Tinea corporis: an updated review

Abstract
Background: Tinea corporis is a common fungal infection that mimics many other annular lesions. Physicians must familiarize themselves with this condition and its treatment.

Objective: This article aimed to provide a narrative updated review on the evaluation, diagnosis, and treatment of tinea corporis.

Methods: A PubMed search was performed with Clinical Queries using the key term ‘tinea corporis.’ The search strategy included clinical trials, meta-analyses, randomized controlled trials, observational studies, and reviews. The search was restricted to the English language. The information retrieved from the mentioned search was used in the compilation of the present article.

Results: Tinea corporis typically presents as a well-demarcated, sharply circumscribed, oval or circular, mildly erythematous, scaly patch or plaque with a raised leading edge. Mild pruritus is common. The diagnosis is often clinical but can be difficult with prior use of medications, such as calcineurin inhibitors or corticosteroids. Dermoscopy is a useful and non-invasive diagnostic tool. If necessary, the diagnosis can be confirmed by microscopic examination of potassium hydroxide wet-mount preparations of skin scrapings from the active border of the lesion. Fungal culture is the gold standard to diagnose dermatophytosis especially if the diagnosis is in doubt and results of other tests are inconclusive or the infection is widespread, severe, or resistant to treatment. The standard treatment of tinea corporis is with topical antifungals. Systemic antifungal treatment is indicated if the lesion is multiple, extensive, deep, recurrent, chronic, or unresponsive to topical antifungal treatment, or if the patient is immunodeficient.

Conclusion: The diagnosis of tinea corporis is usually clinical and should pose no problem to the physician provided the lesion is typical. However, many clinical variants of tinea corporis exist, rendering the diagnosis difficult especially with prior use of medications, such as calcineurin inhibitors or corticosteroids. As such, physicians must be familiar with this condition so that an accurate diagnosis can be made and appropriate treatment initiated.

Keywords: butenafine, dermatophytosis, fluconazole, itraconazole, naftifine, ringworm, terbinafine.

Citation
Leung AKC, Lam JM, Leong KF, Hon KL. Tinea corporis: an updated review. Drugs in Context 2020; 9: 2020-5-6. DOI: 10.7573/dic.2020-5-6

Introduction
Tinea corporis, also known as ‘ringworm,’ is a superficial dermatophyte infection of the skin, other than on the hands (tinea manuum), feet (tinea pedis), scalp (tinea capitis), bearded areas (tinea barbae), face (tinea faciei), groin (tinea cruris), and nails (onychomycosis or tinea unguium). Tinea corporis is most commonly caused by dermatophytes belonging to one of the three genera, namely, Trichophyton (which causes infections on skin, hair, and nails), Microsporum (which causes infections on skin and hair), and Epidermophyton (which causes infections on skin and nails). Dermatophytes are grouped as either anthropophilic, zoophilic, or geophilic, depending on whether their primary source is human, animal, or soil, respectively. Because tinea corporis is common and many other annular lesions can mimic this fungal infection, physicians must familiarize themselves with its etiology and its treatment.
The purpose of this article was to provide a narrative updated review on the evaluation, diagnosis, and treatment of tinea corporis. A PubMed search was performed with Clinical Queries using the key term ‘tinea corporis.’ The search strategy included clinical trials, meta-analyses, randomized controlled trials, observational studies, and reviews. The search was restricted to the English language. The information retrieved from the above search was used in the compilation of the present article.

Etiology

Tinea corporis is most often caused by *Trichophyton rubrum*, *T. tonsurans*, and *Microsporum canis*.6–12 *T. rubrum* is by far the most common cause of dermatophytosis worldwide and is the most common cause of tinea corporis in North America.13–15 *Tinea corporis* secondary to *tinea capitis* is often caused by *T. tonsurans*.16 On the other hand, *tinea corporis* resulting from close contact with dogs or cats is often caused by *M. canis*.8,17–19 Other causative organisms include *T. interdigitale* (previously known as *T. mentagrophytes*), *T. verrucosum*, *T. violaceum*, *T. concentricum*, *Epidermophyton floccosum*, *M. audouini*, and *M. gypseum*.6,20–29 In recent years, *T. interdigitale* has replaced *T. rubrum* as the most common cause of _tinea corporis_ in Southeast Asia. Rare causative organisms include *T. erinacei*, *T. equinum*, *T. simii*, *T. schoenleinii*, *Nannizzia gypsea*, *N. nana*, and *M. gallinae* and *M. fulvum*.30–40

Epidemiology

Tinea corporis is the most common dermatophytosis.41 While _tinea corporis_ occurs worldwide, it is most commonly observed in tropical regions.42 The lifetime risk of acquiring _tinea corporis_ is estimated to be 10–20%.6 _Tinea corporis_ occurs most frequently in post-pubertal children and young adults.18,43,44 Rare cases have been reported in the newborn period.43 There is no sex predominance.1 Humans may become infected through close contact with an infected individual, an infected animal (in particular, domestic dog or cat), contaminated fomites, or contaminated soil.46–48 Infection may be acquired as a result of spread from another site of dermatophyte infection (e.g. _tinea capitis_, _tinea pedis_, onychomycosis).49,50 Transmission among household family members is by far the most common route; children often become infected by spores shed by an infected household family member.15,48,51 Autoinfection by dermatophytes elsewhere in the body may also occur.52 Transmission of the fungus is facilitated by a moist, warm environment, sharing of towels and clothing, and wearing of occlusive clothing.1,53 Predisposing factors include personal history of dermatophytosis (e.g. _tinea capitis_, _tinea pedis_, _tinea cruris_, and _tinea unguium_), concurrent affected family members, pets in the home, crowding in home, recreational exposure (e.g. wrestling and martial arts), hyperhidrosis, low β-defensin 4 levels, immunodeficiency, diabetes mellitus, genetic predisposition (in particular, _tinea imbricata_), xerosis, and ichthyosis.2,18,48,53–55

Pathogenesis

Mannans in the cell walls of some dermatophytes, such as *T. rubrum*, have immune-inhibitory properties.2 This allows the fungus to stay on the skin without being sloughed off prior to invasion of the skin. The causative fungus can produce proteases (enzymes that digest keratin), serine-subtilisins (enzymes that digest protein by initiating the nucleophilic attack on the peptide bond through a serine residue at the active site), and keratinases (enzymes that penetrate keratinized tissue), which allow the fungus to invade the horny layer of the skin and spread outward.3,56 Infection is usually cutaneous and confined to the outer, non-living, cornified layers of the skin. The fungus is unable to penetrate the deeper tissues in healthy immunocompetent hosts because of host defense mechanisms, such as activation of serum inhibitory factor, polymorphonuclear leukocytes, and complements.3 Scaling of the active border results from increased epidermal cell proliferation in response to the fungal infection.56

Clinical manifestations

The incubation period is 1–3 weeks.57 _Tinea corporis_ typically presents as a well-demarcated, sharply circumscribed, oval or circular, mildly erythematous, scaly patch or plaque with a raised leading edge (Figure 1).44 The lesion starts off as a flat scaly spot that spreads centrifugally and clears centrally to form a characteristic annular lesion giving rise to the term ‘ringworm.’52,58,59 The central area becomes hypopigmented or brown and less scaly as the active border progresses outward.4,58 The border is usually annular and irregular.58 Occasionally, the border can be papular, vesicular, or pustular.4,15 Lesions may assume other shapes such as circinate and arcuate. Mild pruritus is common.52,60 In general, lesions caused by anthropophilic species (e.g. *T. rubrum*, *T. tonsurans*, *T. interdigitale*, *T. schoenleinii*, *T. soundanense*, *T. violaceum*, *M. audouini*, and *E. floccosum*) are often less inflammatory/erythematous than those caused by zoophilic species (e.g. *M. canis*, *M. nanum*, *M. ferrugineum*, *M. distortum*, *M. nanum*, *T. equinum*, and *T. verrucosum*) or geophilic species (e.g. *M. gypseum*).44 The lesions tend to be asymmetrically distributed. When multiple lesions are present, they may coalesce into polycyclic patterns.15 In adults, _tinea corporis_ most commonly occurs on exposed skin. In children and adolescents, the site of predilection is the trunk.61

In _tinea gladiatorum_, the lesion presents as well-demarcated, erythematous, annular, scaling plaques on areas of skin-to-skin contact, such as the head, neck, and arms.6 _Tinea gladiatorum_ is most often caused by *T. tonsurans*.62–66 The condition is most common among those who engage in contact sports such as wrestling and judo.62–66 In a 2020 systematic review...
and meta-analysis of 13 studies involving 4818 wrestlers, the prevalence of tinea gladiatorum varied from 2.4 to 96.62%, with an overall prevalence of 34.29% (95% confidence interval: 20.33–48.25).67

Tinea incognito refers to a cutaneous fungal infection that has lost its classical morphological features because of the use of calcineurin inhibitors or corticosteroids.68,69 The clinical manifestations of tinea incognito are highly variable. Generally, compared with the lesion of tinea corporis, the lesion seen in tinea incognito is less erythematous and scaly, with a less defined border and is typically more widespread (Figure 2).24 Pruritus is usually mild or absent.69 The rash can be eczema-like, rosacea-like, or discoid lupus erythematosus-like, especially on the face, and eczema-like or impetigo-like on the trunk and limbs.69

Many clinical variants of tinea corporis exist. Tinea imbricata, caused mainly by a strictly anthropophilic dermatophyte, *T. concentricum*, typically presents as multiple, scaly, annular, concentric, erythematous rings that can extend to form polycyclic plaques (Figure 3).53,60,70 With time, multiple overlapping lesions develop and the plaques become lamellar with abundant thick scales adhering to the interior of the plaque, giving rise to the appearance of overlapping roof tiles or lace, fish scales.53,70 The trunk is the site of predilection. Tinea imbricata has a high tendency to generalize and large areas of the body may be affected. Pruritus is common. Tinea imbricata is endemic in Central and South America, Southwest Pacific, and Southeast Asia.53

Figure 1. An annular, erythematous, scaly plaque with a raised leading edge on the left arm characteristic of tinea corporis.

Figure 2. Tinea incognito resulting from topical corticosteroid treatment of tinea corporis on the medial aspect of the right thigh.

Figure 3. Tinea imbricata. Note the generalized, concentric, annular, lamellar, scaly plaques on the anterior trunk and upper limbs. The undulating lines were composed of overlapping scales.
Majocchi granuloma, also known as nodular granulomatous perifolliculitis, results from penetration of the fungus along the hair follicle to the dermal or subcutaneous tissue, leading to a suppurative folliculitis. The condition may be precipitated by occlusion of hair follicles or trauma to the skin. Majocchi granuloma is most commonly seen in immunocompromised individuals or those treated with topical corticosteroids. T. rubum is the most common causative organism, followed by T. interdigitale, T. violaceum, and T. tonsurans. Majocchi granuloma typically presents as inflammatory perifollicular papules or pustules, mainly on the face or limbs (Figure 4). Nodular lesion and subcutaneous abscess are more commonly seen in immunocompromised individuals. The trichophytin skin test is usually positive.

Bullous tinea corporis, a rare clinical variant of tinea corporis, is characterized by vesicles or bullae, usually limited to the borders of an erythematous scaly plaque. Rupture of the vesicles or bullae may leave behind erosions and crusts over an erythematous background.

In immunocompromised individuals, tinea corporis may present as a disseminated skin infection or subcutaneous/deep abscess. Rarely, tinea corporis may present as purpuric macules, known as tinea corporis purpurica.

Diagnosis

The diagnosis of tinea corporis is most often clinical, especially if the lesion is typical. A well-demarcated, sharply circumscribed, erythematous, annular, scaly plaque with a raised leading edge, and scaling and central clearing on the body is characteristic. At times, the diagnosis can be difficult due to the prior use of medications, such as calcineurin inhibitors or corticosteroids. Dermoscopy is a useful and non-invasive diagnostic tool. Dermoscopic findings in cases of tinea corporis include diffuse erythema, dotted vessels with peripheral to patchy distribution, white scales with peripheral distribution, ‘moth-eaten’ scale, peeling in an outward direction, brown spots surrounded by a white-yellow halo, follicular micropustules, wavy hair, and broken hair. These changes may be seen despite the use of topical corticosteroids or calcineurin inhibitors. Reflectance confocal microscopy is another useful diagnostic tool. Reflectance confocal microscopy, branching fungal hyphae can be detected over an erythematous annular scaly patch in individuals with tinea corporis. Wood lamp examination of the affected area is not useful as the lesion of tinea corporis usually does not fluoresce with a Wood lamp.

If necessary, the diagnosis can be confirmed by microscopic examination of potassium hydroxide (KOH) wet mounts of skin scrapings from the active border of the lesion. The KOH dissolves the epithelial tissue, leaving behind easily visualized septate hyphae with or without arthroconidiospores. Fungal culture is the gold standard to diagnose dermatophytosis, especially if the diagnosis is in doubt and results of other tests are inconclusive, or the infection is widespread, severe, or unresponsive to treatment. Fungal culture can help to differentiate fungal species. However, fungal culture is expensive and it usually takes 7–14 days for results. For certain species, it may take up to 4 weeks for results. The most common culture medium is Sabouraud peptone–glucose agar (4% peptone, 1% glucose). However,
Sabouraud peptone–glucose agar does not contain antibiotics and thus may allow overgrowth of bacterial contaminants. On the other hand, mycosel agar and dermatophyte test medium both contain antibiotics. The antibiotics help to suppress the growth of bacterial species, which may contaminate the culture. If the results of the investigations are inconclusive, a polymerase chain reaction (PCR) assay for fungal DNA or a PCR-restriction fragment length polymorphism method based on a ribosomal DNA internal transcribed spacer may be considered for fungal identification in academic settings for research purposes.85–89

Differential diagnosis

Diseases that present with annular lesions may mimic tinea corporis. The differential diagnosis is broad and includes pityriasis rosea (non-itchy herald patch, generalized, bilateral, symmetrical eruption 4–14 days later, characteristic ‘Christmas tree’ appearance on the back and a V-shaped pattern on the upper chest); tinea versicolor (multiple, well-demarcated, finely scaly, brownish macules/patches in fair-skinned individuals and hypopigmented macules/patches in dark-skinned individuals, minimal or absent erythema, absent colliarette of scales in individual lesions, typically asymptomatic); nummular eczema (well-demarcated, pruritic, coin-shaped, symmetrical, eczematous, scaly lesions, involvement of the extremities rather than the trunk, serous exudate in acute lesions, no central clearing, rapid response to topical steroids); plaque psoriasis (well-demarcated, sharply circumscribed, annular, erythematous, round or oval, pruritic plaques with loosely adherent silvery-white micaceous scales, positive Auspitz sign, Koebner phenomenon, nail pitting, arthritis, uveitis, geographic tongue, positive family history); atopic dermatitis (flexural involvement in older children and adolescents, highly pruritic, excoriation, lichenification in chronic lesions, chronically relapsing); contact dermatitis (well-demarcated, erythematous lesion localized to the area of contact, immediate skin reaction with burning, stinging, or discomfort if caused by an irritant, delayed response associated with pruritus caused by an allergen); seborrhoic dermatitis (salmon-colored or purple (violaceous), localized granuloma annulare (asymptomatic, firm, erythematous, violaceous, flesh-colored or brown, non-scler plaques with central involution, annular configuration, usually involve the extensor surfaces of distal extremities); fixed drug eruption (history of medication use, well-demarcated, round-to-oval, erythematous or violaceous macules/plaques, absent systemic symptoms, sites of predilection include hands, feet, lips and perianal area, usually subsides within 14 days after the offending medication has been discontinued, recurs in the same location with repeat exposure to the medication); subacute cutaneous lupus erythematosus (annular, erythematous, scaly plaques often in sun-exposed areas); discoid lupus erythematosus (well-demarcated, erythematous, hyperkeratotic, indurated, coin-shaped plaques covered by partially adherent, scales in sun-exposed areas); urticaria (pruritic, erythematous, and edematous wheals of the superficial layers of the skin, individual lesions wax and wane rapidly); urticaria pigmentosa (pruritic, yellow-tan to reddish-brown macules/papules on the trunk and proximal extremities, positive Darier sign); pityriasis lichenoides chronica (polymorphic pink to reddish brown papular rash with overlying mica-like scales, chronic relapsing course without herald patch, residual hypo- or hyperpigmentation); lichen planus (characterized by 6 Ps: planar (flat-topped), purple (violaceous), polygonal, pruritic, papules/plaques, lesions may be covered with white, lacy, reticular lines [Wickham striae]); erythema migrans (flat, erythematous, rapidly expanding [days], asymptomatic, annular lesion at the site of a tick bite, central clearing as the lesion expands, ‘bull’s eye’ appearance); erythema multiforme (acraly distributed, distinct targetoid lesions with central erythema); erythema dyschromicum perstans (slowly progressive, symmetrical, ashy gray-colored macules/patches, truncal distribution, slightly raised, erythematous border in the early stage); erythema marginatum (migratory, rapid expanding [hours], evanescent, non-pruritic, arciform/polycyclic/annular, erythematous plaque, lesion extends centrifugally with central clearing, border is irregular, serpiginous, and sharp on the outer edge but diffuse on the inner edge, a major manifestation of acute rheumatic fever); superficial erythema annulare centrifugum (annular or arcuate, erythematous patch/plaque that enlarge centrifugally with central clearing, ‘trailing scale’ along the inner portion of the advancing edge, associated with drugs, systemic infection, malignancies, and autoimmune disease); impetigo contagiosum (characteristic yellowish-brown or honey-colored ‘stuck-on’ crust over the superficial erosion, satellite lesions in the vicinity, most common on the face); erythema gyratum repens (paraneoplastic eruption, erythematous concentric rings with trailing scale at their edges, characteristic ‘wood grain’ appearance); and secondary syphilis (asymptomatic, diffuse, symmetrical, round-to-oval, pink-to-reddish-brown monomorphous macules or patches on the trunk and extremities including the palms and soles, absence of herald patch, ‘moth-eaten’ alopecia, lymphadenopathy, history of venereal exposure, and/or chancre).15,49,52,54,56,60,90–96

Complications

Tinea corporis is contagious and therefore may have significant psychological, social, and occupational health effects.84 Secondary bacterial superinfection may occur as a result of scratching and abrasion of the skin. Post-inflammatory hypopigmentation and hyperpigmentation may occur.59 Dermatophytid (id) reaction, also known as id reaction, auto-eczematization, or disseminated eczema is a secondary dermatitic eruption that may occur in association with a fungal infection especially just after commencement of systemic antifungal treatment.5 Affected patients often develop widespread, intensely pruritic, erythematous, scaly papules, maculopapules, papulovesicles, or pustules. Presumably,
the dermatitic eruption is an immunologic reaction to the fungal antigen like a delayed-type (type IV) hypersensitivity response. Rarely, psoriatic flares precipitated by tinea corporis have been described.97

Treatment

Non-pharmacologic measures

As fungi thrive best in moist and warm environments, patients should be advised to wear light and loose-fitting clothing.59 The skin should be kept clean and dry.

Pharmacotherapy

The standard treatment of tinea corporis is with topical antifungals and there is evidence of the superiority of topical antifungals over the use of placebo.84,98 Localized or superficial tinea corporis usually responds to topical antifungal therapy applied to the lesion and at least 2 cm beyond the lesion once or twice daily for 2–4 weeks.24 Commonly used topical antifungal agents include azoles (e.g. econazole, ketoconazole, miconazole, clotrimazole, miconazole, oxiconazole, sulconazole, sertaconazole, eberconazole, and luliconazole), allylamines (e.g. naftifine, terbinafine), benzylamine (butenafine), ciclopirox, and tolnaftate.18,24,99–110 In this regard, nystatin, which is an effective treatment for Candida infections, is not effective for tinea corporis.24

In a 2013 meta-analysis of 65 trials (trials with a common comparator and head-to-head trials) involving 14 topical antifungals, there was no significant difference among the antifungals regarding the outcome of mycologic cure at the end of the treatment.111 Pairwise comparison of topical antifungals showed that butenafine, naftifine, and terbinafine were significantly more efficacious in sustaining the cured outcome.111 A 2014 Cochrane review suggests that individual treatments with terbinafine and naftifine are effective and have few mild adverse events.112 Topical antifungal agents are generally well tolerated. Side effects are uncommon, except for rare instances of contact dermatitis. Common causes of treatment failure include poor compliance, drug resistance, reinfection from close contact and auto-inoculation, and misdiagnosis.113 Some authors suggest the addition of a topical corticosteroid to the topical antifungal agent, especially in individuals with inflammatory dermatomycosis.114,115

Systemic antifungal treatment is indicated if the lesion is extensive, deep (e.g. Majocchi granuloma), recurrent, chronic, or unresponsive to topical antifungal treatment; if the patient is immunodeficient; or if there are multiple site lesions.24,52,84 Randomized control trials support the efficacy of systemic treatment with oral antifungal agents.116,117 Oral antifungal agents used for the treatment of tinea corporis include itraconazole (children: 3–5 mg/kg/day [maximum 200 mg/day]; adults: 200 mg/day), fluconazole (children: 6 mg/kg once weekly [maximum: 200 mg once weekly]; adults: 200 mg once weekly), terbinafine granules (children: <25 kg, 125 mg/day; 25–35 kg, 187.5 mg/day; >35 kg, 250 mg/day), and terbinafine tablets (children: 10–20 kg, 62.5 mg/day; 21–40 kg, 125 mg/day; >40 mg, 250 mg/day; adults: 250 mg/day).2,24,56,118 The duration of treatment varies, depending on the response. The usual duration of treatment is 2–4 weeks but may take longer for recalcitrant cases.84 Oral ketoconazole should be avoided because of the risk of hepatotoxicity, adrenal insufficiency, and drug interactions.24 Oral griseofulvin (not available in many countries, including Canada) is less effective, has more adverse events, and requires longer duration of therapy.5,50 As such, oral griseofulvin is not the medication of choice in the treatment of tinea corporis. Combined therapy with oral and topical antifungal agents may increase the cure rate.119

In recent years, the incidence of tinea corporis refractory to terbinafine treatment has been on the rise.116,120–124 Terbinafine acts by inhibiting the enzyme squalene epoxidase, which is responsible for synthesis of ergosterol – an essential component of fungal cell wall.125 Resistance to terbinafine has largely been attributed to point mutations in the squalene epoxidase target gene (SQLE).123 Identification of the point mutation can be achieved by DNA sequencing of the SQLE gene of the fungal isolate. Subtherapeutic dosage, non-compliance to treatment, and abuse of over-the-counter topical preparations that combine antifungals with corticosteroids may also be contributory.116

Prevention

Close contact or sharing of fomites and clothing with an infected individual should be avoided.

Prognosis

The prognosis for localized tinea corporis is excellent with appropriate treatment and patient compliance. Recurrence may occur if therapy is stopped too soon without complete eradication of the fungi. Reinfection may occur if a reservoir (tinea pedis, tinea capitis, onychomycosis) of infection is present.5,50,125

Conclusion

A well-demarcated, sharply circumscribed, mildly erythematous, annular, scaly plaque with a raised leading edge, and scaling and central clearing on the body is characteristic of tinea corporis. At times, the diagnosis can be difficult due to the prior use of medications, such as calcineurin inhibitors or corticosteroids. Furthermore, diseases that present with annular lesions may mimic tinea corporis. Tinea corporis is a common fungal infection and the differential diagnosis is broad and, at times, difficult. Physicians must be familiar with this condition so that an accurate diagnosis can be made and appropriate treatment initiated.
Contributions: Professor Alexander KC Leung was involved in the conceptualization of the manuscript. He wrote the first draft of the paper and oversaw the manuscript creation. All the authors contributed to drafting and revising the manuscript and approved the final version submitted for publication. All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Disclosure and potential conflicts of interest: Professor Alexander KC Leung and Professor Kam Lun Hon are associate editors of Drugs in Context and confirm no other conflicts of interest. All other authors declare that they have no conflicts of interest relevant to this manuscript. The International Committee of Medical Journal Editors (ICMJE) Potential Conflicts of Interests form for the authors is available for download at: https://www.drugsincontext.com/wp-content/uploads/2020/07/dic.2020-5-6-COI.pdf

Acknowledgements: None.

Funding declaration: Professor Alexander KC Leung, Dr Joseph Lam, Dr Kin Fon Leong, and Professor Kam Lun Hon disclose no relevant funding associated with the preparation of this article.

Copyright: Copyright © 2020 Leung AKC, Lam JM, Leong KF, Hon KL. Published by Drugs in Context under Creative Commons License Deed CC BY NC ND 4.0. No commercial use without permission.

Correct attribution: Copyright © 2020 Leung AKC, Lam JM, Leong KF, Hon KL. https://doi.org/10.7573/dic.2020-5-6. Published by Drugs in Context under Creative Commons License Deed CC BY NC ND 4.0.

Article URL: https://www.drugsincontext.com/tinea-corporis:-an-updated-review

Correspondence: Alexander KC Leung, The University of Calgary, Alberta Children’s Hospital, #200, 233 – 16th Avenue NW, Calgary, Alberta, Canada T2M 0H5. aleung@ucalgary.ca

Provenance: Invited; externally peer reviewed.

Submitted: 13 May 2020; Peer review comments to author: 8 June 2020; Revised manuscript received: 18 June 2020; Accepted: 25 June 2020; Publication date: 20 July 2020.

Drugs in Context is published by BioExcel Publishing Ltd. Registered office: Plaza Building, Lee High Road, London, England, SE13 5PT.

BioExcel Publishing Limited is registered in England Number 10038393. VAT GB 252 7720 07.

For all manuscript and submissions enquiries, contact the Editorial office editorial@drugsincontext.com

For all permissions, rights and reprints, contact David Hughes david.hughes@bioexcelpublishing.com

References

1. Hsu S, Le EH, Khoshevis MR. Differential diagnosis of annular lesions. Am Fam Physician. 2001;64(2):289–296. PMID: 11476274.
2. Sahoo AK, Mahajan R. Management of tinea corporis, tinea cruris, and tinea pedis: a comprehensive review. Indian Dermatol Online J. 2016;7(2):77–86. https://doi.org/10.4103/2229-5178.178099
3. Surendran KA, Bhat RM, Boloor R, Nandakishore B, Sukumar D. A clinical and mycological study of dermatophytic infections. Indian J Dermatol. 2014;59(3):262–267. https://doi.org/10.4103/0019-5154.131391
4. Alter SJ, McDonald MB, Schloemer J, Simon R, Trevino J. Common child and adolescent cutaneous infestations and fungal infections. Curr Probl Pediatr Adolesc Health Care. 2018;48(1):1–25. https://doi.org/10.1016/j.cppeds.2017.11.001
5. Leung AKC, Hon KL, Leong KF, Barankin B, Lam JM. Tinea capitis: an updated review. Recent Pat Inflamm Allergy Drug Discov. 2020;14(1):58–68. https://doi.org/10.2174/1872213X14666200106145624
6. Adams BB. Tinea corporis gladiatorum. J Am Acad Dermatol. 2002;47(2):286–290. https://doi.org/10.1067/jijd.2002.120603
7. Carrascal-Correa DF, Zuluaga A, González A. Species distribution of the main aetiologic agents causing skin dermatophytosis in Colombian patients: a 23-year experience at a Mycological Reference Center. Mycoses. 2020;63(5):494–499. https://doi.org/10.1111/myc.13073
8. Gnat S, Łagowski D, Nowakiewicz A, Ziępka P. Tinea corporis by Microsporum canis in mycological laboratory staff: unexpected results of epidemiological investigation. Mycoses. 2018;61(12):945–953. https://doi.org/10.1111/myc.12832
9. Khoury S, Kidd S, Warren L. Neonatal tinea corporis due to a novel strain of Trichophyton rubrum. Australas J Dermatol. 2015;56(4):311–312. https://doi.org/10.1111/ajd.12223
10. Kokollari F, Daka A, Blyta Y, Ismaili F, Haxhijaha-Lulaj K. Tinea corporis, caused by Microsporum canis – a case report from Kosovo. Med. Arch. 2015;69(5):345–346. https://doi.org/10.5455/medarch.2015.69.345-346
11. Lee WJ, Sim HB, Jang YH, et al. Skin infection due to Trichophyton tonsurans still occurs in people in Korea but not as outbreaks. J Korean Med Sci. 2016;31(2):296–300. https://doi.org/10.3346/jkms.2016.31.2.296
12. Takenaka M, Murota H, Nishimoto K. Epidemiological survey of 42 403 dermatophytosis cases examined at Nagasaki University Hospital from 1966 to 2015. J Dermatol. 2020. https://doi.org/10.1111/1346-8138.15340.
13. Costa JE, Neves RP, Delgado MM, Lima-Neto RG, Morais VM, Coêlho MR. Dermatophytosis in patients with human immunodeficiency virus infection: clinical aspects and etiologic agents. Acta Trop. 2015;150:111–115.
https://doi.org/10.1016/j.actatropica.2015.07.012

14. Hazarika D, Jahan N, Sharma A. Changing trend of superficial mycoses with increasing nondermatophyte mold infection: a clinicomycological study at a tertiary referral center in Assam. Indian J Dermatol. 2019;64(4):261–265.
https://doi.org/10.4103/ijd.JD_579_18

15. Kelly BP. Superficial fungal infections. Pediatr Rev. 2012;33(4):e22–e37. https://doi.org/10.1542/pir.33-4-e22

16. Yee G, Al Aboud AM. Tinea corporis. Treasure Island, FL: StatPearls Publishing; 2019 Nov 14–2020 Jan. PMID: 31335080

17. Brosh-Nissimov T, Ben-Ami R, Astman N, Malin A, Baruch Y, Galor I. An outbreak of Microsporum canis infection at a military base associated with stray cat exposure and person-to-person transmission. Mycoses. 2018;61(7):472–476.
https://doi.org/10.1111/myc.12771

18. Gupta AK, Foley KA, Versteeg SG. New antifungal agents and new formulations against dermatophytes. Mycopathologia. 2017;182(1–2):127–141. https://doi.org/10.1007/s11046-016-0045-0

19. Pasquetti M, Min ARM, Scacchetti S, Dogliero A, Peano A. Infection by Microsporum canis in paediatric patients: a veterinary perspective. Vet Sci. 2017;4(3):46. https://doi.org/10.3390/vetsci4030046

20. Bhagra S, Ganju SA, Sood A, Guleria RC, Kanga AK. Microsporum gypseum dermatophytosis in a patient of acquired immunodeficiency syndrome: a rare case report. Indian J Med Microbiol. 2013;31(3):295–298.
https://doi.org/10.4103/0255-0857.115656

21. Brasch J, Hügel R, Lipowsky F, Gräser Y. Tinea corporis caused by an unusual strain of Microsporum audouinii that perforates hair in vitro. Mycosis. 2010;53(3):360–362. https://doi.org/10.1111/j.1439-0507.2009.01712.x

22. Brasch J, Müller S, Gräser Y. Unusual strains of Microsporum audouinii causing tinea in Europe. Mycoses. 2015;58(10):573–577. https://doi.org/10.1111/myc.12358

23. Fike JM, Kolllipara R, Alkul S, Stetson CL. Case report of onychomycosis and tinea corporis due to Microsporum gypseum. J Cutan Med Surg. 2018;22(2):94–96. https://doi.org/10.1007/s11046-017-9439-1

24. Goldstein AO, Goldstein BG. Dermatophyte (tinea) infections. Waltham, USA: UpToDate.

25. Jiang Y, Zhan P, Al-Hatmi AMS, et al. Extensive tinea capitis and corporis in a child caused by Trichophyton verrucosum. Pediatr Dermatol. 2015;33(4):596–598. https://doi.org/10.1111/pde.12164

26. Lee WJ, Park JH, Kim JY, et al. Low but continuous occurrence of Microsporum gypseum infection in the study on 198 cases in South Korea from 1979 to 2016. Ann Dermatol. 2018;30(4):427–431. https://doi.org/10.5021/ad.2018.30.4.427

27. Romano C, Feci L, Fimiani M. Thirty-six cases of epidemic infections due to Trichophyton violaceum in Siena, Italy. Mycoses. 2014;57(5):307–311. https://doi.org/10.1111/myc.12164

28. Smriti C, Anuradha S, Kamlesh T, Isampreet K, Nitin K. Tinea corporis due to Trichophyton violaceum: a report of two cases. Indian J Med Microbiol. 2015;33(4):596–598. https://doi.org/10.4103/0255-0857.167334

29. Yang YP, Sheng P, Liu Z, et al. Kerion and tinea corporis caused by rabbit-derived Trichophyton interdigitale in three siblings and one consulting doctor using β-tubulin gene to identify the pathogen. Mycopathologia. 2016;181(7–8):539–546. https://doi.org/10.1007/s11046-016-0998-2

30. Ansari S, Hedayati MT, Noripour-Sisakht S, et al. A 9-month-old girl from Iran with extensive erythematous plaques due to Trichophyton simii, a zoophilic dermatophyte. Mycopathologia. 2016;181(5–6):451–455. https://doi.org/10.1007/s11046-016-9993-1

31. Bonifaz A, Córdoba-Garcia B, Simancas-Llanos T, Hernández MA, Martínez-Herrera E, Tirado-Sánchez A. Dermatophytosis caused by Nannizzia nana in two siblings. Rev Iberoam Microl. 2019;36(1):30–33. https://doi.org/10.1016/j.rijam.2018.02.003

32. Dolenc-Voljč M, Gasparič J. Human infections with Microsporum gypseum complex (Nannizzia gypsea) in Slovenia. Mycopathologia. 2017;182(11–12):1069–1075. https://doi.org/10.1007/s11046-017-0194-9

33. Gnat S, Lagowski D, Nowakiewicz A, Dyląg M. Tinea corporis caused by Trichophyton equinum transmitted from asymptomatic dogs to two siblings. Braz J Microbiol. 2019. https://doi.org/10.1016/j.bjm.2019.01.007

34. Kim J, Tsuchihashi H, Hiruma M, Kano R, Ikeda S. Tinea corporis due to Trichophyton erinacei probably transmitted from a hedgehog. Med Mycol J. 2018;59(4):E77–E79. https://doi.org/10.3314/mmj.18-00006

35. Kobayashi M, Kitahara H, Yaguchi T, Sato T. A case of tinea corporis on the arm caused by Nannizzia gypsea with dermatoscopic images. J Dtsch Dermatol Ges. 2018;16(6):784–786. https://doi.org/10.1111/ddg.13549

36. Mansouri P, Farshi S, Khoosravi AR, Naraghi ZS, Chalangari R. Trichophyton Schoenleini-induced widespread tinea corporis mimicking parapsoriasis. J Mycol Med. 2012;22(2):201–205. https://doi.org/10.1007/jmyc.2012.04.005

37. Miyazato H, Yamaguchi S, Taira K, et al. Tinea corporis caused by Microsporum gallinae: first clinical case in Japan. J Dermatol. 2011;38(5):473–478. https://doi.org/10.1111/j.1439-0507.2010.01090.x

38. Noripour-Sisakht S, Rezaei-Matehkolaei A, Abastabar M, et al. Microsporum fulvum, an ignored pathogenic dermatophyte: a new clinical isolation from Iran. Mycopathologia. 2013;176(1–2):157–160. https://doi.org/10.1007/s11046-013-9665-9
39. Soankasina AH, Rakotozandrindrainy N, Andrianteloasy S, et al. Dermatophyte infection caused by Nannizzia gypsea: a rare case report from Madagascar. Med Mycol Case Rep. 2017;20:7–9. https://doi.org/10.1016/j.mycmr.2017.12.001
40. Veraldi S, Genovese G, Peano A. Tinea corporis caused by Trichophyton equinum in a rider and review of the literature. Infection. 2018;46(1):135–137. https://doi.org/10.1007/s10117-017-1067-3
41. Poudyal Y, Joshi SD. Medication practice of patients with dermatophytosis. JNMA J Nepal Med Assoc. 2016;55(203):7–10. https://doi.org/10.31729/jnma.2830
42. Ebrahimi M, Zarrinifar H, Naseri A, et al. Epidemiology of dermatophytosis in Northeastern Iran: a suburban region. Curr Med Mycol. 2019;5(2):16–21. https://doi.org/10.18502/cmm.5.2.1156
43. Ely JW, Rosenfeld S, Seabyrie Stone M. Diagnosis and management of tinea infections. Am Fam Physician. 2014;90(10):702–710. PMID: 25403034
44. Leung AKC, Barankin B. An itchy, round rash on the back of an adolescent’s neck. Consultant for Pediatricians. 2014;13:466–469. https://www.consult360.com/articles/itchy-round-rash-back-adolescent-s-neck. Accessed June 22, 2020.
45. Palit A, Inamadar AC. Annular, erythematous skin lesions in a neonate. Indian Dermatol Online J. 2012;3(1):45–47. https://doi.org/10.4103/2229-5178.93504
46. Andrews MD, Burns M. Common tinea infections in children. Am Fam Physician. 2008;77(10):1415–1420. PMID: 18533375.
47. Czaika VA. Misdiagnosed zoophilic tinea faciei and tinea corporis effectively treated with isocarboxazid. Mycoses. 2013;56(Suppl. 1):26–29. https://doi.org/10.1111/myc.12057
48. Menoff P, Kruger C, Ginter-Hanselmayer G, Tietz HJ. Mycology – an update. Part 1: dermatomycosis: causative agents, epidemiology and pathogenesis. J Dtsch Dermatol Ges. 2014;12(3):188–209. https://doi.org/10.1111/ddg.12245
49. Leung AKC, Lam JM, Leong KF. Childhood solitary cutaneous mastocytoma: clinical manifestations, diagnosis, evaluation, and management. Curr Pediatr Rev. 2019;15(1):42–46. https://doi.org/10.2174/15733963156661812021603952
50. Leung AKC, Lam JM, Leong KF, et al. Onychomycosis: an updated review. Drugs. 2017;46(1):113–127. https://doi.org/10.1007/s40265-016-0458-8
51. Yin B, Xiao Y, Ran Y, Kang D, Dai Y, Lama J. Microsporum canis infection in three familial cases with tinea capitis and tinea corporis. Mycoses. 2013;63(10):429–435. https://doi.org/10.1111/myc.12057
52. Gupta AK, Chaudhry M, Elewski B. Tinea corporis, tinea cruris, tinea nigra, and piedra. Acad Pediatr. 2013;13(1):466–469. https://doi.org/10.1016/j.apdp.2012.11.002
53. Leung AKC, Barankin B. An itchy, round rash on the back of an adolescent’s neck. Consultant for Pediatricians. 2014;13:466–469. https://www.consult360.com/articles/itchy-round-rash-back-adolescent-s-neck. Accessed June 22, 2020.
54. Singh S, Verma P, Chandra U, Tiwary NK. Risk factors for chronic and chronic-relapsing tinea corporis, tinea cruris and tinea faciei: results of a case-control study. Indian J Dermatol Venereol Leprol. 2019;85(2):197–200. https://doi.org/10.4103/ijdvl.IJDVL_807_17
55. Ziemer M, Seyfarth F, Elsner P, Hipler UC. Atypical manifestations of tinea corporis. J Dtsch Dermatol Ges. 2013;11(3):249–255. https://doi.org/10.1111/ddg.12057
56. Kaushik N, Pujalte GG, Reese ST. Superficial fungal infections. Prim Care. 2015;42(4):501–516. https://doi.org/10.1016/j.pop.2015.08.004
57. Leung AKC, Lam JM, Leong KF, et al. Onychomycosis: an updated review. Recent Pat Inflamm Allergy Drug Discov. 2020;14(1):32–45. https://doi.org/10.2174/1872213X1366619020690713
58. Qadim HH, Golforoushan F, Azimi H, Goldust M. Factors leading to dermatophytosis. Ann Parasitol. 2013;59(2):99–102. PMID: 24171304.
59. Singh S, Verma P, Chandra U, Tiwary NK. Risk factors for chronic and chronic-relapsing tinea corporis, tinea cruris and tinea faciei: results of a case-control study. Indian J Dermatol Venereol Leprol. 2019;85(2):197–200. https://doi.org/10.4103/ijdvl.IJDVL_807_17
60. Ziemer M, Seyfarth F, Elsner P, Hipler UC. Atypical manifestations of tinea corporis. J Dtsch Dermatol Ges. 2013;11(3):249–255. https://doi.org/10.1111/ddg.12057
61. Kaushik N, Pujalte GG, Reese ST. Superficial fungal infections. Prim Care. 2015;42(4):501–516. https://doi.org/10.1016/j.pop.2015.08.004
62. Leung AKC, Lam JM, Leong KF, et al. Onychomycosis: an updated review. Drugs. 2017;46(1):113–127. https://doi.org/10.1007/s40265-016-0458-8
63. Ziemer M, Seyfarth F, Elsner P, Hipler UC. Atypical manifestations of tinea corporis. J Dtsch Dermatol Ges. 2013;11(3):249–255. https://doi.org/10.1111/ddg.12057
64. Kaushik N, Pujalte GG, Reese ST. Superficial fungal infections. Prim Care. 2015;42(4):501–516. https://doi.org/10.1016/j.pop.2015.08.004
65. Ziemer M, Seyfarth F, Elsner P, Hipler UC. Atypical manifestations of tinea corporis. J Dtsch Dermatol Ges. 2013;11(3):249–255. https://doi.org/10.1111/ddg.12057
66. Wilson EK, Deweber K, Berry JW, Wilckens JH. Cutaneous infections in wrestlers. Sports Health. 2013;5(5):423–437. https://doi.org/10.1177/1941738113481179
67. Kermani F, Moosazadeh M, Hosseini SA, Bandalizadeh Z, Barzegari S, Shokohi T. Tinea gladiatorum and dermatophyte contamination among wrestlers and in wrestling halls: a systematic review and meta-analysis. *Curr Microbiol*. 2020;77(4):602–611. https://doi.org/10.1007/s00284-019-01816-3

68. del Boz J, Crespo V, Rivas-Ruiz F, de Troya M. Tinea incognito in children: 54 cases. *Mycoses*. 2011;54(3):254–258. https://doi.org/10.1111/j.1439-0507.2009.01810.x

69. Leung AKC, Adams SP, Barankin B. Boy with pruritic rash on both cheeks. *Consultant Pediatrics*. 2013;12:20–23. https://www.consultant360.com/articles/boy-pruritic-rash-both-cheeks. Accessed June 22, 2020.

70. Leung AKC, LeongKF, Lam JM. Tinea imbricata. *J Pediatr*. 2018;200:285–285.e1. https://doi.org/10.1016/j.jpeds.2018.04.012

71. Su H, Li L, Cheng B, et al. Trichophyton rubrum infection characterized by Majocchi’s granuloma and deeper dermatophytosis: case report and review of published literature. *Mycopathologia*. 2017;182(5–6):549–554. https://doi.org/10.1007/s11046-016-0099-z

72. Gallo JG, Woods M, Graham RM, Jennesson AV. A severe transmissible Majocchi’s granuloma in an immunocompetent returned traveler. *Med Mycol Case Rep*. 2017;18:5–7. https://doi.org/10.1016/j.mmcr.2017.07.003

73. Boral H, Durdu M, Ilkot M. Majocchi’s granuloma: current perspectives. *Infect Drug Resist*. 2018;11:751–760. https://doi.org/10.2147/IDR.S145027

74. Ranganathan S, Barankin B, Ahmed S. Boy with pruritic rash on both cheeks. *Indian J Dermatol*. 2017;62(3):404–405. https://doi.org/10.1016/j.ijid.2017.03.002

75. Leung AKC, Leong KF, Lam JM. Tinea corporis. *Indian J Dermatol*. 2011;54:241–273. https://doi.org/10.4103/1592-0732.84122

76. Aalfs AS, Jonkman MF. Tinea corporis bullosa due to Microsporum canis mimicking linear IgA bullous dermatosis. *Eur J Dermatol*. 2012;22(6):805–806. https://doi.org/10.1684/ejd.2012.1837

77. Mareş M, Năstasă V, Apetrei IC, Sârbescu M. Tinea corporis bullosa due to Trichophyton schoenleinii: case report. *Mycopathologia*. 2012;174(3):319–322. https://doi.org/10.1007/s11046-012-9553-8

78. Sahu P, Srinivas K, Leong KF, et al. Tinea corporis bullosa secondary to Trichophyton verrucosum: a newer etiological agent with literature review. *Indian J Dermatol*. 2020;65(1):76–78. https://doi.org/10.4103/ijd.ID_483_19

79. Brown J, Carvey M, Beiu C, Hage R. Atypical tinea corporis revealing a human immunodeficiency virus infection. *Cureus*. 2020;12(1):e6551. https://doi.org/10.7559/cureus.6551

80. Romano C, Massai L, Strangi R, Feci L, Miracco C, Fimiani M. Tinea corporis purpura and onychomycosis caused by Trichophyton violaceum. *Mycoses*. 2011;54(2):175–178. https://doi.org/10.1111/j.1439-0507.2009.01772.x

81. Bhat YJ, Keen A, Hassan I, Latif I, Bashir S. Can dermoscopy serve as a diagnostic tool in dermatophytosis? A pilot study. *Indian Dermatol Online J*. 2019;10(5):530–535. https://doi.org/10.4103/idoj.IDOJ_423_18

82. Verrier J, Bontems O, Fratti M, Salamin K, Monod M. Dermatophyte identification in skin and hair samples using a simple and reliable nested polymerase chain reaction assay. *Infant & Child Dermatol*. 2018;16(1):295–301. https://doi.org/10.1111/ijid.13285

83. Brown J, Carvey M, Beiu C, Hage R. Atypical tinea corporis revealing a human immunodeficiency virus infection. *Cureus*. 2020;12(1):e6551. https://doi.org/10.7559/cureus.6551

84. Rajagopalan M, Inamadar A, Mittal A, et al. Expert consensus on the management of dermatophytosis in India (ECTODERM India). *J Dermatol*. 2012;39(8):612–614. https://doi.org/10.1111/j.1439-0507.2012.01837.x

85. Romano C, Massai L, Strangi R, Feci L, Miracco C, Fimiani M. Tinea corporis purpura and onychomycosis caused by Trichophyton violaceum. *Mycoses*. 2011;54(2):175–178. https://doi.org/10.1111/j.1439-0507.2009.01772.x

86. Bhat YJ, Keen A, Hassan I, Latif I, Bashir S. Can dermoscopy serve as a diagnostic tool in dermatophytosis? A pilot study. *Indian Dermatol Online J*. 2019;10(5):530–535. https://doi.org/10.4103/idoj.IDOJ_423_18

87. Verrier J, Bontems O, Fratti M, Salamin K, Monod M. Dermatophyte identification in skin and hair samples using a simple and reliable nested polymerase chain reaction assay. *Br J Dermatol*. 2013;168(2):295–301. https://doi.org/10.1111/bjd.12015

88. Verrier J, Monod M. Diagnosis of dermatophytosis using molecular biology. *Mycopathologia*. 2017;182(1-2):193–202. https://doi.org/10.1007/s11046-016-0038-z

89. Hon KL, Loo S, Leung AKC, Li JTS, Lee VYW. An overview of drug discovery efforts for eczema: why is this itch so difficult to scratch? *Expert Opin Drug Discov*. 2020;15(4):487–498. https://doi.org/10.1080/17460441.2020.1722639

90. Khosravi AR, Mansouri P, Nikaein D, et al. Severe tinea corporis due to Trichophyton verrucosum mimicking discoid lupus erythematosus. *J Mycol Med*. 2012;22(1):92–95. https://doi.org/10.1007/s11046-012-9001-0

91. Leung AKC, Lam JM. Erythema dyschromicum perstans in an 8-year-old Indian child. *Case Rep Pediatr*. 2018;2018:2143089. https://doi.org/10.1155/2018/2143089
94. Shimoyama H, Nakashima C, Hase M, Sei Y. A case of tinea corporis due to Trichophyton tonsurans that manifested as impetigo. Med Mycol J. 2016;57(3):E59–E61. https://doi.org/10.3314/mmj.15-00020

95. Trayes KP, Savage K, Studdiford JS. Annular lesions: diagnosis and treatment. Am Fam Physician. 2018;98(5):283–291. PMID: 30216021.

96. Unwala R. Approach to the patient with annular skin lesions. Waltham, USA: UpToDate. https://www.uptodate.com/contents/approach-to-the-patient-with-annular-skin-lesions. Accessed June 23, 2020.

97. Laguna C. Tinea corporis in a psoriatic patient. Mycoses. 2012;55(1):90–92. https://doi.org/10.1111/j.1439-0507.2010.01990.x

98. Rotta I, Otuki MF, Sanches AC, Correr CJ. Efficacy of topical antifungal drugs in different dermatomycoses: a systematic review with meta-analysis. Rev Assoc Med Bras. 2012;58(3):308–318. PMID: 22735222.

99. Abdul Bari MA. Comparison of superficial mycosis treatment using butenafine and bifonazole nitrate clinical efficacy. J Drugs Dermatol. 2013;58(1):150–154. https://doi.org/10.4103/0253-7613.194850

100. Choudhary SV, Agthi T, Bisati S. Efficacy and safety of terbinafine versus itraconazole in treatment of dermatophytic localised tinea corporis and tinea cruris. Indian J Dermatol. 2016;48(6):659–664. https://doi.org/10.4103/0253-7613.194850

101. Czaika VA. Effective treatment of tinea corporis due to Trichophyton mentagrophytes with combined isoconazole nitrate and diflucortolone valerate therapy. Mycoses. 2013;56(Suppl. 1):30–32. https://doi.org/10.1111/myc.12068

102. Gold M, Dhawan S, Verma A, Kuligowski M, Dobrowski D. Efficacy and safety of naftifine HCl cream 2% in the treatment of pediatric subjects with tinea corporis. J Drugs Dermatol. 2016;15(6):743–748. PMID: 2772083.

103. Gupta AK, Daigle D. A critical appraisal of once-daily topical luliconazole for the treatment of superficial fungal infections. In: The diagnosis and management of tinea. https://doi.org/10.1136/bmj.e4380

104. Chatterjee D, Ghosh SK, Sen S, Sarkar S, Hazra A, De R. Efficacy and tolerability of topical sertaconazole in localized dermatophytosis: a randomized, observer-blind, parallel group study. Indian J Pharmacol. 2016;48(6):659–664. https://doi.org/10.4103/0253-7613.194850

105. Lagana C. Tinea corporis in a psoriatic patient. Mycoses. 2012;55(1):90–92. https://doi.org/10.1111/j.1439-0507.2010.01990.x

106. Rotta I, Otuki MF, Sanches AC, Correr CJ. Efficacy of topical antifungal drugs in different dermatomycoses: a systematic review with meta-analysis. Rev Assoc Med Bras. 2012;58(3):308–318. PMID: 22735222.

107. Abdul Bari MA. Comparison of superficial mycosis treatment using butenafine and bifonazole nitrate clinical efficacy. J Drugs Dermatol. 2013;58(1):150–154. https://doi.org/10.4103/0253-7613.194850

108. Choudhary SV, Agthi T, Bisati S. Efficacy and safety of terbinafine versus itraconazole in treatment of dermatophytic localised tinea corporis and tinea cruris. Indian J Dermatol. 2016;48(6):659–664. https://doi.org/10.4103/0253-7613.194850

109. Abreu Filho CA, de Filipe Júnior MA, da Silva MC, et al. Clinical efficacy of topical antifungal drugs and their comparative efficacy in tinea corporis and tinea cruris. Indian J Dermatol. 2016;51(1):116–119. https://doi.org/10.4103/0019-5154.61998

110. Sulaiman A, Wang X, Fan J, et al. Analysis on curative effects and safety of 2% lirunaftate ointment in treating tinea pedis and tinea corporis. Glob J Health Sci. 2015;7(2):1–7. https://doi.org/10.5539/gjhs.v7n2p150

111. Shivamurthy R, Reddy SG, Kallappa R, Somashekar SA, Patil D, Patil UN. Comparison of topical anti-fungal agents sertaconazole (2%) cream versus amorolfine and clotrimazole in the treatment of tinea corporis. Indian J Dermatol. 2011;56(6):657–662. https://doi.org/10.4103/0253-7613.194850

112. Khanna D, Bharti S. Luliconazole for the treatment of fungal infections: an evidence-based review. Core Evid. 2014;9:113–124. https://doi.org/10.2147/CE.S49629

113. Saunders J, Maki K, Koski R, Nybo SE. Tavaborole, efinaconazole, and luliconazole: three new antymycotic agents for the treatment of dermatophytic fungi. J Pharm Pract. 2017;30(6):621–630. https://doi.org/10.1177/0897190016660487

114. Shivasurumithy RP, Reddy SG, Kallappa R, Somashekar SA, Patil D, Patil UN. Comparison of topical anti-fungal agents sertaconazole and clotrimazole in the treatment of tinea corporis in an observational study. J Clin Diagn Res. 2014;8(9):HC09–HC12. https://doi.org/10.7860/JDCR/2014/10210.4866

115. Sulaiman A, Wan X, Fan J, et al. Analysis on curative effects and safety of 2% lirunaftate ointment in treating tinea pedis and tinea corporis & cruris. Pak J Pharm Sci. 2013;30(3(Special)):1103–1106. PMID: 28671089.

116. Rojko M, Ziegelmann PK, Otuki MF, Riveros BS, Bernardo NLM, Correr CJ. Efficacy of topical antifungals in the treatment of dermatophytosis: a mixed-treatment comparison meta-analysis involving 14 treatments. JAMA Dermatol. 2013;149(3):341–349. https://doi.org/10.1001/jamadermatol.2013.1721

117. El-Gohary M, van Zuuren EJ, Fedorowicz Z, et al. Topical antifungal treatments for tinea cruris and tinea corporis. Cochrane Database Syst Rev. 2014;(8):CD009992. https://doi.org/10.1002/14651858.CD009992.pub2

118. Moriarty B, Hay R, Morris-Jones R. The diagnosis and management of tinea. BMJ. 2012;345:e4380. https://doi.org/10.1136/bmj.e4380

119. Hube B, Hay R, Brash J, Veraldi S, Schaller M. Dermatomycoses and inflammation: the adaptive balance between growth, damage, and survival. J Mycol Med. 2015;25(1):e44–e58. https://doi.org/10.1016/j.jmycmed.2014.11.002

120. Veraldi S, Schianchi R, Pontini P, Gorani A. The association of isoconazole-diflucortolone in the treatment of pediatric tinea corporis. J Dermatolog Treat. 2018;29(2):200–201. https://doi.org/10.1091/jdmt.2017.1360988

121. Bhatia A, Kanish B, Badyal DK, Kate P, Choudhary S. Efficacy of oral terbinafine versus itraconazole in treatment of dermatophytic infection of skin – a prospective, randomized comparative study. Indian J Pharmacol. 2019;51(2):116–119. https://doi.org/10.4103/ijp.JP_578_17

122. Sharma P, Bhalla M, Thami GP, Chander J. Evaluation of efficacy and safety of oral terbinafine and itraconazole combination therapy in the management of dermatophytosis. J Dermatolog Treat. 2019;1–5. https://doi.org/10.1093/jdmt/2019.1.01612835

123. Sulitana T, Saha SK, Hossain M, et al. Current trends of using systemic antifungal drugs and their comparative efficacy in tinea corporis and tinea cruris in an outpatient department of dermatology in a tertiary level hospital. Myrmensingh Med J. 2018;27(1):52–56. PMID: 29459592.
119. Drago L, Micali G, Papini M, Piraccini BM, Veraldi S. Management of mycoses in daily practice. *G Ital Dermatol Venereol*. 2017;152(6):642–650. https://doi.org/10.23736/S0392-0488.17.05683-8

120. Kakurai M, Harada K, Maeda T, Hiruma J, Kano R, Demitsu T. Case of tinea corporis due to terbinafine-resistant *Trichophyton interdigitale*. *J Dermatol*. 2020;47(4):e104–e105. https://doi.org/10.1111/1346-8138.15243

121. Khurana A, Sardana K, Chowdhary A. Antifungal resistance in dermatophytes: recent trends and therapeutic implications. *Fungal Genet Biol*. 2019;132:103255. https://doi.org/10.1016/j.fgb.2019.103255

122. Majid I, Sheikh G, Kanth F, Hakak R. Relapse after oral terbinafine therapy in dermatophytosis: a clinical and mycological study. *Indian J Dermatol*. 2016;61(5):529–533. https://doi.org/10.4103/0019-5154.190120

123. Singh A, Masih A, Khurana A, et al. High terbinafine resistance in *Trichophyton interdigitale* isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. *Mycoses*. 2018;61(7):477–484. https://doi.org/10.1111/myc.12772

124. Singh S, Shukla P. End of the road for terbinafine? Results of a pragmatic prospective cohort study of 500 patients. *Indian J Dermatol Venereol Leprol*. 2018;84(5):554–557. https://doi.org/10.4103/ijdvl.IJDVL_526_17

125. Kong QT, Du X, Yang R, Huang SY, Sang H, Liu WD. Chronically recurrent and widespread tinea corporis due to *Trichophyton rubrum* in an immunocompetent patient. *Mycopathologia*. 2015;179(3-4):293–297. https://doi.org/10.1007/s11046-014-9834-5