Factors predictive of the success of tuberculosis treatment: A systematic review with meta-analysis

Ninfa Marlen Chaves Torres ID 1,2*, Jecxy Julieth Quijano Rodríguez ID 2‡, Pablo Sebastián Porras Andrade ID 3, María Belen Arriaga ID 4,5‡, Eduardo Martins Netto ID 1,5‡

1 Department of Medicine and Health, Federal University of Bahia, Salvador, Bahia, Brazil, 2 Department of Medicine, Nueva Granada Military University, Bogotá, D.C., Colombia, 3 Department of Biology, The University of Queensland, Brisbane, Australia, 4 Gonzalo Moniz Institute, Gonzalez Cruz Foundation, Salvador, Bahia, Brazil, 5 Department of Epidemiology, José Silveira Foundation, Salvador, Bahia, Brazil

* These authors contributed equally to this work.
‡ These authors also contributed equally to this work.

Abstract

Objective

To produce pooled estimates of the global results of tuberculosis (TB) treatment and analyze the predictive factors of successful TB treatment.

Methods

Studies published between 2014 and 2019 that reported the results of the treatment of pulmonary TB and the factors that influenced these results. The quality of the studies was evaluated according to the Newcastle-Ottawa quality assessment scale. A random effects model was used to calculate the pooled odds ratio (OR) and 95% confidence interval (CI). This review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) in February 2019 under number CRD42019121512.

Results

A total of 151 studies met the criteria for inclusion in this review. The success rate for the treatment of drug-sensitive TB in adults was 80.1% (95% CI: 78.4–81.7). America had the lowest treatment success rate, 75.9% (95% CI: 73.8–77.9), and Oceania had the highest, 83.9% (95% CI: 75.2–91.0). In children, the success rate was 84.8% (95% CI: 77.7–90.7); in patients coinfected with HIV, it was 71.0% (95% CI: 63.7–77.8), in patients with multidrug-resistant TB, it was 58.4% (95% CI: 51.4–64.6), in patients with and extensively drug-resistant TB it was 27.1% (12.7–44.5). Patients with negative sputum smears two months after treatment were almost three times more likely to be successfully treated (OR 2.7; 1.5–4.8), whereas patients younger than 65 years (OR 2.0; 1.7–2.4), nondrinkers (OR 2.0; 1.6–2.4) and HIV-negative patients (OR 1.9; 1.6–2.5) were two times more likely to be successfully treated.
Conclusion
The success of TB treatment at the global level was good, but was still below the defined threshold of 85%. Factors such as age, sex, alcohol consumption, smoking, lack of sputum conversion at two months of treatment and HIV affected the success of TB treatment.

Introduction
Tuberculosis (TB) remains the leading global cause of death by a single infectious agent; it caused approximately 1.6 million deaths in 2017. An estimated 10 million people developed the disease, of whom 6.4 million (64%) were notified[1]. Additionally, of the 558,000 estimated cases of rifampicin- and isoniazid-resistant TB (multidrug-resistant TB—MDR-TB)/rifampin-resistant TB (RR-TB), a total of 139,114 people (87%) received the second-line regimen, and the proportion of MDR-TB cases with extensively drug-resistant TB (XDR-TB) defined as MDR-TB plus resistance to at least one drug in both of the two most important classes of medicines in an MDR-TB regimen: fluoroquinolones and second-line injectable agents (amikacin, capreomycin or kanamycin) was 8.5% (95% CI: 6.2–11%) [1].

The innumerable efforts to end the global TB epidemic have resulted in remarkable developments in research focused on multiple aspects of the disease. Unfortunately, we should rely on poor diagnostic, therapeutic, and preventive options. However, it is estimated that with the current strategies for TB control, the goals of reducing the number of deaths by 95%, reducing the incidence rate by 90% and increasing the cure rate of patients receiving first-line treatment to 90% between 2015 and 2035 will not be reached without intensifying research and development[2]. It is also necessary to strengthen health systems’ ability to detect cases early and to improve the quality of care, diagnosis and treatment of people with TB[3].

TB treatment coverage is one of the ten priority indicators for achieving the goals of the End TB Strategy, and it has increased from 51% in 2013 to 70% in 2017[2,4]. However, the treatment success rate has decreased from 86% in 2013 to 82% in 2016; in MDR-TB/RR-TB and XDR-TB cases, the success rate remains low: 55% and 34% in 2015[1]. This situation could be related to the limited evaluation of treatment outcomes in countries with limited resources and to the presence of factors that affect the outcome of TB treatment. Exhaustive estimates of TB treatment outcomes are needed to improve the programmatic management of TB. Therefore, this review with meta-analysis was performed to produce pooled estimates of global TB treatment outcomes and to analyze the predictive factors of successful TB treatment.

Methods
This review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) in February 2019 under number CRD42019121512.

Search strategy
PubMed, Medline, Embase, ProQuest, Scopus and Scielo were searched for publications of the last 6 years that is, published between January 2014 and November 2019 that reported the results of treatment for pulmonary tuberculosis and the factors that influenced these results. We also searched other sources, such as Google and Google Scholar, and bibliographies to obtain additional references. Our search contained the following terms: tuberculosis, predictive factors, risk factors and treatment outcomes (tuberculosis AND (risk factors OR associated
factors OR predictive factors OR characteristics) AND (treatment results OR treatment outcome OR successful treatment OR unsuccessful treatment OR unfavorable outcome OR (poverty OR poor)) AND tuberculosis treatment results) in English, Spanish and Portuguese. Trying to include as many publications as possible about our topic of interest. Approval from the ethics committee was not required.

Data extraction and definitions
The step-by-step selection of the studies is described in Fig 1. All article titles and abstracts were evaluated by two investigators (JR and PP), including all the studies that reported quantitative measurements of the results of tuberculosis treatment, and these results were clearly described according to the WHO criteria. For cases of drug-sensitive TB, only studies that clearly described patients receiving the standard treatment for tuberculosis recommended by the WHO known as short-term treatment (6 months) that includes 4 drugs. Studies that reported exclusively on extrapulmonary tuberculosis and those that did not allow the adequate extraction of quantitative data were not included. The full text of articles identified as relevant by any of the reviewers was read.

To determine which full-text articles met the inclusion criteria, two investigators (JR and PP) reviewed all full-text articles, and a third investigator (NC) reviewed a random selection of studies. In cases of disagreement, the two investigators discussed the article until they agreed. One investigator (JR) extracted data from all included studies. The second investigator (NC) independently extracted all numerical data regarding the estimation of the main effect to validate the first review. If data from the same cohort were included in several articles, the article with the most complete data was included. For each included study, detailed information was collected on the design, publication year, country, study population, sample size, definition and measurement of treatment outcomes and associated factors.

Validity assessment
The quality of the included studies was evaluated according to the Newcastle-Ottawa quality assessment scale[5]. It evaluates quality based on the content, design and ease of use of the data for meta-analysis. Two investigators (JR and PP) independently evaluated the quality of the studies, classifying each study as being of either good, acceptable or low quality.

Statistical methods and data synthesis
TB treatment outcome measures were evaluated as the percentage of successful and unsuccessful results among all patients who initiated anti-TB therapy. The results of treatment were defined according to WHO criteria[6]. Successful outcomes were those in which patients met the definition of 'cure' or 'treatment completion'. Unsuccessful outcomes were those in which patients met the definitions of death, default, failure or transfer. The subgroup analysis was performed by continent (Africa, America, Asia, Europe and Oceania), people living with HIV, children (1 to 15 years of age) and MDR/XDR-TB.

The associations of different variables, such as age (<65 years—66 years or older), sex (male—female), area of residence (rural—urban), type of case (new—previously treated), form of TB (pulmonary—extrapulmonary), alcohol consumption (yes—no), smoking (yes—no), HIV status (positive—negative), diabetes (yes—no), baseline sputum smear (positive—negative), and sputum smear microscopy two months after treatment (positive—negative), with the TB treatment outcome were measured. It was not possible to test the association from nutritional status, of educational level or socioeconomic status with TB treatment because these variables were evaluated differently in the studies depending on the country or region of origin. The
Fig 1. PRISMA flow chart indicating the result of literature search.

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit www.prisma-statement.org.
influence of the health facility providing treatment on the results of TB treatment was not addressed in the studies included in this review.

Because most of the studies did not examine the association between these variables and successful treatment outcome as the main effect, unadjusted odds ratios (OR) and 95% confidence intervals (CI) were calculated as estimates of this association. After a table of results was created for each of the analyses, a random effects model was used to calculate pooled ORs and 95% CIs as there were high levels of heterogeneity in the study populations. Statistical heterogeneity was assessed using the I² statistic. Publication bias was assessed using a funnel plot. All statistical analyses were performed in MedCalc® version 19.03.

Results

As indicated in Fig 1, a total of 1,432 articles were identified. Of these, 992 were not duplicated; 807 of those were excluded after the title and abstract were evaluated, and 185 underwent a detailed review of the full text. A total of 151 studies with 1,550,449 patients with TB from 59 countries distributed among 5 continents met the criteria for inclusion in this review (Table 1).

In total, 95 of the 151 studies were retrospective cohort, 28 were cross-sectional, 25 were prospective cohort and 3 were case-control studies. Of the eligible studies, 91 reported treatment results in cases of TB in adults, 7 in children, 15 in patients coinfected with HIV and 38 in MDR/XDR-TB cases. These studies are detailed in Table 2.

Results of TB treatment

The success rate for the treatment of drug-sensitive TB in adults was 80.1% (95% CI: 78.4–81.7) (Fig 2). A high degree of heterogeneity (I²: 99.8%) was observed among the studies, but no publication bias was found in the funnel plot. Based on the subgroup analysis, America had the lowest treatment success rate at 75.9% (95% CI: 73.8–77.9) (S1 Fig), followed by Africa at 78.9% (95% CI: 75.5–82.2) (S2 Fig), Europe at 79.7% (95% CI: 76.2–83.0) (S3 Fig), Asia at 81.6% (95% CI: 78.5–84.5) (S4 Fig) and Oceania at 83.9% (95% CI: 75.2–91.0) (S5 Fig).

The success rate was 84.8% in children (95% CI: 77.7–90.7) (S6 Fig), 71.0% in patients coinfected with HIV (95% CI: 63.7–77.8) (S7 Fig), 58.4% in patients with MDR-TB (95% CI: 51.4–64.6) (S8 Fig) and 27.1% (95% CI: 12.7–44.5) in patients with XDR-TB (Table 3). A high degree of heterogeneity (I²: 98%; I²: 99.8%; I²: 99.2%; I²: 84.3%, respectively), was observed in these subgroups, but there was no evidence of publication bias in the funnel plot.

Predictors of TB treatment success

Patients who were smear-negative at two months of treatment were almost three times more likely to succeed in treatment (OR 2.7; 1.5–4.8) (Fig 3), whereas patients who were younger

Continent	No. Countries	No. Studies	%	Patients	%
Africa	15	47	31.1	164,091	10.6
America	6	20	13.2	716,992	46.2
Asia	19	58	38.4	357,163	23.0
Europe	12	18	11.9	302,557	19.5
Oceania	5	5	3.3	6,926	0.4
Intercontinental	3	3	2.0	2,740	0.2
Total	60	151	100.0	1,550,469	100.0

https://doi.org/10.1371/journal.pone.0226507.t001
Table 2. Characteristics of the included studies according to continent of origin and population studied.

Autor (Year)	Country	Study design	n	Success	%	Quality / newcastle
TB studies in Africa						
Adane K. et al (2018)[7]	Ethiopia	RC	422	395	93.6	L
Ali M. et al (2017)[8]	Somalia	CS	385	315	81.8	L
Amante T. et al (2015)[9]	Ethiopia	CC	976	646	66.2	L
Budgell E. et al (2016)[10]	South Africa	RC	544	394	72.4	A
Chidubem L. et al (2016)[11]	Nigeria	RC	555	479	86.3	L
Ejeta E. et al (2018)[12]	Ethiopia	RC	4144	3532	85.2	G
El-Shabrawy M. et al (2017)[13]	Egypt	RC	480	384	80.0	L
Ershova V. et al (2014)[14]	South Africa	RC	741	617	83.3	L
Esmael A. et al (2014)[15]	Ethiopia	RC	717	425	59.3	L
Gebrezgabiher G. et al (2016)	Ethiopia	RC	1537	1310	85.2	L
Kosgei J. et al (2015)[17]	Kenya	RC	16056	14318	89.2	G
Mbatchou B. et al (2016)[18]	Cameroon	RC	8902	6684	75.1	L
Mhumbira F. et al (2016)[19]	Tanzania	RC	4835	4006	82.9	L
Mlotshwa M. et al (2016)[20]	South Africa	RC	12742	10719	84.1	L
Mugomeri E. et al (2017)[21]	Lesotho	RC	812	577	71.1	A
Muluye A. et al (2018)[22]	Ethiopia	CS	995	905	91.0	L
Nafae R. et al (2017)[23]	Egypt	RC	280	231	82.5	G
Nanzuluka F. et al (2019)[24]	Zambia	RC	1724	985	57.1	L
Nembot F. et al (2015)[25]	Cameroon	RC	1286	1119	87.0	L
Oshi S. et al (2014)[26]	Nigeria	RC	1668	1268	76.0	G
Peltzer K. et al (2014)[27]	South Africa	PC	1196	695	58.1	L
Saleh A. et al (2017)[28]	Yemen	RC	273	227	83.2	A
Ukwajaa N. et al (2014)[29]	Nigeria	RC	929	796	85.7	L
Wondale B. et al (2017)[30]	Ethiopia	RC	1172	868	74.1	L
Worku S. et al (2018)[31]	Ethiopia	CS	985	672	68.2	G
Yoko J. et al (2017)[32]	South Africa	CS	229	176	76.9	L
Zenebe T. et al (2016)[33]	Ethiopia	CS	380	320	84.2	L
Zenebe Y. et al (2016)[34]	Ethiopia	CS	671	542	80.8	L
TB Studies in America						
Cailleaux M. et al (2017)[35]	Brazil	RC	174	146	83.9	L
Calle A. et al (2016)[36]	Colombia	CS	837	645	77.1	A
Dhiba M. et al (2014)[37]	U.S	PC	202	155	76.7	L
Lackey B. et al (2015)[38]	Peru	PC	1233	1036	84.0	L
Maciel E. et al (2015)[39]	Brazil	CS	318445	222186	69.8	G
Magee M. et al (2015)[40]	U.S	PC	291	221	75.9	L
Pereira J. et al (2015)[41]	Brazil	RC	421	362	86.0	L
Reis-Santos B. et al (2015)[42]	Brazil	CS	31578	23537	74.5	L
Romanowski K. et al (2017)[43]	Canada	RC	165	144	87.3	L
Silva M. et al (2017)[44]	Brazil	PC	220	172	78.2	L
Snyder R. et al (2016)[45]	Brazil	RC	6601	3585	54.3	L
Viana P. et al (2016)[46]	Brazil	CS	278674	204205	73.3	L
Viegas A. et al (2016)[47]	Brazil	PC	83	64	77.1	A
TB studies in Asia						
Ahmad T. et al (2017)[48]	Pakistan	RC	493	468	94.9	L
Ali K. et al (2015)[49]	Iran	RC	167	143	85.6	A
Alqahtani S. et al (2017)[50]	Saudi Arabia	CS	1600	1338	83.6	L

(Continued)
Table 2. (Continued)

Autor (Year)	Country	Study design	n	Success	%	Quality / newcastle
Atif M. et al (2014)[51]	Malaysia	RC	336	226	67.3	L
Babalik A. et al (2014)[52]	Turkey	RC	23845	22412	94.0	L
Chi C. et al (2015)[53]	China	PC	16345	13349	81.7	A
Choi H. et al (2014)[54]	Korea	PC	669	335	50.1	L
Gadoev J. et al (2015)[55]	Uzbekistan	RC	107380	89622	83.5	L
Hongguang C. et al (2015)[56]	China	PC	1126	1066	94.7	L
Jackson C. et al (2017)[57]	India	RC	8415	7148	84.9	A
Khaing P. et al (2018)[58]	Myanmar	RC	13711	11066	80.7	L
Khaezai S. et al (2016)[59]	Iran	CS	510	424	83.1	G
Kwon Y. et al (2014)[60]	Korea	RC	2481	2333	94.0	L
Liew S. et al (2015)[61]	Malaysia	RC	21582	16824	78.0	L
Lin Y. et al (2017)[62]	China	CS	30277	26016	85.9	L
Lo H. et al (2016)[63]	Taiwan	RC	766	544	71.0	L
Lwin Z. et al (2017)[64]	Myanmar	RC	2975	2618	80.4	L
Morishita F. et al (2017)[65]	Philippines	RC	612	548	89.5	L
Mukhtar F. et al (2016)[66]	Pakistan	PC	614	434	70.7	L
Mundra A. et al (2017)[67]	India	RC	510	418	82.0	L
Mundra A. et al (2017)[68]	India	CC	275	187	68.0	L
Ni W. et al (2016)[69]	China	RC	1447	1349	93.2	L
Piparva K. (2016)[70]	India	RC	1340	1210	90.3	L
Rahimy N. et al (2018)[71]	Thailand	RC	291	234	80.4	L
Rao P. et al (2015)[72]	India	CS	862	718	83.3	L
Sadykova L. et al (2019)[73]	Kazakhstan	RC	36926	26635	72.1	L
Schwitters A. et al (2014)[74]	Uganda	CS	469	222	47.3	L
Shahrezaei M. et al (2015)[75]	Iran	RC	2224	1827	82.1	L
Thomas B. et al (2019)[76]	India	PC	455	374	82.2	A
Wang X. et al (2015)[77]	China	CS	20396	18908	92.7	L
Wang X. et al (2017)[78]	China	RC	395	296	74.9	L
Wen Y. et al (2018)[79]	China	RC	22998	21851	95.0	G
Xiao-chun H. et al (2017)[80]	China	RC	5663	3154	55.7	L
Yoon Y. et al (2016)[81]	Korea	PC	661	512	77.5	L
Zhang Q. et al (2014)[82]	Kuwait	RC	954	676	70.9	L

TB studies in Europe

Autor (Year)	Country	Study design	n	Success	%	Quality / newcastle
Aibana O. et al (2018)[83]	Ukraine	RC	296	193	65.2	L
Cruz-Ferro E. et al (2014)[84]	Spain	CS	18660	16524	88.6	L
Dias M. et al (2017)[85]	Portugal	RC	17655	14186	80.4	L
Gaborit B. et al (2017)[86]	France	CC	134	112	83.6	L
Holden I. et al (2019)[87]	Denmark	RC	1681	1353	80.5	A
Karp B. et al (2015)[88]	Union europea	RC	250864	196833	78.5	G
Lucenko I. et al (2014)[89]	Latvia	RC	2476	2167	87.5	G
Moreno-Gómez M. et al (2014)[90]	Spain	PC	146	62	42.5	L
Priedeman M. et al (2018)[91]	Ukraine	RC	1618	1327	82.0	L
Przybylski G. et al (2014)[92]	Poland	PC	2025	1813	89.5	G
Rodriguez E. et al (2015)[93]	Spain	RC	5880	4703	80.0	L

TB studies in Oceania

Autor (Year)	Country	Study design	n	Success	%	Quality / newcastle
Alo A. et al (2014)[94]	Fiji	CS	395	322	81.5	L
Itogo N. et al (2014)[95]	Solomon Islands	RC	4137	3779	91.3	L

(Continued)
Table 2. (Continued)

Autor (Year)	Country	Study design	n	Success	%	Quality / newcastle
Scheelbeek P. et al (2014)[96]	Indonesia	RC	1582	1244	78.6	L
Tagaro M. et al (2014)[97]	Vanuatu	RC	568	469	82.6	L

TB / HIV coinfection studies

Autor (Year)	Country	Study design	n	Success	%	Quality / newcastle
Agbor A. et al (2014)[98]	Cameroon	RC	337	205	60.8	L
Ambadekar N. et al (2015)[99]	India	PC	11620	9731	83.7	L
Belayneh M. et al (2015)[100]	Ethiopia	CS	342	242	70.8	L
Do Prado T. et al (2016)[101]	Brazil	CS	68295	37445	54.8	L
Engelbrecht M. et al (2017)[102]	South Africa	CS	66940	51668	77.2	L
Jacobson K. et al (2015)[103]	South Africa	CS	657	540	82.2	L
Lawal A. et al (2018)[104]	Nigeria	RC	1382	745	53.9	A
Mahtab S. et al (2017)[105]	South Africa	CS	12672	8870	70.0	G
Monge S. et al (2014)[106]	Spain	PC	271	216	79.7	G
Parchure R. et al (2016)[107]	India	RC	769	450	58.5	G
Sinshaw Y. et al (2017)[108]	Ethiopia	CS	308	238	77.3	G
Tanu E. et al (2019)[109]	Cameroon	RC	1041	818	78.6	A
Theingi P. et al (2017)[110]	Myanmar	RC	815	624	76.6	G
Torrens A. et al (2016)[111]	Brazil	RC	7628	3664	48.0	L
Wannheden C. et al (2014)[112]	Sweden	RC	127	109	85.8	G

TB / Children studies

Autor (Year)	Country	Study design	n	Success	%	Quality / newcastle
Alavi S. et al (2015)[113]	Iran	CS	177	144	81.4	L
Flick R. et al (2016)[114]	Malawi	RC	371	228	61.5	G
Hamid M. et al (2019)[115]	Pakistan	RC	1665	1421	85.3	A
Laghari M. et al (2018)[116]	Pakistan	RC	2111	1950	92.4	L
Ohene S. et al (2019)[117]	Ghana	RC	214	194	90.7	L
Tilahun G. et al (2016)[118]	Ethiopia	RC	491	420	85.5	L
Turkova A. et al (2016)[119]	European Union, Thailand, Brazil	CS	127	116	91.3	L

MDR/XDR-TB studies

Autor (Year)	Country	Study design	n	Success	%	Quality / newcastle
Addis K. et al (2017)[120]	Ethiopia	RC	242	154	63.6	L
Aibana O. et al (2017)[121]	Ukraine	RC	378	65	17.2	L
Altene R. et al (2015)[122]	Netherlands	CS	113	89	78.8	L
Atif M. et al (2017)[123]	Pakistan	RC	80	48	60.0	L
Bastard M. et al (2018)[124]	Abkhazia, Armenia, Colombia, Kenya, Kyrgyzstan, Swaziland and Uzbekistan	RC	1369	872	63.7	L
Brust J. et al (2018)[125]	South Africa	PC	206	140	68.0	L
Cegielski J. et al (2015)[126]	Estonia, Latvia, Philippines, Peru, Russia, South Africa, South Korea, Taiwan, and Thailand	PC	1244	722	58.0	L
Chen Y. et al (2018)[127]	China	RC	284	194	68.3	G
Chiang S. et al (2016)[128]	Peru	RC	232	163	70.3	L
Demile B. eta al (2018)[129]	Ethiopia	CS	381	264	69.3	L
Duraisamy K. et al (2014)[130]	India	RC	179	112	62.6	G
Francis J. et al (2018)[131]	Australia	RC	244	161	66.0	G
Heyssel S. et al (2016)[132]	Russia	PC	98	51	52.0	L
Ibrahim E. et al (2016)[133]	Egypt	RC	577	352	61.0	L
Jagiełski T. et al (2014)[134]	Poland	PC	46	8	17.4	L
Jamneja A. et al (2018)[135]	India	RC	256	132	51.6	L
Javaid A. et al (2016)[136]	Pakistan	RC	186	73	39.2	L
Javaid A. et al (2017)[137]	Pakistan	RC	535	406	75.9	L

(Continued)
than 65 years (OR 2.0; 1.7–2.4) (Fig 4), nondrinkers (OR 2.0; 1.6–2.4) (Fig 5) and HIV-negative (OR 1.9; 1.6–2.3) were two times more likely to succeed in treatment. In contrast, diabetes, the TB form and positive baseline sputum smear did not influence the results of treatment (Table 4).

Discussion

This meta-analysis showed that the success rate for the treatment of drug-sensitive TB in adults was 80.1% (95% CI: 78.4–81.7); for those with associated HIV-TB, it was 71.0% (95% CI: 63.7–77.8). In patients with XDR-TB it was 27.1% (95% CI: 12.7–44.5) and for those with MDR-TB, it was 58.4% (95% CI: 51.4–64.6). These values did not differ significantly from those reported by the WHO for 2016 (82%, 77%, 34% and 55%, respectively)

Table 2. (Continued)

Autor (Year)	Country	Study design	n	Success	Quality / newcastle
Jensenius M. et al (2016)	Norway	RC	89	45	50.6
Kawatsu L. et al (2018)	Japan	CS	172	98	57.0
Khan M. et al (2015)	Pakistan	RC	179	133	74.3
Liu Q. et al (2018)	China	RC	139	84	60.4
Maraí E. et al (2014)	South Africa	RC	351	158	45.0
Monserrat L. et al (2017)	Mexico	RC	507	399	78.7
Munoz-Torrico M. et al (2016)	Mexico	RC	90	33	36.7
Nair D. et al (2017)	India	RC	788	469	59.5
Pang Y. et al (2017)	China	RC	29	7	24.1
Parmar M. et al (2018)	India	RC	3712	781	21.0
Phuong N. et al (2016)	Viet Nam	RC	1380	1008	73.0
Schnippel K. et al (2015)	South Africa	RC	10763	4227	39.3
Trebucq A. et al (2018)	Central Africa	PC	1006	821	81.6
Udwadia Z. et al (2014)	India	PC	78	53	67.9
Verdeccia M. et al (2018)	Swaziland	RC	174	131	75.3
Viana P. et al (2018)	Brazil	PC	257	139	54.1
Villegas L. et al (2016)	Peru	RC	1039	815	78.4
Xu C. et al (2017)	China	RC	1542	734	47.6
Zhang L. et al (2017)	China	PC	537	374	69.6
Zhang Q. et al (2016)	China	RC	160	88	55.0

CC: Cases and controls study; CS: cross section study; PC: prospective cohort study; RP: retrospective cohort study; A: Acceptable; G: Good; L: Low.

https://doi.org/10.1371/journal.pone.0226507.t002
to include resources to help patients overcome individual challenges to complete treatment [161].

In children, the treatment success rate was 83.4% (95% CI: 71.0–92.9). The WHO annual Global Tuberculosis Report does not specify a treatment success rate for children. However, studies from varying countries published in 2016 reported success rates for the treatment of children with TB that were both lower and higher than that estimated in this review, e.g., 61.5% in Malawi and 91.3% in the European Union[114,119]. Although in 2018 a review was published that calculated the success rate of 78% to MDR TB treatment in children[162], this

![Fig 2. Pooled estimate of successful tuberculosis treatment outcome.](https://doi.org/10.1371/journal.pone.0226507.g002)

Table 3. Success rate in patients with XDR-TB.

Autor (Year)	n	Success (%)	95% CI	Weight (%)
Chen Y. et al (2018)	35	57.1	39.3 to 73.7	20.1
Pang Y. et al (2017)	29	24.1	10.3 to 43.5	19.4
Cegielski J. et al (2015)	58	29.3	18.1 to 42.7	21.4
Aibana O. et al (2017)	35	5.7	0.7 to 19.2	20.1
Javaid A. et al (2017)	26	23.1	8.9 to 43.6	19.1
Total (fixed effects)	183	27.5	21.3 to 34.5	100
Total (random effects)	183	27.1	12.7 to 44.5	100

https://doi.org/10.1371/journal.pone.0226507.t003
is the first pooled estimate of treatment of drug-sensitive TB success in children at the global level in the last five years.

Sputum smear conversion in the second month of treatment was previously associated with treatment success[163]. This meta-analysis confirmed that a negative sputum smear at two months of treatment was a predictor of success (OR 2.7; 95% CI: 1.5–4.8). However, sputum smear non-conversion after two months of treatment continues to be controversial as a predictor of unfavorable outcomes due to its low sensitivity and specificity for identifying treatment failure[164]. Therefore, further studies are needed to clarify this controversy.

It was also confirmed that factors such as age <65 years (OR 2.0; 95% CI 1.7–2.4), female sex (OR 1.2; 95% CI 1.1–1.3) and a new case type favor the success of TB treatment, as reported in previous studies[8,9,17,48,68,69,86,138]. Not drinking alcohol was also a predictor of favorable treatment results (OR 2.0; 95% CI 1.6–2.4). Alcohol consumption has been associated with treatment failure and a predisposition toward adverse drug effects, either because those who consumed alcohol skipped more doses during TB treatment or because alcohol may affect the immune response against *M. tuberculosis*, leading to treatment failure or a late response to treatment[44,92,130].

Nonsmokers also had a higher probability of treatment success (OR 1.5; 95% CI: 1.3–1.7) according to a study conducted in China that suggested smoking adversely affects the bacteriological response to and the result of TB treatment[53]. In Malaysia, smoking was also identified as a risk factor for unfavorable treatment outcomes[61]. In Poland, smoking did not influence the results of TB treatment[92]. In Brazil patients with a history of smoking increase 2.1 (95%
CI 1.1–4.1) times, but the possibility of failure in TB treatment. Moreover, having a larger age of 50 years shows that the possibility of failure increases 2.8 (95% CI 1.4–6.0) [165].

The HIV-TB association continues to be a challenge for public health. Studies have identified coinfection as a risk factor for unfavorable TB treatment results, and most have attributed these results to the high mortality in these patients [10,98–100,105,109]. We corroborated these results, showing that HIV-negative patients had a higher proportion of favorable treatment outcomes (OR 1.9; 95% CI 1.6–2.3), while in general, the treatment success rate in coinfected patients was low (70.5%).

Fig 4. Pooled estimate to age <65 years as a factors predictive of favorable outcomes of tuberculosis treatment.

https://doi.org/10.1371/journal.pone.0226507.g004
Table 4. Factors predictive of favorable outcomes of tuberculosis treatment.

Predictors of TB treatment success
Included studies
Negative smear in the 2nd month
Age <65 years
Non-alcoholic
HIV Negatives
New cases
No smoking
Urban residence
Female sex
No Diabetes
Pulmonary Tuberculosis
Positive smear on admission

https://doi.org/10.1371/journal.pone.0226507.g005

Fig 5. Pooled estimate to Non-alcoholic as a factors predictive of favorable outcomes of tuberculosis treatment.

https://doi.org/10.1371/journal.pone.0226507.t004
In this review, diabetes did not influence treatment outcomes. Our results coincide with those reported in Georgia and Malaysia\cite{40,61}, although it was previously suggested that diabetes was associated with unfavorable TB treatment results\cite{56,81}.

Among the limitations of this study, it is necessary to mention that the use of observational studies for a meta-analysis could induce errors by finding false significant associations when combining small studies affected by confounding\cite{166}. Additionally, it is known that the quality of a meta-analysis depends on the quality of the included studies; in most studies, the quality was classified as low, which may be associated with the fact that most of the studies were retrospective and based on mandatory notification systems, where it is difficult to control due to loss at follow-up and other confounding factors. The degree of heterogeneity was also high among the studies; therefore, the random effects method was used to obtain the pooled results. Finally, the methodological variations among the included studies could also compromise the results of the meta-analysis.

Conclusion

The study findings suggest that the rate of successful TB treatment at the global level is good but is still below the defined threshold of 85%. Factors such as age, sex, alcohol consumption, smoking, sputum smear non-conversion at two months of treatment and HIV affect the results of TB treatment.

Supporting information

S1 File. PRISMA 2009 checklist. Predictors of TB treatment success. (DOC)

S1 Fig. Pooled estimate of successful tuberculosis treatment outcome in America. (TIF)

S2 Fig. Pooled estimate of successful tuberculosis treatment outcome in Africa. (TIF)

S3 Fig. Pooled estimate of successful tuberculosis treatment outcome in Europe. (TIF)

S4 Fig. Pooled estimate of successful tuberculosis treatment outcome in Asia. (TIF)

S5 Fig. Pooled estimate of successful tuberculosis treatment outcome in Oceania. (TIF)

S6 Fig. Pooled estimate of successful tuberculosis treatment outcome in children. (TIF)

S7 Fig. Pooled estimate of successful tuberculosis treatment outcome in patients coinfected with HIV. (TIF)

S8 Fig. Pooled estimate of successful MDR-TB treatment outcome. (TIF)
Author Contributions

Conceptualization: Ninfa Marlen Chaves Torres, María Belen Arriaga, Eduardo Martins Netto.

Data curation: Jecxy Julieth Quijano Rodríguez, Pablo Sebastián Porras Andrade.

Formal analysis: Ninfa Marlen Chaves Torres, Jecxy Julieth Quijano Rodríguez, Pablo Sebastián Porras Andrade, María Belen Arriaga, Eduardo Martins Netto.

Investigation: Ninfa Marlen Chaves Torres, Jecxy Julieth Quijano Rodríguez, Eduardo Martins Netto.

Methodology: Ninfa Marlen Chaves Torres, Eduardo Martins Netto.

Writing – original draft: Ninfa Marlen Chaves Torres, Jecxy Julieth Quijano Rodríguez, Pablo Sebastián Porras Andrade, Eduardo Martins Netto.

Writing – review & editing: Ninfa Marlen Chaves Torres, María Belen Arriaga, Eduardo Martins Netto.

References

1. World Health Organization. Global tuberculosis report 2018. In. Geneva, Switzerland: WHO; 2018.
2. World Health Organization. WHO End TB Strategy [Internet]. 2015. Available from: www.who.int/tb/post2015_strategy/en/
3. Cox H, Nicol MP. Comment Tuberculosis eradication: renewed commitment and global investment required. Lancet Infect Dis. 2018; 18(3):228–9. https://doi.org/10.1016/S1473-3099(17)30692-8 PMID: 29223584
4. World Health Organization. Global Health Observatory data repository [Internet]. Treatment coverage Data by WHO region. 2019. Available from: https://apps.who.int/gho/data/view.main.57056ALL
5. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses [Internet]. The Ottawa Hospital—Research Institute. 2009. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
6. World Health Organization. Revised international definitions in tuberculosis control. Int J Tuberc Lung Dis. 2001; 5(3):213–215. PMID: 11326818
7. Adane K, Spigt M, Dinant G.J. Tuberculosis treatment outcome and predictors in northern Ethiopian prisons: A five-year retrospective analysis. BMC Pulm Med [Internet]. 2018; 18(1). https://doi.org/10.1186/s12890-018-0600-1
8. Ali MK, Karanja S, Karama M. Factors associated with tuberculosis treatment outcomes among tuberculosis patients attending tuberculosis treatment centres in 2016–2017 in Mogadishu, Somalia. Pan Afr Med J. 2017; 28:1–14.
9. Amante TD, Ahemda TA. Risk factors for unsuccessful tuberculosis treatment outcome (failure, default and death) in public health institutions, Eastern Ethiopia. Pan Afr Med J. 2015; 20:247. https://doi.org/10.11604/pamj.2015.20.247.3345 PMID: 26161170
10. Budgell EP, Evans D, Schnippel K, Ibe P, Long L, Rosen S. Outcomes of treatment of drug-susceptible tuberculosis at public sector primary healthcare clinics in Johannesburg, South Africa: A retrospective cohort study. South African Med J [Internet]. 2016; 106(10):1002–9.
11. Ogbudebe CL, Izugodi S, Abu CE. Magnitude and treatment outcomes of pulmonary tuberculosis patients in a poor urban slum of Abia State, Nigeria. Int J Mycobacteriology [Internet]. 2016 Jun; 5 (2):205–10. https://doi.org/10.1016/j.ijmyco.2016.03.003
12. Ejeta E, Beyene G, Balay G, Bonsa Z, Abebe G. Factors associated with unsuccessful treatment outcome in tuberculosis patients among refugees and their surrounding communities in Gambella Regional State, Ethiopia. PLoS One [Internet]. 2018; 13(10). https://doi.org/10.1371/journal.pone.0205468
13. El-Shabrawy M, El-Shafei DA. Evaluation of treatment failure outcome and its predictors among pulmonary tuberculosis patients in Sharkia Governorate, 2013–2014. Egypt J Chest Dis Tuberc [Internet]. 2017; 66(1):145–52. https://doi.org/10.1016/j.ajcdt.2015.11.002
14. Ershova J V, Podewils LJ, Bronner LE, Stockwell HG, Diamini S, Mametja LD. Evaluation of adherence to national treatment guidelines among tuberculosis patients in three provinces of South Africa. SAMJ South African Med J [Internet]. 2014; 104(5):362–8. https://doi.org/10.7196/SAMJ.7655 PMID: 25212205

15. Esmaei A, Tsegaye G, Wubie M, Abera H, Endris M. Treatment outcomes of tuberculosis patients in Debre Markos Referral Hospital, north west Ethiopia (June 2008-August 2013): A five year retrospective study. Int J Pharm Sci Res [Internet]. 2014; 5(4):1500–5. https://doi.org/10.13040/IJPSR.0975-8232.5(4).1500-05

16. Gebrezagabiher G, Romha G, Ejeta E, Asebe G, Zemene E, Ameni G. Treatment Outcome of Tuberculosis Patients under Directly Observed Treatment Short Course and Factors Affecting Outcome in Southern Ethiopia: A Five-Year Retrospective Study. PLoS One [Internet]. 2016; 11(2):e0150560. https://doi.org/10.1371/journal.pone.0150560

17. Kosgei RJ, Sithiene JK, Kipruto H, Kimenye K, Gathara D, Odawa FX, et al. Gender differences in treatment outcomes among 15–49 year olds with smear-positive pulmonary tuberculosis in Kenya. Int J Tuberc Lung Dis [Internet]. 2015; 19(10):1176–81. https://doi.org/10.1016/j.ijtld.2015.07.007

18. Mbatchou BH, Dahirou F, Tchieche C, Wandi J, Ngiié C, Nana-Metchéjin A, et al. Clinical characteristics and outcomes of tuberculosis in Douala, Cameroon: A 7-year retrospective cohort study. Int J Tuberc Lung Dis [Internet]. 2016 Dec; 20(12):1609–14. https://doi.org/10.1016/j.ijtld.2016.10.020

19. Mhimbira F, Heilla J, Maroa T, Kisandu S, Chiryamkubi M, Said K, et al. Home-Based and Facility-Based Directly Observed Therapy of Tuberculosis Treatment under Programmatic Conditions in Urban Tanzania. PLoS One. 2016; 11(8):e0161171. https://doi.org/10.1371/journal.pone.0161171 PMID: 27513331

20. Mlotshwa M, Abraham N, Beery M, Williams S, Smit S, Uys M, et al. Risk factors for tuberculosis smear non-conversion in Eden district, Western Cape, South Africa, 2007–2013: a retrospective cohort study. BMC Infect Dis [Internet]. 2016; 16(1):365. DOI 10.1186/s12879-016-1712-y

21. Mugomeri E, Bekele BS, Maibvisi C, Tarirai C. Trends in diagnostic techniques and factors associated with tuberculosis treatment outcomes in Lesotho, 2010–2015. South African J Infect Dis [Internet]. 2018; 33(1):18–23. https://doi.org/10.1080/23120053.2017.1376545

22. Belachew A, Kebamo S, Teklie T, Alemkere G. Poor treatment outcomes and its determinants among tuberculosis patients in selected health facilities in East Wollega, Western Ethiopia. PLoS One [Internet], 2018; 13(10). https://doi.org/10.1371/journal.pone.0206227

23. Nafae R, Elshahat H, Said A, Ibrahim M. Reviewing treatment outcomes of tuberculosis patients at Zagazig Chest Hospital (2008–2012), Egypt J Chest Dis Tuberc [Internet]. 2017; 56(4):623–30. 10.1016/j.ejcdt.2017.10.006

24. Nanzaluka FH, Chibuye S, Kasapo CC, Langa N, Nyimibili S, Moonga G, et al. Factors associated with unfavourable tuberculosis treatment outcomes in Lusaka, Zambia, 2015: a secondary analysis of routine surveillance data. Pan Afr Med J. 2019 Apr 8; 32:159. https://doi.org/10.11604/pamj.2019.32.159.18472 PMID: 31308862

25. Djiouma FN, Nouborn M, Ngomba AV, Donfack H, Kouommboua PSM, Saah MAF. Determinants of death among tuberculosis patients in a semi urban diagnostic and treatment centre of Bafoussam, West Cameroon: a retrospective case-control study. Pan Afr Med J [Internet]. 2015; 12:223. https://doi.org/10.11604/pamj.2015.12.2015.25212205

26. Oshi SN, Alobu I, Ukwaja KN, Oshi DC. Investigating gender disparities in the profile and treatment outcomes of tuberculosis in Ebonyi state, Nigeria. Epidemiol. Infect. (2015), 143, 932–942. https://doi.org/10.1017/S095026881400291X PMID: 2535040

27. Peltzer K, Louw JS. Prevalence and associated factors of tuberculosis treatment outcome among hazardous or harmful alcohol users in public primary health care in South Africa. Afr Health Sci [Internet]. 2014 Mar; 14(1):157–66.

28. Ali Saleh AA, Hayat A, Azhar Syed SA. Evaluating treatment outcomes and durations among cases of smear-positive pulmonary tuberculosis in Yemen: A prospective follow-up study. J Pharm Policy Pract. 2017; 10(1):1–10. https://doi.org/10.1186/s40545-017-0124-8 PMID: 29214026

29. Ukwaja KN, Oshib DC, Oshib SN, Alobu I. Profile and treatment outcome of smear-positive TB patients who failed to smear convert after 2 months of treatment in Nigeria. Trans R Soc Trop Med Hyg [Internet]. 2014; 108(7):431–8. https://doi.org/10.1093/trstmh/tru070 PMID: 24846911

30. Wondale B, Medihn G, Teklu T, Mersha W, Tamirat M, Ameni G. A retrospective study on tuberculosis treatment outcomes at Jinka General Hospital, southern Ethiopia. BMC Res Notes [Internet]. 2017; 10(1):680. https://doi.org/10.1186/s40249-018-0395-6
32. Yoko JL, Tumbo JM, Mills AB, Kabongo CD. Characteristics of pulmonary tuberculosis patients in Moses Kotane region North West Province, South Africa. South African Fam Pract [Internet]. 2017; 59 (2):78–81. https://doi.org/10.1080/20786190.2016.1272249

33. Zenebea T, Teferab E. Tuberculosis treatment outcome and associated factors among smear-positive pulmonary tuberculosis patients in Afar, Eastern Ethiopia: a retrospective study. Brazilian J Infect Dis [Internet]. 2016; 20(6):635–6. https://doi.org/10.1016/j.bjid.2016.07.012

34. Zenebe Y, Adem Y, Mekonnen D, Derbie A, Bereded F, Bantie M, et al. Profile of tuberculosis and its response to anti-TB drugs among tuberculosis patients treated under the TB control programme at Felege-Hiwot Referral Hospital, Ethiopia. BMC Public Health. 2016 Aug; 16:688. https://doi.org/10.1186/s12889-016-3362-9 PMID: 27485507

35. Cailleaux-Cezar M, Loredo C, Silva JRL, Conde MB. Impact of smoking on sputum culture conversion and pulmonary tuberculosis treatment outcomes in Brazil: a retrospective cohort study—Impacto do tabagismo na conversão de cultura e no desfecho do tratamento da tuberculose pulmonar no Brasil: estudo d. J Bras Pneumol [Internet]. 2018; 44(2):99–105. https://doi.org/10.1590/S1806-3756201700000161

36. Calle AM, Cuartas JM, Álvarez T. Factors associated with successful treatment of tuberculosis patients in Medellín, 2014. CES salud pública. 2017; 8 (7): 34–47.

37. Djibuti M, Mirvelashvili E, Makharashvili N, Magee MJ. Household income and poor treatment outcome among patients with tuberculosis in Georgia: a cohort study. BMC Public Health. 2014 Jan; 14:88. https://doi.org/10.1186/1471-2458-14-88 PMID: 2447154

38. Lackey B, Seas C, Van der Stuyft P, Otero L. Patient Characteristics Associated with Tuberculosis Treatment Default: A Cohort Study in a High-Incidence Area of Lima, Peru. PLoS One. 2015; 10(6): e0128541. https://doi.org/10.1371/journal.pone.0128541 PMID: 26047666

39. Maciel EL, Reis-Santos B. Determinants of tuberculosis in Brazil: from conceptual framework to practical application. Rev Panam Salud Publica [Internet]. 2015; 38(1):28–34.

40. Magee MJ, Kempker RR, Kipiani M, Gandhi NR, Darchia L, Tukvadze N, et al. Diabetes mellitus is associated with cavities, smear grade, and multidrug-resistant tuberculosis in Georgia. Int J Tuberc Lung Dis [Internet]. 2015 Jun; 19(6):685–92. https://doi.org/10.5588/ijtld.14.0811

41. Pereira JC, Silva MR, Costa RR, Guimarães MD, Leite IC. Profile and follow-up of patients with tuberculosis in a priority city in Brazil—Perfil e seguimento dos pacientes com tuberculose em município prioritário no Brasil. Rev Saude Publica [Internet]. 2015; 49. https://doi.org/10.1590/S0034-8910.2015049005304 PMID: 25741659

42. Reis-Santos B, Pellacani-Posses I, Macedo LR, Golub JE, Riley LW, Maciel EL, et al. Directly observed therapy of tuberculosis in Brazil: Associated determinants and impact on treatment outcome. Int J Tuberc Lung Dis [Internet]. 2015 Oct; 19(10):1188–93. https://doi.org/10.5588/ijtld.14.0776

43. Romanowski K, Chiang L, Roth D, Krajden M, Tang P, Cook V, et al. Treatment outcomes for isoniazid-resistant tuberculosis under program conditions in British Columbia, Canada. BMC Infect Dis [Internet]. 2017 Sep; 17(1):604. https://doi.org/10.1186/s12879-017-2706-0 PMID: 28870175

44. Silva MR, Pereira JC, Costa RR, Dias JA, Guimarães MD, Leite IC. Drug addiction and alcoholism as predictors for tuberculosis treatment default in Brazil: A prospective cohort study. Epidemiol Infect [Internet]. 2017; 145(16):3516–24. https://doi.org/10.1017/S0950268817002631 PMID: 29173226

45. Snyder RE, Marlow MA, Phuphanich ME, Riley LW, Maciel EL. Risk factors for differential outcome following directly observed treatment (DOT) of slum and non-slum tuberculosis patients: A retrospective cohort study. BMC Infect Dis [Internet]. 2016; 16(1). https://doi.org/10.1186/s12889-016-1859-1 PMID: 27847383

46. Viana PV, Goncalves MJ, Basta PC. Ethnic and Racial Inequalities in Notified Cases of Tuberculosis in Brazil. PLoS One. 2016; 11(5):e0154658. https://doi.org/10.1371/journal.pone.0154658 PMID: 27176911

47. Viegas AM, Miranda SS, Haddad JP, Ceccato MG, Carvalho WS. Association of outcomes with comprehension, adherence and behavioral characteristics of tuberculosis patients using fixed-dose combination therapy in contagem, Minas Gerais, Brazil. Rev Inst Med Trop Sao Paulo [Internet]. 2017; 59. https://doi.org/10.1590/S1678-99462017509028

48. Ahmad T, Khan MM, Khan MM, Ejeta E, Karami M, Ohia C, et al. Treatment outcome of tuberculosis patients under directly observed treatment short course and its determinants in Shangla, Khyber-Pakhtunkhwa, Pakistan: A retrospective study. Int J Mycobacteriology [Internet]. 2017; 6(4):360–4. https://doi.org/10.4103/ijm.jm.ijm_69_17 PMID: 29171450

49. Mohammadzadeh KA, Ghyaoomi A, Maghsoudloo D. Evaluation of factors associated with failure of tuberculosis treatment under DOTS in northern Islamic Republic of Iran. East Mediterr Health J. 2016 Apr; 22(2):87–94. https://doi.org/10.26719/2016.22.2.87 PMID: 27180736
50. Alqahtani S, Kashkary A, Asiri A, Kamal H, Binongo J, Castro K, et al. Impact of mobile teams on tuberculosis treatment outcomes, Riyadh Region, Kingdom of Saudi Arabia, 2013–2015. J Epidemiol Glob Health [Internet]. 2018; 7:S29–33. https://doi.org/10.1016/j.jegh.2017.09.005

51. Atif M, Sulaiman SA, Shafie AA, Ali I, Asif M, Babar ZU. Treatment outcome of new smear positive pulmonary tuberculosis patients in Penang, Malaysia. BMC Infect Dis. 2014 Jul; 14:399. https://doi.org/10.1186/1471-2334-14-399 PMID: 25037452

52. Babalik A, Kiziltas S, Gencer S, Kilicaslan Z. An investigation into the relationship between region specific quality of life and adverse tuberculosis treatment outcomes in Istanbul, Turkey. Rev Port Pneumol [Internet]. 2014; 20(5):248–53. https://doi.org/10.1016/j.rppneu.2014.01.003

53. Leung CC, Yew WW, Chan CK, Chang KC, Law WS, Lee SN, et al. Smoking adversely affects treatment response, outcome and relapse in tuberculosis. Eur Respir J [Internet]. 2015; 45(3):738–45. https://doi.org/10.1183/09031936.00114214

54. Choi H, Lee M, Chen R, Kim Y, Yoon S, Joh J, et al. Predictors of pulmonary tuberculosis treatment outcomes in South Korea: A prospective cohort study, 2005–2012. BMC Infect Dis [Internet]. 2014; 14 (1).

55. Gadoev J, Asadov D, Tillashtaykhov M, Taylor-Smith K, Isaakidis P, et al. Factors Associated with Unfavorable Treatment Outcomes in New and Previously Treated TB Patients in Uzbekistan: A Five Year Countrywide Study. PLoS ONE. 2015; 10(6): e0128907. https://doi.org/10.1371/journal.pone.0128907 PMID: 26075615

56. Hongguang C, Min L, Shiwen J, Fanghui G, Shaoping H, Tiejie G, et al. Impact of diabetes on clinical presentation and treatment outcome of pulmonary tuberculosis in Beijing. Epidemiol Infect [Internet]. 2015; 143(1):150–6. https://doi.org/10.1017/S0950268814000079X PMID: 24717600

57. Jackson C, Stagg HR, Doshi A, Pan D, Sinha A, Batra R, et al. Tuberculosis treatment outcomes among disadvantaged patients in India. Public Heal Action [Internet]. 2017; 7(2):134–40. https://doi.org/10.5588/pha.16.0107

58. Khazaei S, Hassanzadeh J, Rezaieian S, Ghaderi E, Khazaei S, Hafshejani A, et al. Treatment outcome of new smear positive pulmonary tuberculosis patients in Hamadan, Iran: A registry-based cross-sectional study. Egypt J Chest Dis Tuberc [Internet]. 2016; 65(4):825–30. https://doi.org/10.1016/j.ejcdt.2016.05.007

59. Kwon YS, Kim YH, Song JU, Jeon K, Song J, Ryu YJ, et al. Risk factors for death during pulmonary tuberculosis treatment in Korea: a multicenter retrospective cohort study. J Korean Med Sci [Internet]. 2014 Sep; 29(9):1226–31. https://doi.org/10.3346/jkms.2014.29.9.1226

60. Kwon YS, Kim YH, Song JU, Jeon K, Song J, Ryu YJ, et al. Risk factors for death during pulmonary tuberculosis treatment in Korea: a multicenter retrospective cohort study. J Korean Med Sci [Internet]. 2014 Sep; 29(9):1226–31. https://doi.org/10.3346/jkms.2014.29.9.1226

61. Liew SM, Khoo EM, Ho BK, Lee YK, Mimi O, Fazlina MY, et al. Tuberculosis in malaysia: Predictors of treatment outcomes in a national registry. Int J Tuberc Lung Dis [Internet]. 2015; 19(7):764–71. https://doi.org/10.5588/ijtld.14.0767A

62. Lin Y, Enarson DA, Du J, Dlodlo RA, Chiang CY, Rusen ID. Risk factors for unfavourable treatment outcome among new smear-positive pulmonary tuberculosis cases in China. Public Heal Action [Internet]. 2017; 7(4):299–303. https://doi.org/10.5588/pha.17.0056

63. Lo H-Y, Yang S-L, Lin H-H, Bai K-J, Lee J-J, Lee T-I, et al. Does enhanced diabetes management reduce the risk and improve the outcome of tuberculosis? Int J Tuberc Lung Dis [Internet]. 2016; 20 (3):376–82. https://doi.org/10.5588/ijtld.15.0654

64. Lwin ZM, Sahu SK, Owiti P, Chinnakali P, Majumdar SS. Public-private mix for tuberculosis care and control in Myanmar: A strategy to scale up? Public Heal Action [Internet]. 2017; 7(1):15–20. https://doi.org/10.5588/pha.16.0103

65. Morishita F, Gonzales AM, Lew W, Hyun K, Yadav RP, Reston JC, et al. Bringing state-of-The-Art diagnostics to vulnerable populations: The use of a mobile screening unit in active case finding for tuberculosis in Palawan, the Philippines. PLoS One [Internet]. 2017; 12(2). https://doi.org/10.1371/journal.pone.0171310 PMID: 28152082

66. Mukhtar F, Butt ZA. Cohort profile: the diabetes-tuberculosis treatment outcome (DITTO) study in Pakistan. BMJ Open. 2016 Dec; 6(12):e012970. https://doi.org/10.1136/bmjopen-2016-012970 PMID: 27913560

67. Mundra A, Deshmukh P, Dawale A. Magnitude and determinants of adverse treatment outcomes among tuberculosis patients registered under Revised National Tuberculosis Control Program in a Tuberculosis Unit, Wardha, Central India: A record-based cohort study. J Epidemiol Glob Health [Internet]. 2017; 7(2):111–8. https://doi.org/10.1016/j.jegh.2017.02.002
68. Mundra A, Deshmukh P, Dawale A. Determinants of adverse treatment outcomes among patients treated under Revised National Tuberculosis Control Program in Wardha, India: Case–control study. Med J Armed Forces India [Internet]. 2018; 74(3):241–9. https://doi.org/10.1016/j.mjafi.2017.07.008

69. Ni W, Yan M, Hong L, Jian D, Hui Z, Heng X, et al. Risk of Treatment Failure in Patients with Drug-susceptible Pulmonary Tuberculosis in China. Biomed Environ Sci [Internet]. 2016; 29(8):612–7.

70. Piparva K.G. Treatment outcome of tuberculosis patients on dota therapy for category 1 and 2 at district tuberculosis centre. Int J Pharm Sci Res [Internet]. 2017; 8(1):207–12. https://doi.org/10.13040/IJPSR.0975-8232.8(1).207-12

71. Rahimy N, Luuira V, Charunwanghana P, Iamsirithaworn S, Sutherat M, Phumratanaprapiw W, et al. Predicting factors of treatment failure in smear positive pulmonary tuberculosis: A retrospective cohort study in Bangkok using a combination of symptoms and sputum smear/chest radiography. J Med Assoc Thai [Internet]. 2018; 101(2):181–8.

72. Rao P, Chawla K, Shenoy V, Mukhopadhyay C, Brahmanavar V, Kamath A, et al. Study of drug resistance in pulmonary tuberculosis cases in south coastal Karnataka. J Epidemiol Glob Health [Internet]. 2015; 5(3):275–81.

73. Sadykova L, Abramavicius S, Maimakov T, et al. A retrospective analysis of treatment outcomes of drug-susceptible TB in Kazakhstan, 2013–2016. Medicine (Baltimore). 2019; 98(26):e16071. https://doi.org/10.1097/MD.00000000000016071 PMID: 31261516

74. Schwitters A, Kaggwa M, Omel P, Nagadya G, Kisa N, Dalal S. Tuberculosis incidence and treatment completion among Ugandan prison inmates. Int J Tuberc Lung Dis [Internet]. 2014; 18(7):781–786+i. https://doi.org/10.5588/ijtld.13.0934

75. Shahezraei M, Reza Maracy MR, Farid F. Factors affecting mortality and treatment completion of tuberculosis patients in Isfahan Province from 2006 to 2011. Int J Prev Med [Internet]; 2015;2015-Septe. Doi:10.4103/2008-7802.165157

76. Thomas BE, Thiruvengada K, S. R, Kadam D, Ovung S, Sivakumar S, et al. Smoking, alcohol use disorder and tuberculosis treatment outcomes: A dual co-morbidity burden that cannot be ignored. PLoS ONE. 2019. 14(7): e0220507. 10.1371/journal.pone.0220507 PMID: 31365583

77. Wang X, Cai J, Wang D, Wang Q, Liang H, Ma A, et al. Registration and management of community patients with tuberculosis in north-west China. Public Health [Internet]. 2015; 129(12):1585–90. https://doi.org/10.1016/j.puhe.2015.09.005

78. Wang X-M, Yin S-H, Du J, Du M-L, Wang P-Y, Wu J, et al. Risk factors for the treatment outcome of retreated pulmonary tuberculosis patients in China: an optimized prediction model. Epidemiol Infect. 2017 Jul; 145(9):1805–14. doi:10.1017/S0950268817000656 PMID: 28397611

79. Wen Y, Zhang Z, Li X, Xia D, Ma J, Dong Y, et al. Treatment outcomes and factors affecting unsuccessful outcome among new pulmonary smear positive and negative tuberculosis patients in Anqing, China: A retrospective study. BMC Infect Dis [Internet]. 2018; 18(1). https://doi.org/10.1186/s12879-018-3019-7

80. He X-C, Tao N-N, Liu Y, Zhang X-X, Li H-C. Epidemiological trends and outcomes of extensively drug-resistant tuberculosis in Shandong, China. BMC Infect Dis. 2017 Aug; 17(1):555. https://doi.org/10.1186/s12879-017-2652-x PMID: 28793873

81. Yoon Y, Jung J, Jeon E, Seo H, Ryu Y, Yim J, et al. The effect of diabetes control status on treatment response in pulmonary tuberculosis: A prospective study. Thorax [Internet]. 2017; 72(3):263–70. https://doi.org/10.1136/thoraxjnl-2015-207686 PMID: 27553224

82. Zhang Q, Gaafer M, El-Bayoumy I. Determinants of default from pulmonary tuberculosis treatment in Kuwait. Sci World J [Internet]. 2014; 2014. https://doi.org/10.1155/2014/672825

83. Aibana O, Slavuckij A, Bachmaha M, Krasiuk V, Rybak N, Flanigan TP, et al. Patient predictors of poor drug sensitive tuberculosis treatment outcomes in Kyiv Oblast, Ukraine. F1000Research [Internet]. 2018; 6. https://doi.org/10.12688/f1000research.12687.1

84. Cruz-Ferro E, Ursúa-Díaz MI, Taboada-Rodríguez JA, Hervada-Vidal X, Anibarro L, Túñez V. Epidemiology of tuberculosis in galicia, spain, 16 years after the launch of the galician tuberculosis programme. Int J Tuberc Lung Dis [Internet]. 2014; 18(2):134–40. https://doi.org/10.5588/ijtld.13.0419

85. Dias M, Gaio R, Sousa P, Abranches M, Gomes M, Oliveira O, et al. Tuberculosis among the homeless: Should we change the strategy? Int J Tuberc Lung Dis [Internet]. 2017 Mar; 21(3):327–32. https://doi.org/10.5588/ijtld.16.0597

86. Gaborita BJ, Revest M, Roblottc F, Maakaroun-Vernessed Z, Bemere P, Guimard T, et al. Characteristics and outcome of multidrug-resistant tuberculosis in a low-incidence area. Med Mal Infect [Internet]. 2018; 48(7):457–64. https://doi.org/10.1016/j.medmal.2018.04.400
87. Holden IK, Lillebaek T, Seersholt N, Andersen PH, Wejse C, Johansen IS. Predictors for Pulmonary Tuberculosis Treatment Outcome in Denmark 2009–2014. Sci Rep 9, 12995 (2019) https://doi.org/10.1038/s41598-019-04939-9 PMID: 31506499

88. Karo B, Hauer B, Hollo V, Van-Der-Werf MJ, Fiebig L, Haas W. Tuberculosis treatment outcome in the European Union and European Economic Area: an analysis of surveillance data from 2002–2011. Eurosurveillance [Internet]. 2016; 20(48):30087. 10.2807/1560-7917

89. Lucenko I, Riekstina V, Perevosckivs J, Mozgis D, Khogali M, Gadov J, et al. Treatment outcomes among drug-susceptible tuberculosis patients in Latvia, 2006–2010. Public Heal Action [Internet]. 2014; 4:554–8. https://doi.org/10.5588/pha.14.0040

90. Moreno-Gómez M, Alonso-Sardón M, Iglesias-de-Sena H, Aranha de Macedo L, Mirón-Canelo J. Prospective follow-up of results of tuberculosis treatment. Rev Esp Quimioter [Internet]. 2014; 27(4):244–51.

91. Priedeman M, Curtis S, Angeles G, Mullen S, Senik T. Evaluating the impact of social support services on tuberculosis treatment default in Ukraine. PLoS One [Internet]. 2018; 13(8). https://doi.org/10.1371/journal.pone.0199513

92. Przybylski G, Dąbrowska A, Trzcinska H. Alcoholism and other socio-demographic risk factors for adverse TB-drug reactions and unsuccessful tuberculosis treatment–data from ten years’ observation at the Regional Centre of Pulmonology, Bydgoszcz, Poland. Med Sci Monit, 2014; 20: 444–453. https://doi.org/10.12659/MSM.890012 PMID: 24643127

93. Rodriguez-Valín E, Villarrubia Enseñat S, Díaz García O, Martínez Sánchez EV. Risk Factors for Potentially Unsuccessful Results and Mortality during Tuberculosis Treatment in Spain. Rev Esp Salud Publica [Internet]. 2015; 89(5):459–70.

94. Alonso-Sandoñ M, Iglesias-de-Sena H, Aranha de Macedo L, Mirón-Canelo J. Prospective follow-up of results of tuberculosis treatment. Rev Esp Quimioter [Internet]. 2014; 27(4):244–51.

95. Ambadekar NN, Zodpey SP, Soni RN, Lanjewar SP. Treatment outcome and its attributes in TB-HIV co-infected patients registered under Revised National TB Control Program: A retrospective cohort analysis. Public Health [Internet]. 2015; 129(6):783–8. https://doi.org/10.1016/j.puhe.2015.03.006

96. Do-Prado TN, Rajan J V, Miranda AE, Dias EDS, Cosme LB, Possuelo LG, et al. Clinical and epidemiological characteristics associated with unfavorable tuberculosis treatment outcome in HIV-TB co-infected patients in Brazil: a hierarchical polytomous analysis. Braz J Infect Dis. 2017 Mar; 21(2):162–70. https://doi.org/10.1016/j.bjid.2016.11.006 PMID: 27936379

97. Przybylski G, Dąbrowska A, Trzcinska H. Alcoholism and other socio-demographic risk factors for adverse TB-drug reactions and unsuccessful tuberculosis treatment–data from ten years’ observation at the Regional Centre of Pulmonology, Bydgoszcz, Poland. Med Sci Monit, 2014; 20: 444–453. https://doi.org/10.12659/MSM.890012 PMID: 24643127

98. Potentially Unsuccessful Results and Mortality during Tuberculosis Treatment in Spain. Rev Esp Quimioter [Internet]. 2014; 27(4):244–51.

99. Moren戈mez M, Alonso-Sadron M, Iglesias-de-Sena H, Aranha de Macedo L, Miron-Canelo J. Prospective follow-up of results of tuberculosis treatment. Rev Esp Quimioter [Internet]. 2014; 27(4):244–51.

100. Belayneh M, Giday K, Lemma H. Treatment outcome of human immunodeficiency virus and tuberculosis co-infected patients in public hospitals of eastern and southern zone of Tigray region, Ethiopia. Brazilian J Infect Dis [Internet]. 2015; 19(1):47–51. https://doi.org/10.1016/j.bjid.2014.09.002

101. Jacobsen K, Moll A, Friedland G, Shenoi S. Successful tuberculosis treatment outcomes among HIV/TB coinfected patients down-referred from a district hospital to primary health clinics in rural South Africa. PLoS One [Internet]. 2015; 10(5). https://doi.org/10.1371/journal.pone.0125588

102. Lawal A, Aliyu M, Galadanci N, Musa B, Lawan U, Bashir U, et al. The impact of rural residence and HIV infection on poor tuberculosis treatment outcomes in a large urban hospital: A retrospective cohort analysis. Int J Equity Health [Internet]. 2018; 17(1). https://doi.org/10.1186/s12939-017-0714-8 PMID: 29310659
Predictors of TB treatment success

105. Mahtab S, Coetzee D. Influence of HIV and other risk factors on tuberculosis. SAMJ South African Med J [Internet]. 2017; 107(5):428–34.

106. Monge S, Diez M, Pulido F, Iribarren J, Campins A, Arazo P, et al. Tuberculosis in a cohort of HIV-positive patients: Epidemiology, clinical practice and treatment outcomes. Int J Tuberc Lung Dis [Internet]. 2014; 18(6):700–708+i. https://doi.org/10.5588/ijtld.13.0778

107. Parchure R, Kulkarni V, Gangakhedkar G, Swaminathan S. Treatment outcomes of daily anti-tuberculosis treatment in HIV-infected patients seeking care at a private clinic in India. Int J Tuberc Lung Dis [Internet]. 2016; 20(10):1348–53. https://doi.org/10.5588/ijtld.16.0098

108. Sinshaw Y, Alemu S, Fekadu A, Gizachew M. Successful TB treatment outcome and its associated factors among people living with HIV and AIDS in Fako Division of Cameroon. PLoS ONE. 2019; 14(7): e0218800. 10.1371/journal.pone.0218800 PMID: 31361755

109. Theingia P, Bartholomay P, Silva S, Khogali M, Verdonck K, Bissell K. HIV testing, antiretroviral therapy, and treatment outcomes in new cases of tuberculosis in Brazil, 2011. Rev Panam Salud Publica [Internet]. 2016; 39(1):26–31.

110. Wannheden C, Norrby M, Berggren I, Westling K. Tuberculosis among HIV-infected patients in Stockholm, Sweden, 1987–2010: Treatment outcomes and adverse reactions. Scand J Infect Dis [Internet]. 2014 May; 46(5):331–9. https://doi.org/10.3109/00365548.2013.878033 PMID: 24512373

111. Alavi SM, Salmanzadeh S, Bakhhtiyarinya P, Albagi A, Hemmatnia F, Alavi L. Prevalence and treatment outcome of pulmonary and extrapulmonary pediatric tuberculosis in southwestern Iran. Casp J Intern Med [Internet]. 2015; 6(4):213–9.

112. Alavi SM, Salmanzadeh S, Bakhhtiyarinya P, Albagi A, Hemmatnia F, Alavi L. Prevalence and treatment outcome of pulmonary and extrapulmonary pediatric tuberculosis in southwestern Iran. Casp J Intern Med [Internet]. 2015; 6(4):213–9.

113. Alavi SM, Salmanzadeh S, Bakhhtiyarinya P, Albagi A, Hemmatnia F, Alavi L. Prevalence and treatment outcome of pulmonary and extrapulmonary pediatric tuberculosis in southwestern Iran. Casp J Intern Med [Internet]. 2015; 6(4):213–9.

114. Alavi SM, Salmanzadeh S, Bakhhtiyarinya P, Albagi A, Hemmatnia F, Alavi L. Prevalence and treatment outcome of pulmonary and extrapulmonary pediatric tuberculosis in southwestern Iran. Casp J Intern Med [Internet]. 2015; 6(4):213–9.

115. Alavi SM, Salmanzadeh S, Bakhhtiyarinya P, Albagi A, Hemmatnia F, Alavi L. Prevalence and treatment outcome of pulmonary and extrapulmonary pediatric tuberculosis in southwestern Iran. Casp J Intern Med [Internet]. 2015; 6(4):213–9.

116. Annette B, Bashir A, Ahmad N, Fatima RK, Saba S, Scailhill S. Predictors of unsuccessful interim treatment outcomes of multidrug resistant tuberculosis patients. BMC Infect Dis [Internet]. 2017 Sep; 17(1):655. https://doi.org/10.1186/s12879-017-2746-5 PMID: 28962999

117. Annette B, Bashir A, Ahmad N, Fatima RK, Saba S, Scailhill S. Predictors of unsuccessful interim treatment outcomes of multidrug resistant tuberculosis patients. BMC Infect Dis [Internet]. 2017 Sep; 17(1):655. https://doi.org/10.1186/s12879-017-2746-5 PMID: 28962999

118. Annette B, Bashir A, Ahmad N, Fatima RK, Saba S, Scailhill S. Predictors of unsuccessful interim treatment outcomes of multidrug resistant tuberculosis patients. BMC Infect Dis [Internet]. 2017 Sep; 17(1):655. https://doi.org/10.1186/s12879-017-2746-5 PMID: 28962999

119. Annette B, Bashir A, Ahmad N, Fatima RK, Saba S, Scailhill S. Predictors of unsuccessful interim treatment outcomes of multidrug resistant tuberculosis patients. BMC Infect Dis [Internet]. 2017 Sep; 17(1):655. https://doi.org/10.1186/s12879-017-2746-5 PMID: 28962999

120. Annette B, Bashir A, Ahmad N, Fatima RK, Saba S, Scailhill S. Predictors of unsuccessful interim treatment outcomes of multidrug resistant tuberculosis patients. BMC Infect Dis [Internet]. 2017 Sep; 17(1):655. https://doi.org/10.1186/s12879-017-2746-5 PMID: 28962999

121. Annette B, Bashir A, Ahmad N, Fatima RK, Saba S, Scailhill S. Predictors of unsuccessful interim treatment outcomes of multidrug resistant tuberculosis patients. BMC Infect Dis [Internet]. 2017 Sep; 17(1):655. https://doi.org/10.1186/s12879-017-2746-5 PMID: 28962999

122. Annette B, Bashir A, Ahmad N, Fatima RK, Saba S, Scailhill S. Predictors of unsuccessful interim treatment outcomes of multidrug resistant tuberculosis patients. BMC Infect Dis [Internet]. 2017 Sep; 17(1):655. https://doi.org/10.1186/s12879-017-2746-5 PMID: 28962999

123. Annette B, Bashir A, Ahmad N, Fatima RK, Saba S, Scailhill S. Predictors of unsuccessful interim treatment outcomes of multidrug resistant tuberculosis patients. BMC Infect Dis [Internet]. 2017 Sep; 17(1):655. https://doi.org/10.1186/s12879-017-2746-5 PMID: 28962999

124. Annette B, Bashir A, Ahmad N, Fatima RK, Saba S, Scailhill S. Predictors of unsuccessful interim treatment outcomes of multidrug resistant tuberculosis patients. BMC Infect Dis [Internet]. 2017 Sep; 17(1):655. https://doi.org/10.1186/s12879-017-2746-5 PMID: 28962999
124. Bastard M, Sanchez-Padilla E, Cros P, Khamraev AK, Parpiewa N, Tillyashaykov M, et al. Outcomes of HIV-infected versus HIV-non-infected patients treated for drug-resistance tuberculosis: Multicenter cohort study. PLoS One [Internet]. 2018; 13(3). https://doi.org/10.1371/journal.pone.0193491

125. Brust J, Shah NS, Moodley P, Allana S, Campbell A, et al. Improved Survival and Cure Rates with Concurrent Treatment for Multidrug-Resistant Tuberculosis-Human Immunodeficiency Virus Coinfection in South Africa. Clin Infect Dis [Internet]. 2018; 66(8):1246–53. 10.1093/cid/cix1125/4774985

126. Cegielski JP, Kurbatova E, Van der Walt M, Brand J, Ershova J, Tupasi T, et al. Baseline Predictors of Treatment Outcomes in Children with Multidrug-Resistant Tuberculosis: A Retrospective Cohort Study. Clin Infect Dis [Internet]. 2016; 63(8):1063–71. https://doi.org/10.1093/cid/ciw489 PMID: 27458026

127. Chen Y, Yuan Z, Shen X, Wu J, Wu Z, Xu B. Time to multidrug-resistant tuberculosis treatment initiation in association with treatment outcomes in Shanghai, China. Antimicrob Agents Chemother [Internet]. 2018; 62(4). https://doi.org/10.1128/AAC.02259-17

128. Chiang S, Starke J, Miller AC, Cruz A, Castillo H, Valdivia WJ, et al. Baseline Predictors of Treatment Outcomes in Relation to Treatment and Initial Versus Acquired Second-Line Drug Resistance. Clin Infect Dis [Internet]. 2015 Feb; 62(4):418–30.

129. Demile B, Amare Zenebu A, Shewaye H, Xia S, Guadie A. Risk factors associated with multidrug-resistant tuberculosis (MDR-TB) in a tertiary armed force referral and teaching hospital, Ethiopia. BMC Infect Dis [Internet]. 2018; 18(1). https://doi.org/10.1186/s12879-018-3167-9

130. Duraisamy K, Mrithyunjayan S, Ghosh S, Nair SA, Balakrishnan S, Subramoniapillai J, et al. Does alcohol consumption during multidrug-resistant tuberculosis treatment affect outcome? A population-based study in Kerala, India. Ann Am Thorac Soc [Internet]. 2014 Jun; 11(5):712–5. https://doi.org/10.1513/AnnalsATS.201312-447OC PMID: 24735096

131. Francis JR, Manchikanti P, Blyth CC, Denholm J, Lowbridge C, Coulter C. Multidrug-resistant tuberculosis in Western Australia, 1998–2012. Med J Aust [Internet]. 2014; 200(6):328–32. https://doi.org/10.5880/ijtld.17.0412

132. Heyssel SK, Ogarkov OB, Zhdanova S, Zorkaltseva E, Shugaeva S, Gratjz J, et al. Undertreated HIV and drug-resistant tuberculosis at a referral hospital in Irkutsk, Siberia. Int J Tuberc Lung Dis [Internet]. 2016 Feb; 20(2):187–92. https://doi.org/10.5588/ijtld.14.0961 PMID: 26792470

133. Ibrahim E, Baess AI, Al-Messeray MA. Pattern of prevalence, risk factors and treatment outcomes among Egyptian patients with multidrug-resistant tuberculosis. Egypt J Chest Dis Tuberc [Internet]. 2017; 66(3):405–11. https://doi.org/10.1016/j. ejcctd.2016.11.002

134. Jagelski T, Brzostek A, van Belkum A, Dziadek J, Augustynowicz-Kopec E, Zwolska Z. A close-up on the epidemiology and transmission of multidrug-resistant tuberculosis in Poland. Eur J Clin Microbiol Infect Dis. 2015 Jan; 34(1):41–53. https://doi.org/10.1007/s10096-014-2202-z PMID: 25037868

135. Janmeja AK, Aggarwal D, Dhillon R. Factors predicting treatment success in multi-drug resistant tuberculosis in Pakistan: a retrospective cohort study. Clin Microbiol Infect [Internet]. 2018; 24(6):612–7. https://doi.org/10.1016/j.cmi.2018.07.026

136. Javaid A, Shaheen Z, Shafqat M, Khan AH, Ahma N. Risk factors for high death and loss-to-follow-up rates among patients with multidrug-resistant tuberculosis at a programmatic management unit. Am J Infect Control [Internet]. 2017; 45(2):190–3. https://doi.org/10.1016/j.ajic.2016.07.026

137. Javaid A, Ullah I, Masud H, Basit A, Ahmad W, Butt ZA, et al. Predictors of poor treatment outcomes in multidrug-resistant tuberculosis patients: a retrospective cohort study. Clin Microbiol Infect [Internet]. 2018 Jun; 24(6):612–7. https://doi.org/10.1016/j.cmi.2017.09.012

138. Jensenius M, Winje BA, Blomberg B, Mengshoel AT, Von der Lippe B, Hannula R, et al. Multidrug-resistant tuberculosis in Norway: A nationwide study, 1995–2014. Int J Tuberc Lung Dis [Internet]. 2016; 20(6):786–92. https://doi.org/10.5588/ijtld.15.0895

139. Kawatsu L, Uchimura K, Izumi K, Ohkado A, Yoshiyama T. Treatment outcome of multidrug-resistant tuberculosis patients in Gauteng, South Africa. Infection. 2014 Apr; 42(2):405–13. https://doi.org/10.1007/s15010-013-0572-2 PMID: 24363208
143. Perez-Navarro LM, Restrepo BI, Fuentes-Dominguez FJ, Duggirala R, Morales-Romero J, Lopez-Alvarenga JC, et al. The effect size of type 2 diabetes mellitus on tuberculosis drug resistance and adverse treatment outcomes. Tuberculosis [Internet]. 2017; 103:83–91. Available from: http://www. embase.com/search/results?subaction=viewrecord&from=export&id=L614301639 https://doi.org/10.1016/j.tube.2017.01.006

144. Muñoz-Torrico M, Caminero-Lunab J, Battista-Migliori G, D’Ambrosio L, Carrillo-Alduenda JL, Villarreal-Velarde H, et al. Diabetes is Associated With Severe Adverse Events in Multidrug-Resistant Tuberculosis. Arch Bronconeumol [Internet]. 2017; 53(5):245–50. https://doi.org/10.1016/j.arbres.2016.10.021

145. Nair D, Velayutham B, Kannan T, Tripathy JP, Harries AD, Natrajan M, et al. Predictors of unfavourable treatment outcome in patients with multidrug-resistant tuberculosis in India. Public Health Action [Internet]. 2017; 7(1):32–8. https://doi.org/10.5588/pha.16.0055

146. Pang Y, Lu J, Huo F, Ma Y, Zhao L, Li Y, et al. Prevalence and treatment outcome of extensively drug-resistant tuberculosis plus additional drug resistance from the National Clinical Center for Tuberculosis in China: A five-year review. J Infect [Internet]. 2017 Nov; 75(5):433–40. https://doi.org/10.1016/j.jinf.2017.08.005 PMID: 28804029

147. Parmar MM, Sachdeva KS, Dewan PK, Rade K, Nair SA, Pant R, et al. Unacceptable treatment outcomes and associated factors among India’s initial cohorts of multidrug-resistant tuberculosis (MDR-TB) patients under the revised national TB control programme (2007–2011): Evidence leading to policy enhancement. PLoS One. 2018; 13(4):e0193903. https://doi.org/10.1371/journal.pone.0193903 PMID: 29641576

148. Phuong N, Nhung N, Hoa N, Thuy T, Takarinda K, Tayler-Smith K, et al. Unacceptable treatment outcomes and associated factors among India’s initial cohorts of multidrug-resistant tuberculosis (MDR-TB) patients under the revised national TB control programme (2007–2011): Evidence leading to policy enhancement. PLoS One. 2018; 13(4):e0193903. https://doi.org/10.1371/journal.pone.0193903 PMID: 29641576

149. Parmar MM, Sachdeva KS, Dewan PK, Rade K, Nair SA, Pant R, et al. Unacceptable treatment outcomes and associated factors among India’s initial cohorts of multidrug-resistant tuberculosis (MDR-TB) patients under the revised national TB control programme (2007–2011): Evidence leading to policy enhancement. PLoS One. 2018; 13(4):e0193903. https://doi.org/10.1371/journal.pone.0193903 PMID: 29641576

150. Trebucq A, Schwoebel V, Kashongwe Z, Bakayoko A, Kuaban C, Noeske J, et al. Treatment outcome with a short multidrug-resistant tuberculosis regimen in nine African countries. Int J Tuberc Lung Dis. 2017; 22(1):17–25. https://doi.org/10.5588/ijtld.17.0498 PMID: 29149917

151. Udwadia ZF, Moharlil G. Multidrug-resistant-tuberculosis treatment in the Indian private sector: Results from a tertiary referral private hospital in Mumbai. Lung India [Internet]. 2014; 31(4):336–41. https://doi.org/10.4103/0970-2113.142101 PMID: 25378840

152. Verdecchia M, Keus K, Blankley S, Vambe D, Sonko C, Piening T, et al. Model of care and risk factors for poor outcomes in patients on multi-drug resistant tuberculosis treatment at two facilities in eSwatini (formerly Swaziland), 2011–2013. PLoS One [Internet]. 2018; 13(10). 10.1371/journal.pone.0205601

153. Villegas L, Otero L, Sterling T, Huaman M, Van der Stuyft P, Gotuzzo E, et al. Prevalence, risk factors, and treatment outcomes of isoniazid- and rifampicin-resistant pulmonary tuberculosis in Lima, Peru. PLoS One [Internet]. 2016; 11(4):e0152933. https://doi.org/10.1371/journal.pone.0152933 PMID: 27045684

154. Viana PV de S, Redner P, Ramos JP. Factors associated with loss to follow-up and death in cases of drug-resistant tuberculosis (DR-TB) treated at a reference center in Rio de Janeiro, Brazil. Cad Saúde Pública [Internet]. 2018; 34(5):e00048217—e00048217. https://doi.org/10.1590/1518-8787.2017.08.005 PMID: 29768580

155. Xu C, Pang Y, Li R, Ruan Y, Wang L, Chen M, et al. Clinical outcome of multidrug-resistant tuberculosis patients receiving standardized second-line treatment regimen in China. J Infect [Internet]. 2018; 76(4):348–53. https://doi.org/10.1016/j.jinf.2017.12.017

156. Zhang Q, Wu Z, Zhang Z, Sha W, Shen X, Xiao H. Efficacy and effect of free treatment on multidrug-resistant tuberculosis. Exp Ther Med [Internet]. 2016; 11(3):777–82. https://doi.org/10.3892/etm.2015.2966 PMID: 26997992

157. Faustini A, Hall AJ, Perucci CA. Tuberculosis treatment outcomes in Europe: a systematic review. Eur Respir J 2005; 26: 503–510 https://doi.org/10.1183/09031936.05.00103504 PMID: 16135735

158. Seid MA, Ayalew MB, Muche EA, Gebreyohannes EA, Abegaz TM. Drugsusceptible tuberculosis treatment success and associated factors in Ethiopia from 2005 to 2017: a systematic review and meta-analysis. BMJ Open 2018; 8:e022111 https://doi.org/10.1136/bmjopen-2018-022111 PMID: 30257846
160. Bastos ML, Lan Z, Menzies D. An updated systematic review and meta-analysis for treatment of multidrug-resistant tuberculosis. Eur Respir J 2017; 49: 1600803 [https://doi.org/10.1183/13993003.00803-2016]. PMID: 28331031

161. Alipanah N, Jarlsberg L, Miller C, Linh NN, Falzon D, Jaramillo E, et al. Adherence interventions and outcomes of tuberculosis treatment: A systematic review and meta-analysis of trials and observational studies. PLoS Med. 2018 15(7): e1002595. https://doi.org/10.1371/journal.pmed.1002595 PMID: 29969463

162. Harausz EP, Garcia-Prats AJ, Law S, Schaal HS, Kredo T, Seddon JA, et al. Treatment and outcomes in children with multidrug-resistant tuberculosis: A systematic review and individual patient data meta-analysis. PLoS Med. 2018 15(7): e1002591. 10.1371/journal.pmed.1002591 PMID: 29995958

163. Do Socorro Nantua Evangelista M, Maia R, Toledo JP, De Abreu RG, Braga JU, Barreira D, et al. Second month sputum smear as a predictor of tuberculosis treatment outcomes in Brazil. BMC Res Notes [Internet]. 2018; 11(1):4–9. https://doi.org/10.1186/s13104-018-3522-3

164. Ramarokoto H, Randriamiharisoa H, Rakotoarisaonina A, Rasolovavalona T, Rasolofo V, Chanteau S, et al. Bacteriological follow-up of tuberculosis treatment: A comparative study of smear microscopy and culture results at the second month of treatment. Int J Tuberc Lung Dis. 2002; 6(10):909–12. PMID: 12365578

165. Juan Pablo Aguilar JP, Arriaga MB, Rodas MN, Netto E. Tabacoym y fracaso del tratamiento de la tuberculosis pulmonar. Un estudio de casos y controles. J Bras Pneumol. 2019; 45(2):e20180359. https://doi.org/10.1590/1806-3713/e20180359

166. Shapiro S. Is meta-analysis a valid approach to the evaluation of small effects in observational studies? J Clin Epidemiol. 1997; 50(3):223–9. https://doi.org/10.1016/s0895-4356(96)00360-5 PMID: 9126519