The use of haematopoietic stem cells (HSCs) in the clinic has been a great success for the treatment of blood diseases. HSCs residing in the bone marrow produce all blood cell lineages throughout the lifespan of an organism and are the only cells with the capacity to replenish the whole haematopoietic system upon transplantation into an irradiated adult recipient [1]. However, limited availability has hampered their use and driven efforts for their generation in vitro which, so far, have been unsuccessful. HSCs are generated during embryogenesis and their unsuccessful generation in vitro reflects our sparse knowledge of their embryonic ontogeny. The study of the ontogeny of HSCs has a rich history involving the use of chick, amphibian and mouse embryos, and, more recently, the zebrafish. Each model organism provides unique advantages, and a unification of the knowledge generated from them might be required for a complete

Keywords: definitive haemangioblast; gene regulatory network; haematopoietic stem cells; lateral plate mesoderm; mouse; quail-chick chimera; Wolffian duct; *Xenopus*; zebrafish
understanding of how HSCs are generated during embryogenesis.

The yolk sac is the first haematopoietic organ during embryogenesis. Hence, it was thought that HSCs were generated there and later migrated to intraembryonic organs such as the liver, thymus, spleen and bone marrow [2]. However, the intraembryonic origin of HSCs was clearly demonstrated in chick-quail chimeras [3]. Furthermore, tissue transplantation performed in the frog, Xenopus, also demonstrated their intraembryonic origin [4,5]. Subsequently, this was confirmed in the mouse as the aorta-gonads-mesonephros (AGM) region was demonstrated to autonomously generate HSCs [6,7]. Early anatomical analyses in vertebrate embryos described haematopoietic clusters associated with the dorsal aorta (DA) [8-10]. Later these clusters were also described in the chick [11], human [12], mouse [13] and Xenopus [14] embryos but it was in the chick where evidence of their endothelial origin was first provided [15,16]. In the last few years, conclusive evidence of the existence of haemogenic endothelium (HE) in the DA has been provided [17-19], triggering intense research on the mechanism by which HSCs are generated from it. However, a complete understanding of the genetic programming of HSCs requires knowledge of the origin of the DA/HE. Lineage labelling in Xenopus and mouse has demonstrated that the DA and adult blood derive from the lateral plate mesoderm (LPM) [20,21]. In agreement, definitive haemangioblasts (DHs) have been described in the LPM of Xenopus [22,23]. Although DHs have not yet been specifically located in other vertebrates, including the zebrafish, as discussed below, evidence suggests their existence in the LPM of all vertebrates.

Haemangioblasts are bipotential mesodermal cells with the capacity to give rise to endothelial and blood cells [24]. The specification of DHs in the LPM is the first step in the programming of mesodermal cells towards the HSC lineage. Although the expression of some key haematopoietic transcription factors (TFs) are shared between DHs and other haematovascular progenitors [24], the distinct ontogeny of DHs and the environment where they develop, particularly because of signalling from the somites, make their genetic programming unique. Additionally, endothelial cells give rise to HSCs but endothelial cells do not have a common origin or programming, rather they are patterned along the antero-posterior embryonic axis [25]. Accordingly, lineage labelling experiments in Xenopus demonstrate that only cells originating from the anterior half of the posterior LPM are capable of giving rise to HSCs [4,5,26]. This has implications for the in vitro generation of HSCs from endothelial cells, as correctly patterned endothelial precursors would be required. Studies in model organisms, particularly Xenopus, have greatly contributed to our understanding of the ontogeny of the DA and HSCs as well as of their precursors, the DHs and other haematovascular tissues, which could inform protocols for the de novo generation of HSCs. Here, we briefly summarise these achievements.

The lateral plate mesoderm gives rise to haematovascular progenitors

The experimental amenability of the Xenopus embryo to tissue grafting and fate mapping has allowed the determination of the blood-forming potential of regions and tissues of the early embryo (Fig. 1). The generation of Xenopus borealis–Xenopus laevis interspecific chimeras as well as 3N–2N Xenopus laevis chimeras demonstrated that all adult blood derives from the trunk of the embryo (Fig. 1A) [27]. It has recently been reported that presumptive HSCs are localised in the head of the mid-gestation mouse embryo and that they give rise to postnatal haematopoiesis [28,29]. In Xenopus, chimeric embryos have shown that the head does not contribute to adult blood (Fig. 1A) [27]. In agreement, in interspecific chick-quail chimeras, the head does not contribute to adult blood [30]. The generation of the amphibian and avian chimeras was performed long before the onset of blood circulation, whereas the head contribution in the mouse was recorded after the circulation had started, opening the possibility that HSCs from other tissues colonise the head through the circulation; a view supported by the lack of endothelial to haematopoietic transition (EHT) events in the head [31]. Further research in the mouse is required to clarify whether HSCs emerge independently in the head or are contributed by other tissues such as the AGM.

The trunk of the Xenopus embryo contains the earliest blood-forming organ, the ventral blood island (VBI), which is equivalent to the amniote yolk sac as it produces primitive erythrocytes and macrophages [32]; and, similarly, it was initially believed to be the only source of blood cells, including HSCs. However, orthotopic transplantation of 2N tissue into 3N host embryos demonstrated that a second, independent, haematopoietic tissue contributing to adult blood was located dorsally in the LPM adjacent to the somites, the dorsal lateral plate (DLP; Fig. 1B) [4,5,27]. Previous experiments in Rana showed that the LPM localised just posterior to the pronephros, and alongside the Wolffian duct, gives rise first to the DA, including haematopoietic cells, and later to liver, thymic and
Splenic haematopoiesis [33,34]. Subsequently, this region of the LPM, just posterior to the pronephros, was confirmed by tissue transplantation in *Xenopus* embryos to be the source of haematopoietic cells associated with the DA, the liver, thymus, spleen and, importantly, adult haematopoiesis (Fig. 1C) [4,5,21,26,27]. More recently, direct labelling of the DLP confirmed its contribution to the DA [35]. Furthermore, the DA is absent when the DLP is physically removed [35]. In agreement, lineage labelling in *Xenopus* has demonstrated that a single blastomere of the 32-cell stage embryo, blastomere C3, gives rise to the DLP, the DA and intra-aortic haematopoietic clusters without contributing to the VBI [14,23]; thus, establishing the dorsal LPM, not the VBI, as the tissue from which the progenitors of the DA and HSCs derive.

With the generation of a monoclonal antibody, QH1, that specifically labels endothelial and haematopoietic cells, analysing the development of the first blood vessels in the quail embryo was made possible [36,37]. In amniotes, the DA forms from the fusion of the paired DA which have migrated from the LPM, one from each side of the embryo [38]. Using the QH1 antibody, it was shown that each of the paired DA forms from single endothelial cells which segregate from the LPM and aggregate to form a cord ventral to the somites; meanwhile, the posterior cardinal vein (PCV) also segregates from the LPM, and both vessels form in association with the Wolffian ducts [37]. Furthermore, transplantation of quail LPM into chick embryos resulted in the contribution of quail endothelial cells to the DA of the host as well to intersomitic vessels [36]. More recently, time-lapse imaging analysis of Cy3-QH1 pulse-labelled quail embryos demonstrated that LPM endothelial cells directly contribute to the primary DA [39]. Interestingly, QH1 cells are positive for an antibody against the haematopoietic determinant, Tal1/Scl [40], indicating that the DA derives from cells coexpressing blood and endothelial genes.

The advent of RNA *in situ* hybridisation further improved the analysis of the haematopoietic...
progenitors emerging in the LPM. Hierarchically, Tal1/Scl confers a haematopoietic fate on mesodermal cells and its deficiency results in a total absence of blood cells in the mouse [41]. Detailed analysis of Tal1/Scl expression during embryogenesis was first performed in zebrafish embryos and revealed the presence of haemangioblasts localised in the LPM [42]. In agreement with its LPM origin, Tal1/Scl loss of function results in the absence of the zebrafish DA [43]. Intriguingly, these haemangioblasts give rise to both primitive erythrocytes and macrophages as well as to the precursors of the DA/HSC [32]. However, DA precursors migrate to the midline before the erythrocyte precursors, suggesting that their generation could be temporally distinct [42]. Whether single haemangioblasts in the zebrafish LPM can give rise to both primitive and definitive lineages is not known; either way, zebrafish DHs cannot so far be distinguished from other precursors localised in the LPM. Nevertheless, it is clear that the zebrafish DA derives from the Tal1/Scl-expressing LPM.

As discussed above, transplantation experiments defined the location of HSC precursors in the Xenopus dorsal LPM. Extensive gene expression analysis has revealed the presence of cells coexpressing endothelial and haematopoietic genes in the Xenopus dorsal LPM [22,23], which are very likely to be DHs. However, these DHs cannot anatomically be distinguished from other precursors localised in the LPM. Nevertheless, it is clear that the zebrafish DA derives from the Tal1/Scl-expressing LPM.

A genetic hierarchy in the Xenopus LPM has been established through the temporal analysis of the expression of blood and endothelial genes [22]. Importantly, the gene regulatory network (GRN) controlling the programming of DHs, as indicated by Tal1/Scl expression, has been established through gene perturbation in Xenopus [22,44,45]. This GRN shows that, in addition to familiar regulators of haematopoiesis and vascular development, such as Gata2, Kdr/Flk1, VEGFA and the ETS TFs, Flil and Etv2, less known regulators such as the ETS TF, Etv6, play essential roles in the programming of DHs. Etv6 has emerged as a critical regulator of VEGFA expression in both the somites and the developing DHs themselves [22,46]. Although haemangioblasts are known to express Kdr/Flk1, the receptor for VEGFA, the source of VEGFA in the LPM was unknown. The DH GRN establishes that paracrine VEGFA from the somites is indispensable for the initiation of the DH programme and does so by activating its own expression in Flk1-expressing cells through Etv6 [22]. Expression of VEGFA in the somites is also controlled by Etv6 [46]. This has established that the somites act as a critical signalling centre from the earliest stages of programming of the HSC lineage. Another critical observation is that the establishment of the HSC lineage requires not only TFs but also the intervention of microRNA. The existence of repressive signalling detrimental to DH specification has been revealed by the depletion of miR-142-3p [45]. MicroRNAs are known to act as repressors, therefore the failure to establish DH in miR-142-3p-depleted embryos suggested that this results from the upregulation of a repressive factor.

Not all endothelial cells are related to haematopoietic progenitors

Global gene expression analysis of human endothelial cells from different body sites, cultured under the same conditions, as well as of established laboratory cell lines, revealed an extraordinary diversity in their molecular programming which appears to reflect their origin [51]. Endothelial cells have been considered as a relatively homogeneous cell type and their differential response to physiological challenges was thought to be due to extrinsic factors; however, the Chi et al. findings suggest that these differences might be largely due to intrinsic regulatory mechanisms that appear to reflect regional programming and, perhaps, their
distinct embryonic origin. Indeed, evidence indicates
that embryonic endothelial cells have multiple origins,
and that they are patterned and distinctly programmed
during early embryogenesis.

In amniotes, the first endothelial cells emerge in
extraembryonic tissues and it was initially proposed
that the blood vessels within the embryo proper
develop from extraembryonic precursors [52]. This
view was challenged by the detection of isolated
endothelial vesicles in intraembryonic tissues and by
the emergence of blood vessels in cultured tissue por-
tions explanted from prevascularised chick embryos
(reviewed in [52]). The intraembryonic origin of
endothelial cells was confirmed by tissue transplanta-
tion, in particular by the contribution of mesodermal
cells of quail origin to the blood vessels of recipient
chick embryos [52]. In the quail-chick chimeras, meso-
dermal cell transplantations were performed before
there was any evidence of intraembryonic endothelial
development, either in the donor or recipient embryo,
and endothelial cells of quail origin were detected with
antibodies. These experiments revealed that most
mesodermal cells have the capacity to give rise to
endothelial cells and that the emergence of endothelial
cells was rarely associated with blood cells [52]. The
quail-chick chimeras also indicated that the origin of
blood vessels is regionalised. For example, specific
regions of the cephalic paraxial mesoderm give rise
to particular cranial and head blood vessels, with little or
no mixing between body segments [53], strongly sug-
gesting an antero-posterior (AP) patterning of the
emerging vasculature.

Lineage labelling in early zebrafish embryos also
suggested that most mesoderm-forming regions give
rise to endothelial cells [54]. In these experiments,
caged fluorescein dextran of ubiquitous distribution

![Fig. 2. The lateral plate mesoderm
contains definitive haemangioblasts (DHs).
(A) Expression of Fli1 in a transverse
section of a stage 26 Xenopus embryo,
showing the localisation of DHs within the
LPM. No morphological differences are
noticeable with surrounding cells. Dorsal is
to the top. s, somites; n, notochord; e,
endoderm. (B) In situ hybridisation
showing that Tal1/Scl-expressing DHs
localise dorsal to the Wolffian duct
anlagen, indicated by Lhx1 expression.
Dorsal is to the top. (C) Diagram showing
that DHs localise ventral to the somites
and dorsal to the Wolffian duct (WD). (D)
The emergence of DHs in association with
the somites and WD is conserved through
evolution. Although the exact location of
DHs is only known in Xenopus embryos,
Tal1/Scl expression in the LPM (shown in
red) of other systems is associated with
the somites and WD (shown in green).
Red bars in the chick and mouse embryos
show the localisation of emerging
precursors of the DA, which have been
shown to express Tal1/Scl [40,47].]
was activated with a laser in single cells located within a specific mesodermal quadrant and their descendants, coexpressing either a Flk1 or Gata1 transgene, were scored; this was performed both at the blastula and gastrula stages with similar results: cells from most quadrants were found later to express the Flk1 transgene [54]. A caveat of these experiments is that only cells of the ventral marginal zone were labelled. Also, whether quadrants contribute to specific regions of the vasculature was not examined.

A unique advantage of the *Xenopus* embryo as a model resides in the regularity of the first cell divisions which leads to the generation of embryos with symmetric blastomeres. This allows the generation of reproducible fate maps and has been used to determine the origin of the early vasculature [25]. Labelling single blastomeres with rhodamine dextran at the 16- and 32-cell stage and analysing their contribution to the early embryonic vasculature by colocalisation with the expression of an endothelial gene, apelin receptor (*Aphrr*, also known as *Msr*), determined that all blastomeres fated to the mesodermal lineage give rise to endothelial cells [25]. However, this fate mapping clearly demonstrated an AP organisation/patterning of the *Xenopus* vasculature. Before gastrulation, mesodermal progenitors localise in an equatorial ring (Fig. 3A), where the dorsal marginal zone (DMZ) gives rise to the head region, while the ventral marginal zone (VMZ) gives rise to more posterior mesoderm. Accordingly, the head vasculature derives from the most DMZ blastomeres, while the tail vasculature derives from the most VMZ blastomeres (Fig. 3B) [25]. Importantly, a more medial blastomere, blastomere C3, gives rise to trunk vasculature, including the DA which is fated to give rise to HE. Thus, this fate map agrees with the fate map demonstrating that DH and HE derive from C3 (Fig. 3C) [14].

Analysis in ES cells also indicates that endothelial cells are heterogeneous. For instance, when the expression of a HoxB6 reporter, which drives expression in posterior LPM, was analysed in mouse ES cells differentiated on the OP9 stromal cell line or during the differentiation of embryoid bodies, it was found to be expressed in only 3% of Flk1+ cells [55]. Importantly, the expression of genes associated with arterial specification and critical for definitive haematopoiesis, such as *Notch1, Notch4* and *Sox17*, were enriched in this cell population [55], indicating that only a small fraction of Flk1+ cells are programmed to the definitive blood lineage.

Taken together, the emergence of endothelial cells is not restricted to a single location in the mesodermal layer, instead they appear to emerge from all types of nascent mesodermal cells. Importantly, the vast majority of endothelial cells emerge independently of haematopoietic cells; in other words, they emerge directly from mesodermal cells rather than through a common blood-endothelial precursor or haemangioblast. In contrast, haematopoietic cells emerge in a few restricted areas of the embryo, for example only three regions of the *Xenopus* embryo give rise to blood: two giving rise to primitive/embryonic blood and only one to definitive blood/HSCs [14]. Also, all haematopoietic cells appear to emerge in association with cells expressing endothelial genes and not directly from mesodermal cells; in other words, through a common haematovascular progenitor, either from haemangioblasts or HE.

Antero-posterior patterning of endothelial cells

The vertebrate body plan is established early in embryogenesis, so by the end of gastrulation, the body axes (anterior–posterior, dorsal–ventral, left–right) have already been established [56]. This body plan establishes molecular coordinates which dictate the development of particular tissues and organs in specific locations within the body. As a result, body regions become committed to particular fates which cannot be changed beyond certain developmental stages. Regarding the haematopoietic fate, it has been demonstrated in *Xenopus* that ventral tissue, which is fated to give rise to embryonic blood can be reprogrammed to give rise to adult blood when grafted into the dorsal LPM [57]. Conversely, dorsal LPM fated to give rise to adult blood loses this potential when grafted into ventral mesoderm and is reprogrammed to produce embryonic blood [57]. However, this reprogramming cannot be achieved when these tissues are grafted after stage 15 of development which is just a couple of hours after gastrulation [57]. These experiments demonstrate that the embryonic and adult blood lineages are already distinct soon after gastrulation.

The *Xenopus* fate map and tissue transplantation in avian embryos demonstrate that the emerging embryonic vasculature is patterned along the AP axis. Recent evidence indicates that this patterning is conserved in the mouse. Regional deletion of the ETS TF, *Etv2*, which is essential for endothelial development, demonstrated a regionalisation of the endothelium as avascular areas resulting from the deletion of *Etv2* are not revascularised by endothelial cells from neighbouring regions [55]. For instance, *Etv2* deletion in Mesp1-expressing cells results in the loss of vasculature anterior to the forelimb and posterior to the hindlimb.
Fig. 3. Fate map in *Xenopus* embryos indicates AP patterning of the endothelium. (A) Localisation of the germ layers in the 32-cell stage embryo. Haematopoietic and endothelial cells emerge from the mesodermal layer. AP, animal pole; VP, vegetal pole. (B) The 32-cell stage fate map of the dorsal aorta (DA) and other axial vessels shows an AP regionalisation of the vasculature. The contribution of blastomeres of the 32-cell stage embryo to the vasculature are outlined on an embryo stained for expression of the vascular gene, AA4. Anterior to the right and dorsal to the top. PCV, posterior cardinal vein. (C) Time course of blastomere C3 contribution to haematopoietic tissues. Blastomere C3 gives rise to the dorsal LPM at stage 26 and to the DA and HSCs at stage 43 [23]. During gastrulation, C3 derivatives are distinctly localised from the progenitors of embryonic blood in the DMZ and VMZ. Sections show LacZ staining from one of the two C3 blastomeres at two axial levels: at the level of the bifurcated DA (Anterior) and at the level of the medial DA in the trunk (Posterior). C3 contributes to the entire DA of the trunk and, anteriorly, to the bifurcated DA proximal to the trunk. PN, pronephros; n, notochord; WD, Wolffian duct.

with the trunk vasculature, encompassing the AGM region, much less affected [55]. Unless *Etv2* deletion in *Mesp1* cells indirectly affects the migratory behaviour of normal endothelial cells, this indicates that trunk endothelium does not contribute to, and cannot compensate for, the loss of more anterior or posterior endothelial cells. Furthermore, although somite-derived endothelium has been shown to be highly migratory [58], it appears to be unable to colonise the avascular regions generated by *Etv2* deletion. Thus, the persistence of avascular regions in *Etv2*-deficient embryos is more likely due to regional programming rather than defects in the migratory behaviour of normal endothelial cells. Interestingly, this reduces the possibility that a migratory endothelial precursor is responsible for HSCs in the head, and suggests that a more mature precursor cell, with haematopoietic potential, is a more likely contributor.
It is noteworthy that, in birds, endothelial cells derived from the somites contribute to the embryonic DA [59]. Although the DA is initially formed by endothelial cells derived from the LPM [36,37,39,40], by the time intra-aortic haematopoietic clusters sprout from the ventral wall, the dorsal wall consists of somite-derived endothelium [60]. Haematopoietic potential, however, is restricted to the splanchnic mesoderm-derived ventral wall. Later, after HSCs have sprouted, even the ventral wall is replaced by somite-derived endothelium [61]. In the mouse, however, somite contribution to the DA endothelium is rare [58,62]. Furthermore, lineage labelling strongly indicates that all endothelium of the embryonic and adult DA derives from the LPM [20,50], ruling out a potential contribution of the somites to HSCs. In the mouse, a later contribution of the somites to the HSC lineage is also very unlikely as only endothelial cells labelled during a narrow window of development give rise to adult blood [63].

In *Xenopus*, HSCs originate from a restricted region of the LPM (Fig. 1) [4,5,21,26], suggesting that the LPM is patterned. Importantly, the *Xenopus* Wolffian duct, a structure developing in close association with DHs, has been shown to be segmented in an AP manner [64]. The zebrafish Wolffian duct also develops in close association with haemangioblasts and has also been shown to be segmented [65,66]. Although segmentation of the amniote Wolffian duct has not yet been described, its function evolves with time, reflecting its sequential connection with the transient pronephros, the mesonephros and, finally, the metanephros and the reproductive organs [67]. In amniotes, the Wolffian duct also develops alongside the DA precursors (Fig. 2D) and its development may reflect regional patterning cues that could also influence the emergence of DHs.

In *Xenopus* embryos, the expression of *Tal1/Scl* and *Kdr/Flk1* in the LPM starts at the level of the pronephros (PN) and extends posteriorly to the tail bud (Fig. 4A). Their expression can be subdivided into three regions relative to the developing pronephros and Wolffian duct: an anterior region associated with the pronephric head, a middle region running alongside the Wolffian duct, and a posterior region without any association with pronephric tissue (Fig. 4A). Transplantation experiments have demonstrated that HSCs derive from the region localised immediately posterior to the pronephric head (Fig. 1); therefore, it is likely that DHs giving rise to HSCs reside in the middle portion of the PLM and that they develop in association with the Wolffian duct. However, the precise location of the DHs requires further investigation.

At the 10-somite stage, the LPM of the zebrafish embryo can be subdivided into anterior and posterior regions according to *Tal1/Scl* expression (Fig. 4B). The anterior region is located in the head and gives rise to the rostral blood island. This region produces myeloid and endothelial cells and also contains cardiac precursors [42,68–70]. The posterior LPM localises in between the somites and the pronephric anlagen; however, in contrast to the Wolffian duct, *Scl* does not reach the cloaca (Fig. 4B). The posterior LPM can be further subdivided into two regions according to their potential to give rise only to vascular precursors or to both blood and vascular precursors. *Gata1* expression in the posterior LPM localises from somite 5 and extends posteriorly to cover the *Tal1/Scl* expression domain. Therefore, it is thought that haematopoietic potential is contained within the *Gata1*-expressing cells, whereas the *Gata1*-negative domain localised anterior to somite 5 and running alongside the pronephros (Fig. 4B, blue-boxed region) only generates vascular precursors. The *Gata1*-expressing domain can further be subdivided, as its most posterior region is believed to later give rise to the posterior blood island which has erythromyeloid potential [71]. The region between the vascular precursors and the posterior blood island progenitors is where embryonic erythrocyte precursors reside and, additionally, it is thought to give rise to HSCs, as endothelial cells derived from this region form the trunk DA [32,72], where EHT has been observed [17,18]. However, the boundaries between the regions of the posterior LPM have not been clearly delineated and lineage labelling experiments will be required to define where in the LPM of the 10-somite embryo HSC potential is located. At the 10-somite stage, HSC potential has been proposed to be located posterior to the pronephros (Fig. 4B); this could be the case as *Runx1* expression in the DA of the 30-h postfertilisation (hpf) embryo is also restricted posterior to the PN and extends posteriorly as far as the yolk extension (Fig. 4C). Taken together, these observations indicate AP patterning of the HSC potential in zebrafish.

The functional significance of endothelial patterning is exemplified by the role of hedgehog (Hh) in arterial specification [73]. In the zebrafish, Hh signalling has been implicated in the regulation of *VEGFA* expression in the somites. Subsequent *VEGFA* secretion from the somites activates notch signalling in the DA and this establishes the arterial programme [74]. In parallel, this Hh-VEGFA-notch signalling cascade initiates the HE programme in the zebrafish DA [75]. In the mouse, expression in developing arteries of Dll4, a notch ligand that is essential for arterial identity [76],
is completely dependent on VEGFA signalling [73]. However, in Hh-deficient embryos, Dll4 expression is only lost in the head [73]. This suggests that the Hh-VEGFA-Dll4 cascade is only functional in the head region and not in the DA which gives rise to HSCs. In support of this, although Dll4 expression in Xenopus embryos is completely dependent on VEGFA, inhibition of Hh signalling has no effect on Dll4 expression in the DA, and VEGFA expression in the somites is normal [77], thus confirming that Dll4 expression in the trunk DA is not dependent on Hh signalling. The differential requirement of Hh for the expression of Dll4 in the head and the trunk indicates that regionalisation greatly influences the response of endothelial cells to signalling pathways.

Haematopoietic stem cells emerge in a restricted AP position within the DA. In Xenopus embryos, expression within the DA of Runx1, a TF essential for EHT [78], is restricted to the trunk (Fig. 5A). The main axial artery of the embryo spans from the head to the tail and can be subdivided, from anterior to posterior, into the head arteries, the paired or bifurcated DA, the medial DA of the trunk and the tail artery. Runx1’s expression spans the Wolffian duct and never extends posteriorly into the tail artery, with its posterior boundary of expression located at the level of the

Fig. 4. Haematovascular progenitors within the LPM are regionalised. (A) Comparison of Kdr/Flk1, Tal1/Scl and Pax8 expression in the dorsal LPM of stage 26 Xenopus embryos showing three regions according to their association with the developing pronephric system: an anterior region associated with the pronephros (PN), a middle region associated with the Wolffian duct, and a posterior region without any association with the pronephric system. Transplantation experiments have shown that HSCs derive from the middle region of the LPM. However, further analysis is required to establish whether the anterior and posterior LPM give rise to any HSCs. (B) Regionalisation of the LPM in 10-somite zebrafish embryos. Scl expression, shown in red, subdivides the LPM into anterior and posterior. The posterior LPM localises alongside the Wolffian duct (shown in green) and can be further subdivided into vascular precursors which do not express Gata1, a region proximal to the cloaca which gives rise to the posterior blood island and a middle region which gives rise to embryonic blood. This middle region is also thought to contain HSC precursors. (C) Runx1 expression (red) in the DA of the 30hpf zebrafish embryo localises in the trunk. This region has been shown to undergo EHT to give rise to HSCs. The area expressing Runx1 spans the Wolffian duct (green), is posterior to the pronephros (PN) and does not extend posterior to the yolk extension. Thus, emergence of HSCs appears to be restricted to the trunk.
Runx1's anterior boundary is located in the bifurcated DA, not far from where they fuse to form the medial DA (Fig. 3B) [32]. In the mouse, intra-aortic haematopoietic clusters are also only found in the trunk DA, with an anterior boundary localised at the level of the forelimb and the posterior boundary at the level of the hindlimb [13,79]. More recently, it has been confirmed in the mouse that functional HSCs only emerge in the trunk DA, which extends between the anterior and posterior limb buds and anteriorly includes the most proximal portion of the bifurcated DA (Fig. 5C) [80]. Interestingly, the LPM that gives rise to this region of the DA is already patterned [81]. This patterning positions specification of the forelimb and hindlimb buds and is mediated by a GRN, which includes Hox genes [81,82].

Hox genes are key determinants of AP identity [83] and have been shown to regulate the segmentation of the Wolffian duct. Cdx deficiency in the zebrafish causes a posterior shift of the entire Wolffian duct with the loss of the most posterior segments [66]. Regarding haematopoiesis, Cdx genes have been shown to regulate embryonic erythropoiesis in the zebrafish through Hox genes [86,87]; however, whether this is due to changes in AP patterning is not known. As the DA/HSC precursors develop in close proximity to the Wolffian duct and the precursors of embryonic erythrocytes in this organism, these observations suggest a potential involvement of Hox genes in the AP restriction of HSC emergence.

Evidence that Hox genes can control the AP expression of key HE/HSC genes has been provided by studies on the specification of chick motor neurons [88]. Motor neurons with distinct function are specified as pools of cells at different AP positions in the neural tube. Runx1 is expressed in, and essential for, the specification of one of these pools. Paralogue 5 Hox genes (Hox5) are expressed by the same pool of motor neurons and are required for Runx1 expression. HoxC8 is expressed posterior to the pool of Runx1+ motor neurons and gene perturbation has demonstrated that it regulates the posterior boundary of Runx1 expression by repressing Hox5 [88]. Within the mouse DA, HoxA3 has been shown to repress the expression of Runx1 [89]. At E8.25, expression of Runx1 is not detected by in situ hybridisation in the DA of wild-type embryos; however, when HoxA3 is deleted, premature expression is observed [89]. This suggests that repression of HoxA3 is required for the initiation of the expression of Runx1 and, consequently, for the emergence of HE in the DA. How HoxA3 is repressed in a timely fashion, though, is not known. Similarly, whether deletion of HoxA3 is accompanied by AP changes is not known. Nevertheless, these observations indicate that HE fate is established early during development, potentially in the LPM, and that a Hox GRN is involved.

Conclusions and perspectives

Although DHs have so far only been described and characterised in Xenopus embryos, indirect evidence strongly indicates their existence in the LPM of all vertebrates. In Xenopus, the dorsal LPM of the trunk provides a unique environment for the specification of DHs. Critically, tissues such as the somites, which do not appear to be involved in the specification of other haematovascular progenitors, contribute to the unique signalling regime that initiates the programming of the HSC lineage. Perhaps, one of the main functions of this environment is to prevent emerging DHs from...
immediately differentiating into mature blood cells, while retaining their capacity to differentiate into angioblasts, as well as priming them to give rise to HSCs when localised in the correct DA microenvironment. Important to note is that the TFs controlling the DH GRN, such as Gata2, Scl and ETS transcription factors, also form the core of the GRN programming HE in the DA [22,90]. Similarly, key signalling pathways, such as VEGFA and BMP, are equally essential for DHs and HE. Nevertheless, the programming outputs of the interaction between TFs and signalling pathways are significantly different. This suggests that their combinatorial activity, their regulation and/or their mechanism of action is different. Indeed, we have demonstrated in Xenopus that the small isoform of VEGFA is sufficient for DH programming but that the medium and large isoforms of VEGFA, generated by alternative splicing, are essential for the emergence of HE [77]. The use of model organisms with externally developing embryos will continue to contribute to our understanding of how HSCs are programmed from nascent mesoderm. These important lessons should be used to inform the establishment of protocols for the de novo generation of HSCs in vitro.

Acknowledgements

We thank Philip Pinheiro for discussions on gene expression patterns in the zebrafish LPM. This work was supported by the UK MRC.

References

1 Medvinsky A, Rybtsov S and Taoudi S (2011) Embryonic origin of the adult hematopoietic system: advances and questions. Development 138, 1017–1031.
2 Moore MA and Metcalf D (1970) Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 18, 279–296.
3 Dieterlen-Lievre F (1975) On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J Embryol Exp Morphol 33, 607–619.
4 Maeno M, Tochinai S and Katagiri C (1985) Differential participation of ventral and dorsolateral mesodermis in the hematopoiesis of Xenopus, as revealed in diploid-triploid or interspecific chimeras. Dev Biol 110, 503–508.
5 Kau CL and Turpen JB (1983) Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hematopoietic cells in Xenopus laevis. J Immunol 131, 2262–2266.
6 Medvinsky A and Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897–906.
7 Muller AM, Medvinsky A, Strouboulis J, Grosveld F and Dzierzak E (1994) Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1, 291–301.
8 Emmel VE (1916) The cell clusters in the dorsal aorta of mammalian embryos. Am J Anat 19, 21.
9 Jordan HE (1917) Aortic cell clusters in vertebrate embryos. Proc Natl Acad Sci USA 3, 149–156.
10 Smith RA and Glomski CA (1982) “Hemogenic endothelium” of the embryonic aorta: does it exist? Dev Comp Immunol 6, 359–368.
11 Dieterlen-Lievre F and Martin C (1981) Diffuse intraembryonic hematopoiesis in normal and chimeric avian development. Dev Biol 88, 180–191.
12 Tavian M, Coulombel L, Lunot D, Clemente HS, Dieterlen-Lievre F and Peault B (1996) Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood 87, 67–72.
13 Garcia-Porrero JA, Manaia A, Jimeno J, Lasky LL, Dieterlen-Lievre F and Godin IE (1998) Antigenic profiles of endothelial and hematopoietic lineages in murine intraembryonic hematogenic sites. Dev Comp Immunol 22, 303–319.
14 Ciau-Uitz A, Walmsley M and Patient R (2000) Distinct origins of adult and embryonic blood in Xenopus. Cell 102, 787–796.
15 Jaffredo T, Gautier R, Brajeul V and Dieterlen-Lievre F (2000) Tracing the progeny of the aortic hemangioblast in the avian embryo. Dev Biol 224, 204–214.
16 Jaffredo T, Gautier R, Eichmann A and Dieterlen-Lievre F (1998) Intraaortic hematopoietic cells are derived from endothelial cells during ontogeny. Development 125, 4575–4583.
17 Kissa K and Hermbomel P (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112–115.
18 Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY and Traver D (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–111.
19 Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E and Robin C (2010) In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464, 116–120.
20 Zovein AC, Turlo KA, Ponec RM, Lynch MR, Chen KC, Hofmann JJ, Cox TC, Gasson JC and Irueka-Arispe ML (2010) Vascular remodeling of the vitelline artery initiates extrascular emergence of hematopoietic clusters. Blood 116, 3435–3444.
21 Chen XD and Turpen JB (1995) Intraembryonic origin of hepatic hematopoiesis in Xenopus laevis. J Immunol 154, 2557–2567.
HSCs derive from lateral plate mesoderm

22 Ciau-Uitz A, Pinheiro P, Kirmizitas A, Zuo J and Patient R (2013) VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in *Xenopus*. *Development* 140, 2632–2642.

23 Walmsley M, Ciau-Uitz A and Patient R (2002) Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in *Xenopus*. *Development* 129, 5683–5695.

24 Ciau-Uitz A, Monteiro R, Kirmizitas A and Patient R (2014) Developmental hematopoiesis: ontogeny, genetic programming and conservation. *Exp Hematol* 42, 669–683.

25 Mills KR, Kruep D and Saha MS (1999) Elucidating the origins of the vascular system: a fate map of the vascular endothelial and red blood cell lineages in *Xenopus laevis*. *Dev Biol* 209, 352–368.

26 Turpen JB (1998) Induction and early development of the hematopoietic and immune systems in *Xenopus*. *Dev Comp Immunol* 22, 265–278.

27 Maeno M, Todate A and Katagiri C (1985) The localization of precursor cells for larval and adult hematopoietic-cells of *Xenopus laevis* in 2 regions of embryos. *Dev Growth Differ* 27, 137–148.

28 Li Z, Lan Y, He W, Chen D, Wang J, Zhou F, Wang Y, Sun H, Chen X, Xu C *et al.* (2012) Mouse embryonic head as a site for hematopoietic stem cell development. *Cell Stem Cell* 11, 663–675.

29 Li Z, Vink CS, Mariani SA and Dzierzak E (2016) Subregional localization and characterization of Ly6aGFP-expressing hematopoietic cells in the mouse embryonic head. *Dev Biol* 416, 34–41.

30 Martin C, Beaupain D and Dieterlen-Lievre F (1980) A study of the development of the hematopoietic system using quail-chick chimeras obtained by blastoderm recombination. *Dev Biol* 75, 303–314.

31 Iizuka K, Yokomizo T, Watanabe N, Tanaka Y, Osato M, Takaku T and Komatsu N (2016) Lack of phenotypical and morphological evidences of endothelial to hematopoietic transition in the murine embryonic head during hematopoietic stem cell emergence. *PLoS ONE* 11, e0156427.

32 Ciau-Uitz A, Liu F and Patient R (2010) Genetic control of hematopoietic development in *Xenopus* and zebrafish. *Int J Dev Biol* 54, 1139–1149.

33 Turpen JB and Knudson CM (1982) Ontogeny of hematopoietic cells in *Rana pipiens*: precursor cell migration during embryogenesis. *Dev Biol* 89, 138–151.

34 Turpen JB, Knudson CM and Hoefen PS (1981) The early ontogeny of hematopoietic cells studied by grafting cyogenetically labeled tissue anlagen: localization of a prospective stem cell compartment. *Dev Biol* 85, 99–112.

35 Cleaver O and Krieg PA (1998) VEGF mediates angioblast migration during development of the dorsal aorta in *Xenopus*. *Development* 125, 3905–3914.

36 Poole TJ and Coffin JD (1989) Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. *J Exp Zool* 251, 224–231.

37 Poole TJ and Coffin JD (1988) Developmental angiogenesis: quail embryonic vasculature. *Scanning Microsc* 2, 443–448.

38 Garriock RJ and Mikawa T (2011) Early arterial differentiation and patterning in the avian embryo model. *Semin Cell Dev Biol* 22, 985–992.

39 Rupp PA, Czirok A and Little CD (2004) alphavbeta3 integrin-dependent endothelial cell dynamics in vivo. *Development* 131, 2887–2897.

40 Drake CJ, Brandt SJ, Trusk TC and Little CD (1997) TAL1/SCL is expressed in endothelial progenitor cells/angioblasts and defines a dorsal-to-ventral gradient of vasculogenesis. *Dev Biol* 192, 17–30.

41 Porcher C, Swat W, Rockwell K, Fujiiwara Y, Alt FW and Orkin SH (1996) The T cell leukemia oncprotein SCL/tal-1 is essential for development of all hematopoietic lineages. *Cell* 86, 47–57.

42 Gering M, Rodaway AR, Gottgens B, Patient RK and Green AR (1998) The SCL gene specifies haemangioblast development from early mesoderm. *EMBO J* 17, 4029–4045.

43 Patterson LJ, Gering M and Patient R (2005) Scl is required for dorsal aorta as well as blood formation in zebrafish embryos. *Blood* 105, 3502–3511.

44 Liu F, Walmsley M, Rodaway A and Patient R (2008) Fil1 acts at the top of the transcriptional network driving blood and endothelial development. *Curr Biol* 18, 1234–1240.

45 Nimmo R, Ciau-Uitz A, Ruiz-Herguido C, Soneji S, Bigas A, Patient R and Enver T (2013) MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny. *Dev Cell* 26, 237–249.

46 Ciau-Uitz A, Pinheiro P, Gupta R, Enver T and Patient R (2010) TElf/ETV6 specifies blood stem cells through the agency of VEGF signaling. *Dev Cell* 18, 569–578.

47 Drake CJ and Fleming PA (2000) Vasculogenesis in the day 6.5 to 9.5 mouse embryo. *Blood* 95, 1671–1679.

48 Chong DC, Koo Y, Xu K, Fu S and Cleaver O (2011) Stepwise arteriovenous fate acquisition during mammalian vasculogenesis. *Dev Dyn* 240, 2153–2165.

49 Elefanty AG, Begley CG, Hartley L, Papaevangelou B and Robb L (1999) SCL expression in the mouse embryo detected with a targeted lacZ reporter gene demonstrates its localization to hematopoietic, vascular, and neural tissues. *Blood* 94, 3754–3763.

50 Wasteson P, Johansson BR, Jukkola T, Breuer S, Akyurek LM, Partanen J and Lindahl P (2008)
Developmental origin of smooth muscle cells in the descending aorta in mice. Development 135, 1823–1832.

Chi JT, Chang HY, Haraldsen G, Jahnson FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, van de Rijn M, Botstein D et al. (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci USA 100, 10623–10628.

Noden DM (1990) Origins and assembly of avian embryonic blood vessels. Ann N Y Acad Sci 588, 236–249.

Coulty G, Colley P, Eichmann A and Le Douarin NM (1996) Two distinct endothelial lineages in the zebrafish gastrula. Mech Dev 53, 97–112.

Vogeli KM, Jin SW, Martin GR and Stainier DY (2006) A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 443, 337–339.

Kataoka H, Hayashi M, Kobayashi K, Ding G, Tanaka Y and Nishikawa S (2013) Region-specific Etv2 ablation revealed the critical origin of hemogenic capacity from Hox6-positive caudal-lateral primitive mesoderm. Exp Hematol 41, 567–581 e9.

Carron C and Shi DL (2016) Specification of anteroposterior axis by combinatorial signaling during Xenopus development. Wiley Interdiscip Rev Dev Biol 5, 150–168.

Turpen JB, Kelley CM, Mead PE and Zon LI (1997) Bipotential primitive-definitive hematopoietic progenitors in the vertebrate embryo. Immunity 7, 325–334.

Ambler CA, Nowicki JL, Burke AC and Bautch VL (2001) Assembly of trunk and limb blood vessels involves extensive migration and vasculogenesis of somite-derived angioblasts. Dev Biol 234, 352–364.

Sato Y (2013) Dorsal aorta formation: separate origins, lateral-to-medial migration, and remodeling. Dev Growth Differ 55, 113–129.

Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catala M and Dieterlen-Lievre F (1996) Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122, 1363–1371.

Pouget C, Gautier R, Teillet MA and Jaffredo T (2006) Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development 133, 1013–1022.

Esner M, Meilhac SM, Reliax F, Nicolas JF, Cossu G and Buckingham ME (2006) Smooth muscle of the dorsal aorta shares a common clonal origin with skeletal muscle of the myotome. Development 133, 737–749.

Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y, Becker MS, Zanetta L, Dejana E, Gasson JC et al. (2008) Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3, 625–636.

Raciti D, Reggiani L, Geffers L, Jiang Q, Bacchion F, Subrizi AE, Clements D, Tindal C, Davidson DR, Kaisling B et al. (2008) Organization of the pronephric kidney revealed by large-scale gene expression mapping. Genome Biol 9, R84.

Serluca FC and Fishman MC (2001) Pre-pattern in the pronephric kidney field of zebrafish. Development 128, 2233–2241.

Wingert RA, Selleck R, Yu J, Song HD, Chen Z, Song A, Zhou Y, Thisse B, Thisse C, McMahon AP et al. (2007) The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet 3, 1922–1938.

Dressler GR (2009) Advances in early kidney specification, development and patterning. Development 136, 3863–3874.

Schoenebeck JJ, Keegan BR and Yelon D (2007) Vessel and blood specification override cardiac potential in anterior mesoderm. Dev Cell 13, 254–267.

Peterkin T, Gibson A and Patient R (2009) Common genetic control of haemangioblast and cardiac development in zebrafish. Development 136, 1465–1474.

Simoes FC, Peterkin T and Patient R (2011) Fgf differentially controls cross-antagonism between cardiac and haemangioblast regulators. Development 138, 3235–3245.

Bertrand JY, Kim AD, Violette EP, Stachura DL, Cisson JL and Traver D (2007) Definitive hematopoiesis initiates through a committed erythro-myeloid progenitor in the zebrafish embryo. Development 134, 4147–4156.

Zhong TP, Childs S, Leu JP and Fishman MC (2001) Gridlock signalling pathway fashions the first embryonic artery. Nature 414, 216–220.

Coulitas L, Nieuwenhuis E, Anderson GA, Cabezás J, Nagy A, Henkelman RM, Hui CC and Rossant J (2010) Hedgehog regulates distinct vascular patterning events through VEGF-dependent and -independent mechanisms. Blood 116, 653–660.

Lawson ND, Vogel AM and Weinstein BM (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3, 127–136.

Gering M and Patient R (2005) Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev Cell 8, 389–400.

Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, Costa L, Henrique D and Rossant J (2004) Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 18, 2474–2478.

Leung A, Clau-Uitz A, Pinheiro P, Monteiro R, Zuo J, Vyas P, Patient R and Porcher C (2013) Uncoupling...
VEGFA functions in arteriogenesis and hematopoietic stem cell specification. *Dev Cell* 24, 144–158.

78 Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E and Speck NA (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. *Nature* 457, 887–891.

79 Yokomizo T, Ng CE, Osato M and Dzierzak E (2011) Three-dimensional imaging of whole midgestation murine embryos shows an intravascular localization for all hematopoietic clusters. *Blood* 117, 6132–6134.

80 Rybtsov S, Ivanovs A, Zhao S and Medvinsky A (2016) Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver. *Development* 143, 1284–1289.

81 Nishimoto S and Logan MP (2016) Subdivision of the lateral plate mesoderm and specification of the forelimb and hindlimb forming domains. *Semin Cell Dev Biol* 49, 102–108.

82 Logan M (2003) Finger or toe: the molecular basis of limb identity. *Development* 130, 6401–6410.

83 Burke AC, Nelson CE, Morgan BA and Tabin C (1995) Hox genes and the evolution of vertebrate axial morphology. *Development* 121, 333–346.

84 Pregger-Ben Noon E, Barak H, Guttmann-Raviv N and Reshef R (2009) Interplay between activin and Hox genes determines the formation of the kidney morphogenetic field. *Development* 136, 1995–2004.

85 Mugford JW, Sipila P, Kobayashi A, Behringer RR and McMahon AP (2008) Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo. *Dev Biol* 319, 396–405.

86 Davidson AJ, Ernst P, Wang Y, Dekens MP, Kingsley PD, Palis J, Korsmeyer SJ, Daley GQ and Zon LI (2003) cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. *Nature* 425, 300–306.

87 Davidson AJ and Zon LI (2006) The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. *Dev Biol* 292, 506–518.

88 Dasen JS, Tice BC, Brenner-Morton S and Jessell TM (2005) A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. *Cell* 123, 477–491.

89 Iacovino M, Chong D, Szatmari I, Hartweck L, Rux D, Caprioli A, Cleaver O and Kyba M (2011) HoxA3 is an apical regulator of haemogenic endothelium. *Nat Cell Biol* 13, 72–78.

90 Ciau-Uitz A, Patient R and Medvinsky A (2016) Ontogeny of the hematopoietic system. In *Encyclopedia of Immunobiology* (Ratcliffe MJH, ed.), pp. 1–14, Academic Press, Oxford.