Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis

Yoshihisa Takahashi, Toshio Fukusato

Abstract
Nonalcoholic fatty liver disease (NAFLD), a hepatic manifestation of metabolic syndrome, is the most common chronic liver disease, and the prevalence is rapidly increasing worldwide. Nonalcoholic steatohepatitis (NASH), the severe form of NAFLD, can progress to liver cirrhosis and hepatocellular carcinoma (HCC). Although noninvasive clinical scores and image-based diagnosis for NAFLD have improved, histopathological evaluation of biopsy specimens remains the gold standard for diagnosing NAFLD/NASH. In this report, we review the histopathological features of NAFLD/NASH.

INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is a condition in which excessive fat accumulates in the liver of a patient without a history of alcohol abuse. NAFLD is etiologically associated with systemic and hepatic insulin resistance, and is regarded as a hepatic manifestation of metabolic syndrome[1,2]. The number of patients with...
NAFLD is rapidly increasing worldwide, consistent with the increased prevalence of obesity. NAFLD is currently the most common chronic liver disease; the prevalence of NAFLD in the adult population of developed countries is approximately 30%. NAFLD has also become a significant liver disease in children due to the increased prevalence of childhood obesity.

NAFLD is classified into two categories: simple steatosis, in which only hepatocellular steatosis is observed, and nonalcoholic steatohepatitis (NASH), in which both necroinflammatory reactions and hepatocellular steatosis occur. Although simple steatosis generally has a benign clinical course, NASH, which can be present in one third of NAFLD cases, is a progressive disease that can advance to liver cirrhosis and hepatocellular carcinoma (HCC). Steatohepatitic HCC (SH-HCC), a histological variant of HCC, is thought to be strongly associated with underlining NASH.

Various noninvasive clinical scores have been proposed to diagnose NASH and predict fibrosis, and imaging-based diagnosis of NAFLD has improved. However, histopathological evaluation of biopsy specimens remains the gold standard for diagnosing NAFLD/NASH. In this study, we review the histopathological findings of NAFLD/NASH.

Table 1: Histopathological abnormalities in nonalcoholic steatohepatitis

Histopathological abnormalities
Necessary components
Steatosis (macro > micro; accentuated in zone 3)
Lobular inflammation (mixed, mild; scattered polymorphonuclear leukocytes as well as mononuclear cells)
Hepatocellular ballooning (most apparent near steatotic liver cells, typically in zone 3)
Usually present; but not necessary for diagnosis
Perisinusoidal fibrosis (in zone 3)
Hepatocellular glycogenated nuclei (in zone 1)
Lipogranulomas (in the lobules; of varying size, but usually small)
Acidophil bodies or periodic acid-Schiff-stained Kupffer cells
Fat cysts May be present but not necessary for diagnosis
Mallory-Denk bodies (in ballooned hepatocytes)
Iron deposition (in hepatocytes or sinusoidal lining cells)
Megamitochondria (in hepatocytes)

GRADING AND STAGING OF NASH

Brunt et al. classified the necroinflammatory grades of NASH as grade 1 (mild), grade 2 (moderate), and grade 3 (severe) based on the degree of hepatocellular steatosis, ballooning and disarray, and inflammation (intralobular and portal) (Table 2). Simultaneously, they proposed a scoring system for staging based on the location and extent of fibrosis: stage 1, zone 3 perisinusoidal fibrosis; stage 2, portal fibrosis with the abovementioned stage 1; stage 3, bridging fibrosis in addition to stage 2; and stage 4, cirrhosis (Table 2). The NASH Clinical Research Network (NASH CRN) later subclassified stage 1 into 3 categories: stage 1A, mild perisinusoidal fibrosis in zone 3; stage 1B, moderate perisinusoidal fibrosis in zone 3; and stage 1C, only portal/periportal fibrosis. Stage 1C fibrosis is observed occasionally in children or severely obese patients.

The NASH CRN designed the NAFLD activity score (NAS) for use in clinical research. This score can be used for the full spectrum of NAFLD, including simple steatosis. The score is calculated as the unweighted sum of the scores for steatosis (0-3), lobular inflammation (0-3), and ballooning (0-2), and ranges from 0 to 8 (Table 3). The main purpose of NAS is to evaluate histological changes over time, rather than serve as diagnostic criteria for NASH. However, some studies have used the threshold values of NAS, specifically NAS ≥ 5, as a surrogate for the histological diagnosis of NASH, because NAS ≥ 5 has been reported to correlate with a diagnosis of NASH, and biopsies with scores of ≥ 2 were diagnosed as “not NASH.” Recently, Brunt et al. reviewed biopsies from 976 adults in NASH CRN studies, and found that only 75% of biopsies with definite NASH had NAS ≥ 5, whereas 28% of borderline NASH and 7% of “not NASH” biopsies had NAS ≥ 5. In addition, 3%
of cases with NAS ≥ 5 were “not NASH”, and 29% of cases with NAS ≤ 4 were NASH. Therefore, the authors concluded that the diagnosis of definite NASH or the absence of NASH does not always correlate with the threshold values of NAS.

HISTOPATHOLOGICAL FEATURES OF NAFLD/NASH

Adult NAFLD/NASH

Steatosis: Hepatocellular steatosis is the hallmark of NAFLD, and steatosis in more than 5% of hepatocytes is required for the diagnosis of NAFLD8,16,17. Hepatocellular steatosis is classified into two types: macrovesicular and microvesicular. In macrovesicular steatosis, a single large fat droplet or smaller well-defined fat droplets occupy the cytoplasm of hepatocytes, pushing the nucleus to the periphery. In microvesicular steatosis, the cytoplasm of hepatocytes is filled with tiny lipid droplets, and the nucleus is located centrally in the cell. Steatosis in NAFLD is usually macrovesicular; however, microvesicular steatosis may also be present. It was reported that microvesicular steatosis is present in approximately 10% of biopsies from patients with NAFLD18. Steatosis in NAFLD usually begins in zone 3 (Figure 1), although panacinar steatosis may also be seen with severe steatosis. An increasing severity of steatosis was reported to be positively associated with lobular inflammation, zone 3 fibrosis, and definite steatohepatitis19. In the same study, panacinar steatosis was more often associated with ballooning, Mallory-Denk bodies (MDBs), and advanced fibrosis compared with zone 3 steatosis.

Lobular and portal inflammation

Intralobular inflammation is also present in NASH (Figure 2); it is usually mild, and consists of a mixed inflammatory cell infiltrate (lymphocytes, neutrophils, eosinophils, and Kupffer cells). Polymorphs sometimes surround ballooned hepatocytes (that typically contain a MDB); this lesion is referred to as “satellitosis”. Although satellitosis...

Table 2 Grading and staging system for nonalcoholic steatohepatitis13

Grading and staging
Grading
Grade 1 (mild)
Grade 2 (moderate)
Grade 3 (severe)
Staging
Stage 1
Stage 2
Stage 3
Stage 4

Table 3 Components of nonalcoholic fatty liver disease activity score14

Item	Definition	Score
Steatosis	$< 5\%$	0
	$5\%-33\%$	1
	$> 33\%-66\%$	2
	$> 66\%$	3
Lobular infl.	No foci	0
	< 2 foci per $200 \times$ field	1
	2-4 foci per $200 \times$ field	2
	> 4 foci per $200 \times$ field	3
Ballooning	None	0
	Few balloon cells	1
	Many cells/prominent ballooning	2

Figure 1 Steatosis in nonalcoholic fatty liver disease. Macrovesicular steatosis, predominantly distributed in zone 3, is observed (Masson trichrome staining).
Takahashi Y et al. Histopathology of NAFLD

Figure 2 Lobular inflammation in nonalcoholic steatohepatitis. Necroinflammatory foci (arrows) are scattered in the hepatic lobule (hematoxylin and eosin staining).

Figure 3 Ballooning and Mallory-Denk bodies in nonalcoholic steatohepatitis. Ballooned hepatocytes are recognized as swollen hepatocytes with rarefied cytoplasm (black arrows). Mallory-Denk bodies are eosinophilic irregular-shaped aggregates in the cytoplasm of hepatocytes (white arrow) (hematoxylin and eosin staining).

Figure 4 Fibrosis in nonalcoholic steatohepatitis. The characteristic pattern of fibrosis in nonalcoholic steatohepatitis is perisinusoidal/pericellular (chicken wire) fibrosis, which usually begins in zone 3 (reticulin staining).

Hepatocytes with rarefied cytoplasm, and reflects hepatocellular injury (Figure 3). Fat droplets and/or MDBs may be observed in ballooned hepatocytes. Hepatocellular ballooning is believed to result from alteration of the intermediate filament cytoskeleton. In ballooned hepatocytes, the two hepatocyte keratins cytokeratins 8 and 18 are disrupted and no longer present throughout the cytoplasm; instead, they are dispersed to the periphery\[24\]. Although recognition of ballooned hepatocytes may be difficult in slides stained with hematoxylin and eosin (H and E), the loss of cytokeratin 8/18 immunostaining can serve as an objective marker of ballooned hepatocytes\[25\].

Fibrosis

The characteristic pattern of fibrosis in NASH is perisinusoidal/pericellular (chicken wire) fibrosis, which typically begins in zone 3. Masson trichrome or reticulin staining can be useful to evaluate fibrosis (Figure 4). Recently, very fine non-zonal sinusoidal fibrosis was reported, particularly in adult NAFLD patients post-intervention\[26\]. Fibrosis in NAFLD is usually observed with an active necroinflammatory reaction; however, fibrosis without active lesions can also occur, and prior episodes of steatohepatitis are suggested in such cases\[27\]. As NASH progresses, portal/periportal fibrosis, bridging fibrosis, and liver cirrhosis may occur. In a meta-analysis of ten longitudinal histological studies, older age and parenchymal or portal inflammation on the initial biopsy were independent predictors of progression to advanced fibrosis in NASH\[28\]. During advanced fibrosis or cirrhosis, steatosis and necroinflammatory reactions may disappear, and this status is known as burn-out NASH\[27,28\]. Patients with these symptoms are diagnosed with cryptogenic cirrhosis and NAFLD/NASH is estimated to be a leading cause of cryptogenic cirrhosis\[29-33\].

Glycogenated nuclei

Glycogenated nuclei are vacuolated nuclei observed usually in periportal hepatocytes, and commonly occur in NAFLD. The presence of glycogenated nuclei is useful
for discriminating between NASH and alcoholic steatohepatitis (ASH), as they are rarely observed in ASH[33].

Apoptotic hepatocytes (acidophil bodies)

Apoptotic hepatocytes (acidophil bodies) are observed often in NASH[34], and are deeply eosinophilic rounded bodies, with or without hyperchromatic nuclear fragments. These structures are most commonly observed in sinusoids.

MDBs

MDBs are eosinophilic irregular-shaped aggregates found in the cytoplasm of hepatocytes (Figure 3). These structures are usually observed in ballooned hepatocytes in zone 3, and mainly consist of cytokeratins 8 and 18, ubiquitin, and p62[37,58]. When MDBs are present in ballooned hepatocytes, they can be identified immunohistochemically as aggregates of cytokeratins 8 and 18 within otherwise cleared out cells[24]. However, it remains unclear whether MDBs serve as bystanders, exert protective effects, or promote injury[38]. The presence of MDBs is not definitively required, but is helpful for the diagnosis of NASH. MDBs are not specific to NASH; they are also observed in other liver diseases including alcoholic hepatitis, chronic cholestasis, and HCC[39]. In alcoholic hepatitis, MDBs are also observed in non-ballooned hepatocytes[37,38].

Iron deposition

Iron accumulation in NAFLD/NASH is usually mild, and can occur within hepatocytes, the sinusoidal lining cells of the reticuloendothelial system, or both[12,34,40]. Valenti et al[40] reported that iron accumulation, which was predominant in hepatocytes but not in the reticuloendothelial system, was associated with advanced fibrosis in NASH. However, Nelson et al[24] reported that NASH patients with iron accumulation in the reticuloendothelial system were more likely to have advanced fibrosis compared to patients with iron accumulation in hepatocytes. These results are contradictory, and further studies are needed to elucidate the significance of iron deposition in NASH.

Megamitochondria

Megamitochondria are round or crystal-shaped eosinophilic structures in the cytoplasm of hepatocytes. They are observed most commonly in hepatocytes with microvesicular steatosis. Megamitochondria in NASH are distributed equally in all zones, and are abundant similarly in low- and high-stage groups[40]. Although megamitochondria are poorly understood lesions in NASH, they may be the result of injury from lipid peroxidation, or could represent an adaptive change[14].

Other findings

Ductular reaction refers to ductular proliferation at the portal tract interface. It arises from progenitor cells in the periportal area, and is accompanied by neutrophils and stromal changes[34]. In NASH, the extent of ductular reaction is associated with fibrosis[40].

One of the newly described lesions observed in NASH was the presence of an arterial branch in zone 3, commonly within perisinusoidal fibrosis[40,41]. Pathologists should maintain knowledge of this finding because it can be easily confused with the portal tract.

Pediatric NAFLD/NASH

It is estimated that 2.6%-9.6% of children and adolescents have NAFLD[46-48]. Pediatric NAFLD/NASH has different histological characteristics than adult NAFLD/NASH[48]. Schwimmer et al[42] investigated the histological features of 100 cases of pediatric NAFLD/NASH, and proposed that two different forms of steatohepatitis existed. Type 1 NASH had histological patterns usually seen in adult patients, and was characterized by steatosis, ballooning degeneration, and perisinusoidal fibrosis in the absence of portal features. Type 2 NASH exhibited a unique histological pattern in pediatric patients, characterized by steatosis, portal inflammation, and portal fibrosis in the absence of ballooning degeneration and perisinusoidal fibrosis. In their study, type 1 NASH was present in only 17% of subjects, whereas type 2 NASH was present in 51%, and the prevalence of simple steatosis was 16%. Advanced fibrosis was present in 8%, and cirrhosis was detected in 3%. In cases of advanced fibrosis, the pattern was generally comparable to type 2 NASH. Children with type 2 NASH were significantly younger and had a greater severity of obesity than children with type 1 NASH. Male patients were significantly more likely to have type 2 NASH and less likely to have type 1 NASH than female patients. Type 1 NASH was more common in Caucasian children, whereas type 2 NASH was more common in children of Asian, Native American, and Hispanic ethnicity. It is possible that there is a different pathogenesis, natural history, and responsiveness to treatments between type 1 and type 2 NASH. However, it remains unclear whether type 2 NASH converts into type 1 NASH with increased age of the patient.

Schwimmer et al[42] characterized the histological pattern as an overlap of types 1 and 2 NASH or indeterminate in only 16% of subjects. However, subsequent studies reported that more than 50% of pediatric NAFLD cases exhibited overlapping features of types 1 and 2 NASH[48-51]. We compared the histological characteristics of NAFLD in 34 pediatric and 23 adult cases that were confirmed by liver needle biopsy[52] (Table 4). Steatosis was more severe in pediatric than adult cases, and half of pediatric cases presented with panacinar steatosis. Perisinusoidal fibrosis was significantly milder in pediatric cases than in adult cases, and lobular inflammation and ballooning were milder in pediatric cases compared to adult cases. In contrast, portal inflammation was more severe in pediatric cases. There were no obvious differences in the degree of periporal fibrosis between pediatric and adult individuals. Periporal fibrosis in the absence of perisinusoidal fibrosis (fibrosis stage 1C) was observed...
The prevalence of bridging fibrosis and liver cirrhosis was lower in pediatric patients compared with adults. Type 2 NASH was observed in 21% of pediatric subjects, which was more than double the prevalence observed in adult subjects (9%). Fifty percent of pediatric cases exhibited overlapping features of types 1 and 2 NASH, and intralobular and portal changes were positively and significantly correlated. Our study, performed in Japanese individuals, suggested that pediatric NAFLD exhibits histological features that differ from those of adult NAFLD. The classification of “type 1 NASH” and “type 2 NASH” may be impractical as many pediatric NAFLD cases show overlapping features of types 1 and 2 NASH, and intralobular and portal changes are positively correlated. Recently, it was demonstrated that liver biopsy specimens from children with NAFLD and normal or mildly elevated alanine aminotransferase (ALT) levels showed significant histological abnormalities, including advanced fibrosis in children with mildly elevated ALT[53][53]. Thus, measuring ALT may underestimate liver injury in pediatric NAFLD.

HISTOLOGICAL DIFFERENCES BETWEEN ALCOHOLIC LIVER DISEASE AND NAFLD

The differential diagnosis of alcoholic liver disease and NAFLD is generally based on clinical information regarding alcohol intake, since differentiating based on histological appearance is challenging. However, several histological differences have been reported. Features more common in ASH than NASH include canalicular cholestasis, numerous and well-formed MDBs, prominent ductular reaction, and acute inflammation and fibrosis.

Table 4 Histopathological features of pediatric and adult nonalcoholic fatty liver disease cases (n (%))

Item	Score/code	Pediatric ($n = 34$)	Adult ($n = 23$)
Steatosis			
Grade			
0 (< 5%)	0 (0)	0 (0)	
1 (5%-33%)	10 (29)	7 (30)	
2 (> 33%-66%)	15 (45)	14 (61)	
3 (> 66%)	9 (26)	2 (9)	
Location			
Zone 3	12 (35)	14 (61)	
Zone 1	0 (0)	0 (0)	
Azonal	5 (15)	4 (17)	
Panacinar	17 (50)	5 (22)	
Fibrosis			
Perisinusoidal1			
0 (none)	19 (56)	6 (26)	
1 (mild)	10 (29)	8 (35)	
2 (moderate)	5 (15)	9 (39)	
Periportal			
0 (none)	18 (53)	13 (57)	
1 (mild)	13 (38)	6 (26)	
2 (moderate)	2 (6)	2 (9)	
3 (severe)	1 (3)	1 (4)	
4 (cirrhosis)	0 (0)	1 (4)	
Stage			
0 (none)	12 (34)	6 (26)	
1A (mild, zone 3, perisinusoidal)	4 (12)	5 (22)	
1B (moderate, zone 3, perisinusoidal)	2 (6)	2 (9)	
1C (periportal)	7 (21)	0 (0)	
2 (perisinusoidal + periportal)	6 (18)	5 (22)	
3 (bridging fibrosis)	3 (9)	4 (17)	
4 (cirrhosis)	0 (0)	1 (4)	
Inflammation			
Lobular			
0 (no foci)	7 (21)	2 (9)	
1 (< 2 foci per 200 × field)	18 (52)	13 (56)	
2 (2-4 foci per 200 × field)	7 (21)	6 (26)	
3 (> 4 foci per 200 × field)	2 (6)	2 (9)	
Portal			
0 (none)	11 (32)	10 (43)	
1 (mild)	14 (42)	11 (48)	
2 (moderate)	9 (26)	2 (9)	
3 (severe)	0 (0)	0 (0)	
Ballooning			
0 (none)	16 (47)	6 (26)	
1 (few)	10 (29)	13 (57)	
2 (many/prominent)	8 (24)	4 (17)	
Diagnosis			
Not NASH	8 (24)	4 (17)	
Borderline zone 1 NASH	7 (21)	2 (9)	
Borderline zone 3 NASH	5 (15)	5 (22)	
Definite NASH	14 (40)	12 (52)	

1Perisinusoidal fibrosis was significantly milder in pediatric cases than in adult cases. Borderline zone 1 NASH corresponds to type 2 NASH[52]. NASH: Nonalcoholic steatohepatitis.
The accurate evaluation of each pathological feature in NASH can be difficult, and thus accurate pathological diagnosis of NASH can be challenging. The significant difference in the prevalence of NASH between similar populations has been explained mainly by the different histological criteria used for diagnosing NASH in clinical studies. As such, these findings made the results of clinical studies questionable. Therefore, we studied the extent of interobserver variation in the histopathological assessment of NASH. In the study, eight hepatopathologists read liver biopsy slides of 21 cases where the clinical diagnosis was NASH or suspected NASH, and assessed the histopathological features. There was good agreement in evaluating the extent of steatosis and fibrosis, and moderate consistency concerning the localization of steatosis and fibrosis. However, there was only slight or poor agreement for evaluating ballooning and intra lobular and portal inflammation. Two other studies also assessed interobserver variation in the histopathological assessment of NASH, and the findings were generally similar to our study, with the exception of good agreement for ballooning. Establishing a standardized pathological diagnosis for NASH is necessary based on the results of these studies.

VALUE OF LIVER BIOPSY IN NAFLD/NASH

Liver biopsy is invasive and potentially harmful. Furthermore, histological lesions of NASH are unevenly distributed throughout the liver parenchyma, and liver biopsy sampling error can result in substantial misdiagnosis and staging inaccuracies. Since liver biopsy has such drawbacks, novel imaging and serum-based assays to predict the presence of NAFLD/NASH, fibrosis, and/or inflammation have been studied.

Transient elastography measuring liver stiffness has been reported to have high negative predictive value and modest positive predictive value for assessment of advanced fibrosis in NAFLD; thus, it may be useful as a screening test to exclude advanced fibrosis. Various serum molecular markers have been reported to be useful in diagnosing NASH or predicting fibrosis in NAFLD. The level of serum cytokeratin 18 fragments reflects hepatocyte apoptosis, and the area under the receiver operating characteristic curve (AUROC) for NASH diagnosis was 0.83. Serum levels of Mac-2 binding protein (Mac-2bp), a major fucosylated glycoprotein, were recently shown to be elevated in NASH patients, and the AUROC for predicting NASH was 0.816. Furthermore, it was reported that the Enhanced Liver Fibrosis panel (ELF), an algorithm of serum-based tests, had an AUROC of 0.90 for distinguishing severe fibrosis, 0.82 for moderate fibrosis, and 0.76 for no fibrosis in NAFLD.

Although non-invasive tests for the diagnosis of NAFLD/NASH have progressed, as discussed above, the accuracy of these tests is inadequate. Particularly, characterization of individuals who are in the early and middle stages of NASH remains beyond the scope of most of these types of test. Currently, liver biopsy is the only method to accurately evaluate the extent and pattern of steatosis, necroinflammation, and fibrosis, and confirm the diagnosis of NAFLD/NASH. Liver biopsy evaluation remains the standard against which other assays and clinical algorithms must be matched and validated, and thus the histopathological evaluation of biopsy specimens continues to be the gold standard for diagnosing NAFLD/NASH.

SH-HCC

NASH can progress to liver cirrhosis and HCC. The 5-year incidence of HCC for cirrhotic NASH was reported to be 11.3%, and a substantial proportion of HCC cases without hepatitis B or C viral infections are estimated to be derived from NASH. However, the pathological features of HCC derived from NASH have not been elucidated for extended period of time. In 2010, Salomao et al. reported a distinctive histological variant of HCC that they termed SH-HCC. SH-HCC shows features that resemble non-neoplastic steatohepatitis, including large

Figure 5 Histological appearance of alcoholic steatohepatitis. Canalicular cholestasis (black arrow), Mallory-Denk bodies (white arrows), and acute inflammation in the portal tract are observed (hematoxylin and eosin staining).
droplet steatosis, ballooning of malignant hepatocytes, MDBs, inflammation, and pericellular fibrosis (Figure 6). In a subsequent study, the same group reported that the prevalence of SH-HCC in all HCC cases was 13.5%. Almost all cases of SH-HCC occurred in patients with underlying steatohepatitis. SH-HCC was diagnosed in 35.7% of HCC patients with either NASH or alcoholic liver disease, compared with only 1.3% of HCC patients with other chronic liver diseases. Subsequently, Jain et al. reported that SH-HCC was much more common in cirrhotic NAFLD patients compared with those with alcoholic cirrhosis. Therefore, SH-HCC is thought to be strongly associated with underlying steatohepatitis, particularly NASH.

CONCLUSION

In this report, we reviewed the pathological features of NAFLD/NASH. Pathological assessment remains the gold standard for diagnosis of this disease. Steatosis, lobular inflammation, and hepatocellular ballooning are the necessary components for the diagnosis of NASH, and pathologists must evaluate these findings correctly. However, interobserver agreement can be poor in regards to evaluation of intralobular inflammation and ballooning, and thus clearly defined criteria for assessing these findings should be established. When evaluation of intralobular inflammation is difficult, immunohistochemical staining for leukocyte common antigen (a marker of lymphocytes) and CD68 (a marker of histiocytes/Kupffer cells) may be beneficial. Immunohistochemical staining for cytokeratin 8/18 is useful to objectively evaluate hepatocellular ballooning. Pediatric NAFLD has different histological characteristics from adult NAFLD, and special attention is needed for diagnosis.

REFERENCES

1 Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, Natale S, Vanni E, Villanova N, Melchionda N, Rizzetto M. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003; 37: 917-923 [PMID: 1266987 DOI: 10.1053/jhep.2003.50161]

2 Abdelmalek MF, Dielii AM. Nonalcoholic fatty liver disease as a complication of insulin resistance. Med Clin North Am 2007; 91: 1125-1149, ix [PMID: 17964913]

3 Neuschwander-Tetri BA. Fatty liver and the metabolic syndrome. Curr Opin Gastroenterol 2007; 23: 193-198 [DOI: 10.1097/MOG.0b013e32801421a9]

4 Takahashi Y, Fukusato T. Pediatric nonalcoholic fatty liver disease: overview with emphasis on histology. World J Gastroenterol 2010; 16: 5280-5285 [PMID: 21072890 DOI: 10.3748/wjg.v16.i42.5280]

5 Farrell GC, Larzer CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 2006; 43: S99-S112 [PMID: 16447287 DOI: 10.1002/hep.20973]

6 Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011; 332: 1519-1523 [PMID: 21700865 DOI: 10.1126/science.1204265]

7 Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology 2003; 37: 1202-1219 [PMID: 12717402 DOI: 10.1053/jhep.2003.50193]

8 Brunt EM. Tiniakos DG. Alcoholic and non-alcoholic fatty liver disease. In: Odze RD, Goldblum JR, Crawford JM. Pathology of the GI tract, liver, biliary tract and pancreas. Philadelphia: Saunders, 2009: 1087-1114

9 Neuschwander-Tetri BA, Clark JM, Bass NM, Van Natta ML, Unalp-Arida A, Tonascia J, Zien CO, Brunt EM, Kleiner DE, McCullough AJ, Sanyal AJ, Dielii AM, Lavine JE, Chalasani N, Kowdle KV. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology 2010; 52: 913-924 [PMID: 20648476 DOI: 10.1002/hep.22784]

10 Sanyal AJ, Brunt EM, Kleiner DE, Kowdle KV, Chalasani N, Lavine JE, Ratziu V, McCullough A. Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology 2011; 54: 344-353 [PMID: 21520200 DOI: 10.1002/hep.24576]

11 Patton HM, Lavine JE, Van Natta ML, Schwimmer JB, Kleiner D, Molineux J. Clinical correlates of histopathology in pediatric nonalcoholic steatohepatitis. Gastroenterology 2008; 135: 1961-1971.e2 [PMID: 19013463 DOI: 10.1053/j.gastro.2008.08.050]

12 Schwimmer JB, Behling C, Newbury R, Deutsch R, Nievergelt C, Schork NJ, Lavine JE. Histopathology of pediatric nonalcoholic fatty liver disease. Hepatology 2005; 42: 641-649 [PMID: 16316629 DOI: 10.1002/hep.20842]

13 Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 1999; 94: 2467-2474 [PMID: 10484010 DOI: 10.1111/j.1572-0241.1999.01377.x]

14 Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torberson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41: 1313-1321 [PMID: 15915461 DOI: 10.1002/hep.20701]

15 Brunt EM, Kleiner DE, Wilson LA, Belt P, Neuschwander-Tetri BA. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 2011; 53: 810-820 [PMID: 21331918 DOI: 10.1002/hep.24127]

16 Yeh MM, Brunt EM. Pathology of nonalcoholic fatty liver disease. Am J Clin Pathol 2007; 128: 837-847 [PMID: 17951208 DOI: 10.1309/RTPHIPY6YGBLG2CR]

17 Bondini S, Kleiner DE, Goodman ZD, Gramlich T, Younossi ZM. Pathologic assessment of non-alcoholic fatty liver disease. Clin Liver Dis 2007; 11: 17-23, vii [PMID: 17549069 DOI: 10.1016/j.cld.2007.02.002]

18 Tanda S, Yeh MM, Brunt EM, Vuppalanchi R, Cummings WJG | www.wjgnet.com 15546 November 14, 2014 | Volume 20 | Issue 42 |
Takahashi Y et al. Histopathology of NAFLD

DOi: 10.1186/1471-2431-13-40

50 Nobili V, Marcellini M, Devito R, Ciampalini P, Piemonte F, Comparcola D, Sartorelli MR, Angulo P. NAFLD in children: a prospective clinical-pathological study and effect of lifestyle advice. Hepatology 2006; 44: 458-465 [PMID: 16871574 DOI: 10.1002/hep.21262]

51 Carter-Kent C, Yerian LM, Brunt EM, Kohli R, Ling SC, Xanthakos SA, Whittington PF, Charatcharoenwitthaya P, Yap J, Lopez R, McCullough AJ, Feldstein AE. Nonalcoholic steatohepatitis in children: a multicenter clinicopathological study. Hepatology 2009; 50: 1113-1120 [PMID: 19671900 DOI: 10.1002/hep.23133]

52 Takahashi Y, Inui A, Fujisawa T, Takikawa H, Fukusato T. Histopathological characteristics of non-alcoholic fatty liver disease in children: Comparison with adult cases. Hepatol Res 2011; 41: 1066-1074 [PMID: 22035383 DOI: 10.1111/j.1872-034X.2011.00855.x]

53 Molleston JP, Schwimmer JB, Yates KP, Murray KF, Cummins OW, Lavine JE, Brunt EM, Scheinmann PW, Unalp-Arida A. Histological abnormalities in children with nonalcoholic fatty liver disease and normal or mildly elevated alanine aminotransferase levels. J Pediatr 2014; 164: 707-713, e3 [PMID: 24360992 DOI: 10.1016/j.jpeds.2013.10.071]

54 Nakano M, Fukusato T. Histological study on comparison between NASH and AILD. Hepatol Res 2005; 33: 110-115 [PMID: 16219486]

55 Fukusato T, Fukushima J, Shiga J, Takahashi Y, Nakano T, Maeyama S, Masayuki U, Obitsu M, Matsumoto T, Matsumoto K, Hano H, Sakamoto M, Kondo F, Komatsu A, Ishikawa T, Ohtake H, Takikawa H, Yoshimura K. Interobserver variation in the histopathological assessment of non-alcoholic steatohepatitis. Hepatol Res 2005; 33: 122-127 [PMID: 16890173]

56 Younossi ZM, Gramlich T, Liu YC, Matteoni C, Petrelli M, Goldblum J, Rybicki L, McCullough AJ. Nonalcoholic fatty liver disease: assessment of variability in pathologic interpretations. Mod Pathol 1999; 12: 560-565 [PMID: 9647994]

57 Ratziu V, Charlotte F, Heurtier A, Gombert S, Giralt P, Bruckert E, Grimaldi A, Capron F, Poynard T. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 2005; 128: 1898-1906 [PMID: 15940625 DOI: 10.1053/j.gastro.2005.03.084]

58 Wong VW, Vergniol J, Wong GL, Foucher J, Chan HL, Le Bail B, Choi PC, Kovo M, Chan AW, Merrouche W, Sung JJ, de Lédinghen V. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 2010; 51: 454-462 [PMID: 20101745 DOI: 10.1002/hep.23312]

59 Feldstein AE, Wieckowska A, Lopez AR, Liu YC, Zein NN, McCullough AJ. Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: a multicenter validation study. Hepatology 2009; 50: 1072-1078 [PMID: 19586168 DOI: 10.1002/hep.23050]

60 Kamada Y, Fuji H, Fujii H, Sawai Y, Doi Y, Uozumi N, Mizutani K, Akita M, Sato M, Kida S, Kinoshita N, Maruyama N, Yakushijin T, Miyazaki M, Ezaki H, Hiramatso N, Yoshida Y, Kiso S, Imai Y, Kawada N, Takehara T, Miyoshi E. Serum Mac-2 binding protein levels as a novel diagnostic biomarker for prediction of disease severity and nonalcoholic steatohepatitis. Proteomics Clin Appl 2013; Epub ahead of print [PMID: 23775887 DOI: 10.1002/prca.201200137]

61 Guha IN, Parkes J, Roderick P, Chattopadhyay D, Cross R, Harris S, Kaye P, Burt AD, Ryder SD, Aithal GP, Day CP, Rosenberg WM. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: Validating the European Liver Fibrosis Panel and exploring simple markers. Hepatology 2008; 47: 455-460 [PMID: 18038452 DOI: 10.1002/hep.21984]

62 Yatsui S, Hashimoto E, Tobari M, Tanai M, Tokushige K, Shiratori K. Clinical features and outcomes of cirrhosis due to non-alcoholic steatohepatitis compared with cirrhosis caused by chronic hepatitis C. J Gastroenterol Hepatol 2009; 24: 248-254 [PMID: 19032450 DOI: 10.1111/j.1440-1746.2008.05640.x]

63 Salomao M, Yu WM, Brown RS, Emond JC, Lefkowitch JH. Steatohepatitic hepatocellular carcinoma (SH-HCC): a distinctive histological variant of HCC in hepatitis C virus-related cirrhosis with associated NAFLD/NASH. Am J Surg Pathol 2010; 34: 1630-1636 [PMID: 20973341 DOI: 10.1097/PA S.0b013e3181f31caa]

64 Salomao M, Remotti H, Vaughan R, Siegel AB, Lefkowitch JH, Moreira RK. The steatohepatitic variant of hepatocellular carcinoma and its association with underlying steatohepatitis. Hum Pathol 2012; 43: 737-746 [PMID: 22019503 DOI: 10.1016/j.hump ath.2011.07.005]

65 Jain D, Nayak NC, Saigal S. Hepatocellular carcinoma in nonalcoholic fatty liver cirrhosis and alcoholic cirrhosis: risk factor analysis in liver transplant recipients. Eur J Gastroenterol Hepatol 2012; 24: 840-848 [PMID: 22495597 DOI: 10.1097/MEH.0b013e3283534b40]

P- Reviewer: Fierbinteanu-Braticevici C, Ren SL, Riche DM S- Editor: Qi Y L- Editor: A E- Editor: Ma S
