Cardiovascular safety of febuxostat compared to allopurinol for the treatment of gout: A systematic and meta-analysis

Linggen Gao MD | Bin Wang MD | Ying Pan MD | Yan Lu MD | Rui Cheng MD

Department of Comprehensive Surgery, General Hospital of Chinese People’s Liberation Army & National Clinical Research Center for Geriatric Disease, Beijing, China

Correspondence
Linggen Gao and Rui Cheng, Department of Comprehensive Surgery, General Hospital of Chinese People’s Liberation Army & National Clinical Research Center for Geriatric Disease, Beijing 100853, China.
Email: gaolinggen@163.com (L. G.) and chengrui20212021@163.com (R. C.)

Funding information
the Military Healthcare Fund, Grant/Award Number: 17BJZ48

Abstract
The cardiovascular safety of febuxostat compared to allopurinol for the treatment of gout remains equivocal. Febuxostat had a better safety outcome compared with allopurinol. In this systematic review and meta-analysis, we searched MEDLINE and Embase for articles published between March 1, 2000 and April 4, 2021, without any language restrictions. We did a systematic review and meta-analysis of included clinical trials to evaluate the cardiovascular safety of febuxostat compared to allopurinol for treatment of chronic gout. Two reviewers independently selected studies, assessed study quality, and extracted data. Risk ratios were calculated with random effects and were reported with corresponding 95% confidence intervals (CI). From 240 potentially relevant citations, 224 papers were excluded; 16 studies were ultimately included in the analysis. Febuxostat had a better safety outcome compared with allopurinol, which was the composite of urgent coronary revascularization (OR: 0.84, 95% CI: 0.77–0.90, p < .0001) and stroke (OR: 0.87, 95% CI: 0.79–0.97, p = .009). However, that difference was not found in nonfatal myocardial infarction (OR: 0.99, 95% CI: 0.80–1.22, p = .91), cardiovascular related mortality (OR: 0.98, 95% CI: 0.69–1.38, p = .89) and all-cause mortality (OR: 0.93, 95% CI: 0.75–1.15, p = .52). No significant differences in cardiovascular related mortality and all-cause mortality were observed across any subgroup. This meta-analysis adds new evidence regarding the cardiovascular safety of febuxostat in patients. Initiation of febuxostat in patients was not associated with an increased risk of death or serious cardiovascular related adverse events compared with allopurinol.

KEYWORDS
allopurinol, cardiovascular safety, febuxostat

1 | INTRODUCTION

Gout is a common clinical metabolic system disease and may contribute to many adverse health events. Evidence shows that the risk of hyperuricemia increased with advanced age in both sexes.¹² At present, drugs are the first choice for the treatment of gout in clinical practice. Studies have found that the treatment of gout with xanthine oxidase inhibition (allopurinol, febuxostat) can increase uric acid excretion via the kidneys and achieve better results. Recent studies have shown that febuxostat, a novel non-purine selective inhibitor of xanthine oxidase (XO), is more effective than allopurinol in lowering the uric acid levels in patients with hyperuricemia and gout.³⁴ It is particularly useful in patients who are refractory or intolerant to allopurinol, and requires no dose limitation in stages 1–3 chronic kidney disease.⁵ However, the

Received: 29 April 2021 | Accepted: 5 May 2021
DOI: 10.1002/clc.23643

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
© 2021 The Authors. Clinical Cardiology published by Wiley Periodicals LLC.
food and drug administration (FDA) issued a public safety alert, responding to results of cardiovascular safety of febuxostat and allopurinol in patients with gout and cardiovascular morbidities (CARES) trail. The FDA public safety alert highlights the discussion of CV safety of febuxostat. By contrast, the European Medicines Agency (EMA)-required febuxostat versus allopurinol streamlined trial, a prospective, randomized, open-label, blinded-endpoint, non-inferiority trial of febuxostat (80–120 mg/day) versus allopurinol, does not support the finding of an increased cardiovascular risk of febuxostat.

The evidence for a causal relationship between xanthine oxidase inhibitors and cardiovascular diseases (CVD) remains equivocal. Therefore, this study intends to conduct a systematic review of the relevant clinical trials published in recent years to analyze the adverse cardiovascular events and death risks of febuxostat compared with allopurinol in patients.

2 | METHODS

2.1 | Search strategy and selection criteria

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in this systematic review and meta-analysis. We systematically searched clinical trials of febuxostat and allopurinol treatment of gout in the elderly in PubMed, EMBASE, the Cochrane Library database and reviews of relevant articles from January 2000 to April 4, 2021. The following terms were used: “Gout” “Febuxostat” “Allopurinol” OR “Clinical Trial” “adverse events.” Language of publication did not influence article selection. Titles and abstracts were screened to exclude ineligible studies.

Studies were included if they met the following criteria: (i) clinical trials; (ii) treatment status as treated with febuxostat and allopurinol; (iii) long-term follow up of patients.

Exclusion criteria: (i) Documents in languages other than Chinese and English. (ii) There are no statistics on cardiovascular and death-related adverse events for the outcome indicators, and the data is incomplete. (iii) Patients with severe liver and kidney dysfunction, unstable vital signs, long-term alcoholism, and other conditions that will affect the resolution of indicators (iv) Patients with secondary gout.

Gao LG and Bin Wang screened titles, abstracts, and full text of papers identified in our search and assessed for risk of bias. The titles of the primary 240 publications identified were reviewed and 224 were discarded although they were identified by our search terms. The studies were also discarded because the enrolled patients with acute hyperuricemia or secondary hyperuricemia (e.g., end-stage renal disease). Finally, 14 publications were chosen for the meta-analysis.

2.2 | Study groups and clinical evaluation

The study population in the present meta-analysis consisted of 257 851 patients. Patients were categorized by treatment status as treated with febuxostat or allopurinol. The details in the pharmacologic intervention were listed in Table 1. All patients underwent complete clinical evaluations and fulfilled the diagnostic criteria. Outcomes of major events from each trial were selected, which were consisted of cardiovascular related mortality, major vascular events (including myocardial infarction or other acute coronary syndrome, coronary revascularization, or stroke, etc.) and all-cause mortality.

2.3 | Data extraction

Two authors (L.G. and B.W.) independently assessed and abstracted relevant trials that met the standardized, predefined criteria. Disagreements were identified computationally. Each was checked independently. If data could not be extracted or calculated from the article with confidence, no data were entered. Any discrepancies between the two reviewers were resolved through discussion. A data extraction form was used to collect the following information: (i) authors, study location, dates of study; (ii) number and age of participants; (iii) study design; (iv) comorbidities; (v) details of administration; (vi) follow-up time; (vii) outcomes. L.G. and B.W. extracted the data for patients using a standardized data form.

2.4 | Statistical analysis

The heterogeneity of the included studies was examined by Cochran chisquare tests ($p < .1$). The I^2 statistic was also examined, and we considered $I^2 > 50\%$ to indicate significant heterogeneity between the trials. Publication bias was evaluated using both the Begg’s funnel plot and the Egger plot. The Mantel–Haenszel fixed-effect model or the random-effects model was chosen for meta-analysis of the comparison of efficacy and cardiovascular safety of and endpoint events between febuxostat -treated group and allopurinol -treated group. Statistical analyses were carried out with Review Manager 5.0. p values that were <.05 were considered statistically significant. All statistical tests were two-sided.

To examine the cardiovascular safety and identify the possible source of heterogeneity within these studies, previously defined subgroup analyses were performed (age, population and study design).

3 | RESULTS

3.1 | Results of the literature search

Initially, 240 articles were identified from the databases PubMed, EMBASE, and the Cochrane Library. Based on the predefined selection criteria, 224 papers were excluded for different reasons (Figure 1). As a result, 16 clinical trials with 257 851 subjects met all the inclusion criteria and were included in the meta-analysis (Figure 1). Demographic data for the patients was shown in Table 1. Among febuxostat users, the median age was from 45.5 to
Study	Comparison	Year of publication	Study design	No. of patients	Median age	Population	Male sex — no. (%)	Hypertension	Hyperlipidemia
Ju et al.	Febuxostat	2020	Retrospective cohort study	276	70.41 (14.35)	Chinese	186 (67.4)	-	123 (44.6)
Ju et al.	Allopurinol	2020	Retrospective cohort study	828	70.01 (14.90)	Chinese	549 (66.3)	-	374 (45.2)
Becker et al.	Febuxostat (80 mg)	2005	P; R; O	256	51.8 ± 11.7	White Race	243 (95)	106 (41)	90 (35)
Becker et al.	Febuxostat (120 mg)	2005	P; R; O	251	52.0 ± 12.1	White Race	243 (97)	113 (45)	79 (31)
Becker et al.	Allopurinol (300 mg)	2005	P; R; O	253	51.6 ± 12.6	White Race	243 (96)	112 (44)	86 (34)
Becker et al.	Febuxostat (80 mg)	2009	P; R; O	649	51.4 ± 11.95	White Race	>90%	295 (45.5)	229 (35.3)
Becker et al.	Febuxostat (120 mg)	2009	P; R; O	292	50.9 ± 11.57	White Race	>90%	115 (39.4)	89 (30.5)
Becker et al.	Allopurinol (300 mg)	2009	P; R; O	145	51.0 ± 11.30	White Race	>90%	73 (50.3)	47 (32.4)
Becker et al.	Febuxostat (40 mg)	2010	Double-blind RCT	757	52.5 ± 11.68	White Race	722 (95.4)	-	299 (39.5)
Becker et al.	Febuxostat (80 mg)	2010	Double-blind RCT	756	53.0 ± 11.79	White Race	710 (93.9)	-	308 (40.7)
Becker et al.	Allopurinol (200/300 mg)	2010	Double-blind RCT	756	52.9 ± 11.73	White Race	709 (93.8)	-	335 (44.3)
Kamatani et al.	Febuxostat (40 mg)	2011	P; R; O	122	51.6 ± 13.1	Japanese	118 (96.7)	49 (40.2)	51 (41.8)
Kamatani et al.	Allopurinol (200 mg)	2011	P; R; O	121	52.6 ± 14	Japanese	119 (98.3)	32 (26.4)	44 (36.4)
Huang et al.	Febuxostat (40 mg)	2014	Double-blind RCT	172	46.42 ± 10.90	Chinese	167 (97.1)	54 (31.40)	6 (3.49)
Huang et al.	Febuxostat (80 mg)	2014	Double-blind RCT	172	47.40 ± 11.18	Chinese	169 (98.2)	45 (26.16)	5 (2.91)
Huang et al.	Allopurinol (300 mg)	2014	Double-blind RCT	172	46.17 ± 11.56	Chinese	168 (97.7)	44 (25.58)	2 (1.16)
Xu et al.	Febuxostat (80 mg)	2015	Double-blind RCT	168	48.2 ± 12.0	Chinese	146 (92.4)	32 (20.3)	13 (8.2)
Xu et al.	Febuxostat (40 mg)	2015	Double-blind RCT	168	45.5 ± 11.9	Chinese	158 (98.8)	20 (12.5)	15 (9.4)
Xu et al.	Allopurinol (300 mg)	2015	Double-blind RCT	168	46.6 ± 10.7	Chinese	149 (93.7)	22 (13.8)	11 (6.9)
Tanaka et al.	Febuxostat (40 mg)	2015	P; R; O	21	70.1 ± 9.5	Japanese	19 (90.5)	11 (52)	-
Tanaka et al.	Allopurinol (300 mg)	2015	P; R; O	19	66.1 ± 7.0	Japanese	16 (84.2)	6 (32)	-
Nakagomi et al.	Febuxostat	2015	P; R; O	31	69.3 ± 10.0	Japanese	22 (71)	27 (87.1)	30 (96.8)
Nakagomi et al.	Allopurinol	2015	P; R; O	30	71.8 ± 8.0	Japanese	18 (69)	30 (100)	29 (96.7)
Yu et al.	Febuxostat (80 mg)	2016	P; R; O	54	46.0 ± 11.0	Taiwan	53 (98.1)	-	-
Yu et al.	Allopurinol (300 mg)	2016	P; R; O	55	45.2 ± 12.0	Taiwan	53 (96.4)	-	-
Study	Comparison	Year of publication	Study design	No. of patients	Median age	Population Male sex – no. (%)	Hypertension	Hyperlipidemia	
---------------	------------	---------------------	------------------	----------------	--------------	--------------------------------	--------------	----------------	
White et al.	Febuxostat	2018	Double-blind RCT	3098	64.0 (58–71)	White race (69.7%)	2604 (84.1)	2864 (92.4)	
White et al.	Allopurinol	2018	Double-blind RCT	3092	65.0 (58–71)	White race (69.2%)	2592 (83.8)	2851 (92.2)	
Su et al.	Febuxostat	2019	Cohort study	44	65.0 + 15.7	Taiwan	32 694 (74.1)	30 433 (69.0)	
Su et al.	Allopurinol	2019	Cohort study	39	59.1 (12.5)	Korean	78.3	55.4	
Kang	Febuxostat	2019	Cohort study	537	75.4 ± 6.7	Japanese	371 (69)	506 (94.2)	
Kang	Allopurinol	2019	Cohort study	533	76.0 ± 6.5	Japanese	368 (69)	501 (94.0)	
Kojima et al.	Febuxostat	2019	Observational trial	120	75.9 ± 8.9	Italy	79 (65.8)	114 (95.0)	
Kojima et al.	Allopurinol	2019	Observational trial	135	78.1 ± 6.3	Italy	81 (60)	122 (90.4)	
Mackenzie et al.	Febuxostat	2020	P; R; O	3063	71.0 (6.4)	99.1% White race	2619 (85.5%)	2345 (76.6%)	
Mackenzie et al.	Allopurinol	2020	P; R; O	3065	70.9 (6.5)	99.1% White race	2606 (85.0%)	2439 (79.6%)	
Zhang et al.	Febuxostat	2020	Cohort study	24	76 (70–82)	76.4% White race	52.3	95.4	
Zhang et al.	Allopurinol	2020	Cohort study	74	76 (71–82)	76.2% White race	52.3	95.4	

Study	Coronary heart disease	Diabetes (%)	BMI	Follow-up period	Urgent Coronary revascularisation n (%)	Nonfatal myocardial infarction N OR CAD (%)	Cardiovascular death	Nonfatal stroke OR Cerebrovascular disease	Death from any cause
Ju et al.	-	59 (21.4)	-	-	-	0	6	52	
Ju et al.	-	185 (22.3)	-	-	-	19	0	25	204
Becker et al.	23 (9)	17 (7)	32.7 ± 6.1	52 weeks	0	0	1	0	2
Becker et al.	28 (11)	17 (7)	32.3 ± 5.7	52 weeks	0	0	1	0	2
Becker et al.	23 (9)	19 (8)	32.6 ± 6.1	52 weeks	0	-	0*	0*	0*
Becker et al.	71 (10.9)	46 (7.1)	32.3 ± 5.78	172 weeks	-	-	6	-	7
Becker et al.	33 (11.3)	15 (5.1)	33.2 ± 6.17	172 weeks	-	-	-	-	3
Becker et al.	14 (9.7)	12 (8.3)	33.8 ± 6.79	172 weeks	-	-	0	-	0
Becker et al.	421 (55.6)	89 (11.8)	-	28 weeks	-	0*	0*	0*	1
Becker et al.	440 (58.2)	113 (14.9)	-	28 weeks	-	1	0	2	1
Becker et al.	436 (57.7)	110 (14.6)	-	28 weeks	-	1	2	0	3
TABLE 1 (Continued)

Study	Coronary heart disease	Diabetes (%)	BMI	Follow-up period	Urgent Coronary revascularisation n (%)	Nonfatal myocardial infarction N OR CAD (%)	Cardiovascular death	Nonfatal stroke OR Cerebrovascular disease	Death from any cause
Kamatani et al.	12 (9.8)	-	8 weeks	0	0	0	0	0	0
Kamatani et al.	12 (9.9)	-	8 weeks	0	0	0	0	0	0
Huang et al.	57 (33.14)	14 (8.14)	25.63 ± 2.80	28 weeks	0	0	0	0	0
Huang et al.	47 (27.33)	9 (5.23)	25.25 ± 2.64	28 weeks	0	0	0	0	0
Huang et al.	45 (26.16)	10 (5.81)	25.44 ± 2.53	28 weeks	0	0	0	0	0
Xu et al.	2 (1.3)	5 (3.2)	25.1 ± 2.6	24 weeks	0	0	0	0	0
Xu et al.	4 (2.5)	10 (6.3)	25.3 ± 2.7	24 weeks	0	0	0	0	0
Xu et al.	4 (2.5)	9 (5.7)	25.4 ± 3.3	24 weeks	0	0	0	0	0
Tanaka et al.	-	-	24.1 ± 3.8	12 weeks	0	0	0	0	0
Tanaka et al.	-	-	26.1 ± 2.9	12 weeks	0	0	0	0	0
Nakagomi et al.	-	9 (29.0)	23.6 ± 2.4	23 (13–47)	-	-	-	2 (2/31)	-
Nakagomi et al.	-	12 (40.0)	23.1 ± 3.1	23 (13–47)	-	-	-	5 (1/6)	-
Yu et al.	-	-	26.8 ± 3.7	12 weeks	0	0	0	-	0
Yu et al.	-	-	27.8 ± 4.2	12 weeks	0	0	0	-	0
White et al.	1197 (38.6)	1193 (38.5)	33.6 ± 7.0	72 months	49 (1.6)	111 (3.6)	134 (4.3)	71 (2.3)	243 (7.8)
White et al.	1231 (39.8)	1213 (39.2)	33.4 ± 6.9	72 months	56 (1.8)	118 (3.8)	100 (3.2)	70 (2.3)	199 (6.4)
Su et al.	9390 (21.3)	16 875 (38.3)	-	28.5 weeks	-	272 (0.6)	468 (1.06)	344 (0.8)	1630 (3.7)
Su et al.	8582 (19.5)	15 480 (35.1)	-	22.5 weeks	-	193 (0.4)	334 (0.75)	298 (0.7)	1301 (2.9)
Kang	1.6	29.5	-	43.2 weeks	44 (0.4)	20	-	78	135
Kang	1.6	28.6	-	35.9 weeks	267 (0.64)	88	-	382	545
Kojima et al.	45 (8.4)	197 (36.7)	24.74 ± 3.71	152 weeks	2	4	-	9	10
Kojima et al.	45 (8.4)	199 (37.3)	24.61 ± 3.65	150 weeks	3	7	-	7	12
Cicero et al.	67 (55.8)	32 (26.7)	25.9 ± 2.9	6 years	-	-	-	-	-

(Continues)
76.0 years and 52.3%–98.8% were male in the included studies. Among allopurinol users, the median age was from 65.0 to 76.0 years and 52.3%–98.3% were male. In both groups, 1.3%–58.2% had history of coronary heart disease at baseline. Hypertension (12.5%–100%), hyperlipidemia (2.9%–96.8%), and diabetes (3.2%–55.2%) were common comorbidities in both groups.

3.2 | Effect of febuxostat versus allopurinol treatment on clinical events

Compared with allopurinol treatment group, the febuxostat group had a better safety outcome, which was the composite of urgent coronary revascularization (OR: 0.84, 95% CI: 0.77–0.90, p < .0001 Figure 2(A)) and stroke (Figure 2(B)) (OR: 0.87, 95% CI: 0.79–0.97, p = .009). However, that difference was not found in nonfatal myocardial infarction (Figure 2(C)) (OR: 0.98 95% CI: 0.80–1.22, p = .91), cardiovascular related mortality (Figure 2(D)) (OR: 0.98, 95% CI: 0.69–1.38, p = .89) and all-cause mortality (Figure 2(E)) (OR: 0.93, 95% CI: 0.75–1.15, p = .52).

Begg's funnel plot indicated that there are no strong evidences of publication selection bias.

3.3 | Results of subgroup analyses

To clarify the heterogeneity, subgroup analyses were performed to investigate the source of heterogeneity (Table 2). Compared with allopurinol treatment group, subgroup analyses according to age, population and study design showed that the febuxostat treatment could significantly reduce the occurrence of stroke in age ≥ 65 years group (OR: 0.88, 95% CI: 0.79–0.99, p = .03), white race (≥70%) group (OR:
0.88, 95% CI: 0.79–0.99, p = .04) and cohort study group (OR: 0.87, 95% CI: 0.78–0.98, p = .04). Subgroup analyses according to population showed that the febuxostat treatment could significantly reduce the incidence of nonfatal myocardial infarction in white race participants (OR: 0.87, 95% CI: 0.79–0.96, p = .007). No significant differences in cardiovascular related mortality and all-cause mortality were observed across any subgroup.

DISCUSSION

The present study suggests compared with allopurinol, the use of febuxostat results in significantly decreased risks of urgent coronary revascularization and stroke. Initiation of febuxostat did not increase the risk of nonfatal myocardial infarction, the cardiovascular related mortality and all-cause mortality. Subgroup analyses according to age,
population and study design showed that the febuxostat treatment could significantly increase the occurrence of stroke in patients with age ≥65 years and white race (≥70%).

TABLE 2 Subgroup and sensitivity analyses of adverse events stratified by previously defined study characteristics

Variables	Nonfatal myocardial infarction	Stroke	Cardiovascular related mortality	All-cause mortality
	No. of trials OR (95% CI)	No. of trials OR (95% CI)	No. of trials OR (95% CI)	No. of trials OR (95% CI)
Subgroup analysis	p for heterogeneity	p for heterogeneity	Heterogeneity: Not applicable	p for heterogeneity
Age				
<65 years	3 0.89 (0.56, 1.43) .83	1 0.82 (0.64, 1.04)		5 0.99 (0.25, 3.89) .46
≥65 years	6 0.98 (0.77, 1.24) .0006	5 0.88 (0.79, 0.99)	.59	6 0.97 (0.66, 1.40) .0004
Study design				
RCT	5 0.92 (0.76, 1.11) .91	3 0.88 (0.69, 1.10)	.28	8 0.95 (0.59, 1.52) .08
Cohort study	4 1.00 (0.70, 1.44) .0001	3 0.87 (0.78, 0.98)	.74	3 0.82 (0.25, 2.71) .006
Population				
White Race (≥50%)	4 0.87 (0.79, 0.96) .88	3 0.88 (0.79, 0.99)	.36	8 0.86 (0.52, 1.41) .03
Asian	5 1.01 (0.74, 1.39) .03	3 0.83 (0.66, 1.04)	.65	3 0.92 (0.26, 3.25) .11
				4 0.99 (0.75, 1.29) .001

In conclusion, our meta-analysis suggested that febuxostat users did not significantly increase the risk of cardiovascular events or all-cause mortality compared with allopurinol users. Further research is needed to clarify the safety and efficacy of febuxostat in specific populations.
cause mortality compared with allopurinol users. However, more
high-quality, double-blinded, large, randomized studies are needed to
elucidate this issue.

ACKNOWLEDGMENT
This work was supported by the Military Healthcare Fund 17BJZ48.

CONFLICT OF INTEREST
The authors declares no conflicts of interest.

DATA AVAILABILITY STATEMENT
This is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly
cited.

ORCID
Linggen Gao https://orcid.org/0000-0002-2185-9936

REFERENCES
1. Passos RS, Ribeiro IJS, Freire IV, et al. Hyperuricemia is associated
with sympathovagal imbalance in older adults. Arch Gerontol Geriatr.
2020;90:101432.
2. Burke BT, Kottgen A, Law A, et al. Physical function, Hyperuricemia,
and gout in older adults. Arthritis Care Res (Hoboken). 2015;67(12):
1730-1738.
3. Becker MA, Schumacher HR Jr, Wortmann RL, et al. Febuxostat com-
pared with allopurinol in patients with hyperuricemia and gout. N Engl
J Med. 2005;353(23):2450-2461.
4. Schumacher HR Jr, Becker MA, Wortmann RL, et al. Effects of febuxostat
versus allopurinol and placebo in reducing serum urate in subjects with
hyperuricemia and gout: a 28-week, phase III, randomized, double-blind,
parallel-group trial. Arthritis Rheum. 2008;59(11):1540-1548.
5. Bardin T, Richette P. FAST: new look at the febuxostat safety profile.
Lancet. 2020;396(10264):1704-1705.
6. White WB, Saag KG, Becker MA, et al. Cardiovascular safety of
Febuxostat or allopurinol in patients with gout. N Engl J Med. 2018;
378(13):1200-1210.
7. Wandell P, Carlson AC, Sundquist J, Sundquist K. The association
between gout and cardiovascular disease in patients with atrial fibril-
ation. SN Compr Clin Med. 2019;1(4):304-310.
8. Gupta MK, Singh JA. Cardiovascular disease in gout and the protec-
tive effect of treatments including Urate-lowering therapy. Drugs.
2019;79(5):531-541.
9. Abeles AM, Pillinger MH. Gout and cardiovascular disease: crystal-
ized confusion. Curr Opin Rheumatol. 2019;31(2):118-124.
10. Mackenzie IS, Ford I, Nuki G, et al. Long-term cardiovascular safety of
febuxostat compared with allopurinol in patients with gout (FAST): a
multicentre, prospective, randomised, open-label, non-inferiority trial.
Lancet. 2020;396(10264):1745-1757.
11. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred
reporting items for systematic reviews and meta-analyses: the PIR-
SMA statement. Ann Intern Med. 2009;151(4):264-269.
12. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsis-
tency in meta-analyses. BMJ. 2003;327(7414):557-560.
13. Mantel N, Haenszel W. Statistical aspects of the analysis of data from re-
trospective studies of disease. J Natl Cancer Inst. 1959;22(4):719-748.
14. Zhang M, Solomon DH, Desai RJ, et al. Assessment of cardiovascular risk
in older patients with gout initiating Febuxostat versus allopurinol:
population-based cohort study. Circulation. 2018;138(11):1116-1126.
15. Akihiro Nakagomi YS, Noma S, Kohashi K, et al. Effects of febuxostat
and allopurinol on the inflammation and cardiac function in chronic
heart failure patients with hyperuricemia. J Clin Rheumatol. 2015;8:
46-55.
16. Becker MA, Schumacher HR, MacDonald PA, Lloyd E, Lademacher C.
Clinical efficacy and safety of successful longterm urate lowering with
febuxostat or allopurinol in subjects with gout. J Rheumatol. 2009;36
(6):1273-1282.
17. Becker MA, Schumacher HR, Espinoza LR, et al. The urate-lowering
efficacy and safety of febuxostat in the treatment of the hyperurici-
cemia of gout: the CONFRIMs trial. Arthritis Res Ther. 2010;12
(2):R63.
18. Kamatani N, Fujimori S, Hada T, et al. An allopurinol-controlled, multi-
center, randomized, open-label, parallel between-group, comparative study of
febuxostat (TMX-67), a non-purine-selective inhibitor of xanthine oxidase, in patients with hyperuricemia including those with gout in Japan: phase 2 exploratory clinical study. J Clin Rheumatol.
2011;17(4 Suppl 2):S44-49.
19. Huang X, Du H, Gu J, et al. An allopurinol-controlled, multicenter, ran-
domized, double-blind, parallel between-group, comparative study of
febuxostat in Chinese patients with gout and hyperuricemia. Int J Rheum
Dis. 2014;17(6):679-686.
20. Xu S, Liu X, Ming J, et al. A phase 3, multicenter, randomized,
allopurinol-controlled study assessing the safety and efficacy of oral
febuxostat in Chinese gout patients with hyperuricemia. Int J Rheum
Dis. 2015;18(6):669-678.
21. Tanaka K, Nakayama M, Kanno M, et al. Renoprotective effects of
febuxostat in hyperuremic patients with chronic kidney disease: a
parallel-group, randomized, controlled trial. Clin Exp Nephrol. 2015;19
(6):1044-1053.
22. Yu KH, Lai JH, Hsu PN, Chen DY, Chen CJ, Lin HY. Safety and effi-
cacy of oral febuxostat for treatment of HLA-B*5801-negative gout: a
randomized, open-label, multicentre, allopurinol-controlled study. Scand J Rheumatol. 2016;45(4):304-311.
23. Kang EH, Choi HK, Shin A, et al. Comparative cardiovascular risk of
allopurinol versus febuxostat in patients with gout: a nation-wide
cohort study. Rheumatology (Oxford). 2019;58(12):2122-2129.
24. Kojima S, Matsui K, Hiramitsu S, et al. Febuxostat for cerebral and
Cardiovascular diseases: a randomized, multicentre, open-label, parallel-between group, comparative study ofebuxostat in elderly heart failure patients. Eur Heart J. 2019;40
(22):1778-1786.
25. Cicerò AFG, Cosentino ER, Kuwabara M, Degli Esposti D, Borghi C.
Effects of allopurinol and febuxostat on cardiovascular mortality in elderly heart failure patients. Intern Emerg Med. 2019;14(6):
949-956.
26. Ju C, Lai RWC, Li KHC, et al. Comparative cardiovascular risk in users
versus non-users of xanthine oxidase inhibitors and febuxostat versus
allopurinol users. Rheumatology (Oxford). 2020;59(9):2340-2349.
27. Gao LG, Yao XP, Zhang L, et al. Febuxostat, a nonpurine selective
inhibitor of xanthine oxidase: a promising medical therapy for chronic
heart failure? Chin Med J (Engl). 2010;123(17):2471-2474.
28. Liu CW, Chang WC, Lee CC, et al. The net clinical benefits of
febuxostat versus allopurinol in patients with gout or asymptomatic
hyperuricemia – a systematic review and meta-analysis. Nutr Metab Cardiovasc Dis. 2019;29(10):1011-1022.
29. Fan B, Zhang P, Li X. Efficacy and safety of Febuxostat versus allopu-
rinol in Hyperuricemic patients with or without gout: a meta-analysis.
Neuro Endocrinol Lett. 2020;41(4):195-204.
30. Ye P, Yang S, Zhang W, et al. Efficacy and tolerability of febuxostat in
hyperuricemic patients with or without gout: a systematic review and
meta-analysis. Clin Ther. 2013;35(2):180-189.
31. Fan M, Liu J, Zhao B, et al. Comparison of efficacy and safety of
urate-lowering therapies for hyperuricemic patients with gout: a
meta-analysis of randomized, controlled trials. Clin Rheumatol. 2021;40(2):683-692.
32. Faruque LI, Ehteshami-Afshar A, Wiebe N, Tjosvold L, Homik J, Tonelli M. A systematic review and meta-analysis on the safety and efficacy of febuxostat versus allopurinol in chronic gout. Semin Arthritis Rheum. 2013;43(3):367-375.

33. Schumacher HR Jr, Becker MA, Lloyd E, MacDonald PA, Lademacher C. Febuxostat in the treatment of gout: 5-yr findings of the FOCUS efficacy and safety study. Rheumatology (Oxford). 2009;48(2):188-194.

How to cite this article: Gao L, Wang B, Pan Y, Lu Y, Cheng R. Cardiovascular safety of febuxostat compared to allopurinol for the treatment of gout: A systematic and meta-analysis. Clin Cardiol. 2021;44(7):907–916. https://doi.org/10.1002/clc.23643