PRYM VARIETIES ASSOCIATED TO GRAPHS

RUDI SALOMON

Abstract. We present a Prym construction which associates abelian varieties to vertex-transitive strongly regular graphs. As an application we construct Prym-Tyurin varieties of arbitrary exponent ≥ 3, generalizing a result by Lange, Recillas and Rochas.

1. Introduction

We describe a Prym construction which associates abelian varieties to certain graphs. More precisely, given the adjacency matrix $A = (a_{ij})_{i,j=1}^d$ of a vertex-transitive strongly regular graph G along with a covering of curves $p : C \to \mathbb{P}^1$ of degree d and a labelling $\{x_1, \ldots, x_d\}$ of an unramified fiber such that the induced monodromy group of p is represented as a subgroup of the automorphism group of G, we construct a symmetric divisor correspondence D on $C \times C$ which then serves to define complementary subvarieties P_+ and P_- of the Jacobian $J(C)$. The correspondence D is defined in such a way that the point (x_i, x_j) appears in D with multiplicity a_{ij}, analogous to Kanev’s construction in [5]. The varieties P_\pm are given by $P_\pm = \ker((\gamma - r_\pm \text{id})_{J(C)})_0$, where r_\pm are special eigenvalues of A and γ is the endomorphism on $J(C)$ canonically associated to D (i.e., sending the divisor class $[x - x_0]$ to the class $[D(x) - D(x_0)]$). It is easy to show that

$$(\gamma - r_+ \text{id}_{J(C)})(\gamma - r_- \text{id}_{J(C)}) = 0$$

and $P_\pm = \text{im}(\gamma - r_\pm \text{id}_{J(C)})$. In particular, if D is fixed point free and $r_+ = 1$, then P_+ is a Prym-Tyurin variety of exponent $1 - r_-$ for C. Given the ramification of p it is not hard to compute the dimension of P_\pm.

For a thorough definition of D we consider the Galois closure $\pi : X \to \mathbb{P}^1$ of p and use the induced representation $\text{Gal}(\pi) \to \text{Aut}(G)$ to construct symmetric correspondences D_+ and D_- on $X \times X$ (much the way Mérindol does in [5]). With C being a quotient curve of X, the correspondence D is derived from D_\pm taking quotients and adding $r_\pm \Delta_C$, where Δ_C is the diagonal of $C \times C$; see section 4. Given the endomorphisms γ_\pm on $J(X)$ canonically associated to D_\pm, we show that $\text{im} \gamma_\pm$ and P_\pm are isogenous.

The lattice graphs $L_2(n)$, $n \geq 3$ and their complements $\overline{L_2(n)}$ offer important examples. For instance, applying the method to $\overline{L_2(n)}$ and appropriate coverings $C \to \mathbb{P}^1$ of degree n^2 with branch loci of cardinality $2(l + 2n - 2)$
for \(l \geq 1 \), we obtain \(l \)-dimensional Prym-Tyurin varieties of exponent \(n \) for the curves \(C \); see section 4. We give a characterization of these varieties and show that for \(n = 3 \) they coincide with the non-trivial Prym-Tyurin varieties of exponent 3 described by Lange, Recillas and Rochas in [3].

Conventions and notations. The ground field is assumed to be the field \(\mathbb{C} \) of complex numbers. By a covering of curves we mean a non-constant morphism of irreducible smooth projective curves. The symbol \(S_n \) denotes the symmetric group acting on the letters \(1, \ldots, n \) for \(n \in \mathbb{N} \).

2. **Strongly regular graphs and matrices**

We start our discussion with the definition of a strongly regular graph and its adjacency matrix and collect some properties of such graphs. For additional information we refer to [11].

By definition the set of strongly regular graphs \(\text{SRG}(d,k,\lambda,\mu) \), \(k > 0 \), consists of the graphs \(G \) with vertex set \(\{ v_1, \ldots, v_d \} \) such that

a) the set \(\Gamma(v_i) \) of vertices adjacent to \(v_i \) has exactly \(k \) elements and \(v_i \notin \Gamma(v_i) \);

b) for any two adjacent vertices \(v_i, v_j \) there are exactly \(\lambda \) vertices adjacent to both \(v_i \) and \(v_j \);

c) for any two distinct non-adjacent vertices \(v_i, v_j \) there are exactly \(\mu \) vertices adjacent to both \(v_i \) and \(v_j \).

Let \(A = (a_{ij}) \in \{0,1\}^{d \times d} \) be the adjacency matrix of such a strongly regular graph \(G \), i.e., \(a_{ij} = 1 \) if and only if \(v_i \) is adjacent to \(v_j \). Then \(A \) is symmetric and \((1, \ldots, 1) \in \mathbb{R}^d \) is an eigenvector of \(A \) with eigenvalue \(k \). The set of eigenvalues of \(A \) is \(\{ k, r_+, r_- \} \) with \(r_- < 0 \leq r_+ \leq k \) and

\[
(2.1) \quad r_\pm = \frac{1}{2} \left[\lambda - \mu \pm \sqrt{(\lambda - \mu)^2 + 4(k - \mu)} \right],
\]

implying that

\[
(2.2) \quad (A - r_+ I_d)(A - r_- I_d) = \frac{(k - r_+)(k - r_-)}{d} J_d,
\]

where \(J_d \) is the \(d \times d \) matrix whose entries are equal to 1. Given parameters \((d,k,\lambda,\mu)\) such that \((d,k,\lambda,\mu) \neq (4\mu + 1, 2\mu, \mu - 1, \mu)\), one can show that \(r_\pm \in \mathbb{Z} \) (cf. [11], Theorem 21.1). In fact, if \((d,k,\lambda,\mu) = (4\mu + 1, 2\mu, \mu - 1, \mu)\), then non-integral values of \(r_\pm \) can occur; for instance, the Paley graph \(P(5) \) (see [11], Example 21.3) has parameters \((5,2,0,1)\) and eigenvalues \(r_\pm = -\frac{1}{2} \pm \frac{1}{2} \sqrt{5} \). However, the Paley graph \(P(4\mu + 1) \in \text{SRG}(4\mu + 1, 2\mu, \mu - 1, \mu) \), where \(4\mu + 1 = p^{2n} \) with \(p \) an odd prime and \(n \in \mathbb{N} \), has integer eigenvalues \(r_\pm = \frac{1}{2} (1 \pm p^n) \).

Many strongly regular graphs stem from geometry. The most classical example is offered by the configuration of 27 lines on a cubic surface.
Example 2.1. Given a non-singular cubic surface $X \subset \mathbb{P}^3$, let \mathcal{L} be the intersection graph of the 27 lines that are contained in X. The configuration of the 27 lines is completely described by the 36 Schläfi double-sixes, i.e., pairs $M := \{(a_1, \ldots, a_6), \{b_1, \ldots, b_6\}\}$ of sets of 6 skew lines on X such that each line from one set is skew to a unique line from the other set. Fix a double-six M; in matrix notation we may write

$$M = \begin{pmatrix}
a_1 & a_2 & a_3 & a_4 & a_5 & a_6 \\
b_1 & b_2 & b_3 & b_4 & b_5 & b_6
\end{pmatrix}$$

such that two lines meet if and only they are in different rows and columns. The remaining 15 lines on X are the $c_{ij} := a_ib_j \cap a_j b_i$ with $i \neq j$, where a_ib_j is the plane spanned by the lines a_i and b_j. In this notation the 36 double-sixes are M, the 15 $M_{i,j}$'s and the 20 $M_{i,j,k}$'s, where the double-sixes $M_{i,j}$ and $M_{i,j,k}$ are respectively given by

$$\begin{pmatrix}
a_i & b_i & c_{jk} & c_{jl} & c_{jm} & c_{jn} \\
b_j & c_{ik} & c_{il} & c_{im} & c_{in}
\end{pmatrix}, \quad \begin{pmatrix}
a_i & a_j & a_k & c_{mn} & c_{ln} & c_{in} \\
c_{jk} & c_{ik} & c_{ij} & b_l & b_m & b_n
\end{pmatrix}.$$

It follows that the Schläfi graph \mathcal{L} is in SRG(27, 10, 1, 5) (the unique member of this set). It is easily seen that the stabilizer of a double-six is a subgroup of $\text{Aut}(\mathcal{L})$ of index 36, isomorphic to $S_6 \times \mathbb{Z}/2\mathbb{Z}$; consequently $\#(\text{Aut}(\mathcal{L})) = 6! \cdot 2 \cdot 36$. In fact, $\text{Aut}(\mathcal{L})$ is isomorphic to the Weyl group $W(E_6)$: Consider the Dynkin diagram for E_6

$$\begin{array}{cccccc}
x_1 & x_2 & x_3 & x_4 & x_5 & y
\end{array}$$

By definition $W(E_6)$ is generated by the reflections s_1, \ldots, s_5, s associated to the simple roots x_1, \ldots, x_5, y. One shows that there is a surjective homomorphism $W(E_6) \to \text{Aut}(\mathcal{L})$ sending s_i (resp. s) to the transformation that interchanges the rows of the double-six $M_{i,i+1}$ (resp. $M_{1,2,3}$) (cf. [2], sections 25,26). Then recall that $W(E_6)$ is of order $6! \cdot 2 \cdot 36$. Under this apparent isomorphism the 27 lines on X correspond to the 27 fundamental weights of E_6. Since $W(E_6)$ acts transitively on these weights, we may consider $\text{Aut}(\mathcal{L})$ as a transitive subgroup of S_{27}.

Additional properties (of strongly regular graphs):

1) if \mathcal{G} is disconnected, then \mathcal{G} is the disjoint union of $m > 1$ copies of the complete graph K_{k+1} with adjacency matrix $J_{k+1} - I_{k+1}$, where I_{k+1} is the identity matrix. So $(d, k, \lambda, \mu) = (m(k + 1), k, k - 1, 0)$ and A has exactly two distinct eigenvalues: $k (= r_+)$ with multiplicity m and $r_- = -1$ with multiplicity $d - m$;

2) if \mathcal{G} is connected and $\mathcal{G} \neq K_{k+1}$, then $k \neq r_\pm$ and k is a simple eigenvalue;

3) \mathcal{G} and its complement $\overline{\mathcal{G}} \in \text{SRG}(d, d - k - 1, d - 2k + \mu - 2, d - 2k + \lambda)$ are connected if and only if $0 < \mu < k < d - 1$, in which case \mathcal{G} is said to be non-trivial.
Let $\text{Aut}(A)$ be the stabilizer of A under the natural operation of S_d on $d \times d$ integer matrices by $(a_{ij}) \mapsto (a_{\sigma(i)\sigma(j)})$ and observe that $\text{Aut}(A)$ coincides with $\text{Aut}(G)$. For disconnected G it is easily seen that $\text{Aut}(A)$ is a transitive subgroup of S_d, implying that disconnected strongly regular graphs are vertex-transitive. In practice it turns out that vertex-transitivity is quite rare among non-trivial strongly regular graphs, although most of the sets $\text{SRG}(d, k, \lambda, \mu)$ of non-trivial strongly regular graphs have a vertex-transitive member.

Definition 2.2. Let $A \in \mathbb{Z}^{d \times d}$ be a symmetric matrix with transitive stabilizer group $\text{Aut}(A)$. Then A is a Prym matrix if there exist integers k, r_+, r_- with $r_+ > r_-$ such that equation \((2.2)\) holds. Further, if A is a Prym matrix and $m \in \mathbb{N}$, then $A^{\oplus m} := \bigoplus_{i=1}^{m} A$ is a repeated Prym matrix.

Remarks. Suppose that $A \in \mathbb{Z}^{d \times d}$ is a symmetric matrix for which there exist integers k, r_+, r_- with $r_+ > r_-$ such that equation \((2.2)\) holds. Decomposing \mathbb{R}^d into eigenspaces of A we may assume that A takes diagonal form. Then J_d simultaneously transforms into the diagonal matrix $\text{diag}(d, 0, \ldots, 0)$, implying that $(1, \ldots, 1) \in \mathbb{R}^d$ is an eigenvector of A with, say, eigenvalue η. Hence A has eigenvalues η, r_+, r_- and by \((2.2)\) we have $(\eta - r_+)(\eta - r_-) = (k - r_+)(k - r_-)$, that is, $\eta = k$ or $\eta = r_+ + r_- - k$. Further, if $\eta \neq r_+$, then η is simple. A $d \times d$ Prym matrix A therefore has integer eigenvalues k, r_+, r_- with $r_+ > r_-$ such that \((2.2)\) holds and k belongs to the eigenvector $(1, \ldots, 1)$ of A. Clearly, if A is such a matrix, then for any $m \in \mathbb{N}$ the repeated Prym matrix $A^{\oplus m}$ has the same eigenvalues k, r_+, r_- and satisfies the equation

\[(2.3) \quad (A^{\oplus m} - r_+ I_{md})(A^{\oplus m} - r_- I_{md}) = \frac{(k - r_+)(k - r_-)}{d} J_d^{\oplus m}.
\]

Moreover, it is immediately seen that the repeated Prym matrix $A^{\oplus m}$ has transitive stabilizer $\text{Aut}(A^{\oplus m})$. Throughout the paper the eigenvalues of a Prym matrix A will be denoted by k, r_+, r_-, where k belongs to the eigenvector $(1, \ldots, 1)$ of A and $r_+ > r_-$. Many of the known constructions for Prym varieties rely on the definition of a reduced symmetric divisor correspondence for a curve. These correspondences can often be related to Prym matrices whose entries are in the set $\{0, 1\}$. Hence it is useful to have a characterization for such matrices:

Proposition 2.3. Assume that $A = (a_{ij}) \in \{0, 1\}^{d \times d}$ is a Prym matrix with $a_{11} = 0$. Then A is the adjacency matrix of a graph $G \in \text{SRG}(d, k, \lambda, \mu)$ with $\lambda = k + r_+ r_- + r_+ + r_-$ and $\mu = k + r_+ r_-$. To show that G
is strongly regular we may assume by transitivity that \mathcal{G} is the disjoint union of finitely many copies of a connected graph \mathcal{G}_c with adjacency matrix A_c. If $k \neq r_\pm$, then k is simple, so $A = A_c$ and it follows that \mathcal{G} is strongly regular (cf. [11], the remark at the bottom of p. 265). Hence assume that A has just two distinct eigenvalues, i.e., $k = r_+$. The complementary graph $\overline{\mathcal{G}}$ has adjacency matrix $J_d - I_d - A$ which is Prym and has eigenvalues $k' = d - k - 1$, $r'_+ = -r_+ - 1$ and $r'_- = -k - 1$. So if $r_+ \neq k - d$, then $k' \neq r'_+$, that is, $\overline{\mathcal{G}}$ is a non-complete connected strongly regular graph and so $\mathcal{G}_c = K_{k+1}$. Finally, suppose that $r_+ = k - d$. By equation (2.2) we have $A^2 = (2k - d)A - k(k - d)I_d$, hence if v_h, v_i, v_j are three distinct vertices of \mathcal{G} such that v_h is adjacent to v_i and v_i is adjacent to v_j, then the relation $1 = a_{hi} \leq \sum_{l=1}^{d} a_{hl}a_{lj} = (2k - d) a_{hj}$ implies that v_h is adjacent to v_j. Consequently $\mathcal{G} = K_{k+1}$.

Example 2.4. Among the set of strongly regular graphs there are some distinguished families of non-trivial vertex transitive graphs. One such family is that of lattice graphs; for $n \geq 3$, the lattice graph $L_2(n)$ is the graph with vertex set $\{1, \ldots, n\}^2$ such that two distinct vertices (i, j) and (l, m) are adjacent if and only if $i = l$ or $j = m$. Clearly, $S_n \times S_n$ is a transitive subgroup of $\text{Aut}(L_2(n))$, hence the adjacency matrix of $L_2(n)$ and that of its complement $\overline{L_2(n)}$ are Prym. Another subgroup of $\text{Aut}(L_2(n))$ is S_2; it permutes the coordinates of the vertices of $L_2(n)$. In fact, it is well-known that the automorphism group of $L_2(n) \in \text{SRG}(n^2, 2(n - 1), n - 2, 2)$ is equal to the semi-direct product $S_2 \rtimes (S_n \times S_n)$. With reference to future examples (e.g., Examples 2.6 and 2.7) we shall characterize those $\varphi \in \text{Aut}(L_2(n))$ for which each vertex (i, j) of $L_2(n)$ (resp. $L_2(n)$ for n odd) is non-adjacent to $\varphi(i, j)$. It is easy to check that:

i) Each vertex (i, j) of $L_2(n)$ is non-adjacent to $\varphi(i, j)$ if and only if $\varphi = (\sigma, \tau)$ with $\sigma, \tau \in S_n$ and $\sigma = (1)$ or $\tau = (1)$.

ii) Assume that n is odd and φ is a reflection. Then each vertex (i, j) of $L_2(n)$ is non-adjacent to $\varphi(i, j)$ if and only if $\varphi = (\sigma, \sigma^{-1}) \circ t$ with $\sigma \in S_n$ and $t = (1 \ 2) \in S_2$.

Note moreover that $L_2(3)$ and $\overline{L_2(3)}$ are isomorphic; if we identify the set $\{1, \ldots, n\}$ with the group $\mathbb{Z}/3\mathbb{Z}$, then the matrix $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ defines an isomorphism of graphs $L_2(3) \cong L_2(3)$.

Example 2.5. Another non-trivial family is that of Latin square graphs; for $n \geq 3$, the Latin square graph $L_3(n) \in \text{SRG}(n^2, 3(n - 1), n, 6)$ is the graph with vertex set $(\mathbb{Z}/n\mathbb{Z})^2$ such that two distinct vertices (i, j) and (l, m) are adjacent if and only if $i = l$ or $j = m$ or $i + j = l + m$. We identify three subgroups of $\text{Aut}(L_3(n))$; to begin with, the diagonal action of $\text{Aut}(\mathbb{Z}/n\mathbb{Z})$ on $(\mathbb{Z}/n\mathbb{Z})^2$ induces an embedding $\text{Aut}(\mathbb{Z}/n\mathbb{Z}) \hookrightarrow \text{Aut}(L_3(n))$. Similarly, $(\mathbb{Z}/n\mathbb{Z})^2$ induces a subgroup of $\text{Aut}(L_3(n))$ by translation, thus implying that $L_3(n)$ is vertex-transitive. Finally, the subgroup $S := \langle s, t \rangle \subset$
Aut\((\mathbb{Z}/n\mathbb{Z})^2\) with \(s\) and \(t\) respectively given by the matrices \(\begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}\) and \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\), is immediately seen to be a subgroup of Aut\((L_3(n))\). Note that sending \(s \mapsto (1 \ 2)\) and \(t \mapsto (1 \ 3)\) induces an isomorphism \(S \cong S_3\). Clearly, the actions of Aut\((\mathbb{Z}_n)\) and \(S\) commute. It can be shown that Aut\((L_3(n))\) coincides with the semi-direct product \((\mathbb{Z}/n\mathbb{Z})^2 \rtimes (S \times \text{Aut}(\mathbb{Z}/n\mathbb{Z}))\).

3. Prym varieties of a Galois covering

Given a Prym matrix \(A\), we describe a method that associates certain abelian varieties to Prym data of \(\mathbb{P}^1\) whose Galois group is represented as a transitive subgroup of Aut\((A^{\oplus m})\), \(m \geq 1\). We assume from now on that \(A\) is a \(d \times d\) Prym matrix with eigenvalues \(k, r_+, r_-\).

Definition 3.1. Consider \(\mathcal{P} = (A^{\oplus m}, r, \pi, \phi)\) for \(m \geq 1\), where \(r \in \{r_+, r_-\}\), \(\pi\) is a finite Galois covering of \(\mathbb{P}^1\) and \(\phi : \text{Gal}(\pi) \rightarrow S_{md}\) is a transitive representation. Then \(\mathcal{P}\) is said to represent Prym data if \(\phi(G)\) is a subgroup of Aut\((A^{\oplus m})\).

For instance, assume that we have a finite subset \(B = \{b_1, \ldots, b_n\}\) of \(\mathbb{P}^1\) along with non-trivial permutations \(\sigma_1, \ldots, \sigma_n \in \text{Aut}(A^{\oplus m})\) such that \(\sigma_1 \cdot \ldots \cdot \sigma_n = (1)\) and \(G := \langle \sigma_1, \ldots, \sigma_n \rangle\) is a transitive subgroup of \(S_{md}\). Let \(\Sigma_i\) be the conjugation class of \(\sigma_i\) in \(G\). According to Riemann’s Existence Theorem (RET), the number of equivalence classes of Galois coverings of \(\mathbb{P}^1\) of ramification type \(\mathcal{R} := [G, B, \{\Sigma_i\}_{i = 1}^n]\) is equal to the number of sets \(\{(g_{\tau_1}g_1^{-1}, \ldots, g_{\tau_n}g_n^{-1}) | g \in G\}\) with \(\tau_1, \ldots, \tau_n\) trivial (cf. [12], p. 37). Hence, let \(\pi\) be a Galois covering of type \(\mathcal{R}\). Clearly, if \(\phi : \text{Gal}(\pi) \rightarrow G\) is a group isomorphism, then \((A^{\oplus m}, r, \pi, \phi)\) represents Prym data. In this way, varying the continuous parameters \(b_1, \ldots, b_n\), we obtain finitely many smooth \(n\)-dimensional families of Galois coverings with associated Prym data.

The construction. Let \(\mathcal{P} = (A^{\oplus m}, r, \pi, \phi)\) be Prym data for a given Galois covering \(\pi : X \rightarrow \mathbb{P}^1\). We are going to define two symmetric divisor correspondences, one for \(X\) and one for the quotient curve \(C := X/H\), where \(H \subset G := \text{Gal}(\pi)\) is the stabilizer of the letter 1 with respect to \(\phi\). Let \((\ , \)_r : \mathbb{R}^{md} \times \mathbb{R}^{md} \rightarrow \mathbb{Q}\) be the symmetric bilinear form canonically associated to the matrix \(A^{\oplus m} - rI_{md}\). Given the standard basis \(e_1, \ldots, e_{md}\) of \(\mathbb{R}^{md}\), consider the permutation representation of \(G\) on \(\mathbb{R}^{md}\) induced by \(g : e_i \mapsto e_{g(i)}\). For \(g \in G\), denote \(\hat{g} = HgH\). Then \((\ , \)_r\) is immediately seen to be \(G\)-invariant and \((g_1e_1, e_1)_r = (g_2e_1, e_1)_r\) for all \(g_1, g_2 \in G\) such that \(\hat{g}_1 = \hat{g}_2\). Let \(\alpha : X \rightarrow C\) and \(p : C \rightarrow \mathbb{P}^1\) be the canonical mappings. For each \(g \in G\) take the graph \(\Gamma_g = (\text{id}_X, g)(X)\) of \(g\) and let \(\Gamma_g = (\alpha \times \alpha)(\Gamma_g)\) be its reduced image in \(C \times C\). Assume that \(B\) is the branch locus of \(\pi\) and put \(C_0 = p^{-1}(\mathbb{P}^1 \setminus B)\). Observe that
\[
\hat{g}_1 \cap \hat{g}_2 \cap (C_0 \times C_0) \neq \emptyset \iff \hat{g}_1 = \hat{g}_2 \iff \hat{g}_1 = \hat{g}_2,
\]
for all $g_1, g_2 \in G$. Hence we have divisor correspondences D_p on $X \times X$ and \hat{D}_p on $C \times C$, given by
\[
D_p = \sum_{g \in G} (ge_1, e_1)_r \Gamma_g, \quad \hat{D}_p = \sum_{\hat{g} \in \hat{G}} (ge_1, e_1)_r \hat{\Gamma}_g
\]
with $\hat{G} = G \backslash G/H$. Note that D_p and \hat{D}_p are symmetric as $(ge_1, e_1)_r = (g^{-1}e_1, e_1)_r$ for all $g \in G$.

Definition 3.2. Let γ_p on $J(X)$ (resp. $\hat{\gamma}_p$ on $J(C)$) be the endomorphism canonically associated to D_p (resp. \hat{D}_p). Then we call $Z_p = \text{im } \gamma_p$ (resp. $\hat{Z}_p = \text{im } \hat{\gamma}_p$) the Prym variety of X (resp. C) associated to \mathcal{P}.

Remark. Prym data can be seen as an ‘ornamented’ covering (i.e., a covering with additional data), where the ornamentation is such that we can define divisorial correspondences and Prym varieties.

For $q \in \mathbb{P}^1 \setminus B$ an identification $\pi^{-1}(q) \leftrightarrow G$ is called a *Galois labelling* of the fiber $\pi^{-1}(q)$ if the action of G on the fiber is compatible with its action on itself via multiplication on the left. Moreover, a Galois labelling of $\pi^{-1}(q)$ induces a Galois labelling $p^{-1}(q) \leftrightarrow H\backslash G$ of the fiber of $p : C \to \mathbb{P}^1$ over q. Denoting $\overline{f} = Hg$ for $g \in G$, we have:

Lemma 3.3. Given $q \in \mathbb{P}^1 \setminus B$, take a Galois labelling $p^{-1}(q) \leftrightarrow H\backslash G$. Then, for any $\sigma \in G$, the restriction of \hat{D}_p to $\{\overline{\sigma}\} \times C$ is given by the identity
\[
\hat{D}_p(\overline{\sigma}) = \sum_{\overline{\sigma} \in \overline{H}\backslash G} (ge_1, e_1)_r \overline{g}\overline{\sigma}.
\]

Proof. Because $(\overline{\sigma}, \overline{g}\overline{\sigma}) \in \hat{\Gamma}_f \iff \hat{f} = \hat{g}$, for all $f, g \in G$, the point $(\overline{\sigma}, \overline{g}\overline{\sigma})$ appears in \hat{D}_p with multiplicity $(ge_1, e_1)_r$.

Since H is the stabilizer of a point, the transitivity of the representation $\phi : G \to S_{md}$ implies that there exists a bijection $H\backslash G \to \{1, \ldots, md\}$. Hence the Galois labelling $p^{-1}(q) \leftrightarrow H\backslash G$ induces a labelling $\{y_1, \ldots, y_{md}\}$ of $p^{-1}(q)$ such that \overline{g} corresponds to $y_{g^{-1}(1)}$. The formula in the preceding lemma now turns into

\[
\hat{D}_p(y_i) = \sum_{j=1}^{md} (e_i, e_j)_r y_j = -ry_i + \sum_{j=1}^{md} (e_j \Delta^m e_i)_r y_j,
\]
for all $i = 1, \ldots, md$.

Proposition 3.4. Let $\mathcal{P} = (A^\oplus_m, r, \pi, \phi)$ be Prym data with $\pi : X \to \mathbb{P}^1$. Then the Prym varieties $Z_{\mathcal{P}}$ on X and $\hat{Z}_{\mathcal{P}}$ of $C := X/H$ are isogenous. Using the notation $\mathcal{P}' = (J^\oplus_m, 0, \pi, \phi)$ and $s = r_+ + r_-$, we have the following quadratic equations for the endomorphisms $\hat{\gamma}_p$ on $J(C)$ and γ_p on $J(X)$:
\[
\hat{\gamma}_p(\hat{\gamma}_p + (2r - s)i \text{id}_{J(C)}) = \frac{(k - r_+)(k - r_-)}{d} \hat{\gamma}_p,
\]
and
\[\gamma_p(\gamma_p + #(H)(2r - s)\operatorname{id}_{J(X)}) = #(H)\frac{(k - r_+)(k - r_-)}{d} \gamma_{pr}. \]

Proof. Write \(\alpha^* : J(C) \to J(X) \) for the map induced by \(\alpha \) and write \(N_\alpha : J(X) \to J(C) \) for the norm map. Abusing notation, we define homomorphisms \(\alpha^* : \mathbb{Z}[H \setminus G] \to \mathbb{Z}[G] \) and \(N_\alpha : \mathbb{Z}[G] \to \mathbb{Z}[H \setminus G], \) respectively induced by \(\mathcal{E} \mapsto \sum_{h \in H} hg \) and \(g \mapsto \mathcal{E}. \) As a direct consequence of Lemma 3.3, we have \(N_\alpha D_p = #(H)\hat{D}_p N_\alpha. \) Hence \(N_\alpha \gamma_p = #(H)\hat{\gamma}_p N_\alpha \) and \(\gamma_p = \alpha^* \hat{\gamma}_p N_\alpha. \) The first identity implies that the restricted mapping \(N_\alpha : Z_p \to \hat{Z}_p \) is surjective, while the two identities combined imply that \(\dim \ker(\hat{\gamma}_p) = \dim \ker(\hat{\gamma}_p) \).

Therefore the restriction of \(N_\alpha \) to \(Z_p \) is an isogeny.

Applying equation (3.1) to \(P' \) we obtain \(\hat{D}_p'(y_i) = \sum_{j=1}^{md}(e_j J_d^i e_i y_j, \) for all \(i = 1, \ldots, md. \) Hence equations (2.3) and (3.1) imply
\[\hat{D}_p(\hat{D}_p(y)) + (2r - s)\hat{D}_p(y) = \frac{(k - r_+)(k - r_-)}{d} \hat{D}_{pr}(y) \]
for all \(y \) in a fiber of \(p : C \to \mathbb{P}^1 \) over a point outside the branch locus of \(\pi. \)

Let \(\delta \) (resp. \(\delta \)) denote the difference between the expressions on the left and the right-hand side of the first (resp. second) identity of the proposition. We already know that \(\delta = 0. \) Hence, as \(\gamma_{pr} = \alpha^* \hat{\gamma}_p N_\alpha, \) we have \(\delta = #(H)\alpha^* \hat{\gamma}_p N_\alpha = 0. \)

Proposition 3.5. In the special case \(m = 1 \) the endomorphisms \(\hat{\gamma}_p \) and \(\gamma_{pr} \) vanish and, using the notation \(P^\pm = (A, r_\pm, \pi, \phi), \) we find that \(\hat{Z}_{p^+} \) and \(\hat{Z}_{p^-} \) are complementary subvarieties of \(J(C). \) Moreover, \(\hat{Z}_{p^+} = \ker(\hat{\gamma}_{p^+})_0 \) and \(\hat{Z}_{p^-} = \ker(\gamma_{p^\pm})_0 \).

Proof. Let \(q \in \mathbb{P}^1 \setminus B. \) By definition of \(D_p \), we have \(D_p(x) = \pi^* \pi(x) \) for all \(x \in \pi^{-1}(q), \) while Lemma 3.3 implies that \(\hat{D}_p(y) = p^* p(y) \) for all \(y \in p^{-1}(q). \) Hence \(\gamma_{pr} \) and \(\hat{\gamma}_{pr} \) vanish. As \(\hat{\gamma}_{pr} = \hat{\gamma}_{p^+} + (r_+ - r_-)\gamma_{J(C)}, \) we note that \(\hat{Z}_{p^+} = \operatorname{im}(\hat{\gamma}_{p^+} + (r_+ - r_-)\gamma_{J(C)}). \) Using standard arguments one shows that \(\varepsilon_+ := -\frac{1}{r_+ - r_-} \hat{\gamma}_{p^+} \) and \(\varepsilon_- := -\frac{1}{r_+ - r_-} \hat{\gamma}_{p^+} \) are symmetric idempotents in \(\operatorname{End}_\mathbb{Q}(J(C)). \) Since \(\varepsilon_+ = \operatorname{id}_{J(C)} - \varepsilon_+, \) it follows that \(\hat{Z}_{p^+} \) and \(\hat{Z}_{p^-} \) are complementary subvarieties of \(J(C) \) and \(\dim Z_{p^+} + \dim Z_{p^-} = g(C). \) As a consequence of Proposition 3.4 we have \(\hat{Z}_{p^\pm} \subset \ker(\hat{\gamma}_{p^\pm}). \) Moreover, by 3.3, Proposition 5.1.1 the analytic representation \(g_0(\hat{\gamma}_{p^+}) \in \operatorname{End}(H^0(C, \omega_C)) \) of \(\hat{\gamma}_{p^+} \) is self-adjoint with eigenvalues \(r_+ - r_- \) and 0 with respect to the Riemann form \(c_1(\Theta_C), \) where \(\Theta_C \) is the canonical polarization of \(J(C). \) Since \(\dim \ker(\hat{\gamma}_{p^\pm})_0 = \dim \ker(\hat{\gamma}_{p^\pm})_0 + \dim \ker(\hat{\gamma}_{p^\pm})_0 = g(C) \) and therefore \(\hat{Z}_{p^\pm} = \ker(\hat{\gamma}_{p^\pm})_0. \) Similarly, the remaining assertion follows from the fact that \(\hat{Z}_{p^\pm} \) and \(\operatorname{im}(\gamma_{p^\pm} \pm #(H)(r_+ - r_-)\gamma_{J(X)} \) are complementary subvarieties of \(J(X). \) \(\square \)
Finally, we note that the Prym data $P = (A, r, \pi, \phi)$ associated to the adjacency matrix A of a strongly regular graph G and the Prym data $\overline{P} = (J_d - I_d - A, -r - 1, \pi, \phi)$ associated to the adjacency matrix $J_d - I_d - A$ of the complementary graph \overline{G} yield the same Prym varieties because of the identities $\gamma_p = 0$ and $\gamma_p = 0$.

4. Prym varieties of a non-Galois covering

We now shift our attention to non-Galois coverings of \mathbb{P}^1. Given a (repeated) Prym matrix $A^{\otimes m}$ and a special covering $p : C \to \mathbb{P}^1$ of degree md along with an appropriate labelling class (to be defined below), we shall define a symmetric divisor correspondence on $C \times C$ which then serves to obtain a pair of Prym varieties in $\mathcal{J}(C)$.

To define labelling classes, let $p : C \to \mathbb{P}^1$ be a covering of degree n with branch locus B. Given a point $q \in \mathbb{P}^1 \setminus B$, a labelling $\{x_1, \ldots, x_n\}$ of the fiber $p^{-1}(q)$ induces a bijection $\nu : p^{-1}(q) \to \{1, \ldots, n\}$ sending x_i to i. For $q_j \in \mathbb{P}^1 \setminus B$ with $j = 1, 2$, let $\{x_{j1}, \ldots, x_{jn}\}$ be a labelling of the fiber above q_j inducing a bijection ν_j. Then the bijections ν_1 and ν_2 are said to be equivalent if there exists a path $\mu \subset \mathbb{P}^1 \setminus B$ running from q_1 to q_2 such that the lift of μ to C with initial point x_{1i} has end point x_{2i}, for $i = 1, \ldots, n$.

The equivalence class $[\nu]$ of an induced bijection ν is called a labelling class for p.

Definition 4.1. Consider the triple $\mathcal{T} = (A^{\otimes m}, p, [\nu])$ for $m \geq 1$, where $p : C \to \mathbb{P}^1$ is a covering of degree md and $[\nu]$ is a labelling class for p. We say that \mathcal{T} is a Prym triple if $\text{Aut}(A^{\otimes m})$ contains the monodromy group of p with respect to $[\nu]$.

Let $B = \{b_1, \ldots, b_n\}$ be a finite subset of \mathbb{P}^1 and take non-trivial permutations $\sigma_1, \ldots, \sigma_n \in \text{Aut}(A^{\otimes m})$ such that $\sigma_n \cdots \sigma_1 = (1)$ and $G = \langle \sigma_1, \ldots, \sigma_n \rangle$ is a transitive subgroup of S_{md}. Recalling the monodromy version of RET (cf. [9], p. 92), we may assume that $p : C \to \mathbb{P}^1$ is a covering of degree md with branch locus B and labelling class $[\nu]$ such that the ramification of p above b_i is induced by σ_i, for $i = 1, \ldots, n$. Then $(A^{\otimes m}, p, [\nu])$ is a Prym triple.

A symmetric correspondence. Assume that $\mathcal{T} = (A^{\otimes m}, p, [\nu])$ is a Prym triple with $p : C \to \mathbb{P}^1$ and $\nu : p^{-1}(q) \to \{1, \ldots, md\}$. We shall define a symmetric correspondence on $C \times C$. Take the Galois closure $\pi : X \to \mathbb{P}^1$ of p and let H be the Galois group of the covering $X \to C$. Denote $G = \text{Gal}(\pi)$ and choose a Galois labelling $\pi^{-1}(q) \leftrightarrow G$ such that the induced labelling $p^{-1}(q) \leftrightarrow H \setminus G$ yields $\nu(H) = 1$. Define the group $\Sigma = \{\sigma_g \in S_{md} | g \in G\}$, where σ_g is the permutation sending $\nu(Hf) \mapsto \nu(Hfg^{-1})$ and consider the canonical homomorphism $\phi : G \to \Sigma$, $g \mapsto \sigma_g$. Since $\ker(\phi)$ is a normal subgroup of G contained in H, the minimality of π dictates that $\ker(\phi)$ is trivial, implying that ϕ is an isomorphism. Noticing that, with respect to
the Galois labelling, the monodromy group of \(\pi \) acts on \(G \) via multiplication on the right with the elements of \(G \), we conclude that \(\Sigma \) is the monodromy group of \(p \) with respect to \([\nu]\). Hence \(\phi : G \to \text{Aut}(A^{\oplus m}) \) is a transitive representation. The fact that \(H \) is the stabilizer of the letter 1 with respect to \(\phi \) thus implies that \(\mathcal{P} = (A^{\oplus m}, r, \pi, \phi) \) for \(r, r_+ \) represents Prym data. Therefore

\[
D_r := \hat{D}_p + r \Delta_C
\]

is a well-defined symmetric correspondence on \(C \times C \). Recall that \(k \) is the eigenvalue of the eigenvector \((1, \ldots, 1)\) of \(A \). Because \(\nu(Hg) = (\phi(g))^{-1}(1) \) for all \(g \in G \), equation (3.4) gives the following interpretation of \(D_r \).

Lemma 4.2. Let \(\{x_1, \ldots, x_{md}\} \) be a labelling in the class \([\nu]\) and denote \(A^{\oplus m} = (s_{ij})_{i,j=1}^{md} \). Then the point \((x_i, x_j)\) appears in \(D_r \) with multiplicity \(s_{ij} \). In particular, \(D_r \) is of bidegree \((k,k)\).

In fact, if \(S \) denotes the set of non-zero entries of \(A \) and for each \(s \in S \) we define a set \(\hat{G}_s = \{\hat{g} \in H \backslash G/H \mid s(\phi(g))(1,1) = s\} \), then we find reduced divisors \(D_s = \sum_{\hat{g} \in \hat{G}_s} \hat{g} \Delta \) on \(C \times C \) such that \(D_r = \sum_{s \in S} s D_s \).

Definition 4.3. Let \(\gamma_r = \hat{\gamma}_p + r \text{id}_{J(C)} \). Then \(P_\pm(T) = \ker(\gamma_r - r \pm \text{id}_{J(C)}) \) are the Prym varieties associated to \(T \).

Remark. Given a second labelling \(\nu' \) of the fiber \(p^{-1}(q) \), according to RET there exists an \(f \in \text{Aut}(p) \) such that \(\nu = \nu' \circ f \) if and only if \(\nu \) and \(\nu' \) yield the same monodromy representation for \(p \). If such an \(f \) exists, then \(f \) induces an isomorphism of the Prym varieties.

By Proposition 3.4 if \(m = 1 \), then \(P_+(T) \) and \(P_-(T) \) are complementary subvarieties of \(J(C) \) defined by \(P_\pm(T) = \text{im}(\gamma_r - r \pm \text{id}_{J(C)}) \). If in addition \(D_r \) is fixed point free and \(r_+ = 1 \), then a theorem of Kanev (cf. [4], Theorem 3.1) states that \(P_+(T) \) is a Prym-Tyurin variety of exponent \(1 - r_- \) for \(C \).

We now try to compute the dimension of \(P_\pm(T) \). Let \(\eta \in \{0,1\} \) be such that \(\eta = 1 \) if \(k \neq r_\pm \) and \(\eta = 0 \) else.

Proposition 4.4. Let \(T = (A^{\oplus m}, p, [\nu]) \) be a Prym triple with \(p : C \to \mathbb{P}^1 \) and assume that \(A \) has diagonal \((s, \ldots, s)\). Denote \(T' = (A^{\oplus m} - sI_{md}, p, [\nu]) \) and \(T_0 = (J^\nu, p, [\nu]) \). Using the notation \(d_\pm = \dim P_\pm(T) \) and \(d_0 = \dim P_0(T_0) \), we have the following identity for the dimension of \(P_\pm(T) \):

\[
\pm(r_+ - r_-)d_\pm = (k - r_\pm) \eta d_0 + (r_\pm - s)g(C) - k + s + \frac{1}{2}(D_{T'} \cdot \Delta_C).
\]

Proof. Denote \(\gamma_0 = \gamma_{t_0} \) and define an endomorphism \(\varepsilon \) on \(J(C) \) such that \(\varepsilon = \gamma_r - k \text{id}_{J(C)} \) if \(\eta = 1 \) and \(\varepsilon = \text{id}_{J(C)} \) else. Then Lemma 4.2 implies that \(\varepsilon(\gamma_r - r_\pm \text{id}_{J(C)})(\gamma_r - r \pm \text{id}_{J(C)}) = 0 \). Recall that \(g_\pm(\gamma_r) \) and \(g_\pm(\gamma_0) \) are self-adjoint w.r.t. the form \(c_1(\Theta_C) \). Hence by direct consequence of Proposition 3.4 if \(\eta = 1 \) (resp. \(\eta = 0 \)), then \(g_\pm(\gamma_r) \) has eigenvalues \(k, r_+, r_- \).
for which there exists a divisor \(D \) such that
\[
\dim P_s(\mathcal{T}) = \text{Tr}(\varphi_\mathcal{T}(\gamma_\mathcal{T})) = \text{Tr}(\varphi_\mathcal{T}(\gamma_\mathcal{T} + s\gamma_\mathcal{C})) + s\gamma_\mathcal{C}(C),
\]
we obtain
\[
(4.1) \quad \begin{cases}
 d_+ + d_- + \gamma d_0 = g(C) \\
 r_+ d_+ + r_- d_- + k\gamma d_0 = \text{Tr}(\varphi_\mathcal{T}(\gamma_\mathcal{T} + s\gamma_\mathcal{C})) + s\gamma_\mathcal{C}(C)
\end{cases}
\]
Let \(\text{Tr}_r(\gamma_\mathcal{T}) \) be the rational trace of \(\gamma_\mathcal{T} \), i.e., \(\text{Tr}_r(\gamma_\mathcal{T}) \) is the trace of the extended rational representation \((\varphi_\mathcal{T} \oplus 1)(\gamma_\mathcal{T}) \) of \(H^1(C, \mathbb{Z}) \oplus \mathbb{C} \). As \(\varphi_\mathcal{T} \oplus 1 \) is equivalent to \(\varphi_\mathcal{T} \oplus \varphi_\mathcal{C} \), it follows that \(\text{Tr}_r(\gamma_\mathcal{T}) = 2\text{Tr}(\varphi_\mathcal{T}(\gamma_\mathcal{C})) \). With \(D_T \), being of bidegree \((k - s, k - s)\), Proposition 11.5.2. of \(\mathbb{K} \) implies
\[
\text{Tr}(\varphi_\mathcal{T}(\gamma_\mathcal{T})) = \frac{1}{2}\text{Tr}_r(\gamma_\mathcal{T}) = k - s - \frac{1}{2}(D_T \cdot \Delta_C).
\]
Solving \(4.1 \) for \(d_\pm \) we obtain the desired result. \(\square \)

Proposition 8.5 implies that for \(m = 1 \) we have \(d_0 = 0 \). To compute \(\dim P_s(\mathcal{T}) \) we need to determine the intersection number \((D_T \cdot \Delta_C)\). We shall do this for a Prym triple \(\mathcal{T} = (A^\oplus m, p, [\nu]) \), where \(A^\oplus m = (s_{i,j})_{i,j=1}^{md} \) has zero diagonal. Denoting the set of nonzero entries of \(A \) by \(S \), we recall that \(D_T = \sum_{s \in S} s D_s \) with \(D_s \) reduced. Hence it suffices to determine the local intersection numbers \((D_s \cdot \Delta_C)_{(x,x)} \) at \((x, x)\) for a ramification point \(x \in C \) of \(p : C \to \mathbb{P}^1 \). Let \(b \in \mathbb{P}^1 \) be the corresponding branch point and assume that the local monodromy at \(b \) is given by \(\sigma_b \in S_{md} \). Further, let \(\tau \in S_{md} \) be the cycle factor of \(\sigma_b \) which describes the ramification at \(x \) and assume that it is of order \(l \). For each \(s \in S \) we define a set \(T_{\tau, s} \) of elements \(t \in \{1, \ldots, l - 1\} \) for which there exists a \(j \in \{1, \ldots, md\} \) such that \(s_{j, \tau(j)} = s \). Then:

Lemma 4.5. For each \(s \in S \) we have \((D_s \cdot \Delta_C)_{(x,x)} = #\left(T_{\tau, s}\right)\).

Proof. After a suitable choice of coordinates on a small open neighborhood of \(x \) the covering \(p \) is given by \(z \mapsto z^l \). Then near the point \((x, x)\) the reduced divisor \(D_s \) can be described as the union of graphs of the multiplications \(z \mapsto z t^i \) (for \(t \in T_{\tau, s} \)) with \(\zeta_t = \exp\left(\frac{2\pi i}{l}\right) \). Obviously these graphs intersect \(\Delta_C \) transversally in \((x, x)\), thus implying \((D_s \cdot \Delta_C)_{(x,x)} = #\left(T_{\tau, s}\right). \)

Hence, given the branch locus \(B \) of \(p \) and, for each \(b \in B \), the set \(R_b \) of cycle factors in the cycle decomposition of \(\sigma_b \), we can calculate the intersection number as a sum
\[
(D_T \cdot \Delta_C) = \sum_{b \in B} \sum_{\tau \in R_b} \sum_{s \in S} s #\left(T_{\tau, s}\right).
\]

For an application of the lemma we refer to Example 5.3

5. Examples

Our first example has been covered by Kanev in \(\mathbb{K} \). We will treat it by a different method.
Example 5.1. (Schläfi graph) Let \mathcal{L} be the intersection graph of the 27 lines on a non-singular cubic surface in \mathbb{P}^3. In the notation of Example 2.4, we take τ_i ($i = 1, \ldots, 5$) (resp. τ_6) to be the transformation that interchanges the rows of the double-six $M_{i,1,1}$ (resp. $M_{1,2,3}$). Denoting the adjacency matrix of \mathcal{L} by A, we recall that $\text{Aut}(A) = \langle \tau_1, \ldots, \tau_6 \rangle$ is a transitive subgroup of S_{27}. Note moreover that each τ_j is a reflection with exactly 15 fixed points.

Let $n \geq 7$ be an integer and choose a subset $B = \{b_1, \ldots, b_{2n}\}$ of \mathbb{P}^1. Then we know that there exists a Prym triple $T = (A, p, [\nu])$ for a covering $p : C \to \mathbb{P}^1$ with branch locus B and monodromy group $\text{Aut}(A)$ such that its ramification over b_i is induced by a τ_j. According to Hurwitz’ formula the curve C is of genus $6n - 26$. Since no vertex v of \mathcal{L} is adjacent to $\tau_j(v)$, it follows that D_v is fixed point free. As A has eigenvalues $k = 10$, $r_+ = 1$ and $r_- = -5$, Proposition 4.4 implies that $P_+(T)$ is an $(n - 6)$-dimensional Prym-Tyurin variety of exponent 6 for the curve C. With regard to moduli, note that for $n = 12$ we have $g(C) = 46$, $\dim P_+(T) = 6$ and $\#(B) = \dim \mathcal{A}_6 + \dim \text{Aut}(\mathbb{P}^1) = 24$, where \mathcal{A}_6 is the moduli space of 6-dimensional principally polarized abelian varieties.

Example 5.2. (Lattice graphs) For $n \geq 3$ let A be the adjacency matrix of the lattice graph $L_2(n)$ with vertex set $\{1, \ldots, n\}^2$. We define a group $G = \langle \varphi_0, \varphi_1, \varphi_2, \varphi_3 \rangle$ generated by reflections $\varphi_h := (\tau_h, \tau_h^{-1}) \circ t$ in $\text{Aut}(A)$, where t acts on $\{1, \ldots, n\}^2$ by exchange of coordinates and $\tau_0, \tau_1, \tau_2, \tau_3 \in S_n$ are given by $\tau_0 = (1)$, $\tau_1 = (1 \ n)$, $\tau_2 = (2 \ n)$ and $\tau_3 = (1 \ 2 \ \cdots \ n)$. Then G is a transitive subgroup of $\text{Aut}(A)$; indeed, identifying $\{1, \ldots, n\}$ and $\mathbb{Z}/n\mathbb{Z}$, we have

\begin{align*}
\text{a)} \quad & (\varphi_1 \circ \varphi_3)^m(1, 1) = (1, h + 1) \text{ for } m = 1, \ldots, n - 2; \\
\text{b)} \quad & (\varphi_3 \circ \varphi_0)(i, j) = (i + 1, j - 1) \text{ for } i, j = 1, \ldots, n \text{ with } j \neq n - i; \\
\text{c)} \quad & (\varphi_3 \circ \varphi_0)^{m-1} \circ \varphi_2)(2, 1) = (m, n - m + 1) \text{ for } m = 1, \ldots, n.
\end{align*}

Given an integer $l \geq 0$, choose a subset $B = \{b_1, \ldots, b_{2l+8}\}$ of \mathbb{P}^1. We may assume that $T = (A, p, [\nu])$ is a Prym triple for a covering $p : C \to \mathbb{P}^1$ with branch locus B and monodromy group G such that its ramification over b_i is induced by a φ_h. Then C is of genus $(n - 1)^2 + \frac{1}{2}ln(n - 1)$. As D_v is fixed point free and A has eigenvalues $k = 2(n - 1)$, $r_+ = n - 2$ and $r_- = -2$, it follows that

$$\dim P_+(T) = (n - 1)(n - 3) + \frac{1}{2}l(n - 1)(n - 2).$$

Hence, for $n = 3$ and $l \geq 1$ we obtain a finite number of finite dimensional families of l-dimensional Prym-Tyurin varieties of exponent 3 for curves of genus $3l + 4$. In anticipation of section 7 we shall say that T is of type l whenever $n = 3$ and $l \geq 1$.

Example 5.3. For an example involving symmetric correspondences with fixed points, let $n \geq 3$ and assume that A is the adjacency matrix of the graph $L_2(n)$ (the complement of $L_2(n)$) with vertex set $\{1, \ldots, n\}^2$. Assume that $t \in \text{Aut}(A)$ acts on $\{1, \ldots, n\}^2$ by exchange of coordinates and for
h = 1, \ldots, n - 1 define the reflection \(\sigma_h := ((1, h + 1), (1)) \) in \(S_n \times S_n \). We observe that \(\text{Aut}(A) \) is generated by the elements \(t \) and \(\sigma_1, \ldots, \sigma_{n-1} \). Clearly, no vertex \((i, j) \in \{1, \ldots, n\}^2\) is adjacent to \(\sigma_h(i, j) \). Further, \((i, j)\) is adjacent to \((i, j)\) if and only if \(i \neq j\).

Given nonnegative integers \(l_1, l_2\), we choose a subset \(B = B_1 \sqcup B_2\) of \(\mathbb{P}^1\) with \(B_1 = \{b_{1,1}, \ldots, b_{1,2l_1(n+1)}\}\) and \(B_2 = \{b_{2,1}, \ldots, b_{2,2l_2(n+1)}\}\). Let \(\mathcal{T} = (A, p, [v])\) be a Prym triple for a covering \(p : C \to \mathbb{P}^1\) with branch locus \(B\) and monodromy group \(\text{Aut}(A)\) such that its ramification over \(b_{1,i}\) (resp. \(b_{2,j}\)) is induced by \(t\) (resp. some \(\sigma_h\)). Then the curve \(C\) is of genus \(\frac{1}{2}(n-1)(n-2) + \frac{1}{2}l_1n(n-1) + l_2n\) and Lemma 4.2 implies that \((D_r : \Delta_C) = (l_1 + 1)(n-1)n\). It follows that \(P_+(\mathcal{T})\) is of dimension \(l_1(n-1) + l_2\).

In view of moduli, note that for \(l_1 = 0\) and \(n \geq \frac{1}{2}(l_2^2 - 3l_2 + 6)\) we have \(\dim P_+(\mathcal{T}) = l_2\) and \#\(B \geq \dim \mathcal{A}_{l_2} + \dim \text{Aut}(\mathbb{P}^1)\). In particular, if \(l_1 = 0\) and \(n = l_2 = 6\), then \(g(C) = 46\). Moreover, since \(S_2 \times (S_n \times S_n)\) has no subgroup of index \(n\), Galois theory implies that no factorization \(p : C \overset{\nu_1}{\longrightarrow} C' \overset{\nu_2}{\longrightarrow} \mathbb{P}^1\) exists.

Example 5.4. (Latin square graphs)

Given an integer \(n \geq 3\), we assume that \(A\) is the adjacency matrix of the Latin square graph \(L_3(n)\). We recall from Example 2.5 that \((\mathbb{Z}/n\mathbb{Z})^2\) induces a transitive subgroup of \(\text{Aut}(A)\) via translation; as such it coincides with \((\langle (1, 1), (1, 2) \rangle)\). Viewed as permutations of the vertex set \((\mathbb{Z}/n\mathbb{Z})^2\), the translations \((1, 1)\) and \((1, 2)\) split into \(n\) mutually disjoint \(n\)-cycles. For \(n \geq 4\) the vertices \((i + 1, j + 1)\) and \((i + 1, j + 2)\) of \(L_3(n)\) are non-adjacent to \((i, j)\).

Now assume that \(n \geq 4\). We choose an integer \(l \geq 2\) and a subset \(B = \{b_1, \ldots, b_n\}\) of \(\mathbb{P}^1\). Then there exists a Prym triple \(\mathcal{T} = (A, p, [v])\) for a covering \(p : C \to \mathbb{P}^1\) with branch locus \(B\) and monodromy group \((\mathbb{Z}/n\mathbb{Z})^2\) such that its ramification over \(b_i\) is induced by \((1, 1)\) or \((1, 2)\). We find that \(C\) is of genus \(1 - n^2 + \frac{1}{2}ln^2(n-1)\). Moreover, since \(\deg(p) = \#(\mathbb{Z}/n\mathbb{Z})^2\), it is immediately seen that \(p\) is a Galois covering. Using the fact that \(D_r\) is fixed point free and \(A\) has eigenvalues \(k = 3(n-1), r_+ = n-3\) and \(r_- = -3\), we compute

\[
\dim P_+(\mathcal{T}) = -(n-1)(n-2) + \frac{1}{2}ln(n-1)(n-3).
\]

Hence, for \(n = 4\) we get finitely many finite dimensional families of \(6(l-1)\)-dimensional Prym-Tyurin varieties of exponent 4 for curves of genus \(2d-15\).

6. A splitting

We show that for certain Prym triples \(\mathcal{T} = (A^{\otimes m}, p, [v])\) the covering \(p : C \to \mathbb{P}^1\) splits into a covering \(f : C \to C'\) of degree \(d\) and a covering \(h : C' \to \mathbb{P}^1\) of degree \(m\) such that \(f\) depends essentially on \(D_r\). Recall that \(k\) is the eigenvalue of the eigenvector \((1, \ldots, 1)\) of \(A\).

Theorem 6.1. Assume that \(A \in \{0, 1\}^{d \times d}\) is a Prym matrix with zero diagonal and eigenvalue \(k\) of multiplicity 1. Given \(m \geq 2\), let \(\mathcal{T} = (A^{\otimes m}, p, [v])\)
be a Prym triple for a covering \(p : C \to \mathbb{P}^1 \) with branch locus \(B \). Denote \(C_0 := p^{-1}(\mathbb{P}^1 \setminus B) \). Then there exists a unique splitting

\[
p : C \xrightarrow{d_1} C' \xrightarrow{m_1} \mathbb{P}^1
\]

such that, for any \((x, x') \in (C_0 \times C_0) \setminus \Delta_{C_0}\), the points \(x, x' \) are in the same fiber of \(f \) if and only if there is a finite sequence of points \(x = x_0, \ldots, x_l = x' \) on \(C_0 \) with \((x_j, x_{j+1}) \in D_r \) for all \(j = 0, \ldots, l - 1 \).

Proof. Fix a point \(q_0 \in \mathbb{P}^1 \setminus B \) and assume that \(\nu \) is a labelling of the fiber \(p^{-1}(q_0) \). We denote \(S = \{1, \ldots, m\} \), \(T = \{1, \ldots, d\} \) and identify \(S \times T \) with \(\{1, \ldots, md\} \) via the bijection \((s, t) \leftrightarrow (s - 1)m + t\). Then \(\nu \) turns into a bijection \((\nu_1, \nu_2) : p^{-1}(q_0) \to S \times T\). Let \(\Sigma \) be the monodromy group of \(p \) with respect to \((\nu_1, \nu_2)\) and split its elements accordingly into \(\sigma = (\sigma_1, \sigma_2) \).

Denoting \(A := (a_{i,j})_{i,j=1}^{d,m} \), we may view \(A^{\oplus m} \) as the matrix of entries \(c_{u,u'} \), where \(u = (s, t) \) and \(u' = (s', t') \) run through the set \(S \times T \), such that \(c_{u,u'} = a_{t,t'} \) if \(s = s' \) and \(c_{u,u'} = 0 \) else. According to Proposition 223, the matrix \(A \) is the adjacency matrix of a connected strongly regular graph \(\mathcal{G} \) on \(d \) vertices. Thus, for \(u = (s, t) \) and \(u' = (s', t') \) there exists a finite sequence \(u = u_0, \ldots, u_l = u' \) in \(S \times T \) such that \(c_{u_j,u_{j+1}} = 1 \) for all \(j = 0, \ldots, l - 1 \) if and only if \(s = s' \). Hence \(\sigma_1(\cdot, t) = \sigma_1(\cdot, t') \) for all \(\sigma \in \Sigma \), i.e., there is a unique \(\tau_\sigma \in S_m \) such that \(\sigma_1(\tau_\sigma, t) = \tau_\sigma(\cdot) \) for all \(t \in T \).

Let \(\pi : X \to \mathbb{P}^1 \) be the Galois closure of \(p \) and denote \(G = \text{Gal}(\pi) \). As we have seen in section 4 there exists an isomorphism \(\phi : G \to \Sigma \) such that the Galois group \(H \) of \(X \to C \) is the stabilizer of \((1, 1) \in S \times T\) w.r.t. \(\phi \) and any Galois labelling of a fiber of \(\pi \) induces a labelling in the class \([\nu]\) via the identification \(Hg \leftrightarrow g^{-1}(1, 1) \). We let \(H' \) be the stabilizer of \(1 \in S \) with respect to \(\psi \circ \phi \), where \(\psi : \Sigma \to S_m \) is the transitive representation induced by \(\sigma \mapsto \tau_\sigma \). Write \(C' = X/H' \); since \(H \subset H' \) (resp. \(H' \subset G \)) is a subgroup of index \(d \) (resp. \(m \)), there are canonical coverings \(f : C \to C' \) of degree \(d \) and \(h : C' \to \mathbb{P}^1 \) of degree \(m \) such that \(p = h \circ f \). Take a point \(q \in \mathbb{P}^1 \setminus B \) and a Galois labelling \(\pi^{-1}(q) \leftrightarrow G \). For any element \(g \in G \), if \((s, t) = g^{-1}(1, 1) \), then \(H'g \leftrightarrow g^{-1}(1) = s \), i.e., on the fiber \(p^{-1}(q) \) the covering \(f \) is given by \((s, t) \mapsto s \). With reference to Lemma 4.2 we conclude that \(f \) has the desired properties. Using the monodromy of \(p \), the reader will easily check that the splitting is unique.

With \(\mathcal{T}, f, \) and \(h \) as above, we say that the pair of coverings \((f, h)\) represents the *canonical splitting* for \(\mathcal{T} \).

Corollary 6.2. For integers \(d, m \geq 2 \), assume that \(\mathcal{T} = ((J_d - I_d)^{\oplus m}, p, [\nu]) \) is a Prym triple associated to a covering \(p : C \to \mathbb{P}^1 \) and let \((f, h)\) be its canonical splitting. Then \(P_+(\mathcal{T}) \) is the usual Prym variety associated to the covering \(f \), i.e., \(P_+(\mathcal{T}) \) and \(\text{im} f^* \) are complementary subvarieties of \(J(C) \).
Proof. According to Theorem 6.1 we have \(D_\gamma(x) = -x + f^*f(x) \) for all \(x \in C \) in an unramified fiber of \(p \). Hence \(\gamma_\tau + \text{id}_{J(C)} = f^*N_f \) and thus \(P_+ (\mathcal{T}) = \text{im} f^* \). As \((J_d - I_d) \oplus m \) is a Prym matrix, Proposition 3.5 implies that \(P_+ (\mathcal{T}) \) and \(\text{im} f^* \) are complementary in \(J(C) \). \(\square \)

Corollary 6.2 has a natural converse. Before addressing this, we recall that a smooth projective curve of genus \(g \) is \(m \)-gonal for all \(m \geq \lceil \frac{g}{2} \rceil + 1 \) (cf. [1], Existence Theorem, p. 206).

Corollary 6.3. Assume that \(f : C \to C' \) is a covering of degree \(d \geq 2 \) of a curve \(C' \) of genus \(g \geq 1 \) and let \(h : C'' \to \mathbb{P}^1 \) be a covering of degree \(m \geq \lceil \frac{g}{2} \rceil + 1 \). Then there exists a labelling class \([\nu] \) for the covering \(h \circ f \) such that \(\mathcal{T} = ((J_d - I_d) \oplus m, h \circ f, [\nu]) \) is a Prym triple and \(P_+ (\mathcal{T}) \) is the usual Prym variety associated to \(f \).

Proof. Take a point \(q \in \mathbb{P}^1 \) outside the branch locus of \(h \circ f \). Then we can define a bijection \(\nu = (\nu_1, \nu_2) : (h \circ f)^{-1}(q) \to \{1, \ldots, m\} \times \{1, \ldots, d\} \) such that \(\nu_1(x) = \nu_1(x') \iff f(x) = f(x') \), for all \(x, x' \in (h \circ f)^{-1}(q) \). It is immediately seen that \((J_d - I_d) \oplus m, h \circ f, [\nu]\) represents a Prym triple with canonical splitting \((f, h)\). Now apply Corollary 6.2 \(\square \)

Given integers \(d, m \geq 2 \), assume that \(\mathcal{T} = ((J_d - I_d) \oplus m, p, [\nu]) \) is a Prym triple. We shall call \(\mathcal{T} \) simple if its canonical splitting \((f, h)\) is simple, i.e., if \(f \) and \(h \) are simply branched coverings such that no ramified fiber of \(h \) contains a branch point of \(f \) and no unramified fiber of \(h \) contains more than one branch point of \(f \). It should be noted that simplicity can also be described in terms of the monodromy of \(p \) alone, without reference to \(f \) and \(h \).

To conclude this section, we use simple Prym triples to characterize (at least up to isogeny) abelian varieties corresponding to the general points of \(\mathcal{A}_4 \) and \(\mathcal{A}_5 \).

Lemma 6.4. (1) The general 4-dimensional principally polarized abelian variety is isogenous to a Prym variety \(P_+ (\mathcal{T}) \) for a simple Prym triple \(\mathcal{T} = ((J_2 - I_2) \oplus 3, p, [\nu]) \) such that the covering \(p \) has exactly 4 simple and 10 double branch points.

(2) The general 5-dimensional principally polarized abelian variety is of the form \(P_+ (\mathcal{T}) \), where \(\mathcal{T} = ((J_2 - I_2) \oplus 4, p, [\nu]) \) is a simple Prym triple such that the covering \(p \) has exactly 18 double branch points.

Proof. For integers \(g \geq 1 \) and \(n \geq 0 \), let \(\mathcal{R}(g, n) \) be the moduli space of equivalence classes of double coverings \(f : C \to C' \) with \(C' \) of genus \(g \) and \(f \) branched at \(2n \) distinct points of \(C' \). We shall need the following fact: Let \(m \) be an integer. If \(m \geq \lceil \frac{g}{2} \rceil + 1 \), then for a double covering \(f : C \to C' \) corresponding to a general point of \(\mathcal{R}(g, n) \) there exists an \(m \)-fold covering \(h : C' \to \mathbb{P}^1 \) such that the covering pair \((f, h)\) is simple. The proof is left
to the reader. As in [2], p. 122, we let \(p_{(g,n)} : \mathcal{R}(g,n) \to A_{g+n-1}(\delta) \) be the usual Prym morphism, where \(A_{g+n-1}(\delta) \) is the moduli space of abelian \(g \)-folds with polarization type \(\delta \). According to [2], Theorem 2.2, the morphism \(p_{(3,2)} : \mathcal{R}(3,2) \to A_4(1,2,2,2) \) is dominant. Moreover, for the general double covering \(f : C \to C' \) with 4 branch points and \(g(C') = 3 \) there exists a 3-fold covering \(h : C' \to \mathbb{P}^1 \) such that the pair \((f,h)\) is simple and the covering \(h \circ f \) has exactly 4 simple and 10 double branch points. Together with Corollary 6.3 this shows (1). To prove (2) we recall that \(p_{(6,0)} : \mathcal{R}(6,0) \to A_5 \) is dominant (cf. [10]). Hence it suffices to note that for the general étale double covering \(f : C \to C' \) with \(g(C') = 6 \) there exists a 4-fold covering \(h : C' \to \mathbb{P}^1 \) branched at 18 points such that the pair \((f,h)\) is simple. \(\square \)

7. Prym-Tyurin varieties of arbitrary exponent \(\geq 3 \)

We show how the graph \(L_2(n) \in \text{SRG}(n^2, (n-1)^2, (n-2)^2, (n-1)(n-2)) \) for \(n \geq 3 \) can be employed to construct families of Prym-Tyurin varieties of exponent \(n \). These varieties turn out to be the product of the Jacobians of two \(n \)-gonal curves.

Example 7.1. Given an integer \(n \geq 3 \), we shall try to construct Prym-Tyurin varieties of exponent \(n \). Assume that \(A \) is the adjacency matrix of the graph \(L_2(n) \) with vertex set \(\{1, \ldots, n\}^2 \). Recall that \(S_n \times S_n \) is a transitive subgroup of \(\text{Aut}(A) \). For \(i = 1, \ldots, n-1 \) we define reflections \(\sigma_{1,i} := ((1, i+1), (1)) \) and \(\sigma_{2,i} := ((1), (1, i+1)) \) in \(S_n \times S_n \). Note that \(S_n \times S_n \) is freely generated by these reflections.

Given nonnegative integers \(l_1, l_2 \) such that \(l_1 + l_2 \geq 1 \), let \(B = B_1 \sqcup B_2 \) be a finite subset of \(\mathbb{P}^1 \) with \(B_m = \{b_{m,1}, \ldots, b_{m,2(l_m+n-1)}\} \). Assume that \(\mathcal{T} = (A, p, [\nu]) \) is a Prym triple for a covering \(p : C \to \mathbb{P}^1 \) with branch locus \(B \) and monodromy group \(S_n \times S_n \) such that its ramification over \(b_{m,i} \) is induced by \(\sigma_{m,h} \); in this situation we say that \(\mathcal{T} \) is of type \((l_1, l_2)\). Since no vertex \((i,j)\) of \(L_2(n) \) is adjacent to \(\sigma_{m,h}(i,j) \), the correspondence \(D_\nu \) is fixed point free. Moreover, it is easily seen that all \(\sigma_{m,h} \) decompose into \(n \) mutually disjoint transpositions on the set \(\{1, \ldots, n\}^2 \). Hence, as \(A \) has eigenvalues \(k = (n-1)^2 \), \(r^+ = 1 \) and \(r^- = -n+1 \), it follows that \(P_\nu(\mathcal{T}) \) is an \((l_1 + l_2)\)-dimensional Prym-Tyurin variety of exponent \(n \) for the curve \(C \) of genus \((n-1)^2 + (l_1 + l_2)n\).

Recall from Example 5.2 that a Prym triple \(\mathcal{T} \) of type \(l \) yields an \(l \)-dimensional Prym-Tyurin variety \(P_\nu(\mathcal{T}) \) of exponent 3. We will show that for \(n = 3 \) the Prym-Tyurin varieties of the preceding example are the same as those of Example 5.2. More precisely, let \(A \) be the adjacency matrix of the lattice graph \(L_2(3) \) and assume that \([\nu]\) is a labelling class for a covering \(p : C \to \mathbb{P}^1 \) of degree 9. Given the isomorphism of graphs \(\xi : L_2(3) \to L_2(3) \) induced by the matrix \(\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \) as in Example 2.4, we have:

Lemma 7.2. Let \(l \geq 1 \) be an integer. Then \(\mathcal{T} = (A, p, [\nu]) \) is a Prym triple of type \(l \) if and only if there exist integers \(l_1, l_2 \geq 0 \) such that \(l_1 + l_2 = l \) and...
$T' = (J_0 - I_0 - A, p, |\xi^{-1} \circ \nu|)$ is a Prym triple of type (l_1, l_2). In particular, if T is of type l, then $P_\pm(T) = P_\pm(T')$.

Proof. It suffices to note that the reflections $\varphi_0, \varphi_1, \varphi_2, \varphi_3 \in \text{Aut}(L_2(3))$ of Example 5.2 satisfy the identities $\xi^{-1} \sigma_{1,1} \xi = \varphi_0$, $\xi^{-1} \sigma_{1,2} \xi = \varphi_0 \varphi_3 \varphi_0^{-1}$, $\xi^{-1} \sigma_{2,1} \xi = \varphi_1 \varphi_2 \varphi_1^{-1}$ and $\xi^{-1} \sigma_{2,2} \xi = \varphi_2$. \hfill \square

For Prym-Tyurin varieties $P_+(T)$ with T of type (l_1, l_2) we have the following characterization.

Theorem 7.3. Assume that A is the adjacency matrix of $\overline{L_2(n)}$ with $n \geq 3$. For nonnegative integers l_1, l_2 such that $l_1 + l_2 \geq 1$, let T be a Prym triple of type (l_1, l_2) associated to A and a covering $C \to \mathbb{P}^1$. Then there exist maps $f, T, l \geq 1$ such that $C = C_1 \times_{p_1} C_2$ and $P_+(T) \simeq J(C_1) \times J(C_2)$.

Proof. Let $p : C \to \mathbb{P}^1$ and $[\nu]$ be the covering and labelling class such that $T = (A, p, [\nu])$. Then $S_n \times S_n$ is the monodromy group of p. We take the inclusion $\iota : S_n \times S_n \hookrightarrow \text{Perm}(N \times N)$ and write $N \equiv \{1, \ldots, n\}$. Let $\pi : X \to \mathbb{P}^1$ be the Galois closure of p and denote $G = \text{Gal}(\pi)$. Then there exists an isomorphism $\phi : G \to \Sigma$ such that the Galois group H of $X \to C$ is the stabilizer of $(1, 1) \in N \times N$. Let $H \equiv \Sigma$ and any Galois covering of a fiber of π induces a labelling in the class $[\nu]$ via the identification $H g \leftrightarrow g^{-1}(1, 1)$. Take the projection mappings $p_1, p_2 : S_n \times S_n \to S_n$ onto the first and second factor and let H_1 (resp. H_2) be the stabilizer of the letter $1 \in N$ w.r.t. $\phi_1 := p_1 \circ \phi$ (resp. $\phi_2 := p_2 \circ \phi$). Observing that $H = H_1 \cap H_2$, we take the quotient curves $C_m = X/H_m$ for $m = 1, 2$ and let $f_m : C \to C_m$. Then $f_m : C_m \to \mathbb{P}^1$ is the canonical covering. The transitivity of ϕ_m implies that f_m and h_m are of degree n. In addition to $H = H_1 \cap H_2$ we have $G = \langle H_1, H_2 \rangle$. Using elementary Galois theory we thus find

$$C(C) = C(C_1) \otimes_{C(\mathbb{P}^1)} C(C_2).$$

Hence C is the fiber product of the n-gonal curves C_1 and C_2 with projection morphisms f_1 and f_2. Let B be the branch locus of the covering p. Then h_m for $m = 1, 2$ is a simple covering with branch locus B_m, where B_m is the set of points $b \in B$ such that, in the notation of Example 5.1, the local monodromy of p is given by a permutation $\sigma_{m,i}$. As $\#(B_m) = 2(l_m + n - 1)$, we find $g(C_m) = l_m$.

It remains to show that $P_+(T) \simeq J(C_1) \times J(C_2)$. Choose a point $q \in \mathbb{P}^1 \setminus B$ and a Galois labelling $\pi^{-1}(q) \leftrightarrow G$. Then take a labelling $\{y_{1,1}, \ldots, y_{n,n}\}$ for $p^{-1}(q)$ and a labelling $\{z_{m,1}, \ldots, z_{m,n}\}$ for $h_m^{-1}(q)$, $m = 1, 2$ such that $y_{g^{-1}(1, 1)} \leftrightarrow H g$ and $z_{m,(\phi_m(g))^{-1}(1)} \leftrightarrow H_m g$, for all $g \in G$. We observe that $f_1^{-1}(z_{1,s}) = \{y_{s,j} \mid j \in N\}$ and $f_2^{-1}(z_{2,t}) = \{y_{i,t} \mid i \in N\}$, for all $s, t \in N$.

According to Lemma \ref{lem:fixed_point}, we have $D_T(y_{s,t}) = \sum_{i \neq s, j \neq t} y_{i,j}$ and therefore

$$f_1^* z_{1,s} + f_2^* z_{2,t} = \sum_{j \in N} y_{s,j} + \sum_{i \in N} u_{i,t} = p^p p(y_{s,t}) + y_{s,t} - D_T(y_{s,t}).$$

Hence, for $y, y' \in p^{-1}(\mathbb{P}^1 \setminus B)$ and $z_m = f_m(y)$, $z'_m = f_m(y')$ with $m = 1, 2$ we obtain, using divisor class notation,

$$f_1^*[z_1 - z'_1] + f_2^*[z_2 - z'_2] = -(\gamma_T - \text{id}_{\Theta_C})([y - y']).$$

Consequently, defining $\varphi = f_1^1 \psi_1 + f_2^2 \psi_2 : J(C_1) \times J(C_2) \to J(C)$, where $\psi_m : J(C_1) \times J(C_2) \to J(C_m)$ is the projection on the m-th factor, we get $P_m(T) = \text{im}(\gamma_T - \text{id}_{\Theta_C}) \subset \text{im} \varphi$. Because $\dim P_+(T) = l_1 + l_2 = \dim J(C_1) + \dim J(C_2)$, it thus follows that $\varphi : J(C_1) \times J(C_2) \to P_+(T)$ is an isogeny. As $P_+(T)$ is a Prym-Tyurin variety of exponent n for C, the restriction of the canonical polarization Θ_C to $P_+(T)$ is of type (n, \ldots, n). Lemma 12.3.1 of \cite{rudy} implies that the polarization $\varphi^* \Theta_C$ of $J(C_1) \times J(C_2)$ is of type (n, \ldots, n), as well. Hence $\varphi : J(C_1) \times J(C_2) \to P_+(T)$ is an isogeny of degree 1, i.e., an isomorphism. \hfill \square

Remark. In spite of the similarities between the Examples 5.4 and 6.1, the preceding theorem does not fully extend to Prym triples \mathcal{T} such as in Example 6.4. In fact, defining n-gonal curves C_1 and C_2 analogously to those in the proof, we get $C = C_1 \times_{y_1} C_2$. A simple computation shows, however, that the dimensions of $P_+(T)$ and $J(C_1) \times J(C_2)$ do not match.

A different construction. In \cite{rudy}, Lange, Recillas and Rochas define non-trivial families of Prym-Tyurin varieties of exponent 3. Here is a recap of their construction: Given a hyperelliptic curve X of genus $g \geq 3$ and an étale covering $f : \tilde{X} \to X$ of degree 3, let $h : X \to \mathbb{P}^1$ be the covering given by the g_1^2 and define the curve $C = (f^{(3)})^{-1}(g_1^2)$, where $f^{(3)} : \tilde{X}^{(2)} \to X^{(3)}$ is the second symmetric product of f. Assume for the moment that C is smooth and irreducible. Denote $\tilde{C} = \mu^{-1}(C)$, where $\mu : \tilde{X}^2 \to \tilde{X}^{(2)}$ is the canonical 2 : 1 map and let $\pi : \tilde{C} \to X$ be the projection on the first factor, where \tilde{C} is considered as a curve in \tilde{X}^2. Now define the covering $p : C \to \mathbb{P}^1$ induced by $h \circ f \circ \pi : \tilde{C} \to \mathbb{P}^1$ and let $\iota : X \to X$ be the hyperelliptic involution. Then $p, h \circ f$ and h have the same branch locus B, which may be assumed to be of cardinality $2l + 8$ for $l \geq 0$. To obtain a divisorial correspondence on $C \times C$, we choose a point $q \in \mathbb{P}^1 \setminus B$ and denote the fiber $h^{-1}(q)$ by $\{x, \iota(x)\}$. Write $f^{-1}(x) = \{y_1, y_2, y_3\}$ and $f^{-1}(\iota(x)) = \{z_1, z_2, z_3\}$; then $p^{-1}(q) = \{y_i + z_j | i, j = 1, 2, 3\}$ and the identity

$$D(y_{s,t}) = \sum_{j \neq t} (y_{s} + z_{j}) + \sum_{i \neq s} (y_{i} + z_{t})$$

defines a fixed point free symmetric correspondence D of bidegree $(2, 2)$ on $C \times C$. Note that the matrix of entries $a_{(s,j),(i,t)}$ (for $(s,j), (i,t) \in \{1, 2, 3\}^2$)
given by
\[a_{(s,j),(i,t)} = \begin{cases}
1 & \text{if } (y_s + z_j, y_i + z_t) \in D \\
0 & \text{else}
\end{cases} \]
is the adjacency matrix of \(L_2(3) \). Hence the canonical endomorphism \(\gamma_0 \) of
\(J(C) \) satisfies the equation
\[(\gamma_0 - \text{id}_{J(X)})(\gamma_0 + 2\text{id}_{J(X)}) = 0. \]
For \(l \geq 1 \) it follows that \(P := \text{im}(\gamma_0 - \text{id}_{J(C)}) \) is an \(l \)-dimensional Prym-
Tyurin variety of exponent 3 coincides with the family of Prym-Tyurin
varieties of type \(l \).

Proposition 7.4. The Lange-Recillas-Rochas family of \(l \)-dimensional Prym-
Tyurin varieties of exponent 3 coincides with the family of Prym-Tyurin
varieties \(P_*(T) \) for Prym triples \(T \) of type \(l \).

Proof. Let \(P \) (resp. \(p : C \to \mathbb{P}^1 \)) be the Prym variety (resp. covering) as-
associated to an étale threefold covering \(f : \tilde{X} \to X \) and a double covering
\(h : X \to \mathbb{P}^1 \) with branch locus \(B \) of cardinality \(2l + 8 \). We fix a point
\(q \in \mathbb{P}^1 \setminus B \) and write \(N = \{1, 2, 3\} \). Using the notation of the preceding
construction, we define the bijections \(\nu : p^{-1}(q) \to N \times N, y_i + z_j \mapsto (i, j) \)
and \(\mu : (h \circ f)^{-1}(q) \to \{1, 2\} \times N \), sending \(y_i \mapsto (1, i) \) and \(z_j \mapsto (2, j) \). We
let \(\rho \) (resp. \(\varphi \)) be the monodromy representations for \(p \) (resp. \(h \circ f \)) induced
by \(\nu \) (resp. \(\mu \)). Choose a small \(q \)-based loop \(\lambda \subset \mathbb{P}^1 \setminus B \) around a point
\(b \in B \). Then \(\varphi([\lambda]) = v_1v_2v_3 \) is the product of mutually disjoint transpo-
sitions \(v_j = ((1, s_j), (2, t_j)) \), \(s_j, t_j \in N \). Employing the fact that \(p \) comes
from \(h \circ f \circ \pi \) with \(\pi \) as in the construction, one easily checks that \(\xi \rho([\lambda]) \xi^{-1} \)
is a conjugate of some \(\sigma_{m,h} \in S_3 \times S_3 \) (in the notation of Example 7.1). By
transitivity of \(\text{im} \rho \) it thus follows that \(\xi(\text{im} \rho) \xi^{-1} = S_3 \times S_3 \). Hence, if \(A \)
Denotes the adjacency matrix of the graph \(L_2(3) \), then \(T = (A, p, [\nu]) \) is a
Prym triple of type \(l \) and Lemma 6.2 implies that \(P = P_*(T) \).

Conversely, let \(T \) be a Prym triple of type \(l \) associated to a covering
\(p : C \to \mathbb{P}^1 \) with branch locus \(B \) and a labelling class \([\nu] \), where \(\nu : p^{-1}(q) \to \{1, 2, 3\} \)
is a labelling for the fiber of \(p \) over a point \(q \in \mathbb{P}^1 \setminus B \). Given the
monodromy representation \(\rho : \pi_1(\mathbb{P}^1 \setminus B, q) \to \text{Perm}(\{1, 2, 3\}) \)
for \(p \) induced by \(\nu \), we take coordinate mappings \(\rho_1, \rho_2 \) such that \(\rho(\beta) \)
 splits as \((\rho_1(\beta), \rho_2(\beta)) \) for \(\beta \in \pi_1(\mathbb{P}^1 \setminus B, q) \). We then have a transitive represent-
ation \(\varphi : \pi_1(\mathbb{P}^1 \setminus B, q) \to \text{Perm}(\{1, 2\} \times \{1, 2, 3\}) \), defined by
the relations \(\varphi(\beta)(1, i) = (2, \rho_2(\beta)(i, 1)) \) and \(\varphi(\beta)(2, j) = (1, \rho_1(\beta)(1, j)) \). Using the local
monodromy of \(p \), one shows by analogy with the proof of Theorem 6.1 that
\(\varphi \) is a monodromy representation for a covering
\[h \circ f : \tilde{X} \xrightarrow{3:1} X \xrightarrow{2:1} \mathbb{P}^1, \]
where \(f \) is étale and \(g(X) \geq 4 \). Then \(\rho \) is immediately seen to act as a monodromy representation for the covering that is associated to \(f \) and \(h \). Hence \(P_+(\mathcal{T}) \) (resp. \(p \)) is the Prym variety (resp. covering) associated to \(f \) and \(h \).

\[\square \]

REFERENCES

[1] E. Arbarello, M. Cornalba, P.A. Griffiths, J. Harris, Geometry of Algebraic Curves; Volume I, Springer-Verlag, 1985
[2] F. Bardelli, C. Ciliberto, A. Verra: Curves of minimal genus on a general abelian variety, Comp. Math. 96 (1995), 115–147.
[3] C. Birkenhake, H. Lange, Complex Abelian Varieties, Springer-Verlag, 2004.
[4] V. Kanev: Principal polarizations of Prym-Tjurin varieties, Comp. Math. 64 (1987), 243–270.
[5] V. Kanev: Spectral curves and Prym-Tjurin varieties I, Proceedings of the Egloffstein conference 1993, de Gruyter (1995), 151–198.
[6] H. Lange, S. Recillas, A.M. Rochas: A family of Prym-Tjurin varieties of exponent 3, arXiv:math.AG/0412103
[7] Y.I. Manin, Cubic forms: Algebra, Geometry, Arithmetic, North-Holland, 1974.
[8] J.Y. Méringol: Variétés de Prym d’un revêtement galoisien, J. reine angew. Math. 461 (1995), 49–61.
[9] R. Miranda, Algebraic Curves and Riemann Surfaces, American Mathematical Society, 1995.
[10] D. Mumford: Prym varieties I, in: Contributions to Analysis, Academic Press (1974), 325–350.
[11] J.H. van Lint, R.M. Wilson, A course in Combinatorics, Cambridge University Press, 2002.
[12] H. Völklein, Groups as Galois groups, Cambridge University Press, 1996.

Faculteit Wiskunde en Informatica, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands.

E-mail address: rsalomon@science.uva.nl