Generalized Labeled Multi-Bernoulli Extended Target Tracking Based on Gaussian Process Regression

Luo-jia Chi, Xin-xi Feng and Lu Miao
School of Information and Navigation, Air Force Engineering University, Xi’an, China

Abstract. For the problems that Gamma Gaussian Inverse Wishart Cardinalized Probability Hypothesis Density (GGIW-CPHD) filter cannot accurately estimate the extended target shape and has a bad tracking performance under the condition of low SNR, a new generalized labeled multi-Bernoulli algorithm based on Gaussian process regression is proposed. The algorithm adopts the star convex to model the extended target, and realizes the online learning of the Gaussian process by constructing the state space model to complete the estimation of the extended target shape. At the same time, in the low SNR environment, the target motion state is tracked by the good tracking performance of the generalized label Bernoulli filter. Simulation results show that for any target with unknown shape, the proposed algorithm can well offer its extended shape and in the low SNR environment it can greatly improve the accuracy and stability of target tracking.

1 Introduction

In an extended target tracking problem, target measurements collected by the sensor are no longer one point for one target, but a set of points. By obtaining the extended form of the target from measurement sets, we can achieve better tracking and recognition performance. The extended target form can be modelled as circle, rectangle, ellipse, star convex and other geometric shapes. In 2008, Koch first proposed the random matrix[1] which modelled the target as ellipse and estimated the motion state and extended form of the target. In 2012, Granstrom applied the random matrix to the extended target probability hypothesis density(PHD) filter and proposed the Gaussian Inverse Wishart PHD (GIW-PHD)filter[2], then he applied it to the Cardinalized probability hypothesis density (CPHD) filter and got Gamma Gaussian inverse Wishart CPHD (GGIW- CPHD)filter[3]. However, in low SNR environment, the tracking performance of above RFS algorithm is greatly reduced. In 2008, Baum proposed an extended target tracking method based on random hypersurfaces[4]. Then he modelled the targets as star-convex[5] and realized the tracking of irregular shape targets. In 2015, Gaussian process regression of machine learning is proposed to estimate extended target shape[6], avoiding complex calculation problems of the above algorithm due to excessive parameters, and achieving the accurate estimation of the target of any unknown shape.

A new generalized labeled multi-Bernoulli algorithm based on Gaussian process regression is proposed to solve the problem that GGIW-CPHD filter cannot accurately estimate the extended target shape and has a bad tracking performance under the condition of low SNR. The algorithm improves the accuracy and stability of target tracking in low SNR environment and realizes the accurate estimation of the unknown extended target shape using the Gaussian process regression.

2 Star convex model for extended target based on Gaussian process

2.1. Gaussian process regression

At present, Gaussian process is widely used in machine learning, statistics and communication processing to classify and identify signals[7-9]. In simple terms, the Gaussian process can be regarded as a distribution function $f(u)$ and can be defined by means functions $\mu(u)$ and covariance function $k(u,u')$.

$$f(u) \sim GP(\mu(u),k(u,u'))$$

which

$$\mu(u) = E[f(u)]$$

$$k(u,u') = E[(f(u) - \mu(u))(f(u') - \mu(u'))^T]$$

The Gaussian process learns the unknown function through the input training data. The measurement model is given below:

$$z_k = f(u_k) + e_k$$

Corresponding author: 592255820@qq.com, fengxinxi2005@aliyun.com, 1766584727@qq.com
The learning process mainly is: given a set of measurement \(z [z_1, \ldots, z_s]^T \) and their corresponding input \(u [u_1, \ldots, u_N]^T \), then learning the function \(f \) by Gaussian process so that we can estimate the corresponding function values \(f \left[f(u'_1), \ldots, f(u'_N) \right]^T \) when the input is \(u' [u'_1, \ldots, u'_N]^T \). According to literature 6, it is known that the measurement value \(z_k \) and function value \(f \) are subject to the joint Gaussian distribution.

\[
\begin{pmatrix} z_k \cr f \end{pmatrix} \sim N \left(\begin{pmatrix} 0 \cr K(u'_k, u'_k) \end{pmatrix} \right) \tag{5}
\]

From the above joint Gaussian distribution, it is easy to obtain the likelihood function and the initial prior distribution.

\[
p(z_k | f) = N(z_k; H_k' f, R_k')
\]

\[
p(f) = N(0; P_0')
\]

which

\[
H_k' (u_k) = K(u_k, u_k') [K(u'_k, u'_k)]^{-1}
\]

\[
R_k' (u_k) = k(u_k, u_k') + R - K(u_k, u_k') [K(u'_k, u'_k)]^{-1} K(u'_k, u_k)
\]

\[
P_0' = K(u'_k, u'_k)
\]

Through (6) the likelihood function is obtained, then establish the state space model, and the Gaussian process regression can be realized using the Kalman filter.

\[
f_{k+1} = F' f_k + Q' , \quad w'_k \sim N(0, Q') \tag{11a}
\]

\[
z_k = H' (u_k) f_k + e'_k , \quad e'_k \sim N(0, R'(u_k)) \tag{11b}
\]

\[
f_0 \sim N(0, P_0') \tag{11c}
\]

which

\[
F' = e^{−αT} I
\]

\[
Q' = (1−e^{−2αT}) K(u'_k, u'_k)
\]

2.2 Star convex model for extended target based on Gaussian process

In this paper, the extended target shape is modeled by star convex, and the estimation of it is realized by combining the learning characteristics of Gaussian process regression. According to the definition of star convex model, the shape of the target can be represented by the radius function \(r = f(\theta) \). When the measurements from the sensor come from target surface, we model the measurement equation as

\[
z_{k,l} = c_k + s_{k,l} p(\theta_{k,l}) f(\theta_{k,l}) + e_{k,l}
\]

the location of the object at time \(k \) is \(c_k \), \(\{z_{k,l}^N\}_{k=1}^N \) is the measurement set at time \(k \), \(\{\theta_{k,l}^N\}_{k=1}^N \) and \(f(\theta_{k,l}) \) are respectively measured corresponding angles and radius, \(p(\theta_{k,l}) \) is the direction vector, \(s_{k,l} \) is the scaling factor, \(e_{k,l} \) is the Gaussian noise with zero mean and covariance \(R \).

The radius function of the target shape can be learned through the Gaussian process

\[
f(\theta) \sim GP(\mu(\theta), k(\theta, \theta'))
\]

For each measurement value \(z_{k,l} \), it corresponds to an angle \(\theta_{k,l}^l \). Taking into account the initial direction \(\psi_k \) of the target, the expression of \(\theta_{k,l}^l \) is:

\[
\theta_{k,l}^l (c_k, \psi_k) = \angle (z_{k,l} - c_k) - \psi_k
\]

Put the formula (11) and (16) in(14), the standard measurement equation can be obtained, and its expression is:

\[
z_{k,l} = c_k + s_{k,l} p_{k,l} (\theta_{k,l}^l (c_k, \psi_k)) + e_{k,l}
\]

\[
= c_k + s_{k,l} p_{k,l} (\theta_{k,l}^l (c_k, \psi_k)) \left(H_{k,l} (\theta_{k,l}^l (c_k, \psi_k)) f_k + e_{k,l} + \bar{e}_{k,l} \right) \tag{17}
\]

\[
= c_k + s_{k,l} \bar{H}_{l,k} (c_k, \psi_k) f_k + s_{k,l} p_{k,l} (\theta_{k,l}^l (c_k, \psi_k)) e_{k,l} + \bar{e}_{k,l}
\]

\[
h_{l,k} (c_k, \psi_k, f_k) + e_{k,l} + \bar{e}_{k,l} \sim N(0, R_{k,l})
\]

\[
\bar{H}_{k,l} (c_k, \psi_k) = p_{k,l} (\theta_{k,l}^l (c_k, \psi_k)) \tag{18}
\]

\[
h_{l,k} (c_k, \psi_k, f_k) = c_k + \bar{H}_{l,k} (c_k, \psi_k) f_k \tag{19}
\]

\[
R_{k,l} = p_{k,l} R_{l,k} p_{k,l} + R \tag{20}
\]

\[
p_{k,l} = p_{k,l} (\theta_{k,l}^l (c_k)) = \frac{z_{k,l} - c_k}{\|z_{k,l} - c_k\|} \tag{21}
\]

\[
R_{l,k} = R' (\theta_{k,l}^l (c_k, \psi_k)) \tag{22}
\]

\[
s_{k,l} \sim N(\mu, \sigma^2) \tag{23}
\]

3 Generalized labeled multi-Bernoulli algorithm based on Gaussian process regression

3.1. Generalized labeled Multi-Bernoulli filter

In multiple target tracking problems, filtering methods based on traditional RFS theory cannot provide target track, therefore, Vo introduced label into RFS and put forward the general labeled multi-Bernoulli filter (GLMB)[10][11]. In the process of Bayesian recursion, the posterior probability density of GLMB RFS has the characteristics of maintaining the same form, which can avoid the complicated integral solving process in
traditional algorithm. The posterior probability density can be expressed as follows:

\[
\pi(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha(l_{i}, \xi) \delta_{l_{i}}[L(X)] \left[p(\xi \mid X) \right]^{x} \tag{24}
\]

\[X = \{(x_{i}, l_{i})\}, (i = 1, 2, \cdots, X)\] represents the labeled RFS; \(\Delta(X)\) is the labeled indicator function; \(L\) is the discrete labeled space, \(F(L)\) represents the track set; \(\Theta\) is the discrete association space; Each pair of \((l_{i}, \xi)\) represents an association hypothesis, \(\alpha(l_{i}, \xi)\) is the corresponding weight; \(\rho(x_{i}, \xi)\) is the single target probability distribution; \([p(\xi \mid X)]^{x}\) can be expressed as follows:

\[
[p(\xi \mid X)]^{x} = \prod_{(x_{i}, l_{i}) \in X} p(x_{i} \mid l_{i}, \xi) .
\]

Now assuming that the posterior probability density at time \(k-1\) has the form of formula (24), then the prediction step and update step of GLMB can be expressed as follows:

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]

\[
\pi_{x}(X) = \Delta(X) \sum_{l_{i}, J_{l_{i}}} \alpha_{l_{i}}(\xi, J_{l_{i}}) \delta_{l_{i}}[L(X)] \left[p(\xi, \theta \mid X) \right]^{x}
\]
(2) tracking performance: whether it has good tracking accuracy and stability under low SNR environment.

Our experiment assumes that the extended target is shaped like a star. The new target random set can be represented by the labeled Bernoulli parameter set \(\{ r_{a,b}(l_i), p_{a,b}(l_i) \}_{i=1}^4 \). The probability density of new target is \(r_{a,b}(l_i)=0.04 \) which is subject to Gaussian distribution \(p_{a,b}(l_i)=N(x; m_{b}^{(i)}, P_{b}) \). The initial state of the four new targets is \(m_{b}^{(1)}=[40,2.5,40,2.5]^T \), \(m_{b}^{(2)}=[18,2.5,20,1.5]^T \), \(m_{b}^{(3)}=[30,3,130,0]^T \), \(m_{b}^{(4)}=[120,2,190,-3]^T \). Target survival probability \(P_s=0.98 \), detection probability \(P_b=0.8 \). The background clutter number obeys the Poisson distribution with a mean value of 20 and evenly distributed in the monitoring area. The maximum Gaussian number \(\max H=1000 \). Target position and rotation direction are modeled as the uniform velocity model:

\[
F^n = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \otimes I_3 \times Q^n = \begin{bmatrix} T & 0 \\ 0 & T \end{bmatrix} \otimes \begin{bmatrix} \sigma_j^2 & 0 & 0 \\ 0 & \sigma_j^2 & 0 \\ 0 & 0 & \sigma_j^2 \end{bmatrix} \tag{40}
\]

Assuming the position process noise \(\sigma_j^2 = 1 \), rotation direction process noise \(\sigma_j^2 = 0.1 \), sampling period \(T = 1 \).

The covariance function of Gaussian process\(^6\) is

\[
k(\theta, \theta') = \sigma_j^2 e^{-\frac{2 \sin^2(\frac{\theta-\theta'}{2})}{\ell^2}} + \sigma_\epsilon^2 \tag{41}
\]

The radius prior variance \(\sigma_j^2 = 1 \), output prior variance amplitude \(\sigma_j^2 = 2 \), length scale of the function \(\ell = \frac{\pi}{4} \) and the measurement noise covariance \(R = 0.1^2 I_2 \).

The whole tracking process continuous 100s and 100 Monte Carlo experiment is conducted. The initial state of the target is shown in table 1.

Target	State		
Initial state	Appearing time	Disappearing time	
Target 1	[40 2.5 40 2.5]	1s	60s
Target 2	[180 -2.5 20 1.5]	21s	80s
Target 3	[30 3 130 0]	31s	100s
Target 4	[120 2 190 -3]	41s	100s

4.2. Analysis of simulation result

In this paper, the simulation results are shown in figure 1-4. Fig.1 shows the extended target real tracks and filtering results of GGIW-CPHD and our proposed algorithm.
5 Conclusions

This paper presents a generalized labeled Bernoulli algorithm under Gaussian process regression. The proposed algorithm uses Gaussian process of machine learning to learn extended target shape, avoiding the existing algorithms’ excessive parameters calculation complex problems, then tracking the targets based on the generalized labeled Bernoulli filter good tracking performance under low SNR environment. The experimental results show that the proposed improved algorithm can effectively track the extended target in the low SNR environment, which also has better stability and more accurate shape estimation.

References

1. J. W. Koch. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042-1059.

2. K. Granstrom, U. Orguner. A PHD Filter for Tracking Multiple Extended Targets Using Random Matrices[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5657-5671.

3. C. Lundquist, K. Granström, U. Orguner. An Extended Target CPHD Filter and a Gamma Gaussian Inverse Wishart Implementation[J]. Journal of Selected Topics in Signal Processing, 2013, 7(3): 472-483.

4. M. Baum, U. D. Hanebeck. Random Hypersurface Models for Extended Object Tracking[C]. IEEE International Symposium on Signal Processing and Information Technology. IEEE, 2010: 178-183.

5. M. Baum, U. D. Hanebeck. Shape tracking of extended objects and group targets with star-convex RHMs[C]. Proceedings of the, International Conference on Information Fusion. IEEE, 2011: 1-8.

6. N. Wahlström, E. Özkan. Extended Target Tracking Using Gaussian Processes[J]. IEEE Transactions on Signal Processing, 2015, 63(16): 4165-4178.

7. C. E. Rasmussen, C. K. I. Williams. Gaussian Processes for Machine Learning [M]. Cambridge, USA :The MIT Press, 2005.

8. J. Ko, D. Fox. GP-BayesFilters: Bayesian Filtering Using Gaussian Process Prediction and Observation Models[J]. Autonomous Robots, 2009, 27(1): 75-90.

9. E. Özkan, N. Wahlström, S. J. Godsill. Rao-Blackwellised particle filter for star-convex extended target tracking models[C]. International Conference on Information Fusion. IEEE, 2016.

10. B. T. Vo, B. N. Vo. Labeled random finite sets and multi-object conjugate priors[J]. IEEE Transactions on Signal Processing, 2013, 61 (13): 3460-3475.

11. B. N. Vo, B. T. Vo, Phung D. Labeled random finite sets and the Bayes multi-target tracking filter[J]. IEEE Transactions on Signal Processing, 2014, 62 (24): 6554-6567.