Transport System of Northern and Arctic Regions: Assessment and Development Problems

V A Tsukerman¹, E S Goryachevskaya²

¹Department of Industrial and innovative policy Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences» (FRC KSC RAS), Fersman 24a, 184209 Apatity, Russia
²Department of Industrial and innovative policy Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences» (FRC KSC RAS), Fersman 24a, 184209 Apatity, Russia

E-mail: tsukerman@iep.kolasc.net.ru

Abstract. The analysis of the current state and assessment of the transport system development of the regions of the North and the Arctic was carried out. Analysis of the transport system development on the example of the regions directly bordering with the Northern Sea Route was carried out: Arkhangelsk Region, Murmansk Region, Nenets Autonomous District, Yamalo-Nenets Autonomous District, Krasnoyarsk Territory, Republic of Sakha (Yakutia), Chukotka Autonomous District, Kamchatka Territory, Magadan Region, Sakhalin Region, Primorye Territory. It is shown that the northern and arctic regions are far behind in the development of the transport industry of the subarctic countries. Primorye Territory has the best values of density of general-purpose railways and highways as well as investments in development of transport compared to other regions and is characterized by maximum level of the transport system development during the analyzed period. Of the northern regions minimal values of the transport system development have Magadan Region and Nenets Autonomous District characterized by poor development of transport communications. It is needed a further research in direction of scientific and technological substantiation of the strategic development directions of the transport system of the North and the Arctic.

1. Introduction
Transport is a strategically important area of the economy. For the Arctic territories transport system plays a key role determining the place in the system of numerous inter-regional and inter-country interactions, development of economic processes, globalization of economic activity. Problems of assessment and development of the transport system of the Northern and Arctic regions not only remain relevant to the present, but also require a transformation of approaches to solving existing problems.

Transport system in the Arctic is a national system including the Northern Sea Route, railway, river and airport communications that make up the network of international corridors: the North-West and Trans-Polar (Central) passages [1, 2].

Aim of the work is to analyze the current state and assess the development of the transport system of the Northern and Arctic regions.
2. Materials and methods

Many domestic and foreign scientific papers including technical and economic indicators of the development are devoted to the problem of analyzing the process of transport systems and communications development [3-10]. In [11] a systematic approach to assessing the properties and resource sustainability of the transport system depending on the hierarchy of organizational and functional structures is proposed at the conceptual level. An extended system of indicators of transport accessibility for the analysis of regional and local level systems is presented in [12-14]. The issues of assessment of transport and logistics infrastructure of the Russian regions are discussed in [15-20]. The methods and algorithms of intellectual analysis of the transport system organization were investigated in [21-24]. Analysis of transport, road and human potentials in the context of their interaction was considered in [25-28].

However, currently investigation of the transport system development issues in the North and Arctic has not been adequately reflected in scientific studies.

3. Results

Analysis of the transport system development on the example of the regions directly bordering with the Northern Sea Route was carried out: Arkhangelsk Region, Murmansk Region, Nenets Autonomous District, Yamalo-Nenets Autonomous District, Krasnoyarsk Territory, Republic of Sakha (Yakutia), Chukotka Autonomous District, Kamchatka Territory, Magadan Region, Sakhalin Region, Primorye Territory.

Analysis showed that for 2010-2018 the density of railways in the macroregion, except for Sakhalin Region, is not changed (table 1).

Table 1. Density of railway lines, km of lines per 10000 km² of territory (at the end of the year) [29].

Regions	Years								
	2010	2011	2012	2013	2014	2015	2016	2017	2018
Arkhangelsk Region	30	30	30	30	30	30	30	30	30
Murmansk Region	60	60	60	60	60	60	60	60	60
Yamalo-Nenets Autonomous District	6	6	6	6	6	6	6	6	6
Krasnoyarsk Territory	9	9	9	9	9	9	9	9	9
Republic of Sakha (Yakutia)	2	2	2	2	2	2	2	2	2
Primorye Territory	95	95	95	95	95	95	95	95	95
Sakhalin Region	92	96	96	96	96	96	96	96	96
Russian Federation	50	50	50	50	50	50	50	51	51

In the Nenets Autonomous District, Magadan Region, Kamchatka Territory the Chukotka Autonomous District there is no railway network at all. It should be noted that the northern regions of Russia are far behind the Arctic countries by the railway tracks density. For example, according to the latest official data, this indicator in Denmark is 589 km, 269 in Ireland, 242 in Sweden, 175 in Finland, 101 in Norway [30].

Northern regions, except for Primorye Territory, are far behind the average indicators of the Russian Federation by density of public highways with hard surface (table 2).

By the highway density only Primorye Territory is ahead of average Russian values. In Denmark the density of highways is 1,730 km per 1,000 km² of territory, in Ireland - 1,321, Sweden - 492, Finland - 330, Norway - 293, Canada - 121.
Table 2. Density of public highways with hard surface, km of highways per 1000 km² of the territory (at the end of the year) [29].

Regions	2010	2011	2012	2013	2014	2015	2016	2017	2018
Arkhangelsk Region	26.0	27.0	28.0	29.0	29.0	29.0	29.0	29.0	29.0
Nenets Autonomous District	1.1	1.1	1.2	1.2	1.2	1.3	1.4	1.5	
Murmansk Region	19.0	20.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
Yamalo-Nenets Autonomous District	1.8	1.8	2.4	2.8	2.8	2.9	3.0	3.0	3.1
Krasnoyarsk Territory (Yakutia)	6.4	11.0	11.0	11.0	11.0	12.0	12.0	12.0	12.0
Republic of Sakha (Yakutia)	2.7	2.7	3.3	3.6	3.7	3.8	3.8	3.9	3.9
Kamchatka Territory	3.6	3.6	3.9	4.0	4.1	4.2	4.2	4.4	4.5
Primorye Territory	52.0	51.0	88.0	89.0	89.0	93.0	92.0	90.0	91.0
Magadan Region	4.7	4.7	5.3	5.2	5.3	5.3	5.4	5.5	5.6
Sakhalin Region	14.0	14.0	20.0	21.0	22.0	23.0	23.0	25.0	27.0
Chukotka Autonomous District	0.8	0.9	0.9	1.0	0.9	0.9	1.0	1.2	1.2
Russian Federation	39.0	43.0	54.0	58.0	60.0	61.0	62.0	62.0	63.0

The majority of the analyzed regions, except for Sakhalin Oblast, exceed similar indicators of the Russian Federation by the wear degree of fixed assets in transport during the period under review (table 3).

Table 3. Wear degree of fixed assets according to the transport economic activity [29].

Regions	2010	2013	2014	2015	2016	2017	2018
Arkhangelsk Region	41.0	43.8	46.4	50.1	58.2	55.4	54.7
Nenets Autonomous District	15.8	33.0	39.4	44.6	48.7	53.0	57.4
Murmansk Region	34.6	43.6	44.5	46.6	49.0	44.1	40.5
Yamalo-Nenets Autonomous District	49.3	42.2	43.4	44.5	28.4	30.3	31.8
Krasnoyarsk Territory (Yakutia)	41.1	44.3	46.3	49.0	47.1	38.5	40.5
Republic of Sakha (Yakutia)	40.8	28.5	32.5	38.5	38.3	39.9	43.5
Kamchatka Territory	47.6	52.1	48.7	46.4	45.8	35.6	39.8
Primorye Territory	28.5	30.0	32.1	37.0	40.0	40.4	47.4
Magadan Region	60.6	55.8	51.9	56.4	54.1	48.9	51.1
Sakhalin Region	28.3	31.6	33.6	34.1	30.8	29.0	30.3
Chukotka Autonomous District	28.2	36.4	36.1	40.8	44.3	43.1	48.4
Russian Federation	35.8	40.0	42.7	44.0	44.5	42.1	39.7

For an objective analysis of the transport system development in the Arctic the integral index was calculated. The study on the basis of indicators presented in a regional context by regions of the Russian Federation [29, 31-32] for 2010-2018 was carried out:

- density of railway lines, km of lines per 10000 km² of territory;
- density of public highways with hard surface, km of highways per 1000 km² of territory;
- passenger traffic by public bus, million passengers-km;
- coefficient of fixed assets validity (reverse indicator of wear degree);
- share of investments in fixed assets of transport economic activity.

The calculation of the integral index of the transport system development (IITSD) was carried out according to the formula (1):

\[
IITSD = \frac{\sum cp}{5}
\]

(1),

where \(\sum cp\) - sum of control parameters of transport communications provision.

Control parameters were calculated according to the formula (2):

\[
CP = \frac{x_i - x_{\text{min}}}{x_{\text{max}} - x_{\text{min}}}
\]

(2),

where CP – control parameters for calculation, \(x_i\) – actual value of parameter for specific region, \(x_{\text{min}}\) – minimal value of parameter in a sample, \(x_{\text{max}}\) – maximal value of parameter in a sample.

Primorye Territory has the best values of density of general-purpose railways and highways as well as investments in development of transport compared to other regions and is characterized by maximum level of the transport system development during the analyzed period (table 4). However, the main role belongs to air and water transport. There are four airports (Vladivostok-international, Dalnorechensk, Kavalerovo, Plastun) and six seaports (Vladivostok, Nahodka, Vostochny, Zarubino, Posvet, Olga).

Table 4. Integral index of the transport system development.

Regions	Years						
	2010	2013	2014	2015	2016	2017	2018
Arkhangelsk Region	0.410	0.393	0.419	0.411	0.377	0.336	0.362
Nenets Autonomous District	0.201	0.168	0.128	0.108	0.065	0.019	0.008
Murmansk Region	0.405	0.388	0.398	0.410	0.453	0.425	0.551
Yamalo-Nenets Autonomous District	0.205	0.287	0.279	0.274	0.331	0.257	0.246
Krasnoyarsk Territory	0.359	0.392	0.404	0.435	0.421	0.415	0.433
Republic of Sakha (Yakutia)	0.260	0.402	0.406	0.367	0.340	0.362	0.308
Kamchatka Territory	0.286	0.266	0.265	0.235	0.232	0.228	0.178
Primorye Territory	0.777	0.887	0.851	0.837	0.734	0.715	0.671
Magadan Region	0.077	0.079	0.077	0.055	0.100	0.111	0.061
Sakhalin Region	0.486	0.529	0.487	0.526	0.502	0.498	0.568
Chukotka Autonomous District	0.165	0.203	0.185	0.249	0.280	0.199	0.128

Of the northern regions minimal values of the transport system development have Magadan Region and Nenets Autonomous District characterized by poor development of transport communications. The main role in these regions, due to climatic conditions and remoteness from the center, is played by air and water transport.

4. **Conclusions**

The analysis of the transport system development showed that the northern and Arctic regions are far behind the Arctic countries by the transport industry development was carried out.
Primorye Territory has the best values of density of general-purpose railways and highways as well as investment potential compared with other regions and is characterized by maximum level of the transport system development.

Minimal values of the transport system development are typical for Magadan Region and Nenets Autonomous District.

It is needed a further research in direction of scientific and technological substantiation of the strategic development directions of the transport system of the North and the Arctic.

5. References

[1] Tsukerman V A and Goryachevskaya E S 2018 Management of the Arctic transport system as a key factor of implementation into the global market of the Arctic hydrocarbon resources Management of Large-Scale System Development (MLSD’2018): proceedings of the Eleventh international conference, 1-3 of oct. 2018, Moscow tom 2 (Moscow: ICS RAS) pp 108-111

[2] Selin V S and Tsukerman V A 2015 Sea transport of the Russian North in the terms of increasing international risks Management of Large-Scale System Development (MLSD 2015). proceedings of the Eighth international conference, 29 of sept. – 1 of oct. 2015 Tom 1 (Moscow: ICS RAS) pp 341-345

[3] World transport system 1971 (Moscow: Transport)

[4] Kovaleva E N 2010 Method of determining indicators of local economic systems transport provision Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota imeni admiral S.O. Makarova 4 pp 109-116

[5] Meng D, Liu J, Ge S, Wang X and Tang H 2018 Research on simulation system for ship transport operation based on hla Advances in Intelligent Systems and Computing. 8th International Conference on Computer Engineering and Networks, CENet 2018; Shanghai; China; 17-19 August 2018 vol 905 pp 182-189

[6] Komkov N I, Selin V S, Tsukerman V A and Goryachevskaya E S 2016 Scenario forecast of the development of the Northern Sea Route Studies on Russian Economic Development 2 pp 180-188

[7] Golts G A 1981 Transport and resettlement (Moscow: Transport and resettlement)

[8] Borch O J, Westvik M H, Ehlers S and Berg T E 2012 Sustainable arctic field and maritime operation Society of Petroleum Engineers - Arctic Technology Conference 2012. Houston, TX; United States; 3-5 December 2012 vol 1 pp 390-399

[9] Heitsenrether R, Hensley W, Krug W and Breuer E 2016 Development of a standalone real-time water level measurement system to support safe navigation along Alaska's arctic coasts, OCEANS 2015 - MTS/IEEE Washington. 8 February 2016 7404519

[10] Zgone B, Tekaveie M and Jaksie M 2019 The impact of distance on mode choice in freight transport European Transport Research review vol 11 issue 1 10

[11] Dubov V M, Kapustyanskaya T I, Popov S A and Sharov A A 2006 Problems of complex systems (conceptual foundations of model representations) (SPb.: “Elmor”)

[12] Rassafi A A and Vaziri M 2005 Sustainable transport indicators Definition and integration, Sci. Technol. 21 pp 83-96

[13] Kolesnikov V M and Gibner Ya M 2012 Comparative analysis of the innovative potential of the leading transport industries of Russia Science and education: economy, entrepreneurship, law and management 2 (21) pp 34-39

[14] Sarancha M A 2008 Geographical assessment of transport provision of the recreational potential of Udmurtia Tambov University Reports. Series Natural and Technical Sciences 2-3 tom 13 pp 229-233

[15] Smotrova T I and Verzilin V A 2017 Assessment of transport and logistics infrastructure of the Voronezh Region State and municipal management in Russia: experience, problems, development prospects. Proceedings of the X International scientific and practical conference (Voronezh, 27 of October 2017) (Voronezh: Nauchnaya Kniga) pp 164-171
[16] Solovieva O I 2010 Methodology of forming a system for assessing the quality of transport services to determine the socio-economic potential of a region *Transport business of Russia* 7 pp 128-130

[17] Shpak A V 2013 Transport System of the Arctic regions: a conceptual view on development *The North and the Market: Forming the Economic Order* 2 (33) pp 44-50

[18] Stepien T, Koivurova D, Justus J-C, Gascard J, Gille J and Thomas J 2016 Changes in Arctic maritime transport *Nijhoff Law Specials* vol 89 pp 81-114

[19] Nikolaeva A B 2017 Prospects of development of the northern maritime transport corridor *The North and the Market: Forming the Economic Order* 4(55) pp 106-113

[20] *Transport and infrastructure potential of the Russian Arctic* 2013 (Apatity: Kola Science Centre RAS)

[21] Seliverstov S A, Seliverstov Y A, Tarantsev A A, Grigoriev V A, Elyashevich A M and Muxsimova R S 2017 Elaboration of intelligent development system of megalopolis transportation *2nd IEEE International conference on control in technical systems, CTS 2017. St. Petersburg* pp 211-215

[22] Loginova N A 2010 Transformational development potential of the Russian transport sector *Bulletin of Moscow University. Series 6: Economy* 5 pp 111-120

[23] Marleau D F, Abi-Zeid I, Waygood E O D and Lavoie R 2019 Assessing and ranking the potential of a street to be redesigned as a Complete Street: A multi-criteria decision aiding approach *Transportation Research Part A: Policy and Practice* vol 124 pp 1-19

[24] Ackaah W 2019 Exploring the use of advanced traffic information system to manage traffic congestion in developing countries *Scientific African* vol 4 e00079

[25] Verzilin V A, Bychkov D V and Zalozhnyh V M 2013 Assessment of transport, road and human potentials in the context of their interaction *Region: systems, economy, management* 1 pp 122-131

[26] Shepelev V, Almetova Z, Issenova O, Larin O and Shepelev S 2018 Optimization of the operating parameters of transport and warehouse complexes *Transportation Research Procedia. 2018 EMC-FTL 2018 Padova* pp 236-244

[27] Shapkin I N 2009 Radicalization of approaches to transport potential *World of transport* 2 (26) pp 92-99

[28] Roque-Cilia S, Tamariz-Flores E I, Torreabla-Melendez R and Covarrubias-Rosales D H 2019 Transport tracking through communication in WDSN for smart cities *Measurement: Journal of the International Measurement Confederation* 139 pp 205-212

[29] Regions of Russia. Socio-economic indicators. Statistical compilation 2019 (Moscow: Rosstat)

[30] Russia and world countries. Statistical compilation 2018 (Moscow: Rosstat)

[31] Transport and communication in Russia. Statistical compilation 2016 (Moscow: Rosstat)

[32] Transport in Russia. Statistical compilation 2018 (Moscow: Rosstat)