Heavy Quark Diffusion and Lattice Correlators

P. Petreczky1,2, K. Petron2, D. Teaney3 and A. Velytsky4

1RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY, 11973, USA
2Physics Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
3Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, New York 11764, USA
4Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547, USA

Abstract
We study charmonia correlators at finite temperature. We analyze to what extent heavy quarkonia correlators are sensitive to the effect of heavy quark transport and whether it is possible to constrain the heavy quark diffusion constant by lattice calculations. Preliminary lattice calculations of quarkonia correlators performed on anisotropic lattices show that they are sensitive to the effect of heavy quark transport, but much detailed calculations are required to constrain the value of the heavy quark diffusion constant.

1 Introduction
There are plenty of experimental evidence that strongly interacting matter at high energy density has been produced at RHIC \cite{1, 2}. One of the most exciting results from RHIC so far is the large azimuthal anisotropy of light hadrons with respect to the reaction plane, known as elliptic flow. The observed elliptic flow is well described by ideal hydrodynamics \cite{3, 4, 5} suggesting early equilibration of the produced matter and very short transport mean free path. This interpretation of the experimental data can be challenged by measuring elliptic flow of charm and bottom mesons \cite{6, 7, 8}. The first experimental results show a non-zero elliptic flow for these heavy mesons. Naively, since the quark mass is significantly larger than the temperature of the medium, the mean free path of heavy mesons is $\sim M/T$ longer than the light hadron mean free path. Quantitatively the mean free path is described by the heavy quark diffusion constant which can be defined through the diffusion equation for the heavy quark number density $N(x, t), \partial_t N + D \nabla^2 N = 0$. If the heavy quark diffusion constant $D \geq 1/T$, the predicted heavy quark elliptic flow will be too small and in contradiction with current experimental data \cite{8}.

Kubo formulas relate hydrodynamic transport coefficients to the small frequency behavior of real time correlation functions \cite{9, 10}. Correlation functions in real time are in turn related to correlation functions in imaginary time by analytic continuation. Karsch and Wyld \cite{11} first attempted to use this connection to extract the shear viscosity of QCD from the lattice. More recently, additional attempts to extract the shear viscosity \cite{12, 13} and electric conductivity \cite{14} have been made. It turns out that Euclidean correlations functions are remarkably insensitive to transport coefficients. For weakly coupled field theories this has been discussed by Aarts and Martinez Resco \cite{15}. For this reason, only precise lattice data and a comprehensive understanding of the different contributions to the Euclidean correlator can constrain the transport coefficients. It appears that heavy quarkonia correlators are the likely candidates for meeting this conditions.

2 Euclidean and real time correlators
On the lattice we calculate correlation function of local meson operators (currents) $J_h^E(x, \tau) = \bar{q}(x, \tau) \Gamma_h q(x, \tau)$ at finite temperature

$$G^h(k, \tau, T) = \int d^3 x e^{ik \cdot x} \langle \langle J_h^E(x, \tau) J_h^E(0, 0) \rangle \rangle,$$

with Γ_h being some combination of the Dirac matrices. This correlation function is related to the real time correlation functions $D^h_r(x, t, T) = \langle J_h(x, t) J_h(0, 0) \rangle$, $D^h_l(x, t, T) = \langle J_h(0, 0) J_h(x, t) \rangle$.
The most important channels for our further discussion are the pseudo-scalar, $\Gamma_h = \gamma_5$ and the vector, $\Gamma_h = \gamma_\mu$ channels. In the vector channel the Euclidean correlators are related to density-density correlator $D_{NN}^\gamma = \langle N(x,t)N(0,0) \rangle$ and current-current correlators $D_{jj}^{ij} = \langle J^i(x,t)J^j(0,0) \rangle$,

$$G^{00}(x,\tau,T) = \langle J^0_E(x,\tau)J^0_E(0,0) \rangle = -D_{NN}^\gamma (x,-i\tau,T),$$ \hspace{1cm} (1)

$$G^{ij}(x,\tau,T) = \langle J^j_E(x,\tau)J^i_E(0,0) \rangle = D_{jj}^{ij}(x,-i\tau,T).$$ \hspace{1cm} (2)

Similarly for the pseudo-scalar channel $G^{\bar{5}5}(x,\tau,T) = \langle J^{\bar{5}}_E(x,\tau)J^{\bar{5}}_E(0,0) \rangle = D^\gamma_{\bar{5}5}(x,-i\tau,T)$. The minus sign in Eq. (1) comes from the relation $A^0 = -iA^0_E$ between the temporal component of the vector in Minkowski space and Euclidean space, in particular $x^0 = -ix^0_E = -i\tau$. The spectral function is defined through Fourier transform of D_h^γ and D_h^γ or equivalently as imaginary part of the retarded correlator $\chi_h(k,\omega)$

$$\rho_h(k,\omega,T) = G^\gamma_h(k,\omega,T) - G^\gamma_h(k,-\omega,T) = \frac{1}{2\pi} \Im \chi_h(k,\omega,T).$$ \hspace{1cm} (3)

Using the Kubo-Martin Schwinger (KMS) relation $D^\gamma_h(k,t) = D^\gamma_h(k,t+i/T)$ one discovers the relation between the spectral density and the Euclidean correlator,

$$G^h(k,\tau,T) = (-i)^r \int_0^\infty d\omega \rho^h(k,\omega,T) \frac{\cosh(\omega(\tau - \frac{1}{2T}))}{\sinh(\frac{\omega}{2T})}.$$ \hspace{1cm} (4)

Here r is number of zeros in the space-time indexes.

3 Lattice results on the charmonia correlators and spectral functions

Charmonia correlators have been studied in lattice QCD and the corresponding spectral functions were reconstructed using the Maximal Entropy Method (MEM) [17, 18, 19]. These studies showed that the $1S$ states (h_c and J/ψ) survive in the plasma up to temperatures as high as $1.6T_c$. Though it is quite difficult to reliably reconstruct the spectral functions, the temperature dependence of the correlators can be determined quite precisely [19].

We calculated charmonia correlators on quenched anisotropic lattices using the Fermilab formulation for heavy quarks [16]. Calculation were done at $\beta = 6.5$ and $\xi = a_s/a_t = 4$, corresponding to temporal lattice spacing $a_t^{-1} = 14.12$GeV when we set the spatial lattice spacing a_s using the Sommer scale $r_0 = 0.5$fm. We collected about 1000 gauge configurations at each temperature. From Eq. (4) it is clear that the temperature dependence of the correlator $G(k,\tau,T)$ comes from temperature dependence of the spectral function and temperature dependence of the kernel $K(\tau,\omega,T) = \frac{\cosh(\omega(\tau - \frac{1}{2T}))}{\sinh(\frac{\omega}{2T})}$. To separate out the trivial temperature dependence due to the kernel $K(\tau,\omega,T)$ following [19] we introduce the reconstructed correlator

$$G_{rec}^h(k,\tau,T) = \int_0^\infty d\omega \rho^h(k,\omega,T = 0) K(\tau,\omega,T).$$ \hspace{1cm} (5)

If the charmonia spectral function do not change across the deconfinement transition temperature T_c we expect $G^h/G_{rec}^h \approx 1$. In Fig. 1 we show the temperature dependence of G^h/G_{rec}^h for pseudo-scalar and vector channels at zero spatial momentum $k = 0$. In the vector channel we show both sum over all spatial components $\sum_i G^{ii}$ and the sum over all four components $\sum_\mu G^{\mu\mu}$. We see that the temperature dependence of the vector and pseudo-scalar correlators is quite different. For $T = 1.5T_c$ we see only very small deviations from unity for G^h/G_{rec}^h in the pseudo-scalar channel while significant deviations are seen in the vector channel. In fact similar temperature dependence of the vector correlator was seen in the previous study based on fine isotropic lattices [19, 20]. This is quite unexpected as h_c and J/ψ should have similar properties both in the vacuum and in the medium. We will give an explanation for this difference in the next section in terms of heavy quark transport.
4 Spectral functions at low energies and heavy quark transport

As vector current is a conserved current there should be transport contribution to the corresponding spectral function. In general the vector spectral function can be decomposed in terms of transverse and longitudinal components. Since the heavy quark mass is much larger than the temperature $M \gg T$ we can write

$$\rho^{L,T}\left(\mathbf{k},\omega,T\right) = \rho^{L,T}_{\text{low}}\left(\mathbf{k},\omega,T\right) + \rho^{L,T}_{\text{high}}\left(\mathbf{k},\omega,T\right),$$

where $\rho^{L,T}_{\text{high}}\left(\mathbf{k},\omega,T\right)$ contains the resonances and the continuum, and is non-zero for energies $\omega \sim 2M$, and $\rho^{L,T}_{\text{low}}\left(\mathbf{k},\omega,T\right)$ is the transport contribution. The simplest way to estimate $\rho^{L,T}_{\text{low}}\left(\mathbf{k},\omega,T\right)$ is to evaluate the vector correlator at 1-loop level \cite{21}. In the $\mathbf{k} \to 0$ limit we have $\rho^{L,T}\left(0,\omega,T\right) = \rho^{L,T}\left(0,\omega,T\right) = \rho^{ii}(0,\omega,T)$, and considering small energies, $\omega \ll T$ we get

$$\rho^{ii}_{\text{low}}(0,\omega,T) = \chi_{s}(T)\frac{T}{M}\omega\delta(\omega), \quad \rho^{ii}_{\text{low}}(0,\omega,T) = \chi_{s}(T)\omega\delta(\omega). \quad (6)$$

Here $\chi_{s}(T)$ is the static charm number susceptibility, which in the limit $M \gg T$ is given by $\chi_{s}(T) = 12 \left(\frac{MT}{2\pi}\right)^{3/2} e^{-M/T}$. Thus at finite temperature we expect that the $\sum_{i} G^{ii}$ should be enhanced by a constant contribution $3\chi_{s}(T)T/M$ relative to its $T = 0$ value, while the $\sum_{\mu} G^{\mu\mu}$ should reduced by $-\chi_{s}(T)(1 - 3T/M)$ (recall Eq. (1)). This is exactly what the lattice data in Fig. 1 show. Furthermore, from data on $\sum_{i} G^{ii}$ and $\sum_{\mu} G^{\mu\mu}$ we can estimate that $M/T \simeq 6$ at $1.5T_{c}$. The 1-loop result for the vector correlator can be also obtained using collision-less Boltzmann equation describing free streaming of heavy quarks with no interaction with the plasma \cite{21}. This 1-loop contribution happens to dominate the transport part of the Euclidean correlator \cite{21}.

5 Effective Langevin equation for heavy quark transport

We have seen that the leading transport contribution to the Euclidean correlator is just a constant and corresponds to free streaming of heavy quarks. To get the transport coefficient we need to include the effect of heavy quark interactions with the medium. It is very difficult problem in general. Luckily, the case of heavy quarks is special since the time scale for diffusion, M/T^{2}, is much longer than any other time scale in the problem. In terms of the spectral functions, this separation means that transport processes contribute at small energy, $\omega \sim T^{2}/M$. For this reason we will assume that the Langevin equations provide a good macroscopic description of the dynamics of charm quarks \cite{8},

$$\frac{dx^{i}}{dt} = \frac{p^{i}}{M}, \quad \frac{dp^{i}}{dt} = \xi^{i}(t) - \eta p^{i}, \quad \langle \xi^{i}(t)\xi^{j}(t') \rangle = \kappa \delta^{ij} \delta(t - t'). \quad (7)$$

The drag and fluctuation coefficients are related by the fluctuation dissipation relation $\eta = \frac{2\kappa}{M}$. For time scales which are much larger than $1/\eta$ the heavy quark number density obeys ordinary diffusion
The effective Langevin theory can be derived from kinetic theory in the weak coupling limit [8] and probably is adequate for describing heavy quark diffusion even for strongly interacting plasma. The Langevin equations make a definite prediction for the retarded correlator χ_h at small ω and thus for the transport part of the spectral functions [21]. The results of calculation for the longitudinal spectral functions is shown in Fig. 2. For the case of zero spatial momentum $k = 0$ we have

$$\rho_{\text{low}}^{ii}(0,\omega,T) = \chi_s(T) T \frac{1}{M \pi} \frac{\eta}{\omega^2 + \eta^2}, \quad \rho_{\text{low}}^{00}(0,\omega,T) = \chi_s(T) \delta(\omega).$$
(8)

From Eq. (8) it is clear that to calculate the transport coefficient we have to determine the curvature of $G^{ii}(k = 0, \tau, T)$ at $\tau = 1/(2T)$ due to the low energy part of the spectral function ρ_{low}^{ii}. If ρ_{low}^{ii} was the only contribution to the spectral function and $\eta = 0$ the correlator would be constant. The question is how to determine the small curvature in $G^{ii}(k = 0, \tau, T)$, arising from finite value of η, from the curvature arising from the resonance and continuum contributions. This can be done by introducing a small chemical potential for the heavy quark, $\mu \ll M$. Since the transport contribution is proportional to χ_s, the small chemical potential will enhance the transport by factor of $\cosh(\mu/T)$ [21]. The small charm chemical potential will not affect the resonance and continuum contributions to the spectral function to leading order in the heavy quark density, $\sim e^{-(M-\mu)/T}$. Thus we expect that

$$\delta G^{ii} \equiv G^{ii}(\tau, T, \mu) - G^{ii}(\tau, T, 0) \simeq (\cosh(\mu/T) - 1) \int_0^\infty d\omega \rho_{\text{low}}^{ii}(0,\omega,T) \frac{\cosh(\omega(\tau - 1/(2T)))}{\sinh(\omega/(2T))},$$
(9)

is largely insensitive to the high frequency behavior of the spectral function. In Fig. 2 we show δG^{ii} quantity for several values of D. The numerical results on the vector correlator show that it can be calculated with 0.5% statistical accuracy. Thus if similar numerical accuracy can be achieved for the difference δG^{ii}, the curvature and thus the η, or equivalently D can be estimated in lattice QCD.
Acknowledgements

This work was supported by U.S. Department of Energy under contract DE-AC02-98CH1086 and through the SciDAC program. D.T. was supported by the grant DE-FG02-88ER40388 and DE-FG03-97ER4014 of U.S. Department of Energy, A.V. was partly supported by NSF-PHY-0309362.

References

[1] R. Bellwied et al. [STAR Collaboration], Nucl. Phys. A 752, 398 (2005).
[2] K. Adcox et al. [PHENIX Collaboration], Nucl. Phys. A 757, 184 (2005).
[3] T. Hirano, J. Phys. G 30, S845 (2004).
[4] D. Teaney, J. Lauret and E. V. Shuryak, arXiv:nucl-th/0110037. ibid, Phys. Rev. Lett. 86, 4783 (2001).
[5] P. F. Kolb, P. Huovinen, U. W. Heinz and H. Heiselberg, Phys. Lett. B 500, 232 (2001).
[6] F. Laue [STAR Collaboration], J. Phys. G 31, S27 (2005).
[7] S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 94, 082301 (2005).
[8] G. D. Moore and D. Teaney, Phys. Rev. C 71, 064904 (2005).
[9] D. Forster, Hydrodynamics, Fluctuations, Broken Symmetry, and Correlation Functions, Perseus Books (1990).
[10] J. P. Boon and S. Yip, Molecular Hydrodynamics, McGraw-Hill (1980).
[11] F. Karsch and H. W. Wyld, Phys. Rev. D 35, 2518 (1987).
[12] A. Nakamura, S. Sakai and K. Amemiya, Nucl. Phys. Proc. Suppl. 53, 432 (1997).
[13] A. Nakamura and S. Sakai, Phys. Rev. Lett. 94, 072305 (2005).
[14] S. Gupta, Phys. Lett. B 597, 57 (2004).
[15] G. Aarts and J. M. Martinez Resco, JHEP 0204, 053 (2002).
[16] P. Chen, Phys. Rev. D 64, 034509 (2001).
[17] T. Umeda, K. Nomura and H. Matsufuru, Eur. Phys. J. C 39S1, 9 (2005).
[18] M. Asakawa and T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004).
[19] S. Datta, F. Karsch, P. Petreczky and I. Wetzorke, Phys. Rev. D 69, 094507 (2004).
[20] S. Datta et al., in Strong and Electroweak Matter 2004, p. 211, World Scientific 2005, [arXiv:hep-lat/0409147].
[21] P. Petreczky and D. Teaney, hep-ph/0507318.