Cell culture: complications due to mechanical release of ATP and activation of purinoceptors

Geoffrey Burnstock1,2 · Gillian E. Knight1

Received: 20 February 2017 / Accepted: 21 March 2017 / Published online: 22 April 2017
© The Author(s) 2017. This article is an open access publication

Abstract There is abundant evidence that ATP (adenosine 5’-triphosphate) is released from a variety of cultured cells in response to mechanical stimulation. The release mechanism involved appears to be a combination of vesicular exocytosis and connexin and pannexin hemichannels. Purinergic receptors on cultured cells mediate both short-term purinergic signalling of secretion and long-term (trophic) signalling such as proliferation, migration, differentiation and apoptosis. We aim in this review to bring to the attention of non-purinergic researchers using tissue culture that the release of ATP in response to mechanical stress evoked by the unavoidable movement of the cells acting on functional purinergic receptors on the culture cells is likely to complicate the interpretation of their data.

Keywords P1 receptors · P2 receptors · Purinoceptor · Shear stress · Ectonucleotidases

Introduction

While it was recognised early that ATP (adenosine 5’-triphosphate) is released from damaged or dying cells, it was shown more recently that gentle mechanical perturbation, such as shear stress, membrane stretch and hypo-osmotic cell swelling, leads to release of ATP from most cell types (Bodin and Burnstock 2001; Bodin et al. 1991; Chaudry 1982; Dolovcak et al. 2011; Forrester 1972; Grygorczyk and Guyot 2001; Milner et al. 1990, 1992; Praetorius and Leipziger 2009, 2010; Sperlágh et al. 2007; Wang et al. 1996). In the outstanding review by Lazarowski et al. (2011), it was stated that “P2Y receptor expression-dependent formation of second messengers was noted in cultured cells subjected to mechanical stress, for example medium displacement or cell wash (Filtz et al. 1994; Lazarowski et al. 1995; Parr et al. 1994). A vast number of studies have followed, illustrating that nonlytic release of ATP occurred in practically every cell type subjected to physical stresses, such as flow resulting in shear stress, hydrostatic pressure, osmotic swelling or shrinking, compressive stress, mechanical loading, plasma membrane stretch, hypoxia and cell swelling” performed during routine experimental procedures, such as cell rinsing and medium changes. It is unlikely that ATP release caused by gentle mechanical stimulation arises from cell damage, for example mechanical stimulated ATP release occurs without associated membrane conductive changes (Hamill and Martinac 2001). Many novel assays (or sensors) have been developed.
to detect ATP release from cells, including luciferin–luciferase bioluminescence and atomic force microscopy (see Dale and Frenguelli 2012; Furuya et al. 2014; Khlyntseva et al. 2009; Praetorious and Leipziger 2009).

The mechanisms responsible for the transport of ATP from cells have been a matter of intense debate. For most cell types, it appears to be a combination of vesicular exocytosis and connexin or pannexin hemichannels (Dahl 2015; Dubyak 2007; Lazarski et al. 2011; Li et al. 2011; Lohman and Isakson 2014; Novak 2003; Scemes et al. 2009; Spray et al. 2006), although for some cells ATP-binding cassette transporters or maxi ion channels have been claimed (Sabirov and Okada 2005). It has also been proposed that P2X7 receptors may mediate ATP release (Pellegratti et al. 2005; Suadicani et al. 2006). A vesicular nucleotide transporter has been identified (Sawada et al. 2008).

ATP released from cells is rapidly broken down by ectonucleotidases to adenosine (see Cardoso et al. 2015; Yegutkin 2008; Zimmermann 2006) but both ATP and adenosine will have functional effects on the cells via P1, P2X and P2Y receptors (see Corriden and Insel 2010).

Two purinoceptor families were recognised in 1978, namely P1 (adenosine) and P2 (nucleotide) receptors (Burnstock 1978). Purinoceptor subtypes were cloned and characterised in the early 1990s, consisting in 4 P1 G protein-coupled receptor subtypes, 7 P2X ion channel receptor subtypes and 8 P2Y G protein-coupled receptor subtypes (see Burnstock 2007; Ralevic and Burnstock 1998).

Release of ATP from cultured cells in response to mechanical stimulation

A comprehensive summary is shown in Table 1.

Function of purinergic receptors on cultured cells in response to released ATP

A comprehensive review of the functional expression of P2 receptors on a wide range of cell types is available (Burnstock and Knight 2004). Some examples follow. ATP released from retinal epithelial cells acts via P2 receptors to increase the rate of fluid transport or decrease phagocytosis (Mitchell 2001) and regulate neural retinal progenitor cell proliferation (Pearson et al. 2005). ATP released by osteoblasts inhibits bone mineralisation (Orriss et al. 2013). Stretch-released ATP from fibroblasts results in cell proliferation (Wang et al. 2005). ATP released from astrocytes mediates glial calcium waves (Guthrie et al. 1999). ATP released from endothelial cells by shear stress acts on endothelial P2 receptors to release nitric oxide resulting in vasodilatation (Burnstock and Ralevic 2014).

Mechanically-induced Ca2+ waves have been observed in a variety of cells, including chondrocytes (D’Andrea and Vittur 1996), airways epithelial cells (Boitano et al. 1994; Hansen et al. 1993; Sanderson et al. 1990), glial cells, including Müller cells (Charles et al. 1991, 1992, 1993; Newman 2001), keratinocytes (Koizumi et al. 2004), endothelial cells (Demer et al. 1993), T cells (Wang et al. 2014), mast cells (Osipchuk and Cahalan 1992) and others (see Leybaert and Sanderson 2012). It is likely that they are due to the activation of purinergic receptors by ATP released from the mechanically stimulated cells, mainly via P2Y\textsubscript{1} and P2Y\textsubscript{4} receptors (Frame and de Feijter 1997; Gallagher and Salter 2003; Stamatakis and Mantzaris 2006). Calcium waves are a dynamic intracellular signalling mechanism that allows spatio-temporal information to be rapidly propagated in tissues. ATP released at sites of cell stress signals danger to the immune system.

Conclusion: need for re-interpretation of data derived from cell culture experiments

Release of ATP from cultured cells is unavoidable, due to gentle mechanical stimulation. The released ATP acts on purinoceptors expressed by these cells, which mediate both secretion and trophic events, such as cell proliferation, differentiation, death and migration. These events mean that interpreting results from experiments based on tissue culture need to take into account the effects of released ATP and its actions on purinoceptors.
Cell type	Stimulus	References
Vascular endothelial cells	Shear stress	Bodin et al. 1991, Li et al. 2015, Milner et al. 1990, 1992, Xiang et al. 2007, Yamamoto et al. 2011, Shinozuka et al. 2001, Hamada et al. 1998
	Hypotonic stress	Hisadome et al. 2002, Oike et al. 2000, Shinozuka et al. 2001
Airways		
Lung epithelial cells	Stretch	Ramsingh et al. 2011, Zhang et al. 2014, Guyot and Hanrahan 2002, Homolya et al. 2000, Okada et al. 2006, Ransford et al. 2009, Seminario-Vidal et al. 2011
	Mechanical stress	Hamada et al. 1998
Nasal epithelial cells	Mechanical stimulation	Watt et al. 1998
Tracheal epithelial cells	Hypotonic stress	Kawakami et al. 2004
Eye		
Retinal ganglion cells	Swelling	Xia et al. 2012, Xi et al. 2012
Retinal pigment cells	Mechanical stretch	Eldred et al. 2003, Mitchell 2001, Reigada and Mitchell 2005
Retinal glial (Müller) cells	Hypo-osmotic swelling	Brückner et al. 2012, Voigt et al. 2015, Li et al. 2010, Mitchell et al. 1998, Luna et al. 2009, Li et al. 2011, 2012, Gomes et al. 2005
Lens	Hypertonic stress	Eldred et al. 2003
Ciliary epithelial cells	Hypotonic stress	Li et al. 2010, Mitchell et al. 1998, Luna et al. 2009, Li et al. 2011, 2012, Gomes et al. 2005
Trabecular meshwork cells	Mechanical stress	Swelling
Corneal endothelial cells	Mechanical stimulation	
Liver		
Hepatocytes	Hypotonic cell swelling	Pafundo et al. 2008, Roman et al. 1999, Sathe et al. 2011, Woo et al. 2008, 2010, Darby et al. 2003
Biliary epithelium (cholangiocytes)	Hypotonic cell swelling	
	Shear stress	
Glial cells	Hypotonic cell swelling	Beckel et al. 2014, Darby et al. 2003

Table 1 (continued)

Cell type	Stimulus	References
Astrocytoma cells	Hypotonic stress	Blum et al. 2010, Joseph et al. 2003, Bennett et al. 2008
Microglia	Mechanical stimulation	
Bladder urothelial cells	Stretch	Mansfield and Hughes 2014, Sun and Chai 2002, Sun et al. 2001
Eye		
Retinal ganglion cells		
Retinal pigment cells		
Retinal glial (Müller) cells		
Lens		
Ciliary epithelial cells		
Trabecular meshwork cells		
Corneal endothelial cells		
Liver		
Osteoblastic cells	Mechanical stress	Hecht et al. 2013, Romanello et al. 2001, 2005, Gardinier et al. 2014, Genetos et al. 2005, Rumney et al. 2012, Xing et al. 2014

References:
- Bodin et al. 1991
- Li et al. 2015
- Milner et al. 1990, 1992
- Xiang et al. 2007
- Yamamoto et al. 2011
- Hisadome et al. 2002
- Oike et al. 2000
- Shinozuka et al. 2001
- Hamada et al. 1998
- Ramsingh et al. 2011
- Zhang et al. 2014
- Guyot and Hanrahan 2002
- Homolya et al. 2000
- Okada et al. 2006
- Ransford et al. 2009
- Seminario-Vidal et al. 2011
- Watt et al. 1998
- Wang et al. 1998
- Zhang et al. 2014
- Liu et al. 2008
- Beckel et al. 2014
- Lee et al. 2015
- Stout et al. 2002
- Zhang et al. 2008
- Blum et al. 2010
- Joseph et al. 2003
- Bennett et al. 2008
- Mansfield and Hughes 2014
- Sun and Chai 2002
- Sun et al. 2001
- McClatchie and Fry 2015
- Birder et al. 2003
- Hamada et al. 1998
- Takahara et al. 2014
- Kim and Woo 2015
- Oishi et al. 2012
- Dutta et al. 2004, 2008
- Grierson and Meldolesi 1995
- Funuya et al. 2005, 2014
- Murata et al. 2014
- Boudreault and Grygorczyk 2002, 2004
- Lu et al. 2012
- Riddle et al. 2007
- Ito et al. 2014
- Luckprome et al. 2010, 2011
- Wongkhanteew et al. 2008
- Hecht et al. 2013
- Romanello et al. 2001, 2005
- Gardinier et al. 2014
- Genetos et al. 2005
- Rumney et al. 2012
- Xing et al. 2014
| Cell type | Stimulus | References |
|---------------------------|-----------------------------------|-----------------------------------|
| Intervertebral disc | Vibratory stimulation | Yamazaki et al. 2003 |
| annulus cells | Hypotonic challenge | Rosenthal et al. 2013 |
| Chondrocytes | Mechanical stress | Graff et al. 2000 |
| | | Kono et al. 2006 |
| | | Millward-Sadler et al. 2004 |
| MLO-Y4 osteocytes | Mechanical loading by fluid flow | Genetos et al. 2007 |
| | Focal-force stimulation | Wu et al. 2013 |
| | Mechanical stimulation | Kringelbach et al. 2015 |
| | Membrane stretch | Thompson et al. 2011 |
| Immune cells | Jurkat T lymphocytes | Loomis et al. 2003 |
| | Hypertonic stress | Woehrle et al. 2010 |
| | | Yip et al. 2007 |
| | Mechanical stress | Loomis et al. 2003 |
| | Shockwaves | Weih et al. 2014 |
| | Osmotic stress | Yu et al. 2010 |
| | B lymphoblasts | Sakowicz-Burkiewicz et al. 2010 |
| | Slow motion | |
| Neutrophils | Hypertonic stress | Chen et al. 2004, 2015 |
| Mast cells | Hypo-osmotic stress | Wang et al. 2013 |
| Macrophages | Hypotonic stress | Burow et al. 2015 |
| Tumour cells | Prostate cancer cells | Nandigama et al. 2006 |
| | Hypotonic stress | Sauer et al. 2000 |
| | Mechanical stress | Dolovack et al. 2011 |
| | | Espelt et al. 2013 |
| | | Feranchak et al. 2010 |
| | | Wang et al. 1996 |
| | | Gatof et al. 2004 |
| Cholangiocarcinoma | Hypotonic cell swelling | Roman et al. 1999 |
| | | |
| Lung epithelial carcinoma| Hypotonic shock | Seminario-Vidal et al. 2011 |
| (A549) cells | | Tatur et al. 2008 |
| | Stretch | Ramsingh et al. 2011 |
| Mammary carcinoma (C127) | Hypotonic challenge | Grygorczyk et al. 2013 |
| cells | Mechanical stress | Hazama et al. 2000 |
| Ehrlich ascites tumour | Mechanical stress | Sabirov et al. 2001 |
| cells | | Pedersen et al. 1999 |
| Ovarian carcinoma (SKOV-3)| Mechanical stimulation | Vázquez-Cuevas et al. 2014 |
| cells | Hypotonic challenge | Islam et al. 2012 |
| L929 fibrosarcoma cells | | |

Table 1 (continued)

Cell type	Stimulus	References
Skin	Adipose tissue-derived stem cells	Shock wave treatment
	Keratinocyte cell lines	Air stimulated
Pancreas	Acinar cells	Mechanical stimulation
	Duct cells	Mechanical & hypotonic stress
Gut	Epithelial cell lines	Hypotonic challenge
	Submandibular gland	Mechanical stimulation
Kidney	Collecting duct epithelial cells	Mechanical stimulation
	A6 distal nephron epithelial cells	Mechanical stretch
	Hypotonic treatment	Gheorghiu and Van Driessche 2004
		Jans et al. 2002
		Silva and Garvin 2008
		Prætortius et al. 2005
		Rodat-Despoix et al. 2013
	Epithelia from cysts of polycystic	Hypotonic challenge
Blood cells	Erythrocytes	
	Platelets	Hypotonic stretch
	Leukocytes	

© Springer
Table 2 Purinergic receptor expression in cultured cells (references in Table 1)

Cell type	Receptors expressed
Vascular endothelial cells	P2X4, P2X5, P2X7
Airways	
Lung epithelial cells	P2X4, P2X5
Nasal epithelial cells	P2X4, P2X7
Tracheal epithelial cells	P2X4, P2X7
Eye	
Retinal ganglion cells	P2X2-7
Retinal pigment cells	P2X2, P2X3, P2X7
Retinal glial (Müller) cells	P2X7
Lens	P2X1, P2X4
Ciliary epithelial cells	P2X2, P2X3, P2X7
Trabecular meshwork cells	P2X1, P2X7
Corneal endothelial cells	P2X4-7
Liver	
Hepatocytes	P2X4, P2X7
Biliary epithelium (cholangiocytes)	P2X4
Glial cells	
Astrocytes	P2X4, P2X7
Astrocytoma cells	P2X7
Microglia	P2X4, P2X7
Bladder urothelial cells	P2X2, P2X3, P2X4
Muscle	
Vascular smooth muscle	P2X1, P2X2, P2X4
Bladder smooth muscle	P2X1, P2X2
Cardiomyoctes	P2X1,3,4,5,6 and 7
Fibroblasts	P2X7
Cardiac fibroblasts	P2X4, P2X7
Bone	
Bone marrow stromal cells	P2X7
Periodontal ligament	P2X1-7
Osteoblastic cells	P2X4, P2X7
Intervertebral disc annulus cells	P2X1,3,4,5,6 and 7
Chondrocytes	P2X1,3,4,5 and 7
MLO-Y4 osteocytes	P2X1,2,3,4 and 7
Immune cells	
Jurkat T lymphocytes	P2X1,4,5 and 7
B lymphoblasts	P2X1, P2X4, P2X7
Neutrophils	P2X1, P2X4, P2X7
Mast cells	P2X7
Macrophages	P2X7
Tumour cells	
Table 2 (continued)

Cell type	Receptors expressed		
	P2X	P2Y	P1
Prostate cancer cells	P2X4-7	P2Y_{1,2,6} and 11	A_{1,2A,2B, A3}
Hepatoma cells		P2Y_{1,2,4,6} and 13	A_{2A,2B, A3}
Cholangiocarcinoma		P2Y_{5}	
Lung epithelial carcinoma (A549) cells	P2X4-7	P2Y_{2,4,6}, P2Y_{6}	A_{2A,2B, A3}
Mammary carcinoma cells	P2X7	P2Y_{1}	A_{1,2A, A3}
Ehrlich ascites tumour cells	P2Y_{1,2}, P2Y_{5}		
Ovarian carcinoma (SKOV-3) cells	P2X7	P2Y_{2,6}	
L929 fibrosarcoma cells	P2X7		
Skin		P2X2,3,5 and 7	P2Y_{1,2,4,6} and 11
Keratinocyte cell lines			
Pancreas			
Acinar cells	P2X12,3,4,6 and 7	P2Y_{1,2,4,11,12,13} and 14	A_{1,2A,2B, A3}
Duct cells	P2X1,2,4,5,6 and 7	P2Y_{1,2,4,11,12,13} and 14	A_{1,2A,2B, A3}
Xenopus oocytes	P2X4	P2Y_{2-like}	Atypical A_{1}
Stem cells			
Mesenchymal stem cells	P2X4,5,6 and 7	P2Y_{1,2,4,11,13} and 14	A_{1,2A,2B}
Gut			
Epithelial cell lines	P2X7	P2Y_{2,6}	A_{2A,2B}
Salivary glands			
Submandibular gland	P2X1-7	P2Y_{1,2}	
Kidney			
Collecting duct epithelial cells	P2X4, P2X5, P2X6	P2Y_{1,2,4,6}	A_{1,2A,2B, A3}
A6 distal nephron epithelial cells	P2X4	P2Y_{1,2}	A_{1,2}
MDCK cells	P2X7	P2Y_{1,2,6} and 11	A_{1}
Epithelia from cysts of polycystic kidneys	P2X4, P2X5	P2Y_{1,2}, P2Y_{6}	
Blood cells			
Erythrocytes	P2X1, P2X4, P2X7	P2Y_{1,2}	A_{2B}
Platelets	P2X1	P2Y_{1,2,12}, P2Y_{14}	A_{2A,2B}
Leukocytes	P2X4, P2X7	P2Y_{2,6}	A_{1,2A,2B, A3}

Compliance with ethical standards

Declerations The authors declare that they have no conflict of interest.
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
This article does not contain any studies with human participants or animals performed by any of the authors.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

References

Aleu J, Martin-Satué M, Navarro P, Pérez de Lara I, Bahima L, Marsal J, Solsona C (2003) Release of ATP induced by hypertonic solutions in *Xenopus* oocytes. J Physiol 547:209–219
Barr TP, Albrecht PJ, Hou Q, Mongin AA, Strichartz GR, Rice FL (2013) Air-stimulated ATP release from keratinocytes occurs through connexin hemichannels. PLoS ONE 8:e56744
Beckel JM, Argall AJ, Lim JC, Xia J, Lu W, Coffey EE, Macarak EJ, Shahidullah M, Delamere NA, Zode GS, Sheffield VC, Shestopalov VI, Laties AM, Mitchell CH (2014) Mechanosensitive release of adenosine 5'-triphosphate through pannexin channels and mechanosensitive upregulation of pannexin channels in optic nerve head astrocytes: a mechanism for purinergic involvement in chronic strain. Glia 62:1486–1501
Frame MK, de Feijter AW (1997) Propagation of mechanically induced intercellular calcium waves via gap junctions and ATP receptors in rat liver epithelial cells. Exp Cell Res 230:197–207

Furuya K, Sokabe M, Furuya S (2005) Characteristics of subepithelial fibroblasts as a mechano-sensor in the intestine: cell-surface-dependent ATP release and P2Y1 signaling. J Cell Sci 118:3289–3304

Furuya K, Sokabe M, Grygorczyk R (2014) Real-time luminescence imaging of cellular ATP release. Methods 66:330–344

Gallagher CJ, Salter MW (2003) Differential properties of astrocyte calcium waves mediated by P2Y1 and P2Y2 receptors. J Neurosci 23:6728–6739

Gardnier JD, Gangadharan V, Wang L, Duncan RL (2014) Hydraulic pressure during fluid flow regulates purinergic signaling and cytoskeleton organization of osteoblasts. Cell Mol Bioeng 7:266–277

Gafot D, Kilic G, Fitz JG (2004) Vesicular exocytosis contributes to volume-sensitive ATP release in biliary cells. Am J Physiol Gastrointest Liver Physiol 286:G538–G546

Genetos DC, Geist DJ, Liu D, Donahue HJ, Duncan RL (2005) Fluid shear-induced ATP secretion mediates prostan glandin release in MC3T3-E1 osteoblasts. J Bone Miner Res 20:41–49

Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ (2007) Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 212:207–214

Gheorghiu M, Van Driessche W (2004) Modeling of basolateral ATP release induced by hypotonic treatment in A6 cells. Eur Biophys J 33:412–420

Gomes P, Srinivas SP, Van DW, Vereecke J, Himpens B (2005) ATP release through connexin hemichannels in cornal endothelial cells. Invest Ophthalmol Vis Sci 46:1208–1218

Graff RD, Lazarowski ER, Banes AJ, Lee GM (2000) ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheum 43:1571–1579

Grierson JP, Meldolesi J (1995) Shear stress-induced [Ca2+]i transients and oscillations in mouse fibroblasts are mediated by endogenously released ATP. J Biol Chem 270:4451–4456

Grygorczyk R, Guyot A (2001) Osmotic swelling-induced ATP release: a new role for tyrosine and Rho-kinases? J Physiol 532:582

Grygorczyk R, Furuya K, Sokabe M (2013) Imaging and characterization of stretch-induced ATP release from alveolar A549 cells. J Physiol 591:1195–1215

Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

Guyot A, Hannahan JW (2002) ATP release from human airway epithelial cells studied using a capillary cell culture system. J Physiol 545:199–206

Haanes KA, Kowal JM, Arpino G, Lange SC, Moriayama Y, Pedersen PA, Novak I (2014) Role of vesicular nucleotide transporter VTNUT (SLC17A9) in release of ATP from AR42J cells and mouse pancreatic acinar cells. Purinergic Signal 10:431–440

Hamada K, Takuwa N, Yokoyama K, Takuwa Y (1998) Stretch activates Jun N-terminal kinase/stress-activated protein kinase in vascular smooth muscle cells through mechanisms involving autocrine ATP stimulation of purinoceptors. J Biol Chem 273:6334–6340

Hamill OP, Martinec B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

Hansen M, Boitano S, Dirksen ER, Sanderson MJ (1993) Intercellular calcium signaling induced by extracellular adenosine 5’-triphosphate and mechanical stimulation in airway epithelial cells. J Cell Sci 106:995–1004

Hazama A, Fan HT, Abdullaev I, Maeno E, Tanaka S, Ando AY, Okada Y (2000) Swelling-activated, cystic fibrosis transmembrane conductance regulator–augmented ATP release and Ca2+ conductances in murine C127 cells. J Physiol 523:1–11

Hecht E, Liedert A, Ignatius A, Mizaikoff B, Kranz C (2013) Local detection of mechanically induced ATP release from bone cells with ATP microsensors. Biosens Bioelectron 44:27–33

Hisadome K, Koyama T, Kimura T, Droogmans G, Ita Y, Oike M (2002) Volume-regulated anion channels serve as an auto/paracrine nucleotide release pathway in aortic endothelial cells. J Gen Physiol 119:511–520

Homolya L, Steinberg TH, Boucher RC (2000) Cell to cell communication in response to mechanical stress via bilateral release of ATP and UTP in polarized epithelia. J Cell Biol 150:1349–1360

Hovater MB, Oleantu D, Hanson EL, Cheng NL, Sirok Y, Fintha A, Komlodi P, Liu W, Satlin LM, Bell PD, Yoder BK, Schwiebert EM (2008) Loss of apical monocilia on collecting duct principal cells impairs ATP secretion across the apical cell surface and ATP-dependent and flow-induced calcium signals. Purinergic Signal 4:655–70

Islam M, Uramoto H, Okada T, Sabirov RZ, Okada Y (2012) Maxi-anion channel and panxinn 1 hemichannel constitute separate pathways for swelling-induced ATP release in murine L929 fibrosarcoma cells. Am J Physiol Cell Physiol 303:C924–C935

Ito M, Arakawa T, Okayama M, Shitara A, Miozumi I, Takanova T (2014) Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells. J Investig Dent 5:266–274

Jans D, Srinivas SP, Waekens E, Segal A, Lariviere E, Simeals J, Van Driessche W (2002) Hypotonic treatment evokes biphasic ATP release across the basolateral membrane of cultured renal epithelia (A6). J Physiol 545:543–555

Joseph SM, Buchakjian MR, Dubay GR (2003) Colocalization of ATP release sites and ecto-ATPase activity at the extracellular surface of human astrocytes. J Biol Chem 278:23331–23342

Kawakami M, Nagira T, Hayashi T, Shimamoto C, Kubota M, Mori H, Yoshida H, Nakahara T (2004) Hypo-osmotic potentiation of acetylcholine-stimulated ciliary beat frequency through ATP release in rat tracheal ciliary cells. Exp Physiol 99:739–751

Khalfineva SV, Bazel YR, Vishnikin AB, Andrch V (2009) Methods for the determination of adenosine triphosphate and other adenine nucleotides. J Anal Chem 46:657–673

Kim JC, Woo SH (2015) Shear stress induces a longitudinal Ca2+ wave via autocrine activation of P2Y1 purinergic signaling in rat atrial myocytes. J Physiol 593:5091–5109

Koizumi S, Fujishita K, Inoue K, Shigemoto-Mogami Y, Tsuda M, Inoue K (2004) Ca2+ waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular ATP and P2Y2 receptor activation. Biochem J 380:329–338

Kono T, Nishikori T, Kataoka H, Uchio Y, Ochi M, Enomoto K (2006) Spontaneous oscillation and mechanically induced calcium waves in chondrocytes. Cell Biochem Funct 24:103–111

Kowal JM, Yegutkin GG, Novak I (2015) ATP release, generation and hydrolysis in exocrine pancreatic duct cells. Purinergic Signal 11:533–550

Kringebelb TM, Aslan D, Novak I, Ellegaard M, Syberg S, Andersen CKB, Kristiansen KA, Vang O, Schwarz P, Jørgensen NR (2015) Fine-tuned ATP signals are acute mediators in osteocyte mechanotransduction. Cell Signal 27:2401–2409

Lazarowski ER, Watt WC, Stutts MJ, Boucher RC, Harden TK (1995) Pharmacological selectivity of the cloned human P2U-purinoceptor: potent activation by diadenosine tetraphosphate. Br J Pharmacol 116:1619–1627

Lazarowski ER, Sesma JI, Seminario-Vidal L, Kreda SM (2011) Molecular mechanisms of purine and pyrimidine nucleotide release. Adv Pharmacol 61:221–261

Lee J, Chun YE, Han KS, Lee J, Woo DH, Lee CJ (2015) Ca2+ Entry is required for mechanical stimulation-induced ATP release from astrocyte. Exp Neurobiol 24:17–23
Wang L, Sikora J, Hu L, Shen X, Grygorczyk R, Schwarz W (2013) ATP release from mast cells by physical stimulation: a putative early step in activation of acupuncture points. Evid Based Complement Alternat Med 35:0949

Wang CM, Ploia C, Anselmi F, Sarukhan A, Viola A (2014) Adenosine triphosphate acts as a paracrine signaling molecule to reduce the motility of T cells. EMBO J 33:1354–1364

Watt WC, Lazarowski ER, Boucher RC (1998) Cystic fibrosis transmembrane regulator-independent release of ATP. Its implications for the regulation of P2Y2 receptors in airway epithelia. J Biol Chem 273:14053–14058

Weihl AM, Fuchs C, Teuschi AH, Hartinger J, Slezak P, Mittermayr R, Redl H, Junger WG, Runzler D (2014) Shock wave treatment enhances cell proliferation and improves wound healing by ATP release-coupled extracellular signal-regulated kinase (ERK) activation. J Biol Chem 289:27090–27104

Wilson PD, Hovater JS, Casey CC, Fortenberry JA, Schwiebert EM (1999) ATP release mechanisms in primary cultures of epithelia derived from the cysts of polycystic kidneys. J Am Soc Nephrol 10:218–229

Wochtle T, Yip L, Manohar M, Sumi Y, Yao Y, Chen Y, Junger WG (2010) Hypertonic stress regulates T cell function via pannexin-1 hemichannels and P2X receptors. J Leukoc Biol 88:1181–1189

Wongkhanee S, Yongchaitrakul T, Pavasant P (2008) Mechanical stress induces osteopontin via ATP/P2Y1 in periodontal cells. J Dent Res 87:564–568

Woo K, Dutta AK, Patel V, Kresge C, Feranchak AP (2008) Fluid flow induces mechanosensitive ATP release, calcium signalling and Cl-transport in biliary epithelial cells through a PKCζ-dependent pathway. J Physiol 586:2779–2798

Woo K, Sathe M, Kresge C, Esser V, Ueno Y, Venter J, Glaser SS, Alpini G, Feranchak AP (2010) Adenosine triphosphate release and purinergic (P2) receptor-mediated secretion in small and large mouse cholangiocytes. Hepatology 52:1819–1828

Wu D, Schaffler MB, Weinbaum S, Spray DC (2013) Matrix-dependent adhesion mediates network responses to physiological stimulation of the osteocyte cell process. Proc Natl Acad Sci U S A 110:12096–12101

Xia J, Lim JC, Lu W, Beckel JM, Macarak EJ, Laties AM, Mitchell CH (2012) Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X7 receptors. J Physiol 590:2285–2304

Xiang C, Cao L, Qin K, Xu Z, Chen BM (2007) A modified dynamic model for shear stress induced ATP release from vascular endothelial cells. In: Li K, Fei M, Irwin GW, Ma S (eds) Bio-inspired computational intelligence and applications: international conference on Life System Modeling and Simulation, LSMS 2007, Shanghai, China, September 14–17, 2007. Proceedings, pp. 462–472

Xing Y, Gu Y, Bresnahan JJ, Paul EM, Donahue HJ, You J (2014) The roles of P2Y2 purinergic receptors in osteoblasts and mechanotransduction. PLoS ONE 9

Yamamoto K, Furuya K, Nakamura M, Kobatake E, Sokabe M, Ando J (2011) Visualization of flow-induced ATP release and triggering of Ca2+ waves at caveolae in vascular endothelial cells. J Cell Sci 124:3477–3483

Yamazaki S, Weinhold PS, Graff RD, Tszuaki M, Kawakami M, Minchew JT, Banes AJ (2003) Annulus cells release ATP in response to vibratory loading in vitro. J Cell Biochem 90:812–818

Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694

Yip L, Cheung CW, Corriden R, Chen Y, Insel PA, Junger WG (2007) Hypertonic stress regulates T-cell function by the opposing actions of extracellular adenosine triphosphate and adenosine. Shock 27:242–250

Yu T, Junger WG, Yuan C, Jin A, Zhao Y, Zheng X, Zeng Y, Liu J (2010) Shockwaves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation. Am J Physiol Cell Physiol 298:C457–C464

Zhang Y, Phillips GJ, Li Q, Yeung ES (2008) Imaging localized astrocyte ATP release with firefly luciferase beads attached to the cell surface. Anal Chem 80:9316–9325

Zhang T, Liu C, Zhou X, Kolosov VP, Perelman JM (2014) Effects of ATP release on mucin5AC secretion in airway epithelial cells by mechanical stretching. Ann Clin Lab Sci 44:425–430

Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Foundation Symposium 276 Purinergic Signalling in Neuron-Glia Interactions. Wiley, Chichester, pp 113–128