Supporting the ambulance service to safely convey fewer patients to hospital by developing a risk prediction tool: Risk of Adverse Outcomes after a Suspected Seizure (RADOSS)—protocol for the mixed-methods observational RADOSS project

Adam J Noble,1 Suzanne M Mason,2 Laura J Bonnelt,3 Markus Reuber,4 Jasmine Wright,5 Richard Pilbery,6 Richard M Jacques,7 Rebecca M Simpson,2 Richard Campbell,2 Alison Fuller,7 Anthony Guy Marson,8 Jon Mark Dickson.9

ABSTRACT

Introduction Ambulances services are asked to further reduce avoidable conveyances to emergency departments (EDs). Risk of Adverse Outcomes after a Suspected Seizure seeks to support this by: (1) clarifying the risks of conveyance and non-conveyance, and (2) developing a risk prediction tool for clinicians to use ‘on scene’ to estimate the benefits an individual would receive if conveyed to ED and risks if not.

Methods and analysis Mixed-methods, multi-work package (WP) project. For WP1 and WP2 we shall use an existing linked data set that tracks urgent and emergency care (UEC) use of persons served by one English regional ambulance service. Risk tools are specific to clinical scenarios. We shall use suspected seizures in adults as an exemplar.

WP1: Form a cohort of patients cared for a seizure by the service during 2019/2020. It, and nested Knowledge Exchange workshops with clinicians and service users, will allow us to: determine the proportions following conveyance and non-conveyance that die and/or recontact UEC system within 3 (30) days; quantify the proportion of conveyed incidents resulting in ‘avoidable ED attendance’ (AA); optimise risk tool development; and develop statistical models that, using information available ‘on scene’, predict the risk of death/recontact with the UEC system within 3 (30) days and the likelihood of an attendance at ED resulting in an AA.

WP2: Form a cohort of patients cared for a seizure during 2021/2022 to ‘temporarily’ validate the WP1 predictive models.

WP3: Complete the ‘next steps’ workshops with stakeholders. Using nominal group techniques, finalise plans to develop the risk tool for clinical use and its evaluation.

STRENGTHS AND LIMITATIONS OF THIS STUDY

⇒ Risk of Adverse Outcomes after a Suspected Seizure will use a ‘cutting-edge’ linked data set that captures service use in one ambulance region using data high in quality and coverage.

⇒ The parameters of the outcome measures used to describe risks and the variables tested for their ability to predict these outcomes will be informed by stakeholders and service users.

⇒ As there are no equivalent linked data sets available for other ambulance regions, the validity of the derived prediction models will need to be determined within a cohort of patients treated within the same region, but at a later date.

Ethics and dissemination WP1a and WP2 will be conducted under database ethical approval (IRAS 307353) and Confidentiality Advisory Group (22/CAG/0019) approval. WP1b and WP3 have approval from the University of Liverpool Central Research Ethics Committee (11450). We shall engage in proactive dissemination and knowledge mobilisation to share findings with stakeholders and maximise evidence usage.

INTRODUCTION

Context and drive for health service innovations

Ensuring people ‘get the right care at the right time in the optimal care setting’1 is a key ambition of the UK’s National Health Service (NHS). Ambulance services have a role to play. They
should only be conveying patients to emergency departments (EDs) if it is clinically appropriate or there is no alternative service to provide safe and ongoing care.

Traditionally, UK ambulance services’ primary roles were to provide emergency call handling and transportation to hospital. However, as the nature of the calls it receives has shifted towards non-life-threatening conditions, services and the clinicians working within them have needed to evolve.3

NHS England and Improvement has identified that ambulance clinicians require more support with their changing role.4 Certain presentations continue to be ‘over-conveyed’5 and reductions in ambulance conveyance rates are stalling.6 At the same time, ambulance services are under pressure to provide a timely response to an increasing number of calls,7 while facing increased handover delays at EDs.8

Strategies are thus needed to support appropriate and safe decision-making on scene that minimises avoidable conveyance. The Risk of Adverse Outcomes after a Suspected Seizure (RADOSS) project seeks to generate ways of providing ambulance clinicians with this support.

Why is reducing clinically unnecessary conveyance important?
 Clinically unnecessary conveyances to EDs result in ‘avoidable attendances’ (AAs).9 An AA is where the patient does not require the facilities of a type 1 ED to manage their healthcare problem. AAs can harm the patient10 and have implications for others since they restrict ED capacity.11 12

Approximately 15% of ED attendances currently meet ‘avoidable attendances’ (AAs).9 An AA is where the patient does not require the facilities of a type 1 ED to manage their healthcare problem. AAs can harm the patient10 and have implications for others since they restrict ED capacity.11 12

In 2021/2022, this equated to ~2.3 million visits.13

Patients and the public are broadly supportive of non-conveyance. Research has identified that they are frustrated by inappropriate conveyance to ED and say assessment by an ambulance clinician itself has a therapeutic value.14–21

Importantly, UK data indicate non-conveyance following assessment by ambulance clinicians is safe. Overall, 83% of people experience no subsequent health event within 3 days of non-conveyance (9% reconnect the ambulance service, 12.6% attend ED, 6.3% are admitted and 0.3% die).22

What is known about how ambulance clinicians decide who to convey?
 Systematic reviews23 24 highlight the complex nature of conveyance decisions. Factors beyond patient need can affect them. Oosterwold et al.25 framework (online supplemental file 1) summarises macro, meso and micro factors. Work has started to address some of these.10 25 26 However, given reductions in conveyance have stalled, other factors in the model need addressing.

One factor which has yet to be addressed is that ambulance clinicians can find it difficult to confidently identify cases suitable for non-conveyance. Some report uncertainty regarding the accuracy of their assessments for non-conveyance, and express concern for patient safety and their liability if an incorrect decision is made.10 27–37

Their uncertainty is unsurprising. Paramedic education has traditionally focused on life-threatening conditions and transportation; decisions are based on limited clinical information and occur under time pressures. These circumstances can create ‘disproportionate risk aversion’, with patients being conveyed to ED as a precaution or in order to save time.32 35 36

What could help clinicians identify cases suitable for non-conveyance?
 Ambulance clinicians are critical of current support, saying non-conveyance guidelines and protocols are difficult to apply to the nuances of cases.31 33 38 39 When asked

| Table 1 The RADOSS project’s aims and objectives and the work packages that address them |

Aims	Objectives
(1) Calculate the risks and benefits of conveyance to hospital after a suspected seizure.	a. Describe the characteristics of those conveyed and those not conveyed to ED by one representative English ambulance service (WP1a).
(2) Create a risk prediction tool that predicts the likelihood that an individual will die and/or recontact the UEC system within 3 (and 30) days if not conveyed and the likelihood that their conveyance to ED would result in an AA.	b. Compare the proportions following conveyance and non-conveyance that die and/or recontact the UEC within 3 (and 30) days (WP1a).
(3) Establish a pathway to clinical implementation of the risk prediction tool and maximise usage of RADOSS findings.	c. Quantify the proportion of incidents conveyed to ED that meet the definition of an AA (WP1a).
(2) Create a risk prediction tool that predicts the likelihood that an individual will die and/or recontact the UEC system within 3 (and 30) days if not conveyed and the likelihood that their conveyance to ED would result in an AA.	d. Optimise the prediction tool development by completing KE workshops with service users and ambulance and ED clinicians to get views on predictors considered for inclusion in the models, the way the outcome measures of death, UEC recontact and AA are defined and risk score presentation (WP1b).
(3) Establish a pathway to clinical implementation of the risk prediction tool and maximise usage of RADOSS findings.	e. Develop statistical models to predict a person’s risk of death/recontact with the UEC system within 3 (and 30) days and the likelihood of their attendance at ED being classed an AA if conveyed (WP1a).
(3) Establish a pathway to clinical implementation of the risk prediction tool and maximise usage of RADOSS findings.	f. ‘Temporally’ validate the predictive models using data from the same ambulance service for a later time period (WP2).
(3) Establish a pathway to clinical implementation of the risk prediction tool and maximise usage of RADOSS findings.	g. Complete ‘next steps’ workshops with stakeholders to finalise plans to refine the tool for clinical use and its evaluation (WP3).
(3) Establish a pathway to clinical implementation of the risk prediction tool and maximise usage of RADOSS findings.	h. Complete a proactive dissemination and knowledge mobilisation strategy (WP3, WP4).

AA, avoidable attendance; ED, emergency department; KE, Knowledge Exchange; RADOSS, Risk of Adverse Outcomes after a Suspected Seizure; UEC, urgent and emergency care; WP, work package.
what would help, clinicians identify the development of tools to help them differentiate the needs of individuals as a priority and say the relative risks of non-conveyance for different presentations have also not been fully determined.10,38,40,41

Given this, promising ways of supporting clinicians include: (1) securing and disseminating clear evidence on the risks of conveyance and non-conveyance by presentation, and (2) providing a risk prediction tool that would allow clinicians to predict the likelihood that conveyance to ED of the individual they are caring for would result in an AA and the likelihood of them experiencing adverse health events if not conveyed. This direction aligns with recommendations by Lord Carter12 and others.4,36

What is a risk prediction tool?

Risk prediction tools use ≥2 pieces of patient data to generate a *personalised* estimate of the likelihood that an individual will experience a certain endpoint within a specified time frame. Currently, there are no prediction tools relating to non-conveyance.26 However, evidence suggests they could be developed (see Evidence suggesting a tool predicting benefit/risk of non-conveyance could be developed).

Ambulance clinicians already use such tools to predict other outcomes (eg, ref 43–45) and they want more.40,46 The National Ambulance guidelines47 currently recommend 11 such tools (none relate to seizures). Risk prediction tools do not replace clinical judgement but support it. There is evidence they can improve patient outcomes and satisfaction and avoid unnecessary care.48–53

Methodological standards exist54 for their development. To facilitate uptake and sustained use, their development needs to be carefully informed by the views of intended users.55 56 There is no single pathway by which a tool enters practice, but good practice states confirmation be obtained that it provides valid predictions on a sample different (in time or place) from the one used for model derivation.57

Evidence suggesting a tool predicting benefit/risk of non-conveyance could be developed

The information used by any risk prediction tool should reflect what is available to the clinician at the time conveyancing decisions are made (and is accessible for derivation). Ambulance clinicians do not typically have access to a patient’s full medical record. What is available is the information they record using structured fields on a patient care record (PCR) about the patient’s demographics, medical history, clinical features, physiological observations as well as details relating to the care provided. Also available is structured dispatch information. Online supplemental file 2 indicates the range of data available.

So far, only a selection of this information has been examined for its relationship to the outcomes of interest. While exploratory in nature, studies have identified that recontact with the urgent and emergency care (UEC) system and death following non-conveyance, and AAs following conveyance, are not random but more common in certain subgroups (eg, patient age, sex, time of call, day of week, presence of comorbidities and social deprivation).5,9,22,58–60

A testament to the utility of the information available to ambulance clinicians is Patton and Thakore’s61 study findings. ED clinicians reviewed ambulance PCRs of patients conveyed to ED and identified those whose attendances they suspected would be AA. This was then repeated when ED clinicians had access to the PCR data.

Table 2 Reasons why suspected seizures are considered an ideal exemplar

Reason	Detail
1 Frequent	Responsible for ~211 000 ‘999’ calls per year in England; 7th most common presentation.62,63 Almost all (~97%) receive a face-to-face ambulance response.103
2 ‘Over-conveyed’	Around 70% of suspected seizure cases are conveyed to ED.63,103–106 This is despite national guidelines stating most will not require ED.47 Suspicted seizures are dramatic and frightening and traditional training emphasises status epilepticus—a rare and life-threatening condition. However, most ‘999’ suspected seizures are low risk and persons return to their normal self without intervention.53 Most of those presenting have established, treated epilepsy and have experienced an uncomplicated seizure for which they require rest and reassurance.107 Seizures currently have the third highest conveyance rate of all presentations.10
3 Redeemable cause of avoidable attendance	Clinicians identify suspected seizures as a readily redeemable cause of AAs.32,33,35,46,108 At a 2016 International League Against Epilepsy run research priority event, clinicians identified developing a risk tool to support conveyance decisions as a priority.36
4 ‘Alternative care pathways’ available	Alternative care pathways are becoming available for clinicians to use.109,110 They could, unlike visits to ED,111 prompt improvements in ambulatory care and so address health inequalities.112 Their success depends on clinicians identifying people for them.113
5 User preference	People with established epilepsy and those with other seizure presentations, such as non-epileptic attack disorder, usually want to avoid ED after an uncomplicated seizure;116–118 preferring to recover at home. Unnecessary conveyance to ED puts them at risk of iatrogenic harm and overinvestigation.118–120
6 Cost	Clinically unnecessary ED conveyance generates avoidable costs and contributes to ED overcrowding. In England, the annual cost to the NHS of unplanned hospital care for suspected seizures is ~£90 million.121

‘999’ is a telephone number for emergency calls in the UK. AA, avoidable attendance; ED, emergency department; NHS, National Health Service.

Noble AJ, et al. BMJ Open 2022;12:e069156. doi:10.1136/bmjopen-2022-069156

Open access
and ED notes. Clinicians were confident in identifying AAs on the basis of the PCR alone.

Current project

Overview and aims

To address the identified needs and information gaps, the 24-month mixed-methods RADOSS project is being completed. It has the following aims: (1) calculate the risks and benefits of conveyance to hospital after a suspected seizure; (2) create a risk prediction tool that predicts the likelihood that an individual will die and/or recontact the UEC system within 3 (and 30) days if not conveyed and the likelihood that their conveyance to ED would result in an AA; and (3) establish a pathway to clinical implementation of the risk prediction tool and maximise usage of RADOSS findings. The project’s related objectives were noted in table 1.

Risk prediction tools are specific to clinical scenarios. We are therefore focusing on patients experiencing suspected seizures. Seizures are a topic of interest in their own right but also an ideal exemplar since they are frequently encountered by the service and ‘over-conveyed’. Table 2 expands on the reasons.

RADOSS consists of four work packages (WP). WP1 is the main one. It involves a cohort study (WP1a) and a Knowledge Exchange (KE) study (WP1b). WP2 is smaller and focuses on validation via a second cohort study. WP3 focuses on ‘next steps’ on the journey to implementation of the tool in the NHS, and WP4 on dissemination (figure 1). According to Greene et al’s conceptual framework, the purpose of using a mixed-methods approach is both ‘development’ and ‘expansion’.

Routine data source: cured+

For WP1a and WP2, we will use a cutting-edge database called ‘CUREd+’. Currently being developed by the Centre for Urgent and Emergency Care Research, it will map UEC use by individuals served by the Yorkshire Ambulance Service (YAS) from 2011 to 2022. It contains records of all ambulance contacts and these are linkable to any subsequent ambulance, hospital (ED, inpatient) and death records (Office for National Statistics (ONS) mortality register). Further information is provided in table 3.

METHODS AND ANALYSIS

Work package 1

WP1a: retrospective cohort study 1

Purpose

- Describe the pattern of calls for suspected seizure, the type of ambulance responses received and the characteristics of the patients accounting for them.
- Determine and compare the rate of death and recontact with the UEC system of those seen by the ambulance service for a suspected seizure who were and were not conveyed to ED.
- Determine the proportion of suspected seizure incidents conveyed to ED that resulted in an AA; develop predictive models for risk of death/recontact with the UEC system within 3 (and 30) days following conveyance and non-conveyance and risk of attendance at ED being classed an AA if conveyed.

Figure 1 Summary of RADOSS project. Using four WPs, we will develop a risk prediction tool for people after a suspected seizure; we will validate the tool, plan its implementation and disseminate the findings. ED, emergency department; NHS, National Health Service; RADOSS, Risk of Adverse Outcomes after a Suspected Seizure; WP, work package.
Combine the predictive models to form a draft tool that can potentially provide estimates of an individual’s risk of death/recontact with the UEC system if managed by non-conveyance; risk of death/recontact with the UEC system if managed by conveyance; and the risk of their attendance at ED being classed as an AA if conveyed.

To do this, a retrospective cohort of adults cared for a suspected seizure by YAS will be studied.

Identification

Index events will be identified by searching CUREd+ for persons managed by YAS for a suspected seizure between 1 February 2019 and 31 January 2020. Eligibility criteria are presented in table 4.

The unit of analysis will be the patient, with the first recorded episode being the index event and subsequent episodes ≤3 days defined as recontacts (or 30 days for the secondary analysis).

Data extract

The data extract provided will include any ambulance, ED (Emergency Care Data Set; Hospital Episode Statistics (HES) Accident and Emergency (due to overlap in system use)), urgent inpatient (HES Admitted Patient) and death (ONS) records that relate to the index events which started within 30 days.

Outcome measures

Death/recontact with the UEC system following ambulance care and the likelihood of an AA occurring if conveyed to ED are important outcomes to clinicians and service users. Below we describe how the index events will be classified according to these two measures.

Measure 1 (safe/unsafe: death or recontact with UEC)
All index events, both conveyed and non-conveyed to ED, will be classified according to whether linked data indicate the patient involved died and/or recontacted the UEC (defined as any ambulance, ED or unscheduled inpatient care).

For the primary analysis, we propose a time frame of up to 3 days from the event within which death must have occurred or recontact started. This has been specified by paramedics and other stakeholders. It aligns with evidence that when considering all ambulance presentations, ~75% of deaths/UEC recontacts following non-conveyance occur within 3 days. We shall though still confirm its suitability with clinicians and service users via WP1b. For secondary analyses, a time frame of 30 days is proposed.

Deaths within the cohort should be rare. Nonetheless, when describing and using deaths we shall report them with and without exclusion of persons where death was associated with end-of-life care.

Measure 2 (avoidable/unavoidable ED attendance)

Index events that resulted in conveyance to ED will be classified according to whether they resulted in an AA or not.

To determine this, the events will be assessed against O’Keeffe et al’s definition. Namely, a person has been involved in an AA if routine hospital coding for the attendance indicates it did not result in the person being investigated (except urinalysis, pregnancy test, dental investigation) or treated (except prescription, recording vital signs, dental treatment or guidance/advice), and they were discharged.

O’Keeffe’s system has advantages. It is generic, applicable to all ages, based on process of care rather than initial triage score and has been adopted by the NHS. It is also quick and routine data have been found to be sufficient to mean it can be applied to ~98% of attendances. A possible disadvantage is it assumes all investigations, treatments and admissions were clinically indicated.

Table 3

Key information about CUREd+ linked database

Issue	Detail
Linkage	CUREd+ is a prelinked data set. Events have been linked by NHS Digital using their algorithm based on NHS number, date of birth, postcode and sex.
Coverage of data	CUREd+ is new. Evidence from its predecessor CUREd (which mapped activity in the same area from 2011 to 2017 using a different approach) indicates CUREd+ should have high data coverage. Evidence from CUREd and other work shows ~95% of individuals can have their ambulance and onward care records linked and so are suitable for inclusion. Wider work also shows those who can and cannot have their records linked do not markedly differ. CUREd+ could have even higher coverage due to more use of NHS numbers by ambulance services (which supports linkage).
Quality of data	The data contributing to CUREd were high in quality. Smyth examined ambulance patient care records (PCRs) for >22,000 patients. Most core clinical variables had <2% missing data and errors were rare. CUREd+ could have even higher quality due to the introduction of electronic PCRs (which support more consistent data capture).
Area covered by CUREd+ and suitability for RADOSS	England has 10 regional ambulance services. CUREd+ includes data from the Yorkshire Ambulance Service (YAS). The size of the population (~5.6 million) and geographical area (urban/rural mix, ~6000 square miles) served by YAS is similar to the average, as is its non-conveyance rate.

NHS, National Health Service; RADOSS, Risk of Adverse Outcomes after a Suspected Seizure.
Table 4 Participant inclusion and exclusion criteria for different WPs

WP	Inclusion criteria	Exclusion criteria
WP1a: retrospective cohort study 1	Incident cared for by YAS. Person aged ≥16 years (no upper age limit). Abbreviated complaint (or other complaint) selected by attending ambulance clinician on PCR was ‘convulsions/fitting/seizure’ OR, if empty, call handler coded it as AMPDS protocol 12 (‘Convulsions’). No restriction on type of ambulance response incident received (ie, could have been ‘Hear & Treat’, ‘See & Treat’, ‘See & Convey to ED’ or ‘See & Convey elsewhere’).	The <1% of events coded as AMPDSC02. These relate to seizures in someone potentially pregnant. (Guidelines state these should be conveyed because of eclampsia risk).
WP1b: Knowledge Exchange (KE) workshops	Service users: Aged ≥18 years (no upper limit). Attended to by an ambulance during prior 12 months for a suspected seizure(s) OR a significant other to such a person (eg, family member, friend). Incidental related to epilepsy, non-epileptic attack disorder or syncope. They account for ~70% of events. Able to provide informed consent and participate in a workshop independently in English.	Severe current psychiatric disorders (eg, acute psychosis). Terminal medical condition.
Clincians	Aged ≥18 years (no upper limit). Ambulance clinician, ED doctor or nurse. Works in England. Able to provide informed consent and participate in a workshop independently in English.	Severe current psychiatric disorders (eg, acute psychosis). Terminal medical condition.
WP2: retrospective cohort study 2	Incident cared for by YAS. Person aged ≥16 years (no upper age limit). Incident occurred between 1 July 2021 and 30 June 2022. ‘Chief complaint’ (or other complaint) selected by attending ambulance clinician on PCR was ‘convulsions/fitting/seizure’ OR, if field was empty, call handler coded it as AMPDS protocol 12. No restriction on type of ambulance response incident received.	The <1% of events coded as AMPDSC02. These relate to seizures in someone potentially pregnant.
WP3: ‘Next Steps’ workshops	Incident cared for by YAS. Person aged ≥16 years (no upper age limit). Aged ≥18 years (no upper limit). Ambulance clinician, epilepsy guideline developer, user group representative, seizure specialist (eg, neurologist/epilepsy nurse), commissioning representative. Able to provide informed consent and participate in a workshop independently in English. Lives in UK.	Severe current psychiatric disorders (eg, acute psychosis). Terminal medical condition.

Some may have happened for other reasons (eg, routine or inappropriate administration of test). Thus, we shall describe the reasons why any WP1a cases satisfied the criteria for an unavoidable attendance. Moreover, via WP1b, we shall ask ED clinicians to what extent suspected seizure cases attending their EDs could satisfy the criteria of an unavoidable attendance based on routine practice. Should it prove warranted, a sensitivity analysis will be conducted with and without such cases.

Sample size

Predictive models for the (1) risk of death/UEC recontact following conveyance, (2) risk of death/UEC recontact following non-conveyance, and (3) risk of an AA following conveyance could be developed. To permit robust testing of at least 40 candidate predictor parameters for each of these models, Riley et al's formulae using standard parameters indicate: for model (1), a need for 2567 index events, with 103 experiencing the target event; for model (2), a need for 2194 index events, with 308 experiencing the target event; and for model (3), up to 2194 index events, with 461 experiencing the target event. Twelve months of YAS data should be sufficient to satisfy these requirements. Online supplemental file 3 details the reasons why and provides further information on the sample size calculation.

Data management and analysis

Curation

A statistician, with support from a data manager, will complete data quality checks on the data extract, identifying missing and incongruent values.

Describing sample and patient outcomes

The characteristics of the calls for suspected seizures (dispatch codes, time of day, day of week, location), the patients accounting for them, and the ambulance response they receive (proportions managed by ‘Hear &
Table 5 Topic guide areas that WP1b Knowledge Exchange workshops will explore (emphasis will vary depending on whom the workshop is for)

Area	Detail
1	Potential predictors
2	Parameters of outcome measures
3	Optimal way to present risk scores
4	Optimal format for tool

Area Detail

1 Potential predictors ➤ Asked for views on potential predictors, including perceived utility, reliability, validity and consistency in measurement.
2 Parameters of outcome measures ➤ Asked whether any routine ED practices could mean seizure cases by default would not satisfy AA definition. ➤ Asked about any known differences between EDs and hospitals in how codes for incidents are applied at them that could undermine validity of definition that is based on them. ➤ What time frame for death and recontact with UEC would be most supportive for conveyance decisions.
3 Optimal way to present risk scores ➤ Asked whether percentage probability and/or broad risk categories wanted, whether visual aids would help and if estimates of uncertainty around probabilities wanted. ➤ Illustrations of options offered. ➤ Asked what ‘low’, ‘medium’ or ‘high’ risk of death, UEC recontact or AA would look like to them in percentage terms.
4 Optimal format for tool ➤ Asked how they might want such a tool to be presented in future (eg, web tool, nomogram, graphical score chart), who should have access to it and the extent to which they would want it integrated into existing workflows.

AA, avoidable attendance; ED, emergency department; UEC, urgent and emergency care; WP, work package.

Treat’, ‘See & Treat’, ‘See & Convey to ED’ and ‘See & Convey elsewhere’) will be described. For events receiving the response ‘See & Convey to ED’, we shall:

➤ Tabulate ED discharge diagnoses.
➤ Calculate the proportion satisfying the AA definition.
➤ Tabulate the reason/s why persons did not satisfy the AA definition.

➤ Calculate the proportion recontacting the UEC system within 3 (and 30) days (with and without inclusion of those whose subsequent contact/s meet the AA definition).
➤ Calculate the proportion dying within 3 (and 30) days and reasons.

For events receiving a face-to-face response but not conveyed to ED (ie, ‘See & Treat’, ‘See & Convey elsewhere’), we shall:

➤ Calculate the proportion recontacting UEC system within 3 (and 30) days (with and without those whose subsequent contact/s meet the AA definition; also, with and without those originally non-conveyed to ED because they refused).
➤ Calculate the proportion dying within 3 (and 30) days and reasons.

Derivation of prediction models and management of missing data

As the outcome measures are binary, multivariable logistic regression will be used to derive the predictive models. Reporting will be done according to best practice. The pool of candidate predictors for testing will be informed by WP1b (see WP1b: KE workshops) and chosen based on clinical relevance, consistency in measurement and ease of use in practice. Where possible, variables will be used in their original form.

While missingness on core data items is anticipated to be low, missingness on wider items might be higher since tests may not be performed if expected to be normal and not all PCR fields are mandatory. Where data are ‘expectedly’ missing (ie, the test is not performed as not clinically indicated), an additional category of ‘not clinically indicated’ will be added to the variable. In the case of more than 10% missingness for any other variable, multiple imputation via chained equations will be undertaken. A set of 20 imputed data sets will be created using predictive mean matching. Functional form for continuous variables will be assessed via fractional polynomials of more than 10% missingness for any other variable, multiple imputation via chained equations will be undertaken. A set of 20 imputed data sets will be created using predictive mean matching. Functional form for continuous variables will be assessed via fractional polynomials of more than 10% missingness for any other variable, multiple imputation via chained equations will be undertaken. A set of 20 imputed data sets will be created using predictive mean matching. Functional form for continuous variables will be assessed via fractional polynomials of more than 10% missingness for any other variable, multiple imputation via chained equations will be undertaken. A set of 20 imputed data sets will be created using predictive mean matching. Functional form for continuous variables will be assessed via fractional polynomials of more than 10% missingness for any other variable, multiple imputation via chained equations will be undertaken. A set of 20 imputed data sets will be created using predictive mean matching. Functional form for continuous variables will be assessed via fractional polynomials of more than 10% missingness for any other variable, multiple imputation via chained equations will be undertaken. A set of 20 imputed data sets will be created using predictive mean matching. Functional form for continuous variables will be assessed via fractional polynomials of more than 10% missingness for any other variable, multiple imputation via chained equations will be undertaken. A set of 20 imputed data sets will be created using predictive mean matching. Functional form for continuous variables will be assessed via fractional polynomials.
across all imputed samples will then be used to calculate the optimism-adjusted C-statistic and optimism-adjusted calibration slope. Using the latter as a uniform shrinkage factor, all the predictor effects in the final developed model will be penalised in order to account for overfitting.

The pool of potential predictors for the backward selection will be any predictor in a final multivariable model for each imputed data set.

Combining the predictive models to form a draft tool
The three derived models will be combined to form a single, Excel-based draft version of a tool that seeks to provide estimates of an individual’s risk of death/recontact with the UEC system if managed by non-conveyance; risk of death/recontact with the UEC system if managed by conveyance; and the risk of their attendance at ED being classed as an AA if conveyed. The manner in which it is presented will be informed by WP1b and previous work by Bonnett et al. Examples of tools that have combined predictive models to provide clinicians with different estimates to inform decisions include the CHA2DS2-VASc/ HAS-BLED and the cancer PREDICT tool.

WP1b: Ke workshops

Purpose
Optimise prediction tool development by completing KE workshops with service users, ambulance clinicians and ED clinicians to get views on candidate predictors, the way the outcome measures of death, UEC recontact and AA are defined and risk score presentation.

Design
KE workshops will be run online using videoconferencing technology. Wilkins and Cooper defined KE as a two-way exchange between researchers and research ‘users’ to share ideas, evidence, experiences and skills. It goes beyond telling people things and is a process of listening and interaction, with a goal to generate mutual benefit.

Participants
Service users
Purposive sample of ~20–30 persons recently receiving ambulance care for a suspected seizure/s and their significant others. Full eligibility is presented in table 4.

Individuals shall be recruited via user groups affiliated with the different conditions (including epilepsy deaths). They shall circulate advertisements directly to their members and within publications.

UCE clinicians
Sampling will be purposive, consisting of a group of ~20–30 informed individuals/‘experts’ deemed to have high professional knowledge and clinical experience of the UEC system.

The national ‘Lead Paramedic Group’ will circulate advertisements, with priority being given to ambulance clinicians from the n=6 services that have used Advanced Medical Priority Dispatch System. To recruit ED clinicians, the Royal College of Emergency Medicine Yorkshire and Humber regional board shall circulate advertisements.

Procedure

Workshops for service users and ambulance clinicians will run separately. To maximise participation, we anticipate two to three for each. They will be conducted by a qualitative researcher. For those with clinicians, statistician LJB will assist.

Workshops will start with an explanation of the risk tool, aims and a presentation of the potential predictors and proposed outcome measures. A topic guide will direct the conversation. It will be finalised on the basis of the literature, our experience and key uncertainties regarding the tool’s future implementation surfaced by completion of Greenhalgh et al’s Non-adoption, Abandonment, Scale-up, Spread and Sustainability Complexity Assessment Tool Long. The main areas that the workshops intend to cover are shown in table 5. Workshops will last ~60–90 min.

Analysis
Data will include field notes and audio recordings. A qualitative researcher, supported by the wider team, will take an inductive and deductive approach to analysis. NVivo will provide a transparent account of the work. Nodes (codes) will be created to mark relevant concepts and topics in the documents. Lower level nodes will be grouped into themes.

Work package 2

WP2: Retrospective cohort study 2

Purpose
‘Temporally’ validate WP1a’s predictive models.

The predictions of the WP1a models will be tested on a data set relating to patients cared for by YAS during a 12-month time period different from that used for derivation.

Identification, data linkage, data checks and outcome measures
CUREd+ will be searched to identify events as done for WP1a, except the date range will be 1 July 2021 to 30 June 2022 (table 4). Outcome measures and processes used will be the same.

Sample size
The validation sample will be similar to that used for derivation. It will thus satisfy the recommendation that validation samples include ≥200 cases experiencing the target events.

Data management and analysis

Describing sample and patient outcomes
Sample contributing data will be described as for WP1a.

Comparison with time period used for model derivation
Number of calls for and the characteristics of the patients presenting with suspected seizures during the derivation and validation periods will be compared, as will the proportions...
conveyed to ED, the proportions whose attendance meets the AA definition and the proportions dying/recontacting the UEC within 3 (and 30) days. Differences will be described and tested for statistical significance.

Temporal validation of predictive models

Predictors and regression coefficients from the final internally validated, optimism-adjusted models will be applied to the WP2 data set to predict the target outcomes. The performance of the models will be quantified by comparing predictions with observed outcomes. Performance will be assessed using measures of discrimination and calibration. Model recalibration will be undertaken if there is systematic underprediction or overprediction.

Work package 3

Next steps’ workshops

Purpose

- Finalise plans to refine the risk tool for clinical use and its evaluation.

If the developed models are found to make predictions with an acceptable level of validity then we would have satisfied the requirements for the tools use within practice. We would therefore need to finalise its presentations for clinical use and evaluate its impact on clinical practice. To ensure any plans for this are acceptable to stakeholders and address their information needs, ‘Next steps’ workshops will be completed.

Design

Two online workshops, each lasting ~3 hours. We shall limit each to approximately eight to nine participants.

Workshops will start with a presentation of RADOSS findings and our draft ‘next steps’. To secure stakeholders’ views of these we would use an adapted version of the nominal group technique.

With respect to what evaluation we propose we consider it appropriate to make this judgement nearer the time. A cluster randomised controlled trial would likely be most rigorous. However, various factors can influence and constrain design choice. This includes time frame within which evidence is required and regulations at the time surrounding risk tools.

Recruitment

We shall seek representation from:

- Service providers (via Association of Ambulance Chief Executives National Ambulance Strategy and Transformation Group).
- Care guideline providers (via Joint Royal Colleges Ambulance Liaison Committee panel for seizures; National Institute for Health and Care Excellence panel for epilepsy).
- User groups (including Epilepsy Action, Epilepsy Society, FND Action, SUDEP Action and others).
- Ambulance research and care quality improvement (via National Ambulance Steering Group; National Ambulance Services Clinical Quality Group).
- Seizure specialists (via International League Against Epilepsy; Epilepsy Specialists Nurses Association).
- Commissioners (via National Ambulance Commissioners Network).

Personal invitations will be sent. To maximise attendance, we shall exploit existing relationships our team has. We shall overinvite by ~30%. Table 4 provides the eligibility criteria.

Procedure

Workshops will be facilitated by the investigative team. Presentations will be pre-recorded to reduce opportunity for technical difficulties.

Table 6 Dissemination actions (in addition to WP3)

Activity	Detail
1 Promoting awareness/engagement	Notification of the project’s funding and progress sent to medical directors and lead consultant paramedics of all ambulance services, National Clinical Director for Urgent Care for NHS England, National Ambulance Commissioners Network; National Ambulance Urgent and Emergency Care Group subgroup of the Association of Ambulance Chief Executives, National Ambulance Research Steering Group.
2 Interim updates	As project progresses, accessible briefings are produced and disseminated to funders; stakeholders; service user groups; policy makers; NHS audiences; and research bodies. Include NHS Improvement and NICE who identified need for such research.
3 Peer-reviewed outputs	Minimum of 2 papers in peer-reviewed journals which would appeal to clinical, organisational, general health and social policy audiences.
4 Taking evidence to practitioners	Findings circulated via NHS network newsletters, in practitioner journals and general press.
5 Taking evidence to clinicians	Oral and poster presentations at neurology and acute/emergency care conferences and fora.
6 Taking evidence to participants	Summary of project’s findings distributed to participants in the different WPs.
7 Media briefings	Updates on websites including YAS, Epilepsy Action and universities.
8 Taking evidence to service users	Service users and significant others/carers will clearly be interested in study outcomes. Epilepsy Action will feature study with patient experience stories in communications with epilepsy community.

NHS, National Health Service; NICE, National Institute for Health and Care Excellence; WP, work package; YAS, Yorkshire Ambulance Service.

Noble AJ, et al. BMJ Open 2022;12:e069156. doi:10.1136/bmjopen-2022-069156
Analysis
Field notes will be kept. Delegates’ involvement will be anonymous. A summary of the findings will be generated and discussed by the investigators and the ‘next steps’ plan finalised.

Work package 4
Purpose
Disseminate findings to key stakeholders and maximise evidence usage.

Dissemination and outputs
We shall engage in a proactive dissemination and knowledge mobilisation strategy to ensure those who are considering developing, funding or supporting non-conveyance strategies are aware of the project and its findings. All investigators shall contribute, and the media departments of involved institutions shall help. As well as conducting WP3, dissemination will consist of the items in table 6.

DISCUSSION
Patient and public involvement
This research was instigated by evidence on the priorities of the seizure community and those supporting them (eg, ref 101). To shape the project’s design and determine its perceived importance, a patient and public involvement (PPI) event for nine service users and their informal carers was completed. A similar exercise was completed with leading clinicians from seven of England’s ambulance services.Both groups were supportive of the project idea and provided feedback on the project’s draft design. When asked to rate its importance on a scale of 1–10, seven service user pairs scored it as 10 ‘Extremely important’.

Services users will be actively involved in the project’s completion. Service users are present in both the research team and in the groups advising and overseeing it. Coinvestigator JW is a service user herself with experience in ambulance care. Epilepsy Action, the largest seizure user organisation in the UK, is also a coinvestigator. A PPI group of 20 user representatives will contribute as research peers, advising the investigators on recruitment and reviewing study conclusions, implications for practice and recommendations. Four user representatives will also be on RADOSS Study Steering Committee (SSC).

All user representatives will be supported by Epilepsy Action who have an active PPI scheme and reimbursed for travel and their time according to guidance.102 Representatives will be recruited from a range of user groups.

Ethics and dissemination
Monitoring by an independent SSC will help to ensure the rights, safety and well-being of participants are the most important considerations. Compliance with the principles of Good Clinical Practice and scientific integrity will be managed by the study management team through regular and ad hoc meetings. YAS will be the sponsor. AJN and JMD are cochief investigators. WP1a and WP2 will use completely anonymised data from CUREd+. Access will be sought from the Centre for Urgent and Emergency Care Research Data Release Committee. CUREd+ has generic database ethical approval (307353) and Confidentiality Advisory Group approval (22/CAG/0019). With strict controls, WP1a and WP2’s work will be completed under these. WP1b and WP3 have received ethical approval from the University of Liverpool Central Research Ethics Committee D (11450). Only persons providing informed consent will participate.

We shall engage in a proactive dissemination and knowledge mobilisation strategy. It is specifically addressed by WP4 described in section Work package 4.

All requests for data sharing should be submitted to the corresponding author for consideration. Access to anonymised data may be granted following review.

Author affiliations
1Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, UK
2School of Health and Related Research, The University of Sheffield, Sheffield, UK
3Department of Health Data Science, University of Liverpool, Liverpool, UK
4Academic Neurology Unit, The University of Sheffield, Sheffield, UK
5Public Contributor, UK
6Research and Development Department, Yorkshire Ambulance Service NHS Trust, Wakefield, UK
7Epilepsy Action, London, UK
8Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
9Academic Unit of Primary Medical Care, The University of Sheffield, Sheffield, UK

Acknowledgements
The authors would like to express their appreciation for the contributions from people who have experienced a suspected seizure and their family members and friends who will participate in this study or who have contributed data to CUREd+. They would also like to thank the members of the Study Steering Committee: Professor Niro Sirirwadena (chair), Mrs Jayne Burton, Mrs Carol Jackson, Mr Graham Jackson, Ms Kim Kirby, Dr Benjamin Thomas and Professor Arjune Sen. The study sponsor is the Yorkshire Ambulance Service (yas.research@nhs.net) and they would like to thank Dr Fiona Bell and Ms Kelly Hird for their support with all aspects of the project set-up.

Contributors
AJN and JMD conceived the study and designed the study together with AGM, SMM, LJB, MR, RP, JW, AF, RMJ, RMS and RC. All authors read and approved the final manuscript.

Funding
This project is funded by the National Institute for Health Research (NIHR) Research for Patient Benefit (RfPB) programme (reference NRHR203530).

Disclaimer
The views and opinions expressed herein are those of the authors and do not necessarily reflect those of the University of Liverpool, the RfPB programme, the NIHR, the NHS or the Department of Health and Social Care.

Competing interests
None declared.

Patient and public involvement
Patients and/or the public were involved in the design, conduct, or reporting, or dissemination plans of this research. Refer to the Methods section for further details.

Patient consent for publication
Not applicable.

Provenance and peer review
Not commissioned; peer reviewed for ethical and funding approval prior to submission.

Supplemental material
This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines,
REFERENCES

1. NHS. The NHS Long Term Plan., 2019.

2. England NHS. High Quality Care for All, Now and for Future Generations: Transforming Urgent and Emergency Care Services in England – Urgent and Emergency Care Review. End of Phase 1 Report. NHS England: Leeds, 2013.

3. Newton A, Hunt B, Williams J. The paramedic profession: disruptive innovation and barriers to further progress. Journal of Paramedic Practice 2020;12:138–48.

4. NHS England and NHS Improvement. Planning to Safely Reduce Avoidable Conveyance., 2019.

5. Miles J, O’Keeffe C, Jacques R, et al. Exploring ambulance conveyances to the emergency department: a descriptive analysis of non-urgent transports. Emergency Medicine Journal 2017;34:A872–3.

6. NHS England and NHS Improvement.. AmbSYS Time Series to August 2022., 2022. Available: https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2022/09/AmbSYS-time-series-until-20220831.xlsx. [Accessed cited 2022 9 September].

7. Nuffield Trust.. Ambulance response times, 2022. Available: https://www.nuffieldtrust.org.uk/resource/ambulance-response-times. [Accessed cited 2022 9 September].

8. Nuffield Trust.. Ambulance handover delays, 2022. Available: https://www.nuffieldtrust.org.uk/resource/ambulance-handover-delays. [Accessed cited 2022 9 September].

9. O’Keeffe C, Mason S, Jacques R, et al. Characterising non-urgent uses of the emergency department (ED): a retrospective analysis of routine ED data. PLoS One 2018;13: e0192955.

10. O’Cathain A, Knowles E, Bishop-Edwards L, et al. Understanding variation in ambulance service non-conveyance rates: a mixed methods study. Health Services and Delivery Research 2018;6:1–192.

11. Hoot NR, Aronsky D. Systematic review of emergency department crowding: causes, effects, and solutions. Ann Emerg Med 2008;52: 126–36.

12. Richardson DB. Increase in patient mortality at 10 days associated with emergency department overcrowding. Med J Aust 2006;184: 213–6.

13. NHS England. A&E Attendances and Emergency Admissions 2021-22., 2022. Available: https://www.england.nhs.uk/statistics/statistical-work-areas/a&e-waiting-times-and-activity/ae-attendances-and-emergency-admissions-2021-22/. [Accessed cited 2022 14 July].

14. Keene T, Davis M, Brook C. Characteristics and outcomes of patients assessed by paramedics and not transported to hospital: a pilot study. Australasian Journal of Paramedicare 2015;12.

15. Machen I, Dickinson A, Williams J, et al. Nurses and paramedics in partnership: perceptions of a new response to low-priority ambulance calls. Accid Emerg Nurs 2007;15: :185–92.

16. NHS England., Friends and Family Test data – June 2020., 2020.

17. King R, Opreseanu F, Lord B, et al. Patient experience of non-conveyance following emergency ambulance service response: a scoping review of the literature. Australas Emerg Care 2021;24:210–23.

18. Jones CMC, Wasserman EB, Li T, et al. Acceptability of alternatives to traditional emergency care: patient characteristics, transport modes, and alternate destinations. Prehosp Emerg Care 2015;19:516–23.

19. Ipsos Mori. North East Ambulance Service Patient experience survey, 2017. Available: [https://www.neas.nhs.uk/media/136931/neas_2017_presenation_version_3_final.pdf] [Accessed 12 Jan 2021].

20. Togher FJ, O’Cathain A, Phung V-H, et al. Reassurance as a key outcome valued by emergency ambulance service users: a qualitative interview study. Health Expect 2015;18:2951–61.

21. Scuffham PA, Moretto N, Knirks R, et al. Engaging the public in healthcare decision-making: results from a citizens’ jury on emergency care services. Emerg Med J 2018;35:782–8.

22. Coster J, O’Cathain A, Jacques R, et al. Outcomes for patients who contact the emergency ambulance service and are not transported to the emergency department: a data linkage study. Prehosp Emerg Care 2019;23:566–77.

23. Ebben RHA, Voel LCM, Speijers RF, et al. Patient-safety and professional perspective on non-conveyance in ambulance care: a systematic review. Scand J Trauma Resusc Emerg Med 2017;25:71.

24. Oosterwold J, Sagel D, Berben S, et al. Factors influencing the decision to convey or not to convey elderly people to the emergency department after emergency ambulance attendance: a mixed systematic studies review. BMJ Open 2018;8:e021732.

25. Turner J, Coster J, Chambers D, et al. What evidence is there on the effectiveness of different models of delivering urgent care? a rapid review. Health Services and Delivery Research 2015;3:1–134.

26. National Institute for Health and Clinical Excellence. Emergency and acute medical care in over 16s: service delivery and organisation, 2018. Available: [https://www.nice.org.uk/guidance/NG94] [Accessed 12 Jan 2021].

27. Lederman J, Löfdenmark C, Djärv T, et al. Assessing non-conveyed patients in the ambulance service: a phenomenological interview study with Swedish ambulance clinicians. BMJ Open 2019;9:e030203.

28. Halter M, Vernon S, Snooks H, et al. Complexity of the decision-making process of ambulance staff for assessment and referral of older people who have fallen: a qualitative study. Emerg Med J 2011;28:44–50.

29. Snooks HA, Kearnsley N, Dale J, et al. Gaps between policy, protocols and practice: a qualitative study of the views and practice of emergency ambulance staff concerning the care of patients with non-urgent needs. Qual Saf Health Care 2005;14:251–7.

30. Porter A, Snooks H, Youren A, et al. ‘Covering our backs’: ambulance crews’ attitudes towards clinical documentation when emergency (999) patients are not conveyed to hospital. Emerg Med J 2008;25:292–5.

31. Porter A, Snooks H, Youren A, et al. ‘Should I stay or should I go?’ Deciding whether to go to hospital after a 999 call. J Health Serv Res Policy 2007;12:32–8.

32. Burrell L, Noble A, Ridsdale L. Decision-Making by ambulance clinicians in London when managing patients with epilepsy: a qualitative study. Emerg Med J 2013;30:236–40.

33. Noble AJ, Snape D, Goodacre S, et al. Qualitative study of paramedics’ experiences of managing seizures: a national perspective from England. BMJ Open 2016;6:e014022.

34. Rees N, Porter A, Rapport F, et al. Paramedics’ perceptions of the care they provide to people who self-harm: a qualitative study using evolved grounded theory methodology. PLoS One 2018;13:e0205813.

35. Scherratt FC, Snape D, Goodacre S, et al. Paramedics’ views on their seizure management learning needs: a qualitative study in England. BMJ Open 2017;7:e014024.

36. Colver KA. Ambulance Service Treat and Refer Guidelines: A Qualitative Investigation into the Use of Treat and Refer Guidelines by Ambulance Clinicians. University of Stirling, 2012.

37. Snooks HA, Anthony R, Chatters R, et al. Support and assessment for fall emergency referrals (safer) 2: a cluster randomised trial and systematic review of clinical effectiveness and cost-effectiveness of new protocols for emergency ambulance paramedics to assess older people following a fall with referral to community-based care when appropriate. Health Technol Assess 2017;21:1–218.

38. O’Hara R, Johnson M, Srijawanda AN, et al. A qualitative study of systemic influences on paramedic decision making: care transitions and patient safety. J Health Serv Res Policy 2015;20:45–53.

39. Porter A, Dale J, Foster T, et al. Implementation and use of computerised clinical decision support (CCDS) in emergency pre-hospital care: a qualitative study of paramedic views and experience using strong Structuration theory. Implement Sci 2018:13:91.

40. Snooks H, Evans A, Wells B, et al. What are the highest priorities for research in emergency prehospital care? Emerg Med J 2009;26:549–50.

41. Power B, Bury G, Ryan J. Stakeholder opinion on the proposal to introduce ‘treat and referral’ into the Irish emergency medical service. BMC Emerg Med 2019;19:81.
42 England NHS. Lord Carter’s review into unwarranted variation in NHS ambulance trusts. Operational productivity and performance in English NHS Ambulance Trusts. Unwarranted variations.

43 Wells PS, Ginsberg JS, Anderson DR, et al. Use of a clinical model for safe management of patients with suspected pulmonary embolism. Ann Intern Med 1998;129:997–1005.

44 Physicians, RCo. National Early Warning Score (NEWS) 2: Standardising the assessment of acute-illness severity in the NHS, 2017. Available: https://www.rcplondon.ac.uk/projects/outputs/national-early-warning-score-news-2 [Accessed 12 Jan 2021].

45 Harbison J, Hossain O, Jenkinson D, et al. Diagnostic accuracy of stroke referrals from primary care, emergency room physicians, and ambulance staff using the face arm speech test. Stroke 2003;34:71–6.

46 International League Against Epilepsy - UK Chapter. Emergency health services for epilepsy - The proceedings of an expert workshop, 2016. Available: http://ilaebritish.org.uk/epilepsy-emergency-care/ [Accessed 01 Jan 2018].

47 Joint Royal Colleges Ambulance Liaison Committee. Association of Ambulance Chief Executives, JRCALC Clinical Guidelines. Bridgewater: Class Professional Publishing, 2019.

48 Wallace E, Uijen MJM, Clyne B, et al. Impact analysis studies of clinical prediction rules relevant to primary care: a systematic review. BMJ Open 2016;6:e009957.

49 Murthy C, Davis R, Koegelenberg CFN, et al. The impact of an electronic clinical decision support for pulmonary embolism imaging on the efficiency of computed tomography pulmonary angiography utilisation in a resource-limited setting. S Afr Med J 2015;106:62–4.

50 Hill JC, Whitehurst DGT, Lewis M, et al. Comparison of stratified primary care management for low back pain with current best practice (start back): a randomised controlled trial. Lancet 2011;378:1660–71.

51 Cosman F, de Beur SJ, LeBoff MS, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 2014;25:2359–81.

52 Leyer WC. Use of a clinical model for predicting the risk of death after transfusion in patients with severe sepsis or septic shock. JAMA 2012;308:1702–8.

53 Halligan S, Marshall A, Smeeth L, et al. Risk of death among emergency hospital medical assistance. BMJ 2009;339:b4192.

54 Freeman RD, Hendrie HC, Jarrett RJ, et al. A risk prediction model to aid decision making on adjuvant therapy for breast cancer using routinely available clinical measures. BMC Med 2007;5:4.

55 Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD). Ann Intern Med 2015;162:735–6.

56 Stiell IG, Wells GA. Methodologic standards for the development of clinical decision rules in emergency medicine. Ann Emerg Med 1999;33:437–47.

57 Smyth MA. Prehospital recognition of sepsis by ambulance clinicians (prosac). PHD thesis, University of Warwick, 2018. Available: http://wrap.warwick.ac.uk/103086 [Accessed 12 Jan 2021].

58 Lopez AM, Velasco R, Pascual S, et al. Comparison of stratified primary care management for low back pain with current best practice (start back): a randomised controlled trial. Lancet 2011;378:1660–71.

59 Egan M, Murar F, Lawrence J, et al. Identifying the predictors of avoidable emergency department attendance after contact with the NHS 111 phone service: analysis of 16.6 million calls to 111 in England in 2015-2017. BMJ Open 2020;10:e032043.

60 McHale P, Wood S, Hughes K, et al. Who uses emergency departments inappropriately and when - a national cross-sectional study using a monitoring data system. BMC Med 2012;13:108.

61 Patel PP, Thirumoorthi M, Subramanian S, et al. Reducing inpatient emergency department attendances—a review of ambulance service attendances at a regional teaching hospital in Scotland. Emerg Med J 2013;30:459–61.

62 Dickson JM, Asghar ZB, Siriwardana AN, et al. Prognosis of patients following a suspected seizure: a cross sectional study. Seizure 2018;57:38–44.

63 Dickson JM, Taylor LH, Shewan J, et al. Cross-Sectional study of the prehospital management of adult patients with a suspected seizure (EPIC). BMJ Open 2016;6:e001057.

64 Greene JC, Caracelli VJ, Graham WF. Toward a conceptual framework for mixed-method evaluation designs. Educ Eval Policy Anal 1989;11:255–74.

65 Coster JE, Irving AD, Turner JK, et al. Prioritizing novel and existing ambulance performance measures through expert and lay consensus: a three-stage multimethod consensus study. Health Expect 2018;21:249–60.

66 Snoeks HA, Carter B, Dale J, et al. Support and assessment for fall emergency referrals (safer 1): cluster randomised trial of computerised clinical decision support for paramedics. PLoS One 2014;9:e106436.

67 Mason S, Knowles E, Colwell B, et al. Effectiveness of paramedic practitioners in attending 999 calls from elderly people in the community: cluster randomised controlled trial. BMJ 2007;335:919.

68 Blodgett JM, Robertson DJ, Ratcliffe D, et al. Piloting data linkage in a prospective cohort study of a GP referral scheme to avoid unnecessary emergency department conveyance. BMC Emerg Med 2020;20:48.

69 NHS Digital. Clinical commissioning group outcomes indicator set (CCG OIS), 2020. Available: https://digital.nhs.uk/data-and-information/publications/statistical/ccg-outcomes-indicator-set [Accessed 12 Jan 2021].

70 OCDE. Classifying educational programmes. manual for ISCED-97 implementation in OECD countries. Organisation for Economic Co-operation and Development: Cedex, 1999.

71 NHS Digital. Non-urgent A&E attendances, 2021. Available: https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/innovative-uses-of-data-demand-on-healthcare/unnecessary-a-and-e-attendances. [Accessed 29 Oct 2021].

72 Riley RD, Enser J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. BMJ 2020;368:m441.

73 Burststein JL, Henry MC, Alicantro J, et al. Outcome of patients who refused out-of-hospital medical assistance. Am J Emerg Med 1996;14:23–6.

74 Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD). Ann Intern Med 2015;162:735–6.

75 Stiell IG, Wells GA. Methodologic standards for the development of clinical decision rules in emergency medicine. Ann Emerg Med 1999;33:437–47.

76 Smyth MA. Prehospital recognition of sepsis by ambulance clinicians (prosac). PHD thesis, University of Warwick, 2018. Available: http://wrap.warwick.ac.uk/103086 [Accessed 12 Jan 2021].

77 SR Ambulance Service. Patient report form user guide [V2.0], 2014. Available: https://www.whatdotheyknow.com/request/246823/response/610080/attachment/4/1744%20patient%20report%20form%20user%20guide%20v2.0.pdf?cookie_persist=true [Accessed 01 Dec 2021].

78 West Midlands Ambulance Service. Clinical times, focus on assessment and documentation, 2011. Available: https://www.wmasbco.uk/images/stories/PDFs/clinical_times_aug2011.pdf [Accessed 12 Jan 2021].

79 Graham JW, Olchowski AE, Gilbreath TD. How many imputations are really needed? some practical clarifications of multiple imputation theory. Prev Sci 2007;8:206–13.

80 Sauerbrei W, Royston P. Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials. J R Stat Soc Ser A Stat Soc 1999;162:71–94.

81 Marshall A, Altman DG, Holder RL, et al. Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines. BMC Med Res Methodol 2009;9:57.

82 Clark TG, Stewart ME, Altman DG, et al. A prognostic model for ovarian cancer. Br J Cancer 2001;84:944–52.

83 Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (biomarker. Heart 2012;98:683–90.

84 Rubin DB. Multiple imputation for nonresponse in surveys. New York: John Wiley and Sons, 1987.

85 Van Houwelingen JC, Le Cessie S. Predictive value of statistical models. Stat Med 1990;9:1303–25.

86 Bonnett LJ, Snell KIE, Collins GS, et al. Guide to presenting clinical prediction models for use in clinical settings. BMJ 2019;365:l5737.

87 de Jong J, CHA2DS2-VASc HAS-BLED: EHRA atrial fibrillation risk score calculator, 2022. Available: https://www.chads2vasc.org/ [Accessed 22 Sept 2022].

88 University of Cambridge. Predict: breast cancer, 2022. Available: https://breast.predict.nhs.uk/about/technical/publications. [Accessed 22 Sep 2022].

89 Wilkins T, Cooper I. Lessons from coordinating a knowledge-exchange network for connecting research, policy and practice. Research for All 2019;3:204–17.

90 Chisholm JA, Techie M, Larkin D. Improving Outcomes with Clinical Decision Support: An Implementer’s Guide. In: . 2 nd. Chicago: IL Healthcare Information and Management Systems Society, 2012.
Grønholdt J, Hjortland K, Thygesen JH, et al. The NASSS-100: an evaluation study in real-world settings. *JMR Res Protoc* 2020;9:e16861.

Collins GS, Ogundimu EO, Altman DG. Sample size considerations for resampling study. *Stat Med* 2016;35:214–26.

Vergouwe Y, Steyerberg EW, Eijkemans MJ, et al. Substantial effective sample size for exploratory factor analysis: results of 32 studies of predictive logistic regression models. *J Clin Epidemiol* 2005;58:475–83.

Altman DG, Vergouwe Y, Royston P, et al. Prognosis and prognostic research: validating a prognostic model. *BMJ* 2009;338:b605.

Janssen KJM, Moons KGM, Kaliszuk C, et al. Updating methods improved the performance of a clinical prediction model in new patients. *J Clin Epidemiol* 2008;61:76–86.

Cantrill JA, Sibbald B, Buettow S. The Delphi and nominal group techniques in health services research. *Int J Pharm Pract* 2011;19:67–74.

McMillan SS, Kelly F, Sav A, et al. Using the nominal group technique: how to analyse across multiple groups. *Health Services and Outcomes Research Methodology* 2014;14:92–108.

Campbell NC, Murray E, Darbishire J, et al. Designing and evaluating complex interventions to improve health care. *BMJ* 2007;334:455–9.

Public Health England. *Evaluating digital health products*, 2020. Available: https://www.gov.uk/guidance/get-started-evaluating-digital-health-products. [Accessed 01 Nov 2021].

Webb C, Doman M. Conducting focus groups: experience from nursing research Juncutures. *The Journal for Thematic Dialogue* 2008;10:51–60.

International League Against Epilepsy - British Branch. *Epilepsy health services and outcomes - the proceedings of an expert workshop*, 2016. Available: https://laebritish.org.uk/epilepsy-emergency-care/. [Accessed 22 Oct 2019].

National Institute for Health and Care Research. *Payment guidance for researchers and professionals*, 2022. Available: https://www. nihcr.ac.uk/documents/payment-guidance-for-researchers-and-professionals/27392. [Accessed 14 July 2022].

O’Cathain A, Knowles E, Turner J, et al. Explaining variation in emergency admissions: a mixed-methods study of emergency and urgent care systems. *Health Services and Delivery Research* 2014;2:1–16.

Hughes-Gooding T, Dickson JM, O’Keeffe C, et al. A data linkage study of suspected seizures in the urgent and emergency care system in the UK. *Emerg Med J* 2020;37:605–10.

Baldwin T, Yorkshie ambulance service conveyance rates AMPDS 12, 2019.

North West Ambulance Service. Bell S conveyance rates AMPDS 12, 2019.

Choices NHS. *What to do if someone has a seizure (fit)*, 2013. Available: http://www.nhs. nhs.uk/LiveWell/Epilepsy/Pages/I hatewastingtheemergency.aspx

Kinney MO, Hunt SJ, McKenna C. A self-completed questionnaire study of attitudes and perceptions of paramedic and prehospital practitioners towards acute seizure care in Northern Ireland. *Epilepsy Behav* 2018;81:115–8.

Mathieson A, Marson AG, Jackson M, et al. Clinically unnecessary and avoidable emergency health service use for epilepsy: a survey of what English services are doing to reduce it. *Seizure* 2020;76:156–60.

Noble AJ, Mathieson A, Ridsdale L, et al. Developing patient-centred, feasible alternative care for adult emergency department users with epilepsy: protocol for the mixed-methods observational ‘Collaborate’ project. *BMJ Open* 2019;9:e031696.

Dixon PA, Kirkham JJ, Marson AG, et al. National audit of seizure management in hospitals (NASH): results of the National audit of adult epilepsy in the UK. *BMJ Open* 2015;5:e007325.
SUPPLEMENTARY FILE 1-

FIGURE S1.1 Conceptual framework of factors affecting ambulance clinicians’ conveyance decisions (Oosterwold et al. [1])

Notes: The framework does not assert importance or interplay between factors. It does, though, highlight the quality of evidence support their importance (‘A’ is highest). That clinicians can find it difficult to confidently identify cases suitable for non-conveyance is captured under ‘Experience and confidence of the emergency medical service [EMS] provider’ and ‘Educational background, competencies and skills’ in the figure. Reproduced with permission (S347751335679).
REFERENCES

1. Oosterwold, J., et al., Factors influencing the decision to convey or not to convey elderly people to the emergency department after emergency ambulance attendance: a systematic mixed studies review. BMJ Open, 2018. 8(8): p. e021732.
Table S2.1

Range of structured data items that can be available to ambulance clinicians whilst on scene and will be included in data extract for RADOSS index events

Data Items	Ambulance data system recorded within
Source of call (999, 111, police, other)	CAD
Relationship of the caller to the patient	CAD
Incident Date (day of week and month will be used)	CAD
Incident Time(s)	CAD/PCR
Patient age	PCR
Patient sex	CAD
Patient ethnicity	CAD
Chief Complaint	CAD
Dispatch AMPD code and description	CAD
Priority category for response time	CAD
Location type (private residence/ public place/ place of work/education)	PCR
Incident location (Index of Multiple Deprivation 2020 and subdomain decile scores (IMD2020) and Rural Urban Classification of incident location (RUC11CD) will be used)	CAD/PCR
Presenting complaint	PCR
Clinician grade	PCR
Was patient transported	PCR
Type of facility transported to (ED, UTC, etc.)	PCR
Reason for non-transport	PCR
Referral to other service - type	PCR
Pre-alert to hospital	PCR
Physiological observations (e.g., pulse, BP, respiratory rate, oxygen saturation, level of consciousness AVPU, GCS, NEWS, blood sugar, temperature,)	PCR
Previous medical history reported	PCR
Airway intervention – type	PCR
Wound care provided	PCR
ECG findings	PCR
Cardiac or respiratory arrest present	PCR
Cardiac or respiratory arrest outcome	PCR
Advice provided (non-transported patients)	PCR
Supplementary oxygen provided	PCR
Current medications	PCR
Drugs administered (name, dosage, route)	PCR
Time arrived scene	PCR
Time departed scene	PCR

Notes: CAD, computer aid dispatch; PCR, patient care record; a Professional standards mean clinicians document findings from ≥1 set of observations[1]; b The RADOSS team will only have access to anonymised data; For reasons of governance and cost, the data extract for the index events will not
include free-text data entered by clinicians on ePCRs; Like most services, the Yorkshire Ambulance Service use the Advanced Medical Priority System (AMPDS) to code reason for call. When a call is received regarding what is described as a suspected seizure then AMPDS Protocol 12 is activated. It prompts call handlers to ask standard questions about the presentation severity and the patient. The responses inform the specific subcode given to the call. One question asked is whether the patient has a diagnosis of epilepsy (i.e., “Is s/he an epileptic?”); A minority (~5%) [2] of suspected seizure calls are transfers from ‘111’ rather than ‘999’ calls. As these calls were not managed via AMPDS, a slightly different data-set is available for them (e.g., disposition code). It will be included in the RADOSS data-extract. These items will have been calculated based on LSOA codes by the central CURE’d team who have access to pseudoanonymised data.
REFERENCES

1. Joint Royal Colleges Ambulance Liaison Committee/ Association of Ambulance Chief Executives, JRCALC Clinical Guidelines 2019, Bridgwater: Class Professional Publishing.

2. Hughes-Gooding, T., et al., A data linkage study of suspected seizures in the urgent and emergency care system in the UK. Emergency Medicine Journal 2020. 10: p. 605-610.
SUPPLEMENTARY FILE 3

Details on the size of available linked data set and anticipated number of target events

Twelve-months of Yorkshire Ambulance Service (YAS) data should be sufficient to satisfy the requirements. It should permit a linked data-set to be formed for 13,980 index events [1, 2]. This is after excluding ~15% of cases that might have unlinkable records, ~3% who have ‘opted-out’ of research use of their data,[3] and the 0.02% of cases where the person died ‘on-scene’. [2]

Of the index events, 5,720 index events should have been conveyed of whom 229 (4%) will have experienced death/UEC recontact within 3 days and 1,201 (21%) could have experienced an AA. The remaining 2,451 index events should have been managed by non-conveyance, of whom 343 (14%) will have experienced death/ recontact with the urgent and emergency care system (UEC).[4-6]

The estimate that 14% of events not conveyed to ED will lead to death and/or recontact with the UEC within 3 days is based on O’Cathian et al.’s UK study.[4] We estimated that 4% of cases conveyed to ED will result in death and/or UEC contact. This estimate was generated differently since there is no UK evidence on this. Specifically, we considered Tohira et al.’s[5] US study. It reported adverse event rates within 24 hours in all persons who had attended ED for any reason were 2-4 times lower than for those not conveyed. It was also necessary to factor in individuals accounting for several types of events. Based on evidence from Coster et al.[7] we divided O’Cathian’s[4] estimates by 2 to account for this possibility and then applied Tohira et al. ratios to O’Cathian’s figures.

The estimate that 21% of seizure cases attending ED would satisfy the AA definition is informed by Miles et al.[6].

Key information factored into sample size calculation using Riley et al.’s formulae for each of the models

1. Permit testing of ≥40 candidate predictor parameters
2. Assume 0.05 acceptable difference in apparent and adjusted R-squared
3. Assume 0.05 margin of error in estimation of intercept
4. In the absence of other information, conservatively assumed that R^2_{cs} for each model would correspond to an $R^2_{Nagelkerke}$ of 0.15. [8]
REFERENCES

1. Dickson, J.M., et al., Cross-sectional study of the prehospital management of adult patients with a suspected seizure (EPIC1). BMJ Open, 2016. 6(2): p. e010573.

2. Dickson, J.M., Z.B. Asghar, and A.N. Siriwardena, Pre-hospital ambulance care of patients following a suspected seizure: A cross sectional study. Seizure, 2018. 57: p. 38-44.

3. Digital, N., [MI] National Data Opt-out, March 2019. 2020.

4. O'Cathain, A., et al., Understanding variation in ambulance service non-conveyance rates: a mixed methods study. Health Services and Delivery Research 2018. 6(19).

5. Tohira, H., et al., Is it appropriate for patients to be discharged at the scene by paramedics? Prehospital Emergency Care, 2016. 20(4): p. 539–549.

6. Miles, J., et al., Exploring ambulance conveyances to the emergency department: a descriptive analysis of non-urgent transports. Emergency Medicine Journal, 2017. 34: p. A872-A873.

7. Coster, J., et al., Outcomes for Patients Who Contact the Emergency Ambulance Service and Are Not Transported to the Emergency Department: A Data Linkage Study. Prehospital Emergency Care, 2019. 23(4): p. 566-577.

8. Riley, R.D., et al., Calculating the sample size required for developing a clinical prediction model. British Medical Journal, 2020. 368: p. m441.