Host factors do not influence the colonization or infection by fluconazole resistant Candida species in hospitalized patients

Yun-Liang Yang1, Ming-Fang Cheng2,3, Ya-Wen Chang4, Tzuu-Guang Young5, Hsin Chi6, Sai Cheong Lee7, Bruno Man-Hon Cheung8, Fan-Chen Tseng4, Tun-Chieh Chen9, Yu-Huai Ho10, Zhi-Yuan Shi11, Chung-Huang Hubert Chan12, Ju-Yu Lin4 and Hsiu-Jung Lo*4

Address: 1Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China, 2Department of Pediatrics, Veterans General Hospital-Kaohsiung, Kaohsiung, Taiwan, Republic of China, 3National Yang-Ming University, Taipei, Taiwan, Republic of China, 4Division of Clinical Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China, 5Section of Infection Diseases, Taipei Municipal Zen Ai Hospital, Taipei, Taiwan, Republic of China, 6Section of Infection Diseases, Mackay Memorial Hospital Taichung Branch, Taichung, Taiwan, Republic of China, 7Section of Infectious Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan, Republic of China, 8Section of Infection Diseases, Tainan Municipal Hospital, Tainan, Taiwan, Republic of China, 9Section of Infection Diseases, Kaohsiung Medical College Chung-Ho Memorial Hospital, Kaohsiung, Taiwan, Republic of China, 10Section of Infection Diseases, Buddhist, Tzu-Chi General Hospital, Hualien, Taiwan, Republic of China, 11Section of Infection Diseases, Veterans General Hospital-Taichung, Taipei, Taiwan, Republic of China and 12Department of Hematology and Oncology, Chang-Gung Memorial Hospital-Chiayi, Chiayi, Taiwan, Republic of China

Email: Yun-Liang Yang - yyang@mail.nctu.edu.tw; Ming-Fang Cheng - mfcheng@vghks.gov.tw; Ya-Wen Chang - debbychang@nhri.org.tw; Tzuu-Guang Young - dal07@tpech.gov.tw; Hsin Chi - chi.4531@ms1.mnh.org.tw; Sai Cheong Lee - leesc@url.com.tw; Bruno Man-Hon Cheung - mhcheung2002@yahoo.com.tw; Fan-Chen Tseng - 950119@nhri.org.tw; Tun-Chieh Chen - 880305@ms.kmuh.org.tw; Yu-Huai Ho - hoyuhuai@yahoo.com.tw; Zhi-Yuan Shi - a4531@ttms.mnh.org.tw; Chung-Huang Hubert Chan - hubertchan@nhri.org.tw; Ju-Yu Lin - m508092009@tmu.edu.tw; Hsiu-Jung Lo* - hjlo@nhri.org.tw

* Corresponding author

Abstract

Nosocomial yeast infections have significantly increased during the past two decades in industrialized countries, including Taiwan. This has been associated with the emergence of resistance to fluconazole and other antifungal drugs. The medical records of 88 patients, colonized or infected with Candida species, from nine of the 22 hospitals that provided clinical isolates to the Taiwan Surveillance of Antimicrobial Resistance of Yeasts (TSARY) program in 1999 were reviewed. A total of 35 patients contributed fluconazole resistant strains [minimum inhibitory concentrations (MICs) ≥ 64 mg/l], while the remaining 53 patients contributed susceptible ones (MICs < 8 mg/l). Fluconazole resistance was more frequent among isolates of Candida tropicalis (46.5%) than either C. albicans (36.8%) or C. glabrata (30.8%). There was no significant difference in demographic characteristics or underlying diseases among patients contributing strains different in drug susceptibility.

Background

Nosocomial infections caused by yeasts have increased significantly in the past two decades in Taiwan as well as other industrialized countries [1-4]. Infections by Candida species are important causes of morbidity and mortality in immunocompromised patients. The increase in the prev-
alence of fungal infections is closely associated with invasive medical procedures and the intense use of antibiotics in high-risk patients [5,6]. Resistance to antifungals has emerged in association with the increased use of these drugs [7-9].

The Taiwan Surveillance of Antimicrobial Resistance of Yeasts (TSARY) program was first implemented by the National Health Research Institutes (NHRI) in 1999 to prospectively assess the magnitude of the problem of yeast infection and drug resistance. Clinical isolates of yeasts were obtained from 22 geographically representative hospitals in Taiwan. Emergence of fluconazole resistant *Candida* species was documented in 1999 shortly after the surveillance program was instituted [9-11]. The survey revealed that 8.4% of the collected 632 clinical isolates were resistant [minimum inhibitory concentration (MIC) \(^{\geq} 64\) mg/l] to fluconazole [12]. Furthermore, there is an association between the rate of fluconazole resistance and the number of non-albicans *Candida* species collected from different regions and hospital types [13,14]. This study was a follow-up, designed to determine whether intrinsic host factors of patients might influence the frequency of colonization or infection by fluconazole resistant strains.

Methods

Subjects

Yeast isolates were collected as described [15] from the 22 hospitals participating in TSARY in 1999. In principle, only one isolate was accepted from each patient. The number of clinical isolates with MICs \(^{\geq} 64\) mg/l contributed from each hospital participating in TSARY program in 1999 ranging from none to ten [13,16]. Therefore, we chose hospitals contributed at least three clinical isolates with MICs \(^{\geq} 64\) mg/l for this study. In total, there were 40 isolates with MICs \(^{\geq} 64\) mg/l from nine chosen hospitals. However, medical information of five patients was not available. Thus, we have reviewed all 35 available ones. Patients with resistant strains were matched at a ratio of about 1:2 with those with susceptible strains according to the body sites from which the yeasts were isolated in the same hospital. Each hospital contributed from 7 to 21 patients into the study. Clinical data were recorded on standardized forms and analyzed according to demographic characteristics, hospital unit, duration of stay, predisposing factors, antimicrobial therapy, underlying illnesses, and laboratory findings. The definition of diabetes, hypertension, pulmonary diseases, bacterial infection, antifungal, antibiotics, antituberculous agents, dialysis, catheter insertion, and mobility affected were recorded when the *Candida* species were isolated. The outcome (mortality) was documented within three months after those strains were isolated. The protocol was approved by Institutional Review Board (IRB) of the National Health Research Institutes.

Susceptibility tests

The MICs to fluconazole were determined according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI) for *in vitro* antifungal susceptibility testing [12]. The RPMI medium 1640 (31800-022) provided by Gibco BRL was used for the testing. Strains from American Type Culture Collection including *Candida albicans* (ATCC 90028), *Candida krusei* (ATCC 6258), and *Candida parapsilosis* (ATCC 22019) were used as the standard controls. The final growth of each isolate was measured by Biotrak II plate reader (Amershan Biosciences, Biochrom Ltd., Cambridge England) after incubated at 35°C for 48 hours. The MICs of fluconazole were defined as the minimum inhibitory concentrations of drugs capable of reducing the turbidity of cells to greater than 50%. Isolates with MIC \(^{\geq} 64\) mg/l were considered to be resistant, whereas those with MIC % 8 mg/l were susceptible. Isolates with MICs falling in between (16 – 32 mg/l) were susceptible-dose dependent.

Statistical analysis

The chi-square test or Fisher’s exact test were used for categorical variables. The Student T-test was used for continuous variables. Logistic regression was used to assess the independent effect of factors that were significant in the univariate analysis or were important to the association of interest. A probability (P) < 0.05 was considered significant.

Results

A total of 35 patients from nine hospitals were selected and each one of them has contributed one clinical fluconazole resistant isolate. As a comparison, we have also reviewed 53 patients contributing susceptible isolates (with MICs % 8 mg/l) from the same nine hospitals. Of the 88 isolates, there were three *Candida* species and their distribution in relation to the susceptibility to fluconazole is shown in Table 1. It shows that fluconazole resistance was found to be more frequent in *C. tropicalis* than either *C. albicans* or *C. glabrata*. The distribution of body sites from which the yeasts were isolated is shown in Table 2. Most isolates were from urine (52.3%) and sputum (23.9%) and candidemia was diagnosed in six patients (6.8%). Both *C. glabrata* and *C. tropicalis* were isolated more frequently from the urine than *C. albicans* (61.5% vs. 60.5% vs. 21.0%, respectively), whereas *C. albicans* was dominant in sputum than *C. glabrata* or *C. tropicalis* (47.4% vs. 15.4% vs. 18.6%, respectively).

The analysis of fluconazole susceptibility according to characteristics of different patients is shown in Table 3. There was no significant difference correlated to host fac-
tors such as different demographic characteristics and underlying diseases other than the possibility of pulmonary tuberculosis. The observation that patients with pulmonary diseases, particularly those receiving antituberculous agents were found to be more frequently colonized or infected with fluconazole resistant yeasts requires further investigation. Although patients' ages did not significantly differ between two groups, we still adjust its effect in the multivariate analysis because age might influence hosts' underlying conditions the acquisition of infections. In a logistic regression, which included the presence of pulmonary diseases (yes/no), use of antituberculous agents (yes/no) and age (continuous in years), the former two showed some associations but age did not ($p = 0.23$, details no shown). Use of antituberculous agents was associated with an odds ratio (OR) = 4.2, $p = 0.05$ for the resistance to the fluconazole, while the presence of pulmonary diseases was with OR = 2.7, $p = 0.1$.

Discussion
It is well established that mechanically supported or immunocompromised patients with invasive devices are at increasing risk of colonization and infection with pathogenic yeasts [5,17]. The findings of this study further suggest that there is no difference in frequency between fluconazole resistant and susceptible Candida species to colonize or infect individual patients according to the host factors analyzed. Hence, fluconazole resistant strains do not appear to have more advantage than susceptible ones in these patients. Many nosocomial Candida infections are endogenously acquired [18-21]. It is much more likely that the increase of fluconazole resistant yeasts has resulted from the intense use of fluconazole in response to increasing prevalence of nosocomial yeast infections.

In the previous study, the resistant rate was found to associate with regions and hospital types [13]. In this study, we set out to investigate whether the hosts per se was an influencing factor, since regional difference may be a reflection of host characters. As it turned out, patients receiving antituberculous agents had higher occurrence to be colonized or infected with fluconazole resistant strains. These 10 ten patients receiving antituberculous agents were not associated with either regions or types of hospital.

Among HIV-infected patients, treatment with antituberculous drugs, previous history of tuberculosis, and fluconazole exposure are the risks for development of oropharyngeal colonization or infections by fluconazole-resistant Candida strains [22]. Noteworthily, findings from this study indicate that non-HIV infected patients receiving antituberculous agents had higher occurrence to be colonized or infected with fluconazole resistant strains. Interestingly, a link between mycobacterial infections and oropharyngeal candidiasis in HIV-infected patients has been reported. The prevalence of Candida species colonization or infections in AIDS patients in the tuberculosis

Table 1: Distribution of fluconazole susceptibilities among Candida species isolated from patients in the nine hospitals

MIC (mg/l)	C. albicans	C. glabrata	C. tropicalis	Total
$^\text{> 64}$	7	8	20	35
$^\text{< 8}$	12	18	43	88
Total	19	26	100	100

MIC, minimum inhibitory concentration.

Table 2: Distribution of body sites of Candida species with different fluconazole susceptibilities

Source	MICs $^\text{> 64}$ mg/l	MICs $^\text{< 8}$ mg/l	Total							
	C. albicans	C. glabrata	C. tropicalis	Subtotal	C. albicans	C. glabrata	C. tropicalis	Subtotal	number	%
Urine	0	5	11	16	4	11	15	30	46	52.3
Sputum	4	1	5	10	5	3	3	11	21	23.9
Blood	0	0	3	3	0	3	3	3	6	6.8
Wound	2	0	2	2	1	0	2	3	5	5.7
Fluid	0	1	0	1	1	0	1	2	3	3.4
Genital tract	1	1	3	3	1	1	3	6	6.8	
Catheter tip	0	0	0	0	0	0	1	1	1	1.1
Total	7	8	20	35	12	18	23	53	88	100

MIC, minimum inhibitory concentration; Fluid consisted of ascites, dialysate, and peritoneal fluid.
group was 2.5-fold higher than that without tuberculosis [23]. One possible explanation for this phenomenon is that antituberculous agents may change the microbial ecosystem in the body to favor Candida species [22]. Antibiotics, such as quinolones, reduces the effects of antifungal agents in a murine model of invasive candidiasis [24]. Hence, antituberculous agents may also antagonize the effects of antifungal agents to prolong survival of Candida species and consequently the development of drug resistance. The mechanism by which the usage of antituberculous agents is a risk for colonizing or infecting with fluconazole resistant strains is worthy of further study by a larger series.

Abbreviations

TSARY: Taiwan Surveillance of Antimicrobial Resistance of Yeasts; MIC: minimum inhibitory concentration; NHRI: National Health Research Institutes; CLSI: Clinical and Laboratory Standards Institute; IRB: Institutional Review Board.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

YLY conceived the study and designed it together with MFC and HJL. MFC, YWC, TGY, HC, SCL, BMHC, TCC, YHH, ZYS, CHHC, and JYL reviewed medical charts of patients. FCT performed the statistical study. YLY drafted the manuscript with contribution from HJL.

Acknowledgements

We would like to thank C. M. Kunin for his critical review of the manuscript and Pfizer for supplying the fluconazole. We also thank the nine participating hospitals for providing clinical isolates and information regarding to these isolates. They are Chang Gung Memorial Hospital at Keelung, Taipei Municipal Zen Ai Hospital, Tri Service General Hospital, Veterans General Hospital-Taichung, Tainan Municipal Hospital, Veterans General Hospital-Kaohsiung, Buddhist Tzu-Chi General Hospital, Mackay Memorial Hospital Taitung Branch, and Kaohsiung Medical College Chung-Ho Memorial Hospital. This study was supported by the grant NHRI CL-096-PP07.

References

1. Chen YC, Chang SC, Sun CC, Yang LS, Hsieh WC, Luh KT: Secular trends in the epidemiology of nosocomial fungal infections at a teaching hospital in Taiwan, 1981 to 1993. Infect Control Hosp Epidemiol 1997, 18(5):369-375.
2. Cheng MF, Yu KW, Tang RB, Fan YH, Yang YL, Hsieh KS, Ho M, Lo HJ: Distribution and antifungal susceptibility of Candida species causing candidemia from 1996 to 1999. Diagnostic Microbiology and Infectious Disease 2004, 48(1):33-37.
3. Hung CC, Yang YL, Lauderdale TL, McDonald LC, Hsiao CF, Cheng HH, Ho YA, Lo HJ: Colonization of human immunodeficiency

Table 3: Characteristics of patients colonized or infected with Candida species

Characteristics	Fluconazole susceptibility			
	MICs ^ 64 mg/l	MICs % 8 mg/l		
	number %	number %	number %	p value
Mean of age (years)	65.5	65.0	66.3	
Duration of hospital stay (days)	58.0 (N = 78)	60.0 (N = 30)	56.7 (N = 48)	
Duration of fever (days)	10.2 (N = 62)	10.7 (N = 24)	9.8 (N = 38)	
Underlying diseases				
Diabetes	38 43.2	14 40	24 45.3	0.62
Pulmonary diseases	15 17.1	9 25.7	6 11.3	0.08
Hypertension	10 11.4	4 11.4	6 11.3	1
Bacterial infection	57 64.8	22 62.9	35 66.0	0.76
Special medications or managements				
Antifungal agents	18 20.5	7 20.0	11 20.8	0.93
Antibiotics	76 86.4	29 82.9	47 88.7	0.53
Antituberculosis agents	10 11.4	7 20	3 5.7	0.05
Dialysis	4 4.6	1 2.9	3 5.7	0.65
Catheter insertion	70 79.6	28 80.0	42 69.3	0.85
Mortality	38 43.2	16 45.7	22 41.5	0.87
Total	88 100	35 100	53 100	
virus-infected outpatients in Taiwan with Candida species. Journal of Clinical Microbiology 2005, 43(4):1600-1603.

4. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB: Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004, 39(3):309-317.

5. White TC, Marr KA, Bowden RA: Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clinical Microbiology Reviews 1998, 11(2):382-402.

6. Yang YL, Lo HJ: Mechanisms of antifungal agent resistance. J Microbial Immunol Infect 2001, 34(2):79-86.

7. Marr KA, Lyons CN, Ha K, Rustad TR, White TC: Inducibleazole resistance associated with a heterogeneous phenotype in Candida albicans. Antimicrobial Agents and Chemotherapy 2001, 45(1):52-59.

8. Pfaller MA, Diekema DJ, Messer SA, Boyken L, Hollis RJ: Activities of fluconazole and voriconazole against 1,586 recent clinical isolates of Candida species determined by Broth microdilution, disk diffusion, and Etest methods: report from the ARTEMIS Global Antifungal Susceptibility Program, 2001. Journal of Clinical Microbiology 2003, 41(4):1440-1446.

9. Yang YL, Wang AH, Wang CW, Cheng WT, Li SY, Lo HJ, Hospitals TV: Susceptibilities to amphotericin B and fluconazole of Candida species in TSARY 2006. Diagnostic Microbiology and Infectious Disease 2008, 61(2):175-180.

10. Yang YL, Ho YA, Cheng HH, Lo HJ: Distribution and susceptibility to amphotericin B and fluconazole of Candida spp. isolated from Taiwan. Epidemiology and Infection 2005, 133(2):325-330.

11. Yang YL, Cheng HH, Lo HJ: In vitro activity of voriconazole against Candida species isolated in Taiwan. International Journal of Antimicrobial Agents 2004, 24(3):294-296.

12. Clinical Laboratory Standards Institute: Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard. M27A, Wayne, PA 1997.

13. Yang YL, Cheng HH, Ho YA, Hsiao CF, Lo HJ: Fluconazole resistance rate of Candida species from different regions and hospital types in Taiwan. J Microbial Immunol Infect 2003, 36(3):187-191.

14. Yang YL, Cheng HH, Lo HJ: Distribution and antifungal susceptibility of Candida species isolated from different age populations in Taiwan. Med Mycol 2006, 44(3):237-242.

15. Lo HJ, Ho AH, Ho M: Factors accounting for mis-identification of Candida species. Journal of Microbiology, Immunology, and Infection 2001, 34:171-177.

16. Yang YL, Ho YA, Cheng HH, Ho M, Lo HJ: Susceptibilities of Candida species to amphotericin B and fluconazole: the emergence of fluconazole resistance in Candida tropicalis. Infection Control and Hospital Epidemiology 2004, 25(1):60-64.

17. Yang YL: Virulence factors of Candida species. J Microbial Immunol Infect 2003, 36(4):223-228.

18. Chou HH, Lo HJ, Chen KW, Liao MH, Li SY: Multilocus sequence typing of Candida tropicalis shows clonal cluster enriched in isolates with resistance or trailing growth of fluconazole. Diagnostic Microbiology and Infectious Disease 2007, 58(4):427-433.

19. Li SY, Yang YL, Chen KW, Cheng HH, Chiou CS, Wang TH, Lauderdale TL, Hung CC, Lo HJ: Molecular epidemiology of long-term colonization of Candida albicans strains from HIV-infected patients. Epidemiology and Infection 2006, 134(2):265-269.

20. Lin CY, Chen YC, Lo HJ, Chen KW, Li SY: Assessment of Candida glabrata strain relatedness by pulsed-field gel electrophoresis and multilocus sequence typing. Journal of Clinical Microbiology 2007, 45(8):2452-2459.

21. Wang JS, Li SY, Yang YL, Chou HH, Lo HJ: Association between fluconazole susceptibility and genetic relatedness among Candida tropicalis isolates in Taiwan. J Med Microbiol 2007, 56(Pt 8):650-653.

22. Masis CM, Gutierrez RF, Ortiz de la Tabla D, Hernandez AJ, Martin GC, Sanchez SA, Martin HA: Determinants for the development of oropharyngeal colonization or infection by fluconazole-resistant Candida strains in HIV-infected patients. European Journal of Clinical Microbiology and Infectious Diseases 2000, 19(8):593-601.

23. Cavaliere MJ, Maeda MY, Longatto FA, Shirata NK, Santos RT, Kitanura C, Ueki SY, Martins MC: Frequency of Candida sp infection in tuberculous patients with acquired immunodeficiency syndrome: morphological and immunocytochemical study in sputum. Pathologia 1994, 86(4):409-411.

24. Sugar AM, Liu XP, Chen RJ: Effectiveness of quinolone antibiotics in modulating the effects of antifungal drugs. Antimicrob Agents Chemother 1997, 41(11):2518-2521.