Enhancement of hot carrier effect and signatures of confinement in terms of thermalization power in quantum well solar cell

I Makhfudz1,∗, N Cavassilas1, M Giteau2,3, H Esmaeilpour1,4, D Suchet3,4, A-M Daré1 and F Michelini1

1 Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
2 Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
3 NextPV, LIA RCAST-CNRS, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
4 CNRS, Ecole Polytechnique-IP Paris, Institut Photovoltaique d’Ile de France (IPVF), UMR 9006, 18 Boulevard Thomas Gobert, 91120 Palaiseau, France

E-mail: imakhfudz@gmail.com

Received 1 July 2022, revised 19 August 2022
Accepted for publication 26 September 2022
Published 4 October 2022

Abstract

A theoretical model using electron–phonon scattering rate equations is developed for assessing carrier thermalization under steady-state conditions in two-dimensional systems. The model is applied to investigate the hot carrier effect in III–V hot-carrier solar cells with a quantum well absorber. The question underlying the proposed investigation is: what is the power required to maintain two populations of electron and hole carriers in a quasi-equilibrium state at fixed temperatures and quasi-Fermi level splitting? The obtained answer is that the thermalization power density is reduced in two-dimensional systems compared to their bulk counterpart, which demonstrates a confinement-induced enhancement of the hot carrier effect in quantum wells. This power overall increases with the well thickness, and it is moreover shown that the intra-subband contribution dominates at small thicknesses while the inter-subband contribution increases with thickness and dominates in the bulk limit. Finally, the effects of the thermodynamic state of phonons and screening are clarified. In particular, the two-dimensional thermalization power density exhibits a non-monotonic dependence on the thickness of the quantum well layer, when both out-of-equilibrium longitudinal optical phonons and screening effects are taken into account. Our theoretical and numerical results provide tracks to interpret intriguing experimental observations in quantum well physics. They will also offer guidelines to increase the yield of photovoltaic effect based on the hot carrier effect using quantum well heterostructures, a result critical to the research toward high-efficiency solar cell devices.

Supplementary material for this article is available online

Keywords: semiconductor physics, quantum well, quantum confinement, electron–phonon interaction

(Some figures may appear in colour only in the online journal)
1. Introduction

In the contemporary solar cell research progress, it has been suggested that if the charge carriers of the semiconductor constituting the solar cell can be maintained at high effective temperature, or eventually in an ‘hot’ a-thermal distribution, the yield of the solar cell can be improved [1]. Major efforts and proposals have thus been put forward in order to achieve hot carrier effect [2]. Hot carrier phenomenon has actually been known in semiconductor physics research since early in the 60’s [3]. Its relevance to solar cell study was shown by Ross and Nozik [4] who first demonstrated the hot carrier effect as a principle to beat the efficiency limit imposed by Shockley–Queisser theory [5].

A key mechanism for achieving hot carrier effect is impeding the carrier thermalization process, that is, preventing the charge carriers from cooling down via their interaction with phonons [6]. There are various ways in which this can happen which include reducing carrier-phonon coupling strength [7], reducing longitudinal optical (LO) phonon density [8], and reducing LO phonon decay to acoustic phonons [9]. Overall, electrons and holes under continuous illumination can reach a temperature higher than the one of lattice if the rate at which the power is dissipated via carrier-phonon scattering can be reduced.

One of the most promising tracks to promote a hot carrier effect is to confine electrons in a small region, which restricts their interaction with phonons and, hence, prevents electrons from thermalizing. This can be achieved by employing semiconductor heterostructures with reduced dimensionality (D), in which carriers experience confinement in one (2D), two (1D) or three (0D) directions [10], compared to the bulk case (3D). In such low dimensional systems, the band structure splits into subbands whose energy separation depends on semiconductor properties, as energy gap and effective mass in a simple empirical modeling. In optoelectronics and photovoltaics, quantum wells (2D) based on polar semiconductors of III–V family are widely used due to their good absorption properties. In these materials, the predominant electron thermalization channel is the scattering between electrons and LO phonons [7], while optical phonons may themselves decay into acoustic phonons [11]. While several experiments have indicated that the approach does give rise to a hot carrier effect [12–20], only a few theoretical investigations estimates the contribution of quantum confinement to the hot carrier effect. Furthermore, understanding the intricate mechanisms of this contribution is key to improve the design of solar cells integrating nanostructured absorbers [19].

Numerous theoretical studies on charge transport in quantum wells exist from works in the 80’s, but mostly focused on the calculation of scattering rates without specific application to hot carrier phenomenon nor relevance to solar cells [21–25]. These works reported that a quantum well structure increases the electron–phonon scattering rate relative to its value in the bulk material. Other works applying Boltzmann transport equation on ultrafast dynamics of electrons and phonons in a quantum well [26] however reported that, when the LO phonons are assumed to be in a non-thermal distribution, the electron–phonon scattering rate is of the same order [27] or even reduced compared to the 3D case [28, 29]. The apparent opposite behaviors in terms of electron–phonon scattering rate in quantum wells with respect to bulk points out the critical role of LO phonons throughout the type of equilibrium or non-equilibrium distributions they follow. Finally, related theoretical studies demonstrated high effective electron and hole temperatures on short time scales upon ultrafast excitation and estimated the relaxation time from the transient decay of the effective temperature [30, 31].

In the present work, we demonstrate that confinement in a quantum well suppresses the electron–phonon scattering rate, a phenomenon referred to as the phonon bottleneck [32]. This phenomenon has been observed in quantum dots where the discretization of energy levels prevents state relaxation [33]. As a consequence, the hot carrier effect is shown to be enhanced from quantum confinement. For that, we discuss a quantity which can be deduced from experiment, the so-called thermalization power. Our work relies on a semi-classical kinetic theory developed recently for bulk solar cells [34], which we have extended to include 2D confinement for assessing carrier thermalization in quantum well solar cells. Moreover, simulations are performed for InGaAsP/InGaAs/InGaAsP quantum wells varying the well thickness, and using input parameters from experiment performed under steady-state, i.e. non-transient excitation, thus close to realistic situations in which solar cells normally operate.

This article begins with a description of the main lines of the phenomenological model of carrier cooling in homogeneous bulk solar cells. Then, a specific model of electron–phonon interaction is built taking into account the confinement of electrons in a finite quantum well, and then used to derive the electron–phonon scattering rate, detailing the distinction between intra and inter-subband processes. The unconfined LO phonons in the model are characterized by a non-thermal distribution. The role of a non-equilibrium state of LO phonons on carrier cooling is clarified from the scattering rate. The thermalization power needed to achieve electron and hole populations at given temperatures is computed and analyzed, with an emphasis on the relative importance of a non-equilibrium phonon distribution and screening effect in the case of confining heterostructures. Finally, our theoretical findings are discussed with respect to a number of experimental observations reported in the literature, old and recent, in the context of seeking for the hot carrier effect in quantum wells.

2. On Steady-state carrier thermalization and thermalization power

2.1. Principle

Absorption of a photon generates a pair of electron and hole in the conduction and valence bands respectively of a semiconductor. For photon energy larger than the band gap, the electron (hole) may be generated with energy well above (below) the conduction (valence) band edge. The ensemble of photo-generated carriers redistribute the absorbed
energy among themselves, and may form an effective high-temperature thermal distribution, referred as hot carrier effect. But, this excess kinetic energy is mainly dissipated through carrier-phonon scattering, in a process known as thermalization, until the carriers reach the band edges and fulfill an effective equilibrium distribution at the lattice temperature. The tendency of electrons to cool down can however be impeded if the electron-LO phonon scattering rate is strongly suppressed, so that electrons can hardly release their energy by emitting LO phonons. In other words, the net phonon emission rate needs to be reduced, either by reducing phonon emission or by increasing phonon absorption.

The rate of energy transfer from electrons to LO phonons thus measures the tendency of electrons to cool down. The corresponding power is called thermalization power. It is the quantity of central interest in our work because of two important reasons; it can be deduced from experiment and it is meaningful: a higher thermalization power for a given carrier temperature means that it is necessary to pump more energy into the system to achieve the same carrier temperature.

2.2. Main lines of 3D theoretical model

A semi-classical model of carrier cooling was derived by Tsai in [34] for homogeneous 3D systems of charge carriers, and longitudinal and acoustic phonons in bulk semiconductors used in solar cells, with the interplay between the three elements as illustrated in figure 1. The fundamental assumption of the model is that acoustic phonons remain at lattice temperature T_L while electrons form a thermalized population at a carrier temperature T_c that can be significantly higher than T_L, thus becoming hot carriers. The first part of the assumption is justified by the fact that acoustic phonons do not interact directly with electrons because in polar semiconductors, electrons only couple strongly to polar optical phonons [7, 11]. The thermalization power can be computed from the rate of change of the number of LO phonons due to their interaction with electrons, which represents the only path of thermalization for carrier in that model. More precisely, the thermalization power in units of W m$^{-2}$ is given by

$$P_{th}^{LO} = L_c^{ph} \int \frac{d^3q}{(2\pi)^3} \hbar \omega_q \frac{dN_q}{dt} \big|_{c-LO},$$

where L_c^{ph} is the dimension of the LO phonon bath along the well confinement direction q is the LO phonon wave vector, $\hbar \omega_q$ its energy, while N_q is the number of phonons at wave vector q which is not necessarily equal to its equilibrium value. The equilibrium population at a given temperature T is given by the Bose–Einstein distribution: $N_q(T) = (\exp(\hbar \omega_q/(k_B T)) - 1)^{-1}$ where \hbar is the reduced Planck constant, and k_B the Boltzmann constant.

A key insight put forward in [34] argues that the total rate dN_q/dt for LO phonons receives two principal contributions: one from electrons which emit or absorb LO phonons and the other from the acoustic phonons from 3-phonon scattering process where an LO phonon transforms into two acoustic phonons or vice versa [9]. In other words, we can write

$$\frac{dN_q}{dt} = \frac{dN_q}{dt} \big|_{c-LO} + \frac{dN_q}{dt} \big|_{LO-\text{ac}},$$

where

$$\frac{dN_q}{dt} \big|_{c-LO} = \frac{N_q(T_c) - N_q}{\tau_q^{c-LO}},$$

$$\frac{dN_q}{dt} \big|_{LO-\text{ac}} = \frac{N_q(T_L) - N_q}{\tau_q^{LO-\text{ac}}},$$

and the subscripts c, LO, ac stand for charge carrier, LO phonon, and acoustic phonon respectively, to be used in the rest of this article.

A steady-state is achieved when the rate of LO phonon emission by electrons in equation (3) equals the rate of the LO phonon conversion into acoustic phonons in equation (4). Under this condition, the LO phonons themselves will remain out of equilibrium, with a population number that can be expressed as a thermodynamic average between Bose–Einstein distributions at T_c and T_L, with no well-defined effective temperature. Setting $dN_q/dt = 0$, one arrives at [34]

$$N_q = \frac{N_q(T_c) \tau_q^{LO-\text{ac}} + N_q(T_L) \tau_q^{c-LO}}{\tau_q^{c-LO} + \tau_q^{LO-\text{ac}}},$$

which defines an athermal population of LO phonons. Substituting equation (5) into equations (1) and (3), one obtains [34]

$$P_{th}^{c-LO} = L_c^{ph} \int \frac{d^3q}{(2\pi)^3} \hbar \omega_q \frac{N_q(T_c) - N_q(T_L)}{\tau_q^{c-LO} + \tau_q^{LO-\text{ac}}},$$

for the thermalization power under steady-state condition. The thermalization power reflects the deexcitation of hot carriers via interaction with LO phonons. Thus a reduced thermalization power represents a lower cost to maintain a carrier population hot, it is hence beneficial for technological purposes.
For 3D bulk system, the electron-LO phonon scattering rate is given by [34]

\[
\frac{1}{\tau_{\text{LO}}} = \frac{m_e^2 k_B T_e |M_q|^2 V_e}{\pi \hbar^3 q} \ln \left[\frac{1 + \exp(\eta_e - \varepsilon_{\text{min}} + \varepsilon_{\text{LO}})}{1 + \exp(\eta_e - \varepsilon_{\text{min}})} \right],
\]

(7)

where \(m_e\) is the carrier mass, \(M_q\) the electron-phonon coupling function, \(V_e\) the carrier spatial volume, \(q\) the LO phonon wave vector. Furthermore \(\eta_e = \mu_e / (k_B T_e)\), where \(\mu_e\) is the chemical potential, \(\varepsilon_{\text{LO}} = \hbar \omega_{\text{LO}} / (k_B T_e)\), \(\omega_{\text{LO}}\) the LO phonon frequency (assumed constant independent of \(q\)), \(\varepsilon_{\text{min}} = h^2 k_{\text{min}}^2 / (2m_e k_B T_e)\) where \(k_{\text{min}} = q/2 + m_e \omega_{\text{LO}} / (\hbar q)\).

To show that non-equilibrium phonons do contribute to hot carrier effect, we compare equation (1) with the corresponding expression assuming LO phonons to be at equilibrium at lattice temperature \(T_l\). Then \(N_q = N_q(T_L)\). Substituting it into equation (3) gives

\[
P_{\text{th}}^{c-L} = L_e \int \frac{d^2 q}{(2\pi)^2} \frac{N_q(T_c) - N_q(T_L)}{\epsilon_q^{c-LO}} ,
\]

(8)

which is always larger than the thermalization power with non-equilibrium phonons expressed as in equation (6). This thus demonstrates explicitly that non-equilibrium hot phonons help to maintain a hot carrier effect in bulk systems. It is emphasized here that the hot carrier effect studied in our work is a steady-state property, thus distinguishing itself from the transient hot carrier effect known in the literature [31].

The analytical expression for the electron-LO phonon scattering time \(\tau_{c-L}^{\text{LO}}\) (equation (7)) was derived in [34] for bulk homogeneous semiconductor solar cells. In the following section, we will derive the expression for electron-LO phonon scattering time for 2D systems, and we will analyze the effect of confinement on the hot carrier effect.

3. 2D theoretical model of confined carrier thermalization

In this part, we propose to derive expressions for the electron-LO phonon scattering rate \(\tau_{c-L}^{\text{LO}}\) and the resulting thermalization power \(P_{\text{th}}^{c-L}\) for two-dimensional semiconductor heterostructures. The general framework of the derivation assumes that electron-electron scattering is faster than any other process, such that the carriers follow a Fermi–Dirac distribution given by a temperature \(T_c\) hotter than the lattice one, and a quasi Fermi level \(\mu_e\). The expression for 2D systems starts from equation (1)

\[
P_{\text{th}}^{c-L} = \sum_m \int \frac{d^2 q}{(2\pi)^2} \frac{N_{q_{\perp},m}(T_c) - N_{q_{\perp},m}(T_L)}{\varepsilon_q^{c-LO}} ,
\]

\[
\times \frac{N_{q_{\perp},m}(T_c) - N_{q_{\perp},m}(T_L)}{\tau_{q_{\perp},m}^{c-L} + \tau_{q_{\perp},m}^{\text{LO-ac}}} ,
\]

(9)

which involves a sum over the number of phonon modes \(m\), and an integration over the transverse wave vector \(q_{\perp}\) of the LO phonon. In the following treatment, the LO phonons are supposed dispersionless, such that we shall take \(\hbar \omega_{q_{\perp},m} = h \omega_{\text{LO}}\), hence the only quantity in the integral which depends on \((q_{\perp},m)\) is \(\tau_{q_{\perp},m}^{c-L}\).

To be concrete and perform illustrative calculations, we focus on a single quantum well of width \(L_z\), made of an InGaAs layer sandwiched between two InGaAsP layers, as illustrated in figure 2. In the analytical derivation, we will rely on the approximation of infinite barrier height for the wave functions that will be used to determine interaction matrix elements. In the numerical calculations, we will consider finite barrier height for the confinement energies implemented to account for subband positions and fillings. This impacts the number of subbands existing in the well, as well as their minima (subband edge energy).

For the scattering between LO and acoustic phonons, we will use the following result [9]

\[
\frac{1}{\tau_{\text{LO}-ac}} = \frac{\Gamma^2 \hbar \omega_q^3 (N_{q_1} + N_{q_2} + 1)}{32 \pi \rho v_s^3} = \frac{N_{q_1} + N_{q_2} + 1}{\tau_{\text{LO}-ac}} .
\]

(10)

In this expression, \(N_{q_{\perp},m}\) is the population of acoustic phonons at \(T_L\) at wave vector \(q_{\perp}\) satisfying \(q = q_{\perp} + q_{\parallel}\), \(\rho\) is the mass density of the material, \(v_s\) the speed of sound wave, \(\Gamma\) is a deformation potential coefficient related to the material’s Gruneisen parameter by [9]

\[
\Gamma = \sqrt{\frac{2}{3}} \frac{\gamma \omega_{q_{\perp},m}}{v_s},
\]

(11)

giving the zero temperature LO phonon-acoustic phonon scattering time

\[
\tau_{0-\text{ac}}^{\text{LO}} = \frac{32 \pi \rho v_s^3}{\Gamma^2 \hbar \omega_q^3} .
\]

(12)
In the 3-phonon scattering process that converts an LO phonon into two acoustic phonons, the energy conservation law mandates that $\hbar \omega_{\text{ac}} = \hbar \omega_{\text{q}} + \hbar \omega_{\text{q}}$. While there are virtually infinitely many possible pairs of (q_1, q_2) that satisfy the above energy conservation equation for each given ω_{q}, we consider a simplifying assumption of equal energy partition normally employed in literature: $\hbar \omega_{\text{ac}} = \hbar \omega_{\text{q}} = \hbar \omega_{\text{q}}/2$ [35]. It gives the following population numbers of acoustic phonons

$$N_{\text{q}} = N_{\text{q}} = \frac{1}{\exp(\frac{\hbar \omega_{\text{ac}}}{k_B T}) - 1}.$$ (13)

Acoustic phonons are at equilibrium at T_1^c, in addition, they are not confined. Thus, equations (10)–(13) will be used in the forthcoming 2D and 3D numerical calculations with

$$\tau_{\text{LO}}^{\text{ac}} = \tau_0^{\text{LO}} = \frac{\hbar}{e \tau_{\text{ac}} + 1}.$$ (14)

For InGaAs quantum well, Γ of equation (11) can be estimated from experimental values for InAs and GaAs [36]. For $T_1 = 300$ K, we thus have $\tau_0^{\text{LO}} = 2.2 \times 10^{-11}$ s from equation (12), and $\tau_{\text{ac}}^{\text{LO}} \approx 0.74 \times 10^{-11}$ s from equation (14) (see table I of supplementary material for parameter values).

3.1. Confined electron and unconfined phonon states

In the proposed derivation, we will differ from the models developed for quantum well heterostructures in the 80’s [37–41] which considered the limit where both electrons and phonons are perfectly confined in the quantum well, assumed to be an infinite potential well in first approximation. Instead, we propose to consider unconfined phonon states with several arguments. First of all, we rely on the conclusion put forward in [37] that the impact of dimensionality in electron-LO phonon scattering rate so dramatically depends on the model used to account for phonon confinement that it is safer to use bulk phonon states. Moreover, such a simplified treatment has been widely adopted in theoretical literature [23, 42]. Experimentally, it is reasonably realized in lattice-matched systems, where phonons are generally assumed to keep their bulk properties. Finally, recent theoretical works [43] which compared model based on bulk-like phonon and more sophisticated approach based on dielectric continuum model [44] where phonons can be confined also show that the difference in the result is relatively insignificant.

The corner stone of the thermalization power defined in equation (1) is the rate equation of the LO phonon number. Using the Fermi golden rule, it can be written for bulk systems [34]

$$\frac{dN_q}{dt} = \frac{2\pi}{\hbar} |M_q|^2 \sum_k f_k^{(c)}(N_q + 1)f_k(1 - f_k^{(a)})$$

$$- N_q f_k^{(a)}(1 - f_k^{(c)}) \delta(E_k - E_k^{(a)} - \hbar \omega_{\text{q}})$$

where M_q is the electron-phonon scattering matrix element at wave vector q, $f_k^{(c)}$ represents the overlap of the wave functions of electron and phonon before and after the electron-LO phonon scattering (LO phonon emission or absorption process), N_q is the number of phonon at wave vector q and f_k is the Fermi–Dirac distribution of the electron at wave vector k.

The extra overall factor 2 in front of the right hand side counts for the spin degeneracy. It is emphasized that equation (15) is valid only for 3D theory because the momentum conservation applies to all the three orthogonal directions during the electron-phonon scattering process. In the 3D theory derived in [34], the thermalization power finally takes the form of equation (6) with the scattering rate given equation (7).

In the presence of confinement, the above scattering rate has to be modified appropriately. The wave vectors for carriers will be noted $k = (k_\perp, k_z)$. The longitudinal wave vector component k_z takes discrete values of index n, that are related to the well width L_z [45]. Only transverse components of the wave vectors $(k_\perp, k_z') = (k_\perp, q_\perp)$ satisfy momentum conservation. The rate of change of phonon number becomes

$$\frac{dN_{q_\perp, n}}{dt} = \frac{2\pi}{\hbar} |M_{q_\perp, n}|^2 \sum_{k_\perp, n'} f_{k_\perp, n, n'}^2$$

$$\times \left((N_{q_\perp, n' + 1}) f_{k_\perp, n'}(1 - f_{k_\perp, n'})
- N_{q_\perp, n'} f_{k_\perp, n'}(1 - f_{k_\perp, n'}) \right)$$

$$\times \delta(E_{k_\perp, n} - E_{k_\perp, n'} - \hbar \omega_{q_\perp, n})$$

where the electron–phonon scattering matrix element is given by [34]

$$|M_q|^2 = \frac{\epsilon^2 \hbar \omega_{q_\perp, n}}{2 \pi \hbar^2 \sqrt{\gamma \nu S \hbar}} \left(\frac{1}{K_{\infty} - \frac{1}{K_z}} \right),$$

with $q^2 = (q_\perp^2 + q_z^2)$ for the 2D formulation, $\omega_{q_\perp, n} = \omega_{LO}$ as we have supposed LO phonons to be dispersionless, and $\gamma \nu S \hbar L_z^2$ the volume of the LO phonon bath (not necessarily equal to the carrier volume) for which $S = L_z^2$ is the cross-sectional area of the device. Moreover, ϵ is the electron charge, ϵ_0 the vacuum permittivity, K_{∞} the dielectric constant at infinite frequency and K_z the static dielectric constant.

The wave function overlap f_{k_\perp, q_\perp} occurring in equation (16) is given in terms of the following factor [23, 42]

$$f_{k_\perp, n, n'}^2 = |G_{n, n'}(q_z)|^2$$

where

$$G_{n, n'}(q_z) = \int_0^L dz \psi_n(z) \exp(izq_z) \psi_{n'}(z),$$

with

$$\psi_n(z) = \sqrt{\frac{2}{L_z}} \sin \left(\frac{n \pi z}{L_z} \right).$$
relying on the approximation of infinite barrier height. The calculation leads to

\[
G_{n,n'}(q_z) = \frac{iL_zq_z}{(n\pi - n'\pi + L_zq_z)} \left(\frac{iL_zq_z}{(n\pi + n'\pi + L_zq_z)} + \frac{iL_zq_z}{(n\pi + n'\pi - L_zq_z)}\right) + \frac{iL_zq_z}{(n\pi - n'\pi + L_zq_z)} \cos[(n - n')\pi]
\]

\[
- \frac{iL_zq_z}{(n\pi + n'\pi - L_zq_z)} \cos[(n + n')\pi]
\]

(21)

The profile of \(G_{n,n'}(q_z)\) is illustrated in figure 3, reflecting a distribution maximum at \(q_z = 0\) which sharpens with increasing the quantum well thickness. The overlap factor has a symmetry property \(G_{n,n'}(q_z) = G_{n',n}(q_z)\).

3.2. Intra-subband and inter-subband scattering rates

The next step is the derivation of the electron-phonon scattering rate \(dN_{q_{\perp,q_{\parallel}}}/dt\), which was done with the hypothesis that thermalization occurs only in the conduction band, due to the large effective mass values of holes inside the valence band. Such an hypothesis helps to decipher the thermalization power behavior, but it remains easy to include all band contributions.

We evaluate the expression for the rate of change of the number of LO phonons equation (16) using the electron-phonon scattering matrix element equation (17) and the overlap factor equation (18). The details of the derivation are given in supplementary material. Defining handy notations, for the scattering time, \(\tau_{q_{\perp,q_{\parallel}}^{-\text{LO}}}\), and its inverse the scattering rate \(R_{q_{\perp,q_{\parallel}}}\), it can be written as

\[
\frac{dN_{q_{\perp,q_{\parallel}}}}{dt} \bigg|_{q_{\perp,q_{\parallel}}^{-\text{LO}}} = R_{q_{\perp,q_{\parallel}}} \left(N_{q_{\perp,q_{\parallel}}} - N_{q_{\perp,q_{\parallel}}^{-\text{LO}}} \right)
\]

where

\[
R_{q_{\perp,q_{\parallel}}} = \frac{m_e^2\omega_{\text{LO}}}{\pi\hbar}\frac{1}{K_{\text{LO}}} \left[\frac{1}{q_{\perp}^2 + q_{\parallel}^2} \right]^{1/2} \int_{q_{\perp}^{-\text{LO}}}^{q_{\perp}} dq_{\parallel} \left[\frac{k_{\perp}}{(k_{\perp}^2 - (k_{\perp}^{-\text{LO}})^2)} \right]^{1/2} [f(E_{k_{\perp},n} - \hbar\omega_{\text{LO}}) - f(E_{k_{\perp},n})]
\]

We have defined

\[
k_{\perp}^{-\text{LO}}(n,n') = \frac{q_{\perp}^2 + m_e\omega_{\text{LO}}}{\hbar q_{\perp}} + \frac{(n^2 - n'^2)\pi^2}{2q_{\perp}L_z^2}
\]

(24)

the minimum transverse wave vector for an electron to emit an LO phonon.

Upon emitting a phonon of energy \(\hbar\omega_{\text{LO}}\), an electron may stay in the same subband, which constitutes an intra-subband scattering process, or move to another subband, which represents an inter-subband scattering process. Splitting the intra-subband and inter-subband contributions, the LO phonon emission rate for each phonon wave vector \(q = (q_{\perp}, q_z)\) can be written as

\[
\frac{1}{\tau_{q_{\perp,q_{\parallel}}^{-\text{LO}}}(n,n')} = \sum_{n=1}^{N_t} \frac{1}{\tau_{q_{\perp,q_{\parallel}}^{-\text{LO}}}(n,n)} + \sum_{n,n'=1}^{N_t} \frac{1}{\tau_{q_{\perp,q_{\parallel}}^{-\text{LO}}}(n,n')}
\]

(25)

with \(N_t\) the number of subbands inside the well. We have thus introduced \(1/\tau_{q_{\perp,q_{\parallel}}^{-\text{LO}}}(n,n')\) as the net phonon emission rate from subband \(n\) to subband \(n'\). It is not symmetric upon \(n\) and \(n'\) permutation. It is important to note that our theory only takes into account the scattering between electron states confined in the quantum well and the LO phonons. That is, we do not consider scattering processes involving electron states whose energy are higher than the InGaAsP barrier height in figure 2.

The numerical results for the summed scattering rates

\[
R_{n,n'} = L_z^2 \frac{dq_{\perp}}{2\pi} \frac{1}{\tau_{q_{\perp,q_{\parallel}}^{-\text{LO}}}(n,n')}
\]

(26)

are shown in figure 4 both for intra-subband \((n' = n)\) and inter-subband \((n' \neq n)\) processes. We observe that he intra-subband contribution of the first subband, \(R_{11}\), gives the largest contribution to the electron-phonon scattering rate, and that intra-subband contributions of higher subbands decrease with the subband index, a conclusion which in agreement with that of the classic work by Riddoch and Ridley [25]. Moreover, for small thicknesses where only few subbands exist in the well \((N_t = 2\) for \(L_z = 10\) nm and \(N_t = 3\) for \(L_z = 15\) nm), the \(R_{21}\) inter-subband term is much larger than other inter-subband contributions to the scattering rate. Eventually, as the thickness is increased further, the number of subbands increases, and the inter-subband scattering rate (summing over all inter-subband processes) overtakes that of the first intra-subband scattering rate.
Figure 4. Intra (grey curves) and inter-subband (colored curves) scattering rates $R_{n,n'}$ (see equation (24) for definition) in 10nm (a) and (b), and 15nm (c) and (d) quantum wells, as functions of q_{\perp} for $T_c = 450$ K and $T_L = 300$ K. Other parameters are $m_c = 0.041m_0$ with m_0 the bare electron mass, $\hbar\omega_{LO} = 36$ meV, $K_{\infty} = 10.9$, $K_s = 12.9$, while the chemical potential $\mu_c = -35.9074$ meV for 10nm and $\mu_c = -37.7681$ meV for 15nm quantum wells.

3.3. Impact of non-equilibrium phonon distribution hypothesis

A key mechanism that is believed to drive hot carrier effect is the occurrence of a non-equilibrium distribution of LO phonons. This hypothesis means that the LO phonon occupation number do not match a Bose–Einstein function defined at the lattice temperature T_L with which acoustic phonons stay in equilibrium. The effect of a non-equilibrium LO phonon distribution seems to be significant in bulk 3D systems [34], but this is not necessarily the case in quantum well heterostructures, due to the quantum confinement which constrains the interaction between electrons and phonons.

In this section, we therefore investigate the relative strengths of the effects of confinement and non-equilibrium phonon distribution on the electron-LO phonon scattering rate. With LO phonons characterized by an a-thermal distribution specified in equation (5), the thermalization power is given by equation (6), while, with LO phonons at the lattice temperature T_L, henceforth called equilibrium phonons, the thermalization power is given by equation (8). To this end, using equations (14) and (23), we plot in figure 5 the two integrated scattering rates

$$R_{\text{NonEq}(Eq)}(q_{\perp}) = L_{z}^2 \int \frac{dq_{\perp}}{2\pi} \frac{1}{\tau_{q_{\perp} - LO} + \tau_{q_{\perp} - LO}} ,$$

where $\tau_{q_{\perp} - LO}$ in parenthesis is present or absent respectively in the non-equilibrium (NonEq) and equilibrium (Eq) cases. With the same convention, the 3D results, $1/(\tau_{q_{\perp} - LO} + \tau_{q_{\perp} - LO})$ from equations (7) and (14) are also represented.

In the figure, the solid curves encompass a screening effect that will be discussed in the following section. Focussing on the dashed curves of figure 5, the results show that the expected reduction of the scattering rate due the non-equilibrium phonon distribution hypothesis is suppressed for thinner wells, while it remains strong in the 3D case.

The ratio $\tau_{q_{\perp} - ac}/\tau_{q_{\perp} - LO}$ provides a simple tool to explain why the LO phonons have a weaker tendency to go out-of-equilibrium in quantum wells. On the one hand, the scattering rate $1/\tau_{q_{\perp} - LO}$ is strongly reduced due to confinement relatively to bulk, as shown in section 3.2. On the other hand, the LO phonon-acoustic phonon scattering rate remains unchanged, as phonons are assumed to be unconfined, $1/\tau_{q_{\perp} - LO} = 1.35 \times 10^{11}$ s$^{-1}$. Starting from the 3D case, the characteristic times are in ratio $\tau_{q_{\perp} - ac}/\tau_{q_{\perp} - LO} \approx 30$ for the wave vector corresponding to the maximum of the scattering rate, the corresponding phonon number N_q from equation (5) is then leaning towards $N_q(T_c)$: the-a-thermal distribution of LO phonons approaches a hot equilibrium distribution. In contrast, in the quasi 2D case, and more particularly for narrow quantum wells, the scattering rate $1/\tau_{q_{\perp} - LO}$ is strongly reduced due to confinement, the
reduction can be as large as 2 orders of magnitude examining figure 5. The ratio $\frac{\sigma_{q}^{\text{LO}}}{\sigma_{q}^{\text{c}}}$ thus becomes smaller than 1, which steers the corresponding phonon number towards $N_{q}(T)$: the a-thermal distribution of LO phonons approaches the lattice temperature equilibrium distribution of acoustic phonons. This analysis may be interpreted as follows: in quantum well solar cells, that once an LO phonon is emitted by an electron, it never gets re-absorbed back by the electron. Instead, the LO phonon quickly transforms into acoustic phonons which stay in equilibrium at the lattice temperature. In other words, LO phonons quickly cool down to the lattice temperature, suppressing the non-equilibrium LO phonon effect.

3.4. Dependence on electron–electron screening effect

So far, we did not consider the screening of the electron–phonon interaction in equation (17). However, screening ultimately renormalizes the scattering matrix element $|M_{qL,E}|^2$ of equation (16) as

$$|M_{qL,E}|^2 = |M_{qL,E}|^2 \left(\frac{\varepsilon_{0}}{\varepsilon_{\text{screen}}(q_{L}, \omega_{LO})} \right)^2.$$

Making a static and strictly 2D approximation, we have to evaluate the following screening function [44]

$$\varepsilon_{\text{screen}}(q_{L}, 0) = \varepsilon_{0} \delta_{n_{1},n_{0}} \delta_{n_{1},n_{1}} - \frac{\varepsilon^{2}}{2q_{L}^{2}} f_{n_{2},n_{1}}(q_{L}) \sum_{k_{L}:\sigma} \frac{f(E_{n_{2},k_{L} + q_{L}}) - f(E_{n_{1},k_{L}})}{E_{n_{2},k_{L} + q_{L}} - E_{n_{1},k_{L}}},$$

where $f_{n_{2},n_{1}}(q_{L})$ is the form factor of the electron–electron interaction involving four indices for the confined electron subbands $n_{1}, n_{2}, n_{3}, n_{4}$. \sum_{σ} indicates the sum over the spin.

The number of form factor tensor elements involved in the calculation increases with the number of subbands, going as N_{e}^{4}, where N_{e} is the number of subbands. For the sake of simplicity, we make the approximation of accounting for only the screening of the first intra-subband process, with

$$F_{11}^{n_{2},n_{1}}(q_{L}) = \frac{1}{2} \frac{\eta(\eta^{2} + \pi^{2})^{(3\eta^{2} + 2\pi^{2}) - \pi^{2}(1 - e^{-2\eta})}}{[\eta(\eta^{2} + \pi^{2})]^{2}}$$

where $\eta = q_{L}L_{c}/2$ [44]. We thus ignore the screening of all other scattering processes. This is justified by the fact that the first intra-subband scattering rate R_{11} strongly dominates over all other scattering rates R_{mn}, as can be seen from figure 4. As a consequence, the present approximation which underestimates the screening effect, overestimates most scattering rates.

Figure 5 gathers the effects of screening on the electron–phonon scattering rates in the bulk and in quantum wells, for LO phonons out-of equilibrium or at equilibrium with
the lattice. As a general trend, screening renormalizes downward the scattering rate, whatever the hypothesis made for the LO phonon distribution. The reduction is more pronounced for wider quantum wells up to the 3D limit. However, at the smallest thickness where the confinement effect is strongest, it appears that the hypothesis of out-of-equilibrium LO phonons has only a small influence on scattering rates due to an increasing impact of $\frac{1}{q}\text{LO-ac}$, whatever screening is included, which complies with the analysis we have developed section 3.3.

4. Signatures of quantum confinement and enhancement of hot carrier effect in terms of thermalization power

4.1. Calculation protocol

The objective of this section is to discuss the power needed to maintain a carrier population at fixed temperature T_c and quasi-Fermi level splitting $\Delta \mu$ [46], when confinement increases in InGaAsP/InGaAs/InGaAsP quantum well heterostructures shown figure 2. These two thermodynamic parameters have been extracted from photoluminescence experiments done for a particular quantum well, which makes the obtained conclusions more reasonable and exploitable to interpret real situations. We thus have $T_c = 450 \text{ K}$ and $\Delta \mu = 0.653 \text{ eV}$, and we keep it constants all along the study. For each quantum well thickness, these values are used to numerically estimate the chemical potential μ_c from the electroneutrality equation. Details of the calculation protocol are given in supplementary material. For LO phonons, we take $\hbar \omega_{qL} = \hbar \omega_{q_{L,m}} = \hbar \omega_{\text{LO}} = 36 \text{ meV}$ in the calculations, independent of wave vector. Additionally, acoustic phonons are assumed to be in an equilibrium distribution at the lattice temperature $T_L = 300 \text{ K}$. The 2D thermalization power is finally computed within our theoretical model combining equations (9), (14) and (23).

4.2. Findings: 2D thermalization power

We compare the thermalization power resulting from the proposed 2D theoretical model with the one obtained from the 3D model of [34], within different frameworks of hypothesis shown figure 6: (a) without (in blue) and (b) with (in red) the assumption that LO phonon distribution is non-equilibrium following the derivations of section 3.3, and including or not the screening effects as described in section 3.4.

The first important observation that can be made is that the thermalization power density is lower in 2D than in 3D systems, whatever the used assumptions. It means that the amount of power needed to achieve a hot carrier population at given temperature and Fermi level splitting is lower in quantum well heterostructures than in the bulk material. The result suggests that reducing the system’s dimensionality reduces the system’s propensity for thermalization. Confinement thus enhances the hot carrier effect, which is expected to make quantum well based solar cells more efficient, due to the fact that the quantification of electronic states increases the amount of carrier energy to be converted into electrical power because it reduces the thermalization power. Actually, the reduction of the scattering rate in quantum wells was also pointed out in more sophisticated models of electron-LO phonon interaction [47–49]. Moreover, the thermalization power reduction of about one order of magnitude is consistent with existing works in the literature, e.g. [50].

In the 3D bulk case, the thermalization power density is constant, as can be seen in figure 6. This behavior is in agreement with experimental results where the thermalization power is found to vary linearly with the thickness of the absorber for relatively thick samples of 100–200 nm, where the physics approaches that of a bulk system [51]. In contrast, the 2D thermalization power density increases with the quantum well thickness, but remains always lower than the value computed in the 3D model under the same conditions: LO phonons in equilibrium or not, with screening effect taken into account or not. As a general trend, the assumption of a non-equilibrium LO phonon distribution always reduces the thermalization power, by an amount decreasing with the quantum well thickness for the 2D model whereas it is independent of thickness for the 3D model.

Moreover, a non-trivial dependence on the quantum well thickness clearly appears in the insets of figures 6(a) and (b). Ignoring screening (empty circles), the thermalization power exhibits a staircase shape with a quasi-plateau for thicknesses between 8 and 16 nm, which reflects the evolution of subband filling as the quantum well thickness increases. At small well thicknesses, each subband starts to fill significantly when the energy separation between the subband minimum and the Fermi level goes below $4k_B T_c \approx 4 \times 39 \text{ meV}$ (at which Fermi occupation goes beyond 0.01). This evolution is represented for the two first subbands in figure 7. As the well thickness increases, the filling increases. However in 2D systems, the density of states is proportional to $1/L_z$ inside each subband (for a fixed Fermi energy), so the carrier density must finally decrease at larger well thickness. The thermalization increase by plateau is thus interpreted by distinguishing the intra- and inter-subband contributions to the 2D thermalization power of the first and second subbands, as represented figure 8. At first, the separation energy between the first subband minimum and the quasi Fermi level decreases below $4k_B T_c$, while the energy separation between the second subband and the quasi Fermi level remains above this value, as can be seen figure 7. Consequently, the intraband contribution of the first subband increases then decreases when the $1/L_z$ term dominates. In a second stage, above 12 nm, the second subband approaches the quasi Fermi level μ_c, it starts to fill and participates to thermalization while the first subband depopulates. The first intra-subband contribution to power decreases while both the inter- and intra-second subband contributions increase. In total, the thermalization power plotted figure 6 increases from smaller well thicknesses, then saturates when the contributions of two first subbands compensate, next starts to increase again when intra- and inter-second subband components increase faster than the intra- first subband component decreases. In these confining heterostructures, the thermalization process thus follows several channels that are
Figure 6. Thermalization power per unit volume as a function of the quantum well thickness in InGaAs heterostructure, considering (a) an equilibrium (in blue) (b) a non-equilibrium (in red) LO phonon distribution, with (filled circles) and without (empty circles) screening effect of electrons computed from the 2D model using equation (9), and from the 3D model using equation (6). Input parameters are $T_c = 450$ K, $\Delta \mu = 0.653$ eV and $T_L = 300$ K.

Figure 7. First and second conduction subband minima and quasi Fermi level, as a function of the quantum well thickness. The energy origin is at the bulk conduction band minimum. Thermal energy, $k_B T_c = 0.039$ eV, is also represented.

Figure 8. Detailed subband contributions to the 2D thermalization power per unit volume as a function of the quantum well thickness, in the simplest framework of an equilibrium LO phonon distribution, without screening effect.

activated one after the other. The occurrence of a plateau transition depends on temperature, but also on confinement energies, that are directly related to material nature throughout effective mass and barrier potential. The proposed analysis also explains why the 2D thermalization power remains far from the 3D value at 25 nm, because only two subbands are at play for this thickness value, while there are already five subbands inside the well at 25 nm.

Finally, screening in general also reduces thermalization power, by an amount that varies with thickness in the 2D model, while it is independent of thickness in the 3D model. In particular, the screening-induced reduction of power is non-monotonic in quantum well heterostructures. As a result, the thermalization power density passes through a minimum in the plateau region, before increasing again as one keeps increasing the thickness of the quantum well layer. This non-monotonic behavior thus emerges as a signature of energy quantization in 2D systems.

5. Comparison with experiments

Real systems employed in experiments are far more complex than what we model in the present study. We describe a simple quantum well, for which interface and barrier contributions to the scattering rate are ignored. Moreover, the screening is only partially accounted for, and the form factors and overlap integrals that shape the matrix elements of the electron–phonon interaction and screening potential are estimated in the approximation of infinite well barriers. Finally, electron–LO phonon interaction is assumed to be the only mechanism of carrier energy loss, while the crucial role of radiative recombination have been advanced [18]. Despite these limitations, the scattering theoretical model we developed for carrier thermalization in 2D systems can provide means of interpretation of why quantum well solar cell has been observed to give rise to a slower cooling rate for carriers than a bulk solar cell in several experimental works reported in the literature. We discuss
in this section comparison between our theoretical predictions and available experimental data, which is summarized in terms of quantities that measure hot carrier effect enhancement in quantum well heterostructure in table 1.

One of the first works comparing quantum well and bulk solar cells did observe a significant reduction of the cooling rate in quantum well solar cells by more than one order of magnitude, by a factor of 60 [13], which is comparable to our results presented figure 6, where a reduction factor of about 10 is overall obtained. Many later works suggested that such a reduction of the cooling rate occurs only at a high enough charge density [14]. In these earlier works, the relative role of confinement, screening, and non-equilibrium hot LO phonon effects have not been addressed in detail.

A pioneering work toward a detailed investigation of the different factors that drive the hot carrier effect in 2D systems was given by Shah and co-workers in [15]. They found that the energy loss rate is about 25 times smaller for electrons than for holes in semiconductor quantum wells (segment on the ratio of thermalization powers for (heavy) hole and electron in table 1). This observation can easily be explained within the framework of kinetic scattering theory in terms of the effective mass dependence of the electron-LO phonon scattering rate. As can be seen from equation (19) of supplementary material, the scattering rate depends on the 3/2 power of the carrier effective mass \(m_c \) in the leading order. For GaAs, the heavy hole effective mass \(m_h = 0.5m_0 \) is about 7 times larger than the electron effective mass \(m_e = 0.07m_0 \), where \(m_0 \) is the electron mass, implying that the cooling rate of holes must be about \(7\sqrt{7} \approx 19 \) times larger than that of electrons, providing a reasonable explanation for the observation reported in [15]. Furthermore, the measured energy-loss rate was found to be approximately eight times smaller than expected for 2D electrons based on existing theoretical calculations at that time [25]. This reduction factor is off only by 20% relative to the value obtained from our theoretical results of figure 6 (b), in which a reduction factor of about 10 is obtained at the minimum of the thermalization power density, where both non-equilibrium LO phonon and screening effects are included (segment on reduction factor in table 1). In [15], this reduction was argued to be caused by non-equilibrium LO phonons whose population exceeds the one expected from equilibrium phonons at lattice temperature, rather than by confinement [15].

In contrast, our findings gathered in figure 6 show that confinement, non-equilibrium LO phonons, and screening effects all contribute to reducing the electron–phonon scattering rate in quantum well relative to bulk solar cells. However, confinement has been concluded to be the principal factor responsible for reducing the scattering rate for the smallest quantum well thicknesses. Reducing the system dimensionality exhibits a stronger impact than the one of non-equilibrium LO phonon or electrostatic screening. Within the 2D semi-classical framework that we have built, the effect of an a-thermal LO phonon distribution is suppressed due to the confinement-induced reduction of the electron-LO phonon scattering rate which annihilates the acoustic phonon contribution in the LO phonon dynamics, as implied by equation (27). Remarkably, this relative feeble role of the non-equilibrium hot LO phonons effect in the carrier thermalization process seems to be in agreement with the result of a classic experiment on GaAs quantum well [16].

The use of a multi-quantum well or super-lattice system to enhance efficiency over a bulk GaAs solar cell was first proposed in [52]. The suppression of the radiative recombination in the quantum well compared to that in the bulk regions of the cell was first demonstrated in [53]. Ekins-Daukes et al. [54] demonstrated the excellent material quality of a strain-balanced GaAs/InGaAs multi-quantum well. Such material quality enabled the observation of hot carrier effects in these wells in [10]. Mazzer et al. [55] proposed that the suppressed radiative recombination in the quantum wells, observed in [53], was due to the thermolectric (Seebeck) effect resulting from the presence of hot carriers in the wells. Together with the early studies on hot-carriers revealing that quantum wells lead to slower carrier thermalization [13–15], these pioneering works [52–55] inspired more recent research efforts that try to leverage hot-carrier effects in quantum wells in order to increase the photovoltaic efficiency [10, 18–20].

The hot carrier effect has in fact been confirmed in the strain-balanced quantum wells, especially in the so-called ‘deep well’ samples, for which it was shown that the hot carrier effect is stronger in deep than shallow well samples [10]. The impact of the quantum well depth can be explained following the arguments pointed out in section 4.2. Indeed, the deeper the well is, the larger the inter-subband separation energy is, which supports the interpretation that a fewer number of subbands channels thermalization in the case of ‘deep well’ samples, due to the fact that only a fewer number of subbands are
Table 1. Comparison of quantities characterizing hot carrier effect in our theory and available experimental values from slightly different semiconductor materials but still of III–V family. Eq.(NonEq.) and S (NS) respectively represent hypothesis with equilibrium (non-equilibrium) LO phonons and with (without) screening effect. The first segment shows the amount of hot carrier effect enhancement induced by carrier confinement, relative to bulk system. The second segment gives an approximate value of the ratio between thermalization powers of (heavy) hole and electron, first from the leading-order dependence of thermalization power on carriers (electron and (heavy) hole) masses in the first column while giving the exact numerical values at \(L_c = 11 \text{ nm} \) in the third column for various hypotheses. In the third segment, we have defined \(\eta_{PV} \) as a measure of the change in thermalization power relative to the change in well depth; \(\eta_{PV} \) means a deeper well gives a stronger (weaker) hot carrier effect. In the last segment, an optimal well thickness is defined as the thickness that yields maximum effective carrier (electron) temperature or, equivalently, minimum thermalization power. It is to be noted that this table is not intended to reproduce each available experimental data but to illustrate an overall qualitative and order-of-magnitude quantitative agreement between our theory and experiments.

Hot carrier effect assessment parameter	Hypothesis (2D Theory)	Our 2D Theory (InGaAs/InGaAsP)	Experiment
Reduction factor of electron thermalization power \(\frac{P_{th}^{0}}{P_{th}^{1}} \) (evaluated at \(L_c = 11 \text{ nm} \) as example)	Eq. NS	11	8(GaAs/AlGaAs) [15]
Ratio of (heavy) hole thermalization power to electron thermalization power	Eq. S	20	25(GaAs/AlGaAs) [15]
Leading-order value: 19 (2D theory)	NonEq. NS	5	
NonEq. S	9		
Well depth-dependent enhancement factor	Eq. NS	-0.66	-0.98
\(\eta_{PV} = \left(\frac{P_{th}^{0}}{P_{th}^{1}} \right) \left(\frac{V_{th}^{2}}{V_{th}^{1}} \right) - 1 \) (evaluated at \(L_c = 11 \text{ nm} \) as example)	Eq. S	-4.03	(GaAsP/InGaAs) [10]
NonEq. NS	-0.85		
NonEq. S	-3.69		
Optimal well thickness \(L_c^* \) (nm)	Eq. NS	—	8.0 (GaAs/AlAs) [19]
Eq. S	11.0		
NonEq. NS	—		
NonEq. S	11.5		

able to drive the thermalization process, although a deep well accommodates more subbands. This interpretation is also in agreement with recent experimental studies on strain-balanced multiple InGaAs/GaAsP quantum wells solar cells, in which it was shown that a deeper quantum well gives rise to significantly higher effective carrier temperature, attributed to hot carrier dynamics [18]. Indeed, a higher carrier temperature means a weaker system’s propensity to lose its energy harvested from light, and thus a lower thermalization power. Overall, considering deeper wells augments the degree of confinement inside the solar cell absorbers, which is concluded to enhance the hot carrier effect.

A quantitative measure of this enhancement of the hot carrier effect with a deeper well is given in table 1 in the segment on well depth dependence. There, we compare a quantity \(\eta_{PV} \) which measures how much thermalization power changes relative to the change in the potential barrier height (or equivalently, well depth); \(\eta_{PV} < 0 \) (or 0) means lower(higher) thermalization power with deeper well or, equivalently, stronger (weaker) hot carrier effect respectively. The experimental value is estimated from thermalization powers at \(T_c = 450 \text{ K} \) extracted from figure 2(a) of [10] for samples with 20% In content \((V_{th}^{2} = 0.25 \text{ eV}) \) and 11% In content \((V_{th}^{1} = 0.17 \text{ eV}) \) respectively. The theoretical counterpart values are from our calculation. The thermalization power is found to decrease with deeper well, giving \(\eta_{PV} < 0 \) for all the four theoretical hypotheses, in agreement with the experiment. The experimental reduction factor is about −0.98, closest to our theoretical result with non-equilibrium phonon no screening hypothesis.

Finally, in the investigation conducted by Conibeer et al [19, 20], a non-monotonic dependence of the carrier temperature on the thickness of the quantum well layer was reported, as illustrated in figure 9. Phonon emission was considered there as one of the possible mechanisms in explaining the observed hot carrier effect. While our calculations are based on the parameters of InGaAsP-InGaAs-InGaAsP quantum well layers, we can provide a direct qualitative analysis. We argue that the non-monotonic dependence of the carrier temperature on quantum well layer thickness in [19] corresponds directly to the non-monotonic dependence of the thermalization power density plotted figure 6(d) (red solid circles in the inset), within the most realistic framework in which both non-equilibrium LO phonon and screening effects are taken into account, shown in figure 9. Based on the principle that a lower thermalization power density means a stronger hot carrier effect, the hot carrier effect first increases from 6.5 nm to 10.5 nm, but then decreases from 10.5 nm to 25 nm (and beyond, eventually). It suggests that the carrier temperature should increase when going from 6.5 nm to 10.5 nm, and then decreases in going from 10.5 nm to 25 nm (and beyond). This is in accordance with the thickness dependence of the
carrier temperature displayed in figure 5 of [19] in going from 6 nm to 30 nm for the quantum well layer thickness, while the barrier thickness is fixed to 40 nm. An optimal thickness of about 11.5 nm in our result and 8 nm in [19] gives the strongest hot carrier effect, in terms of lowest thermalization power and highest effective carrier temperature respectively, as summarized in the last segment in table 1. Some of the sources of incomplete analysis of this work of Conibeer and co-workers include the facts that we use different materials and that our simple model assumes infinitely thick barriers on both sides compared to the 40 nm thick barrier. Overall, bulk 3D theory gives a constant power density, which means that there is no dependence of carrier temperature on the quantum well thickness at all, and thus cannot explain the investigation of [19].

6. Conclusion

In this work, we have derived a kinetic scattering model for determining the thermalization power in 2D systems, which was used to understand the confinement-induced thermalization reduction in InGaAsP/InGaAs/InGaAsP quantum wells. In the proposed theoretical investigation, electron and holes are assumed to be in two fixed thermal distributions with fixed temperatures and Fermi level splitting. Moreover, we consider that electron-LO phonon scattering is the unique channel for carrier cooling. Our main findings are listed below.

(a) The thermalization power in quantum wells is reduced by carrier confinement relatively to bulk theory prediction, which occurs because confinement decreases electron–phonon scattering rate. Reducing dimensionality is thus demonstrated to enhance the hot carrier effect, and it is finally expected to improve the efficiency of quantum well solar cells relatively to solar cells with bulk absorbers.

(b) Intra-subband contribution to electron-phonon scattering rate initially dominates over inter-subband contribution at relatively small thicknesses where only few confined electron states exist. As one increases thickness, inter-subband contribution overtakes that of intra-subband scattering process, as inter-subband terms outnumber intra-subband ones.

(c) The effects of confinement, a non-equilibrium LO phonon distribution and screening altogether combine to reduce the electron-phonon scattering and energy loss rates in quantum well heterostructure. In the 3D case, the scattering rate reduction due to non-equilibrium phonons is more significant than in the 2D case, where the impact of the LO phonon disintegration in two acoustic phonons is indirectly weakened due to the confinement-induced reduction of thermalization.

(d) In the samples studied, it exists a cross-over between the reduction of the first intra-subband contribution and the emergence of both intra and inter-subband contributions of the second subband. It results in a plateau region, where the thermalization power adopts a 3D-like behavior paradoxically originating from electronic state quantization. Including the screening effect then gives rise to a non-monotonic dependence on the well thickness. There is a finite thickness that minimizes the thermalization power density and thus maximizes hot carrier effect. For the InGaAsP-InGaAs-InGaAsP quantum wells under consideration, the optimal thickness is about 10.5 nm. We argue that this optimal thickness corresponds to the optimal thickness that would drive to a maximum value of carrier temperature, as observed experimentally [19].

Finally, in experiments, there are various other factors that may come into play and contribute to the scattering process or carrier thermalization, such as impurity, defect, interface scattering, thermionic emission, and exciton effects. We leave these complexities as open problems for future works. It is to be noted that the various additional complexities not considered in our work tend to provide additional channels to carrier thermalization and thus tend to increase the resulting thermalization power. The numerical value of thermalization estimated from our simple model should thus be interpreted as the lower limit of what one should expect by considering more realistic situations. Furthermore, our semi-classical approach does not discuss interface-type LO phonon modes, which requires more rigorous treatment, such as the one based on dielectric continuum model [56]. It is expected that the inclusion of interface-type LO phonon modes would not change qualitatively the conclusions of the present work [43]. Additionally, surface modes manifest experimentally as a constant additive term on the thermalization power density per surface unit [51]. Surface modes are thus not expected to change qualitatively the dependence of thermalization power on the thickness of the quantum well (or volume of a bulk sample).

To conclude, this work provides a proof of principle that 2D confinement of charge carriers in a semiconductor quantum well does indeed give rise to hot carrier effect and precise the details of how this is accomplished, a finding that is expected to be critical and timely to the effort in achieving high solar cell efficiency.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

I M acknowledges funding from the French Agence Nationale de la Recherche (ANR) through Project ANR-ICEMAN under Grant Number:19-CE05-0019-01. The research is involved within the framework of program 6: PROOF (ANR-IEED-002-02) at IPVF.

ORCID IDs

I Makhfudz © https://orcid.org/0000-0002-3365-4532
D Suchet © https://orcid.org/0000-0002-4034-1016
References

[1] Conibeer G, Ekins-Daukes N, Guillemoles J-F, König D, Cho E-C, Jiang C-W, Shrestha S and Green M 2009 Sol. Energy Mater. Sol. Cells 93 713–9

[2] Conibeer G, Patterson R, Huang L, Guillemoles J-F, König D, Shrestha S and Green M A 2010 Sol. Energy Mater. Sol. Cells 94 1516–21

[3] Shah J 1992 Hot Carriers in Semiconductor Nanostructures (San Diego, CA: Academic)

[4] Ross R T and Nozik A J 1982 J. Appl. Phys. 53 3813

[5] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510

[6] Mahan G D 2000 Many-Particle Physics 3rd edn (New York: Kluwer Academic/Plenum Publishers)

[7] Shah J 1978 Solid-State Electron. 21 43

[8] Esmaielpour H, Durant B K, Dorman K R, Whiteside V R, Garg J, Mishima T D, Santos M B, Sellers I R, Guillemoles J-F and Suchet D 2021 Appl. Phys. Lett. 118 213902

[9] Ridley B K 1993 Quantum Processes in Semiconductors 3rd edn (Oxford: Clarendon)

[10] Hirst L C, Fujii H, Wang Y, Sugiyama M and Ekins-Daukes N J 2014 IEEE J. Photovolt. 4 1

[11] Shah J and Leite R C C 1969 Phys. Rev. Lett. 22 1304

[12] Pelouch W S, Ellington R J, Powers P E, Tang C L, Szymy D M and Nozik A J 1992 Phys. Rev. B 45 1450

[13] Ryan J F, Taylor R A, Turberfield A J, Maciel A, Worlock J M, Gossard A C and Wiegmann W 1984 Phys. Rev. Lett. 53 1841

[14] Rosenwaks Y, Hanna M C, Levi D H, Szymy D M, Ahrenkii R K and Nozik A J 1993 Phys. Rev. B 48 14675

[15] Shah J, Pincru, A, Gossard A C and Wiegmann W 1985 Phys. Rev. Lett. 54 2045

[16] Yang C H, Carlson-Swindle J M, Lyon S A and Worlock J M 1985 Phys. Rev. Lett. 55 2359

[17] Balkan N, Ridley B K, Emney M and Goodridge I 1989 Semicond. Sci. Technol. 4 852

[18] Hirst L et al 2011 Proc. IEEE 37th Photovoltaic Spec. Conf. p 3302

[19] Conibeer G, Zhang Y, Chung S, Liao Y, Bremer S and Shrestha S 2017 2017 IEEE 44th Photovoltaic Specialist Conf. (PVSC) pp 2186–91

[20] Conibeer G, Zhang Y, Bremer S P and Shrestha S 2017 Jpn. J. Appl. Phys. 56 091201

[21] Ferry D K 1978 Surf. Sci. 75 86

[22] Hess K 1979 Appl. Phys. Lett. 35 484

[23] Price P J 1981 Ann. Phys., NY 133 217

[24] Ridley B K 1982 J. Phys. C: Solid State Phys. 15 5899

[25] Riddoch F A and Ridley B K 1983 J. Phys. C: Solid State Phys. 16 6971

[26] Lugli P and Goodnick S M 1987 Phys. Rev. Lett. 59 716

[27] Goodnick S M and Lugli P 1988 Phys. Rev. B 37 2578

[28] Ge W, Xu Z, Li Y, Xu Z, Xu J, Zheng B and Zhuang W 1990 J. Lumin. 46 137

[29] Das Sarma S 1991 Proc. 7th Int. Conf. on Hot Carriers in Semiconductors (Nara, Japan)

[30] Joshi R P and Ferry D K 1989 Phys. Rev. 8 1180

[31] Hathwa R, Zou Y, Jirauscek C and Goodnick S M 2019 J. Phys. D: Appl. Phys. 52 093001

[32] Bockelmann U and Bastard G 1990 Phys. Rev. B 42 8947

[33] Urayama J, Norris T B, Singh J and Bhattacharyya P 2001 Phys. Rev. Lett. 86 4930

[34] Tsai C-Y 2018 Prog. Photovolt., Res. Appl. 26 808

[35] Klemens P G 1966 Phys. Rev. 148 845

[36] Sparks P W and Swenson C A 1967 Phys. Rev. B 163 779

[37] Rücker H, Molinari E and Lugli P 1991 Phys. Rev. B 44 3463

[38] Rücker H, Molinari E and Lugli P 1992 Phys. Rev. B 45 6747

[39] Babiker M 1986 J. Phys. C: Solid State Phys. 19 683–97

[40] Ridley B K 1989 Phys. Rev. B 39 5282

[41] Ridley B K 1982 J. Phys. C: Solid State Phys. 15 5899

[42] Ridley B K 1989 Phys. Rev. B 30 13377

[43] Das Sarma S and Mason B A 1985 Ann. Phys., NY 163 78

[44] Zhang J-Z, Dyson A and Ridley B K 2015 J. Appl. Phys. 117 025701

[45] Ridley B K 2009 Electrons and Phonons in Semiconductor Multilayers 2nd edn (Cambridge: Cambridge University Press)

[46] Cohen-Tannoudji C, Diu B and Laloe F 2019 Quantum Mechanics, Volume 1: Basic Concepts, Tools and Applications 2nd edn (Weinheim: Wiley-VCH)

[47] Lassnig R 1984 Phys. Rev. B 30 7132

[48] Riddoch F A and Ridley B K 1985 Physica B +C 1348 342

[49] Sasaki N 1986 J. Phys. C: Solid State Phys. 19 4965

[50] Paulavičius G, Mitin V V and Bannov N A 1997 J. Appl. Phys. 82 5580

[51] Giteau M, de Moustier E, Suchet D, Esmaielpour H, Sodabanli H, Watanabe K, Collin S, Guillemoles J-F and Okada Y 2020 J. Appl. Phys. 128 193102

[52] Barnham K W J and Duggan G 1990 J. Appl. Phys. 67 3490

[53] Nelson J et al 1997 J. Appl. Phys. 82 6240

[54] Ekins-Daukes N J et al 1999 Appl. Phys. Lett. 75 4195

[55] Mazzer M et al 2003 Proc. 3rd World Conf. on PV Energy Conversion (WCPEC3) p 2661

[56] Mori N and Ando T 1989 Phys. Rev. B 40 6175