Effects of iron manipulation on trace elements level in a model of colitis in rats

M Barollo, R D’Incà, M Scarpa, V Medici, R Cardin, M Bortolami, C Ruffolo, I Angriman, GC Sturniolo

INTRODUCTION
Trace elements such as zinc and copper are essential for human health[1]. Zinc is required for cell membrane integrity, cell proliferation, and immune function. Several zinc-dependent antioxidant enzymes such as superoxide dismutase and metallothionein can neutralize free radicals production. Copper is necessary for the function of many enzymes involved in cell respiration and in cellular iron metabolism. Copper and zinc are both components of antioxidant enzymes such as superoxide dismutase. On the other hand, copper excess increases free radical levels thus enhancing the biological damage free radicals mediated[2].

In inflammatory conditions large amounts of reactive oxygen species are produced and this contributes with different mechanisms to damage tissue proteins, DNA chains and lipids[3]. Iron is a major peroxidative agent and animal studies demonstrated increased oxidative stress and intestinal inflammation after iron supplementation[4]. As previously reported by Kato et al., in Long Evans Cinammon rats, a model of copper liver toxicity, increased iron level is associated to copper excess and iron-deprived diet reduced mortality and fulminant hepatitis[5]. Trace elements homeostasis is altered both in human and animal models of inflammatory bowel diseases with possible implication for disease activity and carcinogenesis[6-8].

We previously demonstrated that dietary iron deprivation is effective in reducing DNA damage and improves the outcome of colitis. The aim of this study was to evaluate the effects of iron supplementation compared to deprivation on disease activity, on trace elements status and on colonic DNA oxidative damage in a model of experimental colitis.

MATERIALS AND METHODS
Experimental protocol
Twenty-four male Sprague-Dawley rats weighing 200 g were divided into four groups; one group was fed with standard diet containing 200 mg/kg of iron and given drinking water ad libitum. The second group was fed with an iron-controlled diet (50 mg/kg) and allowed to drink iron-free water for 5 wk and the third with an iron-supplemented diet (1 700 mg/kg) for 5 wk. The fourth group was fed with a standard diet (200 mg/kg of iron) and at the time of colitis induction was sham treated with saline.

Colitis was induced by the intrarectal instillation of 58 mg dinitro-benzene-sulfonic acid (DNBS) dissolved in 50% ethanol. The rats were anesthetized with ether and a silicone catheter was introduced intrarectally to 5 cm. Animals were kept in the Trendelemburg position for 10 min.
to avoid the rapid evacuation of the enema. On d 8, 1 wk after colitis induction, the animals were weighed and anesthetized with intraperitoneal chloral hydrate (400 mg/kg) after which the abdomen was opened with a midline incision and exsanguination was performed. The colon was removed, opened along the antimesenteric border, rinsed with iron-free water and weighed.

The damage was assessed by scoring the number and extension of ulcers, adhesions, and thickness of the colonic wall according to Morris et al.[9].

Operators were unaware of the treatment of each group. Colonic tissue samples were prepared and processed for myeloperoxidase and 8-hydroxydeoxyguanosine (8-OHdG) determination and for measuring iron, zinc, and copper concentrations. Similarly liver samples were obtained for the determination of iron, zinc, and copper concentrations.

Iron, zinc, and copper determination

Trace elements concentrations were measured using atomic absorption spectrophotometry. Intestinal and colonic tissues, obtained from rats, were dried at 42 °C for 24 h. The dried samples were weighed on an analytical balance, transferred into element-free tubes and then dissolved using 4.5 mL of 300 mL/L nitric acid solution. The tubes were incubated at 42 °C for 24 h. Iron, copper, and zinc standard solutions (0.05, 0.10, 0.20, 0.50, and 1 µg/mL) were prepared by dilution of concentrated stock solution (Titrisol, Merck Darmstadt, Germany) in deionized water. A Perkin Elmer 3100 atomic absorption spectrophotometer operated with an acetylene air mixture. A lean blue (oxidizing) flame was used with a cathode lamp current of 15 mA, a monochromator wavelength of 248.3 nm, and a slit width of 0.2 nm for Fe; lamp current of 25 mA, a wavelength of 213.9, and a slit width of 0.7 nm for Zn; lamp current of 15 mA, a wavelength of 324.8 nm, and a slit width of 0.7 mm for Cu.

Samples were aspirated directly and the concentration of the element of interest was determined from appropriate standard curves. Standard controls (Bovine liver, Trimalt, Magenta, Milan, Italy) were prepared using the same extraction procedure used for sample preparation.

Results were expressed taking into account the dry weight and the dilution factor of the samples.

Myeloperoxidase

MPO activity was assessed following previously described methods[10]. Briefly colonic biopsy specimens were thawed, homogenized in a separation buffer and centrifuged for 24 h. The dried pellets were mixed with potassium phosphate buffer containing o-dianisidine-HCl (Sigma-Aldrich, St. Louis, MO, USA) and 0.0005% H₂O₂. MPO activity was expressed as units/g of wet tissue. The enzyme unit was defined as the conversion of 1 mol of H₂O₂ per minute at 25 °C.

8-OHdG

Oxidative DNA damage was assessed following previously described methods[11]. Briefly colonic biopsy specimens were thawed, homogenized and in a separation buffer and approximately 20 µg of purified DNA per sample was injected in the HPLC (Shimadzu, Kyoto, Japan). The 8-OHdG was detected using an electrochemical detector (ESA Coulorchem II 5200A, Bedford, MA, USA). The levels of 8-OHdG were expressed as the number of 8-OHdG adducts per 10⁷ dG bases. The coefficient of variation was <10%; 100 µg of DNA were required for the determination.

Statistical analysis

Data are expressed as mean +/- standard error. Statistical data were analyzed with Mann-Whitney U test for comparison of the four groups and Spearman's rank correlation test to evidence any relation between the evaluated parameters. P values less than 0.05 were considered significant.

RESULTS

Before colitis was induced body weight was similar in all groups of animals. The colon weight, a rough measure of edema and inflammation, was significantly increased in colitic animals with respect to controls (P<0.05), while iron-deprived rats had colonic weights similar to controls. The macroscopic damage score was significantly lower in the group receiving iron-deprived diet than in the colitis groups. MPO activity was significantly increased in iron-supplemented rats. Iron deprivation was associated with significantly higher MPO levels than controls.

Clinical and biochemical aspects of colitis are summarized in Table 1.

	Controls	Standard diet (Fe, 200 mg/kg)	Iron-supplemented diet (1700 mg/kg)	Iron-deprived diet (45 mg/kg)
Colon wet weight (g)	2.2±0.2	4.0±0.9 ¹	3.8±0.8	2.1±0.4 ¹
Macroscopic damage score	0±0	8.7±2.5 ²	7.4±1.4	3.6±1.1 ²
Myeloperoxidase U/mg	3.5±0.6	19.4±5.2	61.4±7.9 ³	24.5±7.1

¹P<0.05 vs controls; ²P<0.01 vs standard diet; ³P<0.05 vs standard diet.
significant change was revealed in any of the treatments the more the colon was damaged the lower was the colonic zinc concentration ($R = -0.460, P = 0.02$).

Hepatic copper concentration was reduced in all colitic groups with respect to controls except in the iron-supplemented group. On the other hand, copper colonic concentration was increased in the iron-deprived diet group irrespective of treatment and inflammatory status (Table 2). Hepatic copper concentration correlated with colonic copper ($R = 0.39, P<0.04$).

Colonic DNA adducts were significantly reduced in rats fed with an iron-deprived diet for 5 wk (Figure 2). Colonic DNA adducts significantly correlated with iron colonic concentration ($R = 0.44, P<0.02$).

![Figure 1 Liver (A) and colonic (B) iron concentrations. *P<0.05, †P<0.01 vs controls; ‡P<0.05 vs standard diet.](image)

![Figure 2 Colonic DNA adducts. *P<0.05 vs controls; †P<0.01 vs standard diet.](image)

DISCUSSION

Iron has a major role in chronic inflammatory diseases. Lin *et al.*, demonstrated *in vitro* that iron chelation effectively blocks NF-kappa B activation and upregulates TNF-α and IL-6 genes in a model of cholestatic liver injury, suggesting a basic role for iron in the activation of the inflammatory process[12]. In patients with Crohn’s disease and anemia, treatment with oral ferrous fumarate decreased cysteine and glutathione peroxidase with consequent altered plasma antioxidant status[8]. Moreover, oxidative stress is increased in *in vitro* cell lines from patients with ulcerative colitis treated with iron[14].

Recent evidence showed that iron dietary deprivation is a reasonable approach to many diseases with a free radical component[15]. It is known that Deferoxamine, an iron chelating agent, effectively reduces mucosal oxidant activity by decreasing the luminol-amplified chemiluminescence *in vitro* by 44% in active ulcerative colitis biopsies[16]. This effect was attributed more to iron chelation than to a direct antioxidant activity.

We observed that iron deprivation was associated with less macroscopic colonic mucosal damage while iron supplementation worsened colitis. Iron and inflammation seem to have a synergic action since MPO levels were greatly increased in the iron-supplemented group. Our observations suggest that iron manipulation may modulate inflammatory damage.

The results of this study confirm that dietary iron deprivation reduces inflammation and oxidative DNA damage in the rat model of DNBS-induced colitis while iron supplementation worsens colitis as we previously reported (in press)[17]. These results further reinforce our previous findings on the role of iron deprivation in DNBS colitis. Carrier *et al.*, recently reported that oral iron supplementation may aggravate inflammation and oxidative stress in dextran sulfate sodium-induced colitis[18]. Oxidative damage, expressed by DNA adducts level, was decreased in iron-deprived rats. According to Seril *et al.*, reactive oxygen species, produced in abundance in the presence of iron during inflammation, can directly mediate DNA damage thus leading to alterations, which cause loss of suppressor genes and gain of oncogenes function[19].

Trace elements are altered during inflammation and their status is critical for normal cell and enzymes function. Many enzymes, involved in DNA repair mechanisms, are zinc-dependent thus trace elements alteration could contribute to DNA damage[8]. Several human and animal studies have demonstrated altered trace elements status during inflammation. Al Awadi *et al.*, reported a significant reduction of colonic zinc level in experimental colitis while copper and manganese remained unaltered[8]. Zinc and copper serum levels were altered in well-nourished patients

Table 2 Hepatic and colonic zinc and copper concentrations in controls and colitis	Zinc µg/g	Copper µg/g		
	Hepatic	Colonic	Hepatic	Colonic
Controls	99.8±2.1	133.4±6.1	54.4±1.6	18.6±0.9
Standard diet	140.2±6.2	113.9±5.8	20.8±0.7	18.6±0.9
Iron-supplemented diet	92.6±5.9	132.2±10.2	44.2±3.9	21±2.1
Iron-deprived diet	117.2±4.4	101.4±5.1	19.7±0.8	36.2±5.9

<0.05 vs controls; †P<0.01 vs standard diet; ‡P<0.05 vs controls and standard diet; ‡P<0.01 vs controls.
with ulcerative colitis and correlated with hematological parameters of disease activity suggesting their role in inflammation[21]. We previously demonstrated that zinc supplementation regulates tight junction permeability in experimental colitis with possible implication on mucosal healing[22]. Several studies have pointed out that zinc, copper, and iron may affect the progression of colonic tumors in experimental model of preneoplastic lesions[23]. Moreover, Ames has recently reported that zinc and other micronutrient deficiencies mimic the effect of radiation on DNA chain with strong implication for carcinogenesis[24].

Hepatic zinc concentration is significantly reduced during iron dietary deprivation. Colonic zinc concentration is similar to controls in all treated groups and it is independent from iron metabolism. The inverse correlation with macroscopic score and colonic weight may suggest the relevant effect of zinc on mucosa healing. In fact as recently reported by Kruidenier superoxide dismutase Zn/Cu dependent is decreased in colonic mucosa of IBD patients with active inflammation[23].

Colonic copper is increased during iron dietary deprivation. Iron supplementation does not seem to affect copper absorption as recently demonstrated in ileostomy subjects[23]. Colonic copper alterations seem therefore a consequence of local inflammation. On the other hand our data showed that inflammation decreased copper concentration in the liver except in the presence of iron supplementation. This is in agreement with the results reported in Long Evans Cinnamon rats, in which an iron deprived diet reduced mortality and fulminant hepatitis[3].

In conclusion, we pointed out that iron manipulation affects the severity of experimental colitis. Iron manipulation results in changes of zinc and copper status which may, after a chemical insult, alter the natural course of intestinal inflammation and may have important implications for the development of antioxidative treatment of IBD patients.

REFERENCES

1 Bogden JD, Klevay LM. Clinical nutrition of the essential trace elements and minerals. The guide for health professionals. 2000 Humana Press Inc.
2 Olivares M, Uauy R. Copper as an essential nutrient. Am J Clin Nutr 1996; 63: 791S-796S
3 Emerit J, Beaumont C, Trivin F. Iron metabolism, free radicals, and oxidative injury. Biomed Pharmacother 2001; 55: 333-339
4 Reifen R, Matas Z, Zeidel L, Berkvitch Z, Bujanover Y. Iron supplementation may aggravate inflammatory status of colitis in a rat model. Dig Dis Sci 2000; 45: 394-397
5 Kato J, Kobune M, Kohgo Y, Sugawara N, Hisai H, Nakamura T, Sakamaki S, Sawada N, Niitsu Y. Hepatic iron deprivation prevents spontaneous development of fulminant hepatitis and liver cancer in Long-Evans Cinnamon rats. J Clin Invest 1996; 98: 923-929
6 Ringstad J, Kildebo S, Thomassen Y. Serum selenium, copper, and zinc concentrations in Crohn’s disease and ulcerative colitis. Scand J Gastroenterol 1993; 28: 605-608
7 Brigonola C, Belloli C, De Simone G, Evangelisti A, Parente R, Mancini R, Iannone P, Mocheggianni E, Fabris N, Morini MC. Zinc supplementation restores plasma concentrations and thymulin in patients with Crohn’s disease. Aliment Pharmacol Ther 1993; 7: 275-280
8 Al-Awadi FM, Khan I, Dashti HM, Srikumar TS. Colitis-induced changes in the level of trace elements in rat colon and other tissues. Ann Nutr Metab 1998; 42: 304-310
9 Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 1989; 98: 795-803
10 Krawisz JE, Sharon P, Stenson WF. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 1984; 87: 1344-1350
11 Helbock HJ, Beckman KB, Shigenaga MK, Walter PB, Woodall AA, Yeo HC, Ames BN. DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanosine. Proc Natl Acad Sci USA 1998; 95: 288-293
12 Lin M, Rippe RA, Niemela O, Brittenham G, Tsukamoto H. Role of iron in NF-kappa B activation and cytokine gene expression by rat hepatic macrophages. Am J Physiol 1997; 272: G1355-1364
13 Erichsen K, Hausken T, Ulvik RJ, Svardal A, Berstad A, Berge RK. Ferrous fumarate deteriorated plasma antioxidant status in patients with Crohn disease. Scand J Gastroenterol 2003; 38: 543-548
14 Millar AD, Rampton DS, Blake DR. Effects of iron and iron chelation in vitro on mucosal oxidant activity in ulcerative colitis. Aliment Pharmacol Ther 2000; 14: 1163-1168
15 Polla BS. Therapy by taking away: the case of iron. Biochem Pharmacol 1999; 57: 1345-1349
16 Carotenuto P, Pontesilli O, Cambier JC, Hayward AR. Desferoxamine blocks IL 2 receptor expression on human T lymphocytes. J Immunol 1986; 136: 2342-2347
17 Barollo M, D’Incà R, Scarpa M, Medici V, Cardin R, Fries W, Angrimon I, Sturioni GC. Effects of iron deprivation or chelation on DNA damage in experimental colitis. Int J Colorectal Dis 2004; 19: 461-466
18 Carrier J, Aghdassi E, Platt I, Mullen J, Allard JP. Effect of oral iron supplementation on oxidative stress and colonic inflammation in rats with induced colitis. Aliment Pharmacol Ther 2001; 15: 1899-1999
19 Seril DN, Liao J, Yang GV, Yang CS. Oxidative stress and ulcerative colitis –associated carcinogenesis: studies in humans and animal models. Carcinogenesis 2003; 24: 353-362
20 Leon O, Roth M. Zinc fingers: DNA binding and protein-protein interactions. Biol Res 2000; 33: 21-30
21 Dalekos GN, Ringstad J, Savaidis I, Sferidias KL, Tsianos EV. Zinc, copper and immunological markers in the circulation of well nourished patients with ulcerative colitis. Eur j Gastroenterol Hepatol 1998; 10: 331-337
22 Sturioni GC, Fries W, Mazzon E, Di Leo V, Barollo M, D’Incà R. Effect of zinc supplementation on intestinal permeability in experimental colitis. J Lab Clin Med 2002; 39: 311-315
23 Davis CD, Feng Y. Dietary copper, manganese and iron affect the formation of aberrant crypts in colon of rats administered 3,2-dimethyl-4-aminobiphenyl. J Nutr 1999; 129: 1060-1067
24 Ames BN. DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutation Research 2001; 475: 7-20
25 Kruidenier L, Kuiper I, van Duijn W, Marklund SL, van Hogezand RA, Lamers CB, Verspagt HW. Differential mucosal expression of three superoxide dismutase isoforms in inflammatory bowel disease. J Pathol 2003; 201: 7-16
26 Troost FJ, Brummer RJ, Dainty JR, Hoogewerff JA, Bull VJ, Saris WH. Iron supplements inhibit zinc but not copper absorption in vivo in ileostomy subjects. Am J Clin Nutr 2003; 78: 1018-1023

Science Editor Zhu LH Language Editor Elsevier HK