Conformal Superspace σ-Models

Thomas Quella

University of Amsterdam

Edinburgh, 20.1.2010

Based on arXiv:0809.1046 (with V. Mitev and V. Schomerus)
and arXiv:09080878 (with C. Candu, V. Mitev, H. Saleur and V. Schomerus)

[This research received funding from an Intra-European Marie-Curie Fellowship]
σ-models in a nutshell

World-sheet

- 2D surface
 - (w/wo boundaries or handles)

Target space

- (Pseudo-)Riemannian manifold
 - (extra structure: gauge fields, ...)

σ-models = (quantum) field theories

Thomas Quella (University of Amsterdam)
Conformal Superspace σ-Models
A simple example: The circle

The moduli space of circle theories

\[R^2 / R \]

\[R_0 \]

\[S^1 \cong S^3 \]

Two lessons

- There is an equivalence: \(R \leftrightarrow R^2_0 / R \) (“T-duality”)
- In the quantum regime geometry starts to loose its meaning
A simple example: The circle

The moduli space of circle theories

Quantum regime

Classical regime

\(R^2 / R \)

\(R_0 \)

\(S^1 \cong S^3 \)

An open string partition function

\[
Z(q, z | R) = \text{tr} \left[z^P q^{\text{Energy}(R)} \right] = \frac{1}{\eta(q)} \sum_{w \in \mathbb{Z}} z^w q^{w^2 / 2R^2}
\]
Adding curvature and supersymmetry...

Appearances of superspace σ-models

- **String theory**
 - Quantization of strings in flux backgrounds
 - String theory / gauge theory correspondence
 - Moduli stabilization in string phenomenology

- **Disordered systems**
 - Quantum Hall systems
 - Self avoiding random walks, polymer physics, ...
 - Efetov’s supersymmetry trick

Conformal invariance

- **String theory**: Diffeomorphism + Weyl invariance
- **Statistical physics**: Critical points / 2^{nd} order phase transitions
Ingredients
- **Superspace σ-model encoding geometry and fluxes**
- Pure spinors: Curved ghost system
- BRST procedure

Features
- Manifest target space supersymmetry
- Manifest world-sheet conformal symmetry
- Action quantizable, but quantization hard in practice
Strings on $\text{AdS}_5 \times S^5$ and $\text{AdS}_4 \times \mathbb{CP}^3$

Spectrum accessible because of integrability
- Factorizable S-matrix
- Structure fixed (up to a phase) by $\text{SU}(2|2) \rtimes \mathbb{R}^3$-symmetry
- Bethe ansatz, Y-systems, ...

Open issues
- String scattering amplitudes?
- 2D Lorentz invariant formulation?
- Other backgrounds? \rightarrow Conifold, nil-manifolds, ...
Overview

Gauge theory	String theory
$\mathcal{N} = 4$ Super Yang-Mills	$\text{AdS}_5 \times S^5$
$\mathcal{N} = 6$ Chern-Simons	$\text{AdS}_4 \times \mathbb{CP}^3$
S-matrix, spectrum, ...	\leftrightarrow S-matrix, spectrum, ...
t’Hooft coupling λ, ...	Radius R, ...

Problem

From this perspective, both sides need to be solved **separately**.
Proposal: Two step procedure...

Weakly coupled 4D gauge theory

Feynman diagram expansion

Weakly coupled 2D theory

"Well-established machinery"

Strongly curved 2D σ-model

(Topological σ-model)

[Berkovits] [Berkovits,Vafa] [Berkovits]
String theory in 10D
(σ-model with constraints)

Gauge theory

Strong curvature
Weak curvature

Strong coupling
Weak coupling

$1/R$
λ
String theory in 10D
\((\sigma\text{-model with constraints})\)

\[\sigma \]

“Some dual 2D theory”

Gauge theory

\[1/R \]

\[g \]

\[\lambda \]

Strong curvature

Weak curvature

Strong coupling

Weak coupling
The structure of this talk

Outline

1. Supercoset σ-models
 - Occurrence in string theory and condensed matter theory
 - Ricci flatness and conformal invariance

2. Particular examples
 - Superspheres
 - Projective superspaces

3. Quasi-abelian perturbation theory
 - Exact open string spectra
 - World-sheet duality for supersphere σ-models
Appearance of supercosets

String backgrounds as supercosets...

Minkowski	AdS$_5 \times S^5$	AdS$_4 \times \mathbb{CP}^3$	AdS$_2 \times S^2$			
super-Poincaré	PSU(2,2	4) SO(1,4)\timesSO(5)	OSP(6	2,2) U(3)\timesSO(1,3)	PSU(1,1	2) U(1)\timesU(1)
Lorentz						

[Metsaev, Tseytlin] [Berkovits, Bershadsky, Hauer, Zhukov, Zwiebach] [Arutyunov, Frolov]

Supercosets in statistical physics...

IQHE	Dense polymers	Dense polymers						
(non-conformal)	$S^{2S+1	2S}$	$\mathbb{CP}^{S−1	S}$				
U(1,1	2) U(1	1)\timesU(1	1)	OSP(2S+2	2S) U(S	S)	U(1)\timesU(S−1	S)

[IQHE] Dense polymers | [Weidenmüller] [Zirnbauer] [Read, Saleur] [Candu, Jacobsen, Read, Saleur]
A unifying construction

Definition of the cosets

\[G/H : \quad gh \sim g \]

Some additional requirements for conformal invariance

- \(H \subset G \) is invariant subgroup under an automorphism
- Ricci flatness ("super Calabi-Yau") \(\iff \) vanishing Killing form

Examples: Cosets of \(\text{PSU}(N|N) \), \(\text{OSP}(2S + 2|2S) \), \(\text{D}(2, 1; \alpha) \).
Properties of conformal supercoset models

The moduli space of generic supercoset theories

Quantum regime \hspace{3cm} Classical regime

Radius

Properties at a glance

- Supersymmetry G: $g \mapsto kg$ (realized geometrically) [Kagan, Young] [Babichenko]
- Conformal invariance
- Integrability [Pohlmeyer] [Lüscher] ... [Bena, Polchinski, Roiban] [Young]
Properties of conformal supercoset models

The moduli space of generic supercoset theories

The general open string partition function

\[Z(q, z|R) = \text{tr} \left[z^{\text{Cartan}} q^{\text{Energy}(R)} \right] = \sum_{\Lambda} \psi_{\Lambda}(q, R) \chi_{\Lambda}^G(z) \]

Dynamics

Symmetry
Sketch of conformal invariance

The β-function vanishes identically...

$$\beta = \sum_{\text{certain } G\text{-invariants}} \kappa_{\mu\nu} = 0$$

Ingredients:
- Invariant form: $\kappa_{\mu\nu}$
- Structure constants: $f^{\mu\nu\lambda}$
The β-function vanishes identically...

$$f \bullet f = 0$$

Ingredients:

- Invariant form: $\kappa^{\mu\nu}$
- Structure constants: $f_{\mu\nu\lambda}$
The β-function vanishes identically...

There is a unique invariant rank 3 tensor!

[Bershadsky, Zhukov, Vaintrob’99] [Babichenko’06]
Sketch of conformal invariance

The β-function vanishes identically...

$\beta(f) \sim 0$

There is a unique invariant rank 3 tensor!

[Bershadsky, Zhukov, Vaintrob'99] [Babichenko'06]
Supersphere σ-models
The supersphere $S^{3|2}$

Realization of $S^{3|2}$ as a submanifold of flat superspace $\mathbb{R}^{4|2}$

$$\vec{X} = \begin{pmatrix} \vec{x} \\ \eta_1 \\ \eta_2 \end{pmatrix} \quad \text{with} \quad \vec{X}^2 = \vec{x}^2 + 2\eta_1\eta_2 = R^2$$

Symmetry

$$O(4) \times SP(2) \xrightarrow{\text{super-symmetrization}} OSP(4|2)$$

Realization as a supercoset

$$S^{3|2} = \frac{OSP(4|2)}{OSP(3|2)}$$
The supersphere σ-model

Action functional

\[S_\sigma = \int \partial_\mu \vec{X} \cdot \partial^\mu \vec{X} \quad \text{with} \quad \vec{X}^2 = R^2 \]

The space of states for freely moving open strings

\[\prod X^{a_i} \prod \partial_t X^{b_j} \prod \partial_t^2 X^{c_k} \ldots \quad \text{and} \quad \vec{X}^2 = R^2 \]

\Rightarrow Products of coordinate fields and their derivatives

Large volume partition function

- “Single particle energies” add up $\rightarrow \#$ derivatives
- Partition function is pure combinatorics
 [Candu, Saleur] [Mitev, TQ, Schomerus]
The large volume limit

Keeping track of quantum numbers...

- Symmetry

 $$\text{OSP}(4|2) \rightarrow \text{SP}(2) \times \text{SO}(4) \cong \text{SU}(2) \times \text{SU}(2) \times \text{SU}(2)$$

- Classify states according to the bosonic symmetry:

 $$\vec{X} = (\vec{x}, \eta_1, \eta_2) : \quad V = \begin{pmatrix} 0, \frac{1}{2}, \frac{1}{2} \end{pmatrix} \oplus \begin{pmatrix} \frac{1}{2}, 0, 0 \end{pmatrix}$$

 - bosons
 - fermions

- Other quantum numbers:
 - Energy $$q^E$$
 - Polynomial grade $$t^n$$ (broken by $$\vec{X}^2 = R^2$$)

- Use this to characterize all monomials

 $$\prod X^{a_i} \prod \partial_t X^{b_j} \prod \partial_t^2 X^{c_k} \ldots \quad \text{with} \quad \vec{X}^2 = R^2$$
Constituents of the partition function

A useful dictionary

Field theoretic quantity	Contribution	Representation
2 Fermionic coordinates	$t z_1^{\pm 1}$	$\frac{1}{2}$
4 Bosonic coordinates	$t z_2^{\pm 1} z_3^{\pm 1}, t z_2^{\pm 1} z_3^{\mp 1}$	$(\frac{1}{2}, \frac{1}{2})$
Derivative ∂	q	
Constraint $\vec{X}^2 = R^2$	$1 - t^2$	
Constraint $\partial^n \vec{X}^2 = 0$	$1 - t^2 q^n$	

$t \leftrightarrow$ polynomial grade

$z_1, z_2, z_3 \leftrightarrow$ SU(2) quantum numbers
The full σ-model partition function

Summing up all contributions...

$$Z_\sigma(R_\infty) = \lim_{t \to 1} \left[q^{-\frac{1}{24}} \prod_{n=0}^{\infty} (1 - t^2 q^n) \times \right.$$

$$\left. \prod_{n=0}^{\infty} \frac{(1 + z_1 t q^n)(1 + z_1^{-1} t q^n)}{(1 - z_2 z_3 t q^n)(1 - z_2^{-1} z_3 t q^n)(1 - z_2^{-1} z_3^{-1} t q^n)} \right]$$

The problem...

Organize this into representations of OSP(4|2)!
Since the model is symmetric under $\text{OSP}(4|2)$ the partition function may be decomposed into characters of $\text{OSP}(4|2)$:

$$Z_{\sigma}(R_\infty) = \sum_{[j_1,j_2,j_3]} \psi_{\sigma}[j_1,j_2,j_3](q) \chi_{[j_1,j_2,j_3]}(z)$$

All the non-trivial information is encoded in

$$\psi_{\sigma}[j_1,j_2,j_3](q) = \frac{q^{-c[j_1,j_2,j_3]/2}}{\eta(q)^4} \sum_{n,m=0}^{\infty} (-1)^{m+n} q^{\frac{m}{2}(m+4j_1+2n+1)+\frac{n}{2}+j_1-\frac{1}{8}}$$

$$\times \left(q^{j_2-\frac{n}{2}^2} - q^{j_2+\frac{n}{2}+1} \right) \left(q^{j_3-\frac{n}{2}^2} - q^{j_3+\frac{n}{2}+1} \right)$$
Sketch of the large volume partition function

\[\partial_t X^i \prod X^{a_j} \rightarrow 1 \]

\[\prod X^{a_j} \rightarrow 0 \]

\(E \)

\(\infty \) many representations

Spherical harmonics on \(S^{3|2} \)

Weak curvature \((R = \infty)\)
Sketch of the large volume partition function

Quantum regime ($R = 1$)

Weak curvature ($R = \infty$)
A world-sheet duality
for supersphere σ-models
A world-sheet duality for superspheres?

Supersphere σ-model

Quantum regime

Large volume

$R^2 = 1 + g^2$

Weak coupling

Strong coupling

geometric

non-geometric (potential)

$Z_\sigma(q, z|R)$

$Z_{GN}(q, z|g^2)$

$\text{OSP}(4|2)$ Gross-Neveu model

[Candu, Saleur]2 [Mitev, TQ, Schomerus]
In the two extreme limits the spectrum has the form...

Quantum regime ($R = 1$) Weak curvature ($R = \infty$)
Evidence for the duality

Weak coupling

Free ghosts / WZW model
Affine symmetry

Lattice formulation

Strong coupling

Free theory
Combinatorics

Goal:
\[Z_{\text{GN}}(q, z | g^2) = \sum \Lambda \psi_\sigma \Lambda(q, g^2) \chi_\Lambda(z) \]

[Candu, Saleur]² [Mitev, TQ, Schomerus]
Evidence for the duality

\[Z_{GN}(q, z | g^2) = \sum_\Lambda \psi_\Lambda^\sigma(q, g^2) \chi_\Lambda(z) \]

[Candu, Saleur] [Mitev, TQ, Schomerus]
OSP(4|2) Gross-Neveu model
The OSP(4|2) Gross-Neveu model

Field content
- Fundamental OSP(4|2)-multiplet ($\psi_1, \psi_2, \psi_3, \psi_4, \beta, \gamma$)
- All these fields have scaling dimension 1/2

Formulation as a Gross-Neveu model

\[
S_{GN} = S_{\text{free}} + g^2 S_{\text{int}} \quad \begin{cases}
S_{\text{free}} &= \int [\bar{\psi} \partial \psi + 2 \bar{\beta} \partial \gamma + \text{h.c.}] \\
S_{\text{int}} &= \int [\bar{\psi} \psi + \bar{\beta} \gamma - \bar{\gamma} \beta]^2 \end{cases}
\]

Graphs
- Weak coupling
- Strong coupling

Goal: $Z_{GN}(q, z | g^2)$
An open string spectrum

Formulation as a deformed \(\text{OSP}(4|2) \) WZW model

\[S_{GN} = S_{WZW} + g^2 S_{\text{def}} \quad \text{with} \quad S_{\text{def}} = \int \text{str}(J\bar{J}) \]

Solution at \(g = 0 \)
- At \(g = 0 \) there is an \(\text{OSP}(4|2) \) Kac-Moody algebra symmetry
- Partition functions can be constructed using combinatorics

An open string partition function for \(g = 0 \)

\[Z_{GN}(g^2 = 0) = \sum_{\Lambda} \psi_{\Lambda}^{\text{WZW}}(q) \chi_{\Lambda}(z) \]

- energy levels
- \(\text{OSP}(4|2) \) content
An open string spectrum

Formulation as a deformed OSP(4|2) WZW model

\[S_{GN} = S_{WZW} + g^2 S_{\text{def}} \quad \text{with} \quad S_{\text{def}} = \int \text{str}(J\bar{J}) \]

Solution at \(g = 0 \)
- At \(g = 0 \) there is an OSP(4|2) Kac-Moody algebra symmetry
- Partition functions can be constructed using combinatorics

An open string partition function for all \(g \)

\[Z_{GN}(g^2) = \sum_{\Lambda} q^{-\frac{1}{2}} \frac{g^2}{1+g^2} C_{\Lambda} \quad \psi_{\Lambda}^{WZW}(q) \quad \chi_{\Lambda}(z) \]
- anomalous dimension
- energy levels
- OSP(4|2) content
A specific D-brane in the OSP(4|2) WZW model...

The spectrum of a “twisted D-brane” is

\[Z_{GN}(g^2 = 0) = \chi_0(q, z) + \chi_{1/2}(q, z) \]

The problem (yet again...)

Organize this into representations of OSP(4|2)!
Decomposition into representations of $\text{OSP}(4|2)$

Plugging in concrete expressions, one obtains

$$Z_{\text{GN}}(g^2 = 0) = \frac{\eta(q)}{\theta_4(z_1)} \left[\frac{\theta_2(q^2, z_2^2)\theta_2(q^2, z_3^2)}{\eta(q)} + \frac{\theta_3(q^2, z_2^2)\theta_3(q^2, z_3^2)}{\eta(q)} \right]$$

$$= \sum \psi_{[j_1.j_2.j_3]}^{\text{WZW}}(q) \chi_{[j_1.j_2.j_3]}(z)$$
Plugging in concrete expressions, one obtains

\[
Z_{GN}(g^2 = 0) = \frac{\eta(q)}{\theta_4(z_1)} \left[\frac{\theta_2(q^2, z_2^2)\theta_2(q^2, z_3^2)}{\eta(q)^2} + \frac{\theta_3(q^2, z_2^2)\theta_3(q^2, z_3^2)}{\eta(q)^2} \right]
\]

\[
= \sum \psi^{WZW}_{[j_1,j_2,j_3]}(q) \chi_{[j_1,j_2,j_3]}(z)
\]

\[
\psi^{WZW}_{[j_1,j_2,j_3]}(q) = \frac{1}{\eta(q)^4} \sum_{n,m=0}^{\infty} (-1)^{n+m} q^{\frac{m}{2}(m+4j_1+2n+1)+j_1+n\frac{1}{2}}
\]

\[
\times \left(q^{(j_2-n\frac{1}{2})^2} - q^{(j_2+n\frac{1}{2}+1)^2} \right) \left(q^{(j_3-n\frac{1}{2})^2} - q^{(j_3+n\frac{1}{2}+1)^2} \right)
\]
What did we achieve now?

WZW model ($g = 0$)

Affine \{0\}

Affine \{1/2\}

E

1

$1/2$

Trivial

Adjoint

Fundamental \otimes Adjoint

Fundamental

WZW model ($g = 0$)
Interpolation of the spectrum

\[Z_{GN}(g^2) = \sum_{\Lambda} q^{-\frac{1}{2}} \frac{g^2}{1+g^2} c_{\Lambda} \psi_{\Lambda}(q) \chi_{\Lambda}(z) \]

anomalous dimension
energy levels
OSp(4\mid2) content

![Diagram showing energy levels and representations in WZW model and strong deformation](image)

WZW model (g = 0)
Strong deformation (g = \infty)
Supersphere σ-model at R → \infty
Quasi-abelian deformations
Consider a deformation...

\[R = R_0 \sqrt{1 + \gamma} \]

Freely moving open strings on a circle of radius \(R \)...

\[
Z(q, z|R) = \frac{1}{\eta(q)} \sum_{w \in \mathbb{Z}} z^w q^{\frac{w^2}{2R^2}} = \frac{1}{\eta(q)} \sum_{w \in \mathbb{Z}} q^{\frac{2R^2_w (1+\gamma)}{2R_0^2}} \chi_w(z)
\]

Anomalous dimensions

\[
\delta_\gamma E_w = \frac{w^2}{2R_0^2} \left[\frac{1}{1 + \gamma} - 1 \right] = -\frac{\gamma}{1 + \gamma} \frac{w^2}{2R_0^2} = -\frac{\gamma}{1 + \gamma} C_2(w)
\]
The effective deformation for conformal dimensions

The combinatorics of the perturbation series is determined by the current algebra

\[J^\mu(z) J^\nu(w) = \frac{k \delta^{\mu \nu}}{(z - w)^2} + \frac{i f^{\mu \nu \lambda} J^\lambda(w)}{z - w} \approx \frac{k \delta^{\mu \nu}}{(z - w)^2} \]

Vanishing Killing form \(\Rightarrow \) the perturbation is quasi-abelian (for the purposes of calculating anomalous dimensions)

[Bershadsky, Zhukov, Vaintrob] [TQ, Schomerus, Creutzig]

In the OSP(4|2) WZW model a representation \(\Lambda \) shifts by

\[\delta E^{\Lambda}(g^2) = -\frac{1}{2} \frac{g^2 C_\Lambda}{1 + g^2} = -\frac{1}{2} \left(1 - \frac{1}{R^2} \right) C_\Lambda \]
Projective Superspaces
New features

- Family contains supertwistor space $\mathbb{CP}^3|4$ \rightarrow [Witten]
- Non-trivial topology \Rightarrow Monopoles and θ-term
- Symplectic fermions as a subsector $[\text{Candu, Creutzig, Mitev, Schomerus}]
- θ-term \Rightarrow twists
- σ-model brane spectrum can be argued to be

$$Z_{R,\theta}(q, z) = q^{-\frac{1}{2} \lambda(R, \theta) \left[1 - \lambda(R, \theta)\right]} \sum_{\Lambda} q^{f(R, \theta) C_{\Lambda}} \psi_{\Lambda}^{\infty}(q) \chi_{\Lambda}(z)$$

result for $R \rightarrow \infty$ $[\text{Candu, Mitev, TQ, Saleur, Schomerus}]

- Currently no free field theory point is known...
Conclusions
Conclusions

- Using supersymmetry we determined the full spectrum of anomalous dimensions for certain open string spectra in various models as a function of the moduli.
- Our results provided strong evidence for a duality between supersphere σ-models and Gross-Neveu models.

Outlook

- Conformal invariance \leftrightarrow Integrability
- Closed string spectra?
- Application to more stringy backgrounds...