A SIMPLE PROOF OF THE BORSUK-ULAM THEOREM FOR \(\mathbb{Z}_p \)-ACTIONS

MAHENDER SINGH

Abstract. In this note, we give a simple proof of the Borsuk-Ulam theorem for \(\mathbb{Z}_p \)-actions. We prove that, if \(S^n \) and \(S^m \) are equipped with free \(\mathbb{Z}_p \)-actions (\(p \) prime) and \(f : S^n \to S^m \) is a \(\mathbb{Z}_p \)-equivariant map, then \(n \leq m \).

Introduction

Let \(S^n \) be the unit \(n \)-sphere in \(\mathbb{R}^{n+1} \). There is a natural involution on \(S^n \), called the antipodal involution and given by \(x \mapsto -x \). The well known Borsuk-Ulam theorem states that: If there is a map \(f : S^n \to S^m \) taking a pair of antipodal points to a pair of antipodal points, then \(n \leq m \).

Over the years, there have been several generalizations of the theorem in many directions. We refer the reader to an interesting article \cite{steinlein} by Steinlein, which lists 457 publications concerned with various generalizations of the Borsuk-Ulam theorem. Also the recent book \cite{matousek} by Matoušek contains a detailed account of various generalizations and applications of the Borsuk-Ulam theorem. There are several proofs of this theorem in literature, in fact, most algebraic topology texts contains a proof.

The purpose of this note is to give a simple proof of a generalization of this theorem in the setting of group actions. Let \(G \) be a group acting on a space \(X \) with the action \(\times \) \(X \to X \) denoted by \((g,x) \mapsto gx \). There is associated with the group action, the orbit space \(X/G \), obtained by identifying all the points in the orbit of \(x \) (denoted by \(x \)) for each \(x \in X \). The orbit map \(X \to X/G \) is given by \(x \mapsto \overline{x} \).

If spaces \(X \) and \(Y \) carry \(G \)-actions, then a map \(f : X \to Y \) is called \(G \)-equivariant if \(f(gx) = g(f(x)) \) for all \(x \in X \) and \(g \in G \). An equivariant map \(f : X \to Y \) induces a map \(\overline{f} : X/G \to Y/G \) given by \(\overline{f}([x]) = \overline{f(x)} \). Recall that a \(G \)-action is said to be free if \(gx = x \) implies \(g = e \), the identity of \(G \).

In 1983, Liulevicius \cite{liulevicius} published the following generalization of the Borsuk-Ulam theorem:

If a map \(f : S^n \to S^m \) commutes with some free actions of a non-trivial compact Lie group \(G \) on the spheres \(S^n \) and \(S^m \), then \(n \leq m \).

An alternative, but relatively simple, proof of the later theorem was also given by Dold \cite{dold} in 1983. There are also some other generalizations of the result, see for example \cite{liulevicius}. In this note, we give a simple proof of the above result for free actions of the cyclic group \(\mathbb{Z}_p \) of prime order \(p \) involving only elementary algebraic topology. More precisely, we prove the following theorem.

2000 Mathematics Subject Classification. Primary 57S17; Secondary 55M35.

Key words and phrases. Cohomology ring, equivariant map, Hurewicz homomorphism, universal coefficient theorem.
Borsuk-Ulam Theorem. Let S^n and S^m be equipped with free \mathbb{Z}_p-actions. If there is a \mathbb{Z}_p-equivariant map $f : S^n \to S^m$, then $n \leq m$.

Before proceeding to prove the theorem, we recall the universal coefficient theorem for singular cohomology.

Universal Coefficient Theorem. [6, p.243] There is a natural short exact sequence

$$0 \to \text{Ext}(H_{k-1}(X;\mathbb{Z}),\mathbb{Z}_p) \to H^k(X;\mathbb{Z}_p) \to \text{Hom}(H_k(X;\mathbb{Z}),\mathbb{Z}_p) \to 0$$

for each $k \geq 0$.

Proof of the Borsuk-Ulam Theorem

Suppose that $n > m$. Let the \mathbb{Z}_p-actions on S^n and S^m be generated by T and S respectively. Note that the map $f : S^n \to S^m$ is \mathbb{Z}_p-equivariant if $f(T(x)) = S(f(x))$ for all $x \in X$. Let $q_1 : S^n \to S^n/T$ and $q_2 : S^m \to S^m/S$ be the orbit maps which are also p-sheeted covering projections. We claim that $f^* : \pi_1(S^n/T) \to \pi_1(S^m/S)$ is zero. This will give a lift \tilde{f} of f, that is, the following diagram commutes

$$\begin{array}{ccc}
S^n & \xrightarrow{f} & S^m \\
\downarrow{q_1} & & \downarrow{q_2} \\
S^n/T & \xrightarrow{T} & S^m/S.
\end{array}$$

Since, $\text{Ext}(H_0(S^n/T;\mathbb{Z}),\mathbb{Z}_p) = 0$, taking $k = 1$ in the universal coefficient theorem, we have $H^1(S^n/T;\mathbb{Z}_p) \cong \text{Hom}(H_1(S^n/T;\mathbb{Z}),\mathbb{Z}_p)$. The same holds for S^m/S also. By naturality of the universal coefficient formula, the map $T : S^n/T \to S^m/S$ gives the following commutative diagram

$$\begin{array}{ccc}
H^1(S^n/T;\mathbb{Z}_p) & \xrightarrow{\cong} & \text{Hom}(H_1(S^n/T;\mathbb{Z}),\mathbb{Z}_p) \\
\downarrow{T^*} & & \downarrow{\alpha \mapsto \alpha T_*} \\
H^1(S^m/T;\mathbb{Z}_p) & \xrightarrow{\cong} & \text{Hom}(H_1(S^m/T;\mathbb{Z}),\mathbb{Z}_p).
\end{array}$$

For p odd, both n and m are odd. It is known that for a free action of \mathbb{Z}_p on a sphere S^{2k-1}, there are integers n_1, \ldots, n_k such that S^{2k-1}/\mathbb{Z}_p is homotopy equivalent to the lens space $L^{2k-1}(p; n_1, \ldots, n_k)$. Thus both S^n/T and S^m/S are homotopy equivalent to lens spaces and have the following cohomology algebras [8, p. 251]

$$H^*(S^n/T;\mathbb{Z}_p) \cong \mathbb{Z}_p[s, t]/\langle s^2, t^{n+1} \rangle,$$

$$H^*(S^m/S;\mathbb{Z}_p) \cong \mathbb{Z}_p[s_1, t_1]/\langle s_1^2, t_1^{m+1} \rangle.$$
with \(t = \beta(s) \) and \(t_1 = \beta(s_1) \), where \(\beta \) is the mod-p Bockstein homomorphism. Naturality of the Bockstein homomorphism gives the commutative diagram

\[
\begin{array}{ccc}
H^1(S^n/S; \mathbb{Z}_p) & \xrightarrow{\beta} & H^2(S^n/S; \mathbb{Z}_p) \\
\downarrow \phi & & \downarrow \phi \\
H^1(S^n/T; \mathbb{Z}_p) & \xrightarrow{\beta} & H^2(S^n/T; \mathbb{Z}_p).
\end{array}
\]

If \(\phi \) is non zero, then \(\phi(s) = s \). From the diagram we have \(\phi(t_1) = t \). But \(0 = \phi(t_1) = \phi(t_1) \frac{m+1}{2} = t \frac{m+1}{2} \), a contradiction as \(n > m \). Hence \(\phi \) is zero in this case.

For \(p = 2 \), both \(S^n/T \) and \(S^m/S \) have the homotopy type of real projective spaces and hence have the cohomology algebras \([3, p. 250] \)

\[
\begin{align*}
H^*(S^n/T; \mathbb{Z}_2) &\cong \mathbb{Z}_2[s]/(s^{n+1}), \\
H^*(S^m/S; \mathbb{Z}_2) &\cong \mathbb{Z}_2[s_1]/(s_1^{m+1}),
\end{align*}
\]

where \(s \) and \(s_1 \) are homogeneous elements of degree one each.

If \(\phi \) is non zero, then \(\phi(s_1) = s_1 \). But \(0 = \phi(s_1) = \phi(s_1) \frac{m+1}{2} = s_1 \frac{m+1}{2} = 3m+1 \), a contradiction as \(n > m \). Hence, \(\phi \) must be zero and by the commutativity of the second diagram, the map \(\alpha \mapsto \alpha \phi \) is zero. From this we get \(\phi_s : H_1(S^n/T; \mathbb{Z}) \to H_1(S^m/S; \mathbb{Z}) \) is zero. Now by naturality of the Hurewicz homomorphism

\(h : \pi_1(S^n/T) \to H_1(S^n/T; \mathbb{Z}) \)

(which is an isomorphism in our case), we have the following commutative diagram

\[
\begin{array}{ccc}
\pi_1(S^n/T) & \xrightarrow{\pi_1} & \pi_1(S^m/S) \\
\downarrow h & & \downarrow h \\
H_1(S^n/T; \mathbb{Z}) & \xrightarrow{\phi} & H_1(S^m/S; \mathbb{Z}),
\end{array}
\]

which shows that \(\phi : \pi_1(S^n/T) \to \pi_1(S^m/S) \) is zero and hence the lift exists.

The commutativity of the first diagram shows that both \(f \) and \(\tilde{f}q_1 \) are lifts of \(f \).

Let \(x_0 \in S^n \), then by definition of \(q_2 \),

\[
q_2(f(x_0)) = q_2(Sf(x_0)) = q_2(S^2f(x_0)) = \ldots = q_2(S^{p-1}f(x_0)),
\]

that is, the fiber over \(q_2(f(x_0)) \) is the set

\[
\{ f(x_0), Sf(x_0), \ldots, S^{p-1}f(x_0) \}.
\]

Also \(q_2(\tilde{f}q_1(x_0)) = \tilde{f}q_1(x_0) = q_2f(x_0) \). Therefore, \(\tilde{f}q_1(x_0) = f(x_0) \) or \(\tilde{f}q_1(x_0) = S^if(x_0) \) for some \(1 \leq i \leq p-1 \). Note that in the later case we have \(\tilde{f}q_1(T^i(x_0)) = \tilde{f}q_1(x_0) = S^if(x_0) = fT^i(x_0) \). Hence in either case, the lifts \(f \) and \(\tilde{f}q_1 \) agree at a point and therefore by uniqueness of lifting, we have \(f = \tilde{f}q_1 \). Now for any \(x \in S^n \), \(q_1(x) = q_1T(x) \). But \(\tilde{f}q_1(x) = \tilde{f}q_1T(x) = fT(x) = Sf(x) \neq f(x) \), a contradiction. Hence \(n \leq m \).

Acknowledgement: The author thanks the referee for comments which improved the presentation of the note.
References

1. C. Biasi, D. de Mattos, *A Borsuk-Ulam Theorem for compact Lie group actions*, Bull. Braz. Math. Soc. 37 (2006), 127-137.

2. A. Dold, *Simple proofs of some Borsuk-Ulam results*, (Proceedings of the Northwestern Homotopy Theory Conference, Evanston, Ill., 1982), Contemp. Math. 19, Amer. Math. Soc., Providence, R. I., 1983, 65-69.

3. A. Hatcher, *Algebraic Topology*, Cambridge University Press, 2002.

4. A. Liulevicius, *Borsuk-Ulam theorems for spherical space forms*, (Proceedings of the Northwestern Homotopy Theory Conference, Evanston, Ill., 1982), Contemp. Math. 19, Amer. Math. Soc., Providence, R. I., 1983, 189-192.

5. J. Matoušek, *Using the Borsuk-Ulam theorem*, Lectures on Topological Methods in Combinatorics and Geometry, Springer, 2003.

6. E. H. Spanier, *Algebraic Topology*, Springer-Verlag, 1966.

7. H. Steinlein, *Borsuk’s antipodal theorem and its generalizations and applications: a survey*, Topological methods in nonlinear analysis, Sém. Math. Sup. 95, Presses Univ. Montréal, Montreal, QC, 1985, 166-235.

School of Mathematics, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019, INDIA.

E-mail address: mahen51@gmail.com