Multibeam Energy Moments of Multibeam Particle Velocity Distributions

M. V. Goldman, D. L. Newman, J. P. Eastwood, and G. Lapenta

1Physics Department, University of Colorado Boulder, Boulder, CO, USA, 2The Blackett Laboratory, Imperial College London, London, UK, 3Department of Mathematics, KU Leuven, University of Leuven, Leuven, Belgium

Abstract High-resolution electron and ion velocity distributions, f(v), which consist of N effectively disjoint beams, have been measured by NASA’s Magnetospheric Multiscale Mission and in reconnection simulations. Commonly used standard velocity moments assume a single mean-flow velocity for the entire distribution. This can lead to counterintuitive results for a multibeam f(v). An example is the standard thermal energy density moment (at a given space-time point) of a pair of equal and opposite cold particle beams. This standard moment is nonzero even though each beam has zero thermal energy density. By contrast, a multibeam moment of two or more cold beams at a given position and time has no thermal energy. A multibeam moment is obtained by taking a standard moment of each beam and then summing over beams. In this paper we will generalize these notions, explore their consequences, and apply them to an f(v) which is a sum of tri-Maxwellians. Both standard and multibeam energy moments have coherent and incoherent pieces. Examples of incoherent moments are the thermal energy density, the pressure, and the thermal energy flux (enthalpy flux plus heat flux). Corresponding coherent moments are the bulk kinetic energy density, the ram pressure, and the bulk kinetic energy flux. The difference between a standard incoherent moment and its multibeam counterpart will be defined as the “pseudothermal part” of the standard moment. The sum of a pair of corresponding coherent and incoherent moments is the undecomposed moment. Undecomposed standard moments are always equal to the corresponding undecomposed multibeam moments.

1. Introduction

1.1. Velocity Moments of Multibeam Velocity Distributions, f(v)

In space plasma physics, it is very common to discuss the properties of a plasma in terms of its velocity moments (density, velocity, pressure, etc.) and to use a fluid theory framework to describe and predict the behavior of many space plasma phenomena (Bellan, 2006; Cravens, 2004; Kulcsrød, 2005). Two different kinds of space plasmas are commonly treated as fluids: collisional and collisionless.

- In collisional space plasmas, such as the chromosphere and lower ionosphere, the collisional mean free path is short, and the particle velocity distributions, f(v), are at or close to Maxwellian, locally (i.e., f(v) is close to local thermal equilibrium). In this case the fluid equations for a given species can be derived from the Boltzmann equation for that species by the Chapman-Enskog procedure (Braginskii, 1963) and include collisional transport coefficients such as electron-ion equilibration rates and thermal conductivity.

- However, in Earth’s upper ionosphere, magnetosphere, and solar wind, the collisional mean free path is large, so the plasma is collisionless and often far from thermal equilibrium (Paschmann et al., 1998). Standard collisionless fluid equations and energy transport equations can be derived for constituent species by taking velocity moments of the Vlasov equation for each species (Aunai et al., 2011; Bellan, 2006; Goldman et al., 2016). The transport equations are expressed in terms of (standard) velocity moments of the particle distribution, f(v). In collisionless space-plasma fluid equations, there are no electron-ion collisions, and there is no collisional thermal conductivity. Energy transport can only occur by convection, described in terms of particle energy fluxes or by radiation (Poynting flux).

In practical space plasma applications, collisionless velocity distributions, f(v), are measured by electrostatic analyzer instruments (Fazakerley et al., 1998), and (standard) moments can be constructed on the ground or onboard (so reducing the telemetry) (McFadden et al., 2008; Rème et al., 2001) The launch of the Fast Plasma
In many regions of interest, not least the electron dissipation region of magnetic reconnection (e.g., Burch et al., 2016), the ion or electron velocity distribution, \(f(\mathbf{v}) \), consists of a number of effectively disjoint pieces or “beams” in velocity space. Ambiguities may arise from the use of standard moments because, experimentally, the distribution is not contiguous nor is it single peaked.

Consequently, for such multibeam \(f(\mathbf{v}) \), it may be useful to take moments beam by beam and then add them together. We will call such sums multibeam moments. The purpose of this paper is to lay out a systematic framework for understanding multibeam moments taken at a single space-time point (or an average over a small space-time neighborhood of such a point).

The standard moments of a given \(f(\mathbf{v}) \) include only one flow velocity, \(\mathbf{u} \), and only one mean density, \(n \). This is the case both for multibeam \(f(\mathbf{v}) \) and for single-peaked \(f(\mathbf{v}) \). Higher-order moments are either coherent (involving \(\mathbf{u} \)) or “incoherent,” corresponding to moments which are correlations of velocity fluctuations, such as \(\int_\mathbf{v} d^3 f(\mathbf{v}) (\mathbf{v} - \mathbf{u})^2 \) or \(\int_\mathbf{v} d^3 f(\mathbf{v}) (\mathbf{v} - \mathbf{u})^3 \). For example, the energy density, \(U \), of electrons or ions is the sum of a bulk kinetic energy density, \(U_{\text{bulk}} = n m u^2 / 2 \), and a “thermal” energy density moment, \(U_{\text{therm}} = \int_\mathbf{v} d^3 f(\mathbf{v}) (\mathbf{v} - \mathbf{u})^2 / 2 \); the energy density flux, \(Q \), is a sum of a coherent bulk kinetic energy flux, \(Q_{\text{bulk}} = n m u \mathbf{u} \), and a “thermal” energy flux moment, \(Q_{\text{therm}} \), which “incoherent” is used here to refer to velocity moments which are correlation functions of velocity fluctuations, \((\mathbf{v} - \mathbf{u}) \). We use another term, thermal, interchangeably with incoherent. Thermal does not imply thermal equilibrium or Maxwellian velocity distributions. It only means incoherent.

Standard moments of multibeam (effectively disjoint) \(f(\mathbf{v}) \) can give rise to ambiguities. A classic example is the standard thermal energy-density moment of a pair of equal and opposite cold particle beams. As shown explicitly in the next section, the standard thermal energy-density moment, \(U_{\text{therm}} \), of this two-beam system is nonzero even though each beam has zero thermal energy density.

The definition \(U_{\text{therm}} = \int_\mathbf{v} d^3 f(\mathbf{v}) (\mathbf{v} - \mathbf{u})^2 / 2 \) guarantees that \(U_{\text{therm}} \) is incoherent. In this example, the flow velocity, \(\mathbf{u} \), is zero because there is zero number density flux due to symmetry. However, \(U_{\text{therm}} / n \) cannot readily be interpreted as the “temperature” of the two-beam system because the fluctuations, \((\mathbf{v} - \mathbf{u}) \), are not taken with respect to the flow velocities, \(\mathbf{u} \), of the beams but rather with respect to \(\mathbf{u} = 0 \). For this reason, we will call \(U_{\text{therm}} \) a pseudothermal energy density. More generally, for beams that are not cold, only a part, \(\Delta U_{\text{therm}} \), of the standard moment, \(U_{\text{therm}} \), is pseudothermal. The remainder is equal to the multibeam thermal moment, \(U_{\text{MB therm}} \).

In general, a two-cold-beam system may develop in time into one beam possessing a standard thermal energy density equal to \(\Delta U_{\text{therm}} \). Such time evolution might be due either to collisions or to the nonlinear evolution of the two-stream instability. This interpretation could be valid and useful for some applications. However, in reconnecting magnetospheric plasmas and in other collisionless plasmas, collisional relaxation to thermal equilibrium is too slow to be relevant. Furthermore, multimodal distributions (especially for ions) are not necessarily two-stream unstable. This appears to be the case for the example presented below (Figure 3) of a multibeam ion distribution from a simulation of magnetic reconnection in the magnetosphere.

In this paper an alternate method is developed for taking velocity moments, at a single space-time point, of an N-beam velocity distribution, \(f(\mathbf{v}) \), of form \(f(\mathbf{v}) = f_1(\mathbf{v}) + f_2(\mathbf{v}) + \ldots + f_N(\mathbf{v}) \). Such multibeam moments are created by taking standard coherent moments or standard thermal moments of each beam, \(f_j(\mathbf{v}) \), and then summing over beams \(j = 1 \) to \(N \). This is especially relevant to an assembly of beams because fluctuations in each beam are then automatically taken with respect to the flow velocity, \(\mathbf{u}_j \), of that beam, rather than to the centroid velocity of the assembly of beams. This procedure eliminates pseudothermal parts of standard moments of \(f(\mathbf{v}) \) whose interpretations are ambiguous or counterintuitive such as the standard “thermal” energy density and related “temperature,” which are system properties, rather than individual beam properties. We do not consider, in the multibeam moment analysis in this paper, the time dependence of moments.
which might eventually transform them (via nonlinear saturation or collisions) into a state in which their temperature is unambiguous.

It is important to note that the sum of the coherent (bulk) and “thermal” parts of an energy density or energy density flux moment remains the same whether the moments are standard or multibeam. Such a sum will be called an undecomposed moment. An example is the undecomposed particle bulk kinetic energy density, \(m f^2 \text{d}v f(v)|\text{d}v|/2 \), which can be decomposed by writing \(v = u + (v - u) \) or by writing \(v = u_j + (v - u_j) \) for each beam in the sum of beams.

1.2. Pseudothermal Energy Moment of a Pair of Cold Beams

Figure 1 shows a distribution, \(f(v) \), consisting of two equal and opposite cold electron beams, with velocities \(u_0 \) and \(-u_0 \) and equal densities \(n_0 \). According to standard moment theory, the effective velocity distribution, \(f(v) \), is one entity, with one flow velocity, \(u \). In this example, \(u = 0 \), so the bulk kinetic energy moment, \(U_{\text{bulk}} \), is zero, and the (single) density is \(n = 2n_0 \). The incoherent energy density moment found from standard moment theory is \(nm(u_0)^2/2 \). This incoherent part of the energy density is often called the thermal energy density and written as \(U_{\text{therm}} = nU \). This yields an effective temperature, “\(T = m(u_0)^2/2 \). A difficulty with such a standard moment is that the pair of cold moving beams appears to have a temperature, which we call here a pseudotemperature, but no bulk kinetic energy density.

This is customarily remedied by simply considering \(f(v) \) to be a two-beam system, \(f(v) = f_1(v) + f_2(v) \). The density and velocity moments of \(f_1 \) and \(f_2 \) are \([n_1, u_1] \) and \([n_2, u_2] \), where \(n_1 = n_2 = n_0 \), \(u_1 = u_0 \) and \(u_2 = -u_0 \). The energy moments of each beam are now \(U_{\text{bulk,1,2}} = n_0m(u_0)^2/2 \) and \(U_{\text{therm,1,2}} = 0 \). For the system of two beams, \((U_{\text{bulk}})_{\text{2-beam}} = U_{\text{bulk,1}} + U_{\text{bulk,2}} = nm(u_0)^2/2 \), where \(n = n_1 + n_2 = 2n_0 \) and \((U_{\text{therm}})_{\text{2-beam}} = 0 + 0 \), which is more intuitive than the results of the standard moment analysis, \(U_{\text{bulk}} = 0 \) and \(U_{\text{therm}} = nm(u_0)^2/2 \).

We summarize the results for the two different ways of taking energy moments of \(f(v) = f_1(v) + f_2(v) \) in the table below.

The bottom row demonstrates an important general result: That the sum of the bulk and thermal energy terms has the same value, \(U = nm(u_0)^2/2 \), for both the standard and the multibeam methods of taking moments. In this paper, the generalized \(U \) will be referred to as the undecomposed energy moment and the bulk and thermal energies as the decomposed energy moments. It is clear from Table 1 that the values of the decomposed moments differ, depending on the method used for taking moments. Since \(U \) is independent of the approach used, it can be employed reliably to quantify the properties of the plasma without ambiguity. This offers a path forward in studying the properties of complex distribution functions such as those observed by MMS.

1.3. Organization and Outline of This Paper

In the present paper the concepts discussed above in Figure 1 and Table 1 for two cold beams will be generalized to N-beams and the full set of multibeam pressure, energy density, and energy density flux moments. Standard and multibeam moments then will be evaluated and compared for an analytic particle velocity distribution, \(f(v) \), consisting of a sum of \(N \) tri-Maxwellian beams.

The content of this paper is indicated below in terms of questions and issues to be addressed:

Table 1	Energy Density Moments for Two System of Equal and Opposite Cold (e or i) Beams	
Standard energy moments: two cold beams	Multibeam energy moments: two cold beams	
\(U_{\text{bulk}} \)	\((U_{\text{bulk}})_{\text{2-beam}} \)	\(nm(u_0)^2/2 \)
\(U_{\text{therm}} \)	\((U_{\text{therm}})_{\text{2-beam}} \)	0
\(U = U_{\text{bulk}} + U_{\text{therm}} \)	\((U_{\text{bulk}})_{\text{2-beam}} + (U_{\text{therm}})_{\text{2-beam}} \)	\(nm(u_0)^2/2 \)

Figure 1. Two equal and opposite cold beams.
What are examples of effectively disjoint velocity distributions, $f(v)$, at both of those times. Right panel: Distribution $f(v)$ determined by the Fast Plasma Instrument at the later time from two different perspectives. The black arrow is in the direction of B, and the blue, green, and red arrows show the directions of GSE coordinates in x, y, and z. The tip of each colored arrow is at a velocity corresponding to an energy of 1.6 keV. The values of $f(v)$ on successive surface contours differ by factors of 5.

1. Examples of measured and simulated $f(v)$ which are effectively disjoint

What are examples of effectively disjoint velocity distributions, $f(v) ≡ f(v, r_0, t_0)$, found at certain locations and times during magnetic reconnection in the magnetopause and found in particle-in-cell (PIC) simulations of reconnection in the magnetotail? Examples treated in this paper (Figures 2 and 3) focus on disjoint ion velocity distributions. However, the theory applies equally well to disjoint electron velocity distributions, such as electron velocity distributions containing “crescents.” One physical mechanism for producing a pair of velocity-space ion beams at $[r_0, t_0]$ has been identified in Figure 3 in terms of Lagrangian beam particle trajectories through $[r_0, t_0]$ and other points in space and time (Eastwood et al., 2014).

2. Standard energy transport theory:

What are the various energy moments and transport equations associated with a given $f(r, v, t)$? We derive and discuss moments and standard energy transport equations in terms of kinetic theory (i.e., the Vlasov equation) in a collisionless plasma.

3. Multibeam moments:

What is the difference between undecomposed energy density, pressure, and energy flux moments and decomposed energy density moments (bulk and thermal), pressure moments (ram and thermal), and energy flux moments (bulk, enthalpy, and heat flux)? What is the relationship between standard and multibeam decomposed moments? How are pseudothermal parts of standard decomposed moments determined? These questions are addressed in terms of the example of the standard and multibeam moments of a set of N tri-Maxwellian beams.

2. Measurements and Simulations Exhibiting Multibeam Velocity Distributions

2.1. Multiple Ion Beams Near X-Line During Dayside Reconnection

In a pioneering paper (Burch et al., 2016), high-resolution data from the Fast Plasma Instruments (FPI) onboard MMS satellites were used to study electron and ion velocity distributions in the electron diffusion...
region of Earth’s magnetopause during magnetic reconnection. The left panel in Figure 2 shows the magnetic field and standard particle and field energy fluxes as functions of time along the trajectory of MMS4. The reconnection x-line is crossed at time 1307, as indicated by the vertical dashed line. The right image (here constructed from the data) shows 3-D contour maps of the ion distribution, \(f(v) \), measured over a time interval of 150 ms, a few seconds before, and a few seconds after an x-line crossing. Details are given in the figure caption. It is clear that both ion distributions, \(f(v) \), are far from equilibrium and disjoint. Each \(f(v) \) is therefore an ion multibeam distribution amenable to the multibeam moment treatment described in this paper. Such a treatment will generally give ion energy moments different from the standard ones on the left in Figure 2.

2.2. Tail Reconnection Simulation Shows Multiple Ion Beams

Multibeam (disjoint) ion distributions, \(f(v) \), have also been found in simulations of magnetic reconnection in Earth’s magnetotail. An example can be found in Eastwood et al. (2014) in which PIC simulations are carried out in support of THEMIS observations of magnetic reconnection on 27 February 2009 and complex ion distributions were observed. The THEMIS magnetic field data were used to establish appropriate comparison cuts through a particle-in-cell simulation of reconnection, and very good agreement was found between the observed and simulated ion distributions on both sides of the dipolarization front.
The principal feature of interest in the simulation is the dynamics of a pair of counterpropagating ion beams found in the dipolarization front about five ion inertial lengths in front of the unperturbed plasma just below the neutral sheet at time $t = 30$. They are visible in the 2-D reduced distribution in the v_{z}-v_{y} (reconnection) plane shown in Figure 3a. This reduced distribution is integrated over v_{z}. The two beams are represented by two small cubes in velocity space labeled A and B. The other two orthogonal reduced distribution functions are shown in Figures 3b and 3c.

Figures 3d–3g show the real space self-consistent trajectories of the bunches of ions that pass through these two phase space cubes at $t = 30$ over the time interval $23 < t < 35$. Trajectories are of particular interest because they illustrate how multibeam particle distributions, $f(v)$, might arise.

The trajectories are superposed on plots of E_{SIM} (approximately the reconnection electric field) and E_{SIM} (approximately the Hall electric field). The fields and circled groups of ions in Figures 3d and 3e correspond to the start time for the trajectories ($t = 23.28$). The fields and circled bunches of ions in Figures 3f and 3g correspond to the time when the trajectories cross, thereby giving rise to the disjoint reduced distribution function shown in Figures 3a–3c. The ions composing the two beams are clearly distinguishable, with Beam A moving primarily downward and to the right while Beam B moves primarily upward and to the right (as labeled in Figure 3d).

At the start time, the ion bunches are widely separated in space, with each bunch near a different separatrix. The ion bunch trajectories later in time are determined by the electric and magnetic forces. The ions are not frozen-in (this is the ion-diffusion region). For details concerning the forces and their influence on the ion trajectories, refer to Eastwood et al. (2014).

3. “Standard” Energy-Transport Theory

3.1. Review of Standard Energy-Transport Theory

There are a number of different ways to take energy moments and derive corresponding energy transport equations for a given particle species. A common strategy, the so-called standard approach, is based on the assumption that there is a single mean-flow velocity, u, of a distribution $f(v)$, for electrons or for ions. For a given particle species, the well-known equations (Aunai et al., 2011; Bellan, 2006; Birn & Hesse, 2005) for the transport of the bulk coherent energy density, U_{bulk}, and the “thermal” (incoherent) energy density, U_{therm}, are given (for electrons or ions) by

$$\frac{\partial}{\partial t} U_{\text{bulk}} + \nabla \cdot Q_{\text{bulk}} = J_{i} \cdot E - u \cdot \nabla \cdot P, \quad (1a)$$

$$\frac{\partial}{\partial t} U_{\text{therm}} + \nabla \cdot Q_{\text{therm}} = u \cdot \nabla \cdot P, \quad Q_{\text{therm}} = Q_{\text{heatflux}} + Q_{\text{enthalpy}}, \quad (1b)$$

In Equation 1a, u is the flow velocity of the species, $U_{\text{bulk}} = mn u^2 / 2$; Q_{bulk} is the bulk kinetic energy density flux, u U_{bulk}; and J_{i}, E is the work per unit volume performed by the electric field, E, against the electron or ion current density, J_{i}, or $J_{i} = J_{e}$ or $J_{i} = J_{i}$. The term $-u \cdot \nabla \cdot P$ is the work per unit volume performed on the flow velocity, u, by the pressure force per unit volume, $-\nabla \cdot P$.

In Equation 1b, Q_{therm} is the thermal (incoherent) energy flux, $Q_{\text{therm}} = Q_{\text{heatflux}} + Q_{\text{enthalpy}}$, consisting of a part, Q_{heatflux}, which is invariant under Galilean velocity-frame transformations and a part, Q_{enthalpy}, proportional to u. The term $+u \cdot \nabla \cdot P$ is the work/volume done by u against the pressure force/volume. Hence, the work associated with pressure governs the transfer of energy between coherent and incoherent energy densities.

Equation 1a may be derived from magnetohydrodynamics with an appropriate equation of state (Birn & Hesse, 2005) or, more fundamentally, from kinetic theory (Aunai et al., 2011; Bellan, 2006), as will be demonstrated in section 3.2.

Another (electron or ion) energy transport equation results from adding Equation 1a to Equation 1b. The work terms associated with pressure forces then drop out entirely, resulting in

$$\frac{\partial}{\partial t} U + \nabla \cdot Q = J_{i} \cdot E, \quad (2a)$$

$$U = U_{\text{bulk}} + U_{\text{therm}}, \quad Q = Q_{\text{bulk}} + Q_{\text{therm}}. \quad (2b)$$
Equation 2a describes particle energy transport (for ions or electrons) without regard to flow velocity or pressure (Goldman et al., 2016). We shall refer to Equation 2a as the undecomposed particle energy transport equation and \(U \) as the undecomposed particle energy density. \(U_{\text{bulk}} \) and \(U_{\text{therm}} \) can be understood as resulting from the decomposition of \(U \) into a coherent and an incoherent parts. In a similar manner, \(Q \) is the undecomposed energy density flux whose decomposed pieces, \(Q_{\text{bulk}} \) and \(Q_{\text{therm}} \), are its coherent and incoherent parts.

At first glance, Energy Transport Equation 2a appears less useful than Energy Transport Equation 1a, because \(U \) and \(Q \) do not distinguish between coherent and incoherent (thermal) energies and fluxes. However, energy transport in terms of \(U \) and \(Q \) can be very useful because \(U \) and \(Q \) are independent of whether their decomposed parts are standard (single-beam) moments or multibeam moments of a given velocity distributions, \(f(\mathbf{v}) \). Note also that \(U \) and \(Q \) enter into the electromagnetic energy transport equation in the same way as the electromagnetic energy density and Poynting flux when \(-\langle \mathbf{J}_e + \mathbf{J}_i \rangle \cdot \mathbf{E} \) is eliminated by using Equation 2a for each species:

\[
\partial_t (U_{EM} + U_e + U_i) + \nabla \cdot (S_{\text{Poynting}} + Q_e + Q_i) = 0. \tag{3}
\]

In Equation 3, the c.g.s. electromagnetic energy, \(U_{EM} = (E^2 + B^2)/8\pi \), and Poynting flux, \(S = c(E \times B)/4\pi \), are on the same footing as \(U_e,i \) and \(Q_e,i \). From Equation 3, it is evident that when electromagnetic energy is converted locally, it can be transformed into local particle energy densities, \(U_{e,i} \), and/or into Poynting flux and particle fluxes, \(Q_e \) and \(Q_i \).

At the level of description of Equation 3, one cannot determine whether lost magnetic energy goes mainly into local particle heating, into particle acceleration, or is spatially transported by electromagnetic fields or particle energy density fluxes. To determine in standard transport theory whether coherent or incoherent processes dominate changes in particle energy (or energy flux), one must employ the standard decomposed energy transport equations (Equations 1a and 1b).

3.2. Kinetic Theory of Standard Energy Transport

Further insight into the meaning of Equation 2a is gained by deriving it from kinetic theory (Aunai et al., 2011; Bellan, 2006; Goldman et al., 2016). In kinetic theory, undecomposed energy transport is described by taking a kinetic energy moment of the Vlasov equation for either species:

\[
\int d^3\mathbf{v} \left(\frac{mv^2}{2} \right) \left[\partial_t + \mathbf{v} \cdot \nabla + \frac{q_e}{m_e} \left(\frac{\mathbf{v}}{c} \times \mathbf{B} \right) \cdot \nabla \right] f_s = 0, \quad s = e, i.
\]

The result is Equation 2a with the undecomposed \(U \) and \(Q \) now explicitly defined as energy density and energy density flux moments of \(f(\mathbf{v}) \)

\[
U(\mathbf{r}, t) = \text{undecomposed energy density (e or i)} \equiv \int d^3\mathbf{v} f(\mathbf{v}, \mathbf{r}, t) \left[\frac{mv^2}{2} \right], \tag{4a}
\]

\[
Q(\mathbf{r}, t) = \text{undecomposed energy density flux (e or i)} \equiv \int d^3\mathbf{v} f(\mathbf{v}, \mathbf{r}, t) \cdot \left[\frac{mv^2}{2} \right], \tag{4b}
\]

In the usual standard approach employing the mean-flow-velocity decomposition of \(U \) and \(Q \) moments, one substitutes \(\mathbf{v} = \mathbf{u} + \delta\mathbf{v} \) into \(mv^2/2 \) and \(mv \delta\mathbf{v}^2/2 \) in the velocity integrals in Equations 4a and 4b. Integrals whose integrands are odd powers \(\delta\mathbf{v} = (\mathbf{v} - \mathbf{u}) \) vanish—hence the term “incoherent” for moments proportional to \(\langle \delta\mathbf{v} \rangle \). This kind of decomposition is most meaningful for a single electron or ion beam, \(f(\mathbf{v}) \), which is single peaked and contiguous. In physical units, the mean-flow-velocity decomposition of \(U \) and \(Q \) moments for either electrons or ion is

\[
\begin{align*}
U_{\text{bulk}} &= \frac{nm\mu u^2}{2}, \quad U_{\text{therm}} = \frac{m}{2} \int d^3\mathbf{v} f(\mathbf{v}) \langle \delta\mathbf{v} \rangle^2, \tag{5a} \\
Q_{\text{bulk}} &= n\mu \frac{mu^2}{2}, \tag{5b}
\end{align*}
\]
To give explicit examples of standard and multibeam energy moments, we first consider a single tri-Maxwellian beam distribution function, \(f(v) \), for electrons or ions

\[
f(v) = \frac{n}{w_x w_y w_z (2\pi)^{3/2}} \exp \left\{ -\frac{1}{2} \left(\frac{(v_x - u_x)^2}{w_x^2} + \frac{(v_y - u_y)^2}{w_y^2} + \frac{(v_z - u_z)^2}{w_z^2} \right) \right\}. \tag{7}
\]

Here, \(f(v) \) is normalized to the density, \(n \), and centered at the velocity, \(\mathbf{u} = [u_x, u_y, u_z] \). The three thermal velocities are \(w_j = \sqrt{(T_j/m_j)} \), where \(k = \{x, y, z\} \), \(s = e \) or \(i \), and \(T_j \) is the temperature (in energy units) associated with direction \(j \). We define a thermal velocity vector, \(\mathbf{w} = [w_x, w_y, w_z] \).
All of the standard moment integrals in Equations 5a and 6 can be performed analytically, with the following results (in dimensional units):

\[\int d^3v f(v) = n = \text{density}, \]
\[\int d^3v f(v) v = nu = \text{particle flux of electrons or ions} \]
\[U_{\text{bulk}} = \frac{nmu^2}{2}, \quad U_{\text{therm}} = \frac{nmw^2}{2} \]
\[P_{\text{ram}} = nmuu, \quad P = nm \begin{bmatrix} w_x^2 & 0 & 0 \\ 0 & w_y^2 & 0 \\ 0 & 0 & w_z^2 \end{bmatrix}, \quad \text{or} \quad P_{kn} = nm\delta_{kj}w_k^2 \text{ (no sum over } k) \]

\[Q_{\text{bulk}} = \frac{numu^2}{2}, \quad Q_{\text{enthalpy}} - k = \frac{mn}{2}(u_kw_k^2 + 2u_kw_k^2) \text{ (no sum over } k) \]
\[Q_{\text{heatflux}} = 0. \]

Note that the pressure tensor is diagonal in this coordinate system. Such a coordinate system may be found for a nondiagonal pressure tensor in terms of its eigenvalues and eigenvectors.

The enthalpy flux vector has been calculated in terms of the pressure, as in Equation 5e, \(Q_{\text{enthalpy}} = u \text{ Tr}(P)/2 + u \cdot P \).

The standard heat flux, \(Q_{\text{heatflux}} \), is zero for a tri-Maxwellian beam of the form in Equation 7 due to reflection symmetries which makes the heat flux integral vanish.

4. Multibeam Moments

4.1. Multibeam Moments for \(f(v) = f_1(v) + f_2(v) + \ldots + f_N(v) \)

Consider a 3-D electron or ion velocity distribution, \(f(v) \), consisting of \(N \) pieces, which will be referred to as **beams**:

\[f(v) = f_1(v) + f_2(v) + \ldots + f_N(v). \]

In the **standard** method for taking moments, a single mean flow velocity, \(u \), is used, as in Equations 5a and 6 for the set of \(N \) beams embodied in \(f(v) \). Such an approach is used in the typical calculation of onboard moments on a satellite, such as the FPIs onboard the MMS satellites as well as instruments on Cluster, THEMIS, and so forth. It is usually applied without regard to whether the measured \(f(v) \) consists of one or more than one effectively disjoint “beams.”

In the **multibeam** decomposition, the moments of each beam are taken first (using flow velocities \(u_j \) of each **beam, j**). One then sums the moments over all beams. In general, the multibeam and standard decomposition methods give different results for the decomposed moments.

By contrast, the **undecomposed** (electron or ion moments), \(U, Q, \) and \(T \), which are independent of flow velocities, are the same whether one uses \(f(v) \) or its equivalent, \(f_1(v) + f_2(v) + \ldots + f_N(v) \). In dimensional units,

\[U \equiv \int d^3v f(v) \left[\frac{mv^2}{2} \right] = \sum_j U_j, \quad U_j \equiv \int d^3v f_j(v) \left[\frac{mv^2}{2} \right], \quad (10a) \]
\[Q \equiv \int d^3v f(v) \left[\frac{mv^2}{2} \right] v = \sum_j Q_j, \quad Q_j \equiv \int d^3v f_j(v) \left[\frac{mv^2}{2} \right] v \quad (10b) \]
\[T \equiv \int d^3v f(v) [wv] = \sum_j T_j, \quad T_j \equiv \int d^3v f_j(v) [wv]. \quad (10c) \]

The sum in Equation 10a is a sum over the \(N \) beams of **undecomposed** beam energy densities, \(U_j \); the sum in Equation 10b is a sum over (electron or ion) beams of undecomposed beam energy fluxes, \(Q_j \); and the sum in
Equation 10c is a sum over beams of undecomposed individual beam stress tensors. It should be clear from Equations 10a–10c that the sum over undecomposed moments of each beam gives the same result as the undecomposed moments of \(f(\mathbf{v}) \). The undecomposed moments are therefore a robust and unambiguous characterization of the plasma, whether it consists of one or more beams.

The “standard” decomposition of \(U, Q, \) and \(T \) based on the mean flow velocity \(\mathbf{u} \) is correctly given by Equations 5a–5e and 6. The standard decomposed moments \(U_{\text{bulk}}, U_{\text{therm}}^1, Q_{\text{bulk}}, Q_{\text{heatflux}}, \) and \(Q_{\text{enthalpy}}^1 \), \(T_{\text{RAM}}^1 \), and \(T \) are found, for example, in the moments file of the FPI on each of the MMS spacecraft.

By contrast, in the alternative, multibeam decomposition, one first decomposes the moments of each beam using that beam’s mean velocity, \(\mathbf{u}_j \), and then substitutes, \(\mathbf{v} = \mathbf{u}_j + (\mathbf{v}_j - \mathbf{u}_j) \), in \(m\mathbf{v}_j^2/2 \) and \(m\mathbf{v}_j^2/2 \) in the velocity integrals for \(\mathbf{u}_j \) and \(\mathbf{Q}_j \) and \(\mathbf{T}_j \) in Equations 10a–10c.

A key point in this paper is that each multibeam decomposed moment of the assembly of (electron or ion) beams is given by the sum over beams, \(j \), of the corresponding standard moment of each beam \(j \),

\[
\begin{align*}
U_{\text{bulk}}^{\text{MB}} &= \sum_{j=1}^{N} U_{j - \text{bulk}}, \\
U_{\text{therm}}^1 &= \sum_{j=1}^{N} U_{j - \text{therm}}, \\
\text{where, } U_{j - \text{therm}} &= \frac{m}{2} \int d^3\mathbf{v}_j (\mathbf{v} - \mathbf{u}_j)^2, \\
Q_{\text{bulk}}^{\text{MB}} &= \sum_{j=1}^{N} Q_{j - \text{bulk}}, \\
Q_{\text{heatflux}}^{\text{MB}} &= \sum_{j=1}^{N} Q_{j - \text{heatflux}}, \\
Q_{\text{enthalpy}}^{\text{MB}} &= \sum_{j=1}^{N} Q_{j - \text{enthalpy}}, \\
P_{\text{ram}}^{\text{MB}} &= \sum_{j=1}^{N} P_{j - \text{ram}},
\end{align*}
\]

(11a)

(11b)

(11c)

In general, none of the multibeam decomposed moments are equal to the corresponding standard decomposed moment.

Based on Equations 10a and 11a, the undecomposed (electron or ion) moments \(U, Q, \) and \(T \) may therefore be decomposed into either a sum of standard moments or a sum of multibeam moments:

\[
\begin{align*}
U &= U_{\text{bulk}}^{\text{MB}} + U_{\text{therm}}^1 = U_{\text{bulk}} + U_{\text{therm}}, \\
T &= P_{\text{RAM}}^{\text{MB}} + P^{\text{MB}} = P_{\text{RAM}} + P, \\
Q &= Q_{\text{bulk}}^{\text{MB}} + Q_{\text{therm}}^1 = Q_{\text{bulk}} + Q_{\text{therm}}, \quad \text{where,} \\
Q_{\text{therm}}^1 \equiv Q_{\text{heatflux}}^{\text{MB}} + Q_{\text{enthalpy}}^{\text{MB}} \quad \text{and} \quad Q_{\text{therm}} \equiv Q_{\text{heatflux}} + Q_{\text{enthalpy}}.
\end{align*}
\]

(12a)

(12b)

(12c)

(12d)

The thermal energy density fluxes \(Q_{\text{therm}} \) and \(Q_{\text{therm}}^1 \) have been defined in Equation 12d as sums of enthalpy flux and heat flux. Section 4.4 will show how Equations 12a–12d determine the pseudothermal parts of standard moments. First, we consider lower-order moments.

4.2. Densities and Particle Fluxes in Standard and Multibeam Pictures

Taking the zero-order moment of both sides in \(\int d^3\mathbf{v} f(\mathbf{v}) = f_1(\mathbf{v}) + f_2(\mathbf{v}) + ... + f_N(\mathbf{v}) \) yields

\[
\int d^3\mathbf{v} f(\mathbf{v})/n = 1 = \eta_1 + \eta_2 + ... + \eta_N, \quad \eta_j \equiv n_j/n.
\]

(13a)

Here, \(n_j \) is the density of beam \(j \), \(n \) is the density of the ensemble of beams, and \(\eta_j = n_j/n \) is the fractional density of each beam. Taking the first-order moment of both sides of \(\int d^3\mathbf{v} f(\mathbf{v}) = f_1(\mathbf{v}) + f_2(\mathbf{v}) + ... + f_N(\mathbf{v}) \) yields the particle flux. When divided by \(n \), this becomes
\[\int d^3v f(v)/n = u = \eta_1 u_1 + \eta_2 u_2 + ... + \eta_N u_N, \]

where \(u_j \) is the velocity of the \(j \)th beam and \(u \) is the mean velocity of the ensemble of beams. Each beam velocity, \(u_j \), in the weighted mean, \(u \), is multiplied by the fractional beam density, \(\eta_j \).

Equations 13a and 13b illustrate that the beam velocities, \(u_j \), and the beam densities, \(\eta_j \), are not independent of each other. Their relationship depends on the standard density, \(n \), and flow velocity, \(u \). We next consider a sum of tri-Maxwellians.

4.3. Multibeam Moments of a Sum of Tri-Maxwellians

Consider an analytic velocity distribution consisting of a sum of \(N \) electron or \(N \) ion beams, \(f(v) = f_1(v) + f_2(v) + ... + f_N(v) \), in which each beam, \(f_j(v) \), is tri-Maxwellian:

\[f_j(v) = \frac{n_j}{w_{jx} w_{jy} w_{jz}(2\pi)^{3/2}} \exp \left\{ -\frac{1}{2} \left(\frac{(v_x - u_{jx})^2}{w_{jx}^2} + \frac{(v_y - u_{jy})^2}{w_{jy}^2} + \frac{(v_z - u_{jz})^2}{w_{jz}^2} \right) \right\}, \quad j = 1, 2, ..., N. \]

Here \(n_j \) is the density of beam \(j \), \(u_j \) is its mean velocity, and \(w_{jx}^2 = T_{jx}, w_{jy}^2 = T_{jy}, and w_{jz}^2 = T_{jz} \) are the three temperatures of beam \(j \). We have taken all of the tri-Maxwellians to be coaligned, with temperatures along the \(x, y, \) and \(z \) axes. Consequently, all beam pressure tensor moments will here be diagonal. This, of course, is not the most general possible sum of tri-Maxwellians, but it will suffice to illustrate the concepts considered in this paper. More commonly treated is the even less general limit of a sum of spherically symmetric Maxwellians, each of temperature \(T_j \), arrived at by setting \(w_{jx} = w_{jy} = w_{jz} = \sqrt{T_j/m} \).

As in Equations 11a–11c, the decomposed multibeam moments of any multibeam \(f(v) \) are given simply by the sum over beams, \(j \), of the corresponding standard moments of each beam \(j \). Since each beam is a tri-Maxwellian and the standard moments of a tri-Maxwellian are given by Equations 8a–8f, the decomposed multibeam moments of the sum of tri-Maxwellians can be expressed as

\[U_{MB, bulk}^{MB} = \frac{mn}{2} \sum_{j=1}^{N} \eta_j |u_j|^2, \quad U_{MB, therm}^{MB} = \frac{mn}{2} \sum_{j=1}^{N} \eta_j |w_j|^2, \]

\[P_{ke}^{MB} = mn \delta_{kn} \sum_{j=1}^{N} \eta_j w_{jk}^2, \quad \text{(no sum over \(k \) or \(n = x, y, z \))} \]

\[Q_{bulk}^{MB} = \frac{mn}{2} \sum_{j=1}^{N} \eta_j \langle u_j |w_j|^2 + 2u_j \cdot w_j w_j \rangle \]

\[Q_{enthalpy}^{MB} = 0. \]

Here the integer \(j \) labels beams, while the integers \(k \) and \(n \) label vector and tensor components in the three Cartesian coordinates, \(\{x, y, z\} \). The multibeam heat flux is zero because of velocity reflection symmetry in each tri-Maxwellian beam. We have defined a thermal vector, \(w_j \equiv \{w_{jx}, w_{jy}, w_{jz}\} \). In the spherically symmetric limit, \(|w_j|^2 = 3T_j/m\). In the cold beam limit, \(w_j \to 0 \), for all beams, so the ensemble thermal energy, enthalpy flux, and pressure go to zero.

4.4. How to Find Standard Moments From Multibeams

The decomposed moments obtained using the standard (e.g., FPI) mean-flow velocity, \(u \), and associated density, \(n \), are given by the (electron or ion) \(f(v) \) integrals in Equations 5a and 6a.

First, substitute \(f(v) = f_1(v) + ... + f_N(v) \) into Equations 5a and 6a. Then, substitute \([u_j - u] + (v - u_j)\] for \(\delta v \equiv (v - u) \) in each \(f_j(v) \) integral in each moment. Note that \(f_j(v) \) integrals proportional to \((v - u_j) \) vanish because they are fluctuation moments. In physical units, the standard energy density Equation 5a then become...
The standard pressure and standard enthalpy flux Equations 5a–5e become

\[
P = p^{MB} + mn \sum_{j=1}^{N} \eta_j (\mathbf{u} - \mathbf{u}_j) \cdot (\mathbf{u} - \mathbf{u}_j),
\]

\[
Q_{\text{enthalpy}} = \frac{\mathbf{u} \cdot \text{Tr}(P)}{2} + \mathbf{u} \cdot \mathbf{P},
\]

and the standard bulk energy flux remains equal to Equation 5b:

\[
Q_{\text{bulk}} = \frac{mn}{2} \mathbf{u} \mathbf{u}^T.
\]

The standard heat flux in Equation 5c requires a bit more algebra to relate to the multibeam heat flux:

\[
Q_{\text{heatflux}} = Q_{\text{heatflux}}^{MB} = \frac{mn}{2} \left\{ \sum_{j=1}^{N} \eta_j |\mathbf{u}_j - \mathbf{u}_j|^2 - 2 \sum_{j=1}^{N} \eta_j \left[(\mathbf{u} - \mathbf{u}_j) \cdot \mathbf{P}_j + (\mathbf{u} - \mathbf{u}_j) \cdot \text{Tr}(\mathbf{P}) \right] \right\}.
\]

4.4.1. Standard Moments of an Assembly of Tri-Maxwellians

For the assembly of N coaligned tri-Maxwellians, \((U_{\text{therm}})^{MB}\) and \(P^{MB}\) are known, so the standard thermal moments for the assembly are

\[
U_{\text{therm}} = U_{\text{therm}}^{MB} + \frac{mn}{2} \sum_{j=1}^{N} \eta_j |\mathbf{u}_j|^2 = \frac{mn}{2} \sum_{j=1}^{N} \eta_j \left(|\mathbf{u}_j|^2 + |\mathbf{\delta u}_j|^2 \right), \quad \mathbf{\delta u}_j \equiv \mathbf{u}_j - \mathbf{u},
\]

\[
P = p^{MB} + mn \sum_{j=1}^{N} \eta_j \mathbf{u}_j \cdot \mathbf{\delta u}_j = \sum_{j=1}^{N} \mathbf{P}_j, \quad \mathbf{P}_j \equiv mn \eta_j
\]

\[
Q_{\text{enthalpy}} = \frac{\mathbf{u} \cdot \text{Tr}(P)}{2} + \mathbf{u} \cdot \mathbf{P} = U_{\text{therm}} + \mathbf{u} \cdot \mathbf{P},
\]

\[
Q_{\text{heatflux}} = 0 + \frac{mn}{2} \left\{ \sum_{j=1}^{N} \eta_j |\mathbf{u}_j|^2 \right\} + 2 \sum_{j=1}^{N} \left[\mathbf{\delta u}_j \cdot \mathbf{P}_j + \mathbf{\delta u}_j \cdot \text{Tr}(\mathbf{P}) \right].
\]

There are both real and pseudo thermal parts contained in the standard thermal energy density, heat flux, and enthalpy flux of the assembly of N coaligned tri-Maxwellian beams. Although the multibeam heat flux, \((Q_{\text{heatflux}})^{MB}\), of the assembly is zero, owing to the symmetry of each tri-Maxwellian beam, the standard heat flux of the assembly, \(Q_{\text{heatflux}}\), does not vanish. It is composed entirely of pseudothermal heat flux. Note that the dependence of \(Q_{\text{heatflux}}\) on \(\mathbf{P}_j\) means that the pseudothermal heat flux contains thermal energy \(m\nu_k^2\), where the index \(k\) is the Cartesian coordinate, \(k = x, y,\) or \(z\). However, in the cold beam limit \(w_k \to 0\), the standard heat flux, \(Q_{\text{heatflux}}\), of the assembly of tri-Maxwellians does not go to zero.

4.4.2. Moments of Equal and Opposite Maxwellian Distributions

The above case is a generalization of the “pseudothermal” standard energy density moment of two equal and opposite cold beams described in section 1. For the two equal and opposite cold beams in Figure 1, the mean flow velocity, \(\mathbf{u} = 0\), and, from Equations 15a and 16a,

\[
n_1 = n_2 = \frac{n}{2}, \quad \mathbf{u}_1 = \mathbf{u}_0, \quad \mathbf{u}_2 = -\mathbf{u}_0, \quad \mathbf{u} = 0
\]

\[
U_{\text{bulk}} = 0, \quad U_{\text{therm}} = \frac{m}{2} (n_1 u_0^2 + n_1 u_0^2) = mn_1 u_0^2
\]

\[
U_{\text{bulk}}^{MB} = \frac{m}{2} (n_1 u_0^2 + n_1 u_0^2) = mn_1 u_0^2, \quad U_{\text{therm}}^{MB} = 0.
\]

Thus, the standard (FPI) moments identify the energy of an assembly of cold beams as totally “thermal,” whereas multibeam moments correctly identify the system energy as composed of bulk kinetic energy
only. In general, \(U_{\text{therm}} \) will be a mixture of real and pseudothermal energy densities. If the two cold beams in Figure 1 and Table 1 are replaced by two Maxwellian beams, each with isotropic temperature, \(T = m w^2 \), Equation 17a still hold, except for the “thermal” energy densities expressions which are changed to

\[
U_{\text{therm}} = \frac{mn w^2 + u_0^2}{2},
\]

\[
U_{\text{2-beam}} = \frac{mn w^2 + u_0^2}{2} = U_{\text{therm}} - \frac{mn u_0^2}{2}.
\]

Table 2 compares the standard energy density moments to the multibeam energy density moments for this example of two beams.

4.5. Pseudothermal Parts of Dimensionless Standard Moments

Thus, standard thermal energy moments may contain pseudothermal parts, whereas the corresponding multibeam thermal energy moments are entirely true thermal.

In general, pseudothermal parts of standard moments are obtained by subtracting from each standard moment the corresponding multibeam moment. Hence, the pseudothermal moments, \(\Delta U \), \(\Delta P \), and \(\Delta Q \) are defined as

\[
\Delta U = U_{\text{therm}} - U_{\text{2-beam}},
\]

\[
\Delta P = P_{\text{therm}} - P_{\text{2-beam}},
\]

\[
\Delta Q = Q_{\text{therm}} - Q_{\text{2-beam}}.
\]

Since Equation 12a, for example, may be rewritten as

\[
U_{\text{therm}} = U_{\text{2-beam}} + U_{\text{bulk}},
\]

Equation 12a allows us to replace the difference moments in Equation 18a by differences of the much simpler bulk moments:

\[
\Delta U = U_{\text{2-beam}} - U_{\text{bulk}},
\]

\[
\Delta P = P_{\text{2-beam}} - P_{\text{RAM}},
\]

\[
\Delta Q = Q_{\text{2-beam}} - Q_{\text{bulk}}.
\]

First, consider energy density moments. Define dimensionless energy units by dividing all energy densities by a normalization standard bulk energy density, \(U_{\text{norm}} = mn u_n^2/2 \). We allow for the possibility that the normalization flow velocity moment, \(u_n \), may (or may not) differ from the standard flow velocity moment, \(u \), of the given \(f(v) \).

The standard and multibeam bulk energy density moments are independent of the exact shape of the (electron or ion) velocity distribution, \(f(v) = f_1(v) + ... + f_N(v) \), and of the shape of the individual beam distributions, \(f_j(v) \). These moments depend only on densities and mean velocities, \((n, u)\), of \(f(v) \) and, \((n_j, u_j)\), of \(f_j(v) \), so that the pseudothermal energy density moment in dimensionless units is given by

\[
\Delta U = U_{\text{2-beam}} - U_{\text{bulk}} \equiv \frac{1}{n} \left[\sum_{j=1}^{N} \eta_j u_j^2 - u^2 \right], \quad \eta_j \equiv \frac{n_j}{n} \quad \text{(dimensionless)},
\]

Two equivalent alternate expressions for the dimensionless \(\Delta U \) are

\[
\Delta U = \sum_{j=1}^{N} \eta_j u_j^2 - u^2
\]
\[\Delta U = \frac{1}{u_n^2} \sum_{j=1}^{N} \eta_j (u_i - u_j)^2, \quad (20b) \]
\[\Delta U = \frac{1}{u_n^2} \sum_{i < j}^{N} \eta_{ij} (u_i - u_j)^2. \quad (20c) \]

Equation 20b has N terms. It is equivalent to Equation 20a as one can see by explicitly squaring \((u_i - u_j)^2\) in each term and summing. In this form, \(\Delta U\) is manifestly invariant under Galilean frame changes since the beam velocities, \(u_i\), are all measured from the mean flow velocity, \(u\). The right side of Equation 20c depends on differences of beam velocities, \((u_i - u_j)\), so it too is explicitly Galilean frame independent. In this format there are \(N(N-1)/2\) terms.

Any of the Equation 20c may be used to calculate the pseudothermal energy density, \(\Delta U\), in terms of zero-order and first-order moments of \(f(v)\) and of zero-order and first-order moments of each of the beams, \(f(v)\). However, there is another possible use of \(\Delta U\) which will be demonstrated in a later paper dealing with methods for finding approximate multibeam moments of measured \(f(v)\). From Equation 19a, the multibeam thermal energy density \((U_\text{therm})^{\text{MB}}\) is

\[U_\text{therm}^{\text{MB}} = U_\text{therm} - \Delta U. \quad (21) \]

Thus, for a given (i.e., measured) \(f(v)\) and a known (i.e., measured) \(U_\text{therm}\), the decomposed multibeam energy density, \((U_\text{therm})^{\text{MB}}\), can be found by subtracting \(\Delta U\). This is usually easier than calculating \((U_\text{therm})^{\text{MB}}\) by summing all of the beam thermal energy densities (as in Equation 11a).

Consistent with the treatment leading to the multibeam energy density, we next treat the vector pseudothermal energy flux, \(\Delta Q\). Here, all (electron or ion) energy density fluxes are rendered dimensionless by dividing by \(nmu_n^2/2\):

\[Q_\text{bulk}^\text{MB} = Q_\text{bulk} + \Delta Q, \quad \Delta Q = \frac{1}{u_n^2} \left[\sum_{j=1}^{N} \eta_j u_i u_j^2 - uu^2 \right]. \quad (22) \]

By the same reasoning that led to the “thermal” multibeam energy moment in Equation 21, we can express the dimensionless “thermal” multibeam energy density flux vector moment as

\[Q_\text{therm}^\text{MB} = Q_\text{therm} - \Delta Q. \quad (23) \]

Hence, if we know the standard moment \(Q_\text{therm}\) for \(f(v)\), we can find \((Q_\text{therm})^{\text{MB}}\) by subtracting the “pseudo-thermal” part, \(\Delta Q\). Adding Equations 22 and 23 verifies that either way the moments are taken (standard method or multibeam method), one obtains the same undecomposed \(Q\). The same is true of the undecomposed energy density, \(U\), as is evident when \(\Delta U\) is eliminated from Equations 18a and 21.

One can use a similar strategy to find the (electron or ion) multibeam pressure tensor, \(P^{\text{MB}}\), from the known standard pressure tensor, \(P\), by introducing the RAM pressure tensor moment, \(P_{\text{RAM}}\), and stress tensor moment, \(T\), as in Equation 12a. Here, \(T = P + P_{\text{RAM}}\) has the same value for standard or multibeam pressure moments. Dimensionless pressures have been created by dividing all pressures by \(nmu_n^2/2\). If \(\Delta P\) is defined as, \(\Delta P = P - P_{\text{RAM}}\), then, by the same arguments as above,

\[P^{\text{MB}} = P - \Delta P, \quad \Delta P = \frac{1}{u_n^2} \left[\sum_{j=1}^{N} \eta_j u_i u_j^2 - uu^2 \right] \quad (\text{dimensionless}, \text{ for electrons or ions}). \quad (24) \]

Note that the multibeam pressure moment tensor, \(P^{\text{MB}}\), contains the scalar multibeam energy density, \(U_\text{therm}^{\text{MB}}\), since, in dimensionless units, the trace of \(P^{\text{MB}}\), \(\text{Tr}[P^{\text{MB}}]\), is \(U_\text{therm}^{\text{MB}}\).

When \(u, P, \text{ and } Q\) are known standard moments of a known or measured electron/ion \(f(v)\), one need only find the density and velocity \((\eta_j, u_j)\) of each beam, \(f(v)\), in order to evaluate \(\Delta U, \Delta P\), and \(\Delta Q\) and, from
moments are the bulk kinetic energy density, \(U_{\text{bulk}}\). For the visual method, this is a more effective strategy than calculating a sum of beam thermal moments, as in the definitions of \(P^{MB}\), \((U_{\text{therm}})^{MB}\), and \((Q_i^{\text{therm}})^{MB}\) given in Equation 11a.

In Table 3, we have summarized the formulas for finding the pseudothermal parts, \(\Delta U\), \(\Delta P\), and \(\Delta Q\), of known standard moments, \(U_{\text{therm}}, P\), and \(Q_{\text{therm}}\), by using the standard moments and the N beam centroid-velocities, \(\mathbf{u}_j\), and N densities, \(n_j\). The multibeam moments are then determined by subtracting \(\Delta U\), \(\Delta P\), and \(\Delta Q\) from \(U_{\text{therm}}\), \(P\), and \(Q_{\text{therm}}\). All quantities are in dimensionless units, constructed by dividing each moment in physical units by the appropriate normalization factor in the third column. The normalization factors are a kinetic energy density, \(mnun^2/2\), an effective scalar pressure, \(mnun^2\), and a kinetic energy density flux magnitude, \(mnun^2/2\). The density, \(n\), and flow velocity, \(\mathbf{u}_j\), can conveniently be taken as the standard density and flow velocity of the given (e or i) \(f(v)\), so that the normalizations become magnitudes of the standard \(U_{\text{bulk}}\) and \(|Q_{\text{bulk}}|\). In other words, \(mnun^2/2 = U_{\text{bulk}}, mnun^3/2 = |Q_{\text{bulk}}|, \) and \(mnun^2 = 2U_{\text{bulk}}\).

5. Summary and Conclusions

5.1. Multibeam Velocity Distributions and Pseudothermal Moments

In this paper we have addressed issues that arise when taking energy moments of effectively disjoint particle velocity distributions, \(f(v)\), which can be expressed as a sum of N beams, \(f(v) = f_1(v) + \ldots + f_N(v)\).

The standard moments of any \(f(v)\) have only one flow velocity, \(\mathbf{u}\), associated with \(f(v)\). Examples of standard coherent moments are the bulk kinetic energy density, \(U_{\text{bulk}} = mnun^2/2\), of the system and the bulk kinetic energy density flux vector, \(Q_{\text{bulk}} = n\mathbf{u} mnun^2\), of the system. Moments which depend on correlations of fluctuations \((v - \mathbf{u})\) are said to be incoherent or “thermal.” Examples are the standard thermal energy density, \(U_{\text{therm}} = \int d^3v f(v) m|v - \mathbf{u}|^2/2\), and the standard thermal energy flux vector, \(Q_{\text{therm}}\), defined, in our convention, to be the sum of the enthalpy and heat flux vectors. There are separate space-time transport equations for the coherent and the incoherent energy moments (Equations 1a and 1b). In this paper we do not address the space-time evolution of energy moments of electrons or ions but rather consider their properties averaged over short time periods and small spatial regions.

Standard moments of multibeam velocity distributions \(f(v) = f_1(v) + \ldots + f_N(v)\) tend to inflate \(U_{\text{therm}}\) and change the direction and magnitude of \(Q_{\text{therm}}\) by amounts we call the pseudothermal parts of these standard thermal moments, \(\Delta U_{\text{therm}}\) and \(\Delta Q_{\text{therm}}\). A simple example is the pseudothermal energy, \(\Delta U_{\text{therm}}\) of a pair of cold beams. In this case \(\Delta U_{\text{therm}}\) arises from the standard-moment misidentification of their center-of-mass-frame kinetic energy as thermal energy.

There is an alternate way of taking moments well suited for multibeam velocity distributions of form \(f(v) = f_1(v) + \ldots + f_N(v)\), which we have called multibeam moments. Multibeam thermal energy density moments, \(U_{\text{therm}}^{MB}\) and energy density flux moments, \(Q_{\text{therm}}^{MB}\), do not have pseudothermal parts. They are calculated by taking a standard thermal moment of each beam and summing over beams. For example, the multibeam thermal energy density moment is given by

\[
\Delta U_{\text{therm}}^{MB} = U_{\text{therm}} - \Delta U_{\text{therm}}
\]

\[
P^{MB} = P - \Delta P
\]

\[
\Delta Q_{\text{therm}} = Q_{\text{therm}} - \Delta Q
\]

\[
Q_{\text{enthalpy}} = \mathbf{u} \tau P + 2\mathbf{u} \cdot \mathbf{P}
\]

\[
\Delta Q_{\text{enthalpy}} = \mathbf{u} \tau P + 2\mathbf{u} \cdot \mathbf{P}
\]

Moment	Pseudothermal part of standard moment	Normalization
Energy density	\(\Delta U_{\text{therm}}^{MB} = U_{\text{therm}} - \Delta U_{\text{therm}}\)	\(mnun^2/2\)
Pressure tensor	\(P^{MB} = P - \Delta P\)	\(mnun^2\)
Energy flux vector	\(\Delta Q_{\text{therm}} = Q_{\text{therm}} - \Delta Q\)	\(mnun^2\)

Table 3: Formulas for Dimensionless Multibeam Thermal Moments (Normalization in Third Column)
An example is the overall energy moment, or incoherence of energy moments. There is still another way of taking energy moments of \(f(\mathbf{v}) \).

For the special case of a pair of equal and opposite cold beams, the standard thermal energy density is non-zero, while the multibeam thermal energy density is zero. For a system of \(N \) beams, the substitution of \(f(\mathbf{v}) \) into \(\Delta Q_{\text{therm}} = Q_{\text{therm}} - Q_{\text{MB}} \).

5.2. Undecomposed Energy Moments

There is still another way of taking energy moments of \(f(\mathbf{v}) \), this time with no reference to either a single beam flow velocity or to multiple beam flow velocities and hence with no distinction between coherence or incoherence of energy moments.

An example is the overall energy moment, \(U = \frac{1}{2} \int d^3 \mathbf{v} f(\mathbf{v}) m \mathbf{v}^2 / 2 \). If \(\mathbf{v}^2 \) is replaced by \((\mathbf{v} - \mathbf{u})^2 \), \(U \) decomposes into a sum of the standard coherent (bulk kinetic) energy density and incoherent (thermal) energy density, \(U = U_{\text{bulk}} + U_{\text{therm}} \). For that reason, we have referred to \(U \) as the undecomposed energy density. For a system of \(N \) beams, the substitution of \(f(\mathbf{v}) = f_1(\mathbf{v}) + \ldots + f_N(\mathbf{v}) \) in the integral for \(U \), followed by a replacement of \(\mathbf{v}^2 \) by \((\mathbf{v} - \mathbf{u}_j)^2 \) in each beam integral, \(j \), leads to the decomposition of \(U \) into a sum of coherent and incoherent multibeam energy densities, \(U = U_{\text{MB bulk}} + U_{\text{MB therm}} \).

Therefore, regardless of whether \(f(\mathbf{v}) \) consists of one or more beams, the undecomposed energy moments are meaningful and independent of which method of decomposition is employed. This is true for the undecomposed energy flux vector, \(\mathbf{Q} \), as well as for \(U \). The space-time energy transport equation for \(U \) is given by Equation 2a.

Analysis of measured velocity distributions, \(f(\mathbf{v}) \), using undecomposed moments such as \(U \) and \(Q \) has the advantage that undecomposed energy moments are well defined and meaningful for single-peaked, multi-peaked, disjoint, or arbitrarily-shaped \(f(\mathbf{v}) \), far from thermal equilibrium. The disadvantage is that the energy and energy flux cannot be interpreted as “coherent” or “incoherent” (i.e., bulk or thermal).

One interesting and important consequence of the invariance of \(U \) and \(Q \) is that pseudothermal parts of standard thermal moments which are absent in multibeam thermal moments appear in the corresponding multibeam bulk moments. As an example, the standard thermal energy density in an assembly of beams will appear as an increase in (multibeam) bulk kinetic energy density. Equivalently, pseudotemperature absent in the multibeam moment shows up as increased coherent kinetic energy per particle in the assembly of beams.

We have shown that the invariance of undecomposed energy moments leads to a simplification in the determination of the pseudothermal parts of the standard thermal energy density and energy density flux moments. For example, we may use the invariance of \(U \) and \(Q \) to rewrite the pseudothermal part of the standard thermal energy density moment and the standard thermal energy flux moment in terms of \(\Delta U_{\text{therm}} = U_{\text{MB bulk}} - U_{\text{bulk}} \) and \(\Delta Q_{\text{therm}} = Q_{\text{MB bulk}} - Q_{\text{bulk}} \).
Hence, the pseudothermal parts of these standard thermal moments can be expressed entirely in terms of coherent beam velocities and beam densities. This will form the basis of the so-called “visual method” for finding pseudothermal moments of measured $f(v)$ to be described in a future paper.

5.3. Pressure Moments

In addition to U and Q, another undecomposed moment we have treated is the particle stress tensor, $T = \int d^3v f(v) m v v$, whose divergence appears in the particle momentum equation (Equation 6b). T decomposes into the standard “thermal” pressure tensor moment, P, and the RAM pressure tensor, $P_{\text{RAM}} = m u u$, when both v‘s in the dyadic $v v$ are replaced by $v = (v - u) + u$. It also decomposes into the multibeam pressure tensor, P^{MB}, and the RAM pressure tensor, $P_{\text{RAM}}^{\text{MB}} = \sum_{j=1}^{N} m n_j (u_j u_j)$, when $f(v)$ is replaced by $(f_1(v) + ... + f_N(v))$ and v is expressed as $v = (v - u_j) + u_j$ in the RAM pressure of each of the N beams. Once again, there will be a (tensor) pseudo thermal part of the standard pressure tensor moment, P, in a multibeam $f(v)$, given by the difference, $\Delta P = P - P^{\text{MB}}$. Pseudothermal pressure will show up in the multibeam ram pressure tensor due to the invariance of T.

5.4. Significance

Recent high-resolution simulations and measurements of electron and ion velocity distributions, $f(v)$, during magnetic reconnection have revealed that $f(v)$ can be very far from thermal equilibrium, quite complex, and often effectively disjoint. Hence, the interpretation of particle energetics sometimes requires new tools although we are still wedded to using long-standing familiar ones such as single fluid concepts and moments. Kinetic theory modeling of processes in collisionless plasmas is increasingly used to understand space physics measurements, especially through particle-in-cell simulations. Vlasov equations contain particle and field physics which is not present in fluid equations. Velocity moments of the Vlasov equation are often the basis for deriving fluid variables and equations.

In this paper we retain this framework but introduce a multibeam method of taking velocity moments which is sometimes more appropriate than the “standard” method of taking velocity moments for interpreting distributions, $f(v)$, which are far from equilibrium and effectively disjoint. In the standard method of taking moments, it is assumed that there is only one overall flow velocity associated with $f(v)$ and the energy moments of $f(v)$ are either coherent (bulk kinetic energy, bulk energy flux, RAM pressure, etc.) or incoherent (pressure, thermal energy density, enthalpy flux, heat flux, etc.). This can lead to counterintuitive results, such as the pseudo thermal energy in a system, $f(v)$, of two cold equal and opposite cold electron beams. The remedy is well known—consider each electron beam to be a separate species. When the system thermal energy is calculated for each species separately and then summed, the system energy is found to be entirely kinetic rather than entirely thermal.

The underlying approximation in the multibeam method is to express $f(v)$ as a sum of distributions, which we call beams, so that for electrons or for ions, $f(v) = f_1(v) + ... + f_N(v)$. We can think of each beam as a separate subspecies of the electron or ion $f(v)$. Each beam has a centroid velocity, u_j, a density, n_j, and so forth. Multibeam energy density moments of $f(v)$ are constructed by taking standard energy density moments of each beam and then summing over beams. Thus, multibeam energy moments are again either coherent (multibeam bulk kinetic energy, multibeam bulk energy flux, multibeam RAM pressure, etc.) or incoherent (multibeam pressure, multibeam thermal energy density, multibeam enthalpy flux, multibeam heat flux, etc.). Multibeam incoherent moments do not contain pseudo thermal parts. However, any of the standard incoherent energy density moments can contain pseudo thermal parts which should be reinterpreted (whether scalar, vector, or tensor) as additions present in the corresponding multibeam coherent moment.

This has practical significance for standard fluid interpretations of multibeam $f(v)$ measured by spacecraft during magnetospheric reconnection or found in PIC simulations. A hypothetical scenario illustrating the differences in interpretation when taking multibeam moments of a multibeam electron distribution, $f(v)$, rather than taking standard moments is as follows:

1. If an elevated standard electron temperature $T = (U_{\text{therm}}/n)$ measured by an MMS spacecraft over a 30 ms time interval is interpreted as due to a heating process and the electron velocity distribution, $f(v)$ measured by the FPI instrument is found to consist of disjoint electron beams, the multibeam electron
temperature will be lower, and the multibeam bulk kinetic energy per particle higher by the same amount. Although the standard temperature suggests electron heating has occurred, the multibeam temperature reveals that some of the higher electron energy is coherent rather than incoherent, arising from electron acceleration to a higher bulk kinetic energy. The relative magnitudes of thermal energy density versus bulk kinetic energy remain to be studied for specific measurements.

It is worth restating and discussing the assumptions and limitations of the approach developed here for taking energy moments of nonequilibrium particle distributions, \(f(v) \). A number of these issues will be addressed by work currently in progress.

The multibeam moment method described here applies to nonequilibrium velocity distributions, \(f(v) \), at essentially one time and place, which can be approximated as a sum of subdistributions, \(f_1(v) + \ldots + f_N(v) \), referred to as “beams.” While an analytic example has been given of a sum of tri-Maxwellians, it has not been demonstrated in this paper when or if an arbitrary measured nonequilibrium \(f(v) \) can be expressed in this manner. One strategy would be to approximate \(f(v) \) as a sum of parametrized analytic subdistributions (not necessarily tri-Maxwellians) and to determine the parameters by a least squares fit to the measured \(f(v) \). There are preliminary indications that this method can be useful and can be adapted to treat high-energy distributed velocity-space “clouds” or “haloes” as particular subdistributions (beams) in the sum.

Aside from the question of uniqueness of a beam decomposition for a given \(N \), it is not always clear how many beams, \(N \), should be included in the sum. In the theoretical limit in which \(N \) equals the number of particles in \(f(v) \), one enters the microscopic kinetic regime, where there is not even a concept of fluid variables such as temperature. However, published work on machine learning suggests a single digit number of beams, \(N \), is reasonable (Dupuis et al., 2020).

A least squares fitting method and other strategies for approximating velocity distributions measured during magnetic reconnection in the magnetosphere (e.g., Figure 2) as sums of beams have been presented at various conferences. A sequel to the present paper, which develops this and other methods for construction of multibeam moments, is about to be submitted for publication.

The present paper does not consider multibeam particle energy transport in space and time. The multibeam fluid moments taken here are of an Eulerian multibeam distribution, \(f(v) \), at one space-time point (or an average over at most a small range of such points). The study of processes such as multibeam particle energization and space-time energy transfer is beyond the scope of the moment methods discussed here. Nevertheless, undecomposed energy moments discussed in this paper may be useful in following spacecraft-measured Eulerian \(f(v) \) in time along the spacecraft orbit, especially when multiple beams appear to merge and split and when the distinction between coherent and incoherent moments is not essential.

Considerable insight is gained into the origins and energization of beams from Lagrangian studies based on kinetic theory (i.e., simulations), such as the particle trajectories traced in Figure 3. For example, a pair of beams may be two-stream unstable only so long as the space-time particle trajectories remain crossed at the same spatial point. Even if instability does occur, the spacecraft must remain at that crossing point long enough for it to be observed.

In conclusion, care must be taken when applying fluid concepts to highly non-Maxwellian particle velocity distributions, especially when they are disjoint.

Data Availability Statement

The MMS data presented as an example in Figure 2 (but not analyzed in the present theoretical paper) are accessible through the public link provided by the MMS science working group teams (http://lasp.colorado.edu/mms/sdc/public/).

References

Aunai, N., Belmont, G., & Smets, R. (2011). Energy budgets in collisionless magnetic reconnection: Ion heating and bulk acceleration. *Physics of Plasmas*, 18(12), 122901.
Bellan, P. (2006). Fundamentals of plasma physics (First ed., ISBN-13: 978-0521528009 ISBN-10: 0521528003). Cambridge: Cambridge University Press.

Birn, J., & Hesse, M. (2005). Energy release and conversion by reconnection in the magnetotail. Annales Geophysicae, 23, 3365–3373.

Braginskii, S. I. (1963). Transport phenomena in plasmas. Reviews of Plasma Physics, 1, 205.

Burch, J. L., Torbert, R. B., Phan, T. D., Chen, L. J., Moore, T. E., Ergun, R. E., et al. (2016). Electron-scale measurements of magnetic reconnection in space. Science, 352(6290), aa2939. https://doi.org/10.1126/science.aaf2939

Cravens, T. E. (2004). Physics of solar system plasmas. Cambridge: Cambridge Univ. Press.

Dupuis, R., Goldman, M. V., Newman, D. L., Amaya, J., & Lapenta, G. (2020). Characterizing magnetic reconnection regions using Gaussian mixture models on particle velocity distributions. Astrophysical Journal, 899, 22. https://doi.org/10.3847/1538-4357/ab5524

Eastwood, J. P., Goldman, M. V., Hietala, H., Newman, D. L., Mistry, R., & Lapenta, G. (2014). Ion reflection and acceleration near magnetotail dipolarization fronts associated with magnetic reconnection. Journal of Geophysical Research: Space Physics, 120, 511–525. https://doi.org/10.1002/2014JA020516

Fazakerley, A. N., Schwartz, S. J., Paschmann, G. (1998). Measurement of plasma velocity distributions, in analysis methods for multi-spacecraft data. In G. Paschmann & P. W. Daly (eds.), International Space Science Institute/ESA, ISSI, (p. 91–124).

Goldman, M. V., Newman, D. L., & Lapenta, G. (2016). What can we learn about magnetotail reconnection from 2D PIC Harris-sheet simulations? Space Science Reviews, 199(1–4), 651–688. https://doi.org/10.1007/s11214-015-0154-y

Kulsrud, R. M. (2005). Plasma physics for astrophysics. Princeton: Princeton University Press.

McFadden, J. P., Carlson, C. W., Larson, D., Ludlam, M., Abiad, R., Elliott, B., et al. (2008). The THEMIS ESA plasma instrument and in-flight calibration. Space Science Reviews, 141(1–4), 277–302.

Paschmann, G., Fazakerley, A. N., Schwartz, S. J. (1998). Moments of plasma velocity distributions, in Analysis methods for multi-spacecraft data. In G. Paschmann & P. W. Daly (eds.), International Space Science Institute/ESA, ISSI SR-001 (p. 125–158).

Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., et al. (2016). Fast plasma investigation for magnetospheric multiscale. Space Science Reviews, 199(1–4), 331–406.

Rager, A. C., Dorelli, J. C., Gershman, D. J., Uritsky, V., Avanov, L. A., Torbert, R. B., et al. (2018). Electron crescent distributions as a manifestation of diamagnetic drift in an electron-scale current sheet: Magnetospheric Multiscale observations using new 7.5 ms Fast Plasma Investigation moments. Geophysical Research Letters, 45, 578–584. https://doi.org/10.1002/2017GL076260

Rème, H., Aoustin, C., Bosqued, J.M., Dandouras, I., Lavraud, B., Sauvaud, J.A., et al. (2001). First multi-spacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. In Annales Geophysicae (Vol. 19, No. 10/12, pp. 1303–1354).