Performance Assessment and Optimization of Vertical Nanowire TFET for Biosensor Application

Parveen Kumar1 · Balwinder Raj2

Received: 31 March 2022 / Revised: 26 May 2022 / Accepted: 3 June 2022 / Published online: 27 June 2022
© The Korean Institute of Electrical and Electronic Material Engineers 2022

Abstract
This paper reports the performance assessment of vertical silicon nanowire TFET (V-siNWTFET) design for biosensor applications using dielectric-modulation and gate underlap technique. The sensitivity of the V-siNWTFET is recognized by immobilizing different biological molecules such as lipids, biotin, uricase, protein, Gox, streptavidin, urease, zein etc. in the cavity region which is created under the gate electrode and source oxide. The performance analysis is observed by varying the relative permittivity of the different biomolecules and analyzes the parametric variation both for neutral and charged biomolecules. The sensitivity of the biosensor has been detecting in the terms of drain current (ID), threshold voltage (VTH), subthreshold slope (SS), transconductance (gm), and ION/IOFF ratio. The proposed device structure has capable to reduce the leakage currents and high sensitivity biosensor design in the nanoscale regimes. The obtained best optimum parameters of the proposed devices are ION (1.37E−08 A/µm), IOFF (9.44E−19 A/µm), SS (29.97 mV/dec) and ION/IOFF (4.29E + 10) ratio with gate work-function (ϕgate = 4.8 eV) and uniformly doped (1 × 10−19 cm−3) silicon nanowire at drain to source voltage (VDS = 1.0 V). The higher sensitivity of the proposed V-siNWTFET for Biosensor is observed for Zein biomolecules (K = 5).

Keywords Nanowire tunnel FET · Biomolecules · Dielectric modulation · Subthreshold slope · Biosensor · Sensitivity

1 Introduction
Nanowire tunnel FET · Biomolecules · Dielectric modulation · Subthreshold slope · Biosensor · Sensitivity

As per current situations the whole world suffers from COVID-19 pandemic and continually increase in cases of Omicron variant is showing the importance of electronic biosensors for the early stage identification of diseases. The biosensor is used for the detection of biomolecules such as lipids, biotin, uricase, protein, Gox, streptavidin, urease, zein [1–5] etc. and various applications such as food analysis [6], health monitoring [7], detection of crime [8], environmental field [9] etc. In the last decade, field effect transistor (FET) based biosensors [10–15] has been proposed and investigated because of their ability to detect the biomolecules. Apart from this, with the regular shrinking in conventional FET based biosensor devices will leads to deteriorating the device performance in terms of leakage currents, higher subthreshold slope (> 60 mV/dec), short channel effects (SCE) and low ION/IOFF ratio. The multiple devices such as DGMOSFET, FinFET, CNTFET, Nanowire, Tunnel Field Effect Transistor (TFET) etc. [16–22] has been reported in the literature to immune the SCEs and discover the substitute in terms of low off-state current (IOFF) and minimum subthreshold slope (SS) below the kT/q limit (i.e. SS < 60 mV/decade) and higher ION/IOFF ratio. Out of these devices, TFET has been found promising candidate for biosensor application due to its good sensitivity, improved SCEs, energy efficient and proficient to defeat aforesaid issues related to designed FET based biosensors. The operational principal of TFET is based on band-to-band-tunneling (BTBT) and heavily doped p-i-n structure. Due to highly doping concentration in drain as well as source region, it suffers from issue like Random dopant fluctuation (RDFs) which construct the fabrication process complicated and enhance the production cost of the device.

Therefore, junctionless transistor [23] has been explored without junctions in their regions, which makes fabrication process easier because it does not required abrupt doping.
profile. Further to increase the density and scaling probability in the semiconductor devices, Vertical Nanowire TFET structure are preferable because of higher density, electrostatic control on the gate, lower SS and immune to SCEs [24–27]. An exploration is required to check its ability for biosensor by the detection of neutral as well as charged biomolecules.

In this paper a Vertical Silicon Nanowire TFET (V-siNWTFET) has been proposed for biosensor applications using silicon as the base material of nanowire and dielectric modulation technique. Moreover, performance assessment has been considered and optimize the device with suitable parameters. A cavity/hole is created on the source-channel interface between the source/gate oxides and electrodes to allow the immobilization of Biomolecules with in the V-siNWTFET. The performance assessment has been observed in the terms of drain currents, SS, transconductance ($g_m$), $I_{ON}/I_{OFF}$ ratio and their sensitivity, when the biomolecules are enters in the cavity region. The various Biomolecules (neutral as well as charged) has been examined for the performance assessment of V-siNWTFET by their appropriate value of relative permitivity ($K$). This paper paying attention on required biosensor for commercial medical applications and early detection of dieases which helps to prevents us from the current pandemic.

2 Device Structure and Simulation Framework

In proposed device structure, a uniform highly doped concentration $1 \times 10^{-19}$ cm$^{-3}$ has been used in all regions of V-siNWTFET by taking silicon material of nanowire in gate-all-around (GAA) environment. The p + source region is framed on silicon substrate (intrinsic type) by utilizing platinum electrode metal workfunction (5.93 eV) and gate metal workfunction (4.8 eV). The work-function of source ($\phi_{source}$) always greater than intrinsic silicon ($\chi_{si} + (E_g/2q)$) and less than work-function of drain ($\phi_{drain}$), where as $\chi_{si}$ represents as electron affinity, q shows the charger and $E_g$ taken as energy gap of silicon [28]. The thickness of silicon film has been arranged within Debye-length $\sqrt{\varepsilon_0 kT/(N\chi_{si}q)}$, whereas $V_T$, $\varepsilon_0$, $\phi$, $N$ represents as thermal voltage, dielectric constant, charge, carrier-concentration respectively [29].

The proposed device structure of V-siNWTFET is shown in Fig. 1(a). The transfer charateristics ($I_D$–$V_{GS}$) of simulated framework (V-siNWTFET) with respect to reported conventional nanowire TFET [30] as illustrated in Fig. 1(b). The device parameter used for the simulation of V-siNWTFET with conventional NWTFET are gate-length = 200 nm, radius of silicon nanowire = 35 nm, gate-oxide thickness = 4.5 nm, workfunction of gate electrode = 4.0 eV with gaussian doping profile = $1 \times 10^{-17}$ cm$^{-3}$. The simulation framework place here for V-siNWTFET is exhaustively calibrated with reported work [30] and data has been extracted using plot digitizer tools.

The optimized parameteric values has been utilized such as gate/channel length ($L_{gate} = 50$ nm), Cavity length ($L_{cavity} = 35$ nm), Radius of silicon nanowire ($R_{NW} = 10$ nm), gate-oxide thickness ($T_{ox} = 2$ nm), Cavity thikness ($T_{cavity} = 2$ nm), gate workfunction ($\phi_{gate} = 4.8$ eV) and highly doped uniform concentration ($N_D = 1 \times 10^{19}$ cm$^{-3}$) to improve the electrical properties of the device such ON state current ($I_{ON}$), subthreshold slope (SS), OFF state current ($I_{OFF}$), Transconductance ($g_m$) and Sensitivity of the V-siNWTFET.
The detailed device parameters of V-siNWTFET are given in Table 1. The tunneling has been performed through BTBT mechanism at the source-channel interface.

The tunneling current ($I_{\text{BTBT}}$) of the TFET based devices depends upon its tunneling probability of the electrons and energy gap between conduction band (CB) and valance band (VB) which is represented as $T(E)$ and $(E_g)$ respectively. The $T(E)$ is expressed in Eq. (1) and calculated through WKB approximation [31].

$$T(E) \cong \exp \left[ - \frac{4 \lambda \sqrt{m^* E_g^3}}{3 q h (E_g + \Delta \Phi)} \right] \Delta \Phi$$

where as $E_g$ denotes the energy gap between CB and VB at tunneling junction, $m^*$ shows the effective mass, $\lambda$ represents the tunneling length and expresses in Eq. (2) [32]

$$\lambda = \sqrt{\frac{\varepsilon_{\text{si}}}{\varepsilon_{\text{bio}}} t_{\text{out}} t_{\text{body}}}$$

where as $\varepsilon_{\text{si}}, \varepsilon_{\text{bio}}, t_{\text{body}}$ shows the dielectric constant of silicon, dielectric constant of biomolecules and body thickness respectively. The total thickness under the gate is represents as $t_{\text{out}}$ which is the summation of gate oxide and cavity thickness.

At the thermal equilibrium state, when the gate to source voltage ($V_{GS}$) is equal to zero and drain-source voltage ($V_{DS}$) is 1.0 V, device will act as OFF state and energy gap between their bands (conduction band and valance band) will be high. Further with the increase in $V_{GS}$ from 0 to 1.2 V and $V_{DS}$ still same at 1.0 V, the device will act as ON state and energy gap between conduction band (CB) and valance band (VB) has been reduced. So the tunneling of electrons has possible only in ON state as shown in Fig. 2 because of lesser energy gap between CB and VB. If the energy gap is low, then tunneling probability is higher in case of TFET devices [33].

The cavity area is formed by a adhesion layer in between the source-gate oxides and source-gate electrodes. The biomolecules get immobilized in the cavity area. The total length of the cavity region is taken as 35 nm, out of this 25 nm for source-oxide region and 10 nm for gate-oxide region and $t_{\text{cavity}} = 2$ nm has been considered for biomolecules detection. The various biomolecules are immobilization in the cavity area such as Lipids, Biotin, Uricase, Protein, Gox, Streptavidin, Uriease, Zein etc. The simulation of V-siNWTFET is performed by filling biomolecules in the entire cavity area. Initially, the entire cavity is filled by air ($K = 1$) and the relative permittivity ($K$) of the biomolecules has been varied from 1.00 to 5.00 for performance assessment of the proposed device. The different models such as Shockley-Read-Hall (SRH) recombination model [34], Wentzel-Kramar-Brillouin (WKB) model [35] for numerical yield, Non-local band-to-band-tunneling (BTBT) model for tunneling-probability at the interface [36], bandgap barrowing (BGN) model for considering high concentration [37], Auger model and Lombardi (CVT) Model [38] have been utilized for simulation of V-siNWTFET device.

### 3 Results and Analysis

The simulation of Vi-siNWTFET has been carried through Silvaco (ATLAS) Tools. The intial value of relative permittivity ($K$) of the Biomolecules is taken as 1 in the cavity region. The position when cavity area is filled with bio-logical molecules, the predictable value is increasing from its initial value ($K_{\text{air}} = 1$). As per the change in the value $K$, the bio-logical molecules are immobilized in the cavity area and the electrical properties of the device changes accordingly. The detail of various bio molecules and their respective relative permittivities are given in Table 2.

#### 3.1 Effect of Neutral Biomolecules on Drain Current

In this section, the effect of neutral biomolecules on the drain current has been analyzed with the change in their relative permittivity ($K$) at $V_{DS} = 1.0$ V as shown in Fig. 3.

Figure 3 shows the variation of drain current with respect to $V_{GS}$ for neutral biomolecules. Initially, it is assumed that the cavity area is filled with air ($K = 1$), which results in low ON current ($I_{ON}$). As the cavity area is filled with different biomolecules such as lipids, biotin, uricase, protein, Gox, streptavidin, uriease, zein and immobilized in the cavity by varies their respective relative permittivities from 1.00 to 5.00, resulting increase in $I_{ON}$ current. The detailed of obtained parameters variation of V-siNWTFET for netural biomolecules are given in Table 3.

#### 3.2 Effect of Charge-Biomolecules on Drain Current ($I_b$)

The effect charged (positive and negative) biomolecules on the drain current with respect to the change in value of $K$ has been analyzed at $V_{DS} = 1.0$ V as shown in Fig. 4.

The position when cavity area is filled with Zein biomolecules ($K = 5.00$) and positively charged biomolecules are immobilized in the cavity area via change in surface density ($N_f$), then corresponding threshold voltage ($V_{th}$) start reduces with the increase in surface densities from $N_f = 3e11$ to $N_f = 3e12$ as shown in Fig. 4(a). Similarly when cavity is filled with negatively charged biological molecules via $N_f = -3e11$ to $N_f = -3e12$ and immobilized in the cavity region, then the reverse action has been performed and threshold voltage ($V_{th}$) start increasing with the increase in negatively charged biomolecules as shown in Fig. 4(b).
The resultant parameters variation of V-siNWTFET after the simulation for charged Biomolecules with $K = 5.00$ are given in Table 4.

3.3 Effect on Energy Bands of V-siNWTFET with respect to different biomolecules

In this section the effect of different neutral biomolecules on energy bands have been considered in OFF-state and On-state at $V_{DS} = 1.0$ V as shown in Fig. 5. According to the energy band diagram, dash line shows the OFF-state ($V_{GS} = 0.0$ V and $V_{DS} = 1.0$ V) and solid line shows the ON-state($V_{GS} = 1.0$ V and $V_{DS} = 1.0$ V). When biomolecules are starts entering into the cavity region it affects the energy bandgaps. As per increase in relative permittivity of the V-siNWTFET from $K = 1.64$ to $K = 5.00$ and biological molecules are immobilized in the cavity. The energy gap between the conduction band (CB) and Valance band (VB) has been reduced with the increase in value of $K$, which results in tunneling probability of charge-carrier at the source channel interface of the proposed device.

3.4 Impact on Electric Field for Various Relative Permittivity ($K$)of the Biomolecules

Figure 6 illustrates the impact on electric field for various relative permittivities of the Biomolecules taken as per Table 2. of V-siNWTFET at $V_{DS} = 1.0$ V. Figure 6 reflects that with the increase in relative permittivity ($K$) from 1.00 to 5.00, the electric field has been increases. The maximum electric field is observed near source-channel interface (where the tunneling process has been performed) at $K = 5.00$.

---

### Table 1: Device parameters of V-siNWTFET

| Parameters               | Symbol    | Applied values |
|--------------------------|-----------|----------------|
| Channel/Gate Length      | $L_{gate}$| 50 nm          |
| Gate-metal Workfunction  | $\Phi_{gate}$ | 4.8 eV     |
| Length of Cavity Region  | $L_{cavity}$ | 35 nm        |
| Thickness of gate oxide  | $T_{ox}$  | 2.0 nm         |
| Radius of Nanowire       | $R_{NW}$  | 10 nm          |
| Thickness of cavity area | $T_{cavity}$ | 2.0 nm      |
| Doping Concentration     | $N_D$     | $1 \times 10^{19}$ cm$^{-3}$ |
| Source-metal Workfunction| $\phi_{source}$ | 5.93 eV |
| Drain/Source Length      | $L_{source/L_{drain}}$ | 50 nm    |

### Table 2: Biological molecules with their respective relative permittivity

| Biological molecule | Relative permittivity ($K$) | Reference |
|---------------------|----------------------------|-----------|
| Uricase             | 1.54                       | [3]       |
| Uriease             | 1.64                       | [1]       |
| Lipids              | 2.00                       | [1]       |
| Streptavidin        | 2.10                       | [2]       |
| Protein             | 2.50                       | [2]       |
| Biotin              | 2.63                       | [1]       |
| Gox                 | 3.46                       | [4]       |
| Zein                | 5.00                       | [5]       |

---

**Fig. 2** Energy bands diagram of V-siNWTFET in OFF state ($V_{GS} = 0.0$ V) and ON State ($V_{GS} = 1.2$ V) at $V_{DS} = 1.0$ V

**Fig. 3** Improvement in $I_{DS}$ current with increased dielectric constant ($K$) of neutral biomolecules at $V_{DS} = 0.8$ V
3.5 Effect of Biomolecules on Drain Current Sensitivity for V-siNWTFET

The effect of biomolecules on drain current sensitivity with $T_{\text{cavity}} = 2$ nm at $V_{DS} = 1.8$ V shows in Fig. 7. The Drain Current Sensitivity ($\psi_{Id}$) of the proposed device is computed through the Eq. (3).

$$\psi_{Id}(\%) = \left( \frac{\psi_{bio} - \psi_{air}}{\psi_{air}} \right) \times 100$$

whereas the $\psi_{air}$ is represents the drain current when the cavity is filled with air and $\psi_{bio}$ is represents the drain current when entire cavity filled with biomolecules [39].

At the intial stage, entire cavity is filled with air ($K = 1$) and with the increases the $K$ from 1.54 to 5.00, the Drain Current Sensitivity ($\psi_{Id}$) significantly improved by taking air as reference material of the cavity region. It is noted that higher percentage $\psi_{Id}$ is observed for Zein Biomolecules having relative permittivity is equal to 5.

3.6 Impact on Transconductance and their Sensitivity for Various K of Biomolecules

In this section the impact of neutral biomolecules on transconductance and their sensitivity has been analyzed as shown in Fig. 8. In general the transconductance of a device is defined as the ratio of change in output current ($I_{out}$) to the change in input voltage ($V_{in}$), it is represents as $g_{m}$ [40]. The mathematical expression for transconductance is given in Eq. (4)

$$\text{Transconductance } (g_{m}) = \frac{\Delta I_{out}}{\Delta V_{in}}$$

From Fig. 8, it is observed that the transconductance is increase with the filling of higher dielectric constant in the cavity region. The dielectric constant natural biomoles varies from greater than air dielectric constant i.e. $K = 1$ to higher $K = 5.00$. The higher value is obtained at Zein Biomolecules by taking the relative permittivity is 5.00 as shown in Fig. 8(a).

The Transconductance Sensitivity ($\psi_{gm}$) is illustrated in Fig. 8(b). The sensitivity of the V-siNWTFET for Biosensor application is measured through the expression given in Eq. (5).
whereas $g_{m\text{bio}}$ and $g_{m\text{air}}$ represent as transconductance of bio-logical molecules and air respectively. Figure 8(b) depicts the absolute value of $\psi_{gm}$ by the variation in cavity filling with different bio-logical molecules. The sensitivity of the V-siNWTFET can be increases or decreases as per the cavity materials such Uricase ($K = 1.54$), Uriease (1.64), Lipids ($K = 2.00$), Streptavidin ($K = 2.10$), Protein ($K = 2.50$), Biotin ($K = 2.63$), Gox (3.46), Zein ($K = 5.00$). From Fig. 8(b), it is evident that lower transconductance sensitivity ($\psi_{gm}$) of the device are observed at $K = 1.54$ and higher $\psi_{gm}$ at $K = 5.00$.

$\psi_{gm}(\%) = \left( \frac{g_{m\text{bio}} - g_{m\text{air}}}{g_{m\text{air}}} \right) \times 100$  \hspace{1cm} (5)

Table 4 Parameter variations of V-siNWTFET for positive and negative charged biomolecules

| Surface Density (Nf) | SS (mV/dec) | $I_{ON}$ (A/μm) | $I_{OFF}$ (A/μm) | $I_{ON}/I_{OFF}$ Ratio | $V_{th}$ (V) |
|----------------------|-------------|-----------------|------------------|------------------------|-------------|
| +3e11                | 34.1302     | 4.42E-08        | 1.14E-18         | 3.88E + 10              | 0.477755    |
| +5e11                | 35.8853     | 4.70E-08        | 9.01E-19         | 5.22E + 10              | 0.47431     |
| +1e12                | 35.7079     | 5.41E-08        | 8.33E-19         | 6.49E + 10              | 0.465431    |
| +2e12                | 35.2652     | 6.74E-08        | 8.44E-19         | 7.99E + 10              | 0.442185    |
| +3e12                | 36.5971     | 7.75E-08        | 1.24E-18         | 6.27E + 10              | 0.425869    |
| -3e11                | 30.7042     | 3.60E-08        | 8.40E-19         | 4.29E + 10              | 0.487768    |
| -5e11                | 32.1401     | 3.34E-08        | 9.98E-19         | 3.35E + 10              | 0.490996    |
| -1e12                | 36.1484     | 2.73E-08        | 1.04E-18         | 2.62E + 10              | 0.498844    |
| -2e12                | 29.9879     | 1.69E-08        | 8.10E-19         | 2.09E + 10              | 0.513722    |
| -3e12                | 29.972      | 9.40E-09        | 9.62E-19         | 9.78E + 09              | 0.527644    |

Fig. 5 Variation of energy bands with respect to channel for neutral Biomolecules varies from K = 1.64 to 5.00 at VDS = 1.0 V

Fig. 6 Impact on electric field for various K at VDS = 1.0 V

Fig. 7 Effect of neutral biomolecules on drain current sensitivity at $T_{cavity} = 2$ nm, $L_{cavity} = 35$ nm and $V_{DS} = 1.0$
4 Conclusion

This article presented a V-siNWTFET structure for Biosensor applications by considering its performance analysis using dielectric modulation (DM) technique. The Biomolecules are immobilized in the cavity region by varying the relative permittivities (K). The V-siNWTFET presents the suitable high performance biosensor for detection of biomolecules like Uricase, Uriease, Lipids, Streptavidin, Protein, Biotin, Gox, Zein etc. The sensitivity of the proposed biosensor has been increased with the increase in dielectric constant in the cavity area by taking air (K = 1) as reference value. The resultant maximum $I_{ON} (1.00 \times 10^{-8})$, minimum $I_{OFF}$ current $(8.31 \times 10^{-19})$ and minimum value of $I_{ON}/I_{OFF}$ Ratio $(1.21 \times 10^{10})$ are observed at K = 5.00. Further the device is optimized for best possible results at $\Phi_{gate} = 4.8$ eV, $L_{cavity} = 35$ nm, $T_{ox} = 2$ nm, $T_{cavity} = 2$ nm and $N_D = 1 \times 10^{-19} \text{ cm}^{-3}$, and $R_{NW} = 10$ nm. The proposed device also investigates the performance assessment with the impact of neutral as well as charged biomolecule, resulting in low leakage currents, enhanced parametric values and high sensitivity with neutral Biomolecules as compared to other FET based sensor devices. The designed V-siNWT-FET device has been suitable for high performance, energy efficient and high sensitivity biosensor design applications.

Acknowledgements We thank the ECE Department of Dr. B.R. Ambedkar National Institute of Technology, Jalandhar and National Institute of Technical Teachers Training and Research, for their attentiveness in this work and useful comments to draft the final form of the paper. The support of Science and Engineering Research Board (SERB), Government of India (Govt), Project (EEQ/2018/000444) is appreciatively acknowledged. We would like to thank NIT Jalandhar and NITTTR Chandigarh for lab facilities and research environment to carry out this work.

Author Contributions We have been proposed Vertical Silicon Nanowire Tunnel-Field Effect Transistor (V-siNWT-FET), which are immune to short channel effects and preferred for high performance biosensor design applications in nano regime.

Funding The authors declare that they have no funding available for the publication chargers of open access. We have received financial support from Science and Engineering Research Board, Government of India for computation and simulation tools to carry out the proposed work.

Declarations

Conflict of interest The proposed device has been suitable for biosensor applications with reduced short channel effects and improved performance parameters as compared to previous reported work. Authors declare that there is no conflict of Interest.

References

1. A. Paliwal, M. Tomar, V. Gupta, Complex dielectric constant of various biomolecules as a function of wavelength using surface plasmon resonance. J. Appl. Phys. 116(2), 23109 (2014)
2. A. Densmore et al., Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response. Opt. Lett. 33(6), 596–598 (2008)
3. G. Wadhwa, B. Raj, Parametric variation analysis of symmetric double gate charge plasma JLTFET for biosensor application. IEEE Sens. J. 18(15), 6070–6077 (2018)
4. S.K. Verma, S. Singh, G. Wadhwa, B. Raj, Detection of biomolecules using charge-plasma based gate underlap dielectric modulated dopingless TFET. Trans. Electr. Electron. Mater. 21(5), 528–535 (2020)
5. P. Kaur, A. S. Buttar, and B. Raj, “Design and Performance Analysis of Proposed Biosensor based on Double Gate Junctionless Transistor,” Silicon, pp. 1–8, 2021
6. M. Sheikhshoaie, H. Kartimi-Maleh, I. Sheikhshoaie, M. Ranjar, Voltammetric amplified sensor employing RuO2 nano-road and room temperature ionic liquid for amaranth analysis in food samples. J. Mol. Liq. 229, 489–494 (2017)
