Kyoto University MT System

Description for IWSLT 2017

Raj Dabre1, Fabien Cromieres2, Sadao Kurohashi1

1Graduate School of Informatics, Kyoto University, Kyoto, Japan

2Japan Science and Technology Agency, Saitama, Japan

14-12-2017
QR code to access Slides
Flow of this talk

- Overview
 - Multilingual Task
 - AIAYN
- Our approaches
 - Using NMT
 - Using SMT (for internal evaluation)
- Experimental Settings
- Results and Observations
- Conclusion
Multilingual Task

- 5 languages
 - German, Dutch, Romanian, Italian and English
 - 3 Germanic and 2 Romance
- Objective: One multilingual model for all 5 languages (20 directions)
- Non zero-shot setting
 - Use all data (20 parallel corpora)
- Zero-shot setting
 - All data except for German-Dutch, Dutch-German, Romanian-Italian and Italian-Romanian (16 parallel corpora)
Preferred Paradigm: Non-Recurrent NMT

- Why NMT?
 - Easier to develop end-to-end multilingual models with parameter sharing (Johnson et al., 2016)
 - NMT as a black box is good enough

- Why Non-Recurrent?
 - Faster to train (multilingual model training takes time as it is)
 - Known to perform better than recurrent models (Vaswani et al., 2017)
ATTENTION IS ALL YOU NEED (AIAYN)

- Faster training
 - Feed Forward Layers
 - Positional Encoding
 - Residual connections
 - Batch Normalization
- Better attention mechanism
 - Multi-head
 - Self and cross
- Adam with decay

Taken from Vaswani et al. 2017
Encoder

Feed Forward Layer

Self Attention Layer

\[E_{\text{Memes}} \quad E_{\text{are}} \quad E_{\text{life}} \]

\[H_{\text{Memes}} \quad H_{\text{are}} \quad H_{\text{life}} \]

N such layers
Residual connections
Normalization
Attention

Taken from Vaswani et al. 2017
Our Approach: MLNMT Using Artificial Tokens

- Possibility of inter-language interaction

Encoder

<2fr> I am a boy
<2hi> I eat food
<2en> Watashiwa ureshii desu

Attention

Decoder

Je suis un garçon
Main khana khata hoon
I am happy

Can translate from X→Y without X-Y data
Multilingual Phrase based SMT

- Hacky Approach
- Only works for non-zero shot conditions
- **Technique:** For each language pair append “#tgt” to each source token
- **Example:**
 - Original: “I am a boy” --> “Watashi wa otokonoko desu”
 - Modified: “I#ja am#ja a#ja boy#ja” --> “Watashi wa otokonoko desu”
- **Outcome:** Single phrase table with multiple language directions
- **Working:** Token “#tgt” helps match phrase pairs for exactly one language pair
Experimental Settings

- Corpora
 - 20 way corpora provided by organizers (~200K sentences per direction)
 - dev2010 and tst2010 for internal evaluation
 - tst2017 for official evaluation

- Generic Preprocessing
 - XML to Moses format
 - Tokenization (using Moses tokenizer)
 - Truecasing (using Moses truecaser)

- Specific Preprocessing For NMT:
 - Prepending the “<2xx>” token to source sentences for all corpora

- Specific Preprocessing For PBSMT:
 - Appending “#xx” token to all source word tokens for all corpora
 - Byte Pair Encoding
 - Not needed for NMT: AIAYN has in built sub-word encoder
PBSMT SETTINGS

- Moses toolkit for training, tuning and testing
- Sub-word vocabulary size: 32000
- Language model: 7-gram KenLM
- Default settings for alignment and phrase extraction, tuning and testing.
NMT SETTINGS

- Google’s implementation of AIAYN
 - https://github.com/tensorflow/tensor2tensor
- Sub-word vocabulary size of 32000 (managed by EMS)
- Embedding and output layer sizes: 512
- Feed forward hidden layer size: 2018
- Adam optimizer with weight decay (Noam LR Decay)
 - 16000 of learning rate warmup before decay
- Beam search decoding:
 - Beam width of size 4
 - Alpha of 0.6 (for decoded sequence length penalty)
- Iterations: 400000 (~10 epochs)
- Data parallelism: 5 GPUs (3-4 days for convergence)
Internal Evaluation (tst2010)

- NMT is inherently superior to PBSMT
- But needs 3-4 times longer training time
- PBSMT does not really allow for languages to interact
 - No parameters are shared in reality
 - Phrase table sharing is more of a hack

L1/L2	de	en	it	nl	ro
de	-	29.63	17.57	23.51	14.49
		34.98	21.37	23.69	18.96
en	21.70	-	24.04	27.25	21.38
	27.81		29.07	30.91	26.65
it	15.88	28.89	-	18.48	19.46
	21.37	34.58		21.83	20.72
nl	21.57	34.79	18.84	-	15.99
	24.45	38.86	23.02		20.68
ro	15.96	31.10	22.65	18.57	-
	21.81	37.10	24.07		

Upper score is SMT
Lower score is NMT
Official Evaluation:

tst2017

- **Surprise:** Zero-shot results are almost as good as non-zero shot results.
- **Analysis:** Extracted 5-lingual corpora from the 20 parallel corpora.
- **Observation:** 150k sentences are 5 lingual:
 - 60% of corpus
- **Conclusion:** Missing parallel sentences between Italian and Romanian and Dutch and German are remedied by indirect translations from other languages.
- **Truly zero-shot?**

Non Zero Shot

L1/L2	de	en	it	nl	ro
de	-	26.45	17.54	19.64	16.27
en	23.25	-	30.79	28.80	24.66
it	19.10	34.73	-	22.32	20.60
nl	20.27	30.49	19.86	-	17.65
ro	17.94	29.58	21.89	20.24	-

Zero Shot

L1/L2	de	en	it	nl	ro
de	-	27.08	17.67	**20.31**	16.08
en	23.63	-	30.99	30.18	24.49
it	19.20	35.28	-	22.76	**20.37**
nl	**19.68**	30.63	20.74	-	17.74
ro	18.40	30.23	**21.85**	20.47	-
How does MLNMT stack against bilingual models?

- **Dutch-German**
 - Bilingual: 19.5
 - Non zero shot: **20.27**
 - Zero shot: 19.68

- **Romanian-Italian**
 - Bilingual: **23.14**
 - Non zero shot: 21.89
 - Zero shot: 21.85

- More or less comparable performance
- Bilingual models required a few hours of training on 5 GPUs
Conclusions and Future Work

- Set foundations for low resource multilingual NMT baselines
- AIAYN is fast and effective
 - Better than PBSMT setting we tried
- Zero-shot performance is almost as good or better than non zero-shot performance
 - Suspicion: Setting is not truly zero shot
- Future work
 - Train more robust models (dropout, annealing, checkpoint averaging)
 - Try out stricter zero-shot conditions
 - Better training methods for related languages (European)
 - Modifications for AIAYN for multilinguality
Thank You for Listening