Transcriptional reprogramming in cellular quiescence
Benjamin Roche, Benoît Arcangioli, Robert Martienssen

To cite this version:
Benjamin Roche, Benoît Arcangioli, Robert Martienssen. Transcriptional reprogramming in cellular quiescence. RNA Biology, Taylor Francis, 2017, 14 (7), pp.843 - 853. 10.1080/15476286.2017.1327510. pasteur-01868271

HAL Id: pasteur-01868271
https://hal-pasteur.archives-ouvertes.fr/pasteur-01868271
Submitted on 5 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Transcriptional reprogramming in cellular quiescence

Benjamin Roche, Benoit Arcangioli & Robert Martienssen

To cite this article: Benjamin Roche, Benoit Arcangioli & Robert Martienssen (2017) Transcriptional reprogramming in cellular quiescence, RNA Biology, 14:7, 843-853, DOI: 10.1080/15476286.2017.1327510

To link to this article: https://doi.org/10.1080/15476286.2017.1327510

© 2017 The Author(s). Published with license by Taylor & Francis Group, LLC

Benjamin Roche, Benoit Arcangioli, and Robert Martienssen

Accepted author version posted online: 12 May 2017. Published online: 30 Jun 2017.

Submit your article to this journal

Article views: 1277

View Crossmark data

Citing articles: 3 View citing articles
Transcriptional reprogramming in cellular quiescence

Benjamin Rochea, Benoit Arcangioli, and Robert Martienssena,c

aCold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; bGenome Dynamics Unit, UMR 3525 CNRS, Institut Pasteur, 25–28 rue du Docteur Roux, Paris, France; cHoward Hughes Medical Institute—Gordon and Betty Moore Foundation (HHMI-GBM) Investigator, NY, USA

ABSTRACT
Most cells in nature are not actively dividing, yet are able to return to the cell cycle given the appropriate environmental signals. There is now ample evidence that quiescent G0 cells are not shut-down but still metabolically and transcriptionally active. Quiescent cells must maintain a basal transcriptional capacity to maintain transcripts and proteins necessary for survival. This implies a tight control over RNA polymerases: RNA pol II for mRNA transcription during G0, but especially RNA pol I and RNA pol III to maintain an appropriate level of structural RNAs, raising the possibility that specific transcriptional control mechanisms evolved in quiescent cells. In accordance with this, we recently discovered that RNA interference is necessary to control RNA polymerase I transcription during G0. While this mini-review focuses on yeast model organisms (Saccharomyces cerevisiae and Schizosaccharomyces pombe), parallels are drawn to other eukaryotes and mammalian systems, in particular stem cells.

Introduction

Cells only divide under appropriate conditions. In unicellular organisms such as microbes, this is usually linked to the availability of appropriate nutrients in the environment. Outside of the laboratory, these are often limiting. As a result, most microorganisms are present in a non-dividing (hereafter referred to as “G0”) state in nature.1–3 Typical examples of non-dividing microbial cells include “viable but non-culturable” (VBNC) cells4–6 and endospores in bacteria, as well as asexual and sexual spores in fungi. Multi-cellular microbes can also induce large resting structures such as sclerotia and cysts. In multi-cellular organisms possessing different cell types and functions, coordination between cells is important to ensure proper development and requires a tight control on cell proliferation. In the human body, most cells are not actively dividing but either terminally differentiated, such as neurons, or quiescent, such as most stem cells and memory lymphocytes.7–12 Reactivation of quiescent stem cells is essential for tissue regeneration, for example during wound healing.13–14

It is important to note that several types of non-dividing states can exist (Fig 1A). Typically, ‘quiescence’ is defined by metabolic activity and full ability to return to the cell cycle. On the other hand, the absence of metabolic activity is a hallmark of ‘dormancy’, for example in spores. The inability to revert to the cell cycle characterizes post-mitotic cells, and when this inability is irreversibly acquired over-time constitutes a key feature of cellular senescence. For example, progressive loss of this reversibility hinders the self-renewal capability of a stem cell niche, resulting in its depletion.15–20 A consequence of this phenotypic definition is that distinct types—and depths—of quiescence can exist. The existence of different depths of cellular quiescence is illustrated for example in muscular stem cells for which cells can enter a ‘poised’ state in response to certain environmental signals, in which they are more responsive to the signal triggering quiescence-exit. A proposed name for this intermediary state has been ‘G-alert’ in stem cells21 and ‘G0(A)’ in T lymphocytes.22 This has lead to the proposal of a ‘quiescence cycle’ alongside the cell cycle (Fig 1B).21,23 Other examples include the morphological and phenotypic differences in fission yeast between early and late G0 cells,24,25 and the transcriptome differences in human fibroblasts when G0 is induced by different signals.26

Controversies

Many efforts in the field have sought a molecular basis underlying quiescence—similarly to the molecular characterization of stem cells and of what constitutes ‘stemness’ (the concomitant presence of ‘self-renewal’ and ‘differentiation potential’).27,28 In part because of the different types of quiescent cells, there are still important controversies surrounding the definition of cellular quiescence. Some are semantic, such as cancer dormancy—“dormancy” qualifies the cancer and not necessarily the cancer cells underlying the “dormant” phenotype, which are thought to be either quiescent cells, and/or an immune balance between growth of a micro-tumor and the immune system.29 Second, the term “G0” has been used as a synonym of “non-dividing” cells in general, as a synonym for “quiescence,” as well as the notion that cells enter quiescence uniquely from G1.
However, in certain conditions cells can enter quiescence from distinct points of the cell cycle and doing so preferentially in G1 may be a consequence of metabolic slow-down rather than necessity. This has led to a controversy over the term “G0” when understood as indicating an exit only from G1. Third, the choice of the model system and of the signal to induce quiescence has to be considered, as different organisms show different responses to starvation of different nutrients, such as nitrogen-starvation in budding yeast haploids vs. diploids, and in fission yeast. In particular, the use of stationary-phase cultures does not necessarily accurately reflect quiescent cells, as these cultures are heterogeneous and most cells not long-lived. Last but not least, it has proven difficult to obtain biomarkers specific for G0 cells.

Markers of cellular quiescence

The first proposed quiescence-specific marker was ‘statin’ in quiescent fibroblasts (not to be confused with the statin class of drugs: statin was later revealed to be lamin A), but was subsequently found to not be completely specific. Nowadays, the most commonly used marker in mammalian cells is pKi-67, which can distinguish between quiescent and proliferating cells; however, pKi-67 is still expressed at low levels in quiescence as it acts in rRNA synthesis. Other proposed markers in mammalian cells include CDK inhibitors such as p27CDKN1B/Kip1, which led to a Venus-p27K construct discriminating G0 and G1 cells, as well as the retinoblastoma (RB) protein (p105, p107, p130) family of cell cycle inhibitors, which regulate the EZF transcription factors, and the RB yeast analog Whi5. Quiescent cells have been often defined negatively i.e. what the cell does not do, such as absence of PCNA (i.e., absence of S-phase), and Hoechst 33342+Pyronin Y staining (DNA+RNA content) based on low RNA expression in G0. Transcriptomic studies in human fibroblasts, and in fission yeast, have identified potential core ‘quiescent program’ genes. This will help identifying better markers for cellular quiescence.

Quiescence: Conserved or specialized?

Despite the importance of quiescence in all organisms, the molecular mechanisms underlying transition between growth and quiescence are not very well understood, nor are the molecular mechanisms of quiescence maintenance over long periods of time. An important question is whether molecular mechanisms underlying cellular quiescence are conserved across evolution. Because states of quiescence can be seen in prokaryotes, unicellular eukaryotes and multicellular organisms, it is likely that some aspects of quiescence are conserved. However, it has been proposed that because cycling cells, in any organism, use their energy predominantly to grow and divide, the most likely conserved mechanisms in G0 would be mechanisms of shutting-down growth and division, and that apart from this common aspect, quiescent cells are driven to specialization. Further study of quiescent cells in different organisms will help us determine to what extent this may be the case; furthermore, this dual aspect of conservation/specialization highlights the importance of in-depth study of several model organisms.

Quiescence in pathological contexts

Quiescence is also important in pathological contexts, such as cancer, degenerative diseases, and microbial infection. Two hallmarks of cancer are the inability to sustain quiescence, resulting in aberrant proliferation, and the inability to trigger apoptosis to stop these cells. It is therefore especially important to study this question not only from the viewpoint of controlled growth and proliferation, but in the context of unwarranted quiescence-exit. Most cancer-related deaths are caused by secondary tumors after treatment of the primary cancer; one factor in cancer persistence and resurgence is thought
to be the presence of quiescent cancer cells, which are less sensitive to antitumor drugs.\(^{1,2}\) An improved understanding of cellular quiescence would therefore permit better targeting of G0 cancerous cells, and develop more specific drugs.\(^{1,2}\)

In the context of human pathogens, the formation of quiescent cells contributes to persistence of infection within the body, such as for the bacterial pathogen *Mycobacterium tuberculosis*\(^{3}\) and for fungal pathogens such as *Cryptococcus* spp., which can survive in a latent state inside host macrophages,\(^{4,5}\) and *Candida albicans*.\(^{6}\) Furthermore, the persistence of quiescent cells in the environment is a matter of human health, illustrated by the fact that VBNC cells of pathogens such as *Vibrio vulnificus* maintain their infectious capability.\(^{7,8}\)

Fission yeast is an ideal model for cellular quiescence

Several model organisms are commonly used for the study of cellular quiescence; the most notable are the budding yeast *Saccharomyces cerevisiae*,\(^{9,10}\) the fission yeast *Schizosaccharomyces pombe*,\(^{11,12}\) in vitro mammalian cell culture,\(^{11,12}\) the wing cells of *Drosophila melanogaster*,\(^{13,14}\) and stem cells.\(^{15,16}\) In fission yeast, quiescence is induced by nitrogen deprivation of a prototrophic heterothallic strain. This results in 2 divisions without growth, resulting in haploid cells with 1c DNA.\(^{17,18}\) An advantage in using this particular model and signal is that G0-induction is synchronous,\(^{17,18}\) all cells retain full viability for extended periods of time,\(^{17,18}\) and G0-exit is synchronous,\(^{17,18}\) more so than when quiescence is brought about by glucose- or phosphate-starvation.\(^{19,20}\) This improved homogeneity of G0 cells is a big advantage over stationary-phase cultures or in vitro cell cultures, which are a heterogeneous population consisting mostly of cells that are not long-lived.\(^{21,22}\) Furthermore, this model is distinct to that of dormant spores, as nitrogen-deprived fission yeast quiescent cells still require a carbon source for viability.\(^{23,24}\) Genetic requirements common to several model systems are more likely to be conserved in higher eukaryotes.\(^{24,25}\)

Cellular quiescence is transcriptionally and metabolically active

While the distinction between cellular quiescence and dormancy is not always trivial to assay, these 2 states are conceptually different: the maintenance of metabolic and transcriptional activity in quiescent cells implies the maintenance of an operational transcriptional machinery. In fission yeast, quiescent cells have distinctive transcriptomic signatures.\(^{26,27}\) mRNA and rRNA levels are greatly reduced to ~10% and ~20% respectively yet display a high diversity of transcripts and of proteins.\(^{26,27}\) Regulation of RNA pol I and RNA pol III is tightly correlated with growth in all organisms\(^{28}\) and accordingly, we have found that the binding of RNA polymerase I to rDNA is decreased over time in G0, reaching 10% that of G0-entering cells after 8 d (= 1% of cycling cells in rich medium).\(^{29}\) Conversely, the proportion of H3K9-methylated silent rDNA repeats is increased.\(^{29}\)

Quiescent fission yeast cells display an extensive metabolic change,\(^{30,31}\) reflecting their shift in metabolism and specialization in recycling of nutrients. In this model, the maintenance of quiescence requires glucose\(^{32}\) and accordingly, several of the most abundant transcripts in G0 code for proteins involved in glycolysis,\(^{33}\) reflecting increased oxidative metabolism.\(^{34}\) One of the immediate changes caused by nitrogen-starvation is a reduction in the free amino acid pool.\(^{35}\) Autophagy is required for quiescence maintenance for recycling of aminoacids\(^{36,37}\) and nucleotides via degradation of RNAs.\(^{38,39}\) Increased catabolism is also reflected by the vast size increase of the vacuole in quiescent cells,\(^{40}\) and many vacuolar genes are essential for quiescence establishment.\(^{41}\) Furthermore, new organelles are formed in quiescent fission yeast and budding yeast cells, such as actin bodies,\(^{42}\) proteasome storage granules\(^{43}\) rapidly re-imported into the nucleus upon quiescence-exit,\(^{44}\) and a quiescent microtubule bundle.\(^{45,46}\)

Another indication of the active state of quiescent *S. pombe* cells is that they are still able to repair DNA damage.\(^{47,48}\) Importantly, transcription itself is a source of damage.\(^{48}\) Transcription of genes exposes single-stranded DNA, which is more prone to several types of damage including cytidine deamination.\(^{49}\) Quiescent cells also retain the ability to repair double-strand DNA breaks and do so preferentially by non-homologous end-joining.\(^{50}\) However, certain DNA lesions may persist in G0 as an increase of DNA repair is seen in several types of G0-exiting cells, such as haematopoietic stem cells,\(^{51}\) and fission yeast cells (where repair is detected as Rad52 foci).\(^{52,53}\) In wild type, the proportion of Rad52 foci forming during the first S-phase when cells are exiting quiescence and during the following S-phases are similar, indicating that the level of unrepaird lesions after 48 hours of quiescence and between 2 replications are similar. The number of Rad52 foci dramatically increases in several DNA repair mutants, indicating that spontaneous DNA lesions are efficiently repaired during quiescence.\(^{54}\)

Several large-scale screens have been conducted in fission yeast to identify genes important for maintaining viability during cellular quiescence.\(^{55,56}\) Essentiality in dividing cells does not correlate with essentiality in quiescence, and it has been estimated that ~25% of essential genes are necessary for both (‘super-housekeeping’ genes).\(^{57}\) An especially interesting set of genes identified is involved in transcription, such as specific alleles of the RNA pol II C-terminal domain phosphatase Fcp1 and of the common RNA pol I/III subunit AC40,\(^{55,56}\) and the Krüppel-like family transcription factor Klf1.\(^{57}\) As the characterization of the transcriptome in early G0 cells has allowed identification of several genes essential for quiescence,\(^{58}\) an important future work would be to characterize the transcriptome and proteome after longer times spent in quiescence, as these might help identify factors involved for long-term maintenance rather than early adaptations to the metabolic stress caused by quiescence induction.

Epigenetic mechanisms of quiescence maintenance?

We propose that epigenetic mechanisms are key to maintaining cellular quiescence. Cells in the cell cycle or in quiescence possess the same genotype, yet exhibit distinct phenotypes. It is therefore possible to envision cellular quiescence as a kind of cellular differentiation.\(^{59}\) Accordingly, early cloning experiments were greatly enhanced by the induction of fibroblasts into quiescence in advance of nuclear transplantation, leading to the realization of its role as a state of major epigenetic
RNA interference controls RNA polymerases

In *S. pombe*, the key proteins Dicer, Argonaute and RNA-dependent RNA polymerase (respectively Dcr1, Ago1 and Rdp1) are involved in co-transcriptional silencing of pericentromeric repeat transcripts, processing these transcripts into small interfering RNAs (siRNAs) and recruiting the silencing CLRC/Rik1 complex, harboring the H3K9 methyltransferase Ctr4_{SVU3}. This results in the formation of H3K9me heterochromatin. Pericentromeric heterochromatin allows proper chromosome segregation in mitosis, in meiosis in *S. pombe*, and in G0-entry mitoses. More recently, RNAi has been proposed to also act in post-transcriptional silencing (PTGS) pathways in fission yeast, and in control of stress-related genes.

Transcriptional silencing is a result of the inhibition of RNA polymerase II. In fission yeast heterochromatin, H3K9 is methylated, and binds HP1-like proteins (Swi6 and Chp2). In turn, Swi6_{HPI} recruits the SHREC complex, containing histone deacetylases, resulting in hypoacetylation of H3 and H4 tails, limiting RNA pol II recruitment. In S-phase, Swi6_{HPI} is displaced by H3S10 phosphorylation by Aurora kinase, alleviating this silencing; this results in transient transcription of pericentromeric repeats that will trigger RNAi and heterochromatin formation on both daughter strands. The activity of DNA polymerases and RNA polymerase II on the same template during S-phase requires both processes to be tightly correlated. Therefore, we hypothesized that RNAi may act more directly on polymerases, and discovered that RNAi releases RNA pol II from pericentromeric heterochromatin, as well as at several highly-transcribed euchromatic loci, tDNAs, and rDNA. This sheds new light on why certain specific RNA pol II mutants lose silencing in *S. pombe*, such as *rpb7-m203* (N44Y) and *rpb7-G150D*.

Finding an important role for RNAi at tDNAs and rDNA loci was one of the reasons that prompted us to investigate the response of RNAi mutants in quiescence. Indeed, we found that RNAi mutants have G0-entry defects and lose viability during quiescence maintenance. We found that RNAi releases RNA pol I from rDNA specifically in G0 (Fig 2ABC), and that the G0 defects of RNAi deletion mutants are suppressed by reducing RNA pol I binding (such as in a specific TBP mutant, *tpb1-D156Y*) or by destabilizing RNA pol I by deleting its non-essential subunit A12 (Fig 2D). Interestingly, mutants in equivalent subunits in RNA pol I (A12) and in RNA pol II (*rpb9 + TFIIH*) specifically suppress, respectively, RNAi quiescence defects and RNAi silencing defects. This strong parallel buttresses the proposition that RNAi proteins are indeed closely associated to RNA polymerase holocomplexes. Furthermore, the parallel role of A12 and TFIIH in polymerase back-tracking may indicate that in the absence of Dicer, this activity becomes detrimental. Pausing of RNA pol II during transcription termination results in polymerase back-tracking, and the 3' end of the RNA is targeted by the RNA exosome. Absence of TFIIH reduces the level of read-through, suggesting that TFIIH and the RNA exosome compete for the RNA 3' end and that in the absence of Dicer, the activity of the RNA exosome becomes essential. The fact that, in the case of RNA pol I, polymerase accumulation in Dicer mutants is not only seen at the 3'ETS region, but over the whole locus (rDNA promoter, 5'ETS and multiple sites in 18S, 5.8S and 28S), suggests that Dicer may play a role during elongation in G0 rather than only during termination.

One difference is that Dicer’s requirement in RNA pol II release from rDNA is independent of its catalytic activity and of Argonaute, while all RNAi proteins are required for RNA pol I release in G0, including Dicer’s catalytic activity. Whether this reflects a difference in different RNA polymerase compositions or cell cycle stage would be an interesting aspect to investigate. Presumably, Dicer acts on a RNA template; and the genetic requirement for catalytic activity and RNAi proteins in this novel mechanism also points to specific small RNAs (siRNAs) being involved. However, we have not found Dicer-dependent novel sRNAs in G0. What is the molecular target of Dicer in G0 cells? One possibility is that the RNA itself is targeted by Dicer, potentially in a torpedo-like mechanism as used by the RNase III Rnt1. In *Candida albicans*, the Dicer ortholog (although closer to the RNT1 family) cleaves the 28S rRNA at the 3'ETS and the 3' tail of U4 snRNA, but we did not detect signatures of this activity in our *S. pombe* sRNA-seq (and unpublished observations). Another possibility is that Dicer may act indirectly on the rRNA, potentially through single-cleavage of a specific non-coding RNA (ncRNA) in G0, in a manner reminiscent of pRNA-mediated rDNA silencing in mammals. Interestingly, the few genomic loci that are upregulated in Dicer mutants in G0 include several long ncRNAs of unknown function (unpublished observations); testing whether any of these ncRNAs plays any function in rDNA silencing is an important next step. Finally, similarly to its function controlling RNA pol I and RNA pol II, we hypothesize that RNAi may release RNA pol III through its C11 subunit at specific genomic loci.

Histone marks in cellular quiescence

Dicer mutants cause over-activation of the CLRC/Rik1 silencing complex at the rDNA resulting in unchecked accumulation of H3K9 methylation (Fig 2C). H3K9me causes cell death, as H3K9me mutants rescue RNAi mutants specifically in G0. In fact, our suppressor screen of G0 viability loss of *dcr1Δ* uncovered a large number of mutants involved in heterochromatin formation, and may potentially be used to uncover novel silencing factors. In addition to CLRC/Rik1 complex mutants (*rik1-V449G, rik1-K812*, *rik1-A875P, rik1-T942K, dcr4-R126*, *dcr4-C317F, dcr4-Y451*, *raf2-G37V*), we obtained Swi6_{HPI} mutants (*swi6-T278K, swi6-W293*). In *S. pombe*, the CLRC/Rik1 complex associates with DNA polymerase α (Cdc20) through its replication targeting subunit Raf2, and several *cdc20* mutants lose silencing; further, we uncovered a novel *cdc20-1* mutant required for Dicer mutant cells to enter G0 (unpublished observation). Proper regulation of H3K9me in G0 is important: wild-type cells show a physiologic increase of H3K9me at the rDNA to adjust the active/silent rDNA repeat ratio. Complete loss of H3K9me results in a mild defect in quiescence maintenance (although much milder than defects resulting from H3K9me over-accumulation).
Several other histone marks are thought to play an important role in quiescence maintenance, belonging to several classes: (i) marks to silence proliferation-genes, such as lack of histone H3 and H4 acetylation; (ii) bivalent marks at ‘poised’ genes, presumably for efficient G0-exit given the appropriate signal. Silencing marks cover a large part of the genome, and are thought to be an important factor in chromatin compaction, a hallmark of G0 cells in most organisms. In budding yeast, condensin, the H1-like Hho1 protein and H4K16 deacetylation are thought to participate in this process; several quiescence-specific transcription factors (Xbp1 and Sth3) have been shown to recruit the class I histone deacetylase (HDAC) Rpd3 to half of gene promoters, and to rDNA. However, Schizosaccharomyces spp. do not have Rpd3 orthologs but only the Clr6 and Hos2 lineages of class I HDACs, and their genomes do not encode H1 orthologs.

The contribution of condensin to G0 chromatin compaction has not yet been investigated in S. pombe. Quiescent naive T cells also display chromatin compaction by condensin. In budding yeast, condensin, the H1-like Hho1 protein and H4K16 acetylation are thought to participate in this process; several quiescence-specific transcription factors (Xbp1 and Sth3) have been shown to recruit the class I histone deacetylase (HDAC) Rpd3 to half of gene promoters, and to rDNA. However, Schizosaccharomyces spp. do not have Rpd3 orthologs but only the Clr6 and Hos2 lineages of class I HDACs, and their genomes do not encode H1 orthologs.

Figure 2. Model for the novel essential role for Dicer in RNA polymerase I release in G0. (A) In wild-type cycling cells, RNA pol I transcribes the rDNA repeats. (B) Wild-type G0 cells lower the recruitment of RNA pol I to rDNA, in part via phosphorylation of the Rrn3 initiation factor, shifting the ratio of active vs. silent rDNA repeats. Dicer contributes to RNA pol I release, although it is still unknown whether this occurs directly at the level of rRNA or via RNA pol I itself. (C) Dicer mutants in G0 are defective in RNA pol I release, resulting in accumulation of stalled RNA pol I, DNA damage, and the recruitment of the silencing CLRC/Rik1 complex at the repeat, causing a hyper-silencing of rDNA repeats via H3K9 methylation. (D) The Dicer defect is suppressed by mutants in the H3K9 methylation pathway (class 2: such as dcr1Δcir4Δ), by reducing RNA pol I transcription initiation (class 3: such as dcr1Δrpa12ΔD156Y), or by destabilizing RNA pol I itself (class 4: such as dcr1Δrpa12ΔΔ). (Note: class 1 suppressors are not represented, and concern chromosomal segregation during G0-entry).
important for lineage differentiation.146,147 \textit{S. cerevisiae} quiescent cells retain high levels of active marks such as H3K4me3, H3K36me3 and H3K79me3,148 and H3K36 methylation by ASH1/Trithorax is important for quiescence and self-renewal of haematopoietic stem cells.18 The contribution of these histone marks to quiescence maintenance has not yet been investigated in fission yeast.

An important question is whether specific novel histone marks are present during cellular quiescence. To our knowledge, this has not yet been investigated; while mass-spectrometry of histone post-translational modifications have allowed the identification of many novel marks of unknown function,149-153 including in primarily non-dividing tissues such as the mouse brain,154 such studies are usually conducted, in yeast, on growing cells.150,155,156 An alternative, complementary approach would be to generate a library of histone mutants157,158 to assay the effect of each aminoacid on viability specifically during cellular quiescence. Toward this goal, we have designed a system for mutating H3 in \textit{S. pombe},40 more physiological than previous systems159 and therefore amenable to G0 study as well as making partial loss-of-function mutants. This approach has the potential to uncover novel histone marks of biological interest.

\section*{Conclusion}

The importance of quiescence makes it likely not only that many molecular mechanisms will be discovered for its establishment and regulation, but also that many of these basic mechanisms may be evolutionarily conserved.36 Importantly, the essentiality of genes is usually determined using laboratory growth conditions, yet in nature, the prevalence of non-dividing states stresses the importance to identify genes essential specifically in quiescence (and genes essential for both growth and quiescence, often termed “super-housekeeping” genes73). Because of the reversible nature of quiescence and because it can be considered a kind of cellular differentiation, we think that epigenetic mechanisms may be key factors controlling maintenance of quiescence and rewiring its transcriptional program. Preliminary data suggests that indeed, other key chromatin genes are specifically essential in G0 in addition to key RNAi proteins80 (and unpublished observations). In fact, it is important to test familiar mechanisms in quiescence as it appears—as is the case with RNAi—that quiescence can uncover novel mechanisms and functions that are important or essential. This also applies for numerous genes that are apparently devoid of function. Indeed mutants affected in growth are not necessarily affected in quiescence and vice versa.73,86 Because of its advantages in studying cellular quiescence as well as in studying epigenetic pathways, we think that the fission yeast \textit{S. pombe} is poised to continue to be a model system of choice. Accordingly, a lot of resources for fission yeast G0 have been developed recently, such as the G0 transcriptome56,57 proteome,37 metabolome.64 Gene replacement in yeast also allows the use of molecular tools such as G0 over-expressing promoters,80,160 and G0-shut off systems.

Advances in fundamental research in cellular quiescence will have consequences in several fields relevant to human health, such as stem cell biology and cancer biology. For example, a strategy that has been successful in developing novel anti-cancer drugs is to identify negative epistasis (synthetic lethality) networks.161-163 Large-scale negative epistasis screens can be conducted on yeast before being tested on human cells, allowing more interactions to be tested164; importantly, there is good conservation of negative epistatic interactions. Using this type of approach to screen for synthetic lethality specific to quiescence would therefore be a promising approach to target quiescent cancer cells, an essential step toward effective treatment and avoiding relapse. We conclude that the investigation of cellular quiescence therefore opens not only a deeper understanding of fundamental biology, but also new avenues in medicine.

\section*{Disclosure of potential conflicts of interest}

No potential conflicts of interest were disclosed.

\section*{Acknowledgments}

We thank the \textit{S. pombe} community for discussion. We thank the \textit{S. pombe} database Pombase, as its resources are an important contribution to work in our laboratories. We apologize to authors whose work was not cited due to space constraints.

\section*{References}

\begin{enumerate}
\item Lewis DL, Gattie DK. The ecology of quiescent microbes. ASM News 1991; 57:27-32.
\item Finkel SE. Long-term survival during stationary phase: evolution and the GASP phenotype. Nat Rev Microbiol 2006; 4:113-20; PMID:16415927; https://dx.doi.org/10.1038/nrmicro1340
\item Rittershaus ES, Baek SH, Sassetti CM. The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 2013; 13:643-51; PMID:23768489; https://dx.doi.org/10.1016/j.chom.2013.05.012
\item Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol 1982; 8:313-23; PMID:24226049; https://dx.doi.org/10.1007/BF02010671
\item Roszak DB, Colwell RR. Survival strategies of bacteria in the natural environment. Microbiol Rev 1987; 51:365-79; PMID:3312987
\item Oliver JD. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 2010; 34:415-25; PMID:20059548; https://dx.doi.org/10.1111/j.1574-6976.2009.00200.x
\item Suda T, Ariai F, Hirao A. Hematopoietic stem cells and their niche. Trends Immunol 2005; 26:426-33; PMID:15979407; https://dx.doi.org/10.1016/j.it.2005.06.006
\item Glauche I, Moore K, Thielecke L, Horn K, Loefler M, Roeder I. Stem cell proliferation and quiescence—two side of the same coin. PLoS Comput Biol 2009; 5:e1000447; PMID:19629161; https://dx.doi.org/10.1371/journal.pcbi.1000447
\item Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 2013; 14:329-40; PMID:23698583; https://dx.doi.org/10.1038/nrm3591
\item Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, Doetsch F. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 2014; 82:545-59; PMID:24811379; https://dx.doi.org/10.1016/j.neuron.2014.02.039
\item Hija A, Salpeter S, Klocchendler A, Grimsby J, Brandeis M, Glaser B, Dor Y. G0-G1 transition and the restriction point in pancreatic β-cells in vivo. Diabetes 2014; 63:578-84; PMID:24130333; https://dx.doi.org/10.2337/db12-1035
\item Ohkrimenko A, Grön JR, Westendorf K, Fang Z, Reinke S, von Roth P, Wassilew G, Kühl AA, Kudernatsch R, Demski S, et al. Human memory T cells from the bone marrow are resting and maintain long-lasting
\end{enumerate}
systemic process. Proc Natl Acad Sci U S A 2014; 111(25):9229-34; PMID:24927527; https://doi.org/10.1073/pnas.1318731111

13. Peng T, Frank DB, Kadzik RS, Morley MP, Rathi KS, Wang T, Zhou S, Cheng L, Lu MM, Morrysee EE. Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration. Nature 2015; 526:578-82; PMID:2646454; https://doi.org/10.1038/nature14984

14. Runman M, Dhayan J. Quiescence in adult stem cells: biological significance and relevance to tissue regeneration. Stem Cells 2015; 33:2903-12; PMID:26075660; https://doi.org/10.1002/stem.2056

15. Thorén LA, Liuba K, Bryder D, Nygren JM, Jensen CT, Qian H, Antonacci I, Jacobsen SE. Kit regulates maintenance of quiescent hematopoietic stem cells. J Immunol 2008; 180:2045-53; PMID:18250409; https://doi.org/10.4049/jimmunol.180.4.2045

16. Chakkalakal JV, Jones KM, Basson MA, Brack AS. The aged niche disrupts muscle stem cell quiescence. Nature 2012; 490:355-60; PMID:23023126; https://doi.org/10.1038/nature13143

17. Rodgers JT, Rando TA. Sprouting a new take on stem cell aging. EMBO J 2012; 31:4103-5; PMID:23042560; https://doi.org/10.1038/emboj.2012.281

18. Rodgers JT, Chase J, Brinkmeier M, Xu J, Weinberg DN, Sciria J, Friedman A, Malek S, Grembecka J, Cierpicki T, et al. Ash1l controls quiescence and self-renewal maintenance in hematopoietic stem cells. J Clin Invest 2015; 125:2007-20; PMID:25866973; https://doi.org/10.1172/JCI78124

19. Cavalli V, Fidalco M, Pani G. Neural stem cell and neurons: poised between quiescence and exhaustion. Trends Endocrinol Metab 2016; 27:756-69; PMID:27387597; https://doi.org/10.1016/j.tem.2016.06.007

20. Yue F, Bi P, Wang C, Shan T, Nie Y, Ratliff TL, Gavin TP, Kuang S. Wang. Rapid disappearance of statin, a nonproliferating and senescent cell-specific protein, upon reentering the process of cell cycling. J Cell Biol 1985; 100:1695-701; PMID:3902853; https://doi.org/10.1083/jcb.100.4.1695

21. Allen C, Böttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Makedo, et al. Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 2006; 174:89-100; PMID:16818721; https://doi.org/10.1083/jcb.200508178

22. Coller HA, Sang L, Roberts JM. A new description of cellular quiescence entry and exit. Cell Biol 2011; 192:949-57; PMID:21402786; https://doi.org/10.1038/cjbc.201009028

23. Daiglen-Fornier B, Sagot I. Proliferation/quiescence: the controversial "aller-retour." Cell Div 2011; 6:10; PMID:21554667; https://doi.org/10.1186/1674-1078-6-10

24. Klosinska MM, Bäckhed F, Rabinowitz JD, Broach JR. Yeast cells can access distinct quiescent states. Genes Dev 2011; 25:336-49; PMID:21289062; https://doi.org/10.1101/gad.2011131

25. Cooper S. Reappraisal of serum starvation, the restriction point, G0, and G1 phase arrest points. FASEB J 2003; 17:333-40; PMID:12631573; https://doi.org/10.1096/fj.02-0352rev

26. Madhani H. From a to α: yeast as a model for cellular differentiation. Cold Spring Harbor Press, Cold Spring Harbor. 2007. Print

27. Thomas NS. Commitment point during G0 transition of quiescent stem cells from yeast stationary-phase cultures. J Cell Sci 2015; 128:4467–4477; PMID:26075660; https://doi.org/10.1002/jcb.20494

28. Ansari B, Dover R, Gillmore CP, Hall PA. Expression of the nuclear membrane protein statin in cycling cells. J Pathol 1993; 169:391-6; PMID:8501536; https://doi.org/10.1046/j.1476-5584.1993.d01-0352.x

29. Rahmanzadeh R, Huttman G, Per, Scholzen T. Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J Cell Physiol 2006; 206:624-35; PMID:16206250; https://doi.org/10.1002/jcp.20494

30. Man A, Malek S, Grembecka J, Cierpicki T, et al. Ash1l controls quiescence and self-renewal maintenance in hematopoietic stem cells. J Clin Invest 2015; 125:2007-20; PMID:25866973; https://doi.org/10.1172/JCI78124

31. Laporte D, De la Barra B, Ahsin A, Pinson B, Ceschin J, Daignain-Forner B, Sagot I. Metabolic status rather than cell cycle signals control quiescence entry and exit. J Cell Biol 2011; 192:949-57; PMID:21402786; https://doi.org/10.1038/cjbc.201009028
65. Garcìa-Rodas R, Zaragoza O. Catch me if you can: phagocytosis and killing avoidance by Cryptococcus neoformans. FEMS Immunol Med Microbiol 2012; 64:147-61; PMID:2209633; https://dx.doi.org/10.1111/j.1574-695X.2011.01087.x

66. Catto R, Bocca AL, Casadevall A. The intracellular life of Cryptococcus neoformans. Annu Rev Pathol 2014; 9:219-38; PMID:24050625; https://dx.doi.org/10.1146/annurev-pathol-021513-104653

67. Du H, Guan G, Li X, Gulati M, Tao L, Cao C, Johnson AD, Nobile CJ, Huang G. N-acetylglucosamine-induced cell death in Candida albicans and its implications for adaptive mechanisms of nutrient sensing in yeasts. MBio 2015; 6(6):e01376-15; PMID:26350972; https://dx.doi.org/10.1128/mBio.01376-15

68. Oliver JD, Bockian R. In vivo resuscitation, and virulence towards mice, of viable but non-culturable cells of Vibriorn vulnificus. Appl Environ Microbiol 1995; 61:2620-3; PMID:7618873

69. Li L, Mendis N, Trigiwi H, Oliver JD, Faucher SP. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 2014; 5:258; PMID:24917854; https://dx.doi.org/10.3389/fmicb.2014.00258

70. Ding T, Suo Y, Xiang Q, Zhao X, Chen S, Ye X, Liu D. Significance of viable but non-culturable Escherichia coli: induction, detection, and control. J Microbiol Biotechnol 2016; 27:417-28; PMID:27974728; https://dx.doi.org/10.4103/jmbl.1609.09063

71. Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M. "Sleeping beauty": quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2004; 68:187-206; PMID:15187181; https://dx.doi.org/10.1128/MMBR.68.2.187-206.2004

72. de Virgilio C. The essence of yeast quiescence. FEMS Microbiol Rev 2012; 36:306-39; PMID:21658086; https://dx.doi.org/10.1111/j.1574-6976.2011.00287.x

73. Sajiki K, HatanaKA M, Nakamura T, Takeda K, Shimankui M, Yoshihisa Y, Hayashi T, Nakaseko Y, Yanagida M. Genetic control of cellular quiescence in S. pombe. J Cell Sci 2009; 122:1418-29; PMID:19366728; https://dx.doi.org/10.1242/jcs.064646

74. Yao G. Modelling mammalian cellular quiescence. Interface Focus 2014; 4:20130074; PMID:24904737; https://dx.doi.org/10.1098/rsfs.2013.0074

75. Sun D, Buttitta L. Protein phosphatase 2A promotes the transition to G0 during terminal differentiation in Drosophila. Development 2015; 142:3033-45; PMID:26253406; https://dx.doi.org/10.1242/dev.120824

76. Guo Y, Fliegel K, Kumar J, McCoy DJ, Buttitta LA. Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells. Biol Open 2016; 5:1648-61; PMID:27737823; https://dx.doi.org/10.1242/bio.017525

77. Sajiki K, Pluskal T, Shimanuki M, Yanagida M. Specific markers for stochastic division patterns and starvation-induced quiescence in Saccharomyces cerevisiae. Front Microbiol 2014; 5:258; PMID:24917854; https://dx.doi.org/10.3389/fmicb.2014.00258

78. Sajiki K, Pluskal T, Shimankui M, Yanagida M. Metabolic control by target of rapamycin as a transcription factor. Cancer Res 2011; 71:4936-41; PMID:21593194; https://dx.doi.org/10.1158/1078-0432.CCR-10-4199

79. An Z, Tassa A, Thomas C, Zhong R, Xiao G, Fotedar R, Tu BP, Washburne M. Sleeping beauty: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2004; 68:187-206; PMID:15187181; https://dx.doi.org/10.1128/MMBR.68.2.187-206.2004

80. Roche B, Arcangioli B, Martienssen RA. RNA interference is essential for the transition from cell cycle to quiescence in budding yeast. PLoS Biol 2010; 8:e1000284; PMID:20087409; https://dx.doi.org/10.1371/journal.pbio.1000284

81. Pluskal T, Hayashi T, Saitoh S, Fujisawa A, Yanagida M. Metabolomic analysis of quiescent and proliferating cells of the fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 2012; 151:671-83; PMID:23101633; https://dx.doi.org/10.1016/j.cell.2012.09.019

82. O'Farrell PH. Quiescence: early evolutionary origins and universality do not imply uniformity. Philos Trans R Soc Lond B Sci 2011; 366:349-70; PMID:21552757; https://dx.doi.org/10.1111/j.1365-2443.2010.04148.x

83. Marinkova M, Chung SY, Chikashige Y, Kawasaki Y, Uehara L, Tsutsumi DE, Lowndes NF, Wittenberg C. Repression of G1/S transcription is mediated via interaction of the G1/S motifs of Nrm1 and Whi5 with Scrib. Mol Cell Biol 2013; 33:1476-86; PMID:23382076; https://dx.doi.org/10.1002/mcb.201333-12

84. Kim KH, Sederstrom JM. Assaying cell cycle status using flow cytometry. Curr Protoc Mol Biol 2015; 111:28.1-1.11; PMID:26131851; https://dx.doi.org/10.1002/0471142727.mb2806s111

85. Sun A, Bagella L, Tutton S, Romano G, Giordano A. From G0 to S phase: a view of the roles played by the retinoblastoma (Rb) family members in the Rb-E2F pathway. J Cell Biochem 2007; 102:1400-4; PMID:17979151; https://dx.doi.org/10.1002/jcb.21609

86. Dai J, Miller MA, Everetts NJ, You L. A bistable Rb-E2F switch underlies the restriction point. Nat Cell Biol 2008; 10:476-82; PMID:18364697; https://dx.doi.org/10.1038/ncl.201111
Autophagy 2014; 10:1702-11; PMID:25126732; https://dx.doi.org/10.1016/j.autophag.2011.06.011

86. Sidery T, Rallis C, Bitton DA, Lages BM, Suo F, Rodríguez-López M, Du LL, Bühler J. Parallel profiling of fission yeast deletion mutants for proliferation and for lifespan during long-term quiescence. G3 (Bethesda) 2014; 5:145-55; PMID:25452419; https://dx.doi.org/10.1534/g3.114.014115

87. Müller M, Schmidt O, Angelova M, Fasera K, Weys S, Kremser L, Pfaffnimmer T, Dalik T, Kraft C, Trajanosić Z, et al. The coordinated action of the MVBP pathway and autophagy ensures cell survival during starvation. Elife 2015; 4:e07736; PMID:25902403; https://dx.doi.org/10.7554/eLife.07736

88. Huang H, Kawamata T, Horie T, Tsugawa H, Nakayama Y, Ohsumi M, Chibnall AM, Wells DN, Oback B. Quiescence loosens epigenetic silencing through replication-dependent histone H3 lysine-9 methylation by RNAi. Science 2002; 297:1833-7; PMID:12193640; https://dx.doi.org/10.1126/science.1074973

89. Castel SE, Martienssen RA. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 2013; 14:100-12; PMID:23329111; https://dx.doi.org/10.1038/nrg3355

90. Volpe TA, Schramke V, Hamilton GL, White SA, Teng G, Martienssen RA, Allshire RC. RNA interference is required for normal centromere function in fission yeast. Chromosome Res 2003; 11:137-46; PMID:12733640; https://dx.doi.org/10.1023/A:10228159 31524

91. Castell P, Agata A, Hara M, Noma K, Tegner R. Regulation of heterochromatin silencing and histone H3 lysine-9 methylation by RNAi. Science 2002; 297:1833-7; PMID:12193640; https://dx.doi.org/10.1126/science.1074973

92. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 2013; 14:100-12; PMID:23329111; https://dx.doi.org/10.1038/nrg3355

93. Laporte D, Courtout F, Pinson B, Dompierre J, Salin B, Brocard L, Ceschin J, Sagot I. An array of nuclear microtubules reorganizes the budding yeast nucleus during quiescence. J Cell Biol 2013; 203:585-94; PMID:14147429; https://dx.doi.org/10.1083/jcb.201306075

94. Laporte D, Courtout F, Pinson B, Dompierre J, Salin B, Brocard L, Sagot I. A stable microtubule array drives fission yeast cell polarity reestablishment upon quiescence exit. J Cell Biol 2015; 210:99-113; PMID:26124291; https://dx.doi.org/10.1083/jcb.201502025

95. Mochida S, Yanagida M. Distinct modes of DNA damage response in S. pombe G0 and vegetative cells. Genes Cells 2006; 11:13-17; PMID:16793793; https://dx.doi.org/10.1046/j.1365-2463.2005.00917.x

96. Gangloff S, Arcangioli B. DNA repair and mutations during quiescence in yeast. FEMS Yeast Res 2017; PMID:28087675; https://dx.doi.org/10.1080/10409238.2016.1230087

97. Kim N, Jinks-Robertson S. Transcription as a source of genomic instability and decay of the primary structure of DNA. J Cell Physiol 2003; 194:450-9; PMID:12692871; https://dx.doi.org/10.1002/jcb.10425

98. Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993; 362:709-15; PMID:8469282; https://dx.doi.org/10.1038/362709a0

99. Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S, Sobotta MC, Moehrle B, Brooks D, Bayindir I, Kaschutning P, et al. Exit from dormancy provokes DNA damage-induced attrition in haematopoietic stem cells. Nature 2015; 520:549-52; PMID:25707806; https://dx.doi.org/10.1038/nature14131

100. Ben Hassine S, Arcangioli B. Tdp1 protects against oxidative DNA damage in non-dividing fission yeast. EMBO J 2009; 28:632-40; PMID:19197239; https://dx.doi.org/10.1038/emboj.2009.9

101. Campbell KH, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature 1996; 380:64-6; PMID:8598906; https://dx.doi.org/10.1038/38064a0

102. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385:810-3; PMID:9039911; https://dx.doi.org/10.1038/385810a0

103. Kallinger P, Turner PM, Eichenlaub MP, Green AL, Oback FC, Chibnall AM, Wells DN, Oback B. Quiescence loosens epigenetic constraints in bovine somatic cells and improves their reprogrammation into totipotency. Biol Reprod 2016; 95:16; PMID:27281704; https://dx.doi.org/10.1093/biolreprod.115.137109

104. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA. Regulation of heterochromatin silencing and histone H3 lysine-9 methylation by RNAi. Science 2002; 297:1833-7; PMID:12193640; https://dx.doi.org/10.1126/science.1074973
polynucleotide I. Nucleic Acids Res 2011; 39:1439-48; PMID:20972219; https://dx.doi.org/10.1093/nar/gkq894

121. Bernstein DA, Vyas VK, Fink GR. Genes come and go: the evolution- ary pathway of budding yeast R Nas III enzymes. RNA Biol 2012; 9:1123-8; PMID:23018782; https://dx.doi.org/10.4161/rna.21360

122. Bernstein DA, Vyas VK, Weinberg DE, Drinnenberg IJ, Bartel DP, PMID:24766807; https://dx.doi.org/10.1016/j.embc.2014.03.032

123. Bierhoff H, Dammert MA, Dambacher D, Dambacher S, Schotta G, PMID:22173636; https://dx.doi.org/10.1073/ pnas.1118859109

124. Bierhoff H, Dammert MA, Brooks D, Dambacher S, Schotta G, PMID:21502405; https://dx.doi.org/10.1016/j.sjpb.2010.05.060

125. Bierhoff H, Dammert MA, Brooks D, Dambacher S, Schotta G, PMID:24440945; https://dx.doi.org/10.4161/rna.27448

126. Li F, Martienssen R, Cande WZ. Coordination of DNA replication
127. Gonzalez M, Li F. DNA replication, RNAi and epigenetic inheri-
128. Schotta G, PMID:21502405; https://dx.doi.org/10.1016/j.sjpb.2010.05.060

129. Bierhoff H, Dammert MA, Brooks D, Dambacher S, Schotta G, PMID:21502405; https://dx.doi.org/10.1016/j.sjpb.2010.05.060

130. Schotta G, PMID:21502405; https://dx.doi.org/10.1016/j.sjpb.2010.05.060

131. Bernstein DA, Vyas VK, Weinberg DE, Drinnenberg IJ, Bartel DP, PMID:24766807; https://dx.doi.org/10.1016/j.embc.2014.03.032

132. Bierhoff H, Dammert MA, Brooks D, Dambacher S, Schotta G, PMID:22173636; https://dx.doi.org/10.1073/ pnas.1118859109

133. Wehner S, Dörrich AK, Ciba P, Wilde A, Marz M. pRNA: NoRC- associated RNA of rRNA operons. RNA Biol 2014; 11:3-9; PMID:24440945; https://dx.doi.org/10.4161/rna.27448

134. McKnight JN, Boerma JW, Breeden LL, Tsukiyama T. Global pro-
135. Sandmeier JJ, French S, Osheimer Y, Cheung WL, Gallo CM, Beyer AL, PMID:21502405; https://dx.doi.org/10.1016/j.sjpb.2010.05.060

136. Sandmeier JJ, French S, Osheimer Y, Cheung WL, Gallo CM, Beyer AL, PMID:21502405; https://dx.doi.org/10.1016/j.sjpb.2010.05.060

137. Bernstein DA, Vyas VK, Fink GR. Genes come and go: the evolution-
138. Rawlings JS, Gatzka M, Thomas PG, Ilie JN. Chromatin condensa-
139. Boonsanay V, Zhang T, Georgieva A, Kostin S, Qi H, Yuan X, Zhou Y, Braun T. Regulation of skeletal muscle stem cell quiescence by Surv-
140. Evertts AG, Manning AL, Wang X, Dyson NJ, Garcia BA, Coller HA. H4K20 methylation regulates quiescence and chromatin compaction. Mol Biol Cell 2013; 24:3025-37; PMID:23924899; https://dx.doi.org/10.1091/mcb.E12-07-0529

141. Dai L, Ye S, Li HW, Chen DF, Wang HL, Jia SN, Lin C, Yang JS, Yang F, Nagasawa H, et al. SETD4 regulates cell quiescence and catalyzes the trimethylation of H4K20 during diapause formation of Artemia. Mol Cell Biol 2017; 37:7 e00453-16; PMID:28031330; https://dx.doi.org/10.1128/MCB.00453-16

142. Svensson JP, Shukla M, Menendez-Benito V, Norman-Alexsson U, Audergon P, Sinha I, Tanny JC, Allshire RC, Eckwall K. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methyla-
143. Sanders SL, Portoso M, Mata J, Bähler J, Allshire RC, Kozarides T. Methylation of histone h4 lysing 20 controls recruitment of Cbr2 to sites of DNA damage. Cell 2004; 119:603-14; PMID:15550243; https://dx.doi.org/10.1016/j.cell.2004.11.009

144. Yang W, Reddy B, Thompson J, Wang H, Noma K, Yates JR, 3rd, Jia S. Regulation of Set9-mediated H4K20 methylation by a PWWP domain protein. Mol Cell 2009; 33:428-37; PMID:19250904; https://dx.doi.org/10.1016/j.molcel.2009.02.002

145. Joh RI, Khanduja JS, Calvo IA, Mishry M, Palmieri CM, Savol AJ, Ho Sui SJ, Sadreyev RI, Aryee MJ, Motamed M. Survival in quiescence requires the euchromatin deployment of Ctr4/SUV39H by Argo-
146. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006; 125:315-26; PMID:16630819; https://dx.doi.org/10.1016/j.cell.2006.02.041

147. Liu L, Cheung TH, Charville GW, Hurgo BM, Leavitt T, Shih JI, Brunet A, Rando TA. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep 2013; 4:189-204; PMID:23810552; https://dx.doi.org/10.1016/j.celrep.2013.05.043

148. Young CP, Hillyer C, Hokamp K, Fitzpatrick DJ, Konstantinov NK, Welty JS, Ness SA, Werner-Washburne M, Fleming AB, Osley MA. Distinct histone methylation and transcription profiles are estab-
lished during the development of cellular quiescence in yeast. BMC Genomics 2017; 18:107; PMID:28122508; https://dx.doi.org/10.1186/ s12864-017-3509-9

149. Brumbaugh J, Phanstiel D, Coon JJ. Unraveling the histone’s potential: a proteomics perspective. Epigenetics 2008; 3:254-7; PMID:18849650; https://dx.doi.org/10.4161/epi.3.5.7005

150. Zhang K, Chen Y, Zhang Z, Zhao Y. Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. J Proteome Res 2008; 8:900-6; PMID:19113941; https://dx.doi.org/10.1021/pr8005155

151. Arnaudo AM, Garcia BA. Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin 2013; 6:24; PMID:23916506; https://dx.doi.org/10.1186/1756-8935-6-24

152. Xu YM, Du JY, Lau AT. Posttranslational modifications of human his-
tone H3; an update. Proteomics 2014; 14:2047-60; PMID:25044606; https://dx.doi.org/10.1002/pmc.20300435

153. Zhao Y, Garcia BA. Comprehensive catalog of currently documented his-
tone modifications. Cold Spring Harb Perspect Biol 2015; 7:a025064; PMID:26330253; https://dx.doi.org/10.1101/cshperspect.a025064

154. Zhou M, Paiva-Tolico L, Stenoien DL. Profiling of histone post-transla-
tional modifications in mouse brain with high-resolution top-down
mass spectrometry. J Proteome Res 2017; 16:599-608; PMID:28001079; https://dx.doi.org/10.1021/acs.jproteome.6b00694

155. Inha I, Buchanan L, Ronnerblad M, Bonilla C, Durand-Dubief M, Shevchenko A, Grunstein M, Stewart AF, Ekwall K. Genome-wide mapping of histone modifications and mass spectrometry reveal H4 acetylation bias and H3K36 methylation at gene promoters in fission yeast. Epigenomics 2010; 2:377-93; PMID:22121899; https://dx.doi.org/10.2217/epi.10.18

156. Mews P, Zee BM, Liu S, Donahue G, Garcia BA, Berger SL. Histone methylation has dynamics distinct from those of histone acetylation in cell cycle reentry from quiescence. Mol Cell Biol 2014; 34:3968-80; PMID:25154414; https://dx.doi.org/10.1128/ MCB.00763-14

157. Matsubara K, Sano N, Umehara T, Horikoshi M. Global analysis of functional surfaces of core histones with comprehensive point mutants. Genes Cells 2007; 12:13-33; PMID:17212652; https://dx. doi.org/10.1111/j.1365-2443.2007.01031.x

158. Kawashima S, Nakabayashi Y, Matsubara K, Sano N, Enomoto T, Tanaka K, Seki M, Horikoshi M. Global analysis of core histones reveals nucleosomal surfaces required for chromosome bi-orientation. EMBO J 2011; 30:3353-67; PMID:21772248; https://dx.doi.org/10.1038/emboj.2011.241

159. Mellone BG, Ball L, Suka N, Grunstein MR, Partridge JF, Allshire RC. Centromere silencing and function in fission yeast is governed by the amino terminus of histone H3. Curr Biol 2003; 13:1748-57; PMID:14561399; https://doi.org/10.1016/j.cub.2003.09.031

160. Watt S, Mata J, López-Maury L, Marguerat S, Burns G, Bähler J. urgl: a uracil-regulatable promoter system for fission yeast with short induction and repression times. PLoS One 2008; 3:e1428; PMID:18197241; https://dx.doi.org/10.1371/journal.pone.0001428

161. Chan DA, Giaccia AJ. Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 2011; 10:351-64; PMID:21532565; https://dx.doi.org/10.1038/nrd3374

162. Weidle UH, Maisel D, Eick D. Synthetic lethality-based targets for discovery of new cancer therapeutics. Cancer Genomics Proteomics 2011; 8:159-71; PMID:21737609

163. Thompson JM, Nguyen QH, Singh M, Razorenova OV. Approaches to identifying synthetic lethal interactions in cancer. Yale J Biol Med 2015; 88:145-55; PMID:26029013

164. Srivas R, Shen JP, Yang CC, Sun SM, Li J, Gross AM, Jensen J, Licon K, Bojorgez-Gomez A, Klepper K, et al. A network of conserved synthetic lethal interactions for exploration of precision cancer therapy. Mol Cell 2016; 63:514-25; PMID:27453043; https://dx.doi.org/10.1016/j.molcel.2016.06.022