Asia, which holds 60% of the world’s population, comprises some developing countries which are in economic transition. This paper reviews the epidemiology of stroke in South, East and South-East Asia. Data on the epidemiology of stroke in South, East, and South-East Asia were derived from the Global Burden of Disease study (mortality, disability-adjusted life-years [DALYs] lost because of stroke), World Health Organization (vascular risk factors in the community), and publications in PubMed (incidence, prevalence, subtypes, vascular risk factors among hospitalized stroke patients). Age- and sex-standardized mortality is the lowest in Japan, and highest in Mongolia. Community-based incidence data of only a few countries are available, with the lowest rates being observed in Malaysia, and the highest in Japan and Taiwan. The availability of prevalence data is higher than incidence data, but different study methods were used for case-finding, with different age bands. For DALYs, Japan has the lowest rates, and Mongolia the highest. For community, a high prevalence of hypertension is seen in Mongolia and Pakistan; diabetes mellitus in Papua New Guinea, Pakistan, and Mongolia; hypercholesterolemia in Japan, Singapore, and Brunei; inactivity in Malaysia; obesity in Brunei, Papua New Guinea, and Mongolia; tobacco smoking in Indonesia. Hypertension is the most frequent risk factor, followed by diabetes mellitus and smoking. Ischemic stroke occurs more frequently than hemorrhagic stroke, and subarachnoid hemorrhages are uncommon. There are variations in the stroke epidemiology between countries in South, East, and South-East Asia. Further research on stroke burden is required.

Keywords Cerebrovascular disorders; Stroke; Epidemiology; Risk factors; Asia

Introduction

Stroke is a major cause of death and disability in many countries. It was reported that, in 2013, globally, there were nearly 25.7 million stroke survivors, 6.5 million deaths due to stroke, 113 million disability-adjusted life-years (DALYs) lost because of stroke, and 10.3 million new cases of strokes. A majority of the stroke burden was observed in developing countries, accounting for 75.2% of all stroke-related deaths and 81.0% of the associated DALYs lost.

Stroke is an especially serious problem in Asia, which has more than 60% of the world’s population, and many of its countries are “developing” economies. Stroke mortality is higher in Asia than in Western Europe, the Americas or Australasia,
except in the case of some countries such as Japan. The epidemiology of stroke in East Asia and South Asia has been previously reviewed. A recent review of stroke in 12 Asian countries included 3 of the 11 countries in South-East Asia, whose people largely have South and East Asian origins—however, data on the remaining South-East Asian countries were not presented.

This study was conducted to review the recent epidemiology of stroke in South, East, and South-East Asia, including mortality, incidence, prevalence, DALYs lost, stroke subtypes and risk factors, based on data from the Global Burden of Disease (GBD) study, World Health Organization (WHO), and recent major publications from Asian countries. A greater understanding of the stroke burden in this part of the world could assist in the appreciation of the magnitude of stroke and its diversity, and help in healthcare planning and resource allocation.

Methods

A search was conducted of all the publications in the PubMed database, from the time of entry into the database to November 1, 2015. The search terms used were "stroke" with the operator "and", along with any ("or") of the following terms: "burden", "epidemiology", "mortality", "incidence", "prevalence", "subtype", and "risk factors". The operator "and" was then used with the name of each country in South, East, and South-East Asia. Data from Middle-Eastern countries were excluded, as the people from those countries are ethnically different from those in the other parts of Asia. The abstracts were reviewed for relevance, and data on stroke epidemiology were extracted. Where possible, the original papers were also obtained and reviewed. The most recent studies or review papers from each country, were preferred over older publications. Data on incidence and prevalence were obtained from community-based studies with wide age ranges and no upper limit. Data on the stroke subtypes and vascular risk factors among stroke patients were preferably from multi-center hospital collaborations with high brain scan rates. There was no exclusion based on language. Data on stroke mortality and morbidty were obtained from the GBD study, and vascular risk factors in the community were obtained from the WHO database. All the data search was conducted by a single author (NV). The data were then tabulated, stratified according to geographical regions.

Results and discussion

Mortality

As per the GBD study, the age- and sex-standardized mortality in Asia has a wide range (Table 1). The lowest rates are observed in Japan (43.4/1,000,000 person-years) and Singapore (47.9/100,000 person-years), followed by Bangladesh, Papua New Guinea, and Bhutan. The highest rates are observed in Mongolia (222.6/100,000 person-years) and Indonesia (193.3/100,000 person-years), followed by Myanmar and North Korea. All three regions show a range of mortality values, although, in general, they are lower in South Asia and high-income countries in East Asia. These varying rates may reflect the differences in stroke incidence, disease severity, and quality of healthcare. Competing causes of death such as coronary artery disease may provide a falsely low mortality value attributable to stroke.

Incidence

Stroke incidence data are available for most countries in East Asia, but only for some in the other regions (Table 1). The lowest rate is observed in Malaysia (67/100,000 person-years). The highest rates are in Japan (422/100,000 person-years among men and 212/100,000 person-years among women) and Taiwan (330/100,000 person-years). However, the results are not strictly comparable, as the methods used were variable and the studies were performed at different time points. However, the observed variations may reflect differences in the risk-factor prevalence, screening/detection method and level of control.

Prevalence

Data on stroke prevalence are more readily-available than those on incidence; especially so in East Asia (Table 1). Comparisons of the studies are difficult to perform as differing study methods were used for case-finding, and differing age bands were investigated. These studies were also conducted at different time points. As prevalence reflects the balance between incidence and mortality, a low prevalence may be due to low incidence or high mortality or both; conversely, a high prevalence may be due to high incidence or low mortality or both. Competing illnesses such as coronary artery disease may reduce the number of stroke survivors and provide a falsely low stroke prevalence value. Prevalence still, however, reflects the status of disease in the community that healthcare services for chronic diseases need to actively deal with.

Stroke burden

Arguably, the best measure of stroke burden is the number of DALYs lost because of stroke. Based on data from the GBD study, there was a wide range of age- and sex-standardized stroke DALYs lost in Asia, in 2010 (Table 1). The lowest rates are...
Venketasubramanian, et al. Stroke in South, East, and South-East Asia

in Japan (706.6/100,000 people) and Singapore (804.2/100,000 people), with low rates also observed in Bangladesh and Bhutan. The highest rates are in Mongolia (4,409.8/100,000 people) and Indonesia (3,382.2/100,000 people), with high rates also observed in Myanmar, Lao PDR, North Korea, and Cambodia. As in the case of mortality, a range of the rates of DALYs lost are observed in all three regions, but the DALYs lost tend to be lower in high-income countries in East and South-East Asia. The DALYs lost reflect the net effects of mortality, incidence, and disability among prevalent cases, and the latter possibly indicates the effects of stroke severity and rehabilitative services.

Vascular factors
Increasing age, sex (male), and genetics are non-modifiable risk factors for stroke. The modifiable stroke risk factors are shown in Table 2, based on data from the WHO. These were derived from community-based cross-sectional surveys. Similar criteria were used for diagnosis, which makes the studies comparable.

Hypertension remains the most common medical risk factor for stroke, whereas current smoking and inactivity are the most predominant among lifestyle-related risk factors. In most countries, high or low frequencies of occurrence are observed consistently across all risk factors for that country, compared to other countries. There is a range of frequencies within each region. A high prevalence of hypertension is seen in Mongolia and Pakistan (low in Korea and Singapore); diabetes mellitus in Papua New Guinea, Pakistan, and Mongolia (low in Vietnam, Timor Leste, and DPR Korea); hypercholesterolemia in Japan,
Singapore and Brunei (low in Nepal, Timor Leste, and DPR Korea); inactivity in Malaysia (low in Nepal and Lao PDR); obesity in Brunei, Papua New Guinea, and Mongolia (low in Timor Leste, Cambodia, and Bangladesh); tobacco smoking in Indonesia (low in India). In general, hypertension, diabetes mellitus and tobacco smoking tend to be more prevalent among men, whereas hypercholesterolemia, inactivity and obesity tend to be more prevalent among women.

Data on the vascular risk factors among stroke patients are available for a number of countries (Table 3). These are derived from hospital-based stroke registries.\(^6,12,25-36\) They are not strictly comparable as varying definitions were used, and studies were performed at differing time points, but there is still some consistency in the findings. Hypertension is the most common risk factor, with diabetes mellitus and smoking following closely. A significant proportion of stroke patients have had previous cerebrovascular events and coronary artery disease.

Possessing knowledge on the risk factors in each population can inform policy makers and healthcare planners on which factors should be targeted and what appropriate preventive measures should be taken.

Stroke subtypes

Information on stroke subtypes is also available in most coun-

Table 2. Vascular risk factors in the community

Country	Hypertension (SBP>140 mmHg and DBP>90 mmHg) (2015) 18+ years (%)	Diabetes mellitus (FBS>7.0 mmol/L or on medication) (2014) 18+ years (%)	Hypercholesterolemia (TC>6.2 mmol/L) (2008) 25+ years (%)	Insufficient physical activity (2010) 18+ years (%)	Obesity (BMI>30) (2014) 18+ years (%)	Smoking (2015) >15 years (%)
South Asia						
Bangladesh	24.5 M 24.9 F	10.3 M 9.3 F	4.4 M 5.5 F	10.2 M 43.4 % F	1.8 M 4.9 F	39.8 M 0.7 F
Bhutan	28.5 M 27.6 F	11.9 M 11.5 F	6.0 M 6.3 F	5.7 M 11.8 % F	4.2 M 8.2 F	- F
India	26.6 M 24.7 F	9.1 M 8.3 F	4.5 M 6.0 F	10.8 M 16.1 % F	2.3 M 5.1 F	20.4 M 1.9 F
Nepal	29.7 M 29.5 F	11.2 M 9.5 F	3.7 M 4.9 F	4.5 M 3.7 F	2.2 M 5.3 F	37.1 M 11.1 F
Pakistan	31.5 M 29.5 F	12.6 M 12.1 F	5.7 M 6.6 F	20.2 M 31.7 % F	4.1 M 8.2 F	41.9 M 3.0 F
Sri Lanka	23.0 M 21.6 F	7.0 M 7.7 F	6.6 M 9.5 F	17.3 M 30.3 % F	3.3 M 9.1 F	28.4 M 0.4 F
East Asia						
China	21.5 M 16.8 F	9.9 M 7.6 F	5.9 M 8.4 F	22.5 M 25.6 % F	7.4 M 8.2 F	47.6 M 1.8 F
DPR Korea	29.3 M 27.6 F	5.8 M 5.9 F	4.2 M 6.1 F	- M - F	2.0 M 3.7 F	- F
Japan	22.5 M 12.6 F	8.4 M 5.0 F	15.7 M 15.8 % F	31.1 M 36.5 % F	3.7 M 3.0 F	33.7 M 10.6 F
Mongolia	32.3 M 25.6 F	12.2 M 11.2 F	7.5 M 8.3 F	19.6 M 23.2 % F	14.0 M 18.4 F	47.7 M 5.3 F
Korea	13.8 M 8.2 F	9.3 M 6.7 F	8.6 M 10.2 F	28.9 M 37.9 % F	4.6 M 6.0 F	49.8 M 4.2 F
Taiwan\(^6\)	- - M 11.6 F	8.0 M - F	- - M - F	- - M 19.2 F	13.4 M 35.0 F	4.1 M F
South-East Asia						
Brunei	22.0 M 15.8 F	9.2 M 9.7 F	15.7 M 18.1 % F	- M - F	15.3 M 18.5 F	29.3 M 3.1 F
Cambodia	26.3 M 25.5 F	7.4 M 6.9 F	4.6 M 6.6 F	9.7 M 10.9 % F	1.6 M 4.2 F	44.1 M 2.8 F
Indonesia	24.3 M 23.1 F	7.4 M 8.0 F	6.4 M 8.9 F	25.5 M 22.0 % F	3.5 M 8.1 F	76.2 M 3.6 F
Lao PDR	24.5 M 24.9 F	7.7 M 7.6 F	5.4 M 7.8 F	4.7 M 16.0 % F	2.0 M 4.8 F	56.6 M 9.1 F
Malaysia	25.3 M 20.8 F	11.4 M 10.7 F	13.3 M 17.4 % F	46.7 M 58.0 % F	11.4 M 15.9 % F	43.0 M 1.4 F
Myanmar	24.9 M 24.2 F	6.9 M 7.9 F	5.1 M 7.5 F	8.3 M 11.6 % F	2.0 M 5.5 F	31.6 M 6.4 F
Papua New Guinea	25.1 M 25.8 F	15.4 M 14.3 F	7.6 M 9.7 F	11.8 M 17.5 % F	14.5 M 23.6 F	- F
Philippines	24.1 M 21.0 F	7.1 M 7.3 F	8.2 M 12.5 % F	13.1 M 18.6 % F	4.1 M 17.0 F	43.0 M 8.5 F
Singapore	17.8 M 11.3 F	9.4 M 6.5 F	15.2 M 19.4 % F	30.9 M 35.3 % F	6.2 M 7.1 F	28.0 M 5.0 F
Thailand	24.2 M 20.3 F	8.3 M 8.8 F	14.4 M 16.7 % F	12.9 M 16.7 % F	5.9 M 11.4 % F	41.4 M 2.3 F
Timor Leste	26.9 M 28.1 F	5.6 M 5.5 F	4.2 M 6.3 F	- - M - F	1.0 M 2.9 F	- F
Vietnam	25.0 M 21.6 F	5.5 M 5.1 F	6.8 M 9.4 F	22.1 M 25.8 % F	8.6 M 19.3 % F	47.1 M 1.3 F

SBP, systolic blood pressure; DBP, diastolic blood pressure; FBS, fasting blood sugar; TC, total cholesterol; BMI, body mass index; M, male; F, female.
tries, as derived from hospital-based stroke registries (Table 3).6,12,23,25-27,29,31-40 In general, ischemic stroke occurs more commonly than hemorrhagic stroke, except in India and Vietnam, where the converse is observed. Subarachnoid hemorrhage is uncommon. Cerebral venous sinus thrombosis may also cause stroke, especially among young women.4,6

Geographical variations within countries
Variations in stroke epidemiology have been found within many countries. Studies in China have shown that the stroke incidence is higher in the northern regions compared to the south,9 with double the incidence along the stroke belt.41 In India, on the contrary, the incidence is higher in rural areas.7 In Thailand, the stroke prevalence is highest in the cities, and then, in a decreasing fashion, in the central, south, north, and northeast regions of the country.23 Similarly, stroke prevalence was found to be higher in cities and urban areas than in rural regions, in Indonesia.20 These differences have been attributed to the differences in the risk factors between various regions in the same country. However, there is no difference in the age-standardized stroke mortality between the metropolitan cities of Korea and the other regions in the country.12

Comparative epidemiology
Heart disease and stroke are competing causes of mortality. Generally, stroke-associated mortality, as a percent of total mortality, is lower than ischemic heart disease–related mortality, in most parts of the world.42 This has been attributed to the higher prevalence of diabetes mellitus and higher mean serum cholesterol levels among those with ischemic heart disease,

Table 3. Vascular risk factors among stroke patients, from hospital-based registries

Country	Year	HT (%)	DM (%)	HL (%)	AF (%)	pS, TIA (%)	CAD (%)	SM (%)
South Asia								
Bangladesh	2014	57.6	23.0	5.3	-	-	17.1	44.6
Bhutan		-	-	-	-	-	-	-
India	2013	85.0	50.0	26.0	-	-	-	26.8
Nepal	2011	61.2	9.3	7.5	23.0	-	-	59.4
Pakistan	2008	50.0	18.0	-	-	17.0	19.0	17.0
Sri Lanka	2015	58.9	42.4	40.2	6.5	32.3	-	28.7
East Asia								
China	2011	63.2	17.7	9.7	5.5	30.9	11.8	38.9
DPR Korea		-	-	-	-	-	-	-
Japan	2010	74.4	22.4	35.7	-	14.7	-	19.7
Mongolia		-	-	-	-	-	-	-
Korea	2013	63.5	30.1	19.3	19.4	19.7	-	38.0
Taiwan	2014	79.7	43.8	45.4	14.7	31.8	12.3	39.8
South-East Asia								
Brunei		-	-	-	-	-	-	-
Cambodia		-	-	-	-	-	-	-
Indonesia	2001	73.9	17.3	-	5.8	19.9	-	20.4
Lao PDR		-	-	-	-	-	-	-
Malaysia	2012	75.5	45.6	22.4	-	25.1	-	19.4
Myanmar		-	-	-	-	-	-	-
Papua New Guinea		-	-	-	-	-	-	-
Philippines		-	-	-	-	-	-	-
Singapore	2008	67.8	39.7	6.3	10.0	22.3	20.2	22.3
Thailand	2014	53.0	26.0	30.0	10.0	-	-	-
Timor Leste		-	-	-	-	-	-	-
Vietnam	2012	96.4	16.8	22.6	5.8	13.7	-	35.9

HT, hypertension; DM, diabetes mellitus; HL, hyperlipidemia; AF, atrial fibrillation; pS, previous stroke; TIA, transient ischemic attack; CAD, coronary artery disease; SM, smoking.
than stroke patients. However, in some countries, the converse
is true, wherein the stroke-related mortality exceeds the mor-
tality caused by ischemic heart disease (in China by 11.9%, Ko-
rea by 9.9%, Mongolia by 8.0%, Thailand by 6.6%, etc.). Yet,
the stroke mortality in Asia is higher than in North America or
Europe.43
Likewise, globally, the disease burden—as measured by the
DALYS lost—associated with stroke is lower than that associat-
ed with ischemic heart disease.42 However, in terms of mortal-
ity, the stroke burden exceeds the ischemic heart disease bur-
den in the same countries in which an excess stroke mortality
is observed—China, Mongolia, and Thailand.
As in much of the world, ischemic stroke occurs more fre-
quently than hemorrhagic stroke (Table 4). However, the 15–
40% incidence of stroke due to hemorrhage, in Asia, is much
higher than the 15% observed in most developed countries in
North America and Western Europe. The incidence of hemor-
rhagic stroke is highest in East Asia, notably in China, com-
pared to North America and Western Europe.44

Trends

Globally, between 1990 and 2013, there was a rise in the num-
ber of deaths, survivors, and events associated with stroke.
However, the significant increase in the associated deaths and
DALYs lost were not significantly different between developing
and developed countries.1

Stroke-related mortality has been decreasing in East-Asian
countries such as Japan, Korea, Taiwan, and the urbanized ar-
 eas of China.43 This may be due to the better risk factor control
and stroke care in these countries. However, the age-standard-

Table 4. Stroke subtypes from hospital-based registries

Country	Year	N	IS (%)	ICH (%)	SAH (%)	TIA (%)	CVT (%)	UNC (%)
South Asia								
Bangladesh	2014	8,400	72.0	28.0	-	-	-	0.0
Bhutan		-	-	-	-	-	-	-
India	2005	801	49.8	49.1	4.8	-	-	2.4
Nepal	2011	160	63.0	29.0	8.0	-	-	0.0
Pakistan	2006	796	69.0	31.0	-	-	-	0.0
Sri Lanka	2001	103	74.7	19.1	6.2	-	-	0.0
East Asia								
China	2011	21,902	66.3	23.4	3.4	6.2	-	0.7
DPR Korea		-	-	-	-	-	-	-
Japan	2013	47,782	75.4	17.8	6.8	-	-	0.0
Mongolia	2009	3,938	55.3	40.7	4.0	-	-	0.0
Korea	2013	119,901	76.1	23.9	-	-	-	0.0
Taiwan	2014	30,599	74	16.1	2.8	6.7	0.2	0.2
South-East Asia								
Brunei	2009	-	70.0	30.0	-	-	-	0.0
Cambodia		-	-	-	-	-	-	-
Indonesia	2001	2,065	42.9	18.5	1.4	-	-	37.2
Lao PDR		-	-	-	-	-	-	-
Malaysia	2012	1,018	73.2	20.9	1.7	2.4	-	1.8
Myanmar		-	-	-	-	-	-	-
Papua New Guinea								
Philippines	2002	259	63.0	32.0	5.0	-	-	0.0
Singapore	2008	300	74.0	24.2	1.8	-	-	0.0
Thailand	2014	-	80.0	20.0	-	-	-	0.0
Timor Leste		-	-	-	-	-	-	-
Vietnam	2012	754	43.5	47.2	1.3	-	-	8.0

N, number; IS, ischemic stroke; ICH, intracerebral hemorrhage; SAH, subarachnoid hemorrhage; TIA, transient ischemic attack; CVT, cerebral venous thrombo-
sis; UNC, unclassified.
ized stroke incidence, in general, has remained relatively constant. The GDB study showed a reduction in age-standardized stroke incidence in Japan, Singapore, and Korea, between 1990 and 2010; in fact, the substantial decline in the age-adjusted stroke incidence in Japan began in the 1960s, due to a decrease in severe hypertension and current smoking. Impressive falls in the DALYs lost were observed in Japan, Singapore, Korea, and Taiwan (Table 5). The decrease in high mortality, incidence and morbidity, observed predominantly in high-income countries, reflects the significant impact of the economic status of a country on health. This pattern of high incidence and falling mortality is likely to raise the prevalence of stroke in those countries. This problem may be compounded by the presence of fewer caregivers, as these countries also have low birth rates.

In South-Asian counties such as India, Pakistan, and Bangladesh, and in developing countries in South-East Asia, such as Cambodia, Indonesia, Laos PDR, and Malaysia, with the better control of infectious diseases, life expectancy will be prolonged. With the economic transition of these countries, towards achieving "developed country" status, risk factors such as hypertension, diabetes mellitus, hypercholesterolemia, obesity, and cigarette smoking will become more prevalent, raising the incidence of stroke. However, due to insufficient healthcare facilities in these developing countries, the mortality will be high, and the number of disabled survivors will also rise.

Limitations and strengths
Our study has several limitations. The data from the WHO, though comprehensive and available for almost all countries,
are based on routinely available data in those countries. There may be variations in the comprehensiveness of the data collection and data reporting, accuracy of the cause of death, and extent of disability. Prevalence and incidence studies, though community-based, were performed at different time points, involved varying ages (especially prevalence studies), used differing methods to screen and assess cases, and thus are not directly comparable. The data were not granular enough to allow for a systematic review. Data were unavailable for a number of countries. Hospital-based studies are prone to selection bias, with a significant flaw in their representativeness; they were performed at different time points; they used varying definitions for the risk factors; and few had 100% brain scan rates. Nation-wide data with good representativeness would be preferred—at present, such data are only available from the country-wide hospital-based registry in China.29

However, our paper has several strengths. It includes up-to-date reliable data from the excellently-performed GBD study and WHO, as well as large, recently-conducted studies from most Asian countries. Data on South-East Asia are available, alongside data on South and East Asia. The paper summarizes and compares, in an easily readable manner, key epidemiological data on stroke that could be helpful to clinicians, researchers and healthcare planners.

Conclusions

Stroke is a major healthcare problem in South, East, and South-East Asia. With a majority of the world’s population living in the developing countries of these regions, the global burden of stroke will have the largest contribution from Asia. In these countries, there are disparities in the healthcare provisions, and this will continue to pose a challenge to disease control. Governments and healthcare workers need to work together, with an informed public, to stem this growing epidemic. As life expectancy increases, with the aging of Asian populations and reduction in mortality due to infectious diseases, and the rise in the prevalence of vascular risk factors among economies in transition, the stroke burden in Asia will surely rise.

References

1. Feigin VL, Krishnamurthi RV, Parmar P, Norving B, Mensah GA, Bennett DA, et al; GBD 2013 Writing Group; GBD 2013 Stroke Panel Experts Group. Update on the Global Burden of Ischemic and Hemorrhagic Stroke in 1990–2013: the GBD 2013 study. Neuroepidemiology 2015;45:161–176.
2. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al; Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010) and the GBD Stroke Experts Group. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 2014;383:245–254.
3. Burke TA, Venkatasubramanian RN. The epidemiology of stroke in the East Asian region: a literature-based review. Int J Stroke 2006;1:208–215.
4. Wasay M, Khatri IA, Kaul S. Stroke in South Asian countries. Nat Rev Neurol 2014;10:135–143.
5. Mehndiratta MM, Khan M, Mehndiratta P, Wasay M. Stroke in Asia: geographical variations and temporal trends. J Neurol Neurosurg Psychiatry 2014;85:1308–1312.
6. Hsieh Fl, Chiou HY. Stroke: morbidity, risk factors, and care in Taiwan. J Stroke 2014;16:59–64.
7. Pandian JD, Sudhan P. Stroke epidemiology and stroke care services in India. J Stroke 2013;15:128–134.
8. Hashmi M, Khan M, Wasay M. Growing burden of stroke in Pakistan: a review of progress and limitations. Int J Stroke 2013;8:575–581.
9. Sun H, Zou X, Liu L. Epidemiological factors of stroke: a survey of the current status in China. J Stroke 2013;15:109–114.
10. Hata J, Ninomiya T, Hirakawa Y, Nagata M, Mukai N, Gotoh S, et al. Secular trends in cardiovascular disease and its risk factors in Japanese: half-century data from the Hisayama study (1961–2009). Circulation 2013;128:1198–1205.
11. Xu T, Bu X, Li H, Zhang M, Wang A, Tong W, et al. Smoking, heart rate, and ischemic stroke: a population-based prospective cohort study among Inner Mongolians in China. Stroke 2013;44:2457–2461.
12. Hong KS, Bang OY, Kang DW, Yu KH, Bae HJ, Lee JS, et al. Stroke statistics in Korea: part I. Epidemiology and risk factors: a report from the Korean stroke society and clinical research center for stroke. J Stroke 2013;15:2–20.
13. Neelamegam M, Looi I, Cheah WK, Narayanan P, Hamid AM, Ong LM. Stroke incidence in the South West District of the Penang Island, Malaysia: PEARLs: Penang Acute Stroke Research Longitudinal Study. Prev Med 2013;57 Suppl:S77–S79.
14. Heng DM, Lee J, Chew SK, Tan BY, Hughes K, Chia KS. Incidence of ischaemic heart disease and stroke in Chinese, Malays and Indians in Singapore: Singapore cardiovascular cohort study. Ann Acad Med Singapore 2000;29:231–236.
15. Lê VT, Lê TL, Nguyên TH, Nguyễn HH, Đào TX, Nguyễn VT, et al. Strokes in South Vietnam: an epidemiologic study. Rev Neurol (Paris) 1999;155:137–140.
16. Zaman MM, Choudhury SR, Ahmed J, Akram Hussain SM, Mahbubus Sobhan SM, Turin TC. Prevalence of stroke in a rural population of Bangladesh. Glob Heart 2015;10:333–334.
17. Chang T, Gajasinghe S, Arambepola C. Prevalence of stroke and its risk factors in urban Sri Lanka: population-based study. Stroke 2015;46:2965-2968.
18. Yoshida D, Ninomiya T, Doi Y, Hata J, Fukuhara M, Ikeda F, et al. Prevalence and causes of functional disability in an elderly general population of Japanese: the Hisayama study. J Epidemiol 2012;22:222-229.
19. Huriletemuer, Zhang C, Zhao S, Wang D, Wang Z, Jiang M, et al. An epidemiological study of stroke and its sub-types in the over 55 Mongolian and Han populations in a pastoral area of Inner Mongolia. Int J Stroke 2011;6:468.
20. Kusuma Y, Venketasubramanian N, Kiemas LS, Misbach J. Burden of stroke in Indonesia. Int J Stroke 2009;4:379-380.
21. Navarro JC, Baroque AC 2nd, Lokin JK, Venketasubramanian N. The real stroke burden in the Philippines. Int J Stroke 2014;9:640-641.
22. Venketasubramanian N, Tan LC, Sahadevan S, Chin JJ, Krishnamoorthy ES, Hong CY, et al. Prevalence of stroke among Chinese, Malay, and Indian Singaporeans: a community-based tri-racial cross-sectional survey. Stroke 2005;36:551-556.
23. Suwanwela NC. Stroke epidemiology in Thailand. J Stroke 2014;16:1-7.
24. World Health Organisation. http://apps.who.int/gho/data/view.main.2464GLOBALSTANDARD?lang=en. Accessed August 10, 2017.
25. Mohammad QD, Habib M, Mondal BA, Chowdhury RN, Hasan MH, Hoque MA, et al. Stroke in Bangladeshi patients and risk factor. Mymensingh Med J 2014;23:520-529.
26. Maskey A, Parajuli M, Kohli SC. A study of risk factors of stroke in patients admitted in Manipal Teaching Hospital, Pokhara. Kathmandu Univ Med J (KUMJ) 2011;9:244-247.
27. Khealani BA, Wasay M. The burden of stroke in Pakistan. Int J Stroke 2008;3:293-296.
28. Perera ND, Bandara KM, Ranasinghe IR, Gunatilake SB. Comparison of risk factors, severity and outcome between lacunar and non-lacunar stroke in a tertiary care center in Sri Lanka: a descriptive study. Ceylon Med J 2015;60:103-106.
29. Wang Y, Cui L, Ji X, Dong Q, Zeng J, Wang Y, et al; China National Stroke Registry Investigators. The China National Stroke Registry for patients with acute cerebrovascular events: design, rationale, and baseline patient characteristics. Int J Stroke 2011;6:355-361.
30. Uchiyama S, Shibata Y, Hirabayashi T, Mihara B, Hamashige N, Kitagawa K, et al; J-TRACE Investigators. Risk factor profiles of stroke, myocardial infarction, and atrial fibrillation: a Japanese Multicenter Cooperative Registry. J Stroke Cerebrovasc Dis 2010;19:190-197.
31. Misbach J, Ali W. Stroke in Indonesia: a first large prospective hospital-based study of acute stroke in 28 hospitals in Indonesia. J Clin Neurosci 2001;8:245-249.
32. Nazifah SN, Azmi IK, Hamidon BB, Looi I, Zariah AA, Hanip MR. National Stroke Registry (NSR): Terengganu and Seberang Jaya experience. Med J Malaysia 2012;67:302-304.
33. Venketasubramanian N, Chen CL. Burden of stroke in Singapore. Int J Stroke 2008;3:51-54.
34. Tirswchell DL, Ton TG, Ly KA, Van Ngo Q, Vo TT, Pham CH, et al. A prospective cohort study of stroke characteristics, care, and mortality in a hospital stroke registry in Vietnam. BMC Neurol 2012;12:150.
35. Banerjee TK, Choudhury D, Das A, Sekhar A, Roy D, Sen S. Analysis of a hospital-based stroke registry in a neurological centre in Kolkata. J Indian Med Assoc 2005;103:665-668.
36. Gunatilake SB, Jayasekera BA, Premawardene AP. Stroke sub-types in Sri Lanka—a hospital based study. Ceylon Med J 2001;46:19-20.
37. Toyoda K. Epidemiology and registry studies of stroke in Japan. J Stroke 2013;15:21-26.
38. Ju Z, Zhang H, Tong W, Xu T, Zhang Y, Wang N, et al. Relationship between admission pulse pressure and clinical outcome during hospitalization among acute stroke patients. Acta Neurol Belg 2009;109:18-23.
39. Nairn SH, Venketasubramanian N. Burden of stroke in Brunei Darussalam. Int J Stroke 2009;4:395-397.
40. Yu RF, San Jose MC, Manzanilla BM, Oris MY, Gan R. Sources and reasons for delays in the care of acute stroke patients. J Neurol Sci 2002;199:49-54.
41. Xu G, Ma M, Liu X, Hankey GJ. Is there a stroke belt in China and why? Stroke 2013;44:1775-1783.
42. Kim AS, Johnston SC. Global variation in the relative burden of stroke and ischemic heart disease. Circulation 2011;124:314-323.
43. Kim JS. Stroke in Asia: a global disaster. Int J Stroke 2014;9:856-857.
44. Krishnamurthi RV, Moran AE, Forouzanfar MH, Bennett DA, Mensah GA, Lawes CM, et al; Global Burden of Diseases, Injuries, and Risk Factors 2010 Study Stroke Expert Group. The global burden of hemorrhagic stroke: a summary of findings from the GBD 2010 study. Glob Heart 2014;9:101-106.
45. Kubo M, Kiyohara Y, Kato I, Tanizaki Y, Arima H, Tanaka K, et al. Trends in the incidence, mortality, and survival rate of cardiovascular disease in a Japanese community: the Hisayama study. Stroke 2003;34:2349-2354.