Soil respiration, pH and EC as influenced by biochar

Tasneem Shah*, Sara and Zahir Shah

Department of Soil and Environmental Sciences, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, Pakistan

Abstract

Biochar application to agricultural land is gaining significance as a strategy for C sequestration and improving soil health and nutrient cycling. Variable results have been reported for the effect of biochar on CO₂ evolution. This study was planned to assess the influence of biochar application on soil respiration (CO₂ evolution), soil pH and electrical conductivity (EC) in a silty clay loam soil during lab incubation experiments for a period up to 50 days. Surface soil sample (0-15 cm) was collected from a garden which had been used for growing vegetables for the last many years. The experiment was comprised of four treatments viz., 0, 5, 10 and 20 t biochar ha⁻¹. The samples were incubated at 28 °C and taken out for CO₂ measurements after 2, 5 and 10 days and for EC and pH after 0, 5, 10 and 50 days of incubation periods. The rate of CO₂ evolution increased significantly with biochar application. During the first 2 days of incubation, the rate of CO₂ evolution increased by 13.1% with 5 t, 22.4% with 10 t and 34.6% with 20 t ha⁻¹ biochar over control treatment. The corresponding increases in CO₂ evolution were 12.8% with 5 t, 23.3 % with 10 t and 22.1% with 20 t ha⁻¹ of biochar during 5 days, and were 14.3% with 5 t, 30.4% with 10 t and 19.6% with 20 t ha⁻¹ of biochar over control during 10 days of incubation period. Almost similar trend was observed for cumulative CO₂ production. The soil EC and pH were also significantly greater in biochar than in the control treatment during all incubation periods. Although biochar application increased CO₂ evolution, the %C evolved from added biochar C decreased with increasing levels of biochar as it was 1.74 % with 5 t, 1.66% with 10 t and 0.82% with 20 t ha⁻¹ of the added biochar C during 10 days of incubation period. These results suggested that biochar application increased soil respiration, EC and pH, however, the ratio of the CO₂ evolved to total biochar C generally declined with increasing levels of biochar.

Keywords: Biochar, pH, EC, microbial activity, gases emission

Introduction

The use of biochar on agricultural land is not only improving soil health and nutrient cycling but also increase carbon sequestration. Biochar is a rich source of organic C and is mostly resistant to microbial decay. It is produced from pyrolysis of various organic materials including plants and organic wastes. The use of biochar on agricultural land is important for the improvement of degraded soils as it improve soil properties and in turn enhance plant growth (Glaser et al., 2002; Yamato et al., 2006). Biochar is resistant to microbial degradation and stay in soil for longer period and thus provide long term benefit to soil fertility (Steiner et al., 2007). Biochar decrease the possibility of nutrient leaching from soil and improve nutrient cycling. Biochar application benefit crop production through alteration in soil chemical reactions, providing active surfaces for the dynamics of soil nutrients, catalyze useful soil reactions, and improving physical soil conditions.

The beneficial effect of biochar on soil fertility and crop productivity is mainly associated with the positive effect of biochar on soil microorganisms. The effect of biochar on soil microbial activity subsequently influence nutrient transformations in soil (Anderson et al., 2011). The application of biochars have shown to increase soil N mineralization (Nelissen et al., 2012). Song et al. (2013) reported increase in nitrification while Cayuela et al. (2013) observed increase in denitrification in soil with the application of biochar. Biochar amendment also influence other N transformations such as biological N₂ fixation (Rondon et al., 2007). However, the effect of biochar on soil microbiological processes are not yet thoroughly established (Lehmann et al., 2011) and variable responses of soil microbial biomass and activity to biochar amendment have been reported (Khodadad et al., 2011). The application of biochar either increased (Luo et al., 2013), reduced (Dempster et al., 2012) or exhibited no effect on soil microbial biomass and activity (Zavalloni et al., 2011). These variable effects of biochar could be associated with biochar characteristics as well as the prevailing soil and environmental conditions. Possible explanations for change in level of soil microbial biomass

*Email: tasneemshah92@gmail.com

© 2017, Soil Science Society of Pakistan (http://www.sss-pakistan.org)
with amendment of biochar could be due to increase in available soil nutrients, adsorption of toxic compounds, improved soil water status and favorable soil pH condition, all of these factors have positive effects on soil microbial activity (Lehmann et al., 2011). Increases in soil microbial biomass have been reported with increasing soil pH from pH 3.7 to 8.3 under similar environmental conditions (Aciego-Pietry and Brookes, 2008). Thus, the pH of biochars have considerable influence on total microbial abundance and biomass in soil.

Biochar amendments have also shown to improve soil quality (Sohi et al., 2010; Sohi, 2012), increased water holding capacity and nutrient retention (Glaser et al., 2002; Steiner et al., 2007), increased soil biological activity (Anderson et al., 2011; Lehmann et al., 2011) and improved nutrient use efficiency (Ippolito et al., 2012; Van Zwieten et al., 2010).

The application of biochar have also shown to increase soil electrical conductivity (EC) and pH (Liang et al., 2006; Gundale and DeLuca, 2006; Warnock et al., 2007; Chan et al., 2008). The effect however varied with salt contents of biochar as its characteristics are variable (Spokas, 2010). For example, biochar produced from switchgrass and corn stover, under similar temperature, had lower aromatic C and high ash contents than those produced from woody materials such as red oak and wood wastes (Brewer et al., 2011). This paper report the results of biochar effect on soil respiration, pH and EC in calcareous soil during lab incubation experiments.

Materials and Methods

A lab incubation experiment was conducted to evaluate the effect of different levels of biochar (viz., 0, 5, 10 and 20 t ha⁻¹) on CO₂ evolution, soil pH and EC in a silty clay loam soil. A surface (0-15 cm) soil sample was collected from a garden which had been used for growing vegetables for the last many years. The soil sample was broken down by hand and sieved using 2 mm sieve. The composite soil sample was analyzed for important soil characteristics (Table 1). Biochar used in this study was prepared from branches and trunk of Acacia trees and had pH 7.01, EC 1.57 dS m⁻¹, total C 578 g kg⁻¹, Ca 2.68 g kg⁻¹ and Mg 10.0 mg kg⁻¹ (Arif et al., 2016)

Incubation experiments

In order to assess the effect of biochar on CO₂ evolution, moist soil sample was amended with biochar at 0, 5, 10 and 20 t ha⁻¹. Fifty gram soil samples, in triplicate, from each treatment along with 5 ml of 0.3 N NaOH in a vial were taken in a conical flask and incubated at 28 °C for 2, 5 and 10 days. The vial was taken out at each incubation period and titrated against 0.1 N HCl in the presence of 10 ml 1 M BaCl₂ solution using phenolphthalein as indicator. The amount of HCl consumed in titration was used to calculate the amount of CO₂ in each flask. A blank was also run simultaneously with each set of incubation.

For assessing the effect of biochar on soil pH and EC, soil sample was split in four treatments. Five hundred gram soil sample of each treatment was taken in incubation pots, in triplicate, and amended with biochar at 0, 5, 10 and 20 t ha⁻¹. All pots were incubated at 28 °C and taken out for analysis of pH and EC at 0, 5, 10 and 50 days of incubation.

Table 1 Important characteristics of soil (0-15 cm) used in the experiment

Soil property	Unit	Value
Sand	%	12
Silt	%	53
Clay	%	35
Textural class		Silty clay loam
Soil organic matter	%	1.45
Total N	%	0.08
Total mineral N	ug g⁻¹ soil	43.5
AB-DTPA extractable P	ug g⁻¹ soil	7.82
AB-DTPA extractable K	ug g⁻¹ soil	110
Soil pH in saturated soil paste		8.10
Soil EC in saturated soil paste	dS m⁻¹	0.15
Lime	%	12.5

Laboratory analysis

Microbial activity

Rate of CO₂ evolved during each incubation period was taken as a measure of microbial activity (Shah et al., 2016). Microbes when active decompose organic materials and liberate CO₂.

Determination of soil pH and EC

For the determination of soil pH and EC, saturated soil paste was prepared, left overnight and then extracted using a vacuum pump (U.S Lab Staff, 1954). The extract was read for pH using pH meter (InoLab pH 720, WTW Series, Germany) and for EC on EC meter (EC Meter 4510, Conductivity Meter, Jenway, UK).

Other soil analysis

Steam distillation method of Mulvaney (1994) was used to determine mineral N in soil while Kjeldhal method of Bremer (1996) was used to determine total N in soil. Available P and K were determined in AB-DTPA soil extract (Soltanpur and Shwab, 1977). The soil extract was read for P on Spectrophotometer and K on Flamephotometer (Jenway, UK). Soil organic matter was determined using K₂Cr₂O₇ as an oxidizing agent in the
presence of H₂SO₄ following the Walkley and Black procedure (Nelson and Sommers, 1996). The lime in soil was determined by the acid-neutralization method as described in U.S. Lab Staff (1954) and Bouyoucos hydrometer method of Gee and Bauder (1986) was used to determine soil texture.

Statistical analysis

Data was analysed statistically following Completely Randomized design using statistical package Statistix 8.1 and means were compared using LSD test (Steel et al., 1997).

Results and Discussion

A laboratory incubation experiment was conducted to assess the effect of biochar amendment on rate of CO₂ evolution, soil EC and soil pH in a calcareous soil. The results obtained are presented and discussed below:

CO₂ evolution

The results obtained on rate of CO₂ evolution as influenced by various doses of biochar are presented in Table 2. The results showed that the rate of CO₂ evolution was consistently greater in the biochar amended than in the unamended soil during 10 days of incubation period. The results further showed that the rate of CO₂ evolution increased with increasing level of biochar application. During the first two days of incubation, biochar application at 5 t ha⁻¹ increased the rate of CO₂ evolution by 13.1% compared with the control treatment (Table 2). The corresponding increases were 22.4% with 10 t and 34.6% with 20 t ha⁻¹ biochar application over control treatment during 2 days of incubation period. During 5 days of incubation, the increases in CO₂ evolution were 12.8% with 5 t, 23.3% with 10 t and 22.1% with 20 t ha⁻¹ of biochar compared with the control. Moreover, the increases in CO₂ evolution during 10 days of incubation were 14.3% with 5 t, 30.4% with 10 t and 19.6% with 20 t ha⁻¹ of biochar over control treatment. These results suggested that application of biochar substantially increased the rate of CO₂ evolution in soil. The rate of CO₂ generally increased with increasing levels of biochar application.

The cumulative CO₂ production showed similar response to biochar application as the rate of CO₂ evolution (Fig 1). The results showed that cumulative CO₂ production was consistently greater in the biochar than in the control treatment during all incubation periods. The results further showed that the amount of CO₂ produced was somehow related with the level of biochar applied. The maximum amount of 389 ug CO₂ g⁻¹ was produced with the application of biochar at 20 t ha⁻¹ during 2 days of incubation period. The next highest amounts of 261 ug CO₂ g⁻¹ was produced with 10 t and 242 ug CO₂ g⁻¹ with 5 t ha⁻¹ of biochar during 2 days. It was evident that biochar at 20 t ha⁻¹ increased CO₂ production by 35 % over control during 2 days. The corresponding increases during 2 days were 22% with 10 t and 13.1% with 5 t ha⁻¹ of biochar. The pattern of increase in CO₂ production with biochar at 5 and 10 t ha⁻¹ at day 5 and 10 was almost similar as at day 2. However, the extent of increase in CO₂ production with 10 t ha⁻¹biochar gradually declined with time as it was 35% at day 2, 28% at day 5 and 25% at day 10.

![Figure 1: Effect of biochar on cumulative CO₂ production (mg kg⁻¹ soil) from soil during 10 days of incubation](image)

Figure 1: Effect of biochar on cumulative CO₂ production (mg kg⁻¹ soil) from soil during 10 days of incubation

These results suggested that biochar application substantially increased CO₂ production during 10 days of incubation and the increase was proportional to the amount of biochar applied. Since CO₂ production is associated with microbial activity, it can be concluded that biochar application remarkably improve the soil microbial activity. Our results are in line with some of the published literature. For example, Hameed et al. (2014) found that biochar application caused tremendous increase in urease activity, microbial biomass-C & -N, total organic C and CEC. Kamal (2014) reported that application of biochar alone or in combination with phosphorus significantly increased microbial population, microbial biomass-C, microbial biomass-N and microbial biomass-P, as well as enzymatic activities such as urease and phosphatase activity. Kolb et al. (2009), Anderson et al. (2011) and Lehmann et al. (2011) reported that changes in soil properties with biochar in turn differentially influenced microbial activity and
community structure. Kolton et al. (2011) and Graber et al. (2010) established that changes in soil microbial communities bring about changes in nutrient transformations which can have impact on crop growth. Our results are however contrary to the belief that biochar use as soil amendments can increase C storage (Woof et al., 2010) and hence mitigate CO$_2$ emission. This may be possible in long-term but we measured CO$_2$ within 10 days after biochar amendment. Moreover, CO$_2$ evolution also depends on temperature of biochar preparation. A number of previous studies have shown highly variable CO$_2$ production from soils amended with biochars produced at temperature ranging from 350 °C to 850 °C (Fabbri et al., 2013; Malghani et al., 2013).

Table 3 represents the evolution of C as CO$_2$ from the applied biochar C. The data revealed that although the total CO$_2$ evolution increased with increasing levels of biochar, the % C evolved as CO$_2$ of the added biochar C decreased with increasing levels of biochar C during 10 days of incubation. The data showed that %C of biochar evolved as CO$_2$ in 10 days was 1.74% with 5 t, 1.66% with 10 t and 0.82% with 20 t ha$^{-1}$ of biochar application suggesting that results showed that the effect of biochar on soil EC was significant (P<0.05%) during all incubation periods. The results were significant (P<0.05) at day 0, 5, 10 and 50 days of incubation periods. The soil EC generally increased with increasing levels of biochar application. The soil EC ranged from 1.00 in the control to 1.29 dS m$^{-1}$ in treatment receiving maximum biochar at 20 t ha$^{-1}$ at day 0. The corresponding soil EC values were 1.06 dS m$^{-1}$ in soil with no biochar to 1.27 dS m$^{-1}$ in soil receiving biochar at 20 t ha$^{-1}$ at day 5. At day 10, soil EC ranged from 1.07 dS m$^{-1}$ in the control to 1.31 dS m$^{-1}$ in soil with biochar at 20 t ha$^{-1}$. After 50 days of incubation period, the soil EC was 0.92 dS m$^{-1}$ in the control to 1.25 dS m$^{-1}$ in soil with biochar at 20 t ha$^{-1}$.

Table 3 Percent C of added biochar evolved as CO$_2$ during 10 days of incubation

Biochar applied (t ha$^{-1}$)	Biochar C (kg ha$^{-1}$)	CO$_2$ evolved in 10 days (mg kg$^{-1}$)	C evolved as CO$_2$ from biochar (mg kg$^{-1}$)	C evolved as CO$_2$ from biochar (kg ha$^{-1}$)	%C of biochar evolved as CO$_2$ in 10 days
0	0	697	25	50	1.74
5	2890	789	25	50	1.66
10	5780	873	48	96	0.82
20	11560	871	47	94	

*C content in biochar 578 g C/kg biochar (Arif et al., 2016)

Table 4: Effect of biochar on soil electrical conductivity during 50 days of incubation period

Biochar level (t ha$^{-1}$)	Incubation period (days)	Soil EC (dS m$^{-1}$)		
	0	5	10	50
0	1.00b	1.06b	1.07b	0.92a
5	1.06b	1.12ba	1.11a	1.12a
10	1.19a	1.15a	1.25a	1.22a
20	1.29a	1.27a	1.31a	1.25a

*C means followed by different letter(s) within columns are significantly different (P<0.05)

Table 5: Effect of biochar on soil pH during 50 days of incubation period

Biochar level (t ha$^{-1}$)	Incubation period (days)	Soil EC (dS m$^{-1}$)		
	0	5	10	50
0	7.27c	7.22c	7.33b	7.54b
5	7.56b	7.45b	7.56a	7.55b
10	7.80a	7.58ab	7.62a	7.67ab
20	7.85a	7.65a	7.49a	7.79a

The results obtained on soil EC as influenced by different levels of biochar are presented in Table 4. The
These results suggested that the effect of biochar on soil EC was significant during all incubation periods and effect increased with increasing levels of biochar application. The increase in soil EC with biochar amendments could be due to the presence of salts in biochar. Previous studies have also shown that biochar increased soil electrical conductivity (EC) and pH (Liang et al., 2006; Gundale and DeLuca, 2006; Warnock et al., 2007). The effect, however, varied with salt contents of biochar as biochar characteristics are highly variable (Spokas, 2010). For example, biochar produced from switchgrass and corn stover, under similar temperature, had lower aromatic C and high ash contents than those produced from woody materials such as red oak and wood wastes (Brewer et al., 2011).

Soil pH

The results obtained on soil pH as influenced by different doses of biochar during 50 days of incubation period are presented in Table 5. The results showed that biochar application caused considerable increase in soil pH immediately after its application (i.e., at 0 day). The soil pH increased with increasing levels of biochar at day 0. The effect of biochar on soil pH maintained during later incubation periods. Moreover, the increase in soil pH was generally associated with the levels of biochar applied as increasing values were noticed with increasing levels of biochar. Our results indicated that maximum increase of 8.0% in soil pH was noticed with biochar at 20 t ha⁻¹ compared to 7.3% increase with 10 t and 4% with 5 t biochar ha⁻¹ during 0 day of incubation period. At the day 5, the maximum increase of 5.96% in soil pH was observed with biochar level of 20 t ha⁻¹. Similarly, the maximum increase in soil pH of 3.96% was observed in treatment receiving biochar at 10 t ha⁻¹ during 10 days. Whereas the maximum increase in soil pH of 3.31% was noted with biochar at 20 t ha⁻¹ during 50 days of incubation period. The results further showed that there was a decreasing trend in soil pH in all treatments with increasing incubation period. It was also observed that the decrease in soil pH was more evident during early days of incubation compared with later incubation period.

These results suggested that biochar application caused considerable increase in soil pH immediately after its application but the increase was not sustained at same extent during later incubation periods. Still soil pH was somehow greater in biochar treatments and the increase in soil pH was generally correlated with increasing level of biochar. Contrary reports have been obtained for the effect of biochar on soil pH in published literature. The application of biochar may increase or decrease soil pH, depending mainly on the salt contents of the biochar used. The pH of biochars may be as low as 4 to as high as 12, depending on the source of biochar, pyrolysis temperature and extent of oxidation (Cheng et al., 2006; Lehmann, 2007; Chan and Xu, 2009). Aslam et al. (2014) and Khalid et al. (2014) reported that biochar had both physical and chemical effects on soils, for example, on soil pH, soil structure, and the availability of micronutrients. Yuan et al. (2011) reported that biochar from legume materials increased soil pH much compared to biochars from non-legume materials.

Conclusion

This study has shown that biochar application substantially enhanced microbial activity which resulted in liberation of large amount of CO₂ during short incubation period. Moreover, biochar application also caused considerable increase in soil EC and pH during short-term incubation. However, %C of biochar evolved as CO₂ during 10 days of incubation generally declined with increasing levels of biochar carbon.

Acknowledgment

This study was funded partially by PARC through ALP scheme.

References

Aciego-Piery, J.C., and P.C. Brookes. 2008. Relationship between soil pH and microbial properties in a UK arable soil. *Soil Biology and Biochemistry* 40: 1856-1861.

Anderson, R.A., L.M. Condron, T.J. Clough, M. Fiers, A. Stewart, R.A. Hill and R.R. Sherlock. 2011. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. *Pedobiologia* 54: 309-320.

Arif, M., K. Ali, M.T. Jan, Z. Shah, D. L. Jones, and R. S. Quilliam. 2016. Integration of biochar with animal manure and nitrogen for improving maize yields and soil properties in calcareous semi-arid agroecosystems. *Field Crops Research* 195: 28-35.

Aslam, Z., M. Khalid, M. Aon, M. Saleem, M. Rashid and M.A. Bashir. 2014. Impact of biochar on soil physical properties. In: F. Rasul and S. Shackley, eds., Proceedings of an International Workshop on Biochar in Pakistan: Biochar for climate-friendly agriculture shifting paradigms towards higher precision and efficiencies, held at the University of Agriculture, Faisalabad, March 24-27, 2014; P-36.

Bremner, J.M. 1996. Nitrogen-Total. In Methods of soil analysis Part 3-Chemical methods, eds. D.L. Sparks, 1085-1122. *SSSA and ASA Book series No. 5, Madison, Wisconsin, USA.*
Brewer, C.E., R. Unger, K. Schmidt-Rohr and R.C. Brown. 2011. Criteria to select biochars for field studies based on biochar chemical properties. *Bioenergy Research* 4: 312-323.

Cayuela, M.L., Sánchez-Monedero, M.A., Roig, A., Hanley, K., Enders, A., Lehmann, J., 2013. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Scientific reports 3. http://dx.doi.org/10.1038/srep01732.

Chan, K., L. Van Zwieten, I. Meszaros, A. Downie and Joseph. 2008. Agronomic values of greenwaste biochar as a soil amendment. *Soil Research* 45: 629-634.

Chan, K.Y. and Z. Xu. 2009. Biochar: nutrient properties and their enhancement. In: Lehmann, J., Joseph, S. (eds.), Biochar for Environmental Management: Science and Technology. Earthscan, London, pp. 67-84.

Cheng, C., J. Lehmann, J.E. Thies, S.D. Burton and M.H. Engelhard. 2006. Oxidation of black carbon by biotic and abiotic processes. *Organic Geochemistry* 37: 1477-1488.

Dempster, D.N., D.B. Gleeson, Z.M. Solaiman, D.L. Jones and D.V. Murphy. 2012. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. *Plant and Soil* 354: 311-324.

Egamberdieva, D. and S. Wirth. 2015. Biochar-based biofertilisers: An emerging technology for sustainable crop production. In proceedings of conference on “Management of land use systems for enhanced food security: conflicts, controversies and resolutions”, held on September 16-18, 2015, Tropentag, Berlin, Germany.

Fabbri, D., A.G. Rombolà, C. Torri and K.A. Spokas. 2013. Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil. *Journal of Analytical and Applied Pyrolysis* 103: 60-67.

Gee, G. W. and J. W. Bauder. 1986. Particle-size analysis. In Methods of Soil Analysis Part 1-Physical and mineralogical methods, 2nd edition, ed., A.L. Page, 383-411. Agronomy Monograph 9, American Society of Agronomy, Madison, WI.

Glaser, B., J. Lehmann and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: a review. *Biology and Fertility of Soils* 35: 219-230.

Graber, E.R., and Y.M. Harel, M. Kolton, E. Cytryn, A. Silber, D.R. David, L. Tsechansky, M. Borenstein and Y. Elad. 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. *Plant Soil* 337: 481-496.

Gundale, M.J. and T.H. DeLuca. 2006. Temperature and source material influence ecological attributes of Donderosa pine and Douglas-fir charcoal. *Forest Ecology and Management* 231: 86-93.

Hameed, Z., Q. Hussain, R. Hayat, A. Khalid, M. Ahmad and M. Khakwani. 2014. Biochar amendment for soil quality and mungbean production with and without N fertilization. *In: F.*

Ippolito, J.A., D.A. Laird and W.J. Busscher. 2012. Environmental benefits of biochar. *Journal of Environmental Quality* 41: 967-972.

Kamal, M. 2014. Effect of biochar prepared from popular tree leaves on some microbiological properties of soil. *In: F. Rasul and S. Shackley, eds., Proceedings of an International Workshop on Biochar in Pakistan: Biochar for climate-friendly agriculture shifting paradigms towards higher precision and efficiencies, held at the University of Agriculture, Faisalabad, March 24-27, 2014; P-7.*

Khalid, M., I. Hussain, T. Rasool and T. Abbas. 2014. Evaluation of rockphosphate in conjunction with biochar for phosphorus availability to maize. *In: F. Rasul and S. Shackley, eds., Proceedings of an International Workshop on Biochar in Pakistan: Biochar for climate-friendly agriculture shifting paradigms towards higher precision and efficiencies, held at the University of Agriculture, Faisalabad, March 24-27, 2014; P-55.*

Khadadad, C.L., A.R. Zimmerman, S.J. Green, S. Uthandi and J.S. Foster. 2011. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. *Soil Biology and Biochemistry* 43: 385-392.

Kolb, S.E., K.J. Fermach and M.E. Dombush. 2009. Effect of charcoal quantity on microbial biomass and activity in temperate soils. *Soil Science Society of America Journal* 73: 1173-1181.

Kolton, M., Y. MellerHarel, Z. Pasternak, E.R. Graber, Y. Elad and E. Cytryn. 2011. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. *Applied and Environmental Microbiology* 77: 4924-4930.

Lehmann, J., M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday and D. Crowley. 2011. Biochar effects on soil biota: a review. *Soil Biology and Biochemistry* 43: 1812-1836.

Lehmann, J. 2007. A handful of carbon. *Nature* 447: 143-144.

Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O’Neill, J.O. Skjemstad, J. Thies, F.J. Luizão and J. Petersen. 2006. Black carbon increases cation exchange capacity in soils. *Soil Science Society of America Journal* 70: 1719-1730.

Luo, Y., M. Durenkamp, M. De Nobili, Q. Lin, B.J. Devonshire and P.C. Brookes. 2013. Microbial
biomass growth, following incorporation of biochars produced at 350°C or 700°C, in a silty-clay loam soil of high and low pH. Soil Biology and Biochemistry 57: 513-523.

Malghani, S., G. Gleixner and S.E. Trumbore. 2013.Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biology and Biochemistry 62: 137-146.

Mulvaney, R.L. 1994. Nitrogen - Inorganic forms. In Methods of Soil Analysis Part.3- Chemical Methods, ed., D.L. Sparks, 1123-11184. SSSA Book Series No. 5. SSSA, Inc., ASA, Inc., Madison, Wisconsin, USA.

Nelissen, V., T. Rütting, D. Huygens, J. Staelens, G. Ruyssevaert and P. Boeckx. 2012. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biology and Biochemistry 55: 20-27.

Nelson, D.W. and L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis Part.3- Chemical Methods, ed., D.L. Sparks, 961-1010. SSSA Book Series No. 5. SSSA, Inc., ASA, Inc., Madison, Wisconsin, USA.

Rondon, M.A., J. Lehmann, J. Ramirez and M. Hurtado. 2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L) increases with bio-char additions. Biology and Fertility of Soils 43: 699-708.

Shah, Z., S. Ali, T. Shah and Amanulah. 2016. Recovering soil health of eroded lands through fertilizers and crop rotation. Soil and Environment 35(2): 194-206.

Sohi, S., E. Krull, E. Lopez-Capel, and R. Bol. 2010. A review of biochar and its use and function in soil. Advances in Agronomy 105: 47-82.

Sohi, S.P. 2012. Carbon storage with benefits. Science 338: 1034-1035.

Soltanpuri, P. N. and A. P. Schwab. 1977. A new soil test for simultaneous extraction of macro and micro nutrients in alkaline soils. Communication in Soil Science and Plant Analysis 8: 195-207.

Song, Y., X. Zhang, B. Ma, S.X. Chang and J. Gong. 2013. Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil. Biology and Fertility of Soils. doi:10.1007/s00374-013-0857-8.

Spokas, K.A. 2010. Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Management 1: 289-303.

Steel, R.G.D, J.H. Torrie and D. Dickey. 1997. Principles and procedures of Statistics, McGraw-Hill, USA.

Steiner, C., W.G. Teixeira, J. Lehmann, T. Nehls, J.L.V. MacêDo, W. E.H. Blum and W. Zech. 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil 291: 275-290.

U.S. Laboratory Staff. 1954. Methods for soil characterization. In Diagnosis and improvement of saline and alkaline soils, ed., L.A. Richards, 83-147. Agriculture Handbook 60, USDA, Washington, DC.

Van Zwieten, L., S. Kimber, S. Morris, K.Y. Chan, A. Downie, J. Rust, S. Joseph and A. Cowie. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327: 235-246.

Warnock, D.D., J. Lehmann, T.W. Kuyper and M.C. Rillig. 2007. Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant and Soil 300: 9-20.

Woolf, D., J.E. Amonette, F. Street-Perrott, J. Lehmann, and S. Joseph. 2010. Sustainable biochar to mitigate global climate change. Nature Communications 1: 56.

Yamato, M., Y. Okimori, I.F. Wibowo, S. Anshiori and M. Ogawa. 2006. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science and Plant Nutrition 52: 489–495.

Yao, C., S. Joseph, L. Li, G. Pan, Y. Lin, P. Munroe, B. Pace, S. Taherymoosavi, L. Van Zwieten, T. Thomas, S. Nielsen, J. Ye and S. Donne. 2015. Developing more effective enhanced biochar fertilisers for improvement of pepper yield and quality. Pedosphere 25(5): 703-712.

Yuan, J.H., R.K. Xu, N. Wang and J. Y. Li. 2011. Amendment of acid soils with crop residues and biochars. Pedosphere 21(3): 302-308.

Zavalloni, C., G. Alberti, S. Biasiol, G.D. Vedove, F. Fornasier, J. Liu and A. Peressotti. 2011. Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study. Applied Soil Ecology 50: 45-51.