ON EXTRAPOLATION OF CARLESON MEASURES

JOHN GARNETT

ABSTRACT. Extrapolation of Carleson measures is a technique originated by [LM] which has become an essential step for several important results. See for example [HL], [AHLT], [AHMTT] and more recently [HM], [HMM], and [HMMTZ]. Here we recast the proof of the extrapolation theorems in [AHLT] and [HMM] using the stopping time - generations language from [C1], [C2] or [CG] but no new idea. We give three equivalent versions of the theorem having the same proof. The first is for dyadic cubes in $[0,1]^d$, the second is an abstract formulation of the result on Ahlfors regular sets from [HM], and the third is the version in [AHLT] which follows from the other two.

1. THE DYADIC CASE

In \mathbb{R}^d, $d \geq 1$, let \mathcal{D} denote the set of closed dyadic cubes

$$Q = \bigcup_{k=1}^{d} \{ j_k 2^{-n} \leq x_k \leq (j_k + 1)2^{-n} \} \subset Q_0 = [0,1]^d, n \in \mathbb{N}, j_k \in \mathbb{Z}.$$

For $Q \in \mathcal{D}$ write $\ell(Q) = 2^{-n}$ for its side length and $|Q| = 2^{-nd}$ for its measure and define

$$Q^* = Q \times (0, \ell(Q)] \subset \mathbb{R}^{d+1},$$

$$T(Q) = Q \times (\ell(Q)/2, \ell(Q)] = Q^* \setminus \cup \{ Q_1 : Q_1 \subsetneq Q \},$$

and

$$\mathcal{D}(Q) = \{ Q' \in \mathcal{D} : Q' \subset Q \}.$$

A Borel measure μ on Q_0^* is a Carleson measure if

$$C_1(\mu) = \sup_{Q \in \mathcal{D}} \frac{\mu(Q^*)}{|Q|} < \infty.$$

Let ν be another Borel measure on Q_0^* satisfying

$$C_2(\nu) = \sup_{Q \in \mathcal{D}} \frac{\nu(T(Q))}{|Q|} < \infty,$$

a condition clearly necessary for ν to be a Carleson measure.

Theorem 1.1: Let μ and ν be Borel measures on Q_0^* satisfying (1.1) and (1.2) respectively. Assume there exist constants $\delta > 0$ and C such that

2010 Mathematics Subject Classification. 31B15, 28A75, 28A78, 35J15, 35J08, 42B37.
\[
\nu(Q^* \backslash \bigcup_{F} Q'^*) \leq C|Q|
\]
whenever \(Q \in \mathcal{D} \) and \(\mathcal{F} \subset \mathcal{D}(Q) \) is a set of subcubes of \(Q \) with disjoint interiors for which

\[
\sup_{Q' \in \mathcal{D}(Q)} \frac{\mu(Q'^* \backslash \bigcup_{F} Q'^*)}{|Q'|} \leq \delta.
\]

Then \(\nu \) is a Carleson measure with constant

\[
C_1(\nu) \leq \left(C_2(\nu) + \frac{2^d C}{2^d - 1} \right) \frac{C_1(\mu)}{\delta}. \quad (1.5)
\]

Careful reading will show that the proof below is little more than a reformulation of the arguments in Sections 7 and 9 of [HM].

Proof: When proving Theorem 1.1. we can assume \(E = \bigcup_{\partial} \partial Q^* \) satisfies \(\mu(E) = \nu(E) = 0 \) by pushing some mass off each \(\partial Q^* \) and thus we can treat all rectangles as open or closed sets when taking unions or intersections.

Fix \(\delta > 0 \) for which (1.4) implies (1.3). For each \(Q \in \mathcal{D} \) we will define a subset \(U(Q) \subset Q^* \) and a pairwise disjoint family \(G_1(Q) \subset \mathcal{D}(Q) \) so that

\[
U(Q) = Q^* \backslash \bigcup_{G_1(Q)} Q'^* . \quad (1.6)
\]

Further define by induction

\[
G_n(Q) = \bigcup \{ G_1(Q') : Q' \in G_{n-1}(Q) \}
\]

and \(G_0(Q) = \{ Q \} \). Then the family \(\bigcup_{n=0}^{\infty} U(Q') : Q' \in G_n(Q) \) is pairwise disjoint and

\[
\nu(Q^*) = \sum_{n=0}^{\infty} \sum_{G_n(Q)} \nu(U(Q')). \quad (1.7)
\]

For each \(Q \) and \(n \geq 1 \) write

\[
\mathcal{E}_n(Q) = \{ Q_n \subset Q : \ell(Q_n) = 2^{-n}\ell(Q) \}.
\]

Also define

\[
\mathcal{B} = \{ Q : \mu(T(Q)) \geq \delta|Q| \}. \quad (1.8)
\]

Fix \(Q \in \mathcal{D} \). For \(Q' \subset Q \) the definitions of \(U(Q') \) and \(G_1(Q') \) depend on whether or not \(Q' \in \mathcal{B} \). When \(Q \in \mathcal{B} \) take \(G_1(Q) = \mathcal{E}_1(Q) \) and \(U(Q) = T(Q) \). Then for any \(Q \) (1.2), (1.8) and disjointness yield
EXTRAPOLATION OF CARLESON MEASURES

\[\sum_{n=0}^{\infty} \sum_{B \cap G_n(Q)} \nu(U(Q')) \leq \frac{C_2}{\delta} \sum_{B \cap D(Q)} \mu(T(Q')) \leq \frac{C_1 C_2}{\delta} |Q|, \]

so that when estimating (1.7) we need only study \(Q' \notin B \).

When \(Q \in D \setminus B \) we define by induction sets \(\mathcal{F}_n(Q) \subset \bigcup_{k=1}^{n} \mathcal{E}_k(Q) \) so that

\[\mathcal{F}_n(Q) \subset \mathcal{F}_{n+1}(Q) \]

and so that (1.4) holds for \(Q \) and

\[\tilde{\mathcal{F}}_n(Q) = \mathcal{F}_n(Q) \cup \mathcal{B}_{n+1}(Q) \]

where

\[\mathcal{B}_{n+1}(Q) = \mathcal{E}_{n+1}(Q) \setminus \bigcup_{Q' \in \mathcal{F}_n(Q)} \mathcal{D}(Q'). \]

Then (1.4) will hold for \(Q \) and

\[\mathcal{F}(Q) = \bigcup_{n} \mathcal{F}_n(Q). \]

Step I: \(n = 1 \). Include \(B \cap \mathcal{E}_1(Q) \subset \mathcal{F}_1(Q) \) and then consider the family of subsets \(\mathcal{I} \subset \mathcal{E}_1(Q) \setminus B \) such that (1.4) holds for \(Q \) and \(\tilde{\mathcal{F}} \) where \(\tilde{\mathcal{F}} = \mathcal{I} \cup (\mathcal{E}_1(Q) \setminus B) \). This family is non-empty because it contains \(\mathcal{E}_1(Q) \setminus B \) since \(Q \notin B \). Order this set family by inclusion, let \(\mathcal{I}_1(Q) \) be a minimal element and define

\[\tilde{\mathcal{F}}_1(Q) = \mathcal{I}_1(Q) \cup (B \cap \mathcal{E}_1(Q)). \]

Then (1.4) holds for \(\tilde{\mathcal{F}}_1(Q) \).

Step II: Now assume \(n \geq 1 \) and \(\mathcal{F}_n(Q) \) has been constructed. If \(\bigcup \mathcal{F}_n(Q) Q' = Q \) stop the construction for \(Q \). If not, include \(B \cap \mathcal{B}_n(Q) \subset \mathcal{F}_{n+1}(Q) \) and consider the family of subsets \(\mathcal{I} \subset \mathcal{B}_n(Q) \setminus B \) such that when

\[\mathcal{F}(Q) = \mathcal{F}_n(Q) \cup \mathcal{I} \cup (B \cap \mathcal{B}_{n+1}(Q)) \]

(1.4) holds for \(Q \) and

\[\tilde{\mathcal{F}}_{n+1}(Q) = \mathcal{F}(Q) \cup (\mathcal{E}_{n+2}(Q) \setminus \bigcup_{Q' \in \mathcal{F}(Q)} \mathcal{D}(Q')). \]

This family is non-empty because by induction (1.4) holds for \(Q \) and \(\tilde{\mathcal{F}} \) when \(\mathcal{I} = \mathcal{B}_{n+1}(Q) \). Order this finite set family by inclusion, let \(\mathcal{I}_{n+1}(Q) \) be a minimal member, and define \(\mathcal{F}_{n+1}(Q) \) by (1.6) with \(\mathcal{I} = \mathcal{I}_{n+1}(Q) \). Then (1.4) holds for \(Q \) and \(\tilde{\mathcal{F}}_{n+1}(Q) \).

Moreover we have:

Lemma 1.2: If \(Q' \in \mathcal{F}(Q) \setminus B \) there exists \(\bar{Q}' \) such that \(Q' \subset \bar{Q}' \subset Q \) and
\[\mu(\tilde{Q}'^* \backslash \bigcup_{F(Q)} Q'^*) \geq \left(1 - \frac{1}{2^d}\right)\delta|\tilde{Q}'|. \]

Proof: We have \(Q' \in \mathcal{F}_n \) for some first \(n \) and by the minimality of \(S_n \) there exists \(\tilde{Q}' \supseteq Q' \) such that

\[\mu(\tilde{Q}'^* \bigcup \{Q''^* : Q'' \in \mathcal{F}_n(Q) \cup \mathcal{E}_{n+1}(Q)\}) + \mu(T(Q')) > \delta|\tilde{Q}'| \]

while \(\mu(T(Q')) < \frac{\delta}{2^d}|\tilde{Q}'| \) since \(Q' \notin \mathcal{B} \). Therefore (1.11) holds.

When \(Q' \notin \mathcal{B} \), (1.4) holds for \(Q' \) and \(\mathcal{F}(Q') \) so that by (1.3) \(\nu(U(Q')) \leq C|Q'| \) and therefore

\[\sum_{n} \sum_{G_n(Q) \notin \mathcal{B}} \nu(U(Q')) \leq C \sum_{n=0}^{\infty} \sum_{G_n(Q) \notin \mathcal{B}} |Q'|. \]

By Lemma 1.2 we can cover \(\bigcup_{\mathcal{F}(Q) \notin \mathcal{B}} Q' \) by the pairwise disjoint family \(\mathcal{H}(Q) \) of maximal dyadic cubes \(\tilde{Q}' \) that satisfy (1.11). Then since both families \(\mathcal{H}(Q) \) and \(\mathcal{F}(Q) \backslash \mathcal{B} \) are pairwise disjoint, (1.11) yields

\[\sum_{\mathcal{F}(Q) \backslash \mathcal{B}} |Q'| \leq \sum_{\mathcal{H}(Q)} |\tilde{Q}'| \leq \frac{2^d}{2^d - 1} \frac{1}{\delta} \mu(U(Q)), \]

and (1.13), (1.12) and (1.1) give

\[\sum_{n=1}^{\infty} \sum_{G_n(Q) \notin \mathcal{B}} \nu(Q') \leq \frac{2^d}{2^d - 1} \frac{C C_1}{\delta} |Q|, \]

and together (1.14) and (1.9) establish the estimate (1.5) and prove Theorem 1.1.

2. A GENERAL CASE

Let \(d \) be a positive integer and let \((X, \rho)\) be a metric space on which there exists a positive Borel measure \(\sigma \) that is \(d \) Ahlfors regular: there exists \(c_1 > 0 \) such that

\[\frac{1}{c_1} R^d \leq \sigma(B(x, R)) \leq c_1 R^d \]

for all \(x \in X \) and all \(0 < R \leq \text{diam}(X) \). We assume for simplicity that \(X \) is compact and \(\sigma(X) = 1 \). Following Christ [Ch], there exists a positive integer \(N \) and a family

\[\mathcal{D} = \bigcup_{j=0}^{\infty} \mathcal{D}_j \]

of Borel subsets of \(X \) satisfying (2.2) - (2.6) below:
(2.2) \[\text{diam } Q \sim 2^{-Nj} \text{ if } Q \in \mathcal{D}_j; \]

(2.3) \[X = \bigcup_{\mathcal{D}_j} Q, \text{ for all } j; \]

(2.4) \[Q \cap Q' = \emptyset \text{ if } Q, Q' \in \mathcal{D}_j \text{ and } Q' \neq Q; \]

(2.5) \[\text{if } j < k, Q_j \in \mathcal{D}_j \text{ and } Q_k \in \mathcal{D}_k, \text{ then } Q_k \subset Q_j \text{ or } Q_k \cap Q_j = \emptyset. \]

There exists constant \(c_0 \) such that for all \(Q \in \mathcal{D} \) there exists \(x_Q \in Q \) with

(2.6) \[B(x_Q, c_0 \ell(Q)) \cap \partial \Omega \subset Q. \]

Note that by (2.1), (2.2) and (2.6) there is a constant \(c_2 \) so that for all \(Q \in \mathcal{D} \),

(2.7) \[\frac{1}{c_2} \ell(Q)^d \leq \sigma(Q) \leq c_2 \ell(Q)^d. \]

Now let \(\mu \) and \(\nu \) be positive discrete measures on the countable set \(\mathcal{D} \), so that there exist \(\alpha_Q \geq 0 \) and \(\beta_Q \geq 0 \) such that for any \(E \subset \mathcal{D} \)

\[\mu(E) = \sum_{Q \in E} \alpha_Q \]

and

\[\nu(E) = \sum_{Q \in E} \beta_Q. \]

Analogous to (1.1) and (1.2) we assume \(\mu \) is a discrete Carleson measure,

(2.8) \[C_1(\mu) = \sup_{Q \in \mathcal{D}} \frac{\mu(Q^*)}{\sigma(Q)} < \infty, \]

where we write \(Q^* = \{ Q' : Q' \subseteq Q \} \), and we assume

(2.9) \[C_2(\nu) \sup_{Q \in \mathcal{D}} \frac{\beta_Q}{\sigma(Q)} < \infty, \]

which is necessary for \(\nu \) to be a discrete Carleson measure. Then we have the following abstract version of Theorem 1.1:

Theorem 2.1: Let \(\mu \) and \(\nu \) be measures on \(\mathcal{D} \) satisfying (2.8) and (2.9) respectively. Assume there exist constants \(\delta > 0 \) and \(C \) such that
(2.10) \[\nu(Q^* \setminus \bigcup_{F} Q') \leq C \sigma(Q) \]

whenever \(Q \in \mathcal{D} \) and \(\mathcal{F} \subset \mathcal{D}(Q) \) is a set of subcubes of \(Q \) for which

(2.11) \[\sup_{Q' \subset Q} \frac{\mu(Q^* \setminus \bigcup_{F} Q'')}{\sigma(Q')} \leq \delta. \]

Then \(\nu \) is a Carleson measure with constant \(C_1(\nu) \) depending only on \(c_2, C, \delta, C_1(\mu) \) and \(C_2(\nu) \).

But for the choices of constants the proof of Theorem 2.1 is a repetition of the proof of Theorem 1.1 and we omit the details.

Theorem 2.1 can be stated more abstractly as a result about the tree \((\mathcal{D}, \subset)\) with transition probabilities \(\sigma(Q')/\sigma(Q) \) for \(Q' \subset Q \). However for the important applications in [HM], [HMM] and [HMMTZ] \(\Omega \) is a domain in \(\mathbb{R}^{d+1} \), \(E = \partial \Omega \) is uniformly rectifiable, and \(\alpha_Q \) and \(\beta_Q \) depend critically on the uniform rectifiability properties of \(E \) and on the elliptic differential equation whose solutions are being estimated. Thus the real difficulty lies in finding suitable functions \(\alpha_Q \) and \(\beta_Q \).

3. A THIRD VERSION

The “extrapolation lemma” in [AHLT] assumes \(\mu \) is a Carleson measure in \(\mathbb{R}^{d+1} \), i.e. \(\mu \) satisfies (1.1) for all cubes \(Q \subset \mathbb{R}^d \) and \(\nu \) is another Borel measure on \(\mathbb{R}^{d+1} \) satisfying

(3.1) \[\nu(T(Q)) \leq C_2|Q|, \]

where now \(T(Q) = Q \times [\ell(Q), \ell(Q)] \subset \mathbb{R}^{d+1} \).

But instead of a cube family \(\mathcal{F} \) one now works with a nonnegative Lipschitz function \(\psi \) such that

(3.2) \[||\nabla \psi||_{\infty} \leq 1 \]

and the region

\[\Omega_{\psi} = \{(x, t) \in \mathbb{R}^d \times (0, \infty) : t \geq \psi(x)\} \]

and instead of (1.4) one tests \(\mu(T_Q \setminus \Omega_{\psi}) \) where \(T_Q \) is the tent

\[T_Q = \{(x, t) : x \in Q, 0 \leq t \leq \text{dist}(x, \mathbb{R}^d \setminus Q)\}. \]

Theorem 3.1: Let \(\mu \) and \(\nu \) be Borel measures on \(\mathbb{R}^{d+1} \) satisfying (1.1) and (3.1) respectively. Assume there are constants \(\delta > 0 \) and \(C > 0 \) such that whenever \(Q \subset \mathbb{R}^d \) is a cube and \(\psi : Q \to \mathbb{R} \) is a nonnegative Lipschitz function satisfying (3.2)

(3.3) \[\nu(Q^* \cap \Omega_{\psi}) \leq C|Q| \]
EXTRAPOLATION OF CARLESON MEASURES

holds provided

\[(3.4) \quad \sup_{Q' \subset Q} \frac{\mu(TQ' \cap \Omega_\psi)}{|Q'|} \leq \delta \]

where the supremum is taken over the decomposition of \(Q\) into cubes having side \(2^{-n}\ell(Q), n \in \mathbb{N}\). Then \(\nu\) is a Carleson measure, i.e. for all \(Q\)

\[(3.5) \quad \nu(Q^*) \leq C|Q| \]

Proof: First note that (3.1) implies for all \(Q\)

\[(3.6) \quad \nu(Q^* \setminus TQ) \leq (C_2 + d)|Q| \]

so that to prove (3.4) for a fixed cube \(Q\) we may assume

\[(3.7) \quad \nu(Q^* \setminus TQ) = 0 \]

and as before we can assume \(\nu(\partial TQ' \cup T(Q')) = 0\) for all \(Q' \subset Q\). For each \(Q'\) write \(p_{Q'} = (c(Q'), \frac{\ell(Q')}{2})\) for the center of \(Q^*\) which is also the vertex of \(TQ'\) and define the discrete measures

\[\tilde{\nu} = \sum_{Q' \subset Q} \nu(T(Q'))\delta_{p_{Q'}}, \text{ and } \tilde{\mu} = \sum_{Q' \subset Q} \mu(T(Q'))\delta_{p_{Q'}}\]

where \(\delta_p\) is the unit point mass at \(p\). Then by (3.7)

\[(3.8) \quad \tilde{\nu}(Q^*) = \nu(Q^*) \text{ and } \tilde{\mu}(Q^*) = \mu(Q^*) \]

for all \(Q' \subset Q\).

To prove Theorem 3.1 we show that if (3.4) \(\implies\) (3.3) for \(\mu\) and \(\nu\) then (1.4) \(\implies\) (1.3) for \(\tilde{\mu}\) and \(\tilde{\nu}\), so that by (3.8) and Theorem 1.1, (3.5) holds for \(\nu\). To that end let \(\mathcal{F} = \{Q_1, \ldots\}\) be a pairwise disjoint family of subcubes of \(Q\) satisfying (1.4) with \(\tilde{\nu}\). Set

\[\psi_{\mathcal{F}}(x) = \sum_{\mathcal{F}} \frac{2}{\ell(Q_j)} \chi_{Q_j}(x) \text{dist}(x, \partial Q_j).\]

Then

\[Q^* \cap \Omega_\psi = (Q^* \setminus \bigcup_{\mathcal{F}} Q_j^*) \cup \bigcup_{\mathcal{F}} (Q_j^* \setminus TQ_j)\]

so that by (1.4) and (3.8) we obtain (3.4) for \(\mu\) and (3.3) for \(\nu\) and therefore (1.3) for \(\tilde{\nu}\), again by (3.8).
REFERENCES

[AHLT] P. Auscher, S. Hofmann, J. L. Lewis, and P. Tchamitchian. Extrapolation of Carleson measures and the analyticity of Kato’s square-root operators. Acta Math. 187 (2001), 161-190.

[AHMTT] P. Auscher, S. Hofmann, C. Muscalu, T. Tao, and C. Thiele Carleson measures, trees, extrapolation, and $T(b)$ theorems. Publ. Mat. 46 (2002) 257-325.

[Ca1] L. Carleson. Interpolations by bounded analytic functions and the corona problem. Ann. of Math. 76, 547-559. (1962).

[Ca2] L. Carleson. The corona theorem, Proc. Scand. Congr., 15th, Oslo (Lecture Notes in Mathematics, Vol. 118). Springer-Verlag, Berlin and New York.

[CG] L. Carleson and J. Garnett. Interpolating sequences and separation properties. J. Analyse Math. 28 (1975) 273-299.

[Ch] M. Christ. A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61 (1990) 601-628.

[HL] S. Hofmann and J. L. Lewis. The Dirichlet problem for parabolic operators with singular drift terms. Mem. Amer. Math. Soc. 151 (2001), no. 719.

[HM] S. Hofmann and J.M. Martell. Uniform Rectifiability and Harmonic Measure I: Uniform rectifiability implies Poisson kernels in L^p, Ann. Sci. École Norm. Sup. 47 (2014), no. 3, 577–654. [arXiv:1505.06499]

[HMM] S. Hofmann, J. M. Martell, and S. Mayboroda. Uniform rectifiability, Carleson measure estimates, and approximation of harmonic functions. Duke Math. J. 165 (2016), no. 12, 2331–2389.

[HMMTZ] S. Hofmann, J. M. Martell, S. Mayboroda, T. Toro, and Z. Zhao. Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. [arXiv:2008.04834v1]

[LM] J. L. Lewis and M. A. M. Murray. The method of layer potentials for the heat equation in time-varying domains. Mem. Amer. Math. Soc. 144 (1996), no. 545.

JOHN GARNETT, DEPARTMENT OF MATHEMATICS, 6363 MATHEMATICAL SCIENCES BUILDING, UNIVERSITY OF CALIFORNIA AT LOS ANGELES, 520 PORTOLA PLAZA, LOS ANGELES, CALIFORNIA 90095-1555.

Email address: jbg@math.ucla.edu