AVIS DU CONSEIL SUPERIEUR DE LA SANTE N° 8311
Evaluation de l’exposition à certains contaminants présents dans les eaux potables et leurs éventuels risques pour la santé.
Cas du FLUOR

In this science-policy advisory report, the Superior Health Council of Belgium provides an expert opinion on the assessment of fluoride intake through the consumption of bottled water and tap water in the Belgian adult population

5 décembre 2012

RESUME

En Belgique, la consommation de la plupart des eaux distribuées par le réseau public (« eaux du robinet ») ou des eaux commercialisées après conditionnement (« eaux en bouteille ») n’est pas de nature à présenter un risque pour la santé humaine dans la mesure où celles-ci respectent les critères de composition et d’étiquetage arrêtés par les autorités.

Une attention particulière doit être réservée aux eaux du robinet et aux eaux en bouteille dont la concentration en fluor est égale ou supérieure à 1,50 mg/l.
Plus particulièrement, l’étiquetage des eaux minérales naturelles (EMN) doit répondre à des indications légales ainsi formulées :
- « contient du fluor » si la concentration de fluor est supérieure à 1,0 mg/l,
- « ce produit ne convient pas aux nourrissons ni aux enfants de moins de sept ans » si la concentration de fluor est égale ou supérieur à 1,5 mg/l.

Parmi les critères retenus par le CSS pour autoriser l’allégation « convient pour la préparation des aliments pour nourrissons », le CSS a fixé à moins de 1,0 mg/l le taux maximum de fluor autorisé. Le CSS a l’intention de revoir très prochainement ses critères.

Dans les régions où la consommation d’eaux du robinet et d’eaux en bouteille , riches en fluor, est habituelle, une information spécifique de la population s’imposerait.

Parmi les eaux en bouteille, certaines eaux minérales naturelles (EMN), de par les caractéristiques qu’elles revendiquent, ne sont pas nécessairement destinées à une consommation habituelle et ce contrairement aux eaux du robinet respectant les critères de potabilité requis. On ne pourrait trop attirer l’attention des consommateurs sur la nécessité, avant toute consommation, de vérifier la composition du produit qu’ils ingèrent, et celle des producteurs sur l’obligation de rendre le plus accessibles possible les informations nécessaires.

La consommation de compléments ou suppléments alimentaires fluorés est à déconseiller en dehors de tout contrôle médical et/ou dentaire.
Mots clés

Keywords	MeSH terms*	Sleutelwoorden	Mots clés	Stichworte
Natural mineral water	Mineral waters	Natuurlijk mineraal water	Eau minérale naturelle	Natürlichen mineralwässern
Fluoride	Fluorides	Fluoride	Fluorure	Fluoride
Risk assessment	Risk assessment	Risicobeoordeling	Evaluation de risque	Risikobewertung

* MeSH (Medical Subject Headings) is the NLM controlled vocabulary thesaurus used for indexing articles for PubMed.
TABLE DES MATIERES

1. INTRODUCTION ET QUESTION ... 5
2. ELABORATION ET ARGUMENTATION ... 5
 2.1 Méthodologie ... 5
 2.2 Elaboration ... 5
 2.2.1 Rôle physiologique du fluor et ses risques pour la santé 5
 2.2.2 Fluor dans la chaîne alimentaire... 6
 2.2.2.1 Denrées alimentaires ... 6
 2.2.2.2 Eau distribuée par le réseau public (« Eau du robinet ») 7
 2.2.2.3 Eaux commercialisées après conditionnement (« Eau en bouteille ») 10
 2.2.3 Consommations de boissons en Belgique .. 14
 2.2.3.1 Population générale de plus de 15 ans ... 14
 2.2.3.2 Jeunes enfants .. 17
 2.2.4 Evaluation de l'exposition au fluor .. 19
3. CONCLUSION ET RECOMMANDATIONS .. 22
4. REFERENCES .. 23
5. ANNEXE ... 26
6. RECOMMANDATIONS POUR LA RECHERCHE .. 26
7. COMPOSITION DU GROUPE DE TRAVAIL ... 26
 ANNEXE ... 28
ABREVIATIONS ET SYMBOLES

Acronym	Description
AFSCA	Agence Fédérale pour la Sécurité de la Chaîne alimentaire
AFSSA	Agence Française de Sécurité sanitaire des Aliments
C-SIDE	Software for Intake Distribution Estimation
CSS	Conseil Supérieur de la Santé
DGARNE	Direction Générale opérationnelle de l’Agriculture, des Ressources Naturelles et de l’Environnement
EFSA	European Food Safety Authority
EMN	Eau minérale naturelle
ES	Eau de source
ET	Eau de table
FFQ	Food Frequency Questionnaire (questionnaire de fréquence alimentaire)
IBGE	Institut bruxellois de Gestion de l’Environnement
IOM	Institute of Medicine
ISU	Iowa State University
NRC	National Research Council
OMS	Organisation Mondiale de la Santé
SPF/DG4	SPF Santé publique, Sécurité de la Chaîne alimentaire et Environnement. Direction générale Animaux, Végétaux et Alimentation.
UL	Tolerable Upper intake Level
VMM	Vlaamse Milieumaatschappij
1. INTRODUCTION ET QUESTION

A l’occasion de la révision de la législation européenne et de la norme du Codex Alimentarius sur les eaux minérales naturelles fixant des valeurs limites pour des contaminants chimiques qui peuvent être présents dans les eaux minérales naturelles, une tendance se dégage qui voudrait aligner purement et simplement ces valeurs limites sur celles fixées pour les eaux distribuées par le réseau public. Une des conséquences de cette assimilation serait de soumettre les eaux minérales naturelles à des batteries de traitements qui, in fine, leur enlèveraient leur caractère naturel.

Considérant qu’il est important de préserver les caractéristiques des eaux minérales naturelles tout en protégeant la santé des consommateurs vis-à-vis de certains risques, l’Administration (SPF/DG4) a souhaité être informée sur l’état actuel des connaissances ayant trait à la toxicologie du fluor (voire ultérieurement d’autres substances telles que le baryum et le bore) et aux risques pour la santé liés à sa présence dans les eaux minérales naturelles en vue de déterminer si les normes actuellement en vigueur sont bien fondées ou si elles mériteraient d’être révisées.

Afin de répondre à la question, un groupe de travail ad hoc a été constitué au sein duquel des expertises en nutrition, toxicologie, contaminants, eaux de sources et eaux minérales naturelles, épidémiologie, gestion de banques de données, santé publique et pédiatrie étaient représentées.

2. ELABORATION ET ARGUMENTATION

2.1 Méthodologie

L’avis est basé sur une revue de la littérature scientifique, des recommandations nationales et internationales ainsi que sur l’opinion des experts.

2.2 Elaboration

2.2.1 Rôle physiologique du fluor et ses risques pour la santé

Depuis de nombreuses années et à de nombreuses reprises, le Conseil Supérieur de la Santé (CSS) a examiné le dossier fluor et arrêté une position à son égard (CSH, 2002a ; CSH, 2002b ; CSS, 2009 ; CSS, 2011).

Tant au niveau dentaire qu’au niveau osseux, l’ion fluor intervient par formation de fluorapatite de calcium plus résistant, aux acides notamment, que l’hydroxyapatite de calcium. Le fluor aurait également un effet antimicrobien sur la flore cariogène de la bouche (Charpentier, 1996 ; EFSA, 2005/192).

Les sels solubles de fluor sont rapidement résorbés par voie gastro-intestinale. L’ion fluor traverse la barrière placentaire par diffusion passive. 95 % du fluor se fixe dans les dents et dans le squelette où sa concentration augmente avec l’âge. Son élimination est principalement rénale par filtration glomérulaire suivie d’une réabsorption tubulaire.

Il ne semble pas qu’il existe un besoin physiologique de fluor, d’où l’absence d’une recommandation spécifique établie dans les « Recommandations Nutritionnelles pour la Belgique » émises par le CSS (CSS, 2009).

Les dérivés inorganiques et organiques du fluor sont des toxiques environnementaux, tant par voie pulmonaire que par voie orale. Dans les intoxications aiguës, la gravité et la rapidité des manifestations toxiques sont imputables à l’effet inhibiteur exercé par le fluor sur certains enzymes de la glycolyse en particulier. Il convient par ailleurs de ne pas négliger la possibilité de formation d’acide fluorhydrique caustique dans l’estomac. Une exposition chronique peut entraîner des lésions d’ostéoporose au niveau des vertèbres, du bassin et...
des côtes. Certains dérivés tels que les fréons peuvent s’avérer hépatotoxiques et immunotoxiques (Lu, 1992; Testut, 1993; Bounias, 1999; Lauwerys, 1999).

Tout excès, même modéré, de fluor est nuisible à l’organisme. Une fluorose dentaire modérée peut être observée avec des concentrations de fluor dans l’eau de l’ordre de 0,7 à 1,2 mg/l. Une fluorose légère se manifeste cliniquement par de petites lignes blanches opaques à la surface de l’émail. En cas de fluorose modérée, il s’agit de véritables taches diffuses. Dans les formes plus graves, une décoloration et une perte d’émail peuvent également apparaître. Le développement d’une fluorose dépend de la dose, de la durée et de la période d’exposition (CSS, 2011).

Dans un rapport de l’US National Research Council (NRC) concernant le fluor dans l’eau, on peut lire que la concentration la plus faible susceptible d’entrainer une fracture osseuse serait de l’ordre de 1,5 mg/l (Carton, 2006).

Lors de son évaluation des concentrations limites de bore et de fluor dans les eaux minérales naturelles, le panel scientifique de l’European Food Safety Authority (EFSA, 2005/237) a fixé les « tolerable upper intake level » (UL) pour le fluor à 1,5 mg/jour de 1 à 3 ans, 2,5 mg/jour de 4 à 8 ans, 5,0 mg/jour de 9 à 14 ans et 7,0 mg/jour au dessus de 15 ans.

Le respect de ces « UL » ne permet cependant pas de conclure en l’absence de tout risque, pour les populations les plus sensibles, d’apports hydriques de l’ordre de 1 à 2 mg/l.

Le Centre Antipoisons de Bruxelles a établi, pour 2006, 53 fiches d’appels relatifs à des expositions humaines aux préparations à base de fluor à usage systémique reprises dans le Répertoire Commenté des Médicaments. Tous les appels concernaient des enfants, principalement de la tranche d’âge de 0 à 4 ans (46/53). Les doses ingérées étaient le plus souvent trop faibles pour provoquer une intoxication et seuls des troubles digestifs étaient signalés dans 10 cas sur 53 (Mostin, 2008).

2.2.2 Fluor dans la chaîne alimentaire

2.2.2.1 Denrées alimentaires

Les concentrations de fluor présentes dans les denrées alimentaires sont le plus souvent relativement faibles. Ces concentrations sont tributaires des espèces végétales et animales considérées, de la nature des sols de culture ou d’élevage, de facteurs environnementaux tels que la proximité de certaines industries voire de la qualité des eaux utilisées à une quelconque étape de la culture ou de l’élevage, de la production, du conditionnement ou de la préparation culinaire.

Ainsi ce n’est que sous réserve de l’absence d’une proximité industrielle que, sur base de la littérature disponible, l’EFSA (EFSA, 2005/192) peut faire état de la présence, dans les légumes et les fruits, d’un taux de fluor de 0,02 à 0,20 mg/kg de produit frais. Ces chiffres ne tiennent pas compte des taux de fluor dans le thé qui peuvent être de l’ordre de 90 à 100 voire 200 mg/kg (OMS, 1972; Underwood, 1977; Souci, 1994). De même, ils ne reflètent guère les discordances que l’on peut trouver à propos de la tomate dont la teneur en fluor pourrait varier de 0,24 mg/kg (Souci, 1994) à 410 mg/kg (Creff, 1993). Toutefois le CSS se demande si, de la part de ce dernier auteur, il n’y a pas une confusion d’unités. Pour les viandes et produits de viande, l’EFSA (EFSA, 2005/192) cite les chiffres de 0,15 à 0,29 mg/kg qui ne devraient toutefois pas faire oublier qu’un foie de porc pourrait renfermer 2,90 mg/kg de fluor (Souci, 1994).

Sur base des études disponibles dans la littérature, l’Agence française de sécurité sanitaire des aliments (AFSSA, 2005) estime que, chez l’adulte, les apports de fluor par l’alimentation sont inférieurs à 2 mg/jour.
2.2.2.2 Eau distribuée par le réseau public (« Eau du robinet »)

En Belgique, la distribution et le contrôle de qualité de l’eau distribuée par le réseau public sont de la responsabilité du distributeur. Il s’agit d’un autocontrôle dont les résultats doivent être communiqués à l’autorité régionale compétente, à savoir :

- pour la région wallonne : la Direction Générale opérationnelle de l’Agriculture, des Ressources Naturelles et de l’Environnement (DGARNE) – Département de l’Environnement et de l’Eau ;
- pour la région de Bruxelles-Capitale : l’Institut Bruxellois de Gestion de l’Environnement (IBGE) ;
- pour la région flamande : la Vlaamse Milieumaatschappij (VMM) – Afdeling Water.

La norme légale en vigueur pour l’eau distribuée par le réseau public est de 1,5 mg/litre. Cette norme est fixée dans les arrêtés des autorités régionales1. Elle est issue de la transposition de la directive européenne 98/83/CE relative à la qualité des eaux destinées à la consommation humaine.

Environ 65 % de l’eau distribuée par le réseau public est d’origine souterraine. La présence de fluor dans l’eau distribuée par le réseau public est principalement liée aux caractéristiques des nappes aquifères souterraines.

Selon les données de la Fédération belge du secteur de l’eau (Belgaqua, 2006), la consommation domestique d’eau distribuée par le réseau public est de 108 litres/jour/personne. On utilise aussi une estimation moyenne de 140 m³/an/ménage. La part de ce volume qui est utilisée pour la boisson ou pour la préparation des aliments est estimée à +/- 5 litres/jour/ménage (Belgaqua, 2006).

1 - Arrêté du 24 janvier 2002 du Gouvernement de la Région de Bruxelles-Capitale relatif à la qualité de l’eau distribuée par réseau.
- Arrêté du 13 décembre 2002 du Gouvernement flamand portant réglementation relative à la qualité et la fourniture des eaux destinées à la consommation humaine.
- Arrêté du Gouvernement wallon du 3 mars 2005 relatif au Livre II du Code de l’environnement, contenant le Code de l’eau.
A. Teneur en fluor dans l’eau du robinet des 19 communes de la Région de Bruxelles-Capitale (Vivaqua, 2007)

Dans la Région de Bruxelles-Capitale, les teneurs en fluor sont très faibles et peu variables (tableau 1).

Tableau 1 : Teneurs en fluor dans l’eau pour la Région de Bruxelles-Capitale.

Teneur en mg/l	Valeur moyenne	Valeur minimum	Valeur maximum
Teneur en mg/l	0,071	0,066	0,079

Population : 1.018.804
Volume total d’eau utilisé (facturé) : 56.290.523 m³/an

B. Teneur en fluor dans l’eau du robinet en Région wallonne (DGARNE, 2007)

En Région wallonne, les teneurs sont généralement faibles sauf dans certaines zones de distribution (tableau 2).

Tableau 2 : Teneurs en fluor dans l’eau pour la Région wallonne.

Teneur en mg/l	Valeur moyenne	Valeur minimum	Valeur maximum
Teneur en mg/l	0,08	0,00	1,243

Population : 3.435.879 (INS, 2007)
Volume total d’eau distribué : 204.051.279 m³/an.

La limite maximale légale n’est cependant pas dépassée. Les teneurs peuvent être mises en corrélation avec les caractéristiques des nappes aquifères souterraines qui sont exploitées dans les zones concernées (figure 1 : F. Delhoye, DGARNE) :

- teneurs importantes dans la masse d’eau du calcaire du Tournaisis, dans la partie captive du Synclinorium de Namur (Péruwelz) et dans la partie profonde des craies de Mons (Hensies) ;
- teneurs faibles dans le reste du Synclinorium calcaire de Namur et des craies de Mons, dans la nappe alluviale de Meuse en aval de Liège et dans la formation du Domérien au sud d’Arlon ;
- absence ou traces pour les autres nappes de Wallonie et notamment les nappes libres (Sables, Hesbaye, Ardenne).

Des informations complémentaires sur les caractéristiques des nappes d’eau souterraine en Wallonie peuvent être consultées sur http://environnement.wallonie.be.
Figure 1 : Zones concernées par des teneurs en fluor significatives en Région wallonne (DGARNE, 2007).

C. Teneur en fluor dans l’eau du robinet en Région flamande (VMM, 2007)

En Flandre, des teneurs significatives, voire importantes, en fluor sont mesurées dans un certain nombre de zones de distribution (tableau 3), comme le montre la carte ci-dessous (figure 2). Le fluor est un élément qui caractérise la nappe du Socle ou du massif de Brabant qui est exploitée intensivement.

Tableau 3 : Teneurs en fluor dans l’eau pour la Région flamande

Teneur en mg/l	Valeur moyenne	Valeur minimum	Valeur maximum
0,141	0,00	1,390	

Population : 6.117.440 (INS, 2007)
Volume total d’eau utilisé : 12.125 m3/jour. Cette valeur ne comprend cependant pas les volumes délivrés par certains petits producteurs parce que ceux-ci ne communiquent pas leurs données (notamment Hoeilaart, Knokke-Heist, Tongeren).
2.2.2.3 Eaux commercialisées après conditionnement (« Eau en bouteille »)

Sur le marché belge, on distingue 3 types d'eaux en bouteille:\(^2\) : les eaux minérales naturelles, les eaux de source et les eaux de table ou eaux de boisson. Les Belges boivent essentiellement les 2 premiers types d'eaux. La consommation des eaux de table est négligeable en Belgique (tableau 4).

\(^2\) Les eaux de table (ET) sont des eaux qui ont subi des traitements plus ou moins poussés destinés à les rendre potables (p.ex. eaux produites à partir d’eau de rivière, de lac, de distribution). La qualité de ces eaux est réglementée par l'arrêté royal du 14 janvier 2002.

Eau de source (ES): l’eau provenant d’une source et qui est propre à la consommation humaine dans son état naturel.

Eau minérale naturelle (EMN): l’eau provenant d’une source et qui se distingue nettement de l’eau de boisson ordinaire par :
 a) sa pureté originelle, notamment microbiologique;
 b) sa nature, caractérisée par sa teneur en minéraux, oligo-éléments ou autres constituants et, le cas échéant, par certains effets.

La composition, la température et les autres caractéristiques essentielles de l’eau doivent demeurer stables dans le cadre de fluctuations naturelles; en particulier elles ne peuvent pas être modifiées par les variations éventuelles de débit.

Les ES et les EMN sont réglementées par des normes beaucoup plus sévères que les autres types d’eaux. Elles figurent dans l'arrêté royal du 8 février 1999 (modifié par l'arrêté royal du 15 décembre 2003).
Tableau 4 : Consommation des eaux en bouteille en Belgique en 2006 (chiffres de vente en millions de litres ; Canadean, 2006)

Eau minérale naturelle	Eau de source	Eau de table	Total
1245 (90 %)	114 (10 %)	6 (1,5 %)	1365

Les belges figurent parmi les 4 plus grands consommateurs européens d’eau en bouteille (figure 3)

Figure 3 : Consommation des eaux en bouteille en Europe en 2006 (chiffres de vente en litres per capita pour 2006; Canadean, 2006)

La limite maximale en fluor dans les eaux de source (ES) et les eaux de table (ET) en bouteilles est fixée également à 1,5 mg/l (arrêté royal du 14.01.2002). Dans les eaux minérales naturelles (EMN), la norme est fixée à 5 mg/l maximum (arrêté royal du 07.02.1999). L’étiquetage de ces dernières doit porter une mention d’avertissement à l’attention de la population à risque lorsqu’elles contiennent une concentration en fluor comprise entre 1,5 et 5 mg/l. Cette mention d’avertissement doit être libellée comme suit : « Contient plus de 1,5 mg/l de fluor : ne convient pas aux nourrissons et aux enfants de moins de 7 ans pour une consommation régulière ». Dans ce cas, la teneur réelle en fluor doit être indiquée dans la mention de la composition analytique. Conformément aux recommandations du Conseil Supérieur de la Santé, l’allégation « convient pour la préparation des aliments des nourrissons » n’est délivrée que si la teneur en fluor de l’eau minérale naturelle ne dépasse pas 1 mg/l.

La majorité des eaux en bouteille qui sont produites en Belgique contiennent peu de fluor (< 0,5 mg/l) (tableau 5). Une seule eau minérale contient une très forte concentration de fluor, à la limite de la valeur maximale autorisée. Trois autres eaux minérales naturelles, qui font l’objet d’un traitement de défloration par adsorption sur un filtre d’alumine activée, se situent à des valeurs correspondant à la limite légale pour l’eau distribuée par le réseau public et l’eau de source (1,5 mg/l). La part de marché de ces eaux riches ou très riches en fluor est négligeable dans le contexte belge.
fluor est cependant assez faible, leur production représentant moins de 10 % du volume total. Elles sont en général consommées très localement.

Tableau 5 : Teneurs en fluor des eaux minérales naturelles et des eaux de source produites et reconnues en Belgique (SPF/DG4, 2007).

Marque commerciale	Source	lieu d'exploitation	type	teneur en fluor (mg/l)	Note
Bru	Bru	Chevron	EMN	0,136	(b)
Chaudfontaine	Thermale	Chaudfontaine	EMN	0,431	(b)
Chevron	Monastère	Chevron	EMN	0,142	(s)
Christianabronnen	Christiana	Gavere	EMN	5,1	(b)
Duke	Duke	Francorchamps	EMN	0,229	(b)
Freu-Hé	Freu Hé	Stoumont	EMN	0,138	(s)
Ginstbergbronnen	Gintsberg	Scheldewindeke	EMN	0,1	(b)
Koningsbronnen	Koning	Brakel	EMN	1,5	(t)
Leberg	Leberg	Roosdal	EMN	0,136	(s)
Ordal	Ordal	Ranst	EMN	<0,1	(b)
Pouhon de Bande	Pouhon de Bande	Bande	EMN	0,15	(b)
San Benedetto	Geneviève	Genval	EMN	0,16	(b)
Spa	Marie-Henriette	Spa	EMN	0,029	(s)
Spa	Barisart	Spa	EMN	0,031	(s)
Spa	Reine	Spa	EMN	0,025	(s)
Sty	Sty	Céroux-Mousty	EMN	0,086	(s)
Sunco	Sunco	Ninove	EMN	1,725	(b)
Toep	Toep	Brakel	EMN	0,125	(s)
Top	Top	Brakel	EMN	1,5	(t)
1	Volette	Etalle	EMN	0,139	(b)
Val	Val	Boortmeerbeek	EMN	0,29	(b)
Valvert	Valvert	Etalle	EMN	<0,05	(b)
Villiers Monopole	Villers	Villers-le-Gambon	EMN	<0,1	(b)
Aquarel	des Acacias	Etalle	ES	<0,05	(b)
Bon Val	Bon-Val	Bavikhove	ES	<0,1	(b)
Straal	Spring	Maarkedal	ES	0,174	(b)
Telle qu'elle	du Cerf	Genval	ES	<0,1	(b)
Nc	Alizée	Brakel	ES	<0,5	(b)
Nc	Charmoise	Etalle	ES	<0,05	(b)
Nc	Elise	Brakel	ES	<0,5	(b)
Nc	des Fagnes	Villers-le-Gambon	ES	<0,1	(b)
Nc	Julie	Brakel	ES	<0,5	(b)
Nc	Pepyn	Landen	ES	0,22	(s)
Nc	Toren	Brakel	ES	<0,5	(b)
Nc	Val d'Aisne	Erezée	ES	0,057	(b)
Nc	de la Vallée	Saint Georges	ES	<0,2	(s)

Légende
EMN : eau minérale naturelle ; ES : eau de source ; nc : non communiqué ; (b) : teneurs analysées dans la bouteille ; (s) : teneurs analysées à la source ; (t) : valeur de consigne du traitement de défluoration sur alumine activée.

Les concentrations importantes dans certaines eaux minérales naturelles produites en Flandre et celles dans certaines zones de distribution d’eau du réseau public en Flandre sont corrélées avec les caractéristiques des nappes aquifères qui sont exploitées, en particulier celle du massif du Brabant ou nappe du socle dans la région d’Oudenaarde.
La Belgique importe également de nombreuses eaux minérales naturelles et eaux de source, principalement en provenance des pays limitrophes, et en particulier de France (tableau 6). La consommation de ces eaux peut être très importante. Certaines contiennent une quantité significative de fluor.
On retrouve aussi des eaux provenant d’autres pays, y compris de pays tiers hors UE, dans les petits commerces d’origine étrangère.

Tableau 6 : Teneurs en fluor des eaux minérales naturelles et des eaux de source importées en Belgique

Marque commerciale	Source	Lieu exploitation	Type	Teneur en fluor (mg/l)	Note
Badoit	Badoit	St Galmier/France	EMN	1,4	(2006)(cp)
Beckerich	Ophélie	Beckerich/Luxembourg	EMN	0,492	(a)
Contrex	Contrex	Contrexéville/France	EMN	0,02	(b)
Dolomiti	Dolomiti	Vincenza/Italie	EMN	0,076	(a)
Evian	Cachat	Evian les Bains/France	EMN	0,073	(b)
Hépar	Hépar	Vittel/France	EMN	0,4	(2001)AFSSA
Mont-Roucous	Mont-Roucous	Lacaune/France	EMN	0,05	(2001)AFSSA
Orée du bois	Orée du bois	St Amand les Eaux/France	EMN	1,387	(a)(t)
Perrier	Perrier	Vergèze/France	EMN	0,1	(2005)(cp)
Rozana	Des Romains	Beaufregard Vendon/France	EMN	0,7	(2001)AFSSA
St Amand	Clos de l'Abbaye	St Amand les Eaux/France	EMN	1,424	(a)(t)
Saint Antonin	Prince noir	St Antonin Noble Val/France	EMN	1,344	(b)
San Pellegrino	San Pellegrino	Bergamo/Italie	EMN	0,412	(b)(m)
Tonissteiner Sprudel	Tonissteiner Sprudel	Andernach-Kell/Allemagne	EMN	0,02	(b)
Vauban	Vauban	St Amand les Eaux/France	EMN	1,501	(a)(t)
Vichy Célestins	Célestins	Vichy/France	EMN	5,9	(2005)(cp)
Vichy St Yorre	Royale	St Yorre/France	EMN	9	(2002)(cp)
Vittel	Grande source	Vittel/France	EMN	0,16	(b)(m)
Volvic	Clairvic	Volvic/France	EMN	0,184	(a)
Wattwiller	Lithinée	Wattwiller/France	EMN	1,514	(a)(t)
Cristaline Louise	Louise	France	ES	0,588	(a)
Cristaline St Léger	Cristaline St Léger	France	ES	0,893	(a)
Pierval	Cristaline	Normandie/France	ES	0,102	(b)

Légende tableau 6 :
EMN : eau minérale naturelle ; ES : eau de source ; nc : non communiqué ; (a) : contrôle AFSCA 2007 ; (b) : contrôle AFSCA 2005 ; (t) : traitement de défluoration sur alumine activée supposé ou confirmé ; (cp) : communication personnelle ; (m) : valeur moyenne ; AFSSA : Agence Française de Sécurité Sanitaire des Aliments
Il est très difficile d’obtenir ces données pour toutes les eaux importées. De plus la teneur en fluor ne figure pas sur l’étiquette des eaux faiblement chargées.

Il faut noter que depuis 2007, des traitements sur alumine activée ont été mis en place par certains exploitants, et autorisés par les autorités, de sorte que les teneurs de certaines eaux fortement chargées en fluor peuvent avoir été ramenées en dessous du seuil de 1,5 mg/l. Cela pourrait être le cas pour les eaux de Vichy par exemple. Dans certains cas, le traitement est connu ou supposé (cf. note t, tableau 6).

2.2.3 Consommations de boissons en Belgique

2.2.3.1 Population générale de plus de 15 ans

En Belgique, la première enquête nationale de consommation a été réalisée en 2004, à l’initiative du Ministre des Affaires sociales et de la Santé publique et du Service public fédéral Santé publique, Sécurité de la Chaîne alimentaire et Environnement (De Vriese et al., 2007). Un échantillon représentatif de la population âgée de 15 ans et plus a été tiré au sort dans le Registre national. L’échantillon a été réparti en 4 tranches d’âge (15-18 ans, 19-59 ans, 60-74 ans et 75 ans ou plus) et entre les deux sexes. Le nombre total de personnes à interroger a été équitalement réparti entre les régions et les clusters provinciaux selon la taille de la population. Un aperçu plus détaillé de la procédure d’échantillonnage peut être trouvé dans la publication de De Vriese et al. (2005).

Les personnes interrogées ont reçu deux fois la visite d’un(e) diététicien(ne) formé(e) à leur domicile. Au cours de la première visite, des questions générales ont été posées, notamment au sujet de la santé, des habitudes de vie et de l’activité physique de la personne interrogée. La taille et le poids de celle-ci ont été mentionnés oralement par la personne elle-même. La partie essentielle de l’enquête portait sur l’alimentation durant 24 heures. Dans ce contexte, tout ce que la personne interrogée a mangé et bu depuis son lever le jour précédent jusqu’au lever du jour de l’interview a été rapporté en détail. La quantité d’aliments et de boissons consommés a également été enregistrée au moyen d’un livre de photos, de mesures standard et ménagères. Afin de standardiser l’enquête, celle-ci a utilisé un logiciel spécifique, à savoir EPIC-SOFT. Au cours de la deuxième visite, environ 2 à 8 semaines plus tard, une nouvelle enquête concernant l’alimentation durant 24 heures a été menée. Dans l’intervalle entre les deux visites, la personne interrogée devait remplir elle-même un questionnaire de fréquence de consommation.

Pour pouvoir déterminer l’ingestion habituelle de denrées alimentaires et de boissons des informations typiques sur la consommation alimentaire sont exigées ; elles doivent être étalées sur un grand nombre de jours. Cependant, il est rarement possible de rassembler ces informations pour tous les individus de l’étude. C’est la raison pour laquelle on utilise une méthode statistique qui corrige la variance interpersonnelle de consommation d’aliments et de nutriments et qui peut être appliquée lorsque un petit nombre de jours seulement est disponible par personne.

Une évaluation correcte de la répartition de la consommation de boissons non alcoolisées au sein de la population nécessite au minimum des informations sur deux jours.

Une analyse statistique permet alors de réaliser une estimation de la consommation sur une période plus longue. A ce niveau, seule la distribution entre les personnes est importante et non les différences intra-individuelles d’un jour à l’autre. Nous parlons de consommations habituelles.

Le présent avis met l’accent sur les consommations habituelles de boissons non alcoolisées dans la population totale (consommateurs + non-consommateurs) et non sur celles des consommateurs seuls (consumers only), étant donné que l’accent est mis sur l’exposition
chronique au fluor. Il a suivi la méthode Nusser (Nusser et al., 1996) recommandée par l’Institute of Medicine (IOM, 2003). Cette méthode permet de corriger la variance totale pour les variances interpersonnelles et de transformer les données en distribution normale. Le logiciel C-SIDE (Software for Intake Distribution Estimation) destiné à estimer les distributions habituelles de la consommation a été développé à l’université de l’Iowa (Guenther et al., 1997; ISU, 1996).

Une estimation de la consommation habituelle de boissons non alcoolisées dans la population totale et pour les deux régions distinctement (Flandre et Wallonie) a été réalisée. Bruxelles a été intégrée dans les calculs pour la Wallonie étant donné que le nombre de personnes qui, durant les deux jours de l’enquête, boivent au moins une fois est trop bas pour pouvoir appliquer la méthode Nusser. Dans une approche plus affinée (calcul de l’apport en fluor de la population belge), il est possible de tenir compte du lieu d’habitation de la personne interrogée (Wallonie ou Bruxelles) lors de l’attribution des concentrations dans l’eau de distribution. Cependant, une ventilation des résultats pour la Wallonie et Bruxelles n’est à nouveau pas possible.

La consommation totale de boissons non alcoolisées réparties entre les boissons à base de fruits et de légumes, les limonades, le café, le thé, l’eau minérale, l’eau de source et l’eau distribuée par le réseau public figure dans le tableau 7 pour la Flandre et le tableau 8 pour la Wallonie et Bruxelles. Ces consommations habituelles sont pondérées et corrigées en fonction du jour de l’interview, de la saison, de l’âge et du sexe.

La consommation totale de boissons non alcoolisées est plus élevée en Flandre qu’en Wallonie et à Bruxelles. Il s’agit plus spécifiquement de la consommation de limonades, café et thé qui est supérieure en Flandre par rapport à la Wallonie et Bruxelles. En Wallonie et à Bruxelles la consommation d’eau distribuée par le réseau public est plus élevée.
Tableau 7 : Consommation habituelle moyenne (SD, Min, P25, P50, P75, P95, P97.5, P99, Max) (ml/jour) de boissons non alcoolisées en Flandre

	Moyenne	SD	Min	P25	P50	P75	P95	P97.5	P99	Max	Obs	N
Boissons non alcoolisées - total (bouillon compris)	1.446	592	0	1.027	1.361	1.768	1.552	2.868	3.277	10.725	3.842	1.923
Boissons non alcoolisées - total (sans bouillon)	1.444	596	0	1.023	1.356	1.767	2.534	2.861	3.322	10.725	3.842	1.923
Jus de fruits et de légumes	63	82	0	32	99	225	281	357	3.500	942	668	
Limonades	219	260	0	145	338	727	902	1.143	5.000	1.516	930	
Café, thé et infusion	502	381	0	238	445	696	1.205	1.484	1.802	4.275	2.855	1.506
Café	409	359	0	135	348	588	1.062	1.321	1.663	4.275	2.523	1.350
Thé et infusion	84	163	0	0	112	423	562	745	2.300	733	463	
Eau – total	615	469	0	267	520	860	1.504	1.762	2.120	9.000	2.903	1.628
Eau minérale et eau de source	526	446	0	185	428	752	1.386	1.631	1.979	9.000	2.475	1.438
Eau minérale et eau de source, sans gaz carbonique	405	414	0	66	299	609	1.276	1.461	1.767	9.000	1.941	1.189
Eau minérale et eau de source, avec gaz carbonique	117	204	0	0	0	172	537	700	921	4.000	728	498
Eau distribuée par le réseau public	73	174	0	0	0	51	427	603	843	3.150	627	429

Obs: nombre de jours de consommation (nombre total 3.846)
N: nombre de consommateurs qui consomment au moins une fois parmi ce groupe (nombre total: 1.923)

Tableau 8 : Consommation habituelle moyenne (SD, Min, P25, P50, P75, P95, P97.5, P99, Max) (ml/jour) de boissons non alcoolisées en Wallonie et à Bruxelles

	Moyenne	SD	Min	P25	P50	P75	P95	P97.5	P99	Max	Obs	N
Boissons non alcoolisées - total (bouillon compris)	1.370	484	0	1.028	1.326	1.658	2.232	2.462	2.758	5.580	2.314	1.158
Boissons non alcoolisées - total (sans bouillon)	1.364	481	0	1.023	1.321	1.653	2.221	2.449	2.743	5.580	2.314	1.158
Jus de fruits et de légumes	60	76	0	33	93	210	263	335	1.950	609	432	
Limonades	190	205	0	138	303	588	703	856	3.850	786	504	
Café, thé et infusion	363	265	0	173	322	500	853	1.006	1.223	3.150	1.793	916
Café	303	261	0	110	267	435	787	958	1.184	3.150	1.563	832
Thé et infusion	49	96	0	0	61	254	324	420	2.250	310	203	
Eau – total	709	415	0	406	661	952	1.469	1.666	1.917	5.250	1.919	1.045
Eau minérale et eau de source	550	409	0	219	492	800	1.315	1.493	1.713	4.500	1.485	857
Eau minérale et eau de source, sans gaz carbonique	446	387	0	119	373	680	1.188	1.368	1.574	4.500	1.270	755
Eau minérale et eau de source, avec gaz carbonique	99	208	0	0	103	547	727	962	3.000	291	202	
Eau distribuée par le réseau public	132	238	0	0	181	632	826	1.085	4.500	558	366	

Obs: nombre de jours de consommation (nombre total 2.320)
N: nombre de consommateurs qui consomment au moins une fois parmi ce groupe (nombre total: 1.160)
2.2.3.2 Jeunes enfants

Pour cette tranche d'âge, il était difficile d'appliquer la méthode Nusser (voir 2.2.3.1. population générale de plus de 15 ans) étant donné que pour certains groupes d'aliments (café, thé), trop peu d'enfants consommaient des boissons de ces groupes durant trois jours consécutifs. C'est la raison pour laquelle un calcul de la consommation moyenne répartie sur trois jours a été retenu.

Aucune donnée n'est disponible pour la Wallonie.

En 2002, l'Université de Gand a mené une enquête sur les habitudes alimentaires des jeunes enfants (2,5 - 6 ans), en Flandre uniquement (Huybrechts et al., 2008). Dans toutes les provinces de Flandre, des écoles ont été sélectionnées comme première unité d'échantillonnage et des classes comme deuxième unité d’échantillonnage. Au total, 65 écoles devaient être retenues afin d’atteindre une participation de 50 d’entre elles. Au moins 1.000 enfants devaient, au total, être interrogés.

Pour le choix de la méthode, la combinaison d’un questionnaire écrit de fréquence alimentaire (FFQ) semi-quantitatif et d’un enregistrement de 3 jours (journal alimentaire) ont été retenus, l’un et l’autre à compléter par les parents de jeunes enfants et les professeurs à l’école. 1.844 FFQ’s et 1.052 journaux alimentaires ont été rassemblés. Parmi ceux-ci, seulement 1.766 FFQ’s et 1.026 journaux alimentaires pouvaient être utilisés pour les analyses.

La consommation totale de boissons non alcoolisées, répartie entre boissons à base de fruits et légumes, limonades, café, thé, eau minérale, eau de source et eau de distribution figure dans le tableau 9 pour les jeunes enfants flamands.

Pour les enfants de moins de 2 ans, très peu de données sont disponibles. En 2008, une étude a démarré à Bruxelles concernant l’ingestion de fluor via l’eau, les compléments et le dentifrice dans ce groupe d’âge. L’échantillon ne comportait que 20 enfants; de ce fait, il est impossible de tirer des conclusions ou de réaliser des calculs (Guerrand, 2008).
Tableau 9: Consommation moyenne (SD, P50, P75, P80, P85, P90, P95, P97.5, P100) (ml/jour) de boissons non alcoolisées pour les jeunes enfants flamands

	observations	moyenne	SD	P_50	P_75	P_80	P_85	P_90	P_95	P_97.5	P_100
Total eau en bout.	2.091	180	213	150	300	300	400	450	600	750	1.575
Eau distribuée par le réseau public	2.091	57	132	0	20	100	150	200	320	450	1.125
Café	2.091	4	30	0	0	0	0	0	0	63	594
Thé	2.091	7	42	0	0	0	0	0	0	125	657
Jus de fruits et légumes	2.091	173	209	150	250	300	400	450	600	675	1.728
Boisson sucrée	2.091	108	179	0	150	200	250	325	450	600	1.650
Bouillon	2.091	9	39	0	0	0	0	0	47	150	300
Eau distribuée par le réseau public	2.091	358	294	300	525	600	650	750	900	1.050	2.183
Total	2.091	538	303	500	716	775	850	925	1.075	1.225	2.333
2.2.4 Evaluation de l'exposition au fluor

La méthodologie utilisée par l'Union européenne pour évaluer l'ingestion d'un additif alimentaire repose sur l'ingestion maximale d'aliments combinée à la teneur maximale de l'additif considéré. L'additif dont l'ingestion reste inférieure aux valeurs maximales d'ingestion arrêtée par les toxicologues est dès lors considéré comme ne présentant pas de risques pour la santé humaine (EU-SCOOP, 1998). De plus amples informations quant à la méthodologie proposée par l'Union européenne ainsi que son application sur un nombre limité d'additifs peuvent être retrouvées dans l'avis « Evaluation de l'ingestion des additifs » précédemment publié par le CSS (CSS, 2007).

Bien que le fluor ne puisse pas être considéré comme un additif alimentaire au sens généralement admis, cette approche maximaliste a, dans un premier temps, retenu l'attention du groupe de travail.

Sans en nier l'intérêt, il est rapidement apparu qu'une telle approche demandait, pour les différentes couches de la population et les différentes sources alimentaires de fluor, hydriques ou non, un travail important dont le résultat ne pourrait présenter un apport susceptible de tenir la comparaison avec celui d’une approche affinée, même imparfaite, reposant sur le résultat des enquêtes de consommation alimentaire actuellement disponibles.

Une estimation plus affinée de l’exposition au fluor via la consommation de boissons non alcoolisées n’est actuellement possible que pour les adultes.

L’exposition au fluor par inhalation, via les compléments ou suppléments alimentaires et les pâtes dentaires étant négligeable, n’est pas prise en compte vu le peu de données disponibles actuellement à ce sujet.

L’apport en fluor via les denrées alimentaires n’est pas pris en compte non plus. Seule la concentration en fluor dans le thé peut être élevée (0,34 – 5,2 mg/l) (Wei, 1989; Chan et Koh, 1996). Cependant, étant donné qu’aucune information n’est disponible sur le type exact de thé et la durée de l’infusion dans l’enquête de consommation alimentaire, cette source n’a, elle non plus, pas été prise en considération. Seule la concentration en fluor de l’eau distribuée par le réseau public, nécessaire pour la préparation du thé, a été prise en compte. Il a cependant déjà été dit ci-dessus (2.2.2.1) que, sur base de la littérature disponible, l’AFSSA estime que l’apport en fluor via la consommation de denrées alimentaires (non compris l’eau, le dentifrice et les compléments et le sel fluoré) ne peut pas dépasser 2 mg/jour (AFSSA, 2005).

Cet exercice d’évaluation de l’exposition au fluor suppose que, pour la préparation des limonades et jus de fruits, mais également pour la préparation du café, du thé et du bouillon à domicile, l’eau distribuée par le réseau public est utilisée. Toutefois, l’eau distribuée par le réseau public utilisée pour cuisiner ou pour la préparation de recettes, pour se laver, se brosser les dents et faire la vaisselle n’est pas prise en compte.

Le but de cet exercice est de corrélérer la concentration en fluor dans l’eau distribuée par le réseau public et les concentrations réelles en fluor des différentes marques d’eaux minérales et de source avec les quantités de ces eaux consommées selon l’enquête nationale de consommation alimentaire réalisée en 2004.

En ce qui concerne l’eau distribuée par le réseau public, il a également été tenu compte du lieu d’habitation (Flandre, Bruxelles ou Wallonie) lors de la corrélation de données de concentration et de consommation des personnes interrogées.

L’enquête de consommation alimentaire auprès des adultes, réalisée en 2004 et examinée ci-dessus (cf. 2.2.3.1.), est utilisée pour calculer les quantités consommées et la fréquence de consommation de l’eau distribuée par le réseau public et des différentes marques d’eaux minérales et de source.
Pour les concentrations en fluor de l’eau distribuée par le réseau public, on dispose pour la Flandre, la Wallonie et Bruxelles tant des concentrations moyennes que des concentrations maximales. Dans le cadre de cet exercice, il a été décidé d’utiliser les concentrations maximales étant donné que le CSS a opté pour une estimation prudente de l’exposition au fluor. Cependant, cela entraîne une surestimation car des concentrations maximales ne sont constatées que dans certaines régions de Belgique (cf. figures 1 et 2 au chapitre 2.2.2.2.). Le fait que la concentration en fluor dans le thé n’est pas prise en compte peut toutefois entraîner une sous-estimation de l’apport en fluor.

En ce qui concerne les concentrations en fluor de l’eau en bouteille, le CSS a utilisé des données de la littérature (Bottenberg, 2004) et/ou les données des autorités compétentes (AFSCA, SPF/DG4). Lorsque la fréquence de consommation de différentes marques d’eaux en bouteille est prise en compte, le CSS constate que dans 52,8 % des cas, l’eau en bouteille consommée contient une concentration inférieure à 0,5 mg/l, dans 14,6 % des cas une concentration comprise entre 0,5 et 1 mg/l est constatée, dans 10,4 % des cas une concentration comprise entre 1 et 1,5 mg/l, dans 3,7 % des cas une concentration allant de 1,5 à 5 mg/l et dans 0,5 % des cas une concentration égale ou supérieure à 5 mg/l. Dans 18 % des cas, la concentration en fluor de l’eau en bouteille concernée était inconnue. Dans ce cas, la concentration moyenne en fluor de toutes les autres eaux en bouteille a été attribuée, pondérée par la fréquence de consommation des différentes marques d’eaux en bouteille. Cette concentration moyenne s’élevait à 0,4 mg/l. Il a été décidé dans ce cas de ne pas utiliser la concentration maximale de 5,5 mg/l étant donné que ceci aurait entraîné une surestimation irréaliste de l’exposition au fluor.

Seules les personnes interrogées durant deux enquêtes complètes de 24 heures ont été prises en compte pour ces analyses (n = 3.083).

L’apport individuel en fluor via l’eau distribuée par le réseau public ou l’eau en bouteille a été estimé selon l’équation suivante :

\[Y_i (\text{mg/day}) = C_i \times X_i \]

avec pour \(Y_i \) l’apport en fluor de l’individu i via la consommation d’eau distribuée par le réseau public ou en bouteille d’une marque déterminée (en mg par jour),
\(C_i \) la concentration en fluor de ce type d’eau (mg/l),
\(X_i \) la quantité de ce type d’eau consommée par l’individu i (l/jour).

Afin de déterminer l’apport en fluor par type d’eau ou par jour, les apports individuels en fluor sont additionnés.

La distribution de l’apport habituel en fluor a été estimée par la méthode Nusser (Nusser et al., 1996), qui utilise le logiciel C-SIDE (ISU, 1996). La méthode Nusser élimine la variance intra-individuelle ou la variance d’un jour à l’autre et transforme les données en une distribution normale. Les apports habituels en fluor ont été déterminés pour la population totale, les deux sexes et tous les groupes d’âge répartis à chaque fois par région. La région de Bruxelles et la Wallonie sont reprises ensemble dans l’examen des résultats étant donné que la méthode Nusser ne peut être utilisée si les observations sont trop peu nombreuses (trop peu d’observations pour Bruxelles pour pouvoir effectuer une analyse distincte).

Il ressort des résultats (tableaux 10 et 11) que l’apport total en fluor par la consommation de boissons non alcoolisées en Flandre s’élève à 1,36 mg/jour tandis qu’en Wallonie (+ Bruxelles) elle est de 0,93 mg/jour. Le percentile 97,5 de l’apport s’élève à 3,06 mg/jour pour la Flandre et 2,44 mg/jour pour la Wallonie (+Bruxelles). Dans les deux régions, l’apport en fluor est plus élevé chez les hommes que chez les femmes et le groupe d’âge 19-59 ans représente l’apport en fluor le plus élevé.
Le lecteur souhaitant de plus amples d’informations sur les résultats de cette évaluation de l’exposition au fluor, menée par le groupe de travail ad hoc du CSS en charge du projet, peut consulter l’article *Fluoride intake through consumption of tap water and bottled water in Belgium* publié dans l’*International Journal of Environmental Research and Public Health* (Vandevijvere et al., 2009) repris en annexe.

Tableau 10 : Apport en fluor (mg/jour) par la consommation de boissons non alcoolisées en Flandre par sexe et tranche d’âge (Vandevijvere et al., 2009)

Moyenne	SD	P50	P95	P97,5	P99	N	% eau de distribution	
Total population	1,36	0,66	1,24	2,64	3,06	3,60	1,918	82
Sexe								
Hommes	1,46	0,77	1,32	2,90	3,43	4,13	968	84
Femmes	1,27	0,59	1,17	2,38	2,69	3,08	950	80
Age (années)								
15-18	1,17	0,52	1,11	2,13	2,36	2,65	486	80
19-59	1,48	0,77	1,34	2,96	3,44	4,05	509	81
60-74	1,16	0,51	1,08	2,11	2,38	2,72	480	83
>75	1,00	0,44	0,95	1,83	2,06	2,34	443	83

Tableau 11: Apport en fluor (mg/jour) par la consommation de boissons non alcoolisées en Wallonie et à Bruxelles, par sexe et tranche d’âge (Vandevijvere et al., 2009)

Moyenne	SD	P50	P95	P97,5	P99	N	% eau de distribution	
Total population	0,93	0,60	0,83	2,07	2,44	2,93	1,159	63
Sexe								
Hommes	0,98	0,64	0,89	2,18	2,59	3,13	574	70
Femmes	0,88	0,55	0,79	1,94	2,28	2,73	583	58
Age (années)								
15-18	0,90	0,57	0,79	2,00	2,32	2,75	271	62
19-59	0,99	0,63	0,88	2,19	2,58	3,09	319	64
60-74	0,86	0,55	0,75	1,88	2,28	2,83	307	60
>75	0,67	0,42	0,64	1,45	1,65	1,90	260	64
3. CONCLUSION ET RECOMMANDATIONS

Il ne semble pas exister un besoin physiologique du fluor. Le fluor n’est pas un micronutriment essentiel. Ceci n’autorise toutefois pas de rejeter le rôle joué par l’ion fluor tant au niveau dentaire qu’au niveau osseux voire au niveau microbiologique sur la flore dentaire. Tout excès, même modéré, de fluor est nuisible à l’organisme.

En Belgique, la consommation de la plupart des eaux distribuées par le réseau public (« eaux du robinet ») ou des eaux commercialisées après conditionnement (« eaux en bouteille ») n’est pas de nature à présenter un risque pour la santé humaine dans la mesure où celles-ci respectent les critères de composition et d’étiquetage arrêtés par les autorités européennes compétentes en la matière.

Une attention particulière doit être réservée aux eaux distribuées par le réseau public et aux eaux en bouteille dont la concentration en fluor est égale ou supérieure à 1,50 mg/l. Plus particulièrement, l’étiquetage des eaux minérales naturelles (EMN) doit répondre à des indications légales ainsi formulées :
- « contient du fluor » si la concentration de fluor est supérieure à 1,0 mg/l,
- « ce produit ne convient pas aux nourrissons ni aux enfants de moins de sept ans » si la concentration de fluor est égale ou supérieure à 1,5 mg/l.

Parmi les critères retenus par le CSS pour autoriser l’allégation « convient pour la préparation des aliments pour nourrissons », le CSS a fixé à moins de 1,0 mg/l le taux maximum de fluor autorisé. A la lumière des informations actuellement disponibles et ainsi que déjà suggéré antérieurement (CSS 8854), le CSS a l’intention de revoir, dans les meilleurs délais, ses critères d’octroi de l’allégation « convient pour la préparation des aliments pour nourrissons ».

Dans les régions où la consommation d’eaux distribuées par le réseau public et d’eaux commercialisées après conditionnement, riches en fluor, est habituelle, une information spécifique de la population s’imposerait. Ces populations devraient par ailleurs faire l’objet d’une étude épidémiologique humaine ciblée sur l’incidence de la fluorose.

Parmi les eaux commercialisées après conditionnement, certaines EMN, de par les caractéristiques qu’elles revendiquent, ne sont pas nécessairement destinées à une consommation habituelle et ce contrairement aux eaux distribuées par le réseau public respectant les critères de potabilité requis. On ne pourrait trop attirer l’attention des consommateurs sur la nécessité, avant toute consommation, de vérifier la composition du produit qu’ils ingèrent, et celle des producteurs sur l’obligation de rendre le plus accessibles possible les informations nécessaires.

Est-il besoin de rappeler que la consommation de compléments ou suppléments alimentaires fluorés est à déconseiller en dehors de tout contrôle médical.
4. REFERENCES

- AFSSA – Agence Française de Sécurité Sanitaire des Aliments. Evaluation des risques sanitaires liés aux situations de dépassement des limites et références de qualité des eaux destinées à la consommation humaine, juin 2004 à avril 2007 – Tome 1. Fiche 3 : Evaluation des risques sanitaires liés au dépassement de la limite de qualité des fluorures dans les eaux destinées à la consommation humaine. Janvier 2005.

- Belgaqua – Fédération belge du secteur de l’eau. Données communiquées, 2006.

- Bottenberg P. Fluoride content of mineral waters on the Belgian market and a case report of fluorosis induced by mineral water use. Eur J Pediatr 2004; 163: 626-627

- Bounias M. Traité de toxicologie générale. Springer, Paris, Berlin, 1999, pp.502-503

- Canadean. Données de 2006.

- CAC – Codex Alimentarius Commission, FAO – Food Agriculture Organisation, OMS – Organisation Mondiale de la Santé. Health related limits for certain substances in the Codex standard for natural mineral waters. 2007.

- Carton RJ. Review of the 2006 United States National Research Council report: Fluoride in drinking water. Fluoride 2006; 39 (3):163-172

- Chan JT, Koh SH. Fluoride content in caffeinatd, decaffeinated and herbal teas. Caries Res 1996; 30: 88-92.

- Charpentier J. Prescription of fluorides in medicine. Rev Med Liege 1996 ; 51(6) : 406-10

- Creff AF. Manuel de diététique en pratique médicale courante. Masson, Paris, 3ème ed., 1992, pp. 194 et 208

- CSH – Conseil Supérieur d’Hygiène. Document de travail FLUOR II de M. Ulens et A. Noirfalise. Bruxelles : CSH, 2002a.

- CSH – Conseil Supérieur d’Hygiène. Mise à jour de l’avis sur le fluor formulé en 1995 par le Conseil supérieur d’hygiène et le Conseil national de la nutrition. Bruxelles : CSH, 2002b. Avis 6103.

- CSS – Conseil Supérieur de la Santé. Evaluation de l’ingestion des additifs. Bruxelles : CSS, 2007. Avis 8118

- CSS - Conseil Supérieur de la Santé. Recommandations nutritionnelles pour la Belgique. Bruxelles: CSS;2009. Avis 8309.

- CSS – Conseil Supérieur de la Santé. Avis sur le fluor. Bruxelles : CSS, 2009. Avis 8520.

- CSS – Conseil Supérieur de la Santé. Révision de l’avis fluor 8520 : Fluor(-ure) en prévention de la carie dentaire. Bruxelles : CSS, 2011. Avis 8671.

- CSS – Conseil Supérieur de la Santé. Avis sur une eau de source pour l’obtention de l’allégation « convient pour la préparation des aliments des nourrissons ». Bruxelles : CSS, 2012. Avis 8854.
- DGARNE – Direction Générale opérationnelle de l’Agriculture, des Ressources Naturelles et de l’Environnement. Données de 2007. F. Delhoye.

- De Vriese S, Debacker G, de Henauw S, Huybrechts I, Kornitzer M, Leveque A et al. The Belgian food consumption survey: aims, design and methods. Arch Public Health. 2005; 63: 1-16.

- De Vriese S, Huybrechts I, Moreau M, Van Oyen H. De Belgische Voedselconsumptiepeiling 1 - 2004 : Rapport. D/2006/2505/15-18. 2007. Brussels, Belgium, Wetenschappelijk Instituut Volksgezondheid. 3-1-2006.

- EFSA - European Food Safety Authority. Opinion of Scientific Panel related to the Tolerable Upper Intake Level of Fluoride (EFSA-Q-2003-018). The EFSA journal, 2005. 192. 1-65. Corrected and published on 7 June 2006.

- EFSA - European Food Safety Authority. Opinion of Scientific Panel related to concentration limits for boron and fluoride in natural mineral waters (EFSA-Q-2003-21). The EFSA journal, 2005. 237.1-8

- EU – European Union. SCOOP – Scientific cooperation. Development of methodologies for the monitoring of food additive intake across the European Union. Reports on tasks for scientific cooperation. Report of experts participating in Task 4.2. Brussels: European Commission 1998; final report SCOOP/INT/REPORT/2

- Gouvernement de la Région Bruxelles-Capitale - Arrêté du 24 janvier 2002 du Gouvernement de la Région de Bruxelles-Capitale relatif à la qualité de l’eau distribuée par réseau.

- Gouvernement flamand - Arrêté du 13 décembre 2002 du Gouvernement flamand portant réglementation relative à la qualité et la fourniture des eaux destinées à la consommation humaine.

- Gouvernement wallon - Arrêté du Gouvernement wallon du 3 mars 2005 relatif au Livre II du Code de l’environnement, contenant le Code de l’eau.

- Guenther PM, Kott PS, Carriquiry AL. Development of an approach for estimating usual nutrient intake distributions at the population level. J Nutr 1997; 127: 1106-1112.

- Guerrand A. Evaluation de la consommation de fluor chez les enfants âgés de 0 à 6 ans, dans la région de Bruxelles. Travail de fin d’études, Spécialisation en diététique de l’enfant et de l’adolescent. Sept 2008

- Huybrechts I, Matthys C, Pynaert I, De Maeyer M, Bellemans M, De Geeter H et al. Flanders preschool dietary survey: rationale, aims, design, methodology and population characteristics. Archives of Public Health. 2008; 5-25.

- INS – Institut National des Statistiques. SPF économie. 2007

- IOM - Institute of Medicine. Dietary Reference Intakes: Applications in Dietary Assessment (2003). Food and Nutrition Board, editor. 2003. Washington, D.C., National Academy Press.

- ISU - Iowa State University. A user's guide to C-SIDE. Software for Intake Distribution Estimation. Technical Report 96-TR 30, 1-92. 1996. Department of Statistics and Center for Agricultural and Rural Development; Iowa State University: Ames, Iowa State, USA, 1996;
- Lauwerys RR. Toxicologie industrielle et intoxications professionnelles. Masson, Paris, 4ième ed., 1999, pp. 604-619

- Lu FC. Toxicologie, données générales, procédures d’évaluation, organes cibles, évaluation du risque. Masson, Paris, 1992, pp. 20,195 et 325

- Mostin M. Centre Antipoisons-Antigifcentrum. Communication personnelle, novembre 2008

- Nusser SM, Carriquiry AL, Dodd KW, Fuller WA. A semiparametric transformation approach to estimating usual daily intake distributions. J Am Stat Assoc. 1996; 91: 1440-1449.

- OMS – Organisation Mondiale de la Santé. Fluor et santé. Chronique OMS, 972.26.5.257-267

- Royaume de Belgique – Arrêté royal du 8.02.1999 concernant les eaux minérales naturelles et les eaux de source, modifié par l’arrêté royal du 15.12.2003.

- Royaume de Belgique – Arrêté royal du 14.01.2002 relatif à la qualité des eaux destinées à la consommation humaine qui sont conditionnées ou qui sont utilisées dans des établissements alimentaires pour la fabrication et/ou la mise dans le commerce de denrées alimentaires.

- Souci, Fachmann, Krant. La composition des aliments, tableaux des valeurs nutritives (anglais, allemand, français). Medpharm, Stuttgart, CRC Press, Ann Arbor, 5th ed., 1994, 1091 pages

- SPF/DG4 – SPF Santé publique, Sécurité de la Chaîne alimentaire et Environnement. Direction générale Animaux, Végétaux et Alimentation. Données d’autocontrôle, 2007.

- Testut F. Pathologie toxique en milieu de travail. A. Lacassagne, Lyon, 1993, pp. 73-82

- UE – Union européenne. Directive 98/83/CE du Conseil du 3.11.1998 relative à la qualité des eaux destinées à la consommation humaine

- Underwood EJ. Trace elements in human and animal nutrition. Academic Press, new-York, 1977, 545 pages

- Vandevijvere S, Horion B, Fondu M, Mozin MJ, Ulens M, Huybrechts I, van Oyen H, Noirfalise A. Fluoride intake through consumption of tap water and bottled water in Belgium. Int J Environ Res Public Health 2009 ; 6 : 1676-1690.

- Vivaqua. Données de 2007.

- VMM – Vlaamse Milieumaatschappij. Données de 2007.

- Wei SHY. Concentration of fluoride and selected other elements in teas. Nutrition 1989; 5: 237-240.
5. ANNEXE

L'article reprenant les résultats concernant l’exposition au fluor telle que calculée au vu des résultats de l’Enquête de consommation alimentaire de 2004 figure pour information en annexe. Le contenu de cet article relève de la responsabilité des auteurs.

- Vandevijvere S, Horion B, Fondu M, Mozin MJ, Ulens M, Huybrechts I, van Oyen H, Noirfalise A. Fluoride intake through consumption of tap water and bottled water in Belgium. Int J Environ Res Public Health 2009 ; 6 : 1676-1690

6. RECOMMANDATIONS POUR LA RECHERCHE

A la vue de la pauvreté des informations actuellement disponibles, il convient d’attirer l’attention sur la nécessité de promouvoir et soutenir des études complémentaires
- sur les données de consommation de liquides aqueux par les enfants de moins de 15 ans,
- sur les besoins spécifiques des nourrissons,
- sur l’incidence de la fluorose dans les populations exposées à une consommation d’eaux distribuées par le réseau public renfermant des taux élevés de fluor, en particulier lorsque celles-ci sont jointes à une consommation d’une eau minérale naturelle (EMN) riche en fluor.

7. COMPOSITION DU GROUPE DE TRAVAIL

Tous les experts ont participé à titre personnel au groupe de travail ad hoc. Les noms des experts du CSS sont annotés d’un astérisque *.

Les experts suivants ont participé à l’élaboration de l’avis :

- DELHAXHE Marylène Nutrition pédiatrique ONE
- FONDU Michel* Chimie, additifs, contaminants ULB
- GUILLAUME Michèle Santé publique ULg
- HORIZON Benoît EMN, ES et ET ; réglementation SPF/DG4
- MOZIN Marie-Josée Nutrition pédiatrique HUDERF
- NOIRFALISSE Alfred* Toxicologie et bromatologie ULg
- VANDENPLAS Yvan* Nutrition pédiatrique ULB
- VANDEVIJVERE Stefanie Enquêtes de consommation alimentaire, ISP
gestion banques de données, épidémiologie,

Le groupe de travail a été présidé par Monsieur Alfred NOIRFALISSE et le secrétariat scientifique a été assuré par Madame Michèle ULENS.

L’avis a été approuvé par le groupe de travail permanent « Nutrition, Alimentation et Santé, y compris Sécurité Alimentaire » (GTP NASSA) lors de sa séance du 31 octobre 2012.

- CARPENTIER Yvon* Nutrition, biochimie pathologique ULB
- DE BACKER Guy* Médecine préventive, santé publique, épidémiologie UGent
- FONDU Michel* Chimie, additifs, contaminants ULB
- HUYGHEBAERT André* Chimie, technologie UGent
LARONDELLE Yvan Biochimie métabolique, nutrition animale et humaine UCL
MAGHUIN-ROGISTER Guy* Analyse des denrées alimentaires ULg
MELIN Pierrette* Microbiologie médicale ULg
MERTENS Birgit Toxicologie, novelfoods ISP
NEVE Jean* Chimie thérapeutique et sciences nutritionnelles ULB
NOIRFALISSE Alfred* Toxicologie et bromatologie ULg
RIGO Jacques* Nutrition pédiatrique ULg

L’administration était représentée par :
DE BOOSERE Isabel SPF Santé publique, Sécurité de la chaîne alimentaire et Environnement – DG 4

Le GTP NASSA a été présidé par Monsieur Guy DE BACKER et le secrétariat scientifique a été assuré par Madame Michèle ULENS.
Fluoride Intake through Consumption of Tap Water and Bottled Water in Belgium

Stefanie Vandevijvere 1,*, Benoit Horion 2, Michel Fondu 3, Marie-Josée Mozin 4, Michèle Ulen 5, Inge Huybrechts 6, Herman van Oyen 1 and Alfred Noirfalise 5

1 Scientific Institute of Public Health, Unit of Epidemiology, J. Wytsmanstraat 14, 1050 Brussels, Belgium; E-Mail: herman.vanoyen@iph.fgov.be
2 Federal Public Service of Health, Food Chain Safety and Environment, Victor Hortaplein 40, 1060 Brussels, Belgium; E-Mail: benoit.horion@health.fgov.be
3 Institute for European Studies, Université Libre de Bruxelles, Pleinlaan 2, 1050 Brussels, Belgium; E-Mail: michel.fondu@versateladsl.be
4 Hospital for Children Queen Fabiola, Université Libre de Bruxelles, Avenue J. Crocq 15, 1020 Laeken, Belgium; E-Mail: marie-josee.mozin@huderf.be
5 Superior Health Council, Zelfbestuurstraat 4, 1050 Brussels, Belgium; E-Mails: michele.ulens@health.fgov.be (M.U.); alfred.noirfalise@health.fgov.be (A.N.)
6 Ghent University, Department of Public Health, De Pintelaan 185, 9000 Ghent, Belgium; E-Mail: inge.huybrechts@ugent.be

* Author to whom correspondence should be addressed; E-Mail: Stefanie.Vandevijvere@iph.fgov.be; Tel.: +32 (0)26 425752; Fax: +32 (0)26 42 5410

Received: 21 April 2009 / Accepted: 13 May 2009 / Published: 15 May 2009
Abstract: There is a tendency to align higher levels of fluoride in natural mineral water with the existing higher levels in tap water. Treatment of natural mineral waters could harm the preservation of their natural character. In this study fluoride intake through bottled and tap water consumption in the Belgian adult population was assessed, taking into account regional differences. A deterministic approach was used whereby consumption quantities of tap water and different brands of bottled water were linked with their respective fluoride concentrations. Data from the national food consumption survey (2004) were used and the Nusser methodology was applied to obtain usual intake estimates.

Mean intake of fluoride through total water consumption in Flanders was 1.4±0.7 mg/day (97.5th percentile: 3.1 mg/day), while in the Walloon region it was on average 0.9±0.6 mg/day (97.5th percentile: 2.4 mg/day). The probability of exceeding the UL of 7 mg per day via a normal diet was estimated to be low. Consequently, there is no need to revise the existing norms, but higher fluoride concentrations should be more clearly indicated on the labels. Reliable data about total dietary fluoride intake in children, including intake of fluoride via tooth paste and food supplements, are needed.

Keywords: fluoride; exposure assessment; food consumption survey; Belgium

1. Introduction

Fluorides are ubiquitous in air, water and the lithosphere, where they are seventeenth in the order of frequency of occurrence (0.06-0.09% of the Earth’s crust) [1]. Fluoride in air exists in gaseous or particulate forms and arises from fluoride containing soils, industry, coal fires and volcanoes. In non-industrial areas, concentrations range between 0.05-1.9 μg/m³.

Inhalation of fluoride from the air does not contribute more than 0.01 mg/day to the total intake, except in occupational settings where intake by inhalation can be several milligrams [2]. Availability of fluoride from soil depends on solubility of the fluoride compound, the acidity of the soil and the presence of water.

Fluoride in the body is mainly associated with calcified tissue (bone and teeth) due to its high affinity for calcium. Absorbed fluoride is partly retained in bone and partly excreted, predominantly via the kidneys. In infants and young children, retention in bone can be as high as 75% of the absorbed amount, whereas in adults retention is usually 50% or less [3,4]. Fluoride is also incorporated into dental enamel during tooth formation.

Fluoride is not essential for human growth and development but is beneficial in the prevention of dental caries (tooth decay) [5-8] when ingested in amounts of about 0.05 mg/kg bodyweight per day and when applied topically via dental products such as toothpaste [9-11].

Excessive intake of fluoride during enamel maturation before tooth eruption from birth to eight years of age (when enamel formation is complete) can lead to reduced mineral content of enamel.
and to dental fluorosis. The incidence and severity of dental fluorosis is dose-dependent [1]. The EFSA Panel considered moderate dental fluorosis, which is characterized by staining and minute pitting of teeth, to be an adverse effect. On the basis that the prevalence of moderate dental fluorosis of permanent teeth is less than 5% in populations ingesting 0.08-0.12 mg/kg bodyweight/day, the Panel considered that the upper level (UL) for fluoride is 0.1 mg fluoride/kg/day in children aged 1-8 years. This is equivalent to 1.5 and 2.5 mg fluoride per day in children aged 1-3 years and 4-8 years respectively [12].

A study with therapeutic oral administration of fluoride in amounts of 0.6 mg/kg bodyweight/day in postmenopausal women over several years increased the risk for non-vertebral bone fractures significantly [13]. The EFSA Panel applied an uncertainty factor of 5 to derive an UL of 0.12 mg/kg bodyweight/day.

This is equivalent to an UL of 5 mg/day in children aged 9-14 years and 7 mg/day for adolescents and adults, aged 15 years and older, including pregnant and lactating women. The UL for fluoride applies to intake from water, beverages, foods, including fluoridated salt, dental health products and fluoride tablets for caries prevention [12].

Among the main sources of total fluoride intake in Europe are drinking waters containing more than 0.3 mg/L of fluoride [11]. Fluoride concentrations in tap water collected during 1985 from public water plants in The Netherlands were between 0.04 and 0.23 mg/L [14]. Whereas drinking water for human consumption, according to Directive 98/83/EC, may not contain more than 1.5 mg fluoride/L, natural mineral waters can have higher fluoride concentration levels. Natural mineral waters which contain more than 1 mg fluoride/L can be labeled as “contains fluoride”. According to Directive 2003/40/EC, the fluoride concentration of natural mineral waters must be less than 5 mg/L. Mineral waters exceeding 1.5 mg fluoride/L shall bear on the label the words “contains more than 1.5 mg/L fluoride; not suitable for regular consumption by infants and children under 7 years of age” and shall indicate the actual fluoride content. Twenty-four mineral waters available in Belgium were found to have fluoride concentrations below 1 mg/L in 16 cases. The highest value found was 5.5 mg/L. A case of dental fluorosis in an eight years old girl was attributed to the preparation of her infant formula with mineral water containing 1.2 mg fluoride/L [15].

Several studies show that excessive long term fluoride intake through water consumption can lead to a range of adverse effects on health such as skeletal and dental fluorosis [16-21].

Fluoride intake from food is generally low. An exception to the low fluoride concentrations found in most foods is tea, which can contain considerable amounts of fluoride (0.34-5.2 mg/L) [22,23], dependent on the type of tea and the duration of brewing. Some brands of instant teas were reported to be another significant source of fluoride intake (up to 6.5 mg/L when prepared with distilled water) [24].

Dental products which contain fluoride can, especially when inappropriately used, increase the total intake of fluoride considerably [9]. This is particularly the case in young children who swallow between 10 to 100% of their toothpaste [25-27]. In the European Communities about 90% of all toothpastes are fluoridated with a maximum level of 1,500 mg/kg.
The European legislation and the norm of the *Codex alimentarius* identified a list of chemical contaminants, fluoride included, which can be present in natural mineral water and determined upper levels for their presence. These levels often were determined using incomplete scientific data. In the near future, these norms will be revised. There is a tendency to align the upper levels of these chemical substances in natural mineral water with the existing upper levels for these substances in tap water. One of the consequences of this alignment will be that natural mineral waters will undergo the same treatment as tap water, which could harm the preservation of their natural character. Natural mineral waters contribute to a policy of sustainable development and to the protection of the natural resources. Therefore it is important in one way to preserve their natural character but in another way it is also primordial to protect the safety of the consumers using evidence-based scientific data.

The objective of this paper is to assess the intake of fluoride through consumption of bottled and tap water in the Belgian adult population, taking into account regional differences. On the basis of these results, the existing norms can be evaluated and eventual recommendations for revision of these norms can be formulated.

2. Design and Methods

2.1. Study Design

The fluoride exposure through consumption of non-alcoholic drinks was calculated using a deterministic approach where consumption quantities of tap water and different brands of bottled water were linked with their respective fluoride concentrations. Regional differences in tap water concentrations were taken into account. Fluoride concentrations of different brands of bottled water were obtained through literature, monitoring data and personal communications.

Fluoride exposure through inhalation from the air, supplements, tooth paste and salt were not taken into account because of the lack of information and because these sources of exposure are assumed to be negligible in adults in Belgium. For tea, no information was available about the duration of brewing from the food consumption survey. Fluoride exposure through food consumption was not taken into account either, but is not negligible. The French Agency for Safety of the Food Chain (AFSSA) estimates that the intake of fluoride through food consumption (water, tooth paste and supplements excluded) is about 2 mg/day for adults [28]. In the UK the mean daily fluoride intake, when including tea but excluding water, amounts to 1.2 mg/day for the adult population [29].

In this study, it is assumed that for the preparation of soft drinks and fruit juices and for the preparation of coffee, tea and broth at home, tap water was used. Tap water used for cooking or preparing meals and for brushing teeth, was not taken into account.
2.2. Food Consumption Data

Consumption data from the 2004 National Food Consumption Survey were used to perform the exposure assessment. Aims, design and methods used in this survey are described elsewhere [30]. The target population comprised all Belgian inhabitants of 15 years or older. The sample included 3,245 participants randomly selected from the National Register. The sampling method followed a multi-stage stratified procedure.

Information on dietary intake was collected by a repeated non-consecutive 24h recall in combination with a food frequency questionnaire. During the 24h dietary recalls the respondent reported the quantity of all foods and beverages consumed during the preceding day. In order to get more information on the within-person variation, two non-consecutive 24h recalls of each respondent were collected. The 24h recall was carried out using the EPIC-SOFT program [31]. This program allows obtaining very detailed information about the foods consumed up to brand level and the recipes used in a standardized way.

A total of 3,083 participants completed two 24-hour recalls of which 1,537 women and 1,546 men. Participants were categorized into four age groups: 15-18 years (n = 760), 19-59 years (n = 830), 60-74 years (n = 789) and 75 years or older (n = 704).

2.3. Fluoride Concentrations of Tap Water and Bottled Water

Mean and maximum concentrations of fluoride in tap water (year 2007) were obtained from the three regional distributers in Belgium (DGARNE for the Walloon region, IBGE for Brussels and VVM for Flanders). The legal norm for fluoride concentration in tap water is 1.5 mg/L (Directive 98/93/CE). Mean and maximum concentrations of fluoride in tap water differed substantially and amounted to 0.08 mg/L and 1.24 mg/L, respectively, for the Walloon region, 0.14 mg/L and 1.39 mg/L, respectively, for the Flemish region and 0.07 and 0.08, respectively, for Brussels. It was decided to use the maximum concentrations in the exposure assessment in order to provide a conservative estimate of the fluoride exposure in Belgian adults.

Fluoride concentrations of different brands of bottled water were obtained from literature [15], from monitoring data by the Belgian Federal Agency for Safety of the Food Chain (FAVV), from monitoring by the French Agency for Safety of the Food Chain (AFSSA) and through personal communications.

When taking into account consumption frequency of different brands of bottled water in Belgium, it was found that in 52.8% of the cases, the consumed brand had a fluoride concentration lower than 0.5 mg/L, in 14.6% of the cases, the fluoride concentration was between 0.5 and 1 mg/L, in 10.4% of the cases between 1 and 1.5 mg/L, in 3.7% of the cases between 1.5 and 5 mg/L and in 0.5% of the cases, the fluoride concentration was higher or equal to 5 mg/L. In 18% of the cases, the fluoride concentration of the consumed water brand could not be retrieved. It was decided to assign a fluoride concentration of 0.4 mg/L to these brands, which represents the mean concentration of the other consumed water brands, weighted by their consumption frequency. The
maximum concentration of 5.5 mg/L was not assigned because this would lead to an unrealistic overestimation of the fluoride exposure in Belgium.

2.4. Statistical Analysis

Only respondents with two completed 24h recall interviews were included in the analyses (n = 3,083; 1,546 men and 1,537 women).

The individual intake of fluoride through consumption of non-alcoholic beverages was estimated using the following equation:

\[Y_i (mg/day) = C \times X_i \]

where \(Y_i \) is the intake of fluoride by individual \(i \) from a particular type of water (in mg per interview day), \(C \) is the concentration of fluoride in that particular type of water (in mg per L), \(X_i \) is the consumption quantity of a certain type of water by individual \(i \) (in L). To estimate the total intake of fluoride per interview day, individual daily intakes of fluoride from different types of water and other beverages were added up.

The usual intake distribution for fluoride was estimated with the Nusser method [32] using the C-side software [33]. Several statistical methods are available to estimate usual intake distributions with the correct mean, variance and skewness. These statistical procedures adjust for day-to-day variability. Of all the different statistical procedures, the Nusser method [32] is highly recommended because it eliminates the intra-individual variance and additionally transforms the data to obtain approximately normally distributed data. The usual intake distribution was weighted and adjusted for the age and sex distribution of the Belgian population and adjusted for day of the week and season.

The results were stratified by region. It was not possible to calculate the results for the region of Brussels separately using C-SIDE because of the low number of positive observations for certain food groups (e.g. coffee/tea). Therefore it was decided to tabulate the results for Flanders (n = 1,923) and the Walloon region (including Brussels) (n = 1,160) separately.

3. Results

In Table 1 and Table 2 the mean daily consumption of non-alcoholic beverages for Flanders and the Walloon region (including Brussels) is tabulated. Total consumption of non-alcoholic beverages was higher in Flanders (p < 0.001), while total consumption of bottled water (sum of mineral and source water) was higher in the Walloon region (p < 0.05). Consumption of soft drinks (p < 0.001), coffee and tea (p < 0.001) was higher in Flanders.
Table 1. Mean (SE, P50, P95, P97.5, P99) usual consumption of non-alcoholic beverages in Flanders (mL/day), all days, entire adult population (Food consumption survey, 2004).

	Mean	SE	P50	P95	P97.5	P99	N
Non alcoholic beverages	1,446	13	1,361	1,552	2,868	3,277	1,923
	of which						
Tap water							
Fruit and vegetable juices	63	2	32	225	281	357	668
Carbonated/ soft /isotonic drinks, diluted	219	6	145	727	902	1,143	930
Coffee, tea and herbal teas	502	9	445	1,205	1,484	1,802	1,506
Coffee	409	8	348	1,062	1,321	1,663	1,350
Tea and herbal teas	84	4	0	423	562	745	463
Tap water	73	4	0	427	603	843	429
Bottled water							
Mineral and source water	526	10	428	1,386	1,631	1,979	1,438
Mineral and source water, non carbonated	405	9	299	1,276	1,461	1,767	1,189
Mineral and source water, carbonated	117	5	0	537	700	921	498

SE: standard error
N: number of respondents who consumed at least one item from the particular food group during at least one of the two interview days

Table 2. Mean (SE, P50, P95, P97.5, P99) usual consumption of non-alcoholic beverages in the Walloon region (Brussels included), all days, entire adult population (mL/day) (Food consumption survey, 2004).

	Mean	SE	P50	P95	P97.5	P99	N
Non alcoholic beverages	1,370	14	1,326	2,232	2,462	2,758	1,158
	of which						
Tap water							
Fruit and vegetable juices	60	2	33	210	263	335	432
Carbonated/ soft /isotonic drinks, diluted	190	6	138	588	703	856	504
Coffee, tea and herbal teas	363	8	322	853	1,006	1,223	916
Coffee	303	8	267	787	958	1,184	832
Tea and herbal teas	49	3	0	254	324	420	203
Tap water	132	7	0	632	826	1,085	366
Bottled water							
Mineral and source water	550	12	492	1,315	1,493	1,713	857
Mineral and source water, non carbonated	446	11	373	1,188	1,368	1,574	755
Mineral and source water, carbonated	99	6	0	547	727	962	202

SE: standard error
N: number of respondents who consumed at least one item from the particular food group during at least one of the two interview days
Total mean intake of fluoride through consumption of non-alcoholic beverages in Flanders was 1.36±0.66 mg/day, while in the Walloon region it amounted to an average of 0.93±0.60 mg/day (p < 0.001). Fluoride intake through consumption of non-alcoholic beverages was found to be 3.06 mg/day at the 97.5th percentile for Flanders and 2.44 mg/day at the 97.5th percentile for the Walloon region. In both regions, the fluoride intake was higher in men than in women (p < 0.001) and individuals in the 19-59 year age group had a higher fluoride intake compared to the other age groups (p < 0.001) (Table 3 and 4).

Table 3. Fluoride intake (mg/day) through consumption of non-alcoholic beverages in Flanders, by sex and age group (Food Consumption Survey, 2004).

	Average	$\text{SE} \times 10^{-2}$	P50	P95	P97.5	P99	N	% tap water
Total population	1.4	1.6	1.2	2.6	3.1	3.6	1923	82
Sex								
Men	1.5	2.6	1.3	2.9	3.4	4.1	971	84
Women	1.3	1.9	1.2	2.4	2.7	3.1	952	80
Age (years)								
15-18	1.2	2.3	1.1	2.1	2.4	2.7	488	80
19-59	1.5	3.5	1.3	3.0	3.4	4.1	510	81
60-74	1.2	2.3	1.1	2.1	2.4	2.7	481	83
>75	1.0	1.9	1.0	1.8	2.1	2.3	444	83

SE: standard error
N: number of respondents

Table 4. Fluoride intake (mg/day) through consumption of non-alcoholic beverages in the Walloon region (Brussels included), by sex and age group (Food Consumption Survey, 2004).

	Average	$\text{SE} \times 10^{-2}$	P50	P95	P97.5	P99	N	% tap water
Total population	0.9	1.8	0.8	2.1	2.4	2.9	1160	63
Sex								
Men	1.0	2.5	0.9	2.2	2.6	3.1	575	70
Women	0.9	2.5	0.8	1.9	2.3	2.7	585	58
Age (years)								
15-18	0.9	3.6	0.8	2.0	2.3	2.8	272	62
19-59	1.0	3.4	0.9	2.2	2.6	3.1	320	64
60-74	0.9	3.4	0.8	1.9	2.3	2.8	308	60
>75	0.7	2.5	0.6	1.5	1.7	1.9	260	64

SE: standard error
N: number of respondents
In Figures 1 and 2, it may be observed that for both regions, both sexes and all age groups the relative contribution of tap water consumption to the total fluoride intake was higher than the contribution of bottled water consumption. Fluoride exposure through consumption of tap water was higher in men than in women while fluoride exposure through consumption of bottled water was higher in women than in men in both regions. In both regions, the 19-59 year age group had the highest exposure to fluoride both through consumption of tap water and consumption of bottled water.

4. Discussion

In general, total consumption of bottled water was higher in the Walloon region and total consumption of tap water was higher in Flanders. People living in the Walloon region have a lower fluoride exposure compared to persons living in Flanders.

The observed fluoride intakes in both regions in the adult population were far below the upper level of intake of 7 mg/day, set by EFSA [12]. Even at the higher percentiles and taking into account an additional daily intake of fluoride through food consumption of 2 mg/day [28], the upper limit was not exceeded. Moreover, because maximum concentrations were used for the fluoride concentrations in tap water, this may have produced a considerable overestimation of the exposure.
Figure 1. Fluoride intake (mg/day) through consumption of tap water and bottled water by sex, for Flanders (up) and the Walloon region (including Brussels) (below).
Figure 2. Fluoride intake (mg/day) through consumption of tap water and bottled water by age group, for Flanders (up) and the Walloon region (including Brussels) (below).
The maximum concentrations were observed only in very specific, small areas in Belgium. On the other hand, fluoride levels in tea can be very high but were not taken into account because there was a lack of information about the duration of brewing in the food consumption survey. This may have produced an underestimation of total fluoride exposure. Also the neglect of water consumption during teeth brushing and preparation of food, and the neglect of fluoride intake through supplementation and inhalation may have posed an underestimation of fluoride intake.

On the basis of these results, we can assume that there is no potential risk for an excessive intake of fluoride in the general adult population in Belgium. In certain individual cases an excessive exposure could still occur, for example a person meeting the recommendation of consuming at least 1.5 L water a day through consumption of bottled water and being loyal to one brand containing 5 mg/L of fluoride, will exceed the upper level only through water consumption. Individuals consuming bottled water containing a fluoride concentration between 1.5 and 5 mg/L and meeting the recommendation of consuming at least 1.5 mg/L water a day, could exceed the upper level, when also fluoride intake through food consumption would be considered. Inadvertent use of highly mineralized water or unawareness of the fluoride content due to incomplete labeling, can lead to an increase of the risk for fluorosis and other health problems. Heavily mineralized water of the Vichy sources is known to cause fluorosis of not only the dentition [34], but also of the skeleton.

The most recent available exposure estimates to fluoride from all sources in Europe show total intakes from 0.5 to 1.2 mg/day, when no fluoridated salt or fluoride containing tooth paste are used, and no supplements are taken. In case where fluoridated salt is used and fluoridated water is drunk and used for the preparation of food and tea, the sum of fluoride intake could reach 6 mg/day, without taking into account toothpaste use [12].

A limitation of the study is that only few respondents know the source of the bottled water consumed. More respondents know the exact brand of the consumed water but although the legislation states ‘one source one brand’, this is often not respected by the industry.

Another limitation of the study is the lack of data about infants and young children. Infant formula, with the exception of soy protein based formula, has low fluoride content when the powder is prepared with low mineralized water (0.01 to 0.05 mg/L). If these formulas were prepared with water containing 0.3 mg fluoride/L and a 5-kg infant drinks 800 mL, fluoride intakes of 60 μg fluoride/kg bodyweight/day or less would result.

The use of water containing 1 mg/L of fluoride would considerably increase the fluoride intake by threefold and with a fluoride concentration between 1 and 5 mg/L the upper level could easily be exceeded.

For infants and children between the age of three and five years old in the USA total daily intakes from all sources (drinking water, beverages, infant formula, cow’s milk, food, soil, supplements and toothpaste) have been estimated. For infants, in non-fluoridated areas the average intake was estimated to be 0.08 mg/kg/day while 0.11 mg/kg/day in fluoridated areas. For young children the average intakes were 0.06 mg/kg/day and 0.06 mg/kg/day respectively [35].

In the Flemish preschool children survey from 2002 (n = 696 with three completed dietary records, 2.5 to 6 years old), it has been shown that intake of tap water is 358 mL/day while intake
of bottled water was 180 mL/day [36]. The upper levels for children from 1 to 8 years old being 1.5 mg (1-3 years) or 2.5 mg (4-8 years) fluoride per day can be exceeded when bottled water with a concentration of 5 mg/L is used for consumption. When use of toothpaste and supplements would be taken into account, the upper level of 2.5 mg/day could be more easily exceeded.

Levels of fluoride through supplementation in children are estimated to be 0.25 mg/day before the age of 2, 0.50 mg/day between 2 and 4 years, 0.75 mg/day between 4 and 6 years and more than 1 mg/day older than 6 years [12]. Fluoride from toothpaste swallowed by a four-year old child was found to contribute up to one third to one half of the total daily fluoride intakes of 3.6 and 2.3 mg, respectively [37].

As part of an epidemiological study on the oral health of Flemish school children, fluoride use was studied together with risk factors (medical history, tap water fluoride concentration, use of fluoride supplements, toothpaste and brushing habits). Fluorosis was present in about 10% of the 4128 children examined. Logistic regression analyses establish tooth brushing frequency and fluoride supplement use in addition to tap water fluoride concentrations above 0.7 mg/L as significant risk factors when the presence of fluorosis on at least one tooth was used as outcome variable [38].

5. Conclusions

The probability of exceeding the UL of 7 mg fluoride per day via a normal diet was estimated to be very low in the Belgian adult population. However, consumption of water with high fluoride content, e.g. more than 3-4 mg/L, predisposes to exceeding the UL, when also fluoride intake through consumption of foods would be considered. A revision of the norms is not necessary but it is recommended to include fluoride concentration on the labels of bottled water. Higher fluoride concentrations should be more clearly indicated. Reliable data are needed about total dietary fluoride intake in children, especially younger children, because the upper level of fluoride intake is much lower and the intake of fluoride through consumption of tooth paste and food supplements can be considerable. The incidence and severity of dental fluorosis should be monitored as an indicator of fluoride exposure during childhood.

Acknowledgements

The authors acknowledge the work of the field work team of the food consumption survey: Stéphanie De Vriese, Michel Moreau and Inge Huybrechts and the dietary support from Mia Bellemans, Micke De Maeyer, Khadija El Moumni and Davy Van Steenkiste. Special thanks go to the respondents and the dietitians during the field work. The survey was funded by the Federal Ministry of Health, Food Chain and Environment.
References

1. World Health Organization. Report of an Expert Committee on Oral Health Status and Fluoride Use. Fluorides and Oral Health. WHO Technical Report Series No 846. WHO: Geneva, Switzerland, 1994.
2. Hodge, H.C.; Smith, F.A. Occupational fluoride exposure. J. Occup. Environ. Med. 1977, 19, 12-39.
3. Caraccio, T.; Greensher, J.; Mofenson, H.C. The toxicology of fluoride. In Clinical Management of Poisoning and Drug Overdose, 2nd Ed.; Haddad, L., Winchester, J., Eds.; WB Saunders Philadelphia: Pennsylvania, USA, 1983.
4. Ekstrand, J.; Spak, C.J.; Ehnebo, M. Renal clearance of fluoride in a steady state condition in man: influence of urinary flow and pH changes by diet. Acta Pharmacol. Toxicol. 1982, 50, 321-325.
5. Groeneveld, A.; van Eck, A.A.; Backer Dirks, O. Fluoride in caries prevention: is the effect pre- or post-eruptive? J. Dent. Res. 1990, 69, 751-755.
6. Stephen, K.W.; McCall, D.R.; Tullis, J.I. Caries prevalence in northern Scotland before, and 5 years after, water defluoridation. Br. Dent. J. 1987, 163, 324-326.
7. Jackson, D.; Murray, J.J.; Fairpo, C.G. Life-long benefits of fluoride in drinking water. Br. Dent. J. 1973, 134, 422.
8. Wiktorsson, A.M.; Martinsson, T.; Zimmerman, M. Caries prevalence among adults in communities with optimal and low-fluoride concentrations. Community Dent. Oral Epidemiol. 1992, 20, 359-363.
9. Burt, B.A. The changing patterns of systemic fluoride intake. J. Dent. Res. 1992, 71, 1228-1237.
10. Singer, L.; Ophaug, R.H. Concentrations of ionic, total and bound fluoride in plasma. Clin. Chem. 1979, 25, 523-525.
11. Food and Nutrition Board. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D and Fluoride. 1997. Institute of Medicine National Academy Press: Washington D.C., USA, 1997.
12. EFSA. Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a request from the Commission related to the Tolerable Upper Intake Level of Fluoride. EFSA J. 2005, 192, 1-65.
13. Riggs, B.L.; Seeman, E.; Hodgson, S.F.; Taves, D.R.; O'Fallon, W.M. Effect of the fluoride/calcium regimen on vertebral fracture occurrence in postmenopausal osteoporosis. Comparison with conventional therapy. N. Eng. J. Med. 1982, 306, 561-566.
14. Sloof, W.; Eerens, H.; Janus, J.; Ros, J. Integrated criteria document: fluorides. National Institute of Public Health and Environmental Protection: Bilthoven, The Netherlands, 1989; Report No.: 758474010.
15. Bottenberg, P. Fluoride content of mineral waters on the Belgian market and a case report of fluorosis induced by mineral water use. Eur. J. Pediatr. 2004, 163, 626-627.
16. Fejerskov, O.; Richards, A.; DenBesten, P. Dose-response and dental fluorosis. In Fluoride in Dentistry, 2nd Ed.; Fejerskov, O., Ekstrand, J., Burt, B.A., Eds; Munksgaard: Copenhagen, Denmark, 1996; pp. 153-166.

17. Horowitz, H.S.; Driscoll, W.S.; Meyers, R.J.; Heifetz, S.B.; Kingman, A. A new method for assessing the prevalence of dental fluorosis - the tooth surface index of fluorosis. J. Am. Diet. Assoc. 1984, 109, 37-41.

18. Liang, C.; Ji, R.; Cao, S. Epidemiological analysis of endemic fluorosis in China. Environ. Carcinogen Ecotoxicol. Rev. 1997, C15, 138.

19. McDonagh, M.S.; Whiting, P.F.; Wilson, P.M.; Sutton, A.J.; Chestnutt, I.; Cooper, J.; Misso, K.; Bradley, M.; Treasure, E.; Kleijnen, J. Systematic review of water fluoridation. Br. Med. J. 2000, 321, 855-859.

20. Thylstrup, A. Distribution of dental fluorosis in the primary dentition. Community Dent. Oral Epidemiol. 1978, 6, 329-337.

21. Xu, R.Q.; Wu, D.Q.; Xu, R.J. Relations between environment and endemic fluorosis in Hobot region, Inner Mongolia. Fluoride 1997, 30, 26-28.

22. Wei, S.H.Y. Concentration of fluoride and selected other elements in teas. Nutrition 1989, 5, 237-240.

23. Chan, J.T.; Koh, S.H. Fluoride content in caffeinated, decaffeinated and herbal teas. Caries Res. 1996, 30, 88-92.

24. Whyte, M.P.; Essmyer, K.; Gannon, F.H.; Reinus, W.R. Skeletal fluorosis and instant tea. Am. J. Med. 2005, 118, 78-82.

25. Barnhart, W.E.; Hiller, L.K.; Leonard, G.J.; Michaels, S.E. Dentifrice usage and ingestion among four age groups. J. Dent. Res. 1974, 53, 1317-1322.

26. Hargreaves, J.A.; Ingram, G.S.; Wagg, B.J. A gravimetric study of the ingestion of toothpaste by children. Caries Res. 1972, 6, 237-243.

27. Naccache, H.; Simard, P.L.; Trahan, L.; Demers, M.; Lapointe, C.; Brodeur, J.M. Variability in the ingestion of toothpaste by preschool children. Caries Res. 1990, 24, 359-363.

28. Agence Française de Sécurité Sanitaire des Aliments (AFSSA). Rapport du comité d'experts spécialisé "eaux" concernant la proposition de fixation d'une valeur limite du fluor dans les eaux minérales naturelles. AFSSA: Maisons-Alfort, France, 2003.

29. Report on safe upper levels for vitamins and minerals. Expert Group on Vitamins and Minerals: London, UK, 2003.

30. De Vriese, S.; Debacker, G.; de Henauw, S.; Huybrechts, I.; Kornitzer, M.; Leveque, A.; Moreau, M.; van Oyen, H. The Belgian food consumption survey: aims, design and methods. Arch. Public Health 2005, 63, 1-16.

31. Slimani, N.; Valsta, L. Perspectives of using the EPIC-SOFT programme in the context of pan-European nutritional monitoring surveys: methodological and practical implications. Eur. J. Clin. Nutr. 2002, 56, S63-S74.
32. Nusser, S.M.; Carriquiry, A.L.; Dodd, K.W.; Fuller, W.A. A semiparametric transformation approach to estimating usual daily intake distributions. *J. Am. Stat. Assoc.* 1996, 91, 1440-1449.

33. Iowa State University. *A user's guide to C-SIDE. Software for Intake Distribution Estimation.* Department of Statistics and Center for Agricultural and Rural Development; Iowa State University: Ames, Iowa State, USA, 1996; Report No.: Technical Report 96-TR 31, pp. 1-69.

34. Nicolay, A.; Bertocchio, P.; Bargas, E.; Coudore, F.; Al Chahin, G.; Reynier, J.P. Hyperkalemia risks in hemodialysed patients consuming fluoride-rich water. *Clin. Chim. Acta* 1999, 281, 29-36.

35. Erdal, S.; Buchanan, S.N. A quantitative look at fluorosis, fluoride exposure, and intake in children using a health risk assessment approach. *Environ. Health Perspect.* 2005, 113, 111-117.

36. Huybrechts, I. *Dietary habits in preschool children.* Ghent University: Ghent, Belgium, 2008; pp. 1-425.

37. Richards, A.; Banting, D.W. Fluoride toothpastes. In *Fluoride in Dentistry*, 2nd Ed.; Fejerskov, O., Ekstrand, J., Burt, B.A., Eds; Munksgaard: Copenhagen, Denmark, 1996.

38. Bottenberg, P.; Declerck, D.; Ghidey, W.; Bogaerts, K.; Vanobbergen, J.; Martens, L. Prevalence and determinants of enamel fluorosis in Flemish schoolchildren. *Caries Res.* 2004, 38, 20-28.

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Au sujet du Conseil Supérieur de la Santé (CSS)

Le Conseil Supérieur de la Santé est un service fédéral relevant du SPF Santé publique, Sécurité de la Chaîne alimentaire et Environnement. Il a été fondé en 1849 et rend des avis scientifiques relatifs à la santé publique aux ministres de la santé publique et de l'environnement, à leurs administrations et à quelques agences. Ces avis sont émis sur demande ou d'initiative. Le CSS ne prend pas de décisions en matière de politique à mener, il ne les exécute pas mais il tente d'indiquer aux décideurs politiques la voie à suivre en matière de santé publique sur base des connaissances scientifiques les plus récentes.

Outre son secrétariat interne composé d'environ 25 collaborateurs, le Conseil fait appel à un large réseau de plus de 500 experts (professeurs d'université, collaborateurs d'institutions scientifiques), parmi lesquels 200 sont nommés à titre d'expert du Conseil. Les experts se réunissent au sein de groupes de travail pluridisciplinaires afin d'élaborer les avis.

En tant qu'organe officiel, le Conseil Supérieur de la Santé estime fondamental de garantir la neutralité et l'impartialité des avis scientifiques qu'il délivre. A cette fin, il s'est doté d'une structure, de règles et de procédures permettant de répondre efficacement à ces besoins et ce, à chaque étape du cheminement des avis. Les étapes clé dans cette matière sont l'analyse préalable de la demande, la désignation des experts au sein des groupes de travail, l'application d'un système de gestion des conflits d'intérêts potentiels (reposant sur des déclarations d'intérêt, un examen des conflits possibles, et un comité référent) et la validation finale des avis par le Collège (ultime organe décisionnel). Cet ensemble cohérent doit permettre la délivrance d'avis basés sur l'expertise scientifique la plus pointue disponible et ce, dans la plus grande impartialité possible.

Les avis des groupes de travail sont présentés au Collège. Après validation, ils sont transmis au requérant et au ministre de la santé publique et sont rendus publics sur le site internet (www.css-hgr.be), sauf en ce qui concerne les avis confidentiels. Un certain nombre d'entre eux sont en outre communiqués à la presse et aux groupes cibles parmi les professionnels du secteur des soins de santé.

Le CSS est également un partenaire actif dans le cadre de la construction du réseau EuSANH (European Science Advisory Network for Health), dont le but est d’élaborer des avis au niveau européen.

Si vous souhaitez rester informé des activités et publications du CSS, vous pouvez envoyer un mail à l'adresse suivante : info.hgr-css@health.belgium.be.