Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel

P. Agnes, I. A. Ahmad, S. Albergo, I. F. M. Albuquerque, T. Alexander, A. K. Alton, P. Amundrud, M. Atzeni Corona, D. J. Auty, M. Ave, I. Ch. Avetisov, R. I. Avetisov, O. Azzolini, H. O. Bajk, B. Baldin, V. Barbarian, A. Barrado Olmedo, P. Barrillon, A. Basco, G. Batignani, E. Berz, A. Bondar, W. M. Boninvento, E. Borisova, B. Bottino, M. G. Boulay, G. Buccino, S. Bussino, J. Busto, A. Buzulutskov, M. Cadeddu, M. Cadoni, A. Caminata, N. Cani, A. Capra, S. Caprioli, M. Caravati, M. Cárdenas-Montes, M. Carioli, P. Castello, V. Cataudella, P. Cavalcante, S. Cavuoti, S. Cebrian, J. M. Cela Ruiz, S. Chaspin, A. Chepurnov, E. Chlyhyrynets, L. Cifarelli, D. Cintas, V. Cocco, E. Conde Vila, L. Consiglio, S. Copello, G. Covone, S. Cross, M. Czubak, M. D’Aniello, S. D’Auria, M. D. Da Rocha Rolo, O. Dadoun, M. Daniel, A. De Candia, D. De Cecco, A. De Falco, G. De Filippis, D. De Gruttola, S. De Pasquale, G. De Rosa, G. Dellascia, A. V. Derbin, A. Devoto, F. Di Capua, D. Di Noto, P. Di Stefano, C. Dionisi, G. Dolganov, F. Dordel, L. Doria, E. Erjavec, M. Fernandez Diaz, G. Fiorillo, A. Franceschi, P. Franchini, D. Franco, E. Frolow, M. Funicello, F. Gabriele, D. Gahan, C. Galbiati, G. Gallina, G. Gallus, M. Garbini, P. Garcia Abia, L. Gendotti, C. Ghino, R. A. Giampaolo, C. Giganti, M. A. Giorgi, G. K. Giovanetti, V. Goloecheva Casanueva, A. Gola, D. Gorman, R. Graciani Diaz, G. Grauso, G. Grillo di Cortona, A. Grobov, M. Gromov, M. Guan, M. Guerzoni, M. Gulino, B. R. Hackett, J. B. Hall, A. L. Hallin, A. Hamer, H. L. Helton, M. Haranczyk, T. Hessel, S. Hill, S. Horikawa, T. Hubaut, E. Hugues, E. V. Hungerford, A. Ianni, V. Ippolito, C. Jillings, P. Kachru, A. Kemp, C. L. Kendziora, G. Keppel, A. Khomlyakov, M. Kimura, I. Kochanek, K. Kondo, G. Korga, S. Koulosousa, A. Kubanik, M. Kuss, M. La Comarre, M. Lai, E. Le Guirrere, E. Leason, X. Li, L. Lidey, J. Lipp, M. Lissia, G. Longo, L. Luzzi, O. Macfadyen, I. N. Machulin, I. Manthos, L. Mapelli, A. Margotti, S. M. Marie, M. Marianti, A. Martínez, A. Masoni, K. Mavorkoridis, A. Mazzi, A. B. McDonald, A. Messina, R. Milincic, A. Moggi, A. Moharan, J. Monroe, M. Morrocchi, E. N. Mozhevita, T. Mróz, N. Muratova, C. Muscas, P. Musico, R. Nania, T. Napolitano, M. Nesti, G. Nieradko, A. Nikolopoulos, I. Niki, J. Nowak, K. Olschansky, A. Oleinik, V. Olevnykov, P. Organti, A. Ortiz de Sobrade, L. Pagani, M. Pallavicini, L. Pandola, E. Pantic, E. Paolini, G. Paternoster, A. P. Pegoraro, K. Pelzar, C. Pellegrino, F. Perotto, V. Pesudo, S. Piacentini, F. Pietropaolo, N. Pino, C. Pira, A. Pocar, D. Poehlmann, S. Pordes, F. Pralavorio, D. Price, F. Raffaelli, F. Ragnag, Y. Ramachers, A. Ramirez, M. Razeti, A. Razeto, A. L. Renshaw, M. Rescigno, F. Resnati, F. Retiere, L. P. Rignanese, C. Ripoli, A. Rivetti, A. Roberts, C. Roberts, J. Rode, G. Rogers, L. Romero, M. Rossi, A. Rubbia, S. Jois, T. R. Saffold, M. Samoylov, E. Sandford, S. Sanfilippo, D. Santone, R. Santorelli, C. Savarese, E. Scapparone, G. Scili, D. A. Semenov, A. Shchagin, A. Sheshlukov, M. Simeone, P. Skensved, M. D. Skorokhvatov, M. Smirnov, B. Smith, A. Sokolov, M. Spangenberg, R. Stefanizzi, A. Steri, S. Stracka, V. Strickland, M. Stringer, S. Sulis, A. Sung, Y. Suvorov, A. Szczeklik, R. Tartaglia, A. Taylor, T. Taylor, S. Tedesco, G. Testera, K. Thiem, N. Thorpe, A. Tonazzo, S. Torres-Lara, A. Tricomi, E. V. Unzhakov, T. Vallivila, John, M. Van Uffelen, T. V. V. S. Viel, A. V. Vishnev, R. B. Vogelaar, J. Vossebeld, M. Wada, M. B. Walczak, Y. Wang, S. Westerdal, R. W. Wheaddon, L. Williams, I. Wingenter-Seez, R. Wojaczynski, M. Wojcik, M. Wojcik, T. Wright, Y. Xie, C. Yang, A. Zabiti, P. Zakhary, A. Zani, A. Zichichi, G. Zuzel, M. P. Zykova.
Dark matter lighter than 10 GeV/c² encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino fog for GeV-scale masses and significant sensitivity down to 10 MeV/c² considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector’s sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies.

I. Introduction

Astrophysical evidence indicates that dark matter (DM) constitutes 26% of the universe’s energy density [1]. Many experiments have tried to detect it directly, often focused on Weakly Interacting Massive Particles (WIMPs) with mass between 10 GeV/c² and 10 TeV/c² [2–8]. Planned experiments [9–11] will search for WIMPs with cross sections below which Coherent Elastic Neutrino-Nucleus Scattering (CEνNS) from atmospheric neutrinos may obscure DM signals, called the “neutrino fog” [12, 13].

Past experiments show that similar technology can perform dedicated light DM searches [14–19]. DarkSide-50 demonstrated that a dual-phase liquid argon time-projection chamber (LAr TPC) performing an electron-counting analysis—focused on electroluminescence signals from ionization electrons in a gas pocket, S2—is sensitive to DM with nuclear couplings for 1–10 GeV/c² masses [20, 21] and electronic couplings for 0.01–1 GeV/c² masses [22].

Interactions in LAr produce a comparable amount of scintillation and ionization. While photons are detected with ∼20% efficiency and must overcome noise, the near-perfect efficiency for extracting electrons from liquid to gaseous argon [23], the long drift

* ds-ed@lngs.infn.it
lifetime (enabled by excellent purity achievable in LAr), and gas pocket amplification lets each ionization electron be detected. As a result, the electron-counting channel accesses energies near the work function, lower than those reached by scintillation.

Dual-phase LAr TPCs benefit from scalability due to LAr’s high transparency to photons and electrons; their low temperature enables exceptional purity, as seen in DEAP-3600’s low 222Rn concentration [24] and DarkSide-50’s long electron drift lifetime [25]. The relatively light nucleus also allows light DM to produce higher-energy recoils.

These properties enable dual-phase LAr TPCs to search for light DM down to the neutrino fog with index $n > 1.5$. Maximizing sensitivity requires a dedicated detector optimized for electron-counting analyses by enhancing S2 and minimizing backgrounds that produce <3 keV electron equivalent (keV$_{ee}$) signals, as expected from light DM. DarkSide-LowMass aims to employ such a detector. This paper explores its potential sensitivity, considering 2 and 4 e$^-$ analysis thresholds and possible background levels and detector response models. A conceptual design is presented in Sec. II; Sec. III describes response models, and Sec. IV explores background scenarios. Finally, Sec. V projects sensitivity with these models, and Sec. VI discusses potential future improvements.

II. Conceptual detector design

![Diagram of conceptual detector design](image)

FIG. 1. Conceptual detector design: a 1.5 t dual-phase LAr TPC in an acrylic vessel, viewed by two photosensor arrays via 10 cm “buffer vetoes”, in a UAr “bath veto” in a cryostat, immersed in a water tank (not shown).

Based on lessons from DarkSide-50 and progress toward DarkSide-20k [14, 15, 20–22, 25–29], a conceptual detector has been designed to optimize DarkSide-LowMass for low-threshold analyses.

A. Lessons from DarkSide-50

While DarkSide-50 was designed for a high-mass WIMP search using primary scintillation (S1) and electroluminescence (S2), its sensitivity to light DM elucidates how a dual-phase LAr TPC can be optimized for an electron-counting analysis. This channel lacks S1, thereby losing the capacity to reject electronic recoils (ERs) by pulse shape discrimination and to reconstruct interactions’ vertical positions [30]. DarkSide-50’s sensitivity was limited by ERs due to γ-rays from the photomultiplier tubes and cryostat and β-decays of trace residual 85Kr and 39Ar in the argon extracted from underground (UAr) [31, 32]. At the lowest energies, spurious electrons (SEs), not directly produced by energy depositions, dominate <4 e$^-$ backgrounds, imposing an effective analysis threshold. Mitigating SEs is key to improving DarkSide-LowMass’s sensitivity.

B. Detector description

Parameter	Value
TPC active LAr mass	1.5 t
TPC fiducial LAr mass	1 t
TPC fiducial cylindrical radius	45 cm
TPC height	111 cm
TPC diameter	110 cm
TPC PDM number	864
TPC PDM peak efficiency	40%
TPC gas pocket thickness	1 cm
TPC electroluminescence field	6.5 kV/cm
TPC drift field	200 V/cm
Acrylic vessel mass	0.144 t
PDM dimensions	5×5 cm2
PDM buffer veto thickness	10 cm
PDM buffer veto total mass	0.3 t
Bath veto UAr mass	4.5 t
Bath veto minimum thickness	28 cm
Cryostat inner height	215 cm
Cryostat inner diameter	170 cm
Cryostat wall thickness	0.5 cm
Ti support structure total mass	0.1 t

Figure 1 shows a conceptual DarkSide-LowMass design; Table I gives design parameters. The nested structure isolates and vetoes against radioactivity. The detector consists of the following elements:

 a. **Depleted Argon TPC:** the inner detector is a dual-phase TPC with an active (fiducial) mass of...
1.5 t (1 t) of UAr, depleted of 39Ar by cryogenic distillation [26]. The TPC has an ultra-pure acrylic vessel, as in DEAP-3600 [33]. Transparent conductive films like Clevis$^\text{TM}$ define anode and cathode planes; rings coated on the walls ensure spatial uniformity of the drift field. Electroluminescence in a 1 cm-thick gas pocket at the top allows extracted electrons to be counted. A stainless steel grid below the LAr surface separates the drift volume from the extraction and multiplexing regions, with a 200 V/cm drift field in the bulk and a 6.5 kV/cm electroluminescence field in the gas pocket, building on experience from DarkSide-50. The expected extraction efficiency exceeds 99.9% [23].

The vessel’s inner surfaces are lined with reflector coated with wavelength shifter like TPB (tetraphenyl butadiene), which shifts VUV photons emitted by argon to ~ 420 nm. Two planes of photodetector modules (PDMs) with 100% optical coverage, mounted 10 cm above and below the TPC, detect this light. Each PDM is a 5×5 cm2 array of silicon photomultipliers (SiPMs) based on Ref. [34], readout by cryogenic pre-amplifiers developed for DarkSide-20k [35]. Titanium structural supports hold the TPC and optical planes; titanium allows them to be radiopure and lightweight, reducing their impact on the vetoes and background budget. This system is immersed in a UAr bath held in a double-walled, 170 cm-diameter stainless steel cryostat.

For these studies, the TPC has equal diameter and height in order to maximize the path that external γ-rays must traverse before reaching the fiducial volume. This design also balances the inability to fiducialize along the vertical axis against the longer electron drift time in a taller TPC, which requires longer veto windows and higher voltages. Considering possible effects of drift time on SEs (see Sec. IV G), other designs may be motivated by future work.

b. γ-ray vetoes: the TPC is surrounded by two vetoes. These instrumented LAr volumes provide passive buffers and anti-coincidence signals when γ-rays deposit energy in them before or after scattering in the TPC. **PDM buffer veto:** Reflective and wavelength-shifting foils (e.g. TPB-coated ESR and acrylic surfaces) surround both PDM arrays and the acrylic vessel, optically decoupling them from the LAr bath while enhancing light collection efficiency. The 10 cm offset between each optical plane and the acrylic vessel serves as a “buffer” veto for γ-rays emitted by the PDMs and associated hardware. This offset allows cm-scale spatial resolution, and larger offsets marginally impact the background rate. Veto scintillation is separated from S1 and S2 in the TPC by pulse-shape and the concentration of light in either PDM plane. **Bath veto:** The 4.5 t UAr in the cryostat is instrumented with PDMs on the cryostat walls and functions as another γ-ray veto. This 28 cm buffer uses the minimal UAr mass needed to veto and shield against γ-rays from the cryostat and render their backgrounds subdominant.

c. Water shielding: the cryostat is in a 8–10 m-diameter water tank that shields against external radiation. If a cosmic-ray veto is needed, the tank can be instrumented to detect Cherenkov light.

III. Detector response model

The detector response model closely follows that in Refs. [27, 36]. For a nuclear recoil (NR) of energy E_R, this model uses the reduced energy ϵ, defined as

$$\epsilon = 0.626 \frac{a_0}{e^2} \frac{E_R}{2Z^{7/3}}$$

with target atomic number Z, Bohr radius a_0, and elementary charge e, giving $a_0/e^2 = 36.81$/keV.

![Graph](image)

FIG. 2. Ionization yield models assumed in these studies for (top) nuclear recoils and (bottom) electronic recoils. Bands show $\pm 1\sigma$ uncertainty from the fit to constraints.

The number of ionization electrons that escape recombination and contribute to S2 is given by

$$N_{\epsilon}^{NR} = \frac{\epsilon}{\epsilon_d} \ln \frac{1 + 10^4 f_{BE}^{NR} \frac{\epsilon S_{\epsilon}(\epsilon)}{\epsilon_d}}{\epsilon_d S_{\epsilon}(\epsilon) + S_{\epsilon}(\epsilon)};$$

(2)
f_B describes the energy partition among ionization and other modes, c^{NR}_0 is a parameter describing the spatial extent of the NR charge distribution, E_d is the drift field strength in V/cm, B parameterizes the drift field scaling, and S_e and S_n are the electronic and nuclear stopping powers, given by Ziegler as [37]

$$S_e = 0.133 \frac{Z^{2/3}}{A^{1/2}} N$$

$$S_n = \frac{\ln |1 + 1.1383 e Z|}{2 (e Z + 0.01321 Z^{21/26} + 0.19593 Z^{1/2})}$$

where $e_Z = 0.94$ for argon, accounting for atomic screening effects, and A is the mass number of argon. Ref. [27] found that this model consistently gives lower Q^{NR}_e than those by Molière [38] and by Lenz and Jensen [39, 40], making its use conservative.

For ERs, the number of electrons escaping recombination is described by the Thomas-Imel model as

$$N^{\text{ER}}_e = \frac{E_d}{c^{\text{ER}}_0} \ln \left[1 + \frac{c^{\text{ER}}_0}{E_d} \rho E R \right] + 1$$

where the initial recoiling electron has been added to N^{ER}_e, and ρ, c^{ER}_0, and E are model parameters.

TABLE II. (Top) Q^{NR}_e and Q^{ER}_e and (Bottom) optical model parameters

Charge yield parameters	Bounds	Modeled value	Units
E_d	Fixed	200	V/cm
B	Fixed	0.61	—
c^{NR}_0	[0.51, 2.04]	1.02^{+0.03}_{-0.01}	(V/cm)B
f_B	[0.35, 1.38]	0.69^{+0.04}_{-0.05}	—
c^{ER}_0	[0.55, 2.18]	1.09^{+0.19}_{-0.20}	(V/cm)g
ρ	[27, 106]	53^{+12}_{-10}	keV$^{-1}$

S2 response parameters	Modeled value	Units
ϵ_{ph}	0.27	PE/photon
$Y_{\text{ph}}^{\text{S2}}$	280	photon/keV$^{-1}$
g_2	75	PE/keV$^{-1}$
σ_{xy}	2.8	cm
v_{drift}	0.93	mm/μs

The charge yield is defined as $Q^{\text{NR}}_e = N^{\text{NR}}_e / E_R$ and $Q^{\text{ER}}_e = (N^{\text{ER}}_e - 1) / E_R$. Nuisance parameters f_B, c^{ER}_0, c^{NR}_0, and ρ are constrained by Q^{NR}_e and Q^{ER}_e measurements reported by ARIS [41] and SCENE [42], as well as in situ measurements reported by DarkSide-50 [15, 27]. This treatment follows that in Ref. [27], constrained to energies below 3 keVee. Since the Thomas-Imel model is valid for ERs in this full range, the extended model developed in Ref. [27] is not needed here. Furthermore, B is fixed to the central value reported by SCENE of $B = 0.61$. Studies varying E_d between 200–1000 V/cm show that its effects on $Q^{\text{NR,ER}}_e$ do not impact the projected sensitivity due to the low recombination rate at these energies. As a result, E_d can be optimized based on its influence on other parameters like v_{drift}; such studies are left to future work. Fig. 2 shows the models that best fit these constraints; Table II gives fixed and fit parameters.

Non-uniformities in g_2, as might arise from TPC components sagging, will lower 1 e$^-$ resolution. These effects can be corrected using the event position, with adequate resolution achieved with DarkSide-LowMass’s stronger electroluminescence field. These defects may also be minimized by adopting technology from O(101) detectors, which have wire grids and anode planes several times larger than DarkSide-LowMass will have.

Quenching and recombination N^{NR}_e fluctuations are modeled with a binomial function; uncertainties in this treatment are explored by projections with no quenching fluctuations. Binomial N^{ER}_e fluctuations are suppressed by a Fano-like factor F, as in NEST [43], constrained by fits to 37Ar peaks in Ref. [27]. Ref. [27] assumes Gaussian fluctuations with variance FN_e, valid for $N_e > 10^4$. Lacking lower-energy ER calibration, assumptions are needed to extrapolate below 10^4 e$. A binomial model reflects variations of energy dissipation via ionization and other modes, while a Gaussian model may describe variations in energy transferred to ionization electrons. Both models fit DarkSide-50’s 37Ar peaks. Due to the strong 1 e$^-$ resolution assumed for DarkSide-LowMass, the Gaussian model produces larger fluctuations at low N_e, giving up to 10\times stronger constraints on DM scattering cross sections; DarkSide-50’s resolution was dominated by spatial g_2 variations, where g_2 is the S2 gain factor, so these models marginally impact its analysis. Binomial fluctuations in N^{NR}_e suppressed by F are conservatively assumed in the present studies. The number of detected photoelectrons (PE) is drawn from a Poisson distribution with mean $g_2 \times N^{\text{NR,ER}}_e$.

A. Optical simulations

Optical simulations were performed with Geant4 [44], based on Geant4-10.0 [45]. SiPMs are assumed to be similar to those in Refs. [29, 46, 47], with peak photon detection efficiency (PDE) of 40%, including an \sim88% geometrical fill factor. Lower PDE and optical coverage can be compensated with a stronger electroluminescence field, increasing $Y_{\text{ph}}^{\text{S2}}$. Simulations of VUV photons generated uni-
formally in the gas pocket predict a S2 light collection efficiency of \(e_{ph} = 0.27 \) PE/photon with both PDM arrays. Electroluminescence simulations based on Refs. [48, 49] predict a photon yield of \(Y_{\text{ph}}^{S2} = 280 \) photon/e\(^-\). These values give \(g_2 = e_{ph} \times Y_{\text{ph}}^{S2} = 75 \) PE/e\(^-\), tuned for high 1 e\(^-\) detection efficiency and resolution, based on DarkSide-50. By varying the gas pocket thickness and electroluminescence field, \(g_2 \) can be varied as needed. These values are summarized in Table II.

To estimate the horizontal position resolution, \(\leq 0.3 \) keV electrons are simulated uniformly in the LAr. S2 photons are generated in the gas pocket for each extracted electron, offset by \(t_{\text{ drift}} \), the time required to drift electrons from the interaction vertex to the gas pocket. The S2 pulse shape is described in Ref. [50]. Photons that reach the PDMs are registered as PE with probability governed by the PDE.

The position of a signal in the horizontal plane is estimated using the barycenter method, calculated as the PE-weighted average PDM location and corrected for the expected radial bias near the walls. More sophisticated algorithms can achieve better resolution, as demonstrated in DarkSide-50 [51].

The resolution \(\sigma_{xy} \) is defined as the root mean square (RMS) distance between the reconstructed and true positions. Fig. 3 shows \(\sigma_{xy} \) as a function of S2 charge. Overall, \(\sigma_{xy} \) decreases for larger signals, varying from 2–7 cm for \(\geq 1 \) e\(^-\) signals. For background simulations, a nominal resolution of \(\sigma_{xy} = 2.8 \) cm is assumed, though varying its value within this range does not impact the results presented. While more sophisticated algorithms can likely achieve better resolution, varying the size of the PDMs does not have a significant effect.

IV. Background model predictions

At the highest energies relevant for light DM, the primary backgrounds include \(\gamma \)-rays from detector components, \(\beta \)-decays from LAr radioisotopes, cosmogenic activation of detector materials, surface backgrounds, and neutrinos. At the lowest energies, SEs produce the dominant backgrounds.

A. Neutrinos

The position of a signal in the horizontal plane is estimated using the barycenter method, calculated as the PE-weighted average PDM location and corrected for the expected radial bias near the walls. More sophisticated algorithms can achieve better resolution, as demonstrated in DarkSide-50 [51].

The resolution \(\sigma_{xy} \) is defined as the root mean square (RMS) distance between the reconstructed and true positions. Fig. 3 shows \(\sigma_{xy} \) as a function of S2 charge. Overall, \(\sigma_{xy} \) decreases for larger signals, varying from 2–7 cm for \(\geq 1 \) e\(^-\) signals. For background simulations, a nominal resolution of \(\sigma_{xy} = 2.8 \) cm is assumed, though varying its value within this range does not impact the results presented. While more sophisticated algorithms can likely achieve better resolution, varying the size of the PDMs does not have a significant effect.

IV. Background model predictions

At the highest energies relevant for light DM, the primary backgrounds include \(\gamma \)-rays from detector components, \(\beta \)-decays from LAr radioisotopes, cosmogenic activation of detector materials, surface backgrounds, and neutrinos. At the lowest energies, SEs produce the dominant backgrounds.

A. Neutrinos

The position of a signal in the horizontal plane is estimated using the barycenter method, calculated as the PE-weighted average PDM location and corrected for the expected radial bias near the walls. More sophisticated algorithms can achieve better resolution, as demonstrated in DarkSide-50 [51].

The resolution \(\sigma_{xy} \) is defined as the root mean square (RMS) distance between the reconstructed and true positions. Fig. 3 shows \(\sigma_{xy} \) as a function of S2 charge. Overall, \(\sigma_{xy} \) decreases for larger signals, varying from 2–7 cm for \(\geq 1 \) e\(^-\) signals. For background simulations, a nominal resolution of \(\sigma_{xy} = 2.8 \) cm is assumed, though varying its value within this range does not impact the results presented. While more sophisticated algorithms can likely achieve better resolution, varying the size of the PDMs does not have a significant effect.

IV. Background model predictions

At the highest energies relevant for light DM, the primary backgrounds include \(\gamma \)-rays from detector components, \(\beta \)-decays from LAr radioisotopes, cosmogenic activation of detector materials, surface backgrounds, and neutrinos. At the lowest energies, SEs produce the dominant backgrounds.

A. Neutrinos

The position of a signal in the horizontal plane is estimated using the barycenter method, calculated as the PE-weighted average PDM location and corrected for the expected radial bias near the walls. More sophisticated algorithms can achieve better resolution, as demonstrated in DarkSide-50 [51].

The resolution \(\sigma_{xy} \) is defined as the root mean square (RMS) distance between the reconstructed and true positions. Fig. 3 shows \(\sigma_{xy} \) as a function of S2 charge. Overall, \(\sigma_{xy} \) decreases for larger signals, varying from 2–7 cm for \(\geq 1 \) e\(^-\) signals. For background simulations, a nominal resolution of \(\sigma_{xy} = 2.8 \) cm is assumed, though varying its value within this range does not impact the results presented. While more sophisticated algorithms can likely achieve better resolution, varying the size of the PDMs does not have a significant effect.

IV. Background model predictions

At the highest energies relevant for light DM, the primary backgrounds include \(\gamma \)-rays from detector components, \(\beta \)-decays from LAr radioisotopes, cosmogenic activation of detector materials, surface backgrounds, and neutrinos. At the lowest energies, SEs produce the dominant backgrounds.

A. Neutrinos

The position of a signal in the horizontal plane is estimated using the barycenter method, calculated as the PE-weighted average PDM location and corrected for the expected radial bias near the walls. More sophisticated algorithms can achieve better resolution, as demonstrated in DarkSide-50 [51].

The resolution \(\sigma_{xy} \) is defined as the root mean square (RMS) distance between the reconstructed and true positions. Fig. 3 shows \(\sigma_{xy} \) as a function of S2 charge. Overall, \(\sigma_{xy} \) decreases for larger signals, varying from 2–7 cm for \(\geq 1 \) e\(^-\) signals. For background simulations, a nominal resolution of \(\sigma_{xy} = 2.8 \) cm is assumed, though varying its value within this range does not impact the results presented. While more sophisticated algorithms can likely achieve better resolution, varying the size of the PDMs does not have a significant effect.

IV. Background model predictions

At the highest energies relevant for light DM, the primary backgrounds include \(\gamma \)-rays from detector components, \(\beta \)-decays from LAr radioisotopes, cosmogenic activation of detector materials, surface backgrounds, and neutrinos. At the lowest energies, SEs produce the dominant backgrounds.

A. Neutrinos

The position of a signal in the horizontal plane is estimated using the barycenter method, calculated as the PE-weighted average PDM location and corrected for the expected radial bias near the walls. More sophisticated algorithms can achieve better resolution, as demonstrated in DarkSide-50 [51].

The resolution \(\sigma_{xy} \) is defined as the root mean square (RMS) distance between the reconstructed and true positions. Fig. 3 shows \(\sigma_{xy} \) as a function of S2 charge. Overall, \(\sigma_{xy} \) decreases for larger signals, varying from 2–7 cm for \(\geq 1 \) e\(^-\) signals. For background simulations, a nominal resolution of \(\sigma_{xy} = 2.8 \) cm is assumed, though varying its value within this range does not impact the results presented. While more sophisticated algorithms can likely achieve better resolution, varying the size of the PDMs does not have a significant effect.

IV. Background model predictions

At the highest energies relevant for light DM, the primary backgrounds include \(\gamma \)-rays from detector components, \(\beta \)-decays from LAr radioisotopes, cosmogenic activation of detector materials, surface backgrounds, and neutrinos. At the lowest energies, SEs produce the dominant backgrounds.

A. Neutrinos

The position of a signal in the horizontal plane is estimated using the barycenter method, calculated as the PE-weighted average PDM location and corrected for the expected radial bias near the walls. More sophisticated algorithms can achieve better resolution, as demonstrated in DarkSide-50 [51].

The resolution \(\sigma_{xy} \) is defined as the root mean square (RMS) distance between the reconstructed and true positions. Fig. 3 shows \(\sigma_{xy} \) as a function of S2 charge. Overall, \(\sigma_{xy} \) decreases for larger signals, varying from 2–7 cm for \(\geq 1 \) e\(^-\) signals. For background simulations, a nominal resolution of \(\sigma_{xy} = 2.8 \) cm is assumed, though varying its value within this range does not impact the results presented. While more sophisticated algorithms can likely achieve better resolution, varying the size of the PDMs does not have a significant effect.

IV. Background model predictions

At the highest energies relevant for light DM, the primary backgrounds include \(\gamma \)-rays from detector components, \(\beta \)-decays from LAr radioisotopes, cosmogenic activation of detector materials, surface backgrounds, and neutrinos. At the lowest energies, SEs produce the dominant backgrounds.

A. Neutrinos

The position of a signal in the horizontal plane is estimated using the barycenter method, calculated as the PE-weighted average PDM location and corrected for the expected radial bias near the walls. More sophisticated algorithms can achieve better resolution, as demonstrated in DarkSide-50 [51].

The resolution \(\sigma_{xy} \) is defined as the root mean square (RMS) distance between the reconstructed and true positions. Fig. 3 shows \(\sigma_{xy} \) as a function of S2 charge. Overall, \(\sigma_{xy} \) decreases for larger signals, varying from 2–7 cm for \(\geq 1 \) e\(^-\) signals. For background simulations, a nominal resolution of \(\sigma_{xy} = 2.8 \) cm is assumed, though varying its value within this range does not impact the results presented. While more sophisticated algorithms can likely achieve better resolution, varying the size of the PDMs does not have a significant effect.
TABLE III. Neutrino fluxes assumed in these studies and their associated uncertainties. For solar neutrinos, the high metallicity model was assumed.

Source	Flux ($1/(cm^2 s)$)	Uncertainty	Ref.
pp	5.98×10^{49}	0.6%	53
pep	1.44×10^{48}	1%	53
7Be	4.99×10^{47}	3%	54
9B	5.25×10^{46}	4%	55
hep	7.98×10^{44}	30%	53
^{13}N	2.78×10^{45}	15%	53
^{15}O	2.05×10^{45}	17%	53
^{17}F	5.29×10^{44}	20%	53
Atmospheric	10.5	20%	56
DSνB	86	50%	57

B. γ-ray backgrounds

![Graph showing γ-ray backgrounds](image)

FIG. 5. Backgrounds from γ-rays, 39Ar, and CEνNS, compared to DarkSide-50. DM spectra for are shown at 2.5, 5 and 10 GeV/c^2 masses with spin-independent nucleon-scattering cross section $\sigma_{SI} = 10^{-44}$ cm2.

Radioisotopes emit γ-rays that scatter in the TPC. Assays from DEAP-3600 [33] and DarkSide are used to estimate the activity of all detector components. Dominant backgrounds include X-rays from the acrylic and γ-rays from the PDMs, including photosensors and their hardware—mostly from 40K and the 238U chain (238U to 230Th).

Radioactive decays in all detector components were simulated using G4DS [44]. Energy depositions were recorded in the TPC, bath veto, and PDM buffer veto, and the expected signals were reconstructed using the response model. The electron drift time in the TPC was determined by the drift speed and diffusion in Ref. [50]. Events were rejected by a multiple-scatter cut if at least two S2 signals were separated by >4 μs. The reconstructed position for events in the horizontal plane was determined using the barycenter coordinates smeared by a Gaussian to account for resolution. Varying the smearing within the range in Fig. 3 changes the observed background rate by <10%. Events outside of the inner 1 t core of the TPC, defined in the horizontal plane, were rejected by a fiducial cut.

Events are rejected if more than 100 keV (50 keV) of energy is deposited in the bath (PDM buffer veto), within an anti-coincidence window of $t_{\text{max drift}} = 1.18$ ms preceding the S2 time. The use of UAr in the vetoes allows thresholds below the 39Ar endpoint; accounting for energy depositions in both vetoes from γ-rays and 39Ar decays, a 3.5–4.0% dead time is expected, depending on v_{drift} and the 39Ar activity.

Total background rates after selection cuts are shown in Fig. 5, compared to DarkSide-50’s best-fit backgrounds and example DM signals. Following veto cuts, the total γ-ray background rate at $N_{\gamma} < 12 e^{-}$ is below that from solar neutrinos. No further R&D is needed to improve PDM radiopurity.

1. Effects of the PDM buffer veto

![Graph showing energy deposited in veto](image)

FIG. 6. Energy deposited in (blue) the PDM buffer veto and (green) bath veto for simulated γ-rays from the photoelectronics with <3 keV single-scatters in the TPC fiducial volume, considering both vetoes independently.

The dominant γ-ray background source is the photoelectronics. Since fiducialization along the vertical axis is not possible, low-energy X-rays and γ-rays that preferentially scatter in the first 10 cm of LAr are not mitigated by fiducial cuts. Instead, the PDM buffer shields the TPC from such backgrounds while still allowing those that scatter in it to be tagged.

Figure 6 shows the energy deposited in the vetoes for simulated γ-rays originating in the photoelectronics that produced single-scatters below 3 keV.
in the fiducial volume. Simulations indicate that the buffer veto can achieve a light yield ≥ 4 PE/keV, making a 50 keV threshold realistic, and that lower thresholds only marginally improve their efficiency. Since γ-rays can be absorbed in inactive materials after scattering in the TPC, only 51% of the γ-rays that penetrate the buffer and produce a background event are tagged by it.

While the PDM buffer veto and TPC share instrumentation, optical simulations show that pulse shape discrimination efficiently separates scintillation in the buffers from S2, and the fraction of light concentrated in the top or bottom PDM array allows these signals to be distinguished from S1.

C. β-decay backgrounds

Two naturally-present β-emitters have been observed in UAr: 39Ar, which DarkSide-50 measured with a specific activity of (0.73 ± 0.11) mBq/kg, and 85Kr, at (1.9 ± 0.1) mBq/kg [25]. Improvements to the UAr extraction facility [58, 59] are expected to completely remove 85Kr and significantly reduce the 39Ar content relative to DarkSide-50’s measurement.

Residual 39Ar can be further suppressed using the Aria facility [26], which will be capable of depleting 39Ar by a factor of 10 at a (8 ± 2) kg/d throughput.

Starting with an 39Ar activity comparable to DarkSide-50’s measurement, the TPC can achieve an activity of 73 µBq/kg with one pass through Aria. With improved UAr extraction and a second pass, this activity may be brought as low as 7.3 µBq/kg.

Potential internal radioisotope activities are summarized in Table IV. The effects of varying the 39Ar activity on the sensitivity to 5 GeV/c² DM with a 2 e⁻ threshold are illustrated in Fig. 7.

Due to their similar β spectra, if 85Kr is present after purification, Fig. 7 can be interpreted as the total activity of 85Kr and 39Ar.

![Threshold: 2 e\]^\nu\] fog:
\(n=1.5\)

DarkSide-50’s measurement, the TPC can achieve a 5 GeV/c² DM activity on the sensitivity to 5 GeV/c² DM with a 2 e⁻ threshold are illustrated in Fig. 7, assuming γ-ray and neutrino backgrounds as discussed above.

D. Cosmogenic backgrounds

Cosmic-rays create backgrounds by activating detector materials in transit and by producing prompt muon-induced signals during operations. FLUKA [60] simulations of muon-induced showers at Laboratori Nazionali del Gran Sasso (LNGS) based on Ref. [61] indicate that they pose a negligible background at comparable or greater depths, such as at Boulby Underground Laboratory or SNOLAB. Therefore, these backgrounds are not considered further.

The dominant cosmogenic backgrounds are from UAr activation. Calculations are performed assuming the cosmic-ray neutron flux parameterized in Ref. [62]; correction factors for different altitudes and locations are obtained following Ref. [63]. Production rates and cross sections are taken from measurements and calculations in Refs. [64, 65] and EXFOR [66] whenever available. Otherwise, cross sections are from the JENDL/AN-2005 [67], TENDL [68], or HEAD-2009 [69] libraries or computed from the COSMO [70], YIELDX [71], and ACTIVIA [72] codes.

![Threshold: 2 e\]^\nu\] fog:
\(n=2.0\)

DarkSide-50’s measurement, the TPC can achieve an activity of 73 µBq/kg with one pass through Aria. With improved UAr extraction and a second pass, this activity may be brought as low as 7.3 µBq/kg.

Due to their similar β spectra, if 85Kr is present after purification, Fig. 7 can be interpreted as the total activity of 85Kr and 39Ar.

![Threshold: 2 e\]^\nu\] fog:
\(n=2.0\)

DarkSide-50’s measurement, the TPC can achieve an activity of 73 µBq/kg with one pass through Aria. With improved UAr extraction and a second pass, this activity may be brought as low as 7.3 µBq/kg.

Due to their similar β spectra, if 85Kr is present after purification, Fig. 7 can be interpreted as the total activity of 85Kr and 39Ar.

TABLE IV. Internal radioisotope activities explored here, with DarkSide-50 measurements for reference [25].

Activity	[µBq/kg]	
85Kr	1900 ± 100	
39Ar	730 ± 110	
DS-LM	0	7.3 ± 73

TABLE V. Expected cosmogenically activated isotopes in UAr after shipping from Urania to Aria, following surface exposure at Aria, and after shipping from Aria to LNGS or North America.

Isotope	[µBq/kg]
39Ar	14.7 ± 1.3
37Ar	806 ± 73
3H	58 ± 12
Aria (1 mo., surface)	2.57 ± 0.33
Aria→LNGS	294 ± 39
Aria→N. America	5.73 ± 0.73

Table V shows 39Ar, 37Ar, and 3H yields for ship transport from the UAr extraction site at Urania (Colorado) to Aria (Sardinia), from Aria to LNGS or North America, and per month outside Aria’s underground column. Atmospheric argon has (40.4 ± 5.0) µBq/kg 40Ar [73], likely orders of magnitude lower in UAr. At sea level, it is activated by successive neutron captures on 40Ar and 44Ar and by 40Ar(α, 2p)42Ar (14 MeV threshold), at a rate 10^6 x...
lower than 39Ar [74]. Other isotopes have short half-lives or will be removed by purification.

At Aria, $(2.57 \pm 0.33)\ \mu$Bq/kg/month of 39Ar will be activated in UAr stored above ground during distillation. For long campaigns, these effects can be mitigated by storing UAr underground. If DarkSide-LowMass runs at LNGS or a lab comparably far from Aria, $(0.86 \pm 0.11)\ \mu$Bq/kg of 39Ar will be activated in transit. At North America, the yield will be $(5.73 \pm 0.73)\ \mu$Bq/kg. Activated 3H is separated from argon with SAES Getters [75] and will be removed in situ while the UAr recirculates; 37Ar will decay away with a 35 day half-life. Hence, neither isotope was included in sensitivity projections.

E. Neutrons

Radiogenic neutrons are produced by (α,n) reactions from trace 238U, 235U, and 232Th in detector materials. Relevant materials have (α,n) yields around 10^{-6}–10^{-5} [76]. Such neutron backgrounds are therefore expected to be subdominant to those from γ-rays from the same isotopes. These backgrounds are, therefore, not included in this study.

F. Surface backgrounds

The TPC’s inner surface area is $5.7\ \text{m}^2$. During construction, 222Rn progeny will deposit on surfaces exposed to air [77], accumulating as 210Pb [78]. Due to its 22.3 yr half life, its activity will be suppressed by a factor of 2132 relative to the deposited 222Rn progeny; by cleaning surfaces [79] and assembling the TPC in a radon-scrubbed clean room [80], 210Pb surface β and X-ray activity can be reduced. Since fiducialization is only in the horizontal plane, cathode cleanliness is particularly important.

While operating, 222Rn can emanate from materials and plate-out on walls, causing surface backgrounds from its decay chain, up to 214Po. These isotopes are efficiently removed from LAr with charcoal radon-traps [33, 81] or molecular sieves [82]; LAr’s cold temperature reduces the radon outgassing [83].

![FIG. 8. SE spectra scaled from DarkSide-50 using Eq. (5) and Eq. (6), for different electron amplification factors g_2, excess noise factor F, and impurity scaling factors η. Backgrounds from other sources are shown for comparison, assuming a $73\ \mu$Bq/kg 39Ar activity.](image)

Surface backgrounds can be controlled through radon-scrubbing and mitigation procedures. To determine the activity at which they pose a significant background contribution, the 222Rn and 210Pb decay chains were simulated within the inner 50 μm of the TPC walls, following the same procedure as for γ-rays. Upper limits on their activity were then set such that surface backgrounds contribute <10% of the γ-ray background rate from TPC components.

Results from these simulations are given in Table VI, compared with surface background rates reported by DarkSide-50 [25] and DEAP-3600 [24]. Surface activities obtained by other LAr DM detectors are comparable to or below these limits. As a result, these backgrounds are not further considered.

G. Spurious electron backgrounds

In DarkSide-50, SEs dominate signals below $4\ \text{e}^-$. Leading hypotheses stipulate that they are produced by photo- and electrochemical interactions, rather than by particles scattering in LAr. SEs are classified into two categories based on their temporal correlation with preceding progenitor events. Those within the maximum drift time of electrons in the TPC, $t_{\text{max}}^{\text{drift}}$, are described in Ref. [28] and are consistent with photoionization of detector materials. By requiring the time between pulses to be longer than $t_{\text{max}}^{\text{drift}}$, such backgrounds are removed from analysis.

At longer delays, a large fraction of SEs follow preceding S2 signals by a $\sim 5\ \text{ms}$ or $\sim 50\ \text{ms}$ exponential lifetime, with matching horizontal positions; a third component extends to several seconds. The SE rate is correlated with the total event rate and progenitors’ drift time, and it increases when the getter used for purification is turned off. While a full understanding of SEs requires further investigation, their properties are consistent with impurities capturing and later releasing drifting electrons. Similar mech-

Isotope	A_{thr}	DarkSide-50	DEAP-3600
222Rn	6.01 ± 0.25	$<$5 × 10^{-3}	$<$5 × 10^{-3}
210Pb	2.21 ± 0.05	2.51 ± 0.01	0.26 ± 0.02

Table VI. Threshold surface activities of 222Rn and 210Pb decay chains needed to contribute <10% of the γ-ray background rate, A_{thr}, compared with the activities reported by DarkSide-50 [25] and DEAP-3600 [24].
anisms have been proposed in xenon [84]. In this case, SEs may be reduced with purer LAr, achievable with Aria and improved in situ purification. The cold temperature of the LAr bath may also slow impurity diffusion. Studies of electron attachment in LAr indicate that attachment coefficients can be decreased by tuning the drift field strength [85, 86].

With improved event reconstruction, it may also be possible to mitigate SEs through their correlations with progenitors. After correcting for pulse-finding efficiency, the N_{e^-} distribution of SEs in DarkSide-50 is consistent with a Poisson distribution, implying that SEs above $1 \ e^-$ may be due to pileup. This explanation is supported by a pulse shape analysis. Therefore, improved SE reconstruction with higher N_{e^-} resolution may allow pileup to be tagged, suppressing backgrounds above $1 \ e^-$. Due to their uncertainties, a full in situ SE model is not possible. For most present studies, the N_{e^-} value below which they dominate sets an analysis threshold, with $2 \ e^-$ and $4 \ e^-$ thresholds considered.

To explore effects of SEs beyond their imposition of an N_{e^-} threshold, studies will assume a model motivated by DarkSide-50. This model assumes SEs are produced following an ionization event where some electrons are trapped and later released. If $k+1$ electrons are released close in time ($k = 0$ corresponding to $1 \ e^-$), they may appear as a single S2 pulse, leading to an SE with $>1 \ e^-$. Resolution smearing, determined by g_2 and its spatial variance, may cause them to be reconstructed with $n \neq k$ electrons. The rate of SEs with n electrons is modeled as

$$\text{SE}(n) = R \sum_{k=0} \text{P}(k; p) \text{G} \left(n; k+1, F \sqrt{\frac{k+1}{g_2}} \right)$$

$$\text{P}(k; p) = \frac{1}{k!} \left(\frac{p^k}{k+1} - \frac{p^{k+1}}{k+2} \right),$$

(5)

where R is the rate per unit mass; G estimates the Gaussian probability of reconstructing n electrons, given mean k and standard deviation $F \sqrt{k/g_2}$; and F accounts for excess noise beyond PE counting statistics (e.g. from spatial g_2 variations).

$P(k; p)$ is the probability of k electrons reconstructing in one S2, given a pileup probability p. It accounts for the probability of two or more electrons appearing in the same S2 window, which decreases with the exponential decay time of captured electrons. This model is fit to DarkSide-50 data and scaled using

$$R \propto R_{\text{trig}} \times L_{\text{drift}}^{\text{max}} \times \frac{\eta}{M_{\text{fid}}},$$

$$p \propto L_{\text{drift}}^{\text{max}} \times \eta,$$

(6)

where R_{trig} is the trigger rate, $L_{\text{drift}}^{\text{max}}$ is the maximum drift length, M_{fid} is the fiducial mass, and η scales the impurity concentration relative to DarkSide-50.

SE spectra for different parameter values are shown in Fig. 8. The bold black curve shows a simple extrapolation from DarkSide-50’s best-fit F and g_2. Increasing g_2 and lowering F can decrease the tails of the SE distribution. Decreasing the impurity concentration by $10–100 \times$ further suppresses SEs, enabling thresholds as low as $2 \ e^-$. Additional suppression of SEs with $N_{e^-} > 1$ may be achievable with analysis cuts narrowing the pileup window, thereby decreasing p. Such cuts will be strengthened by improved reconstruction with higher g_2 and lower F.

Calculations based on measurements in Refs. [83, 89–93], indicate that poly(methyl methacrylate) (PMMA, or acrylic) negligibly outgasses impurities in the 87 K LAr bath, and continuous purification during operations will further remove impurities that do enter the system. It is worth noting that as impurities are reduced, new SE sources may become dominant.

V. Sensitivity projections

DarkSide-LowMass’s sensitivity is projected for various scenarios using the profile likelihood ratio test statistic (defined in Eq. 11 of Ref. [99]) with the CL$\text{_{s}}$ technique (following Ref. [100]) and a Neymann construction to predict median 90% C.L. upper limits for a 1 t yr exposure. These tests used the asymptotic approach with an Asimov dataset, as described in Ref. [99], after confirming that it yields indistinguishable results from generating test statistic distributions with a toy Monte Carlo. Calculations follow the recommendations in Ref. [52], including the Standard Halo Model described in Refs. [101–106].

Except where stated otherwise, all projections use binomial quenching fluctuations, the impact of which is illustrated in the top left panel of Fig. 9. These results assume the validity of the screening model introduced by Ziegler et al. [37]. As shown in Ref. [27], other models give higher ionization yields—up to twice those predicted with the model by Ziegler et al.—and would therefore predict stronger limits than shown in this work. However, it can not be excluded that a new theoretical screening model could result in weaker projected limits at the lowest energies explored. A dedicated measurement campaign is needed to resolve this issue.

Figure 7 and the top right of Fig. 9 show how lower background rates improve sensitivity at all masses. Conservative 39Ar and SE background reductions enable exclusion sensitivity into the neutrino fog in a 1 t yr exposure. Alternative scenarios with further reductions in SE and 39Ar background extend this sensitivity down to 1 GeV/c^2. With 7.3 μBq/kg of 39Ar, doubling the γ-ray back-
FIG. 9. Projected 90% C.L. upper limits on the spin-independent DM-nucleon scattering cross section for 1 t yr exposure: (Top, left) with and without binomial quenching fluctuations. (Top, right) with varying thresholds and background rates. (Bottom, left) including the Migdal effect. (Bottom, right) attempting to model and fit SE backgrounds (see Eq. (5)) at varying impurity concentrations relative to DarkSide-50, \(\eta \). Unless otherwise stated, projections assume binomial quenching fluctuations and an \(^{39}\text{Ar} \) activity of 73 \(\mu\text{Bq/kg} \). The neutrino fog in LAr with index \(n \) representing the resulting impediment to a 3\(\sigma \) DM observation is shown in shades of gray, calculated to \(m_\chi=100\text{MeV/c}^2 \) [13]. Current limits are shown from CRESST-III [87], DarkSide-50 [20, 21], and XENON1T [16, 88].

FIG. 10. Median 90% C.L. upper limit and 1\(\sigma \) expectation band for 5 GeV/c\(^2\) DM at varying exposure.

The ground rate weakens limits by \(<10\% \ (<20\%) below 5 \text{ GeV/c}^2 \) (10 \text{ GeV/c}^2).

Figure 10 shows rapid sensitivity growth going from 0.1 to 1 t yr exposure and modest gains extending to 2 t yr. Longer exposures marginally improve sensitivity, as neutrino backgrounds limit sensitivity. These trends strengthen at lower \(^{39}\text{Ar} \) activity.

The top of Fig. 11 shows that DarkSide-LowMass can reach competitive sensitivity in a 1 t yr exposure.

A. Improvements with the Migdal effect

Inelastic atomic effects may cause some scattering DM to transfer additional energy to an electron in the target atom, adding an electronic recoil and an X-ray/Auger cascade to the nuclear recoil. This so-called “Migdal effect” allows light DM to make higher-energy signals than is possible for a pure nuclear recoil [107]. Given the pure nuclear recoil rate \(dR/dE_{NR} \), the inelastic rate for producing nuclear and electronic recoil energies \(E_{NR} \) and \(E_{ER} \) is

\[
\frac{d^2R}{dE_n dE_{ER}} = \frac{dR}{dE_{NR}} \frac{1}{2\pi} \sum_{n,l} \frac{d\Phi_n^{(nl \rightarrow E_{ER})}}{dE_{ER}}
\]

(7)
B. Spurious electron background fits

If R&D enables SE models, they can be included in the profile likelihood ratio calculation, and the analysis threshold can be lowered, recovering sensitivity. The effects of such an analysis are explored by modeling SEs with Eq. (5), with $F = 1$, $g_2 = 75 \text{ PE/e}^-$, and a total event rate of 0.8 Hz, as estimated from simulations. The effects of varying η, the impurity concentration relative to DarkSide-50, are explored.

The results of these fits with a 2 e^- threshold are shown in the bottom right of Fig. 9. Modeling SEs may extend sensitivity down to 200 MeV/c^2 masses. Kinks in the projected exclusion curves are due to DM spectra that closely match the SE spectrum predicted by a given η.

C. Discovery sensitivity

The bottom of Fig. 11 shows DarkSide-LowMass’s potential for observing evidence of DM at 3σ significance with varying ^{39}Ar concentrations and analysis thresholds. In 1 t yr, a 4 e^- threshold can reach the $n = 1.5$ neutrino fog above 1.7 GeV/c^2, with significant sensitivity down to 0.5 GeV/c^2. A 2 e^- threshold extends the reach to 0.3 GeV/c^2, with masses above 0.7 GeV/c^2 within the fog. Decreasing the ^{39}Ar activity improves sensitivity at all masses.

TABLE VII. DM masses above which evidence (discovery) contours are within the neutrino fog.

N_e - threshold	^{39}Ar activity	3σ	5σ
e^-	[µBq/kg]	$\text{[GeV/c}\ ^2$]	
2	7.3	0.60	0.68
2	73	0.68	0.79
4	7.3	1.42	1.67
4	73	1.71	2.12

An observation rejecting the background-only hypothesis at 3σ significance would constitute evidence for DM, while 5σ amounts to a discovery. Table VII summarizes the masses for which 3σ and 5σ significance is reached within the $n = 1.5$ neutrino fog. Evidence for DM would warrant follow-up studies to either confirm or refute the possible signal and to test if it can be explained by a poorly-understood background like SEs. These tests could include searching for annual modulation in the excess and searches with a liquid xenon TPC, where the SEs behave differently than in LAr, or with entirely different technology with different low-energy systematics, like SBC [110] or SuperCDMS [95], among others. In order to detect compelling evidence for DM, it is critical to better understand SEs.
DarkSide-LowMass will be sensitive to DM with electronic couplings, via a vector mediator with mass m_A'. As in Ref. [14], limiting cases of $m_A' \gg 1/a_0$ (heavy mediator) and $m_A' \ll 1/a_0$ (light mediator) are considered, giving DM form factors $F_{DM}(q)$ of 1 or $1/(a_0 q)^2$, where a_0 is the Bohr radius and q is the momentum transfer. Fig. 12 shows the projected 90% C.L. exclusion curves and 3σ evidence contours with 1 t yr exposure. Sensitivity to heavy (light) mediators with cross sections down to 10^{-42} cm2 (10^{-38} cm2) may be reached at 100 MeV/c2.

DM coupled to electrons via a dark photon with $\alpha_D \equiv g_D^2/4\pi$, where g_D is the $U(1)_D$ gauge coupling, can be produced at the relic abundance through the freeze-in mechanism if $m_A' \ll 1/a_0$ and the freeze-out mechanism if $m_A' \gg 1/a_0$ [98]. Fig. 12 shows the DM-electron scattering cross section σ_e that gives the relic abundance for DM of mass m_χ with $\alpha_D = 0.5$ and either $m_A' \to 0$ or $m_A' = 3m_\chi$ for light and heavy mediators, respectively. Away from resonances such as $m_A' = 2m_\chi$, these curves vary little with choice of m_A' and α_D [98]. Table VIII summarizes m_χ ranges for which DarkSide-LowMass may be able to observe DM with σ_e predicted by either mechanism with at least 3σ or 5σ significance.

Table VIII. DM masses where DM produced by freeze-in ($m_A' \ll 1/a_0$) or freeze-out ($m_A' \gg 1/a_0$) may be observed at 3σ (evidence) and 5σ (discovery) significance.

N_e	39Ar (µBq/kg)	$m_A' \ll 1/a_0$	$m_A' \gg 1/a_0$
2	7.3	13–1000	9–317
2	73	15–1000 15–1000	9–291 10–270
4	7.3	66–404	27–256 27–236
4	73		28–230 29–192

E. Solar neutrino sensitivity

CEνNS from solar neutrinos presents an opportunity to study solar neutrinos through a flavor-universal channel. This reaction was first detected by COHERENT [111, 112], enabling such studies. With a $2e^− (4e^−)$ threshold, an 39Ar activity of 14.6 µBq/kg (7.3 µBq/kg) is required to detect solar neutrinos with 5σ significance in 1 t yr.
VI. Ideas for further improvements and upgrades

The small size and relaxed light yield requirements afford DarkSide-LowMass the flexibility to improve its sensitivity through design features, beyond those in the conceptual design discussed in this paper, either as improvements to the baseline design or as future upgrades, pending additional R&D.

DarkSide-50 found that SEs may largely be due to drifting electrons capturing on impurities and later being released. Improvements in the purification system targeting these impurities or modifications that avoid their introduction may reduce SEs, as may techniques for tagging piled-up SEs or fitting them in data. They may also be reduced by shortening the TPC while maintaining the same target mass or by decreasing the total event rate in the fiducial volume. TPB may be one impurity responsible for SEs: it is soluble in LAr (possibly at the O(1 ppb)-level) and has O(1 ms) excited states observed in its scintillation. Alternatives like the PEN wavelength shifter, VUV-sensitive SiPMs, or Xe-doping may therefore reduce SEs.

Doping LAr may also extend sensitivity to lower DM masses: additives with lower ionization energies can increase the yield and lower the energy threshold. At higher concentrations, additives with light nuclei—such as hydrogen—may offer targets with ideal kinematic coupling to light DM and sensitivity to spin-dependent interactions. Doping LAr in a second phase may be akin to a “beam-on/beam-off” experiment for DM candidates detectable only by the doped target. Since the dominant low-energy backgrounds are SEs, changing the ionization properties of the LAr with dopants may also disambiguate instrumental noise from DM signals. DarkSide-LowMass’s small size will afford it the flexibility for such upgrades through a phased approach.

VII. Conclusion

These studies show that a tonne-scale dual-phase LAr TPC with existing technology can reach sensitivity to DM with nuclear couplings in the solar neutrino fog with a 1 t yr exposure. This can be achieved with a detector similar to DarkSide-50, scaled to a larger target mass with available UAr further suppressed in 39Ar by Aria. In addition to increasing the exposure, the larger mass enables self-shielding, using horizontal fiducialization and the PDM buffer vetoes, to further suppress γ-ray backgrounds.

Present uncertainties in modeling the ionization response of LAr to low-energy nuclear and electronic recoils hinder analyses at lower masses: the top left panel of Fig. 9 illustrates the effects of how ionization yield fluctuations are modeled, while Ref. [27] shows that the choice in nuclear recoil screening function may increase Q_y^NR by nearly a factor of two below 10 keV$_\text{nr}$, relative to the model by Ziegler et al. [37] considered in this work. New measurements below 10 keV, similar to those in Ref. [41, 42], may address these uncertainties and benefit DarkSide-LowMass.

Improved radiopurity, including low-radioactivity SiPMs, and the γ-ray veto system enable a design in which γ-ray backgrounds are subdominant to those from solar neutrinos. The strongest factors for improving sensitivity are further removing 39Ar, with expected gains down to 7.3 µBq/kg, and lowering the energy threshold. The relatively small target mass allows its UAr to be depleted by Aria in a feasible timescale. Little sensitivity is gained with exposures larger than ∼1 t yr, characteristic of DM searches in the neutrino fog. Even if SEs are not reduced, the ability to deplete 39Ar in Aria will enhance DarkSide-LowMass’s sensitivity, and the stronger electroluminescence field will enhance analysis capabilities for the lowest-energy signals. While these improvements will extend DarkSide-LowMass’s sensitivity, especially at lower masses, this fog is already within reach for readily-realizable scenarios. More novel upgrades in a second phase of the experiment may mitigate backgrounds to reach into the neutrino fog for a wider range of DM masses, and they can extend sensitivity to lighter candidates. DarkSide-LowMass’s small size and flexible design will allow these upgrades to be made, including possible modifications to enhance the detectors response or decrease SE backgrounds, if more is learned of their causes after the detector is first commissioned.

VIII. Acknowledgments

The DarkSide Collaboration would like to thank LNGS and its staff for invaluable technical and logistical support. This report is based upon work supported by the U. S. National Science Foundation (NSF) (Grants No. PHY-0919363, No. PHY-1004054, No. PHY-1004072, No. PHY-1242585, No. PHY-1314483, No. PHY-1314507, as well as Major Research Instrumentation Grant No. MRI-1429544), the Italian Istituto Nazionale di Fisica Nucleare (Grants from Italian Ministero dell’Istruzione, Università, e Ricerca Progetto Premiale 2013 and Commissione Scientific Nazionale II), the Natural Sciences and Engineering Research Council of Canada, SNO-
The authors were also supported by the Spanish Ministry of Science and Innovation (MICINN) through the grant PID2019-109374GB-I00, the “Atraccion de Talento” grant 2018-T2/TIC-10494, the Polish Ministry of Science of China (12020101004). The authors were also supported by the Spanish Ministry of Science and Innovation (MICINN) through the grant PID2019-109374GB-I00, the “Atraccion de Talento” grant 2018-T2/TIC-10494, the Polish Ministry of Science and Higher Education (MNiSW, grant number 6811/IA/SP/2018), the International Research Agenda Programme AstroPeTaCT (Grant No. MAB/2018/7) funded by the European Union’s Horizon 2020 research and innovation program under grant agreement No 952480 (DarkWave), the Science and Technology Facilities Council, part of the United Kingdom Research and Innovation, and The Royal Society (United Kingdom), and IN2P3-COPIN consortium (Grant No. 20-152). I.F.M.A is supported in part by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq). We also wish to acknowledge the support from Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. This research was supported by the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) public copyright license to any Author Accepted Manuscript version arising from this submission.

[1] Planck Collaboration, *Planck 2018 results. VI. Cosmological parameters*, Astron. & Astrophys. **641**, A6 (2020).
[2] DarkSide Collaboration, *Results from the first use of low radioactivity argon in a dark matter search*, Phys. Rev. D **93**, 081101 (2016).
[3] DEAP Collaboration, *Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector*, Phys. Rev. D **102**, 082001 (2020).
[4] XENON Collaboration, *Dark Matter Search Results from a One Tonne-year Exposure of XENON1T*, Phys. Rev. Lett. **121**, 111302 (2018).
[5] LUX Collaboration, *Results from a Search for Dark Matter in the Complete LUX Exposure*, Phys. Rev. Lett. **118**, 021303 (2017).
[6] PandaX Collaboration, *Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment*, Phys. Rev. Lett. **119**, 181302 (2017).
[7] SuperCDMS Collaboration, *Results from the Super Cryogenic Dark Matter Search Experiment at Soudan*, Phys. Rev. Lett. **120**, 061802 (2018).
[8] PICO Collaboration, *Dark Matter Search Results from the PICO – 60 C2F8 Bubble Chamber*, Phys. Rev. Lett. **118**, 251301 (2017).
[9] D. S. Akerib et al., *Snowmass2021 Cosmic Frontier Dark Matter Direct Detection to the Neutrino Fog*, arXiv:2203.08084, (2022).
[10] DARWIN Collaboration, *DARWIN: Towards the ultimate dark matter detector*, J. Cosmol. Astropart. Phys. **2016**, 017 (2016).
[11] DarkSide Collaboration, *DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS*, Eur. Phys. J. Plus **133**, 131 (2018).
[12] J. Billard, E. Figueroa-Feliciano, and L. Strigari, *Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments*, Phys. Rev. D **89**, 023524 (2014).
[13] C. A. J. O’Hare, *New Definition of the Neutrino Floor for Direct Dark Matter Searches*, Phys. Rev. Lett. **127**, 251802 (2021).
[14] DarkSide Collaboration, *Constraints on Sub-GeV Dark-Matter-Electron Scattering from the DarkSide-50 Experiment*, Phys. Rev. Lett. **121**, 111303 (2018).
[15] DarkSide Collaboration, *Low-Mass Dark Matter Search with Ionization Signals in XENON1T*, Phys. Rev. Lett. **121**, 081307 (2018).
[16] XENON Collaboration, *Dark Matter Search with Ionization Signals in XENON1T*, Phys. Rev. Lett. **123**, 251801 (2019).
[17] LUX Collaboration, *Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data*, Phys. Rev. Lett. **122**, 131301 (2019).
[18] SuperCDMS Collaboration, *Light Dark Matter Search with a High-Resolution Athermal Phonon Detector Operated above Ground*, Phys. Rev. Lett. **127**, 061801 (2021).
[19] PandaX Collaboration, *Dark Matter Search Results from the PandaX-4T Commissioning Run*, Phys. Rev. Lett. **127**, 261802 (2021).
[20] DarkSide-50 Collaboration, *Search for low-mass dark matter WIMPs with 12 ton-day exposure of DarkSide-50*, arXiv:2207.11966 (2022).
[21] DarkSide-50 Collaboration, *Search for dark matter-nucleon interactions via Migdal effect with DarkSide-50*, arXiv:2207.11967 (2022).
[22] DarkSide-50 Collaboration, *Search for dark matter particle interactions with electron final states with DarkSide-50*, arXiv:2207.11968 (2022).
[55] M. Boulay, DEAP-3600 and Discussion of Multi-
Overview of the FLUKA code
Procuring 50 Tonnes of Underground
[56] A. Renshaw, K. Shibata et al., JENDL-4.0: A New Library
Cosmogenic production of tritium
[57] M. T. Keil, G. G. Raffelt, and H.-T. Janka, Monte Carlo Study of Supernova Neutrino Spectra Forma-
[58] M. Battistoni, A. Ferrari, T. Montaruli, and P. R. Sala, The atmospheric neutrino fluxes below 100 MeV: the FLUKA results, Nucl. Phys. B - Proceedings Supplements 145, 128 (2005).
[59] M. Battistoni et al., Overview of the FLUKA code, Ann. Nucl. Energy 82, 10 (2015).
[60] A. Empl, E. Hungerford, R. Jasim, and P. Mosteiro, A Fluka study of underground cosmogenic neutron production, J. Cosmol. Astropart. Phys. 2014, 064 (2014).
[61] M. S. Gordon, P. Goldhagen, K. P. Rodbell, T. H. Zabel, H. H. K. Tang, J. M. Clem and P. Bailey, Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground, IEEE Trans. Nucl. Sci. 51, 3427 (2004).
[62] J. F. Ziegler, Terrestrial cosmic ray intensities, IBM J. Res. Dev. 42, 117 (1998).
[63] R. Saldanha, H. O. Back, R. H. M. Tsang, T. Alexander, S. R. Elliott, S. Ferrara, E. Mace, C. Overman and M. Zalavadia, Cosmogenic production of 39Ar and 42Ar in argon, Phys. Rev. C 100, 024608 (2019).
[64] J. Amare et al., Cosmogenic production of tritium in dark matter detectors, Astropart. Phys. 97, 96 (2018).
[65] V. V. Zerkin and B. Pritychenko, The experimental nuclear reaction data (EXFOR): Extended computer database and Web retrieval system, Nucl. Instrum. Methods Phys. Res. A 888, 31 (2018).
[66] K. Shibata et al., JENDL-4.0: A New Library for Nuclear Science and Engineering, J. Nucl. Sci. Technol. 48, 1 (2011).
[67] A. J. Koning, D. Rochman, J. C. Sublet, N. Dzyisuk, M. Fleming and S. van der Marck, TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology, Nucl. Data Sheets 155, 1 (2019).
[68] Y. A. Korovin, A. A. Nataleko, A. Y. Stankovskiy, S. G. Mashnik and A. Y. Konobeyev, High energy activation data library (HEAD-2009), Nucl. Instrum. Methods Phys. Res. A 624, 20 (2010).
[69] C. J. Martoff and P. D. Lewin, COSMO - a program to estimate spallation radioactivity produced in a pure substance by exposure to cosmic radiation on the earth, Comput. Phys. Commun. 72, 96 (1992).
[86] D. W. Swan, Electron Attachment Processes in Liquid Argon containing Oxygen or Nitrogen Impurity, Proc. Phys. Soc. 82, 74 (1963).

[87] CRESST Collaboration, First results from the CRESST-III low-mass dark matter program, Phys. Rev. D 100, 102002 (2019).

[88] XENON Collaboration, Search for Light Dark Matter Interactions Enhanced by the Migdal effect or Bremsstrahlung in XENON1T, Phys. Rev. Lett. 123, 241803 (2019).

[89] J. S. Chiou and D. R. Paul, Sorption and transport of inert gases in PVF2/PMMA blends, Journal of Applied Polymer Science 32, 4793 (1986).

[90] W. J. Koros and D. R. Paul, Observations concerning the temperature dependence of the langmuir sorption capacity of glassy polymers, Journal of Polymer Science: Polymer Physics Edition 19, 1655 (1981).

[91] J. Crank and G. Park, Diffusion in polymers, London (1968).

[92] R. J. Li, W. P. Hsu, T. K. Kwei, and A. S. Myerson, Transport of gases in miscible polymer blends above and below the glass transition region, AIChE Journal 39, 1509 (1993).

[93] U. Schmidtchen, T. Gradt, H. Börner, and E. Behrend, Temperature behaviour of permeation of helium through Vespel and Torlon, Cryogenics 34, 105 (1994).

[94] DAMIC Collaboration, Constraints on Light Dark Matter Particles Interacting with Electrons from DAMIC at SNOLAB, Phys. Rev. Lett. 123, 181802 (2019).

[95] SuperCDMS Collaboration, Projected sensitivity of the SuperCDMS SNOLAB experiment, Phys. Rev. D 95, 082002 (2017).

[96] SENSEI Collaboration, SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD, Phys. Rev. Lett. 125, 171802 (2020).

[97] R. Essig, T. Volansky, and T.-T. Yu, New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon, Phys. Rev. D 96, 043017 (2017).

[98] R. Essig, M. Fernández-Serra, J. Mardon, A. Soto, T. Volansky and T.-T. Yu, Direct detection of sub-GeV dark matter with semiconductor targets, J. High Energ. Phys. 2016, 46 (2016).

[99] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71, 1554 (2011).

[100] A. L. Read, Presentation of search results: the CLo, technique, J. Phys. G 28, 2693 (2002).

[101] J. D. Lewin and P. F. Smith, Renew of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6, 87 (1996).

[102] M. C. Smith et al., The RAVE survey: Constraining the local Galactic escape speed, Mon. Notices Royal Astron. Soc. 379, 755 (2007).

[103] C. McCabe, The Earth textquotesingle s velocity for direct detection experiments, J. Cosmol. Astropart. Phys. 2014, 027 (2014).

[104] R. Schönrich, J. Binney, and W. Dehnen, Local kinematics and the local standard of rest, Mon. Notices Royal Astron. Soc. 403, 1829 (2010).

[105] J. Bland-Hawthorn and O. Gerhard, The Galaxy in Context: Structural, Kinematic, and Integrated Properties, Annu. Rev. Astron. Astrophys. 54, 529 (2016).

[106] GRAVITY Collaboration, Improved GRAVITY astrometric accuracy from modeling optical aberrations, Astron. & Astrophys. 647, A59 (2021).

[107] M. Ibe, W. Nakano, Y. Shoji, and K. Suzuki, Migdal Effect in Dark Matter Direct Detection Experiments, J. High Energ. Phys. 2018, 194 (2018).

[108] R. Catena, T. Emken, N. A. Spaldin, and W. Tarantino, Atomic responses to general dark matter-electron interactions, Phys. Rev. Research 2, 033195 (2020).

[109] J.-H. Guo, Y.-X. Sun, W. Wang, and K.-Y. Wu, Can sub-GeV dark matter coherently scatter on the electrons in the Atom?, arXiv:2112.11810, (2021).

[110] E. Alfonso-Pita et al., Snowmass 2021 Scintillating Bubble Chambers: Liquid-noble Bubble Chambers for Dark Matter and CE$
u$NS Detection, arXiv:2207.12400 (2022).

[111] COHERENT Collaboration, Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science 357, 1123 (2017).

[112] COHERENT Collaboration, First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon, Phys. Rev. Lett. 126, 012002 (2021).

[113] J. Asaadi, B. J. P. Jones, A. Tripathi, I. Parmaksiz, H. Sullivan and Z. G. R. Williams, Emanation and bulk fluorescence in liquid argon from tetraphenylbutadiene wavelength shifting coatings, J. Instrum. 14, P02021 (2019).

[114] C. Stanford, S. Westerdale, J. Xu, and F. Calaprice, Surface background suppression in liquid argon dark matter detectors using a newly discovered time component of tetraphenylbutadiene scintillation, Phys. Rev. D 98, 062002 (2018).

[115] T. Igarashi, M. Tanaka, T. Washimi, and K. Yorita, Performance of VUV-sensitive MPPC for Liquid Argon Scintillation Light, Nucl. Instrum. Meth. A 833, 239 (2016).

[116] T. Pershing et al., Performance of Hamamatsu VUV SiPMs for detecting liquid argon scintillation, J. Instrum. 17, P04017 (2022).

[117] C. Galbiati, X. Li, J. Luo, D. R. Marlow, H. Wang, Direct detection of light dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 2016, 46 (2016).

[118] S. W. Lee, J. F. Beacom, and T. Doke, Scintillation of xenon doped liquid argon irradiated with 18O and 36Ar
[120] S. Kubota, A. Nakamoto, T. Takahashi, S. Konno, T. Hamada, M. Miyajima, A. Hitachi, H. Shibamura and T. Doke, Ionization yield in xenon-doped liquid argon, Phys. Lett. A 49, 393 (1974).

[121] H. Ichinose, T. Doke, A. Hitachi, J. Kikuchi, K. Masuda, H. Matsui, E. Otobe, E. Shibamura and T. Takahashi, Energy resolution for 1 MeV electrons in liquid argon doped with allene, Nucl. Instrum. Methods Phys. Res. A 295, 354 (1990).

[122] D. F. Anderson, New photosensitive dopants for liquid argon, Nucl. Instrum. Methods Phys. Res. A 245, 361 (1986).