ORDINARY DIFFERENTIAL SYSTEMS IN DIMENSION THREE
WITH AFFINE WEYL GROUP SYMMETRY OF TYPES
$D_4^{(1)}, B_3^{(1)}, G_2^{(1)}, D_3^{(2)}$ AND $A_2^{(2)}$

YUSUKE SASANO

Abstract. We present a four-parameter family of ordinary differential systems in dimension three with affine Weyl group symmetry of type $D_4^{(1)}$. By obtaining its first integral, we can reduce this system to the second-order non-linear ordinary differential equations of Painlevé type. We also study this system restricted its parameters. Each system can be obtained by connecting some invariant divisors in the system of type $D_4^{(1)}$. Each system admits affine Weyl group symmetry of types $B_3^{(1)}, G_2^{(1)}, D_3^{(2)}$ and $A_2^{(2)}$, respectively. These symmetries, holomorphy conditions and invariant divisors are new.

1. Introduction

In this paper, we present a 4-parameter family of ordinary differential systems in dimension three with affine Weyl group symmetry of type $D_4^{(1)}$. By obtaining its first integral, we can reduce this system to the second-order non-linear ordinary differential equations of Painlevé type. This reduced system parametrizes the first-order ordinary differential equation:

$$\frac{dX}{dt} = \frac{b(t)}{2\eta}X(X + 1)(X + 1 - \eta)(X - \eta), \quad b(t) \in \mathbb{C}(t), \quad \eta \in \mathbb{C} - \{0\}.$$

We also study this system restricted its parameters. Each system admits affine Weyl group symmetry of types $B_3^{(1)}, G_2^{(1)}, D_3^{(2)}$ and $A_2^{(2)}$, respectively.

Each system can be obtained by connecting some invariant divisors in the system of type $D_4^{(1)}$.

The Bäcklund transformations of each system satisfy

$$s_i(g) = g + \frac{\alpha_i}{f_i} \{f_i, g\} + \frac{1}{2!} \left(\frac{\alpha_i}{f_i}\right)^2 \{f_i; \{f_i, g\}\} + \cdots \quad (g \in \mathbb{C}(t)[x, y, z]),$$

where poisson bracket $\{,\}$ satisfies the relations:

$$\{z, x\} = \{z, y\} = 1, \quad \{x, y\} = 0.$$

Since these Bäcklund transformations have Lie theoretic origin, similarity reduction of a Drinfeld-Sokolov hierarchy admits such a Bäcklund symmetry.

These symmetries, holomorphy conditions and invariant divisors are new.

2000 Mathematics Subject Classification. 34M55; 34M45; 58F05; 32S65.

Key words and phrases. Birational symmetry, Chazy equations, Painlevé equations.
In this paper, we study the third-order ordinary differential system:

\[
\begin{align*}
\frac{2\eta}{b(t)} \frac{dx}{dt} &= -2x(y-1)yz(x-\eta)(2x-2y+1-\eta) - 2(2\alpha_0 + 2\alpha_1 + 4\alpha_2 + \alpha_3 + \alpha_4)x^3y \\
&\quad - 2(\alpha_0 + \alpha_1)xy^3 + (5\alpha_0 + 5\alpha_1 + 6\alpha_2 + 3\alpha_3 + \alpha_4)x^2y^2 \\
&\quad - \{5\alpha_0 + 5\alpha_1 + 6\alpha_2 + 2\alpha_3 - 3(2\alpha_0 + 2\alpha_1 + 4\alpha_2 + \alpha_3 + \alpha_4)\eta\}x^2y \\
&\quad + \{3(\alpha_0 + \alpha_1) - (4\alpha_0 + 6\alpha_1 + 6\alpha_2 + \alpha_3 + \alpha_4)\eta\}xy^2 + x^4 \\
&\quad + 2(\alpha_0 + \alpha_1 + 2\alpha_2 + \alpha_3 - \eta)x^3 + 2\alpha_1\eta y^3 \\
&\quad + \{(\alpha_0 + \alpha_1 + 2\alpha_2 + \alpha_3)(\eta^2 - 3\eta + 1) + \alpha_4\eta^2\}x^2 + \alpha_1(\eta - 3)\eta y^2 \\
&\quad + \{-(\alpha_0 + \alpha_1) + 2(2\alpha_0 + 3\alpha_1 + 3\alpha_2 + \alpha_3)\eta - (2\alpha_0 + 2\alpha_1 + 4\alpha_2 + \alpha_3 + \alpha_4)\eta^2\}xy \\
&\quad + (\alpha_0 + \alpha_1 + 2\alpha_2 + \alpha_3)(\eta - 1)\eta x - \alpha_1(\eta - 1)\eta y, \\
\frac{2\eta}{b(t)} \frac{dy}{dt} &= -2x(y-1)yz(x-\eta)(2x-2y+1-\eta) - 2(\alpha_3 + \alpha_4)x^3y \\
&\quad - 2x^3(\alpha_0 + \alpha_1 + 4\alpha_2 + 2\alpha_3 + 2\alpha_4) + x^2y^2(\alpha_0 + \alpha_1 + 6\alpha_2 + 5\alpha_3 + 5\alpha_4) \\
&\quad + x^2y\{-(\alpha_0 + \alpha_1 + 6\alpha_2 + 4\alpha_3 + 6\alpha_4) + 3(\alpha_3 + \alpha_4)\eta\} \\
&\quad + xy^2\{3(\alpha_0 + \alpha_1 + 4\alpha_2 + 2\alpha_3 + 2\alpha_4) - (2\alpha_0 + 6\alpha_2 + 5\alpha_3 + 5\alpha_4)\eta\} + y^4 + 2\alpha_4 x^3 \\
&\quad + 2y^3((\alpha_0 + 2\alpha_2 + \alpha_3 + \alpha_4)\eta - 1) - \alpha_4(3\eta - 1)x^2 \\
&\quad + y^2\{1 - 3(\alpha_0 + 2\alpha_2 + \alpha_3 + \alpha_4)\eta + (\alpha_0 + 2\alpha_2 + \alpha_3 + \alpha_4)\eta^2\} \\
&\quad + xy\{-(\alpha_0 + \alpha_1 + 4\alpha_2 + 2\alpha_3 + 2\alpha_4) + 2(\alpha_0 + 3\alpha_2 + 2\alpha_3 + 3\alpha_4)\eta - (\alpha_3 + \alpha_4)\eta^2\} \\
&\quad + \alpha_4(\eta - 1)\eta x - (\alpha_0 + 2\alpha_2 + \alpha_3 + \alpha_4)(\eta - 1)\eta y, \\
\frac{2\eta}{b(t)} \frac{dz}{dt} &= (2x - 2y + 1 - \eta)(2x^2y + 2x^2z - x^2 - y^2\eta - 2(x + 1)xy + \eta(x + y))z^2 \\
&\quad + z\{-2x^3(\alpha_3 + \alpha_4) + 2y^3(\alpha_0 + \alpha_1) + 2x^2y(\alpha_0 + \alpha_1 + 6\alpha_2 + 2\alpha_3 + 2\alpha_4) \\
&\quad - 2x^2y(2\alpha_0 + 2\alpha_1 + 6\alpha_2 + \alpha_3 + \alpha_4) + x^2\{-(\alpha_0 + \alpha_1 + 6\alpha_2 + 4\alpha_3 + 3(\alpha_3 + \alpha_4)\eta\} \\
&\quad + y^2(-3(\alpha_0 + \alpha_1) + (4\alpha_0 + 6\alpha_2 + \alpha_3 + \alpha_4)\eta) \\
&\quad - 4xy\{-(\alpha_0 + \alpha_1 + 3\alpha_2 + \alpha_3) + (\alpha_0 + 3\alpha_2 + \alpha_3 + \alpha_4)\eta\} \\
&\quad + x\{-(\alpha_0 + \alpha_1 + 4\alpha_2 + 2\alpha_3) + 2(\alpha_0 + 3\alpha_2 + 2\alpha_3)\eta - (\alpha_3 + \alpha_4)\eta^2\} \\
&\quad + y\{\alpha_0 + \alpha_1 - 2(2\alpha_0 + 3\alpha_2 + \alpha_3)\eta + (2\alpha_0 + 4\alpha_2 + \alpha_3 + \alpha_4)\eta^2\} \\
&\quad - (\alpha_0 + 2\alpha_2 + \alpha_3)(\eta - 1)\eta + \alpha_2[(\alpha_0 + \alpha_1 + 2\alpha_2 - \alpha_3 - \alpha_4)x^2 \\
&\quad + (\alpha_0 + \alpha_1 - 2\alpha_2 - \alpha_3 - \alpha_4)y^2 - 2(\alpha_0 + \alpha_1 - \alpha_3 - \alpha_4)xy \\
&\quad + x\{\alpha_0 + \alpha_1 - 2\alpha_3 - (2\alpha_0 + 2\alpha_2 - \alpha_3 - \alpha_4)\eta\} \\
&\quad + y\{\alpha_0 - \alpha_1 + 2\alpha_2 + 2\alpha_3 + (2\alpha_0 - \alpha_3 - \alpha_4)\eta\} + (\eta - 1)(\alpha_2 + \alpha_3 + (\alpha_0 + \alpha_2)\eta)\}.
\end{align*}
\]
Here \(x, y\) and \(z\) denote unknown complex variables, \(b(t) \in \mathbb{C}(t)\), \(\eta \in \mathbb{C} - \{0\}\), and \(\alpha_0, \alpha_1, \ldots, \alpha_4\) are complex parameters satisfying the relation:

\[
\alpha_0 + \alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4 = 1.
\]

Theorem 2.1. Let us consider the following ordinary differential system in the polynomial class:

\[
\begin{align*}
\frac{dx}{dt} &= f_1(x, y, z), \\
\frac{dy}{dt} &= f_2(x, y, z), \\
\frac{dz}{dt} &= f_3(x, y, z).
\end{align*}
\]

We assume that

(A1) \(\text{deg}(f_i) = 6\) with respect to \(x, y, z\).

(A2) The right-hand side of this system becomes again a polynomial in each coordinate system \((x_i, y_i, z_i)\) \((i = 0, 1, \ldots, 4)\).

\[
\begin{align*}
0) & \quad x_0 = x - \eta, \quad y_0 = y, \quad z_0 = z - \frac{\alpha_0}{x - \eta}, \\
1) & \quad x_1 = x, \quad y_1 = y, \quad z_1 = z - \frac{\alpha_1}{x}, \\
2) & \quad x_2 = x + \frac{\alpha_2}{z}, \quad y_2 = y + \frac{\alpha_2}{z}, \quad z_2 = z, \\
3) & \quad x_3 = x, \quad y_3 = y - 1, \quad z_3 = z - \frac{\alpha_3}{y - 1}, \\
4) & \quad x_4 = x, \quad y_4 = y, \quad z_4 = z - \frac{\alpha_4}{y}.
\end{align*}
\]

Then such a system coincides with the system \([4]\).

These transition functions satisfy the condition:

\[
dx_i \wedge dy_i \wedge dz_i = dx \wedge dy \wedge dz \quad (i = 0, 1, \ldots, 4).
\]

Theorem 2.2. The system \([4]\) admits the affine Weyl group symmetry of type \(D_4^{(1)}\) as the group of its Bäcklund transformations, whose generators are explicitly given as follows:
with the notation \((\ast) := (x, y, z; \alpha_0, \alpha_1, \ldots, \alpha_4)\),

\[

text{\begin{align*}
 s_0 : (\ast) &\rightarrow \left(x, y, z - \frac{\alpha_0}{x}; -\alpha_0, \alpha_1, \alpha_2 + \alpha_0, \alpha_3, \alpha_4\right), \\
 s_1 : (\ast) &\rightarrow \left(x, y, z - \frac{\alpha_1}{x}; \alpha_0, -\alpha_1, \alpha_2 + \alpha_1, \alpha_3, \alpha_4\right), \\
 s_2 : (\ast) &\rightarrow \left(x + \frac{\alpha_2}{z}, y + \frac{\alpha_2}{z}; \alpha_0 + \alpha_2, \alpha_1 + \alpha_2, -\alpha_2, \alpha_3 + \alpha_2, \alpha_4 + \alpha_2\right), \\
 s_3 : (\ast) &\rightarrow \left(x, y, z - \frac{\alpha_3}{y - 1}; \alpha_0, \alpha_1, \alpha_2 + \alpha_3, -\alpha_3, \alpha_4\right), \\
 s_4 : (\ast) &\rightarrow \left(x, y, z - \frac{\alpha_4}{y}; \alpha_0, \alpha_1, \alpha_2 + \alpha_4, \alpha_3, -\alpha_4\right).
\end{align*}}

We note that the generators \(s_0, s_1, \ldots, s_4\) are determined by the invariant divisors \((2.3)\) (see next proposition).

Proposition 2.3. The system \((4)\) has the following invariant divisors:

parameter's relation	\(f_i\)
\(\alpha_0 = 0\)	\(f_0 := x - \eta\)
\(\alpha_1 = 0\)	\(f_1 := x\)
\(\alpha_2 = 0\)	\(f_2 := z\)
\(\alpha_3 = 0\)	\(f_3 := y - 1\)
\(\alpha_4 = 0\)	\(f_4 := y\)

We note that when \(\alpha_1 = 0\), we see that the system \((4)\) admits a particular solution \(x = 0\).

3. Reduction of the \(D_{4}^{(1)}\) system

In this section, we show that the system \((4)\) has its first integral. Thanks to this first integral, we can reduce the system \((4)\) to the second-order non-linear ordinary differential equations.

Proposition 3.1. The system \((4)\) has its first integral:

\[
(7) \quad \frac{d(x - y)}{dt} = \frac{b(t)}{2\eta}(x - y)(x - y + 1)(x - y + 1 - \eta)(x - y - \eta).
\]

Under the condition

\[
(8) \quad b(t) = \frac{2\eta}{t(t - 1)(t + \eta)(t + \eta - 1)},
\]

the equation \((7)\) admits a particular solution:

\[
(9) \quad x = y - t.
\]
THEOREM 3.2. Under the conditions

\begin{align}
 b(t) &= \frac{2\eta}{t(t-1)\{t^2 + (2\eta - 1)t + \eta(\eta - 1)\}}, \\
 x &= y - t,
\end{align}

for the system (4) we make the change of parameters and variables

\begin{align}
 \alpha_0 &= A_1, \quad \alpha_1 = A_0, \quad \alpha_2 = A_2, \quad \alpha_3 = A_3, \quad \alpha_4 = A_4, \quad X := y, \quad Y := z
\end{align}

from \(\alpha_0, \alpha_1, \ldots, \alpha_4, x, y, z\) to \(A_i, X, Y\). Then the system (4) can also be written in the new variables \(X, Y\) and parameters \(A_i\) as a Hamiltonian system. This new system tends to

\begin{align}
 \frac{dX}{dt} &= \frac{\partial H_{VI}}{\partial Y}, \quad \frac{dY}{dt} = -\frac{\partial H_{VI}}{\partial X}
\end{align}

with the polynomial Hamiltonian

\begin{align}
 H_{VI}(X, Y, t; A_1, A_0, A_2, A_3, A_4) &= \frac{1}{t(t-1)}[Y^2(X - t)(X - 1)X - \{(A_1 - 1)(X - 1)X + A_3(X - t)X

 + A_4(X - t)(X - 1)\}Y + A_2(A_0 + A_2)X]
\end{align}

as \(\eta \to \infty\).

This system is the Painlevé VI system.

We also see that the equation (7) admits a particular solution:

\begin{align}
 x &= y.
\end{align}

THEOREM 3.3. Under the condition

\begin{align}
 x &= y,
\end{align}

for the system (4) we make the change of variables

\begin{align}
 X := y, \quad Y := z
\end{align}

from \(x, y, z\) to \(X, Y\). Then the system (4) can also be written in the new variables \(X, Y\) as a Hamiltonian system. This new system tends to

\begin{align}
 \frac{dX}{dt} &= \frac{\partial H}{\partial Y}, \quad \frac{dY}{dt} = -\frac{\partial H}{\partial X}
\end{align}

with the polynomial Hamiltonian

\begin{align}
 H(X, Y, t; \alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4) &= -\frac{\eta - 1}{2\eta}b(t)[-(X - 1)(X - \eta)X^2Y^2 - \{2\alpha_2(X - 1)(X - \eta) - \alpha_0\eta(X - 1) - \alpha_3(X - \eta)\}XY

 - \alpha_2^2X^2 + \alpha_2\{1 - (\alpha_0 + \alpha_1 + \alpha_2 + \alpha_4) + (1 - (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4))\eta\}X].
\end{align}
Elimination of Y from the system (18) gives the second-order non-linear ordinary differential equation for the variable X:

$$
\frac{d^2 X}{dt^2} = \left\{ \frac{1}{2(X-1)} + \frac{1}{X} + \frac{1}{2(X-\eta)} \right\} \left(\frac{dX}{dt} \right)^2 + \frac{db(t)}{b(t)} \frac{dX}{dt} - \frac{b(t)^2}{8\eta^2(X-1)(X-\eta)} \left[(\eta-1)^3 X^2 \{ (\alpha_0 \eta + \alpha_3) X - (1 - (\alpha_1 + 2\alpha_2 + \alpha_4)) \eta \} \right.
\times \left\{ (\alpha_0 \eta - \alpha_3) X + (1 - (2\alpha_0 + \alpha_1 + 2\alpha_2 + \alpha_4)) \eta \} \right].
$$

(20)

Proposition 3.4. The system (18) admits the affine Weyl group symmetry of type $D_4^{(1)}$ as the group of its B"acklund transformations, whose generators are explicitly given as follows: with the notation $(*) := (X, Y; \alpha_0, \alpha_1, \ldots, \alpha_4)$,

$\begin{align*}
s_0 : (*) & \rightarrow \left(X, Y - \frac{\alpha_0}{X - \eta}; -\alpha_0, \alpha_1, \alpha_2 + \alpha_0, \alpha_3, \alpha_4 \right), \\
s_1 : (*) & \rightarrow \left(X, Y - \frac{\alpha_1}{X}; \alpha_0, -\alpha_1, \alpha_2 + \alpha_1, \alpha_3, \alpha_4 \right), \\
s_2 : (*) & \rightarrow \left(X + \frac{\alpha_2}{Y}, Y; \alpha_0 + \alpha_2, \alpha_1 + \alpha_2, -\alpha_2, \alpha_3 + \alpha_2, \alpha_4 + \alpha_2 \right), \\
s_3 : (*) & \rightarrow \left(X, Y - \frac{\alpha_3}{X - 1}; \alpha_0, \alpha_1, \alpha_2 + \alpha_3, -\alpha_3, \alpha_4 \right), \\
s_4 : (*) & \rightarrow \left(X, Y - \frac{\alpha_4}{X}; \alpha_0, \alpha_1, \alpha_2 + \alpha_4, \alpha_3, -\alpha_4 \right).
\end{align*}$

4. The System of Type $B_3^{(1)}$

In this section, we present a 3-parameter family of ordinary differential systems in dimension three with affine Weyl group symmetry of type $B_3^{(1)}$. This system is equivalent to the system (4) restricted its parameters.

This system can be obtained by connecting the invariant divisors x and y in the system (4).

For this system, we can discuss some reductions to the second-order ordinary differential equations in the same way in previous section because this system is equivalent to the system (4) only restricted its parameters.

Theorem 4.1. Let us consider the following ordinary differential system in the polynomial class:

$$
\begin{align*}
\frac{dx}{dt} &= f_1(x, y, z), \\
\frac{dy}{dt} &= f_2(x, y, z), \\
\frac{dz}{dt} &= f_3(x, y, z).
\end{align*}
$$

We assume that

(A1) $\text{deg}(f_i) = 6$ with respect to x, y, z.

(A2) The right-hand side of this system becomes again a polynomial in each coordinate system \((x_i, y_i, z_i)\) \((i = 0, 1, 2, 3)\).

\[
\begin{align*}
0) \ x_0 &= x - \eta, \quad y_0 = y, \quad z_0 = z - \frac{\beta_0}{x - \eta}, \\
1) \ x_1 &= x, \quad y_1 = y - 1, \quad z_1 = z - \frac{\beta_1}{y - 1}, \\
2) \ x_2 &= x + \frac{\beta_2}{z}, \quad y_2 = y + \frac{\beta_2}{z}, \quad z_2 = z, \\
3) \ x_3 &= x, \quad y_3 = y, \quad z_3 = z - \frac{\beta_3(x + y)}{xy}.
\end{align*}
\]

Then such a system coincides with the system (4) with the parameter’s relations:

\[
\begin{align*}
\alpha_4 &= \alpha_1, \quad \beta_0 := \alpha_0, \quad \beta_1 := \alpha_3, \quad \beta_2 := \alpha_2, \quad \beta_3 := \alpha_1.
\end{align*}
\]

Here, the complex parameters \(\beta_0, \beta_1, \beta_2, \beta_3\) satisfy the relation:

\[
\beta_0 + \beta_1 + 2\beta_2 + 2\beta_3 = 1.
\]

These transition functions satisfy the condition:

\[
dx_i \wedge dy_i \wedge dz_i = dx \wedge dy \wedge dz \quad (i = 0, 1, 2, 3).
\]

Theorem 4.2. This system admits the affine Weyl group symmetry of type \(B_3^{(1)}\) as the group of its Bäcklund transformations, whose generators are explicitly given as follows: with the notation \((\ast) := (x, y, z; \beta_0, \beta_1, \beta_2, \beta_3),\)

\[
\begin{align*}
s_0 : (\ast) &\rightarrow \left(x, y, z - \frac{\beta_0}{x - \eta}; -\beta_0, \beta_1, \beta_2 + \beta_0, \beta_3 \right), \\
s_1 : (\ast) &\rightarrow \left(x, y, z - \frac{\beta_1}{y - 1}; \beta_0, -\beta_1, \beta_2 + \beta_1, \beta_3 \right), \\
s_2 : (\ast) &\rightarrow \left(x + \frac{\beta_2}{z}, y + \frac{\beta_2}{z}; \beta_0 + \beta_2, \beta_1 + \beta_2, -\beta_2, \beta_3 + \beta_2 \right), \\
s_3 : (\ast) &\rightarrow \left(x, y, z - \frac{\beta_3(x + y)}{xy}; \beta_0, \beta_1, \beta_2 + 2\beta_3, -\beta_3 \right).
\end{align*}
\]

The Bäcklund transformations of each system satisfy

\[
s_i(g) = g + \frac{\alpha_i}{f_i} \{f_i, g\} + \frac{1}{2!} \left(\frac{\alpha_i}{f_i} \right)^2 \{f_i, \{f_i, g\}\} + \cdots \quad (g \in \mathbb{C}(t)[x, y, z]),
\]

where poisson bracket \(\{,\}\) satisfies the relations:

\[
\{z, x\} = \{z, y\} = 1, \quad \{x, y\} = 0.
\]

Since these Bäcklund transformations have Lie theoretic origin, similarity reduction of a Drinfeld-Sokolov hierarchy admits such a Bäcklund symmetry.

We note that all generators \(s_0, s_1, s_2, s_3\) are determined by the invariant divisors (4.3) (see next proposition).
Proposition 4.3. This system has the following invariant divisors:

parameter’s relation	\(f_i \)
\(\beta_0 = 0 \)	\(f_0 := x - \eta \)
\(\beta_1 = 0 \)	\(f_1 := y - 1 \)
\(\beta_2 = 0 \)	\(f_2 := z \)
\(\beta_3 = 0 \)	\(f_3 := xy \)

We note that when \(\beta_3 = 0 \), after we make the birational transformations:

\[
(26) \quad x_3 = xy, \ y_3 = y, \ z_3 = z
\]

we see that in the coordinate system \((x_3, y_3, z_3)\) the system admits a particular solution \(x_3 = 0\).

5. The System of Type \(D_3^{(2)}\)

In this section, we present a 2-parameter family of ordinary differential systems in dimension three with affine Weyl group symmetry of type \(D_3^{(2)}\). This system is equivalent to the system (4) restricted its parameters.

Theorem 5.1. Let us consider the following ordinary differential system in the polynomial class:

\[
\begin{align*}
\frac{dx}{dt} &= f_1(x, y, z), \\
\frac{dy}{dt} &= f_2(x, y, z), \\
\frac{dz}{dt} &= f_3(x, y, z).
\end{align*}
\]

We assume that

(A1) \(\text{deg}(f_i) = 6 \) with respect to \(x, y, z \).

(A2) The right-hand side of this system becomes again a polynomial in each coordinate system \((x_i, y_i, z_i)\) \((i = 1, 2, 3)\).

1) \(x_1 = x - \eta, \ y_1 = y - 1, \ z_1 = z - \frac{\beta_0(x + y - \eta - 1)}{(x - \eta)(y - 1)}, \)

\[
(27) \quad x_2 = x + \frac{\beta_1}{z}, \ y_2 = y + \frac{\beta_1}{z}, \ z_2 = z,
\]

2) \(x_3 = x, \ y_3 = y, \ z_3 = z - \frac{\beta_2(x + y)}{xy}. \)

Then such a system coincides with the system (4) with the parameter’s relations:

\[
(28) \quad \alpha_4 = \alpha_1, \ \alpha_0 = \alpha_3, \ \beta_0 := \alpha_1, \ \beta_1 := \alpha_2, \ \beta_2 := \alpha_3.
\]

Here, the complex parameters \(\beta_0, \beta_1, \beta_2\) satisfy the relation:

\[
(29) \quad \beta_0 + \beta_1 + \beta_2 = \frac{1}{2}.
\]
These transition functions satisfy the condition:
\[dx_i \wedge dy_i \wedge dz_i = dx \wedge dy \wedge dz \quad (i = 1, 2, 3). \]

Theorem 5.2. This system admits the affine Weyl group symmetry of type $D_3^{(2)}$ as the group of its Bäcklund transformations, whose generators are explicitly given as follows: with the notation $(\ast) := (x, y, z; \beta_0, \beta_1, \beta_2)$,

\[
\begin{align*}
s_0 : (\ast) &\to \left(x, y, z - \frac{\beta_0(x + y - \eta - 1)}{(x - \eta)(y - 1)}; -\beta_0 + 2\beta_0, \beta_2 \right), \\
s_1 : (\ast) &\to \left(x + \frac{\beta_1}{z}, y + \frac{\beta_1}{z}, z; \beta_0 + \beta_1, -\beta_1 + 2\beta_1 \right), \\
s_2 : (\ast) &\to \left(x, y, z - \frac{\beta_2(x + y)}{xy}; \beta_0, \beta_1 + 2\beta_2, -\beta_2 \right).
\end{align*}
\]

We note that the generators s_0, s_1, s_2 are determined by the invariant divisors (5.3) (see next proposition).

Proposition 5.3. This system has the following invariant divisors:

parameter’s relation	f_i
$\beta_0 = 0$	$f_0 := (x - \eta)(y - 1)$
$\beta_1 = 0$	$f_1 := z$
$\beta_2 = 0$	$f_2 := xy$

6. **The system of type $G_2^{(1)}$**

In this section, we present a 2-parameter family of ordinary differential systems in dimension three with affine Weyl group symmetry of type $G_2^{(1)}$. This system is equivalent to the system (4) restricted its parameters

\[
\alpha_4 = \alpha_3 = \alpha_1, \quad \beta_0 := \alpha_0, \quad \beta_1 := \alpha_2, \quad \beta_2 := \alpha_3.
\]

Here, the complex parameters $\beta_0, \beta_1, \beta_2$ satisfy the relation:

\[
\beta_0 + 2\beta_1 + 3\beta_2 = 1.
\]

Theorem 6.1. This system admits the affine Weyl group symmetry of type $G_2^{(1)}$ as the group of its Bäcklund transformations, whose generators are explicitly given as follows: with the notation $(\ast) := (x, y, z; \beta_0, \beta_1, \beta_2)$,

\[
\begin{align*}
s_0 : (\ast) &\to \left(x, y, z - \frac{\beta_0}{x - \eta}; -\beta_0 + \beta_1 + \beta_0, \beta_2 \right), \\
s_1 : (\ast) &\to \left(x + \frac{\beta_1}{z}, y + \frac{\beta_1}{z}, z; \beta_0 + \beta_1, -\beta_1 + \beta_2 + \beta_1 \right), \\
s_2 : (\ast) &\to \left(x, y, z - \frac{\beta_2(y(y - 1) + x(y - 1) + xy)}{xy(y - 1)}; \beta_0, \beta_1 + 3\beta_2, -\beta_2 \right).
\end{align*}
\]
We note that the generators s_0, s_1, s_2 are determined by the invariant divisors (6.2) (see next proposition).

Proposition 6.2. This system has the following invariant divisors:

parameter's relation	f_i
$\beta_0 = 0$	$f_0 := x - \eta$
$\beta_1 = 0$	$f_1 := z$
$\beta_2 = 0$	$f_2 := xy(y - 1)$

7. **The system of type $A_2^{(2)}$**

In this section, we present a 1-parameter family of ordinary differential systems in dimension three with affine Weyl group symmetry of type $A_2^{(2)}$. This system is equivalent to the system (4) restricted its parameters

(32) $\alpha_4 = \alpha_3 = \alpha_0 = \alpha_1, \; \beta_0 := \alpha_2, \; \beta_1 := \alpha_1$.

Here, the complex parameters β_0, β_1 satisfy the relation:

(33) $\beta_0 + 2\beta_1 = \frac{1}{2}$.

Theorem 7.1. This system admits the affine Weyl group symmetry of type $A_2^{(2)}$ as the group of its Bäcklund transformations, whose generators are explicitly given as follows: with the notation $(\ast) := (x, y, z; \beta_0, \beta_1),

s_0 : (\ast) \rightarrow \left(x + \frac{\beta_0}{z}, y + \frac{\beta_0}{z}, -\beta_0, \beta_1 + \beta_0 \right),

s_1 : (\ast) \rightarrow (x, y, z - \beta_1 \left\{ y(x - \eta)(y - 1) + x(x - \eta)(y - 1) + xy(y - 1) + xy(x - \eta) \right\} xy(x - \eta)(y - 1) - \beta_0 + 4\beta_1, -\beta_1).

We note that the generators s_0, s_1 are determined by the invariant divisors (7.2) (see next proposition).

Proposition 7.2. This system has the following invariant divisors:

parameter's relation	f_i
$\beta_0 = 0$	$f_0 := z$
$\beta_1 = 0$	$f_1 := xy(x - \eta)(y - 1)$

8. **Appendix A**

It is well-known that the fifth Painlevé equation has symmetries under the affine Weyl group of type $A_3^{(1)}$. In this section, we present a 3-parameter family of the systems of the first-order ordinary differential equations.
Theorem 8.1. The fifth Painlevé equation is equivalent to a 3-parameter family of the systems of the first-order ordinary differential equations:

\[
\begin{align*}
\frac{df_0}{dt} &= -\frac{\varphi}{2}(-2f_0f_1f_2 + af_0f_2 + (\alpha_0 + \alpha_1 + \alpha_3)f_0 - \alpha_0f_2), \\
\frac{df_1}{dt} &= \frac{\varphi}{2}(-f_0f_1 - f_1^2f_2 + af_0f_1 + af_1f_2 - a\alpha_1 + (\alpha_1 + \alpha_3)f_1), \\
\frac{df_2}{dt} &= -\frac{\varphi}{2}(-2f_0f_1f_2 + af_0f_2 + (\alpha_1 + \alpha_2 + \alpha_3)f_2 - \alpha_2f_0).
\end{align*}
\]

Here, \(f_0, f_1, f_2\) denote unknown complex variables and \(\alpha_0, \alpha_1, \alpha_2, \alpha_3\) and \(a\) are constant complex parameters with \(\alpha_0 + \alpha_1 + \alpha_2 + \alpha_3 = 1\) and \(\varphi\) is a nonzero parameter which can be fixed arbitrarily.

We see that the system has its first integral:

\[
\frac{d(f_2 - f_0)}{dt} = f_2 - f_0.
\]

We can solve this equation by

\[
f_2 - f_0 = e^{(t+c)}.
\]

Here we set

\[
t + c = \log T, \ x := f_0, \ y := f_1,
\]

then we can obtain the fifth Painlevé system:

\[
\begin{align*}
\frac{dx}{dT} &= \frac{\partial H_V}{\partial y} = -\frac{2x^2y}{T} + \frac{ax^2}{T} - 2xy + \left(a + \frac{\alpha_1 + \alpha_3}{T}\right)x - \alpha_0, \\
\frac{dy}{dT} &= -\frac{\partial H_V}{\partial x} = \frac{2xy^2}{T} + y^2 - \frac{2axy}{T} - \left(a + \frac{\alpha_1 + \alpha_3}{T}\right)y + \frac{a\alpha_1}{T}
\end{align*}
\]

with the polynomial Hamiltonian

\[
H_V = -\frac{x^2y^2}{T} + \frac{ax^2y}{T} - xy^2 + \left(a + \frac{\alpha_1 + \alpha_3}{T}\right)xy - \alpha_0y - \frac{a\alpha_1}{T}x.
\]

Theorem 8.2. This system admits the affine Weyl group symmetry of type \(A_3^{(1)}\) as the group of its Bäcklund transformations, whose generators \(s_0, s_1, s_2, s_3, \pi\) are explicitly given.
as follows:

\begin{equation}
(40)
\end{equation}

\begin{align*}
s_0 : (f_0, f_1, f_2; \alpha_0, \alpha_1, \alpha_2, \alpha_3) & \rightarrow \left(f_0, f_1 + \frac{\alpha_0 f_0}{f_1}, f_2; -\alpha_0, \alpha_1 + \alpha_0, \alpha_2, \alpha_3 + \alpha_0 \right), \\
s_1 : (f_0, f_1, f_2; \alpha_0, \alpha_1, \alpha_2, \alpha_3) & \rightarrow \left(f_0 - \frac{\alpha_1 f_0}{f_1}, f_1, f_2 - \frac{\alpha_1 f_0}{f_1}; \alpha_0 + \alpha_1, -\alpha_1, \alpha_2 + \alpha_1, \alpha_3 \right), \\
s_2 : (f_0, f_1, f_2; \alpha_0, \alpha_1, \alpha_2, \alpha_3) & \rightarrow \left(f_0, f_1 + \frac{\alpha_2 f_0}{f_2}, f_2; \alpha_0, \alpha_1 + \alpha_2, -\alpha_2, \alpha_3 + \alpha_2 \right), \\
s_3 : (f_0, f_1, f_2; \alpha_0, \alpha_1, \alpha_2, \alpha_3) & \rightarrow \left(f_0 - \frac{\alpha_3 f_0}{f_1 - a}, f_1, f_2 - \frac{\alpha_3 f_0}{f_1 - a}; \alpha_0 + \alpha_3, \alpha_1, \alpha_2 + \alpha_3, -\alpha_3 \right), \\
\pi : (f_0, f_1, f_2; \alpha_0, \alpha_1, \alpha_2, \alpha_3) & \rightarrow (f_2, f_1, f_0; \eta, \alpha_2, \alpha_1, \alpha_0, \alpha_3).
\end{align*}

The Bäcklund transformations of each system satisfy

\begin{equation}
(41) \quad s_i(g) = g + \frac{\alpha_i}{f_i} \{f_i, g\} + \frac{1}{2!} \left(\frac{\alpha_i}{f_i} \right)^2 \{f_i, \{f_i, g\}\} + \cdots \quad (g \in \mathbb{C}[f_0, f_1, f_2]),
\end{equation}

where poisson bracket \{,\} satisfies the relations:

\begin{equation}
(42) \quad \{f_0, f_1\} = \{f_2, f_1\} = 1, \quad \{f_0, f_2\} = 0.
\end{equation}

Since these Bäcklund transformations have Lie theoretic origin, similarity reduction of a Drinfeld-Sokolov hierarchy admits such a Bäcklund symmetry.

9. Appendix B

It is well-known that the third Painlevé equation has symmetries under the affine Weyl group of type $C_2^{(1)}$. In this section, we present a new representation of the third Painlevé equation.

Theorem 9.1. The third Painlevé equation can be written in the following symmetric form:

\begin{equation}
(43) \quad \begin{cases}
\frac{df_0}{dt} = -2f_0 f_1 f_2 + (\alpha_0 + 2\alpha_1)f_0 - \alpha_0 f_2, \\
\frac{df_1}{dt} = (f_0 + f_2)f_1^2 - 2\alpha_1 f_1 + \eta, \\
\frac{df_2}{dt} = -2f_0 f_1 f_2 + (2\alpha_1 + \alpha_2)f_2 - \alpha_2 f_0.
\end{cases}
\end{equation}

Here, f_0, f_1 and f_2 denote unknown complex variables and α_0, α_1 and α_2 are constant parameters with $\alpha_0 + 2\alpha_1 + \alpha_2 = 1$ and η is a nonzero parameter which can be fixed arbitrarily.

We see that the system \[43\] has its first integral:

\begin{equation}
(44) \quad \frac{d(f_0 - f_2)}{dt} = f_0 - f_2.
\end{equation}
We can solve this equation by

\[(45) \quad f_0 - f_2 = e^{(t+c)}.\]

Here we set

\[(46) \quad t + c = \log T, \quad x := \frac{1}{f_1}, \quad y := -(f_1 f_2 + \alpha_2) f_1,\]

then we can obtain the third Painlevé system:

\[(47) \quad \begin{cases} \frac{dx}{dT} = \frac{\partial H_{III}}{\partial y} = \frac{2x^2 y}{T} - \frac{\eta x^2}{T} + \frac{2(\alpha_1 + \alpha_2) x}{T} - 1, \\ \frac{dy}{dT} = -\frac{\partial H_{III}}{\partial x} = -\frac{2xy^2}{T} + \frac{2\eta xy}{T} - \frac{2(\alpha_1 + \alpha_2) y}{T} + \frac{\eta \alpha_2}{T} \end{cases}\]

with the polynomial Hamiltonian

\[(48) \quad H_{III} = \frac{x^2 y^2 - \eta x^2 y + 2(\alpha_1 + \alpha_2) x y - T y - \eta \alpha_2 x}{T}.\]

Theorem 9.2. This system admits extended affine Weyl group symmetry of type $C_2^{(1)}$ as the group of its Bäcklund transformations, whose generators s_0, s_1, s_2, π are explicitly given as follows:

\[
s_0 : (f_0, f_1, f_2; \eta, \alpha_0, \alpha_1, \alpha_2) \rightarrow \left(f_0, f_1 + \frac{\alpha_0}{f_0}, f_2; \eta, -\alpha_0, \alpha_1 + \alpha_0, \alpha_2 \right),
\]

\[
s_1 : (f_0, f_1, f_2; \eta, \alpha_0, \alpha_1, \alpha_2) \rightarrow \left(f_0 - \frac{2\alpha_1}{f_1}, f_1, f_2 - \frac{2\alpha_1}{f_1} + \eta \right),
\]

\[
s_2 : (f_0, f_1, f_2; \eta, \alpha_0, \alpha_1, \alpha_2) \rightarrow \left(f_0, f_1 + \frac{\alpha_2}{f_2}, f_2; \eta, \alpha_0, \alpha_1 + \alpha_2, -\alpha_2 \right),
\]

\[
\pi : (f_0, f_1, f_2; \eta, \alpha_0, \alpha_1, \alpha_2) \rightarrow (f_2, f_1, f_0; \eta, \alpha_2, \alpha_1, \alpha_0).
\]

Figure 1. The transformations described in Theorem 9.2 satisfy the relations:

\[s_0^2 = s_1^2 = s_2^2 = \pi^2 = (s_0 s_2)^2 = (s_0 s_1)^4 = (s_1 s_2)^4 = 1, \quad \pi(s_0, s_1, s_2) = (s_2, s_1, s_0) \pi.\]
Theorem 9.3. For the system (34) of type $A_3^{(1)}$, we make the change of parameters

$$
\alpha_0 = \beta_0, \quad \alpha_1 = -\frac{\eta}{a}, \quad \alpha_2 = \beta_2, \quad \alpha_3 = 2\beta_1 + \frac{\eta}{a}, \quad \varphi = -2,
$$

from $\alpha_0, \alpha_1, \alpha_2, \alpha_3$ to $\beta_0, \beta_1, \beta_2$. This new system tends to the system (43) of type $C_2^{(1)}$ as $a \to 0$.

We note that

$$
\alpha_0 + \alpha_1 + \alpha_2 + \alpha_3 = \beta_0 + 2\beta_1 + \beta_2 = 1.
$$

References

[1] P. Painlevé, Mémoire sur les équations différentielles dont l’intégrale générale est uniforme, Bull. Société Mathématique de France. 28 (1900), 201–261.

[2] P. Painlevé, Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale est uniforme, Acta Math. 25 (1902), 1–85.

[3] B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes, Acta Math. 33 (1910), 1–55.

[4] C. M. Cosgrove and G. Scoufis, Painlevé classification of a class of differential equations of the second order and second degree, Studies in Applied Mathematics. 88 (1993), 25-87.

[5] C. M. Cosgrove, All binomial-type Painlevé equations of the second order and degree three or higher, Studies in Applied Mathematics. 90 (1993), 119-187.

[6] F. Bureau, Integration of some nonlinear systems of ordinary differential equations, Annali di Matematica. 94 (1972), 345–359.

[7] J. Chazy, Sur les équations différentielles dont l’intégrale générale est uniforme et admet des singularités essentielles mobiles, Comptes Rendus de l’Académie des Sciences, Paris. 149 (1909), 563–565.

[8] J. Chazy, Sur les équations différentielles dont l’intégrale générale possède une coupure essentielle mobile, Comptes Rendus de l’Académie des Sciences, Paris. 150 (1910), 456–458.

[9] J. Chazy, Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale a ses points critiques fixes, Acta Math. 34 (1911), 317–385.

[10] Y. Sasano, Coupled Painlevé VI systems in dimension four with affine Weyl group symmetry of types $B_6^{(1)}, D_6^{(1)}$ and $D_7^{(2)}$, preprint.

[11] Y. Sasano, Four-dimensional Painlevé systems of types $D_5^{(1)}$ and $B_4^{(1)}$, preprint.

[12] Y. Sasano, Higher order Painlevé equations of type $D_6^{(1)}$, RIMS Kokyuroku 1473 (2006), 143–163.

[13] Y. Sasano, Symmetries in the system of type $D_4^{(1)}$, preprint.

[14] Y. Sasano, Coupled Painlevé III systems with affine Weyl group symmetry of types $B_4^{(1)}$, $D_4^{(1)}$ and $D_5^{(2)}$, preprint.

[15] Y. Sasano, Coupled Painlevé III systems with affine Weyl group symmetry of types $B_5^{(1)}$, $D_5^{(1)}$ and $D_6^{(2)}$, preprint.

[16] Y. Sasano, Coupled Painlevé VI systems in dimension four with affine Weyl group symmetry of type $D_6^{(1)}$, II, RIMS Kokyuroku Bessatsu. B5 (2008), 137–152.

[17] Y. Sasano, Coupled Painlevé VI systems in dimension four with affine Weyl group symmetry of type $E_6^{(2)}$, preprint.

[18] Y. Sasano, Symmetry in the Painlevé systems and their extensions to four-dimensional systems, Funkcial. Ekvac. 51 (2008), 351–369.