CONTINUOUS PROJECTIONS ONTO IDEAL CONVERGENT SEQUENCES

PAOLO LEONETTI

Abstract. Let \(I \subseteq \mathcal{P}(\omega) \) be a meager ideal. Then there are no continuous projections from \(\ell_\infty \) onto the set of bounded sequences which are \(I \)-convergent to 0. In particular, it follows that the set of bounded sequences statistically convergent to 0 is not isomorphic to \(\ell_\infty \).

1. Introduction

A closed subspace \(X \) of a Banach space \(B \) is said to be complemented in \(B \) if there exists a continuous projection from \(B \) onto \(X \). It is known that \(c_0 \), the space of real sequences convergent to 0, is not complemented in \(\ell_\infty \), cf. [10, 12].

The aim of this note is to show the ideal analogue of this result.

Let \(I \subseteq \mathcal{P}(\omega) \) be an ideal, that is, a family closed under subsets and finite unions. It is also assumed that \(\text{Fin} := \{\omega \}^{<\omega} \subseteq I \) and \(\omega \notin I \). Set \(I^+ := \mathcal{P}(\omega) \setminus I \).

In particular, each \(I \) can be regarded as a subset of the Cantor space \(2^\omega \) with the product topology, so we can speak of Borel ideals, \(F_\sigma \) ideals, etc. An ideal \(I \) is said to be a P-ideal if it is \(\sigma \)-directed modulo finite sets, i.e., for each sequence \((A_n) \) in \(I \) there exists \(A \in I \) such that \(A_n \setminus A \) is finite for all \(n \in \omega \). We refer to [7] for a recent survey on ideals and filters.

A real sequence \((x_n) \) is said to be \(I \)-convergent to \(y \) if \(\{n : x_n \notin U\} \in I \) for all neighborhoods \(U \) of \(y \). We denote by \(c(I) \) [resp. \(c_0(I) \)] the space of real sequences which are \(I \)-convergent [resp. \(I \)-convergent to 0]. The set of bounded real \(I \)-convergent sequences has been studied, e.g., in [2, 6, 8]. By an easy modification of [8, Theorem 2.3], \(c_0(I) \cap \ell_\infty \) is a closed linear subspace of \(\ell_\infty \) (with the sup norm).

The question addressed here, posed at the open problem session of the 45th Winter School in Abstract Analysis (Czech Republic, 2017), follows:

Question 1. Is \(c_0(I) \cap \ell_\infty \) complemented in \(\ell_\infty \)?

Before proving our main result, we recall the following:

2010 Mathematics Subject Classification. Primary: 40A35, 46B03. Secondary: 54A20, 46B26.

Key words and phrases. Meager ideal, \(I \)-maximal almost disjoint family, complementability, asymptotic density zero sets, \(I \)-convergent sequence.
Lemma 1.1. An infinite dimensional subspace X of ℓ_∞ is complemented in ℓ_∞ if and only if it is isomorphic to ℓ_∞.

Proof. See [1, Proposition 2.5.2 and Theorem 5.6.5].

Hence, Question 1 can be reformulated as:

Question 2. Is $c_0(\mathcal{I}) \cap \ell_\infty$ isomorphic to ℓ_∞?

We will prove that the answer is negative for a large class of ideals. To state our result, we recall that a family $\mathcal{A} \subseteq \mathcal{I}^+$ is said to be \mathcal{I}-maximal-almost-disjoint (in short, \mathcal{I}-mad) if \mathcal{A} is a maximal family (with respect to inclusion) such that $A \cap B \in \mathcal{I}$ for all distinct $A, B \in \mathcal{A}$, so that for each $X \in \mathcal{I}^+$ there exists $A \in \mathcal{A}$ such that $X \cap A \in \mathcal{I}^+$. (The minimal cardinality $a(\mathcal{I})$ of an \mathcal{I}-mad has been studied in the literature: e.g., it is known that, if \mathcal{I} is an analytic P-ideal, $a(\mathcal{I}) > \omega$ if and only if \mathcal{I} is F_σ, cf. [4, 5].)

Our main result follows:

Theorem 1.2. Let \mathcal{I} be an ideal for which there exists an uncountable \mathcal{I}-mad family. Then $c_0(\mathcal{I}) \cap \ell_\infty$ is not complemented in ℓ_∞.

It can be shown that, if \mathcal{I} is a meager ideal, there is an \mathcal{I}-mad family of cardinality c, see Lemma 2.3 below. In particular

Corollary 1.3. $c_0(\mathcal{I}) \cap \ell_\infty$ is not complemented in (and not isomorphic to) ℓ_∞ whenever \mathcal{I} is meager.

As an important example, the family of asymptotic density zero sets $\mathcal{Z} := \{S \subseteq \omega : |S \cap [1, n]|/n \to 0\}$ is an analytic P-ideal, hence meager. Therefore:

Corollary 1.4. The set of bounded real sequences statistically convergent to 0 (i.e., $c_0(\mathcal{Z})$) is not isomorphic to ℓ_∞.

Lastly, we obtain an analogue of the main result in [9] (for summability matrices):

Corollary 1.5. c is complemented in $c(\mathcal{I}) \cap \ell_\infty$ if and only if $\mathcal{I} = \operatorname{Fin}$.

It is worth noting that Theorem 1.2 cannot be extended to all ideals \mathcal{I}. Indeed, if \mathcal{I} is maximal, then the set of bounded \mathcal{I}-convergent sequences, which is isomorphic to $c_0(\mathcal{I}) \cap \ell_\infty$, is exactly ℓ_∞.

2. Preliminaries and Proofs

Thanks to Lemma 1.1, a negative question to Question 1 would follow if $c_0(\mathcal{I}) \cap \ell_\infty$ was separable (indeed ℓ_∞ is nonseparable, hence they cannot be isomorphic). However, this works only if $\mathcal{I} = \operatorname{Fin}$:

Lemma 2.1. $c_0(\mathcal{I})$ is separable if and only if $\mathcal{I} = \operatorname{Fin}$.
Proof. The if part is known. Conversely, let us suppose that there exists \(A \in \mathcal{I} \cap [\omega]^\omega \). For each \(X \subseteq \omega \) and \(\varepsilon > 0 \), let \(B(1_X, \varepsilon) \) be the open ball with center \(1_X \) and radius \(\varepsilon \). The collection \(\mathcal{B} := \{B(1_X, 1/2) : X \in [A]^\omega\} \) is an uncountable family of nonempty open sets which are pairwise disjoint, hence \(c_0(\mathcal{I}) \) is not separable.

At this point, recall the following characterization, see [11] and [3, Theorem 4.1.2]:

Lemma 2.2. \(\mathcal{I} \) is a meager ideal if and only if there exists a finite-to-one function \(f : \omega \to \omega \) such that \(f^{-1}(A) \in \mathcal{I} \) if and only if \(A \) is finite.

In other words, the second condition is \(\text{Fin} \leq_{\text{RB}} \mathcal{I} \), where \(\leq_{\text{RB}} \) is the Rudin–Blass ordering. This is sufficient to prove the existence of an uncountable \(\mathcal{I} \)-mad family:

Lemma 2.3. There exists an \(\mathcal{I} \)-mad family of cardinality \(\mathfrak{c} \), provided \(\mathcal{I} \) is meager.

Proof. It is known that there is a \(\text{Fin-mad family} \ \mathcal{A} \) of cardinality \(\mathfrak{c} \), cf. [12]. Then, thanks to Lemma 2.2, there exists a finite-to-one function \(f : \omega \to \omega \) such that \(f^{-1}(A) \in \mathcal{I} \) if and only if \(A \) is finite, hence \(\{f^{-1}(A) : A \in \mathcal{A}\} \) is the claimed \(\mathcal{I} \)-mad family. \(\square \)

Let us prove our main result:

Proof of Theorem 1.2. Let us suppose for the sake of contradiction that \(c_0(\mathcal{I}) \cap \ell_\infty \) is complemented in \(\ell_\infty \) and denote by
\[
\pi : \ell_\infty \to c_0(\mathcal{I}) \cap \ell_\infty
\]
the canonical projection. Define \(T := I - \pi \), hence \(T \) is bounded linear operator such that \(T(x) = 0 \) for each \(x \in c_0(\mathcal{I}) \cap \ell_\infty \). Note also that, if \(B \notin \mathcal{I} \), then \(1_B \) is a bounded sequence which is not \(\mathcal{I} \)-convergent to 0, hence \(\pi(1_B) \neq 1_B \) and \(T(1_B) \neq 0 \).

At this point, let \(\{A_j : j \in J\} \) be an uncountable \(\mathcal{I} \)-mad family, which exists by hypothesis. We are going to show that there exists \(j \in J \) such that \(T(1_{A_j}) = 0 \), which is impossible since \(A_j \in \mathcal{I}^+ \). Indeed, let us suppose that, for each \(j \in J \), there exists \(x_j = (x_{j,n}) \in \ell_\infty \) supported on \(A_j \) with \(T(x_j) \neq 0 \) and, without loss of generality, \(\|x_j\|_\infty = 1 \). It follows that there exists \(m, k \in \omega \) such that \(J := \{j \in J : |x_{j,m}| \geq 2^{-k}\} \) is uncountable. Also, by possibly replacing \(x_j \) with \(-x_j \), let us suppose without loss of generality that \(x_{j,m} > 0 \) for all \(j \in J \).

For each nonempty finite set \(F \subseteq J \), define \(s_F = (s_{F,n}) := \sum_{j \in F} x_j \). In particular,
\[
\|T(s_F)\|_\infty \geq s_{F,m} \geq |F|2^{-k}.
\] (1)
Note also that \(I := \bigcup(A_i \cap A_j) \), where the sum is extended over all distinct \(i, j \in F \), belongs to \(\mathcal{I} \). This implies that the sequence \(s_F \upharpoonright I \) is \(\mathcal{I} \)-convergent to 0,
hence \(T(s_F) = T(s_F \upharpoonright I^c) \). Therefore
\[
\|T(s_F)\|_{\infty} = \|T(s_F \upharpoonright I^c)\|_{\infty} \leq \|T\| \cdot \|s_F \upharpoonright I^c\|_{\infty} \leq \|T\|,
\]
which, together with (1), implies \(|F| \leq 2^k\|T\|\). This contradicts the fact the \(\tilde{J} \) is infinite. \(\square \)

Proof of Corollary 1.5. There is nothing to prove if \(\mathcal{I} = \text{Fin} \). Conversely, fix \(I \in \mathcal{I} \setminus \text{Fin} \) and define \(X := \{ x \in \ell_\infty : x_i \neq 0 \text{ only if } i \in I \} \) and \(Y := X \cap c_0 \). It is clear that
\[
c \subseteq Y \subseteq X \subseteq c(\mathcal{I}) \cap \ell_\infty
\]
and that \(X \) and \(Y \) are isometric to \(\ell_\infty \) and \(c_0 \), respectively. Hence, it is known that \(c \) can be projected continuously onto \(Y \), let us say through \(T \), see [10]. To conclude the proof, let us suppose that there exists a continuous projection \(H : c(\mathcal{I}) \cap \ell_\infty \to c \). Then the restriction \(T \circ H \upharpoonright X \) is a continuous projection \(\ell_\infty \to c_0 \). This contradicts Theorem 1.2 (in the case \(\mathcal{I} = \text{Fin} \)). \(\square \)

2.1. **Acknowledgments.** The author is grateful to Tommaso Russo (Università degli Studi di Milano, IT) for suggesting Question 1 and Lemma 1.1.

REFERENCES

1. F. Albiac and N. J. Kalton, *Topics in Banach space theory*, Graduate Texts in Mathematics, vol. 233, Springer, New York, 2006.
2. A. Bartoszewicz, S. Głąb, and A. Wachowicz, *Remarks on ideal boundedness, convergence and variation of sequences*, J. Math. Anal. Appl. **375** (2011), no. 2, 431–435.
3. T. Bartoszyński and H. Judah, *Set theory*, A K Peters, Ltd., Wellesley, MA, 1995, On the structure of the real line.
4. J. E. Baumgartner, *Iterated forcing*, Surveys in set theory, London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 1–59.
5. B. Farkas and L. Soukup, *More on cardinal invariants of analytic P-ideals*, Comment. Math. Univ. Carolin. **50** (2009), no. 2, 281–295.
6. R. Filipów and J. Tryba, *Ideal convergence versus matrix summability*, Studia Math., to appear.
7. M. Hrušák, *Combinatorics of filters and ideals*, Set theory and its applications, Contemp. Math., vol. 533, Amer. Math. Soc., Providence, RI, 2011, pp. 29–69.
8. P. Kostyrko, M. Mačaj, T. Šalát, and M. Sleziak, *\(\mathcal{J} \)-convergence and extremal \(\mathcal{J} \)-limit points*, Math. Slovaca **55** (2005), no. 4, 443–464.
9. J. Lindenstrauss, *Mathematical Notes: A Remark Concerning Projections in Summability Domains*, Amer. Math. Monthly **70** (1963), no. 9, 977–978.
10. A. Sobczyk, *Projection of the space \((m) \) on its subspace \((c_0) \)*, Bull. Amer. Math. Soc. **47** (1941), 938–947.
11. M. Talagrand, *Compacts de fonctions mesurables et filtres non mesurables*, Studia Math. **67** (1980), no. 1, 13–43.
12. R. Whitley, *Mathematical Notes: Projecting \(m \) onto \(c_0 \)*, Amer. Math. Monthly **73** (1966), no. 3, 285–286.
