Detectors on base of scintillation structures for registration of volumetric activities of gaseous and liquid media gamma radiation

V V Kadilin, V N Yurov, E V Ryabeva, V T Samossadny, E E Lupar, Yu A Trofimov, S V Kolesnikov, S B Chebishev and V O Nebolsin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway 31, Moscow, 115409
E-mail:EVRyabeva@mephi.ru

Abstract. The main aim of this research is the development and prototyping of the ionizing radiation detectors for the diagnosis of the physical processes used for monitoring the radiation situation at the thermal or fast neutrons reactors. In this article we present the experimental verification of applicability of the scintillation detectors based on LaBr₃(Ce) and YAlO₃(Ce). The experimental studies of the gamma-ray detection with several designs of the crystal scintillation detectors in gas and liquid are considered. It was shown that the measurement range in the liquid medium at the duration of one measurement of 100 seconds for ¹³⁷Cs equals from 3.79·10² Bq/l to 1.08·10⁸ Bq/l for detector prototype based on YAlO₃(Ce).

1. Introduction
The aim of the research is the development and prototyping of ionizing radiation detectors for the diagnosis of the physical processes used for monitoring the radiation situation at the thermal or fast neutrons reactors. It is necessary to control the level of radiation exposure to humans and the environment in real-time measurements and to obtain a reasonable long-term forecasts of radiation exposure [1].

The proposed detector should have the highly sensitive radiometric channels and extended measurement ranges. The developed detectors must be capable of measuring the activity of fission gases ⁸⁵Kr, ⁸⁵ᵐKr, ⁸⁸Kr, ¹³³Xe, ¹³⁵Xe in the range from 10⁴ Bq/m³ to 3.7·10¹⁴ Bq/m³ ± 15% ensuring the identification of radionuclide in controlled gas-sample. It must provide the registration of gamma radiation of liquids to ensure the monitoring of volume activity of ¹³⁷Cs with limiting measured value 5·10⁷ Bq/kg ± 15% and identification of radionuclide ¹³⁴Cs, ¹³⁶Cs, ¹³⁸Cs, ¹³¹I, ¹³³I, ²⁴Na. The energy resolution for isotope ¹³¹Cs should be no worse than 4–5%. The upper value of the operating temperature must be at least 80⁰C. The dependence of the detection efficiency and energy resolution of the detector on the temperature must be insignificant [1,2].

Crystal detectors made from inorganic scintillators have high efficiency and high performance. They could be used in high temperature range, have good resistance to external mechanical influences and could be sufficiently large. The fist stage of the study was the choice and verification of applicability of the scintillators. After study of information on scintillators [3] the following materials were chosen: LaBr₃(Ce) and YAlO₃(Ce).
2. Prototypes of the scintillation detectors based on LaBr$_3$(Ce) and YAlO$_3$(Ce)

The detection unit for verification of applicability of the crystals for described tasks was developed.

For every scintillator the following experiments were done. The scintillator was irradiated by gamma-source with known spectra. The obtained waveform and the gamma spectra were recorded. The obtained spectra were analyzed and parameters of sensitivity were calculated. For testing the source 137Cs isotope was used with activity $\sim 0.6 \cdot 10^5$ Bq in the area of 4π. Figure 1 shows the spectra obtained by the crystal YAlO$_3$(Ce). The best energy resolution of the crystal was 5–7% for energy 1332 keV. Given the fact that this type of crystal has a low emission time – 27 ns, has a weakly pronounced temperature dependence of the light output and is not hygroscopic, it can be considered as a candidate for the implementation of the tasks of identification and activity measurements of radionuclides to a level of $3.7 \cdot 10^{17}$ Bq/m3.

Energy resolution for crystal LaBr$_3$(Ce) at 662 keV line was equal to 4.2%. The scintillator LaBr$_3$(Ce) has a great light yield and, at the same time, small decay time (about 16 ns). A feature of the scintillator crystals LaBr$_3$(Ce) is relatively high intrinsic activity as a result of the decay of a radioactive isotope 138La. To determine the contribution of the external background detector was surrounded by a layer of lead 10 cm thick. The measurements showed that the intrinsic background of crystal sample is $7.5 \cdot 10^{-3}$ counts/s/keV in the energy range 500–700 keV.
3. Research of crystal scintillation detectors prototypes for the measurement of the activity of the gas environment

The source of ionizing radiation was set at the distance from the scintillation crystal’s center. Pulse signals from PMT were processed by special board SBS-77 (firm "Green Star" [4]) installed in the system unit of a personal computer (PC). Form of signal is under the control by oscilloscope TDS-2022. The voltmeter V7-22A controls the PMT voltage. Modes of operation of SBS-77 and accumulated spectra are displayed on a PC monitor. The measurements of the gas activity were carried out. The sealed box with input and output connections for pumping gas through the test system was created for tests. The design of box allows to place inside it any of created detector prototypes. The scheme of the measuring stand is shown in figure 3.

The energy resolution of crystalline scintillation detectors LABR1, LABR2 and YAP1 were measured in the testing center for scientific equipment of Institute of Astrophysics NRNU MEPhI. Results of measurement are shown in figure 4.

![Figure 4](image1.png)

Figure 4. The energy resolution on the energy for the three detector prototypes.

![Figure 5](image2.png)

Figure 5. LABR1 counting rate on 85Kr volumetric activity for full spectrum measuring range. Errors are within the data points.

The results confirmed the possibility of any of the prototypes made the sure identification of the radionuclides in the mixture of gaseous fission products 85Kr, 85mKr, 88Kr, 133Xe, 135Xe. Crystal scintillation detectors based on LaBr$_3$(Ce) (LABR1 and LABR2) may provide identification of the nuclides 137Cs, 134Cs, 136Cs, 138Cs, 131I, 133I, 24Na in media. Energy resolution of the crystal scintillation detector based on the YAlO$_3$(Ce) YAP1 is not sufficient for such measurements.

The experiments showed linear dependence of the counting rate in complete absorption peak on the activity of gaseous 85Kr (see figure 5). It is possible to estimate the minimal 85Kr concentration which can be measured by the proposed detectors.

The upper limit is determined by the processing time of interaction which for the currently available processors it equal about 10^{-6} s. On the base of the experimentally obtained data the following values of the activity may be calculated for LABR1 and YAP1:

$$A_{upperLABR1} = 2.9 \cdot 10^9 \cdot 10^6/250 = 1.16 \cdot 10^{13} \text{ Bq/m}^3,$$

where $2.9 \cdot 10^9$ [Bq/m3/250[counts/s]] is the rate for activity per one detector count (see figure 7), 10^6 – limit for detecting count rate. Using the same approach for YAP1:

$$A_{upperYAP1} = 2.86 \cdot 10^9 \cdot 10^6/160 = 1.8 \cdot 10^{13} \text{ Bq/m}^3.$$

If the measurement’s time is 1s, number of events at the peak of total absorption will be about $5 \cdot 10^4$, which is enough to ensure accuracy about 1%.

The lower limit is determined by measuring the efficiency of the detector, the intensity of the background and the time of measurement. $I_{background}=7.5 \times 10^{-3}$ counts/s/keV for LABR1. When the measurement time 100s, the limit of the activity to be measured $A_{lower}=2.1 \times 10^7$ Bq/m3 for the prototype LABR1 and $A_{lower}=4.5 \times 10^7$ Bq/m3 for the prototype of YAP1.

4. The ability of models of crystal scintillation detector to register gamma radiation of liquids

The supposed liquid medium in most cases is water. The main peculiarity for registration of uniformly distributed radiation in the liquid medium from the radiation of the gas is a relatively high rate of absorption and scattering it in the medium itself.

In the fist approximation, the activity of uniformly distributed source may be presented:

$$A_l = \frac{A_0}{\mu_{HgO} l} \left(1 - e^{-\mu_{HgO} l}\right)$$

where A_l – activity emerging from the source [Bq]; A_0 – activity in the source [Bq]; μ – linear absorption factor [cm$^{-1}$]; l – thickness of the radiating source [cm].

The measurement with crystalline scintillation detectors should be conducted in a non-contact method and under moderate temperature conditions. This type of measurements improves the reliability of electronic components, and makes it easy to carry out preventive and calibration work with radiation detectors. The portion of unscattered radiation depending on liquid media and gamma energy may reach the detector in non-contact method. For 137Cs isotope portion of unscattered radiation emitted from measuring volume of radioactive water with thickness 10 cm through 2 mm wall is approximately equal to 0.6.

The spectra of the following isotopes with the following main energy lines were experimentally investigated and analysed: 661.7 keV (137Cs); 604.7 and 795.8 keV (134Cs); 340.5, 818.5 and 1048.07 keV (136Cs); 462.7 and 1048.07 keV(136Cs); 364.48 keV(131I); 529.8 and 875.3 keV(131I); 1368 and 2754 keV(24Na). From the analysis of data on energy resolution it can be concluded that all listed lines can be identified with the detectors based on the LaBr$_3$(Ce) LABR1 and LABR2. Prototype based on the YAlO$_3$(Ce), YAP1 better be used for an energy of 662 keV due to its small thickness. Also because of lower energy resolution, it isn’t able to identify the radionuclide 131I in the presence of 136Cs and 24Na radionuclides.

For the prototype of the detector LABR1 measuring range in the liquid medium when the duration of one measurement – 100s for 137Cs may be calculated on the base of results for gaseous media and taking into account correlated factors on portion of transmitted radiation. The calculated boundaries for measuring range are the following:

$A_{lower}=1.77 \times 10^2$ Bq/l; $A_{upper}=6.96 \times 10^7$ Bq/l.

For the prototype of the detector YAP1 measuring range in the liquid medium at the duration of one measurement 100s for 137Cs are the following:

$A_{lower}=3.79 \times 10^2$ Bq/l; $A_{upper}=1.08 \times 10^8$ Bq/l.

5. Conclusion

The prototyping and experimental investigation of the detectors based on crystal YAlO$_3$(Ce) and LaBr$_3$(Ce) are conducted. It is shown that when the measurement time is 100s the top level of measured activity of the gaseous 85Kr medium is about 10^7 Bq/m3. The measuring range for models of detectors based on YAlO$_3$(Ce) and LaBr$_3$(Ce) in a liquid medium (water) for a duration of one measurement 100s for 137Cs is as follows: $A_{lower}=3.79 \times 10^2$ Bq/l and $A_{upper}=1.08 \times 10^8$ Bq/l and $A_{lower}=1.77 \times 10^2$ Bq/l and $A_{upper}=6.96 \times 10^7$ Bq/l for prototypes correspondently.

Acknowledgments

Authors wish to acknowledge partial support from MEPhI Academic Excellence Project (contract № 02.a03.21.0005, 27.08.2013).
References

[1] Regulations 2003 *Sanitary regulations for design and operation of nuclear power plant* RF, SR NP-03

[2] Chebyshev S B et al. 2008 (in Russian) *Nuclear instrument engineering Vol 1 Instruments for ionization radiation measurements* (original Russian title: *Yadernoe Priborostroenie Vol 1 Pribory dlya izmerenia ionizirushich izluchenii*)

[3] Materials of Saint-Gobain Crystals (www.crystals.saint-gobain.com)

[4] Belousov P V et al. *Structure of Spectrometric complex SCS "Green Star”* (www.greenstar.ru)