Various marginal marine environments in the Central Paratethys: Late Badenian and Sarmatian (middle Miocene) marine and non-marine microfossils from Pécs-Danitzpuszta, southern Hungary

SZUROMI-KORECZ, Andrea1, MAGYAR, Imre2,3, SZTANÓ, Orsolya4, CSOMA, Vivien5, BOTKA, Dániel1,3, SEBE, Krisztián6, TÓTH, Emőke5

1Laboratories MOL, MOL Hungarian Oil and Gas Plc., Budapest; kaszuroka@gmail.com, botkadani@gmail.com, ORCID: 0000-0002-6627-4640
2MOL Hungarian Oil and Gas Plc., 1117 Budapest, Oktober huszonhatmaradika u. 18, Hungary; immagyar@mol.hu, ORCID: 0000-0002-9236-0040
3MTA-MTM-ELTE Research Group for Paleontology, Budapest, Hungary
4ELTE Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/c; orsolya.sztano@ttk.elte.hu, ORCID: 0000-0003-0786-3653
5Department of Palaeontology, ELTE, Budapest; csoma.vivien7@gmail.com, ORCID: 0000-0002-2593-5537; tothemoke.pal@gmail.com, ORCID: 0000-0002-1733-7828
6University of Pécs, Department of Geology and Meteorology, 7624 Pécs, Ifjúság útja 6, Hungary, sebe@gamma.ttk.pte.hu, ORCID: 0000-0002-4647-2199

Abstract

The middle Miocene foraminifera and ostracod record of the Central Paratethys usually reflects stable normal marine depositional environments for the Badenian and more patchy, less stable restricted marine environments for the Sarmatian. A 17 m thick outcrop at Pécs-Danitzpuszta, Mecsek Mts, SW Hungary exposed an upper Badenian to Pannonian succession where foraminifers and ostracods document significant environmental changes. The basal layers of the section contain micro- and macrofossils indicating normal marine, shallow, warm, well-oxygenated habitat with relatively high-energy conditions and algal vegetation on the bottom, and represent the upper Badenian (13.82 to 12.65 Ma). The marine deposits are followed by coarse sandstone, breccia and siltstone layers barren of microfossils but containing rhizoliths. The sediments were probably subaerially exposed for some time. The following marine inundation, marked by the appearance of clays and limestones as well as fossils, was dated to the late Sarmatian (ca. 12 to 11.6 Ma) on the basis of the restricted marine microfossil assemblages from the upper part of the succession (Porosonion granosum Zone, Aurila notata Zone). This community is characterized by exclusively eurytopic forms indicating an unstable and vegetated marginal marine environment with fluctuations in salinity, as well as oxygen and food availability. Within the 5 m thick upper Sarmatian interval, a unique fresh- to oligohaline fauna characterizes a few layers in less than 1 m thickness. This fauna consists of mainly euryhaline foraminifera and freshwater to oligohaline ostracod assemblages, indicating a...
Introduction

The distribution of marine microorganisms in an epicontinental sea is driven by the local and regional changes of environmental conditions such as salinity, water temperature, oxygen-level, food availability, substrates, and water depth. These environmental conditions and the evolution of the microfauna were controlled by the openings and closures of the seaways towards the adjacent seas and the world ocean in the Paratethys, an epicontinental sea of central and eastern Europe during the Oligocene and Miocene (ROGL 1998, POPOV et al. 2004). The connection toward the Mediterranean Sea was terminated due to the uplift of the Dinarides at the Badenian/Sarmatian boundary, triggering an endemic evolution of the marine faunas in the Paratethys (e.g., PALCU et al. 2015). The seaway towards the Indopacific was closed in the late Sarmatian, eliminating the last Indo-Pacific planktonic elements that were detected in the Transylvanian Basin (FLIPESCU & SYLVE 2008). All of these changes might have influenced the biota at the study area in SW Hungary.

The present study focuses on the taxonomy and palaeoecological and biostratigraphical interpretation of foraminiferal and ostracod communities from a middle Miocene succession exposed in an exploratory trench in the Pécs-Danitzpuszta sand pit, Mecsek Mts, SW Hungary. Earlier studies of middle Miocene foraminiferal fauna in Hungary (BÁLDI 1999, 2006; BÁLDI et al. 2002; BÁLDI 2006; GÖRÖG 1992; KORECZ-LAKY 1964, 1965, 1968, 1973, 1982; KORECZ-LAKY & NAGY-GELLAI 1985; TÓTH & GÖRÖG 2008) showed the wide distribution of the normal marine Badenian and restricted marine (brackish and hypersaline) Sarmatian faunas, which are well-known in the entire Central Paratethys. The study of Sarmatian ostracods resulted in a biostratigraphic system for the entire Pannonian Basin (TÓTH 2004, 2008), whereas Badenian ostracods from Hungary have not been studied yet. By investigating the Pécs-Danitzpuszta micropaleontological record, we give the first documentation of Badenian ostracods from Hungary and also describe a so far unknown upper Sarmatian non-marine ostracod assemblage.

Geological setting

The Pécs-Danitzpuszta sand pit lies in the eastern outskirts of Pécs, at the foot of the Mecsek Mts (Figure 1). The region north of the sand pit is built up of Mesozoic rocks, mostly Lower Jurassic marls and sandstones, overlain by a succession of lower to middle Miocene terrestrial clastics and middle Miocene marine clastics and carbonates (SÉBÉ et al. 2015, 2019; SÉBÉ et al. 2021). These are capped by upper
Miocene (Pannonian) marls and sands, exposed in many outcrops around the Mecsek. The boundary between Sarmatian and Pannonian deposits is continuous in (sub)basin centres, while they are separated by an unconformity with increasing hiatus towards the margins. Similar, but several km thick Neogene successions were reported from the Drava Basin to the south and southwest (SÁFTIĆ et al. 2003; SEBE et al. 2020) reflecting the opening and evolution of the Pannonian Basin, flooding by the Paratethys sea and later by the brackish Lake Pannon.

Material and methods

Studied section of Pécs-Danitzpuszta sand pit

The sand pit exposes strongly tilted upper Miocene (Pannonian) calcareous marls and sands. In 2018, an exploratory trench was excavated in the northwestern part of the sand pit across the tilted beds that underlie the exposed Pannonian marl (Figure 1). The trench revealed the lowermost part of the Pannonian succession and the underlying Sarmatian and Badenian deposits. Due to tectonic deformation, most of the exposed succession is overturned, and the stratigraphically lowest (oldest) layers are located in the north (SEBE 2021). Overturned beds become steeper towards the south (upsection) and they are almost vertical close to the southern end of the trench. The oldest part of the studied section is represented by yellowish white calcareous marl (Layer D72) in the northern end of the trench (Figures 2, 3). It contains a typical Badenian mollusk fauna and belongs to the Lajta Formation (SEBE et al. 2021, DULAI et al. 2021). D71 also shows features typical of the Lajta Limestones: it is a sandy limestone with corallineacean algae, echinoids, abundant molluscs, and sporadic fish remains (DULAI et al. 2021, SEBE et al. 2021, SZÁBO et al. 2021). The following beds (D70 to D57) did not provide stratigraphically valuable fossils; thus, their age is uncertain (Figure 2). These are unconformably overlain by a ca. 5 m thick unit of alternating thin clay, marl and limestone beds (layers D56–D36), identified as the Sarmatian Kozárd Formation based on its fossil content and lithology (SEBE et al. 2021).

Micropaleontological samples and methods

Fifteen middle Miocene samples from the trench were studied for their foraminiferal and ostracod content (Figures 2, 3). The samples derived from soft sediments (about 200 g of air-dried clayey, sandy and marly sediments) were processed with hydrogen-peroxide (10%). Hard limestones and calcareous marls were examined in thin sections, or the samples were treated by acetylation following a protocol originally worked out by LETHERS & CRASQUIN-SOLEAU (1988) to extract the isolated carbonate skeletal microfauna. The applied extraction methods and the frequency of the extracted fossil groups from the studied layers are summarized in Figure 4.

Thirteen samples yielded interpretable microfossil content; D57 and D69 were free of microfossils (Appendix). The microfossils were determined using a Zeiss SteREO Discovery.V12 modular binocular stereo microscope in the Laboratory of MOL Plc., Budapest. Thin sections were prepared in the Laboratory of MOL Plc., Budapest and they were investigated with a Zeiss Axio Imager.A1 polarizing microscope. Microscopic images were taken by a Zeiss AxioCam MRC 5 camera, mounted on the Zeiss microscope, using the AxioVision 40×64 v.4.9.1.0 software. The SEM images were taken at the Botanical Department of the Hungarian Natural History Museum in Budapest.

Results

Relatively diverse and well-preserved benthic foraminiferal and ostracod assemblages were found in the studied middle Miocene beds. Altogether, 30 foraminifer and 32 ostracod taxa were identified (see Appendix and Digital annex). The foraminifera specimens are moderately to well-preserved, except for layers D70 and D71, where they were probably affected by transport of the tests and/or diagenetic processes. The ostracod specimens are disarticulated valves in most cases; however, a few carapaaces also occur. The ostracod material is characterized by both adult and juvenile forms.

The oldest layer (D72) yielded the most diverse and abundant microfossil assemblage. Twenty-one foraminifera and 11 ostracod taxa were identified (Figure 2, Plate I). The foraminiferal assemblage was dominated by eurytopic taxa of keeled elphidiids (Elphidium aculeatum, E. crispum, and E. macellum) and miliolids (Borelis sp., Cycloforina contorta, Affinetrina ucrainica, Milolinella selene, and Quinqueloculina hauerna). The ostracod fauna is characterized by the dominance of marine neritic taxa, such as Aurila cicatricosa, Callistoclythere canaliculata, and Phylpeonophora arcuata. Urocyclammina kystelsis, Loxocaenochata punctatella, Loxocorniculina hastata, Xestoleberis dispar, and Polycyopa sp. also occur in low abundance. Besides foraminifers and ostracods, sample D72 also yielded significant amounts of echinoderm skeletal and spike fragments.

The microfossil assemblages of layers D70 and D71 were similar to, but significantly poorer than, that of D72. Poor preservation of the carbonate skeletons allowed only genus level determination in most cases (Xestoleberis sp., Callistoclythere sp., Polycyopa sp., and Elphidium sp.). Echinoderm fragments were also more sporadic than in sample D72. The microfossils of layer D70 are probably reworked based on the scarcity and poor preservation of the specimens, although a diagenetic effect cannot be excluded either.

The soft sediments of layers D54 to D41 yielded a less diverse (5–10 taxa), well-preserved foraminifer and ostracoda fauna (Figure 2, Plates II–III). Among the foraminifera, exclusively eurytopic forms (taxa with wide environmental tolerance) were present. Keeled elphidiids with an acute periphery, sometimes equipped with spines, were the most common (e.g., Elphidium aculeatum, E. macellum, E. obtu-
sum, and E. crisps) Among the non-keeled elphidiids, where the periphery of the tests is rounded or bluntly angular, specimens of Porosononion granosum were abundant. The ostracod fauna was characterized by different species of the genera Aurila, Loxoconcha and Euxinocythere (e.g., Aurila notata, Loxoconcha kochi, L. porosa, and Euxinocythere [Euxinocythere] praebosqueti). Specimens of Xestoleberis tundrum are also present in the samples.

In layers D40 to D37, mainly specimens of the infaunal, non-keeled elphidiid P. granosum and Ammonia sp. were found (Figure 2). Beside the sporadic occurrence of marginal marine ostracods (e.g., Loxoconcha porosa and Aurila sp.), non-marine, freshwater to oligohaline ostracods, like Fabaeformiscadona sp., Heterocypris salina, Darwinula stevensoni, and Vestalenula pagliolii are present in the recovered assemblages.

Layer D36 is characterized by the dominance of eurytopic non-keeled elphidiids and nonionids and the representatives of leptocytherid Euxinocythere (E. [E.] praebosqueti and E. [E.] naca) (Plate II).

Discussion

Biostratigraphy

Benthic foraminifera are instrumental in the biostratigraphy of the middle Miocene sediments of the Central Paratethys, because the best index fossils, such as planktonic foraminifers and nannoplankton, are commonly missing from the fossil record, especially in the coastal regions (Figure 5).

Figure 3. The northern part of the exploratory trench exposes overturned middle Miocene (D72 to D36) and stratigraphically overlying Pannonian (D35 to D28) layers. Sampling locations are indicated by yellow stars.

Figure 5

Layer D36 belongs to the upper Badenian based on the co-evolution of Pyrgo subsphaerica (upper Badenian to recent) and Miliolinella selene (Badenian) among the foraminifera (Luczkowska 1974). Some ostracods in these layers, such as Urocythereis kostelensis and Phylactophora affinis, are restricted to the Badenian (Gross & Piller 2006). Although the microfauna is dominated by eurytopic forms, normal marine taxa (e.g., Callistocythere canaliculata and Heterolepa dutemplei) also occur in these samples; they disappeared from the Central Paratethys at the end of the Badenian. Thus, the microfossil assemblages of layers D72 to D70 indicate late Badenian age, equivalent of the “Bulimalina/Bolvina Zone” (13.82 to 12.65 Ma, according to Hohenegger et al. 2014 and Raffi et al. 2020), which correlates with the standard nannoplankton Zone NN6 (Rogl et al. 2008).

The presence of Aurila notata in layers D54 to D36 suggests correlation with the Aurila notata Zone (ca. 12 to 11.6 Ma). Several other taxa, such as Euxinocythere (E.) praebosqueti, E. (E.) naca, Loxoconcha kochi are also restricted to the upper Sarmatian in the Pannonian Basin (Tóth 2009). The foraminiferal assemblages are characterized by a great abundance of Porosononion granosum in almost all samples, indicating the Porosononion granosum Zone. This cor-
relates with the younger part of the Aurila notata Zone (Tóth 2009). This biostratigraphic interpretation is in accordance with the nannoplankton zonation of the same layers (NN6 or younger, according to Ćorić, 2021).

A sudden change in the microfossil assemblages can be observed between layers D36 and D35, indicating the Sarmatian/Pannonian boundary (11.6 Ma). Foraminifera are entirely missing from sample D35, and the ostracod faunas of the two samples are completely different, without any species in common. In D36, juvenile Aurila notata and Cyprideis sp. specimens, Loxocoroniculum hastatum, Euxinocythere (Euxinocythere) praebosqueti, E. (E.) naca, and Amnicythere tenuis occur. In contrast, sample D35 is dominated by Candonina and Herpetocyprilla species. Calcisphaera-like large algal cysts and mysid statoliths (ballast stones of the shrimplike mysids; following the interpretation of Voicu 1981) are present in sample D35 in low abundance. These are characteristic fossils in strata near the S/P boundary at several locations in Hungary where it was not possible to precisely assign the boundary itself (e.g., Köváry 1974, Bardoč et al. 1987). Mysids are very common in unanimously Sarmatian layers of the Transylvanian and Dacian Basins (e.g., Popescu 1995).

Despite the sharp microfaunal change, no major shift can be observed in the lithofacies of the sediment. The mollusc assemblage of sample D35 contains abundant "Sarmatian-type" small-sized cardiids (Botka et al. 2021). This fauna, affected by the Lilliput Effect (Harriss & Knorr 2009), is often related to environmental stress and has been published from the Sarmatian/Pannonian transition by several authors from different parts of the Pannonian Basin (e.g., Zsámbék Basin, Hungary, Bohn-Havas 1983; Lajoskomárom—I well, Hungary, Jambor et al. 1985; Medvednica Mts, Croatia, Vrsaljko 1999). Although the ostracod faunas of layers D36 and D35 are very different, and mollusks are missing from D36 while D35 shows the mass occurrence of tiny cardiid bivalves, it is not obvious if a short gap or continuous sedimentation occurred at the Sarmatian/Pannonian boundary.

Table:

Layers (NN6)	72	71	70	64	57	54	52	50	47	41	40	39	38	37	36
Methods	TS, AA	HP	AA, TS	AA, TS	TS, HP	TS, AA	HP								
Root traces	–	–	+	+	–	–	–	–	–	–	–	–	–	–	–
Organic matter	–	–	–	–	+	–	–	–	–	–	–	–	–	–	–
Calcisphaera	–	–	–	–	+	+	–	+	–	–	–	–	–	–	–
Red algae & diatoms (bry)	+	–	–	–	–	–	–	+	–	–	–	–	–	–	–
Pteropods & Echinodermata (Einz)	+	–	–	–	+	+	–	–	+	–	–	–	–	–	–
Fish remains	–	+	–	–	–	+	+	+	+	–	–	+	–	–	–
Molluscs (Gastropoda)	+	+	G	–	+	+	–	+	–	–	–	–	–	–	–
Ostracoda	+	+	–	–	–	+	+	+	+	+	+	+	+	+	+
Foraminifera	+	+	–	–	+	+	+	+	+	+	+	+	+	+	+
Age	late Badenian	late Badenian? or early Sarmatian	late Sarmatian												
Facies	Normal marine, high-energy conditions	Very shallow-water, palustral conditions	Brackish-water, littoral, well-ventilated conditions												
Interval	1a	1b	2	3a	3b	3c									

Legend:

- **TS**: thin section
- **AA**: acetic acid preparation
- **HP**: hydrogen-peroxide preparation
- **+** indicates the presence of a fossil group
- **+** indicates some frequency
- **+** indicates several frequency
- **–** indicates none

Figure 4. The extraction method of the studied layers and the frequency of the extracted fossil groups from the studied samples

4. ábra. Az egyes rétegek mintáinak mikropaleontológiai feltárási módszere, és a kinyert ősmaradványcsoportok gyakorisága a mintákban
Paleoecology

Ecological requirements of the extant relatives of the studied middle Miocene taxa

Extant representatives of keeled elphidiids live in temperate to warm, shallow marine (at water depths up to 50 m) environments (inner shelf) and hypersaline lagoons (Murray 1991, 2006). They are mostly epiphytic dwellers (live on plants) and prefer sandy sediment (Langer et al. 1993, Murray 2006). In the Mediterranean Sea, E. aculeatum and E. macellum live on arborescent algal vegetation (Langer et al. 1998). They are chromatophore-bearing foraminifera and the “symbions” may control the phototaxis and the depth distribution of the host organism. The chromatophores are pigment-containing cells that produce color. However, the nature of this symbiosis and the role of the chromatophores in phototaxis – the ability of organisms to move directionally in response to a light source – are poorly known. E. macellum is a common member of foraminiferal assemblages in the Black Sea living in the shallow sublittoral zone and coastal pools (down to 20 m depth) (Temelkov 2008). Meliolinella and Quinqueloculina are epiphytic or they cling on hard substrates in the inner shelf or in normal marine to hypersaline lagoons and marshes; they rarely can be found in deep-sea records (Murray 2006). Recent miliolids prefer waters rich in calcium carbonate (Jorissen 1988). Borelis is a large, bentic foraminifera with photosynthetic diatom algal symbionts. The recent species are restricted to depths of 5–65 m in, for example, the Gulf of Aqaba, and to minimum sea-surface temperatures greater than 18 °C (Reiss & Hottinger 1984, Langer & Hottinger 2000). Non-keeled infaunal elphidiids are characteristic species of brackish to hypersaline marshes and lagoons; however, they can also be found in the inner shelf (water depth up to 50 m) (Murray 2006). Ammonia is widespread in marginal marine environments worldwide and is common in sediments with highly variable mud and organic matter contents, even at low oxygen levels in marsh environments (Murray 2006).

Among the ostracods, Aurila and Urocyclotheris recently live in great abundance in the infralittoral and uppermost circalittoral zone (water depth up to 40 m) of the Black Sea, the Mediterranean, the Eastern Atlantic, and the Indo-Pacific area (e.g., Athersuch 1977, Ruiz et al. 1997, Kılıç 2000, Aiello et al. 2006, Tanaka 2008). Modern representatives of Aurila, Xestooleberis, and Loxoconcha species mainly live on algae or seagrasses (Puri et al. 1969). Loxoconcha punctatella and Xestooleberis dispar are found in neitic shallow sublittoral, littoral environments in the Mediterranean, Black and Marmara Seas (Perçin-Paçal et al. 2015). In the present-day Mediterranean Sea, Xestooleberis dispar is a phylal marine species, but it also occurs in hypersaline environments (Schiuto et al. 2015, Koehn-Zaninetti & Tétard 1982). Phylactenophora occurs in marginal marine estuaries, gulf and lagoon environments in the Indo-Paciﬁc Realm (Wouters 1999, Hussain et al. 2004, Mishra et al. 2019). Recent polycopids have a nektobenthic lifestyle and are found from abyssal ocean depths (Karanovic & Brandão 2012, 2016) to less saline estuarine environments (Tanaka & Tsukagoshi 2010).

Recent Euxinocythere, similarly to Aurila and Loxoconcha, occur in shallow marine sublittoral and littoral environments in the Black Sea (Perçin-Paçal et al. 2015). The extant species Heterocypris salina and Darwinula stevensoni are cosmopolitan and are known from all continents. Heterocypris salina lives in saline coastal and inland water bodies coexisting with other halophilic ostracods and tolerate salinities up to 20‰ (Meisch 2000). The modern species of Darwinula are mostly found in freshwater, although D. stevensoni also tolerates stable, brackish conditions in coastal waters (e.g., Baltic Sea) or saline lakes (Neale 1988, Van
DONINCK et al. 2003), and is reported to tolerate salinities as high as 15‰ (De DECKKER 1981). Today, *Vestalenula pagliolii* occurs in Brazil, where it thrives in riverine pools and lakes, semiterrestrial and/or interstitial habitats and occurs in geographically restricted areas (MARTENS et al. 1997).

Paleoenvironments

Three main intervals were differentiated in the studied layers of Pécs-Danitzzpuszta trench based on the stratigraphic distribution and ecological needs of the identified foraminifera and ostracod taxa, within which further subintervals were designated (Figure 2). The paleoecological interpretations are based on the ecology of extant relatives of the studied taxa.

Interval 1 (sample D72) represents the upper Badenian, and it is characterized with the most diverse fossil assemblage within the sedimentary record (Figure 2). The dominance of keeled elphidiids and miliolid ammonites among the foraminifera and marine neritic genera (*Aurila, Callistocythere, Loxoconcha, Urocythereis, Phlyctenophora, and Xestoleberis*) among the ostracods suggests shallow marine, calcium-carbonate rich littoral environment (inner shelf) with water depths up to 50 m. Although several of the identified forms can live today in hypersaline lagoons as well, the high diversity of the microfauna excludes such environmental interpretation. The presence of the large benthic foraminifera *Borelis* in the assemblage indicates warm seawater, with temperatures higher than 18 °C (REISS & HOTTINGER 1984; LANGER & HOTTINGER 2000). Based on the great abundance of epiphytic dweller foraminifera taxa such as *E. aculeatum* and *E. macellum* and phytal ostracods (*Aurila, Loxoconcha* and *Xestoleberis*), a rich arborescent algal vegetation is supposed to have been present on the sea bottom. The keeled elphidiids are cromatophore-bearing foraminifers that must have lived in the euphotic zone with well-ventilated conditions. The abundance of thick-shelled ostracods, often with worn valves, and the abundance of echinoderm fragments indicate high energy conditions in the sea bottom. The red algal and bryozoan fragments also support this environmental interpretation.

Interval 2 (samples D69 and D57) yielded only one fish tooth. Carbonate-cemented cylinders around holes were interpreted as rhizoliths (root traces; Figure 2). The Fe-Mn encrusted unconformity on top of bed D57 and the appearance of fossiliferous clays, marls and limestones with upper Sarmatian marine microfossils above the unconformity denote a sharp change in the depositional environment, probably from terrestrial to marine.

Interval 3 (layers D54 to D36) belongs to the upper Sarmatian, suggesting that the area was re-flooded by the sea only during the late Sarmatian.

Subinterval 3a (samples D54 to D41) is characterized by exclusively eurytopic forms and lower diversity than in Interval 1 (Figure 2). The impoverishment of the marine faunal elements is explained by the Badenian-Sarmatian Extinction event (BSEE) caused by the final isolation of the Central Paratethys from the Mediterranean and coeval reconnection with the Eastern Paratethys (HARZHAUSER & PILLER 2007). Among the elphidiids, non-keeled forms (mainly the specimens of *Porosonion granosum*) appeared in great abundance due to the unstable environment, e.g., slight fluctuation in salinity or other factors such as food availability. The non-keeled infaunal elphidiids tolerate brackish to hypersaline conditions suggesting marginal marine depositional environments such as a lagoon or a hypersaline marsh. The disappearance of *Phlyctenophora* and *Urocythereis* and the dominance of *Euxinocythere* corroborate the marginal marine conditions. The abundance of the keeled elphidiids and phytal ostracods (*Aurila, Loxoconcha* and *Xestoleberis*) implies a rich vegetation on the substrate. The co-occurrence of shallow infaunal non-keeled and epiphytic keeled elphidiids suggests mixed assemblages indicating a very differentiated seafloor.

In Subinterval 3b (samples D40 to D37) the faunal composition radically changed (Figure 2). The abundance and diversity of foraminifera and ostracoda decreased. Beside the non-keeled infaunal *Porosonion*, the specimens of *Ammonia cf. confragiella* became dominant. *Ammonia cf. confragiella* tolerates a wide range of salinity (10–50‰) and also occurs in non-marine foraminifera faunas (MURRAY 2006). The ostracod fauna is characterized by non-marine, freshwater to oligohaline ostracods, such as *Darwinula stevensoni*, *Heterocypris salina*, *Vestalenula pagliolii*, *Cyprideis* cf. *tosa*, *Fabaeformicandona* sp., and *Limnocythere* sp. This microfossil assemblage indicates a sudden decrease in salinity (which is also supported by the mollusk fauna represented by *Radix, Gyraulus* and *Theodoxus* occurring without the brackish *Congeria* and cardiods). The interpretation of this phenomenon, however, remains a hard nut to crack. The lithology does not show any sign of increased terrestrial input that the proximity of a river mouth would cause, and the Sarmatian geomorphological position of the outcrop, reconstructed as a tip of a promontory protruding into a wide basin, does not support the idea of a freshened lagoon or coastal marsh either. A more regional cause of the salinity drop, such as a climate change, would have left its mark on the fossil record of a wider region, but we are not aware of such observations. Thus, what we can conclude is only that the euryhaline foraminifera and freshwater-oligohaline ostracods lived together in a brackish water (5–10 ‰ salinity) habitat.

In Subinterval 3c (sample D36), characteristic Sarmatian eurytopic taxa (non-keeled elphidiids, nonionids, and representatives of the leptocytherid *Euxinocythere*) replace the non-marine, freshwater-oligohaline species. The low diversity microfossil assemblage with the dominance of infaunal foraminifera (non-keeled elphidiids, nonionids, and bolivinids) and thin-shelled ostracods indicates low-oxygenated environment and/or higher organic content. The latter is supported by the nanoflora, suggesting increasing nutrient supply in this period (ČORIĆ 2021).
Conclusions

The microfossil record of the middle Miocene sedimentary succession of Pécs-Danitzpuszta indicates significant environmental changes through the late Badenian–early Pannonian. The lowermost part of the section belongs to the upper Badenian, with typical Badenian faunal elements indicating stable, normal marine, shallow (inner shelf), warm, well-ventilated environment with relatively high-energy conditions and algal vegetation on the bottom. The overlying layers are devoid of marine microfossils and may indicate terrestrial deposition and subaerial exposure. Following an unconformity, the upper part of the middle Miocene succession belongs to the upper Sarmatian with two distinct biofacies. The lower part and the uppermost layer of the upper Sarmatian are characterized by exclusively eurytopic biofacies. The lower part and the uppermost layer of the upper Sarmatian are characterized by exclusively eurytopic biofacies. The middle part of the upper Sarmatian, however, contains highly euryhaline forams and a unique freshwater to oligohaline ostracod fauna, indicating low salinity. Finally, the disappearance of foraminifera taxa and a complete turnover in the ostracod fauna indicates the boundary between the marginal marine Sarmatian and the brackish lacustrine Pannonian stages (11.6 Ma).

Acknowledgments

We thank Krisztina BUCZKÓ (Botanical Department of the Natural History Museum, Budapest, Hungary) for her help in taking the SEM images. The research was financially supported by the Hungarian National Research, Development and Innovation Office (NKFIH) project 116618 and by Quartz Ltd., and further supported by the project EFOP 3.6.1-16-2016-00004 of the University of Pécs. This is MTA-MTM-ELTE Paleo contribution No 356.

References – Irodalom

AGALARLOVA, D. A. 1967: Mikrofauna pontikeskih otlozeni Azerbaidana i Sopregelunih Rajonov. – Nedra, Leningrad, 420 p.
AIELLO, G. & SZCZECIURA, J. 2004: Middle miocene ostracods of the Fore-Carpathian Depression (Central-Paratethys, southwestern Poland). – Bollottino della Societa Paleontologica Italiana 43/1–2, 11–70.
AIELLO, G., BARRA, D., COPPA, M. G., VALENTE, A. & ZENI, F. 2006: Recent infralittoral Foraminiferida and Ostracoda from the Porto Cesareo Lagoon (Ionian Sea, Mediterranean). – Bollottino della Societa Paleontologica Italiana 45/1, 1–14.
ISMAIL, A. A., BOUKHARY, M. A. K. & NAIY, A. I. A. 2010: Subsurface stratigraphy and micropaleontology of the Neogene rocks, Nile Delta, Egypt. – Geologia Croatica 63/1, 1–26. https://doi.org/104154/gc.2010.01
ATHERSUCH, J. 1977: The Genus Urocythereis (Crustacea: Ostracoda) in Europe, with particular reference to Recent Mediterranean species. Bulletin of the British Museum (Natural History). – Zoology 32/7, 247–283.
BÁLDI, K. 1999: Taxonomic notes on benthic foraminifera from SW Hungary, Middle Miocene (Badenian) Parathethys. – Acta Geologica Hungarica 42/2, 193–236.
BÁLDI, K. 2006: Paleoceanography and climate of the Badenian (Middle Miocene, 16.4–13.0 Ma) in the Central Paratethys based on foraminifera and stable isotope (18O and 13C) evidence. – International Journal of Earth Sciences 95/1, 119–142. https://doi.org/10.1007/s00531-005-0019-9
BÁLDI, K., BENKOVICS, L. & SZTÁNÓ, O. 2002: Badenian (Middle Miocene) basin development in SW Hungary: subsidence history based on quantitative paleobathymetry of foraminifera. – International Journal of Earth Sciences 91/3, 490–504. https://doi.org/10.1007/s00531002226
BARDÓCZ B., BIRÓ E., DANK V., MÉSZÁROS L., NÉMETH G. & TORMÁSSY I. 1987: A Dunántúli medencetertületek kunsági (pannóniai s. str.) emeletbeli képződményei. [Kunsagian (Pannonian s. str.) formations of the Transdanubian basinal areas]. – A MÁFI Évkönyve 69, 149–166. (in Hungarian)
BASSIOUNI, M. A. 1979: Brackische und marine Ostrakoden (Cytherideinae, Hemicytherinae, Trachyleberidinae) aus dem Oligozän und Neogen der Türkei. – Geologisches Jahrbuch Reihe B/31, 1–200.
BEKAERT, O., CAHUZAC, B., DUCASSE, O. & ROUSSELLE, L. 1991: Espéces et populations d’ostracodes a la limite Oligo-Miocène en Aquitaine: stratégie de réponse, microévolution, dans le cadre stratigraphique regional. – Revue de Paléobiologie 10/2, 217–227.
BODGÁNOVICH, A. K. 1952: Miliolidy i Peneroplidy, Iskopaemye foraminifery SSSR [Miliolidae and Peneroplidae, Fossil Foraminifera of the USSR]. – Trudy Vsesoyuznogo Nauchnoissledovatel’skogo Geologorazvedochnnogo Instituta (VNIGRI) 64, 338 p.
BOHN-HAVAS, M. 1983: Új típusú szarmata Cardiumok a Zsámbéki-medencéből (Budajenő 2. sz. fűrész). (Novel Sarmatian Cardium species from the Zsámbék Basin [borehole Budajenő–2]). – A MÁFI Évi Jelentése 1981-ri, 335–368. (in Hungarian, with English summary)
BOTKA, D., ROFRICS, N., KATONA, L. & MAGYAR, I. 2021: Pannonian and Sarmatian mollusks from Pécs-Danitzpuszta, southern Hungary: a unique local faunal succession. – Földtani Közlöny 151/4, 335–362.
easternmost Pannonian Basin (Borod Depression, Romania) revealed by the micropaleontological data. – *Geologica Carpathica* 65/1–2, 67–81. https://doi.org/10.2478/geoca-2014-0005

FORDINÁL, K. & ZLINSKÁ, A. 1994: Sarmatian Fauna from the Stretava and Kachanovce Formations in the Sečovce Area (Albinovská horka, Eastern Slovakian Basin). – *Práce Pánskovo Geo"ologického* 99, 77–82.

FORDINÁL, K., ZÁGORSEK, K. & ZLINSKÁ, A. 2006: Early Sarmatian biota in the northern part of the Danube Basin (Slovakia). – *Geologica Carpathica* 57/2, 123–130.

FUHRMANN, R. 2012: Atlas quartärer und rezenten Ostrakoden Mitteleuropas. – *Altenburger Naturwissenschaftliche Forschungen* 15, 1–320.

GÁRECKA, M. & OLSZEWSKA, B. 2011: Correlation of the Middle Miocene deposits in SE Poland and western Ukraine based on foraminiferal and calcareous nanoflankton. – *Annales Societatis Geologorum Poloniae* 81/3, 309–330.

GEBHART, H., ZORN, I. & ROETZEL, R. 2009: The initial phase of the early Sarmatian (Middle Miocene) transgression. Foraminiferal and Ostracod assemblages from an incised valley fill in the Molasse Basin of Lower Austria. – *Austrian Journal of Earth Sciences* 102/2, 100–119.

GEDI, P. & PERYT, D. 2011: Dinoflagellate cyst, palynofacies and foraminiferal records of environmental changes related to the Late Badenian (Middle Miocene) transgression at Kudryntsi (western Ukraine). – *Annales Societatis Geologorum Poloniae* 81/3, 331–349.

GONERÁ, M. 2012: Palaeoecology of the Middle Miocene foraminifera of the Novy Sicz Basin (Polish Outer Carpathians). – *Geological Quarterly* 56/1, 107–116.

GOROG, A. 1992: Sarmatian foraminifera of the Zsámébk Basin, Hungary. – *Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominate, Sectio Geologica* 29, 31–153.

GRILL, R. 1943: Über mikropaläontologische Gliederungsmöglichkeiten im Miozän des Wiener Becken. – *Mitteilungen der Reichsanstalt für Bodenforschung* 6, 33–44.

GROSS, M. & PILLER, E. W. 2006: Mittelmiozäne Ostracoden aus dem Wiener Becken (Badenium/Sarmatium, Österreich). – *Österreichische Akademie der Wissenschaften Schriftenreihe der Erdwissenschaftlichen Komissionen*. Sonderband 1, 378–425.

GROSS, M., HARZHAUSER, M., MANDIC, O., PILLER, W. E. & ROCQ, F. 2007: A stratigraphic enigma: the age of the Neogene deposits of Graz (Styrian Basin; Austria). – *Joannea Geologie und Paläontologie* 9, 195–220.

HAGEMANN, J. 1979: Benthic foraminiferal assemblages from Pleistocene open bay to lagoonal sediments of the western Peloponnesus (Greece). – *Utrecht Micropaleontological Bulletins* 37, 174 p. https://doi.org/10.1007/S0035-1598(00)90200-9

HAJEK-TADESSE, V. & PIRTOJAN, B. 2011: Badenian Ostracoda from the Pokupsko area (Banovina, Croatia). – *Geologica Carpathica* 62/5, 447–461. http://doi.org/10.2478/v10096-011-0032-9

HANGANU, E. 1974: Observations sur l’ostracofaune pontinne de la region comprise entre la vallée du Danube et la vallée du Motru. – *Revista Española de Micropaleontología* 6/3, 335–345.

HARRIES, J. P. & KNÖRR, P. O. 2009: What does the ‘Lilliput Effect’ mean? – *Palaeogeography, Palaeoclimatology, Palaeoecology* 284/1–2, 4–10. https://doi.org/10.1016/j.palaeo.2009.08.021

HARZHAUSER, M. & PILLER, W. E. 2007: Benchmark data of a changing sea – palaeoecography, palaeobiogeography and events in the Central Paratethys during the Miocene. – *Palaeogeography, Palaeoclimatology, Palaeoecology* 253/1–2, 8–31. https://doi.org/10.1016/j.palaeo.2007.03.031

HARTMANN, G. & PURI, H. S. 1974: Summary of Neontological and Paleontological Classification of Ostracoda. – *Mitteilungen aus dem Hamburger Zoologischen Museum und Institut* 70, 7–73.

HARZHAUSER, M. & PILLER, W. E. 2007: Benchmark data of a changing sea. Palaeoecography, Palaeobiogeography and events in the Central Paratethys during the Miocene. *Palaeogeography, Palaeoclimatology, Palaeoecology* 253, 8–31. https://doi.org/10.1016/j.palaeo.2007.03.031

HARZHAUSER, M., THEOBALT, D., STRAUSS, P., MANDIC, O., CARNEVALE, G. & PILLER, W. 2017: Miocene biostratigraphy and paleoecology of the Mistelbach Halfgraben in the northern Vienna Basin (Lower Austria). – *Jahrbuch der Geologischen Bundesanstalt* 157, 57–108.

HARZHAUSER, M., MANDIC, O., KRANNER, M., LUKENEDER, P., LERN, A., GROSS, M., VARNEVALE, G. & JAWECKI, C. 2018: The Sarmatian/Pannonian boundary at the western margin of the Vienna Basin (City of Vienna, Austria). – *Austrian Journal of Earth Sciences* 111/1, 26–47. http://doi.org/10.17738/ajes.2018.0003

HOHENEGGER, J., ČORIĆ, S. & WAGREICH, M. 2014: Timing of the Middle Miocene Badenian Stage of the Central Paratethys. – *Geologica Carpathica* 65/1, 55–66. https://doi.org/10.2478/geoca-2014-0004

HORNE, D. J., COHEN, A. C. & MARTENS, K. 2002: Taxonomy, Morphology and Biology of Quaternary and Living Ostracoda. – In: HOLMES, J. A. & CHIVAS, A. R. (eds): *The Ostracoda: applications in Quaternary research*. Geophysical monograph, 5–36. https://doi.org/10.1029/131GM02

HUSSAIN, S. M., RAVI, G., MORAN, S. P. & RAO, N. R. 2004: Recent benthic Ostracoda from the inner shelf off Chennai, south east coast of India-implication of microenvironments. – *Environmental Micropaleontology* 1, 105–121.

IONS, B. & CHINTAŬAN, I. 1975: Studiul ostracodelor din depozitele Volhiniene de pe Platforma Moldovenească (sectorul dintre valea siretului și valea Moldovei). – *Dări de seamă ale şedinţelor* 61 (1973–1974), 3–14.

IONS, B. & CHINTAŬAN, I. 1980: Contribuții la cunoașterea faunei de ostracode din Basarabianul Platformei a Moldovanești (Regiunea dintre Siret si Moldova). – *Analele ştiinţifice ale Universităţii “Al. I. Cuza” din Iaşi* 32/2b, 59–66.

IONS, B. & CHINTAŬAN, I. 1985: Ostracofaune des dépôts Besarabiens de la région Văleni (Dobrogea du sud). – *Analele ştiinţifice ale Universităţii “Al. I. Cuza” din Iaşi* 31/2b, 32–36.

IONS, V. & PASCARIU, F. 2011: The relationship between the Sarmatian and Quaternary formations from the Păcurari area (Iaşi, Romania). – *Analele ştiinţifice ale Universităţii “Al. I. Cuza” din Iaşi* 57, 5–14.

JÁMBOR, Á., KORPÁCH-HÖDI, M., SZÉLES, M. & SUTŐ-SZENTAI, M. 1985: Zentrales Mittleres Donaubecken: Bohrung Lajoskomárom Lk-1,
S-Balaton. – In: PAPP, A., JÁMBOR, Á. & STEININGER, F. F. (eds): Chronostratigraphie und Neostratotypen: Miozän der Zentralen Paratethys, Band VII, M6, Pannonien (Slavonien und Serbien), Akadémiai Kiadó, Budapest, pp. 204–241.

JANZ, H. & VENNEMANN, T. W. 2005: Isotopic composition (O, C, Sr, and Nd) and trace element ratios (Sr/Ca, Mg/Ca) of Miocene marine and brackish ostracods from North Alpine Foreland deposits (Germany and Austria) as indicators for palaeoclimate. – Palaeo-

JASONOWSKI, M., PERYT, D. & PERYT, T. M. 2012: Neptunian dykes in the Middle Miocene reefs of western Ukraine: preliminary results. – Geological Quarterly 56/4, 881–894. http://dx.doi.org/10.7306/gq.1066

JIRIČEK, J. 1972. Problém hranice sarmat/panon ve Vídeňské, Podunajské a Východoslovenské pávní (Das Problem der Grenze Sarmat/Pannon in dem Wiener Becken, dem Donaubecken und dem ostslowakischen Becken). – Mineralia Slovaca 4/14, 39–81.

JIRIČEK, R. 1974: Biostratigraphische Bedeutung der Ostracoden des Sarmats s. str. – In: BRESTENSKA, E. (ed.): Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys 4, Bratislava: VEDA, Verlag der Slowakischen Akademie der Wissenschaften, 434–458.

JIRIČEK, R. 1983: Redefinition of the Oligocene and Neogene ostracod zonation of the Paratethys. – Miscellanea Micropalaenontologica. Memoire Vol. 18th European Colloquium of Bratislava-Praha, 195–236.

JORISSEN, F., J. 1988: Benthic foraminifera from the Adriatic Sea: principles of phenotypic variation. – Doctoral dissertation. Utrecht University, 174 p.

JOVANOVIĆ, G., ĆORIĆ, S. & VRABAC, S. 2019: The First evidence of marine Badenian transgression near Koceljeva (central Paratethys, western Serbia). – Geološki analički Balkansko poluostrva 80/1, 1–15.

KARANOVIĆ, I. & BRANDAO, S. N. 2012: Review and phylogeny of the Recent Polycopidae (Ostracoda, Cladocopina), with descriptions of nine new species, one new genus, and one new subspecies from the deep South Atlantic. – Marine Biodiversity 42, 329–393. https://doi.org/10.1007/s12526-012-0165-5

KARANOVIĆ, I. & BRANDAO, S. N. 2016: The genus Polycopa (Polycopidae, Ostracoda) in the North Atlantic and Arctic: taxonomy, distribution, and ecology. – Systematics and Biodiversity 14, 198–223. https://doi.org/10.1080/14772000.2015.1131756

KHEIL, J. 1967: Die Ostracoden der Karpatischen Serie. – In: CICHA, I. (ed.): Chronostratigraphie und Neostratotypen Miozän der Zentralen Paratethys 3, Verlag: Vydavatelstvo Slovenskej Akademie Vied Bratislava, 213–230.

KILÇ, M. 2001: Recent ostracoda (Crustacea) fauna of the Black Sea coasts of Turkey. – Turkish Journal of Zoology 25/4, 375–388.

KIRCI-ELMAS, E. & MERİÇ, E. 2016: Benthic foraminiferal fauna of the Sea of Marmara. – In: ÖZSOY, E., ÇAĞATAY, M. N., BALKIS, N. & ÖZTÜRK, B. (eds): The Sea of Marmara: Marine biodiversity, fisheries, conservation and governance, Turkish Marine Research Foundation, Istanbul, pp. 401–417.

KOEHN-ZANINETTI, L. & TÉTARD, J. 1982: Les ostracodes du marais salants de Salin-de-Giraud (Sud de la France). – Géologie Méditer-
ranéenne 9/4, 471–478.

KOLLMANN, K. 1971: Die Ostracoden der Eggenburger Schichtengruppe Niederösterreichs. – In: SENES, J. (ed.): Chronostratigraphie und Neostratotypen Miozän der Zentralen Paratethys 1, Verlag: Vydavatelstvo Slovenskej Akademie Vied Bratislava, 605–717.

KORECZ-LAKY I. 1964: Magyarszász szarmata foraminiferaik. (Sarmatische Foraminiferen Ungarns.). – Annual Report of the Hungar-

KORECZ-LAKY I. 1965: A telkibányai szarmata üledékek foraminifera faunája. (Foraminifera-fauna der Sarmatischen Ablagerungen von Telkibánya). – Annual Report of the Hungarian Geological Institute of 1965, 351–365.

KORECZ-LAKY I. 1968: A keleti Mesec mioéc Foraminiferái. (Miozán Foraminiferen des östlichen Mesec-Gebriges). – A Magyar Állami Földtani Intézet évkönyve 52/1, 229 p.

KORECZ-LAKY I. 1973: Foraminifera vizsgálatok a Tokaji-hegység miocén képződményeiből. (Examination of the Foraminifera in Miocene rocks of the Tokaj Mountains). – Annual Report of the Hungarian Geological Institute of 1973, 83–119.

KORECZ-LAKY, I. 1982. Miocene Foraminifera Fauna from the borehole Tengelic–2. – Annales of the Hungarian Geological Institute 65, 151–187.

KORECZ-LAKY, I. & NAGY-GELLAI, Á. 1985: Foraminiferal fauna from the Oligocene and Miocene in the Börzsöny Mountains. – Annals of the Hungarian Geological Institute 68, 1–527.

KOVAČ Z. 2001: A Kolozsvár környéki bádeni és szarmata üledékek biosztratigráfiaja. (Studiul biostratigrafic al depozitelor sarmatiene din împrejurimile Clujului). – Colloquium Geologicum 2, 67–97.

KOVAČOVÁ, P. & HUDÁČKOVÁ, N. 2005: Lower/Middle Badenian foraminiferal associations from the Vienna Basin (Slovak part) and Carpathian Foredeep: Biostratigraphy and paleoecology. – Slovak Geological Magazine 4, 233–248.

KOUBOVÁ, I. & HUDÁČKOVÁ, N. 2010: Foraminiferal successions in the shallow water Sarmatian sediments from the MZ 93 borehole (Vienna Basin, Slovak part). – Acta Geologica Slovaca 2/1, 47–58.

KÖVÁRY J. 1974: Délennyugat-Dunántúl jugoszláv határmenti területén szénhidrogénkutató fúrások által feltárt tengeri üledékek mikrobio-

KRSTIĆ, N. 1972: Ostrakodi kongerisksj slojeva: 10. Lokoconcha. – Bulletin of the Natural History Museum, Belgrade A/27, 243–275.

KRSTIĆ, N. 1973: Ostrakodi kongerisksj slojeva: 11. Amnicythere. – Radova Instituta geologos-rudarska istrazivanja ispitivanja nuklearnih drugih mineralnih sirovina 8/8, 53–99.

KRSTIĆ, N. & STANCHEVA, N. 1989: Ostracods of Eastern Serbia and Northern Bulgaria with notice on a Northern Turkey assemblage. – In: STEVANOVIC, P. M., NEVESKSKAJA, L. A., MARINESCU, F., SOKAC, A. & JÁMBOR, Á. (eds): Chronostratigraphie und Neostratotypen, Neogen der Westlichen (’Zentrale’) Paratethys 8, P11, Pontien, 753–819.

LANGER, M. R. 1993: Epiphytic foraminifera. – Marine Micropaleontology 20, 235–265. https://doi.org/10.1016/0377-8398(93)90035-V
LANGER, M. R. & HOTTINGER, L. 2000: Biogeography of selected “larger” foraminifera. – *Micropaleontology* 46, 105–126. https://www.jstor.org/stable/1486184

LANGER, M. R., FRICK, H. & SILK, M. T. 1998: Photophile and sciaphile foraminiferal assemblages from marine plant communities of Levanzo Islands (Corsica. Mediterranean Sea). – *Revue de Paléobiologie* 17, 525–530.

LETIERS, F. & CRASQUIN-SOLEAU, S. 1988: Comment extraire les microfossiles à tests calcaires des roches calcaires dures. – *Revue de Micropaléontologie* 31, 56–61.

LOEBLICH, A. R. & TAPPAN, H. 1992: Present status of foraminiferal classification. – In: TAKAYANAGI, Y. & SATO, T. (eds): *Studies in Benthic foraminifera. Proceedings of the Fourth Symposium on benthic foraminifera, Sendai, 1990*, Tokai University Press, Tokyo, pp. 93–102.

LUCZKOWSKA, E. 1974: Milolidae (Foraminifera) from Miocene of Poland, part II. Biostratigraphy, paleoecology and systematics. – *Acta Paleontologica Polonica* 19/1, 1–176.

MARKS, P. 1951: A Revision of the Smaller Foraminifera from the Miocene of the Vienna Basin. – *Contributions from the Cushman Foundation for Foraminiferal Research* 2/2, 33–73.

MARTENS, K., ROSSETTI, G. & FUHRMANN, R. 1997: Pleistocene and Recent species of the family Darwinulidae Brady et Norman, 1889 (Crustacea, Ostracoda) in Europe. – *Hydrobiologia* 357, 99–116. https://doi.org/10.1023/A:100313072375

MARTINI, E. 1971: Standard Tertiary and Quaternary calcareous nanoplankton zonation. – In: Farinacci A. (Ed.): *Proceedings II Planktonic Conference, Rome* 2, 739–785.

MEHES, Gy. 1908: Adatok Magyarország pliocén Ostracodáinak ismeretéhez II. Az alsópannóniai emelet Darwinulidae-i és Cytheridae-

MÉHÉS, Gy. 1908: Adatok Magyarország pliocén Ostracodáinak ismeretéhez II. Az alsópannóniai emelet Darwinulidae-i és Cytheridae-

MEISCH, C. 2000: Freshwater Ostracoda of Western and Central Europe. – In: Schoerbel, J. & Zwick, P., (eds): *Süßwasserfauna von Mitteleuropa* 8/3, 1–522. Spektrum Akademischer Verlag, Heidelberg, Berlin 522.

MILES, R., FURLANI, S., ANTONIOLI, F., BIONCHI, S., DEGRASSI, V. & MEZGEC, K. 2012: Sea level and paleoenvironment during roman times inferred from coastal archaeological sites in Trieste (northern Italy). – *Alpine and Mediterranean Quaternary* 25/1, 41–55.

MERCI, E., AVSAR, N., GÖMÜŞ, M. & BERGIN, F. 2004: Twin and triplet forms of Recent benthic foraminifera from the eastern Aegean Sea, Turkish coast. – *Micropaleontology* 50/3, 297–300.

MILKER, Y. & SCHMIEDL, G. 2012: A taxonomic guide to modern benthic shelf foraminifera of the western Mediterranean Sea. – *Palaeoentomologia electronica* 15/2, 1–134.

MISCHKE, S., SCHUDDACK, U., BERTRAND, S. & LEROY, S. A. 2012: Ostracods from a Marmara Sea lagoon (Turkey) as tsunami indicators. – *Quaternary International* 261, 156–161.

MISCHKE, S., ASHENAZI, S., ALMOGI-LABIN, A. & GOREN-INBAR, N. 2014: Ostracod evidence for the Acheulian environment of the ancient Hula Lake (Levant) during the early-Mid Pleistocene transition. – *Palaeogeography, Palaeoclimatology, Palaeoecology* 412, 148–159.

MISHRA, R., HUSSAIN, S. M. & NAZEER, M. N. 2019: Distribution of ostracoda and foraminifera from sediments of Chilika Lagoon, Odisha, East Coast of India. – *Journal of the Palaeontological Society of India* 64/1, 115–120.

MORIGI, C., JORISSEN, F. J., FRATICELLI, S., HORTON, B. P., PRINCIPI, M., SABBATINI, A., CAPOTONDI, L., CURZI, P. V. & NEGRI, A. 2005: Benthic foraminiferal evidence for the formation of the Holocene mud-belt and bathymetrical evolution in the central Adriatic Sea. – *Marine Micropaleontology* 57/1–2, 25–49. https://doi.org/10.1016/j.marmicro.2005.06.001

MOSTAFAWI, N. 1986: Pleistozäne Ostracoden aus der Nikolaos-Formation von Ost-Kos, Griechenland. – *Senckenbergiana lethaea* 67/1–4, 275–303.

MURRAY, J. W. 1991: *Ecology and Palaeoecology of Benthic Foraminifera*. – Longman Scientific & Technical, Essex, England, 397 p.

MURRAY, J. W. 2006: *Ecology and applications of benthic foraminifera*. – Cambridge: Cambridge University Press, 318 p.

NÁZÉZ, C. & MALUMIAN, N. 2019: Foraminíferos miocénicos en la cuenca Neuquina, Argentina: implicancias estratigráficas y paleoen- ambientales. – *Andean geology* 46/1, 183–210. http://dx.doi.org/10.5027/andgeov46n1-3142

NAZIK, A., TUERKEMEN, I., KOC, C., AKSOY, E., AVŞAR, N. & YAYIK, H. 2008: Fresh and Brackish Water Ostracods of Upper Miocene Deposits, Arguvan/Malatya (Eastern Anatolia). – *Turkish Journal of Earth Sciences* 17/3, 481–495.

NEALE, J. W. 1988: Ostracodes and paleosalinity reconstructions. – In: DE DEUCKER, P., COLIN, J. P. & PEYPOUQUET, J.-P. (eds): *Ostracoda in Earth Sciences*. Elsevier, Amsterdam, 125–155.

OBŁAK, K. 2007: Most abundant Middle Miocene rotaliinids (suborder Rotaliinina, Foraminifera) of Kozjansko (Eastern Slovenia). – *Geologie* 50/2, 293–322

OLTEANU, R. 1989: La faune d’ostracodes ponties du Bassin Dacique. – In: MAEZ, M. & STEVANOVIC, P. (eds): *Chronostratigraphie und Neostratotypen*, 8, Verlag der Jugoslawischen Akademie der Wissenschaften und Künste und der Serbischen Akademie der Wissenschaften und Künste, Zagreb, 722–752.

OLTEANU, R. 1998: Orthogenesis and orthoselection, *Leptocythere* lineages in brackish-water Neogene (Ostracoda). – *Revista Roumanie Géologie* 42, 141–153.

OLTEANU, R. 2001: Hemicytherinae subfamily (Ostracoda, Crustacea) and its species in Paratethys brackish-water facieses (Neogene, Carpathian areas). Their morphology and taxonomy. – *Studi i cercetări de Geologie* 46, 71–110.

OLTEANU, R. 2011: Atlas of the Pannonian and Pontian Ostracods from the Eastern Area of the Pannonian Basin. – *Geo-Eco-Marina* 17/2011, 135–177. https://doi.org/10.5287/zenodo.45062

ÖZSÁRT, P. 2007: *Middle and Late Eocene benthic foraminiferal fauna of the Hungarian Paleogene Basin: systematics and paleoecology*. – Hanften Press, Budapest, 129 p.

PÄLCU, D. V., TULBURE, M., BARTOL, M., KOUWENHOVEN, T. J. & KRUGSMAN, W. 2015: The Badenian–Sarmatian Extinction Event in the Carpathian foredeep basin of Romania: Paleogeographic changes in the Paratethys domain. – *Global and Planetary Change* 133, 346–358. https://doi.org/10.1016/j.gloplacha.2015.08.014
PAPP, A. 1963: Die biostratigraphische Gliederung des Neogens im Wiener Becken. Die Elphidien im Neogen des Wiener beckens, Genus Ammonia BRUNNICH, 1772 (= Rotalia partim). Die biostratigraphischen Grundlagen der Gliederung des Neogens im Wiener Becken. – Mitteilungen der Geologischen Gesellschaft in Wien 56/1, 255–289.

PAPP, A. 1974: Die Entwicklung des Sarmats in Österreich. – In: BRESTENSKÁ, E. (ed.): Chronostratigraphie und Neosтратотипен, Miozán der Zentralen Paratethys 4, 75–77. Bratislava: VEDA, Verlag der Slowakischen Akademie der Wissenschaften.

PAPP, A. & SENEŠ, J. 1974: Grundzüge der Entwicklung der Fauna und die Biozonen im Sarmatien s. str. der Zentralen Paratethys. – In: BRESTENSKÁ, E. (ed.): Chronostratigraphie und Neosтратотипен, Miozán der Zentralen Paratethys 4, 41–44.

PAPP, A., CICA, I., SENEŠ, J. & STEININGER, F. 1978: M4 – Badenien (Moravien, Wielicen, Kosovien). – Chronostratigraphie und Neosтратотипен, Miozán der Zentralen Paratethys 6, 594 p.

PARKLAK, D. & NAZIK, A. 2016: Ostracods of the Mediterranean (The Gulf of Antalya) and the Aegean Sea (Ayvalik and Kuşadası) and their biogeographical distributions. – Bulletin of the Mineral Research and Exploration 152, 63–83.

PARUL-KULCZYCKA, J. 1992: Malzoraczki środkowego miocenu (badenu) z otwour Broniszowice (SW Polska). – Kwartalnik Geologiczny 36/2, 259–280. (in Polish)

PARUL-KULCZYCKA, J. & SZCZECHURA, J. 1996: Ostracoda. – In: MALINOWSKA, L. & PIWOCKI, M. (ed.): Budowa geologiczna Polski 3, 727–742.

PERÇIN-PAÇAL, F., ALTINSAÇLI, S. & BALKIS, H. 2015: An updated checklist of recent marine and coastal brackish water ostracods (Crustacea Ostracoda) in Turkey. – Journal of Entomology and Zoology Studies 3/3, 20–33.

PERTY, D. 2013: Foraminiferal record of the Middle Miocene climate transition prior to the Badenian salinity crisis in the Polish Carpathian Foredeep Basin (Central Paratethys). – Geological Quarterly 57/1, 141–164. https://doi.org/10.7306/gq.1080

PERTY, D., GEHR, P. & PERTY, T. M. 2020: Marine transgression (s) to evaporite basin: The case of middle Miocene (Badenian) gypsum in the Central Paratethys, SE Poland. – Journal of Palaeogeography 9, 1–18. https://doi.org/10.1186/s42501-020-00062-0

PEZELI, D., MANDE, O. & CORČ, S. 2013: Paleoenvironmental dynamics in the southern Pannonian Basin during initial Middle Miocene marine flooding. – Geologica Carpathica 64/1, 81–100. http://doi.org/10.2478/geoca-2013-0006

PEZELI, D., SREM, J. & BERMARE, V. 2016: Shallow-water benthic foraminiferal assemblages and their response to the paleoenvironmental changes — example from the Middle Miocene of Medvednica Mt. (Croatia, Central Paratethys). – Geologica Carpathica 67/4, 329–345. http://doi.org/10.1515/geoca-2016-0021

PIETRZENIK, E. 1973: Neue Callistocyther-Arten (Ostracoda) aus dem Unteren Sarmat des Tokajer Gebirges (Nördliche Ungarische VR). – Zeitschrift für Geologische Wissenschaften 1, 703–733.

PIPIK, R. & BODERGAT, A. M. 2004: Euxinocythere (Ostracoda, Cytheridae, Leptocytherinae) du Miocène supérieur du Bassin de Turiec (Slovaquie): taxonomie et paléoécologie. – Revue de Micropaléontologie 47, 36–52.

PIPIK, R., FORDIN, K., SLAMKOVA, M., STAREK, D. & CHALUPOVA, B. 2004: Annotated checklist of the Pannonian microflora, evertebrate and vertebrate community from Studienka, Vienna Basin. – Scripta Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis, Geology 31–32, 47–54.

POPPESCU, GH. 1995. Contributions to the knowledge of the Sarmatic foraminifera of Romania. – Romanian Journal of Palaeontology 76, 85–98.

POPOV, S. V., ROGL, F., ROZANOVA, A. Y., STEININGER, F. F., SCHERBA, I. G. & KOVAC, M. 2004: Lithological-Paleogeographic maps of the Paratethys (10 maps Late Eocene to Pliocene). – Courier Forschungsinstitut Senckenberg 250, 1–46.

PURI, H. S., BONADUCE, G., & GERVASIO, A. M. 1969: Distribution of Ostracoda in the Mediterranean. – In: NEALE, J. W. (ed.): The Taxonomy, Morphology and Ecology of Recent Ostracoda. Edinburgh, 356–412.

RAFFI, I., WADE, B. S. & PALKE, H. 2020: The Neogene Period. – In: GRADSTEIN, F. M., OGG, J. G., SCHMITZ, M. D. & OGG, G. M. (eds): Geologic Time Scale 2020. Elsevier, 1141–1215. https://doi.org/10.1016/B978-0-12-824360-2.00029-2

REISS, Z. & HOTTINGER, L. 1984: Shell producers in the water column. – In: REISS, Z. & HOTTINGER, L. (eds): The Gulf of Aqaba, Springer, Berlin, Heidelberg, 89–138.

REISS, A. E. 1850: Die fossilen Entomostraceen des österreichischen Tertiärbecken. – Haidinger’s Naturwissenschaftliche Abhandlungen 31, 1–92.

ROSIL, A., BRIGUGLIO, A., KOCIS, L., CORČ, S. & GEBHARDT, H. 2019: Large rotaliid foraminifera as biostratigraphic and paleo-environmental indicators in northwest Borneo: An example from a late Miocene section in Brunei Darussalam. – Journal of Asian Earth Sciences 170, 20–28. https://doi.org/10.1016/j.jseaes.2018.10.019

ROGL, F. 1969: Die miozäne Foraminiferenfauna von Laa an der Thaya in der Molassenzone auf Niederösterreich. – Mitteilungen der Geologischen Gesellschaft in Wien 61/1968, 63–123.

ROGL, F. 1998: Palaeogeographic considerations for the Mediterranean Paratethys Seaways (Oligocene to Miocene). – Annalen des Naturhistorischen Museums in Wien 99A (1998) , 279–310.

ROGL, F., CORČ, S., HARZHAUSER, M., JIMENEZ-MORENO, G., KROH, A., SCHULTZ, O., WESSELY, G. & ZORN, I. 2008: The Middle Miocene Badenian stratotype at Baden-Soos (Lower Austria). – Geologica Carpathica 59/5, 367–374.

RUZ, F., GONZALEZ-REGALADO, M. L. & MUÑOZ, J. M. 1997: Multivariate analysis applied to total and living fauna: seasonal ecology of recent benthic Ostracoda off the North Cádiz Gulf coast (southwestern Spain). – Marine Micropaleontology 31/3–4, 183–203. https://doi.org/10.1016/S0377-8398(96)00060-6

SAFIĆ, B., VELIĆ, J., SHTANOV, O., JUHASZ, GY. & IVKOVIĆ, Z. 2003: Tertiary Subsurface Facies, Source Rocks and Hydrocarbon Reservoirs in the SW Part of the Pannonian Basin (Northern Croatia and South-Western Hungary). – Geologica Croatica 56, 101–122.

SAOLET, T., BRUNETON, H. & LÉFÈVRE, D. 2016: Ostracods and environmental variability in lagoons and deltas along the north-western Mediterranean coast (Gulf of Lions, France and Ebro delta, Spain). – Revue de Micropaléontologie 59/4, 425–444.

SCHÜTZ, K., HARZHAUSER, M., ROGL, F., CORČ, S. & GALOVIC, I. 2007: Foraminifere and Phytoplankton aus dem unteren Sarmatium des südlichen Wiener Beckens (Petronell, Niederösterreich). – Jahrbuch der Geologischen Bundesanstalt 147, 449–488.
of the Pannonian Basin (Central Paratethys): New constraints from magnetostratigraphy and biostratigraphy. – *Global and Planetary Change* 103, 99–118. https://doi.org/10.1016/j.gloplacha.2012.10.001

Ter Borch, M., Stoica, M., Donselaar, M., Matecno, L. & Krijgsman, W. 2014: Miocene connectivity between the Central and Eastern Paratethys: Constraints from the western Dacian Basin. – *Palaeogeography, Palaeoclimatology, Palaeoecology* 412, 45–67. http://dx.doi.org/10.1016/j.palaeo.2014.07.016

Tóth, E. 2004: Sarmatian ostracods from Budapest (Hungary). – *Hantkeniana* 4, Shallow Tethys 6 Symposium proceedings, 25–29 August 2003, 129–159.

Tóth, E. 2008: Sarmatian (Middle Miocene) ostracod fauna from the Zsámébk Basin, Hungary. – *Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatea*, Sectio Geologica 36, 101–151.

Tóth E. 2009: Öskörnyezeti változások a Középső-Paratethysben a szarmata folyamán a mikrofauna őslénytani és geökémiai vizsgálata alapján. [Changements paléoenvironnementaux dans la Paratéthys Centrale pendant le Sarmatien (Miocène moyen): étude paléontologique de microfaunes et analyses géochimiques]. – *Doktori értekezés*, ELTE Öslénytani Tanszék, Université Claude Bernard Lyon 1, Budapest/Lyon, 153 p.

Tóth, E. & Görög, Á. 2008: Sarmatian foraminifera fauna from Budapest (Hungary). – *Hantkeniana* 6, 187–217.

Tuncer, A., Tunoglu, C., Aydar, E., Yilmaz, I. Ö., Gümüş, B. A. & Şen, E. 2019: Holocene paleoenvironmental evolution of the Actgől paleo maar lake (Nevşehir, Central Anatolia). – *Mediterranean Geoscience Reviews* 1/2, 255–269.

Valchey, B. & Stoianova, V. 2016: Benthic foraminiferal morphgroups from the Paleogene of the Republic of Macedonia–characterization and paleoecological significance. – *Review of the Bulgarian Geological Society* 77/2–3, 3–21.

Van Baak, C. G., Vasyliev, I., Stoica, M., Kluper, K. F., Forte, A. M., Alieve, E. & Krijgsman, W. 2013: A magnetostratigraphic time frame for Plio-Pleistocene transgressions in the South Caspian Basin, Azerbaijan. – *Global and Planetary Change* 103, 119–134. https://doi.org/10.1016/j.gloplacha.2012.05.004

Van Doninck, K., Schion, I., Martens, K. & Goddeeris, B. 2003: The life-cycle of the asexual ostracod *Darwinula stevensoni* (Brady & Robertson, 1870) (Crustacea, Ostracoda) in a temperate pond. – *Hydrobiologia* 500/1, 331–340. https://doi.org/10.1023/A:1024656529004

Venglinsky I. V. 1958: Miocene foraminifera from the Transcarpathian area [Foraminiferi miocenu Zakarpata]. – *Vidatievo Akademia Nauk Ukrainskoi RSR*, Kiev, 1–246 (in Ukrainian).

Venglinsky, I. V. 1975: *Foraminifery i biostratigrafia miocenovih otlozenij zakarpatskovo progiba*. – *Vidatievo Akademia Nauk Ukrainskoi RSR*, Kiev, 263 p.

Volushnova, N. A. 1952. Nonionidae. – In: Outters, K. 1999: Two new species of the genus Phlyctenophora Brady, 1880 (Crustacea, Ostracoda) from the Indo-Pacific realm. – *Micropaleontology* 27/3, 227–244. https://doi.org/10.2307/1485236

Voicu, G. 1981: Upper Miocene and recent mysid statoliths in Central and Eastern Paratethys. – *Micropaleontology* 27/3, 227–244. https://doi.org/10.2307/1485236

Von Fichtel, L. & Von Moll, J. P. C. 1798: *Testacea Microscopica alique minuta ex Generibus Argonauta et Nautilus*. – Anton Pichler, Wien, 123 p.

Vrsaljko, D. 1999: The Pannonian palaeoecology and biostratigraphy of molluscs from Kostanjek-Medvednica Mt., Croatia. – *Geologia Croatica* 52/1, 9–27.

Wouters, K. 1999: Two new species of the genus Phlyctenophora Brady, 1880 (Crustacea, Ostracoda) from the Indo-Pacific realm. – *Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Biologie* 69, 83–92.

Yokes, M. B., Meric, E., Avsar, N., Barut, I., Tas, S., Ervilmaz, M., Dinçer, F. & Bircan, C. 2014: Opinions and comments on the benthic foraminiferal assemblage observed around the mineral submarine spring in Kuyas (Aydin, Turkey). – *Marine Biodiversity Records* 7, 1–17. https://doi.org/10.1017/S1755267214000840

Zelenka, J. 1985: Badenian Ostracoda from Podivín (Vienna Basin – Southern Moravia). – *Věstník Ústředního ústavu geologického* 60/4, 245–248.

Zelenka, J. 1990: A review of the Sarmatian ostracoda of the Vienna basin. – In: Whatley, R. & Maybury, C. (eds): *Ostracoda and Global Events*. London, British Micropaleontological Society Publication, Chapman and Hall, 263–269.

Zheng, S. Y., Cheng, T., Wang, X. & Fu, Z. 1978: The Quaternary Foraminifera of the Dayuzhang Irrigation area, Shandong Province, and a preliminary attempt at an interpretation of its depositional environment. – *Studia Marina Sinica* 13, 72–78.

Zlinska, A. 1997: Biostratigraphy of Sarmatian sediments from the Kosicka kotlina depression on the basis of Foraminifers. – *Slovak Geological Magazine* 3–4, 285–298.

Zlinska, A. 1998: Microbiostratigraphy of the Badenian sediments in the East Slovakian Basin on the Foraminifera study basis. – *Zemny Plyn a Nafra* 43, 11–153.

Zlinska, A. & Fordinal, K. 1995: A Spodnosarmatka fauna zo stretsavského súvrstvia z okolia Slanskej Huty (východoslovenská panva). – *Práce Panstwowego Instytutu Geologicznego* 100, 71–75. (in Slovak)

Zorn, I. 1998: Ostracoda aus dem Karpat (Unter-Miozän) des Korneuburger Beckens (Niederösterreich). – *Beiträge zur Paläontologie* 23, 175–271.

Zorn, I. 2004: Ostracoda from the lower Badenian (middle Miocene) Grund Formation (Molasse Basin, Lower Austria). – *Geologica Carpathica* 55/2, 179–189.

Manuscript received: 30/07/2021
Plate I – I. tábla

Badenian microfossils from the studied exploratory trench in Pécs-Danitzpuszta: 1: Callistocythere canaliculata (Reuss), RV in lateral view, layer D72, scale bar: 250 µm; 2–3: Aurila cicatricosa (Reuss), 2: LV in lateral view, 3: C in right view, layer D72, scale bar: 250 µm; 4: Urocythereis kostelensis (Reuss), LV in lateral view, layer D72, scale bar: 250 µm; 5: Loxoconcha punctatella (Reuss), LV in lateral view layer D72, scale bar: 200 µm; 6: Senesia cinctella (Reuss, C in right view, layer D72, scale bar: 250 µm; 7: Xestoleberis tumida (Reuss), RV in lateral view, layer D72, scale bar: 250 µm; 8: Xestoleberis dispar Müller, C in left view, layer D72, scale bar: 250 µm; 9: Borelis sp., SV, layer D72, scale bar: 200 µm; 10: Heterolepa dutemplei (d’Orbigny), UV, layer D72, scale bar: 500 µm; 11: Cycloloria contorta (d’Orbigny), SV, layer D72, scale bar: 500 µm; 12: Affinitrinia ucrainica (Lust), SV, layer D72, scale bar: 500 µm; 13: Nonion commune (d’Orbigny), SV, layer D72, scale bar: 500 µm; 14: Elphidium crispum (Linne), SV, scale bar: 500 µm; 15: Textularia sp., layer D72; 16: Pyrgo subsphaericus (d’Orbigny), layer D72; 17: Asterigerinata planorbis (d’Orbigny), layer D72; 18: Heterolepa dutemplei (d’Orbigny), layer D72; 19: echinoid spine, layer D72; 20: sponge spicule, layer D72; 21: red algae fragment, layer D72; 22: serpulid worm burrow, layer D72

Abbreviations: LV=left valve, RV=right valve, C=carpace, SV=side view, UV=umbilical view

Plate II – II. tábla

Sarmatian ostracods from the studied exploratory trench in Pécs-Danitzpuszta: 1: Amnicthea tensis (Reuss), RV in lateral view, layer D50, scale bar: 200 µm; 2–3: Amnicthea cernajesi Stancheva, LV in lateral view, 3: C in left view, layer D38, scale bar: 200 µm; 4–6: Eurixynotheca (Euxinocythere) praebosqueti (Suzin), 4: ephophototype, LV in lateral view, layer D36, scale bar: 250 µm; 5: in lateral view layer D36, scale bar: 200 µm; 6: LV in lateral view, layer D50, scale bar: 200 µm; 7: Eurixynotheca (Euxinocythere) naca (Meheș), RV in lateral view, layer D50, scale bar: 200 µm; 8–9: Cypridopsis pokorny Jiríček, 8: male, RV in lateral view, 9: female, RV in lateral view, layer D38, scale bar: 250 µm; 10: Cypridopsis sp., layer D38, scale bar: 250 µm; 11: Hemicytheria omphalodes (Reuss), juvenile, RV in lateral view, layer D36, scale bar: 200 µm; 12–13: Aurila notata (Reuss), 12: RV in lateral view, 13: LV in lateral view, layer D50, scale bar: 500 µm; 14–15: Loxoconcha porosa Meheș, RV in lateral view, layer D54, scale bar: 200 µm; 18: Loxocauda sp., layer D38, scale bar: 250 µm; 19–20: Loxocorculum hastatum (Reuss), RV in lateral view, layer D38, scale bar: 200 µm; 21: Darwinia stevensoni (Brady & Robertson), C in right view, layer D40, scale bar: 250 µm; 22–23: Vestalenula pagliolii (Pinto & Kotzian), 22: RV in lateral view, 23: C in left view, layer D38, scale bar: 200 µm; 24: Fabaeformiscandona (? sp.), sp., LV in lateral view, layer D38, scale bar: 200 µm; 25: Limnothyrine sp., LV in lateral view, layer D38, scale bar: 200 µm; 26: Heterocypris salina (Brady), C in left view, layer D40, scale bar: 500 µm

Abbreviations: LV=left valve, RV=right valve, C=carpace

Plate III – III. tábla

Sarmatian foraminifers and other microfossils from the studied exploratory trench in Pécs-Danitzpuszta: 1: Articulina sp. indet., fragmented specimen, layer D41, scale bar: 200 µm; 2: Bolivina saromatica Didekowsky, SV, layer D41, scale bar: 250 µm; 3: Buliminella elegantissima (d’Orbigny), SV, layer D41, scale bar: 500 µm; 4: Ammonia cf. confertista Zheng, UV, layer D41, scale bar: 200 µm; 5: Porosonion granosum (d’Orbigny), SV, layer D54, scale bar: 250 µm; 6: Elasticulina hauerrni (d’Orbigny), SV, layer D54, scale bar: 200 µm; 7–8: Elasticulina aculeatum (d’Orbigny), SV, layer D54, scale bar: 250 µm; 9: Porosonion granosum (d’Orbigny), layer D54; 10: Vaginella affinis (d’Orbigny), layer D38; 11–12: Fabaeformiscandona (?) sp., juv., RN in lateral view, layer D38, scale bar: 200 µm; 13: Cyprideis sp., LV in lateral view, layer D38, scale bar: 200 µm; 26: Heterocypris salina (Brady), C bal oldalnézet, D40 réteg, méretarány: 500 µm

Abbreviations: SV=side view, UV=umbilical view

Rövidítések: LV=bal teknő, RV=jobb teknő, C=kettőstekő, SV=oldalnézet, UV=umbilical view
Plate III – III. tábla
Appendix

Systematic Palaeontology

The specimens of foraminifers and ostracods are reposit-
ed in the Laboratory of MOL Plc., Exploration and Production Division (Budapest, Hungary).

Foraminifera

Higher classification of the foraminifera follows that of
LOEBLICH & TAPPAN (1992). Abbreviations: L: length, B:
breadth, D: diameter and Th: thickness.

Phylum Protista
Subphylum Sarcochina SCHMARD A, 1871
Class Foraminifera J.J. L.
Order Miliolida L., 1885
Family Hauerinidae S., 1839
Subfamily Hauerininae S., 1896
Superfamily Milioloidea E., 1957

Genus Cycloforina LUCZKOWSKA, 1972
Cycloforina contorta (d’ORBIGNY, 1846)
Plate I, fig. 11
1846 Quinqueloculina contorta n. sp. d’ORBIGNY, p. 298, pl. 20,
figs 4–6.
2008 Cycloforina contorta (d’ORBIGNY) – TÖTH & GÖRÖG, p. 196,
pl. 1, fig. 1. (cum syn.)
2012 Cycloforina contorta (d’ORBIGNY) – GONERA, fig. 2/M.
2012 Cycloforina contorta (d’ORBIGNY) – MILKER & SCHMIEDEL,
pp. 53–54, fig. 14/6.
2014 Cycloforina contorta (d’ORBIGNY) – YOKES et al., fig. 8/2.
2016 Cycloforina contorta (d’ORBIGNY) – LEI & LI, pp. 98–99, fig. 6.
2016 Cycloforina contorta (d’ORBIGNY) – KIRCI-ELMAS & MERİÇ,
fig. 3/8.

Dimensions: L= 530–540 µm, B=400–410 µm, Th= 220–
240 µm

Stratigraphic range and geographic distribution: Mio-
cene: Carpathian Foredeep and Transcarpathian Basin, Uk-
aine (BOGDANOWICH 1952, DIDKOWSKY & SATANOVSKAJA
1970); Badenian: Carpathian Foredeep, Poland (LUCZKOWSKA
1974; GONERA 2012), Vienna Basin, Austria (d’ORBIGNY
1846); Badenian to Sarmatian: Mece Mts, Hungary (KO-
RECZ-LÁKY 1968); Sarmatian: Zsámbék Basin and Bud-
apest, Hungary (GÖRÖG 1992, TÖTH & GÖRÖG 2008). Recently
widely distributed over the world.

Subfamily Miliollinellinae VELLA, 1957
Genus Affinetrina LUCZKOWSKA, 1972
Affinetrina ucrainica (SEROVA, 1952)
Plate I, fig. 12
1952 Miliolina ucrainica n. sp. SEROVA in BOGDANOWICH, p. 104,
pl. 8, fig. 2.
1992 Affinetrina ucrainica (SEROVA) – GÖRÖG, pp. 79–80, pl. 6, figs
1–3. (cum syn.)
2007 Affinetrina ucrainica (SEROVA) – SCHÜTZ et al., p. 453, pl. 2,
fig. 2.
2012 Affinetrina ucrainica (SEROVA) – MILKER & SCHMIEDEL, p. 61,
fig. 16/11–13.
2015. Affinetrina ucrainica (SEROVA) – SÍLYE, p. 111, pl. 1, figs 4–5.

Dimensions: L= 500–550 µm, B=200–300 µm, Th= 160–
220 µm

Stratigraphic range and geographic distribution: Upper
Badenian: Carpathian Foredeep, Poland (LUCZKOWSKA
1974); Upper Badenian – Sarmatian: Transcarpathian Basin
and Carpathian Foredeep, Ukraine (DIDKOWSKY & SATAN-
OVSKAJA 1970); Lower Sarmatian: Vienna Basin, Austria
(SCHÜTZ et al. 2007); Sarmatian: Moesian Platform, Bulga-
ria (STANCHEVA 1960), Transylvanian Basin, Romania (S-
ÍLYE 2015); Zsámbék Basin, Hungary (GÖRÖG 1992). Recent-
ly widely distributed in the Mediterranean Sea.

Genus Pyrgo DEFRANCE, 1824
Pyrgo subsphaerica (d’ORBIGNY, 1839)
Plate I, fig. 16 (thin section)
1839 Biloculina subsphaerica n. sp. d’ORBIGNY, p. 162, pl. 8, figs
25–27.
1974 Pyrgo subsphaerica (d’ORBIGNY) – LUCZKOWSKA, pp. 118–
119, pl. 22, figs 4a, b.
2008 Pyrgo subsphaerica (d’ORBIGNY) – DE ARAÚJO & MACHADO,
pl. 1, fig. 3.

Dimensions: B= 660 µm (other dimensions are not ex-
amined)

Stratigraphic range and geographic distribution: Upper
Badenian: Carpathian Foredeep, Poland (LUCZKOWSKA
1974). Recently widely distributed in the Mediterranean Sea,
Caribbean Sea and Atlantic Ocean.
Bolivina sarmatica Didkowsky, 1959
Plate III, fig. 2

1970 *Bolivina sarmatica* Didkowsky – Didkowsky & Satanowskaia, p. 144, pl. 82, fig. 9. (holotype)
2008 *Bolivina sarmatica* Didkowsky – Tóth & Görgő, p. 198, pl. 1, fig. 12. (cumm syn.)

2011 *Bolivina sarmatica* Didkowsky – Gareck & Olszewska, fig. 6/e.

2011 *Bolivina sarmatica* Didkowsky – Filipske et al., fig. 5/3.

2014 *Bolivina sarmatica* Didkowsky – Filipske et al., fig. 5/19.

2015 *Bolivina sarmatica* Didkowsky – Silye, p. 129, pl. 4, fig. 17.

2017 *Bolivina sarmatica* Didkowsky – Dumitru et al., fig. 13/p.

2018 *Bolivina sarmatica* Didkowsky – Harzhauser et al., fig. 5/10.

Dimensions: L= 150–160 µm, B= 90–95 µm

Stratigraphic range and geographic distribution: Sarmatian: Moldavian Plateau (Didkowsky & Satanowskaia 1970), Transcarpathian Basin, Carpathian Foredeep, Volhynian-Podolian Plateau, Ukraine (Venglinsky 1975), Western Carpathians (Cicha & Zapletalova 1961), easternmost Pannonian and Transylvanian Basins, Romania (Filipescu 1996; Filipescu et al. 2011, 2014), Zsambék Basin and Budapest, Hungary (Görgő 1992, Tóth & Görgő 2008), Carpathian Foredeep, Poland and Romania (Gareck & Olszewska 2011, Dumitru et al. 2017), Vienna Basin, Austria (Harzhauser et al. 2018).

Superfamily Buliminioidea Jones, 1875
Family Buliminellidae Hofker, 1951
Genus Buliminella Cushman, 1911

Buliminella elegansissima (d’Orbigny, 1839)
Plate III, fig. 3

1839 *Bulimina elegansissima* n. sp. d’Orbigny, p. 51, pl. 7, figs 13–14.

2004 *Bulimina elegansissima* (d’Orbigny) – Vilela et al., fig. 4/4.

2008 *Bulimina elegansissima* (d’Orbigny) – Tóth & Görgő, pp. 198–199, pl. 2, figs 2–4. (cumm syn.)

2011 *Bulimina elegansissima* (d’Orbigny) – Filipescu et al., fig. 5/10.

2014 *Bulimina elegansissima* (d’Orbigny) – Filipescu et al., fig. 6/13.

Dimensions: L= 230–320 µm, D= 90–100 µm

Stratigraphic range and geographic distribution: Sarmatian: Black Sea Depression, Ukraine, Moldavian Plateau (Didkowsky & Satanowskaia 1970), Zsambék Basin and Budapest, Hungary (Görgő 1992, Tóth & Görgő 2008), easternmost Pannonian and Transylvanian Basins, Romania (Filipescu et al. 2011, 2014). Recently widely distributed over the world.

Superfamily Asterigerinoidea d’Orbigny, 1839
Family Asterigerinatidae Reiss, 1963
Genus Asterigerinata Reiss, 1963

Asterigerinata planorbis (d’Orbigny, 1846)
Plate I, fig. 17 (thin-section)

1846 *Asterigerinata planorbis* n. sp. d’Orbigny, p. 225, pl. 11, figs 1–3.

1985 *Asterigerinata planorbis* d’Orbigny – Papp & Schmid, pl. 66, figs 9–11.

1985 *Asterigerinata planorbis* d’Orbigny – Korecz-Laky & Nagy-Gellai, pl. 158, figs 1–4.

1998 *Asterigerinata planorbis* (d’Orbigny) – Cicha et al., pl. 64, figs 8–10.

1998 *Asterigerinata planorbis* (d’Orbigny) – Zlinská, pl. 8, figs 10–11.

2007 *Asterigerinata planorbis* (d’Orbigny) – Schutz et al., p. 457, pl. 4, fig. 6.

2010 *Asterigerinata planorbis* d’Orbigny – Ismail et al., pl. 4, figs 4–5.

2012 *Asterigerinata planorbis* (d’Orbigny) – Gonera, fig. 4/c.

2013 *Asterigerinata planorbis* (d’Orbigny) – Pezelj et al., fig. 6/17.

2016 *Asterigerinata planorbis* (d’Orbigny) – Pezelj et al., fig. 5/A–H.

2014 *Basterigerinata planorbis* (d’Orbigny) – Ter Borgh et al., fig. 5/31–32.

2019 *Asterigerinata planorbis* (d’Orbigny) – Jovanović et al., pl. 1, figs f/6, g/5, h/6.

2020 *Asterigerinata planorbis* (d’Orbigny) – Peryt et al., fig. 4/h.

Dimensions: D= 250–350 µm

Stratigraphic range and geographic distribution: Kiscellian: Börzsöny Mt, Hungary (Korecz-Laky & Nagy-Gellai 1985); Badenian: Vienna Basin, Austria (d’Orbigny 1846), East-Slovakian Basin (Zlinská 1998), Dacian Basin, Romania (Ter Borgh et al. 2014), Mt Majevica, Bosnia and Herzegovina (Pezelj et al. 2013, 2016); Koceljeva area, Western Serbia (Jovanović et al. 2019); Carpathian Foredeep, Poland (Gonera 2012, Peryt et al. 2020), North-Croatian Basin, Croatia (Pezelj et al. 2016); Lower Sarmatian: Vienna Basin, Austria (Schutz et al. 2007); Pliocene: Nile Delta, Egypt (Ismail et al. 2010).

Superfamily Nonionioidea Schultze, 1854
Family Nonionidae Schultze, 1854
Subfamily Nonioninae Schultze, 1854
Genus Nonion Montfort, 1808

Nonion commune (d’Orbigny, 1846)
Plate I, fig. 13

1798 *Nautilus scapha* n. sp. Fichtl & Poll, p. 105, pl. 19, figs d–f.

1846 *Nonion commune* d’Orbigny – d’Orbigny, p. 106, pl. 5, figs 7–8.

2008 *Nonion commune* (d’Orbigny) – Tóth & Görgő, pp. 22–203, pl. 2, figs 14–18. (cumm syn.)

2009 *Nonion commune* (d’Orbigny) – Gerhardt et al., pl. 2, fig. 39.

2010 *Nonion commune* (d’Orbigny) – Koubová & Hudačkova, pl. 1, fig. 15.

2012 *Nonion commune* (d’Orbigny) – Ferrer García & Blázquez Morilla, fig. 4/6.
2012 Nonion commune (d’ORBIGNY) – GONERA, fig. 4/e.
2013 Nonion commune (d’ORBIGNY) – PERYT, fig. 4/F.
2013 Nonion commune (d’ORBIGNY) – PEZIEL et al., fig. 6/18.
2014 Nonion commune (d’ORBIGNY) – FILIPESCU et al., fig. 6/7.
2019 Nonion commune (d’ORBIGNY) – JOVANOVIĆ et al., pl. 1, figs f/14, g/6, h/3.
2019 Nonion commune (d’ORBIGNY) – ROSLIM et al., fig. 4/33–36.

Dimensions: D= 350–370 µm, Th= 130–160 µm
Stratigraphic range and geographic distribution: Karpatian: Molasse Basin, Austria (RÖGL 1969); Badenian: Vienna Basin, Austria and Slovakia (d’ORBIGNY 1846, KOVÁCOVÁ & HUDAČKOVÁ 2005), Carpathian Foredeep, Poland (SZCZECHURA 1982, PERYT 2013); Volhynian-Podolian Plateau, Carpathian Foredeep, Transcarpathian Basin, Crimea-Caucasus region and Kuban Lowland, Ukraine and Russia (VOLOSHINOVA 1952, DIDKOWSKY & SATANOVSKAJA 1970), Slovenia (OBLAK 2007), Mt Majevica, Bosnia and Herzegovina (PEZIEL et al. 2013), Koceljeva area, Western Serbia (JOVANOVIĆ et al. 2019); Badenian to Sarmatian: Mesec Ms, Tokaj Ms and SW-Hungary, Budapest (KOOREC-LAKY 1968, 1973, 1982; BÁLDI 1999; TOTH & GÓRÖG 2008), Appenines, Italy (DIECI 1959); Sarmatian: E-Slovakian Basin, Slovakia (ZLINSKÁ 1997, KOUBOVA & HUDAČKOVÁ 2010), Vienna Basin, Austria (SCHÜTZ et al. 2007, GEBHARDT et al. 2009), easternmost Pannonian Basin, Romania (FILIPESCU et al. 2014); Upper Miocene: Ambug Hill, Borneo (ROSLIM et al. 2019). Recently widely distributed over the world.

Superfamily Rotalioidea Ehrenberg, 1839
Family Rotaliidae Ehrenberg, 1839
Subfamily Ammoniinae SAIDOV, 1981
Genus Ammonia BRÚNNICH, 1772

Ammonia cf. conferitesta ZHENG, 1978
Plate III, fig. 4

Dimensions: D= 250–450 µm
Remarks: The studied specimens are very similar (mainly the spiral side of the test) to the holotype described by ZHENG (1978) however the last chamber of the studied specimens in most cases is missing.

Family Elphidiidae GALLOWAY, 1933
Subfamily Elphidiinae GALLOWAY, 1933
Genus Elphidium MONTFORT, 1808

Elphidium aculeatum (d’ORBIGNY, 1846)
Plate III, figs 7–8
1846 Polystomella josephina n. sp. d’ORBIGNY, p. 130, pl. 6, figs 25–26.
1846 Polystomella aculeata n. sp. – d’ORBIGNY, p. 131, pl. 6, figs 27–28.
1995 Elphidium aculeatum (d’ORBIGNY) – POPESCU, p. 94, pl. 7, figs 4–7.
2004 Elphidium aculeatum (d’ORBIGNY) – BRANZILĂ, pl. 4, fig. 5.
2004 Elphidium aculeatum (d’ORBIGNY) – MERCI et al., pl. 32, figs 5–8.
2005 Elphidium aculeatum (d’ORBIGNY) – GOLDRECK et al., pl. 1, fig. 12.
2008 Elphidium aculeatum (d’ORBIGNY) – TOTH & GÓRÖG, pp. 204–205, pl. 3, figs 5–6. (cum syn.)
2010 Elphidium josephinum (d’ORBIGNY) – KOUBOVA & HUDAČKOVÁ, pl. 1, fig. 26.
2011 Elphidium aculeatum (d’ORBIGNY) – GEDL & PERYT, pl. 1, fig. 9/F, I–K.
2012 Elphidium aculeatum (d’ORBIGNY) – ALCOLOU ET AL., pl. 1, fig. 13.
2012 Elphidium aculeatum (d’ORBIGNY) – MILKER & SCHMIDL, p. 119, fig. 27/5–6.
2012 Elphidium aculeatum (d’ORBIGNY) – GONERA et al., fig. 4/K.
2012 Elphidium aculeatum (d’ORBIGNY) – MELIS et al., pl. 1, fig. 1.
2012 Elphidium aculeatum (d’ORBIGNY) – PERYT & JASONOWSKI, fig. 4/C, D, L, M.
2012 Elphidium aculeatum (d’ORBIGNY) – JASONOWSKI et al., fig. 12/A, B, D, E.
2013 Elphidium aculeatum (d’ORBIGNY) – TER BORGH et al., fig. 6, 8–9.
2014 Elphidium josephinum (d’ORBIGNY) – FILIPESCU et al., fig. 7/10.
2014 Elphidium aculeatum (d’ORBIGNY) – MELIS et al., fig. 11/8.
2015 Elphidium aculeatum (d’ORBIGNY) – SYLVE, p. 150, pl. 8, figs 1–2, 4.
2017 Elphidium aculeatum (d’ORBIGNY) – DUMITRIU et al., fig. 11/Q, R.
2020 Elphidium aculeatum (d’ORBIGNY) – PERYT et al., fig. 3/h.

Dimensions: D= 450–600 µm, Th= 200–350 µm.
Stratigraphic range and geographic distribution: Badenian: Carpathian Foredeep, Poland and Ukraine (GEDL & PERYT 2011, GONERA et al. 2012, PERYT et al. 2020); Late Badenian to Sarmatian: Volhynian–Podolian Plateau, Moldavian Plateau, Moldavia and Carpathian Foredeep, Ukraine (VENGLINSKY 1958; DIDKOWSKY & SATANOVSKAJA 1970, BRANZILĂ 2004), Crimea-Caucasus region, South-Caspian Depression, Russia and Azerbaijan (VOLOSHINOVA 1952); Sarmatian: Carpathian Foredeep, Poland, Romania and Ukraine (SZCZECHURA 1982, 2000; JASONOWSKI et al. 2012; DUMITRIU et al. 2017), Vienna Basin, Austria and Slovakia (MARKS 1951, PAPP 1963; SCHÜTZ et al. 2007; KOUBOVA & HUDAČKOVÁ 2010), Danube Basin and East-Slovakian Basin, Slovakia (BRESTENSKA 1974; ZLINSKÁ 1997), Tokaj Ms, Mesec Ms, Zsámbsék Basin and Budapest, Hungary (KOREC-LAKY 1973, 1968, 1964, 1965, 1982; GÓRÖG 1992; TOTH & GÓRÖG 2008), easternmost Pannonian and Transylvanian basins, Romania (KOVÁCS 2001, SUCHU 2005, FILIPESCU et al. 2014, SYLVE 2015); Romanian Plain, Romania (POPESCU 1995), Moesian Platform, Bulgaria (STANCHEVA 1960); Pannonian Basin, Serbia (TER BORGH et al. 2013); Holocene: Mediterranean Sea, Italy (MELIS et al. 2012, YOKES et al. 2014). Recently widely distributed over the world.

Remarks: The number and size of spines are variable, it seems to be intraspecific variability. Making the species Elphidium josephinum described by d’ORBIGNY the junior synonym of E. aculeatum, thus an invalid name.

Elphidium crispum (LINNÉ, 1758)
Plate I, fig. 14
1758 Nautilus crispus n. sp. LINNAEUS, p. 709, pl. 1, figs 2d–e.
1888 Elphidium crispum (LINNÉ) – JORISSSEN, p. 120, pl. 3, figs 8–9, pl. 24, figs 1–2.
2004 Elphidium crispum (LINNE) – MERCI et al., pl. 1, figs 16–18.
2004 Elphidium crispum (LINNE) – MENDES et al., pl. 1, fig. 6.
2004 Elphidium crispum (LINNE) – BRANZILÁ, pl. 4, fig. 11.
2005 Elphidium crispum (LINNE) – MORIGI et al., pl. 2, fig. 9a–c.
2008 Elphidium crispum (LINNE) – TÖTH & GÖRÖG, pp. 205–206, pl. 3, figs 7–8. (cum syn.)
2009 Elphidium crispum (LINNE) – FREZZA & CARBONI, pl. 1, fig. 16.
2010 Elphidium crispum (LINNE) – KOUBOVA & HUĐÁČKOVÁ, pl. 1, fig. 24.
2011 Elphidium crispum (LINNE) – GLED & PERYT, fig. 9/C, R.
2012 Elphidium crispum (LINNE) – FERRER GARCÍA & BLÁZQUEZ MORA, pl. 4, fig. 12.
2012 Elphidium crispum (LINNE) – GONERA, figs 4f.
2012 Elphidium crispum (LINNE) – MILKER & SCHMID, p. 120, fig. 27/13–14.
2012 Elphidium crispum (LINNE) – MELIS et al., pl. 1, fig. 4.
2012 Elphidium crispum (LINNE) – ALÇOLOU et al., pl. 1, fig. 15.
2014 Elphidium crispum (LINNE) – FILIPESCU et al., fig. 7/3.
2014 Elphidium crispum (LINNE) – YOKES et al., figs 11/10–11.
2014 Elphidium crispum (LINNE) – TER BORGH et al., fig. 6/8.
2016 Elphidium crispum (LINNE) – LEI & LI, p. 361, fig. 84.
2016 Elphidium crispum (LINNE) – DIMIZA et al., pl. 4, fig. 20.
2019 Elphidium crispum (LINNE) – PEZELJ et al., fig. 5/D, I.
2019 Elphidium crispum (LINNE) – JOVANOVIC et al., pl. 1, figs f/3, g/7.
2019 Elphidium crispum (LINNE) – ROSLIM et al., fig. 4/25.

Dimensions: D=450–1200 µm, Th=330–350 µm

Stratigraphic range and geographic distribution: Langhian: Aquitaine Basin, France (CAHUZAC & POIGNANT 2000); Karpatian-Badenian: East-Mecsek Mts, Hungary (KORECZ-LAKY 1968); Badenian: Dacic Basin, Romania and Serbia (TER BORGH et al. 2014), Carpathian Foredeep, Poland and Ukraine (GLED & PERYT 2011, GONERA 2012), Vienna Basin, Austria (PAPP 1963), Apennines, Italy (DIECI 1959), Koceljeva area, Western Serbia (JOVANOVIC et al. 2019); Badenian: North-Croatian Basin, Croatia (PEZELJ et al. 2016), Karpatian–Sarmatian: Transcarpathian Basin, Volhynian-Podolian Plateau and Caucasus, Ukraine and Russia (VENGLINSKY 1958, DIDKOWSKY & SATANOVSKAJA 1970); Sarmatian: Carpathian Foredeep, Poland (SZCZECHU A 1982), Mecsek Mts, Zsáméb Basin and Budapest, Hungary (KORECZ-LAKY 1964, 1968; GÖRÖG 1992; TÖTH & GÖRÖG 2008), Vienna Basin, Slovakia (KOUBOVA & HUĐÁČKOVÁ 2010); Moldavian Plateau, Moldavia (BRANZILÁ 2004); Lower Sarmatian: easternmost Pannonian Basin, Romania (FILIPESCU et al. 2014); Upper Miocene: Ambug Hill, Borneo (ROSLIM et al. 2019); Pliocene: Toscana, Italy (FICHTEL & MOLL 1798); Holocene: Mediterranean Sea, Italy (MORIGI et al. 2005, MELIS et al. 2012). Recently widely distributed over the world.

Elphidium hauerinum (d’ORBIGNY, 1846)

Plate III, fig. 6
1846 Polystomella Hauerina n. sp. d’ORBIGNY, p. 122, pl. 6, figs 5–10.
1995 Elphidium hauerinum (d’ORBIGNY) – POPESCU, p. 95, pl. 8, fig. 10.
2005 Elphidium hauerinum (d’ORBIGNY) – FILIPESCU et al., pl. 2, figs 4–5.
2008 Elphidium hauerinum (d’ORBIGNY) – TÖTH & GÖRÖG, pl. 3, figs 10–12. (cum syn.)
2010 Elphidium hauerinum (d’ORBIGNY) – KOUBOVA & HUĐÁČKOVÁ, pl. 1, fig. 18.
2011 Elphidium hauerinum (d’ORBIGNY) – FILIPESCU et al., fig. 4/3.
2011 Elphidium hauerinum (d’ORBIGNY) – IONESI & PASCAI, pl. 1, fig. 29.
2012 Elphidium hauerinum (d’ORBIGNY) – JASIONOWSKI et al., fig. 14/E, H, I, M.
2014 Elphidium hauerinum (d’ORBIGNY) – FILIPESCU et al., figs 7–9.
2015 Elphidium hauerinum (d’ORBIGNY) – SILYE, p. 152, pl. 8, figs 5–7.
2017 Elphidium hauerinum (d’ORBIGNY) – DUMITRIU et al., fig. 12/G, H.

Dimensions: D=240–430 µm, Th=100–150 µm

Stratigraphic range and geographic distribution: Badenian?: Vienna Basin, Austria (d’ORBIGNY 1846); Badenian-Sarmatian: Transcarpathian Basin, Carpathian Foredeep, Ukraine (VENGLINSKY 1958, DIDKOWSKY & SATANOVSKAJA 1970); Sarmatian: Carpathian Foredeep, Ukraine, Poland and Romania (JASIONOWSKI et al. 2012, DUMITRIU et al. 2017), Moldavian Plateau, Romania (IONESI & PASCAI 2011), N-Caucasus, Russia (VOLOSHINOVA 1952); Moesian Platform, Bulgaria (STANCHEVA 1960), easternmost Pannonian and Transylvanian basins, Romania (FILIPESCU 1996; KOVÁCS 2001; SUCIU 2005; FILIPESCU et al. 2005, 2011, 2014), Romanian Plain, Romania (POPESCU 1995), Vienna Basin, Austria (d’ORBIGNY 1846, PAPP 1963, SCHÜTZ et al. 2007), Tokaj Mts, Zsáméb Basin, Mecsek Mts and Budapest, Hungary (KORECZ-LAKY 1964, 1965, 1968, 1973, 1982; GÖRÖG 1992; TÖTH & GÖRÖG 2008); Danube Basin and East-Slovakian Basin, Slovakia (BRINSTENSKÁ 1974, ZLINSKA 1997, KOUBOVA & HUĐÁČKOVÁ 2010), Carpathian Foredeep, Poland (SZCZECHURA 1982, 2000).

Genus Porosonion Putrya in VOLOSHINOVA, 1958

Porosonion granosum (d’ORBIGNY, 1846)

Plate III, figs 5, 9 (thin section)
1846 Nonionina granosus n. sp. d’ORBIGNY, p. 110, pl. 5, figs 19–20.
1888 Elphidium granosum (d’ORBIGNY) – JORISSEN, p. 104, pl. 2, figs 1–3, pl. 16–19.
1992 Porosonion granosum (d’ORBIGNY) – GÖRÖG, pp. 112–113, pl. 11, fig. 5. (cum syn.)
2000 Porosonion granosum (d’ORBIGNY) – POPESCU et al., pp. 400–401, pl. 1, figs 13–14. (cum syn.)
2000 Porosonion granosum (d’ORBIGNY) – SZCZECHURA, pl. 5, figs 3, 6.
2000 Elphidium granosum (d’ORBIGNY) – CARBONI et al., fig. 10.
2001 Porosonion granosum (d’ORBIGNY) – FILIPESCU et al., pl. 3, fig. 11.
2004 Porosonion subgranosus monogranulata GERKE – BRANZILÁ, pl. 2, figs 7–9.
2007 Porosonion ex gr. granosum (d’ORBIGNY) – SCHÜTZ et al., pl. 6, fig.6.
2007 Porosonion granosum (d’ORBIGNY) – GROSS et al., pp. 210–211, fig. 4 a–e, h–i.
2008 Crichelphilidium ex gr. granosum (d’ORBIGNY) – TÖTH & GÖRÖG, p. 204, pl. 3, figs 3–4.
2010 Porosonion granosum (d’ORBIGNY) – KOUBOVA & HUĐÁČKOVÁ, pl. 1, fig. 20.
2011 Porosononion granosum (d’ORBIGNY) – FILIPESCU et al., fig. 4/9.
2012 Elphidium granosum (d’ORBIGNY) – MILKER & SCHMIDT, p. 121, fig. 27/17–18.
2013 Porosononion granosum (d’ORBIGNY) – ter BORGH et al., figs 6/4–5.
2015 Porosononion granosum (d’ORBIGNY) – SILYE, p. 147, pl. 7, figs 4–5.
2018 Porosononion granosum (d’ORBIGNY) – HARZHAUSER et al., fig. 5/1–2.
2019 Porosononion granosum (d’ORBIGNY) – NÁÑEZ & MALUMIÁN, pp. 197–201, figs 5–6.

Dimensions: D= 200–500 µm
Stratigraphic range and geographic distribution: Middle Miocene: Atlantic Ocean, Argentina (NÁÑEZ & MALUMIÁN 2019); Badenian: Transylvanian Basin, Romania (FILIPESCU 2001); Badenian–Sarmatian: Vienna Basin, Austria (d’ORBIGNY 1846); Sarmatian: Vienna Basin and Styrian Basin, Austria (GROSS et al. 2007, SCHÜTZ et al. 2007, HARZHAUSER et al. 2018), Zsámébék Basin and Budapest, Hungary (GÖRÖG 1992, TÖTH & GÖRÖG 2008), Transcarpathian Basin, Ukraine (VOLOSHINOVA 1952, VENGILINSKY 1958), Carpathian Foredeep, Poland (SZCZECHURA 2000), Transylvanian Basin, Romania (FILIPESCU et al. 2011, SILYE 2015), Moldavian Plateau (BRANZILĂ 2004); Pliocene: Mediterranean Sea, Spain (CARBONNEL & MAGNÉ 1977) and Greece (HAGEMAN 1979). Recently widely distributed over the world.

Remarks: The umbilical region is very variable in this group. Due to the large morphological variation, the taxonomic status of fossil specimens is uncertain. The studied specimen is identical (including umbilical region) to the holotype described by d’ORBIGNY (1846).

Family Cibicididae CUSHMAN, 1927
Subfamily Cibicidinae CUSHMAN, 1927
Genus Heterolepa FRANZENAU, 1884
Heterolepa dutemplei (d’ORBIGNY, 1846)
Plate I, figs 10, 18 (thin section)
1846 Rotalia dutemplei n. sp. d’ORBIGNY, p. 157, pl. 8, figs 19–21.
1982 Heterolepa dutemplei (d’ORBIGNY) – SZCZECHURA, pl. 16, figs 8–9.
1985 Heterolepa dutemplei (d’ORBIGNY) – PAPP & SCHMIDT, p. 59, pl. 50, figs 1–3.
1985 Heterolepa dutemplei (d’ORBIGNY) – KORECZ-LAKY & NAGY-GELLAI, pl. 20, fig. 4a–b.
1998 Heterolepa dutemplei (d’ORBIGNY) – CICHA et al., pp.107–108, pl. 71, figs 1–3.
1999 Heterolepa dutemplei (d’ORBIGNY) – BÁLDI, pp. 209–210, pl. 9, figs 1–6, pl. 10, figs 1–2.
2000 Heterolepa dutemplei (d’ORBIGNY) – SZCZECHURA, pl. 1, figs 6, 13.
2001 Heterolepa dutemplei (d’ORBIGNY) – FILIPESCU, pl. 3, figs 12–13.
2007 Heterolepa dutemplei (d’ORBIGNY) – OZSVÁRT, pp. 84–85, pl. 11, figs 11–13. (cum syn.)
2013 Heterolepa dutemplei (d’ORBIGNY) – PEZELJ, figs 4/V, W, 7/Y
2014 Heterolepa dutemplei (d’ORBIGNY) – ter BORGH et al., fig. 5/41–42.

Dimensions: D=450–600 µm, Th= 200–350 µm
Stratigraphic range and geographic distribution: Middle to Upper Eocene: Paleogene Basin, Hungary (ŐZSVÁRT 2007); Upper Eocene – Lower Oligocene: Vandelov-Geygelia Basin, Republic of Macedonia (STOJANOVA & PETROV 2014; VALCHEV & STOJANOVA 2016); Kiscellian to Badenian: Börzsöny Mts, Hungary (KORECZ-LAKY & NAGY-GELLAI 1985); SW-Hungary (BALDI 1999); Ottnangian: Austria, Vienna Basin (HARZHAUSER et al. 2017); Badenian: Koceljeva area, Western Serbia (JOVANOVIĆ et al. 2019); Mt Majevica, Bosnia and Herzegovina (PEZELJ et al. 2013); North-Croatian Basin, Croatia (PEZELJ et al. 2016), Austria, Vienna Basin (d’ORBIGNY 1846), Dacian and Transylvanian basins, Serbia and Romania (FILIPESCU 2001, ter BORGH et al. 2014); Carpathian Foredeep, Poland (SZCZECHURA 1982, 2000; PÉRYT 2013; DUMITRIU et al. 2017), Upper Miocene: Ambug Hill, Borneo (ROSİM et al. 2019).

Ostracoda

Classification of the ostracods follows that of HARTMANN & PURI (1974) and HÖRNER et al. (2002). Abbreviations: L: length, H: height.

Phylum Arthropoda SIEBOLD, STANNIUS, 1845
Subphylum Crustacea PENNANT, 1777
Class Ostracoda LATREILLE, 1802
Order Podocopida MÜLLER, 1894
Suborder Cytherocopia BARD, 1850
Superfamily Cytheroidea BARD, 1850
Family Cytherideidae SARS, 1925
Subfamily Cytherideinae SARS, 1925
Genus Cyprideis JONES, 1857

Cyprideis pokornyi Jiriček, 1974
Plate II, figs 8–9

1974 Cyprideis pokornyi n. sp. Jiriček, p. 439, pl. 2, figs 1–4.
2009 Cyprideis pokornyi Jiriček – Tóth, p. 87, pl. 4, figs 3.6.

Dimensions: L= 660–720 µm, H= 350–410 µm, L/H = 1.6–1.8.
Stratigraphic range and geographic distribution: Upper Sarmatian: Vienna Basin, Slovakia (JIRIČEK 1974); Vértes Hill, Hungary (TÓTH 2009).
Family Hemicytheridae Puri, 1953
Subfamily Hemicytherinae Puri, 1953
Genus Aurila Pokorný, 1955

Aurila cicatricosa (REUSS, 1850)
Plate I, figs 2–3
1850 Cypridina cicatricosa n. sp. REUSS, pp. 67–68, pl. 9, fig. 21.
1962 Mutilus (Aurila) cicatricosa (REUSS) – STANCHEVA, p. 32, pl. 4, fig. 8.
1971 Aurila cicatricosa (REUSS) – CERNIAJEK, pp. 65–69, pl. 6, figs 7–14, pl. 14, fig. 7, pl. 17, fig. 4 a–b [partim, pl. 14, fig. 8]
1978 Aurila cicatricosa (REUSS) – BRESTENSKÁ & JIRIČEK, p. 409, 432, pl. 6, fig. 1.
2008 Aurila cicatricosa (REUSS) – FARAIDA et al., pl. 2, figs 4–5.
2004 Aurila cicatricosa (REUSS) – AIELLO & SZCZECHURA, pp. 28–30, pl. 5, fig. 2.
2006 Aurila cicatricosa (REUSS) – GROSS & PILLER, pp. 47–48, text-fig. 6/1, pl. 21, figs 1–12, pl. 22, figs 8–10.
2006 Aurila cicatricosa (REUSS) – SZCZECHURA, fig. 9/9–10.
2012 Aurila cicatricosa (REUSS) – SEKO et al., fig. 8/P.
2014 Aurila (Aurila) cicatricosa (REUSS) – TER BORGH et al., fig. 7/16.

Dimensions: L= 900–950 µm, H= 530–580 µm, L/H= 1.6–1.7.

Stratigraphic range and geographic distribution: Bade-
nian: Vienna Basin, Austria (CERNIAJEK 1971, GROSS & PIL-
LER 2006); Carpathian Foredeep, Czech Republic, Poland
(BRESTENSKÁ & JIRIČEK 1978, AIELLO & SZCZECHURA 2004,
SZCZECHURA 2006, SEKO et al. 2012); Dacian Basin, Ro-
mania (TER BORGH et al. 2014); Late Miocene: Mediterranean,
Greece (FARAIDA et al. 2008).

Aurila notata (REUSS, 1850)
Plate II, figs 12–13.
1850 Cypridina notata n. sp. REUSS, p. 66, pl. 9, fig. 16.
2006 Aurila (Exaurila?) notata (REUSS) – GROSS & PILLER, p. 83–84, pl. 29, figs 1–9.
2008 Aurila notata (REUSS) – TÖTH, pp. 122–123, pl. 8, figs 3–7. (cum syn.)
2017 Aurila notata (REUSS) – DUMITRIU et al., fig. 12/Q.
2018 Aurila notata (REUSS) – HARZHAUSER et al., fig. 7/10.

Dimensions: L= 900–950 µm, H= 530–580 µm, L/H= 1.6–1.7.

Stratigraphic range and geographic distribution: Upper Sar-
matian: Vienna Basin, Austria and Slovakia (CERNIAJEK
1974, JIRIČEK 1983, ZELENKA 1990, JANZ & VENNEMANN
2005, GROSS & PILLER 2006, HARZHAUSER et al. 2018); Zsám-
bék Basin, Hungary (TÖTH 2008); Caucasus, Russia
(SUZIN 1956); Lower Sarmatian: Moldovan Plateau, Ro-
mania (DUMITRIU et al. 2017).

Genus Hemicytheria Pokorný, 1952

Hemicytheria omphalodes (REUSS, 1850)
Plate II, fig. 11
1850 Cypridina omphalodes n. sp. REUSS, pp. 75, pl. 10, fig. 7.
2008 Hemicytheria omphalodes (REUSS) – TÖTH, pl. 6, figs 2–6. (cum syn.)
2011 Hemicytheria omphalodes (REUSS) – OLTEANU, pl. 18, fig. 8.
2014 Hemicytheria omphalodes (REUSS) – FILIPESCU et al., fig. 8/10.

Dimensions: L= 810–820 µm, H= 470–480 µm, L/H= 1.7–1.75.

Stratigraphic range and geographic distribution: Upper Badenian: Transylvanian Basin, Romania (OLTEANU 2001); Sar-
matian: Vienna Basin, Slovakia (JIRIČEK 1974, ZELENKA
1990); Zsámőbek Basin, Hungary (TÖTH 2008); Lower Sar-
matian: Danube Basin and the eastern region, Slovakia
(FORDINÁL et al. 2006, FORDINÁL & ZLINSKÁ 1994); Upper Sar-
matian: Vienna Basin, Austria (CERNIAJEK 1974); Pan-
nonian: easternmost Pannonian Basin, Transylvanian Ba-
sin, Romania (OLTEANU 2001, 2011; FILIPESCU et al. 2014), Pannonian Basin, Croatia (SOKAČ 1972).

Genus Senesia JIRIČEK, 1974

Senesia cinctella (REUSS, 1850)
Plate I, fig. 6
1850 Cypridina cinctella n. sp. REUSS, p. 67, pl. 9, fig. 19.
1962 Mutilus (Aurila) cinctella (REUSS) – STANCHEVA, p. 35, pl. 4, fig. 9.
1979 Aurila (Aurila) cinctella n. sp. – BASSOUNI, pp. 118–119, pl.
19, figs 7–8.
2006 Senesia cinctella (REUSS) – GROSS & PILLER, pp. 57–58, pl.
31, figs 1–5.

Dimensions: L= 750–760 µm, H= 410–420 µm, L/H= 1.8–1.82

Stratigraphic range and geographic distribution: Lower Miocene: Black Sea Depression, Turkey (BASSOUNI 1979); Badenian: Vienna Basin, Austria and Slovakia (REUSS 1850, CERNIAJEK 1971, BRESTENSKÁ & JIRIČEK 1978, GROSS & PILLER 2006); Moesian Plateau, Bulgaria (STANCHEVA 1962).

Subfamily Urocythereidinae HARTMANN & PURI, 1974
Genus Urocythereis RUGGERI, 1950

Urocythereis kostelenis (REUSS, 1850)
Plate I, fig. 4
1850 Cypridina kostelenis n. sp. REUSS, p. 68, pl. 9, fig. 22.
1978 Urocythereis kostelenis (REUSS) – BRESTENSKÁ & JIRIČEK, p.
410, 432, pl. 6, fig. 12.
1985 Urocythereis kostelenis (REUSS) – ZELENKA, p. 246, pl. 3, fig. 2.
2004 Urocythereis kostelenis (REUSS) – ZORN, p. 180, fig. 4/10–11.
2006 Urocythereis kostelenis (REUSS) – GROSS & PILLER, pp. 106–108, pl. 38, figs 1–5, 9, 11–12.

Dimensions: L= 820–835 µm, H= 410–420 µm, L/H= 1.9–2.

Stratigraphic range and geographic distribution: Baden-
ian: Carpathian Foredeep, Poland (REUSS 1850), Vienna
and Molasse basins, Austria and Slovakia (REUSS 1850, BRESTENSKÁ & JIRIČEK 1978, ZELENKA 1985, ZORN 2004,
GROSS & PILLER 2006).
Family Leptocytheridae HANAI, 1957
Subfamily Leptocytherinae HANAI, 1957
Genus Amnicythere DEVOTO, 1965

Amnicythere cernaijeki STANCHEVA, 1984
Plate II, figs 2–3
1963 Leptocythere modesta n. sp. STANCHEVA, p. 22, pl. 3, fig. 8.
1974 Leptocythere sp. – CERNAIJSEK, p. 476, pl. 2, fig. 7.
1984 Amnicythere cernaijeki nom. nov. – STANCHEVA, p. 39, pl. 1, fig. 5.
1998 Amnicyther aff. plana (SCHNEIDER) – OLTEANU, p. 153, pl. 8, fig. 7.
2008 Amnicythere (?) sp. – TÓTH, p. 110, pl. 2, figs 5–6.
2011 Amnicythere cernaijeki STANCHEVA – FILIPESCU et al., fig. 5/20.

Dimensions: L= 570–600 μm, H= 260–300 μm, L/H= 2–2.19.

Stratigraphic range and geographic distribution: Sarmatian: Vienna Basin, Austria (CERNAIJSEK 1974); Lower Sarmatian: Transylvanian Basin, Romania (OLTEANU 1998); Upper Sarmatian: Zsámbék Basin, Hungary (TÓTH 2008); Transylvanian Basin, Romania (FILIPESCU et al. 2011).

Amnicythere tenes (REUSS, 1850)
Plate II, fig. 1
1850 Cytherina tenes n. sp. REUSS, p. 53, pl. 8, fig. 14.
2008 Amnicythere tenes (REUSS) – TÓTH, p. 109–110, pl. 2, figs 1–3, 5, (cum syn.)
2013 Amnicythere tenes (REUSS) – TER BORGH et al., fig. 6/14–15.
2014 Amnicythere tenes (REUSS) – TER BORGH et al., fig. 8/27–28.
2015 Amnicythere tenes (REUSS) – SILYE, pl. 10, figs 1–3.
2018 Amnicythere tenes (REUSS) – HARZHAUSER et al., fig. 7/3.

Dimensions: L= 510–550 μm, H= 250–290 μm, L/H= 1.96–2.3.

Stratigraphic range and geographic distribution: Sarmatian: Vienna Basin, Austria (CERNAIJSEK 1974, HARZHAUSER et al. 2018); Carpathian Foredeep, Poland (SZCZECHURA 2000); Zsámbék Basin and Budapest, Hungary (TÓTH 2004, 2008); Lower Sarmatian: East-Slovakian Basin, Slovakia (ZLINSKÁ & FORDINÁL 1995); Transylvanian Basin, Romania (OLTEANU 1998, SILYE 2015); Pannonian and Dacian basins, Serbia and Romania (TER BORGH et al. 2013, 2014); Bessarabian: Moesian Plate, Bulgaria (STANCHEVA 1963, 1990); Pannonian: Pannonian Basin, Hungary (MÉHES 1908); Pontian: Dacian Basin, Romania (HANGANU 1974).

Genus Euxinocythere STANCHEVA, 1968

Euxinocythere (Euxinocythere) naca (MÉHES, 1908)
Plate II, fig. 7
1908 Cythere naca n. sp. MÉHES, p. 548–549, pl. 10, figs 8–12.
1989 Leptocythere naca (MÉHES) – SORÁC, p. 687, pl. 8, fig. 10.
1989 Leptocythere (Amnicythere) naca (MÉHES) – OLTEANU, pl. 8, fig. 6.
1989 Euxinocythere (Euxinocythere) cf. naca (MÉHES) – KRSTIĆ & STANCHEVA, p. 778, pl. 11, fig. 3.
2008 Euxinocythere (Euxinocythere) naca (MÉHES) – TÓTH, pp. 112–113, pl. 1, fig. 7, (cum syn.)
2009 Euxinocythere (Euxinocythere) naca (MÉHES) – TÓTH, p. 84, pl. 3, fig. 3.
2011 Leptocythere (Euxinocythere) naca (MÉHES) – OLTEANU, pl. 19, fig. 1.
2013 Euxinocythere naca (MÉHES) – TER BORGH et al., fig. 8/10.

Dimensions: L= 470–510 μm, H= 235–260 μm, L/H= 1.88–1.95.

Stratigraphic range and geographic distribution: Sarmatian: Vienna and Danube basins, Austria and Slovakia (CERNAIJSEK 1974, ZELENKA 1990); Moldavian Plateau, Romania (IONESI & CHINTĂUAN 1975, 1985); Carpathian Foredeep, Poland (SZCZECHURA 2000); Volhynian: Moesian Plate, Northern Bulgaria (STANCHEVA 1990); Zsámbék Basin, Hungary (TÓTH 2008, 2009); Pannonian-Pontian-Bosnian Basin, Hungary and Serbia (KRSTIĆ 1973, MÉHES 1908, 1982, KRSTIĆ & STANCHEVA 1989; TER BORGH et al. 2013); North-Croatian Basin, Croatia (SOKAČ 1967, 1972, 1989); Transylvanian Basin, Romania (OLTEANU 2011); Pontian: Dacian Basin, Romania (OLTEANU 1989); South Caspian Basin, Azerbaijan (AGALAROVA 1967).

Euxinocythere (Euxinocythere) praebosqueti (SUZIN, 1956)
Plate II, figs 4–6
1956 Leptocythere praebosqueti n. sp. SUZIN, p. 83, pl. 3, figs 2–4.
2008 Euxinocythere (Euxinocythere) praebosqueti (SUZIN) – TÓTH, p. 114, pl. 3, figs 2–5, (cum syn.)
2013 Euxinocythere (Euxinocythere) praebosqueti (SUZIN) – VAN BAAK et al., fig. 4/13.

Dimensions: L= 490–510 μm, H= 200–260 μm, L/H= 1.9–2.1.
Stratigraphic range and geographic distribution: Sarmatian: Moesian Plate, Northern Bulgaria (STANCHEVA 1972, 1990); Upper Sarmatian: Zsámébk Basin, Hungary (TÓTH 2008); Bessarabian: Caucasus, Russia (SUZIN 1956); Plio-Pleistocene: South Caspian Basin, Azerbaijan (VAN BAAK et al. 2013).

Family Loxoconchidae SARS, 1925
Subfamily Loxoconchinae SARS, 1925
Genus Loxoconcha SARS, 1866

Loxoconcha kochi MÉHES, 1908
Plate II, figs 14–15
1908 Loxoconcha kochi n. sp. MÉHES, pp. 543–544, pl. 9, figs 5–9.
2005 Loxoconcha kochi MÉHES – FILIPESCU et al., pl. 3, fig. 6.
2006 Loxoconcha kochi? MÉHES – GROSS & PILLER, pp. 112–113, pl. 40, figs 1–7.9.
2008 Loxoconcha kochi MÉHES – TÓTH, p. 124, pl. 9, fig. 6. (cum syn.)
2013 Loxoconcha kochi MÉHES – TER BORGH et al., fig. 8/24–25.
2014 Loxoconcha kochi MÉHES - TER BORGH et al., fig. 7/23.
2014 Loxoconcha kochi MÉHES – FILIPESCU et al., fig.8/15.
2018 Loxoconcha kochi MÉHES – HARZHAUSER et al., fig.7/12.

Dimensions: L= 640–835 µm, H= 400–520 µm, L/H= 1.6–1.75.

Stratigraphic range and geographic distribution: Upper Badenian: Vienna Basin, Austria (GROSS & PILLER 2006); Dacian Basin, Romania (TER BORGH et al. 2014); Sarmatian: Vienna Basin, Austria (CERNAIEK 1974, GROSS & PILLER 2006, HARZHAUSER et al. 2018); easternmost Pannonian and Transylvanian basins, Blacks Sea Depression, Romania (IONESI & CHINTAUAN 1985; FILIPESCU et al. 2005, 2014); Upper Sarmatian: Zsámébk Basin, Hungary (TÓTH 2008); Pannonian Basin, Serbia (TER BORGH et al. 2013); Lower Pannonian (?): Pannonian Basin, Hungary (MÉHES 1908); Messinian and Pliocene (?): Rhôné Valley, France (CARBONNEL 1978).

Loxoconcha laeta STANCHEVA, 1963
Plate II, fig. 16
1963 Loxoconcha laeta n.sp. STANCHEVA, pp. 34–35, pl.6, fig. 9.
1990 Loxoconcha laeta STANCHEVA – STANCHEVA, pp. 88–89, pl. 31, figs 5–6.
2009 Loxoconcha laeta STANCHEVA – TÓTH, pp. 91–92, pl. 7, fig. 12.

Dimensions: L= 720–750 µm, H= 390–410 µm, L/H= 1.8–1.83.

Stratigraphic range and geographic distribution: Lower Sarmatian: Moesian Plate, Bulgaria (STANCHEVA 1963, 1990); Upper Sarmatian: Zsámébk Basin, Hungary (TÓTH 2009).

Loxoconcha porosa MÉHES, 1908
Plate II, fig. 17
1908 Loxoconcha porosa n. sp. MÉHES, pp. 542–543, pl. 8, figs 10–14.
2008 Loxoconcha porosa MÉHES – TÓTH, pp. 124–125, pl. 9, figs 3–5. (cum syn.)

Dimensions: L= 620–700 µm, H= 420–470 µm, L/H= 1.45–1.55.

Stratigraphic range and geographic distribution: Sarmatian: Pannonian Basin, Serbia (KRSTIĆ 1972); Black Sea Depression, Romania (IONESI & CHINTAUAN 1985); Upper Sarmatian: Vienna Basin, Slovakia (ZELENKA 1990); Zsámébk Basin, Hungary (TÓTH 2008); Pannonian: Pannonian Basin, Hungary and Croatia (MÉHES 1908, ŠOKAČ 1972).

Loxoconcha punctatella (REUSS, 1850)
Plate I, fig. 5
1850 Cypridina punctatella n. sp. REUSS, pp. 65–66, pl. 9, fig. 15 a–b.
1978 Loxoconcha punctatella (REUSS) – BREJTSKÁ & JIRIČEK, pl. 2, figs 12–13.
1985 Loxoconcha punctatella (REUSS) – ZELENKA, pl. 3, figs 10–11.
2004 Loxoconcha ex. gr. punctatella (REUSS) – TÓTH, pp. 140–141, pl. 6, figs 1–2.
2006 Loxoconcha punctatella (REUSS) – GROSS & PILLER, pp. 73–74, pl. 40, figs 8,11, pl. 41, figs 1–10. (cum syn.)
2006 Loxocorniculum cf. punctatella (REUSS) – SZCZECHURA, fig. 10/3.
2008 Loxoconcha ex. gr. punctatella (REUSS) – TÓTH, p. 125, pl. 10, figs 1–2.
2011 Loxoconcha punctatella (REUSS) – HAJEK-TADESSE & PRTOSJAN, fig. 4/16.
2012 Loxoconcha punctatella (REUSS) – SEKO et al., fig. 8/D.
2013 Loxoconcha punctatella (REUSS) – TER BORGH et al., fig. 6/28.
2019 Loxoconcha punctatella (REUSS) – BRINKMANN et al., fig. 8/N–O.

Dimensions: L= 540–670 µm, H= 400–450 µm, L/H= 1.4–1.54.

Stratigraphic range and geographic distribution: Burdigalian: Molasse Basin, Austria (BRINKMANN et al. 2019); Karpatian: Molasse Basin, Austria (ZORN 1998); Badenian: Danube Basin and Vienna Basin, Slovakia (BREJTSKÁ & JIRIČEK 1978, ZELENKA 1985); Molasse Basin, Austria (ZORN 2004); Carpathian Foredeep, Czech Republic and Poland (PARUCH–KULCZYCKA 1992, SZCZECHURA 2006, SEKO et al. 2012); North-Croatian Basin, Croatia (HAJEK-TADESSE & PRTOSJAN 2011); Badenian to Sarmatian: Vienna Basin, Austria (GROSS & PILLER 2006); Lower Sarmatian: Zsámébk Basin, Hungary (TÓTH 2004, 2008); Pannonian Basin, Serbia (TER BORGH et al. 2013).

Genus Loxocorniculum BENSON & COLEMAN, 1963

Loxocorniculum hastatum (REUSS, 1850)
Plate II, figs 19–20
1850 Cytherina hastata REUSS sensu CERNAIEK – REUSS, pl.9, fig. 26.
2008 Loxocorniculum hastatum (REUSS) – TÓTH, pp.125–126, pl. 9, figs 1–2. (cum syn.)
2012 Loxocorniculum hastatum (REUSS) – SEKO et al., fig. 8/F.
2014 Loxocorniculum hastatum (REUSS) – TER BORGH et al., fig.7/22.
2017 Loxocorniculum hastatum (REUSS) – DUMITRIU et al., fig. 13/I–J.
2019 Loxocorniculum hastatum (REUSS) – BRINKMANN et al., p. 84, fig. 8/M.
Dimensions: \(L = 620–630 \, \mu m, H = 390–410 \, \mu m, L/H = 1.5–1.6 \).

Stratigraphic range and geographic distribution: Oligocene to Miocene (Aquitanian, Burdigalian, Langhian): Aquitaine Basin, France (DUCASSE et al. 1991, BEKAERT et al. 1991, DUCASSE & CAHUZAC 1996); Burdigalian: Molasse Basin, Austria (BRINKMANN et al. 2019); Rhône Basin, France (CARBONNEL 1969); Eggenburgian: Molasse Basin, Austria (KOLLMAU 1971); Karpatainian: Vienna Basin, Czech Republic (KLIEHL 1967); Molasse Basin, Austria (ZORN 1998, 2003, 2004); Badenian: Molasse Basin, Austria (ZORN 1998, 2004); Carpathian Foredeep, Poland and Czech Republic (PARUCH-KULCZYCKA 1992, SZCZECHURA 2006, SEKO et al. 2012); Vienna Basin, Austria and Czech Republic (CERNSEK 1974, BRESTENSKÁ & JIRIČEK 1978, JANZ & VENNERMANN 2005, ZELENKA 1985); Moeian Platform, Bulgaria (STANCHEVA 1962); Dacian Basin, Romania (TER BORGH et al. 2014); Carpathian Foredeep, Poland (AIELLO & SZCZECHURA 2004); Sarmatian: Mečsek Mts and Zsámbék Basin, Hungary (SZUROMI-KORECZ & SZEGÓ 2001, TÓTH 2008); Carpathian Foredeep, Poland (DUMITRIU et al. 2017).

Family Xestoleberididae SARS, 1928
Genus Xestoleberis SARS, 1866

Xestoleberis dispar MUELLER, 1894
Plate I, fig. 8
1894 *Xestoleberis dispar* n. sp. MÜLLER, p. 334, pl. 25, figs 2, 3, 9, 35.
1982 *Xestoleberis dispar* MÜLLER – FARANDA et al., pl. 2, figs 16–17.
1986 *Xestoleberis* sp. – MOSTAFawi, pl. 3, fig. 33.
2006 *Xestoleberis aff. dispar* MÜLLER – GROSS & PILLET, pp. 137–138, pl. 2, fig. 4.
2008 *Xestoleberis dispar* MÜLLER – KOEHN-ZANINETTI & TÉTARD, fig. 4/10.
2014 *Xestoleberis dispar* (MÜLLER) – TER BORGH et al., fig. 7/26–27.
2015 *Xestoleberis dispar* MÜLLER – SCIUTO et al., pl. 2, fig. 6.
2016 *Xestoleberis dispar* MÜLLER – PARLAK & NAZIK, pl. 3, fig. 14.
2017 *Xestoleberis fuscata* SCHNEIDER – DUMITRIU et al., fig. 13/II.

Dimensions: \(L = 660–665 \, \mu m, H = 350–370 \, \mu m, L/H = 1.80–1.88 \).

Stratigraphic range and geographic distribution: Badeanian: Dacian Basin, Romania (TER BORGH et al. 2014); upper Badenian to lower Sarmatian: Vienna Basin, Austria (GROSS & PILLET 2006); lower Sarmatian: Carpathian Foredeep, Poland (DUMITRIU et al. 2017); Tortonian, Pleistocene: Mediterranean Sea, Greece (FARANDA et al. 2008, MOSTAFawi 1986); Recently widely distributed in the Mediterranean Sea.

Xestoleberis tumida (REUSS, 1850)
Plate I, fig. 7
1850 *Cytherina tumida* n. sp. REUSS, pp. 57–58, pl.8, fig. 29.
2006 *Xestoleberis tumida* (REUSS) – GROSS & PILLET, pp. 134–137, pl. 48, figs 1–10, pl. 49, figs 1–5, pl. 51, fig. 7. (cum syn.)
2006 *Xestoleberis cf. tumida* (REUSS) – SZCZECHURA, fig. 10/2,4.

Dimensions: \(L = 510–540 \, \mu m, H = 320–330 \, \mu m, L/H = 1.6–1.8 \).

Stratigraphic range and geographic distribution: Karpatian: Molasse Basin, Austria (ZORN 1998); Badenian: Carpathian Foredeep, Poland (SZCZECHURA 2006); Austria (ZORN 1998, GROSS & PILLET 2006).

Suborder Cypridocopina BAIRD, 1845
Superfamily Cypridoidea BAIRD, 1845
Family Cyprididae BAIRD, 1845
Subfamily Cyprinotinae BRONSTEIN, 1947
Genus *Heterocypris* CLAUS, 1892

Heterocypris salina (BRADY, 1868)
Plate II, fig. 26
1868 *Cypris salina* n. sp. BRADY, p. 368; pl. 28, figs 8–13.
1980 *Heterocypris salina salina* (BRADY) – FREELS, p.28, pl. 3, figs 1–6. (cum syn.)
2000 *Heterocypris salina* (BRADY) – MEISCH, pp. 349–352, fig. 135.
2003 *Heterocypris salina* (BRADY) – MISCHKE et al., fig. 1/7.
2004 *Heterocypris salina* (BRADY) – PIPIK, p.227, pl. 1, figs 6–7.
2005 *Heterocypris salina* (BRADY) – MATZKE-KARASZ, p. 126, pl. 3, fig. 4.
2005 *Heterocypris salina* (BRADY) – SCHARF et al., pl. 2, figs 17–20.
2008 *Heterocypris salina* (BRADY) – NAZIK et al., pl. 1, fig. 15.
2008 *Heterocypris salina* (BRADY) – POQUET et al., fig. 6/I.
2012 *Heterocypris salina* (BRADY) – MISCHKE et al., pl. 1, figs 7–10, 18.
2014 *Heterocypris salina* (BRADY) – SCHARF & MEISCH, fig. 3/I–K.
2014 *Heterocypris salina* (BRADY) – MISCHKE et al., fig. 7/2.
2016 *Heterocypris salina* (BRADY) – SÁLÉL et al., pl. 4, figs 4–6.
2019 *Heterocypris salina* (BRADY) – TUNCER et al., pl. 1, figs 1–3.

Dimensions: \(L = 945–955 \, \mu m, H = 565–590 \, \mu m, L/H = 1.61–1.67 \).

Stratigraphic range and geographic distribution: Widely distributed in upper Miocene to Holocene freshwater to saline habitats (riverine pools and lakes) in Europe (MEISCH 2000) and recently over the world.

Suborder Darwinulocopina BRADY & NORMAN, 1889
Superfamily Darwinuloidea BRADY & NORMAN, 1889
Family Darwinulidae BRADY & NORMAN, 1889
Genus *Darwinula* BRADY & NORMAN, 1889

Darwinula stevensoni (BRADY & ROBERTSON, 1870)
Plate II, fig. 21
1870 *Polycheles stevensoni* m. BRADY & ROBERTSON, pp. 25–26, pl. 7, figs 1–7, pl. 10, figs 4–14.
2000 *Darwinula stevensoni* (BRADY & ROBERTSON) – MEISCH, p. 49, fig. 16/A–E.
2004 *Darwinula stevensoni* (BRADY & ROBERTSON) – PIPIK et al., pl. 1, fig. 10.
2005 *Darwinula stevensoni* (BRADY & ROBERTSON) – CABRAL et al., pp. 53–55, pl. 1, figs 1–6. (cum syn.)
2012 *Darwinula stevensoni* (BRADY & ROBERTSON) – FURHMANN, pl. 1, figs 1 a–f.

Dimensions: \(L = 670–680 \, \mu m, H = 420–425 \, \mu m, L/H = 1.59–1.6 \).

Stratigraphic range and geographic distribution: Wide-
ly distributed in Oligocene to Holocene lacustrine environments in Europe (Meisch 2000) and recently over the world.

Genus Vestalenula Rossetti & Martens, 1998

Vestalenula pagliolii (Pinto & Kotzian, 1961)
Plate II, figs 22–23; Plate III, fig. 10 (thin-section)

1961 *Darwinula pagliolii* n. sp. Pinto & Kotzian, p. 27, pl. 1, figs 1–5, pl. 3, figs 1–4, pl. 5, figs 1–9, pl. 6, figs 1–9, pl. 9, figs 1–9.
2003 *Vestalenula pagliolii* (Pinto & Kotzian) – Pipik & Bodergat, p. 348, pl. 1, figs 5–10, fig. 24. (cum syn.)

2004 *Vestalenula pagliolii* (Pinto & Kotzian) – Pipik et al., pl. 1, fig. 11.
2005 *Vestalenula pagliolii* (Pinto & Kotzian) – Cabral et al., pp. 59–60, pl. 3, figs 5–16.

Dimensions: L= 455–470 µm, H= 210–220 µm, L/H= 2.16–2.18.

Stratigraphic range and geographic distribution: Widely distributed in Oligocene to Holocene freshwater to oligohaline habitats (riverine pools and lakes) in Europe (Meisch 2000) and recently in Brazil (Martens et al. 1997).