Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Immune system changes in those with hypertension when infected with SARS-CoV-2

Sheng Su a,b,1, Ruirong Chen a,c,1, Shaofen Zhang d,1, Haihua Shu a,c,*, Jianfang Luo a,b,*

a The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
b Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
c Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
d Department of Gynaecology and Obstetrics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China

ARTICLE INFO

Keywords:
SARS-CoV-2
COVID-19
Hypertension
Immune system
Treatment

ABSTRACT

The coronavirus disease 2019 (COVID-19) outbreak has become an evolving global health crisis. With an increasing incidence of primary hypertension, there is greater awareness of the relationship between primary hypertension and the immune system [including CD4+ T cells, CD8+ T cells, interleukin-17 (IL-17)/T regulatory cells (Treg) balance, macrophages, natural killer (NK) cells, neutrophils, B cells, and cytokines]. Hypertension is associated with an increased risk of various infections, post-infection complications, and increased mortality from severe infections. Despite ongoing reports on the epidemiological and clinical features of COVID-19, no articles have systematically addressed the role of primary hypertension in COVID-19 or how COVID-19 affects hypertension or specific treatment in these high-risk groups. Here, we synthesize recent advances in understanding the relationship between primary hypertension and COVID-19 and its underlying mechanisms and provide specific treatment guidelines for these high-risk groups.

1. Introduction

Corona Virus Disease 2019 (COVID-19) is an acute respiratory infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a public health emergency of international concern. In the COVID-19 epidemic, researchers found that nearly half of COVID-19 inpatients had comorbidities, with hypertension being the most common comorbidity [1–5]. What’s more, hypertension is more frequently observed in patients with severe COVID-19 compared to non-severe patients [6]. This suggests that there may be a causal relationship between hypertension and COVID-19 or its severity, which may be mainly related to the specific immune status of hypertension. Understanding how the immune system changes with hypertension and how the immune system interacts with COVID-19 is important, as each key link is expected to be a potential target for COVID-19, providing new approaches and ideas for treating COVID-19 in patients with hypertension. Generally, hypertension can be divided into primary hypertension and secondary hypertension. This paper mainly discusses the interaction of immune system change in primary hypertension with SARS-CoV-2 (see Table 1).

2. The invasion of SARS-CoV-2

Hypertension has a specific inflammatory immune state that may increase the risk of contracting COVID-19 and progressing to severe pneumonia [7,8]. When SARS-CoV-2 enters patients with high blood pressure, the body’s immune system is more likely to trigger a cytokine storm, raising the possibility that the virus will cause serious consequences, such as severe pneumonia and death.

The angiotensin-converting enzyme 2 (ACE2) has been identified as a functional receptor for coronaviruses [9], including SARS-CoV and SARS-CoV-2. Studies have shown that SARS-CoV-2 uses spikes glycoprotein (S) proteins to bind to ACE2 on target cells [10]. Serum ACE2 activity is elevated in hypertensive patients [11]. In addition, with the development of hypertension, the number of ACE2 in patients will increase with the occurrence of other cardiovascular diseases, such as coronary atherosclerosis, myocardial ischemia, myocardial infarction, and heart failure [11,12]. This suggests that people with high blood...
Table 1
Effects of changes in the immune system of hypertension on COVID-19.

Cell/Receptor/Cytokine	Function	Changes in hypertension	Effects on hypertension	Effects on SARS-CoV-2
CD4+ T cells	Secreto pro-inflammatory cytokines; identify antigen[151]	Activated	Attenuate the vascular and renal immune-inflammation	Contribute to cytokine storms and are associated with severe SARS-CoV-2 infection
CD8+ T cells	Secreto pro-inflammatory cytokines; killing effects[151]	Activated	Promote vascular endothelial dysfunction, vascular sparsity and sodium and water retention induced by Ang II[28]	Associated with the pathogenesis of extremely severe SARS-CoV-2 infection[80]
Th17 cells	Promote inflammatory response[41]; down-regulate Treg mRNA[152]	Activated	Aggravate vascular inflammatory response Vascular dysfunction[152]	Promotes the onset and development of cytokine storms
Treg cells	Inhibit immunity responses	Decreased	Aggravate vascular dysfunction[40]	Promotes the onset and development of cytokine storms
B cells	Identify and process antigens; differentiates into plasma cells; secrete cytokines	Increased; activated	Enhance the effect of Ang II on raising blood pressure	Contribute to the formation of cytokine storms[43] and associated with a severe infection in COVID-19[47,138]
Plasma cells	Produce antibodies and cytokine[153]			Promotes the onset and development of cytokine storms
Neutrophils	Phagocytosis; antibacterial activity[154,155]; induces tissue inflammation and fibrosis	Increased	Promotes ROS - induced vascular damage and kidney damage[156]	Promotes the onset and development of cytokine storms
NK cells	Cytolytic activity; secrete cytokines and chemokines	Increased	Interact with monocytes and promote Ang II-induced vascular dysfunction[49,50]	Contribute to SARS-CoV-2 invasion and promotes the formation of cytokine storms
Monocytes	Phagocytosis; antigen presentation[157]	Activated	Aggravate vascular dysfunction[49]	Promote the onset and development of cytokine storms
Dendritic cells	Present antigen and activate T cell; secrete cytokines	Activated	Oxidative injury and inflammation[59]	Promote the onset and development of cytokine storms
Macrophage	Phagocytosis; secretes cytokines and chemokines	Activated	Promotes hypertension through RAAS[57]; causes vascular endothelial disorders and renal sodium excretion disorders[158]	Promote the onset and development of cytokine storms
IFN-γ	Antiangiogenic; promotes inflammatory response and antigen presentation[159]	Increased	Promotes vascular inflammation and vascular dysfunction and induces target organ damage	Promotes the onset and development of cytokine storms; synergistic interaction between TNF and IFN-γ specifically induces cell death, leading to multiple organ damage[166]
TNF	Promotes apoptosis and renal vasconstriction; reduces glomerular filtration rate[161]	Increased	Promotes the development of Ang II-dependent hypertension[162] and induces target organ damage[33]	Promotes the onset and development of cytokine storms; synergistic interaction between TNF and IFN-γ specifically induces cell death, leading to multiple organ damage[160]
VEGF	Stimulates the proliferation of vascular endothelial cells and induces angiogenesis; increases vascular permeability[163]	Increased	Aggravates abnormal angiogenesis and endothelial dysfunction[164]	Cause central nervous system damage via Ang II mediated[165]
TGF-β	Promotes the fibrosis[166]; inhibits immune cell proliferation and secretion of cytokines[167]	Increased	Promotes salt-induced hypertension and leads to kidney and heart fibrosis[166]	Reduces inflammatory response and symptoms; delays virus clearance, and increases infection rates
GM-CSF	Increases monocyte and neutrophil; Initiation and perpetuation of inflammatory response[168,169]	Increased	Promotes Ang II-induced vascular dysfunction[170]	Limits virus-related injury in the early phases; inappropriate release promotes the cytokine storms in later phases[171]
IL-1	Activates T cells, B cells and other immune cells[172]	Increased	Promotes Ang II-dependent hypertension[173]	Promotes the onset and development of cytokine storms
IL-2	Activates T cell and NK cell cytotoxicity[174]	Decreased	Conduce to SARS-CoV-2 invasion	
IL-4	Induces CD4+ T cells to differentiate into Th2 phenotype[175]; regulates cell proliferation and apoptosis[176]	Decreased	Reduces endothelial dysfunction[177]	Promotes the onset and development of cytokine storms
IL-6	Stimulates the proliferation of activated B cells and secretes antibodies; stimulates T cell proliferation and CTL activation[178]	Increased	Promotes Ang II - cold-mediated hypertension[179]	Promotes the onset and development of cytokine storms
IL-8	Up-regulates VEGF synthesis in endothelial cells	Increased	Promotes vascular inflammation, abnormal angiogenesis, and endothelial dysfunction[164]	Promotes the onset and development of cytokine storms
IL-10	Prevents and limits tissue damage caused by excessive immune response[180]	Decreased	Aggravates vascular dysfunction[181]	Conduce to SARS-CoV-2 invasion; aggravates tissue damage
IL-13	Inhibits monocyte releasing pro-inflammatory cytokines; promotes Th cell immune response[182,183]	Decreased	–	Promotes the onset and development of cytokine storms
IL-17	Mediates tissue inflammation[184]	Increased	Resists stress urinary sodium excretion[104]; promotes Ang II-induced vascular dysfunction[185]	Promotes the onset and development of cytokine storms
IL-22	Induces pro-inflammatory cytokines production	Increased	Exacerbates Ang II-induced vascular dysfunction[64]	Promotes the onset and development of cytokine storms
IL-23	Regulates Th17 phenotypes by IL-23 receptors[186]; promotes chronic inflammatory response[187]	Increased	Exacerbate vascular inflammation; aggravates vascular dysfunction	Promotes the onset and development of cytokine storms

(continued on next page)
pressure are more susceptible to SARS-CoV-2 infection and more likely to suffer deterioration of the disease. After cell invasion, the virus replicates heavily and activates various immune cells, which release large amounts of cytokines.

The internalization and exocytosis of ACE2 caused by virus invasion reduced the expression of ACE2 on the cell membrane [13]. ACE2 has a lung-protective effect [14], and a decreased level of ACE2 may aggravate lung injury. Besides, angiotensin 1-7 (Ang 1-7) is the main product of angiotensin II (Ang II) degradation by ACE2, which produces vasodilation by activating bradykinin and nitric oxide (NO), releasing prostaglandin, and inhibiting the release of norepinephrine [15,16]. Ang 1-7 also has anti-inflammatory effects mediated by MAS receptors [17]. The decrease of ACE2 also leads to the decrease of Ang 1-7, which will further aggravate hypertension and make the inflammatory response more intense. Hypertension patients are at high levels of Ang II [18-20]. Ang II levels were linearly correlated with viral load and lung injury [21]. Ang II binds to angiotensin II type 1 receptor (AT1R) to promote inflammation and chronic inflammatory activation of endothelial cells. This state may promote cytokine storms, with severe consequences for those infected with COVID-19, potentially leading to death.

3. The interaction of SARS-CoV-2 and the immune system of hypertension

Compared with those without hypertension, patients with hypertension have a special immune state characterized by endothelial dysfunction and oxidative stress [24]. They are often affected by low-grade chronic inflammation, which may affect how people with high blood pressure respond to viral infections, and SARS-CoV-2 is no exception. This state may promote cytokine storms, with severe consequences for those infected with COVID-19, potentially leading to death. This may explain why COVID-19 patients with hypertension are more likely to develop severe pneumonia and die than those without hypertension [25] (Fig. 1).

Pathogen-related molecular patterns (PAMs) produced after SARS-CoV-2 invasion and danger-associated molecular patterns (DAMPs) released by damaged cells in vivo bind to pattern recognition receptors (PRRs), including epithelial cells, macrophages, and dendritic cells. These cells produce an intracellular cascade reaction, releasing many cytokines that activate and attract more immune cells, such as macrophages, NK cells, neutrophils, CD4+ T cells, CD8+ T cells, and B cells.

These activated immune cells concentrate on the damaged site, exert corresponding immune effects, and release more cytokines, creating a cascade effect that may eventually lead to a cytokine storm [26]. Pre-existing inflammation combined with the direct assault of SARS-CoV-2 may make hypertension patients more likely to develop cytokine storms. Ang II induces T cell proliferation [27,28]. T cells play a central role in the regulation of hypertension, and they are overactivated and proliferated in patients with hypertension [29,30]. The lymphocyte count was positively correlated with the values of systolic and diastolic blood pressure [31]. These T cells exhibit a senescent phenotype characterized by telomere shortening, loss of costimulatory factors CD27 and CD28, and increased surface marker CD57. Due to the lack of costimulatory receptors, senescent T cells cannot participate in classical activation through T cell receptor (TCR) [32]. They lose their ability to fight the virus. However, these cells showed a continuous state of pro-inflammatory activation. T cells produce pro-inflammatory cytokines, such as IFN-γ and TNF [CD8+ T, CD4+ T helper 1 (Th1)] and IL-17A (γδ T, CD4+ Th17), that exacerbate hypertension-related responses and induce endothelial dysfunction, as well as heart, kidney, and neurodegenerative damage [33]. Aging CD8+ T cells also produce many cytotoxic granulosa (IFN-γ perforin and granzyme) [34]. The hyperfunction of CD4+ and CD8+ T cells may be associated with the pathogenesis of severe SARS-COV-2 infection [35,36]. There is an abnormal ratio of helper T cells (Th17) to regulatory T cells (Treg) in hypertensive patients [37-41]. Treg cells inhibit innate and adaptive immune responses [40], and the reduction of Treg cells, the anti-inflammatory effect in patients with hypertension decreases. There is a physiological shift in hypertension patients to a Th17 environment conducive to the expression of inflammatory cytokines IFN-γ, vascular endothelial growth factor (VEGF), IL-1α, and IL-1β, IL-6, IL-12, IL-17. This provides the conditions for cytokine storms to occur.

In Ang II-induced hypertension, NK cells and monocytes activate each other [49]. NK cells have cytolytic activity against tumor or pathogen-infected cells, and they also release cytokines including IFN-γ, TNF, and GM-CSF, as well as chemokines such as chemokine ligand (CCL) 4, CCL5, and CCL22 [50,51]. The increase of NK cells in patients with hypertension leads to a significantly enhanced inflammatory response. Circulating monocytes in hypertensive patients have a pro-inflammatory phenotype [52] and contain high concentrations of harmful cytokines in the serum (IL-1β and TNF) [53]. Increased pro-

Table 1 (continued)

Cell/Receptor/ Cytokine	Function	Changes in hypertension	Effects on hypertension	Effects on SARS-CoV-2
CRP	Activates the complement pathway; promotes the release of pro-inflammatory cytokines and apoptosis [188]	Increased	Promotes vascular endothelial dysfunction and atherosclerosis [189]	Promotes the onset and development of cytokine storms
ACE2	Promotes angiotensin conversion; functional receptors for SARS-COV-2	Increased	Promotes Ang II-mediated hypertension [190]	Conductive to the invasion of SARS-COV-2; exacerbates lung injury
C3	Promotes immune cells to engulf pathogens; regulates cytokine release, and promotes an inflammatory response [191]	Increased	Aggravates inflammatory response and terminal organ injury [192]	Promotes inflammation and exacerbates symptoms of SARS-COV-2 infection [191]

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; Ang II, angiotensin II; Th17 cells, T helper cell 17; Th2 cell, T helper cell 2; Treg cells, regulatory cells; ROS, reactive oxygen species; NK cells, natural killer cells; RAAS, renin-angiotensin-aldosterone system; IFN-γ, interferon gamma; TNF, tumor necrosis factor-alpha; VEGF, vascular endothelial growth factor; TGF-β, transforming growth factor-beta; GM-CSF, granulocyte-macrophage colony-stimulating factor; IL-1, interleukin 1; IL-2, interleukin 2; IL-4, interleukin 4; IL-6, interleukin 6; IL-8, interleukin 8; IL-10, interleukin 10; IL-13, interleukin 13; IL-17, interleukin 17; IL-22, interleukin 22; IL-23, interleukin 23; CTL, cytotoxic T lymphocyte; CRP, C-reactive protein; ACE2, angiotensin-converting enzyme 2; C3, complement 3.
inflammatory (M1) macrophage activity and number were observed in angiotensin II-induced salt hypertension \cite{54-58}. M1 macrophages can produce pro-inflammatory cytokines, such as IL-1β, IL-6, IL-12, IL-23, and TNF, which aggravate the cytokine storm \cite{58}. Dendritic cells are activated in hypertensive patients and trigger T cell activation and proliferation to produce IL-17A, TNF, and IFN-γ \cite{59}. Patients with hypertension have elevated levels of neutrophils \cite{60} that will further promote the occurrence and development of cytokine storms in COVID-19 patients.

The levels of IFN-γ, TGF-β1, VEGF, IL-1α, TNF, IL-1β, IL-6, IL-8, IL-17,
IL-22, IL-23, C-reactive protein (CRP), complement component 3 (C3), and chemokines were increased [61–65]. On the contrary, IL-4 [66], IL-2 [67], IL-10 [68,69], and IL-13 [70] levels were decreased. These changes during hypertension have been associated with worsening symptoms in patients with COVID-19 and the occurrence and development of cytokine storms.

4. Immune changes in COVID-19 lead to hypertension

Studies have shown that people with COVID-19 can develop high blood pressure [71]. Ang II levels were significantly higher in patients with elevated blood pressure after COVID-19. Renin-angiotensin-aldosterone-system (RAAS) plays a key role in the cardiovascular system, including the classical RAAS axis (ACE-ANG II-AT1R pathway) and the non-classical RAAS axis (ACE2-ANG 1-7- Mas receptor pathway), balancing the roles of the two axes in regulating cardiovascular physiology and disease [72,73]. In those people with COVID-19 that develop high blood pressure, this may be related to the inhibition of Ang II degradation by the combination of SARS-COV-2 and ACE2, leading to increased blood pressure. At the same time, elevated Ang II promotes inflammatory and cytokine storms [23] that stimulate the nicotinamide adenine dinucleotide (NADH)/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system and trigger cell contraction and vasoconstriction, exacerbating COVID-19-related organ damage [21] (Fig. 2).

Hypertension is a cause or result of endothelial dysfunction [74]. Endothelial dysfunction after SARS-CoV-2 infection is the key to the progression of COVID-19 [75], so patients infected with SARS-CoV-2 are at increased risk of developing hypertension and exacerbation of hypertension.

The number of CD4+ and CD8+ T cells was significantly reduced in peripheral blood, and their state was overactivated. And increased Th17 and high cytotoxicity of CD8 T cells were observed [76,77]. In addition, circulating levels of different pro-inflammatory cytokines dramatically

Fig. 2. In COVID-19 patients, CD4+ T cells, CD8+ T cells, and macrophages increase, and then cytokines, such as TNF, IL-1 and IL-6, produced by these cells increase, which promotes the occurrence of inflammatory reactions in vivo and leads to vascular endothelial dysfunction, thus increasing the risk of the occurrence and aggravation of hypertension. (a) Both COVID-19 and chronic hypertension can lead to arrhythmias. Cytokines such as TNF are increased in hypertensive patients with COVID-19, further damaging myocardial cells and increasing arrhythmias. (b) High plasma fibrinogen levels and impaired vascular endothelium in hypertensive patients are conducive to thrombosis. People with high blood pressure who have COVID-19 are more likely to develop blood clots because of their abnormal clotting status and endothelial dysfunction due to inflammation. (c) Many macrophages and T cells infiltrate renal microvessels in COVID-19 patients, while patients with hypertension are more likely to form cytokine storms, which leads to acute kidney injury. TNF, tumor necrosis factor; IL-1, interleukin 1; IL-6, interleukin 6.
increase, causing CD4 and CD8 to accumulate in target organs, which was related to severe acute respiratory syndrome [78]. Cytokines secreted by T cells play a key role in developing hypertension [30]. Moreover, CD4+ T cells and CD8+ T cells play a central role in hypertension. In line with this, patients with COVID-19 are more likely to develop or have worsened hypertension [79].

In COVID-19 patients, the level of Treg cells decreased [35,80], the level of Th17 cells increased, and the ratio of Th17/Treg cells decreased [81]. There is an overall decrease in NK cell subsets in COVID-19, and the balance of NK cell subsets favors inflammation rather than cytotoxicity [82]. Inflammatory monocyte-derived macrophages increase in COVID-19 patients and infiltrate the lungs, promoting inflammatory response [78]. Meanwhile, levels of IFN-γ, TNF, IL-1, IL-6, IL-8, IL-10, monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1A (MIP-1A) were significantly elevated in COVID-19 patients [4,80,83]. This makes the immune state of the body pro-inflammatory state change, which will be conducive to the occurrence and development of hypertension.

5. COVID-19 with hypertension leads to adverse outcomes

COVID-19 with hypertension can increase the risk and severity of cardiovascular system and kidney damage (Fig. 2).

Long-term high blood pressure can damage the heart muscle [84,85]. COVID-19 patients with cardiovascular disease have a higher prevalence of myocardial damage and are more likely to require admission to the Intensive Care Unit (ICU) [86]. SARS-CoV-2 binds to ACE2, and a decrease in ACE2 leads to age-dependent cardiomyopathy, cardiac insufficiency, and heart failure [87,88]. Down-regulation of ACE2 also reduces Ang 1-7, impeding its cardioprotective effect, leading to increased production of TNF and promoting inflammatory responses [87,89]. Meanwhile, pre-existing inflammation combined with the direct assault of SARS-CoV-2 may make hypertension patients more likely to develop cytokine storms, which release large amounts of cytokines and cause damage to heart cells [26].

Changes in cardiac hemodynamics, structure, and electrophysiological characteristics caused by chronic hypertension can lead to supraventricular and ventricular arrhythmias [90]. COVID-19 can cause arrhythmias, possibly due to electrolyte and hemodynamic disturbances and high inflammatory stress [91–94]. Patients with severe COVID-19 and myocardial damage have a higher incidence of arrhythmias [1], and hypertension is a risk factor for severe COVID-19 and cardiac injury. Consequently, people with high blood pressure who have COVID-19 are more likely to develop myocardial damage and arrhythmias.

Patients with hypertension have high plasma fibrinogen levels, impaired fibroblinolysis, endothelial dysfunction, and favorable thrombosis [95]. Likewise, studies have suggested that COVID-19 is an endothelial disease, which can lead to clotting disorders [96]. When endothelial dysfunction persists, coagulation cascade activation and microvascular obstruction occur [97]. Dysfunction of ACE2 leads to abnormal activation of RAAS and systemic endodermatitis, which is associated with abnormal clotting in COVID-19 patients [98]. In addition, over-activation of the inflammatory response is also involved in COVID-19-related thrombosis [99]. If hypertension patients are infected by SARS-CoV-2, an existing abnormal clotting state in the body will further promote the formation of thrombosis.

Because COVID-19 patients with high blood pressure are more likely to develop cardiovascular complications that can lead to death in severe cases, therefore, we should pay more attention to the cardiovascular situation of COVID-19 patients with hypertension, timely detection of problems and appropriate treatment measures.

Patients with COVID-19 have a high incidence of renal dysfunction and are prone to acute kidney injury [100]. The main immune mechanisms of renal damage in COVID-19 patients are macrophage and T-cell-dominated microvascular inflammation (glomerulitis and peritubular capillaries) [101]. The innate and adaptive immune systems of hypertensive patients are active [102]. Activated immune cells (monocytes, macrophages, neutrophils, dendritic cells, NK cells, and T cells) can promote a host of pro-inflammatory cytokines, such as TNF, TGF-β, IL-1, IL-6, IL-17, and IFN-γ, which magnify elevated kidney injury [103–106]. This is similar to the overactivation of the immune system in patients with COVID-19 and the eventual formation of cytokine storms. Therefore, the co-occurrence of hypertension and COVID-19 may increase the risk of impaired renal function, and we recommend long-term renal function testing and blood pressure control in these patients [107,108].

6. Hypertension therapy under COVID-19

In the COVID-19 pandemic, medication options for patients with hypertension will be different (Table 2).

Antihypertensive	Drug	Mechanism of action	Effect in COVID-19
ACEI	Inhibits angiotensin II biosynthesis[193]	Dampens COVID-19-related hyperinflammation and increases cell-intrinsic antiviral response[113]	
ARB	Blocks angiotensin II receptor[193]	Enhances epithelial-immune cell interaction[113]	
CCB	Blocks Ca2+ via voltage-dependent calcium channels[194]	Suppresses the activation of immune reactions[195]	
β-blockers	Against catecholamines, adrenergic transmitters[196]; decreases ACE2 receptors expression and CD147[197]	Decreases the SARS-CoV-2 cellular entry; decreases the morbidity and mortality in COVID-19 patients[197]	

ACEI, angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor blocker; CCB, calcium channel blockers; COVID-19, Coronavirus Disease 2019.
in vitro and in vivo experiments have shown that it can resist the replication associated protein kinase-1; GAK, cyclin G-associated kinase; IL-6, interleukin-6; IFN, interferon; Treg/Th17, T regulatory cells/ T helper cell 17.

7. COVID-19 therapy under hypertension

The treatment of COVID-19 in patients with hypertension will differ from those without hypertension, and more attention should be paid to cardiovascular side effects when taking medication. We have summarized several drugs suitable for treating COVID-19 in patients with hypertension (Table 3).

Remdesivir is a novel broad-spectrum antiviral nucleotide prodrug that inhibits viral replication by interrupting viral RNA transcription. In vitro and in vivo experiments have shown that it can resist the replication of SARS-CoV [124,125]. Studies have shown that remdesivir may reduce clinical recovery time for COVID-19 patients [126]. There have been no reports of cardiovascular side effects and toxicity associated with remdesivir, which is a very promising treatment [127].

Bamlanivimab and etesevimab are recombinant human immunoglobulin G1 antibodies that rapidly protect against SARS-COV-2 infection and COVID-19 by binding to the Spike protein. Studies have shown that bamlanivimab can reduce infection rates in people at high risk of COVID-19 and reduce the risk of hospitalization in patients with mild cases [128,129]. Treatment with bamlanivimab and etesevimab significantly reduced SARS-COV-2 load compared with placebo in out-of-hospital patients with mild-to-moderate COVID-19 and reduced hospitalizations and deaths [128,130]. Patients with other chronic conditions, such as cardiovascular disease and high blood pressure, could benefit [130].

Tocilizumab is an IL-6 antagonist. Studies have shown that tocilizumab reduces all-cause mortality in patients with COVID-19, which may be related to the fact that IL-6 antagonists reduce inflammation in patients and help the immune system fight COVID-19 [131]. Other IL-6 antagonists have been shown to have similar effects [131,132]. Notably, IL-6 antagonists improved outcomes in patients with severe cardiovascular complications [132].

Interferon is a cytokine that regulates the immune response to viral infection. Studies have shown that IFN β-1a improves antiviral response and lung function, contributing to improvement or recovery in patients with SARS-CoV-2 infection, and is also safe and effective in patients with hypertension [133,134]. Similarly, other interferons, such as interferon-α and interferon-α-2b, are equally effective against COVID-19 [135].

Baricitinib is a selective inhibitor of Janus kinase (JAK) 1 and 2 [136]. Baricitinib can decrease the cytokines, including IL-2, IL-6, IL-10, INF-γ, and GM-CSF, and improves lymphocyte counts in patients with COVID-19 [137]. Despite concerns about immunosuppressive secondary infections and thrombosis with JAK inhibitors, the addition of baricitinib was not associated with a significantly increased incidence of adverse events or thromboembolic events [138]. It is a relatively safe drug, but further studies are needed for COVID-19 patients with hypertension.

Corticosteroids are steroid hormones and are used as immunosuppressants in clinical work. Systemic corticosteroids are used to treat people with COVID-19 because they counter hyper-inflammation, such as anaphylaxis, myocarditis, thrombosis, capillary leak syndrome, hyperglycemia, infection, water retention, sodium retention, …

Table 3

Therapeutic function	Drug	Mechanism of action	Effect in COVID-19	Adverse effects
Anti-virus	Remdesivir	Inhibits viral replication by interrupting viral RNA transcription [198]	Inhibits the replication of COVID-19 coronavirus [125,126]	Hypotension, nausea, acute respiratory failure, hypokalemia [199]
	Bamlanivimab	Binds to Spike protein and protects against SARS-COV-2 infection [200]	Accelerates the decline in the SARS-CoV-2 viral load [129,138]	Nausea, rash, dizziness, diarrhea, hypertension [138]
Cytokine antagonists	Tocilizumab	Binds soluble IL-6 receptor and inhibits IL-6 signalling [201,202]	Reduces inflammatory response and reduces symptoms after SARS-CoV-2 infection [132]	Infection, rash, headache, dizziness, hypertension, cough [202]
	IFN β – 1a	Supplies IFN [203]	Prevents cytokine storm, improves antiviral response and lung function	Injection-related, neuropsychiatric problems, hypersensitivity reactions [204]
Others	Baricitinib	Binds to AAK1 and GAK; suppresses JAK1/JAK2 [205]	Interrupts SARS-COV-2 access to target cells and intracellular assembly; moderates cytokine storm	Malignancy, thrombosis, neutropenia, lymphopenia, anemia, thrombocytosis
	Vitamin D	Regulates the imbalance of Treg/Th17 and prevents excessive inflammatory response [206]	Against respiratory viral infections and prevents excessive inflammatory response	–
	Convalescent plasma	Supplies virus-associated antibodies	Reduces the progression of COVID-19	–
	Steroids	Suppress innate and adaptive immunity	Reduce the catastrophic effects generated by the overactivation of the immune system	Hyperglycemia, infection, water retention [207,208]
Vaccination	Messenger RNA vaccines	Induces an immune response	Reduce the risk of contracting COVID-19 and progressing to severe pneumonia; slow the further spread of COVID-19	Anaphylaxis, myocarditis, thrombosis, capillary leak syndrome [209]
	Viral vector vaccines	Inactivated and protein subunit vaccines	–	–

COVID-19, Coronavirus Disease 2019; SARS-COV-2, severe acute respiratory syndrome coronavirus 2; JAK1, Janus kinase 1; JAK2, Janus kinase 2; AAK1, AP2-associated protein kinase-1; GAK, cyclin G-associated kinase; IL-6, interleukin-6; IFN, interferon; Treg/Th17, T regulatory cells/ T helper cell 17.
as suppressing pro-inflammatory cytokines and increasing anti-inflammatory cytokine mediators. The benefits and risks of glucocorticoid use in patients with mild COVID-19 are uncertain [139–141]. For patients of critical severity, glucocorticoid treatment reduced mortality [142]. However, corticosteroids may increase the risk of hyperglycemia, infection, and water sodium retention. Therefore, glucocorticoids should be used with caution in COVID-19 patients with hypertension. Vitamin D is an immunomodulatory hormone that can prevent excessive inflammatory response and speeds up the healing process in affected areas, primarily lung tissue [143]. Vitamin D supplementation protects against acute respiratory infections [144]. In the meantime, vitamin D has a protective effect against the development of hypertension [145,146]. Vitamin D is, therefore, a promising complementary therapy.

Convalescent plasma therapy is one of the promising treatments for COVID-19 disease. It should be most effective in the early stages of infection before organ damage becomes apparent. Hospitalized adult patients with severe COVID-19 pneumonia received no improvement in convalescent plasma clinical status or overall mortality [147]. Early-administration of high titer convalescent plasma resistant to SARS-CoV-2 to mildly infected older adults can reduce the progression of COVID-19, and it has been shown to be safe and effective in patients with hypertension [148].

Vaccination is one of the most promising preventive measures against COVID-19. It provides immune protection and reduces the risk of contracting COVID-19 and progressing to severe pneumonia if infected [149]. Vaccination can also slow the further spread of COVID-19. Vaccination is safe and effective for people with high blood pressure. Up to now, few cardiovascular side effects have been reported with the vaccine [149,150]. More extensive research is required regarding vaccinating hypertension patients.

8. Conclusion

COVID-19-related immune system changes in hypertension patients involve multiple cytokines, cells, and receptors. The stable immune system status of hypertension patients makes them more susceptible to SARS-CoV-2 invasion. After SARS-CoV-2 invades hypertension patients, the body’s immune response may be more serious, along with a higher risk of cytokine storms, which increases post-infection complications and mortality from severe infections. Therefore, it is important to accurately identify COVID-19 inflammatory pathways and therapeutic targets in hypertension patients.

Author contributions

HS and JL conceived and designed the study. SS, RC, and SZ performed the literature search and drafted the manuscript. All authors contributed to the article and approved the submitted version.

Funding

This research was supported by grants from the High-level Hospital Construction Project (grant no DFJH201807 and no DFJH201811) and the National Nature Science Foundation of China (grant no 82070478). The funding bodies did not have any role in the study’s design, data collection, and analysis, nor in the interpretation and dissemination of the results.

References

[1] D. Wang, B. Hu, C. Hu, et al., Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China, JAMA 323 (11) (2020) 1061–1069.

[2] B. Wang, B. Li, Z. Lu, et al., Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis, Aging 12 (7) (2020) 6049–6057.

[3] B. Li, J. Yang, F. Zhao, et al., Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China, Clin. Res. Cardiol.: Off. J. German Cardiac Soc. 109 (5) (2020) 531–538.

[4] C. Huang, Y. Wang, X. Li, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet (London, England) 395 (10223) (2020) 497–506.

[5] N. Chen, M. Zhou, X. Dong, et al., Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, Lancet (London, England) 395 (10223) (2020) 507–513.

[6] X. Li, S. Xu, M. Yu, et al., Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan, J. Allergy Clin. Immunol. 146 (1) (2020) 110–118.

[7] M. Kinoshita, K. Sato, B. Vellingiri, et al., Inverse association between hypertension treatment and COVID-19 prevalence in Japan, Int. J. Infect. Dis.: IJD Official Publication of the International Society for Infectious Diseases. 108 (2021) 517–521.

[8] C. Gao, Y. Cai, K. Zhang, et al., Association of hypertension and antihypertensive treatment with COVID-19 mortality: a retrospective observational study, Eur. Heart J. 41 (22) (2020) 2058–2066.

[9] A.J. Turner, J.A. Hiccox, N.M. Hooper, ACE2: from vasopeptidase to SARS virus receptor, Trends Pharmacol. Sci. 25 (6) (2004) 291–294.

[10] Y. Wan, J. Shang, R. Graham, et al., Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus, J. Virol. 94 (7) (2020).

[11] K. Üni, M. Fagyas, A. Kertész, et al., Circulating ACE2 activity correlates with cardiovascular disease development, J. renin-angiotensin-aldosterone system : JRAAS 17 (4) (2016).

[12] L. Angulano, M. Riera, J. Pascual, et al., Circulating ACE2 in Cardiovascular and Kidney Disea ses, Curr. Med. Chem. 24 (30) (2017) 3231–3241.

[13] R. Dijkman, M.F. Jebbink, M. Dej, et al., Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63, J. General Virol. 93 (Pt 9) (2012) 1924–1929.

[14] C.G.K. Ziegler, S.J. Allen, S.K. Nyquist, et al., SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues, Cell. (2020).

[15] S.M. Bindom, E. Lazartigues, The sweeter side of ACE2: physiological evidence for a role in diabetes, Mol. Cell. Endocrinol. 302 (2) (2009) 193–202.

[16] R.A. Santos, A.J. Ferreira, E.S.A.C. Simões, Recent advances in the angiotensin-converting enzyme 2-angiotoxin(1–7)-Mas axis, Exp. Physiol. 93 (5) (2008) 519–527.

[17] D.G. Passos-Silva, T. Verano-Braga, R.A. Santos, Angiotensin (1–7): beyond the cardio-renal actions, Clin. Sci. (London, England : 1979) 124 (7) (2013) 443–456.

[18] X.C. Li, J.L. Zhou, Recent Updates on the Proximal Tubule Renin-Angiotensin System in Angiotensin II-Dependent Hypertension, Curr. Hypertens. Rep. 18 (8) (2016) 63.

[19] N.M. Al-Daghi, I.S. Bindaham, O.S. Al-Attas, et al., Increased circulating ANG II and TNF-α represents important risk factors in obese saudi adults with hypertension irrespective of diabetic status and BMI, PLoS ONE 7 (12) (2012), e51255.

[20] A.M. Al-Hazimi, A.Y. Syamic, Relationship between plasma angiotensinll, leptin and arterial blood pressure, Saudi Med. J. 25 (9) (2004) 1193–1198.

[21] Y. Liu, Y. Yang, C. Zhang, et al., Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury, Sci. China Life Sci. 63 (3) (2020) 364–374.

[22] M.B. Marrero, B. Schieffer, W.G. Paxton, et al., Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor, Nature 375 (6582) (1995) 247–250.

[23] S.J. Forrester, G.W. Boux, C.D. Sigmund, et al., Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology, Physiol. Rev. 98 (3) (2018) 1627–1738.

[24] T.W. Buford, Hypertension and aging, Age Res Rev. 26 (2016) 96–111.

[25] S. Huang, J. Wang, F. Liu, et al., COVID-19 patients with hypertension have more severe disease: a multicenter retrospective observational study, Hypertension Res.: Off. J. Japanese Society of Hypertension 43 (8) (2020) 824–831.

[26] R. Chen, Z. Lan, J. Ye, et al., Cytokine Storm: The Primary Determinant for the Pathophysiological Evolution of COVID-19 Deterioration, Front. Immunol. 12 (2021), 589095.

[27] S.H. Jackson, S. Devadas, J. Kwon, et al., T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation, Nat. Immunol. 5 (8) (2004) 827–837.

[28] C. Nataraj, M.I. Oliverio, R.B. Mannon, et al., Angiotensin II regulates cellular oxidase that is activated after T cell receptor stimulation, Nat. Immunol. 5 (8) (2004) 827–837.

[29] S.H. Jackson, S. Devadas, J. Kwon, et al., T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation, Nat. Immunol. 5 (8) (2004) 827–837.

[30] C. Nataraj, M.I. Oliverio, R.B. Mannon, et al., Angiotensin II regulates cellular oxidase that is activated after T cell receptor stimulation, Nat. Immunol. 5 (8) (2004) 827–837.

[31] S.H. Jackso n, S. Devadas, J. Kwon, et al., T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation, Nat. Immunol. 5 (8) (2004) 827–837.
H.J. Anders, Of Inflammasomes and Alarmins: IL-1
N.V. Kamat, S.R. Thabet, L. Xiao, et al., Renal transporter activation during
A. Caillon, E.L. Schiffrin, Role of Inflammation and Immunity in Hypertension:
X. Yang, Y. Jin, R. Li, et al., Prevalence and impact of acute renal impairment on
T.P. Sheahan, A.C. Sims, R.L. Graham, et al., Broad-spectrum antiviral GS-5734
S. Singh, A.K. Offringa-Hup, S.J.J. Logtenberg, et al., Discontinuation of
C.S. Kow, D.S. Ramachandram, S.S. Hasan, Clinical outcomes of hypertensive
L.K. Zhang, Y. Sun, H. Zeng, et al., Calcium channel blocker amlodipine besylate
W. Pan, J. Zhang, M. Wang, et al., Clinical Features of COVID-19 in Patients With
G. Mancia, F. Rea, M. Ludergnani, et al., Renin-Angiotensin-Aldosterone System
J. Li, X. Wang, J. Chen, et al., Association of Renin-Angiotensin System Inhibitors
O. Hermine, X. Mariette, P.L. Tharaux, et al., Exploring links between vitamin D deficiency
L.K. Zhang, Y. Sun, H. Zeng, et al., Effectiveness of Systemic Corticosteroids Therapy
P.D. Monk, R.J. Marsden, V.J. Tear, et al., Safety and efficacy of inhaled nebulised
V. Horkova, A. Drobek, D. Mueller, et al., Dynamics of the Coreceptor-LCK
A.R. Martineau, D.A. Jolliffe, R.L. Hooper, et al., Vitamin D supplementation to
M. Mohan, J.J. Cherian, A. Sharma, Exploring links between vitamin D deficiency
Z. Chen, Y. Xin, X. Tan, et al., Effect of Tocilizumab vs Usual Care
M. Dougan, A. Nirula, M. Azizad, et al., Bamlanivimab plus Etesevimab in Mild or
V. Neifer-Smadja, Y. Yazdanpanah, Nebulised interferon beta-1a for patients with
N. Wang, Y. Zhan, L. Zou, et al., Retrospective Multicenter Cohort Study Shows
A.R. Martinez, D.A. Hooper, et al., IL-6 antagonists, tocilizumab and sarilumab, provide
2020), e1223. 222.
C. Wagner, M. Gräsel, A. Mikolajewska, et al., Systemic corticosteroids for the
treatment of COVID-19: The Cochrane Database Systematic Rev. 8 (8) (2020)
c041963.
L.M. Yu, M. Bafadhel, J. Dorward, et al., Inhaled budesonide for COVID-19
S. Su et al. in people at high risk of complications in the country in the UK (PRINCIPLE: a
randomised, controlled, open-label, adaptive platform trial, Lancet (London, England)
398 (10303) (2020), 843-855.
J. Li, X. Liao, Y. Zhou, et al., Comparison of Associations Between Glucocorticoids
Interactions during T Cell Development Shape the Self-Reactivity of Peripheral
P.D. Monk, R.J. Marsden, V.J. Tear, et al., Safety and efficacy of inhaled nebulised
M. S. Cohen, A. Nirula, M. J. Mulligan, et al., Effect of Bamlanivimab vs Placebo on
T. J. Gouk, S.A. Mohiddin, A. Dimarco, et al., COVID-19 and the cardiovascular system:
J.H. Beigel, K.M. Tomashek, L.E. Dodd, et al., Remdesivir for the Treatment of
T. P. Sheehan, A.C. Sims, S.R. Leit, et al., Comparative therapeutic efficacy of
J. H. Ng, V. Bijol, M.A. Sparks, et al., Pathophysiology and Pathology of Acute
J. Stebbing, V. Krishnan, S. de Bono, et al., Mechanism of baricitinib supports
A.C. Sims, R.L. Graham, et al., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses, Sci. Transl. Med. 9 (366) (2017).
M. S. Cohen, A. Nirula, M. J. Mulligan, et al., Effect of Bamlanivimab vs Placebo on
T. J. Gouk, S.A. Mohiddin, A. Dimarco, et al., COVID-19 and the cardiovascular system:
implementations for IL-1 receptor antagonists, Phase IIa clinical trial results, Lancet
J. Wang, A.M. Saguner, J. An, et al., Dysfunctional Coagulation in COVID-19:
L. Pearce, S.M. Davidson, D.S. Ramachandram, S.S. Hasan, Clinical outcomes of hypertensive
T. P. Sheehan, A.C. Sims, S.R. Leit, et al., Comparative therapeutic efficacy of
J.H. Anders, Of Inflammasomes and Alarmins: IL-1β and IL-1α in Kidney Disease, J.
J. Li, X. Wang, J. Chen, et al., Association of Renin-Angiotensin System Inhibitors
F. de Abajo, S. Rodríguez-Martín, V. Lerma, et al., Use of renin-angiotensin-
imheterosis of IL-1β and IL-18 on renal damage in diabetes, Cell Rep. 30 (5) (2020)
A. Caillon, E.L. Schiffrin, Role of Inflammation and Immunity in Hypertension:
M. Dougan, A. Nirula, M. Azizad, et al., Bamlanivimab plus Etesevimab in Mild or
R.N. Kumar, E.L. Wu, V. Stotzer, et al., Real-world Experience of Bamlanivimab for
X. Yang, Y. Jin, R. Li, et al., Prevalence and impact of acute renal impairment on
T.P. Sheehan, A.C. Sims, S.R. Leit, et al., Comparative therapeutic efficacy of
A.C. Sims, R.L. Graham, et al., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses, Sci. Transl. Med. 9 (366) (2017).
