MAGIC observations of MWC 656, the only known Be/BH system
(Research Note)

J. Aleksić1, S. Ansoldi2, L. A. Antonelli3, P. Antoranz4, A. Babic5, P. Bangale6, J. A. Barrio7, J. Becerra González8, W. Bednarek9, E. Bernardini10, B. Biasuzzi2, A. Biland11, O. Blanch1, S. Bonnefoy7, G. Bonoli1, F. Borracci9, T. Bretz12,26, E. Carmona13, A. Carosi3, P. Colin6, E. Colombo8, J. L. Contreras7, J. Cortina1, S. Covino3, P. Da Vela4, F. Dazzi6, A. De Angelis2, G. De Caneva10, B. De Lotto12, E. de Oña Wilhelmi14, C. Delgado Mendez13, D. Dominis Prester5, D. Dorner12, M. Dorot15, S. Einecke16, D. Eisenacher12, D. Elsaesser12, D. Fidalgo7, M. V. Fonseca7, L. Font17, K. Franzen16, C. Fruck6, D. Galindo18, R. J. García López8, M. Garczarczyk10, D. Garrido Terrats17, M. Gaug17, N. Godinović5, A. González Muñoz1, S. R. Gozzi11, D. Hadash14,27, Y. Hanabata19, M. Hayashida19, J. Herrera6, D. Hildebrand11, J. Hose6, D. Hrupec5, W. Idec6, V. Kadenius, H. Kellermann6, M. L. Kneiße11, K. Kodani19, Y. Konno19, J. Krause6, H. Kubo19, J. Kushida19, A. La Barbera3, D. Lelas3, N. Lewandowska12, E. Lindfors20,28, S. Lombardi1, F. Longo2, M. López1, R. López-Coto1, A. López-Oramas1,⋆, E. Lorenz6, I. Lozano7, M. Makariev21, K. Mallot10, G. Maneva21, N. Mankuzhiyil2,29, K. Mannheim12, L. Marsachi3, B. Marcote18, M. Mariotti15, M. Martínez1, D. Mazin6, U. Menzel6, J. M. Miranda4, R. Mirzoyan6, A. Moralejo1, P. Munar-Adröver18,⋆, D. Nakajima19, V. Neustroev20, A. Niedzwiecki9, K.Nilsson20,28, K. Nishijima19, K. Noda3, R. Orito19, A. Overkemping16, S. Paiano15, M. Palatiello2, D. Panèque8, R. Paolotti11, J. M. Paredes18, X. Paredes-Fortuny18, M. Persic2,30, J. Poutanen20, P. G. Prada Moroni25, E. Prandini11, I. Puljak3, R. Reintal20, W. Rhode16, M. Ribó18, J. Rico1, J. Rodriguez García6, S. Rügamer12, T. Saito19, K. Saito19, K. Satalecka7, V. Scalzotto7, V. Scapin7, C. Schultz15, T. Schweizer6, A. Sillanpää20, J. Sitarek1, I. Snidaric5, D. Sobczynska9, F. Spanier12, A. Stamerra3, T. Steinbring12, J. Storz12, M. Strzys6, L. Takalo20, H. Takami9, F. Tavecchio3, P. Temnikov21, T. Terzic5, D. Tescaro8, M. Teshima6, J. Thaele16, O. Tibolla12, D. F. Torres23, T. Toyama6, A. Treves24, P. Vogler11, M. Will8, R. Zanin18, (the MAGIC Collaboration), J. Casares8, and J. Moldón18,31

(Affiliations can be found after the references)

Received 29 August 2014 / Accepted 5 February 2015

ABSTRACT

Context. MWC 656 has recently been established as the first observationally detected high-mass X-ray binary system containing a Be star and a black hole (BH). The system has been associated with a gamma-ray flaring event detected by the AGILE satellite in July 2010.

Aims. Our aim is to evaluate whether the MWC 656 gamma-ray emission extends to very high energy (VHE; >100 GeV) gamma rays.

Methods. We observed MWC 656 with the MAGIC telescopes for ~23h during two observation periods: between May and June 2012, and in June 2013. During the last period, observations were performed contemporaneously with X-ray (XMM-Newton) and optical (STELLA) instruments.

Results. We did not detect the MWC 656 binary system at TeV energies with the MAGIC telescopes in either of the two campaigns. Upper limits (ULs) to the integral flux above 300 GeV have been set, as well as differential ULs at a level of ~5% of the Crab nebula flux. The results obtained from the MAGIC observations do not support persistent emission of VHE gamma rays from this system at a level of 2.4% the Crab flux.

Key words. astroparticle physics – binaries: general – gamma rays: stars – X-rays: binaries – stars: individual: MWC 656

1. Introduction

High-mass X-ray binaries (HMXBs) are systems composed of a massive star (M > 10 Me) and a compact object, either a black hole (BH) or a neutron star (NS). The search for GeV and TeV emission from HMXBs has been the aim of extensive studies during the past few decades. Despite the large number of observations devoted to the search, only a few of these systems have been confirmed as gamma-ray emitters. A particular group of five systems are regularly detected at TeV energies: the gamma-ray binaries (see Dubus 2013, and references therein). Two other HMXBs have been the object of extensive searches: Cygnus X-3, which emits in the high-energy (HE; 100 MeV < E < 100 GeV) domain (Fermi-LAT Collaboration et al. 2009; Tavani et al. 2009b), and Cygnus X-1, which has been reported to emit at HE (Sabatini et al. 2013; Malyshhev et al. 2013; Bodaghee et al. 2013) and showed a ~4σ excess at very high energy (VHE; Albert et al. 2007). To investigate the gamma-ray mechanisms in this type of sources, observational campaigns on other HMXBs have been carried out. The recently

Article published by EDP Sciences

A36, page 1 of 5

Astronomy & Astrophysics
discovered object MWC 656 (Lucarelli et al. 2010) is an HMXB system and has been proposed as a new gamma-ray binary candidate (Williams et al. 2010).

In July 2010, AGILE (Tavani et al. 2009a) detected a gamma-ray point-like source dubbed J2241+4454 with a significant excess above 5 sigma, displaying an integral flux above 100 MeV of 15×10^{-7} ph cm$^{-2}$ s$^{-1}$ (Lucarelli et al. 2010). The source was first detected during the period between 25 July at 01:00 UT (MJD = 55 402.042) and 26 July 2010 at 23:30 UT (MJD = 55 403.979). The source is located at $(l,b) = (100.0^\circ,-12.2^\circ) \pm 0.6^\circ(95\%\text{stat}) \pm 0.1^\circ(\text{syst})$. At the time of writing, no further flares from this source have been reported and no spectrum has been published.

Fermi-LAT (Atwood et al. 2009) was unable to confirm the detection by AGILE, and an analysis1 of simultaneous data from the same direction yielded an upper limit (UL) of 10^{-7} ph cm$^{-2}$ s$^{-1}$ (95% confidence level, CL) above 100 MeV, assuming a photon index $\Gamma = 2$. A more extended analysis of Fermi-LAT data, including 3.5 years of data on the AGL J2241+4454 source location, did not lead to evidence of HE gamma-ray emission either. A 90% CL UL was set at the level of 9.4×10^{-10} ph cm$^{-2}$ s$^{-1}$ for 3.5 years of observations (Mori et al. 2013).

The Be star MWC 656, also known as HD 215227, lies within the error bars of the AGILE best-fit source position. It was proposed as the optical counterpart of the excess claimed by the AGILE collaboration (Williams et al. 2010). The system displays optical photometric modulation with a period of 60.37 ± 0.04 days (Williams et al. 2010; Paredes-Fortuny et al. 2012). Optical spectroscopic measurements of MWC 656 confirmed its binary nature (Casares et al. 2012). Recent optical spectroscopic measurements improved the spectral classification and reduced the uncertainties in the spectrophotometric distance, placing the system at a distance of 2.6 ± 0.6 kpc. These measurements also revealed that the compact object is a stellar-mass BH of 3.8–6.9 solar masses, making this the first known case of a Be/BH system (Casares et al. 2014).

MWC 656 was also observed in radio with the European VLBI Network (EVN) and was not detected: Moldón (2012) reported 3σ radio flux density ULs at 30–66 μJy level. X-ray observations were performed by *XMM-Newton* when the source was at an orbital phase $\phi = 0.08^2$ (Munar-Adrover et al. 2014). The X-ray flux measured was compared with the radio ULs, resulting in a ratio compatible with the correlation derived in Corbel et al. (2013) for BH LMXBs, and similar to the faintest BH LMXBs detected. A search for hard X-ray emission has been conducted with INTEGRAL (Li et al. 2013) with no positive detection in the 18–60 keV energy band reported for a total exposure time of 2.1 Ms.

In addition, the MAXI mission, which continuously monitors the X-ray sky in the $2–20$ keV band, has not detected emission coming from the AGL J2241+4454 position3 on the same date as of the AGILE detection.

In this work we present the results of the observations of MWC 656 carried out with the MAGIC telescopes in 2012 and 2013. X-ray and optical observations were performed during the 2013 campaign to study the behavior of the source in a multi-wavelength context.

2. Observations

The VHE observations of MWC 656 were carried out using the MAGIC telescopes, which are located at the observatory of El Roque de Los Muchachos (28°N, 18°W, 2200 m above sea level) on the island of La Palma, Canary Islands, Spain. The system consists of two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs), each one with a pixelized camera containing photo-multipliers, covering a field of view of 3.5°. The current sensitivity of the MAGIC stereoscopic system is $0.71\% \pm 0.02\%$ of the Crab nebula flux in 50 h of observation for energies above 250 GeV (MAGIC Collaboration et al. 2015). The spatial resolution at these energies is $\lesssim0.1^\circ$ and the energy resolution is $\sim18\%$. In the case of monoscopic observations (also referred as mono observations) the integral sensitivity above 280 GeV is about 1.6% of the Crab nebula flux in 50 h (Alì et al. 2009). The observations are performed using wobble mode, in which the telescopes point at two different symmetric regions situated 0.4° away from the source position to simultaneously evaluate the background.

The observations of MWC 656 were performed during two different epochs: May–June 2012, and June 2013. The observations in 2012 were performed between 23 May and 19 June in mono mode with MAGIC-II (the MAGIC-I telescope was not operational) for 23.4 h. After selecting good-quality data, a total of 21.3 h remained. The 2013 observations were performed between 3 and 5 June, just after the periastron passage (see Fig. 1) in stereo mode. The source was observed for a total of ~3.3 h during this period. A summary of the observations is shown in Table 1.

Date (MJD)	Orbital phase (°)	Zenith angle range (°)	Time (h)	Mode
56 070–56 078	0.83–0.95	23–50	9.4	mono
56 092–56 097	0.20–0.28	22–51	14.0	mono
56 446–56 448	0.06–0.08	28–45	3.3	stereo

1. http://fermisky.blogspot.com.es/2010/07/extra-note-july-30-2010.html
2. Phase 0 has been set to the maximum of optical brightness, on HJD 2 453 243.3 (MJD 53 242.8). With the ephemeris from Casares et al. (2014), the periastron passage occurs at phase 0.01 ± 0.10.
3. http://maxi.riken.jp/top/index.php?cid=1&jname=J2242+447#isp

3. Data analysis

The MAGIC data analysis was performed using the standard MAGIC analysis and reconstruction software, MARS...
The recorded shower images were calibrated, cleaned, and parametrized (Hillas 1985; Aliu et al. 2009). The γ/hadron separation (background rejection) was performed with the random forest (RF) method (Albert et al. 2008). The event direction and energy of the primary gamma ray were also reconstructed by using an RF method for the mono observations. The energy of each event for stereoscopic observations was estimated using look-up tables generated by Monte Carlo simulations (Aleksić et al. 2012). Upper limits (ULs) were derived using the method explained in Rolke et al. (2005) with a CL of 95% and a systematic uncertainty of 30%, assuming differential flux ULs from the energy threshold of our analysis (245 GeV) up to 6.3 TeV at 95% CL, with five bins per decade of energy (see Fig. 2).

We computed differential flux ULs from the energy threshold of our analysis (245 GeV) up to 6.3 TeV at 95% CL, with five bins per decade of energy (see Fig. 2).

The MAGIC observations carried out on 4 June, 2013 were performed almost simultaneously with an *XMM-Newton* observation. The detected low X-ray flux was consistent with the source being in the quiescent state (defined in terms of the Eddington luminosity, when $L < 10^{37} \, L_{\text{Edd}}$) during the observation (Munar-Adrover et al. 2014). The MAGIC integral flux UL for 4 June is $F(E > 300 \, \text{GeV}) < 4.9 \times 10^{-12} \, \text{cm}^{-2} \, \text{s}^{-1}$. There is no specific information about the X-ray state of the binary system during the 2012 observations. Other space missions such as MAXI have not reported emission from MWC 656 during the 2012–2013 campaign, which might be indicative of a quiescent state as well.

Finally, the STELLA spectra, contemporaneous with the 2013 MAGIC campaign, show the double peaked He II 4686 emission line with an equivalent width similar to that reported in Casares et al. (2014). We also detect other emission lines, mainly Hα, Hβ, and weak FeII lines with a similar strength to that measured by Casares et al. (2012). Therefore, we conclude that MWC 656 is in a similar optical state as in past observations, the 2013 X-ray observations indicate a quiescent state, and hence the accretion activity should be very similar.

5. Discussion and conclusions

We have searched for a VHE counterpart of the only known Be/BH binary system, MWC 656. The VHE observations

Table 2. Integral flux ULs for $E > 300$ GeV calculated at 95% CL for MWC 656 for each orbital phase range.

Mode	Phase bin	Integral UL	Significance	t_{off}
	($E > 300$ GeV)	($10^{-12} \, \text{cm}^{-2} \, \text{s}^{-1}$)	[σ]	[h]
Stereo	0.0–0.1	2.0	1.0	3.3
Mono	0.2–0.3	8.7	2.1	4.9
Mono	0.8–0.9	6.5	1.0	11.5
Mono	0.9–1.0	2.5	1.1	4.9

(Images and tables are not reproduced here due to the text-only format.)
performed by MAGIC can exclude a VHE flux based on the extrapolation of the emission from the AGILE detection. Assuming a power-law spectrum and a photon index $\Gamma = 2.5$, this emission would be $-4 \times 10^{-11} \text{TeV}^{-1} \text{cm}^{-2} \text{s}^{-1}$ at 300 GeV ($L_{\text{VHE}} \sim 2 \times 10^{46} \text{erg s}^{-1}$), which is well above the UL imposed by MAGIC. However, no flaring episodes were reported during the MAGIC observations, limiting the conclusions we can derive from the HE/VHE comparison.

In this type of binary, several mechanisms have been proposed that would result in gamma-ray emission above tens of GeV (Remillard & McClintock 2006; Fender 2006; Zdziarski et al. 2014). Unfortunately, the lack of contemporaneous data at other wavelengths during the AGILE flare make conclusions on the type of emission model highly speculative. It is even possible that the AGILE detection was just a transient event of an unknown nature in the direction of the binary system but not related to it. Nevertheless, different emission levels could be expected depending on the state of the system, that is, quiescence or accretion.

During simultaneous X-ray and VHE observations the X-ray luminosity of the source in the 0.3–5.5 keV energy range was $L_X(0.3–5.5 \text{ keV}) = (1.6^{+0.9}_{-0.6}) \times 10^{31} \text{ erg s}^{-1} \equiv (3.1 \pm 2.3) \times 10^{-5} L_{\text{Edd}}$ (Munar-Adrover et al. 2014) for the estimated BH mass range $3.8–6.9 M_\odot$ (Casares et al. 2014). The low X-ray luminosity is characteristic of systems in quiescent states (defined in terms of the Eddington luminosity, when $L_X < 10^{-5} L_{\text{Edd}}$). For instance, the X-ray luminosity is ~ 5 orders of magnitude lower than the one typically observed in Cygnus X-1, which has also been observed by MAGIC (Albert et al. 2007). Even if we consider an increase in the X-ray luminosity of the source in the 0.3–5.5 keV energy range, even if we consider an increase in the X-ray emission from the AGILE detection, this would be $-4 \times 10^{-11} \text{TeV}^{-1} \text{cm}^{-2} \text{s}^{-1}$ at 300 GeV ($L_{\text{VHE}} \sim 2 \times 10^{46} \text{erg s}^{-1}$), which is well above the UL imposed by MAGIC. However, no flaring episodes were reported during the MAGIC observations, limiting the conclusions we can derive from the HE/VHE comparison.

References

Acharya, B. S., Actis, M., Aghajani, T., et al. 2013, Astropart. Phys., 43, 3
Alberi, F., Aliu, E., Anderhub, H., et al. 2007, ApJ, 665, L51
Albert, J., Aliu, E., Anderhub, H., et al. 2008, Nucl. Instrum. Methods, 588, 424
Aleksić, J., Alvarez, E. A., Antonelli, L. A., et al. 2012, Astropart. Phys., 35, 435
Alme, D., Pooley, G. D., Princivalle, F., et al. 2012, ApJ, 745, 110
Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071
Bordas, A. S., Tavani, M., Ahnen, D., et al. 2014, 23rd ICRC, 2317
Casares, J., Ribó, M., Ribó, I., et al. 2012, MNARS, 421, 1103
Casares, J., Negueruela, I., Ribó, M., et al. 2014, Nature, 505, 378
Corbel, S., Coriat, M., BROOKSsop, C., et al. 2013, MNARS, 428, 2500
Dubus, G. 2013, A&ARv, 21, 64
Fender, R. 2006, in Relativistic Jets: The Common Physics of AGN, Microquasars, and Gamma-Ray Bursts, eds. P. A. Hughes, & J. N. Bregman, AIP Conf. Ser., 856, 23
Fermi-LAT Collaboration, Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009, Science, 326, 1512
Hillas, A. M. 1985, Internat. Cosm. Ray Conf., 3, 445
Li, J., Torres, D. F., Zhang, S., & Wang, J. 2013 [arXiv:1302.5211]
Lacertielli, F., Vecchiacca, F., Striani, et al. 2010, The ASTRonomers' Telegram, 8, 1161
MAGIC Collaboration, Altmann, J., Ansoldi, S., et al. 2015, Astropart. Phys., in press [arXiv:1409.5994]
Malyshov, D., Zdziarski, A. A., & Chernyakova, M. 2013, MNARS, 434, 2380
Moldón, J. 2012, Ph.D. Thesis, Universitat de Barcelona
Mori, M., Kawachi, A., Nagataki, S., & Naito, T. 2013, 2012 Fermi Symp. Proc. ed. L. Adriani, C12028
Munar-Adrover, P., Paredes, JM., Ribó, M., et al. 2014, ApJ, 786, L11
Paredes-Fortuny, X., Ribó, M., Fort, O., & Núñez, J. 2012, in AIP Conf. Ser. 1505, eds. A. A. Aharonian, W. Hofmann, & F. M. Rieger, Springer, Berlin
Plotkin, R. M., Gallo, E., & Jonker, P. G. 2013, ApJ, 773, 59
Remillard, R. A. & McClintock, J. E. 2006, ARA&A, 44, 49
Rolke, W. A., López, A. M., & Conrad, J. 2005, Nucl. Instrum. Methods, 551, 493
Sabatini, S., Tavani, M., Coppo, P., et al. 2013, ApJ, 766, 83
Sakamoto, K. G., Granzer, T., Weber, M., et al. 2004, Astron. Nachr., 325, 527
Tavani, M., Barbiellini, G., Arnaud, A., et al. 2009a, A&A, 502, 995
Tavani, M., Bulgarelli, A., Pino, G., et al. 2009b, Nature, 462, 620
Williams, S. J., Gies, D. R., Matson, R. A., et al. 2010, ApJ, 723, L93
Zanin, R., Carmona, E., & Sitarek, J. 2013, in Proc. of the ICRC 2013, International Cosmic Ray Conference
Zdziarski, A. A., Stawarz, L., Pjanka, P., & Sikora, M. 2014, MNARS, 440, 2238

1 IFAE, Campus UAB, 08193 Bellaterra, Spain
2 Universität di Udine, and INFN Trieste, 33100 Udine, Italy
3 INAF National Institute for Astrophysics, 00136 Rome, Italy
4 University of Siena, and INFN Pisa, 53100 Siena, Italy
5 Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, 10000 Zagreb, Croatia
6 Max-Planck-Institut für Physik, 80805 München, Germany
7 Universidad Complutense, 28040 Madrid, Spain
8 Inst. de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
9 University of Lodz, 90236 Lodz, Poland
10 Deutsches Elektronen-Synchrotron (DESY), 15738 Zeuthen, Germany
11 ETH Zurich, 8093 Zurich, Switzerland
12 Universität Würzburg, 97074 Würzburg, Germany
13 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 28040 Madrid, Spain
14 Institute of Space Sciences, 08193 Barcelona, Spain
15 Universität di Padova and INFN, 35131 Padova, Italy
16 Technische Universität Dortmund, 44221 Dortmund, Germany
