Relationships between ammonia-oxidizing communities, soil methane uptake and nitrous oxide fluxes in a subtropical plantation soil with nitrogen enrichment

Yongsheng Wang a, b, Shulan Cheng c, *, Huajun Fang a, **, Guirui Yu a, Xueming Yang d, Minjie Xu e, Xusheng Dang a, Linsen Li e, Lei Wang a

a Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
b National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
c University of Chinese Academy of Sciences, Beijing 101408, China
d Harrow Research and Development Center, Agriculture & Agri-Food Canada, Harrow, Ontario N0R 1G0, Canada

ARTICLE INFO

Article history:
Received 16 April 2015
Received in revised form 18 January 2016
Accepted 24 January 2016
Available online 6 February 2016

Handling Editor: C.C. Tebbe

Keywords:
N fertilization
Soil CH4 uptake
Soil N2O emission
Ammonia-oxidizers
Subtropical plantation

ABSTRACT

Ammonia-oxidizers play an essential role in nitrogen (N) transformation and nitrous oxide (N2O) emission in forest soils. It remains unclear if ammonia-oxidizers affect interaction between methane (CH4) uptake and N2O emission. Our specific goal was to test the impacts of changes in ammonia-oxidizing communities elicited by N enrichment on soil CH4 uptake and N2O emission. Based on a field experiment, two-forms (NH4Cl and NaNO3) and two levels (40 and 120 kg N ha−1 yr−1) of N were applied in the subtropical plantation forest of southern China. Soil CH4 and N2O fluxes, the abundance and structure of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities were measured using static chamber-gas chromatography, quantitative PCR (qPCR), and terminal-restriction fragment length polymorphism (T-RFLP). Nitrogen addition tended to inhibit soil CH4 uptake, but significantly promoted soil N2O emission; moreover, these impacts were more significant with NH4Cl addition than with NO3 addition. NH4Cl addition significantly changed ammonia-oxidizer abundance with an increase in AOA and a decrease in AOB. Nitrogen additions significantly decreased the relative abundance of 329 bp and 421 bp of archaeal amoA gene. Negative relationships occurred between soil CH4 uptake and AOA abundance and between soil CH4 uptake and AOA/AOB ratio; however, a positive relationship was found between soil N2O emission and AOA abundance. These results indicate that a shift in abundance and composition of ammonia-oxidizing communities is closely linked to changes in soil CH4 uptake and N2O emission under N enrichment. Furthermore, AOA communities play a contrasting role from AOB communities for regulating the fluctuation between soil CH4 and N2O fluxes.

1. Introduction

Methane (CH4) and nitrous oxide (N2O) are two potent greenhouse gases, and their global warming potential (GWP) is 25 and 298 times as high as carbon dioxide (CO2), respectively [1]. The contribution of accumulated CH4 and N2O in the atmosphere to overall global warming is more than 25% of total CO2 equivalent [1]. Global change strongly affects the capacity of undisturbed soils (i.e., forests, grasslands, shrubs) to act as atmospheric CH4 sink and N2O source [2]. Reactive nitrogen (N) content in the atmosphere and N deposition rate globally caused by human activities has increased by 11 fold and 2.5 fold since the 1860s, respectively [3]. Overall, the increased N deposition input to terrestrial ecosystems improves the net primary productivity, but inhibits CH4 uptake and promotes N2O emission in soils [4, 5]. Considering the effects of N deposition on soil CH4 uptake and N2O emission, the carbon sequestration potential elicited by N deposition would be offset from 53% to 76% [2].
Soil N$_2$O mainly originates from soil nitrification and denitrification processes [6]. NH$_3$ oxidation to NO$_2^-$, the first and rate-limiting step of nitrification, is catalyzed by two groups of prokaryotes, including ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) [7–9]. CH$_4$ in the soil can be oxidized by both methane monoxygenase (MMO) and ammonia monooxygenase (AMO) that are synthesized by methanotrophs and ammonia-oxidizers, respectively [10]. Due to the homology of MMO and AMO enzymes [11], the same habitats [12,13], and a variety of analog substrates [14], both methanotrophs and AOB are simultaneously able to oxidize CH$_4$ and NH$_3$ in soils [11]. Pure culture studies provide the direct evidence for nitrification by methanotrophs [15] and for CH$_4$ oxidation by nitrifiers [16,17]. Moreover, a negative relationship between CH$_4$ oxidation and NH$_3$ oxidation is found, which could be partly due to competition for O$_2$ in soils [18]. Nevertheless, the above mechanisms are rarely examined and verified in the field. It is essential to explore the links between ammonia-oxidizers and soil CH$_4$ consumption and N$_2$O production, so as to clarify the mechanism responsible for the trade-off between CH$_4$ uptake and N$_2$O emission under N enrichment.

In China, the forest plantations cover an area of 6.26 × 107 ha, accounting for 31.8% of China’s forest area and ranking first in the world [19]. Approximately 63% of forest plantations are distributed in the subtropical region of southern China [20]. This region has a high atmospheric N deposition rate ranging from 30 to 73 kg N ha$^{-1}$ yr$^{-1}$ [21]. The humid subtropical forests are considered to be N-rich compared with the boreal and temperate forests, and respond differently to N enrichment [22]. Exogenous N inputs to the subtropical forests can significantly decrease soil CH$_4$ uptake [21,23] and increase N loss via NO$_3^-$ – N leaching [24], as well as via gaseous N emission (N$_2$O, NO, and N$_2$) [25,26]. Experimental N deposition increases [27,28], decreases [29,30] or does not change [31–34] soil AOA abundance. The effects of N additions on soil AOB abundance are controversial, including positive [30,34,35], negative [36], and neutral effects [27,28]. Moreover, few studies on the contrasting effects of soil NH$_4^+$ and NO$_3^-$ on soil microbial communities and biogeochemical cycles, two fertilizers (NH$_4$Cl and NaNO$_3$) were added at two rates: 40 and 120 kg N ha$^{-1}$ yr$^{-1}$. There were five treatments, including a control, low-NH$_4$Cl, low-NaNO$_3$, high-NH$_4$Cl, and high-NaNO$_3$ per block respectively. A total of 15 plots (20 m × 20 m) were established, each surrounded by a 10-m-wide buffer strip. Each month, 509.5 g and 1528.8 g NH$_4$Cl as well as 809.5 g and 2428.5 g NaNO$_3$ were weighted and dissolved in 40 L of water for low and high N treatments, respectively. N fertilizer solutions were sprayed below the canopy during the first week of every month, and the control plots only received equivalent amounts of water, which is equivalent to an increase in annual precipitation of 1.2 mm [23]. The experiment was carried out over 1.5 years beginning in May 2012 and ending in October 2013.

2.2. Experimental design

The N addition experiment is a randomized block design with three replicates. To simulate the effects of deposited NH$_4^+$ and NO$_3^-$ on soil microbial communities and biogeochemical cycles, two fertilizers (NH$_4$Cl and NaNO$_3$) were added at two rates: 40 and 120 kg N ha$^{-1}$ yr$^{-1}$. There were five treatments, including a control, low-NH$_4$Cl, low-NaNO$_3$, high-NH$_4$Cl, and high-NaNO$_3$ per block respectively. A total of 15 plots (20 m × 20 m) were established, each surrounded by a 10-m-wide buffer strip. Each month, 509.5 g and 1528.8 g NH$_4$Cl as well as 809.5 g and 2428.5 g NaNO$_3$ were weighted and dissolved in 40 L of water for low and high N treatments, respectively. N fertilizer solutions were sprayed below the canopy during the first week of every month, and the control plots only received equivalent amounts of water, which is equivalent to an increase in annual precipitation of 1.2 mm [23]. The experiment was carried out over 1.5 years beginning in May 2012 and ending in October 2013.

2.3. Measurement of soil CH$_4$ and N$_2$O fluxes

Soil CH$_4$ and N$_2$O fluxes were measured using a static opaque chamber and gas chromatography techniques [23]. In each plot, a stainless steel collar (50 cm × 50 cm × 10 cm) was permanently inserted into the soil to a depth of 10 cm and remained intact. Chambers (length × width × height = 50 cm × 50 cm × 15 cm) were temporarily mounted onto the frames for gas sampling. The soil CH$_4$ and N$_2$O fluxes were measured twice a week and conducted between 9:00 and 11:00 am (China Standard Time, CST). Five gas samples from the chamber headspace were collected at 10 min intervals using 100 ml plastic syringes during 40 min. The concentrations of CH$_4$ and N$_2$O in the gas samples were analyzed within 24 h using gas chromatography (Agilent 7890A, USA). Soil CH$_4$ and N$_2$O fluxes were calculated based on the rate of change in concentration within the chamber, which was estimated as the slope of linear or nonlinear regression between concentration and time [44]. All the coefficients of determination (r^2) of the regression were greater than 0.90 in this study. The flux measurements began in May 2012, but only the flux data from January to October 2013 were used to perform this study.

2.4. Soil sampling, DNA extraction, and quantitative PCR

In September 2013, soil samples (0–20 cm) were collected, and in five subsamples were pooled to make one composite sample from each plot. All soil samples were passed through a 2.0 mm sieve in the field, and then transported to the lab in a biological refriger-ator. Soil samples were stored at −80 °C before analysis.

Soil DNA was extracted from a 0.5 g soil using the Fast DNA® SPIN Kit for soil (Qiobien Inc., Carlsbad, CA, USA) following the manufacturer’s instructions. The extracted DNA was checked on a 1% agarose gel and the DNA concentration was assessed using a...
Nanodrop® ND-1000 UV–Vis Spectrophotometer (NanoDROPTechnologies, Wilmington, DE, USA). Ten fold diluted DNA was used in PCR analysis.

The amoA genes of AOA and AOB were amplified using the primer pairs amoA1F/amoA2R [45] and Arch-amoAF/Arch-amoAR [46], respectively. Real-time PCR was performed on an iCycler iQ5 Thermo-cycler (Bio-Rad Laboratories, Hercules, CA, USA) as follows: 95 °C for 1 min, followed by 35 cycles of 10 s at 95 °C, 30 s at 53 °C for AOA and 55 °C for AOB, 1 min at 72 °C and plate read at 83 °C [34]. Amplification was performed in 25 μl reaction mixtures, including 12.5 μl SYBR® Premix Ex Taq™ (Takara Biotechnology, Dalian, China), 0.5 μl bovine serum albumin (25 mg ml⁻¹), 0.5 μl each primer (10 μmol l⁻¹), and 2 μl of tenfold-diluted DNA as a template [34]. Amplification of DNA fragments for the correct size was confirmed by a dissociation curve analysis and agarose gel electrophoresis. A known copy number of plasmid DNA for AOA or AOB was used to generate a standard curve. For all assays, PCR efficiency was 90—100% and the r² was 0.95—0.99.

2.5. Terminal restriction fragment length polymorphism (T-RFLP)

For T-RFLP analysis, the PCR amplification was performed using the same primer pairs as the qPCR assays described above, with each forward primer labeled with 6-carboxyfluorescein (FAM). The 50 μl PCR reactions contained 5 μl 10 × PCR buffer (Mg²⁺ plus), 4 μl 2.5 mmol l⁻¹ dNTPs, 0.5 μl Ex Taq HS polymerase (5 U μl⁻¹, Takara Biotechnology, Dalian, China), 1 μl of each primer, and 4 μl tenfold-diluted DNA template. The PCR reaction was the same as that for the qPCR assays. PCR productions were gel-purified with the Wizard® SV Gel and PCR Clean-Up Kit (Promega, San Luis Obispo, CA, USA) and then digested with restriction enzyme FastDigest® Mbo I (Takara Biotechnology, Dalian, China) at 37 °C for 5 min and then at 65 °C for 15 min. The digest products were purified by ethanol precipitation and mixed with deionized formamide and then determined with an ABI Prism® 3130XL Genetic Analyzer (Applied Biosystems). The peak heights were automatically analyzed using GeneScan analysis software 3.7 (Applied Biosystems). The relative abundance of individual terminal restriction fragment (T-RF) was calculated as the percentage of total peak height in a given T-RFLP profile. Only those T-RFs with a relative abundance >1% and fragment lengths in the range of 50—500 bp were considered in further analysis [34].

2.6. Statistical analyses

Repeated measures analysis of variance (ANOVA) with least significant difference (LSD) test was applied to examine the differences of soil CH₄ and N₂O fluxes among the five treatments. Experimental treatment was set as between-subjects factor and measurement date was selected as within-subjects variable. We performed a one-way ANOVA with a LSD test to evaluate the effects of N addition on soil microbial amoA gene copy numbers and specific T-RFs. Linear regression analyses were used to examine the relationships between the monthly average of soil CH₄ and N₂O fluxes and the microbial amoA gene copy numbers. All statistical analyses were conducted using the SPSS software package (version 16.0), and significant differences were set with P values < 0.05 unless otherwise stated. All figures were drawn using the Sigma-ploit software package (version 10.0).

3. Results

3.1. Soil CH₄ and N₂O fluxes

Soil CH₄ flux exhibited a significant temporal variation (P < 0.001, Table 1, Fig. 1a–c). Over the measurement period, both soil CH₄ emission and uptake were observed in the control plots and ranged from 4.09 to −33.07 μg C m⁻² h⁻¹, with an average of −5.01 μg C m⁻² h⁻¹ (Fig. 1d). For a certain observation date, neither N levels nor N forms changed soil CH₄ flux (P₁ = 0.73, P₂ = 0.38, Table 1). Taking all observation data into account, we found that the forms of N addition significantly changed soil CH₄ flux (P = 0.033, Table 1). Comparing the control with the high level of NH₄Cl addition there was a significant inhibition on soil CH₄ uptake (Fig. 1b).

Soil N₂O fluxes significantly varied monthly with the maximum occurring in May, 2013 (Fig. 2a–c, Table 1, P < 0.001). Soil N₂O fluxes in the control plots ranged from −15.26 to 23.68 μg N m⁻² h⁻¹, with an average of 5.67 μg N m⁻² h⁻¹ (Fig. 2d). For a certain observation date, both N level and N form significantly changed soil N₂O fluxes (P₁ = 0.021, P₂ = 0.011, Table 1). N addition significantly promoted soil N₂O emissions (Fig. 2d). Relative to the control, low and high levels of NH₄Cl additions increased soil N₂O fluxes by 774% and 1328%, respectively, while the increases in soil N₂O fluxes elicited by low and high levels of NaNO₃ addition were only 546% and 720%, respectively (Fig. 2d).

3.2. Abundance of soil AOA and AOB communities

N addition tended to increase soil AOA amoA gene copy numbers (Table 2). The highest AOA amoA gene copy numbers occurred in the high-NH₄Cl treatment, which was 15% higher than that of the control (Table 2). Conversely, N additions tended to decrease the abundance of AOB communities in the subtropical plantation forest soils, and the difference between low-NH₄Cl treatment and the control was significant (Table 2). Except low-NaNO₃ treatment, N addition significantly increased the ratio of AOA to AOB abundance (Table 2).

3.3. Structure of soil AOA community

The determination of T-RFLP for the AOB community was not performed due to the low abundance of AOB amoA genes. In contrast, four T-RFs of AOA were detected from all soil samples using the enzyme FastDigest® Mbol. N levels rather than N forms significantly changed the relative abundance of 329 bp and 421 bp (Table 3). Low levels of NH₄Cl and NaNO₃ additions significantly decreased the relative abundance of 329 bp by 81.82% and 81.75%, respectively (Table 3). High levels of NH₄Cl and NaNO₃ additions significantly decreased the relative abundance of 421 bp by 78.82% and 70.67%, respectively. Furthermore, low and high levels of NH₄Cl additions tended to increase the relative abundance of 546 bp (Table 3).

Table 1

Source of variation	Soil CH₄ flux	Soil N₂O flux		
	F	P	F	P
Between subjects				
N level	0.94	0.37	4.45	0.045
N form	7.04	0.033	4.09	0.054
N level × N form	0.13	0.73	0.85	0.37
Within subjects				
Date	5.36	<0.001	6.96	<0.001
Date × N level	0.66	0.73	1.56	0.021
Date × N form	1.09	0.38	3.65	0.011
Date × N level × N form	0.65	0.74	0.91	0.53
Fig. 1. Variation of soil CH$_4$ fluxes under control (a), low and high NH$_4$Cl (b), and low and high NaNO$_3$ (c), and arithmetic mean under the five experimental treatments (d). The data is the mean and standard errors. Different letters below the columns mean significant difference among the experimental treatments.

Fig. 2. Variation of soil N$_2$O fluxes under control (a), low and high NH$_4$Cl (b), and low and high NaNO$_3$ (c), and arithmetic mean under the five experimental treatments (d). The data is mean and standard error. Different letters above the columns mean significant difference among the experimental treatments.
Table 2
Soil AOB and AOA amoA gene copy numbers and their ratios under different experimental treatments.

Treatment	Log number of archaeal amoA (copies g⁻¹ dry soil)	Log number of bacterial amoA (copies g⁻¹ dry soil)	Log ratio of AOA to AOB*
Low-NH₄Cl	7.43 ± 0.13 ab	6.51 ± 0.03 b	1.14 ± 0.02 ab
High-NH₄Cl	7.79 ± 0.30 a	6.69 ± 0.12 a	1.16 ± 0.03 a
Low-NaNO₃	7.02 ± 0.09 ab	6.82 ± 0.05 a	1.03 ± 0.02 bc
High-NaNO₃	7.43 ± 0.22 ab	6.59 ± 0.08 ab	1.13 ± 0.03 ab
Control	6.77 ± 0.41 b	6.85 ± 0.11 a	0.99 ± 0.07 c

* Data are mean ± SE. Lowercase letter in the same column represents significant differences among experimental treatments at the level of 0.05.

Table 3
Relative abundances of T-RFs of AOA amoA gene restricted by Mbo I under different experimental treatments.

Treatment	T-RFs of AOA amoA genes†	329 bp	370 bp	421 bp	443 bp
Low-NH₄Cl	5.86 ± 1.71 b	49.78 ± 15.28 a	26.45 ± 8.15 ab	17.91 ± 6.58 a	
High-NH₄Cl	24.24 ± 5.12 a	47.45 ± 5.19 a	9.54 ± 2.46 b	18.77 ± 3.09 a	
Low-NaNO₃	2.25 ± 0.81 b	44.29 ± 16.78 a	37.56 ± 16.30 a	15.91 ± 5.21 a	
High-NaNO₃	27.61 ± 5.89 a	45.00 ± 11.54 a	11.11 ± 3.35 b	16.28 ± 3.22 ab	
Control	32.23 ± 8.11 a	23.38 ± 1.90 a	37.88 ± 10.57 a	6.50 ± 0.56 b	

* Data are mean ± SE. Lowercase letter in the same column presents significant difference among experimental treatments at the level of 0.05.

3.4. Relationships between soil fluxes and ammonia-oxidizer abundances

The monthly average of soil CH₄ fluxes, N₂O fluxes, AOA amoA gene copy numbers, and AOB amoA gene copy numbers in soils collected in September 2013 were used to perform the regression analysis. Soil AOA amoA gene copy numbers were negatively correlated with soil CH₄ uptake fluxes, whereas they were positively correlated with soil N₂O emission fluxes (Fig. 3a and b). The relationships between AOA amoA gene copy numbers and soil CH₄ fluxes and between AOA amoA gene copy numbers and soil N₂O fluxes were well fitted to linear equations (Fig. 3a and b, Table 4). On the contrary, soil AOB amoA gene copy numbers were positively correlated with soil CH₄ fluxes only (Fig. 3c and d, Table 4). Furthermore, the log ratio of AOA to AOB amoA gene abundances was negatively correlated with soil CH₄ uptake, whereas a positive relationship was observed for N₂O emissions (Fig. 3e and f, Table 4).

3.5. Relationships between soil pH and ammonia-oxidizer abundances

Although low and high levels of NH₄Cl additions tended to decrease soil pH, the difference between N addition treatments and the control was not significant over the short term (Fig. 4a). A significant and negative relationship between the log AOA amoA gene copy numbers and soil pH values, and the later could explain 65% of the variation of the former (Fig. 4b). However, no significant correlation was observed between soil pH and AOB amoA gene abundance (Fig. 4c).

4. Discussion

4.1. Unamplified AOB population

The relative abundance of soil AOA greatly outnumbered AOB in this study. Numerous studies suggest that AOA is ubiquitous [7,47], and their numerical dominance is over their bacterial counterparts in multiple environments, especially in acidic soils [27,40]. Soil AOB gene sequences were significantly amplified and detected from two of fifteen soil samples, despite using the FastDigest® Mbo I enzyme, a procedure that was successfully applied to the typical steppe soils in northern China [34]. Other studies reported that AOB was not detected in the acidic forest soils, either [33,36]. This is partly attributed to the low soil pH in the subtropical region (Fig. 4). Soil acidification often decreases soil NH₃ concentration, and NH₃ is the main substrate dominating the growth and ecological niche of soil AOA and AOB communities [48]. Also, the affinity of AOA for NH₃ is more than 200 times higher than that of AOB strains, which means AOA has the specific ability to use low-level NH₃ and efficiently compete the limited NH₃ substrate with AOB [48,49].

4.2. Effects of N addition on ammonia-oxidizer communities

High-NH₄Cl additions significantly increased soil AOA abundances, and low-NH₄Cl addition significantly decreased soil AOB abundances; however, neither soil AOA nor AOB abundances were changed by NO₃⁻ – N fertilization (Table 2). These indicate that the effects on soil ammonia-oxidizer communities in the subtropical plantation are stronger by deposited NH₄⁺ – N than by deposited NO₃⁻ – N. First, it is because NH₄⁺ – N fertilization directly increases soil NH₄⁺ – N levels, and NH₄⁺/NH₃ serves as the direct substrate to ammonia monooxygenase in NH₃ oxidation [50]. On the contrary, several studies documented that both NH₄⁺ – N and NO₃⁻ – N fertilizations increased soil AOB abundances in the alpine meadow [35], and the farmlands [32]. These inconsistent results could be attributed to the differences of climatic regions (warm-wet vs. cold-dry), soil pH (acid vs. alkaline), and initial status of soil mineral N (e.g., NH₄⁺/NO₃⁻ < 1 vs. NH₄⁺/NO₃⁻ > 1) [40]. Second, soil acidification could be another reasons leading to the shift of soil ammonia-oxidizer communities. The absorption and assimilation of NH₄⁺ by plants and microorganisms, as well as the leaching of NO₃⁻ and other base captions can release H⁺, which leads to soil acidification; moreover, the promotion to soil acidification by NH₄⁺ – N fertilization is generally greater than by NO₃⁻ – N fertilization due to their contrasting pH, soil nitrification, plant preference for NH₄⁺. Theoretically, the decrease in soil pH caused by N additions reduces soil NH₃ availability because of the formation of ionized NH₄⁺ [51,52]. The concentration of ammonia substrate in soils is considered below the growth threshold of cultured AOB in soil when pH is below 4.5, and this is in turn favorable to the growth of high-affinity AOA community [33,50]. Soil pH at all treatment plots was below 4.5 (Fig. 4a). Therefore, the competition for limited NH₃ substrate between AOA and AOB communities would be intensified under N enrichment, which leads to the
degeneration of AOB community. The significant relationship between soil ammonia-oxidizer abundances and soil pH values clearly reflected the interaction (Fig. 4b). These results suggest that soil AOA communities play more important roles than AOB communities in N transformation in the subtropical plantation soils and responded differently to N addition.

Besides altering the abundances of ammonia-oxidizer communities, N additions significantly changed the structure of the soil AOA community. Similar results were found in the subtropical acidic forest and agricultural soils [27,53], and in the temperate alkaline grassland and agricultural soils [31,34]. Although we did not determine the changes in soil ammonia-oxidizer community composition caused by N additions using clone libraries and phylogenetic tree, the *Nitrososphaera* cluster could dominate the AOA community referring to the results from both acidic and alkaline soils [31,34,53,54]. Tourba et al. [55] also documented that *Nitrososphaera* can utilize ammonia or urea as an energy source and grow well in a high-ammonia environment. In order to clarify the coupling between soil methanotrophs and N2O-producing bacteria communities, further study is needed to examine their activities and compositions using cloning and sequence analysis.

4.3. Linkages between soil CH4 and N2O fluxes and ammonia-oxidizer communities

Nitrogen additions significantly promoted soil N2O emissions and tended to inhibit soil CH4 uptake in the subtropical plantation; furthermore, significant relationships between soil N2O and CH4 fluxes and ammonia-oxidizer abundances were observed. Taking all treatments into account, we found that soil CH4 uptake decreased with the increase in AOA amoA gene abundances, whereas increased with the AOB amoA gene abundances (Fig. 3a

Soil flux	Ammonia-oxidizers	Regression equation	R²	P Value
CH4 flux	AOA (X1)	Y = −3.75X1 + 32.21	0.27	0.041
	AOB (X2)	Y = −7.85X2 + 47.41	0.35	0.026
N2O flux	AOA (X1)	Y = −21.31X1 + 27.74	0.25	0.041
	AOA/AOB (X2)	Y = −32.51X1 + 228.55	0.63	<0.001
	AOA/AOB (X2)	Y = 157.93X2 − 163.08	0.47	0.003

Fig. 3. Relationships between soil CH4 and N2O fluxes and AOA, and AOB amoA gene copy numbers, as well as between soil CH4 and N2O fluxes and the ratios of AOA to AOB abundances.
and b); however, an opposite relationship was found between soil N2O emission and AOA abundance (Fig. 3d). These indicate that the increase in AOA amoA gene abundance might increase the activities of soil ammonia-oxidizing microorganisms and the decrease in AOB amoA gene abundance perhaps decrease methane-oxidizing microorganisms, thereby indirectly promoted soil CH4 oxidation and inhibited soil CH4 uptake under N enrichment. Therefore, we could modify soil CH4 and N2O emission by regulating the abundance and composition of ammonia-oxidizer communities (e.g., using nitrification inhibitors) [29,38,56].

The potential mechanisms involved in the above responses are complicated. First, soil CH4 can only be oxidized by bacterial AMO rather than archaean AMO [57], and the decrease in AOB abundance under N enrichment would directly decrease soil CH4 uptake. Second, O2 availability in the soil profile constrains CH4 and NH3 oxidation and the competition of soil ammonia-oxidizers is stronger than that of soil methanotrophs [11]. Soil ammonia oxidation is dominated by archaean AMO. NH3 oxidation by soil AOA consumes a large number of O2 in soils, which in turn inhibits soil CH4 oxidation and favors soil denitrification [9,50]. One of our previous results demonstrated that a high level of NH4Cl addition significantly led to soil NO3− accumulation, which indirectly indicates a high O2 consumption caused by a high nitrification rate [23]. Using 15N-tracing experiment and 15N-tracing models, denitrification was believed to be the largest source of N2O flux relative to nitrification and other N transformations in the subtropical forest soils [58,59]. On the other hand, accelerated nitrification by NH4+ additions gradually decreased soil pH, which would result in higher N2O/N2 ratio during soil denitrification [60]. However, other microorganisms (e.g., methane oxidizers, methanogens and denitrifiers) were also involved in the production and consumption of soil CH4 and N2O. The significant correlations between ammonia-oxidizer communities and soil CH4 and N2O fluxes only indicated their close linkages. Other microorganisms, especially methanotrophs, also have the capability to oxidize CH4 and NH3 in soils. To obtain a clear picture of the interaction between soil CH4 uptake and N2O emission under N enrichment, further study is required to address the pmoA genes of methanotrophs.

5. Conclusions

This study investigated the effects of NH4+ − N and NO3− − N fertilization on the abundance and structure of soil ammonia-oxidizer communities, soil CH4, and N2O fluxes, and their linkages in the subtropical plantation of southern China. We found that N addition increased AOA abundance, decreased AOB abundance, and altered composition of ammonia-oxidizer communities, which could explain to a certain extent the inhabitation to CH4 uptake and the promotion to N2O emission from the subtropical plantation soil. Moreover, NH4+ − N fertilization had stronger effects than NO3− − N fertilizer additions. Our study confirmed the close linkages between soil ammonia-oxidizers and soil CH4 and N2O fluxes, as well as the different roles of soil AOA and AOB communities in regulating soil CH4 uptake and N2O emission. Unfortunately, the measured soil CH4 and N2O exchange fluxes are combined results of several production and consumption processes, which unable to establish direct links between reaction rates and functional microbial activities. Further study is necessary to measure the gross N transformation rates, CH4 production and oxidation rates, and the abundance and composition of related functional microbial community in ambient and N enrichment soils.

Acknowledgments

This project was supported by National Natural Science Foundation of China (No. 31130009, 31290222, 41471212, 31470558, and 31290221), Development Plan Program of State Key Basic Research (No. 2012CB417103). The authors would like to thanks Mary-Anne Reeb for polishing the manuscript.

References

[1] IPCC, Climate change, The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC, Cambridge University Press, Cambridge, NY, 2007, 2007.
[2] L.L. Liu, T.L. Greaver, A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emissions, Earth Syst. Sci. Data 12 (2020) 1103–1117.

[3] J.N. Galloway, A.R. Townsend, J.W. Erisman, M. Bekunda, Z.C. Cai, J.R. Frenay, L.A. Martellini, S.P. Seitzinger, M.A. Sutton, Transformation of the nitrogen cycle: recent trends, questions, and potential solutions, Science 320 (2008) 889–892.

[4] M. Lu, Y.H. Yang, Y.Q. Luo, C.M. Fang, X.H. Zhou, J.K. Chen, X. Yang, B. Li, Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis, New Phyol. 189 (2011) 1040–1050.

[5] M. Lu, X.H. Zhou, X.H. Luo, Y.Q. Luo, C.M. Fang, J.K. Chen, B. Li, Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis, Agr. Ecosyst. Environ. 140 (2011) 234–244.

[6] E.M. Bagnis, A review of stable isotope techniques for N2O source partitioning in recent nitrogen inputs, remaining challenges and future considerations, Rapid Commun. Mass Spec. 22 (2008) 1664–1672.

[7] J.C. Venter, K. Remington, J.F. Heidelberg, A.L. Halpern, D. Rusch, J.A. Eisen, D.Y. Wu, I. Paulsen, R.E. Nelson, W. Nelson, D.E. Fouts, S. Levy, A.H. Knap, M.W. Lomas, K. Keelan, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tilison, C. Plankkoh, Y.H. Rogers, H.O. Smith, Environmental genome shotgun sequencing of the Sargasso Sea, Science 304 (2004) 66–74.

[8] M. Konnerke, A.E. Bernhardt, J.R. de La Torre, C.B. Walker, J.B. Waterbury, M. Lu, X.H. Zhou, Y.Q. Luo, Y.H. Yang, C.M. Fang, L.L. Liu, T.L. Greaver, A review of nitrogen enrichment effects on three biogenic trophic ammonia oxidation by soil thaumarchaea, P Natl. Acad. Sci. U. S. A. 107 (2010) 17240.

[9] D.A. Stahl, Isolation of an autotrophic ammonia-oxidizing marine archaeon, Nature 437 (2005) 543.

[10] M. Tourna, T.E. Freitag, G.W. Nicol, J.I. Prosser, Growth, activity and structural gene amoA as a functional marker: molecular fingerprinting of ammonia-oxidizing bacteria and archaea, Environ. Microbiol. 10 (2008) 2966–2975.

[11] D.A. Stahl, Isolation of an autotrophic ammonia-oxidizing marine archaeon, J. Bacteriol. 120 (1974) 556.

[12] J.P. Shen, L.M. Zhang, Y.G. Zhu, J.R. Zhang, J.Z. He, Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities in an alkaline sandy loam, Environ. Microbiol. 10 (2008) 1601–1611.

[13] J.Z. He, E. Hackl, E. Inselbacher, J. Strauss, W. Wanke, S. Zeichmeister-Boltenstern, A. Sessitsch, Dynamics of ammonia-oxidizing communities in barley-planted bulk soil and rhizosphere following nitrate and ammonium fertilizer amendment, Fems Microbiol. Ecol. 74 (2010) 357–359.

[14] M. Stopnisek, C. Grohens, S. Gobert, C. Rolfe, J. Manhart-Miulec, J.J. Prosser, Thaumarchaeota ammonia oxidation in an acid forest peat soil is not influenced by ammonium amendment, Appl. Environ. Microb. 76 (2010) 6626–6734.

[15] Y. Chen, Z.W. Xu, H.W. Hu, Y.J. Hu, Z.P. Hao, Y. Jiang, B.D. Chen, Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia, Appl. Soil Ecol. 68 (2013) 36–47.

[16] J.F. Tian, H.W. Hu, Q. Ding, M.H. Song, X.L. Xu, Y. Zheng, L.D. Guo, Influence of nitrogen fertilizer on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow, Biol. Fertil. Soils 50 (2014) 703–712.

[17] F. Isobe, K. Koba, Y. Suwa, J. Ikutani, Y.T. Fang, M. Yom, M.O. Matsu, K. Senoo, High abundance of ammonia-oxidizing archaea in acidified subtropical forest soils in southern China after long-term N deposition, Fems Microbiol. Ecol. 80 (2012) 193–202.

[18] J.Z. He, E. Hackl, E. Inselbacher, J. Strauss, W. Wanke, S. Zeichmeister-Boltenstern, A. Sessitsch, Dynamics of ammonia-oxidizing communities in barley-planted bulk soil and rhizosphere following nitrate and ammonium fertilizer amendment, Environ. Microbiol. 10 (2008) 590–599.

[19] Y. Dai, H.J. Di, K.C. Cameron, J.Z. He, Effects of nitrogen application rate and a nitrogen inhibitor dicyandiamide on methanotroph abundance and methane uptake in a grazed pasture soil, Environ. Sci. Pollut. R. 20 (2013) 410–419.

[20] H. Akiyama, S. Morimoto, M. Hayatsu, A. Hayakawa, S. Sudo, K.Y. Yagi, Nitrification, ammonia-oxidizing communities, and N2O and CH4 fluxes in an imperfectly drained agricultural field fertilized with coated urea with and without dicyandiamide, Biol. Fertil. Soils 49 (2013) 213–223.

[21] J.Z. He, H.W. Hu, L.M. Zhang, Current insights into the autotrophic thaumarchaeal ammonia oxidation in acid soils, Soil Biol. Biochem. 55 (2012) 146–154.

[22] Y.H. Wen, H.M. Wang, J.L. Wang, G.R. Yu, X.M. Sun, Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003-2007, Biogeosciences 7 (2010) 357–369.

[23] C.H. Zhang, B.L. Mei, H.B. Wang, H.Y. Xie, Y.S. Wang, H.B. Dong, Quantification of N2O fluxes from soil-plant systems may be biased by the applied gas chromatography methodology, Plant Soil 311 (2008) 211–234.

[24] C.A. Francis, K.J. Roberts, J.M. Beman, A.E. Santoro, B.B. Oakley, Ubiquity and diversity of ammonia-oxidizing archaea in wetland columns and sediments of the ocean, P Natl. Acad. Sci. U. S. A. 102 (2005) 14683–14688.

[25] J.H. Rothfuehrer, K.P. Witzel, W. Liesack, The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations, Appl. Microbiol. Environ. Sci. 63 (1997) 4704–4712.

[26] S. Leininger, T. Urich, M. Schloter, L. Schwehr, J. Qi, G.W. Nicol, J.J. Prosser, S.C. Schuster, C. Schleper, Archaea predomininate among ammonia-oxidizing prokaryotes in soils, Nature 442 (2006) 806–809.

[27] W. Martens-Habben, P.M. Berube, H. Urakawa, J.R. de La Torre, D.A. Stahl, Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria, Nature 461 (2009) 576–579.

[28] W. Martens-Habben, D.A. Stahl, Nitrogen Metabolism and Kinetics of Ammonia-oxidizing Archaea, Methods in Enzymology, in: Research on Nitrification and Related Processes, Pt B, 496, vol. 461, 2011, pp. 463–487.

[29] M.L. Zhang, H.W. Hu, J.P. Shen, J.Z. He, Ammonia-oxidizing bacteria have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils, ISME J. 6 (2012) 1032–1045.

[30] I. Suzuki, U. Dular, S.C. Kvwok, Ammonia or ammonium ion as substrate for oxidation by nitrosomonas-europaea cells and extracts, J. Bacteriol. 120 (1974) 556–558.

[31] G.W. Nicol, S. Leininger, C. Schleper, J.J. Prosser, The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing bacteria and archaea in a cropland soil, Appl. Environ. Microb. 76 (2010) 1067–1071.

[32] H.J. Di, K.C. Cameron, R.R. Sherlock, J.P. Shen, J.Z. He, C.S. Winefield, Nitrite oxidase activity from grazed grassland as affected by a nitritification inhibitor, dicyandiamide, and relationships with ammonia-oxidizing bacteria and archaea, J. Soil Sediment. 10 (2010) 943–954.

[33] S.W. Shen, X.G. Lin, N. Gao, W.M. Shi, J. Min, X.H. He, Nitrogen fertilization changes abundance and community composition of ammonia-oxidizing bacteria, Soil Sci. Soc. Am. J. 77 (2013) 1117–1127.

[34] J.Z. He, E. Hackl, E. Inselbacher, J. Strauss, W. Wanke, S. Zeichmeister-Boltenstern, A. Sessitsch, Dynamics of ammonia-oxidizing communities in barley-planted bulk soil and rhizosphere following nitrate and ammonium fertilizer amendment, Environ. Microbiol. 74 (2010) 6626–6734.

[35] J.Z. He, H.W. Hu, J.P. Shen, C.S. Winefield, M. O’Callaghan, S. Bowatte, J.Z. He, Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils, Nat. Geosci. 2 (2009) 621–624.
temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms, Environ. Microbiol. 10 (2008) 1357–1364.

[56] G. Malla, A. Bhatia, H. Pathak, S. Prasad, N. Jain, J. Singh, Mitigating nitrous oxide and methane emissions from soil in rice-wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors, Chemosphere 58 (2005) 141–147.

[57] J.I. Prosser, G.W. Nicol, Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment, Environ. Microbiol. 10 (2008) 2931–2941.

[58] J.B. Zhang, Z.C. Cai, T.B. Zhu, N₂O production pathways in the subtropical acid forest soils in China, Environ. Res. 111 (2011) 643–649.

[59] J. Zhu, J. Mulder, L. Bakken, P. Dörsch, The importance of denitrification for N₂O emissions from and N-saturated forest in SW China: results from in situ ¹⁵N labeling experiments, Biogeochemistry 116 (2013) 103–117.

[60] B.B. Liu, P.T. Markved, A. Frostegård, L.R. Bakken, Denitrification gene pools, transcription and kinetics of NO, N₂O and N₂ production as affected by soil pH, FEMS Microbiol. Ecol. 72 (2010) 407–417.