Evaluation of water deficit tolerance in maize genotypes using biochemical, physio-morphological changes and yield traits as multivariate cluster analysis

Piyanan PIPATSITEE, Rujira TISARUM, Thapanee SAMPHUMPHUANG, Sumaid KONGPUGDEE, Kanyarat TAOTA, Apisit EIUMNOH, Suriyan CHA-UM*

National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueang, Khlong Luang, Pathum Thani 12120, Thailand; piyanan.pi@biotec.or.th; rujira.tis@biotec.or.th; thapanee@biotec.or.th; sumaidkong@gmail.com; kanyaratao67@gmail.com; apisiteiumnoh@gmail.com; suriyanc7@gmail.com (*corresponding author)

Abstract

Drought is an abiotic stress that inhibits plant growth and development and, therefore, declines crop productivity, as seen in maize plant. The aim of this investigation was to identify the candidate maize varieties that can be grown under water limited conditions using physio-morphological and yield attributes. Eight genotypes of maize including ‘Suwan4452’ (drought tolerant) as a positive check, ‘CP301’, ‘CP-DK888’, ‘DK7979’, ‘DK9901’, ‘Pac339’, ‘S7328’, and ‘Suwan5’ were selected as test plants. Physiological, biochemical and morphological characteristics at seedling (24 day after sowing; DAS) and reproductive (80 DAS) developmental stages of plants under 20-day water withholding (WD), and yield traits at harvesting period were analysed. Leaf temperature in each genotype increased with the degree of water deficit stress, leading to leaf chlorosis, and reduction in maximum quantum yield of PSII ($F_{v}/F_{m}$), photon yield of PSII ($\Phi_{PSII}$), net photosynthetic rate ($P_{n}$), overall growth and yield. $P_{n}$ and stomatal conductance ($g_{s}$) in drought tolerant genotype, ‘Suwan4452’, were decreased by 19.1% and 18.6%, respectively, whereas these in drought sensitive, ‘Pac339’, were significantly declined by 53.9% and 61.8%, respectively. Physio-morphological parameters, growth performance and yield-related traits of maize genotypes grown under water deficit conditions and well-watered conditions were subjected to Ward’s cluster method for identification of water deficit tolerant cultivars. Maintaining photosynthetic abilities, osmotic adjustment and CWSI in drought tolerant genotypes of maize were evidently demonstrated to keep overall growth performance and yield attributes. Based on multivariate cluster analysis and PCA (principal component analysis), ‘Suwan4452’, ‘CP-DK888’ and ‘S7328’ were categorized as drought tolerant genotypes whereas ‘Suwan5’, ‘Pac339’, ‘DK7979’, ‘CP301’ and ‘DK9901’ were identified as drought susceptible cultivars. Hybrid maize cvs. ‘CP-DK888’ and ‘S7328’ may further be suggested to be grown in the rainfed area without irrigation.

Keywords: crop water stress index; normalized difference vegetation index; photosynthetic abilities; seedling stage; reproductive stage; yield traits
Introduction

Limited precipitation because of global climate change leads to reduction in soil water availability and changes in vegetation patterns (Tietjen et al., 2017). Drought stress results in the loss of 12 million ha of agricultural land (0.4% in the globe or 20 million ton of grain loss) per year (Azadi et al., 2018; Hall and Leng, 2019) and 0.9% of gross primary productivity per year (Du et al., 2018). In agricultural sector, 75% of the total food production is generated from 30% of the irrigated land (accounting for > 80% of total water consumption), and it is expected that ~2,300 km$^3$ of fresh water will be used for irrigation by the year 2050 (Dalezios et al., 2018). Annual loss of 0.75 billion USD at global level (year 1990-2004) and 6.2 billion EURO in Europe (year 2001-2006) has been estimated to be caused due to drought stress in the past 30 years (Gerber and Mirzabaev, 2017). In United States of America, crop loss is increased by 3 folds from 9 billion in 1988 to 27.6 billion in 2012 (Elliot et al., 2018; He et al., 2019). Cost of the water used for irrigation is another issue for the agronomists. For example, maize crop requires water consumption (during late vegetative growth stage) greater than 0.21 USD m$^{-3}$ whereas its grain prices are only 0.19 USD kg$^{-1}$. In this case, water cost is a key criterion for the cultivation of the maize crop. Water prices for irrigation ranged between 0.23-0.29 USD per m$^3$ (e.g., 0.15 USD per m$^3$ in Australia and 0.61 USD per m$^3$ in Israel), depending on crop species, availability of water resources and year of crop cultivation (Manning et al., 2018).

Drought severity, risk assessment, agricultural loss and food insecurity in major crops such as maize, wheat, rice, millet, sorghum and soybean can be estimated using several indices, including Standardized Precipitation-Evapotranspiration Index (SPEI) (Chen et al., 2016a); Standardized Precipitation Index (SPI) (Leng and Hall, 2019; Spinoni et al., 2019), Drought Severity Index (DSI) (Zhang et al., 2019a,b,c), Synthesized Drought Index (SDI) (West et al., 2019), agricultural drought monitoring indices (Liu et al., 2016), Normalized Difference Vegetation Index (NDVI) (Nanzad et al., 2019) and Crop Water Stress Index (CWSI) (Ihuoma and Madramootoo, 2017). SPEI has been reported as an effective indicator of drought-induced yield loss (Standardized Yield Residuals Series; SYRS) for five major cereal crops (Chen et al., 2016a). Physiological and morphological adaptations under drought stress maintain growth and yield of the crop (Tardieu et al., 2018). Maize is amongst the top five C$_4$ cereal crop species, used as food, feed and biofuel products in USA (384.7 MT), China (231.8 MT), Brazil (64.1 MT), Argentina (39.8 MT) and Ukraine (28.1 MT) (Wang et al., 2018). Approximately 39.3% of yield reduction in maize has been reported when soil water capacity is less than 40% (Sun et al., 2017; Comas et al., 2019). In USA, yield of maize was significantly declined if the water availability is 70% of the water required for the crop (Trout and DeJonge, 2017). Physiological changes in maize grown under drought conditions have been studied in relation to tolerance abilities, degree of severity of drought, plant developmental stages and their interactions (Casari et al., 2019; Li et al., 2019a; Pires et al., 2020). Multiparameter indices such as Infra-red thermal (leaf/canopy temperature), Red-Green-Blue Imagery (RGB), and GreenSeeker (NDVI), with novel technologies have been used to screen the drought tolerant candidate maize varieties (Casari et al., 2019; Gao et al., 2019). NDVI (GreenSeeker$^\text{TM}$) has been validated to identify the healthy plants (green color of leaves indicating high amount of chlorophyll content in relation to SPAD) using camera or non-destructive methods. Moreover, CWSI is an alternative index, indicating temperature shift between control and stressed plants using IR Thermal camera to play as abiotic stress indices (leaf temperature or canopy temperature). Both parameters are particularly important for biological parameters of plants in response to drought conditions, especially in maize crop (Zhang et al., 2019a; Zhang et al., 2019b). Possible hypotheses for yield reduction in maize genotypes under drought stress include: i) plant developmental stages (maturation; R$_e$-R$_e$ > late vegetative growth stage; V8-VT) (Mi et al., 2018; Zhang et al., 2019d), ii) genetic drought tolerance background (waxy corn > normal corn; Hao et al., 2019; Zhao et al., 2019), iii) water use efficiency of each genotype (Hao et al., 2015a), iv) ovary abortion (especially in ovary apical zone) in the silky stage (Oury et al., 2016a, b), v) ABA-repressed starch biosynthesis (Yang et al., 2019), vi) abortion of kernel (Marwein et al., 2017), vii) degree of severity of water deficit stress (Hao et al., 2016; Cai et al., 2017; Greaves and Wang, 2017), and viii) parental hybrid vigor for drought tolerant abilities of diallel...
crosses (Makumbi et al., 2018). Yield attributes play a major role in cluster ranking of drought tolerant candidates in different populations of maize crop using several evaluation methods such as Distance-based clustering analysis (Su et al., 2019), Principal component analysis (Chen et al., 2016b) and Ward’s minimum variance method (Makumbi et al., 2018; Hao et al., 2015b, 2016, 2019; Zhao et al., 2019). Moreover, PCA has been well established to confirm the morphological, physiological responses and biochemical changes of maize genotypes in responses to drought and re-watered conditions (Chen et al., 2016b). In Thailand, maize is one of the most carbohydrate cereal crops to supply for food, animal feed and fuel (bioethanol). An adoption of hybrid maize varieties has been successfully reported (>90% plantation area) as modern technology to overcome the conventional methods (Poolasawas and Napasintuwong, 2019). However, the basic information of drought tolerant abilities in both hybrid and inbred maize varieties is still lacking as well as the elite variety with drought tolerant strategies is missing. Eight maize varieties, including ‘Suwan5’ (inbred variety), ‘Suwan4452’ (positive check; drought tolerant), ‘CP-DK888’, ‘Pac339’, ‘DK9901’, ‘DK7979’, ‘CP301’ and ‘S7328’, were selected as test plants. In Thailand, eight genotypes of maize in both inbred and hybrid varieties, belonging to private companies are dominated with high yield (>5788 kg ha\(^{-1}\)), which cultivated >95% of whole area (Napasintuwong, 2020). We hypothesized that more adapted strategies in terms of physio-morphological, biochemical traits (at seedling and reproductive stages) and yield attributes (at harvesting stage) of drought tolerant maize genotypes than those in drought susceptible, playing a key role as multivariate indices for drought tolerant screening. In the present study, we aim to evaluate candidate drought tolerant maize varieties under water deficit rainfed trials using physio-morphological changes and yield traits.

**Materials and Methods**

*Plant materials and field experiment conditions*

Seeds of eight genotypes of maize (*Zea mays* L.), including an inbred variety ‘Suwan5’ and 7 hybrid varieties (Table S1), were cultivated in the farmer field at Phetchabun Province, Northern region of Thailand (Latitude 15° 44’ 58.6" N, Longitude 101° 00’ 37.4" E). Two cultivars, ‘Suwan5’ and ‘Suwan4452’ (drought tolerant positive check) of maize genotypes were provided by Suwan Farm Research Station, National Corn and Sorghum Research Center, Nakhon Ratchasima, Thailand. In addition, six hybrid maize genotypes i.e., ‘CP-DK888’, ‘Pac339’, ‘DK9901’, ‘DK7979’, ‘CP301’ and ‘S7328’ were purchased from the market. The isohyperthermic Ultic Paleustalfs soil (0-20 cm depth) was clayey in nature (sand 12.25%, silt 31.33% and clay 54.54%) with a pH of 7.65, electrical conductivity (EC\(_e\)) of 0.95 dS m\(^{-1}\), 1.96% organic matter (OM), 7.78 mg kg\(^{-1}\) available phosphorus (P) and 51.01 mg kg\(^{-1}\) of exchangeable potassium (K) (Table S2). In year 2019, the experimental plots were established as 8 × 2 factorials in completely randomized design (CRD) under two water regimes: well-watered (WW) and water deficit (WD) with three replicates each (n = 3) in an area of 26.88 m\(^2\) (4.8 m × 5.6 m). The plant and row spacing were set at 0.2 and 0.7 m, respectively. Fertilizers were applied twice, before cultivation and 30 days after sowing (DAS), using site-specific nutrient management (SSNM) with 62.5 kg ha\(^{-1}\) of 46-0-0 fertilizer, 31.25 kg ha\(^{-1}\) of 18-46-0 fertilizer, and 31.25 kg ha\(^{-1}\) of 0-0-60 fertilizer for N, P and K, respectively. Furrow irrigation was applied to well-watered plots (WW, 30 ± 2% soil water content) at ten days interval to maintain the soil water content. On the other hand, water deficit plots (WD; 12 ± 2% soil water content) were maintained without water for twenty days before seedling (24 DAS) and reproductive stages (80 DAS) appeared. Weather station was installed at the experimental site to collect the online weather data, including rainfall (mm), air temperature (°C), relative humidity (%), and soil moisture content (%) (Figure S1). Digital images from UAV (unmanned aerial vehicle) with RGB camera were collected for both seedling (24 DAS) and reproductive (80 DAS) stages (Figure S2). UAV (DJI Phantom 4 Advanced) installed with multispectral sensors (RedEdge-M by Micasense) was used. Digital camera installed on the UAV captured images with three spectral bands of red, green, and blue, with image size ratio of 5472 × 3078 pixels and resolution of 20 megapixels. Multispectral sensors have five-narrow spectral bands such as Red, Green,
Blue, Near-Infrared, and Red Edge. The UAV images of both sensors were measured at vegetative and reproductive stages. UAV flight plan was fixed at an altitude of ~90 m aboveground with 80% front and side image overlap. The images were acquired under clear sky minimum possible cloud cover between 10 am to 2 pm. The ground sampling distance (GSD) of digital and multispectral images was fixed at 2.39 and 6.25 cm per pixel, respectively. The UAV images were georeferenced and ortho-mosaicked using Pix4D software. The digital imageries were analysed in the region of interest (ROI) according to the ratio of red (R), green (G), and blue (B) colour components using ArcGIS program.

**Normalized difference vegetation index (NDVI)**

Normalized difference vegetation index (NDVI) was calculated from red and near infra-red (NIR) regions of the spectrum using Trimble GreenSeeker™ (Trimble Inc., Sunnyvale, California, USA) handheld optical sensor (Govaerts and Verhulst, 2010). The measurement was taken from the maize canopy at the seedling (24 DAS) and reproductive stage (80 DAS) with three biological replicates per treatment ($n=3$).

**Leaf temperature and crop water stress index (CWSI)**

Thermal infra-red images were captured between 11 a.m. to 2 p.m. at 1.5 m from the maize canopy using an infra-red thermal imaging camera of FLIR E series (Model E50, FLIR Systems, Inc., Boston, USA), with long-wave of 7.5-13 µm, at resolution of 240 x 180 pixels with an emissivity set at 0.95 for the surfaces of natural vegetation. Artificial dry and wet references were used in the ambient temperature for 10 min and placed in the scene of thermal images. A black paper was used as the artificial dry reference, to absorb the radiation and, therefore, act as a non-transpiration leaf. Artificial wet was obtained by using a small absorbent cotton box filled with water to represent a fully transpiring leaf. Three biological replicates were used per treatment ($n=3$) at the seedling (24 DAS) and reproductive stages (80 DAS) (Figure S3). Temperature of leaf, dry reference and wet reference were analysed using FLIR Tool 5.1 software. CWSI was calculated by the equation provided by Idso et al. (1981).

$$CWSI = \frac{T_{Leaf} - T_{wet}}{T_{dry} - T_{wet}}$$

where $T_{Leaf}$ is the leaf temperature (°C), $T_{dry}$ is the dry reference temperature (°C) for fully closed stomata and $T_{wet}$ is the wet reference temperature (°C) for fully transpiring leaf. CWSI index >0.4 was represented as stress indicator when plants exposed to water deficit condition.

**Physiological characteristics**

Leaf greenness in the second fully expanded leaf of maize genotypes was estimated using Digital Chlorophyll Meter (Model SPAD-502Plus, Konica Minolta Inc., Osaka, Japan) following the method of Dwyer et al. (1991). In brief, the SPAD data in four points of different region of second fully expanded leaf blade were collected and averaged in each treatment.

Chlorophyll fluorescence emission was measured from the adaxial surface of second fully expanded leaf of maize using a fluorescence monitoring system (model FMS 2; Hansatech Instruments Ltd., Norfolk, UK) in the pulse amplitude modulation mode (Loggini et al., 1999). A leaf kept in dark for 30 min was initially exposed to the modulated measuring beam of far-red light (LED source) with typical peak at a wavelength of 735 nm. Basal fluorescence ($F_0$) and maximum ($F_m$) fluorescence yields were measured under weak modulated red light (<85 µmol m$^{-2}$ s$^{-1}$) with 1.6 s pulses of saturating light (>1500 µmol m$^{-2}$ s$^{-1}$ PPFD) and calculated using FMS software for Windows. The variable fluorescence yield ($F_v$) was calculated using the equation: $F_v=F_m-F_0$. The ratio of variable to maximum fluorescence ($F_v/F_m$) was calculated as the maximum quantum
yield of PSII photochemistry. The photon yield of PSII ($\Phi_{\text{PSII}}$) in light was calculated as: $\Phi_{\text{PSII}} = (F_{m'}-F)/F_{m'}$ after 45 s of illumination, when steady state was achieved (Maxwell and Johnson, 2000).

Net photosynthetic rate ($P_n; \mu\text{mol m}^{-2} \text{s}^{-1}$), transpiration rate ($E; \text{mmol H}_2\text{O m}^{-2} \text{s}^{-1}$) and stomatal conductance ($g_s; \text{mmol m}^{-2} \text{s}^{-1}$) in the second fully-expanded leaf of maize genotypes were measured using a Portable Photosynthesis System with an Infra-red Gas Analyzer (Model LI 6400, LI-COR Inc., Lincoln, Nebraska, USA) at 10.00 – 12.00 am. All parameters were measured by continuously monitoring the content of the air entering and exiting the IRGA headspace chamber, according to Cha-um et al. (2006). The air-flow rate of IRGA chamber was fixed at 500 $\mu\text{mol s}^{-1}$ and chamber temperature were set at 28 °C. The light intensity was adjusted to 1000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ PPFD by 6400-02B red-blue LED light source. Leaf area was set at 3 × 2 or 6 cm$^2$ according to the size of IRGA microchamber.

**Morphological and yield-related traits**

Shoot height (cm) and total chlorophyll were assessed at the seedling (24 DAS) and reproductive stage (80 DAS). At the harvesting stage, yield traits (Figure S4), including number of ears per plant, ear weight (g), husk weight (g), cob weight (g), hundred grain weight (g), grain weight (g ear$^{-1}$), total grain weight (kg ha$^{-1}$) and above ground biomass (kg ha$^{-1}$) were measured.

**Statistical analysis and cluster analysis**

The experiment was arranged as 8 × 2 factorials in Completely Randomized Design (CRD) with three replicates ($n=3$) in well watering (WW) and water deficit conditions (WD). Analysis of variance (ANOVA) was calculated, then the mean values obtained from sixteen treatments were compared using Duncan’s Multiple Range test (DMRT) and analysed by SPSS software (version 11.5 for Window®). In addition, water deficit tolerance indices were calculated by dividing the values of physio-morphological parameters and yield traits in water deficit stress by the control as per the following equation (Cha-um et al., 2014). The cluster ranking groups were obtained based on Ward’s cluster analysis using the water deficit tolerance indices of physio-morphological parameters and yield traits (Chen et al., 2016b). In addition, drought tolerance indices (DTI) of morphological, physiological changes and yield-related traits were subjected to principal component analysis biplot for similarity assay according to Liu et al. (2015).

**Results**

**Seedling stage (24 DAS 5 leaf stage)**

Shoot height of eight maize genotypes was measured to be 28-32 cm in well-watered plants. Under water deficit, shoot height in cv. ‘CP-DK888’ and ‘DK7979’ was significantly declined by 22.8% and 18.6%, respectively, whereas it was retained in other genotypes (Figure 1A). Leaf temperature in all the genotypes under water deficit condition was significantly increased by 1.05-1.11 folds over well-watered plants (Figure 2A), thereby leading to enhanced crop water stress index (CWSI) by 1.42-1.86 folds (Table 1). Normalized difference vegetation index (NDVI) in cvs. ‘DK9901’, ‘CP301’ and ‘S7328’, grown under water deficit conditions were decreased by 18.7%, 23.3% and 19.4% over the control, respectively, whereas NDVI in other genotypes was maintained (Table 1).
Figure 1. Shoot height of maize genotypes grown under different water regimes; well-watered (WW) and water deficit (WD) for 24 days after sowing (seedling stage; A) and 80 days (reproductive stage; B) after sowing (DAS)

Data are presented as mean ± SE (n = 3). Different letters in each column represent significant difference at p ≤ 0.05 according to Duncan’s Multiple Range test (DMRT).
Leaf temperature, using Infra-red Thermal Camera, of maize genotypes grown under different water regimes; well-watered (WW) and water deficit (WD) for 24 days (seedling stage; A) and 80 days after sowing (reproductive stage; B) after sowing (DAS).

Data are presented as mean ±SE (n = 3). Different letters in each column represent significant difference at $p \leq 0.05$ according to Duncan’s Multiple Range test (DMRT).

Leaf greenness (SPAD) in maize leaves under water deficit stress was stabilized in most of the genotypes, except in cv. ‘Pac339’ (degradation by 10.2% over the control) and ‘DK7979’ (degradation by 7.6% over the control) (Figure 3A). Maximum quantum yield of PSII ($F_v/F_m$) in water deficit stressed plants was unchanged, whereas photon yield of PSII ($\Phi_{PSII}$) in cvs. ‘Pac339’, ‘DK7979’ and ‘S7328’ were significantly diminished by...
9.0%, 9.5% and 10.2% over the control, respectively (Table 1). Net photosynthetic rate (Pn) in maize cvs. ‘Suwan5’, ‘Pac339’, ‘DK7979’, ‘CP301’ and ‘S7328’ grown under water deficit was significantly reduced by 13.2%, 22.5%, 8.8%, 24.8% and 13.3% over the control, respectively (Table 1). Transpiration rate (E) in cvs. ‘Pac339’, ‘DK7979’, and ‘CP301’ was also declined by 35.1%, 11.3% and 22.8%, respectively, when exposed to water deficit condition (Table 1). In addition, stomatal conductance (gs) in maize genotypes at seedling stage was very sensitive to water deficit stress, and it was sharply declined by 19.4% (‘Suwan5’), 10.9% (‘Suwan4452’), 15.6% (‘CP-DK888’), 30% (‘Pac339’), 19.5% (‘DK9901’), 36.8% (‘CP301’) and 23.6% (‘S7328’), except in cv. DK7979 where it was retained (Table 1). Leaf osmotic potential (Ψw) in water deficit stressed maize was decreased, especially in seedling stage (by 8.95% - 28.69% over well-watered) (Table 1), whereas it was maintained at reproductive stage (by 1.00 – 14.69% over control) (Table 2). This parameter was used as a good indicator for water availability in the leaf tissues, especially in water deficit stressed plants.  

Table 1. Normalized Difference Vegetation Index (NDVI), Crop Water Stress Index (CWSI), maximum quantum yield of PSII (Fv/Fm), quantum efficiency of PSII (ΦPSII), net photosynthetic rate (Pn; μmol m⁻² s⁻¹), transpiration rate (E; mmol H₂O m⁻² s⁻¹), stomatal conductance (gs; mmol H₂O m⁻² s⁻¹) and leaf osmotic potential (Ψw; MPa) in maize genotypes grown under different water regimes for 24 days after sowing (DAS) or seedling stage. Data are presented as mean ± SE (n = 3).
**Table 2.** Normalized Difference Vegetation Index (NDVI), Crop Water Stress Index (CWSI), maximum quantum yield of PSII ($F_{v}/F_{m}$), quantum efficiency of PSII ($\Phi_{PSII}$), net photosynthetic rate ($P_n$; µmol m$^{-2}$ s$^{-1}$), transpiration rate (E; mmol H$_2$O m$^{-2}$ s$^{-1}$), stomatal conductance ($g_{st}$; mmol H$_2$O m$^{-2}$ s$^{-1}$) and leaf osmotic potential ($\Psi_p$; MPa) in maize genotypes grown under different water regimes for 80 days after sowing (DAS) or reproductive stage. Data are presented as mean ± SE ($n = 3$).

| Varieties   | Water regime | NDVI  | CWSI  | $F_{v}/F_{m}$ | $\Phi_{PSII}$ | $P_n$  | E    | $g_{st}$ | $\Psi_p$ |
|-------------|--------------|-------|-------|---------------|---------------|--------|------|----------|----------|
| 'Suwan4'    | WW           | 0.57± | 0.32± | 0.78±         | 0.64±         | 15.71± | 3.51±| 0.10±    | -3.46±   |
|             |              | 0.53± | 0.10±  | 0.04±         | 0.01±         | 4.11±  | 0.72±| 0.04±    | 0.13±    |
|             | WD           | 0.47± | 0.18± | 0.01±         | 0.03±         | 11.75± | 2.23±| 0.02±    | -3.59±   |
| 'Suwan44'   | WW           | 0.57± | 0.82± | 0.01±         | 0.02±         | 16.69± | 3.36±| 0.10±    | -3.51±   |
|             | WD           | 0.47± | 0.78± | 0.02±         | 0.02±         | 13.50± | 3.13±| 0.08±    | -3.55±   |
| 'CP-301'    | WW           | 0.56± | 0.29± | 0.01±         | 0.01±         | 18.97± | 3.82±| 0.12±    | -3.79±   |
|             | WD           | 0.42± | 0.74± | 0.13±         | 0.03±         | 11.75± | 2.59±| 0.06±    | -3.84±   |
| 'CP-339'    | WW           | 0.58± | 0.82± | 0.01±         | 0.02±         | 17.91± | 3.62±| 0.12±    | -3.80±   |
|              | WD           | 0.47± | 0.59± | 0.02±         | 0.03±         | 8.25±  | 1.77±| 0.05±    | -4.16±   |
| 'DK901'     | WW           | 0.60± | 0.82± | 0.04±         | 0.01±         | 20.54± | 4.67±| 0.17±    | -3.20±   |
|              | WD           | 0.51± | 0.61± | 0.03±         | 0.04±         | 14.17± | 2.58±| 0.07±    | -3.43±   |
| 'DK709'     | WW           | 0.60± | 0.65± | 0.03±         | 0.02±         | 20.63± | 4.42±| 0.15±    | -3.22±   |
|              | WD           | 0.50± | 0.57± | 0.03±         | 0.03±         | 16.42± | 2.85±| 0.08±    | -3.25±   |
| 'CP-301'    | WW           | 0.53± | 0.59± | 0.03±         | 0.03±         | 19.59± | 4.40±| 0.18±    | -3.19±   |
|              | WD           | 0.52± | 0.60± | 0.01±         | 0.02±         | 13.67± | 2.73±| 0.08±    | -3.40±   |
| 'S728'      | WW           | 0.53± | 0.63± | 0.04±         | 0.03±         | 17.16± | 3.50±| 0.12±    | -3.54±   |
|              | WD           | 0.43± | 0.59± | 0.02±         | 0.02±         | 9.79±  | 2.03±| 0.06±    | -4.06±   |

**Significant level**

*ns, *, ** represent non-significant difference, and significant difference at $p \leq 0.05$ and $p \leq 0.01$, respectively.

Different letters in each column represent significant difference at $p \leq 0.05$ according to Duncan’s Multiple Range test (DMRT).
Figure 3. Leaf greenness (SPAD) in the leaf tissues of maize genotypes grown under different water regimes; well-watered (WW) and water deficit (WD) for 24 days after sowing (seedling stage; A) and 80 days (reproductive stage; B) after sowing (DAS).

Data are presented as mean ±SE (n = 3). Different letters in each column represent significant difference at $p \leq 0.05$ according to Duncan’s Multiple Range test (DMRT).
Reproductive stage (80 DAS)

Shoot height of maize cvs. 'Suwan4452', 'CP-DK888', and 'S7328' during flowering period under water deficit stress was retained, whereas it was sharply declined by 13.5%, 22.8%, 19.8%, 13.7%, and 13.9% in cvs. 'Suwan5', 'Pac339', 'DK9901', 'DK7979', and 'CP301', respectively, when compared to well-watered condition (Figure 1B). Leaf temperature of maize cvs. 'Pac339' and 'CP301' were increased by 1.19 and 1.10 folds, respectively, over the control, whereas it was unchanged in other genotypes (Figure 2B). NDVI in water deficit stressed leaves of maize genotypes was significantly declined (>14.2% reduction over the control), except in cv. 'CP301' (Table 2). CWSI in maize plants was promoted by water deficit conditions (>1.46 folds over the control) which act as a stress indicator, while it was retained in cvs. 'Suwan4452', 'Pac339' and 'DK9901' (Table 1).

Interestingly, leaf greenness in maize cvs. 'CP-DK888' and 'S7328' under water deficit conditions was degraded by 31.3% and 24.1% over the control, respectively, whereas it was unchanged in other genotypes (Figure 3B). Fv/Fm in cvs. 'Suwan4452' and 'CP-DK888' under drought situation was diminished by 4.2% and 7.1% over the control, respectively. Moreover, ΦPSII in cv. 'DK7979' under drought stress was declined by 11.7% (Table 2). Ψm in maize plant was a very sensitive parameter to water deficit stress as indicated by a sharp decline in cvs. 'CP-DK888' (38.1%), 'Pac339' (53.9%), 'DK9901' (31.0%), 'CP304' (30.2%) and 'S7328' (42.9%) (Table 2). Moreover, E and g, in cv. Suwan4452 under water deficit conditions were stabilized whereas they were sharply dropped in other genotypes (Table 2).

Yield attributes and cluster analysis

At the harvesting stage, plant biomass in cvs. 'Suwan5', 'CP-DK888', and 'Pac339' of water deficit stressed plants was significantly dropped by 39.0%, 24.9% and 40.2% over the control, respectively (Figure 4A). Number of ears per plant in cv. Suwan5 was significantly declined by 30%, whereas it was retained in other genotypes (Table 3). Interestingly, ear weight in cvs. 'Suwan4452', 'Pac339', and 'DK7979' under water deficit condition was retained, whereas it was sharply declined (>27.5% reduction over the control) in other genotypes (Table 3). Husk weight in cv. 'Suwan5' was very sensitive to water deficit stress, leading to a reduction of 22.9% over the control. In addition, hundred grain weight in cv. 'S7328' was also susceptible to drought situation, leading to the reduction of 20.1% (Table 3). Corn cob weight in cvs. 'Suwan5', 'DK7979' and 'CP301' under drought stress was declined by 27.0%, 15.4% and 19.0%, respectively, when compared with well-watered plants (Figure 4B). Grain weight per ear (Figure 5A) and total grain weight (Figure 5B) in cvs. 'Suwan4452' and 'DK7979' under water deficit stress were maintained, whereas those were significantly decreased (>35% reduction over well-watered) in other genotypes.
Figure 4. Biomass (A) and corn cob weight (B) of maize genotypes grown under different water regimes; well-watered (WW) and water deficit (WD) until harvest process. Data are presented as mean ±SE (n = 3). Different letters in each column represent significant difference at $p \leq 0.05$ according to Duncan’s Multiple Range test (DMRT).
Figure 5. Grain weight per ear (A) and total grain weight (B) of maize genotypes grown under different water regimes; well-watered (WW) and water deficit (WD) until harvest process. Data are presented as mean ± SE (n = 3). Different letters in each column represent significant difference at $p \leq 0.05$ according to Duncan's Multiple Range test (DMRT).

Ten indices including shoot height, leaf temperature, chlorophyll content, NDVI, CWSI, $F_v/F_m$, $\Phi_{PSII}$, $P_n$, $E$, and $g_s$ in 24-day-old seedlings of each maize genotype were subjected to Ward's cluster analysis. 'DK7979' and 'CP-DK888' maize genotypes were categorized as drought tolerant in the same group with 'Suwan4452' as drought tolerant positive check. In addition, 'Suwan 5', 'DK9901', and 'S7328' were identified as moderately...
drought tolerant genotypes at the seedling stage. In contrast, 'Pac339' and 'CP301' genotypes were identified as drought susceptible ones (Figure 6A). According to flowering and yield harvesting stages, ‘Suwan4452’, ‘S7328’, and ‘CP-DK888’ were classified as drought tolerant genotypes, whereas ‘DK9901’, ‘CP301’, ‘DK7979’, ‘Suwan5’, and ‘Pac339’ were identified as drought sensitive (Figure 6B). Distribution of several drought tolerance indices of morphological, physiological changes and yield-related traits in both seedling (Figure 7A) and reproductive developmental stages (Figure 7B) using PCA was demonstrated. Moreover, the similarity of individual genotype of maize in responses to water deficit conditions at seedling and reproductive stages was evidently validated (Figure 7).

**Table 3.** Number of ears per plant, ear weight, husk weight and hundred grain weight of maize genotypes grown under different water regimes for 80 days after sowing (DAS) or reproductive stage. Data are presented as mean ±SE (n = 3).

| Varieties  | Water regime | Number of ears per plant | Ear weight (g) | Husk weight (g) | Hundred grain weight (g) |
|------------|--------------|--------------------------|----------------|------------------|--------------------------|
| 'Suwan5'   | WW           | 1.00±0.00a               | 106.00±7.08cd  | 41.37±3.34ab     | 22.41±1.77bcd            |
|            | WD           | 0.70±0.15b               | 71.22±3.87e    | 31.91±2.25c      | 23.28±0.05bcd            |
|            |              | (-30.0%) (-32.8%)        | (0%)           |                  | (-0.5%)                  |
| 'Suwan4452'| WW           | 0.93±0.03a               | 146.36±21.51ab | 40.49±7.59ab     | 23.44±0.40bcd            |
|            | WD           | 1.00±0.00a               | 147.38±9.84ab  | 49.68±4.30a      | 23.33±1.14bcd            |
|            |              | (0%) (0%)                | (0%)           |                  | (-0.5%)                  |
| 'CP-DK888' | WW           | 0.97±0.03a               | 104.38±7.87cd  | 23.11±1.69cde    | 24.91±0.36b              |
|            | WD           | 0.97±0.03a               | 75.61±3.56e    | 30.24±4.82cd     | 24.61±0.406              |
|            |              | (0%) (-27.6%)            | (0%)           |                  | (-1.2%)                  |
| 'Pac339'   | WW           | 1.00±0.00a               | 122.57±13.16bcd| 25.44±5.55ab     | 29.32±0.36a              |
|            | WD           | 0.90±0.00a               | 116.39±19.43bcd| 39.41±4.24ab     | 27.89±0.93a              |
|            |              | (-10.0%) (-5.0%)         | (0%)           |                  | (-4.9%)                  |
| 'DK9901'   | WW           | 1.00±0.00a               | 127.27±8.95bc  | 14.33±1.10c      | 21.14±0.82cde            |
|            | WD           | 1.00±0.00a               | 91.82±18.20de  | 14.86±4.30c      | 21.52±1.69cde            |
|            |              | (0%) (-27.8%)            | (0%)           |                  | (0%)                     |
| 'DK7979'   | WW           | 1.00±0.00a               | 117.07±12.63bcd| 20.50±1.67cde    | 20.85±0.92de             |
|            | WD           | 1.00±0.00a               | 92.78±11.80de  | 19.13±2.68de     | 20.92±0.42de             |
|            |              | (0%) (-20.7%)            | (-6.7%)        |                  | (0%)                     |
| 'CP301'    | WW           | 1.00±0.00a               | 138.28±5.47abc | 18.60±1.31de     | 24.17±1.16bcd            |
|            | WD           | 1.00±0.00a               | 92.43±11.82de  | 17.71±3.87d      | 24.39±0.56bc             |
|            |              | (0%) (-33.2%)            | (-4.8%)        |                  | (0%)                     |
| 'S7328'    | WW           | 0.97±0.03a               | 163.95±9.97a   | 25.18±3.59cde    | 22.99±1.01bcd            |
|            | WD           | 1.00±0.00a               | 96.55±12.81d   | 25.42±1.63cde    | 18.37±1.79e              |
|            |              | (0%) (-41.1%)            | (0%)           |                  | (-20.1%)                |

**Significant level**

| Varieties | Water regime | Ear weight (g) | Husk weight (g) | Hundred grain weight (g) |
|-----------|--------------|----------------|------------------|--------------------------|
| *         | **           | **             | **               | **                       |
| ns        | **           | *              | *                | ns                       |

*ns*, *, ** represent non-significant difference, and significant difference at p≤0.05 and p≤0.01, respectively.

Different letters in each column represent significant difference at p≤0.05 according to Duncan’s Multiple Range test (DMRT).
Figure 6. Ward’s cluster analysis using physio-morphological changes at seedling stage (A), and physio-morphological changes and yield traits at reproductive stage (B) of maize genotypes grown under different water regimes; well-watered (WW) and water deficit (WD)
Figure 7. Principal component analysis biplot of morphological and physiological traits of 8 maize genotypes grown under water deficit at seedling (A; 10 parameters) and reproductive developmental stages (B; 18 parameters including yield-related traits)
Discussion

At the seedling stage, shoot height of maize seedlings was sensitive to water shortage, especially in 'CP-DK888' and 'DK7979'. It corroborated a previous study reporting inhibition in shoot height at 4 leaf stage in drought susceptible maize genotypes, FLD01, 13, 16, 18, 29 and 31 (Adhikari et al., 2019). Likewise, in summer maize (cv. 'Nongda-108'), plant height was significantly declined, when plants were subjected to 35% field capacity (FC) (Ge et al., 2012). In our study, leaf temperature in maize plants exposed to water deficit stress was increased, resulting in enhanced CWSI (>0.4), whereas leaf greenness (SPAD) in cv. 'Pac339' under water deficit conditions was declined, leading to chlorophyll degradation and reduction in NDVI. Increasing leaf and canopy temperature in water-deficit stressed maize directly regulates CWSI (stress indicator depending on different growth stages (Han et al., 2018), chlorophyll degradation and NDVI reduction, especially in drought susceptible genotypes (Han et al., 2016). Chlorophyll degradation in leaf senescence under drought conditions of higher plants has been well reported, therefore delay leaf senescence in drought tolerant genotypes has evidently observed (Rolando et al., 2015; Monteoliva et al., 2021). Consequently, $\Phi_{PSII}$, $P_{m}$, g and E in maize genotypes, 'Pac339' and 'CP301', under water deficit condition were significantly dropped. Total chlorophyll and $P_{m}$ in drought stressed maize plants were identified as sensitive parameters, which rapidly changed when subjected to drought conditions (Voronin et al., 2019) and with the degree of drought stress (Ge et al., 2012). Photosynthetic abilities, $F_{v}/F_{m}$, $P_{m}$, g, and E in drought sensitive maize were decreased, when compared with those of drought tolerant maize (Zhang et al., 2015). In addition, leaf greenness, $F_{v}/F_{m}$, $\Phi_{PSII}$, $P_{m}$, g, and E were higher in drought tolerant maize (Saglam et al., 2014; Chen et al., 2016b). Photosynthetic abilities, especially stomatal function have been reported as sensitive parameters to decline when plants exposed to drought situation (Chaves et al., 2009; Drake et al., 2017). Moreover, reduction $\Psi$, in the leaf tissues of maize under drought was a good indicator to identify the plant response to water availability and played a role as index for drought tolerance in maize genotypes (Li et al., 2019a).

At reproductive stage, overall growth performance in cvs. 'Suwan4452', 'CP-DK888' and 'S7328' under water deficit condition was retained, indicating as drought tolerant indices. In a previous report, morphological traits and biomass in drought-tolerant maize varieties were maintained, identifying these as drought tolerant genotypes (Shao et al., 2016). In contrast, growth characters in maize crop grown under drought stress were significantly declined, identifying as drought susceptible (Ziyomo and Bernardo, 2013). Growth inhibition in maize depends on precipitation, especially in rainfed regions (Greaves and Wang, 2017; Li et al., 2019b). Leaf temperature at flowering stage of maize cv. 'Pac339' and 'CP301' was significantly increased, leading to an increased CWSI. In addition, total chlorophyll degradation in the drought stressed leaves was observed in cv. 'CP-DK888', leading to reduced NDVI. In general, chlorophyll content and NDVI are played an important role as the drought tolerant indices observed in maize genotypes (Maheswari et al., 2016; Effendi et al., 2019). Similarly, CWSI (increase leaf temperature or canopy temperature) was used to identify drought tolerant cultivar of maize crop (Nielsen and Schneekloth, 2018). Increase leaf temperature and CWSI index in drought stressed plants have been well established as rapid, simple, non-destructive method and low cost using Infrared thermal camera (Pipatsitee et al., 2018; 2021). Physiological parameters, i.e., $F_{v}/F_{m}$, $P_{m}$, g, and E, in drought-stressed maize leaves were sharply declined, especially in drought susceptible genotypes such as Suwan5 inbred cultivar. Interestingly, the integrated physiological data (stomatal and non-stomatal functions) in relation to a degree of drought stress in higher plants have been reported, leading to identify a drought tolerant candidate (Gao et al., 2021). Yield traits, including number of ears, ear weight, husk weight, 100-grain weight, corn cob weight, grain weight and total grain weight, are the major criteria to determine the drought tolerance in maize genotypes (El-Sabagh et al., 2018; Su et al., 2019). In the present study, ear weight, grain weight per ear and total grain weight in maize cv. CP301 were sensitive parameters to water deficit stress, leading to declined crop productivity.

For cluster analysis, ten parameters were subjected to classify the drought tolerant group including 'Suwan4425' (positive check), 'CP-DK888' and 'DK7979'. Multivariate cluster analysis has been conducted to
categorize the drought tolerant genotypes of maize crop. For example, seedling morphological traits of maize genotypes were used to classify drought tolerant genotypes (Wattoo et al., 2018). Overall growth traits (20 parameters) of 45-day-old seedlings of hybrid maize population were used as criteria for the identification of drought tolerant cultivars (Akinwale et al., 2018). Also, plant growth attributes in maize population (Adhikari et al., 2019) and single cross hybrid lines (Adewale et al., 2018) were selected to classify the candidate drought tolerant maize cultivars at seedling stage. Therefore, the reproductive and maturation stages with yield attributes are required to evaluate the stability of grain productivity when exposed to drought stress (El-Sabagh et al., 2018; Su et al., 2019). Based on this validation, 'S7328' and 'CP-DK888' were classified as drought tolerant genotypes in the same group as cv. Suwan4452 (positive check). In the previous reports, STI (stress tolerance index), Harm (Harmonic mean) and GMP (Geometric mean productivity) were subjected to Ward’s cluster analysis to identify H6, SC400, H28, H11, H12 and SC250 as drought tolerant maize genotypes (Golbashy et al., 2010). KSC720, KSC710GT and KSC700 were categorized as drought tolerant using STI, stress yield (Y_s) and yield potential (Y_p) indices in Ward’s method (Naghavi et al., 2013). Moreover, 43 candidate genotypes of maize were identified as drought tolerant based on 20 morphological traits and grain yield using Ward’s cluster analysis (Hao et al., 2011). Alternatively, maize genotypes, ‘BC504’, ‘BC652’, ‘BC404’, ‘KSC302’, ‘KSC320’ and ‘KSC647’ were identified as drought tolerant based on STI, GMP, and Harm using Fernandez’s cluster analysis (Jafari et al., 2012).

Figure 8. A summary of evident physio-morphological traits of eight maize genotypes at seedling stages (A) and reproductive developmental stage as well as yield attributes (B) in responses to water deficit stress, playing as key indices for water-deficit tolerant classification.
Conclusions

Physio-morphological indices of maize at the seedling stage, including leaf temperature, CWSI, Φ<sub>PSII</sub>, Ψ<sub>s</sub>, g<sub>s</sub>, E and Ψ<sub>s</sub>, were identified as potential parameters to classify the drought tolerant genotypes (Figure 8A). According to traits studied at reproductive stage (i.e., leaf temperature, CWSI, Φ<sub>PSII</sub> and shoot height) and yield attributes (i.e., number of ears per plant, husk weight, and corn cob weight) (Figure 8B), ‘Suwan4452’, ‘CP-DK888’ and ‘S7328’ were categorized as drought tolerant genotypes, whereas ‘Suwan5’, ‘Pac339’, ‘DK7979’, ‘CP301’ and ‘DK9901’ were identified as drought susceptible ones. Suwan4452 was established as drought tolerant in both seedling and reproductive stages with several physio-morphological and yield adapted traits. Based on the study, hybrid maize cvs. ‘Suwan4452’, ‘CP-DK888’ and ‘S7328’ may be suggested to be grown in the rainfed area without irrigation.

Authors’ Contributions

SC-U and AE conceived of the presented idea. PP, and RT participated in the design, performed experiments and analysis; TS, SK, KT encouraged to investigate yield attributes, morphological and biochemical analysis. All authors participated in interpretation of the data. PP and SC-U wrote the paper and part. All authors read and approved the final manuscript.

Ethical approval (for researches involving animals or humans)

Not applicable.

Acknowledgements

The authors would like to sincerely thank Agricultural Research Development Agency (ARDA grant number PRP5905020180), for funding support and partially support by National Science and Technology Development Agency (NSTDA).

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Adewale SA, Akinwale RO, Fakorede MAB, Badu-Apraku B (2018). Genetic analysis of drought-adaptive traits at seedling stage in early-maturing maize inbred lines and field performance under stress conditions. Euphytica 214:145. https://doi.org/10.1007/s10681-018-2218-z

Adhikari B, Sa KJ, Lee JK (2019). Drought tolerance screening of maize inbred lines at an early growth stage. Plant Breeding and Biotechnology 7:326-339. https://doi.org/10.9787/PBB.2019.4.326

Akinwale RO, Awosanmi FE, Ogguniyi OO, Fadoju AO (2018). Determinants of drought tolerance at seedling stage in early and extra-early maize hybrids. Maydica 62:9.
Azadi H, Keramati P, Taheri F, Rafiaani P, Tekleabriam D, Gebrehiwot K, ... Witlox F (2018). Agricultural land conversion: reviewing drought impacts and coping strategies. International Journal of Disaster Risk Reduction 31:184-195. https://doi.org/10.1016/jijdrr.2018.05.003

Cai Q, Zhang Y, Sun Z, Zheng J, Bai W, Zhang Y, ... Zhang L (2017). Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize. Biogeosciences 14:3851. https://doi.org/10.5194/bg-14-3851-2017

Casari RA, Paiva DS, Silva VNB, Ferreira TMM, Souza MTJ, Oliveira NG, ... Sousa CAF (2019). Using thermography to confirm genotypic variation for drought response in maize. International Journal of Molecular Sciences 20:2273. https://doi.org/10.3390/ijms20092273

Cha-um S, Somseub S, Samphumphuang T, Kirdmanee C (2014). Screening of eight eucalypt genotypes (Eucalyptus sp.) for water deficit tolerance using multivariate cluster analysis. Applied Biochemistry and Biotechnology 173:753-764. https://doi.org/10.1007/s12100-014-0888-0

Cha-um S, Supaibulwatana K, Kirdmanee C (2006). Water relation, photosynthetic ability and growth of Thai jasmine rice (Oryza sativa L. ssp. indica cv. KDML 105) to salt stress by application of exogenous glycinebetaine and choline. Journal of Agronomy and Crop Science 192:25-36. https://doi.org/10.1111/j.1439-037X.2006.00186.x

Chaves MM, Flexas J, Pinheiro C (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103:551-560. https://doi.org/10.1093/aob/mcn125

Chen T, Xia G, Liu T, Chen W, Chi D (2016a). Assessment of drought impact on main cereal crops using a standardized precipitation evapotranspiration index in Lianoning Province, China. Sustainability 8:1069. https://doi.org/10.3390/su8101069

Chen D, Wang S, Cao B, Cao D, Leng G, Li H, Yin L, Shan L, Deng X (2016b). Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Frontiers in Plant Science 6:1241. https://doi.org/10.3389/fpls.2015.01241

Comas LH, Trout TJ, DeJonge KC, Zhang H, Gleason SM (2019). Water productivity under strategic growth stage-based deficit irrigation in maize. Agricultural Water Management 212:433-440. https://doi.org/10.1016/j.agwat.2018.07.015

Dalezios NR, Angelakis AN, Eslamian S (2018). Water scarcity management: Part 1: Methodological framework. International Journal of Global Environmental Issues 17:1-40.

Drake JE, Power SA, Duursma RA, Medlyn BE, Aspinwall MJ, Chot A, ... Tissue DT (2017). Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: a comparison of model formulations. Agricultural and Forest Meteorology 247:454-466. https://doi.org/10.1016/j.agrformet.2017.08.026

Du L, Mikle N, Rou Z, Huang Y, Shi Z, Jiang L, McCarthy HR, Liang J, Luo Y (2018). Global patterns of extreme drought-induced loss in land primary production: Identifying ecological extremes from rain-use efficiency. Science of The Total Environment 628:611-620. https://doi.org/10.1016/j.scitotenv.2018.02.114

Dwyer LM, Tollenaar M, Houwing L (1991). A nondestructive method to monitor leaf greenness in corn. Canada Journal of Plant Science 71:505-509. http://doi.org/10.4141/cjps91-070

Effendi R, Priyanto SB, Asul M, Azrai M (2019). Drought adaptation level of maize genotypes based on leaf rolling, temperature, relative moisture content, and grain yield parameters. IOP Conference Series: Earth and Environmental Science 270:012016. https://doi.org/10.1088/1755-1315/270/1/012016

Elliott J, Gifford M, Boote KJ, Hatfield JL, Jones JW, Rosenzweig C, Smith LA, Foster I (2018). Characterizing agricultural impacts of recent large-scale US droughts and changing technology and management. Agricultural Systems 159:275-281. http://doi.org/10.1016/j.agsy.2017.07.012

El-Sabagh A, Barutcu G, Hotxain A, Islam MS (2018). Response of maize hybrids to drought tolerance in relation to grain weight. Fresenius Environmental Bulletin 27:2476-2482.

Gao C, Li X, Sun Y, Zhou T, Luo G, Chen C (2019). Water requirement of summer maize at different growth stages and the spatiotemporal characteristics of agricultural drought in the Huaihe River Basin, China. Theoretical and Applied Climatology 136:1289-1302. https://doi.org/10.1007/s00704-018-2558-6

Gao D, Shi C, Li Q, Wei Z, Liu L, Feng J (2021). Drought tolerance monitoring of apple rootstock M. 9-T337 based on infrared and fluorescence imaging. Photosynthetica 59:458-467. https://doi.org/10.32615/ps.2021.035

Ge T, Sai F, Bai L, Tong C, Sun N (2012). Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L.) throughout the growth cycle. Acta Physiologica Plantarum 34:1043-1053. https://doi.org/10.1007/s11738-011-0901-y
Gerber N, Mirzabaev A (2017). Benefits of action and costs of inaction: Drought mitigation and preparedness—A literature review. World Meteorological Organization; Global Water Partnership, Working Paper Integrated Drought Management Programme Working Paper 1. WMO, Geneva, Switzerland and GWP, Stockholm, Sweden.

Golbashy M, Ebrahimi M, Khorasani SK, Choukan R (2010). Evaluation of drought tolerance of some corn (Zea mays L.) hybrids in Iran. African Journal of Agricultural Research 5:2714-2719. https://doi.org/10.5897/AJAR.9000310

Govaerts B, Verhulst N (2010). The normalized difference vegetation index (NDVI) Greenseeker handheld sensor: toward the integrated evaluation of crop management part A: concepts and case studies. Mexico. CIMMYT.

Greaves GE, Wang YM (2017). Yield response, water productivity, and seasonal water production functions for maize under deficit irrigation water management in southern Taiwan. Plant Production Science 20:353-365. https://doi.org/10.1080/1343943X.2017.1365613

Hall JW, Leng G (2019). Can we calculate drought risk... and do we need to? Wiley Interdisciplinary Reviews: Water 6:e1349. https://doi.org/10.1002/wat2.1349

Han M, Zhang H, DeJonge KC, Comas LH, Gleason S (2018). Comparison of three crop water stress index models with sap flow measurements in maize. Agricultural Water Management 203:366-375. https://doi.org/10.1016/j.agwat.2018.02.030

Han M, Zhang H, DeJonge KC, Comas LH, Trout TJ (2016). Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agricultural Water Management 177:400-409. https://doi.org/10.1016/j.agwat.2016.08.031

Hao B, Xue Q, Marek TH, Jessup KE, Hou X, Xu W, ... Bean BW (2015a). Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains. Agricultural Water Management 155:11-21. https://doi.org/10.1016/j.agwat.2015.03.007

Hao B, Xue Q, Marek TH, Jessup KE, Becker J, Hou X, ... Howell TA (2015b). Water use and grain yield in drought-tolerant corn in the Texas High Plains. Agronomy Journal 107:1922–1930. https://doi.org/10.2134/agronj15.0133

Hao B, Xue Q, Marek TH, Jessup KE, Becker JD, Hou X, ... Howell TA (2019). Grain yield, evapotranspiration, and water-use efficiency of maize hybrids differing in drought tolerance. Irrigation Science 37:25-34. https://doi.org/10.1007/s00271-018-0597-5

Hao B, Xue Q, Marek TH, Jessup KE, Hou X, Xu W, Bynum D, Bean BW (2016). Radiation-use efficiency, biomass production, and grain yield in two maize hybrids differing in drought tolerance. Journal of Agronomy and Crop Science 202:269-280. https://doi.org/10.1111/jac.12154

Hao ZF, Li XH, Su ZJ, Xie CX, Li MS, Liang XL, Weng DG, Li L, Zhang XL (2011). A proposed selection criterion for drought resistance across multiple environments in maize. Breeding Science 61:101-108. https://doi.org/10.1270/jsbbs.61.101

Idso S, Estes L, Konar M, Tian D, Anghileri D, Baylis K, Evans TP, Sheffield J (2019). Integrated approaches to understanding and reducing drought impact on food security across scales. Current Opinion in Environmental Sustainability 40:43-54. https://doi.org/10.1016/j.cosust.2019.09.006

Idso S, Jackson RD, Pinter PJ, Reginato RJ, Hatfield JL (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology 24:45-55. https://doi.org/10.1016/0002-1571(81)90032-7

Ihuoma SO, Madramootoo CA (2017). Recent advances in crop water stress detection. Computers and Electronics in Agriculture 141:267-275. https://doi.org/10.1016/j.compag.2017.07.026

Jafari A, Paknejad F, Jami AA (2012). Evaluation of selection indices for drought tolerance of corn (Zea mays L.) hybrids. International Journal of Plant Production 3:33-38. https://doi.org/10.22069/IJPP.2012.661

Leng G, Hall J (2019). Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of The Total Environment 654:811-821. https://doi.org/10.1016/j.scitotenv.2018.10.434

Li YH, Cui JY, Zhao Q, Yang YZ, Wei L, Yang MD, Liang F, Ding ST, Wang TC (2019a). Physiology and proteomics of two maize genotypes with different drought resistance. Biologia Plantarum 63:519-528. https://doi.org/10.32615/bp.2019.085

Li Y, Song H, Zhou L, Xu Z, Zhou G (2019b). Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field. Agricultural Water Management 211:190-201. https://doi.org/10.1016/j.agwat.2018.09.050
Liu Y, Zhang X, Tran H, Shan L, Kim J, Childs K, Ervin EH, Fr azier T, Zhao B (2015). Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters. Biotechnology for Biofuels 8:52. https://doi.org/10.1186/s13068-015-0342-8

Liu X, Zhu X, Pan Y, Li S, Liu Y, Ma Y (2016). Agricultural drought monitoring: Progress, challenges, and prospects. Journal of Geographical Sciences 26:750-767. https://doi.org/10.1007/s11442-016-1297-9

Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999). Antioxidant defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology 119:1091-1100. https://doi.org/10.1104/pp.119.3.1091

Maheswari M, Tekula VL, Yellisetty V, Sarkar B, Yadav SK, Singh J, ... Maddi V (2016). Functional mechanisms of drought tolerance in maize through phenotyping and genotyping under well-watered and water stressed conditions. European Journal of Agronomy 79:43-57. https://doi.org/10.1016/j.eja.2016.05.008

Makumbi D, Assanga S, Magorokosho C, Asea G, Worku M, Bänziger M (2018). Genetic analysis of tropical midaltitude-adapted maize populations under stress and nonstress conditions. Crop Science 58:1492-1507. https://doi.org/10.2135/cropsci2017.09.0531

Manning DT, Lurbé S, Comas LH, Trout TJ, Flynn N, Fonte SJ (2018). Economic viability of deficit irrigation in the Western US. Agricultural Water Management 196:114-123. https://doi.org/10.1016/j.agwat.2017.10.024

Marwein MA, Choudhury BU, Chakraborty D, Kumar M, Das A, Rajkhowa DJ (2017). Response of water deficit regime and soil amelioration on evapotranspiration loss and water use efficiency of maize (Zea mays L.) in subtropical northeastern Himalayas. International Journal of Biometeorology 61:845-855. https://doi.org/10.1007/s00484-016-1262-4

Maxwell K, Johnson GN (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany 51:659-668. https://doi.org/10.1093/jexbot/51.345.659

Mi N, Cai F, Zhang Y, Ji R, Zhang S, Wang Y (2018). Differential responses of maize yield to drought at vegetative and reproductive stages. Plant, Soil and Environment 64:260-267. https://doi.org/10.17221/141/2018-PSE

Monteoliva MI, Guzzo MC, Posada GA (2021). Breeding for drought tolerance by monitoring chlorophyll content. Gene Technology 10:1-11.

Naghavi MR, Aboughadareh AP, Khalili M (2013). Evaluation of drought tolerance indices for screening some of corn (Zea mays L.) cultivars under environmental conditions. Notulae Scientia Biologicae 5:388-393. https://doi.org/10.15835/nsb539049

Nanzad L, Zhang J, Tuvdendorj B, Nabil M, Zhang S, Bai Y (2019). NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. Journal of Arid Environments 164:69-77. https://doi.org/10.1016/j.jaridenv.2019.01.019

Niehen DC, Schneckloth JP (2018). Drought genetics have varying influence on corn water stress under differing water availability. Agronomy Journal 110:983-995. https://doi.org/10.2134/agronj2017.10.0579

Napasintuwong O (2020). Thailand’s maize seed market structure, conduct, performance. Future of Food: Journal on Food, Agriculture and Society 8:1-15. https://doi.org/10.17170/kobra-202003241098

Oury V, Tardieu F, Turc O (2016a). Ovary apical abortion under water deficit is caused by changes in sequential development of ovaries and in silk growth rate in maize. Plant Physiology 171:986-996. https://doi.org/10.1007/s00709-015-00268

Oury V, Caldeira CF, Predhomme D, Pichon JP, Gibon Y, Tardieu F, Turc O (2016b). Is change in ovary carbon status a cause or a consequence of maize ovary abortion in water deficit during flowering? Plant Physiology 171:997-1008. https://doi.org/10.1007/s00709-015-01130

Pipatsitee P, Eiumnoh A, Praseartkul P, Taota K, Kongsunglee S, Sakulleerungroj K, Cha-um S (2018). Application of infrared thermography to assess cassava physiology under water deficit condition. Plant Production Science 21:398-406. https://doi.org/10.1080/1343943X.2018.1530943

Pipatsitee P, Theerawitaya C, Tiasarum R, Samphumphuang T, Singh HP, Datta A, Cha-um S (2021). Physiomechanical traits and osmoregulation strategies of hybrid maize (Zea mays) at the seedling stage in response to water-deficit stress. Protoplasma 1-15. https://doi.org/10.1007/s00709-021-01707-0

Pires MV, de Castro EM, de Freitas BSM, Lira JMS, Magalhães PC, Pereira MP (2020). Yield-related phenotypic traits of drought resistant maize genotypes. Environmental and Experimental Botany 171:103962. https://doi.org/10.1016/j.envexpbot.2019.103962

Poolaswas S, Napasintuwong O (2019). Speed of hybrid maize adoption in Thailand: An application of duration analysis. Journal of International Society for Southeast Asian Agricultural Sciences 25:1-13.
Rolando JL, Ramírez DA, Yactayo W, Monneveux P, Quiroz R (2015). Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany 110:27-35. 
https://doi.org/10.1016/j.envexpbot.2014.09.006

Saglam A, Kadioglu A, Demiralay M, Terzi R (2014). Leaf rolling reduces photosynthetic loss in maize under severe drought. Acta Botanica Croatica 73:315-323.

Shao RX, Xin LF, Zheng HF, Li LL, Ran WL, Mao J, Yan QH (2016). Changes in chloroplast ultrastructure in leaves of drought-stressed maize inbred lines. Photosynthetica 54:74-80. 
https://doi.org/10.1007/s11109-015-0158-6

Spinoni J, Barbosa P, de Jager A, McCormick N, Naumann G, Vogt JV, ... Mazzeschi M (2019). A new global database of meteorological drought events from 1951 to 2016 Journal of Hydrology: Regional Studies 22:100593. 
https://doi.org/10.1016/j.ejrh.2019.100593

Su Y, Wu F, Ao Z, Jin S, Qin F, Liu B, Pang S, Liu L, Guo Q (2019). Evaluating maize phenotype dynamics under drought stress using terrestrial lidar. Plant Methods 15:11. 
https://doi.org/10.1186/s13007-019-0396-x

Sun Q, Liang X, Zhang D, Li X, Hao Z, Weng J, Li M, Zhang S (2017). Trends in drought tolerance in Chinese maize cultivars from the 1950s to the 2000s. Field Crops Research 201:175-183. 
https://doi.org/10.1016/j.fcr.2016.10.018

Tardieu F, Simonneau T, Muller B (2018). The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. Annual Review of Plant Biology 69:733-759. 
https://doi.org/10.1146/annurev-arplant-042817-040218

Tietjen B, Schlaepfer DR, Bradford JB, Launenroth WK, Hall SA, Duniway MC, ... Wilson SD (2017). Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands. Global Change Biology 23:2743-2754. 
https://doi.org/10.1111/gcb.13598

Trout TJ, DeJonge KC (2017). Water productivity of maize in the US high plains. Irrigation Science 35:251-266. 
https://doi.org/10.1007/s00271-017-0540-1

Voronin PY, Maevskaya SN, Nikolaeva MK (2019). Physiological and molecular responses of maize (Zea mays L.) plants to drought and rehydration. Photosynthetica 57:850-856. 
https://doi.org/10.32614/j.6020041

Wattoo FM, Rana RM, Fiaz S, Zafar SA, Noor MA, Hassan HM, ... Amir RM (2018). Identification of drought tolerant maize genotypes and seedling based morpho-physiological selection indices for crop improvement. Sains Malays 47:295-302. 
https://doi.org/10.17576/jsm-2018-4702-11

West H, Quinn N, Horswell M (2019). Remote sensing for drought monitoring & impact assessment: Progress, past challenges, and future opportunities. Remote Sensing of Environment 232:111291. 
https://doi.org/10.1016/j.rse.2019.111291

Yang H, Gu X, Ding M, Lu W, Lu D (2019). Activities of starch synthetic enzymes and contents of endogenous hormones in waxy maize grains subjected to post-silking water deficit. Scientific Reports 9:7059. 
https://doi.org/10.1038/s41598-019-43484-0

Zhang L, Niu Y, Zhang H, Han W, Li G, Tang J, Peng X (2019a). Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Frontiers in Plant Science 10:1270. 
https://doi.org/10.3389/fpls.2019.01270

Zhang L, Zhang H, Niu Y, Han W (2019b). Mapping maize water stress based on UAV multispectral remote sensing. Remote Sensing 11:605. 
https://doi.org/10.3390/rs11060605

Zhang Q, Yu H, Sun P, Singh VP, Shi P (2019c). Multisource data based agricultural drought monitoring and agricultural loss in China. Global and Planetary Change 172:298-306. 
https://doi.org/10.1016/j.gloplacha.2018.10.017

Zhang H, Han M, Comas LH, DeJonge KC, Gleason SM, Trout TJ, Ma L (2019d). Response of maize yield components to growth stage-based deficit irrigation. Agronomy Journal 111:3244-3252. 
https://doi.org/10.2134/agronj2019.03.0214

Zhao J, Xue Q, Hao B, Marek TH, Jessup KE, Xu W, Bean BW, Colaizzi PD (2019). Yield determination of maize hybrids under limited irrigation. Journal of Crop Improvement 33:410-427. 
https://doi.org/10.1080/15427528.2019.1606129

Ziyomo C, Bernardo R (2013). Drought tolerance in maize: indirect selection through secondary traits versus genome wide selection. Crop Science 53:1269-1275. 
https://doi.org/10.2135/cropsci2012.11.0651
The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in Notulae Botanicae Horti Agrobotanici Cluj-Napoca are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License. © Articles by the authors; UASVM, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.