Lowering nitrogen rates under the system of rice intensification enhanced rice productivity and nitrogen use efficiency in irrigated lowland rice

Primitiva Andrea Mboyerwa a,b,*, Kibebew Kibret c, Peter Mtakwa b, Abebe Aschalew d

a Africa Center of Excellence for Climate-Smart Agriculture and Biodiversity Conservation, Haramaya University, Ethiopia; P. O. Box 138, Dire Dawa, Ethiopia
b Sokone University of Agriculture, College of Agriculture, Department of Soil and Geological Sciences, P. O. Box 3008, Chao Kikau Morogoro, Tanzania
c School of Natural Resources Management and Environmental Sciences, Haramaya University, Dire Dawa, Ethiopia
d Bahir Dar University, College of Agriculture and Environmental Sciences, P. O. Box 79, Bahir Dar, Ethiopia

ARTICLE INFO

Keywords:
Crop management practices
Environmental conservation
Nitrogen use efficiency
Sustainable intensification

ABSTRACT

Among the essential plant nutrients, nitrogen (N) is the most important and universally deficient in rice cropping systems worldwide. Despite different practices available for improvement of N management, nitrogen use efficiency (NUE) is still very low in rice, particularly under conventional management practices. This study was conducted to assess the effect of two crop management practices including the system of rice intensification (SRI) versus conventional management practices (CP) with four N application levels (60, 90, 120, and 150 kg N ha^{-1}) and absolute control (i.e., without N application) on rice growth, grain yield, and NUE. Experiments were conducted in split-plot randomized complete block design in three replicates. Crop management practices and N levels were treated as the main effect of main-plots and sub-plots, respectively with replicate blocks treated as random factors. Results indicated that deploying of SRI increased rice grain yield by 17.5 and 52.4% during wet and dry seasons, respectively compared with the CP. Rice grain yield was significantly (p < 0.05) higher in SRI than in CP at all levels of N application compared. The application of N at 120 and 60 kg ha^{-1} resulted in the increase in rice grain yields by 49 and 46.5%, respectively, relative to the absolute control during wet and dry seasons. Nitrogen application had a significant effect (p < 0.05) on agronomic nitrogen use efficiency (ANUE) and partial factor productivity (PFP). Results also indicated that agronomic nitrogen use efficiency (ANUE) was higher (27.2 kg grain kg^{-1} N) during the wet season with an application of 60 kg N ha^{-1}. Furthermore, higher ANUE (23.8 kg grain kg^{-1} N) was recorded during dry season with an application of 90 kg N ha^{-1}. The significant (p < 0.05) interaction effects of treatments were recorded on PFP between SRI and 60 kg N ha^{-1} seasons. This study revealed that ANUE and PFP decreased with partial factor productivity (PFP). Results also indicated that agronomic nitrogen use efficiency (ANUE) was higher (27.2 kg grain kg^{-1} N) during the wet season with an application of 60 kg N ha^{-1}. Furthermore, higher ANUE (23.8 kg grain kg^{-1} N) was recorded during dry season with an application of 90 kg N ha^{-1}. The significant (p < 0.05) interaction effects of treatments were recorded on PFP between SRI and 60 kg N ha^{-1} during the wet (116.7 kg grain kg^{-1} N) and dry (105.8 kg grain kg^{-1} N) seasons. This study revealed that ANUE and PFP decreased with N application at the levels of 120 and 150 kg N ha^{-1} under SRI and CP during the two cropping seasons. The findings of the present study provide potential information that rice grain yield and higher NUE could be achieved at low N inputs under SRI, and thus reducing costs resulted from fertilizer inputs without compromising other environmental benefits.

1. Introduction

Rice (Oryza sativa L.) is one of the most important grain crops, and more than three billion people consume rice as food worldwide (Zhao et al., 2021). Tanzania is the largest (947,303 km²) country in East Africa and accounts for 9% (2.6 MT) of African rice production (30.8 MT) (Materu et al., 2018; FAOSTAT, 2014). In Tanzania, rice is the second most popular food crop after maize and the second most important commercial crop (Gowele et al., 2020). Although rice ranks as the second most consumed cereal in Tanzania, the productivity is estimated at 0.5 to 2 t ha^{-1} in the uplands and at 4.5 to 6.0 t ha^{-1} in the irrigated fields. These grain yields are far below the potential of 5 t ha^{-1} and 10–11 t ha^{-1} under proper resource endowment (Gowele et al., 2020; IRRI, 2013). Low rice productivity is associated with poor soil fertility, environmental degradation, intensive cropping systems, insufﬁcient and imbalanced use of fertilizers, use of local varieties, and unawareness of farmers to the improved crop management practices (Baral et al., 2020; Thakur et al., 2013).

Among the essential plant nutrients, nitrogen (N) is universally deﬁcient and the main yield limiting nutrient in rice cropping systems.

* Corresponding author.
E-mail addresses: primitivaandrea@yahoo.com, primitivaandrea@sua.ac.tz (P.A. Mboyerwa).

https://doi.org/10.1016/j.heliyon.2022.e09140
Received 8 November 2021; Received in revised form 7 February 2022; Accepted 15 March 2022
2405-8440/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The application of chemical N fertilizer is considered one of the options of improving grain yields in rice (Thakur et al., 2013; Jiang et al., 2004). The recovery of applied N and the proportion taken up by crop plants are usually less than 50% in traditionally-flooded paddy rice. These are attributed to rapid N losses through various pathways including nitrification-denitrification, ammonia volatilization, leaching, surface runoff, and drainage (Hameed et al., 2019; Chen et al., 2017). The low recovery of N may also result from blanket application of fertilizers which do not consider agro-climatic management conditions (Dobermann et al., 2003). The variations in the indigenous soil N supply capacities, crop N uptake efficiency, and soil moisture conditions may also affect N recovery (Baral et al., 2020). The production of rice by subsistence farmers makes use of traditional conventional methods (Katambara et al., 2013). Conventional methods consume large amounts of water resources as the practices involve keeping the soil flooded throughout the growing season. This increases the losses of N through different pathways (Zhao et al., 2021; Gowele et al., 2020; Islam et al., 2018; Yang et al., 2017).

The depletion of soil fertility and N deficiency are the major challenges in rice cropping systems on smallholder farms of Tanzania (Masiawo, 2016). A study conducted in nine farms of Mkindo Farmer Managed irrigation scheme in Tanzania showed that 100% of the soils were low in total N (Jumanne, 2016). Another study conducted by Amuri et al. (2013) depicted that some selected paddy growing soils in irrigation schemes of Tanzania were low in total N. Nitrogen use efficiency (NUE) is indicates the utilization of nitrogen in rice plants (Bagheri Novair et al., 2021). The NUE is an established metric used to benchmark N management (Congreves et al., 2021). It is also used for environmental and economic objectives of minimizing nutrient losses and the negative impact on surrounding water, air and ecosystems, as well as reducing costs associated with excessive fertilizer inputs (Congreves et al., 2021; Galloway et al., 2014). The NUE is defined as the fraction of applied N uptake by plant, rarely exceeding 30% in lowland rice (Baral et al., 2020).

The losses of N in rice agroecological cropping systems can be mitigated through the system of rice intensification (SRI). The system involves six principles, including water management under alternate wetting and drying (AWD) forms of water saving irrigation (Bagheri Novair et al., 2021). The practice maintains shallow water depth with intermittent drying rather than continuous flooding (Thakur et al., 2013). Therefore, there is a need to assess how a modified crop-soil-water management regime as proposed by SRI theory and practice will affect rice growth, grain yield, and NUE in local conditions. This study compared rice growth, grain yields and factor productivity for plants grown using SRI methods with those under conventional practices. The specific objectives were three-fold: (i) to assess the effects of different

Table 1. Details of experimental treatments.

Crop establishment method	Nitrogen levels kg N ha⁻¹	Age of seedling (d)	Spacing (cm)	Number of seedling hill⁻¹	Plant density (m⁻²)
SRI	ABC 0N	10	25 × 25	1	256 (16)
	60N				
	90N				
	120N				
	150N				
Conventional	ABC 0N	25	20 × 20	3	400 (25)
	60N				
	90N				
	120N				
	150N				

Key: SRI = System of rice intensification; ABC = absolute control. Values in parenthesis under the column of plant density are numbers of hill per unit area (m⁻²) in respective plots.

Table 2. Average values of the selected soil chemical characteristics of composite topsoil sample (0–20 cm) from the experimental field in 2019.

Soil property	Mean Value	Unit
Soil pH (1:2.5)	5.36	
EC	0.03	dS m⁻¹
Cu	3.47	mg kg⁻¹
Zn	2.6	mg kg⁻¹
Mn	7.13	mg kg⁻¹
Fe	1.65	mg kg⁻¹
TN	0.11	%
OC	0.59	%
OM	1.02	%
Av P	7.71	mg kg⁻¹
SO₄²⁻-S	1.04	mg kg⁻¹
Ca²⁺	6.37	cmol kg⁻¹
Mg²⁺	1.51	cmol kg⁻¹
Na⁺	0.06	cmol kg⁻¹
K⁺	0.07	cmol kg⁻¹
CEC	11	cmol kg⁻¹

Key: OC = organic carbon; TN = total nitrogen; TP = total phosphorus; Av. P = available phosphorus; CEC = cation exchange capacity; EC = electric conductivity.

Table 3. Average values of the selected soil physical characteristics of composite topsoil sample (0–20 cm) from the experimental field in 2019.

Soil property	Value	Unit
Bulk density	1.59	g/cm³
Sand	69.8	%
Silt	7.6	%
Clay	22.6	%
Soil Texture class	Sand clay loam	
Field capacity	22.2	% volume
Wilting point	14.4	% volume
Available water	0.08	cm/cm
Saturation	40	% volume
Hydraulic conductivity	1.43E-06	mm/hr
Saturated hydraulic conductivity (Ks)	13.3	mm/hr
Matric potential	175	kPa
Mean values followed by different letters denote significant difference between treatments at \(p < 0.05 \).

2. Materials and methods

2.1. Study site

Two consecutive field experiments using the same plots were conducted during the 2019 and 2020 cropping seasons. The experiment conducted during wet season covered the period of 19th February 2019 - 5th July 2019 and the dry season started on 5th September 2019 and ended on 21st January 2020. Field experiments were conducted at Mkindo Farmer Managed irrigation scheme located in Mkindo village in Mvomero District and Morogoro Region of Eastern. The district is located between latitudes 6°16’ and 6°18’ S and longitudes 37°32’ and 37°36’ E. The experiment site is located at latitude 6°15’13” S and longitude 37°32’19” E. The climate is tropical with two distinct dry and wet seasons. The average monthly maximum temperature at the experimental site ranges between 35.1 °C and 28.5 °C in February and June while the average monthly minimum temperature ranges between 20.4 °C and 15.8 °C in January, March and July. The mean relative humidity is 67.5% and the area experiences bimodal rainfall regime with short rains extending from October to December (OND) and long rains from March to May (MAM). The long rains (masika) range between 112.6 and 250.3 mm with a total rainfall of 571.1 mm while the short rains (vuli) vary between 52.6 and 116 mm with a total rainfall of 254.5 mm. The average annual rainfall ranges between 716.5 and 1503.5 mm (Gowele et al., 2020; Reuben et al., 2016; Kahimba et al., 2013). The average temperature and rainfall of Mkindo site for the past 21 years (1999–2020) are shown in Figure 1.

2.2. Soil sampling and analysis

Soils were sampled before establishing experiments and analyzed, where ten spots were sampled at a soil depth of 0–20 cm. The quartering procedure was used to get a composite soil sample which was subject to routine laboratory analysis. The soil samples were air-dried, ground and sieved to pass through 2 mm mesh and analyzed for the particle size distribution for textural class by Bouyoucos hydrometer method (Day, 1965), soil pH electrochemically in 1:2.5 (weight/volume) soil: water suspension (MacLean, 1982). Organic carbon was measured by the wet digestion (oxidation) method of Walkely-Black (Nelson and Sommers, 1982) with total nitrogen measured by micro-Kjedahl digestion distillation method (Bremner and Mulvaney, 1982), and exchangeable bases (Ca, Mg, K, and Na) were determined by saturating the soil samples with 1 M NH₄OAc solution at pH 7.0. Exchangeable Ca and Mg were determined using atomic absorption spectrophotometry (AAS), while exchangeable Na and K were measured by flame photometer from the same extract (Chapman, 1965). Extractable micronutrients (Zn, Cu, Mn, and Fe) were extracted by diethylene triamine pentaacetic acid (DTPA) method and were measured by AES (Lindsay and Norvell, 1982).

2.3. Experimental design and treatment details

The experiment was arranged in a split-plot randomized complete block design in three replicates with two factors (crop management practices in main plots and nitrogen levels in sub-plots) in each cropping season. The main plot was then divided into six subplots of 4 m × 4 m (16 m²) in size. All

Table 4. Effect of crop management practices and N levels on plant height (cm) during wet season.

Treatment	Maximum tillering	Panicle initiation	Booting	Dough	At harvest
Crop management practices (CMP)					
SRI	32.0	57.0	77.2	97.8	96.3
CP	35.9	58.0	86.6	88.5	89.8
LSD (0.05)	NS	NS	1.18	5.33	NS
F Pr.	0.075	0.368	<.001	0.017	0.205

Table 5. Effect of crop management practices and N levels on plant height during dry season.

Treatment	Panicle initiation	Dough	At harvest
Crop management practices (CMP)			
SRI	57.3	90	87.7
CP	55.2	78.1	77.4
LSD (0.05)	NS	4.919	3.933
F Pr.	0.247	0.009	0.036
SE	0.782	1.36	1.341

Nitrogen levels (N)	Treatment
ABC	50.7a
0 N	50.6a
60 N	56.7bc
90 N	55.7b
120 N	60.6cd
LSD (0.05)	63.7c
F Pr.	6.75
SE	1.354

Key: LSD = least significant difference; F Pr. = F probability; NS = not significant. Mean values followed by different letters denote significant difference between treatments at \(p < 0.05 \).
plots surrounded by consolidated bunds, and 2 m buffer strips were left between the main plots and 1 m for subplots. This was to provide access pathways and more importantly to minimize lateral movement of irrigation water and fertilizers between the plots. The detail of treatments adopted is given in Table 1. Fertilizer treatments comprised six nitrogen levels including absolute control (ABC) which did not receive any N but received P and K fertilizers.

The level of 120 kg N ha\(^{-1}\) represents the existing blanket recommendation for rice growing in the study area. Nutrient N was applied from urea (CON\(_2\)H\(_4\), 46% N) fertilizer in two splits that is 50% of the dose of 60 kg K ha\(^{-1}\). Phosphorus was applied at a full dose of 60 kg P\(_2\)O\(_5\) at fourteen days after transplanting and another 50% of the dose at the soil; this took 2 days to complete. Furthermore, the plots were maintained without standing water for 3 days interval. The soil water depths were measured using a 101 p7 tape water level meter (Solinst Canada Ltd, Georgetown, Ontario Canada).

2.4. Crop establishment

A rice variety TXD 360 semi-aromatic, referred to commonly as SARO 5 was used as a test variety. This is a mid-late season rice variety (120–130 days cycle), which is grown under rainfed or irrigated ecologies with a yield potential of 7.0–8.5 t ha\(^{-1}\). It is medium in stature, resistant to lodging, and has good tillering ability (more than 20 tillers per hill depending on management). Seedling nurseries for each season were prepared by puddling the soil. Before sowing in the nursery, seeds were prepared by separating the unfiled grains from filled grains through priming with clean water to get vigorous plant. In SRI plot, a square grid pattern was created on the soil surface using a wooden marker at distances of 25 cm × 25 cm between perpendicular lines. Ten days after seedlings establishment, one seedling was transplanted per hill. Rotary (cono-weeder) and hand were used in removing the weeds. In CP, 25-day-old seedlings were transplanted in puddled field at a spacing of 20 cm × 20 cm while keeping three seedlings per hill.

2.5. Irrigation water management

Continuous flooding irrigation was done in CP plots following farmers’ practices. For the first 14 days after transplanting, a 3–5 cm water depth was maintained under CP and SRI irrigation regimes to facilitate seedling recovery. Thereafter, plots under CP were continuously flooded with 3–10 cm water level until 10 days before harvest. After the first 14 days of transplanting the SRI plots were kept with a layer of 2 cm of water until 14 days after panicle initiation stage. Furthermore, the plots were maintained without standing water for 3–5 days before re-irrigation under the same SRI plots. Thereafter, the SRI plots were re-irrigated to 2 cm when water depth dropped to 15 cm below the soil; this took 2–3 days interval. The soil water depths were measured and monitored in each SRI plot using PVC pipe installed in the plots at 15 cm depths (Lampayan et al., 2015).

PVC pipes installed in SRI plots, with perforated holes with a diameter of about 0.5 cm each and spaced about 2 cm away from one another. The tube was buried vertically 15 cm into the soil and half of its length protrudes above the soil surface. Pipes were installed near to the bund for easy water monitoring. After burying the soil inside the tube was removed so as bottom level is visible. Water level inside the tube was checked and was the same the outside. Each of the main plots was irrigated separately. Irrigation water was provided from an irrigation canal and measured by a plastic ruler inserted into the plots. The water depth was measured daily at 8:00 am and 14:00 pm GMT using a 101 p7 flat tape water level meter (Solinst Canada Ltd, Georgetown, Ontario Canada).

Table 6. Effect of crop management practices and N levels on the number of tillers during wet season.

Treatment	Mid tillering	Panicle initiation	Booting	Dough	At harvest
SRI	4.3	9.6	13.0	15.0	14.5
CP	7.1	9.6	9.6	9.9	9.1
LSD 0.05	0.48	NS	1.586	NS	2.413
F Pr.	0.002	0.451	0.012	0.065	0.011

Nitrogen levels (N)

Nitrogen levels (N)	Treatment	Mid tillering	Panicle initiation	Booting	Dough	At harvest
0 N	4.5a	8.0a	8.5a	9.0a	8.7a	
60 N	6.0b	8.5a	11.6b	12.9b	12.7b	
90 N	6.1b	9.7ab	12.2b	12.8b	12.2b	
120 N	6.3b	10.7bc	13.3b	15.2b	13.6b	
150 N	6.5b	11.9c	13.4b	14.8b	13.8b	
LSD 0.05	1.27	1.621	2.193	2.268	1.72	
F Pr.	<.001	<.001	<.001	<.001	<.001	

Interactions (CMP × N)

Interactions (CMP × N)	LSD 0.05	F Pr.	SRI	CP	LSD (0.05)	SE
LSD 0.05	NS	0.117	0.195	0.971	0.931	0.004

Key: LSD = least significant difference; F Pr. = F probability; NS = not significant. Mean values followed by different letters denote significant difference between treatments at p < 0.05.

Table 7. Number of tillers during dry season as affected by crop management practices and N levels.

Treatment	Panicle initiation	Milk	Harvest
SRI	9.2	15.9	14.1
CP	11.5	10.4	10.4
LSD 0.05	0.798	3.019	3.172
F Pr.	<.001	0.016	0.037
SE	0.272	0.541	0.572

Nitrogen levels (N)

Nitrogen levels (N)	Treatment	Panicle initiation	Milk	Harvest
0 N	8.6a	8.6a	8.7a	
60 N	8.6a	10.3a	9.9ab	
90 N	11.1b	13.4b	12.5bc	
120 N	10.3b	15.4b	14.1c	
150 N	11.5bc	15.5b	14.4c	
LSD 0.05	12.0c	16.0b	13.8c	
F Pr.	<.001	<.001	2.947	
SE	0.471	0.937	0.991	

Interactions (CMP × N)

Interactions (CMP × N)	SRIABC	CP150 N	CP60 N	CP90 N	CP120 N	CP150 N	LSD (0.05)	SE
SRIABC	7.0	8.9	8.3a	12.5	12.9bcd			
CP150 N	8.5	16.6	16.7de					
CP60 N	9.13	20.3	17.6e					
CP90 N	10.7	18.7	14.5de					
CP120 N	10.5	18.6	14.7de					
CP150 N	12.5	8.3	9.1ab					
LSD (0.05)	8.7	10.1	8.3a					
SE	11.5	11.7	10.7abc					
LSD (0.05)	12.3	12.3	14.3de					
SE	13.6	12.3	13.0bde					
LSD (0.05)	0.114	0.119	0.015					
SE	0.666	1.324	1.401					

Key: LSD = least significant difference; F Pr. = F probability; NS = not significant. Mean values followed by different letters denote significant difference between treatments at p < 0.05.
Table 8. Effects of crop management practices and N levels on leaf chlorophyll content.

Treatment	Panicle initiation	Milk
Crop management practices (CMP)		
SRI	43.8	46.9
CP	40.2	46.3
LSD (0.05)	1.832	NS
F Pr.	<.001	0.377
SE	0.625	0.437
Nitrogen levels (N)		
ABC	40.2ab	43.5a
0	39.5a	45.1ab
60	41.3ab	46.9bc
CP120	44.7c	47.7c
150	43.5ac	49.0c
LSD (0.05)	3.173	2.302
F Pr.	0.018	<.001
SE	1.082	0.757

Interactions (CMP x N)

SRIABC	37.4a	43.2
SRI 0	40.4abcd	45.2
SRI60	44.7cdef	47.2c
SRI90	45.2def	47.5
SRI120	48.9f	48.1
SRI150	46.1ef	50.4
CPABC	43.0bcde	43.7
CP0	38.6ab	44.5
CP60	37.9a	47.6
CP90	41.8abde	48.0
CP120	40.5abcd	46.4
CP150	39.7abc	47.6
LSD (0.05)	5.014	NS
F Pr.	0.002	0.372
SE	4.487	1.071

Mean values followed by different letters denote significant difference between treatments at p < 0.05.

Table 9. Root characteristics as affected by crop establishment methods and nitrogen levels.

Treatment	Fresh weight hill⁻¹ (g)	Length hill⁻¹ (cm)	Volume hill⁻¹ (ml)	Dry weight hill⁻¹ (g)
Crop management practices (CMP)				
SRI	36.2	12.6	33.8	10.4
CF	29.2	11.1	27.5	6.7
LSD (0.05)	6.74	0.726	5.31	1.9
F Pr.	0.043	<.001	0.022	<.001
SE	2.3	0.248	1.81	0.648
Nitrogen levels (N)				
ABC	22.7	11.5	21.6	7.2a
0 N	34.7	12.3	31.7	6.1a
60 N	33.0	11.2	33.0	7.9a
90 N	35.5	12.4	31.2	9.5a
120 N	33.4	11.3	31.2	7.8a
150 N	36.9	12.4	35.2	13.0b
LSD (0.05)	NS	NS	NS	3.291
F Pr.	0.193	0.174	0.086	0.004
SE	3.98	0.429	3.14	1.122

Mean values followed by different letters denote significant (P < 0.05) difference between treatments by DMRT; NS: not significant.

2.6. Assessment of grain growing contributing characters

Plant height: - five plants from each plot were selected randomly and measured at different stages of crop growth to maturity. Plant height was measured from the plant base to the tip of the tallest leaf but for the mature plants, the measurement was performed from the base to the tip of the tallest panicle. Number of tillers per hill: - were counted from five hills of each subplot during wet season as described elsewhere (Xu et al., 2019; Pascual and Wang, 2017; Ndiiri et al., 2012).

2.7. Assessment of grain yield and yield components

The yield components measured were harvest index, straw yield, effective and non-effective tillers, number of panicle per square meter, panicle length, panicle weight, number of panicle per hill, grain number per panicle, grain weight per panicle, and filed and unfiled grains per panicle. Grain yield was determined in a net plot of 2 m × 2 m i.e., 64 and 100 hills in SRI and CP plots, respectively with exclusion of the border rows. The straw (including peduncle and rachis) was oven-dried (Mettler 854 oven, METTMETR GmbH + Co. KG Schwabach, 91126 Bavaria, Germany) at 60 °C for 72 h to constant weight. Grains were sun dried before determining weight and moisture. Grain moisture was measured by 8988N grain moisture meter (Xiamen Hyhoo Imp. & Exp. Co., Ltd, Fujian, China) and adjusted to 14% moisture content. Grain and straw yields obtained were dried in the sun and weighed by Endel Precision weighing scale (EJB-NB-6000, Dubai) to record the yield/plot and finally converted to t ha⁻¹. The grain harvest index was calculated based on the ratio of grain yield to total biomass produced.

The number of productive and non-productive tillers was counted from tillers with panicles bearing at least one filled grain. The panicle weight was obtained at a constant weight after oven drying at 70 °C for 72 h. Panicle length was recorded from the basal node of the rachis to the apex of each panicle with a centimeter rule. The filled spikelets were separated from the unfilled spikelets using a HMC 67 seed blower (Hoffman Manufacturing Inc. Corvallis, OR 97330 USA) and the grain filling rate was calculated on mass basis as the ratio of filled grains weight to the total grain weight per panicle multiplied by 100. One thousand (1000) grains were randomly selected and counted from the harvested grains in each replicate for 1000-grain weight determination using seed counter Seedburo 801 Count-A-Pak², 801-10/C model, serial Co 655 Chicago Illlinois USA.
2.8. Assessment of nitrogen use efficiency

Different measures of nitrogen use efficiency (NUE) such as agronomic nitrogen use rate, partial factor productivity nitrogen of applied N and nitrogen contribution rate (FCRN) were calculated by Eqs. (1), (2), and (3) as described by Thakur et al. (2013).

\[
ANUE = \frac{Y - Y_0}{F} \tag{1}
\]

\[
PFPN = \frac{Y}{F} \tag{2}
\]

\[
FCRN = \frac{Y - Y_0}{Y} \times 100 \tag{3}
\]

Where ANUE for agronomic N use efficiency, PFPN for partial factor nitrogen productivity, FCRN for nitrogen contribution rate, Y for grain yield with nitrogen application, Y0 for grain yield without nitrogen application, and F for amount of nitrogen applied.

2.9. Statistical analyses

In assessing the effects of factors on the measured variables, the fixed main effects were the cropping systems and N application levels, whereas replicate blocks were treated as random effect. A TWO–WAY ANOVA was performed and the factor effects model is as shown in Eq. (4).

\[
Y_{ij} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ij} \tag{4}
\]

Where \(Y_{ij}\) is the observed measured variable in the \(ij\)th factors; \(\mu\) is the overall (grand) mean; \(\alpha_i\) and \(\beta_j\) are the main effects of the factors cropping systems and N levels, respectively; \((\alpha\beta)_{ij}\) is the two-way (first order) interactions between the factors; \(\varepsilon_{ij}\) is the random error associated with the observation of measured variables in the \(ij\)th factors.

The significant effects of cropping systems and N levels on the measured variables identified in Eq. (4) were isolated by a post-hoc Tukey’s-HSD test at a threshold of 5% using GenStat Discovery Edition 15. All statistics followed procedures described by Gomez and Gomez (1983).

3. Results and discussion

3.1. Soil characteristics

The soil in the study area is moderately acid (pH 5.5–6.0) as shown in Table 2 (Landon, 1991). This pH range is generally suitable for rice production (Halim et al., 2018). Soil pH affects the availability and solubility of essential plant nutrients such as N, P, Ca, Mg, S, and K.
Table 11. Effects of crop management practices and fertilizer N levels on panicle components of rice.

Parameter	Panicle weight (g)	Panicle length (cm)	Number of panicle hill⁻¹	Number of panicle m⁻²	Spikelet panicle⁻¹
Season	WS	DS	WS	DS	WS
Crop management practices (CMP)					
SRI	4.5	3.9	22.8	23.1	14.5
CP	3.5	2.2	22.0	20.3	9.1
LSD (0.05)	0.55	1.17	NS	NS	1.005
F Pr.	0.001	0.023	0.069	0.076	<.001
Nitrogen levels (N)					
ABC	3.3a	2.7a	20.7a	20.4	8.7a
0 N	3.6a	2.7a	21.3ab	20.8	8.8a
60 N	3.7a	3.3ab	22.3ab	22.7	12.7b
90 N	4.3ab	3.6b	22.7bc	22.8	13.2b
120 N	4.8b	2.8a	24.4c	21.1	13.6b
150 N	4.2ab	3.1ab	23.0bc	22.4	13.8b
LSD (0.05)	0.96	0.66	1.67	NS	1.74
F Pr.	0.044	0.041	0.003	0.052	<.001
Interaction (CMP x N)					
SRIABC	3.9	3.2	20.9	21.2	9.6abc
SRI0 N	4.1	3.5	22.2	22.4	10.3bc
SRI60 N	4.0	4.0	22.7	23.7	16.0d
SRI 90 N	5.0	5.1	23.5	24.9	17.7d
SRI120 N	5.5	3.6	25.1	22.4	16.5d
SRI150 N	4.3	4.1	22.8	24.1	16.9d
CPABC	2.7	2.1	20.6	19.6	7.3a
CP0 N	3.1	2.0	20.4	19.2	7.9ab
CP60 N	3.4	2.6	21.9	21.6	8.7abc
CP 90 N	3.5	2.2	21.8	20.7	9.5abc
CPI20 N	4.1	1.9	23.7	19.7	10.6bc
CPI50 N	4.0	2.1	23.3	20.7	10.8c
LSD (0.05)	NS	NS	NS	NS	2.461
F Pr.	0.765	0.115	0.724	0.719	0.004

Mean values followed by different letters denote significant (P < 0.05) difference between treatments by DMRT.

NS: not significant.

(Mng’ong’o et al., 2021). The soil is sand clay loamy in texture, with water field capacity of 22.2% volume and wilting point of 14.4% volume (Table 3). The soil is low in total nitrogen (0.11%), which is one of the yield limiting nutrient in rice cropping systems. This finding necessitates the need for application of nitrogen fertilizer to improve rice yield. The soil is low in organic carbon, organic matter, and exchangeable potassium. Other nutrients including Ca, Cu, Fe, Zn, and Mn were in the acceptable ranges for crop growth and production (Landon, 1991).

3.2. Rice growth contributing characters

Plant height increased with the increase in nitrogen application (Tables 4 and 5). The significant effect of CMP in plant height was observed at booting and dough stages in wet season and at dough and harvest in dry season. The tallest plants were measured in SRI against the measurements taken in plants under CP. Nitrogen levels had a significant effect on plants in all stages of crop growth in dry and wet seasons but without significant effect on growth at panicle initiation. The interactions between treatments were significant on the measured growth variables in dry season. Shorter plants were recorded in absolute control plots and in plots where N was not applied during the two cropping seasons.

The highest plant height recorded in SRI could have been contributed by the reduced shock at the initial stage of growth through planting of young seedlings with less leaf area. This is likely to cause stimulation increase in cell division and hence facilitate elongation, which increases plant height (Vijayakumar et al., 2006). Wide spacing of sowing rice facilitates development of functional leaves and increase in leaf area and number of tillers, which in turn increases photosynthetic rate leading to taller plants (Shrirame et al., 2000).

The number of tillers increased with an increase in nitrogen application (Tables 6 and 7). The number of tillers increased continuously in all stages with the highest being 15 and 20 recorded under 120 kg N ha⁻¹ and SRI × 90 kg N ha⁻¹ during wet and dry seasons, respectively. The number of tillers recorded under SRI was higher than that under CP. This is due to nitrogen application, which played role in cell division and elongation of various basal internodes of rice stems leading to increased plant height (Mboyerwa et al., 2021; Zhang et al., 2020; Mazumder et al., 2019). The increase in number of tillers could be associated with the wide spacing (less competition for the growth resources), aeration due to wetting and drying cycles, and root volume that has enhanced nutrients use and yield increase. The increase in number of tillers and height of plants under SRI has been reported by other studies (Kangile et al., 2018; Reuben et al., 2016; Kahimba et al., 2013; Katambara et al., 2013). The reduced number of tillers in plant under CP could be due to narrow environment, high plant density per hill with high competition for nutrients, and light energy.

3.2.1. Chlorophyll content

Chlorophyll content (CC) was significantly (p < 0.05) affected by the crop management practice (CMP) at panicle initiation stage, with high CC (9%) recorded under SRI plants compared with in plants under CP (Table 8). The significant effect of N levels on CC was recorded at panicle
initiation and milk stages. Significant interaction effects of treatments were observed at panicle initiation stage, although the highest CC (50.4) was recorded at milk stage with an application of 150 kg N ha$^{-1}$. High CC with SRI plants was attributed to high root-oxidizing activity of the soil microbes (Mishra and Salokhe, 2010). Thakur et al. (2010) reported that the canopies in SRI plants had the highest leaf area index (LAI) and light interception. These characteristics contribute to the maintenance of high chlorophyll levels, the highest leaf area index and light interception.

Table 12. Effects of crop management practices and fertilizer N levels on effective and non effective tillers, filled and unfilled panicles and grains filling rate.

Parameter	Effective tillers hill$^{-1}$	Non effective tillers hill$^{-1}$	Filled grains panicle$^{-1}$	Unfilled grains panicle$^{-1}$	Grains filling rate (%)											
	WS	DS														
Crop management practices (CMP)																
SRI	12.8	13.5	1.7	0.6	127.1	114.2	18.8	39.3	87.1	74.5						
CP	8.1	9.6	1.0	1.3	94.5	60.9	18.9	25.9	83.3	70.1						
LSD (0.05)	1.095	2.46	0.609	NS	16.19	51.74	NS	NS	2.54	NS						
F Pr.	<0.001	0.021	0.044	0.118	<0.001	0.047	0.937	0.228	0.006	0.579						
Nitrogen levels																
ABC	7.3a	8.7a	1.2	0.03	96.2	82.1	21.8	20.7a	80.6	79.2						
0 N	8.5a	9.2a	0.4	0.7	105.1	76.2	14.7	24.4ab	87.9	75.0						
60 N	11.0b	12.2b	1.7	1.3	105.2	95.1	17.8	43.1c	85.5	69.0						
90 N	11.6b	13.7b	1.6	0.8	117.6	102.6	18.8	40.7c	85.8	69.9						
120 N	11.8b	13.3b	1.8	1.1	125.6	77.7	20.5	29.9abc	85.9	70.0						
150 N	12.4b	12.1b	1.4	2.0	115.4	91.6	19.6	37.1bc	85.4	70.6						
LSD (0.05)	1.897	2.577	NS	NS	16.19	51.74	NS	NS	2.54	NS						
F Pr.	<0.001	0.021	0.044	0.118	<0.001	0.047	0.937	0.228	0.006	0.579						

Mean values followed by different letters denote significant (P < 0.05) difference between treatments by DMRT. NS: not significant.

3.2.2. Root growth characteristics

The SRI practices affected root characteristics significantly (p < 0.05) (Table 9). Results showed that fresh weight, length, and volume of roots per hill were significantly affected by the practices, with the effect of SRI being higher than that of CP. Root dry weight per hill was 55% higher under SRI compared with CP. Nitrogen levels affected root dry weight significantly and higher (13.0 g) dry weight was recorded with an application of 150 kg N ha$^{-1}$. Interaction effects showed that higher root dry weight per hill (15.2 g) was recorded under SRI × 150 kg N ha$^{-1}$, although the effect was not significant from other treatments.

Root enhancement facilitates other physiological processes in plants (Thakur et al., 2013; Naher et al., 2009). These include increases in concentrations of cytokinin in roots and shoots. Root oxidation activities, leaf photosynthetic rates, as well as in the activities of key enzymes involved in sucrose-to-starch conversion in grains. The SRI plants form profuse root systems, with little or late senescence, which enhances the opportunity for beneficial interactions of soil microbes. In addition, this enables plant roots to extend their feeder roots to the lower horizons and take up nutrients throughout their life cycle. Chen et al. (2017) reported increased K$^{+}$ concentration in shoots and grains in SRI plants compared with the plants grown under continuous flooding practice. Hazra and Chandra (2016) reported that at flowering 78% of the root growing under anaerobic soil conditions undergo degeneration while few of the rice roots growing under aerobic soil conditions were affected. Thakur et al. (2013) found the increase of up to 66% in dry weight per hill compared with transplanted flooded rice at the flowering stage. Enhanced root development in alternate wetting and moderate drying soil regimes was reported in other studies using SRI practice (Thakur et al., 2011; Zhang et al., 2009). The double increase in root dry weight of rice under SRI compared with the continuous flooding environment was also reported by Ndiiri et al. (2012).

3.3. Yield and yield components

Grain yield of rice under SRI was significantly (p < 0.05) higher than that of plants under CP at all levels of N application (Table 10). The highest average rice grain yield was found in the SRI treatments (6.7 and 6.4 t ha$^{-1}$). These values were 10.7 and 34% higher than those of the CP (6.4 and 4.2 t ha$^{-1}$) during wet and dry seasons, respectively.
application of N increased rice grain yields over the zero-N and absolute control in the two cropping seasons. Rice grain yield increased with an increase in N levels. However, rice grain yields did not show any further different increase with applications of 120 and 90 kg N ha\(^{-1}\) in wet and dry seasons, respectively.

On average, rice grain yields under SRI increased by 16.2% and 55.6% during wet and dry seasons, respectively for all levels of N application. The maximum rice grain yield under SRI was 8.1 t ha\(^{-1}\) with applications of 120 and 150 kg N ha\(^{-1}\) in wet season and 7.7 t ha\(^{-1}\) with 90 kg N ha\(^{-1}\) in dry season. The maximum rice grain yield under CP was 7.2 t ha\(^{-1}\) with an application of 120 kg N ha\(^{-1}\) in wet season and 5.0 t ha\(^{-1}\) with 90 kg N ha\(^{-1}\) in dry season. The quantities of rice grain yields recorded under SRI in wet and dry seasons, respectively. Panicle length was significantly (p < 0.05) affected by N levels and the length increased with increasing N levels in wet season.

The number of panicles per hill was significantly (p < 0.05) affected by crop management practices in wet season, with SRI recording higher number of panicle per hill (15) compared with CP (9). Nitrogen levels and their interactions with SRI or CP significantly affected the number of panicles per hill. Spikelets per panicle were significantly influenced by crop management practices, with SRI recording higher number of spikelets per panicles in wet and dry seasons. Nitrogen levels also significantly affected the number of spikelets per panicle during dry season. Effective tillers were significantly affected by CP, N levels and their interactions (p < 0.05) in wet and dry seasons but SRI recorded higher effective tillers over CP (Table 12). The filled grains per panicle were significantly affected by crop management practices (p < 0.05) in wet and dry seasons. Grain filling rate was significantly affected by crop management practices in wet season, with increased grain filling by 4.6 and 5.9% under SRI compared with CP in wet and dry season, respectively. There was significant effect of N levels in dry season. Previous studies have reported absence of significant effect of crop management practices on percentage of filled grains (Zheng et al., 2020; Belder et al., 2004).

3.4. Nitrogen use efficiency

An application of N recorded significant effect (p < 0.05) on agronomic N use efficiency (ANUE) (Table 13). The ANUE and PFP were decreased by N application levels under SRI and CP in wet and dry seasons. The similar trend of treatments effect on the ANUE and PFP was reported by other researchers (Djaman et al., 2018; Zhao et al., 2009). The ANUE ranged from 19.7–33.7 kg grain kg\(^{-1}\) N in wet season to 7.08–25.83 kg grain kg\(^{-1}\) N in dry season under SRI. Under CP, the ANUE ranged from 10.0–21.7 kg grain kg\(^{-1}\) N in wet season to 12.0–21.85 kg grain kg\(^{-1}\) N in dry season. The highest ANUE was recorded with the application of 90 kg N ha\(^{-1}\) under SRI and CP in wet and dry seasons (Table 13). The findings of the present study are in agreement with the other studies (Zhang et al., 2020; Djaman et al., 2018; Thakur et al., 2013; Zhao et al., 2009). Other researchers reported low NUE in farmers’ fields in different parts of the world (Peng et al., 2002; Cassman and Pingali, 1996).

Partial factor productivity (PFP) was significantly (p < 0.05) affected by crop management practices, with N levels and their interactions with SRI and CP. Results indicated that SRI recorded PFP values ranging from 53.8 to 116.7 kg grain kg\(^{-1}\) N and 48.6 to 105.8 during wet and dry seasons.
seasons, respectively. The PFP obtained under CP ranged from 42.2 to 102.2 kg grain kg⁻¹ N and 32.17–71.94 kg grain kg⁻¹ N during wet and dry seasons, respectively. The highest PFP was found with the application of 60 kg N ha⁻¹ under SRI and CP in wet and dry seasons. However, there was a decrease in PFP with N levels exceeding 60 kg N ha⁻¹ and with interactions of N and SRI or CP.

Nitrogen levels significantly affected FCRN during the cropping seasons. The maximum FCRN was 38.1% and the lowest was 16% recorded under CP × 150 N and SRI × 60 N, respectively. Alternate wetting and drying under SRI could be the reason for the improved oxygen supply to rice roots, thereby decreasing aerenchyma formation. This also caused strong and health root system, with potential advantages for higher nutrients uptake (Haza and Chandra, 2016). Furthermore, drying and re-watering cycles affect biochemical and physical processes, including nitrification, denitrification, mineralization, percolation, and leaching in soils by changing water and air equilibrium, which in turn affect the availability of nitrogen nutrition (Haza and Chandra, 2016).

The findings of the present study are in agreement with Thakur et al. (2013) that N use-efficiency and partial factor productivity from applied N were significantly higher in SRI than transplanted flooded rice plants. Espiritu and Javier (2013) reported the PFP values ranging from 65.7 to 414.0 kg grain kg⁻¹ N. Zhu et al. (2016) reported rice PFPN that ranged from 26.9 to 69.1 kg grain kg⁻¹ N. Yang et al. (1999) reported that the highest PFPN was achieved under moderate alternate wetting and drying treatments.

4. Conclusion

This field study indicates that nitrogen use efficiency in rice can be met under the system of rice intensification (SRI) management practice due to profuse root development and improved physiological performance. The system results in enhanced grain yield compared with the conventional practice. This indicates that there are systematic interactions between lower plant density (single seedling per hill) in combination with alternate wetting and drying (water saving irrigation) and/or N fertilization. Potential grain yield and higher NUE could be achieved by decreasing N application levels in SRI from 150 to 60 kg N ha⁻¹. An additional benefit derived from SRI is a significant reduction in the costs related to fertilizer inputs and a translation of the same to environmental conservation from population.

Declarations

Author contribution statement

Primitiva Andrea Mboyerwa: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Wrote the paper.

Kibewb Kibret; Abebe Aschalew: Contributed reagents, materials, analysis tools or data; Wrote the paper.

Peter Mtakwa: Performed the experiments; Wrote the paper.

Funding statement

This work was supported by the Eastern and Southern Africa Higher Education Center of Excellence Project: IDA Credit 5794-ET under the frame of Africa Centre of Excellence for Climate Smart Agriculture and Biodiversity Conservation, hosted by Haramaya University, Ethiopia.

Data availability statement

Data will be made available on request.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

The authors would like to acknowledge the contribution of Norman Uphoff, Senior Advisor for the SRI International Network and Resources Center (SRI-Rice), Cornell International Institute for Food, Agriculture and Development, Ithaca, NY, USA, for reviewing drafts of this manuscript and offering useful comments.

References

Amuri, N., Semoka, J., Ikerra, S., Kulaya, L., Mooya, B., 2013. Enhancing use of phosphorus fertilizers for maize and rice production in small scale farming in eastern and northern zones, Tanzania. In: A Paper presented at the 27th Soil Science Society of East Africa 6th African Soil Science Society Conference, 21st to 25th October 2013, Nakuru, Kenya. Department of Soil Science and Department of Agricultural Education and Extension, Sokoine University of Agriculture, pp. 1–12.

Ashraf, M., Khalid, A., Ali, K., 1999. Effect of Seedling Age and Density on Growth and Yield of rice in saline Soil. Pakistan Journal of Biological Sciences (Pakistan).

Bagheri Novaz, S., Mostesharzadeh, B., Argati Lajaty, R., 2021. Techniques for improving nitrogen use efficiency in rice. In: Soil Nitrogen Ecology. Springer, Cham, pp. 203–213.

Baral, B.R., Panda, K.R., Gailhre, Y.K., Baral, K.R., Sah, S.K., Thapa, Y.B., Singh, U., 2020. Increasing nitrogen use efficiency in rice through fertilizer application method under rained drought conditions in Nepal. Nutrient Cycl. Agroecosyst. 118 (1), 103–114.

Belder, P., Bouman, B.A.M., Cabangon, R., Gausan, L., Quialing, E.J.P., Yuanhao, L., Spiertz, J.H.J., Tuong, T.P., 2004. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric. Water Manag. 65 (3), 193–210.

Bray, R.H., Kurtz, L.T., 1945. Determination of total, organic and available forms of phosphorus in soil. Soil Sci. 59, 39–45.

Brenner, J.M., Mulvaney, C.S., 1982. Nitrogen – total. In: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis, Part 3 Chemical and Microbiological Properties. Soil Science Society of America and American Society of Agronomy, Madison, Wis, pp. 643–669.

Casman, K.S., Pingali, P.L., 1996. Extrapolating trends from long-term experiments to farmers’ fields: the case of irrigated rice systems in Asia. In: Barnet, V., Payne, R., Steiner, R. (Eds.), Agricultural Sustainability in Economic, Environmental and Statistical Terms. Wiley, London, UK, pp. 63–68.

Chapman, H.D., 1965. Cation-exchange capacity. In: Sparks, D.L. (Ed.), Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, 9, pp. 545–627.

Congreves, K.A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., Arcand, M.M., 2021. Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 12, 627108.

Day, P.R., 1965. Particle fractionation and particle-size analysis. In: Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, 9, pp. 545–627.

Djaman, K., Mel, V.C., Diep, L., Sow, A., El-Namaky, R., Manneh, B., Saito, K., Futakuchi, K., Irmak, S., 2018. Effects of alternate wetting and drying irrigation regime and nitrogen fertilizer on yield and nitrogen use efficiency of irrigated rice in the Sahel. Water 10 (6), 711.

Dobermann, A., Witt, C., Abdurrahman, S., Gines, H.C., Nagarajan, R., Son, T.T., Tan, P.S., Wang, G.H., Chien, N.V., Thoa, V.T.K., Phung, C.V., 2003. Soil fertility and indigenous nutrient supply in irrigated rice domais of Asia. Agron. J. 95 (4), 972–978.

Espiritu, A.E., Javier, E.F., 2013. Nitrogen use efficiency of different organic fertilizers applied in paddy rice. Philjap. J. Crop Sci. 38, 81–82.

FAOSTAT, 2014. Statistical Databases. Food and Agriculture Organization of the United Nations, Rome, Italy.

Galloway, J.N., Winaweter, W., Leip, A., Leach, A.M., Bleeker, A., Erzuman, J.W., 2014. Nitrogen footprints: past, present and future. Environ. Res. Lett. 9 (11), 115003.

Gomez, K.A., Gomez, A.A., 1983. Statistical Procedures for Agricultural Research. John Wiley & Sons Inc. 5th Edition, pp. 891–1226.

Hazra, K.K., Chandra, S., 2016. Effect of extended water stress on growth, tiller mortality and nutrient recovery under system of rice intensification. Proc. Natl. Acad. Sci. India B Biol. Sci. 86 (1), 105–113.
Massawe, H.I., 2016. Effect of Water Management Systems with Different Nutrient Materu, S.T., Shukla, S., Sishodia, R.P., Tarimo, A., Tumbo, S.D., 2018. Water use and rice Lindsay, W.L., Norvell, W.A., 1982. Development of a DTPA soil test for zinc, iron, Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon, and organic matter. In: Lampayan, R.M., Rejesus, R.M., Singleton, G.R., Bouman, B.A., 2015. Adoption and Kangile, R.J., Ng Thakur, A.K., Mandal, K.G., Mohanty, R.K., Uphoff, N., 2021. How agroecological rice Islam, S.M., Gaihre, Y.K., Biswas, J.C., Jahan, M.S., Singh, U., Adhikary, S.K., Sato, S., Uphoff, N., 2007. Increasing factor productivity in irrigated rice production: opportunities with the system of rice intensification. CAB Review: perspectives in agriculture, veterinary science. Nutr. Nat. Resour. 54 (2). Shrirame, M.D., Raigire, H.J., Raigire, A.H., 2000. Effect of spacing and seedling number per hill on growth attributes and yield of rice hybrids under lowland condition. J. Soils Crops 10 (1), 109–113. Thakur, A.K., Rath, S., Roychowdhury, S., Uphoff, N., 2010. Comparative performance of rice with system of rice intensification (SRI) and conventional farming using different plant spacings. J. Agron. Crop Sci. 196 (2), 146–159. Thakur, A.K., Rath, S., Patil, D.U., Kumar, A., 2011. Effects on rice plant morphology and physiology of water and associated management practices of the system of rice intensification and their implications for crop productivity. Paddy Water Environ. 9 (1), 13–24. Thakur, A.K., Rath, S., Mandal, K.G., 2013. Differential responses of system of rice intensification (SRI) and conventional flooded-rice management methods to applications of nitrogen fertilizer. Plant Soil 370 (1), 59–71. Thakur, A.K., Mohanty, R.K., Patil, D.U., Kumar, A., 2014. Impact of water management on yield and water productivity with system of rice intensification (SRI) and conventional transplanting system in rice. Paddy Water Environ. 12 (4), 413–424. Thanak, T., Thun, V., Battan, K.R., Ram, M., Venkateshwarlu, C., 2017. Root traits enhancing rice grain yield under alternate wetting and drying condition. Front. Plant Sci. 8, 1879. Pascual, V.J., Wang, Y.M., 2017. Impact of water management on rice varieties, yield, and water productivity under the system of rice intensification in Southern Taiwan. Water 9 (1), 3. Peng, S.B., Huang, J.L., Zhong, X.H., Yang, J.C., Wang, G.H., Zou, Y.B., Zhang, F.S., Zhu, Q.S., Buresh, R., Witt, C., 2002. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agric. Sci. China 1 (7), 776–785. Reuben, P., Katambara, Z., Kahimba, F.C., Mahoo, H.F., Mbugua, W.B., Mbenga, F., Nyarubamba, A., Maugo, M., 2016. Influence of transplanting age on paddy yield under the system of rice intensification. Agric. Sci. China 7, 154–163. Sandhu, N., Subedi, S.R., Yadav, R.B., Chandhary, B., Prassil, H., Ikkudraduula, K., Thanak, T., Thun, V., Battan, K.R., Ram, M., Venkateshwarlu, C., 2017. Root traits enhancing rice grain yield under alternate wetting and drying condition. Front. Plant Sci. 8, 1879. Sato, S., Uphoff, N., Dixit, P., 1996. On the phytoavailability of cadmium in paddy soils of central subtropical China. J. Soils Crops 10 (1), 109–113. Thakur, A.K., Rath, S., Roychowdhury, S., Uphoff, N., 2010. Comparative performance of rice with system of rice intensification (SRI) and conventional farming using different plant spacings. J. Agron. Crop Sci. 196 (2), 146–159. Thakur, A.K., Rath, S., Patil, D.U., Kumar, A., 2011. Effects on rice plant morphology and physiology of water and associated management practices of the system of rice intensification and their implications for crop productivity. Paddy Water Environ. 9 (1), 13–24. Thakur, A.K., Rath, S., Mandal, K.G., 2013. Differential responses of system of rice intensification (SRI) and conventional flooded-rice management methods to applications of nitrogen fertilizer. Plant Soil 370 (1), 59–71. Thakur, A.K., Mohanty, R.K., Patil, D.U., Kumar, A., 2014. Impact of water management on yield and water productivity with system of rice intensification (SRI) and conventional transplanting system in rice. Paddy Water Environ. 12 (4), 413–424. Thanak, T., Thun, V., Battan, K.R., Ram, M., Venkateshwarlu, C., 2017. Root traits enhancing rice grain yield under alternate wetting and drying condition. Front. Plant Sci. 8, 1879. Sato, S., Uphoff, N., 2007. Increasing factor productivity in irrigated rice production: opportunities with the system of rice intensification. CAB Review: perspectives in agriculture, veterinary science. Nutr. Nat. Resour. 54 (2). Shrirame, M.D., Raigire, H.J., Raigire, A.H., 2000. Effect of spacing and seedling number per hill on growth attributes and yield of rice hybrids under lowland condition. J. Soils Crops 10 (1), 109–113. Thakur, A.K., Rath, S., Roychowdhury, S., Uphoff, N., 2010. Comparative performance of rice with system of rice intensification (SRI) and conventional farming using different plant spacings. J. Agron. Crop Sci. 196 (2), 146–159. Thakur, A.K., Rath, S., Patil, D.U., Kumar, A., 2011. Effects on rice plant morphology and physiology of water and associated management practices of the system of rice intensification and their implications for crop productivity. Paddy Water Environ. 9 (1), 13–24. Thakur, A.K., Rath, S., Mandal, K.G., 2013. Differential responses of system of rice intensification (SRI) and conventional flooded-rice management methods to applications of nitrogen fertilizer. Plant Soil 370 (1), 59–71. Thakur, A.K., Mohanty, R.K., Patil, D.U., Kumar, A., 2014. Impact of water management on yield and water productivity with system of rice intensification (SRI) and conventional transplanting system in rice. Paddy Water Environ. 12 (4), 413–424. Thanak, T., Thun, V., Battan, K.R., Ram, M., Venkateshwarlu, C., 2017. Root traits enhancing rice grain yield under alternate wetting and drying condition. Front. Plant Sci. 8, 1879. Sato, S., Uphoff, N., 2007. Increasing factor productivity in irrigated rice production: opportunities with the system of rice intensification. CAB Review: perspectives in agriculture, veterinary science. Nutr. Nat. Resour. 54 (2). Shrirame, M.D., Raigire, H.J., Raigire, A.H., 2000. Effect of spacing and seedling number per hill on growth attributes and yield of rice hybrids under lowland condition. J. Soils Crops 10 (1), 109–113.