Newer Diagnostic and Cost-Effective Ways to Identify Asymptomatic Atrial Fibrillation for the Prevention of Stroke

Urvish K. Patel, Preeti Malik, Nidhi Patel, Priyadarshree Patel, Neev Mehta, Eseosa Urhoghide, Surya Aedma, Raja Chandra Chakinala, Shamik Shah, Kogulavadanan Arumaiturai

Abstract
Atrial fibrillation (Afib) is the most common and underestimated cardiac arrhythmia with a lifetime risk of >55% after the age of 55 years and the risk continues to rise exponentially. Afib leads to stasis of blood within the atria allowing clot formation and increasing the risk for systemic embolization leading to strokes. Outcomes due to Afib can improve significantly with appropriate treatment. Thus, the need for convenient, well-tolerated, cost-effective cardiac monitoring for Afib is needed. The study aims to evaluate the various newer devices and compare them with traditional Holter monitoring, keeping diagnostic yield, cost-effectiveness, and patients' convenience in mind. Though Holter monitoring is simple and non-expensive, it has major limitations including limited recording capacity, inability for real-time recordings, and inconvenience to patients. Zio Patch (iRhythm Technologies, Inc; San Francisco, CA) and other loop recording devices are patient-friendly, inexpensive, and can offer real-time data for longer days. More prospective studies are needed to evaluate the sensitivity, specificity, and the actual number of patients getting benefits from newer devices by diagnosing Afib sooner and start early prevention therapy.

Introduction And Background
Atrial fibrillation (Afib) is the most common sustained cardiac arrhythmia, with a lifetime risk of 37% occurrence after the age of 55 years [1]. The causal relation between atrial fibrillation and stroke has been known for many years. Uncoordinated and rapid myocyte activity due to hyperactive electric stimulation from the SA node results in impaired contraction of the atria. This impairment leads to stasis of blood within the atria that allows clot formation to occur, thus increasing the risk for systemic embolization leading to cardio-embolic strokes [2].

Afib has been a major burden on the healthcare system. Though incidence throughout the general population has been relatively stable over time, the prevalence of Afib continues to rise exponentially [3]. Some of the increasing prevalence may be attributable to a modest improvement in Afib-related survival (e.g., three-year mortality rate reduction from 45% in 1993 to 42% in 2005), which is related to earlier detection and treatment of underlying conditions such as hypertension, coronary artery disease (CAD), and heart failure (HF) [5]. Afib accounts for 5–4% of all emergency department visits, with typical symptoms like palpitations, dizziness attributable to arrhythmias, etc. [4]. There are half a million hospitalizations annually in the United States for which Afib is the primary diagnosis. Afib is estimated to contribute to >100,000 deaths per year in the United States. Outpatient cardiac rhythm monitoring is an integral part of the early diagnosis and management of Afib, which is the priority in successful secondary stroke prevention [5]. This stresses the use of ambulatory cardiac monitoring devices for earlier detection of Afib.

The true epidemiological profile of Afib is incomplete and underestimated because a substantial proportion of Afib patients can be asymptomatic or without clinical manifestations (“clinically silent or subclinical Afib”) [6]. Clinically silent Afib diagnosed often during routine checkups, leaves difficult decisions for physicians on how to treat and to what extent. Currently, researchers have been focused on clinically silent and asymptomatic Afib which has shown equal outcomes regarding stroke and death. In the most recent data reported by EuObservational Research Programme (EORP)-Atrial Fibrillation Pilot General Registry,
mortality at one year was more than twofold higher in asymptomatic patients than their symptomatic counterparts and was associated independently with older age and comorbidities [7].

Additionally, undiagnosed Afib can have immense complications and morbidity. Outcomes due to Afib can improve significantly with appropriate treatment, including anticoagulation to prevent systemic embolization and stroke, rhythm, and rate control for the restoration of normal rhythm. Despite guidelines from multiple societies, there is a significant gap in the care of Afib. Earlier and improved methods of detection can allow earlier initiation of appropriate therapies to prevent adverse health outcomes. Furthermore, monitored individuals, compared with non-monitored controls, had higher rates of Afib diagnosis, greater initiation of anticoagulants, but also increased health care resource utilization at one year. Better detection of paroxysmal atrial fibrillation (PAF) by prolonged cardiac monitoring can be expected to improve secondary prevention through optimized secondary preventive regimens, like oral anticoagulation for stroke patients [8]. The improved cost-effectiveness is attributable to the fact that these newly detected patients benefit from anticoagulation therapy to prevent stroke recurrence which in turn saves future costs and reduces the impairment of quality of life.

The need for convenient, well-tolerated, cost-effective cardiac monitoring for Afib is likely to increase as Afib becomes more prevalent [4]. Traditionally monitoring of arrhythmias has been done by a continuous electrocardiogram (ECG) monitor known as a Holter monitor, which is given to patients with a recent history of acute coronary syndrome and daily symptoms such as syncope, dizziness, and palpitations. Continuous ECG monitoring records data such as average heart rate, RR interval, and ST-segment changes for a period of 24–48 hours. Alternatively, in recent years there have been many technological advancements in this field of study. For example, we now have single and double lead ECG that can be placed directly on the chest, smartwatches, and handled devices that pair directly with your phone. These devices have automated algorithms within their specifically designed optical sensors to detect irregularities in pulse to notify the user in real-time of possible atrial fibrillations without the use of electrodes or wires. However, due to its very limited data and accuracy, it still remains unknown when this technology may be used as a primary diagnostic tool in medicine. Lastly, non-invasive continuous monitoring patch such as the Zio Patch (Rhythm Technologies, Inc; San Francisco, CA) is a single-lead ECG monitor that provides up to 14 days of continuous ECG data from a single vector. These devices are single-use, water-resistant, and allow for long term cardiac monitoring. Although this may be a promising technology, larger studies will be required to determine the efficacy of these devices in detecting arrhythmias [9].

Hence, the literature review aims to evaluate the effectiveness of various ambulatory devices in detecting asymptomatic Afib to prevent stroke.

Review

Types of ambulatory devices

Atrial fibrillation is the most underestimated cardiac arrhythmia with a lifetime risk of >35% after the age of 55 years and the causal relationship between atrial fibrillation and stroke has been known for many years [10]. In addition to atrial fibrillation, arrhythmias such as sinus tachycardia, premature ventricular contractions, and ventricular tachycardia can all cause palpitations. Usually benign, palpitations can be a manifestation of potentially life-threatening conditions, especially if associated with dizziness, near-syncope, or syncope. Therefore, ambulatory electrocardiogram monitoring is an invaluable tool to assess and establish the diagnosis of a patient’s symptoms. There are a variety of possible ambulatory monitors to choose from such as Holter monitors, implantable loop recorders, and external loop recorders. Table 1 showed details on various ambulatory electrocardiography devices and their applications.
Types of Device	Description	Usefulness	Limitations
Holter Monitor	For daily or near-daily frequency of symptoms. Has a recording time of 24 hours, 48 hours, or one week. Available in primary and secondary care.	Suitable for patients with frequent symptoms. Less expensive. Noninvasive and no action needed from patients.	Limited recording capacity.
External Loop Recorders	For weekly frequency of symptoms. Has recording time up to 4 weeks. ECG data can be transmitted continuously over wireless networks to a remote monitoring system for evaluation. Patients need to activate by themselves during the onset of symptoms. Available only in specialized cardiac centers.	Higher likelihood of detecting arrhythmias due to prolonged monitoring (in comparison to Holter). Noninvasive.	Not suitable for conditions like syncope when patients cannot activate the device.
Implantable Loop Recorders	For rare (monthly) frequency of symptoms. Has the longest recording time for up to 3 years. Available only in specialized cardiac centers.	Minimally invasive. Both automatic and patient activated methods are supported.	Most expensive among the three device types.
Zio Patch	A single-lead ECG monitor that has no external leads or wires. The patch is stuck on the patient’s left pectoral region and can record a continuous beat-to-beat ECG, making it useful for monitoring cardiac rhythm, for up to fourteen days.	Zio Patch has a higher diagnostic yield to detect Afib and prevention of strokes per year. This would result in significant yearly savings in direct medical costs.	The data of Zio Patch is analyzed offline after the completion of the monitoring.

TABLE 1: Types of ambulatory electrocardiography device and their applications.

Holter Monitor

Traditionally, monitoring of arrhythmias has been done by a continuous ECG monitor known as a Holter monitor. The most common monitors allow for continuous registration of three or more leads for 24–48 hours while newer monitors allow for continuous ECG monitoring for up to two weeks [11]. A benefit in extending the time of ECG registration helps improve the diagnostic yield of Holter monitoring, especially for infrequent but recurrent rhythm disturbances [12]. The Holter monitor aids in the detection of arrhythmias and ST-segment changes help to assess the therapeutic efficiency of antiarrhythmic agents and helps to evaluate pacemaker malfunctions [13]. A primary advantage of using Holter monitoring is that it aids in quantifying the real burden of arrhythmia and could help the clinician in making therapeutic decisions for disabling arrhythmias that occur frequently [14]. However, despite this advantage, some limitations include the relatively brief duration of monitoring, limited recording capacity, and inability to transmit real-time data to the attending cardiac unit, and the need for close collaboration between the patient and the healthcare professional [14]. Additionally, these may cause physical discomfort for patients due to the large size of the monitor and electrodes that need to be taped to various areas on the skin that may irritate.

Loop Recorders

Loop recorders are event recorders that work by continually analyzing the ECG and retaining information pertinent to relevant arrhythmias. This is possible through predefined algorithms and registration of the ECG a few minutes prior to the onset of the arrhythmia [14]. These recorders can be activated by the patient when he/she experiences the symptoms and can therefore reliably document a correlation between symptoms and arrhythmia.

Internal Loop Recorders

Implantable loop recorders is a subcutaneous monitoring device used to monitor electrical activity of the heart over an extended period of time, compared to the fixed picture of electrical activity seen with ECGs [15]. These devices can record for up to three years. An implantable loop recorder can store patient-activated episodes, automatically activated episodes or a combination of the two. Some benefits of an implantable loop recorder are that it does not need to be removed during certain activities such as showering or swimming and it can help identify significant cardiac rhythm abnormalities when the patient is sleeping [15]. Additionally, unlike the Holter monitor, an implantable loop recorder has a higher likelihood of detecting arrhythmias due to prolonged monitoring and the ability to detect atrial fibrillation recurrences, as they can be silent and unpredictable [16]. However, it may be affected by false episode detection due to artifacts and they only allow the registration of one lead, rendering the interpretation of the ECG difficult in some cases [14]. Likewise, unlike the Holter monitor, it is far more efficient and reliable at identifying...
abnormal rhythms [15] and data transmission to a distant diagnostic station is simple [14]. This device may be useful for noncompliant patients, as there are no external parts to be worn [17].

External Loop Recorders

External loop recorders can be connected to a belt around the chest, without the need for traditional electrodes, and can monitor the ECG for a maximum of 30 days [18]. Additionally, because this device relies on the patient activating it, it is not suitable for syncpe or other conditions in which the patient is unable to activate the device. An advantage of using this device is that ECG data can be transmitted continuously over wireless networks to a remote monitoring system for evaluation.

Zio Patch

The Zio Patch is a single-lead ECG monitor that has no external leads or wires. The patch adheres to the patient’s left pectoral region and can record a continuous beat-to-beat ECG, making it useful for monitoring cardiac rhythm, for up to fourteen days. Similar, to the Holter monitor, the data from the Zio Patch is analyzed offline after the completion of the monitoring. However, the Zio Patch has a higher diagnostic yield than the Holter monitor [19]. The patch provides a high diagnostic yield for arrhythmia because the diagnostic yield of continuous loop-recording decreases rapidly after two weeks of monitoring and monitoring beyond seven days provides only an additional 3.9% of patients with a diagnosis [20]. In an epidemiologic study done on the older general population, it was found that atrial fibrillation was detected in 4% of those with no prior history, and 38% of newly detected atrial fibrillation was first found on days three–14 of monitoring with the Zio Patch [21]. Additionally, a single monitoring episode of 12 days was adequate for estimating the extent of supraventricular and ventricular ectopy [21].

Author, Year, and Country	Sample Size	Study Type and Duration	Aim/Objective	Outcomes	Results
Schreiber et al., 2013 (USA) [4]	174	Multicenter Prospective Observational study; February 2011-February 2012	To determine the diagnostic yield of Zio Patch and to determine the value of prolonged monitoring of low-risk discharged ED patients with possible cardiac arrhythmia.	Significant arrhythmias as ventricular tachycardia (VT) ≥4 beats, paroxysmal atrial fibrillation (PAF), supraventricular tachycardia (SVT) ≥4 beats, ≥3-sec pause, 2nd-degree Mobitz II or 3rd degree AV block, or symptomatic bradycardia. Serious arrhythmias were defined as VT >120 for 30 seconds, Complete or 3rd-degree heart block, symptomatic second-degree heart block, type II, pause >6 seconds, and symptomatic bradycardia <40 beats per minute for >30 seconds.	The average age 52.2 (± 21.0) years and 55% were female. The most common indications for device placement were palpitations (44.8%), syncope (24.1%), and dizziness (6.3%). 47.7% had ≥1 arrhythmia and 9.8% were symptomatic at the time of their arrhythmia. 5.2% had ≥2 arrhythmias. 7 patients required immediate physician notification for serious arrhythmias. 93 (53.4%) of symptomatic patients did not have any arrhythmia during their triggered events. The overall diagnostic yield was 63.2%.
Gladstone et al., 2015	237	Multicenter randomized randomized	To predict which cryptogenic stroke or TIA patients have the highest probability of subclinical Afib. Data from the EMBRACE trial was used to investigate the association	Primary: Detection of ≥1 episode of atrial fibrillation or flutter lasting ≥30 s by 30-day ECG monitoring or clinically within 90 days post-randomization. Secondary: Afib ≥30 s	Primary: Median baseline APB count was 66 (IQR, 18-309) in the entire cohort, higher in patients who were subsequently found to have Afib (629 beats/h [IQR, 142-1973]) compared with those without Afib (45 beats/h [IQR, 14-250]); p<0.001. Secondary: Afib ≥30 s on the 30-day ECG monitor alone (p=0.0001) and the more robust outcome of Afib ≥2.5 minutes on 30-day ECG (p=0.0005), and for Afib detection by any means at 2 years (p=0.0027). Overall,

2021 Patel et al. Cureus 13(1): e12437. DOI 10.7759/cureus.12437
Study	Design	Participants	Duration	Primary Outcomes	Secondary Outcomes
Kaura et al., 2019 (UK) [23]	Open-label randomized controlled trial February 2016-February 2017 for 90 days	Patch-based monitoring group:56, Holter monitoring group:60	Compare 14-day ECG monitoring patch (Zio Patch) with short-duration Holter monitoring for the detection of PAF.	Primary: Detection of one or more episodes of ECG-documented PAF lasting at least 30 s within 90 days in each of the study arms. Secondary: PAF lasting at least 30 s within 28 days in each of the study arms and PAF lasting at least 30 s detected on the patch-based monitoring or short-duration Holter monitor within 90 days in patients who underwent both ECG monitoring strategies and A budget impact analysis from the healthcare perspective was performed.	Primary: The rate of detection of PAF at 90 days was 16.3% in the patch-based monitoring group (seven patients) compared to 2.1% in the short-duration Holter monitoring group (1 patient), with an odds ratio of 8.9 (95% CI: 1.1-76.0; p=0.026). Secondary: An economic model demonstrated that implementation of the Zio Patch service would result in 10.8 more strokes avoided per year compared to current practice with Holter monitoring with an associated yearly saving in direct medical costs of £113,630, increasing to £162,491 over 5 years.
Kamel et al., 2013 (USA) [24]	Pilot randomized controlled trial. October 29, 2009-May 24, 2011; 21 days with follow up at 3 months and 1 year	To establish the safety and feasibility of Cardionet Mobile Cardiac Outpatient Telemetry 20 patients wear the for 21 days and 20 patients to get routine care.	Primary: primary feasibility outcomes were enrollment of 40 patients in 2 years, completion of assigned monitoring in ≥70% of patients, and full follow-up for ≥90% of patients. The primary safety outcome was any adverse event resulting directly from the use of the cardiac monitoring device. Secondary: New diagnoses of Afib within 3 months and 1 year	Primary: Atrial fibrillation history was independently associated with vascular diseases (OR: 4.10; 95% CI: 1.32-12.78; p=0.015), P wave terminal force in lead V1 > 40 mm*ms (OR: 4.04; 95% CI: 1.34-12.14; p=0.013) and left atrial volume index (OR: 1.08; 95% CI: 1.03-1.12; p=0.002). Left atrial volume index remained an independent predictor of atrial fibrillation detected after stroke (OR: 1.09; 95% CI: 1.02-1.16; p=0.017).	64% Overall compliance. No patient diagnosed with Afib, 2 patients had brief episodes (<10 seconds) of atrial tachycardia, and 2 patients had non-sustained ventricular tachycardia. No serious adverse event occurred that was attributable to the monitoring intervention.
Baturova et al., 2016 (USA) [25]	Post-hoc analysis from a previous prospective case-control study.	Investigate clinical, ECG, and TTE characteristics associated with paroxysmal Afib in ischemic stroke patients.	To assess predictors of paroxysmal atrial fibrillation using non-invasive surface ECG and transthoracic echocardiography to select candidates for atrial fibrillation screening.	Primary: The primary endpoint was time to diagnosis of Afib. Afib detected by 30-day ECG, Afib ≥2.5 minutes detected by 30-day ECG, and Afib detected by any means within 2 years of clinical follow-up.	To evaluate the
Study	Patients/ECGs	Design	Routine	Randomized	Description
-------	--------------	--------	---------	------------	-------------
Halcox et al., 2017 (UK) [26]	1001/500	Randomized controlled trial for 12 months	Routine care: 501	Efficacy of AliveCor Kardia device (a smartphone/tablet-based single-lead electrocardiographic capture system) vs routine clinical care (RC) in patients >65 years of age with at least one additional stroke risk factor.	
Reed et al., 2018 (Scotland) [27]	86	Prospective pilot study. November 17, 2015 – June 16, 2017	86	This study investigates diagnostic yield, event prevalence, patient satisfaction and compliance, and influence on resource utilization of an ambulatory patch monitor (Zio XT monitor).	
Pradhan et al., 2019 (USA) [28]	363	Single-center Retrospective study. October 2014 to February 2016	363	To describe the duration of ZIO XT Patch use by age and to compare its time to arrhythmia detection with the Holter monitor in a pediatric population.	
Turakhia et al., 2013 (USA) [29]	26,751	Cross-sectional study. January 1, 2011 - December 31, 2011	26,751	To evaluate compliance, analyzable signal time, the interval to arrhythmia detection, and diagnostic yield of the Zio Patch.	
Patel et al., 2021		Randomized		New Afib was identified by 4 months in 3.9% of 9 patients.	
TABLE 2: Studies measuring diagnostic yield of ambulatory ECG monitoring.

Study	Design	Method	Duration	Outcomes
Steinhubl et al, 2018 (USA) [30]	Clinical trial and prospective matched observational cohort study. November 17, 2015 - October 4, 2016	To determine if Zio Patch would be well tolerated and function as well as a Holter monitor in the first 24 hours of use in terms of the detection of Afib and other arrhythmias. To determine if additional days of monitoring would be tolerated and yield meaningful clinical findings.	The Zio Patch was well tolerated, with a mean monitoring period of 10.8 ± 2.8 days. During the first 24 hours period, there was a significant difference in the mean Afib burden estimated by the Zio Patch and the Holter monitor (p<0.0001). Afib events were identified in 18 additional individuals, and the documented pattern of Afib (persistent or paroxysmal) changed in 21 patients after Zio Patch monitoring. As a result of the findings from the Zio Patch, 28.4% of patients had a change in their clinical management.	The rate of detection of PAF at 90 days was 16.3% in Zio Patch compared to 2.1% in the short-duration Holter monitoring group (OR: 8.9; 95% CI: 1.1-76.0; p=0.026). Zio Patch service would result in 10.8 more strokes avoided per year compared to current practice with Holter monitoring with an associated yearly saving in direct medical costs of £113,630, increasing to £162,491 over 5 years.
Rosenberg et al, 2013 (USA) [9]	Single-center Prospective study. April 27, 2011-May 25, 2012	To determine if Zio Patch monitoring was associated with increased initiation of anticoagulants (AD: 2.0; 95% CI: 1.9-2.2), outpatient cardiology visits (AD: 7.5; 95% CI: 7.2-7.9), and primary care visits (AD: 0.9; 95% CI: 0.4-1.8). There was no difference in Afib-related ED visits and hospitalizations.	8.9; 95% CI: 1.1-76.0; p=0.026). Zio Patch service would result in 10.8 more strokes avoided per year compared to current practice with Holter monitoring with an associated yearly saving in direct medical costs of £113,630, increasing to £162,491 over 5 years.	
Kaura et al, 2019 (UK) [31]	Open-label randomized controlled trial. February 2016-February 2017	The primary outcome was the detection of one or more episodes of ECG-documented PAF lasting at least 30 s within 90 days in each of the study arms.	8.9; 95% CI: 1.1-76.0; p=0.026). Zio Patch service would result in 10.8 more strokes avoided per year compared to current practice with Holter monitoring with an associated yearly saving in direct medical costs of £113,630, increasing to £162,491 over 5 years.	

TABLE 2: Studies measuring diagnostic yield of ambulatory ECG monitoring.

VT: ventricular tachycardia, PAF: paroxysmal atrial fibrillation, SVT: supraventricular tachycardia, Afib: atrial fibrillation, APB: atrial premature beat, TTE: transthoracic echocardiography, ECG: electrocardiogram, AD: absolute difference, OR: odds ratio, IQR: interquartile range

Cost-effectiveness

Early detection and timely treatment of arrhythmias are important to reduce the burden of cardiac disease and lower healthcare costs. ECG monitoring beyond the 24-48 hours Holter monitor can improve the detection of arrhythmias, however, prolonged monitoring beyond eight to 14 days is generally not cost-effective [4,9,22-31]. Therefore, wearable patch monitors such as the Zio Patch, that record at least eight days of ECG data are cost-effective alternatives to the traditional Holter monitors and loop recorders.

In an economic model derived from a randomized controlled study comparing the efficacy of a Holter monitor to the Zio Patch for the detection of PAF after a transient ischemic attack/ischemic stroke, it was found that the implementation of the Zio Patch would prevent 10.8 more strokes per year when compared to the current practice with Holter monitoring [23]. This would result in a yearly saving in direct medical costs of £113,630 ($146,963), increasing to £162,491 ($210,157) over five years [25]. Additionally, Brignole et al. noted that while the 24-48 hours Holter monitor has a relatively low set-up cost, it is expensive in terms of cost per diagnosis [32]. Arnold et al. also state that although it is fairly common to repeat Holter monitoring after the first Holter procedure due to inconclusive results, repeat monitoring did not yield a diagnosis, and
patients continued to experience clinical events that led to substantial health costs [33]. In another study comparing the efficacy of the Holter monitor to a 14-day adhesive patch, it was found that the adhesive patch monitor detected 96 arrhythmia events compared with 61 arrhythmia events by the Holter monitor (p<0.001) [34]. This emphasizes the importance of effective diagnosis and treatment in reducing healthcare costs, morbidity, and mortality associated with cardiac arrhythmias. Additionally, the study comparing seven-day-Holter monitoring (7-d-Holter) to a standard 24-hour-Holter to detect PAF, it was found that the seven-day-Holter in patients with cerebral ischemia is cost-effective [8]. The cost-effectiveness is due to the increased detection which leads to the implementation of improved antithrombotic regimes that work to avoid recurrent strokes and decrease quality of life impairment. This also emphasizes the role that a seven to 14-day monitoring modality, such as the Zio Patch, can play in reducing healthcare costs.

In addition to the increased healthcare costs associated with the use of the Holter monitor, studies have found that there is an increased cost in monitoring periods beyond two weeks. For instance, the costs can range up to $852 per new diagnosis versus a $98 cost per patient diagnosis over an initial seven days and $576 over a 14-day period [34]. Therefore, the Zio Patch is likely to achieve a reasonable diagnostic yield compared to loop recorders which typically monitor from up to a month to three years.

Conclusions

Our knowledge of the true ("clinically silent or subclinical Afib") prevalence of Afib is underestimated and represents the tip of the iceberg. Holter monitoring is helpful yet limited by duration, recording capacity, and inability to transmit real-time data. External loop recorder and Zio Patch are better alternatives due to convenient and accurate recording and portability. These newer devices would result in more stroke prevention per year and are more cost-effective in comparison with Holter monitoring. Although these newer devices are proven effective to identify Afib, more prospective studies should be planned to evaluate sensitivity, specificity, and the role of these devices to begin early management in the direction of stroke prevention, and patients' satisfaction.

Additional Information

Disclosures

Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Weng L-C, Preis SR, Hulme OL, et al.: Genetic predisposition, clinical risk factor burden, and lifetime risk of atrial fibrillation. Circulation, 2018, 137:1027-1058. 10.1161/CIRCULATIONAHA.117.031451
2. Harvey E, Levine S: A study of uninfected mural thrombi of the heart . Am J Med Sci. 1950, 180:365-371. 10.1097/00000441-195009000-00006
3. Piccini JP, Hammill BG, Sinnor MF, et al.: Incidence and prevalence of atrial fibrillation and associated mortality among medicare beneficiaries. Circ Cardiovasc Qual Outcomes. 2012, 5:85-93. 10.1161/CIRCOUTCOMES.111.962688
4. Schreiber D, Sattar A, Drigalla D, Higgins S: Ambulatory cardiac monitoring for discharged emergency department patients with possible cardiac arrhythmias. West J Emerg Med. 2014, 15:194-198. 10.5811/westjem.2015.11.18973
5. Wolf PA, Abbott RD, Kannel WB: Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991, 22:983-988. 10.1161/01.STR.22.8.983
6. Borriani G, Pettorelli D: Atrial fibrillation burden and atrial fibrillation type: clinical significance and impact on the risk of stroke and decision making for long-term anticoagulation. Vascul Pharmacol. 2016, 85:26-35. 10.1016/j.vph.2016.05.006
7. Borriani G, Laroche C, Diemberger I, et al.: Asymptomatic atrial fibrillation: clinical correlates, management, and outcomes in the EORP-AF Pilot General Registry. Am J Med. 2015, 128:509-518. 10.1016/j.amjmed.2014.11.026
8. Mayer F, Stahenberg R, Göschel K, et al.: Cost-effectiveness of 7-day-Holter monitoring alone or in combination with transthoracic echocardiography in patients with cerebral ischemia. Clin Res Cardiol. 2013, 102:875-884. 10.1100/00392-015-0601-2
9. Rosenberg MA, Samuel M, Thosani A, Zimethbaum P: Use of a noninvasive continuous monitoring device in the management of atrial fibrillation: a pilot study. Pacing Clin Electrophysiol. 2013, 36:528-535. 10.1111/pace.12053
10. Marini C, De Santis F, Sacco S, Russo T, Olivieri L, Totaro R, Carolei A: Contribution of atrial fibrillation to incidence and outcome of ischemic stroke: results from a population-based study. Stroke. 2005, 36:1115-1119. 10.1161/01.STR.0000166053.83476.4a
11. Zimethbaum P, Goldman A: Ambulatory arrhythmia monitoring: choosing the right device . Circulation. 2010, 122:1629-1636. 10.1161/circulationaha.109.925610
12. Paudel B, Paudel R: The diagnostic significance of the holter monitoring in the evaluation of palpitation . J
adhesive patch electrocardiographic monitoring

Barrett PM, Komatireddy R, Haaser S, et al.: patients: describing the diagnostic odyssey

Eur Heart J. 2018, 39:1883-1948.

Brignole M, Moya A, de Lange FJ, et al.: ambulatory cardiac monitoring in stroke (EPACS): an open-label randomised controlled trial

Kaura A, Sztriha L, Chan FK, Aeron-Thomas J, Gall N, Piechowski-Jozwiak B, Teo JT: the mSToPS randomized clinical trial

Steinhubl SR, Waalen J, Edwards AM, et al.: Pediatric patients: a comparison of devices

Patch monitor in patients with unexplained syncope after initial evaluation in the emergency department:

Reed MJ, Grubb NR, Lang CC, Gray AJ, Simpson K, MacRaid A, Weir CJ: Diagnostic yield of an ambulatory patch monitor in patients with unexplained syncope after initial evaluation in the emergency department: the PATCH-ED study. Emerg Med J. 2018, 35:477-485. 10.1136/emermed-2018-207570

Pradhan S, Robinson JA, Shrivastava E, Snyder CS: the PATCH-ED study

Heckbert SR, Austin TR, Jensen PN, Floyd JS, Psaty BM, Soliman EZ, Kronmal RA: Holter monitoring and loop recorders: from research to clinical practice. J Electrocardiol. 1980, 13:341-346. 10.1016/s0022-0736(80)80085-9

Kunkes SH, Pichard A, Meller J, Gorlin R, Herman MV, Kupersmith J: Use of the ambulatory ECG to diagnose coronary artery disease. J Electrocardiol. 1980, 13:341-346. 10.1016/s0022-0736(80)80085-9

Gall A, Ambrosini F, Lombardi F: Holter monitoring and loop recorders: from research to clinical practice. Arrhythm Electrophysiol Rev. 2016, 5:136-143. 10.1542/ser.2016.17.2

Vilcint V, Kousa O, Hai O: Implantable Loop Recorder. StatPearls, Treasure Island, FL; 2020.

Bixignani A, De Bonis S, Mancuso L, Ceravolo G, Bixignani G: Implantable loop recorder in clinical practice. J Arrhythm. 2019, 35:25-32. 10.1002/joa.3.12142

Giada F, Bertaglia E, Reimers B, Noventa D, Raviele A: Current and emerging indications for implantable cardiac monitors. Pacing Clin Electrophysiol. 2012, 35:1169-1178. 10.1111/j.1540-8159.2012.03411.x

Gladstone DJ, Spring M, Dorian P, et al.: Atrial fibrillation in patients with cryptogenic stroke. N Engl J Med. 2014, 370:2467-2477. 10.1056/NEJma1311376

Barrett PM, Komatireddy R, Haaser S, et al.: Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am J Med. 2014, 127:95. 10.1016/j.amjmed.2013.05.003

Zimetbaum PJ, Kim KY, Josephson ME, Goldberger AL, Cohen DJ: Diagnostic yield and optimal duration of continuous-loop event monitoring for the diagnosis of palpitations. A cost-effectiveness analysis. Ann Intern Med. 1998, 128:890-895. 10.7326/0003-4819-128-11-19980610-00002

Halcox JP, Wareham K, Cardew A, Gilmore M, Barry JP, Phillips C, Gravenor MB: paroxysmal atrial fibrillation detected after ischemic stroke. J Electrocardiol. 2018, 51:997-1002. 10.1016/j.jelectrocard.2018.07.027

Gladstone DJ, Dorian P, Spring M, et al.: Atrial premature beats predict atrial fibrillation in cryptogenic stroke. Stroke. 2015, 46:956-961. 10.1161/STROKEAHA.115.008714

Kaura A, Sztriha L, Chan FK, Aeron-Thomas J, Gall N, Pichowsk-Jozwiak B, Teo JT: Early prolonged ambulatory cardiac monitoring in stroke (EPACS): an open-label randomised controlled trial. Eur J Med Res. 2019, 24:25. 10.1186/s40001-019-0383-8

Kamel H, Navi BB, Elijovich L, et al.: ambulatory cardiac monitoring in stroke (EPACS): an open-label randomised controlled trial

Baturova MA, Sheldon SH, Carlson J, et al.: Electrocardiographic and Echocardiographic predictors of paroxysmal atrial fibrillation detected after ischemic stroke. BMC Cardiovasc Disord. 2016, 16:209. 10.1186/s12872-016-0584-2

Halcox JP, Wareham K, Cardew A, Gilmore M, Barry JP, Phillips C, Gravenor MB: Assessment of remote heart rhythm sampling using the alivcor heart monitor to screen for atrial fibrillation. Circulation. 2017, 136:e1784-e1794. 10.1161/CIRCULATIONAHA.117.035853

Reed MJ, Grubb NR, Lang CC, Gray AJ, Simpson K, MacRaid A, Weir CJ: Diagnostic yield of an ambulatory patch monitor in patients with unexplained syncope after initial evaluation in the emergency department: the PATCH-ED study. Emerg Med J. 2018, 35:477-485. 10.1136/emermed-2018-207570

Pradhan S, Robinson JA, Shrivastava E, Snyder CS: Ambulatory arrhythmia detection with ZIO® XT Patch in pediatric patients: a comparison of devices. Pediatr Cardiol. 2019, 40:921-924. 10.1007/s00246-019-02089-0

Turakhia MP, Hoang DD, Zimetbaum P, et al.: Diagnostic utility of a novel leadless arrhythmia monitoring device. Am J Cardiol. 2015, 112:520-524. 10.1016/j.amjcard.2015.04.017

Steinhubl SR, Waalen J, Edwards AM, et al.: Effect of a home-based wearable continuous ECG monitoring patch on detection of undiagnosed atrial fibrillation: the mSToPS randomized clinical trial. JAMA. 2018, 320:144-155. 10.1001/jama.2018.8102

Kaura A, Sztriha L, Chan FK, Aeron-Thomas J, Gall N, Pichowsk-Jozwiak B, Teo JT: Early prolonged ambulatory cardiac monitoring in stroke (EPACS): an open-label randomised controlled trial. Eur J Med Res. 2019, 24:25. 10.1186/s40001-019-0383-8

Brignole M, Moya A, de Lange FJ, et al.: 2018 ESC guidelines for the diagnosis and management of syncope. Eur Heart J. 2018, 39:1883-1948. 10.1093/eurheartj/ehy607

Arnold R, Layton A: Cost analysis and clinical outcomes of ambulatory care monitoring in medicare patients: describing the diagnostic odyssey. IHEOR. 2015, 2:161-169. 10.36420/aer.2016.17.2

Barrett PM, Komatireddy R, Haaser S, et al.: Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am J Med. 2014, 127:95. 10.1016/j.amjmed.2013.10.003