REVIEW

The Genus *Terminalia* (Combretaceae): An Ethnopharmacological, Phytochemical and Pharmacological Review

Xiao-Rui Zhang\(^1\,2\) · Joseph Sakah Kaunda\(^1\,2\) · Hong-Tao Zhu\(^1\) · Dong Wang\(^1\) · Chong-Ren Yang\(^1\) · Ying-Jun Zhang\(^1\,3\)

Received: 31 July 2019 / Accepted: 15 October 2019 / Published online: 6 November 2019
© The Author(s) 2019

Abstract

Terminalia Linn, a genus of mostly medium or large trees in the family Combretaceae with about 250 species in the world, is distributed mainly in southern Asia, Himalayas, Madagascar, Australia, and the tropical and subtropical regions of Africa. Many species are used widely in many traditional medicinal systems, e.g., traditional Chinese medicine, Tibetan medicine, and Indian Ayurvedic medicine practices. So far, about 39 species have been phytochemically studied, which led to the identification of 368 compounds, including terpenoids, tannins, flavonoids, phenylpropanoids, simple phenolics and so on. Some of the isolates showed various bioactivities, in vitro or in vivo, such as antitumor, anti HIV-1, antifungal, antimicrobial, antimalarial, antioxidant, diarrhea and analgesic. This review covers research articles from 1934 to 2018, retrieved from SciFinder, Wikipedia, Google Scholar, Chinese Knowledge Network and Baidu Scholar by using “*Terminalia*” as the search term (“all fields”) with no specific time frame setting for the search. Thirty-nine important medicinal and edible *Terminalia* species were selected and summarized on their geographical distribution, traditional uses, phytochemistry and related pharmacological activities.

Keywords *Terminalia* · Combretaceae · Ethnomedicine · Traditional uses · Phytochemistry · Hydrolyzable tannins · Pharmacology

Abbreviations

Abbreviation	Description
A.	Aspergillus
BCG	Bacillus Calmette Guerin
BMM	Broth microdilution method
Ca.	Candida
Cr.	Cryptococcus
CC\(_{50}\)	Cytotoxic concentration of the extracts to cause death to 50% of host’s viable cells
DPPH	2,2-Diphenyl-1-picrylhydrazyl
E.	Escherichia
EC\(_{50}\)	Half maximal effective concentration
FRAP	Ferric reducing/antioxidant power
GABA	Neurotransmitter gamma-aminobutyric acid
IC\(_{50}\)	Minimum inhibition concentration for inhibiting 50% of the pathogen
K.	Klebsiella
MIC	Minimum inhibitory concentration
MTT	3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
Ps.	Pseudomonas
Sa.	Salmonella
Sta.	Staphylococcus
Str.	Streptomyces

1 Introduction

Terminalia Linn, comprising about 250 species in the world mostly as medium or large trees, is the second largest genus in the family Combretaceae. The name “*Terminalia*” is derived from Latin word “terminus”, which means the leaves are located at the tip of the branch. The bark of *Terminalia* plants usually has cracks and branches tucked into layers. Most of the *Terminalia* plants’ leaves are large, leathery
with solitary or clustered small green white flowers. Their fruits are yellow, dark red or black; drupe, usually angular or winged. Some fruits are edible, highly nutritious and possess medicinal values.

Terminalia species are widely distributed in the southern Asia, Himalayas, Madagascar, Australia, and the tropical and subtropical regions of Africa. Terminalia plants in southern Asia have been intensively studied phytochemically due to their wide usage in Asian (India, Tibetan, and Chinese) traditional medicine systems [1]. For example, the fruits of Terminalia bellirica and Terminalia chebula, together with Phyllanthus emblica (Euphorbiaceae) which form the herbal remedy, Triphala, in Tibetan medicine, have received much attention because of its extensive and remarkable effectiveness in the treatment of anticancer, antifungal, antimicrobial, antimalarial, antioxidant.

So far, 39 Terminalia species have been investigated for their phytochemical constituents, which resulted in the identification of terpenes, tannins, flavonoids, lignans and simple phenols, amongst others. Pharmacological studies suggest that they have exhibited activity on liver and kidney protection, antibacterial, antiinflammatory, anticaner, and have displayed a positive effect on immune regulation, cardiovascular disease and diabetes, and acceleration of wound healing.

This paper features 39 important medicinal and edible Terminalia species and summarizes their traditional usage, geographical distribution, structures of isolated chemical constituents and pharmacological activities.

2 Species’ Description, Distribution and Traditional Uses

So far, 50 Terminalia species have been documented, 39 of which have been reported to possess medicinal properties and/or being edible. Among them, eight species and four varieties including T. argyrophylla, T. bellirica, T. catappa, T. chebula, T. franchetii, T. hainanensis, T. myriocarpa, T. intricate, T. chebula var. tomentella, T. franchetii var. membranifolia, T. franchetii var. glabra, and T. myriocarpa var. hirsuta are distributed in China (Yunnan, southeast Tibet, Taiwan, Guangdong, south Guangxi and southwest Sichuan). Their distribution and traditional applications are shown in Table 1.

Terminalia species are broadly used in many aspects. Some are employed as drugs, while others can provide high quality wood, tannin or dyes. For example, fruits of T. ferdi-nandiana, a species largely distributed in Australia, are rich in vitamin C, and possess strong antioxidant activity [25]. T. bellirica and T. chebula are not only recorded in every version of Chinese pharmacopoeia, but are also the important and most commonly applied drugs in Han, Tibetan, Mongolian and many other folk medicinal systems in India, Burma, Thailand, Malaysia, Vietnam and other southeast asian countries. T. catappa is a commonly used medicinal plant for liver protection in China [20].

3 Chemical Composition

Since 1930s, the chemical compositions of the genus Terminalia have been vastly studied. T. arjuna, T. bellirica, T. catappa and T. chebula, having been frequently used in the Ayurvedic, Chinese and Tibetan medicines, attracted scholars’ attention. To date, 368 compounds, largely terpenoids (1–104), tannins (105–196), flavonoids (197–241), lignans (242–265), phenols and glycosides (268–318) were reported from the genus (Tables 2, 3).

3.1 Terpenoids

So far, 104 terpenoids (Fig. 1) including 86 triterpenes (1–86), 14 monoterpenes (87–100), 4 sesquiterpenes (101–104) have been reported from the genus Terminalia. The triterpenoids are mainly oleanane, ursane and lupine types, and their glycosides. Particularly, Atta-ur-Rahman et al. isolated a new seco-triterpene terminalin A (81) possessing a novel rearranged seco-glutanine structure with a pyran ring-A and an isopropanol moiety from the stem barks of T. glaucescens [129]. Ponou et al. found two dimeric triterpenoid glucosides, ivorenosides A and B (49–50) possessing an unusual skeleton [131], and two new oleane type triterpenes, 3-oxo-type ivorenigenin A (41) and 3,24-dinor-2,4-secooleanane-type ivorenigenin B (53) from the barks of T. ivorenis [132]. Compounds 41, 49 and 53 showed significant anticancer activities. Wang et al. isolated five new 18,19-secooleanane type triterpene glycosyl esters, namely arjunasides A–E (82–86) from the MeOH extract of T. arjuna’s barks, TaBs [68]. Moreover, five ursane type triterpene glucosyl esters (64–68) were also obtained for the first time [76]. From the fruits of T. chebula, 23-O-neochebuloylarjungenin 28-O-β-d-glycosyl ester (21) and 23-O-4’-epi-neochebuloylarjungenin (22) with novel substituents at C-23 were reported, in addition to compounds 23–24, 30–32 and 63, whose C-23 substituents were gallate. Compounds 30 and 31 had strong hypoglycemic effect [146]. Furthermore, compound 40 was obtained from the barks of T. arjuna [85], while friedelin (79) with 3-oxo moiety was reported from the fruits of T. arjuna [83], the root barks of T. avicennioides [93], and the stem barks of T. glaucescens [130] and T. mollis [35].
Table 1 Local names, distributions and traditional uses of *Terminalia* plants

No.	Plants	Local names	Distributions	Traditional uses
T1	*T. alata*	Unknown	Southern Vietnam [2, 3]	Anti-diarrhea, ulcer, diuretics, supplements [3]
T2	*T. amazonia*	White olive	Southern Costa Rica [4]	Wood
T3	*T. arborea*	Jaha Kling	Indonesia	Cardiovascular disease, myocardial infarction, atherosclerosis, diabetes, cancer, stroke, cataract, shoulder stiffness, cold allergy, hypertension, senile dementia, inflammation, gum disease (e.g. gingivitis, pneumonia), Alzheimer’s, skin conditions [5]
T4	*T. arjuna*	Arjuna, White Marudah, Koha	India, South Asia, Sri Lanka [6]	Cardiotonic, sores, bile infection, poison antidote [6]
T5	*T. argyrophylla*	Silver leaves Chebula, Xiao Chebula (Yunnan), Manna (Yunnan Dai language)	China (Yunnan) [7]	Autoimmune diseases [7]
T6	*T. australis*	Tanimbu, palo amarillo	Punta Lara, Argentina (Buenos Aires) [8]	Hemostasis
T7	*T. avicennioides*	kpai, Kpace, buashe	Nigeria [9, 10]	Malaria, worms, gastric peptic ulcer [9], scorpion bites [10], tuberculosis, cough [90]
T8	*T. bellirica*	Beleric	China (southern Yunnan), Vietnam, Laos, Thailand, Cambodia, Myanmar, India (except West), Malaysia, Indonesia	Laxative, edible
T9	*T. bentzoe*	Unknown	Rodrigues [13]	Edema, diarrhea, leprosy, bile congestion, indigestion, headache [11]
T10	*T. bialata*	Indian silver greywood	India, South Asia	Fever, diarrhea, cough, dysentery, skin diseases [12]
T11	*T. brachystemma*	Kalahari cluster leaf	Southern Africa	Wine, palm sugar [23]
T12	*T. brownii*	Kuuku, muwuku (Kamba, Kenya), koloswa (northern region, Kenya), weba (Ethiopia), Ibu-ko (Samburu, Kenya), orbuko (Masai, Tanzania), and mbarao or mwalambe, in Kiswahili	Southern and central Africa	Diarrhea [94]
T13	*T. bursarina*	Yellow wood	Australia, South Asia [17]	Essential oil [13]
T14	*T. calamansanai*	Philippine almond, Anarep	Philippines, Southeast Asia	Wood [14]
T15	*T. calcicola*	Unknown	Madagascar Rain Forest [19]	Schistosomiasis, gastrointestinal disorders [15]
T16	*T. catappa*	Indian almond, umbrella tree, tropical almond	Australia and SE Asia, Africa, South America Tropical Coast	Diarrhea, stomach pain, gastric ulcer, colic, heartburn
				Genitourinary infection, urethral pain, endometritis, cystitis, leucorrhea, syphilis, gonorrhea, malaria, dysmenorrhea, nervousness, hysteria, epilepsy, athlete’s foot, indigestion, stomach pain, gastric ulcer, colitis, cough, vomiting, hepatitis, jaundice, cirrhosis, yellow fever [16]

Note: The table includes local names, distributions, and traditional uses of *Terminalia* plants. The traditional uses are diverse, ranging from anti-diarrhea and ulcer treatments to cardiovascular disease prevention and additional health benefits.
No.	Plants	Local names	Distributions	Traditional uses	
T17	*T. chebula*	Black Myrobalan, Inknut, Chebulic Myrobalan	Nepal, northern India, Myanmar, Sri Lanka, Thailand, Bangladesh, China (Yunnan), Himalayan	Digestion appetizers, vomiting, infertility, asthma, sore throat, vomiting, diarrhea, dysentery, bleeding, ulcers, gout, bladder disease	
T18	*T. chebula* var. tomentella	Weimaohezi (variant)	China (western Yunnan), Myanmar	Unknown	
T19	*T. citrina*	Manahei, Yellow myrobalan	India, Bangladesh, Laos, Myanmar, Nepal, Thailand, Cambodia, Vietnam	Unknown	
T20	*T. elliptica*	Indian arali	SE Asia, Bangladesh, Laos, Myanmar, Nepal, Thailand	Ulcers, fractures, bleeding, bronchitis, diarrhoea	[23]
T21	*T. franchetii*	Unknown	SW China	Unknown	
T22	*T. franchetii* var. membranifolia	Baoyedianlanren (variant)	China (western Guangxi (Longlin), central to SE Yunnan)	Unknown	
T23	*T. franchetii* var. glabra	Guang yedianlanren (variant)	Unknown	Unknown	
T24	*T. ferdinandiana*	Gubinge, Bbillygoat plum, Kakadu plum, green plum	Australia	Dietary supplements, skin care	[25]
T25	*T. glaucescens*	Unknown	Nigeria	Amenorrhea, vaginal infections, syphilis, sore, neurological disorders, Anti-plasma, antiparasitic, antiviral, antimicrobial	
T26	*T. hainanensis*	Ji zhenmu, Hainan lanren	China (Hainan)	Unknown	
T27	*T. intricate*	Cuozhilanren	China (NW Yunnan and SW Sichuan)	Unknown	
T28	*T. ivorensis*	Idigbo, Black Afara, Shingle Wood, Brimstone Wood, Black bark	Cameroon, West Africa, Ivory Coast, Liberia, Nigeria, Sierra Leone, Ghana	Rheumatism, gastroenteritis, psychiatric, syphilis, burns and bruises, Malara, cough, diarhoea, dysentery, wound, hepatitis, malaria, fever, cough, diarhoea, tuberculosis, skin diseases	
T29	*T. kaernbachii*	Okari Nai	Unknown	Unknown	
T30	*T. kaiserana*	Unknown	Tanzania	West Africa, Sudan Savanna	[32]
T31	*T. laxiflora*	Unknown	West Africa	Unknown	
T32	*T. macroptera*	Bayankada	Unknown	Unknown	
T33	*T. mantaly*	Unknown	Africa	Unknown	
T34	*T. mollis*	Quangolaren	Indonesia, SE Asia, South Asia, China (Guangxi (Li-oung), Yunnan (central to the south), and Tibet (Medog), northern Vietnam, Thailand, Laos, northern Myanmar, Malaysia, NE India, Sikkim)	Antimicrobial, Antioxidant, liver protection, Antioxidant, liver protection, Antioxidant, liver protection,	
T35	*T. myriocarpa*	Unknown	Quangolaren	Unknown	
T36	*T. myriocarpa* var. hirsuta	Yingmaoqiangularen (variant)	Unknown	Unknown	
Table 1 (continued)

No.	Plants	Local names	Distributions	Traditional uses
T38	*T. oblongata*	Rose wood, yellow wood	Central Queensland [39]	Unknown [39]
T39	*T. paniculata*	Vellamaruth	India	Cholera, mumps, menstrual disorders, cough, bronchitis, heart failure, hepatitis, diabetes, obesity [40]
T40	*T. parviflora*	Tropical almond, umbrella tree, Indian almond	Sri Lanka and India [41]	Diarrhea [41]
T41	*T. prunioides*	Hareri, Sterkbos, Purple pod Terminalia, Mwangati	Southern Africa	Postnatal abdominal pain
T42	*T. sambesiaca*	Unknown	Southern Africa	Cancer, gastric ulcer, appendicitis
T43	*T. schimperiana*	Idi odan	Africa, Sierra Leone, Guinea, Uganda, Ethiopia	Bloody diarrhea [45]
T44	*T. sericea*	Monakanakane, Mososo, Mogonono, Amangwe, Vaalboom, Mangwe, Silver clutter-leaf	Northern South Africa, Botswana (except central Kalahari), southern Mozambique, Tanzania, Namibia, Zimbabwe, Northern Democratic Republic of Congo, tropical Africa [43]	Local burns, bronchitis, dysentery [42] Diarrhea, sexually transmitted infections, rash, tuberculosis [43] Fever, high blood pressure [44]
T45	*T. spinosa*	Musosahwai, spiny cluster leaf, Kasansa	Southern Africa	Malaria, fever [46]
T46	*T. stenostachya*	Rosette leaf Terminalia	Southern Africa	Epilepsy, poisoning [47]
T47	*T. stuhlmannii*	Unknown	Acacia [48]	Epilepsy, poisoning [47]
T48	*T. superba*	Limba	Tropical Western Africa	Unknown
T49	*T. triflora*	Lanza, lanza amarilla, amarillo derío, paloamarillo	Tropical (South America)	Gastroenteritis, diabetes, female infertility, abdominal pain, bacteria/fungi/viral infections [49], diabetes remedies, anesthetic, hepatitis [50]
T50	*T. tropophylla*	Unknown	Madagascan [51]	Making posts, furniture, weapons, fuel [149]

SE southeastern, NE northeastern, SW southwestern, NW northwestern
No.	Compounds	Plants	Organs	References
	Triterpenes (86)			
1	2α,3β,19α-Trihydroxyolean-12-en-20-oic acid 3-O-β-d-galactosyl-(1→3)-β-d-glucoside	T1	R	[3]
2	2α,3β,19α-Trihydroxyolean-12-en-28-oic acid methylester 3β-O-rutinoside	T1	R	[53]
3	2α,3β,19β,23-Tetrahydroxyolean-12-en-28-oic acid 3β-O-β-d-galactosyl-(1→3)-β-d-glucoside-28-O-β-d-glucoside	T1	R	[52]
4	3-Acetylmasinic acid	T1	RB	[54]
5	Arjunic acid	T1	B	[55, 74]
		T4	SB, F	[60, 79, 124]
		T17	F	[146]
		T25	SB	[130]
		T28	B	[132]
		T32	B	[145]
		T44	R	[133]
6	Arjunoside I	T4	SB	[61]
7	Arjunoside II	T4	SB	[61]
8	Arjunoside III	T4	R	[62, 63]
9	Arjunoside IV	T4	R	[62, 63]
10	Arjunetin	T1	B	[55, 74]
		T4	B, L, S, R, F	[23, 67]
		T8, T16, T17, T20, T39	B, L, S, R, F	[23]
11	Oleanolic acid	T1	H	[56]
		T9	L	[97]
		T4, T16, T20	B, L, S, R, F	[23]
		T8, T17	B, L, S, R	[23]
		T39	L, S, R, F	[23]
		T28	B	[132]
		T36	B	[140]
12	Ursolic Acid	T4, T16, T20	B, L, S, R, F	[23]
		T8, T17	L, S, R	[23]
		T39	B, L, S, F	[23]
13	Maslinic acid	T1	H	[56]
		T9	L	[97]
		T17	F	[21, 116]
		T36	B	[140]
14	2α,3α,24-Trihydroxyolean-11,13(18)-dien-28-oic acid	T33	SB	[158]
15	Terminoside A	T4	B	[58]
16	Arjungenin	T4	SB, L, R, F	[23, 60, 70, 74]
		T25	R	[60]
		T12	B	[99]
		T8, T16, T20, T39	B, L, S, R, F	[23]
		T17	B, L, S, R, F	[23, 146]
		T25	R, SB	[69, 130]
		T28	B	[132]
		T32	B	[145]
		T33	SB	[158]
		T44	RB	[133, 152]
17	Hypatic acid	T25	R	[69]
18	Arjunglucoside I	T4	B, R	[70, 74, 78]
		T17	F	[146]
		T50	R	[72]
		T32	B	[145]
Table 2 (continued)

No.	Compounds	Plants	Organs	References
19	Sericoside	T4	B	[71]
		T25	SB	[130]
		T28	B	[76, 131]
		T44	R, L, SB	[43, 133, 149]
		T32	B	[145]
		T50	R	[72]
20	Crataegioside	T4	B	[75]
		T17	F	[146]
21	23-O-neochebuloylarjungenin 28-O-β-D-glucosyl ester	T17	F	[146]
22	23-O-4′-epi-neochebuloylarjungenin	T17	F	[146]
23	23-O-galloylarjunic acid	T39	B	[144]
		T32	B	[145]
		T17	F	[146]
24	Quercotriterpenoside I	T32	B	[145]
		T17	F	[146]
25	Sericic acid	T28	B	[132]
		T32	B	[145]
		T44	R	[150]
26	24-Deoxy-sericoside	T32	B	[138]
27	Arjunolic acid	T1	B, H	[55, 56, 74]
		T4	B, H, L, S, R, F	[23, 77, 78, 91]
		T7		[97]
		T9	L	[23]
		T8	B, L, S, R	[23]
		T16, T17, T20, T39		[23, 144]
		T32	H, R	[128]
		T34	H, B	[128, 145]
		T36	H	[140]
28	Terminolic acid	T1	H	[56]
		T17	F	[146]
		T7, T16, T31		[128]
		T25	H, R1	[128]
		T32	H, B	[128, 145]
29	Arjunglucoside II	T4	B	[70, 74]
		T17	F	[146]
30	23-O-galloylarjunic acid	T17	F	[146]
31	23-O-galloylarjunic acid 28-O-β-D-glucosyl ester	T17	F	[146]
32	23-O-galloyl terminolic acid 28-O-β-D-glucosyl ester	T17	F	[146]
33	Arjunolitin	T4	SB	[80]
34	Terminolitin	T4	F	[80]
35	Arjunglucoside III	T4	B	[74]
36	Methyl oleanate	T4	R, F	[80, 124]
37	Olean-3α,22β-diol-12 en-28-oic acid 3-O-β-D-glucosyl-(1→4)-β-D-glucoside	T4	B	[81, 84]
38	Arjunetoside	T4	R, SB	[82]
39	Olean 3β,6β,22α-triol-12en-28-oic acid-3-O-β-D-glucosyl-(1→4)-β-D-glucoside	T4	B	[84]
40	2α,19α-Dihydroxy-3-oxoolean-12-en-28-oic acid 28-O-β-D-glucoside	T4	R	[85]
41	Ivorengenin A (2α,19α,24-trihydroxy-3-oxoolean-12-en-28-oic acid)	T28	B	[132]
42	Chebuloside I	T17	F	[115]
43	Chebuloside II	T17	F	[115]
		T32	B	[138]
No.	Compounds	Plants	Organs	References
-----	---	--------	--------	------------
44	Arjunglucoside	T17	F	[115]
		T44	R, SB	[133]
		T33	SB	[158]
45	Glaucescic acid (2α,3α,6α,23-tetrahydroxyolean-2-en-28-oic acid)	T25	R	[69]
46	Glaucinoic acid (2α,3β,19α,24-tetrahydroxyolean-12-en-30-oic acid)	T25	SB	[130]
47	Termiarjunoside I (olean-1α,3β,9α,22α-tetraol-12-en-28-oic acid-3β-T-n-	T4	SB	[156]
	glucoside)			
48	Termiarjunoside II (olean-3α,5α,25-triol-12-en-23,28-dioic acid-3α-T-n-	T4	SB	[156]
	glucoside)			
49	β-Amyrin	T25	SB	[129]
		T36	B	[140]
50	Ivorenoside A	T28	B	[131]
51	Ivorenoside B	T28	B	[131]
52	Ivorenoside C	T28	B	[131]
53	Ivorengenin B (4-oxo-19α-hydroxy-3,24-dinor-2,4-secoolean-12-ene-2,28-	T28	B	[132]
	dioic acid)			
54	1α,3β-Hydroxyimberbic acid 23-O-α-l-4-acetylrhamnoside	T47	SB	[48]
55	1α,3β,3,23-Trihydroxy-olean-12-en-29-oate-23-O-α-[4-acetoxyrhamnosyl]-29-	T47	SB	[48]
	α-rhamnoside			
56	2α,3β-Dihydroxyolean-12-en-28-oic acid 28-O-β-n-glucoside	T48	SB	[49]
57	2α,3β,21β-Trihydroxyolean-12-en-28-oic acid 28-O-β-n-glucoside	T48	SB	[49]
58	2α,3β,29-Trihydroxyolean-12-en-28-oic acid 28-O-β-n-glucoside	T48	SB	[49]
59	2α,3β,23,27-Tetrahydroxyolean-12-en-28-oic acid 28-O-β-n-glucoside	T48	SB	[49]
60	Terminaliaside A ((3β,21β,22α)-3-O-(3′-O-angeloylglucosyl)-21,22-dihydroxy	T50	R	[72]
	28-O-sophorosyl-16-oxoolean-12-ene)			
61	2, 3, 23-Trihydroxyolean-12-ene	T7	RB	[91]
62	2α,3β,23-Trihydroxyolean-12-en-28-oic acid	T48	SB	[49]
63	23-O-galloylpinaenoic acid 28-O-β-n-glucosyl ester	T17	F	[146]
64	Pinaenoic acid 28-O-β-n-glucosyl ester	T4	B	[76]
		T17	F	[146]
65	2α,3β-Dihydroxysurs-12,18-dien-28-oic acid 28-O-β-n-glucosyl ester	T4	B	[76]
66	Quadranoside VIII	T4	B	[76]
67	Kajiichigoside F1	T4	B	[76]
68	2α,3β,23-Trihydroxyurs-12,19-dien-28-oic acid 28-O-β-n-glucosyl ester	T4	B	[76]
69	α-Amyrin	T7	RB	[91]
70	2α,3β,23-Trihydroxy-urs-12-en-28-oic acid	T34	L	[35]
71	2α-Hydroxyursolic acid	T34	L	[35]
		T17	F	[115, 116]
72	Ursolic acid	T11	L	[35]
73	2α-Hydroxymicromeric acid	T17	F	[115, 116]
74	Betulinic acid	T1	B	[55]
		T11	L	[35]
		T12	B	[99]
		T4, T16, T17, T20, T39	B, L, S, R, F	[23]
		T8	SB	[129]
		T25	B	[132]
		T28	B	[140]
		T36		
75	Terminic acid	T4	R, H	[57, 62]
Table 2 (continued)

No.	Compounds	Plants	Organs	References
76	Lupeol	T4	SB	[80]
		T25	SB	[129]
		T44	SB, R	[43]
77	Monogynol A	T12	B	[99]
78	Triterpenes	T25	SB	[129]
		T44	R, SB	[133]
79	Friedelin	T4	F	[83]
		T7	RB	[93]
		T25	SB	[129, 130]
		T34	SB	[35]
80	Maslinic lactone	T1	H	[56]
81	Terminalin A	T25	SB	[129]
82	Arjunaside A	T4	B	[68]
83	Arjunaside B	T4	B	[68]
84	Arjunaside C	T4	B	[68]
85	Arjunaside D	T4	B	[68]
86	Arjunaside E	T4	B	[68]
	Mono- (14) and sesqui- (4) terpendoids			
87	α-Pinene	T9	L	[13]
88	Sabinene	T9	L	[13]
89	Myrcene	T9	L	[13]
90	β-Pinene	T9	L	[13]
91	1,8-Cineole	T9	L	[13]
92	Linalool	T9	L	[13]
93	Menthone	T9	L	[13]
94	γ-Terpineol	T9	L	[13]
95	α-Terpineol	T9	L	[13]
96	Limonene	T9	L	[13]
97	Neral	T9	L	[13]
98	Geraniol	T9	L	[13]
99	Thymol	T9	L	[13]
100	Isomenthone	T9	L	[13]
101	β-Copaene	T9	L	[13]
102	β-Caryophyllene	T9	L	[13]
103	Caryophyllene	T9	L	[13]
104	α-Humulene	T9	L	[13]
	Hydrolysable (89) and condensed tannins (2)			
105	1,2,3,6-Tetra-O-galloyl-β-D-glucose	T17	F	[159]
106	Gallotannin (1,2,3,4,6 pentagalloyl glucose)	T4	SB, L	[86]
		T17	F	[21, 118, 119]
		T19	F	[120]
		T30	R	[133]
		T45, T46	L	[133]
107	1,3,4,6-Tetra-O-galloyl-β-D-glucose	T17	F	[159]
108	2,3,4,6-Tetra-O-galloyl-β-D-glucose	T3	F	[154]
		T4	SB, L	[86]
109	1,2,6-Tri-O-galloyl-β-D-glucose	T31	R	[101]
110	Sanguin H-1	T14	L	[102]
111	1,6-Di-O-galloyl-β-D-glucose	T3	F	[154]
		T17	F	[21, 119]
		T40	B	[41]
Table 2 (continued)

No.	Compounds	Plants	Organs	References
112	1,3,6-Tri-O-galloyl-β-D-glucose	T3	F	[154]
		T40	B	[41]
		T19	F	[120]
		T17	F	[159]
113	Methyl 3,6-di-O-galloyl-β-D-glucoside	T40	B	[41]
114	4,6 Bis hexahydroxydiphenyl-1-galloyl-glucose	T14	L	[18, 102]
115	Sanguin H-4	T3	F	[154]
116	Corilagin	T3	F	[101]
		T31	R	[41, 106, 107]
		T16	L, B	[41, 106, 107]
		T17	F	[21, 118, 119, 159]
		T19	F	[120]
		T24	F	[126]
		T32	L	[135, 136]
117	Tercatain	T16	B, L	[41, 106, 107]
		T17	F	[159]
118	1,3-Di-O-galloyl-β-D-glucose	T17	F	[159]
119	2,3-O-(S)-HHDP-β-D-glucose	T3	F	[154]
		T14	L	[102]
		T4	B	[104]
		T16	B, L	[41, 107]
		T40	B	[41]
		T36	L	[38]
120	2,3-(S)-HHDP-6-O-galloyl-β-D-glucose	T3	F	[154]
		T4	B	[104]
		T40	B	[41]
		T32	B	[137]
121	3,6-Di-O-galloyl-β-D-glucose	T3	F	[154]
		T40	B	[41]
		T17	F	[159]
122	3,4-Di-O-galloyl-β-D-glucose	T3	F	[154]
123	6-O-galloyl-β-D-glucose	T17	F	[159]
124	3,4,6-Tri-O-galloyl-β-D-glucose	T17	F	[159]
125	Tellimagrandin I	T35	L	[139]
		T17	F	[159]
126	Gemin D	T17	F	[159]
127	Arjunin	T4	L	[65, 86]
		T17	F	[115]
128	Punicalin	T3	F	[154]
		T4	L, B	[65, 86, 104]
		T14	L	[102]
		T40	B	[41]
		T16	L	[106, 107]
		T17	L, F	[21, 155]
		T28	SB	[29]
		T49	L	[149]
129	Casuarinin	T4	L, B	[88, 104]
		T16	B	[41]
		T17	F	[21, 118, 119]
130	Casuariin	T4	B	[90, 104]
131	Terchebulin	T3	F	[154]
		T4	B	[90, 104]
		T7	SB	[92]
		T12	B	[100]
		T17	F	[21]
		T31	W	[134]
Table 2 (continued)

No.	Compounds	Plants	Organs	References
132	Castalagin	T4	B	[90, 104]
		T16, T40	B	[41]
133	Grandinin	T16, T40	B	[41]
134	Castalin	T16, T40	B	[41]
135	α/β-Punicalagin	T3	F	[154]
		T7	SB	[92]
		T4	B	[104]
		T11	L	[35]
		T12	B	[100]
		T31	R	[101]
		T14	L	[18, 103]
		T16	B	[41]
		T17	L, F	[21, 106, 119, 155]
		T40	B	[41]
		T19	F	[120]
		T28	SB	[29]
		T32	B	[137]
		T35	L	[139]
		T36	L	[38]
		T38	L	[39]
136	1-α-O-galloylpunicalagin	T14	L	[18, 102, 103]
137	6′-O-methyl neochebulagate	T17	F	[159]
138	Dimethyl neochebulagate	T17	F	[159]
139	Neochebulagic acid	T17	F	[159]
140	Dimethyl 4′-epi-neochebulagate	T17	F	[159]
141	Methyl chebulagate	T17	F	[159]
142	Chebulagic acid	T3	F	[154]
		T4	B, L, S	[23]
		T8	F, B, L,S	[23]
		T17	F, B, L,S,R	[23, 96]
		T16	F, B, L,S,R	[3, 4, 9, 21, 110]
		T39	F, B, L,S,R	[23]
		T20	F, B, L,R	[23]
		T19	F	[120]
		T32	L	[135, 136]
		T35	L	[139]
143	Chebulinic acid	T3	F	[154]
		T4, T8, T16, T20, T39	F, B, L, S,R	[3, 4, 21, 110, 119, 155]
		T17	F	[23]
		T32	L	[23]
		T35	L	[110, 135, 139]
144	Chebulanin	T34, T11	L	[35]
		T17	F	[21, 119, 155, 159]
145	1,3-Di-O-galloyl-2,4-chebuloyl-β-D-glucose	T3	F	[154]
146	1,6-Di-O-galloyl-2,4-chebuloyl-β-D-glucose	T17	F	[155, 159]
147	2-O-galloylpunicalin	T14	L	[18]
		T40	B	[41]
		T32	B	[137]
		T49	L	[149]
148	1-Desgalloyleugenin	T14	L	[102]
		T16	L	[107]
149	Eugeniin	T14	L	[102]
150	Rugosin A	T14	L	[102]
151	1(α)-O-galloylpedunculagin	T14	L	[102]
152	Praecoxin A	T14	L	[102]
153	Calamansanin	T14	L	[102]
No.	Compounds	Plants	Organs	References
-----	---	--------	--------	------------
154	Calamanin A	T14	L	[102]
155	Calamanin B	T14	L	[102]
156	Calamanin C	T14	L	[102]
157	Terflavin C	T4	B	[104]
		T14	L	[103]
		T17	L	[21]
158	Terflavin A	T16	L	[106, 107]
		T17	F	[21]
		T32	B	[137]
159	Terflavin B	T16	L	[106, 107]
		T17	L, F	[21, 155]
		T32	B	[137]
160	3-Methoxy-4-hydroxyphenol-1-O-β-(6′-O-galloyl)-glucoside	T16	B	[41]
161	3,5-Di-methoxy-4-hydroxyphenol-1-O-β-(6′-O-galloyl)-glucoside	T16	B	[41]
162	Acutissimin A	T16	B	[41]
163	Eugenigrandin A	T16	B	[41]
164	Catappanin A	T16	B	[41]
165	Castamollinin	T40	B	[41]
166	Tergallagin	T16	L	[106, 107]
167	Geraniin	T16	L	[107]
168	Granatin B	T16	L	[107]
169	Gallotannic (tannic acid)	T17, T8	F	[113]
		T38	L	[141]
170	Chebulin	T17	F	[113, 114]
171	Terchebin	T17	F	[113, 119]
172	Neochebulinic acid	T3	F	[154]
		T17	F	[21, 119, 155]
173	Chebumeinin A	T17	F	[118]
174	Chebumeinin B	T17	F	[118]
175	Isoterchebulin	T32	B	[137]
176	Punicacortein C	T3	F	[154]
		T32	B	[137]
		T17	F	[159]
177	Punicacortein D	T17	F	[159]
178	4,6-O-Isoterchebuloyl-β-glucose	T32	B	[137]
179	Trigalloyl-β-β-glucose	T35	L	[139]
180	Tetragalloyl-β-β-glucose	T35	L	[139]
181	Pentagalloyl-β-β-glucose	T35	L	[139]
182	1,2,3-Tri-O-galloyl-6-O-cinnamoyl-β-β-glucose	T17	F	[159]
183	1,2,3,6-Tetra-O-galloyl-4-O-cinnamoyl-β-β-glucose	T17	F	[159]
184	1,6-Di-O-galloyl-2-O-cinnamoyl-β-β-glucose	T17	F	[159]
185	1,2-Di-O-galloyl-6-O-cinnamoyl-β-β-glucose	T17	F	[159]
186	4-O-(2′, 4′-di-O-galloyl-α-β-rhamnosyl) ellagic acid	T17	F	[159]
187	4-O-(4′-O-galloyl-α-β-rhamnosyl) ellagic acid	T17	F	[159]
188	4-O-(3′, 4′-di-O-galloyl-α-β-rhamnosyl) ellagic acid	T17	F	[159]
189	1′-O-methyl neochebulanin	T17	F	[159]
190	Dimethyl neochebulinate	T17	F	[159]
191	Phyllanembelin E	T17	F	[159]
192	1′-O-methyl neochebulinate	T17	F	[159]
193	Phyllanembelin F	T17	F	[159]
194	Procyanidin B-1	T16	B	[41]
195	3′-O-galloyl procyanidin B-2	T16	B	[41]
No.	Compounds	Plants	Organs	References
-----	---	--------	--------	------------
196	5,7,2'-Tri-O-methylflavanone 4'-O-α-l-rhamnosyl-(1→4)-β-D-glucoside	T1	R	[52]
197	Arjunone	T4	B, F	[83, 89]
198	8-Methyl-5,7,2',4'-tetramethoxy-flavanone	T1	R	[53]
		T39	B	[144]
199	Naringin	T4	L, S, F	[23]
		T8	B, F	[23]
		T17	L, R, F	[23]
		T39	R, F	[23]
		T20	B, L, S, R	[23]
200	Eriodictyol	T4, T8, T17, T20, T39	B, L, S, R, F	[23]
		T16	L, S, R, F	[23]
201	Hesperitin	T24	F	[122]
202	Flavanone	T24	F	[122]
203	Arjunolone (6,4-dihydroxy-7-methoxy flavone)	T4	SB	[64]
204	Bicalein (5,6,7-trihydroxy flavone)	T4	SB	[64]
205	Scutellarein	T4	B, R	[23]
		T8, T17, T20	B, L, S, R, F	[23]
		T16	L, F	[23]
		T39	B, L, R, F	[23]
206	Luteolin	T4	B, L	[23, 65]
		T8, T20	L, S	[23]
		T17	R, L	[23]
		T16	L	[23]
		T39	L, S, F	[23]
		T24	F	[122]
207	Apigenin	T4	B, L, S, R, F	[23, 66]
		T8, T16, T17, T20, T39	B, L, S, R, F	[23]
208	Isoorientin	T11	L	[35]
		T4, T8, T17, T16, T20, T39	B, L, S, R, F	[23]
		T16	L	[139]
		T35	L	[38]
		T36	L	[38]
209	Orientin	T11	L	[35]
		T4	L, F	[23]
		T8	B, S	[23]
		T17	B, L, S, R, F	[23]
		T16	L, R, F	[23]
		T39	B, S, F	[23]
		T20	L, S, F	[23]
		T35	L	[139]
		T36	L	[38]
210	Isovitexin	T11	L	[35]
		T4	L, F	[23]
		T17	L, R, F	[23]
		T16	L	[23, 105]
		T39	S, F	[23]
		T20	L, S, F	[23]
		T35	L	[139]
		T36	L	[38]
211	Apigenin-6-C-(2"-O-galloyl)-β-D-glucoside	T16	L	[105]
212	Apigenin-8-C-(2"-O-galloyl)-β-D-glucoside	T16	L	[105]
		T34	L	[35]
Table 2 (continued)

No.	Compounds	Plants	Organs	References
213	Vitexin	T4, T17, T20	B, L, S, R, F	[23]
		T8	B, L, S, R	[23]
		T16	L, S, R, F	[23]
		T39	B, L, S, F	[23]
		T35	L	[139]
		T36	L	[38]
214	Amentoflavone	T8	L	[23]
		T17	L, R, F	[23]
		T20	L	[23]
215	Neosaponarin	T36	L	[38]
216	(−)-Epicatechin	T4	B	[76]
217	Epicatechin	T4, T8, T17, T20, T39	B, L, S, R, F	[23]
		T16	L, S, R, F	[23]
		T34	SB	[35]
218	Catechin	T34	SB	[35]
		T11	L	[35]
		T4, T8, T16, T17, T20, T39	B, L, S, R, F	[23]
		T44	R	[133]
219	Catechin–epicatechin	T44	R	[43]
220	Catechin–epigallocatechin	T44	R	[43]
221	Epigallocatechin	T34	SB	[35]
222	(−)-Epicatechin-3-O-gallate	T16	B	[41]
223	(−)-Epigallocatechin-3-O-gallate	T16	B	[41]
224	Flavanol	T24	F	[122]
225	Gallicatechin	T34	SB	[35]
		T24	F	[126]
226	Quercetin	T4	B, L, R	[23]
		T8	R	[23]
		T17	S, R, F	[23]
		T16	L, S, F	[23]
		T39	L, B	[23, 142]
		T20	F	[23]
		T24	F	[124]
		T49	L	[124]
227	Kaempferol	T4	B, L, S, R, F	[23, 66]
		T8	B, L, S, F	[23]
		T16, T17	B, L, S, R, F	[23]
		T20, T39	L, S, R, F	[23]
		T24	F	[122]
228	Kaempferol-3-O-β-D-rutinoside	T4, T8, T17	B, L, S, R, F	[23]
		T16	L, S, F	[23]
		T39	L, R, F	[23]
		T20	L, S, R	[23]
		T36	L	[38]
229	Afzelin (kaempferol 3-O-rhamnoside)	T49	L	[124]
230	Rutin	T4, T16	B, L, S, F	[23]
		T8	L	[23]
		T17, T39	B, L, S, R, F	[23]
		T20	L, S, F	[23]
		T32	L	[135, 136]
		T36	L	[38]
231	Narcissin	T32	L	[135, 136]
Table 2 (continued)

No.	Compounds	Plants	Organs	References
232	Quercetin-3,4′-di-O-glucoside	T4	B, L, S, F	[23]
		T8	B, S, F	[23]
		T16, T17, T20, T39	B, L, S, R, F	[23]
233	Quercetin-7-O-rhamnoside	T4	F	[80]
234	2-O-β-glucosyloxy-4,6,2′,4′-tetramethoxychalcone	T1	R	[53]
235	Cerasidin	T4	F	[80]
236	Genistein	T4	B, L, S, R, F	[23, 80]
		T8, T16, T17, T20, T39	B, L, S, R, F	[23]
237	Cyaniding	T4	B	[66]
238	Pelargonidin	T4	B	[66]
239	Leucocyanidin	T4	B	[80]
240	7-Hydroxy-3′,4-(methylenedioxy)flavan	T8	FR	[12]

Lignan (27)

No.	Compounds	Plants	Organs	References
241	Termilignan	T8	FR	[12]
		T39		[144]
242	Anolignan B	T8	FR	[12]
		T44	R	[43, 151]
243	Thannilignan	T8	FR	[12]
244	Termilignan B	T44	R	[133]
245	Ferulic acid dehydrodimer	T24	F	[125]
246	(7S,8R,7′R,8′S)-4′-hydroxy-4-methoxy-7,7′-epoxylignan	T48	SB	[50]
247	Meso-(rel7S,8R,7′R,8′S)-4′-dimethoxy-7,7′-epoxylignan	T48	SB	[50]
248	4′-O-cinnamoyl cleomiscosin A	T50	R	[72]
249	Diethylstilbestrol monosulphate	T24	F	[126]
250	Terminaloside A	T19	L	[22]
251	Terminaloside B	T19	L	[22]
252	Terminaloside C	T19	L	[22]
253	Terminaloside D	T19	L	[22]
254	Terminaloside E	T19	L	[22]
255	Terminaloside F	T19	L	[22]
256	Terminaloside G	T19	L	[22]
257	Terminaloside H	T19	L	[22]
258	Terminaloside I	T19	L	[22]
259	Terminaloside J	T19	L	[22]
260	Terminaloside K	T19	L	[22]
261	2-Epiterminaloside D	T19	L	[22]
262	6-Epiterminaloside K	T19	L	[22]
263	Terminaloside L	T19	L	[121]
264	Terminaloside M	T19	L	[121]
265	Terminaloside N	T19	L	[121]
266	Terminaloside O	T19	L	[121]
267	Terminaloside P	T19	L	[121]
No.	Compounds	Plants	Organs	References
-----	---	--------	-----------------	------------
268	Phenols and glycosides (52)			
269	Methyl ellagic acid	T4	B	[90]
270	3-O-methyellagic acid	T33	SB	[158]
271	3,3'-Di-O-methyellagic acid	T28	SB	[29]
		T39	H, B	[8, 9, 143, 144]
		T48	SB	[50]
272	3,3'-Di-O-methyellagic acid 4-mono glucoside	T39	H	[147, 148]
273	Tetra-O-methyl ellagic acid	T39	H	[148]
274	3,3'-Di-O-methyellagic acid 4-O-β-n-glucosyl-(1 → 4)-β-n-glucosyl-(1 → 2)-α-l-arabinoside	T1	R	[52]
275	3,4,3'-Tri-O-methylflavellagic acid	T7, T12, T24, T25, T31, T28, T32, T39, T48	B, F, L, B, R, RI, H, B, SB, H, B, L, B, R, RI	[126, 100, 126, 26, 70, 127, 128, 127, 29, 128, 128, 138, 143, 148]
276	3,3',4-O-trimethyl-4'-O-β-n-glucosylellagic acid	T28	SB	[29]
277	3,3'-Di-O-methyl ellagic acid 4'-O-β-n-xyloside	T48	SB	[50]
278	3,4'-Di-O-methyellagic acid 3'-O-β-n-xyloside	T48	SB	[153]
279	4'-O-galloy-3,3'-di-O-methyellagic acid 4-O-β-n-xyloside	T48	SB	[153]
280	Flavogallonic acid	T7	SB	[92]
		T40	B	[41]
		T31	W	[134]
		T12	R	[101]
		T36	L	[38]
281	Methyl (S)-flavogallonate	T36	L	[38]
282	Vanillic acid 4-O-β-n-(6'-O-galloyl) glucoside	T32	B	[138]
283	3-O-methyellagic acid 4'-O-α-l-rhamnoside	T4	B	[76]
		T34	SB	[35]
		T33	SB	[158]
284	Eschweilenol C (ellagic acid 4-O-α-l-rhamnoside)	T12, T17	B, F	[100, 164]
285	3-O-methyellagic acid 4'-O-xyloside	T31	R	[101]
286	Brevifolin carboxylic acid	T35	L	[139]
No.	Compounds	Plants	Organs	References
-----	---	--------	--------	----------------------------
287	Terflavin D	T17	F	[159]
287	Gallic acid	T17	L	[21]
287		T3	F	[154]
288		T4, T8, T20, T39	B, L, S, R, F	
288		T10, TM, TT	SB	[14]
288		T17	SB, F, R, L	[14, 21, 23, 118, 119]
288		T16	SB, F, R, L	[14, 21, 23, 118, 119]
288		T34	L	[14, 21, 23, 41, 108]
288		T12	B	[35]
288		T31	R, W	[100]
288		T40	B	[101, 134]
288		T24	F	[41]
288		T30	R	[123, 125]
288		T35	L	[133]
288		T36	L	[139]
288		T38	L	[38]
288		T42	R, SB	[141]
288		T44	R	[133]
288		T45, T46	L	[133]
288		T48	SB	[133]
288		T49	L	[50]
289	Phyllemblin (ethyl gallate isomers1 progallin A)	T4	B	[86]
289		T8	F	[96, 113]
289		T24	F	[126]
289		T28	SB	[29]
289		T36	L	[38]
290	Monogalloyl glucose	T3	F	[154]
290		T8	F	[113]
290		T17	F	[21]
290		T31	R	[101]
291	Methyl gallate	T14	L	[18]
291		T8	F	[113]
291		T32	L	[135, 136]
291		T36	L	[38]
291		T48	SB	[50]
291		T49	L	[124]
292	Shikimic acid	T32	L	[135, 136]
293	5-O-galloyl-(−)-shikimic acid	T3	F	[118]
293		T17	F	[154, 159]
294	4-O-galloyl-(−)-shikimic acid	T17	F	[159]
295	3,5-Di-O-galloyl-(−)-shikimic acid	T3	F	[154]
296	Digallic acid	T17	F	[159]
297	Ethyl gallate isomers2	T24	F	[126]
298	Ethyl gallate isomers3	T24	F	[126]
299	Dimethyl gallic acid	T35	L	[139]
300	Chebulic acid	T3	F	[154]
300		T17	F	[4, 9, 112, 119, 159]
300		T24	F	[159]
300		T35	L	[125, 126]
301	6′-O-methyl chebulate	T17	F	[159]
302	7′-O-methyl chebulate	T17	F	[159]
303	Chebulic acid trimethyl ester	T32	L	[135, 136]
304	Terminalin	T38	L	[39]
305	Decarboxyellagic acid	T3	F	[154]
306	3-O-galloyl-α-glucose	T3	F	[154]
No.	Compounds	Plants	Organs	References
-----	-----------	--------	--------	------------
307	6-O-galloyl-d-glucose	T3, T17	F	[154]
		T4, T8, T20, T39	B, L, S, R, F	[23]
308	Vanillic acid	T17	B	[23, 117]
		T16	S, R, B, F	[23]
		T44	R	[43]
309	Benzoic acid	T44	R	[43]
		T24	F	[122]
310	Hydrocinnamic acid	T44	R	[43]
311	Gentic acid	T16	L	[108]
312	Protocatechuic acid	T4, T8, T16, T17, T20, T39	B, L, S, R, F	[23]
313	2,3-Di-hydroxyphenyl β-d-glucosiduronic acid	T24	F	[125]
314	Quinic acid	T4, T8, T16, T17, T20, T39	B, L, S, R, F	[23]
		T24		[125]
315	p-Coumaric acid	T17	WP	[117]
		T44	R	[43]
316	Caffeic acid	T4, T8	L, S	[23]
		T17	L, S, R	[23]
		T16	L	[23]
		T39	B, L, S, R, F	[23]
		T20	B	[23]
		T44	R	[43]
317	Chlorogenic acid	T4	L, S	[23]
		T17	S, R, F, L	[23]
		T16, T39	L	[23]
		T20	B	[23]
318	Ferulic acid	T4	B, L, S, F	[23]
		T8, T17, T20, T39	B, L, S, R, F	[23]
		T16	L, S, R	[23]
319	Sinapic acid	T4, T16, T20, T39	B, L, S, R, F	[23]
		T8	S, R, F	[23]
		T17	B, S, R, F	[23]
	Steroids (8), polyols (9) and esters (6)			
320	β-Sitosterol	T1	B, H	[55, 56]
		T4	S, F	[57, 83]
		T8	F	[96, 113]
		T12	F	[99]
		T16	B, SB	[128]
		T48	H	[128]
		T25	H	[129]
		T36	SB	[140]
		T39	B	[147, 148]
		T44	H, SB, R	[43, 133, 152]
321	β-Sitosterol-3-acetate	T44	SB, R	[43]
322	β-Sitosteryl palmitate	T16	SB, H	[128]
		T25, T31	L, F	[128]
323	Stigmasterol 3-O-β-d-glucoside	T4	F	[80]
		T33	SB	[158]
324	Stigmasterol	T12	B	[99]
		T25	SB	[129]
		T33	SB	[158]
		T44	RB	[133, 152]
325	Stigma-4-ene-3-one	T44	RB	[43]
326	16,17-Dihydrorneridienone 3-O-β-d-galactosyl-(1→6)-O-β-d-galactoside	T4	R	[59]
Table 2 (continued)

No.	Compounds	Plants	Organs	References
327	Cannogenol 3-O-β-D-galactosyl-(1→4)-O-α-L-rhamno-side	T8	Se	[94]
328	2-Hexanol	T9	L	[13]
329	Octanol	T9	L	[13]
330	Methoxycarbonyloxymethyl methylcarbonate	T24	F	[125]
331	Ribonolactone	T24	F	[125]
332	Apionic acid	T24	F	[125]
333	Ascorbic acid	T24	F	[125]
334	Gluconolactone	T24	F	[125]
335	Glucohepatic acid-1,4-lactone	T24	F	[125]
336	Galacturonic acid	T44	R	[43]
337	Geranyl formate	T9	L	[13]
338	Citronellyl acetate	T9	L	[13]
339	Geranyl acetate	T9	L	[13]
340	Geranyl tiglate	T9	L	[13]
341	Laxiflorin	T31	RB	[127]
342	(1S,5R)-4-oxo-6,8-dioxabicyclo[3.2.1]oct-2-ene-2-carboxylic acid	T24	F	[125]
	Others (26)			
343	Glucuronic acid	T24	F	[125]
344	Coumarin	T45	L	[133]
345	Eujavonic acid	T24	F	[125]
346	Purine	T24	F	[125]
347	5-(4-Hydroxy-2,5-dimethylphenoxo)-2,2-dimethylpentanoic acid (gemfibrozil M1)	T24	F	[125]
348	p-Hydroxytiaprofenic acid	T24	F	[125]
349	Cis-polyisoprene	T32	L	[135]
350	Arachidic acid	T17	F	[113]
351	Behenic acid	T8, T17	F	[113]
352	Arjunaphthanoloside	T4	SB	[87]
353	Resveratrol (3′,4,5′-trihydroxystilbene)	T24	F	[126]
		T44	R	[43]
354	Resveratrol glucoside (piceid)	T24	F	[126]
		T44	RB	[152]
355	Resveratrol-β-D-glucoside	T44	RB	[152]
356	Combretatatin	T24	F	[126]
357	Combretastatin A1	T24	F	[126]
358	(Z)-Stilbene	T44	R	[133]
359	(E)-Stilbene	T44	R	[133]
360	3′,5′-Dihydroxy-4-(2-hydroxyethoxy) resveratrol-3-O-β-rutinoside	T44	R, RB	[43, 152]
361	Resveratrol-3-O-β-rutinoside glycoside	T44	R, RB	[43, 152]
362	1,4-Cineole	T9	L	[13]
363	Terpinen-4-ol	T9	L	[13]
364	Terminalanone	T12	B	[98]
365	Termicalcicolanone A	T15	WP	[19]
366	Termicalcicolanone B	T15	WP	[19]
3.2 Tannins

As the main secondary metabolites, 91 tannins (105–195) were reported from the genus *Terminalia* (Fig. 2), including ellagitannins, gallotannins, dimeric, and trimeric tannins. Four cinnamoyl-containing gallotannins (182–185) were discovered firstly from the fruits of *T. chebula*, and 1,2,3,6-tetra-O-galloyl-4-O-cinnamoylβ-D-glucose (183) and 4-O-(2′,4′-di-O-galloyl-α-L-rhamnosyl) ellagic acid (186) showed significant inhibitory activity on α-glucosidase with IC₅₀ values of 2.9 and 6.4 μM, respectively [159].

Tannins possess not only liver and kidney protection properties, but also anti-diarrhea, anticancer, antibacterial and hypoglycemic activities [133]. However, a condensed tannin terminalin (186) from *T. oblongata* was reported to have severe hepatorenal toxicity and even caused renal necrosis [39].

3.3 Flavonoids

The *Terminalia* genus are rich in flavonoids (Fig. 3) comprising of flavanones (196–202), flavones (203–215), flavan-3-ols (216–225), and flavonols (226–233). Among them, cerasidin (235) of chalcone, genistein (236) of isoflavone, and leucocyanidin (239) of flavan-3,4-diol from *T. arjuna* [80] were described as rare structural types in the *Terminalia* genus. Moreover, a new chalcone glycoside 2-O-β-glucosyloxy-4,6,2′,4′-tetramethoxychalcone (234) was reported from the roots of *T. alata* [53]. In addition, anthocyanidin cyanidin (237) and pelargonidin (238), flavanoid 7-hydroxy-3′,4′-(methylenedioxy)flavon (240) and other structure were reported [12, 23, 66]. Compounds 209–213, 215 were C-glycosides at C-6 or C-8 of ring A.

3.4 Lignans

Twenty-seven lignans (241–267) were reported from the genus *Terminalia* (Fig. 4). A new lignan 4′-O-cinnamoyl cleomiscosin A (248) was reported from the ethanol extract of *T. tropophylla* roots [72]. Moreover, 13 new furofuran lignan glucosides, terminalosides A–K (250–260), 2-epiterminaloside D (261), 6-epiterminaloside K (262) and 5 new polyalkoxyated furofuranone lignan glucosides, terminalosides L–P (263–267) were obtained from the leaves of *T. citrina*. All of them were tested for their estrogenic and/or antiestrogenic activities using estrogen responsive breast cancer cell lines T47D and MCF-7, and showed varying degrees of inhibitory activity. Among them, terminalosides B (251), G (256), L (263) and M (264) inhibited cell growth by up to 90% at a minimum concentration of 10 nM [22, 121].

3.5 Phenols and Glycosides

There are 52 phenols and glycosides reported in the *Terminalia* genus (Fig. 5), in which ellagic acid (268) and gallic acid (289) are present in almost all species. Studies have shown that most of the simple phenolic compounds have antioxidant, antibacterial, hypoglycemic, liver and kidney protection [23].

3.6 Sterols and Cardiac Glycosides

Only 6 sterols (320–325) and 2 cardiac glycosides (326–327) were isolated from the genus *Terminalia* before 2001 (Fig. 6).

3.7 Polyols and Esters

Polyols and lipids were reported to be abundant in the genus *Terminalia* and concentrated mainly in fruits and leaves [125]. So far, 9 polyol (328–336) and 6 esters (337–342) have been documented (Fig. 7).

3.8 Other Compounds

Other compounds featured in the *Terminalia* genus are shown in Fig. 8 and are mostly styrenes. Cao et al. isolated two new cytotoxic xanthones - terminalcalcicolanone A (365),
termicalcicolanone B (366) in *T. calcicola*, and found an inhibitory effect on ovarian cancer [19]. Hiroko Negishi et al. obtained a new chromone derivative - terminalianone (364) from the barks of *Terminalia brownii* [98]. Ansari et al. isolated the novel compound, 4′-substituted benzoyl-β-D-glycoside (368), from the fruits of *T. bellirica* and illustrated its potential for anticoagulation [160]. Moreover, chlorophyll and various vitamins were reported from the genus *Terminalia*.

4 Pharmacological Activities

The pharmacological activities of the genus *Terminalia*, mainly including antimicrobial, antioxidant, cytotoxicity, anti-inflammatory, hypoglycemic, cardiovascular, mosquito-cidal and antiviral, have been extensively studied.

4.1 Antimicrobial

Extracts of several *Terminalia* species exhibit antimicrobial activity against various microbes. For example, methanol and aqueous extracts of *T. australis* were demonstrated antimicrobial activity against *Ca. albicans* (MIC = 180 and 250 µg/mL, resp.) and *Ca. kruzei* (MIC = 250 and 300 µg/mL, resp.) [8]. Aqueous extracts of the stem barks, woods and whole roots of *T. brownii* showed antibacterial activity against standard strains of *Sta. aureus* (14.0 ± 1.1 µg/mL), *Escherichia coli*, *Ps. aeruginosa* (12.0 ± 1.1 µg/mL), *Klebsiella pneumonia* (6.0 ± 1.0 µg/mL), *Sa. typhi* and *Bacillus anthracis* (13.0 ± 1.0 µg/mL), as well as fungi *Ca. albi-cans* (12.3 ± 1.5 µg/mL) and *Cr. neoformans* (9.7 ± 1.1 µg/mL) [16]. Ethanol extracts of the root barks and leaves of *T. schimperiana* were against *Sta. aureus*, *Ps. aeruginosa* and *Sa. typhi* (MIC = 0.058–2.089 mg/mL), with inhibition...
zone diameters (IZDs) of 17.2 to 10.0 mm, compared to gentamicin (IZD = 21.8–10 mm). The results supported the efficacy of the extracts in the folkloric treatment of burns wounds, bronchitis and dysentery, respectively [42]. Antibacterial tests on *Mycobacterium smegmatis* ATCC 14468 showed that methanol extract of *T. sambesiaca* roots and stem barks had promising effects (MIC = 1.25 mg/mL, both) [133].

Ellagitannin punicalagin (133) obtained from the stem barks of *T. mollis* demonstrated crucial activity against *Ca. parapsilosis* and *Ca. krusei* (MIC = 6.25 μg/mL), as well as *Ca. albicans* (MIC = 12.5 μg/mL) [35].
7-Hydroxy-3',4'-(methylenedioxy) flavan (240), termilignan (241), anolignan B (242) and thannilignan (243) isolated from the fruit rinds of *T. bellirica* displayed significant antifungal activity against *Penicillium expansum* (MIC = 1.0, 2.0, 3.0 and 4.0 µg/mL, resp.), also with 240 and 241 against *Ca. albicans* at 10 and 6 µg/mL, resp. [12]. The antimycobacterial activity of friedelin (79) furnished from the root barks of *T. avicennioides* was 4.9 µg/mL in terms of MIC...
value [93]. β-Arjungenin (16), betulinic acid (74), sitosterol (319) and stigmasterol (323) from *T. brownii* were proved to possess antibacterial activity, with 74 the most active against *A. niger* and *S. ipomoea* (MIC = 50 μg/ml) [99].

4.2 Antioxidant

Terminalia species have also illustrated some interesting antioxidant properties [161]. By a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, relatively high antioxidant activities of the methanol extracts of *T. alata*, *T. belblica* and *T. corticosa* trunk-barks were found (IC₅₀ = 0.24, 1.02 and 0.25 mg/mL, resp.), compared to the positive control, l-ascorbic acid (IC₅₀ = 0.24 mg/mL) [2].

Flavonoid glycosides, apigenin-6-C- (211) and apigenin-8-C- (212) (2″-O-galloyl)-β-D-glucoside, isolated from dried fallen leaves of *T. catappa*, showed significant antioxidative effects (IC₅₀ = 2.1 and 4.5 μM, resp.) on Cu²⁺/O₂⁻-induced low density lipoprotein lipid peroxidation, with probucol (IC₅₀ = 4.0 μM) as positive control [105].

Arjunaphthanoloside (351), isolated from the stem barks of *T. arjuna* showed potent antioxidant activity and inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated rat peritoneal macrophages [87], while ivorenosides B (51) and C (52), two triterpenoid saponins from *T. ivorensis*, exhibited scavenging activities against DPPH and ABTS⁺ radicals [131].

The antioxidant potential of *T. paniculata* (TPW) was investigated by DPPH, ABTS⁻, NO, superoxide (O₂⁻), Fe²⁺ chelating and ferric reducing/antioxidant power (FRAP) assays. TPW showed maximum superoxide, ABTS⁻, NO, DPPH inhibition, and Fe²⁺-chelating property at 400 μg/mL, resp. FRAP value was 4.5 ± 0.25 μg Fe(II)/g, which
The Genus Terminalia (Combretaceae): An Ethnopharmacological, Phytochemical

demonstrated the efficacy of aqueous barks extract of T. paniculata as a potential antioxidant and analgesic agent [142].

TaB contains various natural antioxidants and has been used to protect animal cells against oxidative stress. The alleviating effect of TaB aqueous extract against Ni toxicity in rice (Oryza sativa L.) suggested that TaB extract considerably alleviated Ni toxicity in rice seedlings by preventing Ni uptake and reducing oxidative stress in the seedlings [162]. Behavioral paradigms and PCR studies of TaB extract against picrotoxin-induced anxiety showed that TaB supplementation increased locomotion towards open arm (EPM), illuminated area (light–dark box test), and increased rearing frequency (open field test) in a dose dependent manner, compared to picrotoxin (P < 0.05). Furthermore, alcoholic extract of TaB showed protective activity against picrotoxin in mice by modulation of genes related to synaptic plasticity, neurotransmitters, and antioxidant enzymes [174].
Fig. 2 (continued)
Fig. 2 (continued)
Fig. 3 The structures of flavonoids 197–240
4.3 Cytotoxicity

70% Acetone extracts of T. calamansanai leaves inhibited the viability of human promyelocytic leukemia HL-60 cells. Sanguin H-4 (115), 1-α-O-galloylpunicalagin (136), punicalagin (135), 2-O-galloylpunicalin (147) and methyl gallate (290) were the main components isolated from T. calamansanai with the IC₅₀ values of 65.2, 74.8, 42.2, 38.0 and > 100 µM, respectively, for HL-60 cells. Apoptosis of HL-60 cells treated with 1-α-O-galloylpunicalagin, 115, 135, and 147 was noted by the appearance of a sub-G₁ peak in flow cytometric analysis and DNA fragmentation by gel electrophoresis. 115 and 147 induced a decrease of the human poly (ADP-ribose) polymerase (PARP) cleavage-related procaspase-3 and elevated activity of caspase-3 in HL-60 cells, but not normal human peripheral blood mononuclear cells, PBMCs [18].

Terminaliaside A (60), an oleanane-type triterpenoid saponin isolated from the roots of T. tropophylla showed antiproliferative activity against the A2780 human ovarian cancer cell line with an IC₅₀ value of 1.2 µM [72]. The 70% methanolic extract of T. chebula fruits was found to decrease cell viability, inhibit cell proliferation, and induce cell death of human (MCF-7) and mouse (S115) breast cancer, human osteosarcoma (HOS-1), human prostate cancer (PC-3) and a non-tumorigenic, immortalized human prostate (PNT1A) cell lines. Flow cytometry and other analyses showed that some apoptosis was induced by the extract at lower concentrations, but at higher concentrations, necrosis was the major mechanism of cell death. Chebulinic acid (143) and ellagic acid (186) were tested by ATP assay on HOS-1 cell line in comparison with three known anti-growth phenolics of Terminalia, gallic acid (287), methyl gallate (290), luteolin (206), and tannic acid (169). Results showed that the most growth inhibitory phenolics in T. chebula fruits were chebulinic acid (IC₅₀ = 53.2 µM ±/0.16) > tannic acid (IC₅₀ = 59.0 mg/mL ±/0.19) > ellagic acid (IC₅₀ = 78.5 µM ±/0.24) [111].

Aqueous and ethanolic extracts of T. citrina fruits were revealed to exhibit significant mutagenicity in tested strains of baby hamster kidney cell line (BHK-21). Ethanolic extract showed higher mutagenicity in TA 100 strain, whereas aqueous extract exhibited higher mutagenicity in TA 102 strain than TA 100. Both extracts showed dose-dependent
mutagenicity. Fifty percent cell viability was exhibited by 260 and 545 μg/mL of ethanolic and aqueous extracts respectively [169]. Moreover, ivorenoside A (50) showed antiproliferative activity against MDA-MB-231 and HCT116 human cancer cell lines with IC₅₀ values of 3.96 and 3.43 μM, respectively [131].
4.4 Anti-inflammatory

Inflammation has been considered as a major risk factor for various kinds of human diseases. Macrophages play substantial roles in host defense against infection. It can be activated by LPS, the major component of the outer membrane of Gram-negative bacteria. An investigation was carried out to determine anti-inflammatory potential of ethyl acetate fraction isolated from *T. bellirica* (EFTB) in LPS stimulated RAW 264.7 macrophage cell lines. EFTB (100 μg/mL) inhibited all inflammatory markers in dose dependent manner. Moreover, EFTB down regulated the mRNA expression of TNF-α, IL-6, COX-2 and NF-κB against LPS stimulation. These results demonstrated that EFTB is able to attenuate...
inflammatory response possibly via suppression of ROS and NO species, inhibiting the production of arachidonic acid metabolites, proinflammatory mediators and cytokines release [165].

Anolignan B (242) isolated from roots of T. sericea was tested for anti-inflammatory activity using the cyclooxygenase enzyme assays (COX-1 and COX-2). It showed activity against both COX-1 (IC$_{50}$ = 1.5 mM) and COX-2 (IC$_{50}$ = 7.5 mM) enzymes [151]. Termiarjunosides I (47) and II (48) isolated from stem barks of T. arjuna inhibited aggregation of platelets and suppressed the release of NO and superoxide from macrophages [156].

The anti-inflammatory activities of a polyphenol-rich fraction (TMEF) obtained from T. muelleri was assessed using carrageenan-induced paw edema model by measuring PGE$_2$, TNF-α, IL-1β, and IL-6 plasma levels as well as the paw thickness. The group treated with 400 mg/kg of TMEF showed a greater inhibition in the number of writhes (by 63%) than the standard treated group (61%). TMEF pretreatment reduced the edema thickness by 48, 53, and 62% at the tested doses, respectively. TMEF administration inhibited the carrageenan-induced elevations in PGE$_2$ (by 34, 43, and 47%), TNF-α (18, 28, and 41%), IL-1β (14, 22, and 29%), and IL-6 (26, 31, and 46%) [166].

4.5 Hypoglycemic

Some species and isolates from Terminalia have indicated possession of α-glucosidase inhibitory capabilities. Gallic acid (287) and methyl gallate (290), from stem barks of T. superba, showed significant activity (IC$_{50}$ = 5.2 ± 0.2 and 11.5 ± 0.1 μM), resp.). Arjunic acid (5) and glucinoic acid (46) from stem barks of T. glaucescens showed significant β-glucuronidase inhibitory activity with IC$_{50}$ value 80.1 and 500 μM, resp., against β-glucuronidase [130].

In a study to investigate α-glucosidase inhibition of extracts and isolated compounds from T. macroptera leaves, chebulagic acid (142) showed an IC$_{50}$ value of 0.05 μM towards α-glucosidase and 24.9 ± 0.4 μM towards 15-lipoxynagenase (15-LO), in contrast to positive controls (acarbose: IC$_{50}$ = 201 ± 28 μM towards α-glucosidase, quercetin: IC$_{50}$ = 93 ± 3 μM towards 15-LO). Corilagin (116) and narcissin (231) were good 15-LO and α-glucosidase inhibitors. Rutin (230) was a good α-glucosidase inhibitor (IC$_{50}$ ca. 3 μM), but less active towards 15-LO [136].

From the fruits of T. chebula, 23-O-galloylarjunonic acid (30) and 23-O-galloylarjunonic acid 28-O-β-d-glucosyl ester (31) were afforded and showed potent inhibitory activities with IC$_{50}$ values of 21.7 (30) and 64.2 (31) μM, resp., against Baker’s yeast α-glucosidase, compared to the positive control, acarbose (IC$_{50}$ = 174.0 μM) [146].

Hydrolyzable tannins, 1,2,3,6-tetra-O-galloyl-4-O-cinnamoyl-β-d-glucose (183) and 4-O-(2″,4″-di-O-galloyl-α-L-rhamnosyl) ellagic acid (186) from the fruits of T. chebula, showed significant α-glucosidase inhibitory activities with IC$_{50}$ values of 2.9 and 6.4 μM, resp. In addition, inhibition kinetic studies showed that both compounds have mixed-type inhibitory activities with the inhibition constants (Ki) of 1.9 and 4.0 μM, respectively [159].

4.6 Cardiovascular

A few species of Terminalia have demonstrated cardiovascular activities. It was reported that the barks of T. arjuna possessed significant inotropic and hypotensive effect, mild diuretic, antithrombotic, prostaglandin E2 enhancing and hypolipidemic activities [66].

Ethanol extract of T. pallida fruits (TpFE) were studied to determine their cardioprotection against isoprostene (ISO)-administered rats. The supplementation of TpFE dose-dependently exerts notable protection on myocardium by virtue of its strong antioxidant activity. It could be used as a medicinal food for the treatment of cardiovascular ailments [163].

4.7 Mosquitocidal

Insect-borne diseases remain to this day a major source of illness and can cause death worldwide. The resistance to chemical insecticides among mosquito species has been a major problem in vector control. The larvicidal and ovicidal activities of crude benzene, hexane, ethyl acetate, chloroform and methanol extracts of T. chebula were tested for their toxicity against three important vector mosquitoes, viz., Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. All extracts showed moderate larvicidal effects, the highest larval mortality was found in the methanol extract of T. chebula against the larvae of A. stephensi, A. aegypti, and C. quinquefasciatus with the LC$_{50}$ values of 87.13, 93.24 and 111.98 ppm, respectively. Mean percent hatchability of the ovicidal activity was observed 48 h post treatment. All the five solvent extracts showed moderate ovicidal activity. The maximum egg mortality (zero hatchability) was observed in the methanol extract of T. chebula at 200 and 250 ppm against A. stephensi, while A. aegypti and C. quinquefasciatus showed 100% mortality at 300 ppm. No mortality was observed in the control group. The finding of the investigation revealed that the leaf extract of T. chebula possesses remarkable larvicidal and ovicidal activity against medically important vector mosquitoes [167, 168].

4.8 Antiviral

Termilignan (241) and anolignan B (242), obtained from T. bellirica exhibited antimalarial activity against the
In vitro anti-HIV-1 activity of acetone and methanol extracts of *T. paniculata* fruits was studied by Durge A. et al. Cytotoxicity tests were conducted on TZM-bl cells and PBMCs, the CC₅₀ values of both extracts were ≥ 260 μg/mL. By using TZM-bl cells, the extracts were tested for their ability to inhibit replication of two primary isolates HIV-1 (X4, Subtype D) and HIV-1 (R5, Subtype C). The activity against HIV-1 primary isolate (R5, Subtype C) was confirmed by using activated PBMC and quantification of HIV-1 p24 antigen. Both the extracts showed anti-HIV-1 activity in a dose-dependent manner. The EC₅₀ values of the acetone and methanol extracts of *T. paniculata* were ≤ 10.3 μg/mL. Furthermore, the enzymatic assays were performed to determine the mechanism of action which indicated that the anti-HIV-1 activity might be due to inhibition of reverse transcriptase (≥ 77.7% inhibition) and protease (≥ 69.9% inhibition) enzymes [172].

Kesharwani A. et al. investigated anti-HSV-2 activity of *T. chebula* extract and its constituents, chebulagic acid (142) and chebulinic acid (143). Cytotoxicity assay using Vero cells revealed CC₅₀ = 409.71 ± 47.70 μg/mL for the extract whereas 142 and 143 showed more than 95% cell viability up to 200 μg/mL. The extract from *T. chebula* (IC₅₀ = 0.01 ± 0.0002 μg/mL), chebulagic (IC₅₀ = 1.41 ± 0.51 μg/mL) and chebulinic acids (IC₅₀ = 0.06 ± 0.002 μg/mL) showed dose dependent in vitro anti-viral activity against HSV-2, which can also effectively prevent the attachment and penetration of the HSV-2 to Vero cells. In comparison, acyclovir showed poor direct anti-viral activity and failed to significantly (p > 0.05) prevent the attachment as well as penetration of HSV-2 to Vero cells when tested up to 50 μg/mL. Besides, in post-infection plaque reduction assay, *T. chebula* extract, chebulagic and chebulinic acids showed IC₅₀ values of 50.06 ± 6.12, 31.84 ± 2.64, and 8.69 ± 2.09 μg/mL, resp., which were much lower than acyclovir (71.80 ± 19.95 μg/mL) [173].

4.9 Others

Terminalia species were also reported to be used in the treatment of diarrhea [95], Alzheimer’s disease [112], psoriasis [164], liver disease [170], kidney disease [171], etc. Terminalosides A–K (249–259) from the leaves of the Bangladeshi medicinal plant *T. citrina* possess estrogen-inhibitory properties. Among them, Terminaloside E (253) showed inhibitory activity against the T47D cell line, such terminalosides C (252), F (255), and I (258). Besides, 6-epiterminaloside K (262) displayed antiestrogenic activity against MCF-7 cells [22].

5 Conclusion and Future Prospects

The genus *Terminalia* contains not only a large number of tannins, simple phenolics, but also a lot of terpenoids, flavonoids, lignans and other compounds. Most tannins, simple phenolics and flavonoids have antioxidation, antibacterial, antiinflammatory and anticancer activities. The plants of the genus *Terminalia* have exhibited positive effect on immune regulation, cardiovascular disease and diabetes, and can accelerate wound healing [157]. Therefore, the *Terminalia* genus has great medicinal potential. However, most of the chemical composition of species is still unknown, we should use modern advanced technology such as LC–MS to continue to isolate its compounds, and determine their pharmacological activities and mechanism of action, to explore other possible greater medicinal value.

Acknowledgements This work was supported by the Key Projects of Yunnan Science and Technology, and Yunnan Key Laboratory of Natural Medicinal Chemistry (S2017-ZZ14).

Conflict of interest All authors declare no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. L.J. McGaw, T. Rabe, S.G. Sparg, A.K. Jäger, J.N. Eloff, J. van Staden, J. Ethnopharmacol. 75, 45–50 (2001)
2. Q. Nguyen, V.B. Nguyen, J. Eun, S. Wang, D.H. Nguyen, T.N. Tran, A.D. Ngugen, Res. Chem. Intermed. 42, 5859–5871 (2016)
3. S.K. Srivastava, B.K. Choutek, S.D. Srivastava, Fitoterapia 72, 191–193 (2001)
4. D. Arias, J. Calvo-Alvarado, D.B. de Richter, A. Dohrenbusch, Biomass Bioenergy 35, 1779–1788 (2011)
5. Y. Noboru, I. Ayako, K. Chika, S. Keisuke, JP2001098264 A 20010410 (2001)
6. R.N. Yadav, K. Rathore, Phytochem. Commun. 72, 459–461 (2001)
7. S. Fangwen, P. Rajoji, CN105232959 A 20160113 (2016)
8. S.M. Carpano, E.D. Spegazzini, J.S. Rossi, M.T. Castro, S.L. Debenedetti, Fitoterapia 74, 294–297 (2003)
9. A.A. Omonkhua, M.C. Cyril-Olutayo, O.M. Akanbi, O.A. Adebayo, Parasitol. Res. 112, 3497–3503 (2013)
10. H. Zanna, S. Ahmad, B. Abdulmalik, Tasi’u M, Abel GO, Musa HM. Adv. Biochem. 2, 55–59 (2014)
142. S. Talwar, P.G. Nayak, J. Mudgal, P. Paul, P. Bansal, K. Nandakumar, J. Med. Food 16, 1153–1161 (2013)
143. L.R. Row, R.R. Raju, Tetrahedron 23, 879–884 (1967)
144. R. Mopuri, M. Ganjayi, K.S. Banavathy, B.N. Parim, B. Meriga, BMC Complement. Altern. Med. 15, 76 (2015)
145. J. Conrad, B. Vogler, I. Klaiber, G. Roos, U. Walter, W. Kraus, Phytochemistry 48, 647–650 (1998)
146. D.Y. Lee, K.H. Woo, H.J. Yang, S.S. Hyun, Bioorg. Med. Chem. Lett. 27, 34–39 (2017)
147. R.L. Ramachandra, R.R. Ramkrishnam, Curr. Sci. 34, 177 (1965)
148. L.R. Row, G.S. Rao, Tetrahedron 18, 357–360 (1962)
149. V. Martino, J. Morales, J.J. Martínez-Irujo, M. Font, A. Monge, J. Coussio, Phytother. Res. 18, 667–669 (2004)
150. M.J. Moshi, Z.H. Mbwambo, J. Ethnopharmacol. 97, 43–47 (2005)
151. I.M. Eldeen, E.E. Elgorashi, D.A. Mulholland, J. van Staden, J. Ethnopharmacol. 103, 135–138 (2006)
152. C.C. Joseph, M.J. Moshi, E. Innocent, M.H.H. Nkunya, Afr. J. Tradit. Complement. Altern. Med. 4, 383–386 (2007)
153. V. Kuete, T.K. Tabopda, B. Ngameni, F. Nana, T.E. Tshikalange, B.T. Ngadjui, S. Afr. J. Bot. 76, 125–131 (2010)
154. T.C. Li, F.L. Hsu, Chin. Pharm. J. 48, 167–175 (1996)
155. L.F. Wu, Y.B. Yuan, K.F. Wang, S.Q. Li, J. Liu, L.Z. Zhang, G.M. She, Chin. Tradit. Herb. Drugs 45, 290–299 (2014)
156. M.S. Alam, G. Kaur, A. Ali, H. Hamid, M. Ali, M. Athar, Nat. Prod. Res. 22, 1279-1288 (2008)
157. I.E. Cock, Inflammopharmacology 23, 203–229 (2015)
158. M.T. Tchuanemogne, T. Kammalac, S. Gohlke, R. Koupou, A. Aslan, M. Kuzu, N. Sewald, Medicines (Basel) 4, 6 (2017)
159. D.Y. Lee, H.W. Kim, H. Yang, S.H. Sung, Phytochemistry 137, 109–116 (2017)
160. V.A. Anarsi, M. Arif, M.S. Hussain, H.H. Siddiqui, R.K. Dixit, Integr. Med. Res. 5, 317–323 (2016)
161. C. Rice-Evans, N. Miller, G. Paganga, Trends Plant Sci. 2, 152–159 (1997)
162. R. Rajpoot, A. Rani, R.K. Srivastava, P. Pandey, R.S. Dubey, Proteoplasma 253, 1449–1462 (2016)
163. S.A. Hussain, M.A. Kareem, S.N. Rasoo, S.Y. Al Omar, A. Saleh, M.A. Al-Fwuuiarues, K.L. Devi, Biol. Trace Elem. Res. 181, 112–121 (2018)
164. J. An, T. Li, Y. Dong, Z. Li, J. Huo, Cell. Physiol. Biochem. 39, 531–543 (2017)
165. K. Jayesh, L.R. Helen, A. Vysakh, E. Binil, M.S. Latha, Biomed. Pharmacother. 95, 1654–1660 (2017)
166. N.M. Fahmy, E. Al-Sayed, M.M. Abdel-Daim, A.N. Singab, Drug Dev. Res. 78, 146–154 (2017)
167. T. Veni, T. Pushpanathan, J. Mohanraj, J. Parasit. Dis. 41, 693–702 (2017)
168. A. Thanigaivel, P. Vasantha-Srinivasan, S. Senthil-Nathan, E.S. Edwin, A. Ponsranks, M. Chellappandian, K. Kalaivani, Ecotoxicol. Environ. Saf. 137, 210–217 (2017)
169. M.F. Akhtar, A. Saleem, A. Shariff, B. Akhtar, M.B. Nasim, S. Peerzada, S. Ali, EXCLI J. 15, 589 (2016)
170. J. Kuriakose, H.L. Raisa, A. Vysakh, B. Eldhose, M.S. Latha, Biomed. Pharmacother. 93, 327–333 (2017)
171. A. Mittal, S. Tandon, S.K. Singla, C. Tandon, Cytotechnology 69, 349–358 (2017)
172. A. Durge, P. Jadaun, A. Wadhwani, A.A. Chinchansure, M. Said, H.V. Thulasiram, S.S. Kuikarni, Nat. Prod. Res. 31, 1468–1471 (2017)
173. A. Kesharwani, S.K. Polachira, R. Nair, A. Agarwal, N.N. Mishra, S.K. Gupta, BMC Complement. Altern. Med. 17, 110 (2017)
174. Y.C. Sekhar, G.P. Kumar, K.R. Anilkumar, Chin. J. Nat. Med. 15, 584–596 (2017)