Exploring linkages between drought and HIV treatment adherence in Africa: a systematic review

Orievulu, Kingsley Stephen, Ayeb-Karlsson, Sonja, Ngema, Sthembile, Baisley, Kathy, Tanser, Frank, Ngwenya, Nothando, Seeley, Janet, Hanekom, Willem, Herbst, Kobus, Kniveton, Dominic and Iwuji, Collins C (2022) Exploring linkages between drought and HIV treatment adherence in Africa: a systematic review. The Lancet Planetary Health, 6 (4). e359-e370. ISSN 2542-5196

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/104380/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Climate change is directly and indirectly linked to human health, including through access to treatment and care. Our systematic review presents a systems understanding of the nexus between drought and antiretroviral therapy (ART) adherence in HIV-positive individuals in the African setting. Narrative synthesis of 111 studies retrieved from Web of Science, PubMed/MEDLINE, and PsycINFO suggests that livelihoods and economic conditions, comorbidities and ART regimens, human mobility, and psychosocial dispositions and support systems interact in complex ways in the drought–ART adherence nexus in Africa. Economic and livelihood-related challenges appear to impose the strongest impact on human interactions, actions, and systems that culminate in non-adherence. Indeed, the complex pathways identified by our systems approach emphasise the need for more integrated research approaches to understanding this phenomenon and developing interventions.

Key messages

- Climate change affects human health and livelihoods in a myriad of ways
- Some of the impact of climate change on human health can be through indirect mechanisms, such as the relationship between drought and HIV treatment adherence
- A systems approach allows an understanding of these indirect relationships by elucidating the distal and proximate connections between drought and HIV treatment adherence
- Our systematic review suggests that during droughts, livelihoods and economic conditions, comorbidities and antiretroviral therapy regimens, human mobility, and psychosocial dispositions and support systems interact in complex ways that could influence HIV treatment adherence
- Economic and livelihood-related challenges resulting from drought-induced food and water insecurity appear to impose the biggest threat to HIV treatment adherence
- Interventions to improve the health and wellbeing of people living with HIV should not just focus primarily on HIV but should adopt a whole systems approach to improving public health in general, such as ensuring water and food security
associated with HIV prevalence in older females (25–59 years) and was protective with respect to HIV infection in young males.7

In addition to pre-existing climate vulnerabilities, southern Africa in comparison to other regions in Africa has the highest HIV burden, accounting for more than 30% of the global HIV prevalence.20 Both direct factors (sexual behaviour and unprotected sex) and longer causal chains (lack of adherence to HIV antiretroviral therapy [ART]) contribute to this high burden.7,8 We focus here on the indirect impacts of drought on HIV treatment adherence in Africa because of the contributions of poor ART adherence to increased morbidity and mortality risks in HIV-positive individuals as well as HIV transmission.7,8

The objective of this paper is therefore to develop a systems understanding of the nexus between environmental stress, in this case drought, and ART adherence in HIV-positive individuals in Africa. Several scholars have argued for the effective use of a systems approach to draw out the many indirect linkages between climate change and health, or other outcomes, that might be difficult to attribute to the environment as the pathways pass through various social, political, economic, and psychological factors. For example, a systems understanding has previously been applied to investigate the connections between climate change and mental health,23–25 and natural hazards and wellbeing.26–28

The previously shown association between drought and increased HIV prevalence could be explained by changes in behaviour in reaction to income and production shocks, which often culminate in increased sexual risk taking, temporary migration, school withdrawal, and early sexual debut, especially in rural contexts.23 However, to date no study has applied a full systems approach to understand the association between drought and HIV in general, or in particular to account for the complexities underlying drought’s impact on HIV ART adherence, which in turn can affect HIV transmission. Berry and colleagues define systems thinking as a set of “synergistic analytic skills” used to help describe a complex set of interacting factors that produce outcomes, to predict their behaviour, and to formulate interventions to achieve desired results.29 We argue that the systems approach is more appropriate in investigating the drought–HIV nexus as it shows how different geopolitical, socioeconomic, and environmental factors, including health systems, interact through a complex interlinked process and culminate in non-linear outcomes such as mental (ill-)health, increased HIV transmission, or ART (non-)adherence, which is our focus.23–25 Thus, we undertook a systematic literature review on the impacts of drought on human health and livelihoods, and factors associated with ART adherence, and used the findings to develop a systems diagram describing the relationship between drought and ART adherence. This makes a case for future research agendas and policy frameworks that capture the complex causal pathways between drought and ART adherence, especially in Africa.

Methods

Four researchers (KSO, SA-K, DK, and CCI) searched three electronic databases for peer-reviewed published literature: Web of Science, PubMed/MEDLINE, and PsycINFO (Jan 1, 2003, to Sept 20, 2019). We chose 2003 as our starting date as it was about the time ART roll-out was starting in Africa.30 Three distinct searches were applied to each of the databases in line with the study objective to cover publications on impacts of drought generally, impacts of drought on human health, and adherence to ART, in the African setting (panel and appendix p 2). We reviewed primary studies published in English.

We imported all articles into EndNote reference management software, version X9 (Clarivate), and excluded duplicates using the “Find Duplicates” function in EndNote. KSO, SA-K, DK, and CCI independently screened the titles and abstracts of all records to identify studies possibly related to our areas of interest. We obtained full text articles from the three distinct searches (panel) which examined (1) the general impact of drought on Africa, (2) the impact of drought on human health, and (3) HIV treatment adherence-related factors. KSO and CCI screened the full text articles based on the inclusion and exclusion criteria (panel) and CCI made final decisions on which articles to include in the review when there was a discrepancy. We included both quantitative and qualitative studies to allow us to describe both the proximal and distal factors that connect drought with HIV treatment adherence. The heterogeneity in the...
study designs and outcomes investigated in the included studies meant it was inappropriate to undertake a meta-analysis.

For the quality assessment of included articles, we applied the Critical Appraisal Skills Programme (CASP) quality assessment tool to specifically assess only studies linked directly to adherence as the outcome variable of interest. For quantitative and mixed methods studies, we used the CASP criteria to address the following questions: (1) is the question clear or are there clear aims and objectives? (2) Is the sample appropriate, and does the size allow generalisation? (3) Is the research design clearly stated? (4) Is the data collection process clear, including recruitment and consent? (5) Did the researcher follow the steps of data analysis and was the data management clear? (6) Are the results accurate and presented in the correct format? (7) Does the discussion and conclusion support the results?

To assess the quality of qualitative studies, a previously described adaptation of questions representing the three key conceptual domains described in the CASP quality assessment tool was used. The criteria addressed the following questions: (1) was the relationship between researcher and participant adequately considered? (2) Was the sampling method clearly described? (3) Was the data collected in a way that addressed the research issue? (4) Was the analysis method clearly described?

We organised the studies by year of publication, study design, country of origin, and key findings. For each search, we grouped findings into key thematic areas using NVivo 12 Pro (QSR International) and Microsoft Excel to tabulate them. Subsequently, we linked common themes across the searches to establish the relationships between drought, health, HIV, and adherence to HIV care and treatment, using the same approach for both quantitative and qualitative studies.

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for this systematic review. The PRISMA checklist is in the appendix (pp 36–37).

Results

The numbers of articles derived from the search of the databases are summarised in the figure. Our search identified 3217 articles, and we excluded 503 duplicates. A further 2482 were excluded after screening abstracts for titles and relevance, leaving 232 articles relevant for full text review, of which 121 articles were excluded as...
they did not meet inclusion criteria on adherence as the main outcome variable of the study, situated in Africa, focused on adults, and focused on human impacts in the case of drought (panel). Studies that focused broadly on climate change without direct emphasis on drought, or those that mentioned adherence without specific focus on this outcome and related factors, were deemed insufficient and consequently excluded (figure).

After all exclusions, 111 articles were synthesised in the systematic review, including 71 quantitative studies, 27 mixed methods studies, and 13 qualitative studies (table 1). The majority of included studies were from South Africa (24), Uganda (13), Kenya (12), and Ethiopia (10). Subregionally, the majority of these studies were in southern (47) and eastern (41) Africa, with west Africa and central Africa accounting for 22 and three articles respectively. Some articles included data from more than one country across subregions; as a result, the total number of studies exceeds 111. These are summarised in two tables in the appendix (p 3).

Many studies exploring factors associated with ART adherence have relied on a socioecological framework. This framework recognises that societal norms and structures influence individual attitudes and behaviours, and identifies key levels affecting adherence to ART: individual (knowledge, attitudes, beliefs, perceptions); community (cultural values and norms); interpersonal (family, friends, social networks); institutional (health system, social institutions, workplace); and public policy (local, state, and national laws and policies). The most popular of these levels that we used to delineate adherence-related factors include individual, community or contextual, and health or policy systems levels (table 1).

We used the empirically derived themes (table 2) from the quantitative and qualitative studies to develop a systems explanation of the relationship between drought and adherence (appendix p 35) while citing areas of similarity between the theoretical framework such as the socioecological model described earlier.

The four thematic areas—(1) livelihoods and economic conditions, (2) physical health constraints and ART regimens, (3) human mobility, and (4) social support and psychosocial dispositions (table 2)—illuminate the complex pathways to understanding the extent to which adherence to HIV care is sensitive to the effects of drought on human livelihoods and interactions, as well as structures of policy response to environmental stress.

Livelihoods and economic conditions

Livelihoods and economic conditions emerged as one of the strongest determinants of (non-)adherence to ART. Factors identified here, including food insecurity, water insecurity, and others (table 2), cumulatively affected ART adherence. Multiple studies have shown poor socioeconomic conditions to be associated with poor adherence. Often cited in the literature is the impact of worries about taking ART on an empty stomach. The fear of adverse side-effects linked to food insecurity was also noted as an important barrier to adherence in both quantitative and qualitative studies.

Study participants attributed side-effects such as hallucinations, drowsiness, and sickly feelings to taking ART with insufficient food, or on an empty stomach. Drought directly affects food security through loss of production of both crop and livestock, and for subsistence farmers can affect their capacity to access food. Individuals could also be impacted indirectly either through loss of employment, or the increase in food prices.

In response to a severe economic impact of drought, some individuals sold off assets, including those that help to meet individual and family food needs. In the case of an extended drought, beyond a year or growing season, this can affect mental health (anxiety, stress, depression) which in turn could impact not only individual but also family socioeconomic conditions if the breadwinner in the family is affected. ART adherence could then be affected through trading off family food provision with the cost of transportation to a health-care facility for drug pick up or vice versa. Conversely, individuals who are employed and well-off sometimes find themselves defaulting on treatment due to the demands of work.
Lack of access to clean water, or the means to buy it, is a socioeconomic condition (table 2) also found to have severe impact on ART adherence.4–6,70 Extreme drought can further exacerbate an already limited resource. Our systems diagram (appendix p 35) shows how low water quality and quantity is linked to diseases afflicting livestock and human beings alike; for example, drought-tolerant tuber crops such as cassava can lead to Konzo disease,64,67,70,92–94 a type of paralysis of the leg which is permanent and is associated with the consumption of inadequately processed cassava-based food.39 People on ART might also forgo hospital appointments, as they search for clean water for themselves and their livestock, while insufficient water and low water quality (driven by drought) might exacerbate poor economic conditions that individuals, communities, farmers, herders, and countries face in general.8,54,57,73,95,96 Insufficient water impacts overall food production, increases government expenditure on food, and could exacerbate morbidity. Such fiscal burdens on the economy linked to food and water could have ripple effects on expenditure on adequate water supply to poor drought-stricken rural communities, where many HIV-positive individuals reside. This would inadvertently impact ART adherence in these communities, with poor individuals who rely on government provision of water, often inconsistent, being disproportionately affected.

Poor economic conditions, possibly from drought impact on livelihoods or overarching poverty, impede people’s ability to acquire even the simplest technological device (mobile phones), often used to facilitate ART adherence.4–6,70 Developing technology-based interventions—either for drought monitoring or ART adherence—heavily depends on economic viability, but in many African countries, harsh economic conditions put governments in difficult positions of making trade-offs between health interventions and economic stability, among others. Consequently, poor economic conditions and insufficient interventions interact negatively to exacerbate how drought affects the agency of individuals and communities.

The economic shocks associated with drought, especially in terms of seasonal poverty, can impact investment in human capital, including education56,98,99 and access to adequate health care. Previous ART adherence studies showed that HIV-positive individuals who had to bear the cost of treatment, including those linked to transportation to clinics, reported poor adherence.4–6,94 Various support systems,44,45,47,50 including community health workers, family members, lay health workers, and counselling groups within a drought-hit context might face challenges from drought that affect their ability to provide support for health care in general.

Comorbidities and ART regimen

Drought aggravates the physical and mental health pressures that individuals face.4–6,94,95,99,102,104 Like other environmental stressors and extreme events, including floods, drought is linked to disease outbreaks such as Rift Valley fever, Konzo disease, trachoma, diseases linked to poor hygiene and access to water (e.g., diarrhoea), and diseases carried by vectors (e.g., chikungunya outbreaks in east Africa).4–6,79 Furthermore, drought has been linked to later life disability, especially among males who also are

Livelihoods and economic conditions (total studies=76)
Catastrophic treatment costs
Drought impact mitigation
Food insecurity
Poor ART knowledge
Intervention programmes
Loss of production
Low water quality and quantity
Missing education
Poor individual and national economic conditions
Reduced livelihood diversification
Selling off assets and borrowing
Technology
Unemployment

Social support and psychobehavioural disposition (37)
Age
Alcohol and substance abuse
Fertility choice
Inadequate counselling or support groups
Depression and mental ill-health
Forgetfulness
Gender
Lack of CHWs and LHWs
Less equitable gender norms
Marital status
Non-disclosure
Risky sexual behaviour
Stigma
Traditional belief and treatment
Violence

Comorbidities and ART regimens (27)
Medication side-effects
Nurses’ and officials’ behaviour
Drought-related diseases
Comorbid conditions
Stock-out
Time on ART or fatigue

Human mobility (17)
Migration and displacement
Seeking off-farm employment
Travel away from home but not migration

The numbers shown in the bold row headings do not represent the cumulative numbers from individual factors, but the unique studies linked to each factor.

ART=antiretroviral therapy. CHWs=community health workers. LHWs=lay health workers.
at risk of both physical and mental disabilities having experienced drought as infants.206

It is established that drought imposes economic distress and stress on individuals due to losses in crop and animal production, and livelihoods.8,9,68,72 Such stressful situations, including those linked to income loss, unemployment, seeking off-farm employment, or migration, and possibly exacerbated by drought-related diseases and disabilities, might culminate in coping mechanisms that include alcohol and substance abuse, which have been implicated in domestic and intimate partner violence (IPV).21 Furthermore, migration has been linked to increased risky sexual behaviours that culminate in increased prevalence of HIV in Africa.8

Alcohol and substance abuse cases have been shown to be associated with comorbidities like diabetes, heart diseases, hepatitis, hypertension, and strokes.92–105 Treatment for multimorbidity related to these conditions, in addition to acute stress and depression, results in increased pill burden, which is associated with poor adherence4 and increased likelihood of drug–drug interactions with HIV drugs.9,41,44,48,50,52–56 This could result in possible trade-off in adherence to one treatment over another. In drought, especially among the rural poor, this trade-off might be exacerbated by the lack of sufficient food and clean water further increasing disease susceptibility. Where drought and comorbidities interact with economic stress, social vulnerabilities, medication stock-out, pill burden, or side-effects from ART regimens, this can be detrimental to adherence.15–40,104–110

Non-adherence, a negative health-seeking behaviour, is also attributable to patients’ experience of, and relationship with, health-care providers.9,41,50–56 Three studies cited the attitudes of nurses towards patients as a possible barrier to ART adherence, including not trusting health facilities to maintain confidentiality.14,42–45 This could be an additional disincentive in patients already facing increased livelihood challenges from drought, especially among men who, facing a dominant masculine normativity of breadwinner, feel ashamed, isolated, and refuse to seek help for their mental illness due to the stigma attached to mental health.21 Drought’s impact on the macro-economy might arguably also exacerbate drug stock-out of more expensive ART regimens with fewer side-effects, as countries might rely on cheaper, older regimens with more side-effects due to competing policy priorities.

Human mobility

Human mobility, with mobility defined broadly to encapsulate migratory activities as well as other forms of movements, brings together factors that can influence adherence. Many studies showed that adherence is very sensitive to mobility, as people sometimes move from where they are resident and registered with health-care facilities to new and possibly unfamiliar places.4,9,104,111 Some included studies showed that drought is a very strong driver of human migration, with people moving away from drought-affected areas or relocating their livestock to areas where they could find forage and water to prevent the livestock from dying.7,12,13,15–16 The impact of drought on adherence could be mediated through this forced mobility.

Collectively, these studies show how forced migration from drought or other forms of migration can affect adherence. For example, permanent migration (change of residence)—where people changed locations and lost touch with their primary clinics—or travels outside normal areas of residence for work (including holidays or religious activities of some sort) affected adherence among patients.9,111 Similarly, movements generally linked to seeking off-farm employment or permanent relocation out of a drought-stricken area were found in relation to the impact of drought on livelihood.42,73,127,128

Drought has been linked to violence and displacements as well as increased risky sexual behaviour and alcohol and substance abuse, which have been shown to be associated with poor adherence.9 Firstly, the scramble over water sources by herders and farmers is well recorded in countries like Kenya and Nigeria.128,129 Although the impact of drought has not been explored in depth in the Nigerian case, in Kenya, incidents of violence linked to the practice of cattle-rustling emanate from scarce water resources.130–132 In contexts where such violence leads to large-scale displacement through forced migration, the implication for HIV-positive individuals in care becomes dire. Secondly, people who migrate in search of better life opportunities out of drought-stricken areas face uncertainties in their destinations that have culminated in many risky sexual behaviours such as transactional sex and alcohol abuse, both of which are strongly associated with poor adherence.7,8

Droughts cause crop failures, production losses, livestock deaths or reduced productivity, and almost total destruction of individual and collective livelihoods to the extent that social structures (social networks) within socially knit populations become stretched.35 People move, temporally or permanently, internally or internationally, to seek out avenues to survive. We found these to include taking refuge outside the drought area, sending children to more affluent relatives (maybe outside the area), sending family members abroad,8,114,115 selling off their assets to survive, abandoning rural farms to seek off-farm employment in cities, or even, for cattle farmers, moving their herd away in search of forage in other towns or areas.114,116,122 These outcomes linked to drought, as our review found, are some of the drivers of poor adherence.

Consequently, the mitigation strategies established to manage drought impacts were individual-based, such as moving or sending children or family members to relatives or abroad, community-focused, such as food or loan support systems, and even on an institutional or policy level of intervention.114,117,119–124 An important issue
about the latter is that if, and once, drought succeeds in destabilising support systems set up individually or collectively—within societies and beyond—then the devastation on wealth and health further diminishes resilience.6,127 This is central to the next theme; support systems and the linkages to drought and adherence.

Social support and psychobehavioural disposition

Our review has shown that migration can mean the loss of important support structures, especially strongly knit (society or family) social support systems. This could be a source of anxiety and stress relating to concerns around adjustment and integration in the new environment.21 The place and role of support systems for adherence is well documented in the ART adherence literature. In fact, issues linked to support systems were described in 17 articles highlighting how marital status, non-disclosure, and forgetfulness drive poor adherence, and how caregivers’ roles, counselling groups, and community or lay health workers were crucial towards facilitating adherence.34,42,44,47–49,51,106,107,127–131 Conversely, failures in the support system, such as absence of caregivers or lack of health workers, were shown to be detrimental to ART adherence in different population groups, with younger age groups being more affected.41,44,54,129

The sensitivity of adherence to the support systems appeared to be exacerbated by gender, which is similarly impacted by drought.46,52,67,135 Indeed, where support systems are lacking, livelihood losses induce stress that leads to alcohol and substance abuse and associated risky sexual behaviour, including transactional sex, multiple sexual partners, and sex without condom use, due to weak bargaining power (for women and girls), which studies showed to hinder adherence.23,32,42,45–47,49,52,127 Very importantly, these behaviours can emanate from attempts to cope with HIV-related stigma and unpalatable experiences from health workers.14,37,42,51,60 Some of these negative coping strategies might inadvertently lead to domestic violence (including IPV), which in some cases also negatively affects adherence.60,127

Social, cultural, and religious norms that normalise such systems of stigmatisation, especially in paternalistic African societies, exacerbate this situation.28 Drought, by increasing vulnerability within affected populations, constrains (or possibly erodes) whatever safety nets and support structures that might exist.7,53,127 It imposes additional shocks in a situation where poverty already disrupts individuals’ capacity to support themselves or extended family members who might be dependent on them for sustenance.

Discussion

The individual and public health consequences of poor ART adherence, and resulting increase in HIV drug resistance, have been clearly described.115 At the individual level, these consequences include increased HIV-related morbidity and mortality, while at the public health level, there is the risk of transmission of, possibly drug-resistant, HIV to sexual partners, and a threat to national HIV treatment programmes based on the public health approach as in many African countries.111

In this systematic review, we utilised a systems approach to examine the complex linkages between drought and ART adherence, which are mediated through a web of proximate and distal factors not often considered. We found that the strongest links between drought and poor ART adherence were those clustered around livelihoods and economic conditions, with most emphasis on food insecurity, loss of production, and individual, societal, and national economic conditions in the form of unemployment and reduced overall income. These factors interact with social support systems, psychobehavioural dispositions, mobility, physical health,111 and ART regimen-related constraints in a disruptive manner, culminating in varying forms of poor adherence.21

Our systems diagram (appendix p 35) connects these factors, demonstrating adherence sensitivity to drought-related impacts. So, elements of poor adherence, such as medication side-effects, comorbidities, and migration, are shown to be largely products of constrained livelihood and economic conditions. Such conditions have also been shown to exacerbate stress, depression, stigma, alcohol and substance misuse, risky sexual behaviour, and IPV.23,136 Consequently, non-disclosure or forgetfulness, and inadequate support structures, prove detrimental to adherence. IPV was not shown to be associated with poor adherence among HIV-positive sex workers in one included study, while in another, IPV was associated with treatment interruption in women living with HIV. A higher report of commercial and forced sex was observed in drought-affected areas in Lesotho than in non-affected areas, attributable to household poverty. Hence, drought can impact adherence by resulting in increased violence towards women, regardless of involvement in sex work.7

The reviewed literature described individual, societal, and institutional strategies to mitigate economic situations and address poor adherence. Institutional and policy frameworks related to drought and environmental stress mitigation include water harvesting, collective loan systems, food aid, drought tolerant crops, off-farm employment, or alternative livelihoods, among others.43,46,48,49,51,77,81,87,106,117,121,122–124,137–144 The review also shows the disruptive effects of drought on these strategies.7,127 Adherence studies allude to policy and health system factors and their impact on adherence. Statistical evidence (and good qualitative narratives from some of these studies) of associations between health systems interventions and positive adherence outcomes among patients have been found in quantitative studies.36,145 This means that changes in medication (ART) regimens, improved policy guidelines for patients’ handling or engagement (targeted at care providers and facilities), sentiments of trust towards care providers, and the effectiveness of counselling and support groups and
community or lay health workers signalled improvements in adherence outcomes in the reviewed literature. This highlights the essential role of policy and health systems as regards these positive outcomes. Conversely, failure within these systems is detrimental to adherence.

Noteworthy, and linked to drought impact mitigation, is that poor economic conditions—a possible impact of drought—can detract from institutional frameworks’ attempts to address the challenges of livelihood losses and non-adherence. Because the effects of drought strike deep into the economy, it could raise the country’s debts and increase the opportunity costs that might truncate strides to cushion both environmental stress and adherence challenges. A strong and resilient economy is more favourable towards advancing ART adherence and limiting its negative consequences by ensuring sufficient medication supplies and allowing review and reform of medication regimens with increased adverse effects on patients, while also enhancing and supporting food supply systems and various networks of support for HIV-positive individuals.

Our review had some limitations. Prominent among them is that we did not include grey literature and studies not published in English. Although some of these pieces of literature might have been relevant for this review, especially those not published in English, we omitted them because of the challenges of translating non-English published sources. Also, due to the paucity of data linking drought and HIV ART adherence, discussions pertaining to possible experiences of adolescent girls and young women, who are disproportionately affected by HIV in the African setting, were limited to the impact of drought on HIV prevalence, while other key populations such as men who have sex with men, and climate-induced gender impacts upon men, were largely not explored in the studies included in this review.

This review, bringing together environmental and physical related factors linked to drought and various barriers to and facilitators of ART adherence in Africa, demonstrates the strength of a systems approach. The triangulation of quantitative, qualitative, and mixed-methods studies enhanced the ability of this study to elucidate complex connections between drought and adherence that were not immediately apparent. This is crucial for future studies on the interaction between drought and HIV-related treatment and adherence challenges.

Gaps in literature: towards further research

One major finding from this systematic review is the lack of studies directly investigating the relationship between drought and ART adherence. The systems approach adopted by our review substantially extends the literature in this field by exploring the non-linear and complex pathways between drought and HIV treatment adherence.

The cross-sectional nature of the two studies that examined the relationship between drought and HIV prevalence meant that the association could not be considered causal, as acknowledged by the authors. Furthermore, HIV prevalence is a weak outcome variable because it is sensitive to the mortality rate and HIV incidence in the population, which in turn are affected by factors other than ART adherence per se. Longitudinal studies investigating the impact of drought on HIV acquisition, and mediators such as population HIV viral load, could therefore address the noted shortcomings.

Furthermore, mental health challenges (acute stress, anxiety, depression, trauma), as well as stigma, are crucial to understanding the drought–adherence nexus, since these challenges can exacerbate economic hardship and vice versa. Surprisingly, only one article focused on the impact of drought on mental health in Africa, even though stress, broadly speaking, can provide a convergence point in grasping drought’s impact on ART adherence. The dearth of information in this area highlights the fact that mental health is under-investigated in the African setting, especially in the context of medical pluralism, in which mental health conditions are often attributed to spiritual or ancestral issues. This is an area that warrants further investigation. There was also a paucity of studies investigating the impact of drought on key populations, and the systems approach we have used to describe the drought–adherence nexus might not apply to these groups, thereby highlighting future areas of investigation. Studies on appropriate mitigation strategies and economic support systems for less resilient economies with a high burden of HIV and individual poverty with limited ability to cushion the impact of drought are urgently required.

Contributors

CCI and DK conceptualised and secured funding for the study. KSO, CCI, DK, and SA-K conceptualised and designed the study methodology and conducted the initial investigation, data curation, formal analysis, and visualisation. KSO and CCI wrote the first draft with input from DK and SA-K. KSO and SN worked on data extraction and visualisation, study administration, and editing. KSO, CCI, DK, SA-K, KB, FT, NN, JS, WH, and KH contributed to formal analysis, writing, review, and editing the drafts of the manuscript. All authors approved the final version of the manuscript.

Declaration of interests

CCI and DK received grant funding paid to their institution for this work from the Sussex Sustainability Research Programme (SSRP), University of Sussex. The SSRP grant provided salary support for KSO and SN and travel support for SA-K to visit the project sites. CCI received conference attendance support from Gilead Sciences unrelated to the submitted work. All other authors declare no competing interests.

Acknowledgments

The authors are grateful to the social science department at the Africa Health Research Institute (AHRI) for their support in the development of this piece of research. The research described in this paper was funded by the SSRP, with grant number SSRP2007-009. The AHRI research was funded in whole or in part by Wellcome (Wellcome Strategic Core award: grant number 204433/Z/16/A).
2 Watts N, Adger WN, Ayeb-Karlsson S, et al. The Lancet Countdown: tracking progress on health and climate change. Lancet 2017; 389: 1521–64.

3 Stanke C, Kerac M, Prud’homme C, Medlock J, Murray V. Health effects of drought: a systematic review of the evidence. PLoS Curr 2013; 5: S. 5.

4 Anthopoulos G, Dökkruüger B, Borgemeister C, Kistemann T. Health risk perceptions and local knowledge of water-related infectious disease exposure among Kenyan wetland communities. Int J Hyg Environ Health 2019; 222: 34–48.

5 Anyamba A, Small JL, Britich SC, et al. Recent weather extremes and impacts on agricultural production and vector-borne disease outbreak patterns. PLoS One 2014; 9: e92538.

6 Anyamba A, Linthicum KJ, Small JL, et al. Climate teleconnections and recent patterns of human and animal disease outbreaks. PLoS Negl Trop Dis 2012; 6: e1465.

7 Low AJ, Frederis K, McCracken S, et al. Association between severe drought and HIV prevention and care behaviors in Lesotho: a population-based survey 2016-2017. PLoS Med 2019; 16: e1002727.

8 Burke M, Geng E, Jones K. Income shocks and HIV in Africa. Econ J (London) 2015; 125: S157–89.

9 Clover J. Food security in sub-Saharan Africa. Afr Secur Rev 2003; 12: 5–15.

10 Tichagwa W. The effects of drought on the condition of women. Focus Genf 1994; 2: 20–25.

11 Braun YA. Drought. In: Stange MZ, Oyster CK, Sloan JE, Eds. Encyclopedia of women in today’s world, vol 1. Washington, DC: Sage, 2011: 427–28.

12 Zeufack AG, Calderon C, Kubota M, Kornman Y, Cantu Canales C, Kabundi AN. Africa’s Pulse, No. 24, October 2021: an analysis of issues shaping Africa’s economic future. Washington, DC: World Bank, 2021.

13 UNECA. Sustainable Development Goals for the Southern Africa subregion: summary report. Addis Ababa: United Nations Economic Commission for Africa, 2013.

14 Austin KF. Noble MD, Berndt VK. Drying climates and gendered suffering: links between drought, food insecurity, and women’s HIV in less-developed countries. Soc Indic Res 2020; 154: 1–22.

15 Arku FS, Arku C. I cannot drink water on an empty stomach: a gender perspective on living with drought. Gend Dev 2010; 18: 115–24.

16 Rao N, Lawson ET, Radilozameng WN, Solomon D, Angula MN. Gendered vulnerabilities to climate change: insights from the semi-arid regions of Africa and Asia. Clim Dev 2019; 11: 14–26.

17 Florida Ngu F, Kelmam I, Chambers J, Ayeb-Karlsson S. Correlating heatwaves and relative humidity with suicide (fatal intentional self-harm). Sci Rep 2021; 11: 22175.

18 Ayeb-Karlsson S. ‘I do not like her going to the shelter’: stories on gendered disaster (im)mobility decision-making and wellbeing from an urban informal settlement in Bangalore. Int J Disaster Risk Reduct 2020; 50: 101904.

19 Hayward G, Ayeb-Karlsson S. ‘Seeing with Empty Eyes’: a systems approach to understand climate change and mental health in Bangladesh. Clim Change 2021; 165: 29.

20 Ayeb-Karlsson S. ‘When we were children we had dreams, then we came to Dhaka to survive’: urban stories connecting loss of land to wellbeing in a population-based survey 2016-2017. Afr J Prim Health Care Fam Med 2019; 11: 1348–59.

21 Ayeb-Karlsson S, Knivent D, Cannon T. Trapped in the prison of mind: notions of climate-induced (im)mobility decision-making and wellbeing from an urban informal settlement in Bangladesh. Palgrave Commun 2020; 6: 62.

22 UNAIDS. Global report: UNAIDS report on the global AIDS epidemic 2010. Geneva: Joint United Nations Programme on HIV/AIDS, 2010. https://www.unaids.org/globalreport/documents/20101213_GlobalReport_full_en.pdf (accessed Sept 22, 2020).

23 Vins H, Bell J, Saha S, Hess J. The mental health outcomes of drought: a systematic review and causal process diagram. Int J Environ Res Public Health 2015; 12: 13251–75.

24 Berry HL, Waite TD, Dear KBG, Capon AG, Murray V. The case for systems thinking about climate change and mental health. Nat Clim Chang 2018; 8: 282–90.

25 Peters DH. The application of systems thinking in health: why use systems thinking? Health Res Policy Syst 2014; 12: 51.

26 MoH Uganda. National antiretroviral treatment care guidelines for adults and children. Kampala: Uganda Ministry of Health, 2003.

27 Critical Appraisal Skills Programme (CASP). CASP cohort study checklist 2018. https://casp-uk.net/wp-content/uploads/2018/03/CASP-Cohort-Study-Checklist_2018fillable_form.pdf (accessed June 20, 2021).

28 Katz IT, Rye AE, Onuegbui AG, et al. Impact of HIV-related stigma on treatment adherence: systematic review and meta-synthesis. J Int AIDS Soc 2013; 16 (suppl 2): e1860.

29 Elder JP, Lyle L, Sallis JF, et al. A description of the social-ecological framework used in the trial of activity for adolescent girls (TAAG). Health Educ Res 2007; 22: 155–63.

30 Mukumbang FC, Mwale JC, van Wyk B. Conceptualising the factors affecting retention in care of patients on antiretroviral treatment in Kabwe district, Zambia, using the ecological framework. AIDS Rev Treat 2017; 153: S363–62.

31 Stangl AL, Lloyd JK, Brady LM, Holland CE, Baral S. A systematic review of interventions to reduce HIV-related stigma and discrimination from 2002 to 2013: how far have we come? J Int AIDS Soc 2013; 16 (suppl 2): 18714.

32 Haberer JE, Bwanu BM, Orrell C, et al. ART adherence and viral suppression are high among most non-pregnant individuals with early-stage, asymptomatic HIV infection: an observational study from Uganda and South Africa. J Int AIDS Soc 2019; 22: e25322.

33 Masa R, Chowia G, Ntirenda V. Barriers and facilitators of antiretroviral therapy adherence in rural Eastern province, Zambia: the role of household economic status. Afr J AIDS Res 2017; 16: 91–99.

34 Morojele NK, Kekewatele CT, Nkosi S. Associations between alcohol use, other psychosocial factors, structural factors and antiretroviral therapy (ART) adherence among South African ART recipients. AIDS Behav 2014; 18: 519–24.

35 Ramadhami HO, Thielman NM, Landman KZ, et al. Predictors of incomplete adherence, virologic failure, and antiretroviral drug resistance among HIV-infected adults receiving antiretroviral therapy in Tanzania. Clin Infect Dis 2007; 45: 1492–98.

36 Weiser SD, Tsai AC, Gupta R, et al. Food insecurity is associated with morbidity and patterns of healthcare utilization among HIV-infected individuals in a resource-poor setting. AIDS 2012; 26: 67–75.

37 Weiser SD, Palar K, Frongillo EA, et al. Longitudinal assessment of associations between food insecurity, antiretroviral adherence and HIV treatment outcomes in rural Uganda. AIDS 2014; 28: 115–20.

38 Weiser SD, Hatcher AM, Hufstedler LL, et al. Changes in health and antiretroviral adherence among HIV-infected adults in Kenya: quantitative longitudinal findings from a livelihood intervention. AIDS Behav 2017; 21: 415–27.

39 Murray LK, Semrauk K, McCurley E, et al. Barriers to acceptance and adherence of antiretroviral therapy in urban Zambian women: a qualitative study. AIDS Care 2009; 21: 78–86.

40 Elafros MA, Birbeck GL, Gardner JC, et al. Patient-reported adverse effects associated with combination antiretroviral therapy and coadministered enzyme-inducing antiepileptic drugs. Am J Trop Med Hyg 2017; 96: 1505–11.

41 Denison JA, Koole O, Tsui S, et al. Incomplete adherence among treatment-experienced adults on antiretroviral therapy in Tanzania, Uganda and Zambia. AIDS 2015; 29: 361–71.

42 Ehlers VJ, Tshisuuya ET. Adherence to antiretroviral treatment by adults in a rural area of Botswana. Curationis 2015; 38: 38.

43 Ehul B, Basinga P, Nuwagaba-Birirbwohua H, et al. High levels of adherence and viral suppression in a nationally representative sample of HIV-infected adults on antiretroviral therapy for 6, 12 and 18 months in Rwanda. PLoS One 2013; 8: e53586.

44 Filimão DBC, Moon TD, Senise JF, Diaz RS, Sidat M, Castelo A. Individual factors associated with time to non-adherence to ART pick-up within HIV care and treatment services in three health facilities of Zambezia Province, Mozambique. PLoS One 2019; 14: e0213804.

45 Kip E, Ehlers VJ, van der Wal DM. Patients’ adherence to antiretroviral therapy in Botswana. J Nutr Edu Sch 2009; 41: 149–57.

46 Eyassu MA, Molitha TM, Mhambo-Kekana NP. Adherence to antiretroviral therapy among HIV and AIDS patients at the Kwa-Thema clinic in Gauteng Province, South Africa. Afr J Prim Health Care Fam Med 2016; 8: e1–7.
47 Adeniyi OV, Ajayi AI, Ter Goon D, Owolabi EO, Eboh A, Lambert J. Factors affecting adherence to antiretroviral therapy among pregnant women in the Eastern Cape, South Africa. BMC Infect Dis 2018; 18: 175.

48 Mayanja BN, Kahunza E, Masira B, Luhega R, Kaleebu P, Seeley J. Personal barriers to antiretroviral therapy adherence: case studies from a rural Uganda prospective clinical cohort. Afr Health Sci 2013; 13: 311–19.

49 Aspeling HE, van Wyk NC. Factors associated with adherence to antiretroviral therapy for the treatment of HIV-infected women in a rural care facility. Int J Nurs Pract 2008; 14: 3–10.

50 Lobell DB, Banziger M, Magorokosho C, Vivek B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat Clim Chang 2011; 1: 42–45.

51 Lunde TM, Lindtjørn B. Cattle and climate in Africa: how climate variability has influenced national cattle holdings from 1961-2008. Pern 2013; 1: e55.

52 Bartzke GS, Ogutu JO, Mukhopadhyay S, Muki D, Dublin HT, Piepho HP. Rainfall trends and variation in the Maasai Mara ecosystem and their implications for animal population and biodiversity dynamics. PloS One 2013; 18: e0202814.

53 Angassa A, Ola G. Relating long-term rainfall variability to cattle population dynamics in communal rangelands and a government ranch in southern Ethiopia. Agric Syst 2007; 94: 715–23.

54 Call M, Gray C, Jagger P. Smallholder responses to climate change in urban core facilities. Int J Agric Sustain 2013; 91: 208–20.

55 Hassan AG, Fullen MA, Oloke D. Problems of drought and its management in Yobe State, Nigeria. Weather Clim Extrem 2019; 23: 23.

56 Hyland M, Ruso J. Water as destiny - the long-term impacts of drought in sub-Saharan Africa. World Dev 2019; 115: 33–44.

57 Kilimani N, van Heerden J, Bohlmann H, Roos L. Economy-wide impact of drought induced productivity losses. Disaster Prev Manag 2018; 27: 616–46.

58 Yirga CGB, Stringer LC. Spatio-temporal analyses of impacts of multiple climatic hazards in a savannah ecosystem of Ghana. Clim Risk Manage 2016; 14: 11–26.

59 Mare F, Bahta YT, Van Niekerk W. The impact of drought on commercial livestock farmers in South Africa. Dev Pract 2018; 28: 88–98.

60 Shi WJ, Tao FL. Vulnerability of African maize yield to climate change and variability during 1961-2010. Food Secur 2014; 6: 471–81.

61 Yergooh GT. Climate and food production: understanding vulnerability from past trends in Africa’s Sudan-Sahel. Sustainability (Basel) 2013; 5: 52–71.

62 Clarke CL, Shackleton SE, Powell M. Climate change perceptions, drought responses and views on carbon farming amongst commercial livestock and game farmers in the semi-arid Great Fish River Valley, Eastern Cape province, South Africa. Afr J Range Forage Sci 2012; 29: 13–23.

63 Codque SNA, Owusu G. Climate change/variability and food systems: evidence from the Afiram Plains, Ghana. Reg Environ Change 2014; 11: 753–65.

64 Cooper SJ, Wheeler T. Rural household vulnerability to climate risk in Uganda. Reg Environ Change 2017; 17: 649–63.

65 Derbile KE, Fille DJM, Dongragla A. The double tragedy of agriculture vulnerability to climate variability in Africa: how vulnerable is smallholder agriculture to rainfall variability in rural Uganda. World Dev 2019; 115: 33–44.

66 Mthembu NN, Zwane EM. The adaptive capacity of smallholder mixed-farming systems to the impact of climate change: the case of KwaZulu-Natal in South Africa. JAMA 2017; 9: 469.

67 Terry AK. The impact of the 2015-16 El Nino drought on the irrigated home gardens of the Komati downstream development project, Swaziland. S Afr Geogr J 2020; 102: 41–58.

68 Quinn CH, Zieroggel G, Taylor A, Takana T, Thomalla F. Coping with multiple stresses in rural South Africa. Ecol Soc 2011; 16: 16.

69 Schmidt M, Pearson O. Pastoral livelihoods under pressure: ecological, political and socioeconomic transitions in Afr (Ethiopia). J Arid Environ 2016; 124: 22–30.

70 Brown AL, Cavagnaro TR, Gleadow R, Miller RE. Interactive effects of temperature and drought on cassava growth and toxicity: implications for food security? Glob Change Biol 2016; 22: 3461–73.

71 Nawrotzki RJ, Schlak AM, Kugler TA. Climate, migration, and the local food security context: introducing Terra Populus. Popul Environ 2016; 38: 364–84.

72 Hennink M, McFarland DA. A delicate web: household changes in health behaviour enabled by microcredit in Burkina Faso. Glob Public Health 2013; 8: 144–58.

73 Crow C, Meeks R, Hunu K, Yu W. Hydroclimate risk to economic growth in sub-Saharan Africa. Clim Change 2011; 106: 621–47.

74 Dile YT, Karlberg L, Daggupati P, Srinivasan R, Wiberg D, Rockstrom J. Assessing the implications of water harvesting intensification on upstream-downstream ecosystem services: a case study in the Lake Tana basin. Sci Total Environ 2016; 542: 22–35.

75 Gao JF, Mills BF. Weather shocks, coping strategies, and consumption dynamics in rural Ethiopia. World Dev 2018; 101: 268–83.

76 Twongirwe R, Mbitumukiza D, Barasa B, et al. Perceived effects of drought on household food security in south-western Uganda: coping responses and determinants. Weather Clim Extrem 2019; 24: 24.

77 Cafer AM. Khat: Adaptive community resilience strategy or short-sighted money maker? Rural Sociol 2018; 83: 772–98.

78 Nnadi OI, Liwenga ET, Lyimo JG, Madukuw MC. Impacts of variability and change in rainfall on gender of farmers in Anamba, South East Nigeria. Heliyon 2019; 5: e02085.

79 Speranza CI, Kiterne B, Wiesmann U. Droughts and famines: the underlying factors and the causal links among agro-pastoral households in semi-arid Makueni district, Kenya. Glob Environ Change 2008; 18: 220–33.

80 Gwatiris R, Manderson L. Food insecurity and HIV/AIDS in low-income households in urban Zimbabwe. Hum Organ 2009; 68: 103–12.

81 Lawson DS, Kasire J. How the extreme poor cope with crises: understanding the role of assets and consumption. Int Dev 2013; 23: 1126–49.

82 Davies S. Do shocks have a persistent impact on consumption? The case of rural Malawi. Prog Dev Stud. 2010; 10: 75–79.

83 Bauaidin MA, Vogel C, Nortje K, Naik M. Living with drought in South Africa: lessons learnt from the recent El Nino drought period. Int J Disaster Risk Reduct 2017; 23: 128–37.

84 Semva SK, Orrell C, Mmbaga ET, Semva HH, Bartlett JA, Boule AA. Predictors of non-adherence to antiretroviral therapy among HIV infected patients in northern Tanzania. PLoS One 2017; 12: e0189460.

85 Silva JA, Matyas CJ. Relating rainfall patterns to agricultural income: implications for rural development in Mozambique. Weather Clim Soc 2014; 6: 218–37.

86 Hlaha S, Hill TR. Responses to climate variability in urban poor communities in Pietermaritzburg, KwaZulu-Natal, South Africa. SAGE Open 2018; 8: 8.

87 Speranza CI. Drought coping and adaptation strategies: understanding adaptations to climate change in agro-pastoral livestock production in Makueni District, Kenya. Eur J Dev Res 2010; 22: 633–42.

88 Coppock DL, Desta S. Collective action, innovation, and wealth generation among settled pastoral women in northern Kenya. Rangeland Ecol Manag 2013; 66: 95–105.

89 Bahta YT, Jordaen A, Muyambo F. Communal farmers’ perception of drought in South Africa: policy implication for drought risk reduction. Int J Disaster Risk Reduct 2016; 20: 39–50.

90 Ngorima M, Popowene R, Kilewe C, Biberfeld G, Ekstrom AM. Reasons for poor adherence to antiretroviral therapy postnatally in HIV-infected women treated for their own health; experiences from the Mitra Plus study in Tanzania. BMC Public Health 2013; 13: 450.

91 El-Khatib Z, Ekstrom AM, Coovadia A, et al. Adherence and virologic suppression during the first 24 weeks on antiretroviral therapy among women in Johannesburg, South Africa: a prospective cohort study. BMC Public Health 2011; 11: 88.

92 Mussa FEF, Zhou Y, Maskey S, Masih I, Uhlenbrook S. Groundwater as an emergency source for drought mitigation in the Crocodile River catchment, South Africa. Hydrof Earth Sys Sci 2015; 19: 1093–106.

93 Ferrer N, Ariza J, Lane M, Olagota D, Odida J, Custodio E. Groundwater hydrodynamics of an Eastern Africa coastal aquifer, including La Niña 2016-17 drought. Sci Total Environ 2019; 661: 575–97.
4.2018; the displacement of people in East Africa. Palgrave Commun 23:23–2018; J Acquire Immune Defic Syndr 47:231–240.

23. Evidence for the climate inhibitor mechanism and the agricultural disruption-results from the ANRS-12288 EVOLCam survey. Eur J Clin Chang Manag 2018; 4:34–41.

23. Antwi-Opoku P. Stringer LC. Douglall AJ. Living adaptations to climate variability: insights from farming households in Ghana. Reg Env Change 2014; 14:305–315.

23. Unks RR, King RG, Nelson DR, Wachira NP, German LA. Constraints, multiple stressors, and stratified adaptation: pastoralist livelihood vulnerability in a semi-arid wildlife conservation context in Central Kenya. Glob Environ Change 2019; 54:124–34.

23. Brittain K, Remien RH, Mellsca CA, et al. Determinants of suboptimal adherence and elevated HIV viral load in pregnant women already on antiretroviral therapy when entering antenatal care in Cape Town, South Africa. AIDS Care 2018; 30:1517–23.

23. Igumbor JO, Scheepers EA, Brahim M, Grimmel AL. An evaluation of the impact of a community-based adherence support programme on ART outcomes in selected government HIV treatment sites in South Africa. AIDS Care 2011; 23:231–36.

23. Wilson KS, Wanjie G, Yihui K, et al. A prospective study of intimate partner violence as a risk factor for detectable plasma viral load in HIV-positive women engaged in transactional sex in Mombasa, Kenya. AIDS Behav 2016; 20:2065–75.

23. Avong YK, van Wyk B, Njil J, et al. Adherence to anti-retroviral therapy in north central Nigeria. Curr HIV Res 2013; 13:2678–87.

23. Grimsrud A, Lesosky M, Kalemos C, Bekker LG, Myer L. Implementation and operational research: community-based adherence clubs for the management of stable antiretroviral therapy patients in Cape Town, South Africa: a cohort study. J Acquir Immune Defic Syndr 2016; 72:e16–23.

23. Luque-Fernandez MA, Van Cortein G, Gnesaree E, et al. Effectiveness of patient adherence groups as a model of care for stable patients on antiretroviral therapy in Khuyelitsha, Cape Town, South Africa. PLoS One 2013; 8:e65888.

23. Nakamanya S, Mayanja BN, Mukumura R, Bukunya D, Seeley J. Are treatment supporters relevant in long-term antiretroviral Therapy (ART) adherence? Experiences from a long-term ART cohort in Uganda. Glob Public Health 2019; 14:469–80.

23. Marconi VC, Wu B, Hampton J, et al. Early warning indicators for first-line virologic failure independent of adherence measures in a South African urban clinic. AIDS Patient Care STDs 2013; 27:657–68.

23. Nachega JB, Marconi VC, van Zyl GU, et al. HIV treatment adherence, drug resistance, virologic failure: evolving concepts. Infect Disord Drug Targets 2011; 11:167–74.

23. WHO. Global action plan on HIV drug resistance 2017–2021: 2018 progress report. July 2018: executive summary. Geneva: World Health Organization, 2018.

23. Bakshi B, Nawrotzki RJ, Donato JR, Leis LS. Exploring the link between climate variability and mortality in Sub-Saharan Africa. Int J Environ Sustain Dev 2019; 18:206–17.

23. Hodgson I, Plummer ML, Konopka SN, et al. A systematic review of individual and contextual factors affecting ART initiation, adherence, and retention for HIV-infected pregnant and postpartum women. PLoS One 2014; 9:e91134.

23. Nalley L, Dixon B, Chaminuka P, Naledzani Z, Coale MJ. The role of public wheat breeding in reducing food insecurity in South Africa. PLoS One 2018; 13:e0209538.
138 Fisher M, Abate T, Lunduka RW, Asnake W, Alemayehu Y, Madulu RB. Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: determinants of adoption in eastern and southern Africa. *Clim Change* 2015; 133: 283–99.

139 Makate C, Makate M, Mango N, Siziba S. Increasing resilience of smallholder farmers to climate change through multiple adoption of proven climate-smart agriculture innovations. Lessons from Southern Africa. *J Environ Manage* 2019; 231: 858–68.

140 Asare-Kyei D, Renaud FG, Kloos J, Walz Y, Rhyner J. Development and validation of risk profiles of West African rural communities facing multiple natural hazards. *PLoS One* 2017; 12: e017921.

141 Adgo E, Tesfome A, Mati B. Impacts of long-term soil and water conservation on agricultural productivity: the case of Anjenie watershed, Ethiopia. *Agric Water Manage* 2013; 117: 55–61.

142 Fisher M, Carr ER. The influence of gendered roles and responsibilities on the adoption of technologies that mitigate drought risk: the case of drought-tolerant maize seed in eastern Uganda. *Glob Environ Change* 2015; 35: 82–92.

143 Mavhura E, Manatsa D, Mushore T. Adaptation to drought in arid and semi-arid environments: case of the Zambezi Valley, Zimbabwe. *Jamba* 2015; 7: 144.

144 Nonvide GMA, Sarpong DB, Kwandzo GTM, Anim-Somuah H, Gero FA. Farmers’ perceptions of irrigation and constraints on rice production in Benin: a stakeholder-consultation approach. *Int J Water Resour Dev* 2018; 34: 1001–21.

145 UNAIDS. The gap report. Geneva: UN Joint Programme on HIV/AIDS, 2014. https://www.unaids.org/sites/default/files/media_asset/UNAIDS_Gap_report_en.pdf (accessed Nov 25, 2021).

146 UNAIDS. Global AIDS update 2021. Confronting inequalities: lessons for pandemic responses from 40 years of AIDS. Geneva: UN Joint Programme on HIV/AIDS, 2021. https://www.unaids.org/sites/default/files/media_asset/2021-global-aids-update_en.pdf (accessed Nov 25, 2021).

147 Adejumo O, Oladeji B, Akpa O, et al. Psychiatric disorders and adherence to antiretroviral therapy among a population of HIV-infected adults in Nigeria. *Int J STD AIDS* 2016; 27: 938–49.