The state complexity of star-complement-star

Galina Jirásková1,* and Jeffrey Shallit 2

1 Mathematical Institute, Slovak Academy of Sciences
Grešáková 6, 040 01 Košice, Slovakia
jiraskov@saske.sk

2 School of Computer Science, University of Waterloo
Waterloo, ON N2L 3G1 Canada
shallit@cs.uwaterloo.ca

Abstract. We resolve an open question by determining matching (asymptotic) upper and lower bounds on the state complexity of the operation that sends a language \(L\) to \((L^\ast)^\ast\).

1 Introduction

Let \(\Sigma\) be a finite nonempty alphabet, let \(L \subseteq \Sigma^*\) be a language, let \(\overline{L} = \Sigma^* - L\) denote the complement of \(L\), and let \(L^\ast\) (resp., \(L^+\)) denote the Kleene closure (resp., positive closure) of the language \(L\). If \(L\) is a regular language, its \textit{state complexity} is defined to be the number of states in the minimal deterministic finite automaton accepting \(L\) \cite{7}. In this paper we resolve an open question by determining matching (asymptotic) upper and lower bounds on the deterministic state complexity of the operations

\[
\begin{align*}
L &\rightarrow (\overline{L}^\ast)^\ast \\
L &\rightarrow (\overline{L}^+)^+.
\end{align*}
\]

To simplify the exposition, we will write everything using an exponent notation, using \(c\) to represent complement, as follows:

\[
\begin{align*}
L^c &:= \overline{L}^+ \\
L^{c+} &:= (\overline{L}^+)^+,
\end{align*}
\]

and similarly for \(L^{c\ast}\) and \(L^{c\ast\ast}\).

Note that

\[
L^{c\ast} = \begin{cases}
L^{c+}, & \text{if } \varepsilon \not\in L; \\
L^{c+} \cup \{\varepsilon\}, & \text{if } \varepsilon \in L.
\end{cases}
\]

It follows that the state complexity of \(L^{c+}\) and \(L^{c\ast}\) differ by at most 1. In what follows, we will work only with \(L^{c+}\).

* Research supported by VEGA grant 2/0183/11.
2 Upper Bound

Consider a deterministic finite automaton (DFA) $D = (Q_n, \Sigma, \delta, 0, F)$ accepting a language L, where $Q_n := \{0, 1, \ldots, n - 1\}$. As an example, consider the three-state DFA over $\{a, b, c, d\}$ shown in Fig. 1 (left). To get a nondeterministic finite automaton (NFA) N_1 for the language L^+, we add an ε-transition from every non-initial final state to the state 0. In our example, we add an ε-transition from state 1 to state 0; see Fig. 1 (right). After applying the subset construction to the NFA N_1 we get a DFA D_1 for the language L^+. The state set of D_1 consists of subsets of Q_n see Fig. 2 (left). Here the sets in the labels of states are written without commas and brackets; thus, for example 012 stands for the set $\{0, 1, 2\}$. Next, we interchange the roles of the final and non-final states of the DFA D_1, and get a DFA D_2 for the language L^{+c}; see Fig. 2 (right).

To get an NFA N_3 for L^{+c+} from the DFA D_2, we add an ε-transition from each non-initial final state of D_2 to the state $\{0\}$, see Fig. 3 (top). Applying the subset construction to the NFA N_3 results in a DFA D_3 for the language L^{+c+} with its state set consisting of some sets of subsets of Q_n; see Fig. 3 (middle). Here, for example, the label 0, 2 corresponds to the set $\{\{0\}, \{2\}\}$. This gives an upper bound of 2^{2^n} on the state complexity of the operation plus-complement-plus.

Our first result shows that in the minimal DFA for L^{+c+} we do not have any state $\{S_1, S_2, \ldots, S_k\}$, in which a set S_i is a subset of some other set S_j; see Fig. 3 (bottom). This reduces the upper bound to the number of antichains of subsets of an n-element set known as the Dedekind number $M(n)$ with \[2^{\left(\frac{n}{\lfloor n/2 \rfloor}\right)} \leq \log M(n) \leq \left(\frac{n}{\lfloor n/2 \rfloor}\right) \left(1 + O\left(\frac{\log n}{n}\right)\right).\]

Fig. 1. DFA D for a language L and NFA N_1 for the language L^+.

Fig. 2. DFA D_1 for language L^+ and DFA D_2 for the language L^{+c}.
Fig. 3. NFA N_3, DFA D_3, and the minimal DFA D_3^{min} for the language L^{+e+}.

3
Lemma 1. If S and T are subsets of Q_n such that $S \subseteq T$, then the states $\{S, T\}$ and $\{S\}$ of the DFA D_3 for the language L^{+c+} are equivalent.

Proof. Let S and T be subsets of Q_n such that $S \subseteq T$. We only need to show that if a string w is accepted by the NFA N_3 starting from the state T, then it also is accepted by N_3 from the state S.

Assume w is accepted by N_3 from T. Then in the NFA N_3, an accepting computation on w from state T looks like this:

$$T \xrightarrow{w} T_1 \xrightarrow{\varepsilon} \{0\} \xrightarrow{v} T_2,$$

where $w = uv$, and state T goes to an accepting state T_1 on u without using any ε-transitions, then T_1 goes to $\{0\}$ on ε, and then $\{0\}$ goes to an accepting state T_2 on v; it also may happen that $w = u$, in which case the computation ends in T_1. Let us show that S goes to an accepting state of the NFA N_3 on u.

Since T goes to an accepting state T_1 on u in the NFA N_3 without using any ε-transition, state T goes to the accepting state T_1 in the DFA D_1. Thus, every state q in S goes to rejecting states in the NFA N_1, and therefore S goes to a rejecting state S_1 in the DFA D_1, thus to the accepting state S_1 in the DFA D_2. Hence $w = uv$ is accepted from S in the NFA N_3 by computation $S \xrightarrow{u} S_1 \xrightarrow{\varepsilon} \{0\} \xrightarrow{v} T_2$.

Hence whenever a state $S = \{S_1, S_2, \ldots, S_k\}$ of the DFA D_3 contains two subsets S_i and S_j with $i \neq j$ and $S_i \subseteq S_j$, then it is equivalent to state $S \setminus \{S_j\}$.

Lemma 2. Let D be a DFA for a language L with state set Q_n, and D_3^{min} be the minimal DFA for L^{+c+} as described above. Then every state of D_3^{min} can be expressed in the form

$$S = \{X_1, X_2, \ldots, X_k\}$$

where

- $1 \leq k \leq n$;
- there exist subsets $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_k \subseteq Q_n$; and
- there exist q_1, \ldots, q_k, pairwise distinct states of D not in S_k; such that
- $X_i = \{q_i\} \cup S_i$ for $i = 1, 2, \ldots, k$.

Proof. Let $D = (Q_n, \Sigma, \delta, 0, F)$.

For a state q in Q_n and a symbol a in Σ, let $q.a$ denote the state in Q_n, to which q goes on a, that is, $q.a = \delta(q, a)$. For a subset X of Q_n, let $X.a$ denote the set of states to which states in X go by a, that is,

$$X.a = \bigcup_{q \in X} \{\delta(q, a)\}.$$
Consider transitions on a symbol a in automata D, N_1, D_1, D_2, N_3; Fig. 4 illustrates these transitions. In the NFA N_1, each state q goes to a state in $\{0, q.a\}$ if $q.a$ is a final state of D, and to state $q.a$ if $q.a$ is non-final. It follows that in the DFA D_1 for L^+, each state X (a subset of Q_a) goes on a to final state $\{0\} \cup X.a$ if $X.a$ contains a final state of D, and to non-final state $X.a$ if all states in $X.a$ are non-final in D. Hence in the DFA D_2 for L^{+c}, each state X goes on a to non-final state $\{0\} \cup X.a$ if $X.a$ contains a final state of D, and to the final state $X.a$ if all states in $X.a$ are non-final in D.

Therefore, in the NFA N_3 for L^{+c+}, each state X goes on a to a state in $\{\{0\}, X.a\}$ if all states in $X.a$ are non-final in D, and to state $\{0\} \cup X.a$ if $X.a$ contains a final state of D.

To prove the lemma for each state, we use induction on the length of the shortest path from the initial state to the state of D_{min}^k in question. The base case is a path of length 0. In this case, the initial state is $\{\{0\}\}$, which is in the required form (1) with $k = 1, q_1 = 0$, and $S_1 = \emptyset$.

Fig. 4. Transitions under symbol a in automata D, N_1, D_1, D_2, N_3.
For the induction step, let
\[S = \{X_1, X_2, \ldots, X_k\}, \]
where \(1 \leq k \leq n \), and
- \(S_1 \subseteq S_2 \subseteq \cdots \subseteq S_k \subseteq Q_n \),
- \(q_1, \ldots, q_k \) are pairwise distinct states of \(D \) that are not in \(S_k \) and
- \(X_i = \{q_i\} \cup S_i \) for \(i = 1, 2, \ldots, k \).

We now prove the result for all states reachable from \(S \) on a symbol \(a \).

First, consider the case that each \(X_i \) goes on \(a \) to a non-final state \(X'_i \) in the NFA \(N_3 \). It follows that \(S \) goes on \(a \) to \(S' = \{X'_1, X'_2, \ldots, X'_k\} \), where
\[X'_i = \{q_i, a\} \cup S_i, a \cup \{0\}. \]
Write \(p_i = q_i, a \) and \(P_i = S_i, a \cup \{0\} \). Then we have \(P_1 \subseteq P_2 \subseteq \cdots \subseteq P_k \subseteq Q_n \).

If \(p_i = p_j \) for some \(i, j \) with \(i < j \), then \(X'_i \subseteq X'_j \), and therefore \(X'_i \) can be removed from state \(S' \) in the minimal DFA \(D_3^{\min} \). After several such removals, we arrive at an equivalent state
\[S'' = \{X''_1, X''_2, \ldots, X''_\ell\} \]
where \(\ell \leq k \), \(X''_i = \{r_i\} \cup R_i \) and the states \(r_1, r_2, \ldots, r_\ell \) are pairwise distinct.

If \(r_i \in R_j \) for some \(i \) with \(i < \ell \), then \(X_i \subseteq R_\ell \); thus \(R_\ell \) can be removed. After all such removals, we get an equivalent set
\[S''' = \{X'''_1, X'''_2, \ldots, X'''_m\} \]
where \(m \leq \ell \), \(X'''_i = \{t_i\} \cup T_i \) and the states \(t_1, t_2, \ldots, t_m \) are pairwise distinct and \(t_1, t_2, \ldots, t_{m-1} \) are not in \(T_m \). If \(t_m \notin T_m \), then the state \(S''' \) is in the required form \(\square \). Otherwise, if \(T_{m-1} \) is a proper subset of \(T_m \), then there is a state \(t \) in \(T_m - T_{m-1} \), and then we can take \(X'''_i = \{t\} \cup T_m - \{t\} \): since \(t_1, \ldots, t_{m-1} \) are not in \(T_m \), they are distinct from \(t \), and moreover \(T_{m-1} \subseteq T_m - \{t\} \).

If \(T_{m-1} = T_m \), then \(X'''_{m-1} \subseteq X'''_m \), and therefore \(X'''_{m-1} \) can be removed from \(S''' \). After all these removals we either reach some \(T_i \) that is a proper subset of \(T_m \), and then pick a state \(t \) in \(T_m - T_i \) in the same way as above, or we only get a single set \(T_m \), which is in the required form \(\{r_m\} \cup T_m - \{r_m\} \).

This proves that if each \(X_i \) in \(S \) goes on \(a \) to a non-final state \(X'_i \) in the NFA \(N_3 \), then \(S \) goes on \(a \) in the DFA \(D_3^{\min} \) to a set that is in the required form \(\square \).

Now consider the case that at least one \(X_i \) in \(S \) goes to a final state \(X'_i \) in the NFA \(N_3 \). It follows that \(S \) goes to a final state
\[S' = \{0\}, X'_1, X'_2, \ldots, X'_k, \]
where \(X'_i = \{q_i, a\} \cup S_i, a \) and if \(i \neq j \), then \(X'_i = \{q_i, a\} \cup S_i, a \) or \(X'_i = \{0\} \cup \{q_i, a\} \cup S_i, a \). We can now remove all \(X_i \) that contain state \(0 \), and arrive at an equivalent state
\[S'' = \{0\}, X''_1, X''_2, \ldots, X''_\ell, \]
where \(\ell \leq k \), and the states \(r_1, r_2, \ldots, r_\ell \) are pairwise distinct.

\(\square \)
where $\ell \leq k$, and $X_i'' = \{p_i\} \cup P_i$, and $P_1 \subseteq P_2 \subseteq \cdots \subseteq P_\ell \subseteq Q_n$, and each p_i is distinct from 0.

Now in the same way as above we arrive at an equivalent state
\[
\{\{0\}, \{t_1\} \cup T_1, \ldots, \{t_m\} \cup T_m\}
\]
where $m \leq \ell$, all the t_i are pairwise distinct and different from 0, and moreover, the states t_1, \ldots, t_{m-1} are not in T_m. If t_m is not in T_m, then we are done. Otherwise, we remove all sets with $T_i = T_m$. We either arrive at a proper subset T_j of T_m, and may pick a state t in $T_m - T_j$ to play the role of new t_m, or we arrive at $\{\{0\}, T_m\}$, which is in the required form $\{\{0\} \cup \emptyset, t_m \cup T_m - \{t_m\}\}$. This completes the proof of the lemma.

Corollary 1 (Star-Complement-Star: Upper Bound). If a language L is accepted by a DFA of n states, then the language L^{c*} is accepted by a DFA of $2^{O(n \log n)}$ states.

Proof. Lemma 2 gives the following upper bound
\[
\sum_{k=1}^{n} \frac{n!}{k!} (k+1)^{n-k} \leq 2^{O(n \log n)},
\]
and the upper bound follows.

Remark 1. The summation $\sum_{k=1}^{n} \frac{n!}{k!} (k+1)^{n-k}$ differs by one from Sloane’s sequence A072597 in the Online Encyclopedia of Integer Sequences. These numbers are the coefficients of the exponential generating function of $1/(e^x - x)$. It follows, by standard techniques, that these numbers are asymptotically given by $C_1 W(1)^{-n!}$, where
\[
W(1) \approx 0.5671432904097838729999666622103555497538
\]
is the Lambert W-function evaluated at 1, equal to the positive real solution of the equation $e^x = 1/x$, and C_1 is a constant, approximately
\[
1.1251190996878593170279439143182676599.
\]
The convergence is quite fast; this gives a somewhat more explicit version of the upper bound.
3 Lower Bound

We now turn to the matching lower bound on the state complexity of plus-complement-plus. The basic idea is to create one DFA where the DFA for L^{+c+} has many reachable states, and another where the DFA for L^{+c+} has many distinguishable states. Then we “join” them together in Corollary 2.

The following lemma uses a four-letter alphabet to prove the reachability of some specific states of the DFA D_3 for plus-complement-plus.

Lemma 3. There exists an n-state DFA $D = (Q_n, \{a, b, c, d\}, \delta, 0, \{0, 1\})$ such that in the DFA D_3 for the language $L(D)^{+c+}$ every state of the form

$$\left\{ \{0, q_1\} \cup S_1, \{0, q_2\} \cup S_2, \ldots, \{0, q_k\} \cup S_k \right\}$$

is reachable, where $1 \leq k \leq n - 2$, S_1, S_2, \ldots, S_k are subsets of $\{2, 3, \ldots, n - 2\}$ with $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_k$, and the q_1, \ldots, q_k are pairwise distinct states in $\{2, 3, \ldots, n - 2\}$ that are not in S_k.

Proof. Consider the DFA D over $\{a, b, c, d\}$ shown in Fig. 5. Let L be the language accepted by the DFA D. Construct the NFA N_1 for the language L^+ from the DFA D by adding loops on a and d in the initial state 0. In the subset automaton corresponding to the NFA N_1, every subset of $\{0, 1, \ldots, n - 2\}$ containing state 0 is reachable from the initial state $\{0\}$ on a string over $\{a, b\}$ since each subset $\{0, i_1, i_2, \ldots, i_k\}$ of size k, where $1 \leq k \leq n - 1$ and $1 \leq i_1 < i_2 < \cdots < i_k \leq n - 2$, is reached from the set $\{0, i_2 - i_1, \ldots, i_k - i_1\}$ of size $k - 1$ on the string ab^{i_1-1}. Moreover, after reading every symbol of string ab^{i_1-1}, the subset automaton is always in a set that contains state 0. All such states are rejecting in the DFA D_2 for the language L^{+c}, and therefore, in the NFA N_3 for L^{+c+}, the initial state $\{0\}$ only goes to the rejecting state $\{0, i_1, i_2, \ldots, i_k\}$ on ab^{i_1-1}.

Hence in the DFA D_3, for every subset S of $\{0, 1, \ldots, n - 2\}$ containing 0, the initial state $\{\emptyset\}$ goes to the state $\{S\}$ on a string w over $\{a, b\}$.

Now notice that transitions on symbols a and b perform the cyclic permutation of states in $\{2, 3, \ldots, n - 2\}$. For every state q in $\{2, 3, \ldots, n - 2\}$ and an integer i, let

$$q \odot i = ((q - i - 2) \mod n - 3) + 2$$
denote the state in \(\{2, 3, \ldots, n-2\} \) that goes to the state \(q \) on string \(a^i \), and, in fact, on every string over \(\{a, b\} \) of length \(i \). Next, for a subset \(S \) of \(\{2, 3, \ldots, n-2\} \) let

\[
S \oplus i = \{ q \oplus i \mid q \in S \}.
\]

Thus \(S \oplus i \) is a shift of \(S \), and if \(q \notin S \), then \(q \oplus i \notin S \oplus i \).

The proof of the lemma now proceeds by induction on \(k \). To prove the base case, let \(S_1 \) be a subset of \(\{2, 3, \ldots, n-2\} \) and \(q_1 \) be a state in \(\{2, 3, \ldots, n-2\} \) with \(q_1 \notin S_1 \). In the NFA \(N_3 \), the initial state \(\{0\} \) goes to the state \(\{0\} \cup S_1 \) on a string \(w \) over \(\{a, b\} \). Next, state \(q_1 \oplus |w| \) is in \(\{2, 3, \ldots, n-2\} \), and it is reached from state 1 on a string \(b^j \), while state 0 goes to itself on \(b \). In the DFA \(D_3 \) we thus have

\[
\{0\} \xrightarrow{a} \{0, 1\} \xrightarrow{b^j} \{0, q_1 \oplus |w|\} \xrightarrow{w} \{0, q_1 \cup S_1\},
\]

which proves the base case.

Now assume that every set of size \(k-1 \) satisfying the lemma is reachable in the DFA \(D_3 \). Let

\[
S = \{ \{0, q_1\} \cup S_1, \{0, q_2\} \cup S_2, \ldots, \{0, q_k\} \cup S_k \}
\]

be a set of size \(k \) satisfying the lemma. Let \(w \) be a string, on which \(\{0\} \) goes to \(\{0\} \cup S_1 \), and let \(\ell \) be an integer such that \(1 \) goes to \(q_1 \oplus |w| \) on \(b^\ell \). Let

\[
S' = \{ \{0, q_2 \oplus |w| \oplus \ell\} \cup S_2 \oplus |w| \oplus \ell, \ldots, \{0, q_k \oplus |w| \oplus \ell\} \cup S_k \oplus |w| \oplus \ell \},
\]

where the operation \(\oplus \) is understood to have left-associativity. Then \(S' \) is reachable by induction. On \(c \), every set \(\{0, q_i \oplus |w| \oplus \ell\} \cup S_i \oplus |w| \oplus \ell \) goes to the accepting state \(\{n-1, q_i \oplus |w| \oplus \ell\} \cup S_i \oplus |w| \oplus \ell \) in the NFA \(N_3 \), and therefore also to the initial state \(\{0\} \). Then, on \(d \), every state \(\{n-1, q_i \oplus |w| \oplus \ell\} \cup S_i \oplus |w| \oplus \ell \) goes to the rejecting state \(\{0, q_i \oplus |w| \oplus \ell\} \cup S_i \oplus |w| \oplus \ell \), while \(\{0\} \) goes to \(\{0, 1\} \). Hence, in the DFA \(D_3 \) we have

\[
S' \xrightarrow{a} \{\{0\}, \{n-1, q_2 \oplus |w| \oplus \ell\} \cup S_2 \oplus |w| \oplus \ell, \ldots, \{n-1, q_k \oplus |w| \oplus \ell\} \cup S_k \oplus |w| \oplus \ell\} \\
\xrightarrow{b^\ell} \{\{0, q_1 \oplus |w|\}, \{0, q_2 \oplus |w|\} \cup S_2 \oplus |w|, \ldots, \{0, q_k \oplus |w|\} \cup S_k \oplus |w| \} \xrightarrow{w} S.
\]

It follows that \(S \) is reachable in the DFA \(D_3 \). This concludes the proof. \(\square \)

The next lemma shows that some rejecting states of the DFA \(D_3 \), in which no set is a subset of some other set, may be pairwise distinguishable. To prove the result it uses four symbols, one of which is the symbol \(b \) from the proof of the previous lemma.
Lemma 4. Let \(n \geq 5 \). There exists an \(n \)-state DFA \(D = (Q_n, \Sigma, \delta, 0, \{0,1\}) \) over a four-letter alphabet \(\Sigma \) such that all the states of the DFA \(D_3 \) for the language \(L(D)^{++} \) of the form

\[
\left\{ \{0\} \cup T_1, \{0\} \cup T_2, \ldots, \{0\} \cup T_k \right\},
\]

in which no set is a subset of some other set and each \(T_i \subseteq \{2, 3, \ldots, n-2\} \), are pairwise distinguishable.

Proof. To prove the lemma, we reuse the symbol \(b \) from the proof of Lemma 3 and define three new symbols \(e, f, g \) as shown in Fig. 6.

Notice that on states \(2, 3, \ldots, n-2 \), the symbol \(b \) performs a big permutation, while \(e \) performs a trasposition, and \(f \) a contraction. It follows that every transformation of states \(2, 3, \ldots, n-2 \) can be performed by strings over \(\{b, e, f\} \).

In particular, for each subset \(T \) of \(\{2, 3, \ldots, n-2\} \), there is a string \(w_T \) over \(\{b, e, f\} \) such that in \(D \), each state in \(T \) goes to state 2 on \(w_T \), while each state in \(\{2, 3, \ldots, n-2\} \setminus T \) goes to state 3 on \(w_T \). Moreover, state 0 remains in itself while reading the string \(w_T \). Next, the symbol \(g \) sends state 0 to state 2, state 3 to state 0, and state 2 to itself.

It follows that in the NFA \(N_3 \), the state \(\{0\} \cup T \), as well as each state \(\{0\} \cup T' \) with \(T' \subseteq T \), goes to the accepting state \(\{2\} \) on \(w_T \cdot g \). However, every other state \(\{0\} \cup T'' \) with \(T'' \subseteq \{2, 3, \ldots, n-2\} \) is in a state containing 0, thus in a rejecting state of \(N_3 \), while reading \(w_T \cdot g \), and it is in the rejecting state \(\{0, 3\} \) after reading \(w_T \). Then \(\{0, 3\} \) goes to the rejecting state \(\{0, 2\} \) on reading \(g \).

Hence the string \(w_T \cdot g \) is accepted by the NFA \(N_3 \) from each state \(\{0\} \cup T' \) with \(T' \subseteq T \), but rejected from any other state \(\{0\} \cup T'' \) with \(T'' \subseteq \{2, 3, \ldots, n-2\} \).

Now consider two different states of the DFA \(D_3 \)

\[
\mathcal{T} = \left\{ \{0\} \cup T_1, \ldots, \{0\} \cup T_k \right\},
\]

\[
\mathcal{R} = \left\{ \{0\} \cup R_1, \ldots, \{0\} \cup R_l \right\},
\]

in which no set is a subset of some other set and where each \(T_i \) and each \(R_j \) is a subset of \(\{2, 3, \ldots, n-2\} \). Then, without loss of generality, there is a set \(\{0\} \cup T_i \) in \(\mathcal{T} \) that is not in \(\mathcal{R} \). If no set \(\{0\} \cup T' \) with \(T' \subseteq T_i \) is in \(\mathcal{R} \), then the string \(w_{T_i} \cdot g \) is accepted from \(\mathcal{T} \) but not from \(\mathcal{R} \). If there is a subset \(T' \) of \(T_i \) such that \(\{0\} \cup T' \) is in \(\mathcal{R} \), then for each subset \(T'' \) of \(T' \) the set \(\{0\} \cup T'' \) cannot be in \(\mathcal{T} \), and then the string \(w_{T'} \cdot g \) is accepted from \(\mathcal{R} \) but not from \(\mathcal{T} \). \(\square \)
Corollary 2 (Star-Complement-Star: Lower Bound). There exists a language \(L \) accepted by an \(n \)-state DFA over a seven-letter input alphabet, such that any DFA for the language \(L^{*c*} \) has \(2^{\Omega(n \log n)} \) states.

Proof. Let \(\Sigma = \{a, b, c, d, e, f, g\} \) and \(L \) be the language accepted by \(n \)-state DFA \(D = (\{0, 1, \ldots, n - 1\}, \Sigma, \delta, 0, \{0, 1\}) \), where transitions on symbols \(a, b, c, d \) are defined as in the proof of Lemma 3, and on symbols \(d, e, f \) as in the proof of Lemma 4.

Let \(m = \lceil n/2 \rceil \). By Lemma 3, the following states are reachable in the DFA \(D_3 \) for \(L^{c+} \):

\[
\{\{0, 2\} \cup S_1, \{0, 3\} \cup S_2, \ldots, \{0, m - 2\} \cup S_{m-1}\},
\]

where \(S_1 \subseteq S_2 \subseteq \cdots \subseteq S_{m-1} \subseteq \{m - 1, m, \ldots, n - 2\} \). The number of such subsets \(S_i \) is given by \(m^{n-m} \), and we have

\[
m^{n-m} \geq \left(\frac{n}{2}\right)^{n-1} = 2^{\Omega(n \log n)}.
\]

By Lemma 4 all these states are pairwise distinguishable, and the lower bound follows.

Hence we have an asymptotically tight bound on the state complexity of star-complement-star operation that is significantly smaller than \(2^{2^n} \).

Theorem 1. The state complexity of star-complement-star is \(2^{\Theta(n \log n)} \).

4 Applications

We conclude with an application.

Corollary 3. Let \(L \) be a regular language, accepted by a DFA with \(n \) states. Then any language that can be expressed in terms of \(L \) and the operations of positive closure, Kleene closure, and complement has state complexity bounded by \(2^{\Theta(n \log n)} \).

Proof. As shown in \(\text{[1]} \), every such language can be expressed, up to inclusion of \(\epsilon \), as one of the following 5 languages and their complements:

\(L, L^+, L^{c+}, L^{+c+}, L^{c+c+} \).

If the state complexity of \(L \) is \(n \), then clearly the state complexity of \(L^c \) is also \(n \). Furthermore, we know that the state complexity of \(L^+ \) is bounded by \(2^n \) (a more exact bound can be found in \(\text{[7]} \)); this also handles \(L^{c+} \). The remaining languages can be handled with Theorem \(\text{[1]} \).
References

1. Brzozowski, J., Grant, E., and Shallit, J.: Closures in formal languages and Kuratowski’s theorem, Int. J. Found. Comput. Sci. 22, 301–321 (2011)
2. Kleitman, D. and Markowsky, G.: On Dedekind’s problem: the number of isotone Boolean functions. II, Trans. Amer. Math. Soc. 213, 373–390 (1975)
3. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Res. Develop. 3, 114–129 (1959)
4. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company, Boston (1997)
5. Sloane, N. J. A.: Online Encyclopedia of Integer Sequences, http://oeis.org
6. Yu, S.: Chapter 2: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages - Vol. I, pp. 41–110. Springer, Heidelberg (1997)
7. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)