The copies of any permutation pattern are asymptotically normal

Miklós Bóna
Department of Mathematics
University of Florida
Gainesville FL 32611-8105
bona@math.ufl.edu

Abstract

We prove that the number of copies of any given permutation pattern q has an asymptotically normal distribution in random permutations.

1 Introduction

The classic definition of pattern avoidance for permutations is as follows. Let $p = p_1p_2\cdots p_n$ be a permutation, let $k < n$, and let $q = q_1q_2\cdots q_k$ be another permutation. We say that p contains q as a pattern if there exists a subsequence $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ so that for all indices j and r, the inequality $q_j < q_r$ holds if and only if the inequality $p_{i_j} < p_{i_r}$ holds. If p does not contain q, then we say that p avoids q. In other words, p contains q if p has a subsequence of entries, not necessarily in consecutive positions, which relate to each other the same way as the entries of q do.

In a recent survey paper [2] on the monotone permutation pattern $12\cdots k$, we have shown that if X_n is the random variable counting copies of that pattern in a randomly selected permutation of length n, then as n goes to infinity, X_n converges (in distribution) to a normal distribution. When we say “random permutation”, we mean that each permutation of length n is selected with probability $1/n!$.

In this paper, we will generalize that result for any permutation pattern q, and the variable $X_{n,q}$ counting the copies of q in permutations of length

*Partially supported by an NSA Young Investigator Award.
The proof is very similar to the monotone case; just some details have to be modified. The result is a far-reaching generalization of the classic results (see [3]) for more references) that descents and inversions of random permutations are asymptotically normal. As a byproduct, we will see how close \(\text{Var}(X_{n,q}) \) and \(\text{Var}(X_{n,12\cdots k}) \) are to each other, for any pattern \(q \) of length \(k \).

2 The Proof of Our Theorem

2.1 Background and Definitions

We need to introduce some notation for transforms of the random variable \(Z \). Let \(\bar{Z} = Z - E(Z) \), let \(\tilde{Z} = \bar{Z}/\sqrt{\text{Var}(Z)} \), and let \(Z_n \to N(0,1) \) mean that \(Z_n \) converges in distribution to the standard normal variable.

Definition 1 Let \(\{Y_{n,k} | k = 1, 2, \ldots, N_n\} \) be an array of random variables. We say that a graph \(G \) is a dependency graph for \(\{Y_{n,k} | k = 1, 2, \ldots, N_n\} \) if the following two conditions are satisfied:

1. There exists a bijection between the random variables \(Y_{n,k} \) and the vertices of \(G \), and

2. If \(V_1 \) and \(V_2 \) are two disjoint sets of vertices of \(G \) so that no edge of \(G \) has one endpoint in \(V_1 \) and another one in \(V_2 \), then the corresponding sets of random variables are independent.

Note that the dependency graph of a family of variables is not unique. Indeed if \(G \) is a dependency graph for a family and \(G \) is not a complete graph, then we can get other dependency graphs for the family by simply adding new edges to \(G \).

Now we are in position to state Janson’s theorem, the famous Janson dependency criterion.

Theorem 1 [4] Let \(Y_{n,k} \) be an array of random variables such that for all \(n \), and for all \(k = 1, 2, \ldots, N_n \), the inequality \(|Y_{n,k}| \leq A_n \) holds for some real number \(A_n \), and that the maximum degree of a dependency graph of \(\{Y_{n,k} | k = 1, 2, \ldots, N_n\} \) is \(\Delta_n \).

Set \(Y_n = \sum_{k=1}^{N_n} Y_{n,k} \) and \(\sigma_n^2 = \text{Var}(Y_n) \). If there is a natural number \(m \) so that

\[
N_n \Delta_n^{m-1} \left(\frac{A_n}{\sigma_n} \right)^m \to 0, \tag{1}
\]
as n goes to infinity, then

$$
\bar{Y}_n \rightarrow N(0,1).
$$

2.2 Verifying the Conditions of Janson’s Criterion

Let q be a fixed pattern of length k. As q is fixed for the rest of this paper, we will mark our variables X_n instead of $X_{n,q}$, in order to avoid excessive indexing.

Let us order the $\binom{n}{k}$ subwords of length k of the permutation $p_1p_2 \cdots p_n$ linearly in some way. For $1 \leq i \leq \binom{n}{k}$, let $X_{n,i}$ be the indicator random variable of the event that in a randomly selected permutation of length n, the ith subword of length k in the permutation $p = p_1p_2 \cdots p_n$ is a q-pattern. We will now verify that the family of the $X_{n,i}$ satisfies all conditions of the Janson Dependency Criterion.

First, $|X_{n,i}| \leq 1$ for all i and all n, since the $X_{n,i}$ are indicator random variables. So we can set $A_n = 1$. Second, $N_n = \binom{n}{k}$, the total number of subwords of length k in p. Third, if $a \neq b$, then X_a and X_b are independent unless the corresponding subwords intersect. For that, the bth subword must intersect the ath subword in j entries, for some $1 \leq j \leq k - 1$. For a fixed ath subword, the number of ways that can happen is $\sum_{j=1}^{k-1} \binom{k}{j}(\binom{n-k}{k-j}) = \binom{n}{k} - \binom{n-k}{k} - 1$, where we used the well-known Vandermonde identity to compute the sum. Therefore,

$$
\Delta_n \leq \binom{n}{k} - \binom{n-k}{k} - 1. \tag{2}
$$

In particular, note that (2) provides an upper bound for Δ_n in terms of a polynomial function of n that is of degree $k - 1$ since terms of degree k will cancel.

There remains the task of finding a lower bound for σ_n that we can then use in applying Theorem 1. Let $X_n = \sum_{i=1}^{\binom{n}{k}} X_{n,i}$. We will show the following.

Proposition 1 There exists a positive constant c so that for all n, the inequality

$$
\text{Var}(X_n) \geq cn^{2k-1}
$$

holds.
Proof: By linearity of expectation, we have

\[\text{Var}(X_n) = E(X_n^2) - (E(X_n))^2 \]

\[= E \left(\left(\sum_{i=1}^{(n)} X_{n,i} \right)^2 \right) - \left(E \left(\sum_{i=1}^{(n)} X_{n,i} \right) \right)^2 \]

\[= E \left(\sum_{i=1}^{(n)} X_{n,i}^2 \right) - \left(\sum_{i=1}^{(n)} E(X_{n,i}) \right)^2 \]

\[= \sum_{i_1,i_2} E(X_{n,i_1}X_{n,i_2}) - \sum_{i_1,i_2} E(X_{n,i_1})E(X_{n,i_2}). \]

Let \(I_1 \) (resp. \(I_2 \)) denote the \(k \)-element subword of \(p \) indexed by \(i_1 \), (resp. \(i_2 \)). Clearly, it suffices to show that

\[\sum_{|I_1 \cap I_2| \leq 1} E(X_{n,i_1}X_{n,i_2}) - \sum_{i_1,i_2} E(X_{n,i_1})E(X_{n,i_2}) \geq cn^{2k-1}, \]

since the left-hand side of (7) is obtained from the (6) by removing the sum of some positive terms, that is, the sum of all \(E(X_{n,i_1}X_{n,i_2}) \) where \(|I_1 \cap I_2| > 1 \).

As \(E(X_{n,i}) = 1/k! \) for each \(i \), the sum with negative sign in (6) is

\[\sum_{i_1,i_2} E(X_{n,i_1}X_{n,i_2}) = \left(\begin{array}{c} n \\ k \end{array} \right)^2 \cdot \frac{1}{k!^2}, \]

which is a polynomial function in \(n \), of degree \(2k \) and of leading coefficient \(\frac{1}{k!^2} \). As far as the summands in (6) with a positive sign go, most of them are also equal to \(\frac{1}{k!^2} \). More precisely, \(E(X_{n,i_1}X_{n,i_2}) = \frac{1}{k!^2} \) when \(I_1 \) and \(I_2 \) are disjoint, and that happens for \(\left(\begin{array}{c} n \\ k \end{array} \right) \left(\begin{array}{c} n-k \\ k \end{array} \right) \) ordered pairs \((i_1,i_2)\) of indices. The sum of these summands is

\[d_n = \left(\begin{array}{c} n \\ k \end{array} \right) \left(\begin{array}{c} n-k \\ k \end{array} \right) \frac{1}{k!^2}, \]

which is again a polynomial function in \(n \), of degree \(2k \) and with leading coefficient \(\frac{1}{k!^2} \). So summands of degree \(2k \) will cancel out in (6). (We will see in the next paragraph that the summands we have not yet considered add up to a polynomial of degree \(2k - 1 \).)
In fact, considering the two types of summands we studied in (6) and (8), we see that they add up to

\[\binom{n}{k} \binom{n-k}{k} \frac{1}{k!^2} - \binom{n}{k}^2 \frac{1}{k!^2} = n^{2k-1} \frac{2\binom{k}{2} - \binom{2k-1}{2}}{k!^4} + O(n^{2k-2}) \tag{9} \]

\[= n^{2k-1} \frac{-k^2}{k!^4} + O(n^{2k-2}). \tag{10} \]

Next we look at ordered pairs of indices \((i_1, i_2)\) so that the corresponding subwords \(I_1\) and \(I_2\) intersect in exactly one entry, the entry \(x\). Let us restrict our attention to the special case when \(I_1\) and \(I_2\) both form \(q\)-patterns, and \(x\) is the \(a\)th smallest entry in \(I_1\) and the \(b\)th smallest entry in \(I_2\). Given \(q\), the pair \((a, b)\) describes the location of \(x\) in \(I_1\) and in \(I_2\) as well. Let \(I'_1\) (resp. \(I'_2\)) denote the set of \(a-1\) positions in \(I_1\) (resp. \(b-1\) positions in \(I_2\)) which must contain entries smaller than \(x\) given that \(I_1\) (resp. \(I_2\)) forms a \(q\)-pattern. Similarly, let \(I''_1\) (resp. \(I''_2\)) denote the set of \(k-a\) positions in \(I_1\) (resp. \(k-b\) positions in \(I_2\)) which must contain entries larger than \(x\) given that \(I_1\) (resp. \(I_2\)) forms a \(q\)-pattern.

Example 1 Let \(q = 35142\), and let us say that \(I_1\) and \(I_2\) both form \(q\)-patterns, and they intersect in one entry \(x\) that is the third smallest entry in \(I_1\) and the fourth smallest entry in \(I_2\) (so \(a = 3\), and \(b = 4\)). Then \(x\) is the leftmost entry of \(I_1\) and the next-to-last entry of \(I_2\). Furthermore, the third and fifth positions of \(I_1\) form \(I'_1\) and the second and fourth positions of \(I_1\) form \(I''_1\). Similarly, the first, third, and fifth positions of \(I_2\) form \(I'_2\) and the second position of \(I_2\) forms \(I''_2\).

Let \(q_a\) (resp. \(q_b\)) be the pattern obtained from \(q\) by removing its \(a\)th smallest (resp. \(b\)th smallest) entry.

Note that \(X_{i_1} X_{i_2} = 1\) if and only if all of the following independent events hold.

1. In the \((2k-1)\)-element set of entries that belong to \(I_1 \cup I_2\), the entry \(x\) is the \((a+b-1)\)th smallest. This happens with probability \(1/(2k-1)\).
2. The \(a + b - 2\) entries in positions belonging to \(I'_1 \cup I'_2\) must all be smaller than the \(2k - a - b\) entries in positions belonging to \(I''_1 \cup I''_2\). This happens with probability \(\frac{1}{(2k-2-a+b)}\).
3. • the subword \(I'_1\) is a pattern that is isomorphic to the pattern formed by the \(a-1\) smallest entries of \(q\),
The subword I'_2 is a pattern that is isomorphic to the pattern formed by the $b - 1$ smallest entries of q.

The subword I''_1 is a pattern that is isomorphic to the pattern formed by the $k - a$ largest entries of q, and

The subword I''_2 is a pattern that is isomorphic to the pattern formed by the $k - b$ largest entries of q. This happens with probability $\frac{1}{(a-1)(b-1)(k-a)(k-b)!}$.

Therefore, if $|I_1 \cap I_2| = 1$, then

\[
P(X_{i_1}X_{i_2} = 1) = \frac{1}{(2k-1)(a+b-2)(a-1)!(b-1)!(k-a)!(k-b)!(a-1)!(b-1)!(2k-a-b)!(2k-a-b)}.
\]

How many such ordered pairs (I_1, I_2) are there? There are $\binom{n}{2k-1}$ choices for the underlying set $I_1 \cup I_2$. Once that choice is made, the $a+b-1$st smallest entry of $I_1 \cup I_2$ will be x. Then the number of choices for the set of entries other than x that will be part of I_1 is $\binom{a+b-2}{a-1}\binom{2k-a-b}{k-a}$. Therefore, summing over all a and b and recalling (11),

\[
p_n = \sum_{|I_1 \cap I_2| = 1} P(X_{i_1}X_{i_2} = 1) = \sum_{|I_1 \cap I_2| = 1} E(X_{i_1}X_{i_2})
\]

\[
= \frac{1}{(2k-1)!} \left(\binom{n}{2k-1} \sum_{1 \leq a, b \leq k} \binom{a+b-2}{a-1}^2 \binom{2k-a-b}{k-a}^2 \right).
\]

The expression we just obtained is a polynomial of degree $2k-1$, in the variable n. We claim that its leading coefficient is larger than $k^2/k!^4$. If we can show that, the proposition will be proved since (10) shows that the summands not included in (13) contribute about $-\frac{k^2}{k!^4}n^{2k-1}$ to the left-hand side of (7).

Recall that by the Cauchy-Schwarz inequality, if t_1, t_2, \cdots, t_m are non-negative real numbers, then

\[
\frac{(\sum_{i=1}^m t_i)^2}{m} \leq \sum_{i=1}^m t_i^2,
\]

where equality holds if and only if all the t_i are equal.
Let us apply this inequality with the numbers \((a + b - 2)^2 (2k - a - b)^2\) playing the role of the \(t_i\), where \(a\) and \(b\) range from 1 to \(k\). We get that
\[
\sum_{1 \leq a, b \leq k} (a + b - 2)^2 (2k - a - b)^2 > \left(\frac{\sum_{1 \leq a, b \leq k} (a + b - 2)^2 (2k - a - b)^2}{k^2} \right).
\]

(16)

We will use Vandermonde’s identity to compute the right-hand side. To that end, we first compute the sum of summands with a fixed \(h = a + b\). We obtain
\[
\sum_{1 \leq a, b \leq k} \frac{(a + b - 2)^2 (2k - a - b)^2}{k^2} = \sum_{h=2}^{2k} \sum_{a=1}^{k} \frac{(h - 2)^2 (2k - h)^2}{k^2} = \sum_{h=2}^{2k} \binom{2k - 2}{k - 1}.
\]

(17)

(18)

Substituting the last expression into the right-hand side of (16) yields
\[
\sum_{1 \leq a, b \leq k} \frac{(a + b - 2)^2 (2k - a - b)^2}{k^2} > \frac{1}{k^2} \cdot (2k - 1)^2 \cdot \binom{2k - 2}{k - 1}.
\]

(19)

Therefore, (13) and (20) imply that
\[
p_n > \frac{1}{(2k - 1)!} \binom{n}{2k - 1} \frac{(2k - 1)^2}{k^2} \binom{k - 2}{k - 1}^2.
\]

As we pointed out after (13), \(p_n\) is a polynomial of degree \(2k - 1\) in the variable \(n\). The last displayed inequality shows that its leading coefficient is larger than
\[
\frac{1}{(2k - 1)!^2} \cdot \frac{1}{k^2} \cdot \frac{(2k - 2)!^2}{(k - 1)!^4} = \frac{k^2}{k!^4}
\]
as claimed.

Comparing this with (10) completes the proof of our Proposition. ◇

We can now return to the application of Theorem 1 to our variables \(X_{n,i}\). By Proposition 1 there is an absolute constant \(C\) so that \(\sigma_n > Cn^{k-0.5}\) for
all \(n \). So (11) will be satisfied if we show that there exists a positive integer \(m \) so that
\[
\binom{n}{k} (dn^{k-1})^{m-1} \cdot (n^{-k+0.5})^m < dn^{-0.5m} \to 0.
\]

Clearly, any positive integer \(m \) is a good choice. So we have proved the following theorem.

Theorem 2 Let \(q \) be a fixed permutation pattern of length \(k \), and let \(X_n \) be the random variable counting occurrences of \(q \) in permutations of length \(n \). Then \(\hat{X}_n \to N(0,1) \). In other words, \(X_n \) is asymptotically normal.

The following Corollary shows how close the variances of the numbers of copies of two given patterns are to each other.

Corollary 1 For any pattern \(q \) of length \(k \), we have
\[
\text{Var}(X_{n,q}) = c_k n^{2k-1} + O(n^{2k-2}),
\]
where
\[
c_k = \frac{1}{(2k-1)!^2} \sum_{1 \leq a, b \leq k} \frac{a + b - 2}{a - 1} \left(\frac{2k - a - b}{k - a} \right)^2 - \frac{k^2}{k!^2}.
\]

We point out that this does not mean that \(\text{Var}(X_{n,q}) \) does not depend on \(q \). It does, and it is easy to verify that \(\text{Var}(X_{4,123}) \neq \text{Var}(X_{4,132}) \). However, it is only the terms of degree at most \(2k - 2 \) of \(\text{Var}(X_{n,q}) \) that depend on \(q \).

Proof: Note that in the proof of Theorem 2 we have not used anything about the pattern \(q \) apart from its length. Our claim then follows from comparing (10) and (14). \(\diamond \)

References

[1] M. Bóna, Generalized Descents and Normality, submitted.

[2] M. Bóna, On Three Notions of Monotone Subsequences, submitted.

[3] J. Fulman, Stein’s Method and Non-reversible Markov Chains. Stein’s method: expository lectures and applications, 69–77, IMS Lecture Notes Monogr. Ser., 46, Inst. Math. Statist., Beachwood, OH, 2004.

[4] S. Janson, Normal convergence by higher semi-invariants with applications to sums of dependent random variables and random graphs. *Ann. Prob.** 16** (1988), no. 1, 305-312.