Numerical precision radiative corrections to the Dalitz plot of baryon semileptonic decays including the spin-momentum correlation of the decaying and emitted baryons

J. J. Torres

Escuela Superior de Cómputo del IPN,
Apartado Postal 75-702, México, D.F. 07738, México

Rubén Flores-Mendieta

Instituto de Física, Universidad Autónoma de San Luis Potosí,
Álvaro Obregón 64, Zona Centro, San Luis Potosí, S.L.P. 78000, México

M. Neri, A. Martínez

Escuela Superior de Física y Matemáticas del IPN,
Apartado Postal 75-702, México, D.F. 07738, México

A. García

Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN,
Apartado Postal 14-740, México, D.F. 07000, México

(Dated: November 11, 2018)
Abstract

We calculate the radiative corrections to the angular correlation between the polarization of the decaying and the direction of the emitted spin one-half baryons in the semileptonic decay mode to order \((\alpha/\pi)(q/M_1)\), where \(q\) is the momentum transfer and \(M_1\) is the mass of the decaying baryon. The final results are presented, first, with the triple integration of the bremsstrahlung photon ready to be performed numerically and, second, in an analytical form. A third presentation of our results in the form of numerical arrays of coefficients to be multiplied by the quadratic products of form factors is discussed. This latter may be the most practical one to use in Monte Carlo simulations. A series of crosschecks is performed. This paper is organized to make it accessible and reliable in the analysis of the Dalitz plot of precision experiments involving heavy quarks and is not compromised to fixing the form factors at predetermined values. It is assumed that the real photons are kinematically discriminated. Otherwise, our results have a general model-independent applicability.

PACS numbers: 14.20.Lq, 13.30.Ce, 13.40.Ks
I. INTRODUCTION

The radiative corrections (RC) to spin one-half baryon semileptonic decays face three levels of complications. Despite the important progress achieved in the understanding of the fundamental interactions with the Standard Model [1], no first principle calculation of these corrections is yet possible. RC become then committed to model dependence and, what is worse, experimental analyses which use these calculations become model dependent, too. The second level comes from the fact that RC depend on the process characteristics, such as charge assignment of the baryons, type of the emitted charged lepton, size of the momentum transfer $q$ involved, and whether real photons can be experimentally discriminated or not. RC also depend on the observable which is to be measured. All this requires RC to be recalculated every time the process characteristics and the observables are changed. At the third level one finds complications of a practical nature. It turns out that the final results of RC calculations are rather very inefficient to use or are long and tedious to the point that their use becomes unreliable. Fortunately, all the above complications can be solved rather satisfactorily.

Although the model dependence of the virtual RC cannot be eliminated, an extension to baryon semileptonic decays of an analysis of Sirlin [2] of these corrections in neutron beta decay shows that to orders $\left(\alpha/\pi\right)^0(q/M_1)$ and $\left(\alpha/\pi\right)^0(q/M_1)$, where $M_1$ is the mass of the decaying baryon, the corresponding model-dependence amounts to several constants. These constants can all be absorbed into the already present form factors of the weak decay vertex. In addition, the theorem of Low [3] in its presentation by Chew [4] can be used to show that to these two orders of approximation the bremsstrahlung RC depend only on the non-radiative form factors and on the static electromagnetic multipoles of the particles involved. Accordingly, no model-dependence is introduced in this other part of the RC. Within these orders of approximation it is then possible to obtain final expressions for the RC that can be used in model-independent experimental analyses. The price is that it will be the effective form factors (which may be indicated by putting a prime on them) that can be experimentally determined. The separation of the original form factors from the model dependence of RC is then a theoretical problem only. It is in this sense that the first level of complications is put under control.

To deal with the second level one must make an effort to calculate RC in a way as general as possible and to be able to obtain results which can be used directly to obtain the final results of other possible baryon semileptonic decays. In a recent publication [5] we showed that of the
six allowed charge assignments to the baryons when heavy quarks are involved, namely, \( A^- \to B^0 l^- \bar{\nu}_l \), \( A^0 \to B^- l^+ \nu_l \), \( A^+ \to B^0 l^- \nu_l \), \( A^0 \to B^- l^+ \nu_l \), \( A^{++} \to B^+ l^+ \nu_l \), and \( A^+ \to B^{++} l^- \bar{\nu}_l \). It is necessary only to calculate the RC to the first two, to which we shall refer to as charged decaying baryon (CDB) and neutral decaying baryon (NDB), respectively. The RC to the other four cases are then obtained from these two. We also showed that this property is valid up to order \((\alpha/\pi)(q/M_1)\), when \( l = e^\pm, \mu^\pm \), and \( \tau^\pm \) and for any observable of baryon semileptonic decays. The problem of calculating RC is reduced considerably this way, although it will still be necessary to recalculate for different observables and whether real photons are discriminated or not in the first two cases.

The third level of complications has been dealt with by computing analytically the triple integrals over the real photon variables. A numerical calculation of these integrals makes the application of RC to a Monte Carlo simulation practically impossible, because every time the values of the kinematical variables are varied those integrals must be recalculated. The analytical form of RC solves this problem. However, the results are very long and tedious and the use of this latter form may become unreliable. To control this it is very important that the analytical result be well organized and that it be crosschecked with the triple numerical integration form. A successful crosscheck allows the user to gain confidence on the analytical result and on its feeding into a Monte Carlo simulation. It may still be convenient to find a third presentation of RC, which would make their use more practical.

From the above discussion it is clear that the calculation of RC to baryon semileptonic decays must be done following a program (see Ref. [5] and references therein). In previous publications we obtained the RC to the Dalitz plot of unpolarized decaying baryons up to order \((\alpha/\pi)(q/M_1)\) [6, 7]. In Ref. [8] we calculated to order \((\alpha/\pi)(q/M_1)\) the RC to the Dalitz plot with the angular correlation \( \hat{s}_1 \cdot \hat{p}_2 \) when the initial baryon is polarized along \( \hat{s}_1 \) and the final baryon in emitted along \( \hat{p}_2 \).

In the present paper we want to attain two goals. The first one is to continue with our program and to calculate to order \((\alpha/\pi)(q/M_1)\) the RC to the differential angular correlation \( \hat{s}_1 \cdot \hat{p}_2 \). The second one is to present the RC in the form of numerical arrays which should be applied to the quadratic products of form factors that appear in the RC, up to order \((\alpha/\pi)(q/M_1)\). We shall cover both CDB and NDB cases.

The ordering of the paper is as follows. In Sec. III we present the results to order \((\alpha/\pi)(q/M_1)\) for the virtual RC. In Sec. IV we give the results for the bremsstrahlung RC in the triple numerical...
integration form and combine them with the virtual RC results to obtain our first main result. In addition, we give the corresponding fully analytical results. In Sec. IV we perform several crosschecks and compare with other published results. In Sec. V we proceed towards our second goal. The last Sec. VI is dedicated to a summary and to concluding remarks.

In order not to obscure the physics we have moved to Appendices A, B, and C the very many algebraic expressions that appear in the analytical results. In this paper we exhibit only new expressions. However, previously published expressions are required in these results. We do not reproduce them here. Instead, we give all the necessary references so that the reader can identify them correctly. The text and these appendices are organized so as not to obscure the physics and to make accessible the use of our results. Performing the analytical integrals is long an tedious. In order to help the reader interested in checking our results we have introduced the Appendix D, where the previous and new integrals can be identified. In Secs. IV and V we provide several numerical tables with the purposes of illustration and, more importantly, of helping the user to check his numerical results with ours.

II. VIRTUAL RADIATIVE CORRECTIONS

Our first purpose in this section is to review our notation and conventions. Next we shall discuss the virtual RC to the $\hat{s}_1 \cdot \hat{p}_2$ angular correlation over the Dalitz plot to order $(\alpha/\pi)(q/M_1)$. The uncorrected transition amplitude $M_0$ for the baryon semileptonic decays

$$A \rightarrow B \ l \ \overline{\nu}_l$$

is

$$M_0 = \frac{G_V}{\sqrt{2}}[\overline{u}_B(p_2)W_\mu(p_1, p_2)u_A(p_1)][\overline{u}_l(l)O_\mu v_\nu(p_\nu)].$$

$G_V$ is the Fermi decay constant multiplied by the appropriate Cabibbo-Kobayashi-Maskawa factor [1]. $A$ and $B$ are spin one-half baryons, $l$ is the charged lepton, and $\nu_l$ is the accompanying antineutrino or neutrino as the case may be. $u_A$, $u_B$, $u_l$ or $\nu_l$, and $v_\nu$ or $u_\nu$ are their corresponding spinors. The weak interaction vertex is

$$W_\mu(p_1, p_2) = f_1(q^2)\gamma_\mu + f_2(q^2)\sigma_{\mu\nu} \frac{q_\nu}{M_1} + f_3(q^2)\frac{q_\mu}{M_1} + \left[ g_1(q^2)\gamma_\mu + g_2(q^2)\sigma_{\mu\nu} \frac{q_\nu}{M_1} + g_3(q^2)\frac{q_\mu}{M_1} \right] \gamma_5,$$
where \( O_\mu = \gamma_\mu (1 + \gamma_5) \), \( \sigma_{\mu\nu} = (1/2)(\gamma_\mu \gamma_\nu - \gamma_\nu \gamma_\mu) \), and \( \gamma_\mu \) and \( \gamma_5 \) are Dirac matrices. \( q \equiv p_1 - p_2 \) is the four-momentum transfer, and \( f_i(q^2) \) and \( g_i(q^2) \) are the vector and axial-vector form factors, respectively. Each form factor is assumed to be real in this work. The four-momenta and masses of the particles involved in (1) are \( p_1 = (E_1, p_1) \) and \( M_1, p_2 = (E_2, p_2) \) and \( M_2, l = (E, l) \) and \( m, \) and \( p_\nu = (E_0^\nu, p_\nu) \) and \( m_\nu \), respectively. Our calculations will be specialized to the center-of-mass frame of \( A \). In this frame, \( p_1, p_2, l, \) and \( p_\nu \) will also represent the magnitudes of the corresponding three-momenta, no confusion will arise from this. The directions of these momenta will be indicated by a caret, e.g., \( \hat{p}_2 \).

Our approach to virtual RC follows the procedure of Ref. [2]. It has been discussed extensively in our previous works (see Ref. [6]), so only a few salient facts will be repeated here. The virtual RC can be separated into a model-independent part \( M_v \) and into a model-dependent one which amounts to six constants. These latter can be absorbed into the corresponding form factors of (3), this is indicated by a prime on \( M_0 \). The RC in \( M_v \) are finite in the ultraviolet, contain the infrared cutoff, and are gauge invariant. We shall limit ourselves here to exhibit explicitly only the new contributions of order \((\alpha/\pi)(q/M_1)\) to the Dalitz plot with the \( \hat{s}_1 \cdot \hat{p}_2 \) correlation. However, previous results are needed in the complete result. We shall give ample referencing to them.

The transition amplitude with virtual RC is

\[
M_V = M'_0 + M_v. \tag{4}
\]

The calculation of all the integrals over the virtual photon four-momentum that appear in \( M_V \) have been performed already to order \((\alpha/\pi)(q/M_1)\) in Ref. [6] for the CDB case and in Ref. [7] for the NDB case. The corresponding results are compactly expressed as

\[
M_{vi} = \frac{\alpha}{2\pi} [M_0 \Phi_i + M_{\gamma\Phi'}_i], \tag{5}
\]

where \( i = C, N \) separates the CDB and NDB cases, respectively. The matrix element \( M_{\gamma\Phi'C} \) and the explicit forms of \( \Phi_C \) and \( \Phi'_C \) are found in Eqs. (8), (6), and (7) of Ref. [6], respectively. The corresponding ones of \( M_{\gamma\Phi'N}, \Phi_N, \) and \( \Phi'_N \) are found in Eqs. (6), (7), and (8) of Ref. [7], once the identifications \( \Phi_N = 2Re \phi \) and \( \Phi'_N = 2Re m\phi' \) are made.

The Dalitz plot with virtual radiative corrections is now obtained by leaving \( E \) and \( E_2 \) as the relevant variables in the differential decay rate for process (1) and specializing the result to exhibit explicitly the angular correlation \( \hat{s}_1 \cdot \hat{p}_2 \). After making the replacement \( u_A(p_1) \rightarrow \Sigma(s_1)u_A(p_1) \) in \( M_V \) [where the spin projector \( \Sigma(s_1) \) is given by \( \Sigma(s_1) = (1 - \gamma_5 s_1)/2 \)], squaring the resulting
amplitude, and rearranging terms we obtain for the differential decay rate

$$d\Gamma_{iv} = d\Omega \left\{ A'_0 + \frac{\alpha}{\pi} (B'_1 \Phi_i + B''_1 \Phi'_i) - \hat{s}_1 \cdot \hat{p}_2 \left[ A''_0 + \frac{\alpha}{\pi} (B'_2 \Phi_i + B''_2 \Phi'_i) \right] \right\} \tag{6}$$

In Eq. (6) the first two terms within curly brackets correspond to the unpolarized Dalitz plot. For $i = C$ they can be found in Ref. [6] where $A'_0, B'_1,$ and $B''_1$ correspond to Eqs. (10), (11), and (12), respectively, of this reference. For $i = N$ the unpolarized Dalitz plot can be found in Ref. [7], where $B''_N$ corresponds to Eq. (15). The spin-dependent part of Eq. (6) was obtained to order $(\alpha/\pi)(q/M_1)^0$ in Ref. [8]. There in Eq. (19) one can find the full expression for $A''_0$. To the next order of approximation, however, there appear the new contributions, namely,

$$B'_2 = E p_2 Q_6 + E l y_0 Q_7 \tag{7}$$

$$B''_{c2} = E p_2 Q_8 + E l y_0 Q_9 \tag{8}$$

and

$$B''_{N2} = M_1 p_2 Q_{N8} + M_1 l y_0 Q_{N9} \tag{9}$$

The phase space factor of Eq. (6) is $d\Omega = (G_F^2/2) |dE_2 dE d\Omega_2 d\varphi_1/(2\pi)^5| 2M_1$, the cosine $y_0$ of the angle between the directions of the emitted baryon and the charged lepton is $y_0 = [(E_{\nu}^0)^2 - l^2 - p_2^2]/(2p_2l)$, and the neutrino energy is, by energy conservation, $E_{\nu}^0 = M_1 - E_2 - E$

The $Q_i$ in Eqs. (7) - (9) are functions of quadratic products of the form factors. They are new and are listed in Appendix A.

III. BREMSSTRAHLUNG RADIATIVE CORRECTIONS AND FINAL RESULTS

The radiative process that accompanies (1) is

$$A \rightarrow B \ell \nu \gamma, \tag{10}$$

where the real photon $\gamma$ carries four-momentum $k = (\omega, k)$ and the neutrino energy is now $E_{\nu} = E_{\nu}^0 - \omega$.

The Dalitz plot for this four-body decay covers the three-body region of (1) and extends over it by a region where both $E_{\nu}$ and $\omega$ are always non-zero simultaneously. We shall refer to this extension as the four-body region. A detailed discussion of these two regions as well as explicit expressions of their boundaries in the $(E, E_2)$ plane are given in Ref. [8]. Even if experiments have
no provision to detect the real photons in (10), a precise measurement of $E$ and $E_2$ still allows to discriminate against photons belonging to the four-body region. We shall assume in this paper that this is the case and shall restrict our calculations to the three-body region of (10).

In order to establish our notation and conventions and to make the necessary connections with our previous work, we must briefly review the derivation of the bremsstrahlung differential decay rate. According to the Low theorem [3], the amplitude for process (10) with contributions of orders $1/k$ and $k^0$ depends only on the form factors of the non-radiative amplitude (2) and on the static electromagnetic multipoles of the particles involved. The model dependence included by the real photon appears in new form factors which vanish at least linearly with $k$. These latter contribute to orders $(\alpha/\pi)(q/M_1)^2$ and higher to the differential decay rate. Thus, within the approximations of this paper this part of the RC is model independent. The transition amplitude consists of the sum of three terms, namely,

$$M_{iB} = M_{iB1} + M_{iB2} + M_{iB3}. \tag{11}$$

As in Sec. II, the subindex $i = C, N$ is used to distinguish CDB and NDB cases, respectively. The detailed expressions of $M_{CB1}$, $M_{CB2}$, and $M_{CB3}$ are found in Eqs. (18), (19), and (20), respectively, of Ref. [6] and of $M_{NB1}$, $M_{NB2}$, and $M_{NB3}$ are found in Eqs. (21), (22), and (23) of Ref. [7], respectively. Using the $\Sigma(s_1)$ projector in Eq. (11), squaring the matrix element, performing the trace calculations, inserting the appropriate phase space factor, and indicating the integrations over the photon variables, the differential decay rate can be compactly given as

$$d\Gamma_{iB} = d\Gamma'_{iB} - d\Gamma^{(s)}_{iB}. \tag{12}$$

The analytical result to order $(\alpha/\pi)(q/M_1)$ of the unpolarized decay rate $d\Gamma'_{iB}$ was calculated in Ref. [6] for the CDB case and in Ref. [7] for the NDB case. They can be found in Eqs. (48) and (54) of such references, respectively. The polarized decay rate $d\Gamma^{(s)}_{iB}$ was calculated analytically to order $(\alpha/\pi)(q/M_1)^0$ in Ref. [8]. The final results are given in Eq. (101) of this reference, for both CDB and NDB cases.

The calculation to order $(\alpha/\pi)(q/M_1)$ of $d\Gamma^{(s)}_{iB}$ is new. Let us now proceed with it. This decay rate consists of the sum of three terms

$$d\Gamma^{(s)}_{iB} = d\Gamma^{(s)}_{iB1} + d\Gamma^{(s)}_{iBII} + d\Gamma^{(s)}_{iBIII}. \tag{13}$$

$d\Gamma^{(s)}_{iB1}$ comes from the product $M^{(s)}_{iB1}\overline{M}_{iB1}$ and it contains the infrared divergence and the finite terms that accompany it. To extract them we follow the procedure used in Ref. [8], which
extended the formalism introduced in Ref. [9] for $K_{l3}$ decays. The second and third summands in Eq. (13) come from of the product $M^{(s)}_{1B1} + M^{(s)}_{1B2} M^{(s)}_{1Bj}$ for $j = 2, 3$ respectively. They are infrared convergent and are computed with standard techniques. The product $M^{(s)}_{1B3} M^{(s)}_{1Bj}$ is left out because it contributes to orders $(\alpha/\pi)(q/M_1)^2$ and higher. The upper index $s$ indicates where the $\gamma_5 \not s_1$ of $\Sigma(s_1)$ is contained in these amplitudes.

An important remark is in order here. It turns out that trying to compute the terms of order $(\alpha/\pi)(q/M_1)$ only and then adding them to the results of Ref. [8] is long and more cumbersome than doing from the start the full calculation containing both $(\alpha/\pi)(q/M_1)^0$ and $(\alpha/\pi)(q/M_1)$ contributions. Accordingly, our new expressions will contain the previous and the new contributions. It is then easy to verify that by eliminating the $(\alpha/\pi)(q/M_1)$ terms in the new expressions one obtains the ones of Ref. [8].

The procedure to calculate the CDB and NDB cases differ substantially. We shall deal with them successively in the next two subsections

A. Charged decaying baryon case

The polarized radiative differential decay rate can be cast into the form

$$d\Gamma^{(s)}_{CB} = \frac{\alpha}{\pi} d\Omega \hat{s}_1 \cdot \hat{p}_2 B'_2 I_{C0} + C^{(s)}_A.$$  \hspace{1cm} (14)

$I_{C0}$ contains the infrared divergence and the finite terms that accompany it. It was calculated already, its explicit form is found in Eq. (52) of Ref. [8]. $B'_2$ contains new $(q/M_1)$ contributions. It coincides with Eq. (7) of the virtual RC. $C^{(s)}_A$ consists of the sum of three terms, namely,

$$C^{(s)}_A = \sum_{R=1}^{III} C_R,$$  \hspace{1cm} (15)

where

$$C_R = \frac{p_2 l}{2\pi} \int_{-1}^{1} dy \int_{-1}^{1} dx \int_{0}^{2\pi} d\varphi_k \frac{|M_R|^2}{D}.$$  \hspace{1cm} (16)

The integrations over the photon three-momentum are to be performed through the variables $y = \hat{p}_2 \cdot \hat{l}$, $x = \hat{l} \cdot \hat{k}$, and the azimuthal angle $\varphi_k$ of $k$. The traces of the square of the matrix elements give

$$|M_l|^2 = \frac{\beta^2 (1 - x^2) E}{(1 - \beta x)^2} \left[ -\frac{D}{p_2} \bar{Q}_7 + \hat{k} \cdot \hat{p}_2 \bar{Q}_9 + \frac{p_2 (E + lx - D)}{M_1 E} \bar{Q}_{10} + \frac{(1 - \beta x)(p_2 + 2ly)}{M_1} \bar{Q}_{11} + \frac{2ly(E_0 + lx) + Dp_2}{M_1 E} \bar{Q}_{12} + \frac{ly}{M_1} \bar{Q}_{13} - \frac{Dp_2}{M_1 E} \bar{Q}_{14} \right],$$  \hspace{1cm} (17)
\[ |M_{II}|^2 = \frac{1}{1 - \beta x} \left[ \frac{p_2}{2} \tilde{Q}_6 + \frac{l y}{2} \tilde{Q}_7 + \frac{p_2}{2} R_1 Q_8 + \left( \frac{k \cdot \hat{p}_2}{2} [(E_\nu - \omega) R_2 + \beta \omega x] + \frac{l y}{2} R_1 \right) Q_9 \right. \\
+ \frac{p_2}{2 M_1} \left[ -(\hat{k} \cdot p_2 + l x + 2 \omega) R_2 + \frac{\omega}{E} (2 l x - D) \right] Q_{10} \\
+ \frac{p_2}{2 M_1} \left[ -(\hat{k} \cdot \hat{p}_2 (p_2 + 2 l y + 2 \omega \hat{k} \cdot \hat{p}_2) + l x] R_2 + \frac{2 l \omega y}{p_2} (1 - \beta x) \right] Q_{11} \\
+ \frac{p_2}{M_1} \left[ k \cdot \hat{p}_2 (p_2 + l y + \omega \hat{k} \cdot \hat{p}_2) R_2 + \frac{\omega}{2 E p_2} \left[ D p_2 + 2 l y (D - \hat{k} \cdot p_2) \right] \right] \left. \right] Q_{12} \\
+ \frac{l \omega y}{2 M_1} Q_{13} - \frac{D p_2 \omega}{2 M_1 E} Q_{14} - \frac{E_\nu}{2} \hat{k} \cdot \hat{p}_2 R_2 Q_{15} \right), \tag{18} \]

and

\[ |M_{III}|^2 = \frac{2 E_\nu l (x \hat{k} \cdot \hat{p}_2 - y)}{M_1} \frac{(x \hat{k} \cdot \hat{p}_2 - y)}{1 - \beta x} (E_\nu + \beta l + \beta p_2 y + \beta \omega x) Q_{16} - \frac{l}{M_1} \frac{(x \hat{k} \cdot \hat{p}_2 - y)}{1 - \beta x} (E_\nu + \beta l + \beta p_2 y + \beta \omega x) Q_{17} \\
+ E \frac{\beta^2 (1 - x^2)}{M_1} (p_2 + l y + \omega \hat{k} \cdot \hat{p}_2) Q_{18} \\
+ \frac{l}{M_1} \left[ \frac{\hat{k} \cdot \hat{p}_2}{1 - \beta x} (\beta E_\nu - p_2 y - l - \omega x) + y \left[ E_\nu + \frac{D - 2 E_\nu}{1 - \beta x} \right] \right] Q_{19} \\
+ \frac{l}{M_1} \left[ \frac{\hat{k} \cdot \hat{p}_2}{1 - \beta x} (\beta E_\nu + p_2 y + l + \omega x) + y \left[ E_\nu - \frac{D}{1 - \beta x} \right] \right] Q_{20} \\
- \frac{l}{M_1} \frac{\beta y [x (E_\nu^0 - D) + p_2 y + l]}{1 - \beta x} Q_{21} \\
- \frac{\omega}{2 M_1} \frac{\hat{k} \cdot \hat{p}_2}{1 - \beta x} (E_\nu - D + \beta l + \beta p_2 y + \beta \omega x) Q_{22} \\
+ \frac{\omega}{2 M_1} \frac{1}{1 - \beta x} \left[ \hat{k} \cdot \hat{p}_2 (E_\nu - \beta l - \beta p_2 y - \beta \omega x) + \beta y (D - 2 E_\nu) \right] Q_{23} \\
+ \frac{E_\nu \omega}{2 M_1} \hat{k} \cdot \hat{p}_2 Q_{24} - \frac{\omega}{2 M_1} \left( p_2 + l y + \omega \hat{k} \cdot \hat{p}_2 \right) Q_{25}. \tag{19} \]

Here \( \beta = l / E, R_1 = -1 + \beta^2 (1 - x^2) / (1 - \beta x) + \omega / E, R_2 = -1 + (1 - \beta^2) / (1 - \beta x) - \omega / E, D = E_\nu^0 + (1 + p_2) \cdot \hat{k}, \) and \( \omega = F / (2D), \) with \( F = 2 p_2 l (y_0 - y). \)

The form factors of the vertex (5) are contained in the \( Q_i \) coefficients. These are collected in Appendix A.

The complete differential decay rate, containing the Dalitz plot with virtual and bremsstrahlung RC to order \((\alpha / \pi)(q/M_1),\) is compactly expressed as

\[ d \Gamma_C = d \Gamma_{CV} + d \Gamma_{CB}, \tag{20} \]

where the detailed expressions of \( d \Gamma_{CV} \) and \( d \Gamma_{CB}, \) containing \( \delta_1, \) can be traced starting at Eqs. (6) and (14). One can check that the infrared cutoff \( \lambda \) contained in the virtual RC is canceled by
its counterpart in the bremsstrahlung RC. Eq. (20) is model-independent to order \((\alpha/\pi)(q/M_1)\). The photon triple integrals of Eq. (16) remain to be performed numerically. This is our first main result, in the sense that it can already be used in a Monte Carlo simulation. It complies with all the requirements discussed in the Introduction to solve the difficulties of the first two levels. However, it still presents problems of the third level. The triple numerical integration form is still unpractical. This difficulty can be substantially solved because such triple integrations can be calculated analytically.

We shall now proceed to obtain the analytical counterpart of the \(\hat{s}_1 \cdot \hat{p}_2\) correlation contained in Eq. (20). Within our approximations all the form factors are constant and can be factored out of the very many triple integrals. A convenient rearrangement of the \(C_R\) of Eq. (15) is

\[
C_{I} = \sum_{i=1}^{8} Q_{i+6} \Lambda_i, \tag{21}
\]

\[
C_{II} = \sum_{i=6}^{15} Q_i \Lambda_{i+3}, \tag{22}
\]

and

\[
C_{III} = \sum_{i=16}^{25} Q_i \Lambda_{i+3}. \tag{23}
\]

The \(Q_i\) are the quadratic functions of the form factors listed in Appendix A. The triple integrals are contained in the \(\Lambda_i\). We shall not detail here their explicit form in terms of such integrals. We only give their final analytical expressions and collect them in Appendix B. Many of these integrals have been performed already in our previous work, although some are new. To help the reader interested in following our calculations in more detail, we have given in Appendix D the general form of the triple integrals and a guide to identify their analytical counterparts in our previous work. Only the results for the new integrals are explicitly given in this appendix. In organizing Eq. (21) with one running index \(i\) it was necessary to introduce \(\Lambda_2 = 0\), because \(Q_8\) does not appear in this equation.

The completely analytical result for the Dalitz plot in the differential decay rate of CDB, Eq. (20), can be compactly written as

\[
d\Gamma_C = d\Omega \left[ A'_0 - A''_0 \hat{s}_1 \cdot \hat{p}_2 + \frac{\alpha}{\pi} (\Theta_{CI} - \Theta_{CII} \hat{s}_1 \cdot \hat{p}_2) \right], \tag{24}
\]

where

\[
\Theta_{CI} = B'_1(\Phi_C + I_{C0}) + B''_{C1}\Phi_C' + C'_A, \tag{25}
\]
and
\[
\Theta_{CI} = B'_2(\Phi_C + I_{C0}) + B''_2\Phi'_C + C_A^{(s)}.
\] (26)

In this last equation, $\Phi_C$, $\Phi'_C$, $B'_2$ and $B''_2$ are the same of Eq. (6), $I_{C0}$ is the one of Eq. (14), and $C_A^{(s)}$ is given by the sum of Eqs. (21)-(23). In Eq. (24), $A'_0$ and $A''_0$ are the ones of Eq. (6) and the analytic form of $\Theta_{CI}$ is found in Eq. (48) of Ref. [6]. One can check that when $(q/M_1)$ contributions in $\Theta_{CI}$ and $\Theta_{CII}$ are neglected, one obtains the order $(q/M_1)^0$ result of Ref. [8]. In particular $B'_2$, $B''_2$, and $C_A^{(s)}$ become $A'_2$, $A''_2$, and $D_3(\rho_1 + \rho_3) + D_4(\rho_2 + \rho_4)$ of Eqs. (20), (21), and (96), respectively, of this reference. Let us now proceed with the second case.

B. Neutral decaying baryon case

The calculation of $d\Gamma_{NB}^{(s)}$ proceeds in two ways. One possibility is to perform a straight-forward calculation using the tools described in the previous section. Another possibility is to use the approach introduced in Ref. [7] to deal with the convergent pieces of $d\Gamma_{NB}$. All the $(\alpha/\pi)(q/M_1)$ terms can be obtained using the approximation
\[
\frac{1}{p_2 \cdot k} \simeq \frac{1}{p_1 \cdot k} + \frac{q \cdot k}{(p_1 \cdot k)^2};
\] (27)
and this will allow us to incorporate all the terms of order $(\alpha/\pi)(q/M_1)$ that arise from this ratio. The advantage of this second possibility is that all the convergent terms of the NDB case are then obtained from their counterparts for the CDB case up to a few additional terms. This approximation, however, cannot be used in the divergent terms and hence we need standard techniques to calculate them. In the first term of Eq. (13) the infrared divergence is handled as in Ref. [7] and afterwards the approximation (27) is used. One gets
\[
d\Gamma_{NB}^{(s)} = \frac{\alpha}{\pi} d\Omega \hat{s}_1 \cdot \hat{p}_2(B'_2I_{N0} + C_I + \tilde{C}^{(s)}_I).
\] (28)
The next term in Eq. (13) can be arranged using (27) into
\[
d\Gamma_{NBII}^{(s)} = \frac{\alpha}{\pi} d\Omega \hat{s}_1 \cdot \hat{p}_2(C_{II} + \tilde{C}^{(s)}_{II}).
\] (29)
To calculate the third term in (13) we can use the approximations $W_\lambda \simeq \gamma_\lambda(f_1 + g_2\gamma_5)$ and $p_2 \simeq p_1$. The traces that arise are practically the same as in $d\Gamma_{CBIII}^{(s)}$. However, there is a difference to order $(\alpha/\pi)(q/M_1)$ which gives rise to a $\tilde{C}^{(s)}_{III}$ summand. Thus, one gets
\[
d\Gamma_{NBIII}^{(s)} = \frac{\alpha}{\pi} d\Omega \hat{s}_1 \cdot \hat{p}_2(C_{III} + \tilde{C}^{(s)}_{III}).
\] (30)
The polarized decay rate becomes

\[ d\Gamma^{(s)}_{NB} = \frac{\alpha}{\pi} d\Omega \, \hat{s}_1 \cdot \hat{p}_2 (B'_2 I_{N0} + C_A^{(s)} + C_{NA}^{(s)}). \]  

(31)

\( I_{N0} \) contains the infrared divergence and the finite terms that accompany it. It was calculated already, its explicit form is found in Eq. (40) of Ref. [7]. As before in Eq. (7), \( B'_2 \) contains the \((\alpha/\pi)(q/M_1)\) contributions. \( C_A^{(s)} \) is the same of Eq. (14) of the CDB case and \( C_{NA}^{(s)} \) is defined as

\[ C_{NA}^{(s)} = \tilde{C}_I^{(s)} + \tilde{C}_II^{(s)} + \tilde{C}_III^{(s)}. \]  

(32)

After some tedious but straight-forward trace calculations their explicit forms are obtained. \( \tilde{C}_i^{(s)} \) becomes

\[ \tilde{C}_i^{(s)} = D_3 \rho_i + D_4 \rho'_i. \]  

(33)

with \( i = I, II, III \). Here \( D_3 = 2(-g_1^2 + f_1 g_1) \) and \( D_4 = 2(g_1^2 + f_1 g_1). \) \( \rho_i \) and \( \rho'_i \) are

\[ \rho_I = \frac{p_2}{2\pi M_1} \int_{-1}^{1} dy \int_{-1}^{1} dx \int_{0}^{2\pi} d\varphi_k \beta^2 (1 - x^2) (1 + \beta y) \rho^2 \frac{D}{(1 - x^2)} \left[ \hat{p}_2 \cdot \hat{k} \right], \]  

(34)

\[ \rho'_I = \frac{p_2}{2\pi M_1} \int_{-1}^{1} dy \int_{-1}^{1} dx \int_{0}^{2\pi} d\varphi_k \beta^2 (1 - x^2) (1 + \beta y) \rho^2 \frac{D}{(1 - x^2)} \left[ \hat{p}_2 \cdot \hat{k} \right], \]  

(35)

\[ \rho_{II} = \frac{p_2}{8\pi M_1} \int_{-1}^{1} dy \int_{-1}^{1} dx \int_{0}^{2\pi} d\varphi_k \beta^2 (1 - x^2) (1 + \beta y) \rho^2 \frac{D}{(1 - x^2)} \left[ \hat{p}_2 \cdot \hat{k} \right], \]  

(36)

\[ \rho_{III} = \frac{p_2}{4\pi M_1} \int_{-1}^{1} dy \int_{-1}^{1} dx \int_{0}^{2\pi} d\varphi_k \beta^2 (1 - x^2) (1 + \beta y) \rho^2 \frac{D}{(1 - x^2)} \left[ \hat{p}_2 \cdot \hat{k} \right], \]  

(37)

\[ \rho_{III} = \frac{p_2}{4\pi M_1} \int_{-1}^{1} dy \int_{-1}^{1} dx \int_{0}^{2\pi} d\varphi_k \beta^2 (1 - x^2) (1 + \beta y) \rho^2 \frac{D}{(1 - x^2)} \left[ \hat{p}_2 \cdot \hat{k} \right], \]  

(38)

and

\[ \rho'_{III} = \frac{p_2}{4\pi M_1} \int_{-1}^{1} dy \int_{-1}^{1} dx \int_{0}^{2\pi} d\varphi_k \beta^2 (1 - x^2) (1 + \beta y) \rho^2 \frac{D}{(1 - x^2)} \left[ \hat{p}_2 \cdot \hat{k} \right], \]  

(39)
The complete differential decay rate that contains the Dalitz plot of the NDB case including the $s_1 \cdot \hat{p}_2$ correlation can be expressed compactly as

$$d\Gamma_N = d\Gamma_{NV} + d\Gamma_{NB}, \quad (40)$$

where the detailed expressions of $d\Gamma_{NV}$ and $d\Gamma_{NB}$ containing $s_1$ are traced starting at Eqs. (6) and (31). This is our second main result and the discussion of the previous subsection applies to it: its triple numerical integration form is still unpractical. This difficulty is solved by performing analytically the triple integrals contained in Eq. (31). We have to concentrate only on $C_{NA}^{(s)}$ of this equation, all other terms in it have been given analytically already. Then, Eq. (32) can be cast into the compact form

$$C_{NA}^{(s)} = D_3\rho_{N3} + D_4\rho_{N4}, \quad (41)$$

where

$$\rho_{N3} = \rho_I + \rho_{II} + \rho_{III}, \quad (42)$$

and

$$\rho_{N4} = \rho'_I + \rho'_{II} + \rho'_{III}. \quad (43)$$

The explicit analytical expressions of the $\rho_i$ and $\rho'_i$ are collected in Appendix C.

The completely analytical result for the Dalitz plot in Eq. (40) can be put in parallel with Eq. (24), namely,

$$d\Gamma_N = d\Omega \left[ A'_0 - A''_0 s_1 \cdot \hat{p}_2 + \frac{\alpha}{\pi} (\Theta_{NI} - \Theta_{NII} s_1 \cdot \hat{p}_2) \right], \quad (44)$$

where

$$\Theta_{NI} = B'_1(\Phi_N + I_{N0}) + B''_{N1}\Phi'_N + C'_A + C'_{NA}, \quad (45)$$

and

$$\Theta_{NII} = B'_2(\Phi_N + I_{N0}) + B''_{N2}\Phi'_N + C_s^{(s)} + C_{NA}^{(s)}. \quad (46)$$

In this last equation $\Phi_N$, $\Phi'_N$, $B'_1$ and $B''_{N2}$ are the same of Eq. (6), $C'_A$ and $I_{N0}$ are the ones of Eq. (31), and $C_{NA}^{(s)}$ is given in Eq. (41). In Eq. (44) $A'_0$ and $A''_0$ are the ones of Eq. (6) and the analytical form of $\Theta_{NI}$ is found in Eq. (54) of Ref. [7]. One can check that when $(\alpha/\pi)(q/M_1)$ contributions in Eq. (44) are neglected one obtains the $(\alpha/\pi)(q/M_1)^0$ result of Ref. [8]. In particular $B''_{N2}$ becomes $A''_{2}$ of this reference and $C_{NA}^{(s)}$ becomes zero.
IV. CROSSCHECKS

There are several points we want to make in this section. One is that the analytical results are so long that it is important to check them. Another one is that there are some results already available in the literature \[10\] and we should compare with them. An even more important point is to provide the reader interested in using our result with numbers to be reproduced.

To crosscheck the analytical results we use the triple numerical integration form of the RC. We make numerical comparisons of both forms by fixing the values of several form factors and of the Dalitz plot variables $E$ and $E_2$. A complete crosscheck requires the use of several choices of non-zero values for all the six form factors and a range of values of the pair $(E, E_2)$ over the Dalitz plot. Also, the comparison with the numerical results of Ref. \[10\] should be made in the several cases covered there. All these crosschecks and comparisons were satisfactory and it is not necessary to display all the details here. Accordingly, we shall present a minimum of numerical tables and limit our discussion to them.

For definiteness, we shall work with the decays $\Sigma^- \to n e \bar{\nu}$ and $\Lambda \to p e \bar{\nu}$ as examples of CDB and NDB cases. The reason for this is that numerical RC for these two decays were produced in Ref. \[10\]. We shall accordingly fix the form factors at the values used in this reference, namely, $g_1/f_1 = -0.34$, $f_2/f_1 = -0.97$ for $\Sigma^- \to n e \bar{\nu}$ decay and $g_1/f_1 = 0.72$, $f_2/f_1 = 0.97$ for $\Lambda \to p e \bar{\nu}$. In addition, we use $f_1 = 1$ in $\Sigma^- \to n e \bar{\nu}$ and $f_1 = 1.2366$ in $\Lambda \to p e \bar{\nu}$ and to compare with Ref. \[10\] in both these decays we put $g_2 = 0$ and neglect $f_3$ and $g_3$ contributions. The values of the masses come from Ref. \[1\]. The anomalous magnetic moments of the baryons appear in our expressions of the RC. We use $\kappa(\Sigma^-) = 0.3764 M_N$, $\kappa(\Lambda) = 0.6130 M_N$, $\kappa(n) = 1.9130 M_N$, and $\kappa(p) = -1.7928 M_N$, where $M_N$ is the nuclear magneton. These values are extracted from the corresponding total magnetic moments reported in \[1\] using Eq. (22) of Ref. \[6\]. We neglected the anomalous magnetic moment of the electron, due to its smallness.

As an example of the numerical crosscheck we display Table I for $\Sigma^- \to n e \bar{\nu}$, where for generality we allowed $g_2, g_3, f_3 \neq 0$. In the upper entries (a) we use the triple numerical integration form to obtain the RC for $C_A^{(s)}$ of the $\hat{s}_1 \cdot \hat{p}_2$ correlation covering a lattice of points over the Dalitz plot. The energies $E$ and $E_2$ enter through $\delta = E/E_m$ and $\sigma = E_2/M_1$. $E_m$, $\sigma^{\text{max}}$, and $\sigma^{\text{min}}$ are determined using the boundaries of the three body region given in Ref. \[8\]. The lower entries (b) contain the RC for the same $C_A^{(s)}$ calculated with the analytical form. An inspection of this table shows an agreement to two decimal places and the third one being close.
| $\sigma$ | (a) |
|---------|------|
| 0.8077 | -0.0744 -0.0811 -0.0587 -0.0256 0.0101 0.0420 0.0650 0.0741 0.0648 0.0309 |
| 0.8056 | -0.1350 -0.1435 -0.1048 -0.0507 0.0049 0.0528 0.0852 0.0955 0.0778 0.0253 |
| 0.8035 | -0.1673 -0.1294 -0.0708 -0.0090 0.0443 0.0802 0.0910 0.0700 0.0102 |
| 0.8014 | -0.1875 -0.1534 -0.0921 -0.0254 0.0327 0.0718 0.0831 0.0590 |
| 0.7993 | -0.2065 -0.1784 -0.1152 -0.0438 0.0193 0.0617 0.0734 0.0459 |
| 0.7972 | -0.2054 -0.1407 -0.0643 0.0042 0.0503 0.0625 0.0306 |
| 0.7951 | -0.2358 -0.1697 -0.0873 -0.0124 0.0379 0.0499 0.0128 |
| 0.7930 | -0.2720 -0.2042 -0.1141 -0.0309 0.0246 0.0363 |
| 0.7909 | -0.2480 -0.1469 -0.0520 0.0106 0.0211 |
| 0.7888 | -0.3115 -0.1913 -0.0772 -0.0035 0.0041 |
| 0.7867 | -0.2684 -0.1110 -0.0135 |

| $\delta$ | 0.0500 0.1500 0.2500 0.3500 0.4500 0.5500 0.6500 0.7500 0.8500 0.9500 |
|----------|--------------------------|
| $\sigma_{\text{max}}$ | 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 |
| $\sigma_{\text{min}}$ | 0.8043 0.7978 0.7925 0.7884 0.7857 0.7847 0.7854 0.7884 0.7939 0.8023 |

TABLE I: Values of $C_A^{(s)}$ in $\Sigma^- \to n e \bar{\nu}$ decay by (a) integrating it numerically and (b) evaluating it analytically. $C_A^{(s)}$ is given in units of GeV$^2$. The form factors have been given the arbitrary values $f_1 = 1.0$, $f_2 = -0.97$, $f_3 = -0.778$, $g_1 = -0.34$, $g_2 = 0.987$, and $g_3 = -1.563$.

To proceed with the comparison with Ref. [10], we must use the difference defined there, namely,

$$\delta\alpha_B(E, E_2) = \alpha_B(E, E_2) - \alpha_0(E, E_2),$$

(47)

where

$$\alpha_B(E, E_2) = -\frac{A_0''(E, E_2) + (\alpha/\pi)\Theta_{III}(E, E_2)}{A_0'(E, E_2) + (\alpha/\pi)\Theta_{II}(E, E_2)},$$

(48)

and as before $i = C, N$ and $\alpha_0(E, E_2) = -A_0''(E, E_2)/A_0'(E, E_2)$ for both values of $i$.

One may interpret $\alpha_{Bi}(E, E_2)$ as the asymmetry parameter of the emitted baryon at $(E, E_2)$. 
points of the Dalitz plot. Here we must choose the same \((E, E_2)\) points as in Ref. \[10\] and, as already mentioned, use the same values of the form factors. However, it should be stressed that our final results are not compromised to fixing the values of the form factors.

Before proceeding with a detailed comparison with the numbers of this reference, there is a point that must be kept in mind. The approximations used in our work and in Ref. \[10\] are not quite the same. We used the Low theorem to calculate the bremsstrahlung RC and in this reference it was assumed that both baryons involved were point-like and higher \((\alpha/\pi)(q/M_1)^n\) contributions \((n \geq 2)\) were included in this part. Another interesting thing is to compare our order \((\alpha/\pi)(q/M_1)\) results with our previous order \((\alpha/\pi)(q/M_1)^0\) results. As explained earlier these latter are reproduced here when the \((\alpha/\pi)(q/M_1)^0\) contributions are neglected.

We performed many comparisons and, as before, there is no need to present all the details. One example, the \(\Lambda \rightarrow p e \bar{\nu}\) case is enough for this discussion. The results are displayed in Table II. In the upper (a) part only the order \((\alpha/\pi)(q/M_1)^0\) is given. Both this order and the order \((\alpha/\pi)(q/M_1)\) contributions are added in the middle part (b). The numerical results of Ref. \[10\] are reproduced in the lower part (c). A numerical crosscheck was also performed in producing parts (a) and (b). We do not reproduce it here, the agreement was as good as in Table I.

An inspection of Table II shows that the order \((\alpha/\pi)(q/M_1)\) is systematically perceptible at the second significant digit and even at the first one. In comparing with Ref. \[10\], one can see a better agreement with the middle table (b). The agreement at the first significant digit improves as the RC grow in size and also the variations in the second digit become smaller. There are differences, however. They may be explained as due to the different approximations used. Also, comparing entries (a) and (b) one may conclude that for light quark hyperon semileptonic decays the order \((\alpha/\pi)(q/M_1)\) is perceptible enough and that when heavy quarks are involved contributions of this order become relevant in precision experiments.

Let us now turn to a different form to use our results. A form which may provide a more efficient use of them in a Monte Carlo simulation and which still is not compromised to fixing values of the form factors, as was the case in Table II.

V. NUMERICAL FORM OF THE RADIATIVE CORRECTIONS

We now come to our second goal in this paper. In the previous sections we have obtained the RC to CDB and NDB in two forms. The first one has triple integrals over the real photon variables
| $\sigma$  | (a)   | (b)   | (c)   |
|---------|-------|-------|-------|
| 0.8530  | 0.1  | 0.5  | 0.2  |
| 0.8518  | 1.2  | 2.0  | 1.9  |
| 0.8505  | 0.3  | 0.4  | 0.8  |
| 0.8492  | 1.7  | 2.3  | 1.8  |
| 0.8467  | 1.3  | 1.8  | 1.7  |
| 0.8454  | 1.4  | 1.7  | 1.7  |
| 0.8442  | 2.7  | 2.4  | 2.1  |
| 0.8416  | 3.4  | 2.2  | 0.1  |

| $\sigma_{\text{max}}$ | 0.8536 | 0.8536 | 0.8536 | 0.8536 | 0.8536 | 0.8536 | 0.8536 | 0.8536 | 0.8536 | 0.8536 |
|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $\sigma_{\text{min}}$ | 0.8516 | 0.8479 | 0.8450 | 0.8428 | 0.8414 | 0.8410 | 0.8416 | 0.8433 | 0.8464 | 0.8508 |

| \(\delta\) | 0.0500 | 0.1500 | 0.2500 | 0.3500 | 0.4500 | 0.5500 | 0.6500 | 0.7500 | 0.8500 | 0.9500 |

**TABLE II:** $100\delta\alpha_B(E, E_2)$ with RC over the three-body region in \(\Lambda \rightarrow p\pi\nu\) decay. (a) gives the RC to order \((\alpha/\pi)(q/M_1)^0\), (b) gives the RC to order \((\alpha/\pi)(q/M_1)^1\), and (c) corresponds to the RC computed in Ref. [10].
ready to be performed numerically. The second one is fully analytical. Although this latter one is already practical it is still long and tedious. It still requires that the RC be calculated within the Monte Carlo simulation every time \( E \) and \( E_2 \) are varied. This is much faster than performing the triple integrals, but, it still represents a non-negligible computer effort. We shall now discuss a third form of the RC that may be more practical to use.

For fixed values of \( E \) and \( E_2 \), Eqs. (25) and (26) for the CDB case and Eqs. (45) and (46) for the NDB case take the form

\[
\Theta_m = \sum_{i \leq j = 1}^{6} a_{ij}^m f_i f_j,
\]

(49)

because they are quadratic in the form factors. For the sake of simplify, in Eq. (49) we have momentarily redefined \( g_1 = f_4, g_2 = f_5, \) and \( g_3 = f_6 \). Notice that the restriction \( i \leq j \) reduces the sum in Eq. (49) to 21 terms. The index \( m \) takes the values \( m = CI, CII, NI, \) and \( NII \). The third form of RC we propose consists of calculating arrays of the \( a_{ij}^m \) coefficients determined at fixed values of \((E, E_2)\) and that these pairs of \((E, E_2)\) cover a lattice of points on the Dalitz plot.

To calculate the coefficients \( a_{ij}^m \) it is not necessary to rearrange our final results, either analytical or to be integrated, so that they take the form (49). One can calculate them following a systematic procedure. One chooses fixed \((E, E_2)\) points. Then one fixes \( f_1 = 1 \) and \( f_i = 0, i \neq 1 \) and obtains \( a_{11}^m \), one repeats this calculation for \( f_2 = 1, f_i = 0, i \neq 2 \) to obtain \( a_{22}^m \), and again until \( f_6 = 1, f_i = 0, i \neq 6 \) and \( a_{66}^m \) is obtained. Next, one repeats the calculation with \( f_1 = 1, f_2 = 1, f_i = 0, i \neq 1,2 \) and from this results one subtracts \( a_{11}^m \) and \( a_{22}^m \), this way one obtains the coefficient \( a_{12}^m \). One repeats this last step changing \( i \) and \( j \) until all the interference coefficients \( a_{ij}^m, i \neq j \), have been calculated.

To illustrate all this and to further discuss it we have produced arrays presented in two tables, selecting in each one ten points \((E, E_2)\) over the Dalitz plot. We have chosen two examples, \( \Lambda \to p e^\nu \) of a NDB case which is displayed in Table III and \( \Lambda^+_c \to \Lambda e^+\nu \) of a CDB case which is displayed in Table IV. This latter also serves as an example of a heavy quark decay. As in the previous section, the more important purpose is to provide the user with numbers to compare with. The arrays of these two tables were obtained using the RC in the analytical form. In the \( \Lambda^+_c \) case we used the formulas for the charge assignments \( A^- \), \( B^0 \), \( l^- \) of the CDB case of the previous sections and then applied the rules of Ref. [5] to obtain the results for the charge assignment \( A^+, B^0, l^+ \) of this particular case. In these tables we have restored our standard notation for the axial-vector form factors \( g_1, g_2, \) and \( g_3 \). The masses used are those of Sec. IV, \( M_1(\Lambda^+_c) \) comes from
Ref. [1], and we assume an estimate for $\kappa (\Lambda^+_c) = 0.1106 M_N$.

The first fact that appears in these tables is that the RC do not depend on the form factor products $g_3^2$, $g_3^2$, $f_1 f_3$, $f_2 f_3$, $g_2 g_3$, $f_1 g_3$, $f_2 g_3$, and $f_3 g_3$ in Tables III and IV. The non-appearance of these products cannot be seen easily in our final results of Sec. III. The other fact is that the non-zero RC to each form factor product vary appreciably from one $(E, E_2)$ point to another. This means that replacing the precision results of Sec. III with an array of only a few columns over the Dalitz plot is far from satisfactory. Therefore the lattice of $(E, E_2)$ points must be much finer than only a few points.

The use of this third presentation of RC is very practical in the sense that such RC can be calculated separately and only the arrays should be fed into the Monte Carlo simulation. However, in a precision experiment possibly involving 150, 200, and even 300 bins over the Dalitz plot the number of columns in the RC arrays should be at least just as many. It may be required that several columns be produced in finer subdivisions within each bin, possibly 4, 8, or even more. For example, one may require that the numerical changes of the $a_{ij}^{(n)}$ coefficients between neighboring $(E, E_2)$ points do not exceed two decimal places within rounding of the third decimal place.

To close this section let us stress that none of the three forms of our RC results is compromised to fixing from the outset values for the form factors when RC are applied in a Monte Carlo simulation. To fix them at prescribed values may be not too bad an assumption for hyperon semileptonic decays, but it is not acceptable at all for decays involving heavy quarks where the Cabibbo theory [1] is no longer reliable for fixing the form factors.

VI. SUMMARY AND CONCLUSIONS

We have obtained in Secs. III and IV the RC to the angular correlation $\hat{s}_1 \cdot \hat{p}_2$ to order $(\alpha/\pi) (q/M_1)$. Our final results are given in two forms. The first one is the triple numerical integration form, in which the integrations over the real photon variables are explicitly exhibited and remain to be performed numerically. The second one is the analytical form where those integrations have all been calculated analytically. We covered two cases, the CDB and the NDB ones whose final results are given in Eqs. (24) and (44), respectively. The analytical results are very long and tedious. To make their use more accessible we have collected the numerous $Q_i$ and $\Lambda_i$ algebraic expressions which appear in the CDB case in Appendices A and B respectively. The NDB case uses these expressions and also the $\rho_i$ ones. These latter were collected in Appendix C.
|        | (0.05,0.8518) | (0.35,0.8518) | (0.65,0.8518) | (0.95,0.8518) | (0.25,0.8480) | (0.55,0.8480) | (0.75,0.8480) | (0.45,0.8442) | (0.65,0.8442) | (0.55,0.8416) |
|--------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| $f_1$  | $6.812 \times 10^{-4}$ | $1.550 \times 10^{-4}$ | $-1.024 \times 10^{-4}$ | $6.505 \times 10^{-4}$ | $7.218 \times 10^{-4}$ | $-1.622 \times 10^{-4}$ | $-6.987 \times 10^{-5}$ | $7.198 \times 10^{-5}$ | $-1.227 \times 10^{-4}$ | $-4.887 \times 10^{-5}$ |
| $f_2$  | $1.604 \times 10^{-3}$ | $-1.875 \times 10^{-4}$ | $-5.732 \times 10^{-4}$ | $2.204 \times 10^{-3}$ | $6.787 \times 10^{-4}$ | $-1.268 \times 10^{-3}$ | $-3.588 \times 10^{-4}$ | $-7.888 \times 10^{-4}$ | $-5.807 \times 10^{-4}$ | $-2.633 \times 10^{-4}$ |
| $f_3$  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $g_1$  | $7.470 \times 10^{-2}$ | $-8.900 \times 10^{-3}$ | $-2.635 \times 10^{-2}$ | $1.026 \times 10^{-1}$ | $4.812 \times 10^{-2}$ | $-9.116 \times 10^{-2}$ | $-2.537 \times 10^{-2}$ | $-1.250 \times 10^{-1}$ | $-9.181 \times 10^{-2}$ | $-2.073 \times 10^{-1}$ |
| $g_2$  | $1.882 \times 10^{-3}$ | $-2.199 \times 10^{-4}$ | $-6.722 \times 10^{-4}$ | $2.585 \times 10^{-3}$ | $1.227 \times 10^{-3}$ | $-2.293 \times 10^{-3}$ | $-6.488 \times 10^{-4}$ | $-3.131 \times 10^{-3}$ | $-2.305 \times 10^{-3}$ | $-5.219 \times 10^{-3}$ |
| $g_3$  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $f_1f_2$ | $2.010 \times 10^{-3}$ | $-4.892 \times 10^{-5}$ | $-5.756 \times 10^{-4}$ | $2.395 \times 10^{-3}$ | $1.258 \times 10^{-3}$ | $-1.173 \times 10^{-3}$ | $-3.495 \times 10^{-4}$ | $-4.985 \times 10^{-4}$ | $-5.694 \times 10^{-4}$ | $-2.477 \times 10^{-4}$ |
| $f_1f_3$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $f_2f_3$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $g_1g_2$ | $-2.362 \times 10^{-2}$ | $2.889 \times 10^{-3}$ | $8.504 \times 10^{-3}$ | $-3.252 \times 10^{-2}$ | $-1.509 \times 10^{-2}$ | $2.906 \times 10^{-2}$ | $8.219 \times 10^{-3}$ | $3.975 \times 10^{-2}$ | $2.911 \times 10^{-2}$ | $6.574 \times 10^{-2}$ |
| $g_1g_3$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $g_2g_3$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $f_1g_1$ | $1.683 \times 10^{-1}$ | $3.604 \times 10^{-1}$ | $1.875 \times 10^{-2}$ | $-5.329 \times 10^{-2}$ | $2.878 \times 10^{-1}$ | $8.435 \times 10^{-2}$ | $-1.250 \times 10^{-1}$ | $1.258 \times 10^{-1}$ | $-8.629 \times 10^{-2}$ | $-3.368 \times 10^{-2}$ |
| $f_1g_2$ | $-1.763 \times 10^{-3}$ | $-6.857 \times 10^{-3}$ | $6.870 \times 10^{-4}$ | $-9.573 \times 10^{-4}$ | $-1.808 \times 10^{-2}$ | $-4.425 \times 10^{-3}$ | $9.176 \times 10^{-3}$ | $-1.410 \times 10^{-2}$ | $1.046 \times 10^{-2}$ | $5.085 \times 10^{-3}$ |
| $f_1g_3$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $f_2g_1$ | $-2.482 \times 10^{-2}$ | $-8.236 \times 10^{-3}$ | $-6.172 \times 10^{-3}$ | $2.989 \times 10^{-2}$ | $-2.846 \times 10^{-2}$ | $-1.758 \times 10^{-2}$ | $-4.052 \times 10^{-3}$ | $-1.703 \times 10^{-2}$ | $-9.910 \times 10^{-3}$ | $-5.365 \times 10^{-3}$ |
| $f_2g_2$ | $3.970 \times 10^{-3}$ | $1.329 \times 10^{-3}$ | $9.192 \times 10^{-4}$ | $-4.778 \times 10^{-3}$ | $4.634 \times 10^{-3}$ | $2.719 \times 10^{-3}$ | $4.868 \times 10^{-4}$ | $2.659 \times 10^{-3}$ | $1.401 \times 10^{-3}$ | $7.390 \times 10^{-4}$ |
| $f_2g_3$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $f_3g_1$ | $-5.014 \times 10^{-5}$ | $-9.348 \times 10^{-5}$ | $-6.324 \times 10^{-5}$ | $-5.962 \times 10^{-7}$ | $-1.323 \times 10^{-4}$ | $-1.003 \times 10^{-4}$ | $-2.914 \times 10^{-5}$ | $-9.289 \times 10^{-5}$ | $-2.412 \times 10^{-5}$ | $-9.643 \times 10^{-6}$ |
| $f_3g_2$ | $-4.271 \times 10^{-5}$ | $-8.147 \times 10^{-5}$ | $-5.522 \times 10^{-5}$ | $-5.513 \times 10^{-7}$ | $-1.136 \times 10^{-4}$ | $-8.644 \times 10^{-5}$ | $-2.517 \times 10^{-5}$ | $-7.876 \times 10^{-5}$ | $-2.061 \times 10^{-5}$ | $-8.140 \times 10^{-6}$ |
| $f_3g_3$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

**TABLE III:** Numerical arrays of the coefficients $a_{ij}^{NII}$ in GeV$^2$ of Eq. (49) evaluated at ten points $(E, E_2)$ (headings of columns) over the polarized Dalitz plot of $\Lambda \rightarrow p e^- \bar{\nu}$ decay.
TABLE IV: Numerical arrays of the coefficients $\alpha_{ij}^{CII}$ in GeV$^2$ of Eq. (49) evaluated at ten points $(E, E_2)$ (headings of columns) over the polarized Dalitz plot of $\Lambda_c^+ \rightarrow \Lambda e^+ \nu$ decay.
Our analytical results were crosschecked and compared with other results available in literature. This we have done in Sec. IV. We have limited ourselves to discuss the decay $\Sigma^- \to n e \bar{\nu}$ as an example of the crosschecks and $\Lambda \to p e \bar{\nu}$ as an example of the comparisons with Ref. [10]. In addition, in this latter decay we also included a comparison between our RC to orders $(\alpha/\pi)(q/M_1)^0$ and $(\alpha/\pi)(q/M_1)$.

We have discussed in Sec. V another possibility to use our results in an experimental analysis. One can calculate the numerical factors of the quadratic products of the form factors that appear in the RC at fixed values of $(E, E_2)$. These factors can be organized in arrays to be multiplied upon such products, covering a lattice of $(E, E_2)$ points over the Dalitz plot. We discussed two examples of this possibility, a CDB one and NDB one.

Apart from illustration purposes, the several tables in this paper provide numbers to compare with. Also, our calculations rely heavily on previous results. Apart from discussions in text, we have given in Appendix D details to allow the identification of our previous and new analytical results for the many integrals.

To close, let us recall that our results are general within our approximation. They can be applied in the other four charge assignments of baryons involving heavy quarks and whether the charged lepton is $e^\pm$, $\mu^\pm$, or $\tau^\pm$. They are model independent and are not compromised to fixing the form factors at prescribed values. The above calculations should be extended to cover precision RC in the $s_1 \cdot \hat{I}$ correlation [11] and in the four body region [12]. We hope to return to these cases in the near future.

Acknowledgments

The authors are grateful to Consejo Nacional de Ciencia y Tecnología (México) for partial support. J.J. Torres, A. M., and M. Neri were partially supported by Comisión de Operación y Fomento de Actividades Académicas (Instituto Politécnico Nacional). They also wish to thank the warm hospitality extended to them at IF-UASLP, where part of this paper was performed. R. F.-M. was also partially supported by Fondo de Apoyo a la Investigación (Universidad Autónoma de San Luis Potosí).
APPENDIX A: COLLECTION OF THE $Q_i$ COEFFICIENTS

The coefficients $Q_i$ introduced in Secs. II and III are long quadratic functions of the form factors. The coefficients $Q_1, \ldots, Q_7$ have been computed in previous works \[6, 8\] and can be found there. The new coefficients are listed below. They read

$$
\tilde{Q}_6 = F_1^2 \left[ \frac{E_2 - M_2 - \beta p_{2y_0}}{M_1} \right] + G_1^2 \left[ \frac{E_2 + M_2 - \beta p_{2y_0}}{M_1} \right] + 2F_1G_1 \left[ \frac{E_2 - \beta p_{2y_0}}{M_1} \right] \\
- (F_1F_2 - G_1G_2) \left[ \frac{\beta p_{2y_0}}{M_1} \right] - F_1G_2 \left[ - \frac{M_1 - M_2 + E_0^0 - E}{M_1} - \frac{q^2}{2M_1E} \right] + F_2G_1 \left[ \frac{M_1 + M_2 + E_0^0 - E}{M_1} - \frac{q^2}{2M_1E} \right] - F_2G_2 \left[ \frac{2E_0^0}{M_1} - \frac{q^2}{2M_1E} \right],
$$

$$
\tilde{Q}_7 = F_1^2 \left[ 1 + \frac{M_2}{M_1} \right] \left[ \frac{E_2 - M_2}{E} \right] + G_1^2 \left[ 1 - \frac{M_2}{M_1} \right] \left[ \frac{E_2 + M_2}{E} \right] - 2F_1G_1 \left[ \frac{E_0^0}{E} \right] \\
+ F_1G_2 \left[ \frac{E_2 - M_2}{M_1} \right] \left[ \frac{E_0^0}{E} \right] - F_2G_1 \left[ \frac{E_2 + M_2}{M_1} \right] \left[ \frac{E_0^0}{E} \right] - (F_1F_2 - G_1G_2) \left[ \frac{p_{2y_0}^2}{M_1E} \right],
$$

$$
Q_8 = F_1^2 \left[ \frac{E_2 - M_2}{M_1} \right] + G_1^2 \left[ \frac{E_2 + M_2}{M_1} \right] + 2F_1G_1 \left[ \frac{E_2}{M_1} \right] + F_1G_2 \left[ \frac{E - M_1 + M_2}{M_1} \right] \\
- F_2G_2 \left[ \frac{E_0^0}{M_1} \right] - F_2G_1 \left[ \frac{E - M_1 - M_2}{M_1} \right] + F_3G_1 \left[ \frac{E(E_2 + M_2)}{M_1^2} \right] ,
$$

$$
Q_9 = F_1^2 \left[ \frac{E_2 - M_2}{M_1} \right] + G_1^2 \left[ \frac{E_2 + M_2}{M_1} \right] + 2F_1G_1 \left[ \frac{E_2}{M_1} \right] - F_1G_2 \left[ \frac{E_2 - M_2}{M_1} \right] \\
+ F_2G_1 \left[ \frac{E_2 + M_2}{M_1} \right] - F_3G_1 \left[ \frac{E_2}{M_1} - 1 \right] \left[ \frac{E_2 + M_2}{M_1} \right] ,
$$

$$
Q_{N8} = F_1^2 \left[ \frac{(M_1 - E)(E_2 - M_2)}{M_1^2} \right] + G_1^2 \left[ \frac{(M_1 - E)(E_2 + M_2)}{M_1^2} \right] + 2F_1G_1 \left[ \frac{M_2^2}{M_1^2} - \frac{E_0^0}{M_1} \right] \\
+ F_1G_2 \left[ \frac{M_2(E_2 - M_2 - E_0^0)}{M_1^2} \right] + F_2G_1 \left[ \frac{M_2(E_2 + M_2 - E_0^0)}{M_1^2} \right] \\
- F_2G_2 \left[ \frac{E_2E_0^0}{M_1^2} \right] + F_3G_1 \left[ \frac{E(E_2 + M_2)}{M_1^2} \right] ,
$$

$$
Q_{N9} = - F_1^2 \left[ \frac{M_2(E_2 - M_2)}{M_1^2} \right] + G_1^2 \left[ \frac{M_2(E_2 + M_2)}{M_1^2} \right] + 2F_1G_1 \left[ \frac{M_2^2}{M_1^2} \right] - F_1G_2 \left[ \frac{E_2(E_2 - M_2)}{M_1^2} \right] \\
+ F_2G_1 \left[ \frac{E_2(E_2 + M_2)}{M_1^2} \right] + F_3G_1 \left[ \frac{M_2 + E_2}{M_1} \right] \left[ 1 - \frac{E_2}{M_1} \right] ,
$$

24
\[ Q_{10} = -F_2 G_1 + F_1 G_2 + F_2 G_2, \]
\[ Q_{11} = \left[ \frac{E_2 + M_2}{M_1} \right] G_1 F_3, \]
\[ Q_{12} = 2 F_1 G_1, \]
\[ Q_{13} = -F_1^2 \left[ \frac{E_2 - M_2}{E} \right] - G_1^2 \left[ \frac{E_2 + M_2}{E} \right] + 2 F_1 G_1 \left[ \frac{E_2}{E} \right] + F_2 G_1 \left[ \frac{E_2 + M_2}{E} \right] \]
\[ - F_1 G_2 \left[ \frac{E_2 - M_2}{E} \right] - F_3 G_1 \left[ 1 - \frac{E_2}{M_1} \right] \left[ \frac{M_2 + E_2}{E} \right], \]
\[ Q_{14} = -F_1^2 - G_1^2 - F_1 F_2 + G_1 G_2, \]
\[ Q_{15} = 2 F_1^2 \left[ \frac{E_2 - M_2}{M_1} \right] + 2 G_1^2 \left[ \frac{E_2 + M_2}{M_1} \right], \]
\[ Q_{16} = f_1 (g_2 - g_1) - f_2 g_1, \]
\[ Q_{17} = f_1 g_2 + f_3 g_1, \]
\[ Q_{18} = \frac{1}{2} (f_1^2 - g_1^2) + f_2 (f_1 + g_1) - g_1 (f_3 - g_2), \]
\[ Q_{19} = 2 f_1 g_1 \left[ \frac{1}{2 M_1} + \frac{\kappa_1}{e} \right] M_1, \]
\[ Q_{20} = -2 g_1^2 \left[ \frac{1}{2 M_1} + \frac{\kappa_1}{e} \right] M_1, \]
\[ Q_{21} = \frac{1}{2} (f_1^2 - g_1^2) + f_2 (f_1 - g_1) + g_1 (f_3 + g_2), \]
\[ Q_{22} = (f_1 - g_1) (f_2 - g_2) + M_1 \frac{\kappa_2}{e} (f_1 - g_1)^2 - M_1 \frac{\kappa_1}{e} (f_1^2 - g_1^2), \]
\[ Q_{23} = -(f_1 + g_1) (f_2 - g_2) + M_1 \frac{\kappa_1}{e} (f_1 + g_1)^2 - M_1 \frac{\kappa_2}{e} (f_1^2 - g_1^2), \]
\[ Q_{24} = -(f_1 - g_1)^2 + g_1 (2 f_1 + 3 f_2 + 2 f_3 + g_2 - 2 g_1) - f_1 (f_2 + g_2) \]
\[ - M_1 \frac{\kappa_1}{e} (f_1 - g_1)^2 + M_1 \frac{\kappa_2}{e} (f_1^2 - g_1^2) - 4 M_1 \frac{\kappa_1}{e} g_1^2, \]

and
\[ Q_{25} = -(f_1^2 - g_1^2) - (f_1 + g_1) (f_2 + g_2) + 2 g_1 (f_3 - f_2) \]
\[ + M_1 \frac{\kappa_2}{e} (5 g_1^2 + f_1^2 + 2 f_1 g_1) - M_1 \frac{\kappa_1}{e} (f_1^2 - g_1^2). \]

Here, \( \kappa_1 \) and \( \kappa_2 \) denote the anomalous magnetic moments of the decaying and emitted baryons, respectively.
The tildes on \( Q_6 \) and \( Q_7 \) indicates that contributions of order \((q/M_1)^2\) and higher have been subtracted. Also, \( Q_8, \ldots, Q_{25} \) have only contributions up to order \( q/M_1 \).

Although we have not made it explicit, in the above expressions the primed form factors, containing the model dependence of virtual RC should be used. This is valid to order \((\alpha/\pi)^2\) rearrangements. In the coefficients \( Q_6, \ldots, Q_{15} \) we have used the Harrington’s form factors \( F_i, G_i \). They are related to the Dirac’s form factors \( f_i, g_i \) as

\[
\begin{align*}
F_1 &= f_1 + (1 + M_2/M_1) f_2, \\
F_2 &= -2f_2, \\
F_3 &= f_2 + f_3, \\
G_1 &= g_1 - (1 - M_2/M_1) g_2, \\
G_2 &= -2g_2, \\
G_3 &= g_2 + g_3.
\end{align*}
\]

**APPENDIX B: COLLECTION OF THE \( \Lambda_i \) FUNCTIONS**

Here we give the analytical expressions of the \( \Lambda_i \) functions that appear in Sec. III in the analytical form of the RC to the polarized decay rate.

\[
\begin{align*}
\Lambda_1 &= -E l \theta_0, \\
\Lambda_3 &= \frac{E}{2} \left[ (\beta^2 - 1) \chi_{12} + 2 \chi_{11} - \chi_{10} \right], \\
\Lambda_4 &= \frac{E l p_2^2}{2M_1} \left[ 2Y_2 - Y_3 - \frac{2\theta_0}{E} \right], \\
\Lambda_5 &= \frac{E l}{2M_1} \left[ p_2^2 Y_3 + 2Z_2 + \frac{2p_2 l^2}{E} Y_1 \right], \\
\Lambda_6 &= \frac{l}{M_1} \left[ p_2^2 \theta_0 + (E + E_\nu^0) Z_1 - EZ_2 - l^2 p_2 Y_1 \right], \\
\Lambda_7 &= \frac{E l}{2M_1} Z_1, \\
\Lambda_8 &= -\frac{p_2^2 l}{M_1} \theta_0, \\
\Lambda_9 &= \frac{1}{2} l p_2^2 \theta_3, \\
\Lambda_{10} &= \frac{1}{2} l \zeta_{11}.
\end{align*}
\]
\[ \Lambda_{11} = \frac{1}{2} \beta p_2^2 (\gamma_0 - E \theta_3), \]

\[ \Lambda_{12} = \frac{1}{2} \left[ -l \zeta_{10} - \beta Z_3 - \frac{X_3}{E} + \frac{1}{2} (\chi_{21} - \chi_{20}) + \frac{E_0}{E} X_2 \right], \]

\[ \Lambda_{13} = \frac{l p_2^2}{2 M_1} \left[ Y_4 - \frac{X_2}{E l} - 2 \eta_0 - \frac{\chi_{21}}{2 E l} - \frac{E + E_0}{E} \left[ \frac{1}{2} \theta_7 + E (\theta_4 - \theta_3) \right] \right], \]

\[ \Lambda_{14} = -\frac{l p_2^2}{2 M_1} \left[ \gamma_0 - \beta l \theta_3 + \frac{X_2}{E l} - \eta_0 \right] + \frac{1}{2} \frac{E + E_0}{M_1} X_3 - \frac{X_4}{2 M_1} \]

\[ + \frac{p_2 l}{M_1} \left[ -\frac{y_0}{E} X_2 + \frac{\eta_0}{4} \left[ l(y_0 - 1) - 2 p_2 \right] \right], \]

\[ \Lambda_{15} = \frac{\beta (E + E_0)}{4 M_1} \left[ p_2^2 \theta_7 + 2 p_2^2 E (\theta_4 - \theta_3) + 2 \zeta_{21} - \frac{2}{l} X_3 + \frac{X_4}{2 M_1} - \frac{p_2 l^2}{4 M_1} (y_0^2 - 1) \right] \]

\[ + \frac{p_2}{4 M_1 E} \left[ 4 (l y_0 + p_2) X_2 + p_2 \chi_{21} \right], \]

\[ \Lambda_{16} = \frac{l}{4 M_1} \zeta_{21}, \]

\[ \Lambda_{17} = -\frac{\beta p_2^2}{4 M_1} \left[ \frac{\chi_{21}}{l} - 2 E \eta_0 + (E + E_0) [\theta_7 + 2 E (\theta_4 - \theta_3)] \right], \]

\[ \Lambda_{18} = \frac{1}{4 E} \left[ X_3 - 2 E_0 X_2 \right], \]

\[ \Lambda_{19} = \frac{E}{M_1} \left[ \chi_{20} - \chi_{21} + 2 E_0 (\chi_{11} - \chi_{10}) + \beta (\zeta_{21} - 2 E_0 \zeta_{11}) \right], \]

\[ \Lambda_{20} = \frac{E}{M_1} \left[ \beta l^2 p_2 (Y_5 - Y_1) - (E_0 + l \beta)(\chi_{11} - \chi_{10} - \beta \zeta_{11}) \right] \]

\[ + \beta (E + E_0)(\zeta_{11} - \zeta_{10}) + \frac{1}{2} \beta \theta_7 (1 - y_0)(\theta_0 + \eta_0) + \beta^2 l p_2^2 I \right], \]

\[ \Lambda_{21} = \frac{E}{M_1} \left[ \beta l^2 p_2 (Y_5 + Y_1) - \frac{1}{2 E} X_4 + l p_2^2 Y_3 + l Z_2 \right], \]
\[ \Lambda_{22} = \frac{E}{M_1} \left[ \frac{1}{2} \chi_{20} + \beta (\beta E_\nu^0 - l) \chi_{11} - \frac{1}{2} (1 + \beta^2) \chi_{21} + \beta (E - E_\nu^0) (\zeta_{11} - \zeta_{10}) + \beta \zeta_{21} + \frac{1}{2} l \beta p_2 (1 - y_0^2) \right], \]

\[ \Lambda_{23} = \frac{l}{M_1} \left[ \frac{X_4}{2l} + (\beta E_\nu^0 + l) \chi_{11} - (E + E_\nu^0) (\zeta_{11} - \zeta_{10}) + \frac{1}{2} p_2 l (1 - y_0^2) \right], \]

\[ \Lambda_{24} = \frac{l}{M_1} \left[ \frac{1}{2} p_2 l (y_0 - 1) \theta_0 + E_\nu^0 \zeta_{10} - (E_\nu^0 + l \beta) \zeta_{11} - \beta l p_2^2 I \right], \]

\[ \Lambda_{25} = \frac{p_2 l}{4M_1} \left[ 2 y_0 \chi_{11} + l (\theta_0 + 2 \eta_0) (1 - y_0) + \frac{2}{p_2} (E + E_\nu^0 - \beta p_2 y_0) \zeta_{11} - \frac{2E}{p_2} \zeta_{10} - (E_\nu^0 + l \beta) \frac{\chi_{21}}{p_2 l} + \beta (E + E_\nu^0) \frac{\zeta_{21}}{p_2 l} + N_1 + 2 \beta l p_2 I \right], \]

\[ \Lambda_{26} = \frac{1}{4M_1} \left[ (E_\nu^0 - l \beta) \chi_{21} - \beta (E_\nu^0 - E) \zeta_{21} + p_2 l N_1 - \chi_{31} + \beta \zeta_{31} \right], \]

\[ \Lambda_{27} = \frac{1}{4M_1} \left[ E_\nu^0 \chi_{20} + p_2 l N_2 \right], \]

and

\[ \Lambda_{28} = - \frac{p_2 l}{4M_1} N_2. \]

In these \( \Lambda_i \) we introduced the definitions

\[ X_2 = \frac{m^2}{E} \chi_{12} - E \chi_{11} - \frac{1}{2} \chi_{21}, \]

\[ X_3 = \frac{m^2}{E} \chi_{22} - E \chi_{21} - \frac{1}{2} \chi_{31}, \]

\[ X_4 = \frac{m^2}{E} \chi_{21} - E \chi_{20}, \]

\[ Y_1 = \theta_{19} - \frac{l}{p_2} \theta_{20} - \frac{E_\nu^0}{p_2} \theta_{10}, \]

\[ Y_2 = 2 \theta_3 + (\beta^2 - 1) \theta_2 - \theta_4, \]
\[ Y_3 = (\beta^2 - 1)\theta_3 + \theta_4 + \beta \theta_5, \]

\[ Y_4 = \gamma_0 - 3E\theta_3 + E\theta_4 + 2\theta_7 - 3l\theta_5 + (1 - \beta^2)(2E\theta_2 - \theta_6) + \frac{1}{2}E\theta_9, \]

\[ Y_5 = \theta_{19} - \frac{1}{2p_2} \left[ \theta_{21} + \frac{E^0}{l}\theta_{14} \right] - 2Y_1 + y_0\theta_5, \]

\[ Z_1 = (\beta^2 - 1)\zeta_{12} + 2\zeta_{11} - \zeta_{10}, \]

\[ Z_2 = (\beta^2 - 1)\zeta_{11} + \zeta_{10}, \]

\[ Z_3 = \frac{m^2}{E} \zeta_{12} - E \zeta_{11} - \frac{1}{2}\zeta_{21}, \]

\[ N_1 = l\eta_0 \left[ \frac{3}{2} (1 - y_0) - \frac{p_2}{l} \right], \]

\[ N_2 = l\eta_0 \left[ \frac{1}{2} (y_0 - 1) + \frac{p_2}{l} \right], \]

and

\[ \gamma_0 = -\frac{m^2}{E} \theta_2 + E \theta_3 + \frac{1}{2} \theta_7. \]

\( \eta_0 \) is defined as \( \eta_0 = 1 + y_0 \). All of the quantities \( \zeta_{pq}, \chi_{mn} \) except \( \zeta_{31} \) as functions of the \( \theta_1, \ldots, \theta_{18} \) come from previous work \[8\]. The \( \theta_0, \ldots, \theta_{18} \) are found in Refs. \[7, 8\]. \( \zeta_{31}, I, \theta_{19}, \ldots, \theta_{22} \), are all new functions and they are given by

\[ I = \frac{3}{2p_2^2} (E + E^0) (\theta_{13} - \theta_{12}) + \frac{1}{2} y_0 \theta_{12} + \frac{\beta E^0}{2p_2^2} l q_0 + \frac{\eta_0 E^0}{p_2^2} \]

\[ + \frac{1}{2p_2^2 \beta^2} \left[ 3(E^0)^2 - l^2 + 3E(E + 2E^0) \right] (\theta_3 - \theta_4 - \beta \theta_5) + \frac{E E^0}{p_2^2} (\theta_4 - \theta_3) \]

\[ - \frac{(E^0)^2}{2p_2^2} \theta_3 + \frac{3E}{2p_2} Y_1 - \frac{3E(E + E^0)}{2p_2^2} \theta_{10} + \frac{1}{2\beta^2} Y_3, \]
\[ 
\zeta_{31} = p_2 l y_0 \left[ 2(3E^2 - l^2)\theta_3 - 6E^2(\theta_4 + \beta\theta_5) + \theta_9 \right] - 30lE^2 p_2 \theta_{13} - 30l^2 E p_2 \theta_{19} \\
- \frac{6l^3}{\beta^4} \left[ 5(l + \beta E_0^2) + 3\beta^2(p_2 y_0 - l) \right] (\theta_3 - \theta_4 - \beta \theta_5) - 18l^2 E E_0^2 \theta_3 - \frac{1}{2} \theta_{22} \\
+ 6p_2 l^2 y_0 \theta_{13} + 30lE^2 (l + \beta E_0^2) \theta_{10} + 30 E l^2 \theta_{20} - \frac{1}{2} \theta_{22} \\
- 6p_2 \left[ l^2 E (\beta^2 - 5) - \frac{2l p_2^2 + 2\beta p_2 l y_0 (E + E_0^2)}{b^+ b^-} \right] \theta_{12}. 
\]

The functions \( \theta_{19}, \ldots, \theta_{22} \) are

\[ 
\theta_{19} = \frac{1}{p_2} (T_{19}^+ + T_{19}^-), \\
\theta_{20} = \frac{1}{p_2} (T_{20}^+ + T_{20}^-), \\
\theta_{21} = \frac{1}{p_2} (T_{21}^+ + T_{21}^-), \\
\theta_{22} = \frac{1}{p_2} (T_{22}^+ + T_{22}^-), 
\]

with

\[ 
T_{19}^\pm = \frac{1}{3p_2} \left[ p_2 - l + \frac{1}{2} E_0^2 (x_0^2 - 3) x_0 \right], \\
T_{20}^\pm = \frac{1}{4} \left[ x_0^4 \ln \left| \frac{1 \pm x_0}{\pm x_0 \pm a^\pm} \right| + (a^\pm)^4 \ln \left| \frac{\pm x_0 \pm a^\pm}{1 \pm a^\pm} \right| + \ln \left| \frac{1 \pm a^\pm}{1 \pm x_0} \right| \\
- \frac{1}{3} (1 \mp x_0^3) (1 \pm a^\pm) + \frac{1}{2} (1 - x_0^2) \left[ 1 - (a^\pm)^2 \right] - (1 \mp x_0) \left[ 1 \mp (a^\pm)^3 \right] \right], \\
T_{21}^\pm = \frac{2}{3} \left[ p_2 - l - E_0^2 x_0^3 \mp p_2 y_0^2 a^\pm \left[ a^\pm I_2^\pm - 2 \right] - E_0^0 x_0^2 \left[ 2a^\pm x_0 - x_0^2 + 1 + (a^\pm)^2 J_2^\pm \right] \right], \\
T_{22}^\pm = \frac{2}{3l} \left[ (E_0^0)^2 x_0^3 (l - p_2)^3 - 6p_2 E_0 \eta_0 (p_2 + l) + 12\eta_0 p_2 a^\pm \left[ \pm E + p_2 \frac{y_0^2}{b^\pm} \right] \\
+ \frac{(E_0^0)^2 (1 - \beta x_0)^3}{\beta (b^\pm)^2} J_1 + \frac{1}{b^\pm} \left[ \mp 3(a^\pm \mp 1) \eta_0 p_2 l (\beta \eta_0 p_2 + 2E + 2E_0^0) \right] I_1 \\
+ \frac{1}{(b^\pm)^2} \left[ \mp (p_2 \eta_0)^3 \beta^2 - \frac{1}{\beta} (E_0^0 \beta + l - p_2)^3 - 3p_2 \eta_0 (E_0^0 \beta + l - p_2) (p_2 \beta y_0 + E_0 + E) \right] I_1 \\
+ \frac{3p_2 \eta_0 l}{\beta} \left[ E (l - p_2) + p_2 (E_0^0 \mp 2l \pm 2p_2) \right] - 3 (a^\pm \mp 1) \beta \frac{2l (\pm \eta_0^2 + 2a^\pm (\eta_0 + y_0^2))}{b^\pm} \right] I_2^\pm \\
+ \frac{1}{(b^\pm)^2} \left[ \mp \beta (p_2 \eta_0)^3 \beta^2 - p_2^2 (a^\pm \mp 1)^2 [3(E_0^0 \beta + l - p_2) - 2p_2 \beta (a^\pm \mp 1)] \right] I_2^\pm \\
+ \frac{1}{(b^\pm)^2} \left[ -3p_2 \eta_0 (E_0^0 \beta + l - p_2) (p_2 \beta y_0 + E_0^0 + E) \right] I_2^\pm - \frac{(E_0^0 x_0^2)^3}{b^\pm} (J_3^\pm \pm I_3^\pm) \\
+ \left[ \frac{(E_0^0)^2 (x_0^2)^2}{(b^\pm)^2} (3 - \beta x_0 + 2\beta a^\pm) - 6p_2 l E_0^0 \left( a^\pm y_0^2 x_0^2 \frac{y_0^2}{b^\pm} \right) \right] J_2^\pm, \right] 
\]
where \( y_0^\pm = y_0 \pm a^\pm, b^\pm = 1 + \beta a^\pm, \) and \( x_0^\pm = x_0 + a^\pm. \) The functions \( a^\pm, x_0, I_1, I_2^\pm, I_3^\pm, J_1, J_2^\pm, \) and \( J_3^\pm \) are found in Ref. \[8\].

**APPENDIX C: COLLECTION OF THE \( \rho_i \) FUNCTIONS**

Here we give the analytical results for the \( \rho_i \) functions after performing the integrals displayed in Eqs. (34)-(39).

\[
\rho_I = \frac{l}{M_1} \left\{ E_0^0 p_2 (y_0 - 1) \left[ \frac{1 - \beta^2}{2\beta} \theta_0 - \beta \eta_0 \right] + (E + E_0^0) (\zeta_{10} - \zeta_{11}) \right. \\
+ \frac{p_2 l}{2} (y_0 - 1) \theta_0 + l^2 p_2 Y_1 - \beta l p_2^2 l \right\},
\]

\[
\rho_I' = \frac{E l}{M_1} \left[ (E_0^0 + E) (\beta p_2 \theta_{12} - \theta_0) - p_2 l \theta_{13} \right],
\]

\[
\rho_{II} = \frac{p_2 l}{2 M_1} \left[ \frac{p_2 E_0^0}{2} \theta_4 + \frac{\eta_0}{4} \left[ (y_0 - 1)(2E_0^0 \beta - 3l) - 2p_2 \right] - \frac{E_0^0}{2 \beta p_2} \chi_{10} + \frac{1}{4 \beta p_2} \chi_{20} \right.
+ \left. \frac{1}{2} \left[ y_0 + \frac{E_0^0 (E_0^0 + E)}{p_2 l} \right] \chi_{11} - \frac{E_0^0 + E}{4 p_2 l} \chi_{21} + \frac{y_0 - 1}{4 \beta} \left[ (\beta^2 - 1) E_0^0 - \beta l \right] \theta_0 \right.
+ \left. \frac{E_0^0 - E}{2 p_2} \chi_{11} + \frac{1}{2} \left[ \frac{E_0^0}{p_2} - \beta y_0 \right] \chi_{21} + \frac{E_0^0 + E}{4 p_2} \chi_{21} + \frac{\beta p_2^2 l}{2} \right]
\]

\[
\rho_{II}' = \frac{p_2 l}{8 M_1} \left[ 2(p_2 + l y_0)(\theta_0 - \beta p_2 \theta_{12}) + l (1 - y_0^2) + 2l^2 Y_5 \right]
+ \frac{E + E_0^0}{p_2 l} \left[ \beta \chi_{21} + \chi_{20} - \chi_{21} \right],
\]

\[
\rho_{III} = \frac{p_2 l}{2 M_1} \left[ \frac{E}{2 p_2 l} \left[ 2 E_0^0 (1 - \beta^2) \chi_{11} - 2 E_0^0 \chi_{10} - (1 - \beta^2) \chi_{21} + \chi_{20} \right] - \frac{2 E_0^0}{p_2} \chi_{10} + \frac{l (y_0^2 - 1)}{2} \chi_{11} + \frac{E_0^0 + \beta l}{p_2} \chi_{11} + \beta p_2^2 l \right]
- \frac{p_2}{4 M_1} \eta_0 \left[ l (y_0 - 1) + 2p_2 \right] - \frac{E_0^0}{2 M_1} \chi_{20},
\]

and

\[
\rho_{III}' = \frac{p_2 l}{2 M_1} \left[ E (p_2 - l y_0) \theta_4 + \frac{E E_0^0}{p_2} \eta_0 + l (p_2 + l y_0) \theta_5 - \frac{p_2 m^2}{E} \theta_3 - \frac{E p_2}{p_2} \left[ 2 - \beta^2 + \frac{E_0^0}{E} \right] \right]
+ \frac{3 E}{p_2} \zeta_{10} + \frac{E}{p_2 l} \left( E_0^0 + \beta l \right) \chi_{11} - \left[ \frac{1 - \beta^2}{2 \beta p_2} \chi_{21} + \frac{E}{p_2 l} \chi_{20} - \frac{E E_0^0}{p_2 l} \chi_{10} \right]
- \frac{l^2}{2 p_2} (\theta_{21} - 2 l \theta_{20}) - \frac{l}{2 p_2} \left( E_0^0 - E \right) (\theta_{14} - 2 l \theta_{10}) + \frac{\eta_0}{2} \left[ l (y_0 - 1) + 2p_2 \right].
\]

All the algebraic expressions that appear in these \( \rho_i \) and \( \rho_i' \) are defined in Appendix B.
APPENDIX D: NEW AND PREVIOUS ANALYTICAL INTEGRALS

In this Appendix, we give a brief discussion that allows the identification of previous and new analytical integrals over the photon variables that emerge in the present calculation. Such integrals can all be put into the general form

\[
\int_{-1}^{y_0} dy F y \int_{-1}^{1} dx \int_{0}^{2\pi} d\varphi_k \frac{x^r \hat{s}_1 \cdot \hat{a}}{D^m (1 - \beta x)^n},
\]

with \(\hat{a} = \hat{p}_2, \hat{l}, \hat{k}\) and \(x = \hat{l} \cdot \hat{k}\). \(F\) and \(D\) were defined after Eq. (19). The powers of \(x\), \(F\), \(D\), and \((1 - \beta x)\) are denoted by \(\{rpmn\}\). Since each one of these quantities is a rotational scalar, one may change the orientation of the space axes. For \(\hat{s}_1 \cdot \hat{a}\) we use the rule [8]

\[
\hat{s}_1 \cdot \hat{a} \rightarrow (\hat{s}_1 \cdot \hat{p}_2)(\hat{a} \cdot \hat{p}_2),
\]

where \(\hat{a} = \hat{p}_2, \hat{l}, \) or \(\hat{k}\). This considerably simplifies the calculation of such integrals. One can classify these integrals into three groups. In the first one we can directly identify integrals previously performed. This occurs for \(\hat{a} = \hat{p}_2\) and \(\{rpmn\} = \{0012, 0011, 0010\}\), then one identifies \(\theta_2, \theta_3\) and \(\theta_4\) of Ref. [8]. For \(\hat{a} = \hat{l}\) and \(\{rpmn\} = \{0010, 0011, 0012, 0121\}\) one identifies the functions \(\zeta_{pq}\). For \(\hat{a} = \hat{k}\) and \(\{rpmn\} = \{0010, 0120, 0011, 0012, 0121, 0122, 0231\}\) one identifies the functions \(\chi_{pq}\).

In the second group are new integrals that can be expressed as combinations of previous results in terms of \(\eta_0 = 1 + y_0\) and \(\theta_0, \theta_2, \ldots, \theta_{18}\) also of Ref. [8]. This occurs for \(\hat{a} = \hat{p}_2\) and \(\{rpmn\} = \{0000, 0001, 00(-1)1, 0111, 0121, 0122, 0231, 1010\}\), for \(\hat{a} = \hat{l}\) and \(\{rpmn\} = \{0000, 0001, 0002, 0120, 0101\}\), and for \(\hat{a} = \hat{k}\) and \(\{rpmn\} = \{0010, 1010, 0111, 0112, 0230\}\). Omitting details, such combinations are accommodated into the \(\Lambda_i\) of Appendix [13].

The third group contains, after applying the above rule, only four new integrals with \(\hat{a} = \hat{p}_2\) and the powers are \(\{rpmn\} = \{0211, 2120, 1110, 0331\}\). The first three of them are straightforward. Explicitly they are

\[
\int_{-1}^{1} dx \frac{1}{1 - \beta x} \int_{-1}^{y_0} dy F^2 \int_{0}^{2\pi} d\varphi_k \frac{1}{D} = 2\pi (2p_2l)^2 \left[ I + y_0^2 \theta_3 - \frac{2y_0}{p_2l} \zeta_{11} \right],
\]

where

\[
I = \int_{-1}^{1} dx \frac{1}{1 - \beta x} \int_{-1}^{y_0} dy \frac{y^2}{\sqrt{R}},
\]

\[
\int_{-1}^{1} dx x^2 \int_{-1}^{y_0} dy F \int_{0}^{2\pi} d\varphi_k \frac{1}{D^2} = 2\pi (\theta_{21} - 2l\theta_{20}),
\]

32
and
\[
\int_{-1}^{1} dx \int_{-1}^{y_0} dy F \int_{0}^{2\pi} d\varphi_k \frac{1}{D} = 2\pi(2p_2 l)(y_0\theta_5 - Y_1).
\]

\(\theta_{20}\) and \(\theta_{21}\) are new and they are listed below. \(\theta_5\) is found in [8] and \(Y_1\) is found in Appendix B.

The computation of the fourth integral,
\[
\mathcal{J} = \int_{-1}^{1} dx \frac{1}{1-\beta x} \int_{-1}^{y_0} dy F^3 \int_{0}^{2\pi} d\varphi_k \frac{1}{D^3},
\]
although long and tedious, can be performed by using standard techniques. The final result can be organized as
\[
\frac{\mathcal{J}}{(2\pi)(12l^3)} = \frac{1}{\beta^4} \left[ 5(l + \beta E^0_\nu) + 3\beta^2(p_2 y_0 - l)(\theta_3 - \theta_4 - \beta\theta_5) + \frac{3E^0_\nu}{\beta}(\theta_4 - \theta_3) \right.
\]
\[
- p_2 y_0 \theta_3 - \frac{5}{\beta^2}(l + \beta E^0_\nu)\theta_{10} - 5E\theta_{20} + \frac{1}{12l^3}\theta_{22} + \frac{5p_2^2}{\beta^2}\theta_{13} + \frac{5p_2}{\beta}\theta_{19}
\]
\[
+ p_2 \left[ \frac{\beta^2 - 5}{\beta} - \frac{2p_2^2 + 2\beta p_2 y_0 (E + E^0_\nu)}{l^2b^+b^-} \right] \theta_{12}.
\]

The functions \(\theta_{19}, \ldots, \theta_{22}\) in the four new integrals are
\[
\theta_{19} = \int_{-1}^{1} x \xi_4(x) dx,
\]
\[
\theta_{20} = \int_{-1}^{1} x^3 \xi_1(x) dx,
\]
\[
\theta_{21} = \int_{-1}^{1} x^2 \xi_2(x) dx,
\]
and
\[
\theta_{22} = \int_{-1}^{1} \frac{\xi_6(x)}{1 - \frac{1-x}{2l}} dx.
\]

The other \(\xi_1(x), \xi_2(x),\) and \(\xi_4(x)\) are used in the Ref. [6], the function \(\xi_6(x)\) is new and it reads
\[
\frac{\xi_6(x)}{2l} = p_2^2 \eta_0^3 \left[ \frac{1}{(x + a^-)^2} - \frac{1}{(x + a^+)^2} \right] + 3\eta_0 \left[ p_2 y_0 + 2x(E^0_\nu + lx) \right] \left[ \frac{a^- + 1}{x + a^-} - \frac{a^+ - 1}{x + a^+} \right]
\]
\[
- 3\eta_0 \left[ p_2 y_0 + x(E^0_\nu + lx) \right] \left[ E^0_\nu + (l - p_2)x \right] \left[ \frac{1}{(x + a^-)^2} + \frac{1}{(x + a^+)^2} \right]
\]
\[
+ \frac{(E^0_\nu)^3}{p_2} \left[ |x - x_0|^3 - (1 + xd)^3 \right] \left[ \frac{1}{(x + a^-)^2} + \frac{1}{(x + a^+)^2} \right]
\]
\[
- 6l p_2^2 \left[ \frac{a^- y_0}{b^+(x + a^+)} - \frac{a^- y_0}{b^-(x + a^-)} \right] (1 - \beta x) \xi_4(x),
\]
where \(d = (l - p_2)/E^0_\nu\).

[1] S. Eidelman et al. [Particle Data Group Collaboration], Phys. Lett. B 592, 1 (2004).
[2] A. Sirlin, Phys. Rev. 164, 1767 (1967); A. García and S. R. Juárez W., Phys. Rev. D 22, 1132 (1980).
[3] F. E. Low, Phys. Rev. 110, 974 (1958).
[4] H. Chew, Phys. Rev. 123, 377 (1961).
[5] A. Martínez, J. J. Torres, A. García, and R. Flores-Mendieta, Phys. Rev. D 66, 074014 (2002).
[6] D. M. Tun, S. R. Juárez W., and A. García, Phys. Rev. D 44, 3589 (1991).
[7] A. Martínez, A. García, and D. M. Tun, Phys. Rev. D 47, 3984 (1993) [Addendum-ibid. D 50, 2325 (1994)].
[8] R. Flores-Mendieta, A. García, A. Martínez, and J. J. Torres, Phys. Rev. D 55, 5702 (1997).
[9] E. S. Ginsberg, Phys. Rev. 162, 1570 (1967); 187, 2280(E)(1969); 171 1675 (1968); 174 2169(E)(1968).
[10] F. Gluck and K. Toth, Phys. Rev. D 46, 2090 (1992).
[11] A. Martinez, J. J. Torres, R. Flores-Mendieta and A. Garcia, Phys. Rev. D 63, 014025 (2001).
[12] R. Flores-Mendieta, A. Garcia, A. Martinez and J. J. Torres, Phys. Rev. D 65, 074002 (2002).