Life Cycle Energy Analysis of Eight Residential Houses in Brisbane, Australia

Lisa Guana,*, Madeleine Walmselya and Guangnan Chenb

aQueensland University of Technology (QUT), GPO Box 2434, Brisbane, QLD 4001, Australia
bFaculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia

Abstract

Life cycle energy analysis (LCEA) of eight residential buildings in and around Brisbane, Queensland, Australia, is undertaken in this study. Energy used in all three phases of construction, operation and demolition are considered. It is found that the main contribution to the operational energy in residential buildings is from use of general appliance. The choice of building materials is shown to have significant effects on the embodied energy for the production, construction, maintenance and demolition phases. From this study, it is shown that the embodied energy may vary from 10\% to 30\%, while the operational energy may vary from 65\% to 90\%. The demolition energy generally accounts for less than 4\% of life cycle energy.

Keywords: life cycle energy analysis; residential buildings; building embodied energy; building operational energy; building demolition energy

Nomenclature

Symbol	Definition
EE\textsubscript{assembly}	embodied energy for an individual assembly
EE\textsubscript{material}	embodied energy for an individual building material
EE\textsubscript{total}	total embodied energy for an individual house
EE\textsubscript{average}	average embodied energy for a house

* Corresponding author. Tel.: +61-7-3138 2484; fax: +61-7-3138 1516.
E-mail address: l.guan@qut.edu.au
1. Introduction

Buildings, as one of the most significant infrastructure in modern society, use energy throughout their life, from its construction to its demolition (e.g. from cradle to grave). Worldwide, buildings are responsible for 40% of the world’s total energy use, having a significant influence on the total natural resource consumption and the emissions released. It was found that for the greenhouse emissions related to buildings, 40–95% of these emissions are caused by operational energy use, with the remainder being caused by construction and demolition [1].

In order to design environmentally-conscious buildings, various methods and tools have been developed to measure and compare the environmental impacts of buildings over their whole life cycle. Generally, materials and energy flows of a building system may include three phases of upstream of construction (e.g. extraction, production, transportation and construction), operation or use and downstream of deconstruction (deconstruction and disposal) [2].

In this paper, a life cycle energy analysis of eight residential buildings in and around Brisbane, Queensland, Australia, was conducted. After brief introduction, the methodology used for this study is introduced, including the overall study approach, the information of the study houses and the study assumptions adopted. This is followed with results and analysis of energy used during all three phases of construction, operation and demolition.

2. Methods

2.1. Overview of the methodology

Life cycle energy analysis (LCEA) is an approach that accounts for all energy inputs to a building in its life cycle [2], consisting of four stage processes as shown in Figure 1(a). First, the purposes and system boundaries of the study are defined. Then the appropriate data and information will need to be collected and analyzed to quantify the material and energy flows in various stages of a system lifecycle. The contributions of various constituents on the environmental indicators can be finally evaluated and interpreted to show the significant issues and potential environmental impacts.

Figure 1(b) further illustrates the energy involved in the life cycle of buildings. Embodied energy is the energy consumed by all of the processes associated with the production of a building, from the mining and processing of natural resources to manufacturing, product transport and delivery, and building construction and installation. It is the ‘upstream’ or ‘front-end’ component of the life cycle impact of a building [3]. Operational energy is the energy
required for maintaining comfort conditions and day-to-day maintenance of the buildings [2]. It is the energy used for heating, ventilation and air conditioning (HVAC), domestic hot water, lighting, and for running appliances. The demolition energy is the energy occurring during the last destruction phase, which includes the energy used to demolish the building and transportation of dismantled materials to landfill sites and/or recycling plants.

Potential energy savings from recycling or reusing the demolished building materials is not considered in this study. This is because there is currently no agreement over the method of attributing this saved energy to the demolished building, although it would be more appropriate if this energy can be incorporated in the life cycle energy estimation in overall sense [2].

2.2. Information of study houses

Total eight residential houses in and around Brisbane, Queensland, Australia, were studied. The general information, details of construction materials and electrical appliance and equipment for these eight residential houses is gathered from site visits to these houses and is tabulated in Table 1, Table 2 and Table 3 respectively. The energy use for the studied houses was collected varying from one year to four years, depending on their availability. Information presented in these tables will be used later to estimate embodied energy and operational energy for these studied houses.

House	Location	Storey	No. Of People	Living area (m²)	Start Date	End Date	Billing days	Total energy use (kWh)
A	Birkdale	one	1	195	10/11/2008	7/11/2011	1093	15861
B	Tingalpa	one	2	160	21/05/2008	14/02/2012	1365	28528
C	Wynnum	two	2	230	19/06/2009	14/09/2012	1183	15449
D	Wynnum	two	6	510	12/01/2011	10/04/2012	454	25453
E	Manly	two	4	350	19/09/2008	18/09/2012	1461	4630
F	Norman Park	two	3	217	4/10/2007	28/12/2011	1546	41836
G	Manly	one	3	110	15/12/2008	13/12/2011	1094	22693
H	Tingalpa	two	2	260	13/05/2009	8/02/2012	1001	15487

It can be seen in Table 2 that most of these houses are constructed with brick walls, concrete floor and metal roofs. Because the use of insulation in roofs and walls and floors are sealed, the potential difference of insulation between these houses was ignored in this study. Moreover, the possible difference in internal finishing and decoration between different houses has also not been considered in this study. For internal walls, 20% of timber framework was assumed.

Table 2. Construction materials for eight residential houses.

House	A	B	C	D	E	F	G	H
Lower level floor	Reinforced Concrete	Timber	Reinforced Concrete					
Lower level roof	Concrete tile + Plasterboard	Detromatic-tin roof + Plasterboard	Plasterboard	Timber + Fibre				
Lower level internal walls	Plasterboard	Plasterboard	Plasterboard	Timber				
Lower level external walls	Brick	Brick	Brick	Concrete Blocks	Brick	Timber	Brick	
Upper level floor	Timber	Timber	Timber	Timber	Timber			
Upper level roof	Super six fibro + Plasterboard	Timber	Timber	Timber	Concrete tile + Fibre			
Upper level	Timber	Timber	Timber	Timber	Brick	Cement		
external walls
Upper level
internal walls
Fibre
Cement
Timber
Brick
Timber
New extension
floor
Timber
New extension
roof
Tin-iron+
Plasterboard
New extension
external walls
Timber
New extension
internal walls
Plasterboard

Table 3. Main electrical appliance and equipment in eight residential houses.

House	A	B	C	D	E	F	G	H
Washing machine	✓	✓	✓	✓	✓	✓	✓	✓
Dryer	✓	✓	✓	✓	✓	✓	✓	✓
Iron	✓	✓	✓	✓	✓	✓	✓	✓
TV	✓	✓	✓	✓	✓	✓	✓	✓
DVD/CD player	✓	✓	✓	✓	✓	✓	✓	✓
Cordless phone (or iPhone)	✓	✓	✓	✓	✓	✓	✓	✓
Clock radio	✓	✓	✓	✓	✓	✓	✓	✓
Computer (e.g. desk top, laptop, notepad)	✓	✓	✓	✓	✓	✓	✓	✓
Printer	✓	✓	✓	✓	✓	✓	✓	✓
Dishwasher	✓	✓	✓	✓	✓	✓	✓	✓
Oven	✓	✓	✓	✓	✓	✓	✓	✓
Stove top & electric fryer	✓	✓	✓	✓	✓	✓	✓	✓
Fridge & freezer	✓	✓	✓	✓	✓	✓	✓	✓
Microwave	✓	✓	✓	✓	✓	✓	✓	✓
Kettle	✓	✓	✓	✓	✓	✓	✓	✓
Toaster	✓	✓	✓	✓	✓	✓	✓	✓
Toaster	✓	✓	✓	✓	✓	✓	✓	✓
Electric toothbrush	✓	✓	✓	✓	✓	✓	✓	✓
Hair dryer	✓	✓	✓	✓	✓	✓	✓	✓
Straightener	✓	✓	✓	✓	✓	✓	✓	✓
Lighting	✓	✓	✓	✓	✓	✓	✓	✓
Normal lights	✓	✓	✓	✓	✓	✓	✓	✓
Spot light	✓	✓	✓	✓	✓	✓	✓	✓
Halogen lights	✓	✓	✓	✓	✓	✓	✓	✓
Energy saving lights	✓	✓	✓	✓	✓	✓	✓	✓
Down lights	✓	✓	✓	✓	✓	✓	✓	✓
Swimming pool pumps	✓	✓	✓	✓	✓	✓	✓	✓
Electric hot water system	✓	✓	✓	✓	✓	✓	✓	✓
Ceiling or Pedestal fans	✓	✓	✓	✓	✓	✓	✓	✓
Heater	✓	✓	✓	✓	✓	✓	✓	✓
Air conditioning	✓	✓	✓	✓	✓	✓	✓	✓
Solar PV	✓	✓	✓	✓	✓	✓	✓	✓

2.3. Study assumptions

Following assumptions were also adopted in this study:

- The lifespan of the houses for this study was assumed to be 50 years.
- The possible influence of methods (e.g. by truck, train, ship or plane) and distance to transport building materials from one location to another was ignored in the calculation of embodied energy and demolition energy.
- The potential influence of the type of “raw” materials (e.g. natural or recycled sources) for the manufacturing of building materials was also ignored in the calculation of embodied energy.
The possible contribution of embodied energy due to renovation and maintenance over a building’s life was ignored.

The potential influence of various construction methods and different brands of a building product (e.g., different efficiency of the individual manufacturing process and the fuels used in the manufacture of the materials) on embodied energy was also ignored.

For operational energy, this study was focused on the buildings only. Therefore the possible contribution from urban scale (e.g., the transport energy of building occupants and urban infrastructure) was not considered.

3. Results and analysis

3.1. Embodied energy

Every building uses a complex combination of many processed materials, which all contribute to the building’s total embodied energy [3]. Therefore, the choices of building materials will influence the amount of energy embodied in the structure of a building. Various approaches may be used to determine the embodied energy, including:

- Process energy analysis, which considers the energy directly related to the manufacturing processes of the product [3]. The accuracy of this method is dependent on the system boundary drawn, while all processes outside the boundary will be neglected [4].
- The input–output analysis, where the embodied energy of a product is calculated using its average price and the energy intensity of its sector. That is, all products within a sector will be assigned the same energy intensity. Moreover, the price of the product can sometimes distort the calculation results [4].
- Gross energy analysis, which is a true measure of embodied energy of a produce. In practice, however, the energy use is usually very difficult to measure [3]. Therefore, various alternative options are proposed. These include the hybrid analysis, which uses available process energy data and filling the gaps with input–output data [4].

Currently, most figures quoted for embodied energy are based on the process energy analysis [3]. In general, process energy requirement (PER) accounts for 50-80% of gross energy requirement (GER). However, by using different calculation methods, the estimation of embodied energy can vary by a factor of up to ten. Therefore, for a comparison of embodied energy, it is often desirable to use figures produced from a single source, so that the adoptions of methodology and base data are consistent.

For this study, embodied energy of common house assemblies and materials, as suggested by the “Your home – Australia’s guide to environmentally sustainable homes”, were adopted and is presented in Table 4 and Table 5. The values with symbol of “*” in Table 5 are extracted from the article “Choosing building materials” [5]. The embodied energy for an individual assembly (EE\textsubscript{assembly}) is calculated as follows:

\[
EE_{\text{assembly}} (MJ) = \text{Embodied energy (MJ/m}^2\text{)} \times \text{Area (m}^2\text{)}
\]

(1)

For any building elements that are not listed in Table 4, the data from Table 5 would then be used instead for the calculation of embodied energy. The embodied energy for an individual building material (EE\text{material}) was calculated as follows:

\[
EE_{\text{material}} (MJ) = \text{Embodied energy (MJ/kg)} \times \text{Density (kg/m}^3\text{)} \times \text{Area (m}^2\text{)} \times \text{Thickness (m)}
\]

(2)

Table 4. Embodied energy for assembled floors, roofs and walls [3].

Assembly	Embodied energy MJ/m²
Elevated timber floor	293
110mm concrete slab-on-ground 645
200mm precast concrete, T beam/infill 644
Timber frame, concrete tile, plasterboard ceiling 251
Timber frame, terracotta tile, plasterboard ceiling 271
Timber frame, steel sheet, plasterboard ceiling 330
Single skin autoclaved aerated concrete (AAC) block wall 440
Single skin AAC block wall gyprock lining 448
Single skin stabilised (rammed) earth wall (5% cement) 405
Steel frame, compressed fibre cement clad wall 385
Timber frame, reconstituted timber weatherboard wall 377
Timber frame, fibre cement earthboard wall 169
Cavity clay brick wall 860
Cavity clay brick wall with plasterboard internal lining and acrylic paint finish 906
Cavity concrete block wall 465

Table 5. Embodied energy (PER) for common building materials [3].

Material	Embodied energy (MJ/kg)	Material	Embodied energy (MJ/kg)
Kiln dried sawn softwood	3.4	In situ concrete	1.9
Gypsum plaster	2.9	Clay bricks	2.5
Plasterboard	4.4	Concrete blocks	1.5
Plywood	10.4	Glass	12.7
Fibre cement	4.8	Fibreglass	30.3*
Cement	5.6	Cellulose insulation	3.3*
Aluminium	170	Wool insulation	2.5*
Galvanised steel	38	Polyester insulation	53.7*

The total embodied energy for an individual house (EE_{total}) would be equal to the sum of all building elements (e.g. all assemblies and materials):

\[EE_{total} (\text{MJ}) = \sum EE_{assembly} + \sum EE_{material} \] (3)

The average embodied energy for a house (EE_{average}) was defined as the ratio between the total embodied energy and the liveable area as follows:

\[EE_{average} (\text{MJ/m}^2) = \frac{EE_{total} (\text{MJ})}{\text{Living area (m}^2\text{)}} \] (4)

The estimated PER embodied energy for the studied houses are shown in Figure 2. It can be seen that the difference in PER embodied energy can be up to 100%, with House F having the highest embodied energy, while House G having the lowest embodied energy. The results also show that the more use of timber, the lower embodied energy (e.g. comparing Houses A and B with Houses C and D in Figure 2). After removing the contribution of embodied energy from internal walls, the difference between different types of house construction becomes slightly larger.

![Estimated PER embodied energy (MJ/m²)](image_url)

Fig. 2. Estimated PER embodied energy for the studied houses.
With the improvement of energy efficiency of manufacturing process to produce building material, it would be expected that the level of embodied energy required in building materials would become small [3]. However, with increasing energy efficiency of houses and appliances, the operational energy will decrease and the embodied energy may become increasingly important.

3.2. Operational energy

Different from embodied energy of building, the amount of building operational energy will be dependent on the occupant behaviors and schedules, as well as the level of required comfort and climatic conditions. Generally, operational energy includes the energy requirements for heating ventilation and air conditioning (HVAC), lighting, demotic hot water (DHW) system and general appliance used in kitchen, living area, laundry and bathroom etc. It accumulates energy over the life time of the buildings.

The average annual energy use (OE\textsubscript{annual}) was calculated as follows, where both the billed total energy use and billing days were listed in Table 1:

\[
OE\textsubscript{annual} (\text{kWh/\text{year}}) = 365 \times \text{Total energy use (kWh)} / \text{Billing days} \tag{5}
\]

The average annual energy use per square meter (OE\textsubscript{average}) is equal to the ratio between the average annual energy use (kWh/\text{year}) and the liveable area (m2):

\[
OE\textsubscript{average} (\text{kWh/m}^2) = OE\textsubscript{annual} (\text{kWh/\text{year}}) / \text{Living area (m}^2) \tag{6}
\]

As shown in Table 3, electrical appliance and equipment varied considerably between these studied houses. Particularly, it is noted that two houses (B and F) had swimming pool, two houses (B and H) have installed solar panel and four houses (B, C, G to H) used electric hot water system. To be consistent in the comparison, the possible energy inputs from solar panels have been removed from this study. Based on the information provided in Table 3 and the possible use of them, the breakdown end energy use for these houses was also conducted. It was found that energy used by general appliance varying from 45% to 75%, by lighting energy varying from 5% to 15%, by pool pumps varying from 20% to 35%, by air conditioner varying from 15% to 45% and by electric hot water system varying from 15% to 30%.

Table 6. Average annual energy use for the studied houses.

House	A	B	C	D	E	F	G	H
Average annual energy use (kWh/\text{year})	5297	7628	4767	20463	1157	9877	7571	5647
Average annual energy use without DHW (kWh/\text{year})	5297	6127	3651	20463	1157	9877	4720	3891
Average annual energy use (kWh/m2)	27	48	21	40	3	46	69	22
Average annual energy use without DHW (kWh/m2)	27	38	16	40	3	46	43	15

Fig. 3. Estimated 50 years operational energy for the studied houses.
Average annual energy use for households is also tabulated in Table 6. It was noted that House E had much lower total energy use than the other houses. A further investigation of the electrical appliance within the household and the energy usage of house revealed that the electricity meter for the particular house might have malfunctioned for a long time (e.g. four years). The analysis of electricity energy bills showed that there are four houses use electric domestic hot water system, while other may use gas or solar energy for hot water. To be consistent in the comparison, the results of removing the large energy use by electric hot water systems are also presented in the Table 6. The estimated 50 years operational energy for the studied houses is shown in Figure 3.

3.3. Demolition energy

The demolition phase takes into consideration of the energy used by machinery to deconstruct the existing building, as well as energy required to raze, store and transport these materials from the building site to the landfill sites and/or final treatment plants. This phase is usually quite small in comparison to that of the production and operational phases. This may be typically around 1-4% of the energy usage during the life cycle of a building.

Construction Type	Demolition Energy (MJ/m²)	Studied houses
Light (e.g. wood frame)	35	House G
Medium (e.g. steel frame)	106	House E
Heavy (e.g. masonry, concrete)	176	Houses A to D, F, H

Based on the demolition energy calculator suggested by Matt [6] for “the greenest building is the one already built”, the demolition energy for small buildings (e.g. 465-1395 m²) is tabulated in Table 7. It is suggested that the demolition energy per unit area will decrease with the increase of building size. The proposed demolition energy for the studied houses is shown in the third column in Table 7.

It is noted that the potential reuse and recycling building materials have not been considered in this study. It was suggested that the energy savings from recycling of materials for reprocessing can vary considerably, from 20% for glass to up to 95% for aluminium. However, some materials such as bricks and roof tiles may be damaged [3].

3.4. Impact Assessment

Based on the above analysis, the life cycle energy analysis of these houses is shown in Figure 4. It can be seen that due to possible malfunction of the electricity meter, House E has an un-believably low operational energy, which should be excluded from the study. Although House G has relative low embodied energy and demolition energy, it has the highest life cycle energy if the energy used for DHW is included. After excluding DHW in operational energy and internal walls in embodied energy, it still has the third highest life cycle energy.

Fig. 4. Life cycle energy analysis of the studied houses.
Overall, it was found from this study that the demolition energy generally takes less than 4% of life cycle energy. This was in comparison with the embodied energy which may vary from 10% to 30%, and the operational energy which may vary from 65% to 90%.

4. Conclusions

Life cycle energy analysis (LCEA) of eight residential buildings in and around Brisbane, Australia, has been undertaken in this study. Energy used in all three phases of construction, operation and demolition has been considered. It has also been shown that the embodied energy may vary from 10% to 30%, while the operational energy may vary from 65% to 90%. The demolition energy generally accounts for less than 4% of life cycle. The main contribution to the operational energy in residential building is from use of general appliance. Future research should study the trade-off between the embodied energy and operational energy, as well as the adoption of renewable energy.

References

[1] P. de Wilde, D. Coley, The implications of a changing climate for buildings, Building and Environment. 55 (2012) 1–7.
[2] T. Ramesha, R. Prakash, K.K. Shuklab, Life cycle energy analysis of buildings: An overview, Energy and Buildings. 42 (2010) 1592–1600.
[3] G. Milne, C. Reardon, Your home - Embodied energy. http://www.yourhome.gov.au/materials/embodied-energy (accessed on 19-5-2015).
[4] A. Stephan, R.H. Crawford, K. De Myttenaere, A comprehensive assessment of the life cycle energy demand of passive houses, Applied Energy. 112 (2012) 23–34.
[5] I. Cleland, “Choosing building materials”, Expert Advice – building materials, pp234-237, http://www.ritek.net.au/pdf/grand-designs.pdf (accessed on 28-5-2015).
[6] M. Matt, The greenest building is the one already built. http://thegreenestbuilding.org/ (accessed on 30-5-2015).
The 9th International Symposium on Heating, Ventilation and Air Conditioning and the 3rd International Conference on Building Energy and Environment (ISHVAC-COBEE 2015)

This volume contains articles submitted and published at the 9th International Symposium on Heating, Ventilation and Air Conditioning joint with the 3rd International Conference on Building Energy and Environment (ISHVAC-COBEE 2015).

The ISHVAC conference series was initiated by Tsinghua University in 1991. It is the premier international HVAC conference initiated in China and has played a significant role in the development of HVAC and indoor environment research and industry in China.

The COBEE conference series was initiated by Tianjin University and Dalian University of Technology in 2008. This conference aims to provide a platform for discussing energy and environmental issues and for initiating collaboration among building engineers, environmental scientists, architects, facility managers, and policy makers.

The ISHVAC-COBEE 2015 conference was held in Tianjin, China. China is one of the main manufacturers of HVAC equipment and a significant energy consumption country. Among the total energy consumption, the building energy consumption accounts for nearly 30%, of which 65% is HVAC energy consumption and the data ranked first in the world. Besides energy, due to the serious ambient air pollution in China now, and the wide public concern of poor indoor air quality caused by various indoor sources and non-enough ventilation, the indoor environment quality in enclosed environment is also a popular topic in related field. Therefore, the significance of this conference is to learn how to promote the advancement of HVAC technology, combined with the gradual improvement of building energy consumption and the environment.

The ISHVAC-COBEE 2015 conference attracted nearly 500 participants from 25 countries, with 484 papers being presented in the conference. In this issue, 301 papers are selected from the conference proceedings, which address crucial topics in the related area, including:

1. Building HVAC;
2. Air Cleaning Technologies;
3. Indoor Air Quality;
4. Ventilation;
5. Thermal Comfort;
6. Cabin Air Quality;
7. Building Energy;
8. Outdoor Environment.

We would like to thank Tianjin University for hosting this conference, and all our reviewers and authors for their contribution to this issue.

Yuexia Sun, Tianjin University
Jingjing Pei, Tianjin University
School of Environmental Science and Engineering,
Tianjin University, Tianjin, China

E-mail addresses: yuexiasun@tju.edu.cn (Y. Sun), jpei@tju.edu.cn (J. Pei)
Procedia Engineering

Conference: 9th International Symposium on Building Energy and Environment (ISBEE), 12-18 June 2015, Tianjin, China

Volume: 121, Pages 1-2240 (2015)

Articles

- **Analysis Based on the Questionnaire in Dujiangyan after Wenchuan Earthquake**
 - Authors: Zhiqiang Kang, Yixian Zhang, Hongbo Fan, Guohui Feng
 - Pages: 114-121

- **Dehumidifier with Liquid Desiccant**
 - Authors: Chengjian University, China
 - Pages: 107-113

- **Assessment of Human Health in Northeast China Apartments with Mould Growth**
 - Authors: Luhong Huang, Enshen Long
 - Pages: 95-100

- **Numerical Simulation of Coughed Droplets in the Air-Conditioning Room**
 - Authors: Liang Yu, Wei Gao, Zhenbo Sun, Ran Ding, Guohui Feng
 - Pages: 89-94

- **The Research of POE System and Method of Urban Green Residential Environmental Performance in Severe Cold Regions**
 - Authors: Luhong Huang, Enshen Long
 - Pages: 82-88

- **Architecture and Planning Design Strategy of Post-disaster Temporary Settlement with High Building Density**
 - Authors: Luhong Huang, Enshen Long, Jinlong Ouyang
 - Pages: 79-84

- **Economic Benefits**
 - Authors: Yuexia Sun, Jingjing Pei
 - Pages: 76-81

- **Measurement of the Thermal Environment in Temporary Settlements with High Building Density after 2008 Wenchuan Earthquake in China**
 - Authors: Zhiqiang Kang, Yixian Zhang, Hongbo Fan, Guohui Feng
 - Pages: 68-75

- **Analysis of the Concentration and Distribution of the Airborne Bacteria in Indoor Air in the Lecture Theatres at Tianjin Chengjian University, China**
 - Authors: Xiaoling Xia, Huaqiang Sun, Yaxi Li, Shifan Yin
 - Pages: 59-65

- **The Impact of Relative Humidity on the Emission Behaviour of Formaldehyde in Building Materials**
 - Authors: Shuang Sun, Dongdong Zhang, Huanhai Liu, Gang Sun, Yanyan Gu
 - Pages: 52-58

- **Experimental Study on the Radiant Cooling Load of Floor based on the Radiant Time Series Method**
 - Authors: Hao Zhang, Yuxiang Wang, Shun Li, Huajun Tang, Xueting Liu, Yuancheng Wang
 - Pages: 45-51

- **Secondary Energy Trading Markets in Community Scale, Description and Implementation**
 - Authors: Yu Zhang
 - Pages: 39-44

- **The Impact of Relative Humidity on the Emission Behaviour of Formaldehyde in Building Materials**
 - Authors: Shuang Sun, Dongdong Zhang, Huanhai Liu, Gang Sun, Yanyan Gu
 - Pages: 33-36

- **Study on the Concentration and Distribution of the Airborne Bacteria in Indoor Air in the Lecture Theatres at Tianjin Chengjian University, China**
 - Authors: Xiaoling Xia, Huaqiang Sun, Yaxi Li, Shifan Yin
 - Pages: 29-35

- **Impedance, a New Concept of Determining Ideal Thermophysical Properties of Building Wall and its Application**
 - Authors: Shaodan Huang, Jianyin Xiong, Yinping Zhang
 - Pages: 23-28

- **Analysis on the Concentration of CO2 Level in General Hospital Wards in Nanjing**
 - Authors: Zhengrong Li, Junling Ju, Weipeng Xu
 - Pages: 19-26

- **Study on the Influence of the Street Side Buildings on the Pollutant Dispersion in the Street Canyon**
 - Authors: Dexing Guan, Chunmei Guo, Yanjun Li, Haoqi Lv, Xiaojuan Yu
 - Pages: 13-18

- **Analysis of the Performance of Ground Heat Exchangers in Ground Source Heat Pump Systems based on Heat Transfer Enhancements**
 - Authors: Yong Hui, Xin Li, Yuanze Zhang, Shengqiang Song, Zhenli Wang, Huiyang Zhang
 - Pages: 11-16

- **Field Measurement of CO2 Level in General Hospital Wards in Nanjing**
 - Authors: Qi Zhong, Zhiqiang Liu, Huaxuan Chen, Jianwen Song, Yike C. Mills
 - Pages: 4-9

- **Experimental Study on the Radiant Cooling Load of Floor based on the Radiant Time Series Method**
 - Authors: Guohui Feng, Yixian Zhang, Hongbo Fan, Zhiqiang Kang, Guohui Feng
 - Pages: 3-8

- **The Effect of Relative Humidity on the Emission Behaviour of Formaldehyde in Building Materials**
 - Authors: Shuang Sun, Dongdong Zhang, Huanhai Liu, Gang Sun, Yanyan Gu
 - Pages: 29-35

- **Energy Efficiency Measures for a High-tech Campus in California Based on Total Performance Oriented Optimization and Retrofit (TPOOR) Approach**
 - Authors: Jingyi Shi, Shuang Sun, Dongdong Zhang, Huanhai Liu, Gang Sun, Yanyan Gu
 - Pages: 23-28

- **Secondary Energy Trading Markets in Community Scale, Description and Implementation**
 - Authors: Yu Zhang
 - Pages: 19-26

- **Analysis of the Concentration of CO2 Level in General Hospital Wards in Nanjing**
 - Authors: Zhengrong Li, Junling Ju, Weipeng Xu
 - Pages: 19-26

- **Analysis on the Concentration of CO2 Level in General Hospital Wards in Nanjing**
 - Authors: Zhengrong Li, Junling Ju, Weipeng Xu
 - Pages: 19-26

- **Field Measurement of CO2 Level in General Hospital Wards in Nanjing**
 - Authors: Qi Zhong, Zhiqiang Liu, Huaxuan Chen, Jianwen Song, Yike C. Mills
 - Pages: 4-9

- **The Effect of Relative Humidity on the Emission Behaviour of Formaldehyde in Building Materials**
 - Authors: Shuang Sun, Dongdong Zhang, Huanhai Liu, Gang Sun, Yanyan Gu
 - Pages: 29-35

- **Impedance, a New Concept of Determining Ideal Thermophysical Properties of Building Wall and its Application**
 - Authors: Shaodan Huang, Jianyin Xiong, Yinping Zhang
 - Pages: 23-28

- **Analysis of the Concentration of CO2 Level in General Hospital Wards in Nanjing**
 - Authors: Zhengrong Li, Junling Ju, Weipeng Xu
 - Pages: 19-26

- **Field Measurement of CO2 Level in General Hospital Wards in Nanjing**
 - Authors: Qi Zhong, Zhiqiang Liu, Huaxuan Chen, Jianwen Song, Yike C. Mills
 - Pages: 4-9

- **The Effect of Relative Humidity on the Emission Behaviour of Formaldehyde in Building Materials**
 - Authors: Shuang Sun, Dongdong Zhang, Huanhai Liu, Gang Sun, Yanyan Gu
 - Pages: 29-35

- **Impedance, a New Concept of Determining Ideal Thermophysical Properties of Building Wall and its Application**
 - Authors: Shaodan Huang, Jianyin Xiong, Yinping Zhang
 - Pages: 23-28

- **Analysis of the Concentration of CO2 Level in General Hospital Wards in Nanjing**
 - Authors: Zhengrong Li, Junling Ju, Weipeng Xu
 - Pages: 19-26
Abstract | PDF (179 K)
--- | ---
Optimum Analysis on the Thermal Performance of the Small-scaled Biogas Fermentation Tank Based on Annual Energy Consumption Simulation | Open Access
Pages 206-218
Xin Wang, Jinhua Zheng, Min Guo, Jelena Srebric
Abstract | PDF (2054 K)
Energy Savings and Cost-benefit Analysis of the New Commercial Building Standard in China | Open Access
Pages 177-186
Shuang Zhao, Wei Pei, Shiqiang Zhang, Jing Han, Nan Zhao, Meihua Lai
Abstract | PDF (568 K)
Study on Ground Test Simulation Method of the Run Air for Commercial Airlines' Environmental Control System | Open Access
Pages 203-207
Zhi Ma, Yingqian Zhang, Chao Wang, Yun Yang, Chunhui Yang
Abstract | PDF (567 K)
Experimental Investigation on Indoor/Outdoor PM2.5 Concentrations of an Office Building Located in Guangzhou | Open Access
Pages 201-206
Yimin Wang, Chang Chen, Peng Wang, Yi Lin, Ziqiang Chen, Li Zhao
Abstract | PDF (568 K)
Physical Environment of Silled Buildings in Rural Area of Southwest China | Open Access
Pages 201-218
Hongwei Li, Ji Zhong, Han Yin, Jun Cheng, Jian Chen, Bin Qin
Abstract | PDF (5104 K)
Analysis on All-Day Operating Solar Absorption-Refrigeration System with Heat Pump System | Open Access
Pages 204-208
Hu Li, Yingqian Zhang, Chunhui Yang
Abstract | PDF (568 K)
Research on the Numerical Simulation of Aircraft Cabin Smoked | Open Access
Pages 207-213
Shuang Zhao, Meihua Lai, Yingqian Zhang, Nianzheng Chen
Abstract | PDF (562 K)
Thermal Comfort and Thermal Adaptation between Residential and Office Buildings in Severe Cold Area of China | Open Access
Pages 209-215
Haiyan Peng, Zhipeng Xing, Jing Ren, Yating Li
Abstract | PDF (5134 K)
Analysis of Energy Flow Path Model Based on Spatial Layout Features of Buildings | Open Access
Pages 207-213
Jinping Zhang, Jianong Li, Angui Li, Yuhuan Wang, Wenjun Chen
Abstract | PDF (518 K)
Effects of Effect Control System Operation on Ozone Retention Inside Airplane Cabin | Open Access
Pages 201-205
Wei Guo, Pengyi Su, Shiguang Zhang
Abstract | PDF (513 K)
On-Site Measurement of Airborne Fungi in Shanghai Residential | Open Access
Pages 204-206
Jing Yu, Yuan Li, Chao Huang, Wenfei Zhang, Zhiping Guo, Rongguang Li, Li Shen, Jing Chang
Abstract | PDF (568 K)
Experimental Study on the Thermal Performance of Ventilation Wall with Cladding Panels in Hot and Humid Area | Open Access
Pages 207-219
Zhiming Zhou, Yutao Ji, Mingli Li, Geqiang Wang
Abstract | PDF (507 K)
Investigation of Microclimate and Air Pollution in the Classrooms of a Primary School in Wuhan | Open Access
Pages 207-208
Yan Cao, Xiabiao Yan, Shuangyu Zhu, Li Yang, Nannan Gao, Renqin Huang
Abstract | PDF (566 K)
Feasibility Investigation of the Low Energy Consumption Cooling Mode with Ground Heat Exchanger and Terminal Radiator | Open Access
Pages 207-209
Yi Han, Yingqian Yang, Yunfei Gu, Zhiliang Fang
Abstract | PDF (569 K)
Field Survey on Indoor Air Pollution Transport Path in Rural House in Northeast China | Open Access
Pages 207-215
Xingfeng Wang, Bin Chen, Runmei Zheng
Abstract | PDF (503 K)
Testing for Energy Recovery Ventilation and Energy Saving Analysis with Air-Conditioning Systems | Open Access
Pages 203-207
Jiang Guo, Jinhua Zheng, Min Guo, Jelena Srebric
Abstract | PDF (5024 K)
Household Fuels for Cooking and Allergies of Preschool Children in Tianjin, China: A Cross-Sectional Study | Open Access
Pages 203-208
Zhaohong Kuang, Yating Zhang, Yuankun Sun, Jing Han, Olgayxia Zhang, Pan Wang, Jie Sunbelt
Abstract | PDF (568 K)
Study on Mixture and Deposition of Particles in a Wind Tunnel | Open Access
Pages 202-206
Jingqiang Zhang, Junqi Lu, Yuhuan Wang, Shengjun Chen
Abstract | PDF (568 K)
Thermal Comfort in Naturally Ventilated Apartments in Sunbays, Indonesia | Open Access
Pages 207-209
Mardan Salleh, Farhiz Fida Putri, Nasa Hadin, Teo Ruki, Agung Miftah Nugroho, Trisnadi Uno, I Nenggala Agung, Si Hasti Ismawan
Abstract | PDF (568 K)
The Effects of Courtyard on Indoor Thermal Conditions of Chinese Shophouse in Malacca | Open Access
Pages 203-209
Wald Amin Zakaria, Titiq Kudokko, Dina Hafaq Chary
Abstract | PDF (178 K)
Association between Home Environment and Allergies among Children in Beijing, China | Open Access
Pages 201-207
Jingqiang Zhang, Yating Zhang, Jian Sunbelt, Fang Gu, Jianguo Li
Abstract | PDF (568 K)
Survey Study on Health-Effects Related with Indoor Environment of Residential Building during Winter Heating Period in Dalian City | Open Access
Pages 207-209
Qingli Fan, Bei Chen, Sihi Zhang, Yi Chen
Abstract | PDF (568 K)
Different Fuel Types and Heating Approaches Impact on the Indoor Air Quality of Rural Houses in Northern China | Open Access
Pages 201-208
Xiaomin Song, Bin Chen, Yuhang Shu, Yuanbin Zhu
Abstract | PDF (518 K)
Abstracts of Selected Articles

1. The Effects of Electrospray-based Electrostatic Precipitator for Removing Particles
- **Authors:** Ruobing Liang, Jili Zhang, Chao Zhou
- **Pages:** 675-683
- **Abstract:**

2. Performance Analysis of Solar Desiccant-Evaporative Cooling for a Commercial Building under Different Australian Climatic Conditions
- **Authors:** Original Research Article
- **Pages:** 699-711
- **Abstract:**

3. PCM-based High-density Thermal Storage Systems for Residential and Small Commercial Retrofit Applications
- **Authors:** Original Research Article
- **Pages:** 712-720
- **Abstract:**

4. The Dynamic Thermal Comfort Index Analysis under the Air Supply Vent Coupled with the Cross-Flow Dehumidification System
- **Authors:** Original Research Article
- **Pages:** 721-730
- **Abstract:**

5. Indoor Air Pollution and Human Perception in Public Buildings in Tianjin, China
- **Authors:** Original Research Article
- **Pages:** 731-740
- **Abstract:**

6. Design a Zero Energy House in Brisbane, Australia
- **Authors:** Original Research Article
- **Pages:** 741-750
- **Abstract:**

7. A Study on the Model for Heating Influence on PM2.5 Emission in Beijing China
- **Authors:** Original Research Article
- **Pages:** 751-760
- **Abstract:**

8. The Influence of Doors and Windows on the Indoor Temperature in Rural House
- **Authors:** Original Research Article
- **Pages:** 761-770
- **Abstract:**

9. A New Method to Assess the Infiltration Rate in Large Commercial Complex in Beijing, China
- **Authors:** Original Research Article
- **Pages:** 771-780
- **Abstract:**

10. Analysis of Carbon Dioxide Emissions of Buildings in Different Regions of China Based on STRIPAT Model
- **Authors:** Original Research Article
- **Pages:** 781-790
- **Abstract:**

11. Life Cycle Energy Analysis of Eight Residential Houses in Brisbane, Australia
- **Authors:** Original Research Article
- **Pages:** 791-799
- **Abstract:**

Additional Articles
- There are numerous more articles covering various topics in energy, ventilation, and pollution control, each with its own abstract and publication details.
| Title | Authors | Page Range | Type | Access Type |
|--|--|-------------------------------------|-----------------------|----------------------|
| Variation of PM2.5 Concentrations in Shopping Malls in Autumn, Changsha | Xiaoliang Xie, Hua Qian | 684-691 | Original Research Article | Open Access |
| A Novel Control Strategy for Air-Cooled Twin-Circuit Screw Chillers | Jinhua Hu, Nianping Li | 692-698 | Original Research Article | Open Access |
| Hybrid Artificial Neural Network−Genetic Algorithm Technique for Condensing Temperature Control of Air-Cooled Chillers | Jia Yang, K.T. Chan, Tongyong Dai, Hongyu Zhang, Zhaoguo Zhou | 699-705 | Original Research Article | Open Access |
| Experimental Study on a Novel Optimal Differential Pressure Reset Method for Online Application in Chilled Water System | Jia Yang, K.T. Chan, Tongyong Dai, F.W. Yu, Lei Chen | 706-713 | Original Research Article | Open Access |
| Research on Ventilation Plan of Summer in Kangding | Jingjing Yang, Liu Yang, Xilong Zhang, Quan He, Daolong Liu | 714-719 | Original Research Article | Open Access |
| Improved p(t)-Linear Average Method for Ground Thermal Properties Estimation during in-situ Thermal Response | Linfeng Zhang, Quan Zhang, Josef Asufa, Keesen Li | 720-726 | Original Research Article | Open Access |
| Analysis of Thermal Environment in a Hospital Operating Room | Chunhua Liu, Guang Zhou, Hongyuan Li | 727-734 | Original Research Article | Open Access |
Procedia Engineering

Volume 121 (2015)

Title	Pages	Authors
The 9th International Symposium on Heating, Ventilation and Air Conditioning (COBEE) joint with the 3rd International Conference on Building Energy and Environment (COBEE) 13-15 July 2015, Tianjin, China		
Study on the Concentration and Distribution of the Aerobics Bacteria in Indoor Air in the Lecture Theatres at Tarbei Chengdu University	127-133	Shuang Li, Jiajia Li, Xingcheng Liu, Jin Kang
Study on the Influence of the Street Side Buildings on the Pollutant Dispersion in the Street Canyon	120-126	Jiaojiao Dou, Xiaoyan Sun, Jiaxiong Xu, Wang Li
Study of Experimental Study on the Radiant Cooling Load of Floor Based on the Radiant Time Series Method	117-120	Yiming Yuan, Xiang Liu, Junyao Su, Yaping Gao
Field Measurement of CO2 Level in General Hospital wards in Harbin	114-116	Gaofeng Wang, Wei Wang, Xiaoyan Sun, Yaping Gao
The Impact of Relative Humidity on the Emission Behaviour of Formaldehyde in Building Materials	109-113	Shixuan Li, Jiashan Guo, Yaping Gao
Impedance, a New Concept of Determining Ideal Thermophysical Properties of Building Wall and its Application	105-109	Yuefang Cai, Zekun Yang, Yaping Gao
Energy Efficiency Measure for a High-tech Campus in California Based on Total Performance Oriented Optimization and Retrofit (TPOR)	100-104	Yujie Zhang, Wei Zhang, Yong Huang, Li
Measurement of the Thermal Environment in Temporary Settlements with High Building Density after 2008 Wenchuan Earthquake in China	97-100	Xiaohui Li, Zhihua Gao, Guihong Zhang, Shenglan Liu
Architecture and Planning Design Strategy of Post-disaster Temporary Settlement with High Building Density——Analysis Based on the Questionnaire in Dujiangyan after Wenchuan Earthquake	94-97	Jun Zhang, Xingchen Liu, Yaping Gao
The Research of PGE System and Method of Urban Green Residential Environmental Performance in Severe Cold and Cold Regions	91-95	Yiming Yuan, Xiang Liu, Jiaxiong Xu, Wang Li
Numerical Simulation of Coughed Droplets in the Air-Conditioning Room	88-92	Zhihong Wang, Xingchen Liu, Yong Huang
Assessment of Human Health in Northeast China Apartments with Mould Growth	85-89	Yiming Yuan, Xiang Liu, Junyao Su, Yaping Gao
Performance Analysis of Four Types of Adsorbent Beds in a Double-Adsorber Adsorption Refrigerator	82-86	Yu Zhang, Zhihua Gao, Guihong Zhang, Shenglan Liu
Effects of Exposure to Carbon Dioxide and Human Bioeffluents on Cognitive Performance	79-83	Xiaohui Li, Zhihua Gao, Guihong Zhang, Shenglan Liu
Study on the Influence of the Street Side Buildings on the Pollutant Dispersion in the Street Canyon	76-79	Yiming Yuan, Xiang Liu, Junyao Su, Yaping Gao
Field Measurement of CO2 Level in General Hospital wards in Harbin	73-76	Gaofeng Wang, Wei Wang, Xiaoyan Sun, Yaping Gao
The Impact of Relative Humidity on the Emission Behaviour of Formaldehyde in Building Materials	70-74	Shixuan Li, Jiashan Guo, Yaping Gao
Impedance, a New Concept of Determining Ideal Thermophysical Properties of Building Wall and its Application	66-70	Yuefang Cai, Zekun Yang, Yaping Gao
Energy Efficiency Measure for a High-tech Campus in California Based on Total Performance Oriented Optimization and Retrofit (TPOR)	61-65	Yujie Zhang, Wei Zhang, Yong Huang, Li
Measurement of the Thermal Environment in Temporary Settlements with High Building Density after 2008 Wenchuan Earthquake in China	58-61	Xiaohui Li, Zhihua Gao, Guihong Zhang, Shenglan Liu
Architecture and Planning Design Strategy of Post-disaster Temporary Settlement with High Building Density——Analysis Based on the Questionnaire in Dujiangyan after Wenchuan Earthquake	55-58	Jun Zhang, Xingchen Liu, Yaping Gao
The Research of PGE System and Method of Urban Green Residential Environmental Performance in Severe Cold and Cold Regions	52-56	Yiming Yuan, Xiang Liu, Junyao Su, Yaping Gao
Numerical Simulation of Coughed Droplets in the Air-Conditioning Room	49-52	Zhihong Wang, Xingchen Liu, Yong Huang
Assessment of Human Health in Northeast China Apartments with Mould Growth	46-50	Yiming Yuan, Xiang Liu, Junyao Su, Yaping Gao
Performance Analysis of Four Types of Adsorbent Beds in a Double-Adsorber Adsorption Refrigerator	43-47	Yu Zhang, Zhihua Gao, Guihong Zhang, Shenglan Liu
Effects of Exposure to Carbon Dioxide and Human Bioeffluents on Cognitive Performance	40-44	Xiaohui Li, Zhihua Gao, Guihong Zhang, Shenglan Liu
Study on the Concentration and Distribution of the Aerobics Bacteria in Indoor Air in the Lecture Theatres at Tarbei Chengdu University	37-41	Shuang Li, Jiajia Li, Xingcheng Liu, Jin Kang
Study on the Influence of the Street Side Buildings on the Pollutant Dispersion in the Street Canyon	34-38	Jiaojiao Dou, Xiaoyan Sun, Jiaxiong Xu, Wang Li
Study of Experimental Study on the Radiant Cooling Load of Floor Based on the Radiant Time Series Method	31-34	Yiming Yuan, Xiang Liu, Junyao Su, Yaping Gao
Field Measurement of CO2 Level in General Hospital wards in Harbin	28-31	Gaofeng Wang, Wei Wang, Xiaoyan Sun, Yaping Gao
The Impact of Relative Humidity on the Emission Behaviour of Formaldehyde in Building Materials	25-29	Shixuan Li, Jiashan Guo, Yaping Gao
Impedance, a New Concept of Determining Ideal Thermophysical Properties of Building Wall and its Application	22-26	Yuefang Cai, Zekun Yang, Yaping Gao
Energy Efficiency Measure for a High-tech Campus in California Based on Total Performance Oriented Optimization and Retrofit (TPOR)	19-23	Yujie Zhang, Wei Zhang, Yong Huang, Li
Measurement of the Thermal Environment in Temporary Settlements with High Building Density after 2008 Wenchuan Earthquake in China	16-19	Xiaohui Li, Zhihua Gao, Guihong Zhang, Shenglan Liu
Architecture and Planning Design Strategy of Post-disaster Temporary Settlement with High Building Density——Analysis Based on the Questionnaire in Dujiangyan after Wenchuan Earthquake	13-16	Jun Zhang, Xingchen Liu, Yaping Gao
The Research of PGE System and Method of Urban Green Residential Environmental Performance in Severe Cold and Cold Regions	10-14	Yiming Yuan, Xiang Liu, Junyao Su, Yaping Gao
Numerical Simulation of Coughed Droplets in the Air-Conditioning Room	7-10	Zhihong Wang, Xingchen Liu, Yong Huang
Assessment of Human Health in Northeast China Apartments with Mould Growth	4-8	Yiming Yuan, Xiang Liu, Junyao Su, Yaping Gao
Performance Analysis of Four Types of Adsorbent Beds in a Double-Adsorber Adsorption Refrigerator	1-5	Yu Zhang, Zhihua Gao, Guihong Zhang, Shenglan Liu
Effects of Exposure to Carbon Dioxide and Human Bioeffluents on Cognitive Performance	1-5	Xiaohui Li, Zhihua Gao, Guihong Zhang, Shenglan Liu
Abstract

Levels of Adaptation in Dry-Hot and Dry-Cold Climate Zone and Its Implications for Indoor Thermal Environment
Original Research Article
Pages 159-165
Yinan Ren, Lin Yang, Xiangdong Zhang, Xingqun Nan, Di Zhang
Abstract | PDF (506 K)

Analysis of Human Adaptive Levels in Different Kinds of Indoor Thermal Environment
Original Research Article
Pages 167-173
Yan Zhang, Lin Yang, Xingqun Nan, Yinan Ren, Yu Liu
Abstract | PDF (776 K)

The Influence of Urban Geometry on Thermal Comfort and Energy Consumption in Residential Buildings of Hot-Arid Climate, Assiut, Egypt
Original Research Article
Pages 175-182
Andrzej Mazur, M. A. Hany
Abstract | PDF (854 K)

Simplified Model of HVAC Load Prediction for Urban Building Districts
Original Research Article
Pages 183-189
Ali He, Shiyao Chen, Shi Li, Kai Liang, Ka
Abstract | PDF (1.19 MB)

Research of Individual Physiological Parameters Differences and Related Body Characteristics in Hot-dry and Warm-Hot Desert Climates
Original Research Article
Pages 191-197
Shi Liu, Li Lei, Jie Li, Hui Yu, Peng Bai
Abstract | PDF (986 K)

Features of Indoor Human Surface Chemical Reaction under Depositional Ventilation
Original Research Article
Pages 199-205
Jie Wang, Yong Chen, Xing Liang
Abstract | PDF (960 K)

Infiltration Characteristic of Outdoor Fine Particulate Matter (PM2.5) for the Window Gaps
Original Research Article
Pages 207-213
Yi Shian, Chen Chen, Ping Wang, Yaling Wang, Ziquan Chen, Li Zhao
Abstract | PDF (776 K)

Performance Testing of Air Curtain in Residential Range Hoods
Original Research Article
Pages 215-221
Shihui Guo, Jie Pan, Li Liu, Ji Ruan, Yi Yu
Abstract | PDF (1.1 MB)

The Influence of the Deteriorations in Living Environments on the Health of Disaster Victims Following a Natural Disaster
Original Research Article
Pages 223-229
Yang Song, Shuxin Zhou, Liu Rong, Yang Feng, Feng Liu
Abstract | PDF (776 K)

Investigation of Subjectively Assessed Health Symptoms and Human Thermal Perceptions in Transient Thermal Environments
Original Research Article
Pages 231-237
Kun Gao, Zhiyuan Chen, Da Yi
Abstract | PDF (986 K)

Experimental Study on the Influence of a Ventilated Window for Indoor Air Quality and Indoor Thermal Environment
Original Research Article
Pages 239-245
Wenfeng Ji, Hangzhou Zhang, Jinhua He
Abstract | PDF (1.19 MB)

A Case Study on Optimization of Building Design Based on CFD Simulation Technology of Wind Environment
Original Research Article
Pages 247-253
Wenxing Suo, Wei Li, Xu Piao
Abstract | PDF (1.1 MB)

Simulation of Particles Diffusion Characteristics in the Ventilation Out of the Air Conditioning System
Original Research Article
Pages 255-261
Xianbin Wu, Yang Li, Weihua Xu
Abstract | PDF (986 K)

Numerical Simulation for Gas Diffusion in Fractal-Reconstructed Anisotropic Porous Building Materials
Original Research Article
Pages 263-269
Gao Y. Y. Zhang, Qian Chen, Da Xu
Abstract | PDF (986 K)

Design Analysis of Power Recovery Systems for Cabin Exhaust Air
Original Research Article
Pages 271-277
Xutian H. Lu, Shuqin Chen
Abstract | PDF (986 K)

Study on the Heating Modes in the Hot Summer and Cold Winter Region in China
Original Research Article
Pages 279-285
Xuefeng C. Ji, Shifu Zhou, Wei Wang
Abstract | PDF (986 K)

Research on Energy-Saving of New Type Low-Temperature Air Flow Dehumidification System Based on Energy Analysis Method
Original Research Article
Pages 287-293
Wen Gao, Xu Chen, Shengguo Li, Jin Zhou
Abstract | PDF (986 K)

Variable Importance Analysis for Urban Building Energy Assessment in the Presence of Correlated Factors
Original Research Article
Pages 295-301
Sheng Yang, Wei Tian, Xiaofang He, Qingming Meng, Luqiu Yang
Abstract | PDF (986 K)

Comparative Study on Machine Learning for Urban Building Energy Analysis
Original Research Article
Pages 303-309
Liu Xin, Wei Tian, Elizabeth A. Brown, Ruchai Chouwary, Shengguo Li, Meng Yang
Abstract | PDF (986 K)

Study on the Heat Transfer Characteristics of Compact Heat Exchanger Based on Experimental Data
Original Research Article
Pages 311-317
Xiaoping Xu, Shuguang Zhang, Peng Liu, Chen Wang, Hao Yang, Chuan Yang
Abstract | PDF (986 K)

A Novel Internal Cooling Radiator Used for Supplemental Heat Sink of Active Cooling System
Original Research Article
Pages 319-325
Yi Lin, Hongzhang Wang, Yulin Gu, Zhanglei Peng
Abstract | PDF (986 K)

Optimization Analysis on the Thermal Performance of the Small-scaled Biogas Fermentation Tank Based on Annual Energy Consumption
Original Research Article
Pages 327-333
Shuang Zhou, Wei Tang, Shunping Li, Jie Yao, Na Zhao, Mao Lu
Abstract | PDF (986 K)

Energy Savings and Cost-benefit Analysis of the New Commercial Building Standard in China
Original Research Article
Pages 335-341
Yanfeng Wang, Lei Wang, Yuling He, Ze Liu, Ziqiang Chen, Li Zhao
Abstract | PDF (986 K)
Title	Authors	Pages	Published Date
Physical Environment of Built Buildings in Rural Area of Southwest China	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	501-505	2015
Analysis on All-Occurring Solar Absorption Refrigeration System with Heat Pump System	Zhihua Zhu, Xueli Jin, Qinglin Meng	410-414	2015
Research on the Numerical Simulation of Aircraft Cabin Smoldering	Zhihua Zhu, Xueli Jin, Qinglin Meng	415-422	2015
Thermal Comfort and Thermal Adaptation between Residential and Office Buildings in Severe Cold Area of China	Zhihua Zhu, Xueli Jin, Qinglin Meng	423-429	2015
Analysis of Energy Flow Path Model Based on Spatial Layout Features of Buildings	Zhihua Zhu, Xueli Jin, Qinglin Meng	430-437	2015
Effects of Environment Control System Operation on Dust Releasing	Zhihua Zhu, Xueli Jin, Qinglin Meng	444-450	2015
On-Site Measurement of Asbestos Fungi in Shanghai Residences	Zhihua Zhu, Xueli Jin, Qinglin Meng	451-458	2015
Photocatalytic Decomposition of Formaldehyde by Combination of Ozone and AC Network with UV365nm, UV254nm and UV254+185nm	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	468-476	2015
Investigation of Ultrafine Particle Emissions of Desktop 3D Printers in the Clean Room	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	477-483	2015
Field Survey on Indoor Air Pollution Transport Path in Rural House in Northeast China	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	484-490	2015
Proposal on Low-Energy Consumption Cooling Mode with Ground Heat Exchanger and Terminal Radiator	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	491-497	2015
Field Survey on Indoor Air Pollution Transport Path in Rural House in Northeast China	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	498-504	2015
Study on Motion and Deposition of Particles in a Wind Tunnel	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	505-511	2015
Thermal Comfort in Naturally Ventilated Apartments in Surabaya, Indonesia	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	512-518	2015
The Effects of Courtyard on Indoor Thermal Conditions of Chinese Shophouse in Malacca	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	519-525	2015
Association between Home Environment and Allergies among Children in Beijing, China	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	526-532	2015
Survey Study on Health Effects Related with Indoor Environment of Residential Building during Winter Heating Period in Guizhou City	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	533-539	2015
Different Fuel Types and Heating Approaches Impact on the Indoor Air Quality of Rural Houses in Northern China	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	540-546	2015
Associations between Natural Ventilation for the Child’s Bedroom during Night and Childhood Asthma in Shanghai, China	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	547-553	2015
Investigation of Ultraviolet Particle Emissions of Desktop 3D Printers in the Clean Room	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	554-560	2015
Challenges for Modeling Energy Use in High-rise Office Buildings in Hong Kong	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	561-567	2015
Photocatalytic Decomposition of Formic Acid by Combination of Ozone and AC Network with UV365nm, UV254nm and UV254+185nm	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	568-574	2015
Performance Analysis of Solar Dewatering Evaporative Cooling for a Commercial Building under Different Australian Climatic	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	575-581	2015
PCM-based High-density Thermal Storage Systems for Residential and Small Commercial Retrofit Applications	Cong Yu, Wei Pan, Yisong Zhao, Yuguo Li	582-588	2015
Evaluation of Retrofit of One Existing Residential Building in North China: Energy Saving, Environmental and Economic Benefits

Abstract

Xiaojing Zhang, Pawel Wargocki, Zhiwei Lian

Pages 138-142

Effects of Exposure to Carbon Dioxide and Human Bioeffluents on Cognitive Performance

Abstract

L.Q. Zhu, Z.W. Gong, B.X. Ou, C.L. Wu

Pages 129-137

Performance Analysis of Four Types of Adsorbent Beds in a Double-Adsorber Adsorption Refrigerator

Abstract

Liang Yu, Wei Gao, Zhenbo Sun, Ran Ding, Guohui Feng

Pages 114-121

Assessment of Human Health in Northeast China Apartments with Mould Growth

Abstract

Zishuo Huang, Hang Yu, Zhenwei Peng, Zhiyuan Liu

Pages 82-88

Secondary Energy Trading Markets in Community Scale, Description and Implementation

Abstract

Y. Lin, M. Liu, W. Yang

Pages 67-74

Impedance, a New Concept of Determining Ideal Thermophysical Properties of Building Wall and its Application

Abstract

Shaodan Huang, Jianyin Xiong, Yinping Zhang

Pages 59-66

The Impact of Relative Humidity on the Emission Behaviour of Formaldehyde in Building Materials

Abstract

Qi Zhou, Zhengfei Lyu, Hua Qian, Jinwei Song, Viola C. Möbs

Pages 52-58

Chen Huang, Tianyu Bai, Jiao Cai, Liugen Lv, Jianchang Chen, Li Li

Pages 45-51

Hao Zhang, Yuxiang Wang, Shun Li, Huajun Tang, Xueting Liu, Yuancheng Wang

Pages 33-36

Zhengrong Li, Junling Ju, Weipeng Xu

Pages 27-32

Yong Liu, Yuqiao Zhang, Shengqiang Gong, Zhenfei Wang, Huiting Zhang

Pages 11-18

Application of Lorenz Curve and Gini Index in the Analysis of Load Feature in HVAC Systems

Abstract

Pages 3-10

Evaluation on Retrofit of One Existing Residential Building in North China: Energy Saving, Environmental and Economic Benefits

Original Research Article

Yuexia Sun, Jingjing Pei

Pages 1-2

Preface

Yousef H. El-Qadi, Ariel Prieto-Rivera

PDF (517 K)

Chinese original research article

Liu Xia, Suo Yanyan, Man Huimin, Liao Longchao, Wang Yi

Abstract

PDF (509 K)

Abstract

PDF (209 K)

Abstract

PDF (171 K)

Abstract

PDF (176 K)

Abstract

PDF (111 K)

Abstract

PDF (177 K)

Abstract

PDF (188 K)

Abstract

PDF (187 K)

Abstract

PDF (188 K)

Abstract

PDF (185 K)

Abstract

PDF (185 K)
Abstract	PDF (200 K)
Levels of Adaptation in Dry-Hot and Dry-Cold Climate Zone and Its Implications in Evaluation for Indoor Thermal Environment Original Research Article
Pages 69-76
Yiwen Ren, Lin Yang, Shuang Zheng, Kaiping Song, Wenhao He
Abstract | PDF (108 K)
---|---
Analysis of Human Adaptive Levels in Different Kinds of Indoor Thermal Environment Original Research Article
Pages 105-114
Shuang Zheng, Lin Yang, Shuang Ren, Yulan Li
Abstract | PDF (205 K)
---|---
The Influence of Urban Geometry on Thermal Comfort and Energy Consumption in Residential Building of Hot And Cold Climate Assess Egypt Original Research Article
Pages 109-116
Ahd Sallam-Hassan Abdullah
Abstract | PDF (209 K)
---|---
Simplified Model of HVAC Load Prediction for Urban Building Districts Original Research Article
Pages 123-130
Ali He, Shuang Chen, ShiLi Li, Ku Ling Kan
Abstract | PDF (210 K)
---|---
Research of Individual Physiological Parameters Difference and Revised Body Characteristic Index in Hot-dry and Warm-Hot Climate Original Research Article
Pages 138-147
Shi Le, Lixin J., Huaja Peng
Abstract | PDF (205 K)
---|---
Features of Window Human Surface Chemical Reaction under Different Ventilation Original Research Article
Pages 152-158
Jie Wang, Yang Chen, Sun Wang
Abstract | PDF (106 K)
---|---
Infiltration Characteristic of Outdoor Fine Particulate Matter (PM2.5) for the Window Gap Original Research Article
Pages 159-166
Yiyi Fan, Zhen Chao, Ping Wang, Yang Ping, Zuo Qing Chen, Li Zhan
Abstract | PDF (718 K)
---|---
Performance Testing of Air Curtains in Residential Range Hoods Original Research Article
Pages 172-179
Ming Chen, Jie Fu, Long Sun, Jie Fu, Rui Ren
Abstract | PDF (209 K)
---|---
The Influence of the Deteriorations in Living Environments on the Health of Disaster Victims Following a Natural Disaster Original Research Article
Pages 192-207
Yan Wang, Shuqing Deng, Li Wang, Minghong Yang, Zelin Long
Abstract | PDF (197 K)
---|---
Investigation of Subjectively Assessed Health Symptoms and Human Thermal Perceptions in Transient Thermal Environments Original Research Article
Pages 208-215
Jing Ren, Zhenkai Chen, Xin Zhan
Abstract | PDF (503 K)
---|---
Experimental Study on the Influence of a Ventilated Window for Indoor Air Quality and Indoor Thermal Environment Original Research Article
Pages 217-224
Wenjing Ju, Xiangying Zhang, Jiewen He
Abstract | PDF (204 K)
---|---
A Case Study on Optimization of Building Design Based on CFD Simulation Technology of Wind Environment Original Research Article
Pages 224-231
Wenqian Sun, ShiLe Li, Yi Fei
Abstract | PDF (118 K)
---|---
Simulation of Particle Diffusion Characteristics in the Ventilation Out of the Air Conditioning System Original Research Article
Pages 233-240
Shi Xi Chen, Sheng Yang, Yan Li, ShiLe Li
Abstract | PDF (216 K)
---|---
Numerical Simulation for Gas Diffusion in Fractal Reconstructed Anisotropic Porous Building Materials Original Research Article
Pages 242-249
Qian Hu, Zhenzhen Chen, Bai Su
Abstract | PDF (307 K)
---|---
Design Analysis of Power Recovery Systems for Cabin Exhaust Air Original Research Article
Pages 250-255
Han Yang, Xingjuan Zhang, Chao Wang, Chunxin Yang
Abstract | PDF (206 K)
---|---
Study on the Heating Modes in the Hot Summer and Cold Winter Region in China Original Research Article
Pages 256-263
Yuefen Gao, Jiawen Wu, Yongzhao Cheng
Abstract | PDF (209 K)
---|---
Comparative Study on Machine Learning for Urban Building Energy Analysis Original Research Article
Pages 264-270
Liu Wei, Wei Tian, Elisabete A. Silva, Ruchi Choudhary, QingXin Meng, Song Yang
Abstract | PDF (206 K)
---|---
Study on the Heat Transfer Characteristics of Compact Heat Exchanger Based on Experimental Data Original Research Article
Pages 272-278
Shanghai Xu, Shiyong Zhang, Peng Hu, Chaos Wang, Han Yang, Chuan Yang
Abstract | PDF (203 K)
---|---
Variable Importance Analysis for Urban Building Energy Assessment in the Presence of Correlated Factors Original Research Article
Pages 279-286
Song Yang, Wei Tian, Yan Jie Yang, Qingming Meng, Lu Min
Abstract | PDF (307 K)
---|---
A Novel Natural Cooling Radiator Used for Supplemental Heat Sink of Active Cooling System Original Research Article
Pages 287-292
Yi Fan, Yeming Yang, Youwen Du, Zhiling Fang
Abstract | PDF (206 K)
---|---
Optimum Analysis on the Thermal Performance of the Small-scaled Biogas Fermentation Tank Based on Annual Energy Consumption Simulation Original Research Article
Pages 293-299
Lin Yang, Shuang Zheng, Kaiping Song, Wenhao He
Abstract | PDF (218 K)
---|---
Energy Savings and Cost-benefit Analysis of the New Commercial Building Standard in China Original Research Article
Pages 301-308
Shuang Ren, Lin Yang, Shuang Zheng, Yulan Li
Abstract | PDF (208 K)
---|---
Study on Ground-Test Simulation Method of the Ram Air for Commercial Airplanes’ Environmental Control System Original Research Article
Pages 309-316
Zhi Wei, Xingxiang Zhang, Chao Wang, Han Yang, Chuan Yang
Abstract | PDF (223 K)
---|---
Experimental Investigation on Indoor/Outdoor PM2.5 Concentrations of an Office Building Located in Guangzhou Original Research Article
Pages 317-324
Yuefen Gao, Jiawen Wu, Yongzhao Cheng, Yi Fei, Zuo Qing Chen, Li Zhan
Abstract | PDF (307 K)
Abstract

Performance Analysis of Solar Desiccant-Evaporative Cooling for a Commercial Building under Different Australian Climates

Abstract

Research on the Numerical Simulation of Aircraft Cabin Smokin...
The 9th International Symposium on Heating, Ventilation, and Air Conditioning (ISHVAC) and The 3rd International Conference on Building Energy and Environment (COBEE)

July 12-15, 2015
Tianjin, China

Organized by
Tianjin University
Co-Organized by
Tsinghua University
Dalian University of Technology
Purdue University
University of Colorado at Boulder

First Announcement and Call for Papers
INVITATION

Welcome to ISHVAC-COBEE 2015, Tianjin, China

The ISHVAC conference series was initiated by Tsinghua University in 1991. It is the premier international HVAC conference initiated in China and has played a significant role in the development of HVAC and indoor environment research and industry in China.

The COBEE conference series was initiated by Tianjin University and Dalian University of Technology in 2008. This conference aims to provide a platform for discussing energy and environmental issues and for initiating collaboration among building engineers, environmental scientists, architects, facility managers, and policy makers.

The ISHVAC-COBEE 2015 conference will be held in Tianjin, China. It will be an exclusive opportunity for building engineers, environmental scientists, architects, facility managers, and policy makers to share their experience. It will provide an excellent forum for learning the state-of-art applications for indoor/outdoor environment and energy research by the participants from all over the world. In this beautiful city, you will be attracted by the charming scenery, profound culture and welcoming people.

China is one of the main manufacturers of HVAC equipment and a famous energy consumption country. In 2013, the output value of HVAC products was 560 billion RMB, which shows an increase of nearly 8% compared with that in 2012. Among the total energy consumption, the building energy consumption accounts for nearly 30%, of which 65% is HVAC energy consumption and the data ranked first in the world. Therefore, the significance of this conference is to learn how to promote the advancement of HVAC technology, combined with the gradual improvement of building energy consumption and the environment.

We look forward to meeting you in Tianjin!

President of ISHVAC-COBEE 2015
Junjie Liu, Ph.D.
Professor, Tianjin University
PAPER TOPICS

A. HVAC
1. Building energy demand and energy performance of buildings, systems, and components
2. Air cleaning and filtration for high load and low energy consumption
3. Passive heating, cooling, and renewable energy for buildings
4. Advanced or innovative HVAC&R systems and system components
5. Integration of technologies and tools for HVAC system design and operation
6. Intelligent buildings and advanced control techniques
7. Solar cooling and refrigeration

B. Built Environment and Energy
1. Advanced or innovative building envelopes, energy conservation materials, and indoor environmental techniques
2. Cabin and other semi-open space environments and their energy consumption
3. Building ventilation, infiltration, and air distribution
4. Computer tools and experimental techniques for analyzing building energy and built environments assessments
5. Retrofit and optimal operation of the building energy systems
6. Influence of climate change on building energy and environment
7. Public policies related to building energy and environment
8. Simulations and real energy consumption
9. Actual energy consumption of high performance buildings
10. The role of commissioning

C. Urban/Indoor Environment and Health
1. Indoor and outdoor air quality and its health impact related to built environment
2. Indoor air quality in urban area with heavy ambient air pollution
3. Health and productivity in indoor environment
4. Indoor and outdoor lighting, lighting control, and visual comfort
5. Thermal comfort and built environments
6. Sustainable and advanced built environments
IMPORTANT DATES

Abstract Submission Deadline: December 31, 2014
Abstract Accept/Reject Notification: February 1, 2015
Full Paper/Extended Abstracts Submission Deadline: April 1, 2015
Paper Accept/Reject Notification: April 30, 2015
Early-bird Registration: before May 20, 2015
Papers in Final Format: May 30, 2015
Conference Opening Date: July 12, 2015

CALL FOR PAPERS

Abstract Submissions

You are invited to submit one-page abstracts. Each abstract should be submitted separately and should contain the following information:

1. Topic code
2. Title of the paper
3. Full name of the author(s)
4. Affiliation of the author(s)
5. Mailing address and e-mail address of the corresponding author

We also accept extended abstracts.
All abstracts must be submitted online via conference website www.cobee.org. The abstract template is available on the conference website.

Forum/Workshop Submissions

These workshops are expected to discuss broadly the future science of indoor air, new and emerging directions of building energy applications.

Forums will be 60 minutes long and usually consist of a panel or sequence of invited speakers on a specific subject or that address prepared questions on a subject.
Workshops will be 120 minutes long, and usually consist of invited presentations
and round-table discussions with audience participation.

Each proposal should contain the following information:

1. Title of the forum/workshop
2. Full name, affiliation and email address of the facilitators, the panel/presenters
3. The goal and a bulleted list of key issues to be discussed or presented (200 words or less)
4. The importance of the workshop/forum to ISHVAC-COBEE 2015 (100 words or less)

EXHIBITION

An exhibition will be held concurrently with the ISHVAC-COBEE 2015 conference and will be located at the same venue. The exhibition is to show products, software, and information related to building energy and environment to the conference participants. Exhibition spaces in the conference venue will be available at reasonable price. Exhibitors are encouraged to submit requests for more information to ishvac_cobee@tju.edu.cn.

LANGUAGE AND PUBLICATIONS

The official language of the conference is English.

All accepted papers will be published in the conference proceedings. Selected papers from the conference will be expanded and published as special issues by the following journals:

Energy and Buildings
HVAC&R Research
Building Simulation

.....

ORGANIZERS, SPONSORS/SUPPORTERS

Conference Organizing Committee

President

Junjie Liu (Tianjin University)
Vice Presidents
Zhiqiang (John) Zhai (University of Colorado at Boulder)
Tengfei (Tim) Zhang (Dalian University of Technology)

Co-Chairs
Yuexia Sun (Tianjin University)
Hejiang Sun (Tianjin University)

Members
Guanyi Chen (Tianjin University)
Qingyan Chen (Purdue University)
Yi Jiang (Tsinghua University)
Zhengwei Long (Tianjin University)
Nan Lu (Tianjin University)
Jingjing Pei (Tianjin University)
Xudong Yang (Tsinghua University)
Shijun You (Tianjin University)
Yingxin Zhu (Tsinghua University)

International Advisory Committee
Chungyoon Chun Yonsei University Korea
Richard Corsi University of Texas at Austin USA
Shinsuke Kato University of Tokyo Japan
Kwang-Woo Kim Seoul National University Korea
Angui Li Xi’an University of Architecture and Technology China
Baizhan Li Chongqing University China
Yuguo Li Hongkong University China
Zhiwei Lian Shanghai Jiaotong University China
Farhad Memarzadeh National Institutes of Health USA
Peter Nielsen Aalborg University Denmark
Bjarne Olesen Technical University of Denmark Denmark
Andrew Persily National Institute of Standards and Technology China
Jan Sundell Tsinghua University China
Jelena Srebric University of Maryland USA
Shinichi Tanabe Waseda University Japan
Branislav Todorovic University of Belgrade Serbia
Marijia Todorovic University of Belgrade Serbia
Charles Weschler Rutgers, The State University of New Jersey USA
Hiroshi Yoshino Tohoku University Japan
Name	Institution	Country
Jianing Zhao	Harbin Institute of Technology	China
Guoqiang Zhang	Hunan University	China
Xu Zhang	Tongji University	China
Hazim Awbi	University of Reading	UK
Costas Balaras	National Observatory of Athens	Greece
Jamie Bennett	Center for Disease Control and Prevention	USA
Zhuolun Chen	South China University of Technology	China
Craig Christensen	National Renewable Energy Laboratory	USA
Derek	University of Reading	UK
Peter Ellis	Big Ladder Software	USA
Ellen Franconi	Rocky Mountain Institute	USA
Yanfeng Gong	Nanjing University of Technology	China
Lixing Gu	Florida Solar Energy Center	USA
Fariborz Haghighat	Concordia University	Canada
Guoqing He	Zhejiang University	China
Hugo Hens	Katholieke Universiteit	Belgium
Jan Hensen	Eindhoven University	Netherlands
Abel Hernández-Guerrero	Abel Hernández-Guerrero	Mexico
Tianzhen Hong	Lawrence Berkeley National Laboratory	USA
Shih-Cheng Hu	National Taipei University of Technology	Taiwan
Joe Huang	White Box Technologies	USA
Ezzat Khalifa	Syracuse University	USA
Joseph Lam	City University of Hong Kong	China
Xianting Li	Tsinghua University	China
Borong Lin	Tsinghua University	China
Chao-Hsin Lin	The Boeing Company	USA
John Lin	Hong Kong City University	China
John Little	Virginia Tech	USA
John Mardaljevic	De Montfort University	UK
Lupita D. Montoya	University of Colorado Boulder	USA
Jianlei Niu	Hong Kong Polytechnic University	China
Atila Novoselac	University of Texas at Austin	USA
Menghao Qin	Nanjing University	USA
Anu Ramaswami	University of Colorado Denver	USA
Sue Reilly	Group 14 Engineering, Inc.	USA
Claude-Alain Roulet Swiss Federal Institute of Technology Switzerland
Mattheos Santamouris University of Athens Greece
Stefano Schiavon University of California, Berkeley USA
Chandra Sekhar National University of Singapore Singapore
Gang Tan University of Wyoming USA
Kwok Wai Tham National University of Singapore Singapore
Marija Todorovic University of Belgrade Serbia
Yasuo Utsumi Sendai National College of Technology Japan
Fu-jen Wang National Chin-Yi University of Technology Taiwan
Leon Wang Concordia University Canada
Xinlei Wang University of Illinois at Urbana-Champaign USA
Zhao Wang South China University of Technology China
Zhaojun Wang Harbin Institute of Technology China
Peter Wouters Belgian Building Research Institute Belgium
Peng Xu Shanghai Tongji University China
Tim Xu Lawrence Berkeley National Laboratory USA
Runming Yao University of Reading UK
Guoqiang Zhang Hunan University China
Guoqiang Zhang Aarhus University Denmark
Tim Zhang Dalian University of Technology China
Jianshun (Jensen) Zhang Syracuse University USA
Nan Zhou Lawrance Berkeley National Laboratory USA
Wangda Zuo Lawrance Berkeley National Laboratory USA

Sponsors/Supporters (Tentative)

Information for sponsors/supporters is available at www.cobee.org
INFORMATION on Tianjin and Tianjin University

Tianjin is a charming seaport city where the famous river Hai river flows through, with a lot of sunshine, beautiful landscapes, gourmet seafood, and friendly people. You can take a ride on 'The Tianjin Eye'; the only Ferris wheel in the world built on a bridge. At the highest point, you can have a full view of the surrounding scenery. You can take the sightseeing boat in the Hai River leisurely and enjoy the beautiful exotic architectural style. Tianjin has delicious seafood and greasy Goubuli Steamed Bun to tempt your stomach. You can listen to the Chinese comic dialog to enjoy the Chinese traditional art and also can feel the humor of Tianjin native. Walking on Five Great Avenues which includes Chongqing road, Changde road, Dali road, Munan road and Machang road, you will find the colored houses are not only the relics of the history, but also the city logo and a coagulation-art.

Hai River and the "Tianjin Eye" Goubuli Steamed Bun

Tianjin is located on the plain of North China and convergence of five tributaries. It faces the Bo Sea in the east and is adjacent to Yan Mountain. As the mother river of Tianjin, Hai River has nourished her children for many years. If the Hai River is the necklace of Tianjin, then the bridges over it are the jewels embellished in the necklace. The bridges on the Hai River have hold the historical memories and witnessed the development of Tianjin. Beautiful Tianjin welcomes you.

The map of Tianjin
Tianjin University, formerly known as Peiyang University, is China's first modern university. Based on the motto of "seek truth from facts", spirit of "rigorous scholarship" and tradition of "patriotic devotion", Tianjin University, a national key university under the direct supervision of the Ministry of Education, enjoys a worldwide reputation. It is one of the first universities entering into national "211 Project", "985 Project", "2011 Plan", "111 plan", and awarded the title of "Excellent Engineer Education And Training Plan ", and member of "University Of Excellence Alliance ".

The gate of Tianjin University

The newly established campus, known as the Northern Park campus, with a total construction area of 1.55 million square meters, is located in the Tianjin Haihe Education Park in the middle reaches of the Haihe River. The project will be basically completed in November 2015. Colleges will overall relocate to the new campus, where the main educational and research work will be conducted. And the number of students will reach 18,000.