Some biological properties of spiny eel (*Mastacembelus mastacembelus*, Banks & Solander, 1794) living in the Upper Euphrates River Basin, Turkey

Mehmet Zülfü Çoban¹, Mücahit Eroğlu² & Mustafa Düşükcan²

This study was carried out to determine some bioecological characteristics of *Mastacembelus mastacembelus*, which is the only species of Mastacembelidae family living in Turkey. Fish samples were caught between 2014–2018 from Keban Dam Lake, one of the most important reservoirs of the upper Euphrates Basin. In totally, 348 *Mastacembelus mastacembelus* individuals were examined, including 178 males and 170 females. The age distributions were defined between the I–XV age groups. Total lengths ranged from 14.20 to 81.80 cm in males and from 15.60 to 77.30 cm in females. Total length–weight relationships were calculated as $W = 0.0083 \times TL^{2.6516}$ for males, $W = 0.0043 \times TL^{2.8310}$ for females and $W = 0.0063 \times TL^{2.7256}$ for all population, and the growth type was estimated as “negative allometric”. The von Bertalanffy growth parameters for all individuals were computed as $L_\infty = 90.99$, $k = 0.13$, $t_0 = -0.45$. The total (Z), natural (M), fishing (F) mortality rates and exploitation rate (E) were estimated as $Z = 0.313$, $M = 0.270$, $F = 0.043$ and $E = 0.137$, respectively. The length at first capture (L_c) was found as 50.72. The optimum, maximum and economic yields were calculated as $E_{0.5} = 0.361$; $E_{\max} = 0.776$; $E_{0.1} = 0.664$, respectively.

Mastacembelids or spiny eels (Teleostei: Synbranchiformes: Mastacembelidae) are a freshwater fish family. The family encompassing *Mastacembelus* (61 species), *Macrognathus* (24 species) and *Sinobdella* (1 species) genus includes 86 species. However, the Mastacembelidae family is distributed in the Middle East, in Southeast Asia and north of China, most of its species live in Africa. Members of this family that are anguilliform fishes are mostly river forms.

The only species of Mastacembelidae family in Turkey is *Mastacembelus mastacembelus* and is distributed in Tigris, Euphrates and Asi River systems. The dorsal, caudal, and anal fins of the *M. mastacembelus* individuals living in Africa are jointed, but in individuals living in Turkey are not integrated. They live in lotic and lentic systems where are muddy and sandy grounds which are usually plentiful in vegetation and low in elevation. They hide in plants or bury in bottom muds to protect themselves during daytime.

Some of the morphological features of *M. mastacembelus*, which is called Mesopotamian spiny eel, are as follows: Dorsal spine 33–35; Anal spine 3–3; Dorsal fin ray 70–78; Anal fin ray 70–78; Caudal fin ray 16–21; Pectoral fin ray 18–21; Abdominal vertebrae 36–37; Caudal vertebrae 49–51; Total vertebrae 85–88; Lower jaw length 0.7–1.9; Upper jaw length 1.3–3.2; Body depth 6.7–11.2; Head depth 3.3–6.1; Rostral length 1.6–3.1 (Fig. 1).

Several studies have been carried out on the morphological characteristics, embryo development, digestive system content, otolith size–fish length, fish age–otolith size, reproduction and growth characteristics of *M. mastacembelus* throughout Turkey. This study has got importance for being the first scientific research on the growth parameters of *M. mastacembelus* distributed in the Keban Reservoir located on the Euphrates River. Also, no studies were found on the mortality and exploitation rates, the length at first capture (L_c), the length at recruitment (L_r) and yield per recruit (Y/R) of *M. mastacembelus*.

¹Keban Vocational Schools, Fırat University, Keban, Elazığ, Turkey. ²Faculty of Fisheries, Fırat University, 23119 Elazığ, Turkey. *email: mzcoban@firat.edu.tr*
Materials and methods
Study area and sample collection. Keban Dam was built between 1965 and 1975 in the Keban district for electric production and irrigation. It is the second larger artificial lake in Turkey, was built on Euphrates River in the eastern part of Turkey (within 38° 37′ and 39° 20′N; 38° 15′ and 39° 52′E). The dam lake is 845 m above the sea level and has 675 km² surface areas at maximum level, 160 m in maximum depth and 64,100 km² in basin area (Fig. 2).

This study was carried out between 2014 and 2018 in Keban Dam Lake. Fish samples were caught using gill nets with 22, 28, 34, 36, 42, and 55 mm mesh sizes and crayfish fyke-nets, which used prevalently in the region, with D form and 36 mm stretched mesh size, structured with five hoops and a barrier. Most of the samples were taken from crayfish fishermen during crayfish hunting periods (December–June). Total length (TL, cm) and weight (W, g) of all fish samples were measured and its sexes were noted according to Lagler et al.

Age and growth. Ages of samples were counted by using vertebrae. Because Gümüş et al. examined various bony structures in *M. mastacembelus* and reported that vertebrae are the most suitable structures for age estimation of this species. The vertebrae were immersed in boiling water for approximately 5 min. The vertebrae were then cleaned with a soft cloth and washed with alcohol. Larger vertebrae samples were processed with decolourant for about 1 min and immersed again with water. The vertebrae were dried at 105 °C for 15 min to increase the visibility of annular patterns, and they were examined in alcohol using a trinocular microscope (Olympus CX41 microscope and Olympus DP25 monitoring system), magnification of 10× and 15×.

The sex ratio of the samples was investigated using the Chi-Square test (Χ²). Condition factor (CF) was determined from CF = (W × 100)/L³ equation. Length–weight relationships were computed from the Le Cren's equation and the investigation of the age-length relationship of the *M. mastacembelus*, the von Bertalanffy growth equations (VBGE) were used. The growth performance of fishes was estimated with Munro's growth performance (phi-prime) index (φ′). Equations:

Figure 1. A sample of *M. mastacembelus* caught during the study (original photo).

Figure 2. The map of Keban Dam Lake [Google Maps: https://www.google.com/maps/@38.8025012,38.9170508,9z (Accessed 10 February 2021)].
logL \quad 2 \quad t' \quad = \quad \logK + 2 \logL∞
WM = 0.0083 × TL^{2.6516} \quad R = 0.97, \quad N = 178, \quad CI(95\%)_{b} = 0.065, \quad CI(95\%)_{a} = 0.002
WF = 0.0043 × TL^{2.8310} \quad R = 0.97, \quad N = 170, \quad CI(95\%)_{b} = 0.076, \quad CI(95\%)_{a} = 0.002
WM+F = 0.0063 × TL^{2.7256} \quad R = 0.97, \quad N = 348, \quad CI(95\%)_{b} = 0.051, \quad CI(95\%)_{a} = 0.002 (Fig. 4).

Condition factor. While the condition factor of males ranged from 0.14 to 0.49, in females reached from 0.15 to 0.35. When the mean values were examined, it was determined that the females had a higher condition than the males and the condition factors decreased with growing age in both sexes, in general (Fig. 5). The difference between the condition factor values of males and females were ascertained statistically different in VI, VII, VIII, XI and XIV age groups (p < 0.05).

Table 1. Total length (cm) and weight (g) values of *M. mastacembelus* population inhabiting Keban Dam Lake.

Age groups	Male	Female	T test for lengths	T test for weights				
	N	Total length	Weight	N	Total length	Weight		
I	4	17.60 ± 1.60 (14.20–20.80)	15.80 ± 1.77 (13.20–21.00)	2	15.90 ± 0.30 (15.60–16.20)	13.60 ± 0.40 (13.20–14.00)	p > 0.05	p > 0.05
II	8	25.58 ± 1.17 (24.00–30.20)	44.72 ± 2.61 (41.00–55.00)	12	25.76 ± 1.36 (19.20–29.70)	46.69 ± 6.48 (25.00–70.10)	p > 0.05	p > 0.05
III	11	36.39 ± 2.01 (27.20–45.70)	114.09 ± 15.80 (58.00–192.40)	16	32.57 ± 0.70 (27.00–38.40)	86.90 ± 6.90 (51.80–162.80)	p > 0.05	p > 0.05
IV	18	39.58 ± 1.48 (28.70–50.10)	151.19 ± 16.47 (58.00–301.90)	24	37.09 ± 1.53 (29.10–49.60)	127.84 ± 16.58 (50.40–295.50)	p > 0.05	p > 0.05
V	22	46.75 ± 1.17 (41.20–59.60)	251.10 ± 24.42 (150.00–576.30)	22	45.23 ± 1.81 (31.20–58.40)	241.51 ± 31.57 (64.00–593.00)	p > 0.05	p > 0.05
VI	25	55.38 ± 1.09 (47.10–65.40)	342.94 ± 19.54 (228.00–584.00)	24	50.97 ± 2.25 (36.70–64.60)	241.51 ± 31.57 (64.00–593.00)	p > 0.05	p > 0.05
VII	27	60.83 ± 0.63 (57.10–69.10)	438.79 ± 13.80 (344.50–192.40)	31	56.14 ± 1.70 (41.80–64.70)	415.55 ± 32.29 (130.70–608.00)	p < 0.05	p < 0.05
VIII	19	65.41 ± 0.57 (62.40–70.00)	541.04 ± 17.41 (442.00–673.80)	14	62.11 ± 1.53 (48.10–66.70)	536.51 ± 37.23 (190.30–632.00)	p < 0.05	p < 0.05
IX	12	68.78 ± 0.58 (66.50–73.10)	637.83 ± 25.39 (502.00–787.40)	9	64.28 ± 1.69 (53.80–68.40)	583.16 ± 23.90 (484.00–671.51)	p < 0.05	p < 0.05
X	11	69.72 ± 0.24 (68.10–71.10)	671.22 ± 25.07 (554.00–826.00)	5	66.14 ± 1.40 (63.00–70.20)	612.09 ± 48.28 (485.00–760.00)	p < 0.05	p < 0.05
XI	6	72.08 ± 0.49 (69.90–73.00)	641.03 ± 33.71 (553.10–774.00)	4	69.35 ± 1.81 (64.00–72.00)	732.30 ± 88.91 (488.20–886.00)	p < 0.05	p < 0.05
XII	6	73.55 ± 0.68 (72.20–76.00)	815.33 ± 50.76 (670.70–928.90)	3	72.33 ± 0.64 (71.30–73.50)	727.40 ± 7.83 (758.00–787.20)	p < 0.05	p < 0.05
XIII	4	75.48 ± 1.37 (72.10–78.20)	786.10 ± 94.53 (600.00–980.00)	2	74.15 ± 1.25 (72.90–75.40)	847.00 ± 39.00 (808.00–886.00)	p > 0.05	p > 0.05
XIV	3	76.87 ± 2.07 (72.90–79.90)	782.80 ± 97.95 (589.30–906.00)	2	77.05 ± 0.25 (76.80–77.30)	984.57 ± 25.73 (958.84–1010.30)	p > 0.05	p > 0.05
XV	2	80.90 ± 0.90 (80.00–81.80)	980.60 ± 150.50 (830.10–1131.10)	-	-	-	-	-
Growth parameters. The von Bertalanffy growth parameters, calculated using age and mean length values, were given in Table 2. It was determined that the differences between measured and estimated (using von Bertalanffy growth parameters) length and weight values were statistically insignificant in both sexes (p > 0.05). When the growth curves of both sexes were investigated, it was seen that the males grew faster than the females in between IV and X age groups, but the difference between in growth rates gradually decreased in the later age groups, and both sexes grew almost at the same rate (Fig. 6). According to the covariance analysis (ANCOVA), it was determined that the growth parameters of the sexes were not statistically different (ANCOVA: df = 1, F = 0.640, p = 0.428).

Mortality and exploitation rates. The natural mortality rate was estimated as \(M = 0.270 \text{ year}^{-1} \) by using Pauly's empirical formula, the total mortality rate was computed as \(Z = 0.313 \text{ year}^{-1} \) by using the length converted catch curve (Fig. 7) and the fishing mortality rate was calculated as \(F = 0.043 \text{ year}^{-1} \) by using the formula \(F = Z - M \). The exploitation rate was computed as 0.137 by using \(E = F/Z \) formula. The calculated exploitation rate value is significantly lower than the optimum exploitation rate value, which is assumed to be 0.50.
Length at first capture (Lc) and recruitment (Lr). The cumulative length-frequency distribution graph was drawn to determine the length at first capture (Lc) of *M. mastacembelus* caught between 2014–2018 in Keban Dam Lake. According to Fig. 8, the length at first capture (Lc) was found to be 50.72 cm, 15.5 cm, which is the midpoint of the smallest size class, was accepted as the length at recruitment (Lr). The ages corresponding to Lc and Lr were calculated as $t_c = 5.82$ year and $t_r = 0.98$ year, respectively, using the VBGE parameters.

Figure 6. Age-length relations of *M. mastacembelus* population inhabiting Keban Dam Lake, according to sexes.

Figure 7. Length converted catch curve.

Figure 8. Cumulative length frequency distribution and the length at first capture of *M. mastacembelus* population inhabiting Keban Dam Lake.
Yield per recruit. The relative yield per recruit model (Y/R) was calculated using the knife-edge method of Beverton and Holt. According to the results, the optimum sustainable yield (E_{0.5}) was found to be 0.278, the maximum sustainable yield (E_{max}) to be 0.776 and the economic yield (E_{0.1}) to be 0.355 (Fig. 9). It was seen that the current exploitation rate calculated as 0.137 is lower than the optimum, maximum and economic yield indices.

Discussion
In this study; a total of 348 *M. mastacembelus* individuals (178 male and 170 female) were examined and the age distributions were found to vary between 1–15 for males (14.20–81.80 cm) and 1–14 for females (15.60–77.30 cm). Kılıç, ascertained age distribution 1–7 in males (21.0–70.0 cm) and 1–5 in females (25.0–62.0 cm) from Kärkaya Dam Lake and two rivers flowed to it. He also reported larger fish specimens from the dam reservoir28. In another study conducted in Kärkaya Dam Lake, the age distributions were stated as 1–18 in males (7.0–82.0 cm) and as 1–8 for females (26.6–68.5 cm)19. On the other hand; Pazira et al., from two rivers in southern Iran, reported age distributions as 0–6 for both males (9.5–43.2 cm) and females (4.2–42.5 cm)29. In two studies, executed in Ataturk Dam Lake, the age distributions were stated as 1–18 in males (7.0–82.0 cm) and as 1–9 in females (29.0–69.0 cm) by Oymak et al.17, and were notified as 1–21 for males (14.4–76.9 cm) and as 1–9 for females (14.9–57.3 cm) by Gümüş et al.18. In all of the mentioned studies, since the catching methods of the fish samples are similar (gill nets, fish traps and fishing baskets), it is thought that the differences between fish sizes are due to the difference in living areas instead of the catching technique. In particular, larger Mesopotamian spiny eels samples were caught from lentic systems. It was thought that the inconsistencies between the age data of Kılıç's28 and Eroğlu and Şen's16 studies and the age data of this study were substantially resulted from age reading and validating errors (especially in old fishes).

In this study; "b" value in the length–weight relationship was determined as 2.7256 for all population (M: 2.6516, F: 2.8310). It was found that "b" value statistically different from "3" in both sexes and in all population, and growth types were revealed as negative allometric. "b" value was stated as 1.923 for combined sexes by Kılıç28; as 2.524 in males, as 2.144 in females and as 2.275 in all population by Pazira et al.29; as 2.43 for males and as 2.95 for females by Oymak et al.17; as 2.996 in males, as 2.792 in females and as 2.835 in all individuals by Gümüş et al.18. The growth type was reported as isometric only for males in the study of Gümüş et al.18. In all other studies, the growth type was notified as negative allometric consistently with our study. This finding is also consistent with the morphological structure of *M. mastacembelus*.

It was estimated that the condition factor values ranged between 0.14–0.49 in males and 0.15–0.35 in females and it decreased as age progress. Pazira et al., reported as 0.16–0.39 in males and as 0.16–0.46 in females in two different rivers in Iran29. Eroğlu and Şen stated that the condition factor values varied from 0.17 to 0.30 for males and from 0.19 to 0.27 for females in Kärkaya Dam Lake19. We think that the differences between the condition factor values resulted from that Eroğlu and Şen's16 findings were average values and the samples used in Pazira et al.'s29 study is only obtained from rivers. Because the condition factor values may vary dependently many factors such as age, fish species, habitat, water flow, nutrient, reproductive activity and sampling time80.

In this study; L∞ values were identified for males, females and all population as 88.03 (K: 0.15 year^{-1}), 91.97 (K: 0.12 year^{-1}) and 90.99 (K: 0.13 year^{-1}), respectively. It is thought that the differences with other studies in Table 3 are due to disparities in study areas, in age distributions and calculation methods. However, it was determined using the Phi prime test whether the VBGE parameters in the other studies were statistically significant, and it was found that the findings obtained from this study were not statistically different from the findings of Pazira et al.29, Oymak et al.17 and Gümüş et al.18 (for males t = -3.314, df = 2, p > 0.05; for females t = -0.792, df = 2, p > 0.05).

Natural mortality rate was calculated as M = 0.270, total mortality rate as Z = 0.313, fishing mortality rate as F = 0.043 and exploitation rate as E = 0.137. The exploitation rate is lower than the optimum value that is assumed as 0.50. The optimum, maximum and economic yield indices was calculated as E_{0.5} = 0.278; E_{max} = 0.776;
Table 3. VBGGE parameters of different M. mastacembelus populations.

References	Sexes					
Kilic (2002)	M+F	89.58	0.16	1.41	1098.92	3.192
Pazira et al. (2005)	M	92.3	0.08	1.46	2.833	
	F	87.3	0.08	1.49	2.785	
Oymak et al. (2009)	M	99.2	0.10	0.12	1619.79	2.993
	F	69.2	0.26	0.35	777.52	3.095
Gümüş et al. (2010)	M	80.0	0.14	0.45	1106.83	2.952
	F	83.6	0.12	0.62	1256.59	2.924
This study	M+F	81.7	0.13	0.57	1160.39	2.938
	M	88.3	0.15	0.34	1189.76	3.065
	F	91.97	0.12	0.53	1557.94	3.006
	M+F	90.99	0.13	0.45	1376.49	2.997

E₀₁ = 0.355, and the current exploitation rate (E = 0.137) was lower than these values. M. mastacembelus is not a direct target species of fishermen in the region, because its long and thin body structure reduces the success of catching this species and because of its snake-like appearance, it is a species not preferred by consumers. So it is expected that the fishing mortality rate and the exploitation rate to be low.

In conclusion, M. mastacembelus that is a long-lived and slow-growing species have a low exploitation rate and fishing mortality rate in Keban Dam Lake. In the future, it is thought that the stock estimation studies will be beneficial to learn the economic value of this species.

Received: 21 February 2021; Accepted: 21 May 2021
Published online: 03 June 2021

References
1. Eschmeyer, W. N. & Fong, J. D. Species of fish by family/subfamily. https://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp#Mastacembelidae [Accessed 10 February 2021] (2021).
2. Johnson, G. D. & Patterson, C. Percomorph phylogeny: A survey of Acanthomorphs and a new proposal. Bull. Mar. Sci. 52, 554–626 (1993).
3. Britz, R. & Kottelat, M. Descriptive osteology of the family Chaudhuriidae (Teleostei, Synbranchiformes, Mastacembeloidei), with a discussion of its relationships. Am. Mus. Novit. 3418, 1–62 (2003).
4. Brown, K. J., Britz, R., Bills, R., Rüber, L. & Day, J. J. Pectoral fin loss in the Mastacembelidae: A new species from Lake Tanganyika. J. Zool. 284, 286–293 (2011).
5. Kara, C., Güney, H., Gürlek, M. E. & Alp, A. Adiyaman bölgesi akarsularında dikenli yılan balığı (Mastacembelus mastacembelus Banks & Solander 1794)’nin dağılımı ve bazı morfometrik özellikleri. Aquat. St. 3, 3–11 (2014) (in Turkish).
6. Dağlı, M. & Erdemli, A. Ü. An investigation on the fish fauna of Balıksuyu Stream (Kilis, Turkey). Int. J. Nat. Eng. Sci. 3, 19–24 (2009).
7. Geldaş, R. & Balık, S. Türkiye Tatlısu Balıkları. VI. Baskı, Ege Üniversitesi Su Ürünleri Yayınları, (Ege Üniversitesi Basımevi, Türkiye Tatlısu Balıkları, 2009) (in Turkish).
8. Vreven, E. J. & Teugels, G. G. Redescription of Mastacembelus liberiensis Baulenger, 1898 and description of a new West African spiny-eel (Synbranchiformes: Mastacembelidae) from the Konkoure River basin, Guinea. J. Fish Biol. 67, 332–369 (2005).
9. Jalali, B., Barzegar, M. & Nezamabadi, H. Parasitic fauna of the spiny eel, Mastacembelus mastacembelus Banks et Solander (Teleostei: Mastacembelidae) in Iran. Iran. J. Vet. Res. 9, 158–161 (2008).
10. Çağmaz, N. E. Dikenli yılan balığı (Mastacembelus mastacembelus)’nun morfoloji ve moleküler özlüklerinin belirlenmesi. Kahrımanmaraş Sütçü İmam Üniversitesi, Fen Bilimleri Enstitüsü, Master Thesis, (Kahramanmaraş, 2008) (in Turkish).
11. Çağmaz, E. & Alp, A. Morphological differences among the Mesopotamian spiny eel, Mastacembelus mastacembelus (Banks & Solander 1794), populations. Turk. J. Fish. Aquat. Sci. 10, 7–92 (2010).
12. Şahinöz, E., Doğuz, Z. & Aral, F. Development of embryos in Mastacembelus mastacembelus (Banks & Solander, 1794) (Mesopotamian spiny eel) (Mastacembelidae). Aquat. Res. 37, 1611–1616 (2006).
13. Pala, G., Tellioğlu, A., Erdoğlu, M. & Şen, D. The digestive system content of Mastacembelus mastacembelus (Banks & Solander, 1794) inhabiting in Keban Dam Lake (Malatya, Turkey). Turk. J. Fish. Aquat. Sci. 10, 229–233 (2010).
14. Eroğlu, M. & Şen, D. Otolith size-total length relationship in spiny eel, Mastacembelus mastacembelus inhabiting in Keban Dam Lake (Malatya, Turkey). J. FisheriesSciences.com 3, 342–351 (2009).
15. Eroğlu, M. & Şen, D. Relationships between fish age and otolith size in spiny eel: Mastacembelus mastacembelus (Banks & Solander, 1794). Bitlis Eren Univ. J. Sci. Technol. 2, 15–18 (2012).
16. Eroğlu, M. & Şen, D. Reproduction biology of Mastacembelus simnack (Walbaum, 1792) inhabiting Keban Dam Lake (Malatya, Turkey). Int. J. Nat. Eng. Sci. 1, 69–73 (2007).
17. Oymak, S. A., Krankaya, ŞÇ. & Dogan, N. Growth and reproduction of Mesopotamian spiny eel (Mastacembelus mastacembelus Banks and Solander, 1794) in Ataturk Dam Lake (Sanliurfa, Turkey). J. Appl. Ichthyol. 25, 488–490 (2009).
18. Gümüş, A., Şahinöz, E., Doğuz, Z. & Polat, N. Age and growth of the Mesopotamian spiny eel, Mastacembelus mastacembelus (Banks & Solander, 1974), from southeastern Anatolia. Turk. Zool. Derg. 34, 399–407 (2010).
19. Anonymous. Keban Barajı Gölü limnoloji raporu. DSI 9. Bölge Müdürlüğü, Su Ürünleri Başımuhendisliği. (Keban-Elazığ, 1994) (in Turkish).
20. Yüksel, F., Demirol, F. & Gündüz, F. Leslie population estimation for Turkish crayfish (Astacus leptodactylus Esch., 1823) in the Keban Dam Lake, Turkey. Turk. J. Fish. Aquat. Sci. 13, 835–839 (2013).
21. Google Maps. https://www.google.com/maps/@38.8025012,38.9170508,9z [Accessed 10 February 2021] (2021).
22. Lagler, K. F., Bardach, J. E., Miller, R. R. & Passino, D. R. M. Ichthyology (Wiley, 1977).
23. Zar, J. H. Biostatistical Analysis 4th edn. (Prentice-Hall, 1999).
24. Pauly, D. *Some Simple Methods for the Assessment of Tropical Fish Stocks* (FAO, 1984).
25. Sparre, P. & Venema, S. C. *Introduction to Tropical Fish Stock Assessment*. FAO Fisheries Technical Paper, 306/1, Rev. 2, (Rome, 1998).
26. Munro, J. L. & Pauly, D. A simple method for comparing the growth of fishes and invertebrates. *FishByte* 1, 5–6 (1983).
27. Gayanilo, F. C., Sparre, P. & Pauly, D. *FAO-ICLARM Stock Assessment Tools II (FiSAT II)*. User's Guide. FAO Computerized Information Series (Fisheries). No. 8, Revised version, (FAO, Rome, 2005).
28. Kılıç, H. M. Sultançuyu Deresi, Beyler Deresi ve Karakaya Barajı’nda yaşayan dikenli yılanbalığı (*Mastacembelus simack*)’nın biyolojik özelliklerinin incelenmesi. Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Master Thesi, (Eskişehir, 2002) *(in Turkish)*.
29. Pazira, A., Abdoli, A., Kouhgardi, E. & Yousifard, P. Age structure and growth of the Mesopotamian spiny eel, *Mastacembelus mastacembelus* (Banks & Solander in Russell, 1974) (Mastacembelidae), in southern Iran. *Zool. Middle East* 35, 43–47 (2005).
30. Korkut, A. Y., Kop, A., Demirtaş, N. & Cihaner, A. Balık beslemede gelişim performansının izlenme yöntemleri. *EgeFAS* 24, 201–205 (2007) *(in Turkish)*.

Author contributions

Sample collection and laboratory work: M.Z.Ç., M.E. and M.D. Article writing and evaluation of data: M.Z.Ç. and M.E.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to M.Z.Ç.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021