Percolation of secret correlations in a network

Anthony Leverrier
ICFO-Institut de Ciencies Fotòniques, 08860 Castelldefels (Barcelona), Spain

Raúl García-Patrón
Research Laboratory of Electronics, MIT, Cambridge, MA 02139 and Max-Planck Institut fur Quantenoptik, Hans-Kopfermann Str. 1, D-85748 Garching, Germany

(Dated: February 17, 2022)

In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks, more precisely the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a classical context.

In 1993, Maurer introduced an information-theoretically secure secret-key agreement scenario where two honest parties, Alice and Bob, have access to many independent outcomes of random variables A, B correlated with the eavesdropper’s (Eve) variable E through the probability distribution $P_{A,B,E}(a,b,e)$. Their goal is to extract a secret key from their data with the help of: (i) local manipulations of their respective variables, using protocols such as error correction codes and privacy amplification; (ii) communicating over a public channel, i.e., using local operations and public communication [1].

It was later observed in [2, 3] that Maurer’s scenario shares a lot of similarities with the quantum scenario where Alice, Bob and Eve share an initial quantum state ρ_{ABE} and Alice and Bob’s task is to distill a maximum amount of entanglement qubits (ebits), i.e.,

$$|\psi\rangle_{AB} = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle),$$ \hspace{1cm} (1)

using local operations and classical communication. In the same way as entanglement can be seen as a resource that cannot increase under local operations and classical communication, secret classical correlations are measured in secret bits (sbits), i.e.,

$$P_{A,B,E}(a,b,e) = \frac{1}{2} \delta_{a,b} P_E(e),$$ \hspace{1cm} (2)

a universal resource that cannot increase under local operations and public communication. In this expression, $\delta_{a,b} = 1$ if $a = b$ and $\delta_{a,b} = 0$ otherwise and $P_E(e)$ refers to any possible distribution of Eve’s random variable e, which is therefore completely uncorrelated with Alice and Bob’s variables. In [2], it was shown that many quantum information processing protocols have an equivalent protocol in Maurer’s secure secret-key scenario. For example, the analog of quantum teleportation is simply one-time pad, see Figure 1 (b). Similarly, entanglement distillation, entanglement dilution, (probabilistic) single-copy conversion were also shown to have secure secret-key analogous protocols. It is not surprising then that entanglement measures, such as the entanglement distillation and entanglement of formation, have their corresponding secure secret-key measure [1, 4, 5]. The connection between entanglement and secure secret-key has benefited the research in both fields. On the first hand, Gisin and Wolf asked whether a classical secrecy analog of bound entanglement [4] existed. This question was positively answered in [6], where a tripartite (plus Eve) distribution $P_{ABCE}(a,b,c,e)$ was shown to need previously established secrecy between the honest parties to be generated, but from which no secret key could be distilled. Despite further results [7, 8], it still an open question whether there exists bipartite bound-secrecy while bipartite bound-entanglement is known to exist. On the other hand, the secrecy measure intrinsic information, introduced in [9] and shown to be a lower-bound of the secret distillation and an upper-bound of the secret of formation in [5], was generalized to the quantum scenario in [10]. There, the authors introduced the squashed entanglement measure which has recently received a lot of attention [11, 12].

In this work, we want to explore the analogy between entanglement and secret classical correlations in the context of large networks. More precisely, we study the percolation of secret correlations in lattices. In the quantum case, when the goal is to establish ebits between two arbitrary nodes of a quantum lattice, there exists a phase transition for entanglement percolation for which the success probability does not decrease exponentially with the distance between the two nodes [13]. More interestingly, Ref. [13] gave the first example of a quantum protocol that changes the topology of the network, making possible the distillation of a perfect entanglement link in a regime where traditional percolation would fail. This phenomenon was further studied in [14, 15] and extended to the mixed state scenario [19, 21]. In the present work, we show that the same phenomenon already happens in the purely classical context of Maurer’s secret-key agreement scenario.
I. SECRET-KEY NETWORKS

In this work, we study secrecy distribution in secret-key networks, see Fig. 1 (a). More precisely, we are interested in secret-key networks where each edge \(ab\) between nodes \(A\) and \(B\), corresponds to a biased secret-key bit

\[
P_{A,B,E}(a,b,e) = [(1-p)\delta_{a,b,0} + p\delta_{a,b,1}] * P_E(e) \tag{3}
\]

where \(\delta_{a,b,x} := \delta_{ab}\delta_{ax}\) and \(p \leq 1/2\).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{networks.png}
\caption{(Color online) Secret-key networks: a) A general secret-key network is composed of a set of nodes (vertices of the graph) distributed with a given geometry, sharing secrecy correlations when connected by a link (edges of the graph). b) One-time Pad: In order to establish a unbiased secret bit between, previously unconnected, nodes \(A\) and \(C\), and \(B\) apply one round of one-time pad; (i) \(B\) publicly announces the value of \(z = b_1 \oplus b_2\); (ii) \(C\) calculates \(c' = c \oplus z\) which gives \(c' = a\).
}
\end{figure}

The question we want to address is the following: given a secret-key network and a choice of two nodes, does there exist a strategy, based on local manipulations of the bits and public classical communication, allowing to distill a secret bit (sbit) between these two nodes? Let us first start by considering some simple examples of networks as their analysis will be useful for the rest of the paper.

A. Simple examples

A single link: The simplest network consists of two nodes, \(A\) and \(B\), sharing a biased secret bit following a Bernoulli distribution of parameter \(p \leq 1/2\) given by Eq. 3. The results for probabilistic conversion of 2 (see Appendix 1) show that the probability to convert this biased secret bit into an unbiased one is equal to \(2p\). A protocol achieving this optimal value is the following. Let \(a\) be Alice and Bob’s bit. If \(a = 0\) (which happens with probability \(1 - p \geq 1/2\)), Alice tosses a biased coin that gives "heads" with probability \((1-2p)/(1-p)\). If she gets "heads", she tells Bob to abort the protocol; otherwise, they keep \(a\) as the final sbit. It is easy to check that conditioned on the fact that the protocol did not abort, the value of \(a\) is unbiased.

A chain with 2 links: consider the scenario shown in Fig. 1 (b) with three nodes where \(A\) and \(B\) share a biased secret bit \((a = b_1)\) while \(B\) and \(C\) share a second biased secret bit \(b_2 = c\). The probability of establishing an unbiased bit between nodes \(A\) and \(C\) can only be lower or equal to the probability of conversion of a single link. Surprisingly, there exists a strategy succeeding with average probability \(2p\). This strategy uses one-time pad, the secret-key protocol analogous to quantum teleportation: node \(B\) simply publicly announces the value of \(b_1 \oplus b_2\). If \(b_1 \oplus b_2 = 1\), which happens with probability \(2p(1-p)\), \(C\) flips his bit and obtains an unbiased secret bit shared with \(A\). If \(b_1 \oplus b_2 = 0\), \(A\) and \(C\) secret-key (unnormalized) distribution becomes

\[
P_{A,C,E}(a,c,e) \propto [(1-p)^2\delta_{a,c,0} + p^2\delta_{a,c,1}] * P_E(e), \tag{4}
\]

which has a conversion probability \(P_c = 2p^2/(p^2 + (1-p)^2)\).

Putting everything together gives an average probability of success of

\[
P_{\text{succ}} = P(b_1 \oplus b_2 = 1) * 1 + P(b_1 \oplus b_2 = 0) * P_c = 2p(1-p) + 2p^2 = 2p. \tag{5}
\]

Two parallel links: if the nodes \(A\) and \(B\) share two biased secret bits \(a_1\) and \(a_2\) (with \(p \leq 1/\sqrt{2}\)), the optimal probabilistic conversion strategy (see Theorem 2 of Appendix 1) consists for nodes \(A\) and \(B\) in mapping their two bits into a new bit \(a_f\) such that \(a_f = 0\) if \(a_1 = a_2 = 0\) and \(a_f = 1\) otherwise. The bit \(a_f\) then follows a Bernoulli distribution with parameter \((1-p)^2\) and the probability to convert it into an unbiased secret bit is \(2(1-(1-p)^2)^2 = 2p(2-p)\).

B. The straightforward strategy

As in the quantum scenario 13, there exists one natural strategy to distill an unbiased secret bit between two arbitrary nodes, \(A\) and \(B\), of a given lattice \(\mathbb{L}\). This protocol consists in trying to convert each biased secret bit (corresponding to each edge of the lattice) into an unbiased secret bit, each conversion succeeding with some probability \(p_{\text{succ}}\). If there exists a path among the edges of the unbiased secret bit graph connecting nodes \(A\) and \(B\), then, using one-time pad along this path, one can produce a secret bit between nodes \(A\) and \(B\). Based on percolation theory, one can show that the probability that two arbitrary nodes are connected by a path does not depend on their distance in the graph if \(p_{\text{succ}}\) is larger than the critical percolation threshold probability \(P_c^\mathbb{L}\) of the lattice. For \(p_{\text{succ}} \leq P_c^\mathbb{L}\) the success probability of the overall procedure decreases exponentially with
the distance in the lattice between the two nodes (see Appendix for details). The question that one wishes to answer is whether or not this simple strategy is optimal and whether the bound corresponding to p^n_c is tight. In the case of entanglement percolation, it was shown in [13] that the strategy described above is asymptotically optimal in the case of one-dimensional chains but not in general for two-dimensional lattices. In the following, we show that these two statements also apply to the case of secret classical correlations.

II. ONE-DIMENSIONAL CHAIN

A. Presentation of the problem

Let us consider a one-dimensional chain with n links and $n+1$ nodes: A_0, A_1, \ldots, A_n. Each link i corresponds to a pair of biased perfectly correlated variables, as in Eq. (3). Because each pair is perfectly correlated, we simplify the discussion by noting a_i the single bit shared by A_{i-1} and A_i, as shown in Fig. 2. In this model, the eavesdropper has no prior information on the bits a_i (except for the value of p), meaning that her initial probability distribution is uncorrelated with (a_1, \ldots, a_n). We will now show that the probability of establishing a perfect secret bit between the extremities of a chain, (between A_0 and A_n) decreases exponentially fast with n, except if the chain is initially composed of perfect secret bits, i.e., if $p = 1/2$. Hence, with that respect, distribution of secrecy and distribution of entanglement display the same behavior in the case of one-dimensional chains.

B. Description of the optimal protocol

Let us first start with the smallest, but non-trivial, case of 2 links. The general proof will then follow by induction. As shown on Fig. 2, nodes A_0 and A_1 share the biased secret bit a_1 and nodes A_1 and A_2 share a_2. Both bits, a_1 and a_2, are biased and have value 0 with probability $1 - p$. The goal is for A_0 and A_2 to distill a secret bit unknown to Eve, who had no prior information on a_1 and a_2.

In order to succeed, node A_1 has to publicly announce some information, z_1, depending on his own bits a_1 and a_2 and possibly on some random ancillary bits. This public information should allow nodes A_0 and A_2 to distill a secret bit, without giving any information to Eve. In full generality, node A_1 may use a probabilistic strategy to generate z_1. However, because every probabilistic strategy is a convex combination of deterministic ones, a probabilistic strategy cannot be better than the best deterministic one. Therefore, it is sufficient to consider the set of deterministic functions $z_1 = f(a_1, a_2)$. Since A_1 simply needs to tell node A_2 whether it should keep its bit a_2 or flip it in order to match the secret bit a_1, z_1 only needs to take 2 possible values, 0 or 1. As a consequence, we only need to analyze 16 possible functions f of a_1 and a_2. The constraints of the problem help us find the only possibility for f. First, node A_2 should be able to recover a_1 from the knowledge of a_2 and z_1, imposing $f(0, a_2) \neq f(1, a_2)$. Second, Eve should not learn any information about a_1, imposing $\sum_{a_2} f(0, a_2) = \sum_{a_2} f(1, a_2)$. Up to a relabeling, the only function that satisfies these constraints is the exclusive or (XOR): $f(a_1, a_2) = a_1 \oplus a_2$. It is not surprising that we obtain exactly the one-time pad protocol, which achieves a success probability of $2p$ for a three node chain, as shown before.

Generalization to n links: In a scenario with more links, it is easy to see that the same reasoning applies. In particular, all the intermediate nodes should announce the XOR of their two bits, up to some relabeling. The protocol is therefore the following. Each intermediate node A_i (for $1 \leq i \leq n - 1$) publicly announces $z_i = a_i \oplus a_{i+1}$. The final node can then compute the value of a_1 since $a_1 = a_n \oplus z_{n-1} \oplus z_{n-2} \oplus \cdots \oplus z_1$. Once nodes A_0 and A_n share this (biased) secret bit, they can proceed with the optimal probabilistic conversion protocol of Theorem 2 and end up with a unbiased secret bit. The average success probability reads

$$p_n = \sum_{z_1, \ldots, z_{n-1}} p(z_1, \ldots, z_{n-1}) p(\text{success}|z_1, \ldots, z_{n-1})$$

(6)

where $p(\text{success}|z_1, \ldots, z_{n-1})$ corresponds to the success probability of conversion of the bit given that the vector

\[z_1, \ldots, z_{n-1} \]
Therefore, the straightforward percolation strategy succeeds only for \(p \geq 0.1792 \).

\[p_c^{\text{hex}} = 1 - \sin(2\pi/18) \approx 0.6527. \]

\(\frac{p_{c_{\text{triang}}}}{2} = \sin(2\pi/18) \approx 0.3473. \)

This "topology conversion" strategy is therefore compatible with percolation of sbits for \(p \geq 0.1736 \). We conclude that in the regime where \(p \in [0.1736, 0.1792] \), percolation can occur if the nodes use the non-trivial percolation strategy consisting in changing the topology of the lattice from honeycomb to triangular, while the straightforward strategy fails. Other quantum percolation examples \([14, 15]\) can also been easily adapted to the secret-key percolation scenario, using the tools presented here.

IV. CONCLUSION

In this paper, using known analogies between entanglement and classical secret-key correlations, we have studied secrecy percolation in networks. More precisely, we have shown that local operations and public communication can be used to change the topology of a secrecy network and to establish a secret key between nodes, in a
regime where the initial lattice configuration is not compatible with percolation of secrecy. This effect was already known to exist in quantum entanglement networks. Our work shows that this phenomenon thought to be of a genuine quantum nature, already appears in the context of classical secret correlations.

Acknowledgments

The authors acknowledge fruitful discussions with Antonio Acín. A.L. received financial support from the EU ERC Starting grant PERCENT. R.G.-P. acknowledges financial support from the W. M. Keck Foundation Center for Extreme Quantum Information Theory and the Alexander von Humboldt foundation.

Appendix

1. Pure State Conversions

In Ref. [2], the authors characterized the set of transformations which are allowed among probability distributions. Their characterization is reminiscent of the quantum case [22] and uses the same notion of majorization.

Theorem 1 (Deterministic conversion [2]). If Alice and Bob begin with an arbitrary classical bipartite pure state, $P_{ABE}(i,j,k) = \delta_{i,j}p_i P_E(k)$, then they can produce a new state $P'_{ABE}(i,j,k) = \delta_{i,j}q_i P_E(k)$ if and only if q majorizes p.

Recall that the vector $q = \{q_i\}$ is said to majorize the vector $p = \{p_i\}$ (with $p_1 \geq p_2 \geq \cdots$ and $q_1 \geq q_2 \geq \cdots$) if

$$\sum_{i=1}^{k} q_i \geq \sum_{i=1}^{k} p_i \quad \forall k. \quad (11)$$

Whereas Theorem 1 is only concerned with conversion strategies which work with probability 1, the following result deals with strategies which work with a finite probability. Note that again, one recovers the same result as in the quantum case [23].

Theorem 2 (Probabilistic conversion [2]). If Alice and Bob begin with an arbitrary classical bipartite pure state, $P_{ABE}(i,j,k) = \delta_{i,j}p_i P_E(k)$, then the maximal probability with which they can produce a new state $P'_{ABE}(i,j,k) = \delta_{i,j}q_i P_E(k)$ is given by

$$\min_k \frac{1 - \sum_{i=1}^{k} p_i}{1 - \sum_{i=1}^{k} q_i}. \quad (12)$$

2. Bond-percolation in Lattices

The percolation behaviors that appear in the context of quantum networks or secrecy networks are closely related to the concept of bond-percolation. The scenario of bond-percolation is the following. Consider a lattice L such that for each edge of L, the bond is open (or equivalently, the edge is present) with probability p. Taking the limit where the size of L is infinite, one can define the probability $\theta(p)$ that a randomly chosen node belongs to a cluster of infinite size. Then, there exists a critical percolation probability p_C^L such that:

- $\theta(p) > 0$ if $p > p_C^L$,
- $\theta(p) = 0$ if $p < p_C^L$.

The link to our problem is immediate. Given two arbitrary nodes of the lattice, one is interested in whether an unbiased secret bit can be established between them. In the case where there exists an infinite size component, then both nodes belong to this cluster with probability $\theta^2(p)$ and an unbiased secret bit can be established between them. Otherwise, if there is no cluster of infinite size, the probability of establishing an unbiased secret bit decreases exponentially with the distance between the nodes in the lattice L.

3. Analysis of the protocol of Section IIB

Let us consider the same scenario of a chain of n links where each link is a biased secret bit that takes value 1 with probability $p \leq 1/2$, and bound the probability of creating a secret bit between the extremities.

As we saw in Section IIB, the protocol consists first in publicly announcing the vector $z = (z_1, \cdots, z_{n-1})$, and then conditionally on the value of z, try to convert the bit shared by A_0 and A_n into an sbit. The probability of success p_n of this procedure is therefore given by:

$$p_n = \sum_{z_1, \cdots, z_{n-1}} p(z_1, \cdots, z_{n-1}) p(\text{success} | z_1, \cdots, z_{n-1}) \quad (13)$$

where $p(\text{success} | z_1, \cdots, z_{n-1})$ corresponds to the success probability of conversion of the bit given that the vector announced by the intermediate nodes is (z_1, \cdots, z_{n-1}).

The probability that the public communication is described by $z = (z_1, \cdots, z_{n-1})$ is

$$p(z) = p(a_1 = 0, a_2 = z_1, \cdots, a_n = \bigoplus_k z_k) +$$

$$p(a_1 = 1, a_2 = 1 \oplus z_1, \cdots, a_n = 1 \bigoplus_k z_k)$$

Given a particular value of z, the success probability
for the probabilistic conversion of Theorem 2 reads:

\[
p(success|\mathbf{a}) = \min(p(a_1 = 0, \ldots, a_n = \bigoplus z_k), p(a_1 = 1, \ldots, a_n = 1 \bigoplus z_k)) \cdot \frac{1}{p(a_1 = 0, \ldots, a_n = \bigoplus z_k) + p(a_1 = 1, \ldots, a_n = 1 \bigoplus z_k)}
\]

Putting everything together, one has

\[
p_n = 2 \sum_{\mathbf{a}} \min(p(a_1, \ldots, a_n), p(\overline{a_1}, \ldots, \overline{a_n}))
= 2 \sum_{\mathbf{a}} \min(p^{w(\mathbf{a})}(1-p)^{n-w(\mathbf{a})}, p^{n-w(\mathbf{a})}(1-p)^w(\mathbf{a}))
= 2 \sum_{\mathbf{a}} p^{n-w(\mathbf{a})}(1-p)^w(\mathbf{a})
= 2 \sum_{\text{first half}} \binom{n}{k} p^{n-k}(1-p)^k
\]

where \(\mathbf{a} = (a_1, \ldots, a_n), \overline{a}_k := 1 \oplus a_k, w(\mathbf{a}) \) denotes the Hamming weight of the vector \(\mathbf{a} \) and "first half" means that the sum contains exactly the first half of the binomial expansion, that is, the \(2^{n-1} \) first terms of this expansion.

This probability is achieved if all the intermediate nodes \((n-1) \text{ such nodes}\) reveal the value of the XOR of their two bits.

This success probability is equal to (twice) the first half of the binomial expansion. Let us bound this quantity:

\[
p_n = 2 \sum_{\text{first half}} \binom{n}{k} p^{n-k}(1-p)^k
\leq 2p^{\lceil n/2 \rceil}(1-p)^{\lfloor n/2 \rfloor} \sum_{k=0}^{\text{first half}} \binom{n}{k}
\leq p^{\lceil n/2 \rceil}(1-p)^{\lfloor n/2 \rfloor} \sum_{k=0}^{\text{first half}} \binom{n}{k}
\leq 2^n p^{\lceil n/2 \rceil}(1-p)^{\lfloor n/2 \rfloor}
\leq (2\sqrt{p(1-p)})^n,
\]

which goes down to 0 exponentially fast with \(n \) for \(p \neq 1/2 \).