Synthesis and characterization of Schiff's bases of sulfamethoxazole

Zainab Hussain1, Emad Yousif2*, Ahmed Ahmed2 and Ali Altaie1

Abstract
Background: Schiff’s bases are excellent ligands which are synthesized from the condensation of primary amines with carbonyl groups.
Findings: The classical reaction for the synthesis of Schiff's bases in an ethanolic solution and glacial acetic acid as a catalyst was followed in the synthesis of substituted sulfamethoxazole compounds.
Conclusions: Some Schiff's bases containing sulfamethoxazole nucleus have been synthesized and characterized. The present compounds are hoped to be applied in the photostability of PVC.

Keywords: Schiff bases; Sulfamethoxazole; Synthesis

Findings
Background
Schiff’s bases are an important class of organic compounds [1]. They were first reported by Hugo Schiff in 1864 [2]. Schiff’s bases are condensation products of primary amines with carbonyl compounds. The common structural feature of these compounds is the azomethine group with the general formula RHC = N-R1, where R and R1 are alkyl, aryl, cycloalkyl, or heterocyclic groups [1]. Structurally, a Schiff’s base (also known as imine or azomethine) is a nitrogen analogue of an aldehyde or ketone in which the carbonyl group (>C = O) is replaced by an imine or azomethine group. Schiff’s bases have also been shown to exhibit a broad range of biological activities, including antifungal, antibacterial, antimalarial, antiproliferative, anti-inflammatory, antiviral, and anti-pyretic properties [3,4]. Imine or azomethine groups are present in various natural, naturally derived, and nonnatural compounds. The imine group present in such compounds has been shown to be critical to their biological activities [5-7]. Schiff's bases are important compounds owing to their wide range of industrial applications [8]. Schiff’s bases are used in the photostabilization of poly (vinyl chloride) polymers against photodegradation by ultraviolet radiation [9-11] and are also used to improve poly(methyl methacrylate) from degradation [12] and to prevent polystyrene from photodegradation by their addition to polymer films [13,14].

Methods
Fourier transform infrared (FTIR) spectra were registered on a SHIMADZU (8300, Kyoto, Japan) infrared spectrophotometer, using KBr discs. Proton nuclear magnetic resonance (1H-NMR; 600 MHz) spectra were obtained at room temperature with Bruker equipment (Madison, WI, USA) using TMS as an internal standard in dimethyl sulfoxide (DMSO). Melting points were recorded using hot-stage Gallenkamp melting point apparatus (Loughborough, UK) and were uncorrected. Analytical grade chemicals (BDH, G.C.C., Hopkin & William Corporation, Poole, UK) were used throughout the project.

Results and discussion
The synthesis of Schiff’s bases with different specific aldehydes in ethanol as a solvent and catalyst (glacial acetic acid) resulted in five new series of Schiff’s bases with the general formula RHC = N-R1. Here R1 = sulfamethoxazole and R = benzaldehyde, 4-bromobenzaldehyde, 2-hydroxybenzaldehyde (salicylaldehyde), 4-N,N-dimethylbenzaldehyde, and 3-nitrobenzaldehyde were synthesized by the reaction of sulfamethoxazole and substituted

* Correspondence: emad_yousif@hotmail.com
2Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
Full list of author information is available at the end of the article

© 2014 Hussain et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
aldehydes in ethanol (Scheme 1). Such compounds were characterized by different physicochemical techniques like melting point, elemental analysis, FTIR spectroscopy, and multinuclear NMR (1H).

Physical properties of the prepared Schiff’s bases
The physical properties of sulfamethoxazole and its derivatives including melting point, color, and elemental analysis are tabulated in Table 1.

The structure of the prepared Schiff’s bases was confirmed by infrared spectroscopy. The FTIR spectra of sulfamethoxazole and its prepared compounds, as shown in Table 2, showed that the band of NH₂ was found in sulfamethoxazole in the location 3,298 cm⁻¹ and then vanished. After that, the band of NH appeared in the prepared Schiff’s bases with different shifting from 3,250 to 3,287 cm⁻¹. The band of C=N for imine stretching vibration was also not found in sulfamethoxazole, and it

Scheme 1 Scheme of the preparation of Schiff’s bases from sulfamethoxazole. (1) 4-[(2-Hydroxy-benzylidene)-amino]-N-(5-methyl-isoxazol-3-yl)-benzene sulfonamide. (2) N-(5-Methyl-isoxazol-3-yl)-4-[(4-nitroox-benzylidene)-amino]-benzene sulfonamide. (3) 4-[(4-Dimethylamino-benzylidene)-amino]-N-(5-methyl-isoxazol-3-yl)-benzene sulfonamide. (4) 4-[(4-Bromo-benzylidene)-amino]-N-(5-methyl-isoxazol-3-yl)-benzene sulfonamide. (5) (N-(5-Methyl-isoxazol-3-yl)-4-[(3-nitro-benzylidene)-amino]-benzene sulfonamide.
Table 1 Physical data of the prepared compounds

Compounds	Color	MP (°C)	Elemental analysis, theoretical (actual)				
		% C	% H	% N	% O	% S	
(1)	Yellow	190 to 192	57.13	4.23	11.76	17.91	8.97
(2)	Brown	148 to 150	60.85	6.23	13.52	11.58	7.74
(3)	Orange	122 to 124	52.84	3.65	14.50	20.70	8.30
(4)	Light yellow	142 to 143	48.58	3.36	10.00	11.42	7.63
(5)	Orange	110 to 112	59.81	4.43	12.31	14.06	9.39

Table 2 FTIR spectroscopy for sulfamethoxazole and its derivatives

Compounds	\(\nu (\text{NH}_2)\) (cm\(^{-1}\))	\(\nu (\text{N-H})\) (cm\(^{-1}\))	\(\nu (\text{C=N})\) imine (cm\(^{-1}\))	\(\nu (\text{C=N})\) ring (cm\(^{-1}\))
Sulfamethoxazole	3,298	-	-	1,620
(1)	-	3,250	1,650	1,616
(2)	-	3,266	1,603	1,620
(3)	-	3,290	1,650	1,600
(4)	-	3,270	1,650	1,630
(5)	-	3,287	1,633	1,615

Table 3 UV spectroscopy for sulfamethoxazole and its derivatives

Compounds	Absorption bands (nm)	Assigned transition
Sulfamethoxazole	280	\(\pi \rightarrow \pi^{*}\)
(1)	282, 310	\(\pi \rightarrow \pi^{*}, \pi \rightarrow \pi^{*}\)
(2)	250, 360	\(\pi \rightarrow \pi^{*}, \pi \rightarrow \pi^{*}\)
(3)	270	\(\pi \rightarrow \pi^{*}\)
(4)	271	\(\pi \rightarrow \pi^{*}\)
(5)	270	\(\pi \rightarrow \pi^{*}\)

The attribution of the protons of the CH\(_3\) group, the singlet signal at \(\delta = 6.029\) ppm suggested the attribution of the proton of CH of the isoxazole ring, the multiplet signal at \(\delta = 6.743\) to 7.768 ppm suggested the attribution of the protons of two aromatic benzene rings, the singlet signal at \(\delta = 8.764\) ppm suggested the attribution of the proton of the CH = N group, the singlet signal at \(\delta = 9.352\) ppm suggested the attribution of the proton of the NH group, and the singlet signal at \(\delta = 10.525\) ppm suggested the attribution of the proton of the OH group.

Also, the \(^1H\)-NMR spectrum of compound (5) showed the following characteristic chemical shifts (DMSO as a solvent): the singlet signal at \(\delta = 2.200\) ppm suggested the attribution of the protons of the CH\(_3\) group, the singlet signal at \(\delta = 5.833\) ppm suggested the attribution of the proton of CH of the isoxazole ring, the multiplet signal at \(\delta = 6.743\) to 7.768 ppm suggested the attribution of the protons of two aromatic benzene rings, the singlet signal at \(\delta = 8.764\) ppm suggested the attribution of the proton of the CH = N group, the singlet signal at \(\delta = 9.352\) ppm suggested the attribution of the proton of the NH group, and the singlet signal at \(\delta = 10.525\) ppm suggested the attribution of the proton of the OH group.

The \(^1H\)-NMR spectrum of compound (1) showed the following characteristic chemical shifts (DMSO as a solvent): the singlet signal at \(\delta = 2.212\) ppm suggested the attribution of the protons of the CH\(_3\) group, the singlet signal at \(\delta = 6.029\) ppm suggested the attribution of the proton of CH of the isoxazole ring, the multiplet signal at \(\delta = 6.743\) to 7.768 ppm suggested the attribution of the protons of two aromatic benzene rings, the singlet signal at \(\delta = 8.764\) ppm suggested the attribution of the proton of the CH = N group, the singlet signal at \(\delta = 9.352\) ppm suggested the attribution of the proton of the NH group, and the singlet signal at \(\delta = 10.525\) ppm suggested the attribution of the proton of the OH group.

Experimental

A solution of sulfamethoxazole (0.001 mol) in absolute ethanol (30 ml) was slowly added to a solution of aldehyde (0.001 mol) in absolute ethanol (20 ml). The stirred reaction mixture was refluxed for 12 h. After cooling, a precipitate was formed which was collected by filtration, then washed with cold ethanol, and recrystallized from ethanol.

Table 4 \(^1H\)-NMR data of sulfamethoxazole and its derivatives

Compounds	CH\(_3\)	C-H isoxazole ring	Aromatic benzene rings	Imine	N-H	OH
(1)	2.212	6.029	6.743 to 7.768	8.764	9.352	10.525
(5)	2.200	5.833	6.789 to 7.749	8.698	9.602	-
Conclusion

Five Schiff’s bases: (1), (2), (3), (4), and (5), were synthesized as derivatives of sulfamethoxazole and characterized by UV, FTIR, and 1H-NMR spectroscopies and elemental analysis (CHNS).

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors acknowledge the Department of Chemistry, College of Science, Al-Nahrain University for their encouragement.

Author details

1Department of Chemistry, College of Science for Women, Baghdad University, Baghdad, Iraq. 2Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq.

Received: 5 January 2014 Accepted: 18 February 2014 Published: 28 February 2014

References

1. Arulmurugan S, Kavitha PH, Venkatraman RP (2010) Biological activities of Schiff base and its complexes: a review. Rasayan J Chem 3(3):385–410
2. Schiff H (1864) Mitteilungen aus dem universitats laboratory in Pisa: Eineneue reihe organischer basen. Justus Liebigs Ann Chem 131:118–119
3. Dhar DN, Taploo CL (1982) Schiff bases and their applications. J Sci Ind Res 41:501–506
4. Przybylski P, Huczýński A, Pyta K, Brzezinski B, Bartl F (2009) Biological properties of Schiff bases and azo derivatives of phenols. Curr Org Chem 13:124–148
5. Bringmann G, Dreyer M, Faber JH, Dalsgaard PW, Staerk D, Jaroszewski JW (2004) Ancistrotanzanine C and related 5,1'- and 7,3'-coupled naphthylisoquinoline alkaloids from Ancistrocladus tanzaniensis. J Nat Prod 67(5):743–748
6. Salimon J, Salih N, Ibraheem H, Yousif E (2010) Synthesis of 2-N-salicylidene-5-(substituted)-1,3,4-thiadiazole as potential antimicrobial agents. Asian J Chem 22(7):5289–5296
7. Guo Z, Xing R, Liu S, Zhong Z, Ji X, Wang L (2007) Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan. Carbohydr Res 342(10):1329–1332
8. Li Y, Yang ZS, Zhang H, Cao BJ, Wang FD (2003) Artemisinin derivatives bearing Mannich base group: synthesis and antimalarial activity. Bioorg Med Chem 11:4363–4368
9. Yousif E, Salih N, Salimon J (2011) Improvement of the photostabilization of PVC films in the presence of 2-N-salicylidene-5-(substituted)-1,3,4-thiadiazole. J Appl Polym Sci 120:2207–2214
10. Yousif E, Ahmed A, Mahnoud M (2012) New organic photostabilizers for rigid PVC against photodegradation. Lambert Academic, Saarbrücken
11. Yousif E (2012) Photostabilization of PVC: principles and applications. Lambert Academic, Saarbrücken
12. Yousif E, Salimon J, Salih N, Ahmed A (2012) Improvement of the photostabilization of PMMA films in the presence 2-N-salicylidene-5-(substituted)-1,3,4-thiadiazole. J King Saud University Sci 24:131–137
13. Yousif E, Salimon J, Salih N (2012) New stabilizers for polystyrene based on 2-N-salicylidene-5-(substituted)-1,3,4-thiadiazole compounds. J Saudi Chem Soc 16:299–306
14. Yousif E, Haddad R, Ahmed A (2013) Photodegradation and photostabilization of polystyrene. Lambert Academic, Saarbrücken
15. Haddad R, Yousif E, Ahmed A (2013) Synthesis and characterization of transition metal complexes of 4-amino-5-pyridyl-4H-1,2,4-triazole-3-thiol. Springerplus 2:510

Cite this article as: Hussain et al.: Synthesis and characterization of Schiff’s bases of sulfamethoxazole. Organic and Medicinal Chemistry Letters 2014 4:1.

doi:10.1186/2191-2858-4-1