NMR investigation of iron-containing magnetically ordered nanomaterial used for preparing of magnetic fluid

A S Mazur, I V Pleshakov, A V Khudyakov, E E Bibik and Yu I Kuzmin

1 Saint Petersburg State University, St. Petersburg 198504, Russia
2 Ioffe Institute, St. Petersburg 194021, Russia
3 Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
4 Saint Petersburg State Institute of Technology (Technical University), St. Petersburg 190013, Russia

E-mail: mr.connect@yandex.ru

Abstract. The first observation of 57Fe nuclear magnetic resonance in nanostructured magnetite, used for preparing of magnetic fluid is reported. The radiospectroscopic technique required for the reliable spin echo signal observation is discussed. The data on resonance line associated with physical properties of the material, are presented.

1. Introduction
Magnetic fluids are attractive objects, which have a wide variety of applications in different areas [1]. They are colloids with a solid fraction of magnetically ordered particles, solved in a liquid medium, which possess a number of unconventional physical properties. Now there are many suggestions for their use in photonics [2-5], sensors [6-9], biomedicine [10-13] and other fields. This topic is closely related with the general problem of physics of nanocomposites, containing magnetic phase [14-16].

A question of internal structure of the particles, which determines basic characteristics of such systems, is of a current interest, and a lot of experimental methods were employed to obtain information about it. However, nuclear magnetic resonance (NMR) has never been used, although it is known that it can provide important data, complimentary for such techniques as, for example, magnetometry, neutron scattering and others. This is primarily due to the difficulties of NMR signal registration in very small (nanosized) magnetic objects.

The purpose of this work was to investigate the response of nuclear spin system in nanostructured magnetite, which represents an initial material for the preparing of magnetic fluid, using sensitive radiospectroscopic technique. This approach is a necessary step in the transition to the study of NMR in the solid phase of the colloid.

2. Samples
The samples were prepared by standard procedure as precursors for further fabrication of a magnetic fluid [17]. Initially the synthesis of magnetite colloid was carried out in a solution of FeCl$_3$ and FeSO$_4$ by precipitation with ammonia water. Then the reaction yield, in the form of Fe$_3$O$_4$ nanoparticles, was condensed to the state of a paste. During the synthesis process an admixture of oleic acid was used in order to form a surfactant layer on particle surfaces for preventing their close adhesion. The resulted samples represented paste-like objects, composed of Fe$_3$O$_4$ nanoparticles with the median diameter of
about 10 nm, separated by the layers of an organic substance. Thus, the substance obtained was a true magnetically ordered nanomaterial.

![Figure 1. Schematic depiction of magnetite paste (a) and magnetic fluid, prepared as its 10 % solution (b). Surfactant molecules marked as dashes (a small uncontrollable amount of oleic acid can present in a solvent, for example, kerosene). Normally the particles are consisted of magnetic core and nonmagnetic shell, which outlined in the pictures by different color density. The scale is maintained approximately.](image)

For the comparing with the paste the sample of a bulk Fe₃O₄ (in the form of macrocrystalline powder) was used.

3. Experimental method
The measurements were carried out on Tecmag Redstone radiospectrometer by two-pulse technique of spin echo observation with repetition period of the sequence of 5 ms. The durations of the first and second radio frequency (RF) pulses were 2 μs and 4 μs correspondingly, the delay time t₁₂ between them was 10 μs (for measuring of relaxation time T₂ it was increased by several microseconds). The carrier frequency of RF pulses f was of about 70 MHz, which corresponds to ⁵⁷Fe NMR frequency in most of magnetic iron oxides.

Because ⁵⁷Fe nuclei have very small magnetic moment, natural abundance of ⁵⁷Fe isotope is only of about 2.2 % and, as it is usual for nanostructures, the particles in our paste should have an increased magnetic anisotropy, an expected NMR intensity I in our case had to be extremely low. In order to increase the signal the experiments were carried out at liquid nitrogen temperature (77 K) with the signal accumulation number of 40960.

For the comparing with the paste the sample of a bulk Fe₃O₄ (in the form of macrocrystalline powder) was used.

4. Results and discussion
⁵⁷Fe NMR spectra for nano- and bulk materials are shown in figure 2. In spite of a small signal-to-noise ratio, spin echo signal in the paste was observable in the range of 68 – 74 MHz (figure 2(a)), demonstrating a general similarity with the same in bulk material (figure 2(b)). According to [18] the resonance lines may be attributed to tetra- (A) and octahedral-like (B) Fe-sites (it should be taken into account that our experiments were carried out lower the Verwey temperature, where the crystalline and magnetic properties of magnetite change). The peculiarities of NMR spectrum in the paste consists in: i) A-peak frequency shifting down (≈ 350 kHz); ii) B-peak frequency shifting up (≈ 800 kHz); iii) considerable increasing of the relative intensity of A-peak; iv) significant broadening of B-peak; v) appearance of a weak signal at lower frequencies (marked by arrow in figure 2(b)).
Note that the resonance line splitting cannot be due to influence of domain walls, because it was observed both in bulk and in nanostructured material, while in the latter case the walls are absent (the particles with diameter of 10 nm should be regarded as single domain). The shift of the peaks preliminary can be explained by the crystal structure distortion, the broadening, most probably, is coming from increased defects amount, typical for nanosized objects and to the increase of the surface contribution in nanocrystalline state. Additional signal at lower frequencies may be ascribed to other magnetic phases.

![Figure 2. 57Fe NMR spectra. a – NMR spectrum in nanostructural sample; b – NMR spectrum in bulk sample ($T = 77$ K)](image)

It was difficult enough to investigate the relaxation in our paste because of rapid decreasing of the signal amplitude with increased delay time between RF pulses. Nevertheless, with a slight changing of t_{12} it was possible to obtain qualitatively measured dependencies of $I(t_{12})$ and to estimate T_2. The spin-spin relaxation time frequency distribution shown in figure 2. As it is seen, $T_2 \approx 2 - 4 \mu$s. It is more than by one order of value lower than in bulk sample. This effect points to a drastic conversion of magnetic processes in nanoparticles and confirms the difference between conventional and nanostructured forms of matter.

![Figure 3. Frequency distribution of relaxation time T_2 ($T = 77$ K)](image)
5. Conclusion
The first observation of NMR in nanostructured iron oxide, which is a solid precursor (paste) for the preparing of liquid material (magnetic fluid), presented in this work. It was shown, that using sensitive radiospectroscopic equipment and a large number of accumulations it is possible to observe spin echo signal of iron nuclei and to obtain characteristics of NMR spectrum of this substance. The latter demonstrate a change of magnetite properties when the material prepared in nanostructured form.

Acknowledgement
The authors are grateful to B.T. Melekh for providing of bulk magnetite samples.

References
[1] C Scherer and A Figueiredo 2005 Ferrofluids: properties and applications Brazilian Journal of Physics 35 718–727
[2] J Philip and J M Laskar 2012 Optical properties and applications of ferrofluids - a review Journal of Nanofluids 1 3–20
[3] E Nepomnyashchaya, E Velichko and E Aksenov Inverse problem of laser correlation spectroscopy for analysis of polydisperse solutions of nanoparticles 2016 Journal of Physics: Conference Series 769 012025
[4] P M Agruzov, I V Pleshakov, E E Bibik and A V Shamray 2014 Magneto-optic effects in silica core microstructured fibers with a ferrofluidic cladding Appl. Phys. Lett. 104 071108
[5] P M Agruzov, I V Pleshakov, E E Bibik, S I Stepanov and A V Shamrai 2015 Transient magneto-optic effects in ferrofluid-filled microstructured fibers in pulsed magnetic field EPL 111 57003
[6] S E Logunov, A Yu Koshkin, V V Davydov and A A Petrov 2016 Visualizer of magnetic fields Journal of Physics: Conference Series 741 012092
[7] S E Logunov, A Yu Koshkin and V V Davydov 2018 Quantum autonomous magnetic field sensor Journal of Physics: Conference Series 1124 041025
[8] G L Klimchitskaya, V M Mostepanenko, E K Nepomnyashchaya and E N Velichko 2019 Impact of magnetic nanoparticles on the Casimir pressure in three-layer systems Phys. Rev. B 99 045433
[9] G L Klimchitskaya, V M Mostepanenko, E K Nepomnyashchaya and E N Velichko 2018 Impact of magnetic particles on dispersion forces in ferrofluid-based microdevices Proc. 2018 IEEE Int. Conf. Electr. Eng. Photonics, EExPolytech-2018 156–9
[10] Y G Toropova, N A Pechnikova, I A Zelinskaya, D V Korolev, K G Gareev, A S Markitantova, V D Bogushevskaya, A V Povolotskaya and A A Manshina 2018 Hemocompatibility of magnetic magnetite nanoparticles and magnetite-silica composites in vitro Bull. Sib. Med. 17 157–67
[11] E Velichko, E Nepomnyashchaya, A Dudina, I Pleshakov and E Aksenov 2018 Investigation of the interaction of ferromagnetic fluids with proteins by dynamic light scattering Prog. Biomed. Opt. Imaging - Proc. SPIE 10716 1071616
[12] M A Baranov, E N Velichko, E K Nepomnyashchaya and E T Aksenov 2017 Kinetics of structuring of protein solutions in magnetic fields in dehydration Prog. Electromagn. Res. Symp. 42–4
[13] T V Lyutyy, O M Hryshko and M Yu Yakovenko 2019 Uniform and nonuniform precession of nanoparticle with finite anisotropy in a liquid: opportunities and limitations form magnetic fluid hyperthermia J. Magn. Magn. Mat. 473 198–200
[14] E Y Koroleva, D Y Burdin, Y A Kumzerov, A A Sysoeva, A V Filimonov and S B Vakhrushev 2017 Dielectric properties of magnetic-ferroelectric CoO–NaNO₂ porous glass nanocomposite Phys. Solid State 59 2036–44
[15] A A Naberezhnov, V Ryukhtin and A A Sysoeva 2017 Internal structure of magnetic porous glasses and the related ferroelectric nanocomposites Phys. Solid State 59 378–84
[16] A I Nikitchenko, A V Azovtsev and N A Pertsev 2018 Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix J. Phys. Condens. Matter 30 015701
[17] E E Bibik, B Ya Matygullin, Yu L Raikher and M I Shliomis 1973 Magnetic properties of magnetite colloids Magnetohydrodynamics 9 58–62
[18] T J Bastow and A Trinchi 2008 NMR analysis of ferromagnets: Fe oxides Solid State Nuclear Magnetic Resonance 35 25–31