Removal of Pb^{2+} metal ion using electrolysis system of Fe(s)/NaCl(aq), Pb(NO_3)_2(aq)//H_2O(aq)/C(s)

L Suyati, D Efendi, G Gunawan, A Haris, D S Widodo
Chemistry Department, FSM, Diponegoro University, Semarang, Indonesia

Corresponding author: linda_suyati@live.undip.ac.id

Abstract. Lead^{2+} is very dangerous heavy metal for the environment due to its toxicity and it requires a serious handling. A more efficient and effective method for handling is electrolysis using electrocoagulation. This method provides an electric current to the system, a redox reaction occurs followed by a coagulation process, which then absorbs Pb^{2+} metal ions to form floculants. The study covered electrocoagulation of artificial waste containing Pb^{2+}, characterization of functional groups and compounds contained in floculants. The two compartment reactor was used. It consisted of an anode (iron) and cathode (graphite) parts separated by a salt bridge. The anode was filled with 0.1M NaCl electrolyte solution, artificial waste of Pb(NO_3)_2. The cathode contained H_2O. Potential was set in the range of 1-6 V. Then the filtrate at the anode was analyzed by AAS and the precipitate was characterized by FTIR and SEM EDX. The results showed Pb metal waste was removed 43.2% by electrocoagulation method at a maximum voltage of 6 V. FITR result shows Fe-O in the wave numbers of 1117 and 111.99 cm^{-1} and Pb-O in the wave numbers of 482.22 and 474.82 cm^{-1}. SEM analysis shows that the morphology has slightly changes. Elements contained by EDX analysis of the floc are iron, lead, oxygen, silica and sodium.

1. Introduction
Lead (II) is an inorganic compound, is toxic [1], many are in water [2] so that their presence are harmful to the environment. Lead metal poisoning can cause damage to the kidneys, nervous system, reproductive system, cardiovascular system, liver and brain [3]. Therefore it is necessary to do water treatment to reduce lead heavy metal level.

Effective and efficient design systems have been widely studied including ion exchange, precipitation, adsorption and electrocoagulation [4]. The electrocoagulation approach is chosen because it is a combination of electrochemical process and flocculation process. The coagulation process is proposed as an alternative handling of this metal waste that has been carried out by [5-6].

Factors that influence the success of this electrocoagulation technique are variables of electrodes, voltage, electrolytes and adequate energy applications. Meanwhile, considering the coagulation system that is the deposition of colloidal particles due to the electric current given is successful in forming a coagulant that is capable of absorbing nearby heavy metal ions. Coagulant Al(OH)_3 and Fe(OH)_3 are very good coagulation agents [7]. The electrodes used are graphite, aluminum and iron as the anode, while at the cathode graphite is used. The supporting electrolyte used is NaCl by Mansour et al [1].

This research focuses on the electrocoagulation system by prioritizing environmentally friendly, fast and efficient processes. The sample in this study was chosen in the form of an artificial lead^{2+} sample and examined the efficiency of the process and the reliability of the approach from the...
standpoint of environmental indicators and selecting the right electrodes and the functional groups, compounds contained in the precipitated electrolysis.

2. Experimental section

2.1. Materials
Materials used include: Pb(NO₃)₂ (p.a, Merck), NaCl (pa, Merck), carbon (Graphite), Iron Plate, distilled water, filter paper.

2.2. Instrumentation
The tools used include: a set of pirex glassware, electrolysis reactors, analytical balance (S / NP 1 835442), filter paper (Brand MN 640d, 10mm), Power supply (DC), Digital Multimeter (Sanwa CD800a), pH meter, Spectrophotometer of Atomic Absorption (PinAAcle 900F Model), Perkin-Elmer Spectrum Version (FT-IR) and SEM (Phenom Pro X Desktop SEM with EDX).

2.3. Procedure
Electrolysis consists of two compartments, the anode and the cathode connected by a salt bridge, the concentration of waste is 10 ppm, NaCl 0.1M and the time is 1 hour. Voltage varies from 1-6 V. The schematic diagram of electrocoagulation system is shown in Figure 1. The electrolysis solution after filtration was analyzed with AAS and the sediment was analyzed by FTIR and EDX.

3. Results and discussion
In this study the removal process of Pb²⁺ was carried out by electrocoagulation using iron metal as an anode and carbon as a cathode. The use of iron aims to produce Fe(OH)₃ coagulants. The process of forming Fe(OH)₃ is shown in equations (1) to (5). Fe(OH)₃ can take Pb (II) in solution through adsorption followed by coagulation followed by coagulation [8]. The colloidal Fe(OH)₃ particle has a positively charged colloidal core and a negatively charged surface because it is surrounded by many OH⁻ ions. A colloidal particle has an electric charge on the colloidal surface. With this charge, ions with opposite charge will gather to the colloidal surface, and the ion atmosphere is formed [9]. The positively charged Pb metal ion will be adsorbed very strongly on the surface stern layer of Fe(OH)₃ due to electrostatic attraction, this ionic layer does not move. Between the stern layers with its outer atmosphere is called the electrical double layer or the diffusion layer. When high ionic strength diffuses to the surface an electrostatic repulsion will occur, to obstruct the approach between two colloidal particles. As a result, there is an immediate coagulation-flocculation, which is the clumping of colloidal particles to form macrofase which are easily deposited [9]. Pb metal ions that are absorbed on the colloidal surface will also settle together. The process of coagulation of colloidal particles is also caused by the neutralization of the colloidal particle charge due to the large number of Pb metal ions that are
absorbed on its surface, so that the stability of the colloid becomes disrupted and allows clumping and precipitation.

The electrolysis process produces reddish orange deposits of Fe(OH)$_3$ at the anode and H$_2$ gas bubbles at the carbon cathode. The reactions that occur are:

Anode:

\[
4 \text{Fe (s)} \rightarrow 4\text{Fe}^{2+} \text{(aq)} + 8 \text{e}^{-} \tag{1}
\]

\[
4\text{Fe}^{2+} \text{(aq)} + 10\text{H}_2\text{O (l)} + \text{O}_2 \text{(g)} \rightarrow 4\text{Fe(OH)}_3\text{(aq)} + 8\text{H}^+ \text{(aq)} \tag{2}
\]

\[
2\text{Cl}^- \text{(aq)} \rightarrow \text{Cl}_2 \text{(g)} + 2\text{e}^- \tag{3}
\]

Cathode:

\[
2\text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{H}_2 + 2\text{OH}^- \tag{4}
\]

Overall:

\[
4\text{Fe (s)} + 10\text{H}_2\text{O (l)} + \text{O}_2 \text{(g)} + 2\text{Cl}^- \rightarrow 4\text{Fe(OH)}_3\text{(aq)} + 4\text{H}_2\text{(g)} + \text{Cl}_2 \text{(g)} \tag{5}
\]

3.1. Voltage variations

The higher the voltage the more Pb$^{2+}$ was electrocoagulated. This is in accordance with the ohm law $V = IR$ where V = voltage (Volt), I = current (ampere) and R = resistance so that the higher the voltage the higher the current produced. The more the current produced the more Fe(OH)$_3$ obtained that functions as coagulation for Pb$^{2+}$ ions.

Figure 2. Pb$^{2+}$ recovered (%) Vs potential (V)

3.2. Floc characterization with FTIR instrument

To find out the clusters contained in floc, analysis was carried out before and after being given a solution of Pb(NO$_3$)$_2$. FTIR spectra results can be seen in Figure 3. This data show that the compound Fe(OH)$_3$ has been successfully synthesized in the anode compartment. As the bonding vibrational peaks in Fe(OH)$_3$ were observed in the spectra as shown in table 1.

Table 1 and figure 3 can be seen that before and after insertion of Pb$^{2+}$ ion there are almost the same wave numbers of OH, namely 3445.97 and 3436 cm$^{-1}$, N-O groups in wave numbers of 1636.58 and 1631.24 cm$^{-1}$. The nitro group arises at wave numbers 1300 - 1700 cm$^{-1}$, while Fe-O groups are at 1117 and 1111.99 cm$^{-1}$. Meanwhile Pb-O appears in wave numbers of 482.22 cm$^{-1}$ and 474.82 cm$^{-1}$.

Vibration	before (cm$^{-1}$)	after (cm$^{-1}$)
OH strceting	3445.97	3436
Fe-O strceting	1117.51	1111.99
	-	1039
	616.82	-
3.3. Floc characterization with SEM EDX instrument

SEM results show fine depositions of Fe(OH)$_3$ that the shape of the sediment does not produce differences in the surface morphology of the floc, but the presence of the floc constituent can be confirmed on EDX data.

Characterization of electrocoagulation floc before and after coagulating Pb metal using EDX instrument to find out the composition of elements contained in each floc produced at the anode. The results of the characterization can be seen in Figure 4. The floc constituent consists of Fe, O, and Pb elements. Pb arises before the presence of artificial waste; it can be from the iron used. After adding artificial Pb waste its composition increased until 71.6% of the coagulation process. The presence of Si comes from silica present in the glass used as a compartment. While Na and Cl atoms derived from NaCl compounds. More complete composition can be seen in table 2.

| N-O stretching | 1636.58 | 1631.24 |
| Pb-O | - | 474.82, 482.22 |

Figure 3. FT-IR Spectra of the floc before and after Pb$^{2+}$ insertion in the electrode Fe/C.

Figure 4. SEM images of floc before and after recovered of Pb$^{2+}$.
Figure 5. Elemental composition of floc before (blue color) and after (red color) Pb$^{2+}$ introduction measured by EDX.

Condition	Pb	Fe	O	Si	Na	Cl
Before	5.5	50.2	34.9	3.8	5.6	0
After	71.6	15.6	8.1	0.7	0	4

4. Conclusion
Pb metal waste was successfully conducted by electrocoagulation method with a maximum voltage of 6 V and a yield of 43.2%. The FTIR results show that Fe-O is in wave numbers of 1117 and 1119.99 cm$^{-1}$ and Pb-O in wave numbers 482.22 and 474.82 cm$^{-1}$. SEM shows that morphology does not show significant changes. The elements contained in floc are elements of iron, lead, oxygen, silica and sodium.

Acknowledgements
Financial support From Diponegoro University (APBN FSM Universitas Diponegoro) 2018, Ministry of Research and Higher Education Republic of Indonesia is acknowledged.

References
[1] Mansoorian H J, Mahvi A H and Jafari A J 2014 Separation and Purification Technology 135 165-175
[2] Acharya J, Sahu J N, Mohanty C R and Meikap B C 2009 Chemical Engineering Journal 149(1-3) 249-262
[3] Naiya T K, Bhattacharya A K, Mandal S and Das S K 2009 J Hazard Mater 163(2-3) 1254-1264
[4] Hua M, Zhang S, Pan B, Zhang W, Lv L and Zhang Q 2012 J Hazard Mater 211-212 317-331
[5] Khosa M K, Jamali M A, Hussain A, Muneeb M, Zia K M and Hafeez S 2013 Journal of the Korean Chemical Society 57(3) 316-321
[6] Meunier N, Drogui P, Montané C, Hausler R, Mercier G and Blais J F 2006 Journal of Hazardous Materials 137(1) 581-590
[7] Mollah M Y, Morkovsky P, Gomes J A, Kesmez M, Parga J and Cocke D L 2004 J Hazard Mater 114(1-3) 199-210
[8] Bazrafshan E, Mohammadi L, Ansari-Moghaddam A and Mahvi A H 2015 Journal of environmental health science and engineering 13(1) 74
[9] Atkins P and de Paula J 2010 Physical Chemistry 9th ed (New York: W.H. Freman & Company)