Maternal and Perinatal Factors Associated With Kawasaki Disease Among Offspring in Taiwan

Chaw-Liang Chang, MD; Ming-Chih Lin, MD, PhD; Ching-Heng Lin, PhD; Tai-Ming Ko, PhD

Introduction

Kawasaki disease (KD) is the most recognized childhood vasculitis and the leading cause of pediatric-acquired heart disease in developed countries. Increased KD incidence among East Asian children, a high risk among siblings and twins, and familial occurrence suggest a genetic predisposition. However, genetic factors alone cannot explain seasonal variations, periodic outbreaks, or the continued increase in KD incidence. Many other factors, including exposure to infectious agents, pollution, and elevated atmospheric biological particle concentrations, are associated with KD. Several studies have suggested that maternal and perinatal factors might be associated with KD development. This case-control study investigated the role of perinatal factors and maternal autoimmune diseases in the development of KD using the Taiwan Maternal and Child Health Database.

Methods

The institutional review board of the Cathay General Hospital approved this study and waived the need for informed consent because the data are publicly available and deidentified. The study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline for case-control studies.

We collected data of patients who were younger than 5 years, had KD, and were born between 2004 and 2010, from the original claims data of the Taiwan National Health Insurance Research Database, which was established in 1995 and covered 99.9% of the population by 2003. KD diagnosis (International Classification of Diseases, Ninth Revision code 446.1) was confirmed by receipt of intravenous immunoglobulins (Anatomic Therapeutic Chemical code J06BA02) and hospitalization. Age-matched and index date–matched individuals were collected as a control group. Every citizen in Taiwan is assigned a unique national identification number. The Taiwan Maternal and Child Health Database, which contains national identification numbers of children and their parents, was used to link parents and children. The child’s birth history, maternal comorbidities, and maternal autoimmune diseases were analyzed (see the eAppendix in the Supplement).

Differences in categorical and continuous variables were assessed using χ² and t tests, respectively. P values were 2-sided, and statistical significance was set at P < .05. Analyses were performed using SAS Enterprise Guide statistical software version 9.4 (SAS Institute). The analyses were conducted from May 1 to August 6, 2020.

Results

We enrolled 4197 patients with KD (2601 boys [62.0%]; 1717 [40.9%] younger than 1 year; 1261 [30.0%] aged 1 year) and 16788 matched individuals without KD (8832 boys [52.6%]) from 1280374 children in the database. Male sex (odds ratio [OR], 1.47; 95% CI, 1.37-1.57; P < .001), maternal age 35 years or older (OR, 1.18; 95% CI, 1.07-1.30; P < .001), maternal age 35 years or older (OR, 1.18; 95% CI, 1.07-1.30; P < .001), maternal Sjögren syndrome (OR, 1.75; 95% CI, 1.03-2.95; P = .04), and maternal ankylosing spondylitis (OR, 2.01; 95% CI, 1.69-2.39; P = .05) were associated with KD.
were associated with increased KD risk in the offspring. However, low birth weight, preterm delivery, other maternal autoimmune diseases, and maternal comorbidities showed no associations with risk of developing KD (Table 1). In the multivariable analysis, maternal ankylosing spondylitis was associated with a 2.02 times higher odds of KD in the offspring (95% CI, 1.18-3.47; \(P = .01 \)) (Table 2).

Table 2. Multivariable Analysis of Autoimmune Diseases Associated With Kawasaki Disease

Autoimmune disease	Model 1\(^a\)	Model 2\(^b\)		
	OR (95% CI)	\(P \) value	OR (95% CI)	\(P \) value
Systemic lupus erythematosus	0.85 (0.43-1.67)	.63	0.86 (0.43-1.71)	.67
Rheumatoid arthritis	0.78 (0.41-1.49)	.45	0.79 (0.41-1.52)	.49
Sjögren syndrome	1.74 (1.03-2.94)	.04	1.67 (0.99-2.84)	.06
Ankylosing spondylitis	1.97 (1.15-3.37)	.01	2.02 (1.18-3.47)	.01
Psoriatic arthritis or psoriasis	0.85 (0.41-1.74)	.65	0.85 (0.41-1.74)	.65
Autoimmune thyroiditis	1.38 (0.65-2.94)	.41	1.40 (0.65-2.99)	.39

Abbreviation: OR, odds ratio.

\(^a\) Model 1 was adjusted for neonatal sex and maternal age.

\(^b\) Model 2 was adjusted for neonatal sex, maternal age, neonatal age, birth weight, preterm delivery, and maternal comorbidity.

Table 1. Characteristics of Study Participants and Factors Associated With KD

Characteristic	Non-KD group (\(n = 16\,788 \))	KD group (\(n = 4197 \))	OR (95% CI)	\(P \) value
Age, y	6868 (40.9)	1717 (40.9)	NA\(^a\)	NA\(^a\)
0	5044 (30.0)	1261 (30.0)		
2	2336 (13.9)	584 (13.9)		
3	1180 (7.0)	295 (7.0)		
4	824 (4.9)	206 (4.9)		
5	536 (3.2)	134 (3.2)		
Sex	7956 (47.4)	1596 (38.0)	1 [Reference]	<.001
Female	8832 (52.6)	2601 (62.0)	1.47 (1.37-1.57)	<.001
Male				
Birth weight, g	15 672 (93.4)	3929 (93.6)	1 [Reference]	<.001
≥2500	1116 (6.6)	268 (6.4)	0.96 (0.84-1.10)	.55
<2500				
Mother’s age, y	14 611 (87.0)	3571 (85.1)	1 [Reference]	<.001
<35	2177 (13.0)	626 (14.9)	1.18 (1.07-1.30)	<.001
≥35				
Preterm delivery, wk	15 448 (92.0)	3856 (91.9)	1 [Reference]	<.001
≥37	1340 (8.0)	341 (8.1)	1.02 (0.90-1.15)	.76
<37				
Maternal comorbidity				
Diabetes	125 (0.7)	27 (0.6)	0.86 (0.57-1.31)	.49
Hypertension	143 (0.9)	39 (0.9)	1.09 (0.77-1.56)	.63
Hyperlipidemia	202 (1.2)	54 (1.3)	1.07 (0.79-1.45)	.65
Gestational diabetes	272 (1.6)	60 (1.4)	0.88 (0.67-1.17)	.38
Gestational hypertension	84 (0.5)	23 (0.5)	1.10 (0.69-1.74)	.70
Preeclampsia or eclampsia	188 (1.1)	51 (1.2)	1.09 (0.80-1.48)	.60
Maternal autoimmune disease				
Systemic lupus erythematosus	47 (0.3)	10 (0.2)	0.85 (0.43-1.69)	.64
Rheumatoid arthritis	55 (0.3)	11 (0.3)	0.80 (0.42-1.53)	.50
Sjögren syndrome	46 (0.3)	20 (0.5)	1.75 (1.03-2.95)	.04
Ankylosing spondylitis	40 (0.2)	20 (0.5)	2.01 (1.17-3.43)	.01
Psoriatic arthritis or psoriasis	43 (0.3)	9 (0.2)	0.84 (0.41-1.72)	.63
Autoimmune thyroiditis	26 (0.2)	9 (0.2)	1.39 (0.65-2.96)	.40

Abbreviations: KD, Kawasaki Disease; NA, not applicable; OR, odds ratio.

\(^a\) The groups were age matched so no comparisons were made.
Discussion

Given that the age of KD onset is between 6 months and 5 years, and it is most severe during the first year of life, it is possible that the child’s immature immune system and maternal and perinatal factors might be associated with KD development. However, the identification of maternal associations, especially when investigating perinatal factors associated with pediatric diseases, is the challenge when integrating different large databases to link maternal health information with the child’s clinical phenotypes. In this study, we found that advanced maternal age was significantly associated with KD development in the offspring. This association may partly explain the increasing KD incidence in developed countries because ages at marriage and childbearing are increasing. The advanced parental age may be associated with more germline de novo variants, which may lead to KD in the offspring. Furthermore, we demonstrated that maternal ankylosing spondylitis and Sjögren syndrome may be perinatal factors associated with increased risk of KD. This suggests that a maternal autoimmune disease or its associated medical treatment might induce an epigenetic predisposition to developing KD in the offspring.

The main limitation of the study was the unavailability of the genetic and environmental confounders. Moreover, our findings are based on data of patients who were younger than 5 years. Therefore, the role of maternal factors in increasing the risk of KD in offspring requires further investigation, especially in older patients.

ARTICLE INFORMATION

Accepted for Publication: February 4, 2021.

Published: March 26, 2021. doi:10.1001/jamanetworkopen.2021.3233

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2021 Chang C-L et al. JAMA Network Open.

Corresponding Authors: Tai-Ming Ko, PhD, Department of Biological Science and Technology, National Chiao Tung University, 75 Boai St, Hsinchu 300, Taiwan, ROC (tmko@mctu.edu.tw); Ching-Heng Lin, PhD, Department of Medical Research, Taichung Veterans General Hospital, 1650 Taiwan Blvd, Section 4, Taichung, Taiwan, ROC (epid@vghtc.gov.tw).

Author Affiliations: Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan (Chang, Ko); Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan (Chang, Ko); Department of Pediatrics, Cathay General Hospital, Hsinchu, Taiwan (Chang); School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan (Chang); Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan (M.-C. Lin); School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (M.-C. Lin); Department of Food and Nutrition, Providence University, Taichung, Taiwan (M.-C. Lin); School of Medicine, Chung Shan Medical University, Taichung, Taiwan (M.-C. Lin); Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan (C.-H. Lin); Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan (C.-H. Lin); Department of Health Care Management, National Taiwan University of Nursing and Health Sciences, Taipei, Taiwan (C.-H. Lin); Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan (C.-H. Lin); Institute of Public Health and Community Medicine Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan (C.-H. Lin); Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan (Ko); Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Ko); Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan (Ko); Center For Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan (Ko); Drug Development and Value Creation Research Center, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan (Ko).

Author Contributions: Dr C.-H. Lin had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Chang, Ko.

Critical revision of the manuscript for important intellectual content: All authors.
Statistical analysis: C.-H. Lin.

Obtained funding: Ko.

Administrative, technical, or material support: M.-C. Lin, C.-H. Lin, Ko.

Supervision: M.-C. Lin, Ko.

Conflict of Interest Disclosures: None reported.

Funding/Support: This study was funded by grants VGHUST108-G2-2-1 and VGHUST109-V2-1-2 from the University System of Taiwan Joint Research Program and by grants MOST-107-2314-B-009-005-MY2, MOST-109-2314-B-009-003-MY3, and MOST109-2321-B-009-007 from the Ministry of Science and Technology in Taiwan.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

REFERENCES

1. Onouchi Y, Ozaki K, Burns JC, et al; Japan Kawasaki Disease Genome Consortium; US Kawasaki Disease Genetics Consortium. A genome-wide association study identifies three new risk loci for Kawasaki disease. *Nat Genet.* 2012;44(5):517-521. doi:10.1038/ng.2220

2. McCrindle BW, Rowley AH, Newburger JW, et al; American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Cardiovascular Surgery and Anesthesia; and Council on Epidemiology and Prevention. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. *Circulation.* 2017;135(17):e927-e999. doi:10.1161/CIR.0000000000000484

3. Hayward K, Wallace CA, Koepsell T. Perinatal exposures and Kawasaki disease in Washington State: a population-based, case-control study. *Pediatr Infect Dis J.* 2012;31(10):1027-1031. doi:10.1097/INF.0b013e31825eaed0

4. Belkaibech S, Potter BJ, Kang H, Lee GE, Blodeau-Bertrand M, Auger N. Maternal autoimmune disorders and risk of Kawasaki disease in offspring. *J Pediatr.* 2020;222:240-243.e1. doi:10.1016/j.jpeds.2020.02.016

5. Yang SW, Kernic MA, Mueller BA, Simon GE, Chan KCG, Vander Stoep A. Association of parental mental illness with child injury occurrence, hospitalization, and death during early childhood. *JAMA Pediatr.* 2020;174(8): e201749. doi:10.1001/jamapediatrics.2020.1749

6. Wong WS, Solomon BD, Bodian DL, et al. New observations on maternal age effect on germline de novo mutations. *Nat Commun.* 2016;7:10486. doi:10.1038/ncomms10486

SUPPLEMENT.

eAppendix. Supplemental Methods