MultAV: Multiplicative Adversarial Videos

AVSS 2021

Shao-Yuan Lo and Vishal M. Patel
Johns Hopkins University
Recall: Adversarial Examples

\[x_{\text{adv}} = x + \delta \]

\[f(x_{\text{adv}}) \neq y \]
Recall: Adversarial Examples

- Deep networks are **vulnerable** to adversarial examples.

Goodfellow et al. Explaining and Harnessing Adversarial Examples. ICLR’15.
Adversarial Videos

• Video is a stack of consecutive images.

• A naïve way to generate adversarial videos:
 Use image-based method directly.

\[x^{adv} = x + \epsilon \cdot \text{sign}(\nabla_x L(x, y; \theta)) \]

Image: \(x \in \mathbb{R}^{C \times H \times W} \)

Video: \(x \in \mathbb{R}^{F \times C \times H \times W} \)
Multiplicative Adversarial Videos

• **Additive** attack:

\[x_{adv} = x + \delta \]

• **Multiplicative** attack:

\[x_{adv} = x \odot \delta \]
Multiplicative Adversarial Videos

• Add-L_∞:

$$x^{adv} = x + \alpha \cdot \text{sign}(\nabla_x L(x, y; \theta))$$

$$|x^{adv} - x| \leq \epsilon$$

• Mult-L_∞:

$$x^{adv} = x \odot \alpha^\text{sign}(\nabla_x L(x, y; \theta))$$

$$\max(x^{adv}/x, x/x^{adv}) \leq \epsilon \quad \text{Ratio bound}$$
Multiplicative Adversarial Videos

- **Add-L2:**

\[x^{adv} = x + \alpha \cdot \frac{\nabla_x L(x, y; \theta)}{\|\nabla_x L(x, y; \theta)\|_2} \]

\[\| x^{adv} - x \|_2 \leq \epsilon \]

- **Mult-L2:**

\[x^{adv} = x \odot \alpha \frac{\nabla_x L(x, y; \theta)}{\|\nabla_x L(x, y; \theta)\|_2} \]

\[\| \frac{x^{adv}}{x} \|_2 \leq \epsilon \quad \text{Ratio bound} \]
Signal-dependent Perturbation

• Mult-L_{∞}:

\[
x^{adv} = x \odot \alpha \text{sign}(\nabla_x L(x,y;\theta))
\]

\[
\updownarrow
\]

\[
x^{adv} = x + [x \odot (\alpha \text{sign}(\nabla_x L(x,y;\theta)) - 1)]
\]

• Mult-L_2:

\[
x^{adv} = x \odot \alpha \frac{\nabla_x L(x,y;\theta)}{\|\nabla_x L(x,y;\theta)\|_2}
\]

\[
\updownarrow
\]

\[
x^{adv} = x + [x \odot \left(\alpha \frac{\nabla_x L(x,y;\theta)}{\|\nabla_x L(x,y;\theta)\|_2} - 1\right)]
\]
Visual Results
Quantitative Results

- Dataset: UCF-101

Network	Clean	Training	MultAV-\(\ell_\infty\)	MultAV-\(\ell_2\)	MultAV-ROA	MultAV-AF	MultAV-SPA
3D ResNet-18	76.90	Clean	7.19	2.67	2.30	0.26	4.02
			(-5.39)	(-6.29)	(-1.67)	(-15.12)	(-0.80)
3D ResNet-18	76.90	Mult Add	47.00	16.23	44.12	66.35	55.54
			41.61	9.94	42.45	51.23	54.74
			(-5.39)	(-6.29)	(-1.67)	(-15.12)	(-0.80)
3D ResNet-18	70.82	Mult Add	42.69	14.75	39.31	60.53	48.37
+ 3D Denoise			31.46	9.15	37.72	48.98	48.06
			(-11.23)	(-5.60)	(-1.59)	(-11.55)	(-0.31)
3D ResNet-18	69.47	Mult Add	41.87	14.04	40.34	58.97	47.48
+ 2D Denoise			30.16	10.23	39.65	47.82	47.18
			(-11.71)	(-3.81)	(-0.69)	(-11.15)	(-0.30)
Feature Visualization
Conclusion

• Propose a new attack method against video recognition networks: Multiplicative Adversarial Videos (MultAV).

• MultAV can generalize to not only Lp-norm attacks, but also different types of physically realizable attacks.

• MultAV challenges the defense approaches that tailored to resisting additive adversarial attacks. We hope to encourage the research community to look into more general and more powerful defense solutions for video recognition networks.