Advancing Digital Health Equity: A Policy Paper of the Infectious Diseases Society of America and the HIV Medicine Association

Brian R. Wood, Jeremy D. Young, Rima C. Abdel-Massih, Lewis McCurdy, Todd J. Vento, Shireesha Dhanireddy, Kay J. Moyer, Javeed Siddiqui, and John D. Scott

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has revolutionized the practice of ambulatory medicine, triggering rapid dissemination of digital healthcare modalities, including synchronous video visits. However, social determinants of health, such as age, race, income, and others, predict readiness for telemedicine and individuals who are not able to connect virtually may become lost to care. This is particularly relevant to the practice of infectious diseases (ID) and human immunodeficiency virus (HIV) medicine, as we care for high proportions of individuals whose health outcomes are affected by such factors. Furthermore, delivering high-quality clinical care in ID and HIV practice necessitates discussion of sensitive topics, which is challenging over video without proper preparation. We describe the “digital divide,” emphasize the relevance to ID and HIV practice, underscore the need to study the issue and develop interventions to mitigate its impact, and provide suggestions for optimizing telemedicine in ID and HIV clinics.

Keywords. HIV; communicable diseases; telemedicine; policy.

Almost overnight, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic fundamentally changed the practice of ambulatory medicine in the United States. In response to the public health emergency, clinics swiftly launched or expanded options for healthcare delivery through synchronous telemedicine (real-time video conferencing) and other telehealth modalities (“telehealth” refers broadly to all remote electronic healthcare services, including video interactions, telephone communication, asynchronous messaging, and others). A report from the Department of Health and Human Services (HHS) highlights the unprecedented change, noting that 43.5% of Medicare visits in April 2020 (~1.3 million visits per week) were conducted electronically—the report includes interactions by voice, voice and video, chat, or e-mail—compared with 0.1% in February 2020 (~2000 per week) [1].

The immediate expansion of remote healthcare service delivery was facilitated by Congressional House Bill 6074, which allowed HHS to waive certain telemedicine restrictions, coupled with emergency declaration waivers from the Centers for Medicare and Medicaid Services [2–4]. These directives suspended regulatory obstacles to video visits; previously, patients had to live in designated rural or medically underserved areas and could not connect to visits from home. The declarations also expanded provider types who could bill for telehealth services and allowed use of remote communication applications that may not meet Health Insurance Portability and Accountability Act (HIPAA) requirements. These new mandates, coupled with improved coverage from private payors, enabled the rapid and dramatic expansion of virtual healthcare. However, many of these regulatory decrees are temporary. Moreover, the accelerated adoption of remote healthcare has exposed critical gaps in access. Socioeconomic disparities prevent many vulnerable persons from benefiting from telehealth innovations; such disparities create a “digital divide” [5–7].

This digital divide, defined as unequal access to or ability to engage in care using technological means, is not new, but has become more apparent with the recent proliferation of video visits. As an example, researchers analyzed data from cardiology clinic visits since onset of the SARS-CoV-2 pandemic and results reveal that social determinants of health significantly impact a person’s ability to engage via telehealth [8]. In general, video visits are preferred over telephone visits [9], as they allow for better communication, a limited physical assessment, and enhanced reimbursement. However, female, older, lower-income (<$50 000/year), and non–English-speaking patients were more likely to complete a telephone visit instead of a video visit [8]. Another troubling finding: non-English proficiency was associated with a more than 50% decrease in the use...
of either video or phone visits. Similarly, investigators examined data from gastroenterology clinic visits during the pandemic and found that Black race and age above 60 were independent predictors of completing a phone visit instead of video and of lower usage of online portals [10].

Practitioners in the fields of infectious diseases (ID) and human immunodeficiency virus (HIV) medicine care for a disproportionately large number of individuals whose health outcomes are affected by social determinants of health, including race, ethnicity, gender, income, housing stability, mental health, substance use, education, language, incarceration history, and others [11, 12]. The degree to which social determinants of health predict digital health readiness is striking. They influence a person’s likelihood of being able to participate in video visits, communicate by electronic health record (EHR) portals, and request appointments or prescription refills electronically [13, 14]. In addition, most mobile health applications are not designed to engage individuals with limited English proficiency [13]. Efforts to eliminate health inequities based on the intersectionality of various socioeconomic factors must also address the influence of such factors on digital health access.

For an individual to benefit from digital healthcare, experts describe 3 requirements: (1) technology, (2) technical literacy, and (3) broadband internet connectivity [15]. We would add a fourth related, yet independent, need: personal privacy. For individuals with conditions that sadly remain stigmatizing (HIV, viral hepatitis, sexually transmitted infections, tuberculosis, and others) or when discussing personal matters (sexual health, gender-affirming care, intimate partner violence, mental health, substance use), personal privacy becomes a crucial, yet sometimes scarce, commodity outside of the clinic. These sensitive discussions are critical to delivery of high-quality care in ID and HIV medicine; raising such conversations by video or phone can create ethical dilemmas for the patient and provider if proper planning and preparations are not completed.

Here, we aim to examine how critical digital health access points—technology, technical literacy, broadband connectivity, and personal privacy—impact care. We seek to highlight unique considerations for ID and HIV practitioners, acknowledge ethical dilemmas that may arise in the practice of telemedicine as well as risks of exacerbating implicit biases, and recommend that, as a community of practitioners, we work towards interventions to relieve these pressure points. We emphasize the importance of collecting data, tracking, and researching disparities in telehealth access in order to devise interventions and promote digital health equity.

SOCIAL DETERMINANTS OF HEALTH PREDICT READINESS FOR TELEMEDICINE

The most obvious requisite for telemedicine is a device with audio and video capability, such as a desktop, laptop, smartphone, or tablet. However, one must also have consistent broadband internet connectivity. Access to any internet service is not the same as access to reliable broadband; patients may have some internet access at home or on their device but lack stable broadband or sufficient data speeds and quantities for video interactions. Additionally, to access virtual visits, a person must feel comfortable using and interacting with their device and understand how to connect to EHR portals and video interfaces. Participation in telemedicine becomes more difficult if a person requires care through multiple healthcare centers that use different EHR portals and video apps.

As an illustration of disparities in device ownership and broadband internet access, 2016 data from the US Census Bureau showed that 80.9% of white households had a desktop or laptop computer, compared with 63.9% of Black and 67.5% of Hispanic households, with similar discrepancies in broadband subscriptions [16]. Analyses from the Pew Internet and American Life Project demonstrate stark differences in smartphone ownership and home broadband use by age, race, income, and educational level [17] (Figure 1). Individuals from ethnic minority or lower income groups are more likely to be “smartphone dependent” (rely on a phone for internet service), which may be less dependable than an established device with stable broadband connectivity in the home [18, 19]. Additionally, urban versus rural discrepancies in telemedicine access remain stark. Many rural areas in the United States still lack high-speed broadband connectivity and individuals living outside of metropolitan and urban areas are less likely have the capacity to complete video visits from home [13, 16, 17]. Telehealth visit increases in recent months have been more modest in rural compared with urban areas, at least partly due to differences in broadband availability [1].

Age and social isolation are also critical factors that reduce the likelihood of engaging in virtual healthcare. Studies using 2018 data estimated that, of older adults in the United States, 38% were not ready for home-based video visits; technical inexperience emerged as a predominant barrier [20]. Additionally, 20% of older adults were unready for phone visits due to limited hearing, vision, or cognition. Lack of telemedicine readiness was more likely for individuals who were older, male, unmar- ried, Black or Hispanic, resided in nonmetropolitan areas, had less education, lower income, and poorer self-reported health. A similar analysis identified significant barriers to telemedicine for many Medicare beneficiaries: 41.4% lacked a desktop or laptop computer with high-speed internet connection at home, 40.9% lacked a smartphone with wireless data, and 26.3% lacked both (even higher for Black or Hispanic individuals or persons with lower income, high school education or less, Medicaid, or a disability) [21].

In ID and HIV clinics, practitioners may care for large proportions of individuals who experience an intersection of factors that make them especially vulnerable to these disparities in digital health access. For example, a study that surveyed...
persons with HIV (PWH) and hepatitis C as well as a history of substance use found that, while 86% owned a mobile phone, there were high rates of phone turnover and only 52% had daily internet service [22]. Researchers in a metropolitan area surveyed 103 cis-gender women with HIV (median age, 50 years; majority Black, half with less than a high school education, and half unstably housed) and determined that 61% were active internet users, but most relied on a mobile phone for access. Those who were older, had lower income, or less social support were less likely to use the internet [23]. Given sizeable numbers of individuals with HIV, hepatitis C, and other infectious diseases in rural regions, as well as recent outbreaks associated with the opioid epidemic, geographic disparities in digital healthcare access are also highly relevant [24, 25]. Furthermore, large proportions of patients in ID and HIV clinics may be older and rates of social isolation are dramatically high, so the digital divide is germane to ID and HIV practice [26–28].

Undoubtedly, some individuals benefit greatly from telemedicine. Individuals who live far from the clinic or have barriers to transportation or mobility, for example, may better engage in care by video as opposed to in-person, and indeed, many individuals were ready and eager for telemedicine prior to the SARS-CoV-2 pandemic [1]. Remote visits reduce other burdens created by in-person appointments (lost time from work, childcare needs, or stigma that some feel when attending visits at an ID or HIV clinic), and video visits may add insights for the provider into the patient’s living situation, thus augmenting quality of care (reminiscent of a home visit). Moreover, the ability to offer remote visits is critical during the current public health crisis and gives an opportunity to help keep individuals who are vulnerable to severe SARS-CoV-2 infection at home and safe. We assert that recent regulatory changes should be extended so that after the pandemic we can continue to utilize telemedicine to increase care access. However, we also believe it is important to recognize that social determinants of health predict the ability to engage by telemedicine so that disparities can be quantified and addressed.

Concerns have been raised that telemedicine may contribute to “depersonalization of medicine” (less personal connection with patients when relying on distance visits) and data suggest that satisfaction with tele-visits may vary by age, gender, race/ethnicity, and other factors [10, 29–31]. Video visits may also perpetuate or exacerbate provider implicit biases due to visualizing a patient’s living environment or less personal interactions [32]. We must acknowledge and remain aware of these risks. Furthermore, while social determinants of health predict telemedicine readiness, one should never assume that a patient will or will not be able to engage in video visits based on demographic or clinical history alone. We need to carefully track, study, and understand which individuals in HIV and ID clinics benefit from telemedicine and which are excluded so that we can better identify and support individuals who cannot connect. Acknowledging the digital divide will allow for analyses of ways in which telemedicine mitigates versus exacerbates healthcare
disparities so that all may benefit from digital innovations. We recommend developing plans to assess each individual’s readiness for telemedicine and focusing on ways to prevent disparities in care from widening.

IMPROTANCE OF PERSONAL PRIVACY

As a real-life case scenario that raises important considerations around preparing for and conducting telemedicine visits, a provider logs into a video visit and the patient, a young Black man-who-has-sex-with-men, joins from the corner of the shelter where he stays, using a personal phone but without headphones. The patient, who has HIV, struggles with medication adherence due to drug use and mental health issues. Should the provider conduct this video visit? If so, how can it be done safely and sensitively, protecting privacy and confidentiality? What preparations could have enhanced the likelihood of a successful visit?

This scenario illustrates an ethical dilemma that providers face more often in the era of frequent video visits. Patients may log into visits from a public space (park, parking lot, city street, public transportation, work site, etc) out of necessity, or from various places in the buildings where they reside (including bathrooms) in an effort to keep discussions with their healthcare providers private. Although headphones may seem like a trivial accessory, they add an essential amount of privacy. Importantly, when a provider logs into a video visit, consent for conducting the visit by video should come first and should acknowledge risks to privacy, particularly if the patient joins from a public setting or does not have headphones. In some instances, the video visit should be rescheduled if privacy is a concern.

Clinicians must exercise judgment in deciding when to encourage in-person versus remote visits and certain medical issues necessitate an in-person visit, especially those that require a hands-on physical examination. Currently, the decision for in-person versus telemedicine visits also requires judgment about risk of SARS-CoV-2 infection in the local jurisdiction, patient risk factors for serious SARS-CoV-2 infection, availability of personal protective equipment, and risks of travel to the clinic, particularly if physical distancing is difficult. Unfortunately, this risk is greater for many individuals from lower income or minority ethnic groups, who are more likely to rely on public transportation and face a disproportionately elevated risk of SARS-CoV-2 infection [33].

POTENTIAL INTERVENTIONS TO MITIGATE EFFECTS OF DIGITAL HEALTH DISPARITIES

Research is needed to quantify and characterize the digital divide in ID and HIV, with the goal of understanding and alleviating virtual healthcare barriers. Rodriguez and colleagues [13] recently outlined broad-scale interventions from various stakeholders that would help move towards digital health equity in all fields and we support these recommendations. Steps must be taken at the national, state, and local levels. In addition to campaigns for expansion of broadband internet, advocacy is needed so that recent legislative, regulatory, and reimbursement changes persist and continue to support telehealth services and ensure payment parity after the emergency declarations end (payment parity for video and phone visits, as individuals who are unable to engage in care by video may rely on phone appointments to stay connected).

As an example of a state-level response to the public health crisis, the Washington State Health Care Authority distributed licenses for a telemedicine application to clinics serving vulnerable persons and supplied donated phones to Native American tribes, Medicaid clients, persons enrolled in housing and employment support programs, and other vulnerable individuals [34]. These and similar interventions by other states should be replicated and their impact assessed. As an example of interventions at a healthcare institution, medical students at the University of Washington created a Telehealth Navigation Project in which student volunteers contact individuals prior to scheduled telemedicine visits to help them prepare and connect, plus they are creating a kiosk at the medical center where a volunteer teaches patients how to join video visits.

Other interventions that have been implemented or are in development to support telemedicine should be expanded. These interventions could be adopted by healthcare institutions, clinics, public health departments, community-based organizations, and others, and should be supported with funding at the state and national level:

- Develop protocols to assess patient technical readiness and needs at clinical intake and update at each subsequent visit.
- Ahead of every telemedicine visit, provide instructions (in the patient’s language) for connecting and recommendations for maintaining privacy, such as use of headphones.
- Conduct a test visit to confirm capability, review the process, and ensure a plan for a safe space to conduct the visit (Figure 2 provides a sample checklist).
- Develop programs that offer smartphones, tablets, or laptops to patients, and that provide headphones if a person does not have access to them; offering hardware devices is not a panacea because it does not address other barriers, like broadband access or other hurdles we have outlined, plus devices can be lost or stolen, but for some individuals it can make a major difference.
- Implement classes or other trainings to teach technical literacy, especially for individuals with the most need, such as those with limited English proficiency or hearing or vision impairment.
- Ensure an option for language interpretation services (simultaneous video preferred over audio only) as well as options for hearing impairment (American Sign Language interpreters or closed captioning) and assess if individuals...
need assistance due to vision impairment or cognitive impairments; follow telehealth principles outlined by the Consortium for Citizens with Disabilities [35].

- Design virtual user interfaces, mobile health applications, websites, and other online health support tools to engage users of various language and cultural backgrounds and users with visual or hearing impairment.

- Provide a way that patients can access video visits besides the EHR portal; for example, secure HIPAA-compliant texting platforms can be used to message patients with instructions and links to their telemedicine visit.

- Train clinical staff, peer support teams, volunteers, and/or healthcare navigation specialists to help patients manage EHR portals and telemedicine tools.
• Design locations where individuals can join teledmedicine visits that offer reliable connectivity, privacy, and careful cleaning and precautions to prevent SARS-CoV-2 infection (accessible stations in a parking lot or library, for example, or available devices and assistance at central community-based organization sites) [36].

• Offer tablets with headphones and a private space to connect at group living sites, such as shelters (with careful cleaning and precautions to prevent SARS-CoV-2).

• For clinics and healthcare systems, carefully track which individuals appear to be absent from care, missing video visits, or relying on phone visits instead of video and develop outreach programs.

• Include health disparities as a key performance indicator on teledmedicine dashboards and quality-improvement interventions.

• Add teledmedicine best practices to medical education and training curricula.

CONCLUSIONS

Telemedicine offers a powerful tool to ensure access to healthcare and some patients are benefiting dramatically from recent expansions. However, we need intentional interventions to ensure that this era of virtual healthcare does not exclude vulnerable persons from care. Local, state, and national approaches to address digital health equity and mitigate the impact of the digital divide on health outcomes for all patients are critical and should be a priority in ID and HIV medicine.

Notes

Acknowledgments. The authors thank Dr Angad Singh for input on medical student volunteer programs at the University of Washington and Lisa Sawczuk and Amber Bent from Infectious Disease Connect for assistance in developing the figure and supplementary material.

Potential conflicts of interest. J. D. S. reports personal fees from Gilead Sciences and Premera Blue Cross. All other authors report no potential conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. Bosworth A, Ruther J, Smason LW, et al. Medicare beneficiary use of telehealth visits: early data from the start of the COVID-19 pandemic. Washington, DC: Office of the Assistant Secretary for Planning and Evaluation, US Department of Health and Human Services. July 28, 2020. Available at: https://aspe.hhs.gov/pdf-report/medicare-beneficiary-use-telehealth. Accessed 22 August 2020.

2. US Congress. H.R.6074—Coronavirus Preparedness and Response Supplemental Appropriations Act, 2020. Available at: www.congress.gov/bill/116th-congress/house-bill/6074. Accessed 22 August 2020.

3. Centers for Medicare and Medicaid Services. COVID-19 emergency declaration blanket waivers for health care providers. Available at: www.cms.gov/files/document/summary-covid-19-emergency-declaration-waivers.pdf. Accessed 22 August 2020.

4. Department of Health and Human Services. Notification of enforcement discretion for teledhealth remote communications during the COVID-19 nationwide public health emergency. Available at: www.hhs.gov/hipaa/for-professionals/special-topics/emergency-preparedness/notification-enforcement-discretion-telehealth/index.html. Accessed 22 August 2020.

5. Fang ML, Carhnan SL, Battersby L, Sixsmith J, Wada M, Sixsmith A. Exploring privilege in the digital divide: implications for theory, policy, and practice. Gerontologist 2019; 59:e1–5.

6. Estacio V, Whittle R, Protheroe J. The digital divide: examining sociodemographic factors associated with health literacy, access and use of internet to seek health information. J Health Psychol 2019;24:1668–75.

7. Walker DM, Hefner JL, Fareed N, Huerta TR, McAlearney AS. Exploring the digital divide: age and race disparities in use of an inpatient portal. Telemed J E Health 2020; 26:603–13.

8. Eberly LA, Khatana SAM, Nathan AS, et al. Teledmedicine outpatient cardiovascular care during the COVID-19 pandemic. Circulation 2020;142:510–2.

9. Rush KL, Howlett L, Munro A, Burton L. Videoconference compared to telephone in healthcare delivery: a systematic review. Int J Med Inform 2018; 118:44–53.

10. Serper M, Nunes F, Ahmad N, Roberts D, Metz DC, Mehta SJ. Positive early patient and clinician experience with telemedicine in an academic gastroenterology practice during the COVID-19 pandemic. Gastroenterology. Published online June 18, 2020. doi: 10.1053/j.gastro.2020.06.034

11. Centers for Disease Control and Prevention. NCHHSTP social determinants of health. Available at: https://www.cdc.gov/nchhstp/socialdeterminants/index.html. Accessed 27 August 2020.

12. Centers for Disease Control and Prevention. Establishing a holistic framework to reduce inequities in HIV, viral hepatitis, STDs, and tuberculosis in the United States. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention; October 2010. Available at: https://cvs.cdc.gov/publication/establishing-holistic-framework-reduce-inequities-hiv-viral-hepatitis-stds-and/. Accessed 22 August 2020.

13. Rodriguez JA, Clark CR, Bates DW. Digital health equity as a necessity in the 21st century cura’s era. JAMA 2020; 323:2381–2.

14. Anthony DL, Campos-Castillo C, Lim PS. Who isn’t using patient portals and why? Evidence and implications from a national sample of US adults. Health Aff (Millwood) 2018; 37:1948–54.

15. Velasquez D, Mehrrota A. Ensuring the growth of telehealth during COVID-19 does not exacerbate disparities in care. Health Affairs blog, May 8, 2020. Available at: https://www.healthaffairs.org/do/10.1377/hblog20200505.591306/full/. Accessed 17 August 2020.

16. Ryan C. Computer and internet use in the United States: 2016. American Community Survey Reports, ACS-39. Washington, DC: US Census Bureau. Available at: www.census.gov. Accessed 17 August 2020.

17. Pew Research Center. Internet/broadband fact sheet. Available at: https://www.pewresearch.org/internet/fact-sheet/internet-broadband/. Accessed 17 August 2020.

18. Tietze E, Rains SA. Smartphone internet access and use: extending the digital divide and usage gap. Mobile Media Communication 2017; 5:239–55.

19. Anderson M. Mobile technology and home broadband 2019. Available at: https://www.pewresearch.org/internet/2019/06/13/mobile-technology-and-home-broadband-2019/. Accessed 17 August 2020.

20. Lam K, Lu AD, Shi Y, Covinsky KE. Assessing telemedicine unreadiness among older adults in the United States during the COVID-19 pandemic. JAMA Intern Med 2020; 202671. doi: 10.1001/jamainternmed.2020.2671

21. Roberts ET, Mehrrota A. Assessment of disparities in digital access among Medicare beneficiaries and implications for telemedicine. JAMA Intern Med 2020; 202666. doi: 10.1001/jamainternmed.2020.2666

22. Tofighi B, Hein P, Carvalho AMS, Lee JD, Leonard NR. Technology preferences to enhance HIV and HCV care among patients with substance use disorders. J Addict Dis 2018; 37:157–9.

23. Blackstock OL, Haughton LJ, Garner RY, Horvath KJ, Norwood C, Cunningham CO. General and health-related internet use among an urban, community-based sample of HIV-positive women: implications for intervention development. AIDS Care 2015; 27:536–44.

24. Nelson JA, Kinder A, Johnson AS, et al. Differences in selected HIV care continuum outcomes among people residing in rural, urban, and metropolitan areas—28 US jurisdictions. J Rural Health 2018; 34:63–70.

25. Schranz AJ, Barrett J, Hurt CB, Malvestutto C, Miller WC. Challenges facing a rural opioid epidemic: treatment and prevention of HIV and hepatitis C. Curr HIV/AIDS Rep 2018; 15:245–49.

26. Enriquez M, Mercier DA, Cheng AL, Bandera JW. Perceived social support among adults struggling with adherence to HIV care and treatment. J Assoc Nurses AIDS Care 2019; 30:362–71.

27. Emedet CA. An examination of the social networks and social isolation in older and younger adults living with HIV/AIDS. Health Soc Work 2006; 31:299–308.

28. Weibel AR, Longenecker CT, Gripschover B, Hanson JE, Schmotzer BJ, Salata RA. Age, stress, and isolation in older adults living with HIV. AIDS Care 2014; 26:523–31.
29. Young JD, Borgetti SA, Clapham PJ. Telehealth: exploring the ethical issues. Depaul J Health Care L 2018;19:1–15.
30. Langarizadeh M, Moghbeli F, Alibadi A. Application of ethics for providing telemedicine services and information technology. Med Arch 2017;71:351–5.
31. Polinski JM, Barker T, Gagliano N, Sussman A, Brennan TA, Shrank WH. Patients’ satisfaction with and preference for telehealth visits. J Gen Intern Med 2016;31:269–75.
32. Clair M, Clair BW, Clair WK. Unless its done carefully, the rise of telehealth could widen health disparities. STAT News. June 26, 2020. Available at: https://www.statnews.com/2020/06/26/unless-its-done-carefully-the-rise-of-telehealth-could-widen-health-disparities/. Accessed 27 August 2020.
33. Yancy CW. COVID-19 and African Americans. JAMA. Published online April 15, 2020. doi: 10.1001/jama.2020.6548
34. Washington State Health Care Authority. HCA telehealth tools help Washingtonians stay connected during the COVID-19 pandemic. Available at: https://www.hca.wa.gov/about-hca/hca-telehealth-tools-help-washingtonians-stay-connected-during-covid-19-pandemic. Accessed 22 August 2020.
35. Consortium for Citizens with Disabilities. Consortium for Citizens with Disabilities Health Task Force telehealth principles, July 2020. Available at: gphpandlablpfncckabmghjnpjaiahphttp://www.c-c-d.org/files/ccd-Health-TaskForce-Telehealth-Principles-July-2020.pdf. Accessed 27 August 2020.
36. DuBosar R. Drive-in visits can fill the cracks of telemedicine’s reach. ACP Internist. July/August 2020. Available at: https://acpinternist.org/archives/2020/07/drive-in-visits-can-fill-the-cracks-of-telemedicines-reach.htm. Accessed 17 August 2020.