Abstract

Introduction: Thalassemia is a group of autosomal recessive inherited blood disorder characterized by reduced or no production of β-globin gene, leading to reduced synthesis of erythrocytes and anaemia. β-thalassemia is an autosomal recessive hereditary blood disorder in which there is reduced or no production of β-globin genes occurs, leading to decrease production of haemoglobin. It was originated and spread over Middle East, Mediterranean and Southeast Asia.

There are several treatment options for patients with β-thalassemia major but due to poor availability of medical care, safe and adequate transfusion of red blood cells, high cost and poor compliance with chelation therapy remains a challenging situation in developing countries. Treatment of β-thalassemia major is not considered easy due to severe complications in these patients including pericarditis, hypercoagulability, iron overload, hepatocellular carcinoma, osteoporosis and psychological problems. Traditional therapy in patients with β-thalassemia major includes supportive therapy by transfusion of red blood cells, iron chelation therapy to remove excessive amount of iron in the body, hydroxyurea therapy, erythropoietin etc. Despite of availability of various treatment options in β-thalassemia major, there are various complications being faced worldwide. Thalidomide was previously used to treat multiple myeloma. It has also significant role on HbF. Exact aetiology of its role is not known but it may be due to suppression of NF–κB induction caused by certain inflammatory cytokines including tumor necrotic factor–α (TNF–α), prostaglandin E2 synthesis (PG–E2), and vascular endothelial growth factor (VEGF), in association with increase in release of reactive oxygen species (ROS). Reactive oxygen species launches P38 MAPK, which causes increase in Hbf levels.

We analyzed the effect of thalidomide in patients with β–thalassemia major.

Materials and methods

It was a prospective study conducted at a tertiary care centre. 70 patients were included in this study. All patients were known cases of transfusion dependent β–thalassemia major. Study was performed from October 2017 to April 2018. Thalidomide was given at a dose of 2mg/kg to 10mg/kg for 6 months. Age, gender, haemoglobin levels, ferritin levels before and after therapy were assessed in all patients. A sample was taken in tube containing Gel for evaluation of serum ferritin. All data was collected and analyzed in SPSS 21.0.

Results

Among 70 patients, 46 were males and 24 were females (male to female ratio=1.9:1). Mean age of the patients was 10.31±1.24 years. Before and after treatment with thalidomide, all data were collected and analyzed in SPSS 21.0. P-value of <0.05 was considered as statistically significant.

Before treatment, haemoglobin levels ranged from 7.23 to 9.41g/dL, while after treatment with thalidomide, haemoglobin ranged from 8.93±1.04g/dL and 10.54±1.18g/dL respectively (p=0.011). Before and after treatment, mean serum ferritin level was 3125±143.51ng/mL and 1241±135.94ng/mL (p>0.001). Before and after treatment thalidomide.

Conclusion: Thalidomide proved to increased haemoglobin levels and reducing ferritin levels in patients with β-thalassemia major.

Keywords: β-thalassemia, thalidomide, haemoglobin, ferritin

Effect of thalidomide in patients with β–thalassemia major

Shahzad Ali Jiskani,1 Sumair Memon2
1Department of Pathology, Indus Medical College, Tando Muhammad Khan, Pakistan
2Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan

Correspondence: Shahzad Ali Jiskani, Shaheed Zulfiqar Ali Bhutto Medical University/ Pakistan Institute of Medical Sciences, Islamabad, House No. 482, Brahman Muhallah, Tando Muhammad Khan, Pakistan, Tel 3332672268, Email shahzadabaloach289@gmail.com

Received: September 29, 2018 | Published: November 21, 2018

References

1. Jiskani SA, Memon S. Effect of thalidomide in patients with β–thalassemia major. Hematology Transfus Int J. 2018;6(6):234–236.
Effect of thalidomide in patients with β–thalassemia major

it ranged from 9.83 to 11.21 (mean=10.54±1.18g/dL) (Table 1 & 2) (Figure 2). There was statistically significant difference (p=0.011).

Table 1 Evaluation of age, haemoglobin and serum ferritin levels before and after treatment (n=70)

	Mean	Standard Deviation
Age	10.31	1.24
Haemoglobin (g/dL)	Before treatment 8.93	1.04
	After treatment 10.54	1.18
Serum ferritin (ng/mL)	Before treatment 3125.24	143.51
	After treatment 1241.85	135.94

Before treatment, serum ferritin was 2538 to 6429ng/mL (mean=3125±143.51ng/mL), while after treatment, it was 873 to 1582ng/mL (mean=135.94ng/mL) (Table 2 & 3) (Figure 3). The difference was statistically significant (p<0.001). Clinical features of patients are described (Table 3). All patients showed different transfusion frequencies (Table 4).

Table 2 Difference in haemoglobin and ferritin levels before and after treatment (n=70)

	Before Treatment	After Treatment	P–value
Mean haemoglobin (g/dL)	8.92±1.04	10.54±1.18	0.011
Mean serum ferritin (ng/mL)	3125.23±143.51	1241±135.94	<0.001

Discussion

Thalassemia is a group of hereditary haemolytic anaemia caused by disruption in the production of haemoglobin chains. Various treatment options are available but the overall compliance, standardization and compliance is poor, due to which many complications develop in patients with thalassemia. Thalidomide is not commonly used in the patients with thalassemia as its role is not fully understood. In our study we evaluated the role of thalidomide to see its effect on haemoglobin and serum ferritin levels. It was found that mean haemoglobin levels was increased after treatment with thalidomide, while serum ferritin levels significantly decreases after treating with thalidomide. It is strongly suggestive of effect of thalidomide on HbF and also reduction in iron deposition.

Few studies are in favour of these findings. Fozza et al. presented 2 cases of non–transfusion dependant thalassemia. HbF was significantly raised in these patients after treatment with low–dose thalidomide. Ali et al. performed a study in 2016. He treated patients of β-thalassemia major with thalidomide and sodium butyrate. He strongly suggested that thalidomide was more efficient than sodium.
butyrate in expression of GATA–1 and EKLF genes, which efficiently induced the HbF levels in these patients. Ramanan et al. postulated the same evidence by treating patients with thalidomide. He proved that thalidomide significantly reduced ferritin levels in patients with β–thalassemia major. Masera et al. presented a case of patients with β–thalassemia major who was resistant to conventional therapy. Thalidomide proved the positive response by inducing HbF levels in the patient.

Various studies proved to be in favour of our study by showing similar results.

Conclusion

Thalidomide showed strongly positive results in patients with β–thalassemia major. Although our study was performed on fewer number of patients so more studies on large populations should be carried out to see strong findings and evidences. Our study did not evaluate the optimal transfusion interval in these patients as there was poor compliance and uneven follow-up of patients at the time of transfusion. Status of splenectomy was not included in this study, so further evaluation is needed in these patients on other parameters as well.

Acknowledgements

None.

Conflict of interest

Authors declare that there is no conflict of interest.

References

1. Kaveh Tari, Pooya Valizadeh Ardalan, Mahnoosh Abbaszadeh dibavar, et al. Thalassemia an update: molecular basis, clinical features and treatment. Int J BioMed Public Heal. 2018;1(1):48–58.

2. Fibach E, Rachmilewitz EA. Pathophysiology and treatment of patients with beta–thalassemia–an update. F1000Res. 2017;6:2156.

3. Nihar Ranjan Sarker, Ashis Kumar Ghosh, Santosh Kumar Saha, et al. Recent advances in the management of Thalassaemia : A Review Update. J Shaheed Suhrawardy Med Coll. 2014;6(1):31–7.

4. Mettananda S, Gibbons RJ, Higgs DR. a–Globin as a molecular target in the treatment of β–thalassemia. Blood. 2015;125(24):3694–3701.

5. Rund D, Rachmilewitz E. New trends in the treatment of beta–thalassemia. Crit Rev Oncol Hematol. 2000;33(3):105–118.

6. Dharmesh Chandra Sharma, Anita Arya, Purnima Kishor, et al. Overview on Thalassemias: A Review Article. Med Res Chron. 2017;4(3):325–337.

7. Ramanan V, Kelkar K. Role of Thalidomide in Treatment of Beta Thalassemia. J Blood Disord Med. 2017;3(1):8–10.

8. Ng NY, Ko CH. Natural Remedies for the Treatment of Beta–Thalassemia and Sickle Cell Anemia–Current Status and Perspectives in Fetal Hemoglobin Reactivation. Int Sch Res Notices. 2014;2014:123257.

9. Cappellini MD, Porter JB, Viprakasit V, et al. A paradigm shift on beta–thalassemia treatment : How will we manage this old disease with new therapies? Blood Rev. 2018;32(4):300–311.

10. De Dreuzy E, Bhukhai K, Lebouch P, et al. Current and future alternative therapies for beta – thalassemia major. Biomed J. 2016;39(1):24–38.

11. Fozza C, Pardini S, Giannico DB, et al. Dramatic erythroid response to low–dose thalidomide in two patients with transfusion independent thalassemia and severe post–transfusional alloimmune hemolysis. Am J Hematol. 2015;90(7):E141.

12. Jalali Far MA, Dehghani Fard A, Hajizamani S, et al. Thalidomide is more efficient than sodium butyrate in enhancing GATA–1 and EKLF gene expression in erythroid progenitors derived from HSCs with β–globin gene mutation. Int J Hematol Oncol Stem Cell Res. 2016;10(1):37–41.

13. Masera N, Tavecchia L, Capra M, et al. Optimal response to thalidomide in a patient with thalassaemia major resistant to conventional therapy Case description. Blood Transfus. 2010;8(1):63–65.