StRAP: An Integrated Resource for Profiling High-Throughput Cancer Genomic Data from Stress Response Studies

Seth Johnson¹,², Biju Issac³, Shuping Zhao¹,², Mohit Bisht¹, Orieta Celiku¹, Philip Tofilon¹, Kevin Camphausen¹, Uma Shankavaram¹*

¹ Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America, ² SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, Maryland, United States of America, ³ Division of Bioinformatics, Sylvester Comprehensive Cancer Center, University of Miami, Florida, United States of America

Abstract

The increasing availability and maturity of DNA microarray technology has led to an explosion of cancer profiling studies for identifying cancer biomarkers, and predicting treatment response. Uncovering complex relationships, however, remains the most challenging task as it requires compiling and efficiently querying data from various sources. Here, we describe the Stress Response Array Profiler (StRAP), an open-source, web-based resource for storage, profiling, visualization, and sharing of cancer genomic data. StRAP houses multi-cancer microarray data with major emphasis on radiotherapy studies, and takes a systems biology approach towards the integration, comparison, and cross-validation of multiple cancer profiling studies. The database is a comprehensive platform for comparative analysis of gene expression data. For effective use of arrays, we provide user-friendly and interactive visualization tools that can display the data and query results. StRAP is web-based, platform-independent, and freely accessible at http://strap.nci.nih.gov/.

Introduction

DNA microarrays are successfully being used to classify tumors and identify novel biomarkers associated with cancer (for some recent reviews see [1]). Genetic variants and differences in personal genomes not only impact cancer profiles but are often responsible for how the patient and the cancer respond to treatment. In particular, the response to cellular stress, whether induced by cytotoxic drugs, hypoxia, or ionizing radiation can vary greatly, and its genetic basis is subject of much interest. We are especially interested in elucidating the genetic basis of radiotherapy response in search of highly-predictive genetic signatures. Radiotherapy is a core component of cancer treatment [2] but has been relatively under-studied: a glimpse at public datasets (using single-color, or single-channel, arrays), or instead to synthesize in situ. A major design question is whether to measure DNA, RNA, protein, and pharmacological levels on the widely studied NCI-60 cancer cells [6]. Several other studies found added complexity for meta analysis due to considerable diversity in source, sample, and platform types [7–9]. The two major technologies of microarrays differ in the basic design, cDNA microarrays use full-length transcripts printed onto the slides and oligonucleotide based arrays constitute a shorter- oligonucleotide synthesized in situ. A major design question is whether to measure the expression levels from each sample on a different microarray (using single-color, or single-channel, arrays), or instead to compare relative expression levels between a pair of samples on each microarray (two-color or two-channel arrays). There are tradeoffs between the two approaches. Single-color arrays allow for more flexibility in analysis, while two-color arrays can control for some technical issues by allowing a direct comparison in a

* E-mail: uma@mail.nih.gov

Citation: Johnson S, Issac B, Zhao S, Bisht M, Celiku O, et al. (2012) StRAP: An Integrated Resource for Profiling High-Throughput Cancer Genomic Data from Stress Response Studies. PLoS ONE 7(12): e51693. doi:10.1371/journal.pone.0051693

Editor: Sui Huang, Institute for Systems Biology, United States of America

Received August 9, 2012; Accepted November 5, 2012; Published December 17, 2012

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

This work was supported by Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: SJ and SZ are affiliated to SAIC, Frederick, Inc. Authors KC and PT are PLOS ONE Editorial Board members. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

E-mail: uma@mail.nih.gov
single hybridization [10]. A recent comparison of single- and
two-color methods on the same platforms found good overall
agreement in the data produced by the two methods [11]. The
Z score transformation procedure for normalizing data is a
familiar statistical method in both neuroimaging and psychological
studies and been used in the meta-analysis of microarray
data from different platforms [12], and is especially suited for
database development [13].

The wealth of data has also brought about the creation of a wide
range of resources. On one end of the spectrum, data repositories
like Gene Expression Omnibus (GEO) [14] provide access to raw
experimental data; on the other end, tools like ONCOMINE [15]
more ambitiously, but typically at a cost, provide facilities for meta
analysis of array data. However, to our knowledge, none of the
existing free resources focus on stress response or radiotherapy
studies combined with visualization outputs.

We develop StRAP, a free web-accessible resource to address
the need to query, compare, profile, and visualize results from
different microarray experiments. StRAP hosts data from diverse
cancer studies (currently from 12 different tissue types), and will be
further extended in the future. We used Z scoring method to
standardize data, since the internally normalized values do not
change with subsequent addition of new datasets. All data are
mapped to Entrez Gene identifiers for consistency in comparison.
The user-friendly interface facilitates exploration by a wide-range
of researchers, including those with little expertise in bioinfor-
matics.

In the remainder of this paper we briefly describe StRAP’s
construction and core features.

Materials and Methods

Architecture

The runtime architecture of StRAP is described in Figure 1. The architecture is 3-tiered. The basic design of the architecture is
an enhancement of our previously published CellMiner tool [6].

The bottom tier represents the sources of experimental (micro-
array), meta (cell line) data, and external tools that are invoked to
visualize the data. The middle tier represents how the data are
processed, stored, and made available to the user. The pre-
processing steps were performed before deployment. At this stage,
data from the lower tier were accessed, processed (using R
scripting), and stored in the StRAP data repository (comprised of a
MySQL database, and other files stored on the server file system).
The right hand side of the middle tier represents the analysis
“services” that are available at runtime to the user. These include
filtering of data (according to user constructed queries), visualization
of results, and the options to download the data. These
services are made available as web-services and are hosted on an
Apache server. The top tier represents the user interface
(implemented using PHP, Javascript, AJAX, and HTML), and is
organized around three main modules (Genes, Cell lines, and
Arrays).

Data Repositories

Four main data repositories reside at the backend of StRAP: (1)
Gene associated annotation information derived from the National
Center for Biotechnology Information (NCBI, http://www.ncbi.
nlm.nih.gov/), (2) Pre-processed gene expression microarray
molecular profile data (including pre-computed statistics), (3)
Metadata on cell lines, and (4) Metadata on platform-associated
information.

The structured layout of the tables promotes efficient querying
and integration of phenotypic data, metadata and molecular
profile information from various studies. The database supports
multiple concurrent query sessions.

The repositories are stored as a MySQL relational database
(http://www.mysql.com).

Data Preparation

The microarray data were obtained as raw files whenever
available or else as author deposited normalized files from the
GEO database [14], ArrayExpress [16], or in-house experiments.

Two platform types are predominantly used in these studies:
cDNA two-color (National Cancer Institute- ROSP 8K Human
Array and Agilent whole human genome microarrays), and single
color arrays (currently we house Affymetrix and Illumina gene
chip data).

The raw data were assessed for quality and normalized by the
Lowess [17], or MAS5 [18]methods for cDNA, and Affymetrix
arrays, respectively. Z-score transformation was used to obtain a
uniform scale across different studies and platforms, which is
necessary for comparing data from different studies. Pre-computed
statistical tests were performed at three nested-level complexity.

- At the top level, each study is subjected to ANOVA analysis
 performed between all controls and cases to give an overall
 significance of the study design.

- A tissue level ANOVA analysis is implemented as a second tier
 of comparison between all the controls and cases for each
tissue type in a study.

- At the experiment level, for each cell-line/sample, a case-
 control comparison is performed by t-test analysis.

Pre-processing and computation of statistical tests are per-
formed in the R environment (http://www.r-project.org/).

Interface

The front end interface is a web-based application implemented
using R, PHP (http://www.php.net/) and Python (http://www.
python.org/). The application is deployed on an Apache HTTP
server (http://httpd.apache.org/) at the National Cancer Institute
(NCI).

Core Features

Data access and presentation is organized around three main
concepts or modules: (1) Genes, (2) Cell lines, and (3) Arrays.
Flexible user-defined data queries can be initiated from any of the
modules; the data visualization options for the results are displayed
in integrated views and may, depending on the query, involve
cross-talk between modules. Several links to external resources
promote a systems biology approach. Table 1 gives a summary of
core features for each module. Pre-computed statistics (as
described in the previous section) enable display of efficient and
intuitive graphs.

Genes

The genes module enables gene-centric queries of the StRAP
microarray studies. Queries can be based on gene or protein
identifiers, synonyms, gene descriptions, or chromosome location.
The results include associated arrays and studies, and a
compilation of gene-annotation information, spatial localization
within the genome visualized in the UCSC Genome browser [19],
and network neighborhood maps generated from protein-protein
interaction networks [20]. Queries can also be constructed using
gene lists defined by the user or generated, for example, from
Gene Ontology (GO) terms [21].
A typical gene-centric query (see Figure 2 for an example workflow) starts by identifying studies profiling the expression of a gene (list) of interest. The expression profiles and their statistical significance are then visualized via boxplots, and barplots (showing study-level, and experimental-level case-control differences). If the input involves a list of genes, an interactive heatmap option enables viewing expressions of genes in selected studies. The heatmap is visualized using the Java Treeview program [22].

As an added convenience, the genes module includes a gene identifier conversion utility, which can be used to map from one type of gene identifier (for example, Entrez gene symbol) to another (for example, Entrez geneid).

Cell Lines

The cell lines module provides metadata on available cell lines and associated studies. Queries in this module are tailored to allow selection of complete studies, by tissue of origin, or individual cell line. Comparisons can be made for samples within a study or across studies. (See Figure 3 for an example workflow.) Differentially expressed genes in studies of interest are identified based on case-control t-test analyses (cell line selection) and ANOVA analysis (studies with more than one group). The default filter is set to p≤0.05, but can be customized by the user.

Arrays

The arrays module provides an overview of the current contents of the database, including the number of studies, information on platforms, contributors, and available meta-information. Preprocessed data or data from the original source can be downloaded from this module. Integrated queries from this module allow performing comparison of studies by common samples or union of genes within the selected studies.

An example workflow is shown in Figure 4. Arrays can be filtered by the select stimulus used in the study. Given our interest in effects of ionizing radiation, most of the arrays in the repository have “radiation” as stimulus.

Validation

Radiation therapy is a core component of cancer treatment. However, radiation response often varies considerably among different patients [23]. Therefore, it is important to identify genes predictive of radiation response. Equally important is to validate
Description	Gene module	Cell line module	Array module
Gene level comparison of one or more studies queried by gene related keyword search, identifier, or GO terms.	Gene identifier conversion utility	Cell line based comparison of one or more studies selected individually, by tissue type, or manually from a list of all available studies	Overview of all studies, or studies by tissue. Enables comparison of studies by common cell lines, or union of genes. Enables downloading of data.
Results	List of associated studies	Gene information	List of selected studies
Details of meta information	UCSC genome browser, Pubmed references, GO terms, and Pathway Commons networks	Mapping of gene identifiers of one type to another	Cell line information
Visualization of multi-gene query. A multi-study comparison by Metamap, or a single or multi-study comparison by Heatmap	Table of mapped gene identifiers	Description of origin and source, experimental details, and source reference information	Option to compare studies by cell line
Visualization of Single gene query. A single or multi-study comparison at study level by Boxplot, and at Experiment level by Barplot			Option to compare studies by gene
Study information			Study information

Table 1. StRAP modules functionality.

doi:10.1371/journal.pone.0051693.t001
the results of an analysis in independent data with similar experimental design.

To illustrate the functionality of StRAP, we used a study by Rieger and colleagues [24] on peripheral blood lymphoblastoid cells derived from patients with acute radiation toxicity and control group of patients with mild toxicity. Using gene expression profiling, the authors reported 24 highly predictive genes of radiation response. We sought to explore the expression of these 24 genes in several independent studies from StRAP database, and found 18 genes significantly changed among the selected studies.
Figure 3. Example of a workflow initiated from the Cell lines module. The Cell lines initiated workflow typically starts with 1) selection of a cell line (or tissue) of interest (here “LCL”), 2) inspection of the cell line metadata, and associated studies, 3) comparison of studies of interest with a metamap showing significance of differential expression of individual genes for the given cell line, and 4) inspecting individual genes via barplots and boxplots.

doi:10.1371/journal.pone.0051693.g003
Figure 4. Example of a workflow initiated from the Arrays module. The Arrays workflow typically starts with 1) inspection of available arrays and selection of a study of interest, 2) viewing of experimental conditions and selection of a p-value threshold for significance of gene expression differentiation, and 3) study of expressions heatmap. Comparison of several arrays can also be initiated from the overview page.

doi:10.1371/journal.pone.0051693.g004
To test if we can reproduce the authors findings, we first selected 3 studies, 2 studies (studies 4 and 6) containing lymphoblastoid cells treated with different doses of radiation, and as a negative control, we chose 1 study (Study 14) with stem cells from CNS tissue with hypoxia stimulus. A multi-study heatmap (Figure 5, Step 1) on the gene subset showed a selective up regulation of the gene subset in studies 4 and 6 but, not in study 14, confirming the role of these genes in response to radiation. Of particular, CDKN1A is a DNA damage response, cell cycle regulating gene reported to be induced by radiation [25,26]. We explored the comparative profiling of CDKN1A gene in a range of studies with diverse cell lines from our database that are treated with (Studies 2–5) or without radiation as stimulus (Study 14). A comparative gene profiling across multiple studies (Figure 5, Step 2) showed a significant induction of the gene selectively in radiation treated studies. In addition the induction is found to have no effect at low dose radiation (0.4 Gy in Study 3) indicating cellular response to radiation is dependent on dose rate used.

Conclusions

SiRAP is an open-access resource developed primarily to support research on the effects of stress with major emphasis on ionizing radiation on cancer in a systems-biology context.

Author Contributions

Conceived and designed the experiments: US KC PT. Performed the experiments: SJ BI MB SZ OC. Analyzed the data: SJ BI SZ OC. Contributed reagents/materials/analysis tools: SJ BI OC MB. Wrote the paper: OC US.

References

1. Chon HS, Lancaster JM (2011) Microarray-based gene expression studies in ovarian cancer. Cancer Control 18: 8–15.
2. Burnet NG, Benson RJ, Williams JV, Peacock JH (2000) Improving cancer outcomes through radiotherapy. Lack of UK radiotherapy resources prejudices cancer outcomes. BMJ 320: 198–199.
3. Zhang Y, Szustakowski J, Schinke M (2009) Bioinformatics analysis of microarray data. Methods Mol Biol 573: 259–284.
4. Clarke R, Ressom HW, Wang A, Xuan J, Liu MC, et al. (2008) The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat Rev Cancer 8: 37–49.
5. Stafford P, Brun M (2007) Three methods for optimization of cross-laboratory and cross-platform microarray expression data. Nucleic Acids Res 35: e72.
6. Shankavaram UT, Varma S, Kane D, Sunshine M, Chary KK, et al. (2009) CellMiner: a relational database and query tool for the NCI-60 cancer cell lines. BMC Genomics 10: 277.
7. Jarvinen AK, Hautaniemi S, Edgren H, Auvinen P, Saarela J, et al. (2004) Are data from different gene expression microarray platforms comparable? Genomics 83: 1164–1168.
8. Mal-N, Thelin A, Lu T, Nikolaus S, Kuhlbauch T, et al. (2004) A comparison of oligonucleotide and cDNA-based microarray systems. Physiol Genomics 16: 361–370.
9. Tan PK, Downey TJ, Spitznagel EL Jr., Xu P, Fu D, et al. (2003) Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 31: 5676–5684.
10. Altman NS, Hua J (2006) Extending the loop design for two-channel microarray experiments. Genet Res 88: 153–163.

11. Patterson TA, Lobenhofer EK, Fuhrer-Smentek SB, Collino PJ, Chu TM, et al. (2006) Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol 24: 1140–1150.

12. Bevilacqua V, Pannarale P, Abbrescia M, Cava G, Paradiso A, et al. (2012) Comparison of data-merging methods with SVM attribute selection and classification in breast cancer gene expression. BMC Bioinformatics 13 Suppl 7: S9.

13. Bargaje R, Harisharan M, Scaria V, Pillai B (2010) Consensus miRNA expression profiles derived from interplatform normalization of microarray data. RNA 16: 16–25.

14. Erilg R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210.

15. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, et al. (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6: 1–6.

16. Parkinson H, Sarkans U, Kolesnikov N, Abeygunawardena N, Burdett T, et al. (2011) ArrayExpress update—an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res 39: D1002–1004.

17. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30: e15.

18. Hubbell E, Liu WM, Mei R (2002) Robust estimators for expression analysis. Bioinformatics 18: 1585–1592.

19. Krut WJ, Sagan CW, Furay TS, Roskin KM, Pringle TH, et al. (2002) The human genome browser at UCSC. Genome Res 12: 996–1006.

20. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, et al. (2011) Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 39: D685–690.

21. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29.

22. Saldanha AJ (2004) Java Treeview–extensible visualization of microarray data. Bioinformatics 20: 3246–3248.

23. Chon BH, Loeffler JS (2002) The effect of nonmalignant systemic disease on tolerance to radiation therapy. Oncologist 7: 136–145.

24. Rieger KE, Hong WJ, Tusher VG, Tang J, Tilghman R, et al. (2004) Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Proc Natl Acad Sci USA 101: 6635–6640.

25. Amundson SA, Grace MB, McLeland CB, Epperly MW, Yeager A, et al. (2004) Human in vivo radiation-induced biomarkers: gene expression changes in radiotherapy patients. Cancer Res 64: 6368–6371.

26. Rodningen OK, Ovegaard J, Ahner J, Hastie T, Borresen-Dale AL (2005) Microarray analysis of the transcriptional response to single or multiple doses of ionizing radiation in human subcutaneous fibroblasts. Radiother Oncol 77: 231–240.

27. Prasad TS, Kandasamy K, Pandey A (2009) Human Protein Reference Database and Human Proteinpedia as discovery tools for systems biology. Methods Mol Biol 577: 67–79.