1. Introduction

The compass model was coined as a minimal model to describe orbital–orbital interactions in strongly correlated electron systems three decades ago, and it has recently regained people’s interest in much wider fields [1]. Part of the reason for this revival is that the communities connected this mathematical model with potential application in quantum computing. A milestone in this context was Kitaev’s honeycomb model [2], which has the virtue of being exactly solvable. This quintessential model was proven to host gapped and gapless quantum spin liquids with emergent Majorana fermion excitations obeying non-Abelian statistics, topological order and topological entanglement. Further, a quantum compass model on a two-dimensional (2D) square lattice was found to be dual to the toric code model in transverse magnetic field [3] and to the Xu–Moore model [4]. The common structure of the compass model and the Kitaev model is their building blocks are the bond-directional interactions. In parallel a family of layered iridates A2IrO3, where relativistic spin–orbit coupling plays an important role, have been suggested as promising candidates of solid-state systems for Kitaev’s model [5, 6].

A variation of the 2D quantum compass model is an extension to one dimension, in which antiferromagnetic exchange interactions alternate between even and odd bonds [7]. It can be treated as a zigzag edge limit of Kitaev’s honeycomb model along one of the three crystalline directions [8]. A one-dimensional (1D) generalized compass model (GCM) was proposed to capture more insight along zigzag chains [9–11]. For instance, the model is anticipated to describe frustrated spin exchanges in perovskites transition metal (TM) oxides rendered by the Peierls-type spin-phonon coupling along distorted TM-oxygen-TM bonds [12]. The GCM includes a tunable angle \(\theta \) to control the distortion relative to the chain direction \(e_x \). The Ising model appears at angles of zero and this situation changes fundamentally when the TM-oxygen-TM bond is \(180^\circ \). Such a model was recently introduced for a 1D zigzag chain in an \((a,b)\) plane [9], and may be realized in either layered structures of TM oxides [13], or optical lattices [14, 15], as well as Co zigzag chains [16].

The GCM is advantageous for the analytical solvability for arbitrary angles, rather than for only handling extreme cases of some models. Hence, a kaleidoscope of equilibrium properties has been scrutinized. An exact analytical solution for various thermodynamic quantities, such as the Helmholtz free energy, the entropy and the specific heat, can be straight-forwardly retrieved [10]. Recently possible observations of Majorana zero modes in 1D topological superconductors have
stimulated interest to study the transport dynamics of spin chains [17, 18]. The finite-temperature conductivity of a few 1D integrable quantum many-body systems, including the Heisenberg spin-1/2 chain, the Hubbard model and the supersymmetric t-J model, was shown to be dissipationless. The integrality inherits from a macroscopic number of conserved quantities in these systems [19]. The effects of either magnetization currents or energy currents in the 1D transverse Ising model [20], 1D transverse XX model [21], 1D XY model with three-spin interactions [22] and 1D XXZ model [23, 24] were investigated. Also, the entanglement entropy was adopted to study nonequilibrium dynamics of integrable system by a quantum quench in the presence of an energy current [25]. In this paper, we study nonequilibrium steady states of the GCM by imposing a current on the system and the properties of the ground state thus generated.

2. The Hamiltonian and energy current

The 1D GCM considered below is given by

$$H_{GCM} = \sum_{i=1}^{N'} J_{o} \sigma_{i} \sigma_{i+1} + J_{l} \sigma_{i} \sigma_{i+1} + \lambda \sigma_{i} \sigma_{i+1} - \lambda \sigma_{i} \sigma_{i+1}.$$ \hspace{1cm} (1)

Here we assume the 1D chain has N sites with periodic boundary conditions, and $i = 1, 2, \cdots, N' (N' = N/2)$ specifies the index of two-site unit cells. J_{o} and J_{l} denote the coupling strengths on odd and even bonds, respectively. The operator with a tilde sign is defined as linear combinations of $\{\sigma_{i}^{+}, \sigma_{i}^{-}\}$ pseudospin components (Pauli matrices),

$$\tilde{\sigma}(\theta) \equiv \cos(\theta/2) \sigma_{i}^{+} + \sin(\theta/2) \sigma_{i}^{-}. \hspace{1cm} (2)$$

In equation (1) an arbitrary angle $\pm \theta/2$ relative to σ_{i}^{z} is introduced to characterize the preferential easy axes of Ising-like interactions on an odd/even bond. With increasing the angle θ, the frustration increases gradually when the model equation (1) interpolates between the Ising model at $\theta = 0$ to the quantum compass model (QCM) at $\theta = \pi/2$ [26].

The model equation (1) was solved rigorously and the ground state is ordered along the easy axis as long as $\theta \neq \pi/2$. The case of the compass limit of the GCM (also called the 1D Kitaev chain in some literature), i.e. $\theta = \pi/2$, is rather special, where the model allows for $N/2$ mutually commuting Z_{2} invariants $\sigma_{i}^{z} - \sigma_{i}^{+} \sigma_{i}^{-} \sigma_{i}^{z} \sigma_{i}^{+} \sigma_{i}^{-}$. These so called intermediate symmetries conduce to a macroscopic degeneracy of $2^{N/2-1}$ in the structure of the spin Hilbert space away from the isotropic point, and the degeneracy of $2^{N/2}$ due to the closure at energy band edges when the spin interactions are isotropic, i.e. $J_{o} = J_{l}$ [10]. In the thermodynamic limit we recover the degeneracy of $2 \times 2^{N/2}$ for isotropic spin interactions [7]. We will unearth these intermediate symmetries not only leading to above ground-state degeneracies, but also admitting a dissipationless energy current.

For a 1D compass chain, spin magnetizations are not conserved due to the intrinsic frustration in the compass model, and the only conserved quantity is the energy. We can decompose equation (1) into:

$$H_{GCM} = \sum_{i=1}^{N'} h_{i},$$ \hspace{1cm} (3)

where

$$h_{i} = J_{o} \tilde{\sigma}_{i-1}(\theta) \tilde{\sigma}_{i}(\theta) + J_{l} \tilde{\sigma}_{i}(\theta) \tilde{\sigma}_{i+1}(\theta).$$ \hspace{1cm} (4)

A local energy operator h_{i} contains interactions on two bonds. Further we can obtain the commutation relations:

$$[\tilde{\sigma}_{i}(\theta), \tilde{\sigma}_{i}(\theta)] = 0, [\tilde{\sigma}_{i}(\theta), \tilde{\sigma}_{i}(-\theta)] = -2i \sin \theta \tilde{\sigma}_{i} \tilde{\sigma}_{i},$$

$$[\tilde{\sigma}_{i}(-\theta), \tilde{\sigma}_{i}(\theta)] = 2i \sin \theta \tilde{\sigma}_{i} \tilde{\sigma}_{i} \tilde{\sigma}_{i} \tilde{\sigma}_{i}.$$ \hspace{1cm} (5)

The energy current \dot{j}_{i} of a compass chain in the nonequilibrium steady states is calculated by taking a time derivative of the energy density and follows from the continuity equation [20]:

$$\frac{dh_{i}}{dt} = i[H, h_{i}] = -\frac{\dot{j}_{i+1} - \dot{j}_{i-1}}{2} = -\text{div} j_{i}. \hspace{1cm} (5)$$

Immediately it arrives

$$\dot{j}_{2i-1} = -4J_{o} \tilde{\sigma}_{i-1}(\theta) \tilde{\sigma}_{i+1}(-\theta) \tilde{\sigma}_{i} \tilde{\sigma}_{i}.$$ \hspace{1cm} (6)

This energy current operator acts on three adjacent sites and has the z component of spin-1/2 operators between two odd sites. Of course the oddity of operators is artificial. In order to maintain translational invariance of local energy densities, we set

$$h'_{i} = J_{o} \tilde{\sigma}_{i}(\theta) \tilde{\sigma}_{i+1}(\theta) \tilde{\sigma}_{i} \tilde{\sigma}_{i}.$$ \hspace{1cm} (7)

Then we can derive

$$\dot{j}_{2i} = 4J_{o} J_{l} \sin \theta \tilde{\sigma}_{i-1}(\theta) \tilde{\sigma}_{i} \tilde{\sigma}_{i} \tilde{\sigma}_{i}.$$ \hspace{1cm} (8)

Therefore, a linear combination gives rise to

$$\dot{j}_{i} = \frac{1}{2} \left(\dot{j}_{i+1} + \dot{j}_{i-1} \right) = 2J_{o} J_{l} \sin \theta \tilde{\sigma}_{i-1}(\theta) \tilde{\sigma}_{i} \tilde{\sigma}_{i} \tilde{\sigma}_{i}.$$ \hspace{1cm} (9)

The local energy operator in the Hamiltonian equation (1) involves two sites ($i, i+1$), while the local energy current operator embraces three sites ($i-1, i, i+1$). The form of energy current operator equation (9) is generally angle dependent. For $\theta = 0$, the operator will present an XZX type although the front factor will vanish, while it exhibits an XZY–YZX type in the compass limit.

The macroscopic current $\dot{j}_{E} = \sum_{i} \dot{j}_{i}$ sums over all sites of the local currents. The presence of an effective energy flow will manifest itself in the effective Hamiltonian \mathcal{H} followed by a Lagrange multiplier λ:

$$\mathcal{H} = H_{GCM} - \lambda \sum_{i} \dot{j}_{i}. \hspace{1cm} (10)$$

In the following we set $J' \equiv -2\lambda J_{o} \sin \theta$ to make the formulas concise. Finding the ground state of \mathcal{H} gives us the minimum energy state of H_{GCM} which carries an energy current \dot{j}_{E}, and thus provides us with the properties of the nonequilibrium...
steady states. The Hamiltonian of the 1D GCM with three-site interactions is given by
\[H = H_{\text{GCM}} + H_{3\text{-site}}. \]
(11)

The GCM is driven out of equilibrium by a quantum quench in the presence of an energy current. The current term reads
\[H_{3\text{-site}} = J' \sum_i \left[\bar{\sigma}_{2i-1} - i(\theta) \sigma_{2i+1} \bar{\sigma}_{2i+2} \right]. \]
(12)

To better understand the current-carrying term, one can define new annihilation and creation operators for Majorana fermions: \(\gamma_{1,1} = e^{-i\theta/2}c_1^+ + e^{i\theta/2}c_1, \gamma_{2,2} = i(e^{i\theta/2}c_1^+ - e^{-i\theta/2}c_1) \) [27]. In this respect, we can verify \(\gamma_{1,n}^\dagger \gamma_{n,1} = 1 (n = 1, 2), \) but \(\gamma_{1,1} \gamma_{2,1} = -\gamma_{2,1} \gamma_{1,1} \).

Here the Majorana operators \(\gamma_{2,2}, \gamma_{2,1} \) from different sites are paired together and especially the whole chain can be seen as two separate chains.

Both the bare GCM and the energy current can be expressed into a Majorana fermions representation using the Jordan–Wigner transformation. We employ the standard Jordan–Wigner transformation which maps explicitly between quasiparticle operators and spinless fermion operators through the following relations [28]:
\[\sigma_{\uparrow}^j = 1 - 2c_j^\dagger c_j, \quad \sigma_{\downarrow}^j = i\sigma_{\uparrow}^j \sigma_{\downarrow}^j, \]
\[\sigma_{\uparrow}^j = \prod_{i<j} \left(1 - 2c_i^\dagger c_j + c_j^\dagger c_i \right), \]
(13)

where \(c_j \) and \(c_j^\dagger \) are annihilation and creation operators of spinless fermions at site \(j \) which obey the standard anticommutation relations, \(\{ c_j, c_j \} = 0 \) and \(\{ c_i^\dagger, c_j^\dagger \} = \delta_{ij} \). To diagonalize the Hamiltonian equation (11), a Fourier transformation for plural spin sites is followed:
\[c_{2j-1} = \frac{1}{\sqrt{N'}} \sum_k e^{-ik}a_k, \quad c_{2j} = \frac{1}{\sqrt{N'}} \sum_k e^{-ik}b_k. \]
(14)

Then we write it in a symmetrized matrix form with respect to the \(k \leftrightarrow -k \) transformation within the Bogoliubov–de Gennes (BdG) representation,
\[H = \sum_k \Gamma_k^\dagger \tilde{M}_k \Gamma_k, \]
(15)

where
\[\tilde{M}_k = \frac{1}{2} \begin{pmatrix} B_k & iJ^* \sin k & A_k & P_k + Q_k \\ iJ^* \sin k & B_k & P_k - Q_k & -A_k \\ A_k^\dagger & P_k^\dagger - Q_k^\dagger & B_k^* & iJ^* \sin k \\ P_k^\dagger + Q_k^\dagger & -A_k^\dagger & -iJ^* \sin k & B_k^\dagger \end{pmatrix} \]
(16)

and \(\Gamma_k^\dagger = (a_k^\dagger, a_{-k}^\dagger, b_k^\dagger, b_{-k}^\dagger) \). Here the discrete momentums are given by
\[k = \frac{n\pi}{N'}, \quad n = -(N'-1), -(N'-3), \ldots, N'-1, \]
(17)

and the compact notations in equation (16) read
\[A_k = J_0 + Je^{ik}, \quad B_k = J_0 \cos(\theta - sk), \]
\[P_k = i\sin(\theta(J_0 e^{ik} + J_0)), \quad Q_k = -\cos \theta(J_0 e^{ik} - J_0). \]

The diagonalization of the Hamiltonian matrix equation (16) yields the energy spectra \(\varepsilon_{k,j} \) \((j = 1, \ldots, 4)\). We plot the energy spectra for a few typical parameters in figures 1 and 2. We note due to the lack of parity (\(P \)) and time reversal (\(T \)) symmetries in three-site interactions, the spectra are nonsymmetric with respect to \(k = 0 \). However, the BdG Hamiltonian (15) has been enlarged in an artificially particle-hole space and it still respects the particle-hole symmetry (PHS) \(C \), i.e. \(C\tilde{M}_k C = -\tilde{M}_{-k} \) with \(C^2 = 1 \). The PHS implies \(\varepsilon_{k,j} \) \((j = 1, \ldots, 4)\) actually are two copies of the original excitation spectrum. To be specific, \(\varepsilon_{2,k} = -\varepsilon_{-2,k}, \varepsilon_{3,k} = -\varepsilon_{-3,k} \), as is evidenced in figures 1 and 2. The bands with positive energies correspond to the electron excitations while the negative ones are the corresponding hole excitations. When all quasiparticles above the Fermi surface are absent, the ground-state energy for the particle-hole excitation spectrum may be expressed as:

Figure 1. The energy spectra \(\varepsilon_{k,j} \) \((j = 1, \ldots, 4)\) for increasing \(J' \) : (a) \(J' = 0 \), (b) \(J' = 2 \), (c) \(J' = 4 \), and (d) \(J' = 6 \). Parameters are as follows: \(J_0 = 1, J_0 = 4, \theta = \pi/5 \).
Accordingly, the gap is determined by the absolute value of the difference between the second and third energy branches,
\[\Delta = \min_k |\varepsilon_{k,2} - \varepsilon_{k,3}|. \] (19)

3. Three-site interactions

It is worth mentioning that three-spin interactions arise naturally in the Hubbard model as higher-order corrections and in the presence of a magnetic flux. Recently three-site interactions have received considerable attention from both the theoretical side [24, 29–39, 40] and experimental side [41–43]. In the following we shall figure out effects of the emergent three-site interactions in the GCM.

Figure 3 shows the gap \(\Delta \) by adjusting the angle \(\theta \) and the strength of three-site interactions \(J^* \). We find \(\frac{\theta}{\pi} = 2 \) and \(\frac{\theta}{\pi} = 3 \) are the critical lines. To understand various phases and the quantum phase transitions, we consider \(\theta = \pi/3 \) and \(\theta = \pi/2 \) separately, without losing generality. The eigenenergies for various \(J^* \) are labeled sequentially from the bottom to the top as \(\varepsilon_{k,1}, \ldots, \varepsilon_{k,4} \) in figures 1 and 2. For \(\theta = \pi/3 \), the gap closes at \(k = 0 \) at \(J^* \) and reopens as \(J^* \) increases. When \(J^* \) is below \(J^*_c \), a canted antiferromagnetic phase was identified. In the large \(J^* \) limit, the spectra \(\varepsilon_{k,3} \) and \(\varepsilon_{k,4} \) will converge to \(\varepsilon_{k}(k) = J^*(\sin \theta \sin k + \sqrt{\cos^2 \theta + \sin^2 \theta \sin^2 k}) > 0 \), while \(\varepsilon_{k,1} \) and \(\varepsilon_{k,2} \) will merge to \(\varepsilon_{-k}(k) = J^*(\sin \theta \sin k - \sqrt{\cos^2 \theta + \sin^2 \theta \sin^2 k}) < 0 \). A spiral phase is anticipated at large \(J^* \) for \(\theta = \pi/2 \). Such criticality belongs to a second-order quantum phase transition. However, the quantum phase transition by varying \(\theta \) is found to be within the Berezinskii–Kosterlitz–Thouless scenario.

Note that
\[
\{\hat{J}_E, H_{GCM}\} = 4iJ_L \sin \theta \times \sum_i \{J_i(\partial_2(-\theta)\partial_{2i+1}(\theta - \pi) - \partial_2(\theta - \pi)\partial_{2i+1}(-\theta))
+ J_i(\partial_{2i+1}(-\theta - \pi)\partial_{2}(\theta) - \partial_{2i+1}(\theta)\partial_{2}(\theta - \pi))\}. \] (20)

We find that the global energy current operator \(\hat{J}_E \) does not commute with the Hamiltonian for arbitrary \(\theta \) except for the compass limit. In this special case (\(\theta = \pi/2 \)), the energy current \(\hat{J}_E \) is conserved, and thus the energy current time
correlations should be independent of time. Such a conclusion is a bit different from the finding in [44], where the translation invariance of local energy densities is violated. The ground state of H can be considered as a current-carrying steady state of H_{GCQM} at zero temperature, and the ground-state expectation value of current operator $J_0 \equiv \langle J_0 \rangle$ acts as an order parameter indicating the presence of an energy current, as shown in figure 4. One can see the conservation of the current operator is crucial to the validity of being an order parameter.

When $\theta = \pi/2$, the system is maximally frustrated. We can actually rotate the original (σ^x, σ^y) plane clockwise by $\pi/4$ around the z-axis, and then the transformed Hamiltonian in the new axis (σ^x, σ^z) reads

$$H = \sum_{i=1}^{N} J_0 \sigma^x_{2i-1} \sigma^x_{2i} + J_0 \sigma^z_{2i-1} \sigma^z_{2i+1} - J^* (\sigma^x_{2i-1} \sigma^z_{2i+1} - \sigma^z_{2i-1} \sigma^x_{2i+1}).$$

(21)

In this circumstance, the diagonalization of Hamiltonian matrix (16) yields the eigenspectra:

$$\varepsilon_{k,1} = J^* \sin k - |J_0 + J_0 e^{i k}|,$$

$$\varepsilon_{k,2(3)} = 0,$$

$$\varepsilon_{k,4} = J^* \sin k + |J_0 + J_0 e^{i k}|.$$

(22)

One can easily find that three-site interactions commute with the bare compass model. That is to say, the compass model and the three-site interactions have the same ground state for $J^* < J^* = \max(J_0, J_0)$. As shown in figure 2, the compass model with three-site interactions (12) is gapless irrespective of the values of J_0, J_0, and J^* for $\theta = \pi/2$. Nevertheless, the Fermi-surface topology and also the ground-state degeneracy undergo changes upon increase J^*. For $J^* < J^*$, $\varepsilon_{k,4}$ and $\varepsilon_{k,3}$ dwell on zero energies, and thus gives rise to a macroscopic degeneracy originating from the intermediate symmetries [7, 45]. We can sum over the eigenenergies below the Fermi surface and obtain the ground-state energy:

$$E_0 = \frac{|J_0 - J_0|}{\pi} E \left[\frac{4J_0 J_0}{(J_0 - J_0)^2} \right],$$

(23)

where $E[\cdot]$ gives the complete elliptic integral. One discovers that E_0 is independent of J^*, implying three-site correlations are vanishing in this highly disordered spin-liquid phase, in which only short-range correlations $|\langle \sigma^x_{2i-1} \sigma^x_{2i+1} \rangle|$ survive.

With the increase of J^*, the minimum of $\varepsilon_{k,4}$ bends down until it touches $\varepsilon = 0$ at an incommensurate mode when J^* reaches a threshold value; see figure 2(c). Further increase of J^* leads to the bands inversion between $\varepsilon_{k,1}$ and $\varepsilon_{k,4}$. There is a negative-energy region of $\varepsilon_{k,4}$ in k space shown in figure 2(d) between k_F and k^*_F, depicted by $\cos k_F^* = -\mu \pm \sqrt{1 + \mu^2 - \nu}$ with $\mu = J_0 k_F J^* \nu = (J^*_0 + J^*_0) J^*$. Therefore, beyond J^*, the Fermi sea starts to be populated by the modes in between the zeros of the single-particle spectrum $\varepsilon_{k,4}$ (i.e. between k_F and k_F^* in figure 2(d)), implying that the ground state is no longer that of H_{GCQM}. We plot the ground-state energy density $e_0 = E_0 N$ and the generalized stiffness $\eta(J^*) = -\partial^2 e_0 / \partial J^*$ versus J^* in figure 5. It is obvious that the generalized stiffness is singular at J^*, suggesting a quantum phase transition induced by frustrated three-spin interactions.

4. Effect of transverse field

We now consider the case where a magnetic field is oriented perpendicular to the easy plane of the spins, i.e. $\hat{h} = h \hat{z}$. Here h denotes the magnitude of the transverse external field. In this case, the Zeeman term is given by

$$H_h = h \hat{z} \cdot \sum_i (\hat{\sigma}_{2i-1} + \hat{\sigma}_{2i}).$$

(24)

Following a parallel procedure as above, we can derive the energy density using local energy operators

$$h_0^c = J_0 \sigma_{2i-1}(\theta) \sigma_{2i}(\theta) + J_0 \sigma_{2i-1}(-\theta) \sigma_{2i+1}(-\theta)$$

$$+ h (\sigma^z_{2i-1} + \sigma^z_{2i})$$

(25)

and the commutation relation

$$[\hat{\sigma}(\theta), \sigma_j^z] = 2i \delta_j^z \hat{\sigma}(\theta - \pi).$$

(26)

One can find the transverse field will induce an extra term of energy current operator in comparison with the case when the magnetic field is absent.
\[
\hat{J}^h_i = \hbar \lambda \left[\hat{\sigma}_{2i-1}(\theta - \pi) \hat{\sigma}_{2i}(\theta - \pi) - \hat{\sigma}_{2i-1}(\theta - \pi) \hat{\sigma}_{2i}(\theta - \pi) \right]
\]
\[
+ \hbar \lambda \left[\hat{\sigma}_{2i-1}(-\theta - \pi) \hat{\sigma}_{2i+1}(-\theta - \pi) - \hat{\sigma}_{2i-1}(-\theta - \pi) \hat{\sigma}_{2i+1}(-\theta - \pi) \right].
\]

(27)

We can easily observe that spin components in equation (27) are always perpendicular to each others on adjacent sites. Surprisedly, summing up all the local operators and the field-induced current term can be simplified into a \(\theta\)-independent form:

\[
H_{\text{DM}} = E \sum_i \left[J_i (\sigma_{2i-1}^z \sigma_{2i+1}^z - \sigma_{2i-1}^z \sigma_{2i+1}^z) + J_i (\sigma_{2i}^x \sigma_{2i+1}^x - \sigma_{2i}^x \sigma_{2i+1}^x) \right].
\]

(28)

In equation (28) we have set \(E \equiv h'\lambda'\) as an independent parameter describing the strength of field-induced current, where \(\lambda'\) is the second Lagrange multiplier.

One can recognize \(H_{\text{DM}}\) describes well-known antisymmetric Dzyaloshinskii–Moriya exchange interactions [46], which have been incorporated to contribute to the ferroelectricity in the Katsura–Nagaosa–Balatsky (KNB) mechanism of the magnetoelectric effect [47]. To this end, the complete Hamiltonian with both two-site and three-site interactions takes the form:

\[
\mathcal{H} = \mathcal{H}_{\text{GCM}} + H_h + H_{\text{DM}} + H_{\text{s-site}}.
\]

(29)

The ground state of \(\mathcal{H}\) can be considered as a current-carrying steady state of \(\mathcal{H}_{\text{GCM}}\) under external magnetic field at zero temperature. Subsequently, in Nambu representation, the Hamiltonian matrix \(\hat{\mathcal{M}}_k\) is modified in the following way,

\[
\hat{\mathcal{M}}_k \to \hat{\mathcal{M}}'_k = \hat{\mathcal{M}}_k - h \sum_{\sigma} (\sigma \sigma \sigma \sigma) e^{2i\phi_k} \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \times \sigma^z.
\]

(30)

Here \(\sigma_2\) is a \(2 \times 2\) unity matrix, \(\mathbb{R}_k = 2EJ_h^2 + J_h^2 - 2J_h^4 \cos k\) and \(\phi_k = \tan^{-1}[(L_\sigma - J_h \cos k)/L_\sigma \sin k]\).

The effect of an antisymmetric Dzyaloshinskii–Moriya interaction (DMI) and an external magnetic field has been studied in [10]. The frustrated quantum spin cannot simultaneously satisfy local energetic constraints of both interaction. The external magnetic field will spoil the Néel phase into the paramagnetic phase [9]. The homogeneous DMI will induce a gapless chiral phase with a nonlocal string order and a finite electrical polarization as long as \(E > E_c \equiv \frac{1}{2} \sqrt{\sum_{\sigma} J_{\sigma}^2 \cos \theta}\). As seen in figure 6(a), a gapless chiral phase arises accompanied by nonlocal string orders and finite electrical polarization for \(E > E_c\); when \(J_\sigma = J_h\) [10]. Especially the chiral phase exists at infinitesimal \(E_\sigma\) for \(\theta = \pi/2\). Interestingly enough, the effect of the inhomogeneous DMI (see equation (28)) plays a significantly different role from the homogeneous one and it thus provides the system with a richer phase diagram. As is presented in figure 6(b), the induced phase has a dimerized gap when \(E_\sigma\) above the critical value

\[
E_c \equiv \sqrt{J^2} \cos \theta (J_\sigma + J_h).
\]

(31)

The DMI leads to a spin-polarized current flowing through chiral magnetic structures and then may exert a spin-torque on the magnetic structure [48]. Specially in the compass limit, either a weak magnetic field or DMI can destroy the local order. In a similar way, the ground-state expectation of field-induced current operator \(\langle \hat{J}^h_i \rangle \equiv \langle \hat{H}_{\text{DM}} \rangle / E\) is suitable for an order parameter exhibited in figure 7 and it is independent of \(h\).
5. Summary and discussion

In this paper we have considered the energy transport in the one-dimensional generalized compass model, which interpolates between two qualitatively different well-known models in one dimension. It represents the Ising model for \(\theta = 0 \) and the pristine quantum compass model for \(\theta = \pi/2 \). Although the system is highly frustrated, we have found that exact solutions of the corresponding model may be obtained through Jordan–Wigner transformation. The longitudinal spin magnetization is not conserved due to the intrinsic frustration in the compass model, while the energy is nevertheless conserved, so the energy current operators \(\hat{J}_E \) are well defined. We find the energy current operators \(\hat{J}_E \) from the generalized compass model involve three contiguous sites, which can be diagonalized with the usual Jordan–Wigner and Bogoliubov transformations. Such multispin interactions break both the parity symmetry and the time-reversal symmetry and cause a reshuffling of the energy spectra. Our results show that the total energy current commutes with the Hamiltonian only in the compass limit, which means that the existence of conserved quantities is crucial for the presence of a persistent energy current. In this regard, the current operator can act as a natural order parameter in detecting the quantum phase transition from a non-current-carrying phase to a current-carrying phase.

We also investigated the general compass model in the presence of an external magnetic field. Consequently the current operators \(\hat{J}_E \) will include additional Dzyaloshinskii–Moriya interactions. We find such homogeneous Dzyaloshinskii–Moriya interactions induce a chiral phase while the inhomogeneous counterpart will conduce to a gapped phase.

To conclude, low dimensional quantum magnets with general exchange interactions cover a vast number of materials and theoretical models. The merit of the model considered here is its exact solvability that implies in particular the possibility to calculate accurately various benchmark and dynamic quantities. The reported results may serve as a benchmark for more realistic cases which are not exactly solvable.

Acknowledgments

W-LY acknowledges support by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK20141190 and the NSFC under Grant No. 11474211. Y-CQ acknowledges support by Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment (21315003).

References

[1] Nussinov Z and van den Brink J 2015 Rev. Mod. Phys. 87 1
[2] kitaev A 2006 Ann. Phys. 321 2
[3] Vidal J, Thomale R, Schmidt K P and Dusuel S 2009 Phys. Rev. B 80 081104
[4] Xu C and Moore J E 2004 Phys. Rev. Lett. 93 047003
[5] Jackeli G and Khaliullin G 2009 Phys. Rev. Lett. 102 017205
[6] Chaloupka J, Jackeli G and Khaliullin G 2010 Phys. Rev. Lett. 105 027204

Y-C Qiu et al

[7] Brzezicki W, Dziarmaga J and Oleś A M 2007 Phys. Rev. B 75 134415
[8] Feng X-Y, Zhang G-M and Xiang T 2007 Phys. Rev. Lett. 98 087204
[9] You W-L, Horsch P and Oleś A M 2014 Phys. Rev. B 89 104425
[10] You W-L, Liu G-H, Horsch P and Oleś A M 2014 Phys. Rev. B 90 094413
[11] You W-L, Qiu Y-C and Oleś A M 2016 Phys. Rev. B 93 214417
[12] Mochizuki M, Furukawa N and Nagaosa N 2010 Phys. Rev. Lett. 105 037205
Mochizuki M, Furukawa N and Nagaosa N 2011 Phys. Rev. B 84 144409
[13] Xiao D, Zhu W, Ran Y, Nagaosa N and Okamoto S 2011 Nat. Commun. 2 596
[14] Simon J, Bakr W S, Ma R, Eric Tai M, Preis P M and Greiner M 2011 Nature 472 307
[15] Sun G, Jackeli G, Santos L and Vekua T 2012 Phys. Rev. B 86 155159
[16] Dupé B, Bickel J E, Mokrousov Y, Otte F, von Bergmann K, Kubetzka A, Heinze S and Wiesendanger R 2015 New J. Phys. 17 023014
[17] Mourik V, Zuo K, Frolov S M, Plisser S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[18] Sun H-H et al 2016 Phys. Rev. Lett. 116 257003
[19] Zotos X, Nael F and Pretlovšek P 1997 Phys. Rev. B 55 11029
[20] Antal T, Rácz Z and Suvář L 1997 Phys. Rev. Lett. 78 167
[21] Antal T, Rácz Z, Rákos A and Schütz G M 1998 Phys. Rev. E 57 5184
[22] Menchshyshin O, Ohanyan V, Verkholyak T, Krokhlamskii T and Derzhko O 2015 Phys. Rev. B 92 184427
[23] Biella A, De Luca A, Viti J, Rossini D, Mazza L and Fazio R 2016 Phys. Rev. B 93 205121
[24] Steinigeweg R, Gemmer J and Bremig W 2015 Phys. Rev. B 91 104404
[25] Das A, Garnerone S and Haas S 2011 Phys. Rev. A 84 052317
[26] Cincio L, Dziarmaga J and Oleś A M 2010 Phys. Rev. B 82 104416
[27] kitaev A 2001 Phys.—Usp. 44 131
[28] Barouch E and McCoy B M 1970 Phys. Rev. A 2 1075
Barouch E and McCoy B M 1971 Phys. Rev. A 3 786
[29] Gottlieb D and Rüssler J 1999 Phys. Rev. B 60 9232
[30] Titvinidze I and Japaridze G I 2003 Eur. Phys. J. B 32 383
[31] Lou P, Wu W-C and Chang M-C 2004 Phys. Rev. B 70 064405
[32] Krokhlamskii T, Derzhko O, Stolze J and Verkholyak T 2008 Phys. Rev. B 77 174404
[33] Derzhko V, Derzhko O and Richter J 2011 Phys. Rev. B 83 174428
[34] Topilko M, Krokhlamskii T, Derzhko O and Ohanyan V 2012 Eur. Phys. J. B 85 278
[35] Cheng W W and Liu J M 2010 Phys. Rev. A 81 044304
[36] Li Y-C and Lin H-Q 2011 Phys. Rev. A 83 052323
[37] Zhang G and Song Z 2015 Phys. Rev. Lett. 115 177204
[38] Lei S and Tong P 2015 Physica B 463 1
[39] Lahtinen V and Ardonne E 2015 Phys. Rev. Lett. 115 237203
[40] Brzezicki W and Oleś A M 2014 Phys. Rev. B 90 024433
[41] Tseng C H, Somaroo S, Sharf Y, Knill E, Laflamme R, Havel T F and Cory D G 1999 Phys. Rev. A 61 012302
[42] Peng X, Zhang J, Du J and Suter D 2009 Phys. Rev. Lett. 103 140501
[43] Pachos J K and Plenio M B 2004 Phys. Rev. Lett. 93 056402
[44] Steinigeweg R and Brenig W 2016 Phys. Rev. B 93 214425
[45] You W-L, Tian G-S and Lin H-Q 2007 Phys. Rev. B 75 195118
[46] Dzyaloshinskii I 1958 Phys. Chem. Solids 4 241
 Moriya T 1960 Phys. Rev. 120 91
[47] Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett. 95 057205
 Mostovoy M 2006 Phys. Rev. Lett. 96 067601
[48] Bode M, Heide M, von Bergmann K, Ferriani P, Heinze S,
 Bihlmayer G, Kubetzka A, Pietzsch O, Blügel S and
 Wiesendange R 2007 Nature 447 190