Original Article

Genetic variants of chromosome 9p21.3 region associated with coronary artery disease and premature coronary artery disease in an Asian Indian population

Bellary Kalpana a,*, Dwarkanath K. Murthy b, Nagalla Balakrishna c, Mohini T. Aiyengar a

a Department of Genetics & Biotechnology, Bhavan’s Vivekananda College, Sainikpuri, Secunderabad 500094, Telangana State, India
b Department of Genetics & Biotechnology, Osmania University, Hyderabad 500070, Telangana State, India
c Division of Biostatistics, National Institute of Nutrition, Hyderabad 500007, Telangana State, India

ABSTRACT

Introduction: Asian Indians have a propensity for premature, severe, and diffuse coronary artery disease (CAD). Several single-nucleotide polymorphisms (SNPs) in the ‘core CAD’ region of the chromosomal region 9p21.3 are known to be strongly associated with CAD.

Objectives: We aimed to study SNPs in the 9p21.3 region associated with CAD and premature CAD and identify their association with demographic and clinical characteristics in an Asian Indian population.

Methods: SNP genotyping was performed for 30 SNPs of the 9p21.3 region using MassARRAY® technology. Along with demographic and SNP data analysis, we also performed multivariate logistic regression analysis and multifactor dimensionality reduction analysis to study SNP–SNP and SNP–demographic/clinical variable interactions.

Results: Our results suggest that females are at a higher risk of premature CAD. We found that SNPs rs1333045 (CC), rs16905599 (AA), rs2383206 (GG), rs2383208 (AG), and rs4977574 (GG) were significantly associated with premature CAD. When adjusted for covariates/confounders, we found that rs2383206 showed the strongest risk association with CAD followed by rs16905599 and rs2383208. Further, SNPs rs1333049 (CC) and rs4977574 (GG) were found to be exclusively associated with premature CAD cases, suggesting their potential as genetic markers for premature CAD in the local population. Upon gender-based stratification, it was found that rs10757272 (TT and TC) is significantly associated with eightfold to ninefold CAD risk specifically among females. SNP rs7865618 (GG) is significantly associated with more than 2.5-fold CAD risk specifically among males.

Conclusion: Our study suggests that SNPs at the 9p21 risk locus may be used to generate a reliable genetic risk score along with markers at other loci.

© 2019 Cardiological Society of India. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Coronary artery disease (CAD) has reached epidemic proportions in the Asian Indian population. Asian Indians have a propensity for premature, diffuse, and severe CAD.1-2 Genome-wide association studies starting from 20073-7 identified the 9p21.3 chromosomal region as being strongly associated with CAD and myocardial infarction (MI). This region has also been associated with stroke,8 aortic,9 abdominal,10 intracranial aneurysms,10 and several types of cancers.12-14

The chromosomal region 9p21.3 has been strongly associated with CAD in Caucasian, Italian15 US Hispanic,16 Chinese,17 Japanese,18 Korean,19 Asian Indian,20 and Pakistani21 populations. This region is sparse in genes and also called ‘gene desert’. The nearest genes, about 100 kb upstream of the core CAD region, are two tumor suppressor genes called CDKN2A and CDKN2B that constitute the INK4/ARF locus. This locus encodes cyclin-dependent kinase inhibitors (p16INK4A and p14ARF) from CDKN2A and p15INK4B from CDKN2B that cause arrest of cell cycle in the G1 phase.22,23 Further
away is another gene MTAP that encodes methylthioadenosine phosphorylase, that is involved in the polyamine pathway (salvage of adenine and methionine). Most of the single-nucleotide polymorphisms (SNPs) associated with CAD are present in a 58 Kb region called the ‘core CAD’ region. The core CAD region overlaps CDKN2B and also contains a long noncoding RNA of about 126 kb named ANRIL for antisense noncoding RNA in the INK4 locus, hence also called CDKN2B-AS. ANRIL is known to have several linear and circular isoforms.

Table 1

SNPs studied in the 9p213 region.

S. No.	SNP ID	Chromosomal position	Gene view	Functional consequence	Minor allele and global frequency
1	rs1004638 (T/A)	22115590	CDKN2B-AS1	Intron variant	A-0.31
2	rs10116277 (T/G)	22081398	CDKN2B-AS1	Intron variant	G-0.323
3	rs1011970 (G/T)	22062135	CDKN2B-AS1	Intron variant	T-0.247
4	rs1063192 (A/G)	22003368	CDKN2B-AS1	Intron variant, UTR variant 3’	G-0.205
5	rs10757272 (C/T)	22088261	CDKN2B-AS1	Intron variant	C-0.218
6	rs10757274 (A/G)	22096056	CDKN2B-AS1	Intron variant	G-0.404
7	rs10757278 (A/G)	22124478	CDKN2B-AS1	Intron variant	C-0.408
8	rs10757283 (C/T)	22134173	CDKN2B-AS1	Intron variant	T-0.456
9	rs10811661 (T/C)	22134095	CDKN2B-AS1	Intron variant	C-0.176
10	rs1323940 (T/C)	22083405	CDKN2B-AS1	Intron variant	G-0.312
11	rs1333042 (G/A)	22103814	CDKN2B-AS1	Intron variant	A-0.321
12	rs1333045 (A/G)	22119196	CDKN2B-AS1	Intron variant	C-0.498
13	rs1333048 (A/G)	22125348	CDKN2B-AS1	Intron variant	A-0.442
14	rs1333049 (G/A)	22125504	CDKN2B-AS1	Intron variant	C-0.418
15	rs1690599 (G/A)	22069145	CDKN2B-AS1	Intron variant	A-0.190
16	rs2383206 (A/G)	22115027	CDKN2B-AS1	Intron variant	C-0.195
17	rs2383207 (A/G)	22132277	CDKN2B-AS1	Intron variant	G-0.210
18	rs2811712 (A/G)	22083405	CDKN2B-AS1	Intron variant	A-0.190
19	rs2811960 (A/G)	22113826	CDKN2B-AS1	Intron variant	G-0.493
20	rs3123123 (A/G)	21974219	CDKN2A	Intron variant	G-0.175
21	rs4977574 (A/G)	22088575	CDKN2B-AS1	Intron variant	C-0.487
22	rs4977756 (A/G)	22086853	CDKN2B-AS1	Intron variant	G-0.288
23	rs654958 (T/C)	22095458	CDKN2B-AS1	Intron variant	A-0.184
24	rs615552 (T/C)	22030078	CDKN2B-AS1	Intron variant	T-0.431
25	rs647606 (T/C)	22081851	CDKN2B-AS1	Intronic variant	C-0.322
26	rs7023329 (A/G)	21816529	MTAP	Intron variant	G-0.449
27	rs7865818 (A/G)	22031006	CDKN2B-AS1	Intron variant	C-0.188
28	rs944797 (T/C)	22115287	CDKN2B-AS1	Intron variant	G-0.487
29	rs9632884 (C/G)	22072302	CDKN2B-AS1	Intron variant	G-0.304

SNP, single-nucleotide polymorphism.
* Genome build is GRCh38.p12 (taken from dbSNP site).

Table 2

Epidemiological characteristics of the study population.

Demographic/clinical parameter	Controls	Cases	P value
Age in years (mean ± SD)	51.8 ± 9.8	55.9 ± 10.7	1 x 10⁻⁶
Percentage of males/females	366/63.4	812/18.8	<1 x 10⁻⁷
Height in cms (mean ± SD)	157.61 ± 10	163.49 ± 8.1	3 x 10⁻¹
Weight in Kg (mean ± SD)	67.5 ± 11.6	67.8 ± 11.7	0.603
BMI (mean ± SD)	26.1 ± 4.9	25.4 ± 3.8	0.044
Systolic BP (mean ± SD)	121.4 ± 6.7	125.7 ± 18.1	8 x 10⁻⁴
Diastolic BP (mean ± SD)	80.8 ± 5.9	76.6 ± 10.7	1 x 10⁻¹
Percentage of diabetes/normal	15.8/84.2	50.5/49.5	<1 x 10⁻⁷
Duration of diabetes in years (mean ± SD)	0.431 ± 1.13	1.50 ± 1.18	<1 x 10⁻⁷
Percentage of hypertensives/normal	24.6/75.4	58.7/41.3	<1 x 10⁻⁷
Duration of hypertension in years (mean ± SD)	0.76 ± 1.55	1.74 ± 1.82	<1 x 10⁻⁶
Percentage having affected first-degree relative/no affected first-degree relative	30/70	39.4/60.6	0.015
Percentage of cigarette smokers (ever)/nonsmokers	4.7/95.3	43.6/56.4	<1 x 10⁻⁷
No. of cigarettes per day (mean ± SD)	0.13 ± 0.92	4.21 ± 7.30	<1 x 10⁻⁷
Percentage of alcoholics (ever)/nonalcoholics	9.5/90.5	39.5/60.5	<1 x 10⁻⁷
Number of pegs of alcohol (mean ± SD)	1.85 ± 1.10	1.01 ± 1.40	<1 x 10⁻⁷
Number of tea/coffee cups per day (mean ± SD)	2.37 ± 1.12	2.69 ± 1.86	0.021
Percentage of individuals with vegetarian diet/mixed diet	51.9/48.1	17.9/82.1	<1 x 10⁻⁷
Percentage of individuals with regular fruit intake/rare fruit intake	75.25	56.9/43.1	2 x 10⁻⁶
Percentage of individuals with regular physical exercise/no physical exercise	78.3/21.7	45.5/54.5	<1 x 10⁻⁷

SD, standard deviation; BMI, body mass index; BP, blood pressure.
To understand the association of the 9p21 risk locus with CAD and premature CAD, we aimed to study 30 SNPs in this region, their association with demographic, clinical characteristics, and interferon alpha 21 (IFNA21) levels in an Asian Indian population.

2. Materials and methods

The study was conducted in the south Indian state of Telangana, in the twin cities of Hyderabad and Secunderabad. The study population consisted of 661 individuals including 443 controls and 218 angiographically documented CAD cases (recruited from June 2015 to June 2017). The controls were recruited from various parts of the twin cities of Hyderabad and Secunderabad. We have followed the guidelines of the 1975 Declaration of Helsinki in the recruitment of study subjects, sample, and data collection. The CAD cases were recruited from Krishna Institute of Medical Sciences (KIMS), Secunderabad, after the approval of the Ethics Committee of KIMS Foundation and Research Centre. Written informed consent was taken from all subjects prior to sample and data collection.

2.1. Selection criteria of study subjects

Inclusion criteria for controls include healthy individuals from the age of 40 to 85 years.
Exclusion criteria for cases include individuals with liver, kidney, and gastrointestinal disorders and individuals with infectious diseases such as hepatitis, HIV, TB, and so on.

2.2. Methodology

The CAD cases were recruited in consultation with the hospital cardiologist. Peripheral blood sample of 5 ml was taken from each subject and equally dispensed in a vacutainer tube coated with EDTA for plasma and vacutainer tube with clot accelerator for serum separation. DNA extraction from plasma was performed using the kit manufactured by Epicentre (an Illumina company). The DNA samples were estimated qualitatively by electrophoresis on 0.8% agarose gels stained with ethidium bromide, and the bands were viewed in a UV transilluminator. The quantitative estimation of DNA was performed using a Nanodrop Spectrophotometer and taking the ratio of absorbance at 260/280 nm.

The DNA samples were then genotyped for 30 SNPs of the 9p21 region (Table 1). The 9p21 SNPs were chosen based on 2 criteria: (A) extensive literature survey and (B) minor allele frequency (MAF) taken from the dbSNP site of the National Center for Biotechnology Information. We have chosen SNPs having MAF > 0.15. The SNP genotyping was performed by the MassARRAY® technology (Sequenom platform) using the AGENA protocol.

Table 3
Comparison of epidemiological and clinical variables between nonpremature and premature cases.

S. No.	Variable	% of Nonpremature cases (n = 109)	% of Premature cases (n = 109)	P value
1.	Gender			
	Male	86.7	75.2	0.030
	Female	13.3	24.8	
2.	Diabetes			
	Yes	58.4	41.9	0.015
	No	41.6	58.1	
3.	Hypertension			
	Yes	70.8	45.7	0.0002
	No	29.2	54.3	
4.	Hyperlipidemia			
	Yes	10.6	13.3	0.404
	No	55.8	46.7	
	No information	33.6	40.0	
5.	Alcohol			
	Yes	36.3	42.9	0.321
	No	63.7	57.1	
6.	Smoking habit			
	Yes	40.7	46.7	0.375
	No	59.3	53.3	
7.	Exercise			
	Yes	49.6	41	0.202
	No	50.4	59	
8.	Food habit			
	Vegetarian	23.9	11.4	0.016
	Mixed	76.1	88.6	
9.	Fruits intake			
	Daily	38.1	37.1	0.592
	1–2 times weekly	5.3	6.7	
	3–4 times weekly	10.6	16.2	
	Occasionally/carely	46.0	40.0	
10.	Family history			
	Yes	37.6	41.6	0.597
	No	62.4	58.4	

To understand the association of the 9p21 risk locus with CAD and premature CAD, we aimed to study 30 SNPs in this region, their association with demographic, clinical characteristics, and interferon alpha 21 (IFNA21) levels in an Asian Indian population.
S. No.	SNP ID/variable	Wild-type genotype /reference value	Risk genotype /OR with 95% CI	P value	Heterozygous genotype /OR with 95% CI	P value	
1.	rs1004638	AA(1)	0.676 (0.469–0.974)	0.036	0.767 (0.576–1.022)	0.070	
2.	rs10116277	TT(1)	3.394 (0.917–12.566)	0.067	3.137 (1.044–9.429)	0.042	
3.	rs1011970	TT(1)	0.294 (0.707–1.235)	0.095	0.555 (0.278–1.110)	0.096	
4.	rs1063192	AA(1)	0.205 (0.040–1.053)	0.058	0.638 (0.376–1.084)	0.096	
5.	rs10757272	TT(1)	13.88 (0.998–1932)	0.020	2.703 (0.918–7.958)	0.071	
6.	rs10757274	AA(1)	0.216 (0.059–0.785)	0.051	2.656 (0.971–7.266)	0.057	
7.	rs10757578	AA(1)	0.354 (0.108–1.157)	0.086	0.565 (0.307–1.040)	0.067	
8.	rs10811661	AA(1)	0.287 (0.085–0.972)	0.045	2.801 (0.898–8.736)	0.076	
9.	rs1333040	CC(1)	3.385 (1.110–10.324)	0.032	3.905 (1.462–10.430)	0.007	
10.	rs1333042	CC(1)	3.206 (1.029–9.991)	0.045	3.222 (1.232–8.424)	0.017	
11.	rs1333045	AA(1)	0.273 (0.065–1.155)	0.078	4.052 (1.500–10.948)	0.006	
12.	rs1333048	AA(1)	0.720 (0.488–1.060)	0.096	1.678 (0.939–2.999)	0.080	
13.	rs1333049	TT(1)	1.287 (0.857–0.972)	0.045	1.424 (1.023–1.981)	0.036	
14.	rs1333059	CC(1)	3.835 (1.110–10.324)	0.052	2.887 (1.041–8.011)	0.042	
15.	rs1333060	CC(1)	3.206 (1.029–9.991)	0.045	3.222 (1.232–8.424)	0.017	
16.	rs1333061	CC(1)	1.316 (0.951–1.821)	0.097	4.052 (1.500–10.948)	0.006	
17.	rs1333062	CC(1)	7.737E+13 to 7.737E+13	0.000	2.349 (0.878–6.282)	0.089	
18.	rs1333063	CC(1)	4.052 (1.500–10.948)	0.006	1.678 (0.939–2.999)	0.080	
19.	rs1333064	CC(1)	1.285 (0.994–1.660)	0.055	AG		
20.	rs1540599	CC(1)	4.052 (1.500–10.948)	0.006	1.678 (0.939–2.999)	0.080	
21.	rs1540600	CC(1)	1.285 (0.994–1.660)	0.055	AG		
22.	rs1540601	CC(1)	4.052 (1.500–10.948)	0.006	1.678 (0.939–2.999)	0.080	
23.	rs1540602	CC(1)	1.285 (0.994–1.660)	0.055	AG		
S. No.	SNP ID/variable	Wild-type genotype/reference value	Risk genotype/OR with 95% CI	P value	Heterozygous genotype/OR with 95% CI	P value	
--------	----------------	-----------------------------------	-------------------------------	---------	-------------------------------------	---------	
24.	A Age						
	B Duration of CAD						
	C Hypertension						
	D Rh blood group						
	rs7023329 ABO blood groups		AA(1) GG	2.684 (1.150–6.265)	0.022	1.383 (1.039–1.840)	0.026
	Hyperlipidemia		GA				
25.	rs944797		TT(1) CC	0.008			
	A ABO blood groups						
	B Hyperlipidemia						
	rs9632884		CC(1) GG	0.008	1.443 (1.038–2.005)	0.029	
	A Age						
	B ABO blood groups						
	C Fruit intake						

SNP, single-nucleotide polymorphism; CAD, coronary artery disease; OR, odds ratio; CI, confidence interval.

* The variables included for multivariate logistic regression analysis are age at onset, duration of CAD, diabetes, hypertension, hyperlipidemia, ABO blood groups, Rh blood groups, alcohol habit, smoking habit, physical exercise, food habit, and fruit intake. Only variables for which there is an association or trend towards an association have been shown in the table for each SNP.
IFNA21 gene is located 946,000 base pairs downstream of “core CAD” region in the IFNA gene cluster.

2.3. **Statistical analyses**

Demographic data were analyzed using SPSS software (Statistical Package for Social Sciences, version 21). The SNP data were analyzed using SPSS (version 21), SNPStats (available online), Haploview (available online), and multifactor dimensionality reduction (MDR) software (version 3.2). Two-tailed P values were considered to assess the significance of association in Chi-square tests used in all the statistical analyses. The power of the study was estimated by using online available software M GAS (Genetic Association Study) Power Calculator (version 3) and found to be 0.966.

3. Results and discussion

Demographic data analysis revealed a higher frequency of conventional risk factors such as diabetes, hypertension, hyperlipidemia, smoking, alcohol, nonvegetarian diet, low fruit intake, lack of physical exercise, and family history (affected first-degree relative) in CAD cases as compared to controls (Table 2). We compared demographic and clinical characteristics between premature CAD cases (age at presentation <55 years in men and <65 years in women) and nonpremature CAD cases (Table 3). Analysis revealed that frequency of females and individuals with diabetes, hypertension, and nonvegetarian diet is significantly higher in premature cases as compared to nonpremature cases. Premature cases did not score well with respect to lifestyle habits, except for regular fruit intake. Our results suggest that lifestyle habits and an increased genetic predisposition may play an important role in the etiology of premature CAD.

3.1. **SNP data analysis**

The genotypic and allele frequency distribution of the 30 SNPs among the controls and CAD and premature CAD cases revealed that the CC genotype of rs1333045 (T/C) showed more than 1.4-fold risk for CAD ($P = 0.046$ in the recessive model). We found more than 1.6-fold risk for premature CAD ($P = 0.051$ in the recessive model). Our study is the first to report an association of rs1333045 with CAD risk in an Asian Indian population.

The CC genotype of rs1333049 (G/C), a highly replicated SNP, showed a trend toward risk association with premature
CAD in the study population ($P = 0.061$ in the recessive model).41,42

Further, we found that the AA genotype of rs16905599 (G/A) is associated with more than 2.4-fold risk for CAD in the study population ($P = 0.025$ in the codominant model and $P = 0.0069$ in the recessive model). The AA genotype of rs16905599 showed about threefold risk for premature CAD ($P = 0.018$ in the codominant model and $P = 0.0081$ in the recessive model). This is a first ever report of an association of rs16905599 (AA) with CAD indicating its potential as a useful genetic marker for CAD in the local population.

In addition, rs2383206 (A/G) showed robust association with CAD in the study population where the GG genotype of rs2383206 conferred about twofold risk for CAD ($P = 0.0004$ in the codominant model and $P = 0.0001$ in the recessive model)42,43 and 2.4-fold risk for Premature CAD ($P = 0.0002$ in Recessive model).

An interesting case of under dominance (risk associated with only heterozygote) was found in case of rs2383208 (A/G) where the GG genotype showed about 1.7-fold risk for premature CAD ($P = 0.021$ in the codominant model and $P = 0.034$ in the overdominant model). We found a similar trend in all CAD cases ($P = 0.051$ in the overdominant model). The GG genotype of rs4977574 (A/G) was also associated with more than 1.7-fold risk for premature CAD ($P = 0.025$ in the recessive model).42

Thus, the present study identified SNPs rs1333049 (CC) and rs4977574 (GG)41,42 to be associated exclusively with premature CAD in the local population, suggesting that these have the potential to be used as markers to identify asymptomatic individuals at a higher risk of premature CAD. However, these results require further validation in larger cohorts.

We performed association analysis using SNPStats by adjustment for the following covariates: age, gender, diabetes, hypertension, hyperlipidemia, smoking, alcohol, and family history. The SNPs that showed significant risk association despite adjustment for the covariates were rs2383206, rs16905599, and rs2383208. Among the three SNPs, rs2383206 consistently showed the strongest CAD risk association with odds ratio greater than 2 in our study population. Hence, rs2383206, rs16905599, and rs2383208 have the potential to be used as 9p21 markers along with markers at other loci to generate a more reliable genetic risk score (GRS) for CAD in the local population.

We used the Bonferroni correction to reduce the probability of false-positive results (type I errors) and found that only SNP rs2383206 showed significant risk association with CAD ($P < 0.0016$) after doing multiple testing corrections for the 30 9p21 SNPs studied.

Upon gender stratification of the SNP genotyping data, we found that the TT and TC genotypes of SNP rs10757272 (C/T) showed an eightfold to ninefold significant risk association ($P = 0.0032$ in the dominant model and $P = 0.012$ in the codominant model) with CAD specifically among females.

The GG genotype of SNP rs7865618 (A/G) showed more than 2.5-fold risk association ($P = 0.037$ in the recessive model) with CAD specifically among males.

3.2. Multivariate logistic regression, MDR, and Haploview analysis

We performed multivariate logistic regression analysis of 30 9p21 SNPs with 12 demographic/clinical variables (Table 4). Our analysis revealed association of several 9p21 SNPs with demographic and clinical variables such as age, diabetes, hyperlipidemia, RH blood groups, ABO blood groups, food habit, and fruit intake.

Further, we examined SNP–SNP interactions and SNP–demographic/clinical variable interactions using MDR analysis for ten 9p21 SNPs showing good risk association trends with CAD: rs1011970, rs10757272, rs10757274, rs1333045, rs1333049, rs16905599, rs2383206, rs2383208, rs4977574, and rs7865618.

MDR risk prediction model analysis revealed that rs2383206 is the best one-locus model, and rs16905599 with rs2383206 is the best two-locus model in the study population.

With respect to SNP–SNP interactions, MDR analysis revealed a mild interaction between rs10757272 and rs2383208.

SNPs rs1333045, rs16905599, rs7865618, rs10757274, and rs2383206 showed no interaction among themselves. Therefore, these SNPs (showing significant risk association with CAD in our study population) appear to be operating independent of each other (Fig. 1).

With respect to SNP–demographic/clinical variable interactions, a moderate interaction was observed among the variables body mass index, age, and fruit intake, whereas a mild interaction was observed among hypertension, diabetes, and serum IPNA21 levels. Similarly, there is a mild interaction between exercise and food habit. The variables alcohol, smoking, gender, and hyperlipidemia are found to be operating independently (Fig. 2). This corroborates the observation that the 9p21 locus confers CAD risk independent of classic risk factors.4,5,7

Linkage disequilibrium (LD) analysis was performed using Haploview software to generate LD plots for controls and cases. Our analysis has revealed six blocks (blocks 1, 2, 3, 4, 5, and 6) of linked SNP variants in controls and three blocks (blocks 1, 2, and 3) in cases (Fig. 3). Similarly, six blocks (blocks 1, 2, 3, 4, 5, and 6) of linked SNP variants were observed for the entire sample (Fig. 4).

One limitation of our study is the limited size of CAD cases. Hence, the results need to be validated in larger CAD cohorts. Our study subjects have been taken from the twin cities of Hyderabad and Secunderabad, irrespective of the geographical region, language, caste group, and community they hail from. Most CAD cases have been taken from KIMS hospital, Secunderabad, which is centrally located and receives patients from different parts of the state and country. Despite these measures, there may be a possibility of a hidden population substructure that has not been considered in this study.

4. Conclusions

Premature CAD cases showed a significantly higher frequency of females, diabetics, hypertensives, and individuals with nonvegetarian food habit as compared to nonpremature cases. SNPs rs1333045 (CC), rs16905599 (AA), rs2383206 (GG), rs2383208 (AG), and rs4977574 (GG) showed significant risk association with premature CAD in our study population. We found rs1333049 (CC) and rs4977574 (GG) to be associated exclusively with premature CAD, suggesting their potential as genetic markers to predict premature CAD in the local population. Of all the 9p21 SNPs that showed significant CAD risk association, rs2383206 emerged as the strongest genetic risk factor followed by rs16905599 and rs2383208. SNP rs10757272 (TT and TC) has shown a robust female-specific risk association, and SNP rs7865618 (GG) has shown significant male-specific risk association with CAD in our study population.

To conclude, results of the present study suggest that SNPs at the 9p21 risk locus may be used to generate a reliable GRS along with markers at other loci. This could be used for presymptomatic diagnosis in high-risk families such that suitable therapeutic measures could be advised to prevent the serious outcomes of acute coronary syndromes.
Author contributions

B.K. has contributed to the design of the work and acquisition of data. D.K.M. has contributed to the substantial revision of the manuscript. N.B. has contributed to the statistical analysis of the data. M.T.A. has contributed to the interpretation of the data and to the preparation of the final draft of the manuscript. All authors have read and approved the submitted version of the manuscript and have agreed to be personally accountable for their own contribution and all queries related to the study.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflicts of interest

All authors have none to declare.

Acknowledgments

The authors are extremely thankful to Dr. V. Dayasagar Rao, Senior Interventional Cardiologist, KIMS, and Ms. Apoorva Sharma, Clinical Research Coordinator, KIMS, for their kind help in recruitment of patients with CAD. They owe the success of this work to the willing participation and cooperation of all the study subjects.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijhj.2019.04.005.

References

1. Krishnaswamy S, Prasad NK, Jose VJ. A study of lipid level in Indian patients with coronary artery disease. Int J Cardiol. 1989;4:337–345.
2. Tewari S, Kumar S, Kapoor A, et al. Premature coronary artery disease in North India: an angiography study of 1971 patients. Indian Heart J. 2005;57:311–318.
3. Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491–1495.
4. McPherson R, Pertzemilis A, Kavaslar N, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488–1491.
5. Samani NJ, Erdmann J, Hall AS, et al. WTCCC and the Cardiogenics Consortium. Genome-wide association analysis of coronary artery disease. N Engl J Med. 2007;357:443–453.
6. Coronary Artery Disease (CAD) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet. 2011;43(4):339–344.
7. Broadbent HM, Peden JF, Lorkowski S, et al. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet. 2008;17:806–814.
8. Gschwendtner A, Bevan S, Cole JW, et al. Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol. 2009;65(5):531–539.
9. Matarin M, Brown WM, Singleton A, Hardy JA, Meschia JF. Whole genome analyses suggest ischemic stroke and heart disease share an association with polymorphisms on chromosome 9p21. Stroke. 2008;39:1586–1589.
10. Helgadottir A, Thorleifsson G, Magnusson KP, et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008;40:217–224.
11. Thompson AR, Golledge J, Cooper JA, Hafez H, Norman PE, Humphries SE. Sequence variant on 9p21 is associated with the presence of abdominal aortic aneurysm disease but does not have an impact on aneurysmal expansion. Eur J Hum Genet. 2008;16(3):391–394.
12. Sherborne AL, Hosking FJ, Prasad RB, et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat Genet. 2010;42:492–494.
13. Turnbull C, Ahmed S, Morrison J, et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet. 2010;42:504–507.
14. Stacey SN, Sulem P, Masson G, et al. New common variants affecting susceptibility to basal cell carcinoma. Nat Genet. 2009;41:909–914.
15. Gori F, Specchia C, Pietri S, et al. Common genetic variants on chromosome 9p21 are associated with myocardial infarction and type 2 diabetes in an Italian population. BMC Med Genet. 2010;11:60.
16. Asinòles TL, Knowles JW, Basu A, et al. Susceptibility locus for clinical and subclinical coronary artery disease at chromosome 9p21 in the multi-ethnic ADVANCE study. Hum Mol Genet. 2008;17:2320–2328.
17. Ding H, Xu Y, Wang X, et al. 9p21 is a shared susceptibility locus strongly for coronary artery disease and weakly for ischemic stroke in Chinese Han population. Circ Cardiovasc Genet. 2009;2:338–346.
18. Hiura Y, Fukushima Y, Yuno M, et al. Validation of the association of genetic variants on chromosome 9p21 and 1q41 with myocardial infarction in a Japanese population. Circ J. 2008;72:1213–1217.
19. Shen GQ, Li L, Rao S, et al. Four SNPs on chromosome 9p21 in a South Korean population implicate a genetic locus that confers high cross-risk for development of coronary artery disease. Arterioscler Thromb Vasc Biol. 2008;28:360–365.
Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B. Chromo-
29. Holdt LM, Beutner F, Scholz M, et al. ANRIL expression is associated with
28. Congrains A, Kamide K, Oguro R, et al. Genetic variants at the 9p21 locus
27. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear
25. Pasmant E, Laurendeau I, H
t26. Folkersen L, Kyriakou T, Goel A, et al. PROCARDIS consortia. Relationship be-
24. Thomas T, Thomas TJ. Polyamines in cell growth and cell death: molecular
23. Popov N, Gil J. Epigenetic regulation of the INK4b-ARF-INK4a locus: in sickness
22. Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the
21. Saleheen D, Alexander M, Rasheed A, et al. Association of the 9p21.3 locus with
20. Maitra A, Dash D, John S, et al. A common variant in chromosome 9p21
ANRIL expression. ANRIL expression is associated with
some 9p21 SNPs associated with multiple disease phenotypes correlate with
atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol
2010;30:620
Atherosclerosis
20. Maitra A, Dash D, John S, et al. A common variant in chromosome 9p21
2009;88(1):113–118.
21. Saleheen D, Alexander M, Rasheed A, et al. Association of the 9p21.3 locus with
risk of first-ever myocardial infarction in Pakistanis: case-control study in
South Asia and updated meta-analysis of Europeans. Arterioscler Thromb Vasc Biol.
2010;30:1467–1473.
22. Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the
INK4a tumor suppressor gene encode two unrelated proteins capable of
inducing cell cycle arrest. Cell. 1995;83:993–1000.
23. Popov N, Gil J. Epigenetic regulation of the INK4b-ARF-INK4a locus: in sickness
and in health. Epigenetics. 2010;5:685–690.
24. Thomas T, Thomas TJ. Polyamines in cell growth and cell death: molecular
mechanisms and therapeutic applications. Cell Mol Life Sci. 2001;58:244–258.
25. Pasman E, Laurendeau I, Héron D, Vidaud M, Vidaud D, Bieche I. Character-
ization of a germ-line deletion including the entire INK4/ARF locus, in a
melanoma-neural system tumor family. Identification of ANRIL, an antisense
noncoding RNA whose expression cooclusters with ARF. Cancer Res. 2007;67:
3983–3989.
26. Folkersen L, Kyriakou T, Goel A, et al. PROCARDIS consortia. Relationship be-
tween CAD risk genotype in the chromosome 9p21 locus and gene expression.
Identification of eight new ANRIL splice variants. PLoS One. 2009;4, e7677.
27. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear
and novel circular forms of an INK4/ARF-associated non-coding RNA correlates
with atherosclerosis risk. PLoS Genet. 2010;6, e1001233.
28. Congrains A, Kamide K, Oguro R, et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B.
Atherosclerosis. 2012;220:449–455.
29. Holdt LM, Beutner F, Scholz M, et al. ANRIL expression is associated with
atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol.
2010;30:620–627.
30. Cunningham MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B. Chromo-
some 9p21 SNPs associated with multiple disease phenotypes correlate with
ANRIL expression. PLoS Genet. 2010;6, e1000899.
31. Harismendy O, Notani D, Song X, et al. 9p21 DNA variants associated with
coronary artery disease impair interferon-γ signalling response. Nature.
2011;470:264–268.
32. Liu Y, Sanoff HK, Cho H, et al. INK4/ARF transcript expression is associated with
chromosome 9p21 variants linked to atherosclerosis. PLoS One. 2009;4, e5027.
33. Yap KL, Li S, Munoz-Caballero AM, et al. Molecular interplay of the noncoding
RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in tran-
scriptional silencing of INK4a. Mol Cell. 2010;38:662–674.
34. Yu W, Gius D, Onyango P, et al. Epigenetic silencing of tumour suppressor gene
p15 by its antisense RNA. Nature. 2008;451:202–206.
35. Bochenek G, Hadler R, El Mokhtari NE, et al. The large non-coding RNA ANRIL,
which is associated with atherosclerosis, periodontitis and several forms of
cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet.
2013;22;6, e1455–e1457.
36. Motterle A, Pu X, Wood H, et al. Functional analyses of coronary artery disease
associated variation on chromosome 9p21 in vascular smooth muscle cells.
Hum Mol Genet. 2012;21(18):4021–4029.
37. Almontashiri NA, Fan M, Chen H-H, et al. Abstract 15730: serum interferon
alpha 21 is a biomarker of the 9p21.3 risk locus for coronary artery disease.
Circulation. 2011;124:A15730.
38. Sólé X, Guinó E, Valls J, Iniesta R, Moreno V, SNPStats: a web tool for the
analysis of association studies. Bioinformatics. 2006 Aug 1;22(15):1928–1929.
Epub 2006 May 23.
39. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD
and haplotype maps. Bioinformatics. 2005 Jan 15;21(2):263–265. Epub 2004 Aug 5.
40. Motzinga AA, Ritchie MD. Multifactor dimensionality reduction: an analysis
strategy for modelling and detecting gene–gene interactions in human genetics
and pharmacogenomics studies. Hum Genomics. 2006;2(5):318–328.
41. Bhanushali AA, Contractor A, Das BR. Variant on 9p21 rs 1333049 is associated
with age of onset of CAD in a Western Indian population: a case control as-
sociation study. Genet Res (Camb). 2013;95(5):138–145.
42. Shanker J, Arvind P, Jambunathan S, Nair J, Kakkar V. Genetic analysis of the
polymorphisms in chromosome 9p21 region with CAD in North Indian population: replication of SNP’s identified through GWAS. Clin Genet. 2011;79(6):588–593.