The impact of varying seasonal lengths of the rainy seasons of India on its teleconnections with tropical sea surface temperatures

Vasubandhu Misra1,2,3 | Amit Bhardwaj1,3

1Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida
2Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida
3Florida Climate Institute, Florida State University, Tallahassee, Florida

Correspondence
Vasubandhu Misra, Center for Ocean-Atmospheric Prediction Studies, Florida State University, 2000 Levy Avenue, Building A, Suite 292, Tallahassee, FL 32306-2741. Email: vmisra@fsu.edu

Funding information
Langley Research Center, Grant/Award Number: NNX16AD83G; NASA, Grant/Award Number: NNX17AG72G; National Science Foundation, USA, Grant/Award Number: 1606296

Abstract
We present in this paper the interannual variability of seasonal temperature and rainfall in the Indian meteorological subdivisions (IMS) for boreal winter and summer seasons that take in to account the varying length of the seasons. Our study reveals that accounting for the variations in the length of the seasons produces stronger teleconnections between the seasonal anomalies of surface temperature and rainfall over India with corresponding sea surface temperature anomalies of the tropical Oceans (especially over the northern Indian and the equatorial Pacific Oceans) compared to the same teleconnections from fixed length seasons over the IMS. It should be noted that the IMS show significant spatial heterogeneity in these teleconnections.

KEYWORDS
ENSO, Monsoon, teleconnection

1 | INTRODUCTION

The primary basis for seasonal prediction of the Indian monsoons has been the remote forcing of the tropical sea surface temperature (SST) anomalies, especially that related to El Niño Southern Oscillation (ENSO) (Charney and Shukla, 1981; Gowariker \textit{et al.}, 1989; Thapliyal and Kulshrestha, 1992; Gershunov \textit{et al.}, 2001; Delsole and Shukla, 2012; Rajeevan \textit{et al.}, 2012; Ramu \textit{et al.}, 2016). Over the years, the influence of the tropical Indian and the Atlantic Oceans has also been noted (Saji \textit{et al.}, 1999; Goswami \textit{et al.}, 2006; Krishnamurthy and Krishnamurthy, 2016). The ENSO-Indian summer monsoon (ISM) teleconnection has been widely studied, which shows a complex relationship at different lead/lag leading to contrasting interpretations of the teleconnection (Krishna Kumar \textit{et al.}, 1999; Kirtman and Shukla, 2000; Gershunov \textit{et al.}, 2001). The influence of the Indian ocean dipole and the tropical Atlantic Ocean on the ISM in contrast is far more subtle and at times used to understand the noncanonical ISM-ENSO seasons (Krishnamurthy and Kirtman, 2009; Yadav \textit{et al.}, 2018). Nonetheless, despite these teleconnections, the seasonal prediction of the ISM continues to be a challenge (Ramu \textit{et al.}, 2017; Pillai \textit{et al.}, 2018).

On the other hand, despite the strong variability of the Indian Winter Monsoon (IWM) rainfall and its relatively strong teleconnection with ENSO (Ramawamy,
and concluding remarks in Section 4.

followed by the presentation of the results in Section 3.

In the following section, we describe the methodology and the datasets. In this study, we present a case to account for the variations in the length of both the ISM and IWM seasons to interpret the teleconnections of their corresponding seasonal surface temperature and rainfall anomalies with tropical SST anomalies at interannual timescales. As noted earlier, the variations in the length of the ISM and IWM is significant with both the onset and demise dates of the seasons showing considerable variations at interannual time scales (Misra et al., 2017a, 2017b; Misra and Bhardwaj, 2019). In the following section, we describe the methodology and the datasets followed by the presentation of the results in Section 3 and concluding remarks in Section 4.

2 | METHODOLOGY AND DATASETS

In this study, we are targeting the interannual scales of variability of seasonal rainfall (R) and surface temperature (T_s) over India at the resolution of the IMS outlined in Figure S1, which is the operational spatial scales at which the Indian Meteorological Department (IMD) target their forecasts to meet the consumer needs. Here, we take the area average of daily R and T_s at each of the IMS and compute the corresponding onset and demise of the summer and winter seasons for each of the years based on Bhardwaj and Misra (2019) and Misra and Bhardwaj (2019), respectively. The minima and the maxima in the cumulative anomaly curve of the daily precipitation anomaly (computed after removing the corresponding annual mean climatology) are diagnosed as the onset and the demise of the summer season over India (Misra and Bhardwaj, 2019). The partial cumulative anomaly curve is so called because this curve is constructed between the demise of the preceding and the onset of the following summer season, not over the full year.

Subsequently, we conduct an Ensemble Empirical Mode Decomposition (EEMD); Wu and Chung, 2009; Wu and Tsai, 2011) on the time series of the length of the season and the associated seasonal R and T_s anomalies for each of the IMS. EEMD is a data adaptive time series technique that does not make use of any predetermined basis functions (e.g., Fourier transform) to perform the temporal decomposition of the time series. An illustration of the temporal decomposition of the length of the summer season for the Gangetic West Bengal IMS by EEMD is shown in Figure S2. The EEMD in this case isolates three intrinsic mode functions (IMFs; Figure S2b, c, and d) and a residual time series, that usually describes the nonlinear trend or the lowest frequency oscillation in the time series (Figure S2e). Since we are interested in the variations at interannual scales, only IMF’s 1 and 2 would be of interest to us while IMF3 and the residual component are at decadal and longer time scales. IMF’s 1 and 2 are combined to reconstruct the filtered time series of the length of the summer season for the Gangetic West Bengal IMS. Likewise, similar filtering is done to the time series of seasonal length, rainfall, and surface temperature anomalies for both the summer and the winter seasons and for all IMS.

After filtering for the interannual time scales in the time series of the variable at each of the IMS we conducted an empirical orthogonal function (EOF) analysis on all of the time series as a way to reduce the dimensions. In this way, we isolated EOF1, which explained the most variance and was distinctly higher than the rest of the EOFs (Figures S3, S4, and S6). The filtering was done using the EEMD technique to isolate the interannual scales, which helped in maximizing the variance explained by the first EOF in every instance (Figures S3, S4, S5, S6, and S7). Similarly, we also conducted an EOF analysis and isolated EOF1 for the filtered seasonal rainfall and the surface temperature anomalies for fixed length seasons of December-January-February (DJF) and June-July-August (JJA) in Figures S5 and S7, respectively. The principal components (PCs) from the isolated EOF1 (Figures S3c and d, S4c and d, S5c and d, S6c and d, and S7c and d) were then used to correlate with the seasonal mean global SSTs to examine the teleconnections of primarily the tropical SSTs on the Indian seasonal climate variations. The seasonal mean SSTs were linearly detrended before the correlations were computed.

The Indian Meteorological Department gridded analysis of rainfall (Pai et al., 2014a, 2014b) and surface
temperature analysis (Srivastava et al., 2009) were used in this study. The rainfall analysis is available at 0.25°×0.25° from 1900 to 2005. The surface temperature analysis is available at 1°×1° grid at daily interval from 1969 to 2005. These datasets were area averaged over each IMS before the diagnosis of the onset and the demise of the summer and winter seasons. The SST analysis is the Extended Reconstructed SST version 5 (ERSSTv5) following Huang et al. (2017) and is available on 2°×2° grid at monthly interval from January 1854 to March 2018. It may be stated that the teleconnections diagnosed in this paper with the tropical SST were identical when other alternative SST datasets were used. However, ERSSTv5 was used simply because it overlapped with our analysis period. In this paper, we conducted the analysis over the overlapping period of these datasets from 1969 to 2005.

3 | RESULTS

3.1 | Seasonal length variations

Figure 1 shows the climatological length of the winter and summer seasons for each of the IMS. From Figure 1a it can be noted that climatologically, the length of the
winter season as defined here is longer in the northern, than in the southern part of India. In the summer, the season is longer in the southern and the northeastern part of India compared to northern India (Figure 1b). As noted in Misra et al. (2017a), the time series of the daily rainfall over the Deccan Plateau and northeast India shows that the premonsoon rainfall is indistinguishable from the summer monsoon rainfall and therefore, the rainy (or summer) season is longer in these regions than in the rest of India. The corresponding SD indicates that the variability of the length of the season is the largest in southeastern part of India during winter, (Figure 1c) while the variability in central India is least during summer (Figure 1d), respectively. In both the seasons, the IMS region of Kerala exhibits the largest interannual variations in the length of the season (Figures 1c, d).

The EEMD decomposition in Figure S2 for one of the IMS (Gangetic West Bengal) shows that the temporal variations have distinct frequencies that allows for unambiguous filtering of the low frequency variations. The first EOF and PC of the filtered time series of the length of the two seasons is shown in Figure S3. In both the seasons, the first EOF explains a more significant variance than the rest of the EOFs (not shown). The correlations of the PC from Figure S3 with the corresponding seasonal mean global SST (at zero lag) is shown in the Figure 2. The

![Figure 2](image-url)

Figure 2 The correlation of detrended seasonal mean (a) DJF SST with winter seasonal length (WSL) PC from Figure S3c and (b) JJA SST and summer seasonal length (SSL) PC from Figure S3d. Correlations which are significant at 95% confidence interval according to the bootstrap method is shaded.
negative correlations in the winter (Figure 2a) and the positive correlations in the summer (Figure 2b) over the tropical Pacific are prominent. In the winter season, the correlations over the tropical Indian Ocean is also equally strong and negative (Figure 2a). The negative correlations in Figure 2a suggests that the warm tropical eastern Pacific and the tropical Indian Oceans are likely to lead to shorter winter seasons in the regions of positive EOF patterns in Figure S3a. Likewise, cold SST anomalies over the tropical eastern Pacific and the tropical Indian Oceans are likely to lead to longer winter seasons in the regions of negative EOF patterns. For example, the IMS of Tamil Nadu and Kerala, and some regions in central and northwest India that display a negative EOF pattern in Figure S3a is likely to have a longer winter season with a warmer tropical Pacific and Indian Oceans, while a shorter winter season is expected with colder tropical Pacific and Indian Oceans. Similarly, shorter winter seasons with warmer or colder tropical Oceans are likely in Karnataka, coastal Andhra Pradesh, Orissa, Chhattisgarh, and other regions in coastal western parts of India, that display a positive EOF pattern in Figure S3a, respectively. Alternatively, longer winter seasons over Karnataka, coastal Andhra Pradesh, Orissa, Chhattisgarh, and other regions in coastal western parts of India that display a positive EOF pattern in Figure S3a are expected with warm SST anomalies of the tropical Oceans.

Similarly, the positive correlations in the summer season over the tropical eastern Pacific Ocean (Figure 2b) indicate that regions with negative EOF pattern in the summer (Figure S3b) like in central India (e.g., Madhya Pradesh, Vidarbha, Chhattisgarh) and in the eastern Gangetic Plains (e.g., Bihar, Jharkhand, Gangetic West Bengal) are likely to have shorter ISM seasons with

![Figure 3](image-url)
FIGURE 3 The correlation of the seasonal mean (a) DJF SST with varying seasonal length winter rainfall (WR) PC from Figure S4c and (b) JJA SST with varying seasonal length summer rainfall (SR) PC from Figure S4d. Similarly, the correlations of the seasonal mean (c) DJF SST with fixed length winter rainfall (FWR) PC from Figure S5c and (d) JJA SST with fixed length summer rainfall (FSR) PC from Figure S5d. Correlations that are significant at 95% confidence interval according to the bootstrap method is shaded. The SST is detrended.
3.2 | Seasonal rainfall anomalies

The PC of the first EOF of the seasonal rainfall anomalies computed for varying length of the season (Figure S4) shows a very strong contemporaneous correlation with the tropical Pacific and the Indian Oceans in the winter season, (Figure 3a) and similarly in the summer season but only over the tropical eastern Pacific Ocean (Figure 3b). The strong negative correlations of Figure 3a with the positive patterns of EOF1 in Figure S4a over southeast India (e.g., coastal Andhra Pradesh, Telangana, and Tamil Nadu) suggests that these regions have a higher likelihood of deficit seasonal winter rainfall anomalies with warmer in the tropical eastern Pacific and Indian Oceans are alternatively surplus winter rainfall anomalies with colder tropical eastern Pacific and Indian Oceans. Furthermore, the negative correlations in Figure 3a suggests that warm SST anomalies in the tropical Pacific and Indian Oceans are likely to result in wetter winter seasonal anomalies over northern India (e.g., western Uttar Pradesh, Uttarakhand, Punjab, Haryana, Himachal Pradesh, Jammu, and Kashmir), where a negative EOF pattern is displayed (Figure S4a). Alternatively, these regions could experience drier winter seasonal anomalies with cold SST anomalies over tropical Pacific and Indian Oceans. Similarly, the negative correlations in Figure 3b and the EOF pattern of the filtered summer seasonal rainfall anomalies in Figure S4b indicate that warmer SST anomalies increase the likelihood of drier summer seasonal anomalies over most of India with a positive EOF pattern except in southeastern India (e.g., Rayalaseema and coastal Andhra Pradesh).

Contrasting the correlations in Figures 3a, b with the correlations of the PCs from the first EOF of the seasonal rainfall anomalies from fixed length seasons (Figure S5) in Figures 3c, d show that the teleconnections with the SST anomalies of the tropical Oceans are significantly diminished in both the seasons. For example, the teleconnection of the winter seasonal rainfall anomalies for the DJF season over the tropical Pacific is insignificant (Figure 3c) while the correlations are weaker in the JJA season (Figure 3d) compared to the correlations shown in Figure 3b.

3.3 | Seasonal temperature anomalies

Similarly, the seasonal temperature anomalies for both winter and summer seasons over India display a stronger teleconnection with the tropical Oceans when we account for varying length of the season compared to fixed length seasons of the ISM and the IWM (Figure 4). In the winter season, the correlations are far stronger in Figure 4a, for seasonal temperature anomalies for varying length of the season compared to the fixed season anomalies (Figure 4c). The negative correlations in Figure 4a suggest that warm tropical Pacific is associated with colder winter seasonal anomalies over India or warmer winter seasonal anomalies over India are associated with cold tropical Pacific. It may be stated that although the correlations for summer seasonal temperature anomalies with varying length of the season in the summer with tropical Pacific (Figure 4) are comparable to the correlations of the fixed JJA seasonal temperature anomalies (Figure 4d), the correlations over the northern Indian Ocean are substantially weaker in the latter compared to the former.

These results clearly suggest that accounting for the variations in the length of the season boosts, the teleconnection signal of the co-variations between the tropical Oceans (Pacific and northern Indian Ocean) and Indian seasonal anomalies of surface temperature and rainfall in both winter and summer seasons. These results indicate that by ignoring the variations in the length of ISM and IWM seasons, a significant fraction of the variance of the Indian monsoons explained by the tropical oceans is lost.

4 | CONCLUSIONS

This study clearly shows that the teleconnections of both the summer and the winter seasonal anomalies of surface temperature and rainfall over India are stronger with the tropical oceans if we account for the variations in the length of their seasons. This enhancement of the teleconnection is enabled from the fact that the variations in the length of the seasons are significant and show a covariation in all instances with tropical Pacific SST anomalies and in some instances, additionally with SST anomalies of the tropical Indian Ocean (e.g., winter seasonal anomalies of surface temperature and rainfall). These covariations robustly show that warm or cold
tropical Pacific and Indian Oceans are associated with colder or warmer surface temperature anomalies across India in the winter season, respectively. Similarly, warm tropical Pacific and Indian Oceans are related to drier or wetter winter anomalies in southeastern India or northern India, respectively. It is indicated that ENSO events are related to the modulation of the westerly disturbances that bring copious rainfall to northern India in the winter season (Dimri et al., 2016). Therefore, the teleconnections exhibited by the winter anomalies over northern India in this paper is consistent with such an interpretation. In this study, a robust negative correlation is shown between the winter rainfall anomalies over southeastern India with the tropical Pacific, which at the outset seems contrary to previous studies (Rajeevan et al., 2012; Sengupta and Nigam, 2019).

However, the earlier studies have reported comparatively much weaker correlations and have used a different season for IWM (e.g., October–November–December). In our study, the seasons vary from one IMS to the other with the southeastern part of India (including Tamil Nadu, Rayalseema, and coastal Andhra Pradesh) exhibiting a climatological onset and demise dates of November 6 and March 13, respectively.

Likewise, we show that wetter and colder or drier and warmer summer seasonal anomalies of surface temperature and rainfall over most of India are associated with cold or warm tropical Pacific SST anomalies, respectively. These teleconnections are robust and stronger with the inclusion of the variations of the length of the season. This study gives further hope for pursuing seasonal prediction of the Indian monsoons from potentially

FIGURE 4 The correlation of the seasonal mean (a) DJF SST with varying seasonal length winter temperature (WT) PC from Figure S6c and (b) JJA SST and varying seasonal length summer temperature (ST) PC from Figure S6d. Similarly, correlations of detrended seasonal mean (c) DJF SST with fixed length winter temperature (FWT) PC from Figure S7c and (d) JJA SST and fixed length summer temperature (FST) PC from Figure S7d. Correlations that are significant at 95% confidence interval according to the bootstrap method is shaded. The SST is detrended
exploiting the variations in the length of the seasons. Although, the predictability of the onset and demise of the seasons is yet to be ascertained.

ACKNOWLEDGEMENTS
This work was funded by NASA grants NNX17AG72G, NNX16AD83G, NSF award number 1606296. The rainfall and surface temperature datasets over India used in this paper were made available from the Indian Meteorological Department at https://data.gov.in and SST data is available from NOAA: https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html

REFERENCES

Bhardwaj, A. and Misra, V. (2019) Monitoring the Indian summer monsoon evolution at the granularity of the Indian meteorological sub-divisions using remotely sensed rainfall products. Remote Sensing, 11(9), 1080.

Bombardi, R.J., KinterIII, J.L. and Frauenfeld, O.W. (2019) A global gridded dataset of the characteristics of the rainy and dry seasons. Bulletin of the American Mathematical Society, 100, 1315–1328.

Charney, J.G. and Shukla, J. (1981) Predictability of monsoons. In: Charney, J.G. and Shukla, J. (Eds.) Monsoon Dynamics - 109.

Delsole, T. and Shukla, J. (2012) Climate models produce skillful predictions of Indian summer monsoon rainfall. Geophysical Research Letters, 39, L09, 703. https://doi.org/10.1029/2012GL051279.

Dimri, A.P., Yasunari, T., Kotlia, B.S., Mohanty, U.C. and Sikka, D. R. (2016) Indian winter monsoon: present and past. Earth Science Reviews, 163, 297–322.

Gershunov, A., Schneider, N. and Barnett, T. (2001) Low-frequency modulation of the ENSO-Indian monsoon rainfall relationship: signal or noise? Journal of Climate, 14, 2486–2492.

Goswami, B.N. and Xavier, P.K. (2005) ENSO control on the South Asian monsoon through the length of the rainy season. Geophysical Research Letters, 32, L18717. https://doi.org/10.1029/2005GL023216.

Goswami, B.N., Madhusoodanan, M.S., Neema, C.P. and Sengupta, D. (2006) A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophysical Research Letters, 33, 1–4.

Gowariker, V., Thapliyal, V., Sarker, R.P., Mandal, G.S. and Sikka, D.R. (1989) Parametric and power regression models: new approach to long range forecasting of monsoon rainfall in India. Mausam, 40, 115–122.

Huang, B., Thorne, P.W., Banzon, V.F., Boyer, T., Chepurin, G., Lawrimore, J.H., Menne, M.J., Smith, T.M., Vose, R.S. and Zhang, H.-M. (2017) Extended reconstructed sea surface temperature version 5 (ERSSTv5), upgrades, validations, and inter-comparisons. Journal of Climate, 30, 8179–8205. https://doi.org/10.1175/JCLI-D-16-0836.1.

Kirtman, B.P. and Shukla, J. (2000) Influence of the Indian summer monsoon on ENSO. Quarterly Journal of the Royal Meteorological Society, 126, 213–239.

Krishna Kumar, K., Rajagopalan, B. and Cane, M.A. (1999) On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 2156–2159.

Krishnamurthy, L. and Krishnamurthy, V. (2016) Teleconnections of Indian monsoon rainfall with AMO and Atlantic tripole. Climate Dynamics, 46, 2269–2285. https://doi.org/10.1007/s00382-015-2701-3.

Krishnamurthy, V. and Kirtman, B.P. (2009) Relation between Indian monsoon variability and SST. Journal of Climate, 22, 4437–4458.

Kumar, P., Kumar, K.R., Rajeevan, M. and Sahai, A.K. (2007) On the recent strengthening of the relationship between ENSO and northeast monsoon rainfall over South Asia. Climate Dynamics, 28, 649–660. https://doi.org/10.1007/s00382-006-0210-0.

Kurths, J., Agarwal, A., Shukla, R., Marwan, N. and coauthors. (2019) Unravelling the spatial diversity of Indian precipitation teleconnections via a nonlinear multi-scale. Nonlinear Processes in Geophysics, 26, 251–266.

Misra, V. and Bhardwaj, A. (2019) Defining the northeast monsoon of India. Monthly Weather Review, 147, 791–807. https://doi.org/10.1175/MWR-D-18-0287.1.

Misra, V., Bhardwaj, A. and Mishra, A. (2017a) Local onset and demise of the Indian summer monsoon. Climate Dynamics, 51, 1609–1622. https://doi.org/10.1007/s00382-017-3924-2.

Misra, V., Bhardwaj, A. and Noska, R. (2017b) Understanding the variations of the length and the seasonal rainfall anomalies of the Indian summer monsoon. Journal of Climate, 30, 1753–1763.

Noska, R. and Misra, V. (2016) Characterizing the onset and demise of the Indian summer monsoon. Geophysical Research Letters, 43, 4547–4554. https://doi.org/10.1002/2016GL068409.

Pai, D.S., Sridhar, L., Badwaik, M.R. and Rajeevan, M. (2014a) Analysis of the daily rainfall events over India using a new long period (1901–2010) high resolution (0.25° × 0.25°) gridded rainfall data set. Climate Dynamics, 45, 3–4. https://doi.org/10.1007/s00382-014-2307-1.

Pai, D.S., Sridhar, L., Rajeevan, M., Sreejith, O.P., Satbhai, N.S. and Mukhopadhyay, B. (2014b) Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65(1), 1–18.

Pillai, P.A., Rao, S.A., Ramu, D.A., Pradhan, M. and George, G. (2018) Seasonal prediction skill of Indian summer monsoon rainfall in NMME models and monsoon mission CFSV2. International Journal of Climatology, 38, e847–e861. https://doi.org/10.1002/joc.5413.

Rajeevan, M., Unnikrishnan, C.K., Bhave, J., Niranjan Kumar, K. and Sreekala, P.P. (2012) Northeast monsoon over India: variability and prediction. Meteorological Applications, 19(2), 226–236.

Ramaswamy, C. (1972) The severe drought over Tamil Nadu during the retreat ing monsoon period of 1968 and its association with anomalies in the upper level flow pattern over the Northern Hemisphere. Indian Journal of Meteorology & Geophysics, 23(3), 303–316.
Ramu, D.A., Sabeerali, C.T., Chattopadhyay, R., Rao, D.N., George, G., Dhakate, A.R., Salunke, K., Srivastava, A. and Rao, S.A. (2016) Indian summer monsoon rainfall simulation and prediction skill in the CFSv2 coupled model: impact of atmospheric horizontal resolution. *Journal of Geophysical Research – Atmospheres*, 121, 2205–2221.

Ramu, D.A., Rao, S.A., Pillai, P.A., Pradhan, M., George, G., Rao, D.N., Mahapatra, S., Pai, D.S. and Rajeevan, M. (2017) Prediction of seasonal summer monsoon rainfall over homogenous regions of India using dynamical prediction system. *Journal of Hydrology*, 546, 103–112.

Saji, N.H., Goswami, B.N., Vinayachandran, P.N. and Yamagata, T. (1999) A dipole mode in the tropical Indian Ocean. *Nature*, 401, 360–363.

Sengupta, A. and Nigam, S. (2019) The northeast winter monsoon over the Indian subcontinent and Southeast Asia: evolution, interannual variability, and model simulations. *Journal of Climate*, 32, 231–249. https://doi.org/10.1175/JCLI-D-18-0034.1.

Srivastava, A.K., Rajeevan, M. and Kshirsagar, S.R. (2009) Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. *Atmospheric Science Letters*, 10, 249–254. https://doi.org/10.1002/asl.232.

Thapliyal, V. and Kulshrestha, S.M. (1992) Recent models for long range forecasting of southwest monsoon rainfall in India. *Mausam*, 43, 239–248.

Wu, J.D. and Tsai, Y.J. (2011) Speaker identification system using empirical mode decomposition and an artificial neural network. *Expert Systems with Applications*, 38(5), 6112–6117.

Wu, T.Y. and Chung, Y.L. (2009) Misalignment diagnosis of rotating machinery through vibration analysis via the hybrid EEMD and EMD approach. *Smart Materials and Structures*, 18(9), 095004.

Xavier, P.K., Marzin, C. and Goswami, B.N. (2007) An objective definition of the Indian summer monsoon season and a new perspective on the ENSO-monsoon relationship. *Quarterly Journal of the Royal Meteorological Society*, 133, 749–764.

Yadav, R.K., Srinivas, G. and Chowdary, J.S. (2018) Atlantic Niño modulation of the Indian summer monsoon through Asian jet. *NPJ Climate and Atmospheric Science*, 1, 23. https://doi.org/10.1038/s41612-018-0029-5.

Zubair, L. and Ropelewski, C.F. (2006) The strengthening relationship between ENSO and Northeast Monsoon Rainfall over Sri Lanka and Southern India. *Journal of Climate*, 19, 1567–1575.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Misra V, Bhardwaj A. The impact of varying seasonal lengths of the rainy seasons of India on its teleconnections with tropical sea surface temperatures. *Atmos Sci Lett*. 2020;21:e959. https://doi.org/10.1002/asl.959