INTRODUCTION

The range of intraocular pressure (IOP), among the general population, varies from 8-22 mmHg [1]. This variation can be explained by the numerous factors affecting IOP. Previous studies have shown that the factors associated with elevated IOP include smoking [2], older age [3], gender [2,3], blood pressure [2-4], family history of glaucoma [2,3], pulse rate [2,3], diabetes (elevated glycosylated hemoglobin) [2,3], myopia [5], alcohol usage [2], race (African) [4], nuclear sclerosis [3,5], body mass index (BMI) [2-4] and iris color [5].

Subjects with type 2 diabetes mellitus (DM) have an increased risk of developing open angle glaucoma [6]. It is important to study the distribution and effect of the factors affecting IOP among subjects with DM in India, as there are few population-based studies regarding the same [7]. Based on the procedure used and the population chosen, the distribution of intraocular pressure among type 2 DM varied from 14.86 to 21.5 mmHg [2,3,7-18].

However, these studies did not have standardized procedures like goldmann applanation tonometer (GAT) and fundus photography based standardized retinopathy grading. The aim of this study is to describe the IOP distribution and the factors affecting IOP in subjects with type 2 DM. It also elucidates the gender-specific influence of these factors on the IOP.

METHODS

Sankara Nethralaya - Diabetic Retinopathy Epidemiology and Molecular Genetic Study (SN- DREAMS 1) is a population-based, cross-sectional, study to estimate the prevalence and risk factors of diabetes and diabetic retinopathy in the South-Indian population. The detail methodology and study design of SN-DREAMS 1 is given elsewhere [19].

The study population was selected by multistage, systematic random sampling based on the socio-economic status, which made the sample a true representation of subjects with type 2 DM in India. Out
of the 5999 individuals, aged ≥ 40, enumerated from the general population, 1816 subjects had diabetes (known 1349 and provisional 469); 1563 (86.1%) subjects came for further evaluation at the base hospital and of these, 138 subjects with no diabetes and 11 subjects with ungradable retinal photographs were excluded. Apart from this, 30 subjects having IOP ≥ 22 mmHg, three glaucoma suspects and four subjects under anti-glaucoma medication (one of them being ocular hypertensive) were excluded from the study. Finally, we had 1377 subjects for this study. Known diabetics and provisional diabetics were selected in accordance with the ADA criterion [20]. Known diabetes is when diabetes is diagnosed by a medical practitioner, or the patient uses hypoglycemic medication, either oral or insulin or both and provisional diabetes is when the condition is diagnosed in a new asymptomatic individual with a first fasting blood glucose level ≥ 110 mg/dL (Accutrend alpha). The right eye was chosen for analysis, alternatively the eye without any history of ocular surgery was selected for analysis.

The study was approved by the Institutional Review Board and a written informed consent was obtained from the subjects as per the Helsinki Declaration. Subjects with provisional diabetes were confirmed to be having diabetes by re-estimating fasting blood glucose by enzymatic assay based glucose oxidation method (Accutrend alpha) [20]. The biochemical analyses done using the Merck Micro Lab 120, semi automated analyzer included total serum cholesterol (CHOD-POD method), high-density lipoproteins (after protein precipitation CHOD-POD method), serum triglycerides (CHOD-POD), hemoglobin (calorimetric hemoglobinometer), packed cell volume (capillary method) and the glycosylated hemoglobin fraction (Bio-Rad DiaSTAT HbA1c Reagent Kit).

Anthropometric measurements, including weight, height, waist and hip, were obtained using standardized techniques. The blood pressure was recorded, in the sitting position, in the right arm, to the nearest 2 mmHg using the mercury sphygmomanometer (Diamond Deluxe BP apparatus, Pune, India). Two readings were taken, five minutes apart, and their mean, was taken as the blood pressure. Microalbuminuria was estimated using the first morning urine sample, by a semi-quantitative procedure (Clintek 50 Bayer Urine Analyzer) in which the subjects were considered to have microalbuminuria, if the albumin creatinine ratio (ACR) was between 30 and 299 mg/g [21]. Diabetic neuropathy was assessed by measuring the vibration perception threshold (VPT) using a sensiometer by a single observer with a biothesiometer probe placed perpendicular to the distal plantar surface of the great toe in both legs. The mean VPT measure of the three readings of both legs was considered for the analysis. The presence of diabetic neuropathy was considered if the VPT value was >20 V [22].

After the initial phases of sampling, diabetes confirmation, biochemical and anthropometric examination, a comprehensive ophthalmic examination was conducted at a dedicated facility created in the base hospital in a pre-determined specific order - starting from the subject’s medical and ophthalmic condition to recording the presenting and the best-corrected distance visual acuity using the modified ETDRS chart (Light House Low Vision Products, New York, NY, USA). For those who could not read the English alphabet, the Landolt’s ring was shown. The pinhole visual acuity was assessed for those having visual acuity less than 4/4 (LogMAR 0.0). An objective refraction was performed with a streak retinoscope (Beta 200, Heine, Germany) and was followed by subjective refraction. The corneal endothelial status was assessed with the corneal specular microscopy, the corneal thickness was measured using the Corneal Pachymeter (Alcon ultrasound pachymeter) after which the slit lamp examination was performed (Zeiss SL 130). The peripheral anterior chamber depth was assessed as per the van Herick grading [23] and the iris was examined for neovascularization. The IOP in both the eyes were measured using Goldmann applanation tonometer (Zeiss AT 030 Appplanation Tonometer, Carl Zeiss, Jena, Germany), using 0.05% proparacaine eyedrops as topical anaesthesia and 2% fluorescein to stain the tear film [24]. The IOP in the right eye was measured first and taken for analysis (Intra correlation coefficient 0.84 between the eyes), with only one reliable measurement recorded for each. The instrument was calibrated on the first working day of every week. After dilating the pupils with 5%...
Table 1. Distribution of Intraocular pressure in various subgroups among subjects with type 2 diabetes mellitus

Mean ± SD	Over all (n=1377)	Men (n=731)	Women (n=646)				
IOP (mmHg)	n		n		n		p
Mean IOP	14.8 ± 2.9		14.6 ± 2.9		15.0 ± 2.8		0.005
Demography							
Age (y)							
40 - 49	385		210		175		0.94
50 - 59	494		245		249		0.28
60 - 69	342		178		164		1.29
70 +	156		96		58		2.6
Duration of diabetes (y)							
< 5	799		403		396		2.7
≥ 5	578		328		250		2.9
Nuclear cataract							
Absent	1011		550		461		2.8
Present	187		93		94		2.1
Alcohol history							
Absent	2074		1074		646		2.8
Present	303		303		0		2.9
Refractive error							
Absent	511		287		224		2.7
Present	866		444		422		2.8
Family history of glaucoma							
Absent	1371		727		224		2.8
Present	6		4		422		2.7
Smoking status							
Non smoker	1106		460		646		2.8
Smoker	271		271		0		2.9
Insulin							
Non user of insulin	1310		698		612		2.8
User of insulin	67		33		34		3.0
Anthropometry							
BMI							
Lean	87		66		21		3.1
Normal	522		365		157		2.9
Overweight	562		258		304		2.7
Obese	206		42		164		2.9
Height (cm)							
≤ 156	586		652		619		2.8
> 156	791		79		27		3.0
Weight (kg)							
< 57.5	410		208		163		2.8
≥ 57.5	967		523		483		2.8
Axial length (mm)							
< 22.6	565		257		308		2.7
≥ 22.6	786		465		321		2.9
Hypertension							
No	499		300		199		2.8
Yes	878		431		447		2.8
Systolic BP (mmHg)							
< 130	401		242		159		2.9
≥ 130	976		489		487		2.8
Diastolic BP (mmHg)							
< 80	429		241		188		2.8
≥ 80	948		490		458		2.8
Biochemical							
Serum total cholesterol (mg/dL)							
< 200	883		511		372		2.8
≥ 200	493		219		274		2.8

STDRI: sight threatening diabetic retinopathy (severe Non proliferative diabetic retinopathy, proliferative diabetic retinopathy and clinically significant macular edema), CSME: clinically significant macular edema, HbA1c: glycosylated hemoglobin, BP: blood pressure, CCT: central corneal thickness, BMI: body mass index, FBS: fasting blood sugar.
Table 1. Continued

Risk factors	Over all (n=1377)	Mean±SD	Men (n=731)	p	Women (n=646)	p
Serum high density lipoproteins (mg/dl)						
≥ 60	1327	14.8 ± 2.9	0.56	715	14.6 ± 2.9	0.93
< 60	49	15.0 ± 2.9		15	14.7 ± 3.1	0.34
Serum triglycerides (mg/dl)						
< 150	848	14.7 ± 2.9	0.37	448	14.5 ± 2.9	0.56
≥ 150	528	14.9 ± 2.9		282	14.7 ± 2.9	0.26
HbA1c (%)						
Normal (<5.6)	97	14.7 ± 2.9	0.31	49	14.9 ± 3.1	0.72
Good to Fair (5.6 - 8.0)	654	14.7 ± 2.8		346	14.5 ± 2.9	0.70
Poor (≥ 8.1)	626	14.9 ± 2.9		336	14.6 ± 2.9	0.94
Albuminuria						
No micro / macroalbuminuria	1123	14.8 ± 2.8	0.43	594	14.6 ± 2.9	0.96
Microalbuminuria	217	15.0 ± 3.1		115	14.5 ± 3.2	0.10
Macroalbuminuria	37	14.5 ± 2.7		22	14.5 ± 2.9	0.15
FBS (mg/dl)						
< 126	402	14.8 ± 2.9	0.35	226	14.6 ± 3.1	0.94
≥ 126	975	14.8 ± 2.9		505	14.6 ± 2.9	0.76
CCT (microns)						
< 511	466	14.5 ± 2.8	0.002	233	14.3 ± 2.9	0.07
≥ 511	911	14.9 ± 2.9		498	14.7 ± 2.9	0.41
Pulse (Beats/min)						
< 80	960	14.6 ± 2.9	<0.0001	529	14.4 ± 2.9	0.003
≥ 80	417	15.2 ± 2.8		202	15.1 ± 2.8	0.21
Diabetes complications						
Absent	1130	14.8 ± 2.8	0.44	578	14.6 ± 2.9	0.39
Present	247	14.7 ± 3.1		155	14.2 ± 3.1	0.92
STDR						
Absent	1333	14.8 ± 2.9	0.54	702	14.6 ± 2.9	0.23
Present	44	14.5 ± 3.1		29	13.9 ± 2.9	0.15
CSME						
Absent	1361	14.8 ± 2.9	0.29	722	14.6 ± 2.9	0.62
Present	16	15.7 ± 3.1		9	14.1 ± 3.0	0.07
Diabetic neuropathy						
Absent	1113	14.9 ± 2.8	0.008	581	14.7 ± 2.9	0.06
Present	251	14.4 ± 2.9		146	14.2 ± 2.9	0.10

STDR: sight threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy, proliferative diabetic retinopathy and clinically significant macular edema), CSME: clinically significant macular edema, HbA1c: glycosylated hemoglobin, BP: blood pressure, CCT: central corneal thickness, BMI: body mass index, FBS: fasting blood sugar.

Glycemic control was categorized as normal (glycosylated hemoglobin [HbA1c] < 5.6), good (HbA1c 5.6 - 7.0), fair (HbA1c 7.1 - 8.0) and poor (HbA1c ≥ 8.1) [20]. The fasting plasma glucose was considered to be high if the value was >126 mg/dL [26]. The height and weight of all subjects were noted, after which the body mass index (BMI) was calculated using the formula: weight (kg)/height (m²) [27]. Based on the BMI, individuals were classified as lean (male, <20; female, <19), normal (male, 20-25; female, 19-24), overweight (male, 25-30; female, 24-29) or obese (male, >30; female, >29) [28]. The mean Indian height and weight (Indian Council of Medical Research, 1990), axial length [27], CCT [29], pulse beat [30] were taken for general characteristics, whereas, total cholesterol, high and low density cholesterol, triglycerides levels were taken from a previous study [31].

Along with the age and gender-specific mean IOP (±
standard deviation (SD), the mean IOP (± SD), based on the stratification of each categorical predictor, was also calculated. Analysis of variance (ANOVA) was used to compare the demographic, anthropometric, biochemical factors with the IOP. Beta values were calculated for the continuous variables. Both unadjusted and adjusted regression analysis was performed for the variables. All analysis was done using SPSS version 15.0 (SPSS Inc., Chicago, IL). A p value of ≤ 0.05 was considered significant.

RESULTS

Figure 1 shows the normal distribution of intraocular pressure among subjects with type 2 diabetes. The mean IOP was 14.8 ± 2.9 mmHg (men 14.6 ± 2.9 and women 15.0 ± 2.8 mmHg, p=0.005). There was no significant difference between the mean IOP in the right and left eye (p=0.185). Table 1 shows the IOP distribution in various sub-groups. Subjects with hypertension and a raised systolic blood pressure (SBP) had a higher IOP than those without (14.9 ± 2.9 vs 14.6 ± 2.9 mmHg, p=0.03 and 14.9 ± 2.9 vs 14.4 ± 2.9 mmHg, p=0.001 respectively). Those with diabetic neuropathy had a lower IOP than those without (14.4 ± 2.9 vs 14.9 ± 2.8 mmHg, p=0.008). Among women subjects, those with clinically significant macular edema (CSME) had a higher IOP than those without CSME (17.4 ± 2.2 vs 15.0 ± 2.8 mmHg, p=0.02). Smokers had a higher IOP than non-smokers (14.9 ± 2.9 vs 14.3 ± 2.9, p=0.001) whereas, alcoholics had a lower IOP than non-alcoholics (14.4 ± 2.9 vs 14.9 ± 2.9, p=0.002). Short stature, high central corneal thickness (CCT) and raised pulse beat were significantly associated with a higher IOP, whereas, longer axial length was significantly associated with a higher IOP only in men subjects. Table 2 describes the correlation of the continuous variables with the intraocular pressure. height, SBP, pulse, CCT and serum total cholesterol were the variables found to be significantly associated with intraocular pressure. Pulse (men: r=0.076, p=0.021 and women r=0.058, p=0.011) and CCT (men: r=0.12, p=0.001 and women r=0.182, p<0.001) were the variables associated with an elevated IOP in men and women.

Table 3 shows the gender-specific unadjusted analysis for continuous variables associated with IOP in subjects with type 2 diabetes. Factors associated with an elevated IOP included elevated systolic blood pressure (β=0.008, p=0.024), elevated resting pulse rate (β=0.019, p=0.006) and thicker central corneal thickness (β

Variable	r	p
Age (y)	-0.015	0.29
Duration of diabetes (y)	-0.035	0.09
Weight (Kg)	-0.012	0.33
Height (cm)	-0.012	0.004
Systolic BP (mmHg)	0.061	0.01
Diastolic BP (mmHg)	0.041	0.06
Pulse (Beats/min)	0.074	0.003
CCT (r)	0.139	<.0001
Axial Length (mm)	0.026	0.16
Serum Total cholesterol (mg/dL)	0.047	0.04
Serum high density lipoproteins (mg/dL)	0.003	0.45
Serum Triglycerides (mg/dL)	0.021	0.16
HbA1C (%)	0.035	0.10
FBS (mg/dL)	0.045	0.04
Over All		
Age (y)	0.014	0.35
Duration of diabetes (y)	-0.061	0.05
Weight (Kg)	-0.011	0.38
Height (cm)	-0.029	0.215
Systolic BP (mmHg)	0.076	0.02
Diastolic BP (mmHg)	0.057	0.06
Pulse (Beats/min)	0.076	0.02
CCT (r)	0.12	0.00
Axial Length (mm)	0.057	0.06
Serum total cholesterol (mg/dL)	0.013	0.36
Serum high density lipoproteins (mg/dL)	-0.008	0.41
Serum triglycerides (mg/dL)	0.027	0.23
HbA1C (%)	-0.003	0.47
FBS (mg/dL)	0.047	0.10
Men		
Age (y)	0.041	0.14
Duration of diabetes (y)	0.025	0.26
Weight (Kg)	0.016	0.34
Height (cm)	-0.027	0.24
Systolic BP (mmHg)	0.029	0.23
Diastolic BP (mmHg)	0.015	0.35
Pulse (Beats/min)	0.058	0.01
CCT (r)	0.182	<.0001
Axial Length (mm)	0.018	0.33
Serum total cholesterol (mg/dL)	0.063	0.05
Serum high density lipoproteins (mg/dL)	-0.008	0.41
Serum triglycerides (mg/dL)	0.037	0.17
HbA1C (%)	0.08	0.02
FBS (mg/dL)	0.039	0.16

Table 2. Correlation with intraocular pressure

BP: blood pressure, CCT: central corneal thickness, HbA1c: glycosylated hemoglobin, FBS: fasting blood sugar.
thicker central corneal thickness ($\beta = 0.011, p < 0.001$) and elevated resting pulse rate ($\beta = 0.001, p = 0.03$); height was associated with a decrease in the IOP ($\beta = -0.028, p = 0.008$). A thicker central corneal thickness was the single variable associated with an elevated IOP in men and women (men: $\beta = 0.01, p = 0.002$ and women $\beta = 0.015, p < 0.001$).

DISCUSSION

The supplementary Table shows the comparison of the mean IOP in published population-based reports among type 2 diabetes. The mean IOP among diabetics in our study was lower than other studies [2,8,9]. When compared to other races, the IOP in the Asian ethnicity is lower [7,10]. The Barbados Eye Study and the Los Angeles Latino Eye Study, like our study, has also found
a higher IOP among women with diabetes [2,11]. However, Kawase et al. [32] did not find any gender difference in IOP. We assume that the increased IOP among women with elevated glycosylated hemoglobin in our study is related to accumulation of fibronectin in trabecular meshwork [12]. Higher prevalence of obesity, hypertension and probably a higher life expectancy can best explain higher IOP among women [11]. Similar to our study, many other studies have reported a higher prevalence of elevated IOP among subjects with hypertension [2-4,11]. Although, the rationale for this is poorly understood, possible reasons could be increased aqueous humor production by ultrafiltration due to the elevated ciliary artery pressure, a generalized increase in the sympathetic tone or elevated serum corticosteroid levels as seen in hypertension subjects [4].

We found a higher IOP among women with CSME. The reason for this is unknown. But, this can probably be explained by a complex interplay between the change in retinal hemodynamics, ocular perfusion, scleral rigidity and hormonal influence among women [33].

We found an inverse relationship between the presence of diabetic neuropathy and IOP. al-Sereiti et al. [13] reported normal IOP among patients with diabetes having autonomic neuropathy. However, one study has shown that autonomic denervation may be a prerequisite of peripheral diabetic neuropathy [34]. It has been postulated that in autonomic neuropathy, the pupil/iris diameter is reduced, which increases the aqueous drainage, reducing the IOP [13].

Similar to previous studies, alcohol has been shown to lower the IOP, possibly through a reduction of net water movement into the eye [35], whereas, smoking was found to increase the IOP, hypothesized to be due to smoking induced degenerative changes in the arteries and increase in blood viscosity [36].

Wu et al. [3] found a positive association between pulse rate and IOP, similar to our study. Even on multivariate analysis after adjusting for variables like age, gender, duration of diabetes, BMI and glycemic control, the association between the resting pulse rate and the IOP remained the same. Like earlier study [37], the present study also found a negative relationship between height and IOP. However, one study by Bulpitt et al. [4] found no relationship between the two. The height of an individual is related to genetic and acquired factors like status of growth hormone and childhood nutrition [38] which may probably affect the IOP. BMI and IOP being directly proportional, and height being inversely proportional to BMI [19], we can expect a similar inverse relationship between height and IOP.

Earlier study has reported a similar relationship between CCT and IOP among subjects with diabetes [11]. However, as diabetes affects corneal biomechanics, this results in lower corneal hysteresis values than those in healthy control subjects [39]. This may cause clinically relevant high IOP measurements independent of CCT. Also, the GAT gives an accurate intraocular pressure reading for an eye with average CCT, but tends to underestimate or overestimate the true intraocular pressure for thinner and thicker cornea, respectively [11]. Our study confirmed this correlation between increasing IOP and increasing CCT as measured by GAT.

The strength of this study was that it used photography and standard grading techniques. Further, the study was representative of a large population, and the results could be extrapolated to the whole of urban India. One of the
limitations of this study was the absence of non-diabetic subjects, including them may have elicited a better relationship between IOP and subjects with DM. Also, in subjects with known DM, a second estimation of blood glucose was not performed; the diagnostic accuracy of the treating diabetologists was relied upon totally. The sample size for this study was calculated for the estimation of the prevalence of diabetic retinopathy in the general population; the power to elucidate associated risk factors in the subgroup analysis may be inadequate. This study does not have any data on progression, as no follow-up is envisaged. These data stress on the need for regular ocular examinations in subjects with type 2 DM in countries like India, especially for smokers and when associated with systemic hypertension. Even the IOP distribution in subjects with type 2 diabetes is gender specific. In conclusion, identifying the risk factors for high IOP in this population will prevent blindness in this vulnerable population.

CONFLICT OF INTEREST

The authors have no conflicts of interest with the material presented in this paper.

REFERENCES

1. Vijaya L, George R, Baskaran M, Arvind H, Raju P, Ramesh SV, et al. Prevalence of primary open-angle glaucoma in an urban south Indian population and comparison with a rural population. The Chennai Glaucoma Study. *Ophthalmology* 2008; 115(4): 648-654.

2. Wu SY, Leske MC. Associations with intraocular pressure in the Barbados Eye Study. *Arch Ophthalmol* 1997; 115(12): 1572-1576.

3. Klein BE, Klein R, Linton KL. Intraocular pressure in an urban south Indian population. *Arch Ophthalmol* 1975; 59(12): 717-720.

4. Wei L, Mukesh BN, McCarty CA, Taylor HR. Association of demographic, familial, medical, and ocular factors with intraocular pressure. *Arch Ophthalmol* 2001; 119(6): 875-880.

5. Chopra V, Varma R, Francis BA, Wu J, Torres M, Azen SP, et al. Type 2 diabetes mellitus and the risk of open-angle glaucoma the Los Angeles Latino Eye Study. *Ophthalmology* 2008; 115(2): 227-232.

6. Arora VK, Prasad VN. The intraocular pressure and diabetes-a correlative study. *Indian J Ophthalmol* 1989; 37(1): 10-12.

7. Nemesure B, Wu SY, Hennis A, Leske MC; Barbados Eye Studies Group. Factors related to the 4-year risk of high intraocular pressure: the Barbados Eye Studies. *Arch Ophthalmol* 2003; 121(6): 856-862.

8. Tielsch JM, Katz J, Quigley HA, Javitt JC, Sommer A. Diabetes, intraocular pressure, and primary open-angle glaucoma in the Baltimore Eye Survey. *Ophthalmology* 1995; 102(1): 48-53.

9. Xu L, Xie XW, Wang YX, Jonas JB. Ocular and systemic factors associated with diabetes mellitus in the adult population in rural and urban China. The Beijing Eye Study. *E eye (Lond)* 2009; 23(3): 676-682.

10. Memarzadeh F, Ying-Lai M, Azen SP, Varma R; Los Angeles Latino Eye Study Group. Associations with intraocular pressure in Latinos: the Los Angeles Latino Eye Study. *Am J Ophthalmol* 2008; 146(1): 69-76.

11. Oshitari T, Fujimoto N, Hanawa K, Adachi-Usami E, Roy S. Effect of chronic hyperglycemia on intraocular pressure in patients with diabetes. *Am J Ophthalmol* 2007; 143(2): 363-365.

12. al-Sereiti MR, Turner P, Gale EA. Intraocular pressure and pupillary responses in patients with diabetes mellitus. *Postgrad Med J* 1991; 67(785): 250-251.

13. Bankes JL. Ocular tension and diabetes mellitus. *Br J Ophthalmol* 1967; 51(8): 557-561.

14. Bouzas AG, Gragoudas ES, Balodimos MC, Brinigar CH, Aiello LM. Intraocular pressure in diabetes. Relationship to retinopathy and blood glucose level. *Arch Ophthalmol* 1971; 85(4): 423-427.

15. Williams BI, Peart WS, Letley E. Abnormal intraocular pressure control in systemic hypertension and diabetic mellitus. *Br J Ophthalmol* 1980; 64(11): 845-851.

16. Klein BE, Klein R, Moss SE. Intraocular pressure in diabetic persons. *Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus*. 1984; 91(11): 1356-1360.

17. Dielemans I, de Jong PT, Stolk R, Vingerling JR, Grobbee DE, Hofman A. Primary open-angle glaucoma, intraocular pressure, and diabetes mellitus in the general elderly population. The Rotterdam Study. *Ophthalmology* 1996; 103(8): 1271-1275.

18. Agarwal S, Raman R, Paul PG, Rani PK, Uthra S, Gayathree R, et al. Sankara Nethralaya-Diabetic Retinopathy Epidemiology and Molecular Genetic Study (SN-DREAMS 1): study design and research method-ology. *Ophthalmic Epidemiol* 2005; 12(2): 143-153.

19. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. *Diabetes Care* 2003; 26(Suppl 1): S5-S20.

20. Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, et al. Nephropathy in diabetes. *Diabetes Care* 2004; 27(Suppl 1): S79-S83.

21. Pradeepa R, Rema M, Vignesh J, Deepa M, Deepa R,
Mohan V. Prevalence and risk factors for diabetic neuropathy in an urban south Indian population: the Chennai Urban Rural Epidemiology Study (CURES-55). Diabet Med 2008; 25(4): 407-412.

23. Palmberg P. Gonioscopy. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas, vol. I. 4th ed. St. Louis: Mosby; 1996. p. 455-470.

24. Kass MA. Standardizing the measurement of intraocular pressure for clinical research. Guidelines from the Eye Care Technology Forum. Ophthalmology 1996; 103(1):183-185.

25. Klein R, Klein BE, Magli YL, Brothers RJ, Meuer SM, Moss SE, et al. An alternative method of grading diabetic retinopathy. Ophthalmology 1986; 93(9): 1183-1187.

26. American Diabetes Association. Tests of glycemia in diabetes. Diabetes Care 2000; 23(suppl 1): S80-S82.

27. Nangia V, Jonas JB, Sinha A, Matin A, Kulkarni M, Panda-Jonas S. Ocular axial length and its associations in an adult population of central rural India: the Central India Eye and Medical Study. Ophthalmology 2010; 117(7): 1360-1366.

28. Mohan V, Vijayaraprabha R, Rema M, Premalatha G, Poongothai S, Deepa R, et al. Clinical profile of lean NIDDM in South India. Diabetes Res Clin Pract 1997; 38(2): 101-108.

29. Vijaya L, George R, Arvind H, Ve Ramesh S, Baskaran M, Raju P, et al. Central corneal thickness in adult South Indians: the Chennai Glaucoma Study. Ophthalmology 2010; 117(4): 700-704.

30. Fauzi AS. Harrison’s principles of internal medicine. 17th ed. New York: McGraw-Hill; 2008. p. 1535.

31. Menon VU, Guruprasad U, Sundaram KR, Jayakumar RV, Nair V, Kumar H. Glycaemic status and prevalence of comorbid conditions among people with diabetes in Kerala. Natl Med J India 2008; 21(3): 112-115.

32. Kawase K, Tomidokoro A, Arai M, Iwase A, Yamamoto T; Tajimi Study Group, et al. Ocular and systemic factors related to intraocular pressure in Japanese adults: the Tajimi study. Br J Ophthalmol 2008; 92(9): 1175-1179.

33. Ciulla TA, Harris A, Latkany P, Piper HC, Arend O, Garzozi H, et al. Ocular perfusion abnormalities in diabetes. Acta Ophthalmol Scand 2002; 80(5): 468-477.

34. Ryder RE, Kennedy RL, Newrick PG, Wilson RM, Ward JD, Hardesty CA. Autonomic denervation may be a prerequisite of diabetic neuropathic foot ulceration. Diabet Med 1990; 7(8): 726-730.

35. Harris A, Swartz D, Engen D, Beck D, Evans D, Caldemeyer K, et al. Ocular hemodynamic effects of acute ethanol ingestion. Ophthalmic Res 1996; 28(3):193-200.

36. Lee AJ, Rochtchina E, Wang JJ, Healey PR, Mitchell P. Does smoking affect intraocular pressure? Findings from the Blue Mountains Eye Study. J Glaucoma 2003; 12(3): 209-212.

37. Carel RS, Korczyn AD, Rock M, Goya I. Association between ocular pressure and certain health parameters. Ophthalmology 1984; 91(4): 311-314.

38. Hellgren G, Andersson B, Nierop AF, Dahlgren J, Hochberg Z, Albertsson-Wikland K. A proteomic approach identified growth hormone-dependent nutrition markers in children with idiopathic short stature. Proteome Sci 2008; 6: 35.

39. Sahin A, Bayer A, Ozge G, Mumcuğlu T. Corneal biomechanical changes in diabetes mellitus and their influence on intraocular pressure measurements. Invest Ophthalmol Vis Sci 2009; 50(10): 4597-4604.
Appendix. Comparison of mean IOP in published population-based reports among type 2 diabetes

Study name	Country	Publication year	Ethnicity	Gender	Age range (y)	Age (mean ± SD) (y)	Sample (n)	IOP measurement technique	IOP (mean ± SD) (mmHg)
Bankes JL [14]	England	1967	Mixed	Both	≥ 40	NA	212	GAT	16.69 ± 3.32
Bouzas AG, et al [15]	New England	1971	Mixed	Both	51 - 68	NA	56	GAT	15.19 ± 3.15
Williams B, et al [16]	England	1980	Mixed	Both	25 - 70	53.36 ± 13.3	14	Perkins handheld	18.9 ± 2.25
Wisconsin epidemiologic study [17]	USA	1984	Mixed	Both	0 to >75	NA	2990	GAT	16.3 ± 4.12
Arora VK, et al [7]	India	1989	Asian	Males	NA	NA	46	Schiotz	19.26
al-Sereiti MR, et al [13]	England	1991	Mixed	Both	40 ± 15	53.36 ± 13.3	38	Non-contact	15.5 ± 3.9
Beaver dam eye study [3]	USA	1992	Mixed	Both	43 - 84	NA	438	GAT	16.05 ± 3.8
Baltimore eye survey [9]	USA	1995	Mixed	Both	≥ 40	NA	714	GAT	17.9 ± 0.24
Rotterdam study [18]	Netherland	1996	White	Both	≥ 55	55 - 94	256	GAT	14.86 ± 2.91
Barbados eye study [2]	West Indies	1997	Mixed	Both	40 - 84	58	17	GAT	18.6 ± 3.7
Barbados incidence study of eye diseases [8]	West Indies	2003	Mixed	Both	40 - 84	57.5 ± 11.5	559	GAT	21.5 ± 4.7
Oshitari T [12]	Japan	2007	Japanese	Both	NA	60.86 ± 10.76	190	GAT	16.0 ± 2.5
Los Angeles Latino eye study [11]	USA	2008	Mexicans	Both	≥ 40	NA	1416	GAT	15.2 ± 3.3
Beijing eye study [10]	China	2009	Chinese	Both	45 - 89	60.4 ± 10	381	Non-contact	16.14 ± 2.96
Present study	India	2010	Asian	Both	≥ 40	56.32 ± 10.02	1414	GAT	14.8 ± 2.9

GAT: goldmann applanation tonometry, IOP: intraocular pressure, SD: standard deviation.