DNA sequencing, genomes and genetic markers of microbes on fruits and vegetables

Youming Shen, Jiyun Nie, Jianyi Zhang and Haifei Li

1Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.

2College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.

Summary

The development of DNA sequencing technology has provided an effective method for studying foodborne and phytopathogenic microorganisms on fruits and vegetables (F & V). DNA sequencing has successfully proceeded through three generations, including the tens of operating platforms. These advances have significantly promoted microbial whole-genome sequencing (WGS) and DNA polymorphism research. Based on genomic and regional polymorphisms, genetic markers have been widely obtained. These molecular markers are used as targets for PCR or chip analyses to detect microbes at the genetic level. Furthermore, metagenomic analyses conducted by sequencing the hypervariable regions of ribosomal DNA (rDNA) have revealed comprehensive microbial communities in various studies on F & V. This review highlights the basic principles of three generations of DNA sequencing, and summarizes the WGS studies of and available DNA markers for major bacterial foodborne pathogens and phytopathogenic fungi found on F & V. In addition, rDNA sequencing-based bacterial and fungal metagenomics are summarized under three topics. These findings deepen the understanding of DNA sequencing and its application in studies of foodborne and phytopathogenic microbes and shed light on strategies for the monitoring of F & V microbes and quality control.

Introduction

The requirements for the improvement of the quality and safety of horticultural fruits and vegetables (F & V) depend on a better understanding of microorganisms (Dean et al., 2012; Olaimat and Holley, 2012; Siroli et al., 2015). Foodborne pathogens pollute F & V under cultivation in diverse environments, the use of unsterilized agricultural inputs or improper storage. Such contamination can easily cause food poisoning (Olaimat and Holley, 2012). Phytopathogenic fungi cause plant diseases, postharvest deterioration and mycotoxin accumulation, which significantly affect yield, quality and market value (Dean et al., 2012; Kumar et al., 2017). However, several endophytes can also be used as biocontrol agents to provide beneficial conditions for cultivation and postharvest storage (Siroli et al., 2015). Researchers are working to describe and control all of these microorganisms from farmland to consumers.

Microbial genome analysis relies strictly on DNA sequencing technology. The genome is the collection of DNA molecules, in which genes and variable sequences are arranged and provide the basic information for the formation of a microorganism. DNA sequencing, as a general technology applied in life science research, determines the nucleotide sequences of DNA strands. Over the past four decades, DNA sequencing technologies have rapidly developed and proceeded through three generations, resulting in the successful development of tens of platforms (Morey et al., 2013). First-generation sequencing (FGS) was developed in the mid-1970s and was mainly based on Frederick Sanger's DNA chain-termination sequencing method (Sanger...
Next-generation sequencing (NGS) was introduced in the 2000s, involving systems such as the Roche 454 pyrosequencing, Illumina Genome Solexa and Supported Oligo Ligation Detection (SOLiD) platforms (Liu et al., 2012). Third-generation sequencing (TGS) is the most recently introduced advance in this technology, which detects single and longer reads in real-time with a high efficiency (van Dijk et al., 2018). In parallel, DNA sequencing technologies have been applied in various genomic and phylogenetic studies (Rogers et al., 2008; Morey et al., 2013). First, DNA sequencing and whole-genome sequencing (WGS) were applied in microbial studies. Sanger sequencing was first used to determine the genome of phage X174 (5386 bp; Sanger et al., 1977). Subsequently, Sanger et al. verified the sequencing procedure and determined the genome of phage λ (48 502 bp; Sanger et al., 1983). In 1990, Goebel et al. reported the whole genome of vaccinia virus (192 kb), obtained by using the first automatic DNA sequencer, the AB370 system (Goebel et al., 1990). In 1991, Bankier et al. reported the genome of a human cytomegalovirus (229 kb; Bankier et al., 1991). In 1990, genomic research was initiated in Escherichia coli and Saccharomyces cerevisiae as model systems in preparation for the Human Genome Project. In 1995, Fleischmann et al. reported the genome of the first cellular microbe, Haemophilus influenzae Rd (1.83 Mb; Fleischmann et al., 1995). After the AB370 DNA sequencer was upgraded to the AB3730xl system, microbial WGS was greatly promoted. Since then, the genomes of important microbes such as E. coli (Blattner et al., 1997), Salmonella enterica (Parkhill et al., 2001), Listeria monocytogenes (Glaser et al., 2001), Staphylococcus aureus (Kuroda et al., 2001), Campylobacter jejuni (Parkhill et al., 2000) and Shigella flexneri (Jin et al., 2002) have been widely reported. Currently, approximately 100 microbial genomes per day are being registered on the US National Center for Biotechnology Information (NCBI) platform.

Knowledge of DNA polymorphisms improves the understanding of microbial genetic specificity. The microbial genome shows various sequence differences or polymorphisms. Microbial DNA polymorphisms are the basis for explaining the specificity of phenotypes, evolution and taxonomy (Foley et al., 2009). Methods such as the amplified fragment length polymorphism (AFLP), random fragment length polymorphism (RFLP), randomly amplified polymorphic DNA (RAPD), simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) approaches are important for DNA polymorphism studies. Significantly, polymorphisms in bacterial ribosomal DNA (rDNA) 16S rDNA genes and fungal internal transcribed spacers (ITSs) have been widely used in studies of microbial taxonomy and identification (Sun et al., 2013). The 16S rDNA sequences of bacteria are relatively short, containing several conserved and hypervariable regions, and can provide taxonomic information for bacteria at the genetic level. Fungal rDNA contains tandem repeats of noncoding ITS regions. These ITS regions show a high level of polymorphism, and they are effective for fungal identification. Recently, improved sequencing technologies and powerful databases and software have promoted the development of sequence-based identification methods. In metagenomics, 16S rDNA and ITS sequencing present significant benefits for characterizing overall bacterial and fungal communities.

Notably, DNA sequencing has promoted studies involving F & V microbial WGS, gene identification and specificity analysis. Genetic markers identified in studies of polymorphism have been widely used for polymerase chain reaction- (PCR) and chip-based microbial detection (based, e.g. on conventional PCR, qPCR, multiplex PCR and gene chips; Lüth et al., 2018). These detection methods can monitor foodborne pathogens and phytopathogens on F & V with good accuracy and acceptability (O’Connor and Glynn, 2010). In addition, metagenomic studies have revealed the bacterial and fungal communities on F & V by using 16S rDNA and ITS sequencing (Forbes et al., 2017). The present review highlights the principles of DNA sequencing and outlines the WGS information and genetic markers of major bacterial foodborne pathogens and fungal phytopathogens on F & V. Common foodborne pathogenic species come from the Escherichia, Salmonella, Staphylococcus, Listeria, Shigella and Campylobacter genera (Table 1). Common phytopathogenic fungi come from the Penicillium, Alternaria, Aspergillus, Fusarium, Botrytis, Colletotrichum, Monilinia and Trichothecium genera (Table 2). Furthermore, NGS-based metagenomic references have provided comprehensive data on key aspects of bacterial and fungal communities found on F & V (Table 3). These findings have deepened our understanding of DNA sequencing technology and its application in studies of foodborne and phytopathogenic pathogens, and they have shed light on methods for the microbial monitoring and quality control of F & V.

DNA sequencing

First-generation sequencing

The initial DNA sequencing methodology was developed in the mid-1970s. Sanger et al. established a method for determining DNA sequences via primed synthesis with DNA polymerase (Sanger et al., 1974; Sanger and Coulson, 1975). Progress in Sanger’s method was made after the introduction of chain-terminating inhibitor dideoxynucleotides (ddNTPs; Sanger et al., 1977). In the same year, Maxam and Gilbert reported a DNA sequencing approach based on chemical modification...
Table 1. Whole-genome sequences of foodborne pathogens registered on NCBI platforms (up to 1 October 2019) and summary of the related genetic markers.

Species	ID number	Number of sequenced strains	Representative strain	Size (Mb)	GC%	Genes	Proteins Specific genetic markers
Escherichia E. coli	ID167	17 952	K-12 substr. MG1655	4.64	50.8	4498	4140 fiIC, V11, V12 (Gannon et al., 1997); uspA (Osek, 2001); lacZ (Foulds et al., 2002); rBE, eae, stx1, stx2 (Ooka et al., 2009); ipaH (van den Beld and Reubsaat, 2012); lacY, uidA (Mendes Silva and Domingues, 2015); PhoA (Yang et al., 2016); cdTB (Hassan et al., 2018)
E. albertii	ID 1729	89	KF1	4.70	49.7	4823	4380 cdTB (Maheux et al., 2014); rpOB (Lindsey et al., 2015); EAKF1, ch4033 (Lindsey et al., 2017); 16S rDNA (Grillo et al., 2018)
E. fergusonii	ID 1877	18	ATCC 35469T	4.64	49.9	4618	4349 yidE, EFER, 1569, EFER, 3126 (Simmons et al., 2014); EFER, 0790 (Lindsey et al., 2017)
Salmonella S. enterica	ID 152	11 215	CT18	5.13	51.9	4829	4473 AceK, flIC, iagA, invA, orfC, sfl, setA, ssxA, serA, STM2745, STM4492, 16S rRNA (Lee et al., 2009; Postollec et al., 2011); ssl, spvC (Peterson et al., 2010); hilA, fimA, hns (Jeyasekaran et al., 2011); avrA, stn, stn (Amin et al., 2016); spv, huf, fiB (Aizwghabi et al., 2018)
S. bongori	ID1089	20	NCTC 12419	4.46	51.3	4382	4068 fiB, galD, invA (Lee et al., 2009); flIC, gnd, mltB (Soler-Garcia et al., 2014)
Staphylococcus S. aureus	ID 154	10 630	NCTC 8325	2.82	32.9	2872	2767 mecA, nuc, femA-SA, femA-SE, orfX, SCC mec, spa, gyrB, 16S rDNA (Hirvonen, 2014); tuf, rpoB, gap, pyrH, ftsZ (Song et al., 2019); sea, seb, sec, sed, see (Omrenga et al., 2019)
S. epidermidis	ID 155	670	ATCC 12228	2.56	32.1	2558	2482 mecA, emmA, emmB, emmC, and msrA (Martineau et al., 2000); hld, ica, agrA, sarA (Frebourg et al., 2000); 16S rDNA and tuf (Kobayashi et al., 2009); femA-SA, femA-SE (Jukes et al., 2010); allE, gap and mvaA (Kilic and Basustaoglu, 2011); recN (Iorio et al., 2011); adhesin fibrinogen binding protein (Sunagar et al., 2013); hla/yidD and hlb (Pinheiro et al., 2015); Gmk2, pta and SESB (Osmani Bojd et al., 2017); icaA, aap, bhp (Ribic et al., 2017)
S. lugdunensis	ID2548	26	HKU09-01	2.66	33.9	2567	2567 Agr (Dufour et al., 2002); rpOB (Drancourt and Raoult, 2002); 16S rRNA (Skow et al., 2005); Fbl (Campos-Pena et al., 2014)
S. saprophyticus	ID1350	108	ATCC 15305	2.58	33.1	2523	2351 16S rRNA (Gaszewskas-Mastalzar et al., 1997); femA (Vannuffel et al., 1999); hrcA (Paiva-Santos et al., 2016)
S. pseudintermedius	ID3429	223	HKU10-03	2.62	37.5	2517	2384 SpsJ (Versiappan et al., 2017); sps (Phumthanakorn et al., 2017)
Listeria L. monocytogenes	ID 159	3063	EGD-e	2.94	38.0	3055	2867 hly, iap, mpl, prfA, iniA, iniB, actA (Gasanov et al., 2005); pica, 16S rRNA (Xu et al., 2008)
L. seeligeri	ID 1246	6	SLCC3954	2.80	37.4	2790	2663 23S rRNA, iap (Paillard et al., 2003); lse24-315 (Liu et al., 2004); 16S rRNA (Dalmasso et al., 2010); 5’-exonuclease (Hage et al., 2014)
Table 1. (Continued)

Species	ID number	Number of sequenced strains	Representative strain	Size (Mb)	GC%	Genes	Proteins	Specific genetic markers
Shigella								
S. flexneri	ID 182	480	301	4.83	50.67	4788	4313	ipaH, plasmid DNA, ial, 16S rRNA (Warren et al., 2006); she PAI (Farfan et al., 2010); invC, rfc (Ojha et al., 2013); genome marker (Sahl et al., 2015; Kim et al., 2017a)
S. boydii	ID 496	113	1221_SBOY	4.84	50.7	5125	4745	ipaH, 16S rRNA (Warren et al., 2006); invC (Ojha et al., 2013); wzy (Radhika et al., 2014); genome marker (Sahl et al., 2015; Kim et al., 2017a)
S. sonnei	ID 417	1338	4303	4.55	51.1	5275	4009	ipaH, 16S rRNA (Warren et al., 2006); IS1 (Hsu et al., 2007); she PAI (Farfan et al., 2010); invC, wbgZ (Ojha et al., 2013); IpaB/D (Farshad et al., 2015); genome marker (Sahl et al., 2015; Kim et al., 2017a)
S. dysenteriae	ID 415	67	Sd197	4.56	50.9	4834	4294	il, virA, 16S rRNA (Warren et al., 2006); invC, rfb (Ojha et al., 2013); genome marker (Sahl et al., 2015; Kim et al., 2017a)
Campylobacter								
C. jejuni	ID149	1615	NCTC 11168	1.64	30.5	1668	1572	pDT1720 (Ng et al., 1997); CC2, CJ2 (Sails et al., 2001); ciaB, pldA, CDT (Ghorbanalizadgan et al., 2014); GTPase gene, hip, 16S rRNA, rs, cda, porA, 16S-23S ITS, Hpr, ciaA, cepE, hipO, mapA, cefA, askD, gpyA, lpxA, ccoN, ORF-C, poB, oxidoeductase gene, cda, pepT (Frasso et al., 2017); ftaA, cdtF, racR, dnaJ, cdtB, and cdtC (Oh et al., 2017); gyrA (Sierra-Arguello et al., 2018); ask, cdt (Kabir et al., 2019)
C. coli	ID1145	928	Aerotolerant OR12	2.03	30.8	2185	2058	ansP, ansR, aswC, acO3, acB (Noormohamed and Fakhr, 2013); GTPase gene, hip, cefA, CCCH, cdtB, porA, 16S-23S ITS, cepE, mapA, hipO, gpyA, cefD, oxidoeductase gene, cefA, pepT, inv, C51 (Frasso et al., 2017); cepE (Rodgers et al., 2017); cefD, asp (Pavlova et al., 2016; Banowary et al., 2018)

and specific cleavage (Maxam and Gilbert, 1977). The first-generation DNA sequencing method of shotgun sequencing was developed based on the principles of both methods (Morey et al., 2013). This technique involves the following steps (Fig. 1). A DNA template is broken down into fragments. Each DNA fragment is then amplified (initially by E. coli cloning and later by PCR). The amplicons of the DNA fragments are then sequenced in a system with four independent PCR arrays. In the four independent PCR assays, four chain-terminating inhibitors (ddATP, ddTTP, ddGTP and ddCTP) are added. In the PCR assays, the majority of DNA polymerase reactions are conducted by adding dNTPs. However, in several reactions, ddNTPs are added for polymerization, thus terminating chain extension. As a result, DNA amplicons with different lengths are obtained. An electrophoresis method is used to separate the terminated DNA amplicons. The continuous DNA sequence is obtained by docking the ends of the electrophoresis-separated products.

Automated DNA sequencing has been available since the introduction of fluorescently labelled ddNTPs and spectrum detection in the mid-1980s. The first automated DNA sequencer (AB370) was announced by Applied Biosystems Co. in 1987 (Bankier et al., 1991). The read length produced by the AB370 platform reached 600 bp, with detection of 96 bp per cycle and 500 kb per day. The AB370 system was upgraded to AB3730xl platform in 1995, with an improved read length (approximately 900 bases), speed (2.88 Mb per day) and accuracy (over 99.99%; Liu et al., 2012). However, compared with NGS platforms, the AB3730xl system was far from

© 2020 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. Microbial Biotechnology, 14, 323–362
Species	ID number	Number of sequenced strains	Representative strain	Size (Mb)	GC%	Genes	Proteins	Specific genetic markers
Penicillium								
P. expansum	ID11336	9	MD-8	32.36	47.5	11 060	11 060	Polygalacturonase (Hesham et al., 2011); PatF (Tannous et al., 2015); idh, 18S, α-tubulin, calmodulin (De et al., 2016; Rharmitt et al., 2016); ITS1-ITS4 (Hammami et al., 2017); PdCYP51 (Hammamoto et al., 2001); α-tubulin (Oshikata et al., 2013); PdCyt b (Zhang et al., 2009); ITS (Liu et al., 2017); RPB1, cmd-3 (Chen et al., 2017b)
P. digitatum	ID13384	3	Pd1	26.05	48.9	8962	8961	
P. griseofulvum	ID43141	2	PG3	29.14	47.3	9630	9630	
P. citrinum	ID40785	2	JCM 22607	34.00	45.9	–	–	
P. italicum	ID34360	3	GL-Gan1	31.03	45.8	–	–	
Alternaria								
A. alternata	ID11201	6	SRC1lrK2f	32.99	51.4	13 577	13 466	endopolygalacturonase (Garganese et al., 2016); glyceraldehyde-3-phosphate dehydrogenase (Gpd), Alt a1 (Gherbawy et al., 2018); AaSdhB, AaSdhC, AaSdhD (Lichtemberg et al., 2018); β-tubulin (Basim et al., 2018); ITS1, ITS4, histone 3 (Wang et al., 2019)
A. arborescens	ID12091	5	EGS 39-128	33.89	50.9	–	–	ITS (Lorenzini and Zapparoli, 2014); endopolygalacturonase (Garganese et al., 2016); Alt a1, calmodulin, plasma membrane ATPase (Ellar et al., 2018); elongation factor, β-tubulin, glyceraldehyde-3-phosphate dehydrogenase (Somma et al., 2019)
A. brassicicola	ID865	2	Abra43	31.04	50.8	–	–	Cutinase A (Gachon and Saindrenan, 2004); Microsatellite locus ABS28 (Singh et al., 2014); ITS4, ITS5 (Gao et al., 2014); ITS1, ITS2 (Zur et al., 2002); Alt_a1, ITS-ptsAs (Gu et al., 2017); histidine kinase (HK1) (Khan et al., 2018); ITS1, ITS4 (Yousif et al., 2010); RPB1-1, cmd-3 (Chen et al., 2017b); RPB1, RPB2 (Chen et al., 2019)
A. solani	ID65961	2	NL03003	32.78	51.3	–	–	
A. tenuissima	ID76065	7	FERA 1166	35.70	51.1	13 653	13 575	Aflatoxin (Andersen et al., 2006); histone (Kou et al., 2014)
Aspergillus								
A. flavus	ID360	60	NRRL3357	36.89	48.3	13 485	13 485	aflS, aflO (Degola et al., 2007); ITS, pksA, omtA (Yin et al., 2008b); β-tubulin (Zarinfar et al., 2015); aflatoxin biosynthesis gene cluster (Cailcott and Cotty, 2015); aflQ (Mahmoud, 2015); ITS1, ITS4 (Mytroie et al., 2016); aflR – aflJ intergenic region (Alouli and El Khoury, 2017); ITS, aflP (1), aflM, aflA, aflID, aflIP(3), aflIP (2), aflR (Al-Shuhaib et al., 2018); norA, omtA (Hua et al., 2018)
Species	ID number	Number of sequenced strains	Representative strain	Size (Mb)	GC%	Genes	Proteins	Specific genetic markers
---------------------	-----------	-----------------------------	-----------------------	-----------	------	-------	----------	--
A. niger	ID429	14	FDAARGOS_311	35.74	49.7	11 602	11 190	ITS (Gonzalez-Salgado et al., 2005); acf1F (Tunetevski et al., 2013); β-tubulin gene (Mirhendi et al., 2016); calmodulin gene (Das et al., 2017); benA (von Hertwig et al., 2018)
A. carbonarius	ID947	1	ITEM 5010	36.15	51.6	11 735	11 478	Calmodulin (Palumbo and O’Keeffe, 2015); β-tubulin (Mirhendi et al., 2016)
A. tubingensis	ID18109	2	CBS 134.48	35.15	49.2	12 592	12 319	ITS (Medina et al., 2005); sequence-characterized amplified region (SCAR) (Giaj Merlera et al., 2015); calmodulin (Palumbo and O’Keeffe, 2015); β-tubulin (Mirhendi et al., 2016)
A. parasiticus	ID12976	3	SU-1	39.47	48.1	8645	8645	nor-1, ver-1, omf-1, apf-2 (Chen et al., 2002); afiR (Somashekar et al., 2004); ITS (Luo et al., 2009); acf, norA (Yin et al., 2015); afiR-aff intergenic region (Atoui and El Khoury, 2017)
A. westerdijkiae	ID40399	1	CBS 112803	36.07	50.2	–	–	ITS (Gil-Sema et al., 2009); pks, p450-B03 (Gil-Sema et al., 2011); β-tubulin (Durand et al., 2019)
Fusarium								
F. oxysporum	ID707	115	f. sp. lycopersici	61.39	48.4	27 347	27 347	FOW1 (Li et al., 2014); IGS, TEF-1α, β-tubulin gene (Kim et al., 2017b); Tfl1 insertion (Ortiz et al., 2017); Bk (Pugliese et al., 2013); ITS (Wu et al., 2019); Efl1 (Chen et al., 2017a); SIX4, SIX5 (Ayukawa et al., 2016); SIX1, SIX3 (Debbui et al., 2018); FEM1, HPEG (van Dam et al., 2018); FocScF/FocScR (Singh and Kapoor, 2018)
F. solani	ID537	3	77-13-4 (Coleman et al., 2009)	51.29	50.8	15 708	15 708	FS1/FS2 (Gasasnovas et al., 2013); EF-1α (Muraosa et al., 2014); ITS (de Souza et al., 2017); RPB (Chitrampalam et al., 2018)
(Nectria haematococca)								
F. fujikuroi	ID13188	15	IMI 58289	43.83	47.5	14 943	14 810	histone H3 (Steenkamp et al., 1999); MAT allele (Steenkamp et al., 2000); ITS (Llorens et al., 2006); gaoB (Faria et al., 2012); β2-tubulin (Zhang et al., 2015); TEF 1-α (Carneiro et al., 2017)
F. verticilloides	ID488	4	7600	41.84	48.7	20 574	20 574	EF-1α (Wu et al., 2016); FUM1; FUM19 (Omoni et al., 2018); ITS (Jedidi et al., 2018); calmodulin (Mulé et al., 2004); EGFP (Gai et al., 2018)
F. proliferatum	ID2434	13	ET1 (Niehaus et al., 2016)	45.21	48.1	16 509	16 143	Calmodulin (Mulé et al., 2004); ISR (Borrego-Benjumea et al., 2014); SSR (Moncrief et al., 2016); tef-1α, FUM1 (Gilveze et al., 2017); FUM19 (Proctor and Vaughan, 2017); ITS (Jedidi et al., 2018)
Species	ID number	Number of sequenced strains	Representative strain	Size (Mb)	GC%	Genes	Proteins	Specific genetic markers
-----------------------	-----------	-----------------------------	-----------------------	-----------	-----	-------	----------	-------------------------
F. graminearum	ID 58	11	PH-1 (Cuomo et al., 2007)	36.67	48.3	13 334	13 334	MGB (Waalwijk et al., 2004); gao4 (de Biazio et al., 2008); cyp51A, beta-tubulin (Yin et al., 2009a); TRI12 (Nielsen et al., 2012); MAT (Demeke et al., 2010); PKS13 (Atoui et al., 2012); Trif7, Trif3 (Tralamazza et al., 2016); TRI (Wang and Cheng, 2017); ITS (Jedidi et al., 2018); tef-1x (Garmandia et al., 2018)
Colletotrichum								
C. acutatum	ID38530	2	–	52.13	51.7	–	–	ITS (Talhinhas et al., 2002); beta-tubulin 2 (Talhinhas et al., 2005); Calint2 (Jelev et al., 2008); BenA (Polizi et al., 2011); beta-tubulin (TUB), GAPDH (Karimi et al., 2019); MAT1-2 (Furuta et al., 2017)
C. gloeosporioides	ID17739	6	TYU	53.01	49.6	–	–	RAPD (Pileggi et al., 2009); CgInt (Lopes et al., 2010); j-tubulin (TUB), actin (ACT), GAPDH (Ramdeen and Rampersad, 2013); act, cal, gapdh, gs, ITS, tub2 (Sharma et al., 2017)
C. coccodes	ID56076	2	NJ-RT1	50.12	53.8	–	–	RAPD (Dauch et al., 2003); ITS (Baysal-Gurel et al., 2014); CAL, ITS, TUB2 (Silva et al., 2018)
C. fructicola	ID57524	3	15060 (Aguilar-Pontes et al., 2018)	55.92	53.2	–	–	ITS (Li et al., 2013); ACT, CAL, CHS-1, ITS, TUB, GAPDH (Gan et al., 2017)
Monilinia								
M. fructicola	ID54919	2	LMK 125	44.68	40.1	–	–	MO368-1, Laxa (Cote et al., 2004); 18S rDNA (Fulton and Brown, 1997); j-tubulin (Fan et al., 2014); ITS (Guinet et al., 2016); laccase-2 (Wang et al., 2018b); cytochrome b (Ortega et al., 2019)
M. laxa	ID56076	2	EBR-Ba11b	41.84	40.2	–	–	18S rDNA (Fulton and Brown, 1997); MO368-1, Laxa (Cote et al., 2004); ISSR and RAPD (Fazekeas et al., 2014); ITS (Guinet et al., 2016); laccase-2 (Wang et al., 2018b); SCAR (Ortega et al., 2019)
M. fructigena	ID66926	3	ASM290963v1	39.33	41.7	–	–	18S rDNA (Fulton and Brown, 1997); MO368-1, Laxa (Cote et al., 2004); j-tubulin (Fan et al., 2014); ITS (Guinet et al., 2016); laccase-2 (Wang et al., 2018b); MO368-1, Laxa (Cote et al., 2004); ITS (Guinet et al., 2016); laccase-2 (Wang et al., 2018b)
M. polystroma	ID66925	1	ASM290964v1	44.63	39.2	–	–	
Botrytis								
B. cinerea	ID494	4	B05.10	42.63	42.0	13 703	13 703	EcoRI (Rigotti et al., 2002); IGS, SCAR (Suarez et al., 2005); IGS (Duguta et al., 2010); G3PDH, HP60, RPB2, NEP1, NEP2 (Fan et al., 2015); ITS, j-tubulin (Reich et al., 2016); necrosis, nep1 (Munoz et al., 2016)
Table 3. Summary of 16S rDNA and ITS sequencing-based microbiome community studies of fruits and vegetables.

Samples	Bacteria/fungi	Target organs	Study focus	Technology/sequencing platform	16S rRNA target/primers	Taxonomic resolution/focused taxonomy	References
Apple	Bacteria	Flower	Apple flower Microbiome	Pyrosequencing	Primers 799 and 1115 reverse	Genera: Acetobacter, Arthrobacter, Burkholderia, Butulaxella, Deinococcus, Escherichia/Shigella, Hymenobacter, Knoellia, Lactobacillus, Methanosarcina, Pantoea, Terrimonas, Truepera	Shade et al. (2013)
Apple, Grapes, Lettuce, Peach, Spinach and Tomato	Bacteria	Fruit; Leaf	Overall diversity and composition of bacterial communities, and their variations in fruits and vegetables	Pyrosequencing	Metabarcoding V4eV7 (universal primer 799F and 1115R)	Family: Bacillaceae, Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae, Leuconostocaceae, Microbacteriaceae, Micrococcaceae, Moraxellaceae, Nocardioidaeae, Oxalobacteraceae, Pseudomonadaceae, Rhizobiales, Xanthomonadaceae	Leff and Fierer (2013)
Arugula	Bacteria	Leaf	Arugula phyllosphere indigenous microbiome	Pyrosequencing	V3-V8	Genera: Caulobacteriales, Rhizobiales, Rhodobacteriales, Sphingomonadaceae, Burkholderiales, Rhodocyclales, Enterobacteriales, Pseudomonadales, Xanthomonadales	Cernava et al. (2019)
Basil	Bacteria	Leaf	Naturally bacterial community on basil leaves	Pyrosequencing	V1-V3	Genera: Arcicella, Chryseobacterium, Flavobacterium, Sphingobacterium, Altererythrobacter, Novosphingobium, Sphingobium, Sphingomonas, Herbaspirillum, Acinetobacter, Pseudomonas, Rheinheimera, Enterobacter, Erwinia, Klebsiella, Kluyvera, Pantoea, Rahmella, Raoultella	Ceuppens et al. (2015)
Blueberry	Bacteria	Root	Soil properties and plant cultivars cooperatively shaped the variations in bacterial diversity and networks in the rhizosphere	Illumina sequencing	V4-V5	Genera: Azospirillum, Phenylbacterium, Rhodanobacter, Steroidobacter, Pseudomonas, Leteibacter, Acidothermus, Dongia, Rhizomicrobium, Pseudolabrys, Acidothermus, Rhodanobacter, Bradyrhizobium, Rhodoplanes, Pseudolabrys	Jiang et al. (2017)
Cilantro, Cucumber, Mung, Bean and Sprout	Bacteria	Fruit, Leaf and Stem	Bacterial diversity differences	Illumina sequencing	V1-V3	Genera: Xanthomonas, Sphingobacterium, Stenotrophomonas, Klebsiella, Enterococcus, Corynebacterium, Brachybacterium, Cronobacter, Brevibacterium, Rhizobium, Weissella, Serratia, Acinetobacter, Pantoea, Pseudomonas, Enterobacteriaceae, Bacillus, Enterobacter, Staphylococcus	Jarvis et al. (2018)
Samples	Bacteria/ fungi	Target organs	Study focus	Technology/ sequencing platform	16S rRNA target/primers	Taxonomic resolution/focused taxonomy	References
---------	----------------	---------------	-------------	-------------------------------	------------------------	--------------------------------------	------------
Grape	Bacteria	Leaf	Characterize the natural microbiome of grapevine	Pyrosequencing	V6	Genera: Neisseriaceae; Sphingomonadaceae; Xanthomonadaceae; Veillonellaceae; Comamonadaceae; Leuconostocaceae; Moraxellaceae; Pseudomonadaceae; Enterobacteriaceae; Streptococcaceae	Pinto et al. (2014)
Grape	Bacteria	Fruit	Geographical origin and cultivar of grape by microbiome composition in Northern Italy and Spain Vineyards	Illumina sequencing	V3-V4	Genera: Alphaproteobacteria; Gamaproteobacteria; Actinobacteria; Bacilli; Citrobacter; Shingobactellia; Cytophaga; Blastocellia; Phycisphaerae; Acidimicrobia; Thermoleophilia; Deltaproteobacteria; Solibacteres; Gemmatimonadetes; Actinobacteria; Cyanobacteria	Mezzasalma et al. (2018)
Grape	Bacteria	Fruit	Bacterial communities of Grenache and Carignan grape varieties	Not given	V4	Genera: Bacillus; Oenococcus; Acinetobacter; Erwinia; Streptococcus; Pseudomonas; Haemophilus; Enhydrobacter; Methylobacterium; Veillonella; Corynebacterium; Lactobacillus; Niesseria; Gluconobacter; Sphingomonas; Staphylococcus; Micrococcus	Portillo et al. (2016)
Grape	Fungi	Fruit; Leaf	Microbial relationship between soil, leaves and fruits	Illumina sequencing	ITS1	Genera: Hydrosporphaera; Mycoarthritis; Chaetomium; Fusarium; Acremonium; Phoma; Cryptococcus; Cladosporium; Guehomyces; Alternaria	Zhang et al. (2017b)
Grape	Fungi	Leaf	Natural microbiome of grapevine	Pyrosequencing	ITS2 and D2	Genera: Zoophthora; Pandora; Rhizopus; Mucor; Aureobasidium; Sporormiella; Alternaria; Kurztmanomyces; Colacogloea; Lewia; Ustilago; Puccinia; Cronartium	Pinto et al. (2014)
Grape	Fungi	Fruit	Wine grape yeast from China	Not given	ITS1	Genera: Zygosaccharomyces; Candida; Issatchenkia; Pichia; Sporidobolus; Hanseniaspora; Cryptococcus; Pichia; Issatchenkia; Metschnikowia	Li et al. (2010)
Grape	Bacteria	Leaf; Fruit	Microbial relationship between soil, leaves and grapes	Illumina sequencing	V5-V7	Genera: Kocuria; Microvirga; Flavobacterium; Sphingomonas; Nocardioides; Pseudomonas; Gaiella; Arthrobacter; Bacillus; Blastococcus	Zhang et al. (2017b)
Grape	Bacteria	Fruit	Geography and cultivar differences affect wine grape microorganisms	Illumina sequencing	V4	Genera: Acetobacter; Erwinia; Gluconobacter; Hymenobacter; Janthinobacterium; Klebsiella; Lactobacillus; Microbacteriaceae; Sporosarcina; Pseudomonadaceae; Sphingomonas; Leuconostocaceae; Moraxellaceae; Methylobacterium	Bokulich et al. (2014)
Samples	Technology/sequencing platform	16S rRNA target/primers	Taxonomic resolution/focused taxonomy	References			
---------------------------------	--------------------------------	-------------------------	--------------------------------------	---------------------			
Fungi	Illumina sequencing	ITS1	Genera: *Cladosporium* spp.; *Botryotinia* Fuckelliana, *Penicillium*; *Davidiella*; *Aureobasidium*; *Hanseniaspora*; *Candida*	Bokulich et al. (2014)			
Fungi	Illumina sequencing	ITS1	Genera: *Myrothecium*; *Epicoccum*; *Cryptococcus*; *Mortierella*; *Guehomyces*; *Fusarium*; *Phoma*; *Cladosporium*; *Alternaria*	Zhang et al. (2017a)			
Fungi	Illumina sequencing	V3-V4	Genera: *Acinetobacter*; *Actinobacteria*; *Bacillus*; *Brevundimonae*; *Massillia*; *Methylobacterium*; *Pseudomonas*; *Sphingomonas*; *Streptococcus*	Purahong et al. (2018)			
Fungi	Illumina sequencing	V3	Genera: *Aeromonas*; *Bacillus*; *Citrobacter*; *Curtobacterium*; *Enterobacter*; *Lelliottia*; *Obesumbacterium*; *Pantoea*; *Providencia*; *Pseudomonas*; *Shigella*	Darlison et al. (2019)			
Fungi	Illumina sequencing	V3	Genera: *Dothioraceae*; *Davidiellaceae*; *Tremellales*; *Incertae Sedis*; *Davidiellaceae*; *Cystofilobasidiaceae*; *Tremellales*	Chen et al. (2018)			
Flower, Fruit, Leaf and Stem	Pyrosequencing	V2	Genera: *Pseudomonas*; *Micrococcineae*; *Xanthomonas*; *MethylBacterium*; *Rhizobium*; *Sphingomonas*	Ottesen et al. (2013)			
Flower, Fruit, Leaf and Stem	Pyrosequencing	EF4 and Fung5	Genera: *Hypocreac; Aureobasidium; Cryptococcus; Chaetomium; Fusarium; Aspergillus*	Ottesen et al. (2013)			
Topics	Regional environment and farming practices affect microbiomes						
--------	---						
Cabbage and Lettuce	Bacteria	Leaf	Microbial communities location differences	Pyrosequencing V4-V5	Genera: Acinetobacter; Alistipes; Barnesiella; Rikenella; Anaerococcus; Aerospiraera; Vagococcus; Parabacteroides; Kluyvera; Peptoclostridium; Lysinibacillus; Lactobacter; Serratia; Macroccus; Weissella; Exiguobacterium; Kosakonia; Candidatus Nardonella; Leclercia; Obesumbacterium; Streptococcus; Escherichia; Clostridium; Aeromonas; Staphylococcus; Lactococcus; Butulaxella; Citrobacter; Pseudomonas; Enterococcus; Klebsiella; Bacillus; Enterobacter; Pantoea	Higgins et al. (2018)	
Grape	Fungi	Fruit	Fungal diversity in ferment associated with grape microbes	Pyrosequencing	NL1 and NL4	Genera: Columnosphaeria; Davidella; Cryptococcus	Morrison-Whittle et al. (2017)
Grape	Fungi	Fruit	Grape microbiome related to field origin and environmental conditions	Illumina sequencing ITS1	Family: Botryosphaeriaceae; Dothioraceae; Pleosporaceae; Trichocomaceae; Incertae Sedis; Saccharomycetaceae; Saccharomycodaceae; Hymenochaetales; Peniophoraceae; Chytridiomycota	Mezzasalma et al. (2017)	
Lettuce	Bacteria	Leaf	Bacterial communities on plant leaf surfaces related to time, space and environment	Pyrosequencing V5-V7	Genera: Xanthomonas; Pantoea; Pseudomonas; Massilia; Bacillus; Erwinia; Alkanindiges; Acinetobacter; Naxibacter; Duganella; Flavobacterium; Exiguobacterium; Anthrobacter	Rastogi et al. (2012)	
Lettuce	Bacteria	Leaf	Biotic stress shifted structure and abundance of Enterobacteriaceae in the lettuce microbiome	Pyrosequencing V4-V5	Genera: Trabulsiella; Serratia; Klusbsela; Yersinia; Rahmelia; Pantoela; Erichichia; Enterobacter; Butulaxella; Cedecea; Citrobacter; Erwinia	Erlacher et al. (2015)	
Maize	Bacteria	Leaf	Organic fertilization increased antibiotic resistome in phyllosphere	Illumina sequencing V4-V5	Genera: Sphingomonas; Pseudomonas; Chryseobacterium; Curtobacterium; Methylobacterium	Chen et al. (2018)	
Mulberry	Fungi	Fruit	Soil fungal community borne related to genotypes and disease occurrence	Illumina sequencing ITS1 and ITS2	Genera: Humicola; Mortierella; Scleromitra; Schizothecium; Sphaerulina; Lecidella; Corinianius; Russula; Hymenochaete; Mraia	Yu et al. (2016)	
Table 3. (Continued)

Topics	Regional environment and farming practices affect microbiomes			
Peach and Nectarines	Fungi Fruit Yeasts traceability of organic and conventional farming types	PCR-DGGE/ GATC Biotech D1/D2	Species: *Pichia Kluyveri; Pichia Fermentans; Candida; Tremella Flava*	Bigot et al. (2015)
Tomato	Bacteria Flower and Fruit Insects introduce variability in bacterial diversity	Illumina sequencing V1-V3	Family: *Microbacteriaceae; Methylobacteriaceae; Rhizobiales; Alphaproteobacteria; Proteobacteria; Rhizobiaceae; Sphingomonadaceae; Comamonadaceae; Gammaproteobacteria; Shewanellaceae; Enterobacteriaceae; Pseudomonadales; Pseudomonadaceae; Xanthomonadaceae*	Allard et al. (2018)

### Topics	Artificial treatment and quality control in storage and processing
Apple	Fungi Fruit Long-term cold storage changed fungal components
Apple	Fungi Fruit Mycotoxin contamination associated with fungal flora of apple core
Arugula, Broccoli, Cabbage, Cauliflower, Horseradish, Radish and Turnip	Bacteria Leaf Microbiomes of vegetables related to plant disease resistance and human health
Asparagus	Bacteria Stem High-hydrostatic pressure treatment for postharvest preservation
Topics	Artificial treatment and quality control in storage and processing
---	---
Baby Spinach	Bacteria Leaf, Leaf, Bacterial communities changed by the chlorine dioxide (ClO2) treatment
Bean and Radish	Bacteria Seed, Bacteria community in the early plant developmental stages
Cabbage	Bacteria Leaf, Microbiota changes during cabbage ferment progress
Carrot	Bacteria Root, Postharvest gamma irradiation affects surface carrot bacterial community
Cherry	Bacteria Fruit, High-hydrostatic pressure treatment affects bacterial community
Cherry	Bacteria Fruit, High-hydrostatic pressure processing changed the microbiological quality and bacterial biodiversity
Clementines, Potatoes and Tomatoes	Bacteria Fruit and Root, Food packaging materials affected microbial community
Grape	Bacteria, Bacterial community and its temporal succession during the fermentation
Grape	Bacteria, Diversity and evolution of microorganisms during grape wine fermentation
Grape	Bacteria, Human and animal pathogens related to foodborne diseases in the grapevine endosphere
Topics	Artificial treatment and quality control in storage and processing
--------	--
Grape	**Fungi**
Grape	**Fungi**
Grape	**Fungi**
Grape	**Fungi**
Grape	**Fungi**
Grape	**Fungi**
Topics	Artificial treatment and quality control in storage and processing
--------	---
Grape	Fungi Fruit Yeast communities on the grape berries affect by fungicides
Grape	Fungi Fruit Diversity and evolution of microorganisms during grape wine fermentation
Lettuce	Bacteria Leaf Chitin amendment changed the microbial composition
Lettuce	Bacteria Leaf Gamma irradiation changed the phyllosphere microbiota
Lettuce	Bacteria Leaf Innovative washing solutions shifted the lettuce microbiota
Lettuce	Fungi Leaf Chitin amendment changed the microbial composition
Maize	Fungi Seed Composition and variation in the fungal communities associated with seeds during storage
Topics	Artificial treatment and quality control in storage and processing
---------------	---
Orange Peel	Fungi Fruit Dynamic of fungi communities during the storage
Peanut	Fungi Seed Dynamic of fungi communities during the peanut storage
Pear	Bacteria Fruit Chlorine drenching and after controlled atmosphere storage affect bacterial populations
Spinach	Bacteria Leaf Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage
meeting the needs for a higher speed, throughput and cost-effectiveness.

Next-generation sequencing

Three NGS platforms were introduced during the first decade of the 21st century: the Roche 454 pyrosequencing, Illumina Genome Analyzer and SOLiD sequencing platforms. Compared with FGS, these NGS technologies perform multiparallel sequencing, which improves the throughput and speed and reduces costs.

Roche 454 pyrosequencing was announced by the 454 Life Sciences Co. in 2005. Pyrosequencing is based on sequencing by synthesis and relies on the detection of the released pyrophosphate when a nucleotide polymerizes to the nascent DNA chain (van Dijk et al., 2014). The template DNA is divided into 300- to 500-base single-stranded fragments (Fig. 2). Each DNA fragment was connected with two specific adapters at both ends and then attached to a 20 μm bead and transferred to a PTP hole (29 μm). The bead is emulsified to form a water-in-oil structure. The DNA fragment is amplified by performing emulsion PCR to form thousands of repetitions. In a single pyrosequencing cycle, four dNTPs (dATP, dGTP, dCTP and dTTP) are added to the PTP hole, and only one of them correctly matches the leading chain and is integrated into the nascent DNA. As soon as the correct dNTP is added and polymerized, the pyrophosphate is released to trigger luciferase-mediated light emission. The signal is captured by a spectrum detector. The addition of the other three unpaired dNTPs does not generate a signal, and they will subsequently be removed. The combined data from hundreds of pyrosequencing cycles are used to generate DNA sequence reads. Thousands of PTP holes are arrayed on a PTP board. Therefore, numerous pyrosequencing reactions can be conducted simultaneously.

The Illumina Genome Analyzer was first introduced by Solexa in 2006 and purchased by Illumina in 2007. The Illumina platform is based on sequencing by synthesis (Morey et al., 2013; Ghanbari et al., 2015). The template DNA sequencing, genomes and markers for microbes
DNA is first divided into 100- to 200-base single-stranded fragments. Both ends of the fragment are connected with an oligonucleotide adaptor. The two adaptors are complementarily matched with forward and reverse primers immobilized on a glass surface. The DNA fragment is amplified by performing bridge PCR to generate thousands of repeats. Repeats from a single DNA fragment form a separate strand by linearization. DNA sequencing is then performed by using four specific dNTPs. The dNTPs contain a specific cleavable fluorescent blocking group at the 3'-OH end. In each sequencing cycle, the incorporation of a dNTP into the nascent DNA stimulates the release of a fluorescent signal, which is captured by a detector. Then, the blocking group on 3'-OH is removed to continue the next sequencing step. Combined signals from hundreds of sequencing cycles are used to generate DNA sequence reads.

The SOLiD platform was introduced by Applied Biosystems in 2007. In contrast to sequencing by synthesis, SOLiD relies on the method of sequencing by ligation (Morey et al., 2013). The NDA library preparation method is similar to Roche 454 pyrosequencing. The template DNA is first broken down into 30- to 50-base single-stranded fragments. Each DNA fragment linked with two adaptors at both ends and then attached to a 1 μm bead. The bead is immobilized on a glass slide. The DNA fragment is amplified by performing emulsion PCR. Sequencing is performed by using sixteen classes of 8-base fluorescent nucleotide probes and 5 classes of primers. In the 8-base probe, the 1st and 2nd positions at the 3'-end can be occupied by any combination A, T, G or C, resulting in a total of 16 probes. The 8th probe position is linked with four fluorescent groups, which correspond to the first two nucleotides at the 3'-end (mainly the 1st position). The 3rd and 4th positions of the probe can match any base. The 5th nucleotide is the cleavage site. Five universal primers match the continuous positions (n, n + 1, n + 2, n + 3 and n + 4) on the template DNA. Sequencing is initiated by hybridization. The first primer is hybridized to the template DNA (the initial site, n). Then, an 8-base probe is introduced, which correctly matches the 1st and 2nd positions of the template DNA. Therefore, the fluorescent signal from the probe reflects the nucleotides of the 1st and 2nd positions (mainly the 1st position). After recording the signal, the fluorescent group is removed by cutting at the 5th position of the probe. Another probe matching the 6th and 7th positions of template is connected at the 5th cleavage site. Therefore, the second fluorescent signal reflects the 6th and 7th nucleotides. These steps are repeated until the ligation reaction is complete. The signals of the original consecutive fluorescent codes (n) are obtained, followed by melting. The second universal primer (n + 1) is used to obtain the corresponding fluorescent codes of the 2nd and 3rd positions, the 7th and 8th positions and so on. Then, three other universal primers (n + 2, n + 3 and n + 4) are used to obtain the three consecutive corresponding fluorescent codes. By combining the five signals (n, n + 1, n + 2, n + 3 and n + 4) of the colour codes and the read matrix, the original sequence of the template DNA can be calculated.

The three NGS platforms exhibit different characteristics (Liu et al., 2012). Roche 454 sequencing produces a maximum read length of approximately 700 bases, which is longer than the read lengths generated by Illumina sequencing (150–200 bases) and SOLiD (30-50 bases). In addition, Roche 454 sequencing is faster than Illumina or SOLiD sequencing. However, the Roche 454 platform presents an insufficient sequencing accuracy. Because dNTPs are not added to the last base of the DNA ligation chain, the last base of the sequence cannot be read. The Illumina sequencing platform exhibits the highest sequencing throughput and lowest operating cost per base. However, Illumina sequencing produces a shorter read length and therefore requires a greater sequencing depth. The two-base coding and verification system of the SOLiD platform exhibits the greatest accuracy. However, the computing steps for the colour-coding matrix and the combination of iterative data are complicated. Moreover, the shorter read length of this platform requires a greater sequencing depth. Several shortcomings commonly emerge in NGS platforms (Pushkarev et al., 2009). Generally, the shorter read length of NGS requires that the template DNA be highly fragmented. This demands a greater sequencing depth and complex data computing for obtaining the overall reads. Second, PCR amplification is strictly required. However, PCR results are often inconsistent in regions such as those with a higher GC% or repeated hairpins. PCR amplicons also show variations in abundance under uniform PCR procedures (van Dijk et al., 2018).

Third-generation sequencing

There are three leading TGS technologies: the Heliscope Single Molecule Sequencer (SMS), the single-molecule real-time (SMRT) approach and the Oxford Nanopore MinION sequencer (Reuter et al., 2015; Lu et al., 2016; van Dijk et al., 2018). Compared with NGS, the fundamental improvement achieved by TGS is that a single strain or longer DNA molecules can be sequenced without PCR amplification. In addition, TGS technology shows real-time performance, a higher throughput and reduced costs.

The Heliscope SMS was introduced by Helicos Biosciences in 2009 (Pushkarev et al., 2009; Reuter et al., 2015). The Heliscope SMS approach is based on...
sequencing by single-molecule synthesis. The template DNA is first divided into single-stranded fragments. Then, the 3'-end fragment is linked to a poly-A tail. Sequencing is performed on a HeliScope slide containing millions of flow cells. The flow cells contain a fixed with a poly T tail that both hybridizes with poly-A sequence of the DNA template and provides a primer for DNA synthesis. Sequencing is initiated by the addition of the four fluorescently labelled and 3'-OH-blocked dNTPs, which is similar to Illumina sequencing. In each sequencing cycle, four dNTPs are added in turn. Once the correct dNTP is added and polymerized, the fluorescent signal is released. The signal is captured by a highly sensitive detection system. Then, the blocking group on the 3'-OH is removed to begin the next sequencing step.

The SMRT TGS platform was launched by Pacific Bioscience in 2011 (van Dijk et al., 2018). SMRT sequencing is based on DNA synthesis, and the signal is captured via zero-mode waveguide (ZMW) detection (Fig. 3). The ZMW nanopore is a channel with a diameter of 10 nm, which provides limited space for DNA polymerization. At the bottom of the ZMW nanopore, a DNA polymerase is immobilized. The template DNA is disintegrated into single-stranded fragments of tens of kb. Both ends of a fragment are connected to two closed circular single-stranded DNA adaptors. The DNA fragment is then introduced into the nanopore and ligated to the polymerase via either adaptor. Four fluorescently labelled and 3'-OH-blocked nucleotides are added to the reaction cells to start the synthesis process. Immediately after nucleotide polymerization, a fluorescent signal is generated. At the same time, laser irradiation of the nanopore is performed, and the fluorescent signal is amplified to a detectable level and transmitted to the nanopore-external space. Thus, the undetectable fluorescent signal in the ZMW pore can be captured. Once the blocking group on 3'-OH is removed, the next sequencing cycle continues. There are approximately 150 000 ZNWs in an SMRT unit, which is enough to obtain a sufficient throughput.

MiniION sequencing was introduced by Oxford Nanopore Technologies in 2014 (Mikheyev and Tin, 2014). MiniION sequencing is based on DNA electrophoresis, in which a-haemolysin nanopores distributed across a semipermeable membrane serve as channels for DNA electrophoresis. Cyclodextrins covalently bind to the nanopores to increase nucleotide-channel interactions. First, the template DNA is fragmented by using Covaris g-TUBEs to form single-stranded DNA fragments. The two ends of the DNA fragment are connected with two adapters. The lead adapter (Y adapter) is added to the 5'-end, and the hairpin adapter (HP adapter) is added to the 3'-end. An electric field is applied to both sides of the membrane to provide a driving force for DNA cross-channel electrophoresis. Driven by voltage, DNA fragments enter and pass through the pores and interact with cyclodextrin in the process. Different nucleotide bases (A, T, G and C) interact with cyclodextrin differently and generate corresponding current waves. The ion current is measured and characterized to obtain the sequence of template DNA.

The three TGS platforms have different characteristics. The HeliScope SMS has not been widely used, because of its relatively slower speed, shorter read length and higher price. SMRT is the most commonly used TGS approach. In recent years, SMRT technology has been highly improved to achieve a sufficient throughput and cost-effectiveness. The SMRT PacBio RSII platform produces a read length of 10–15 kb and a throughput of 0.5–1.0 Gb per run (van Dijk et al., 2018). The read length of Nanopore MinION sequencing is similar to that of PacBio RSII. However, the error rate of Nanopore MinION (20–40%) is higher than that of PacBio RSII (10–15%; Lu et al., 2016). However, the Nanopore MinION sequencer has attracted considerable interest.
due to its smaller size, cheaper equipment and lower running costs.

WGS and genetic marker identification of related microbes on F & V

WGS and genetic marker identification of related foodborne pathogen

The *Escherichia* genus contains three species: *E. coli*, *E. albertii* and *E. fergusonii*. *E. coli* exhibits many strains, which usually colonized the intestines of humans and other mammals and are considered to be part of the intestinal flora. Gut *E. coli* can be released into the environment via feces. Therefore, the count of *E. coli* can reflect the extent of fecal contamination. In addition, several *E. coli* strains are serious opportunistic pathogens that cause food poisoning. To date, 17,952 *E. coli* genomes have been registered (Fig. 4), and approximately 1000 representative references have been summarized (NCBI genome ID 167). The first *E. coli* genome was obtained for strain K-12 MG1655 by shotgun sequencing (Blattner et al., 1997). Subsequently, Hayashi et al. reported the genome of the pathogenic strain *E. coli* O157:H7 RIMD 0509952 (Hayashi et al., 2001). The genome of *E. coli* O157:H7 is 859 kb larger than that of strain K-12 MG1655, and the comparison of their genomes showed extensive polymorphisms (Hayashi et al., 2001). There are fewer reports of *E. albertii* and *E. fergusonii* as pathogens responsible for food poisoning. Genome sequencing has revealed 89 and 18 strains of *E. albertii* and *E. fergusonii* respectively (NCBI data). The representative *E. albertii* strain KF1 was the first to be sequenced and reported (NCBI genome ID 1729; Fedoruk et al., 2014). 16S rDNA sequencing has been used to distinguish *E. coli*, *E. albertii* and *E. fergusonii* (Maifreni et al., 2013). Multiplex PCR based on the *cdgR*, *EAKF1_ch4033* and *EFR_0790* genes can efficiently distinguish *E. coli*, *E. albertii* and *E. fergusonii* (Lindsey et al., 2017). For the identification of *E. coli*, the reported genetic markers mainly include *flIC*, *Vt1*, *Vt2*

![Fig. 4. Genomic information for major foodborne pathogen species of *Escherichia coli* (*E. coli*), *Salmonella enterica* (*S. enterica*), *Staphylococcus aureus* (*S. aureus*), *Listeria monocytogenes* (*L. monocytogenes*), *Shigella sonnei* (*S. sonnei*) and *Campylobacter jejuni* (*C. jejuni*).](image)
The Salmonella genus contains two pathogenic species, and Salmonella enterica and S. bongori. S. enterica can be subdivided into six subspecies: enterica (I), salamae (II), arizonae (Illa), diarizonae (Illb), houtenae (IV) and indica (VI; Agbaje et al., 2011; Lamas et al., 2018). Alternatively, S. enterica can be subdivided into approximately 2,500 different serotypes according to somatic (O) and flagellar (H) antigens (Tindall et al., 2005; Grimont and Weill, 2007). S. enterica subspecies I causes the majority of cases of foodborne diarrhoea (Sanchez-Vargas et al., 2011; Rezende et al., 2016). S. enterica subspecies I exhibits approximately 1531 serotypes (Desai et al., 2013; Lamas et al., 2018). To date, approximately 11,215 strains of S. enterica have been registered (Fig. 4), and approximately 340 representative references concerning S. enterica genomc research have been summarized (NCBI genome ID 152). The genome of the representative S. enterica strain Typhi strain CT18 was the first to be reported (Parkhill et al., 2001). Detailed genomic comparisons between S. enterica typhi, E. coli and S. typhimurium have been reported (McClelland et al., 2001). The genomes of approximately 20 strains of S. bongori have been registered, among which the representative strain is S. bongori NCTC 12419 (NCBI genome ID 1089). The sseL, spvC (Peterson et al., 2010), avrA, stn, stn (Amin et al., 2016), spv, hut, fiJ (Alzwghaibi et al., 2018), hila, fimA and hns (Jeyasekaran et al., 2011) gene regions have been reported as markers for the Salmonella genus. In addition, multiplex PCR analysis based on the fiJB, gatD, invA, mdcA, stn and STM4057 genes is used for Salmonella genus identification (Lee et al., 2009). For S. enterica species, the AceK, fiIC, invA, orfC, sdt, setA, ssaN, STM2745, STM4492 and 16S rRNA genes are widely used for PCR identification and detection (Lee et al., 2009; Postollec et al., 2011). The fiIC, gnd, and mutS genes are used to distinguish S. bongori from other Salmonella pathogens (Soler-Garcia et al., 2014).

The Staphylococcus genus contains several species related to skin infection and food poisoning (mainly Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus lugdunensis, Staphylococcus saprophyticus and Staphylococcus pseudintermedius). Specifically, S. aureus is an important pathogen associated with toxin-related food poisoning. As of recently, the genomes of approximately 10,630 S. aureus strains have been registered (Fig. 4), and approximately 300 representative references have been summarized (NCBI genome ID 154). The genomes of two S. aureus strains, N315 and Mu50, were the first to be determined by performing shotgun sequencing (Kuroda et al., 2001). The characteristics of the genomes of potentially pathogenic species including S. epidermidis, S. lugdunensis, S. saprophyticus and S. pseudintermedius have been summarized (Table 1). Specific regions of mecA, nuc, femA-SA, femA-SE, orfx-SCCmec, spa, gyrB and 16S rRNA are used as markers for S. aureus identification (Hirvonen, 2014). Based on polymorphisms in the femA gene, S. aureus and S. epidermidis can be differentiated (Jukes et al., 2010). Recently, multilocus sequence typing (MLST) was performed on femA, tuf, rpoB, gap, pyrH and ftsZ to identify Staphylococcus strains accurately (Song et al., 2019). The staphylococcal enterotoxin (se) genes of sea, seb, sec and see have been used to monitor toxic S. aureus in food (Omwenga et al., 2019).

The Listeria genus contains the pathogenic species L. monocytogenes and L. seeligeri. L. monocytogenes is an important foodborne pathogen that contaminates various F & V and causes human listeriosis (Buchanan et al., 2017). About the genomes of 3063 strains of L. monocytogenes have been registered to date (Fig. 4), and nearly 80 genomic references have been summarized (NCBI genome ID 159). The genome of the representative L. monocytogenes strain EGD-e was the first to be obtained (Glaser et al., 2001). L. seeligeri is reported less often in food, and its genomic information is summarized in Table 1. Methods for L. monocytogenes identification have been reviewed previously (Gasanov et al., 2005; Välimaa et al., 2015). PCR-based detection has mainly been performed for the hly, iap, mpl, prfA, inlA, inlB, actA (Gasanov et al., 2005), plcA and 16S RNA genes (Xu et al., 2008).

The Shigella genus contains four foodborne pathogens, Shigella flexneri, Shigella boydii, Shigella sonnei and Shigella dysenteriae (Warren et al., 2006). Shigella pathogens contaminate a variety of foods and exhibit diverse occurrences and different epidemiologies (Warren et al., 2006; Levin, 2009; Lin et al., 2010). Shigella sonnei serotype 1 causes deadly epidemics, S. flexneri causes endemic infection, foodborne diseases associated with S. boydii occur mainly in developing countries, and foodborne diseases associated with S. sonnei occur in developed countries (Hale, 1991). To date, approximately 480 strains of Sh. flexneri (NCBI DNA sequencing, genomes and markers for microbes 343

© 2020 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. Microbial Biotechnology, 14, 323–362
The genome ID 182), 113 strains of *S. boydii* (genome ID 496), 1338 strains of *S. sonnei* (genome ID 417; Fig. 4) and 67 strains of *S. dysenteriae* (genome ID 415) have been registered (Table 1). The genome of *S. flexneri* strain 2a str. 301 was the first to be obtained (Jin et al., 2002). *S. flexneri* serotype 2a and *E. coli* K12 MG1655 share a high degree of genomic similarity (Stephens and Murray, 2001; Yang et al., 2005). They exhibit a common sequence of approximately 3 Mb (65% in *E. coli*) that encodes 2790 proteins. In PCR-based detection assays, specific gene regions of *ipaH*, virA, *ial* and 16S rRNA have been used as targets for *Shigella* genus identification (Warren et al., 2006). The *ipaH* gene, encoding the invasive plasmid antigen H, is carried by four *Shigella* species (Dutta et al., 2001; Warren et al., 2006). Specific regions of the *rfc* gene of *S. flexneri*, the *wbgZ* gene of *S. sonnei* and the *rfpB* gene of *S. dysenteriae* have been used to differentiate the three *Shigella* species (Ojha et al., 2013). SSR markers that can distinguish *Shigella* species have also been identified (Sahi et al., 2015). A recent study differentiated all four *Shigella* species by performing multiplex PCR analysis of differentiated genes (Kim et al., 2017a), for which a putative restriction endonuclease gene specific to *S. sonnei*, a hypothetical protein gene specific to *S. boydii* and *S. dysenteriae* and a repressor protein gene specific to *S. flexneri* were used.

The Campylobacter genus includes two major species of foodborne pathogens, *C. jejuni* and *C. coli*. To date, about the genomes of 1615 strains of *C. jejuni* have been registered (Fig. 4), and nearly 100 representative references describing genomic research have been summarized (NCBI genome ID 149). The genome of *C. jejuni* is relatively small, with a low GC% (Table 1). The genome of the representative *C. jejuni* strain NCTC 11168 has been reported (Parkhill et al., 2000), and has been indicated to harbour only a few repeat sequences and no transposons, phage remnants or insertion elements (Parkhill et al., 2000; Dorrell et al., 2001). *C. coli* is another pathogen that shows a distinctive epidemiology (Gillespie et al., 2002). To date, 928 genomic sequences have been registered for *C. coli*, and nearly 40 representative references have been summarized (NCBI genome ID 1145). The *hip*, 16S rRNA, *rsr*, *cfaF*, *porA*, *hyp*, *cjaA*, *ceuE*, *hipO*, *mapA*, *ceuA*, *askD*, *glyA*, *lpxA*, *ccoN*, *ORF-C* sequence, *rpoB*, *oxidoreductase gene*, *cfaA* and *pepT* genes are widely used for the PCR identification of *C. jejuni* (Frasao et al., 2017). The other related genetic regions used for *C. coli* identification are summarized in Table 1.

WGS and genetic marker identification of related phytopathogenic fungi

The *Penicillium* genus contains several pathogenic species, particularly *P. expansum*, *P. digitatum*, *P. griseofulvum*, *P. italicum* and *P. citrinum*. The majority of these species are related to the postharvest decay of *F. V. P. chrysogenum* was the first sequenced species in this genus, as it is used as an industrial penicillin producer (van den Berg et al., 2008). *P. expansum* is an important pathogen that accelerates corruption in various produce species (Nie, 2017; Shen et al., 2018a). *P. expansum* also produces the mycotoxins patulin and citrinin. *P. expansum* strain R19 was the first to be sequenced (Yu et al., 2014). To date, the genomes of nine strains of *P. expansum* have been registered (NCBI genome ID 11336; Fig. 5). A representative genome was reported for *P. expansum* from strain MD-8 (Ballester et al., 2015). *P. digitatum* causes postharvest green mould in citrus fruits (Marcet-Houben et al., 2012). The genomes of two *P. digitatum* strains, PHI26 and Pd1, have been reported (Marcet-Houben et al., 2012). *P. italicum* causes postharvest blue mould on citrus fruit (Deng et al., 2018). The representative strain of *P. italicum* PHI1 was reported (Ballester et al., 2015). Genomic comparison showed that *P. expansum* and *P. italicum* present differences in gene clusters related to secondary metabolism (Ballester et al., 2015; Li et al., 2015). Fifteen genes for patulin biosynthesis have been identified in *P. expansum*, which are located in a gene cluster (Ballester et al., 2015; Li et al., 2015). These genes and functions have been reviewed previously (Puel et al., 2010). Several methods, including RAPD (Schena et al., 2000), SNP (Piombo et al., 2018) and microsatellite analysis (Mohmed et al., 2010), have been used for distinguishing *Penicillium* species. The isoeoxypipenyldenogenase (*IDH*) gene is considered to be a useful marker for distinguishing patulin-producing and nonproducing *Penicillium* species (De et al., 2016; Rhamm et al., 2016). Several gene regions, such as the *patF* (Tannous et al., 2015), *ITS* (Hammani et al., 2017), *Pepg1* (Ostry et al., 2018) and polygalacturonase genes (Hesham et al., 2011), have been used for the identification of *P. expansum*. The specific genes employed for the identification of *P. digitatum*, *P. griseofulvum*, *P. italicum* and *P. citrinum* are summarized in Table 2.

The *Alternaria* genus contains several pathogenic species, particularly *A. alternata*, *A. arborescens*, *A. brassicicola* and *A. solani*. These pathogens commonly cause plant diseases and postharvest rot (Harteveld et al., 2014). Additionally, *Alternaria* species can produce host-specific phytotoxins (HSTs), which differ between plant species (Akamatsu et al., 1999). *Alternaria* toxins are a group of mycotoxins produced by *Alternaria* species that mainly include tenuazonic acid (*TeA*), alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (Ten) and altenuene (ALT). However, the genes responsible for *Alternaria* toxin biosynthesis have not yet been confirmed. To date, six strains of *A. alternata* have been
registered (NCBI genome ID 11201; Fig. 5). Nguyen et al. (2016) reported the first draft genome of *A. alternata* ATCC 34957, obtained using PacBio SMRT technology, and discussed the gene regions related to mycotoxin metabolism. *A. arborescens* is another pathogen in this genus. Hu, et al. (2012) generated the first sequence for *A. arborescens* and demonstrated the horizontal transfer of the conditionally dispensable chromosome (CDC) carrying HST genes. The genome characteristics of *A. arborescens*, *A. brassicicola*, *A. solani* and *A. tenuissima* are summarized in Table 2.

Several methods have been used for the identification of *Alternaria* species, such as high-resolution melting (HRM) analyses, AFLP and SSR (Lorenzini and Zapparoli, 2014; Wolters et al., 2018). Genes such as histone-3, glyceraldehyde 3-phosphate dehydrogenase (*Gpd*), *Alt a1*, *AaSdhB*, *AaSdhC*, *AaSdhD*, ITS and *j-tubulin* have been used for *Alternaria* species identification (Table 2). The *Alt a1* gene is a widely used marker for *Alternaria* species (Gabriel et al., 2017). The polyketide synthetase (PKS) gene and nonribosomal peptide synthesis (NRPS) gene are essential for *Alternaria* toxin synthesis and regulation and can also be used to identify *Alternaria* toxin-producing species (Chen et al., 2015).

The *Aspergillus* genus is large and contains several saprophytic/pathogenic species, particularly *A. flavus*, *A. parasiticus*, *A. carbonarius*, *A. niger*, *A. tubingensis* and *A. westerdijkiae*. These species cause corruption in various agricultural products and produce the aflatoxin and ochratoxin A mycotoxins. To date, the genomes of a total of 60 *A. flavus* strains have been registered (NCBI data, genome ID 360; Fig. 5). A representative genome of *A. flavus* was reported from strain NRRL3357 (Nierman et al., 2015). Genomic comparison between *A. flavus* strains NRRL3357 and AF70 showed polymorphisms in their aflatoxin toxin gene cluster (Sharma et al., 2018). *A. parasiticus* is another important aflatoxin producer. Two strains of *A. parasiticus* have
been sequenced, and the representative strain is SU-1 (NCBI genome ID 12976). Genomic comparison revealed approximately 98% similarity between the six A. flavus species and 81% similarity between A. flavus and A. parasiticus species (Faustinelli et al., 2016). Fourteen strains of A. niger have been registered, the majority of which have been related to citrate production or sugar metabolism (Aguilar-Pontes et al., 2018; Laotanaachareon et al., 2018). A. carbonarius is another ochratoxin A-producing member of this genus, for which one strain has been sequenced (NCBI genome ID 947). As illustrated in previous reviews, the genes responsible for aflatoxin biosynthesis are integrated as a cluster that contains approximately 25 genes with a total length of 80 kb (Yu et al., 2004; Moore et al., 2010). This gene cluster contains the main regulatory genes aflR and aflS and the biosynthesis genes aflD, aflM, aflP, aflQ aflD, aflO and aflQ. Aflatoxin biosynthesis and regulatory genes have been widely used to identify toxin-producing species (Mahmoud, 2015; Hua et al., 2018). Polymorphisms of the calmodulin gene have been used to identify Aspergillus species (Palumbo and O’Keeffe, 2015). The β-tubulin gene can also be used for the specific identification of several Aspergillus species (Nasri et al., 2015; Falahati et al., 2016). The other genetic markers for Aspergillus species are summarized in Table 2.

The Fusarium genus contains several pathogenic species, particularly F. oxysporum, F. fujikuroi, F. verticillioides, F. proliferatum, F. graminearum and F. sporotrichioides. These pathogens cause serious diseases in crops and vegetables and produce toxic trichotheccene mycotoxins. The genomes of a total of 115 F. oxysporum strains have been registered (NCBI genome ID 707; Fig. 5). The representative strain of F. oxysporum f. sp. lycopersici 4287 has been reported (Ma et al., 2010). Genome comparison between F. graminearum, F. verticillioides and F. oxysporum revealed genomic lineage-specific (LS) regions in the Fusarium genus (Ma et al., 2010). F. fujikuroi is a plant pathogen that causes bakanae disease in rice and produces gibberellins (GAs). A total of 15 strains of this pathogen have been sequenced (NCBI genome ID 13188). The representative F. fujikuroi strain IMI 58289 has been reported (Wiemann et al., 2013). F. proliferatum is also a plant pathogen, and the genomes of 13 strains of this species have been registered (NCBI genome ID 2434). The representative strain F. proliferatum ET1 has been reported (Niehaus et al., 2016). For genetic detection, the Fusarium-specific gene regions that have been used have mainly included the translation elongation factor-1α (tef-1α) gene (Wu et al., 2016), ITS (Jedidi et al., 2018), SIX (Debbi et al., 2018) and FUM gene (Omoni et al., 2018) sequences. The genetic markers used for F. graminearum and F. sporotrichioides are summarized in Table 2.

The Colletotrichum genus contains several pathogenic species, particularly C. gloeosporioides, C. acutatum, C. coccodes and C. fructicola. C. gloeosporioides infects many crops, causing anthracnose diseases. A total of six strains of C. gloeosporioides have been registered, among which the representative strain is C. gloeosporioides SMCG1#C (NCBI genome ID 17739; Fig. 5). C. acutatum widely infects F & V (Cano et al., 2004; Heilmann et al., 2006). Two strains of this species have been registered (NCBI genome ID 38530). In addition, the genomes of two strains of C. coccodes and three strains of C. fructicola have been registered (Table 2). However, they were only registered at the scaffold level, and no related references have been reported. For PCR detection, the ITS, β-tubulin, actin, act, ApMat, cal, chs1, gapdh, gs, his3, tub2, glyceraldehyde-3-phosphate dehydrogenase and oxidase subunit 1 gene have been widely used (Tapia-Tussell et al., 2008; Chung et al., 2010; Ramdeen and Rampersad, 2013; Yang et al., 2015; Sharma et al., 2017).

The Monilinia genus contains several species related to brown rot on F & V, particularly M. laxa, M. fructicola, M. fructigena and M. polystroma. However, the genomes of Monilinia species have rarely been reported. To date, 2 strains of M. laxa, 2 strains of M. fructicola, 3 strains of M. fructigena (Fig. 5) and 1 strain of M. polystroma have been registered. The representative M. laxa strain 8L has been reported (NCBI data, genome ID 66927; Naranjo-Ortiz et al., 2018). The inter-simple sequence repeat (ISSR), RAPD (Fazekas et al., 2014) and HRM (Papavasileiou et al., 2016) methods have been used for interspecies identification. Specific regions of the cytchrome b gene (Ortega et al., 2019), laccase-2 gene (Wang et al., 2018b), β-tubulin gene (Fan et al., 2014), ITS (Guinet et al., 2016), MO368-1, Laxa (Cote et al., 2004) and small subunit (SSU) rDNA (18S) gene (Fulton and Brown, 1997) have been reported as markers for PCR-based detection.

The Botrytis genus contains the pathogenic species B. cinerea. B. cinerea causes serious grey mould diseases on F & V (Reich et al., 2016). Four strains of B. cinerea have been registered, among which the representative strain is B05.10 (NCBI genome ID 494; Fig. 5). Genomic comparative analysis between B. cinerea and Sclerotinia sclerotiorum revealed extensive genetic polymorphisms, but showed few significant polymorphisms in specific pathogenic clusters (Amsellem et al., 2011). The RAPD and HRM methods have been used to identify B. cinerea (Thompson and Latorre, 1999). The genetic markers used for B. cinerea include the ITS (Reich et al., 2016), the necrosis and ethylene-inducing protein gene (Munoz et al., 2016), the Bc-hch locus (Zhang et al., 2018), G3PDH, HSP60 and RPB2 (Zhou et al., 2014), the necrosis and ethylene-inducing protein 1 gene (Fan
et al., 2015), the species-specific sequence-characterized amplified region (SCAR) marker (Suarez et al., 2005) and the intergenic spacer (IGS) region (Diguta et al., 2010).

16S rDNA and ITS sequencing of the microbiome community on F & V

16S rDNA and ITS sequencing-based metagenomics

Metagenomic strategies are technological approaches that are increasingly being used to study the overall microbial community in complex biological samples (Cao et al., 2017). Significantly, metagenomics expands the scope of microbiology research and provides new insights into uncultivable microbes. This method is mainly based on polymorphisms in the bacterial 16S rDNA and fungal ITS regions, combined with powerful sequencing technologies, databases and software platforms (Fig. 6A). Total microbial DNA is directly extracted from research samples under this approach. rDNA PCR-based denaturing gradient gel electrophoresis (PCR-DGGE) was the first method developed to identify differential abundant microbes at a general level (Wang et al., 2015). The distinguished rDNA fragments are obtained by gel cutting, followed by sequencing. Then, the microbes are identified by performing sequence alignment against databases. In the 2000s, NGS could be used to sequence all of the obtained rDNA amplifications, which allows the microbial community to be analysed more deeply and comprehensively. The obtained sequences are assigned to operational taxonomic units (OTUs) based on similarity (Caporaso et al., 2010). Representative OTU sequences are identified (Fig. 6B). Additionally, OTU abundance provides relatively quantitative information for specific microbial taxa. Several analytical software platforms, such as the FLASH and QIIME packages, are used for downstream data analysis (Jüinemann et al., 2017). To address the short read length and PCR dependence of NGS, TGS-based metagenomics is promising and powerful (Uyaguari-Díaz et al., 2016). The long reads obtained via TGS can be used to directly identify microbes at the species or even strain level. Additionally, the sequence abundance accurately represents the number of specific microbes. Once the cost is reduced, TGS will become a powerful tool for metagenomic research.

Many studies have elucidated the bacterial and fungal communities on F & V by using 16S rDNA and ITS sequencing. For this review, we searched references mainly from the Web of Science, NCBI, ScienceDirect and CNKI platforms. A total of 64 original studies describing the microbiomes of various F & V were identified (Table 3). Illumina sequencing and Roche 454 pyrosequencing have been most widely used for these studies. PCR-DGGE combined with AB3730xl sequencing was mainly used in earlier studies. Until recently, no TGS-based metagenomic analyses of F & V had been reported. Based on common themes, we grouped these references into three categories: microbiome diversity between plant species/genotypes; regional/environmental factors and farming practices affecting microbiomes; and microbiomes affected by artificial treatment and quality control procedures in storage and processing.

Microbiome diversity between plant species/genotypes

Plant microbiomes are related to species/genotype specificity (Fig. 7). Recently, differential bacterial and fungal communities have been recorded on diverse fruits, including apples (Soliman et al., 2015), blueberries (Jiang et al., 2017), grapes (Pinto et al., 2014; Zhang et al., 2017a), kiwifruits (Purahong et al., 2018), spinach (Darlison et al., 2019) and tomatoes (Ottesen et al., 2013). Because of the importance of leafy vegetables in food control, the phyllosphere microbiomes have been...
monitored on vegetables such as spinach (Chen et al., 2018), lettuce (Higgins et al., 2018) and rocket (Darlison et al., 2019). In addition, the microbial community may be related to the specificity of plant tissue. The microbiomes differ among plant organs such as the fruits, leaves, flowers (Shade et al., 2013) and roots (Ottesen et al., 2013; Zhang et al., 2017b). However, they also show correlations between several plant tissues (Zhang et al., 2017b). The microbial community on F & V products is related to different characteristics and biological processes. In particular, the bacterial communities on several wine grape varieties have been found to differ, which may affect the fermentation process in winemaking (Bokulich et al., 2014). Additionally, the microbial communities of plants might be related to their chemical compositions. Recently, relationships between phyllosphere minerals and microbial communities have been observed in spinach and rocket (Darlison et al., 2019). Bacterial communities present in the plant rhizosphere could potentially be used as indicators of the soil environment and mineral efficiency (Jiang et al., 2017). Microbiome–host or microbiome–mineral interactions might be widespread. These NGS-based metagenomic studies have shown that the microbiomes of F & V are plant specific.

Microbiomes affected by regional/environmental factors and farming practices

The microbiomes of F & V are affected by differences in regional environments, farming practices and disease occurrences (Fig. 8A). Many environmental factors influence microbial activities, including temperature, humidity, light exposure, soil organic matter and mineral compositions (Yu et al., 2016; Higgins et al., 2018). Regional verification based on microbial communities has been conducted on shea fruits (El Sheikha et al., 2011), peaches (Bigot et al., 2015) and grapes (Mezzasalma et al., 2017; Mezzasalma et al., 2018). Recently, a comprehensive review summarized the complex relationships between wine quality, grape microbial communities and regional climates (Droby and Wisniewski, 2018). The natural microbiomes of grapes are important for fruit maturation and wine fermentation, especially regarding the

Fig. 7. Microbiome specificity in various plant species and tissues.
formation of some secondary metabolites related to wine colour and flavour (Mezzasalma et al., 2017). Agricultural inputs and farming practices such as fertilizers and pesticides influence the formation of microbial communities on agricultural products (Allard et al., 2018; Chen et al., 2018). Fertilization has been reported to be a factor affecting the plant microbiomes of maize plants (Chen et al., 2018). The products and soil associated with organic and conventional farming practices show differences in their microbiome communities. Specifically, F & V such as grapes (Mezzasalma et al., 2017), apples (Abdelfattah et al., 2016), peaches (Bigot et al., 2015), lettuce and spinach (Leff and Fierer, 2013) produced from organic and conventional agriculture systems have been observed to exhibit differences in their microbial communities. However, the significant relationships between microbiomes and the regional environment and farming practices are only just beginning to be revealed.

Effects of artificial treatments in storage and processing on microbiomes

The treatments applied to F & V during postharvest processing and storage affect microbial communities (Fig. 8B). Refrigerated storage is a common approach that is considered to keep food fresh and nutritious. During cold storage, the microbial composition and activity are altered. Variations in microbial communities during cold storage have been reported in apples (Shen et al., 2018a), lettuce and spinach (Lopez-Velasco et al., 2011). Different fungal structures have been identified between harvest-point and stored samples (Shen et al., 2018a). Compared with the harvest-point samples, stored apples show increases in the relative abundance of several genera, particularly Aspergillus, Botrytis, Mucor and Penicillium. The spinach phyllosphere was observed to present a decrease in bacterial diversity after 15 days of storage at 4°C or 10°C, which might be related to the inhibition of bacterial activity by the lower temperature (Lopez-Velasco et al., 2011). In addition, physical and chemical treatments affect the microbial communities of postharvest F & V. Physical gamma irradiation treatment of romaine lettuce alters the leaf bacterial community and reduces the survival rate and regrowth ability of pathogenic bacteria (Dharmarha et al., 2019a). High-hydrostatic pressure treatments change the dynamics of the overall bacterial population and extend the shelf life of sweet cherries and asparagus (del Arbol et al., 2016a, b). Antibiotics and fungicides have been shown to alter the microbial communities and extend the shelf life of several F & V. Hypochlorite treatment alters the structure of bacterial communities and extends the shelf life of carrots (Dharmarha et al., 2019b). The application of fungicides alters the dynamics of yeast communities on grape berries (Milanovic et al., 2013). To improve postharvest storage, the relationships between the postharvest treatment of F & V and their microbial communities require more attention.

Conclusion

The development of DNA sequencing technology has provided an effective method for microbial WGS and genetic analysis. In recent decades, DNA sequencing technologies have been successfully developed including approximately ten operational platforms. By performing DNA sequencing, microbial WGS is largely promoted. Genetic studies provide DNA markers for microbial identification at the genetic level. These markers are extensively used in PCR or chip-based detection. On the basis of 16S rDNA and ITS sequencing, metagenomic approaches are now emerging technologies for analysing the entire microbial community in a complex F & V matrix. The microbiomes of F & V show huge differences between plant species/genotypes. In addition, the microbiomes of F & V are related to factors such as regional/environmental factors, farming practices and postharvest treatments. These studies shed light on
ways to improve F & V cultivation, disease prevention and quality control.

Acknowledgements

We acknowledge Liu Shutong from Shanghai Personal Biotechnology (Shanghai, China) for the help in revised the manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

Abdelfattah, A., Wisniewski, M., Droby, S., and Schena, L. (2016) Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. *Horticult Res* 3: 16047.

Abdel-Wahhab, M.A., Aljawish, A., Kenawy, A.M., El-Nekety, A.A., Hamed, H.S., and Abdel-Aziem, S.H. (2016) Grafting of gallic acid onto chitosan nano particles enhances antioxidant activities in vitro and protects against ochratoxin A toxicity in catfish (*Clarias gariepinus*). *Environ Toxicol Pharmacol* 41: 279–288.

Agbaje, M., Begum, R.H., Oyekunle, M.A., Ojo, O.E., and Adenubi, O.T. (2011) Evolution of Salmonella nomenclature: a critical note. *Folia Microbiol* 56: 497–503.

Aguilar-Pontes, M.V., Brandi, J., McDonnell, E., Strasser, K., Nguyen, T.T.M., Riley, R., et al. (2018) The gold-standard genome of *Aspergillus niger* NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi. *Stud Mycol* 91: 61–78.

Akamatsu, H., Taka, M., Kodama, M., Johnson, R., Otani, H., and Kohmoto, K. (1999) Molecular karyotypes for *Alternaria* plant pathogens known to produce host-specific toxins. *Curr Genet* 35: 467–468.

Allard, S.M., Ottesen, A.R., Brown, E.W., and Micallef, S.A. (2018) Insect exclusion limits variation in bacterial microbiomes of tomato flowers and fruit. *J Appl Microbiol* 125: 1749–1760.

Al-Shuhaib, M.B.S., Albakri, A.H., Alwan, S.H., Almandil, N.B., AbdurAzeez, S., and Borgio, J.F. (2018) Optimal PCR primers for rapid and accurate detection of *Aspergillus* flavus isolates. *Microb Pathog* 116: 351–355.

Alzghabi, A.B., Yahyaraeyat, R., Fasaei, B.N., Langeroudi, A.G., and Salehi, T.Z. (2018) Rapid molecular identification and differentiation of common *Salmonella* serovars isolated from poultry, domestic animals and foodstuff using multiplex PCR assay. *Arch Microbiol* 200: 1009–1016.

Amin, H.S., Abdelrahman, A.A., and Abdellrazeq, G.S. (2016) Occurrence of multidrug-resistant *Salmonella enterica* in retail chicken meat and development of a six genes-based multiplex PCR as an alternative diagnostic method. *J Food Safety* 36: 459–466.

Amselem, J., Cuomo, C.A., van Kan, J.A., Viaud, M., Benito, E.P., Couloux, A., et al. (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. *PLoS Genet* 7: e1002230.

Andersen, B., Smidsgaard, J., Jørging, I., Skouboe, P., and Pedersen, L.H. (2006) Real-time PCR quantification of the AM-toxin gene and HPLC qualification of toxicogenic metabolites from *Alternaria* species from apples. *Int J Food Microbiol* 111: 105–111.

del Arbol, J.T., Pulido, R.P., La Storia, A., Burgos, M.J.G., Lucas, R., Ercolini, D., et al. (2016a) Changes in microbial diversity of brined green asparagus upon treatment with high hydrostatic pressure. *Int J Food Microbiol* 216: 1–8.

del Arbol, J.T., Pulido, R.P., La Storia, A., Burgos, M.J.G., Lucas, R., Ercolini, D., et al. (2016b) Microbial diversity in pitted sweet cherries (*Prunus avium*) as affected by High-Hydrostatic Pressure treatment. *Food Res Int* 89: 790–796.

Atoui, A., and El Khoury, A. (2017) PCR-RFLP for *Aspergillus* species. *Methods Mol Biol* 1542: 313–320.

Atoui, A., El Khoury, A., Kallassy, M., and Lebrini, A. (2012) Quantification of *Fusarium graminearum* and *Fusarium culmorum* by real-time PCR system and zearalenone assessment in maize. *Int J Food Microbiol* 154: 59–65.

Ayukawa, Y., Komatsu, K., Kashiw, T., Akai, K., Yamada, M., Teraoka, T., et al. (2016) Detection and differentiation of *Fusarium oxysporum* f. sp. lycopersici rice 1 using loop-mediated isothermal amplification with three primer sets. *Lett Appl Microbiol* 63: 202–209.

Ballester, A.R., Marcut-Houben, M., Levin, E., Sela, N., Selma-Lazaro, C., Carmona, L., et al. (2015) Genome, transcriptome, and functional analyses of *Penicillium expansum* expans plant expands new insights into secondary metabolism and pathogenicity. *Mol Plant Microbe Interact* 28: 232–248.

Bankier, A.T., Beck, S., Bohni, R., Brown, C.M., Cerny, R., Chee, M.S., et al. (1991) The DNA sequence of the human cytomegalovirus genome. *DNA Sequence* 2: 1–11.

Banowary, B., Dang, V.T., Sarker, S., Connolly, J.H., Chenu, J., Groves, P., et al. (2018) Evaluation of two multiplex PCR-high-resolution melt curve analysis methods for differentiation of *Campylobacter jejuni* and *Campylobacter coli* intraspecies. *Avian Dis* 62: 86–93.

Basim, H., Basim, E., Baki, D., Abdulai, M., Ozturk, N., and Balkic, R. (2018) Identification and characterization of *Alternaria alternata* (Fr.) Keissler causing Ceratonia Blight disease of carob (*Ceratonia siliqua* L.) in Turkey. *Eur J Plant Pathol* 151: 73–86.

Baysal-Gurel, F., Subedi, N., Mamiro, D.P., and Miller, S.A. (2014) First report of Anthracnose of onion caused by Colletotrichum coccodes in Ohio. *Plant Dis* 98: 1271.

van den Beld, M.J.C., and Reubsaet, F.A.G. (2012) Differentiation between Shigella, enteroinvasive Escherichia coli (IEEC) and noninvasive Escherichia coli. *Eur J Clin Microbiol Infect Dis* 31: 899–904.

van den Berg, M.A., Albang, R., Albermann, K., Badger, J.H., Daran, J.M., Diessen, A.J.M., et al. (2008) Genome sequencing and analysis of the filamentous fungus *Penicillium chrysogenum*. *Nat Biotechnol* 26: 1161–1168.

de Biazio, G.R., Leite, G.G., Tessmann, I.P., and Barbosa-Tessmann, I.P. (2008) A new PCR approach for the
identification of *Fusarium graminearum*. Braz J Microbiol 39: 554–560.
de Souza, M., Matsuzawa, T., Sakai, K., Muraoa, Y., Lyra, L., Bussos-Lopes, A.F., et al. (2017) Comparison of DNA Microarray, Loop-Mediated Isothermal Amplification (LAMP) and Real-Time PCR with DNA sequencing for identification of *Fusarium* spp. obtained from patients with hematologic malignancies. *Mycoopathia* 182: 625–632.
Bigot, C., Meille, J.-C., Kapitan, A., and Montet, D. (2015) Discriminating organic and conventional foods by analysis of their microbial ecology: an application on fruits. *Food Control* 48: 123–129.
Blattner, F.R., Plunkett, G. 3rd, Bloch, C.A., Perna, N.T., Burland, V., Riley, M., et al. (1997) The complete genome sequence of *Escherichia coli* K-12. *Science* 277: 1453–1462.
Bokulich, N.A., Thorn gate, J.H., Richardson, P.M., and Mills, D.A. (2014) Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. *Proc Natl Acad Sci USA* 111: E139–E148.
Borro-go-Benjumea, A., Basallote-Ureba, M.J., Melero-Vara, J.M., and Abbasi, P.A. (2014) Characterization of *Fusarium* isoles from asparagus fields in southwestern Ontario and influence of soil organic amendments on *Fusarium* crown and root rot. *Phytopathology* 104: 403–415.
Brandwein, M., Al-Quntar, A., Goldberg, H., Mosheyyev, G., Goffer, M., Marin-Iniesta, F., et al. (2016) Mitigation of biofilm formation on corrugated cardboard fresh produce packaging surfaces using a novel thiazolidinedione derivative integrated in acrylic emulsion polymers. *Front Microbiol* 7: 159.
Buchanan, R.L., Gorris, L.G.M., Hayman, M.M., Jackson, T.C., and Whiting, R.C. (2017) A review of *Listeria monocytogenes*: an update on outbreaks, virulence, dose-response, ecology, and risk assessments. *Food Control* 75: 1–13.
Calicott, K.A., and Cotty, P.J. (2015) Method for monitoring deletions in the aflatoxin biosynthesis gene cluster of *Aspergillus flavus* with multiplex PCR. *Lett Appl Microbiol* 60: 60–65.
Campos-Pena, E., Martin-Nunez, E., Pulido-Reyes, G., Martin-Padron, J., Caro-Carrillo, E., Donate-Correa, J., et al. (2014) Multiplex PCR assay for identification of six different *Staphylococcus* spp. and simultaneous detection of methicillin and mupirocin resistance. *J Clin Microbiol* 52: 2698–2701.
Cano, J., Guarro, J., and Gene, J. (2004) Molecular and morphological identification of *Colletotrichum* species of clinical interest. *J Clin Microbiol* 42: 2450–2454.
Cao, Y., Fanning, S., Proos, S., Jordan, K., and Srikumar, S. (2017) A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. *Front Microbiol* 8: 1829.
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., et al. (2010) QIIME allows analysis of high-throughput community sequencing data. *Nat Methods* 7: 335–336.
Carneiro, G.A., Matić, S., Ortu, G., Garibaldi, A., Spadaro, D., and Gillioni, M.L. (2017) Development and validation of a TaqMan Real-Time PCR assay for the specific detection and quantification of *Fusarium* fujikuroi in rice plants and seeds. *Phytopathology* 107: 885–892.
Casasnovas, F., Fantini, E.N., Palazzini, J.M., Gaj-Merlera, G., Chulze, S.N., Reynoso, M.M., et al. (2013) Development of amplified fragment length polymorphism (AFLP)-derived specific primer for the detection of *Fusarium solani* aetiological agent of peanut brown root rot. *J Appl Microbiol* 114: 1782–1792.
Cernava, T., Erlacher, A., Soh, J., Sensen, C.W., Grube, M., and Berg, G. (2019) Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (*Eruca sativa Mill.*). *Microbiome* 7: 13.
Ceuppens, S., Delbeke, S., De Coninck, D., Boussa maere, J., Boon, N., and Uyttendaele, M. (2015) Characterization of the bacterial community naturally present on commercially grown basil leaves: evaluation of sample preparation prior to culture-independent techniques. *Int J Environ Res Public Health* 12: 10171–10197.
Chen, R.S., Tsay, J.G., Huang, Y.F., and Chiou, R.Y. (2002) Polymerase chain reaction-mediated characterization of molds belonging to the *Aspergillus flavus* group and detection of *Aspergillus parasiticus* in peanut kernels by a multiplex polymerase chain reaction. *J Food Prot* 65: 840–844.
Chen, Y., Wen, X., Sun, Y., Zhang, J., Lin, X., and Liao, Y. (2015) Effect of ground mulch managements on soil bacterial community structure and diversity in the non-irrigated apple orchard in Weibei Loess Plateau. *Acta Microbiol Sin* 55: 892–904.
Chen, J., Wu, L., Xiao, Z., Wu, Y., Wu, H., Qin, X., et al. (2017) Assessment of the diversity of *Pseudomonas* spp. and *Fusarium* spp. in Radix pseudostellareae rhizosphere under monoculture by combining DGGE and quantitative PCR. *Front Microbiol* 8: 1748.
Chen, K., Tian, Z., Wang, L., and Long, C.A. (2017) Development of specific primers based on the genomes of *Penicillium* spp. for rapid detection of *Penicillium digitatum* among fungal isolates in citrus. *Eur J Plant Pathol* 149: 201–209.
Chen, Q.L., An, X.L., Zheng, B.X., Ma, Y.B., and Su, J.Q. (2018) Long-term organic fertilization increased antibiotic resistome in phyllosphere of maize. *Sci Total Environ* 645: 1230–1237.
Chen, K., Tian, Z., Jiang, F., and Long, C.A. (2019) Development of *Penicillium italicum*-specific primers for rapid detection among fungal isolates in citrus. *J Microbiol Biotechnol* 29: 984–988.
Chitrampaliam, P., Abraham, N., and Nelson, B.D. Jr (2018) A culture-independent PCR-based assay to detect the root rot pathogen *Fusarium solani* species complex 11 from soybean roots and soil. *Plant Dis* 102: 327–333.
Chou, M.Y., Vanden Heuvel, J., Bell, T.H., Panke-Buisse, K., and Kao-Knif, J. (2018) Vineyard under-vine floor management alters soil microbial composition, while the fruit microbiome shows no corresponding shifts. *Sci Rep* 8: 11039.
Chung, W.H., Chung, W.C., Peng, M.T., Yang, H.R., and Huang, J.W. (2010) Specific detection of benzimidazole resistance in *Colletotrichum* gloeosporioides from fruit crops by PCR-RFLP. *New Biotechnol* 27: 17–24.
Coleman, J.J., Rounsley, S.D., Rodriguez-Carres, M., Kuo, A., Wasmann, C.C., Grimwood, J., et al. (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. *PLoS Genet* 5: e1000618.

Cote, M.J., Tardif, M.C., and Meldrum, A.J. (2004) Identification of *Monilinia fructigena*, *M. fructicola*, *M. laxa*, and *Monilia polystoma* on inoculated and naturally infected fruit using multiplex PCR. *Plant Dis* 88: 1219–1225.

Cuomo, C.A., Guldener, U., Xu, J.R., Trail, F., Turgeon, B.G., Di Pietro, A., et al. (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. *Science* 317: 1400–1402.

Dalmasso, A., Rantsiou, K., Cocolin, L., and Bottero, M.T. (2010) Development of a biomolecular assay for the identification of *Listeria* at species level. *Foodborne Pathog Dis* 7: 565–571.

van Dam, P., de Sain, M., Ter Horst, A., van der Gragt, M., and Rep, M. (2018) Use of comparative genomics-based markers for discrimination of host specificity in *Fusarium oxysporum*. *Appl Environ Microbiol* 84: e01868-17.

van Dijk, E.L., Auger, H., Jaszczysyn, Y., and Thermo, C. (2014) Ten years of next-generation sequencing technology. *Trends Genet* 30: 418–426.

van Dijk, E.L., Jaszczysyn, Y., Naquin, D., and Thermo, C. (2018) The third revolution in sequencing technology. *Trends Genet* 34: 666–681.

Darlison, J., Mogren, L., Rosberg, A.K., Gruden, M., Minet, A., Line, C., et al. (2019) Leaf mineral content governs microbial community structure in the phyllosphere of spinach (*Spinacia oleracea*) and rocket (*Diplotaxis tenuifolia*). *Sci Total Environ* 675: 501–512.

Das, P., Pandey, P., Harishankar, A., Chandy, M., Bhat-tacharya, S., and Chakrabarti, A. (2017) Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important *Aspergillus* species. *Indian J Med Microbiol* 35: 381–388.

Dauch, A.L., Watson, A.K., and Jabaji-Hare, S.H. (2003) Detection of the biocontrol agent *Colletotrichum coccodes* (183088) from the target weed velvetleaf and from soil by strain-specific PCR markers. *J Microbiol Methods* 55: 61–64.

De, C.N., Vlaeminck, G., Van, P.E., Van, W.S., Herman, L., Devlieghere, F., et al. (2016) Isoepoxydien dehydrogenase (idh) gene expression in relation to patulin production by *Penicillium expansum* under different temperature and atmosphere. *Int J Food Microbiol* 220: 50–57.

Dean, R., Van Kan, J.A.L., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D., et al. (2012) The top 10 fungal pathogens in molecular plant pathology. *Mol Plant Pathol* 13: 414–430.

Debbi, A., Bourghda, H., Monte, E., and Hermosa, R. (2018) Distribution and genetic variability of *Fusarium oxysporum* associated with tomato diseases in Algeria and a biocontrol strategy with indigenous *Trichoderma* *spp*. *Front Microbiol* 9: 282.

Debode, J., De Tende, C., Soltaninejad, S., Van Malderghem, C., Haegeaman, G., Van der Linden, I., et al. (2016) Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology. *Front Microbiol* 7: 565.

Degola, F., Berni, E., Dall’Asta, C., Spotti, E., Marchelli, R., Ferrero, I., et al. (2007) A multiplex RT-PCR approach to detect aflatoxicogenic strains of *Aspergillus flavus*. *J Appl Microbiol* 103: 409–417.

Demeke, T., Grafenhan, T., Clear, R.M., Phan, A., Ratnayaka, I., Chapados, J., et al. (2010) Development of a specific TaqMan real-time PCR assay for quantification of Fusarium graminearum clade 7 and comparison of fungal biomass determined by PCR with deoxynivalenol content in wheat and barley. *Int J Food Microbiol* 141: 45–50.

Deng, B., Wang, W.H., Deng, L.L., Yao, S.X., Ming, J., and Zeng, K.F. (2018) Comparative RNA-seq analysis of citrus fruit in response to infection with three major postharvest fungi. *Postharvest Biol Technol* 146: 134–146.

Desai, P.T., Porwollik, S., Long, F., Cheng, P., Wollam, A., Clifton, S.W., et al. (2013) Evolutionary genomics of *Salmonella enterica* subspecies. *Mbio* 4: 12.

Dharmarha, V., Guron, G., Boyer, R.R., Niemira, B.A., Pruden, A., Straw, L.K., et al. (2019a) Gamma irradiation influences the survival and regrowth of antibiotic-resistant bacteria and antibiotic-resistance genes on romaine lettuce. *Front Microbiol* 10.

Dharmarha, V., Pulido, N., Boyer, R.R., Pruden, A., Straw, L.K., and Ponder, M.A. (2019b) Effect of post-harvest interventions on surficial carrot bacterial community dynamics, pathogen survival, and antibiotic resistance. *Int J Food Microbiol* 291: 25–34.

Digita, C.F., Rousseau, S., Weidmann, S., Brint, N., Vincent, B., Guilloux-Benatier, M., et al. (2010) Development of a qPCR assay for specific quantification of *Botrytis cinerea* on grapes. *FEMS Microbiol Lett* 313: 81–87.

Ding, N., Xing, F., Liu, X., Selvaraj, J.N., Wang, L., Zhao, Y., et al. (2015). Variation in fungal microbiome (myco-biome) and aflatoxin in stored in-shell peanuts at four different areas of China. *Front Microbiol* 6: 1055.

Dorrell, N., Mangan, J.A., Laing, K.G., Hinds, J., Linton, D., Al-Ghusein, H., et al. (2001) Whole genome comparison of *Campylobacter jejuni* human isolates using a low-cost microarray reveals extensive genetic diversity. *Genome Res* 11: 1706–1715.

Drancourt, M., and Raoult, D. (2002) rpoB gene sequence-based identification of *Staphylococcus* species. *J Clin Microbiol* 40: 1333–1338.

Droby, S., and Wisniewski, M. (2018) The fruit microbiome: a new frontier for postharvest biocontrol and postharvest biology. *Postharvest Biol Technol* 140: 107–112.

Dufour, P., Jarraud, S., Vandenesch, F., Greenland, T., Novick, R.P., Bes, M., et al. (2002) High genetic variability of the agr locus in *Staphylococcus aureus* and comparison of *S. aureus* and *S. epidermidis* with the agr-37593590 locus in *S. epidermidis* species. *J Bacteriol* 184: 1180–1186.

Durand, N., Fontana, A., Meile, J.C., Suarez-Quiroz, M.L., Schorr-Gallindo, S., and Montet, D. (2019) Differentiation and quantification of the ochratoxin A producers *Aspergillus ochraceus* and *Aspergillus versicolor* using molecular typing. *Appl Microbiol Biotechnol* 93: 599–615.
comparison to conventional techniques for diagnosis of Shigella and enteroinvasive Escherichia coli infection in children with acute diarrhoea in Calcutta, India. J Med Microbiol 50: 667–674.

Duvenage, F.J., Duvenage, S., Du Plessis, E.M., Volschenk, Q., and Korsten, L. (2017) Viable bacterial population and persistence of foodborne pathogens on the pear carpelone. J Sci Food Agric 97: 1115–1192.

Einson, J.E., Rani, A., You, X.M., Rodriguez, A.A., Randell, C.L., Barnaba, T., et al. (2018) A vegetable fermentation facility hosts distinct microbiomes reflecting the production environment. Appl Environ Microbiol 84: e01680-18.

El Khoury, R., Atoui, A., Verheeecke, C., Marouan, R., El Khoury, A., and Mathieu, F. (2016) Essential oils modulate gene expression and Ochratoxin A production in Aspergillus carbonarius. Toxins 8: 242.

El Sheikha, A.F., Bouvet, J.M., and Montet, D. (2011) Bioassay Assurance Safety Crops Foods 40: 40–47.

Elfar, K., Zoffoli, J.P., and Latorre, B.A. (2018) Identification and characterization of Alternaria species associated with Moldy Core of apple in Chile. Plant Dis 102: 2158–2169.

Erlacher, A., Cardinale, M., Grube, M., and Berg, G. (2015) Biotic stress shifted structure and abundance of Enterobacteriaceae in the lettuce microbiome. Plos One 10: e0118068.

Falahati, M., Ghogyahi, A., Abastabar, M., Ghasemi, Z., Farahyar, S., Roudbary, M., et al. (2016) The first case of total dystrophic Onychomycosis caused by Aspergillus clavatus resistant to antifungal drugs. Mycopathologia 181: 273–277.

Fan, J., Luo, Y., Michalides, T.J., and Guo, L. (2014) Simultaneous quantification of alleles E198A and H6Y in the beta-tubulin gene conferring benzimidazole resistance in Monilinia fructicola using a duplex real-time (TaqMan) PCR. Pest Manag Sci 70: 245–251.

Fan, X., Zhang, J., Yang, L., Wu, M., Chen, W., and Li, G. (2015) Development of PCR-based assays for detecting and differentiating three species of botrytis infecting broad bean. Plant Dis 99: 691–698.

Farfan, M.J., Garay, T.A., Prado, C.A., Filliol, I., Iulioa, M.T., and Toro, C.S. (2010) A new multiplex PCR for differential identification of Shigella flexneri and Shigella sonnei and detection of Shigella virulence determinants. Epidemiol Infect 138: 525–533.

Faria, C.B., Abe, C.A., da Silva, C.N., Tessmann, D.J., and Barbosa-Tessmann, I.P. (2012) New PCR assays for the identification of Fusarium verticillioides, Fusarium subglutinis, and other species of the Gibberella fujikuroi complex. Int J Mol Sci 13: 115–132.

Farshad, S., Ranobar, R., and Hosseini, M. (2015) Molecular genotyping of Shigella sonnei strains isolated from children with bloody diarrhea using pulsed field gel electrophoresis on the total genome and PCR-RFLP of Ipsh and IpshBCD genes. Jundishapur J Microbiol 8: e14004.

Faustinelli, P.C., Wang, X.M., Palencia, E.R., and Arias, R.S. (2016) Genome sequences of eight Aspergillus flavus ssp. and one A. parasiticus ssp., isolated from peanut seeds in Georgia. Genome Announc 4: e00278-16.

Fazekas, M., Madar, A., Sipiczki, M., Miklos, I., and Holb, I.J. (2014) Genetic diversity in Monilinia laxa populations in stone fruit species in Hungary. World J Microbiol Biotechnol 30: 1879–1892.

Fiedoruk, K., Daniluk, T., Swieciecka, I., Murawaska, E., Sciepuk, M., and Leszczynska, K. (2014) First complete genome sequence of Escherichia albertii strain KF1, a new potential human enteric pathogen. Genome Announc 2.

Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512.

Foley, S.L., Lynne, A.M., and Nayak, R. (2009) Molecular typing methodologies for microbial source tracking and epidemiological investigations of Gram-negative bacterial foodborne pathogens. Infect Genet Evol 9: 430–440.

Forbes, J.D., Knox, N.C., Ronholm, J., Pagotto, F., and Reimer, A. (2017) Metagenomics: the next culture-independent game changer. Front Microbiol 8: 1069.

Foulds, I.V., Granacki, A., Xiao, C., Krull, U.J., Castle, A., and Horgan, P.A. (2002) Quantification of microcystin-producing cyanobacteria and E-coli in water by 5′-nuclease PCR. J Appl Microbiol 93: 825–834.

Franz, E., Klers, M.A., De Vos, O.J., Termorshuizen, A.J., and van Bruggen, A.H.C. (2007) Prevalence of Shiga toxin-producing Escherichia coli stx(1), stx(2), eaeA, and rfbE genes and survival of E-coli O157: H7 in manure from organic and low-input conventional dairy farms. Appl Environ Microbiol 73: 2180–2190.

Frasao, B.D., Marin, V.A., and Conte, C.A. (2017) Molecular detection, typing, and quantification of Campylobacter spp. in foods of animal origin. Comp Rev Food Sci Food Safety 16: 721–734.

Frebourg, N.B., Lefebvre, S., Baert, S., and Lemeland, J.F. (2000) PCR-based assay for discrimination between invasive and contaminating Staphylococcus epidermidis strains. J Clin Microbiol 38: 877–880.

Fulton, C.E., and Brown, A.E. (1997) Use of SSU rDNA group-I intron to distinguish Monilinia fructicola from M. laxa and M. fructigena. FEMS Microbiol Lett 157: 307–312.

Furuta, K., Nagashima, S., Inukai, T., and Masuta, G. (2017) Construction of a system for the Strawberry Nursery Production towards elimination of latent infection of Anthracnose fungi by a combination of PCR and microtube hybridization. Plant Pathol J 33: 80–86.

Gabriel, M.F., Uriel, N., Teillo, F., Postigo, I., Sunen, E., and Martinez, J. (2017) The major Alternaria alternata allergen, Alt a 1: A reliable and specific marker of fungal contamination in citrus fruits. Int J Food Microbiol 257: 26–30.

Gachon, C., and Saindrenan, P. (2004) Real-time PCR monitoring of fungal development in Arabidopsis thaliana infected by Alternaria brassicicola and Botrytis cinerea. Plant Physiol Biochem 42: 367–371.

Gai, X., Dong, H., Wang, S., Liu, B., Zhang, Z., Li, X., et al. (2018) Infection cycle of maize stalk rot and ear rot caused by Fusarium verticillioides. PLoS One 13: e0201586.

Galvez, L., Urbaniaik, M., Waskiewicz, A., Stepien, L., and Palmero, D. (2017) Fusarium proliferatum – causal agent of...
of garlic bulb rot in Spain: genetic variability and myco-
toxin production. Food Microbiol 67: 41–48.
Gan, P., Nakata, N., Suzuki, T., and Shirasu, K. (2017) Markers to differentiate species of anthracnose fungi iden-
tify Colletotrichum fructicola as the predominant virulent
species in strawberry plants in Chiba Prefecture of Japan.
J Gen Plant Pathol 83: 14–22.
Gannon, V.P.J., Dsouza, S., Graham, T., King, R.K., Rahn,
K., and Read, S. (1997) Use of the flagellar H7 gene as a
target in multiplex PCR assays and improved specificity
in identification of enterohemorrhagic Escherichia coli
strains. J Clin Microbiol 35: 656–662.
Gao, J., Liu, Y.N., Nan, N., Lu, B.H., Xia, W.Y., and Wu,
X.Y. (2014) Alternaria brassicicola causes a leaf spot on
Isatis indigotica in China. Plant Dis 98: 1431.
Garganese, F., Schena, L., Siciliano, I., Prigigallo, M.I., Spa-
daro, D., De Grassi, A., et al. (2016) Characterization of
Citrus-associated Alternaria species in Mediterranean
Areas. PLoS One 11: e0163255.
Garmentia, G., Umpierrez-Failache, M., Ward, T.J., and
Vero, S. (2018) Development of a PCR-RFLP method
based on the transcription elongation factor 1-alpha gene
to differentiate Fusarium graminearum from other species
within the Fusarium graminearum species complex. Food
Microbiol 70: 28–32.
Gasanov, U., Hughes, D., and Hansbro, P.M. (2005) Meth-
ods for the isolation and identification of Listeria spp. and
Listeria monocytogenes: a review. FEMS Microbiol Rev
29: 851–875.
Gaszewskwa-Mastalarz, A., Zakrzewska-Czerwinska, J., and
Mordarski, M. (1997) Rapid detection of Staphylococcus
saprophyticus using primer specific PCR. Acta Biol Hung
48: 319–322.
Ghanbari, M., Kneifel, W., and Domig, K.J. (2015) A new
view of the fish gut microbiome: advances from next-gen-
eration sequencing. Aquaculture 448: 464–475.
Gherbawy, Y., Hussein, M.A., Runge, F., and Spring, O.
(2018) Molecular characterization of Alternaria alternata
population isolated from Upper Egyptian tomato fruits. J
Phytopathol 166: 709–721.
Ghorbanalizadgan, M., Bakhshi, B., Kazemnejad Lili, A.,
Najar-Peerayeh, S., and Nikmanesh, B. (2014) Molecular
survey of Campylobacter jejuni and Campylobacter coli
virulence and diversity. Iran Biomed J 18: 158–164.
Gijal Merlera, G., Munoz, S., Coelho, I., Cavaglieri, L.R., Tor-
rres, A.M., and Reynoso, M.M. (2015) Diversity of black
Aspergillus isolated from raisins in Argentina: polyphasic
approach to species identification and development of
SCAR markers for Aspergillus ibericus. Int J Food Microbi-
ol 210: 92–101.
Gillespie, I.A., O’Brien, S.J., Frost, J.A., Adak, G.K., Peter,
H., Swan, A.V., et al. (2002) A case-case comparison of
Campylobacter coli and Campylobacter jejuni infection: a
tool for generating hypotheses. Emerg Infect Dis 8: 937–
942.
Gil-Sema, J., Vazquez, C., Saridinas, N., Gonzalez-Jaen,
M.T., and Patino, B. (2009) Discrimination of the main
Ochratoxin A-producing species in Aspergillus section Cir-
cumdati by specific PCR assays. Int J Food Microbiol
136: 83–87.
Gil-Sema, J., Patino, B., Cortes, L., Teresa Gonzalez-Jaen,
M., and Vazquez, C. (2011) Mechanisms involved in
reduction of ochratoxin A produced by Aspergillus wester-
dijkiae using Debaryomyces Hansenii CYC 1244. Int J
Food Microbiol 151: 113–118.
Glaser, P., Frangeul, L., Buchrieser, C., Rusniok, C., Amend,
A., Baquero, F., et al. (2001) Comparative geno-
mics of Listeria species. Science 294: 849–852.
Goebel, S.J., Johnson, G.P., Perkus, M.E., Davis, S.W.,
Winslow, J.P., and Paoletti, E. (1990) The complete DNA
sequence of vaccinia virus. Virology 179: 247–266.
Gonzalez-Salgado, A., Patino, B., Vazquez, C., and Gonza-
lez-Jaen, M.T. (2005) Discrimination of Aspergillus niger
and other Aspergillus species belonging to section Nigri
by PCR assays. FEMS Microbiol Lett 245: 353–361.
Grillova, L., Sedlack, I., Pachnikova, G., Stankova, E.,
Svec, P., Holochova, P., et al. (2018) Characterization of
four Escherichia albertii isolates collected from animals
living in Antarctica and Patagonia. J Vet Med Sci 80:
138–146.
Grimont, P.A.D., and Weill, F.X. (2007) Antigenic Formu-
flaee of the Salmonella Serovars: WHO Collaborating Centre
for Reference and Research on Salmonella, 9th edn.
Paris, France: Institute Pasteur, pp. 1–166.
Gu, Q., Yang, Z.H., Zhao, D.M., Zhang, D., Wang, Q., Ma,
L.S., et al. (2017) Development of a semi-nested PCR-
based method for specific and rapid detection of Alter-
naria solani causing potato early blight in soil. Curr Micro-
biol 74: 1083–1088.
Guinet, C., Fourrier-Jeandel, C., Cert-Wendling, I., and Ios,
R. (2016) One-step detection of Monilinia fructicola, M.
fructigena, and M. laxa on Prunus and Malus by a multi-
plex real-time PCR assay. Plant Dis 100: 2465–2474.
Hage, E., Mpamugo, O., Ohai, C., Sapkota, S., Swift, C.,
Wooldridge, D., et al. (2014) Identification of six Listeria
species by real-time PCR assay. Lett Appl Microbiol 58:
535–540.
Hale, T.L. (1991) Genetic basis of virulence in Shigella spe-
cies. Microbiol Rev 55: 206–224.
Hamamoto, H., Hasegawa, K., Nakaune, R., Lee, Y.J.,
Akutsu, K., and Hibi, T. (2001) PCR-based detection of
sterol demethylating inhibitor-resistant strains of Penicil-
ilium digitatum. Pest Management Science 57: 839–843.
Hamamni, W., Al-Thani, R., Fiori, S., Al-Meer, S., Atia,
F.A., Rabab, D., et al. (2017) Patulin and patulin produc-
ing Penicillium spp. occurrence in apples and apple-
based products including baby food. J Infect Dev Ctries
11: 343–349.
Harteveld, D.O.C., Akinsanmi, O.A., and Drenth, A. (2014)
Pathogenic variation of Alternaria species associated with
leaf blotch and fruit spot of apple in Australia. Eur J Plant
Pathol 139: 789–799.
Hassan, J., Awasthi, S.P., Hatanaka, N., Okuno, K., Hoang,
P.H., Nagita, A., et al. (2018) Development of a multiplex
PCR targeting eae, stx and cdt genes in genus Escheri-
chia and detection of a novel cdtB gene in Providencia
rustigianii. Pathog Dis 76: fzz002.
Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii,
K., Yokoyama, K., et al. (2001) Complete genome sequence
of enterohemorrhagic Escherichia coli O157:H7 and
genomic comparison with a laboratory strain K-12. DNA Res 8: 11–22.

Heilmann, L.J., Nitzan, N., Johnson, D.A., Pasche, J.S., Doetkott, C., and Gudmestad, N.C. (2006) Genetic variability in the potato pathogen colletotrichum coccodes as determined by amplified fragment length polymorphism and vegetative compatibility group analyses. Phytopathology 96: 1097–1107.

von Hertwig, A.M., Sant’Ana, A.S., Santori, D., da Silva, J.J., Nascimento, M.S., Iamanaka, B.T., et al. (2018) Real-time PCR-based method for rapid detection of Aspergillus niger and Aspergillus weithitschiae isolated from coffee. J Microbiol Methods 148: 87–92.

Hesham, E., Abdul Aziz, B., and Youssuf, G. (2011) Genotypic identification of Penicillium expansum and the role of processing on patulin presence in juice. Food Chem Toxicol 49: 941–946.

Higgins, D., Pal, C., Saluaiman, I.M., Jia, C.R., Zerwekh, T., Dowd, S.E., et al. (2018) Application of high-throughput pyrosequencing in the analysis of microbiota of food commodities procured from small and large retail outlets in a US metropolitan area – a pilot study. Food Res Int 105: 29–40.

Hirvonen, J.J. (2014) The use of molecular methods for the detection and identification of methicillin-resistant Staphylococcus aureus. Biomarkers Med 8: 1115–1125.

Hsu, W.B., Wang, J.H., Chen, P.C., Lu, Y.S., and Chen, J.H. (2007) Detecting low concentrations of Shigella sonnei in environmental water samples by PCR. FEMS Microbiol Lett 276: 291–298.

Hu, J., Chen, C., Peever, T., Dang, H., Lawrence, C., and Mitchell, T. (2012) Genomic characterization of the conditionally dispensable chromosome in Alternaria arborescens provides evidence for horizontal gene transfer. BMC Genomics 13: 171.

Hua, S.S.T., Palumbo, J.D., Dan, E.P., Sarreal, S.B.L., and O’Keeffe, T.L. (2018) Development of a droplet digital PCR assay for population analysis of aflatoxicogenic and atoxigenic Aspergillus flavus mixtures in soil. Mycotoxin Res 34: 187–194.

Iorio, N.L., Azevedo, M.B., Frazao, V.H., Barcellos, A.G., Barros, E.M., Pereira, E.M., et al. (2011) Methicillin-resistant Staphylococcus epidermidis carrying biofilm formation genes: detection of clinical isolates by multiplex PCR. Int Microbiol 14: 13–17.

Jarvis, K.G., Daquigan, N., White, J.R., Morin, P.M., Howard, L.M., Manetas, J.E., et al. (2018) Microorganisms associated with foods from plant and animal sources. Front Microbiol 9.

Jedidi, I., Soldiervilla, C., Laouhar, A., Marin, P., Gonzalez-Jaen, M.T., and Said, S. (2018) Mycoflora isolation and molecular characterization of Aspergillus and Fusarium species in Tunisian cereals. Saud J Biol Sci 25: 686–674.

Jelev, Z.J., Bobev, S.G., Minz, D., Maymon, M., and Freeman, S. (2008) First report of Anthracnose fruit rot caused by Colletotrichum acutatum on pepper and tomato in Bulgaria. Plant Dis 92: 172.

Jeyasekaran, G., Raj, K.T., Shakra, R.J., Thangarani, A.J., Sukumar, D., and Jainani, V.A.K. (2011) Rapid detection of Salmonella enterica serovars by multiplex PCR. World J Microbiol Biotechnol 27: 953–959.

Jiang, Y.J., Li, S.Z., Li, R.P., Zhang, J., Liu, Y.H., Lv, L.F., et al. (2017) Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol Biochem 109: 145–155.

Jin, Q., Yuan, Z., Xu, J., Wang, Y., Shen, Y., Lu, W., et al. (2002) Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res 30: 4432–4441.

Jukes, L., Mikhail, J., Bome-Mannathoko, N., Hadfield, S.J., Harris, L.G., El-Bouri, K., et al. (2010) Rapid differentiation of Staphylococcus aureus, Staphylococcus epidermidis and other coagulase-negative staphylococci and meticillin susceptibility testing directly from growth-positive blood cultures by multiplex real-time PCR. J Med Microbiol 59: 1456–1461.

Jüinemann, S., Kleinböltig, N., Jaenicke, S., Henke, C., Hassa, J., Nelkner, J., et al. (2017) Bioinformatics for NGS-based metagenomics and the application to biogas research. J Biotechnol 261: 10–23.

Kabir, S.M.L., Chowdhury, N., Asakura, M., Shiramaru, S., Kikuchi, K., Hinenoya, A., et al. (2019) Comparison of established PCR assays for accurate identification of Campylobacter jejuni and Campylobacter coli. Jpn J Infect Dis 72: 81–87.

Kamri, K., Arzanlou, M., and Pertot, I. (2019) Weeds as potential inoculum reservoir for Colletotrichum nymphaeae causing strawberry anthracnose in Iran and Rep-PCR fingerprinting as useful marker to differentiate C. acutum complex on strawberry. Front Microbiol 10: 129.

Khan, M., Wang, R., Li, B., Liu, P., Weng, Q., and Chen, Q. (2018) Comparative evaluation of the LAMP Assay and PCR-based assays for the rapid detection of Alternaria solani. Front Microbiol 9: 2089.

Kilic, A., and Basustaoglu, A.C. (2011) Double triplex real-time PCR assay for simultaneous detection of Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis, and Staphylococcus haemolyticus and determination of their meticillin resistance directly from positive blood culture bottles. Res Microbiol 162: 1060–1066.

Kim, H.-J., Ryu, J.-O., Song, J.-Y., and Kim, H.-Y. (2017a) Multiplex polymerase chain reaction for identification of Shigella and four Shigella species using novel genetic markers screened by comparative genomics. Foodborne Pathog Dis 14: 400–406.

Kim, J.S., Kang, N.J., Kwak, Y.S., and Lee, C. (2017b) Investigation of genetic diversity of Fusarium oxysporum f. sp. fragariae using PCR-RFLP. Plant Pathol J 33: 140–147.

Kobayashi, H., Oethering, M., Tuohy, M.J., Hall, G.S., and Bauer, T.W. (2009) Improving clinical significance of PCR: use of propidium monoazide to distinguish viable from dead Staphylococcus aureus and Staphylococcus epidermidis. J Orthop Res 27: 1243–1247.

Kou, L.P., Gaskins, V.L., Luo, Y.G., and Jurick, W.M. 2nd (2014) First report of Alternaria tenuissima causing postharvest decay on apple fruit from cold storage in the United States. Plant Dis 98: 690.

Kumar, D., Barad, S., Sionov, E., Keller, N.P., and Prusky, D.B. (2017) Does the host contribute to modulation of mycotoxin production by fruit pathogens? Toxins 9: 280.
Genome sequence of the necrotrophic fungus *Penicillium digitatum*, the main postharvest pathogen of citrus. *Bmc Genomics* 13: 646–646.

Martineau, F., Picard, F.J., Lansac, N., Menard, C., Roy, P.H., Ouellette, M., et al. (2000) Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of *Staphylococcus aureus* and *Staphylococcus epidermidis*. *Antimicrob Agents Chemother* 44: 231–238.

Maxam, A.M., and Gilbert, W. (1977) A new method for sequencing DNA. *Proc Natl Acad Sci USA* 74: 560–564.

McClelland, M., Sanderson, K.E., Spieth, J., Clifton, S.W., Latreille, P., Courtney, L., et al. (2001) Complete genome sequence of *Salmonella enterica* serovar Typhimurium LT2. *Nature* 413: 852–856.

Medina, A., Mateo, R., Lopez-Ocana, L., Valle-Algarra, F.M., and Jimenez, M. (2005) Study of Spanish grape mycoflora and ochratoxin A production by isolates of *Aspergillus* tubingenensis and other members of *Aspergillus* section Nigri. *Appl Environ Microbiol* 71: 4696–4702.

Mendez Silva, D., and Dominguez, L. (2015) On the track for an efficient detection of *Escherichia coli* in water: a review on PCR-based methods. *Ecotoxicol Environ Saf* 113: 400–411.

Mezzasalma, V., Sandionigi, A., Bruni, I., Bruno, A., Lovicu, G., Casiraghi, M., et al. (2017) Grape microbiome as a reliable and persistent signature of field origin and environmental conditions in Cannonau wine production. *Plos One* 12: e0184615.

Mezzasalma, V., Sandionigi, A., Guzzetti, L., Galimberti, A., Grando, M.S., Tardaguila, J., et al. (2018) Geographical and cultivar features differentiate grape microbiota in Northern Italy and Spain Vineyards. *Front Microbiol* 9: 946.

Mikhayev, A.S., and Tin, M.M. (2014) A first look at the Oxford nanopore MinION sequencer. *Mol Ecol Resour* 14: 1097–1102.

Milanovic, V., Comitini, F., and Ciani, M. (2013) Grape berry yeast communities: influence of fungicide treatments. *Int J Food Microbiol* 161: 240–246.

Mirhendi, H., Zarei, F., Motamed, M., and Nouripour-Sisakht, S. (2016) *Aspergillus tubingensis* and *Aspergillus niger* as the dominant black Aspergillus, use of simple PCR-RFLP for preliminary differentiation. *J Mycol Med* 26: 9–16.

Mohmed, M., Abd-Elsalam, K., Mohamed, Y., and Ali, B. (2010) First morphomolecular identification of *Penicillium griseofulvum* and *Penicillium aurantiogriseum* toxigenic isolates associated with blue mold on apple. *Foodborne Pathog Dis* 7: 857–861.

Moncrief, I., Garzon, C., Marek, S., Stack, J., Gamliel, A., Garrido, P., et al. (2016) Development of simple sequence repeat (SSR) markers for discrimination among isolates of *Fusarium proliferatum*. *J Microbiol Methods* 126: 12–17.

Moore, G.G., Rahki, S., Horn, B.W., and Ignazio, C. (2010) Recombination and lineage-specific gene loss in the aflatoxin gene cluster of *Aspergillus flavus*. *Mol Ecol* 18: 4870–4887.

Morey, M., Fernández-Marniesse, A., Castiñeiras, D., Fraga, J.M., Couce, M.L., and Cocho, J.A. (2013) A glimpse into past, present, and future DNA sequencing. *Mol Genet Metabol* 110: 3–24.

Morrison-Whittle, P., Lee, P., K. A., and Goddard, M.R. (2017) Fungal communities are differentially affected by conventional and biodynamic agricultural management approaches in vineyard ecosystems. *Agric Ecosystem Environ* 246: 306–313.

Mule, G., Susca, A., Stea, G., and Moretti, A. (2004) A species-specific PCR assay based on the calmodulin partial gene for identification of *Aspergillus flaviiformis*, *A. flavus*, and *A. subglutinatus*. *Eur J Plant Pathol* 110: 495–502.

Munoz, G., Campos, F., Salgado, D., Galdames, R., Gilchrist, L., Chahin, G., et al. (2016) Molecular identification of *Botrytis cinerea*, *Botrytis paeoniae* and *Botrytis pseudocinerea* associated with grey mould disease in peonies (*Paeonia lactiflora Pall.*) in Southern Chile. *Rev Iberoam Micr* 33: 43–47.

Muraosa, Y., Schreiber, A.Z., Trabasso, P., Matsuazawa, T., Taguchi, H., Moretti, M.L., et al. (2014) Development of cycling probe-based real-time PCR system to detect Fusarium species and *Fusarium solani* species complex (FSSC). *Int J Med Microbiol* 304: 505–511.

Myroie, J.E., Ozkan, S., Shivaji, R., Windham, G.L., Alpe, M.N., and Williams, W.P. (2016) Identification and quantification of a toxigenic and non-toxigenic *Aspergillus flavus* strain in contaminated maize using quantitative real-time PCR. *Toxins* 8: 15.

Naranjo-Ortiz, M.A., Rodriguez-Pires, S., Torres, R., De Cal, A., Usall, J., and Gabaldon, T. (2018) Genome sequence of the brown rot fungal pathogen *Monilinia laxa*. *Genome Announc* 6: e00214-18.

Nasri, T., Hedayati, M.T., Abastabar, M., Pasqualotto, A.C., Armaki, M.T., Hoseinnejad, A., et al. (2015) PCR-RFLP on j-Tubulin gene for rapid identification of the most clinically important species of *Aspergillus*. *J Microbiol Methods* 117: 144–147.

Ng, L.K., Kingombe, C.I., Yan, W., Taylor, D.E., Hiratsuka, K., Malik, N., et al. (1997) Specific detection and confirmation of *Campylobacter jejuni* by DNA hybridization and PCR. *Appl Environ Microbiol* 63: 4558–4563.

Nguyen, H.D., Lewis, C.T., Levesque, C.A., and Grafenhahn, T. (2016) Draft genome sequence of *Alternaria alternata* ATCC 34957. *Genome Announc* 4: e01554-15.

Nie, J. (2017) Occurrence, control and determination of patulin contamination in fruits and fruit products. *Sci Agric Sin* 50: 3591–3607.

Nienhaus, E.M., Munsterkotter, M., Proctor, R.H., Brown, D.W., Sharan, A., Idan, Y., et al. (2016) Comparative “omics” of the Fusarium fujikuroi species complex highlights differences in genetic potential and metabolite synthesis. *Genome Biol Evol* 8: 3574–3599.

Nielsen, L.K., Jensen, J.D., Rodriguez, A., Jorgensen, L.N., and Justesen, A.F. (2012) TR112 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of *F. graminearum* and *F. culmorum* isolates in Danish small grain cereals. *Int J Food Microbiol* 157: 384–392.

Nierman, W.C., Yu, J.J., Fedorova-Abrams, N.D., Losada, L., Cleveland, T.E., Bhatnagar, D., et al. (2015) Genome sequence of *Aspergillus flavus* NRRL 3357, a strain that...
causes aflatoxin contamination of food and feed. Genome Announc 3: e00168-15.

Noormohamed, A., and Fakhr, M.K. (2013) Arsenic resistance and prevalence of arsenic resistance genes in Campylobacter jejuni and Campylobacter coli isolated from retail meats. Int J Environ Res Public Health 10: 3453–3464.

O’Connor, L., and Glynn, B. (2010) Recent advances in the development of nucleic acid diagnostics. Expert Rev Med Devices 7: 529–539.

Oh, J.Y., Kwon, Y.K., Wei, B., Jang, H.K., Lim, S.K., Kim, C.H., et al. (2017) Epidemiological relationships of Campylobacter jejuni strains isolated from humans and chickens in South Korea. J Microbiol 55: 13–20.

Ojha, S.C., Yean, C.Y., Ismail, A., and Singh, K.K.B. (2013) A Pentaplex PCR assay for the detection and differentiation of Shigella species. Biomed Res Int 9: 412370.

Olaimat, A.N., and Holley, R.A. (2012) Factors influencing the microbial safety of fresh produce: a review. Food Microbiol 32: 1–19.

Omori, A.M., Ono, E.Y.S., Bordini, J.G., Hirozawa, M.T., Fungaro, M.H.P., and Ono, M.A. (2018) Detection of Fusarium verticillioides by PCR-ELISA based on FUM21 gene. Food Microbiol 73: 160–167.

Oowenga, I., Aboge, G.O., Mitema, E.S., Obiero, G., Oshikata, C., Tsurikisawa, N., Saito, A., Watanabe, M., Osek, J. (2019) Staphylococcus aureus enterotoxin genes detected in milk from various livestock species in northern pastoral region of Kenya. Food Control 103: 126–132.

Ooka, T., Terajima, J., Kusumoto, M., Iguchi, A., Kurokawa, K., Ogura, Y., et al. (2009) Development of a multiplex PCR-based rapid typing method for enterohemorrhagic Escherichia coli O157 strains. J Clin Microbiol 47: 2888–2894.

Ortega, S.F., Del Pilar Bustos Lopez, M., Nari, L., Boonham, N., Guilino, M.L., and Spadaro, D. (2019) Rapid detection of Monilinia fructicola and Monilinia laxa on Peach and Nectarine using loop-mediated isothermal amplification. Plant Dis 103: 2305–2314.

Ortiz, C.S., Bell, A.A., Magill, C.W., and Liu, J. (2017) Specific PCR detection of Fusarium oxysporum f. sp. vasinfectum California Race 4 based on a unique Tfo1 insertion event in the PHO gene. Plant Dis 101: 34–44.

Osek, J. (2001) Multiplex polymerase chain reaction assay for identification of enterotoxigenic Escherichia coli strains. J Vet Diag Investig 13: 308–311.

Oshikata, C., Tsunrisawa, N., Saito, A., Watanabe, M., Kamata, Y., Tanaka, M., et al. (2013) Fatal pneumonia caused by Penicillium digitatum: a case report. BMC Pulmonary Med 13: 16.

Osmani Bojd, M., Kamaladini, H., Haddadi, F., and Vaseghi, A. (2017) Thiolated AuNP probes and multiplex PCR for molecular detection of Staphylococcus epidermidis. Mol Cell Probes 34: 30–36.

Ostry, V., Malir, F., Curnova, M., Kyrova, V., Toman, J., Grosse, Y., et al. (2018) Investigation of patulin and citrinin in grape must and wine from grapes naturally contaminated by strains of Penicillium expansum. Food Chem Toxicol 118: 805–811.

Ottesen, A.R., Pena, A.G., White, J.R., Pettengill, J.B., Li, C., Allard, S., et al. (2013) Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). BMC Microbiol 13: 114.

Paillard, D., Dubois, V., Duran, R., Nather, F., Guittet, C., Caumette, P., et al. (2003) Rapid identification of Listeria species by using restriction fragment length polymorphism of PCR-amplified 23S rRNA gene fragments. Appl Environ Microbiol 69: 6386–6392.

Paiva-Santos, W., Barros, E.M., Sousa, V.S., Laport, M.S., and Giambiagi-deMarval, M. (2016) Identification of coagulase-negative Staphylococcus saprophyticus by polymerase chain reaction based on the heat-shock repressor encoding hrcA gene. Diagn Microbiol Infect Dis 86: 253–256.

Palumbo, J.D., and O’Keefe, T.L. (2015) Detection and discrimination of four Aspergillus section Nigri species by PCR. Lett Appl Microbiol 60: 188–195.

Papavasileiou, A., Madesis, P.B., and Karaoğlanidis, G.S. (2016) Identification and differentiation of Monilinia species causing brown rot of pome and stone fruit using high-resolution melting (HRM) analysis. Phytopathology 106: 1055–1064.

Parkhill, J., Wren, B.W., Mangall, K., Ketley, J.M., Churcher, C., Basham, D., et al. (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665–668.

Parkhill, J., Dougan, G., James, K.D., Thomson, N.R., Pickard, D., Wain, J., et al. (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413: 848–852.

Pavlova, M.R., Dobreva, E.G., Ivanova, K.I., Asseva, G.D., Ivanov, I.N., Petrov, P.K., et al. (2016) Multiplex PCR assay for identification and differentiation of Campylobacter jejuni and Campylobacter coli isolates. Folia Med (Plovdiv) 58: 95–100.

Peterson, G., Gerdes, B., Berges, J., Nagaraja, T.G., Frye, J.G., Boyle, D.S., et al. (2010) Development of microarray and multiplex polymerase chain reaction assays for identification of serovars and virulence genes in Salmonella enterica of human or animal origin. J Vet Diagn Investig 22: 559–569.

Phumthanakom, N., Chanchaithong, P., and Prapasarakul, N. (2017) Development of a set of multiplex PCRs for detection of genes encoding cell wall-associated proteins in Staphylococcus pseudintermedius isolates from dogs, humans and the environment. J Microbiol Methods 142: 90–95.

Piao, H., Hawley, E., Kopf, S., DeScenzo, R., Sealock, S., Henick-Kling, T., et al. (2015) Insights into the bacterial community and its temporal succession during the fermentation of wine grapes. Front Microbiol 6: 809.

Pileggi, S.A., Vieira de Oliveira, S.F., Andrade, C.W., Viceconti, V.A., Dalzotto Pdo, R., Kniphoff da Cruz, G., et al. (2009) Molecular and morphological markers for rapid distinction between 2 Colletotrichum species. Can J Microbiol 55: 1076–1088.

Pinheiro, L., Brito, C.I., de Oliveira, A., Martins, P.Y., Pereira, V.C., and da Cunha Mde, L. (2015) Staphylococcus epidermidis and Staphylococcus haemolyticus: molecular detection of cytotoxin and enterotoxin genes. Toxins 7: 3689–3699.
DNA sequencing, genomes and markers for microbes

Pinto, C., Pinho, D., Sousa, S., Pinheiro, M., Egas, C., and Gomes, A.C. (2014) Unravelling the diversity of grapevine microbiome. *PLoS ONE* 9: e85622.

Piombo, E., Sela, N., Wisniewski, M., Hoffmann, M., Gullino, M.L., Allard, M.W., et al. (2018) Genome sequence, assembly and characterization of two *Metschnikowia fructicola* strains used as biocontrol agents of postharvest diseases. *Front Microbiol* 9: 593.

Polizzi, G., Aiello, D., Guarnaccia, V., Vitale, A., Perrone, G., and Stea, G. (2011) First report of damping-off in strawberry tree caused by *Colletotrichum acutatum* and *C. simmondsii* in Italy. *Plant Dis* 95: 1588.

Portillo, M.D., and Mas, A. (2016) Analysis of microbial diversity and dynamics during wine fermentation of Grenache grape variety by high-throughput barcoding sequencing. *LWT-Food Sci Technol* 72: 317–321.

Portillo, M.D.C., Franquès, J., Araqué, I., Reguant, C., and Bordon, A. (2016) Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). *Int J Food Microbiol* 219: 56–63.

Postollec, F., Falentin, H., Pavan, S., Combrisson, J., and Sohier, D. (2011) Recent advances in quantitative PCR (qPCR) applications in food microbiology. *Food Microbiol* 28: 848–861.

Proctor, R.H., and Vaughan, M.M. (2017) Targeting Fumonisins biosynthetic genes. *Methods Mol Biol* 1542: 201–214.

Puel, O., Gaillier, P., and Oswald, I.P. (2010) Biosynthesis and toxicological effects of Patulin. *Toxins* 2: 613–631.

Pugliese, M., Ferrocino, I., Gullino, M.L., and Garibaldi, A. (2013) Detection of *Fusarium oxysporum* fsp. basilici in substrates and roots by PCR. *Commun Agric Appl Biol Sci* 78: 621–624.

Purahong, W., Orru, L., Donati, I., Perpetuini, G., Cellini, A., Lamontanara, A., et al. (2018) Plant microbiome and its link to plant health: host species, organs and *Pseudomonas syringae* pv. actinidiae infection shaping bacterial phyllosphere communities of Kiwifruit plants. *Front Plant Science* 9: 1563.

Pushkarev, D., Neff, N.F., and Quake, S.R. (2009) Single-molecule sequencing of an individual human genome. *Nat Biotechnol* 27: 847–850.

Radhika, M., Saugata, M., Murali, H.S., and Batra, H.V. (2014) A novel multiplex PCR for the simultaneous detection of *Salmonella enterica* and *Shigella* species. *Brazil J Microbiol* 45: 667–676.

Ramdeen, S., and Rampersad, S.N. (2013) Intraspecific differentiation of *Colletotrichum gloeosporioides* sensu lato based on in silico multilocus PCR-RFLP fingerprinting. *Mol Biotechnol* 53: 170–181.

Rastogi, G., Sbodio, A., Tech, J.J., Suslow, T.V., Coaker, G.L., and Leveau, J.H.J. (2012) Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. *ISME J* 6: 1812–1822.

Reich, J.D., Alexander, T.W., and Chatterton, S. (2016) A multiplex PCR assay for the detection and quantification of *Sclerotinia sclerotiorum* and *Botrytis cinerea*. *Lett Appl Microbiol* 62: 379–385.

Reuter, J.A., Spacek, D.V., and Snyder, M.P. (2015) High-throughput sequencing technologies. *Mol Cell* 58: 586–597.

Rezende, A.C.B., Crucello, J., Moreira, R.C., Silva, B.S., and Sant’Ana, A.S. (2016) Incidence and growth of *Salmonella enterica* on the peel and pulp of avocado (*Persea americana*) and custard apple (*Annona squamosa*). *Int J Food Microbiol* 235: 10–16.

Rhammit, S., Hafidi, M., Hajaj, H., Scordino, F., Giosa, D., Giuffre, L., et al. (2016) Molecular characterization of patulin producing and non-producing *Penicillium* species in apples from Morocco. *Int J Food Microbiol* 217: 137–140.

Ribic, U., Klancnik, A., and Jersek, B. (2017) Characterization of *Staphylococcus* epidermidis strains isolated from industrial cleanrooms under regular routine disinfection. *J Appl Microbiol* 122: 1186–1196.

Rigotti, S., Gindro, K., Richter, H., and Viret, O. (2002) Characterization of molecular markers for specific and sensitive detection of *Botrytis* cinerea Pers.: Fr. in strawberry (Fragariaxananasass Duch.) using PCR. *FEMS Microbiol Lett* 209: 169–174.

Rodgers, J.D., Simpkin, E., Lee, R., Clifton-Hadley, F.A., and Vidal, A.B. (2017) Sensitivity of direct culture, enrichment and PCR for detection of *Campylobacter jejuni* and *C. coli* in Broiler Flocks at Slaughter. *Zoonoses Public Health* 64: 262–271.

Rogers, S., Girolami, M., Kolch, W., Waters, K.M., Liu, T., Thrall, B., et al. (2008) Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. *Bioinformatics* 24: 2894–2900.

Sahl, J.W., Morris, C.R., Emberger, J., Fraser, C.M., Ochib, J.J., Juma, J., et al. (2015) Defining the phylogenomics of *Shigella* species: a pathway to diagnostics. *J Clin Microbiol* 53: 951–960.

Sails, A.D., Fox, A.J., Bolton, F.J., Wareing, D.R., Greenway, D.L., and Borrow, R. (2001) Development of a PCR ELISA assay for the identification of *Campylobacter jejuni* and *Campylobacter coli*. *Mol Cell Probes* 15: 291–300.

Sanchez-Vargas, F.M., Abu-El-Haija, M.A., and Gomez-Duarte, O.G. (2011) *Salmonella* infections: an update on epidemiology, management, and prevention. *Travel Med Infect Dis* 9: 263–277.

Sanger, F., and Coulson, A.R. (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. *J Mol Biol* 94: 441–448.

Sanger, F., Donelson, J.E., Coulson, A.E., Kössel, H., and Fischer, D. (1974). Determination of a nucleotide sequence in bacteriophage f1 DNA by primed synthesis with DNA polymerase. *J Mol Biol* 90: 315, IN333,327–326, IN341,333.

Sanger, F., Air, G.M., Barrell, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., et al. (1977) Nucleotide sequence of bacteriophage ϕX174 DNA. *Nature* 265: 687–695.

Sanger, F., Coulson, A.R., Hong, G.F., Hill, D.F., and Petersen, G.B. (1983) Nucleotide sequence of bacteriophage λ DNA. *J Mol Biol* 162: 729–773.

Schena, L., Ippolito, A., Zahavi, T., Cohen, L., and Droby, S. (2000) Molecular approaches to assist the screening and monitoring of postharvest biocontrol yeasts. *Eur J Plant Pathol* 106: 681–691.

Shade, A., McManus, P.S., and Handelsman, J. (2013) Unexpected diversity during community succession in the apple flower microbiome. *Mbio* 4: 12.
Soler-García, A.A., De Jesus, A.J., Taylor, K., and Brown, Skow, A., Mangold, K.A., Tajuddin, M., Huntington, A., Fritz, B., Thomson, R.B. Jr, et al (2005) Species-level identification of staphylococcal isolates by real-time PCR and melt curve analysis. J Clin Microbiol 43: 2876–2880.

Soler-García, A.A., De Jesus, A.J., Taylor, K., and Brown, E.W. (2014) Differentiation of Salmonella strains from the SARA, SARB and SARC reference collections by using three genes PCR-RFLP and the 2100 Agilent Bioanalyzer. Front Microbiol 5: 417.

Soliman, S., Li, X.Z., Shao, S., Behar, M., Svircev, A.M., Tsoa, R., et al (2015) Potential mycotoxin contamination risks of apple products associated with fungal flora of apple core. Food Control 47: 585–591.

Somashekar, D., Rati, E.R., and Chandrashekar, A. (2004) PCR-restriction fragment length analysis of aflR gene for differentiation and detection of Aspergillus flavus and Aspergillus parasiticus in maize. Int J Food Microbiol 93: 101–107.

Somma, S., Amatulli, M.T., Masiello, M., Moretti, A., and Logrieco, A.F. (2019) Wheat black point identified through a multilocus sequence approach. Int J Food Microbiol 293: 34–43.

Song, J., Gu, W., Lin, C., Zhang, X., Gan, Z., Xie, L., et al. (2018) Molecular identification and safety evaluation of Penicillium citrinum YL-1 from fish sauce based on fungal genomic sequencing. Shipin Kexue/ Food Sci 39: 305–311.

Song, M., Li, Q., He, Y., Lan, L., Feng, Z., Fan, Y., et al. (2019) A comprehensive multilocus sequence typing scheme for identification and genotyping of Staphylococcus strains. Foodborne Pathog Dis 16: 331–338.

Steenkamp, E.T., Wingfield, B.D., Coutinho, T.A., Wingfield, M.J., and Marasas, W.F. (1999) Differentiation of Fusarium subglutinans f. sp. pini by histone gene sequence data. Appl Environ Microbiol 65: 3401–3406.

Steenkamp, E.T., Wingfield, B.D., Coutinho, T.A., Zeller, K.A., Wingfield, M.J., Marasas, W.F., et al. (2000) PCR-based identification of MAT-1 and MAT-2 in the Gibberella fujikuroi species complex. Appl Environ Microbiol 66: 4378–4382.

Stefanini, I., Albanese, D., Cavazza, A., Franciosi, E., De Filippo, C., Donati, C., et al. (2016) Dynamic changes in microbiota and mycobiota during spontaneous “Vino Santo Trentino” fermentation. Microb Biotechnol 9: 195–208.

Stefanini, I., Carlin, S., Tocci, N., Albanese, D., Donati, C., Franceschi, P., et al. (2017) Core microbiota and metabolome of Vitis vinifera L. cv. Corvina grapes and musts. Front Microbiol 8: 457.

Stephens, C., and Murray, W. (2001) Pathogen evolution: how good bacteria go bad. Curr Biol 11: R53–R56.

Stemes, P.R., Lee, D., Kutyna, D.R., and Borneman, A.R. (2017) A combined meta-barcoding and shotgun metagenomic analysis of spontaneous wine fermentation. Gigascience 6: 1–30.

Suarez, M.B., Walsh, K., Boonham, N., O’Neill, T., Pearson, S., and Barker, I. (2005) Development of real-time PCR (TaqMan) assays for the detection and quantification of Botrytis cinerea in planta. Plant Physiol Biochem 43: 890–899.

Sun, D.-L., Jiang, X., Wu, Q.L., and Zhou, N.-Y. (2013) Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol 79: 5962–5969.

Sunagar, R., Deore, S.N., Deshpande, P.V., Rizwan, A., Sannejal, A.D., Sundareshan, S., et al. (2013) Differentiation of Staphylococcus aureus and Staphylococcus epidermidis by PCR for the fibrinogen binding protein gene. J Dairy Sci 96: 2857–2865.
Tralamazza, S.M., Braghini, R., and Correa, B. (2016) Tri-

Thompson, J.R., and Latorre, B.A. (1999) Characterization

Tryfinopoulos, P., Kizis, D., Nychas, G.J., and Panagou, E.Z. (2015) Quantification of Aspergillus carbonarius in grapes using a real time PCR assay. Food Microbiol 51: 139–143.

Tuntevski, K., Durme, B.C., Snyder, A.K., Lasala, P.R., Nayak, A.P., Green, B.J., et al. (2013) Aspergillus colla-
gen-like genes (acao): identification, sequence polymor-

Talhinhas, P., Sreenivasapradas, S., Neves-Martins, J., and

Toledo del Arbol, J., Perez Pulido, R., La Storia, A., Grande

Tannous, J., Atoui, A., El Khoury, A., Kantar, S., Chdid, N.,

Tapia-Tussell, R., Quijano-Ramayo, A., Cortes-Velazquez,

Thompson, J.R., and Latorre, B.A. (1999) Characterization of Botrytis cinerea from Table Grapes in Chile using RAPD-PCR. Plant Dis 83: 1090–1094.

Tindall, B.J., Grimont, P.A.D., Garrity, G.M., and Euzeyb, J.P. (2005) Nomenclature and taxonomy of the genus Salmonella. Int J Syst Evol Microbiol 55: 521–524.

Toledo del Arbol, J., Perez Pulido, R., La Storia, A., Grande

Tralamazza, S.M., Braghini, R., and Correa, B. (2016) Tri-

Truchado, P., Gil, M.I., Suslow, T., and Allende, A. (2018) Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLoS ONE 13.

Tryfinopoulos, P., Kizis, D., Nychas, G.J., and Panagou, E.Z. (2015) Quantification of Aspergillus carbonarius in grapes using a real time PCR assay. Food Microbiol 51: 139–143.

Tuntevski, K., Durme, B.C., Snyder, A.K., Lasala, P.R., Nayak, A.P., Green, B.J., et al. (2013) Aspergillus colla-
gen-like genes (acao): identification, sequence polymor-

Uyaguari-Diaz, M.I., Chan, M., Chaban, B.L., Croxen, M.A., Finke, J.F., Hill, J.E., et al. (2016) A comprehensive method for amplicon-based and metagenomic characterization of viruses, bacteria, and eukaryotes in freshwater samples. Microbiome 4: 19.

Válímá, A.-L., Tisala-Timisjärvi, A., and Virtanen, E. (2015) Rapid detection and identification methods for Listeria monocytogenes in the food chain – a review. Food Control 55: 103–114.

Vannuffel, P., Heusterspreute, M., Bouyer, M., Vandercam, B., Philippe, M., and Gala, J.L. (1999) Molecular character-

Vanroose, B. (2015). Fungal diversity in grape must and wine fermentation assessed by massive sequencing, quantitative PCR and DGGE. Front Microbiol 6: 1156.

Wang, F., Chen, L., Liu, S.J., Li, F.Q., Zhang, X., Chen, H.P., et al. (2018a) Studying safe storage time of orange peel (Citrus reticulata) using high-throughput sequencing and conventional pure culture. Food Sci Nutr 6: 2545–2552.

Wang, J.R., Guo, L.Y., Xiao, C.L., and Zhu, X.Q. (2018b) Detection and identification of six Monilinia spp. causing brown rot using TaqMan Real-Time PCR from pure cultures and infected apple fruit. Plant Dis 102: 1527–1533.

Wang, T., Zhao, J., Ma, G., Bao, S., and Wu, X. (2019) Leaf blight of sunflower caused by Alternaria tenuissima and A. alternata in Beijing, China. Can J Plant Pathol 41: 372–378.

Warren, B.R., Parish, M.E., and Schneider, K.R. (2006) Shigella as a foodborne pathogen and current methods for detection in food. Crit Rev Food Sci Nutr 46: 551–567.

Wassermann, B., Rybakova, D., Müller, C., and Berg, G. (2017) Harnessing the microbiomes of Brassica vegeta-

Wolters, P.J., Faino, L., van den Bosch, T., Evenhuis, B., Visser, R., Seidl, M.F., et al. (2018) Gapless genome assembly of the potato and tomato early blight pathogen Alternaria solani. Mol Plant Microbe Interact 31: 692–694.

Wu, L., Conner, R.L., Wang, X., Xu, R., and Li, H. (2016) Variation in growth, colonization of maize, and metabolic parameters of GFP- and DsRed-Labeled Fusarium verti-
ciliioides strains. Phytopathology 106: 890–899.

Wu, K.-L., Chen, W.-Z., Yang, S., Wen, Y., Zheng, Y.R., Anjago, W.M., et al. (2019) Isolation and identification of Fusarium oxysporum f. sp. cubense in Fujian Province, China. J Integr Agric 18: 1905–1913.

Xing, H.Q., Ma, J.C., Xu, B.L., Zhang, S.W., Wang, L., Cao, L., et al. (2018) Mycobiota of maize seeds revealed by DNA sequencing, genomes and markers for microbes 361

© 2020 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. Microbial Biotechnology, 14, 323–362.
rDNA-ITS sequence analysis of samples with varying storage times. Microbiologyn 7: e00609.
Xu, W., Li, S., and Liu, J. (2008) The development of Listeria monocytogenes Assay by PCR. Biotechnol Bull 1: 95–99–112.
Yang, F., Yang, J., Zhang, X.B., Chen, L.H., Jiang, Y., Yan, Y.L., et al. (2005) Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 33: 6445–6458.
Yang, H.C., Haudenshield, J.S., and Hartman, G.L. (2015) Multiplex Real-time PCR detection and differentiation of Colletotrichum species infecting soybean. Plant Dis 99: 1559–1568.
Yang, X., Guo, X., Wen, X., and Xie, X. (2016) Rapid detection of three types of bacterial pathogens in cosmetics by multiplex PCR. Industrial Microbiol 46: 53–57.
Yin, Y., Liu, X., and Ma, Z. (2009a) Simultaneous detection of Fusarium asiaticum and Fusarium graminearum in wheat seeds using real-time PCR method. Lett Appl Microbiol 48: 680–686.
Yin, Y., Lou, T., Yan, L., Michailides, T.J., and Ma, Z. (2009b) Molecular characterization of toxigenic and atoxigenic Aspergillus flavus isolates, collected from peanut fields in China. J Appl Microbiol 107: 1857–1865.
Yin, H.B., Chen, C.H., Kollanoor-Johny, A., Darre, M.J., and Venkitanarayanan, K. (2015) Controlling Aspergillus flavus and Aspergillus parasiticus growth and aflatoxin production in poultry feed using carvacrol and trans-cinnamaldehyde. Poult Sci 94: 2183–2190.
Yoshida, T., and Ichishima, E. (1995) Molecular-cloning and nucleotide-sequencing of the genomic dna for 1,2-alpha-d-mannosidase gene, msdc from penicillium-citrinum. Biochim Biophys Acta Gene Struct Express 1263: 159–162.
You, M.P., Lanoiselet, V., Wang, C.P., and Barbetti, M.J. (2014) First report of Alternaria leaf spot caused by Alternaria tenuissima on Blueberry (Vaccinium corymbosum) in Western Australia. Plant Dis 98: 423.
Yousaf, S., Bulgari, D., Bergna, A., Pancher, M., Quaglino, F., Casati, P., et al. (2014) Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere. Front Microbiol 5: 327.
Youssef, K., Ahmed, Y., Ligorio, A., D’Onghia, A.M., Ngo, F., and Ippolito, A. (2010) First report of Penicillium ulaiense as a postharvest pathogen of orange fruit in Egypt. New Disease Rep 59: 1174–1174.
Yu, J., Perng-Kuang, C., Ehrlich, K.C., Cary, J.W., Deepak, B., Cleveland, T.E., et al. (2004) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70: 1253–1262.
Yu, J.J., Jurick, W.M., II, Cao, H.S., Yin, Y., Gaskins, V.L., Losada, L., et al. (2014) Draft genome sequence of Penicillium expansum strain R19, which causes postharvest decay of apple fruit. Genome Announc 2: e00635-00614.
Yue, C., Hu, X., Deng, W., Li, Y., Han, G., and Ye, C. (2016) Soil fungal community comparison of different mulberry genotypes and the relationship with mulberry fruit sclerotinosis. Sci Rep 6: 28365.
Zarrinifar, H., Mirhendi, H., Fata, A., Khodadadi, H., and Kordbacheh, P. (2015) Detection of Aspergillus flavus and A. fumigatus in bronchoalveolar lavage specimens of hematopoietic stem cell transplants and hematological malignancies patients by real-time polymerase chain reaction, nested PCR and mycological assays. Jundishapur J Microbiol 8: e13744.
Zhang, Z., Zhu, Z., Ma, Z., and Li, H. (2009) A molecular mechanism of azoxyostrobin resistance in Penicillium digitatum UV mutants and a PCR-based assay for detection of azoxyostrobin-resistant strains in packing- or storehouse isolates. Int J Food Microbiol 131: 157–161.
Zhang, Z., Chen, Z., Hou, Y., Duan, Y., Wang, J., Zhou, M., et al. (2015) PIRA-PCR FOR Detection of Fusarium fujikuroi genotypes with carbendazim-resistance alleles. Plant Dis 99: 1241–1246.
Zhang, S., Chen, X., Zhong, Q., Huang, Z., Meng, Z., Luo, J., et al. (2017a) Microbial communities on the wine grape surfaces of different cultivars. Biotechnol Bull 33: 128–137.
Zhang, S.W., Chen, X., Zhong, Q.D., Huang, Z.B., and Bai, Z.H. (2017b) Relations among epiphytic microbial communities from soil, leaves and grapes of the grapevine. Front Life Sci 10: 73–83.
Zhang, Y., Li, X., Shen, F., Xu, H., Li, Y., and Liu, D. (2018) Characterization of Botrytis cinerea isolates from grape vineyards in China. Plant Dis 102: 40–48.
Zhou, Y.J., Zhang, J., Wang, X.D., Yang, L., Jiang, D.H., Li, G.Q., et al. (2014) Morphological and phylogenetic identification of Botrytis sirolocicola, a novel cryptic species causing gray mold disease of table grapes (Vitis vinifera) in China. Mycologia 106: 43–58.
Zur, G., Shimon, E., Hallerman, E., and Kashi, Y. (2002) Detection of Alternaria fungal contamination in cereal grains by a polymerase chain reaction-based assay. J Food Prot 65: 1433–1440.