Protective role of ginseng in endometriosis during covid-19

JiHyeon Song, YoungJoo Lee*

Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea

A R T I C L E I N F O

Article history:
Received 25 May 2022
Received in revised form 19 July 2022
Accepted 1 August 2022
Available online 11 August 2022

Keywords:
endometriosis
ginseng
korea red ginseng
COVID-19

A B S T R A C T

The coronavirus disease 2019 (COVID) pandemic began in December 2019. Many countries have implemented restrictions such as mandatory mask wearing and social distancing. These measures have caused diverse and complex health problems, particularly in women’s health, anxiety, and depression. This review examines an alternative approach to the treatment of endometriosis during the COVID pandemic. The efficacy of ginseng with anti-inflammatory activity and ability to relieve or prevent symptoms of endometriosis is discussed and reviewed.

© 2022 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Around the end of 2019, a series of cases of pneumonia of unknown cause occurred in Wuhan, Hubei, China [1]. The clinical manifestations were like those of viral pneumonia. On January 7, the China Centers for Disease Control and Prevention found a novel coronavirus in these patients and reported that it had caused the cluster of pneumonia cases. The World Health Organization estimated that 527,842,668 patients caught COVID and 6,300,942 died between December 30, 2019, and January 3, 2022 [2]. COVID causes symptoms such as chest and sore throat, muscle pain, fever, cough, and respiratory insufficiency. It affects the heart, liver, kidney, and nervous system [3,4]. COVID is also responsible for multi-organ syndrome [5,6]. Neurological symptoms including depression, musculoskeletal, and digestive such as diarrhea are frequently observed in patients with post-COVID syndrome. Causes of post-COVID syndrome are under study. Hypotheses including autoimmune problem, persisting chronic inflammation, and hormonal imbalance as a consequence of a change in the hypothalamic-pituitary-adrenal axis have been proposed [7]. To prevent the spread of the virus by contact, a stringent approach has been taken. Measures include implementation of social distancing, mandatory use of face masks, events cancellation (e.g., meetings, exhibitions, and sports competitions), strict travel restrictions, and closure of most nonessential workplaces. Most countries have adopted these precautions to limit the spread of COVID. However, these measures themselves have caused a health crisis, worsening mental health and increasing numbers of suicides [8,9]. Endometriosis is one of the most common benign gynecological conditions in premenopausal women. An estimated 10–15% of women of reproductive age have pelvic endometriosis [10]. Endometriosis is a pelvic inflammatory disease triggered by inflammatory reactions caused by evasion of the local immune system [11]. It can lead to abrupt abdominal pelvic pain and reproductive problems such as infertility [12]. Local pre-inflammatory mediators such as tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β can activate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and hypoxia-inducible factor 1-alpha (HIF-1α) signaling pathways, leading to cyclooxygenase-2 (COX-2) induction and angiogenesis [11]. A positive feed-forward loop is created by COX-2 to enhance inflammatory activity and ability to relieve or prevent inflammatory reactions caused by COX-2 induction and angiogenesis [11]. These data suggest that suppression of COX-2 is a promising therapeutic strategy for endometriosis [14]. The COVID pandemic has had many mental and physical adverse effects on women’s health, anxiety, and depression [15,16]. An internet-based survey for assessing the impact of COVID was carried out on the care of people with endometriosis worldwide, to determine their priorities in relation to their clinical care during and after COVID, and whether they believed that endometriosis made them more vulnerable to COVID. Issues reported by 80.7% out of 6729 eligible respondents with endometriosis included difficulties obtaining medication (20.3%), and sports competitions), strict travel restrictions, and closure of most nonessential workplaces. Most countries have adopted these precautions to limit the spread of COVID. However, these measures themselves have caused a health crisis, worsening mental health and increasing numbers of suicides [8,9]. Endometriosis is one of the most common benign gynecological conditions in premenopausal women. An estimated 10–15% of women of reproductive age have pelvic endometriosis [10]. Endometriosis is a pelvic inflammatory disease triggered by inflammatory reactions caused by evasion of the local immune system [11]. It can lead to abrupt abdominal pelvic pain and reproductive problems such as infertility [12]. Local pre-inflammatory mediators such as tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β can activate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and hypoxia-inducible factor 1-alpha (HIF-1α) signaling pathways, leading to cyclooxygenase-2 (COX-2) induction and angiogenesis [11]. A positive feed-forward loop is created by COX-2 to enhance inflammatory activity and ability to relieve or prevent inflammatory reactions caused by COX-2 induction and angiogenesis [11]. These data suggest that suppression of COX-2 is a promising therapeutic strategy for endometriosis [14]. The COVID pandemic has had many mental and physical adverse effects on women’s health, anxiety, and depression [15,16]. An internet-based survey for assessing the impact of COVID was carried out on the care of people with endometriosis worldwide, to determine their priorities in relation to their clinical care during and after COVID, and whether they believed that endometriosis made them more vulnerable to COVID. Issues reported by 80.7% out of 6729 eligible respondents with endometriosis included difficulties obtaining medication (20.3%), and sports competitions), strict travel restrictions, and closure of most nonessential workplaces. Most countries have adopted these precautions to limit the spread of COVID. However, these measures themselves have caused a health crisis, worsening mental health and increasing numbers of suicides [8,9]. Endometriosis is one of the most common benign gynecological conditions in premenopausal women. An estimated 10–15% of women of reproductive age have pelvic endometriosis [10]. Endometriosis is a pelvic inflammatory disease triggered by inflammatory reactions caused by evasion of the local immune system [11]. It can lead to abrupt abdominal pelvic pain and reproductive problems such as infertility [12]. Local pre-inflammatory mediators such as tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β can activate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and hypoxia-inducible factor 1-alpha (HIF-1α) signaling pathways, leading to cyclooxygenase-2 (COX-2) induction and angiogenesis [11]. A positive feed-forward loop is created by COX-2 to enhance inflammatory activity and ability to relieve or prevent inflammatory reactions caused by COX-2 induction and angiogenesis [11]. These data suggest that suppression of COX-2 is a promising therapeutic strategy for endometriosis [14]. The COVID pandemic has had many mental and physical adverse effects on women’s health, anxiety, and depression [15,16]. An internet-based survey for assessing the impact of COVID was carried out on the care of people with endometriosis worldwide, to determine their priorities in relation to their clinical care during and after COVID, and whether they believed that endometriosis made them more vulnerable to COVID. Issues reported by 80.7% out of 6729 eligible respondents with endometriosis included difficulties obtaining medication (20.3%),
attenuate TNF-β by inhibiting activation of NF-κB, vascular cell adhesion molecule-1, MCP-1, IL-8, and IL-6 functions, and diseases such as breast cancer [19]. Genistein can been assessed clinically in endometrial carcinoma, endothelial cells [22]. Curcumin can maintain immune system homeostasis and enhance resistance against endometriosis associated symptoms by regulating angiogenesis, inflammation, and anti-inflammatory suppression, increasing apoptosis, immune system regulation, and anti-inflammation, [24–30]. The following section focused on KRG of its effectiveness for endometriosis.

2. Endometriosis and herb

Curcumin, genistein, ginsenoside, resveratrol, and pueraerin have been assessed clinically in endometrial carcinoma, endothelial functions, and diseases such as breast cancer [19]. Genistein can inhibit the maintenance of endometriosis controlled by vascular endothelial growth factor (VEGF) and suppress neo-angiogenesis by inhibiting HIF-1α and mitogenic activity [20]. Curcumin can attenuate TNF-α-stimulated expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, MCP-1, IL-8, and IL-6 by inhibiting activation of NF-κB, a key regulator of inflammation and inflammation gene activation, in human endometriotic stromal cells [21]. Regulated on activation normal T cell-expressed and secreted (RANTES) is a potent chemotactic factor for monocytes and activated T lymphocyte [22]. It is produced by peritoneal macrophages and endometriotic stromal cells. Its concentrations and levels are elevated in endometriotic patients, paralleling with disease severity. It is increased by the synthesis of cytokines (such as IL-1β) by activated macrophages and of NF-κB by endometriotic stromal cells [23]. Resveratrol can significantly reduce the expression of RANTES in ectopic endometrial stromal cells [23]. Several Chinese medicine formula containing various Chinese herbs were reviewed which can relieve various symptoms such as dysmenorrhea relief, reduction of CA-125, normalization of prolactin serum levels, treatment of uterine fibroids and even infertility [19].

3. Ginseng and endometriosis

Korea red ginseng (KRG) has immunomodulatory [28,31,32], anti-inflammatory [32–36], and anti-proliferative effects [37,38]. It can maintain immune system homeostasis and enhance resistance to microbial attack by regulating the immune system. The production of TNF-α, IL-18, IL-12, IL-6, IL-1β, and interferon-gamma (IFN-γ) is controlled by KRG [34,38–42]. KRG attenuates not only the production of pro-inflammatory cytokines, but also the production of chemokines such as MCP-1 and MIP-2β thereby reducing leukocyte infiltration and the inflammatory response [43].

Table 1

Bioactive herbal compound	Source	Model	Action/mechanism	Reference
Curcumin	Turmeric.	Ishikawa epithelial endometrial cells	Angiogenesis suppression and inflammation, anti-inflammation, antioxidant.	[66]
Resveratrol	Mulberry, peanuts, grapes, raspberry, cranberry, etc.	Ishikawa epithelial endometrial cells	Lowered IGF-1 and HGF levels	[65]
Quercetin	Onions, curry plagues, apple peels, lettuce, peppers.	Endometriotic stromal cells	Anti-angiogenesis, anti-inflammatory.	[68]
Apigenin	Apple, beans, broccoli, celery, cherry, grape, onion, parsley, tomato, tea, wine, etc.	Endometriotic stromal cells	Anti-angiogenesis, anti-inflammatory.	[69]
Rosmarinic acid and carnosic acid	Lamiaceae hub	Endometriotic stromal cells	Anti-angiogenesis, anti-inflammatory.	[69]
Wogonin	Scutellaria baicalensis	Immortalized endometrial cell (T-HESC, ATCC CRL-4003)	Anti-angiogenesis, anti-inflammatory.	[70]
Delta-9-tetrahydrocannabinol	Hemp	Ishikawa epithelial endometrial cells	Anti-angiogenesis, anti-inflammatory.	[71]

Table 2

Source	Model	Action	Target	Reference
Rg3	Female Sprague-Dawley (SD)	Angiogenesis suppression and increasing apoptosis	VEGFR-2-mediated PI3K/Akt/mTOR	[27]
Rg3	Endometriotic stromal and Ishikawa cells	Inhibition of endometriosis-related fibrotic and invasion potential	miR-27b-3p	[26]
Rg3	Female C57Bl6 mice	Reduction lesion size, fibrotic and invasion potential	MMP9, MMP2, fibronectin, CTGF, Col-1, TGF-β	[26]
Rg3	Endometriotic stromal cells	Suppression of cell proliferation, angiogenesis, and inflammation.	NF-κB p65 subunit, VEGF	[25]
PPD	Endometriotic stromal cells	Activation of the cytotoxicity of NK, autophagy induction, growth of lesions suppression, enhancing immune surveillance	ERα, PRα	[24]
PPD	Female BALB/c mice	Reduction of lesion size, inflammation, and the risk of abortion	IL-12, IFN-γ, CD16, NKp30, K67, VEGF, TGF-β	[29]
Red ginseng	Female C57Bl6 mice	Reduction of lesion size, immune system regulation	miRNA	[30]
Red ginseng	DEHP-treated Ishikawa cells	Anti-inflammation	MMP-9, COX-2	[31]
inflammatory effects of KRG are associated with cytokine regulation and phagocytosis in innate immunity as well as the activation of B and T lymphocytes [44–46]. Ginsenosides such as ginsenoside-Rh2 (Rh2) and ginsenoside-Rg3 (Rg3) and their metabolites propanaxatriol (PPT) and propanaxadiol (PPD) have antioxidant, anti-tumor, anti-inflammatory and immunomodulatory activities [47–51]. For instance, Rg3 can significantly reduce the activity of NF-κB, elevate caspase-3 expression, and inhibit VEGF expression [52–56]. These effects of KRG may be beneficial to symptoms of post-COVID as well autoimmune problems, persistent chronic inflammation, and hormonal imbalance as a consequence of changes in the hypothalamic-pituitary-adrenal axis [75,77].

We have reported that KRG can attenuate phthalate-induced endometriosis in a mouse model as indicated by a reduction in the expression of CD10, a sensitive marker of endometrial stromal cells [13]. COX-2 is overexpressed in endometriosis. COX-2 can induce or promote proliferation and inflammation [14]. KRG can decrease COX-2, NF-κB, and EKIK1/2 levels in Ishikawa cells. It can inhibit COX-2 through diverse mechanisms, including the suppression of NF-κB [13]. Therefore, KRG can alleviate or prevent endometriotic symptoms. PPT and Rh2 can inhibit the viability and growth of ectopic endometrial stromal cells [24]. In endometriosis, PPD can reduce ectopic foci, promote endometrial receptivity and decidualization, suppress the inflammatory response of peritoneal macrophages, and increase the proportion, tolerance, and pro-angiogenic phenotypes of natural killer cells. It can down-regulate estrogen receptor α (ERα) and induce the expression of progesterone receptor in ectopic and normal endometrial stromal cells. ERα suppression mediated by PPD can induce autophagy of ectopic endometrial stromal cells, leading to increased NK cell cytotoxicity. These phenomena can enhance the immune surveillance of ectopic lesions thus inhibiting the development of endometriosis [24,29]. In a rat model, Rg3 can inhibit the development of endometriotic lesions induced by endometrial tissue allotransplantation by inhibiting angiogenesis [27]. Other studies have shown that Rg3 can inhibit the proliferation of ectopic endometriotic cells and significantly diminish the level of NF-κB p65 subunit as well as TNF-α induced nuclear translocation of NF-κB p65 subunit in ectopic endometriotic cells [25]. In addition, it can suppress endometriosis by regulating apoptosis and angiogenesis via NF-κB signaling in human ectopic endometrial stromal cells, suggesting that it can inhibit the growth of ectopic endometrium by blocking VEGF receptor-2-mediated PI3K/Akt/mTOR signaling pathway, thus promoting the halting angiogenesis and apoptosis of ectopic endometrial cells [27]. In an endometriosis mouse model, red ginseng extract can significantly reduce the size of endometrial implant. Functional analyses have indicated that miRNAs with altered expression are involved in the immune system and multiple pathways, for example, PI3K/Akt/mTOR and Ras/Raf/MAPK pathways [30]. Through this regulation route, ginseng and its components can alleviate symptoms of endometriosis and inhibit the progression of endometriosis. Table 2 lists effects of KRG and its associated ginsenosides on endometriosis. The COVID-19 pandemic causes difficulties in endometriosis treatment and surgery [17]. Moreover, Covid-19 induced cytokine storms causing imbalances in inflammatory factors such as IL-6, IL-10 is believed to have an adverse effect on the health of endometriosis patients [58,59]. Therefore, it would be valuable to study the effectiveness of KRG on endometriosis under pandemic situation.

4. Conclusion

Medicinal plants can relieve fever and cough in patients with COVID [60]. KRG may modulate acquired and natural immunity during COVID infection, indicating its potential as a preventive and supportive therapy [37,60–62]. It can promote health and prevent diseases by having immunomodulatory [63,64]. This review summarized a therapeutic potential of KRG as an adjunct for treating and preventing endometriosis [13,25–27,29,30]. Further focused research is needed to reveal the precise functional effect and the mechanism of action of KRG in endometriosis in conjunction with viral spread of pandemic situation.

Acknowledgments

This research was supported by 2020 grant from The Korean Society of Ginseng.

References

[1] Huang C, Wang y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497–506.
[2] WHO COVID-19 dashboard. Geneva: World Health Organization; 2020. Available online: https://covid19.who.int/ (accessed February 2022).
[3] Pancerealla G, Strumia A, Pilegko C, Bruno F, Del Buono R, Costa F, et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med 2020;288(2):192–201.
[4] da Costa Mesquita R, Francesco Silva Junior LC, Santos Santana FM, Farias de Oliveira T, Campos Alcantara R, Monteiro Arnozo G, et al. Clinical manifestations of COVID-19 in the general population: systematic review. Wien Klin Wochenschr 2021;133(7–8):377–82.
[5] Zolotovskaia IA, Shatskaia PR, Davydkin IL, Shavlovskaya OA. Post-COVID-19 asthenic syndrome. Zh Nevrol Psihiatr Im S S Korsakov 2021;121(4):25–30.
[6] Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-COVID-19 syndrome. Nat Med 2021;27(4):601–15.
[7] Anaya J-M, Rojas M, Salinas ML, Rodríguez V, Roa G, Lozano M, et al. Post-COVID study group. Post-COVID syndrome: a case series and comprehensive review. Autoimmun Rev 2021;20(11):102947.
[8] Brunein de Bruin Y, Lequeur AS, McCourt J, Clevestig P, Pizagani F, Zare Jedd M, et al. Initial impacts of global risk mitigation measures taken during the combatting of the COVID-19 pandemic. Saf Sci 2020;128:104773.
[9] Both LM, Zoratto G, Galegaro VC, Ramos-Lima LF, Negretto BL, Hauck S, et al. COVID-19 pandemic and social distancing: economic, psychological, family, and technological effects. Trends Psychiatry Psychother 2021;43(2):85–91.
[10] Aghaiani S, Valizadeh A, Aghaei-Maleki L, Nouri M, Yousef M. Endometriosis: perspective, lights, and shadows of etiology. Biomed Pharm 2018;106:163–74.
[11] Han SJ, Wu SP, Hawkins SM, Park MJ, Kyo S, Qin J, et al. Estrogen receptor β modulates apoptosis complexes and the inflammasome to drive the pathogenesis of endometriosis. Cell 2015;161(4):960–74.
[12] Blomk T, Pierson R. Endometriosis and chronic pelvic pain: unravelling the mystery behind this complex condition. Nursing Women's Health 2008;12(5):382.
[13] Song H, Won JE, Lee J, Han HD, Lee YJ. Korean red ginseng attenuates Di-(2-ethylhexyl) phthalate-induced inflammatory response in endometrial cancer cells and an endometriosis mouse model. J Ginseng Res 2021.
[14] Zheng Y, Liu X, Guo S-W. Therapeutic potential of andrographolide for treating endometriosis. Human Reprod 2012;27(5):1300–13.
[15] Almeida M, Shrestha AD, Stojanac D, Miller LJ. The impact of the COVID-19 pandemic on women's mental health. Archives Women's Mental Health 2020;23(6):741–8.
[16] Connor J, Madhavan S, Mokhadi M, Amanuel H, Johnson NR, Pace LE, et al. Health risks and outcomes that disproportionately affect women during the Covid-19 pandemic: a review. Soc Sci Med 2020;266:113364.
[17] Demetrius L, Cox E, Lunde CE, Becker CM, Incitti AL, Martinez-Burgro, B, et al. The global impact of COVID-19 on the care of people with endometriosis. Front Glob Womens Health 2021;2:662732.
[18] Leonardi M, Horne AW, Vincent K, Sinclair J, Sherman KA, Ciccia D, et al. Self-management strategies to consider to combat endometriosis symptoms during the COVID-19 pandemic. Hum Reprod Open 2020;2020;2:hoa028.
[19] Meeresman GF, Götte M, Laschke MW. Plants as source of new therapies for endometriosis: a review of preclinical and clinical studies. Hum Reprod Update 2021;27(2):367–92.
[20] Sutrisno S, Aprina H, Simunangkalit HM, Andriyani A, Barialanto W, Sujiti H, et al. Gentisite modulates the estrogen receptor and suppresses angiogenesis and inflammation in the murine model of peritoneal endometriosis. J Tradit Complement Med 2018;8(2):278–81.
[21] Kim KH, Lee EN, Park JK, Lee JR, Kim JH, Choi HJ, et al. Curcumin attenuates TNF-alpha-induced expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and proinflammatory cytokines in human endometriotic stromal cells. Phytother Res 2012;26(7):1037–47.
Kim M, Sur B, Villa T, Yun J, Nah SY, Oh S. Gintonin regulates in...
Kim I-K, Lee KY, Kang J, Park JS, Jeong J. Immune-modulating effect of Korean...
Hyun SH, Ahn H-Y, Kim H-J, Kim SW, So S-H, In G, et al. Immuno-enhance-...
Cao Y, Ye Q, Xie S, Zhong R, Cui J, Zhou J, et al. Ginsenoside Rg3 inhibits...
Choi JH, Lee MJ, Park KS, Kin SH, In JG, Kwak YS, et al. Korean Red Ginseng...
Saba E, Lee YY, Kim MK, Kim S-H, Hong S-B, Rhee MH. A comparative study on...
Hu Y, He Y, Niu Z, Shen T, Zhang J, Wang X, et al. A review of the immuno-...
Lee J-O, Yang Y, Tao Y, Yi Y-S, Cho JY. Korean red ginseng saponin fraction...
Xu HL, Chen G-H, Wu Y-T, Xie L-P, Tan Z-B, Liu B, et al. Ginsenoside Ro, an...
Heo H, Kim Y, Cha B, Brito S, Kim H, Kim H, et al. A systematic exploration of...
Lee WS, Rhee D-K. Corona-Cov-2 (COVID-19) and ginseng: comparison of...
Jalali A, Dabaghian F, Akbrialiabad H, Foroughinia F, Zarshenas MM. A pharmacology-based comprehensive review on medicinal plants and phytoactive constituents possibly effective in the management of COVID-19. Phytother Res 2021;35(4):1925–38.
Lee YY, Qah Y, Shin H-J, Kwon H-W, Lee D-H, Han JE, et al. COVID-19 and Panax ginseng: targeting platelet aggregation, thrombosis and the coagulation pathway. J Ginseng Res 2022;46(2):175–82.
Lee WS, Rhee D-K. Corona-Cov-2 (COVID-19) and ginseng: comparison of possible use in COVID-19 and influenza. J Ginseng Res 2021;45(4):535–37.
Saba E, Lee YY, Kim MK, Kim S-H, Hong S-B, Rhee MH. A comparative study on immune-stimulatory and antioxidant activities of various types of ginseng extracts in murine and rodent models. J Ginseng Res 2018;42(4):384–14.
Shuwa HA, Knight SB, Wemyss K, McClure FA, Pearmain L, Prise IK, et al. Alzheimer’s disease and ginseng. J Ginseng Res 2019;43(2):125–30.
Xiong Y, Chen L, Man J, Hu Y, Cui X. Chemical and bioactive comparison of Panax notoginseng root and rhizome in raw and steamed forms. J Ginseng Res 2019;43(3):254–60.
Malchandani R, Lyngoh T, Kakkar AK. Deciphering the COVID-19 cytochrome b6f-c1 immunomodulatory activities of polysaccharides isolated from Panax species. J Ginseng Res 2022;46(1):23–32.
Lee SY, Kim H-M, Kim H-S, Ahn T, Kim S-W, Kwak S-Y, et al. Korean Red Ginseng affects ovulation-induced asthma by modulating IL-12, IL-4, and IL-6 levels and the NF-κB/COX-2 and PGE(2) pathways. J Ginseng Res 2022;46(1):526–56.
Lee SY, Kim H-M, Kim H-S, Ahn T, Kim S-W, Kwak S-Y, et al. Korean Red Ginseng affects ovulation-induced asthma by modulating IL-12, IL-4, and IL-6 levels and the NF-κB/COX-2 and PGE(2) pathways. J Ginseng Res 2022;46(1):156–66.
Ratan ZA, Haider MF, Hong YH, Park SH, Lee J-O, Lee J, et al. Pharmacological potential of ginseng and its major component ginsenosides. J Ginseng Res 2019;43(2):191–200.
Huang W-C, Huang T-H, Yeh K-W, Chen Y-L, Shen S-C, Liu C-J. Ginseng Rg3 ameliorates allergic airway inflammation and oxidative stress in mice. J Ginseng Res 2021;45(6):654–64.
You Y, Chu S, Kim M-Y, Cho JY. Ginsenosides are active ingredients in Panax ginseng with immunomodulatory properties from cellular to organismal levels. J Ginseng Res 2021.
Wan Y, Wang J, Xu J-F, Fang C, Chen L, Rao C-L, et al. Panax ginseng and its ginsenosides: potential targets for the prevention and treatment of chemotherapy-induced side effects. J Ginseng Res 2021;45(6):617–30.
Jo S, Na HG, Choi YS, Bae CH, Song S-Y, Kim Y-D. Saponin attenuates diesel exhaust particle (DEP)-induced MUC5AC expression and pro-inflammatory cytokine upregulation via TLR4/TRIF/NF-κB signaling pathway in airway epithelium and ovalbumin (OVA)-sensitized mice. J Ginseng Res 2022.
Hyun SH, Ahn H-Y, Kim H-J, Kim SW, So S-H, In G, et al. Immuno-enhance- ment effects of Korean Red Ginseng in healthy adults: a randomized, double-blind, placebo-controlled trial. J Ginseng Res 2021;45(1):191–8.