Dry eye syndrome: comprehensive etiologies and recent clinical trials

Ruojing Huang · Caiying Su · Lvjie Fang · Jiaqi Lu · Jiansu Chen · Yong Ding

Received: 9 August 2021 / Accepted: 18 April 2022 / Published online: 9 June 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract Dry eye syndrome (DES) is multifactorial and likely to be a cause of concern more so than ever given the rapid pace of modernization, which is directly associated with many of the extrinsic causative factors. Additionally, recent studies have also postulated novel etiologies that may provide the basis for alternative treatment methods clinically. Such insights are especially important given that current approaches to tackle DES remains suboptimal. This review will primarily cover a comprehensive list of causes that lead to DES, summarize all the upcoming and ongoing clinical trials that focuses on treating this disease as well as discuss future potential treatments that can improve inclusivity.

Keywords Dry eye syndrome · Lacrimal functional unit · Ophthalmology

Introduction

DES is a relatively common clinical ophthalmic condition, characterized by a disorder of the preocular tear film and affecting approximately 1 out of 7 individuals aged 48 and above [1]. Besides DES, this condition can also be known as keratoconjunctivitis sicca (KCS), dry eye disease (DED), ocular surface disease (OSD) or dysfunctional tear syndrome (DTS) [2]. It is a dysfunction of the nasolacrimal unit (nasolacrimal glands, corneal surface and eyelids) which leads to defective or insufficient tear film formation [3].

The maintenance of a physiologically complete tear film is imperative for normal vision as it is, along with the cornea, responsible for focusing light onto the retina [4]. Additionally, it also functions to lubricate the eye, remove debris from the ocular surface as well as maintain nutrition and oxygenation of the ocular structures [5]. Patients who developed DES may experience ocular burning, blurred vision or even pain and often have a reduced quality of life as common daily tasks that require visual attention (e.g. reading, computer work, etc.) become significantly challenging. However, while treatments are available to minimize the negative impacts, they are often suboptimal and unable to specifically target the root cause(s) of this disease.

It is now known that DES can be caused by a non-exhaustive list of factors which include autoimmune, hormonal imbalance, deleterious environmental...
settings and many more. Unbeknown to many, symptoms associated with dry eyes may even at times be indicative of undiagnosed systemic diseases which, if treated timely, may avoid life-threatening outcomes [5]. Over the years, given a more profound understanding of the various mechanisms involved in the development of this condition, a wide range of novel treatments are underway to provide more effective results and overcome limitations posed by conventional therapeutics utilized in the clinic currently. This review aims to summarize the causes of DES and its respective mechanism, explore ongoing clinical trials for DES treatment and lastly, discuss promising technologies that can potentially shape future treatment strategies.

Secretory components and tear film composition

The tear film is regulated by an integrated lachrimal functional unit (LFU) which consists of the lachrimal glands, cornea, conjunctiva, eyelids, meibomian glands, goblet cells as well as the sensory and motor nerves that connect them [6]. As measured by ultra-high resolution optical coherence tomography (OCT) and validated with interferometry techniques [7, 8], it was found that the tear film, when spread across the exposed conjunctiva and cornea, is approximately 2 to 5.5 μm thick [9]. Correspondingly, this extremely thin layer of film is constituted by an even thinner top layer of lipid (about 42 nm) [10] and a mucin-aqueous (mucoaqueous) layer with decreasing concentration of mucins from the cornea epithelium towards the lipid layer [11, 12].

The lipid layer is derived from meibum produced by the meibomian gland and secreted through the lid margins. Meanwhile, blinking helps to spread the lipid layer across the tear film through surface tension forces. This configuration functions to stabilize the film by preventing the aqueous component from evaporating too rapidly [13–15]. The aqueous fluid in the tear film, which contains water, electrolytes, small molecule metabolites, plethora of proteins (more than 1500 detected [16]) and peptides (more than 200 [17]) is mostly produced by the lacrimal glands. The aqueous portion in the mucoaqueous layer provides oxygen and nutrients to the underlying avascular corneal tissue and assist in flushing away epithelial debris, toxins and foreign bodies [18].

Secreted mucins are present in the aqueous component as well and are produced by the goblet cells present in the conjunctiva while transmembrane mucins (glycocalyx) that can extend up to 500 nm from the plasma membrane are formed on the apical surfaces of the corneal and conjunctival epithelia [19]. Mucins are large high molecular weight glycoproteins that contain one of more protein domains which are rich in serines and threonines extensively glycosylated via O-glycan attachments [20, 21]. They are essential for providing lubrication, hydration as well as protection against infection and injury [22, 23]. On the ocular surface, it was shown recently that they further maintain a disadhesive property to the apical epithelial cells such that, during blinking or sleeping, cell surfaces facing each other like the cornea and conjunctiva do not adhere to each other [24]. Together, these constituents maintain the tear film and any slight dysregulation such as decreased aqueous volume or abnormal production of mucins or lipids will lead to DES [25, 26].

Etiology of DES

There are a multitude of factors that have been discovered to result in such dysregulations which, in general, can be classified as intrinsic and extrinsic. Intrinsic factors are defined as conditions present within the body and include autoimmunity [3, 27, 28], hormonal imbalance [29, 30], systemic diseases [31–34], hereditary diseases [35, 36], nerve damage [37, 38] and gut dysbiosis [39, 40]. On the other hand, extrinsic elements are derived from stimulus that occur outside the body and consist of environmental influences [41, 42], behaviour and/or habits [43–46], eye accessories [47] and eye surgeries [48, 49] (Fig. 1).

Intrinsic factors

Autoimmunity

Dry eyes caused by autoimmunity could be attributed to Sjögren’s syndrome (SS), a chronic autoimmune disorder that primarily affects the salivary and lacrimal glands. Specifically, these exocrine glands are heavily infiltrated with lymphocytes (T cells and B cells) and macrophages which produces
pro-inflammatory signalling molecules such as IL-1, TNF-α and IFN-γ [28, 50–52]. CD4+ T cells are the primary immune effectors [53] and interact closely with antigen presenting-macrophages to provoke ocular disease development through inflammation-induced (IL-1 and IFN-γ) local tissue damage [51]. Additionally, they are also associated with peripheral neuropathy in the lacrimal glands, suggesting possible denervation and loss of function [54]. Besides CD4+ T cells, it was recently observed that highly cytotoxic activated CD8+ T cells are correlated with lacrimal gland epithelial cell death [50] and may account for the reduction in tear production. Given the varied possible causes of DES, the diagnosis of SS-induced dry eyes is relatively tedious and requires defined biomarkers for validation. Accordingly, it is known that the tear film of patients who developed SS contained elevated amounts of pro-inflammatory cytokines such as IL-1, IL-6, IL-8 and TNF-α. Their presence also corresponded to lower tear secretion levels [55–57]. Other biomarkers include MMP-9 [58, 59], HLA-DR [60, 61] and potentially MUC5AC [62].

Graves’ ophthalmopathy, also known as thyroid eye disease, is another autoimmune condition that can lead to DES [63]. Patients afflicted with this disease produce excessive thyroid hormones which induce an inflammatory response in the orbital tissues [64]. Mechanistically, DES is caused by a combination of mechanical impairment of the lids [65] and autoantibodies targeting the thyroid-stimulating hormone receptors on the lacrimal gland [66]. Incomplete blinking due to lid impairment results in inadequate tear distribution over the ocular surface and excessive tear evaporation [65] while autoantibodies binding causes aberrant signal transduction in the lacrimal gland and subsequent tear hyposecretion [66].

While not commonly known, multiple sclerosis, where the central nervous system (CNS) becomes demyelinated, is also an autoimmune disease that is correlated to DES. Specifically, poor corneal sensory
impulse conduction due to demyelination can lead to insufficient tear production [67].

Hormonal imbalance

Hormones are known to influence both the lacrimal and meibomian glands [68]. Sex hormones, particularly androgens, appeared to account for many of the sex-related disease susceptibility of the lacrimal gland in a variety of species [69]. For instance, testosterone was able to upregulate and downregulate a substantial amount of lacrimal gland genes found to be highly and lowly expressed respectively in male vs. female mice [70, 71]. On the other hand, estrogen and progesterone only impacted a small percentage [71] of these differentially expressed genes between male and female mice [70]. Mechanistically, androgens have been demonstrated to regulate the lacrimal glands’ fluid and protein secretion [72–74] through saturable, high-affinity and steroid-specific receptors binding in acinar and ductar epithelial cells [69, 75]. Accordingly, the lack of androgens was linked to lacrimal gland dysfunction and corresponding aqueous tear deficiency [30, 76], which helps to explain the higher DES prevalence among females [77, 78] since they are prone to reduced serum androgen levels during various stages of their life (lactation and menopause) [79, 80]. The meibomian glands, which are sebaceous in nature and contain acinar epithelial cells with androgen receptors, are also regulated by androgens [81, 82]. This form of regulation is dependent on 5α-reductase, an enzyme crucial for the production of the potent androgen, 5α-dihydrotestosterone (DHT). In the presence of DHT, these acinar cells display enhanced synthesis and secretion of lipids. Conversely, a reduction in DHT resulted in attenuated gland activity, size and lipid release [82, 83], which, in the context of DES, leads to the formation of an unstable tear film attributable to the increased rate of evaporation.

Systemic diseases

Diabetes mellitus (DM) is regarded as one of the leading systemic risk factors for DES due to the high prevalence (~18% to 54%) observed in Type 2 diabetic patients [84–86]. However, regardless of Type 1 or 2 diabetes, both conditions heighten the risk of developing LFU dysfunction such as corneal and conjunctival epithelium damage due to increased levels of HbA1c in blood serum [87]. HbA1c are glycated haemoglobins and provide an estimate of the blood sugar levels of an individual over the last three months [88]. As the conjunctiva epithelium contains goblet cells, the damage sustained will also be associated with diminished mucin production. Additionally, hyperglycemia has been shown to activate aldose reductase, an enzyme that catalyzes the conversion of glucose to the cytotoxic sorbitol [89]. Correspondingly, elevated amounts of sorbitol within cells will lead to cellular apoptosis and ultimately lacrimal gland structure dysfunction followed by the reduction in tear secretion [31].

Xerophthalmia is a systemic disease that consists of a variety of eye disorders, including DES [90]. It is attributed to vitamin A deficiency and is the only vitamin deficiency disease in the world that causes major concern to the public health personnel [91, 92]. Vitamin A is crucial for maintaining the differentiation and proliferation of the conjunctiva and corneal epithelium [93] by inhibiting the upregulation of apoptotic signals [94]. The lack of vitamin A will therefore lead to loss of goblet cells and mucin production.

Hereditary diseases

Familial dysautonomia (FD), also known as Riley-Day syndrome, is a rare, hereditary autosomal recessive disorder that impairs the development of specific sensory and autonomic neurons during embryogenesis [35]. As a result of this maldevelopment, patients with FD are highly vulnerable to optic neuropathy during their childhood, which becomes worse as they age [36]. Without proper control of their LFU, they lack the ability to produce tears at a basal, reflex and emotional level [95].

Nerve damage

All the secretory functions in the LFU are regulated by autonomic nerves. The lacrimal gland is largely innervated by the Vasoactive Intestinal Peptide immunoreactive (VIP-IR) parasympathetic nerve fibers (secretory control) [96, 97] and, to a lesser extent, sympathetic nerve fibers (vasculature control) immunoreactive to Neuropeptide Y (NPY-IR), Tyrosine Hydroxylase (TH-IR) and Dopamine...
β-Hydroxylase (DBH-IR) [98]. Upon stimulation, water and electrolytes, supplied by the blood, are transported into the duct system by the coordinated activation of ion channels and pumps [99–101]. Meanwhile, proteins produced and stored in the secretory granules of the lacrimal gland acinar cells will be released through stimulus-induced exocytosis [102] and carried along with the ionic fluid.

The meibomian gland and goblet cells in the conjunctiva is regulated by both parasympathetic VIP-IR and sympathetic DBH-IR and NPY-IR nerve fibers as well [97, 103, 104]. VIP-IR nerve fibers are located in close proximity to the acini and central duct of the meibomian gland where they influence the secretion of lipids, contributed by the meibocyte acinar cells, into the lumen of the duct system [97, 105]. On the other hand, VIP-IR nerve fibers are located at the epithelial-stroma junction in the conjunctiva, near the basal membrane of the goblet cells [104]. Upon receiving an appropriate stimulus, the secretory granules within the goblet cells fuse with each other and with the apical membrane to release the mucins, along with some amount of water and electrolytes, onto the ocular surface.

Correspondingly, the activity of these autonomic nerves are dependent on reflexes initiated by the activation of sensory neurons, which are present in high density, on the ocular surface [38]. At that location, they are very susceptible to direct injury caused by environmental factors and mechanical trauma [38]. Indirect forms of injury can also occur. For example, patients with aqueous tear deficiency from other causes may blink too frequently, which can generate enough stress to damage terminal nerve branches. Besides that, inflammation also plays a key role in altering the physiological state of the peripheral sensory neurons. Specifically, pro-inflammatory signalling molecules are able to either reduce the sensory neurons’ threshold for activation (sensitization) or increase their ongoing nerve activity (excitation) [106]. Such changes are linked to the kinetics of the transduction ion channels and voltage-gated ion channels in the axonal membrane [107], affecting the generation and propagation of action potentials [108, 109]. Without consistent control over the activation of the autonomic nerve fibers, tear production will therefore be defective.

Gut dysbiosis

The human body is host to trillions of microbiota. Among the various regions, such as the oral cavity, respiratory tract, skin and gastrointestinal tract, that harbor these microorganisms [110], the colon is the organ which consists of the densest number of microbes [111]. This additional diversity of microbiome serves as a functional expansion of host genomes [112] and produces signaling molecules that facilitate host metabolism and regulation of host physiology [113]. Studies have revealed correlations between gut dysbiosis, defined as an imbalance of the gut microbiota diversity (disturbed or inverted *Firmicutes/Bacteroidetes* ratio), and DES. Specifically, this connection was hypothesized to occur through the gut dysbiosis-ocular surface-lacrimal gland axis which consists of five proposed immune-related mechanisms describing how ratio changes of gut commensal can lead to DES [114, 115]. For example, one of the mechanisms proposed involve the migration of gut dysbiosis-activated CD103+ or CXCR1+ dendritic cells or monocytes/macrophage to the ocular surface where they prime T cells to secrete pro-inflammatory cytokines in the ocular surface and lacrimal glands [114]. Consequently, the immune response mounted will lead to a decrease in goblet cells and acinar cells in the conjunctiva and lacrimal glands, respectively, resulting in reduced mucin and tear secretion.

Extrinsic factors

Environmental influences

The LFU is well-equipped to withstand tolerable amounts of impurities in the environment and prevent ocular surface damage through tear secretion. However, the protection provided by the tear film can be eroded if the pollution becomes too overwhelming, especially if it affects the function of the various secretory components in the LFU. Particulate matter smaller than 2.5 and 10 μm (PM2.5 and PM10), which consists of inorganic dust, dirt, soot particles and organic allergens like pollen grains, mold and microbial colonies, are common pollutants associated with DES [116–121]. Excessive and prolonged exposure of these pollutants to the ocular surface were shown to trigger chronic inflammatory responses and induce...
oxidative stress, both of which have cytotoxic effects on the secretory cells [41]. Similarly, gaseous pollutants such as NO₂, SO₂, O₃ and volatile organic compounds (VOCs) such as formaldehyde, toluene and acetone were all found to be positively correlated with DES through inflammatory and cytotoxic causes [122–125].

Even in the absence of impurities and reactive gases, constant exposure to extreme environmental conditions such as strong winds, low humidity, high temperature and high altitude can directly affect ocular health as well [125–127]. These scenarios reduce the tear film stability and cause faster tear evaporation [41], resulting in DES.

Behaviour and/or habits

Tobacco consumption is one of the main causes of morbidity and mortality globally and has been associated with a number of systemic disorders and conditions, including DES [43–45]. Besides conventional cigarettes, battery-powered electronic cigarettes (ECs), which deliver nicotine through a heated vapor [128], are also recently shown to increase the risk of developing dry eyes [129]. Accordingly, both types of cigarettes affect ocular functionality through the smoke and/or combustion by-products produced, leading to inflammation and subsequent decreased quantity and quality of tear secretion as well as ocular surface damage [129, 130].

Additionally, long-term usage of computer, tablet and cell phone can also result in DES [131]. It was observed that users blink less when using such display devices with a screen, which prevented the formation of a stable tear film and therefore leading to a faster rate of tear evaporation [46].

Eye accessories

Contact lenses provide an aesthetic means for ocular refractive error correction over glasses and an estimated 140 million people in the world use them [132]. This estimation has remained relatively consistent over the past decade despite numerous improvements in contact lens technology [133]. Correspondingly, a major reason for this observation arises from eye discomfort, mostly the sensation of dry eyes, after prolonged usage [134]. Specifically, the close proximity of contact lens to the ocular surface poses a host of issues to the LFU and the tear film.

When fitted correctly, the contact lens cover the cornea completely and extends by ~2 mm onto the conjunctiva. In this configuration, every blink will cause it to move along the conjunctiva, which induces mechanical friction and goblet cells damage within the epithelium [135] over time [136, 137]. A reduction in goblet cell density will therefore lead to decreased mucin production and secretion, which affects tear film spreading. Besides that, contact lenses have also been associated with the loss of the meibomian gland and its orifice obstruction, resulting in impeded lipid synthesis and their transport to the tear film. Together, these dysregulations reduce the stability of the pre-lens tear film (PrLTF), the thin layer of fluid constrained between the cornea and the contact lens which is half the thickness of the normal pre-corneal tear film [138], and cause it to be susceptible to rapid evaporation, rupture and dry spot formation [139]. The lack of a consistent PrLTF is therefore a manifestation of DES.

Eye surgeries

Surgical procedures for ocular refractive errors such as laser-assisted in situ keratomileusis (LASIK), photorefractive keratectomy (PRK) and small incision lenticule extraction (SMILE) are recognized risk factors for developing dry eye [48, 49, 140]. This is attributable to a limitation posed by these surgical procedures where the sensory nerves present on the ocular surface will inevitably get damaged [48, 49, 140]. Without reliable sensory detection, the corneal sensation become impaired, which decreases basal and reflex tearing as well as rate of blinking [141–143]. Moreover, sensory denervation will also disrupt tear production by the lacrimal gland, leading to reduced tear secretion [144]. In addition to nerve damage, these refractive surgeries are also known to inflict damage to the conjunctival goblet cells [145–147]. Consequently, a reduction in goblet cell density signifies reduced mucin production and therefore, reduced tear film stability. Inflammatory responses induced as a result of postoperative wound-healing process is the last contributing factor to DES.

Altogether, these factors constitute the major known causes of DES. For clarity, they are compiled and summarized in Table 1.
Table 1 Summary of all the intrinsic and extrinsic etiologies and how they lead to dry eyes

Etiology	How it leads to DES	References
Autoimmunity		
Sjögren’s syndrome	- Lymphocytes and macrophages infiltrate lacrimal glands	[28, 50–52]
	- ↑ inflammatory cytokines, ↑ cell death, ↓ tear secretion	
Graves’ ophthalmopathy	- Excessive thyroid hormones	[64–66]
	- ↑ inflammation in orbital tissue	
	- Lid impaired mechanically, ↓ rate of blinking, ↑ tear evaporation	
	- Autoantibodies target lacrimal gland, ↓ tear secretion	
Multiple sclerosis	- Poor corneal sensory impulse conduction	[67]
	- ↓ tear secretion	
Hormonal imbalance		
Androgens	- Androgens bind to steroid-specific receptors in epithelial cells	[30, 69, 72–76, 82, 83]
	- ↓ androgens, lacrimal and meibomian gland dysfunction, ↓ tear secretion, ↓ lipid secretion, ↑ tear evaporation	
Systemic diseases		
Diabetes mellitus	- ↑ HbA1c in blood serum	[31, 87, 89]
	- Corneal and conjunctival epithelium damage, lacrimal gland dysfunction	
	- ↑ goblet cell death, ↓ mucin secretion, ↓ tear secretion	
Xerophthalmia	- Vitamin A deficiency	[91–94]
	- ↓ goblet cells, ↓ mucin secretion	
Hereditary diseases		
Familial dysautonomia	- Impaired sensory and autonomic neurons	[35, 95]
	- Lack LFU control, no tears produced	
Nerve damage		
VIP-IR nerve fibers	- VIP-IR nerve fibers regulate lacrimal and meibomian gland and goblet cells	[38, 96, 97, 103, 104]
	- Damage to the nerve itself or to its corresponding sensory neurons leads to ↓ tear secretion, ↓ lipid secretion, ↓ mucin secretion	
Gut dysbiosis		
Firmicutes/Bacteroidetes	- Altered ratio lead to dendritic cells’ and macrophages’ migration to ocular surface	[114, 115]
ratio	- T cells primed by their presence, secrete pro-inflammatory cytokines	
	- ↓ acinar and goblet cells, ↓ tear and mucin secretion	
Environment		
PM$_{2.5}$ and PM$_{10}$	- Prolonged exposure to ocular surface causes inflammation and damage	[41]
	- ↓ secretory cells	
Gaseous pollutants	- Prolonged exposure to ocular surface causes inflammation and damage	[122–125]
	- ↓ secretory cells	
Extreme weather conditions	- Strong winds, low humidity, high temperature and high altitude	[41, 125–127]
	- ↓ tear film stability, ↑ tear evaporation	
Behavior and/or habits		
Conventional and battery-	- Smoke and/or combustion by-products produced	[129, 130]
powered electronic ciga-	- Ocular surface inflammation and damage	
rettes	- ↓ quality and quantity of tear	
Display devices	- ↓ rate of blinking, ↓ tear film stability, ↑ tear evaporation	[46]
Upcoming clinical trials for DES treatment

Method of search

A primary search was conducted using ClinicalTrials (http://clinicaltrials.gov) and the key words used were dry eye, keratoconjunctivitis sicca, dryness, ocular, ophthalmic and optic. The search filters ‘Not yet recruiting’, ‘Recruiting’, ‘Enrolling by invitation’ and ‘Active, not recruiting’ were then applied to sieve out all the upcoming clinical trials related to these keywords. From there, the studies were reviewed and included only if they are associated with DES treatment.

Search results

All the pending and current clinical trials that focused on DES treatment were compiled and tabulated in Table 2. Applying the ‘Not yet recruiting’ filter yielded a total of 47 studies, of which 14 were relevant for this review. For the ‘Recruiting’ filter, there were a total of 146 studies and 34 of them were relevant. Meanwhile, the ‘Enrolling by invitation’ filter provided a total of 10 studies and 5 of them were found to be relevant. Lastly, the ‘Active, not recruiting’ filter returned a total of 23 studies and 7 of them were screened to be relevant.

For each of these filter categories, the studies-of-interest were further grouped according to various treatment types such as biologic, drug, device, drug delivery system, dietary supplement, physical activity, combinatorial as well as unknown. Here, biologics are distinct from drugs and defined as large complex biological molecules or a combination of molecules that can be derived from carbohydrates, lipids, proteins, nucleic acids, whole cells and even tissues. On the other hand, drugs are designated as molecules that are synthesized chemically and have well-characterized molecular structures. Based on the classification, around 50% of the recent clinical trials will be utilizing biologics and drugs for DES treatment. These therapeutics vary greatly and will mostly be concocted into a solution for delivery as eye drops. Among them, cyclosporine will be one of the most commonly tested anti-inflammatory drug. Even though cyclosporine was already approved for use in clinics to treat DES [207, 208], many of these studies are attempting to further improve its potency by testing different concentrations (NCT04835623), duration (NCT04144413) and delivery method such as sustained release (NCT04541888) and nanoencapsulation (NCT04172961). On the other hand, hyaluronic acid and its salt derivative, sodium hyaluronate, will be the most popular biologics utilized in these studies to constitute artificial tears with lubricating [156, 209] and antibacterial properties [210, 211].

Besides biologics and drugs, medical devices are also quite commonly employed, especially for DES caused by Meibomian Gland Dysfunction (MGD). These commercial devices such as Tear Care System (NCT04309799, NCT04795752) and MiBo Thermoflo (NCT03767530) usually have components that are attached to the users’ eyelids for providing heat and/or pressure which enhances meibum lipid flow [162, 212]. For other causes of DES, one study will be investigating the efficacy of quantum molecular resonance (QMR) on patients with DES (NCT04320563). QMR is a recent innovative technology that involves the application of low-power high-frequency oscillating electrical currents (4 to 64 MHz), a range which resonates with biological tissues, in order to elicit cellular

Table 1 (continued)

Etiology	How it leads to DES	References
Eye accessories	Contact lenses	- Mechanical friction, ↓ goblet cells, ↓ mucin secretion
		- Meibomian gland damaged, ↓ lipid secretion
		- ↓ tear film stability, ↑ tear evaporation
Eye surgeries	LASIK, PRK, SMILE	- Damaged sensory nerves and goblet cells
		- ↓ rate of blinking, ↓ mucin production, ↓ tear secretion, ↓ tear film stability, ↑ tear evaporation

[135–139]

[48, 49, 140–147]
Identifier	Status	Treatment/Intervention	Treatment type	Route of administration	Phase	Related literatures
NCT05169931	Not yet recruiting	Amniotic membrane extract	Biologic	Ophthalmic (Eye drops)	1	[148, 149]
NCT04938908	Not yet recruiting	Probiotic from bacterial lysate	Biologic	Ophthalmic (Eye drops)	2	[150]
NCT04608084	Not yet recruiting	Autologous platelet rich plasma	Biologic	Ophthalmic (Eye drops)	4	[151, 152]
NCT04510428	Not yet recruiting	Ocular Surface Immune Globulin (OSIG)	Biologic	Ophthalmic (Eye drops)	2	N.A
NCT04819269	Not yet recruiting	Tivanisiran (siRNA against TRPV1)	Biologic	Ophthalmic (Eye drops)	3	[153, 154]
NCT04704531	Not yet recruiting	Lagricel Ofteno (Sodium hyaluronate 0.4%)	Biologic	Ophthalmic (Eye drops)	2	[155, 156]
NCT03953703	Not yet recruiting	Levocarnitine	Drug	Oral	2	[157]
NCT04668118	Not yet recruiting	Diquafosol	Drug	Ophthalmic (Eye drops)	4	[158, 159]
NCT04835623	Not yet recruiting	Cyclosporine 0.09% ophthalmic solution	Drug	Ophthalmic (Eye drops)	4	[160]
NCT04965974	Not yet recruiting	Digital blue light blocking filter	Device	N.A	N.A	N.A
NCT04877483	Not yet recruiting	Acupuncture	Device	N.A	N.A	[161]
NCT04309799	Not yet recruiting	Tear Restore Mask (warms the eyelids)	Device	N.A	N.A	[162]
NCT04541888	Not yet recruiting	CsA eye gel (cyclosporine-based gel)	Drug delivery system	Ophthalmic (Eye drops)	3	[163]
NCT04679883	Not yet recruiting	5% GLH8NDE	N.A	Ophthalmic (Eye drops)	2	N.A
NCT05136170	Recruiting	Oxervate (cenegermin a.k.a. rhNGF 20mcg/mL)	Biologic	Ophthalmic (Eye drops)	3	[164]
NCT05109702	Recruiting	Tanfanercept (0.25% HL036 ophthalmic solution)	Biologic	Ophthalmic (Eye drops)	3	[165]
NCT04899518	Recruiting	ALY688 ophthalmic solution	Biologic	Ophthalmic (Eye drops)	2 and 3	[166]
NCT04633213	Recruiting	HBM9036 (TNF-α inhibitor)	Biologic	Ophthalmic (Eye drops)	3	[167, 168]
NCT04615455	Recruiting	Allogeneic adipose-derived mesenchymal stem cells (injection into lacrimal gland)	Biologic	Transplant	2	[169]
NCT04877210	Recruiting	Insulin (in diabetics)	Biologic	Ophthalmic (Eye drops)	1	[170]
Table 2 (continued)

Identifier	Status	Treatment/Intervention	Treatment type	Route of administration	Phase	Related literatures
NCT04683796	Recruiting	Autologous platelet rich plasma vs. autologous serum	Biologic	Ophthalmic (Eye drops)	3	[171–173]
NCT04217785	Recruiting	Umbilical cord serum	Biologic	Ophthalmic (Eye drops)	1 and 2	[174, 175]
NCT03953118	Recruiting	Azithromycin (antibiotic)	Drug	Oral	4	[176]
NCT04357795	Recruiting	CequaTM (Cyclosporine 0.09%) ophthalmic solution	Drug	Ophthalmic (Eye drops)	4	[177]
NCT05213156	Recruiting	Oxatrex (0.3% ofloxacin)	Drug	Ophthalmic (Eye drops)	4	[178]
NCT04030962	Recruiting	AGN-242428 (RORγ inhibitor) + AGN-231868 (chemokine antagonist)	Drug	Ophthalmic (Eye drops)	1 and 2	[179]
NCT05056155	Recruiting	Systane Complete (0.6% propylene glycol)	Drug	Ophthalmic (Eye drops)	N.A	N.A
NCT04735393	Recruiting	Reproxalap (covalent inhibitor of RASP)	Drug	Ophthalmic (Eye drops)	3	[180, 181]
NCT04734210	Recruiting	SURF-200 (betamethasone sodium phosphate)	Drug	Ophthalmic (Eye drops)	2	N.A
NCT04172961	Recruiting	Nanomicellar cyclosporine formulation	Drug	Ophthalmic (Eye drops)	4	[160]
NCT04144413	Recruiting	Ikervis (1 mg/ml cyclosporine formulation)	Drug	Ophthalmic (Eye drops)	3	[160]
NCT04553432	Recruiting	Omnigen (processed amniotic membrane)	Device	N.A	4	[182]
NCT05203796	Recruiting	Transcutaneous pulsed electrical stimulation (NuEye 02)	Device	N.A	N.A	[183]
NCT04795752	Recruiting	TearCare system (thermal treatment)	Device	N.A	N.A	[184]
NCT04120584	Recruiting	Forma eye applicator (radio frequency treatment)	Device	N.A	N.A	N.A
NCT04320563	Recruiting	Rexon-eye (4 to 64 MHz, quantum molecular resonance)	Device	N.A	N.A	[185]
Identifier	Status	Treatment/Intervention	Treatment type	Route of administration	Phase	Related literatures
-----------------	-------------------	--	----------------------	--------------------------	-------	--------------------
NCT03767530	Recruiting	MiBo Thermoflo (thermal therapy)	Device	N.A	N.A	[186]
NCT04730336	Recruiting	Tixel (peri-orbital fractional thermomechanical treatment)	Device	N.A	N.A	
NCT04763018	Recruiting	iTEAR100 (neuro-stimulate external nasal nerve)	Device	N.A	N.A	[187]
NCT04096898	Recruiting	Senofilcon A contact lens	Device	N.A	N.A	[188, 189]
NCT04498468	Recruiting	DEXTENZA (Dexamethasone-loaded intracanalicular insert)	Drug delivery system	Implant	4	N.A
NCT05119920	Recruiting	Pilocarpine ophthalmic topical cream	Drug delivery system	Eyelid	2	N.A
NCT04527887	Recruiting	Dexamethasone-loaded intracanalicular insert	Drug delivery system	Implant	4	[190]
NCT04645446	Recruiting	Pro-ocular gel (loaded with 1% progesterone)	Drug delivery system	Transdermal	2	[191]
NCT05027087	Recruiting	Blueberry gummy	Dietary supplement	Oral	3	[192]
NCT04785261	Recruiting	Artelac eye drops + Vidisic gel + traditional Chinese medicine formula	Drug + Biologic	Ophthalmic (Eye drops) + Oral	2	[193]
NCT04413279	Recruiting	Dexamethasone-loaded intracanalicular insert + LipiFlow thermal pulsation	Drug delivery system + Device	Implant	4	[190, 194]
NCT03652051	Recruiting	AZR-MD-001 (topical ointment)	N.A	Ophthalmic (Eye drops)	2	N.A
NCT03302273	Enrolling by invitation	Corneal epithelial stem cells	Biologic	Transplant	N.A	[195, 196]
NCT04056221	Enrolling by invitation	Acupuncture	Device	N.A	N.A	[161]
NCT04884217	Enrolling by invitation	Pro-ocular gel (loaded with 1% progesterone)	Drug delivery system	Transdermal	2	[191]
NCT04421300	Enrolling by invitation	Smiling exercise	Physical activity	N.A	N.A	[197]
NCT04658927	Enrolling by invitation	iLUX (applies heat and compression to eyelids) + Dexamethasone-loaded intracanalicular insert	Device + Drug delivery system	Implant	4	[190, 198]
This procedure will be performed using Rexon-Eye, a noninvasive, QMR-based patented instrument. Patients will wear the device like an eye mask and electrodes will stimulate their periorbital region during the therapy for enhanced tear secretion.

The rest of the treatment types form the minority within the list of clinical trials. These included drug delivery systems that will provide sustained release through dexamethasone-loaded implants (NCT04527887, NCT04413279, NCT04658927) and hydrogels (NCT04541888, NCT04645446, NCT04884217), dietary supplements consisting of vitamins and lipids (NCT04181593) as well as physical activities for boosting well-being (NCT04421300).

Future prospects for DES treatment

As discussed, DES could be caused by a large variety of factors. However, current treatments mainly addressed the symptoms by hydrating or lubricating the ocular surface without tackling the root problems [148]. Besides creating unhealthy dependence in patients, such approaches will also lead to significant financial burden due to recurring treatment costs. Therefore, it is encouraging to witness the trajectory of upcoming DES treatment strategies where cellular and tissue regeneration in the LFU are the key focus. Specifically, studies that employ blood components such as platelet rich plasma or serum hold great promise in the clinics not only for treating DES but for other diseases as well [214]. However, like many other treatment
options, allogeneic stem cell and body fluid therapy come with their own limitations that cannot be easily circumvented. Most notably, they involve invasive procedures and may deter patients from opting for this method. Additionally, the effectiveness of these components in inducing favorable outcomes is highly dependent on the patients’ suitability as well.

Therefore, for treatments to be inclusive, they should be varied and multipronged. In our opinion, one promising alternative is gene therapy, which enables the alteration of genetic sequences within tissues and cells with recombinant nucleic acids [215]. Commonly used nucleic acids such as DNA, mRNA, siRNA, miRNA and anti-sense oligonucleotides can be strategically delivered into a defective target cell or tissue in order to either restore the gene(s) responsible for disease suppression or inhibit the gene(s) related to disease development [216]. Besides its versatility, these nucleic acids can also be administered noninvasively for DES treatment. Accordingly, the efficacy of this technology will be investigated in one of the upcoming clinical trials listed in Table 2 which utilizes Tivanisiran (NCT04819269), a novel 19 nucleotide siRNA for suppressing the expression of the transient receptor potential cation channel subfamily V member 1 (TRPV1) [153]. TRPV1 is a pain receptor found in some components of the LFU [217] and the responses it mediates in the sensory neurons was found to be associated with the development of inflammation and neuropathic pain [218]. The delivery of this siRNA-based of eye drop will potentially result in the reduction in TRPV1’s expression in the ocular tissues and therefore, alleviate inflammation and improve tear secretion [219]. Of note, naked nucleic acids are very inefficiently uptaken by cells as they possess similar negative charges as the cell membrane, which leads to electrostatic repulsion [220, 221]. Delivery vehicles are required to transport nucleic acids across the cell membrane and herein determines the success of gene therapy. Recently, a breakthrough in vaccination strategy has shed valuable insights about the optimal form of nucleic acid carriers. Specifically, the Pfizer vaccine for Covid-19 utilizes a specially formulated liposome for delivering mRNAs into cells with great efficiency [222]. With the approval of this revolutionary delivery platform, gene therapy is thus in a favorable position to take off.

Another prospective DES treatment option is fecal microbiota transplantation (FMT), which is the transfer of fecal materials from a healthy donor into the intestinal tract of an ill or diseased recipient. By doing so, the recipient’s gut microbial composition can be adjusted to resemble the healthy donor’s, thereby conferring health benefits [223]. Since DES was found to be associated with gut dysbiosis, FMT is a potentially relevant and practical technique for treatment. However, there were not many clinical trials investigating the efficacy of FMT on DES patients as it was only quite recently that a correlation between DES and gut dysbiosis was uncovered. The first and only study was completed on June 2020, which explored the effects of FMT on patients with SS (NCT03926286). Alternatively, we may also expect ocular microbiota transplantation in future as studies have identified microbiome differences between closed dry eye patients and healthy closed eye patients [224–226].

Conclusion

DES is a relatively common ophthalmic disease that can manifest in various degrees of severity and can be caused by many factors. While not life threatening, patients may often have to continuously endure discomfort or even pain, which puts a damper in their quality of life. Given the multitude of conditions which DES can originate from, a variety of treatment options is critical to ensure inclusivity and effectiveness. Encouragingly, current clinical trials are trending towards this notion and investigating promising research-backed treatments like stem cell therapy, blood component therapy and gene therapy. If successful, these strategies may define treatments for other diseases in future as well.

Author contributions RJH, CYS, LJF and JQL wrote and edited the manuscript. JSC and YD proofread and edited the manuscript. JSC and YD provided guidance and the funding for this work.

Availability of data and material Not applicable.

Code availability Not applicable.

Declarations
Conflict of interest All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication Not applicable.

References

1. Moss SE, Klein R, Klein BEK (2000) Prevalence of and risk factors for dry eye syndrome. Arch Ophthalmol 9:1264–1268
2. (2007) The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf 2:75–92
3. Liu KC, Huynh K, Grubbs J Jr et al (2014) Autoimmunity in the pathogenesis and treatment of keratoconjunctivitis sicca. Curr Allergy Asthma Rep 1:403–403
4. Pflugfelder SC, Stern ME (2020) The cornea in keratoconjunctivitis sicca. Exp Eye Res. https://doi.org/10.1016/j.exer.2020.108295
5. Javadi MA, Feizi S (2011) Dry eye syndrome. J Ophthalmic Vis Res 3:192–198
6. Rolando M, Zierhut M (2001) The ocular surface and tear film and their dysfunction in dry eye disease. Surv Ophthalmol 45:S203–S210
7. King-Smith PE, Fink BA, Hill RM et al (2004) The thickness of the tear film. Curr Eye Res 4–5:357–368
8. King-Smith PE, Fink BA, Fogt N et al (2000) The thickness of the human precorneal tear film: evidence from reflection spectra. Invest Ophthalmol Vis Sci 11:3348–3359
9. Willcox MDP, Argüeso P, Georgiev GA et al (2017) TFOS DEWS II tear film report. Ocul Surf 3:366–403
10. King-Smith PE, Hinel EA, Nichols JJ (2010) Application of a novel interferometric method to investigate the relation between lipid layer thickness and tear film thinning. Invest Ophthalmol Vis Sci 5:2418–2423
11. Dilly PN (1994) Structure and function of the tear film. In: Sullivan DA (ed) Lacrimal gland, tear film, and dry eye syndromes: basic science and clinical relevance. Springer, Boston, pp 239–247
12. Cher I (2008) A new look at lubrication of the ocular surface: fluid mechanics behind the blinking eyelids. Ocul Surf 2:79–86
13. Peng CC, Cerretani C, Li Y et al (2014) Flow evaporimeter to assess evaporative resistance of human tear-film lipid layer. Ind Eng Chem Res 47:18130–18139
14. Bron AJ, Tiffany JM, Gouveia SM et al (2004) Functional aspects of the tear film lipid layer. Exp Eye Res 3:347–360
15. Knop E, Knop N, Millar T et al (2011) The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Invest Ophthalmol Vis Sci 4:1938–1978
16. Zhou L, Zhao SZ, Koh SK et al (2012) In-depth analysis of the human tear proteome. J Proteom 13:3877–3885
17. Azkargorta M, Soria J, Ojeda C et al (2015) Human basal tear peptidome characterization by CID, HCD, and ETD followed by in silico and in vitro analyses for antimicrobial peptide identification. J Proteome Res 6:2649–2658
18. Darzt DA, Willcox MDP (2013) Complexity of the tear film: importance in homeostasis and dysfunction during disease. Exp Eye Res 117:1–3
19. Mantelli F, Mauris J, Argüeso P (2013) The ocular surface epithelial barrier and other mechanisms of mucosal protection: from allergy to infectious diseases. Curr Opin Allergy Clin Immunol 5:563–568
20. Hattrup CL, Gendler SJ (2008) Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol 70:431–457
21. Thornton DJ, Rousseau K, McGuckin MA (2008) Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol 70:459–486
22. Gipson IK, Hori Y, Argüeso P (2004) Character of ocular surface mucins and their alteration in dry eye disease. Ocul Surf 2:131–148
23. Gipson IK, Argüeso P (2003) Role of mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol 231:1–49
24. Sumiyoshi M, Ricciuto J, Tisdale A et al (2008) Antihesive character of mucin O-glycans at the apical surface of corneal epithelial cells. Invest Ophthalmol Vis Sci 1:197–203
25. Lempp MA (1995) Report of the National Eye Institute/Industry workshop on clinical trials in dry eyes. Clao J 4:221–232
26. Johnson ME, Murphy PJ (2004) Changes in the tear film and ocular surface from dry eye syndrome. Prog Retin Eye Res 4:449–474
27. Stern ME, Schaumburg CS, Pflugfelder SC (2013) Dry eye as a mucosal autoimmune disease. Int Rev Immunol 1:19–41
28. Coursey TG, de Paiva CS (2014) Managing Sjögren’s Syndrome and non-Sjögren Syndrome dry eye with anti-inflammatory therapy. Clin Ophthalmol 8:1447–1458
29. Peck T, Olsakovsky L, Aggarwal S (2017) Dry eye syndrome in menopause and perimenopausal age group. J Mid-Life Health 2:51–54
30. Versura P, Giannaccare G, Campos EC (2015) Sex steroid imbalance in females and dry eye. Curr Eye Res 2:162–175
31. Zhang X, Zhao L, Deng S et al (2016) Dry eye syndrome in patients with diabetes mellitus: prevalence, etiology, and clinical characteristics. J Ophthalmol 2016:8201053
32. De Freitas GR, Ferraz GAM, Gehlen M et al (2021) Dry eyes in patients with diabetes mellitus. Prim Care Diabetes 1:184–186
33. Abd-Allah NM, Hassan AA, Omar G et al (2020) Dry eye in rheumatoid arthritis: relation to disease activity. Immunol Med 2:92–97
34. Yumori JW, Trinh D, Lee E et al (2015) Prevalence of dry eye disease in rheumatoid arthritis patients. Invest Ophthalmol Vis Sci 7:4437–4437
35. Gold-von Simson G, Axelrod FB (2006) Familial dysautonomia: update and recent advances. Curr Probl Pediatr Adolesc Health Care 6:218–237
36. Mendoza-Santiesteban CE, Hedges TR 3rd, Norcliffe-Kaufmann L et al (2012) Clinical neuro-ophthalmic findings in familial dysautonomia. J Neuro-Ophthalmol 1:23–26
37. Galor A, Levitt RC, Felix ER et al (2015) Neuropathic ocular pain: an important yet underevaluated feature of dry eye. Eye (Lond) 3:301–312
38. Belmonte C, Nichols JJ, Cox SM et al (2017) TFOS DEWS II pain and sensation report. Ocul Surf 3:404–437
39. Moon J, Choi SH, Yoon CH et al (2020) Gut dysbiosis is prevailing in Sjögren’s syndrome and is related to dry eye severity. PLoS ONE 6:e029209
40. Tsigalou C, Stavropoulou E, Bezirtzoglou E (2018) Current Insights in microbiome shifts in Sjögren’s syndrome and possible therapeutic interventions. Front Immunol 9:1106
41. Mandell JT, Idarraga M, Kumar N et al (2020) Impact of air pollution and weather on dry eye. J Clin Med 11:3740
42. Alves M, Novaes P, Morraye Mde A et al (2014) Is dry eye an environmental disease? Arq Bras Oftalmol 3:193–200
43. Xu L, Zhang W, Zhu X-Y et al (2016) Smoking and the risk of dry eye: a meta-analysis. Int J Ophthalmol 10:1480–1486
44. Erginturk Acar D, Acar U, Ozen Tunay Z et al (2017) The effects of smoking on dry eye parameters in healthy women. Cutan Ocul Toxicol 1:1–4
45. Khalil HE, Aboud S, Azzab M (2018) Comparative study between smokers and nonsmokers regarding dry eye. Delta J Ophthalmol 9:1–13
46. Akkaya S, Atakan T, Acikalin B et al (2018) Effects of long-term computer use on eye dryness. North Clin Istanbul 4:319–322
47. Koh S (2020) Contact lens wear and dry eye: beyond the known. Asia-Pac J Ophthalmol. https://doi.org/10.1097/APO.0000000000000329
48. Shtein RM (2011) Post-LASIK dry eye. Expert Rev Ophthalmol 5:575–582
49. Wong AHY, Cheung RKY, Kuan WN et al (2019) Dry eyes after SMILE. Asia-Pac J Ophthalmol 5:397–405
50. Barr JY, Wang X, Meyerholz DK et al (2017) CD8 T cells contribute to lacrimal gland pathology in the non-obese diabetic mouse model of Sjögren syndrome. Immunol Cell Biol 8:684–694
51. Zhou D, Chen Y-T, Chen F et al (2012) Critical involvement of macrophage infiltration in the development of Sjögren’s syndrome-associated dry eye. Am J Pathol 3:753–760
52. Srivastava A, Makarenkova HP (2020) Innate immunity and biological therapies for the treatment of Sjögren’s syndrome. Int J Mol Sci 23:9172
53. Chen Y-T, Lazarev S, Bahrami AF et al (2012) Interleukin-1 receptor mediates the interplay between CD4+ T cells and ocular resident cells to promote keratinizing squamous metaplasia in Sjögren’s syndrome. Lab Investig 4:556–570
54. Chen FY, Lee A, Ge S et al (2017) Aire-deficient mice provide a model of corneal and lacrimal gland neuropa-thy in Sjögren’s syndrome. PLoS ONE 9:e0184916
55. Pflugfelder SC, Jones D, Ji Z et al (1999) Altered cytokine balance in the tear fluid and conjunctiva of patients with Sjögren’s syndrome keratoconjunctivitis sicca. Curr Eye Res 3:201–211
56. Lam H, Bleiden L, de Paiva CS et al (2009) Tear cytokine profiles in dysfunctional tear syndrome. Am J Ophthalmol 2:198–205
57. Solomon A, Dursun D, Liu Z et al (2001) Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Invest Ophthalmol Vis Sci 10:2283–2292
58. Kook KY, Jin R, Li L et al (2020) Tear osmolarity and matrix metallopeptidase-9 in dry eye associated with Sjögren’s syndrome. Korean J Ophthalmol 3:179–186
59. Lanza NL, Valenzuela F, Perez VL et al (2016) The matrix metalloproteinase 9 point-of-care test in dry eye. Ocul Surf 2:189–195
60. Tsubota K, Fukagawa K, Fujihara T et al (1999) Regulation of human leukocyte antigen expression in human conjunctival epithelium. Invest Ophthalmol Vis Sci 1:28–34
61. Brignole-Baudouin F, Riancho L, Ismail D et al (2017) Correlation between the inflammatory marker HLA-DR and signs and symptoms in moderate to severe dry eye disease. Invest Ophthalmol Vis Sci 4:2438–2448
62. Akpek EK, Wu HY, Karakus S et al (2020) Differential diagnosis of sjögren versus non-sjögren dry eye through tear film biomarkers. Cornea 8:991–997
63. Gürdal C, Sarac O, Genç I et al (2011) Ocular surface and dry eye in Graves’ disease. Curr Eye Res 1:8–13
64. Bothun ED, Scheurer RA, Harrison AR et al (2009) Update on thyroid eye disease and management. Clin Ophthalmol 3:543–551
65. Iskelenli G, Karakoc Y, Abdula A (2008) Tear film osmolality in patients with thyroid ophthalmopathy. Jpn J Ophthalmol 4:323–326
66. Eckstein AK, Finkenrath A, Heiligenhaus A et al (2004) Dry eye syndrome in thyroid-associated ophthalmopathy: lacrimal expression of TSH receptor suggests involvement of TSHR-specific autoantibodies. Acta Ophthalmol Scand 2(1):291–297
67. Coyle PK, Sibony PA (1986) Tear analysis in multiple sclerosis. Neurology 4:547–550
68. Pontelli RCN, Rocha BA, Garcia DM et al (2020) Endocrine disrupting chemicals associated with dry eye syndrome. Ocul Surf 3:487–493
69. Sullivan DA, Rocha EM, Aragona P et al (2017) TFOS DEWS II sex, gender, and hormones report. Ocul Surf 3:284–333
70. Richards SM, Jensen RV, Liu M et al (2006) Influence of sex on gene expression in the mouse lacrimal gland. Exp Eye Res 1:13–23
71. Suzuki T, Schirra F, Richards SM et al (2006) Estrogen’s and progesterone’s impact on gene expression in the mouse lacrimal gland. Invest Ophthalmol Vis Sci 1:158–168
72. Toda I, Wickham LA, Sullivan DA (1998) Gender and androgen treatment influence the expression of proto-oncogenes and apoptotic factors in lacrimal and salivary tissues of MRL/IprMice. Clin Immunol Immunopathol 1:59–71
73. Richards SM, Liu M, Sullivan BD et al (2002) Gender-related differences in gene expression of the lacrimal gland. In: Sullivan DA, Stern ME, Tsubota K, Dartt DA, Sullivan RM, Bromberg BB (eds) Lacrimal gland, tear film, and dry eye syndromes 3: basic science and clinical relevance part A and B. Springer, Boston, pp 121–127
74. Gao J, Lambert RW, Wickham LA et al (1995) Androgen control of secretory component mRNA levels in the rat lacrimal gland. J Steroid Biochem Mol Biol 3:239–249
75. Ono M, Rocha FJ, Sullivan DA (1995) Immunocytochemical location and hormonal control of androgen receptors in lacrimal tissues of the female MRL/Mp-Ipr/Ipr mouse model of sjögren's syndrome. Exp Eye Res 6:659–666
76. Truong S, Cole N, Stapleton F et al (2014) Sex hormones and the dry eye. Clin Exp Ophthalmol 4:324–336
77. Chia EM, Mitchell P, Rochtchina E et al (2003) Prevalence and associations of dry eye syndrome in an older population: the Blue Mountains Eye Study. Clin Exp Ophthalmol 3:229–232
78. Sullivan DA, Wickham LA, Rocha EM et al (1998) Influence of gender, sex steroid hormones, and the hypothalamic-pituitary axis on the structure and function of the lacrimal gland. In: Sullivan DA, Dartt DA, Meneray MA (eds) Lacrimal gland, tear film, and dry eye syndromes 2: basic science and clinical relevance. Springer, Boston, pp 11–42
79. Carlsen SM, Jacobsen G, Vanky E (2010) Mid-pregnancy androgen levels are negatively associated with breastfeeding. Acta Obstet Gynecol Scand 1:87–94
80. Yasui T, Matsui S, Tani A et al (2012) Androgen deficiency, Meibomian gland dysfunction, and evaporative dry eye. Ann N Y Acad Sci 1041:666–672
81. Thody AJ, Shuster S (1989) Control and function of sebaceous glands. Physiol Rev 2:383–416
82. Sullivan DA, Sullivan BD, Evans JE et al (2002) Androgen deficiency, Meibomian gland dysfunction, and evaporative dry eye. Am J Ophthalmol Physiol 5:C188-198
83. Schröder HG, Ziegler M, Nickisch K et al (1989) Effects of topically applied antiandrogenic compounds on sebaceous glands of hamster ears and flank organs. J Invest Dermatol 5:769–773
84. Manaviat MR, Rashidi M, Afkhami-Ardakani M et al (2008) Prevalence of dry eye syndrome and diabetic retinopathy in type 2 diabetic patients. BMC Ophthalmol 8:10
85. Zou X, Lu L, Xu Y et al (2018) Prevalence and clinical characteristics of dry eye disease in community-based type 2 diabetic patients: the Beixining eye study. BMC Ophthalmol 1:117
86. Najafi L, Malek M, Valojerdi AE et al (2013) Dry eye and its correlation to diabetes microvascular complications in people with type 2 diabetes mellitus. J Diabetes Complicat 5:459–462
87. Gekka M, Miyata K, Nagai Y et al (2004) Corneal epithelial barrier function in diabetic patients. Cornea 1:35–37
88. Nitin S (2010) HbA1c and factors other than diabetes mellitus affecting it. Singapore Med J 8:616–622
89. Tang WH, Martin KA, Hwa J (2012) Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 3:87
90. Faustino JF, Ribeiro-Silva A, Dalto RF et al (2016) Vitamin A and the eye: an old tale for modern times. Arquivos Bras Oftalmol 79:56–61
91. Pal R, Sagar V (2008) Antecedent risk factors of xerophthalmia among Indian rural preschool children. Eye Contact Lens 2:106–108
92. McLaughlin S, Welch J, MacDonald E et al (2014) Xerophthalmia: a potential epidemic on our doorstep? Eye (Lond) 5:621–623
93. Feroze KB, Kaufmann EJ (2021) Xerophthalmia. StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC, Treasure Island
94. Zhang W, Li W, Zhang C et al (2019) Effects of vitamin A on Expressions Of Apoptosis Genes Bax and Bcl-2 in epithelial cells of corneal tissues induced by benzalkonium chloride in mice with dry eye. Med Sci Monit 25:4583–4589
95. Palma J-A, Norcliffe-Kaufmann L, Fuente-Mora C et al (2014) Current treatments in familial dysautonomia. Expert Opin Pharmacother 18:2653–2671
96. Nikkinen A, Lehtosalo JI, Uusitalo H et al (1984) The lacrimal glands of the rat and the guinea pig are innervated by nerve fibers containing immunoreactivities for substance P and vasoactive intestinal polypeptide. Histochemistry 1:23–27
97. Seifert P, Spitznas M (1999) Vasoactive intestinal polypeptide (VIP) innervation of the human eyelid glands. Exp Eye Res 6:659–666
98. Zhang WH, Martin KA, Hwa J (2012) Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 3:87
99. Martyn A, Tan YP, Trautmann A (1984) Three types of calcium-dependent channel in rat lacrimal glands. J Physiol 357:293–325
100. Trautmann A, Martyn A (1984) Activation of Ca-dependent K channels by carbamoylcholine in rat lacrimal glands. Proc Natl Acad Sci U S A 2:611–615
101. Wood RL, Mircheff AK (1986) Apical and basal-lateral Na/K-ATPase in rat lacrimal glands. J Membrane Biol 357:293–325
102. Putney JW Jr, VandeWalle CM, Leslie BA (1978) Stimulus-secretion coupling in the rat lacrimal gland. Am J Physiol 5:1188–198
103. Seifert P, Spitznas M (1996) Immunohistochemical and ultrastructural evaluation of the distribution of nervous tissue and neuropeptides in the meibomian gland. Graefes Arch Clin Exp Ophthalmol 10:648–658
104. Diebold Y, Rios JD, Hodges RR et al (2001) Presence of nerves and their receptors in mouse and human
conjunctival goblet cells. Invest Ophthalmol Vis Sci 10:2270–2282
105. Kirch W, Horneber M, Tamm ER (1996) Characterization of Meibomian gland innervation in the cynomolgus monkey (Macaca fascicularis). Anat Embryol (Berl) 4:365–375
106. Andersen HH, Yosipovich G, Galor A (2017) Neurogenic symptoms of the ocular surface: dryness, pain, and itch. Curr Opin Allergy Clin Immunol 5:373–381
107. Staaf S, Oerther S, Lucas G et al (2009) Differential regulation of TRP channels in a rat model of neuropathic pain. PAIN® 1:187–199
108. Tibbs GR, Posson DJ, Goldstein PA (2016) Voltage-gated ion channels in the PNS: novel therapies for neuropathic pain? Trends Pharmacol Sci 7:522–542
109. Cooper LV, Jordan JI (2001) Commensal host-bacterial relationships in the gut. Science 5519:1115
110. Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Med 1:51
111. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 8:e1002533
112. Kho ZY, Lal SK (2018) The human gut microbiome: a potential controller of wellness and disease. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01835
113. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 5519:1115
114. Moon J, Yoon CH, Choi YH, Paik HJ et al (2016) Symptoms of environmental pollution on the eye. Acta Ophthalmol 5:499–506
115. Saxena R, Srivastava S, Trivedi D et al (2003) Impact of environmental pollution on the eye. Acta Ophthalmol Scand 5:491–494
116. Wiwatanadate P (2014) Acute air pollution-related symptoms among residents in Chiang Mai, Thailand. J Environ Health Geogr 13:31
117. Randolph SA (2017) Computer vision syndrome. Work-place Health Saf 7:328
118. Stapleton F, Keay L, Dalbert I et al (2007) The epidemiology of contact lens related infiltrates. Optom Vis Opt 4:257–272
119. Markoulli M, Kolanu S (2017) Contact lens wear and dry eyes: challenges and solutions. Clin Optom 9:41–48
120. Riley C, Young G, Chalmers R (2006) Prevalence of ocular surface symptoms, signs, and uncomfortable hours of wear in contact lens wearers: the effect of refitting with daily-wear silicone hydrogel lenses (senofilcon a). Eye Contact Lens 6:281–286
121. Colorado LH, Alzahrani Y, Pritchard N et al (2016) Time course of changes in goblet cell density in symptomatic and asymptomatic contact lens wearers. Invest Ophthalmol Vis Sci 6:2888–2894
122. Doughty MJ (2011) Contact lens wear and the goblet cells of the human conjunctiva: a review. Cont Lens Anterior Eye 4:157–163
123. Mo Z, Fu Q, Lyu D et al (2019) Impacts of air pollution on dry eye disease among residents in Hangzhou, China: a case-crossover study. Environ Pollut 246:183–189
124. Hwang SH, Choi YH, Paik HJ et al (2016) Potential importance of ozone in the association between outdoor air pollution and dry eye disease in South Korea. JAMA Ophthalmol 5:503–510
125. van Setten G, Labetoulle M, Baudouin C et al (2016) Evidence of seasonality and effects of psychrometry in dry eye disease. Acta Ophthalmol 5:499–506
126. Lam DCL, Nana A, Eastwood PR et al (2014) Electronic cigarettes: ‘vaping’ has unproven benefits and potential harm. Respirology 7:945–947
127. Md Isa NA, Koh PY, Doraj P (2019) The tear function in electronic cigarette smokers. Optom Vis Sci 9:678–685
128. Kiotseridis H, Cilio CM, Bjermer L et al (2013) Grass pollen allergy in children and adolescents—symptoms, health related quality of life and the value of pollen prophylaxis in the prevention of meibomitis: manifestations, incidence, and predictive factors. J Cataract Refract Surg 12:2624–2634
129. Colorado LH, Alzahrani Y, Pritchard N et al (2016) Time course of changes in goblet cell density in symptomatic and asymptomatic contact lens wearers. Invest Ophthalmol Vis Sci 6:2888–2894
130. Nichols JJ, Mitchell GL, King-Smith PE (2005) Thin film. Australas Med J 4:221–226
131. Stapleton F, Keay L, Dalbert I et al (2007) The epidemiology of contact lens related infiltrates. Optom Vis Opt 4:257–272
132. Markoulli M, Kolanu S (2017) Contact lens wear and dry eyes: challenges and solutions. Clin Optom 9:41–48
133. Riley C, Young G, Chalmers R (2006) Prevalence of ocular surface symptoms, signs, and uncomfortable hours of wear in contact lens wearers: the effect of refitting with daily-wear silicone hydrogel lenses (senofilcon a). Eye Contact Lens 6:281–286
134. Colorado LH, Alzahrani Y, Pritchard N et al (2016) Time course of changes in goblet cell density in symptomatic and asymptomatic contact lens wearers. Invest Ophthalmol Vis Sci 6:2888–2894
135. Nichols JJ, Mitchell GL, King-Smith PE (2005) Thin film. Australas Med J 4:221–226
136. Randolph SA (2017) Computer vision syndrome. Workplace Health Saf 7:328
137. Stapleton F, Keay L, Dalbert I et al (2007) The epidemiology of contact lens related infiltrates. Optom Vis Opt 4:257–272
138. Colorado LH, Alzahrani Y, Pritchard N et al (2016) Time course of changes in goblet cell density in symptomatic and asymptomatic contact lens wearers. Invest Ophthalmol Vis Sci 6:2888–2894
139. Nichols JJ, Mitchell GL, King-Smith PE (2005) Thin film. Australas Med J 4:221–226
144. Battat L, Macri A, Dursun D et al (2001) Effects of laser in situ keratomileusis on tear production, clearance, and the ocular surface. Ophthalmology 7:1230–1235

145. Rodriguez AE, Rodriguez-Prats JL, Hamdi IM et al (2007) Comparison of goblet cell density after femtosecond laser and mechanical microkeratome in LASIK. Invest Ophthalmo Vis Sci 6:2570–2575

146. Konomi K, Chen LL, Tarko RS et al (2008) Preoperative characteristics and a potential mechanism of chronic dry eye after LASIK. Invest Ophthalmo Vis Sci 1:168–174

147. Mian SI, Li AY, Dutta S et al (2009) Dry eyes and corneal sensation after laser in situ keratomileusis with femtosecond laser flap creation Effect of hinge position, hinge angle, and flap thickness. J Cataract Refract Surg 12:2092–2098

148. O’Neil EC, Henderson M, Massaro-Giordano M et al (2019) Advances in dry eye disease treatment. Curr Opin Ophthalmo 3:166–178

149. Yeu E, Goldberg DF, Mah FS et al (2019) Safety and efficacy of amniotic cytokine extract in the treatment of dry eye disease. Clin Ophthalmo 13:887–894

150. Iorio R, Petricca S, Luzi C et al (2021) Lactobacillus sakei Pro-Bio65 reduces TNF-α expression and upregulates GSH content and antioxidant enzymatic activities in human conjunctival cells. Transl Vis Sci Technol 6:8–8

151. Alio JL, Rodriguez AE, Ferreira-Oliveira R et al (2017) Treatment of dry eye disease with autologous platelet-rich plasma: a prospective, interventional, non-randomized study. Ophthalmo Ther 2:285–293

152. You J, Hodge C, Hoque M et al (2020) Human platelets and derived products in treating ocular surface diseases: a systematic review. Clin Ophthalmo 14:3195–3210

153. Gonzalez V, Ruz V, Bleau AM et al (2020) Tivanisiran as a new treatment for Dry Eye in patients with Sjögren Syndrome. Invest Ophthalmo Vis Sci 7:102–102

154. Jimenez AI, Ruz V, Gonzalez V et al (2018) Tivanisiran, a new treatment for Dry Eye Disease, that improved signs and symptoms in clinical trials. Invest Ophthalmo Vis Sci 9:925–925

155. Johnson ME, Murphy PJ, Boulton M (2006) Effectiveness of sodium hyaluronate eyedrops in the treatment of dry eye. Graefes Arch Clin Exp Ophthalmol 1:109–112

156. Ang B, Sng J, Wang PXH et al (2017) Sodium hyaluronate in the treatment of dry eye syndrome: a systematic review and meta-analysis. Sci Rep 1:9013–9013

157. Garrett Q, Zhang X, Wang Y et al (2013) Topical administration of L-carnitine on prevention and treatment of murine dry eye. Invest Ophthalmo Vis Sci 15:921–921

158. Nam K, Kim HI, Yoo A (2019) Efficacy and safety of topical 3% diquafosol ophthalmic solution for the treatment of multifactorial dry eye disease: meta-analysis of randomized clinical Trials. Ophthalmo Res 4:188–198

159. Watanabe H (2018) Medical treatment for dry eye in Japan. Investig Ophthalmo Vis Sci 14:DES116–DES120

160. Wirta DL, Torkildsen GL, Moreira HR et al (2019) A clinical phase ii study to assess efficacy, safety, and tolerability of waterfree cycloporsine formulation for treatment of dry eye disease. Ophthalmo Therapy 6:792–800

161. Yang L, Yang Z, Yu H et al (2015) Acupuncture therapy is more effective than artificial tears for dry eye syndrome: evidence based on a meta-analysis. Evid-Based Complement Altern Med 2015:1–11

162. Boruchman D (2019) The optimum temperature for the heat therapy for meibomian gland dysfunction. Ocul Surf 2:360–364

163. Lallemend F, Schmitt M, Bourges J-L et al (2017) Cyclosporine A delivery to the eye: A comprehensive review of academic and industrial efforts. Eur J Pharm Biopharm 117:14–28

164. Sheha H, Tighe S, Hashem O et al (2019) Update on cenegeamin eye drops in the treatment of neurotrophic keratitis. Clin Ophthalmo 13:1973–1980

165. Shin M, Ahn H, Bernton E et al (2019) HL036 ophthalmic solution, a topical TNF-α inhibitor, significantly improves signs and symptoms of dry eye in a phase 2 clinical trial (VELOS-1). Invest Ophthalmo Vis Sci 9:249–249

166. Crawford KS, Schuh, C, Schuh J et al (2019) Effects of ALY688 on atropine-induced dry eye in rabbits. Invest Ophthalmo Vis Sci 9:305–305

167. Usuba FS, de Medeiros-Ribeiro AC, Novoa P et al (2020) Dry eye in rheumatoid arthritis patients under TNF-inhibitors: conjunctival goblet cell as an early ocular biomarker. Sci Rep 1:14054

168. Ji YW, Byun YJ, Choi W et al (2013) Neutralization of ocular surface TNF-α reduces ocular surface and lacrimal gland inflammation induced by in vivo dry eye. Invest Ophthalmo Vis Sci 12:7557–7566

169. Villatoro AJ, Fernández V, Claros S et al (2015) Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model. BioMed Res Int 2015:527926

170. Aniah Azmi N, Bastion MC (2020) Short-term results of trial of topical insulin for treatment of dry eyes in diabetics. Eye Contact Lens 46:S25–S32

171. Alio JL, Colecha JR, Pastor S et al (2007) Symptomatic dry eye treatment with autologous platelet-rich plasma. Ophthalmo Res 3:124–129

172. López-Plandolit S, Morales MC, Freire V et al (2011) Efficacy of plasma rich in growth factors for the treatment of dry eye. Cornea 12:1312–1317

173. Geerling G, MacLennan S, Hartwig D (2004) Autologous serum eye drops for ocular surface disorders. Br J Ophthalmol 11:1467

174. Yoon KC (2014) Use of umbilical cord serum in ophthalmology. Chonnam Med J 3:82–85

175. Giannaccare G, Carnevali A, Senni C et al (2020) Umbilical cord blood and serum for the treatment of ocular diseases: a comprehensive review. Ophthalmo Therapy 2:235–248

176. Kagkelaris KA, Makri OE, Georgakopoulos CD et al (2018) An eye for azithromycin: review of the literature. Ther Adv Ophthalmo 10:2515844118783622

177. (2019) Cyclosporine 0.09% solution (Cequa) for dry eye disease. Med Lett Drugs Ther 1577:116–118

178. Friedlaender MH (1998) Twice-a-day versus four-times-a-day ofloxacin treatment of external ocular infection. Am J Ophthalmo 12:235–248

179. Tan J, Liu H, Huang M et al (2020) Small molecules targeting RORγt inhibit autoimmune disease by suppressing Th17 cell differentiation. Cell Death Dis 8:697
180. Clark D, Tauber J, Sheppard J et al (2021) Early onset and broad activity of reproxalap in a randomized, double-masked, vehicle-controlled phase 2b trial in dry eye disease. Am J Ophthalmol 226:22–31
181. MacDonald S, Halilovic A, Brady T (2018) Novel small molecule aldehyde sequestering agents demonstrate broad therapeutic potential for ocular inflammation. Invest Ophthalmol Vis Sci 9:2663–2663
182. McDonald MB, Sheha H, Tighe S et al (2018) Treatment outcomes in the DRy Eye Amniotic Membrane (DREAM) study. Clin Ophthalmol 12:677–681
183. Cai M-M, Zhang J (2020) Effectiveness of transcutaneous electrical stimulation combined with artificial tears for the treatment of dry eye: a randomized controlled trial. Exp Ther Med 6:175–175
184. Badawi D (2018) A novel system, TearCare®, for the treatment of the signs and symptoms of dry eye disease. Clin Ophthalmol 12:683–694
185. Ruggeri A, Fatigati E, Vigo L (2020) Mixed dry eye patients successfully treated by the innovative high-frequency electrotherapy device Rexon-Eye®. Invest Ophthalmol Vis Sci 7:114–114
186. Connor CG, Narayanan S, Miller WL (2016) The efficacy of MiBo Thermoflo in treatment of meibomian gland dysfunction. Invest Ophthalmol Vis Sci 12:5678–5678
187. Ji MH, Moshfeghi DM, Periman L et al (2020) Novel extranasal tear stimulation: pivotal study results. Transl Vis Sci Technol 12:23–23
188. Keir N, Woods CA, Dumbleton K et al (2010) Clinical performance of different care systems with silicone hydrogel contact lenses. Cont Lens Anterior Eye 4:189–195
189. Lazon de la Jara P, Papas E, Diec J et al (2013) Effect of lens care systems on the clinical performance of a contact lens. Optom Vis Sci 4:344–350
190. Lee A, Blair HA (2020) Dexamethasone intracanalicular insert: a review in treating post-surgical ocular pain and inflammation. Drugs 11:1101–1108
191. Luo ZK, Domenech-Establellas E, Han A et al (2020) A novel transdermal treatment of chronic ocular graft-vs-host disease (oGVHD): a phase II Clinic trial. Biol Blood Marrow Transplant 3(Supplement):S31–S32
192. Li J, Ruzhi D, Hua X et al (2016) Blueberry component pterostilbene protects corneal epithelial cells from inflammation via anti-oxidative pathway. Sci Rep 6:19408
193. Marquardt R (1986) Treatment of dry eye with a new gel in eyelid form. Klin Monbl Augenheilkd 1:51–54
194. Greiner JV (2012) A single LipiFlow® Thermal Pulsation System treatment improves meibomian gland function and reduces dry eye symptoms for 9 months. Curr Eye Res 4:272–278
195. Bains KK, Fukuoka H, Hammond GM et al (2019) Recovering vision in corneal epithelial stem cell deficient eyes. Cont Lens Anterior Eye 4:350–358
196. Norković JS, Vojinović R, Dolićanin Z (2020) Corneal stem cells as a source of regenerative cell-based therapy. Stem Cells Int 2020:1–11
197. Yeo S, Tong L (2018) Coping with dry eyes: a qualitative approach. BMC Ophthalmol 1:8
198. Tauber J, Owen J, Bloomenstein M et al (2020) Comparison of the iLUX and the LipiFlow for the treatment of meibomian gland dysfunction and symptoms: a randomized clinical trial. Clin Ophthalmol 14:405–418
199. Belalcázar-Rey S, Sánchez Huerta V, Ochoa-Tabares JC et al (2020) Efficacy and safety of sodium hyaluronate/ chondroitin sulfate preservative-free ophthalmic solution in the treatment of dry eye: a clinical trial. Curr Eye Res 46:919–929
200. Sosne G, Qi P, Ousler GW et al (2012) Thymosin β4: a potential novel dry eye therapy. Ann N Y Acad Sci 1270:45–50
201. Sosne G, Kleinman HK (2015) Primary mechanisms of thymosin β4 repair activity in dry eye disorders and other tissue injuries. Invest Ophthalmol Vis Sci 9:5110–5117
202. Postorino EI, Rania L, Aragona E et al (2018) Efficacy of eyedrops containing cross-linked hyaluronic acid and coenzyme Q10 in treating patients with mild to moderate dry eye. Eur J Ophthalmol 1:25–31
203. Song JK, Lee K, Park HY et al (2017) Efficacy of carboxymethylcellulose and hyaluronate in dry eye disease: a systematic review and meta-analysis. Korean J Fam Med 1:2–7
204. Toyos T, Toyos M, Willcox J et al (2019) Evaluation of the safety and efficacy of intense pulsed light treatment with meibomian gland expression of the upper eyelids for dry eye disease. Photobiomodul Photomed Laser Surg 9:527–531
205. Ferreira FC, Sathler CSCdO, Hida IY et al (2020) Upper eyelid blepharoplasty using plasma exeresis: evaluation of outcomes, satisfaction, and symptoms after procedure. J Cosmet Dermatol 20:2758–2764
206. Park J, Yoo Y-S, Shin E et al (2020) Effects of the reesterified triglyceride (rTG) form of omega-3 supplements on dry eye following cataract surgery. Br J Ophthalmol 105:1504–1509
207. Kymionis GD, Bouzoukis DI, Diakonis VF et al (2008) Treatment of chronic dry eye: focus on cyclosporine. Clin Ophthalmol 4:829–836
208. Schultz C (2014) Safety and efficacy of cyclosporine in the treatment of chronic dry eye. Ophthalmol Eye Dis 6:37–42
209. Mori S, Naito M, Moriyama S (2002) Highly viscous sodium hyaluronate and joint lubrication. Int Orthop 26:37–42
210. Romanó CL, De Vecchi E, Bortolin M et al (2017) Hyaluronic acid and its composites as a local antimicrobial/antiadhesive barrier. J Bone Joint Infect 1:63–72
211. Kummara MR, Kumar A, Sung Soo H (2017) Development of antibacterial paper coated with sodium hyaluronate stabilized curcumin-Ag nanohybrid and chitosan via polyelectrolyte complexation for medical applications. Mater Res Express 11:115401
212. Arita R, Fukuoka S (2020) Non-pharmaceutical treatment options for meibomian gland dysfunction. Clin Exp Ophthalm 6:742–755
213. Sella S, Adami V, Amati E et al (2018) In-vitro analysis of quantum molecular resonance effects on human mesenchymal stromal cells. PLoS ONE 1:e0190082
214. Kabat M, Bobkov I, Kumar S et al (2020) Trends in mesenchymal stem cell clinical trials 2004–2018: is efficacy
optimal in a narrow dose range? Stem Cells Transl Med 1:17–27
215. Hanna E, Rémuzat C, Auquier P et al (2017) Gene therapies development: slow progress and promising prospect. J Mark Access Health Policy 1:1265293–1265293
216. Goswami R, Subramanian G, Silayeva L et al (2019) Gene therapy leaves a vicious cycle. Front Oncol. https://doi.org/10.3389/fonc.2019.00297
217. Yang JM, Wei ET, Kim SJ et al (2018) TRPM8 channels and dry eye. Pharmaceuticals 4:125
218. Fischer MJM, Btesh J, McNaughton PA (2013) Disrupting sensitization of transient receptor potential vanilloid subtype 1 inhibits inflammatory hyperalgesia. J Neurosci 17:7407
219. Masuoka T, Yamashita Y, Nakano K et al (2020) Chronic tear deficiency sensitizes transient receptor potential vanilloid 1-mediated responses in corneal sensory nerves. Front Cell Neurosci. https://doi.org/10.3389/fncel.2020.598678
220. Huo S, Li H, Boersma AJ et al (2019) DNA nanotechnology enters cell membranes. Adv Sci 10:1900043–1900043
221. Lin J, Jo SB, Kim T-H et al (2020) RNA interference in glial cells for nerve injury treatment. J Tissue Eng 11:2041731420939224–2041731420939224
222. (2021) Let’s talk about lipid nanoparticles. Nat Rev Mater 2:99–99
223. Gupta S, Allen-Vercoe E, Petrof EO (2016) Fecal microbiota transplantation: in perspective. Ther Adv Gastroenterol 2:229–239
224. Willis KA, Postnikoff CK, Freeman AB et al (2020) The closed eye harbors a unique microbiome in dry eye disease. medRxiv 182:90
225. Gomes JAP, Frizon L, Demeda VF (2020) Ocular surface microbiome in health and disease. Asia-Pac J Ophthalmol 6:505–511
226. Li JJ, Yi S, Wei L (2020) Ocular microbiota and intraocular inflammation. Front Immunol. https://doi.org/10.3389/fimmu.2020.609765

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.