Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Major Article

Quantification of diurnal variation in “glove hygiene” compliance in COVID ICUs: An exploratory study

Parakriti Gupta MD, DNB a, Manisha Biswal MD a,*, Rupinder Kaur MSc a, Kulbeer Kaur BSN, PhD a, Harinder Kaur MSc a, Manjinder Kaur MSc a, Varun Mahajan MD b, G.D. Puri MD b, Rashmi R. Guru MD c, Vipin Kaushal MD c

a Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab, India
b Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab, India
c Department of Hospital Administration, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab, India

ABSTRACT

Background: Hand hygiene compliance (HHC) monitoring is almost always done in daytime. Documentation of HHC in health care workers (HCWs) is limited during odd hours and nighttime. The objective of the study was to determine diurnal variation in HHC in different categories of health care workers in tertiary care hospital in North India.

Methods: A prospective, observational study was conducted in 3 COVID-19 intensive care units (ICUs) with closed-circuit television (CCTV) cameras. Dedicated infection control nurses monitored HHC among various HCWs (doctors, nursing staff, technicians, hospital and sanitary attendants) during day and nighttime, in 20-minute durations. The difference in HHC by-professional category and for each WHO moment was assessed using χ² test and P value.

Results: A total of 705 opportunities were observed over a period of 7 days, with overall compliance of 53%. Day and nighttime compliance was recorded to be 60.7% and 42.1%, respectively (P < .001). HHC was highest amongst resident doctors with little diurnal variation. However, nurses and housekeeping staff exhibited significant diurnal variation. The compliance at “after” moments was much higher than “before” moments in all professional categories.

Conclusion: There was a significant decrease in compliance during nighttime, amongst all HCWs, with maximum variation exhibited by nursing staff. The present study underlines the importance of monitoring HHC at odd hours, to elicit a more accurate picture round the clock. Health care facilities monitoring compliance only during the daytime may substantially overestimate HHC.

© 2022 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

Key Words: COVID-19 India Gloves Hand hygiene Health care workers Opportunities

INTRODUCTION

Hand hygiene (HH) is recognized as one of the main evaluation points for improvement by ‘WHO Clean Care is safer Care’. 1 HH compliance (HHC) monitoring is often done in the daytime due to logistic reasons. HHC decreases during evening and night shifts2-4; however, documentation of the same and the extent of variation are scarce.

The 5 moments of HH as recommended by WHO include before touching a patient, before aseptic procedures, after body fluid exposure, after touching a patient and after touching patient surroundings. Moreover, the Centers for Disease Control and Prevention (CDC) or WHO have not addressed the diurnal variation pertaining to HH practices. Thereby, we designed the present study to find the gaps in compliance of different health care workers (HCWs) groups in day and night in our tertiary care hospital in North India.

MATERIALS AND METHODS

This prospective, observational study was conducted in April 2021 in 3 Coronavirus disease 2019 (COVID-19) intensive care units (ICUs)
of a tertiary care hospital in North India. Our HCWs wore gloves all the time. Thus, we assessed glove hygiene with an alcohol hand rub rather than HH per se. The staff shift changes occurred at 08:00, 14:00, 20:00 and 02:00 hours. We selected 15:00 and 03:00 hours as the times for observations to represent daytime and night shifts, respectively. An infection control monitor observed HHC via closed-circuit television (CCTV) cameras during the day and night shifts. The auditor recorded all the 5 moments and opportunities as per CDC in the World Health Organization (WHO) proforma and speedy audit app. The auditor observed HHC in real time during the day via CCTV and retrospectively reviewed the recordings made at night to assess HHC during the night shift. The auditor observed HHC via the CCTVs or via the recordings to limit the auditor’s exposure to patients with COVID-19 and to prevent the Hawthorne effect, since the subjects did not know when the audits were done. We provided feedback regarding weekly HHC levels to all staff in all categories.

The health care worker-patient ratio did not change over the 3 duty shifts for all HCW categories. All the staff members underwent mandatory HH and infection prevention and control (IPC) training before they began working in the COVID-19 hospital. The ICUs had alcohol hand solutions near all beds, doors, drug tables, and nursing and doctors’ stations. Sinks for hand-washing purposes were present in each ICU and supplied with both warm and cold water, bars of soap, chlorhexidine-based soap solution and paper towels. Posters depicting all the steps and the 5 HH moments were posted on doors, near sinks and on the ICU walls, to remind staff members to do HH.

Data were analyzed to assess hand-hygiene compliance amongst different professional categories and for each of the 5 HH moments. The difference in overall compliance by day and night, by-professional category and for each WHO moment was assessed using χ² test and P < .05 was considered as significant.

RESULTS

A total of 705 opportunities were observed over 7 days. There were 161, 14, 64, 180 and 286 observations at Moments 1, 2, 3, 4 and 5 respectively. Overall, HCWs performed HH at 374 opportunities (53% compliance). HCIC was 64.7% amongst doctors, 48.4% among nursing staff and 46.3% among housekeeping staff (P = 0.0025). The compliance at “after” moments was much higher than “before” moments for all 3 professional categories (Table 1).

Overall, compliance was 252 of 415 (60.7%) during the day and 122 of 290 (42.1%) during the night (P < .001) (Table 2). Compliance was highest amongst residents for all 5 HH moments during both daytime and nighttime. Compliance by doctors did not vary much by time of day but that by nurses and housekeeping staff varied significantly (P < .001). At night, nurses had significantly lower HHC at Moment 1 and housekeeping staff had had significantly lower HHC for Moment 5. The profession-wise and opportunity-wise compliance has been depicted in Figure 1.

DISCUSSION

Generally, the compliance with HH, or for that matter, any infection prevention activity, is monitored during daytime hours due to obvious logistic reasons. This is especially true in resource poor settings where infection control nurses, who generally do this task, are short in supply. This limitation may explain why the overwhelming majority of studies on HHC in developing countries do not record compliance at odd hours like evening and night shifts. In the present study, CCTV cameras had been fixed in COVID-19 ICUs for other reasons. We utilized these cameras to monitor HHC, allowing us to minimize the Hawthorne effect since the HCW did not know when the audits were done. The remote-audio-visual auditing also allowed the observer to avoid contact with patients or their surroundings, during COVID-19 pandemic, thus, was an excellent HH observation method. Other health care facilities might find this method of observing HHC to be useful. However, they will need to address issues regarding patients’ and HCW’s privacy. The study allowed us to observe HHC compliance in our HCWs at 3 AM, which we have never done in our hospital. We also observed that all HCWs donned 2 pairs of gloves all the time and the outer pair was changed for each patient, despite CDC’s guidelines on appropriate usage of gloves when caring for patients with SARS-CoV-2 infection. Thus, we evaluated glove hygiene compliance rather than HHC. Compliance with glove hygiene was 53.7%, which is substantially lower than the 74% HHC found by a

Table 1
Opportunity-wise compliance of hand hygiene among all categories of HCWs

Indication	Doctors	Nursing staff	Hospital/sanitary attendants	All HCWs
Indication 1	19/59 (32.0)	30/97 (30.3)	0/5	49/161 (30.4)
Indication 2	3/4 (75)	5/10 (50)	-	8/14 (57)
Indication 3	7/7 (100)	17/39 (43.6)	5/18 (27.8)	29/64 (45.3)
Indication 4	62/71 (87.32)	64/97 (65.98)	8/12 (66.67)	134/180 (74.4)
Indication 5	45/69 (65.21)	84/170 (49.41)	25/47 (52.2)	154/286 (82.8)
Total	136/210 (64.7%)	200/413 (48.4%)	38/82 (46.3%)	374/705 (53%)

Table 2
Variation in day and night time hand hygiene compliance among all categories of HCWs

Day	Performed/(%)	Night	Performed/(%)	P value
Total	95/139 (68.3)	41/71 (57.7)	132/233 (56.6)	.13
Moment 1	16/38 (32.2)	3/21 (14.29)	25/58 (43.1)	.03
Moment 2	3/4 (75)	-	4/7	-
Moment 3	5/5	2/2	14/25 (56)	.096
Moment 4	42/51 (82.36)	20/20 (100)	38/58 (65.52)	.24
Moment 5	29/41 (70.73)	16/28 (57.14)	51/85 (60)	.107

Day	Performed/(%)	Night	Performed/(%)	P value
Total	25/43 (58.1)	13/39 (33.3)	132/233 (56.6)	.024
Moment 1	16/38 (32.2)	3/21 (14.29)	25/58 (43.1)	.02
Moment 2	3/4 (75)	-	4/7	-
Moment 3	5/5	2/2	14/25 (56)	.096
Moment 4	42/51 (82.36)	20/20 (100)	38/58 (65.52)	.24
Moment 5	29/41 (70.73)	16/28 (57.14)	51/85 (60)	.107

Percentage not calculated for small number of observations.

The P values in bold are significant and χ² test was used for statistical analysis.
Opportunity-wise diurnal variation in hand hygiene compliance.

Fig 1. Opportunity-wise diurnal variation in hand hygiene compliance.

Higher compliance among doctors might be related to their higher education level and their knowledge of the literature about the role HH plays in preventing the HAI.

Our study found that HHC was lowest for the first indication (ie, before touching the patient). In contrast, Bischoff et al found the lowest compliance with HH before aseptic procedure in medical ICU. This could be attributed to the different clinical situations in both the scenarios.

The present study underlines the importance of monitoring HH compliance at odd hours to gain a more accurate picture of HHC around the clock. Our results indicate that monitoring compliance only during the daytime may overestimate HHC. We found diurnal variation amongst all HCWs, with the maximum variation being exhibited by the nursing staff. This observation may have important implications for HAI prevention because nurses provide most of the direct patient care. The present study underlines the pre-requisite for periodic continuous teaching and training sessions, followed by monitoring and feedback, to raise the adherence to recommended guidelines, both during day and night.

The present study was limited by its duration since the auditing was done for one week, thus we had relative few observations for some WHO HH moments. Also given the times during which we observed, we observed only 14 aseptic procedures as these procedures are usually done during morning shifts between 9 and 11 am. We recorded observations via CCTV cameras, which had several advantages as mentioned above. However, the CCTV cameras were in fixed locations, some of which prevented the observer from seeing whether HCWs did HH before entering or after leaving patients’ rooms, thereby affecting our assessment of moments 1 and 5.

CONCLUSIONS

We found significantly lower HHC during the night shift than during the day shift. Diurnal variation was noted amongst all HCWs, with nursing staff having the largest variation. The present study underlines the importance of monitoring HHC at odd hours, to provide a more accurate assessment of HCC. Health care facilities monitoring compliance only during the daytime may substantially overestimate HHC.

Acknowledgement

None.

References

1. WHO | Background to Clean Care is Safer Care. WHO. World Health Organization. Accessed January 19, 2022. http://www.who.int/gpsc/background/en/.

2. Raboud J, Saskin R, Wong K, et al. Patterns of handwashing behavior and visits to patients on a general medical ward of health care workers. Infect Control Hosp Epidemiol. 2004;25:198–202.

3. Sahay S, Panna S, Ray S, Rao BK. Diurnal variation in hand hygiene compliance in a tertiary level multidisciplinary intensive care unit. Am J Infect Control. 2010;38:535–539.

4. Pitter D, Mourgoua P, Perneger TV. Compliance with handwashing in a teaching hospital. Infection control program. Ann Intern Med. 1999;130:126–130.

5. Observation_Form.doc 2022.

6. Speedyaudit. Accessibled January 11, 2022. https://www.speedyaudit.com. 2022.

7. Strategies for Optimizing the Supply of Disposable Medical Gloves | CDC. Accessed January 22, 2022. https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/gloves.html.

8. Wang Y, Yang J, Qiao F, et al. Compared hand hygiene compliance among health care providers before and after the COVID-19 pandemic: a rapid review and meta-analysis. Am J Infect Control. 2022:50:563–571.

9. Roeker LE, Knorr DA, Thompson MC, et al. COVID–19 vaccine efficacy in patients with chronic lymphocytic leukemia. Leukemia. 2021;35:2703–2705.

10. COVID–19 Impact on HAIs in 2020 | HA | CDC. Accessed from January 22, 2022. https://www.cdc.gov/hai/data/portal/covid-impact-hai.html.

11. Halverson T, MikkolaCZ, A Mora N, Sillikitis C, Stout S. Impact of COVID–19 on hospital acquired infections. Am J Infect Control. 2022:50:831–833.
12. Rosenthal VD, Myatra SN, Divatia JV, et al. The impact of COVID-19 on health care-associated infections in intensive care units in low- and middle-income countries: International Nosocomial Infection Control Consortium (INICC) findings. Int J Infect Dis. 2022;118:83–88.

13. das Neves ZCP, Tipple AFV, Silva e Souza AC, Pereira MS, Melo D de S, Ferreira LR. Hand hygiene: the impact of incentive strategies on adherence among healthcare workers from a newborn intensive care unit. Rev Lat Am Enfermagem. 2006;14:546–552.

14. Bischoff WE, Reynolds TM, Sessler CN, Edmond MB, Wenzel RP. Handwashing compliance by health care workers: the impact of introducing an accessible, alcohol-based hand antiseptic. Arch Intern Med. 2000;160:1017–1021.

15. Doebbeling BN, Stanley GL, Sheetz CT, et al. Comparative efficacy of alternative hand-washing agents in reducing nosocomial infections in intensive care units. N Engl J Med. 1992;327:88–93.

16. Zipnokoff J, Stormark M, Larsen SO. Use of gloves and handwashing behavior among health care workers in intensive care units. A multicenter investigation in four hospitals in Denmark and Norway. J Hosp Infect. 1993;24:63–67.

17. Muto CA, Sistrom MG, Farr BM. Hand hygiene rates unaffected by installation of dispensers of a rapidly acting hand antiseptic. Am J Infect Control. 2000;28:273–276.

18. Larson EL, Quiros D, Lin SX. Dissemination of the CDC’s hand hygiene guideline and impact on infection rates. Am J Infect Control. 2007;35:666–675.

19. Suzuki N, Mori N, Onose T, et al. A questionnaire investigation regarding the neglect of hand washing, assessed by nurses in hospitals in Japan. Jpn J Infect Dis. 2002;55:217–219.

20. Santana SL, Furtado GHC, Coutinho AP, Medeiros EAS. Assessment of health care professionals’ adherence to hand hygiene after alcohol-based hand rub introduction at an intensive care unit in São Paulo, Brazil. Infect Control Hosp Epidemiol. 2007;28:365–367.

21. Chang NN, Reisinger HS, Schweizer ML, et al. Hand hygiene compliance at critical points of care. Clin Infect Dis. 2021;72:814–820.

22. Whitty M, McLaws ML, Ross MW. Why health care workers don’t wash their hands: a behavioral explanation. Infect Control Hosp Epidemiol. 2006;27:484–492.

23. Chang NC, Jones M, Reisinger HS, et al. Hand hygiene and the sequence of patient care. Infect Control Hosp Epidemiol. 2022;43:218–223.

24. Biswal M, Singh NV, Kaur R, et al. Adherence to hand hygiene in high-risk units of a tertiary care hospital in India. Am J Infect Control. 2013;41:1114–1115.

25. Biswal M, Rajpoot S, Dhaliwal N, Appanavanavar SB, Tanega N, Gupta AK. Evaluation of the short-term and long-term effect of a short series of hand hygiene campaigns on improving adherence in a tertiary care hospital in India. Am J Infect Control. 2014;42:1009–1010.

26. Rumbaua R, Yu C, Pena A. A point-in-time observational study of hand washing practices of healthcare workers in the intensive care Unit of St. Luke’s medical center. Phil J Microbiol Infect Dis. 2001;30:3–7.

27. Kazaaslan A, Kepenekli Kadayifci E, Atic S, et al. Compliance of health care workers with hand hygiene practices in neonatal and pediatric intensive care units: overt observation. Interdiscip Perspect Infect Dis. 2014;2014: e306478.

28. Scheithauer S, Oude-Aaest J, Heimann K, et al. Hand hygiene in pediatric and neonatal intensive care unit patients: daily opportunities and indication- and profession-specific analyses of compliance. Am J Infect Control. 2011;39:732–737.

29. Mazi W, Senok AC, Al-Kahldy S, Abdullah D. Implementation of the world health organization hand hygiene improvement strategy in critical care units. Antimicrob Resist Infect Control. 2013;2:15.

30. Quiros D, Lin S, Larson EL. Attitudes toward practice guidelines among intensive care unit personnel: a cross-sectional anonymous survey. Heart Lung. 2007;36:287–297.

31. Du M. Effect of Hawthorne effect on improving hand hygiene compliance of ICU medical staff during New Coronavirus pneumonia outbreak. Integrat Tradition Chin West Med Nurs. 2020;6:327–329.