INTRODUCTION

Blastocystis hominis is the most common intestinal protozoan, with a wide geographic distribution that has unclear clinical significance [1]. It is a morphologically variable protozoan that can exist in granular, vacuolar, amoeboid, and cystic forms. Vacuolar forms are most often observed under microscopic examination. The amoeboid forms are considered pathogenic and responsible for the manifestation of clinical symptoms, including various intestinal conditions. With symptoms similar to those of irritable bowel syndrome, transmission of *Blastocystis* occurs by the fecal-oral route through the consumption of contaminated water or food [2,3]. Although this parasite can be asymptomatic, in immuno-
compromised patients it can function as an opportunistic pathogen and cause gastrointestinal disorders [4]. Blastocystis spp. are considered to be pathogenic whenever more than 5 parasites are detected in each microscopic field without the presence of other organisms [4,5]. Because of the variable size of the parasite and its similarity to fat drops, yeast, and white blood cells, it has been recommended to apply several diagnostic tests to detect Blastocystis in stool specimens [6]. The prevalence of Blastocystis infection varies from 1.6% to 16.0% in developed countries, such as Singapore and Japan [7,8] and can reach 60.0% in developing countries including Senegal, Cuba, Brazil, and Argentina [9-12]. In Iran, the total prevalence of B. hominis in the total population has been estimated to be 3.0% [13]. Because of the high infection rate, data collection and analysis are essential for identifying high-risk locations, factors related to incidence, and control strategies for Blastocystis. The use of a geographic information system is a strategy that could enable a more accurate evaluation of the distribution of the illness in a high-incidence community and improvements in approaches to avoid infection spread. Therefore, using this powerful tool, along with a risk factor questionnaire, constitutes a true environmental health approach [14]. The current study was performed to study the prevalence and geospatial distribution of Blastocystis among the total population in Mazandaran Province (in northern Iran) and to identify factors associated with the occurrence of B. hominis.

MATERIALS AND METHODS

Study area
This cross-sectional study was performed in Mazandaran Province, which is located in northern Iran (35°47′ to 36°35′N, 50°34′ to 54°10′E). This province consists of 19 cities and a population of 3,073,943 people. This area has a subtropical climate with an average annual relative humidity of 83%, an average temperature of 18°C, and rainfall occurrence during all four seasons of the year [15].

Ethics Statement
First, the study protocol was evaluated and approved by the Medical Research Ethics Committee of Mazandaran University of Medical Sciences, Sari, Iran. Informed permission was then obtained from all participants.

Sample collection
The participants of the current study included 4,788 individuals referred to health centers in Mazandaran Province from January to December 2016. A questionnaire was prepared on the basis of socio-demographic data, and assessed possible parameters related to Blastocystis prevalence, including age, sex, site of residence, type of consumed water, job, education, contact with domestic animals, season, and anti-parasitic drug use. Fresh stool specimens were collected after subjects agreed to participate in the study and completed the questionnaire. The samples were kept in a clean plastic container, fixed in polyvinyl alcohol, and then transferred to the Parasitology Laboratory of Mazandaran University of Medical Sciences.

Stool examination
All samples were tested with normal saline (0.85% NaCl) for the presence of trophozoites and Lugol iodine staining for the recognition of Blastocystis cysts under an optical microscope with × 40 objective magnification. Then, formalin-ether and trichrome staining methods [16] were used to visualize all specimens.

Geographical data
In our research, data on elevation above sea level (< 500 m, 500-1,000 m, and > 1,000 m) and distance from the sea (< 10 km, 10-20 km, and > 20 km) were acquired from Google Earth version 16 (https://www.google.com/earth/). Ecological data (such as temperature, rain, moisture, elevation above sea level, and distance from the sea) were acquired from the Mazandaran Metrological Institute.

Statistical analysis
The outcomes of the study were analyzed using SPSS version 16.0 (SPSS Inc., Chicago, IL, USA). Local indicators of spatial association were used to characterize the distribution of B. hominis and potential risk factors in various areas of the province. Additionally, geographically weighted regression (GWR) was applied to examine the geographical relationships between the occurrence of Blastocystis and related main variables, including temperature and precipitation.

RESULTS

Of the 4,788 individuals referred to health centers, 2,579 (53.9%) were male and 2,209 (46.1%) were female. The average age was 32.39 ± 17.75 years (range, 1-77 years).

In total, 247 (5.2%) individuals were positive for B. hominis. The outcomes demonstrated statistically significant relationships between the prevalence of B. hominis and age, occupation, residence, contact with domestic animals, and anti-parasitic drug consumption (p < 0.05) (Table 1).

Based on the outcomes of this research, the prevalence rates of Blastocystis according to elevation above sea level was as follows: < 500 m, 4.3% (74 of 1,710); 500-1,000 m, 5.4% (162 of 2,954); and > 1,000 m, 8.9% (11 of 124). Of the meteorological risk factors, only elevation above sea level of > 1,000 m showed a significant difference from sea level (p < 0.05). Mapping the infection rate of B. hominis in Mazandaran Province showed that the Savadkooh (8.9%) and Babolsar (1.9%) districts had the maximum and minimum occurrence level of B. hominis, respectively (Figure 1).

DISCUSSION

Blastocystis is the most common parasite worldwide and has a global distribution. During recent years, despite improvements in
Asfaram S et al.: Geospatial and epidemiological aspects of Blastocystis

health services, the outcomes of epidemiological studies in numerous parts of the world have indicated that Blastocystis infection remains an important health problem in tropical and subtropical areas, particularly in developing countries [17]. Several investigations in Iran have revealed infection rates of 2.4% to 54.5% [18-21]. A meta-analysis in Iran showed an infection rate of 3.0% in the overall population [13]. It seems that differences in the prevalence of B. hominis infection may be caused by diverse parameters, such as sample size, type of consumed water, inconsistent laboratory approaches, and ecological parameters. In the current study, the highest prevalence rate of B. hominis was reported in individuals aged 10-14 (10.6%). We observed a significant relationship between B. hominis infection and age (p = 0.005), which is in accordance with research performed in Bangladesh [22] and Brazil [23]. Some studies have reported a high prevalence of this infection among all age groups [24,25], possibly

Table 1. Frequency of Blastocystis hominis in Mazandaran Province by demographic data and risk factors

Risk factors	Specimens examined	Positive specimens	OR (95% CI)	p-value
Age (yr)				
<5	648	20 (3.0)	1.00 (reference)	
5-9	828	42 (5.0)	0.59 (0.30, 1.00)	0.06
10-14	722	77 (10.6)	3.70 (2.20, 6.50)	0.05
15-24	988	40 (4.0)	1.30 (0.74, 2.40)	0.34
25-39	913	38 (4.1)	1.30 (0.76, 2.40)	0.27
≥ 40	689	30 (4.3)	1.40 (0.77, 2.60)	0.24
Sex				
Male	2,579	135 (5.2)	1.03 (0.79, 1.30)	0.79
Female	2,209	112 (5.0)	1.00 (reference)	
Residence				
Rural	2,273	160 (7.0)	2.10 (1.60, 2.70)	<0.001
Urban	2,515	87 (3.4)	1.00 (reference)	
Consumed water				
Tap	3,984	208 (5.2)	1.00 (reference)	
Well	308	16 (5.1)	1.01 (0.59, 1.80)	0.99
Mineral	496	23 (4.6)	0.88 (0.54, 1.30)	0.66
Job				
Student	1,587	63 (3.9)	1.00 (reference)	
Private business	1,085	58 (5.3)	0.73 (0.49, 1.07)	0.10
Housewife	1,139	56 (4.9)	1.20 (0.84, 1.80)	0.25
Government employee	348	15 (4.3)	1.08 (0.56, 1.90)	0.76
Agriculture	629	55 (8.7)	2.30 (1.50, 3.40)	<0.001
Education				
Illiterate	943	45 (4.7)	1.00 (reference)	
Primary	1,477	70 (4.7)	1.00 (0.67, 1.50)	0.90
High school	1,646	95 (5.7)	1.20 (0.83, 1.80)	0.30
University	722	37 (5.1)	1.07 (0.67, 1.70)	0.80
Contact with domestic animals				
Yes	2,427	151 (6.2)	1.50 (1.10, 2.05)	0.001
No	2,361	96 (4.0)	1.00 (reference)	
Season				
Winter	1,167	60 (5.1)	1.00 (reference)	
Spring	1,196	60 (5.0)	1.02 (0.69, 1.50)	0.92
Summer	1,256	75 (5.9)	1.10 (0.81, 1.60)	0.37
Autumn	1,169	52 (4.4)	0.85 (0.57, 1.20)	0.44
Anti-parasitic drug consumption				
Yes	1,086	35 (3.2)	1.00 (reference)	
No	3,702	212 (5.7)	0.05 (0.36, 0.79)	0.001

Values are presented as number or number (%). OR, odds ratio; CI, confidence interval.
due to behavioral patterns and high levels of activity.

The prevalence of \textit{B. hominis} demonstrated significant variation by area (p < 0.001), which is in accordance with studies conducted in South Khorasan of Iran [26] and Turkey [27]. In rural and urban regions, the incidence of \textit{B. hominis} was 7.0% and 3.4%, respectively; the higher rate in rural regions can be explained as the result of poor sanitation, lack of healthy drinking water reservoirs, more contact with the soil, environmental contamination with the cystic form, a large number of households, and geographical factors.

In the current study, 6.2% of the infected subjects had experienced contact with animals (p = 0.001). Several studies have found animal ownership to be a risk factor for \textit{Blastocystis} infection [28-32].

Our investigation showed that there was a significant relationship between taking anti-parasitic drugs and infection with \textit{B. hominis}. However, 3.2% and 5.7% of subjects with and without a history of anti-parasitic drug consumption were infected with \textit{B. hominis}, respectively (p = 0.001). Similar to several other studies, our findings showed that consumption of anti-parasitic drugs may be an important reason for the reduction in parasitic infections in recent years.

In this study, there was a significant relationship between certain jobs and infection with \textit{B. hominis} (p < 0.001). The prevalence rate of \textit{B. hominis} in farmers (8.7%) was higher than in people with other occupations. Our result is in accordance with the research performed by Banai in Ghazvin Province of Iran [33]. The high prevalence of infection in agriculturists may be because of their high exposure to manure and human excrement in the soil [34].

In this research, similar to other studies, no meaningful relationships were found between the prevalence of \textit{Blastocystis} and sex (p = 0.795), type of consumed water (p = 0.857), education level (p = 0.964), or season (p = 0.399) [35-39].

Despite awareness of the impacts of environmental factors on \textit{B. hominis}, few attempts have been made to map the distribution of this parasite in relation to particular ecological parameters in Iran. Based on the map prepared in this research, Savadkooh district had the maximum prevalence of \textit{B. hominis}. This city is situated in the south of Mazandaran Province, in the northern Alborz Mountains, at a height of 1,000 m. The high rate of \textit{Blastocystis} in Savadkooh district seems to be because of its geographical location, contact with animals, agriculture activities, and the presence of many villages in this region.

Furthermore, the elevation of Savadkooh district above sea level was estimated to be more favorable for cyst persistence [40,41]. The concordance between higher prevalence and elevation could be explained by the fact that cysts are viable for longer in cold climates [41]. Additionally, the transportation of livestock from the plains to mountainous areas in the warm season may influence parasite transmission to different regions. In this study, GWR was applied to examine the geographical relationship of the prevalence of \textit{B. hominis} with several significant factors, including precipitation, temperature, and livestock. The outcomes indicate that 65%
and 60% of the prevalence of Blastocystis could be explained by contact with domestic animals and rainfall, respectively. This fact highlights the significant impact of these 2 main factors.

Based on our research, the prevalence of Blastocystis in mountainous areas may be high because of the more widespread use of unfiltered water sources, high levels of husbandry and agriculture, and lack of good hygiene practices. This geospatial study demonstrated that living in regions with low elevation and converting traditional livestock to industrial livestock could effectively decrease Blastocystis infections in different districts in Mazandaran Province. Therefore, the populations living in areas with suitable environmental factors for the parasite are potentially at risk for Blastocystis infection.

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare for this study.

ACKNOWLEDGEMENTS

The authors acknowledge the Vice Chancellors of Research of Mazandaran University of Medical Sciences for financial support, as well as all personnel at the local health centers (grant No. 1031).

ORCID

Shabnam Asfaram: http://orcid.org/0000-0002-4455-1512; Ahmad Daryani: http://orcid.org/0000-0001-8571-5803; Shahbedin Sarvi: http://orcid.org/0000-0002-3412-1033; Abol Sattar Pagheh: http://orcid.org/0000-0002-1234-6127; Seyed Abdollah Hoseini: https://orcid.org/0000-0002-2990-1123; Reza Saberi: http://orcid.org/0000-0002-7906-7034; Seyed Mahboobe Hoseiny: http://orcid.org/0000-0002-7711-4714; Masoud Soosaraei: http://orcid.org/0000-0002-5566-0060; Mehdi Sharif: http://orcid.org/0000-0001-5946-9856

REFERENCES

1. Alfellani MA, Stensvold CR, Vidal-Lapiedra A, Onuoha ES, Fagbenro-Beyioku AF, Clark CG. Variable geographic distribution of Blastocystis subtypes and its potential implications. Acta Trop 2013;126:11-18.
2. Eida AM, Eida MM. Identification of Blastocystis hominis in patients with irritable bowel syndrome using microscopy and culture compared to PCR. Parasitol United J 2008;1:87-92.
3. Woodhall D, Jones JL, Cantey PT, Wilkins PP, Montgomery SP. Neglected parasitic infections: what every family physician needs to know. Am Fam Physician 2014;89:803-811.
4. Stensvold CR, Nielsen HV, Mollbak K, Smith HV. Pursuing the clinical significance of Blastocystis–diagnostic limitations. Trends Parasitol 2009;25:23-29.
5. Stenzel D, Boreham PF. Blastocystis hominis revisited. Clin Microbiol Rev 1996;9:563-584.
6. Stensvold CR, Smith HV, Nagel R, Olsen KE, Traub RJ. Eradication of Blastocystis carriage with anti-microbials: reality or delusion? J Clin Gastroenterol 2010;44:85-90.
7. Wong KH, Ng GC, Lin RT, Yoshikawa H, Taylor MB, Tan KS. Predominance of subtype 3 among Blastocystis isolates from a major hospital in Singapore. Parasitol Res 2008;102:663-670.
8. Hirata T, Nakamura H, Kinjo N, Hokama A, Kinjo F, Yamane N, et al. Prevalence of Blastocystis hominis and Strongyloides stercoralis infection in Okinawa, Japan. Parasitol Res 2007;101:1717-1719.
9. El Safadi D, Gaayeb L, Meloni D, Cian A, Poirier P, Wawrzycki I, et al. Children of Senegal River Basin show the highest prevalence of Blastocystis sp. ever observed worldwide. BMC Infect Dis 2014;14:164.
10. Escobedo AA, Cañete R, Núñez FA. Intestinal protozoa and helminth infections in the Municipality San Juan y Martínez, Pinar del Río, Cuba. Trop Doct 2007;37:236-238.
11. Aguiar JJ, Gonçalves AQ, Sodré FC, Pereira Sdos R, Bóia MN, de Lemos ER, et al. Intestinal protozoa and helminths among Terena Indians in the State of Mato Grosso do Sul: high prevalence of Blastocystis hominis. Rev Soc Bras Med Trop 2007;40:631-634.
12. Basualdo JA, Córdoba MA, de Luca MM, Ciarmela ML, Pezzani BC, Grenovero MS, et al. Intestinal parasites and environmental factors in a rural population of Argentina, 2002-2003. Rev Inst Med Trop Sao Paulo 2007;49:251-255.
13. Badparva E, Ezatpour B, Mahmoudvand H, Behzadifar M, Behzadifar M, Kheirandish F. Prevalence and genotype analysis of blastocystis hominis in Iran: a systematic review and meta-analysis. Arch Clin Infect Dis 2017;12:1-9.
14. Zhou XN, Lv S, Yang GJ, Kristensen TK, Bergquist NR, Utzinger J, et al. Spatial epidemiology in zoonotic parasitic diseases: insights gained at the 1st International Symposium on Geospatial Health in Lijiang, China 2007. Parasit Vectors 2009;2:10.
15. Daryani A, Sharif M, Nasrolahie M, Khalilian A, Mohammadi A, Barzegar G. Epidemiological survey of the prevalence of intestinal parasites among schoolchildren in Sari, northern Iran. Trans R Soc Trop Med Hyg 2012;106:455-459.
16. Garcia LS. Diagnostic medical parasitology. 5th ed. Santa Monica, CA: American Society for Microbiology Press; 2007, p. 57-101.
17. Ithoi I, Jali A, Mak JW, Wan Sulaiman WY, Mahmud R. Occurrence of Blastocystis in water of two rivers from recreational areas in Malaysia. J Parasitol Res 2011;2011:123916.
18. Haghhighi A, Khorashad AS, Nazemalhosseini Mojarad E, Kazemi B, Rostami Nejad M, Rasti S. Frequency of enteric protozoan parasites among patients with gastrointestinal complaints in medical centers of Zahedan, Iran. Trans R Soc Trop Med Hyg 2009;103:452-454.
19. Daryani A, Barmaki N, Ettehad GH, Sharif M, Nemati A, Ziaei H. A cross-sectional study of Blastocystis hominis in primary school children, Northwest Iran. Inter J Trop Med 2006;1:53-57.
20. Zali MR, Mehr AJ, Rezaian M, Meamar AR, Vaziri S, Mohraz M. Prevalence of intestinal parasitic pathogens among HIV-positive individuals in Iran. Jpn J Infect Dis 2004;57:268-270.
21. Heidari A, Rokni MB. Prevalence of intestinal parasites among children in day-care centers in Damghan-Iran. Iran J Public Health 2003;32:31-34.
22. Hossain MM, Ljungstrom I, Glass RI, Lundin L, Stoll BJ, Huldt G. Amoebiasis and giardiasis in Bangladesh: parasitological and serological studies. Trans R Soc Trop Med Hyg 1983;77:552-554.
23. Braga LL, Lima AA, Sears CL, Newman RD, Wuhlb T, Paiva CA, et al. Seroepidemiology of Entamoeba histolytica in a slum in northeastern Brazil. Am J Trop Med Hyg 1996;55:693-697.
24. Al-Harazi T, Ghani MK, Othman H. Prevalence of intestinal protozoan infections among Orang Asli schoolchildren in Pos Sendrut, Pahang, Malaysia. J Egypt Soc Parasitol 2013;43:561-568.
25. Sukthana Y. Is Blastocystis hominis a human pathogenic protozoan? J Trop Med Parasitol 2001;24:16-22.
26. Taheri F, Namakin K, Zarban A, Sharifzadeh G. Intestinal parasitic infection among school children in South Khorasan Province, Iran. J Res Health Sci 2011;11:45-50.
27. Aksoy U, Akisii C, Bayram-Delibaş S, Ozkoç S, Sahin S, Usluca S. Demographic status and prevalence of intestinal parasitic infections in schoolchildren in Izmir, Turkey. Turk J Pediatr 2007;49:278-282.
28. Doyle PW, Helgason MM, Mathias RG, Proctor EM. Epidemiology and pathogenicity of Blastocystis hominis. J Clin Microbiol 1990;28:116-121.
29. Rajah Salim H, Suresh Kumar G, Vellayan S, Mak JW, Khairul Anuar A, Init I, et al. Blastocystis in animal handlers. Parasitol Res 1999;85:1032-1033.
30. Li LH, Zhou XN, Du ZW, Wang XZ, Wang LB, Jiang JY, et al. Molecular epidemiology of human Blastocystis in a village in Yunnan province, China. Parasitol Int 2007;56:281-286.
31. Stensvold CR, Suresh GK, Tan KS, Thompson RC, Traub RJ, Viscogliosi E, et al. Terminology for Blastocystis subtypes—a consensus. Trends Parasitol 2007;23:93-96.
32. Yoshikawa H, Wu Z, Pandey K, Pandey BD, Sherchand JB, Yanagi T, et al. Molecular characterization of Blastocystis isolates from children and rhesus monkeys in Kathmandu, Nepal. Vet Parasitol 2009;160:295-300.
33. Banai F. A survey of the prevalence of intestinal parasites in the city of Ghazvin during 2001-2002 [dissertation]. Tehran: Tehran University; 2002 (Persian).
34. Shahabi S. Epidemiological study of intestinal parasites among primary school students in Shahryar in 1993. Pejouhesh 2000;24:133-139 (Persian).
35. Cegielski JP, Msengi AE, Dukes CS, Mbise R, Redding-Lallinger R, Minjas JN, et al. Intestinal parasites and HIV infection in Tanzanian children with chronic diarrhea. AIDS 1993;7:213-221.
36. Yaicharoen R, Ngrengarmlert W, Wongiindanon N, Sripochang S, Kiatfuengfoo R. Infection of Blastocystis hominis in primary schoolchildren from Nakhon Pathom province, Thailand. Trop Biomed 2006;23:117-122.
37. Shahbazi AE, Rezaeian M, Eshraghian MR, Mohebali M, Rokni MB, Sharifdini M, et al. The prevalence of human intestinal parasites in rural areas of Saveh, Markazi Province, Iran. J Fasa Univ Med Sci 2014;4:177-184 (Persian).
38. EL-Marhoumy SM, EL-Nouby KA, Shoheib ZS, Salama AM. Prevalence and diagnostic approach for a neglected protozoan Blastocystis hominis. Asian Pac J Trop Dis 2015;5:51-59.
39. Alver O, Töre O. The prevalence and distribution of intestinal parasites detected by the Uludag University Medical School. Türkiye Parazitol Derg 2006;30:296-301 (Turkish).
40. Leeayoova S, Siripattanapipong S, Thathaisong U, Naaglor T, Tamasri P, Piayaraj P, et al. Drinking water: a possible source of Blastocystis spp. subtype 1 infection in schoolchildren of a rural community in central Thailand. Am J Trop Med Hyg 2008;79:401-406.
41. Schmidt GD, Roberts LS, Janovy Jr J. Foundation of parasitology. 6th ed. New York: Mcgraw-Hill; 2000, p. 347-410.