Revisiting Metallicity of Long Duration Gamma-Ray Burst Host Galaxies: The Role of Chemical Inhomogeneity within Galaxies

Y. Niino 1,2 *

1 Division of Optical & Infrared Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
2 Department of Astronomy, School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

ABSTRACT
We predict the metallicity probability distribution function (PDF) of long gamma-ray burst (GRB) host galaxies at low-redshifts ($z \lesssim 0.3$) when GRBs occur only in low-metallicity environment, assuming empirical formulations of galaxy properties. We discuss contribution of high-metallicity galaxies to the cosmic rate of low-metallicity GRBs, taking internal dispersion of metallicity within each galaxy into account. Assuming GRBs trace low-metallicity star formation ($Z_{\text{crit}}: 12+\log_{10}(O/H)=8.2$), we find that GRB host galaxies may have systematically higher-metallicity than that of GRB progenitors. Furthermore, we expect $\gtrsim 10\%$ of the host galaxies to have $12+\log_{10}(O/H)>8.8$, if galaxies have internal dispersion of metallicity comparable to that observed in the Milky Way. Our results show that the low-metallicity scenario of GRB progenitors can be reconciled with the recent discoveries of the high-metallicity host galaxies of GRBs. We also show possible bimodality in the host metallicity PDF that results from the single progenitor model of GRBs. If found in future observation, the bimodality can be a clue to constrain the nature of GRB progenitors.

Key words: gamma-ray burst: general – galaxies: abundances.

1 INTRODUCTION
It is now broadly agreed that some of long gamma-ray bursts (GRBs) originate in core-collapse supernovae (CC SNe). However, not all CC SNe produce GRBs, and the criteria that discriminates GRBs from general CC SN is one of the most outstanding questions about GRBs.

Some theoretical studies on the origin of GRBs using stellar evolution models suggest that a low-metallicity may be a necessary condition for a GRB to occur ($Z < 0.1 Z_{\odot}$, e.g., MacFadyen & Woosley 1999; Yoon & Langer 2005; Yoon et al. 2006; Woosley & Heger 2006). It has also been suggested from observations that metallicity distribution of GRB host galaxies at redshift $z < 0.25$ is significantly biased towards low metallicities compared to the expectation when GRBs are unbiased tracers of star formation (Stanek et al. 2006; Modjaz et al. 2008).

Furthermore, some observations suggest that the GRB host galaxies are systematically fainter and smaller than those of the core-collapse SNe (Le Floc’h et al. 2003; Fruchter et al. 2002; Svensson et al. 2010), indicating that the GRBs may preferentially occur in low metallicity environment, because fainter and lower mass galaxies generally have lower metallicities. These interpretations have also been supported by other theoretical studies using the models of galaxies (e.g. Wolf & Podsiadlowski 2007; Niino et al. 2011).

However, recent discoveries of high-metallicity host galaxies of some GRBs cast doubt on the requirement of low-metallicity in GRB occurrence (Levesque et al. 2010a,b; Han et al. 2011; Hashimoto, et al. 2010). On the other hand, it should be kept in mind that GRB host galaxies may have different metallicity from that of GRB progenitors, because a galaxy is not a chemically homogeneous object. To decide whether the discoveries of the high-metallicity host galaxies are consistent to the low-metallicity requirement or not, we need to quantitatively consider contribution of high-metallicity galaxies to the cosmic rate of low-metallicity star formation.

In this study, we predict the metallicity probability distribution function (PDF) of GRB host galaxies at $z \lesssim 0.3$, assuming the low-metallicity requirement and taking the metallicity dispersion within each galaxy into account. We discuss whether the expected rate of low-metallicity GRBs in high-metallicity galaxies is significant to explain the observations or not. We use empirical formulations of galaxy properties, and assume GRBs trace low-metallicity star formation ($Z_{\text{crit}}: 12+\log_{10}(O/H)=8.2$). In §2 we describe...
empirical formulations of galaxy properties and GRB rate models which we use in this study. In § 3 we show the expected metallicity and mass distributions of GRB host galaxies and discuss their implications. In § 4 we also discuss how the expected metallicity distribution changes if there is a correlation between metallicity and star formation rate of a galaxy, as it is claimed in Mannucci et al. (2010). We summarize our conclusion in § 5.

2 MODELS

2.1 Galaxy Properties

To compute the expected metallicity PDF of GRB host galaxies at \(z \lesssim 0.3 \), we assume empirical formulation of stellar mass function, mass–star formation rate \((M_\star - \text{SFR})\) relation of galaxies, and mass–metallicity \((M_\star - Z_{\text{gal}})\) relation of low-redshift galaxies. Our approach is similar to that of Stanek et al. (2006), who have calculated expected metallicity PDF of GRB host galaxies when GRBs trace star formation without any metallicity dependence. However, we step further to include the low-metallicity preference of GRBs considering the chemical inhomogeneity within galaxies.

It should be noted that \(M_\star \) is calibrated using different initial mass functions (IMFs) in different studies. In this study, we assume conversion among stellar mass scales for different IMFs as: \(M_{\text{Salpeter}} = 1.43 \times M_{\text{distSalpeter}} = 1.5 \times M_{\text{Kroupa}} = 1.8 \times M_{\text{Chabrier}} = 1.8 \times M_{\text{BG03}} \) (Salpeter 1955; Bell & de Jong 2001; Kroupa & Burkert 2001; Chabrier 2003; Baldry & Glazebrook 2003). Hereafter stellar masses are scaled for Salpeter IMF, unless otherwise stated.

We use empirical formulations of the stellar mass function (Bell et al. 2003), and the \(M_\star - \text{SFR} \) relation of galaxies (Stanek et al. 2006), a fit to the observation by Brinchmann et al. (2004) of low-redshift \((z \lesssim 0.3)\) late-type galaxies. We assume the dispersion of the \(M_\star - \text{SFR} \) relation to be \(\sim 0.3 \) dex following Stanek et al. (2006). Using the mass function and the \(M_\star - \text{SFR} \) relation, we compute cosmic SFR density as a function of \(M_\star \) : \(\rho_{\text{SFR}}(M_\star) \) \([M_\odot \text{yr}^{-1} \text{Mpc}^{-3} \text{dex}^{-1}]\). These models are shown in Fig. 1.

We only consider galaxies with \(\log_{10} M_\star > 8.0 \), which corresponds to the lowest-mass of GRB host galaxies ever known. Both of the stellar mass function and the \(M_\star - \text{SFR} \) relation may suffer from selection effects of the galaxy sample. To demonstrate the uncertainty, we also use \(\rho_{\text{SFR}}(M_\star) \) derived from observation of galaxies of all-type (Drory & Alvarez 2008, DA08).

Various methods have been proposed to measure gas metallicity of galaxies, but they do not always agree with each other (e.g., Kennicutt et al. 2003; Kewley & Ellison 2008). When we discuss metallicity of galaxies, we use metallicity calibrated with Kobulnicky & Kewley (2004), hereafter KK04 method in this study. We use the \(M_\star - Z_{\text{gal}} \) relation with the KK04 calibration presented in Eq. 8 of Savaglio et al. (2003, hereafter S05 relation). We assume the dispersion of the relation to be 0.1 dex (Tremonti et al. 2004).

When we consider the dispersions of \(M_\star - \text{SFR} \) relation and \(M_\star - Z_{\text{gal}} \) relation, we assume that the offset from \(M_\star - Z_{\text{gal}} \) relation and that from \(M_\star - \text{SFR} \) relation are independent of each other. This assumption is supported by the observed no correlation between H\text{α} equivalent width and SFR (Tremonti et al. 2004). However, it is also claimed that those offsets are correlated (Mannucci et al. 2010), and we discuss the case where the offsets are correlated in § 4.

2.2 GRB Rate and Internal Dispersion of Metallicity within Each Galaxy

Observations of nearby galaxies, including the Milky Way (MW) and the Magellanic clouds, show that the galaxies have internal dispersion of metallicity within them \((\sim 1 \text{ dex in MW and } \sim 0.3 \text{ dex in the Large Magellanic Cloud (LMC)})\), e.g., Rolleston et al. 2003, 2004. Furthermore, there is a \(\sim 0.4 \) dex variation of \(12 + \log_{10}(O/\text{H}) \) among HII regions in the host galaxy of GRB 980425/SN 1998bw which is comparable to 3\(\sigma \) error of the metallicity calibration (Christensen et al. 2008). To demonstrate effects of the chemical inhomogeneity, we assume metallicity of SFR in a galaxy has a log-normal distribution with dispersion \(\sigma_{Z_{\text{int}}} \) around \(Z_{\text{gal}} \), al-
though metallicity distribution of star forming gas within a galaxy is hardly understood.

In Fig. 2, we plot the log-normal models with $Z_{\text{gal}} = 8.9$ and $\sigma_{Z,\text{int}} = 0.1, 0.3$ and 0.5. For comparison, we plot the observed metallicity distribution of HII regions and the young B-type stars (Afflerbach et al. 1997; Rolleston et al. 2000), red dashed and blue dotted, respectively. We note that the metallicities measured in Afflerbach et al. (1997) and Rolleston et al. (2000) may be inconsistent with KK04 metallicities.

We have assumed that $\sigma_{Z,\text{int}}$ is same among all galaxies in discussions above. However, the internal metallicity dispersion within galaxies is not well known, and it is possible that galaxies with different M_* (or Z_{gal}) typically have different $\sigma_{Z,\text{int}}$. In fact, the LMC has smaller internal dispersion of metallicity than that in MW (e.g., Rolleston et al. 2002; Cioni 2009). In that case, the expected metallicity distribution of the host galaxies would be different from those discussed above.

The predicted metallicity PDF of GRB host galaxies is shown in the left panels of Fig. 3. The model without metal cutoff (i.e., $\epsilon_{\text{GRB}}(Z_{\text{gal}}) = 1.0$) is consistent to the results of Stanek et al. (2004), and it shows that more than 50% of low-redshift star formation takes place in high-metallicity galaxies with $12+\log_{10}(O/H) > 8.8$, which is much higher fraction than high-metallicity galaxies in observed GRB host galaxies.

Now we consider the effect of the metal cutoff on the metallicity distribution of the host galaxies. The contribution of $Z_{\text{gal}} < Z_{\text{crit}}$ galaxies is not zero due to the effect of the internal dispersion. The results with $\sigma_{Z,\text{int}} = 0.1, 0.3$ and 0.5 are shown in Fig. 3. In the cases of $\sigma_{Z,\text{int}} \gtrsim 0.3$ dex, more than 50% of GRB host galaxies have $Z_{\text{gal}} > Z_{\text{crit}}$, suggesting that the progenitor metallicity can be systematically different from the host metallicity.

The contribution of the high-metallicity galaxies $(12+\log_{10}(O/H) > 8.8)$ to the cosmic GRB rate is equivalent to that of $Z_{\text{gal}} < Z_{\text{crit}}$ galaxies when they have $\sigma_{Z,\text{int}} = 0.5$ dex. In the case of $\sigma_{Z,\text{int}} = 0.5$ (0.3) dex, roughly 25% (5%) of the host galaxies have $12+\log_{10}(O/H) > 8.8$, suggesting that GRBs occur only in low-metallicity environment does not contradict to the recent observations of high-metallicity host galaxies of GRBs. We note that the prediction of the DA08 model is not largely different from that of the late-type galaxy model. The expected mass PDF of GRB host galaxies is shown in the right panels of Fig. 3 in the similar manner to the metallicity PDFs.

3 THE METALLICITY PDF OF GRB HOST GALAXIES

The results are shown in Fig. 3. It is interesting that the Z_{gal} PDF has multi-peak distribution in this model, although we consider only one population of GRB progenitors.

This bimodality can be explained as follows. In the case of $\sigma_{Z,\text{int}} = 0.5$ dex, $\rho_{\text{GRB}}(Z_{\text{gal}})$ is approximately constant between $12+\log_{10}(O/H) = 8.2$ and 9.0 (see left bottom panel of Fig. 3). If (1) high-metallicity galaxies $(12+\log_{10}(O/H) \gtrsim 9.0)$ typically have $\sigma_{Z,\text{int}} \sim 0.5$ dex and (2) $\sigma_{Z,\text{int}}$ is positively correlated with Z_{gal}, galaxies with $12+\log_{10}(O/H) \lesssim 8.2$ or $\gtrsim 9.0$ have similar $\rho_{\text{GRB}}(Z_{\text{gal}})$ to that in the...
4 CORRELATION BETWEEN \(Z_{\text{gal}} \) AND SFR

In the previous sections, the dispersions of the \(M_{\star} - Z_{\text{gal}} \) relation and the \(M_{\star} - \text{SFR} \) relation are treated independently. However, it is recently claimed that galaxies with higher-SFR tend to have lower-\(Z_{\text{gal}} \) compared to lower-SFR galaxies with similar \(M_{\star} \) [Mannucci et al. 2010, Mannucci et al. (2011) and Kocevski & West 2010] have investigated the effect of the SFR–\(Z_{\text{gal}} \) correlation on the \(M_{\star} - Z_{\text{gal}} \) relation of GRB host galaxies.

In this section, we use \(M_{\star} - \text{SFR} - Z_{\text{gal}} \) relation [Mannucci et al. (2011), hereafter M11 relation] instead of S05 relation, to investigate how the metallicity PDF of the host galaxies is changed if there is a SFR–\(Z_{\text{gal}} \) correlation. It should be noted that M11 relation studied in Mannucci et al. [2010, 2011] is calibrated with Nagao et al. (2006, hereafter N06) method. Hence we can not directly compare predictions of M11 relation with predictions and/or observations with KK04 calibration. We project the mass-SFR relation described in §2.1 to \(M_{\star} - Z_{\text{gal}} \) plane using M11 relation, and compare it with S05 relation. In Fig. 4, one sees discrepancy between the two relation.

To make consistent comparison between the two models, we assume ad hoc conversion between the two metallicity calibration:

\[
\alpha_{\text{KK04}} = \begin{cases}
\alpha_{\text{N06}} + 0.25(\alpha_{\text{N06}} - 8.0) + 0.1 & (\alpha_{\text{N06}} < 8.4) \\
\alpha_{\text{N06}} - 0.33(\alpha_{\text{N06}} - 8.4) + 0.2 & (\alpha_{\text{N06}} \geq 8.4)
\end{cases}
\]

where \(\alpha \) represents \(12 + \log_{10}(\text{O/H}) \). Converted with Eq. (3) the projected \(M_{\star} - \text{SFR} \) relation agrees with S05 relation in 0.04 dex (Fig. 4).

The metallicity and mass PDFs predicted using M11 relation are shown in Fig. 5. Although the host galaxies have lower-metallicity by \(\lesssim 0.1 \) dex compared to the case of S05 relation depending on \(\sigma_{Z_{\text{int}}} \), M11 relation alone does not make the metallicity PDF consistent to the current sample of GRB hosts without further metallicity effect. The metallicity PDFs with the metallicity cut-off may agree with the observations, as well as in the case of S05 relation.

The predicted host galaxies in the case of \(\sigma_{Z_{\text{int}}} = 0.5 \) have smaller \(M_{\star} \) compared to that for S05 relation, while the host galaxies in the case of \(\sigma_{Z_{\text{int}}} = 0.1 \) have larger \(M_{\star} \). As a result, the mass PDF is less sensitive to the change of \(\sigma_{Z_{\text{int}}} \). This is because SFR and \(Z_{\text{gal}} \) correlate stronger when \(M_{\star} \) is smaller in M11 relation. Once a galaxy sample is weighted with SFR, M11 relation makes \(M_{\star} - Z_{\text{gal}} \) relation steeper, and hence a difference in \(Z_{\text{gal}} \) corresponds to smaller difference in \(M_{\star} \) with M11 relation compared to the case with S05 relation. However, we note that the predicted mass PDF is strongly dependent on the low-metallicity tail of M11 relation, which is still highly uncertain.
We have shown that multi-peak distribution of the metallicity of GRB host galaxies can be produced by a single population of GRB progenitors, when \(\sigma_{Z, \text{int}} \) positively correlates with \(M_* \). If observed, the bimodality can be a clue to investigate the nature of GRB progenitors. If \(\epsilon_{\text{GRB}} > 0 \) in high-metallicity galaxies is caused by the nature of GRB progenitors rather than properties of galaxies, there would be no effect of the \(\sigma_{Z, \text{int}} - M_* \) correlation.

Although some results shown in this paper suffer from uncertainties about the properties of low-redshift galaxies, some important features of the results which we have discussed are not dependent on the detail of the modelings (see §3). However, we need to understand the actual metallicity distribution within young star forming galaxies to make reliable prediction of the exact metallicity PDF. More detailed study of the internal structure of galaxies requires different approach from that in this study, such as high-resolution hydrodynamic simulation and/or spatially resolved spectroscopic observation of large sample of galaxies, and we address this issue to future studies. Future development of our knowledge about galaxy properties would provide us with more robust predictions about GRB progenitors and their host galaxies.

5 DISCUSSIONS

We have predicted the metallicity and mass PDFs of GRB host galaxies, assuming empirical formulations of galaxy properties and the model of GRB rate in which GRBs occur only from low-metallicity stars (< \(Z_{\text{crit}} \), 12+log(O/H) = 8.2). Our results show that > 50% of GRB host galaxies can have \(Z_{\text{gal}} > Z_{\text{crit}} \), and high-metallicity galaxies (12+log(O/H) \(\gtrsim \) 8.8) may have significant contribution to cosmic GRB rate. This means that metallicities of GRB host galaxies may be systematically different from those of GRB progenitors, and the low-metallicity scenario can be reconciled with the observations of high-metallicity host galaxies of GRBs.

For some GRBs, metallicities are measured at the positions of the bursts (e.g., Modjaz et al. 2008), and the host galaxy of GRB 020819 has high-metallicity at the position of the burst (Levesque et al. 2010a). However, it should be noted that the positioning error of GRB 020819 is roughly 5 kpc (Jakobsson et al. 2005), and there might be chemical inhomogeneity in the error circle. We need more precise localization of GRBs to draw robust conclusions, although it is also difficult to specify what precision is required. The required precision is dependent on the mixing process of inter-stellar medium which is not well understood.

Although we have formulated \(\epsilon_{\text{GRB}}(Z_{\text{gal}}) \) motivated by the probable chemical inhomogeneity within each GRB host galaxy, similar formulation of \(\epsilon_{\text{GRB}}(Z_{\text{gal}}) \) may be obtained considering other effects (e.g. moderate low-metallicity preference of GRB occurrence without sharp metallicity cutoff). It is currently difficult to distinguish what effect constructs \(\epsilon_{\text{GRB}}(Z_{\text{gal}}) \).

\[M_{\text{star,Sap}} [h_{70}^{-2} M_{\odot}] \]

\[\frac{dN}{dz_{\text{gal}}} \]

\[Z_{\text{gal}} \]

\[Z_{\text{crit}} \]

\[Z_{\text{int}} \]

\[\sigma_{Z, \text{int}} \]

\[M_* \]

\[\epsilon_{\text{GRB}}(Z_{\text{gal}}) \]

\[\text{S05 relation} \]

\[\text{M11 relation} \]
ACKNOWLEDGMENTS

We would like to thank an anonymous referee for his/her helpful comments. YN was supported by the Grant-in-Aid for JSPS Fellows.

REFERENCES

Afflerbach A., Churchwell E., Werner M. W., 1997, ApJ, 478, 190
Balduy I. K., Glazebrook K., 2003, ApJ, 593, 258
Bell E. F., de Jong R. S., 2001, ApJ, 550, 212
Bell E. F., McIntosh D. H., Katz N., Weinberg M. D., 2003, ApJS, 149, 289
Brinchmann J., Charlot S., White S. D. M., Tremonti C., Kaufrmann G., Heckman T., Brinkmann J., 2004, MNRAS, 351, 1151
Chabrier G., 2003, PASP, 115, 763
Christensen L., Vreeswijk P. M., Sollerman J., Thöne C. C., Le Floc’h E., Wiersema K., 2008, A&A, 490, 45
Cioni M., 2009, A&A, 506, 1137
Drory N., Alvarez M., 2008, ApJ, 680, 41
Fruchter A. S. et al., 2006, Nature, 441, 463
Han X. H., Hammer F., Liang Y. C., Flores H., Rodrigues M., Hou J. L., Wei J. Y., 2010, A&A, 514, A24+
Hashimoto T. et al., 2010, ApJ, 719, 378
Jakobsson P., Frail D. A., Fox D. B., Moon D., Price P. A., Kulkarni S. R., Hjorth J., Berger E., McNaught R. H., Dahle H., 2005, ApJ, 629, 45
Kennicutt Jr. R. C., Bresolin F., Garrett D. R., 2003, ApJ, 591, 801
Kewley L. J., Ellison S. L., 2008, ApJ, 681, 1183
Kobulnicky H. A., Kewley L. J., 2004, ApJ, 617, 240
Kocevski D., West A. A., 2010, ArXiv e-prints
Kocevski D., West A. A., Modjaz M., 2009, ApJ, 702, 377
Kroupa P., Burkert A., 2001, ApJ, 555, 945
Le Floc’h E., Due P., Mirabel I. F., Sanders D. B., Bosch G., Diaz J. R., Donzelli C. J., Rodrigues I., Courvoisier T., Greiner J., Mereghetti S., Melnick J., Maza J., Minniti D., 2003, A&A, 400, 499
Levesque E. M., Kewley L. J., Berger E., Jabran Zahid H., 2010b, AJ, 140, 1557
Levesque E. M., Kewley L. J., Graham J. F., Fruchter A. S., 2010a, ApJL, 712, L26
MacFadyen A. I., Woosley S. E., 1999, ApJ, 524, 262
Mannucci F., Cresci G., Maiolino R., Marconi A., Gnerucci A., 2010, MNRAS, 408, 2115
Mannucci F., Salvaterra R., Campisi M. A., 2011, MNRAS, pp 439–+
Modjaz M., Kewley L., Kirshner R. P., Stanek K. Z., Challis P., Garnavich P. M., Greene J. E., Kelly P. L., Prieto J. L., 2008, AJ, 135, 1136
Nagao T., Maiolino R., Marconi A., 2006, A&A, 459, 85
Niino Y., Choi J., Kobayashi M. A. R., Nagamine K., Totani T., Zhang B., 2011, ApJ, 726, 88
Rolleston W. R. J., Smartt S. J., Dufton P. L., Ryan R. S. I., 2000, A&A, 363, 537
Rolleston W. R. J., Trundle C., Dufton P. L., 2002, A&A, 396, 53
Salpeter E. E., 1955, ApJ, 121, 161
Savaglio S., Glazebrook K., Le Borgne D., Juneau S., Abraham R. G., Chen H., Crampton D., McCarthy P. J., Carlberg R. G., Marzke R. O., Roth K., Jørgensen L., Murowinski R., 2005, ApJ, 635, 260
Stanek K. Z., Gnedin O. Y., Beacom J. F., Gould A. P., Johnson J. A., Kollmeier J. A., Modjaz M., Pinsoneault M. H., Pogge R., Weinberg D. H., 2006, Acta Astronomica, 56, 333
Svensson K. M., Levan A. J., Tanvir N. R., Fruchter A. S., Stroger L., 2010, MNRAS, 405, 57
Tremonti C. A., Heckman T. M., Kauffmann G., Brinchmann J., Charlot S., White S. D. M., Seibert M., Peng E. W., Schlegel D. J., Uomoto A., Fukugita M., Brinkmann J., 2004, ApJ, 613, 898
Wolf C., Podsadlowski P., 2007, MNRAS, 375, 1049
Woosley S. E., Heger A., 2006, ApJ, 637, 914
Yoon S., Langer N., 2005, A&A, 443, 643
Yoon S., Langer N., Norman C., 2006, A&A, 460, 199

This paper has been typeset from a TeX/\LaTeX file prepared by the author.