SIGNATURES, HEEGAARD FLOER CORRECTION TERMS AND QUASI–ALTERNATING LINKS

PAOLO LISCA AND BRENDAN OWENS

(Communicated by Daniel Ruberman)

Abstract. Turaev showed that there is a well–defined map assigning to an oriented link \(L \) in the three–sphere a Spin structure \(t_0 \) on \(\Sigma(L) \), the two–fold cover of \(S^3 \) branched along \(L \). We prove, generalizing results of Manolescu–Owens and Donald–Owens, that for an oriented quasi–alternating link \(L \) the signature of \(L \) equals minus four times the Heegaard Floer correction term of \((\Sigma(L), t_0) \).

1. Introduction

Vladimir Turaev \cite{21} \S 2.2] proved that there is a surjective map which associates to a link \(L \subset S^3 \) decorated with an orientation \(o \) a Spin structure \(t_{(L,o)} \) on \(\Sigma(L) \), the double cover of \(S^3 \) branched along \(L \). Moreover, he showed that the only other orientation on \(L \) which maps to \(t_{(L,o)} \) is \(-o \), the overall reversed orientation. In other words, Turaev described a bijection between the set of quasi–orientations on \(L \) (i.e. orientations up to overall reversal) and the set \(\text{Spin}(\Sigma(L)) \) of Spin structures on \(\Sigma(L) \). Each element \(t \in \text{Spin}(\Sigma(L)) \) can be viewed as a Spin\(^c\) structure on \(\Sigma(L) \), so if \(\Sigma(L) \) is a rational homology sphere, then it makes sense to consider the rational number \(d(\Sigma(L), t) \), where \(d \) is the correction term invariant defined by Ozsváth and Szabó \cite{13}. Under the assumption that \(L \) is nonsplit alternating it was proved — in \cite{10} when \(L \) is a knot and in \cite{3} for any number of components of \(L \) — that

\[
\sigma(L, o) = -4d(\Sigma(L), t_{(L,o)}) \quad \text{for every orientation } o \text{ on } L,
\]

where \(\sigma(L, o) \) is the link signature. For an alternating link associated to a plumbing graph with no bad vertices, this follows from a combination of earlier results of Saveliev \cite{19} and Stipsicz \cite{20}, each of whom showed that one of the quantities in (*) is equal to the Neumann–Siebenmann \(\mu \)-invariant of the plumbing tree. The main purpose of this paper is to prove property (*) for the family of quasi–alternating links introduced in \cite{14}:

Definition 1. The quasi–alternating links are the links in \(S^3 \) with nonzero determinant defined recursively as follows:

1. the unknot is quasi–alternating;

Received by the editors March 7, 2013 and, in revised form, May 20, 2013.
2010 Mathematics Subject Classification. Primary 57M25, 57M27; Secondary 57Q60.
The present work is part of the first author’s activities within CAST, a Research Network Program of the European Science Foundation, and the PRIN–MIUR research project 2010–2011 “Varietà reali e complesse: geometria, topologia e analisi armonica”.

The second author was supported in part by EPSRC grant EP/I033754/1.

©2014 American Mathematical Society
Reverts to public domain 28 years from publication

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(2) if L_0, L_1 are quasi–alternating, $L \subset S^3$ is a link such that $\det L = \det L_0 + \det L_1$ and L, L_0, L_1 differ only inside a 3–ball as illustrated in Figure 1, then L is quasi–alternating.

Figure 1. L and its resolutions L_0 and L_1.

Quasi–alternating links have recently been the object of considerable attention [1, 2, 6, 11, 16, 17, 22, 23]. Alternating links are quasi–alternating [14, Lemma 3.2], but (as shown in e.g. [1]) there exist infinitely many quasi–alternating, nonalternating links. Our main result is the following:

Theorem 1. Let (L, o) be an oriented link. If L is quasi–alternating, then

$$\sigma(L, o) = -4d(\Sigma(L), t_{(L, o)}).$$

The contents of the paper are as follows. In Section 2 we first recall some basic facts on Spin structures and the existence of two natural 4–dimensional cobordisms, one from $\Sigma(L_1)$ to $\Sigma(L)$, the other from $\Sigma(L)$ to $\Sigma(L_0)$. Then, in Proposition 1 we show that for an orientation o on L for which the crossing in Figure 1 is positive, the Spin structure $t_{(L, o)}$ extends to the first cobordism but not to the second one. In Section 3 we use this information together with the Heegaard Floer surgery exact triangle to prove Proposition 2 which relates the value of the correction term $d(\Sigma(L), t_{(L, o)})$ with the value of an analogous correction term for $\Sigma(L_1)$. In Section 4 we restate and prove our main result, Theorem 1. The proof consists of an inductive argument based on Proposition 2 and the known relationship between the signatures of L and L_1. The use of Proposition 2 is made possible by the fact that up to mirroring L one may always assume the crossing of Figure 1 to be positive. We close Section 4 with Corollary 3 which uses results of Rustamov and Mullins to relate Turaev’s torsion function for the two–fold branched cover of a quasi–alternating link L with the Jones polynomial of L.

2. **Triads and Spin structures**

A Spin structure on an n–manifold M^n is a double cover of the oriented frame bundle of M with the added condition that if $n > 1$, then it restricts to the nontrivial double cover on fibres. A Spin structure on a manifold restricts to give a Spin structure on a codimension–one submanifold, or on a framed submanifold of codimension higher than one. As mentioned in the introduction, an orientation o on a link L in S^3 induces a Spin structure $t_{(L, o)}$ on the double–branched cover $\Sigma(L)$, as in [21]. Recall also that there are two Spin structures on $S^1 = \partial D^2$: the nontrivial or bounding Spin structure, which is the restriction of the unique Spin structure on D^2, and the trivial or Lie Spin structure, which does not extend over the disk. The restriction map from Spin structures on a solid torus to Spin structures on its boundary is injective; thus if two Spin structures on a closed 3–manifold agree
outside a solid torus, then they are the same. For more details on Spin structures see for example [7].

If \(Y \) is a 3–manifold with a Spin structure \(t \) and \(K \) is a knot in \(Y \) with framing \(\lambda \), we may attach a 2–handle to \(K \) giving a surgery cobordism \(W \) from \(Y \) to \(Y_\lambda(K) \). There is a unique Spin structure on \(D^2 \times D^2 \), which restricts to the bounding Spin structure on each framed circle \(\partial D^2 \times \{\text{point}\} \) in \(\partial D^2 \times D^2 \). Thus the Spin structure on \(Y \) extends over \(W \) if and only if its restriction to \(K \), viewed as a framed submanifold via the framing \(\lambda \), is the bounding Spin structure. Note that this is equivalent, symmetrically, to the restriction of \(t \) to the submanifold \(\lambda \)-framed by \(K \) being the bounding Spin structure. Moreover, the extension over \(W \) is unique if it exists.

Let \(L, L_0, L_1 \) be three links in \(S^3 \) differing only in a 3–ball \(B \) as in Figure 1. The double cover of \(B \) branched along the pair of arcs \(B \cap L \) is a solid torus \(\tilde{B} \) with core \(C \). The boundary of a properly embedded disk in \(B \) which separates the two branching arcs lifts to a disjoint pair of meridians of \(\tilde{B} \). The preimage in \(\Sigma(L) \) of the curve \(\lambda_0 \) shown in Figure 2 is a pair of parallel framings for \(C \); denote one of these by \(\tilde{\lambda}_0 \). Similarly, let \(\tilde{\lambda}_1 \) denote one of the components of the preimage in \(\Sigma(L) \) of \(\lambda_1 \). Since \(\lambda_0 \) is homotopic in \(B - L \) to the boundary of a disk separating the two components of \(L_0 \cap B \), we see that \(\Sigma(L_0) \) is obtained from \(\Sigma(L) \) by \(\tilde{\lambda}_0 \)-framed surgery on \(C \). Similarly, \(\lambda_1 \) is homotopic in \(B - L \) to the boundary of a disk separating the two components of \(L_1 \cap B \), and \(\Sigma(L_1) \) is obtained from \(\Sigma(L) \) by \(\tilde{\lambda}_1 \)-framed surgery on \(C \).

The two framings \(\tilde{\lambda}_0 \) and \(\tilde{\lambda}_1 \) differ by a meridian of \(C \). In the terminology from [14], the manifolds \(\Sigma(L) \), \(\Sigma(L_0) \) and \(\Sigma(L_1) \) form a triad and there are surgery cobordisms

\[
V : \Sigma(L_1) \rightarrow \Sigma(L) \quad \text{and} \quad W : \Sigma(L) \rightarrow \Sigma(L_0).
\]

The surgery cobordism \(W \) is built by attaching a 2–handle to \(\Sigma(L) \) along the knot \(C \) with framing \(\tilde{\lambda}_0 \). The cobordism \(V \) is built by attaching a 2–handle to \(\Sigma(L_1) \). Dualising this handle structure, \(V \) is obtained by attaching a 2–handle to \(\Sigma(L) \) along the knot \(C \) with framing \(\tilde{\lambda}_1 \) (and reversing orientation).

![Figure 2. The loops \(\lambda_0 \) and \(\lambda_1 \).](image)

Proposition 1. For any orientation \(o \) on \(L \) such that the crossing shown in Figure 1 is positive, the Spin structure \(t_{(L,o)} \) extends to a unique Spin structure \(s_o \) on the cobordism \(V \) and does not admit an extension over \(W \). The restriction of \(s_o \) to \(\Sigma(L_1) \) is the Spin structure \(t_{(L_1,o_1)} \), where \(o_1 \) is the orientation on \(L_1 \) induced by \(o \).
Proof. Let $\pi : \Sigma(L) \to S^3$ be the branched covering map. The Spin structure $t_{(L,o)}$ is the lift \tilde{s} of the Spin structure restricted from S^3 to $S^3 - L$, twisted by $h \in H^1(\Sigma(L) - \pi^{-1}(L); \mathbb{Z}/2\mathbb{Z})$, where the value of h on a curve γ is the parity of half the sum of the linking numbers of $\pi \circ \gamma$ about the components of L (following Turaev [21, §2.2]). Suppose that the crossing in Figure 1 is positive as, for example, illustrated in Figure 3, so that the orientation o induces an orientation o_1 on L_1.

Then, we can compute from Figure 2 that $h(\tilde{\lambda}_1) = 0$ and $h(\tilde{\lambda}_0) = 1$. The Spin structure on S^3 restricts to the bounding structure on each of $\tilde{\lambda}_0$ and $\tilde{\lambda}_1$ using the 0-framing. The map π restricts to a diffeomorphism on neighbourhoods of $\tilde{\lambda}_0$ and $\tilde{\lambda}_1$. Therefore, the restriction of \tilde{s} to each of $\tilde{\lambda}_0$ and $\tilde{\lambda}_1$ using the pullback of the 0-framing is also the bounding structure. Also note that the preimage under π of a disk bounded by λ_i is an annulus with core C, so the framing of $\tilde{\lambda}_i$ given by C is the same as the pullback of the 0-framing.

The spin structure $t_{(L,o)}$ is equal to \tilde{s} twisted by h. Since \tilde{s} restricts to the bounding spin structure on $\tilde{\lambda}_1$, and $h(\tilde{\lambda}_1) = 0$, we see that $t_{(L,o)}$ restricts to the bounding Spin structure on $\tilde{\lambda}_1$ using the framing given by C. On the other hand since $h(\tilde{\lambda}_0) = 1$, $t_{(L,o)}$ restricts to the Lie Spin structure on $\tilde{\lambda}_0$, again using the framing given by C. It follows that $t_{(L,o)}$ admits a unique extension s_o over the 2-handle giving the cobordism V, and does not extend over the cobordism W.

The restriction of s_o to $\Sigma(L_1)$ coincides with $t_{(L_1,o_1)}$ outside of the solid torus \tilde{B}, and therefore also on the closed manifold $\Sigma(L_1)$. □

3. Relations between correction terms

By [14 Proposition 2.1] we have the following exact triangle:

$$
\begin{align*}
\hat{HF}(\Sigma(L_1)) & \xrightarrow{F_V} \hat{HF}(\Sigma(L)) \\
& \xrightarrow{F_W} \hat{HF}(\Sigma(L_0))
\end{align*}
$$

where the maps F_V and F_W are induced by the surgery cobordisms of (2). (All the Heegaard Floer groups are taken with $\mathbb{Z}/2\mathbb{Z}$ coefficients.)

By [14 Proposition 3.3] (and notation as in that paper), if $L \subset S^3$ is a quasi-alternating link and L_0 and L_1 are resolutions of L as in Definition 1 then $\Sigma(L)$, $\Sigma(L_0)$ and $\Sigma(L_1)$ are L–spaces. Moreover, by assumption we have

$$
|H^2(\Sigma(L); \mathbb{Z})| = |H^2(\Sigma(L_0); \mathbb{Z})| + |H^2(\Sigma(L_1); \mathbb{Z})|.
$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Since for every \(L \)-space \(Y \) we have \(|H^2(Y; \mathbb{Z})| = \dim \widehat{HF}(Y) \), the Heegaard Floer surgery exact triangle reduces to a short exact sequence:

\[
0 \to \widehat{HF}(\Sigma(L_1)) \xrightarrow{F_U} \widehat{HF}(\Sigma(L)) \xrightarrow{F_W} \widehat{HF}(\Sigma(L_0)) \to 0.
\]

The type of argument employed in the proof of the following proposition goes back to [9] and was also used in [20].

Proposition 2. Let \(L \) be a quasi–alternating link and let \(L_0, L_1 \) be resolutions of \(L \) as in Definition [1]. Let \(o \) be an orientation on \(L \) for which the crossing of Figure [1] is positive, and let \(o_1 \) be the induced orientation on \(L_1 \). Then, the following holds:

\[
-4d(\Sigma(L), \mathfrak{t}_{(L,o)}) = -4d(\Sigma(L_1), \mathfrak{t}_{(L_1,o_1)}) - 1.
\]

Proof. Since \(\Sigma(L), \Sigma(L_1) \) and \(\Sigma(L_0) \) are \(L \)-spaces, we may think of the Spin\(^c\) structures on these spaces as generators of their \(\widehat{HF} \)-groups, and we shall abuse our notation accordingly. Let \(V : \Sigma(L_1) \to \Sigma(L) \) be the surgery cobordism of \([2]\), and let \(s_o \) be the unique Spin structure on \(V \) which extends \(t_{(L,o)} \) as in Proposition [1].

Recall that, by definition, the map \(F_U \) associated to a cobordism \(U : Y_1 \to Y_2 \) is given by

\[
F_U = \sum_{s \in \text{Spin}^c(U)} F_{U,s},
\]

where \(F_{U,s} : \widehat{HF}(Y_1, \mathfrak{t}_1) \to \widehat{HF}(Y_2, \mathfrak{t}_2) \) and \(\mathfrak{t}_i = s|_{Y_i} \) for \(i = 1, 2 \). We claim that

\[
(5)
F_{V,s_o}(\mathfrak{t}_{(L_1, o_1)}) = \mathfrak{t}_{(L,o)}.
\]

The Heegaard Floer \(\widehat{HF} \)-groups admit a natural involution, usually denoted by \(J \). The maps induced by cobordisms are equivariant with respect to the \(\mathbb{Z}/2\mathbb{Z} \)-actions associated to conjugation on Spin\(^c\) structures and the \(J \)-map on the Heegaard Floer groups, in the sense that, if \(\overline{x} := J(x) \) for an element \(x \), we have

\[
(6)
F_{W, \overline{s}}(\overline{x}) = \overline{F_{W,s}(x)}
\]

for each \(s \in \text{Spin}^c(W) \). Since by Proposition [1] there are no Spin structures on the surgery cobordism \(W : \Sigma(L) \to \Sigma(L_0) \) of \([2]\) which restrict to \(t_{(L,o)} \), the element \(F_W(t_{(L,o)}) \in \widehat{HF}(\Sigma(L_0)) \) has no Spin component. In fact, since \(t_{(L,o)} \) is fixed under conjugation and we are working over \(\mathbb{Z}/2\mathbb{Z} \), \([6]\) implies that the contribution of each non–Spin \(s \in \text{Spin}^c(W) \) to a Spin component of \(F_W(t_{(L,o)}) \) is cancelled by the contribution of \(\overline{s} \) to the same component. Therefore we may write

\[
F_W(t_{(L,o)}) = x + \overline{x}
\]

for some \(x \in \widehat{HF}(\Sigma(L_0)) \). By the surjectivity of \(F_W \) there is some \(y \in \widehat{HF}(\Sigma(L)) \) with \(F_W(y) = x \), therefore \(F_W(t_{(L,o)} + y + \overline{y}) = 0 \), and by the exactness of \([4]\) we have \(t_{(L,o)} + y + \overline{y} = F_V(z) \) for some \(z \in \widehat{HF}(\Sigma(L_0)) \). Since \(F_V(\overline{z}) = \overline{F_V(z)} = F_V(z) \), the injectivity of \(F_V \) implies \(z = \overline{z} \). Moreover, \(z \) must have some nonzero Spin component, otherwise we could write \(z = u + \overline{u} \) and

\[
F_V(u + \overline{u}) = F_V(u) + F_V(\overline{u}) = F_V(u) + F_V(\overline{u})
\]

could not have the Spin component \(t_{(L,o)} \). This shows that there is a Spin structure \(t \in \widehat{HF}(\Sigma(L_1)) \) such that \(F_V(t) = t_{(L,o)} \). But, as we argued before for \(F_W(t_{(L,o)}) \), in order for \(F_V(t) \) to have a Spin component it must be the case that there is some Spin structure \(s \) on \(V \) such that \(F_{V,s}(t) = t_{(L,o)} \). Applying Proposition [1] we conclude \(s = s_o \) and therefore \(t = t_{(L_1,o_1)} \). This establishes claim \([5]\).
Using equation (3) and the fact that \(\det(L_1) > 0 \) it is easy to check that \(V \) is negative definite. The statement follows immediately from equation (5) and the degree–shift formula in Heegaard Floer theory [15, Theorem 7.1] using the fact that \(c_1(s_o) = 0, \sigma(V) = -1 \) and \(\chi(V) = 1 \).

4. The main result and a corollary

Theorem 1. Let \((L, o)\) be an oriented link. If \(L \) is quasi–alternating, then

\[
\sigma(L, o) = -4d(\Sigma(L), t_{(L, o)}).
\]

Proof. The statement trivially holds for the unknot, because the unknot has zero signature and the two–fold cover of \(S^3 \) branched along the unknot is \(S^3 \), whose only correction term vanishes. If \(L \) is not the unknot and \(L \) is quasi–alternating, there are quasi–alternating links \(L_0 \) and \(L_1 \) such that \(\det(L) = \det(L_0) + \det(L_1) \) and \(L, L_0 \) and \(L_1 \) are related as in Figure 1. To prove the theorem it suffices to show that if the statement holds for \(L_0 \) and \(L_1 \), then it holds for \(L \) as well.

Denote by \(L^m \) the mirror image of \(L \), and by \(o^m \) the orientation on \(L^m \) naturally induced by an orientation \(o \) on \(L \). The orientation–reversing diffeomorphism from \(S^3 \) to itself taking \(L \) to \(L^m \) lifts to one from \(\Sigma(L) \) to \(\Sigma(L^m) \) sending \(t_{(L, o)} \) to \(t_{(L^m, o^m)} \). Thus by [8, Theorem 8.10] and [13, Proposition 4.2] we have

\[
\sigma(L^m, o^m) = -\sigma(L, o)
\]

and

\[
4d(\Sigma(L^m), t_{(L^m, o^m)}) = 4d(-\Sigma(L), t_{(L, o)}) = -4d(\Sigma(L), t_{(L, o)}),
\]

therefore equation (1) holds for \((L, o)\) if and only if it holds for \((L^m, o^m)\). Hence, without loss of generality we may now fix an orientation \(o \) on \(L \) so that the crossing appearing in Figure 1 is positive.

Denote by \(o_1 \) the orientation on \(L_1 \) naturally induced by \(o \). By [11, Lemma 2.1]

\[
\sigma(L, o) = \sigma(L_1, o_1) - 1.
\]

Since we are assuming that the statement holds for \(L_1 \), we have

\[
\sigma(L_1, o_1) = -4d(\Sigma(L_1), t_{(L_1, o_1)}).
\]

Equations (7) and (8) together with Proposition 2 immediately imply equation (1).

Corollary 3. Let \((L, o)\) be an oriented, quasi–alternating link. Then,

\[
\tau(\Sigma(L), t_{(L, o)}) = -\frac{1}{12} \frac{V'_{(L, o)}(-1)}{V_{(L, o)}(-1)},
\]

where \(\tau \) is Turaev’s torsion function and \(V_{(L, o)}(t) \) is the Jones polynomial of \((L, o)\).

Proof. By [18, Theorem 3.4] we have

\[
d(\Sigma(L), t_{(L, o)}) = 2\chi(\text{HF}^+_\text{red}(\Sigma(L))) + 2\tau(\Sigma(L), t_{(L, o)}) - \lambda(\Sigma(L)),
\]

where \(\lambda \) denotes the Casson–Walker invariant, normalized so that it takes value \(-2\) on the Poincaré sphere oriented as the boundary of the negative \(E_8 \) plumbing. Moreover, since \(L \) is quasi–alternating \(\Sigma(L) \) is an \(L \)–space; therefore the first
summand on the right–hand side of (9) vanishes. By [12, Theorem 5.1], when \(\det(L) > 0 \) we have

\[
\chi(S(L)) = -\frac{1}{6} V'(L,o)(-1) + \frac{1}{4} \sigma(L,o).
\]

Therefore, when \((L,o)\) is an oriented quasi–alternating link, Theorem 1 together with equations (9) and (10) yield the statement. \(\square\)

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referee for suggestions which helped to improve the exposition.

REFERENCES

[1] Abhijit Champanerkar and Ilya Kofman, Twisting quasi-alternating links, Proc. Amer. Math. Soc. 137 (2009), no. 7, 2451–2458, DOI 10.1090/S0002-9939-09-09876-1. MR2495282

[2] A. Champanerkar and P. Ording, A note on quasi-alternating Montesinos links, arXiv preprint 1205.5261.

[3] Andrew Donald and Brendan Owens, Concordance groups of links, Algebr. Geom. Topol. 12 (2012), no. 4, 2069–2093, DOI 10.2140/agt.2012.12.2069. MR3020201

[4] Joshua Greene, Homologically thin, non-quasi-alternating links, Math. Res. Lett. 17 (2010), no. 1, 39–49, DOI 10.4310/MRL.2010.v17.n1.a4. MR2592726 (2011e:57007)

[5] Joshua Evan Greene and Liam Watson, Turaev torsion, definite 4-manifolds, and quasi-alternating knots, Bull. Lond. Math. Soc. 45 (2013), no. 5, 962–972. MR3104988

[6] S. Jablon and R. Sazdanović, Quasi-alternating links and odd homology: computations and conjectures, arXiv preprint 0901.0075.

[7] Robion C. Kirby, The topology of 4-manifolds, Lecture Notes in Mathematics, vol. 1374, Springer-Verlag, Berlin, 1989. MR1001966 (90j:57012)

[8] W. B. Raymond Lickorish, An introduction to knot theory, Graduate Texts in Mathematics, vol. 175, Springer-Verlag, New York, 1997. MR1472978 (98f:57015)

[9] Paolo Lisca and András I. Stipsicz, Ozsváth-Szabó invariants and tight contact three-manifolds. II, J. Differential Geom. 75 (2007), no. 1, 109–141. MR2282726 (2008g:57029)

[10] C. Manolescu and B. Owens, A concordance invariant from the Floer homology of double branched covers, International Mathematics Research Notices 2007 (2007), no. 20, Art. ID rnm077.

[11] Ciprian Manolescu and Peter Ozsváth, On the Khovanov and knot Floer homologies of quasi-alternating links, Proceedings of Gökova Geometry-Topology Conference 2007, Gökova Geometry/Topology Conference (GGT), Gökova, 2008, pp. 60–81. MR2509750 (2010i:57029)

[12] David Mullins, The generalized Casson invariant for 2-fold branched covers of S^3 and the Jones polynomial, Topology 32 (1993), no. 2, 419–438, DOI 10.1016/0040-9383(93)90029-U. MR1217078 (94h:57013)

[13] Peter Ozsváth and Zoltán Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179–261, DOI 10.1016/S0001-8708(02)00030-0. MR1957829 (2003m:57066)

[14] Peter Ozsváth and Zoltán Szabó, On the Heegaard Floer homology of branched double-covers, Advances in Mathematics 194 (2005), no. 1, 1–33.

[15] Peter Ozsváth and Zoltán Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006), no. 2, 326–400, DOI 10.1016/j.aim.2005.03.014. MR2223558 (2007i:57029)

[16] K. Qazaqzeh, N. Chbili, and B. Qublan, Characterization of quasi-alternating Montesinos links, arXiv preprint 1205.4650.

[17] K. Qazaqzeh, B. Qublan, and A. Jaradat, A new property of quasi-alternating links, arXiv preprint 1205.4291.

[18] R. Rustamov, Surgery formula for the renormalized Euler characteristic of Heegaard Floer homology, arXiv preprint math/0409294.
[19] Nikolai Saveliev, *A surgery formula for the \(\mu \)-invariant*, Topology Appl. **106** (2000), no. 1, 91–102, DOI 10.1016/S0166-8641(99)00075-9. MR1769335 (2001g:57025)

[20] András I. Stipsicz, *On the \(\mu \)-invariant of rational surface singularities*, Proc. Amer. Math. Soc. **136** (2008), no. 11, 3815–3823, DOI 10.1090/S0002-9939-08-09439-2. MR2425720 (2009e:57024)

[21] V. G. Turaev, *Classification of oriented Montesinos links via spin structures*, Topology and geometry—Roßl Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, 1988, pp. 271–289, DOI 10.1007/BFb0082779. MR970080 (90d:57013)

[22] Liam Watson, *A surgical perspective on quasi-alternating links*, Low-dimensional and symplectic topology, Proc. Sympos. Pure Math., vol. 82, Amer. Math. Soc., Providence, RI, 2011, pp. 39–51. MR2768652

[23] Tamara Widmer, *Quasi-alternating Montesinos links*, J. Knot Theory Ramifications **18** (2009), no. 10, 1459–1469, DOI 10.1142/S0218216509007518. MR2583805 (2011d:57025)

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PISA, LARGO BRUNO PONTECORVO 5, 56127 PISA, ITALY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GLASGOW, UNIVERSITY GARDENS, GLASGOW G12 8QW, UNITED KINGDOM

E-mail address: b.owens@maths.gla.ac.uk