Polysemy in Controlled Natural Language Texts

Normunds Grūzītis & Guntis Bārzdiņš
Workshop on Controlled Natural Language
8–10 June 2009, Marettimo Island, Italy

IMCS, University of Latvia
Agenda

- **Polysemy**: causes and types
- Supporting polysemy in two alternative controlled natural languages
 - **Declarative** CNL
 - Ontological knowledge for WSD
 - **Procedural** CNL
 - Semantics is not based in FOL
Two Subsets of Natural Language

Interaction

- Static
 - Compositional
 - Deterministic
 - Ontologies
 - Logic
 - Amodal
 - Digital

- Dynamic / Temporal
 - Spatial
 - Context-sensitive
 - Reality / Imagination
 - Conceptualization
 - Modal
 - Analog
Polysemy

- ‘Finite’ set of words (signs)
- Unlimited number of (new) concepts

⇒ Reuse of existing words in different contexts

1) Metaphorically (figurative senses)
 “Language is a graveyard of dead metaphors” (Leary, 1994)

2) Metonymically
 e.g., “library” for “building of library”

3) Collocations → multi-word units
Polysemy in a Declarative CNL
Ontological vs. Factual Sentences

- **Every mouse is an animal.**
- **The black mouse is not working properly.**
 - *It is used by no computer.*

CNL for T-Box vs. A-Box
- Relieve **average users** of providing ontological sentences
 - Leave creation of consistent ontologies to knowledge engineers and domain experts

⇒ **Polysemy** should appear only in the **factual** sentences, which can refer to the mix of domain ontologies

- Ontology **population** with facts
 - Information extraction (IE)
 - Web page descriptions in CNLs (Semantic Web)
⇒ **Multi-lingual semantic search engine**
User’s perspective

- **One** or few **consistent** target ontologies
- **Monosemous** lexicon

- **Many** target ontologies that may be mutually **inconsistent**
- ‘**Polysemous**’ lexicon
Micro-ontologies

● Requirements
 – Internally consistent
 ● OWL DL compliant
 – Lexicon-driven (concept naming)
 – Syntax-driven (property mapping)

● Consequences
 – A set of translation equivalents and synonyms can be attached to a concept or property
 ● Ontologies themselves are language-independent
WSD as Ontology Merging

- *Two sides of the same coin*

- **Difficult**: match the *equivalent* concepts & properties
 - Facing the *word-sense disambiguation* problem
 - *Lexical* naming & *syntactic* mapping guidelines → **hints**

- **Easy**: ensure that the merger is *consistent*
 - OWL DL **reasoners**

- **Interpretation** = consistent matching & merging
Multi-domain Communication

T-Box	Micro-ontologies	Axioms
Domain	**Axioms**	
Buildings	Every building is a construction and has a roof. Every library is a building.	
Collections	Every collection is an abstract-entity that contains some items. Every library is a collection that contains some publications.	
General	Every construction is a physical-entity. No physical-entity is an abstract-entity.	

A-Box	Assertions
There is a library that has a green roof. The library contains some valuable publications.	
Multi-domain Communication

Micro-ontologies	Domain	Axioms
T-Box		
Merged ontology	Every building is a construction and has a roof. Every library[building] is a building.	
	Every collection is an abstract-entity that contains some items. Every library[collection] is a collection that contains some publications.	
	Every construction is a physical-entity. No physical-entity is an abstract-entity.	

A-Box	Assertions
	There is a library[building] that has a green roof. The library[collection] contains some valuable publications.

Solution found through an exhaustive search (with possible user interaction)
Multi-lingual Communication

T-Box

Domain	Axioms
#1	$\forall x (\text{artifact}(x) \rightarrow \neg \text{body-part}(x))$
 | $\forall x (\text{footwear}(x) \rightarrow \text{artifact}(x))$ |
| #2 | $\forall x (\text{shoe}_{\text{kurpe}}(x) \rightarrow \text{footwear}(x))$
 | $\forall x y (\text{polish}_{\text{pucē}}(x,y) \rightarrow \text{person}(x) \& \text{footwear}(y))$ |
| #3 | $\forall x (\text{nail}_{\text{nags}}(x) \rightarrow \text{body-part}(x))$
 | $\forall x y (\text{polish}_{\text{vilē}}(x,y) \rightarrow \text{person}(x) \& \text{nail}_{\text{nags}}(y))$ |

A-Box

Source text	Target text
John polishes a shoe. Ann polishes some red nails.	Jānis pucē vienu kurpi. Anna vīļē sarkanus nagus.

OWL DL micro-ontologies as interlingua
The Overall Picture

Original Text

...
..........library[buildings].........
...
library[collections].............

Modified Text

...
......library[buildings]...
...
library[collections].......
Discussion

- User doesn’t have to provide the target ontology
 - Unlimited ‘repository’ of cross-language micro-ontologies, that are implicitly reused

- User only populates existing ontologies with facts
 - Automatic word-sense disambiguation

- Adaptation of existing domain-ontologies
 - Lexical-driven naming conventions
 - Creation of bridging-ontologies if necessary

- No changes to existing ‘monosemous’ CNL machinery
Polysemy in a Procedural CNL
Two Subsets of Natural Language

Interaction

Static
- Compositional
- Deterministic

Ontologies
- Logic

Amodal
- Digital

Dynamic / Temporal
- Spatial
- Context-sensitive

Reality / Imagination
- Conceptualization

Modal
- Analog
Domain experts' involvement in ontology authoring

- Conceptual Modelling
- Ontology Modelling

- Domain experts
- Knowledge Engineers
Little Red Riding Hood lived in a wood with her mother.

She baked tasty bread and brought it to her grandmother.

Grandmother now has bread.

Declarative CNL

- FOL semantics
- STATIC, COMPOSITIONAL, AMODAL

- Functional words
- Discrete word senses

- All men are mortal.
 Socrates is a man.

 Socrates is mortal.

Procedural CNL

- Formal imperative semantics
- TEMPORAL, SPATIAL, MODAL

- Content words
- Vague / related word senses

- Little Red Riding Hood lived in a wood with her mother. She baked tasty bread and brought it to her grandmother.

 Grandmother now has bread.

- Reuse of a finite set of available words

Educated adults

Children at ~3 years
FrameNet

- Developed in ISCI, Berkley by C. Fillmore et al.
- Consists of ~800 frames (generic situations and objects) and their arguments – frame elements
- Derived from extensive text corpus evidence – new frames caused only by unique argument structure
- Frames organized in inheritance hierarchies
- Largely language independent
 - LexicalUnits assigned to frames
 - back.n (Observable_bodyparts)
 - back.n (Part_orientational)
 - back.v (Self_motion)
 - back.a (Part_orientational)

Bringing

Definition:

This frame concerns the movement of a Theme and an Agent and/or Framee. The Agent, a person or other sentient entity, controls the movement of the Theme. In other words, the Agent has overall motion in directing the motion of the Theme. The Theme may be a separate entity, or it may be the Agent’s body. The Conceptual_Domain may be a subregion of the Agent’s body or (a subregion of) a vehicle that the Agent uses.

- Karl CARRIED the books across campus to the library.
- Karl CARRIED the books across campus to the library in his truck.
- Karl CARRIED the books across campus to the library by truck.
- The books CARRIED the books across campus to the library in a specially designed box.

The FEs include Path, Source, and Goal. Area is an area that contains the motion when the path is understood as irregular. This frame emphasizes the path of movement as opposed to the FEs Source or Goal as in Piling or Placing.

FEs:

Case:

- Agent [act]
 - Semantic Type: Agent
 - The Agent is a sentient being who physically controls the movement of the Theme via the载体， accompanying the Theme.
 - Karl CARRIED the books across campus to the library.

- Area [area]
 - Semantic Type: Area
 - Area is used for descriptions of a general area in which the carrying action takes place when the motion is understood to be irregular or not to consist of a single linear path.

- Carrier [car]
 - Semantic Type: Carrier
 - The Carrier provides support for the Theme. Movement of the Carrier results in movement of the Theme.
 - also area CARRIED the books across the river.

- Goal [goal]
 - Semantic Type: Goal
 - Goal identifies the endpoint of the path.
 - Karl CARRIED the books to the library.

- Path [path]
 - Semantic Type: Path
 - Path along which carrying occurs.
 - Karl CARRIED the books across the campus.

- Source [source]
 - Semantic Type: Source
 - Source indicates the beginning of the path along which the Theme travels.
 - Karl HAULED the books from the library to the office.

- Theme [them]
 - Semantic Type: Theme
 - Physical_object
 - The objects being carried.
 - Karl TOLLED the books to the car.
What is a Procedural CNL?

- **Procedural CNL Definition:** text that 100% maps into sequential FrameNet OBJECT and SITUATION frames.

- **Polysemy:** many lexemes map into the same frame; specific lexemes used only for anaphora resolution and visual identification (icons).
1. Little Red Riding Hood
2. lived
3. in a wood
4. with her mother.
5. She baked
6. tasty
7. bread
8. and brought it
9. to her grandmother.
Discourse is Model: 3D Animation

- Incremental semantic interpretation word-by-word
Role of PDDL

- Planning Domain Description Language (PDDL)
 - Developed by Drew McDermott for planning competitions
 - Central concepts are OBJECTS and ACTIONS
 - ACTIONS have precondition and effect
 - Planning problem: given an initial and goal states, find a sequence of actions (plan) leading from initial to goal state

- PDDL role in Procedural CNL
 - Mapping of FrameNet OBJECTS and sequential SITUATIONS into PDDL language OBJECTS and ACTIONS preserves semantics
 - Planning can be used to fill-in missing actions not mentioned in the text (e.g., to eat an apple, it first needs to be picked up)
PDDL: Classic Logistics Example

Domain description
(define (domain logistics-strips)
 (:requirements :strips)
 (:predicates (OBJ ?obj) (TRUCK ?truck) (LOCATION ?loc) (AIRPLANE ?airplane) (CITY ?city) (AIRPORT ?airport))
 (at ?obj ?loc) (in ?obj ?obj) (in-city ?obj ?city))

(:action LOAD-TRUCK
 :parameters (?obj ?truc ?loc)
 :precondition (and (OBJ ?obj) (TRUCK ?truck) (LOCATION ?loc) (at ?truck ?loc) (at ?obj ?loc))
 :effect (and (not (at ?obj ?loc)) (in ?obj ?truck)))

(:action LOAD-AIRPLANE
 :parameters (?ob ?airplan ?loc)
 :precondition (and (OBJ ?obj) (AIRPLANE ?airplane) (LOCATION ?lo (at ?obj ?loc) (at ?airplane ?loc))
 :effect (and (not (at ?obj ?loc)) (in ?obj ?airplane)))

(:action UNLOAD-TRUCK
 :parameters (?obj
 ?truck
 ?loc)
 :precondition (and (OBJ ?obj) (TRUCK ?truck) (LOCATION ?loc) (at ?truck ?loc) (in ?obj ?truck))
)

Planning problem description
(define (problem log001)
 (:domain logistics-strips)
 (:objects package1 package2 package3 airplane1 airplane2)
 :init (at package1 pgh-po) (at package2 pgh-po) (at package3 pgh-po) (at airplane1 pgh-airport) (at airplane2 pgh-airport) (at bos-truck bos-po) (at pgh-truck pgh-po) (at la-truck la-po) (at la-airport la) (at bos-airport bos-po) (at pgh-airport pgh) ...
 :goal (and (at package1 bos-po) (at package2 la-po) (at package3 bos-po))
)

Plan (problem solution)
1 (load-truck package2 pgh-truck pgh-po)
1 (drive-truck bos-truck bos-po bos-airport bos)
1 (load-truck package3 pgh-truck pgh-po)
1 (drive-truck la-truck la-po la-airport la)
1 (load-truck package1 pgh-truck pgh-po)
2 (drive-truck pgh-truck pgh-po pgh-airport pgh)
3 (unload-truck package3 pgh-truck pgh-airport)
3 (unload-truck package2 pgh-truck pgh-airport)
4 (load-airplane package1 airplane1 pgh-airport)
4 (load-airplane package2 airplane2 pgh-airport)
4 (load-airplane package3 airplane1 pgh-airport)
4 (load-airplane package2 airplane2 pgh-airport)
5 (fly-airplane airplane2 pgh-airport la-airport)
5 (fly-airplane airplane1 pgh-airport bos-airport)
6 (unload-airplane package1 airplane1 bo-truck bos-airport)
6 (unload-airplane package2 airplane2 bo-truck bos-airport)
6 (unload-airplane package3 airplane1 bo-truck bos-airport)
7 (load-truck package2 la-truck la-airport)
7 (load-truck package1 bos-truck bos-airport)
7 (load-truck package3 bos-truck bos-airport)
8 (drive-truck bos-truck bos-airport bos-po bos)
8 (drive-truck la-truck la-airport la-po la)
9 (unload-truck package3 bos-truck bos-po)
9 (unload-truck package2 la-truck la-po)
9 (unload-truck package1 bos-truck bos-po)
PDDL: FrameNet Example

Domain description

(define (domain framenet)
 (:action residence
 :parameters (?co_resident ?location ?resident)
 :effect
 (residence ?co_resident ?location ?resident))

 (:action bringing
 :parameters (?agent ?goal ?theme)
 :precondition
 (in ?theme ?agent)
 :effect
 (and (at ?agent ?goal) (at ?theme ?goal)))

 (:action people
 :parameters (?person ?sprite)
 :effect
 (sprite ?person ?sprite)))

Plan (extracted directly from the input text)

1: people obj4 "littleredridinghood"
2: residence obj11 obj8 obj4
3: biological_area obj8 "wood"
4: kinship obj11 obj4 NULL "mother"
5: cooking_creation obj4 obj17 NULL
6: chemical-sense_description obj17 NULL "tasty"
7: food NULL obj17 "bread"
8: bringing obj4 obj25 obj17
9: kinship obj25 obj4 NULL "grandmother"

Planning problem description – not used* in Proceural CNL
One could envision a special PlanningDomainDescription CNL

* - micro-planning: to eat an aple, it first needs to be picked up
Proof-of-concept Implementation (not yet a truly “controlled” NL)

- Input text
 - Stanford dependency parser
 - Lund (LTH) FrameNet annotator
 - JavaRAP anaphora resolver
 - Integrated dependency mapping

- Rich annotation editor
 - frames.xml
 - frRelation.xml
 - extra_fn_lemmas
 - v_n_a.txt
 - charniak_small.model

- Mapping to PDDL
 - object_frames.txt
 - names.txt
 - predicate_animation

- PDDL Plan
 - PDDL animator
 - Domain.pddl

- Discourse model: 3D animation
 - female_first.txt
 - HumanTitle.txt
 - male_first.txt
 - name_last.txt
 - personTitle.txt
 - frames.xml
 - predicate_animation
Little Red Riding Hood lived in a wood with her mother. One day Little Red Riding Hood went to see her Granny. She had a cake in her basket. On her way Little Red Riding Hood met a wolf. "Hello!" said the wolf. "Where are you going?" I am going to see my grandmother. She lives in a house behind those trees." The wolf ran to Granny’s house, and ate Granny up. He got into Granny’s bed. A little later, Little Red Riding Hood reached the house. She looked at the wolf. "Granny, what big eyes you have!" "All the better to see you with!" said the wolf. "Granny, what big ears you have!" "All the better to hear you with!" said the wolf. "Granny, what big nose you have!" "All the better to smell you with!" said the wolf. "Granny, what big teeth you have!" "All the better to eat you with!" shouted the wolf. A woodcutter was in the wood. He heard a loud scream, and ran to the house. The woodcutter hit the wolf over the head. The wolf opened his mouth wide and shouted and Granny jumped out. The wolf ran away, and Little Red Riding Hood never saw the wolf again.
Discussion

- How to integrate Declarative and Procedural CNL?
 - **Syntactically**: add ACE functional words, predictive parser
 - **Semantically**: ACE/OWL classes, properties define icons for objects and their static relationships (“A is a mother of B”). OWL constraints remain as invisible rules, which should be checked after each planned action. FOL model builder could generate objects and their relationships.

- How to implement reasoning in Procedural CNL?
 - Spatial, temporal conceptualisation (“vison”) – check, whether the generated 3D animation includes a scene triggering perception of the queried situation
 - “Did LittleRedRidingHood visited her grandmother?”
 - “Did grandmother got some bread at the end?”

- Potential applications: control of devices
 - Especially, with the help of visual feedback
Polysemy summary

- To remain “natural”, a multi-domain CNL must support ambiguity in the form of (controlled) polysemy
 - library [collection], library [building], live [residence],…
 - Ambiguity can be resolved through domain identification
 - micro-ontologies, FrameNet frames, Wittgenstein’s communication games, etc.

- For domain-concept naming, natural language relies on heavy reuse of “small” set of well-known words
 - Through multiword-units, metaphors, metonymy

\[
\text{鳥} \ + \ \text{山} \quad \rightarrow \quad \text{島} \quad \text{island}
\]

IMCS, University of Latvia
Thank you!