Heterotic Supergravity with Internal Almost-Kähler Spaces; Instantons for $SO(32)$, or $E_8 \times E_8$, Gauge Groups; and Deformed Black Holes with Soliton, Quasiperiodic and/or Pattern-forming Structures

Laurenţiu Bubuianu
TVR Iaşi, 33 Lascăr Catargi street, 700107 Iaşi, Romania
and University Apollonia, 2 Muzicii street, Iaşi, Romania
email: laurentiu.bubuianu@tvr.ro

Klee Irwin
Quantum Gravity Research; 101 S. Topanga Canyon Blvd # 1159. Topanga, CA 90290, USA
email: klee@quantumgravityresearch.org

Sergiu I. Vacaru
Quantum Gravity Research; 101 S. Topanga Canyon Blvd # 1159. Topanga, CA 90290, USA
and University "Al. I. Cuza" Iaşi, Project IDEI *
email: sergiu.vacaru@gmail.com

January 25, 2017

Abstract

Heterotic supergravity with (1+3)–dimensional domain wall configurations and (warped) internal, six dimensional, almost-Kähler manifolds 6X are studied. Considering ten dimensional spacetimes with nonholonomic distributions and conventional double fibrations, $2+2+\ldots=2+2+3+3$, and associated $SU(3)$ structures on internal space, we generalize for real, internal, almost symplectic gravitational structures the constructions with gravitational and gauge instantons of tanh-kink type [1, 2]. They include the first α' corrections to the heterotic supergravity action, parameterized in a form to imply nonholonomic deformations of the Yang-Mills sector and corresponding Bianchi identities. We show how it is possible to construct a variety of solutions depending on the type of nonholonomic distributions and deformations of 'prime' instanton configurations characterized by two real supercharges. This corresponds to $N = 1/2$ supersymmetric, nonholonomic manifolds from the four dimensional point of view. Our method provides a unified description of embedding nonholonomically deformed tanh-kink-type instantons into half-BPS solutions of heterotic supergravity. This allows us to elaborate new geometric methods of constructing exact solutions of motion equations, with first order α' corrections to the heterotic supergravity. Such a formalism is applied for general and/or warped almost-Kähler configurations, which allows us to generate nontrivial (1+3)-d domain walls and black hole deformations determined by quasiperiodic internal space structures. This formalism is utilized in our associated publication [3] in order to construct and study generic off-diagonal nonholonomic deformations of the Kerr metric, encoding contributions from heterotic supergravity.

Keywords: heterotic supergravity; almost Kähler geometry; nonholonomic (super) manifolds; domain walls; extra dimension black holes; solitons and quasiperiodic structures

MSC2010: 8C15, 8D99, 83E99; and PACS2008: 04.20.Jb, 04.50.-h, 04.20.Cv

*Address for contact: Flat 4 Brefney house, Fleet street, Ashton-under-Lyne, OL6 7PG, the UK
1 Introduction

The majority of different vacua in string gravity theories, including four dimensional spacetime domains, are elaborated with 6-d internal manifolds adapted to certain toroidal compactification or warping of extra
dimensions. With the aim of obtaining interesting and realistic models of lower-dimensional physics, elaborations of 10-d theories with special Calabi–Yau (and/or more general \(SU(3) \) structure) manifolds were used. Such constructions are related to pseudo-Euclidean 4-d domain configurations and warped almost-Kähler internal spaces. Recent results and reviews related to superstrings, flux compactifications, D-branes, instantons etc., are cited respectively \([1, 2, 4, 5, 6, 7, 8] \).

Further generalizations with nontrivial solutions in the 4-d domain, such as reproductions of 4-d black hole solutions and cosmological scenarios related to modified gravity theories (MGTs) encoding information from extra dimension internal spaces, are possible if richer geometric structures are involved. Nonholonomic distributions with splitting on 4-d, 6-d and 10-d manifolds as well as almost-Kähler internal manifolds are considered when bimetric structures, possible nontrivial mass terms for the graviton, locally anisotropic effects etc. can be reproduced in the framework of heterotic supergravity theory, see \([9, 10] \). For MGTs and their applications, we cite \([11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] \) and references therein.

In a series of works \([29, 30, 31, 32, 33, 34, 35, 36, 37, 38] \), the so-called anholonomic frame deformation method, AFDM, of constructing exact solutions in commutative and noncommutative (super) gravity and geometric flow theories has been further developed. By straightforward analytic computations, it was proven that it is possible to decouple the gravitational field equations and generate new classes of solutions in various theories of gravity with metric, nonlinear, N-, and linear connection structures. The geometric formalism was based on spacetime fibrations determined by nonholonomic distributions with splitting of dimensions, 2 (or 3) + 2 + 2 + In explicit form, certain classes of N-elongated frames of reference, considered formal extensions/embeddings of 4-d spacetimes into higher dimensional spacetimes were introduced and necessary types of adapted linear connections were defined. Such connections are called distinguished, d-connections, and defined in some form that preserves the N-connection splitting. In Einstein gravity, a d-connection is considered as an auxiliary one which is supplementary to the Levi-Civita, LC, connection. For certain well defined conditions, the canonical d-connection can be uniquely defined by the metric structure following the conditions of metric compatibility and the conditions of zero values for "pure" horizontal and vertical components but nonzero, nonholonomically-induced, mixed vertical-horizontal torsion components. Surprisingly, such a canonical d-connection allows us to decouple the motion equations into general form. As a result, we can generate various classes of exact solutions in generalized/modified string and gravity theories. Having constructed a class of generalized solutions in explicit form (depending on generating and integration functions, generalized effective sources and integration constants), we then impose some additional constraints at the end, resulting in zero induced torsion fields. In this way, we can always "extract" solutions for LC-configurations and/or Einstein gravity. It should be emphasized that it is important to impose the zero-torsion conditions at the end, i.e. after we found a class of generalized solutions. We can not decouple and solve in general forms the corresponding systems of PDEs if we use the LC-connection from the very beginning. Here it should be noted that to work with nontrivial torsion configurations is important in order to find exact solutions in string gravity and gauge gravity models.

Using the AFDM, a series of exact and/or small parameter depending solutions were constructed, which for small deformations mimic rotoid Kerr - de Sitter like black holes/ellipsoids self-consistently embedded into generic off-diagonal backgrounds of arbitrary finite dimensions. A number of examples for 5,6 and 8 dimensional (non) commutative and/or supersymmetric spacetimes are provided, see examples in \([30, 31, 35, 37, 38] \) and references therein. Such backgrounds can be of solitonic/ vertex / instanton type. In this paper, we develop and apply these nonholonomic geometric methods for constructing new classes of exact and parametric solutions in heterotic string theory. The motion equations are re-written in certain nonholonomic variables as generalized (effective) Einstein equations for 4-d spacetimes, encoding nontrivial geometric constructions on extra dimension internal spaces. Here we note that by using nonholonomic distributions and corresponding classes of solutions for heterotic string gravity, it is possible to mimic physically important effects in modified gravity. In a series of works \([23, 39] \), we studied the acceleration of the universe, certain theories with dark energy and dark matter locally anisotropic interactions and effective renormalization of quantum gravity models via nonlinear generic
off-diagonal interactions on effective Einstein spaces. In our associated publication [3], we explained in more
detail the AFDM for constructing general classes of exact solutions with generic off-diagonal metrics in heterotic
supergravity and generalized connections depending on all 4-d and 10-d coordinates via corresponding classes
of generating and integration functions. In explicit form, we constructed a series of new solutions in heterotic
string gravity describing deformations of the Kerr metric by effective string sources, ellipsoidal configurations
and extra dimensional string modifications by a nontrivial cosmological constant, a NS 3-form and/or 6-d
almost -Kähler internal spaces. The main results of this and the associated publications are based on the
idea that we can generate physically interesting domain wall configurations (for instance, 4-d deformed black
holes) by considering richer geometric structures on the internal space. In this work, we shall construct and
analyze physical implications of a series of new classes of solutions with deformations of Kerr metrics by string
solitonic distributions/ waves in internal space; with quasiperiodic (quasicrystal like and/or with nonlinear
three-wave interactions and extra dimensional temporal chaos); and examples of configurations with solitonic
and/or quasiperiodic YM and/or almost Kähler sections. We shall prove that we can parametrize and generalize
all possible off-diagonal solutions in heterotic supergravity in terms of such variables with internal geometric
objects that are determined by an almost-Kähler geometry. This is possible for nonholonomic distributions with
conventional splitting \(2 + 2 + 2 = 3 + 3 \) (such constructions are based on former results in [9, 10, 40]).

In this paper, we apply deformation methods used in the geometry of nonholonomic and almost-Kähler
manifolds in order to study heterotic supergravity derived in the low-energy limit of heterotic string theory
[11, 12, 13]. We cite also section 4.4 in [1] for a summary of previous results and certain similar conventions
on warped configurations and modified gravitational equations. The main goal of this work is to formulate
a geometric formalism which allows us to construct new classes of exact and parametric solutions describing
nonholonomically deformed black hole solutions encoding various types of quasiperiodic structures, see details
and recent results in Refs. [44, 45, 46, 47, 48, 49]. Such methods have been applied in a partner article
[3] for integrating in generic off-diagonal forms, and for generalized connections, the equations of motion of
heterotic supergravity up to and including terms of order \(\alpha' \). The solutions of heterotic supergravity which will
be constructed in further sections describe (1+3)–dimensional walls endowed with generic off-diagonal metrics
warped to an almost-Kähler 6-d internal space in the presence of nonholonomically deformed gravitational
and gauge instantons induced by nontrivial soliton, quasiperiodic and/or pattern-forming structures. The
generalized instanton contributions are adapted to a nontrivial, nonlinear connection structure determined by
generic off-diagonal interactions which allows us to solve the Yang–Mills, YM, sector and the corresponding
Bianchi identity at order \(\alpha' \) (which is related to the gravitational constant in 10-d). Such 10-d solutions
preserve two real supercharges, which correspond to the \(\mathcal{N} = 1/2 \) supersymmetry. The almost-Kähler internal
6-d structure can be defined for various classes of solutions in 10-d gravity, including black hole deformations
by quasiperiodic structures in string gravity, if we prescribe an effective Lagrange type generating function. In
such an approach, we can work both with real nonholonomic gravitational and YM instanton configurations
and/or consider deformed \(SU(3) \) structures.

This article is organized as follows: In section 2 we formulate a geometric approach to heterotic supergravity
with almost Kähler internal 6-d configurations. The main geometric conventions are explained in Appendix A
and used in that section for defining nonholonomic manifolds with domain–walls, G structures and corresponding
BPS equations. Then in section 3 we provide solutions for nonholonomic instanton d-connections, almost-
Kähler manifolds and N-adapted (effective) YM and instanton configurations. The equations of motion of
heterotic supergravity are formulated in nonholonomic variables and discussed in detail. Section 4 provides
a series of new and significant contributions in constructing exact and parametric 10-d solutions in string
gravity depending, in general, on all 4-d and extra dimensional coordinates. We study examples of solitonic
deformations of 4-d Kerr configurations and possible internal space extensions determined by stationary solitonic
distributions and nonlinear waves. We construct solutions for black hole deformations by various types of

\[\text{We shall develop a different system of notation with N-connections and auxiliary d–connections which allows us to define geometric objects on higher order shells of nonholonomically decomposed 10-d spacetimes.} \]
quasiperiodic strictures (quasi-crystal like and three-wave interactions with possible extra dimensional chaos). Such configurations are then modeled by exact solitonic and/or quasiperiodic solutions for the YM and almost-Kähler internal sectors. Finally, we summarize the results in section 5 concluding that the heterotic supergravity theory can be formulated in nonholonomic variables which allows us to integrate in general form (see [3]) the corresponding modified Einstein equations and study stationary nonholonomic deformations of black hole solutions. In Appendix A we provide necessary geometric preliminaries on 10-d nonholonomic manifolds with $\mathbb{2}+\mathbb{2}+...$ splitting and associated nonlinear connection (N-connection) structures related to off-diagonal metric terms and certain classes of N-adapted frames. Such a formalism is necessary for the definition of nontrivial internal space geometric structures and for the decoupling of motions equations.

2 Almost-Kähler Internal Configurations in Heterotic Supergravity

The goal of this section is to formulate a model of the $\mathcal{N}=1$ and 10-d supergravity coupled to a super Yang–Mills theory for a 10–d nonholonomic manifold with fibered $4+2s$ structure (where $s=1, 2, 3$ labels a geometric structure with conventional 2-d shells). Readers are referred to Appendix A and references therein, containing an introduction into the geometry of nonholonomic manifolds with nonlinear connection, N-connection, splitting. Originally, such a formalism was considered for developing certain methods of classical and quantum deformations in the Einstein and Finsler modified gravity theories, and for formulating models of almost-Kähler geometric flows and Lie algebroid structures, see [9, 10, 50, 40]. In this work, such geometric methods are developed for (super) spaces enabled with N–connection, structure and a gauge d–connection $^\sharp A\hat{\nabla}$ distorting in nonholonomic form a connection $^A\nabla$ with gauge group $SO(32)$ or $E_8 \times E_8$. We note that in order to generate more general classes of solutions and provide a more realistic phenomenology in string theory, with more complex vacua, we shall work with nonholonomic deformations and internal nonholonomic manifolds with a richer geometric structure (with nontrivial N–connections, effective extra dimensional gravitational and matter field interactions etc.). Such geometric constructions and methods preserve less supersymmetry and lead to more realistic models. This follows from the holonomy principle which can be formulated for the parallel d–spinor equations (we shall omit details on spinor considerations for $^\sharp \hat{\Phi}$, which can be found in [51, 52, 54, 55]).

Our model of nonholonomic heterotic supergravity theory will be determined by $(M, N, ^\sharp g, ^\hat{H}, ^\hat{\phi}, ^\sharp A\hat{\nabla})$, where N and $^\sharp g$ are respective, N–connection and d–metric; $^\hat{H}$ is the nonholonomic version of NS 3-form \hat{H}; $^\hat{\phi}$ is a dilaton field on an N–anholonomic manifold which transform into the standard one $\hat{\phi}$ for LC–configurations; $^\sharp A\hat{\nabla}$ is an N–adapted version of $^A\nabla$ (we shall describe this construction below).

2.1 Nonholonomic domain–walls in heterotic supergravity

We analyze important geometric structures which can be defined for the decomposition $^7X = \mathbb{R} \times ^6X$. For holonomic distributions, it is always possible to rewrite the equation (9) in terms of an SU(3) structure defined on 6X and the domain wall direction. Such constructions are related to the complex structure and Kähler geometry $[56, 57, 1]$. In order to develop a heterotic theory with generic off–diagonal metrics $g = (^4g, ^6g)$ (A.10), we need a richer, real geometric structure for internal space 6X. Up to certain classes of frame transforms, any 6g of Euclidean signature can be uniquely related to an almost-Kähler geometry.

2.1.1 The canonical d–connection and BPS equations

By letting $^\sharp A\hat{\nabla}|^{\hat{T}=0} \rightarrow ^\sharp \nabla$, see (A.15), and formulating, in N–adapted form, the anomaly cancellation condition of the 10-d super Yang–Mills, YM, theory coupled to $\mathcal{N}=1$, 10-d supergravity can be written as a Bianchi identity on $^\hat{H}$,

$$^\hat{d}\hat{H} = \frac{\alpha'}{4} \text{Tr}(\hat{F} \wedge \hat{F} - \hat{R} \wedge \hat{R}),$$ (1)
implies two curvature 2-forms: \(\tilde{\mathbf{F}} \) is the strength of the gauge d–connection and \(\hat{\mathbf{A}} \hat{\mathbf{D}} \tilde{\mathbf{R}} \) is the strength of a d–connection \(\mathbf{D} \) which will be defined below; \(\hat{\mathbf{D}} \) is the 10-d exterior derivative; \(\mathcal{T} r \) means the trace on gauge group indices. There are different connections which can be used in anomaly cancellation conditions of type 1. This depends on the type of renormalization scheme and the preferences of string theory physicists, see discussions in [38, 59, 60, 61] and references therein. In non N–adapted form, \(\hat{\mathbf{D}} \) can be transformed into an almost-Kähler d–connection studied in details in Refs. [10, 9, 50, 40], which allows us to find a number of nontrivial generic off–diagonal solutions in 10-d following the AFDM. The instanton equation for (anti) self-dual gravitational fields can be written in nonholonomic form, \(\tilde{\mathbf{R}} \cdot \epsilon = 0 \) (for motivations details on holonomic configurations, see details in [2]). In further sections, we show how G structures [53, 62] can be adapted to N–connections. For such configurations, the Killing spinor \(\epsilon \) is adapted to above prime and target d–metric ansatz as \(\epsilon(x^i, t, y^4, y^9) = \rho(x^i, t) \otimes \eta(y^4, y^9) \otimes \tilde{\theta} \), where the domain wall spinor \(\rho \) has two real components corresponding to the two real supercharges which the holonomic background \(\mathbb{R}^{2,1} \) preserves; \(\eta \) is a covariantly constant Majorana spinor on \(7\mathbf{X} = (y^4, 6\mathbf{X}) \); and \(\tilde{\theta} \) is an eigenvector of the respective Pauli matrix.

In string theory, it is considered that for \(\hat{\mathbf{H}} = 0 \) the internal manifold should be Ricci flat and Kähler and such a condition does not stabilize all Kähler moduli. A non-zero 3-form flux of the above breaks scale invariance and provides a corresponding stabilization [62]. In a similar form, the canonical d–connection structure may result in stable configurations for corresponding nonholonomic constraints. For instance, the \(\alpha' \)–solutions with nonzero \(\tilde{\mathbf{H}} \) constructed in [1] preserve a \(\mathcal{N} = 1/2 \) supersymmetry (with two real supercharges instead of four for the usual \(\mathcal{N} = 1 \) supersymmetry) in \(1 + 3 \) external dimensions. This is implied by the so called Bogomol’nyi-Prasad-Sommerfield, BPS, conditions halving the supersymmetry by the presence of a domain wall, see details in references [58, 59, 60, 61, 1].

At the zeroth order in \(\alpha' \), zero value of the NS 3-form \(\tilde{\mathbf{H}} \) and a dilaton field \(\tilde{\phi} = \text{const} \), the PBS configurations are given by \(\tilde{\mathcal{M}} = \mathbb{R}^{2,1} \times \tilde{c}(6\mathbf{X}); \tilde{\mathbf{H}} = 0, \tilde{\phi} = \text{const} \), where \(\tilde{c}(6\mathbf{X}) \) is the metric cone over a 6-d almost-Kähler manifold \(6\mathbf{X} \). In this formula, \(\mathbb{R}^{2,1} \) is a pseudo-Euclidean space with signature \((+ + -) \) and local coordinates \(x^i = (x^i, y^3 = t) \), for \(i, j, \ldots = 1, 2, 3 \) and \(i, j, \ldots = 1, 2 \); the local coordinates on \(6\mathbf{X} \) are used for the shells \(s = 1, 2, 3, \) when \(u^a = y^a = \{u^{a_1} = y^{a_1} = (y^5, y^6), u^{a_2} = y^{a_2} = (y^7, y^8), u^{a_3} = y^{a_3} = (y^9, y^{10})\} \), with indices \(\tilde{a}, \tilde{b}, \ldots \) \(= 5, 6, 7, 8, 9, 10 \), are labeled in a form compatible with coordinate conventions [A.1]. The space-like coordinate \(u^4 = y^4 \) will be used for a 7-d warped extension of \(6\mathbf{X} \rightarrow 7\mathbf{X} = (y^4, 6\mathbf{X}) \) with local coordinates on \(7\mathbf{X} \), \(y^a = (y^4, y^{a_1}, y^{a_2}, y^{a_3}) = (y^4, y^5, y^6, y^7, y^8, y^9, y^{10}) \) for indices \(\tilde{a}, \tilde{b}, \ldots = 4, 5, \ldots 10 \).

2.1.2 Nonholonomic domain–wall backgrounds

In Einstein–Cartan and gauge field theories, torsion fields have certain sources subjected to algebraic equations. If a background with vanishing fermionic vacuum expectations does not have prescribed nonholonomic distributions, the supersymmetry transformations of the corresponding fermionic fields are zero. Such conditions for the holonomic backgrounds are known as BPS equations. Up to and including terms of order \(\alpha' \) for N–anholonomic backgrounds, the BPS equations are formulated for a Majorana–Weyl spinor \(\eta \),

\[
(\tilde{\mathbf{D}} - \hat{\mathbf{H}}) \cdot \epsilon = 0, \tag{2}
\]

\[
(\hat{\mathbf{D}} \tilde{\phi} - \frac{1}{2} \hat{\mathbf{H}}) \cdot \epsilon = 0,
\]

\[
\tilde{\mathbf{F}} \cdot \epsilon = 0.
\]

It should be noted that in this work, hatted boldface objects denote 10–d geometric/physical objects on N–anholonomic manifolds enabled with d–connection structure \(\tilde{\mathbf{D}} \). We cite here Refs. [56, 57] for similar details

2It important to note here that the constant \(\alpha' \) is related to the gravitational constant \(10\kappa \) in 10-d following formulas \((10\kappa)^2 = \frac{1}{384} (4\pi^2 \alpha')^4 = \frac{\alpha'}{4\pi} \). The 4-d gravitational constant \(4\kappa \) is given by \((4\kappa)^2 = \ell_{\text{str}}^2 \cdot (10\kappa)^2 = M_{\text{Pl}}^2 = 8\pi G^{-1} \), where \(G \) is the Newton constant.
on BPS equations and holonomic heterotic string theories. For N-adapted constructions and spinors on commutative and noncommutative (super) manifolds and bundle spaces, the nonholonomic Majorana-Weyl spinors and modified Dirac operators are studied in [51, 52, 54, 55]. In appendix A.6 there are stated main formulas for N–adapted gamma matrices and Clifford distinguished algebras defined on nonholonomic manifolds.

In heterotic string gravity (see details and references in [5]), a geometric background is given by 4-d domain walls with 6 internal directions stating a compact manifold \mathcal{X} with $SU(3)$ structure for a 10-d metric ansatz and quadratic element:

$$ ds^2[g] = \tilde{g}_{\alpha\beta}(y^4, y^\delta) du^\alpha du^\beta = \tilde{g}_{\alpha\beta}(y^4, y^\delta) du^{a\ast} du^{b\ast} = $$

$$ = e^{2A(y^4, y^\delta)} [(dx^1)^2 + (dx^2)^2 - (dy^3)^2 + e^{2B(y^4)} (dy^4)^2 + \tilde{g}_{bc}(y^4, y^\delta) dy^b dy^c], $$

where $y^3 = t$ and y^4 is chosen to be transverse to the domain wall given with coordinates (x^i, t). We can consider orthonormal frames $e^\alpha = e^\alpha(y^4, y^\delta)e^\beta$ for a prescribed N–connection structure $\tilde{\mathcal{N}} = \{\tilde{N}^{\alpha}_i(y^4, y^\delta) \rightarrow \tilde{N}^{\beta}_i(y^4, y^\delta)\}$ defined for a local system of coordinates in the internal 6-d manifold \mathcal{X} embedded via warped coordinate y^4 into higher dimensional ones and transform it into N-anholonomic manifold $\mathcal{X} \subset \mathcal{M}$, endowed with a d–metric structure of type (A.10),

$$ ds^2[\tilde{g}] = e^{2A(y^4, y^\delta)} [(dx^1)^2 + (dx^2)^2 - (\tilde{e}^3)^2 + e^{2B(y^4)} (\tilde{e}^4)^2 + $$

$$ + \tilde{g}_{\alpha_1}(y^4, y^{a_1}) (\tilde{e}^{a_1})^2 + \tilde{g}_{\alpha_2}(y^4, y^{a_2}) (\tilde{e}^{a_2})^2 + \tilde{g}_{\alpha_3}(y^4, y^{a_3}) (\tilde{e}^{a_3})^2], $$

where $a_0 = 3 : \tilde{e}^3 = dt + \tilde{n}_{i_0} dx^{i_0}$, for $\tilde{N}^3_{i_0} = \tilde{n}_{i_0}(x^k, y^4)$, for $k, i_0 = 1, 2$;

$$ a_0 = 4 : \tilde{e}^4 = dy^4 + \tilde{w}_{i_0} dx^{i_0}$, for $\tilde{N}^4_{i_0} = \tilde{w}_{i_0}(x^k, y^4)$;

$$ a_1 = 5 : \tilde{e}^5 = dy^5 + \tilde{n}_{i_1} dx^{i_1}$, for $\tilde{N}^5_{i_1} = \tilde{n}_{i_1}(x^k, y^4, y^6)$, for $i_1 = 1, 2, 3, 4$;

$$ a_1 = 6 : \tilde{e}^6 = dy^6 + \tilde{w}_{i_1} dx^{i_1}$, for $\tilde{N}^6_{i_1} = \tilde{w}_{i_1}(x^k, y^4, y^6)$;

$$ a_2 = 7 : \tilde{e}^7 = dy^7 + \tilde{n}_{i_2} dx^{i_2}$, for $\tilde{N}^7_{i_2} = \tilde{n}_{i_2}(x^k, y^4, y^6, y^8)$, for $i_2 = 1, 2, 3, 4, 5, 6$;

$$ a_2 = 8 : \tilde{e}^8 = dy^8 + \tilde{w}_{i_2} dx^{i_2}$, for $\tilde{N}^8_{i_2} = \tilde{w}_{i_2}(x^k, y^4, y^5, y^6, y^8)$;

$$ a_3 = 9 : \tilde{e}^9 = dy^9 + \tilde{n}_{i_3} dx^{i_3}$, for $\tilde{N}^9_{i_3} = \tilde{n}_{i_3}(x^k, y^4, y^5, y^6, y^7, y^8, y^{10})$, for $i_3 = 1, 2, 3, 4, 5, 6, 7, 8$;

$$ a_3 = 10 : \tilde{e}^{10} = dy^{10} + \tilde{w}_{i_3} dx^{i_3}$, for $\tilde{N}^{10}_{i_3} = \tilde{w}_{i_3}(x^k, y^4, y^5, y^6, y^7, y^8, y^{10})$. $$

In this paper, we shall study stationary configurations with Killing symmetry on ∂_t when the metric/d–metric ansatz do not depend on coordinate $y^3 = t$. We call an ansatz \tilde{g} (4) as a prime off–diagonal metric and an ansatz \tilde{g} (4) (prime metrics will be labeled by a circle \circ) [3].

The overall goal of this and associated [3] articles is to study nonholonomic deformations of a primary metric \tilde{g} into a target metric g

$$ \tilde{g} \Rightarrow [\tilde{g}_{\alpha_\gamma}, N^\alpha_{i_\gamma}] \rightarrow g = [g_{\alpha_\gamma} = \eta_{\alpha_\gamma} \tilde{g}_{\alpha_\gamma}, N^\alpha_{i_\gamma} = \eta^\alpha_{i_\gamma} N^\alpha_{i_\gamma}] \rightarrow \circ g = [g_{\alpha_\gamma} = (1 + \varepsilon \chi_{\alpha_\gamma}) \tilde{g}_{\alpha_\gamma}, N^\alpha_{i_\gamma} = (1 + \varepsilon \chi^\alpha_{i_\gamma}) N^\alpha_{i_\gamma}], $$

for $\eta_{\alpha_\gamma} \simeq 1 + \varepsilon \chi_{\alpha_\gamma}, \eta^\alpha_{i_\gamma}, \eta^\alpha_{i_\gamma} \simeq 1 + \varepsilon \chi^\alpha_{i_\gamma}$, where $0 \leq \varepsilon \ll 1$. (6)

In these formulas, we do not consider summations on repeating indices. Any target metric $\circ g$ will be subjected to these conditions to define new classes of solutions for certain systems of nonlinear PDEs in heterotic string gravity (see next section) or in a MGT. It is always possible to model the internal 6-d space as an almost-Kähler

\footnote{It should be emphasized that indices $a_1 = (5, 6), a_2 = (7, 8), a_3 = (9, 10)$ are shell adapted but indices $\hat{a}, \hat{c}, \hat{a}'$ may take, in general, values $6, 7, \ldots, 10$ with shell mixing of indices. In order to apply the AFDM, we shall always consider certain frame/coordinate transforms with N–adapted shell redefinitions of interior indices and coordinates. Indices with "inverse" hats are convenient for parametrization of almost-Kähler structures but shell indices are important for constructing exact off-diagonal solutions in 10-d gravity.}
manifold. For certain subclasses of solutions with \(\lim_{\varepsilon \to 0} \hat{s} g \to \hat{g} \), the \(\eta \)-polarization functions \((\eta_{0 s}, \tilde{\eta}_{i s})\) \(\to 1\). In general, such limits with a small parameter \(\varepsilon \) may not exist, or can behave singularly.

It is possible to preserve, in the tangent bundle \(TM \), the \((1 + 2)\)-dimensional Lorentz invariance together with \(N \)-connection splitting if restrictions on \(\hat{\phi} \) and \(\hat{H}_{\alpha \beta \mu s} \):

\[
e_i \hat{\phi} = 0, \hat{H}_{i a b} = 0, \hat{H}_{ij b} = 0.
\]

are considered. For a flat 3-d Minkowski spacetime, the only non-zero components of the NS 3-form flux are \(\hat{H}_{i a b}, \hat{H}_{a b c} \) and \(\hat{H}_{i j k} = \ell \sqrt{|g_{ij}|} \epsilon_{ijkl} \) for \(\ell = \text{const} \) and the totally antisymmetric tensor on \(\mathbb{R}^{2, 1} \) with normalization \(\epsilon_{123} = 1 \).

Let us define \(G_2 \) d-structure adapted to the \(N \)-connection splitting in \(\hat{7}X = \mathbb{R} \times 6X \) enabled with an arbitrary d-metric (of the type included in [3] and [1]), respectively,

\[
ds^2[7g] = e^{2B(y^a)} (dy_i^4 \partial_y^4 + \check{g}_{ab}(y^4, y^b)dy^b dy^c) \quad \text{and} \quad \hat{ds}^2[7\check{g}] = e^{2\check{B}(y^a)} (e^4)^2 + \check{g}_{a1}(y^4, y^{a1})(e^{a1})^2 + \check{g}_{a2}(y^4, y^{a2})(e^{a2})^2 + \check{g}_{a3}(y^4, y^{a3})(e^{a3})^2.
\]

Such holonomic structures were studied in [56, 57] for certain special parameterizations of functions \(B, \check{B} \) and \(g_{\chi} \). For nonholonomic deformations [3], we generated d-metrics on \(7X \) with \(g_4 = e^{2B(y^a)} \to g_4 = e^{2B(y^a)} \) (via coordinate transforms, we can consider parameterizations with \(B = 0 \) but we keep a nontrivial value of \(B \) in order to compare our results with those for holonomic Kähler configurations outlined in [1], where \(\Delta \) is considered for \(B \).

\[
ds^2[7\check{g}] = e^{2\check{B}(y^a)} (e^4)^2 + \check{g}_{a1}(y^4, y^{a1})(e^{a1})^2 + \check{g}_{a2}(y^4, y^{a2})(e^{a2})^2 + \check{g}_{a3}(y^4, y^{a3})(e^{a3})^2.
\]

In this formula and [3], the internal spaces, the indices and coordinates can be written in any form we need for the definition of almost-Kähler or diadic shell structures as we explained above in footnote [3]. The d-metric \(7g \) defines the Hodge operator \(\ast_7 \). The \(G_2 \) d-structure is given by a 3-form \(\varpi \in \wedge^3(7X) \) and its 7-d Hodge dual \(\mathcal{W} := 7 \ast \varpi \in \wedge^4(7X) \) (in a similar form, d-structures can be introduced for d-spinors and 7-d gamma matrices). In N-adapted form with absolute differential operator \(7d \) on \(7X \), the BPS equations (2) imply

\[
7d\varpi = 2 (7d\hat{\phi} \wedge \varpi - 7 \ast \hat{H} - 7d\mathcal{W} = 2 7d\hat{\phi} \wedge \mathcal{W},
\]

\[
7 \ast 7d\hat{\phi} = \frac{1}{2} \hat{H} \wedge \varpi, \quad 7 \ast \ell = 2 \hat{H} \wedge \mathcal{W}.
\]

Such relations can be written in N-adapted form with respect to frames \([\mathcal{A}, \mathcal{A}]\) and for \(4\hat{D} \).

2.2 Almost symplectic structures induced by effective Lagrange distributions

In order to enable the internal space with a complex Kähler structure, one considers a decomposition of the Majorana spinor \(\eta \) into two 6-d spinors of definite chirality, \(\eta = \frac{1}{\sqrt{2}}(\eta_+ + \eta_-) \). We can specify any \(SU(3) \) structure on \(6X \) via a couple of geometric objects \((J, \theta)\) a real 2-form \(J \) and a complex 3-form \(\theta = \theta_+ + i \theta_- \), where \(i^2 = -1 \). Such values can be defined for any fixed values \(y^4 \) and by using the chiral spinors \(\eta_\pm \). The relation between holonomic \(G_2 \) structure \((\varpi, \mathcal{W})\) and \((J, \theta)\) is studied in [1], [56], [57] and [63].

The real nonholonomic almost-Kähler geometry is also determined by a couple \((J, \hat{\theta})\) which in our work is constructed to be uniquely determined by a \(N \)-connection structure \(\hat{N} \) and a 6-d metric \(6g \to \hat{\theta} \) defined by an Lagrange type distribution \(\hat{\tilde{L}}(y^4, y^a) \). In this case, we also have a nontrivial nonolonomically induced torsion with conventional splitting of internal coordinates and indices in the form \(y^\hat{a} = (y^i, y^\hat{b}) \), where \(i, j, \ldots = 5, 6, 7 \) and (for conventional "vertical", \(v \), indices) \(\hat{a}, \hat{b}, \ldots = 8, 9, 10 \).
2.2.1 The canonical N–connection, d–metric, and almost symplectic 2-forms

We can re-parametrize a general Riemannian metric $^6g \subset g$ on 6X, when possible dependencies on 4-d spacetime coordinates $^0u = (x^i, y^a)$ are considered as parameters [for simplicity, we shall omit writing of 4-d coordinates if it will not result in ambiguities],

$$ds^2[^6g] = g_{be}(x^i, y^a, y^b)dy^b dy^e$$

and/or $ds^2[^6g] = ga_i(0, u, y^{a_1}) (e^{a_1})^2 + ga_2(1, u, y^{a_2}) (e^{a_2})^2 + ga_3(2, u, y^{a_3}) (e^{a_3})^2$.

In the form:

$$^6g = g_{ij}(0, u, y^i, y^j)dy^i \otimes dy^j + g_{ab}(0, u, y^i, y^a)e^a \otimes e^b,$$

$$e^a = dy^a - N^a_i(u)dy^i.$$ \hspace{1cm} (10)

In formulas (10), the vierbein coefficients e^a of the dual basis $e^a = (e^i, e^a) = e^a_{(u)}dy^a$, are parametrized to define a formal $3 + 3$ splitting with N–connection structure $^6N = \{N_i^a\}$.

It is possible to prescribe any generating function $L(u) = L(x^i, y^a, y^b)$ on 6X with nondegenerate Hessian

$$\det |\tilde{g}_{ab}| \neq 0$$

for

$$\tilde{g}_{\dot{ab}} := \frac{1}{2} \frac{\partial^2 L}{\partial y^{\dot{a}} \partial y^{\dot{b}}}.$$ \hspace{1cm} (11)

We define a canonical N–connection structure

$$\tilde{N}_i^a = \frac{\partial G^a}{\partial y^{\dot{a}}}, \text{ where } G^a = \frac{1}{4} \tilde{g}^{7+i} \frac{\partial^2 L}{\partial y^{7+i} \partial y^k} y^{7+k} - \frac{\partial L}{\partial y^i}.$$ \hspace{1cm} (12)

In these formulas, $\tilde{g}_{\dot{ab}}$ is inverse to \tilde{g}_{ab} and respective contractions of h– and v–indices, $i, j, \ldots = 5, 6, 7$ and $\dot{a}, \dot{b}, \ldots = 8, 9, 10$, are performed following this rule: For example, we take an up v–index $\dot{a} = 3 + i$ and contract it with a low index $i = 1, 2, 3$. Using (11) and (12), we construct an internal 6-d d–metric

$$^6\tilde{g} = \tilde{g}_{ij}dy^i \otimes dy^j + \tilde{g}_{ab}e^a \otimes e^b,$$

$$\tilde{e}^a = dy^\dot{a} + \tilde{N}_i^a dy^i, \{\tilde{g}_{\dot{ab}}\} = \{\tilde{g}_{7+i, 7+j}\}.$$ \hspace{1cm} (13)

It should be emphasized that any d–metric $^6g (10)$ can be parametrized by coefficients $^6g_{\dot{ab}} = [g_{ij}, g_{\dot{ab}}, N_i^a]$ computed with respect to a N-adapted basis $e^a = (e^i = dy^i, e^\dot{a})$ which is related to the metric $^6\tilde{g}_{\dot{ab}} = \{\tilde{g}_{ij}, \tilde{g}_{\dot{ab}}, \tilde{N}_i^a\}$ (13) with coefficients defined with respect to a N–adapted dual basis $\tilde{e}^a = (e^i = dy^i, \tilde{e}^\dot{a})$ if the conditions $^6g_{\dot{a}b'}e^\dot{a}\dot{e}_b = ^6\tilde{g}_{\dot{ab}}$ related to corresponding frame transforms are satisfied. Fixing any values $^6g_{i\dot{b}}$ and $^6\tilde{g}_{\dot{ab}}$, we have to solve a system of quadratic algebraic equations with unknown variables e^a. A nonholonomic $2 + 2 + 2 = 3 + 3$ splitting of 6X with $^6g_{\dot{ab}} = [g_{ij}, g_{\dot{ab}}, N_i^a]$ is convenient for constructing generic off-diagonal solutions but similar N–connection splitting with equivalent $^6\tilde{g}_{\dot{ab}} = \{\tilde{g}_{ij}, \tilde{g}_{\dot{ab}}, \tilde{N}_i^a\}$ will allow us to define real solutions for effective EYMM systems.

A set of coefficients $\tilde{N} = \{\tilde{N}_i^a\}$ defines an N–connection splitting as a Whitney sum,

$$T^6X = h^6X \oplus v^6X$$ \hspace{1cm} (14)

into conventional internal horizontal (h) and vertical (v) subspaces. In local form, this can be written as

$$\tilde{N} = \tilde{N}_i^a(u)dy^i \otimes \frac{\partial}{\partial y^a},$$ \hspace{1cm} (15)

9
with $^6\mathbf{X} = ^3+^3\mathbf{X}$. As a result, there are N–adapted frame (vielbein) structures,
\begin{equation}
\tilde{e}_a = \left(\tilde{e}_i = \frac{\partial}{\partial y^i} - \tilde{N}_i^\alpha \frac{\partial}{\partial y^a}, e_a = \frac{\partial}{\partial y^a} \right),
\end{equation}
with dual frame (coframe) structures \tilde{e}^α, see (13). These vielbein structures define the nonholonomy relations
\begin{equation}
[\tilde{e}_a, \tilde{e}_b] = \tilde{e}_a \tilde{e}_b - \tilde{e}_b \tilde{e}_a = \tilde{w}_{ab}^c \tilde{e}_c
\end{equation}
with (antisymmetric) anholonomy coefficients $\tilde{w}_{ab}^c = \partial_a \tilde{N}_{ib}^c$ and $\tilde{w}_{ji}^a = \tilde{\Omega}_{ij}^a$, where $\tilde{\Omega}_{ij}^a = \tilde{e}_j \left(\tilde{N}_{ia}^b \right) - \tilde{e}_i \left(\tilde{N}_{ja}^b \right)$ are the coefficients of N–connection curvature (defined as the Neijenhuis tensor).

Using the canonical N–connection splitting, we introduce a linear operator \tilde{J} acting on vectors on $^6\mathbf{X}$, following formulas $\tilde{J}(\tilde{e}_i) = -e_7+i$ and $\tilde{J}(e_{7+i}) = \tilde{e}_i$, where $\tilde{J} \tilde{J} = -I$, for I being the unity matrix, and construct a tensor field
\begin{equation}
\tilde{\tilde{J}} = \tilde{J}_a^b e_a \otimes e^b = \tilde{J}_a^b \frac{\partial}{\partial y^a} \otimes du^b = \tilde{J}_i^j \frac{\partial}{\partial y^i} \otimes \tilde{e}^j = -e_{7+i} \otimes e^j + \tilde{e}_i \otimes e^{7+i}
\end{equation}

The corresponding d-tensor field defined globally by an almost complex structure on $^6\mathbf{X}$ is completely determined by a prescribed generating function $\tilde{L}(y^a, y^\alpha) \subseteq L(u^\alpha)$. In this subsection, we consider only structures $\tilde{J} = \tilde{J}$ induced by a \tilde{N}^{7+i}. In general, we can define an almost complex structure J for an arbitrary N–connection N, stating a nonholonomic 3 + 3 splitting by using N–adapted bases (16) which can be included (if necessary) into respective nonholonomic frames of the 10–spacetime, see (A.1).

The Neijenhuis tensor field for \tilde{J} (equivalently, the curvature of N–connection \tilde{N}) is
\begin{equation}
\tilde{J} \tilde{J}(X, Y) := -[X, Y] + [\tilde{J}X, \tilde{J}Y] - \tilde{J}[X, Y] - \tilde{J}[X, \tilde{J}Y],
\end{equation}
for any d–vectors $X, Y \in T^6\mathbf{X}$. With respect to N–adapted bases (16), a subset of the coefficients of the Neijenhuis tensor defines the N–connection curvature,
\begin{equation}
\tilde{\tilde{\Omega}}_{ik}^a = \frac{\partial \tilde{N}_i^a}{\partial y^k} - \frac{\partial \tilde{N}_k^a}{\partial y^i} + \tilde{N}_i^j \frac{\partial \tilde{N}_k^j}{\partial y^b} - \tilde{N}_k^j \frac{\partial \tilde{N}_i^j}{\partial y^b}.
\end{equation}

The nonholonomic structure is integrable if $\tilde{\tilde{\Omega}}_{ik}^a = 0$. We get a complex structure if and only if both the h– and v–distributions are integrable, i.e. if and only if $\tilde{\tilde{\Omega}}_{ik}^a = 0$ and $\frac{\partial \tilde{N}_i^a}{\partial y^k} - \frac{\partial \tilde{N}_k^a}{\partial y^i} = 0$.

An almost symplectic structure on a manifold is introduced by a nondegenerate 2–form
\begin{equation}
\theta = \frac{1}{2} \theta_{ab}(u) e^a \wedge e^b = \frac{1}{2} \theta_{ik}(u) e^i \wedge e^k + \frac{1}{2} \theta_{ab}(u) e^a \wedge e^b.
\end{equation}
An almost Hermitian model of an internal 6-d Riemannian space equipped with a N–connection structure \tilde{N} is defined by a triple $\mathbf{H}^{3+3} = (\mathbf{6}X, \theta, J)$, where $\theta(X, Y) \div g(JX, Y)$ for any g (10). A space \mathbf{H}^{3+3} is almost-Kähler, denoted \mathbf{K}^{3+3}, if and only if $d\theta = 0$.

Using $g = \tilde{g}$ (13) and structures \tilde{N} (12) and \tilde{J}, we define $\tilde{\vartheta}(X, Y) : = \tilde{g}\left(JX, Y\right)$, for any d–vectors $X, Y \in T^6\mathbf{X}$. In local N–adapted form, we have
\begin{equation}
\tilde{\vartheta} = \frac{1}{2} \tilde{\theta}_{ab}(u) e^a \wedge e^b = \frac{1}{2} \tilde{\theta}_{ik}(u) du^a \wedge du^b
\end{equation}
\begin{equation}
= \tilde{g}_{ik}(x^i, y^a, \tilde{y}^\alpha) e^{7+i} \wedge dy^k = \tilde{g}_{ij}(x^i, y^a, \tilde{y}^\alpha)(dy^{7+i} + \tilde{N}_k^{7+i} dy^k) \wedge dy^j.
\end{equation}
Considering the form $\bar{\omega} = \frac{1}{2} \theta^i_j du^i \wedge dy^j$, we prove by a straightforward computation that $\bar{\theta} = d \bar{\omega}$, i.e. $d \bar{\theta} = dd \bar{\omega} = 0$. As a result, any canonical effective Lagrange structure $\left(g = \bar{g}, \bar{N}, \bar{J} \right)$ induces an almost-Kähler geometry. The 2–form (21) can be written

$$\theta = \frac{1}{2} \theta^i_j(u) e^i \wedge e^j + \frac{1}{2} \theta^i_{ab}(u) e^a \wedge e^b \quad (22)$$

where the nontrivial coefficients $\bar{\theta}^i_{ab} = \bar{\theta}^i_{7+i, 7+j}$ are equal to the N-adapted coefficients $\bar{\theta}^i_{7+j}$ respectively.

2.2.2 Almost symplectic connections for N-anholonomic internal spaces

Taking a general 2–form θ constructed for any metric g and almost complex J structures on 6X, one obtains $d\theta \neq 0$. Nevertheless, we can always define a $3+3$ splitting induced by an effective Lagrange generating function when $d\theta = 0$. Considering frame transforms, $\theta^i_{ab} e^a_i e^b_j = \theta^i_{ab}$, we can write $d\theta = 0$ for any set of 2–form coefficients related via frame transforms to a canonical symplectic structure.

There is a unique normal d–connection $\bar{\mathbf{D}} = \left\{ h \mathbf{D} = (\bar{D}_k^i, v \bar{D}_k^c) \right\}$, which is metric compatible, $\bar{D}_k^i \bar{g}^i_j = 0$ and $\bar{D}_b^c \bar{g}^c_b = 0$, and completely defined by a couple of h– and v–components $\bar{D}_a = (\bar{D}_k^i, \bar{D}_b^c)$. The corresponding N-adapted coefficients $\bar{\Gamma}^i_{jk} = (\bar{\hat{\Gamma}}^i_{jk}, v \bar{\hat{\Gamma}}^i_{bk})$ are given by

$$\bar{\hat{\Gamma}}^i_{jk} = \frac{1}{2} \bar{g}^{ih} \left(\bar{e}^i_k \bar{g}^j_h + \bar{e}^i_j \bar{g}^k_h - \bar{e}^i_h \bar{g}^j_k \right), \quad \bar{\hat{\Gamma}}^i_{jk} = \frac{1}{2} \bar{g}^{ih} \left(\frac{\partial \bar{g}^j_k}{\partial y^i} - \frac{\partial \bar{g}^i_k}{\partial y^j} \right). \quad (24)$$

To develop a differential form calculus on 6X which is adapted to the canonical N–connection \bar{N}, we introduce the normal d–connection 1–form

$$\bar{\Gamma}^i_j = \bar{\hat{\Gamma}}^i_{jk} e^k + \bar{\hat{\Gamma}}^i_{jk} e^k. \quad (25)$$

Using this linear connection, we prove that the Cartan structure equations are satisfied,

$$de^k - e^j \wedge \bar{\Gamma}^i_j = - \bar{T}^k, \quad de^k - e^j \wedge \bar{\Gamma}^i_j = - v \bar{T}^i, \quad (26)$$

and

$$d\bar{\Gamma}^i_j - \bar{\Gamma}^h_j \wedge \bar{\Gamma}^i_h = - \bar{\hat{R}}^i_j. \quad (27)$$

The h– and v–components of the torsion 2–form $\bar{T}^a_i = \left(\bar{T}^i_k, v \bar{T}^i_c \right) = \bar{T}^a_{cb} e^a_i e^b_j$ from (26) are computed

$$\bar{T}^i_j = \bar{\hat{\Gamma}}^i_{jk} e^k \wedge e^j, \quad v \bar{T}^i_k = \frac{1}{2} \bar{\Omega}^i_{jk} e^k \wedge e^j + \left(\frac{\partial \bar{N}^i_j}{\partial y^j} - \bar{\tilde{\Gamma}}^i_j \right) e^k \wedge e^j. \quad (28)$$

In these formulas, $\bar{\Omega}^i_{jk}$ are coefficients of the curvature of \bar{N}^i_j defined by formulas similar to (20). The formulas (28) parametrize the h– and v–components of torsion \bar{T}^a_{cb} in the form

$$\bar{T}^i_{jk} = 0, \bar{T}^i_{ja} = \bar{\hat{\Gamma}}^i_{ja} \bar{N}^a_k, \bar{T}^i_{kj} = \bar{\hat{\Gamma}}^i_{kj} \bar{N}^a_j \bar{N}^a_k e_b \left(\bar{N}^a_i \right) - \bar{\tilde{\Gamma}}^a_{ibc} \bar{N}^a_c = 0. \quad (29)$$
We emphasize that \tilde{T} vanishes on h- and v-subspaces, i.e. $\tilde{T}_{jk}^i = 0$ and $\tilde{T}_{\tilde{k} \tilde{c}}^\beta = 0$, but other nontrivial h–v–components are induced by the nonholonomic structure determined canonically by $\mathbf{g} = \tilde{\mathbf{g}}$ and \tilde{L}.

An explicit calculus of the curvature 2–form from (27) results in

$$\tilde{R}^i_{\ j} = \tilde{R}^i_{\ jh} \mathbf{e}^h \wedge \mathbf{e}^j + \frac{1}{2} \tilde{R}^i_{\ jk} \mathbf{e}^k \wedge \mathbf{e}^j + \frac{1}{2} \tilde{R}^i_{\ jk} \tilde{\mathbf{e}}^k \wedge \tilde{\mathbf{e}}^j. \quad (30)$$

The corresponding nontrivial N–adapted coefficients of curvature $\tilde{R}^a_{\ \beta \epsilon \delta}$ of \tilde{D} are

$$\tilde{R}^i_{\ jhk} = \tilde{e}_k \tilde{L}^i_{\ hj} - \tilde{e}_j \tilde{L}^i_{\ hk} + \tilde{L}^i_{\ hj} \tilde{L}^j_{\ mk} - \tilde{L}^i_{\ hk} \tilde{L}^j_{\ mk} - \tilde{L}^i_{\ hj} \tilde{e}_j \tilde{e}^k \tilde{\Omega}_{\ k}^a$$

$$\tilde{R}^i_{\ jk\hat{a}} = e_{\hat{a}} \tilde{L}^i_{\ jk} - \tilde{D}_k \tilde{\mathbf{C}}^i_{\ ja} \hat{S}^a_{\ \beta \hat{c} \hat{d}} = e_d \tilde{\mathbf{C}}^a_{\ \beta \hat{c} \hat{d}} - e_{\hat{c}} \tilde{\mathbf{C}}^a_{\ \beta \hat{d} \hat{c}} + \tilde{\mathbf{C}}^a_{\ \beta \hat{c} \hat{d}} \tilde{\mathbf{C}}^a_{\ \beta \hat{d} \hat{c}} - \tilde{\mathbf{C}}^a_{\ \beta \hat{c} \hat{d}} \tilde{\mathbf{C}}^a_{\ \beta \hat{d} \hat{c}}.$$

By definition, the Ricci d–tensor $\tilde{R}_{\hat{b} \hat{c}} = \tilde{R}^a_{\ \hat{b} \hat{c} \hat{a}}$ is computed

$$\tilde{R}_{\hat{b} \hat{c}} = \left(\tilde{R}_{\hat{ij}}, \tilde{R}_{\hat{ia}}, \tilde{R}_{\hat{ib}}, \tilde{R}_{\hat{ab}} \right). \quad (31)$$

The scalar curvature \tilde{R} of \tilde{D} is given by two h- and v-terms,

$$\tilde{R} = \tilde{g}^{\hat{b} \hat{c}} \tilde{R}_{\hat{b} \hat{c}} = \tilde{g}^{\hat{i} \hat{j}} \tilde{R}_{\hat{ij}} + \tilde{g}^{\hat{a} \hat{b}} \tilde{R}_{\hat{ab}}. \quad (32)$$

The normal d–connection \tilde{D} (23) defines a canonical almost symplectic d–connection, $\tilde{D} \equiv \theta \tilde{D}$, which is N–adapted to the effective Lagrange and, related to almost symplectic structures, i.e. it preserves the splitting under parallelism (14).

$$\tilde{D}_X \tilde{g} = \theta \tilde{D}_X \theta = 0,$$

for any $X \in T^6 \mathbf{X}$ and its torsion is constrained to satisfy the conditions $\tilde{T}_{\hat{j} \hat{k}}^i = 0$ and $\tilde{T}_{\hat{b} \hat{c}}^\beta = 0$.

We conclude that having chosen a regular generating function $L(x, y)$ on a Riemannian internal space \mathbf{V}, we can always model this spacetime equivalently as an almost Kähler manifold. Using corresponding nonholonomic frame transforms and deformation of connections, we can work with equivalent geometric data on the internal space $^6 \mathbf{X}$, for convenience $(^6 \mathbf{g}, ^6 \mathbf{N}, ^6 \tilde{D}) \iff (\tilde{\mathbf{g}}, \tilde{\mathbf{N}}, \tilde{\mathbf{D}}, \tilde{L}) \iff (\theta, \tilde{J}, \tilde{D})$. The first N-adapted model is convenient for constructing exact solutions in 6-d and 10-d gravity models (this will be addressed in the associated paper [3], see also examples in [37]). The second nonholonomic model with "tilde" geometric objects (with so–called Lagrange-Finsler variables, in our case, on a 6–d Riemannian space) is an example of an internal space with nontrivial nonholonomic 3 + 3 splitting by a canonical N–connection structure determined by an effective Lagrange function \tilde{L}. The $(\theta, \tilde{J}, \tilde{D})$ defines an almost-Kähler geometric model on $^6 \mathbf{X}$ with nontrivial nonholonomically induced d–torsion structure \tilde{T}^a. This way, we can mimic a complex like differential geometry by real values and elaborate on various applications to quantum gravity, string/brane and geometric flow theories [9][10][11]. Introducing the complex imaginary unit $i^2 = -1$, with $\tilde{J} \approx i...$ and integrable nonholonomic distributions, we can redefine the geometric constructions for complex manifolds. Using nonholonomic real 3+3 distributions, we can develop gravitational and gauge like models of internal spaces, for instance, with $SO(3)$, or $SU(3)$ symmetries and their tensor products. Two different approaches can be unified in a geometric language with double nonholonomic fibrations $2 + 2 + 2 = 3 + 3$. Any d–metric with internal $2 + 2 + 2$ nonholonomic splitting can be redefined by nonholonomic frame transforms into an almost symplectic structure with $3 + 3$ decomposition. Considering actions of $SO(3)$, or $SU(3)$ on corresponding tangent spaces, we can reproduce all results with Kähler internal spaces related 4-d, 6-d and 10-d solutions for holonomic configurations obtained in Refs. [1][2].
2.3 N-adapted G_2 structures on almost-Kähler internal spaces

2.3.1 6-d and 7-d almost-Kähler models

For any 3-form $\Theta = \Theta_{abc} \tilde{e}^a \wedge \tilde{e}^b \wedge \tilde{e}^c$ on $6\mathbf{X}$ endowed with a canonical almost complex structure \tilde{J}

$$\Theta = \ +\Theta + \tilde{J} \ - \Theta.$$ \hspace{1cm} (33)

We can fix these conditions such that for $\tilde{J} \rightarrow iJ = -1$, Θ defines an $SU(3)$ structure defined on $6\mathbf{X}$ and the tangent space to the domain wall with $\Theta = \ +\Theta + i \ - \Theta$. Defining the gamma matrices γ_a on $6\mathbf{X}$ from the relation $\gamma_a \gamma_b + \gamma_b \gamma_a = 2$ δ_{ab}, see (13), we can relate the geometric objects in the almost-Kähler model of the internal space to the models with $SU(3)$ structure on a typical fiber in the tangent bundle $T^*6\mathbf{X}$. For integrable $SU(3)$ structures and Kähler internal spaces, one works with the structure forms (J, Θ), where

$$\Theta_{abc} = (\eta_{-})^{3} \gamma_{abc} \eta_{-} \quad \text{and} \quad J_{ab} = \mp (\eta_{\pm})^{3} \gamma_{ab} \eta_{\pm}$$

are considered for a Kähler metric 2 $\tilde{g}_{ab} = \gamma_{a} \gamma_{b} + \eta_{a} \eta_{b}$ with a 6-d Hodge star operator $\tilde{\ast}$. These forms obey the conditions

$$J \wedge \Theta = 0, \quad \frac{i}{8} J \wedge \overline{\Theta} = \frac{1}{3!} J \wedge J \wedge J = \mp 1, \quad J = \frac{1}{2} J \wedge J, \quad \mp \Theta_{\mp} = \pm \Theta_{\mp},$$

where $\overline{\Theta}$ means complex conjugation of Θ.

Working with \tilde{J} instead of J, we can define a similar 3-form $\tilde{\Theta}$ for an almost-Kähler model $(\tilde{\theta}, \tilde{J}, \tilde{g} \tilde{D})$ and construct the Hodge star operator $\tilde{\ast}$ corresponding to \tilde{g}. The relation between 6-d $\tilde{\ast}$ and 7-d $\tilde{7}_{\ast}$ Hodge stars for an ansatz of type (3) is

$$\tilde{7}_{\ast} (\tilde{6}_{\mu}) = e^{B(y^{3})} \tilde{\gamma}_{(\tilde{6}_{\mu})} \wedge \tilde{e}^{4} \quad \text{and} \quad \tilde{7}_{\ast}(\tilde{e}^{4} \wedge \tilde{6}_{\mu}) = e^{-B(y^{3})} \tilde{\gamma}_{(\tilde{6}_{\mu})},$$

where $\tilde{6}_{\mu}$ is a p-form with legs only in the directions on $6\mathbf{X}$. The two exterior derivatives $\tilde{7}_{d}$ and \tilde{d} are related via $\tilde{7}_{d}(\tilde{6}_{\mu}) = \tilde{d}(\tilde{6}_{\mu}) + dy^{4} \wedge \frac{\partial}{\partial y^{4}} (\tilde{6}_{\mu})$. Applying these formulas, we decompose the 10-d 3-form \tilde{H} into three N-adapted parts,

$$\tilde{H} = \varepsilon vol[3\tilde{g}] + \tilde{6} \tilde{H} + dy^{4} \wedge \tilde{H}_{4},$$

where $\varepsilon vol[3\tilde{g}] = \frac{1}{3} e_{ijk} \sqrt{|3\tilde{g}_{ijk}|} e^{i} \wedge e^{j} \wedge e^{k}$, $6\tilde{H} = \frac{1}{3} \tilde{H}_{abc} \tilde{e}^{a} \wedge \tilde{e}^{b} \wedge \tilde{e}^{c}$, $\tilde{H}_{4} = \frac{1}{2} \tilde{H}_{abc} \tilde{e}^{b} \wedge \tilde{e}^{c}$.

The operators $(\tilde{J}, \tilde{\Theta})$ allow us to generalize, in almost-Kähler form, the original constructions for Kähler internal spaces provided in [2, 11, 56, 57, 63] for the G_2 structure. In our approach, such an N-adapted configuration is adapted by the data for \tilde{g}, $(\tilde{\omega}, \tilde{\mathcal{W}})$ which can be related to the $SU(3)$ almost-Kähler structure $(\tilde{J}, \tilde{\Theta})$ by expressions

$$\tilde{\omega} = e^{-B(y^{3})} \tilde{e}^{4} \wedge \tilde{J} + \tilde{\Theta}_{\mp} \quad \text{and} \quad \tilde{\mathcal{W}} = e^{B(y^{3})} \tilde{e}^{4} \wedge \tilde{\Theta}_{\mp} + \frac{1}{2} \tilde{J} \wedge \tilde{J}.$$

For any structure group $SU(3)$ and its Lie algebra $\mathfrak{su}(6) = \mathfrak{su}(3) \oplus \mathfrak{su}(3)^{\perp}$, there is a canonical torsion $0T^{a'_{b'c'}} \in \wedge^{1} \mathfrak{su}(3)^{\perp}$, where primed indices refer to an orthonormal basis which can be related to any coordinate and/or N-adapted basis. For instance we write $0T^{a'_{b'c'}}$ if such a basis is for an almost-Kähler structure.

$$0T^{a'_{b'c'}} = (3 \oplus \overline{3}) \oplus (1 \oplus 3 \oplus \overline{3})$$

by expressions

$$\overline{\mathcal{W}} = e^{B(y^{3})} \tilde{e}^{4} \wedge \tilde{\Theta}_{\mp} + \frac{1}{2} \tilde{J} \wedge \tilde{J}.$$

This classification can be N-adapted if we use derivatives of the structure forms

$$\tilde{dJ} = -\frac{3}{2} Im(\overline{T_{1}\tilde{\Theta}}) + \overline{T_{4}} \wedge \tilde{J} + \overline{T_{5}},$$

$$\tilde{d\Theta} = \overline{T_{1}} \tilde{J} \wedge \tilde{J} + \overline{T_{2}} \wedge \tilde{J} + \overline{T_{5}} \wedge \tilde{\Theta},$$

where $Im(\overline{T_{1}\tilde{\Theta}})$ should be treated as the "vertical" part for almost-Kähler structures (when all values are real) and as the imaginary part for complex and Kähler structures $(\tilde{J}, \tilde{\Theta}) \rightarrow (J, \Theta)$.

2.3.2 Nonholonomic instanton d–connections nearly almost Kähler manifolds

The instanton type connections constructed in [2, 1] can be modelled for almost-Kähler internal spaces if we work in N–adapted frames for respective nonholonomically deformed connections. For such configurations, we set

\[T_2 = T_3 = T_4 = T_5 = 0 \quad \text{and} \quad T_1 = +T_1 + \tilde{J} - T_1, \]

where the last splitting is defined similarly to (33). All further calculations with \((J, \Theta)\) in [2, 1, 56, 57, 63] are similar to those for \((\tilde{J}, \tilde{\Theta})\) if we work in N–adapted frames on \(\mathcal{X}\) and corresponding model \((\tilde{\theta}, \tilde{J}, \theta, \tilde{D})\). Hereafter, we shall omit detailed proofs for almost-Kähler structures and send readers to analogous constructions in the aforementioned references.

Considering an ansatz (8) with possible embedding into a 10-d one of type (4), with \(A = B = 0\) for simplicity, we can construct solutions on \(\mathcal{X}\) of the first two nonholonomic BPS equations in (2) and (9). Such almost-Kähler configurations are determined by the system

\[
\hat{H} = \ell \text{vol}[\mathcal{X}] - \frac{1}{2} \partial_4 \phi + \left(\frac{3}{2} - T_1 + \frac{7}{8} \ell \right) + dy^4 \wedge (2 - T_1 + \ell)\tilde{J} \quad \text{for} \quad \hat{\phi} = \phi(y^4) \tag{34}
\]

and \((\tilde{J}, \tilde{\Theta})\) subjected to respective flow and structure equations:

\[
\partial_4 \tilde{J} = \left(+T_1 + \partial_4 \phi \right) \tilde{J}, \\
\partial_4 \tilde{\Theta} = - (3 - T_1 + \frac{15}{8} \ell) \tilde{\Theta} + \frac{3}{2} \left(+T_1 + \partial_4 \phi \right) \tilde{\Theta}, \\
\partial_4 + \tilde{\Theta} = \frac{3}{2} \left(+T_1 + \partial_4 \phi \right) + \tilde{\alpha}(y^4) - \tilde{\Theta}, \quad \text{for arbitrary function} \quad \tilde{\alpha}(y^4);
\]

and

\[
\tilde{d}\tilde{J} = - \frac{3}{2} - T_1 + \tilde{\Theta} + \frac{3}{2} + T_1 - \tilde{\Theta}, \\
\tilde{d}\tilde{\Theta} = T_1 \tilde{J} \wedge \tilde{J}. \tag{36}
\]

At the zeroth order in \(\alpha'\) with the Bianchi identity \(\hat{d}\hat{H} = 0\), see (1), we can choose \(\hat{F} = 0\) in order to solve the third equation in (2). The time–like component of the equations of motion can be solved if \(\ell = 0\) as in the pure Kähler case [1]. We obtain a special case of solutions (see [56] for original Kähler ones) when

1. \(\phi = \text{const.}, \quad +T_1 \text{ is a free function }, \quad -T_1 = 0, \quad \tilde{\alpha}(y^4) \text{ is a free function} ;
\]

2. \(\phi = \frac{2}{3} \log(a_0 y^4 + b_0), \quad +T_1 = 0, \quad -T_1 = 0, \quad \tilde{\alpha} = 0, \)

for integration constants \(a_0\) and \(b_0\) corresponding to \(\text{N–adapted frames. Respectively, cases 1 and 2 correspond to a nearly almost-Kähler geometry, with nonholonomically induced torsion (by off–diagonal N-terms) and vanishing NS 3-form flux, and a nonholonomic generalized Calabi-Yau with flux.}

3 The YM Sector and Nonholonomic Heterotic Supergravity

In this section, we construct a nontrivial gauge d–field \(\hat{F}\) which arises at the first order \(\alpha'\), when the YM sector can not be ignored. The approach elaborates on a nonholonomic and almost-Kähler version of YM instantons studied in [2, 56, 1]. The equations of motion of heterotic supergravity are then re–written in canonical nonholonomic variables, which allows us to decouple and find general integrals of such systems using methods applied for nonholonomic EYMH and Einstein–Dirac fields, see [30, 32, 36, 37, 38, 51, 55].
3.1 N–adapted YM and instanton configurations

The nonholonomic instanton equations can be formulated on $\mathbb{R} \times \mathbb{X}$ with generalized ‘h–cone’ d–metric

$$
\begin{align*}
\tilde{\mathbb{X}}^4 &= (e^4)^2 + |h(y^4)|^2 \mathbb{T}^4(y^4) = (e^4)^2 + |h(y^4)|^2 \tilde{6}g_{\tilde{ab}}(y^\tilde{a}), \\
\mathbb{E}^4 &= dy^4 + w_i(x^k, y^a),
\end{align*}
$$

where $\tilde{\mathbb{X}}$ can be considered for exact solutions determined in 4-d gravity and $\tilde{6}g_{\tilde{ab}} = \tilde{\mathbb{E}}_{ij}; \tilde{\mathbb{E}}_{\tilde{ab}}; \tilde{\mathbb{E}}_{\tilde{a}b}$ is for elaborating respective almost Kähler models. We denote by $\tilde{\mathbb{E}}_{\tilde{ab}} = \{\mathbb{E}_1, \cdot \cdot \cdot \mathbb{E}_9\} \in \mathbb{T}^*(\mathbb{X})$ an orthonormal N–adapted basis on $\tilde{\mathbb{X}}$.

We can relate the N–adapted configuration to the orthonormal frame \mathbb{E}_a by introducing certain Kähler operators in standard form instead of $(\tilde{\mathbb{J}}, \tilde{\Theta})$,

$$
\tilde{\mathbb{J}} := (\tilde{\mathbb{E}}^5 \wedge \tilde{\mathbb{E}}^6 + \tilde{\mathbb{E}}^7 \wedge \tilde{\mathbb{E}}^8 + \tilde{\mathbb{E}}^9 \wedge \tilde{\mathbb{E}}^{10}, \tilde{\Theta} = (\tilde{\mathbb{E}}^5 + i\tilde{\mathbb{E}}^6) \wedge (\tilde{\mathbb{E}}^7 + i\tilde{\mathbb{E}}^8) \wedge (\tilde{\mathbb{E}}^9 + \tilde{\mathbb{E}}^{10}),
$$

where $r^2 = -1$ is used for $SU(3)$. Using properties of such orthonormalized N-adapted bases, we can verify that standard conditions for the nearly Kähler internal spaces are satisfied \mathbb{E}, but also mimic almost-Kähler manifolds with $d(\mathbb{J}) = 2 \tilde{\mathbb{J}}$ and $d(\tilde{\Theta}) = 3(\tilde{\Theta})$.

As a result, we can consider the same reduction of the instanton equations (third formula in \mathbb{E}) as for holonomic Kähler structures with nontrivial torsion structure encoded in N–adapted bases for differential forms on nonholonomic internal manifolds \mathbb{X}. Using two types of warping variables,

$$
dy^4 = e^f(\tau) d\tau, \ \text{for} \ \mathbb{E}^f(\tau) = h(y^4(\tau))
$$

and two equivalent d–metrics, $\tilde{\mathbb{X}}^4 = e^{2f} \tilde{\mathbb{X}}^4$ and $\mathbb{E}^4 = dy^4 + 6\tilde{\mathbb{E}}_{\tilde{ab}}$, we obtain nonholonomic instanton equations

$$
*_{\mathbb{E}} \tilde{\mathbb{F}} = -(*_{\mathbb{E}} \mathbb{Q}_2) \wedge \tilde{\mathbb{F}},
$$

where $\mathbb{Q}_2 = d\tau \wedge \tilde{\Theta} + \frac{1}{2} \tilde{\mathbb{J}} \wedge \tilde{\mathbb{J}}$ and $*_{\mathbb{E}}$ is the Hodge star with respect to the cylinder metric $\tilde{\mathbb{X}}^4$. The almost-Kähler structure of \mathbb{X} is encoded into boldface operators \mathbb{Q}_2, $\tilde{\mathbb{J}}$ and canonical tilde like for \mathbb{X}. This does not allow us to solve such equations with an ansatz for the canonical connection on \mathbb{X} determined by the LC–connection as in \mathbb{E} but imposes the necessity to involve the normal (almost symplectic) d–connection $\mathbb{D}_b = (\mathbb{D}_k, \tilde{\mathbb{D}}_b) = \{\mathbb{D}_{\tilde{ab}}\}$, \mathbb{E}. Let us consider $\mathbb{A}\mathbb{D} = \mathbb{A}\mathbb{D}(\mathbb{D}_k, \tilde{\mathbb{D}}_b) = \{\mathbb{D}_{\tilde{ab}}\}$. In these formulas, the matrices $I_{\tilde{a}} = (I_{\tilde{a}}, I_{\tilde{a}})$ satisfy the Lie algebra commutator $[I_{\tilde{a}}, I_{\tilde{b}}] = f_{\tilde{a}}^{\tilde{b}}, f_{\tilde{a}}^{\tilde{b}} I_{\tilde{a}}$, with respective structure constants $f_{\tilde{a}}^{\tilde{b}}$ and $f_{\tilde{a}}^{\tilde{b}}$, (see formulas (3.9) in \mathbb{E} for explicit parameterizations).

We can define and compute the curvature d–form

$$
\mathbb{A}\tilde{\mathbb{F}} = \frac{1}{2} [\mathbb{A}\mathbb{D}, \mathbb{A}\tilde{\mathbb{D}}] := \mathbb{F}(\psi)
$$

where $\mathbb{F}(\psi)$ can be considered in a more generalized form $h(x^i, y^a, y^4)$ because the AFDM also allows us to generate these classes of solutions. For simplicity, we shall consider factorizations and frame transforms when the warping factor depends only on the coordinate y^4. This allows us to reproduce, in explicit form, the results for Kähler internal spaces if the 6-d metric structures do not depend on y^4.

\footnote{The warping factor $h(y^4)$ can be considered in a more generalized form $h(x^i, y^a, y^4)$ because the AFDM also allows us to generate these classes of solutions. For simplicity, we shall consider factorizations and frame transforms when the warping factor depends only on the coordinate y^4. This allows us to reproduce, in explicit form, the results for Kähler internal spaces if the 6-d metric structures do not depend on y^4.}
with parametric dependence on \(\tau \) \(\text{(39)} \) via \(\psi(\tau) \). Such an \(\mathcal{A}F \) is a solution of the nonholonomic instanton equations \(\text{(40)} \) for any solution of the 'kink equation' \(\frac{\partial \psi}{\partial \tau} = 2\psi(\psi - 1) \). For the aforementioned types of \(\mathcal{D} \)-connections, and for the LC-connection, we can consider two fixed points, \(\psi = 0 \) and \(\psi = 1 \) and a non-constant solution \(\psi(\tau) = \frac{1}{2} (1 - \tanh(|\tau - \tau_0|)) \), where the integration constant \(\tau_0 \) fixes the position of the instanton in the \(\tau \) direction but such an instanton also encodes an almost-Kähler structure.

In heterotic supergravity, we can consider two classes of nonholonomic instanton configurations. The first one is for the gauge-like curvature, \(\mathcal{A}F = \mathcal{F}(\psi) \) and \(\mathcal{R} = \mathcal{R}(\psi) \), in the second case, we also solve the condition \(\mathcal{R} \cdot \epsilon = 0 \) where the values \(1\psi \) and \(2\psi \) will be defined below.

3.2 Static and/or dynamic \(SU(3) \) nonholonomic structures on almost Kähler configurations

The transforms \(\mathcal{A}g_{ab} = [h]^2 \mathcal{A}g_{ab} \) in d–metric \(\text{(35)} \) impose certain relations on the two pairs \((\mathcal{J}, \tilde{\Theta}) \) and \((\tilde{\Theta}, \Theta) \), where the last couple is subjected to the respective flow and structure equations, \(\text{(36)} \) and \(\text{(37)} \), and define the 3–form \(\mathcal{H} \) \(\text{(34)} \). We note that such relations are a mixing between real and imaginary parts and nonholonomically constrained in order to adapt the Lie algebra symmetries to the almost-Kähler structure. Like in \(\text{[1]} \), it is considered a \(y^4 \) depending mixing angle \(\beta(y^4) \in [0,2\pi) \) when

\[
\mathcal{J} = [h]^2 \mathcal{J}, \quad \hat{\mathcal{J}} = [h]^3(\hat{\Theta}\cos \beta + \tilde{\Theta}\sin \beta), \quad \tilde{\Theta} = [h]^3(\hat{\Theta}\sin \beta + \hat{\Theta}\cos \beta).
\]

Introducing such values into the relations for \((\mathcal{J}, \tilde{\Theta}, \Theta) \), we obtain (compare to \(\text{(37)} \))

\[
\mathcal{H} = \ell \mathcal{F} + [h]d^4 \Theta + (\ell, h - 4\sin \beta, \tilde{\Theta}, \mathcal{J}) + [h]^2 \left[-\frac{1}{2} \mathcal{F}(\mathcal{F}\cos \beta + 3\sin^2 \beta - \frac{7}{8} \ell \mathcal{J} \sin \beta \right] \hat{\tilde{\Theta}}
\]

The above formula involves the conditions \(+\mathcal{T}_1 = 2(\mathcal{F})^{-1} \cos \beta \) and \(-\mathcal{T}_1 = -2(\mathcal{F})^{-1} \sin \beta \) which allows us to fix \(\mathcal{A}(y^4) = 3 - \mathcal{T}_1 + \frac{15}{8} \ell \).

There are additional conditions on the scalar functions \(h, \ell, \beta, \phi \) which must be imposed on coupled nonholonomic instanton solutions \(1\psi \) and \(2\psi \) satisfying the Bianchi conditions, the nonholonomic BPS equations and the time–like components of the equations of motion. We omit such an analysis because it is similar to that of the pure Kähler configurations, see sections 4 and 5 in \(\text{[1]} \). The purpose of nonholonomic almost-Kähler variables is so that we can work with respect to N-adapted frames in a form which is very similar to that for complex and symplectic structures.

3.3 Equations of motion of heterotic supergravity in nonholonomic variables

In order to apply the AFDM, we have to rewrite the equations of motion (generalized Einstein equations) in nonholonomic variables. The formal procedure is to take such equations written for the LC–connection with respect to coordinate frames and re–write them for the same metric structure, but for corresponding geometric objects with "hats " and "waves" and with respect to N-adapted frames on corresponding shells. In this way, including terms of order \(\alpha' \), the N–adapted equations of motion of heterotic nonholonomic supergravity considered in \(\text{[1]} \) can be written in such a form:

\[
\mathcal{R}_{\mu\nu}\alpha + 2(\mathcal{D}\mathcal{\hat{\Theta}})_{\mu\nu} - \frac{1}{4} \mathcal{H}_{\alpha\beta\gamma\mu\nu} \mathcal{H}_{\alpha\beta\gamma} = 0, \quad \mathcal{A}F = \mathcal{F}(\psi) \text{ and } \mathcal{R} = \mathcal{R}(\psi).
\]

\[
\mathcal{F} + 4\mathcal{\hat{\Theta}} - 4 \mathcal{\hat{\Theta}}^2 - \frac{1}{2} \mathcal{H}^2 + \alpha' \mathcal{H}^2 = 0,
\]

\[
e^{2\hat{\Theta}} \mathcal{\hat{\Theta}} e^{-2\hat{\Theta}} = 0, \quad \mathcal{\hat{\Theta}}^2 \mathcal{\hat{\Theta}} = 0,
\]

\[
\mathcal{\hat{F}}(e^{-2\hat{\Theta}}) = 0.
\]
where the Hodge operator $\hat{\ast}$, $s\hat{\mathbf{D}} = \{\hat{\mathbf{D}}_{\alpha}^\mu\}$ (A.12), the canonical nonholonomic d’Alambert wave operator $\hat{\square} := \hat{\mathbf{g}}^{\mu\nu} \hat{\mathbf{D}}_\mu \hat{\mathbf{D}}_\nu$, $\hat{\mathbf{R}}_{\mu\nu\alpha\beta}$ (A.17), $s\hat{\mathbf{R}}$ (A.18) are all determined by a d–metric $\hat{\mathbf{g}}$ (A.10). The curvature d–tensor $\hat{\mathbf{R}}_{\mu\nu\alpha\beta\gamma}$ is taken for an almost-Kähler structure $\hat{\mathbf{g}}$ (22) defined by corresponding nonholonomic distributions which are stated up to frame transforms by the N–connection structure and components of d–metric on shells $s = 1, 2, 3$ as we described above. The gauge field $\hat{\mathbf{A}}$ corresponds to the N–adapted operator

$$s\hat{\mathbf{D}} = \hat{\mathbf{D}} + \hat{\psi}(y^4)[e^{a_1}I_{a_1} + e^{a_2}I_{a_2} + e^{a_3}I_{a_3}] = s\hat{\mathbf{D}} + \hat{\psi}(y^4)\hat{\nabla} = \hat{\mathbf{d}} + \hat{\mathbf{A}}$$

and curvature $\hat{\mathbf{F}} = F(\hat{\psi})$ via a map constructed above (for $s\hat{\mathbf{D}}_{\hat{\mathbf{F}} = 0} \to s\nabla$, see details in [11]). For instance, the LC–configurations of (41) are determined by equations

$$R_{\mu\nu} + 2(\nabla d\phi)_{\mu\nu} - \frac{1}{4} H_{\alpha\beta\mu} H_\nu^{\quad\alpha\beta} \equiv \frac{1}{4} \left[\hat{\mathbf{R}}_{\mu\alpha\beta\gamma} \hat{\mathbf{R}}_\nu^{\quad\alpha\beta\gamma} - tr \left(\hat{\mathbf{F}}_{\mu\alpha} \hat{\mathbf{F}}_\nu^{\quad\alpha} \right) \right] = 0$$

with standard 10-d indices $\alpha, \beta, ... = 0, 1, 2, ... 9$ and geometric values determined by ∇. Unfortunately, the system of nonlinear PDEs (45) can not be decoupled and integrated in any general form if we do not consider shell N–adapted frames/coordinates and generalized connections which can be nonholonomically constrained to LC-configurations.

The equations (43) and (44) can be solved for arbitrary almost-Kähler internal spaces by introducing corresponding classes of N-adapted variables as we proved in previous sections. Such solutions can be classified as for pure Kähler spaces, for simplicity, considering a special case with $-\hat{T}_1 = 0$ and $\ell = 0$ and in terms of ’kink’ solutions with $e^{2f} = e^{2(\tau - \tau_0)} + \frac{\alpha'}{4}[(1 \psi)^2 - (2 \psi)^2], \tau_0 = const$. The NS 3–form flux is given by a simple formula

$$\hat{\mathbf{H}}(\tau, y^5) = -\frac{1}{2} = [\lambda_0](\partial_1 \phi)(\hat{\Theta} + \hat{\Theta}) = \frac{\alpha'}{4}[(1 \psi)^2(2 1 \psi - 3) - (2 \psi)^2(2 2 \psi - 3)](\tau)[\hat{\Theta}(y^5)].$$

Here we reproduce the classification of 8 cases with fixed and/or kink configurations for almost-Kähler configurations,

Case	1ψ, 2ψ;	$e^{2f} = e^{2(\tau - \tau_0)} + \frac{\alpha'}{4}[(1 \psi)^2 - (2 \psi)^2], f = \tau - \tau_0$, $\phi = \phi_0 + 2(f - \tau)$
1	$1\psi = 2\psi$;	$f = f_0 := \frac{1}{2} \log(\frac{\phi}{\phi_0})$, $\phi = \phi_0 + 2(f_0 - \tau)$
2	$1\psi = 2\psi = 0$;	$e^{2f} = e^{2(\tau - \tau_0)} - \frac{\alpha'}{4}e^{-\phi_0} = e^{-2\tau_0} - \frac{\alpha'}{4}e^{-2\tau}$

3	$1\psi = 1$, $2\psi = 0$;	$e^{2f} = e^{2(\tau - \tau_0)} + \frac{\alpha'}{16}[1 - \tanh(\tau - \tau_1)]^2, \phi = \phi_0 + 2(f - \tau)$
4	$1\psi = 0$, $2\psi = \text{kink}$;	$e^{2f} = e^{2(\tau - \tau_0)} - \frac{\alpha'}{16}[1 - \tanh(\tau - \tau_1)]^2, \phi = \phi_0 + 2(f - \tau)$
5	$1\psi = \text{kink}$, $2\psi = 0$;	$e^{2f} = e^{2(\tau - \tau_0)} + \frac{\alpha'}{16}[\tanh(\tau - \tau_1) + 1][\tanh(\tau - \tau_1) - 3]
6	$1\psi = 2\psi = \text{kink}$;	$e^{2f} = e^{2(\tau - \tau_0)} - \frac{\alpha'}{16}[\tanh(\tau - \tau_1) + 1][\tanh(\tau - \tau_1) - 3]
7	$1\psi = \text{kink}$, $2\psi = 1$;	$e^{2f} = e^{2(\tau - \tau_0)} + \frac{\alpha'}{16}[\tanh(\tau - \tau_1) - 2\tanh(\tau - \tau_1) - 2\tanh(\tau - \tau_2) + 2 \tanh(\tau - \tau_2)]
8	$1\psi = \text{kink}$, $2\psi = \text{kink}$ with $\tau_1 \neq \tau_2$;	

Such a classification can be used for parametrizing certain effective sources of Einstein–Yang-Mills-Higgs type and preserved for constructing generic off-diagonal solutions following the AFDM [30, 31, 34, 29, 36, 37, 23, 24]. We emphasize that classes 1-8 distinguish different almost-Kähler structures encoding corresponding assumptions, that for identification of almost complex structure I with the complex unity i in the typical fiber of tangent space use the same classification as for symplectic configurations introduced in [11, 2]. A unified classification for internal (almost) Kähler spaces is possible with respect to corresponding N–adapted frames generated by a conventional Lagrange function as we considered in formulas (12) and (22).

Finally, we note that we shall construct and analyze various classes of generic off-diagonal exact solutions of the equations (41) and (42) in our associated work [3]. The main goal of that work is to prove that it is possible to reproduce certain types of off–diagonal deformations of the Kerr metric in heterotic supergravity for the 4-d
sector if the internal 6-d space is endowed with richer (than in Kähler geometry) structures. In section [3] we proved that it is always possible to introduce such nonholonomic variables when the internal space geometric data is parameterized via geometric objects of an effective almost-Kähler geometry. This allows us to solve the equations ([43]) and ([44]) following the same procedure and classification as in [1] when the domain walls were endowed with trivial pseudo-Euclidean structure warped nearly Kähler internal spaces. The off-diagonal deformation techniques defined by the AFDM allow us to generalize the constructions for nontrivial exact and parametric solutions in 4-d, 6-d and 10-d MGTs and string gravity.

4 String Deformations of Kerr Metrics with Quasiperiodic or Pattern– Forming Structure

We provide and analyze explicit examples of solutions in heterotic string gravity defining deformations of the Kerr metric with pattern-forming and spatiotemporal chaos [44] in the 4-d spacelike part and/or for the internal almost-Kähler structure. In brief, we shall refer to such configurations with possible additional solitonic distributions and nonlinear waves as quasiperiodic structures. It should be noted that the generic off-diagonal internal almost-Kähler structure. In brief, we shall refer to such configurations with possible additional solitonic deformations defined by the AFDM allow us to generalize the constructions for nontrivial exact and parametric solutions in 4-d, 6-d and 10-d MGTs and string gravity.

4.1 Solutions with small parametric deformations in 10-d string gravity

The motion equations for heterotic gravity (41) - (44) with nontrivial sources determined by fields \(\hat{H}_{\alpha s\beta s\mu s}, \hat{F}_{\mu s\alpha s}, \) and \(\hat{\phi} \), and internal almost-Kähler curvature \(\hat{R}_{\mu s\alpha s\beta s\gamma s} \) can be integrated in general form for certain parameterizations of such fields with respect to N–adapted frames. By explicit computations, we can check this for

\[
\hat{H}_{\alpha s\beta s\mu s} = H_s \sqrt{|g_{\beta s\mu s}|} \epsilon_{\alpha s\beta s\mu s}, \hat{F}_{\mu s\alpha s} = F_s \sqrt{|g_{\beta s\mu s}|} \epsilon_{\mu s\alpha s}, \hat{R}_{\mu s\alpha s\beta s\gamma s} = R_s \sqrt{|g_{\beta s\mu s}|} \epsilon_{\mu s\alpha s\beta s\gamma s},
\]

with absolute anti-symmetric \(\epsilon \)-tensors, which are similar to ansatz considered for (effective) Einstein Yang–Mills Higgs systems and heterotic string gravity [35, 36]. The corresponding effective energy–momentum tensors are computed

\[
\begin{align*}
\mathcal{Y}_{ij} &= \kappa \mathcal{Y} = \kappa \Lambda g_{ij} \\
H \mathcal{Y}_{\mu s\nu s} &= -\frac{10}{2} (H_s)^2 g_{\beta s\mu s}, \text{ for } H \Lambda = -5 (H_s)^2, \\
F \mathcal{Y}_{\mu s\nu s} &= -\frac{10 \alpha'}{2} n_F (F_s)^2 g_{\beta s\mu s}, \text{ for } F \Lambda = -5 n_F (F_s)^2, \\
R \mathcal{Y}_{\mu s\nu s} &= \frac{10 \alpha'}{2} n_R (R_s)^2 g_{\beta s\mu s}, \text{ for } R \Lambda = -5 n_R (R_s)^2,
\end{align*}
\]

where respectively associated cosmological constants are determined, for instance, by the numbers \(n_F = tr[\text{internal } F] \) and \(n_R = tr[\text{internal } R] \) depending on the representation of the Lie algebra for \(F \) and on the representation of Lie groups on the internal space, and on real constants \(H_s, F_s \) and \(R_s \). We can introduce more general sources with coefficients in N–adapted form determined by redefinition of generating functions and sources but all resulting in an effective cosmological constant \(\Lambda = H \Lambda + F \Lambda + R \Lambda \) (see formula (104) and relevant details for sections 2.3.4 and 3.4.2 in the partner work [3]).

The quadratic elements for such classes of 10-d off-diagonal solutions with parametric dependence on a small parameter \(\varepsilon \), \(0 \leq \varepsilon \ll 1 \) in heterotic supergravity split in conventional 4-d spacetime and 6-d internal space
components,
\[ds_{\text{40d}}^2 = ds^2[4g] + ds^2[6g]. \quad (48) \]
In this formula, the 4-d spacetime part of the d-metric is written
\[
\begin{align*}
&ds^2[4g] = (1 + \varepsilon \epsilon^0_q g^q) (dx^1)^2 + (dx^2)^2 + \left(A - \varepsilon \frac{\Phi^2}{4A} \right) [dy^3 + \varepsilon \partial_{x^4} n(x^4) - \partial_{x^4}(y^3 + \varphi \frac{\overline{B}}{A})] \, dx^{k'2} \\
&+ \left[1 + \varepsilon \left(2(\chi + \frac{\Phi}{\partial_x \Phi} \partial_x \chi) + \frac{\Phi^2 \chi}{4A} \right) \right] (C - \frac{\overline{B}^2}{A}) |d\varphi + \varepsilon \partial_{x^4} \tilde{A}| dx^{x^4}', \quad (49)
\end{align*}
\]
where \(\partial_i = \partial/\partial y^i = \partial/\partial \varphi . \) The functions \(\chi(x^4, y^4) \) and \(\Phi(x^4, y^4) \) define a generating function \(\varepsilon \Phi = \hat{\Phi}(x^4, \varphi)[1 + \varepsilon \chi(x^4, \varphi)] \) subjected to the condition
\[
\varepsilon \partial_{x^4} \tilde{A} = \partial_{y^4}(\varepsilon \Phi)/\partial_{x^4} \varepsilon \Phi, \quad (50)
\]
which for any functions \(\hat{A}(x^4, \varphi) \) and \(\chi n(x^4) \), (for \(i' = 1, 2 \)) result in zero nonholonomically induced torsion. The values \(\tilde{\zeta}, \omega_0, \varphi_0 \) are some integration constants and the functions \(0q(x^4) \) and \(1q(x^4) \) are determined by a solution of the 2-d Poisson equation \(\partial_i^2 q + \partial_{x^4}^2 q = 2\Lambda \), when
\[
(1 + \varepsilon \epsilon^0_q g^q) (dx^1)^2 + (dx^2)^2 = e^{q(x^4)} [(dx^1)^2 + (dx^2)^2].
\]
For \(\varepsilon = 0 \), the 4-d metric transforms into the Kerr metric in the so-called Boyer–Linquist coordinates \((r, \vartheta, \varphi, t) \), for \(r = m_0(1 + p \tilde{x}_1) \), \(\tilde{x}_2 = \cos \tilde{\vartheta} \). Such a parametrization is convenient for applications of the AFDM in order to construct nonholonomic and extra dimensional deformations of solutions and generalizations. The Boyer–Linquist coordinates can be expressed via certain parameters \(p, q \) (related to the total black hole mass, \(m_0 \) and the total angular momentum, \(a = m_0 \), for the asymptotically flat, stationary and anti-symmetric Kerr spacetime), when \(m_0 = Mp^{-1} \) and \(a = M(q^{-1} \) when \(p^2 + q^2 = 1 \) implies \(m_0^2 - a^2 = M^2 \). In these variables, the vacuum 4-d Kerr black hole solution can be written in the form
\[
\begin{align*}
&ds^2[4g] = (dx^1)^2 + (dx^2)^2 + A(e^3')^2 + (C - \frac{\overline{B}^2}{A})(e^4')^2, \\
&e^{3'} = dt + d\varphi \overline{B}/A = dy^3 - \partial_{x^4}(y^3 + \varphi \overline{B}/A) dx^{x^4}', e^{4'} = dy^4 = d\varphi;
\end{align*}
\]
where \(x^1(r, \vartheta) \), \(x^2(r, \vartheta) \), \(y^3 = t + y^3(r, \vartheta, \varphi) + \varphi \overline{B}/A \), \(x^4, \partial_{x^4} y^3 = -\overline{B}/A \) are any coordinate functions for which \((dx^1)^2 + (dx^2)^2 = \Xi(\Delta - 1dr^2 + \partial x^2)^2 \), and the coefficients are
\[
\begin{align*}
&A = -\Xi^{-1}(\Delta - a^2 \sin^2 \vartheta), \quad B = -\Xi^{-1}a \sin \vartheta \left[\Delta - (r^2 + a^2) \right], \\
&\overline{C} = \Xi^{-1} \sin^2 \vartheta \left[(r^2 + a^2) - \Delta a^2 \sin^2 \vartheta \right], \quad \Delta = r^2 - 2m_0 + a^2, \quad \Xi = r^2 + a^2 \cos^2 \vartheta.
\end{align*}
\]
(51)

The effective d-metric for the 6-d internal space in (48) is
\[
\begin{align*}
&ds^2[6g] = [1 - \varepsilon \frac{1}{4A} \partial_{x_0} \chi] \partial_{x_0}[dy^6 + [1 + \varepsilon \frac{1}{4n_{x_1}} \int dy^6(\frac{\chi}{\partial x^1} - \frac{1}{4\partial_{x^1}} \partial_{x^1}(\frac{\chi}{\partial x^1}) - \frac{5}{8\partial_{x^1}} \partial_{x^1}(\frac{\chi}{\partial x^1})\partial_{x^1}(\frac{\chi}{\partial x^1})] \overline{\tilde{u}_1} d\tilde{x}^1]^2 \\
&+ [1 + \varepsilon \left(2(\frac{\chi}{\partial x^1} - \frac{1}{4\partial_{x^1}} \partial_{x^1}(\frac{\chi}{\partial x^1}) - \frac{1}{4\partial_{x^1}} \partial_{x^1}(\frac{\chi}{\partial x^1})\partial_{x^1}(\frac{\chi}{\partial x^1}) \right) \overline{\tilde{w}_1} d\tilde{x}^1]^2 \quad (52)
\end{align*}
\]
\[
\begin{align*}
&+ [1 - \varepsilon \frac{2\chi}{4A} \partial_{x_1} \partial_{x_2} \overline{\tilde{u}_1} d\tilde{x}^2] \partial_{x_1} d\tilde{x}^2 \\
&+ [1 + \varepsilon \left(2(\frac{\chi}{\partial x^1} - \frac{2\chi}{4\partial_{x^1} \partial_{x^1}} \partial_{x^1}(\frac{\chi}{\partial x^1}) - \frac{2\chi}{4\partial_{x^1} \partial_{x^1}} \partial_{x^1}(\frac{\chi}{\partial x^1})\partial_{x^1}(\frac{\chi}{\partial x^1}) \right) \overline{\tilde{w}_2} d\tilde{x}^2]^2.
\end{align*}
\]
In these formulas, we consider generating functions of the form

\[\Phi(r, \vartheta, \varphi, y^6), \]

\[\Phi(r, \vartheta, \varphi, y^6, y^8), \]

\[\Phi(r, \vartheta, \varphi, y^6, y^8, y^{10}) \]

where the coordinates are parameterized

\[u^\alpha = \{ x^1 = x^1' = r, x^2 = x^2', \vartheta, x^3 = t, x^4 = x^4', \} \]

\[y_i^{\alpha_1} = \{ u^5 = y^5, u^6 = y^6, \} \]

In above solutions and generating functions, the left symbols label the "shells" \(s = 1, 2, 3\), and emphasize that such metrics are defined as solutions in 10-d heterotic supergravity with effective sources \([47]\) with \(\Lambda = H_A + F_A + R_A\).

The target metric \(g\) \([48]\) describes a nonholonomic deformation \(\hat{g} = [\hat{g}_i, \hat{h}_{ab}, \hat{N}_{bi}^a] \rightarrow g = [g_i, h_{ab}, N_{bi}^a]\) when the prime metric is parameterized

\[ds^2 = \hat{g}_i(x^k)(dx^i)^2 + \hat{h}_{ab}(x^k,y^3)(dy^a)^2 + \hat{g}_{ai}(x^k,y^3)(e^{a_1})^2 \]

\[+ \hat{g}_{ab}(x^k,y^3,y^{a_1},y^{a_2})(e^{a_2})^2 + g_{ab}(x^k,y^3,y^{a_1},y^{a_2},y^9)(e^{a_3})^2, \]

where \(e^{a_\alpha}\) are \(N\)-elongated differentials. Such a metric contains a 4-d spacetime part describing a Kerr black hole solution and can be diagonalizable if there is a coordinate transform \(w^\alpha = u^{\alpha_1}(u^{\alpha_2})\) for which \(ds^2 = \hat{g}_i(x^k)(dx^i)^2 + \hat{h}_{ab}(x^k)(dy^a)^2\), with \(s\hat{w}_i = s\hat{n}_i = 0\), i.e. the anholonomy coefficients vanish, \(W^\alpha_{\beta\gamma\delta}(u^{\mu_5}) = 0\), see \([47]\). The extra dimensional coefficients can be arbitrary ones describing a nontrivial internal space struture, or considered for trivial diagonalizable data, for instance, \(g_{a_1} = 1\), for \(s = 1, 2, 3\). The target metrics will be constructed for small generic off–diagonal parametric deformations of the Kerr metric embedded in a 10-d prime spacetime into as a solution of nonholonomic motion equations in heterotic string gravity \([41]\). Conventionally, the \(N\)-adapted coefficients are parameterized

\[ds^2 = \eta_i \hat{g}_i(x^k)^2 + \eta_{a_1} \hat{g}_{a_1}(e^{a_1})^2, \]

\[e^{a} = dt + \eta_i \hat{n}_a dx^i, e^{5} = dy^5 + \eta_i \hat{n}_i dx^i, \]

\[e^{7} = dy^7 + \eta_i \hat{n}_i dx^i, e^{8} = dy^8 + \eta_i \hat{n}_i dx^i, e^{9} = dy^9 + \eta_i \hat{n}_i dx^i, \]

where the coefficients \(\eta_{a_1} = \eta_{a_2} = \eta_{a_3}\) are determined by polarization \(\eta\)-coefficients with \(\varepsilon\)-parameter linearization

\[\eta_i = 1 + \varepsilon \chi_i(x^k), \eta_0 = 1 + \varepsilon \chi_0(x^k, y^a, y^6), \eta_{a_1} = 1 + \varepsilon \chi_{a_1}(x^k, y^a, y^6), \]

\[\eta_{a_2} = 1 + \varepsilon \chi_{a_2}(x^k, y^a, y^{a_1}, y^{a_2}), \eta_{a_3} = 1 + \varepsilon \chi_{a_3}(x^k, y^a, y^{a_1}, y^{a_2}, y^{10}); \]

\[\eta_{i1} = 1 + \varepsilon \chi_{i1}(x^k, y^4), \eta_{i} = 1 + \varepsilon \chi_i(x^k, y^4), \]

\[\eta_{i_1} = 1 + \varepsilon \chi_{i_1}(x^k, y^a, y^6), \eta_{i_1} = 1 + \varepsilon \chi_i(x^k, y^a, y^6), \]

\[\eta_{i_2} = 1 + \varepsilon \chi_{i_2}(x^k, y^a, y^{a_1}, y^8), \eta_{i_2} = 1 + \varepsilon \chi_i(x^k, y^a, y^{a_1}, y^8), \]

\[\eta_{i_3} = 1 + \varepsilon \chi_{i_3}(x^k, y^a, y^{a_2}, y^{10}), \eta_{i_3} = 1 + \varepsilon \chi_i(x^k, y^a, y^{a_2}, y^{10}). \]

We note that such nonholonomic \(\varepsilon\)-parameters deformations embed and nonholonomically transform a 4-d stationary Kerr metric into a 10-d solutions of the nonholonomic motion equations in heterotic string gravity \([41],[43]\) with an effective scalar field encoded into the N–connection structure and non-stationary internal spacetimes. Both 4-d and 6-d components, respectively, \([49]\) and \([50]\), of generic off-diagonal metrics \([48]\) written in terms of polarization functions \([51]\), can be re-defined in almost Kähler variables.
4.2 Solitonic deformations of 4-d Kerr configurations and internal space extensions

Off-diagonal terms and nontrivial effective sources in heterotic string gravity result in various effects with solitonic like distributions in the 4-d spacetime and 6-d internal spaces and various possible nonlinear solitonic waves on mixed spacetime and internal space coordinates.

4.2.1 String solitonic polarizations of the mass of 4-d Kerr black holes

We can construct off-diagonal analogs of the Kerr-Sen rotoid configurations \[\chi \] if the generating function \[s_{ld} \chi = \chi (r, \theta, \varphi) \] in \[49 \] is a solution of the solitonic equation

\[
\partial_{rr}^2 \chi + \epsilon \partial \chi (\partial \theta \chi + 6 \chi \partial \varphi \chi + \partial^3 \varphi \chi) = 0,
\]

for \(\epsilon = \pm 1 \). In this formula, the left label \(sld \) emphasizes that such a function is defined as a "solitonic distribution". In gravity theories, such Kadomtzev–Petviashvili, KP, type equations were studied in details \[49, 51, 55 \], see references therein (with examples of 2-d and 3-d sign-Gordon equations are studied). The corresponding \(tt \)-coefficient of the d-metric, \(h_3 = A - \epsilon \frac{\Phi^2}{\Lambda} = A(r, \theta, \varphi) \), can be re-written in a form with an effective solitonic polarization of mass,

\[
m_0 \rightarrow \tilde{m}(r, \theta, \varphi) = m_0 [1 - \epsilon \chi (r, \theta, \varphi) \frac{\Phi(r, \theta, \varphi)}{8 \Lambda m_0} (r^2 + a^2 \cos^2 \vartheta)].
\]

This formula describes possible modifications of Kerr black holes, BH, for a nontrivial cosmological constant \(\Lambda = H \Lambda + F \Lambda + R \Lambda \) induced effectively by "matter field" sources \(47 \). For small values of parameter \(\epsilon \), we can consider that contributions from heterotic string gravity result also into generic off–diagonal nonholonomic deformations of the vacuum BH solutions to certain Kerr-type rotoid configurations with nontrivial vacuum modifications of the gravitational media, which is contained explicitly in the diagonal coefficients, \(h_{a1} \chi \), and the N-coefficients, computed using the formula \[52 \] for \(w_i \chi \), in \[49 \]. In explicit form, the function \(\tilde{m}(r, \theta, \varphi) \) can be computed for certain prescribed values, i.e. boundary conditions, for the solitons determined as solutions \[56 \] and choosing explicit frame and coordinate systems with respective \(\Phi(r, \theta, \varphi) \) and \(\Lambda \). Such values should be determined by explicit experimental / observational data in modern astrophysics and cosmology.

4.2.2 Stationary solitonic distributions of in the internal space

On the first shell, we can generate such solutions if the generating function \(\chi \) is taken in the form \(1 \chi = s_{ld} \chi (r, \theta, y^6) \) and constrained to be a solution of the 3-d solitonic equation

\[
\partial_{rr}^2 (1 \chi) + \epsilon \partial \theta [\partial \theta (1 \chi) + 6 (1 \chi) \partial \varphi (1 \chi) + \partial^3 \varphi (1 \chi)] = 0.
\]

In result, we obtain solitonic gravitational configurations with N-adapted coefficients \[52 \] being functionals of solitonic functions, when \(h_{a1} \chi \), (where \(a_1 = 5, 6 \)), and nontrivial \(N^{a1} \chi \), \[52 \].

In similar forms, we can generate 3-d solitonic configurations, with mixed dependence on 4-d space coordinates and an extra-dimension coordinate, on all 3 shells of the internals space of the heterotic supergravity. Such solutions are determined by \(s \chi = s_{ld} \chi (r, \theta, y^{2s+2}) \), (when dependencies on coordinates \(y^6, y^8, y^{10} \) are obtained correspondingly for \(s = 1, 2, 3 \)), as respective solutions of

\[
\partial_{rr}^2 (s \chi) + \epsilon \frac{\partial}{\partial y^{2s+2}} [\partial \theta (s \chi) + 6 (s \chi) \frac{\partial}{\partial y^{2s+2}} (s \chi) + \partial^3 (s \chi)] = 0.
\]

\[^5 \] An alternative class of solitonic distributions can be generated if we consider \(\chi \) in the form \(1 \chi = s_{lt} \chi (r, \varphi, y^6) \) and constrained to be a solution of the 3-d solitonic equation \(\partial_{rr}^2 (1 \chi) + \epsilon \partial \theta [\partial \varphi (1 \chi) + 6 (1 \chi) \partial \theta (1 \chi) + \partial^3 (1 \chi)] = 0. \)
Prescribing generating functions \((53) \), we generate internal space d-metrics, and nonholonomic solitonic off-diagonal deformations of the Kerr 4-d BH into stationary solutions with 10-d metrics determined as functionals \((48) \), i.e. functionals of type \(g = g \ [\text{Kerr} 4d, \ s \chi(r, \vartheta, y^{2s+2})] \). In respective N-adapted frames and coordinate systems, such 10-d solitonic gravitational configurations do not depend on the time like coordinate \(t \). They can be, in general, with nontrivial nonholonomically induced torsion coefficients. Imposing additional nonholonomic constraints, we can extract torsionless Levi-Civita configurations as in \([37, 34] \).

4.2.3 Solitonic waves in extra-dimensional shells on the internal space

We can construct solutions of the equations of motion in heterotic supergravity generated in the internal space by solitonic waves with explicit dependence on time like coordinate \(t \). For such internal metrics, the generating function \(\frac{\lambda}{s} \chi \) can be taken, for instance, in such forms

\[
\begin{align*}
\frac{\lambda}{s} \chi &= \left\{
\begin{array}{ll}
\frac{s}{w} \chi(t, \vartheta, y^{2s+2}) & \text{as a solution of } \\
\frac{s}{w} \chi(\vartheta, t, y^{2s+2}) & \text{as a solution of } \\
\frac{s}{w} \chi(t, r, y^{2s+2}) & \text{as a solution of } \\
\frac{s}{w} \chi(r, t, y^{2s+2}) & \text{as a solution of } \\
\frac{s}{w} \chi(\varphi, r, y^{2s+2}) & \text{as a solution of } \\
\frac{s}{w} \chi(\varphi, t, y^{2s+2}) & \text{as a solution of }
\end{array}
\right.
\end{align*}
\]

\[
\frac{\partial^2}{\partial t^2} (s \chi) + \frac{\partial}{\partial \varphi^2} (s \chi) + \frac{\partial}{\partial \varphi^2} (s \chi) + \frac{\partial}{\partial \varphi^2} (s \chi) = 0;
\]

\[
\frac{\partial^2}{\partial \varphi^2} (s \chi) + \frac{\partial}{\partial \varphi^2} (s \chi) + \frac{\partial}{\partial \varphi^2} (s \chi) + \frac{\partial}{\partial \varphi^2} (s \chi) = 0;
\]

\[
\frac{\partial^2}{\partial r^2} (s \chi) + \frac{\partial}{\partial y^2} (s \chi) + \frac{\partial}{\partial y^2} (s \chi) + \frac{\partial}{\partial y^2} (s \chi) = 0;
\]

\[
\frac{\partial^2}{\partial y^2} (s \chi) + \frac{\partial}{\partial y^2} (s \chi) + \frac{\partial}{\partial y^2} (s \chi) + \frac{\partial}{\partial y^2} (s \chi) = 0.
\]

Introducing certain values \(s \chi \) \((59) \) instead of respective \(\frac{\lambda}{s} \chi \) in \((52) \), we generate solutions of type \((48) \) as functionals \(g = g \ [\text{Kerr} 4d, \ s \chi(\cdot, \cdot, y^{2s+2})] \). Such metrics in 10-d gravity define nonstationary generic off-diagonal deformations of Kerr BHs with nonlinear soliton interactions in the internal space.

4.3 Quasiperiodic configurations in 10-d heterotic supergravity

Recently, quasi-crystal like cosmological structures defined as exact solutions in modified and Einstein gravity, and/or with loop quantum corrections have been studied in Refs. \([46, 47]\). One of the main goals of this paper is to show that such quasiperiodic models can be elaborated for stationary and nonstationary off-diagonal deformations of BH solutions in string and modified gravity theories \([3, 37, 34, 32]\). In this section, we provide examples of BH deformations by quasi-crystal structures with possible three-wave interactions and extra dimensional temporal chaos in internal space of heterotic gravity. The analogs of solutions of PDEs considered for quasiperiodic structures in condensed matter physics \([45, 44]\) are derived for the system of motion equations \((11) - (14)\) in heterotic string gravity. We shall express the N-adapted coefficients in terms of \(\eta \)-functions as in \([54]\) which for \(\varepsilon \)-decompositions can be defined in terms of \(\chi \)-functions using \((55)\).

4.3.1 Quasi-crystal structures in the 4-d spacetime and higher dimension internal spaces

For the internal spaces, we consider analogous of 3-d phase field crystal models, PFC, which were elaborated for soft matter systems generated by modulations with two length scales \([45]\). The polarization generating functions are parameterized in a form \(\eta_{\alpha_s}(r, t, y^{2s}) \), or \(\eta_{\alpha_s}(\vartheta, t, y^{2s}) \), or \(\eta_{\alpha_s}(t, \varphi, y^{2s}) \), emphasizing different examples of possible anisotropies on radial, angular, time like and extra dimension coordinates. In explicit form, the constructions in this subsection will be performed by prescribing generating functions \(s \eta = \{ \eta_{\alpha_s}(t, \varphi, y^{2s+2}) \} \), for \(s = 1, 2, 3 \). Such values specify respective shells certain nonholonomic deformation of the metric and N-connection coefficients in a point \((\varphi, y^{2s+2})\) at time \(t \). This model possesses conserved dynamics described by respective nonlinear PDEs describing the evolution of nonholonomic deformations over diffusive time scales. In particular, we shall use a toy construction when our PFC includes all the resonant interactions for a correlated 4-d and internal space deformations of certain BH prime metrics, for simplicity, approximated by models with icosahedral symmetry. Such gravitational off-diagonal models with nontrivial vacuum extends previous works.
for soft matter systems \cite{45} to BH configurations with quasiperiodic internal space structure in certain sense completing the results on quasiperiodic cosmological models \cite{46, 47} with local anisotropy. This allows an independent control over the growth rates of gravitational string waves with two wavelengths. As a result, one proves that just as for 2-d quasi-crystals, the resonant interactions between the two wavelengths do stabilize 3-d quasiperiodic heterotic string structures.

The analogous PFC models are determined by shell labeled effective free energies,

\[
F[s_\eta] = \int \sqrt{|s_g|} dt \delta \varphi \delta y^{2s+2} \left[-\frac{1}{2} (s_\eta) \mathcal{L}(s_\eta) - \frac{Q}{3} (s_\eta)^3 + \frac{1}{4} (s_\eta)^4 \right],
\]

where the operator \(\mathcal{L} \) and parameter \(Q \) can be chosen in certain forms which stabilize the \(t \)-evolution to be compatible with possible experimental data for soft matter, or cosmology, see \cite{45, 46, 47}. Such values in heterotic string gravity can be chosen for certain limits of off-diagonal deformations of 4-d Kerr holes in order to be compatible with astrophysical/cosmological data. Above functionals result into a conserved dynamics with respective evolution equations on shells of internal space,

\[
\frac{\partial (s_\eta)}{\partial t} = (\hat{\nabla})^2 \left[\mathcal{L}(s_\eta) + Q(s_\eta)^2 - (s_\eta)^3 \right]
\]

where \(\hat{\nabla} \) is the canonical d-connection restricted on respective \(s \)-shell with spacelike signature (+ + + +) and the system is stabilized nonlinearly by the cubic term. The resonant term is set by the value \(Q \).

The PDEs (61) describe a quasicrystal like structure with stable evolution of BHs into extra-dimensional 10-d spacetime, which is determined by exact solutions of the motion equations in heterotic supergravity. Such quasiperiodic structures are characterized by an effective free energy functional (60) which can be related to geometric flows and Perelman’s functionals as in Refs. \cite{52, 40}.

Introducing the values \(s_\eta \) into (55) and (54) we construct 10-d exact solutions of type (48) describing 4-d Kerr BHs with extra dimensional evolving locally anisotropic hear and/or quasiperiodic like structure. Such solutions can be characterized both by Hawking-Bekenstein entropy values for BHs and by Perelman’s functionals for entropy.

4.3.2 Three-wave interactions and extra dimensional temporal chaos

We can consider another class of evolution PDEs generalizing (61) to

\[
\frac{\partial (s_\eta)}{\partial t} = \mathcal{L}(s_\eta) + Q_1(s_\eta)^2 + Q_2(s_\eta)(\hat{\nabla})^2(s_\eta) + Q_3|\hat{\nabla}(s_\eta)|^2 - (s_\eta)^3.
\]

Such models are studied in \cite{44} for respective values of the operator \(\mathcal{L} \) and constants \(Q_1, Q_2, Q_3 \). In heterotic string gravity, this evolution equation describes nonholonomic deformations of the BHs by three-wave interactions involving internal space coordinates. Such many pattern-forming gravitational systems encapsulate the basic properties of nonlinear interactions of 4-d Kerr parameters and internal space nonlinear interactions. We can consider configurations with two comparable length scales when two gravitational waves of the shorter wavelength nonlinearly interact with one wave of the longer. For a different set of parameters, two waves of the longer wavelength to interact with one wave of the shorter extra-dimensional gravitational waves. Such nonlinear three-wave interactions with respective parameters may result in the presence of complex patterns and/or spatiotemporal chaos, see similar constructions in \cite{31}.

4.4 Solitonic and/or quasiperiodic YM and almost-Kähler sectors

All solutions in heterotic supergravity theories defining BH, solitonic and quasi-periodic configurations, constructed in this section and partner works \cite{3, 37, 34, 32}, can be reformulated in nonholonomic variables distinguishing in explicit form almost-Kähler internal configurations and the YM sector. There are two approaches:
In the first case, we can take any solution \((48) \) defining nontrivial quasiperiodic deformations of BH solutions and perform respective frame transforms which allows us to distinguish respective almost-Kähler and/or YM variables. In the second case, we have to introduce some effective Lagrange functions in the internal spaces which generate respective quasiperiodic almost symplectic geometric structures and YM fields.

4.4.1 Quasiperiodic canonical connections, metrics, and almost symplectic configurations

Let us consider any d-metric \((48) \) for a Kerr deformed BH of type \(g = g[Kerr 4d, \frac{sl}{s} \chi (r, \vartheta, y^{2s+2})] \), with \(s \chi = \frac{sl}{s} \chi (r, \vartheta, y^{2s+2}) \) and being a solution of (58); or \(g = g[Kerr 4d, \frac{sw}{s} \chi] \), with any \(\frac{sw}{s} \chi \) subjected to respective evolution equations; \(g = g[Kerr 4d, \eta_{\alpha}] \) with \(\eta_{\alpha}(r, t, y^{\alpha}) \), or \(\eta_{\alpha}(t, \varphi, y^{\alpha}) \), emphasizing different examples of possible anisotropies on radial, angular, time like and extra dimension coordinates, and when \(s = \{ \eta_{\alpha}(t, \varphi, y^{2s+2}) \} \), for \(s = 1, 2, 3 \), are solutions of evolution equations of type (61), or (62). The corresponding component of the quadratic element for the internal space is determined by \(\tilde{\xi} = \tilde{\xi}_{\alpha} \) on \(\tilde{X} \) for any set of quasiperiodic generating functions

\[
\tilde{\eta} = \begin{cases}
\frac{sl}{s} \chi = 1 + \varepsilon \frac{sl}{s} \chi; \\
\frac{sw}{s} \chi = 1 + \varepsilon \frac{sw}{s} \chi; \\
\eta_{\alpha} = \{ \eta_{\alpha}(t, \varphi, y^{2s+2}) \}, \text{ for } s = 1, 2, 3.
\end{cases}
\]

(63)

In the following section, the symbols with "up arrow" will be used in order to emphasize that polarization functions of type (55) are determined for a set of data with quasiperiodic structure, when \(\tilde{g} \subset \tilde{g} \) (computed as in (48) for a respective \(\tilde{\eta} \)) is a solution of the motion equations in heterotic supergravity. One parameterizes

\[
ds^2[\tilde{\xi}] = \tilde{g}_{bc}(x^i, y^a, y^b)dy^bdy^c \text{ in off-diagonal coordinate form and/or (in N-adapted form)}
\]

\[
ds^2[\tilde{\xi}] = \tilde{g}_{a1}(0u, y^a) e^{a_1} + \tilde{g}_{a2}(u, y^a) (e^{a_2})^2 + \tilde{g}_{a3}(2u, y^a) (e^{a_3})^2.
\]

On \(\tilde{X} \), we can define a form \(3 + 3 \) splitting determined by N-adapted frame transforms with vielbein coefficients \(e^a \), of the dual basis \(e^a = (e^i, e^3) = e^\tilde{a}(x^\tilde{a})dy^\tilde{a} \), when for any data determining a quasiperiodic structure, the d-metric (61) is expressed in the form (10) with coefficients being functionals of a set of quasiperiodic generating functions of type (63)

\[
\tilde{\xi} = dy^\tilde{a} - N^a_{\tilde{b}}(0u, y^a, \tilde{y}^\tilde{a}) dy^\tilde{b},
\]

with quasiperiodic N–connection structure, \(\tilde{\xi} = \{ N^\tilde{b}_{\tilde{a}} \} \) determining a conventional splitting of coordinates \(y^i \) (for \(i = 5, 6, 7 \)) and \(y^\tilde{a} \) (for \(\tilde{a} = 8, 9, 10 \)), when \(0u = (x^i, y^a) \). Prescribing any generating function \(L[\tilde{\eta}] = \tilde{L}(x^i, y^a, y^3, y^\tilde{a}) \), we can define canonical effective Lagrange variables on \(\tilde{X} \). We can relate \(\tilde{L} \), for instance, to any effective Lagrange of soliton type, or free energy (60) for quasiperiodic structures. Using formulas (11), (12) and (13) with \(L \rightarrow \tilde{L} \), we enable the internal space with a 6-d canonical d-metric ("tilde" on symbols are changed into "→") in order to state that such physical and geometric objects are induced by quasiperiodic structures,

\[
\tilde{g} = g_{ij}[\tilde{\eta}(0u, y^i, y^\tilde{a})]dy^i \otimes dy^i + g_{ab}[\tilde{\eta}(0u, y^i, y^\tilde{a})]e^{a_1} \otimes e^{b_1},
\]

(65)

Any \(\tilde{X} \) can be enabled with canonical d-metric and N-connection quasiperiodic structures \(\tilde{g}, \tilde{N} \) and denoted \(\tilde{X} \).

We note that any d-metric \(\tilde{g} \) (52) generated by quasiperiodic generating functions \(\tilde{\eta} \) in any equivalent form (61), or (65), for instance, by data \(\{ g_{ij}[\tilde{\eta}], g_{ab}[\tilde{\eta}], N^a_{\tilde{b}}[\tilde{\eta}] \} \) computed with respect to a N-adapted
basis $e^a[\overrightarrow{\eta}] = (e^i = dy^i, e^h[\overrightarrow{\eta}])$ can be transformed into a d-metric $\hat{g}_{ab} = \hat{g}_{ij} \hat{g}_{\dot{a}\dot{b}} \tilde{N}^i \tilde{N}^j$ with coefficients defined with respect to a canonical N-adapted dual basis $\hat{e}^{\dot{a}} = (e^i = dy^i, \hat{e}^{\dot{a}})$. Such nonholonomic frame transforms are subjected to the conditions $\hat{g}_{ab}[\overrightarrow{\eta}] e^a \hat{e}^b = \hat{g}_{\dot{a}\dot{b}}$. Fixing any quasiperiodic data $\hat{g}_{\dot{a}\dot{b}}[\overrightarrow{\eta}]$ and $\hat{g}_{ab}[\overrightarrow{\eta}]$, we can find e^α as solutions of corresponding system of quadratic algebraic equations.

A quasi-periodic canonical N-connection structure \tilde{N} defines an almost complex structure as a linear operator $\tilde{\Theta}$ acting on vectors on $6\tilde{X}$ following formulas $\tilde{\Theta}(e^i) = -e_{\tau+i}$ and $\tilde{\Theta}(e^i) = e^i$, where $\tilde{\Theta} \circ \tilde{\Theta} = -1$, for I being the unity matrix, and construct a tensor field following formulas (13) with $\tilde{N}_i \rightarrow \tilde{N}_i^\dot{a}$. The operator $\tilde{\Theta}$ and the canonical d-metric $g = \hat{g}$ (60) allow to define $\tilde{\theta}(X, Y) = (\tilde{\Theta}X, Y)$, for any d-vectors $X, Y \in T^{6\tilde{X}}$. Considering a quasiperiodic form $\tilde{\theta} = 1/2 \partial \tilde{\theta} \wedge \partial \tilde{\theta}$ (see formulas (21) and (22), redefined for quasiperiodic configurations), we conclude that any data $(g = \hat{g}, \tilde{N}, \tilde{J})$ induces an almost-Kähler geometry characterized by a 2-form of type (21),

$$\theta = \tilde{\theta} = 1/2 \tilde{\theta}_{ij}(u) e^i \wedge e^j + 1/2 \tilde{\theta}_{\dot{a}\dot{b}}(u) \hat{e}^{\dot{a}} \wedge \hat{e}^{\dot{b}} = \tilde{\Theta}_{ij}(u) \left[dy^i + \tilde{N}^{k+i}(u) dy^k \right] \wedge dy^j. \quad (67)$$

Using \hat{g} (63) and $\tilde{\theta}$ (67), we can construct a quasiperiodic normal d-connection \tilde{D} of type (23). This induces a respective canonical almost symplectic d-connection, $\tilde{D} \equiv \theta \tilde{D}$, satisfying the compatibility conditions

$$\tilde{D}_X (\hat{g}) = \theta \tilde{D}_X \tilde{\theta} = 0,$$

for any $X \in T^{6\tilde{X}}$.

Any solution with quasiperiodic structure $[\tilde{\eta}]$ (63) for the internal space in heterotic supergravity can be parameterized in nonholonomic variables determined by a regular generating effective function \tilde{L}. Such a geometric model can be reformulated equivalently as an almost-Kähler manifold $6\tilde{X}$ which allows us to work equivalently with such quasiperiodic geometric data on any $6\tilde{X}$,

$$(\hat{g}[\overrightarrow{\eta}], 6\tilde{N}[\overrightarrow{\eta}], 6\tilde{D}[\overrightarrow{\eta}]) \iff (\tilde{g}, \tilde{N}, \tilde{J}, \tilde{L}) \iff (\tilde{\theta}, \tilde{J}, \theta \tilde{D}).$$

Such constructions generalize for quasiperiodic almost Kähler structures the results of [12]. We can prove this by introducing the complex imaginary unit $i^2 = -1$, with $\tilde{J} \approx i...$ and considering integrable nonholonomic distributions which state respective complex geometries and models of Kähler and complex manifolds.

4.4.2 Quasiperiodic N-adapted G2 and almost-Kähler structures in internal spaces

Let us consider a 3-form Θ defining an $SU(3)$ structure on the internal space $6\tilde{X}$ and related on the tangent space to the domain wall with a decomposition $\Theta = +\Theta - i - \Theta$ as in formula (13). Substituting the complex unity by \tilde{J} on $6\tilde{X}$ endowed with quasiperiodic structure, we can express

$$\tilde{\Theta} = \Theta_{abc} \hat{e}^{\dot{a}} \wedge \hat{e}^{\dot{b}} \wedge \hat{e}^{\dot{c}} = +\Theta + \tilde{J} - \Theta.$$

The contributions of quasiperiodic structures can be included also via Clifford structures with gamma matrices $\gamma_a[\overrightarrow{\eta}]$ on $6\tilde{X}$. Such geometric objects are determined by the relation $\gamma_{\dot{a}} \gamma_{\dot{b}} + \gamma_{\dot{b}} \gamma_{\dot{a}} = 2 \hat{g}_{\dot{a}\dot{b}}$, see (60) and appendix A.G.

Considering \tilde{J} instead of J, taken for an integrable $SU(3)$ structures and Kähler internal spaces, we can construct a similar 3-form $\tilde{\Theta}$ for any quasiperiodic almost-Kähler model $(\tilde{\theta}, \tilde{J}, \theta \tilde{D})$ and construct the Hodge star operator $\tilde{\star}$ corresponding to \hat{g}. Here we note the relation between 6-d $\tilde{\star}$ and 7-d $7\tilde{\star}$ Hodge stars which can be constructed similarly to ansatz (8), is

$$7\tilde{\star}(\hat{g}[\overrightarrow{\eta}]) = e^B(\hat{g}[\overrightarrow{\eta}]) \hat{e}^4 \wedge e^4 \wedge e^4 \wedge e^4 \wedge e^4 \wedge e^4 = e^{-B(\hat{g}[\overrightarrow{\eta}])} \tilde{\star}(\hat{g}[\overrightarrow{\eta}]).$$
The two exterior derivatives \(\nabla d \) and \(\nabla \) are related via \(\nabla d(\eta) = \nabla(\eta) + d\xi \wedge \frac{\partial}{\partial y}(\eta) \), where \(\eta \) is a p–form with legs only in the directions on \(X^6 \).

On quasiperiodic internal spaces, these formulas allow us to decompose the 10-d 3-form \(\tilde{H} \) into three N-adapted parts,

\[
\tilde{H} = \ell vol[3 \tilde{g}] + 4 \tilde{H} + \tilde{H}_4 | \tilde{H},
\]

where \(\ell vol[3 \tilde{g}] = \frac{1}{2} \epsilon_{ijk} \sqrt{3 \tilde{g}} \eta \wedge \xi \wedge \xi \) and the set of polarization functions determining exact solutions in heterotic supergravity are encoded into

\[
\tilde{H} = \frac{1}{3!} \tilde{H}_{abc} \xi \wedge \xi \wedge \xi \quad \text{and} \quad \tilde{H}_4 = \frac{1}{2!} \tilde{H}_{abc} \xi \wedge \xi \wedge \xi.
\]

The operators \((\tilde{J}, \tilde{G}) \) provide examples of quasiperiodic structures derived as almost-Kähler geometries in section 2.3.4. For trivial holonomic smooth configurations with \(\tilde{J} \approx i \) and \(G_2 \) structure, we can reproduce the results for \(\tilde{G} \) internal spaces provided in [2, 11, 56, 57, 63]. In this section, quasiperiodic nonholonomic configurations are adapted to the data for \(g \), \((\omega, W) \) which can be related to the \(SU(3) \) almost-Kähler structure by expressions

\[
\omega = e^{B(2\tilde{g})} \xi \wedge \tilde{J} + \tilde{G}_+ \quad \text{and} \quad W = e^{B(2\tilde{g})} \xi \wedge \tilde{G}_+ + \frac{1}{2} \tilde{J} \wedge \tilde{J}.
\]

Modifications by quasiperiodic structures are computed following the procedure of changing geometric objects with "tilde" into geometric objects with "arrow" but with the same Lie algebra \(T \)-classification. This classification can be N-adapted if we use derivatives of the structure forms

\[
\tilde{d} \tilde{J} = -\frac{3}{2} \tilde{d}(\tilde{J}) = \frac{3}{2} \tilde{d}(\tilde{J}) = \frac{3}{2} \tilde{d}(\tilde{J}) = \frac{3}{2} \tilde{d}(\tilde{J}) = \frac{3}{2} \tilde{d}(\tilde{J} + \tilde{G}_+) \quad \text{and} \quad \tilde{d} \tilde{G} = \tilde{d}(\tilde{J}) = \tilde{d}(\tilde{J} + \tilde{G}_+).
\]

The vertical part for real quasiperiodic almost-Kähler structures, i.e. \(\tilde{H}(\tilde{J}, \tilde{G}) \), is computed as the imaginary part of respective forms if \((\tilde{J}, \tilde{G}) \rightarrow (J, G) \).

4.4.3 Quasiperiodic instantons nearly almost Kähler manifolds

We extend on almost-Kähler quasiperiodic internal spaces the instanton type connections \((\tilde{J}, \tilde{G}) \) for canonical N–adapted frames, when \(\tilde{T}_2 = \tilde{T}_3 = \tilde{T}_4 = \tilde{T}_5 = 0 \) and \(\tilde{T}_1 = + \tilde{T}_1 + \tilde{T}_5 - \tilde{T}_1 \). Let us consider geometric data \((\tilde{J}, \tilde{G}) \) and \((\tilde{J}, \tilde{G}, \theta \tilde{D}) \) for an ansatz \((\tilde{J}, \tilde{G}) \) generated by quasi-periodic structures with embedding into a 10-d ones of type \((\tilde{J}) \), with \(A = B = 0 \) (for simplicity). This way, we construct solutions on \(X^6 \) of the first two nonholonomic BPS equations in [2] and [3] defining quasiperiodic almost-Kähler configurations for

\[
\tilde{H} = \ell vol[3 \tilde{g}] - \frac{1}{2} \partial_4 \phi + \left(\frac{3}{2} - \tilde{T}_1 + \frac{7}{8} \right) + dy^4 \wedge (2 - \tilde{T}_1 + \ell) \tilde{J} \quad \text{for} \quad \tilde{G} = \phi(y^4).
\]

The data \((\tilde{J}, \tilde{G}) \) are subjected to respective quasiperiodic flow and structure equations (encoding \((\tilde{J}, \tilde{G}) \) and possible nonholonomic deformations with generalized evolution equations):

\[
\partial_4 \tilde{J} = \left(+ \tilde{T}_1 + \partial_4 \phi \right) \tilde{J},
\]

\[
\partial_4 \tilde{G} = -3 \left(\tilde{T}_1 + \frac{15}{8} \ell \right) \tilde{G} + \frac{3}{2} \left(+ \tilde{T}_1 + \partial_4 \phi \right) \tilde{G},
\]

\[
\partial_4 \tilde{G} = \frac{3}{2} \left(+ \tilde{T}_1 + \partial_4 \phi \right) \tilde{G} + \tilde{G} - \tilde{G}, \quad \text{for arbitrary function} \ \tilde{G}(\tilde{J}^4);
\]

\[
\tilde{d} \tilde{J} = -\frac{3}{2} \tilde{T}_1 \tilde{G} + \frac{3}{2} \tilde{T}_1 \tilde{G} \quad \text{and} \quad \tilde{d} \tilde{G} = \tilde{T}_1 \tilde{J} \wedge \tilde{J}.
\]

Similarly to [1], there are two cases corresponding to a nearly almost-Kähler quasiperiodic geometric (i.e. with nonholonomically induced torsion by off–diagonal N–terms and vanishing NS 3-form flux) and a nonholonomic generalized Calabi-Yau with flux of quasiperiodic structures.
4.4.4 YM and instanton configurations induced by quasiperiodic structures

Nonholonomic instanton equations with quasiperiodic structure can be formulated on \(7\mathbb{X} := \mathbb{R} \times 6\mathbb{X} \) by generalized 'h-cone' d-metrics of type

\[
\begin{align*}
\gamma g &= (e^4)^2 + [h(y^4)]^2 \gamma g[\gamma(y^\dot{c})] = (e^4)^2 + [h(y^4)]^2 6\gamma g_{\dot{a}\dot{b}}[\gamma(y^\dot{c})], \\
e^4 &= dy^4 + w_i(x^k, y^\dot{a}).
\end{align*}
\]

In this formula, \(6\gamma g_{\dot{a}\dot{b}} \) is taken for an exact solution in 10-d gravity, as we considered in section 4.1. In this subsection, we use the local frames adapted to the quasiperiodic structure as \(\gamma e^{\dot{a}'} = \{e^{\dot{b}'}, h \cdot \gamma e^{\dot{a}'}\} \in T^*(7\mathbb{X}) \), i.e. for an orthonormal N-adapted basis on \(\vec{a}', \vec{b}', ... = 4, 5, 6, 7, 8, 9, 10 \), with \(\gamma e^{\dot{a}'} = e^{\dot{i}'}_{\dot{a}'} \gamma e^{\dot{a}}_{\dot{b}} \), when \(6\gamma g_{\dot{a}\dot{b}} = \delta_{\dot{a}\dot{b}} e^{\dot{a}'}_{\dot{a}'} e^{\dot{b}'}_{\dot{b}'} \).

Considering almost-Kähler operators in standard form (instead of \((\vec{J}, \vec{\Theta}) \) but with respect to orthonormal frames), we construct

\[
\vec{J} := (\gamma e^5 \wedge \gamma e^6 + \gamma e^7 \wedge \gamma e^8 + \gamma e^9 \wedge \gamma e^{10}) \quad \text{and} \quad \vec{\Theta} := (\gamma e^3 + i \gamma e^6) \wedge (\gamma e^7 + i \gamma e^8) \wedge (\gamma e^9 + i \gamma e^{10}),
\]

where \(\iota^2 = -1 \) is used for \(SU(3) \). For such orthonormalized quasi-period N-adapted bases, we can verify that there are satisfied conditions which are similar to those for the nearly Kähler internal spaces, see Refs. [2, 56, 1]. There are reproduced nonholonomic variants of almost-Kähler manifold structure equations,

\[
d(\vec{\Theta}) = 2 \vec{J} \wedge \vec{J} \quad \text{and} \quad d \vec{J} = 3(\vec{\Theta}).
\]

Using formulas (39) and (40) in terms of "arrow" operators, we define on \(7\mathbb{X} \) two equivalent d-metrics, \(7\gamma g[\gamma] = e^{2/7} 7\gamma g[\gamma] \) and \(7\gamma g[\gamma] = d\tau^2 + 6\gamma g_{\dot{a}\dot{b}} \). The respective nonholonomic instanton equations with quasiperiodic structure are

\[
\gamma F = - (\gamma Q_{\tau}) \wedge \gamma F, \quad \text{for} \quad \gamma Q_{\tau} = d\tau \wedge \gamma \gamma + \frac{1}{2} \vec{J} \wedge \vec{J}, \quad \text{(69)}
\]

where \(\gamma Q_{\tau} \) is the Hodge star with respect to the cylinder metric \(7\gamma g[\gamma] \). We encode the quasiperiodic almost-Kähler structure of \(7\mathbb{X} \) into boldface arrow operators \(\gamma Q_{\tau}, \vec{J} \) and \(\gamma \gamma \) and consider the normal (quasiperiodic almost symplectic) d-connection \(\vec{D}_\dot{a} = (\vec{D}_{\dot{k}}, \vec{D}_{\dot{b}}) = \{\gamma e^{\dot{b}'}_{\dot{a}'}\} \), computed for formulas similar to (21) but with arrow values.

In terms of arrow-operators, we construct the canonical values \(\gamma \vec{D} = \gamma \vec{D} + \psi(\tau) \cdot e^{\dot{a}'} I_{\dot{a}'} \), where the canonical d-connection on \(6\mathbb{X} \) is \(\gamma \vec{D} = \{\gamma \vec{D} + \psi(\tau) \cdot e^{\dot{a}'} I_{\dot{a}'}\} \). The the curvature d-form induced by quasiperiodic structures is computed

\[
A \gamma F = \frac{1}{2} [A \gamma D, A \gamma D] := \gamma F(\psi)
\]

\[
= \gamma \vec{R} + \frac{1}{2} \psi^2 \gamma f_{\dot{a}\dot{b}}^\psi I_{\dot{b}'} \cdot e^{\dot{a}'} \wedge e^{\dot{b}'} + \frac{\partial \psi}{\partial \tau} d\tau \wedge I_{\dot{a}'} \cdot e^{\dot{a}'} + \frac{1}{2}(\psi - \tau) \cdot I_{\dot{b}'} \cdot e^{\dot{b}'} \wedge e^{\dot{a}'} \wedge e^{\dot{a}'} + \frac{1}{2}(\psi - \tau)^2 I_{\dot{b}'} \cdot \gamma e^{\dot{b}'} \wedge e^{\dot{a}'} \wedge e^{\dot{a}'}
\]

with a similar parametric dependence on \(\tau \) via \(\psi(\tau) \). For instance, \(A \gamma F \) is a quasiperiodic solution of the nonholonomic instanton equations (69) if \(\psi \) is a solution of the 'kink equation' \(\frac{\partial \psi}{\partial \tau} = 2\psi(\psi - 1) \).

In heterotic supergravity, it is possible to derive two classes of quasiperiodic instanton configurations. In the first case, one considers gauge-like curvatures of type \(A \gamma F = \gamma F(\tau) \) and \(\gamma \vec{R} [\gamma] = \gamma \mathcal{R} (2\psi) \). In the second case, we have to solve also the equations \(\gamma \vec{R} [\gamma] \cdot e = 0 \).
5 Summary of Results and Conclusions

In this work, we have studied how to generalize certain classes of 'prime' solutions in heterotic string gravity constructed in [1, 2] for arbitrary 'target' ten dimensional, 10-d, spaces with metrics depending on all 4-d spacetime and 6-d internal space coordinates. The structure and classification of prime configurations [with pseudo-Euclidean (1+3)-dimensional domain walls and 6-d warped nearly Kähler manifolds in the presence of gravitational and gauge instantons] can be preserved for nontrivial curved 4-d spacetime configurations. For instance, we can generate black hole/ellipsoid configurations if certain types of nonholonomic variables with conventional 2+2+...=10 splitting are defined and respective almost-Kähler internal configurations are associated for 2+2+2=3+3 double fibrations. The diadic "shell by shell" nonholonomic decomposition of 4-d, 6-d and 10-d pseudo-Riemannian manifolds allows us to integrate the motion equations (41)–(44) in very general forms using the AFDM, see further developments of this paper in [3]. The 3+3 decomposition is used for constructing nonholonomic deformed instanton configurations which are necessary for solving the Yang-Mills sector and the generalized Bianchi identity at order \(\alpha' \), when certain generalized classes of solutions may contain internal configurations depending, in principle, on all 9 space-like coordinates for a 10-d effective gravity theory. The triadic formalism is also important for associating \(SU(3) \) structures in certain holonomic limits to well known solutions (with more "simple" domain wall and an internal structures) in heterotic string gravity.

The geometric techniques explained in this paper (which is a development for the heterotic string gravity results of a series of studies [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 9, 10, 40]) allows us to work with arbitrary stationary generic off-diagonal metrics on 10-d spacetimes. Effective MGTs spacetimes can be enabled with generalized connections, depending on all possible 4-d and extra dimension space coordinates. One of the main results of the presented work is that the system (43)–(44) admits subclasses of solutions with warping on coordinate \(y^4 \) nearly almost-Kähler 6-d internal manifolds in the presence of nonholonomically deformed gravitational and gauge instantons. The almost-Kähler structure is necessary if we want to generate in the 4-d spacetime part, for instance, the Kerr metric with possible (off-) diagonal and nonholonomic deformations to black ellipsoid type configurations characterized by locally anisotropic polarized physical constants, small deformations of horizons, embedding into nontrivial extra dimension vacuum gravitational fields and/or gauge configurations [which are considered in detail in [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 3]]. In this work, we concentrate on 10-d configurations preserving two real supercharges corresponding to \(\mathcal{N} = 1/2 \) supersymmetry from the viewpoint of four non-compact dimensions and various nonholonomic deformations.

Following methods of the geometry of nonholonomic manifolds and almost-Kähler spaces, applied for deformation and/or A-brane quantization, and geometric flows of gravity theories [9, 10, 40], we defined two pairs of related \((\mathcal{J}, \mathcal{\Theta})\) and \((\tilde{\mathcal{J}}, \tilde{\mathcal{\Theta}})\) structures depending both on warping and other space coordinates. Such constructions encode possible almost symplectic configurations determined by the 6-d internal sector of heterotic gravity and BPS equations re-written in nonholonomic variables. This involves and mixes certain gauge like, i.e. a NS 3-form for flux, gravitational solitons, and effective scalar fields. For additional constraints, such stationary configurations transform into static \(SU(3) \) structures as in [11, 2]. This assumption is crucial for classifying new types of nonholonomically deformed solutions following the same principles, as it was done originally for Kähler internal spaces and standard instanton constructions.

Let us outline the most important results obtained in this paper which provide significant contributions in heterotic supergravity and string theories and for development of new geometric methods for constructing exact solutions in (super) string and gravity modified theories:

1. We developed a nonholonomic geometric approach to heterotic supergravity using the formalism of non-linear connections on (super) manifolds with fibred structure and bundle superspaces. This allows us to define almost symplectic structures canonically induced by effective Lagrange distributions and construct real solutions with generalized connections for BPS equations. We have defined nonholonomic domain-wall backgrounds and \(\mathcal{N} \)-adapted \(G_2 \) structures on almost Kähler internal spaces and constructed various classes of nonholonomic instanton solutions.
We found new classes of exact solutions for the N-adapted YM and instanton configurations, and for static/ dynamic $SU(3)$ nonholonomic structures on almost Kähler configurations.

A fundamental result is that the equations of motion in heterotic supergravity (formulated in terms of a well-defined class of nonholonomic variables and auxiliary connections) can be decoupled in general forms. This allows us to construct exact solutions in 4-d and 10-d gravity parameterized by generic off-diagonal metrics and generalized connections depending, in general, on all spacetime and internal space coordinates via respective classes of generating and integration functions, effective matter sources, integration constants, and prescribed symmetries. Detailed proofs and applications of such geometric methods have been presented in a series of recent papers [37, 38, 49, 66, 29] and in the partner work [3]. Those results are completed with examples of nine new classes of solutions studied in section 4 of this paper.

Section 4 is devoted to string deformations of Kerr metrics determined by solitonic, quasiperiodic and/or pattern-forming structures and generic off-diagonal terms of 4-d spacetime metrics and 6-d internal spaces. Such new classes, exact and parametric solutions provide very important contributions to modern cosmology, astrophysics and modified gravity (see also recent results obtained by applying similar geometric methods in Refs. [25, 26, 27, 28, 46, 47]) and concern such fundamental issues:

(a) String solitonic interactions result in effective anisotropic polarizations of the mass of 4-d Kerr black holes. Such physical effects can be determined by generic off-diagonal terms of metrics in an effective 4-d gravity (encoding string contributions) and nonholonomic deformations determined by stationary solitonic distributions and/or solitonic waves in extra-dimensional shells on the internal space.

(b) Prescribing certain classes of generating functions and effective sources, we can generate off-diagonal deformations of black hole solutions resulting in quasiperiodic configurations in 10-d supergravity. Such quasicrystal like and/or pattern-forming structures are characterized by respective free-energy and evolution type equations of astrophysical (and cosmological [64, 65, 60, 62]) objects. Such free energy type values are similar to Lyapunov type functionals and entropy functionals considered by G. Perelman in his, and R. Hamilton, approach to Ricci flow theory. The possibility to construct exact solutions in heterotic supergravity with nonlinear evolution on mixed 4-d spacetime and internal spaces variables presents a new fundamental result for the theory of (super) geometric flows and applications in modern physics and geometric mechanics.

(c) A series of new geometric and physically important solutions consists of 10-d, 7-d, and 6-d metrics encoding almost symplectic models with quasiperiodic canonical connections; N-adapted G_2 and/or almost complex structures; YM and instanton configurations induced by quasiperiodic structures.

Finally, we note that a series of recent works [37, 38, 61, 65, 40, 52] prove that the AFDM allows us to construct various classes of physically important solutions of the motion equations (11)-(12) (like black holes, cosmological metrics, wormholes etc.) in the 4-d sector, using nonholonomic solutions of (13)-(14). In the associated paper [3], the motion equations in heterotic string gravity resulting in stationary metrics, in particular, in generic off-diagonal deformations of the Kerr solution to certain ellipsoid like configurations are solved by integrating modified Einstein equations in very general off-diagonal forms. Further developments in string MGTs with cosmological solutions of type [11, 12, 15, 16, 19, 25, 26, 27, 28], with quasiperiodic and other type nonlinear structures are left for future work.

Acknowledgments: The SV research is for the QGR–Topanga with a former partial support by IDEI, PN-II-ID-PCE-2011-3-0256 and DAAD. This work contains also a summary of results presented in a talk for GR21 at NY.
A Nonholonomic Manifolds with $2+2+...$ Splitting

We summarize necessary results from the geometry of nonholonomic manifolds which will then be applied in the heterotic supergravity (modelled in the low-energy limit of heterotic string theory as a $\mathcal{N} = 1$ and 10-d supergravity coupled to super Yang-Mills theory). A geometric formalism with nonholonomic variables and conventional $2+2+...$ splitting defined in such forms, that allows a general decoupling of the motion equations will be elaborated upon, see our associated work [3]. Such a higher dimensional pseudo–Riemannian spacetime is modelled as a 10-d manifold \mathcal{M}, equipped with a Lorentzian metric \tilde{g} of signature $(+++---+++)$ with a time like third coordinate. In our approach, we use a unified system of notation for straightforward applications of geometric methods for constructing exact solutions developed in [34, 35, 38, 36, 37]. Such notation and nonholonomic variables are different from that usually used in string theory (see, for instance, [1]). The heterotic supergravity theory is defined by a couple (\mathcal{M}, \tilde{g}), an NS 3-form \tilde{H}, a dilaton field $\tilde{\phi}$ and a gauge connection $\tilde{\nabla}$, with gauge group $SO(32)$ or $E_8 \times E_8$.

A.1 N-adapted frames and coordinates

For spacetime geometric models on a 10-d pseudo-Riemannian spacetime \mathcal{M} with a time-like coordinate $u^3 = t$ and other coordinates being space-like, we consider conventional splitting of dimensions, dim $\mathcal{M} = 4 + 2s = 10$; $s = 0, 1, 2, 3$. The AFDM allows us to construct exact solutions with arbitrary signatures of metrics \tilde{g}, but our goal is to consider extra dimensional string gravity generalizations of the Einstein theory. In most general forms, this is possible if we use the formalism of nonlinear connection splitting for higher dimensional (super) spaces and strings which was elaborated originally in (super) Lagrange-Finsler theory [51, 53]. We shall not consider Finsler type (super) gravity models in this work, but follow a similar approach with nonholonomic distributions on (super) manifolds [37, 38, 34].

Let us establish conventions on (abstract) indices and coordinates $u^\alpha = (x^i, y^a)$ by labelling the oriented number of two dimensional, 2-d, "shells" added to a 4-d spacetime in GR. We consider local systems of 10-d coordinates:

\begin{equation}
\begin{aligned}
s &= 0 : u^{00} = (x^0, y^0) ;
 s &= 1 : u^{01} = (x^1, y^1) = (x^0, y^0, y^1); \\
 s &= 2 : u^{02} = (x^1 = u^{a1}, y^a) = (x^0, y^0, y^1, y^2); \\
 s &= 3 : u^{03} = (x^2 = u^{a2}, y^a) = (x^0, y^0, y^1, y^2, y^3),
\end{aligned}
\end{equation}

with values for indices: $i_0, j_0, ..., = 1, 2; a_0, b_0, ..., = 3, 4$, when $u^3 = y^3 = t$; $a_1, b_1, ... = 5, 6; a_2, b_2, ... = 7, 8$; $a_3, b_3, ... = 9, 10$; and, for instance, $i_1, j_1, ... = 1, 2, 3, 4; i_2, j_2, ... = 1, 2, 3, 4, 5, 6; i_3, j_3, ... = 1, 2, 3, 4, 5, 6, 7, 8$, or we shall write only i_0. In brief, we shall write $u^0 = (x^0, y^0)$; $u^1 = (x^1, y^1) = (x^0, y^0, y^1)$, $u^2 = (x^1, y^2) = (0, x^1, y^2); \quad u^3 = (x^2 = u^{a2}, y^a) = (0, x^2, y^a)$. In order to connect these notations to standard ones of supergravity theories (see [12][2][3]) We shall consider small Greek indices without subscripts, and respective coordinates x^μ, when indices $\alpha, \mu, ... = 0, 1, ..., 9$. The identification with shell coordinates is of type $x^0 = u^3 = t$ (for time-like coordinate) and (for space-like coordinates): $x^1 = u^1, x^2 = u^2, x^3 = u^3, x^4 = u^4, x^5 = u^5, x^6 = u^7, x^7 = u^8, x^8 = u^9, x^9 = u^{10}$.

Working with such a signature is convenient for deriving recurrent formulas for exact generic off-diagonal solutions in 4d to 10d spacetimes. By re-defining at the end of the frame/coordinat systems, we can consider "standard" coordinates and signatures of type $(+++---+++)$.

In modern gravity, the so-called ADM (Arnowit–Deser–Misner) formalism with $3+1$ splitting, or any $n+1$ splitting is used, see details in [63]. It is not possible to develop a technique for general decoupling of the gravitational field equations and generating off-diagonal solutions in such cases because the conventional one dimensional "fibers" result in certain degenerate systems of equations. To construct exact solutions in 4 to 10 dimensional theories, it is more convenient to work with non–integrable $2+2+...$ splitting, see details in [37, 33, 34]. Using shell coordinates, we are able to prove in a more "compact form" certain recurrent formulas for integrating systems of nonlinear PDEs and understand important nonlinear symmetries of higher dimension spacetimes in heterotic supergravity. Such constructions are hidden in certain general statements and sophisticated formulas if we work only with "standard" indices and coordinates of type x^μ, with $\mu = 0, 1, ..., 10$.

30
Local frames/bases, \(e_{\alpha s}\), on \(\mathcal{M}\) are written in the form
\[e_{\alpha s} = e_{\alpha s}^u \partial / \partial u^s, \]
where partial derivatives
\(\partial / \partial u^s\) define local coordinate bases and indices are underlined if it is necessary to emphasize that such values are defined with respect to a coordinate frame. In general, a frame \(e_{\alpha s}\) is nonholonomic (equivalently, anholonomic, or non-integrable), if it satisfies the anholonomy relations
\[e_{\alpha s} e_{\beta s} - e_{\beta s} e_{\alpha s} = W_{\alpha s \beta s \gamma s}. \]
In these formulas, the anholonomy coefficients \(W_{\alpha s \beta s \gamma s} = W_{\alpha s \beta s \gamma s}(u)\) vanish for holonomic/integrable configurations. The dual frames, \(e^{\alpha s}\), can be defined from the condition
\[e^{\alpha s} e_{\beta s} = \delta_{\alpha}^{\beta}. \]
In such conditions, the 'hook' operator \(\mathcal{H}\) corresponds to the inner derivative and \(\delta_{\alpha}^{\beta}\) is the Kronecker symbol.

By using nonholonomic (non-integrable) distributions, we can define \(2+2+\ldots\) spacetime splitting in adapted frame and coordinate forms. For our purpose, we shall work with certain distributions defining a nonlinear connection, structure via a Whitney sum
\[s\mathbb{N} : T\mathcal{M} = 0 h\mathcal{M} \oplus 0 v\mathcal{M} \oplus 1 v\mathcal{M} \oplus 2 v\mathcal{M} \oplus 3 v\mathcal{M}. \]
Such a sum states a conventional horizontal (h) and vertical (v) "shell by shell" splitting. We shall write boldface letters for spaces and geometric objects enabled/adapted to a nonlinear connection structure. In local form, the nonlinear connection coefficients, \(N_{is}^{\alpha s}\), are defined from a decomposition
\[s\mathbb{N} = N_{is}^{\alpha s} (\partial / \partial y^s). \]

A manifold \(\mathcal{M}\) enabled with a nonholonomic distribution (A.2) is called nonholonomic (one can also use the term N–anholonomic manifold). This definition comes form the fact that in linear form, the coefficients (A.3) determine a system of N–adapted local bases, with N-elongated partial derivatives, \(e_{\alpha s} = (e_{i s}, e_{a s})\), and cobases with N–adapted differentials, \(e^{\alpha s} = (e^{i s}, e^{a s})\). For \(s = 0\) (on a 4-d spacetime part)
\[
\begin{align*}
e_{i 0} & = \frac{\partial}{\partial x^{i 0}} - N_{i 0}^{a 0} \frac{\partial}{\partial y^{a 0}}, \\
e_{a 0} & = \frac{\partial}{\partial y^{a 0}}, \\
\end{align*}
\]
and \(e_{i s} = \frac{\partial}{\partial x^{i s}} - N_{is}^{a s} \frac{\partial}{\partial y^{a s}}, \quad e_{a s} = \frac{\partial}{\partial y^{a s}}, \quad e^{i s} = dx^{i s}, \quad e^{a s} = dy^{a s} + N_{is}^{a s} dx^{i s}\) for \(s = 1, 2, 3\).

The corresponding anholonomy relations with inter–shell non–integrable relations,
\[[e_{\alpha s}, e_{\beta s}] = e_{\alpha s} e_{\beta s} - e_{\beta s} e_{\alpha s} = W_{\alpha s \beta s \gamma s}. \]
are computed \(W_{isjs}^{b s} = \partial_{sjs} N_{is}^{b s}\) and \(W_{jsis}^{a s} = \Omega_{jsis}^{a s}\). In these formulas, the curvature of N–connection is defined as the Neijenhuis tensor, \(\Omega_{isjs}^{a s} := e_{js} \left(N_{is}^{a s} \right) - e_{is} \left(N_{js}^{a s} \right)\).

A.2 d–torsions and d–curvatures of d–connections

There is a subclass of linear connections on \(\mathcal{M}\), called distinguished connections, d–connections, which preserve the N–connection structure under parallelism (A.2). With left shell labels, we write
\[s\mathbb{D} = \{ D_{\alpha s} \} = (s^{-1} h\mathcal{D}; \; s v\mathcal{D}) \quad 0\mathbb{D} = (0 h\mathcal{D}; \; 0 v\mathcal{D}), \quad 1\mathbb{D} = (1 h\mathcal{D}; \; 1 v\mathcal{D}), \quad 2\mathbb{D} = (2 h\mathcal{D}; \; 2 v\mathcal{D}), \quad 3\mathbb{D} = (3 h\mathcal{D}; \; 3 v\mathcal{D}). \]
In N–adapted form, the coefficients of a d–connection \(s\mathbb{D} = \{ \Gamma_{\alpha s}^{\beta s} = (L_{\alpha s}^{\beta s \gamma s} ; C_{\alpha s}^{\beta s \gamma s}, C_{\beta s}^{\alpha s \gamma s}) \} \), for example:
\[
\begin{align*}
\Gamma_{\beta s}^{\alpha s} & = (L_{\beta s}^{\alpha s \gamma s} ; C_{\beta s}^{\alpha s \gamma s}, C_{\alpha s}^{\beta s \gamma s}), \\
\Gamma_{\alpha s}^{\gamma s} & = (L_{\alpha s}^{\beta s \gamma s} ; C_{\alpha s}^{\beta s \gamma s}, C_{\beta s}^{\alpha s \gamma s}), \\
\end{align*}
\]
\[s\]For spaces enabled with N–connection structure, terms are used like distinguished tensor, d–tensor; distinguished spinor, d–spinor; distinguished geometric object, d–object, if the coefficients of such geometric/physical values are determined in a N–adapted shell form, with respect to frames of type (A.3) and their symmetric, or skew symmetric tensor products.
can be computed in N–adapted form with respect to frames (A.4). We have to consider the equations $D_{\alpha e} e_{\beta s} = \Gamma_{\beta_s \gamma_s}^{\alpha_s} e_{\gamma_s}$ and covariant derivatives parameterized in the forms

$$D_{a_0} = (D_{i_0}; D_{a_0}), \quad D_{a_1} = (D_{i_1}; D_{a_1}), \quad D_{a_2} = (D_{a_1}; D_{a_2}), \quad D_{a_3} = (D_{a_2}; D_{a_3})$$

for $hD = (L_{jk}; L_{bk}), vD = (C\gamma_j^\beta; C\beta_j^\mu)$, $1hD = (L_{\beta_1\gamma_1}; L_{\beta_1}^{a_1}), vD = (C\beta_{\beta_1}^{\alpha_1}; C\alpha_{\beta_1}^{a_1})$, $2hD = (L_{\beta_1\gamma_1}, L_{\beta_2\gamma_2}), 2vD = (C\alpha_{\beta_1}^{a_1}C\alpha_{\beta_2}^{a_2}), 3hD = (L_{\beta_2\gamma_2}, L_{\beta_3\gamma_3}), 3vD = (C\beta_{\beta_2}^{c_2}C\beta_{\beta_3}^{c_3})$.

or, in general form, $s^hD = (L_{\beta_{s-1}\gamma_{s-1}}^{a_{s-1}}, L_{\beta_{s-1}}^{a_{s-1}})$, $s^vD = (C\alpha_{\beta_{s-1}}^{a_{s-1}}C\alpha_{\beta_{s-1}}^{a_{s-1}})$. Such coefficients can be computed with respect to mixed subsets of coordinates and/or N–adapted frames on different shells. It is always possible to consider such frame shells when all shell frames are N-adapted, $D_{\alpha s-1} = D_{\alpha s-1}$.

Using (A.6), we can develop an N–adapted covariant calculus on M and a corresponding differential form calculus with a differential connection 1–form $\Gamma_{\beta_s}^{\alpha_s} = \Gamma_{\beta_s}^{\alpha_s} e^\gamma_s$ with respect to skew symmetric tensor products of N–adapted frames (A.4). For instance, the torsion $T_{\alpha_s}^{\beta_s} = \{T_{\alpha_s}^{\beta_s} \gamma_s \}$ and curvature $R_{\alpha_s}^{\beta_s} = \{R_{\alpha_s}^{\beta_s} \gamma_s \delta_s \}$ d–tensors of $*D$ can be computed in explicit form following respective formulas,

$$T_{\alpha_s}^{\gamma_s} := sDe_{\alpha_s} = de_{\alpha_s} + \Gamma_{\beta_s}^{\alpha_s} e^\beta_s, \quad (A.7)$$

$$R_{\alpha_s}^{\beta_s} := sD\Gamma_{\alpha_s}^{\beta_s} = d\Gamma_{\alpha_s}^{\beta_s} - \Gamma_{\gamma_s}^{\alpha_s} \wedge \Gamma_{\gamma_s}^{\beta_s}, \quad (A.8)$$

see Refs. [31, 38, 41, 51, 53] for explicit calculation of coefficients $T_{\alpha_s}^{\beta_s} \gamma_s$ and $R_{\alpha_s}^{\beta_s} \gamma_s \delta_s$ in higher dimensions.

A.3 d–metrics and generic off–diagonal metrics

In coordinate form, a metric \tilde{g} on M is written

$$s^g = g_{\alpha_s \beta_s} e^{\alpha_s} \otimes e^{\beta_s} = g_{\underline{a} \underline{b}} du^{\underline{a}} \otimes du^{\underline{b}}, \quad (A.9)$$

for $s = 0, 1, 2, 3$ corresponding to a conventional $2 + 2 + \ldots$ splitting. Under general frame transforms, the coefficients of the metric transforms as $g_{\alpha_s \beta_s} = e_{\alpha_s}^{\underline{a}} e_{\beta_s}^{\underline{b}} g_{\underline{a} \underline{b}}$. Similar rules can be considered for all tensor objects which do not preserve a splitting of dimensions. The same metric can be parameterized as a distinguished metric (d–metric, in boldface form), $s^g = \{g_{\alpha_s \beta_s}\}$.

$$s^g = g_{i_s j_s} (s u) e^{i_s} \otimes e^{j_s} + g_{a_s b_s} (s u) e^{a_s} \otimes e^{b_s} = g_{ij} (x) e^i \otimes e^j + g_{ab} (u) e^a \otimes e^b + g_{a1 b1} (1 u) e^{a1} \otimes e^{b1} + \ldots + g_{a3 b3} (s u) e^{a3} \otimes e^{b3}. \quad (A.10)$$

Redefining (A.10) in coordinate frames, we find the relation between N–connection coefficients and off-diagonal metric terms in (A.9),

$$g_{\alpha \beta} (u) = \left[\begin{array}{cc} g_{ij} + h_{ab} N_i^a N_j^b & h_{ae} N_j^b \\ h_{be} N_i^a & h_{ab} \end{array} \right], \quad g_{a1 \beta} (1 u) = \left[\begin{array}{c} g_{a \beta} \\ h_{ae} N_i^a \\ h_{ab} \end{array} \right], \quad g_{a2 \beta} (2 u) = \left[\begin{array}{c} g_{a2 \beta} \\ h_{b2 \alpha} N_i^a \\ h_{a2 b2} \end{array} \right], \quad g_{a3 \beta} (3 u) = \left[\begin{array}{c} g_{a3 \beta} \\ h_{b3 \alpha} N_i^a \\ h_{a3 b3} \end{array} \right].$$

For extra dimensions with $r^a, s \geq 1$, such coefficients $g_{a_s \beta_s} (s u) = \left[\begin{array}{c} g_{i_s j_s} + h_{ab} N_i^a N_j^b \\ h_{ae} N_j^b \\ h_{ab} \end{array} \right]$ are similar to those introduced in the Kaluza–Klein theory (using cylindrical compactifications on extra dimension coordinates, $N_i^a (s u) \sim A_i^a (u) y^a$, where $A_i^a (u)$ are (non) Abelian gauge fields). In general, various parametrizations can be used for warped/trapped coordinates in extra dimension (super) gravity, string and brane gravity and modifications of GR, see examples in [31, 53, 24, 30, 29, 37, 38, 34, 35, 36, 25, 20, 27, 28].
A.4 The canonical d–connection

There are two very important linear connection structures determined by the same metric structure following geometric conditions:

\[
s^g \rightarrow \begin{cases} s\nabla : \quad s\nabla (s^g) = 0; \quad \xi \cdot \mathcal{T} = 0, \\ s\hat{\mathbf{D}} : \quad s\hat{\mathbf{D}} (s^g) = 0; \quad h\mathcal{T} = 0, \quad 1_v\mathcal{T} = 0, \quad s^v\mathcal{T} = 0, \quad 3^v\mathcal{T} = 0. \end{cases}
\]

the Levi–Civita connection; the canonical d–connection. (A.11)

Let us explain how the above connections are defined:

The LC–connection \(s\nabla = \{ \Gamma^a_{\beta\gamma} \} \) can be introduced without an N–connection structure but can always be canonically distorted to a necessary type of d–connection completely defined by \(s^g \) following certain geometric principles. In shell N–adapted frames, we can compute \(\mathcal{T}^{\alpha^s} = 0 \) using formulas (A.7) for \(s\hat{\mathbf{D}} \rightarrow s\nabla \).

To elaborate on a covariant differential calculus adapted to decomposition (A.2) with a d–connection completely determined by the d–metric and d–connection structure, we have to consider the canonical d–connection \(s\hat{\mathbf{D}} \) from (A.11). For this linear connection, the horizontal and vertical torsions are zero, i.e. \(h\mathcal{T} = \{ \hat{T}^i_{jk} \} = 0, \quad v\mathcal{T} = \{ \hat{T}^a_{bc} \} = 0, \quad 1_v\mathcal{T} = \{ \hat{T}^{a_1}_{b_1c_1} \} = 0, \ldots, \quad s^v\mathcal{T} = \{ \hat{T}^{a_3}_{b_3c_3} \} = 0. \) We can check using straightforward computations that such conditions are satisfied by \(s\hat{\mathbf{D}} = \{ \hat{\Gamma}^a_{\alpha^s\beta^s} \} \) with coefficients (A.6) computed with respect to N–adapted frames (A.4) following formulas

\[
\hat{L}^i_{jk}s = \frac{1}{2} g^{i r s} (e_k g_{jkr} + e_j g_{krs} - e_r g_{jk}s), \\
\hat{L}^a_{bs} = e_b (N^a_{ks} + \frac{1}{2} g^{ac} e_d (e_k g_{bs} - g_{ds} e_b), \\
\hat{C}^a_{cs} = \frac{1}{2} g^{ab} e_d (e_c g_{bs} + e_d g_{cs} - e_{ds} g_{bc}s). \quad (A.12)
\]

The canonical d–connection \(s\hat{\mathbf{D}} \) is characterized by nonholonomically induced torsion d–tensor (A.7) which is completely defined by \(s^g \) (A.10) for any chosen \(s\mathbf{N} = \{ N^a_{bs} \} \). The N–adapted coefficients can be computed if the coefficients (A.12) are introduced "shell by shell" into formulas

\[
\hat{T}^i_{jk}s = \hat{L}^i_{jk}s - \hat{L}^i_{kjs}, \quad \hat{T}^a_{bs} = \hat{C}^a_{cs} - \hat{C}^a_{bs}, \quad \hat{C}^a_{cs} = \frac{1}{2} g^{ab} e_d (e_c g_{bs} + e_d g_{cs} - e_{ds} g_{bc}s). \quad (A.13)
\]

The N–adapted formulas (A.12) and (A.13) show that any coefficient with such objects computed in 4-d can be similarly extended "shell by shell" by any value \(s = 1, 2 \) and 3, redefining the h- and v-indices correspondingly.

Any (pseudo) Riemannian geometry can be equivalently formulated on nonholonomic variables (\(s^g \) (A.10), \(s\mathbf{N}, \ s\hat{\mathbf{D}} \) or using the standard ones (\(s^g \) (A.9), \(s\nabla \)). This follows from the fact that both linear connections \(s\nabla \) and \(s\hat{\mathbf{D}} \) are defined by the same metric structure via a canonical distortion relation

\[
s\hat{\mathbf{D}} = s\nabla + s\hat{\mathbf{Z}}. \quad (A.14)
\]

The distorting tensor \(s\hat{\mathbf{Z}} = \{ \hat{Z}^{\alpha^a}_{\beta^a\gamma^a} \} \) can also be constructed from the same metric \(s^g \) (A.10). The values \(\hat{Z}^{\alpha^a}_{\beta^a\gamma^a} \) are algebraic combinations of \(\hat{T}^a_{\beta\alpha\gamma} \) and vanish for zero torsion. The linear connections \(s\nabla \) and \(s\hat{\mathbf{D}} \) are not tensor objects. It is possible to consider frame/coordinate transforms for certain parametrization \(s\mathbf{N} = \{ N^a_{bs} \} \) when the conditions \(\hat{\Gamma}^a_{\alpha^s\beta^s} = \hat{\Gamma}^a_{\beta^s\alpha^s} \) are satisfied with respect to some N–adapted frames. In general, \(s\nabla \neq s\hat{\mathbf{D}} \) and the corresponding curvature tensors \(\hat{R}^a_{\beta^s\gamma^s\delta^s} \) are not tensor objects. It is possible to consider frame/coordinate transforms for certain parametrization \(s\mathbf{N} = \{ N^a_{bs} \} \) when the conditions \(\hat{\Gamma}^a_{\alpha^s\beta^s} = \hat{\Gamma}^a_{\beta^s\alpha^s} \) are satisfied with respect to some N–adapted frames. In general, \(s\nabla \neq s\hat{\mathbf{D}} \) and the corresponding curvature tensors \(\hat{R}^a_{\beta^s\gamma^s\delta^s} \).

It should be noted that such a torsion is different from the torsions considered in Einstein-Cartan gauge type and string gravity theories with absolutely antisymmetric torsion. In those theories, the torsion fields are independent from the metric/vielbein one and may have proper sources. In our approach, the torsion \(s\hat{T} \) is completely determined by the d–metric and N–connection coefficients. There are unnecessary additional sources because such a d–torsion is determined by the nonholonomic structures. For certain additional assumptions, we can relate its coefficients, for instance, to a subclass of nontrivial coefficients of an absolute antisymmetric torsion in string gravity.
We note that we can always extract LC-configurations with zero torsion if we impose additionally for \((A.13) \) the conditions
\[
\mathbf{T}^{\alpha s}_{\alpha s} = 0,
\] \((A.15) \)
In general, \(W^{\gamma s}_{\alpha s} \) \((A.5) \) may be not zero. We write this in the form \(s\mathbf{D}_{T=0} \rightarrow s\nabla \). Such nonholonomic constraints may be stated in non-explicit forms and are not obligated to be described by limits of certain smooth functions.

A.5 The Riemann and Ricci d-tensors of the canonical d-connection

The N-adapted coefficients of curvature d-tensor \(\mathbf{R}^{\alpha s}_{\beta s} = \{ \mathbf{R}^{\alpha s}_{\beta s} g_{\gamma s} \} \) \((A.8) \) of the canonical d-connection \(s\mathbf{D} \) \((A.12) \) and \(s\mathbf{g} \) \((A.10) \) are given by formulas
\[
\begin{align*}
\tilde{R}^{is}_{hjs} &= e_k^{i} \tilde{R}^{is}_{hjs} - e_j^{i} \tilde{R}^{is}_{hks} + \tilde{L}^{ms}_{hjs} \tilde{L}^{is}_{mks} - \tilde{L}^{ms}_{hks} \tilde{L}^{is}_{mjs}, \\
\tilde{R}^{as}_{bjs} &= e_k^{a} \tilde{R}^{as}_{bjs} - e_j^{a} \tilde{R}^{as}_{bks} + \tilde{L}^{ca}_{bjs} \tilde{L}^{as}_{cks} - \tilde{L}^{ca}_{bks} \tilde{L}^{as}_{cjs}, \\
\tilde{P}^{is}_{jks} &= e_s^{i} \tilde{P}^{is}_{jks} - \tilde{D}^{k}_{s} \tilde{C}^{is}_{jks}, \\
\tilde{P}^{as}_{bks} &= e_s^{a} \tilde{P}^{as}_{bks} - \tilde{D}^{k}_{s} \tilde{C}^{as}_{bks}, \\
\tilde{\mathbf{S}}^{is}_{jbs} &= e_s^{i} \tilde{\mathbf{S}}^{is}_{jbs} - e_b^{i} \tilde{\mathbf{S}}^{is}_{jbs}, \\
\tilde{\mathbf{S}}^{as}_{bcs} &= e_s^{a} \tilde{\mathbf{S}}^{as}_{bcs} - e_c^{a} \tilde{\mathbf{S}}^{as}_{bcs},
\end{align*}
\] \((A.16) \)
computed respectively for all shells \(s = 0, 1, 2, 3 \).

The Ricci d-tensor \(\mathbf{Ric} = \{ \mathbf{R}_{\alpha s}^{\beta s} := \tilde{\mathbf{R}}^{\alpha s}_{\alpha s} \} \) of \(s\mathbf{D} \) is introduced via a respective contraction of coefficients of the curvature tensor \(\mathbf{R} \), when
\[
\mathbf{R}_{\alpha s}^{\beta s} = \{ \tilde{R}^{is}_{\alpha s} := \tilde{R}^{is}_{hjs}, \tilde{R}^{as}_{\beta s} := -\tilde{P}^{is}_{jks}, \tilde{R}^{as}_{bks} := \tilde{P}^{as}_{bks}, \tilde{R}^{as}_{bs} := \tilde{\mathbf{S}}^{as}_{bcs} \}. \] \((A.17) \)
By contracting the N-adapted coefficients of the Ricci d-tensor with the inverse d-metric (computed as the inverse matrix of \(s\mathbf{g} \)), we define and compute the scalar curvature of \(s\mathbf{D} \),
\[
\mathbf{R} := g^{ijs} \mathbf{R}_{ijs}^{as} + g^{asb} \mathbf{R}_{asb} = \mathbf{R} + \mathbf{S} + \mathbf{X} + 2\mathbf{X} + 3\mathbf{S}, \]
with respective h- and v-components of scalar curvature, \(\mathbf{R} = g^{ij} \mathbf{R}_{ij}, \mathbf{S} = g^{ab} \mathbf{S}_{ab}, 1\mathbf{S} = g^{a1b1} \mathbf{S}_{a1b1}, 2\mathbf{S} = g^{a2b2} \mathbf{S}_{a2b2}, 3\mathbf{S} = g^{a3b3} \mathbf{R}_{a3b3}. \)

A.6 Conventions for 10-d nonholonomic manifolds, d-tensor and d-spinor indices

In heterotic superstring theory, one considers domain walls for nonholonomic splitting transform, in general, in nonholonomic domains. In the framework of conventions for indices and coordinates on shells \(\{ \mathbf{A.1} \} \), we consider additional parameterizations
\[
\begin{align*}
\mu, \alpha, ... &= 1, 2, ..10, \text{ on a 10-d nonholonomic manifold with shell coordinates } u^{\mu} = (x^{i}, y^{a}, y^{a'}, y^{a''}, t) \text{ on } \mathcal{M}; \\
\bar{\mu}, \bar{\alpha}, ... &= 1, 2, ..10, \text{ equivalently, with general indices and coordinates } u^{a} \text{ on } \mathcal{M}; \\
\tilde{i}, \tilde{j}, ... &= 1, 2, 3, \text{ for a 3-d pseudo-Euclidean signature } (+ + -) \text{ and coordinates } u^{i} = x^{i} = (x^{1}, y^{3}, t) = (x^{1}, x^{2}, t); \\
\tilde{a}, \tilde{b}, ... &= 5, 6, 7, 8, 9, 10, \text{ with } u^{a} = y^{a} \text{ on N-anholonomic } 6\mathbf{X} \text{ with Euclidian signature; } \\
\bar{a}, \bar{b}, ... &= 4, 5, 6, 7, 8, 9, 10, \text{ with } u^{a} = y^{a} \text{ on N-anholonomic } 5\mathbf{X} \text{ with Euclidian signature; }
\end{align*}
\]
We shall underline such indices in order to emphasize that we work in a coordinate base \(\partial_{\tilde{a}} \): For instance, \(A^{\tilde{a}} e_{\tilde{a}} = A^{\tilde{a}} \partial_{\tilde{a}} \) if we consider decompositions of a d-vector.
Anti–symmetrization is performed with a factorial factor, for instance, \(A_{[\hat{\mu}\hat{\nu}\ldots\hat{\rho}} B_{\hat{\alpha}\ldots\hat{\beta}]} := \frac{1}{2}(A_{\hat{\mu}} B_{\hat{\alpha}} - B_{\hat{\alpha}} A_{\hat{\mu}}) \). A p–form \(\omega \) is expressed as
\[
\omega = \frac{1}{p!} \omega_{\hat{\mu}_1\ldots\hat{\mu}_p} e^{\hat{\mu}_1} \wedge \ldots \wedge e^{\hat{\mu}_p}, \text{see (A.3)}.
\]
The Clifford action of such a form on a spinor \(\epsilon \) can be defined in N–adapted form as
\[
\omega \cdot \epsilon := \frac{1}{p!} \omega_{\hat{\mu}_1\ldots\hat{\mu}_p} \gamma^{\hat{\mu}_1\ldots\hat{\mu}_p} \epsilon,
\]
for \(\gamma^{\hat{\mu}_1\ldots\hat{\mu}_p} := \gamma_{[\hat{\mu}_1\ldots\hat{\mu}_p]} \) if the Clifford d–algebra is introduced following convention
\[
\{\gamma^{\hat{\mu}}, \gamma^{\hat{\nu}}\} := \gamma^{\hat{\mu}\gamma^{\hat{\nu}} + \gamma^{\hat{\nu}\gamma^{\hat{\mu}}} = 2g^{\hat{\mu}\hat{\nu}}}
\]
for 10-d gamma matrices \(\gamma^{\hat{\mu}} \) with \(g^{\hat{\mu}\hat{\nu}} = \{g^{\mu\nu}\}_{s} \) admitting a shell decomposition (A.10). A theory of N–adapted spinors and Dirac operators is elaborated upon [51, 54, 55, 52], see also references therein. We omit such considerations in this work.

It is proven in [2] that at first order in \(\alpha' \), the BPS equations are solved by
\[
A \ddot{\nabla} = c^\nabla, \ddot{H} = 0, \ddot{\phi} = const,
\]
where \(c^\nabla \) is the LC–connection on \(\hat{c}(\hat{6} X) \). A series of less trivial solutions with \(\ddot{H} \neq 0 \) have been studied in [2, 67, 68, 56, 57, 1] under assumptions that the gauge field is chosen to be an instanton and within the framework of dynamic \(SU(3) \) structures. In this work, we shall extend those results in string theory by proving that the equations of motion of heterotic string supergravity can be decoupled and solved in very general off–diagonal forms with dependence, in principle, of all 10-d spacetime coordinates (using the AFDM for higher dimensions [37, 38, 34]). In order to preserve certain relations to former "holonomic" solutions, we shall work with N–anholonomic manifolds \(M \) and \(\hat{6} X \) determined by d–metric (A.10). We shall prove that for any solution of certain generalized/modified 10-d Einstein equations for \(\hat{D}_{\hat{T}} = 0 \rightarrow ^s\nabla \) and additional extensions with gauge and scalar fields, the submanifold \(\hat{6} X \) can be endowed with almost-Kähler variables [9, 50, 40]. As a result, the curvature \(\tilde{R} \) of d–connection \(\tilde{D} \) can be determined for arbitrary solutions of the equations of motion of heterotic supergravity with generic off–diagonal interactions, nonholonomically deformed connections and various parameterizations of effective sources.

References

[1] A. S. Haupt, O. Lechtenfeld and E. T. Musaev, Order \(\alpha' \) heterotic domain walls with warped nearly Kähler geometry, JHEP 1411 (2014) 152
[2] D. Harland and C. Nölle, Instantons and Killing spinors, JHEP 1203 (2012) 082
[3] S. Vacaru and K. Irwin, Off–diagonal deformations of Kerr metrics and black ellipsoids in heterotic supergravity, Eur. Phys. J. C77 (2017) 17
[4] M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Repts. 423 (2006) 91-158
[5] B. Wecht, Lectures on nongeometric flux compactifications, Class. Quant. Grav. 24 (2007) S773-S794
[6] M. R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2009) 733-796
[7] R. Blumenhagen, B. Körs, D. Lüst, and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1-193
[8] H. Samtleben, Lectures on gauged supergravity and flux compactifications, Class. Quant. Grav. 25 (2008) 214002
[9] S. Vacaru, Einstein gravity as a nonholonomic almost Kaehler geometry, Lagrange-Finsler variables, and deformation quantization, J. Geom. Phys. 60 (2010) 1289-1305
[10] S. Vacaru, Branes and quantization for an A-model complexification of Einstein gravity in almost Kaehler variables, Int. J. Geom. Meth. Mod. Phys. 6 (2009) 873-909
[11] S. Ferrara, A. Kehagias and A. Riotto, The imaginary Starobinsky model, Fortsch. Phys. 62 (2014) 573

[12] C. Kounnas, D. Lüst and N. Toumbas, R^2 inflation from scale invariant supergravity and anomaly free superstrings with fluxes, Fortsch. Phys. 63 (2015) 12-35

[13] A. Kehagias, C. Kounnas, D. Lüst and A. Riotto, Black hole solutions in R^2 gravity, JHEP 5 (2015) 143

[14] S. Basilakos and P. C. Stavrinos, Cosmological equivalence between the Finsler–Randers spacetime in DGP gravity models, Phys. Rev. D 87 (2013) 043506

[15] S. Nojiri, S. D. Odintsov, V. K. Oikonomou and E. N. Saridakis, Singular cosmological evolution using canonical and ghost scalar fields, JCAP 1509 (2015) 044

[16] S. Basilakos, N. E. Mavromatos and J. Sola, Starobinsky-like inflation and running vacuum in the context of Supergravity, Universe 2 (2016) 14

[17] S. Basilakos, A. P. Kouretsis, E. N. Saridakis and P. Stavrinos, Resembling dark energy and modified gravity with Finsler-Randers cosmology, Phys. Rev. D 88 (2013) 123510

[18] N. E. Mavromatos, V. A. Mitsou, S. Sarkar and A. Vergou, Implications of a stochastic microscopic Finsler cosmology, Eur. Phys. J. C72 (2012) 1956

[19] S. Nojiri and S. D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, Int. J. Geom. Meth. Mod. Phys. 4 (2007) 115-146

[20] S. Capozziello and V. Faraoni, Beyond Einstein Gravity; A Survey of Gravitational Theories for Cosmology and Astrophysics, Fundamental Theories of Physics, vol. 170, (Springer Netherlands, 2011), 467 pp

[21] G. Gabadadze, General relativity with an auxiliary dimension, Phys. Lett. B 681 (2009) 89

[22] S. Hassan and R. A. Rosen, Resolving the ghost problem in non–linear massive gravity, Phys. Rev. Lett. 108 (2012) 041101

[23] S. Vacaru, Modified Dispersion Relations in Horava-Lifshitz Gravity and Finsler Brane Models, Gener. Relat. Grav. 44 (2012) 1015-1042

[24] S. Vacaru and D. Singleton, Singleton, Warped, anisotropic wormhole / soliton configurations in vacuum 5D gravity, Class. Quant. Grav. 19 (2002) 2793-2811

[25] S. Vacaru, Ghost-free massive f(R) theories modelled as effective Einstein spaces & cosmic acceleration, Eur. Phys. J. C 74 (2014) 3132

[26] S. Vacaru, Equivalent off-diagonal cosmological models and ekpyrotic scenarios in f(R)-modified massive and Einstein gravity, Eur. Phys. J. C 75 (2015) 176

[27] E. Elizalde and S. Vacaru, Effective Einstein cosmological spaces for non-minimal modified gravity, Gen. Relativity Grav. 47 (2015) 64

[28] S. Vacaru, Off-diagonal ekpyrotic scenarios and equivalence of modified, massive and/or Einstein gravity, Phys. Lett. B 752 (2016) 27-33

[29] S. Vacaru, Parametric nonholonomic frame transforms and exact solutions in gravity, Int. J. Geom. Meth. Mod. Phys. 4 (2007) 1285-1334

[30] S. Vacaru, Anholonomic soliton-dilaton and black hole solutions in general relativity, JHEP 04 (2001) 009
[31] S. Vacaru, Locally anisotropic kinetic processes and thermodynamics in curved spaces, Ann. Phys. (N.Y.) 290 (2001) 83-123
[32] S. Vacaru, Exact solutions with noncommutative symmetries in Einstein and gauge gravity, J. Math. Phys. 46 (2005) 042503
[33] S. Vacaru, On general solutions in Einstein gravity, Int. J. Geom. Meth. Mod. Phys. 8 (2011) 9–21
[34] S. Vacaru, On general solutions in Einstein and high dimensional gravity, Int. J. Theor. Phys. 49 (2010) 884-913
[35] S. Vacaru, Decoupling of field equations in Einstein and modified gravity, J. Phys.: Conf. Ser. 543 (2013) 012021
[36] S. Vacaru, E. Veliev, E. Yazici, A geometric method of constructing exact solutions in modified f(R,T) gravity with Yang-Mills and Higgs Interactions, IJGMMP 11 (2014) 1450088
[37] T. Gheorghiu, O. Vacaru, S. Vacaru, Off-diagonal deformations of Kerr black holes in Einstein and modified massive gravity and higher dimensions, EPJC 74 (2014) 3152
[38] T. Gheorghiu, O. Vacaru and S. Vacaru, Modified dynamical supergravity breaking and off-diagonal super-Higgs effects, Class. Quant. Grav. 32 (2015) 065004
[39] S. Vacaru, Finsler branes and quantum gravity phenomenology with Lorentz symmetry violations, Class. Quant. Grav. 28 (2011) 215991
[40] S. Vacaru, Almost Kaehler Ricci Flows and Einstein and Lagrange-Finsler Structures on Lie Algebroids, Medit. J. Math. 12 (2015) 1397-1427
[41] M. B. Green and J. H. Schwarz, Anomaly cancellation in supersymmetric $D = 10$ gauge theory and superstring theory, Phys. Lett. B 149 (1984) 117-122
[42] D. J. Gross, J. A. Harvey, E. J. Martinec and R. Rohm, Heterotic string theory. 1. The free heterotic string, Nucl. Phys. B 256 (1985) 253-284
[43] D. J. Gross, J. A. Harvey, E. J. Martinec and R. Rohm, Heterotic string theory. 2. The interacting heterotic string, Nucl. Phys. B 267 (1986) 75-124
[44] A. M. Rucklidge, M. Silber and A. C. Skeldon, Three-wave interactions and spatiotemporal chaos, Phys. Rev. Lett. 108 (2012) 074504
[45] P. Subramanian, A. J. Archer, E. Knobloch, and A. M. Rucklidge, Three-dimensional icosahedral phase field quasicrystal, Phys. Rev. Lett. 117 (2016) 075501
[46] R. Aschheim, L. Bubuianu, F. Fang, K. Irving, V. Ruchin and S. Vacaru, Starobinsky inflation and dark energy and dark matter effects for quasicrystal like spacetime structures, arXiv: 1611.04858
[47] M. M. Amaral, R. Aschheim, L. Bubuianu, K. Irwin, S. Vacaru and D. Wooldridge, Anamorphic quasiperiodic universes in modified and Einstein gravity with loop quantum gravity corrections, arXiv: 1611.05295
[48] A. Sen, Rotating charged black hole solution in heterotic string theory, Phys. Rev. Lett. 69 (1992) 1006-1009
[49] S. Vacaru, Hidden symmetries for ellipsoid-solitonic deformations of the Kerr-Sen black holes and quantum anomalies, EPJC 74 (2013) 2287

37
[50] S. Vacaru, The algebraic index theorem and Fedosov quantization of Lagrange-Finsler and Einstein spaces, J. Math. Phys. 54 (2013) 073511
[51] S. Vacaru, Superstrings in higher order extensions of Finsler superspaces, Nucl. Phys. B, 434 (1997) 590-656
[52] S. Vacaru, Spectral functionals, nonholonomic Dirac operators, and noncommutative Ricci flows, J. Math. Phys. 50 (2009) 073503
[53] S. Vacaru, Locally anisotropic gravity and strings, Ann. Phys. (NY), 256 (1997) 39-61
[54] S. Vacaru and F. C. Popa, Dirac spinor waves and solitons in anisotropic Taub-NUT spaces, Class. Quant. Gravity, 18 (2001) 4921-4938
[55] S. Vacaru and O. Tintareanu-Mircea, Anholonomic frames, generalized Killing equations, and anisotropic Taub NUT spinning spaces, Nucl. Phys. B626 (2002) 239-264
[56] J. Gray, M. Larfors and D. Lüst, Heterotic domain wall solutions and SU(3) structure manifolds, JHEP 1208 (2012) 099
[57] A. Lukas and C. Matti, G–structures and domain walls in heterotic theories, JHEP 1101 (2011) 151
[58] C. Hull, Anomalies, ambiguities and superstrings, Phys. Lett. B 167 (1986) 51-55
[59] S. Ivanov, Heterotic supersymmetry, anomaly cancellation and equations of motion, Phys. Lett 685 (2010) 190-196
[60] E. Bergshoeff and M. de Roo, The quartic effective action of the heterotic string and supersymmetry, Nucl. Phys. B 328 (1989) 439-468
[61] K. Becker and S. Sethi, Torsional heterotic geometries, Nucl. Phys. B 820 (2009) 1-31
[62] G. T. Horowitz and A. Strominger, Black strings and p–branes, Nucl. Phys. B 360 (1991) 197-209
[63] S. Chiossi and S. Salamon, The intrinsic torsion of SU(3) and G_2 structures, in: Differential Geometry, Valencia 2001 (World Sci. Publishing, 2002) pp 115-133; arXiv: math/0202282
[64] T. Gheorghiu, V. Ruchin, O. Vacaru and S. Vacaru, Geometric flows and Perelman’s thermodynamics for black ellipsoids in R^2 and Einstein gravity theories, Ann. Phys. NY, 369 (2016) 1-35
[65] S. Rajpoot and S. Vacaru, On supersymmetric geometric flows and R^2 inflation from scale invariant supergravity, arXiv: 1606.06884
[66] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation (Freeman, 1973)
[67] K.-P. Gemmer, A. S. Haupt, O. Lechtenfeld, C. Nölle and A. D. Popov, Heterotic string plus five-brane systems with asymptotic AdS_3, Adv. Theor. Math. Phys. 17 (2013) 771-827
[68] M. Klaupt, A. Lukas, C. Matti and E. E. Svanes, Moduli stabilising in heterotic nearly Kähler compactifications, JHEP 1301 (2013) 015