The polytopes in a Poisson hyperplane tessellation

Rolf Schneider

Abstract

For a stationary Poisson hyperplane tessellation X in \mathbb{R}^d, whose directional distribution satisfies some mild conditions (which hold in the isotropic case, for example), it was recently shown that with probability one every combinatorial type of a simple d-polytope is realized infinitely often by the polytopes of X. This result is strengthened here: with probability one, every such combinatorial type appears among the polytopes of X not only infinitely often, but with positive density.

2010 Mathematics Subject Classification. Primary 60D05, Secondary 51M20, 52C22

Key words and phrases. Poisson hyperplane tessellation; ergodicity; simple polytope; combinatorial type; density in a tessellation

1 Introduction

Imagine a system H of hyperplanes in Euclidean space \mathbb{R}^d ($d \geq 2$) that induces a tessellation T_H of \mathbb{R}^d. This means that any bounded subset of \mathbb{R}^d meets only finitely many hyperplanes of H and that the components of $\mathbb{R}^d \setminus \bigcup_{H \in H} H$ are bounded. The closures of these components are then convex polytopes which cover \mathbb{R}^d and have pairwise no common interior points. The set of these polytopes is denoted by T_H. We impose the additional assumption that the hyperplanes of H are in general position; then each polytope of T_H is simple, that is, each of its vertices is contained in precisely d facets. The polytopes appearing in T_H may be rather boring; they could, for example, all be parallelepipeds. However, if the hyperplanes of H have sufficiently many different directions, one can imagine that quite different shapes of polytopes appear in T_H. Is it possible that every combinatorial type of a simple d-polytope is realized in T_H? This can be achieved in a much stronger sense.

In fact, suppose that \hat{X} is a stationary and isotropic Poisson hyperplane process in \mathbb{R}^d (explanations are found in [7], for example). Its hyperplanes are almost surely in general position and induce a random tessellation of \mathbb{R}^d, denoted by X. The general character of the polytopes in X was recently investigated in [4]. For example, it was shown there that almost surely (a.s.) the translates of the polytopes in X are dense in the space of convex bodies in \mathbb{R}^d (with the Hausdorff metric). Another result was that a.s. the polytopes of X realize every combinatorial type of a simple d-polytope infinitely often. In the following, we improve the latter result considerably, replacing ‘infinitely often’ by ‘with positive density’.

In the subsequent definition, B_n is the ball in \mathbb{R}^d with center at the origin and radius $n \in \mathbb{N}$, and λ_d denotes Lebesgue measure in \mathbb{R}^d. Further, 1_A is the indicator function of A.

Definition 1. Let T be a tessellation of \mathbb{R}^d, and let A be a translation invariant set of polytopes in \mathbb{R}^d. We say that A appears in T with density δ if

$$\liminf_{n \to \infty} \frac{1}{\lambda_d(B_n)} \sum_{P \in T, P \subseteq B_n} 1_A(P) = \delta.$$
With this definition, we prove below that in a Poisson hyperplane tessellation in \mathbb{R}^d which is stationary and isotropic (that is, has a motion invariant distribution), almost surely every combinatorial type of a simple d-polytope appears with positive density. The actual result will, in fact, be more general: it is sufficient that the Poisson hyperplane tessellation is stationary and that its directional distribution, a measure on the unit sphere, is not zero on any nonempty open set and is zero on any great subsphere. The precise theorem is formulated in the next section.

2 Explanations

We work in the d-dimensional Euclidean space \mathbb{R}^d ($d \geq 2$) with its usual scalar product $\langle \cdot, \cdot \rangle$. By λ_d we denote its Lebesgue measure, by o its origin, by B^d its unit ball (with $nB^d =: B_n$), and by \mathbb{S}^{d-1} its unit sphere. The space of hyperplanes in \mathbb{R}^d, with its usual topology, is denoted by H, and $\mathcal{B}(H)$ is the σ-algebra of Borel sets in H. Hyperplanes in \mathbb{R}^d are often written in the form $H(u, \tau) = \{x \in \mathbb{R}^d : \langle x, u \rangle \leq \tau\}$ with $u \in \mathbb{S}^{d-1}$ and $\tau \in \mathbb{R}$.

We assume that \hat{X} is a stationary Poisson hyperplane process in \mathbb{R}^d, thus, a Poisson point process in the space H of hyperplanes, with the property that its distribution is invariant under translations (we refer, e.g., to [7] for more details). The intensity measure $\hat{\Theta}$ of \hat{X} is defined by

$$\hat{\Theta}(A) = \mathbb{E} \hat{X}(A) \quad \text{for } A \in \mathcal{B}(H).$$

Here \mathbb{E} denotes expectation, and we write $(\Omega, \mathcal{A}, \mathbb{P})$ for the underlying probability space. It is assumed that $\hat{\Theta}$ is locally finite and not identically zero. That \hat{X} is a Poisson process includes that

$$\mathbb{P}(\hat{X}(A) = k) = e^{-\hat{\Theta}(A)} \frac{\hat{\Theta}(A)^k}{k!} \quad \text{for } k \in \mathbb{N}_0,$$

for any $A \in \mathcal{B}(H)$ with $\hat{\Theta}(A) < \infty$.

Since \hat{X} is stationary, the measure $\hat{\Theta}$ has a decomposition

$$\hat{\Theta}(A) = \hat{\gamma} \int_{\mathbb{S}^{d-1}} \int_{-\infty}^{\infty} 1_A(H(u, \tau)) d\tau \varphi(du)$$

for $A \in \mathcal{B}(H)$ (see [7], Theorem 4.4.2 and (4.33)). The number $\hat{\gamma} > 0$ is the intensity of \hat{X}, and φ is a finite, even Borel measure on the unit sphere. It is called the spherical directional distribution of \hat{X}. For any such measure φ and any number $\hat{\gamma} > 0$, there exists a stationary Poisson hyperplane process in \mathbb{R}^d with these data, and it is unique up to stochastic equivalence.

The hyperplane process \hat{X} induces a random tessellation of \mathbb{R}^d, which we denote by X. As usual, a random tessellation is formalized as a particle process; we refer again to [7].

Since we are considering only simple processes, it is convenient to identify such a process, which by definition is a counting measure, with its support, which is a locally finite set. In particular, a realization of \hat{X} is also considered as a set of hyperplanes, and a realization of X is considered as a set of polytopes. The notations $\hat{X}(\{H\}) = 1$ and $H \in \hat{X}$ for a hyperplane H, for example, are therefore used synonymously.

The combinatorial type of a polytope P in \mathbb{R}^d is the set of all polytopes in \mathbb{R}^d that are combinatorially isomorphic to P. Now we can formulate our result.
Theorem 1. Let \(X \) be a tessellation of \(\mathbb{R}^d \) that is induced by a stationary Poisson hyperplane process \(\tilde{X} \) with spherical directional distribution \(\varphi \). Suppose that the support of \(\varphi \) is the whole unit sphere \(S^{d-1} \) and that \(\varphi \) assigns measure zero to each great subsphere of \(S^{d-1} \). Then, with probability one, each combinatorial type of a simple \(d \)-polytope appears with positive density in \(X \).

Theorem 1 implies, trivially, that under its assumptions almost surely each combinatorial type of a simple \(d \)-polytope appears infinitely often in \(X \). When the latter fact was proved, among other results, in [4], a tool was a strengthened version of the Borel–Cantelli lemma, due to Erdős and Rényi [3] (see also [5, p. 327]). When the note [4] was submitted, an anonymous referee wrote “that the use of ergodicity of the mosaic could lead to a possibly shorter alternative proof”, and he/she briefly indicated a possible approach. After thorough consideration, we preferred the more elementary Borel–Cantelli lemma. However, reconsideration revealed that ergodicity, applied in a different way, might lead to a stronger result, as far as the occurrence of combinatorial types is concerned. This is carried out in the following.

3 Proof

Let \(X \) satisfy the assumptions of Theorem 1. Under the only assumption that the spherical directional distribution of the stationary Poisson hyperplane tessellation \(X \) is zero on every great subsphere, it was shown in [7, Thm. 10.5.3] that \(X \) is mixing and hence ergodic. This requires a few explanations. To model \(X \) as a point process, we consider the space \(\mathcal{K} \) of convex bodies (nonempty, compact, convex subsets) in \(\mathbb{R}^d \) with the Hausdorff metric. By \(\mathcal{B}(\mathcal{K}) \) we denote the \(\sigma \)-algebra of Borel sets in \(\mathcal{K} \). Let \(N_s(\mathcal{K}) \) be the set of simple, locally finite counting measures on \(\mathcal{B}(\mathcal{K}) \) and \(\mathcal{N}_s(\mathcal{K}) \) its usual \(\sigma \)-algebra (for details see, e.g., [7, Sect. 3.1]). As underlying probability space \((\Omega, \mathcal{A}, \mathbb{P}) \), on which \(X \) is defined, we can use \((\mathcal{N}_s(\mathcal{K}), \mathcal{N}_s(\mathcal{K}), \mathbb{P}_X) \), where \(\mathbb{P}_X \) is the distribution of \(X \). For \(t \in \mathbb{R}^d \), a bijective map \(T_t : \eta \mapsto T_t \eta \) of \(\mathcal{N}_s(\mathcal{K}) \) onto itself is defined by

\[
(T_t \eta)(B) := \eta(B - t), \quad B \in \mathcal{B}(\mathcal{K}), \ \eta \in \mathcal{N}_s(\mathcal{K}).
\]

Since \(X \) is stationary, we have

\[
\mathbb{P}_X(T_t A) = \mathbb{P}_X(A) \quad \text{for} \quad A \in \mathcal{N}_s(\mathcal{K}),
\]

thus \(T_t \) induces a measure preserving map of \(\mathcal{N}_s(\mathcal{K}) \) into itself. Let \(\mathcal{T} := \{T_t : t \in \mathbb{R}^d \} \). As shown in [7, Thm. 10.5.3], the dynamical system \((\mathcal{N}_s(\mathcal{K}), \mathcal{N}_s(\mathcal{K}), \mathbb{P}_X, \mathcal{T}) \) is mixing, that is,

\[
\lim_{||t|| \to \infty} \mathbb{P}_X(A \cap T_t B) = \mathbb{P}_X(A) \mathbb{P}_X(B)
\]

holds for all \(A, B \in \mathcal{N}_s(\mathcal{K}) \). It follows that the system is ergodic, which means that \(\mathbb{P}_X(A) \in \{0, 1\} \) for all \(A \in \mathcal{T} := \{A \in \mathcal{N}_s(\mathcal{K}) : T_t A = A \text{ for all } t \in \mathbb{R}^d \} \). Therefore, the ‘Individual Ergodic Theorem for \(d \)-dimensional Shifts’ yields the following.

Proposition 1. Let \(f \) be an integrable random variable on \((\mathcal{N}_s(\mathcal{K}), \mathcal{N}_s(\mathcal{K}), \mathbb{P}_X) \). Then

\[
\lim_{n \to \infty} \frac{1}{\lambda_d(B_n)} \int_{B_n} f(T_t \omega) \lambda(dt) = \mathbb{E} f
\]

holds for \(\mathbb{P}_X \)-almost all \(\omega \in \mathcal{N}_s(\mathcal{K}) \).
We refer to Daley and Vere–Jones \cite{DaleyVereJones} Proposition 12.2.II for a more general formulation (with hints to proofs of more general results in Tempel’man \cite{Tempelman}). However, we have already incorporated into our Proposition \[1\] the information that in our case \((N_s(K), N_s(K), P_X, T)\) is ergodic, which yields that the limit is equal to the expectation of \(f\).

We apply this Proposition in the following way. First we choose a center function \(c\) on \(\mathcal{K}\); for example, let \(c(K)\) denote the circumcenter of \(K \in \mathcal{K}\), which is the center of the smallest ball containing \(K\). Let \(A \in \mathcal{B}(\mathcal{K})\) be a translation invariant Borel set of convex bodies. Given any bounded Borel set \(B \in \mathcal{B}(\mathbb{R}^d)\), we define

\[
f(B, \omega) := \sum_{K \in X(\omega), c(K) \in B} 1_A(K)
\]

for \(\omega \in \Omega\), where we use \((\Omega, \mathcal{A}, P) = (N_s(\mathcal{K}), N_s(\mathcal{K}), P_X)\) as the underlying probability space. Then \(f(B, \cdot)\) is measurable, and \(f(B + t, \omega) = f(B, T^{-t} \omega)\) for \(t \in \mathbb{R}^d\). The following generalizes an approach of Cowan \cite{Cowan} in the plane (“Tricks with small disks”). Assuming that \(n > 1\), we have

\[
\int_{B_{n-1}} f(B_1 + t, \omega) \lambda_d(dt)
\]

\[
= \sum_{K \in X(\omega)} \int_{\mathbb{R}^d} 1\{t \in B_{n-1}\} 1\{K \in A\} 1\{c(K) \in B_1 + t\} \lambda_d(dt).
\]

Since

\[
1\{t \in B_{n-1}\} 1\{c(K) \in B_1 + t\} \leq 1\{t \in -B_1 + c(K)\} 1\{c(K) \in B_n\},
\]

we get

\[
\int_{B_{n-1}} f(B_1 + t, \omega) \lambda_d(dt)
\]

\[
\leq \sum_{K \in X(\omega)} \int_{\mathbb{R}^d} 1\{t \in -B_1 + c(K)\} 1\{K \in A\} 1\{c(K) \in B_n\} \lambda_d(dt)
\]

\[
= \lambda_d(B_1) f(B_n, \omega).
\]

Similarly,

\[
\int_{B_{n+1}} f(B_1 + t, \omega) \lambda_d(dt)
\]

\[
\geq \sum_{K \in X(\omega)} \int_{\mathbb{R}^d} 1\{t \in -B_1 + c(K)\} 1\{K \in A\} 1\{c(K) \in B_n\} \lambda_d(dt)
\]

\[
= \lambda_d(B_1) f(B_n, \omega).
\]

We conclude that

\[
\frac{\lambda_d(B_{n-1})}{\lambda_d(B_n)} \frac{1}{\lambda_d(B_{n-1})} \int_{B_{n-1}} f(B_1, T^{-t} \omega) \lambda_d(dt)
\]

\[
\leq \frac{\lambda_d(B_1)}{\lambda_d(B_n)} f(B_n, \omega)
\]

\[
\leq \frac{\lambda_d(B_{n+1})}{\lambda_d(B_n)} \frac{1}{\lambda_d(B_{n+1})} \int_{B_{n+1}} f(B, T^{-t} \omega) \lambda_d(dt).
\]
By the Proposition, the lower and the upper bound converge, for \(n \to \infty \), almost surely to
\[
\lim_{n \to \infty} \frac{1}{\lambda_d(B_n)} f(B_n, \cdot) = \frac{\mathbb{E} f(B_1, \cdot)}{\lambda_d(B_1)}.
\] (1)

Now we assume in addition that there is a constant \(D > 0 \) such that all convex bodies
\(K \in A \) satisfy \(\text{diam} K \leq D \), where \(\text{diam} \) denotes the diameter. The center function \(c \) satisfies
\(c(K) \in K \), hence if \(c(K) \in B_{n-D} \) (with \(n > D \)) and \(\text{diam} K \leq D \), then \(K \subset B_n \). It follows
that, for \(n > D \),

\[
\frac{\lambda_d(B_{n-D})}{\lambda_d(B_n)} \frac{1}{\lambda_d(B_{n-D})} \sum_{K \in X} 1_A(K) 1\{c(K) \in B_{n-D}\}
\]

\[
\leq \frac{1}{\lambda_d(B_n)} \sum_{K \in X, K \subset B_n} 1_A(K)
\]

\[
\leq \frac{1}{\lambda_d(B_n)} \sum_{K \in X} 1_A(K) 1\{c(K) \in B_n\}.
\]

As \(n \to \infty \), the lower and the upper bound converge a.s. to the right side of (1), hence
a.s. we have
\[
\delta(X, A) := \lim_{n \to \infty} \frac{1}{\lambda_d(B_n)} \sum_{K \in X, K \subset B_n} 1_A(K) = \frac{1}{\lambda_d(B^d)} \mathbb{E} \sum_{K \in X, c(K) \in B^d} 1_A(K).
\] (2)

Now we consider the special case where \(A_D \) is the set of polytopes that are combinatorially
isomorphic to a given simple \(d \)-polytope \(P \) and have diameter at most \(D \), for some fixed
number \(D > 0 \). We remark that (2) shows that
\[
\delta(X, A_D) = \frac{1}{\lambda_d(B^d)} \mathbb{E} \sum_{K \in X, c(K) \in B^d} 1\{K \in A_D\},
\] (3)

It remains to show that
\[
\mathbb{E} \sum_{K \in X, c(K) \in B^d} 1\{K \in A_D\} > 0.
\] (4)

For this, we use an argument from [4], which we recall for completeness.

Without loss of generality, we can assume that \(c(P) = o \). Let \(F_1, \ldots, F_m \) be the facets of
\(P \). We denote by \(B(x, \varepsilon) \) the ball with center \(x \) and radius \(\varepsilon > 0 \), set \([B(x, \varepsilon)]_H := \{H \in \mathcal{H} : H \cap B(x, \varepsilon) \neq \emptyset\}\), and define
\[
A_j(P, \varepsilon) := \bigcap_{v \in \text{vert} F_j} [B(v, \varepsilon)]_{H_j}, \quad j = 1, \ldots, m,
\]

where \(\text{vert} \) denotes the set of vertices. Each hyperplane from \(A_j(P, \varepsilon) \) is said to be \(\varepsilon \)-close to
\(F_j \). A polytope \(Q \) is said to be \(\varepsilon \)-close to \(P \) if it has \(m \) facets \(G_1, \ldots, G_m \) and, after suitable
renumbering, the affine hull of \(G_j \) is \(\varepsilon \)-close to \(F_j \), for \(j = 1, \ldots, m \). Since \(P \) is simple and
\(c(P) = o \), we can choose numbers \(D, \varepsilon_0 > 0 \) such that for \(0 < \varepsilon \leq \varepsilon_0 \), the following is true:

- the sets \(A_1(P, \varepsilon), \ldots, A_m(P, \varepsilon) \) are pairwise disjoint, and any hyperplanes \(H_j \in A_j(P, \varepsilon) \),
 \(j = 1, \ldots, m \), are the facet hyperplanes of a polytope \(Q \) that is \(\varepsilon \)-close to \(P \).
Any polytope Q that is ε-close to P satisfies the following:
- Q is combinatorially isomorphic to P,
- $Q \subset P + B^d$,
- $\operatorname{diam} Q \leq D$,
- $c(Q) \in B^d$.

That this can be achieved by suitable choices of D and ε_0, follows from easy continuity considerations and the fact that P is simple.

Now we define

$$C(P, \varepsilon) := \{ H \in \mathcal{H} : H \cap (P + B^d) \neq \emptyset, \ H \notin A_j(P, \varepsilon) \text{ for } j = 1, \ldots, m \}$$

and consider the event $E(P, \varepsilon)$ defined by

$$\tilde{X}(A_j(P, \varepsilon)) = 1 \text{ for } j = 1, \ldots, m \text{ and } \tilde{X}(C(P, \varepsilon)) = 0.$$

Let $0 < \varepsilon \leq \varepsilon_0$. The following was proved in [4]:
- If the event $E(P, \varepsilon)$ occurs, then some polytope Q of the tessellation X is ε-close to P and hence satisfies $Q \in A_D$ and $c(Q) \in B^d$.
- The event $\mathbb{P}(E(P, \varepsilon))$ has positive probability.

Now it follows that

$$\mathbb{E} \sum_{K \in X, c(K) \in B^d} 1\{ K \in A_D \} \geq \mathbb{P}(E(P, \varepsilon)) > 0,$$

which proves [4].

The result is that $\delta(X, A_D) > 0$ a.s. This implies, in particular, that with probability one the polytopes of the combinatorial type of P appear in X with positive density. Since there are only countably many combinatorial types, it also holds with probability one that each combinatorial type of a simple d-polytope appears in X with positive density.

References

[1] Cowan, R., Properties of ergodic random mosaic processes. Math. Nachr. 97 (1980), 89–102.

[2] Daley, D., Vere–Jones, D., An Introduction to the Theory of Point Processes, Volume II: General Theory and Structure. 2nd edn., Springer, New York, 2008.

[3] Erdős, P., Rényi, A., On Cantor’s series with convergent $\sum 1/q_n$. Ann. Univ. Sci. Budapest. Eötvös. Sect. Math. 2 (1959), 93–109.

[4] Reitzner, M., Schneider, R., On the cells in a stationary Poisson hyperplane mosaic. Adv. Geom. (accepted). arXiv:1609.04230 (2016).

[5] Rényi, A., Wahrscheinlichkeitsrechnung. 3rd edn., VEB Deutsch. Verl. d. Wiss., Berlin, 1971.

[6] Tempel’man, A.A., Ergodic theorems for general dynamical systems (in Russian). Trudy Moskov. Mat. Obsc. 26 (1972). Engl. transl.: Trans. Moscow Math. Soc. 26 (1972), 94–132.
[7] Schneider, R., Weil, W., *Stochastic and Integral Geometry*. Springer, Berlin, 2008.

Author’s address:

Rolf Schneider
Mathematisches Institut, Albert-Ludwigs-Universität
D-79104 Freiburg i. Br., Germany
E-mail: rolf.schneider@math.uni-freiburg.de