MicroRNA-148a is downregulated in gastric cancer, targets MMP7, and indicates tumor invasiveness and poor prognosis

Naoya Sakamoto,1 Yutaka Naito,1 Naohide Oue,1 Kazuhiro Sentani,1 Naohiro Uraoka,1 Htoo Zarni Oo,1 Kazuyoshi Yanagihara,2 Kazuhiko Aoyagi,3 Hiroki Sasaki3 and Wataru Yasui1

1Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima; 2Division of Translational Research, Exploratory Oncology and Clinical Trial Center, National Cancer Center, Chiba; 3Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan

Key words
Gastric cancer, microRNA, miR-148a, MMP7, cancer invasion

Correspondence
Wataru Yasui, Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
Tel: +81-82-257-5145; Fax: +81-82-257-5149
E-mail: wyasui@hiroshima-u.ac.jp

Funding Information
Ministry of Education, Culture, Science, Sports, and Technology of Japan. Ministry of Health, Labor and Welfare of Japan. The National Institute of Biomedical Innovation. The Japan Society for the Promotion of Science. The National Cancer Center Research and Development Fund.

Received August 20, 2013; Revised November 16, 2013; Accepted November 26, 2013

Cancer Sci 105 (2014) 236–243
doi: 10.1111/cas.12330

Gastric cancer (GC) remains a major public health issue as the fourth most common cancer and the second leading cause of cancer mortality worldwide.1) Gastric cancer is assumed to originate from a sequential accumulation of molecular and genetic alterations to stomach epithelial cells.2) A deeper understanding of the pathogenesis and biological features of GC is necessary to further inform and enhance early detection and treatment methods.

MicroRNAs (miRNAs) are non-protein-coding small RNAs in the size range of 19–25 nucleotides, which play important regulatory roles in posttranscriptional repression and fine-tune various essential biological processes.3–5) Recent data clearly shows that miRNAs are abnormally expressed in various cancers, indicating novel roles as oncogenes or tumor suppressors in different tumor types.6) Currently, miRNA target-prediction algorithms and publicly available databases are undergoing rapid and dramatic evolution. However, precision and sensitivity of state-of-the-art algorithms were estimated as ~50% and 12%, respectively, when tested against proteomics-supported miRNA targets,7) highlighting the necessity for mass experimental miRNA target validation.8) As for GC, although there are several reports of aberrant expression of specific miRNAs, target predictions of identified miRNAs were carried out by several online databases in each study.9,10) Each new finding of deregulated miRNA in GC and its target gene is a welcome addition to the body of knowledge; however, there is no denying the possibility that genuine targets can be overlooked using online algorithms.

In the present study, we examined miRNA expression in 20 GC cases and five corresponding non-neoplastic gastric mucosa using miRNA microarray. By comparing these expression profiles, we found downregulation of miR-148a in the majority of GC tissues. The correlation between the miR-148a expression level and clinicopathologic parameters of GC was also examined and we identified that lower expression levels of miR-148a correlate with worse clinicopathologic characters. To predict gene targets of miR-148a, we used an oligonucleotide array to generate a list of genes whose expression was deregulated by altered expression of miR-148a, and found that expression of MMP7 was suppressed by upregulation of miR-148a. It was confirmed that MMP7 was a direct and functional target of miR-148a, participating in cell invasion. These results suggest that miR-148a contributes to the maintenance of homeostasis in normal stomach tissue and plays an important role in GC invasion by regulating MMP7 expression.
out target prediction of miR-148a using representative online databases. However, no lists of miR-148a target genes contained MMP7, thus validating the reliability of the conventional laboratory-based experimental strategy for miRNA target prediction, by which crucial target genes were detected—genes, which online target prediction could not detect.

Materials and Methods

MicroRNA microarray hybridization. Total RNA was isolated from frozen tissue with Isogene (Nippon Gene, Tokyo, Japan). Short-strand RNA was purified from total RNA with the RNeasy MinElute Cleanup Kit (Qiagen, Hilden, Germany). For the oligonucleotide array we used Genopal-MICH07 DNA chips (Mitsubishi Rayon, Tokyo, Japan) comprising 188 oligonucleotide DNA probes. Details are described in Data S1.

In situ hybridization for miR-148a. Biotin 3′-labeled locked nucleic acid-incorporated miRNA probe (miR-CURY LNA detection probe; Exiqon, Woburn, MA, USA) was used for visualization of miR-148a. Details are described in Data S1.

Cell lines. Nine cell lines derived from human GC were used. All cell lines were maintained as described previously. Details are described in Data S1.

Oligonucleotide array construction, hybridization, detection, and data analysis. The oligonucleotide array, Genopal (Mitsubishi Rayon), was prepared as described previously. Details of oligonucleotide array probes, total RNA isolation, RNA quantification and assessment of integrity, hybridization, detection, and data analysis were carried out as described previously.

Quantitative RT-PCR and Western blot analysis. Quantification of MMP7 mRNA levels was carried out using real-time fluorescence detection as described previously. For analysis of miR-148a and U6B, expression levels of miR-148a and RN6U6B were measured and quantified as described previously. Western blot analysis was carried out as described previously. Details are described in Data S1.

CpG island determination, genomic DNA extraction, and bisulfite genomic DNA sequencing. A 20-kb genomic DNA fragment encompassing the miRNA coding sequences was described previously. Details of oligonucleotide array probes, total RNA isolation, RNA quantification and assessment of integrity, hybridization, detection, and data analysis were carried out as described previously.

Plasmids. For constitutive expression of the MMP7 gene, commercially available MPP7 cDNA construct (Invitrogen, Carlsbad, CA, USA) was purchased. pCMV-MIR (Origene, Rockville, MD, USA) was used for constitutive expression of miR-148a. Details are described in Data S1.

Cell transfection. Transfection of cells was carried out with Lipofectamine RNAiMAX Reagent (Invitrogen) according to the manufacturer’s instructions. Details are described in Data S1.

Reporter gene assay. Reporter gene assay was carried out as described previously. Details are described in Data S1.

Tissue samples. A total of 81 primary tumor samples were collected from patients diagnosed with GC. Details are described in Data S1.

Cell growth and in vitro invasion assay. For the MTT assay, cells were seeded at a density of 2000 cells per well in 96-well plates. Cell growth was monitored after 1, 2, and 4 days by MTT assay. Modified Boyden chamber assays were used to examine invasiveness as described previously.

Statistical methods. Statistical differences between miRNA levels in non-neoplastic gastric mucosa and GC were evaluated using the Mann–Whitney U-test and Wilcoxon matched pairs test. The correlation between expression levels of miR-148a and clinicopathologic parameters was analyzed with Fisher’s exact test. Univariate and multivariate Cox regression was used to evaluate the associations between clinical covariates and cancer-specific mortality. Hazard ratios and 95% confidence intervals were estimated from Cox proportional hazard models. P-values < 0.05 were considered to be statistically significant.

Results

MicroRNA microarray analysis. To identify GC-related miRNA, we carried out miRNA microarray profiling to compare between 20 cancer tissue and five corresponding non-neoplastic gastric mucosa. Through the comparison between these two profiles, six miRNAs showed significantly higher expression in corresponding non-neoplastic gastric mucosa than in cancer tissue (Table 1). Among six miRNAs, we focused on miR-148a because its expression was most downregulated in GC tissue. Further analysis of the same GC tissues by qRT-PCR also showed a significant downregulation of miR-148a (Fig. S1). Clinical pathologic characteristics of GC cases in which miR-148a is downregulated. To confirm the localization of miR-148a expression, in situ hybridization (ISH) was carried out using GC tissues. We could detect the miR-148a expression only in fundic glands and pyloric glands. However, neither cancer cells nor stromal tissues expressed miR-148a (Fig. 1a). Then, to further understand the relationship between miR-148a expression and clinicopathologic parameters, we examined the miR-148a expression levels in 61 formalin-fixed paraffin-embedded samples of primary GC and their corresponding non-neoplastic gastric mucosa by qRT-PCR. In this sample set, miR-148a expression levels were also significantly downregulated in GC tissue compared with corresponding non-neoplastic mucosa (Fig. S2). The expression level of miR-148a was evaluated using the tumor : normal ratio of miR-148a. The relationship

miRBase ID	Mature accession	Non-neoplastic mucosa	Tumor	Fold change	P-value
hsa-miR-148a	MIMAT0000243	892	279	−0.31	0.0178
hsa-miR-29a	MIMAT0000086	1626	932	−0.57	0.0395
hsa-miR-30a-3p	MIMAT0000088	681	412	−0.60	0.0246
hsa-miR-30b	MIMAT0000715	953	581	−0.61	0.0207
hsa-miR-30a-5p	MIMAT0000087	648	402	−0.62	0.0443
hsa-miR-125b-1	MIMAT0000423	1257	804	−0.64	0.0315

miRBase ID codes are available from www.mirbase.org.
between the miR-148a expression level and clinicopathologic parameters of GC is summarized in Table S1. We also evaluated the association between miR-148a expression levels and cancer-specific mortality. In all cases and in 41 advanced GC patients, the GC tissues with lower expression levels of miR-148a showed significantly worse prognosis than those with high expression (Fig. 1b,c). In order to further evaluate the association of miR-148a expression with cancer-specific mortality, we used both univariate and multivariate Cox proportional hazards analyses (Table 2). According to the univariate analysis, T grade, N grade, stage, and miR-148a expression were significantly associated with cancer-specific mortality. According to the multivariate model, expression of miR-148a was an independent prognostic classifier of cancer-specific mortality.

Table 2. Univariate and multivariate analysis of factors influencing survival in 61 patients with gastric cancer

Parameter	Univariate analysis	Multivariate analysis				
	HR	95% CI	P-value	HR	95% CI	P-value
Sex						
Female	Ref.			NA		
Male	1.271	0.702–1.532	0.5896	NA		
Age, years						
<60	Ref.			NA		
≥60	1.122	0.442–1.483	0.8593	NA		
Mucin phenotype						
I and N type	Ref.			NA		
G and GI type	0.903	0.214–3.802	0.1003	NA		
Histology†						
Intestinal	Ref.			NA		
Diffuse	1.601	0.254–1.473	0.2805	NA		
T grade‡						
T1/2	Ref.			Ref.		
T3/4	4.886	1.136–3.225	0.0030	13.22	3.371–50.747	<0.0010
N grade‡						
N0	Ref.			Ref.		
N1/2/3	9.234	1.388–16.667	<0.0010	5.063	0.931–94.529	0.0625
Stage‡						
0/1/II	Ref.			Ref.		
III/IV	8.460	2.083–11.111	<0.0010	34.579	6.293–222.270	<0.0010
miR-148a expression						
High	Ref.			Ref.		
Low	10.820	1.785–20.000	0.0041	3.076	1.216–8.776	0.0169

†Histology was determined according to the Japanese Classification of Gastric Cancer (14th edition). ‡Tumor stage was classified according to the criteria of the International Union Against Cancer TNM classification of malignant tumors. CI, confidence interval; HR, hazard ratio; NA, not applicable; Ref., reference.
mortality. These results indicate that loss of miR-148a may play important roles in GC progression.

Analysis of MIR148A methylation in GC cell lines. To pursue the cause of miR-148a downregulation, we examined the methylation status in CpG islands of the MIR148A promoter region in GC cell lines. Expression levels of miR-148a measured by qRT-PCR are shown in Figure S3(a), and we carried out bisulfite sequencing of genomic DNAs from two GC cell lines with high miR-148a expression and two cell lines with low miR-148a expression. Results of bisulfite sequencing are shown in Figure S3(b). An inverse correlation was observed between frequency of methylation in MIR148A promoter-region CpG islands and expression levels of miR-148a. In addition, we ascertained that miR-148a expression was restored in five aza-dc-treated MKN-45 and MKN-74 cells (Fig. S3c). These results suggest that DNA methylation of CpG islands of MIR148A play an important role in transcriptional inactivation in GC cell lines.

Effect of deregulation of miR-148a expression on cell growth and invasive activity. To investigate the biological significance of miR-148a in GC, we carried out an MTT assay 4 days after altering miR-148a expression. In this experiment, we used MKN-1 cells transfected with miR-148a precursor and HSC-57 cells transfected with miR-148a inhibitor. MKN-1 and HSC-57 were selected as they possessed the lowest and highest endogenous miR-148a expression among nine GC cell lines, respectively. Successful overexpression and suppression of miR-148a in each treated cell line were confirmed by qRT-PCR (Fig. 2a). Cell growth of GC cells with deregulated miR-148a expression did not differ from that of cells transfected with control miRNA up to day 4 (data not shown). Next, a Transwell invasion assay was carried out. The invasiveness of miR-148a-overexpressing MKN-1 cells was reduced compared with the negative control miRNA-transfected MKN-1 cells (Fig. 2b). In contrast, the invasiveness of miR-148a-suppressed HSC-57 cells was greater than that of the negative control miRNA-transfected HSC-57 cells (Fig. 2c). These results are consistent with those of a previous report,\(^\text{(22)}\) and indicate that miR-148a regulates some genes which in turn affect tumor invasion in GC cells.

MicroRNA-148a target prediction using custom oligonucleotide array. Although some reports have identified the target gene of miR-148a, these studies used online databases to derive predicted targets.\(^\text{(22–25)}\) To identify novel GC invasion-related genes whose expression was directly regulated by miR-148a, we analyzed gene expression profiles from four GC cell lines showing deregulation of miR-148a alongside corresponding non-treated cells, using a custom oligonucleotide array. In each cell line, either overexpression or suppression of miR-148a was induced, according to their endogenous miR-148a expression level. The list of genes with expression altered more than twofold in miR-148a-deregulated cells is summarized in Table 3. Among these candidates, MMP7 was markedly downregulated by miR-148a overexpression both in MKN-45 and MKN-74 cell lines. Although target prediction for miR-148a was carried out using online databases including TargetScan, PicTar, and miRanda, these databases did not list MMP7 as a candidate miR148a target gene (data not shown). Therefore, further study of the correlation between miR-148a and MMP7 was undertaken.

To confirm the regulation of MMP7 by miR-148a, MKN-45 and MKN-74 cells were transfected to induce miR-148a overexpression, then examined for MMP7 expression level by Western blotting. In both cell lines, MMP7 expression was significantly downregulated; levels were similar to that of MMP7-specific siRNA treated cells (Fig. 3a). The MMP7 mRNA levels determined by qRT-PCR were consistent with the MMP7 protein levels determined by Western blotting (Fig. 3b). It was also
found that upregulation of MMP7 was inversely associated with miR-148a expression in GC cases analyzed in Figure 1(b) (Table S2). In addition, we examined the effect of miR-148a deregulation on the expression of epithelial–mesenchymal transition-related molecules. However, no significant alterations of these molecules were detected in miR-148a deregulated cells (Fig. S4a). As shown in Figure 2(b), overexpression of miR-148a repressed invasion of MKN-1 cells. However, MMP7 expression was not detected in MKN-1 cells (data not shown). It was reported that ROCK1 is a direct target of miR-148a and could be involved in GC invasion.\(^{2(2)}\) We checked expression of ROCK1 in MKN-1 and the alteration of its expression in miR-148a-deregulated cells. Actually, we detected that expression of ROCK1 was downregulated by miR-148a overexpression in MKN-1 cells (Fig. S4b). Furthermore, to prove that MMP7 is a direct target of miR-148a, we used a 3′-UTR sequence of MMP7 cloned into a reporter vector downstream of the luciferase complementary DNA (Fig. 3c). Transfection of this construct into three GC cell lines with high endogenous miR-148a expression levels led to suppression of MMP7 reporter activity, and mutation of the miR-148a binding site abolished the inhibitory effect of miR-148a on reporter activity (Fig. 3d). Conversely, transfection of this construct into three GC cell lines with low endogenous miR-148a expression levels did not lead to suppression of MMP7 reporter activity. However, cotransfection of this construct with miR-148a precursor into these cells showed that miR-148a suppressed the MMP7 reporter activity (Fig. S5). These results imply that miR-148a downregulates MMP7 expression by directly targeting its 3′-UTR.

Several reports show that miR-148a regulates cancer cell invasion through suppressing its target genes.\(^{2(2)}\) To confirm the cellular level at which MMP7 contributes to GC cell invasion, the MKN-45 cell line was stably transfected with vector expressing miR-148a alone, and cotransfected with vectors expressing miR-148a and MMP7. MKN-45 cells were selected because they express high levels of MMP7 and low levels of miR-148a. In MKN-45-miR-148a, which stably expressed miR-148a, MMP7 expression was significantly suppressed, and in MKN-45-miR-148a/MMP7, which stably expressed miR-148a and MMP7, the expression of MMP7 was 50% less than that of empty vector-transfected MKN-45 cells (Fig. 3e). Next, the invasive properties of these cells were examined by Transwell invasion assay. As shown in Figure 3(i), the invasiveness of MKN-45-miR-148a was approximately 50% less than that of MKN-45-empty vector at all endpoints. However, the invasiveness of MKN-45-miR-148a/MMP7 was only approximately 10–20% less than that of the MKN-45-empty vector. These observations suggest that MMP7 plays a central role in GC invasion among miR-148a target genes.

Discussion

In this study, we showed frequent downregulation of miR-148a in GC tissue that was significantly correlated with lymph node metastasis, advanced clinical stage, and poor clinical outcome. We also established that MMP7 is a direct and functional target of miR-148a. This is the first report to identify miRNA that regulates MMP7 expression. Further studies revealed that overexpression of miR-148a suppressed GC cell invasion in vitro, and cotransfection of miR-148a and MMP7 restored invasiveness of GC cells. It has been reported that MMP7 plays a key role in invasive properties of various cancer cells, and MMP7 is well known as a representative cancer invasion-related gene whose expression is correlated with worse clinicopathologic characteristics.\(^{2(2)}\) Together with previous reports, our results suggest that miR-148a plays important roles in suppressing tumor progression in GC, and that the induction of MMP7 expression by downregulation of miR-148a contributes to GC progression.

MicroRNA microarray analysis and qRT-PCR revealed that miR-148a was significantly downregulated in GC tissue, and we also confirmed that hypermethylation of MIR148A CpG islands is correlated with suppression of miR-148a in GC cell lines. It has been reported that hypermethylation of MIR148A CpG islands is induced by DNA methyltransferase-1, however DNA methyltransferase-1, in turn, is conversely downregulated by miR-148a overexpression.\(^{2(2)}\) In healthy stomach tissue, next-generation sequencing reportedly confirms overexpression of miR-148a,\(^{2(2)}\) and downregulation of miR-148a has been reported in various cancers including GC.\(^{2(3,2)}\) In relation to miR-148a, almost all of its target genes were implicated in promoting cancer progression. These results suggest that miR-148a may play essential roles in maintaining homeostasis of normal stomach tissue, and when downregulated, sequential induction of some oncogenes may contribute to the development of gastric neoplasia. However, the points at which downregulation of miR-148a occurs in the process of carcinogenesis

Table 3. Genes downregulated by microRNA-148a (miR-148a) deregulation

Symbol	Description	GenBank	Intensity Control	Intensity miR-148a	Fold change
MNK-1	Keratin 86	NM_000584.2	168	72	–2.33
CDH17	Cadherin 17, L1-cadherin	NM_001912	148	72	–2.09
APOE	Apolipoprotein E	NM_145804.1	118	57	–2.03
MKN45	Matrix metalloproteinase 7	NM_002423.3	730	132	–5.55
MIA	Melanoma inhibitory activity	NM_006533.3	649	244	–2.63
MKN-74	Matrix metalloproteinase 7	NM_002423.3	291	32	–9.99
MMP7	Nei endonuclease VIII-like 1	NM_024608.3	2004	831	–2.43
MMP10	Matrix metalloproteinase 10	NM_002421.3	455	208	–2.17

© 2013 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
or tumor progression have not been fully elucidated. In GC, there is no report that has examined the timing of miR-148a downregulation. It is our current important task to determine when miR-148a is downregulated in gastric neoplasia.

A number of miRNA target-prediction databases have been developed and tested for accuracy and precision using both computational and laboratory techniques. However, when results from laboratory techniques were compared to those of computational approaches, analysis showed that most gene lists generated using computational target prediction contained high false-negative and false-positive results. In addition, various miRNA target prediction programs, which use different algorithms of targeting, produce different lists of predicted targets. It is documented that these differences can arise from the source of 3′-UTR sequences. In the present study, using custom oligonucleotide array-based target prediction, we found that MMP7 expression is downregulated by miR-148a overexpression. Moreover, this was confirmed by qRT-PCR, Western blotting, and reporter gene assays. We determined the 3′-UTR of MMP7 by referring to the Gene database available from the National Center for Biotechnology Information (NCBI), and found that the 3′-UTR of MMP7 contains a putative binding site that is complementary to the miR-148a seed sequence. We compared the sequence of MMP7 coding region from the Gene database (NCBI: http://www.ncbi.nlm.nih.gov) with that from Ensembl (http://useast.ensembl.org) or UCSC (http://genome.ucsc.edu). Although slight differences were observed among these sequences, including the definition of the start point, most were almost completely matched. This result suggests that the extant online miRNA target prediction database did not detect MMP7 as a candidate target gene of miR-148a, due to a deficiency in their chosen algorithm. These considerations point to a need for further refinement of online databases, in order to effectively identify real target genes for any given miRNA. At this point in time, conventional laboratory techniques remain very valuable methods for effective identification of miRNA target genes.

In summary, we have shown that downregulation of miR-148a is an independent prognostic classifier in patients with GC. Furthermore, this study identified MMP7 as a direct target of miR-148a in GC cells and its restoration by downregulation of miR-148a in these cells increases tumor invasive activity. The present findings provide evidence for the contribution of miR-148a to the maintenance of homeostasis in normal stomach tissue and suggest an additional role for miR-148a in GC invasion through regulation of MMP7 expression. Elucidation
of a fuller picture of the molecular mechanisms through which miR-148a is involved in gene deregulatory oncogenic processes could improve our understanding of carcinogenesis, particularly tumor progression in GC.

Acknowledgments

We thank Mr. Shinichi Norimura for excellent technical assistance. This work was carried out with the kind cooperation of the Research Center for Molecular Medicine, Faculty of Medicine, Hiroshima University (Hiroshima, Japan). We thank the Analysis Center of Life Science, Hiroshima University, for the use of their facilities. This work was supported by Grants-in-Aid for Research from the Ministry of Education, Culture, Science, Sports, and Technology of Japan, and, in part, by a Grant-in-Aid for the Third Comprehensive 10-Year Strategy for Cancer Control and for Cancer Research from the Ministry of Health, Labor, and Welfare of Japan, and from The National Institute of Biomedical Innovation (Program for Promotion of Fundamental Studies in Health Sciences). This work was also supported in part by a Research Fellowship of the Japan Society for the Promotion of Science and the National Cancer Center Research and Development Fund (23-A-9).

Disclosure Statement

The authors have no conflict of interest.

References

1 Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol 2006; 12: 354–62.
2 Yasui W, Sentani K, Sakamoto N, Anami K, Naito Y, Oue N. Molecular pathology of gastric cancer: research and practice. Pathol Res Pract 2011; 207: 608–12.
3 Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–66.
4 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–97.
5 Ambros V. The functions of animal microRNAs. Nature 2004; 431: 350–5.
6 Di Leva G, Croce CM. Roles of small RNAs in tumor formation. Trends Mol Med 2010; 16: 257–67.
7 Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG. Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 2009; 25: 3049–55.
8 Thomson DW, Bracken CP, Goodall GJ. Experimental strategies for microRNA target identification. Nucleic Acids Res 2011; 39: 6845–53.
9 Zhao X, Dou W, He L et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene 2013; 32: 1363–72.
10 Tsukamoto Y, Nakada C, Noguchi T et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zet. Cancer Res 2010; 70: 2339–49.
11 Sakamoto N, Oue N, Noguchi T et al. Serial analysis of gene expression of esophageal squamous cell carcinoma: ADAMTS16 is upregulated in esophageal squamous cell carcinoma. Cancer Sci 2010; 101: 1038–44.
12 Nagao K, Togawa N, Fujii K et al. Detecting tissue-specific alternative splicing and disease-associated aberrant splicing of the PTCH gene with exon junction microarrays. Hum Mol Genet 2005; 14: 3379–88.
13 Oue N, Sentani K, Sakamoto N et al. Characteristic gene expression in stromal cells of gastric cancers among atomic-bomb survivors. Int J Cancer Suppl 2009; 124: 1112–21.
14 Kondo T, Oue N, Yoshida K et al. Expression of POT1 is associated with tumor stage and telomere length in gastric carcinoma. Cancer Sci 2004; 95: 523–9.
15 Shimmi S, Sakamoto N, Goto K et al. MicroRNA-155 is a predictive marker for survival in patients with clear cell renal cell carcinoma. Int J Urol 2013; 20: 468–77.
16 Yasui W, Sano T, Nishimura K et al. Expression of P-cadherin in gastric carcinomas and its reduction in tumor progression. Int J Cancer Suppl 1993; 49: 49–52.
17 Herman JM, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821–6.
18 Hanoun N, Delpu Y, Suraiwatana AA et al. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clin Chem 2010; 56: 1107–18.
19 Matsumura S, Oue N, Mitani Y, Kitadai Y, Yasui W. DNA demethylation and the National Cancer Center Research and Development Fund (23-A-9). Supporting Information

Additional supporting information may be found in the online version of this article:

Fig. S1. Comparison between microarray and quantitative RT-PCR data for microRNA-148a (miR-148a) expression levels in the same gastric cancer (GC) sample set.

Fig. S2. Comparison between microRNA-148a (miR-148a) expression levels in non-neoplastic gastric mucosa and gastric cancer (GC).
Fig. S3. Quantitative RT-PCR and bisulfite genomic DNA sequencing analysis of MIR148A in gastric cancer (GC) cell lines.

Fig. S4. Effect of microRNA-148a (miR-148a) on epithelial–mesenchymal transition-related molecules and ROCK1 expression in gastric cancer cell lines.

Fig. S5. Effect of microRNA-148a (miR-148a) on MMP7 expression in gastric cancer cell lines.

Table S1. Correlation between microRNA-148a (miR-148a) expression level and clinicopathologic characters.

Table S2. Correlation between MMP7 and microRNA-148a (miR-148a) expression in gastric cancer tissue.

Data S1. Materials and methods.