CulebrONT: a streamlined long reads multi-assembler pipeline for prokaryotic and eukaryotic genomes

Julie Orjuela1,2,3,*, Aurore Comte2,3,*, Sébastien Ravel2,3,*, Florian Charriat2,3, Tram Vi2,4, François Sabot1,3, Sébastien Cunnac2,3

1DIADE Unit, University of Montpellier, CIRAD,IRD – Montpellier Cedex 5, France
2PHIM Plant Health Institute, University of Montpellier, CIRAD,INRAE,Institut Agro,IRD – Montpellier, France
3IFB - South Green Bioinformatics Platform, Bioversity,CIRAD,INRAE,IRD – Montpellier, France
4Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences – Hanoi, Vietnam

*Equal contributor

This version of the article has been peer-reviewed and recommended by Peer Community In Genomics

Abstract

Using long reads provides higher contiguity and better genome assemblies. However, producing such high quality sequences from raw reads requires to chain a growing set of tools, and determining the best workflow is a complex task. To tackle this challenge, we developed CulebrONT, an open-source, scalable, modular and traceable Snakemake pipeline for assembling long reads data. CulebrONT enables to perform tests on multiple samples and multiple long reads assemblers in parallel, and can optionally perform, downstream circularization and polishing. It further provides a range of assembly quality metrics summarized in a final user-friendly report. CulebrONT alleviates the difficulties of assembly pipelines development, and allow users to identify the best assembly options.

Keywords: long reads; assembly; quality control; reproducibility; snakemake
Introduction

Third-generation sequencing technologies, namely Pacific Biosciences (PB) and Oxford Nanopore Technologies (ONT), provide reads up to 25kb in length, and even hundreds of thousands of bases for ONT. They can extend over repeats or structural variants, and thus result in higher contiguity and accuracy of genome assembly. Due to its low price, speed, portability and easy-access system, ONT is increasingly used worldwide, generally by laboratories sequencing their favorite organism, but with limited expertise in assembly methods. Nonetheless, assembly is not trivial: eukaryotic genomes assembly is a highly complex task (large genome sizes, high rates of repeated sequences, high heterozygosity levels and even polyploidy), and while prokaryotic genomes may appear less challenging, specific features such as circular DNA molecules, must be taken into consideration to achieve high quality assembly.

Numerous long-read assembly and post-assembly tools are available, relying on a large variety of approaches and algorithms, and many of them are frequently updated. However, even with this plethora of tools, there is no single silver bullet to genome assembly for all taxonomic groups. The systematic assessment of these assembly tools is needed to properly exploit data (Murigneux, Rai, et al., 2020). But performing benchmarks to find the best combination of tools for a given dataset and application is a highly complex task (see for example Wick and Holt, 2021 and Chen et al., 2020), even if the computer code used for such studies is increasingly being made available (e.g. Wick, Judd, et al., 2021 or Latorre-Pérez et al., 2020). This endeavor would presumably benefit from streamlined generalist data processing workflows that are accessible, scalable, traceable and reproducible.

A few solutions, such as Katuali (https://nanoporetech.github.io/katuali/ 2018) or CCBGpipe (Liao et al., 2019), were previously developed to tackle these issues, but they are dedicated to either eukaryotic or prokaryotic genomes only, or provide a restricted choice of assemblers. Some of these are also difficult to parallelize in a HPC environment, or to update with the latest versions of software components. In addition, for the subsequent evaluation of the assemblies, it is critical to organize and aggregate the numerous Quality Control (QC) metrics generated by various tools, in order to facilitate comparisons. As an example, microPIPE (Murigneux, Roberts, et al., 2021), a recently released Nextflow-based bacterial ONT reads assembly pipeline, fills some of these gaps but does not incorporate QC analysis apart from QUAST. To address these issues, we developed CulebrONT, a pipeline allowing users to easily assemble, circularize (if needed) and polish assemblies on multiple datasets with multiple alternative tools, while reporting various QC metrics for each assembly.

Implementation

CulebrONT assembles, circularises, polishes and corrects genome sequences from raw read sequences in fastq format, and provides QC metrics. To provide more flexibility to the user, individual tools are optional and include the most popular ones. Thus, CulebrONT can be used either to prototype and explore assemblies on new organisms or in assembly production. While originally developed primarily for working on ONT data, CulebrONT can also be used on PB data with generalist tools.

Six recent community-validated assemblers are currently included (Canu (Koren et al., 2017), Flye (Kolmogorov et al., 2019), Raven (Vaser and Šikić, 2020), MiniAsm (Li, 2016) (coupled with minipolish (Wick and Holt, 2020) for an initial polishing), Shasta (Shafin et al., 2020) and smartDeNovo (Liu et al., 2020)). Several tools for polishing (Racon (Vaser, Sović, et al., 2017), Pilon (Walker et al., 2014), Medaka (https://github.com/nanoporetech/medaka 2018) and Nanopolish (Loman et al., 2015)) were also included. If requested, Circulator (Hunt et al., 2015) can automatically circularise the primary output of assemblers that cannot handle circular
CulebrONT relies on conda (Anaconda Software Distribution 2021) and singularity (Kurtzer et al., 2017) that simplify installation of specific versions of the software, secure environments and greatly improve reproducibility. CulebrONT is available as a Python Package in PyPi to ease its installation https://pypi.org/project/culebrONT/. In addition, the CulebrONT API adapts the installation to local or distributed/HPC environment. In terms of modularity, relevant tools or processing steps can be selected or omitted in the user setup file config.yaml, and CulebrONT builds a dedicated instance of the workflow. Data can come from a single sample as well as from multiple ones (one fastq file per sample in the data folder). Tools paths are imported from tools_path.yaml, and cluster resources are managed using the cluster_config.yaml file (Figure 1.1). The
dedicated CulebrONT class checks configuration files, controls if data and software environments exist and ensures the global coherence of the requested steps. This python class imports snakefiles to build a specific instance of the workflow (Figure 1.2). Upon execution (on HPC or a single machine, Figure 1.3), in addition to the expected final output, individual rules will generate log files (Figure 1.4).

Figure 2. Example of CulebrONT HTML reports. A. Busco statistics for Acinetobacter sp. dataset B. Quast for the rice dataset.

Results

CulebrONT was developed in order to facilitate comparisons between primary assemblies, but also to check the effect of polishing on sequence accuracy. CulebrONT compiles information from these steps, but also essential quality information calculated at each activated step. An individual output directory with a specific subdirectories topology (see Additional file 1 to details) is generated for each samples. It notably contains a sub-directory corresponding to each activated step on the config.yaml file (assemblers, circularisation, polishing, correction, fixstart, and QC, for instance). In addition, a log directory includes execution information for all steps. CulebrONT generates an global HTML report, found in the FINAL REPORT folder. In this report, summarized statistics and relevant information can be found, such as the configuration parameters used or the tools versions and the computational time for each steps (Figure 2). These information can be useful for users that want to benchmark and identify suitable workflows for their data.

In order to provide an illustration of how CulebrONT can help benchmark assembly pipelines, ONT genome sequencing datasets for four highly contrasted species were tested: i. a strain of Acinetobacter baumannii (Wick, Judd, et al., 2021) (ABJ9: reads N50 15,130 bp; median 7,621 bp; 741 Mb), ii. a strain of Haemophilus haemolyticus (Wick, Judd, et al., 2021) (HM1C1321: reads N50 10,569 bp; median 7,027 bp; 1,6 Gb) iii. Meloidogyne graminicola nematoda (Phan et al., 2020) (VN18: reads N50 9,372 bp; median 2,853 bp; 3.2 Gb) and iv. a Oryza sativa dataset (unpublished data) (DJ123: N50 22,328 bp, median 13 544 bp, total 14,6 Gb).

For bacterial sequences, all available assemblers included in CulebrONT were tested using reads for samples ABJ9 and HM1C1321 from A. baumannii and H. haemolyticus. For ABJ9, good results were obtained by Canu and Miniasm, but the best (the longest N50 and lowest L50) were found using Miniasm + 2 minipolish rounds + Medaka correction with only 2 circularised contig (N50 3,798,675 bp and L50 1) obtaining and a Busco score of 98.4%. Busco results obtained on this sample can be found on the figure 2. For HM1C1321, Flye gave the highest number of circularised contigs (N50 2,052,024 bp and L50 1) and the Busco score for conserved orthologous genes on the final assembly was 95.2%. More details can be found on the table 1).
Five assemblers were tested for *M. graminicola* (Flye, Shasta, Miniasm, Smartdenovo and Raven). With the VN18 sample, the lowest number of contigs (617) was obtained using a combination of Flye for assembly with a N50 of 402,454 bp and a L50 of 29 and followed by two rounds of Racon and ultimately Medaka polishing (see table 1).

On *Oryza sativa*, due to the larger genome size, only three assemblers were activated (Flye, Shasta and Raven) and polishing was performed with Racon only. For DJ123 rice sample, Flye + two Racon rounds seemed to be the optimal solution, with the best N50 (14,895,042 bp) and lower L50 (10 for 12 chromosomes). An overview of a CulebrONT report is shown on the figure 2B using rice as an example. More details can be found on table 1 and more reports generated by CulebrONT are available at: https://itrop.ird.fr/culebront_utilities/PCI_RESULTS.

Applications

CulebrONT has been also successfully used on many various organisms, including more than 40 bacteria (*Xanthomonas sp*) (S. Cunnac, pers com), haploid fungi (*Pseudocercospora fijiensis*) (J. Carlier, pers com) and (*Fusarium oxysporum f.sp. cubense*) (E. Wicker, pers com), green algae (*Bathycoccus sp*), insects (*Drosophila sp* (Mohamed et al., 2020)), diploid grasses (*Paspalum sp* (O. Blanc, pers com) and other *Oryza sp*), as well as on allopolyploid plants (ABB triploid banana; M. Rouard, pers com).

Discussion

Obtaining a good assembly is a complex task, and the software ecosystem for this is evolving continually. While CulebrONT is currently proposing the state-of-the-art tools from today, we expect evolution in the next months or years for the next releases in different ways: On a short term, we will integrate the possibility of adding an external fasta sequence for using the QC part (for instance coming from an assembler not included in CulebrONT), re-entry at any steps, and also optimize the disk space usage. On a medium term, we will re-evaluate the available tools (adding hifiAsm (Cheng et al., 2021), removing tools not updated for years), restructure the final output structure for more readability, and better integrate the outputs from diverse QC tools (in particular BlobTools or RAM usage per tool). Finally, in a longer term, *i.e.* in the next 2 years, we plan to integrate tools for contig integrity, possibilities for haplotyping/polyploids and so on.

Conclusion

In summary, CulebrONT simplifies the analysis of large-scale assemblies by allowing fast and reproducible processing of a single dataset or on a collection of samples simultaneously. The output facilitates the comparative evaluation of the assembly workflows while keeping a traceable record of the analyses.

Acknowledgements

Data processing was performed at the High-Performance Computing Cluster i-Trop of IRD. Authors thank N.Tando for administration support and the South Green Plateform. We also thanks the French Bioinformatics Infrastructure IFB for feedback on CulebrONT installation. Version 5 of this preprint has been peer-reviewed and recommended by Peer Community In Genomics (https://doi.org/10.24072/pci.genomics.100018)
Table 1. Results obtained on ONT data using CulebrONT on various biological models and assemblers. The "Organisms" row provides information about the samples, the "Reads" subsection describes input reads features, the "Activated tools" section lists the tools activated (yes) in the corresponding CulebrONT run, and a summary of the best results is presented in the "Best workflow" row (considering best by the longest N50 and lowest L50 in this study).

Specie	Acinetobacter baumannii	Haemophilus haemolyticus	Meloidogyne graminicola	Oryza sativa
Organism	ABJ9	HMTCT321	VN18	DJ123
Kingdom	Bacteria	Bacteria	Nematoda	Plantae
Genome Size	3.9M	2.1M	35M	380M
Ht %	haploid	haploid	2%	0.20%
Ploidy	haploid	haploid	diploid	

Organism	Sample name	Number	Read length N50 (bp)	Total bases (bp)	Depth
Acinetobacter baumannii	ABJ9	69,135	15,130	3,9M	
Haemophilus haemolyticus	HMTCT321	185,001	10,569	2.1M	
Meloidogyne graminicola	VN18	671,385	9,372	35M	
Oryza sativa	DJ123	930,909	22,328	380M	

Organism	Genome Size	Ht %	Ploidy	Number	Read length N50 (bp)	Total bases (bp)	Depth
Acinetobacter baumannii	3.9M	haploid	haploid	69,135	15,130	3,9M	
Haemophilus haemolyticus	2.1M	haploid	haploid	185,001	10,569	2.1M	
Meloidogyne graminicola	35M	haploid	haploid	671,385	9,372	35M	
Oryza sativa	380M	haploid	haploid	930,909	22,328	380M	

Organism	Assemblers	Circulatisation	Polishers	Correcteurs	Best workflow
Flye	yes	yes			Flye + 2xRacon + Medaka
Raven	yes	yes	x2	Medaka	Flye + 2xRacon + Medaka
Miniasm	yes	yes	x2	Nanopolish	Flye + 2xRacon + Medaka
Smartdenovo	yes	yes	x2	Pilon	Flye + 2xRacon + Medaka
Shasta	yes	yes	no	no	Medaka + 2xminipolish + Medaka
Canu	yes	yes	no	no	Flye + 2xRacon + Medaka

Busco score	Miniasm + 2xminipolish + Medaka C:98.4% S:98.4%, D:0%	Flye + 2xRacon + Medaka C:95.2% S:95.2%, D:0%	Flye + 2xRacon + Medaka C:65.9% S:64.7%, D:1.2%	Flye + 3xRacon C:95.1% S:93.7%, D:1.4%
Largest contig (bp)	3,798,675	2,175,110	1,984,010	26,745,371
Contigs number	2	7	617	261
N50 (bp)	3,798,675	2,052,024	402,454	14,895,042
L50	1	1	29	10
Fundings

This work was supported by PHIM and DIADE research units. AC was recruited by a IRD engineer contract. TV was recruited by PHIM funding and the CRP-Rice program. FC contract was recruited by the MagMAX ANR-18-CE20-0016 grant awarded to Pierre Gladieux.

Conflict of interest disclosure

The authors declare that they have no competing interests.

Data, script and code availability

CulebrONT pipeline project home page https://github.com/SouthGreenPlatform/CulebrONT_pipeline.

Documentation : https://culebront-pipeline.readthedocs.io/en/latest/.

CulebrONT is also available as a Python Package https://pypi.org/project/culebrONT

Source code DOI : https://dataverse.ird.fr/dataset.xhtml?persistentId=doi:10.23708/TBPNWJ

This pipeline is operating system platform independent.

CulebrONT has been programmed in Python ≥ 3.6 langage and Snakemake ≥ 5.10.

CulebrONT is under GPLv3 licence with any restrictions to use by non-academics.

Author’s contributions

JO, FS and SC conceived the original idea. JO, AC, SR, FC, TV and SC written code source. Documentation was performed by JO, SR, FS, SC and AC. JO and FS analysed data. JO, FS and SC drafted the manuscript. All authors read and approved the final manuscript.

List of abbreviations

N50 : the smaller contig length required to cover 50 percent of the assembled genome sequence with the largest contigs.

L50 : The number of sequences required to obtain N50.

Supplementary information availability

Results generated by CulebrONT can be found in https://itrop.ird.fr/culebront_utilities/PCI_REPORTS/.

Available data test can be found in https://itrop.ird.fr/culebront_utilities/Data-Xoo-sub/.

Annexes or Supplementary Information

Additional file 1. Supplemental file descriptions of the CulebrONT implementation.

References

Anaconda Software Distribution (2021). Version Vers. 2-2.4.0.
Chen Z, DL Erickson, and J Meng (2020). Benchmarking Long-Read Assemblers for Genomic Analyses of Bacterial Pathogens Using Oxford Nanopore Sequencing. *International Journal of Molecular Sciences* 21. ISSN: 1422-0067. https://doi.org/10.3390/ijms21239161.

Cheng H, GT Concepcion, X Feng, H Zhang, and H Li (Feb. 2021). Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. *Nature Methods* 18, 170–175. ISSN: 1548-7105. https://doi.org/10.1038/s41592-020-01056-5.

Darling ACE, B Mau, FR Blattner, and NT Perna (July 2004). Mauve: multiple alignment of conserved genomic sequence with rearrangements. eng. *Genome research* 14. 15231754 [pmid], 1394–1403. ISSN: 1088-9051. https://doi.org/10.1101/gr.2289704.

Gurevich A, V Saveliev, N Vyahhi, and G Tesler (Feb. 2013). QUAST: quality assessment tool for genome assemblies. *Bioinformatics* 29, 1072–1075. https://doi.org/10.1093/bioinformatics/btt086.

https://github.com/nanoporetech/medaka (2018).

https://nanoporetech.github.io/katuali/ (2018).

Hunt M, ND Silva, TD Otto, J Parkhill, JA Keane, and SR Harris (Dec. 2015). Circlator: automated circularization of genome assemblies using long sequencing reads. *Genome Biology* 16, 294. ISSN: 1474-760X. https://doi.org/10.1186/s13059-015-0849-0.

Kolmogorov M, J Yuan, Y Lin, and PA Pevzner (May 2019). Assembly of long, error-prone reads using repeat graphs. *Nature Biotechnology* 37, 540–546. ISSN: 1546-1696. https://doi.org/10.1038/s41587-019-0072-8.

Koren S, BP Walenz, K Berlin, JR Miller, NH Bergman, and AM Phillipsy (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Research* 27, 722–736. https://doi.org/10.1101/gr.215087.116. eprint: http://genome.cshlp.org/content/27/5/722.full.pdf+html.

Köster J and S Rahmann (Aug. 2012). Snakemake—a scalable bioinformatics workflow engine. *Bioinformatics* 28, 2520–2522. ISSN: 1367-4803. https://doi.org/10.1093/bioinformatics/bts480. eprint: https://academic.oup.com/bioinformatics/article-pdf/28/19/2520/819790/bts480.pdf.

Kurtz GM, V Sochat, and MW Bauer (May 2017). Singularity: Scientific containers for mobility of compute. *PLOS ONE* 12, 1–20. https://doi.org/10.1371/journal.pone.0177459.

Laetsch D and M Blaxter (2017). BlobTools: Interrogation of genome assemblies [version 1; peer review: 2 approved with reservations]. *F1000Research* 6. https://doi.org/10.12688/f1000research.12232.1.

Latorre-Pérez A, P Villalba-Bermell, J Pascual, and C Vilanova (Aug. 12, 2020). Assembly methods for nanopore-based metagenomic sequencing: a comparative study. *Scientific Reports* 10, 13588. ISSN: 2045-2322. https://doi.org/10.1038/s41598-020-70491-3.

Li H, B Handsaker, A Wysoker, T Fennell, J Ruan, N Homer, G Marth, G Abecasis, and RD and (June 2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352.

Li H (Mar. 2016). Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. *Bioinformatics* 32, 2103–2110. ISSN: 1367-4803. https://doi.org/10.1093/bioinformatics/btw152. eprint: https://academic.oup.com/bioinformatics/article-pdf/32/14/2103/19567911/btw152.pdf.

Liao YC, HW Cheng, HC Wu, SC Kuo, TLY Lauderdale, and FJ Chen (Sept. 2019). Completing Circular Bacterial Genomes With Assembly Complexity by Using a Sampling Strategy From a Single MinION Run With Barcoding. eng. *Frontiers in microbiology* 10. 31551994 [pmid], 2068–2068. ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2019.02068.

Liu H, S Wu, A Li, and J Ruan (2020). SMARTdenovo: A de novo Assembler Using Long Noisy Reads. https://www.preprints.org/https://doi.org/10.20944/preprints202009.0207.v1. eprint: https://www.preprints.org/manuscript/202009.0207v1.

Loman NJ, J Quick, and JT Simpson (Aug. 2015). A complete bacterial genome assembled de novo using only nanopore sequencing data. *Nature Methods* 12, 733–735. ISSN: 1548-7105. https://doi.org/10.1038/nmeth.3444.
Mapleson D, G Garcia Accinelli, G Kettleborough, J Wright, and BJ Clavijo (Feb. 2017). KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies. en. *Bioinformatics* 33, 574–576.

Mohamed M, NTM Dang, Y Ogyama, N Burlet, B Mugat, M Boulesteix, V Mérel, P Veber, J Salces-Ortiz, D Severac, A Péllisson, C Vieira, F Sabot, M Fablet, and S Chambeayron (July 2020). A Transposon Story: From TE Content to TE Dynamic Invasion of Drosophila Genomes Using the Single-Molecule Sequencing Technology from Oxford Nanopore. eng. *Cells* 9. 32722451[pmid], 1776. ISSN: 2073-4409. https://doi.org/10.3390/cells9081776.

Murigneux V, SK Rai, A Furtado, TJC Bruxner, W Tian, I Harliwong, H Wei, B Yang, Q Ye, E Anderson, Q Mao, R Drmanac, O Wang, BA Peters, M Xu, P Wu, B Topp, LJM Coin, and RJ Henry (Nov. 2020). Comparison of long-read methods for sequencing and assembly of a plant genome. *GigaScience* 9, giaa146. ISSN: 2047-217X. https://doi.org/10.1093/gigascience/giaa146.

Murigneux V, LW Roberts, BM Forde, MD Phan, NTK Nhu, AD Irwin, PNA Harris, DL Paterson, MA Schembri, DM Whiley, and SA Beatson (June 25, 2021). MicroPIPE: validating an end-to-end workflow for high-quality complete bacterial genome construction. *BMC Genomics* 22, 474. ISSN: 1471-2164. https://doi.org/10.1186/s12864-021-07767-z.

Nattestad M and MC Schatz (June 2016). Assemblytics: a web analytics tool for the detection of variants from an assembly. *Bioinformatics* 32, 3021–3023. https://doi.org/10.1093/bioinformatics/btw369.

Phan NT, J Orjuela, EQJ Danchin, C Klopp, L Perfus-Barbeoch, DK Kozlowski, GD Koutsovoulos, C Lopez-Roques, O Bouchez, M Zahm, G Besnard, and S Bellafiore (2020). Genome structure and content of the rice root-knot nematode (Meloidogyne graminicola). *Ecology and Evolution* 10, 11006–11021. https://doi.org/https://doi.org/10.1002/ece3.6680. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ece3.6680.

Rhie A, BP Walenz, S Koren, and AM Phillippy (Sept. 2020). Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. *Genome Biology* 21, 245. ISSN: 1474-760X. https://doi.org/10.1186/s13059-020-02134-9.

Shafin K, T Pesout, R Lorig-Roach, M Haukness, HE Olsen, C Bosworth, J Armstrong, K Tigyi, N Maurer, S Koren, FJ Sedlazeck, T Marschall, S Mayes, V Costa, JM Zook, KJ Liu, D Kilburn, M Sorensen, KM Munson, MR Vollger, J Monlong, E Garrison, EE Eichler, S Salama, D Haussler, RE Green, M Akeson, A Phillippy, KH Miga, P Carnevali, M Jain, and B Paten (Sept. 2020). Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. *Nature Biotechnology* 38, 1044–1053. ISSN: 1546-1696. https://doi.org/10.1038/s41587-020-0503-6.

Simão FA, RM Waterhouse, P Ioannidis, EV Kriventseva, and EM Zdobnov (June 2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics* 31, 3210–3212. ISSN: 1367-4803. https://doi.org/10.1093/bioinformatics/btv351. eprint: https://academic.oup.com/bioinformatics/article-pdf/31/19/3210/17086320/btv351.pdf.

Vaser R and M Šikić (2020). Raven: a de novo genome assembler for long reads. *bioRxiv*. https://doi.org/10.1101/2020.08.07.242461. eprint: https://www.biorxiv.org/content/early/2020/08/10/2020.08.07.242461.full.pdf.

Vaser R, I Sović, N Nagarajan, and M Šikić (May 2017). Fast and accurate de novo genome assembly from long uncorrected reads. eng. *Genome research* 27. 28100585[pmid], 737–746. ISSN: 1549-5469. https://doi.org/10.1101/gr.214270.116.

Walker BJ, T Abeel, T Shea, M Priest, A Abouelliel, S Sakthikumar, CA Cuomo, Q Zeng, J Wortman, SK Young, and AM Earl (Nov. 2014). Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. *PLoS ONE* 9. Ed. by Wang J. e112963. https://doi.org/10.1371/journal.pone.0112963.

Wick RR, LM Judd, LT Cerdeira, J Hawkey, G Méric, B Vezina, KL Wyles, and KE Holt (Sept. 2021). Trycycler: consensus long-read assemblies for bacterial genomes. *Genome Biology* 22, 266. ISSN: 1474-760X. https://doi.org/10.1186/s13059-021-02483-z.
Wick RR and KE Holt (2020). Benchmarking of long-read assemblers for prokaryote whole genome sequencing [version 3; peer review: 4 approved]. *F1000Research* 8. https://doi.org/10.12688/f1000research.21782.3.

— (2021). Benchmarking of long-read assemblers for prokaryote whole genome sequencing [version 4; peer review: 4 approved]. *F1000Research* 8. https://doi.org/10.12688/f1000research.21782.4.
BUSCO Report

BUSCO sets are collections of orthologous groups with near-universally-distributed single-copy genes in each species.

Assembler	Steps	Complete	Single	Duplicate	Fragmented	Missing	Total Genes
CANGU	AB19	80.1%	82.3%	0.8%	13.7%	2.2%	124
CANGU	CORRECTION, MEDAKA	93.6%	97.6%	0.8%	2.5%	0.3%	124
CANGU	POLISHING, RAICON	87.9%	87.9%	0.8%	11.2%	0.3%	124
FLYE	AB19	93.5%	93.5%	0.6%	0.3%	0.3%	124
FLYE	CORRECTION, MEDAKA	97.6%	97.6%	0.6%	2.4%	0.2%	124
FLYE	POLISHING, RAICON	91.1%	91.1%	0.8%	7.2%	1.2%	124
MINASAM	AB19	93.5%	93.5%	0.6%	0.3%	0.3%	124
MINASAM	CORRECTION, MEDAKA	96.4%	96.4%	0.6%	0.6%	0.1%	124
RAVEN	AB19	5.6%	5.6%	28.8%	44.4%	0.5%	124
RAVEN	CORRECTION, MEDAKA	97.6%	97.6%	0.6%	2.4%	0.3%	124
RAVEN	POLISHING, RAICON	89.5%	89.5%	0.6%	7.9%	0.3%	124
SHASTA	AB19	91.9%	91.9%	3.5%	17.1%	0.3%	124
SHASTA	CORRECTION, MEDAKA	99.4%	99.4%	1.6%	0.6%	0.3%	124
SHASTA	POLISHING, RAICON	89.5%	89.5%	0.6%	10.5%	0.3%	124
SMARTENOV	AB19	93.7%	93.7%	0.8%	13.5%	0.3%	124
SMARTENOV	CORRECTION, MEDAKA	97.6%	97.6%	0.8%	2.4%	0.3%	124
SMARTENOV	POLISHING, RAICON	87.5%	87.5%	0.8%	7.5%	0.3%	124

QUAST Report

QUAST is a good starting point to evaluate the quality of assemblies. It provides many helpful contigularity statistics.

- **Flow**: Cumulative length vs. N50, N90, N95, N100, Masses, GC content.
- **N50**: 124
- **N90**: 124
- **N95**: 124
- **N100**: 124
- **Masses**: 124
- **GC content**: 124