Pavonia Cav. SPECIES (MALVACEAE SENSU LATO) AS SOURCE OF NEW DRUGS: A REVIEW

Janderson Barbosa Leite de Albuquerque*, Camila Macaúbas da Silva*, Diégina Araújo Fernandes*, Pedro Isaac Vanderlei de Souza* and Maria de Fátima Vanderlei de Souza*a,2

aDepartamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, 58051-900 João Pessoa – PB, Brasil
bInstituto de Biociências, Universidade Federal do Mato Grosso do Sul, 79070-900 Campo Grande – MS, Brasil

Recebido em 17/12/2021; aceite em 17/03/2022; publicado na web em 19/04/2022

INTRODUCTION

Medicinal plants constitute the main therapeutic source of folk medicine. Traditional knowledges are passed through generations due to the stark believes that come since primitive folks and healers. Previous ethno-pharmacological-botanical studies form the foundation to the development of new drugs from medicinal herbs.1

Plants provide an essential economic role as they are used as a drug source.2 This fact rises in developing countries due to lesser side effects and easy access that low-income populations have to those plants, making them an almost inexhaustible source of remedies for those people.3

Several chemical compounds that act as potential therapeutic agents have been isolated from plant species.4 Studies about those compounds are based on ethnomedical, chemical and pharmacological knowledges, aiming to find out new bioactive molecules. On this context, species from Malvaceae sensu lato family arouse major interests of the scientific community due to the fact that those species are important economic sources in agriculture, decorations, manufacturing, food and medicine.5

Among several genus belonging to Malvaceae sensu lato, we highlight Pavonia Cav., which has several biological and pharmacological activities described in literature about folk medicine. Those activities have been confirmed through the isolation, identification and characterization of secondary metabolites, as well as several pharmacological activities described for those compounds.6

The genus Pavonia Cav. includes approximately 271 species distributed worldwide, being more diverse in America and Africa, with only two species being recorded for Asia. A lot of chemical and pharmacological studies with species P. odorata and P. zeylanica are described in literature, mostly for India, due to the traditional medicine system Ayuverda.7

Approximately 224 species can be found in America, ranging from USA to Uruguay, including the Antilles and excluding Chile.8

In Africa, approximately 46 species can be found.9 In Brazil, 136 species of Pavonia can be found, ranging from Amazon rainforest, Caatinga, Cerrado, Atlantic Forest, Pampas and Pantanal wetlands.9

Based on presented data, this review aims to accomplish a bibliographical survey about traditional uses of Pavonia species and evaluate the chemical and pharmacological potential of this genus in order to drive future researches based on natural products as a source of new drugs.

METHODOLOGY

Information about the use of plants by folk medicine, phytochemical studies, botanic characteristics and pharmacological activities of genus Pavonia have been based and collected from scientific data banks such as: ‘Web of Science’, ‘Scifinder’, ‘Pubmed’ and ‘Scholar Google’, using papers, books, dissertation and thesis from the year 1918 until April 2021 and searching for the keyword ‘Pavonia’. Following this methodology, we consulted 156 scientific articles, having, as inclusion criteria, the presence of information regarding the use of Pavonia genus in traditional medicine, phytochemical studies, pharmacological and/or biological activities. The exclusion criteria of the articles involved repetition of those in different databases, review articles that contained references used in the manuscript, information with the keyword ‘Pavonia’ that do not concerns the genus, articles with only botanical data or articles not available for access on the platforms used. A single patent referring to the species P. schiedeana (JP 2001181172A (2001)) was found as part of a cosmetic composition.

The development of this revision paper aimed the study of this genus in order to expand the scientific interest through knowledge of isolated compounds with several biological activities, as those are the candidates to new drugs isolated from Pavonia species.

The present study and data have been extracted by the author (JBLA) and confirmed by other (DAF, CMS, PIVS, MFVS). All data are resumed in tables and their descriptions have been resumed as updated information.
RESULTS AND DISCUSSION

Botanical description

Pavonia comprises species of herbs, shrubs and bushes. Its flowers are, generally, solitary, composed by four epicalyces, several free bracteoles, a tubulous and cupuliform calyx composed by five petals, carpels uniovulate and stigma capitate (Figure 1). The fruits are schizocarp, formed by five mericarps with a nervous-reticulate dorsal face, smooth lateral faces and smooth or striated obovoid or reniform seeds.

Some species of *Pavonia* possess floral nectaries formed by multicellular glandular trichomes, providing a thick area located near the internal base of calyx. This characteristic attracts hummingbirds, which are pollinators of tubulous flowers, such as *P. glazioviana* and *P. multiflora*. Species that possesses flowers with twisted corolla and short staminal tube formed by free stamens, such as *P. malacophylla*, *P. varians*, *P. zeylanica* and *P. distinguenda*, are pollinated by bees.

Ethnopharmacological relevance

Different species of *Pavonia* Cav. are related in folk medicine as a treatment for several diseases. Among the most used parts of those plants used by some tribes in therapeutics are flowers, bark, roots, rhizomes and flowers (Table 1).

Juice of *P. odorata* leaves is used by traditional medicine Ayurveda as a treatment for dysentery, gonorrhea and halitosis, whereas leaves macerate as a paste are used as a treatment for rheumatism, foot infections and antipyretic.

Powder from seeds of *P. senegalensis* is used as a contraceptive. Decoct of *P. urens* roots is largely used as a treatment for toothache. Brewing of roots and leaves of *P. zeylanica*, as well as decocts, powder and pastes are largely used by eastern communities as a treatment for osteoarthritis, joint pain, bone fractures, cough with discharge and healing of wounds. Leaves’ juice and the entire plant prepared as infusion are also used for its vermifuge and purgative properties.

Several ethnopharmacological studies regarding *Pavonia* species have been described in literature, which give us basis for deepening the chemical and pharmacological knowledge of those herbs, since many of the pharmacological activities are related to traditional use of medicinal plants, therefore providing essential information to the development of new drugs.

Chemical composition

Based on literature data, 29 references in the area of phytochemistry have been found to species of the genus *Pavonia*: 10 papers referred to species *P. odorata* (06) and *P. zeylanica* (04); 9 papers referred to species *P. malacophylla* (03), *P. glazioviana* (03) and *P. sepium* (03), and; 2 papers referred to *P. cancelatta*. Besides, several other papers have been related in this field with the species *P. varians*, *P. xanthogloea*, *P. sepioides*, *P. distinguenda*, *P. multiflora*, *P. hastata*, *P. lasiopetala*, *P. schiedeana* and *P. alnifolia*. 169 compounds have been isolated and/or identified in the genus *Pavonia* (Table 2), comprehending the most diverse classes of secondary metabolites ever related.

Fatty acids are molecule that consists of the most diverse lipids and, by enzymatic action, become free fatty acids, presenting powerful biological activities.

Table 1. Species of *Pavonia* genus and their uses in folk medicine

Scientific name/ Popular name	Used plant part	Traditional Use	Therapeutic Properties	References
Pavonia cancellata	LV	Poultice	Boils	31
Pavonia distinguenda	AP *	*	Antitumor and antibacterial	32
Pavonia lasiopetala	WP	Decoction	Antipyretic and common cold	33
Pavonia rosa	LV *	Breaks and disintegrates kidney and urinary stones; Diuretic	34	
Table 1. Species of *Pavonia* genus and their uses in folk medicine (cont.)

Species	Uses	References
RH	Dysentry, anti-inflammatory, anti-hemorrhagic; Antipyretic, digestive and astringent	35,36
RH and LV	Antipyretic, stomachic, dysentry and antiurolytic	37,38
WP	Antipyretic, stomachic, dysentry; Rheumatism; Antiemetic; Anti-hemorrhagic; Demulcent, carminative, diaphoretic, diuretic, anti-inflammatory, spasmyotic and astringent	29,39-45
ST and RT	Antipyretic	7
ST	Bone fractures	46
AP	Colds, diaphoretic, diuretic, demulcent; Antipyretic, anti-inflammatory and anti-hemorrhagic	47-49
P	Antipyretic, stomachic, dysentry; Anti-hemorrhagic; Skin diseases, anti-inflammatory, spasmyotic; Nervous weakness	3,35,50-54
LV	Leaf juice, Dysentry; Gonorrhoea; Anti-halitosis	12-15
RT	Stomachache, anti-inflammatory, anti-hemorrhagic; Antipyretic, diuretic; Carminative, diaphoretic, polydipsia, burning when urinating, demulcent astringent, stomachic, haemorrhages from intestines; bleeding disorders, dysentry and antiulcerogenic; appetizer	4,29,52,55-58
Pavonia odorata/ Sugandhibala		
LV	Paste, Athlete’s foot	1,159
RT	Decoction, Athlete’s foot	1,59
Powder	Dislocations of bone joints; Osteoarthritis	21,22
Decoction	Dysentry and carminative	60,61
Pavonia procumbens	Antiulcerogenic, fumigation, vermifuge, analgesic and skin infections	2,51,62-64
Pavonia schiedeana/ Cadillo	Decoction, Retained placenta and prevention of miscarriage	65
RT and WP	Poultice, Antipyretic	66
LV	Infusion, Hypoglycemic; retained placenta and prevention of miscarriage	65,67
Pavonia senegalensis	Aqueous extract, Bone and soft tissue infections	68,69
RT	Inhalation and infusion, Diarrhea and induce labour	70,71
SD	Powder, Contraceptive	18
Pavonia spinifex	Infusion, Analgesic and skin problems	72,73
FL	Infusion, Stomach problems, gallstones and liver pain	
LV	Infusion, Hepatoprotection, antioxidant, anticancer, antifungal and antibacterial	74
AP	Inhalation and decoction, Antipyretic	75
RT	Decoction, Toothache	19,20
Pavonia urens	Boils, Repellent for mosquitoes and house flies	78
Pavonia varians/ Malva-peluda	Infections of the digestive system, and anti-inflammatory	82
Pavonia xanthogloeal/ Erva-de-ovelha	Antimicrobial and antitumor	83,84
Pavonia zeylanica/ Citramutti	Eczema; Eye diseases; Antipyretic, Anthelmintic, anti-inflammatory, analgesic, toothache; Dysentry, anti-hemorrhagic and emollient	43,85-91
LV	Decoction, Cough with phlegm	23
Ground	Constipation in animals	92
Paste	Bone fractures; Healing of acute and chronic wounds	24,25
Smoke	Skin diseases, anthelmintic, leprosy, scabies, ringworm, dermatitis, acne, wounds and antiulcerogenic; Blood circulation	3,93
Table 1. Species of *Pavonia* genus and their uses in folk medicine (cont.)

Scientific name/ Popular name	Medicinal Parts	Traditional Use	Therapeutic Properties	References
Pavonia zeylanica/*Citramutti*	WP	Inhalation	* Antipyretic and anthelmintic; Paralysis; Joint pain	94, 4, 95, 96
	RT	Infusion and leaf juice	* Demulcent, carminative, diaphoretic, diuretic, astringent, tonic, anti-hemorrhagic and anti-inflammatory; Antiulcerogenic	88, 97
	AP: Aerial Parts; FL: Flowers; FR: Fruits; LV: Leaves; RH: Rhizomes; RT: Roots; SD: Seeds; ST: Stems; TW: Twigs; WP: Whole Plant.			

not reported in the literature.

Table 2. Isolated compounds from *Pavonia* genus

Nº	Name	Source	Reference
1	Malvalic acid	SD of *P. sepium* and *P. zeylanica*	98-101
2	Sterculic acid		
3	Palmitic acid		
4	Stearic acid	SD of *P. zeylanica*, RT and AP of *P. oleracea*	48, 101-105
5	Oleic acid	AP of *P. oleracea*	
6	Linoleic acid		
7	Dihydrosterculic acid	SD of *P. zeylanica*	101
8	(9Z,12Z,15Z)-9,12,15-Octadecatrienoic acid	RT of *P. oleracea*	48, 102-104, 106
9	Isovaleric acid		
10	Caproic acid		
11	Dodecanoic acid		
12	Methyl tetradecanoate		
13	Tetradecanoic acid		
14	Methyl-(2E,6E)-farnesate	AP of *P. oleracea*	105
15	Pentadecanoic acid		
16	Methyl palmitate		
17	Methyl linoleate		
18	Methyl oleate		
19	α-amirine	AP of *P. malaba*	107
20	β-amirine		
21	Lupeol	AP of *P. malaba* and *P. doistionii*	31, 108
22	Blumenol C		
23	Vomifoliol		
24	4,5-dihydroxalbumenol A	LV of *P. malaba*	109
25	3-oxo-α-ionol		
26	Loliolide		
27	Taraxerol p-methoxybenzoate		
28	Cycloart-23Z-en-3β, 25-diol	AP of *P. gularia*	110
29	Cycloart-25Z-en-3β, 24-diol		
30	Taraxerol	AP of *P. dianthus*	31
31	Germanicol		

Terpenoids

Nº	Name	Source	Reference
32	Cedran-diol,8S,13		
33	Cedrol		
34	S-guaiazulene		
35	Pinocarveol		
36	α-terpinene	RT of *P. oleracea*	48, 102-104, 106
37	Pavonanol*		
38	β-pinene		
39	p-cymene		
40	1,8-cineole		
41	(Z)-linalooloxide		
42	(E)-linalooloxide		
43	Linalool		
44	(E)-pinocarveol		
45	Borneol		
46	Menthol		
47	Terpinen-4-ol		
48	p-cymen-8-ol		
49	α-terpineol		
50	Carvone		
51	Geraniol	AP of *P. oleracea*	105
52	Thymol		
53	Eugenol		
54	β-damascenone		
55	β-caryophyllene		
56	β-eudesmol		
57	Mururolane		
58	Farnesyl acetone		
59	Phytole		
60	β-caryophyllene oxide		
61	Guaiole		
62	γ-eudesmol		
63	α-eudesmol	RT and AP of *P. oleracea*	48, 102-105
64	α-pinene		

Steroids

Nº	Name	Source	Reference
65	Sitosterol-3-O-β-D-glucopyranoside	AP of *P. oleracea*	107, 110-112
66	Stigmasterol-3-O-β-D-glucopyranoside	AP of *P. oleracea* and *P. gularia*	107, 110-112
Table 2. Isolated compounds from Pavonia genus (cont.)

Nº	Name	Source	Reference
67	β-sitosterol	AP of P.c., P.mal., and P.d.; RT of P.o.	31,106, 107,111, 112
68	Stigmasterol	AP of P.c.	111,112
69	Ethyl iso-allocholate	RT of P.o.	106

Flavonoids

Nº	Name	Source	Reference
70	Kaempferol-3-O-(6''-O-p-coumaroyl)-glucoside (Tiliroside)	AP of P.c., P.x., P.mal., P.v., P.g., P.d.	11,31,83, 107, 111-114
71	3,7-di-O-methylkaempferol	AP of P.c.	111,112
72	Quercetin	FL of P.h. and Pl.; AP of P.x., P.mal., P.g.	11,83, 117, 107,115
73	2-(3,4-dihydroxyphenyl) chromane-3,5,7-triol (Cyanidin)	AP of P.x.	83,116
74	Rutin	AP of P.a. and P.x.	83
75	Quercitin	AP of P.x.	83
76	Kaempferol	AP of P.mal., P.g.	11,107
77	5,8-dihydroxy-7,4'-dimethoxyflavone	AP of P.mal.	108
78	5,7-dihydroxy-4'-methoxyflavone (Acacetin)		
79	5,7-dihydroxy-3,8,4'-trimethoxyflavone	AP of P.g.	11,110, 117
80	5-hydroxy-3,7,8,4'-tetramethoxyflavone	AP of P.mal., P.g.	
81	5,7,4'-trihydroxy-3,8-dimethoxyflavone		
82	5,7,4'-trihydroxy-3-methoxyflavone		
83	Kaempferol-3-glucoside (Astragalin)	AP of P.d.	31
84	Dihydrokaempferol (Aromadendrin)	RT of P.o.	48,102-104
85	Aromadendrene		

Compounds Phenolics

Nº	Name	Source	Reference
86	Gossypol	SD of P.sch.	118
87	Gallic acid		
88	Catechin	AP of P.x.	83
89	Chlorogenic acid		
90	Caffeic acid	AP of P.x.; LV of P.sepio.	83,119
91	Vanillic acid		
92	Ferulic acid	LV of P.mal. and P.sepio.	109,119
93	p-Hydroxybenzoic acid		
94	p-coumaric acid	LV of P.mal.	109
95	Salicylic acid		
96	Cinnamic acid		
97	p-Hydroxyphenylacetic acid	LV of P.sepio.	119
98	Gentisic acid		
99	4-[(1E)-prop-1-en-1-yl] benzoic acid		

Other compounds

Nº	Name	Source	Reference
100	2-[(1E)-prop-1-en-1-yl] benzoic acid		
101	3-[(1E)-prop-1-en-1-yl] benzoic acid	LV of P.sepio.	119
102	Syringic acid		
103	Protocatechelic acid		

Phenyl alcohol

Nº	Name	Source	Reference
114	Benzoic acid-2-hydroxy-ethyl-ester		
115	5αH-3α,12-methano-1H-cyclopropane [5,6'] cyclodecane [1'-2',1,5] cyclopenta [1,2-d] [1,3] dioxal-13-one		
116	2,7-diphenyl-1,6 dioxypyridazinol[4,5,2,3'] pyrrolo[4',5'-p]pyridazine		
117	Bicyclo [4, 3, 0] nonan-7-one,1-(2-methoxyvinyl) 1,5-bis (3-cyclopentyl-propoxy)-1, 13,3,5,5-hexamethylsiloxane		
118	Pavenone*		
119	Isovaleraldehyde		
121	Azulene		
122	Hexahydrofarnesyl-acetone	RT and AP of P.o.	48,102-104, 104,106
123	6-methyl-5-hepten-2-one		
124	Isopentyl alcohol		
125	Pentanol		
126	Hexanol		
127	Benzyl alcohol		
128	Phenylethyl alcohol		
129	2-methoxy-p-cresol		
130	2-methoxy-4-vinylphenol		
131	2,4-bis(1,1-dimethylethyl)-phenol		105
132	Acetophenone		
133	2-nonanone		
134	Isophorone		
135	4-keto-isophorone		
136	p-menth-4-en-3-one		
Studies described in literature review that activities of those compounds depend on the level of unsaturation and the size of hydrocarbons chain, resulting antibacterial, antifungal and antimycobacterial activities. A recent study has shown that P. malacophylla and P. cancellata have palmitic, oleic and linoleic acids as majoritarian fatty acids.

Eighteen fatty acids have been isolated and identified in species P. sepium, P. odorata and P. zeylanica (Table 2). Palmitic (3) and capric (10) fatty acids showed significant activities in preparatory studies as having inhibitory properties for the activities of glycerol kinase enzyme from the fungus Epidermophyton floccosum and inhibitory properties for the alcohol-dehydrogenase enzyme from the protozoan Entamoeba histolytica.

Table 2. Isolated compounds from Pavonia genus (cont.)

N°	Name	Source	Reference
137	Dihydro-5-pentyl-2-(3H)-furanone	AP of P.o	105
138	Hexahydropseudoionone		
139	α-ionone		
140	Dihydro-β-ionone		
141	Dihydropseudoionone		
142	β-ionone		
143	4,8,12-trimethyltridecan-4-olide		
144	Phthalic acid		
145	2-pentyl-furan		
146	3-butyl-pyridine		
147	p-vallyl-anisole		
148	3-phenylpyridine		
149	Dihydroacinnolide		
150	Ageratocromene		
151	Hexadecanolactone		
152	Hexanal		
153	Benzaldehyde		
154	Phenylacetaldehyde		
155	(2E)-nonen-1-al		

Steroids are a minority class in Pavonia genus, with only five isolated compounds (65-69). Phyto steroids share as common structure ciclopentanoperidrofenaterne as carbonic skeleton, being β-sitosterol and stigmasterol the most common steroids of this genus and commonly encountered attached to sugar monomers.

Flavonoids and phenolic compounds

Flavonoids are the most important and diversified class of phenolic compounds among natural products, being relatively abundant secondary metabolites and responsible for several functions in plants’ organisms.

Seventeen flavonoids have been isolated from Pavonia species, being sixteen of those members of subclass flavone (70-84) and one, to flavanonol subclass (85). Many isolated flavonoids have glycosids attached to their structures.

Among the isolated compounds, flavonoid 5,7-dihydroxy-3,8,4’-trimethoxy flavone (79) has demonstrated in vitro antimicrobial, in silico anticancer, in vitro antineoplastic, in vitro antiprotozoal and in vitro photoprotective activities.

The compound tiliroside (70) has demonstrated in vitro and in vivo antihypertensive activities, leading to reduction of peripheral vascular and vasorelaxant resistances by blocking the Calcium channels dependent of voltage (CaV) in cells of vascular smooth muscle (VSMCs); in vitro antimicrobial activity; in silico antidiabetic activity through interaction with human pancreatic α-amylase enzyme; in vitro anticancer and anticolinesterasic activities.

Nineteen phenolic compounds (87-105) have been identified and isolated from the species P. xanthogloea, P. sepioides, P. multiflora and P. schiedeana. Studies demonstrated that those compounds presented different activities. Gross ethanolic extract and fractions of ethyl acetated from extractive process of P. sepioides leaves have shown a large quantity of phenolic compounds present on the samples, which...
Figure 2. Compounds isolated from Pavonia species
Figure 2. Compounds isolated from Pavonia species (cont.)
explains the antioxidant activity of those substances against free radicals inhibitions tests through the methods of DPPH and ABTS.119

Besides that species, other studies have shown a large potential of antioxidant activity as a primordial activity of those phenolic compounds such as described for P. xanthogloea, P. zeylanica, P. odorata, P. distinguenda, P. varians, P. glazioviana and P. procumbens.31,44,82,83,90,117,133-135

Other compounds

Differently from previously mentioned compounds, other classes of secondary metabolites have been isolated and identified in a lesser frequency on Pavonia species. Among those compounds, we can list alcohols, aldehydes, ketones, pheophytins and hydrocarbons (106-171) (Table 2, Figure 2).

Chaves107 has conducted a phytochemical study of P. malacophylla, isolating and identifying the compound 17α-ethoxy-phaeophorbide A (104), which has presented in vitro antibacterial activity against Staphylococcus aureus and Escherichia coli.

Table 3. In vitro, in vivo, and in silico biological studies reported from Pavonia genus

Species	Material used	Experimental model	Reference
Anti-inflammatory and Analgesic Activity			
Pz.	Leaves alcoholic extract	In vitro - anti-inflammatory and antinociceptive by inhibition the arachidonic acid pathway	88
Pz.	Leaves and stems aqueous extract	In vitro - anti-inflammatory and analgesic	136
Pz.	Leaves ethanolic extract	In vitro – anti-inflammatory activity by inhibition protein denaturation	90
Po.	Roots extract	Anti-inflammatory activity	137
Po.	Roots methanolic, chloroform and ethyl acetate extract	In vitro - anti-inflammatory	106

Antioxidant Activity
Pz.
Pz.
Pgl.
Ppro.
Pd.
Psep.
Pz.
Po.
Pa.
Po.

Antitumor and Cytotoxic Activity
Pgl.
Pd.
Po.
Po.

Antidiabetic Activity
Pz.

Pharmacological study

Several pharmacological activities involving Pavonia species have been arousing interest of scientific community hence there is a large collection of reports of their use in folk medicine. Researches have been developed to confirm the anti-inflammatory, analgesic, antioxidant, cytotoxic, antitumoral, antidiabetic, antimicrobial and antiviral potential of Pavonia species through scientific analysis (Table 3).

Anti-inflammatory and analgesic activities

Plants constitute a vast and precious source of natural products, which are essential to human health as they play several biological roles such as anti-inflammatory and analgesic activities, as it has been demonstrated by some studies over extracts and isolated compounds.306

Alcoholic extract of P. zeylanica leaves has shown in vivo anti-inflammatory activity in rat foot edema induced by carrageenan and...
Table 3. *In vitro, in vivo, and in silico* biological studies reported from *Pavonia* genus (cont.)

Species	Material used	Experimental model	Reference
P. o.	Roots extract	*In vitro* – reduced blood sugar levels	139
P. mal.	Leaves aqueous extract	*In vitro* – reduced blood sugar levels	86,136
P. gila.	Mixture of α-amirine and β-amirine	*In vitro* – *Staphylococcus aureus*, *Escherichia coli* and *Candida albicans*	107
P. pro.	Hexane:Acetate (9:1) fraction	*In vitro* – *Escherichia coli*, *Pseudomonas aeruginosa*, *Candida tropicalis*, *Candida parapsilosis*, *Aspergillus flavus* and *Aspergillus fumigatus*	131
P. spi.	Hexane:Acetate (1:1) fraction	*In vitro* – *Staphylococcus aureus*, *Staphylococcus epidermidis*, *Escherichia coli*, *Klebsiella pneumoniae* and *Proteus mirabilis*	63
P. a.	Tiliroside	*In vitro* – *Escherichia coli*	76,77
P. sen.	Aerial parts methanolic extract	*In vitro* – *Staphylococcus aureus* and *Klebsiella pneumoniae*	140
P. pra.	Aerial parts methanolic extract, hexane, dichloromethane, ethyl acetate and n-butanol fractions	*In vitro* – *Staphylococcus aureus*, *Staphylococcus epidermidis*, *Bacillus subtilis*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *Escherichia coli* and *Salmonella setubal*	31
P. z.	Leaves dichloromethane extract	*In vitro* – *Escherichia coli* and *Klebsiella aerogenes*	85
P. o.	Leaves ethyl acetate extract	*In vitro* – *Escherichia coli*	
P. o.	Leaves diethyl ether extract		
P. o.	Leaves methanolic extract	*In vitro* – *Staphylococcus aureus*	
P. o.	Rhizomes essential oil	*In vitro* – *Staphylococcus aureus*, *Bacillus subtilis*, *Escherichia coli*, *Klebsiella pneumoniae*, *Salmonella typhi H*, *Salmonella paratyphi A.*, *Shigella flexneri*, *Vibrio cholerae* Ogawa, *Escherichia coli*, *Klebsiella sp.*, *Helminthosporium* sp., *Fusarium solani*, *Aspergillus flavus*, *Aspergillus niger*, *Aspergillus nidulans*, *Aspergillus fumigatus*, *Botrytis cerealis*, *Alternaria* sp., *Rhizopus nodosus*, *Colletotrichum capsici*, *Trichophyton mentagrophytes*, *Chrysosporium* indicum and *Rhizoctonia* sp.	35,141-143
P. o.	Roots methanolic, chloroform and ethyl acetate extracts	*In vitro* – *Staphylococcus aureus* and *Candida albicans*	106
P. o.	Caproic and palmmitic acids	*In silico* – inhibition of the activity of the glycerol kinase enzyme of *Epidermophyton floccosum*	104
P. c.	Tiliroside	*In vitro* e *in vivo* – antihypertensive activity by reducing resistance peripheral vascular and vasorelaxing by blocking voltage-gated calcium channels (CaV) in vascular smooth muscle cells (VSMCs)	132
P. gle.	Leaves aqueous extract	*In vitro* – phytostaticial activity against termites	144
P. l.	Leaves aqueous extract	*In vitro* - antiurolytic activity (inhibition of calcium oxalate nucleation by disintegrating into smaller particles with increasing fraction concentrations)	34
P. pra.	Leaves ethanolic extract	*In vitro* – inhibition of tyrosinase enzyme	145
P. sch.	Aerial parts methanolic extract	*In vitro* - Antiretroviral activity (reverse transcriptase inhibition)	146,147
P. sch.	Aqueous extract	Promoter of peripheral vascular blood flow; improves dryness and roughness of the skin and stimulates hair growth	148
P. sen.	Leaves aqueous ethanolic extracts	It does not present acute toxicity, however after 28 days the extract becomes nephrotoxic and slightly hepatotoxic	68
P. a.	Stems hydroethanolic extract	*In vivo e in vitro* - dose-dependent hypotensive and ACE inhibitor	116
P. a.	Stems ethanolic extract	*In vivo* - gastroprotective activity	149
P. mul.	Leaves ethanolic extract	*In vitro* - inhibitor of cathepsins K and V	109
Table 3. *In vitro, in vivo, and in silico* biological studies reported from *Pavonia* genus (cont.)

Species	Material used	Experimental model	Reference
P. mul.	Lolitide	*In vitro - inhibition of electron flow in photosystem II*	127
		Tararexol *p*-methoxybenzoate	
P. gla.	5,7-dihydroxy-3,8,4′-trimethoxy flavone	*In vitro – antipROTOzoan (Trichomonas vaginalis)*	130, 131
		In vitro - photoprotective activity with a high level of protection (25.01 FPS)	
P. d.	Tiliroside	*In vitro - inhibition of acetylcholinesterase (AChE) activity*	31
P. z.	Leaves methanolic extract	*In vitro - larvicidice against Culex quinquefasciatus*	150
P. z.	Leaves methanolic, hexanic, chloroformic, ethyl acetate and aceton	*In vitro - larvicidice against Anopheles stephensi and Culex quinquefasciatus*	151
P. p.	Leaves and stems ethanolic extract	*In vitro – laxative activity*	136
P. o.	Leaves ethanolic extract	*In vitro - inhibition of denaturation of albumin, stabilization of the erythrocyte membrane and protection against hemolysis*	90
P. o.	Rhizones essential oil	*In vitro – anthelmintic against tapeworms and roundworms*	35, 141-143
P. o.	Rhizones essential oil	*In vitro - Hypotensive, antispasmodic and intestinal relaxant*	36
P. o.	Whole plant extract	Antirheumatic, antiasthmatic/antibronchial activities	137
P. o.	Roots aqueous and alcoholic extracts	*In vitro – anthelmintic against Pheretima postuma*	152
P. o.	Leaves methanolic extract	*In vitro – larvicidal and repellent activity against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus*	153
P. o.	Caprico, palmitic acids and hexahydropharmesylacetone	*In vitro – inhibition of the activity of the enzyme alcohol dehydrogenase of Entamoeba histolytica*	53
P. o.	Whole plant aqueous extract	*In vitro – inhibits the formation of minerals in urine samples*	154
P. o.	Whole plant aqueous extract	*In vitro – controls human urinary calculogenesis*	155
P. o.	Whole plant extract	Antiparasitic activity against Entamoeba histolytica	29

Antioxidant activity

Antioxidants are substances that control the action of free radicals, minimizing the risk of diseases, specially those related to oxidative damage on nervous system. Naturally, some enzymes are responsible for the protection of harmful effects of free radicals, such as catalasis and dismutasis superoxide, as well as natural products with antioxidant action such as ascorbic acid, tocopherol, phenolics and flavonoids.\(^\text{133}\)

The evaluation of antioxidant activity of extracts from the aerial parts of *Pavonia* species has shown the presence of phenolics and flavonoids as its constituents, having those compounds demonstrated a huge antioxidant potential in tests through the methods DPPH (1,1-diphenyl-2-picril-hidrazil), H_2O_2 (hydrogen peroxide), NO (nitric oxide), ABTS (2,2′-azino-bis(3-ethylbenzotiazoline-6-sulphonic acid), FRAP (Ferric Reduction Antioxidant Power), SNP (Sodium Nitroprussiate radicals), phosphomolybdiumen reduction, ORAC (Oxygen Radical Absorbance Capacity) and TBARS (Thiobarbituric Acid Reactive Substances) (Table 3).

Cytotoxic and anticancer activities

Cancer is one of the most lethal diseases that affects humankind. Some phytochemical studies have demonstrated anticancer potentials in several plants due to their chemoprotective and antioxidant properties, which make plants an option to minimize the adverse effects of conventional cancer treatments.\(^\text{156}\)

Extracts and isolated compounds from *P. glazioviana*, *P. distinguenda* and *P. odorata* have demonstrated anticancer activities. The tiliroside flavonoid isolated from *P. distinguenda* has shown *in vitro* anticancer activity against leukemic, ovarian, colon, prostate, kidney, breast, resistant breast and melanoma cells, besides being cytotoxic to *Artemia salina* larvae.\(^\text{31}\)

Other flavonoid isolated from *P. glazioviana* (5,7-dihydroxy-3,8,4′-trimethoxyflavone) (79) has shown *in silico* anticancer activity against carcinogen uterine and ovarian cells, while having *in vitro* antineoplastic activity against sarcoma, carcinoma, melanoma and squamous cell carcinoma.\(^\text{130, 131}\)

Extracts from the whole plant of *P. odorata* has shown *in vitro* anticancer activity against *Ehrlich* Ascites Carcinoma (EAC), lung and breast cancer.\(^\text{43, 138}\)

Antidiabetics activity

Several plants are used by folk medicine worldwide against diabetes.\(^\text{86}\) Some of the species quoted in literature are *P. zeylanica* and *P. odorata*. Extracts from their leaves, stems and roots have been evaluated regarding their *in vitro* antidiabetic activity, being constated a significant reduction of glucose levels in bloodstream.\(^\text{86, 136, 139}\)

In silico hypoglycemic activity of the tiliroside flavonoid isolated from *P. varians* through the interaction of this compound with human pancreatic α-amylase enzyme presented a lesser linking energy of -9.4 kcal/mol, being more stable in its active site when compared to the standard drug acarbose, that presented an energy of -7.6 kcal/mol.\(^\text{144}\)

Antimicrobial activity

Bacterial resistance has been increasing significatively in the last years, which leads to high mortalities caused by generalized infections. This fact is a consequence of ungovernable use of...
antibiotics. For those reasons, the search for new natural compounds with antimicrobial activity and new action mechanisms if necessary for the control of such micro-organisms.

Extracts, fractions and compounds isolated from *Pavonia* species have shown a great antimicrobial potential that has already been described in literature. Among the compounds that were tested against several fungal and bacterial lineages, we have α-amirine (19), β-amirine (20), 17-ethoxy-phaeophorbide A (A104) isolated from *P. malacophylla*, cycloart-23E-en-3β,25-diol (28), 5,7-dihydroxy-3,8,4'-trimethoxyflavone (79) isolated from *P. glazioviana*, tiliroside (70) isolated from *P. malacophylla* and p. distinguenda and caproic (10) and palmitic (3) acids identified in *P. odorata* (Table 3).

Other activities

Other activities have been related for *Pavonia* species. Methyleneic extract from *P. odorata* leaves has shown in vitro larvicidal and repellent activities against *Aedes aegypti*, *Anopheles stephensi* and *Culex quinquefasciatus*.153 Researches have shown anti-hypertensive,16,116,132 anti-helminthic,138-141,152 anti-uricemic,16,46 gastroprotective,149 lactic,136 photoprotective,131 antiretroviral146,147 and several other kinds of activities.

Furthermore, a study on *P. senegalensis* has showed that fresh liquid ethanolic extract of leaves has not a very strong toxicity, becoming nephrotoxic and slightly hepatotoxic after 28 days.68

CONCLUSIONS

Pavonia Cav. is one of the largest genus on Malvaceae *sensu lato* family and has showed different biologic activities amongst its species, which have already been mentioned in literature and scientific proved. Studies have shown that fatty acids, terpenoids, flavonoids and phenolics are the most common classes of secondary metabolites on this genus. Pharmacological *in vivo*, *in vitro* and *in silico* tests have given the researches promissory results due to the presence of those compounds, both isolated and present on the extracts, corroborating the reports of use of those herbs in folk medicine.

Nonetheless, there is a major need of keep exploring chemical and biological potentials of *Pavonia* species, both already and never studied, since medicinal plants are almost inexhaustible sources of bioactive molecules that can help the treatment and cure of several diseases that affect human populations worldwide.

This paper is a database with very relevant information from both phytochemical and biological studies of *Pavonia* species that can be further explored, aiming to understand the use of *Pavonia* by traditional medicine in various diseases, becoming alternatives for therapies by the use of these natural products with emphasis on the benefit of the world population.

ACKNOWLEDGMENTS

We thank Coordenação de Aperfeiçoamento do Ensino Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for all the support to our researches.

REFERENCES

1. Mohammed, F.; Shifa, S. P.; *J. Pharmacogn. Phytochem.* 2019, 8, 1887.
2. Vijayashalini, P.; Jayanthi, G.; Abirami, P.; *Journal of Medicinal Plants Studies* 2017, 5, 331.
3. Reddy, A. M.; Suresh Babu, M. V.; Rao, R. R.; *Herba Pol.*, 2019; 65, 40 [Crossref].
4. Sterlin Raj, T.; Edal Kuvin, J.; Asha, K. R. T.; Mohammed, A. A.; Puspharaj, A.; Raubhia, R. S.; *World J. Pharm. Sci.* 2016; 4, 518.
5. Vadivel, V.; Sriram, S.; Brindha, P.; *Int. J. Green Pharm.* 2016; 10, 33 [Crossref].
6. Fernandes, D. A.; Assis, E. B.; Souza, M. S. R.; Souza, P. I. V.; Souza, M. F. V.; *Quim. Nova* 2020, 43, 787 [Crossref].
7. Johnson, M.; Maharajan, M.; Janakiraman, N.; *Journal of Medicinal Herbs and Ethnomedicine* 2015; 1, 125 [Crossref].
8. Grings, M.; Boldrini, I. I.; *Revista Brasileira de Biociências* 2013; 11, 352.
9. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB9118, acessada em abril 2022.
10. Esteves, G. L.; Krapovickas, A.; Boletim de Botânica da Universidade de São Paulo, 2009; 27, 63 [Crossref].
11. Mazzotti, M. R. R. M.; *Dissertação de Mestrado*, Universidade do Estado da Bahia, Brasil, 2015.
12. Pando, A. M. S. C.; *Dissertação de Mestrado*, Instituto de Botânica da Secretaria do Meio Ambiente, Brasil, 2009.
13. Behera, K. K.; Mandal, P.; Mahapatra, D.; *Ethnobotanical Leaflets* 2006; 10, 305.
14. Madhu, V.; Naik, D. S. R.; *Ethnobotanical Leaflets* 2009; 13, 1337.
15. Mishra, R. K.; Patel, S. P.; Srivastava, A.; Vashistha, R. K.; Singh, A.; Puskar, A.; *Nature and Science* 2012; 10, 22.
16. Singh, P. S.; Kumar, P. P.; Srinivasulu, D.; *Nat. Oral Care Dent. Ther. 2020*, 407 [Crossref].
17. Kingston, C.; Nisha, B. S.; Kiruba, S.; Jeeva, S.; Ethnobotanical Leaflets 2007; 11, 32.
18. Ranjithkumar, A.; Chittibabu, C. V.; Renu, G.; *Indian Journal of Medicine and Healthcare* 2014; 3, 322.
19. Adebisi, I. M.; Alebiosu, O. C.; *Int. J. Cur. Res. Chem. Pharm. Sci.* 2014; 1, 81.
20. Tadesse, M.; Hunde, D.; Getachew, Y.; *Ethiopian Journal of Health Sciences* 2005; 15, 89.
21. Megersa, M.; Jimma, T. T.; Goro, K. K.; *J. Evidence-Based Complementary Altern. Med.* 2019; 1 [Crossref].
22. Babu, N. V. J.; Murty, P. P.; Rao, G. M. N.; *International Journal of Botany and Research* 2020; 10, 55.
23. Babu, N. V. J.; Murty, P. P.; Rao, G. M. N.; *IOSR J. Pharm. Biol. Sci.* 2020; 15, 44 [Crossref].
24. Kumar, R. B.; Suryanarayana, B.; *Ethnobotanical Leaflets* 2008; 12, 896.
25. Somasekhara Achar, K. G.; Boosanur, V.; Shivanna, M. B.; *Indian Journal of Traditional Knowledge* 2015; 1, 147.
26. Kannan, M.; Kumar, T. S.; Rao, M. V.; *Global Journal Research Medicinal Plants & Indigenous Medicine* 2016; 5, 203.
27. Tiwari, K. P.; Minocha, P. C.; *Phytochemistry* 1980; 19, 701 [Crossref].
28. Anand, R. M.; Nandakumar, N.; Karunakaran, L.; Ragunathan, M.; Murugan, V.; *Natural Product Radiance* 2005; 5, 139.
29. Daddam, J. R.; Kota, P.; Katihe, U.; Basha, S.; Dowlatabad, M. R.; *Research Square 2020*, 1 [Crossref].
30. Khare, C. P.; *Indian Medicinal Plants – An Illustrated Dictionary*, New Delhi, 2007.
31. Agra, M. F.; Freitas, P. F.; Barbosa-Filho, J. M.; *Rev. Bras. Farmacogn.* 2007; 17, 114 [Crossref].
32. Garcia, C. M.; *Tese de Doutorado*, Universidade de Santa Maria, Brasil, 2007.
33. Caballero-George, C.; Gupta, M. P.; *Planta Med.* 2011; 77, 1189 [Crossref].
34. Ramprasad, R.; Anil, N.; Hameed, S. S.; Shifama, J. M. R.; Venkateshan, N.; *J. Drug Delivery Ther.* 2019; 9, 102 [Crossref].
35. Nakhare, S.; Garg, S. C.; *Ancient Science of Life* 1992; 12, 227.
36. Nakhare, S.; Garg, S. C.; Bhagwat, A. W.; *Ancient Science of Life* 1997; 17, 23.
37. Waghmare, S. D.; *International Research Journal on Advanced Science Hub 2020*, 2, 268 [Crossref].
Pavonia Cav. species (Malvaceae sensu lato) as source of new drugs: a review

107. Chaves, O. S.; Tese de Doutorado, Universidade Federal da Paraíba, Brasil, 2016.
108. Albuquerque, J. B. L.; trabalho não publicado.
109. Lopes, L. G.; Dissertação de Mestrado, Universidade Federal do Espírito Santo, Brasil, 2014.
110. Oliveira, M. S.; Tese de Doutorado, Universidade Federal da Paraíba, Brasil, 2019.
111. Casimiro-Júnior, F.; Chaves, O. S.; Fernandes, M. M. M. S.; Agra, M. F.; Teles, Y. C. F.; Souza, M. F. V.; 36ª Reunião Anual da Sociedade Brasileira de Química, São Paulo, Brasil, 2013.
112. Fernandes, M. M. S.; Dissertação de Mestrado, Universidade Federal da Paraíba, Brasil, 2013.
113. Gualberto, F. T. A.: Trabalho de Conclusão de Curso, Universidade Federal da Paraíba, Brasil, 2013.
114. Fernando, L. M.; Lima, A. A.; Dias, W. S.; Moura-Júnior, R. T.; Teles, Y. C. F.; Souza, M. F. V. In Processos Químicos e Biotecnológicos; Andrade, D. F., Souza, A. A., Andrade, D. E., Oliveira, E. J., Santos, F., Lopes, J. E. F., Neves, O. F., Lima, L. C., Ferreira Filho, N., Oliveira, V. A., eds.; Editora Poisson: Belo Horizonte, 2020, cap. 3.
115. Puckhaber, L. S.; Stipanovic, R. D.; Bost, G. A.; Herbs, Medicinals, and Aromatics 2002, 556.
116. Andrade, T. U.; Ewald, B. T.; Freitas, P. R.; Lenz, D.; Endringer, D. C.; Int. J. Pharm. Sci. 2012, 4, 124.
117. Silva, C. M.; Trabalho de Conclusão de Curso, Universidade Federal da Paraíba, Brasil, 2018.
118. Sotelo, A.; Villavicencio, H.; Montalvo, I.; Gonzalez-Garza, M. T.; Afr. J. Tradit., Complementary Altern. Med. 2005, 1, 4 [Crossref].
119. Gasca, C. A.; Cabezas, F. A.; Torras, L.; Bastida, J.; Codina, C.; Free Radicals and Antioxidants 2013, 3, 55 [Crossref].
120. Tiwari, K. P.; Minocha, P. K.; Masood, M.; Proc. Natl. Acad. Sci., India, Sect. A 1978, 48, 158.
121. Tiwari, K. P.; Choudhary, R. N.; Acta Cienc. Indica, Chem. 1980, 6, 36.
122. Desbois, A. P.; Smith, V. J.; Appl. Microbiol. Biotechnol., 2010, 85, 1629 [Crossref].
123. Mandy, J. S.; Wolayan, F. R.; Poonth, C. J.; Kowel, Y. H. S.; Scientific Papers, Series D, Animal Science 2020, 63, 214.
124. Seidel, V.; Taylor, P. W.; Int. J. Antimicrob. Agents 2004, 23, 613 [Crossref].
125. Fernandes, D. A.; Chaves, O. S.; Teles, Y. C. F.; Agra, M. F.; Vieira, M. A. R.; Silva, P. S. S.; Marques, M. O. M.; Souza, M. F. V.; Quim. Nova 2021, 44, 137 [Crossref].
126. Yadav, N.; Yadav, R.; Goyal, A.; Int. J. Pharm. Sci. Res. 2014, 27, 272.
127. Lopes, L. G.; Tavares, G. L.; Thomaz, L. D.; Sabino, J. R.; Borges, K. B.; Vieira, P. C.; Veiga, T. A. M.; Borges, W. S.; Chem. Biodiversity 2016, 13, 284 [Crossref].
128. Santos, R. A. F.; Dissertação de Mestrado, Universidade Federal da Bahia, Brasil, 2010.
129. Santos, D. S.; Rodrigues, M. M. F.; Estação Científica (UNIFAP) 2017, 7, 29 [Crossref].
130. Sousa, A. P.; Oliveira, M. S.; Fernandes, D. A.; Ferreira, M. D. L.; Cordeiro, L. V.; Souza, H. D. S.; Souza, M. F. V.; Pessoa, H. L. F.; Oliveira-Filho, A. A.; Silva e Sá, R. C.; Scientific Electronic Archives 2021, 13, 120 [Crossref].
131. Sousa, A. P.; Nunes, M. K. S.; Oliveira, M. S.; Fernandes, D. A.; Ferreira, M. D. L.; Cordeiro, L. V.; Souza, H. D. S.; Souza, M. F. V.; Pessoa, H. L. F.; Oliveira-Filho, A. A.; Silva e Sá, R. C.; Sci. Plena 2020, 16, 1 [Crossref].
132. Silva, G. C.; Pereira, A. C.; Rezende, B. A.; Silva, J. F. P.; Cruz, J. S.; Souza, M. F. V.; Gomes, R. A.; Teles, Y. C. F.; Cortes, S. F.; Lemos, V. S.; Planta Med. 2013, 79, 1003. [Crossref].
133. Rajalakshmi, P.; Vadivel, V.; Subashini, G.; Pugalethi, M.; Int. J. Adv. Res. 2016, 4, 1751 [Crossref].
134. Silva, C. M.; Félix, M. D.; Aquino, A. K.; Oliveira, M. S.; Teles, Y. C. F.; Souza, M. F. V.; Mol2Net 2016, 2, 1 [Crossref].
135. Badami, S.; Channabasavaraj, K.; Pharm. Biol. 2007, 45, 392 [Crossref].
136. Kalarani, D. H.; Dinakar, A.; Senthilkumar, N.; Int. J. Drug Dev. Res. 2012, 4, 298.
137. Kirtikar, K. R.; Basu, B. D.; Indian Medicinal Plants, International Book Distributors Book Sellers and Publishers: Deheradun, 1999.
138. Girish, H. V.; Vinod, A. B.; Dhananjaya, B. L.; Satish Kumar, D.; Duraisamy, S.; Pharmacogn. J. 2016, 8, 28 [Crossref].
139. Rayar, A.; Manivannan, R.; Int. J. Pharm. Sci. Invent. 2015, 4, 46 [Crossref].
140. Lozano, C. M.; Vasquez-Tineo, M. A.; Ramírez, M.; Infante, M. I.; Natural Product Radiance 2005, 4, 18.
141. Singh, S. C.; Int. J. Pharm. Sci. Res. 2015, 7, 812.
142. Singh, D.; Singh, B.; Dutta, B. K.; International Journal of Science 2012, 4, 3 [Crossref].
143. Mapunya, M. B.; Dissertação de Mestrado, Universidade de Pretória, África do Sul, 2009.
144. Matsuse, I. T.; Lim, Y. A.; Hattori, M.; Gupta, M. P.; J. Ethnopharmacol. 1999, 64, 15 [Crossref].
145. Dan, G.; Castellar, A.; Alumni – Revista Discente da UNIAEBU 2015, 3, 8.
146. Shaku, M.; Yamamoto, T.; Shishido, M.; Takashi, T.; Yoshitani, S.; Yoshimi, F.; Jpn. Jpn Kokai Tokkyo Koho 2001, JP 2001181172.
147. Ewald, B. T.; Loyolla, C. M.; Pereira, A. C. H.; Lenz, D.; Medeiros, A. R. S; Andrade, T. U.; Nogueira, B. V.; Pereira, T. M. C.; Endringer, D. C.; Rev. Bras. Plantas Med. 2015, 17, 392 [Crossref].
148. Vahitha, R.; Venkatachalam, M. R.; Murugan, K.; Jebanesan, A.; Bioresour. Technol. 2002, 82, 2 [Crossref].
149. Kamaraj, C.; Abdul Rahuman, A.; Bagavan, A.; Abduz Zahir, A.; Elango, G.; Kandan, P.; Rajakumar, G.; Marinuthu, S.; Santhoshkumar, T.; Tropical Biomedicine 2010, 27, 211.
150. Singhai, A.; Singour, P. K.; Garg, G.; Pawar, R. S.; Patil, U. K.; Research Journal of Pharmacology and Pharmacodynamics 2009, 1, 82.
151. Selvakumar, B.; Gokulakrishnan, J.; Elanchezhiyan, K.; Deepa, J.; International Journal of Current Advanced Research 2015, 4, 221.
152. Mago, N.; Sofat, I. B.; Jethi, R. K.; Indian J. Med. Res. 1989, 90, 77.
153. Jethi, R. K.; Duggal, B.; Sabhata, R. S.; Gupta, M.; Sofat, I. B.; Indian J. Med. Res. 1983, 78, 422.
154. Jeeva Gladys, R.; Kalai Arasi, R.; Elangoivan, S.; Mubarak, H.; J. Appl. Pharm. Sci. 2013, 3, 176 [Crossref].