Identification of specific proteins in colorectal cancer patients with *Schistosoma mansoni* infection as a possible biomarker for the treatment of this infection

Eshtyaq Abdalla Abdelkareem<sup>1,2</sup>, Tan Gim Cheong<sup>3</sup>, Abdalla Hassan Sharief<sup>2</sup>, Lim Boon Huat<sup>4</sup>, Khoo Boon Yin<sup>1*</sup>

<sup>1</sup>The Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
<sup>2</sup>Tropical Medicine Research Institute (TMRI), Khartoum, Sudan.
<sup>3</sup>Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Perak, Malaysia.
<sup>4</sup>School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.

**ARTICLE INFO**

**ABSTRACT**

**Objective:** To identify the associated proteins or antigens in serum of colorectal cancer patients with and without the chronic *Schistosoma mansoni* (*S. mansoni*) infection in Sudan.

**Methods:** The study included 93 patients with colorectal cancer and/or *S. mansoni* infection. A clinical database of colorectal cancer patients was documented by pathologist and information of *S. mansoni* infection was collected through stool analysis. Blood samples were collected from the identified patients. Geographical distribution of patients and etiological factors of colorectal cancer and *S. mansoni* infection were also discussed in this study. The proteins extracted from serum samples of patients using Tri Reagent were electrophoretically separated on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Specific protein band was then subjected to matrix laser desorption ionisation–time assistance-of-flight mass spectrometry analysis.

**Results:** Stool analysis documented that 40 patients were colorectal cancer patients infected with *S. mansoni*, 26 patients were diagnosed with colorectal cancer only, and 27 patients were infected with *S. mansoni* only. Approximately 27% of participating patients with colorectal cancer and *S. mansoni* infection in this study came from Gezira State. A specific protein band was identified from the serum samples of colorectal cancer patients with *S. mansoni* infection on the separated protein by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The specific protein band was then analyzed by matrix laser desorption ionisation–time assistance-of-flight mass spectrometry and identified as a clusterin protein.

**Conclusions:** The study showed that the colorectal cancer patients infected with *S. mansoni* expressed clusterin protein, indicating that clusterin protein may be a potential biomarker to aid in the treatment of colorectal cancer patients infected with *S. mansoni* in the future.

1. Introduction

Human cancers are believed to be caused by infectious diseases. It was estimated that 18% of cancer cases worldwide are related to infectious diseases<sup>[1]</sup>. This proportion varies by region, ranging from 25% in some areas of Africa to approximately 10% in developed countries. Infections with parasites, including *Schistosoma haematobium* (*S. haematobium*) that usually cause squamous cell carcinoma of the bladder and liver flukes<sup>[2]</sup>, are often associated with human cancers. Schistosomiasis is a fairly prevalent communicable disease in tropical and subtropical regions, and is caused by a trematode of the genus *Schistosoma*. In general, human schistosomiasis is caused by three major species: *Schistosoma mansoni* (*S. mansoni*) endemic in Africa, the Middle East, and South America; *Schistosoma japonicum* (*S. japonicum*) common in Southeast Asia; and *S. haematobium*, which prevails in Africa and the Middle East<sup>[3]</sup>. Schistosomiasis affects more than 210 million people worldwide, and more than 700 million people live in areas that favour the transmission<sup>[4,5]</sup>.

Schistosomiasis is a long-term infection with a progressive development of pathological changes throughout the course of the disease. *S. haematobium* can cause bladder cancer, whereas *S. mansoni* and *S. japonicum*...
result in schistosomal colitis. By a sequence of infection, treatment and re-infection, the disease causes a transient and recurrent inflammatory reaction in patients[6,7]. S. mansoni and S. japonicum remain sufficiently viable in the large intestine and can produce an inflammatory reaction, granuloma formation, papilloma, ulceration, bleeding, and subsequently fibrosis that gives rise to the long-term sequelae of the disease[8,9]. An association between schistosomiasis and colorectal malignancy has long been proposed in the literature. However, this link has not been uniformly accepted. In the Far East, the evidence supporting the etiological link between S. japonicum and colorectal cancer has frequently been discussed. However, available data on the role of S. mansoni and colorectal carcinogenesis is inconsistent and often does not show causality. There have been some studies on schistosomal colonic disease, but literature reports on the value of schistosomal colonoscopic biopsy in the diagnosis of colon disease remain scarce.

Scientists and clinicians have increasingly applied various techniques, including molecular approaches, to discover and validate new biomarkers or ensembles of biomarkers that display better specificity and sensitivity characteristics than existing methods. Indeed, an improved understanding of African schistosomal-related colorectal cancer initiation and progression is warranted[10]. Therefore, the identification of specific protein(s) or antigen(s) that indicate the proliferation of viable colorectal cancer cells could be useful for cancer staging and surveillance. This study aims to identify specific protein(s) or antigen(s) in the serum samples of colorectal cancer patients, some of whom were infected with S. mansoni, and also to assess the identity of the identified protein(s) or antigen(s) that to be used as a possible biomarker to aid in the treatment of colorectal cancer patients infected with S. mansoni in future.

2. Materials and methods

2.1. S. mansoni–infected population in Sudan

A total of 93 patients with colorectal cancer and/or S. mansoni infection from Khartoum Hospital in Sudan were involved in the study. The study was approved by the Tropical Medicine Research Institute in Sudan. Stool specimens were collected from all patients for analysis and were processed using a modified Kato–Katz technique as described by Teesdale and Amin[11]. Blood samples were also collected from the patients for protein extraction and specific protein identification.

2.2. Blood sample collection

Blood samples (2 mL) were collected in non–heparinised tubes from all patients involved in this study. The blood samples were allowed to clot at room temperature, and then serum of each sample was separated by centrifugation at 2000 r/min for 15 min and stored at −70 °C until use.

2.3. Protein extraction and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS–PAGE) analysis

Tri Reagent was used to extract proteins from the blood samples. The concentration of each extracted protein was adjusted to 20 µg/µL using the DC protein assay reagent before SDS–PAGE analysis. The proteins were then separated by 10% reducing and discontinuous SDS–PAGE, as described by Laemmli[12], at 100 V for 2 h using a slab mini–gel system (Mini-V 8–10 Vertical Gel Electrophoresis Apparatus). The separation of the protein samples was performed according to their molecular weights.

2.4. Matrix laser desorption ionisation–time assistion–flight (MALDI–TOF) mass spectrometry

Bands of proteins (peptides) observed on the gel were excised and analysed by MALDI–TOF mass spectrometry. Subsequently, the identified peptides were analysed by Mascot Search Results software for the identification of specific peptides. Protein scores greater than 70 was regarded as statistically significant (P<0.05).

3. Results

Stool examination of all patients showed that 40 patients diagnosed with malignant colorectal cancer by colonoscopy and histopathology were infected with S. mansoni. 26 patients who were diagnosed with colorectal cancer were S. mansoni negative, and the remaining 27 patients were only infected with S. mansoni. Among the 93 patients who were examined and diagnosed, 75 patients (80.6%) were male, and 18 patients (19.4%) were female. Age of all patients involved in this study ranged from 15 to 66 years and above. The distribution of ages for this study is shown in Table 1.

Table 1

| Age group | Number | Percentage (%) |
|-----------|--------|----------------|
| 15–25     | 31     | 33.3           |
| 26–35     | 21     | 22.6           |
| 36–45     | 15     | 16.1           |
| 46–55     | 13     | 14.0           |
| 56–65     | 10     | 10.8           |
| >66       | 3      | 3.2            |
| Total     | 93     | 100.0          |

The geographic distribution analysis showed that high percentage of Sudanese patients with colorectal cancer and S. mansoni infection were from the Gazira State compared to other states (Figure 1).
The electrophoretic separation of proteins extracted from serum samples of colorectal cancer patients, patients with S. mansoni infection only and colorectal cancer patients with S. mansoni infection were stained with Coomassie brilliant blue stain. A specific protein band (A) was identified from the serum samples of colorectal cancer patients with S. mansoni infection that served to distinguish the serum samples of the colorectal cancer patients who were infected with S. mansoni and those who were not infected with the parasite. Another protein band (B1) was identified in the serum samples of colorectal cancer patients with S. mansoni infection and B2 was identified in the serum samples of the patients with S. mansoni infection only (Figure 2).

MALDI–TOF mass spectrometry analysis showed that the unknown protein band (A) detected in the serum samples analysed by Mascot Search, was a clusterin protein fragment. This peptide was specifically identified in the serum samples of colorectal cancer patients who were S. mansoni positive, but not in the colorectal cancer patients who were S. mansoni negative. Protein band (B1) revealed in colorectal cancer patients with S. mansoni infection and a faint protein band (B2) appeared in patients with S. mansoni infection only were plasminogen protein fragments (P<0.05) (Figure 3).

4. Discussion

Schistosomiasis is a major public health problem that has long existed in Sudan, particularly in area with irrigation schemes. The disease traces back to 2600 BC, and its introduction is thought to be a sign of political and economic ties to Egypt. The flow of thousands of pilgrims headed to Mecca from West Africa through Sudan may also have contributed to the establishment of the disease in Sudan[13]. Additionally, this disease has also demonstrated a close relation to colorectal cancer. The precursors of colorectal carcinomas are adenomatous polyps and chronic inflammatory bowel diseases, such as ulcerative colitis and Crohn’s diseases. Additionally, infectious diseases that are common in the tropics may be related to colorectal malignancies[14], S. mansoni and S. japonicum infections in the intestine begin with sequestered eggs in the mucosa and submucosa, inciting a severe inflammatory reaction with cellular infiltration and consequent granuloma formation. This reaction, in turn, leads to mucosal ulceration, microabscess formation, polyposis and neoplastic transformation[15], and may lead to colorectal cancer development.

In Sudan, approximately 51% of patients with colorectal cancer and S. mansoni infection are under the age of 35, as reported by Abou-Zeid and Mansour[16,17]. This phenomenon is in contrast to colorectal cancer prevalence in developed countries whereby approximately 90% of colorectal cancers are caused by environmental factors, and 10% are caused by genetics[18,19]. Similar to the aforementioned region, exposure to Schistosoma is responsible for 21% of the cases of childhood S. mansoni infection in Sudan[20]. The male predominance in S. mansoni infection observed in this work was in line with Hayne’s study[21], but contrasts with McDermott’s and a recent study[22,23], which found that infections were equally distributed between the sexes. This difference is not hormone dependent[24], but it is natural that the schistosomal infection is common in men and men are more prone to getting and suffering from this infection.
Approximately 27% of participating patients with colorectal cancer and \textit{S. mansoni} infection in this study came from Gezira State, where the Gazira Agriculture Irrigation Scheme is known to be an area of high endemicity for schistosomiasis in Sudan\cite{25,26}.

In this study, we found that patients diagnosed with colorectal cancer and \textit{S. mansoni} infection secreted clusterin protein that was not found in the serum samples of colorectal cancer patients who were \textit{S. mansoni} negative. Clusterin protein has been reported to be involved in numerous physiological processes important for carcinogenesis and tumour growth, including apoptotic cell death, cell cycle regulation, DNA repair, cell adhesion, tissue remodelling, lipid transportation, membrane recycling and immune system regulation\cite{27,28}. A previous study indicated that the clusterin protein expression is involved in tumorigenesis and the progression of 25\% of colorectal cancer. Hence, in 75\% of the tumor specimens, there is not clusterin expressing cancer cells\cite{29}. Clusterin protein appears to be a sensitive and stable histological marker for murine and human intestinal tumours. Therefore, clusterin protein can be used as a potential biomarker for human colorectal cancer. Furthermore, the high secretion of clusterin protein from tumour cells can be easily detected in body fluids, such as serum. The correlation pattern of clusterin protein expression to the events of the other cells indicated that clusterin expression is involved in tumorigenesis and progression of 25\% of colorectal cancer cells\cite{30}. Perhaps, clusterin protein only present in the cancer patients infected with certain infectious disease, highlighting the potential of clusterin protein to be used as a biomarker in an effective treatment solution for colorectal cancer patients infected with \textit{S. mansoni}.

This study also showed that patients with \textit{S. mansoni} infection and those have colorectal cancer with \textit{S. mansoni} infection released plasminogen protein. Plasminogen is a single chain glycoprotein, representing the monomeric proenzyme of the serine protease plasmin, which degrades fibrin and extracellular matrices\cite{31}. Interactions of plasminogen with pathogens have been observed in bacteria, fungi, protozoa and helminths. The interactions show to increase invasiveness within the host\cite{32-34}. The protozoa \textit{Leishmania mexicana} and \textit{Trypanosoma cruzi} have been reported to bind to the plasminogen, enhancing the activation of plasminogen by tissue-type plasminogen activator (t–PA)\cite{35,36}. In helminths, two plasminogen-binding proteins have been identified; enolase in \textit{Fasciola hepatica} and \textit{Onchocerca volvulus} and glyceraldehyde–3–phosphate dehydrogenase in \textit{Onchocerca volvulus}\cite{37–39}.

The identification of useful markers for the treatment of colorectal cancer patients infected with \textit{S. mansoni} is the primary goal of our research. The lack of specific and sensitive biomarkers for colorectal cancer and schistosomal infections has resulted in delayed treatment for these patients. Therefore, the search for specific and sensitive markers for the treatment is warranted. High clusterin protein expression in the serum of colorectal cancer patients infected with \textit{S. mansoni} indicate that clusterin may be a potential biomarker to aid in the treatment of colorectal cancer patients infected with \textit{S. mansoni}, and plasminogen distinguishes colorectal cancer patients with \textit{S. mansoni} infection and patients infected with \textit{S. mansoni} only in the future.

\textbf{Conflict of interest statement}

We declare that we have no conflict of interest.

\textbf{Acknowledgements}

The authors thank the Tropical Medicine Research Institute for approving human ethical clearance for sample collection in Sudan, and Universiti Sains Malaysia (USM) for offering the TWAS–USM Fellowship Program to the first author (Ph.D. student). This project was also supported by the USM Short–Term Grant Scheme (304/CIPPM/6311018).

\textbf{References}

[1] Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. \textit{Pharm Res} 2008; \textit{25}(9): 2097–2116.

[2] Samaras V, Rafailidis PI, Mourtzoukou EG, Peppas G, Falagas ME. Chronic bacterial and parasitic infections and cancer: a review. \textit{J Infect Dev Ctries} 2010; 4(5): 267–281.

[3] Gryseels B, Polman K, Clerinx J, Kestens L. Human schistosomiasis. \textit{Lancet} 2006; \textit{368}(9541): 1106–1118.

[4] Fenwick A. The global burden of neglected tropical diseases. \textit{Public Health} 2012; \textit{126}(3): 233–236.

[5] Thétiot–Laurent SA, Boissier J, Robert A, Meunier B. Schistosomiasis chemotherapy. \textit{Angew Chem Int Ed Engl} (2013; \textit{52}(31): 7936–7956.

[6] Margolese RG, Fisher B, Hortobagyi GN, Bloomer WD. Neoplasms of the breast. In: Bast RC Jr, Kufe DW, Pollock RE, Weichselbaum RR, Holland JF, Frei E III, et al., editors. \textit{Cancer Medicine}. 5th ed. Hamilton: B.C. Decker; 2000.

[7] Najar MS, Saldanha CL, Banday KA. Approach to urinary tract
infections. Indian J Nephrol 2009; 19(4): 129–139.

[8] Gad YZ, Ahmad NA, El-Desoky I, Arafa MM, Farag RE. Colorectal schistosomiasis: is it still endemic in delta Egypt, early in the third millennium? Trop Parasitol 2011; 1(2): 108–110.

[9] H Salim OE, Hamid HK, Mekki SO, Suleiman SH, Ibrahim SZ. Colorectal carcinoma associated with schistosomiasis: a possible causal relationship. World J Surg Oncol 2010; 8: 68.

[10] Pissituk T, Johnstone P. Current trends in colorectal surgery. In: Hughes ESR, Cuthbertson AM, Killingback MK, editors. Colorectal surgery. Edinburgh: Churchill Livingstone; 1999, p. 336.

[11] Teesdale CH, Amin MA. Comparison of the Bell technique, a modified Kato thick smear technique, and a digestion method for the field diagnosis of Schistosoma mansoni. J Helminthol 1976; 50(1): 17–20.

[12] Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227(5259): 680–685.

[13] Archibald RG. The epidemiology and epidemiology of schistosomiasis in the Sudan. J Trop Med Hyg 1933; 36(22): 345–348.

[14] Al–Mashat F, Amin MA. Comparison of the Bell technique, a modified Kato thick smear technique, and a digestion method for the field diagnosis of Schistosoma mansoni. J Helminthol 1976; 50(1): 17–20.

[15] Ross AG, Bartley PB, Sleigh AC, Olds GR, Li Y, Williams GM, et al. Schistosomiasis. N Engl J Med 2002; 346(16): 1212–1220.

[16] Abou–Zeid AA, Khafagy W, Marzouk DM, Alaa A, Mostafa I, Ela MA. Colorectal cancer in Egypt. Dis Colon Rectum 2002; 45(9): 1255–1260.

[17] Mansoor I, Zahrani H, Abdul–Aziz S. Colorectal cancer in Saudi Arabia. Saudi Med J 2002; 23: 322–327.

[18] Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 2008; 25(9): 2097–2116.

[19] Hagger FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg 2009; 22(4): 191–197.

[20] Curtale F, Nabil M, el–Wakeel A, Shamy MY. Anemia and intestinal parasitic infections among school age children in Behera Governorate, Egypt. Behera Survey Team. J Trop Pediatr 1998; 44(6): 323–328.

[21] Hayne D, Brown RS, McCormack M, Quinn MJ, Payne HA, Babh P. Current trends in colorectal cancer, site, incidence, mortality and survival in England and Wales. Clin Oncol (R Coll Radiol) 2001; 13(6): 448–452.

[22] McDermott FT. Carcinoma of the rectum. In: Hughes ESR, Cuthbertson AM, Killingback MK, editors. Colorectal surgery. Edinburgh: Churchill Livingstone; 1999, p. 336.

[23] Worku L, Dante D, Endris M, Tesfa H, Aemero M. Schistosoma mansoni infection and associated determinant factors among school children in Sanja Town, Northwest Ethiopia. J Parasitol Res 2014; doi: 10.1155/2014/792536.

[24] Dinger JC, Heinemann LA, Möhner S, Thai do M, Assmann A. Colon cancer risk and different HRT formulations: a case–control study. BMC Cancer 2007; 7: 76.

[25] Elhag SM, Abdelkareem EA, Yousif AS, Frah EA, Mohamed AB. Detection of schistosomiasis antibodies in urine patients as a promising diagnostic maker. Asian Pac J Trop Med 2011; 4(10): 773–777.

[26] Eltayeb NM, Mukhtar MM, Mohamed AB. Epidemiology of schistosomiasis in Gezira area Central Sudan and analysis of cytokine profiles. Asian Pac J Trop Med 2013; 6(2): 119–125.

[27] Trougakos IP, Conos ES. Clusterin/apolipoprotein J in human aging and cancer. Int J Biochem Cell Biol 2002; 34: 1430–1448.

[28] Shannan B, Seifert M, Leskov K, Willis J, Boothman D, Tilgen W, et al. Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ 2006; 13(1): 12–19.

[29] Andersen CL, Schepeler T, Thorsen K, Birkenkamp–Demtröder K, Mansilla F, Aaltonen LA, et al. Clusterin expression in normal mucosa and colorectal cancer. Mol Cell Proteomics 2007; 6(5): 1039–1048.

[30] Chen XD, Halberg RB, Ehrhardt WM, Torreallba J, Dove WF. Clusterin as a biomarker in murine and human intestinal neoplasia. Proc Natl Acad Sci U S A 2003; 100(16): 9530–9535.

[31] Godier A, Hunt BJ. Plasminogen receptors and their role in the pathogenesis of inflammatory, autoimmune and malignant disease. J Thromb Haemost 2013; 11(1): 26–34.

[32] Lähteenmäki K, Knuelsen P, Korhonen TK. Bacterial plasminogen activators and receptors. FEMS Microbiol Rev 2001; 25: 531–552.

[33] Crowe JD, Sievwright IK, Auld GC, Moore NR, Gow NA, Booth NA. Candida albicans binds human plasminogen: identification of eight plasminogen–binding proteins. Mol Microbiol 2003; 47(6): 1637–1651.

[34] Ramajo–Hernández A, Pérez–Sánchez R, Ramajo–Martín V, Oleaga A. Schistosoma boris: plasminogen binding in adults and the identification of plasminogen–binding proteins from the worm tegument. Exp Parasitol 2007; 115(1): 83–91.

[35] Avilan L, Calcagno M, Figuera M, Lemus L, Puig J, Rodriguez AM. Interaction of Leishmania mexicana promastigotes with the plasminogen–plasmin system. Mol Biochem Parasitol 2002; 110(2): 183–193.

[36] Almeida L, Vanegas G, Calcagno M, Concepción JL, Avilan L. Plasminogen interaction with Trypanosoma cruzi. Mem Inst Oswaldo Cruz 2004; 99(1): 63–67.

[37] Jolodan A, Fisher P, Bergmann S, Büttner DW, Hammerschmidt S, Brattig NW. Molecular cloning of an alpha-enolase from the Leishmania parasite that binds human plasminogen. FEBS Lett 2000; 477: 121–125.

[38] Bernal D, de la Rubia JE, Carrasco–Abad AM, Toledo R, Mas–Coma S, Morcilla A. Identification of enolase as a plasminogen–binding protein in excretory–secretory products of Fasciola hepatica. FEBS Lett 2004; 563(1–3): 203–206.

[39] Erttmann KD, Kleensang A, Schneider E, Hammerschmidt S, Büttner DW, Gallin M. Cloning, characterization and DNA immunization of an Onchocerca volvulus glyceraldehyde–3–phosphate dehydrogenase (Ov–GAPDH). Biochim Biophys Acta 2005; 1741(1–2): 85–94.