The BMW (Brera-Multiscale-Wavelet) Catalogue of Serendipitous X-ray Sources

Davide Lazzati1, Sergio Campana1, Stefano Covino1, Gian L. Israel2, Luigi Guzzo1, Roberto Mignani3, Alberto Moretti1, Maria R. Panzera1, and Gianpiero Tagliaferri1

1 Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate, Italy
2 Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone, Italy
3 European Southern Observatory, Garching bei Munchen, Germany

Abstract. In collaboration with the Observatories of Palermo and Rome and the SAX-SDC we are constructing a multi-site interactive archive system featuring specific analysis tools. In this context we developed a detection algorithm based on the Wavelet Transform (WT) and performed a systematic analysis of all ROSAT-HRI public data (\sim 3100 observations +1000 to come). The WT is specifically suitable to detect and characterize extended sources while properly detecting point sources in very crowded fields. Moreover, the good angular resolution of HRI images allows the source extension and position to be accurately determined.

This effort has produced the BMW (Brera Multiscale Wavelet) catalogue, with more than 19,000 sources detected at the $\sim 4.2\sigma$ level. For each source detection we have information on the X-ray flux and extension, allowing for instance to select complete samples of extended X-ray sources such as candidate clusters of galaxies or SNR's. Details about the detection algorithm and the catalogue can be found in Lazzati et al. 1999 and Campana et al. 1999. Here we shall present an overview of first results from several undergoing projects which make use of the BMW catalogue.

1 The Catalogue

The wavelet detection algorithm (WDA) we developed was made suited for a fast and efficient analysis of images taken with the ROSAT HRI instrument (see Lazzati et al. 1999 and Campana et al. 1999). From the automatic analysis of all pointing observations available in the ROSAT public archive (at HEASARC and MPE) as of January 1999, we derived the BMW catalogue with sources detected with a significance $\sim 4.2\sigma$ (~ 19000). All the detected HRI sources are characterized in flux, size and position. In Fig.~1 we show the differential and integral distributions of exposure times and galactic absorptions; while in Fig.~2 we plot the results of source detection applied to the crowded Trapezium field. At variance with the “sliding box” detection algorithms the WDA provides also a reliable description of the source extension allowing for a complete search of e.g. supernova remnants or clusters of galaxies in the HRI fields. To assess the source extension we considered all the sources detected in the observations that have a star(s) as a target.
Fig. 1. (a) Distribution of the HRI exposure times of the HRI images (all but SNR and calibration fields) that we have analyzed; (b) cumulative distribution. (c) Distribution of the Galactic column density in the same fields; (d) cumulative distribution.

(ROR number beginning with 2): 6013 in 756 HRI fields. The distribution of the source width (σ) as a function of the source off-axis angle has been divided into bins of 1 arcmin each in which we applied a σ-clipping algorithm on the source width. This method iteratively discards truly extended sources and provides the mean value of σ for each bin. We then determined the 3 σ dispersion on the mean for each bin. The mean value plus the 3 σ dispersion provide the threshold for the source extension (dashed line in Fig. 3, see also Rosati et al. 1995). We conservatively classify a source as extended if it lies more than 2 σ from this limit (filled squares in Fig. 3).

More than 1000 new HRI fields have been taken from the ROSAT public archive and will be analyzed in the next future.

2 First Results

In the following we present the first results obtained using the BMW bright-catalogue.

2.1 Search for Periodic Signals

The BMW bright-catalogue contains about 3000 sources with more than 160 photons, which we set as the minimum number required to carry out a meaningful search for period signals (see Israel et al. 1998). In collaboration with the Osservatorio Astronomico di Roma, these light curves were analysed in a systematic way by using the algorithm of Israel & Stella (1996) for the detection of coherent or quasi-coherent signals in the power spectra even in
presence of additional non-Poissonian noise components. The technique was
modified to correct for the spurious effects which characterise the ROSAT
light curves. During this systematic search we discovered ~ 321 s pulsations
in the X-ray flux of 1BMW J080622.8 +152732 = RX J0806.3+1527. Two
different HRI observations were obtained with the source at flux level of 3 and
5×10^{-12} erg cm$^{-2}$ s$^{-1}$, respectively. Only a faint $B = 20.5$ object is possibly
present within the error circle, while no optical counterpart is present in the
plate down to a limiting magnitude of ~ 20. This indicates that the object
is intrinsically blue. The X-ray and optical findings imply that the sourc
is a relatively distant (~ 500 pc) intermediate polar (IP) or, a nearby (~ 10 pc)
isolated neutron star accreting from the interstellar medium (Israel et al.
1999).

2.2 Search for Clusters of Galaxies

The evolution of the abundance of massive clusters of galaxies represents a
key test for the models of large-scale structure formation. X-ray observations
are the most fruitful (and physically sound) way to find such objects at high
redshift ($z > 0.5$), as demonstrated in recent years by surveys based on the
ROSAT PSPC archival data (e.g. Rosati et al. 1998, Vikhlinin et al. 1998a).
On the contrary, the ROSAT HRI data archive received poor attention as a
source for cluster searches, due to its lower sensitivity and higher background.
Our first results on BMW cluster candidates are showing that these problems
can be overcome with a clever analysis of the data (see Campana et al. 1999).
We have extracted a sample of cluster candidates based purely on the
source extension (cf. Fig. 3), which was requested to exceed the local PSF at
more than $\sim 5\sigma$ level. These candidates (limited to $|b_{II}| > 20^\circ$ and with
flux brighter than $f_x \sim 3 \cdot 10^{-14}$ erg s$^{-1}$ cm$^{-2}$) have been screened by cou-
ing the X-ray isophotes to the DSS2, discarding 20% of them as obvious

See gif image

Fig. 2. Source detection in the Trapezium field. The four panels show the smoothed
images at rebin 1, 3, 6 and 10 (i.e. pixel size of 0.5, 1.5, 3.0 and 5 arcsec, respec-
tively), respectively. Circles mark X-ray sources; the size of the circles is twice the
source width (σ; modelled as a Gaussian).
Fig. 3. Source extension (σ) vs. off-axis angle for 6013 sources detected in the HRI fields pointed on stellar targets. Dashed line, marks the 3 σ extension limit for point-like sources; solid line, computed PSF.

contaminants. About 90 objects in the current “clean” sample of candidates are already identified on the DSS with clear groups or clusters, while the remaining \sim 300 “blank-field” objects need dedicated imaging follow-up work. This is currently underway using the TNG and ESO 3.6 m telescopes and we show one example in Fig. 4. It is among these “invisible” objects that the highest-redshift clusters in this sample are certainly hidden. The success rate of the identification program is so far high, with 80% of the \sim 20 targets observed providing a positive identification.

A quantitative comparison of the BMW cluster sample properties to those of existing surveys is given in Fig. 4 (top right), where the sky coverage at different flux limits is plotted. The same figure shows also (bottom panel) an estimate of the survey number counts, clearly preliminary as mostly based on candidates that await confirmation. The large sky coverage, nearly 3 times that of the CfA PSPC sample, makes the BMW cluster sample an excellent source for finding luminous clusters and thus verify the indications for evolution of the XLF bright-end yielded by the EMSS and PSPC samples.

2.3 Cross-correlations

The sharp core of the ROSAT HRI Point Spread Function (< 6 arcseconds FWHM on-axis) greatly simplifies the search of counterparts at different wavelengths, providing valuable information for source identification. As first examples we present in Fig. 5 the cross-correlations of the BMW catalogue with the following catalogue: (i) a preliminary version of the Guide Star Catalog II (GSC–II); (ii) the Infrared IRAS point source catalogue; (iii) the NVSS
Fig. 4. **Left panels:** Colour-magnitude diagram of the cluster BMW080459.3+241 (lower panel), showing a concentration of the brighter galaxies (solid bullets, $r < 22.5$) around a similar colour. The sky distribution of these galaxies is marked in the upper panel over a 100 min image taken with the TNG telescope. The red–sequence colors suggest a tentative redshift $z \simeq 0.6$.

Right panels: Top: The solid angle covered by the BMW cluster sample at different fluxes compared to the the EMSS survey (Gioia et al. 1990) and two PSPC surveys (Cfa: Vikhlinin et al. 1998b; RDCS: Rosati et al. 1998). **Bottom:** Preliminary number counts for the cluster sample, compared to those expected (in the currently Boomerang-favoured cosmology), with and without the XLF evolution suggested by the RDCS.

catalogue at the radio wavelengths; (iv) the ROSAT source catalogue of HRI pointed observations (ROSHRICAT) delivered by the ROSAT Consortium.

The cross-correlation with the GSC-II is still preliminary since the optical catalogue does not cover all the sky yet. As soon as the GSC-II will be completed the cross-correlation will be repeated as well. The cross-correlations of the BMW bright-catalogue with the four catalogue provide the following results: $\sim 10,000$ cross-correlated objects with the GSC-II, ~ 400 with the IRAS catalogue, ~ 500 with the NVSS catalogue and finally ~ 6400 with the ROSHRI catalogue.

2.4 The On-line Service

A WEB based browser to access the service of the BMW catalogue has been developed at the Osservatorio Astronomico di Brera. The source by coordinate environment allows the search by object name or coordinates and to choose the output format (table only or table and sky chart). The WEB site can be found at:

http://vela.merate.mi.astro.it/~xanadu/browser/sbmw.html

If you need to get in touch with us write to: xanadu@merate.mi.astro.it.

References
Fig. 5. **upper left panel**: GSC-II B magnitude versus the BMW X-ray flux (0.1–2.4 keV) for the ~ 10000 cross-correlated objects (10 arcsec cone radius); **upper right panel**: IRAS flux (at 12 µm) versus the BMW X-ray flux for the ~ 400 cross-correlated objects (1 arcsec cone radius); **lower left panel**: NVSS flux (at 20 cm) versus the BMW X-ray flux for the ~ 500 cross-correlated objects (1 arcsec cone radius); **lower right panel**: ROSHRICAT count rate versus the BMW count rate for the ~ 6400 cross-correlated objects (1 arcsec cone radius). The two dashed lines represent the region in which the count rate is within a factor of two.

1. Campana, S., Lazzati, D., Panzera, M. R. et al. (1999) The Brera Multiscale Wavelet ROSAT HRI Source Catalog. II. Application to the HRI and First Results. ApJ 524, 423–433
2. Gioia, I. M., Maccacaro, T., Schild, R. E. et al. The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis. ApJS 72, 567–619
3. Israel, G. L., Panzera, M. R., Campana, S. et al. (1999) The Discovery of 321 s Pulsations in the ROSAT HRI Light Curves of 1BMW J080622.8+152732 = RX J0806.3+1527. A&A 349, L1–L4
4. Israel, G. L., Treves, A., Stella, L. et al. (1998) First Results from a Systematic Search for New X-ray Pulsators in ROSAT PSPC Fields. In: The Many Faces
of Neutron Stars, NATO-ASI Series, Vol. 515, Kluwer Academic Publishers, 411–417
5. Israel, G. L., Stella, L. (1996) A New Technique for the Detection of Periodic Signals in “Colored” Power Spectra. ApJ 468, 369–379
6. Lazzati, D., Campana, S., Rosati, P. et al. (1999) The Brera Multiscale Wavelet (BMW) ROSAT HRI Source Catalog. I. The Algorithm. ApJ 524, 414–422
7. Rosati, P., Della Ceca, R., Norman, C. et al. (1998) The ROSAT Deep Cluster Survey: The X-Ray Luminosity Function Out to z=0.8. ApJ 492, L21–L24
8. Rosati, P., Della Ceca, R., Burg, R. et al. (1995) A first determination of the surface density of galaxy clusters at very low x-ray fluxes. ApJ 445, L11–L14
9. Vikhlinin, A., McNamara, B. R., Forman, W. et al. (1998a) Evolution of Cluster X-Ray Luminosities and Radii: Results from the 160 Square Degree ROSAT Survey. ApJ 498, L21–L25
10. Vikhlinin, A., McNamara, B. R., Forman, W. et al. (1998b) A Catalog of 200 Galaxy Clusters Serendipitously Detected in the ROSAT PSPC Pointed Observations. ApJ 502, 558–581
This figure "lazzatif2.gif" is available in "gif" format from:

http://arxiv.org/ps/astro-ph/0012099v1
This figure "lazzatif4.gif" is available in "gif" format from:

http://arxiv.org/ps/astro-ph/0012099v1