Some recent theoretical progress in Higgs boson and top quark physics at hadron colliders

Chong Sheng Li, Hai Tao Li, and Ding Yu Shao

1 School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
2 Center for High Energy Physics, Peking University, Beijing 100871, China

(Dated: January 9, 2014)

In this review we briefly summarize some recent theoretical progress in Higgs boson and top quark physics, especially the fixed-order and resummation predictions in QCD at both the Tevatron and the LHC.

CONTENTS

I. Introduction 1

II. Recent progress in Higgs boson physics 1
 A. Higgs boson production 2
 1. Gluon gluon fusion channel 2
 2. Vector boson fusion channel 4
 3. Higgs strahlung production channel 4
 4. Higgs boson associated with $t\bar{t}$ production 5
 B. Higgs boson properties 5
 1. CP and spin 5
 2. Couplings 6
 3. Self-coupling constant 6

III. Recent progress in top quark physics 8
 A. Top quark mass determination 8
 B. Top quark decay at NNLO 8
 C. Top quark pair production 9
 1. Forward-backward asymmetry 9
 2. Cross section at fixed-order 10
 3. Threshold resummation 11
 4. Transverse momentum resummation 11
 D. Single top quark production 12

IV. Summary 14

Acknowledgments 14

References 14

I. INTRODUCTION

Recently, a Higgs boson with a mass around 125 GeV has been discovered by the ATLAS [1] and CMS [2] collaborations at the LHC. In the future, it is possible that the LHC can tell whether this particle is the Standard Model (SM) Higgs boson or one of many Higgs bosons in new physics (NP) model.

In the SM, the Higgs boson is responsible for the origin of Electro-Weak (EW) symmetry breaking and the generation of elementary particle masses. The future experimental task at the LHC is to examine the Higgs mechanism and test the properties and couplings of Higgs boson. Therefore, in order to compare with more precise experimental results, it is important to perform accurate theoretical predictions for the Higgs process at the LHC.

Besides discovering Higgs boson, another important task at the LHC is the measurement of the top quark properties. In fact, the LHC has produced over a million and around ten million top quark events at a center of mass energy of 7 TeV and 8 TeV, respectively, which leads to precise measurements of observables relevant to top quark. Thus, the accurate theoretical predictions are necessary in order to test the SM and search for NP.

In general, QCD controls the theoretical predictions for the production of any particle in both the SM and NP at hadron colliders. And the QCD high order corrections play a key role for the accurate theoretical predictions. These QCD corrections may come from virtual corrections and extra hard parton emissions which involve complicated multi-loop and multi-leg calculations, respectively. Besides, significant contributions can also come from the logarithmic terms by emitting the soft and collinear gluons, which can be resummed to all order in α_s. A lot of efforts on QCD high order calculations have been made for over twenty years, and the theoretical predictions become more and more precise. In this review some recent theoretical progress in the Higgs and top quark physics are summarized below.
nal strength is \(\mu = 1.30 \pm 0.13 \) (stat.) \(\pm 0.14 \) (syst.) \[3\]. For the CMS detector the combined signal strength is \(\mu = 0.80 \pm 0.14 \) \[4\]. Obviously, as shown in Eq. \(\text{[1]} \), the parameter \(\mu \) strongly depends on the accurate theoretical predictions at the LHC, especially the QCD predictions.

For the CMS detector the combined signal strength is \(\mu = 0 \) \[5\]. At the LHC the SM Higgs boson is produced through four different channels:

- **Vector Boson Fusion (VBF) channel**: \(q q' \to hjjX \);
- **Higgs boson strahlung channel**: \(q q \to hVX \);
- **Higgs boson and top quark pair associated production channel**: \(q q' (gg) \to htiX \).

Until now, the precision predictions for above cross sections at the LHC with \(\sqrt{s} = 7 \) TeV are shown in Fig. \[2\].

A. Higgs boson production

At the LHC the SM Higgs boson is produced through four different channels:

- Gluon gluon fusion channel: \(gg \to hX \);
- Vector Boson Fusion (VBF) channel: \(q q' \to hjjX \);
- Higgs boson strahlung channel: \(q q \to hVX \);
- Higgs boson and top quark pair associated production channel: \(q q' (gg) \to htiX \).

Until now, the precision predictions for above cross sections at the LHC with \(\sqrt{s} = 7 \) TeV are shown in Fig. \[2\].

FIG. 1. Measurements of the signal strength parameter \(\mu \) for the individual channels and their combinations \[3, 4\].

FIG. 2. SM Higgs boson production cross sections at the LHC with \(\sqrt{s} = 7 \) TeV \[3, 4\].

1. **Gluon gluon fusion channel**

Gluon gluon fusion induced by top and bottom quark loops is the dominating channel of Higgs boson production at the LHC (Fig. \[3\]), where the main contributions come from top quark loop due to the large Yukawa coupling \(y_t \sim 1 \). The QCD Next-to-Leading Order (NLO) corrections to this process have been investigated in both cases of the infinite \(\mathcal{O} \) \[8, 9\] and finite \(\mathcal{O} \) \[10, 11\] top quark mass limits, and can enhance the total cross section by about 80\% for a 125 GeV Higgs boson at the LHC with \(\sqrt{s} = 7 \) TeV. In the infinite top quark mass limit, the QCD Next-to-Next-to-Leading Order (NNLO) corrections to the total and differential cross section have been calculated \[12, 17\], and increase the NLO results by about 25\%. Recently, in Ref. \[18\], approximate results for the total cross section at QCD Next-to-Next-to-Next-to-Leading Order (N^3LO) in infinite top mass are also calculated, and the results show that the approximate N^3LO result amounts to a correction of 17\% to the QCD NNLO cross section for a 125 GeV Higgs boson at the LHC with 8 TeV. Furthermore, the threshold soft gluon effects have been resummed up to Next-to-Next-to-Leading Logarithm (NNLL) \[19\], leading to an increase of cross section by about 7\% at the LHC. And the Next-to-Next-to-Next-to-Leading Logarithm resummation has also been studied \[20, 22\]. Moreover, in Soft Collinear Effective Theory (SCET) formalism, the \(\pi^2 \) enhancement contributions, originating from the powers of logarithmic terms of \(\ln((-Q^2 - i\varepsilon)/\mu^2) \), have been studied and resummed to all order \[22, 24\], which help to explain the poor convergence behavior of fixed-order calculations.

Besides the total cross section, the transverse momen-
large logarithms of the scale ratio m_H/\sqrt{s} are resummed to all orders. The differential cross section based on SCET can be factorized as

$$
\frac{d^2\sigma}{dq_T^2\,dy} = \frac{\lambda_0}{S} \frac{Q^2}{(Q^2 - m_H^2)^2 + (Q^2 \Gamma_H/m_H)^2} \times \left\{ \frac{1}{(2\pi)^2} \int d^2b e^{iQ_T b} \tilde{W}_{gg}(b, \alpha_m) \right\} \times \tilde{W}_{gg}(b, Q, x_1, x_2),
$$

where the updated NNLO Wilson coefficients are included in \tilde{W}_{gg}, which dominates at small Q_T, and behaves as Q_T^{-2} times a series of $\ln^n(Q^2/Q_T^2)$. The function \tilde{W}_{gg} describes the non-perturbative part, and the term containing Y incorporates the remainder of the cross section which is not singular as $Q_T \to 0$. The results show that including NNLO Wilson coefficient functions increases the total cross section predictions of ResBos for a 125 GeV Higgs Boson production by about 8% and 6% at the Tevatron and the LHC, respectively. The different theoretical predictions on the transverse momentum distributions for the Higgs boson production at the LHC with 14 TeV are shown in Fig. 3.

In Ref. 43 using methods of SCET, the calculation of the cross sections for the Higgs boson production at small transverse momentum q_T region is performed, where large logarithms of the scale ratio m_H/q_T are resummed to all orders. The differential cross section based on SCET can be factorized as

$$
\frac{d^2\sigma}{dq_T^2\,dy} = \frac{\lambda_0}{S} \frac{Q^2}{(Q^2 - m_H^2)^2 + (Q^2 \Gamma_H/m_H)^2} \times \left\{ \frac{1}{(2\pi)^2} \int d^2b e^{iQ_T b} \tilde{W}_{gg}(b, \alpha_m) \right\} \times \tilde{W}_{gg}(b, Q, x_1, x_2),
$$

where the updated NNLO Wilson coefficients are included in \tilde{W}_{gg}, which dominates at small Q_T, and behaves as Q_T^{-2} times a series of $\ln^n(Q^2/Q_T^2)$. The function \tilde{W}_{gg} describes the non-perturbative part, and the term containing Y incorporates the remainder of the cross section which is not singular as $Q_T \to 0$. The results show that including NNLO Wilson coefficient functions increases the total cross section predictions of ResBos for a 125 GeV Higgs Boson production by about 8% and 6% at the Tevatron and the LHC, respectively. The different theoretical predictions on the transverse momentum distributions for the Higgs boson production at the LHC with 14 TeV are shown in Fig. 3.

In Ref. 43 using methods of SCET, the calculation of the cross sections for the Higgs boson production at small transverse momentum q_T region is performed, where large logarithms of the scale ratio m_H/q_T are resummed to all orders. The differential cross section based on SCET can be factorized as

$$
\frac{d^2\sigma}{dq_T^2\,dy} = \frac{\lambda_0}{S} \frac{Q^2}{(Q^2 - m_H^2)^2 + (Q^2 \Gamma_H/m_H)^2} \times \left\{ \frac{1}{(2\pi)^2} \int d^2b e^{iQ_T b} \tilde{W}_{gg}(b, \alpha_m) \right\} \times \tilde{W}_{gg}(b, Q, x_1, x_2),
$$

where the updated NNLO Wilson coefficients are included in \tilde{W}_{gg}, which dominates at small Q_T, and behaves as Q_T^{-2} times a series of $\ln^n(Q^2/Q_T^2)$. The function \tilde{W}_{gg} describes the non-perturbative part, and the term containing Y incorporates the remainder of the cross section which is not singular as $Q_T \to 0$. The results show that including NNLO Wilson coefficient functions increases the total cross section predictions of ResBos for a 125 GeV Higgs Boson production by about 8% and 6% at the Tevatron and the LHC, respectively. The different theoretical predictions on the transverse momentum distributions for the Higgs boson production at the LHC with 14 TeV are shown in Fig. 3.
computed for a $2 \to 2$ process, whose cross section depends on the implementation of the jet algorithm. The contribution to this process at $\mathcal{O}(\alpha_s^2)$ can be divided into three categories:

- $gg \to H + g$ at two-loop level;
- $gg \to H + gg$ at one-loop level;
- $gg \to H + ggg$ at tree level.

In order to perform the complete QCD NNLO calculation, these three contributions have to be combined appropriately. In these calculations a key idea is utilized to deal with infrared divergences, which can be isolated through appropriate parameterizations of phase-space and expansions in plus-distributions \[50\]. To illustrate this method, consider the integral

$$ I(\epsilon) = \int_0^1 dx x^{-1-\alpha \epsilon} F(x), \quad (5) $$

where the function $F(x)$ has a well-defined limit $\lim_{x \to 0} F(x) = F(0)$. Expanding I in ϵ, the $x^{-1-\alpha \epsilon}$ can be written as

$$ \frac{1}{x^{1+\alpha \epsilon}} = -\frac{1}{\alpha \epsilon} \delta(x) + \sum_{n=0}^{\infty} \frac{(-\epsilon a)^n}{n!} \left[\ln^n(x) \right] + \quad (6) $$

so that

$$ I(\epsilon) = \int_0^1 dx \left[-\frac{F(0)}{\alpha \epsilon} + \frac{F(x) - F(0)}{x} \right. $$

$$ \left. - \alpha \epsilon \frac{F(x) - F(0)}{x} \ln(x) + \ldots \right]. \quad (7) $$

Here each term can be calculated independently. In Fig. 5 the scale uncertainties for the process $gg \to h + 1$ jet at LO, NLO and NNLO are shown, respectively. Obviously, NNLO corrections increase NLO total cross section by about 30%, and the scale uncertainties are reduced to less than 5%.

It is worth noting that based on the effective Lagrangian approximation with the form factor the processes $gg \to h + 2$ jet and $gg \to h + 3$ jet at the LO level were investigated \[51, 52\]. Furthermore, NLO QCD corrections to these processes were also calculated recently \[53, 54\].

2. Vector boson fusion channel

At the LHC the SM Higgs boson can also be produced via VBF in association with two hard jets in the forward regions. Through the VBF channel it is helpful to determine the couplings between Higgs and EW gauge bosons.

The QCD NLO corrections are of the order of $5 \sim 10\%$ and reduce the factorization and renormalization scale dependence of the cross section to a few percent \[55-59\]. The full EW NLO + QCD NLO corrections have been computed \[60, 61\], and the results show that the EW corrections are approximately 5%, which is as important as QCD corrections. Based on the structure function approach \[54\], the approximate QCD NNLO corrections to the total cross section for VBF have been presented in Ref. \[52\], and the scale uncertainty is reduced to $1 \sim 2\%$ after combining QCD and EW calculations.

Recently, the theoretical predictions of VBF Higgs production plus one jet production are presented at QCD NLO level \[63\]. The results show that the NLO corrections to the total cross section are moderate for the scale choice of $\mu = HT/2$, but can be more significant for $\mu = m_W/2$. Nevertheless, the scale uncertainty significantly decreases from around 30% (24%) at LO to about 2% (9%) at NLO, where the scale is chosen as $HT/2(m_W/2)$.

3. Higgs strahlung production channel

The associated production of Higgs boson H and vector boson $V (Z, W^\pm)$ is the main channel of searching Higgs boson at the Tevatron. However, by means of modern jet substructure methods, HV production is also an important process to study the Higgs boson at the LHC. Two different decay modes, $h \to b\bar{b}$ and $h \to W^+W^-$ have been searched by the ALTAS \[64, 65\] and CMS \[66, 67\] collaborations.

The efforts of obtaining accurate theoretical predictions for HV associated production at the hadron col-
The production of the Higgs boson associated with top quark pair is the main channel for measuring top quark and Higgs boson Yukawa coupling at the LHC. Similarly to top quark pair production, the LO predictions for $tar{t}h$ production suffer from large theoretical uncertainties. However, the QCD NLO results show that QCD NLO corrections increase the total cross section by about 20%, and the scale uncertainties are reduced to 10%. Besides, recently QCD NLO corrections to Higgs boson production in association with $t\bar{t} + \text{jet}$ were calculated.

B. Higgs boson properties

1. **CP and spin**

In the SM, the Higgs boson is a CP-even, spin-0 particle ($J^P = 0^+$). The Landau-Yang theorem forbids the direct decay of a spin-1 particle into a pair of photons. The spin-1 hypothesis is therefore strongly disfavored by the observation of the $h \rightarrow \gamma\gamma$ decay. The difference between the SM predictions $J^P = 0^+$ and alternative hypotheses can be studied through the bosonic decay channels $h \rightarrow l^+l^-$, $l = e, \mu$.

The difference between the SM predictions and alternative hypotheses can be studied through the bosonic decay channels $h \rightarrow l^+l^-$, $l = e, \mu$. The production of the Higgs boson associated with top quark pair is the main channel for measuring top quark and Higgs boson Yukawa coupling at the LHC. Similarly to top quark pair production, the LO predictions for $t\bar{t}h$ production suffer from large theoretical uncertainties. However, the QCD NLO results show that QCD NLO corrections increase the total cross section by about 20%, and the scale uncertainties are reduced to 10%. Besides, recently QCD NLO corrections to Higgs boson production in association with $t\bar{t} + \text{jet}$ were calculated.
a specific model of $J^P = 2^+$. Up to now the data strongly favor the $J^P = 0^+$ hypothesis, and the specific $J^P = 2^+$ hypothesis is excluded with a confidence level above 99.9%, independently of the contributions of gluon fusion and quark-antiquark annihilation processes in the production of the spin-2 particle.

2. Couplings

Extraction of the Higgs coupling constants can serve to limit various new physics models, or further to confirm the validity of the SM. The deviations from the SM can be parameterized as scale factor κ of Higgs couplings relative to the SM values:

$$g_{hff} = \kappa_f \cdot g_{SM}^{hff}, \quad g_{hVV} = \kappa_V \cdot g_{SM}^{hVV}. \quad (11)$$

Fig. 10 shows a summary of the coupling scale factor κ measured by the ATLAS and CMS collaborations [93, 94], which indicates that the measured coupling between Higgs boson and other SM particle are consistent with the SM predictions. In the future, with the increasing of statistics of Higgs boson, the measurement of the couplings may be more precision.

3. Self-coupling constant

In the SM, the Higgs boson is responsible for the origin of EW symmetry breaking and the generation of elementary particle masses. After the Higgs field Φ gets the vacuum expectation value v, the SM Higgs potential in the unitary gauge can be written as

$$V(h) = \lambda \left[\frac{(v + h)^2}{2} - \frac{v^2}{2} \right]^2, \quad (12)$$

where the Higgs boson self-coupling λ is given by $\lambda_{SM} = m_H^2/(2v^2)$ at the tree-level in the SM, and the radiative corrections can decrease λ_{SM} by 10% for $m_H = 125$ GeV where main contributions come from top quark loops [93].

At the LHC, the Higgs boson self-coupling λ can be directly probed through Higgs boson pair production, and the relevant studies have been performed [96–118]. Similarly to the case of single Higgs boson production, there are four classes of Higgs pair production at the LHC, and the corresponding total cross sections are shown in Fig. 11 as functions of the center of mass frame energy.

The Higgs boson pair production is mainly induced by gluon gluon fusion (see Fig. 12). In Ref. [99], the QCD NLO corrections are calculated in the large top quark mass limit. Recently, the soft gluon threshold resummation and π^2 enhancement effects in Higgs boson pair production at the LHC have been calculated in Ref. [104]. In the infinite top quark mass limit, the effective Lagrangian describing ggh and $gggh$ interactions is given by

$$\mathcal{L}_{\text{eff}} = \frac{\alpha_s(\mu^2)}{12\pi v} C_i(\mu^2) G^a_{\mu\nu} G^{a \mu \nu} h - \frac{\alpha_s(\mu^2)}{24\pi v^2} C_i(\mu^2) G^a_{\mu\nu} G^{a \mu \nu} h^2. \quad (13)$$

Up to NLO, the Wilson coefficient $C_i(\mu^2)$ was calculated by performing the large top quark mass expansion of the corresponding one- and two-loop Feynman diagrams [99]. In SCET the differential cross section can
be factorized as

\begin{align}
\frac{d^3\sigma}{dM^2dYd\cos\theta} &= \frac{\alpha_s^2 G_F^2 M^2 \beta_H}{2504(2\pi)^3 S} \left[f_{A_{\text{Tri}}}^2 + f_{B_{\text{Tri}}}^2 + f_{B_{\text{Box}}}^2 \right] \\
&\times \left[\int_1^{\sqrt{s}/\sqrt{s} - 1} \frac{dz}{z} f_{g/A}(\sqrt{s}e^{Y}, \mu_f, f_{g/B}(\sqrt{s}e^{Y}, \mu_f) + \int_1^{\sqrt{s}/\sqrt{s} + 1} \frac{dz}{z} f_{g/A}(\sqrt{s}e^{Y}, \mu_f, f_{g/B}(\sqrt{s}e^{Y}, \mu_f) \right] \\
&\times C(z, M, \mu_f),
\end{align}

(14)

where \(f_{A_{\text{Tri}}}^2, f_{A_{\text{Box}}}^2 \) and \(f_{B_{\text{Box}}}^2 \) are the form factors including complete top quark effects at one-loop level. The integral kernel \(C(z, M, \mu_f) \) has the form

\begin{align}
C(z, m_t, M, \mu_f) &= \left[C_1(m_t^2, \mu_f^2) \right]^2 \left[C_2(-M^2, \mu_h^2) \right]^2 \\
&\times U(M^2, \mu_f^2, \mu_h^2, \mu_f^2) \frac{z^{-\eta}}{(1-z)^{1-2\eta}} \\
&\times \hat{s} \left(\ln \frac{M^2(1-z)^2}{\mu_f^2 z} + \partial_\eta, \mu_f^2 \right) e^{-2\gamma_E \eta} \Gamma(2\eta),
\end{align}

(15)

where \(C_S \) is the hard matching coefficient, \(\hat{s} \) is the soft function, and \(U \) is the evolution function.

Table II shows the NLO and NLO+NNLL total cross sections of Higgs boson pair production at the LHC with \(\sqrt{s} = 14 \text{ TeV} \) for different Higgs boson self-coupling \(\lambda \). Obviously, due to the interference effects between two channels, the total cross section of Higgs boson pair production decreases with the increasing of \(\lambda \). Besides, the resummation effects increase the QCD NLO results by about 20% ~ 30%. Moreover, in Fig. 15 the resummation results show that the shape of the normalized invariant mass distribution of Higgs boson pair strongly depends on the Higgs boson self-coupling \(\lambda \). And it is possible to extract the parameter \(\lambda \) from the Higgs boson pair invariant mass distribution.

Later, the extraction of the Higgs self-coupling is also studied by exploiting the double-to-single cross section ratio \(\lambda/\lambda_{\text{SM}} \). The top quark mass effects on the total cross section of Higgs boson pair production at the QCD NLO have been studied \[117, 118\], where the NLO cross section keeping exact top quark mass is expanded in powers of \(1/m_t \). And the the power corrections are calculated up to \(O(1/m_t^2) \) and \(O(1/m_t^4) \) for partonic channel \(gg \to HH \) and \(gg(\bar{q}) \to HH \), respectively. They find that the poor convergence induced by top quark mass effects can be improved if the exact LO cross section are used to normalize the QCD NLO correction, and the remaining uncertainties from top mass effects are about \(O(10\%) \) in the QCD NLO results.

Veryrcently, the full QCD NNLO corrections for the cross section in the large top mass limit for Higgs boson pair production are calculated, in which the soft and collinear divergences are removed via the FKS subtraction method \[113\]. Table II shows the total cross section

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\(\lambda/\lambda_{\text{SM}} \) & NLO [fb] & NLO + NNLL [fb] & K-factor \\
\hline
-1 & 127.9 \pm 23.1 \pm 8.7 (1.8) & 161.6 \pm 9.8 \pm 12.0 (11.2) & 1.26 \\
0 & 71.1 \pm 12.8 \pm 4.8 (2.1) & 90.0 \pm 5.4 \pm 6.8 (3.3) & 1.27 \\
1 & 33.9 \pm 6.1 \pm 2.3 (1.0) & 42.9 \pm 2.6 \pm 3.3 (1.6) & 1.27 \\
2 & 16.1 \pm 2.9 \pm 1.1 (0.5) & 20.4 \pm 1.2 \pm 1.6 (0.8) & 1.27 \\
\hline
\end{tabular}
\caption{NLO and NLO+NNLL total cross sections of Higgs boson pair production at the 14 TeV LHC for different Higgs boson self-coupling \(\lambda \). The first errors represent the scale uncertainties. The second errors are PDF+\(\alpha_s \) uncertainties [104].}
\end{table}
as functions of the center of mass frame energy at NNLO.

E_{cm}	8 TeV	14 TeV	33 TeV	100 TeV
σ_{NNLO}	9.76 fb	40.2 fb	243 fb	1638 fb
Scale [%]	+9.0 − 9.8	+8.0 − 8.7	+7.0 − 7.4	+5.9 − 5.8
PDF [%]	+6.0 − 6.1	+4.0 − 4.0	+2.5 − 2.6	+2.3 − 2.6
PDF + α_s [%]	+9.3 − 8.8	+7.2 − 7.1	+6.0 − 6.0	+5.8 − 6.0

TABLE II. Total cross section as functions of the center of mass frame energy at NNLO accuracy. The exact LO prediction to normalize the results is used [113].

III. RECENT PROGRESS IN TOP QUARK PHYSICS

Due to the large mass of top quark, it is one of the hottest topics in particle physics. Top quarks are mostly produced through top and anti-top pairs production via strong interactions, or single top production via EW interactions at hadron colliders.

A. Top quark mass determination

The top quark mass is one of the free parameters in SM. Through EW corrections, the top quark mass together with the W boson mass can be used to constrain the Higgs boson mass. Thus, the precise top quark mass is important for testing the SM or searching for NP, using precision EW fits. It was pointed out in Ref. [121] that precise measurement of M_W in future requires the high precision top quark mass so that EW precision fits are not restricted by the uncertainty of the top quark mass [122, 123]. Top quark mass also plays a crucial role in constraining Higgs boson mass by vacuum stability of Higgs field. If changing top quark mass by 2.1 GeV around the central value $m_t = 173.1$ GeV, vacuum instability scale changes from $\mu_{\text{neg}} \sim 10^8$ GeV to $\mu_{\text{neg}} \sim 10^{14}$ GeV [121, 124]. Thus, the precision determination of top quark mass has an important impact on the understanding of the SM.

Because top quark mass can not be measured directly, it can only be extracted from observables which is sensitive to it. In the following, we briefly review some popular methods.

The matrix element method [123, 124] used at the Tevatron is the most precise approach for the measurements of the top quark mass, where the measured results are compared with predictions of the LO $t \bar{t}$ production and decay convoluted with the detector response. An approach including NLO QCD effects is being developed [127]. Another most precise approach is ideogram and template methods which are used by the ATLAS and CMS. With these approaches, the top quark mass is determined by comparing the reconstructed distributions with Monte Carlo spectrums. A third approach is extracting the top quark mass from the total cross section of top-pair production, with which the latest results was performed at the NNLO+NNLL level [128]. However, the sensitivity of total cross section to m_t is relatively small, which means that with this method the precision is lower than the ones of others. Besides above methods, there are other approaches for the determination of m_t, which are reviewed recently in Refs. [129, 130].

In Fig. 14, the combined measurements from the LHC are compared with the latest ones from the Tevatron [119, 120], which shows that the combined results are $m_t = 173.2 \pm 0.8$ GeV at the Tevatron and $m_t = 173.3 \pm 0.95$ GeV at the LHC.

B. Top quark decay at NNLO

The top quark decay width has already been directly measured at the Tevatron [131]. In SM the top quark almost 100% decays into a bottom quark and a W boson. The QCD NLO calculations were done over twenty years ago [132, 134]. The EW corrections were computed at NLO accuracy [135, 136]. In the approximation of $m_t \gg m_W$, the QCD NNLO corrections to width were calculated [137]. Based on the calculations of top quark self-energy as an expansion in m_t^2 / m_W^2, the NNLO decay width was presented in Refs. [138, 139].

Recently, the calculation of top quark decay width at NNLO in QCD, including NLO EW corrections as well as the finite bottom quark mass and W boson width effects, was completed in Ref. [140], where the NNLO fully differential decay rates were first presented. Later, another calculation of NNLO differential top quark decay width was presented in Ref. [141].

We briefly review the method proposed in Ref. [140]. In the NLO and NNLO calculations, the bottom quark mass is set as $m_b = 0$. All the partons in the final state are clustered into a single jet whose invariance mass is
measured by $\tau = (p_0 + p_X)^2 / m^2$. Therefore, when $\tau \to 0$ the radiations can only be soft and(or) collinear to bottom quark. We can divide the top quark decay width into two parts:

$$\Gamma_t = \int_0^{\tau_0} d\tau \frac{d\Gamma_t}{d\tau} + \int_{\tau_0}^{\tau_{\text{max}}} d\tau \frac{d\Gamma_t}{d\tau} \equiv \Gamma_A + \Gamma_B,$$ (16)

where τ_0 is a dimensionless cutoff for τ and $\tau_{\text{max}} = (1 - m_W/m_t^2)$. In the limit of $\tau \to 0$, $d\Gamma_i / d\tau$ can be expressed as

$$\frac{1}{\Gamma_t^{(0)}} \frac{d\Gamma_t}{d\tau} = \mathcal{H}(x = m_W^2 / m_t^2, \mu) \int dk \, d^2 J(m_2, \mu) S(k, \mu) \times \delta \left(\tau - \frac{m_2^2 + 2 E_J k}{m_t^2} \right) + \cdots.$$ (17)

The second part in Eq. (16) can be obtained form the QCD NLO corrections to $t \to W^+ b + \text{jet}$.

The total width is independent of τ_0 as long as τ_0 is sufficient small, which can be written as

$$\Gamma_t = \Gamma_t^{(0)} (1 + \delta \delta_1 + \delta_2 + \delta_{\text{EW}} + \delta_{\text{QCD}}^{(1)} + \delta_{\text{QCD}}^{(2)}),$$ (18)

where $\Gamma_t^{(0)}$ is the leading order total width, δ_1 and δ_2 is the effects of the finite b quark mass and W boson width, δ_{EW} is the NLO EW corrections, and $\delta_{\text{QCD}}^{(1)}$ and $\delta_{\text{QCD}}^{(2)}$ are the QCD NLO and NNLO corrections, respectively. All these corrections are shown in Table III. After including the QCD NNLO corrections, the scale dependence is reduced to about 0.8%, which makes the predictions more reliable. Fig. 15 shows the charged lepton energy distribution. It can be seen that the high order corrections push the energy distribution into the central region.

The QCD NNLO corrections to top quark decay rates complement the QCD NNLO predictions for top quark pair production. This method can be also used in studies of heavy-to-light quark decay, such as B meson semileptonic decay.

C. Top quark pair production

The main channels of top-pair production at hadron colliders are

$$q(p_1) + \bar{q}(p_2) \to t(p_3) + \bar{t}(p_4),$$

$$g(p_1) + g(p_2) \to t(p_3) + \bar{t}(p_4).$$ (19)

TABLE III. Top quark total width including the QCD NLO and NNLO corrections and NLO EW corrections.

m_t(GeV)	$\Gamma_t^{(0)}$(GeV)	δ_1	δ_2	δ_{EW}	$\delta_{\text{QCD}}^{(1)}$	$\delta_{\text{QCD}}^{(2)}$
172.5	1.406	-0.26	-1.49	1.68	-8.58	-2.09
173.5	1.5109	-0.26	-1.49	1.69	-8.58	-2.09
174.5	1.5415	-0.25	-1.48	1.69	-8.58	-2.09

For later convenience, we define the kinematic variables

$$s = (p_1 + p_2)^2, \quad m_t = (p_3 + p_4)^2, \quad t_1 = (p_1 - p_3)^2 - m_t^2, \quad u_1 = (p_1 - p_4)^2 - m_t^2$$ (20)

And we use p_T and q_T to denote the transverse moment of the top quark and $t \bar{t}$ system, respectively.

1. Forward-backward asymmetry

In the SM, the forward-backward asymmetry of top quark pair production at pp colliders mainly arises from the higher orders corrections in perturbative QCD. As a result of it, the top quark is preferably produced in the direction of the incoming quark, and the anti-top follows the direction of incoming anti-quark. Thus, we can define the forward-backward asymmetry as

$$A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}.$$ (21)

where $\Delta y = y_\text{t} - y_\bar{t}$ is a difference of the rapidity of top and anti-top quark. The differences between the SM prediction and the latest measurements by the D0 and CDF are around 2σ [144, 145]. For the differential asymmetries, A_{FB} is found to have strong dependence on $t \bar{t}$ invariant mass, rapidity difference of top and anti-top quark, and the transverse momentum of the $t \bar{t}$ system. And the dependencies of the differential asymmetries on $|\Delta y|$ and $M_{t\bar{t}}$ show large deviation by about 3σ from the predictions of the SM [144, 145].

The EW corrections were found to enlarge the SM predictions [146] and the interferences between the EW and QCD corrections also contribute to the asymmetry [147]. Beyond QCD NLO effects, the soft-gluon resummation corrections for A_{FB} were presented in Refs. [148, 149]. It was shown that the soft gluon resummation corrections
are very small and increase the NLO total asymmetry by less than 3%. Recently, it was pointed out [150] that the SM predictions actually have only 1 σ deviation in the large pair invariant mass region from the CDF and D0 measurements after the principle of maximum conformal symmetry setting [153]. However, the calculations of a combination of \(t\bar{t} \) and \(t\bar{t} + \) jet at QCD NLO merged with parton shower show that the dependences of the asymmetries on the rapidity and invariant mass still suggest a 2σ deviation from the experimental measurements [153].

At the LHC, it is difficult to measure the asymmetric, because the proton-proton collisions are forward-backward symmetry and a large gluon flux reduces the asymmetry here. But the charge asymmetry at the LHC can be measured through the difference in the top and anti-top rapidity distributions, which is defined as

\[
A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)},
\]

where \(\Delta|y| = |y_t| - |y_{\bar{t}}| \). The measurements at the LHC have been performed by the ATLAS and CMS, which are found to be consistent with SM predictions [153–156]. Du to the large errors, these results are not conclusive. With sufficient luminosity, the 14 TeV LHC will have enough sensitivity to the charge asymmetry [157].

TABLE IV. The NNLO theoretical predictions for top-pair production at the Tevatron and the LHC [128].

Collider	\(\sigma_{\text{tot}} \) [pb]	scales [pb]	pdf [pb]
Tevatron	7.009	+0.259(1.7%)	+0.169(2.4%)
LHC 7 TeV	167.0	+0.374(5.3%)	-0.121(1.7%)
LHC 8 TeV	239.1	+0.710(4.4%)	-4.7(2.8%)
LHC 14 TeV	933.0	+0.822(3.9%)	+6.12(2.6%)

TABLE V. Three cases in soft gluon resummation for top-pair production.

name	soft limit	logarithmic corrections	observables
production threshold	\(\beta = \sqrt{1 - \frac{4m_t^2}{s}} \rightarrow 0 \)	\(\ln^m \beta \) \(\frac{\beta^n}{\beta} \)	total cross section \(\sigma \)
top pair invariant mass (PIM)	\(1 - \frac{M_t^2}{s} \rightarrow 0 \)	\(\ln^m (1-z) \) \(\frac{1-z}{(1-z)} \)	\(\frac{d\sigma}{dN_{\text{t}} d\cos(\theta)} \)
single particle inclusive (1PI)	\(s_q = \delta + t_1 + u_1 \rightarrow 0 \)	\(\ln^m (x_q/m_t^2) \) \(\frac{x_q}{s_q} \)	\(\frac{d\sigma}{d\phi d\theta} \)

The QCD NNLO calculations can be divided into three parts, i.e. two-loop diagrams or one loop squared contributions without additional partons emitting, one-loop diagrams with one additional parton in the final state and tree level diagrams with emitting two additional partons. One-loop squared contributions were calculated in Refs. [175–177]. The analytic results for the two loop were calculated in the high energy limit [178, 179]. And then, the analytic leading color contributions for the \(gg \) and \(q\bar{q} \) channel were computed [180, 182]. Recently the exact results for the two loop contributions were numerically calculated [183, 184]. The contributions from the one-loop diagram with one additional parton emitting can be obtained through the NLO corrections of \(t\bar{t} + \) jet [185–188]. The double real radiation has been calculated with different subtraction method in Refs. [189–193]. Based on the above progress, the NNLO total cross section for top quark pair production has been completed [128, 194, 196]. The total cross sections for top-pair production are shown in Table [128], where the scale uncertainty is about 4% and 5% at the Tevatron and the LHC, respectively. Fig. [16] shows that the scale dependence of the NNLO total cross sections is much smaller than that of the LO and NLO cross sections [158]. It can be seen in Fig. [16] that, at both the Tevatron and the LHC, the experimental results agree well with the NNLO theoretical predictions. The NNLO total cross section has been used to constrain the gluon PDF [197], especially at large Bjorken scaling variable x, which plays an significant role in theoretical predictions of many NP scenarios. Besides, the NNLO results can be used to improve NP studies, such as the separating the stop signals from large top backgrounds in the stop searches [158].
3. Threshold resummation

When the physical process considered involves multi-scale in high energy hard scattering, in certain kinematic region, there exist the powers of large logarithms which origin from soft gluon effects so that the convergence of the fixed-order calculations in the QCD is spoiled. These large logarithms can be resummed by reorganizing the perturbative expansion, which is so-called soft gluon resummation.

The threshold resummation for top-pair production can be mainly divided into three different cases which are well reviewed in Ref. [198] and are summarized in Table V. The soft gluon resummations for top-pair production at NLL accuracy have been available for a long time [199, 200]. The advances in the understanding of the infrared structure of QCD amplitudes [201, 202] make it possible to extend the resummation to NNLL level. In the threshold limit $\beta \to 0$, the NNLL resummed total cross section was calculated [203]. The NNLL resummation for top quark pair invariant-mass (PIM) distribution has been investigated [204–206]. Recently, NNLL resummation for the transverse-momentum and rapidity distributions of the top quark were also calculated in the case of single particle inclusive (1PI) kinematics [206–208]. Utilizing the results of soft gluon resummation, the approximate NNLO corrections are calculated in Refs. [204–214].

Table VI shows the most accuracy predictions for the total cross section at NNLO+NNLL level [128]. Their scale uncertainties are about 2% and 4% at the Tevatron and the LHC, respectively. Compared with the NNLO results in Table VI, the resummation results agree with the NNLO results and reduce the scale dependence.

4. Transverse momentum resummation

The transverse momentum distribution is one of the interesting observables for top-pair production. The measurements at the Tevatron show that the forward-backward asymmetry of $t\bar{t}$ production has strong dependence on the transverse momentum of $t\bar{t}$ system [144, 145]. An enhancement of the sensitivity of the invariant mass distribution to the effects of NP can be obtained by setting a kinematic cut on the top quark pair transverse momentum, especially in the small q_T region [215]. Therefore, it is significant to have an accuracy prediction for small q_T distribution in top-pair production.

It is well known that there are the large logarithms of the form $\ln^n (q_T/M)$ at small q_T region in the fixed-order calculations. To obtain the correct prediction at small q_T, these logarithms must be resummed to all order in the QCD coupling constant α_s. Efforts have been made in
order to achieve the transverse-momentum resummation by modifying the CSS formalism [40]. However, they neglected the color-mixing effects between the singlet and octet final states and the contributions from the initial-state soft-gluon exchange. Another approach to the transverse momentum resummation is based on the SCET, which has been developed for Drell Yan process and Higgs production [43, 48, 216, 220], where there are not any colored particle in final state. Based on SCET, the NNLL transverse momentum resummation for top-pair production was obtained in Refs. [221, 222]. Their factorization formula can be written as

\[
\frac{d^4\sigma}{dq_T^2 \, dy \, dM \, d\cos \theta} = \sum_{i=q,g} \sum_{a,b} \frac{8\pi\beta_i M}{3s(M^2 + q_T^2)} \int_{\xi_1}^1 \frac{dz_1}{z_1} \int_{\xi_2}^1 \frac{dz_2}{z_2} f_a/N_1(\xi_1/z_1, \mu) f_b/N_2(\xi_2/z_2, \mu) \times C_{ii\rightarrow ab}(z_1, z_2, q_T, M, m_t, \cos \theta, \mu),
\]

with

\[
C_{ii\rightarrow ab}(z_1, z_2, q_T, M, \cos \theta, m_t, \mu) = \frac{1}{2} \int_0^\infty x_T dx_T \, J_0(x_T q_T) \exp \left[g_i(y_1, L_\perp, \alpha_s) \right] \left[\hat{I}_{i\rightarrow a}(z_1, L_\perp, \alpha_s) \hat{I}_{i\rightarrow b}(z_2, L_\perp, \alpha_s) + \delta g_i \hat{P}_{i\rightarrow a}(z_1, L_\perp, \alpha_s) \hat{P}_{i\rightarrow b}(z_2, L_\perp, \alpha_s) \right] \text{Tr} \left[H_{ii}(M, m_t, \cos \theta, \mu) S_{ii}(L_\perp, M, m_t, \cos \theta, \mu) \right].
\]

where \(H_{ij} \) and \(S_{ij} \) are the hard function and soft function, respectively. \(J_0(x_T q_T) \) is the 0th order Bessel function. The functions \(g_i, \hat{I}_{i\rightarrow b} \) and \(\hat{P}_{i\rightarrow b} \) are related to the transverse momentum dependent parton distribution functions [43, 48]. The hard functions are matrices in the color space, which are the same as in threshold resummation [204]. The soft functions are defined and calculated in Refs. [221, 222], which are given by

\[
S_{ii}^{(1)}(z_1, z_2, q_T, M, \cos \theta, m_t, \mu) = 4L_\perp \left(2w_{ii}^{13} \ln \frac{-t_1}{m_t M} + 2w_{ii}^{23} \ln \frac{-u_1}{m_t M} + w_{ii}^{33} \right) - 4 \left(w_{ii}^{13} + w_{ii}^{23} \right) \left[1 - \frac{t_1 u_1}{m_t^2 M^2} \right] + 4w_{ii}^{13} \ln \frac{t_1 u_1}{m_t^2 M^2} - 2w_{ii}^{33} \frac{1 + \beta_i^2}{\beta_i^2} \left[L_\perp \ln x_s + f_{34} \right],
\]

with \(x_s = (1 - \beta_i)/(1 + \beta_i) \) and

\[
f_{34} = -L_2 \left(-x_s \tan^2 \frac{\theta}{2} \right) + L_2 \left(-\frac{1}{x_s} \tan^2 \frac{\theta}{2} \right) + 4 \ln x_s \ln \frac{\cos \frac{\theta}{2}}{\theta}.
\]

In general, the renormalization group equations for the soft functions can be written as

\[
\frac{d}{d\ln \mu} S_{ii} = -\gamma_i S_{ii} - S_{ii} \gamma_i^e.
\]

Fig. 17 shows the transverse momentum distribution, which has been matched to QCD NLO results. It can be found that the resummed distributions have small scale dependence and are consistent with the data from the CMS [222] within theoretical and experimental uncertainties.
FIG. 18. Feynman diagrams for single top production.

FIG. 19. The RG improved (dashed) and fixed-order q_T distributions for t-channel single top production at the Tevatron (left) and the LHC (right) [224].

FIG. 20. Top quark mass dependence of the fixed-order and resummed cross section [227].

Beyond the fixed-order calculations, the soft gluon resummations improve the theoretical predictions. Among the three production channels at hadron colliders, the t-channel is the dominant one at both the Tevatron and the LHC. In the CSS framework, the NLL and NNLL threshold effects were calculated in Refs. [249–251]. The top quark transverse momentum distribution at large p_T is interesting because it can be directly compared with the experimental results and is an important background in the searches of NP. This has been investigated with SCET in the partonic threshold limit $s_4 \rightarrow 0$ [224], which is the first application of SCET to a spacelike process with the final states of one massless and one massive colored particle. In the SCET approach, the differential cross section at partonic level can be factorized into the convolution of hard, jet and soft functions, which can be written in the form [224]

$$\frac{d\sigma_{\text{thres}}}{d\Omega} = \frac{1}{4N_c^2} \frac{1}{8\pi s} \lambda_{0,ij} H_{up}(\mu) H_{dn}(\mu) \int dp_1^+ \int dp_2^+ \delta(s_4 - p_1^2 - 2k^+ E_1), \quad (28)$$

where H_{up} and H_{dn} stand for contributions from the up and down fermion lines, respectively. The hard, jet and soft functions represent interactions at different scales, which can be calculated order by order in perturbative theory. After combining the hard, jet and soft functions, the RG improved top quark p_T distributions are shown in Fig. [224]. It can be seen that the resummed distribution is increased by about 9% ∼ 13% and 4% ∼ 9% for $p_T > 50$ and 70 GeV at the Tevatron and the LHC, respectively. Recently, the soft gluon resummation in the partonic threshold $s_4 \rightarrow 0$ was recalculated in the CSS framework, which also improved the NLO calculations by including soft-gluon corrections at NNLO [252].

As for the s-channel single top production, it is also an important process, because it is sensitive to the interaction mediated by an extra heavy particle. Approximate NNLO calculations from the NLL and NNLL threshold resummation in the CSS framework were presented in Refs. [249, 250] and Ref. [253], respectively. Based on SCET, the factorization and the NNLL resummation results were given in Ref. [228], where the cross section is also factorized into the convolution of hard, jet and soft
functions:

\[
\sigma_{\text{thres}} = \frac{1}{2E_{\text{CM}}^2} \frac{1}{4N_c^2} \int_0^1 \frac{dx_a}{x_a} dx_b \int \frac{d^3 q}{2E_q(2\pi)^3} \times f_{ij/\mu} (x_a, \mu_f) f_{ij/\mu} (x_b, \mu_f) \lambda_{0, ij} H_{1, J} \times \int dk^+ S_{JJ} (k_i^+, \mu) (2\pi)i J (s_4 - 2k^+ E_1, \mu). \quad (29)
\]

Fig. 20 shows the LO, NLO and resummed cross sections for different top quark mass at the Tevatron. Compared with the NLO results, it can be seen that the scale dependence of the resummed cross section was significantly improved. Besides, the resummation effects enhance the NLO cross section by about 3% ~ 5%.

The associated production of top quark with a W boson process $bg \to tW^-$ has median cross section in the single top production at the LHC. The QCD NLO corrections were calculated in Ref. 254, 255. In the case of massive b-quarks, the NLO description of this channel (plus decay) was also investigated 174. Approximated NNLO corrections from NLL and NNLL resummation were calculated in Refs. 249, 250 and Ref. 257, respectively. It is found that the approximate NNLO corrections increase the NLO cross by about 8%.

IV. SUMMARY

We have briefly reviewed some recent theoretical processes on the high precision calculations in the Higgs boson and top quark physics at the hadron colliders, including the fixed-order and soft gluon resummation effects. The main aim of the future LHC experiments is precision test of the SM and search for the NP signal. Therefore, with the increasing of measurement accuracy at the LHC, it is a major task in future to exceed the present accuracy of the theoretical predictions and to perform higher order calculations for important processes, in particular the processes involving Higgs boson and top quark, such as QCD N3LO corrections to Higgs production, higher order QCD corrections to Higgs and jet associated production, the fully differential NNLO calculations for top-pair production, and the high order QCD calculations of top pair and jet associated production, which is an significant background of SUSY signals, etc.

ACKNOWLEDGMENTS

We would like to thank Jun Gao, Jian Wang and Hua Xing Zhu for useful suggestions. This work is supported by the National Natural Science Foundation of China under Grants No. 11375013 and No. 11135003.
[17] Charalampos Anastasiou, Gunther Dissertori, and Fabian Stefek. NNLO QCD predictions for the $H \to WW \to ℓνℓν$ signal at the LHC. *JHEP*, 0709:018, 2007, arXiv:0707.2373.

[18] Richard D. Ball, Marco Bonvini, Stefano Forte, Simone Marzani, and Giovanni Ridolfi. Higgs production in gluon fusion beyond NNLO. *Nucl. Phys.*, B874:746–772, 2013, arXiv:1303.3590.

[19] Stefano Catani, Daniel de Florian, Massimiliano Grazzini, and Paolo Nason. Soft gluon resummation for Higgs boson production at hadron colliders. *JHEP*, 0307:028, 2003, arXiv:hep-ph/0306211.

[20] S. Moch and A. Vogt. Higher-order soft corrections to lepton pair and Higgs boson production. *Phys. Lett.*, B631:48–57, 2005, arXiv:hep-ph/0508265.

[21] Ahmad Idilbi, Xiang-dong Ji, Jian-Ping Ma, and Feng Yuan. Threshold resummation for Higgs production in effective field theory. *Phys. Rev.*, D73:077501, 2006, arXiv:hep-ph/0509294.

[22] Valentin Ahrens, Thomas Becher, Matthias Neubert, and Li Lin Yang. Renormalization-Group Improved Prediction for Higgs Production at Hadron Colliders. *Eur. Phys. J.*, C62:333–353, 2009, arXiv:0809.4283.

[23] Valentin Ahrens, Thomas Becher, Matthias Neubert, and Li Lin Yang. Updated Predictions for Higgs Production at the Tevatron and the LHC. *Phys. Lett.*, B698:271–274, 2011, arXiv:1008.3162.

[24] Valentin Ahrens, Thomas Becher, Matthias Neubert, and Li Lin Yang. Origin of the Large Perturbative Corrections to Higgs Production at Hadron Colliders. *Phys. Rev.*, D79:033013, 2009, arXiv:0808.3008.

[25] Russell P. Kauffman, Satish V. Desai, and Dipesh Risal. Production of a Higgs boson plus two jets in hadronic collisions. *Phys. Rev.*, D55:4005–4015, 1997, arXiv:hep-ph/9610541.

[26] D. de Florian, M. Grazzini, and Z. Kunszt. Higgs production with large transverse momentum in hadronic collisions at next-to-leading order. *Phys. Rev. Lett.*, 82:5209–5212, 1999, arXiv:hep-ph/9902483.

[27] V. Ravindran, J. Smith, and W.L. Van Neerven. Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions. *Nucl. Phys.*, B634:247–290, 2002, arXiv:hep-ph/0201114.

[28] Christopher J. Gasser and Carl R. Schmidt. Next-to-leading corrections to the Higgs boson transverse momentum spectrum in gluon fusion. *JHEP*, 0212:016, 2002, arXiv:hep-ph/0209248.

[29] Massimiliano Grazzini. NNLO predictions for the Higgs boson signal in the $H \to WW \to ℓνℓν$ and $H \to ZZ \to 4ℓ$ decay channels. *JHEP*, 0802:043, 2008, arXiv:0801.3232.

[30] John M. Campbell, R. Keith Ellis, and Giulia Zanderighi. Next-To-Leading Order Higgs + 2 jet production via gluon fusion. *JHEP*, 0610:028, 2006, arXiv:hep-ph/0608194.

[31] C.P. Yuan. Kinematics of the Higgs boson at hadron colliders: NLO QCD gluon resummation. *Phys. Lett.*, B283:395–402, 1992.

[32] C. Balazs and C.P. Yuan. Higgs boson production at the LHC with soft gluon effects. *Phys. Lett.*, B478:192–198, 2000, arXiv:hep-ph/0001103.

[33] C. Balazs, J. Huston, and I. Puljak. Higgs production: A Comparison of parton showers and resummation. *Phys. Rev.*, D63:014021, 2001, arXiv:hep-ph/0002032.

[34] Edmond L. Berger and Jian-wei Qiu. Differential cross-section for Higgs boson production including all orders soft gluon resummation. *Phys. Rev.*, D67:034026, 2003, arXiv:hep-ph/0210135.

[35] Anna Kulesza, George F. Sterman, and Werner Vogelsang. Joint resummation for Higgs production. *Phys. Rev.*, D69:014012, 2004, arXiv:hep-ph/0309264.

[36] G. Bozzi, S. Catani, D. de Florian, and M. Grazzini. The $q\bar{q}$ spectrum of the Higgs boson at the LHC in QCD perturbation theory. *Phys. Lett.*, B564:65–72, 2003, arXiv:hep-ph/0302104.

[37] Giuseppe Bozzi, Stefano Catani, Daniel de Florian, and Massimiliano Grazzini. Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC. *Nucl. Phys.*, B737:73–120, 2006, arXiv:hep-ph/0508068.

[38] Giuseppe Bozzi, Stefano Catani, Daniel de Florian, and Massimiliano Grazzini. Higgs boson production at the LHC: Transverse-momentum resummation and rapidity dependence. *Nucl. Phys.*, B791:1–19, 2008, arXiv:0705.3887.

[39] Qing-Hong Cao and Chuan-Ren Chen. Resummation Effects in the Search of SM Higgs Boson at Hadron Colliders. *Phys. Rev.*, D76:073006, 2007, arXiv:0704.1344.

[40] Qing-Hong Cao, Chuan-Ren Chen, Carl Schmidt, and C.-P. Yuan. Improved Predictions for Higgs Q_2 at the Tevatron and the LHC. 2009, arXiv:0909.2305.

[41] Daniel de Florian, Giancarlo Ferrera, Massimiliano Grazzini, and Damiano Tommasini. Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC. *JHEP*, 1111:064, 2011, arXiv:1109.2109.

[42] Thomas Becher and Matthias Neubert. Factorization and NNLL Resummation for Higgs Production with a Jet Veto. *JHEP*, 1207:108, 2012, arXiv:1205.3806.

[43] Thomas Becher, Matthias Neubert, and Daniel Wilhelm. Higgs-Boson Production at Small Transverse Momentum. *JHEP*, 1305:110, 2013, arXiv:1212.2621.

[44] John C. Collins and Davison E. Soper. Back-To-Back Jets in QCD. *Nucl. Phys.*, B193:381, 1981.

[45] John C. Collins and Davison E. Soper. Back-To-Back Jets: Fourier Transform from B to K-Transverse. *Nucl. Phys.*, B197:446, 1982.

[46] John C. Collins, Davison E. Soper, and George F. Sterman. Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production. *Nucl. Phys.*, B250:199, 1985.

[47] Jian Wang, Chong Sheng Li, Zhao Li, C.P. Yuan, and Hai Tao Li. Improved Resummation Prediction on Higgs Production at Hadron Colliders. *Phys. Rev.*, D86:094026, 2012, arXiv:1205.4311.

[48] Thomas Becher and Matthias Neubert. Drell-Yan production at small Q_2, transverse parton distributions and the collinear anomaly. *Eur. Phys. J.*, C71:1665, 2011, arXiv:1007.4005.

[49] Radja Boughezal, Fabrizio Caola, Kirill Melnikov, Frank Petriello, and Markus Schulze. Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD. *JHEP*, 1306:072, 2013, arXiv:1302.6216.

[50] S. Frixione, Z. Kunszt, and A. Signer. Three jet cross-sections to next-to-leading order. *Nucl. Phys.*, B467:399–442, 1996, arXiv:hep-ph/9512328.
[51] Francisco Campanario, Michael Kubocz, and Dieter Zeppenfeld. Gluon-fusion contributions to Phi + 2 Jet production. Phys. Rev., D84:095025, 2011, arXiv:1011.3819.

[52] Francisco Campanario and Michael Kubocz. Higgs boson production in association with three jets via gluon fusion at the LHC: Gluon contributions. Phys. Rev., D88:054021, 2013, arXiv:1306.1830.

[53] H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, et al. NLO QCD corrections to the production of Higgs plus two jets at the LHC. Phys. Lett., B721:74–81, 2013, arXiv:1301.0493.

[54] G. Cullen, H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, et al. NLO QCD corrections to Higgs boson production plus three jets in gluon fusion. Phys. Rev. Lett., 111:131801, 2013, arXiv:1307.4737.

[55] Michael Spira. QCD effects in Higgs physics. Fortsch. Phys., 46:203–284, 1998, arXiv:hep-ph/9705337.

[56] Tao Han, G. Valencia, and S. Willenbrock. Structure function approach to vector boson scattering in p p collisions. Phys. Rev. Lett., 69:3274–3277, 1992, arXiv:hep-ph/9206246.

[57] T. Figy, C. Oleari, and D. Zeppenfeld. Next-to-leading order jet distributions for Higgs boson production via weak boson fusion. Phys. Rev., D68:073005, 2003, arXiv:hep-ph/0306109.

[58] Terrance Figy and Dieter Zeppenfeld. QCD corrections to jet correlations in weak boson fusion. Phys. Lett., B591:297–303, 2004, arXiv:hep-ph/0403297.

[59] Edmond L. Berger and John M. Campbell. Higgs boson production in weak boson fusion at next-to-leading order. Phys. Rev., D70:073011, 2004, arXiv:hep-ph/0403194.

[60] M. Ciccolini, Ansgar Denner, and S. Dittmaier. Strong and electroweak corrections to the production of Higgs + 2jets via weak interactions at the LHC. Phys. Rev. Lett., 99:161803, 2007, arXiv:0707.0381.

[61] Mariano Ciccolini, Ansgar Denner, and Stefan Dittmaier. Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC. Phys. Rev., D77:013002, 2008, arXiv:0710.4749.

[62] Paolo Bolzoni, Fabio Maltoni, Sven-Olaf Moch, and Marco Zaro. Higgs production via vector-boson fusion at NNLO in QCD. Phys. Rev. Lett., 105:011801, 2010, arXiv:1003.4451.

[63] F. Campanario, T.M. Figy, S. Platzer, and M. Sjodahl. Electroweak Higgs plus Three Jet Production at NLO QCD. Phys. Rev. Lett., 111:211802, 2013, arXiv:1308.2932.

[64]Search for associated production of the Higgs boson in the WH WW lll and ZH ZZWW llll channels with the ATLAS detector at the LHC. Technical Report ATLAS-CONF-2013-075, CERN, Geneva, Jul 2013.

[65] Search for the bb decay of the Standard Model Higgs boson in associated W/ZH production with the ATLAS detector. Technical Report ATLAS-CONF-2013-079, CERN, Geneva, Jul 2013.

[66] VH with H→WW→ℓνℓν and V→jj. Technical Report CMS-PAS-HIG-13-017, CERN, Geneva, 2013.

[67] Serguei Chatrchyan et al. Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks. 2013, arXiv:1310.3687.

[68] Tao Han and S. Willenbrock. QCD correction to the p p → W H and Z H total cross-sections. Phys. Lett., B273:167–172, 1991.

[69] H. Baer, B. Bailey, and J.F. Owens. O (alpha-s) Monte Carlo approach to W + Higgs associated production at hadron supercolliders. Phys. Rev., D47:2730–2734, 1993.

[70] J. Ohnemus and W. James Stirling. Order α_s corrections to the differential cross-section for the W H intermediate mass Higgs signal. Phys. Rev., D47:2722–2729, 1993.

[71] Bernd A. Kniehl. Associated Production of Higgs and Z Bosons From Gluon Fusion in Hadron Collisions. Phys. Rev., D42:2253–2258, 1990.

[72] M.L. Ciccolini, S. Dittmaier, and M. Kramer. Electroweak radiative corrections to associated WH and ZH production at hadron colliders. Phys. Rev., D68:073003, 2003, arXiv:hep-ph/0306234.

[73] R. Hamberg, W.L. van Neerven, and T. Matsuura. A Complete calculation of the order α_{EW} correction to the Drell-Yan K factor. Nucl.Phys., B359:434–450, 1991.

[74] Oliver Brein, Abdelhak Djouadi, and Robert Harlander. NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders. Phys. Lett., B579:149–156, 2004, arXiv:hep-ph/0307206.

[75] Oliver Brein, Robert V. Harlander, and Tom J.E. Zirke. vh@nnlo - Higgs Strahlung at hadron colliders. Comput.Phys.Commun., 184:998–1003, 2013, arXiv:1210.5347.

[76] Giancarlo Ferrera, Massimiliano Grazzini, and Francesco Tramontano. Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO. Phys. Rev. Lett., 107:152003, 2011, arXiv:1107.1164.

[77] Andrea Banfi and Julian Cancino. Implications of QCD radiative corrections on high-pT Higgs searches. Phys. Lett., B718:499–506, 2012, arXiv:1207.0674.

[78] Giancarlo Ferrera, Massimiliano Grazzini, and Francesco Tramontano. Higher-order QCD effects for associated WH production and decay at the LHC. 2013, arXiv:1312.1669.

[79] Ding Yu Shao, Chong Sheng Li, and Hai Tao Li. Resummation Prediction on Higgs and Vector Boson Associated Production with a Jet Veto at the LHC, 2013, arXiv:1309.5015.

[80] Risto Raitio and Walter W. Wada. Higgs Boson Production at Large Transverse Momentum in QCD. Phys. Rev., D19:941, 1979.

[81] John N. Ng and Pierre Zakarauskas. A QCD Parton Calculation of Conjoined Production of Higgs Bosons and Heavy Flavors in pp Collision. Phys. Rev., D29:876, 1984.

[82] Z. Kunstz. Associated Production of Heavy Higgs Boson with Top Quarks. Nucl.Phys., B247:339, 1984.

[83] J.F. Gunion. Associated top anti-top Higgs production as a large source of W H events: Implications for Higgs detection in the lepton neutrino gamma gamma final state. Phys. Lett., B261:510–517, 1991.

[84] William J. Marciano and Frank E. Paige. Associated production of Higgs bosons with t anti-t pairs. Phys. Rev. Lett., 66:2433–2435, 1991.

[85] W. Beenacke, S. Dittmaier, M. Kramer, B. Plumper, M. Spira, et al. Higgs radiation off top quarks at the Tevatron and the LHC. Phys. Rev. Lett., 87:201805, 2001, arXiv:hep-ph/0107081.
[86] W. Beenakker, S. Dittmaier, M. Kramer, B. Plumber, M. Spira, et al. NLO QCD corrections to $t\bar{t}$-H production in hadron collisions. *Nucl.Phys.*, B653:151–203, 2003, arXiv:hep-ph/0211352.

[87] L. Reina and S. Dawson. Next-to-leading order results for $t\bar{t}$ anti-t H production at the Tevatron. *Phys.Rev.Lett.*, 87:201804, 2001, arXiv:hep-ph/0107101.

[88] S. Dawson, L.H. Orr, L. Reina, and D. Wackeroth. Associated top quark Higgs boson production at the LHC. *Phys.Rev.*, D67:071503, 2003, arXiv:hep-ph/0211438.

[89] Hans van Deurzen, Giomata Luisoni, Pierpaolo Mastrobia, Edoardo Mirabella, Giovanni Ossola, et al. NLO QCD corrections to Higgs boson production in association with a top quark pair and a jet. *Phys.Rev.Lett.*, 111:171801, 2013, arXiv:1307.8437.

[90] L. D. Landau. On the angular momentum of a two-photon system *Dokl.Akad.Nauk Ser.Fiz.*, 60:207, 1948.

[91] C.-N. Yang. Selection rules for the dematerialization of a particle into two photons. *Phys.Rev.*, 77:242, 1950.

[92] Study of the spin of the new boson with up to 25 fb$^{-1}$ of ATLAS data. Technical Report ATLAS-CONF-2013-040, CERN, Geneva, Apr 2013.

[93] Georges Aad et al. Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC. *Phys.Lett.*, B726:88–119, 2013, arXiv:1307.1427.

[94] Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV. Technical Report CMS-PAS-HIG-12-045, CERN, Geneva, 2012.

[95] Shinya Kanemura, Shingo Kiyoura, Yasuhiro Okada, Eibun Senaha, and C.P. Yuan. New physics effect on $\gamma\gamma$ production at the LHC: theoretical status. *JHEP*, 1304:151, 2013, arXiv:1212.5581.

[96] Matthew J. Dolan, Christoph Englert, and Michael Spannowsky. Further on up the road: Higgs self-coupling measurements at the high luminosity LHC. 2013, arXiv:1309.6392.

[97] Matthew J. Dolan, Christoph Englert, Nicolas Greiner, and Michael Spannowsky. Di-Higgs final states augmented – selecting hh events at the high luminosity LHC. 2013, arXiv:1309.6318.

[98] Daniel de Florian and Javier Mazzitelli. Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD. *Phys. Rev. Lett. 111,*, 201801:201801, 2013, arXiv:1309.6594.

[99] Qiang Li, Qi-Shu Yan, and Xiaoran Zhao. Higgs Pair Production: Improved Description by Matrix Element Matching. 2013, arXiv:1312.3830.

[100] Florian Goertz, Andreas Papaestathiou, Li Lin Yang, and Jose Zurita. Higgs boson pair production at the LHC in the $b\bar{b}W^+W^−$ channel. *Phys.Rev.*, D87:011301, 2013, arXiv:1309.1084.

[101] Qiang Li, Qi-Shu Yan, and Xiaoran Zhao. Higgs Pair Production at Next-to-Next-to-Leading Order in QCD. *Phys. Rev. Lett. 111,*, 201801:201801, 2013, arXiv:1309.6594.

[102] Jonathan Grigo, Jens Hoff, Kirill Melnikov, and Matthias Steinhauser. Higgs boson pair production at the LHC in the $b\bar{b}W^+W^−$ channel. *Phys.Rev.*, D87:011301, 2013, arXiv:1309.1084.

[103] Ding Yu Shao, Chong Sheng Li, Hai Tao Li, and Jian Wang. Threshold resummation effects in Higgs boson pair production at the LHC. *JHEP*07:169, 2013, arXiv:1301.245.

[104] U. Baur, T. Plehn, and David L. Rainwater. Probing the Higgs boson potential at lepton and hadron colliders: A Comparative analysis. *Phys.Rev.*, D68:033001, 2003, arXiv:hep-ph/0304015.

[105] U. Baur, T. Plehn, and David L. Rainwater. Probing the Higgs self-coupling at hadron colliders using rare decays. *Phys.Rev.*, D69:035004, 2004, arXiv:hep-ph/0310056.

[106] Matthew J. Dolan, Christoph Englert, and Michael Spannowsky. Higgs self-coupling measurements at the LHC. *JHEP*, 1210:112, 2012, arXiv:1206.5001.

[107] Andreas Papaestathiou, Li Lin Yang, and Jose Zurita. Higgs boson pair production at the LHC in the $b\bar{b}W^+W^−$ channel. *Phys.Rev.*, D87:011301, 2013, arXiv:1209.1489.

[108] Daniel de Florian and Javier Mazzitelli. Two-loop virtual corrections to Higgs boson production. *Phys.Lett.*, B724:206–309, 2013, arXiv:1305.5206.

[109] Rick S. Gupta, Heidi Rzehak, and James D. Wells. How well do we need to measure the Higgs boson mass and self-coupling? *Phys.Rev.*, D88:055024, 2013, arXiv:1305.6397.

[110] Weiming Yao. Studies of measuring Higgs self-coupling with $HH \to b\bar{b}\gamma\gamma$ at the future hadron colliders. 2013, arXiv:1308.6302.

[111] Alan J. Barr, Matthew J. Dolan, Christoph Englert, and Michael Spannowsky. Di-Higgs final states augMT2ed – selecting HH events at the high luminosity LHC. 2013, arXiv:1309.6318.

[112] Daniel de Florian and Javier Mazzitelli. Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD. *Phys. Rev. Lett. 111,*, 201801:201801, 2013, arXiv:1309.6594.

[113] Matthew J. Dolan, Christoph Englert, Nicolas Greiner, and Michael Spannowsky. Further on up the road: $hhjj$ production at the LHC. 2013, arXiv:1310.1084.

[114] Matthew J. Dolan, Christoph Englert, Nicolas Greiner, and Michael Spannowsky. Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD. *Phys. Rev. Lett. 111,*, 201801:201801, 2013, arXiv:1309.6594.

[115] Florin Goertz, Andreas Papaestathiou, Li Lin Yang, and Jose Zurita. Higgs Boson Pair Production: Improved Description by Matrix Element Matching. 2013, arXiv:1312.3830.

[116] Matthew J. Dolan, Christoph Englert, Nicolas Greiner, and Michael Spannowsky. Further on up the road: $hhjj$ production at the LHC. 2013, arXiv:1310.1084.

[117] Jonathan Grigo, Jens Hoff, Kirill Melnikov, and Matthias Steinhauser. On the Higgs boson pair production at the LHC. *Nucl.Phys.*, B875:1–17, 2013, arXiv:1305.7340.

[118] Jonathan Grigo, Jens Hoff, Kirill Melnikov, and Matthias Steinhauser. Higgs boson pair production at the LHC: top-quark mass effects at NLO. 2013, arXiv:1311.7425.

[119] Mathew Muether and CDF. Combination of CDF and DO results on the mass of the top quark using up to 8.7 fb$^{-1}$ at the Tevatron. 2013, arXiv:1305.3929.

[120] Matthew J. Dolan, Christoph Englert, and Michael Spannowsky. Higgs boson pair production at the LHC: top-quark mass effects at NLO. 2013, arXiv:1311.7425.

[121] K. Agashe et al. Snowmass 2013 Top quark working group report. 2013, arXiv:1311.2028.

[122] M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Kennedy, et al. The Electroweak Fit of the Standard Model after
the Discovery of a New Boson at the LHC. *Eur.Phys.J.*, C72:2205, 2012, arXiv:1209.2716.

[123] M. Baak, A. Blondel, A. Bodek, R. Caputo, T. Corbett, et al. Study of Electroweak Interactions at the Energy Frontier. 2013, arXiv:1310.6708.

[124] Giuseppe Degrassi, Stefano Di Vita, Joan Elias-Miro, Jose R. Espinosa, Gian F. Giudice, et al. Higgs mass and vacuum stability in the Standard Model at NNLO. *JHEP*, 1208:098, 2012, arXiv:1205.6497.

[125] Juan Cruz Estrada Vigil. Maximal use of kinematic information for the extraction of the mass of the top quark in single-lepton t anti-t events at D0. 2001.

[126] V.M. Abazov et al. A precision measurement of the mass of the top quark. *Nature*, 429:638–642, 2004, arXiv:hep-ex/0406031.

[127] John M. Campbell, Walter T. Giele, and Ciaran O’G. First-order QCD corrections to top quark pair production at hadron colliders. *EPJ Web Conf.*, 49:04002, 2013, arXiv:1303.1059.

[128] Aurelio Juste, Sonny Mantry, Alexander Mitov, Alexander Penin, Peter Skands, et al. Determination of the top quark mass circa 2013: methods, subtleties, perspectives. 2013, arXiv:1310.0799.

[129] Timo Antero Aaltonen et al. A Direct Measurement of the Total Decay Width of the Top Quark. *Phys.Rev.Lett.*, 2013, arXiv:1308.4050.

[130] M. Jezebeek and Johann H. Kuhn. QCD Corrections to Semileptonic Decays of Heavy Quarks. *Nucl.Phys.*, B314:1, 1989.

[131] Andrzej Czarnecki. QCD corrections to the decay $t \rightarrow Wb$ in dimensional regularization. *Phys.Lett.*, B252:467–470, 1990.

[132] Chong Sheng Li, Robert J. Oakes, and Tzu Chiang Yuan. QCD corrections to $t \rightarrow W^+b$. *Phys.Rev.*, D43:3759–3762, 1991.

[133] G. Eilam, R.R. Mendel, R. Migneron, and A. Soni. Radiative corrections to top quark decay. *Phys.Rev.Lett.*, 66:3105–3108, 1991.

[134] Ansgar Denner and Thomas Sack. The Top width. *Nucl.Phys.*, B358:46–58, 1991.

[135] Andrzej Czarnecki and Kirill Melnikov. Two loop QCD corrections to top quark width. *Nucl.Phys.*, B544:520–531, 1999, arXiv:hep-ph/9806244.

[136] K.G. Chetyrkin, R. Harlander, T. Seidensticker, and M. Steinhauser. Second order QCD corrections to $Γ(t \rightarrow Wb)$. *Phys.Rev.*, D60:114015, 1999, arXiv:hep-ph/9906273.

[137] Ian Richard Blokland, Andrzej Czarnecki, Maciej Slusarczyk, and Fyodor Tkachov. Heavy to light decays with a two loop accuracy. *Phys.Rev.Lett.*, 93:062001, 2004, arXiv:hep-ph/0403221.

[138] Jun Gao, Chong Sheng Li, and Hua Xing Zhu. Top Quark Decay at Next-to-Next-to Leading Order in QCD. *Phys.Rev.Lett.*, 110:042001, 2013, arXiv:1210.2808.

[139] Mathias Brucherseifer, Fabrizio Caola, and Kirill Melnikov. $O(α_s^2)$ corrections to fully-differential top quark decays. *JHEP*, 1304:059, 2013, arXiv:1301.7133.

[140] Johann H. Kuhn and German Rodrigo. Charge asymmetry in hadroproduction of heavy quarks. *Phys.Rev.Lett.*, 81:49–52, 1998, arXiv:hep-ph/9802268.

[141] Johann H. Kuhn and German Rodrigo. Charge asymmetry of heavy quarks at hadron colliders. *Phys.Rev.*, D59:054017, 1999, arXiv:hep-ph/9807420.

[142] Victor Mukhamedovich Abazov et al. Forward-backward asymmetry in top quark-antiquark production. *Phys.Rev.*, D84:112005, 2011, arXiv:1107.4995.

[143] T. Aaltonen et al. Measurement of the top quark forward-backward production asymmetry and its dependence on event kinematic properties. *Phys.Rev.*, D87:092002, 2013, arXiv:1211.1003.

[144] Wolfgang Hollik and Davide Pagani. The electroweak contribution to the top quark forward-backward asymmetry at the Tevatron. *Phys.Rev.*, D84:093003, 2011, arXiv:1107.2606.

[145] Werner Bernreuther and Zong-Guo Si. Top quark and leptonic charge asymmetries for the Tevatron and LHC. *Phys.Rev.*, D86:034026, 2012, arXiv:1205.6580.

[146] Leandro G. Almeida, George F. Stemman, and Werner Vogelsang. Threshold Resummation for the Top Quark Charge Asymmetry. *Phys.Rev.*, D78:014008, 2008, arXiv:0805.1885.

[147] Valentin Ahrens, Andrea Ferroglia, Matthias Neubert, Ben D. Peicjak, and Li Lin Yang. The top-pair forward-backward asymmetry beyond NLO. *Phys.Rev.*, D84:074004, 2011, arXiv:1106.6051.

[148] Stanley J. Brodsky and Xing-Gang Wu. Eliminating the Renormalization Scale Ambiguity for Top-Pair Production Using the Principle of Maximum Conformality. *Phys.Rev.Lett.*, 109:042002, 2012, arXiv:1203.5312.

[149] Stanley J. Brodsky and Leonardo Di Giustino. Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality. *Phys.Rev.*, D86:085026, 2012, arXiv:1107.0338.

[150] Stefan Hoeche, Junwu Huang, Gionata Luisoni, Marek Schoenherr, and Jan Winter. Zero and one jet combined NLO analysis of the top quark forward-backward asymmetry. *Phys.Rev.*, D88:014040, 2013, arXiv:1306.2703.

[151] Serguei Chatrchyan et al. Measurement of the charge asymmetry in top-quark pair production in proton-proton collisions at $\sqrt{s} = 7$ TeV. *Phys.Lett.*, B709:28–49, 2012, arXiv:1112.5100.

[152] Georges Aad et al. Measurement of the charge asymmetry in top quark pair production in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector. *Eur.Phys.J.*, C72:2039, 2012, arXiv:1203.4211.

[153] Georges Aad et al. Measurement of the top quark pair production charge asymmetry in proton-proton collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector. 2013, arXiv:1311.6724.

[154] CMS Collaboration. Measurement of the ttbar charge asymmetry with lepton+n-jets events at 8 TeV. 2013.

[155] Andreas Jung, Markus Schulze, and Jessie Shelton. Kinematics of Top Quark Final States: A Snowmass White Paper. 2013, arXiv:1309.2889.

[156] Michal Czakon, Paul Fiedler, Alexander Mitov, and Juan Rojo. Further exploration of top pair hadroproduction at NNLO. 2013, arXiv:1305.3892.

[157] P. Nason, S. Dawson, and R. Keith Ellis. The Total Cross-Section for the Production of Heavy Quarks in Hadronic Collisions. *Nucl.Phys.*, B303:607, 1988.
P. Nason, S. Dawson, and R. Keith Ellis. The One Particle Inclusive Differential Cross-Section for Heavy Quark Production in Hadronic Collisions. Nucl.Phys., B327:49–92, 1989.

W. Beenakker, H. Kuijf, W.L. van Neerven, and J. Smith. QCD Corrections to Heavy Quark Production in p anti-p Collisions. Phys.Rev., D40:54–82, 1989.

W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler, and J. Smith. QCD corrections to heavy quark production in hadron hadron collisions. Nucl.Phys., B351:507–560, 1991.

W. Beenakker, Ansgar Denner, W. Hollik, R. Mertig, T. Sack, et al. Electroweak one loop contributions to top pair production in hadron colliders. Nucl.Phys., B411:343–380, 1994.

W. Bernreuther, Michael Fuecker, and Z.G. Si. Mixed QCD and weak corrections to top quark pair production at hadron colliders. Phys.Lett., B633:54–60, 2006, arXiv:hep-ph/0508091.

S. Moretti, M.R. Nolten, and D.A. Ross. Weak corrections to gluon-induced top-antitop hadro-production. Phys.Lett., B639:513–519, 2006, arXiv:hep-ph/0603083.

Johann H. Kuhn, A. Scharf, and P. Uwer. Electroweak effects in top-quark pair production at hadron colliders. Eur.Phys.J., C51:37–53, 2007, arXiv:hep-ph/0610035.

Kirill Melnikov and Markus Schulze. NLO QCD corrections to top quark pair production and decay at hadron colliders. JHEP, 0908:049, 2009, arXiv:0907.3090.

W. Bernreuther and Zong-Guo Si. Distributions and correlations for top quark pair production and decay at the Tevatron and LHC. Nucl.Phys., B837:90–121, 2010, arXiv:1003.3926.

John M. Campbell and R. Keith Ellis. Top-quark processes at NLO in production and decay. 2012, arXiv:1204.1513.

A. Denner, S. Dittmaier, S. Kallweit, and S. Pozzorini. NLO QCD corrections to WWbb production at hadron colliders. Phys.Rev.Lett., 106:052001, 2011, arXiv:1012.3975.

Ansgar Denner, Stefan Dittmaier, Stefan Kallweit, and Stefano Pozzorini. NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders. JHEP, 1210:110, 2012, arXiv:1207.5018.

Giuseppe Bevilacqua, Michal Czakon, Andreas van Hameren, Costas G. Papadopoulos, and Malgorzata Worek. Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order. JHEP, 1102:083, 2011, arXiv:1012.4230.

P. Falgari, A.S. Papanastasiou, and A. Signer. Finite-width effects in unstable-particle production at hadron colliders. JHEP, 1305:156, 2013, arXiv:1303.5299.

F. Cascioli, S. Kallweit, P. Maierhöfer, and S. Pozzorini. A unified NLO description of top-pair and associated Wt production. 2013, arXiv:1312.0546.

J.G. Korner, Z. Merebashvili, and M. Rogal. NNLO $O(\alpha_S^4)$ results for heavy quark pair production in quark-antiquark collisions: The One-loop squared contributions. Phys.Rev., D77:094011, 2008, arXiv:0802.0106.

Charalampos Anastasiou and S. Mert Aybat. The One-loop gluon amplitude for heavy-quark production at NNLO. Phys.Rev., D78:114006, 2008, arXiv:0809.1355.

B. Kniehl, Zakaria Merebashvili, J.G. Korner, and M. Rogal. Heavy quark pair production in gluon fusion at next-to-next-to-leading $O(\alpha_S^4)$ order: One-loop squared contributions. Phys.Rev., D78:094013, 2008, arXiv:0809.3980.

M. Czakon, A. Mitov, and S. Moch. Heavy-quark production in massless quark scattering at two loops in QCD. Phys.Lett., B651:147–159, 2007, arXiv:0705.1975.

M. Czakon, A. Mitov, and S. Moch. Heavy-quark production in gluon fusion at two loops in QCD. Nucl.Phys., B798:210–250, 2008, arXiv:0707.4139.

R. Bonciani, A. Ferroglia, T. Gehrmann, D. Maitre, and C. Stedrus. Two-Loop Fermionic Corrections to Heavy-Quark Pair Production: The Quark-Antiquark Channel. JHEP, 0807:129, 2008, arXiv:0806.2301.

R. Bonciani, A. Ferroglia, T. Gehrmann, and C. Stedrus. Two-Loop Planar Corrections to Heavy-Quark Pair Production in the Quark-Antiquark Channel. JHEP, 0908:067, 2009, arXiv:0906.3671.

R. Bonciani, A. Ferroglia, T. Gehrmann, A. Manteuffel, and C. Stedrus. Two-Loop Leading Color Corrections to Heavy-Quark Pair Production in the Gluon Fusion Channel. JHEP, 1101:102, 2011, arXiv:1011.6661.

M. Czakon. Tops from Light Quarks: Full Mass Dependence at Two-Loops in QCD. Phys.Lett., B664:307–314, 2008, arXiv:0803.1400.

P. Baernreuther, M. Czakon, and P. Fiedler. Virtual amplitudes and threshold behaviour of hadronic top-quark pair-production cross sections. 2013, arXiv:1312.6279.

S. Dittmaier, P. Uwer, and S. Weinzierl. NLO QCD corrections to $t\to t+1$ jet production at hadron colliders. Phys.Rev.Lett., 98:262002, 2007, arXiv:hep-ph/0703120.

S. Dittmaier, P. Uwer, and S. Weinzierl. Top-quark pair $+$ 1-jet production at next-to-leading order QCD. Nucl.Phys.Proc.Suppl., 183:196–201, 2008, arXiv:0807.1223.

G. Bevilacqua, M. Czakon, C.G. Papadopoulos, and M. Worek. Dominant QCD Backgrounds in Higgs Boson Analyses at the LHC: A Study of $pp\to t\to t+2$ jets at Next-To-Leading Order. Phys.Rev.Lett., 104:162002, 2010, arXiv:1002.4009.

Kirill Melnikov and Markus Schulze. NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders. Nucl.Phys., B840:129–159, 2010, arXiv:1004.3284.

M. Czakon. A novel subtraction scheme for double-real radiation at NNLO. Phys.Lett., B693:259–268, 2010, arXiv:1005.0274.

M. Czakon. Double-real radiation in hadronic top quark pair production as a proof of a certain concept. Nucl.Phys., B849:250–295, 2011, arXiv:1101.0642.

Charalampos Anastasiou, Franz Herzog, and Achilles Lazopoulos. On the factorization of overlapping singularities at NNLO. JHEP, 1103:038, 2011, arXiv:1101.4867.

G. Abelof and A. Gehrmann-De Ridder. Antenna subtraction for the production of heavy particles at hadron colliders. JHEP, 1104:063, 2011, arXiv:1102.2443.

Werner Bernreuther, Christian Bogner, and Olivier Dekkers. The real radiation antenna function for $S\to Q\bar{Q}g\bar{g}$ at NNLO QCD. JHEP, 1106:032, 2011, arXiv:1105.0530.

Peter Br unreuther, Michal Czakon, and Alexander Mitov. Percent Level Precision Physics at the Tevatron: First Genuine NNLO QCD Corrections to $q\bar{q}\to t\bar{t}+X$. Phys.Rev.Lett., 109:132001, 2012, arXiv:1204.5201.
[195] Michal Czakon and Alexander Mitov. NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels. *JHEP*, 1212:054, 2012, arXiv:1207.0236.

[196] Michal Czakon and Alexander Mitov. NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction. *JHEP*, 1301:080, 2013, arXiv:1210.6832.

[197] Michal Czakon, Michelangelo L. Mangano, Alexander Mitov, and Juan Rojo. Constraints on the gluon PDF from top quark pair production at hadron colliders. *JHEP*, 1307:167, 2013, arXiv:1303.7215.

[198] Nikolaos Kidonakis and Ben D. Pecjak. Top-quark production and QCD. *Eur.Phys.J.*, C72:2084, 2012, arXiv:1108.6063.

[199] Nikolaos Kidonakis and George F. Sterman. Resummation for QCD hard scattering. *Nucl.Phys.*, B505:321–348, 1997, arXiv:hep-ph/9705234.

[200] Roberto Bonciani, Stefano Catani, Michelangelo L. Mangano, and Paolo Nason. NLL resummation of the heavy quark hadroproduction cross-section. *Nucl.Phys.*, B529:424–450, 1998, arXiv:hep-ph/9801375.

[201] Thomas Becher and Matthias Neubert. Infrared singularities of QCD amplitudes with massive partons. *Phys.Rev.*, D79:125004, 2009, arXiv:0904.1021.

[202] Andrea Ferroglia, Matthias Neubert, Ben D. Pecjak, and Li Lin Yang. Two-loop divergences of scattering amplitudes with massive partons. *Phys.Rev.Lett.*, 103:201601, 2009, arXiv:0907.4791.

[203] Sven Moch and Peter Uwer. Theoretical status and prospects for top-quark pair production at hadron colliders. *Phys.Rev.*, D78:034003, 2008, arXiv:0804.1476.

[204] Valentin Ahrens, Andrea Ferroglia, Matthias Neubert, Ben D. Pecjak, and Li Lin Yang. Renormalization-Group Improved Predictions for Top-Quark Pair Production at Hadron Colliders. *JHEP*, 1009:097, 2010, arXiv:1003.5827.

[205] Matteo Cacciari, Michal Czakon, Michelangelo Mangano, Alexander Mitov, and Paolo Nason. Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation. *Phys.Lett.*, B710:612–622, 2012, arXiv:1111.5869.

[206] Nikolaos Kidonakis. Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution. *Phys.Rev.*, D82:114030, 2010, arXiv:1009.4935.

[207] Valentin Ahrens, Andrea Ferroglia, Matthias Neubert, Ben D. Pecjak, and Li Lin Yang. RG-improved single-particle inclusive cross sections and forward-backward asymmetry in tt production at hadron colliders. *JHEP*, 1109:070, 2011, arXiv:1103.0550.

[208] Valentin Ahrens, Andrea Ferroglia, Matthias Neubert, Ben D. Pecjak, and Li Lin Yang. Precision predictions for the t+t(tbar) production cross section at hadron colliders. *Phys.Lett.*, B703:135–141, 2011, arXiv:1105.5824.

[209] Andrea Ferroglia, Ben D. Pecjak, Li Lin Yang, Ben D. Pecjak, and Li Lin Yang. The NNLO soft function for the pair invariant mass distribution of boosted top quarks. *JHEP*, 1210:180, 2012, arXiv:1207.4798.

[210] Andrea Ferroglia, Ben D. Pecjak, and Li Lin Yang. Top-quark pair production at high invariant mass: an NNLO soft plus virtual approximation. *JHEP*, 1309:032, 2013, arXiv:1306.1537.

[211] Andrea Ferroglia, Simone Marzani, Ben D. Pecjak, and Li Lin Yang. Boosted top production: factorization and resummation for single-particle inclusive distributions. 2013, arXiv:1310.3836.
\[\sqrt{s} = 7 \text{ TeV} \text{ with the ATLAS detector}. \]
Phys.Lett., B717:330–350, 2012, arXiv:1205.3130.

[229] Serguei Chatrchyan et al. Measurement of the single-top-quark t-channel cross section in pp collisions at \[\sqrt{s} = 7 \text{ TeV}. \]
JHEP, 1212:035, 2012, arXiv:1209.4533.

[230] G. Bordes and B. van Eijk. Calculating QCD corrections to single top production in hadronic interactions.
Nucl.Phys., B435:23–58, 1995.

[231] T. Stelzer and S. Willenbrock. Single top quark production via \[q\bar{q} \to t\bar{b} \].
Phys.Lett., B357:125–130, 1995, arXiv:hep-ph/9505433.

[232] Martin C. Smith and S. Willenbrock. QCD and Yukawa corrections to single top quark production via \[q\bar{q} \to t\bar{b} \].
Phys.Rev., D54:6696–6702, 1996, arXiv:hep-ph/9604223.

[233] B.W. Harris, Eric Laenen, L. Phaf, Z. Sullivan, and S. Weinzierl. The Fully differential single top quark cross-section in next to leading order QCD.
Phys.Rev., D66:054024, 2002, arXiv:hep-ph/0207055.

[234] Zack Sullivan. Understanding single-top-quark production and jets at hadron colliders.
Phys.Rev., D70:114012, 2004, arXiv:hep-ph/0408049.

[235] Stefano Frizione, Eric Laenen, Patrick Motylinski, and Bryan R. Webber. Single-top production in MC@NLO.
JHEP, 0603:092, 2006, arXiv:hep-ph/0512250.

[236] Simone Allioti, Paolo Nason, Carlo Oleari, and Emanuele Re. NLO single-top production matched with shower in POWHEG: s- and t-channel contributions.
JHEP, 0909:111, 2009, arXiv:0907.4076.

[237] Emanuele Re. Single-top Wt-channel production matched with parton showers using the POWHEG method.
Eur.Phys.J., C71:1547, 2011, arXiv:1009.2450.

[238] Rikkert Frederix, Emanuele Re, and Paolo Torrielli. Single-top t-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO.
JHEP, 1209:130, 2012, arXiv:1207.5391.

[239] John M. Campbell, R. Keith Ellis, and Francesco Tramontano. Single top production and decay at next-to-leading order.
Phys.Rev., D70:094012, 2004, arXiv:hep-ph/0408158.

[240] Qing-Hong Cao and C.-P. Yuan. Single top quark production and decay at next-to-leading order in hadron collision.
Phys.Rev., D71:054022, 2005, arXiv:hep-ph/0408180.

[241] Qing-Hong Cao, Reinhard Schwienhorst, and C.-P. Yuan. Next-to-leading order corrections to single top quark production and decay at Tevatron. 1. s-channel process.
Phys.Rev., D71:054023, 2005, arXiv:hep-ph/0409040.

[242] Qing-Hong Cao, Reinhard Schwienhorst, Jorge A. Bentez, Raymond Brock, and C.-P. Yuan. Next-to-leading order corrections to single top quark production and decay at the Tevatron: 2. t-channel process.
Phys.Rev., D72:094027, 2005, arXiv:hep-ph/0504230.

[243] Sarah Heim, Qing-Hong Cao, Reinhard Schwienhorst, and C.-P. Yuan. Next-to-leading order QCD corrections to s-channel single top quark production and decay at the LHC.
Phys.Rev., D81:034005, 2010, arXiv:0911.0620.

[244] Reinhard Schwienhorst, C.-P. Yuan, Charles Mueller, and Qing-Hong Cao. Single top quark production and decay in the t-channel at next-to-leading order at the LHC.
Phys.Rev., D83:034019, 2011, arXiv:1012.5132.

[245] Pietro Falgari, Paul Mellor, and Adrian Signer. Production-decay interferences at NLO in QCD for t-channel single-top production.
Phys.Rev., D82:054028, 2010, arXiv:1007.0893.

[246] P. Falgari, F. Giannuzzi, P. Mellor, and A. Signer. Off-shell effects for t-channel and s-channel single-top production at NLO in QCD.
Phys.Rev., D83:094013, 2011, arXiv:1102.5267.

[247] John M. Campbell, Rikkert Frederix, Fabio Maltoni, and Francesco Tramontano. Next-to-Leading-Order Predictions for t-channel Single-Top Production at Hadron Colliders.
Phys.Rev.Lett., 102:182003, 2009, arXiv:0903.0005.

[248] John M. Campbell, Rikkert Frederix, Fabio Maltoni, and Francesco Tramontano. NLO predictions for t-channel production of single top and fourth generation quarks at hadron colliders.
JHEP, 0910:042, 2009, arXiv:0907.3933.

[249] Nikolaos Kidonakis. Single top production at the Tevatron: Threshold resummation and finite-order soft gluon corrections.
Phys.Rev., D74:114012, 2006, arXiv:hep-ph/0609287.

[250] Nikolaos Kidonakis. Higher-order soft gluon corrections in single top quark production at the LHC.
Phys.Rev., D75:071501, 2007, arXiv:hep-ph/0701080.

[251] Nikolaos Kidonakis. Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production.
Phys.Rev., D83:091503, 2011, arXiv:1103.2792.

[252] Nikolaos Kidonakis. Top-quark transverse-momentum distributions in t-channel single-top production.
Phys.Rev., D88:031504, 2013, arXiv:1306.3592.

[253] Nikolaos Kidonakis. NNLL resummation for s-channel single top quark production.
Phys.Rev., D81:054028, 2010, arXiv:1001.5034.

[254] Walter T. Giele, Stephane Keller, and Eric Laenen. QCD corrections to W boson plus heavy quark production at the Tevatron.
Phys.Rev., B372:141–149, 1996, arXiv:hep-ph/9511449.

[255] Shouhua Zhu. Next-to-leading order QCD corrections to \(bg \to tW^- \) at CERN large hadron collider.
2001, arXiv:hep-ph/0109269.

[256] John M. Campbell and Francesco Tramontano. Next-to-leading order corrections to Wt production and decay.
Nucl.Phys., B726:109–130, 2005, arXiv:hep-ph/0506289.

[257] Nikolaos Kidonakis. Two-loop soft anomalous dimensions for single top quark associated production with a \(W^- \) or \(H^- \).
Phys.Rev., D82:054018, 2010, arXiv:1005.4451.