The diagnosis and treatment of cardiac lymphangioma
A case report and literature review

Wen-Jie Diao, MD, Chao Shi, MD, PHD, Ge Liu, MD, Xue-Gang Liu, MD, PHD∗, Hai-Hui Li, MD, Jin-Jin Meng, MD, Yu Shi, MD, Ming-Ming Chang, MD, Yi-Yao Liu, MD

Abstract
Rationale: Cardiac lymphangioma is a rare disease. Until now, there have been only a few cases of cardiac lymphangioma reported in the literature.

Patient concerns: We report the case of a 57-year-old female patient with cardiac lymphangioma from atrial septum.

Diagnosis: Color Doppler echocardiography was performed, which revealed a tumor occupying a large amount of space in the left and right atrium.

Interventions: The patient underwent thoracoscopic cardiac tumor resection under general anesthesia according to the procedure used for benign tumors.

Outcomes: The patient recovered completely and was discharged home. Follow-up color Doppler echocardiography scans obtained from 6 months to 2 years after the operation showed no recurrent mass.

Lessons: Once the tumor is detected, surgical treatment should be implemented as soon as possible.

Abbreviations: BP = blood pressure, CT = computed tomography, MRI = magnetic resonance imaging.

Keywords: cardiac lymphangioma, cardiac tumor, literature review

1. Introduction
Cardiac lymphangioma is a rare benign tumor,1,2 and only a few cases of cardiac lymphangioma have been reported until now. According to the existing medical literature, color Doppler echocardiography is an important diagnostic method for cardiac lymphangioma,3 and once detected, surgical treatment should be performed as soon as possible. However, more cases need to be studied to better understand the relevant issues.

In this article, we described the case of a 57-year-old female patient with cardiac lymphangioma from atrial septum, detected by color Doppler echocardiography. Further, we also reviewed 13 cases reported on cardiac lymphangioma identified on a PubMed search.

2. Case presentation
A 57-year-old female patient was hospitalized because of a tibial fracture in September 2015. Color Doppler echocardiography was performed during the hospitalization, which revealed a mass in the left atrium. The patient presented at our hospital in July 2016 once again after her fracture had healed. The patient had mild chest tightness and asthma for 2 months and did not have any significant past history. Her BP was 126/88 mmHg. Physical examination revealed atypical cardiac murmur in the precordium and mild pitting edema in both lower extremities. Color Doppler echocardiography was performed, which showed an enlarged left atrium and an echoic mass of about 55 ± 60 mm² with a regular shape, unclear boundary, and poor activity. Her high-density lipoprotein level was 0.98 mmol/L, low-density lipoprotein (calculated) level was 3.27 mmol/L, and C-reactive protein level was 6.10 mg/L. Electrocardiography revealed a sinus rhythm and a first-degree atrioventricular block.

A preoperative diagnosis of a benign cardiac tumor was made. Thoracoscopic cardiac tumor resection was performed under general anesthesia on July 12, 2016, according to the procedure used for a benign tumor. The mass was about 5 × 6 cm², with a moderate texture. The tumor was found to have originated from the atrial septum, invaded the roof of the left atrium upward, and extended downward into the wall of the right atrium. The pathologic analysis led to a diagnosis of cardiac lymphangioma. Under a low-power microscopic field the tumor was found to be composed of dilated lymphatic vessels, and under a high-power microscopic field the lumen of the lymphatic vessels was found to be separated by collagen fibers. Follow-up color Doppler echocardiography scans obtained from 6 months to 2 years after the operation showed no recurrent mass (Figs. 1 and 2).
3. Discussion

Primary cardiac tumors are very rare, with an autopsy incidence ranging from 0.001% to 0.030%.[4] The pathological types of cardiac tumors include myxoma, hemangioma, rhabdomyomas, fibroids, metastatic tumors, and so on.[5] However, cardiac lymphangiomas are rarely benign congenital tumors. A PubMed search for case reports on cardiac lymphangiomas between 1934 and 2018, using the keyword “cardiac tumor, lymphangioma” (see Table 1), yielded a total of 13 cases, other than the case described in this report. Among them, 9 cases were in adults and 5 cases were in infants and young children. Of the patients in the 13 cases, 9 were female and 5 were male. Cardiac lymphangioma may be associated with other lesions.[6] Of the 14 cases, 1 had accompanying breast cancer,[13] 1, pelvic lymphangioma,[14] and 1, left axillary fossa, left neck, and left scapular lymphangioma.[8]

Cardiac lymphangioma can originate from various parts of the heart, including the atrial septum, myocardium, atrioventricular node, and heart valves. Of 14 cases, cardiac lymphangioma originated from the atrial septum in 3 cases[13,16]; from the left ventricular myocardium in 3 cases[10,12,17]; from the right atrium in 2 cases[7,15]; from the left atrium in 1 case[9]; from the right atrial sulcus in 1 case;[19] from the right ventricle in 1 case,[18] from the mitral valve in 1 case[11]; from the tricuspid valve in 1 case[14]; and from the atrial septum and right atrium in 1 case.[8]

The symptoms of cardiac lymphangioma appear only when the tumor size becomes large enough. Among the 14 cases, arrhythmia was observed in 4 cases,[7,16,17,19] chest tightness and dyspnea in 4 cases,[14,15,18] chest pain in 2 cases,[17] and heart failure in 1 case[16]; 2 cases were asymptomatic.[10,13] Results of laboratory examinations are generally normal. Color Doppler
echocardiography can be used as an early screening method for cardiac lymphangioma. It can clearly reveal the tumor size, attachment site, adjacent structures, and valve condition. In addition, this technique allows clinicians to dynamically observe the tumor and evaluate secondary hemodynamic changes. A combination of various imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), plays a crucial role in the surgical operation.\(^\text{[20]}\) Certainly, detecting the nature of the tumor still depends on pathological examination.

Surgical treatment for cardiac lymphangioma is similar to that for other benign tumors of the heart.\(^\text{[21]}\) The operative method is chosen on the basis of the size and site of the tumor. If the disease is diagnosed, surgical intervention should be performed. If the size of the mass increased gradually, some complications could occur, such as severe arrhythmia, tumor embolism, and cardiac arrest. These complications could hinder surgical resection and decrease the survival rate. Among the 13 reported cases, 1 had a cardiac arrest during the examination,\(^\text{[18]}\) 1 was unable to undergo surgical resection because of the large size and unclear boundary of the tumor,\(^\text{[12]}\) and 1 received conservative treatment because of malnutrition.\(^\text{[7]}\) The remaining 10 cases were actively treated by surgical resection. Cardiac lymphangioma has a higher recurrence rate than other benign tumors. Our case.

The patient has provided informed consent for publication of the case.

### 4. Statement

The patient has provided informed consent for publication of the case.

**Author contributions**

Data curation: Ge Liu.
Investigation: Yu Shi and Ming-Ming Chang.
Project administration: Chao Shi.
Resources: Hai-Hui Li, Jin-Jin Meng, and Yi-Yao Liu.

---

**References**

1. Majano Lainez RA. Cardiac tumors: a current clinical and pathological perspective. Crit Rev Oncog 1997;8:293–303.
2. Ekmektzoglou KA, Samelis GF, Xanthos T. Heart and tumors: location, metastasis, clinical manifestations, diagnostic approaches and therapeutic considerations. J Cardiovasc Med (Hagerstown) 2008;9:769–77.
3. Strzelecki M, Materia A, Drozdz J, et al. Classification and segmentation of intracardiac masses in cardiac tumor echocardiograms. Comput Med Imaging Graph 2006;30:95–107.
4. Butany J, Leong SW, Carmichael K, et al. A 30-year analysis of cardiac neoplasms at autopsy. Can J Cardiol 2005;21:675–80.
5. Butany J, Nair V, Naseemuddin A, et al. Cardiac tumours: diagnosis and management. Lancet Oncol 2005;6:219–28.
6. Goh BK, Tan YM, Ong HS, et al. Intra-abdominal and retroperitoneal lymphangiomas in pediatric and adult patients. World J Surg 2005;29:837–40.
7. Lymburner RM. Tumor of the heart: histopathological and clinical study. Can Med Assoc J 1934;30:368–73.
8. Daniel T, Anbe MD. Cardiac lymphangioma and lipoma. Am Heart J 1973;86:227–35.
9. Pasaullo I, Dogan R, Ozme S, et al. Cardiac lymphangioma. Am J Heart 1991;121:1821–4.
10. Kaji T, Takamatsu H, Noguchi H, et al. Cardiac lymphangioma: case report and review of the literature. J Pediatr Surg 2002;37:E32.
11. Föhringer B, Rümmele P, Lehane C, et al. Mitral prolapse caused by lymphangioma. Thorac Cardiovasc Surg 2005;53:180–3.
12. Pennes PY, Blance JJ. Cardiac lymphangioma: a benign cardiac tumour. Eur Heart J 2006;27:2913.
13. Kim SJ, Shin ES, Kim SW, et al. A case of cardiac lymphangioma presenting as a cystic mass in the right atrium. Yonsei Med J 2007;48:1043–7.
14. Kim DH, Seo HS, Seo J, et al. Lymphangiomatosis involving the inferior vena cava, heart, pulmonary artery and pelvic cavity. Korean J Radiol 2010;11:115–8. doi: 10.3348/kjr.2010.11.1.115. Epub 2009 Dec 28.
15. Almaraawzy H, Matter M, Elgammal MA, et al. Pediatr Cardiol 2011;32:1233.
16. Biskupski A, Waligórski S, Mokrzycki K, et al. Cardiac lymphangioma in the right atrium. Ann Thorac Surg 2013;96:328. doi: 10.1016/j.athoracsur.2012.10.057.
17. Huang Z. Lymphangioma of the left ventricle. J Card Surg 2013;28:24–6.

**Table 1**

| No | Year | Sex/age | Symptom | Treatment | Size (cm) | Tumor originate | Other |
|----|------|---------|---------|-----------|-----------|-----------------|-------|
| 1† | 1934 | M/10 m  | Arrhythmia | None | 2.5 x 1.5 | Cardiac right auricle | Malnutrition |
| 2‡ | 1973 | M/43 | Arrhythmia | None | 2.6 x 2.1 | Atrial septal and right atrium | Death |
| 3‡ | 1991 | M/10 | Limb pain | Surgery | 5 x 3.0 | Left atrium | None |
| 4† | 2002 | F/86 | None | Surgery | 8 x 5.1 | Left myocardium | None |
| 5† | 2005 | F/62 | Mitral prolapse | Surgery | 2.5 x 2 | Mitral valve | None |
| 6† | 2006 | F/21 | Palpitations | Surgery | 10 x 12 | Postero-lateral wall of the LV | None |
| 7† | 2007 | F/44 | None | Surgery | 2.8 x 2.9 | Atrial septum | Breast cancer |
| 8‡ | 2010 | F/58 | Cough dyspnea | Surgery | 2.9 elongated | Tricuspid valve | Pelvic lymphangioma |
| 9‡ | 2011 | M/1 | Respiratory distress cyanosis | Surgery | NA | Right atrial | None |
| 10‡ | 2012 | F/66 | Heart failure | Surgery | 4.5 x 5.7 | Atrial septum | None |
| 11‡ | 2013 | M/31 | Chest pain | Surgery | 6 x 6.1 | Antero-lateral wall of the LV | None |
| 12‡ | 2016 | F/42 | Breathlessness | Surgery | 10.6 x 4.8 | The right ventricular myocardium | None |
| 13‡ | 2017 | F/3 | Arrhythmia | Surgery | 2.6 x 2.4 | Right atrioventricular groove | Tumor encasing RCA |
| 14‡ | 2018 | F/57 | Chest tightness asthma | Surgery | 5 x 6 | Atrial septum | None |

LV = left ventricle, RCA = right coronary artery.

†Cardiac arrest during coronary angiography.
‡Left axillar fossa, left side of the neck and left scapular region lymphangioma.

Writing – original draft: Wen-Jie Diao.
Writing – review & editing: Xue-Gang Liu.
Xue-Gang Liu orcid: 0000-0001-6541-0682.
[18] Lone NA, Naikoo BA, Khan NA. Cardiac lymphangioma presenting as intrapericardial cystic mass. Saudi Med J 2016;37:90–2. doi: 10.15537/smj.2016.1.12594.

[19] Bansal N, Haidar-El-Atrache S, Walters HL, et al. Cardiac lymphangioma encasing right coronary artery in an infant. Ann Thorac Surg 2017;104:e279–81.

[20] Araoz PA, Mulvagh SL, Tazelaar HD, et al. CT and MR imaging of benign primary cardiac neoplasms with echocardiographic correlation. Radiographics 2000;20:1303–19.

[21] Bruce CJ. Cardiac tumours: diagnosis and management. Heart 2011;97:151–60.