Comorbidities, clinical signs and symptoms, laboratory findings, imaging features, treatment strategies, and outcomes in adult and pediatric patients with COVID-19: A systematic review and meta-analysis

Catherine R. Jutzeler PhD1,2,3,*, Lucie Bourguignon BSc1,2,#, Caroline V. Weis MSc1,2, Bobo Tong MPH4, Cyrus Wong BSc5, Bastian Rieck PhD1,2, Hans Pargger MD6, Sarah Tschudin-Sutter MD7,8, Adrin Egli MD PhD9,10, Karsten Borgwardt PhD1,2,5, Matthias Walter MD PhD3,4,11$

1Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
2SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
3Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
4International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
5Simon Fraser University, Vancouver, Canada
6Intensive Care Unit, University Hospital Basel, University Basel, Basel, Switzerland
7Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel and University of Basel, Switzerland
8Department of Clinical Research, University Hospital Basel and University of Basel, Switzerland
9Division of Clinical Bacteriology & Mycology, University Hospital Basel, Basel, Switzerland
10Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
11Swiss Paraplegic Center, Nottwil, Switzerland

#These authors share the lead authorship
$These authors share the senior authorship

*Corresponding author
Catherine Jutzeler
Department of Biosystems Science and Engineering, ETH Zurich
Mattenstrasse 26
Basel 4058
Switzerland
Email: Catherine.Jutzeler@bsse.ethz.ch

Key words: SARS-CoV-2, COVID-19, meta-analysis, systematic review, comorbidities, clinical characteristics, laboratory findings, imaging features, treatment

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Introduction
Since December 2019, a novel coronavirus (SARS-CoV-2) has triggered a world-wide pandemic with an enormous medical, societal, and economic toll. Thus, our aim was to gather all available information regarding comorbidities, clinical signs and symptoms, outcomes, laboratory findings, imaging features, and treatments in patients with coronavirus disease 2019 (COVID-19).

Methods
EMBASE, PubMed/ Medline, Scopus, and Web of Science were searched for studies published in any language between December 1st, 2019 and March 28th. Original studies were included if the exposure of interest was an infection with SARS-CoV-2 or confirmed COVID-19. The primary outcome was the risk ratio of comorbidities, clinical signs and symptoms, imaging features, treatments, outcomes, and complications associated with COVID-19 morbidity and mortality. We performed random-effects pairwise meta-analyses for proportions and relative risks, I², Tau², and Cochrane Q, sensitivity analyses, and assessed publication bias.

Results:
148 met the inclusion criteria for the systematic review and meta-analysis with 12'149 patients (5'739 female) and a median age was 47.0 [35.0-64.6]. 617 patients died from COVID-19 and its complication, while 297 patients were reported as asymptomatic. Older age (SMD: 1.25 [0.78-1.72]; p < 0.001), being male (RR = 1.32 [1.13-1.54], p = 0.005) and pre-existing comorbidity (RR = 1.69 [1.48-1.94]; p < 0.001) were identified as risk factors of in-hospital mortality. The heterogeneity between studies varied substantially (I²; range: 1.5-98.2%). Publication bias was only found in eight studies (Egger’s test: p < 0.05).

Conclusions:
Our meta-analyses revealed important risk factors that are associated with severity and mortality of COVID-19.
1. Introduction

The severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) initially emerged in Wuhan, Hubei, People's Republic of China and has been identified as the causative agent of coronavirus disease 2019 (COVID-19). Its pandemic spread presents a substantial medical challenge with an enormous societal and economic toll\(^3\). Similar to influenza and SARS-CoV-1, SARS-CoV-2 is considered a “crowd disease” that spreads most easily when individuals are packed together at high densities. Phylogenetic data implicate a zoonotic origin\(^3\) and the rapid spread suggests ongoing person-to-person transmission\(^4\). Additional factors contributing to the rapid spread constitute the duration of the incubation period\(^5\) and infectiousness peaking on or before symptom onset\(^6\) contribute to the rapid spread of SARS-CoV-2. Another factor contributing to the rapid spread and alarmingly high number of infected people is the SARS-CoV-2 nature of initial dormancy of symptoms. The most common symptoms associated with COVID-19 include a sudden onset of fever, coughing, and dyspnea\(^2,7,17\). Complications comprise acute respiratory distress syndrome (ARDS), pneumonia, kidney failure, bacterial superinfections, coagulation abnormalities and thromboembolic events, sepsis, and even death\(^9,20\). So far, only a few demographic and clinical factors, such as older age, diabetes, and cardiovascular diseases, have been linked with poor outcome and increased risk of mortality\(^12,13\). This knowledge gap extends to the risk of infections, disease progression, and outcome in vulnerable patient populations, including newborns, children, pregnant, and elderly patients. A better understanding of the risks for these vulnerable patient populations is critical in order to optimize their protection and tailor prevention and treatment strategies. Thus, the aim of our systematic review and meta-analysis was to gather available information in the literature and determine the most prevalent comorbidities, clinical signs and symptoms, imaging features, laboratory parameters, treatments, outcomes, and complications arising in patients with COVID-19. We stratified our systematic reviews and meta-analysis by different cohorts, namely pediatric/neonatal and adult COVID-19 patients.
including pregnant women. Furthermore, we aimed to assess current evidence for the associations between risk factors and in-hospital mortality. Based on previous reports, we addressed the hypothesis that male sex, older age, as well as pre-existing hypertension and diabetes mellitus are risk factors of morbidity and mortality in patients with COVID-19.

2. Methods

Our systematic review and meta-analysis adhere to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) statement13 and Meta-analysis of Observational Studies in Epidemiology (MOOSE) checklist14.

2.1. Search strategy and selection criteria

Four bibliographic databases were systematically searched: EMBASE, PubMed/ Medline, Scopus, and Web of Science. Our search was not restricted by language. We searched for studies published from December 1st, 2019 to March 28th, 2020, with search terms related to COVID-19 (“COVID-19”, “SARS-CoV-2”, “coronavirus disease 2019”, “severe acute respiratory syndrome coronavirus 2”, “2019 novel coronavirus”, “2019-nCoV”, “coronavirus”, and “corona virus”). The full search strategy is provided in Appendix 1. Manual searching was also performed, reviewing reference lists of relevant studies and comprehensive review articles. Records were managed by EndNote X 8.0 software to exclude duplicates.

2.2. Selection of studies

Two investigators (CRJ and MW) independently screened the titles and abstracts to determine whether studies should be included. Eligibility criteria were also applied to the full-text articles during the final selection. In case multiple articles reported on a single study, the article that provided the most data was selected for further synthesis. We quantified the inter-rater agreement for study selection using Cohen’s κ coefficient15. Articles written in Chinese were reviewed by our two native speaking authors.
(BT and CW) and if the inclusion criteria were met, these authors also extracted the specified data. All disagreements were discussed and resolved at a consensus meeting.

2.3. Inclusion and exclusion criteria

All full-text, peer-reviewed articles that described case-control, cohort studies, or case studies investigating the epidemiological and clinical features, comorbidities, laboratory parameters, imaging features, and/or treatment of patients that were diagnosed with COVID-19. We excluded duplicate publications, non-peer reviewed articles (e.g., preprints), reviews, meta-analyses, abstracts or conference proceedings, editorials, commentaries, letters with insufficient data, studies on non-human species, or out-of-scope studies (e.g., comparison with other infections, case-fatality reports). In case multiple studies published data from the same cohort, we included the article representing the most inclusive information on the population to avoid overlap. Lastly, studies that did not report demographics (i.e., age and sex) were also excluded. Figure 1 outlines our search strategy and application of inclusion and exclusion criteria.

2.4. Data extraction and synthesis

Data extraction tables were created with the following information: 1) publication information (i.e., author, date, language of article, country where the study was performed, study design [case study, case series, or cohort study]16, study population [pediatric/neonatal and adult COVID-19 patients including pregnant women); 2) demographics (i.e., age, sex); 3) clinical signs and symptoms (e.g., cough, fatigue, fever, sputum); 3) comorbidities (e.g., hypertension, diabetes, cardiovascular diseases); 4) therapies administered to treat COVID-19 (e.g., antibiotics, antivirals, invasive mechanical ventilation); 5) clinical outcomes (e.g., death, survival, recovery); and 6) complications associated with COVID-19 (e.g., sepsis and shock, ARDS). In case studies provided data for multiple patient groups
(e.g., pediatric and adult patient), we extracted this information separately for each group. A full list of extracted variables is provided in Supplementary Table 1.

2.5. **Statistical analysis**

For the studies reporting mean and standard deviation (SD) for extracted variables, we computed the median and interquartile ranges (IQR) assuming a normal distribution (i.e., using the formula: IQR ~ SD*1.35). To test if there is a bias by including the studies for which we computed the median and IQR (i.e., quartiles, Q1 and Q3), we performed a sensitivity analyses in which we calculated the median and IQR under the assumption of right-skewed and left-skewed distribution (see Appendix 2). We compared the results of the different distributions to test the robustness of our findings. Descriptive statistics (median, IQR, n, and %) were used to characterize the studies and patients included as well as the laboratory parameters. Weighted by study sample size, the pooled median and 95% confidence interval (CI) were computed for continuous variables. Normality approximation of the binomial was used to construct an approximate confidence interval (R package *metamedian*). Welch’s two-sample t-test was employed to test if there are significant differences in the proportion of male and female patients across studies.

Our meta-analysis was structured in two parts. In the first part, we performed meta-analyses of all 148 studies to define the prevalence of comorbidities, clinical signs and symptoms, imaging features, treatments, outcomes, and complications associated with COVID-19. Using the *metaprop* function of the R package *metafor*, we calculated the overall prevalence from studies reporting a single prevalence. Our meta-analysis was stratified by patient group (pediatric/neonatal [≤17 years of age], pregnant, and adult COVID-19 patients). Heterogeneity between studies was assessed visually by Forest plots, and analytically by I^2, tau T^2, and Cochrane Q. Briefly put, I^2 describes the percentage of
variation across studies that is due to heterogeneity rather than chance33: 0% indicates no heterogeneity, whereas 25%, 50%, and 75% indicate low, moderate, and high heterogeneity, respectively. CIs for I2 were calculated using the iterative non-central chi-squared distribution method of Hedges and Piggott10. Tau (T2) represents the absolute value of the true variance (heterogeneity) and is the estimated SD of underlying true effects across studies. Cochran's Q is the weighted sum of squared differences between individual study effects and the pooled effect across studies, with the weights being those used in the pooling method (i.e., sample size)21. The second part comprised meta-analyses to calculate the relative risk (RR) of certain comorbidities, clinical signs and symptoms, imaging features, laboratory parameters, complications, and outcomes in patients with severe vs. those with non-severe disease condition (12 studies) as well as deceased vs. survivors (7 studies). The categorization into severe and non-severe COVID-19 disease was consistent with the groups reported by the reviewed studies (Supplementary Table 2). Owing to our judgment that considerable clinical and statistical heterogeneity exists among the studies (statistical heterogeneity was confirmed by the computed I2, T2, and Cochran Q), we calculated pooled RRs with 95% CIs using a random-effects model with inverse-variance weighting (metabin function from R package meta). For continuous outcome data (e.g., age, laboratory parameters, and time from symptoms onset to hospital admission), we estimated the standardized mean difference (SMD) by means of a random-effect models with inverse variance weighting for pooling (metacont function from R package meta). To calculate the SMD, we converted medians, Q1s, and Q3s into means and standard deviations. The SMD, 95% CIs, and p values were reported. We produced Forest plots to visualize the results from the random-effect models (R function: forest). Publication bias was assessed visually by funnel plots (R function: funnel) and analytically by the Egger test (R function: regtest). An Egger test p<0.05 indicates a significant publication bias. All statistical analyses were performed in R (version 3.6.3) for MacOS X(Mojave, 10.14.4) with the packages meta (version 4.11-0) and dmetar (version 0.0.90)18. The code used for the
analysis and to create figures and tables is provided in our GitHub repository (https://github.com/jutzca/Corona-Virus-Meta-Analysis-2020).

2.6. Role of funding source

The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

3. Results

Study selection and study characteristics

Our systematic literature search yielded 5'049 articles (including articles identified by manual searching). Upon removal of duplicates and exclusion of studies on the basis of their abstracts or following screening their full text, 148 met the inclusion criteria and were considered for the review and meta-analysis (Figure 1). The inter-rater agreement for study selection was very high (κ=0.94 [95% CI: 0.91 - 0.96], 97.0% agreement [11/ 362 studies with disagreement]). Detailed information on the included studies are provided in Tables 1-3. Included studies were conducted in 15 countries between December 1st, 2019 and March 28th, 2020 (Supplementary Table 3) and enrolled between 1 and 1'099 patients (median 12.5 [1.00 – 56.75]). The majority of the articles were written in English (123 studies, 83.1%) and the remainder in Chinese (25 studies, 16.9%). We classified studies according to their design: cohort study (76 studies, 51.4%), case study/report (41 studies, 27.7%), and case series (31 studies, 20.9%). While all studies reported information on demographics (148, 100%), the number of studies reporting information on comorbidities (84 studies, 56.8%), clinical sign and symptoms (130 studies, 87.8%), laboratory parameters (113 studies, 76.4%), imaging features (118 studies, 79.7%), treatments (91, 61.5%), outcomes (118 studies, 79.3%), and complications (59 studies, 39.9%) varied markedly.
In terms of study population, 114 studies included only adult participants, 6 only pregnant women, 22 only children and neonates, and 6 included mixed cohorts. Of the total 12'149 patients included, 6'410 (52.8%) were male and 5'739 female (47.2%, Figure 2A and 2B). The median age of adult (11'058 patients, 91.0%), pregnant (35 patients, 0.3%), and pediatric (1'056 patients, 8.7%; including neonates) patients was 47.0 years [35.0-65.3] (Figure 3A), 30.0 [26.0-33.0] (Figure 3B), and 10.0 [2.0-13.0] (Figure 3C), respectively. Approximately 7.8% (297/3'822 patients) were reported to be asymptomatic and 7.7% (617/8'047) died during hospitalization due to complications related to the infection with SARS-CoV-2. With the exception of one 10-month old child, all deaths were non-pregnant adult COVID-19 patients.

Adult patients

Higher proportions of male than female patients were reported to be infected with SARS-CoV-2 (t = 2.678, df = 202, p-value = 0.008; Figure 2A) across all studies. Comorbidities were present in ~31% of the adult patients (2'329/7'608), with hypertension being the most prevalent one (1'352/6'460 patients, 20.93%), followed by heart failure (37/354 patients, 10.5%), diabetes mellitus (678/6'535 patients, 10.4%), and coronary heart disease (194/2'388 patients, 8.5%) (Figure 4A, Table 4, Supplementary Figure 1). The most frequent clinical signs and symptoms were fever (6'955/8'859 patients, 78.5%), cough (4'778/8'885 patients, 53.8%), and fatigue (1'996/7'980 patients, 25.0%) (Figure 4B, Table 4). A little over five percent of the adult COVID-19 patients were asymptomatic (148/2'749 patients, 5.4%). Over 6'969 patients (89.6%) had abnormal CT imaging features. The most common patterns of CT abnormalities were indicating pneumonia (unilateral or bilateral; 6'620/7'917 patients, 83.6%), including air bronchogram (264/523 patients, 50.5%), and ground-glass opacity (GGO) with consolidation (153/323 patients, 47.4%) and without (2'446/5'591 patients, 43.8%) (Table 4, Supplementary Figure 2). In terms of laboratory parameters, inflammatory markers, such as interleukin 6 (22 pg/mL [4.68-51.8]), and erythrocyte sedimentation rate (32.5 mm/h [17.3-53.8]) were...
elevated across the adult population. Moreover, markers of coagulation, namely d-dimer (0.5 µg/mL [0.3-1.08]), fibrinogen (4.5 g/L [3.66-5.1]), and cell damage were also elevated (i.e., lactate dehydrogenase, U/L; 213 [173-268]). An overview of all laboratory parameters is provided in Supplementary Table 4. As shown in Figure 4D, the most common treatments were antivirals (4'475/6'068, patients, 73.8%), oxygen therapy (1'300/1'872 patients, 69.4%), and antibiotics (2'518/4'825 patients, 52.2%). Detailed information on all treatments is provided in Table 4. Eight percent (616/7'727 patients) of the adults died during the hospitalization due to complications related to COVID-19. Amongst the survivors (7'111/7'727 patients, 92.0%), a total of 3'025 (68.7%) remained hospitalized, 1'751 (32.4%) were discharged, and 1'012 (27.1%) reportedly recovered (Figure 4C, Table 4). Important to note, for some patients it was stated that they both, recovered and were discharged (i.e., one patient can fall in multiple categories). The median duration between symptoms onset and hospitalization was 8 days [7 - 9.5]. A total of 195 (6.8%) patients were admitted to the intensive care unit (ICU). The most frequently reported complications associated with COVID-19 were pneumonia (1'032/1'489 patients, 69.2%), respiratory failure (141/413 patients, 34.1%), acute cardiac injury (242/1'250 patients, 19.4%), and ARDS (759/5'122 patients, 14.8%), (Figure 4D, Table 4).

Pregnant woman

Studies investigating the effect of COVID-19 in pregnant women reported that only five pregnant women had any history of comorbidities. Hypothyroidism, allergies, or influenza were reported each for one pregnant woman (Supplementary Table 5). Fever (25/35 patients, 71.4%), cough (12/29 patients, 41.4%), and myalgia (3/9 patients, 33.3%) were the three most common symptoms observed in pregnant women that were infected with SARS-CoV-2 (Supplementary Figure 3, Supplementary Table 5). Abnormal CT features were evident in 88.6% (34/35 patients) of pregnant women diagnosed with COVID-19. Pneumonia (unilateral or bilateral, 31/35 patients, 88.6%), GGO (29/34 patients,
85.3%), and consolidation (8/16 patients, 50.0%) were among the most common patterns of CT abnormalities (Supplementary Figure 4, Supplementary Table 5). Inflammatory markers, such as C-reactive protein (19.25 mg/L [12.35-25.7]), procalcitonin (0.187 ng/mL), and neutrophil count (9.14 x 10^9/L) were elevated in this patient population. Along this line, lactate dehydrogenase concentrations were increased (544 U/L) reflecting cellular damage. An overview of all laboratory parameters is provided in Supplementary Table 4. Moreover, antibiotics (14/14 patients, 100.0%), antivirals (11/14 patients, 78.6%) and oxygen therapy (high flow nasal cannula; 3/12 patients, 25.0%) were used to treat pregnant COVID-19 patients (Supplementary Table 5). None of the pregnant COVID-19 patients died. Lastly, one patient was admitted to the ICU (Supplementary Table 5).

Pediatric and Neonatal Patients

Similar to the adult cohort, the proportion between female and male patients were comparable in the pediatric/neonatal cohort (t = 1.169, df = 26, p-value = 0.253; Figure 2B). Fourteen percent of the children and neonates were asymptomatic (149/1'054). With the exception of two children, no comorbidities were reported for any of the pediatric or neonatal patients (Supplementary Table 6). Similar to the adult and pregnant COVID-19 patients, children and neonates frequently presented with fever (170/320 patients, 53.1%), cough (149/311 patients, 47.9%), and sputum (14/51 patients, 27.5%) (Supplementary Figure 6 and Supplementary Table 6). Sixty-five percent of the pediatric and neonatal patients presented with CT abnormalities, including pneumonia (194/298 patients), GGO (108/278 patients, 38.9%), and local patchy shadowing (52/223 patients, 23.3%) (Supplementary Figure 7, Supplementary Table 6). An overview of all laboratory parameters is provided in Supplementary Table 7. As the reference values vary considerably within the pediatric/neonatal patient population, the results of the laboratory parameters have to be interpreted with caution. In terms of treatment, children and neonates received antibiotics (31/43 patients, 72.1%), oxygen therapy
through high flow nasal cannula (5/52, 9.6%), and alpha interferon aerosol inhalation therapy (31/52, 59.6%) to treat COVID-19 and its complications (Supplementary Figure 8, Supplementary Table 6). With the exception of a 10-month-old child that died four weeks after admission of multi-organ failure, all children survived. Less than 30% remained hospitalized (90/293 patients, 74.9%) were discharged (216/290 patients) and 87.4% reportedly recovered (236/270 patients) (Supplementary Figure 9, Supplementary Table 6). The median duration between symptoms onset and hospitalization was 6 days [4.0-8.5]. Fifteen percent (6/39 patients) had to be admitted to the ICU. Complications associated with COVID-19 comprised pneumonia (16/26 patients, 61.5%), secondary bacterial infection (12/21 patients, 57.1%), and respiratory failure (10/33 patients, 30.3%) (Supplementary Table 6).

Non-severe vs. Severe

Twelve studies (2’596 patients) provided separate data for patients with a severe (500 patients, 19.3%) and non-severe disease status (2’096, 80.7%). No differences regarding sex were found between severe (t = 0.604, df = 16.645, p-value = 0.554; male: 278 patients [55.6%] and female: 210 patients [42.0%]; unknown sex: 12 patients [2.4%]) and non-severe disease status group (t = 0.217, df = 16.393, p-value = 0.831; male: 1’059 patients [50.5%] and female: 925 patients [49.5%]) (Supplementary Figure 10). In terms of age, patients with non-severe COVID-19 were significantly younger (median age in years= 45.0 [34.0-57.0]) than those with a severe disease progression (61.4 [44.5-75.5], Figure 5). Our meta-analysis revealed that older age (SMD: 0.68 [0.40-0.97], p < 0.001), being male (RR = 1.11 [1.01-1.22], p = 0.039), and preexisting comorbidities (RR=2.11 [1.02-4.35], p= 0.046) were associated with a higher risk of increased disease severity. Specifically, hypertension (RR = 2.15 [1.64-2.81], p < 0.001), diabetes mellitus (RR = 2.56 [1.50-4.39], p = 0.005), any heart condition (RR = 4.09 [2.45-6.84], p < 0.001), and chronic obstructive pulmonary disease (COPD, RR = 5.10 [3.08-8.45], p < 0.001) (Figure 6, Table 5) were associated with worse outcome (i.e., severe disease). To test if the increased risk of heart conditions is
attributable to the study that has classified their patients into severe and non-severe based on the presence or absence of cardiac injuries, we conducted a sensitivity analysis excluding these studies [44].

The risk of any heart condition remained significantly elevated in the severe disease patient cohort (RR = 3.87 [1.85 - 8.11], p = 0.005). Numerous laboratory parameters were significantly different between the non-severe and severe patient cohorts. Patients with severe disease status presented with decreased levels of albumin (SMD = 1.60 [-2.97 - (-0.24)]; p = 0.022), hemoglobin (SMD = -0.23 [-0.41 - (-0.06)]; p = 0.001), and thrombocytes (SMD = -0.57 [-0.68 - (-0.45)]; p < 0.001) in comparison to patients with non-severe disease status. Additionally, C-reactive protein (SMD = 1.47 [0.88-2.07]; p < 0.001), lactate dehydrogenase (SMD = 1.71 [1.08-2.34]; p < 0.001), and aspartate transaminase levels (SMD = 0.85 [0.61-1.09]; p < 0.001) were elevated in patients with severe disease status. In terms of complications, patients with severe COVID-19 disease were at an elevated risk of developing ARDS (RR=10.59 [2.44-46.01], p = 0.014, Figure 6). The heterogeneity between the studies varied substantially (Table 5). Publication bias, measured by means of the Egger’s test, was only evident in three analyses. However, Egger’s test may lack the statistical power to detect bias when the number of studies is small (i.e., fewer than 10) as we only included 4-8 studies.

Survivor vs. non-survivors

Seven studies (957 patients) provided disaggregated data for COVID-19 survivors (617 patients, 64.5%) and non-survivors (340, 35.5%). No differences regarding sex were found in the survivor group (t = 0.258, df = 11.879, p-value = 0.801; male: 326 patients [52.8%] and female: 291 patients [47.2%]), but a significantly higher proportion of male patients were amongst the deceased cohort (t = 4.30, df = 12, p-value = 0.001; male: 236 patients [69.4%] and female: 104 patients [30.6%]) (Supplementary Figure 10). In terms of age, COVID-19 patients that survived were significantly younger (median age in years= 52.0 [35.0-66.0]) than non-survivors (68.0 [62.0-76.0], Figure 5). The meta-analysis yielded older age
(SMD: 1.25 [0.78-1.72]; p < 0.001), being male (RR = 1.32 [1.13-1.54], p = 0.005), pre-existing comorbidities (RR = 1.69 [1.48-1.94]; p < 0.001) as potential risk factors of in-hospital mortality. Pre-existing cerebrovascular diseases (RR = 36.88 [8.50-160.04]; p = 0.009), heart conditions (RR = 3.95 [1.03-15.20]; p = 0.047, Figure 7A), and hypertension (RR = 2.09 [1.65-2.64]; p = 0.001) were found to be associated with the highest risks of mortality. Clinical signs and symptoms as well as imaging features were comparable between survivors and non-survivors. In terms of treatments, non-survivors were more frequently mechanically ventilated than survivors (RR = 6.05 [1.41-26.05]; p = 0.026, Figure 7B) and more commonly received extracorporeal membrane oxygenation (RR = 4.39 [1.64-11.78], p = 0.014). Non-survivors had higher risks of complications, particularly acute kidney injury (RR = 20.77 [2.43-177.44]; p = 0.017; Figure 7C) and ARDS (RR = 4.24 [1.30-13.83], p = 0.026, Figure 7D). Low levels of albumin (SMD = -1.13 [-1.41-(-0.85)]; p < 0.001) and lymphocytes (SMD = -0.92 [-1.3-(-0.55)]; p < 0.001) as well as elevated level of interleukin 6 (SMD = 1.21 [0.93-1.5]; p < 0.001), leucocytes (SMD = 2.21 [0.61-3.64]; p = 0.06), and prolonged prothrombin time (SMD = 7.99 [4.64-11.34]; p < 0.01) were associated with death (Table 5). Publication bias, measured by means of the Egger’s test, was only evident in five analyses.

4. Discussion

As of May 1st, 2020, more than 3.3 million confirmed cases of COVID-19 and more than 230,000 deaths attributable to the disease, have been reported worldwide66,67. In-depth knowledge of clinical, laboratory, and imaging factors that are associated with the disease progression and outcome is critical to inform clinical decision making and pandemic preparedness initiatives. An ever-growing number of research studies have been performed, but thus far the meta-analytical evidence is sparse. To address this paucity, we conducted a systematic review and meta-analysis of 148 studies involving over 12,000 patients providing an unprecedented comprehensive overview of comorbidities, clinical
signs and symptoms, laboratory parameters, CT imaging features, treatment, outcomes, and complications in adult, pregnant, and pediatric/neonatal COVID-19 patients. Approximately eight percent of the patients were reported to be asymptomatic, while over seven percent died from complications associated with COVID-19. Recent analysis suggests that up to 75% of the coronavirus infections caused no illness68-70. Presumably, the virus has been circulating for longer than generally believed and large swathes of the population have already been exposed. Although our fatality rate lies within previous estimates171,172, it is important to mention that only a limited number of studies reported on the outcome of COVID-19 (i.e., death, survival, recovery) and thus, caution has to be exercised when interpreting this number. Through our meta-analysis, we revealed several important risk factors that are associated with severe disease progression and mortality. Among these risk factors were two demographic factors, namely older age and being male. Well-studied consequences of ageing are the decline in the immune function (e.g., T-cell and B-cell function) and excess production of type 2 cytokines173,174. These age-dependent changes in the immune response are suspected to cause deficiency in control of viral replication and more prolonged proinflammatory responses, potentially leading to poor outcome175. Corroborative evidence stems from preclinical studies that found an age-dependent host innate responses to virus infection in non-human primates inoculated with SARS-CoV-1176. Confirming previous findings177,178, sex-specific differences in mortality and vulnerability to the disease were evident in the current study. Specifically, men were disproportionately affected by an infection with SARS-CoV-2 (i.e., proportion of men presented with COVID-19 was larger compared to women) and the in-hospital mortality amongst male patients was significantly higher compared to female patients. Emerging evidence pinpoints towards differences in the immune system140, genetic polymorphism179, life style factors including smoking180, personal hygiene habits181, pre-existing comorbidities180,182, and expression of angiotensin-converting enzyme 2 (ACE2)184,185 as potential explanations for the increased vulnerability in men. This sex difference in
vulnerability has also been observed for SARS and MERS185, two previously emerging coronavirus diseases. The lack of sex-disaggregated data in the reviewed studies made it impossible to further explore these potential explanations for the discrepant findings in men and women. Overall, the preexisting comorbidities, namely hypertension, diabetes mellitus, and any heart condition, were found to be linked with both more severe diseases status and increased in-hospital mortality. Smoking, by contrast, was not associated with disease severity or mortality. However, the low number of studies reporting smoking status (13/148) cautions against early assumptions. Clinical signs and symptoms were comparable between patients with non-severe and severe COVID-19 as well as survivors and non-survivors. Fever, cough, and myalgia were amongst the most frequent reported symptoms across all groups. Similarly, the present study revealed no differences in the CT imaging features. The majority of the COVID-19 patients presented with pneumonia (bilateral or unilateral) and GGO. These pathological findings are a hallmark of any viral pneumonia, and thus it is not surprising that asymptomatic patients had similar distinctive features187. In terms of laboratory parameters, elevated levels of interleukin 6, leucocytes, d-dimer, and lactate dehydrogenase as well as hypoalbuminemia and lymphopenia were more commonly seen in patients with severe COVID-19 illness and non-survivors. High levels of d-dimer have a reported association with 28-day mortality in patients with infections or sepsis admitted to the intensive care unit188. Systemic pro-inflammatory cytokine responses (e.g., interleukin 6 and other components) contribute to host defense against infections, such as SARS-CoV-2189–191. However, exaggerated synthesis of interleukin 6 can lead to an acute, severe systemic inflammatory response syndrome (SIRS) known as ‘cytokine storm’192. In addition to SIRS, hypoalbuminemia and lymphopenia were previously shown to be associated with increased odds of severe infection and infection-related death193–195. Complications were very common amongst patients with severe COVID-19 disease (over 50%) and non-survivors (more than two thirds). Acute cardiac injury, ARDS, and acute kidney injury were strongly linked to the outcome. Widely used
treatments for COVID-19 and associated complications comprised antibiotics, antivirals, and oxygen therapy. Patients with severe COVID-19 disease required more often mechanical ventilation and renal replacement therapy compared to those with non-severe COVID-19. Moreover, corticosteroids have been commonly administered to hospitalized patients with severe illness, although their benefit is highly disputed. Evidence from MERS or influenza suggests that patients who were given corticosteroids had prolonged viral replication, receive mechanical ventilation, and have higher mortality196–199. Administration of antibiotics and antivirals was independent of disease-severity.

Pregnant women as well as pediatric and neonatal patients may be less vulnerable to complications of COVID-19. Comorbidities were almost non-existent in these patient cohorts. Clinical signs and symptoms, laboratory parameters, imaging features, and treatments were comparable to the adult (non-pregnant) cohort. While there was a considerable proportion of children and neonates with SARS-CoV-2 infections reported, most of these patients did not need hospitalization and recovered quite well. With the exception of a 10-month old neonate, no children were amongst the deaths reported. All pregnant women included in our study survived COVID-19 and associated complications.

4.1. Limitations of review

A limitation of the current review was that literature search was limited to articles listed in EMBASE, PubMed/ Medline, Scopus, Web of Science, or identified by hand searches. Considering the pace at which the research in this area is moving forward, it is likely that the findings of the publications described in this paper will be quickly complemented by further research. The literature search also excluded grey literature (e.g., preprints, reports, conference proceedings), the importance of which to this topic is unknown, and thus might have introduced another source of search bias. There is also a probability of publication bias, as well as potential for a search bias. Publication bias is likely to result in studies with more positive results being preferentially submitted and accepted for publication. Moreover, geographical bias cannot be rule out as the majority of the studies (129/148) were
conducted in China. While symptoms might be quite comparable across countries, comorbidities, treatments, and outcome potentially depends on the country (and its healthcare system). There is also a considerable risk for a reporting bias towards comorbidities, clinical signs and symptoms, laboratory parameters, imaging features, treatment, outcome, and complications that are present. Specifically, only a minority of studies reported a zero when this information was assessed, but absent in patients. Lack of data on absent clinical signs and symptoms might lead to distorted estimates of proportion. The meta-analysis of severity and mortality could only be performed with a small number of studies as the minority of the 148 provided data separately for different disease severity groups (e.g., non-severe, severe, survivors, non-survivors). This needs to be considered when interpreting the results, including the publication bias as the Egger’s test may lack the statistical power to detect bias when the number of studies is small (i.e., < 10). Lastly, the criteria to classify patients in severe and non-severe COVID-19 disease cohorts varied between studies leading to additional heterogeneity between studies. By virtue of low number of studies available, we could not assess this heterogeneity nor adjust for it.

4.2. Conclusion and future directions

In conclusion, this unprecedentedly comprehensive systematic review and meta-analysis of the literature published during the first 120 days of the COVID-19 pandemic yields important information regarding the comorbidities, clinical signs and symptoms, laboratory parameters, imaging features, treatment, outcome, and complications. Male sex, older age, and pre-existing comorbidities are major risk factors for in-hospital mortality and complications. This study revealed a fatality rate of 7.7% and found that approximately 8% of the patients were reportedly asymptomatic. Based on recent reports, the latter number is likely 6- to 10-fold higher as only a few asymptomatic patients are captured by the healthcare system as they do not seek medical attention due to the lack of symptoms or are not hospitalized and thus, included in studies. Unnoticed asymptomatic cases of COVID-19 are likely a major source of ongoing transmission. Children and neonates appear to be the least vulnerable cohort.
Forthcoming studies are needed that provide sex-disaggregated data to better characterize risk factors that affect both sexes or are specific to men or women, respectively.

Authors’ contribution

Catherine Jutzeler: Substantial contributions to the conception and design of the study; acquisition, analysis, and interpretation of data, drafting the manuscript, final approval of version to be published.

Lucie Bourguignon: Substantial contributions to acquisition, analysis, and interpretation of data, drafting the manuscript, final approval of version to be published.

Caroline Weis: Acquisition and interpretation of data, revising the manuscript critically for important intellectual content, final approval of version to be published.

Bastian Rieck: Acquisition and interpretation of data, revising the manuscript critically for important intellectual content, final approval of version to be published.

Bobo Tong: Acquisition and interpretation of data, revising the manuscript critically for important intellectual content, final approval of version to be published.

Cyrus Wong: Acquisition and interpretation of data, revising the manuscript critically for important intellectual content, final approval of version to be published.

Hans Pargger: Substantial contributions to the interpretation of data, revising the manuscript critically for important intellectual content, final approval of version to be published.

Sarah Tschudin-Sutter: Substantial contributions to the interpretation of data, revising the manuscript critically for important intellectual content, final approval of version to be published.

Adrian Egli: Substantial contributions to the interpretation of data, revising the manuscript critically for important intellectual content, final approval of version to be published.

Karsten Borgwardt: Substantial contributions to the interpretation of data, revising the manuscript critically for important intellectual content, final approval of version to be published.

Matthias Walter: Substantial contributions to the conception and design of the study; acquisition, analysis, and interpretation of data, drafting the manuscript, final approval of version to be published.

4.3. Conflict of interest

The authors do not report any (financial or otherwise) conflict of interest.

4.4. Acknowledgement
This study was supported by the Alfried Krupp Prize for Young University Teachers of the Alfried Krupp von Bohlen und Halbach-Stiftung (Borgwardt), and the Swiss National Science Foundation (Ambizione Grant [PZooP3_1861_1, Jutzeler], SNSF Starting Grant [155913, Borgwardt]). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Table 1 – Included studies of adults with COVID-19

Authors	Title	PMID	Unique study ID	Country	Language	Study type	Study population	Sample size	Age *	Male (%)	Female (%)			
Ai et al, 2020 [32]	Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases	32101510	S1	China	English	Cohort Study	Adult	1014	51 (15)	467 (46)	547 (54)			
Albarello et al, 2020 [159]	2019-novel Coronavirus severe adult respiratory distress syndrome in two cases in Italy: An uncommon radiological presentation	32112966	S2	Italy	English	Case series	Adult	2	66.5 [66.25-66.75]	1 (50)	1 (50)			
An et al, 2020 [94]	CT Manifestations of Novel Coronavirus Pneumonia: A Case Report	32157862	S3	China	English	Case Study	Adult	1	50	0 (0)	1 (100)			
Arentz et al, 2020 [59]	Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State	32191259	S4	USA	English	Cohort Study	Adult	21	70 [43-92]	11 (52)	10 (48)			
Bai et al, 2020 [128]	Analysis of the first cluster of cases in a family of novel coronavirus pneumonia in Gansu Province	32064855	S5	China	Chinese	Case series	Adult	7	53.4	3 (43)	4 (57)			
Chan et al, 2020 [4]	A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster	31986261	S6_adult	China	English	Case series	Adult	5	50 [36.25-64.50]	2 (40)	3 (60)			
Chang et al, 2020 [131]	Epidemiologic and Clinical Characteristics of Novel Coronavirus Infections Involving 13 Patients Outside Wuhan, China	32031568	S7	China	English	Cohort Study	Adult	13	34 [34-48]	10 (77)	3 (33)			
Chen et al, 2020 [95]	Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia	32164089	S8	China	Chinese	Cohort Study	Adult	29	56 [range 26-79]	21 (72)	8 (28)			
Chen et al, 2020 [67]	Analysis of myocardial injury in patients with COVID-19 and association between concomitant cardiovascular diseases and severity of COVID-19	32141280	S9_severe	China	Chinese	Cohort Study	Adult (severe)	24	68.5 (13.6)	18 (75)	6 (25)			
Chen et al, 2020 [67]	Analysis of myocardial injury in patients with COVID-19 and association between concomitant cardiovascular diseases and severity of COVID-19	32141280	S9_nonsevere	China	Chinese	Cohort Study	Adult (non-severe)	126	57.1 (15.6)	66 (52)	60 (48)			
Chen et al, 2020 [39]	Clinical progression of patients with COVID-19 in Shanghai, China	32171869	S10	China	English	Cohort Study	Adult	249	51 [36-64]	126 (51)	123 (49)			
Chen et al, 2020 [140]	Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study	32007143	S11	China	English	Cohort Study	Adult	99	55.5 (13.1)	67 (68)	32 (32)			
Authors	Title	Journal ID	Country	Language	Study Type	Age	Gender	Age Range	Male	Female	Male	Female	% Male	% Female
---------------------------------	--	------------	---------	----------	---------------	-----	--------	-----------	------	--------	------	--------	-------	---------
Chen et al, 2020 [161]	Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study	32217556	China	English	Cohort Study	Adult	274	62 [44-70]	171	103	62	38		
Cheng et al, 2020 [149]	Epidemiological characteristics of novel coronavirus pneumonia in Henan	32118390	China	Chinese	Cohort Study	Adult	1079	46 [IQR: 24]	573	506	53	47		
Cheng et al, 2020 [62]	Clinical Features and Chest CT Manifestations of Coronavirus Disease 2019 (COVID-19) in a Single-Center Study in Shanghai, China	32174128	China	English	Cohort Study	Adult	11	50.36 (15.5)	8	73	73	27		
Cheng et al, 2020 [157]	First case of Coronavirus Disease 2019 (COVID-19) pneumonia in Taiwan	32113824	Taiwan	English	Case Study	Adult	1	55	0	1	100	0		
Cheng et al, 2020 [62]	Early Epidemiological and Clinical Characteristics of 28 Cases of Coronavirus Disease in South Korea	32149037	Korea	English	Cohort Study	Adult	28	42.6 [range 20-73]	15	13	54	46		
Dai et al, 2020 [105]	CT Imaging and Differential Diagnosis of COVID-19	32129670	China	English	Case Series	Adult	4	50 [47.75-55.125]	4	0	100	0		
Deng et al, 2020 [68]	Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study	32209890	China	English	Cohort Study	Adult and pediatric	109	69[62-74]	73	36	67	33		
Deng et al, 2020 [68]	Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study	32209890	China	English	Cohort Study	Adult and pediatric	116	40[33-57]	51	65	44	56		
Ding et al, 2020 [72]	The clinical characteristics of pneumonia patients coinfected with 2019 novel coronavirus and influenza virus in Wuhan, China	32196707	China	English	Case Series	Adult	5	49 [47-50]	2	3	40	60		
Ding et al, 2020 [28]	A cured patient with 2019-nCoV pneumonia	32205073	China	English	Case Study	Adult	1	57	0	1	100	0		
Dong et al, 2020 [106]	Epidemiological characteristics of confirmed COVID-19 cases in Tianjin	32164400	China	English	Cohort Study	Adult	135	48.62 (16.83)	72	65	53	47		
Duan and Qin, 2020 [144]	Pre- and Posttreatment Chest CT Findings - 2019 Novel Coronavirus (2019-nCoV) Pneumonia	32049602	China	English	Case Study	Adult	1	46	0	1	100	0		
Fan et al, 2020 [49]	Perinatal Transmission of COVID-19 Associated SARS-CoV-2: Should We Worry?	32182347	China	English	Case Series	Adult	2	31.5 [30.25-32.75]	0	2	100	0		
Fang et al, 2020 [93]	Changes of CT findings in a 2019 novel coronavirus (2019-nCoV) pneumonia patient	32073631	China	English	Case Study	Adult	1	47	1	0	100	0		
Fang et al, 2020 [88]	Comparisons of nucleic acid conversion time of SARS-CoV-2 of different samples in ICU and non-ICU patients	32209381	China	English	Cohort Study	Adult	32	41	16	16	50	50		
Author(s)	Title	PMCID	Country	Language	Study Design	Age Group	Case Count	Sex	Age Range	Mortality Rate				
----------	-------	-------	---------	----------	-------------	-----------	------------	-----	-----------	----------------				
Fang et al, 2020 [115]	CT Manifestations of Two Cases of 2019 Novel Coronavirus (2019-nCoV) Pneumonia	32031481	China	English	Case Series	Adult	2	60	38.5 [35.25-41.75]	1 (50) 1 (50)				
Gautret et al, 2020 [127]	Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial	32205204	France	English	Case Series	Adult	36	47 [24.5-61.5]	15 (42) 21 (58)					
Gross et al, 2020 [112]	CT appearance of severe, laboratory-proven coronavirus disease 2019 (COVID-19) in a Caucasian patient in Berlin, Germany	32193883	Germany	English	Case Study	Adult	1	60	1 (100) 0 (0)					
Guan et al, 2020 [25]	Epidemiological investigation of a family clustering of COVID-19	32149484	China	Chinese	Case Series	Adult	7	53.43	3 (43) 4 (57)					
Guan et al, 2020 [138]	Clinical Characteristics of Coronavirus Disease 2019 in China	32109013	China	English	Cohort Study	Adult	1099	47 [35-58]	639 (58) 460 (42)					
Guan et al, 2020 [142]	Imaging Features of Coronavirus Disease 2019 (COVID-19) Severe Pneumonia	32208010	China	English	Case Study	Adult	1	59	0 (0) 1 (100)					
Guan et al, 2020 [120]	Imaging Features of Coronavirus Disease 2019 (COVID-19): Evaluation on Thin-Section CT	32204990	China	English	Cohort Study	Adult	53	42 [range 1-86]	25 (47) 28 (53)					
Han et al, 2020 [137]	Early Clinical and CT Manifestations of Coronavirus Disease 2019 (COVID-19) Pneumonia	32181672	China	English	Cohort Study	Adult	108	45	38 (35) 70 (65)					
Han et al, 2020 [104]	The course of clinical diagnosis and treatment of a case infected with coronavirus disease 2019	32073161	China	English	Case Study	Adult	1	47	1 (100) 0 (0)					
Hao, 2020 [30]	Clinical features of atypical 2019 novel coronavirus pneumonia with an initially negative RT-PCR assay	32092387	China	English	Case study	Adult	1	58	1 (100) 0 (0)					
He et al, 2020 [52]	Impact of complicated myocardial injury on the clinical outcome of severe or critically ill COVID-19 patients	32171190	China	Chinese	Cohort Study	Adult	54	68 [59.8-74.3]	34 (63) 20 (37)					
Hill et al, 2020 [118]	The index case of SARS-CoV-2 in Scotland: a case report	32205138	Scotland	English	Case Study	Adult	1	51	1 (100) 0 (0)					
Holshue et al, 2020 [113]	First Case of 2019 Novel Coronavirus in the United States	32004227	USA	English	Case Study	Adult	1	35	1 (100) 0 (0)					
Hosoda et al, 2020 [57]	SARS-CoV-2 enterocolitis with persisting to excrete the virus for about two weeks after recovering from diarrhea: A case report	32188528	Japan	English	Case Study	Adult	1	81	0 (0) 1 (100)					
Hu et al, 2020 [119]	Clinical characteristics of 24 asymptomatic infections with COVID19 screened among close contacts in Nanjing, China	32146694	China	English	Cohort Study	Adult	24	32.5 [19.0-57.0]	8 (33) 16 (64)					
Reference	Title	Study Design	Country	Age Group	Sample Size	Median Age	Age Range	Gender	Characteristics					
-----------	--------	--------------	---------	-----------	-------------	------------	-----------	---------	-----------------					
Hu et al., 2020 [102]	CT imaging of two cases of one family cluster 2019 novel coronavirus (2019-nCoV) pneumonia: inconsistency between clinical symptoms amelioration and imaging sign progression	Case Series	China	Adult	2	42.5 (40.25-44.75)	1 (50)	1 (50)						
Huang et al, 2020 [76]	Clinical characteristics of laboratory confirmed positive cases of SARS-CoV2 infection in Wuhan, China: A retrospective single center analysis	Cohort Study	China	Adult	34	56.24 (17.14)	14 (41)	20 (59)						
Huang et al, 2020 [66]	Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China	Cohort Study	China	Adult	41	49 (41-58)	30 (73)	11 (27)						
Huang et al, 2020 [109]	Use of Chest CT in Combination with Negative RT-PCR Assay for the 2019 Novel Coronavirus but High Clinical Suspicion	Case Study	China	Adult	1	36	1 (100)	0 (0)						
Jin et al. 2020 [63]	Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms	Cohort Study	China	Adult	74	46.14 (14.19)	37 (50)	37 (50)						
Jin et al. 2020 [63]	Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms	Cohort Study	China	Adult - No GI Symptoms	577	45.09 (14.45)	294 (51)	283 (49)						
Lee et al, 2020 [54]	A case of COVID-19 and pneumonia returning from Macau in Taiwan: Clinical course and anti-SARS-CoV-2 IgG dynamic	Case study	Vietnam	Adult	1	46	0 (0)	1 (100)						
Leung et al, 2020 [47]	Clinical features of deaths in the novel coronavirus epidemic in China	Cohort Study	China	Adult	46	70.6 (12.63)	31 (67)	15 (33)						
Li et al, 2020 [114]	CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19)	Cohort Study	China	Adult	78	44.6 (17.9)	38 (49)	40 (51)						
Li et al, 2020 [99]	Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19	Cohort Study	China	Adult	10	46.5 (36.5-64.3)	5 (50)	5 (50)						
Li et al, 2020 [96]	Comparison of epidemic characteristics between SARS in 2003 and COVID-19 in 2020 in Guangzhou	Cohort Study	China	Adult	346	48 [range 3 months-90 y/o]	167 (48)	179 (52)						
Li et al, 2020 [111]	Comparison of the clinical characteristics between RNA positive and negative patients clinically diagnosed with 2019 novel coronavirus pneumonia	Cohort Study	China	Adult (young and middle-aged)	652	41.15 (1.38)	349 (54)	303 (46)						
Lian et al, 2020 [77]	Analysis of Epidemiological and Clinical features in older patients with Coronavirus Disease 2019 (COVID-19) out of Wuhan	Cohort Study	China	Adult	31	54	15 (48)	16 (52)						
Authors, Year	Study Title	Study Type	Country	Language	Age Group	Sample Size	Mean Age (Range)	Total Positive	Total Negative	Notes				
---------------	-------------	------------	---------	----------	-----------	-------------	----------------	----------------	---------------	-------				
Lian et al, 2020 [77]	Analysis of Epidemiological and Clinical features in older patients with Corona Virus Disease 2019 (COVID-19) out of Wuhan	Cohort Study	China	English	Adult (elderly >= 60 years)	136	68.28 (7.31)	58 (43)	78 (57)					
Lin et al, 2020 [40]	Novel coronavirus pneumonia outbreak in 2019: Computed tomographic findings in two cases	Case Series	China	English	Adult	2	37 [36-38]	2 (100)	0 (0)					
Liu et al, 2020 [147]	Clinical feature of COVID-19 in elderly patients: a comparison with young and middle-aged patients	Cohort Study	China	English	Adult (elderly >= 60 years)	18	68.00 [65.25-69.75]	12 (67)	6 (33)					
Liu et al, 2020 [147]	Clinical feature of COVID-19 in elderly patients: a comparison with young and middle-aged patients	Cohort Study	China	English	Adult (young and middle-aged < 60 years)	38	47 [35.75-51.25]	19 (50)	19 (50)					
Liu et al, 2020 [153]	Gross examination of report of a COVID-19 death autopsy	Case Study	China	Chinese	Adult	1	85	1 (100)	0 (0)					
Liu et al, 2020 [90]	Clinical characteristics of 30 medical workers infected with new coronavirus pneumonia	Cohort Study	China	Chinese	Adult	30	35 [21-59]	10 (33)	20 (67)					
Liu et al, 2020 [81]	Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease	Cohort Study	China	English	Adult	78	38 [33-57]	39 (50)	39 (50)					
Liu et al, 2020 [74]	Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury	Case Series	China	English	Adult	12	63 [53.5-65]	8 (67)	4 (33)					
Liu et al, 2020 [133]	Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province	Cohort Study	China	English	Adult	137	57 [range 20-83]	61 (45)	76 (55)					
Liu et al, 2020 [146]	Clinical and CT imaging features of the COVID-19 pneumonia: Focus on pregnant women and children	Cohort Study	China	English	Adult	14	5 (36)	9 (64)						
Mo et al, 2020 [98]	Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China	Cohort Study	China	English	Adult	155	54 [42-66]	86 (55)	69 (45)					
Pan et al, 2020 [132]	Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China	Cohort Study	China	English	Adult	63	44.9 (15.2)	33 (52)	30 (48)					
Peng et al, 2020 [145]	Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nVoC	Cohort Study	China	Chinese	Adult (severe)	16	57.5 [54-63]	9 (56)	7 (44)					
Peng et al, 2020 [36]	Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nVoC	Cohort Study	China	Chinese	Adult (non-severe)	96	62 [55-67.5]	44 (46)	52 (54)					
Study Title	ID	Country	Language	Study Type	Study Details	Adult Cases	Adult Mean Age (Range)	Adult Median Age	Adult Median Age (Range)					
--	-------	-------------	----------	--------------	---	-------------	------------------------	-------------------	--------------------------					
Qian et al, 2020 [80] A COVID-19 Transmission within a family cluster by presymptomatic infectors in China	32201889	China	English	Case series	Adult 7 57.5 [44.5-59]	3 (43)	4 (57)							
Qian et al, 2020 [156] Epidemiologic and Clinical Characteristics of 91 Hospitalized Patients with COVID-19 in Zhejiang, China: A retrospective, multi-centre case series	32181807	China	English	Cohort Study	Adult 91 50 [36.5-57]	37 (41)	54 (59)							
Qu et al, 2020 Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19	32181903	China	English	Cohort Study	Adult 30 50.5 [36-65]	16 (53)	14 (47)							
Ren et al, 2020 Identification of a novel coronavirus causing severe pneumonia in human - a descriptive study	32004165	China	English	Case Series	Adult 5 47 [49-61]	3 (60)	2 (40)							
Ruan et al, 2020 A case of 2019 novel coronavirus infected pneumonia with twice negative 2019-nCoV nucleic acid testing within 8 days	32149771	China	English	Case study	Adult 1 47 0 (0) 1 (100)									
Shi et al, 2020 [44] Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China	32211816	China	English	Cohort Study	Adult 416 64 [range 21-90]	205 (49)	211 (51)							
Shi et al, 2020 [51] Radiologic findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study	32105637	China	English	Cohort Study	Adult 81 49.5 (11) 42 (52) 39 (48)									
Shi et al. 2020 [103] Evolution of CT Manifestations in a Patient Recovered from 2019 Novel Coronavirus (2019-nCoV) Pneumonia in Wuhan, China	32032497	China	English	Case Study	Adult 1 42 1 (100) 0 (0)									
Silverstein et al, 2020 [91] First imported case of 2019 novel coronavirus in Canada, presenting as mild pneumonia	32061312	Canada	English	Case Study	Adult 1 56 1 (100) 0 (0)									
Song et al, 2020 [60] SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19	32139552	China	English	Case Study	Adult 1 22 1 (100) 0 (0)									
Song et al, 2020 [164] Emerging 2019 Novel Coronavirus (2019-nCoV) Pneumonia	32027573	China	English	Cohort Study	Adult 51 49 (16) 25 (49) 26 (51)									
Spiteri et al, 2020 [31] First cases of coronavirus disease 2019 (COVID-19) in the WHO European Region, 24 January to 21 February 2020	32156327	Europe	English	Cohort Study	Adult 38 42 [range 2-81]	25 (66)	13 (34)							
Stoecklin et al, 2020 [160] First cases of coronavirus disease 2019 (COVID-19) in France: surveillance, investigations and control measures, January 2020	32074065	France	English	Case Series	Adult 3 31 [30.5-39.5]	2 (67)	1 (33)							
Sun et al, 2020 [134] Epidemiological and Clinical Predictors of COVID-19	32211755	Singapore	English	Cohort Study	Adult 54 42 [34-54] 29 (54) 25 (46)									
Sun et al, 2020 [89] Evolution of Computed Tomography Manifestations in Five Patients Who Recovered from Coronavirus Disease	32174054	China	English	Case Series	Adult 5 45 [range 20-55]	2 (40)	3 (60)							
Reference	Title	Country	Language	Study Type	Age	Median	Range	Sex	Median	Range				
-----------	--	---------	----------	----------------	-----	--------	-------	-----	--------	-------				
Tang et al, 2020 [108]	Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia	China	English	Cohort Study	Adult	183	54.1 (16.2)	98 (54)	85 (46)					
Tian et al, 2020 [148]	Characteristics of COVID-19 infection in Beijing	China	English	Cohort Study	Adult	262	47.5 [range 1-94]	127 (48)	135 (52)					
Tian et al, 2020 [84]	Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer	China	English	Case Study	Adult	1	73	1 (100)	0 (0)					
Tian et al, 2020 [84]	Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer	China	English	Case Study	Adult	1	84	0 (0)	1 (100)					
Tong et al, 2020 [38]	Potential Presymptomatic Transmission of SARS-CoV-2, Zhejiang Province, China, 2020	China	English	Case Series	Adult	6	23.00 [15.00-41.75]	3 (50)	3 (50)					
Van Cuong et al, 2020 [154]	The first Vietnamese case of COVID-19 acquired from China	Vietnam	English	Case Study	Adult	1	25	0 (0)	1 (100)					
Wan et al, 2020 [70]	Clinical Features and Treatment of COVID-19 Patients in Northeast Chongqing	China	English	Cohort Study	Adult	135	47 [36-55]	72 (53)	63 (47)					
Wang et al, 2020 [56]	Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment	China	English	Case series	Adult	4	47.5 [28.75-63]	3 (75)	1 (25)					
Wang et al, 2020 [139]	Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China	China	English	Cohort Study	Adult	138	56 [42 - 68]	75 (54)	63 (46)					
Wang et al, 2020 [100]	Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China	China	English	Cohort Study	Adult	69	42 [35-62]	32 (46)	37 (54)					
Wang et al, 2020 [45]	Clinical Outcomes in 55 Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Who Were Asymptomatic at Hospital Admission in Shenzhen, China	China	English	Cohort Study	Adult	55	49 [range 2-69]	22 (40)	33 (60)					
Wang et al, 2020 [26]	The clinical dynamics of 18 cases of COVID-19 outside of Wuhan, China	China	English	Cohort Study	Adult	18	39 [29-55]	10 (56)	8 (44)					
Wu et al, 2020 [125]	Clinical Characteristics of Imported Cases of COVID-19 in Jiangsu Province: A Multicenter Descriptive Study	China	English	Cohort Study	Adult	80	46.1 (15.42)	39 (49)	41 (51)					
Reference	Title	Journal ID	Country	Language	Study Type	Study Details								
-----------	---	------------	---------	----------	------------------	--								
Wu et al, 2020 [85]	Biological characters analysis of COVID-19 patient accompanied with aplastic anemia	32145715	China	Chinese	Case Study	Adult 1 48 1 (100) 0 (0)								
Xie et al, 2020 [82]	Comparison of different samples for 2019 novel coronavirus detection by nucleic acid amplification tests	32114193	China	English	Case Series	Adult 9 34 [26-45] 4 (44) 5 (56)								
Xiong et al, 2020 [50]	Clinical and High-Resolution CT Features of the COVID-19 Infection: Comparison of the Initial and Follow-up Changes	32134800	China	English	Cohort Study	Adult 42 49.5 (14.1) 25 (60) 17 (40)								
Xu et al, 2020 [73]	Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2	32109443	China	English	Cohort Study	Adult 50 43.9 (16.8) 29 (58) 21 (42)								
Xu et al, 2020 [22]	Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2	32107577	China	English	Cohort Study	Adult 90 50 [range 18-86] 39 (43) 51 (57)								
Xu et al, 2020 [41]	Pathological findings of COVID-19 associated with acute respiratory distress syndrome	32085846	China	English	Case Study	Adult 1 50 1 (100) 0 (0)								
Xiong et al, 2020 [50]	Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series	32075786	China	English	Cohort Study	Adult 62 41 [32-52] 35 (56) 27 (44)								
Xu et al. 2020 [41]	Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19	32179140	China	English	Cohort Study	Adult 15 35 10 (67) 5 (33)								
Xu et al. 2020 [41]	Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19	32179140	China	English	Cohort Study	Adult 17 37 7 (41) 10 (59)								
Xu et al. 2020 [41]	Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19	32179140	China	English	Cohort Study	Adult 19 53 8 (42) 11 (58)								
Yang et al, 2020 [126]	Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China	32112884	China	English	Cohort Study	Adult 149 45.11 (13.35) 81 (54) 68 (46)								
Yang et al, 2020 [9]	Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study	32105632	China	English	Cohort Study	Adult 52 59.7 (13.3) 35 (67) 17 (33)								
Yao et al, 2020 [42]	Clinical characteristics and influencing factors of patients with novel coronavirus pneumonia combined with liver injury in Shaanxi region	32153170	China	Chinese	Cohort Study	Adult 40 53.87 (15.84) 25 (63) 15 (37)								
Yao et al, 2020 [143]	Epidemiological characteristics of 2019-nCoV infections in Shaanxi, China by February 8, 2020	32139462	China	English	Cohort Study	Adult 195 44.13 (15.8) 129 (66) 66 (34)								
Ye et al, 2020 [23]	Clinical characteristics of severe acute respiratory syndrome coronavirus 2	32171867	China	English	Case Series	Adult 5 31 [30-32] 2 (40) 3 (60)								
Study Authors	Title	Journal	Country	English	Cohort Type	Study Type	Gender	Age Mean (SD)	Age Med (Q1-Q3)	Severe	Mortality			
---------------	---	---------	---------	---------	-------------	------------	---------	---------------	----------------	--------	-----------			
Yoon et al. 2020 [141]	Chest Radiographic and CT Findings of the 2019 Novel Coronavirus Disease (COVID-19): Analysis of Nine Patients Treated in Korea	S104	South Korea	English	Cohort Study	Adult	9	54	4 (44)	5 (56)				
Young et al. 2020 [79]	Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore	S105	Singapore	English	Cohort Study	Adult	18	47 [31-71]	9 (50)	9 (50)				
Yu et al. 2020 [150]	A Familial Cluster of Infection Associated With the 2019 Novel Coronavirus Indicating Possible Person-to-Person Transmission During the Incubation Period	S106	China	English	Case series	Adult	4	72 [68-78.25]	2 (50)	2 (50)				
Yuan et al. 2020 [55]	Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China	S107	China	English	Cohort Study	Adult	27	60 [47-69]	12 (44)	15 (56)				
Zhang et al. 2020 [71]	CT image of novel coronavirus pneumonia: a case report	S108	China	English	Case Study	Adult	1	64	1 (100)	0 (0)				
Zhang et al. 2020 [79]	Clinical features of 2019 novel coronavirus pneumonia in the early stage from a fever clinic in Beijing	S109	China	Chinese	Cohort Study	Adult	9	36 [15-49]	5 (56)	4 (44)				
Zhang et al. 2020 [34]	Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China	S110	China	English	Cohort Study	Adult	140	57 [range 25-87]	71 (51)	69 (49)				
Zhang et al. 2020 [155]	Epidemiological, clinical characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings	S111	China	English	Cohort Study	Adult	573	46.65 (13.83)	295 (51)	278 (49)				
Zhang et al. 2020 [117]	High-resolution CT features of 17 cases of Corona Virus Disease 2019 in Sichuan province, China	S112	China	English	Cohort Study	Adult	17	48.6 [range 23-74]	8 (47)	9 (53)				
Zhao et al. 2020 [162]	The characteristics and clinical value of chest CT images of novel coronavirus pneumonia	S113	China	English	Cohort Study	Adult	80	44 (1.77)	43 (54)	37 (46)				
Zhao et al. 2020 [78]	A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias	S114	China	English	Cohort Study	Adult	19	48 [27-56]	11 (58)	8 (42)				
Zhou et al. 2020 [48]	Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study	S115	China	English	Cohort Study	Adult	191	56.0 (67.0)	119 (62)	72 (38)				
Zhu et al. 2020 [110]	Comparison of heart failure and 2019 novel coronavirus pneumonia in chest CT features and clinical characteristics	S116	China	Chinese	Cohort Study	Adult	12	52 [32-73]	8 (67)	4 (33)				
Zhu et al. 2020 [58]	Clinical and CT imaging features of 2019 novel coronavirus disease (COVID-19)	S117	China	English	Case Series	Adult	6	43 [32-56]	0 (0)	6 (100)				

* mean(sd) or median[Q1-Q3], ** COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention, Cheongju, Korea et al. 2020
Table 2 – Included studies of pregnant women with COVID-19

Authors	Title	PMID	Unique study ID	Country	Language	Study type	Study population	Sample size	Age *	Male (%)	Female (%)
Chen et al, 2020 [29]	Pregnant women with new coronavirus infection: a clinical characteristics and placental pathological analysis of three cases	32114744	S118	China	Chinese	Case Series	Pregnant	3	29.6	0 (0)	3 (100)
Chen et al, 2020 [75]	Chest computed tomography images of early coronavirus disease (COVID-19)	32162211	S119	China	English	Case Study	Pregnant	1	27	0 (0)	1 (100)
Chen et al, 2020 [11]	Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records	32151335	S120	China	English	Case Series	Pregnant	9	28 [26-33]	0 (0)	9 (100)
Dong et al. 2020 [46]	Possible Vertical Transmission of SARS-CoV-2 From an Infected Mother to Her Newborn	32215581	S121_pr	China	English	Case Study	Pregnant	1	29	0 (0)	1 (100)
Liao et al, 2020 [122]	Chest CT Findings in a Pregnant Patient with 2019 Novel Coronavirus Disease	32212578	S122	China	English	Case Study	Pregnant	1	25	0 (0)	1 (100)
Liu et al, 2020 [146]	Clinical and CT imaging features of the COVID-19 pneumonia: Focus on pregnant women and children	32171865	S60_pre	China	English	Cohort Study	Pregnant	16	30 [26-35]	0 (0)	16 (100)
Wang et al, 2020 [123]	A case of 2019 Novel Coronavirus in a pregnant woman with preterm delivery	32119083	S123	China	English	Case study	Pregnant	1	28	0 (0)	1 (100)
Wang et al, 2020 [152]	A case report of neonatal COVID-19 infection in China	32161941	S124_pr	China	English	Case study	Pregnant	1	34	0 (0)	1 (100)
Wen et al, 2020 [124]	A patient with SARS-CoV-2 infection during pregnancy in Qingdao, China	32198004	S125	China	English	Case study	Pregnant	1	31	0 (0)	1 (100)
Xia et al, 2020 [136]	Emergency Caesarean delivery in a patient with confirmed coronavirus disease 2019 under spinal anaesthesia	32192711	S126	China	English	Case Study	Adult	1	27	0 (0)	1 (100)

* mean(sd) or median[Q1-Q3]
Table 3 – Included studies of pediatric and neonatal patients with COVID-19

Authors	Title	PMID	Unique study ID	Country	Language	Study type	Study population	Sample size	Age *	Male (%)	Female (%)
Cai et al, 2020 [65]	First case of 2019 novel coronavirus infection in children in Shanghai	32102141	S127	China	Chinese	Case Study	Pediatric	1	7	1 (100)	0 (0)
Chan et al, 2020 [4]	A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster	31986261	S6_pediatric	China	English	Case series	Pediatric	1	10	1 (100)	0 (0)
Chen et al, 2020 [101]	First case of severe childhood novel coronavirus pneumonia in China	32135586	S128	China	Chinese	Case Study	Pediatric	1	1.1	1 (100)	0 (0)
Cui et al, 2020 [33]	A 55-Day-Old Female Infant Infected With 2019 Novel Coronavirus Disease: Presenting With Pneumonia, Liver Injury, and Heart Damage	32179908	S129	China	English	Case study	Neonatal	1	55	(days)	0 (0)
Dong et al. 2020 [46]	Possible Vertical Transmission of SARS-CoV-2 From an Infected Mother to Her Newborn	32215581	S121_pediatric	China	English	Case Study	Neonatal	1	0	0 (0)	1 (100)
Dong et al. 2020 [92]	Epidemiological Characteristics of 2143 Pediatric Patients With 2019 Coronavirus Disease in China	DOI: 10.1542/peds.2020-0702	S130	China	English	Cohort Study	Pediatric	731	10 [2-13]	420 (57)	311 (43)
Fan et al, 2020 [158]	Anal swab findings in an infant with COVID-19	DOI: 10.1002/peds.202012186	S131	China	English	Case Study	Neonatal	1	0.25	0 (0)	1 (100)
Feng et al, 2020 [87]	Analysis of CT features of 15 children with 2019 novel coronavirus infection	32061200	S132	China	Chinese	Case series	Pediatric	15	7 [range 4-14]	5 (33)	10 (67)
Ji et al, 2020 [135]	Clinical features of pediatric patients with COVID-19: a report of two family cluster cases	32180140	S133	China	English	Case Series	Pediatric	2	12.0 [10.5-13.5]	2 (100)	0 (0)
Le et al, 2020 [24]	The first infant case of COVID-19 acquired from a secondary transmission in Vietnam	32213326	S134	Vietnam	English	Case Study	Neonatal	1	0.25	0 (0)	1 (100)
Liu et al, 2020 [74]	Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury	32048163	S58_pediatric	China	English	Case Study	Pediatric	1	10	1 (100)	0 (0)
Liu et al, 2020 [86]	Detection of Covid-19 in Children in Early January 2020 in Wuhan, China	32163697	S135	China	English	Case Series	Pediatric	6	3 [3-3.75]	2 (33)	4 (67)
Liu et al, 2020 [146]	Clinical and CT imaging features of the COVID-19 pneumonia: Focus on pregnant women and children	32171865	S60_pediatric	China	English	Cohort Study	Pediatric	4	3.0 [0.7-6.0]	2 (50)	2 (50)
Liu et al, 2020 [37]	SARS-CoV-2 Infection in Children	32187458	S136	China	English	Cohort Study	Pediatric	171	6.7 [2-9.8]	104 (61)	67 (39)
Park et al, 2020 [163]	First Pediatric Case of Coronavirus Disease 2019 in Korea	32193905	S137	South Korea	English	Case Study	Pediatric	1	10	0 (0)	1 (100)
Authors	Title	PMCID	Country	Language	Study Type	Age Group	Age Range	Male	Female	Total	
----------------------	--	-------	---------	----------	--------------	------------	-----------------	------	--------	-------	
Qian et al, 2020	A COVID-19 Transmission within a family cluster by presymptomatic infectors in China	32201889	China	English	Case study	Pediatric	1	0 (0)	1 (100)		
Sun et al, 2020	Clinical features of severe pediatric patients with coronavirus disease 2019 in China: a single center's observational study	32193831	China	English	Case series	Pediatric	8	0 (0)	6 (75)		
Tang et al, 2020	Detection of Novel Coronavirus by RT-PCR in Stool Specimen from Asymptomatic Child, China	32161941	China	English	Case study	Neonatal	1	0 (0)	1 (100)		
Wang et al, 2020	SARS-CoV-2 infection with gastrointestinal symptoms as the first manifestation in a neonate	32118389	China	Chinese	Cohort Study	Pediatric	31	7 [0.6-17]	15 (48)		
Wei et al, 2020	Novel Coronavirus Infection in Hospitalized Infants Under 1 Year of Age in China	32058570	China	English	Case Series	Neonatal	9	0.583 [0.33-0.75]	2 (22)		
Xia et al, 2020	Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults	32134205	China	English	Cohort Study	Pediatric	20	2 [range 1-14 years 7 months]	13 (65)		
Xu et al, 2020	Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding	PMC70951 02	China	English	Case Series	Pediatric	10	6.63 [2.17-13.4]	6 (60)		
Zeng et al, 2020	First case of neonate infected with novel coronavirus pneumonia in China	32065520	China	Chinese	Case study	Neonatal	1	0.25 (0)	1 (100)		
Zhang et al, 2020	2019-novel coronavirus infection in a three-month-old baby	32043842	China	Chinese	Case study	Neonatal	1	0 (0)	1 (100)		
Zheng et al, 2020	Clinical Characteristics of Children with Coronavirus Disease 2019 in Hubei, China	32207032	China	English	Cohort Study	Pediatric	25	3 [2-9]	14 (56)		
Zhou et al, 2020	Clinical features and chest CT findings of coronavirus disease 2019 in infants and young children	32204756	China	Chinese	Case Series	Pediatric	9	1 [range 7 months-3 years]	4 (44)		

* mean(sd) or median[Q1-Q3]
Table 4: Summary for random effects model for prevalence of comorbidities, clinical signs and symptoms, imaging features, treatments, outcome and complications in adult CoVID-19 patients.

Variable	Numb of studies	Patients	Total patients	Crude prevalence [%]	Random effect model (REM) Prevalence	REM (lower CI)	REM (upper CI)	Tau T^2	I^2	Q
Comorbidities										
Any comorbidity	85	2'329	7'608	30.61	29.57	24.08	35.71	1.271	95.4	902.92
Hypertension	58	1'352	6'460	20.93	23.24	19.23	27.8	0.585	90.4	517.13
Diabetes mellitus	53	678	6'535	10.37	11.81	10.12	13.72	0.218	70.0	187.38
Carcinoma	36	111	6'033	1.84	2.15	1.56	2.95	0.467	56.7	95.51
Chronic obstructive pulmonary disease	29	86	5'232	1.64	1.70	0.92	3.1	1.976	84.5	147.80
Cardiovascular disease	28	1'112	2'750	4.36	3.95	2.12	7.23	1.025	87.5	143.74
Chronic kidney disease	20	56	3'521	1.59	1.85	0.93	3.63	1.536	79.4	84.55
Coronary heart disease	17	194	2'988	8.12	9.32	4.53	18.21	2.167	94.3	296.34
Any liver disease	15	51	5'80	8.79	3.85	1.44	9.83	2.215	83.5	95.23
Cerebrovascular disease	13	1'122	2'568	4.36	3.95	2.12	7.23	1.025	87.5	143.74
Current smoker	13	266	3'400	7.82	5.79	4.32	7.72	0.156	66.8	62.4
Hepatitis B	12	54	2'333	8.12	9.32	4.53	18.21	2.167	94.3	296.34
Chronic liver disease	11	95	2'576	3.69	3.69	3.03	4.49	0.724	71.5	34.60
Any respiratory system disease	10	49	1'020	4.80	2.95	1.28	6.67	1.045	78.8	45.62
Heart failure	5	37	768	10.45	10.45	2.25	73.36	5.885	95.6	43.48
Immunodeficiency	5	6	418	1.44	1.62	0.18	12.8	3.889	81.3	19.40
Clinical signs and symptoms										
Asymptomatic	69	1'356	2'749	5.38	0.4	0.07	2.21	11.535	93.6	664.40
Patients reported with any sign or symptom	65	1'356	2'597	74.55	98.03	92.48	99.51	9.123	96.2	864.92
Fever	110	6'955	8'859	78.51	82.96	79.13	86.21	0.968	91.6	1'096.03
Cough	102	4'778	8'885	53.78	58.38	53.92	62.70	0.548	90.1	1'671.74
Fatigue	69	1'199	2'980	26.01	29.25	24.03	35.07	0.918	94.2	1'440.98
Diarrhea	58	1'065	6'475	11.10	13.04	10.0	16.84	0.497	76.9	343.2
Sore throat	49	726	6'538	11.10	13.04	10.0	16.84	0.497	76.9	343.2
Sputum	48	1'437	6'218	23.49	25.06	19.68	31.35	0.850	94.3	94.12
Headache	48	730	7'564	9.39	10.4	8.29	12.97	0.511	86.0	326.48
Chest tightness	46	885	4'596	19.26	24.21	17.02	33.21	1.737	95.3	882.92
Myalgia	46	808	5'284	15.29	18.99	14.69	24.79	0.799	90.7	411.98
Dyspnea	39	705	5'730	12.30	15.20	10.54	21.43	1.446	94.8	883.01
Nausea	31	329	5'361	6.14	7.06	4.87	10.11	0.837	88.0	211.11
Running nose (rhinorrhea)	25	113	2'513	4.50	7.30	4.57	11.46	0.676	71.3	115.97
Nasal congestion	20	239	4'87	4.88	9.32	4.7	17.65	2.089	94.7	166.83
Dizziness or confusion	18	97	2'054	9.20	13.6	6.92	24.97	1.376	84.8	85.04
Condition	Count	Mean±SD	Range							
---------------------------------	-------	----------	--------							
Hemoptysis	13	65±131	1-320							
Anorexia	10	205±337	1-1302							
Emesis or vomiting	6	38±136	1-832							
Chest pain	6	64±331	1-832							
Abdominal pain	7	38±136	1-740							
Imaging features										
Pathologic findings	93	6969±337	1-7870							
Pneumonia	93	6620±337	1-7917							
Ground glass opacity (GGO)	62	2466±337	1-5941							
Bilateral pneumonia	48	2745±337	1-4247							
Unilateral pneumonia	32	799±337	1-3745							
Consolidation	30	711±337	1-2022							
GGO with consolidation	15	153±337	1-323							
Local patchy shadowing	8	424±337	1-1661							
Bilateral patchy shadowing	12	577±337	1-1341							
Nodular lesions	13	70±337	1-1345							
Air bronchogram	10	264±337	1-523							
Pleural effusion	10	52±337	1-666							
Reticulation / interlobular septal thickening	7	163±337	1-244							
Interstitial abnormalities	5	19±337	1-1158							
Crazy paving pattern	5	59±337	1-210							
Treatments										
Antiviral treatment	57	4475±337	1-6068							
Antibiotics	47	2618±337	1-4825							
Corticosteroids	34	1715±337	1-5828							
All mechanical ventilation	32	807±337	1-5228							
Invasive mechanical ventilation	25	238±337	1-3506							
High flow nasal cannula	20	1298±337	1-2745							
Non-invasive mechanical ventilation	23	502±337	1-3838							
Intravenous immunoglobulin	20	781±337	1-3162							
Alpha interferon aerosol inhalation	15	367±337	1-745							
Lopinavir	19	510±337	1-1684							
Ritonavir	19	510±337	1-1684							
Oxygen therapy	20	1300±337	1-1872							
Extracorporeal membrane oxygenation	22	31±337	1-4651							
Oseltamivir	23	443±337	1-1359							
Renal replacement therapy	18	62±337	1-572							
Immune enhancing treatment	5	103±337	1-254							
Antifungal treatment	5	70±337	1-516							
Outcome										
Death	99	616±337	1-7727							

34
Complications	Survived	Discharged	Remained hospitalized	Recovery
Admissions to intensive care unit				
Acute respiratory distress syndrome				
Shock				
Acute kidney injury				
Acute cardiac injury				
All secondary infections				
Respiratory failure				
Pneumonia				
Secondary infections (bacteria)				
Heart failure				
Table 5: Results of meta-analyses for patients with severe and non-severe COVID-19 disease outcome as well as survivors and non-survivors.

Demographics	Number of Studies	Number of events/Number of severe	Number of events/Number of non-severe	RR [95% CI]	p-value	Tau²	I²	Cochranes Q	Egger’s test (p-value)
Sex: male	10	278/488	1059/1987	1.11 [1.01-1.22]	0.039	0.004	0%	7.67	0.769
Sex: female	10	220/488	925/1987	0.95 [0.82-1.10]	0.490	0.006	18.6%	11.05	0.395
Age	11	487	2059	SMD: 0.68 [0.40-0.97]	<0.001	0.154	81.8%	55.05	0.012

Comorbidities	Number of Studies	Number of events/Number of severe	Number of events/Number of non-severe	RR [95% CI]	p-value	Tau²	I²	Cochranes Q	Egger’s test (p-value)
Any comorbidity	4	167/307	291/1205	2.11 [1.02-4.35]	0.046	0.160	79.8%	14.86	0.122
Hypertension	8	158/429	292/1734	2.15 [1.64-2.81]	<0.001	0.018	35.8%	10.91	0.664
Diabetes mellitus	7	84/427	127/1720	2.56 [1.50-4.39]	0.005	0.038	49.7%	11.92	0.279
Any heart condition	7	64/427	58/1720	4.09 [2.45-6.84]	<0.001	0.032	22.7%	7.76	0.548
COPD	6	23/403	15/1594	5.10 [3.08-8.45]	<0.001	0	8%	1.59	0.034
Carcinoma	5	15/345	19/1512	3.13 [0.63-15.64]	0.120	0.696	42.9%	7.00	0.339

Symptoms and signs	Number of Studies	Number of events/Number of severe	Number of events/Number of non-severe	RR [95% CI]	p-value	Tau²	I²	Cochranes Q	Egger’s test (p-value)
Fever	8	399/462	1588/1847	1.02 [0.99-1.06]	0.187	<0.0001	41.3%	11.92	0.644
Fatigue	8	199/462	611/1847	1.21 [0.99-1.48]	0.059	0.004	46.0%	12.95	0.011
Myalgia	5	53/348	27/1451	1.01 [0.66-1.66]	0.929	<0.0001	20.7%	5.04	0.702
Headache	7	47/404	187/1765	1.14 [0.94-1.39]	0.246	<0.0001	0%	1.65	0.625
Cough	8	290/462	1053/1847	1.14 [1.02-1.27]	0.026	0.006	25.1%	8.25	0.633
Sputum	6	85/385	384/1549	1.05 [0.79-1.39]	0.460	<0.0001	14.8%	5.87	0.873
Dyspnea	6	91/207	56/587	4.67 [0.99-21.91]	0.050	1.156	76.2%	21.03	0.148
Sore throat / Pharyngalia	6	41/358	18/1549	1.40 [0.62-3.17]	0.337	0.218	59.9%	10.19	0.831
Diarhea	6	41/403	77/1594	1.76 [0.72-4.22]	0.364	0.296	53.7%	10.80	0.384

Treatment	Number of Studies	Number of events/Number of severe	Number of events/Number of non-severe	RR [95% CI]	p-value	Tau²	I²	Cochranes Q	Egger’s test (p-value)
Antibiotics	4	254/309	73/1420	1.63 [0.67-3.66]	0.377	0.285	93.5%	45.93	0.877
Antiviral treatment	6	249/347	888/1526	1.05 [0.90-1.22]	0.490	0.031	77.7%	22.45	0.604
Corticosteroids	5	200/345	416/1512	2.26 [1.32-3.87]	0.014	0.174	93.7%	63.66	0.211

Imaging features (CT)	Number of Studies	Number of events/Number of severe	Number of events/Number of non-severe	RR [95% CI]	p-value	Tau²	I²	Cochranes Q	Egger’s test (p-value)
Pathological findings	7	400/416	1372/1631	1.06 [0.96-1.18]	0.392	0.009	90.1%	60.32	0.085
Pneumonia	5	373/389	1290/1539	1.05 [0.94-1.18]	0.299	0.008	92.1%	50.58	0.176

Complications	Number of Studies	Number of events/Number of severe	Number of events/Number of non-severe	RR [95% CI]	p-value	Tau²	I²	Cochranes Q	Egger’s test (p-value)
Acute respiratory distress symptom (ARDS)	4	117/331	65/1457	10.59 [2.44-46.01]	0.014	0.606	84.1%	18.90	0.067
Acute kidney injury	4	16/331	8/1457	6.60 [0.37-116.33]	0.128	2.075	65.6%	8.56	0.909

Laboratory parameter	Number of studies	Number of severe	Number of non-severe	SMD [95% CI]	p-value	Tau²	I²	Cochranes Q	Egger’s test (p-value)

All rights reserved. No reuse allowed without permission. (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. The copyright holder for this preprint this version posted May 22, 2020. doi: medRxiv preprint
	Mean (SD)	Median	IQR	p-value	OR (95% CI)	95% CI	CR	p-value	OR (95% CI)	95% CI	CR	p-value
Albumin	3	131	511	-1.60 [-2.97 - (-0.24)]	0.022	1.385	96%	0.01	0.790			
Alanine aminotransferase (ALT)	6	184	695	0.27 [0.06-0.47]	0.011	0.014	22%	0.01	6.42	0.545		
Aspartate transaminase (AST)	6	184	695	0.85 [0.63-1.09]	<0.001	0.031	36%	0.01	7.88	0.942		
Creatinine	6	205	794	0.59 [0.12-1.07]	0.015	0.298	87%	0.01	39.30	0.62		
C-reactive protein (CRP)	6	227	774	1.47 [0.88-2.07]	<0.001	0.487	91%	0.01	9.01	0.26		
D-Dimer	4	343	361	0.55 [0.22-0.85]	0.001	0.066	59%	0.01	7.39	0.632		
Hemoglobin	6	342	1618	-0.23 [-0.41 - (-0.06)]	0.001	0.016	37%	0.01	7.96	0.927		
Lactate dehydrogenase (LDH)	4	93	279	1.71 [1.08-2.34]	<0.001	0.294	77.3%	0.01	13.20	0.599		
Leucocytes	7	412	1676	0.49 [-0.24-1.21]	0.187	0.905	97%	0.03	20.83	0.175		
Lymphocytes	8	415	1703	-0.59 [-0.88 - (-0.30)]	<0.001	0.118	79%	0.29	33.64	0.986		
Monocytes	3	59	239	-0.10 [-0.39-0.19]	0.519	0.00	0%	0.12	0.58	0.180		
Neutrophils	4	99	334	0.94 [0.27-1.61]	0.006	0.384	85.6%	0.01	20.8	0.409		
Potassium	4	304	1437	-0.21 [-0.40 - (-0.02)]	0.034	0.015	41%	0.31	5.1	0.902		
Procalcitonin	4	394	566	0.72 [0.06-1.38]	0.032	0.401	92%	0.01	37.55	0.848		
Sodium	4	304	1437	-0.26 [-0.67-0.15]	0.201	0.137	86.3%	0.47	21.97	0.533		
Thrombocytes	7	357	1621	-0.57 [-0.68-(-0.49)]	<0.001	0.00	0%	0.12	3.17	0.127		
Others												
Time since onset of symptoms to admission	5	236	789	SMD: 0.14 [-0.12-0.41]	0.291	0.056	64.8%	0.01	11.36	0.465		

Non-survivors (cases) vs Survivors (controls)

Demographics

	Mean (SD)	Median	IQR	p-value	OR (95% CI)	95% CI	CR	p-value	OR (95% CI)	95% CI	CR	p-value
Sex: male	7	236/340	326/617	1.32 [1.13-1.54]	0.005	0.002	21.8%	0.00	7.67	0.70		
Sex: female	7	104/340	291/617	0.65 [0.53-0.83]	0.005	0.00	1.6%	0.01	6.10	0.54		
Age	7	340	617	SMD: 1.25 [0.78-1.72]	<0.001	0.294	85.7%	0.00	41.97	0.012		

Comorbidities

	Mean (SD)	Median	IQR	p-value	OR (95% CI)	95% CI	CR	p-value	OR (95% CI)	95% CI	CR	p-value
Any comorbidity	6	207/308	234/597	1.69 [1.48-1.94]	<0.001	0.00	1%	0.01	2.91	0.115		
Hypertension	5	125/287	90/435	2.09 [1.65-2.64]	<0.001	<0.001	0%	0.01	2.08	0.545		
Diabetes mellitus	5	71/318	53/451	1.88 [1.26-2.81]	0.012	<0.001	0%	0.01	2.88	0.141		
Any heart condition	5	48/318	15/451	3.95 [1.03-15.20]	0.047	0.477	45.5%	0.00	7.35	0.666		
Cerebrovascular disease	3	12/155	0/198	36.88 [8.50-160.04]	0.009	0.00	0%	0.00	0.07	0.305		
Any lung disease	4	39/308	14/434	3.03 [0.61-15.04]	0.115	0.429	49.8%	0.00	5.97	0.811		
Carcinoma	5	12/318	8/451	2.26 [0.67-7.61]	0.136	0.00	0%	0.00	2.84	0.02		
Symptoms and signs

Symptom	Number of cases	Number of controls	SMD [95% CI]	p-value	Tau²	I²	Cochrane's Q	Egger's test (p-value)*
Fever	6	1288/319	407/455	1.00 [0.95-1.05]	0.974	0	0%	4.9 0.022
Fatigue	3	109/276	129/414	1.24 [1.14-1.36]	0.009	0	0%	0.61 0.091
Myalgia	5	35/210	66/339	0.67 [0.61-1.55]	0.895	0.026	0%	3.14 0.385
Headache	4	19/255	29/301	0.83 [0.64-1.09]	0.120	0	0%	0.26 0.900
Cough	6	196/319	196/455	1.37 [0.58-3.24]	0.385	0.605	92.3%	64.86 0.389
Sputum	4	8/277	93/418	1.43 [0.65-3.35]	0.245	0.182	62.4%	7.99 0.866
Dyspnea	4	278/264	196/455	1.37 [0.58-3.24]	0.385	0.605	92.3%	64.86 0.389
Diarrhea	3	48/277	72/418	0.96 [0.38-2.43]	0.860	0.077	27.6%	2.76 0.838

Treatment

Treatment	Number of cases	Number of controls	SMD [95% CI]	p-value	Tau²	I²	Cochrane's Q	Egger's test (p-value)*
Antibiotics	5	280/309	395/438	1.03 [0.99-1.07]	0.114	0	0%	2.09 0.293
Antiviral treatment	5	222/329	446/596	0.94 [0.79-1.13]	0.426	0.006	67.7%	12.38 0.260
Corticosteroids	4	229/308	227/434	1.29 [0.66-2.54]	0.321	0.136	80.6%	15.44 0.873
Immunoglobulin	4	143/308	122/434	1.88 [0.36-9.68]	0.390	0.979	92.5%	15.44 0.873
Oxygen nasal (high flow)	4	154/308	139/434	2.16 [0.09-5.08]	0.493	3.843	98.1%	158.98 0.03
All mechanical ventilation	5	298/319	115/455	6.05 [1.41-26.05]	0.026	1.126	84.5%	25.75 0.686
Non-invasive mech. ventilation	5	181/309	45/438	5.33 [1.52-18.71]	0.021	0.565	66.7%	12.02 0.765
Invasive mech. ventilation	5	89/309	5/438	14.34 [138-145.09]	0.034	2.800	59.7%	9.92 0.181
Renal replacement therapy	4	22/200	1/322	10.36 [0.98-110.07]	0.051	0.194	0%	1.92 0.057
Extracorporeal membrane oxygenation (ECMO)	5	12/309	2/438	4.39 [1.64-1.78]	0.014	0	0%	1.35 0.033

Imaging features (CT)

Imaging features (CT)	Number of cases	Number of controls	SMD [95% CI]	p-value	Tau²	I²	Cochrane's Q	Egger's test (p-value)*
Pathological findings	6	362/577	325/335	0.97 [0.87-1.09]	0.688	0.006	75.9%	20.71 0.675
Pneumonia	3	159/168	25/302	1.07 [0.97-1.17]	0.089	<0.001	0%	1.34 0.680
Complications	6	298/319	115/455	4.24 [1.30-13.83]	0.026	1.115	92.8%	69.92 0.197
Acute respiratory distress symptom (ARDS)	4	98/277	0/418	24.79 [23.70-24.87.07]	0.005	0	0%	0.64 0.300
Shock	4	178/308	23/434	13.21 [0.70-24.83]	0.068	2.783	81.8%	16.48 0.435
Acute kidney injury	5	88/309	5/435	20.77 [2.43-177.444]	0.017	2.301	67.7%	12.37 0.229

Laboratory parameter

Laboratory parameter	Number of Studies	Number of cases	Number of controls	SMD [95% CI]	p-value	Tau²	I²	Cochrane's Q	Egger's test (p-value)*																								
Albumin	2	110	120	-1.14 [-1.42 - (-0.85)]	<0.001	0	0%	0.136 n.a.																									
Alanine aminotransferase (ALT)	3	223	281	0.05 [0.08-0.82]	0.016	0.056	62.7%	6.37 0.984																									
Test	Mean 1	Mean 2	Mean 3	CI	SMD	P value	Median 1	Median 2	Median 3	CI	SMD	P value	Median 1	Median 2	Median 3	CI	SMD	P value	Median 1	Median 2	Median 3	CI	SMD	P value	Median 1	Median 2	Median 3						
-------------------------------------	--------	--------	--------	-------------------	--------	---------	----------	----------	----------	----------------	--------	---------	----------	----------	----------	----------------	--------	---------	----------	----------	----------	----------------	--------	---------	----------	----------	----------	----------------	--------	---------	----------	----------	----------
Aspartate transaminase (AST)				0.17 [-0.07 - 0.43]	-0.168	0.176																											
Creatinine	2	114	165	2.24 [-0.56 - 5.03]	0.317	0.179	7.719	98.8%	244.97	0.400																							
C-reactive protein (CRP)	2	114	165	0.12 [-0.24 - 0.14]	1.0	0.975	0	0%	0																								
D-Dimer	4	200	322	2.34 [-0.37 - 3.25]	0.077	2.370	96.8%	94.99	0.672																								
Hemoglobin				-0.08 [-0.32 - 0.16]	0.904	9.080	99.8%	6.61	0.610																								
Lactate dehydrogenase (LDH)	2	110	120	1.61 [1.31 - 1.91]		<0.001	0	0%	0																								
Leucocytes	4	277	418	2.21 [0.61 - 3.64]	0.006	1.989	97.9%	144.57	0.421																								
Lymphocytes	4	255	301	-0.92 [-1.3 - (-0.55)]	<0.001	0.079	64.6%	8.47	n.a.																								
Neutrophils	2	55	143	3.6 [3.12 - 4.08]	<0.001	0	0	0%	0.27																								
Potassium	2	55	143	0.41 [0.1 - 0.77]	0.060	0.979	99.9%	8.47	n.a.																								
Thrombocytes	4	396	277	0.9 [-1.09 - 3.88]	0.956	8.916	99%	309.32	0.487																								
Partial thromboplastin time (PTT)	5	206	294	7.99 [4.64 - 11.34]	<0.001	13.245	98.9%	370.17	0.194																								
Activated partial thromboplastin time (APTT)	3	65	158	21.73 [4.34 - 39.13]	0.014	231.933	99.5%	363.82	0.386																								
Interleukin 6 (IL-6)	2	110	120	1.21 [0.93 - 1.5]	<0.001	0	0	0%	0.44																								

Others

| Time since onset of symptoms to admission | 3 | 195 | 273 | 0.47 [-0.09 - 1.02] | 0.098 | 0.201 | 85.8% | 14.05 | 0.797 | | | | | | | | | | | | | | | | | | |

*Egger’s test cannot be performed with less than three studies. Abbreviation: SMD: Standardize mean difference (negative number indicate lower values in cases, positive number indicate higher number in cases)
4.6. Figure legends

Figure 1. Flow-chart of the search strategy.
A total of 148 studies were eligible for the literature review and the first part of the meta-analysis (i.e., prevalence). Nine-teen studies were included in the second part of the meta-analysis (i.e., severity and mortality).

Figure 2. Proportion of female and male patients in adult (A) and pediatric/neonatal cohort (B).
All case studies/reports were pooled together for visualization (CS_adult, and CS_children [pediatric/neonatal]). The key to the study identifier can be found in Tables 1 (adults) and Table 3 (children).

Figure 3. Age of adult (A), pregnant (B), and pediatric/neonatal (C) COVID-19 patients included in eligible studies.
Median age and interquartile ranges (IQR) are represented by the midpoints and error bars, respectively. The studies have been sorted by patients’ median age in years. The size of the midpoint (circle, square, triangle) indicates the study sample size. The red line indicates the pooled median age of the respective cohort. All adult case studies/reports (CS_adult) were pooled for the visualization reasons. The key to the study identifier can be found in Table 1 (adults), Table 2 (pregnant women), and Table 3 (children).

Figure 4. Comorbidities (A), Clinical signs and symptoms (B), outcomes (C), and treatments administered (D) to adult COVID-19 patients.
The colors indicated the proportion of patients (%: 0 = yellow, 100 = dark purple). Note: Missing values are colored in white.

Figure 5. Age of non-severe (A), severe (B), survivor (C), and non-survivor (D) COVID-19 patients included in eligible studies.
The median age and interquartile ranges (IQR) are represented by the midpoints and error bars, respectively. The studies have been sorted by patients’ median age in years. The size of the midpoint indicates the study sample size. The red line indicates the pooled median age of the respective cohort. The key to the study identifier can be found in Table 1.

Figure 6. Relative risks of comorbidities (i.e., hypertension, diabetes mellitus, and COPD) and complications (i.e., ARDS) in patients with a severe COVID-19 disease progression.
Funnel plots indicate the potential of publication bias. The key to the study identifier can be found in Table 1.

Figure 7. Relative risks of comorbidity (i.e., any heart condition), treatment (i.e., mechanical ventilation), and complications (i.e., acute kidney injury and ARDS) in survivors and non-survivors. Funnel plots indicate the potential of publication bias. The key to the study identifier can be found in Table 1.
References

1. Tuite AR, Bogoch II, Sherbo R, Watts A, Fisman D, Khan K. Estimation of Coronavirus Disease 2019 (COVID-19) Burden and Potential for International Dissemination of Infection From Iran. *Ann Intern Med.* 2020. doi:10.7326/m20-0696

2. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. *Lancet.* 2020. doi:10.1016/S0140-6736(20)30185-9

3. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. *Lancet.* 2020. doi:10.1016/S0140-6736(20)30251-8

4. Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. *Lancet.* 2020. doi:10.1016/S0140-6736(20)30154-9

5. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. *N Engl J Med.* 2020. doi:10.1056/NEJMoa2001316

6. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. *Nat Med.* 2020. doi:10.1038/s41591-020-0869-5

7. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19). *J Gen Intern Med.* 2020. doi:10.1007/s11606-020-05762-w

8. Xu JW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: Retrospective case series. *BMJ.* 2020. doi:10.1136/bmj.m606

9. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *Lancet Respir Med.* 2020. doi:10.1016/S2213-2600(20)30079-5

10. Litjos J-F, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. *J Thromb Haemost.* 2020. doi:10.1111/jth.14869

11. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. *Lancet.* 2020;395(10226):809-815. doi:10.1016/S0140-6736(20)30360-3

12. Xu. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series (vol 368, m606, 2020). *BMJ-British Med J.* 2020;368:m792

13. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. *PLoS Med.* 2009;6(7). doi:10.1371/journal.pmed.1000100

14. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: A proposal for reporting. *J Am Med Assoc.* 2000. doi:10.1001/jama.283.15.2008

15. Viera AJ, Garrett JM. Understanding interobserver agreement: The kappa statistic. *Fam Med.* 2005.

16. Mathes T, Pieper D. Clarifying the distinction between case series and cohort studies in systematic reviews of comparative studies: Potential impact on body of evidence and workload. *BMC Med Res Methodol.* 2017. doi:10.1186/s12874-017-0391-8
17. McGrath S, Zhao XF, Qin ZZ, Steele R, Benedetti A. One-sample aggregate data meta-analysis of medians. Stat Med. 2019. doi:10.1002/sim.8013
18. Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: A practical tutorial. Evid Based Ment Health. 2019. doi:10.1136/ebmental-2019-300117
19. Bollegala D, Matsuo Y, Ishizuka M. Measuring semantic similarity between words using web search engines. In: 16th International World Wide Web Conference, WWW2007.; 2007. doi:10.1145/1242572.1242675
20. Hedges LV, Pigott TD. The power of statistical tests for moderators in meta-analysis. Psychol Methods. 2004. doi:10.1037/1082-989X.9.4.426
21. Cochran WG. The Combination of Estimates from Different Experiments. Biometrics. 1954. doi:10.2307/3001666
22. Xu X, Yu C, Qu J, et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging. 2020. doi:10.1007/s00259-020-04735-9
23. Ye G, Pan Z, Pan Y, et al. Clinical characteristics of severe acute respiratory syndrome coronavirus 2 reactivation. J Infect. 2020. doi:10.1016/j.jinf.2020.03.001
24. Le HT, Nguyen LV, Tran DM, et al. The first infant case of COVID-19 acquired from a secondary transmission in Vietnam. Lancet Child Adolesc Heal. 2020. doi:10.1016/S2352-4642(20)30091-2
25. Guan Q, Liu M, Zhuang YJ, et al. Epidemiological investigation of a family clustering of COVID-19. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41:629-633. doi:10.3760/cma.j.cn112338-20200223-00152
26. Wang L, Gao YH, Lou LL, Zhang GJ. The clinical dynamics of 18 cases of COVID-19 outside of Wuhan, China. Eur Respir J. 2020. doi:10.1183/13993003.00398-2020
27. Zhang MQ, Wang XH, Chen YL, et al. [Clinical features of 2019 novel coronavirus pneumonia in the early stage from a fever clinic in Beijing]. Zhonghua Bing Li Xue Za Zhi. 2020;43(3):215-218. doi:10.3760/cma.j.issn.1001-0939.2020.03.015
28. Ding D, Zhu C, Yao W. A cured patient with 2019-nCoV pneumonia. Am J Med. 2020. doi:10.1016/j.amjmed.2020.02.023
29. Chen S, Huang B, Luo DJ, et al. [Pregnant women with new coronavirus infection: a clinical characteristics and placental pathological analysis of three cases]. Zhonghua Bing Li Xue Za Zhi. 2020;49(0):E005. doi:10.3760/cma.j.issn.1001-0939.2020.03.013
30. Hao W. Clinical Features of Atypical 2019 Novel Coronavirus Pneumonia with an initially Negative RT-PCR Assay. J Infect. 2020. doi:10.1016/j.jinf.2020.02.008
31. Spiteri G, Fielding J, Diercke M, et al. First cases of coronavirus disease 2019 (COVID-19) in the WHO European Region, 24 January to 21 February 2020. Euro Surveill. 2020;25(9). doi:10.2807/1560-7917.es.2020.25.9.2000178
32. Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology. 2020;200642. doi:10.1148/radiol.2020200642
33. Cui Y, Tian M, Huang D, et al. A 55-Day-Old Female Infant infected with COVID-19: presenting with pneumonia, liver injury, and heart damage. J Infect Dis. 2020. doi:10.1093/infdis/jiaa113
34. Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy Eur J Allergy Clin Immunol. 2020. doi:10.1111/ajc.15238
35. Xu Y, Li XF, Zhu B, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med :9. doi:10.1038/s41591-020-0817-4

36. Peng YD, Meng K, Guan HQ, et al. Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48:E004. doi:10.3760/cma.j.cn112148-20200220-00105

37. Lu X, Zhang L, Du H, et al. SARS-CoV-2 Infection in Children. N Engl J Med. 2020. doi:10.1056/NEJMc2005073

38. Tong ZD, Tang A, Li KF, et al. Potential Presymptomatic Transmission of SARS-CoV-2, Zhejiang Province, China, 2020. Emerg Infect Dis. 2020;26(5). doi:10.3201/eid2605.200198

39. Chen J, Qi T, Liu L, et al. Clinical progression of patients with COVID-19 in Shanghai, China. J Infect. 2020. doi:10.1016/j.jinf.2020.03.004

40. Lin X, Gong Z, Xiao Z, Xiong J, Fan B, Liu J. Novel coronavirus pneumonia outbreak in 2019: Computed tomographic findings in two cases. Korean J Radiol. 2020;21(3):365-368. doi:10.3348/kjr.2020.0078

41. Xu T, Chen C, Zhu Z, et al. Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19. Int J Infect Dis. 2020. doi:10.1016/j.ijid.2020.03.022

42. Yao N, Wang SN, Lian JQ, et al. Clinical characteristics and influencing factors of patients with novel coronavirus pneumonia combined with liver injury in Shaanxi region. Zhonghua Gan Zang Bing Za Zhi. 2020;28:E003. doi:10.3760/cma.j.cn501113-20200226-00070

43. Tang A, Tong ZD, Wang HL, et al. Detection of Novel Coronavirus by RT-PCR in Stool Specimen from Asymptomatic Child, China. Emerg Infect Dis. 2020;26(6). doi:10.3201/eid2606.200301

44. Shi S, Qin M, Shen B, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020. doi:10.1001/jamacardio.2020.0950

45. Wang Y, Liu Y, Liu L, Wang X, Luo N, Ling L. Clinical Outcomes in 55 Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Who Were Asymptomatic at Hospital Admission in Shenzhen, China. J Infect Dis. 2020. doi:10.1093/infdis/jiaa226

46. Dong L, Tian J, He S, et al. Possible Vertical Transmission of SARS-CoV-2 From an Infected Mother to Her Newborn. JAMA. 2020. doi:10.1001/jama.2020.4621

47. Leung C. Clinical features of deaths in the novel coronavirus epidemic in China. Rev Med Virol. 2020. doi:10.1002/rmv.2103

48. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020. doi:10.1016/S0140-6736(20)30566-3

49. Fan C, Lei D, Fang C, et al. Perinatal Transmission of COVID-19 Associated SARS-CoV-2: Should We Worry? Clin Infect Dis. 2020. doi:10.1093/cid/ciaa226

50. Xiong Y, Sun D, Liu Y, et al. Clinical and High-Resolution CT Features of the COVID-19 Infection: Comparison of the Initial and Follow-up Changes. Invest Radiol. 2020. doi:10.1097/RLI.0000000000000674

51. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020. doi:10.1016/S1473-3099(20)30086-4

52. He XW, Lai JS, Cheng J, et al. Impact of complicated myocardial injury on the clinical outcome of severe or critically ill COVID-19 patients. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48:E011. doi:10.3760/cma.j.cn112148-
53. Wei M, Yuan J, Liu Y, Fu T, Yu X, Zhang ZJ. Novel Coronavirus Infection in Hospitalized Infants under 1 Year of Age in China. JAMA - J Am Med Assoc. 2020. doi:10.1001/jama.2020.2131
54. Lee NY, Li CW, Tsai HP, et al. A case of COVID-19 and pneumonia returning from Macau in Taiwan: Clinical course and anti-SARS-CoV-2 IgG dynamic. J Microbiol Immunol Infect. 2020. doi:10.1016/j.jmii.2020.03.003
55. Yuan M, Yin W, Tao Z, Tan W, Hu Y. Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China. PLoS One. 2020;15(3):e0230548. doi:10.1371/journal.pone.0230548
56. Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends. 2020;14(1):64-68. doi:10.5582/bst.2020.01030
57. Hosoda T, Sakamoto M, Shimizu H, Okabe N. SARS-CoV-2 enterocolitis with persisting to excrete the virus for about two weeks after recovering from diarrhea: A case report. Infect Control Hosp Epidemiol. 2020;1-4. doi:10.1017/ice.2020.87
58. Zhu Y, Liu YL, Li ZP, et al. Clinical and CT imaging features of 2019 novel coronavirus disease (COVID-19). J Infect. 2020. doi:10.1016/j.jinf.2020.02.022
59. Arentz M, Yim E, Klaff L, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington. JAMA. 2020. doi:10.1001/jama.2020.4326
60. Song Y, Liu P, Shi XL, et al. SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut. 2020. doi:10.1136/gutjnl-2020-320891
61. Qu R, Ling Y, Zhang YH, et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with Coronavirus Disease-19. J Med Virol. 2020. doi:10.1002/jmv.25767
62. Cheng Z, Lu Y, Cao Q, et al. Clinical Features and Chest CT Manifestations of Coronavirus Disease 2019 (COVID-19) in a Single-Center Study in Shanghai, China. AJR Am J Roentgenol. 2020;1-6. doi:10.2214/AJR.20.22959
63. Jin X, Lian JS, Hu JH, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020. doi:10.1136/gutjnl-2020-320926
64. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020. doi:10.1016/S2213-2600(20)30076-X
65. Cai JH, Wang XS, Ge YL, et al. First case of 2019 novel coronavirus infection in children in Shanghai. Zhonghua er ke za zhi = Chinese J Pediatr. 2020;58:E002. doi:10.3760/cma.j.issn.0578-1310.2020.020.0002
66. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5
67. Chen C, Chen C, Yan JT, Zhou N, Zhao JP, Wang DW. [Analysis of myocardial injury in patients with COVID-19 and association concomitant cardiovascular diseases and severity of COVID-19]. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48(8):E008. doi:10.3760/cma.j.cn112148-20200225-00123
68. Deng Y, Liu W, Liu K, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study. Chin Med J. 2020. doi:10.1097/cm9.000000000000824
69. COVID-19 National Emergency Response Center E and CMT, Korea Centers for Disease Control and Prevention Korea C. Early Epidemiological and Clinical Characteristics of 28 Cases of Coronavirus Disease in South Korea.
70. Wan S, Xiang Y, Fang W, et al. Clinical Features and Treatment of COVID-19 Patients in Northeast Chongqing. J Med Virol. 2020. doi:10.1002/jmv.25783

71. Zhang X, Song W, Liu X, Lyu L. CT image of novel coronavirus pneumonia: a case report. Jpn J Radiol. 2020. doi:10.1007/s11604-020-00945-1

72. Ding Q, Lu P, Fan Y, Xia Y, Liu M. The clinical characteristics of pneumonia patients co-infected with 2019 novel coronavirus and influenza virus in Wuhan, China. J Med Virol. 2020. doi:10.1002/jmv.25781

73. Xu YH, Dong JH, An WM, et al. Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. J Infect. 2020. doi:10.1016/j.jinf.2020.02.017

74. Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364-374. doi:10.1007/s11427-020-1643-8

75. Chen R, Chen J, Meng QT. Chest computed tomography images of early coronavirus disease (COVID-19). Can J Anesth. 2020. doi:10.1007/s12630-020-01625-4

76. Huang Y, Tu M, Wang S, et al. Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single center analysis. Travel Med Infect Dis. 2020. doi:10.1016/j.tmaid.2020.101606

77. Lian J, Jin X, Hao S, et al. Analysis of Epidemiological and Clinical features in older patients with Corona Virus Disease 2019 (COVID-19) out of Wuhan. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa242

78. Zhao D, Yao F, Wang L, et al. A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa247

79. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA. 2020. doi:10.1001/jama.2020.3204

80. Qian G, Yang N, Ma AHY, et al. A COVID-19 Transmission within a family cluster by presymptomatic infectors in China. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa316

81. Liu W, Tao ZW, Lei W, et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J (Engl). 2020. doi:10.977/CM9.0000000000000775

82. Xie C, Jiang L, Huang G, et al. Comparison of different samples for 2019 novel coronavirus detection by nucleic acid amplification tests. Int J Infect Dis. 2020;93:264-267. doi:10.1016/j.ijid.2020.02.050

83. Wang J, Wang D, Chen GC, Tao XW, Zeng LK. [SARS-CoV-2 infection with gastrointestinal symptoms as the first manifestation in a neonate]. Zhongguo Dang Dai Er Ke Za Zhi. 2020;22(3):211-214.

84. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer. J Thorac Oncol. 2020. doi:10.1016/j.jtho.2020.02.010

85. Wu T, Kang SC, Feng W, et al. Biological characters analysis of COVID-19 patient accompanied with aplastic anemia. Zhonghua Xue Ye Xue Za Zhi. 2020;41:E003. doi:10.3760/cma.j.issn.0253-2727.2020.0003

86. Liu W, Zhang Q, Chen J, et al. Detection of Covid-19 in Children in Early January 2020 in Wuhan, China. N Engl J Med. 2020. doi:10.1056/NEJMc2003717

87. Feng K, Yun YX, Wang XF, et al. Analysis of CT features of 15 Children with 2019 novel coronavirus infection.
88. Fang Z, Zhang Y, Hang C, Zhang W, Ai J, Li S. Comparisons of nucleic acid conversion time of SARS-CoV-2 of different samples in ICU and non-ICU patients. *J Infect*. 2020. doi:10.1016/j.jinf.2020.03.013

89. Sun Q, Xu X, Xie J, Li J, Huang X. Evolution of Computed Tomography Manifestations in Five Patients Who Recovered from Coronavirus Disease 2019 (COVID-19) Pneumonia. *Korean J Radiol*. 2020. doi:10.3348/kjr.2020.0157

90. Liu M, He P, Liu HG, et al. [Clinical characteristics of 30 medical workers infected with new coronavirus pneumonia]. *Zhonghua Jie He He Hu Xi Za Zhi*. 2020;43(3):209-214. doi:10.3760/cma.j.issn.1001-0939.2020.03.014

91. Silverstein WK, Stroud L, Cleghom GE, Leis JA. First imported case of 2019 novel coronavirus in Canada, presenting as mild pneumonia. *Lancet*. 2020;395(10225):734. doi:10.1016/S0140-6736(20)30370-6

92. Dong Y, Mo X, Hu Y, et al. Epidemiological Characteristics of 2143 Pediatric Patients With 2019 Coronavirus Disease in China. *Pediatrics*. 2020. doi:10.1542/peds.2020-0702

93. Fang X, Zhao M, Li S, Yang L, Wu B. Changes of CT Findings in a 2019 Novel Coronavirus (2019-nCoV) pneumonia patient. *QJM*. 2020. doi:10.1093/qjmed/hca098

94. An P, Song P, Lian K, Wang Y. CT Manifestations of Novel Coronavirus Pneumonia: A Case Report. *Balkan Med J*. 2020. doi:10.4274/balkanmedj.galenos.2020.2020.2.15

95. Chen L, Liu HG, Liu W, et al. [Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia]. *Zhonghua Jie He He Hu Xi Za Zhi*. 2020;43(3):203-208. doi:10.3760/cma.j.issn.1001-0939.2020.03.013

96. Li XQ, Cai WF, Huang LF, et al. Comparison of epidemic characteristics between SARS in 2003 and COVID-19 in 2020 in Guangzhou. *Zhonghua Liu Xing Bing Xue Za Zhi*. 2020;41(5):634-637. doi:10.3760/cma.j.cn112338-20200228-00209

97. Zeng LK, Tao XW, Yuan WH, Wang J, Liu X, Liu ZS. First case of neonate infected with novel coronavirus pneumonia in China. *Zhonghua er ke za zhi = Chinese J Pediatr*. 2020;58:E009. doi:10.3760/cma.j.issn.0578-1310.2020.02.0009

98. Mo P, Xing Y, Xiao Y, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. *Clin Infect Dis*. 2020. doi:10.1093/cid/ciaa270

99. Li YX, Wu W, Yang T, et al. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19. *Zhonghua nei ke za zhi*. 2020;59:E003. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L631125257.

100. Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. *Clin Infect Dis*. 2020. doi:10.1093/cid/ciaa272

101. Chen F, Liu ZS, Zhang FR, et al. First case of severe childhood novel coronavirus pneumonia in China. *Zhonghua er ke za zhi = Chinese J Pediatr*. 2020;58(3):179-182. doi:10.3760/cma.j.issn.0578-1310.2020.03.003

102. Hu X, Chen J, Jiang X, et al. CT imaging of two cases of one family cluster 2019 novel coronavirus (2019-nCoV) pneumonia: inconsistency between clinical symptoms amelioration and imaging sign progression. *Quant Imaging Med Surg*. 2020;10(2):508-510. doi:10.21037/qims.2020.02.10

103. Shi H, Han X, Zheng C. Evolution of CT Manifestations in a Patient Recovered from 2019 Novel Coronavirus (2019-nCoV) Pneumonia in Wuhan, China. *Radiology*. 2020;295(1):20. doi:10.1148/radiol.2020200269
104. Han W, Quan B, Guo Y, et al. The course of clinical diagnosis and treatment of a case infected with coronavirus disease 2019. *J Med Virol*. 2020;92(5):461-463. doi:10.1002/jmv.25711

105. Dai WC, Zhang HW, Yu J, et al. CT Imaging and Differential Diagnosis of COVID-19. *Can Assoc Radiol J*. 2020;84:638-642. doi:10.1177/0846537120913033

106. Dong XC, Li JM, Bai JY, et al. Epidemiological characteristics of confirmed COVID-19 cases in Tianjin. *Zhonghua Liu Xing Bing Xue Za Zhi*. 2020;41(5):638-642. doi:10.3760/cma.j.cn112338-20200221-00046

107. Wang D, Ju XL, Xie F, et al. Clinical analysis of 31 cases of 2019 novel coronavirus infection in children from six provinces (autonomous region) of northern China. *Zhonghua er ke za zhi = Chinese J Pediatr*. 2020;58(4):E011. doi:10.3760/cma.j.cn112140-20200225-00138

108. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. *J Thromb Haemost*. 2020. doi:10.1111/jth.14768

109. Huang P, Liu T, Huang L, et al. Use of Chest CT in Combination with Negative RT-PCR Assay for the 2019 Novel Coronavirus but High Clinical Suspicion. *Radiology*. 2020;295(1):22-23. doi:10.1148/radiol.2020200330

110. Zhu ZW, Tang JJ, Chai XP, et al. Comparison of heart failure and 2019 novel coronavirus pneumonia in chest CT features and clinical characteristics. *Zhonghua Xin Xue Guan Bing Za Zhi*. 2020;48:E007. doi:10.3760/cma.j.cn112148-20200218-00093

111. Li YY, Wang WN, Lei Y, et al. [Comparison of the clinical characteristics between RNA positive and negative patients clinically diagnosed with 2019 novel coronavirus pneumonia]. *Zhonghua Jie He He Hu Xi Za Zhi*. 2020;43(0):E023. doi:10.3760/cma.j.cn112147-20200214-00095

112. Gross A, Thiemig D, Koch FW, Schwarz M, Glaser S, Albrecht T. CT appearance of severe, laboratory-proven coronavirus disease 2019 (COVID-19) in a Caucasian patient in Berlin, Germany. *Rofo*. 2020. doi:10.1055/a-1138-8783

113. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. *N Engl J Med*. 2020;382(10):929-936. doi:10.1056/NEJMoA2001191

114. Li K, Fang Y, Li W, et al. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). *Eur Radiol*. 2020. doi:10.1007/s00330-020-06817-6

115. Fang Y, Zhang H, Xu Y, Xie J, Pang P, Ji W. CT Manifestations of Two Cases of 2019 Novel Coronavirus (2019-nCoV) Pneumonia. *Radiology*. 2020;295(1):208-209. doi:10.1148/radiol.2020200280

116. Sun D, Li H, Lu XX, et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center's observational study. *World J Pediatr*. 2020. doi:10.1007/s12519-020-00354-4

117. Zhang S, Li H, Huang S, You W, Sun H. High-resolution CT features of 17 cases of Corona Virus Disease 2019 in Sichuan province, China. *Eur Respir J*. 2020. doi:10.1183/13993003.00334-2020

118. Hill DKJ, Russell DCD, Clifford DS, et al. The index case of SARS-CoV-2 in Scotland: a case report. *J Infect*. 2020. doi:10.1016/j.jinf.2020.03.022

119. Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. *Sci China Life Sci*. 2020. doi:10.1007/s11427-020-1661-4

120. Guan CS, Lv ZB, Yan S, et al. Imaging Features of Coronavirus disease 2019 (COVID-19): Evaluation on Thin-Section CT. *Acad Radiol*. 2020. doi:10.1016/j.acra.2020.03.002
121. Zhou Y, Yang GD, Feng K, et al. [Clinical features and chest CT findings of coronavirus disease 2019 in infants and young children]. Zhongguo Dang Dai Er Ke Za Zhi. 2020;22(3):215-220.

122. Liao X, Yang H, Kong J, Yang H. Chest CT Findings in a Pregnant Patient with 2019 Novel Coronavirus Disease. Balk Med J. 2020. doi:10.4274/balkanmedj.galenos.2020.2020.3.89

123. Wang X, Zhou Z, Zhang J, Zhu F, Tang Y, Shen X. A case of 2019 Novel Coronavirus in a pregnant woman with preterm delivery. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa200

124. Wen R, Sun Y, Xing QS. A patient with SARS-CoV-2 infection during pregnancy in Qingdao, China. J Microbiol Immunol Infect. 2020. doi:10.1016/j.jmii.2020.03.004

125. Wu J, Liu J, Zhao X, et al. Clinical Characteristics of Imported Cases of COVID-19 in Jiangsu Province: A Multicenter Descriptive Study. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa199

126. Yang W, Cao Q, Qin L, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. J Infect. 2020. doi:10.1016/j.jinf.2020.02.016

127. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020:105949. doi:10.1016/j.ijantimicag.2020.105949

128. Bai SL, Wang JY, Zhou YQ, et al. Analysis of the first cluster of cases in a family of novel coronavirus pneumonia in Gansu Province. Zhonghua Yu Fang Yi Xue Za Zhi. 2020;54:E005. doi:10.3760/cma.j.issn.0253-9624.2020.0005

129. Zheng F, Liao C, Fan QH, et al. Clinical Characteristics of Children with Coronavirus Disease 2019 in Hubei, China. Curr Med Sci. 2020. doi:10.1007/s11596-020-2172-6

130. Ruan ZR, Gong P, Han W, Huang MQ, Han M. A case of 2019 novel coronavirus infected pneumonia with twice negative 2019-nCoV nucleic acid testing within 8 days. Chin Med J (Engl). 2020. doi:10.1097/CM9.000000000000788

131. Chang, Lin M, Wei L, et al. Epidemiologic and Clinical Characteristics of Novel Coronavirus Infections Involving 13 Patients Outside Wuhan, China. JAMA. 2020. doi:10.1001/jama.2020.1623

132. Pan Y, Guan H, Zhou S, et al. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur Radiol. 2020. doi:10.1007/s00330-020-06731-x

133. Lui K, Fang YY, Deng Y, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020. doi:10.1097/CM9.000000000000744

134. Sun Y, Koh V, Marimuthu K, et al. Epidemiological and Clinical Predictors of COVID-19. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa322

135. Ji LN, Chao S, Wang YJ, et al. Clinical features of pediatric patients with COVID-19: a report of two family cluster cases. World J Pediatr. 2020. doi:10.1007/s12519-020-00356-2

136. Xia H, Zhao S, Wu Z, Luo H, Zhou C, Chen X. Emergency Caesarean delivery in a patient with confirmed coronavirus disease 2019 under spinal anaesthesia. Br J Anaesth. 2020. doi:10.1016/j.bja.2020.02.016

137. Han R, Huang L, Jiang H, Dong J, Peng H, Zhang D. Early Clinical and CT Manifestations of Coronavirus Disease 2019 (COVID-19) Pneumonia. AJR Am J Roentgenol. 2020;1-6. doi:10.2214/AJR.20.22961
138. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020. doi:10.1056/NEJMoa2002032

139. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - J Am Med Assoc. 2020;323(11):1061-1069. doi:10.1001/jama.2020.1585

140. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513. doi:10.1016/S0140-6736(20)30211-7

141. Yoon SH, Lee KH, Kim JY, et al. Chest Radiographic and CT Findings of the 2019 Novel Coronavirus Disease (COVID-19): Analysis of Nine Patients Treated in Korea. Korean J Radiol. 2020;21(4):494-500. doi:10.3348/kjr.2020.0132

142. Guan W, Liu J, Yu C. CT Findings of Coronavirus Disease (COVID-19) Severe Pneumonia. AJR Am J Roentgenol. 2020:W1-w2. doi:10.2214/ajr.20.23035

143. Yao Y, Tian Y, Zhou J, Ma X, Yang M, Wang S. Epidemiological characteristics of 2019-nCoV infections in Shaanxi, China by February 8, 2020. Eur Respir J. 2020. doi:10.1183/13993003.00310-2020

144. Duan YN, Qin J. Pre- and Posttreatment Chest CT Findings: 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology. 2020;295(1):21. doi:10.1148/radiol.2020200323

145. Zhang YH, Lin DJ, Xiao MF, et al. 2019-novel coronavirus infection in a three-month-old baby. Zhonghua er ke zhi = Chinese J Pediatr. 2020;58:E006. doi:10.3760/cma.j.issn.0578-1310.2020.0006

146. Liu K, Chen Y, Lin R, Han K. Clinical feature of COVID-19 in elderly patients: a comparison with young and middle-aged patients. J Infect. 2020. doi:10.1016/j.jinf.2020.03.005

147. Tian S, Hu N, Lou J, et al. Characteristics of COVID-19 infection in Beijing. J Infect. 2020. doi:10.1016/j.jinf.2020.02.018

148. Cheng JL, Huang C, Zhang GJ, et al. [Epidemiological characteristics of novel coronavirus pneumonia in Henan]. Zhonghua jie he he hu xi zhi = Chinese J Dispos. 2020;43(0):E027. doi:10.3760/cma.j.cn112147-20200222-00148

149. Yu P, Zhu J, Zhang Z, Han Y, Huang L. A familial cluster of infection associated with the 2019 novel coronavirus indicating potential person-to-person transmission during the incubation period. J Infect Dis. 2020. doi:10.1093/infdis/jiaa077

150. Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatr Pulmonol. 2020. doi:10.1002/ppul.24718

151. Wang S, Guo L, Chen L, et al. A case report of neonatal COVID-19 infection in China. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa225

152. Liu Q, Wang RS, Qu GQ, et al. Gross examination report of a COVID-19 death autopsy. Fa Yi Xue Za Zhi. 2020;36(1):21-23. doi:10.12116/j.issn.1004-5619.2020.01.005

153. Van Cuong L, Giang HTN, LinhLK, et al. The first Vietnamese case of COVID-19 acquired from China. Lancet Infect Dis. 2020. doi:10.1016/S1473-3099(20)30111-0
155. Zhang X, Cai H, Hu J, et al. Epidemiological, clinical characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings. *Int J Infect Dis*. 2020. doi:10.1016/j.ijid.2020.03.040

156. Qian GQ, Yang NB, Ding F, et al. Epidemiological and Clinical Characteristics of 91 Hospitalized Patients with COVID-19 in Zhejiang, China: A retrospective, multi-centre case series. *QJM*. 2020. doi:10.1093/qjmed/hcaa089

157. Cheng SC, Chang YC, Fan Chiang YL, et al. First case of Coronavirus Disease 2019 (COVID-19) pneumonia in Taiwan. *J Formos Med Assoc*. 2020;119(3):747-751. doi:10.1016/j.jfma.2020.02.007

158. Fan Q, Pan Y, Wu Q, et al. Anal swab findings in an infant with COVID-19. *Pediatr Investig*. 2020;4(1):48-50. doi:10.1002/ped4.12186

159. Albarello F, Pianura E, Di Stefano F, et al. 2019-novel Coronavirus severe adult respiratory distress syndrome in two cases in Italy: An uncommon radiological presentation. *Int J Infect Dis*. 2020;93:192-197. doi:10.1016/j.ijid.2020.02.043

160. Bermond Stoecklin S, Rolland P, Silue Y, et al. First cases of coronavirus disease 2019 (COVID-19) in France: surveillance, investigations and control measures, January 2020. *Euro Surveill*. 2020;25(6). doi:10.2807/1560-7917.ES.2020.25.6.2000094

161. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. *Bmj*. 2020;368:m1091. doi:10.1136/bmj.m1091

162. Zhao X, Liu B, Yu Y, et al. The characteristics and clinical value of chest CT images of novel coronavirus pneumonia. *Clin Radiol*. 2020. doi:10.1016/j.crad.2020.03.002

163. Park JY, Han MS, Park KU, Kim JY, Choi EH. First Pediatric Case of Coronavirus Disease 2019 in Korea. *J Korean Med Sci*. 2020;35(1):e124. doi:10.3346/jkms.2020.35.e124

164. Song F, Shi N, Shan F, et al. Emerging 2019 Novel Coronavirus (2019-nCoV) Pneumonia. *Radiology*. 2020;295(1):210-217. doi:10.1148/radiol.2020200274

165. Ren LL, Wang YM, Wu ZQ, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. *Chin Med J (Engl)*. 2020. doi:10.1097/CM9.000000000000722

166. https://www.worldometers.info/coronavirus/. https://www.worldometers.info/coronavirus/

167. World Health Organization. WHO Corona Virus Situation Report. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/. Published 2020.

168. Day M. Covid-19: four fifths of cases are asymptomatic, China figures indicate. *Bmj*. 2020. doi:10.1136/bmj.m3375

169. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. *Eurosurveillance*. 2020. doi:10.2807/1560-7917.ES.2020.25.10.2000180

170. Day M. Covid-19: identifying and isolating asymptomatic people helped eliminate virus in Italian village. *Bmj*. 2020. doi:10.1136/bmj.m1165

171. Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. *Lancet Infect Dis*. 2020. doi:10.1016/s1473-3099(20)30243-7

172. Ruan S. Likelihood of survival of coronavirus disease 2019. *Lancet Infect Dis*. 2020. doi:10.1016/s1473-3099(20)30257-7
173. Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. *J Clin Invest*. 2013. doi:10.1172/JCI64096

174. Fuentes E, Fuentes M, Alarcón M, Palomo I. Immune system dysfunction in the elderly. *An Acad Bras Cienc*. 2017. doi:10.1590/0001-376520170160487

175. Opal SM, Girard TD, Ely EW. The Immunopathogenesis of Sepsis in Elderly Patients. *Clin Infect Dis*. 2005. doi:10.1086/432007

176. Smits SL, De Lang A, Van Den Brand JMA, et al. Exacerbated innate host response to SARS-CoV in aged non-human primates. *PLoS Pathog*. 2010. doi:10.1371/journal.ppat.1000756

177. Jin J-M, Bai P, He W, et al. Gender differences in patients with COVID-19: Focus on severity and mortality. *medRxiv*. 2020. doi:10.1101/2020.02.23.20026864

178. Wenham C, Smith J, Morgan R. COVID-19: the gendered impacts of the outbreak. *Lancet*. 2020. doi:10.1016/S0140-6736(20)30526-2

179. Delanghe JR, Speeckaert MM, De Buyzere ML. The host's angiotensin-converting enzyme polymorphism may explain epidemiological findings in COVID-19 infections. *Clin Chim Acta*. 2020. doi:10.1016/j.cca.2020.03.031

180. Liu S, Zhang M, Yang L, et al. Prevalence and patterns of tobacco smoking among Chinese adult men and women: Findings of the 2010 national smoking survey. *J Epidemiol Community Health*. 2017. doi:10.1136/jech-2016-207805

181. Judah G, Auenger R, Schmidt WP, Michie S, Granger S, Curtis V. Experimental pretesting of hand-washing interventions in a natural setting. *Am J Public Health*. 2009. doi:10.2105/AJPH.2009.164160

182. Nordström A, Hadrévi J, Olsson T, Franks PW, Nordström P. Higher prevalence of type 2 diabetes in men than in women is associated with differences in visceral fat mass. *J Clin Endocrinol Metab*. 2016. doi:10.1210/jc.2016-1915

183. Regitz-Zagrosek V, Lehmkuhl E, Weickert MO. Gender differences in the metabolic syndrome and their role for cardiovascular disease. *Clin Res Cardiol*. 2006. doi:10.1007/s00392-006-0377-8

184. Gupte M, Thatcher SE, Boustany-Kari CM, et al. Angiotensin converting enzyme 2 contributes to sex differences in the development of obesity hypertension in C57BL/6 mice. *Arterioscler Thromb Vasc Biol*. 2012. doi:10.1161/ATVBAHA.112.248559

185. Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 Variants and Expression as Candidates to Sex and Country Differences in COVID-19 Severity in Italy. *SSRN Electron J*. 2020. doi:10.2139/ssrn.3559608

186. Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. Sex-Based Differences in Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection. *J Immunol*. 2017. doi:10.4049/jimmunol.1601896

187. Lin C, Ding Y, Xie B, et al. Asymptomatic novel coronavirus pneumonia patient outside Wuhan: The value of CT images in the course of the disease. *Clin Imaging*. 2020. doi:10.1016/j.clinimag.2020.02.008

188. Rodelo JR, De La Rosa G, Valencia ML, et al. D-dimer is a significant prognostic factor in patients with suspected infection and sepsis. *Am J Emerg Med*. 2012. doi:10.1016/j.ajem.2012.04.033

189. Dinarello CA. Proinflammatory cytokines. *Chest*. 2000. doi:10.1378/chest.118.2.503

190. Short KR, Veeris R, Leijten LM, et al. Proinflammatory Cytokine Responses in Extra-Respiratory Tissues during Severe Influenza. *J Infect Dis*. 2017. doi:10.1093/infdis/jix281
| | Reference | Journal | Year | DOI |
|---|---|---|------|--|
| 191 | Kube D, Sontich U, Fletcher D, Davis PB. Proinflammatory cytokine responses to P. aeruginosa infection in human airway epithelial cell lines. | *Am J Physiol - Lung Cell Mol Physiol*. 2001. doi:10.1152/ajplung.2001.280.3.l493 |
| 192 | Toliver-Kinsky T, Kobayashi M, Suzuki F, Sherwood ER. The systemic inflammatory response syndrome. In: Total Burn Care: Fifth Edition. | 2018. doi:10.1016/B978-0-323-47661-4.00019-8 |
| 193 | Xiong T-Y, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications. | *Eur Heart J*. 2020. doi:10.1093/eurheartj/ehaa231 |
| 194 | Warny M, Helby J, Nordestgaard BG, Birgens H, Bojesen SE. Lymphopenia and risk of infection and infection-related death in 98,344 individuals from a prospective Danish population-based study. | *PLoS Med*. 2018. doi:10.1371/journal.pmed.1002685 |
| 195 | Minatoguchi S, Nomura A, Imaizumi T, et al. Low serum albumin as a risk factor for infection-related in-hospital death among hemodialysis patients hospitalized on suspicion of infectious disease: a Japanese multicenter retrospective cohort study. | *Ren Replace Ther*. 2018. doi:10.1186/s41100-018-0173-8 |
| 196 | Arabi YM, Mandourah Y, Al-Hameed F, et al. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. | *Am J Respir Crit Care Med*. 2018. doi:10.1164/rccm.201706-1172OC |
| 197 | Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. | *Lancet*. 2020. doi:10.1016/S0140-6736(20)30317-2 |
| 198 | Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. | *Lancet*. 2015. doi:10.1016/S0140-6736(15)60454-8 |
| 199 | Rodrigo C, Leonardi-Bee J, Nguyen-Van-Tam JS, Lim WS. Effect of corticosteroid therapy on influenza-related mortality: A systematic review and meta-analysis. | *J Infect Dis*. 2015. doi:10.1093/infdis/jiu645 |
Total results from search (n=5'049)

Duplicates removed (n=2'444)

Articles excluded (Title or Abstract) (n=2'243)

Articles excluded (Full-text) (n=214)

Reason for exclusion
- Article not available/retraction: n=2
- Commentary/editorial/letter: n=44
- Duplicates: n=4
- Insufficient data: n=52
- No COVID-19: n=3
- Out of scope: n=100
- Reuse of data: n=5
- Reviews/meta-analysis: n=4

Articles included in synthesis (n=148)

Articles included in meta-analysis (n=148)

Meta-analysis I: Prevalence (n=148)

Meta-analysis II: Severity & mortality (n=19)
Hypertension

Study	Severe Events	Non-severe Events	Risk Ratio	RR	95%–CI	Weight
S30	41	173	1.77	[1.29; 2.42]	23.8%	
S86	21	36	2.70	[1.70; 4.29]	14.1%	
S88	2	2	141.00	[0.29; 6782.45]	0.1%	
S84	4	40	1.06	[0.34; 3.23]	3.0%	
S87	5	14	4.91	[1.51; 15.93]	2.7%	
S9	14	24	2.10	[1.35; 3.26]	15.2%	
S110	22	58	1.56	[0.94; 2.57]	12.3%	
S69	49	82	2.56	[1.97; 3.33]	28.8%	

Random effects model: $I^2 = 36\%, \tau^2 = 0.0180, p = 0.14$

Prediction interval: $[1.40; 3.30]$

Diabetes mellitus

Study	Severe Events	Non-severe Events	Risk Ratio	RR	95%–CI	Weight
S30	28	173	2.83	[1.84; 4.34]	32.0%	
S86	8	36	3.78	[1.41; 10.15]	9.4%	
S84	9	40	7.13	[2.03; 24.95]	6.2%	
S87	6	14	23.57	[3.08; 180.21]	2.5%	
S9	5	24	1.75	[0.70; 4.36]	10.8%	
S110	8	58	1.26	[0.52; 3.06]	11.2%	
S69	20	82	2.04	[1.26; 3.29]	28.0%	

Random effects model: $I^2 = 50\%, \tau^2 = 0.0384, p = 0.06$

Prediction interval: $[1.20; 5.47]$

Chronic obstructive pulmonary disease (COPD)

Study	Severe Events	Non-severe Events	Risk Ratio	RR	95%–CI	Weight
S30	6	173	5.35	[1.75; 16.40]	37.0%	
S86	3	36	8.50	[0.91; 79.13]	9.3%	
S84	4	40	97.23	[0.19; 50987.71]	1.2%	
S87	2	14	3.93	[0.61; 25.49]	13.3%	
S110	2	58	29.67	[0.19; 50987.71]	1.2%	
S69	6	82	4.07	[1.35; 12.30]	38.0%	

Random effects model: $I^2 = 0\%, \tau^2 = 0, p = 0.90$

Prediction interval: $[2.96; 5.47]$

Acute respiratory distress syndrome (ARDS)

Study	Severe Events	Non-severe Events	Risk Ratio	RR	95%–CI	Weight
S30	27	173	14.45	[7.13; 29.31]	28.4%	
S86	22	36	12.47	[5.10; 30.47]	25.7%	
S84	20	40	47.50	[6.60; 342.01]	12.9%	
S69	48	82	3.99	[2.91; 5.47]	33.1%	

Random effects model: $I^2 = 84\%, \tau^2 = 0.6016, p < 0.01$

Prediction interval: $[2.44; 46.01]$

All rights reserved. No reuse allowed without permission.

This research has not been peer reviewed. The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
