Crystal structure analyses of ZnO nanoparticles growth by simple wet chemical method

I Sugihartono¹*, D Dianisya¹ and I Isnaeni²

¹ Program Studi Fisika, FMIPA Universitas Negeri Jakarta, Jl. Rawamangun Muka No. 01, Jakarta Timur 13220, Indonesia
² Research Center for Physics, Indonesian Institute of Sciences, Banten 15314, Indonesia

*iwan-sugihartono@unj.ac.id

Abstract. We have synthesized ZnO nanoparticles by using simple wet chemical method at calcination temperature of 400°C for 2 hours. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed to analyse morphology and crystal structure of ZnO nanoparticles, respectively. Morphologically, ZnO nanoparticles aggregated formed larger particles. Then, according to the International Center for Diffraction Data (ICDD) number #98-002-9272, the XRD spectra confirmed that the ZnO nanoparticles have polycrystalline hexagonal structure with prefer orientation of (002) and crystallite size in the range 21 nm.

1. Introduction

ZnO as II-VI semiconductor material with wide band gap energy of 3.34 eV and large exciton binding energy (60 mV) at room temperature is a potential material for optoelectronic applications [1,2]. In the last two decades, ZnO nanostructures have been studied theoretically and experimentally [3–5]. Scientist and engineer believed that the specific form ZnO nanostructure has a different application [3,6]. Compared with other nanostructures, ZnO nanoparticles with the range of 100 nm have a large specific surface area and small size effect [7]. Furthermore, ZnO nanoparticles have paid considerable attention due to quantum confinement effects which control optical properties of ZnO [7,8].

There are many methods to synthesize ZnO nanoparticles such as wet chemical [9], thermal decomposition, hydrolysis, hydrothermal, vapor transport, etc [10,11]. Among of these methods, wet chemical offers low-cost and has been used to synthesized different ZnO nanostructure [12].

In small concentrations, ZnO nanoparticles strongly inhibit the action of pathogenic microbes [13]. It also possesses antibacterial and antifungal activities [7]. Interestingly, ZnO nanoparticles have used to enhance electrochemiluminescence of luminol which used cancer biomarker detection [14]. Recently, ZnO nanoparticles are believed have a potential application as photocatalyst [11]. Even though, synthesized and characterization of ZnO nanoparticles still become major interest due to abundant their potential applications.

In this paper, we report structure analysis of ZnO nanoparticles which synthesized with simple wet chemical method. The morphology of powder ZnO nanoparticles have been observed by scanning electron microscopy (SEM) JEOL JSM-6510, X-ray diffraction (XRD) measurement with CuKα radiation (PAN-analytical), and compositions of precursors have been observed by energy dispersive X-ray.
2. Experimental
Zinc Chloride (ZnCl2) and Sodium Hydroxide (NaOH) were used as Zn precursor and for controlling pH in solution. Each of ZnCl2 and NaOH was dissolved in de-ionized (DI) water to obtain various molarities. The NaOH solution was added into ZnCl2 solution drop by drop under vigorous stirring without any heat treatment until a white suspension formed. ZnCl2 the molarities of ZnCl2/NaOH are 0.4/0.8 (ZnO-A), 0.4/0.4 (ZnO-B), and 0.8/0.4 (ZnO-C). Then, each of the suspension solutions was centrifuged to obtain precipitated of Zn(OH)2. Finally, the precipitation of Zn(OH)2 was calcined at the temperature of 400°C to obtain powder ZnO nanoparticles.

3. Results and discussion
Figure 1 (a)-(c) show SEM images of powder ZnO nanoparticles various compositions of ZnCl2/NaOH ratios. It can be observed that the ZnO nanoparticle aggregate tremendously. More clearly images of the aggregation can be confirmed in figure 1 (a). As seen from the figure 1(b) and (c), the aggregation of nanoparticles quite large. The aggregation of ZnO nanoparticles are predicted due to high surface energy of ZnO nanoparticles during calcination [15].

We further investigated the composition of powder ZnO particles by energy dispersive X-ray (EDAX). In can be seen from the table 1 that the ZnCl2/NaOH ratio of 0.4:0.8 yield the optimum composition ratio to synthesized ZnO nanoparticles.

![SEM images of powder ZnO nanoparticles various compositions of ZnCl2/NaOH ratios. The atomic percentage of Zn and O are 48.24% and 51.76%, respectively.](image)

Figure 1. SEM images of powder ZnO nanoparticles various compositions of ZnCl2/NaOH ratios. The atomic percentage of Zn and O are 48.24% and 51.76%, respectively.
Table 1. Elements composition of ZnCl$_2$/NaOH ratio.

Sample	Precursor (Molaritas)	EDAX Analysis (At.%)			
	ZnCl$_2$	NaOH	Zn	O	Cl
ZnO-A	0.4	0.8	48.24	51.76	-
ZnO-B	0.4	0.4	26.12	72.70	01.17
ZnO-C	0.8	0.4	29.59	58.16	12.25

Figure 2 show XRD pattern of ZnO nanoparticles with various compositions of ZnCl$_2$/NaOH ratios. According to the XRD pattern, we confirm that the sample ZnO-A with ZnCl$_2$/NaOH ratio of 0.4:0.8 have only one phase ZnO. Meanwhile, ZnO-B and ZnO-C have other phases such as Zn(OH)$_2$.

According the XRD pattern of ZnO-A as shown in fig. 2, we observed eleven peaks with the hkl are (100), (002), (101), (102), (110), (103), (200), (112), (201), (004), and (202). Among of these peaks, the peaks belongs to hkl (100), (002), and (101) are more intense compared with others.

Figure 2. XRD pattern of ZnO nanoparticles with various compositions of ZnCl$_2$/NaOH ratios.

Refer to the International Center for Diffraction Data (ICDD) number #98-002-9272, the powder ZnO nanoparticles have a hexagonal wurtzite structure.

Table 2. The data of full width at half maximum (FWHM), crystallite size, and lattice strain of ZnO nanoparticle structure at hkl of (002).

No.	2 theta	hkl	FWHM	Crystallite size (nm)	Lattice Strain (%)
1	31.837	100	0.307	21.672	0.650
2	34.502	002	0.316	21.586	0.600
3	36.334	101	0.322	21.342	0.580
A crystallite size and lattice strain have been calculated by using Scherer’s and Stokes-Wilson’s equation, respectively [16]. Table 2 is the data of full width at half maximum (FWHM), crystallite size, and lattice strain of ZnO nanoparticle structure at hkl of (002). As seen in table 2, the FWHM for three peaks (100), (002), (101) are 0.307, 0.316, 0.322. Meanwhile, for the peaks orientation of (100), (002), (101) the crystallite size and lattice strain are 21.672 nm, 21.586 nm, 21.342 nm and 0.650 %, 0.600 %, 0.580 %. Raou reported that the crystallite size of ZnO nanoparticle (101) which was synthesized at the temperature of 450 °C and 550 °C are 19.810 nm and 27.590 nm, respectively [17]. The crystallite size increase by increasing annealing temperature. According to our results, we believe that our calcination temperature of 400 °C is optimum temperature to obtain ZnO nanoparticles with ZnCl₂/NaOH ratio of 0.4:0.8.

![Figure 3. Coefficient of texture of ZnO nanoparticles with ZnCl₂/NaOH ratios of 0.4:0.8.](image)

In order to confirm prefer orientation, we calculated quantitavely coefficient of texture by using this equation [18],

\[
T_{hkl} = \frac{I(hkl)}{1/n \sum I(hkl)/I_0(hkl)}
\]

(1)

I (hkl) is the measured relative intensity of the reflection from the (hkl) plane, I₀(hkl) is that from the same plane in a standard reference sample, and n is the total number of reflection peaks from the sample. Figure 3 show coefficient of texture from XRD pattern of ZnO nanoparticles. It can be confirmed that the hkl of (002) is prefer orientation.

4. Conclusions
In conclusions, ZnO nanoparticles have been synthesized by using simple wet chemical method at calcination temperature of 400 °C for 2 hours. Morphologically, ZnO nanoparticles aggregated formed larger particles. Then, according to the International Center for Diffraction Data (ICDD) number #98-002-9272, the XRD spectra confirmed that the ZnO nanoparticles have polycrystalline hexagonal structure with prefer orientation of (002) and crystallite size in the range 21 nm.

Acknowledgement
Financial support from hibah penelitian kompetitif Universitas Negeri Jakarta no. 12/KOMP-UNJ/LPPM-UNJ/II/2018 is gratefully acknowledged.

References
[1] Iwan S, Fauzia V, Umar A A and Sun X W 2016 Room temperature photoluminescence
properties of ZnO nanorods grown by hydrothermal reaction AIP Conference Proceedings vol 1729

[2] Iwan S, Bambang S, Zhao J L, Tan S T, Fan H M, Sun L, Zhang S, Ryu H H and Sun X W 2012 Green electroluminescence from an n-ZnO: Er/p-Si heterostructured light-emitting diode Phys. B Condens. Matter 407

[3] Wang Z L 2004 Zinc oxide nanostructures: Growth, properties and applications J. Phys. Condens. Matter 16 829–58

[4] Xing Y J, Xi Z H, Xue Z Q, Zhang X D, Song J H, Wang R M, Xu J, Song Y, Zhang S L and Yu D P 2003 Optical properties of the ZnO nanotubes synthesized via vapor phase growth Appl. Phys. Lett. 83 1689–91

[5] Lestari A, Iwan S, Djuhana D, Imawan C, Harmoko A and Fauzia V 2016 Effect of precursor concentration on the structural and optical properties of ZnO nanorods prepared by hydrothermal method AIP Conference Proceedings vol 1729

[6] Putri N A, Fauzia V, Iwan S, Roza L, Umar A A and Budi S 2017 Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates Appl. Surf. Sci.

[7] Sharma D, Rajput J, Kaith B S, Kaur M and Sharma S 2010 Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties Thin Solid Films 519 1224–9

[8] Jeong E, Yu H, Kim Y, Yi G, Choi Y and Han S 2010 Local Structural and Optical Properties of ZnO Nanoparticles 13 3562–5

[9] Debanath M K and Karmakar S 2013 Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method Mater. Lett. 111 116–9

[10] Yadav R, Bandopadhyay M and Saha A 2015 Synthesis, Characterisation, Antibacterial and Cytotoxic Assay of Zinc Oxide (ZnO) Nanoparticles 9 1–10

[11] Kumaresan N, Ramamurthi K, Ramesh Babu R, Sethuraman K and Moorthy Babu S 2017 Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity Appl. Surf. Sci. 418 138–46

[12] Shimpi N G, Jain S, Karmakar N, Shah A, Kothari D C and Mishra S 2016 Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor Appl. Surf. Sci. 390 17–24

[13] Parthasarathi V and Thilagavathi G 2011 Synthesis and characterization of Zinc oxide nanoparticle and its application on fabrics for microbe resistant defence clothing Int. J. Pharm. Pharm. Sci. 3 392–8

[14] Cheng Y, Yuan R, Chai Y, Niu H, Cao Y, Liu H, Bai L and Yuan Y 2012 Analytica Chimica Acta Highly sensitive luminol electrochemiluminescence immunosensor based on ZnO nanoparticles and glucose oxidase decorated graphene for cancer biomarker detection Anal. Chim. Acta 745 137–42

[15] Hong R Y, Li J H, Chen L L, Liu D Q, Li H Z, Zheng Y and Ding J 2009 Synthesis, surface modification and photocatalytic property of ZnO nanoparticles Powder Technol. 189 426–32

[16] Sugihartono I, Handoko E, Fauzia V, Arkudato A and Sari L P 2018 Structural and Photoluminescence Properties of ZnO Thin Films Deposited by Ultrasonic Spray Pyrolysis Makara J. Technol. 22 13–6

[17] Raou D 2013 Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method Renew. Energy 50 932–7

[18] Nyung Lee D 1989 A model for development of orientation of vapour deposits J. Mater. Sci. 24 4375–8