Occurrence of pharmaceuticals and personal care products, and their associated environmental risks in Guanting Reservoir and its upstream rivers in north China

Panwei Zhang,ab Huaidong Zhou,ab Kun Li,ab Xiaohui Zhao,ab Qiaona Liu,ab Dongjiao Li,b Gaofeng Zhao,ab Liang Wang b

a: State Key Laboratory of Regulation of Water Cycle in River Basin, China Institute of Water Resource and Hydropower Research, Beijing, 100038, P.R. China.
b: China Institute of Water Resources and Hydropower Research, Beijing 100038, P.R. China

*Corresponding Author

Email: zhaogf@iwhr.com

Tel: +86-1068781893

Fax: +86-1068573618
Table S1 Basic information of eighteen selected PPCPs
Table S2 Sampling site information for samples of Guanting Reservoir
Table S3 Experimental conditions of electrospray tandem mass spectrometry
Table S4 Water quality parameters in surface water samples collected from Guanting Reservoir and its upstream rivers
Table S5 Environmental risk assessment for selected PPCPs in GTR and its upstream rivers
Classes	Compound	acronym	CAS no.	molecular formula	log\(k_w\)	pKa\(^a\)	classification
Acetaminophen	ACE	103-90-2	\(C_8H_9NO_2\)	0.46	9.38		Analgesic, antipyretic
Caffeine	CAF	58-08-2	\(C_8H_11NO_2\)	-0.07	10.40		Central nervous system stimulant
Non-antibiotic pharmaceuticals (N-APs)	Diltiazem	DTZ	42399-41-7	\(C_{22}H_{26}N_2O_4S\)	2.70	8.90	Calcium channel blocker
Carbazepine	CBZ	298-46-4	\(C_{15}H_{12}N_2O_2\)	2.47	7.00		Anticonvulsant, antidepressant
Fluoxetine	FXT	54910-83-3	\(C_{17}H_{18}F_3NO\)	1.80	-		antidepressant
Sulfadiazine	SDZ	68-35-9	\(C_{10}H_{10}N_4O_2S\)	-0.34	2.0/6.48		Sulfonamide antibiotic
Sulfamethoxazole	SMX	723-46-6	\(C_{10}H_{12}N_2O_3S\)	0.89	1.6/5.7		Sulfonamide antibiotic
Sulfamethazine	SMZ	57-68-1	\(C_{10}H_{12}N_2O_3S\)	0.14	2.65/7.65		Sulfonamide antibiotic
Trimethoprim	TMP	738-70-5	\(C_{17}H_{11}N_2O_3\)	0.91	7.12		Antibacterial agent
Oxytetracycline	OTC	79-57-2	\(C_{18}H_{15}N_2O_8\)	0.02	9.50		Tetracycline antibiotic
Tetracycline	TC	60-54-8	\(C_{20}H_{15}N_2O_8\)	-1.37	3.30		Tetracycline antibiotic
Chlortetracycline	CTC	57-62-5	\(C_{22}H_{25}ClN_2O_8\)	-	3.02/7.55/9.33		Tetracycline antibiotic
Doxycycline	DOX	562-25-0	\(C_{20}H_{18}N_2O_8\)	2.37	3.02/7.97/9.15		Tetracycline antibiotic
Azithromycin	AZM	83905-01-5	\(C_{20}H_{22}N_2O_2\)	4.02	8.74		Macrolide antibiotic
Erythromycin	ERY	114-07-8	\(C_{19}H_{22}NO_3\)	3.06	8.90		Macrolide antibiotic
Tylosin	TYL	1401-69-0	\(C_{10}H_{17}NO_7\)	1.05	7.10		Macrolide antibiotic
Lincomycin	LIN	154-21-2	\(C_{23}H_{23}N_2O_8\)	0.56	7.60		Lincosomide antibiotic
Ofloxacin	OFL	82419-36-1	\(C_{18}H_{20}F_3N_2O_4\)	-0.02	-		Quinolone antibiotic

\(^a\): Stamatis and Konstantinou, 2013; Salgado et al., 2012; Chen et al., 2014; Yang et al., 2011; Marczak et al., 2015
Table S2. Sampling site information for samples of Guanting Reservoir

Sites	Coordinates	Date	Location	
L01	115°46'36.84"E 40°22'16.752"N	August, 01 2017	Guanting Reservoir	
L02	115°45'43.56"E 40°21'43.344"N	August, 01 2017	Guanting Reservoir	
L03	115°45'48.24"E 40°21'38.592"N	August, 01 2017	Guanting Reservoir	
L04	115°45'54.72"E 40°21'27.072"N	August, 01 2017	Guanting Reservoir	
L05	115°44'30.12"E 40°20'52.26"N	August, 01 2017	Guanting Reservoir	
L06	115°44'13.56"E 40°21'5.04"N	August, 01 2017	Guanting Reservoir	
L07	115°43'54.48"E 40°21'13.32"N	August, 01 2017	Guanting Reservoir	
L08	115°43'11.99"E 40°20'55.788"N	August, 01 2017	Guanting Reservoir	
L09	115°41'25.08"E 40°20'20.04"N	August, 01 2017	Guanting Reservoir	
L10	115°37'35.40"E 40°18'25.668"N	August, 01 2017	Guanting Reservoir	
L11	115°37'9.12"E 40°17'29.076"N	August, 01 2017	Guanting Reservoir	
L12	115°36'59.04"E 40°16'56.279"N	August, 01 2017	Guanting Reservoir	
L13	115°36'26.48"E 40°16'18.336"N	August, 01 2017	Guanting Reservoir	
L14	115°36'9.72"E 40°14'7.799"N	August, 01 2017	Guanting Reservoir	
R01	115°52'28.20"E 40°26'47.868"N	August, 04 2017	Guishui River	
R02	114°30'20.52"E 40°37'1.235"N	August, 02 2017	Yongding River	
R03	115°28'1.20"E 40°21'25.128"N	August, 02 2017	Yongding River	
R04	115°21'18.72"E 40°21'15.696"N	August, 02 2017	Sanggan River	
R05	115°12'40.32"E 40°21'30.96"N	August, 02 2017	Sanggan River	
R06	115°18'20.88"E 40°24'52.344"N	August, 02 2017	Yanghe River	
R07	115°7'9.84"E 40°31'4.295"N	August, 02 2017	Yanghe River	
R08	114°58'19.91"E 40°37'10.488"N	August, 02 2017	Yanghe River	
Analytes	Parent ion (m/z)	Daughter ion (m/z)	Fragmentor/ Collision energy/	
----------	-----------------	-------------------	-----------------------------	---
ACE	152	110	90	15
		65	90	35
CAF	195	138	110	15
		110	110	25
DTZ	415	178	130	25
		150	130	25
		194	110	15
CBZ	237	156	110	15
		92	110	25
		156	110	15
SMX	254	92	110	25
		156	90	25
SMZ	279	186	90	25
		156	90	25
TMP	291	261	110	25
		230	110	25
		444	130	13
OTC	461	426	130	17
		427	110	5
TC	445.2	410	110	15
		426	110	15
		427	110	5
CTC	479	462	110	15
		197	110	35
DOX	445.2	428	110	15
		154	110	35
		591.2	130	30
AZM	749.5	158	130	35
		576	90	15
ERY	734.5	158	90	35
		772	110	35
TYL	916.3	174	110	35
Table S4. Water quality parameters in surface water samples collected from Guanting Reservoir and its upstream rivers

Sites	DOC (mg L\(^{-1}\))	TN (mg L\(^{-1}\))	TP (mg L\(^{-1}\))	NH3-N (mg L\(^{-1}\))
L01	13.17	0.326	0.013	0.27
L02	10.11	0.280	0.022	0.16
L03	10.75	0.234	0.026	0.14
L04	11.52	0.222	0.023	0.16
L05	11.65	0.230	0.016	0.30
L06	11.47	0.329	0.016	0.11
L07	12.52	0.322	0.020	0.11
L08	10.58	0.249	0.025	0.10
L09	11.24	0.276	0.012	0.25
L10	10.48	0.234	0.030	0.16
L11	7.98	0.257	0.027	0.18
L12	9.58	0.268	0.023	0.12
L13	10.89	0.130	0.026	0.19
L14	7.83	0.283	0.039	0.22
R01	14.65	1.261	0.140	0.26
R02	6.33	2.024	0.325	0.16
R03	8.74	0.188	0.075	0.12
R04	17.19	0.479	0.037	0.59
R05	3.20	1.775	0.025	0.23
R06	4.64	1.073	0.104	0.16
R07	11.67	2.116	0.467	0.77
R08	21.98	1.100	1.639	0.87
R09	14.47	0.855	0.143	19.70
R10	13.55	1.146	0.206	1.02
R11	6.45	0.164	0.083	0.45
R12	2.33	0.617	0.089	0.04
R13	0.61	0.398	0.080	0.06
R14	1.91	0.797	0.007	0.07
Table S5. Environmental risk assessment for selected PPCPs in GTR and its upstream rivers

Analytes	EC50 (mg/L)	PNEC (μg·L⁻¹)	Maxium MEC (ng·L⁻¹)	RQ		
			GTR	Upstream rivers	GTR	Upstream rivers
ACE	9.2	9.2⁷	506.47	901.73	5.51E-02	9.80E-02
CAF	69	69⁸	620.39	707.51	0.009	0.010
DTZ	8.2	8.2⁹	17.37	8.64	2.12E-03	1.05E-03
CBZ	31.6	31.6³	5.90	11.47	0.000	0.000
FXT	41	41²	3.40	4.45	8.29E-05	1.09E-04
SDZ	10	10⁶	23.51	20.58	0.002	2.06E-03
SMX	20	20⁴	44.39	42.59	0.002	0.002
SMZ	15.6	15.6³	25.68	14.11	0.002	9.03E-04
TMP	1.0	1³	15.26	20.23	0.015	0.020
OTC	2.0	2⁸	30.45	36.26	0.015	0.018
TC	3400	3400⁸	14.86	18.86	4.37E-06	5.55E-06
CTC	5.0	5³	15.38	19.68	0.003	3.94E-03
DOX	430	430⁴	10.11	12.76	2.35E-05	2.97E-05
AZM	0.45	0.45²³	16.72	25.71	0.037	0.057
ERY	0.04	0.04³	27.56	63.69	0.689	1.592
TYL	0.34	0.34³	1.49	0.00	0.004	0.000
LIN	14.0	13.98³	10.53	59.19	0.001	0.004
OFL	100	100²	26.37	36.73	2.64E-04	3.67E-04

⁷ Lin et al., 2008; ⁸ Muñoz et al., 2008; ⁹ Kim et al., 2007; ³ Schwab et al., 2005; ⁴ Bu et al., 2013; ⁵ Ji et al., 2012; ⁶ Verlicchi et al., 2014; ⁷ Isidori et al., 2005
References:
Bu, Q., Wang, B., Huang, J., Deng, S., Yu, G., 2013. Pharmaceuticals and personal care products in the aquatic environment in China: a review. Journal of Hazardous Materials. 262,189-211.

Isidori, M., Lavorgna, M., Nardelli A, Pascarella, L., Parrella, A., 2005. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Science of the Total Environment. 346, 87-98.

Ji K, Kim S, Han S, Seo, J., Lee, S., Park, Y., Choi, K., Kho, Y.L., Kim, P.G., Park, J., Chio, K., 2012. Risk assessment of chlortetracycline, oxytetracycline, sulfamethazine, sulfathiazole, and erythromycin in aquatic environment: are the current environmental concentrations safe?. Ecotoxicology. 21, 2031-2050.

Kim, Y., Choi, K., Jung, J., Jung, J.Y. Park, S.J., Kim, P.G., Park, J., 2007. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environment International, 33, 370-375.

Lin A Y, Yu T H, Lin C F. 2008. Pharmaceutical Contamination in Residential, Industrial, and Agricultural Waste Streams: Risk to Aqueous Environments in Taiwan. Chemosphere. 74, 131-141.

Marczak, M., Okoniewska, K. M., Okoniewski, J., Grabowski, T., Jaroszewski, J. J. (2015). Indirect relationship between lipophilicity and maximum residue limit of drugs determined for fatty tissue. Bulletin of the Veterinary Institute in Pulawy, 59, 383-391.

Muñoz, I., Gómez, M.J., Molina-Díaz, A., Mark, A.J., Fernández-Alba, A.R., García-Calvo, E., 2008. Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment. Chemosphere, 74, 37-44.

Schwab, B.W., Hayes, E.P., Fiori, J.M., Roden, N.M., Cragin, D., Meyerhoff, R.D., Vincent, J.D., Anderson, P.D., 2005. Human pharmaceuticals in US surface waters: a human health risk assessment. Regulatory Toxicology and Pharmacology, 42, 296-312

Stamatis, N. K., Konstantinou, I. K. (2013). Occurrence and removal of emerging pharmaceutical, personal care compounds and caffeine tracer in municipal sewage treatment plant in Western Greece. Journal of Environmental Science and Health. part. b: Pesticides Food Contaminants and Agricultural Wastes, 48, 800-813.

Verlicchi, P., Al, A.M., Jelic, A., Petrović, M., Barceló, D., 2014. Comparison of measured and predicted concentrations of selected pharmaceuticals in wastewater and surface water: a case study of a catchment area in the Po Valley (Italy). Science of the Total Environment. 470-471, 844-854.

Yang, X., Flowers, R. C., Weinberg, H. S., Singer, P. C. (2011). Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Research, 45, 5218–5228.