Non-thermal leptogenesis with strongly hierarchical right handed neutrinos

V. Nefer Şenoğuz
Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA

Assuming the Dirac-type neutrino masses m_D are related to quark or charged lepton masses, neutrino oscillation data indicate that right handed neutrino masses are in general strongly hierarchical. In particular, if m_D is similar to the up-type quark masses, the mass of the lightest right handed neutrino $M_1 \lesssim 10^6$ GeV. We show that non-thermal leptogenesis by inflaton decay can yield sufficient baryon asymmetry despite this constraint, and discuss how the asymmetry is correlated with the low energy neutrino masses and CP-violating phases.

PACS numbers: 98.80.Cq, 14.60.St, 14.60.Pq, 12.60.Jv

I. INTRODUCTION

An attractive mechanism for generating the observed baryon asymmetry of the universe (BAU) is baryogenesis via leptogenesis [1]. In the seesaw model [2], the out-of-equilibrium decays of right handed (RH) neutrinos to lepton and Higgs fields create lepton asymmetry, which is partially converted to baryon asymmetry by electroweak sphaleron processes [3].

The RH neutrinos can be generated thermally after inflation, if their masses are comparable to or below the reheat temperature T_r. The thermal leptogenesis scenario has the nice feature that the final asymmetry is independent of initial conditions and inflaton couplings. However, it requires $T_r \gtrsim 10^9$ GeV to generate the BAU [4, 5], which is problematic in supersymmetric (SUSY) models due to the gravitino constraint [6]. Non-thermal leptogenesis by inflaton decay is an alternative scenario that can work with lower values of $T_r (\gtrsim 10^6$ GeV) [7–9]. These bounds can be saturated with $M_1 \sim T_r$ and $M_1 \gtrsim T_r$ for the thermal and non-thermal scenarios respectively, where M_1 is the lightest RH neutrino mass.

The seesaw relation

$$m = m_D M^{-1} m_D^T,$$

where m_D is the Dirac-type neutrino mass matrix, relates the RH neutrino mass matrix M to the low energy neutrino mass matrix m, given in the basis where the charged lepton mass matrix and gauge interactions are diagonal by

$$m = U_{PMNS}^* d_d U_{PMNS}^T.$$

Here $d_d \equiv \text{diag}(m_1, m_2, m_3)$, and U_{PMNS} [10] is the leptonic mixing matrix

$$
\begin{pmatrix}
 c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{13} & c_{12} c_{13} & s_{13} e^{i \delta} \\
 s_{23} c_{12} & -s_{23} s_{12} c_{13} e^{i \delta} & c_{23} c_{13}
\end{pmatrix} \cdot K_0,
$$

where $K_0 = \text{diag}(e^{i \alpha_1/2}, e^{i \alpha_2/2}, 1)$ contains the two CP-violating Majorana phases.

In Refs. 11–15, thermal leptogenesis was analyzed with the assumption that m_D is related to the mass matrices of quarks or charged leptons, as typically realized in grand unified theories. In this case the Dirac masses are hierarchical, and the Dirac left-handed rotation in the basis where the charged lepton mass matrix is diagonal (the leptonic analogue of U_{CKM}) is expected to be nearly diagonal or similar to U_{CKM}. We will hereafter refer to these two assumptions as quark-lepton symmetry.

Hierarchical Dirac masses indicate strongly hierarchical RH neutrino masses [13], and the resulting BAU is suppressed due to the low value of M_1. In particular, $M_1 \lesssim 10^6$ GeV if m_D is similar to the up-type quark masses. In this letter we point out that sufficient asymmetry can nevertheless be generated through non-thermal leptogenesis by inflaton decay. The inflaton is assumed to decay predominantly to the next-to-lightest RH neutrino. The asymmetry resulting from decays of this neutrino is partially washed out since $M_1 < T_r$. The final asymmetry depends on the asymmetry per neutrino decay as well as how strong the washout is.

The plan of the paper is as follows: We first review the structure of seesaw parameters and estimate the asymmetry and the washout assuming quark-lepton symmetry. Numerical examples are provided in separate sections for normal and inverted hierarchical (or quasi-degenerate) light neutrino masses. We discuss how the BAU is correlated with the CP-violating phases and conclude with a summary of results and some brief remarks on thermal leptogenesis.

II. SEESEAW PARAMETERS AND LEPTOGENESIS

In the basis where the RH neutrino mass matrix is diagonal, the Dirac mass matrix can be written as

$$m_D = U_L^T d_D U_R,$$

$$d_D \equiv \text{diag}(m_D 1, m_D 2, m_D 3).$$

Eq. (1) then takes the form

$$m = U_L^T d_D W d_D U_R^T,$$

where $c_{ij} \equiv \cos \theta_{ij}, s_{ij} \equiv \sin \theta_{ij}, \delta$ is the CP-violating Dirac phase and $K_0 = \text{diag}(e^{i \alpha_1/2}, e^{i \alpha_2/2}, 1)$ contains the two CP-violating Majorana phases.

Electronic address: nefer@ku.edu
where
\[W \equiv U_R d_R^{-1} U_R^{T} \]
(6)
is the inverse mass matrix of the RH neutrinos in the basis where \(m_D \equiv U^{T}_{L} m_D U_{L} \), and \(d_R \equiv \text{diag}(M_1, M_2, M_3) \). From Eq. (5) one obtains
\[
W = \begin{pmatrix}
\hat{m}_{e\mu} / m_{D1} & \hat{m}_{e\tau} / m_{D2} & \hat{m}_{eR} / m_{D3} \\
\hat{m}_{\mu\mu} / m_{D2} & \hat{m}_{\mu\tau} / m_{D3} & 0 \\
\hat{m}_{\tau\tau} / m_{D3} & 0 & 0
\end{pmatrix},
\]
(7)
\[
\hat{m} \equiv U_L m_U U_L^{T} .
\]
(8)
As mentioned in the introduction, we are assuming \(m_{D1} \ll m_{D2} \ll m_{D3} \), and the Dirac left-handed rotation \(U_L \approx U_{\text{CKM}} \approx \mathbb{1} \). Elements of \(\hat{m} \approx m \) generally have a much milder hierarchy compared to the Dirac masses. The matrix \(W \) then has a simple hierarchical structure, and is diagonalized by \([13]\)
\[
U_R \approx \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{\hat{m}_{e\mu}}{m_{D1}} \frac{m_{D1}}{m_{D2}} & \hat{m}_{e\tau} \frac{m_{D1}}{m_{D3}} \\
\frac{\hat{m}_{\mu\mu}}{m_{D2}} & 1 & \hat{m}_{\mu\tau} \frac{m_{D2}}{m_{D3}} \\
\frac{\hat{m}_{\tau\tau}}{m_{D3}} & 0 & 1
\end{pmatrix} \cdot K,
\]
(9)
\[
d_{23} = \hat{m}_{e\mu} \hat{m}_{\mu\tau} - \hat{m}_{\mu\mu} \hat{m}_{e\tau} ,
\]
\[
d_{13} = \hat{m}_{e\tau} \hat{m}_{\mu\tau} - \hat{m}_{\tau\tau} \hat{m}_{e\mu} ,
\]
\[
d_{12} = \hat{m}_{e\tau} \hat{m}_{\mu\mu} - \hat{m}_{\tau\tau} \hat{m}_{e\mu} ,
\]
\[
K = \text{diag}(e^{-i\phi_1/2}, e^{-i\phi_2/2}, e^{-i\phi_3/2}) , \quad \phi_i = \text{arg} M_i .
\]
Here the phases of RH neutrinos \(\phi_i \) are included in \(U_R \) to keep \(M_i \) real. The mass eigenvalues are
\[
M_1 \approx \frac{m_{D1}^{2}}{m_{e\e}} , \quad M_2 \approx \frac{m_{D2}^{2}}{d_{12}} \frac{m_{e\e}}{d_{12}} , \quad M_3 \approx \frac{m_{D3}^{2}}{m_{1} m_{2} m_{3}} .
\]
(10)
The large neutrino mixings can originate from the see-saw, despite both \(U_L \) and \(U_R \) being nearly diagonal \([16]\).
To estimate the BAU, suppose the inflaton predominantly decays into the \(i \)-th family RHN \(N_i \). The comoving number density \(Y_N \) is given by
\[
Y_N = \frac{n_N}{s} = \frac{n_N}{n_\phi} \frac{\rho_\phi}{s} = 2B_r \frac{1}{m_\phi} \frac{3T_r}{4} ,
\]
(11)
\(B_r \leq 1 \) is the branching ratio of the inflaton \(\phi \) to \(N_i \), the factor 2 assumes \(\phi \to 2N_i \), \(m_\phi \) is the inflaton mass, and we have used the instantaneous decay approximation. A more accurate calculation shows \(Y_N \) to be \(\approx 25% \) larger \([17]\). The asymmetry resulting from the decays of \(N_i \) (assuming it decays promptly \([8]\)) is then
\[
Y_\Delta \lesssim \frac{2T_r |\epsilon_i| \eta}{m_\phi} ,
\]
(12)
where \(\Delta \equiv (1/3) B - L \), \(\epsilon_i \) is the lepton asymmetry produced per decay of \(N_i \), and \(\eta \) is the washout factor. In the simplest scenario, \(M_1 \gg T_r \) and there is no washout \(\eta = 1 \). On the other hand, if \(M_1 \ll T_r \), part of the asymmetry will be washed out due to \(N_1 \) mediated inverse decays and \(\Delta = 1 \) scatterings. For \(M_2 \ll T_r \), \(N_2 \) mediated processes contribute to the washout as well. The \(\Delta \) asymmetry is multiplied by a conversion factor \((C \approx 12/37) \) for SM and \((C \approx 10/31) \) for MSSM to obtain the BAU resulting from sphaleron processes at equilibrium above the electroweak scale \([18]\).
For hierarchical RH neutrino masses as in Eq. (10),
\[
|\epsilon_1| \leq \frac{3a M_1 m_{\text{atm}}}{16\pi v^2} ,
\]
(13)where the parameter \(a = 1 \) for non-SUSY and \(a = 2/\sin^2 \beta \) for SUSY \((\tan \beta \equiv \langle H_u \rangle / \langle H_d \rangle) \) and \(v = 174 \) GeV \([9, 19, 20]\). Eqs. \((12, 13)\) imply that if the inflaton decays into \(N_1 \), the WMAP best fit \(Y_{B0} = 8.7 \times 10^{-11} \) \([21]\) for the BAU requires
\[
M_1 \gtrsim \frac{1}{16\pi v^2} \left(\frac{1}{C} \right) \left(\frac{0.05 \text{ eV}}{m_{\text{atm}}} \right) 1.3 \times 10^6 \text{ GeV} ,
\]
(14)since \(m_\phi \gtrsim T_r \) (in effect \([22]\)).
If the Dirac masses are related to the up-type quark masses, Eq. \((10)\) indicates that \(M_1 \) is too light to generate the BAU. We will therefore assume \(m_\phi > 2M_2 \) so that \(\phi \) predominantly decays into \(N_2 \) instead of \(N_1 \). Using Eqs. \((4, 9)\), \((m_{D_D}^i)_{ij} \sim m_{D_2} m_{D_3} \) with coefficients involving elements of \(\hat{m} \). It follows that for hierarchical Dirac masses the dominant contribution to the asymmetry from the decays of \(N_2 \) involves \(N_3 \) in the loop \([23]\):
\[
\epsilon_2 \equiv \sum_\alpha \epsilon_{2,\alpha} \]
(15)
\[
\approx -\frac{3a}{16\pi v^2} \sum_\alpha \text{Im} \left((m_{D_2}^i)_{2\alpha} (m_{D_3}^i)_{22} m_{D_2} m_{D_3} \right) \frac{M_2}{M_3} .
\]
(16)
In the expression \(\epsilon_{2,\alpha} \), the label \(i = 1, 2, 3 \) refers to the RH neutrino, and \(\alpha = e, \mu, \tau \) to the lepton flavor that it decays into. For quark-lepton symmetry (that is, also assuming \(U_L \approx \mathbb{1} \)), the Dirac mass matrix has the form
\[
M_D \sim \begin{pmatrix} O(m_{D_1}) & m_{D_1} m_{D_2} & m_{D_1} m_{D_3} \\
O(m_{D_2}) & O(m_{D_2}) & O(m_{D_3}) \\
O(m_{D_3}) & O(m_{D_3}) & O(m_{D_3})
\end{pmatrix} ,
\]
(16)with coefficients involving elements of \(\hat{m} \), and the terms above the main diagonal proportional to non-diagonal elements of \(U_L \). It follows that the dominant term in Eq. \((15)\) is
\[
|\epsilon_{2,\tau}| \approx \frac{3a \varphi}{16\pi v^2} \frac{m_{D_1}^2 m_{D_3}}{m_{D_2}^2} \frac{M_2}{M_3} ,
\]
(17)
\[
|\epsilon_{2,\mu}| \approx \frac{3a \varphi}{16\pi v^2} \frac{|d_{13}|^2 m_1 m_2 m_3}{|d_{12}|^2 + |d_{13}|^2} .
\]
(18)
where $\varphi \leq 1$ is an effective phase that depends on d_ν, U_{PMNS}, d_D and U_L. (The phases ϕ_i in U_R can be calculated using Eqs. (5, 6) given the above masses, mixings and phases.)

To estimate η_i (the washout involving N_i), we define the washout parameters

$$K_{i,\alpha} \equiv \frac{\tilde{m}_{i,\alpha}}{m_i}, \quad \tilde{m}_{i,\alpha} \equiv \frac{|m_{DaI}|^2}{M_i},$$

(19)

$m_* \approx 1.08 \times 10^{-3}$ eV for non-SUSY and $m_* \approx (\sin^2 \beta)1.58 \times 10^{-3}$ eV for SUSY. Note that lepton flavors should be treated separately for an accurate calculation of the washout [14, 24–26]. Setting $\alpha = \tau$, the washout is given in the instantaneous decay approximation by [5, 26]

$$\eta_{i,\tau} \approx \exp \left[\int_{z_0}^{z} -\frac{1}{4} z^3 K_1(z) j(z) K_{i,\tau} A_{\tau,\tau} dz \right],$$

(20)

$z \equiv M_i/T, \quad z_0 \equiv M_i/T, \quad K_1$ is a modified Bessel function of the second kind, and

$$Y_{i,\alpha} = -A_{\alpha \beta} Y_{\Delta \beta},$$

(21)

with ℓ denoting the lepton doublet. The value of $A_{\tau \tau}$ depends on which interactions are in thermal equilibrium [24]. For MSSM, $A_{\tau \tau} = 19/30$ between $(1 + \tan^2 \beta) \times 10^5$ GeV and $(1 + \tan^2 \beta) \times 10^9$ GeV [27]. For SM, $A_{\tau \tau} = 344/537$ and $390/589$ below and above 10^9 GeV respectively [26].

The function $j(z)$ takes $\Delta L = 1$ scatterings into account. We will not attempt a detailed calculation which involves finite temperature effects. Instead, we will use $j(z) = 1$ to define η_{max} which underestimates the washout, and

$$j(z) = \frac{K_2(z)}{K_1(z)} \left(\frac{9 m_i^2}{8 \pi^2 v^2} \right) + 1$$

(22)

to define η_{min} which overestimates the washout [5].

It is also required that $\Delta L = 2$ processes mediated by RH neutrinos are out of equilibrium. As discussed in Ref. 8, it is sufficient to have $T_r \lesssim (m_{\text{atm}}/m_i)^2 10^{13.5}$ GeV provided

$$\frac{\Gamma_{N_i}}{\Gamma_\phi} \equiv \frac{(a/8\pi v^2) \sum_\alpha |m_{DaI}|^2 |m_2|}{\sqrt{2 \pi^2 g_*} / 45 T^2 / m_p} > 1,$$

(23)

where $m_p \approx 2.4 \times 10^{18}$ GeV is the reduced Planck scale, and the relativistic degrees of freedom $g_* = 106.75$ (228.75) for SM (MSSM). Using $\sum_\alpha \tilde{m}_{2,\alpha} \sim m_{\text{atm}}$, this condition corresponds to $M_2 \gtrsim T_r/5$. For $M_2 \gtrsim T_r$, $\Gamma_{N_i} \gg \Gamma_\phi$ and we can use the following simplified equations [4, 27, 28]:

$$Z \frac{d\rho_\phi}{dz} = -\frac{3}{2} \frac{z^2 \rho_\phi}{H z} \frac{\Gamma_\phi}{H z},$$

(24)

$$Z X \frac{dY_{\Delta,\tau}}{dz} = \frac{3}{8} (Z - 1) Y_{\Delta,\tau} + \frac{\Gamma_\phi \rho_\phi}{s H z m_\phi}$$

(25)

$$\left(-\frac{1}{4} z^3 K_1(z) j(z) K_{\tau,\tau} A_{\tau,\tau} Y_{\Delta,\tau} - \frac{1}{4} \gamma(z^3) K_1(z) j(z) K_{\tau,\Delta} A_{\tau,\Delta} Y_{\Delta,\tau} \right).$$

Here $z \equiv M_2/T, \quad \gamma \equiv M_1/M_2$, and

$$Z \equiv 1 - \frac{\Gamma_\phi \rho_\phi}{4 H \rho_r}, \quad X \equiv \left(\frac{\rho_r + \rho_\phi}{\rho_r} \right)^{1/2} ,$$

(26)

with $\rho_r = (M_2/z)^4 g_* \pi^2/30$. The equations are solved from $z_i = M_2/T_{\text{max}}$ to $z_f \gtrsim \gamma^{-1}$, and $Y_B \approx C \Delta Y_{\tau} / (z_f)$.²

III. RESULTS FOR NH SPECTRUM

In this section we assume a normal hierarchical (NH) spectrum of light neutrino masses ($m_3 \approx m_{\text{atm}}, m_2 \approx m_\phi, m_1 \ll m_2$). To simplify the discussion we also set $U_L = 1$ and $s_{13} = 0$. In this limit the RH neutrino masses are given by [11, 13]

$$M_1 \approx \frac{m_{D_1}^2}{s_{12}^2 m_2}, \quad M_2 \approx \frac{2 m_{D_2}^2}{m_3}, \quad M_3 \approx \frac{m_{D_3}^2 s_{12}^2}{2 m_1},$$

(27)

and with $|d_{12}| = |d_{13}| = s_{12}^2 m_2 m_3/2$ we obtain

$$|\epsilon_{2,\tau}| \approx \frac{3 \alpha m_1 M_2}{16 \pi^2 v^2 s_{12}^2},$$

(28)

Using Eqs. (12, 28),

$$Y_B \approx \left(\frac{2 M_2}{m_\phi} \right) \left(\frac{m_1}{m_2} \right) \varphi Y_{B,\text{max}},$$

(29)

$$Y_{B,\text{max}} \approx \frac{3 \alpha C T_r m_2 m_1}{16 \pi^2 s_{12}^2}.$$

(30)

For $M_1 \ll T_r$ we can take $z_0 = 0$ in Eq. (20) to obtain

$$\eta_{1,\text{max}} = \exp \left[-\frac{3 \pi}{8} K_{1,\tau} A_{\tau,\tau} \right],$$

(31)

$$\eta_{1,\text{min}} = \exp \left[-\left(2 + \frac{3 \pi}{8} \frac{9 m_i^2}{8 \pi^2 v^2} \right) K_{1,\tau} A_{\tau,\tau} \right].$$

² $T_{\text{max}} \sim (H_i m_p)^{1/4} T_r^{1/2}$ is the maximum temperature attained just after the inflaton starts oscillating, at time T_r^{-1}. We took $H_i = m_\phi$ for the numerical calculation, but the results are not sensitive to H_i as long as T_{max} is at least a few times larger than T_r ($H_i \gg T_r^2 / m_p$).
the maximum asymmetry is obtained for T_z bounds:

θ can be estimated by using Eq. (20), and becomes significant for $z_0 \lesssim 10$. It follows from Eqs. (29, 30) that the maximum asymmetry is obtained for $T_x \approx M_2/10$ and $m_φ \approx 20T_x$. Taking the rephasing phase into account by solving the Boltzmann equations gives similar results.

A numerical example is shown in Fig. 1, where we have used Eq. (30) and set $d_U = d_d = \text{diag}(m_u, m_c, m_t)$ with the values $m_u = 1.5$ MeV, $m_c = 0.43$ GeV, $m_t = 150$ GeV (taken from Ref. 29, for a renormalization scale of 105 GeV), for which $M_1 \approx 6 \times 10^9$ GeV and $M_2 \approx 6 \times 10^9$ GeV. Assuming $m_1 \ll m_2$, we can ignore the contributions to $\tilde{m}_{i\alpha}$ that involve m_1, and it follows from Eq. (29) that $Y_B \sim m_1$.

While the washout due to N_2 is severe when $M_2 \lesssim T_x$, the washout due to N_1 is rather mild, of order 0.1, for $U_1 = 1$ and $s_{13} = 0$. This follows from Eq. (20), with $\tilde{m}_{i\tau} \approx m_i/2$ compared to $\tilde{m}_{1\tau} \approx e_i^2 m_2/2$ (in the limit $m_1 \ll m_2$). For $U_1 \approx U_{\text{CKM}}$, there are additional, order $\theta_C m_2^2/m_2$ contributions to $\tilde{m}_{1\tau}$, where θ_C is the leptonic analogue of the Cabibbo angle. The result then depends on the CP-violating phases of U_{PMNS}, but on average the washout gets stronger.

We also take into account an effect due to off-diagonal elements of $A_{\alpha\beta}$ [30]. Namely, in case of a strong washout related to a large $\tilde{m}_{1\tau}$, part of the asymmetry can still survive if $\tilde{m}_{1\mu} \sim m_\tau$. Typically $\tilde{m}_{1\tau}$ is the smallest washout parameter. For an estimate we can ignore $\tilde{m}_{1\mu}$ which is of order $\tilde{m}_{1\tau}$, and modify the Boltzmann equations by adding

$$-\frac{1}{4} \langle (\gamma z)^3 K_1(\gamma z) j(\gamma z) K_{1,\tau} A_{\tau e} Y_{\Delta e}\rangle$$

Eq. (25), and including an analogous equation for $Y_{\Delta e}$ (with $e, \mu \equiv \tau$). The final asymmetry is then $Y_B \sim C(Y_{\Delta e}(z_f) + Y_{\Delta e}(z_f))$.

To estimate the probability distribution of $Y_{B,\text{max}}$ for $U_1 = U_{\text{CKM}}$, we numerically solved the Boltzmann equations 5000 times with uniformly distributed random phases of U_{PMNS}. We define $Y_{B,\text{max}}$ by taking $m_\phi = 2M_2$ as in Eq. (29), but here we take $m_1 = 0.2m_2$ to be specific and include φ. In addition, the asymmetry is maximized by varying T_x for each run. Fig. 2 shows the results for $s_{13} = 0$ and $s_{13} = 0.2$. The percentage of runs yielding $Y_{B,\text{max}} > Y_{B_0}$ was 38% and 32% for $s_{13} = 0$ and $s_{13} = 0.2$ respectively. Including the $A_{\tau e}$ term significantly alters the low end of the probability distribution for $Y_{B,\text{max}}$, but the effect on these percentages is only a few points.

For $s_{13} = 0$, the peak at $Y_B \approx 10^{-12}$ results from $\tilde{m}_{1\nu}$ having a relatively small deviation ($\tilde{m}_{1\nu} \approx \left[1 + O(\Theta_C) + O(\theta_C^2 m_3/m_2)^2 \right] \tilde{m}_{1\tau}$). For $s_{13} \neq 0$, there are additional contributions to $\tilde{m}_{1\nu}$ (as well as $\tilde{m}_{1\tau}$), and the probability distribution becomes more dispersed. Using Eqs. (19, 4, 9, 10), $\tilde{m}_{1\tau} \approx |m_{ee}|^2/|m_{ee}|$, which from Eqs. (8, 2) is given by

$$\approx \left| \frac{|c_{12}s_{12}e^{i\alpha}m_2 + (s_{13}e^{-i\delta} + \frac{s_{13}}{\sqrt{2}}) m_3|^2 \left|s_{13} \approx \frac{s_{13}e^{-i\delta} + \frac{s_{13}}{\sqrt{2}}}{m_3} \right|^2}{2 \left|s_{12}e^{i\alpha}m_2 + (s_{13}e^{-i\delta} + \frac{s_{13}}{\sqrt{2}}) m_3 \right|^2} \right|^2.$$ (33)

The terms including m_1 and α are subdominant. Assuming Θ_C is similar to the Cabibbo angle, $\tilde{m}_{1\tau}$ is minimized for $\delta = \pi$. $Y_{B,\text{max}}$ also depends on $e_{2\tau}$, which from

3 We take $s_{12} = 1/\sqrt{2}$, $s_{23} = 1/\sqrt{2}$ and $\sin \beta = 1$ in the numerical calculations. We also take $m_3 = 0.06$ eV and $m_2 = 0.011$ eV, roughly approximating renormalization group effects by increasing the neutrino mass scale 20%.

4 This is also true for the washout due to N_2, and part of the asymmetry can survive for $M_2 \lesssim T_x$. However, the maximum BAU is still obtained for $M_2 \approx 10T_x$.

5 Note that in Eq. (4), there are generally Majorana phases on the left side of U_R as well. These phases enter $\tilde{m}_{1\alpha}$, leading to $O(\Theta_C)$ corrections for $\alpha = e, \mu$. (They can be rotated away in the limit $U_1 = 1$.) This does not affect the results appreciably.
Eq. (18) is maximized for \(\delta \approx 0 \). For random Majorana phases, \(Y_{B,\text{max}} > Y_{B0} \) is most likely at \(\delta \approx \pi \) due to the exponential dependence on \(\bar{m}_{1,\tau} \), however it remains possible for all values of \(\delta \) (Fig. 3).

The values of \(s_{13} \) and \(\delta \) will be probed by neutrino beam experiments within a decade for \(s_{13} \gtrsim 0.05 \) [31]. The value of \(\alpha_2 \) can in principle be probed by neutrino-less double beta decay experiments. However, for normal hierarchy the effective Majorana mass \(|\langle m_{\beta\beta}\rangle| = |m_{ee}| \approx |s_{12}^2 e^{i\alpha_2} m_2 + s_{13}^2 e^{-2i\delta} m_3| \) is too small to detect using current techniques.

IV. RESULTS FOR IH AND QD SPECTRA

For inverted hierarchical (IH) spectrum of neutrino masses, \(m_3 < m_1 < m_2 \approx m_{\text{atm}} \) and in the limit \(m_3 \to 0, U_L \to \mathbb{1} \),

\[
\bar{m}_{1,\tau} = \frac{c_{12}^2 s_{12}^2}{2|c_{12}|^2} |m_{1} - e^{i\alpha_2} m_2|^2. \quad (34)
\]

Taking \(s_{12} = 1/\sqrt{2} \), \(\bar{m}_{1,\tau} \) ranges from \(4m_{\text{atm}}/3 \) for \(\alpha_2 = \alpha_1 + \pi \) to \(m_{\text{atm}}^2/6 m_{\text{atm}}^3 \approx 0 \) for \(\alpha_2 = \alpha_1 \). (Including the Cabibbo mixing, \(\bar{m}_{1,\tau} \) for \(\alpha_2 = \alpha_1 \) becomes \(m_{\text{atm}}^2 \theta^2 C/4 \), which is still \(\lesssim m_s \).) As a result, the asymmetry is suppressed by a factor \(\sim 10^8 \) for \(\alpha_2 = \alpha_1 + \pi \), but \(Y_{B,\text{max}} > Y_{B0} \) is possible if \(\alpha_1 \approx \alpha_2 \).

The RH neutrino masses are given in this limit by

\[
M_1 \approx \frac{m_{D1}^2}{m_{\text{atm}}}, \quad M_2 \approx \frac{2m_{D2}^2}{m_{\text{atm}}}, \quad M_3 \approx \frac{m_{D3}^2}{2m_3} \quad (35)
\]

for \(\alpha_1 \approx \alpha_2 \). With \(|d_{12}| = |d_{13}| = m_1 m_2/2 \) we obtain

\[
|\epsilon_{2,\tau}| \approx \frac{3a_2 m_3}{16\pi v^2}, \quad (36)
\]

similar to Eq. (28).

The asymmetry can only survive if \(\alpha_1 \approx \alpha_2 \) for quasi-degenerate (QD) spectra of neutrino masses as well, since terms involving \(m_3 \) in \(\bar{m}_{1,\tau} \) are suppressed either by \(s_{13} \) or \(\theta_C \). The RH neutrino masses \(M_i \approx m_{D_i}/\bar{m} \) where \(\bar{m} \) is the QD neutrino mass scale. Assuming \(\alpha_1 \approx \alpha_2 \), \(|\epsilon_{2,\tau}| \sim (3a/16\pi v^2) m_{D2}^2 \) is maximized for \(\alpha_2 \approx \pi \). On the other hand, \(\bar{m}_{1,\tau} \approx \theta^2 \bar{m} \) for \(\alpha_2 \approx \pi \) and it is minimized for \(\alpha_2 \approx 0 \). The maximum asymmetry is determined by the interplay of these two factors.

In the numerical examples we used the following neutrino masses. IH spectrum: \(m_1 = 0.059 \text{ eV}, m_2 = 0.06 \text{ eV}, m_3 = m_2/5 \). QD spectrum: \(m_1 = 0.1 \text{ eV}, m_2 = 0.1006 \text{ eV}, m_3 = 0.117 \text{ eV} \). (Similar results are obtained for inverted hierarchical QD masses.) The resulting probability distribution of \(Y_{B,\text{max}} \) is displayed in Fig. 4. The percentage of runs yielding \(Y_{B,\text{max}} > Y_{B0} \) was 31% and 18% for IH and QD spectra respectively, for \(U_L = U_{\text{CKM}} \) and \(s_{13} = 0 \). Since \(\bar{m}_{1,\tau} \propto \bar{m}, Y_{B,\text{max}} \) decreases as \(\bar{m} \) is increased, with the percentage of runs yielding \(Y_{B,\text{max}} > Y_{B0} \) decreasing to 7% (3%) for \(m_1 = 0.2 \) (0.3) eV. These percentages increase a few points if \(U_L \approx 1 \), and decrease a few points if \(s_{13} \approx 0.2 \).

The effective Majorana mass, given by

\[
|\langle m_{\beta\beta}\rangle| \approx |\epsilon_{12}^\ast e^{i\alpha_1} m_1 + \epsilon_{12} e^{i\alpha_2} m_2| \quad (37)
\]

for both IH and QD spectra, is maximized by the condition \(\alpha_2 \approx \alpha_1 \). As shown in Fig. 5, \(Y_{B,\text{max}} > Y_{B0} \) requires \(|\langle m_{\beta\beta}\rangle| \gtrsim 0.04 \text{ eV} \) for IH.\(^6\) This range of \(|\langle m_{\beta\beta}\rangle| \) can be probed within a decade [32].

V. CONCLUSION

In this paper we considered non-thermal leptogenesis by inflaton decay under the assumption that the Dirac-type neutrino mass matrix \(m_D \) is related to the up-type

\(^6\) Note that since we took the neutrino mass scale 20% larger at the leptogenesis scale, we scaled \(|\langle m_{\beta\beta}\rangle| \) down 20% in the figure to correspond to low energy values.
of light neutrino masses, sufficient asymmetry is most likely to be obtained if the U_{PMNS} Dirac phase $\delta \approx \pi$ (assuming $U_L \approx U_{CKM}$). For IH or QD spectra of light neutrino masses, sufficient asymmetry can only be obtained if the U_{PMNS} Majorana phases are approximately equal to each other, implying $|\langle m_{\beta\beta}\rangle| \approx m_{\text{atm}}$ for IH spectrum and larger for QD spectrum. The asymmetry decreases as the QD neutrino mass scale is increased, and if $|\langle m_{\beta\beta}\rangle| \gtrsim 0.2$ eV, the leptogenesis scenario discussed here is strongly disfavored assuming $d_D \approx d_u$.

If we relate the Dirac masses to masses of the charged leptons $d_\ell \equiv \text{diag}(m_\tau, m_\mu, m_e)$ instead, $m_{D2} \approx m_\tau \tan \beta$ and Eq. (27) yields $M_2 \sim (\tan^2 \beta)2 \times 10^8$ GeV. Provided $\tan \beta$ is large, it is then easier to satisfy Eq. (38), especially for non-SUSY where there is no gravitino constraint on T_τ. For large $\tan \beta$ it also becomes possible to generate the BAU with the inflaton decaying to N_1, as $M_1 \sim (\tan^2 \beta)5 \times 10^4$ GeV can satisfy Eq. (14).

Thermal leptogenesis where the asymmetry is created by the decays of N_2 was discussed in Refs. 20, 30, 35 as well as Refs. 14, 15 which also relate m_{χ} to the up-type quark masses. It is difficult to obtain sufficient asymmetry in this case. For $m_{2,\tau} \approx m_{\text{atm}}/2$, the bounds are $T_\tau \gtrsim 10^{10}$ GeV and $M_2 \gtrsim 5 \times 10^{10}$ GeV assuming that ϵ_2 is given by Eq. (13) with M_1 replaced by M_2, and that there is negligible washout from N_1 [5, 20]. However, for quark-lepton symmetry ϵ_2 is suppressed by the lightest neutrino mass, and the phase values that maximize it do not coincide with those that suppress the washout. We therefore expect these bounds to be at least a few times larger. Similar conclusions are reached in Refs. 15. Notwithstanding the high T_τ, the value of M_2 would then not be compatible with the assumption $d_D \approx d_u$, although it may be compatible with $d_D \approx d_\ell \tan \beta$ for large $\tan \beta$.

Acknowledgments

I thank Azar Mustafayev and Danny Marfatia for useful discussions. I also thank L. Velasco-Sevilla and W. Rodejohann for helpful comments and pointing out relevant papers. This research was supported by the U.S. Department of Energy under Grant No. DE-FG02-04ER41308.
[1] M. Fukugita and T. Yanagida, Phys. Lett. B174, 45 (1986).
[2] P. Minkowski, Phys. Lett. B67, 421 (1977); T. Yanagida, in proc. of Workshop on the Unified Theory and Baryon Number in the Universe p. 95, O. Sawada and A. Sugamoto eds., Tsukuba, Japan 1979; S. L. Glashow, in proc. of Cargese 1979 Quarks and Leptons p. 687; M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity p. 315, P. van Nieuwenhuizen and D.Z. Freedman eds., North Holland, Amsterdam 1979; R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).
[3] V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, Phys. Lett. B155, 36 (1985).
[4] G. F. Giudice, A. Notari, M. Raidal, A. Riotto, and A. Strumia, Nucl. Phys. B685, 89 (2004), hep-ph/0310123.
[5] W. Buchmuller, P. Di Bari, and M. Plumacher, Ann. Phys. 315, 305 (2005), hep-ph/0401240.
[6] M. Y. Khlopov and A. D. Linde, Phys. Lett. B138, 265 (1984); J. R. Ellis, J. E. Kim, and D. V. Nanopoulos, Phys. Lett. B145, 181 (1984).
[7] G. Lazarides and Q. Shafi, Phys. Lett. B258, 305 (1991); H. Murayama, H. Suzuki, T. Yanagida, and J. Yokoyama, Phys. Rev. Lett. 70, 1912 (1993).
[8] G. F. Giudice, M. Peloso, A. Riotto, and I. Tkachev, JHEP 08, 014 (1999), hep-ph/9905242.
[9] T. Asaka, K. Hamaguchi, M. Kawasaki, and T. Yanagida, Phys. Lett. B464, 12 (1999), hep-ph/9906366.
[10] B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957); Sov. Phys. JETP 7, 172 (1958); Sov. Phys. JETP 26, 984 (1968); Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).
[11] G. C. Branco, R. Gonzalez Felipe, F. R. Joaquim, and M. N. Rebelo, Nucl. Phys. B640, 202 (2002), hep-ph/0202030.
[12] M. S. Berger and B. Brahmachari, Phys. Rev. D60, 073009 (1999), hep-ph/9903406; D. Falcone and F. Tramontano, Phys. Rev. D63, 073007 (2001), hep-ph/0011053; E. Nezri and J. Orloff, JHEP 04, 020 (2003), hep-ph/0004227; D. Falcone, Phys. Rev. D66, 053001 (2002), hep-ph/0204335; S. Pascoli, S. T. Petcov and W. Rodejohann, Phys. Rev. D68, 093007 (2003), hep-ph/0302054; D. Falcone, Phys. Rev. D68, 033002 (2003), hep-ph/0305229.
[13] E. K. Akhmedov, M. Frigerio, and A. Y. Smirnov, JHEP 09, 021 (2003), hep-ph/0305322.
[14] O. Vives, Phys. Rev. D73, 073006 (2006), hep-ph/0512160; E. J. Chun and L. Velasco-Sevilla, hep-ph/0702039.
[15] P. Hostiens, S. Livigniac and C. A. Savoy, Nucl. Phys. B755, 137 (2006), hep-ph/0606078; K. A. Hochmuth and W. Rodejohann, Phys. Rev. D75, 073001 (2007), hep-ph/0607103.
[16] A. Y. Smirnov, Phys. Rev. D48, 3264 (1993), hep-ph/9304205.
[17] E. W. Kolb and M. S. Turner, The Early universe (Addison-Wesley, 1990).
[18] S. Y. Khlebnikov and M. E. Shaposhnikov, Nucl. Phys. B308, 885 (1988); J. A. Harvey and M. S. Turner, Phys. Rev. D42, 3344 (1990); S. Y. Khlebnikov and M. E. Shaposhnikov, Phys. Lett. B387, 817 (1996), hep-ph/9607386; M. Laine and M. E. Shaposhnikov, Phys. Rev. D61, 117302 (2000), hep-ph/9911473.
[19] K. Hamaguchi, H. Murayama, and T. Yanagida, Phys. Rev. D65, 043512 (2002), hep-ph/0109030; S. Davidson and A. Ibarra, Phys. Lett. B535, 25 (2002), hep-ph/0202239.
[20] P. Di Bari, Nucl. Phys. B727, 318 (2005), hep-ph/0502082.
[21] D. N. Spergel et al., astro-ph/0603449.
[22] E. W. Kolb, A. Notari, and A. Riotto, Phys. Rev. D68, 123505 (2003), hep-ph/0307241.
[23] V. N. Šenoguz and Q. Shafi, Phys. Lett. B582, 6 (2004), hep-ph/0309134.
[24] R. Barbieri, P. Creminelli, A. Strumia, and N. Tetrads, Nucl. Phys. B575, 61 (2000), hep-ph/9911315; E. Nardi, Y. Nir, E. Roulet, and J. Racker, JHEP 01, 164 (2006), hep-ph/0601084.
[25] A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada, and A. Riotto, JCAP 0604, 004 (2006), hep-ph/0601083.
[26] A. Abada et al., JHEP 09, 010 (2006), hep-ph/0605281.
[27] S. Antusch, S. F. King, and A. Riotto, JCAP 0611, 011 (2006), hep-ph/0609038.
[28] S. Antusch and A. M. Teixeira, JCAP 0702, 024 (2007), hep-ph/0611252.
[29] H. Fusaoa and Y. Koide, Phys. Rev. D57, 3986 (1998), hep-ph/9712201.
[30] T. Shindou and T. Yamashita, hep-ph/0703183.
[31] P. Huber, M. Lindner, M. Rolinec, T. Schwetz and W. Winter, Phys. Rev. D70, 073014 (2004), hep-ph/0403068; V. Barger et al., Phys. Rev. D74, 075004 (2006), hep-ph/0607177. For review and references see V. Barger, D. Marfatia and K. Whisnant, Int. J. Mod. Phys. E12, 569 (2003), hep-ph/0308123; A. Strumia and F. Vissani (2006), hep-ph/0606054; M. C. Gonzalez-Garcia and M. Maltoni, arXiv:0704.1800.
[32] C. Aalseth et al. (2004), hep-ph/0412300; S. R. Elliott and J. Engel, J. Phys. G30, R183 (2004), hep-ph/0405078.
[33] L. J. Hall, H. Murayama and N. Weiner, Phys. Rev. Lett. 84, 2572 (2000), hep-ph/9911341; N. Haba and H. Murayama, Phys. Rev. D63, 053010 (2001), hep-ph/0009174.
[34] S. Dodelson, W. H. Kinney, and E. W. Kolb, Phys. Rev. D56, 3207 (1997), astro-ph/9702166; Planck Collaboration, astro-ph/0604069.
[35] G. Engelhard, Y. Grossman, E. Nardi, and Y. Nir, hep-ph/0612187.