A new HDF5 based raw data model for CCAT

Reinhold Schaaf¹, Adam Brazier², Tim Jenness², Thomas Nikola², and Martin Shepherd³
¹Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
²Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA
³California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA

Abstract. CCAT will be a large sub-millimeter telescope to be built near the ALMA site in northern Chile. The telescope must support a varied set of instrumentation including large format KID cameras, a large heterodyne array and a KID-based direct detection multi-object spectrometer. We are developing a new raw data model based on HDF5 that can cope with the expected data rates of order Gbit/s and is flexible enough to hold raw data from all planned instruments.

1. Introduction

CCAT (Woody et al. 2012; Glenn et al. 2013) will be a large sub-millimeter telescope to be built near the ALMA site in northern Chile. Operating at this altitude results in excellent transparency across all observing bands from 350 µm to 2 mm, including the potential to observe at 200 µm in the best weather conditions.

The telescope must support a varied set of instrumentation including large format KID cameras (SWCam; Stacey et al. 2014), a large heterodyne array (CHAI; Goldsmith et al. 2012) and a KID-based direct detection multi-object spectrometer (X-Spec; Bradford et al. 2014). CCAT’s raw data model must be flexible enough to be used with any of these instruments.

Since the expected data rates for the instruments are of order Gbit/s, it was decided to use a loosely-coupled distributed data acquisition system where instruments and the telescope control system (TCS) write out time-series independently of all other systems but where synchronization is managed by accurate recording of time stamps. It is up to the data reduction software to take the time stamps and determine which sequences are related. Each system writes out time-series using a shared data model and a central data capturer task (Jenness et al. 2014) collates the individual components and creates a linker file referencing them. The data capturer does not require highly synchronized coordination of data writing between systems.
Schaaf et al.

<ObsID>.h5
|--OCS Group Basic metadata
|--... other static metadata
|--TCS Group observation metadata
|--... other static metadata
|--TCS_00001 Group (ext. link) static TCS metadata
|--TCS_00002 Group (ext. link) TCS data (30s)
|--SWCam350 Group (ext. link) static SWCam350 metadata
|--SWCam350_00001 Group (ext. link) SWCam350 data (30s)
|--SWCam350_00002 Group (ext. link) SWCam350 data (30s)
|--SWCam450 Group (ext. link) static SWCam450 metadata
|--SWCam450_00001 Group (ext. link) SWCam450 data (30s)
|--SWCam450_00002 Group (ext. link) SWCam450 data (30s)

Figure 1. The HDF5 hierarchy of an observation with the 350\(\mu\)m and 450\(\mu\)m sections of SWCam. The HDF5 root group and other groups directly below it in the hierarchy (like the shown OCS group) contain observation-related static metadata. TCS and instrument data and metadata are stored in separate files, external links are used to establish a single HDF5 hierarchy for all data in the dataset.

2. Evaluation of existing raw data models

We have evaluated the existing data models MBFITS (Muders et al. 2006), NDF (Jenness et al. 2015; Economou et al. 2014) and LOFAR Data Types (Alexov et al. 2012). In view of CCAT’s demands, each of these data models has its advantages and disadvantages: MBFITS keeps data from different systems in different files, in accordance with the envisaged distributed data acquisition scheme; however, although MBFITS was designed and is being used for continuum and spectral line arrays conceptually similar to CCAT's first-light instruments, the data model is not flexible enough for new types of instruments like X-Spec. In contrast, NDF gives data authors wide freedom to design specialized data models on top of the general NDF model (for example those used for the SCUBA-2 (Holland et al. 2013) and ACSIS (Buckle et al. 2009) instruments) but lacks facilities for transparently linking structures across different files or for implementing tabular time-series data in an efficient manner\(^1\). The LOFAR Data Types (implemented in HDF5) are a family of related hierarchical data models for raw data and data products for various LOFAR observing modes; they share common structures for common data and metadata and allow specialized structures. However, the data models reflect the specific structure of the LOFAR array and its observation modes too much to be used directly for a single-dish telescope with radically different observing modes.

3. Layout of the raw data model

HDF5 (Folk et al. 2011) is a fundamentally hierarchical format that matches our design philosophy, but also supports critical features such as external links between files and high performance writing of time-series data using the packet table interface. For these reasons we have chosen to adopt HDF5 as our low-level data format on which to layer our data model.

\(^1\)Neither of these issues are fundamental issues with NDF and could easily be solved by implementing NDF on top of HDF5.
A new HDF5 based raw data model for CCAT

Figure 2. The HDF5 sub-hierarchy of the HDF5 hierarchy in Fig. 1 holding 30 s of TCS data. Since the TCS samples data at three different frequencies (300 Hz, 30 Hz, and 1 Hz), sub-structures for each of these frequencies are needed. Each of these sub-structure comprises a dataset Data with a table containing timestamps and TCS data, and an additional group Quality (similar to NDF’s QUALITY structure) allowing storage of a bit mask for each element of the Data dataset indicating missing or invalid data.

During an observation, the data capturer, the TCS, and involved instruments write their data to HDF5 files independently. The set of these files forms a dataset that contains all data and metadata of the involved systems during this observation. In order to avoid excessive file sizes, bulk data from the TCS and science instruments will be recorded in sequences of data files which hold chunks of data for 30 s each.

In order to form a single HDF5 hierarchy from the HDF5 structures in the files of a dataset, HDF5’s external links are used. The result is a HDF5 hierarchy with basic observation-related metadata at the root of the hierarchy, and TCS and instrument specific structures further down the hierarchy. Each system will write out structures in a standard way such that the TCS component of a CHAI observation will be identical to that of an SWCam observation. Furthermore, following the lead from NDF, structure layouts will be re-used wherever possible when designing the form of instrument-specific structures and, for example, the time field in every time-series table will use the same name and format to encourage code re-use and aid in cross-instrument understanding. There is, however, no requirement for each instrument to adopt data models that do not fit well with the needs of the particular instrument. This approach provides a good compromise between a well-constrained model and one with sufficient flexibility to cope with the specific needs of instruments. Figures 1, 2, and 3 illustrate the proposed HDF5 hierarchy.

HDF5’s external links rely on pathnames of the referenced files; since absolute pathnames are not invariant when files are moved, only relative pathnames are used. This requires that all files of a dataset reside in a single directory tree which can be achieved with mounts and (file-system) symbolic links. It is also likely that we will adopt the approach of using a distributed file system such as GPFS.

2Sometimes even using the NDF naming convention when that is appropriate.
Figure 3. The HDF5 sub-hierarchy of the HDF5 hierarchy in Fig. 1 for data from the 350 µm section of SWCam. The sub-hierarchy contains structures for static metadata needed for calibration and for 30s chunks of detector data. The detector data will be time-stamped and transparently compressed.

References

Alexov, A., et al. 2012, in Astronomical Data Analysis Software and Systems XXI, edited by P. Ballester, D. Egret, & N. P. F. Lorente, vol. 461 of ASP Conf. Ser., 283
Bradford, C. M., Hailey-Dunsheath, S., Shirokoff, E. D., Hollister, M. I., McKenney, C. M., Chapman, S., Tikhomirov, A., & Nikola, T. 2014, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, edited by W. S. Holland, & J. Zmuidzinas, vol. 9153 of Proc. SPIE, 91531Y
Buckle, J. V., et al. 2009, MNRAS, 399, 1026. [arXiv:0907.3610]
Economou, F., Jenness, T., Currie, M. J., & Berry, D. S. 2014, in Astronomical Data Analysis Software and Systems XXIII, edited by N. Manset, & P. Forshay, vol. 485 of ASP Conf. Ser., 355
Folk, M., Heber, G., Koziol, Q., Pourmal, E., & Robinson, D. 2011, in Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases (ACM), AD ’11, 36
Glenn, J., et al. 2013, in American Astronomical Society Meeting, vol. 221 of American Astronomical Society Meeting Abstracts, #150.06
Goldsmith, P., et al. 2012, Studying the Formation and Development of Molecular Clouds: with the CCAT Heterodyne Array Instrument (CHAI), http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/42645/1/12-2032_A1b.pdf
Holland, W. S., et al. 2013, MNRAS, 430, 2513. [arXiv:1301.3650]
Jenness, T., et al. 2014, in Software and Cyberinfrastructure for Astronomy III, edited by G. Chiozzi, & N. M. Radziwill, vol. 9152 of Proc. SPIE, 91522W. [arXiv:1406.1515]
— 2015, Astron. Comp., submitted. [arXiv:1410.7513]
Muders, D., et al. 2006, A&A, 454, L25
Stacey, G. J., et al. 2014, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, edited by W. S. Holland, & J. Zmuidzinas, vol. 9153 of Proc. SPIE, 91530L
Woody, D., et al. 2012, in Ground-based and Airborne Telescopes IV, edited by L. M. Stepp, R. Gilmozzi, & H. J. Hall, vol. 8444 of Proc. SPIE, 84442M