Morphophysiological characters of binahong (*Anredera cordifolia* (L.) Steenis) with application of natural growth regulators

L Mawarni*, Y Hasanah1 and H Rusmarilin2

1Department of Agrotechnology, Universitas Sumatera Utara, Medan, Indonesia.
2Department of Food Engineering, Universitas Sumatera Utara, Medan, Indonesia.

E-mail: *lisa.mawarni@usu.ac.id

Abstract. The morphophysiological study of binahong is still limited. The objective of the research is to identify the morphophysiological characteristics of binahong plants through natural GR application. This study described the relationship of plant length, number of leaves, stomatal density, and the content of chlorophyll leaves of binahong due to the application of natural growth regulators from coconut water combined with red shallot extract, bamboo shoots, and banana weevils. The results obtained in general giving GR can reduce plant length and number of leaves. The highest stomatal density was obtained in the application of coconut water while the lowest as shown in the application of coconut water and bamboo shoots. Chlorophyll a and b, as well as the highest total chlorophyll, are found without growth regulators application and application of a mixture of coconut water, shallot, bamboo shoots and, banana weevils. Chlorophyll a and b and the lowest total chlorophyll are found in the application of coconut water and bamboo shoots.

1. Introduction

The medicinal plant that have potential to be developed into phytopharmaca raw materials because of the secondary metabolite content in binahong. All part of this plant can be used as a medicine. Saponin is one of a secondary metabolite of binahong has the function as antibacterial, antioxidant, and antifungal. The chlorophyll content in leaves is effective as antibiotics, disinfectant, and food [1-3]. The raw materials of binahong for industry was only about 20% from cultivation, rest was forest.

Phytochemical as secondary metabolite compounds contained in plants are very usefull as a source of raw materials and antioxidants. Therefore, to get the number of relatively large bioactive compounds of plant secondary metabolites required abundant enough so that the necessary arrangement substance application of natural GR in plants and improve the morphophysiological characters of binahong. Often the growth regulator is naturally present in plants are below the optimum, so the required resources from the outside to produce a maximum response [4]. The use of synthetic exogenous GR has not been widely applied by farmers and the use of natural GR is an alternative that is easy to obtain, relatively cheap, and safe to use. There are various types of ingredient of plants which are GR sources, such as shallot source of auxin, bamboo shoot source of gibberellin [5,6] and banana weevil and coconut water source of cytokinin [7].
The results study[8] showed that the application of banana weevil extract increased the height of the Inpari variety of rice plant. In young coconut water contains hormones such as cytokines 5.8 g L-1 which can stimulate the growth of shoots and activate the activities of living cells, auxin hormone 0.07 mg L-1 and a little gibberellin and other compounds that can stimulate germination and growth [9]. Therefore, this research aimed to study the morphophysiological characters of binahong with the application of a natural growth regulator.

2. Materials and methods

2.1. Study area and materials
This research was carried out in the research field of Faculty of Agriculture, Universitas Sumatera Utara (32 m asl). The ingredients used are root rhizome of binahong, chicken manure, topsoil, sand, polybag, natural GR, organic insecticides, and fungicides. The tools used are shade houses with 25% of shade, microscopes, and spectrophotometers. The content of natural GR in bamboo shoot, shallots, and banana hump from this materials was describe [10].

2.2. Procedures
The study used a nonfactorial randomized block design with 3 replications. The treatment consists of (1) Control (without treatment of GR) (A0); (2). Coconut water (source of natural GR cytokines) (A1), (3) Coconut water + shallot extract (A2), (4) Coconut water + bamboo shoot extract (A3); (5). Coconut water + banana weevil extract (A4); (6). Coconut water + shallot extract + bamboo shoot extract + extract of banana weevil (A5). The variables observed were plant length, number of leaves, chlorophyll a and b, total chlorophyll, and density of stomata. The analysis of chlorophyll content use the method of Coomb [11].

2.3. Data analysis
Data were subjected to analysis of variance (ANOVA) for comparison of means if there were significant differences then proceed with Duncan's Multiple Range Test at the level of $\alpha = 5\%$ then plotted onto curve lines or bar chart.

3. Results and discussion

3.1. Plant length and number of leaves
The effect of GR application on binahong plant length (cm) is shown in Figure 1. It can be seen that plant length growth is very fast in the third week after natural GR application. However, the highest plant length is found without GR, which means that generally, the application of GR can reduce the length of the plant. The shortest plant is found in coconut water and shallot extract (A2).

Figure 2 shows that the increase in the number of leaves after the GR application occurs is not sharp. The number of leaves without application of GR turned out to be the most leaf, while the application of coconut water (cytokinins) and shallot (auxin) or A2 showed the lowest number of leaves as well as the lowest plant length. The addition of gibberellins to plants will increase the number and size of cells, with photosynthetic yield increasing at the beginning of planting will accelerate the process of vegetative growth of plants (including the growth of new shoots) as well as overcome the dwarfishness of plants. Along with the vegetative growth of plants, photosynthesis results will increase steadily. The real effect of gibberellin on plant height is related to the function of the gibberellins in cell lengthening and division. Gibberellin directly controls the spread of plant cells by changing the orientation of cellulose microfibrils through changes in cortical microtubule orientation and also changes the association between microtubules and plasma membran [12].
3.2. Stomatal density
The effect of the GR application on stomatal density (unit/mm²) is shown in Figure 3. The highest stomatal density was obtained in the application of coconut water (A1). Coconut water containing cytokinins encourages the formation of stomata in the leaf epidermis. The increased density of stomata allows increased absorption of carbon dioxide into the mesophyll tissue so that the results of photosynthesis are more produced [13].

The lowest stomata density was obtained in the application of coconut water and bamboo shoots (A3). The content of gibberellin in bamboo shoots decreases the density of stomata. This is understandable because of the influence of GA, especially in the extension of the segment and stem of the plant and enlarge the leaf area so that it will suppress the formation of stomata in the leaf epidermis.
This was stated by Davies [12] the role of cytokinins in plants, among others, is to regulate cell division, organ formation, enlargement of cells, and organs and participate in the opening and closing of stomata.

![Figure 3](image-url)

Figure 3. Density of stomata on binahong with application of natural GR.

3.3. Chlorophyll a and b, and total chlorophyll

The effect of natural GR application on the content of chlorophyll a and b, and total chlorophyll is shown in figure 4. The highest chlorophyll a and b and total chlorophyll are found without the application of natural GR.

Some studies state that the application of plant growth regulators increased chlorophyll content in the plant [7,13] while [14] state that the application of plant growth regulators was not significantly effected to the chlorophyll content.

In this study, we found the contradiction that the application of natural GR decreased the chlorophyll content of binahong. This is presumably because the natural GR which is still in the form of fresh extract and not yet available for fermentation, therefore it need a long time so it can affect increasing chlorophyll in the plant, and also suspected that the concentration of natural GR is not precisely used, which in this study concentration of natural GR is not precisely used, 40 ml of natural GR extract per liter of distilled water.

![Figure 4](image-url)

Figure 4. The content of chlorophyll of binahong with the application of natural GR.
The high content of chlorophyll in the treatment of a mixture of coconut water, shallot, bamboo shoots, and banana weevils (A5) showed that chlorophyll is affected by the treatment of natural growth regulators cytokinin, gibberellin, and auxin, that each contained in coconut water, shallot, bamboo shoots, and banana weevils. Previous a study [15] stated that gibberellin increased significantly the total chlorophyll content of Mentha piperita.

The high chlorophyll in binahong is excellent because the chlorophyll in binahong as medicinal plant can act as an antibiotic, disinfectant, and food supplements [1].

The lowest of chlorophyll a, chlorophyll a, and total chlorophyll were found in the application of coconut water and bamboo shoots (A3). This indicated that cytokinins in coconut water and gibberellin in bamboo shoots did not support for chlorophyll formation. It is understandable that cytokinins and gibberellin role a lot in cell elongation and enlargement, especially in the stem [16].

4. Conclusions
In general, the application of GR can reduce plant length and number of leaves. The highest stomatal density was obtained in the application of coconut water while the lowest as shown in the application of coconut water and bamboo shoots. The highest chlorophyll a, chlorophyll b, and total chlorophyll are found without GR application and application of a mixture of coconut water, shallot, bamboo shoots, and banana weevils. The lowest content of chlorophylls are found in the application of coconut water and bamboo shoots. To achieve the further objectives of this study, it is necessary to analyze the total leaf area and saponin content.

References
[1] Rachmawati S 2008 Studi Makroskopik dan Skrining Fitokimia Daun Anredera cordifolia (Ten) Steenis. [Macroscopic Studies and Leaf Phytochemical Screening of Anredera cordifolia (Ten) Steenis] (Surabaya: Universitas Airlangga)
[2] Hasbullah UHA 2016 Kandungan senyawa saponin pada daun, batang dan umbi tanaman binahong [Saponin compound content on the leaves, stems and tubers of Anredera cordifolia (Ten) Steenis] Plan Trop Journal of Agro Science 4 1 pp 20-7
[3] Alba MT, de Pelegrin C MG and Sobottka AM 2020 Ethnobotany, ecology, pharmacology, and chemistry of Anredera cordifolia (Basellaceae): a review Rodriguesia. 71 pp 2-11
[4] Aliyu OM, Adeigbe OO and Awopetu JA 2011 Foliar application of the exogenous plant hormones at the preblooming stage improves flowering and fruiting in cashew (Anacardium occidentale L.). Journal of Crop Science and Biotechnology. 14 pp 143-50
[5] Maretza DT 2009 Pengaruh Dosis Ekstrak Bambu Betung terhadap Pertumbuhan Semai Sengon (Paraserianthes falcata (L.) [Effect of Dose of Betung Bamboo Shoots Extract on Growth of Sengon (Paraserianthes falcata (L.) seedling] (Bogor: Institut Pertanian Bogor)
[6] Mardaleni and Sutrisna S 2014 Pemberian ekstrak rebung dan pupuk hormon tanaman unggul terhadap pertumbuhan dan produksi kacang hijau (Vigna radiata L.) [Application of superior bamboo shoot extract and plant hormone fertilizer on the growth and production of green beans (Vigna radiata L.)] Jurnal Dinamika Pertanian Volume 29 1 pp 1-12
[7] Lindung 2014 Teknologi Aplikasi GR [GR Application Technology] (Jambi: Balai Pelatihan Pertanian)
[8] Septari Y, Nelvia and Al I A 2013 Pengaruh pemberian beberapa jenis ekstrak tanaman sebagai gr dan rasio amelioran terhadap pertumbuhan dan produksi padi varietas Inpari 12 di lahan gambut [The effect of giving several types of plant extracts as GR and ameliorant ratio on growth and production of inpari 12 rice in peatlands] Jurnal Dinamika Pertanian 189544
[9] Bey Y, Syafri W and Sutrisna 2006 Pengaruh pemberian giberelin (GA3) dan air kelapa terhadap perkecambahan biji anggrek bulan [Effect of gibberelin (GA3) and coconut water on moon orchid seed germination] Jurnal Biogenesis 2 2 pp1-46
[10] Hasanah Y, Mawarni L and Rusmarilin H 2019 Stomatal density and chlorophyll content of madeira vine (Anredera cordifolia (Ten.) Steenis) on application of natural plant regulator Journal of Agronomy 18 3 pp 117-22

[11] Coombs J, Hind G, Leegood RC, Tieszen LL and Vonshak A 1987 Analytical Techniques. In: J. Coombs, Hall DO, SP Long and JMO Scurlock (eds) Techniques in bioproductivity and photosynthesis 2nd edition (Oxford: Pergamon Press)

[12] Davies PJ 2010 The Plant Hormones: Their Nature, Occurrence, and Functions in the book: Plant Hormones (New York: Cornell University)

[13] Piotrowska-Niczyporuk A and Bajguz A 2014 The effect of natural and synthetic auxins on the growth metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae) Plant Growth Regul. 73 pp 57-66

[14] Sardoei AS 2014 Plant growth regulators effects on the growth and photosynthetic pigments on three indoor ornamental plants European Journal of Experimental Biology 4 2 pp 311-8

[15] Kavina J, Gopi R and Panneerselvam R 2011 Plant growth regulators and fungicides alter growth and biochemical content in Mentha piperita Linn International Journal of Environmental Sciences 1 7 pp 2096-108

[16] Hartmann H T 2002 Plant Propagation Principle and Practices (London: Prentice Hall Inc)

Acknowledgements
The authors would like to thank Research Institution, Universitas Sumatera Utara that has funded this research under Research Contract TALENTA Universitas Sumatera Utara, Fiscal Year 2018 Number: 2590 / UN5.I.R / PPM / 2018 dated March 16, 2018.