Determination of Volatile Components of *Helichrysum arenarium* subsp. *aucheri* Naturally Distributed in Two Different Regions

Ebru Hatice Tığlı Kaytanlıoğlu 1*, Sevgin Özderin 2, Hüseyin Fakir 3, Emre Gümüşay 4

1* Isparta Applied Sciences of University, Faculty of Forest, Department of Forest Engineering, Isparta, Turkey, (ORCID: 0000-0002-9165-6675), ebruhatice@isparta.edu.tr

2 Muğla Sıtkı Koçman University, Koycegiz Vocational High School, Department of Forestry, Muğla, Turkey, (ORCID: 0000-0002-4511-5229), sevginizozderin@mu.edu.tr

3 Isparta Applied Sciences of University, Faculty of Forest, Department of Forest Engineering, Isparta, Turkey, (ORCID: 0000-0002-6606-8011), huseyinfakir@isparta.edu.tr

4 Isparta Applied Sciences of University, Faculty of Forest, Department of Forest Engineering, Isparta, Turkey, (ORCID: 0000-0002-6108-5373), gmus_enre.01@hotmail.com

(First received 27 February 2021 and in final form 27 June 2021)

DOI: 10.31590/ejosat.887605

ATIF/REFERENCE: Tığlı Kaytanlıoğlu, E.H., Özderin, S., Fakir, H. & Gümüşay, E. (2021). Determination of Volatile Components of *Helichrysum arenarium* subsp. *aucheri* Naturally Distributed in Two Different Regions. *European Journal of Science and Technology*, (25), 152-158.

Abstract

The aim of this study was to determine the volatile components of *Helichrysum arenarium* (L.) Moench subsp. *aucheri* that belongs to the *Helichrysum* genus, belonging to the Asteraceae family, one of the important families for Turkey and generally known as ‘ölmez çiçek, altın otu veya mantuvar’ in Turkey. To determine volatile components, leaves and flowers of *Helichrysum arenarium* subsp. *aucheri* specimens were collected from Isparta Aksu and Adana Feke villages in Turkey, and dried at room temperature. Then, volatile components were determined with HS-SPME/GC-MS analysis. As a result of the findings obtained, a total of 86 volatile components were found for *Helichrysum* species. A total of 64 volatile components were determined for *Helichrysum arenarium* subsp. *aucheri* specimens collected from Isparta Aksu region, whereas the main components were found as trans-Caryophyllene (24.33%), α-humulene (16.14%), α-pinene (14.79%); and dl-limonene (11.98%), respectively; and a total of 87 volatile components for specimens collected from Adana Feke region, whereas the main components were found as trans-caryophyllene (24.57%), α-pinene (22.5%), β-pinene (8.98%), limonene (8.21%), respectively.

Keywords: *Helichrysum arenarium* subsp. *aucheri*, volatile components, HS-SPME/GC-MS, α-pinene, trans-caryophyllene, Türkiye

炎二地域に自然分布するヤブナシ類（*Helichrysum arenarium* subsp. *aucheri*）の揮発性物質成分における比較研究

** Öz**

Bu çalışmada ülkemiz için öne mini familyalarından olan Asteraceae familyasına ait Türkiye’de yaygın olarak ‘ölmez çiçek, altın otu veya mantuvar’ olarak bilinen *Helichrysum cinsine ait Helichrysum arenarium* (L.) Moench subsp. *aucheri*’nin uçucu bileşenlerinin belirlenmesi amaçlanmıştır. Isparta Aksu ve Adana Feke Köyü mevkiilerinden farklı olarak yayılış gösteren *Helichrysum arenarium* subsp. *aucheri* örnekleri uçucu bileşenleri belirlenmek amacıyla yaprak ve çiçekleri toplandı ve oda sıcaklığında kurutulmuştur. Daha sonra HS-SPME/GC-MS analizi ile uçucu bileşenleri belirlenmiştir. Elde edilen bulgular sonucunda altın otu türe ait toplam 86 adet uçucu bileşen belirlenmiştir. Isparta Aksu mevkiinden toplanan *Helichrysum arenarium* subsp. *aucheri*’da 6 uçucu bileşen, bu bileşenler içerisinde temel bileşenler; trans-caryophyllene %24.33, α-humulene % 16.14, α-pinene %14.79; dl-limonene (% 11.98); Adana Feke Köyü mevkiii örneklerinde 87 uçucu bileşen, bu bileşenler içerisinde temel bileşenler; trans-caryophyllene (%24.57), α-pinene(22.5), β-pinene (% 8.98), limonene (%8.21) bileşenleri tespit edilmiştir.

Anahtar Kelimeler: *Helichrysum arenarium* subsp. *aucheri*, uçucu bileşen, HS-SPME/GC-MS, α-Pinene, trans-Caryophyllene, Türkiye.
1. Introduction

Thanks to its geographical location, climate and plant diversity, agricultural potential, and wide area, Turkey is one of the leading countries in the trade of medicinal and aromatic plants, because of its geographical location. This importance of Turkey stems from the fact that plants that produce many herbal products constituting the input of herbal medicine, plant chemicals, food and additive agents, and cosmetics and perfume industries present in the natural flora of Turkey. Therefore, these plants are being marketed with the collection from the wild (Bayram et al., 2010). Medicinal and aromatic plants have been used in health promotion and disease prevention. By observing the protection methods developed by the defense mechanisms of plants by secreting active substances such as various enzymes, essential fatty acids, and phenolic substances, it was identified with the trial-and-error method that these have been good for the treatment of a number of ailments in humans (Kayaalp, 2001). Growing production and marketing of natural health-promotion and personal care products has also created an increasing industrial demand for medicinal and aromatic plants as well (Igwillo, 2019). Medicinal and aromatic plants contain bioactive secondary metabolites like steroids, flavonoids, saponins, alkaloids, terpenes, and phenolic compounds. These secondary metabolites possess antimicrobial, antifungal, antiallergic, antidiabetic, cardioprotective, antioxidant, anticancer, antithyroid, antihistaminic, antimalarial, anthelmintic, anti-inflammatory, antihypertensive, antispasmodic, and analgesic properties (Aftab, 2019). Medicinal and aromatic plants can be found in fresh, frozen, or dry forms. These plants are preferred in the pharmaceutical industry because of their therapeutic effects. Fixed oils (or fats, fatty acids that plants have (might be added) and essential oils extracted from plants are used in soft drinks and candies within food industry and in perfumes, skin care and hair care products and aromatherapy within cosmetic industry (Van Vuuren et al., 2010, Christaki, 2012). Since they are complex mixtures, effectiveness of essential oils varies depending on the amount and type of substances they contain (Bayaz, 2014).

The fact that almost 5,000 of the 7,000 chemical compounds, of which have been isolated and identified from plants thus far, were extracted from the members of this family is an indicator of how rich they are in chemical terms (Zeybek and Zeybek, 2002). The genus Helichrysum consists of an estimated 600 species all around the world, and is widely distributed in South Africa (250 species), Southern Europe, Southern-Western Asia, Southern India, Sri Lanka, Australia, and the Mediterranean basin (Anderberg, 1991). This genus is represented by 27 taxa, 15 of which are endemic in Turkish flora (Davis, et al., 1988; Güner et al., 2000; Sümäß, et al., 2003). Helichrysum species are grown in every region of Turkey and is supplied fresh in every season as it is not affected by the climate conditions. Hel species have been used as Daily herbal tea in Turkey, since they have bile and diuretic effects. (Şen and Kalayci, 2016).

Heli species, growing in Corsica, France, is one of the most preferred species in perfumery and cosmetics industry around the World. (Bianchini et al., 2001). The economically used part of the Helichrysum species is its flowers. The main active substance of yellow flowers of Helichrysum species is the yellowish-colored essential oils in glandular hairs (Licina and Kralj, 2016). Despite its floral scent, it can be used as a base note in perfume blends thanks to its strength and color (Lawless, 2002). Helichrysum species are reported to have a high degree of polymorphism (Peyron and Roubaud, 1971). Previous studies have reported that some of them show significant pharmacological properties and find wide use in perfumery (Bianchini et al., 2001). It was identified that Helichrysum volatile components show anti-inflammatory (Sala et al., 2002; Appendino et al., 2007), antimicrobial (Roussis et al., 1998; Nostro et al., 2001; Angioni et al., 2003), and antioxidant (Sala et al., 2002) activities. Helichrysum volatile components reportedly have anti-inflammatory, analgesic, cell regenerative, pain reducing, and sedative effects and it relieves stress. By reason of the fact that “anti-aging skincare” comes to mind when it comes to cell regeneration recently; Helichrysum volatile components are dermatologically applied against cracked skins, hemmorhoids, acne scars, surgical scars, and wounds, and can be in-depth effective even with a small content of dilutions (Harris and Harris, 2002; Haas, 2004; Schnaabel, 2011). Helichrysum volatile components have been reported to be of great value as a cell regenerative and decongestant thanks to the fact that neryl acetate, one of the components in essential oil, has a very high antiradical activity and increases collagen type I production about 6 times (Millou et al., 2010). As they can aid the renewal of skin cells, they are used in skincare products and called “liquid stiches” (Price and Price, 2012). Additionally, studies suggest that Helichrysum volatile components prevent blood clot formation and accumulation (Markovic, 2005; Battaglia, 2003; Gatetossé, 1993) and have mucolytic, anti-spasmodic, and expectorant effects, which are helpful for coughs, bronchitis, and sinusits (Battaglia, 2003; Lawless, 2002; Poštig, 2013). Besides, it is reported that Helichrysum volatile components, together with chamomile (Chamaemelum nobile) and yarrow (Achillea millefolium), are used to reduce fever and has an anti-inflammatory effect (Mohaj, 1996). It is reported that Helichrysum hydrossol, which is obtained by steam distillation, can help to relieve painful menstrual cramps, cleanse the liver from toxins, and combat gingivitis, as a mouthwash (Catty, 2001).

SPME (solid-based micro-extraction method) saves processing time and costs as it is a method that combines sample preparation, extraction and concentration stages in a single solvent-free stage. However, positive developments were observed in the sample preparation phase and results. The type and thickness of the material covering the fiber part in the syringe affects the effectiveness of the SPME method. The fact that SPME method can be performed in a short time such as 1-30 minutes reveals its advantage over other methods (Vas & Vekey, 2004; Araujo et al., 2007; Dönmee & Salman, 2017).

The aim of this study was to determine volatile components that were extracted from Helichrysum arenarium (L.) Moench subsp. acheri (Boiss.) P.H. Davis & Kupicha, using solid-phase microextration (SPME, Supelco, Germany) procedure.

2. Material and Method

2.1. Material

Helichrysum arenarium subsp. acheri specimens, the research material, were collected from the research area in Aksu (1970m) 37°47’59” kuzey-31°03’59” doğu (Isparta province) and Feke (1160m) 37°48’46” kuzey-35°54’44” doğu (Adana province) counties in Turkey within the vegetation period.
Helichrysum arenarium subsp. aucheri species constitute samples of leaves and flowers. The plant was diagnosed by us using the discrimination key in "Flora of Turkey" (Davis, 1982).

The voucher specimens were placed in sample bags and the bags were labeled after coding, and collection data (collection time, place, and elevation) were marked on the label. The plant samples were kept at room temperature in a semi-dark and airy place, to use in the analysis of volatile components. After the specimens were dried, they were brought to the Laboratory of the Department of Forest Botany, Faculty of Forestry, Isparta University of Applied Sciences. The plant samples were identified in the Herbarium at S. Demirel University, Faculty of Arts and Science, Department of Biology. The identified voucher specimens were deposited in the Herbarium at Isparta University of Applied Sciences, Faculty of Forestry.

2.2. Determination of leaf and flower volatile components with HS-SPME/GC-MS analysis

In this study, leaf and flower samples were collected from the area where Helichrysum species grow, within the vegetation period. The collected leaf and flower samples were placed in bags and brought to the Laboratory of the Department of Forest Botany, Faculty of Forestry, Isparta University of Applied Sciences within the same day, without any delay and exposure to sunlight. The voucher specimens were dried at room temperature (25°C) to constant weight.

Floral scent components of flowers and leaves were combined with Gas Chromatography/ Mass Spectrometric (GC-MS) and determined with Headspace Solid-Phase Microextraction (HS-SPME) procedure. Based on solid-phase microextraction (SPME, Supelco, Germany) procedure, 2 g of flower and leaf specimens were placed into a 10 mL vial and heated to 60°C for 30 minutes. After that, volatile components were absorbed from headspace using a 75 µm-thick Carboxen/Polydimethylsiloxane (CAR/PDMS) coated fused silica fiber and injected into capillary column (Restek Rx-5 Sil MS 30 m x 0.25 mm, 0.25 µm) of HS-SPME-compatible GC-MS (Shimadzu 2010 PLUS) instrument. The oven temperature was set to keep at 40°C for 2 minutes and to reach 250°C with a 4°C increase per minute. Injection and detection temperatures were set at 250°C. EI (70 eV) was used as an ionization mode and Helium (1.61 mL per minute) was used as carrier gas. Wiley, NIST Tutor, and FFNSC libraries were used to identify volatile components. LRI (Linear Retention Indices) values were calculated by using a series of the standards of C7-C30 saturated n-alkanes (Sigma-Aldrich Chemical Co., USA).

Helichrysum arenarium subsp. aucheri specimens collected from Isparta Aksu area, whereas the main components were found as trans-Caryophyllene (24.33%), α.-Humulene (16.14%), α- Pinene (14.79%); and dl-Limonene (11.98%), respectively. Similarly, a total of 86 volatile components were determined for Helichrysum arenarium subsp. aucheri specimens collected from Adana Feke village, whereas the main components were found as trans-Caryophyllene (24.57%), α-Pinene (22.5%), β-Pinene (8.98%), Limonene (8.18%), respectively.

3. Results

In this study, volatile components of Helichrysum arenarium subsp. aucheri specimens were determined with SPME (Solid-Phase Microextraction) analysis. The volatile components determined were given in Table 1.

As a result of SPME analyses, a total of 64 volatile components were determined for Helichrysum arenarium subsp. aucheri.

Table 1. Volatile components of Helichrysum arenarium subsp. aucheri

K.T.	Components	Flowering (Adana)	Flowering (Isparta)	Formula	Category
4.650	Hexanal	-	1.62	C6H12O	AA
6.144	2-Hexanal	-	1.23	C6H12O	AA
6.228	7-Methyl-1-Octene	-	0.98	C8H18	OC
6.341	Ethyl-Benzene	-	0.12	C7H16	AH
6.630	1,2-Dimethyl Benzene	-	0.16	C8H18	AH
6.671	1,4-Dimethyl Benzene	-	0.08	C8H18	AH
7.332	Styrene	-	0.37	C8H18	OC
7.400	1-Nonanol	-	0.38	C10H22	OC
7.754	Heptanal	-	0.09	C7H16	AA
7.804	Bornylnle	-	0.09	C10H18	MH
8.410	Tricyclo heptane	-	0.02	C10H18	AH
8.426	Tricyclone	0.05	-	C10H18	MH
8.755	3-Heptane	-	0.03	C7H16	MH
8.911	α-Pinene	22.15	14.79	C10H18	MH
9.361	α-Fenchene	-	0.54	C10H18	MH
9.369	2,2-Dimethyl-3-Methylen	0.23	-	C11H22	MH
9.421	Camphene	0.95	0.75	C11H22	MH
9.739	4-Undecene	0.25	0.34	C11H22	AH
9.859	Benzaldehyde	0.21	0.29	C10H12	AA
9.950	Cyclopropane	0.22	0.16	C6H10	SH
10.094	2-Hexenoic Acid	0.04	-	C6H12O	FA
10.235	Cymene	0.03	-	C6H14	MH
10.502	2- β-Pinene	8.98	6.38	C6H14	MH
10.680	1-Octen-3-Ok	0.08	0.04	C6H14	AA
10.839	6-Methyl-5-Hepten-2-One	0.07	0.40	C6H14	AA
11.004	β-Myrcene	0.87	4.83	C6H14	SH
Compounds	%	C_{10}H_{18}O	AAI		
-----------------------------------	---------	---------------	------		
BENZOIC ACID 1-METHYL-HEPTYL ESTER	0.10	C_{10}H_{20}	MH		
1-Decene	0.13	-			
Methyl 12-Methylene-tetradecanoate	0.13	-	OC		
Methyl isohexanoate	-	0.15	C_{10}H_{20}	AAI	
Trans-2-Furan	0.02	0.05	C_{10}H_{20}	OC	
Octanal	0.02	0.13	C_{10}H_{20}	AA	
L-Phellandrene	0.23	0.21	C_{10}H_{16}	MH	
Linamaraldehyde	-	0.14	C_{10}H_{20}	OM	
2,3-Carene	0.17	-	C_{10}H_{16}	MH	
1,4-Dichlorobenzene	0.23	0.18	C_{10}H_{12}	AH	
Terpenes	0.62	0.70	C_{10}H_{14}	MH	
Nonanal	-	1.79	C_{10}H_{14}	MH	
Methyl benzoate	0.60	-	C_{10}H_{14}	AH	
Limonene	-	11.98	C_{10}H_{14}	MH	
1,8-Cineole	0.18	1.27	C_{10}H_{14}	MH	
Cis-Ocimene	0.79	0.04	C_{10}H_{16}	MH	
Oct-3(E)-En-2-One	0.01	-	C_{10}H_{20}	AAI	
Benzene acetaldehyde	0.06	0.08	C_{10}H_{16}	AAI	
1,3,6-Octatriene	1.14	0.10	C_{10}H_{12}	AH	
2-Isopropenyl-5-Methylhex-4-Eenal	0.01	-	C_{10}H_{16}	AAI	
1,4-Cyclohexadiene	0.97	0.87	C_{10}H_{16}	MH	
3,5-Octadien-2-One	0.06	0.05	C_{10}H_{16}	AAI	
Ethyl benzene	0.02	-	C_{10}H_{14}	AH	
α-Terpinolene	1.06	0.60	C_{10}H_{16}	MH	
1-Methyl-4-isopropenylbenzene	-	0.25	C_{10}H_{12}	MH	
1-Isopropenylbenzene	0.16	-	C_{10}H_{16}	AH	
Cyclohexane	0.04	-	C_{10}H_{12}	AH	
Octanoic acid	0.08	-	C_{10}H_{16}	AAI	
2,4,6-Octatriene	0.07	-	C_{10}H_{16}	AH	
Heptan-2-One	-	0.11	C_{10}H_{12}	OC	
2,6-Nonadienol	0.02	-	C_{10}H_{16}	AAI	
1-Unidecene	0.06	-	C_{10}H_{12}	AH	
2-Nonenal	0.02	0.14	C_{10}H_{18}	AAI	
3-Cyclohexen-1-Ol	0.03	-	C_{10}H_{16}	AH	
Trans-Sabinene Hydrate	0.09	-	C_{10}H_{18}	OM	
Benzoic acid	0.04	-	C_{10}H_{12}	AAI	
β-Fenchyl alcohol	0.09	0.13	C_{10}H_{18}	OM	
1-Methoxy-4 benzene	0.12	0.06	C_{10}H_{14}	AH	
Decanal	-	0.08	C_{10}H_{18}	OM	
Nonanoic acid	0.05	-	C_{10}H_{20}	AAI	
Z-3-Hexenyl-2-Methylbutanoate	0.07	-	C_{10}H_{22}	AAI	
Butanoic acid	0.15	-	C_{10}H_{18}	MH	
2-Isopropyl-1-Methoxy-4-Methylbenzene	0.05	-	C_{10}H_{20}	AH	
Tetradecane	0.02	-	C_{10}H_{20}	AAI	
Exobornyl acetate	0.06	-	C_{10}H_{18}	OM	
Carvacrol	0.04	-	C_{10}H_{18}	OM	
3,7-Cycloundecadien-1-Ol	0.01	-	C_{10}H_{20}	OC	
Cyclosativone	-	0.31	C_{10}H_{22}	SH	
Ylangene	3.22	-	C_{10}H_{24}	SH	
α-Copaene	3.61	2.86	C_{10}H_{24}	SH	
Salivan	0.20	-	C_{10}H_{20}	OC	
Tetradecane	0.03	0.21	C_{10}H_{24}	AH	
Undec-4-En	0.12	-	C_{10}H_{24}	SH	
Caryophyllene	-	0.09	C_{10}H_{24}	SH	
α-Gurjunene	0.26	0.04	C_{10}H_{24}	SH	
Nonane	0.03	-	C_{10}H_{20}	AH	
Dehydro aromadendrane	0.04	-	C_{10}H_{24}	SH	
Trans-Caryophyllene	24.57	24.33	C_{10}H_{24}	SH	
Epi-Butylocresqui phellandrene	0.03	-	C_{10}H_{18}	OC	
α-Guaiene	0.06	-	C_{10}H_{24}	SH	
Aromadendrene	0.15	-	C_{10}H_{24}	SH	
4. Discussion and Conclusion

Helichrysum arenarium subsp. _aucheri_ according to the results obtained from flower plants leaves and flowers, α- Pinene (14.79%), (22.5%); trans-Caryophyllene 24.33%, 24.57% as it is the most active in samples from its two sample areas. The same analysis is in the sample samples from _β_-pinene Adana (8.98%), the main component is in the sample samples from _Isparta_ (6.38%) in the environment at a lower rate. α- Humulene and dl-Limonene are the most effective applications in the samples collected from _Isparta_ Aksu, respectively (16.14%) and (11.98%), while the α-Humulene was 5.70% lower in the samples from Adana and the dl-Limonene component was not detected.

In general, the essential ingredients in _Helichrysum_ spp. essential oil are neryl acetate (1), γ-cumcume (2), (+) - limonene, neryl propionate, α-pinene (3), ar-curcumene, italidione I (4), nerol, italene, linalool, italidione II (5), eudesm-5-en-11-ol, italidione II isomer, 4,6-dimethyloctan-3,5-dione (italidione III), 4-methylhexan-3-one, isotalicene and 1 Reported as 8-cineole (Tisserand & Young, 2014). It is reported that the essential oil components differ significantly due to the polymorphism in the studies conducted in the regions where it has a wide spread area. Geraniol (36%), geranyl acetate (15%) and nerolidol (12%) in Greek-origin essential oils (Chinou et al., 1996), neryl acetate (36-51%) and α-pinene in France-Corsica essential oils (17%) and γ-curcumene (15%) (Bianchini et al., 2001), neryl acetate (17%), α-pinene (5%) and γ-curcumene (16%) in goldgrass essential oils originating from Bosnia and Herzegovina (Licina and Kralj, 2016), α-pinene, neryl acetate, α-cedrene, nerol, ar-curcumene, γ-curcumene and geranyl acetate (Mastellic et al., 2008), in goldgrass essential oils of Croatian origin neryl acetate (28.2%), γ-curcumene (18.8%), neryl propionate (9.1%) and ar-curcumene (8.3%) (Kladar et al., 2015), α-pinene (22%) in goldgrass essential oils of Serbia origin, γ-curcumene (10%), β-selinene (6%), neryl acetate (6%) and β-caryophyllene (5%), and ar-curcumene (15-29%) in group 1 in Adriatic goldgrass essential oils. and γ-curcumene (10-22%), α-pinene (25-30%) and neryl acetate (4-14%) in group 2 (Blazevic et al., 1995).

Torbarebi et al. (2006) In Iran H. aucheri essential oil components α-pinene (39.6%), 1,8-cineole (19.7%), β-caryophyllene (7.3%); van Vuuren (2006); In South Africa, in Asia, H. Cymosum essential oil components include α-pinene (12.4%), 1,8-cineole (20.4%), β-Caryophyllene (10.8%); H. gymnophalum 15 1,8-cineole (17%), borneol (16%), Italy-Caryophyllene (13%); Charles, D.J., Simon, J.E. (1991); In North Africa, H. italicum subsp. Nerylacetate (51.4%), α-pinene (17%), North African neryl acetate (17%), γ-curcumene (16%) in Italicum essential oil components; Tsoukatou et al., (1999) Spain H. stoechas spp. Stoechas blown up α-pine (28.3%), epo-α-bisabol (21.9%), Spain β-karyophyllene (5.5%) as the main target.

Solid-phase micro-extraction (SPME) method, which is used to obtain volatile components, was used in this study. The SPME method has become a highly preferred method that provides sensitivity with ease of use with fast and low cost sampling without solvent (Umaz et al., 2019). In this study, the volatile
components of gold grass from two different locations were determined and compared with the SPME / GC-MS method. In our research, H. arenarium ssp. The α-pinene component, which we identified as one of the most active components in our acheni, was also found at high rates in studies conducted in literature, while other components determined in the literature were found at lower rates in our study. According to the studies carried out, some differences were determined in terms of the essential oil basic components and ratios of the tested plant species compared to other studies. When we look at the literature, the α-pinene component, which is one of the most active components we found in the experimental study, has antimicrobial (Moslemi et al.2012), anti-inflammatory, antibacterial, antioxidant, anticancer and antineoplastic activities (Aydın et al., 2013) and the anti-inflammatory component of the trans-Caryophyllene component (Fernandes at all., 2006), we can say that this plant can be used effectively in the pharmaceutical industry because it shows activity.

In addition, the variety and amount of bioactive substances present in medicinal and aromatic plants may also differ according to the part of the plant used, post-harvest processes, and the methods of obtaining and analyzing the essential oil used. Considering that essential oil components differ according to environmental factors, more studies should be carried out on different types of gold from different locations in our country, which are rich in gold grass species, in order to reveal the chemical profile of Helichrysum spp. species.

References

Aftab, T. 2019. A review of medicinal and aromatic plants and their secondary metabolites status under abiotic stress. Journal of Medicinal Plants, 7(3), 99-106.

Anderberg, A. A. 1991. “Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae)”, Opera Botanica 104, 1-195.

Angioni, A., Barra, A., Arlorio, M., Coisson, J. D., Russo, M. T., Pirisi, F. M., Satta, M., Cabrás, P. 2003. “Chemical composition, plant genetic differences, and antifungal activity of the essential oil of Helichrysum italicum G. Don ssp. microphylhum (Willd) Nym”, Journal of Agricultural and Food Chemistry, 51(4), 1030-1034.

Appendino, G., Ottino, M., Marquez, N., Bianchi, F., Giana, A., Ballero, M., Sterner, O., Fiebich, L., Munoz, E. 2007. “Arzanol, an anti-inflammatory and anti-HIV-1 phloroglucinol a-pyrene from Helichrysum italicum ssp. microphylhum”, Journal of Natural Products, 70, 608-612.

Araujo, H.C., Lacerda, M.E.G., Lopes, D., Bizzo, H.R., Kaplan, M.A.C., 2007. Studies On The Aroma Of Mate (Ilex paraguariensis St.Hil.) Using Headspace SolidPhase Microextraction. Phtochemical Analysis, 18: 469 - 474.

Aydin E., Türez H., Geyikoglu F. 2013. Antioxidative, anticancer and genotoxic properties of α-pinene on N2a neuroblastoma cells. Biologia, 68(5): 1004-1009.

Battaglia S. 2003. The Complete Guide to Aromatherapy. 2nd edition. 624 p, Brisbane: The International Centre of Holistic Aromatherapy.

Bayaz, M. 2014. Esansiyel yağlar: antimikrobiyal, antioksidan ve antitumajenik aktiviteleri. Academic Food Journal/Akademik Gıda, 12(3).

Buyram, E., Kirci, S., Tansü, S., Yılmaz, G., Arabaci, O., Kızıl, S., Telci, D., 2010. “Tibbi Ve Aromatik Bitkiler Üretiminin Artırılması Olanakları”. Türkiye Ziraat Mühendisliği VII.
Antioxidant Properties”, Chemistry & Biodiversity, 12(3), 419-431.
Lawless, J. 2002. The Encyclopedia of Essential Oils. London: Thorsons. p107.
Licina, A., Kralj, V.R. 2016. “Mediterranean Gold-Helichrysum italicum”, The International Journal of Professional Holistic Aromatherapy, 4(4), 5-12.
Marković, S. 2005. Fitoaromaterapija. Zagreb: Centar Cedrus. p245.
Mastelić, J., Politeo, O., Jerković, I. 2008. “Contribution to the analysis of the essential oil of Helichrysum italicum (Roth) G. Don. determination of ester bonded acids and phenols”, Molecules, 13(4), 795-803.
Millou, Y., Fontes, K., Tourel, C. 2010. Cosmetic composition comprising an essential oil, extracted from Helichrysum italicum. United States Patent, No: US7666454B2 dated 23.02.2010.
Mojay, G. 1996. Aromatherapy for Healing the Spirit. London: Gaia Books Limited, p:70–71.
Moslemi H.R,Hoseinzadeh H, Badouei M.R et al. Antimicrobial Activity of Artemisia absinthium Against Surgical Wounds Infected by Staphylococcus aureus in a Rat Model. Indian J Microbiol 2012;52:601–604.
Nostro, A., Bisignano, G., Cannatelli, M. A., Crisafi, G., Germano, M. P., Alonzo, V. 2001. “Effects of Helichrysum italicum extract on growth and enzymatic activity of Staphylococcus aureus”, International journal of antimicrobial agents, 17(6), 517-520.
Poštić, S. 2013. V čarobnem svetu vonjev. Ljubljana: Buča. p93.
Price, S., Price, L. 2012. Aromatherapy for Health Professionals, 4th ed. London: Churchill Livingstone 315.
Roussis, V., Tsoukatou, M., Chinou, I.B., Ortiz, A. 1998. “Composition and antibacterial activity of the essential oils of Helichrysum rupestre and H. ambigua growing in the Balearic Islands1 (Part III)”, Planta medica, 64(07), 675-676.
Sala, A., Recio, M., Giner, R.M., Máfiz. S., Tournier, H., Schinella, G., Ríos, J.L. 2002. “Anti-inflammatory and antioxidant properties of Helichrysum italicum”, Pharm Pharmacol. ,54 (3), 365-371.
Schnaubelt, K. 2011. The Healing Intelligence of Essential Oils. Toronto: Healing Art Press. p152-155.
Sümbül, H., R. S. Göktürk, and O, and D. Düsen. 2003. A new endemic species of Helichrysum Gaertn. (Asteraceae-Inuleae) from south Anatolia. Botanical Journal of the Linnean Society 141:251–54. doi:10.1046/j.1095-8339.2003.00109.x.
Şen N., Kalaycı G. 2016. Altın Otu Bitkisinden (Helichrysum arenarium) Tanen ve Kumarinin Kimyasal Kompozisyonu 42 (2): 226-231.
Tabata M, Honda G, Sezik E et al. 1993. A report on traditional medicine and medicinal plants in Turkey 1990, 1991. Faculty of Pharmaceutical Sciences, Kyoto University. Kyoto, s. 54 - 107
Tisserand R, Young R. 2014. Essential oil safety. 2nd ed. Edinburgh: Churchill Livingstone, Elsevier.
Torabbeigi M., Azar P.A. & Meibodi Z. A. 2006. Chemical Composition of Essential Oils of Aerial Partsof Helichrysum aucheri from Iran. Analytical Chemistry Letters. 1:5-6, 393-396, DOI: 10.1080/22297928.2011.10648243
Tsoukatou, M., Roussis, V., Chinou, L., Petrakis, P.V., Ortiz. A. (1999). Chemical Composition of the Essential Oils and Headspace Samples of Two Helichrysum Species Occurring in Spain. Journal of Essential Oil Research, 11: 511-516.
Van Vuuren, S. F., du Toit, L. C., Parry, A., Pillay, V., Choonara, Y. E. (2010). Encapsulation of essential oils within a polymeric liposomal formulation for enhancement of antimicrobial efficacy. Natural product communications, 5(9), 1401-1408.
Van Vuuren, S.F., Viljoen, A.M., van Zyl, R.L., van Heerden, F.R., Baser, K.H.C. (2006). The antimicrobial, antimalarial and toxicity profiles of helihumulone, leaf essential oil and extracts of Helichrysum cymosum (L.) D. Don subsp. cymosum, South African Journal of Botany, 72: 287-290.
Zeybek, U. and N. Zeybek. 2002. Farmasötik Botanik. 3. Baskı, E.Ü. Ecž. Fak. Yaym. No.3, Ege Üniversitesi Basmevi, Borna-Izmir, pp. 378-382.