LEVEL OF HEALTH LITERACY AND ASSOCIATED FACTORS AMONG RURAL AND URBAN SECONDARY SCHOOL STUDENTS IN SANLIURFA PROVINCE, TURKEY

Mehmet Enes Gökler¹, Nimetcan Mehmet¹, Salih Mollahaliloğlu¹

1- Ankara Yıldırım Beyazıt University, Department of Public Health. Ankara, Turkey.

Abstract
Low health literacy is a major source of poor health status among all age group. Aim of this study is to investigate level of health literacy and factors associated with it among children in the rural and urban secondary school in Sanliurfa province of Turkey. The cross-sectional study was carried out among children aged 12-15 years old in urban and rural areas in the Southeast Anatolia Region of Turkey. Health Literacy Survey Questionnaire (HLS-EU-Q47) was used for data collection. In this study, general internal consistency (Cronbach's alpha) of the HLS-EU-Q47; was found to be 0.916. Total 1,997 children participated from 18 schools in the study, 47.2% were females and 52.8% were males. The age of the participant's ranged from 12 to 15 years. The mean (SD) of measured weight, height, and BMI of the students were 47.2 ± 10.7 kg, 154.4 ± 7.8 cm, and 19.6 ± 3.5 kg/m², respectively. The prevalence of obesity, overweight and underweight were 6.5%, 13.8%, and 6.3% respectively. The prevalence of having daily breakfast, soft-drink, fruit, and tooth brushing frequency were 53.6%, 14.4%, 39.3%, and 38.5% respectively. Generally, the HL level was very low among the children in this study.

Keywords: Health literacy, school children, rural health, urban health, parent education.

Cómo citar: Gökler ME, Mehmet N, Mollahaliloğlu S. Nivel de Letra de Salud y Factores Asociados entre Estudiantes de Secundaria en los Distritos Rurales y Urbanos de la Provincia de Sanliurfa, Turquía. ESTÜDAM Public Health Journal. 2020;5(2):168-75.
Introduction

Low health literacy is a major source of poor health status among all age groups. Health literacy (HL) has been addressed as one major public health issue silently affecting all population. Studies showed that around 80 million American adults are affected by low HL (1). Literacy provides the skills that enable individuals to understand and communicate health information and concerns. Literacy is defined as a set of reading, writing, basic mathematics, speech, and speech comprehension skills (2). HL defined as “the capacity to which individuals can obtain, process, and understand basic health information needed to make appropriate health decisions” (3). The individuals with adequate health literacy can make right decisions to improve their health and well-being (4). Health literacy is the bridge between the literacy (and other) skills and abilities of the individual and the health context.

The HL is of concern to everyone involved in health promotion and protection, disease prevention and early screening, health care and maintenance, and policy making. Health literacy skills are needed for dialogue and discussion, reading health information, interpreting charts, making decisions about participating in research studies, using medical tools for personal or familial health care (5). From a public health perspective, children and young people constitute a core target group for health literacy research and intervention as during childhood and youth, fundamental cognitive, physical and emotional development processes take place (6) and health-related behaviors and skills develop. As a result, these stages of life are regarded as crucial for healthy development, as well as for personal health and well-being throughout adulthood (7,8). Moreover, health literacy is understood as a variable construct that is acquired in a life-long learning process, starting in early childhood (9). Hence, targeting children and young people with health literacy interventions can help promoting healthy behaviors and reduce future health risks.

Priority of public health for preventing childhood obesity and increasing HL, few intervention studies have evaluated the influence of HL on weight-related child outcomes. The prevalence of childhood obesity has increased significantly over the previous four decades, stabilizing over the past decade, with approximately one-third of US children being classified as obese (10). The understandability of health information is of public concern. High percentages of adults have limited ability to use print materials to accomplish their tasks, and many health education materials are written at a level higher than these adults can comprehend based on literacy in this filed. When considering children, parents and caregivers play an important role in providing healthy eating and physical activity opportunities.

Researchers from different countries have investigated the relationship between health literacy and adult populations health status; however, very few studies have been carried out directly with children and adolescent population, leading to a significant gap in literature (11,12). The situation is the same in Turkey, researchers have focused on adult population; however, studies with children cannot be found. The aim of the study to investigate level of health literacy and factors associated with it among children in the secondary school in East of Turkey.
Materials and Method

Research design and location
This cross-sectional study was conducted among secondary school students getting education in the urban and rural areas of Şanlıurfa between January 2017 and June 2017. The study was conducted on a sample of secondary school students from rural and urban areas in Şanlıurfa Province located in the Southeast Anatolia Region. Şanlıurfa is among the less developed provinces compared to west part of country, especially its rural areas are underdeveloped. Based on the register as of 2017 TürkStat, the population of Şanlıurfa totals 1,985,753 people (13). There are 204,084 students (56.7% are male and 34.2% are in rural areas) at the Şanlıurfa’s secondary schools.

Study group
The minimum sample size was 2,750 with a margin of error of 1%, and considering the frequency of obesity as 8%. Seven counties (Haliliye, Eyyubiye, Karaköprü, Birecik, Hilvan, Suruc, Siverek) where dietitian service is provided were included in the study. The number of students to choose from each districts was chosen in proportion to the population’s distribution. Total 18 schools were randomly selected from seven counties. There were 2933 students in 18 schools.

Study procedure
The questionnaires used in the study were filled in by the students under supervision in about 30 min. The specially designed questionnaire form included questions about socio-demographic characteristics (age, gender, parents’ education level and working status, family income status, a family history of chronic disease, student’s history of any disease), eating behavior (breakfast consumption, fruit consumption, soft-drink consumption), physical activity and sedentary behavior (moderate-to-vigorous physical activity, time spent with screens such as television, smartphones, tablet PCs and computers), tooth brushing frequency and self-rated health.

We used European Health Literacy Survey Questionnaire (HLS-EU-Q47) to assess health literacy. HLS-EU-Q47 is a self-report scale developed to evaluate the health literacy of at least primary school graduated (14) HLS-EU-Q47 contained 47 items measuring health literacy. The lowest score is 47 and the highest is 188. Total scores were standardized to be between 0 and 50. The resulting four levels were ‘inadequate’ (0–25), ‘problematic’ (25–33), ‘sufficient’ (33–42) and ‘excellent’ (42–50) health literacy. To detect vulnerable groups, the ‘inadequate’ and ‘problematic’ levels were combined to a single level, called ‘limited health literacy’ (0–33). In this study general internal consistency (Cronbach’s alpha) of the HLS-EU-Q47; was found to be 0.916.

After the completion of the questionnaire, body height and weight of each student were measured and recorded. Obesity was assessed by using WHO criteria (< 85th percentile, normal; 85 – 95th percentile, overweight; and ≥ 95th percentile, obese) (15). The detailed protocol for the study and the questionnaire were obtained from the previous Health Behavior in School-aged Children (HBSC) study (16).

Statistical analysis
Data were analyzed using the Statistical Package for the Social Sciences 20.0. We used descriptive statistics (frequencies, proportions, means, and medians) to assess the demographic characteristics and the health literacy. Data were analyzed by using chi-square test as a univariate analysis and multiple logistic regression as a multivariate analysis. The multivariate logistic regression model included independent variables that were found to be significant (for variables at p < 0.10 significance level in univariate analysis). Odds ratios and 95%
Confidence intervals were calculated for the variables associated with health literacy.

Ethical clearance
The required permissions for conducting the study were obtained from school administration, Harran University Ethics Committee (approval number 12/08.12.2016) and informed verbal consent was obtained from each student and their parents.

Results

Of the 1,997 (%68.2) students included in the study, 47.2% were females and 52.8% were males. The age of the students ranged from 12 to 15 years, with a mean age of 12.97 ± 0.57 years. The mean (SD) of weight, height, and BMI of the students were 47.2 ± 10.7 kg, 154.4 ± 7.8 cm, and 19.6 ± 3.5 kg/m², respectively. Of the students comprising the study group, 16.7% were considered adequate health literacy (38.46 ± 4.47) and 83.2% limited health literacy (18.54 ± 10.55).

Characteristics	Adequate health literacy n %	Limited health literacy n %	Test Statistics X²; p		
Gender					
Male	165	15.6	890	84.4	2.065; 0.151
Female	170	18.0	772	82.0	
Residence					
Urban	231	18.0	1049	82.0	4,130; 0.042
Rural	104	14.5	613	85.5	
Educational level of mother					
Illiterate	119	12.9	802	87.1	32,637; <0.001
Primary school	175	19.7	715	80.3	
High school	23	20.7	88	79.3	
University	14	42.4	19	57.6	
Employment status of mother					
Unemployed	294	16.7	1462	83.3	0.011; 0.916
Employed	41	17.0	200	83.0	
Educational level of father					
Illiterate	21	8.6	222	91.4	19,536; <0.001
Primary school	201	16.7	1000	83.3	
High school	72	20.4	281	79.6	
University	33	23.7	106	76.3	
Employment status of father					
Unemployed	42	11.9	312	88.1	7,432; 0.006
Employed	293	17.8	1350	82.2	
Family income (monthly)					
<500 TL	61	9.9	558	90.1	42,333; <0.001
500-1500 TL	147	17.5	692	82.5	
>1500 TL	116	24.6	355	75.4	
A family history of chronic disease	177	16.2	915	83.8	0.554; 0.457
Yes	158	17.5	747	82.5	
Student’s history of any disease	284	16.9	1395	83.1	0.147; 0.701
No	51	16.0	267	84.0	

The prevalence of obesity, overweight and underweight were 6.5%, 13.8%, and 6.3% respectively. The prevalence of having daily breakfast, soft-drink, fruit, and tooth brushing frequency were 53.6%, 14.4%, 39.3%, and 38.5% respectively. Distribution of students' health literacy according to BMI, eating behavior, physical activity and sedentary behavior are given in table 2.
Table 2: Sample characteristics of the study group.

Variables	Adequate health literacy n %	Limited health literacy n %	Test Statistics X²;p
Body mass index			
Underweight	12 (9.5)	114 (90.5)	21,715; <0,001
Normal	228 (15.6)	1238 (84.4)	
Overweight	70 (25.5)	205 (74.5)	
Obese	25 (19.2)	105 (80.8)	
Daily breakfast consumption			
Yes	134 (16.7)	793 (83.3)	6,670; <0,001
No	201 (17.0)	869 (83.0)	
Daily soft-drink consumption			
Yes	293 (11.9)	1416 (88.1)	1,158; 0.282
No	42 (17.8)	246 (82.2)	
Daily fruit consumption			
Yes	177 (14.5)	1036 (85.5)	10,549; <0,001
No	158 (18.8)	626 (81.2)	
Daily tooth brushing frequency			
Yes	167 (17.1)	1062 (82.9)	23,248; <0,001
No	168 (14.6)	600 (85.4)	
Self-rated health			
Excellent and good	285 (14.6)	1234 (85.4)	17,950; <0,001
Fair and poor	50 (20.2)	428 (79.8)	
Daily time spent with screens			
<4 hr	107 (13.6)	584 (86.4)	1,260; 0.262
≥4 hr	228 (21.9)	1078 (78.1)	
Moderate-to-vigorous physical activity			
No	175 (18.8)	1003 (81.2)	7,580; 0.006
Yes	160 (10.5)	659 (89.5)	

The estimated crude ORs for area, educational level of mother, educational level of father employment status of father, family income, body mass index, daily breakfast consumption, daily fruit consumption, daily tooth brushing frequency, self-rated health, and moderate-to-vigorous physical activity were statistically significant. After multivariate logistic regression analysis, educational level of mother, family income, body mass index, daily tooth brushing consumption, self-rated health remained significant in the model (Table 3).

Table 3: The variables associated with health literacy were determined by a multivariate logistic regression analysis.

Variables	Crude OR (95% CI)	Adjusted OR (95% CI)	
Settlements			
Urban	1	1	
Rural	1,298 (1.01-1.67)	1,17 (0.89-1.54)	
Educational level of mother			
Illiterate	4,97 (2.43-10.17)	3,01 (1.28-7.06)	
Primary school	3,011 (1.48-6.12)	2,64 (1.15-6.05)	
High school	2,819 (1.23-6.46)	2,54 (1.04-6.23)	
University	1	1	
Educational level of father			
Illiterate	3,29 (1.82-5.96)	1,10 (0.54-2.23)	
Primary school	1,55 (1.02-2.36)	0,78 (0.46-1.32)	
High school	1,22 (0.76-1.94)	0,82 (0.48-1.35)	
University	1	1	
Employment status of father			
Unemployed	1,61 (1.14-2.27)	0,92 (0.62-1.37)	
Employed	1	1	
Family income (monthly)	<500 TL	2.99 (2.13-4.19)**	2.41 (1.60-3.61)**
------------------------	---------	-------------------	-------------------
	500-1500 TL	1.54 (1.17-2.03)**	1.32 (0.97-1.79)
	>1500 TL	1.01 (0.61-1.61)	1.01 (0.61-1.61)
Body mass index			
	Underweight	1.01 (0.61-1.61)	1.01 (0.61-1.61)
	Normal	1.75 (0.95-3.22)	1.27 (0.68-2.39)
	Overweight	0.54 (0.39-0.73)**	0.55 (0.39-0.76)**
	Obese	0.77 (0.49-1.22)	0.86 (0.52-1.40)
Daily breakfast consumption	Yes	1.37 (1.08-1.74)**	1.25 (0.96-1.61)
	No	1.01 (0.61-1.61)	1.01 (0.61-1.61)
Daily fruit consumption	Yes	1.48 (1.18-1.87)**	1.25 (0.96-1.61)
	No	1.01 (0.61-1.61)	1.01 (0.61-1.61)
Daily tooth brushing frequency	Yes	1.78 (1.41-2.26)**	1.54 (1.20-1.99)**
	No	1.01 (0.61-1.61)	1.01 (0.61-1.61)
Self-rated health	Excellent and good	1.01 (0.61-1.61)	1.01 (0.61-1.61)
	Fair and poor	1.98 (1.44-2.72)**	1.54 (1.20-2.17)**
Moderate-to-vigorous physical activity	No	1.39 (1.10-1.76)**	1.24 (0.96-1.60)
	Yes	1.01 (0.61-1.61)	1.01 (0.61-1.61)

* p < 0.05, ** p < 0.01, *** p < 0.001.

Discussion

The study demonstrated that general HL level of the children was low. The various factors influenced their HL level. The findings show that HL level was different by residences of the participants, educational level of parents, employment status of father, family income, participants body mass index, daily breakfast consumption, daily fruit consumption, daily tooth brushing frequency, self-rated health, and moderate-to-vigorous physical activity. Pervious scientific literacy shows the association between health literacy and socio-demographic factors, including family income, education background and age (17-21). A USA study demonstrated people living in rural areas are more likely than those in mixed urban-rural areas to have low levels of health literacy. Lower health literacy may result in poor health outcomes among rural cancer patients and contribute to disparities in cancer care (22). The rural area residents suffered more from low functional health literacy, compared with their urban counterparts (23). HL levels were significantly associated with annual household income, father's education level, and mother's education level. Those whose annual household income was high had higher HL levels than those whose annual household income was low. The relationship between HL levels and parents’ education level was significant in this study; specifically, the HL level of participants whose parents had a postgraduate education was the lowest. Interestingly, the HL levels of students whose parents were teachers were the highest for both mother and father’s occupation (24), according to these results, we can see that higher education level of parents did not really affect children’s HL but the occupation really influence HL level of children's. A study from Finland shows that perceived health literacy was higher among adolescents who participated in sports club activities (25). Generally, people who care more about their health are more active on doing sport and they read information related to health. The current study also examined the relationship between BMI and HL level, the result determined that over or under weight participants have low HL. Child health literacy was negatively correlated with BMI Z-scores in overweight children in New York City (26). Finds of the study and other previous studies from different regions shows that various factors affect...
HL level among children. People with good HL are more likely to adopt healthier behaviors. Good HL enables individuals to protect themselves, their family and community members from various risks.

This study shows the influence of health literacy in obtaining habits such as daily breakfast consumption, daily fruit consumption, daily tooth brushing frequency and moderate-to-vigorous physical activity in children. By increasing the level of health literacy in children, it is possible to develop the right nutrition behaviors, good oral health and physically active lifestyles. Additionally, interventions that will increase the level of health literacy may have a positive impact on obesity prevalence in the longer term. Health literacy should be used as an important tool in reducing inequalities.

There are some strengths of this study, the study was conducted multiple study centers and study schools were selected from urban and rural areas. The data related to health literacy was collected using self-reported method so information bias may occur.

Conclusions

The findings of the study show that HL level was different between rural and urban residences, educational level of parents, employment status of father, family income, body mass index, daily breakfast consumption, daily fruit consumption, daily tooth brushing frequency, self-rated health, and moderate-to-vigorous physical activity. Based on the findings of the study we suggest that the school students must be educated and improve their health literacy. The health literacy education policy must be developed and implement in the region.

Acknowledgement

We would like to thanks Sanliurfa Health Directorate nutritionists, and all the students who participated in this study.

References

1. Berkman, N. D., Sheridan, S. L., Donahue, K. E., Halpern, D. J., & Crotty, K. Low health literacy and health outcomes: an updated systematic review. Annals of internal medicine, 2011;155(2), 97-107.
2. Kirsch IS. The International Adult Literacy Survey (IALS): Understanding What Was Measured. Princeton, NJ: Educational Testing Service. 2001
3. Roopa Chari, Joel Warsh, Tara Ketterer, Jobayer Hossain, Iman Sharif. Association between health literacy and child and adolescent obesity. Patient Education and Counseling,2014; 94; 61–66
4. Kristine Sørensen, Stephan Van den Broucke, James Fullam, Gerardine Doyle, Jürgen Pelikan, Zofia Slonska and Helmut Brand. Health literacy and public health: A systematic review and integration of definitions and models. BMC Public Health, 2012;12:80
5. Lynn Nielsen-Bohman, Allison M. Panzer, David A. Health Literacy: A Prescription to End Confusion. the National Academies Press. 2004, ISBN: 0-309-52926-3, 368 pages, 6 x 9, available from the National Academies Press at: http://www.nap.edu/catalog/10883.html
6. Borzekowski DLG. Considering children and health literacy: a theoretical approach. Pediatrics. 2009; 124:282–8. doi:10.1542/peds.2009-1162D.
7. Irwin L, Siddiqi A, Hertzman C. Early child development: a powerful equalizer. Final report for the World Health Organization's Commission on social
determinants of health. Vancouver: University of British Columbia. 2007

8. Marmot M, Friel S, Bell R, Houweling TAJ, Taylor S. Closing the gap in a generation: Health equity through action on the social determinants of health. Lancet. 2008; 372:1661–9. doi:10.1016/S0140-6736(08)61690-6.

9. Zarcadoolas C, Pleasant A, Greer DS. Understanding health literacy: an expanded model. Health Promot Int. 2005; 20:195–203. doi:10.1093/heapro/dah609.

10. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA, 2014; 311(8):806–14.

11. Darren A. DeWalt and Ashley Hink (2009). Health Literacy and Child Health Outcomes: A Systematic Review of the Literature. Pediatrics. 2009; 124; S265.

12. Martha Driessnack, Sophia Chung, Elena Perkhounkova, & Maria Hein. Using the “Newest Vital Sign” to Assess Health Literacy in Children. Journal of Pediatric Health Care, 2014; 28. Number 2; 165-171

13. Turkish statistical institute 2017 report. www.turkstat.gov.tr

14. Pınar Okyay, Filiz Abacıgil. Türkiye sağlık okuryazarlığı ölçeği güvenilirlik ve geçerlilik çalışması. Avrupa sağlık okuryazarlığı ölçü cetveli türkçe uyarlaması (ASOY-TR). MOH, Turkey, 2016.

15. Krebs NF, Himes JH, Jacobson D, Nicklas TA, Guilday P, Styne D. Assessment of child and adolescent overweight and obesity. Pediatrics. 2007; 120 Suppl 4: S193–228 [PubMed]

16. C. Roberts, J. Freeman, O. Samdal, C. Schnoor, M. Looze, S. Nic Gabhainn, and R. Iannotti. The Health Behaviour in School-aged Children (HBSC) study: methodological developments and current tensions. Int J Public Health. 2009; 54(Suppl 2): 140–150.

17. Berkman ND, Sheridan SL, Donahue KE, Halpern DJ, Crotty K. Low health literacy and health outcomes: An updated systematic review. Ann Intern Med. 2011; 155(2):97–107. [PubMed: 21768583]

18. Amalraj S, Starweather C, Nguyen C, Naeim A. Health literacy, communication, and treatment decision-making in older cancer patients. Oncology. 2009; 23(4):369–375. [PubMed: 19476267]

19. Koay K, Schofield P, Jefford M. Importance of health literacy in oncology. Asia Pac J Clin Oncol. 2012; 8:14–23. [PubMed: 22369440]

20. Davis TC, Williams MV, Marin E, Parker RM, Glass J. Health literacy and cancer communication. CA Cancer J Clin. 2002; 53(3):134–149. [PubMed: 12018928]

21. Martin LT, Ruder T, Escarce JJ, et al. Developing predictive models of health literacy. J Gen Intern Med. 2009; 24(11):1211–1216. [PubMed: 19760299]

22. Julie Halverson, Ana Martinez-Donate, Amy Tretham-Dietz, Matthew C. Walsh, , Jeanne Schaaf Strickland, Mari Palta et.al. Health Literacy and Urbanicity Among Cancer Patients. J Rural Health. 2013; 29(4): 392–402. doi:10.1111/jrhl.12018.

23. Farzaneh Golboni, Haidar Nadrian, Sarisa Najafi, Shoyesteh Shirzadi, Hassan Mahmodi (2017). Urban–rural differences in health literacy and its determinants in Iran: A community-based study. The Australia Journal of Rural Health, 2017; Volume26, Issue2. https://doi.org/10.1111/ajr.12378

24. Rong H, Cheng X, Garcia JM, Zhang L, Lu L, Fang J, et al. Survey of health literacy level and related influencing factors in military college students in Chongqing, China: A cross-sectional analysis. PLoS ONE, 2017; 12(5): e0177776. https://doi.org/10.1371/journal.pone.0177776

25. Paakkari L, Kokso S, Villberg J, Paakkari O, Tyńjälä J. Health literacy and participation in sports club activities among adolescents. Scand J Public Health. 2017 Dec;45(8):854-860. doi: 10.1177/1403494817714189. Epub, Jul 4.

26. Iman Sharif and Arthur E. Blank (2010). Relationship between Child Health Literacy and Body Mass Index in Overweight Children. Patient Educ Couns, 2010; 79(1): 43–48.