Review

Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies

Roberta Maria Antonello 1, Luigi Principe 2, Alberto Enrico Maraolo 3, Valentina Viaggi 4, Riccardo Pol 5, Massimiliano Fabbiani 6, Francesca Montagnani 6,7, Antonio Lovecchio 1, Roberto Luzzati 1 and Stefano Di Bella 1,*

1 Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy; rma.roby@gmail.com (R.M.A.); antolvc93@gmail.com (A.L.); roberto.luzzati@asugi.sanita.fvg.it (R.L.)
2 “San Giovanni di Dio” Hospital, 88900 Crotone, Italy; luigi.principe@gmail.com
3 First Division of Infectious Diseases, Cotugno Hospital, AORN dei Colli, 80131 Naples, Italy; albertomaraolo@mail.com
4 “A. Manzoni” Hospital, 23900 Lecco, Italy; v.viaggi@asst-lecco.it
5 Department of Infectious Diseases, Udine University, 33100 Udine, Italy; riccardopol91@gmail.com
6 Department of Medical Sciences, Tropical and Infectious Diseases Unit, University Hospital of Siena, 53100 Siena, Italy; massimiliano.fabbiani@gmail.com (M.F.); francesca.montagnani@unisi.it (F.M.)
7 Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
* Correspondence: stefano932@gmail.com

Received: 10 July 2020; Accepted: 3 August 2020; Published: 10 August 2020

Abstract: Fosfomycin is being increasingly prescribed for multidrug-resistant bacterial infections. In patients with systemic involvement, intravenous fosfomycin is usually administered as a partner drug, as part of an antibiotic regimen. Hence, the knowledge of fosfomycin pharmacodynamic interactions (synergistic, additive, indifferent and antagonistic effect) is fundamental for a proper clinical management of severe bacterial infections. We performed a systematic review to point out fosfomycin’s synergistic properties, when administered with other antibiotics, in order to help clinicians to maximize drug efficacy optimizing its use in clinical practice. Interactions were more frequently additive or indifferent (65.4%). Synergism accounted for 33.7% of total interactions, while antagonism occurred sporadically (0.9%). Clinically significant synergistic interactions were mostly distributed in combination with penicillins (51%), carbapenems (43%), chloramphenicol (39%) and cephalosporins (33%) in Enterobacterales; with linezolid (74%), tetracyclines (72%) and daptomycin (56%) in Staphylococcus aureus; with chloramphenicol (53%), aminoglycosides (43%) and cephalosporins (36%) against Pseudomonas aeruginosa; with daptomycin (97%) in Enterococcus spp. and with sulbactam (75%) and penicillins (60%) and in Acinetobacter spp. fosfomycin-based antibiotic associations benefit from increase in the bactericidal effect and prevention of antimicrobial resistances. Taken together, the presence of synergistic interactions and the nearly total absence of antagonisms, make fosfomycin a good partner drug in clinical practice.

Keywords: fosfomycin; pharmacodynamic; synergic; synergism; synergistic; infection; multidrug resistant

1. Introduction

Antimicrobial resistance (AMR) is a health issue of global concern, burdened with elevated costs and high morbidity and mortality rates. Limited therapeutic options and the increasing occurrence of resistance to last-resort antibiotics, i.e., colistin or carbapenems, make it necessary to reassess the role of “old” drugs while waiting for new antibiotics available on the market.
Fosfomycin (FOS) is an inhibitor of the synthesis of the bacterial wall acting with a unique mechanism of action. To carry out its action, FOS enters in the bacterial cell through the L-alpha-glycerophosphate and the hexose-6-phosphate transporter systems, interfering with the formation of the peptidoglycan precursor uridine diphosphate N-acetylmuramic acid (UDP-MurNAc) [1].

FOS, after being discovered in 1969 [2], has long been prescribed orally for low urinary tract infections (UTIs) and only recently has been repurposed, also intravenously and in combination, as a meropenem- and colistin-sparing agent to treat other infections (complicated UTIs, severe soft tissue infections, osteomyelitis, prostatitis, etc.) [1,3–5]. The excellent distribution in body sites, the safety and tolerability profile, as well as its affordability, make FOS a therapeutic option worth considering to treat multidrug-resistant (MDR) bacterial infections [6,7].

FOS is generally prescribed in association with at least another active agent. The association benefits from increase in the bactericidal effect of FOS, prevention of AMR, limitation of side effects thanks to lower dosages. Examples of commonly used empirical combination regimens including FOS are: Carbapenems + FOS, colistin + FOS, ceftolozane/tazobactam + FOS and tigecycline (TIG) + FOS.

We performed a systematic literature review concerning in vitro and in vivo studies to evaluate the synergistic effect of FOS in combination with other antibiotics and offer an overall view with clinically practical tables divided by antibiotic class.

2. Materials and Methods

This systematic review was carried out following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA).

On 14 April 2020 we performed a MEDLINE/PubMed search using the search string “Fosfomycin”[Tw] AND (synerg*[Tw] OR association*[Tw] OR combin*[Tw] OR “together”[Tw] OR “additive”[Tw] OR “addition”[Tw] OR “checkerboard”[Tw] OR “chequerboard”[Tw] OR “time kill”[Tw] OR “time–kill”[Tw] OR “time–killing”[Tw] OR “time killing”[Tw]).

1232 papers, from inception to 14 April 2020, were identified. Of these, 870 were excluded by title screening, 84 by abstract screening, 28 after full-text reading. Fifty-eight papers were excluded because written in a language different from English. 7 papers were excluded because full text was not available either online or in paper version. 185 papers were reviewed and discussed independently by seven authors (RMA, RP, AL, SDB, VV, LP, MF).

Common criteria for the evaluation of susceptibility and synergism were adopted by all authors. Susceptibility. Susceptibility to FOS for Enterobacterales and Staphylococcus spp. was determined, according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints, when the minimum inhibitory concentration (MIC) was ≤ 32 µg/mL. Enterococcus spp. were considered susceptible when exhibiting a MIC ≤ 64 µg/mL, according to the Clinical & Laboratory Standards Institute (CLSI) breakpoints. FOS breakpoints are not defined either by EUCAST or CLSI for Pseudomonas spp., Acinetobacter spp. and Streptococcus spp. Based on literature data, susceptibility was defined as a MIC ≤ 128 µg/mL for Pseudomonas spp. (ECOFF value), MIC ≤ 32 for Acinetobacter spp. and ≤ 64 µg/mL for Streptococcus spp. [8,9].

For all the antibiotics tested in combination, EUCAST breakpoints was considered at first and CLSI breakpoints were considered when EUCAST breakpoints were not available. Breakpoints adopted are specified in each paragraph.

Synergistic effect. Checkerboard assay: fractional inhibitory concentration index (FICI) ≤ 0.5. FICI is defined as follows:

\[
FICI = \frac{MIC \text{ FOS in combination}}{MIC \text{ FOS alone}} + \frac{MIC \text{ other antibiotic in combination}}{MIC \text{ other antibiotic alone}}
\]

Time–kill assay: ratio of effective concentrations concordant with FICI or ≥ 2 log kill.
Additive effect. Checkerboard assay: 0.5 < FICI ≤ 1. Time–kill assay: ratio of effective concentrations concordant with FICI or 1 < log kill < 2.

Indifferent effect. Checkerboard assay: 1 < FICI < 4. Time–kill assay: ratio of effective concentrations concordant with FICI or ± 1 log kill.

Antagonistic effect. Checkerboard assay: FICI ≥ 4. Time–kill assay: ratio of effective concentrations concordant with FICI or < 1 log kill.

For in vitro studies using a method different from checkerboard or time–kill assay, or in case data on effective concentrations were not available, synergism was evaluated according to the authors’ judgment.

For studies performed in vivo, synergism was established with the same ratio of effective concentrations considered for checkerboard assays or with the same log kill considered for time–kill assays. When these data were not reported in the paper, synergism was evaluated according to the authors’ judgment.

3. Results

For a better comprehension, a table with reviewed papers and a summary of most relevant results is proposed for each antibiotic class.

3.1. Penicillins

Twenty-eight papers evaluating FOS in combination with penicillins, penicillins + β-lactamase inhibitors, penicillinase-resistant penicillins were reviewed (Table 1). Breakpoints for penicillins were inferred from EUCAST breakpoints [10]. Penicillins are β-lactam antibiotics that acts through the inhibition of enzymes needed for peptidoglycans cross linking. Effect of FOS in combination with penicillins varied greatly according with the bacterial species considered. The highest rates of synergistic effect were observed against Enterobacterales and Acinetobacter spp. Despite this, Avery et al. [11] reported high rates of indifferent effect of FOS + piperacillin/tazobactam (PIP/TAZ) against PIP/TAZ-resistant Enterobacterales. Antagonistic effect was observed against one isolate of S. aureus with the combination FOS + methicillin [12] and against 6 biofilm-producer Enterococcus faecalis isolates with the combination FOS + ampicillin [13]. Four studies [14–17] performed in vivo experiments, with no substantial differences in results when compared with results obtained in vitro.

The combination of penicillin + FOS retains additive/synergistic effects against ~50% of Enterobacterales, Acinetobacter spp., Staphylococcus spp., and Streptococcus spp. strains.

3.2. Cephalosporins

Forty-one papers evaluating FOS in combination with cephalosporins and cephalosporins + β-lactamase inhibitors were reviewed (Table 2). Breakpoints for cephalosporins were inferred from EUCAST breakpoints [10]. Cephalosporins are β-lactam antibiotics that acts disrupting the peptidoglycan synthesis like penicillins, but are less susceptible to β-lactamases. Some studies reported discordant results on the effect of FOS in combination with a cephalosporin against clinical isolates, particularly against Staphylococcus spp. [18–20] and Enterobacterales isolates [11,14,21]. Antagonistic effect was observed against 4 Pseudomonas aeruginosa isolates with the combination FOS + ceftazidime [22], 1 S. aureus and 1 Staphylococcus epidermidis isolates with the combination FOS + ceftriaxone [19]. 9 in vivo studies [17,23–30] performed with different strains (Escherichia coli, P. aeruginosa, S. aureus, Streptococcus pneumoniae, Streptococcus sanguis) confirmed results obtained in vitro or resulted in higher synergistic effect (additive effect only against 3 S. aureus isolates [25,26]).

Cephalosporins + β-lactamase inhibitors, often chosen by clinicians to treat MDR infections, resulted in moderate rates of synergistic effect in combination with FOS. Against Enterobacterales, the combination ceftolozane/tazobactam + FOS resulted synergistic in 16.3% of cases (49 isolates tested [11]), while the combination ceftazidime/avibactam + FOS was synergistic in 28.8% of cases (66 isolates tested [11,21,31]). Against P. aeruginosa, the combination ceftolozane/tazobactam + FOS resulted
Antibiotics 2020, 9, 500

synergistic in 71.1% of cases (45 isolates tested [32–34]), while the combination ceftazidime/avibactam + FOS was synergistic in 31.6% of cases (38 isolates tested [21,29,33]).

The combination of cephalosporins or cephalosporins + β-lactamase inhibitors + FOS appears to be clinically appealing especially against infections sustained by Enterobacterales and Pseudomonas spp.

3.3. Carbapenems

Forty-four papers evaluating FOS in combination with carbapenems were reviewed (Table 3). Carbapenems are β-lactam antibiotics that inhibit bacterial cell wall synthesis by binding to penicillin-binding proteins. Carbapenems are β-lactams “last-resort” used intravenously to treat severe infections. Imipenem (IMI) breakpoints are ≤2 µg/mL for Enterobacterales, Acinetobacter spp., S. pneumoniae and ≤ 0.001 µg/mL for Pseudomonas spp. and Staphylococcus spp. Meropenem breakpoints are ≤2 µg/mL for Enterobacterales, Acinetobacter spp., Pseudomonas spp., S. pneumoniae and ≤ 4 µg/mL for Staphylococcus spp. Ertapenem (ERT) breakpoints are ≤0.5 µg/mL for Enterobacterales, S. pneumoniae and ≤4 µg/mL for Staphylococcus spp. [10].

Synergism rates were not unanimous on all studies, but antagonistic effect was observed only in 2 isolates of P. aeruginosa in the study by Pruekprasert et al. [22] and in 1 isolate of S. aureus in the study by Quentin et al. [35]. No evident differences in the synergistic effect was observed depending on the carbapenem tested. The association FOS + carbapenem often resulted, when reported, in FOS- and/or carbapenem-susceptibility restoration. Three authors performed in vivo experiments using methicillin-resistant Staphylococcus aureus (MRSA) isolates: in two studies [28,36] the results in vivo were concordant with those found in vitro, while in the third study the combination in vivo resulted less effective [37].

From the clinical point of view the combination of carbapenems + FOS against Enterobacterales, P. aeruginosa and Acinetobacter spp. appears appealing.

3.4. Monobactams

Five papers evaluating FOS in combination with aztreonam (ATM) were reviewed (Table 4). ATM is a synthetic antibiotic whose susceptibility is often preserved also in those strains which are resistant to other β-lactam antibiotics. The mechanism of action is similar to penicillins. ATM breakpoints are ≤1 µg/mL for Enterobacterales and ≤0.001 µg/mL for Pseudomonas spp. [10].

The largest study evaluating FOS in combination with ATM on Enterobacterales isolates [33] reported an indifferent effect on most (64.6%) isolates. The combination was reported to have an additive effect on most isolates of P. aeruginosa [33,38], sometimes leading to ATM susceptibility restoration [33,39]. There were no in vivo studies evaluating this combination.

3.5. Quinolones

Twenty-nine papers evaluating FOS in combination with quinolones were reviewed (Table 5). Quinolones are bactericidal antibiotics that directly inhibit bacterial DNA synthesis. Breakpoints for quinolones were inferred from EUCAST breakpoints [10]. Synergism rates were not unanimous on all studies for isolates of P. aeruginosa. In 1 in vivo study synergism rate was 100% according to Mikuniya et al. [40]. Antagonism was observed in 1 in vivo [41] and 1 in vitro studies [39]. For E. coli isolates there was a weak synergism. In a recent in vitro study there was complete FOS and ciprofloxacin susceptibility restoration [42]. The combinations showed different synergistic rates for Staphylococcus spp. isolates with 100% synergistic rate in 1 in vitro study [43] and in 1 in vivo study [44]. No antagonism was observed for E. coli and Staphylococcus spp. isolates. There were some differences in the synergistic effect depending on the quinolone tested. The most frequent effect of FOS + ciprofloxacin was indifferent even though it showed in vitro 95% synergistic effect with S. aureus [45]. The combination with levofloxacin showed mainly an additive effect in P. aeruginosa [38,39,46] and in Acinetobacter spp. [38] isolates.
In summary, good additive/synergistic effect rates are reported when quinolones + FOS are used against S. aureus and P. aeruginosa isolates.

3.6. Aminoglycosides

Aminoglycosides (AMG) act through inhibition of protein synthesis, resulting in a potent and broad-spectrum antibacterial activity but with a potential high nephro- and oto-toxicity [47]. In the attempt to overcome increasing aminoglycosides resistance, development of novel AMG (such as arbekacin and plazomicin) has occurred, but combination strategies are important opportunities to treat resistant bacteria and to reduce toxicity. Inhaled delivery of tobramycin, allowing for greater exposure within the lungs and reducing systemic toxicity, is also approved for the treatment of patients with chronic P. aeruginosa lung infection associated with cystic fibrosis (CF) in United States and Europe [47]. Overall, 41 papers evaluating FOS in combinations with AMG were reviewed (Table 6). Available EUCAST aminoglycosides breakpoints were applied in all studies except one [48]. Due to the peculiarity of possible AMG therapeutic use (e.g. inhaled formulation in cystic fibrosis), many studies investigated the AMG + FOS combination also when administered by inhaled topical use; moreover, the activity of this combination on biofilm formation and in anaerobic conditions was also evaluated. Different AMG were tested as partner of FOS towards several bacterial species in a total of 67 evaluations: mainly gentamicin (31.3%, n = 21), amikacin (23.9%, n = 16) and tobramycin (22.4%, n = 15) were used. Synergism rates were not unanimous on all studies, considering the different bacteria analyzed and the different types of aminoglycosides tested. Overall, a synergistic effect of FOS together with different AMG, even if with different percentages, was revealed in 51 evaluations (74.6%). No synergism was reported in 16 cases (23.9%), even regarding effects on P. aeruginosa and Acinetobacter spp. In one study, data on synergism were not available [49]: however, a potential beneficial effect was indeed reported, demonstrating that FOS enhanced the activity of tobramycin with a 100% additive effect during in vitro evaluation on P. aeruginosa biofilms on cystic fibrosis airway epithelial cells. An antagonistic effect, testing the combination of FOS with gentamicin, was reported in 1985 by Alvarez et al. in 2.7% of 148 MRSA isolates [12] and in 2005 by Pruekprasert et al. in 27% of 22 P. aeruginosa strains [22].

Focusing on different bacterial strains, generally a synergistic or additive effect of FOS + AMG was demonstrated on KPC-producing K. pneumoniae [50–52]; however, Souli et al. observed an indifferent effect of FOS + gentamycin combination in all of their tested KPC+ strains [53].

When tested, a generally positive effect of FOS and AMG combination on biofilm formation and an improved AMG activity in anaerobic conditions were also reported for P. aeruginosa and Acinetobacter spp., resulting moreover in lower required AMG doses.

Activity of FOS plus an AMG was also evaluated against Streptococcus spp. (streptomycin) and Neisseria gonorrhoeae (both, gentamicin) in two studies [14,54]: No synergistic effect was revealed but antagonism was not even reported. Interestingly, synergistic activity (assessed as a fourfold reduction of MIC when fosfomycin was combined with gentamicin 1 mcg/mL) and additive effect were revealed for 8 vancomycin-resistant E. faecium (VRE) isolates (63% and 13%, respectively) [55].

The combination of AMG + FOS against P. aeruginosa appears to be the most clinically appealing.

3.7. Macrolides

Six papers evaluating FOS in combination with macrolides, in particular with erythromycin (ERY), azithromycin (AZT), clarithromycin (CLT), or midecamycin (MDM), were reviewed (Table 7). Macrolides are a large class of antibiotics that act binding 50S ribosomal subunit, inhibiting bacterial proteins synthesis. They have broad-spectrum activity, mainly against many Gram-positive bacteria and some Gram-negative bacteria [56]. Only one in vitro study evaluated FOS + ERY combination against Enterobacterales (87 strains of E. cloacae, E. coli, Proteus spp. and Klebsiella pneumoniae), reporting synergistic effect against 52% of isolates and additive effect against 30% [14]; in the same study FOS + ERY combination was also tested against P. aeruginosa and S. aureus, proving in most
cases additive effect or, less frequently, synergistic effect [14]. When this combination was tested against *Streptococcus* spp. synergistic effect was observed against 15% of isolates, while additive (27%) or indifferent (58%) was seen against the remaining [14]. Some studies evaluated FOS + AZT combination, reporting indifferent effect in 100% of cases, either when tested against *N. gonorrhoeae* (2 studies) [54,57] or against *S. epidermidis* (1 study) [58]. Finally, FOS + CLT and FOS + MDM combinations were evaluated against *S. pseudointermedius* and *P. aeruginosa* respectively; in both cases additive or synergistic effect was demonstrated in vitro or in vivo experiments [59,60]. No antagonistic effect was observed for any combination against any isolate.

From the clinical point of view the combination of macrolides + FOS appears the less appealing.

3.8. Glycopeptides

Eighteen articles evaluating FOS in combination with glycopeptides (vancomycin and teicoplanin) have been reviewed (Table 8). Articles were from Spain (n = 5), Taiwan (n = 3), China (n = 2), France (n = 2), Germany (n = 2), Italy (n = 2), Austria (n = 1), and Brazil (n = 1).

Glycopeptides possess an antimicrobial activity selectively directed against Gram-positive bacteria, while Gram-negatives are protected by the outer membrane that is impermeable to these antibiotics. Glycopeptides inhibit the peptidoglycan synthesis by interacting with the terminal D-alanyl-D-alanine present on the pentapeptide side chains of the peptidoglycan precursors.

384 strains have been studied, belonging to several species as *S. aureus* (n = 219), *S. epidermidis* (n = 52), *E. faecalis* (n = 39), *S. pneumoniae* (n = 28), *Acinetobacter baumannii* (n = 20), *Enterococcus faecium* (n = 16) and other coagulase-negative staphylococci (CoNS) (n = 10). Synergy was detected with FOS-vancomycin (VAN) combination (40 out of 308 strains tested, 13%) in 33.3% of *E. faecalis*, 30% of *E. faecium*, 16.7% of *S. aureus*, 13.5% of *S. epidermidis*, and 3.6% of *S. pneumoniae*. Higher rates of synergistic interactions were detected with FOS-teicoplanin (TEC) combination (63 out of 130 strains tested, 48.5%) in 71.8% of *E. faecalis*, 43.7% of *E. faecium*, 60% of other CoNS, 34.3% of *S. aureus* and 33.3% *S. epidermidis*. Synergistic concentration ranges were 1-64 mg/L for FOS, 1-7.5 mg/L for VAN and only 8 mg/L for TEC. Regarding resistant isolates, FOS-VAN synergy was detected in one heterogeneous glycopeptide-intermediate *Staphylococcus aureus* (hGISA), 27 MRSA, 5 *S. aureus* strains with borderline MIC values for VAN (2 mg/L) and in 6 VRE strains, while FOS-TEC in 10 MRSA and 11 VRE strains. Antagonism FOS-VAN was detected in 5 *S. aureus* and one *S. epidermidis* strains. Only in 8 FOS-resistant *S. aureus* strains the activity of FOS was restored in combination with VAN. In vivo application of FOS-VAN combinations showed significant survival of ≥50% of treated animals or patients with infections caused by *S. aureus* or *S. epidermidis* [24,36,61–63].

In summary the combination of VAN + FOS resulted in good synergistic effect rates against *Enterococcus* spp. isolates and seems to be the most clinically relevant combination.

3.9. Tetracyclines

Ten papers evaluating FOS in combination with tetracyclines, mostly with minocycline (MIN) and in few cases with doxycycline (DOX) or tetracycline (TEC), were reviewed (Table 9). Tetracyclines are a large class of antibiotics that acts binding the 30S ribosomal subunits, inhibiting bacterial proteins synthesis. They have broad-spectrum activity, being active against many Gram-positive bacteria, Gram-negative, and atypical bacteria [64]. Almost all studies evaluated in vitro FOS + MIN combination against different bacterial species. When evaluated against Enterobacteriales (20 strains), FOS + MIN proved to have additive effect most of the time (65% of isolate), but only in few cases synergistic effect [38]. Similar results were observed when it was tested against multdrug-resistant *P. aeruginosa* [38] and *A. baumannii* isolates; furthermore, in the last case, complete restoration of susceptibility of MIN was reported [65]. Only one study evaluated FOS + TEC combination against Enterobacteriales (100 isolates), observing indifference in almost 100% of cases [66]. 2 studies evaluated FOS + MIN combination against vancomycin-resistant *E. faecium* or *E. faecalis* (51 strains), reporting most often indifferent effect and some sporadic case of synergism [13,67]. Otherwise, FOS + DOX combination was
tested once against 24 isolates of vancomycin-resistant *E. faecium*, demonstrating to have synergistic or additive effect in most of cases [68]. Finally, when FOS + MIN was tested against MRSA (152, strains, 3 studies) proved to have synergistic effect in numerous cases [18,69,70]. No study reported any case of antagonism.

The combination of minocycline + FOS against *A. baumannii* appears interesting.

3.10. Polymyxins

Thirty-two papers evaluating FOS in combination with polymyxins were reviewed (Table 10). Polymyxins are bactericidal drugs that bind to lipopolysaccharide (LPS) and phospholipids in the outer cell membrane of Gram-negative bacteria and leads to disruption of this. Twenty-eight papers evaluated colistin. Colistin breakpoints are $\leq 2 \mu g/mL$ for Enterobacterales, *Acinetobacter* spp. and *Pseudomonas* spp. according to the EUCAST [10]. Synergism rates were not unanimous on all studies but was reported in 23/29 papers. Synergism rates were 100% in 2 in vitro studies against *K. pneumoniae* [50,71] and 2 in vivo studies respectively against *A. baumannii* and *E.coli* [72,73]. The overall effect was indifferent on most isolates of *P. aeruginosa* and Enterobacterales. Antagonism was reported in vitro against *K. pneumoniae* and *A. baumannii*. In particular the combination was antagonist in 100% of all *K. pneumoniae* OXA-48 isolates according to Evren et al. [74].

Four papers evaluated polymyxin B. Polymyxin B breakpoints for Enterobacterales, *Acinetobacter* spp. and *Pseudomonas* spp. are $\leq 2 \mu g/mL$ according to CLSI. Synergism was observed in 100% of in vitro isolates of CP *K. pneumoniae* according to Bulman et al. [75]. FOS + polymyxin had a prevalent additive effect in vitro against *Pseudomonas* spp. [76] and *A. baumannii* [65]. In a study there was a complete polymyxin B susceptibility restoration [65]. No antagonistic effect was observed either in in vitro or in vivo studies.

The combination of polymyxins and FOS appears a good option against Enterobacterales and *P. aeruginosa* strains.

3.11. Daptomycin

Thirteen papers evaluating FOS in combination with daptomycin (DAP) were reviewed (Table 11). DAP is a cyclic lipopeptide administered intravenously for Gram-positive infections, acting through bacterial membrane depolarization [77]. Its breakpoints are $\leq 1 \mu g/mL$ for *Staphylococcus* spp. and $\leq 2 \mu g/mL$ for *Enterococcus* spp. [10,78].

When evaluated against *S. aureus* isolates, the combination FOS + DAP had a synergistic effect in vitro against 37–100% of isolates (synergistic effect of the combination against 100% of the tested isolates was reported in 4 in vitro studies [63,79–81] and 2 in vivo studies [37,79]). DAP showed excellent synergistic activity in association with FOS against *Enterococcus* spp., resulting in synergistic effect in all 34 tested isolates (4 studies). FOS + DAP also exhibited a greater efficacy against *E. faecalis* biofilm formation than FOS or DAP alone. Efficacy in vivo sometimes differed from the results obtained in vitro, resulting in greater [37] or less [82] efficacy. No antagonistic effect was observed either in in vitro or in vivo studies.

The combination of daptomycin + FOS has good synergistic effect rates against *S. aureus* and *Enterococcus* spp. and deserves clinical interest.

3.12. Tigecycline

Fourteen papers evaluating FOS in combination with TIG were reviewed (Table 12). TIG is the first glycyclcline antibiotic, a broad-spectrum class of bacteriostatic derivate from tetracyclines, that acts binding the 30S ribosomal subunits, inhibiting bacterial proteins synthesis. It is only available for intravenous administration and shows activity against either Gram-positive or Gram-negative or atypical bacteria [64]. Its breakpoint are $\leq 0.5 \text{mg/L}$ both for *S. aureus* and Enterobacterales and $\leq 0.25 \text{mg/L}$ for *Enterococcus* spp. [10].
When evaluated in vitro against Enterobacterales or *A. baumannii* (10 studies, 338 isolates) FOS + TIG had synergistic effect approximately in 17% of cases and additive effect in the 43%, while indifference was reported for all remaining cases [38,73,74,83–89]. Furthermore, indifferent effect against all isolates was observed in one in vivo experiment against *E. coli* [73]. Mostly indifference was observed also when it was tested against *N. gonorrhoeae* or *P. aeruginosa* [54,86]. When tested against 61 isolates of *Enterococcus* spp. (3 studies) many cases of synergistic effect was reported in vitro (about 40% of cases) [55,90,91] and in vivo against *E. faecalis* [90]. Finally, 2 studies evaluated FOS + TIG combination in vitro against MRSA, but with inconclusive results (total indifference or almost total synergism) [69,90]. In all in vitro studies only 2 cases of antagonism were reported, against *K. pneumoniae* [89].

According to the literature the combination of TIG + FOS appears to be particularly interesting (good synergistic effect rates) against Enterobacterales and *Enterococcus* spp.

3.13. Linezolid

Thirteen papers evaluating FOS in combination with linezolid (LZD) were reviewed (Table 13). LZD is a synthetic antibiotic which binds rRNA on both 30S and 50S ribosomal subunits, inhibiting bacterial proteins synthesis [92]. It is used for Gram-positive infections treatment, including MRSA and *E. faecium* vancomycin-resistant (VREF) infections [93]. Its breakpoint is ≤0.06 µg/mL both for *S. aureus* and *E. faecium*.

When evaluated against *S. aureus* isolates (9 studies), combination FOS + LZD had a synergistic effect in vitro approximately in 95% of cases (synergistic effect of the combination against 100% of the tested isolates was reported in 6 in vitro studies [36,43,63,94,95]) and even against staphylococcal biofilm cultures [69]; furthermore, the only 2 in vivo studies performed proved FOS + LZD combination to have higher efficacy than FOS or LZD alone [36,95]. One study evaluated the combination on 2 strains of *S. epidermidis* proving synergism on both [43]. Otherwise, in the 4 studies in which it was tested against *E. faecalis*, this combination showed in most cases additive effect and only few cases of synergism. In no case was reported synergistic effect against *E. faecalis* (2 studies). No antagonistic effect was observed either in in vitro or in vivo studies.

The good synergistic effects reported make LZD + FOS a promising combination against *staphylococci*.

3.14. Rifampin

Fourteen papers evaluating FOS in combinations with rifampin were reviewed (Table 14). Rifampin breakpoints are ≤0.06 µg/mL for *Staphylococcus* spp., *Streptococcus* spp. and ≤0.125 µg/mL for *S. pneumoniae*. Rifampin inhibits bacterial DNA-dependent RNA polymerase with a concentration related effect. It is used for the treatment of intracellular pathogens and it has a broad-spectrum antibacterial activity. Rifampin breakpoints are not defined either by EUCAST or by CLSI for *Acinetobacter* spp., Enterobacterales and *Enterococcus* spp. Based on literature data, susceptibility was defined as a MIC ≤ 1 µg/mL for *Enterococcus* spp. [71]. Rifampin showed synergistic activity in association with FOS against *Enterococcus* spp., resulting in synergistic effect in 20–100% of cases. High activity was reported in vitro and in vivo in a recent paper where FOS + RIFA also exhibited a greater efficacy against *E. faecalis* biofilm formation [90]. When evaluated against *S. aureus* isolates, the combination FOS + rifampin had a synergistic effect in vitro against 34–100% of isolates. Synergistic effect of the combination against 100% of the tested isolates was reported in 3 in vitro studies [43,90,96] and 2 in vivo studies [37,96]. Antagonistic effect was observed only in 33% of isolates in the study by Quentin et al. [35] where the antibiotic combination was antagonist for the isolates susceptible and intermediate to rifampin and indifferent for those resistant. No antagonistic effect was observed in other studies.

In clinics RIF + FOS should be considered (usually with a third agent) against *S. aureus* sustained infections, especially when biofilm production is likely.
3.15. Miscellanea

Two papers evaluating FOS in combination with metronidazole (MTZ) were reviewed (Table S1). MTZ is a bacteriostatic antimicrobial, active on bacteria (mainly anaerobic) and parasites. When evaluated in vitro against Helicobacter pylori, combination FOS + MTZ had a prevalent indifferent effect, an additive effect in only 21% of cases and an antagonist effect in 4% [97]. In vivo study showed a significantly decrease mortality and increase cure rates if the animal treated with MTZ + FOS [98].

One paper evaluating FOS in combination with spectinomycin (SCM) was reviewed (Table S1). SCM is an aminocyclitol aminoglycoside antibiotic with bacteriostatic activity, used to treat gonorrhea. In vitro study reported that antimicrobial combinations of SMC + FOS no synergistic effect was found [54].

One paper evaluating FOS in combination with sulfamethoxazole (SLB) was reviewed (Table S1). SLB is an irreversible β-lactamase inhibitor capable to binding to penicillin-binding proteins and with weak antimicrobial activity. When evaluated in vitro against A. baumannii OXA-23, combination FOS + SLB had a synergistic effect in 75% of case, and an indifferent effect in 25% of cases [99].

One paper evaluating FOS in combination with lincomycin (LMN) was reviewed (Table S1). LMN is a protein synthesis inhibitor with activity against gram positive and anaerobic bacteria. When evaluated in vitro against S. aureus, combination FOS + LMN had a synergistic effect in 81% of case and an additive effect in 25% of cases [14].

One paper evaluating FOS in combination with nitrofurantoin (NTX) was reviewed (Table S1). NTX is a urinary antibacterial agent active against susceptible Gram-positive and Gram-negative organisms. In vitro study, NTX was synergistic with FOS in only 12% of cases and in other cases showed an indifferent effect (88%) [66].

Two papers evaluating FOS in combination with fusidic acid (FSA) were reviewed (Table S1). FSA is a bacteriostatic antibiotic with acts as a bacterial protein synthesis inhibitor. When evaluated in vitro against MRSA, combination FOS + FSA had a various behavior, showing a synergistic effect in 88–100% of case or an indifferent effect in 25% of cases. No antagonism was found [69,101,102].

Four papers evaluating FOS in combination with chloramphenicol (CHL) were reviewed (Table S1). CHL is a synthetic broad-spectrum antimicrobial, mainly bacteriostatic, active on numerous Gram-positive and Gram-negative, aerobic and anaerobic bacteria; it acts binding 50S ribosomal subunit, inhibiting bacterial protein synthesis [103]. Its breakpoint is ≤8 mg/L both for S. aureus and Enterobacterales [10]. When evaluated in vitro against either Enterobacterales (468 isolates, 4 studies), combination FOS + CHL had synergistic effect approximately in 40% of cases, while additive effect in 35% and indifferent effect in the remaining cases [14,66,104,105]. Furthermore, one study tested this combination against S. aureus, with similar results (synergistic effect against 44% of isolates) [14]. No antagonistic effect was observed.

Three papers evaluating FOS in combination with trimethoprim-sulfamethoxazole (TMP-SMX) were reviewed (Table S1). TMP-SMX is a fixed combination of 2 antimicrobials that inhibits bacterial synthesis of tetrahydrofolate, a necessary cofactor for bacterial DNA synthesis. It is available in oral or intravenous preparation and it is mainly used for treatment of urinary and respiratory infections [106]. Its breakpoint is ≤2 µg/mL both S. aureus and Enterobacterales [10]. When evaluated in vitro against either S. aureus (148 isolates) or Enterobacterales (120 isolates), combination FOS + TMP-SMX had indifferent effect approximately against 92% of isolates [12,38,66]. Only in few cases, against Enterobacterales, was reported synergistic or additive effect (1 study) [38] and even antagonistic effect was reported in 4 cases when tested against S. aureus [12].

Two papers evaluating FOS in combination with nitrofurantoin (NTF) were reviewed (Table S1). NTF is a synthetic antibiotic administered orally mainly for treatment of lower urinary tract infections.
Its breakpoint is $\leq 64 \, \mu g/mL$ both *E. faecalis* and Enterobacterales [10]. When evaluated in vitro against either vancomycin-resistant *E. faecium* (32 isolates) or Enterobacterales (100 isolates), combination FOS + NTF had indifferent effect against 100% of isolates [66,67]. No synergistic, additive or antagonistic effect was observed.

3.16. Non-Antibiotic Molecules

One paper evaluating FOS in combination with auranofin (AF) was reviewed (Table S2). AF is an orally active gold compound for the treatment of rheumatoid arthritis. When evaluated in vitro against *Staphylococcus* spp., combination FOS + AF had showed a reduction of bacterial load for both MSSA and MRSA strains. In vivo, this combination had showed a synergistically inhibition of abscess and inflammation formation. No interactions were showed against *S. epidermidis* MS [107]. Three paper evaluating FOS in combination with dilipid ultrashort cationic lipopeptides, tobramycin-efflux pump inhibitor (TOB-EPI) conjugates or amphiphilic lysine-tobramycin conjugates (ALT) against *P. aeruginosa*, were reviewed (Table S2). For all combinations, in vitro studies had showed a synergistic effect (100%). Furthermore, in presence of TOB-EPI or ALT conjugates MICs of FOS were dramatically reduced [108–110]. One paper evaluating FOS in combination with β-chboro-L-alanine (β-CLA) was reviewed (Table S2). β-CLA is an amino acid analog of FOS. When evaluated in vitro against MRSA, combination FOS + β-CLA had showed a synergistic effect on biofilm production [111]. One paper evaluating FOS in combination with plectasini NZ2114, compound capable to inhibits a cell wall biosynthesis, was reviewed (Table S2). When plectasini NZ2114 evaluated in vitro against *E. faecalis*, in combination with FOS it no show a synergistic effect [112]. One paper evaluating FOS in combination with 2 quinolone derivatives (A and B) was reviewed (Table S2). When evaluated in vitro against *E. faecalis* VRE and MRSA, combination FOS + A had always showed a synergistic effect, while FOS + B had showed a synergistic effect in 64% of cases and in other cases shoed an additive effect (36%) [113]. One paper evaluating FOS in combination with N-acetylcysteine (NAC), a mucolytic agent, was reviewed (Table S2). The in vitro analysis against *E. coli*, had showed a capable of NAC to reduce biofilm if used in combination with FOS. The most effective combination was that obtained using FOS at 2000 mg/L and NAC at 2 mg/mL [114]. One paper evaluating FOS in combination with sophoraflavone G (SFG), a phytoalexins, was reviewed (Table S2). When evaluated in vitro against MRSA, combination FOS + SFG had showed a synergistic effect (100%) [115]. One paper evaluating FOS in combination with arenaemycin (ARM), also called pentalenolactones, was reviewed (Table S2). When evaluated in vitro against *P. vulgaris* and *S. gallinarum*, combination FOS + ARM had showed a synergistic effect (100%) [116]. One paper evaluating FOS in combination with chlorogenic acid (CHA) and caffeic acid (CFA) was reviewed (Table S2). When evaluated in vitro against Resistant *Listeria monocytogenes*, combination FOS + CHA had showed a reduction in the cell growth equal to 98% and FOS + CFA as to 85,2%. Moreover, CHA restored a FOS susceptibility in 100%, if 3 mg/L [117]. One paper evaluating FOS in combination with silver (AgNPs) and zinc oxide (ZnONPs) nanoparticles, are molecules known to affect bacterial membranes, was reviewed (Table S2). When evaluated in vitro against *S. aureus, S. enterica*, and *E. coli*, combination FOS + AgNPs or ZnONPs had showed a synergistic effect (100%) [118].

4. Discussion

FOS is an inhibitor of bacterial wall synthesis with a unique mechanism of action. Its use in clinic is increasing as is often active against MDR bacteria. Intravenous FOS is often administered in combination with other antibiotics therefore the knowledge of pharmacodynamic interactions is of fundamental importance. In this review, we have investigated the role of FOS as partner drug, by analyzing literature studies in which it has been used in vitro and in vivo in combination with other antibiotics and evaluating the antimicrobial activity of combinations against the most common bacterial pathogens. From this huge data collection, no clinically significant antagonistic effect came out between FOS and any most common used antibiotics for the treatment of nosocomial infections.
FOS has been studied in combination with the major antibiotic classes (penicillins, cephalosporins, carbapenems, monobactams, quinolones, aminoglycosides, macrolides, glycopeptides, tetracyclines, polimyxins, lipopeptides, oxazolidinones, and rifampicin) against both Gram-negative and Gram-positive bacteria. A total of 185 literature reports accounted for 9,927 study isolates. FOS-based synergistic interactions were detected in 33.7% of total isolates, although additive and indifferent interactions were more prevalent (65.4%). Antagonism occurred sporadically (0.9% of total isolates).

Clinically significant synergistic interactions were mostly distributed in combination with penicillins (51%), carbapenems (43%), chloramphenicol (39%), and cephalosporins (33%) in Enterobacterales; with linezolid (74%), tetracyclines (72%), and daptomycin (56%) in S. aureus; with chloramphenicol (53%), aminoglycosides (43%) and cephalosporins (36%) against P. aeruginosa; with daptomycin (97%) in Enterococcus spp. and with sulbactam (75%) and penicillins (60%) and in Acinetobacter spp.

Notably, 31.2% of synergistic interactions occurred in Enterobacterales (FOS in combination with 3 different antibiotics), followed by 31% occurred in S. aureus (FOS in combination with 4 different antibiotics) and 7.6% occurred Enterococcus spp. (FOS in combination with 5 different antibiotics).

From a clinical point of view, taking into account the antimicrobial stewardship principles and the priorities in terms of MDR impact, our work points out good pharmacodynamic interactions rates (additive/synergistic effects) when FOS is especially combined with:

1. Cephalosporins and cephalosporins + β-lactamase inhibitors, including ceftazidime/avitabactam and ceftolozane/tazobactam, for Enterobacterales and P. aeruginosa;
2. carbapenems for K. pneumoniae and P. aeruginosa;
3. quinolones for P. aeruginosa;
4. polimyxins for K. pneumoniae;
5. daptomycin for Staphylococcus spp (MRSA included), and Enterococcus spp.;
6. linezolid for Staphylococcus spp.; and
7. sulbactam for A. baumannii.

When FOS is combined with molecules other than antibiotics, chlorogenic acid and cafféic acid appeared to be good partner drugs against L. monocytogenes.

Our tables (including the summarizing Table 15) could act as a useful consultation tool for clinicians using FOS both as empirical or targeted antibiotic regimen.

5. Conclusions

In conclusion, taken together, these data, the pharmacological characteristics (i.e., excellent distribution in body sites, the safety and tolerability profile) and the encouraging positive clinical outcome of treated patients highlight the role of FOS as partner drug (mostly intravenously) for the treatment of infections caused by common (including MDR) pathogens. In particular, the presence of synergistic interactions and the almost total absence of antagonisms, make FOS a good partner drug in clinical practice. Moreover, improving FOS-based combinations could act as a meropenem- and colistin-sparing agent, mostly contributing to prevent AMR, especially related to last resource antibiotics.
Table 1. Studies on combination between fosfomycin and penicillins, penicillins + β-lactamase inhibitors, penicillinase-resistant penicillins. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain	Year and Country	Author	Penicillin	Number of Isolates	Fosfomycin-Resistant (%)	Penicillin-Resistant (%)	Known Resistance Mechanisms or Determinants (%)	In Vitro Methods/ In Vivo (Animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	Fosfomycin Susceptibility Restoration (%)	Penicillin Susceptibility Restoration (%)	Comments	Reference	
Enterobacteriaceae	2019, USA	Avery	piperacillin/tazobactam	49	8 E. coli: KPC (25%), NDM (75%), ESBL (62.5%); 35 Klebsiella spp: KPC (45.7%), NDM (40%); OXA (14.3%); VIM (8.6%); ESBL (66.6%); smooth (44%); 2 Citrobacter spp: KPC (50%), NDM (50%); ESBL (50%); 4 E. cloacae: KPC (75%), NDM (25%); ESBL (75%)	49 (100%)	20 (40.8%)	in vitro (ET)	1 (2%)	2 (4%)	46 (94%)	0%	-	-	Data on synergism reported without distinction for bacterial strains. % of FOS-R isolates estimated on the basis of the reported MIC50.		
Enterobacteriaceae	2019, USA	Flam	piperacillin/tazobactam	20	-	-	-	in vitro (CB, TK)	12 (60%)	7 (35%)	0%	0%	-	-	For 1 isolate the efficacy of FOS + PIP/TAZ remained indeterminate.		
Enterobacteriaceae	1978, Spain	Olave	ampicillin, carbenicillin	-	Ampicillin: 17 E. coli, 11 Klebsiella spp, 7 E. cloacae, 4 Proteus spp., 22 Salmonella spp.	-	-	-	in vitro (CB)	ampicillin: 31 (42%); carbenicillin: 24 (52%)	ampicillin: 31 (42%); carbenicillin: 31 (41%)	ampicillin: 9 (12%); carbenicillin: 19 (25%)	0%	-	-	-	[14]
Enterobacteriaceae	2020, Korea	Seok	piperacillin/tazobactam	2	ESBL (100%)	0%	1 (50%)	in vitro (TK)	0%	0%	2 (100%)	0%	-	-	-	[119]	
Enterobacteriaceae	2018, France	Berleur	temocillin	3	KPC (33.3%), OXA (33.3%)	0%	Breakpoints NA	in vivo (mouse, peritonitis)	0%	0%	in vivo: 3 (100%); in vivo: 3 (100%)	0%	-	-	-	[15]	
Enterobacteriaceae	2014, Sweden	Hickam	mecillinam	2	ESBL, OXA (50%)	0%	0%	in vitro (CB, TK)	2 (100%)	0%	0%	0%	-	-	-	-	[120]

For 'Enterobacteriaceae' and 'Streptococcus' sections, the number of isolates is provided for each strain. The resistance mechanisms and determinants are listed for each isolate. The in vitro and in vivo methods used are also indicated. Synergistic, additive, indifferent, and antagonistic effects are reported for each combination. Fosfomycin and penicillin susceptibilities are restored in some cases, with percentages indicated.
Strain	Year and Country	Author	Penicillin	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	Fosfomycin-Resistant (%)	Penicillin-Resistant (%)	In Vitro (Methods/ In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	Fosfomycin Susceptibility Restoration (%)	Penicillin Susceptibility Restoration (%)	Comments	Reference	
K. pneumonia	1977, Poland	Borowski	ampicillin	10	-	-	-	in vitro (CB)	7 (70%)	1 (10%)	2 (20%)	0%	-	-	For 2 isolates: the effect of FOS + ampicillin remained indeterminate. The authors considered synergistic the effect for FICI up to 0.75. *S. typh*. The authors considered synergistic the effect for FICI up to < 1. They also evaluated different antibiotic combinations on patients with typhoid fever: FOS + AMP resulted in the highest rate of cures.	[121]	
	2014, Sweden	Hickam	mecillinam	1	ESBL, OXA (100%)	0%	0%	in vitro (CB, TK)	1 (100%)	0%	0%	0%	-	-	[120]		
	1977, Spain	Perea	ampicillin	90	-	17 (18.9%)	11 (12%)	in vitro (CB, TK)	74 (92%)	7 (7%)	7 (7%)	0%	-	-	The authors considered synergistic the effect for FICI up to 0.75.	[104]	
	1977, Spain	Figueras	ampicillin	16	-	-	-	in vitro (CB)	15 (93%)	1 (6%)	0%	0%	-	-	[105]		
Salmonella spp.																	
Shigella spp.	1977, Spain	Perea	ampicillin	50	-	27 (54%)	30 (60%)	in vitro (CB, TK)	27 (54%)	9 (18%)	14 (28%)	0%	-	-	The authors considered synergistic the effect for FICI up to 0.75.	[104]	
	2019, USA	Avery	piperacillin/ tazobactam piperacillin/ tazobactam	105	-	NA (at least 71)	103 (100%)	in vitro (ET)	3 (2%)	26 (25%)	74 (71%)	0%	-	15 (14.8%)	[33]		
	2019, USA	Flamm	piperacillin/ tazobactam piperacillin/ tazobactam	5	-	-	-	in vitro (CB, TK)	0%	5 (100%)	0%	0%	-	-	-	-	[38]
	2013, Brazil, 2002, Japan	dos Santos, Okazaki, Takahasahi	piperacillin piperacillin piperacillin	4	-	4 (100%)	4 (100%)	in vitro (CB)	4 (100%)	0%	0%	0%	2 (50%)	1 (50%)	-	-	[46]
	1984, Japan	Takahasahi	piperacillin	30	-	15 (50%)	30 (100%)	in vitro (efficacy time index)	3 (10%)	6 (20%)	21 (70%)	0%	0%	15 (50%)	[39]		
	1979, Spain	Clay	carbenicillin	20	-	-	-	in vitro (CB)	4 (20%)	16 (80%)	0%	0%	-	-	-	-	[122]
P. aeruginosa	1978, Spain	Olley	carbenicillin	2	-	-	-	in vitro (7), in vivo (mouse, peritonitis)	-	-	-	-	-	-	-	-	[14]
Table 1. Cont.

Strain	Year and Country	Author	Penicillin	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	Fosfomycin-Resistant (%)	Penicillin-Resistant (%)	In Vitro (Methods)/ In Vivo (Animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	Fosfomycin Susceptibility Restoration (%)	Penicillin Susceptibility Restoration (%)	Comments		
Acinetobacter spp.	2019, USA	Flam	Piperacillin/ tazobactam (A. baumannii-calcoaceticus species complex)	5	-	-	-	in vitro (CB, TK)	(A. baumannii-calcoaceticus species complex)	3 (60%)	1 (20%)	0%	0%	-	-	For 1 isolate the efficacy of FOS + PIP/TAZ remained indeterminate.	
S. aureus	2015, Spain	del Río	Amoxicillin + clavulanic acid	10	Methicillin-resistant Staphylococcus aureus (MRSA)	1 (10%)	10 (100%)	in vitro (TK)	in vitro: 8 (80%); in vivo: 2 (20%)	0%	0%	-	-	-	-	Addition or indifferent effect was observed for the remaining 6 strains (data not shown).	
S. aureus	2003, Japan	Nakazawa	Ampicillin	32	MRSA (100%)	20 (91%)	31 (96%)	in vitro (efficacy time index)	4 (12%)	2 (6%)	26 (81%)	0%	-	-	-	Addition or indifferent effect was observed for the remaining 6 strains (data not shown).	
S. aureus	1997, Italy	Ferrara	Oxacillin	36	MRSA (100%)	NA (at least 8)	16 (100%)	in vitro (TK)	3 (18%)	3 (18%)	4 (25%)	-	-	-	-	1994, Japan	
	S. epidermidis	Komatsu	Oxyacillin	38	MRSA (60.5%)	33 (66.8%)	23 (60%)	in vitro (CR)	20 (52%)	17 (44%)	1 (2%)	0%	-	-	-	Data of the other 4 strains are not shown.	
S. epidermidis	1985, USA	Alvarez	Methicillin	148	MRSA (100%)	NA (< 15)	148 (100%)	in vitro (CR)	69 (46%)	-	-	1 (1%)	-	-	-	-	1978, Spain
	S. epidermidis	Olay	Ampicillin, Carbencillin	27	Ampicillin and Carbencillin	4 (55%)	10 (55%)	in vitro (CR)	2 (11%)	-	-	-	-	-	-	Data of the other 4 strains are not shown.	
S. epidermidis	1977, Poland	Bonowski	Penicillin G	11	-	-	-	in vitro (CR)	5 (45%)	2 (18%)	4 (36%)	0%	-	-	-	-	1997, Italy
	S. epidermidis	Ferrara	Oxacillin	12	MRSE (100%)	NA (at least 6)	12 (100%)	in vitro (TK)	6 (50%)	1 (8%)	1 (8%)	-	-	-	-		
Year and Country	Author	Penicillin	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	Fosfomycin-Resistant (%)	Penicillin-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	Fosfomycin Susceptibility Restoration (%)	Penicillin Susceptibility Restoration (%)	Comments	Reference		
-----------------	--------	------------	-------------------	---	------------------------	------------------------	---	-----------------------	-----------------	---------------------	---------------------	----------------------------	----------------------------	----------	----------		
2017, Germany	Gonzalez Moreno	benzylpenicillin	3	-	1 (33.3%)	0%	in vitro (microcalorimetry for biofilms)	0%	0%	3 (100%)	0%	-	-	S. agalactiae, S. pyogenes, S. oralis. High-dose FOS caused a delay of 8 h in the production of heat, compared with untreated controls, suggesting that the treatment could result in a reduction in the number of viable sessile cells, although not in complete biofilm eradication. S. sanguis. The mean log10 CFU per gram of vegetations in the FOS + penicillin group was significantly lower than that in the FOS groups but was not significantly lower than that in the penicillin group.	[9]		
1981, Spain	Vicente	penicillin G	17	-	9 (53%)	5 (29%)	in vitro (CB, TK); in vivo (rabbit, endocarditis)	in vitro: 4 (23%)	in vitro: 12 (71%); in vivo: 100%	0%	-	-	S. sanguis. The mean log10 CFU per gram of vegetations in the FOS + penicillin group was significantly lower than that in the FOS groups but was not significantly lower than that in the penicillin group.	[17]			
1979, Spain	Olby	ampicillin	37	-	-	-	in vitro (CB)	12 (32%)	11 (29%)	14 (37%)	0%	-	-	S. sanguis. The mean log10 CFU per gram of vegetations in the FOS + penicillin group was significantly lower than that in the FOS groups but was not significantly lower than that in the penicillin group.	[14]		
Strain	Year and Country	Author	Penicillin	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	Fosfomycin-Resistant (%)	Penicillin-Resistant (%)	Unknown	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	Fosfomycin Susceptibility Restoration (%)	Penicillin Susceptibility Restoration (%)	Comments	Reference
-------------	------------------	-------------	------------	-------------------	---	--------------------------	--------------------------	---------	--	-------------------------	---------------------	------------------------	------------------------	-------------------------------	---	---	-----------
S. pneumonia	2001, Spain	Batón Arias	penicillin	10		1 (10%)	8 (80%)		in vitro (TK)	10 (100%)	0%	0%	0%	-	-	Synergistic effect difficult to determine. It is reported as synergistic against all isolates based on authors' considerations and on the comparison between cumulative efficacy of MIC + MIC and MIC/4 + MIC/4.	[125]
	1996, France	Chavanet	amoxicillin	1		0%	1 (100%)		in vivo (rabbit, throm clot infection)	1 (100%)	0%	0%	0%	-	-	[23]	
	1995, Japan	Kikuchi	benzylpenicillin	51		0%	51 (100%)		in vitro (CB, TK)	9 (17%)	42 (82%)	0%	0%	-	-	The 3 isolates exhibiting synergistic effect were all *E. faecium*. The 6 isolates exhibiting antagonistic effect on biofilms formation were all *E. faecalis*. From the data reported in the paper it was not possible to establish the effect of the combination against the other isolates. *E. faecalis*, *E. faecium*, *E. casseliflavus*, *E. durans*. The authors did not distinguish between additive and indifferent effect.	[13]
Enterococcus spp.	2013, Taiwan	Tang	ampicillin	10 *E. faecium*, 9	VRE (100%)	13 (68%)	9 (47%)		in vitro (TK, biofilm)	TK: 3 (15%)	-	-	biofilm: 6 (31%)	-	-	[13]	
	1995, France	Postel	penicillin	10		10 (100%)	6 (60%)		in vitro (CB, TK)	6 (60%)	-	-	0%	-	-	[127]	
Table 1. Cont.

Strain	Year and Country	Author	Penicillin	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	Fosfomycin-Resistant (%)	Penicillin-Resistant (%)	In Vitro (Methods/ Animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	Fosfomycin Susceptibility Restoration (%)	Penicillin Susceptibility Restoration (%)	Comments	Reference
E. faecalis	2011, Italy	Farina	ampicillin	27	-	2 (7%)	0%	in vitro (ET)	2 (7%)	0%	25 (92%)	0%	-	-	-	[128]
E. faecium	2013, USA	Descoutreze	amoxicillin	4	VRE (100%)	0%	4 (100%)	in vitro (TK)	100%	0%	0%	0%	-	-	-	[67]

Table 2. Studies on combination between fosfomycin and cephalosporins, cephalosporins + β-lactamase inhibitors. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain	Year and Country	Author	Cephalosporin	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Cephalosporin-Resistant (%)	In Vitro (Methods/ Animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Cephalosporin Susceptibility Restoration (%)	Comments	Reference	
Enterobacteriaceae	2019, USA	Avey	cefepime (FEP), ceftolozane/tazobactam (CT), ceftazidime (CTZ), ceftriaxone/avibactam (CZA)	49 (26 tested for CZA)	8 E. coli: KPC (25%), NDM (77%), ESBL (62%); 35 Klebsiella spp: KPC (45%), NDM (40%), OXA (14%), VIM (6%), ESBL (88%); 4 Acinetobacter spp: KPC (50%), NDM (50%), ESBL (50%); 4 E. cloacae: KPC (75%), NDM (25%), ESBL (75%)	20 (40%)	49 (100%)	in vitro (ET)	FEP: 2 (4%); CTZ: 8 (16%); CTZ: 3 (6%); CZA: 0%	-	-	-	-	-	-	Data on synergism reported without distinction for bacterial strains. % of FOS-R isolates estimated on the basis of the reported MIC50.	[11]
Enterobacteriaceae	2019, USA	Flamm	cefazidime	20	-	-	-	in vitro (CB, TK)	8 (40%)	10 (50%)	0%	0%	-	-	-	For 2 isolates the efficacy of FOS + CTZ remained indeterminate.	[36]
Enterobacteriaceae	1978, Spain	Olay	cefalexin	23 E. coli: 29 Salmonella spp., 8 Klebsiella spp., 11 E. cloacae, 4 S. marcescens, 16 Proteus spp.	-	-	-	in vitro (CB)	42 (40%)	46 (44%)	15 (14%)	0%	-	-	-	[14]	
E. coli	2020, Korea	Seok	cefoxime	4	ESBL (50%)	0%	2 (50%)	in vitro (TK)	4 (100%)	0%	0%	0%	-	-	-	[110]	
E. coli	2014, France	Lafort	cefoxitin	2	ESBL (50%)	0%	breakpoint NA	in vitro (mesone, urinary tract infection)	4 (100%)	0%	0%	0%	-	-	-	[30]	
Table 2. Cont.

Strain	Year and Country	Author	Cephalosporin	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Cephalosporin-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Cephalosporin Susceptibility Restoration (%)	Comments	Reference
K. pneumonia	2019, Poland	Ojdana	ceftazidime-avibactam	19	NDM (52%); KPC (42%); OXA (5%)	10 (53%)	10 (53%)	in vitro (ET)	9 (47%)	7 (36%)	3 (15%)	0%	-	-	It is reported only the reduction of CZA in combination and time–kill was performed only on 2 isolates randomly selected, therefore a reduction of at least 4 times was considered as synergistic. A 2-fold reduction was considered as additive. No reduction was considered as indifferent. In increase of MIC in combination was considered antagonistic. The authors reported only the number of isolates on which the combination had a synergistic effect.	[31]
K. pneumonia	2019, USA	Mikhail	ceftazidime-avibactam	21	fosA/fosC-like, KPC, ESBL, OXA (18%)	15 (71%)	0%	in vitro (CB, TK)	10 (47%)	9 (42%)	2 (9%)	0%	-	0% (all S)	[21]	
	1977, Spain	Daza	cephalosporin	33	-	100%	breakpoints NA in vitro (CB)	1 (3%)	-	-	-	-	-	Breakpoints NA (reduction of MIC from 16 to 4 µg/mL) had a synergistic effect.	[66]	
Table 2. Cont.

Strain	Year and Country	Author	Cephalosporin	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Cephalosporin-Resistant (%)	In Vitro (Methods)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Cephalosporin Susceptibility Restoration (%)	Comments		
P. aeruginosa	2020, Brazil	Cuba	ceftolozan/tazobactam	27	carbapenemase-producing (74%)	26 (96%)	2e2 (81%)	in vitro (ET, TK)	24 (88%)	3 (11%)	0%	0%	24 (92%)	-	It is not possible to establish the % of strains with FOS susceptibility restoration because the MIC for all R strains was >64 μg/mL, and it is not reported the MIC in combination but the MIC fold reduction. It is however strongly reduced (range: 2–16 fold reduction).		
	2020, USA	Mullane	cepofim, ceftolozan/tazobactam	28 CEF; 15 C/T	-	-	-	in vitro (CB, TK)	CEF: 5 (18%);	2 (8%);	0%	-	1 (4%); CEF 5 (33%)	-	It is reported only the reduction of CZA in combination and time–kill was performed only on 2 isolates randomly selected, therefore a reduction of at least 4 times was considered as synergistic. A 2-fold reduction was considered as additive. No reduction was considered as indifferent. An increase of MIC in combination was considered antagonistic.		
P. aeruginosa	2019, USA	Mikhail	ceftazidime-avibactam	21	fosA/fosA-like, KPC, ESBL, OXA (100% at least 1 resistance gene)	19 (90%)	5 (23%)	in vitro (CB, TK)	7 (33%)	6 (28%)	8 (38%)	0%	-	1 (28%)	-	It is reported only the reduction of CZA in combination and time–kill was performed only on 2 isolates randomly selected, therefore a reduction of at least 4 times was considered as synergistic. A 2-fold reduction was considered as additive. No reduction was considered as indifferent. An increase of MIC in combination was considered antagonistic.	
P. aeruginosa	2019, USA	Papp-Wallace	ceftazidime-avibactam	1	-	0%	1 (100%)	in vitro (CB, TK)	0%	0%	0%	-	-	-	-	It is reported only the reduction of CZA in combination and time–kill was performed only on 2 isolates randomly selected, therefore a reduction of at least 4 times was considered as synergistic. A 2-fold reduction was considered as additive. No reduction was considered as indifferent. An increase of MIC in combination was considered antagonistic.	
Strain	Year and Country	Author	Cephalosporin	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Cephalosporin-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Cephalosporin Susceptibility Restoration (%)	Comments	Reference	
--------	------------------	--------	---------------	-------------------	---	------------------	-----------------------------	---	-------------------	-----------------	------------------	------------------	-----------------------------	---	----------	-----------	
2019, USA	Avery	cefepime (FEP), ceftolozane/tazobactam (CTZ), ceftazidime (CAZ), avibactam (AVB)	92 (FEP: 44, CTZ: 32, CAZ: 16, AVB: 14)	Carbapenem-resistant (100%)	-	100%	in vitro (ET)	FEP: 22 (23%), CTZ: 7 (50%), CAZ: 42 (51%), CAZ: 4 (25%)									
2019, USA	Avery	cefepime (FEP), ceftolozane/tazobactam (CTZ), ceftazidime (CAZ), avibactam (AVB)	5	-	-	-	in vitro (CB, TK)	2 (40%)	3 (60%)	0%	0%	-	-	-		[33]	
2018, USA	Monogue	ceftazidime, ceftolozane/tazobactam (CTZ), ceftazidime (CAZ), avibactam (AVB)	4	-	3 (75%)	2 (50%)	in vitro (TK)	1 (25%)	2 (50%)	1 (25%)	0%	-	-	-		[34]	
2018, USA	Monogue	ceftazidime, ceftolozane/tazobactam (CTZ), ceftazidime (CAZ), avibactam (AVB)	3	-	3 (100%)	3 (100%)	in vitro (CB)	3 (100%)	0%	0%	0%	1 (33%)	2 (66%)	-		[40]	
2017, Japan	Okazaki	ceftazidime, cefepime, ceftobiprole	30	-	15 (50%)	CAZ: 2 (40%), CEPF: 25 (83.3%)	in vitro (efficacy time index)	FEP: 2 (2%), CEPF: 7 (50%), CAZ: 20 (50%)	1 (33%)	5 (16%)	0%						[122]
1999, Japan	Hayami	ceftazidime	26	-	NA (at least 13)	NA (at least 5)	in vitro (CB, TK)	7 (26%)	14 (53%)	0%		-	-	-			[130]
1997, France	Tessier	ceftazidime	40	-	21 (52%)	14 (35%)	in vitro (CB)	0%	8 (20%)	32 (80%)	0%	20 (95%)	8 (57%)	-		[131]	
1984, Japan	Takahashi	cefoperazone, cefadroxil	20 (cefoperazone), 23 (cefadroxil)	-	-	-	in vitro (CB)	cefoper: 17 (85%), cefad: 19 (82%)	cefoper: 3 (15%), cefad: 4 (17%)	0%	0%	-	-	-	-	[122]	
A. baumannii	2019, USA	Flamm	ceftazidime, ceftolozane/tazobactam (CTZ), ceftazidime (CAZ), avibactam (AVB)	5 (A. baumannii-calcoaceticus species complex)	-	-	-	in vitro (CB, TK)	2 (40%)	1 (20%)	1 (20%)	0%	-	-	-	For 1 isolate the efficacy of FOS + CTZ remained indeterminate. Only synergistic and antagonistic effect reported.	[38]
1996, Spain	Martinez-Martinez	cefazidime	34	-	34 (100%)	32 (94%)	in vitro (CB)	1 (3%)	NA	NA	0%	-	-	-		[132]	
Staphylococci spp.	1995, Italy	Marchese	ceftazidime, ceftazolin	6 S. aureus, 8 S. epidermidis, 2 S. hominis, 2 S. xylosus, 5 S. saprophyticus, 2 S. haemolyticus	Penicillin-resistant (100%)	-	-	in vitro (CB, TK)	4 (14%)	-	-	0%	-	-		The authors considered 0.5 < FICI ≤ 4 as indifferent, therefore it is not possible to establish if the effect was additive or indifferent for most strains.	[114]
Table 2. Cont.

Strain	Year and Country	Author	Cephalosporin	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Cephalosporin-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Cephalosporin Susceptibility Restoration (%)	Comments	Reference	
S. aureus	2003, Japan	Nakazawa	flomoxef sodium (FS), cefmetazole (CEM), cefotaxime (CET), cefoperazone/ sulbactam (CS)	32	MRSA (100%)	29 (91%)	FS: 29 (91%); CEM: 16 (50%); CET: 30 (94%); CS: 27 (84%)	in vitro (efficacy time index)	FS: 7 (22%); CEM: 26 (81%); CET: 7 (22%); CS: 19 (59%)	17 (70.8%)	7 (29.2%)	0%	0%	-	-	[18]	
	1978, Spain	Olay	cepheaxin	24	-	-	-	in vitro (CB)	FS: 7 (22%); CEM: 26 (81%); CET: 7 (22%); CS: 19 (59%)	17 (70.8%)	7 (29.2%)	0%	0%	-	-	-	[14]
	2015, Spain	del Rio	ceftriaxone	in vitro 10; in vivo 2	MRSA (100%)	1 (10%)	10 (100%)	in vitro (TK); in vivo (rabbit, endocarditis)	cefotaxime, cephalotin, cefoperazone, cefotamide: 10 (100%)	1 (100%)	0%	0%	0%	-	-	[28]	
	1985, Germany	Portier	cefotaxime, cephalotin, cefoperazone, cefotamide	10	MRSA (100%)	0%	10 (100%)	in vitro (CB)	cefotaxime, cephalotin, cefoperazone, cefotamide: 10 (100%)	1 (100%)	0%	0%	0%	-	-	[28]	
S. aneurus	1990, France	Chanvat	cefotaxime	1	MGRSA (100%)	0%	1 (100%)	in vivo (rabbit, subcutaneous fibron clot)	1 (100%)	0%	0%	0%	0%	-	-	-	[27]
	1985, France	Kazmiereczak	cefotaxime	1	-	0%	1 (100%)	in vivo (rabbit, meningitis)	0%	1 (100%)	0%	0%	-	-	-	[28]	
Strain Year and Country	Author	Cephalosporin	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Cephalosporin-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Cephalosporin Susceptibility Restoration (%)	Comments	Reference		
-------------------------	--------	---------------	-------------------	---	-----------------	-----------------------------	--	------------------------	----------------------	------------------------	-----------------------------	-----------------------------	-----------------------------	----------	-----------		
1991, Japan Matsuda	cefmetazole	25	MRSA (100%)	25 (100%)	25 (100%)	in vitro (CB, TK)	11 (44%) in vitro: 10 (71%); in vivo: 5 (71%)	11 (44%)	3 (12%)	0%	-	-	-		[130]		
1986, Japan Utsui	cefmetazole	14 in vitro, 7 in vivo	MRSA (100%)	-	14 (100%)	in vitro (CB, TK); in vivo (mouse)	0% in vitro: 4 (28%); in vivo: 2 (26%)	0%	0%	-	-	-	-		[25]		
1987, France Courcol	ceftriaxone	6	-	1 (16%)	6 (100%)	in vitro (CB, TK)	CB: 1 (16%); TK: 1 (16%)	CB: 0%; TK: -	-	-	-	-	-	Different activity of the drug combination with checkerboard assay or time–kill assay. The effect of FOS + ceftriaxone on 2 isolates remained indeterminate. The authors considered the combination antagonistic when the FICI was > 2. For the 78 remaining isolates it was not specified if the combination FOS + ceftriaxone acted with an additive or indifferent effect.	[19]		
1985, USA Alvarez	cefamandole	148	MRSA (100%)	NA (<15)	-	in vitro (CB)	97 (66%)	-	-	0%	-	-	-	For the 78 remaining isolates it was not specified if the combination FOS + cefamandole acted with an additive or indifferent effect.	[12]		
2001, Austria Grif	cefazolin	5	MRSA (20%), GISA (20%)	-	-	in vitro (CB, TK)	5 (100%)	0%	0%	0%	-	-	-	[43]			
Strain	Year and Country	Author	Cephalosporin	Number of Isolates	Cephalosporin-Resistant (%)	FOS-Resistant (%)	Known Resistance Mechanisms or Determinants (%)	In Vitro (Method(s)/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Cephalosporin Susceptibility Restoration (%)	Comments	Reference	
----------------------------	------------------	--------	---------------	-------------------	---------------------------	-------------------	---	--	------------------------	---------------------	------------------------	-----------------------------	-----------------------------	--	--	-----------	
S. epidermidis	2001, Austria	Grif et al.	Cefazolin	2	-	-	-	In vitro (CB, TK)	0%	0%	2 (100%)	-	-	-	Different activity of the drug combination with checkerboard assay or time–kill assay.	[43]	
	1987, France	Courcol et al.	Ceftriaxone	6	-	2 (33.3%)	6 (100%)	In vitro (CB, TK)	CB: 1 (16%); TK: 5 (63.3%)	CB: 0% TK: -	CB: 5 (83%); TK: -	CB: 1 (16%); TK: -	-	-	The effect of FOS + ceftriaxone on 1 isolate remained indeterminate. The authors considered the combination antagonistic when the FICI was > 2.	[19]	
	2006, Spain	Ribes et al.	Ceftriaxone	2	-	0%	2 (100%)	In vitro (TK); in vivo (rabbit, meningitis)	0%	-	-	-	-	-	Synergistic effect difficult to determine. It is reported as synergistic against all isolates based on authors’ considerations and on the comparison between cumulative efficacy of MIC + MIC and MIC/4 + MIC/4.	[24]	
	2001, Spain	Bañón Arias et al.	Ceftriaxone	10	-	1 (10%)	7 (70%)	In vitro (TK)	10 (100%)	0%	0%	0%	-	-	-	[23]	
S. pneumonia	1994, France	Doit et al.	Ceftriaxone	26	-	0%	20 (76%)	In vitro (TK)	0%	-	-	-	-	-	-	[134]	
	1993, France	Barakett et al.	Cefotaxime	7	-	0%	2 (28%)	In vitro (TK)	3 (42%)	1 (14%)	3 (42%)	0%	-	-	-	[135]	
	1995, France	Charvet et al.	Cefotaxime, ceftriaxone	1	-	0%	1 (100%)	In vitro (TK); in vivo (rabbit, fibrin clot infection)	0%	-	-	-	-	-	-	[23]	
Strain	Year and Country	Author	Cephalosporin	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Cephalosporin-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Cephalosporin Susceptibility Restoration (%)	Comments	Reference	
------------	------------------	----------	---------------	-------------------	--	------------------	-----------------------------	--	----------------------	---------------------	------------------------	--------------------------	-------------------------------	--	----------	-----------	
S. sanguis	1981, Spain	Vicente	Cefoxitin	17	-	3 (16%)	9 (53%)	in vitro (CB, TK); in vivo (rabbit, endocarditis)	8 (47%); in vivo: 100%	8 (42%)	1 (6%)	0%	-	-	The mean log_{10} CFU per gram of vegetations in the FOS + cefoxitin groups was significantly lower than that in the FOS groups and in the cefoxitin groups. [17]		
Enterococcus spp.	1995, France	Pestel	Cefotaxime	50	-	50 (100%)	48 (96%)	in vitro (CB, TK)	45 (90%)	-	5 (10%)	0%	-	-	E. faecalis, E. casseliflavus, E. durans. The authors did not distinguish between additive and indifferent effect. [127]		
E. faecalis	2011, Italy	Farina	Ceftriaxone	27	-	2 (7%)	27 (100%)	in vitro (ET)	15 (55%)	0%	12 (44%)	0%	-	-	The authors did not distinguish between additive and indifferent effect, considering $0.5 < FICI \leq 4$ as indifferent. [128]		
N. gonorrhoeae	2015, Switzerland	Hauser	Ceftriaxone	8	-	0%	1 (12.5%)	in vitro (CB)	0%	0%	-	-	-	-	-	The authors did not distinguish between additive and indifferent effect, considering $0.5 < FICI \leq 4$ as indifferent. [157]	
N. gonorrhoeae	2015, The Netherlands	Wind	Ceftriaxone, Cefotaxime	4	-	-	-	in vitro (ET)	0%	0%	-	-	-	-	-	-	The authors did not distinguish between additive and indifferent effect, considering $0.5 < FICI \leq 4$ as indifferent. [156]
N. gonorrhoeae	2014, USA	Barber	Ceftriaxone, Cefotaxime	32	-	0%	32 (100%)	in vitro (ET)	0%	0%	32 (100%)	0%	-	-	-	The authors did not distinguish between additive and indifferent effect, considering $0.5 < FICI \leq 4$ as indifferent. [136]	
Table 3. Studies on combination between fosfomycin and carbapenems. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strains	Year and Country	Author	Carbapenem	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Carbapenem-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Carbapenem Susceptibility Restoration (%)	Comments	Reference	
Entrobacterales	2019, USA	Avery	meropenem	49	8 E. coli: KPC (25%), NDM (75%), ESBL (62%); 3S E. coli spp: KPC (45%), NDM (40%); ORA (16%); VIM (8%); ESBL (9%); fosA (44%); 2 C. bovis spp: KPC (50%), NDM (50%); ESBL (50%); 4 E. faecalis: KPC (7%), NDM (25%); ESBL (7%)	20 (40.8%)	49 (100%)	in vitro (ET)	1 (2%)	10 (20%)	38 (77%)	0%	-	-	Data on synergism reported without distinction for bacterial strains. % of FOS-R isolates estimated on the basis of the reported MIC.	[11]	
	2020, Egypt	El-Wafa	imipenem	8	E. coli: 3 (37.5%); 7 (87.5%)	3 (37.5%)	7 (87.5%)	in vitro (CB, TK)	2 (25%)	5 (62%)	0%	0%	2 (66%)	6 (87%)	For 2 isolates the efficacy of FOS + meropenem (MDE) remained indeterminate.	[38]	
	2019, India	Sugathan	meropenem,	50	E. coli: 0%	0%	8 (96%)	in vitro (TK)	34 (68%)	14 (28%)	0%	0%	0%	0% (all 3)	For 1 isolate the efficacy of FOS + meropenem (MDE) remained indeterminate	[42]	
	2019, Germany	Loose	meropenem,	4	E. coli: 1 (25%); 3 (75%)	1 (25%)	3 (75%)	in vitro (CB)	4 (100%)	0%	0%	0%	-	-	The authors reported FIC1 ranging from 0.5 to 4, without distinction between additive and indifferent effect.	[137]	
	2013, Austria	Lingscheid	doripenem	10	E. coli: ESBL (80%), AmpC (20%)	0%	-	in vitro (CB, TK)	8 (80%)	-	0%	-	-	-		[139]	
	2012, Greece	Samonis	imipenem,	20	E. coli: ESBL (100%)	0%	0%	in vitro (ET)	IML: 11 (55%); MER: 3 (25%); DOR: 6 (30%)	-	-	0%	0%	-	-		[86]
	2010, Thailand	Netikul	imipenem,	8	E. coli: ESBL (87%)	0%	8 (100%)	in vitro (ET)	ERT: 3 (62%); IML: 2 (25%); MER: 2 (25%); DOR: 1 (12%)	-	-	0%	-	-	-		[140]
Strains	Year and Country	Author	Carbapenem	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Carbapenem-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOSSusceptibilityRestoration(%)	CarbapenemSusceptibilityRestoration(%)	Comments	Reference	
---------	-----------------	--------	-------------	-------------------	---	------------------	-------------------------	---------------------------------	-------------------	----------------	---------------------	----------------------	-----------------------------	--------------------------------	---------	----------	
K. pneumoniae																	
2020, India	Bakthavatchalam	meropenem	50	OXA (78%), NDM (32%), KPC (24%)	50 (100%)	-	in vitro (TK)	10 (20%)	0%	40 (80%)	0%	-	-	-	[141]		
2020, Turkey	Erturk Sengel	meropenem	17	OXA (70%), NDM (32%), KPC (21%)	17 (100%)	7 (41%)	in vitro (CB, TK)	15 (88%)	2 (11%)	0%	0%	4 (23%)	-	-	[142]		
2019, Germany	Loose	meropenem, ertapenem	3	-	5 (100%)	2 (66%)	in vitro (CB)	2 (66%)	1 (33%)	0%	0%	-	-	-	[130]		
2019, Brazil	Perdigão Neto	meropenem	9	ESBL, KPC (100%); OXA (4%), fosA (100%)	9 (100%)	9 (100%)	in vitro (CB, TK)	8 (88%)	0%	1 (11%)	0%	2 (22%)	0%	-	[143]		
2017, Taiwan	Tseng	meropenem	25	see comments	12 (48%)	24 (96%)	in vitro (CB)	25 (100%)	0%	0%	0%	-	-	-	[144]		
2017, China	Yu	imipenem, ertapenem	136	KPC (100%)	78 (52%)	136 (100%)	in vitro (CB, TK)	IMI: 21 (15%); ERT: 30 (22%)	IMI: 114 (85%); ERT: 104 (78%)	IMI: 1 (1%); ERT: 2 (1%)	0%	-	-	-	[89]		
2016, Brazil	Albinho	meropenem	18	KPC (100%)	13 (72%)	16 (89%)	in vitro (CB)	12 (66%)	3 (18%)	3 (16%)	0%	12 (92.3%)	4 (25%)	-	[145]		
2014, Sweden	Tingdén	meropenem	4	NDM (50%), VIM (20%), ESBL (100%)	4 (100%)	3 (75%)	in vitro (TK)	0%	0%	4 (100%)	0%	-	-	-	[146]		
2013, Turkey	Evren	meropenem, ertapenem	12	OXA-48 (100%)	12 (100%)	12 (100%)	in vitro (CB)	IMI: 5 (41%); MER: 4 (33%)	IMI: 6 (50%); MER: 6 (50%)	IMI: 1 (8%); MER: 2 (16%)	0%	-	-	-	[74]		
2013, Austria	Längscheid	doripenem	5	ESBL (60%), AmpC (100%)	0%	-	in vitro (CB, TK)	5 (100%)	0%	0%	0%	0%	-	-	-	[130]	
2012, Greece	Samonis	imipenem, doripenem	64	KPC (78%); ESBL (21%)	1 (1%)	51 (78%)	in vitro (ET)	KPC: IMI: 37 (74%); MER: 35 (70%); DOR: 37 (74%); ESBL: IMI: 11 (79%); MER: 6 (42%); DOR: 7 (42%)	KPC: IMI: 13 (26%); MER: 15 (30%); DOR: 13 (26%); ESBL: IMI: 3 (25%); MER: 8 (57%); DOR: 8 (57%)	0%	-	-	-	[86]			
2011, Greece	Souli	meropenem	17	KPC (100%)	4 (23%)	17 (100%)	in vitro (TK)	11 (64%)	0%	6 (35%)	0%	-	-	-	[53]		

The 25 isolates were randomly selected among 642 isolates with the following resistance determinants: fosA3 (5.5%), foskpg2 (4.2%), KPC (10.1%), IMP (1.8%), VIM (0.2%). It is not reported which carbapenemases and fosfomycinases were present in the 25 isolates tested for synergism.
Table 3. Cont.

Strains	Year and Country	Author	Carbapenem	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Carbapenem-Resistant (%)	In Vitro (Methods)/In Vivo (Animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Carbapenem Susceptibility Restoration (%)	Comments	Reference	
2010, Thailand	Netikul	ertapenem, imipenem, meropenem, doripenem	8	ESBL (87%)	4 (50%)	8 (100%)	in vitro (ET)	0%	ERT: 5 (62%); IMI: 2 (25%); MER: 1 (12%); DOR: 2 (25%)	ERT: 3 (37%); IMI: 6 (75%); MER: 7 (87%); DOR: 6 (75%)	0%	-	-	-	[140]		
2019, Germany	Loose	meropenem, ertapenem	2	-	2 (100%)	1 (50%)	in vitro (CB)	0%	2 (100%)	0%	0%	-	-	-	-	[133]	
E. cloacae	Lingscheid	doripenem	3	1 (33%)	0%	-	in vitro (CB, TK)	1 (33%)	-	-	0%	-	-	-	[130]		
2018, USA	Mullane	meropenem	30	-	14 (47%)	NA (at least 71)	in vitro (CB, TK)	8 (17%)	9 (30%)	16 (53%)	0%	0%	0%	-	-	[129]	
2019, USA	Avery	meropenem	153	-	-	153 (100%)	in vitro (ET)	29 (19%)	55 (35%)	69 (44%)	0%	-	21 (13%)	-	-	[129]	
2019, Brazil	Albaso	meropenem	19	MBL (52%)	17 (89%)	16 (84%)	in vitro (CB)	15 (88%)	3 (15%)	1 (5%)	0%	15 (88%)	7 (43%)	-	-	[147]	
2019, USA	Flamm	meropenem	5	-	-	-	in vitro (CB, TK)	1 (100%)	0%	0%	0%	1 (100%)	1 (100%)	-	-	[147]	
2018, Brazil	Perdigão	meropenem	1	OXA, fosA (100%)	1 (100%)	1 (100%)	in vitro (CB, TK)	1 (100%)	0%	0%	0%	1 (100%)	1 (100%)	-	-	[143]	
2010, USA	Drusano	meropenem	1	-	-	-	in vitro (hollow-fiber infection model)	1 (100%)	0%	0%	0%	-	-	-	-	[140]	
P. aeruginosa	2017, Spain	Hamou-Segarra	imipenem, meropenem, doripenem	4	-	1 (25%)	-	in vitro (TK)	4 (100%)	0%	0%	0%	-	-	-	-	[140]
2015, Thailand	Kunakovcik	imipenem, meropenem, doripenem	70	-	-	70 (100%)	in vitro (CB, TK)	IMI: 36%; MER: 48%; DOR: 45%	-	-	-	-	-	-	-	[150]	
2013, Brazil	dos Santos	imipenem	4	-	4 (100%)	2 (50%)	in vitro (CB)	4 (100%)	0%	0%	0%	3 (75%)	1 (50%)	-	-	[40]	

The authors reported FICI ranging from 0.5 to 4, without distinction between additive and indifferent effect.

Combination therapy was able to counterselect resistance emergence. FOS and imipenem (IMI) alone lead to bacterial regrowth, while no regrowth was observed with the combination FOS + IMI. FOS in association with a carbapenem was observed to reduce also biofilm formation.
Table 3. Cont.

Strains	Year and Country	Author	Carbapenem	Number of Isolates	FOS-Resistant (%)	Carbapenem-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Carbapenem Susceptibility Restoration (%)	Comments	Reference
A. baumannii	2019, USA	Flamm	meropenem	25 (A. baumannii-calcoaceticus species complex)	-	-	in vitro (CB, TK)	1 (20%)	3 (60%)	0%	0%	-	-	For 1 isolate the efficacy of FOS + MER remained indeterminate	[39]
A. baumannii	2018, China	Zhu	imipenem	21	-	20 (95%)	21 (100%) in vitro (CB)	12 (57%)	3 (13.3%)	6 (28%)	0%	-	-	-	[151]
A. baumannii	2016, Thailand	Singkham-In	imipenem, meropenem	23	OXA (100%)	23 (100%)	23 (100%) in vitro (CB, TK)	IMI 65%; MER 0%	IMI 30.4%; MER 87%	IMI 4%; MER 13%	0%	-	-	-	[83]
A. baumannii	1999, Spain	Martinez-Marti	imipenem	34	-	34 (100%)	NA (at least 7y) in vitro (CB)	1 (3%)	-	0%	-	-	-	-	[132]

The authors reported FIC ranging from 0.5 to 4, without distinction between additive and indifferent effect, and considered the combination 'indifferent' against all isolates. [130]

Although the combination had a synergistic effect on no tested strains, it is of clinical relevance as it restored FOS and IMI susceptibility in almost all R isolates. [131]

The Authors reported only the number of isolates on which the combination had a synergistic or an antagonistic effect. [83]
Table 3. Cont.

Strains	Year and Country	Author	Carbapenem	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Carbapenem-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Carbapenem Susceptibility Restoration (%)	Comments	Reference
S. aureus	2019, Spain	Coronado-Álvarez	imipenem	4	MRSA (50%)	-	-	in vitro (TK)	4 (100%)	0%	0%	0%	-	-	[63]	
S. aureus	2015, Spain	del Rio	imipenem	10 (in vitro), 2 (in vivo)	MRSA (100%)	1 (10%)	4 (40%)	in vitro (TB); in vivo (rabbit, endocarditis)	in vitro: 9 (90%); in vivo: 2 (100%)	in vitro: 1 (100%)	0%	0%	-	-	-	% of sterile vegetations: FOS alone 0%, IMI alone 7%; FOS + IMI 73%. The authors reported FICs ranging from 0.5 to 4, without distinction between additive and indifferent effect.
S. aureus	2013, Austria	Lingscheid	doripenem	39	MRSA (100%)	0%	-	in vitro (CB, TK)	37 (94%)	-	-	0%	-	-	[130]	
S. aureus	2012, Spain	Garrigós	imipenem	1	MRSA (100%)	0%	0%	in vitro (TK); in vivo (neck, foreign-body infection)	0%	in vitro: 1 (100%)	in vivo: 0%; in vivo: 1 (100%)	0%	-	-	-	[37]
S. aureus	2011, Spain	Pachón-Biabiez	imipenem	1	GISA (100%)	0%	100%	in vitro (TK); in vivo (mouse, peritonitis)	in vitro: 1 (100%); in vivo: 1 (100%)	0%	0%	0%	-	-	-	[36]
S. aureus	2003, Japan	Nakazawa	imipenem, panipenem	32	MRSA (100%)	29 (91%)	28 (88%)	in vitro (efficacy time index)	IMI: 16 (50%); PAN: 21 (66%)	IMI: 3 (9%); PAN: 8 (25%)	IMI: 13 (41%); PAN: 3 (9%)	0%	-	-	-	[18]
S. aureus	1992, France	Quentin	imipenem	5	-	1 (20%)	1 (20%)	in vitro (TK)	1 (20%)	0%	3 (60%)	1 (20%)	-	-	-	[15]
S. aureus + S. epidermidis	2001, Austria	Grif	meropenem	5 (S. aureus + 2 S. epidermidis)	MRSA (28%), GISA (25%)	-	-	in vitro (CB, TK)	S. aureus: 5 (100%)	0%	-	-	-	-	-	The study was conducted on catheters infected in laboratory. Bacterial regrowth was observed on catheters treated with FOS or IMI alone, but did not occur when the drugs were tested in combination.
S. aureus + S. epidermidis	1992, Austria	Goggenmbichler	imipenem	1 (S. aureus + 2 S. epidermidis)	-	-	-	in vitro (TK)	3 (100%)	0%	0%	0%	-	-	-	[150]
Table 3. Cont.

Strains	Year and Country	Author	Carbapenem	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Carbapenem-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Carbapenem Susceptibility Restoration (%)	Comments	Reference
Staphylococcus spp. + Enterococcus spp.	1986, Italy	Debbia	imipenem	76		-	-	in vitro (CB, TK)	54 (71%)	0%	22 (29%)	0%	-	-	% reported are those obtained with CB. Results of TK showed higher rates of synergism, but in the present Table are considered the results of CB as not all isolates were tested with TK.	[154]
E. faecalis	2011, Italy	Farina	imipenem	27		-	2 (7%)	in vitro (ET)	0%	0%	10 (37%)	17 (62%)	-	-	The Authors did not distinguish between additive and indifferent effect, and defined the effect of FOS + IMI indifferent.	[128]
S. pneumoniae	1994, France	Doit	imipenem	26		-	0%	in vitro (TK)	0%	26 (100%)	0%	0%	-	-	-	[134]
N. gonorrhoeae	2015, The Netherlands	Wind	ertapenem	4		-	-	in vitro (ET)	0%	3 (75%)	1 (25%)	0%	-	-	-	[54]
Table 4. Studies on combination between fosfomycin and aztreonam. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain	Year and Country	Author	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Aztreonam-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Aztreonam Susceptibility Restoration (%)	Comments Reference
Enterobacteriales	2019, USA	Avery	48	E. coli: KPC (25%), NDM (75%), ESBL (62%); K. pneumoniae: KPC (45%), NDM (40%); OXA (14%); VIM (5%); ESBL (5%); K. oxytoca: KPC (50%), NDM (50%); E. cloacae: KPC (50%), NDM (50%); 4% of isolates had ESBL and OXA	48 (40%) 48 (100%) in vitro (ET); 20 (40%) 48 (100%) in vitro (ET)	4 (8%) 1 (2%) 4 (8%) 13 (27%) 20 (40%) 48 (100%) in vitro (ET)	20 (40%) 13 (27%) 31 (64%) 0% 0% 0%	Data on synergism reported without distinction for bacterial strains. % of FOS-R isolates estimated on the basis of the reported MIC90.	[11]					
Enterobacteriales	2019, USA	Flamm	20	E. coli: KPC (25%), NDM (75%), ESBL (62%); K. pneumoniae: KPC (45%), NDM (40%); OXA (14%); VIM (5%); ESBL (5%); K. oxytoca: KPC (50%), NDM (50%); E. cloacae: KPC (50%), NDM (50%); 4% of isolates had ESBL and OXA	48 (40%) 48 (100%) in vitro (ET); 20 (40%) 48 (100%) in vitro (ET)	4 (8%) 1 (2%) 4 (8%) 13 (27%) 20 (40%) 48 (100%) in vitro (ET)	20 (40%) 13 (27%) 31 (64%) 0% 0% 0%	Data on synergism reported without distinction for bacterial strains. % of FOS-R isolates estimated on the basis of the reported MIC90.	[38]					
Enterobacteriales	2019, Sweden	Hickam	2	E. coli: KPC (25%), NDM (75%), ESBL (62%); K. pneumoniae: KPC (45%), NDM (40%); OXA (14%); VIM (5%); ESBL (5%); K. oxytoca: KPC (50%), NDM (50%); E. cloacae: KPC (50%), NDM (50%); 4% of isolates had ESBL and OXA	48 (40%) 48 (100%) in vitro (ET); 20 (40%) 48 (100%) in vitro (ET)	4 (8%) 1 (2%) 4 (8%) 13 (27%) 20 (40%) 48 (100%) in vitro (ET)	20 (40%) 13 (27%) 31 (64%) 0% 0% 0%	Data on synergism reported without distinction for bacterial strains. % of FOS-R isolates estimated on the basis of the reported MIC90.	[120]					
Enterobacteriales	2014, Sweden	Hickam	1	E. coli: KPC (25%), NDM (75%), ESBL (62%); K. pneumoniae: KPC (45%), NDM (40%); OXA (14%); VIM (5%); ESBL (5%); K. oxytoca: KPC (50%), NDM (50%); E. cloacae: KPC (50%), NDM (50%); 4% of isolates had ESBL and OXA	48 (40%) 48 (100%) in vitro (ET); 20 (40%) 48 (100%) in vitro (ET)	4 (8%) 1 (2%) 4 (8%) 13 (27%) 20 (40%) 48 (100%) in vitro (ET)	20 (40%) 13 (27%) 31 (64%) 0% 0% 0%	Data on synergism reported without distinction for bacterial strains. % of FOS-R isolates estimated on the basis of the reported MIC90.	[120]					
Enterobacteriales	2014, Sweden	Hickam	1	E. coli: KPC (25%), NDM (75%), ESBL (62%); K. pneumoniae: KPC (45%), NDM (40%); OXA (14%); VIM (5%); ESBL (5%); K. oxytoca: KPC (50%), NDM (50%); E. cloacae: KPC (50%), NDM (50%); 4% of isolates had ESBL and OXA	48 (40%) 48 (100%) in vitro (ET); 20 (40%) 48 (100%) in vitro (ET)	4 (8%) 1 (2%) 4 (8%) 13 (27%) 20 (40%) 48 (100%) in vitro (ET)	20 (40%) 13 (27%) 31 (64%) 0% 0% 0%	Data on synergism reported without distinction for bacterial strains. % of FOS-R isolates estimated on the basis of the reported MIC90.	[120]					
P. aeruginosa	2019, USA	Avery	103	E. coli: KPC (25%), NDM (75%), ESBL (62%); K. pneumoniae: KPC (45%), NDM (40%); OXA (14%); VIM (5%); ESBL (5%); K. oxytoca: KPC (50%), NDM (50%); E. cloacae: KPC (50%), NDM (50%); 4% of isolates had ESBL and OXA	48 (40%) 48 (100%) in vitro (ET); 20 (40%) 48 (100%) in vitro (ET)	4 (8%) 1 (2%) 4 (8%) 13 (27%) 20 (40%) 48 (100%) in vitro (ET)	20 (40%) 13 (27%) 31 (64%) 0% 0% 0%	Data on synergism reported without distinction for bacterial strains. % of FOS-R isolates estimated on the basis of the reported MIC90.	[38]					
P. aeruginosa	2019, USA	Flamm	5	E. coli: KPC (25%), NDM (75%), ESBL (62%); K. pneumoniae: KPC (45%), NDM (40%); OXA (14%); VIM (5%); ESBL (5%); K. oxytoca: KPC (50%), NDM (50%); E. cloacae: KPC (50%), NDM (50%); 4% of isolates had ESBL and OXA	48 (40%) 48 (100%) in vitro (ET); 20 (40%) 48 (100%) in vitro (ET)	4 (8%) 1 (2%) 4 (8%) 13 (27%) 20 (40%) 48 (100%) in vitro (ET)	20 (40%) 13 (27%) 31 (64%) 0% 0% 0%	Data on synergism reported without distinction for bacterial strains. % of FOS-R isolates estimated on the basis of the reported MIC90.	[38]					
P. aeruginosa	2002, Japan	Okazaki	30	E. coli: KPC (25%), NDM (75%), ESBL (62%); K. pneumoniae: KPC (45%), NDM (40%); OXA (14%); VIM (5%); ESBL (5%); K. oxytoca: KPC (50%), NDM (50%); E. cloacae: KPC (50%), NDM (50%); 4% of isolates had ESBL and OXA	48 (40%) 48 (100%) in vitro (ET); 20 (40%) 48 (100%) in vitro (ET)	4 (8%) 1 (2%) 4 (8%) 13 (27%) 20 (40%) 48 (100%) in vitro (ET)	20 (40%) 13 (27%) 31 (64%) 0% 0% 0%	Data on synergism reported without distinction for bacterial strains. % of FOS-R isolates estimated on the basis of the reported MIC90.	[38]					
Table 5. Studies on combination between fosfomycin and quinolones. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain	Year and Country	Author	Quinolone	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Quinolone Susceptibility Restoration (%)	Comments	Reference
Enterobacteriales	2019, USA	Flamm	Levofloxacin 20	5 MDR (of which 29% ESBL and 29% KPC-producer)	-	in vitro (CB)	30% 60% 10% 0%	-	-	-	-	-	Triple combination (FOS+IMP+CIP or FOS+CIP/TOB) increased synergism against all isolates.	[38]
E. coli	2020, Egypt	El-Wafa	Ciprofloxacin 8	-	100%	in vitro (CB, TK)	3 (37%) - - - 3 (100%)	3 (100%)	-	-	-	-	The optimal combination of fosfomycin with N-acetylcysteine produces the reduction of E. coli sessile cell viability and biofilm formation up to 60–73%.	[42]
E. coli	2019, USA	Wang	Ciprofloxacin 8	-	0% 98%	in vitro (CB, TK)	3 (6%) 20 (40%) 27 (54%)	0%	-	0%	-	-	-	[155]
E. coli	2019, India	Sugathan	Ciprofloxacin 50	biofilm producers (100%)	-	in vitro (CB, TK)	31 (38%) 0% 49 (61%) 0% 65 (81%) 3 (4%)	-	-	-	-	-	-	[137]
S. flexneri	2019, China	Liu	Ciprofloxacin 80	-	43 (54%) 100%	in vitro (CB, TK) in vivo (Galleria mellonella)	31 (38%) 0% 49 (61%) 0% 65 (81%) 3 (4%)	-	-	-	-	-	-	[156]
P. aeruginosa	2019, USA	Wang	Ciprofloxacin 7	-	0% 14%	in vitro (ET, biofilm)	4 (57%) - 3 (42%) - - -	-	-	-	-	-	-	[155]
P. aeruginosa	2019, USA	Flamm	Levofloxacin 5	7 MDR (of which 29% ESBL and 29% KPC-producer)	-	in vitro (CB)	1 (20%) 4 (80%) 0%	-	-	-	-	-	The total number of experiments was 108 (9 combinations of FOS+CIP at different concentrations, in 3 different times).	[38]
P. aeruginosa	2016, Australia	Walsh	Ciprofloxacin 4	-	75% 50%	in vitro (TK)	21% (21/108) 15% (16/108) 38% (41/108)	-	-	-	-	-	-	[76]
P. aeruginosa	2013, Brazil	Dos Santos	Ciprofloxacin 2	MDR (50%)	100% 50%	in vitro (CB, TK)	2 (100%) - - - 2 (100%) 0%	-	-	-	-	-	*After 3 consecutive days' co-administration.	[48]
P. aeruginosa	2007, Japan	Mikuniya	Prulifloxacin, ciprofloxacin, levofloxacin 1	biofilm forming (100%)	-	in vivo (rat, UTI)	1 (100%) - - - - - -	-	-	-	-	-	-	[48]
P. aeruginosa	2007, Japan	Yamada	Ciprofloxacin 74	-	-	in vitro (CB)	20 (27%) 54 (73%) 0% 0%	-	-	-	-	-	-	[157]
Table 5. Cont.

Strain Year and Country	Author	Quinolone	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Quinolone-Resistant (%)	In Vitro (Method)/In Vivo (Animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Quinolone Susceptibility Restoration (%)	Comments	Reference	
2005, Japan	Micuniya	Ciprofloxacin, Ulofl oxacin, Levofloxacin	1	-	100%	100%	in vitro (ATP bioluminescence assay)	-	100%	-	-	0%	0%	-	[46]	
2002, Japan	Monden	Ofloxacin	4	-	3 (75%)	1 (25%)	in vitro (biofilm)	3 (75%)	-	-	-	-	-	-	[158]	
2001, Japan	Okazaki	Levofloxacin	30	MDR (50%)	13/30 (43%)	21/30 (70%)	in vitro (Efficacy time index)	3/30 (1%)	17/30 (56%)	-	-	10/30 (33%)	-	-	[39]	
1999, Japan, 1997, 1997, 1999, Japan, 1997, 1997, France	Hayami	Ciprofloxacin	26	-	-	-	in vitro (CB, TK)	10 (38%)	15 (57%)	1 (3%)	0%	-	-	-	[130]	
1997, France	Bugnon	Pefloxacin	2	-	-	-	in vivo (rabbit, endocarditis)	-	-	-	100%	-	-	-	[41]	
1995, Japan	Tessier	Ciprofloxacin	40	MDR (100%)	23 (57%)	19 (47%)	in vitro (CB)	6 (15%)	32 (80%)	2 (5%)	-	16 (70%)	12 (63%)	-	[131]	
1994, France	Xiong	Ciprofloxacin	2	MDR (50%)	0%	50%	in vitro (CB); in vivo (rabbit, endocarditis)	2 (100%)	early thp; 1 (50%) Late thp	0% early thp; 1 (50%) Late thp	-	-	-	in vivo results.	[160]	
1994, France	Xiong	Pefloxacin	2	MDR (50%)	0%	50%	in vitro (CB); in vivo (rabbit, endocarditis)	1 (50%) early thp; 1 (50%) Late thp	1 (50%) early thp	1 (50%) late thp	-	-	-	-	[160]	
1998, Germany	Vogl	Ciprofloxacin	25	-	1 (4%)	2 (8%)	in vitro (TK)	20%	-	-	-	-	-	-	[161]	
1988, USA	Figueroa	Ciprofloxacin	-	-	-	-	in vitro (CB)	40% (EV)	17% (CB)	-	-	0%	-	-	[162]	
1987, Germany	Ullmann	Ciprofloxacin	37	-	-	-	in vitro (CB)	29 (78%)	8 (22%)	0%	0%	100%	-	-	[45]	
A. baumannii	1996, Spain	Martinez-Martinez	Ciprofloxacin	34	-	100%	100%	in vitro (CB)	1 (3%)	-	-	0%	-	-	-	[152]
A. baumannii- A. calcoaceticus spp. complex	2019, USA	Flamm	Levofloxacin	5	7 MDR (29% ESBL and 29% KPC-producer)	-	-	in vitro (CB)	0%	4 (80%)	1 (20%)	0%	-	-	-	[38]
Gram negative	1977, Spain	Daza	Nalidixic acid	100	-	100%	-	in vitro (CB)	0%	-	100%	0%	-	-	-	[66]

Note: ETI < 0.5 antagonism; 0.5 ≤ ETI < 1 indifferent; 1 ≤ ETI < 8 additive; ETI ≥ 8 synergistic.
Table 5. Cont.

Strain	Year and Country	Author	Quinolone	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Quinolone-Resistant (%)	In Vitro (Methods)/In Vivo (Animal and Site of Infection)	Syndromic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Quinolone Susceptibility Restoration (%)	Comments	Reference			
Staphylococcus spp:	2003, Japan	Nakazawa	Ofloxacin	32	MRSA (100%)	-	-	in vitro (efficacy time index)	3 (9%)	2 (6%)	27 (84%)	-	-	-	synergy = high efficacy; additive = efficacy, indifferent = invalid	[18]			
	2001, Austria	Grif	Moxifloxacin	7	MRSA (100%)	-	-	in vitro (CB)	100%	-	-	-	-	-	-	[45]			
	1997, Italy	Ferrara	sparfloxacin	16	MRSA (100%)	>50% ~100%	-	in vitro (TK)	0%	-	-	-	-	-	-	[123]			
	1988, France	Thauvin	Pefloxacin	1	MRSA (100%)	-	-	in vitro (rat, endocarditis)	100%	-	-	-	-	-	-	[44]			
	1987, France	Weber	Ofloxacin	8	MRSA (97%)	-	-	in vitro (TK)	2 (25%)	6 (75%)	-	-	-	-	-	[160]			
	1987, Germany	Ullmann	Ciprofloxacin	20	-	-	-	in vitro (CB)	19 (95%)	1 (5%)	-	-	-	-	-	-	S. aureus	[46]	
	1987, France	Quentin	Pefloxacin	6	-	16%	0%	in vitro (TK)	0%	0%	100%	0%	-	-	-	-	S. aureus	Indifferent effect.	[18]
	1997, Italy	Ferrara	Sparfloxacin	12	MBSE (100%)	>50% ~100%	-	in vitro (TK)	6/12 (50%)	-	-	-	-	-	-	[123]			
	1997, France	Quentin	Pefloxacin	2	-	50%	-	in vitro (TK)	0%	0%	100%	0%	-	-	-	-	-	Indifferent effect.	[18]
	2019, USA	Avery	Tobramycin	45	-	-	-	in vitro (ET)	0%	-	-	-	-	-	-	-	[54]		
Enterobacteriaceae	2019, USA	Flamm	Gentamicin	20	-	-	-	in vitro (CB, TK)	6 (30%)	13 (65%)	1 (5%)	0%	-	-	-	-	-	[10]	

Table 6. Studies on combination between fosfomycin and aminoglycosides. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain	Year and Country	Author	Aminoglycoside	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Aminoglycoside-Resistant (%)	In Vitro (Methods)/In Vivo (animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Aminoglycoside Susceptibility Restoration (%)	Comments	Reference		
Enterobacteriaceae	2019, USA	Avery	Tobramycin	45	-	-	-	in vitro (ET)	0%	-	-	-	-	-	-	-	[11]	
	2019, USA	Flamm	Gentamicin	20	-	-	-	in vitro (CB, TK)	6 (30%)	13 (65%)	1 (5%)	0%	-	-	-	-	-	[10]
Year and Country	Author	Aminoglycoside	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	In Vitro (Method)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Aminoglycoside Susceptibility Restoration (%)	Comments	Reference					
------------------	--------	----------------	-------------------	---	------------------	------------------------	---------------------	------------------------	------------------------	--------------------------------------	--	----------	----------					
1977, Spain	Olay	Streptomycin, gentamicin, kanamycin	-	Streptomycin: 18 (E. coli), Gentamicin: 30 (E. coli), 24 K. pneumoniae, 39 S. marcescens, 33 Proteus spp., Kanamycin: 21 E. coli, 12 K. pneumoniae, 14 Proteus spp., 5 E. cloacae, 22 S. marcescens	in vitro (CB)	streptomycin: 0% (E. coli), gentamicin: 36 (12%), kanamycin: 21 (27%)	2 (25%)	0%	0%	0%	2 (66%)	2 (25%)	For 6 isolates the efficacy of FOS + TOB remained indeterminate.	[14]				
2020, Egypt	El-Wafa	Tobramycin	8	-	in vitro (CB, TK)	2 (25%)	0%	0%	0%	2 (66%)	2 (25%)	-	-	-	[43]			
2019, USA	Wang	Gentamicin	8	-	in vitro (ET, biofilm)	75% (6/8)	0%	(2/8) 25%	0%	-	1/2 50%	-	The Authors also studied the efficacy of combination of FOS + AMK and found it reduced significantly biofilm formation.	[135]				
2019, India	Sugathan	Amikacin	50	-	in vitro (TK)	29 (58%)	21 (42%)	0%	0%	0% (all S)	22 (44%)	-	-	-	[137]			
2013, Switzerland	Corvec	Gentamicin	1	CTX-M15, ESBL	in vitro (TK); in vitro (foreign-body infection model)	0%	100%	0%	0%	-	-	-	-	-	[73]			
2011, Greece	Simonis	Netilmicin	20	ESBL	in vitro (ET)	25% (5/20)	-	-	-	-	-	-	-	-	[86]			
1977, Poland	Boroszki	Streptomycin	10	-	in vitro (CB)	7 (70%)	3 (30%)	0%	0%	-	-	-	-	-	-	[112]		
2020, Turkey	Erturk Sengel	Amikacin	17	OXA-48, NDM	in vitro (CB)	29%	29%	24%	0%	-	-	Combination of FOS plus amikacin seems not a good choice for NDM producing strains.	[142]					
2018, China	Yu	Amikacin	3	-	in vitro (TK)	100% (3/3)	0%	0%	0%	-	-	-	-	-	-	-	[164]	
2017, China	Yu	Amikacin	3	KPC-2	in vitro (TK)	66%	0%	33%	0%	-	-	-	-	-	-	-	[56]	
2017, China	Yu	Amikacin	136	KPC (100%)	in vitro (CB, TK)	7 (5%)	109 (80%)	20 (14%)	0%	-	-	-	-	-	-	-	[89]	
Table 6. Cont.

Strain	Year and Country	Author	Aminoglycoside	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	Synergistic Effects (%)	Additive Effects (%)	Indifferent Effects (%)	Antagonistic Effects (%)	FOS Susceptibility Restoration (%)	Aminoglycoside Susceptibility Restoration (%)	Comments					
2015, Spain	Rodriguez-Avila et al	Plazomicin	4 (CB); 2 (TK)	Carbapenemase-producing strains (KPC, VIM)	FOS-resistant (100%) in vitro (CB, TK)	25–100%	50–0%	25–0%	0%	-	-	Synergy defined: reduction of FOS and AMK MIC when used in combination.					
2014, USA	Montgomery	Amikacin	20	KPC-2 (20%); KPC-3 (15%)	NA in vitro (agar dilution, antibiotic potentiation study in A:F 5:2 ratio)	100%	-	-	0%	-	-		[51]				
2011, Greece	Samonis	Netilmicin	65	serine carbapenem-producing (50/65); ESBL (14/65); MBL (1/65)	98% in vitro (ET)	41% (27/65) overall. In ESBL 42% (6/14). In serine enzymes 42% (2/50)	-	-	-	54% (25/46)	-		[52]				
2011, Greece	Souli	Gentamicin	17	KPC (100%)	4 (22%); 7 (41%) in vitro (TK)	0%	0%	15/15 (100%)	-	-	-	Efficacy of FOS + GEN was not evaluated in 2 isolates.	[53]				
1977, Spain	Daza	Tobramycin	23	-	in vitro (CB)	2/23 (8%)	-	-	-	54% (25/46)	-		[54]				
M. morganii	1977, Spain	Daza	Gentamicin	2	-	-	in vivo (CB)	50% (1/2)	-	-	0%	-	-		[55]		
2019, USA	Wang	Gentamicin	7	-	in vitro (ET, biofilm)	0% (57%)	0%	3 (42%)	0%	-	0%	-	No difference in P. aeruginosa lung tissue concentration, bronchoalveolar lavage concentration and lung histopathology score when amikacin and FOS were administered by aerosol alone or in combination therapy.	[56]			
2019, USA	Avery	Tobramycin	42	-	NA (at least 71)	42 (27%)	8 (19%)	13 (33%)	21 (50%)	0%	-	8 (19%)	-		[57]		
P. aeruginosa	2019, New Zealand	Li Bassi	Amikacin	15	Strains resistant to nebulized fosfomycin and amikacin (100%)	-	-	-	in vivo (pigs, pneumonia)	0%	0%	100%	0%	-	-		[58]
2019, USA	Flamm	Gentamicin, amikacin	5	-	-	in vitro (CB, TK)	0%	genta 4 (90%); amika 4 (80%)	-	-	-	-	-	Synergy tested in biofilm.	[59]		
2018, Spain	Daza-Aguilar	Tobramycin	6	-	100%	67%	in vivo (CB)	83%	17%	0%	0%	-	-		[60]		
Table 6. Cont.

Strain	Year and Country	Author	Aminoglycoside	Number of Isolates	Known Resistance Mechanisms on Determinants (%)	FOS-Resistant (%)	Aminoglycoside-Resistant (%)	In Vitro (Method/In Vivo (animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Aminoglycoside Susceptibility Restoration (%)	Comments	Reference
2015, Australia	Walsh	Tobramycin	3		1/4 (25%) in vitro (TK)	18% (15/81)	25% (20/81)	-	-	-	-	-	-	-	[76]	
2015, Spain	Diez-Aguilar	Tobramycin	8	mexZ mutation (25%), ANT(2')-I enzyme (27.5%), GES-1, OXA-2 plus OXA-10 plus VM-2, OXA 14, VM-4 (each, 48%), VIM-2 (15%)	100%	37% in vitro (TK)	25%	0%	75%	0%	-	-	-	[166]		
2014, USA	Montgomery	Amikacin	21	IMP-R (100%)	100% in vitro (broth microdilution, CB)	100%	0%	0%	0%	100%	0%	-	-	[52]		
2013, Brazil	Ferrari dos Santos Lima	Tobramycin	2	IMP-R (100%)	100% in vitro (-effects on biofilms on CF airway epithelial cells)	-	100%	0%	0%	-	-	-	-	[40]		
2013, USA	Anderson	Tobramycin	1		-	-	-	-	-	-	-	-	-	[49]		
2012, UK/USA	McCaughey	Tobramycin	15		in vitro (agar dilution, TK)	100%	-	-	0%	-	-	-	-	[167]		
2011, Greece	Samonis	Netilmicin	15	MDR	93%	13% in vitro (ET)	13% (2/15)	-	-	-	-	-	-	-	[66]	

Synergy defined: reduction of FOS and AMK MIC when used in combination. Authors do NOT report FOS and AMK MIC (they referred to CLSI criteria except for FOS-Eucast S ≤ 32 µg/mL; FOS MIC restoration 32. FOS:TOBRA (4:1) formulas for inhalation treatment; results suggest that fosfomycin enhanced the activity of tobramycin (much less level of tobramycin needed). FOS alone does NOT result in biofilm inhibition; TOBRA alone require HIGHER doses for biofilm inhibition. Synergism defined as FOS:TOBRA bactericidal activity; Time kill studies in a subset of isolates; biofilm studies were also performed.
Table 6. Cont.

Strain	Year and Country	Author	Aminoglycoside	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Aminoglycoside-Resistant (%)	In Vitro (Methods/En Vivo (animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Aminoglycoside Susceptibility Restoration (%)	Comments	Reference
2009, China	Cai	Amikacin	20	-	NA (MIC90 32)	in vitro (CB); in vivo (rat, biofilm-infected model)	80%	15%	-	0%	-	MBC90 decrease of 64-fold	F + T (lowest FICI amikacin and sisomicina) had synergistic effect on planctonic P. aeruginosa.	[168]		
2009, China	Cai	Gentamicin	20	-	NA (MIC90 36)	in vitro (CB); in vivo (rat, biofilm-infected model)	70%	15%	-	0%	-	MBC90 decrease of 8-fold	F + T (lowest FICI amikacin and sisomicina) had synergistic effect on planctonic P. aeruginosa.	[168]		
2009, China	Cai	Netilmicin	20	-	NA (MIC90 36)	in vitro (CB); in vivo (rat, biofilm-infected model)	60%	20%	-	0%	-	MBC90 decrease of 8-fold	F + T (lowest FICI amikacin and sisomicina) had synergistic effect on planctonic P. aeruginosa.	[168]		
2009, China	Cai	Tobramycin	20	-	NA (MIC90 8)	in vitro (CB); in vivo (rat, biofilm-infected model)	60%	20%	-	0%	-	MBC90 decrease of 2-fold	F + T (lowest FICI amikacin and sisomicina) had synergistic effect on planctonic P. aeruginosa.	[168]		
2005, Thailand 2002, Japan 1999, Nigeria	Prukpresert	Gentamicin	22	-	-	in vitro (CB)	1 (4%)	9 (42%)	6 (27%)	6 (27%)	-	-	-	-	[22]	
	Okazaki	Gentamicin	30	-	15 (50%)	19 (63%)	in vitro (efficacy time index)	0%	9 (30%)	21 (70%)	0%	0%	15 (50%)	-	-	[39]
	Hayami	Amikacin	25	-	NA (at least 13)	NA (< 5)	in vitro (CB, TK)	0%	10 (38%)	16 (62%)	0%	-	-	-	-	[130]
	Chimuaba	Gentamicin	8	-	-	0%	in vitro (CB, TK)	0%	0%	100%	0%	-	-	-	-	[169]
1997, France	Tessier	Amikacin	40	-	23 (57%)	13 (32%)	in vitro (CB)	3 (7%)	21 (52%)	16 (40%)	0%	18 (78%)	11 (84%)	-	-	[131]
1978, Spain	Olaf	Gentamicin, Kanamycin	77	gentamicin: 55 (71%); kanamycin: 4 (26%)	gentamicin: 17 (22%); kanamycin: 8 (103%)	gentamicin: 5 (6%); kanamycin: 3 (20%)	-	-	-	0%	-	-	-	[14]		
Table 6. Cont.

Strain	Year and Country	Author	Aminoglycoside	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Aminoglycoside-Resistant (%)	In Vitro (Method)/In Vivo (animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Aminoglycoside Susceptibility Restoration (%)	Comments	Reference			
A. baumannii	2019, USA	Flamm	gentamicin, amikacin	5 (*A. baumannii-cacoaceticus specios species complex*)	-	-	-	in vitro (CB, TK)	genta: 2 (40%); amika: 2 (40%)	genta: 3 (60%); amika: 3 (60%)	0%	0%	-	-	-	-	[38]		
	2016, Brazil	Leite	gentamicin, amikacin	20 OXA (100%), IMP (15%)	20 (100%)	genta: 11 (55%); amika: 19 (95%)	in vitro (CB, TK)	0%	genta: 2 (10%); amika: 0%	genta: 18 (90%); amika: 20 (100%)	0%	-	-	-	-	[63]			
A. baumannii	2014, USA	Montgomery	Amikacyn	21 OXA-23 plus OXA-51 (23.8%); OXA-24 plus OXA-51 (8.5%); OXA-51, OXA-51 plus OXA-58 (each, 4.8%)	-	-	100%	in vitro (agar dilution, antibiotic potentiation study in A:F 5:2 ratio)	100%	-	-	0%	-	-	-	[52]			
Gram-negative	1996, Spain	Martinnez-Martinez	amikacin, tobramycin	34	-	34 (100%)	amika: 31 (91%); tobra: 33 (97%)	in vitro (CB)	amika: 15 (44%); tobra: 11 (32%)	-	-	0%	-	-	-	-	[132]		
S. aureus	2017, Spain	Lopez-Diaz	Plazomicin	12 (BC); 5 (TK)	MDR Strains carrying aminoglycoside-modifying enzymes (100%)	66%	-	-	in vitro (CB, TK)	33.3–0%	66–100%	0%	0%	-	-	-	-	[46]	
	2012, UK/USA	McLaughay	Tobramycin	5	MRSA	100%	-	-	-	in vitro (agar dilution, TK)	60%	-	-	0%	-	-	-	-	[167]
Table 6. Cont.

| Strain Year and Country | Author | Aminoglycoside | Number of Isolates | Known Resistance Mechanisms or Determinants (%) | FOS-Resistant (%) | Aminoglycoside-Resistant (%) | In Vitro (Methods) | In Vivo (animal and Site of Infection) | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | FOS Susceptibility Restoration (%) | Aminoglycoside Susceptibility Restoration (%) | Comments | Reference |
|------------------------|--------|----------------|-------------------|---|------------------|-----------------------------|-------------------|--|----------------------|--------------------|----------------------|----------------------|-----------------|-----------------------------|-----------------------------|-----------------------------|------------------|
| 2005, Japan Morikawa | Arbekacin | 1 | MRSA | 100% | 100% | MIC 0.5 (no available breakpoint) | in vivo (rat, carboxymethyl cellulose pouch infection model) | 100% | - | - | - | - | | | | [171] |
| 1994, Japan Kono | Arbekacin | 96 | MRSA | 38% | - | in vitro | 66% (60/90) | - | - | 0% | - | - | | | | [172] |
| 1987, Spain Rodriguez | Gentamicin | 1 | MRSA | 0% | 0% | in vivo (endocarditis in 10 rabbits) | 100% (1/1) 0% n. of rabbits' death (0/10) | 0% | 0% | 0% | - | - | | | | [61] |
| 1985, USA Alvarez | Gentamicin | 148 | MRSA | - | - | in vitro (microtiter technique in a 1:1 ratio) | (10/148) 7% | 0% | 90% (134/148) | (4/148) 3% | - | - | | | | [12] |
| 1978, Spain Olay | Streptomycin, gentamicin, kanamycin | 18 | streptomycin, 29 gentamicin, 21 kanamycin | - | - | - | in vitro (CB) | streptomycin: 1 (5%); gentamicin: 0%; kanamycin: 0 (43%); streptomycin: 10 (53%); gentamicin: 3 (10%); kanamycin: 7 (33%); streptomycin: 7 (38%); gentamicin: 26 (89%); kanamycin: 5 (20%); streptomycin: 0% | - | - | - | - | | | | [14] |

NOT available arbekacin EUCAST breakpoints; Synergistic effect was evaluated by i) morphological and histological studies showing dramatic change in biofilm and inflammatory response and by ii) decrease in the number of viable bacteria in vivo. Better results of FOS-arbekacin combination in FOS susceptible strains. Synergy was indicated if the MICs of both drugs decreased by at least one-fourth. If the MIC of one drug showed a fourfold or greater increase, it was assumed to be an indication of antagonism.
Table 6. Cont.

Strain	Year and Country	Author	Aminoglycoside	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	In Vitro (Methods/In Vivo (animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Aminoglycoside Susceptibility Restoration (%)	Comments	Reference
Streptococcus spp.	1978, Spain	Olay	streptomycin	16	-	in vitro (CB)	0%	9 (56%)	7 (43%)	0%	-	-	-	[14]
E. faecium	2019, Thailand	Hemapanpairoa	Gentamicin	8	VRE (100%)	in vitro (ET for FOS, broth microdilution for gentamicin)	63%	13%	25%	0%	63%	-	-	[55]
N. gonorrhoeae	2015, The Netherlands	Wind	gentamicin	4	-	in vitro (ET)	0%	1 (25%)	3 (75%)	0%	-	-	-	[54]
Miscellaneous	2009, USA	MacLeod	Tobramycin	27 (4 *S. aureus*, 17 *P. aeruginosa*, 5 *E. coli*, 1 *H. influenzae*)	-	in vitro (CB, TK), in vivo (rat, pneumonia)	7% (1 *P. aeruginosa*, 1 *E. coli*)	-	93%	0%	-	-	-	[173]
Table 7. Studies on combination between fosfomycin and macrolides. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain	Year and Country	Author	Macrolide	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Macrolide-Resistant (%)	In Vitro (Methodology)/In Vivo (animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Macrolide Susceptibility Restoration (%)	Comments	Reference
E. coli	1978, Spain	Olay	Erythromycin	14	-	-	-	in vitro (CB)	42%	29%	28%	0%	-	-		[14]
Klebsiella spp.	1978, Spain	Olay	Erythromycin	44	-	-	-	in vitro (CB)	50%	23%	27%	0%	-	-		[14]
E. cloacae	1978, Spain	Olay	Erythromycin	16	-	-	-	in vitro (CB)	62%	38%	0%	0%	-	-		[14]

Authors considered Synergistic effect when MIC of both antimicrobials was at least fourfold lower over initial MIC; partial synergy when MIC of one antimicrobial was at least fourfold lower and MIC of the other one 2 times lower over initial MIC; Indifferent effect when MIC of both antimicrobials was 2 times lower; antagonism when MIC of both increased 4 times over initial MIC.
Table 7. Cont.

Strain	Year and Country	Author	Macrolide	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Macrolide-Resistant (%)	In Vito (Method/In Vivo Animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Macrolide Susceptibility Restoration (%)	Comments
P. aeruginosa	1978, Spain	Olley	Erythromycin	13	-	-	-	in vitro (CB)	53%	46%	0%	0%	-	-	
													Authors considered synergistic effect when MIC of both antimicrobials was at least fourfold lower over initial MIC, partial synergy when MIC of one antimicrobial was at least fourfold lower and MIC of the other one 2 times lower over initial MIC; indifferent effect when MIC of both antimicrobials was 2 times lower; antagonism when MIC of both increased 4 times over initial MIC.		
	1982, Japan	Kasai	Midecamycin	2	0%	2 (100%)	0%	in vitro (TK/Animal: peritonitis or subcutaneous infection)	0%	2 (100%)	0%	0%	-	-	
													Authors considered synergistic effect when MIC of both antimicrobials was at least fourfold lower over initial MIC, partial synergy when MIC of one antimicrobial was at least fourfold lower and MIC of the other one 2 times lower over initial MIC; indifferent effect when MIC of both antimicrobials was 2 times lower; antagonism when MIC of both increased 4 times over initial MIC.		
P. aeruginosa	1978, Spain	Olley	Erythromycin	29	-	-	-	in vitro (CB)	38%	59%	3%	0%	-	-	

References:
[14]
Table 7. Cont.

Strain	Year and Country	Author	Macrolide	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Macrolide-Resistant (%)	In Vitro (Method/In Vivo (animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Macrolide Susceptibility Restoration (%)	Comments	Reference
S. aureus	1978, Spain	Olay	Erythromycin	34	-	-	-	in vitro (CB)	26%	68%	6%	0%	-	-	Authors considered Synergistic effect when MIC of both antimicrobials was at least fourfold lower over initial MIC; partial synergy when MIC of one antimicrobial was at least fourfold lower and MIC of the other one 2 times lower over initial MIC; Indifferent effect when MIC of both antimicrobials was 2 times lower; antagonism when MIC of both increased 4 times over initial MIC.	[14]
S. epidermidis	2009, Austria	Presterl	Azithromycin	11	-	2 (18%)	5 (45%)	in vitro (Microtitre plate assay on Biofilm culture)	-	-	-	-	-	-	Combination of azithromycin with any of the tested antimicrobial agents did not reduce the biofilm OD compared to the ODs of biofilms treated with single agents.	[56]
S. pseudintermedius	2014, Canada	DiCicco	Clarithromycin	8	MRSP (100%)	5 (62%)	8 (100%)	in vitro (Microtitre plate assay)	5 (62%)	2 (25%)	0%	0%	-	-	FICI for 1 strains was reported as “Not available”.	[60]
Streptococcus spp.	1978, Spain	Olay	Erythromycin	26	-	-	-	in vitro (CB)	15%	27%	57%	0%	-	-	Authors considered Synergistic effect when MIC of both antimicrobials was at least fourfold lower over initial MIC; partial synergy when MIC of one antimicrobial was at least fourfold lower and MIC of the other one 2 times lower over initial MIC; Indifferent effect when MIC of both antimicrobials was 2 times lower; antagonism when MIC of both increased 4 times over initial MIC.	[14]
N. gonorrhoeae	2015, Switzerland	Hauser	Azithromycin	8 (4 TK)	AZT-HER (32,%)	0%	1 (12%)	in vitro (CB, TK)	CK 0%, TK 0%	CK 0%, TK 0%	CK 0%, TK 4 (100%)	CK 0%, TK 0%	8 (100%)	4 (100%)	Only 4 strains were tested with TKA. Authors used Enterobacterales FOS breakpoint as presumptive breakpoint for *N. gonorrhoeae* (EUCAST: S \leq 32 mg/L; CLSI: S \leq 64 mg/L).	[57]
N. gonorrhoeae	2015, Netherlands	Wind	Azithromycin	4	Anthromycin and Ceftriaxone Resistant (100%)	-	-	in vitro (ET)	0%	0%	4 (100%)	-	-	-		[54]
Table 8. Studies on combination between fosfomycin and glycopeptides. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain	Year and Country	Author	Glycopeptide	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Glycopeptide-Resistant (%)	In Vitro Method/Animal and Site of Infection	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Glycopeptide Susceptibility Restoration (%)	Comments	Reference	
A. baumannii	2016, Brazil	Leite	Vancomycin	20	OXA-23 (50%), OXA-143 (35%), IMP-type (15%), depletion of OMP 43 kDa (20%)	19 (95%)	Natural resistance	in vitro (CB, TK)	0%	0%	CB: 20 (100%)	0%	0%	Breakpoints not available	TK showed indifferent in all strains.	[83]	
	2018, China	Xu	Vancomycin	3	-	1 (33%)	0%	in vitro (CB)	0%	2 (66%)	1 (33%)	0%	1 (100%)	No resistant isolates		In vitro concentrations - VAN (0.5, 1, 2 mg/L), FOS (0.2, 0.4 mg/L). The study also evaluated 15 patients with bacteremia caused by MRSA were treated with FOS in combination with VAN. Of these, 7 patients (46.7%) had negative blood cultures after 48 h of combination therapy. Synergistic concentrations were 64 mg/L for FOS and 2 mg/L for VAN, at 24 h. Indifference was detected with 8 mg/L for TEC at 24 h. Significant reduction of colony count in biofilm model when FOS was in combination with either VAN and TEC after 5 days. All strains had borderline MIC values for VAN (2 mg/L) and TEC (4 mg/L).	[174]
	2017, Spain	Coronado-Alvarez	Vancomycin	4	Methicillin resistance (50%)	-	-	in vitro (TK)	0%	4 (100%)	0%	0%	-	-	The study also evaluated 15 patients with bacteremia caused by MRSA were treated with FOS in combination with VAN. Of these, 7 patients (46.7%) had negative blood cultures after 48 h of combination therapy. Synergistic concentrations were 64 mg/L for FOS and 2 mg/L for VAN, at 24 h. Indifference was detected with 8 mg/L for TEC at 24 h. Significant reduction of colony count in biofilm model when FOS was in combination with either VAN and TEC after 5 days. All strains had borderline MIC values for VAN (2 mg/L) and TEC (4 mg/L).	[63]	
S. aureus																	
	2012, Taiwan	Tang	Vancomycin, teicoplanin	8	Methicillin resistance (100%)	2 (6%)	VAN: 0%, TEC: 0%	in vitro (TK)	VAN: 8 (100%)	0%	TEC: 8 (100%)	0%	0%	No resistant isolates	No resistant isolates	[69]	
	2011, Taiwan	Tang	Vancomycin	5	Methicillin resistance (100%)	0%	0%	in vitro (TK)	5 (100%)	0%	0%	0%	No resistant isolates	No resistant isolates	In vitro synergistic concentrations were 2 mg/L for VAN and 64 mg/L for FOS.	[175]	
Table 8. Cont.

Strain Year and Country	Author	Glycopeptide	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Glycopeptide-Resistant (%)	In Vitro (Methods)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Glycopeptide Susceptibility Restoration (%)	Comments	Reference		
2010, Spain	Pachon-Ibanez	Vancomycin	1	hGISA (100%)	0%	0%	in vitro (TK); in vivo (mouse, peritonitis)	1 (100%)	0%	0%	0%	No resistant isolate	No resistant isolate	Resistant (4 mg/L) sub-population frequency: 3.6 × 10⁻⁶ CFU/mL; in vitro synergistic concentrations were 1–2–4 mg/L for FOS and 1–2 mg/L for VAN at 24 h. In vivo combination was significant and effective in reducing bacteremia rates in 57% (n = 8 out of 14) of mice treated. Synergistic concentrations were 8 mg/L for FOS and 1 × MIC for VAN (1, 2 or 4 mg/L, respectively) at 24 h. In vivo synergism at 24 and 48 h. Fixed concentrations of FOS at 8 mg/L and VAN at 1 mg/L. In vivo combination was successful in 10 rabbits (100%) showing sterile vegetations. 1 strain was resistant to VAN (MIC > 32 mg/L).	[36]		
2005, Italy	Pistella	Vancomycin, teicoplanin	7	Methicillin resistance (100%)	5 (71%)	VAN: 3 (42%); TEC: 6 (85.7%)	in vitro (TK)	VAN: 7 (100%); TEC: 0%	VAN: 0%; TEC: 7 (100%)	0%	0%	7 (100%)	0%	Synergistic concentrations were 8 mg/L for FOS and 1 × MIC for VAN (1, 2 or 4 mg/L, respectively) at 24 h. In vivo synergism at 24 and 48 h. Fixed concentrations of FOS at 8 mg/L and VAN at 1 mg/L.	[176]		
1987, Spain	Rodriguez	Vancomycin	1	Methicillin resistance (100%)	0%	0%	in vitro (TK); in vivo (rabbit, endocarditis)	1 (100%)	0%	0%	0%	No resistant isolates	No resistant isolates	-	176		
1985, Spain	Alvarez	Vancomycin	148	Methicillin resistance (100%)	15 (10%)	1 (1%)	in vitro (CB)	0%	0%	0%	145 (98%)	3 (2%)	-	-	In vitro synergistic concentrations at 1 mg/L for VAN and 64 mg/L for FOS at 6h and 24h. In vivo significative reduction of biofilm formation in rabbits' tissue (4, 100%). TK showed indifference for all strains, with fixed concentration of FOS at 40 mg/L and VAN at 10 mg/L.	[12]	
S. aureus, S. epidermidis	2014, China	Shi	Vancomycin	3	(2 S. aureus; 1 S. epidermidis)	Methicillin resistance (62%)	3 (100%)	0%	in vitro (TK); in vivo (biofilm in rabbit tissue)	3 (100%)	0%	0%	0%	0%	No resistant isolates	In vitro synergistic concentrations at 1 mg/L for VAN and 64 mg/L for FOS at 6h and 24h. In vivo significative reduction of biofilm formation in rabbits' tissue (4, 100%). TK showed indifference for all strains, with fixed concentration of FOS at 40 mg/L and VAN at 10 mg/L.	[62]
S. aureus, S. epidermidis	2001, Austria	Grill	Vancomycin	7	(5 S. aureus; 2 S. epidermidis)	S. aureus: GISA 1 (20%); MBSA 1 (20%)	-	0%	in vitro (CB, TK)	0%	0%	CB: S. epidermidis 2 (100%); S. aureus 1 (5%)	CB: S. epidermidis 1 (5%); S. aureus 2 (28%)	-	-	Synergistic concentrations not specified.	[43]
S. aureus, S. epidermidis	1999, Germany	Gehrman	Vancomycin	33	(15 S. aureus; 18 S. epidermidis)	-	-	-	-	-	S. aureus: 1 (6%); S. epidermidis: 1 (5%)	S. aureus: 8 (33%); S. epidermidis: 7 (30%); S. aureus: 4 (15%); S. epidermidis: 9 (50%); S. aureus: 0%; S. epidermidis: 1 (5%)	-	-	Synergistic concentrations not specified.	[177]	
Table 8. Cont.

Strain	Year and Country	Author	Glycopeptide	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Glycopeptide-Resistant (%)	In Vitro (Methods)/In Vivo (Animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Glycopeptide Susceptibility Restoration (%)	Comments	Reference		
E. faecalis, E. faecium, S. aureus, S. epidermidis, CONS	1986, Italy	Debbia	Teicoplanin	76 strains: 30 E. faecalis, 6 E. faecium, 20 S. aureus, 10 S. epidermidis, 10 CoNS	Methicillin resistance (50% of S. aureus)	-	-	in vitro (CB, TK)	CB: 20 (67%) E. faecalis; 4 (67%) E. faecium; 6 (60%) S. aureus; 6 (60%) MRSA; 1 (10%) S. epidermidis; 6 (60%) CONS	CB: 10 (33%) E. faecalis; 2 (33%) E. faecium; 4 (40%) S. aureus; 4 (40%) MRSA; 9 (90%) S. epidermidis; 4 (40%) CONS	0%	0%	-	-	-	-	-	[178]
S. pneumoniae	2006, Spain	Ribes	Vancomycin	2	Resistance to penicillin (50%) and cephalosporin (100%)	0%	0%	in vitro (KB); in vivo (rabbit, meningitis)	1 (50%)	1 (50%)	0%	0%	No resistant isolates	No resistant isolates	In vitro synergism at 24 h, at concentrations achievable in CSF. In vivo combination significant and effective in eradicating meningitis with sterile blood cultures (8, 100%).	[24]		
	1994, France	Doit	Vancomycin	26	Isolates not susceptible to penicillin (100%)	0%	0%	in vitro (TK)	0%	0%	100%	0%	No resistant isolates	No resistant isolates	-	-	-	[134]
S. epidermidis	1990, France	Gailland	Vancomycin	1	-	0%	0%	in vitro (TK)	1 (100%)	0%	0%	0%	No resistant isolates	No resistant isolates	Synergism at 4 h. Fixed concentrations of FOS at 12.5 mg/L and VAN at 7.5 mg/L. Effective to reduce biofilm formation (1, 100%).	[179]		
	1990, Germany	Simon	Vancomycin, teicoplanin	20	Methicillin resistant (100%)	10 (50%)	VAN: 0% TEC: 2 (10%)	in vitro (CB)	VAN: 4 (20%); TEC: 9 (45%)	VAN: 5 (25%); TEC: 6 (30%)	VAN: 11 (55%); TEC: 5 (25%)	VAN: 0% TEC: 0%	No resistant isolates; TEC: NS	-	VAN and VAN no resistant isolates; TEC and TEC no resistant isolates	-	-	[180]
Table 8. Cont.

Strain Year and Country	Author	Glycopeptide	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Glycopeptide-Resistant (%)	In Vitro (Methods)/In Vivo (Animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Glycopeptide Susceptibility Restoration (%)	Comments	Reference
E. faecalis - E. faecium	2013, Taiwan Tang	Vancomycin- teicoplanin	19 strains: 9 E. faecalis; 10 E. faecium	Vancomycin resistant (100%)	5 (55%) E. faecalis; 7 (70%) E. faecium	VAN: 19 (100%) both; TEC: 1 (11%) E. faecalis; 6 (60%) E. faecium	in vitro (TK)	VAN: 3 (33%) E. faecalis; 3 (30%) E. faecium; TEC: 8 (89%) E. faecalis; 3 (30%) E. faecium	0%						[13]
Enterobacteriales	2019, USA Flamm	Minocycline	7/30 MDR strains (A. baumannii, Enterobacteriales, P. aeruginosa) included 2 ESBL, 2 KPC Enterobacteriales	-	-	-	in vitro (CB)	4 (20%)	13 (65%)	1 (5%)	0%	-	-		[38]
Enterobacteriales	1977, Spain Daza	Tetracycline	100	100 (100%)	-	-	in vitro (CB)	2 (2%)	-	98%	0%	-	-		[66]
P. aeruginosa	2019, USA Flamm	Minocycline	5	7/30 MDR strains (A. baumannii, Enterobacteriales, P. aeruginosa)	-	-	in vitro (CB)	2 (40%)	3 (60%)	0%	0%	-	-		[38]

Table 9. Studies on combination between fosfomycin and tetracyclines. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain Year and Country	Author	Tetracycline	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Tetracycline-Resistant (%)	In Vitro (Methods)/In Vivo (Animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Tetracycline Susceptibility Restoration (%)	Comments	Reference
Enterobacteriales	2019, USA Flamm	Minocycline	20	7/30 MDR strains (A. baumannii, Enterobacteriales, P. aeruginosa) included 2 ESBL, 2 KPC Enterobacteriales	-	-	in vitro (CB)	4 (20%)	13 (65%)	1 (5%)	0%	-	-		[38]
1977, Spain Daza	Tetracycline	100	100 (100%)	-	-	in vitro (CB)	2 (2%)	-	98%	0%	-	-		[66]	
P. aeruginosa	2019, USA Flamm	Minocycline	5	7/30 MDR strains (A. baumannii, Enterobacteriales, P. aeruginosa)	-	-	in vitro (CB)	2 (40%)	3 (60%)	0%	0%	-	-		[38]
Table 9. Cont.

Strain	Year and Country	Author	Tetracycline	Number of Isolates	Known Resistance Mechanisms or Determinants (%	FOS-Resistant (%)	Tetracycline-Resistant (%)	In Vitro (Methods/In Vivo (Animal and site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Tetracycline Susceptibility Restoration (%)	Comments
A. baumannii	2013, China	Zhang	Minocycline	25	Pan-Drug-Resistant (100%)	100%	See Comments	in vitro (CB)	12%	56%	32%	0%	0%	100%	Mean MIC for Minocycline was 16, MIC range 4-16. Authors used CLSI breakpoint for MIN (S ≤ 4 mg/L).
	2012, Taiwan	Tang	Minocycline	33 (8 TK)	MRSA (100%)	6%	63%	in vitro (TK, Biofilm MTT-staining method)	-	-	-	-	-	-	Only 9 strains were tested with TK. Biofilm cultures were 94% MIN resistant and 54% FOS resistant. Cases of synergism were observed with FOS+MIN combination. Percentages or other data were not reported by authors. Combination of FOS + MIN determined a statistically significant reduction on ODRs in biofilm cultures compared to single drugs. Authors considered Indifferent effect for FICI between 0.5 and 4. CLSI breakpoint was used for MIN (S ≤ 4 mg/L) and *E. faecalis* FOS breakpoint as presumptive breakpoint for MRSA (S ≤ 64 mg/L).
S. aureus	2011, China	Sun	Minocycline	87	MRSA (100%)	35 (40%)	13 (14%)	in vitro (CB)	76 (87%)	-	11 (12%)	0%	100%	92%	[70]
	2003, Japan	Nakazawa	Minocycline	32	MRSA (100%)	29 (91%)	26 (81%)	in vitro (Efficacy Time Index)	10 (31%)	1 (3%)	21 (65%)	-	-	-	*E. faecalis* 2013, Taiwan 2019, USA Descourouez 2012, USA Davis 2015, Netherlands Wind
E. faecalis	2013, Taiwan	Tang	Minocycline	9	VRE (100%)	56%	89%	in vitro (TK, Biofilm Model)	TKA 2 (22%); BM 1 (51%)	-	-	-	-	-	Additive, Indifferent and antagonistic effect were not evaluated.
E. faecium	2013, Taiwan	Tang	Minocycline	10	VRE (100%)	70%	80%	in vitro (TK, Biofilm Model)	TKA 4 (48%); BM 1 (50%)	-	-	-	-	-	Additive, Indifferent and antagonistic effect were not evaluated.
	2012, USA	Descourouez	Minocycline	32	VRE (100%)	9%	See Comments	in vitro (TK)	0%	0%	100%	0%	-	-	Most of strains were minocycline resistant (MIC range 4-32, mean MIC 16 mg/L). Authors used CLSI breakpoint for DOX (S ≤ 4 mg/L)and *E. faecalis* FOS breakpoint as presumptive breakpoint for VRE (S ≤ 64 mg/L).
	2019, USA	Davis	Doxycycline	24	VRE (100%)	96%	8%	in vitro (ET)	CK 11 (46%); TK 10 (41%)	0%	0%	CK 9%, TK 10 (41%)	CK 0%, TK 0%	-	*N. gonorrhoeae* 2015, Netherlands Wind 2019, USA Davis
N. gonorrhoeae	2013, Netherlands	Wind	Minocycline	4	Anthracyclin and Ceftriaxone Resistant (100%)	-	-	in vitro (ET)	0%	0%	4 (100%)	-	-	-	Anthracyclin and Ceftriaxone Resistant (100%)
Table 10. Studies on combination between fosfomycin and polymyxins. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain	Year and Country	Author	Polymyxin	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Polymyxin-Resistant (%)	Known Resistance Mechanisms or Determinants (FOS)	FOS-Resistant (Polymyxin)	Polymyxin-Resistant (FOS)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Polymyxin Susceptibility Restoration (%)	Comments	Reference
Enterobacterales	2019, USA	Flamm	Colistin	20	carbapenem-resistant (5%), KPC (50%), ESBL (10%)	-	-	in vitro (CB, TK)	1 (5%)	5 (25%)	8 (40%)	0%	-	-	-	38			
									For 6 isolates the effect of the combination was indeterminate. The combination was synergistic against FOS-S isolates. Against FOS-R isolates, an additive effect was observed after 12h, but then regrowth occurred.										
	2015, UK	Albur	Colistin	6	NDM-1 (100%)	3 (50%)	0%	in vitro (TK)	3 (50%)	0%	3 (50%)	0%	-	-	-	-	35		
	E. coli	2013, Switzerland	Corvec	Colistin	1	CTX-M15, ESBL (100%)	0%	0%	in vitro (TK), in vivo (dengue-body infection model)	1 (100%)	0%	0%	0%	-	-	-	-	75	
									The combination was synergistic against FOS-S isolates. Against FOS-R isolates, an additive effect was observed after 12h, but then regrowth occurred.										
	2011, France	Berçot	Colistin	1	NDM-1	0%	0%	in vitro (CB, TK)	0%	1 (100%)	0%	0%	-	-	-	-	85		
									E. coli J53										
	2011, Greece	Samonis	Colistin	20	ESBL (100%)	0%	0%	in vitro (ET)	3 (15%)	-	-	0%	-	-	-	-	86		
	K. pneumoniae	2020, Turkey	Buket Ertuluk Sengel	Colistin	17	KPC-2, KPC-3, NDM-1, OXA-48, VIM-1 (100%)	3 (60%)	2 (40%)	in vitro (TK)	5 (31%)	2 (12%)	-	-	-	-	-	82		
									Synergistic rate inferred from 4 isolates monitored at different times. If evaluated only after 24 h, syn: 40%; add 20%.										
									3 isolates showed heteroresistance: the total number of experiments was 72 (3 different colistin concentrations tested in 6 different times).										
	2018, China	Yu	Colistin	3	KPC-2 (100%)	1 (33%)	3 (100%)	in vitro (TK)	2 (66%)	1 (33%)	0%	0%	-	-	-	-	-	89	
									E. coli										
	2017, Taiwan	Ku	Colistin	9	KPC-2 (100%)	1 (33%)	3 (100%)	in vitro (TK)	5 (55%)	0%	4 (40%)	0%	-	-	-	-	-	86	
	2018, USA	Bulman	Polymyxin B	2	KPC-2 (100%)	0%	0%	in vitro (TB, CK), in vivo (infection model)	2 (100%)	-	-	-	-	-	-	-	-	75	
Table 10. Cont.

Strain	Year and Country	Author	Polymyxin	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Polymyxin-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Polymyxin Susceptibility Restoration (%)	Comments	Reference
2014, Sweden	Tängde	Colistin	4	VIM (50%), NDM (50%)	2 (50%)	0%	in vitro (TK)	3 (75%)	0%	1 (25%)	0%	-	-	Synergism in 1 VIM- and 2 NDM-producing isolates, although NDM-producing isolates were FOS-R. [146]		
2013, Turkey	Evren	Colistin	12	OXA-48 (100%)	11 (92%)	2 (17%)	in vitro (CB)	0%	0%	0%	12 (100%)	-	-	-	[74]	
2011, France	Berçot	Colistin	3	NDM-1 (100%)	0%	0%	in vitro (CB, TK)	0%	1 (33%)	2 (66%)	0%	-	-	-	[68]	
2011, Greece	Samonis	Colistin	50	carbapenem-resistant (100%)	3%	25%	in vitro (ET)	18 (36%)	-	-	0%	-	-	-	[60]	
2011, Greece	Souli	Colistin	14	ESBL (100%)	3%	25%	in vitro (ET)	1 (7%)	-	-	0%	-	-	-	[66]	
2011, Greece	Souli	Colistin	17	KPC-2 (100%)	4 (23%)	7 (41%)	in vitro (TK)	2 (12%)	0%	15 (88%)	0%	-	-	-	[60]	
K. oxytoca	2011, France	Berçot	Colistin	1	NDM-1	0%	0%	in vitro (CB, TK)	0%	100%	0%	0%	-	-	-	[68]
P. rettgeri	2011, France	Berçot	Colistin	1	NDM-1	0%	100%	in vitro (CB, TK)	0%	0%	100%	0%	-	-	-	[68]
2019, USA	Flamm	Colistin	5	-	-	-	in vitro (CB, TK)	0%	1 (20%)	4 (80%)	0%	-	-	-	[68]	
P. aeruginosa	2016, Australia	Walsh	Polymyxin B	4	MDR (75%)	50%	50%	in vitro (TK)	19 (18%)	27 (25%)	-	-	-	-	FOS in combination with polymyxin B increased bacterial killing, but did not suppress emergence of FOS resistance. The total number of experiments was 108 (9 combinations of FOS + CIP at different concentrations, in 3 different times). [76]	
2011, Greece	Samonis	Colistin	15	MDR (100%)	6%	0%	in vitro (ET)	2 (13%)	-	-	0%	-	-	-	[68]	
2011, Greece	Da	Colistin	87	CRPA (100%)	75%	4% (587)	in vitro (CB, TK)	19 (21%)	29 (33%)	39 (44%)	0%	-	3 (60%)	-	[68]	
Table 10. Cont.

Strain	Year and Country	Author	Polymyxin	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Polymyxin-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Polymyxin Susceptibility Restoration (%)	Comments	Reference	
A. baumannii-A. calcoaceticus spp. Complex	2019, USA	Flamm	Colistin	5	MDR (20%)	-	-	in vitro (CR, TK)	2 (40%)	1 (20%)	1 (20%)	0%	-	-	For 1 isolate the effect of the combination was indeterminate. [38]		
2020, South Korea	Su Ku	Colistin	1	OXA-23 (100%)	100%	0%	in vitro (TK), in vivo (mouse, nasal inoculation)	1 (100%)	0%	0%	0%	-	-	-	[72]		
2019, Turkey 2019, China	Sertozluk	Colistin	23	carbapenem-resistant (100%)	100%	26%	in vitro (CB)	1 (4%)	10 (43%)	12 (52%)	0%	-	-	-	[185]		
2019, China	Bian	Colistin	9	carbapenem-resistant (100%)	-	0%	in vitro (CR, TK)	1 (11%)	-	-	-	-	-	-	[186]		
2018, China	Zhu	Colistin	21	carbapenem-resistant (100%)	CoR-AB; carbapenemase-producing efflux-pump (100%)	100%	61% (13/21)	in vitro (CR, ET)	4 (26%)	7 (46%)	4 (26%)	0%	-	-	The authors reported 8 isolates to be colistin-R, but only 3 isolates had MIC > 2. [53]		
2018, Thailand	Leslasupari	Colistin	15	carbapenem-resistant (100%)	Carb-AB, carbapenemase-producing efflux-pump (100%)	100%	0%	in vitro (CR, ET)	-	-	0%	-	-	-	Treatment in vivo (patients) with COL + FOS lead to death (2/2). [187]		
2017, Thailand	Lertstoaatit	Colistin	17	-	-	-	in vitro (CR, TK)	-	-	0%	-	-	-	-	[188]		
2016, China 2016, Brazil	Fan	Colistin	12	XDR (100%)	OXA-23, OXA-143 (100%)	100%	0%	in vivo (mouse, thigh-infection model)	1 (8%)	-	-	0%	-	-	-	[189]	
2015, China	Leith	Colistin	20	XDR (100%)	OXA-23, OXA-143 (100%)	100%	33% (7/20)	in vitro (CR, TK, 2-well)	0%	-	-	-	-	-	-	Synergy (FICI = < 0.5); Indifference (FICI, 0.5–4). Antagonism (FICI: >= 4). [190]	
2013, China 2013, Thailand	Wei	Colistin	50	XDR (100%)	94%	50%	in vitro (CB)	25 (50%)	0%	22 (44%)	3 (6%)	-	-	-	[190]		
2013, China 2011, Thailand	Zhang	Polymyxin B	25	FDR (100%)	carbapenem-resistant (100%)	100%	100%	in vitro (TK)	4 (16%)	11 (44%)	10 (40%)	0%	0%	25 (100%)	-	[192]	
2011, Thailand	Santithampongpraphit	Colistin	8	-	-	carbapenem-resistant (100%)	-	-	in vitro (CR, TK)	13%	-	-	-	-	-	-	[192]
N. gonorrhoeae	2014, Netherlands	Wind	Colistin	4	-	-	-	in vitro (ET)	0%	-	-	-	-	-	-	[54]	
Table 11. Studies on combination between fosfomycin and daptomycin. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strains	Year and Country	Author	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Daptomycin-Resistant (%)	In Vitro (Methods/In Vivo (animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Daptomycin Susceptibility Restoration (%)	Comments Reference
S. aureus	2019, Taiwan	Lee	100 MRSA (100%)	15 (15%)	0%	in vitro (CB)	37 (57%) (in vitro (CB))	44 (44%)	19 (19%)	0%	-	-	-	All isolates had MIC to daptomycin = 1 (previously selected among 1353 isolates). The authors also performed a retrospective review of 9 patients with diabetes and found that DAP + FOS was the most effective combination. [191]
S. aureus	2019, Spain	Coronado-Alvarez	4 MRSA (50%)	-	-	in vitro (TK)	4 (100%) (in vitro (TK))	0%	0%	0%	-	-	-	The authors also performed a retrospective review of 9 patients with diabetes and found that DAP + FOS was the most effective combination. [192]
S. aureus	2018, Spain	García-de-la-Marta	5 (in vitro) + 1 (in vivo) MRSA (100%)	0%	0%	in vitro (TK)	in vitro (100%), in vivo (100%) (rabbit, endocarditis)	0%	0%	0%	-	-	-	
S. aureus	2017, Turkey	Aktas	25 MRSA (100%)	11 (44%)	0%	in vitro (CB)	25 (100%) (in vitro (CB), animals)	0%	0%	0%	-	-	-	
S. aureus	2015, Austria	Lingenscheid	1 MRSA (100%)	0%	0%	in vitro (TK), in vivo (rabbit, endocarditis)	1 (100%) (in vitro (TK), in vivo (100%))	0%	0%	0%	-	-	-	The combination was bactericidal against 9 (52%) isolates. The authors also reported the case reports of 3 patients with S. aureus (1 MSSA, 2 MRSA) successfully treated with high-dose DAP (100 mg/kg/day) + FOS. FOS and FOS + DAP were significantly superior to placebo and to DAP alone. FOS + DAP was not more effective than FOS alone. [193]
S. aureus	2013, Spain	Garrigos	1 MRSA (100%)	0%	0%	in vitro (TK)	in vitro: 0%, in vivo: 1 (100%) (fibrosis, body fluid)	0%	0%	0%	-	-	-	
S. aureus	2012, Spain	Miró	14 MRSA (35%), GISA (14%)	0%	1 (7%)	in vitro (TK)	11 (79%) (in vitro: 100%), in vivo: 1 (100%) (rabbit, endocarditis)	3 (21%)	0%	0%	-	-	-	
S. aureus	2011, Austria	Poeppl	1 MRSA (100%)	0%	0%	in vitro (TK)	0% (in vitro (TK), osteomyelitis)	0%	1 (100%)	0%	-	-	-	
E. faecalis	2019, China	Zheng	4 (TK) + 4 biofilm assay	-	1 (12%)	2 (25%)	TK: 4 (100%), Biofilm assay: 5 (75%)	0%	TK: 0%	Biofilm assay: 1 (25%)	-	-	-	TK performed on 4 linezolid-R isolates. Biofilm assay performed on 4 linezolid-S isolates. DAP + FOS demonstrated significantly more anti-biofilm activity than DAP or FOS alone. The isolate was highly R to gentamicin. DAP + FOS sterilized more values (99% VS 35%) than DAP alone. Despite this, the combination in vivo was considered 'additive' because it was not possible to demonstrate a statistically significant superiority in comparison with DAP alone. All isolates were highly R to gentamicin. The bactericidal effect of DAP alone was not increased by the addition of FOS. [194]
E. faecalis	1992, USA	Rice	1 -	0	1 (100%)	in vitro (TK), in vivo (100%) (rat, endocarditis)	in vitro (TK), in vivo (100%) (rat, endocarditis)	0%	0%	0%	-	-	-	
E. faecalis	1989, USA	Rice	21 -	0	0	in vitro (TK)	21 (100%) (in vitro (TK))	0%	0%	0%	-	-	-	
E. faecalis	2013, USA	Descourouez	4 VRE (100%)	0%	0%	in vitro (TK)	4 (100%) (in vitro (TK))	0%	0%	0%	-	-	-	The combination resulted strongly bactericidal. [195]
E. faecalis	1988, Italy	Debbia	50 -	-	-	in vitro (CB, TK)	CB: 80% (TK: 85%)	0%	CB: 20% (TK: 5%)	0%	-	-	-	A total of 50 strains was tested with CB, and only 20 strains were tested with TK. [196]

Staphylococcus spp., Enterococcus spp. 1990, Italy Delbua 50 - - in vitro (CB, TK) CB: 80% (TK: 85%) 0% CB: 20% (TK: 5%) 0% - - A total of 50 strains was tested with CB, and only 20 strains were tested with TK. [197]
Table 12. Studies on combination between fosfomycin and tigecycline. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain	Year and Country	Author	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Tigecycline-Resistant (%)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Tigecycline Susceptibility Restoration (%)	Comments	Reference		
Enterobacterales	2019, USA	Flamm	20	7/30 MDR strains (A. aerogenes, Enterobacteriaceae e P. aeruginosa) included 2 ESBL e 2 KPC	-	-	in vitro (CB)	5 (25%)	10 (50%)	5 (25%)	0%	-	-	Authors considered Partial Synergy when FICI was between 0.5–1 and Additive effect for FICI = 1. [38]		
	2017, Taiwan	Ku	9	ESBL KP producing	4 (44.4%)	4 (44%)	in vitro (TK)	6 (66%)	0%	3 (33%)	0%	-	-	-	[84]	
	2011, France	Bericot	9	NDM-1 KPC (100%)	2 (22%)	3 (33%)	in vitro (CB)	0%	-	9 (100%)	0%	-	-	-	[65]	
	2013, Switzerland	Corvec	1	% HSE-1 (100%)	ESBL and Ciprofloxacin resistant	0%	0%	in vitro (TK); in vivo (Guinea pigs, cage infection)	TK: 0%; in vivo: 0%	TK: 100%; in vivo: 0%	0%	-	-	-	[73]	
E. coli	2011, Greece	Samonis	20	ESBL (100%)	0%	1 (5%)	in vitro (ET)	5 (25%)	-	15 (75%)	0%	-	-	-	[86]	
	2019, China	Huang	30	KPC (100%)	19 (63%)	11 (36%)	in vitro (ET, CB)	ET: 5 (16%); CK: 4 (13%)	ET: 9 (30%); CK: 11 (36%)	ET: 16/15 (50%); CK: 15/15 (50%)	0%	ET: 14/19 (73%); CK: 6/55 (40%); ET: 5/11 (45%); CK: 7/13 (53%)	-	-	-	[88]
K. pneumoniae	2019, Greece	Papoutsaki	11	KPC (100%)	35%	96%	in vitro (ET, TK)	ET: 16/33 (48%); TKA: 1/22 (4%)	ET: 17/33 (51%); TKA: 2/22 (9%)	0%	0%	-	-	ET performed three times with different methods: a) Elisa/Agar method, b) Cross formation method, c) MIC/MIC ratio method. TK was performed two times: a) TIG 1,3 mg/L + FOS 0,5xMIC and b) TIG 1,3 mg/L + FOS 30 mg/L. [87]		
	2017, China	Yu	136	KPC (100%)	78 (57%)	25 (18%)	in vitro (CB, TK)	CK: 2 (1%); TKA: 0%	CK: 113 (85%); TKA: 5 (7%)	CK: 19 (14%); TKA: 2 (2%)	CK: 2 (1%); TKA: 0%	-	-	Only 4 strains were tested with TK. [89]		
	2013, Turkey	Evren	12	OXA-48 (100%)	11 (92%)	5 (41%)	in vitro (CB)	4 (33%)	6 (50%)	2 (18%)	0%	-	-	Authors considered Indistinguishable effect for FICI between 0.5 and 4. In vivo experiment: bacterial count using FOS + TIG combination was reduced ≥ 2 log over single antimicrobials. [74]		
	2011, Greece	Samonis	63	Serine-KPC (77%); MBL (1%); ESBL (21%)	1 (1%)	10 (15%)	in vitro (ET)	18 (27%)	-	47 (72%)	0%	-	-	-	[86]	
Table 12. Cont.

Strain	Year and Country	Author	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Tigecycline-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Tigecycline Susceptibility Restoration (%)	Comments	Reference
P. aeruginosa	2011, Greece	Samonis	15	MDR (100%)	1 (6%)	15 (100%)	in vitro (ET)	2 (13%)	-	13 (86%)	0%	-	-	Authors considered Indifferent effect for FICI between 0.5 and 4. In vivo experiment: bacterial count using FOS + TIG combination was reduced ≥ 2 log over single antimicrobials	[86]
A. baumannii	2019, USA	Flamm	5	7/50 MDR strains (A. baumannii, Enterobacterales e P. aeruginosa)	-	-	in vitro (CB)	0%	4 (80%)	1 (20%)	0%	-	-	Authors considered Partial Synergy when FICI was between 0.5–1 and Additive effect for FICI = 1. Any synergistic effect was reported. Additive, Indifferent and antagonistic effect were not evaluated.	[38]
	2016, Netherlands	Leite	20	Colistin-Resistant (60%)	20 (100%)	5%	in vitro (CB, 2-Well Method)	0%	-	-	-	-	-		
	2018, Italy	Simonetti	15	MRSA (100%)	0	0%	in vitro (CB); in vivo (mice, wound infection)	12 (80%)	-	3 (20%)	0%	-	-	Authors considered Indifferent effect for FICI between 0.5 and 4. In vivo experiment: bacterial count using FOS + TIG combination was reduced ≥ 2 log over single antimicrobials. Only 8 strains were tested with Time-kill Assay. Biofilm cultures were 100% TIG resistant and 94% FOS resistant. No FICI were reported by authors, no synergistic effect was seen on any strains.	[80]
	2012, Taiwan	Tang	33 (8 TK)	MRSA (100%)	6%	0%	in vitro (TK, Biofilm Model)	0%	-	100%	0%	-	-	Authors considered Indifferent effect for FICI between 0.5 and 4. In vivo experiment: bacterial count using FOS + TIG combination was reduced ≥ 2 log over single antimicrobials.	[66]
	2019, Thailand	Hemapampairoa	12	VRE (100%)	12 (100%)	3 (25%)	in vitro (CB)	1 (8%)	9 (79%)	2 (18%)	0%	-	-	Authors considered Indifferent effect for FICI between 0.5 and 4. In vivo experiment: bacterial count using FOS + TIG combination was reduced ≥ 2 log over single antimicrobials. Additive, Indifferent and antagonistic effect were not evaluated.	[55]
E. faecium	2018, Italy	Simonetti	15	-	0%	0%	in vitro (CB); in vivo (mice, wound infection)	12 (80%)	-	3 (20%)	0%	-	-	Authors considered Indifferent effect for FICI between 0.5 and 4. In vivo experiment: bacterial count using FOS + TIG combination was reduced ≥ 2 log over single antimicrobials. Additive, Indifferent and antagonistic effect were not evaluated.	[90]
	2013, Taiwan	Tang	9	VRE (100%)	56%	0%	in vitro (TK, Biofilm Model)	TKA: 3 (33%); BM: 5 (56%)	-	-	-	-	-		[13]
E. faecium	2019, Thailand	Hemapampairoa	12	VRE (100%)	12 (100%)	3 (25%)	in vitro (CB)	1 (8%)	9 (79%)	2 (18%)	0%	-	-		
	2018, Italy	Simonetti	15	-	0%	0%	in vitro (CB)	10 (66%)	-	5 (33%)	0%	-	-	Authors considered Indifferent effect for FICI between 0.5 and 4. In vivo experiment: bacterial count using FOS + TIG combination was reduced ≥ 2 log over single antimicrobials. Additive, Indifferent and antagonistic effect were not evaluated.	[90]
	2013, Taiwan	Tang	10	VRE (100%)	70%	0%	in vitro (TK, Biofilm Model)	TKA: 3 (38%); BM: 1 (10%)	-	-	-	-	-		[13]
N. gonorrhoeae	2015, Netherlands	Wind	4	Amoxicillin and Clavulanic Acid Resistant (100%)	-	-	in vitro (ET)	0%	0%	4 (100%)	-	-	-		
Table 13. Studies on combination between fosfomycin and linezolid. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain	Year and Country	Author	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Linezolid-Resistant (%)	In Vitro (Methods)/In Vivo (Animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Linezolid Susceptibility Restoration (%)	Comments	Reference
S. aureus	2018, China	Chen	11 (3 TK)	MRSA (50%)	0%	0%	in vitro (CB, TK)	8 (72%); TK 3 (100%)	CK: 3 (27%); TK: 0%	CK: 0%; TK: 0%	CK: 0%; TK: 0%	-	-	Only 3 strains were tested with TK. For the same 3 strains, the authors also evaluated Post-Antibiotic Effect (PAE) of LZD alone and in combination with FOS. PAE of LZD + FOS seemed to be increased with the increase in time of exposure, even if no statistically significant difference was found. Synergy was defined as a reduction > 3 log CFU/mL over antimicrobial agent alone, additive effect was defined as a reduction < 3 log CFU/mL. Synergistic effect was demonstrated only when 4 × MIC LZD + 2 × MIC FOS were used, 1 × MIC LZD + 2 × MIC FOS regimen showed Additive effect. Only 1 strain was tested with Time–kill Assay. The authors also evaluated in vitro and in vivo efficacy of LIN + FOS on MRSA biofilm (all 3 strains), demonstrating a synergistic effect only in vitro when using 1/2 MIC LZD + 1/2 MIC FOS and not with lower concentrations. The authors considered Indifferent effect for FICI between 0.5 and 4. Fosfomycin MIC range in combination was 2-32 mg/L, LZD MIC in combination was 0,125-1 mg/L.	[198]
S. aureus	2018, Spain	Coronado-Alvarez 2	2	MRSA (100%)	-	-	in vitro (TK)	2 (100%)	0%	0%	0%	-	-	-	[63]
S. aureus	2016, China	Chai	3 (1 TK)	MRSA (100%)	2 (66%)	0%	in vitro (CB, TK)	CK: 3 (100%); TK: 1 (100%)	CK: 0%; TK: 0%	CK: 0%; TK: 0%	CK: 0%; TK: 0%	100%	100%	-	[94]
S. aureus	2014, China	Xu-Hong	102	MRSA (100%)	0%	-	in vitro (CB)	100 (98%)	2 (2%)	0%	100%	100%	-	-	[199]
Table 13. Cont.

Year and Country	Author	Number of Isolates	Strain (%)	FOS-Resistant (%)	Linezolid-Resistant (%)	In Vitro (Methods)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	Comments	Reference				
2012, Taiwan	Tang	33 (8 TK)	MRSA (100%)	6%	0%	in vitro (TK, Biofilm, MTT-staining method)	-	-	-	-	Only 8 strains were tested with Time–kill Assay. Biofilm cultures were 100% LZD resistant and 94% FOS resistant. Combination of FOS + LZD determined a statistically significant reduction on OD6s in biofilm cultures.	[60]				
2010, Spain	Pachón-Ibáñez	1	GISA 100%	Gentamicin Intermediate S. aureus	-	-	-	-	-	-	In vivo experiment on mice showed a higher rate of blood culture negativization when using FOS + LZD therapy (57%) than using FOS or LZD alone (43% and 27% respectively). Synergistic effect at CB was confirmed with TK on 4 strains. The authors did not consider additive effect. They also performed Transmission Electron Microscopy, demonstrating profound morphological alteration of 2 strains when using FOS + LZD, which were not seen using FOS or LZD alone. TKAs showed synergism, but bacteriostatic effect. In vivo experiment showed statistically significant higher efficacy of high-dose LZD + FOS combination, then high dose of FOS or LZD alone, but low-dose combination had no significant differences with monotherapy or high-dose combination.	[36]				
2006, Spain	Sahuquillo Arce	5 (4 TK)	-	0%	0%	in vitro (CB, TK)	1 (100%)	0%	0%	0%	Synergistic effect at CB was confirmed with TK on 4 strains. TKAs showed synergism, but bacteriostatic effect. In vivo experiment showed statistically significant higher efficacy of high-dose LZD + FOS combination, then high dose of FOS or LZD alone, but low-dose combination had no significant differences with monotherapy or high-dose combination.	[200]				
2001, Austria	Grif	5 (1 TK)	MRSA (60%)	0%	0%	in vitro (CB, TEM)	CK: 5 (100%); TK: 0%	-	-	-		[43]				
2018, China	Li	4	MRSA (50%)	0%	0%	in vitro (CB, TK); in vivo (Galleria mellonella Survival Assay)	CK: 4 (100%); TK: 0%	CK: 0%; TK: 0%	CK: 0%; TK: 0%	CK: 0%; TK: 0%		[95]				
Strain	Year and Country	Author	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Linezolid-Resistant (%)	In Vitro (Methods)/In Vivo (Animal and Site of Infection)	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Linezolid Susceptibility Restoration (%)	Comments	Reference	
--------	-----------------	--------	-------------------	---	------------------	------------------------	---	------------------------	----------------	---------------------	---------------------	-------------------------	-------------------------------	---------	----------	
S. epidermidis	2001, Austria	Grif	2	-	0%	0%	in vitro (CB)	2 (100%)	-	0%	0%	-	-	The authors did not consider additive effect. They also performed Transmission Electron Microscopy, demonstrating profound morphological alteration of 2 strains when using FOS + LZD, which were not seen using FOS or LZD alone. [43]		
E. faecalis	2013, Taiwan	Tang	9	VRE (100%)	56%	0%	in vitro (TK, Biofilm Model)	TKA: 0%; BM: 0%	-	-	-	-	-	The authors did not consider additive, indifferent or antagonistic effect. Transmission Electron Microscopy, demonstrated more morphological alterations when using FOS + LZD, than using FOS or LZD alone. [13]		
	2019, China	Qi	2	VRE (90%)	2 (100%)	0%	in vitro (CR, TK, TEM)	CK: 0%; TK: 0%	CK: 2 (100%); TK: 1 (50%)	CK: 0%; TK: 1 (50%)	CK: 0%; TK: 0%	2 (100%)	2 (100%)	Transmission Electron Microscopy, demonstrated more morphological alterations when using FOS + LZD, than using FOS or LZD alone. [201]		
	2012, USA	Descoutures	32	VRE (100%)	9%	3%	in vitro (TK)	See comments	See comments	0%	0%	-	-	The authors did not consider additive, indifferent or antagonistic effect. The authors considered MIC ≤ 64 mg/L as FOS breakpoint. FOS combined with LZD was either synergistic or additive yet bacteriostatic. Percentages of strains on which there was synergistic effect were not reported. Transmission Electron Microscopy, demonstrated more morphological alterations when using FOS + LZD, than using FOS or LZD alone. In vivo experiment showed higher survival rates of larvae when using FOS + LZD than LZD alone, but similar rates using FOS alone. [201]		
E. faecium	2012, USA	Descoutures	32	VRE (100%)	9%	3%	in vitro (CR, TK, TEM; in vivo (Cadentia Melonella Survival Assay))	CK: 2 (50%); TK: 2 (50%)	CK: 1 (25%); TK: 1 (25%)	CK: 1 (25%); TK: 1 (25%)	0%	3 (75%)	4 (100%)	-	-	The authors did not consider additive, indifferent or antagonistic effect. The authors considered MIC ≤ 64 mg/L as FOS breakpoint. FOS combined with LZD was either synergistic or additive yet bacteriostatic. Percentages of strains on which there was synergistic effect were not reported. Transmission Electron Microscopy, demonstrated more morphological alterations when using FOS + LZD, than using FOS or LZD alone. In vivo experiment showed higher survival rates of larvae when using FOS + LZD than LZD alone, but similar rates using FOS alone. [201]
Table 14. Studies on combination between fosfomycin and rifampin. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain	Year and Country	Author	Number of Isolates	Known Resistance Mechanisms or Determinants (%)	FOS-Resistant (%)	Rifampin-Resistant (%)	In Vitro (Methods/In Vivo (Animal and Site of Infection))	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	FOS Susceptibility Restoration (%)	Rifampin Susceptibility Restoration (%)	Comments	Reference
E. coli	1978, Spain	Olay	17	-	-	-	in vitro (CB, in vivo (mouse, peritonitis))	1 (5.8%)	9 (52.9%)	7 (41.2%)	0%	-	-	-	[14]
A. baumannii	2016, Brazil	Leite	20	OXA-23, OXA-43 (100%)	(100%)	(100%)	in vitro (CB, TK)	0%	-	-	-	-	-	-	[10]
E. coli	2010, Italy	Simonetti	16	MRSA (100%)	0%	2 (12%)	in vitro (ET, TK), in vivo (mouse, wound infection)	16 (100%)	0%	0%	0%	-	-	-	[10]
A. baumannii	2014, Switzerland	Mihalcescu	1	MRSA (100%)	0%	0%	in vitro (ET, TK), in vivo (foreign-body infection model)	0%	0%	0%	0%	-	-	-	[10]
S. aureus	2013, China	Tang	8	MRSA (100%)	0%	8 (100%)	in vitro (biofilm assay)	4 (50%)	-	-	-	-	-	-	[11]
S. aureus	2012, Taiwan	Carrongos	1	MRSA (100%)	-	-	in vitro (TK), in vivo (rat, tissue cage infection)	-	-	-	-	-	-	-	[12]
A. baumannii	2012, Taiwan	Garrigos	35	MRSA (100%)	6% (planktonic) 94% (biofilm)	0% (planktonic) 9% (biofilm)	in vitro (TK)	0%	-	-	-	-	-	-	[12]
S. aureus	2001, Austria	Gelf	5	MRSA (100%)	-	-	in vitro (CB, TK)	100%	-	-	-	-	-	-	[10]
A. baumannii	1997, France	Quentin	6	-	33%	0%	in vitro (TK)	0%	0%	20%	33%	-	-	-	[10]
E. faecalis	2018, Italy	Simonetti	16	-	2 (12%)	2 (12%)	in vitro (CB, TK), in vivo (mouse, wound infection)	12 (75%)	0%	4 (25%)	0%	-	-	-	[9]
A. baumannii	2013, Taiwan	Tang	9	VRE (100%)	56%	11%	in vitro (TK, biofilm)	12 (35%)	0%	4 (25%)	0%	-	-	-	[10]
S. epidermidis	2011, Austria	Grif	2	MRSA (100%)	-	-	in vitro (CB, TK)	0%	0%	-	-	-	-	-	[10]
S. epidermidis	1984, Germany	Doit	26	-	0%	0%	in vitro (TK)	0%	100%	0%	-	-	-	-	[134]
S. epidermidis, S.	2017, Germany	Gonzalez Moreno	3	-	33%	0%	in vitro (ET)	1 (100%)	0%	-	-	-	-	-	[9]
pyogenes S. oralis															
E. faecalis	2018, Taiwan	Simonetti	16	-	2 (13%)	2 (13%)	in vitro (CB, TK), in vivo (mouse, wound infection)	11 (73%)	0%	4 (27%)	0%	-	-	-	[9]
A. baumannii	2013, Taiwan	Tang	9	VRE (100%)	70%	90%	in vitro (TK, biofilm)	11 (73%)	0%	4 (27%)	0%	-	-	-	[10]
S. epidermidis	2011, Austria	Grif	2	MRSA (100%)	-	-	in vitro (CB, TK)	2 (100%)	-	-	-	-	-	-	[11]
A. baumannii	1997, France	Quentin	3	-	NA	NA	in vitro (TK)	0%	0%	0%	-	-	-	-	[12]
N. gonorrhoeae	2015, Netherlands	Wind	4	-	-	-	in vitro (ET)	1 (25%)	-	-	-	-	-	-	[14]

Comments: RIF antagonizes FOS. In particular, it antagonizes FOS against susceptible and intermediate isolates to RIF. The combination resulted indifferent against RIF-resistant isolates. For 2 isolates it was not possible to infer their susceptibility to RIF.
Table 15. Effect of FOS in combination with different antibiotics: overview.

Antibiotic Class	Strains	Number of Studies	Number of Isolates	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	Comments
Penicillins, penicillins + β-lactamase inhibitors, penicillinase-resistant penicillins								
P. aeruginosa	6	235	13	51	19	28		One study [1] reported high rates of indifferent effect of FOS + PIP/TAZ against PIP/TAZ-R isolates.
Acinetobacter spp.	1	5	60	60	20	0	45	
Staphylococcus spp.	7	295	60	50	15	33	10	
Streplococcus spp.	6	119	30	30	55	15	-	
Enterococcus spp.	4	60	25	25	0	42	10	Antagonistic effect observed in biofilms of some E. faecalis isolates.
Cephalosporins, cephalosporins + β-lactamase inhibitors								
P. aeruginosa	13	318	36	36	40	23	1	Antagonistic effect against 4 P. aeruginosa isolates [22].
Acinetobacter spp.	2	39	8	8	3	3	9	Effect of the combination indeterminate on 33 isolates.
Staphylococcus spp.	12	284	97	97	12	8	1	Great heterogeneity of results.
Streplococcus spp.	6	63	33	33	59	8	-	
Enterococcus spp.	2	77	58	58	0	32	-	
N. gonorrhoeae	3	44	0	0	5	95	-	
Carbapenems								
P. aeruginosa	15	445	29	29	25	36	1	
Acinetobacter spp.	5	105	28	28	17	22	-	
Gram + cocci	23	542	43	43	37	19		
N. gonorrhoeae	1	4	0	0	75	25	-	
Monobactams								
P. aeruginosa	3	138	25	25	54	17		
Acinetobacter spp.	18	264	17	17	12	69	-	
Staphylococcus spp.	3	41	4	4	36	38	5	Synergism rates not concordant in all studies.
N. gonorrhoeae	7	90	37	37	9	34	-	
Quinolones								
P. aeruginosa	18	263	42	42	36	38	5	Synergism rates not concordant in all studies.
Acinetobacter spp.	3	41	4	4	36	38	5	Synergism rates not concordant in all studies.
Staphylococcus spp.	7	90	37	37	9	34	-	
N. gonorrhoeae	1	4	0	0	0	100	-	
Aminoglycosides								
P. aeruginosa	19	713	20	20	31	36		Synergism rates not concordant in all studies.
Acinetobacter spp.	23	440	43	43	29	27	1	Synergism rates not concordant in all studies.
S. aureus	5	102	37	37	5	18	-	Synergism rates not concordant in all studies.
Streplococcus spp.	8	301	26	26	4	53	1	Antagonistic effect of FOS + gentamicin against 4 isolates [12].
E. faecalis	1	16	0	0	52	48	-	
N. gonorrhoeae	1	8	62	62	13	25	-	
H. influenzae	1	4	4	4	25	75	-	
E. faecium	1	1	0	0	0	100	-	
Table 15. Cont.

Antibiotic Class	Strains	Number of Studies	Number of Isolates	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	Comments
Glycopeptides	A. baumannii	1	20	0	0	100	-	
Staphylococcus spp.	12	229	17	16	0	65	2	In 2 studies [69,176] VAN exhibited higher synergistic rates than TEC. Antagonistic effect with FOS + VAN against 5 isolates of S. aureus [12,43].
Enterococcus spp.	2	55	25	22	0	24	-	
S. pneumoniae	2	28	4	4	92	-	-	
Enterobacteriales	1	87	53	34	14	-	-	
N. gonorrhoeae	2	12	0	11	84	-	-	
P. aeruginos	2	31	19	79	2	-	-	-
S. aureus	1	34	26	68	8	-	-	-
S. epidermidis	1	11	0	0	100	-	-	
S. pseudintermedius	1	8	62	25	12	-	-	
Streptococcus spp.	1	26	15	27	58	-	-	
Macrolides	Enterobacteriales	2	120	5	11	84	-	Indifferent effect when tetracycline was tested, but one study showed additive or synergistic effect when using minocycline + FOS combination [38].
N. gonorrhoeae	1	5	40	60	0	-	-	
P. aeruginos	2	12	12	56	32	-	-	
Tetracyclines	Acinetobacter spp.	1	25	12	56	32	-	In all experiment minocycline susceptibility restoration was observed [65].
S. aureus	3	152	72	1	27	-	-	
Enterococcus spp.	3	75	24	10	20	-	-	
N. gonorrhoeae	1	4	0	0	100	-	-	
Polymyxins	Enterobacteriales	18	381	26	35	35	4	Antagonistic effect of FOS + colistin observed against 14 isolates of K. pneumoniae.
P. aeruginos	4	111	27	41	31	-	-	
Acinetobacter spp.	12	206	19	15	32	-	-	Antagonistic effect of FOS + colistin observed against 3 isolates of A. baumannii.
N. gonorrhoeae	1	4	0	0	100	-	-	
Daptomycin	Staphylococcus spp.	13	186	56	31	14	-	
Enterococcus spp.	5	49	97	0	3	-	-	
Antibiotic Class	Strains	Number of Studies	Number of Isolates	Synergistic Effect (%)	Additive Effect (%)	Indifferent Effect (%)	Antagonistic Effect (%)	Comments
------------------	---------	------------------	-------------------	-----------------------	--------------------	-----------------------	------------------------	----------
Tigecycline								
Enterobacterales	9	313	17	17	44	34	1	One in vivo study observed indifferent effect in 100% of cases against *E. coli* [73] and one in vitro study reported 2 cases of antagonistic effect against *K. pneumoniae* isolates [10].
P. aeruginosa	1	15	13	13	0	87	-	
Acinetobacter spp.	2	25	21	21	0	79	-	
S. aureus	2	48	0	16	0	3	-	
Entenococcus spp.	3	61	61	0	0	9	-	
N. gonorrhoea	1	4	0	0	0	100	-	
Linezolid								
Entenococcus spp.	4	69	69	29	17	6	-	Synergistic effect was never observed for *E. faecalis* (2 studies) [13,201].
S. aureus	9	166	74	74	0	2	2	
S. epidermidis	1	2	100	100	0	100	-	
Rifampin								
E. coli	1	17	6	6	10	-	-	
A. baumannii	1	0	0	0	100	-	-	
S. aureus	9	114	35	35	21	4	3	Antibiotic effect of FO8 + RIF against 3 isolates [35,37].
S. epidermidis	2	5	40	40	0	40	-	
Streptococcus spp.	2	29	3	3	0	97	-	
Entenococcus spp.	2	50	50	99	0	12	-	
N. gonorrhoea	1	4	25	25	0	75	-	
Metronidazole								
Intestinal bacteria (not specified)	1	NA	-	-	-	-	-	
H. pylori	1	24	0	0	21	80	-	
Spectinomycin								
N. gonorrhoea	1	4	0	0	100	-	-	
Sulbactam								
A. baumannii	1	8	8	8	0	25	-	
Lincocycin								
S. aureus	1	37	37	37	19	10	-	
Nitrofurantoin								
P. aeruginosa	1	4	12	12	0	88	-	
S. aureus	1	8	8	8	0	88	-	
Diallopristin-Quinupristin	2	12	100	100	0	0	-	
Fusidic acid								
S. aureus	3	239	63	63	4	33	-	
Chloramphenicol								
Enterobacterales	4	468	39	39	34	25	-	
P. aeruginosa	1	19	19	19	33	10	-	
S. aureus	1	46	46	46	37	19	-	
Nitrofurantoin								
Enterobacterales	1	100	0	0	100	-	-	
Entenococcus spp.	1	32	0	0	100	-	-	
Trimethoprim-Sulfamethoxazole								
Enterobacterales	2	120	2	2	5	99	-	
S. aureus	1	148	3	3	0	95	-	Antagonistic effect was reported for 4 isolates [12].
Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/9/8/500/s1, Table S1: Studies on combination between fosfomycin and different antibiotics. CB: checkerboard assay; TK: time–kill assay; ET: E-test. Table S2: Studies on combination between fosfomycin and molecules other than antibiotics. CB: checkerboard assay; TK: time–kill assay.

Author Contributions: Conceptualization, R.M.A., R.L. and S.D.B.; methodology, A.E.M.; investigation, R.M.A., L.P., V.V., R.P., M.F., F.M., A.L., S.D.B.; data curation, R.M.A., A.E.M.; writing–original draft preparation, R.M.A., L.P., M.F., F.M., R.L. and S.D.B.; writing–review and editing, R.L. and S.D.B.; supervision, R.L. and S.D.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The Authors are grateful to Maria Crapulli for her precious help in finding articles available only in paper version.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [CrossRef] [PubMed]
2. Hendlin, D.; Stapley, E.O.; Jackson, M.; Wallick, H.; Miller, A.K.; Wolf, F.J.; Miller, T.W.; Chaiet, L.; Kahan, F.M.; Foltz, E.L.; et al. Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science 1969, 166, 122–123. [CrossRef] [PubMed]
3. Kaye, K.S.; Rice, L.B.; Dane, A.L.; Stus, V.; Sagan, O.; Fedosiuk, E.; Das, A.F.; Skarinisky, D.; Eckburg, P.B.; Ellis-Grosse, E.J. Fosfomycin for Injection (ZTH-01) Versus Piperacillin-tazobactam for the Treatment of Complicated Urinary Tract Infection Including Acute Pyelonephritis: ZEUS, A Phase 2/3 Randomized Trial. Clin. Infect. Dis. 2019, 69, 2045–2056. [CrossRef] [PubMed]
4. Falagas, M.E.; Kastoris, A.C.; Kapaskelis, A.M.; Karageorgopoulos, D.E. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: A systematic review. Lancet. Infect. Dis. 2010, 10, 43–50. [CrossRef]
5. Zhanel, G.G.; Zhanel, M.A.; Karlowsky, J.A. Oral Fosfomycin for the Treatment of Acute and Chronic Bacterial Prostatitis Caused by Multidrug-Resistant Escherichia coli. Can. J. Infect. Dis. Med. Microbiol. = J. Can. des Mal. Infect. la Microbiol. Medicale 2018, 2018, 1404813. [CrossRef]
6. Petrocelli, N.; Taglietti, F.; Granata, G. Treatment Options for Colistin Resistant Klebsiella pneumoniae: Present and Future. J. Clin. Med. 2019, 8, 934. [CrossRef]
7. Krcmery, S.; Hromec, J.; Demesova, D. Treatment of lower urinary tract infection in pregnancy. Int. J. Antimicrob. Agents 2001, 17, 279–282. [CrossRef] [PubMed]
8. Behera, B.; Mohanty, S.; Sahu, S.; Praharaj, A. In vitro activity of fosfomycin against multidrug-resistant urinary and nonurinary Gram-negative isolates. Indian J. Crit. Care Med. 2018, 22, 533–536. [CrossRef] [PubMed]
9. Gonzalez Moreno, M.; Trampuz, A.; Di Luca, M. Synergistic antibiotic activity against planktonic and biofilm-embedded Streptococcus agalactiae, Streptococcus pyogenes and Streptococcus oralis. J. Antimicrob. Chemother. 2017, 72, 3085–3092. [CrossRef] [PubMed]
10. EUCAST: Clinical breakpoints and dosing of antibiotics. Available online: https://eucast.org/clinical_breakpoints/ (accessed on 2020-12-22). [CrossRef]
11. Avery, L.M.; Sutherland, C.A.; Nicolau, D.P. In vitro investigation of synergy among fosfomycin and parenteral antimicrobials against carbapenemase-producing Enterobacteriaceae. Diagn. Microbiol. Infect. Dis. 2019, 95, 216–220. [CrossRef] [PubMed]
12. Alvarez, S.; Jones, M.; Berk, S.L. In vitro activity of fosfomycin, alone and in combination, against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1985, 28, 689–690. [CrossRef] [PubMed]
13. Tang, H-J.; Chen, C-C.; Zhang, C-C.; Su, B-A.; Li, C-M.; Weng, T-C.; Chiang, S-R.; Ko, W-C.; Chuang, Y-C. In vitro efficacy of fosfomycin-based combinations against clinical vancomycin-resistant Enterococcus isolates. Diagn. Microbiol. Infect. Dis. 2013, 77, 254–257. [CrossRef] [PubMed]
14. Olay, T.; Rodriguez, A.; Oliver, L.E.; Vicente, M.V.; Quecedo, M.C.R. Interaction of fosfomycin with other antimicrobial agents: In vitro and in vivo studies. J. Antimicrob. Chemother. 1978, 4, 569–576. [CrossRef] [PubMed]
15. Berleur, M.; Guérin, F.; Massias, L.; Chau, F.; Poujade, J.; Cattoir, V.; Fantin, B.; de Lastours, V. Activity of fosfomycin alone or combined with temocillin in vitro and in a murine model of peritonitis due to KPC-3- or OXA-48-producing Escherichia coli. *J. Antimicrob. Chemother.* **2018**, *73*, 3074–3080. [CrossRef]

16. Chavanet, P.; Peyrard, N.; Pechinot, A.; Buisson, M.; Duong, M.; Neuwirth, C.; Kazmierczak, A.; Portier, H. In vivo activity and pharmacodynamics of amoxicillin in combination with fosfomycin in fibrin clots infected with highly penicillin-resistant *Streptococcus pneumoniae*. *Antimicrob. Agents Chemother.* **1996**, *40*, 2062–2066. [CrossRef]

17. Vicente, M.V.; Olay, T.; Rodriguez, A. Experimental endocarditis caused by *Streptococcus sanguis*: Single and combined antibiotic therapy. *Antimicrob. Agents Chemother.* **1981**, *20*, 10–14. [CrossRef]

18. Nakazawa, H.; Kikuchi, Y.; Honda, T.; Isago, T.; Nozaki, M. Enhancement of antimicrobial effects of various antibiotics against methicillin-resistant *Staphylococcus aureus* (MRSA) by combination with fosfomycin. *J. Infect. Chemother.* **2003**, *9*, 304–309. [CrossRef]

19. Courcol, R.J.; Martin, G.R. In-vitro activity of the combination of ceftriaxone and fosfomycin against *staphylococci*. *J. Antimicrob. Chemother.* **1987**, *19*, 276–278. [CrossRef]

20. Portier, H.; Lucht, F.; Chavanet, P.; Kazmierczak, A.; Tremeaux, J.C.; Duez, J.M. Ceftazidime in combination with other antibiotics for the treatment of severe methicillin-resistant *staphylococcal infections*. *Infection* **1985**, *13*, S123–S128. [CrossRef]

21. Mikhail, S.; Singh, N.B.; Kebriaei, R.; Rice, S.A.; Stamper, K.C.; Castanheira, M.; Rybak, M.J. Evaluation of the Synergy of Ceftazidime-Avibactam in Combination with Meropenem, Amikacin, Aztreonam, Colistin, or Fosfomycin against Well-Characterized Multidrug-Resistant *Klebsiella pneumoniae* and *Pseudomonas aeruginosa*. *Antimicrob. Agents Chemother.* **2019**, *63*, e00779-19. [CrossRef]

22. Pruekprasert, P.; Tuyapanit, W. In vitro activity of fosfomycin-gentamicin, fosfomycin-ceftazidime, fosfomycin-imipenem and ceftazidime-gentamicin combinations against ceftazidime-resistant *Pseudomonas aeruginosa*. *Southeast Asian J. Trop. Med. Public Health* **2005**, *36*, 1239–1242.

23. Chavanet, P.; Beloeil, H.; Pechinot, A.; Duigou, F.; Buisson, J.C.; Duong, M.; Neuwirth, C.; Kazmierczak, A.; Portier, H. In vivo activity and pharmacodynamics of cefotaxime or ceftriaxone in combination with fosfomycin in fibrin clots infected with highly penicillin-resistant *Streptococcus pneumoniae*. *Antimicrob. Agents Chemother.* **1995**, *39*, 1736–1743. [CrossRef] [PubMed]

24. Ribes, S.; Taberner, F.; Domenech, A.; Cabellos, C.; Tubau, F.; Liñ Ares, J.; Ferná Ndez Viladrich, P.; Gudiol, F. Evaluation of fosfomycin alone and in combination with ceftriaxone or vancomycin in an experimental model of meningitis caused by two strains of cephalosporin-resistant *Streptococcus pneumoniae*. *J. Antimicrob. Chemother.* **2006**, *57*, 931–936. [CrossRef] [PubMed]

25. Utsui, Y.; Ohya, S.; Magaribuchi, T.; Tajima, M.; Yokota, T. Antibacterial activity of ceftazidime alone and in combination with fosfomycin against methicillin- and cephem-resistant *Staphylococcus aureus*. *Antimicrob. Agents Chemother.* **1986**, *30*, 917–922. [CrossRef] [PubMed]

26. Kazmierczak, A.; Pechinot, A.; Duez, J.M.; Kohli, E.; Tremeaux, J.C.; Portier, H. Bactericidal activity of cefotaxime and fosfomycin in cerebrospinal fluid during the treatment of rabbit meningitis experimentally induced by methicillin-resistant *staphylococcus aureus*. *Infection* **1985**, *13*, S76–S80. [CrossRef]

27. Chavanet, P.; Muggeo, E.; Waldner, A.; Dijoux, S.; Caillot, D.; Portier, H. Synergism between cefotaxime and fosfomycin in the therapy of methicillin and gentamicin resistant *Staphylococcus aureus* infection in rabbits. *Eur. J. Clin. Microbiol. Infect. Dis.* **1990**, *9*, 271–275. [CrossRef]

28. Del Río, A.; García-de-la-María, C.; Entenza, J.M.; Gasch, O.; Armero, Y.; Soy, D.; Mestres, C.A.; Pericás, J.M.; Falces, C.; Ninot, S.; et al. Fosfomycin plus *β*-Lactams as Synergistic Bactericidal Combinations for Experimental Endocarditis Due to Methicillin-Resistant and Glycopeptide-Intermediate *Staphylococcus aureus*. *Antimicrob. Agents Chemother.* **2016**, *60*, 478–486. [CrossRef]

29. Papp-Wallace, K.M.; Zeiser, E.T.; Becka, S.A.; Park, S.; Wilson, B.M.; Winkler, M.L.; D’Souza, R.; Singh, I.; Sutton, G.; Fouts, D.E.; et al. Ceftazidime-Avibactam in Combination With Fosfomycin: A Novel Therapeutic Strategy Against Multidrug-Resistant *Pseudomonas aeruginosa*. *J. Infect. Dis.* **2019**, *220*, 666–676. [CrossRef]

30. Lefort, A.; Chau, F.; Lepeule, R.; Dubée, V.; Kitzis, M.D.; Dion, S.; Fantin, B. Activity of fosfomycin alone or combined with cefoxitin in vitro and in vivo in a murine model of urinary tract infection due to *Escherichia coli* harbouring CTX-M-15-type extended-spectrum *β*-lactamase. *Int. J. Antimicrob. Agents* **2014**, *43*, 366–369. [CrossRef]
31. Ojdana, D.; Gutowska, A.; Sacha, P.; Majewski, P.; Wieczorewka, E. Activity of Ceftazidine-Avbactam Alone and in Combination with Ertapenem, Fosfomycin, and Tigecycline Against Carbapenemase-Producing Klebsiella pneumoniae. Microb. Drug Resist. 2019, 25, 1357–1364. [CrossRef]

32. Cuba, G.; Rocha-Santos, G.; Cayô, R.; Streling, A.; Nodari, C.; Gales, A.; Pignatari, A.; Nicolau, D.; Kiffer, C. In Vitro Synergy of Ceftolozane/Tazobactam in Combination With Fosfomycin or Aztreonam Against MDR Pseudomonas Aeruginosa. J. Antimicrob. Chemother. 2020, 75, 1874–1878. [CrossRef] [PubMed]

33. Avery, L.M.; Sutherland, C.A.; Nicolau, D.P. Prevalence of in vitro synergistic antibiotic interaction between fosfomycin and nonsusceptible antimicrobials in carbapenem-resistant Pseudomonas aeruginosa. J. Med. Microbiol. 2019, 68, 893–897. [CrossRef] [PubMed]

34. Monogue, M.; Nicolau, D. Antibacterial Activity of Ceftolozane/Tazobactam Alone and in Combination With Other Antimicrobial Agents Against MDR Pseudomonas Aeruginosa. J. Antimicrob. Chemother. 2018, 73, 942–952. [CrossRef] [PubMed]

35. Quentin, C.; Saivin, S.; Lafferriere, C.; Noury, P.; Bebear, C. In vitro activity of fosfomycin combined with rifampin, pefloxacin and imipenem against staphylococci: A study by the time–kill curve method. Drugs Exp. Clin. Res. 1987, 13, 219–224. [PubMed]

36. Pachón-Ibáñez, M.E.; Ribes, S.; Dominguez, M.A.; Fernández, R.; Tubau, F.; Ariza, J.; Gudiol, F.; Cabellos, C. Efficacy of fosfomycin and its combination with linezolid, vancomycin and imipenem in an experimental peritonitis model caused by a Staphylococcus aureus strain with reduced susceptibility to vancomycin. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 89–95. [CrossRef] [PubMed]

37. Garrigós, C.; Murillo, O.; Lora-Tamayo, J.; Verdaguer, R.; Tubau, F.; Cabellos, C.; Cabo, J.; Ariza, J. Fosfomycin-daptomycin and other fosfomycin combinations as alternative therapies in experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2013, 57, 606–610. [CrossRef]

38. Flamm, R.K.; Rhomberg, P.R.; Lindley, J.M.; Sweeney, K.; Ellis-Grosse, E.J.; Shortridge, D. Evaluation of the Bactericidal Activity of Fosfomycin in Combination with Selected Antimicrobial Comparison Agents Tested against Gram-Negative Bacterial Strains by Using Time–kill Curves. Antimicrob. Agents Chemother. 2019, 63, e02549-18. [CrossRef]

39. Okazaki, M.; Suzuki, K.; Asano, N.; Araki, K.; Shukuya, N.; Egami, T.; Higurashi, Y.; Morita, K.; Uchimura, H.; Watanabe, T. Efficacy of pefloxacin-fosfomycin in experimental peritonitis caused by a Staphylococcus aureus strain with reduced susceptibility to vancomycin. Eur. J. Infect. Chemother. 2002, 8, 37–42. [CrossRef]

40. Mikuniya, T.; Kato, Y.; Ida, T.; Maebashi, K.; Kariyama, R.; Kumon, H. Treatment of Pseudomonas aeruginosa biofilms with a combination of fluoroquinolones and fosfomycin in a rat urinary tract infection model. J. Infect. Chemother. 2007, 13, 285–290. [CrossRef]

41. Bugnon, D.; Potel, G.; Xiong, Y.Q.; Caillon, J.; Navas, D.; Gras, C.; Kergueris, M.F.; Le Conte, P.; Jehl, F.; Baron, D.; et al. Bactericidal effect of pefloxacin and fosfomycin against Pseudomonas aeruginosa in a rabbit endocarditis model with pharmacokinetics of pefloxacin in humans simulated in vivo. Eur. J. Clin. Microbiol. Infect. Dis. 1997, 16, 575–580. [CrossRef]

42. El-Wafa, W.M.A.; Ibrahim, Y.M. In Vitro Activity of Fosfomycin in Double and Triple Combinations With Imipenem, Ciprofloxacin and Tobramycin Against Multidrug-Resistant Escherichia coli. Curr. Microbiol. 2020, 77, 1–7. [CrossRef] [PubMed]

43. Grif, K.; Dierich, M.; Pfaller, K.; Miglioli, P.; Allerberger, F. In vitro activity of fosfomycin in combination with various antistaphylococcal substances. J. Antimicrob. Chemother. 2001, 48, 209–217. [CrossRef] [PubMed]

44. Thauvin, C.; Lemeland, J.F.; Humbert, G.; Fillastre, J.P. Efficacy of pefloxacin-fosfomycin in experimental endocarditis caused by methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1988, 32, 919–921. [CrossRef] [PubMed]

45. Ullmann, U. Synergism between ciprofloxacin and fosfomycin in vitro. Infection 1987, 15, 264. [CrossRef]

46. Mikuniya, T.; Kato, Y.; Kariyama, R.; Monden, K.; Hikida, M.; Kumon, H. Synergistic effect of fosfomycin and fluoroquinolones against Pseudomonas aeruginosa growing in a biofilm. Acta Med. Okayama 2005, 59, 209–216. [CrossRef]

47. Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [CrossRef]
48. Dos Santos Lima, D.A.F.; Do Nascimento, M.M.P.; Vitali, L.H.; Martinez, R. In vitro activity of antimicrobial combinations against multidrug-resistant Pseudomonas aeruginosa. Rev. Soc. Bras. Med. Trop. 2013, 46, 299–303. [CrossRef]

49. Anderson, G.G.; Kenney, T.F.; Macleod, D.L.; Henig, N.R.; O’Toole, G.A. Eradication of Pseudomonas aeruginosa biofilms on cultured airway cells by a fosfomycin/tobramycin antibiotic combination. Pathog. Dis. 2013, 67, 39–45. [CrossRef]

50. Yu, W.; Zhou, K.; Guo, L.; Ji, J.; Niu, T.; Xiao, T.; Shen, P.; Xiao, Y. In vitro Pharmacokinetics/Pharmacodynamics Evaluation of Fosfomycin Combined with Amikacin or Colistin against KPC2-Producing Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 2017, 7, 246. [CrossRef]

51. Rodriguez-Avial, I.; Pena, I.; Picozo, J.J.; Rodriguez-Avial, C.; Culebras, E. In vitro activity of the next-generation aminoglycoside plazomicin alone and in combination with colistin, meropenem, fosfomycin or tigecycline against carbapenemase-producing Enterobacteriaceae strains. Int. J. Antimicrob. Agents 2015, 46, 616–621. [CrossRef]

52. Montgomery, A.B.; Rhomberg, P.R.; Abuan, T.; Walters, K.A.; Flamm, R.K. Potentiation effects of amikacin and fosfomycin against selected amikacin-nonsusceptible Gram-negative respiratory tract pathogens. Antimicrob. Agents Chemother. 2014, 58, 3714–3719. [CrossRef] [PubMed]

53. Souli, M.; Galani, I.; Boukovalas, S.; Gourgoulis, M.G.; Chryssouli, Z.; Kanellakopoulou, K.; Panagea, T.; Giamarellou, H. In vitro interactions of antimicrobial combinations with fosfomycin against KPC-2-producing Klebsiella pneumoniae and protection of resistance development. Antimicrob. Agents Chemother. 2011, 55, 2395–2397. [CrossRef] [PubMed]

54. Wind, C.M.; De Vries, H.J.C.; Van Dam, A.P. Determination of in vitro synergy for dual antimicrobial therapy resistant Neisseria gonorrhoeae using Etest and agar dilution. Int. J. Antimicrob. Agents 2015, 45, 305–308. [CrossRef] [PubMed]

55. Hemapanpaipao, J.; Chongpradub, D.; Thunyaharn, S.; Santimaleeworagun, W. Vancomycin-resistant enterococcal infection in a Thai university hospital: Clinical characteristics, treatment outcomes, and synergistic effect. Infect. Drug Resist. 2019, 12, 2049–2057. [CrossRef] [PubMed]

56. Dinos, G.P. The macrolide antibiotic renaissance. Br. J. Pharmacol. 2017, 174, 2967–2983. [CrossRef] [PubMed]

57. Hauser, C.; Hrizberger, L.; Unemo, M.; Furrer, H.; Endimiani, A. In vitro activity of fosfomycin alone and in combination with ceftriaxone or azithromycin against clinical Neisseria gonorrhoeae isolates. Antimicrob. Agents Chemother. 2015, 59, 1605–1611. [CrossRef]

58. Prestrel, E.; Hajdu, S.; Lassnigg, A.M.; Hirschl, A.M.; Holinka, J.; Graninger, W. Effects of azithromycin in combination with vancomycin, daptomycin, fosfomycin, tigecycline, and ceftriaxone on Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 2009, 53, 3205–3210. [CrossRef]

59. Kasai, T.; Yuzuru Homma, J. Synergistic effects of a macrolide and a cell wall-affecting antibiotic on pseudomonas aeruginosa in vitro and in vivo 2. Combined effects of a macrolide with a fosfomycin and an aminoglycoside antibiotic. J. Antibiot. (Tokyo) 1982, 35, 858–865. [CrossRef]

60. Dicicco, M.; Neethirajan, S.; Weese, J.S.; Singh, A. In vitro synergism of fosfomycin and clarithromycin antimicrobials against methicillin-resistant Staphylococcus pseudintermedius. BMC Microbiol. 2014, 14, 129. [CrossRef]

61. Rodriguez, A.; Vicente, M.V.; Olay, T. Single- and combination-antibiotic therapy for experimental endocarditis caused by methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1987, 31, 1444–1445. [CrossRef]

62. Shi, J.; Mao, N.F.; Wang, L.; Zhang, H.B.; Chen, Q.; Liu, H.; Tang, X.; Jin, T.; Zhu, C.T.; Li, F.B.; et al. Efficacy of combined vancomycin and fosfomycin against methicillin-resistant Staphylococcus aureus in biofilms in vivo. PloS ONE 2014, 9, e113133. [CrossRef] [PubMed]

63. Coronado-Alvarez, N.M.; Parra, D.; Parra-Ruiz, J. Clinical efficacy of fosfomycin combinations against a variety of Gram-positive cocci. Enferm. Infec. Microbiol. Clin. 2019, 37, 4–10. [CrossRef] [PubMed]

64. Shankar, C.; Nabarro, L.E.B.; Anandan, S.; Veeraraghavan, B. Minocycline and Tigecycline: What Is Their Role in the Treatment of Carbapenem-Resistant Gram-Negative Organisms? Microb. Drug Resist. 2017, 23, 437–446. [CrossRef] [PubMed]

65. Zhang, Y.; Chen, F.; Sun, E.; Ma, R.; Qu, C.; Ma, L. In vitro antibacterial activity of combinations of fosfomycin, minocycline and polymyxin B on pan-drug-resistant Acinetobacter baumannii. Exp. Ther. Med. 2013, 5, 1737–1739. [CrossRef]
66. Daza, R.; Moreno Lopez, M.; Damaso, D. Interactions of fosfomycin with other antibiotics. *Chemotherapy* 1977, 23, 86–92. [CrossRef]

67. Descourouez, J.L.; Jorgenson, M.R.; Wergin, J.E.; Rose, W.E. Fosfomycin synergy in vitro with amoxicillin, daptomycin, and linezolid against vancomycin-resistant enterococcus faecium from renal transplant patients with infected urinary stents. *Antimicrob. Agents Chemother.* 2013, 57, 1518–1520. [CrossRef]

68. Davis, H.; Brown, R.; Ashcraft, D.; Pankey, G. In Vitro Synergy with Fosfomycin Plus Doxycycline Against Linezolid and Vancomycin-resistant Enterococcus faecium. *J. Glob. Antimicrob. Resist.* 2020, 22, 78–83. [CrossRef]

69. Tang, H.-J.; Chen, C.-C.; Cheng, K.-C.; Toh, H.-S.; Su, B.-A.; Chiang, S.-R.; Ko, W.-C.; Chuang, Y.-C. In vitro efficacy of fosfomycin-containing regimens against methicillin-resistant Staphylococcus aureus in biofilms. *J. Antimicrob. Chemother.* 2012, 67, 944–950. [CrossRef]

70. Sun, C.; Falagas, M.E.; Wang, R.; Karageorgopoulos, D.E.; Yu, X.; Liu, Y.; Cai, Y.; Liang, B.; Song, X.; Liu, Z. In vitro activity of minocycline combined with fosfomycin against clinical isolates of methicillin-resistant Staphylococcus aureus. *J. Antibi. (Tokyo)* 2011, 64, 559–562. [CrossRef]

71. Crémières, A.-C.; Dinh, A.; Nordmann, P.; Mouton, W.; Tettelin, P.; Ghout, I.; Jayol, A.; Aimer, O.; Gatin, L.; Verdier, M.-C.; et al. Efficacy of colistin alone and in various combinations for the treatment of experimental osteomyelitis due to carbapenemase-producing Klebsiella pneumoniae. *J. Antimicrob. Chemother.* 2019, 74, 2666–2675. [CrossRef]

72. Ku, N.S.; Lee, S.H.; Lim, Y.S.; Choi, H.; Ahn, J.Y.; Jeong, S.J.; Shin, S.J.; Choi, J.Y.; Choi, Y.H.; Yeom, J.S.; et al. In vivo efficacy of combination of colistin with fosfomycin or minocycline in a mouse model of multidrug-resistant Acinetobacter baumannii pneumonia. *Sci. Rep.* 2019, 9, 17127. [CrossRef] [PubMed]

73. Corvec, S.; Tafin, U.F.; Betrisey, B.; Borens, O.; Trampuz, A. Activities of fosfomycin, tigecycline, colistin, and gentamicin against extended-spectrum-lactamase-producing escherichia coli in a foreign-body infection model. *Antimicrob. Agents Chemother.* 2013, 57, 1421–1427. [CrossRef] [PubMed]

74. Evren, E.; Azap, Ö.K.; Çolakoğlu, Ş.; Arslan, H. In vitro activity of fosfomycin in combination with imipenem, meropenem, colistin and tigecycline against OXA 48-positive Klebsiella pneumoniae strains. *Diagn. Microbiol. Infect. Dis.* 2013, 76, 335–338. [CrossRef] [PubMed]

75. Bulman, Z.P.; Zhao, M.; Satlin, M.J.; Chen, L.; Kreiswirth, B.N.; Walsh, T.J.; Nation, R.L.; Li, J.; Tsuji, B.T. Polymyxin B and fosfomycin thwart KPC-producing Klebsiella pneumoniae in the hollow-fibre infection model. *Int. J. Antimicrob. Agents* 2018, 52, 114–118. [CrossRef] [PubMed]

76. Walsh, C.C.; Landersdorfer, C.B.; McIntosh, M.P.; Peleg, A.Y.; Hirsch, E.B.; Kirkpatrick, C.M.; Bergen, P.J. Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of *Pseudomonas aeruginosa*, but do not suppress the emergence of fosfomycin resistance. *J. Antimicrob. Chemother.* 2016, 71, 2218–2229. [CrossRef] [PubMed]

77. Heidary, M.; Khosravi, A.D.; Khoshnood, S.; Nasiri, M.J.; Soleimani, S.; Goudarzi, M. Daptomycin. *Antimicrob. Agents Chemother.* 2012, 67, 944–950. [CrossRef]

78. Aktas, G.; Derbentli, S. In vitro activity of daptomycin-combinations with rifampicin, gentamicin, fosfomycin and fusidic acid against MRSA strains. *J. Glob. Antimicrob. Resist.* 2017, 10, 223–227. [CrossRef]

79. Lingscheid, T.; Poeppl, W.; Bernitzky, D.; Veletzky, L.; Kussmann, M.; Plasenzotti, R.; Burgmann, H. Daptomycin plus fosfomycin: A synergistic combination in experimental plant-associated MRSA-osteomyelitis in rats. *Antimicrob. Agents Chemother.* 2014, 59, 1–16. [CrossRef]

80. Rice, L.B.; Eliopoulos, C.T.; Yao, J.D.C.; Eliopoulos, G.M.; Moellerding, R.C. In vivo activity of the combination of daptomycin and fosfomycin compared with daptomycin alone against a strain of Enterococcus faecalis with high-level gentamicin resistance in the rat endocarditis model. *Diagn. Microbiol. Infect. Dis.* 1992, 15, 173–176. [CrossRef]
83. Leite, G.C.; Oliveira, M.S.; Perdigão-Neto, L.V.; Rocha, C.K.D.; Guimarães, T.; Rizek, C.; Levin, A.S.; Costa, S.F. Antimicrobial combinations against pan- resistant acinetobacter baumannii isolates with different resistance mechanisms. *PLoS ONE* **2016**, *11*, e0151270. [CrossRef] [PubMed]

84. Ku, Y.H.; Chen, C.C.; Lee, M.F.; Chuang, Y.C.; Tang, H.J.; Yu, W.L. Comparison of synergism between colistin, fosfomycin and ticagyceline against extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates or with carbapenem resistance. *J. Microbiol. Immunol. Infect.* **2017**, *50*, 931–939. [CrossRef] [PubMed]

85. Berçot, B.; Poirel, L.; Dortet, L.; Nordmann, P. In vitro evaluation of antibiotic synergy for NDM-1-producing Enterobacteriaceae. *J. Antimicrob. Chemother.* **2011**, *66*, 2295–2297. [CrossRef] [PubMed]

86. Samonis, G.; Maraki, S.; Karageorgopoulos, D.E.; Vouloumanou, E.K.; Falagas, M.E. Synergy of fosfomycin with carbapenems, colistin, netilimicin, and ticagyceline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. *Eur. J. Clin. Microbiol. Infect. Dis.* **2012**, *31*, 695–701. [CrossRef] [PubMed]

87. Papoutsaki, V.; Galani, I.; Papadimitriou, E.; Karantani, I.; Karaiskos, I.; Giamarellou, H. Evaluation of in vitro methods for testing ticagyceline combinations against carbapenemase-producing Klebsiella pneumoniae isolates. *J. Glob. Antimicrob. Resist.* **2020**, *9*, 98–104. [CrossRef]

88. Huang, L.; Wang, M.; Sun, L. Synergy Testing by E-Test and Microdilution Checkerboard for Fosfomycin Combined with Ticagyceline against KPC-Producing Klebsiella pneumoniae. *Clin. Lab.* **2019**, *65*, 2369–2375. [CrossRef]

89. Yu, W.; Shen, P.; Bao, Z.; Zhou, K.; Zheng, B.; Ji, J.; Guo, L.; Huang, C.; Xiao, Y. In vitro antibacterial activity of fosfomycin combined with other antimicrobials against KPC-producing Klebsiella pneumoniae. *Int. J. Antimicrob. Agents* **2017**, *50*, 237–241. [CrossRef]

90. Simonetti, O.; Morroni, G.; Ghiselli, R.; Orlando, F.; Benciani, A.; Xuvelaj, L.; Provinciali, M.; Offidani, A.; Guerrieri, M.; Giacometti, A.; et al. In vitro and in vivo activity of fosfomycin alone and in combination with rifampin and ticagyceline against Grampositive cocci isolated from surgical wound infections. *J. Med. Microbiol.* **2018**, *67*, 139–143. [CrossRef]

91. Tang, H.J.; Chen, C.C.; Cheng, K.C.; Wu, K.Y.; Lin, Y.C.; Zhang, C.C.; Weng, T.C.; Yu, W.L.; Chiu, Y.H.; Toh, H.S.; et al. In vitro efficacies and resistance profiles of rifampin-based combination regimens for biofilm-embedded methicillin-resistant Staphylococcus aureus. *Antimicrob. Agents Chemother.* **2013**, *57*, 5717–5720. [CrossRef] [PubMed]

92. Batts, D. Linezolid—a New Option for Treating Gram-Positive Infections. *Oncology (Willist. Park.)* **2000**, *14*, 23–29. [CrossRef]

93. Hashemian, S.M.R.; Farhadi, T.; Ganjparvar, M. Linezolid: A review of its properties, function, and use in critical care. *Drug Des. Devel. Ther.* **2018**, *12*, 1759–1767. [CrossRef] [PubMed]

94. Chai, D.; Liu, X.; Wang, R.; Bai, Y.; Cai, Y. Efficacy of Linezolid and Fosfomycin in Catheter-Related Biofilm Infection Caused by Methicillin-Resistant Staphylococcus aureus. *Biomed Res. Int.* **2016**, *2016*, 6413982. [CrossRef] [PubMed]

95. Li, L.; Chen, H.; Liu, Y.; Xu, S.; Wu, M.; Liu, Z.; Qi, C.; Zhang, G.; Li, J.; Huang, X. Synergistic effect of linezolid with fosfomycin against Staphylococcus aureus in vitro and in an experimental Galleria mellonella model. *J. Microbiol. Immunol. Infect.* **2018**, S1684-1182(18)30538-3. [CrossRef] [PubMed]

96. Mihailescuc, R.; Tafin, U.F.; Corvec, S.; Oliva, A.; Betrisley, B.; Borens, O.; Trampuza, A. High activity of fosfomycin and rifampin against meticillin-resistant staphylococcus aureus biofilm in vitro and in an experimental foreign-body infection model. *Antimicrob. Agents Chemother.* **2014**, *58*, 2547–2553. [CrossRef] [PubMed]

97. Blacky, A.; Makristathis, A.; Apfarler, P.; Willinger, B.; Rotter, M.L.; Hirschl, A.M. In vitro activity of fosfomycin alone and in combination with amoxicillin, clarithromycin and metronidazole against Helicobacter pylori compared with combined clarithromycin and metronidazole. *Eur. J. Clin. Microbiol. Infect. Dis.* **2005**, *24*, 276–279. [CrossRef]

98. Nord, C.; Lahnborg, G. Efficacy of Metronidazole and Fosfomycin Alone and in Combination in the Treatment of Experimentally Induced Intra-Abdominal Infections. *Scand. J. Gastroenterol.* Suppl. **1984**, *80*, 15–19. [CrossRef]

99. Santimaleeworagun, W.; Wongpoowarak, P.; Chayakul, P.; Pattharachayakul, S.; Tansakul, P.; Garey, K.W. In vitro activity of colistin or sulbactam in combination with fosfomycin or imipenem against clinical isolates
of carbapenem-resistant acinetobacter baumannii producing OXA-23 carbapenemases. Southeast Asian J. Trop. Med. Public Health 2011, 42, 890–900.

100. Duez, J.M.; Adochitei, A.; Péchinot, A.; Siebor, E.; Sixt, N.; Neuwirth, C. In vitro combinations of five intravenous antibiotics with Dallopristin-Quinupristin against staphylococcus aureus in a 3-dimensional model. J. Chemother. 2008, 20, 684–689. [CrossRef]

101. Yu, X.H.; Song, X.J.; Cai, Y.; Liang, B.B.; Lin, D.F.; Wang, R. In vitro activity of two old antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus. J. Antibiot. (Tokyo) 2010, 63, 657–659. [CrossRef]

102. Drugeon, H.; Caillon, J.; Juvin, M. In-vitro Antibacterial Activity of Fusidic Acid Alone and in Combination With Other Antibiotics Against Methicillin-Sensitive and -Resistant Staphylococcus Aureus. J. Antimicrob. Chemother. 1994, 34, 899–907. [CrossRef]

103. Schwarz, S.; Keohrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Lett. 2004, 28, 519–524. [CrossRef] [PubMed]

104. Perea, E.J.; Torres, M.A.; Borobio, M.V. Synergism of fosfomycin-ampicillin and fosfomycin-chloramphenicol against Salmonella and Shigella. Antimicrob. Agents Chemother. 1978, 13, 705–709. [CrossRef] [PubMed]

105. Figueroa, J.; Baquero, G.; Otal, C.; Rodriguez, A. Treatment of typhoid fever with fosfomycin alone and associated to chloramphenicol or ampicillin. Chemotherapy 1977, 23, 365–377. [CrossRef] [PubMed]

106. Masters, P.A.; O’Bryan, T.A.; Zurlo, J.; Miller, D.Q.; Joshi, N. Trimethoprim-sulfamethoxazole revisited. Arch. Intern. Med. 2003, 163, 402–410. [CrossRef]

107. She, P.; Zhou, L.; Li, S.; Liu, Y.; Xu, L.; Chen, L.; Luo, Z.; Wu, Y. Synergistic Microbicidal Effects of Chlorogenic Acid and Ca(2+) on Staphylococcus aureus. Front. Microbiol. 2019, 10, 2453. [CrossRef]

108. Domalaon, R.; Brizuela, M.; Eisner, B.; Findlay, B.; Zhanel, G.G.; Schweizer, F. Dilipid ultrashort cationic lipopeptides as adjuvants for chloramphenicol and other conventional antibiotics against Gram-negative bacteria. Amino Acids 2019, 51, 383–393. [CrossRef]

109. Wang, H.; Wang, H.; Yu, X.; Zhou, H.; Li, B.; Chen, G.; Ye, Z.; Wang, Y.; Cui, X.; Zheng, Y.; et al. Impact of antimicrobial stewardship managed by clinical pharmacists on antibiotic use and drug resistance in a Chinese hospital, 2010–2016: A retrospective observational study. BMJ Open 2019, 9, e026072. [CrossRef]

110. Lyu, Y.; Domalaon, R.; Yang, X.; Schweizer, F. Amphiphilic lysine conjugated to tobramycin synergizes legacy antibiotics against wild-type and multidrug-resistant pseudomonas aeruginosa. Pept. Sci. 2019, 111, e23091. [CrossRef]

111. Akbari-Ayezloy, E.; Hosseini-Jazani, N.; Yousefi, S.; Habibi, N. Eradication of methicillin resistant S. aureus biofilm by the combined use of fosfomycin and β-chloro-L-alanine. Iran. J. Microbiol. 2017, 9, 1–10.

112. Breidenstein, E.B.M.; Courvalin, P.; Meziane-Cherif, D. Antimicrobial activity of plectasin NZ2114 and Antibiotics Against Planktonic and Biofilm-Encased S. aureus and E. faecalis. Front. Microbiol. 2019, 10, 2435. [CrossRef]

113. Sakagami, Y.; Komemushi, S.; Tsukamoto, G.; Kondo, H.; Yoshikawa, A.; Muraoka, O. Anti-vRE and anti-MRSA activities of new quinolones and their synergism with conventional antibiotics. Part 2. Biocontrol. Sci. 2008, 13, 103–109. [CrossRef] [PubMed]

114. Marchese, A.; Bozzolasco, M.; Gualco, L.; Debbia, E.A.; Schito, G.C.; Schito, A.M. Effect of fosfomycin alone and in combination with N-acetylcysteine on E. coli biofilms. Int. J. Antimicrob. Agents 2003, 22, 95–100. [CrossRef]

115. Sakagami, Y.; Mimura, M.; Kajimura, K.; Yokoyama, H.; Inumasa, M.; Tanaka, T.; Ohyama, M. Anti-MRSA activity of sophoraflavanone G and synergism with other antibacterial agents. Lett. Appl. Microbiol. 1998, 27, 98–100. [CrossRef] [PubMed]

116. Dulaney, E.L.; Jacobsen, C.A. Synergy between fosfomycin and arenaemycin. J. Antibiots (Tokyo) 1988, 41, 982–983. [CrossRef]

117. Zhang, F.; Zhai, T.; Haider, S.; Liu, Y.; Huang, Z.J. Synergistic Effect of Chlorogenic Acid and Caffeic Acid with Fosfomycin on Growth Inhibition of a Resistant Listeria monocytogenes Strain. ACS Omega 2020, 5, 7537–7544. [CrossRef]

118. Abo-Shama, U.H.; El-Gendy, H.; Mousa, W.S.; Hamouda, R.A.; Yousuf, W.E.; Hetta, H.F.; Abdeen, E.E. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms. Infect. Drug Resist. 2020, 13, 351–362. [CrossRef]
119. Seok, H.; Choi, J.Y.; Wi, Y.M.; Park, D.W.; Peck, K.R.; Ko, K.S. Fosfomycin resistance in escherichia coli isolates from south korea and in vitro activity of fosfomycin alone and in combination with other antibiotics. *Antibiotics* **2020**, *9*, 112. [CrossRef]

120. Hickman, R.A.; Hughes, D.; Cars, T.; Malmberg, C.; Cars, O. Cell-wall-inhibiting antibiotic combinations with activity against multidrug-resistant Klebsiella pneumoniae and Escherichia coli. *Clin. Microbiol. Infect.* **2014**, *20*, O267–O273. [CrossRef]

121. Borowski, J.; Linda, H. Combined action of fosfomycin with β-lactam and aminoglycoside antibiotics. *Chemotherapy* **1977**, *23*, 82–85. [CrossRef]

122. Takahashi, K.; Kanno, H. Synergistic activities of combinations of β-lactams, fosfomycin, and tobramycin against Pseudomonas aeruginosa. *Antimicrob. Agents Chemother.* **1984**, *26*, 789–791. [CrossRef]

123. Ferrara, A.; Dos Santos, C.; Cimbro, M.; Gialdroni Grassi, G. Efficacy of different combinations of ceftriaxone, oxacillin, and fosfomycin against methicillin-resistant staphylococci. *Eur. J. Clin. Microbiol. Infect. Dis.* **1997**, *16*, 535–537. [CrossRef] [PubMed]

124. Komatsu, H.; Suzuki, J.; Sugai, M.; Miyake, Y.; Suginaka, H. Effect of Combination of Oxacillin and Non-Beta-Lactam Antibiotics on Methicillin-Resistant Staphylococcus Aureus. *J. Antimicrob. Chemother.* **1994**, *33*, 1155–1163. [CrossRef] [PubMed]

125. Bañon Arias, R.; García Lópe, M.; Pinedo Sánchez, A. Time–kill evaluation of antimicrobial regimens against clinical isolates of penicillin-resistant Streptococcus pneumoniae. *J. Chemother.* **2001**, *13*, 535–540. [CrossRef] [PubMed]

126. Farina, C.; Russello, G.; Chinello, P.; Pastici, M.B.; Raglio, A.; Ravasio, V.; Rizzi, M.; Scarparo, C.; Vailati, F.; Suter, F. In vitro activity of dicloxacillin and ciprofloxacin against Pseudomonas aeruginosa. *Eur. J. Clin. Microbiol. Infect. Dis.* **1997**, *16*, 535–537. [CrossRef] [PubMed]

127. Pestel, M.; Martin, E.; Aucouturier, C.; Lemeland, J.F.; Caron, F. In vitro interactions between different β-lactam antibiotics and fosfomycin against bloodstream isolates of enterococci. *Antimicrob. Agents Chemother.* **1995**, *39*, 2341–2344. [CrossRef] [PubMed]

128. Kikuchi, K.; Totsuka, K.; Shimizu, K.; Ishii, T.; Yoshida, T.; Orikasa, Y. Efficacy of Combination of Benzylpenicillin and Fosfomycin on Penicillin-Resistant Streptococcus pneumoniae. *Microb. Drug Resist.* **1995**, *1*, 185–189. [CrossRef] [PubMed]

129. Pestel, M.; Martin, E.; Aucouturier, C.; Lemeland, J.F.; Caron, F. In vitro interactions between different β-lactam antibiotics and fosfomycin against bloodstream isolates of enterococci. *Antimicrob. Agents Chemother.* **1995**, *39*, 2341–2344. [CrossRef] [PubMed]

130. Hayami, H.; Goto, T.; Kawahara, M.; Ohk, Y. Activities of β-lactams, fluoroquinolones, amikacin and fosfomycin alone and in combination against Pseudomonas aeruginosa isolated from complicated urinary tract infections. *J. Infect. Chemother.* **1999**, *5*, 130–138. [CrossRef]

131. Tessier, F.; Quentin, C. In vitro activity of fosfomycin combined with ceftazidime, imipenem, amikacin, and ciprofloxacin against Pseudomonas aeruginosa. *Eur. J. Clin. Microbiol. Infect. Dis.* **1997**, *16*, 159–162. [CrossRef] [PubMed]

132. Martinez-Martinez, L.; Rodriguez, G.; Pascual, A.; Suárez, A.; Perea, E.J. In-vitro Activity of Antimicrobial Agent Combinations Against Multiresistant Acinetobacter Baumannii. *J. Antimicrob. Chemother.* **1996**, *38*, 1107–1108. [CrossRef]

133. Matsuda, K.; Asahi, Y.; Nakagawa, S.; Tanaka, N.; Inoue, M. In-vitro Activity of Imipenem Combined With Beta-Lactam Antibiotics for Methicillin-Resistant Staphylococcus Aureus. *J. Antimicrob. Chemother.* **1991**, *27*, 809–815. [CrossRef] [PubMed]

134. Doit, C.P.; Bonacorsi, S.P.; Fremaux, A.J.; Sissia, G.; Cohen, R.; Geslin, P.L.; Bingen, E.H. In vitro killing activities of antibiotics at clinically achievable concentrations in cerebrospinal fluid against penicillin-resistant Streptococcus pneumoniae isolated from children with meningitis. *Antimicrob. Agents Chemother.* **1994**, *38*, 2655–2659. [CrossRef] [PubMed]

135. Barakett, V.; Lesage, D.; Delisle, F.; Burghoffer, B.; Richard, G.; Vergez, P.; Petit, J. Synergy of Cefotaxime and Fosfomycin Against Penicillin-Resistant Pneumococci. *J. Antimicrob. Chemother.* **1993**, *31*, 105–109. [CrossRef] [PubMed]
136. Barbee, L.A.; Soge, O.O.; Holmes, K.K.; Golden, M.R. In vitro synergy testing of novel antimicrobial combination therapies against Neisseria gonorrhoeae. J. Antimicrob. Chemother. 2014, 69, 1572–1578. [CrossRef] [PubMed]

137. Sugathan, S.; Mandal, J. An invitro experimental study of the effect of fosfomycin in combination with amikacin, ciprofloxacin or meropenem on biofilm formation by multidrug-resistant urinary isolates of Escherichia coli. J. Med. Microbiol. 2019, 68, 1699–1706. [CrossRef] [PubMed]

138. Loose, M.; Link, I.; Naber, K.G.; Wagenlehner, F.M.E. Carbapenem-Containing Combination Antibiotic Therapy against Carbapenem-Resistant Uropathogenic Enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 64, e01839-19. [CrossRef]

139. Lingscheid, T; Tobudic, S.; Poeppl, W.; Mitteregger, D.; Burgmann, H. In vitro activity of doripenem plus fosfomycin against drug-resistant clinical blood isolates. Pharmacology 2013, 91, 214–218. [CrossRef]

140. Netikul, T.; Leelaporn, A.; Leelarasmee, A.; Kiratisin, P. In vitro activities of fosfomycin and carbapenem combinations against carbapenem non-susceptible Escherichia coli and Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2010, 35, 609–610. [CrossRef]

141. Bakhthavatchalam, Y.D.; Shankar, A.; Muthuirulandi Sethuvel, D.P.; Asokan, K.; Kanthan, K.; Veeraraghavan, B. Synergistic activity of fosfomycin-meropenem and fosfomycin-colistin against carbapenem resistant Klebsiella pneumoniae: An in vitro evidence. Futur. Sci. OA 2020, 6, FSO461. [CrossRef]

142. Erturk Sengel, B.; Altinkanat Gelmez, G.; Soyletir, G.; Korten, V. In vitro synergistic activity of fosfomycin in combination with meropenem, amikacin and colistin against OXA-48 and/or NDM-producing Klebsiella pneumoniae. J. Chemother. 2020, 32, 1–7. [CrossRef]

143. Perdigão Neto, L.V.; Oliveira, M.S.; Martins, R.C.R.; Marchi, A.P.; Gaudereto, J.J.; da Costa, L.A.T.J.; de Lima, L.F.A.; Takeda, C.F.V.; Costa, S.F.; Levin, A.S. Fosfomycin in severe infections due to genetically distinct pan-drug-resistant Gram-negative microorganisms: Synergy with meropenem. J. Antimicrob. Chemother. 2019, 74, 177–181. [CrossRef] [PubMed]

144. Tseng, S.-P.; Wang, S.-F.; Ma, L.; Wang, T.-Y.; Yang, T.-Y.; Siu, L.K.; Chuang, Y.-C.; Lee, P.-S.; Wang, J.-T.; Wu, T.-L.; et al. The plasmid-mediated fosfomycin resistance determinants and synergy of fosfomycin and meropenem in carbapenem-resistant Klebsiella pneumoniae isolates in Taiwan. J. Microbiol. Immunol. Infect. 2017, 50, 653–661. [CrossRef] [PubMed]

145. Albiero, J.; Sy, S.K.B.; Mazucheli, J.; Caparroz-Assef, S.M.; Costa, B.B.; Alves, J.L.B.; Gales, A.C.; Tognim, M.C.B. Pharmacodynamic evaluation of the potential clinical utility of fosfomycin and meropenem in combination therapy against KPC-2-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2016, 60, 4128–4139. [CrossRef] [PubMed]

146. Tängdén, T.; Hickman, R.A.; Forsberg, P.; Lagerbäck, P.; Giske, C.G.; Cars, O. Evaluation of double- and triple-antibiotic combinations for VIM- and NDM-producing klebsiella pneumonias by in vitro time-kill experiments. Antimicrob. Agents Chemother. 2014, 58, 1757–1762. [CrossRef] [PubMed]

147. Albiero, J.; Mazucheli, J.; Dos Reis Barros, J.P.; Dos Anjos Szczerapek, M.M.; Belini Nishiyma, S.A.; Carrara-Marroni, F.E.; Sy, S.; Fidler, M.; Sy, S.K.B.; Bronharo Tognim, M.C. Pharmacodynamic attainment of the synergism of meropenem and fosfomycin combination against pseudomonas aeruginosa producing metallo-lactamase. Antimicrob. Agents Chemother. 2019, 63, e00126-19. [CrossRef] [PubMed]

148. Drusano, G.L.; Neely, M.N.; Yamada, W.M.; Duncanson, B.; Brown, D.; Maynard, M.; Vicchiarelli, M.; Louie, A. The Combination of Fosfomycin plus Meropenem Is Synergistic for Pseudomonas aeruginosa PAO1 in a Hollow-Fiber Infection Model. Antimicrob. Agents Chemother. 2018, 62, e01682-18. [CrossRef]

149. Hamou-Segarra, M.; Zamorano, L.; Vadlamani, G.; Chu, M.; Sanchez-Diener, I.; Juan, C.; Blazquez, J.; Hattie, M.; Stubbs, K.A.; Mark, B.L.; et al. Synergistic activity of fosfomycin, β-lactams and peptidoglycan recycling inhibition against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2017, 72, 448–454. [CrossRef]

150. Kunakonvichaya, B.; Thirapanmethee, K.; Khuntayaporn, P.; Montakantikul, P.; Chomnawang, M.T. Synergistic effects of fosfomycin and carbapenems against carbapenem-resistant Pseudomonas aeruginosa clinical isolates. Int. J. Antimicrob. Agents 2015, 45, 556–557. [CrossRef]

151. Zhu, W.; Wang, Y.; Cao, W.; Cao, S.; Zhang, J. In vitro evaluation of antimicrobial combinations against imipenem-resistant Acinetobacter baumannii of different MICs. J. Infect. Public Health 2018, 11, 856–860. [CrossRef]
152. Singkham-in, U.; Chatsuwan, T. In vitro activities of carbapenems in combination with amikacin, colistin, or fosfomycin against carbapenem-resistant Acinetobacter baumannii clinical isolates. *Diagn. Microbiol. Infect. Dis.* 2018, 91, 169–174. [CrossRef]
153. Guggenbichler, I.P.; Berchtold, D.; Allerberger, F.; Bonatti, H.; Hager, J.; Pfaller, W.; Dierich, M.P. In vitro and in vivo effect of antibiotics on catheters colonized by staphylococci. *Eur. J. Clin. Microbiol. Infect. Dis.* 1992, 11, 408–415. [CrossRef] [PubMed]
154. Debbia, E.; Pesce, A.; Schito, G.C. In vitro interactions between teicoplanin and other antibiotics against enterococci and staphylococci. *J. Hosp. Infect.* 1986, 7, 73–77. [CrossRef]
155. Wang, L.; Di Luca, M.; Tkhilaishvili, T.; Trampuz, A.; Gonzalez Moreno, M. Synergistic Activity of Fosfomycin, Ciprofloxacin, and Gentamicin Against Escherichia coli and Pseudomonas aeruginosa Biofilms. *Front. Microbiol.* 2019, 10, 2522. [CrossRef] [PubMed]
156. Liu, Y.; Li, H.; Zhang, Y.; Ye, Y.; Gao, Y.; Li, J. In vitro and in vivo activity of ciprofloxacin/fosfomycin combination therapy against ciprofloxacin-resistant Shigella flexneri isolates. *Infect. Drug Resist.* 2019, 12, 1619–1628. [CrossRef]
157. Yamada, S.; Hyo, Y.; Ohmori, S.; Ohuchi, M. Role of ciprofloxacin in its synergistic effect with fosfomycin on drug-resistant strains of *Pseudomonas aeruginosa*. *Chemotherapy* 2007, 53, 202–209. [CrossRef]
158. Monden, K.; Ando, E.; Iida, M.; Kumon, H. Role of fosfomycin in a synergistic combination with ofloxacin against *Pseudomonas aeruginosa* growing in a biofilm. *J. Infect. Chemother.* 2002, 8, 218–226. [CrossRef]
159. Kumon, H.; Ono, N.; Iida, M.; Nickel, J.C. Combination effect of fosfomycin and ofloxacin against *Pseudomonas aeruginosa* growing in a biofilm. *Antimicrob. Agents Chemother.* 1995, 39, 1038–1044. [CrossRef]
160. Xiong, Y.Q.; Potel, G.; Caillon, J.; Stephant, G.; Jehl, F.; Bugnon, D.; Le Conte, P.; Baron, D.; Drugeon, H. Comparative efficacies of ciprofloxacin and pefloxacin alone or in combination with fosfomycin in experimental endocarditis induced by multidrug-susceptible and -resistant *Pseudomonas aeruginosa*. *Antimicrob. Agents Chemother.* 1995, 39, 496–499. [CrossRef]
161. Vogt, K.; Hahn, H. Synergism between Ciprofloxacin and Fosfomycin against Gram-negative Bacteria in vitro. *Zentralblatt fur Bakteriol.* 1989, 272, 225–230. [CrossRef]
162. Figueredo, V.; Neu, H. Synergy of Ciprofloxacin With Fosfomycin in Vitro Against *Pseudomonas* Isolates From Patients With Cystic Fibrosis. *J. Antimicrob. Chemother.* 1988, 22, 41–50. [CrossRef]
163. Weber, P.; Boussougant, Y.; Ichou, F.; Dutout, C.; Carbon, C. Bactericidal Effect of Ofloxacin Alone and Combined With Fosfomycin or Vancomycin Against *Staphylococcus Aureus* in Vitro and in Sera From Volunteers. *J. Antimicrob. Chemother.* 1987, 20, 839–847. [CrossRef] [PubMed]
164. Yu, W.; Luo, Q.; Shi, Q.; Huang, C.; Yu, X.; Niu, T.; Zhou, K.; Zhang, J.; Xiao, Y. In vitro antibacterial effect of fosfomycin combination therapy against colistin-resistant *Klebsiella pneumoniae*. *Infect. Drug Resist.* 2018, 11, 577–585. [CrossRef] [PubMed]
165. Li Bassi, G.; Motos, A.; Fernandez-Barat, L.; Aguilera Xiol, E.; Chiurazzi, C.; Senussi, T.; Saco, M.A.; Fuster, C.; Carbonara, M.; Bobi, J.; et al. Nebulized Amikacin and Fosfomycin for Severe *Pseudomonas aeruginosa* growing in a biofilm. *Antimicrob. Agents Chemother.* 1995, 59, 6039–6045. [CrossRef]
166. Diez-Aguilar, M.; Morosini, M.I.; Tedim, A.P.; Rodriguez, I.; Aktaş, Z.; Cantón, R. Antimicrobial activity of fosfomycin-tobramycin combination against *Pseudomonas aeruginosa* isolates assessed by time-kill assays and mutant prevention concentrations. *Antimicrob. Agents Chemother.* 2015, 59, 6039–6045. [CrossRef] [PubMed]
167. McCaughey, G.; McKeivitt, M.; Elborn, J.S.; Tunney, M.M. Antimicrobial activity of fosfomycin and tobramycin in combination against cystic fibrosis pathogens under aerobic and anaerobic conditions. *J. Cyst. Fibros.* 2012, 11, 163–172. [CrossRef] [PubMed]
168. Cai, Y.; Fan, Y.; Wang, R.; An, M.-M.; Liang, B.-B. Synergistic effects of aminoglycosides and fosfomycin on *Pseudomonas aeruginosa* in vitro and biofilm infections in a rat model. *J. Antimicrob. Chemother.* 2009, 64, 563–566. [CrossRef]
169. Chinvuba, Z.G.; Chiiori, C.O.; GhoaBashe, A.A.; Okore, V.C. Determination of the synergy of antibiotic combinations by an overlay inoculum susceptibility disc method. *Arzneimittelforschung* 1991, 41, 148–150.
170. López Díaz, M.C.; Ríos, E.; Rodriguez-Avial, I.; Simaluzia, R.J.; Picazo, J.J.; Culebras, E. In-vitro activity of several antimicrobial agents against methicillin-resistant *Staphylococcus aureus* (MRSA) isolates expressing...
aminoglycoside-modifying enzymes: Potency of plazomicin alone and in combination with other agents. *Int. J. Antimicrob. Agents* **2017**, *50*, 191–196. [CrossRef]

171. Morikawa, K.; Nonaka, M.; Yoshikawa, Y.; Torii, I. Synergistic effect of fosfomycin and arbekacin on a methicillin-resistant *Staphylococcus aureus*-induced biofilm in a rat model. *Int. J. Antimicrob. Agents* **2005**, *25*, 44–50. [CrossRef]

172. Kono, K.; Takeda, S.; Tataria, I.; Arakawa, K. In vitro activities of arbekacin, alone and in combination, against methicillin-resistant *Staphylococcus aureus*. *Jpn. J. Antibioto*. **1994**, *47*, 710–719.

173. MacLeod, D.L.; Barker, L.M.; Sutherland, J.L.; Moss, S.C.; Gurgel, J.L.; Kenney, T.F.; Burns, J.L.; Baker, W.R. Antibacterial activities of a fosfomycin/tobramycin combination: A novel inhaled antibiotic for bronchiectasis. *J. Antimicrob. Chemother.* **2009**, *64*, 829–836. [CrossRef] [PubMed]

174. Xu, X.; Xu, L.; Yuan, G.; Wang, Y.; Qu, Y.; Zhou, M. Synergistic combination of two antimicrobial agents closing each other’s mutant selection windows to prevent antimicrobial resistance. *Sci. Rep.* **2018**, *8*, 7237. [CrossRef] [PubMed]

175. Tang, H.J.; Chen, C.C.; Ko, W.C.; Yu, W.L.; Chiang, Y.C. In vitro efficacy of antimicrobial agents against high-inoculum or biofilm-embedded meticillin-resistant *Staphylococcus aureus* with vancomycin minimal inhibitory concentrations equal to 2 µg/mL (VA2-MRSA). *Int. J. Antimicrob. Agents* **2011**, *38*, 46–51. [CrossRef] [PubMed]

176. Pistella, E.; Falcone, M.; Baiocchi, P.; Pompeo, M.E.; Perciaccante, A.; Penni, A.; Venditti, M. In vitro activity of fosfomycin in combination with vancomycin or teicoplanin against *Staphylococcus aureus* isolated from device-associated infections unresponsive to glycopeptide therapy. *Infez. Med*. **2005**, *13*, 97–102. [PubMed]

177. Gatermann, S.; Marre, R.; Schulz, E. The microbiological efficacy of the combination of fosfomycin and vancomycin against clinically relevant *staphylococci*. *Infection* **1989**, *17*, 35–37. [CrossRef] [PubMed]

178. Debbia, E.; Varaldo, P.E.; Schito, G.C. In vitro activity of imipenem against enterococci and *staphylococci* and evidence for high rates of synergism with teicoplanin, fosfomycin, and rifampin. *Antimicrob. Agents Chemother.* **1986**, *30*, 813–815. [CrossRef]

179. Gaillard, J.L.; Merlino, R.; Pajot, N.; Fauchere, J.L.; Ricour, C.; Veron, M. Conventional and nonconventional modes of vancomycin administration to decontaminate the internal surface of catheters colonized with coagulase-negative *staphylococci*. *J. Parenter. Enter. Nutr.* **1990**, *14*, 593–597. [CrossRef] [PubMed]

180. Simon, V.; Simon, M. Antibacterial Activity of Teicoplanin and Vancomycin in Combination with Rifampicin, Fusidic Acid or Fosfomycin Against *Staphylococcus* on Vein Catheters. *Scand. J. Infect. Dis.* **1990**, *72*, 14–19. [CrossRef]

181. Albur, M.S.; Noel, A.; Bowker, K.; MacGowan, A. The combination of colistin and fosfomycin is synergistic against NDM-1-producing Enterobacteriaceae in in vitro pharmacokinetic/pharmacodynamic model experiments. *Int. J. Antimicrob. Agents* **2015**, *46*, 560–567. [CrossRef]

182. Wistrand-Yuen, P.; Olsson, A.; Skarp, K.P.; Friberg, L.E.; Nielsen, E.I.; Lagerbäck, P.; Tängdén, T. Evaluation of polymyxin B in combination with 13 other antibiotics against carbapenemase-producing *Klebsiella pneumoniae* in time-lapse microscopy and time–kill experiments. *Clin. Microbiol. Infect.* **2020**, S1198-743X(20)30149-X. [CrossRef]

183. Wang, J.; He, J.-T.; Bai, Y.; Wang, R.; Cai, Y. Synergistic Activity of Colistin/Fosfomycin Combination against Carbapenemase-Producing *Klebsiella pneumoniae* in an In Vitro Pharmacokinetic/Pharmacodynamic Model. *Biomed Res. Int.* **2018**, *2018*, 5720417. [CrossRef] [PubMed]

184. Di, X.; Wang, R.; Liu, B.; Zhang, X.; Ni, W.; Wang, J.; Liang, B.; Cai, Y.; Liu, Y. Thymidine-Dependent *Staphylococcus aureus* Small-Colony Variants Are Induced by Trimethoprim-Sulfamethoxazole (SXT) and Have Increased Fitness during SXT Challenge. *Antimicrob. Agents Chemother.* **2015**, *68*, 551–555. [CrossRef]

185. Sertcelik, A.; Baran, I.; Akinici, E.; Muncucoglu, I.; Bodur, H. Synergistic Activities of Colistin Combinations with Meropenem, Sulbactam, Minocycline, Disodium Fosfomycin, or Vancomycin Against Different Clones of Carbapenem-Resistant Acinetobacter baumannii Strains. *Microb. Drug Resist.* **2020**, *26*, 429–433. [CrossRef] [PubMed]

186. Bian, X.; Liu, X.; Chen, Y.; Chen, D.; Li, J.; Zhang, J. Dose Optimization of Colistin Combinations against Carbapenem-Resistant Acinetobacter baumannii from Patients with Hospital-Acquired Pneumonia in China by Using an In Vitro Pharmacokinetic/Pharmacodynamic Model. *Antimicrob. Agents Chemother.* **2019**, *63*, e01989-18. [CrossRef] [PubMed]
187. Leelasupasri, S.; Santimaleeworagun, W.; Jitwasinkul, T. Antimicrobial Susceptibility among Colistin, Sulbactam, and Fosfomycin and a Synergism Study of Colistin in Combination with Sulbactam or Fosfomycin against Clinical Isolates of Carbapenem-Resistant Acinetobacter baumannii. *J. Pathog.* 2018, 2018, 1–5. [CrossRef] [PubMed]

188. Lertsrisatit, Y.; Santimaleeworagun, W.; Thunyaharn, S.; Traipattanakul, J. In vitro activity of colistin mono- and combination therapy against colistin-resistant Acinetobacter baumannii, mechanism of resistance, and clinical outcomes of patients infected with colistinresistant A. baumannii at a Thai university hospital. Infect. Drug Resist. 2017, 10, 437–443. [CrossRef]

189. Fan, B.; Guan, J.; Wang, X.; Cong, Y. Activity of colistin in combination with meropenem, tigecycline, fosfomycin, fusidic acid, rifampin or sulbactam against extensively drug-resistant acinetobacter baumannii in a murine thigh-infection model. *PLoS ONE* 2016, 11, e0157757. [CrossRef]

190. Wei, W.; Yang, H.; Liu, Y.; Ye, Y.; Li, J. In vitro synergy of colistin combinations against extensively drug-resistant Acinetobacter baumannii producing OXA-23 carbapenemase. *J. Chemother.* 2016, 28, 159–163. [CrossRef]

191. Lee, Y.-C.; Chen, P.-Y.; Wang, J.-T.; Chang, S.-C. A study on combination of daptomycin with selected antimicrobial agents: In vitro synergistic effect of MIC value of 1 mg/L against MRSA strains. *BMC Pharmacol. Toxicol.* 2019, 20, 25. [CrossRef]

192. Miro, J.M.; Entenza, J.M.; Del Río, A.; Velasco, M.; Castañeda, X.; De La María, C.G.; Giddey, M.; Armero, Y.; Pericás, J.M.; Cervera, C.; et al. High-dose daptomycin plus fosfomycin is safe and effective in treating methicillin-susceptible and methicillin-resistant Staphylococcus aureus endocarditis. *Antimicrob. Agents Chemother.* 2012, 56, 4511–4515. [CrossRef]

193. Poespil, W.; Tobudic, S.; Lingscheid, T.; Plasenzotti, R.; Kozakowski, N.; Lagler, H.; Georgopoulos, A.; Poeppl, W.; Tobudic, S.; Lingscheid, T.; Plasenzotti, R.; Kozakowski, N.; Lagler, H.; Georgopoulos, A.; Miro, J.M.; Entenza, J.M.; Del Río, A.; Velasco, M.; Castañeda, X.; De La María, C.G.; Giddey, M.; Armero, Y.; Pericás, J.M.; Cervera, C.; et al. High-dose daptomycin plus fosfomycin is safe and effective in treating methicillin-susceptible and methicillin-resistant Staphylococcus aureus endocarditis. *Antimicrob. Agents Chemother.* 2011, 55, 4999–5003. [CrossRef] [PubMed]

194. Zheng, J.X.; Sun, X.; Lin, Z.W.; Qi, G.B.; Tu, H.P.; Wu, Y.; Jiang, S.B.; Chen, Z.; Deng, Q.W.; Qu, D.; et al. In vitro activities of daptomycin combined with fosfomycin or rifampin on planktonic and adherent linezolid-resistant isolates of Enterococcus faecalis. *J. Med. Microbiol.* 2019, 68, 493–502. [CrossRef] [PubMed]

195. Rice, L.B.; Eliopoulos, G.M.; Moellering, R.C. In vitro synergism between daptomycin and fosfomycin against Enterococcus faecalis isolates with high-level gentamicin resistance. *Antimicrob. Agents Chemother.* 1989, 33, 470–473. [CrossRef] [PubMed]

196. Hasse, B.; Husmann, L.; Zinkernagel, A.; Weber, R.; Lachat, M.; Mayer, D. Vascular graft infections. *Swiss Med. Wkly.* 2013, 143, w13754. [CrossRef] [PubMed]

197. Debbia, E.; Pesce, A.; Schito, G.C. In vitro activity of LY146032 alone and in combination with other antibiotics against Gram-positive bacteria. *Antimicrob. Agents Chemother.* 1988, 32, 279–281. [CrossRef] [PubMed]

198. Chen, H.; Li, L.; Liu, Y.; Wu, M.; Xu, S.; Zhang, G.; Qi, C.; Du, Y.; Wang, M.; Li, J.; et al. In vitro activity and post-antibiotic effects of linezolid in combination with fosfomycin against clinical isolates of Staphylococcus aureus. *Infect. Drug Resist.* 2018, 11, 2107–2115. [CrossRef]

199. Xu-Hong, Y.; Falagas, M.E.; Dong, W.; Karageorgopoulos, D.E.; De-Feng, L.; Rui, W. In vitro activity of fosfomycin in combination with linezolid against clinical isolates of methicillin-resistant Staphylococcus aureus. *J. Antibiot. (Tokyo)* 2014, 67, 369–371. [CrossRef]

200. Sahuquillo Arce, J.M.; Colombo Gainza, E.; Gil Brusola, A.; Ortiz Estévez, R.; Cantón, E.; Gobernado, M. In vitro activity of linezolid in combination with doxycycline, fosfomycin, levofloxacin, rifampicin and vancomycin against methicillin-susceptible Staphylococcus aureus. *Rev. Esp. Quimioter.* 2006, 19, 252–257.

201. Qi, C.; Xu, S.; Wu, M.; Zhu, S.; Liu, Y.; Huang, H.; Zhang, G.; Li, J.; Huang, X. Pharmacodynamics Of Linezolid-Plus-Fosfomycin Against Vancomycin-Susceptible And -Resistant Enterococci In Vitro And In Vivo Of A Galleria mellonella Larval Infection Model. *Infect. Drug Resist.* 2019, 12, 3497–3505. [CrossRef]

202. Traub, W.H.; Spohr, M.; Bauer, D. Gentamicin-and methicillin-resistant, clinical isolates of staphylococcus aureus: Comparative in vitro and in vivo efficacy of alternative antimicrobial drugs. *Chemotherapy* 1984, 30, 102–112. [CrossRef]