHYUNG YOO, AND DOO SEOK JEONG, (Member, IEEE)
Division of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea
Corresponding author: Doo Seok Jeong (dooseokj@hanyang.ac.kr)

This work was supported by the National Research and Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT under Grant NRF-2021M3F3A2A01037632 and Grant NRF-2019R1C1C1009810.

ABSTRACT Convolution helps spiking neural networks (SNNs) capture the spatio-temporal structures of neuromorphic (event) data as evident in the convolution-based SNNs (C-SNNs) with the state-of-the-art classification-accuracies on various datasets. However, the efficacy aside, the efficiency of C-SNN is questionable. In this regard, we propose SNNs with novel trainable dynamic time-surfaces (DTS-SNNs) as efficient alternatives to convolution. The novel dynamic time-surface proposed in this work features its high responsiveness to moving objects given the use of the zero-sum temporal kernel that is motivated by the simple cells’ receptive fields in the early stage visual pathway. We evaluated the performance and computational complexity of our DTS-SNNs on three real-world event-based datasets (DVS128 Gesture, Spiking Heidelberg dataset, N-Cars). The results highlight high classification accuracies and significant improvements in computational efficiency, e.g., merely 1.51% behind of the state-of-the-art result on DVS128 Gesture but a ×18 improvement in efficiency. The code is available online (https://github.com/dooseokjeong/DTS-SNN).

INDEX TERMS Lightweight spiking neural network, spiking neural network, dynamic time-surfaces, event-based data.

I. INTRODUCTION Convolution-based methods are pervasive in a variety of deep learning application domains given their high efficacy across different domains when implemented in convolutional neural networks (CNNs). The same holds for spiking neural networks (SNNs) in that convolution-based SNNs (C-SNNs) hold the state-of-the-art classification accuracies on a variety of datasets [1], [2], [3]. Convolution is an operation-intensive method that involves a large number of multiply-accumulate operations over 3D feature maps. Therefore, convolution generally results in high computational complexity and high power consumption, which is a daunting challenge, particularly for C-SNNs, because power efficiency is supposed to be one of the key advantages of SNNs over deep neural networks (DNNs).

SNNs are time-dependent hypotheses consisting of spiking units and unidirectional synapses [4]. One of the advantages of SNNs is their operations based on asynchronous spikes, unlike layer-wise sequential operations in DNNs which impose forward locking constraints [5], [6]. To leverage this advantage, it is required to implement SNNs in dedicated hardware, which is referred to as neuromorphic hardware [7], [8], [9], [10], [11]. Generally, a neuromorphic processor consists of multiple cores supporting asynchronous event-based operations across them. The consequent power efficiency is the key feature of neuromorphic hardware.

Time-surface (TS) analyses are effective methods to process asynchronous events (spikes) for various tasks [12], [13], [14]. A TS for a given event is a 2D map of the event timestamps prior to the event in the spatial vicinity of the event. Therefore, the TS can capture the spatio-temporal local structure of the events responding to the object. Nevertheless, the previous TSs are not tailored to SNNs and hardly support end-to-end learning.

In this regard, we attempt to use TSs, in place of convolution, to extract the features of event data in a highly operation-efficient manner to leverage the key advantage,
As a workaround, Sironi et al. proposed HATS that is based on averaged TSs [13]. For a compact representation, they partitioned the input field into grid-cells. For each grid-cell, the TSs for several recent events in the grid-cell are averaged over the entire timesteps and grid-cell to acquire a single smooth TS that is representative for the grid-cell. Unlike HOTS, in HATS, the TS of each event considers several recent timestamps by convolving an event stream with an exponentially decaying temporal kernel.

HOTS uses a set of TSs as a dictionary to compare it with the input TS and to consequently build a feature map (matching frequency). This comparison is repeated through multiple stages. The feature histogram from the last stage is used to categorize input data, which is based on the histogram-similarity between the input and instances in each category. HATS uses grid-cell-wise averaged TSs as a dictionary. Similar to HOTS, the feature map is built based on matching frequency but uses a support vector machine as a classifier. Notably, both HOTS and HATS use time-invariant (static) TSs as inputs to their classifiers.

With the development of training algorithms for SNNs, there have been attempts to process event data by exploiting the spatio-temporal processing ability of SNNs [1], [2], [18], [19], [20]. Yet, to achieve high classification accuracies, most of them used large C-SNNs with multiple hidden layers, which cause significant computational complexity.

This lets us revisit the initial motivation of SNNs, energy-efficiency, and consequently rethink of efficient methods to extract the spatio-temporal features of event data using TSs as alternatives to convolution. To this end, the prerequisites include (i) the modification of the conventional time-invariant TSs to time-dependent (dynamic) forms with a noise-robust temporal kernel and (ii) development of a DTS builder supporting end-to-end batch learning.

III. SPIKING NEURAL NETWORKS WITH DYNAMIC TIME-SURFACES

DTS-SNNs consists of a DTS builder and SNN classifier. The builder constructs DTSs for the events at every timestep, which are subsequently fed into the SNN as inputs. To validate the feature extraction ability of the proposed DTS builder and the importance of well-defined features for SNNs, we used a simple dense SNN with a single hidden layer, which was trained using a surrogate gradient-based backpropagation algorithm [21]. This section elucidates the DTS in comparison with the previous TSs and a method to build DTSs in parallel for the samples in a single batch.

A. DYNAMIC TIME-SURFACES WITH ZERO-SUM TEMPORAL KERNELS

For an event stream from an event camera, the ith event (e_i) is encoded as $e_i = (p_i, t_i, X_i)$, where p_i, t_i, and X_i denote its polarity $p_i \in \{-1, 1\}$, timestamp, and location on a 2D pixel array $X_i = (x_i, y_i)$, respectively. The DTS for the ith event T_{e_i} only considers the previous or simultaneous events $e_j(j \leq i)$ of the same polarity ($p_j = p_i$), which are
Figure 3 shows an example of timestamps encoded using the zero-sum temporal kernel k_{tzs} compared with encoding using a single-exponential kernel k_t. Figure 3(a) highlights the high responsiveness of the encoding function to events varying their rate such that it outputs high responses in the initial encoding phase while the following responses merely fluctuate around zero due to the constant event rate. This can clearly be differentiated from the timestamp encoding using the single-exponential kernel k_t as compared in Figure 3(b). Similar to HATS, the input field is partitioned into grid-cells, and a single grid-cell-wise representative DTS is built for each grid-cell. However, unlike HATS, the representative DTS $\mathcal{T}_c(t)$ for a given grid-cell c and timestep t is the weighted sum of the DTSs of simultaneous events \mathcal{T}_{ei}.

$$\mathcal{T}_c(t) = \sum_{e_i \in \mathcal{E}_{c,t}} a_i \mathcal{T}_{ei},$$

where $e_{i,c} = \{e_i | t_i = t, X_i \in c\}$. The weight of each element time-surface \mathcal{T}_{ei} is denoted by a_i which is a trainable parameter. This set of weights is shared among all grid-cells. Note that, in HATS, the representative TS is the simple average of the TSs of simultaneous events as follows.

$$\overline{\mathcal{T}_c} = \frac{1}{|e_{i,c}|} \sum_{e_i \in c} \mathcal{T}_{ei}.$$
the input field. As such, the spatial domain of each DTS \(T_{t} \) is \(R_x \times R_y \) in size, where \(R_x = (2r_x + 1) \) and \(R_y = (2r_y + 1) \). The procedure is detailed in the following subsections. The pseudocode is shown in Appendix D.

1) BUILDING TIMESTAMP-ENCODING BANKS

A timestamp-encoding bank \(E(t) \) is a bank of timestamp-encodings for all pixels so that its dimension is identical to the input field. \(E(t) \in \mathbb{R}^{P \times H \times W} \) for a \(P \times H \times W \) input field. Each element \(E_{p,v}(t) \) is calculated by convolving an event-stream (polarity \(p \)) at a location \((x, y)\), \(\rho(t; p, x, y) \) with the zero-sum temporal kernel \(k_{t,v} \).

\[
E_{p,v}(t) = (k_{t,v} \ast \rho(t; p, x, y))(t).
\]
(6)

For efficient computation, we transform this convolution into a recursive form as follows:

\[
E(t + 1) = E_1(t + 1) - E_2(t + 1),
\]
\[
E_1(t + 1) = E_1(t) e^{-1/t_1} + \mathbb{1}_A(p, X),
\]
\[
E_2(t + 1) = E_2(t) e^{-1/t_2} + \mathbb{1}_A(p, X).
\]
(7)

The indicator function \(\mathbb{1}_A(p, X) \) is an event-map at timestep \(t \), where \(A = \{(p_i, X_i)| t_i = t\} \).

2) UNFOLDING TIMESTAMP-ENCODING BANKS

The timestamp-encoding bank \(E(t) \in \mathbb{R}^{P \times H \times W} \) is subsequently unfolded to build a preliminary time-surface map \(T(t) \in \mathbb{R}^{P \times H \times W \times (R_x \times R_y)} \) in which each location in the \(P \times H \times W \) input field is given a \(R_x \times R_y \) preliminary time-surface centered at the location such that

\[
T_{p,v}(t) \leftarrow E_{p,(x-r_y):(x+r_y),(y-r_y):(y+r_y)}(t).
\]
(8)

This process is indicated by “Unfolding” in Figure 4.

3) RESHAPING UNFOLDED BANKS

Each preliminary time-surface in the map \(T(t) \) is flattened, leading to a \(P \times H \times W \times (R_x R_y) \) map. This is subsequently reshaped into a \(P \times (R_x R_y) \times H \times W \) map. This reshaping is for the grid-cell-wise calculation of the weighted sum of the DTSs using 3D convolution. This process is depicted in Figure 4, indicated by “Flattening/reshaping”.

4) MULTIPLICATION BY EVENT-MAPS

The reshaped preliminary time-surface map \(T(t) \) is read out to acquire the DTSs of the events occurring at timestep \(t \). To this end, we reuse the event-map \(\mathbb{1}_A(p, X) \) in Eq. (7). This event-map is expanded by repeating the map along the flattened time-surface axis. This expanded event-map is element-wise multiplied by the map \(T(t) \), resulting in the map \(T(t) \) including nonzero element time-surfaces \(T_{t} \) for the events at timestep \(t \) only. This process is indicated by “Multiplied by expanded event-map” in Figure 4. The elements in each flattened \(T_{t} \) are L2-normalized.

5) GRID-CELL-WISE WEIGHTED SUM OF TIME-SURFACES

The input field is a \(H/h_c \times W/h_c \) grid, and each grid-cell is \(h_c \times w_c \) in size. For a given grid-cell, the DTS \(T_{t}(c) \) in Eq. (5) is calculated by convolving the map \(T(t) \) along the time-surface axis using a kernel \(a \in \mathbb{R}^{P \times 1 \times h_c \times w_c} \) with a stride of one. Note that the kernel elements indicate the contributions of the element time-surfaces \(T(t) \) to the grid-cell-wise representative DTS \(T_{t}(c) \) as in Eq. (5). The same process is repeated for the next grid-cell: moving the kernel to the next grid-cell (with a stride of \(h_c \) or \(h_c \)) and convolving \(T(t) \) with a stride of one. Thus, the calculation of \(T_{t}(c) \) is equivalent to 3D convolution of the element time-surface map \(T(t) \) using the rank-4 kernel \(a \). This allows us to readily use the convolution methods in the deep learning frameworks.

The resulting \((R_x R_y) \times H/h_c \times W/w_c \) map is a map of flattened DTSs for all grid-cells. The map is reshaped into \(H/h_c \times W/w_c \times (R_x R_y) \). The number of operations involved (#OPDTS) is given by

\[
#OP_{DTS} = 2PHWR_xR_y.
\]
(9)
C. SPIKING NEURAL NETWORK CLASSIFIER

The SNN classifier used is a simple fully-connected network (FCN) with a single hidden layer. The $H / h_i \times W / w_i \times R_i \times R_i$, DTS is flattened and fed to the SNN classifier as synaptic currents at a given timestep. Each dense layer consists of spiking neurons conforming to the spike-response model (SRM) but without a refractory mechanism. The sub-threshold membrane potential of the ith neuron in the lth layer is denoted by $u^{(l)}_i(t)$. Hereafter, the subscript and superscript of a variable mean a neuron index and layer index, respectively. The potential $u^{(l)}_i(t)$ is given by

$$u^{(l)}_i(t) = \sum_j w^{(l)}_{ij} (e^{\rho_j^{(l-1)}} - 1) (1)$$

$$\rho_j = \frac{\tau_m}{\tau_m - \tau_s} (e^{-\tau/\tau_s} - e^{-\tau/\tau_s}) \Theta (\tau),$$

where $w^{(l)}_{ij}$, τ_m, and τ_s denote the weight from the jth neuron in the $(l-1)$th layer, time-constant for potential decay, and time-constant for synaptic current decay, respectively. A spike train from the jth neuron in the $(l-1)$th layer is denoted by $\rho_j^{(l-1)}$. We use a spike function $S_\theta(u^{(l)}_i)$,

$$S_\theta(u^{(l)}_i) = \begin{cases} 1 & \text{if } u^{(l)}_i \geq \theta; \\ 0 & \text{otherwise}. \end{cases}$$

When the potential in Eq. (10) crosses a threshold for spiking θ, a spike is emitted. Subsequently, the potential is reset to zero.

We trained the SNN classifier using the spatio-temporal backpropagation (STBP) algorithm based on surrogate gradient [21]. However, for simplicity, we modified STBP such that the gradient $\partial S\Theta / \partial u^{(l)}_i$ is replaced by a boxcar function B as follows:

$$\frac{\partial S_\theta}{\partial u^{(l)}_i} \leftarrow B(u^{(l)}_i) = \begin{cases} 1 & \text{if } |u^{(l)}_i - \vartheta| < \alpha; \\ 0 & \text{otherwise}, \end{cases}$$

where α is a positive constant.

IV. EXPERIMENTS

We evaluated the performance of DTS-SNNs on three real-world datasets, DVS128 Gesture, SHD datasets, N-Cars. For all datasets, we reduced the input event sampling rate to reduce the computational complexity, which is equivalent to the reciprocal timestep Δt^{-1}. The hyper-parameters used for each dataset are listed in Appendix E, which were found using manual searches. We used the raw event datasets without any pre-processing.

To identify the effect of the zero-sum temporal kernel k_{zts} on performance, we compared the classification accuracy for the zero-sum temporal kernel k_{zts} with that for the single-exponential kernel k_t. We evaluated the computational efficiency of DTS-SNN in terms of the number of OPs per timestep. Note that the number of OPs includes $\#\text{OP}_{\text{DTS}}$ in Eq. (9). All experiments were conducted on a GPU workstation (GPU: RTX 2080 Ti). DTS-SNNs were implemented in Python using the Pytorch’s Autograd framework [22]. We trained the networks using Adam [23] without weight decay and learning rate scheduling.

A. DVS128 GESTURE

DVS128 Gesture is an event-based hand-gesture dataset, which comprises 1,342 samples labeled as 11 classes. We set the input sampling time Δt and the number of timesteps to 5 ms and 300, respectively. Each original sample ($H = W = 128$) was mapped onto an 8×8 grid, i.e., $h_i = w_i = 16$. The size of each time-surface was set to 7×7, i.e., $R_i = R_i = 7$. The flattened DTS was thus 3136 in length and fed into a 3136-400-11 SNN classifier.

Table 1 shows the performance and efficiency of DTS-SNN on DVS128 Gesture in comparison with previous methods using CNN-based SNNs. It highlights (i) high classification accuracy (1.51% lower than the state-of-the-art result though) and (ii) extremely high computational efficiency ($\times 18$ of that of the state-of-the-art result). The high computational efficiency arises from the use of a small FCN instead of a CNN and the high efficiency of the DTS builder. The evolution of test accuracy with training epoch is plotted in Figure 5.

Additionally, we achieved a 3.12% accuracy improvement by using the zero-sum temporal kernel k_{zts} instead of the single-exponential kernel k_t, which indicates the higher temporal responsiveness of the zero-sum temporal kernel than the conventional single-exponential temporal kernel. We visualize the DTSs T_e of the two temporal kernels at five timesteps (200 – 240) in Figure 6. A detailed comparison between the two time-surfaces is addressed in Appendix B.
TABLE 1. Performance comparisons of DTS-SNN on DVS128 Gesture, SHD, and N-Cars.

Method	Architecture	Accuracy	# Params	# OPs	# Timesteps
DVS128 Gesture					
SLAYER [24]	8-layer CNN	93.64±0.49	-	-	300
SCRNN [18]	3-layer CNN	92.01	-	-	20
DECOLLE [19]	5-layer CNN	95.54±0.16	1.6M	340M	500/1800
Streaming rollout SNN [2]	DenseNet	95.56±0.14	0.8M	15G	-
STBP [20]	4-layer CNN	93.4	2.3M	230M	60
STBP-tdBN [1]	ResNet-17	96.87	1.5M	258M	40
PLIF [25]	7-layer CNN	97.57	1.7M	1.6G	20
This work (with k_{x+y})	1-layer FCN (3136-400-11)	96.06±0.33	1.3M	5.7M	300
This work (with k_{x})		92.94±0.43			
SHD					
Surrogate gradient BP [17]	1-layer FCN	48.1±1.6	92K	184K	2000
Surrogate gradient BP [17]	2-layer FCN	48.6±0.9	108K	217K	2000
Surrogate gradient BP [17]	3-layer FCN	47.5±2.3	125K	250K	2000
Surrogate gradient BP [17]	1-layer RSNN	71.4±1.9	108K	217K	2000
Surrogate gradient BP [26]	1-layer RSNN	82.2	250K	500K	500
Surrogate gradient BP [27]	1-layer RSNN	82.7±0.8	108K	217K	2000
Surrogate gradient BP [3]	2-layer RSNN	90.4	141K	283K	250
This work (with k_{x+y})	1-layer FCN (105-128-20)	82.17±0.17	16K	36K	500
This work (with k_{x})		66.21±0.63			
N-Cars					
Gabor-SNN [13]	2-layer CNN	78.9	7K	119M	-
HATS [13]	-	90.2	-	115M	-
Streaming rollout SNN [2]	DenseNet	94.07±0.05	0.1M	1.4G	165
CarSNN [28]	4-layer CNN	86.3	0.8M	5.4M	10
This work (with k_{x+y})	1-layer FCN (3000-400-2)	90.28±0.06	1.2M	3.6M	100
This work (with k_{x})		89.47±0.19			

FIGURE 6. DTSs for (upper panel) the zero-sum temporal kernel and (lower panel) the single-exponential kernel. Each grid-cell in an 8×8 grid is a 7×7 DTS. (Right hand clockwise sample from DVS128 Gesture).

B. SHD

SHD is an audio classification dataset. It consists of 10,420 samples of spoken digits (0 – 9) in English and German, and thus labeled as 20 classes. The recorded samples were analyzed using 700 channels as bases which determine the input data dimension. Each sample varies in length (0.24 – 1.17 s). We set the input sampling time Δt to 1 ms. The other hyper-parameters are listed in Table 4. We considered the original 700-long 1D sample at a given timestep as a 2D sample ($H = 1$, $W = 700$) and mapped it onto a 1×35 grid,
i.e., $h_c = 1$ and $w_c = 20$. The size of each time-surface was set to 1×3, i.e., $R_x = 1$ and $R_y = 3$. The 105-long flattened DTS was fed into a 105-128-20 SNN classifier.

Table 1 shows the performance and efficiency on SHD compared with previous works. Note that all models except [26] on SHD in Table 1 have 128 neurons in each hidden layer. The use of the zero-sum temporal kernel realized a significant improvement in classification accuracy (by 15.96%) compared with the single-exponential kernel. The learning kinetics for both cases is plotted in Figure 5.

C. N-CARS

N-Cars is an event-based dataset that was directly recorded using an event camera for car detection task. This dataset aims to binary classification task (car or background) with event data of static objects (rather than dynamic objects as for DVS128 Gesture and SHD). Each sample is 100 ms long, and we set the input sampling time Δt to 1 ms so that the number of timesteps was 100.

We mapped each sample at a given timestep ($H = 100$, $W = 120$) onto a 10×12 grid, i.e., $h_c = w_c = 10$. We used the same size of time-surfaces as for DVS128 Gesture and SHD, i.e., $R_x = R_y = 5$. The 3,000-long flattened DTS was fed into a 3000-400-2 SNN classifier. The results are shown in Table 1 and compared with several state-of-the-art methods. The results indicate an accuracy improvement by 0.81% by using the zero-sum temporal kernel instead of the single-exponential kernel. The evolution of test accuracy with training epoch is plotted in Figure 5.

V. DISCUSSION

The zero-sum temporal kernel k_{tzs} avoids large timestamp encoding values caused by persistent events so that it enhances the responsiveness to time-varying events. To show this, we address the distribution of timestamp encoding values on a SHD. The comparison evidently indicates the larger dispersion of encoding values for the single-exponential kernel, and thus the larger standard deviation than the zero-sum temporal kernel. The larger encoding values for the single-exponential kernel are likely attributed to persistent events. The zero-sum temporal kernel filters out such large encoding values and consequently allows the SNN classifier to pay attention to time-varying events.

The dimensions of each time-surface and grid-cell are important hyper-parameters, which are given by $(R \times R$ and $C \times C$) for 2D data and $(R$ and C) for 1D data. The dependency of classification accuracy on these hyper-parameters is shown in Table 2. The larger the value R, the further

Time-surface size R	DVS128 Gesture	SHD	N-Cars
3	91.32	95.49	89.42
5	91.67	96.53	90.35
7	91.32	92.36	90.06

Grid-cell size C	DVS128 Gesture	SHD	N-Cars
10	82.03	81.25	87.55
20	75.98	80.61	89.13
30			
events are considered to build time-surfaces, capturing the spatio-temporal correlation of likely incoherent long-range events. The larger the value C, the further time-surfaces are considered to build a single representative time-surface per grid-cell. Table 2 highlights the presence of optimal dimensions of time-surfaces and grid-cells which may optimally take into account coherent events by filtering out incoherent long-range events. We chose the optimal values R and C for each dataset with reference to the data in Table 2.

VI. CONCLUSION

We proposed DTS-SNN that merges the time-surface analysis and event-based classification to realize lightweight inference models with high classification capability. The DTS builder with the conventional single-exponential temporal kernel successfully extracted spatio-temporal features of event data, allowing the following simple SNN classifier (1-layer FCN) and event-based classification to realize lightweight inference models with high classification capability. The DTS builder and event-based classification to realize lightweight inference.

APPENDIX

A. PROOFS OF LEMMAS

Lemma 2: Consider the convolution of a train of Poisson spikes r at a firing rate r

$$y(t) = (k * r(t)) (t).$$

where k is a single exponential kernel $k = e^{-t/\tau}$. The expected value \bar{y} is approximated to the convolution of the firing rate r using the same kernel,

$$\bar{y}(t) = (k * r(t)) (t).$$

Proof: The probability of a particular pattern of probabilistic spikes in a period is calculated using the probability of spiking $P_s(t)$ and not spiking $1 - P_s(t)$. Consider a pattern of spikes at timesteps T_s and no spikes at timesteps T_{ns}. The probability of the pattern is given by

$$P = \prod_{t \in T_s} P_s(t) \prod_{t \in T_{ns}} (1 - P_s(t)).$$

The probability of spiking P_s is the product of spiking rate r and timestep size Δt, i.e., $P_s = \alpha \Delta t$. Generally, spiking rate is below 50 Hz, and setting Δt to 1 ms is commonplace. Even for $r = 50$ Hz and $\Delta t = 1$ ms, the spiking probability P_s is 0.05. Therefore, ignoring nonlinear terms in Eq. (13) is a reasonable approximation. Considering this approximation, the nontrivial cases include only one spike in the entire period T, Thus, there are T nontrivial cases whose probabilities are given by

$$\forall k \in T, P_k = P_s(k) \prod_{t \neq k} (1 - P_s(t)) \approx P_s(k).$$

The expected value \bar{y} at timestep t can be calculated considering the nontrivial cases only.

$$\bar{y}(t) = \sum_{k=1}^{t} e^{-\tau(t-k)/\tau} P_s(k).$$

Because $P_s(k) = r(k) \Delta t$, we have

$$\bar{y}(t) = \sum_{k=1}^{t} e^{-\tau(t-k)/\tau} r(k) \Delta t. \quad (14)$$

Eq. (14) is the discrete form of the convolution:

$$\bar{y}(t) = (k * r(t))(t).$$

Lemma 3: Consider the convolution of a train of Poisson spikes ρ at a constant firing rate r using the zero-sum temporal kernel k_{zs}. $y(t) = (k_{zs} * \rho)(t)$. The result converges to zero as time t increases, i.e., $y(\infty) = 0$.

Proof: We first divide the zero-sum temporal kernel k_{zs} into two sub-kernels $k_{zs}^{(1)}$ and $k_{zs}^{(2)}$.

$$k_{zs}^{(1)} = k_{zs} - \frac{\tau_1}{\tau_2} k_{zs}^{(2)},$$

$$k_{zs}^{(2)} = e^{-\tau_1/\tau_2}.$$

Using Lemma 2, we have

$$\bar{y}(t) = \bar{y}^{(1)}(t) - \frac{\tau_1}{\tau_2} \bar{y}^{(2)}(t),$$

$$\bar{y}^{(i)}(t) = \left(k_{zs}^{(i)} * r(t)\right)(t), i \in \{1, 2\}. \quad (15)$$

We consider a Poisson-spike train whose firing rate r is given by a boxcar function with constant nonzero firing rate r_0 in the range $t_0 < t < t_1$.

$$r(t) = r_0 \left[H(t - t_0) - H(t - t_1)\right],$$

where H is the Heaviside step function. Consequently, we have the result of the convolution in Eq. (15) as follows.

$$\bar{y}(t) = 0 \quad \text{if } 0 \leq t < t_0,$$

$$\bar{y}(t) = r_0 \tau_1 \left[e^{-\tau_1(t-t_0)/\tau_2} - e^{-\tau_1(t-t_0)/\tau_1}\right] \quad \text{if } t_0 \leq t < t_1,$$

$$\bar{y}(t) = r_0 \tau_1 \left[e^{-\tau_1(t-t_0)/\tau_2} - e^{-\tau_1(t-t_0)/\tau_1}\right] - r_0 \tau_1 \left[e^{-\tau_1(t-t_1)/\tau_2} - e^{-\tau_1(t-t_1)/\tau_1}\right] \quad \text{if } t \geq t_1. \quad (16)$$

Eq. (16) indicates that $\bar{y}(t)$ converges to zero if $t_0 \ll t < t_1$. \qed
B. NONZERO-SUM TEMPORAL KERNEL

The use of the zero-sum temporal kernel instead of the single-exponential kernel improves classification accuracy on all three datasets considered in this study. We evaluate the effect of nonzero-sum temporal kernel on classification accuracy in depth by introducing a temporal kernel k_{t0}.

$$k_{t0} = e^{-t/t_1} - b - e^{-t/t_2},$$

where b is a non-negative constant that determines the contribution of a single event to timestamp encoding such that

$$k_i = \begin{cases}
 k_i & \text{if } b = 0, \\
 \text{positive-sum temporal kernel} & \text{if } 0 < b < 1, \\
 k_{tzs} & \text{if } b = 1, \\
 \text{negative-sum temporal kernel} & \text{if } b > 1.
\end{cases}$$

We evaluated the classification accuracy on DVS128 Gesture with respect to b (Figure 8). The results indicate the highest accuracy achieved at $b = 1$, i.e., $k_{t0} = k_{tzs}$.

C. ZERO-SUM TEMPORAL KERNELS WITH DIFFERENT TIME-CONSTANTS

We manually explored time-constant space in search of the optimal set of time-constants t_1 and t_2 for the zero-sum temporal kernel ($t_2 = 2t_1$). Here, we report the classification accuracy on DVS128 Gesture, SHD, and N-Cars for three sets of time-constants ($t_1/t_2 = 10/20$, 20/40, and 50/100) in Table 3.

TABLE 3. Classification accuracy for three different sets of time-constants t_1 and t_2. This is the best validation accuracy from a single trial for each case.

Time-constants	Accuracy		
t_1/t_2 (ms)	DVS128 Gesture	SHD	N-Cars
10/20	95.14	76.37	90.35
20/40	95.49	82.47	90.04
50/100	96.53	53.47	89.78

D. PSEUDOCODE

The pseudocode for constructing dynamic time-surfaces in parallel is shown in Algorithm 1.

Algorithm 1: Building Dynamic Time-Surfaces. Functions encTstamp and Unfold Are Given by Eqs. 7 and 8. Function Mul Element-Wise Multiplies T by the Event-Map Built Using $e = \{e_i| t_i = t\}$. Function conv3d Executes the 3D Convolution of T Using the Rank-4 Kernel a.

Input: Set of events $e = \{e_i\}_{i=1}^N$ for a sample

Output: Dynamic time-surfaces $\overline{T}_c(t)$ at every timestep t for all grid-cells $C = \{c_i\}_{i=1}^M$

Initialization: $E \leftarrow 0$

for $t = 1$ to T do

/* Update of timestamp-encoding bank E */

$E \leftarrow$ encTstamp(E_T, $e = \{e_i| t_i = t\}$)

/* Building preliminary time-surface map T */

$T \leftarrow$ unfold(E)

/* Flattening/reshaping T to $P \times [R_x R_y] \times H \times W$ */

$T \leftarrow$ flatten/reshape(T)

/* Building T_c using the event-map */

$T_c \leftarrow$ Mul(T, $e = \{e_i| t_i = t\}$)

$T_c \leftarrow$ Normalize(T_c)

/* 3D convolution using rank-4 kernel a */

$\overline{T}_c \leftarrow$ conv3d(T_c, a)

/* Reshaping \overline{T}_c to $H/h_x \times W/w_y \times (R_x \times R_y)$ */

$\overline{T}_c \leftarrow$ Reshape(\overline{T}_c)

end

TABLE 4. Hyper-parameters used for evaluation.

Parameter	DVS128 Gesture	SHD	N-Cars	
Learner	w_h/a in Eq. (12)	0.05/0.05		
Learning rate	0.001			
Zero-sum temporal kernel in Eq. (3)	τ_1/τ_2 (ms)	50/100	20/40	10/20
Single-exponential kernel in Eq. (4)	τ_0 (ms)	50	20	10
SRM in Eq. (10)	τ_m/τ_s (ms)	60/20	40/20	12/4
General setting	Batch size	16	256	64
	Δt (ms)	5	1	1
REFERENCES

[1] H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li, “Going deeper with directly-trained larger spiking neural networks,” in Proc. AAAI Conf. Artif. Intell., 2021, pp. 11062–11070.

[2] A. Kugele, T. Pfeil, M. Pfeiffer, and E. Chicca, “Efficient processing of spatio-temporal data streams with spiking neural networks,” Frontiers Neurosci., vol. 14, p. 439, May 2020.

[3] Y. Yin, F. Corradi, and S. M. Böhm, “Accurate and efficient time-domain classification with adaptive spiking recurrent neural networks,” Nature Mach. Intell., vol. 3, no. 10, pp. 905–913, Oct. 2021.

[4] D. S. Jeong, “Tutorial: Neuromorphic spiking neural networks for temporal learning,” J. Appl. Phys., vol. 124, no. 15, Oct. 2018, Art. no. 152002.

[5] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: Opportunities and challenges,” Frontiers Neurosci., vol. 12, p. 774, Oct. 2018.

[6] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves, D. Silver, and K. Kavukcuoglu, “Decoupled neural interfaces using synthetic gradients,” in Proc. Int. Conf. Mach. Learn., 2017, p. 1627–1635.

[7] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, G. Guo, Y. Nakamura, B. Brezzo, J. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science, vol. 345, no. 6197, pp. 668–673, Aug. 2014.

[8] M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, and Y. Liao, “Loihi: A neuromorphic manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan. 2018.

[9] A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza, A. R. Voelker, C. Eliasmith, R. Manohar, and K. Boahen, “Braindrop: A mixed-signal neuromorphic architecture with a dynamical systems-based programming model,” Proc. IEEE, vol. 107, no. 1, pp. 144–164, Jan. 2019.

[10] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs),” IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 1, pp. 106–122, Feb. 2018.

[11] V. Korniucjk and D. S. Jeong, “Recent progress in real-time adaptable digital neuromorphic hardware,” Adv. Intell. Syst., vol. 1, no. 6, Oct. 2019, Art. no. 1900030.

[12] X. Lagorce, G. Orchard, F. Gallupi, B. E. Shi, and R. Benosman, “HOTS: A hierarchy of event-based time-surses for pattern recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 7, pp. 1346–1359, Jan. 2017.

[13] A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman, “HATS: Histograms of averaged time surfaces for robust event-based object classification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 1731–1740.

[14] J. Manderscheid, A. Sironi, N. Bourdis, D. Migliore, and V. Lepeit, “Speed invariant time surface for learning to detect corner points with event-based cameras,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 10237–10246.

[15] P. Dayan and L. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA, USA: MIT Press, 2005.

[16] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo, T. Nayak, A. Andreopoulos, G. Garreaux, M. Mendoza, J. Kiwitz, M. Debole, S. Esser, T. Delbruck, M. Flickner, and D. Modha, “A low power, fully event-based gesture recognition system,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 7243–7252.

[17] B. Cramer, Y. Stradmann, J. Schemmel, and F. Zenke, “The Heidelberg spiking data sets for the systematic evaluation of spiking neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 7, pp. 2744–2757, Jul. 2022.

[18] Y. Xie, “Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences,” Neural Netw., vol. 132, pp. 108–120, Dec. 2020.

[19] Y. Lu, W. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropagation for training high-performance spiking neural networks,” Frontiers Neurosci., vol. 12, p. 331, May 2018.

DONGHYUNG YOO received the B.S. degree in materials science and engineering from Hanyang University, Seoul, South Korea, in 2017, where he is currently pursuing the Ph.D. degree in materials science and engineering. His current research interests include learning algorithms for spiking neural networks and neuromorphic vision sensor.

DOO SEOK JEONG (Member, IEEE) received the B.E. and M.E. degrees in materials science from Seoul National University, in 2002 and 2005, respectively, and the Ph.D. degree in materials science from RWTH Aachen, Germany, in 2008. He was with the Korea Institute of Science and Technology, from 2008 to 2018. He is an Associate Professor with Hanyang University, South Korea. His research interests include spiking neural networks for sequence learning, future prediction, learning algorithms, spiking neural network design, and digital neuromorphic processor design.

* * *

102668 VOLUME 10, 2022