Label-free and charge-sensitive dynamic imaging of lipid membrane hydration on millisecond time scales

Orly B. Taruna,b,c, Christof Hannesschlägerd, Peter Pohld, and Sylvie Rokee,b,c,1

aLaboratory for Fundamental BioPhotonics, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; bInstitute of Materials Science, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; cLausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; and dInstitute of Biophysics, Johannes Kepler University Linz, A-4040 Linz, Austria

Edited by F. Fleming Crim, University of Wisconsin–Madison, Madison, WI, and approved March 1, 2018 (received for review November 7, 2017)

Biological membranes are highly dynamic and complex lipid bilayers, responsible for the fate of living cells. To achieve this function, the hydrating environment is crucial. However, membrane imaging typically neglects water, focusing on the insertion of probes, resonant responses of lipids, or the hydrophobic core. Owing to a recent improvement of second-harmonic (SH) imaging throughput by three orders of magnitude, we show here that we can use SH microscopy to follow membrane hydration of freestanding lipid bilayers on millisecond time scales. Instead of using the UV/VIS resonant response of specific membrane-inserted fluorophores to record static SH images over time scales of 1000 s, we imaged symmetric and asymmetric lipid membranes, while varying the ionic strength and pH of the adjacent solutions. We show that the nonresonant SH response of water molecules aligned by charge–dipole interactions with charged lipids can be used as a label-free probe of membrane structure and dynamics. Lipid domain diffusion is imaged label-free by means of the hydration of charged domains. The orientational ordering of water is used to construct electrostatic membrane potential maps. The average membrane potential depends quadratically on an applied external bias, which is modeled by nonlinear optical theory. Spatiotemporal fluctuations on the order of 100-mV changes in the membrane potential are seen. These changes imply that membranes are very dynamic, not only in their structure but also in their membrane potential landscape. This may have important consequences for membrane function, mechanical stability, and protein/pore distributions.

to whom correspondence should be addressed. Email: sylvie.roke@epfl.ch.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719347115/-/DCSupplemental.

Published online April 2, 2018.

www.pnas.org/cgi/doi/10.1073/pnas.1719347115

Significance

Lipid bilayer membranes are responsible for compartmentalization, signaling, transport, and flow of charge in living cells. Membranes self-assemble in aqueous solutions. Without a hydrating environment, membranes cannot exist. It is therefore surprising to note that the hydrating water is neglected in most membrane-related studies. We imaged membrane-bound oriented water by means of label-free second harmonic microscopy. We tracked, on millisecond time scales, membrane domain diffusion of condensed charged lipid domains, domain structure, and the spatial distribution of charge. Real-time electrostatic membrane potential maps were constructed using nonlinear optical theory. The spatiotemporal fluctuation in the membrane potential is surprisingly large and reveals the importance of charge fluctuations on membranes.
improved the throughput of an SH microscope by a factor of ~5,000 compared with a confocal scanning microscope (25), enabling the measurement of interfacial water that was oriented by the presence of surface charges inside a glass microcapillary. If high-throughput wide-field SH imaging were to be applied to lipid membrane research, it would be possible to image the molecular structure of membrane-interacting water that is interrelated with hydration, the presence of local charges, ionization states, and membrane potentials. Such information, if obtained on a subsecond time scale, would provide a new pathway to image the dynamic molecular response of membranes and relate molecular structure to macroscopic function.

Here, we show that wide-field high-throughput SH imaging can indeed be used to label-free image the water molecules in the hydration shells of charged membranes. As hydrating water molecules are oriented by the ionic groups in the lipid head groups of charged lipids through charge–dipole interactions, they can emit SH photons. We use a series of experiments based on changing the membrane composition, changing the ionic content of the aqueous phase adjacent to both membrane leaflets, and the pH of the solution to demonstrate that the hydrating water can be used to image membrane structure. We then SH image domain diffusion on millisecond time scales in cholesterol (Chol)-rich freestanding lipid membranes by means of the water contrast and show that the diffusion times of whole domains compare well to time scales measured with fluorescence microscopy. Finally, we use the second-order optical response of water to measure the membrane potential and changes therein as a function of an external bias. While the average potential follows the quadratic dependence on an external bias, extractable from nonlinear optical theory, individual images show dynamic spatiotemporal fluctuations on the order of 100 mV.

Results and Discussion

SH Imaging of Membrane Hydration. Freestanding horizontal planar lipid bilayers are formed in an aperture of a thin Teflon film by the apposition of lipid monolayers formed on two different air/water interfaces (20, 26, 27). The presence of a bilayer inside a ~80- to 120-μm-sized circular aperture in a 25-μm-thick Teflon film is confirmed with white-light imaging and electrical recordings (Fig. L4 and Fig. S2). The appearance of Newton diffraction rings and the measured specific capacitance (C_m) and specific resistance (R_m) of the membrane ($C_m > 0.7 \mu F/cm^2$, $R_m \approx 10^8 \Omega cm^2$, Fig. 1) agree well with literature values (26, 27). Compositional transleaflet asymmetry is confirmed by capacitance minimization measurements (28, 29) that are sensitive to differences in surface charge density between the leaflets (Verification of Transmembrane Asymmetry by Capacitance Minimization).

The horizontally mounted membranes are sandwiched between pH-neutral aqueous 0.1-mM KCl solutions and are imaged with a medium repetition rate wide-field SH microscope (24) that employs a counterpropagating double-beam geometry

![Fig. 1](https://www.pnas.org/cgi/doi/10.1073/pnas.1719347115)

Fig. 1. SH imaging of membrane hydration. (A) Two counterpropagating 190-fs beams overlap in space and time to illuminate the membrane. SH photons are collected in the phase-matched direction (see Fig. S3 for details). A white-light image with diffraction rings (indicated by a dashed white circle) and a current response (t) to a 20-mV bias (U(t)) are also shown. (B) SH images (20 frames, 560 ms each; magnification: 50x, NA = 0.65) of a symmetric membrane composed of 1) 75:25 mol % DOPC:Chol, and (2) 37.5:37.5:25 mol % DPPC:DOPC:Chol, and an asymmetric membrane composed of 37.5:37.5:25 mol % DPPS, DOPC:Chol (top leaflet) and 37.5:37.5:25 mol % DPPC:DOPC:Chol (bottom leaflet) (3) single frame, and (4) average of 20 frames. Inset in B shows the SH response of the Teflon film where the aperture that contains the bilayer is indicated by the white dashed circle. Analyses are performed only on the central part of the bilayer (cyan circle) as shown in 1–4. The images are collected with all beams P-polarized. (C) SH spectra of an asymmetric membrane composed of 70:30 mol % DPHPC:DPHPS (top leaflet) and DPHPC (bottom leaflet), black trace, and after addition of 0.5 mM of KCl to the bottom chamber containing the neutral leaflet [DPHPC + (KCl)$_{aq}$ blue], or the top chamber containing the charged leaflet [DPHPC + DPHPS + (KCl)$_{aq}$ red]. (D) Average SH intensity of an asymmetric DPHPS (top leaflet)/DPHPC (bottom leaflet) membrane before (pH = 5.5) and after (pH = 4) addition of (KOH)$_{aq}$ to reach a pH-neutral solution increases the intensity. SH scattering images of a 100-pM KCl solution were subtracted from the raw images. The error bars represent the SDs from 20 spectra (C) or images (D).
(Fig. 1A and Fig. S3). Images are recorded with a numerical aperture (NA) of 0.65 or 0.42, and the SH photons are detected in the phase-matched direction, perpendicular to the membrane position. The polarization combination of the two incoming 1,030-nm, 190-fs, 200-kHz pulses and the emitted 515-nm intensity is controllable. The transverse resolution is 430 nm. For more information on the imaging throughput of the setup, see ref. 24. Fig. 1B shows SH images of the central part of several membranes: Fig. 1 B, I shows a symmetric membrane composed of 75:25 mol % 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and Chol, and Fig. 1B, 2 shows a symmetric membrane composed of 37.5:37.5:25 mol % 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), DOPC, and Chol in which domains of a more ordered phase composed of primarily saturated acyl chain lipids are formed within a more liquid phase consisting of primarily unsaturated lipids, and Fig. 1B, 3 and 4 shows an asymmetric membrane composed of 37.5:37.5:25 mol % 1,2-dipalmitoyl-sn-glycero-3-phospho-t-serine (DPPS), DOPC, and Chol (top leaflet) and 37.5:37.5:25 mol % DPPC, DOPC, and Chol (bottom leaflet) that also displays domain formation. The acquisition time for each image was 560 ms, and Fig. 1B, 4 represents an average of 20 frames. The images were collected with all beams P-polarized. Fig. 1B, 1. Inset displays an SH image recorded from the Teflon film, where the aperture that contains the bilayer is indicated by the white dashed circle. It can be seen that SH photons appear from the edge of the Teflon aperture but not from the center of the membrane. The absence of SH photons from the center of a symmetric bilayer arises from the fact that oppositely oriented polar molecules do not emit SH photons [within the dipole approximation (30)]. This result agrees with the images obtained by Ries et al. (21). As the membrane is ~5 nm thick in the center of the aperture, while the Teflon film is 25 µm thick, there is only a bilayer membrane inside the cyan circle. Outside the cyan circle, but still inside the white dashed circle (the aperture), there is a mixture of hexadecane oil covered with lipids. This curved membrane around the edges of the Teflon film emits SH photons, because, with increasing distance between opposing curved leaflets, there is not anymore destructive interference between the emitted SH photons. This interference process is comparable to observing the emission of SH photons from nanoscopic particles in solution (31). The SH emission from curved water/liquid interfaces is also significantly brighter for larger distances between the opposing leaflets. The Teflon ring itself emits a two-photon fluorescence.

Comparing the center of symmetric and asymmetric membranes, Fig. 1B shows that only the asymmetric membrane generates a clear SH bilayer contrast. Note that the only difference in composition between Fig. 1B, 2 and Fig. 1B, 3 and 4 is that the charge-neutral DPPC in one leaflet is replaced with charged DPPS. This results in the appearance of µm size domains rich in DPPS lipids. The polarization and symmetry selection rules (30, 31) for nonresonant SH generation dictate that centrosymmetric systems (such as an isotropic liquid) will not generate coherent SH photons. Orientational ordering of asymmetric molecules along the surface normal are responsible for the contrast, and will be most pronounced in the PPP polarization combination (30). This is essentially what we observe in Fig. 1B: only the asymmetric bilayer generates a SH image, while the symmetric bilayers do not, in agreement with literature (22, 32). Fig. S7 shows that the nonzero polarization combinations are PPP and SSP, with the first (second and third) letter describing the outgoing (incoming) beam(s). These combinations are to be expected for an azimuthally isotropic interface in contact with centrosymmetric media (30). This behavior is distinctly different from fluorescence.

Fig. 1C displays the SH spectrum (black) obtained from an asymmetric membrane composed of 1,2-diphtanoyl-sn-glycero-3-phospho-t-serine (DPhPS) (top leaflet) and 1,2-diphtanoyl-sn-glycero-3-phosphocholine (DPhPC) (bottom leaflet), which confirms that, indeed, SH light is detected. Candidates for the emission of SH photons are all noncentrosymmetrically structured molecular groups (30, 33), that is, lipids or water. Taking into account the number density difference between water and lipids and previous nonresonant SH scattering studies of liposomes (34, 35), it is likely that the dominant contribution to the SH intensity will be from water. To test this hypothesis, we added 0.5 mM KCl to the solution. Adding KCl changes the ion distribution inside the interfacial electric double layer and modifies the surface potential (36). This modification alters the number of noncentrosymmetrically distributed water molecules that generate SH light (37), but not the number of noncentrosymmetrically distributed lipids. Fig. 1C shows that adding KCl to the neutral side of the membrane leads to a negligible difference within error of the measurement in the SH intensity (blue spectrum) (38). Increasing the KCl concentration on the side with the charged leaflet, however, reduces the SH intensity (red spectrum). Thus, the SH response originates primarily from the hydrating water in the electric double layer that is associated with the charged lipid head groups. This interpretation is further confirmed by protonating/deprotonating the asymmetrically distributed DPhS lipids (pK_a = 5.5 to 6, at low ionic strength) (3, 39) as shown in Fig. 1D. Starting with a bilayer in contact with a pH = 5.5 solution, the ionic strength (I) is 100 µM, which has ~20 to 50% of the PS groups charge neutral and the other part negatively charged; adding (HCl)aq (1 ≈ 130 µM) leads to a removal of the surface charged results in a very sharp SH intensity (red) image. On the other hand, starting with a membrane in contact with an acidic solution (pH = 4.5, I = 100 µM, all PS groups charge neutral) increasing the pH to ~7 (1 ≈ 130 µM) by adding (KOH)aq ionizes most of the PS groups and results in a sharp increase in the SH intensity, which is indeed the case.

Having determined that the hydrating water associated with charged lipids is responsible for the SH emission of asymmetric lipid bilayers, we proceed to use the orientational order of water around charged head groups as a label-free and in situ probe of membrane dynamics.

SH Imaging of Membrane Structure and Dynamics. To image membrane dynamics in real time, an asymmetric membrane of the same composition as used in Fig. 1B, 3 is formed at elevated temperatures (>60 °C) which is then cooled down to room temperature. Ternary mixtures of lipids with different transition temperature, degree of saturation, and chain length (e.g., DPPS vs. DOPC), mixed with Chol, phase separate into liquid-ordered (rich in DPPS with Chol) and liquid-disordered (rich in DOPC) phases (40–43). To verify phase separation, we labeled the charged leaflet (DPPS/DOPC/Chol) with TopFluor Chol that is known to partition into the Chol-rich hydrophobic phase (44, 45) and imaged the membrane two-photon exited fluorescence with 110-ms acquisition time. Fig. 2A shows ~3-µm-diameter domains of a liquid-ordered DPPS-rich phase. Mean square displacement (MSD) traces (orange) are shown in Fig. 2C, with a diffusion constant of D = 0.19 ± 0.01 µm²/s, in agreement with literature (41). Fig. 2B shows an SH image recorded with 180-ms acquisition time of a membrane with the same composition, but now following the hydrating water around the charged head groups of DPPS, label-free. Domains with a similar size and diffusion speed (Fig. 2C, green, D = 0.23 ± 0.06 µm²/s) are observed. Corresponding movies are shown in Supporting Information. Although both imaging modalities measure a different observable, the presence of fluorophores attached to modified Chol inserted in the condensed phase vs. the hydrating water in contact with the head groups of charged DPPS lipids in the condensed phase, the similarity between the fluorescently labeled membrane images and the nonlabeled membrane SH images suggests that it is indeed possible to probe membrane dynamics by means of the hydration shells of the charged lipids.

Having shown that membrane hydration can be tracked dynamically and label-free, we proceed to use the charge-induced
orientational order of water molecules to derive membrane potentials. Changes in the membrane potential are induced by external stimuli.

Membrane Potential SH Imaging. The electrical activity in membranes underlies a wide variety of chemical and physical processes in cells: the contraction of muscle cells, the communication of neurons, and transport functions all depend on membrane potentials (3). To date, lipid bilayer membrane potentials cannot be imaged directly and noninvasively, and the method below provides a proof of the possibility to do this label-free and in real time. SH measurements and theoretical considerations have shown that the SH intensity of an

Fig. 2. SH imaging of water around liquid-ordered domains of charged lipids. (A) Fluorescence image of an asymmetric membrane composed of 37.5:37.5:25 mol % DPPS/DOPC/Chol + TopFluor (top) and 37.5:37.5:25 mol % DPPC/DOPC/Chol (bottom). (B) SH image of a membrane made with the same composition and asymmetry but now label-free. (Scale bar, 10 μm.) The arrows in A and B point to the positions where the line profiles were obtained to extract the domain size. Both images show phase separation, leading to DPPS and Chol-rich domains of similar size. (C) MSD as a function of delay time (τ) comparing label-free SH imaging with TopFluor labeled imaging. The calculated diffusion coefficients are comparable. SH scattering images of a 100-μM KCl solution were subtracted from the raw SH images. Symbols are experimental data and lines are linear fits. More data recorded on longer time scales are shown in Fig. S4.

Fig. 3. Voltage-sensitive SH imaging of the changes in membrane surface potential. (A) Illustration of the membrane with one neutral (L1) and one charged (L2) leaflet, the susceptibility (χ(2) and χ(3)), and surface potential Φ. (B) Simplified model of a membrane with capacitance C_m in series with a double layer of capacitance C_D. (C) One-dimensional COMSOL simulation of the shift in surface potential as a function of an applied bias for an asymmetric membrane (see *Numerical Computations* for details); Φ_0,1/Φ_0,2 shows the linear response of the surface potential of the neutral and charged leaflet as a function of external bias (U). (D) Spatially averaged SH intensities per pixel as a function of an applied bias (U) for an asymmetric membrane composed of 70:30 mol % of DPhPC:DPhPS (top leaflet) and DPhPC (bottom leaflet) (black data), and a symmetric membrane composed of DPhPC (dark red data). The top axis shows the average surface potential changes for the corresponding applied bias, with the coloring corresponding to the average surface potential changes. The average intensity values were computed over a 25-μm-diameter aperture. SH scattering images of a 100-μM KCl solution were subtracted from the raw images. The error bars represent the SD of the mean from 20 images. (E) Surface potential maps for three subsequent frames, 2-s acquisition time, with an external bias of 150 mV. The maps are taken from the central part of the membrane 23 μm × 23 μm in size.
interface depends on the surface potential (Φ) via $I(2\omega) \approx \chi^2(\omega) + \chi^3(\omega) \Phi^2$ (37, 46), where $\chi^2(\omega)$ is the surface second-order susceptibility and $\chi^3(\omega)$ is an effective third-order susceptibility of the aqueous phase (see refs. 34 and 47 for more details). For our imaging experiment, there are two oppositely oriented membrane interfaces i, that each have a surface potential $\Phi_{0,i}(x,y)$ (Fig. 3A, top) resulting in

$$I(2\omega, x, y) \approx I(\omega, x, y)^2 \left| \chi_1^{(2)}(x, y) - \chi_1^{(2)}(x, y) \right|^2 + \chi^3(\omega) f_3(\Phi_{0,1}(x, y) - \Phi_{0,2}(x, y))^2, \tag{1}$$

where f_3 is an interference term which has the form factor $f_3 = 1/\Delta k - \Delta k^2$, containing Δk as the wave vector mismatch ($\Delta k = k_{12} + k_2 - k_{10} = k_{12} + k_{2} + k_{10}$, and k_{12} as the incoming wave vectors and k_{10} as the outgoing wave vector), and κ as the inverse Debye length. This term describes interference effects within the electric double layer. For the transmission experiment employed here, $f_3 = 1$ (47). Fig. 3A shows a schematic of an asymmetric membrane subject to an external bias U. The effect of an external bias U can be simplified by treating the membrane as a capacitor (C_p) in series with the double layer approximated as a capacitor (C_D) with a plate spacing equal to the Debye length ($1/\kappa$) as shown in Fig. 3B. The specific capacitance ($C_p = 0.2 \mu \text{F/cm}$) of the double layer is then $2.3 \mu \text{F/cm}$ using $\kappa = 30.3 \text{ nm}$ (corresponding to $1 = 100 \mu \text{M}$). Applying an external bias U to the membrane changes the surface potential (Fig. 3C), such that $\Delta \Phi_0(U) = \Delta \Phi_{0,\text{ini}} + \beta U$ with β a constant of proportionality and $\Delta \Phi_{0,\text{ini}}$ the initial surface potential difference at zero external bias ($U = 0$). Fig. 3C shows an estimate of the proportionality relation between Φ_0 and U derived from a COMSOL simulation (COMSOL Multiphysics software) for an asymmetric bilayer (Numerical Computations). The surface potential of each leaflet changes as a function of bias, with the majority of the change occurring in the charged leaflet. For a symmetric zwitterionic membrane (34), and the average surface potential difference ($\Delta \Phi_0(x,y)$) as a variable. The retrieved values for ($\Delta \Phi_0(x,y)$) are plotted on the top axis, with the initial surface potential difference $\Delta \Phi_{0,\text{ini}}$ around -50 mV. This value corresponds to 0.6% of ionized lipids (Numerical Computations) and is consistent with the theory of charge condensation (35, 48). Fig. 3E shows snapshots of the membrane potential recorded for three subsequent frames, 2 s in acquisition time, with an external bias of 150 mV. It can be seen that fluctuations across the membrane occur that change from frame to frame. Although the average membrane potential of the 20-frame data stack is 115 mV, fluctuations as large as -100 mV are observed. The fluctuations suggest a variable degree of ionization from 0 to 6% in the image of Fig. 3E (using the values from the COMSOL simulations).

It is thus possible to optically determine the membrane surface potential label-free and to track spatiotemporal changes in it as a function of an external bias. The fluctuations imply that membranes are very dynamic, not only in their structure but also in their membrane potential landscape. The fluctuations observed within the membrane potential can arise from the association/disassociation dynamics of surface charges similar to the observed heterogeneous association rates on the surface of silica glass (25). This spatial and temporal heterogeneity could have important consequences for membrane function, mechanical stability, and protein/pore distributions.

Summary and Conclusions

In summary, we have shown, in a series of experiments on free-standing lipid membranes involving symmetric and asymmetric lipid membranes, and changes in the pH environment of adjacent solutions, that hydrating water can be SH imaged on subsecond time scales. This hydrating water has a nonrandom orientation, as it is oriented by the charged-dipole interactions between charged lipid head groups and water dipoles. We demonstrate that this contrast mechanism can be used to probe domain diffusion of DPPS-rich domains. In addition, we used the water response to compute the electrostatic membrane potential, and map its dependence on an externally applied field. Although the average membrane potential follows the quadratic dependence on external bias that is modeled by nonlinear optical theory, individual images show dynamic spatiotemporal fluctuations on the order of -100 mV. These fluctuations illustrate the dynamic link between the aqueous environment and the lipid membrane that is often forgotten.

This contrast mechanism for label-free SH imaging of membranes can be used to acquire molecular-level understanding of membranes that are due to a number of important processes such as specific ion interactions, membrane (interleaflet) structuring and dynamics, membrane fusion, charge-dependent protein activity, ion pumps/pore structure and activity, surface acid/base reactions, and dynamics of membrane potentials. The imaging method is directly applicable to live neurons, without the need to physically patch the cells, thus possibly providing a future noninvasive and clinically viable method of mapping membrane potentials. The connection between the molecular response of the hydrating water and the structural features present in the images provides a unique connection between molecular-level processes involving water and macroscopic observables.

ACKNOWLEDGMENTS. This work is supported by the Julia Jacobis Foundation, the Swiss National Science Foundation, under Grant 200021-140472, and the Austrian Science Fund, under Grant P23679.

1. Simons K, Vaz WLC (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295.
2. van Meer G, de Kroon AIPM (2011) Lipid map of the mammalian cell. J Cell Sci 124: S5–S8.
3. Marsh D (2013) Handbook of Lipid Bilayers (CRC Press, Boca Raton, FL), 2nd Ed.
4. Jackson JD (1998) Classical Electrodynamics (Wiley, New York), 3rd Ed.
5. Veatch SL, Keller SL (2005) Seeing spots: Complex phase behavior in simple membranes. Biochim Biophys Acta 1746:172–185.
6. Kress A, et al. (2013) Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy. Biophys J 105:127–136.
7. Eggeling C, et al. (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162.
8. Korlach J, Schville P, Webb WW, Feigenson GW (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 96:8461-8466.

9. Potma E, de Boeij WP, van Haastert PIM, Wiemsma DA (2001) Real-time visualization of intracellular hydrodynamics in single living cells. Proc Natl Acad Sci USA 98: 1577-1582.

10. Rinia HA, Burger KN, Bonn M, Mu M (2008) Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy. Biophys J 95:4908-4914.

11. Li L, Cheng J-X (2008) Label-free coherent anti-Stokes Raman scattering imaging of coexisting lipid domains in single bilayers. J Phys Chem B 112:1576-1579.

12. Nguyen TT, Conboy JC (2011) High-throughput anti-Stokes Raman scattering imaging of coexisting lipid domains in single bilayers. J Phys Chem B 112:12299-12303.

13. de Wit G, Danail JSH, Kukupa P, Wallace MI (2015) Dynamic label-free imaging of lipid nanodomains. Proc Natl Acad Sci USA 112:13978-13983.

14. Howland MC, Szmodis AW, Sanii B, Parikh AN (2007) Characterization of physical properties of supported phospholipid membranes using imaging ellipsometry at optical wavelengths. Biophys J 92:1306-1317.

15. Shim S-H, et al. (2012) Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci USA 109:13978-13983.

16. Mashaghi A, et al. (2014) Label-free characterization of biomembranes: From structure to dynamics. Chem Soc Rev 43:887-900.

17. Liu J, Conboy JC (2004) Direct measurement of the transblayer movement of phospholipids by sum-frequency vibrational spectroscopy. J Am Chem Soc 126:8376-8377.

18. Roke S, Schins J, Müller M, Bonn M (2003) Vibrational spectroscopic investigation of the phase diagram of a biomimetic lipid monolayer. Phys Rev Lett 90:128101.

19. Liu B, et al. (2015) Label-free spectroscopic detection of membrane potential using stimulated Raman scattering. Appl Phys Lett 106:173704.

20. Horner A, Aikimov SA, Pohl P (2013) Long and short lipid molecules experience the same interleaflet drag in lipid bilayers. Phys Rev Lett 110:268101.

21. Ries RS, Choi H, Blunck R, Bezania G, Heath JR (2004) Black lipid membranes: Visualizing the structure, dynamics, and substrate dependence of membranes. J Phys Chem B 108:16040-16049.

22. Krček MA, Conboy JC (2005) Imaging chirality with surface second harmonic generation microscopy. J Am Chem Soc 127:2834-2835.

23. Dissalvo AE (2015) Membrane Hydration the Role of Water in the Structure and Function of Biological Membranes (Springer, Heidelberg).

24. Macias-Romero C, et al. (2014) High throughput second harmonic imaging for label-free biological applications. Opt Express 22:31102-31112.

25. Macias-Romero C, Nahalka I, Okur HI, Roke S (2017) Optical imaging of surface chemistry and dynamics in confinement. Science 357:784-788.

26. Montal M, Mueller P (1972) Formation of biomolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci USA 69:3561-3566.

27. Gutsmann T, Heimburg T, Keyser U, Mahendran KR, Winterhalter M (2015) Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization. Nat Protoc 10:188-198.

28. Alvarez O, Latorre R (1978) Voltage-dependent capacitance in lipid bilayers made from monolayers. Biophys J 21:1-17.

29. Peterson U, et al. (2002) Origin of membrane dipole potential: Contribution of the phospholipid fatty acid chains. Chem Phys Lipids 117:19-27.

30. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: Where they are and how they behave. Nat Rev Mol Cell Biol 9:112-124.

31. Roke S, Gonnella G (2012) Nonlinear light scattering and spectroscopy of particles and droplets in liquids. Annu Rev Phys Chem 63:353-378.

32. Smolentsev N, Lütgebaucks C, Okur H, de Beer AGF, Roke S (2016) Intermolecular headgroup interaction and hydration as driving forces for lipid transmembrane asymmetry. J Am Chem Soc 138:4053-4060.

33. Bersohn R, Pao YH, Frisch HL (1966) Double-quantum light scattering by molecules. J Chem Phys 45:3184-3198.

34. Lütgebaucks C, Gonnella G, Roke S (2016) Optical label-free and model-free probe of the surface potential of nanoscale and microscopic objects in aqueous solution. Phys Rev B 94:195410.

35. Lütgebaucks C, Macías-Romero C, Roke S (2017) Characterization of the interface of binary mixed DOPC:DOPS liposomes in water: The impact of charge condensation. J Phys Chem B 146:044701.

36. Hunter RJ (2001) Foundations of Colloid Science (Oxford Univ Press, Oxford).

37. Ong S, Zhao X, Eisenhthal K (1992) Polarization of water molecules at a charged interface: Second harmonic studies of the silicawater interface. Chem Phys Lett 191:327-335.

38. Okur HI, Kherb J, Cremer PS (2013) Cations bind only weakly to amides in aqueous solutions. J Am Chem Soc 135:5062-5067.

39. Tsui FC, Ojius DM, Hubbell WL (1986) The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidycholine host bilayers. Biophys J 49:429-458.

40. Bakhti O, Pathak P, London E (2007) Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): Identification of multiple raft-stabilization mechanisms. Biophys J 93:4307-4318.

41. Cicuta P, Keller SL, Veatch SL (2007) Diffusion of liquid domains in lipid bilayer membranes. J Phys Chem B 111:3228-3331.

42. Collins MD, Keller SL (2008) Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers. Proc Natl Acad Sci USA 105:124-128.

43. Boyd RW (2008) Nonlinear Optics (Academic, New York), 3rd Ed.

44. Sezgin E, et al. (2012) Partitioning, diffusion, and ligand binding of raft lipid analogs from monolayers to bilayers. J Membr Biol 236:103-110.

45. Klymchenko AS, Kreder R (2014) Fluorescent probes for lipid rafts: From model systems to living cells. Biophys J 105:808-819.

46. Lee CH, Chang RK, Bloembergen N (1967) Nonlinear electroreflectance in silicon and germanium. Phys Rev 153:459-468.

47. Gonella G, Lütgebaucks C, Roke S (2012) Nonlinear light scattering and spectroscopy of particles and droplets in liquids. Annu Rev Phys Chem 63:353-378.

48. Smolentsev N, Lütgebaucks C, Okur H, de Beer AGF, Roke S (2016) Intermolecular headgroup interaction and hydration as driving forces for lipid transmembrane asymmetry. J Am Chem Soc 138:4053-4060.

49. Bersohn R, Pao YH, Frisch HL (1966) Double-quantum light scattering by molecules. J Chem Phys 45:3184-3198.

50. Lütgebaucks C, Macías-Romero C, Roke S (2017) Characterization of the interface of binary mixed DOPC:DOPS liposomes in water: The impact of charge condensation. J Phys Chem B 146:044701.