Nonracemic Allylic Boronates through Enantiotopic-Group-Selective Cross-Coupling of Geminal Bis(boronates) and Vinyl Halides

Bowman Potter, Adam A. Szymaniak,† Emma K. Edelstein,† and James P. Morken*

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States

Supporting Information

ABSTRACT: Under the influence of a chiral palladium catalyst, 1,1-bis(pinacolboronate) esters undergo asymmetric cross-coupling with bromoalkenes to generate nonracemic allyl boronates with high levels of enantioselectivity. The so-formed allyl boronates may be oxidized with hydrogen peroxide to provide secondary allylic alcohols or with nitrosobenzene to furnish nonracemic tertiary allylic alcohols. Mechanistic experiments suggest the operation of a pathway involving outer-sphere stereoinvertive transmetalation.

Nonracemic allyl boronates are valuable intermediates in organic synthesis. In particular, α-chiral γ,γ-disubstituted allylic boronates are attractive reagents: not only can they be directly converted to chiral γ,γ-disubstituted allylic alcohols and amines by oxidation and amination, but they can also engage in carbonyl allylations that establish chiral all-carbon quaternary centers. However, in spite of their ability to address important synthesis problems, there remain few catalytic enantioselective methods for the construction of α-chiral allylic boronates that are doubly substituted at the γ position. Indeed, only two methods have been developed to construct this important motif, and they both result in specialized product functionality. In a strategy developed by our lab, enantioselective 1,2-diboration of 4,4-disubstituted-1,3-dienes (Scheme 1, eq 1) results in a vicinal diboronate in which the allyl boronate unit bears two γ substituents. Allylic borylation is an alternate strategy that provides α-chiral allylic boronates, but this method can furnish γ,γ-disubstituted boronates with regio- and stereosecontrol only when cyclic substrates are employed (eq 2). Indeed, only the Aggarwal homologation reaction furnishes chiral γ,γ-disubstituted allylic boronates for a range of substrates in an asymmetric fashion. To address this gap in catalytic synthesis technology, we considered cross-coupling of vinyl electrophiles and readily available achiral geminal bis(boronates) (eq 3). We recently reported that this transformation can be accomplished with aryl electrophiles in the presence of a Pd catalyst and a chiral monodentate phosphoramidite ligand: upon enantiotopic-group-selective cross-coupling, chiral benzylboronates are generated. Herein we report a new catalyst system that enables the reaction between vinyl electrophiles and geminal boronates and allows rapid access to enantiomerically enriched allylic boronates. Additionally, we provide insight into the mechanistic features that govern this transformation and delineate strategically useful applications of the allylic boronates for the construction of structurally challenging chiral motifs.

Our initial investigations focused on ligand selection for the enantiotopic-group-selective cross-coupling of geminal bis(boronate) 1 and 1-bromo-2-methylpropane. Unlike the cross-coupling of aryl electrophiles, the background reaction in the absence of ligand was sluggish (Table 1, entry 1), and the monodentate phosphoramidite ligand L1 that was effective in aryl halide couplings failed to convert 1 to allylic boronate 3 (entry 2). Fortunately, Josiphos ligand L2 afforded the desired product, albeit in low yield, low enantioselective, and contaminated by significant amounts of 1,4-diene 4 that appeared to arise from coupling of boronate 3 and the vinyl halide. A survey of related Josiphos-type ligands revealed that alkyl substitution on the Cp-bound phosphine (R2) minimized the yield of bис coupling product 4 and increased the enantioselectivity (entry 3 vs 4). Further enhancing the size of the alkyl groups from Cy to tert-Bu (L4) had a profound impact on the reaction (entry 5): not only were the bis-scoupling byproducts substantially minimized, but the enantioselectivity of the reaction was enhanced from 65:35 to 90:10 (cf. entries 4 and 5). The nature of the benzylic phosphine substituents (R1) also influenced the outcome of the reaction: increasing the size from phenyl to o-tolyl resulted in lower yield and selectivity (entries 5 and 6), whereas p-trifluoromethylphenyl groups provided a higher-yielding transformation with a slight increase in selectivity (entry 7; for an exhaustive ligand optimization, see Supporting Information).

Received: October 6, 2014
Published: December 8, 2014

dx.doi.org/10.1021/ja510266x J. Am. Chem. Soc. 2014, 136, 17918−17921

© 2014 American Chemical Society
To simplify the experimental setup, the palladium dichloride complex with ligand $L_6$ was prepared, and a crystal structure is depicted in Figure 1.

Importantly, when air-stable $L_6\cdot\text{PdCl}_2$ was used as the catalyst, lower catalyst loadings could be employed and the reaction exhibited a slight improvement in selectivity (entry 8). Of paramount importance, with $L_6\cdot\text{PdCl}_2$, the reactions could be set up without the aid of a drybox and required only 1 mol % catalyst for effective reaction.

The scope of the enantiotopic-group-selective cross-coupling in the presence of $L_6\cdot\text{PdCl}_2$ was examined with a variety of vinyl bromides and geminal bis(boronates) (Table 2). While phenyl-containing substrates were processed effectively and provided reaction products 3, 4, and 5, aromatic substituents were not required, as demonstrated by the production of compounds 6–8. Of note, the reaction tolerated the presence of a silyl ether (7), aryl chloride (9), and amide (10). Moreover, even though Pd catalysis of alkyl bromide dehydrohalogenation can be efficient, the cross-coupling process described here is quite tolerant of an alkyl bromide substituent (compound 8).

In the case of 2-monosubstituted vinyl bromides, only a substrate with a bulky tert-butyl group afforded useful levels of monoaddition (product 16); with the current catalyst system, smaller monosubstituted vinyl bromides afforded significant amounts of biscopling products (data not shown).

As mentioned above, chiral allyl boronates participate in a range of useful reactions. To probe whether these apply to unpurified products that arise from enantiotopic-group-selective cross-couplings, the transformations in Scheme 2 were conducted. In the first experiment, geminal bis(boronate) 1 and 1-bromo-2-methylpropene were linked by cross-coupling in the presence of 1 mol % $L_6\cdot\text{PdCl}_2$ complex. After filtration and a solvent swap, oxidation with NaOH/H$_2$O$_2$ furnished allylic alcohol 17 in excellent yield and enantiomeric purity. In a second experiment, addition to benzaldehyde was examined.

---

**Table 1. Survey of Ligands in the Cross-Coupling of Bis(boronate) 1 and 1-Bromo-2-methylpropene**

| entry | ligand | 2 (%) yield | 3 (%) yield | er 3’ |
|-------|--------|-------------|-------------|-------|
| 1     | none   | <2          | <2          | –     |
| 2     | L1     | <2          | <2          | –     |
| 3     | L2     | 27          | 21          | 57:43 |
| 4     | L3     | 13          | 49          | 65:35 |
| 5     | L4     | <2          | 55          | 90:10 |
| 6     | L5     | <2          | 14          | 63:37 |
| 7     | L6     | <2          | 95          | 91:9  |
| 8     | L6     | <2          | 95 (86)     | 93:7  |

---

**Table 2. Substrate Scope in the Asymmetric Cross-Coupling of Vinlylic Halides and Geminal Bis(boronates)**

![Figure 1. Crystal structure of $L_6\cdot\text{PdCl}_2$. The structure was obtained from a crystal of the racemic complex in the presence of CH$_2$Cl$_2$. Coordinates have been deposited at the Cambridge Crystallographic Data Centre under CCDC 1035172.](image-url)
following cross-coupling, filtration, and a solvent swap into toluene, benzaldehyde was added. As shown in Scheme 2, this procedure provided homoallylic alcohol 18 bearing an adjacent all-carbon quaternary center with complete enantiopurity. Lastly, it was found that oxidation with nitrosobenzene, a reaction that occurs with allyl migration, directly furnished tertiary allylic alcohol 19 with excellent enantiomeric purity.

To study the ability of this catalytic cross-coupling to deliver synthetically useful quantities of material, the reaction in Scheme 3 was undertaken. In this experiment, the alkylation of 1-bromo-2-methylpropene occurred effectively on a larger scale and furnished α-chiral allylic boronate 3 in 71% yield with 93:7 er. It should be noted that the product contained material derived from protodeboronation of 1, and while this is difficult to remove on large scale, it does not interfere with subsequent alkylation or oxidation reactions.

Our previous studies of enantiotopic-group-selective cross-coupling of aryl electrophiles employed a monodentate chiral phosphoramidite ligand, and it was determined that these reactions occurred with inversion at carbon during the cross-coupling process. Considering that \( \text{L}_6 \cdot \text{PdCl}_2 \) contains a bidentate ligand, it was of interest to determine whether the reaction in the presence of this complex occurs with the same stereoechemical outcome. To study this aspect, (S)-(pin)BCHL2B(pin) was conducted on a 5 mmol scale by deprotonation with LiTMP and subsequent treatment with (2-bromoethyl)benzene. This delivered 1 in good yield and provided ample material to examine larger-scale cross-couplings. As depicted, the coupling with 1-bromo-2-methylpropene occurred effectively on a larger scale and furnished α-chiral allylic boronate 3 in 71% yield with 93:7 er. It should be noted that the product contained material derived from protodeboronation of 1, and while this is difficult to remove on large scale, it does not interfere with subsequent alkylation or oxidation reactions.

In summary, we have described a catalytic enantioselective cross-coupling that delivers chiral \( \gamma,\gamma \)-disubstituted allylic boronates from simple substrates under mild reaction conditions. The reaction products can be used to address important problems in asymmetric synthesis, and further studies in this regard are in progress.

ASSOCIATED CONTENT

Supporting Information
Procedures, characterization, and spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
morken@bc.edu

Author Contributions
A.A.S. and E.K.E. contributed equally.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Dr. Bo Li for assistance with crystal structure analysis. The NIH (GM-59471) is acknowledged for financial support; AllyChem is acknowledged for a donation of \( \text{B}_2\text{(pin)}_2 \).

REFERENCES

(1) For an overview of allylic borylation reactions, see: Lachance, H.; Hall, D. G. Org. React. 2008, 73, 1.
(2) Kliman, L. T.; Mlynarski, N.; Ferris, G. E.; Morken, J. P. Angew. Chem., Int. Ed. 2012, 51, 521.
(3) Ito, H.; Kaniu, S.; Sawamura, M. Nat. Chem. 2010, 2, 972.
(4) For catalytic enantioselective allylic borylation reactions that do not apply to the construction of \( \gamma,\gamma \)-disubstituted allylic boronates, see: (a) Ito, H.; Ito, S.; Sasaki, Y.; Matsuura, K.; Sawamura, M. J. Am. Chem. Soc. 2007, 129, 14856. (b) Guzman-Martinez, A.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10634. (c) Park, J. K.; Lackey, H. H.; Ondrusek, B. A.; McQuade, D. T. J. Am. Chem. Soc. 2011, 133, 2410.
For the preparation of geminal bis(boronates), see: (a) Matteson, D. S.; Moody, R. J. Organometallics 1982, 1, 20. (b) Endo, K.; Hirokami, M.; Shibata, T. Synlett 2009, 1331. (c) Ito, H.; Kubota, K. Org. Lett. 2012, 14, 890. (d) Li, H.; Wang, L.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2012, 51, 2943. (e) Li, H.; Shangguan, X.; Zhang, Z.; Huang, S.; Zhang, Y.; Wang, J. Org. Lett. 2014, 16, 448. (f) Hong, K.; Liu, X.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 10581. (g) Wommack, A. J.; Kingsbury, J. S. Tetrahedron Lett. 2014, 55, 3163.

For cross-coupling of geminal bis(boronates) without stereocontrol, see: (a) Endo, K.; Ohkubo, T.; Hirokami, M.; Shibata, T. J. Am. Chem. Soc. 2010, 132, 11033. (b) Endo, K.; Ohkubo, T.; Shibata, T. Org. Lett. 2011, 13, 3568. (c) Endo, K.; Ohkubo, T.; Ishioka, T.; Shibata, T. J. Org. Chem. 2012, 77, 4826. (d) Endo, K.; Ishioka, T.; Ohkubo, T.; Shibata, T. J. Org. Chem. 2012, 77, 7223. (e) Cho, S. H.; Hartwig, J. F. Chem. Sci. 2014, 5, 694.

For an example of cross-coupling of a vinyl halide and a geminal bis(boronate) to furnish a racemic allyl boronate, see Scheme 4 of the following reference: Li, H.; Zhang, Z.; Shangguan, X.; Huang, S.; Chen, J.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 11921.

Bissember, A. C.; Levina, A.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 14232.

For chirality transfer in allylic borylations with α-chiral γ,γ-di-substituted allyl boronates to furnish all-carbon quaternary centers, see refs 2 and 5 and the following reference: (a) Hoffmann, R. W.; Schlabach, A. Liebigs Ann. Chem. 1991, 1203. For allylic borylation to generate all-carbon quaternary stereocenters, see: (b) Kennedy, J. W.; Hall, D. G. J. Org. Chem. 2004, 69, 4412. (c) Sato, M.; Yamamoto, Y.; Hara, S.; Suzuki, A. Tetrahedron Lett. 1993, 34, 7071–7074. For catalytic enantioselective construction of quaternary centers by allylic silylation, see: (d) Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2001, 123, 9488. (e) Denmark, S. E.; Fu, J. Org. Lett. 2002, 4, 1951. For a recent review of the construction of acyclic all-carbon stereocenters, see: (f) Marek, I.; Minko, Y.; Pasco, M.; Mejuch, T.; Gilboa, N.; Chechik, H.; Das, P. J. Am. Chem. Soc. 2014, 136, 2682.

For details regarding the synthesis of (S)-10B-20, see ref 9.

Stereoinversion during cross-coupling generally occurs by an outer-sphere transmetalation involving an “ate” complex of the organometallic reagent. For examples, see: (a) Ohmura, T.; Awano, T.; Sugino, M. J. Am. Chem. Soc. 2010, 132, 13191. (b) Sandrock, D. L.; Jean-Gérard, L.; Chen, C. Y.; Dreher, S. D.; Molander, G. A. J. Am. Chem. Soc. 2010, 132, 17108. (c) Lee, J. C. H.; McDonald, R.; Hall, D. G. Nat. Chem. 2011, 3, 894. (d) Labadie, J. W.; Stille, J. K. J. Am. Chem. Soc. 1983, 105, 6129. (e) Kells, K. W.; Chong, J. M. J. Am. Chem. Soc. 2004, 126, 15666. (f) Hatanaka, Y.; Hiyama, T. J. Am. Chem. Soc. 1990, 112, 7793.