LETTER • OPEN ACCESS

A complete transition to clean household energy can save one–quarter of the healthy life lost to particulate matter pollution exposure in India

To cite this article: Luke Conibear et al 2020 Environ. Res. Lett. 15 094096

View the article online for updates and enhancements.
Environmental Research Letters

LETTER

A complete transition to clean household energy can save one–quarter of the healthy life lost to particulate matter pollution exposure in India

Luke Conibear, Edward W Butt, Christoph Knote, Nicholas I Lam, Stephen R Arnold, Kushal Tibrewal, Chandra Venkataraman, Dominick V Spracklen and Tami C Bond

1 Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
2 Meteorological Institute, LMU Munich, Germany
3 Schatz Energy Research Center, Humboldt State University, Arcata, CA 95521 United States of America
4 Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80521, United States of America
5 Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, India
6 Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India

E-mail: L.A.Conibear@leeds.ac.uk

Keywords: particulate matter, ambient air pollution, household air pollution, India, solid fuel intervention, health impact assessment, disease burden

Supplementary material for this article is available online

Abstract
Exposure to fine particulate matter (PM\textsubscript{2.5}) is a leading contributor to the disease burden in India, largely due to widespread household solid fuel use. The transition from solid to clean fuels in households has the potential to substantially improve public health. India has implemented large initiatives to promote clean fuel access, but how these initiatives will reduce PM\textsubscript{2.5} exposure and the associated health benefits have not yet been established. We quantified the impacts of a transition of household energy from solid fuel use to liquefied petroleum gas (LPG) on public health in India from ambient and household PM\textsubscript{2.5} exposure. We estimate that the transition to LPG would reduce ambient PM\textsubscript{2.5} concentrations by 25%. Reduced exposure to total PM\textsubscript{2.5} results in a 29% reduction in the loss of healthy life, preventing 348 000 (95% uncertainty interval, UI: 284 000–373 000) premature mortalities every year. Achieving these benefits requires a complete transition to LPG. If access to LPG is restricted to within 15 km of urban centres, then the health benefits of the clean fuel transition are reduced by 50%. If half of original solid fuel users continue to use solid fuels in addition to LPG, then the health benefits of the clean fuel transition are reduced by 75%. As the exposure–outcome associations are non–linear, it is critical for air pollution studies to consider the disease burden attributed to total PM\textsubscript{2.5} exposure, and not only the portion attributed to either ambient or household PM\textsubscript{2.5} exposure. Our work shows that a transition to clean household energy can substantially improve public health in India, however, these large public health benefits are dependent on the complete transition to clean fuels for all.

1. Introduction

Fine particulate matter (PM\textsubscript{2.5}) exposure is a leading contributor to disease burden in India, associated with 8% (95% uncertainty interval, UI: 7–9%) of healthy life lost (disability–adjusted life years, DALYs) (India State-Level Disease Burden Initiative Air Pollution Collaborators 2019). The majority of the air pollution disease burden in India is from ambient PM\textsubscript{2.5} (APM\textsubscript{2.5}) exposure (55% of DALYs), with a substantial contribution from household PM\textsubscript{2.5} (HPM\textsubscript{2.5}) exposure (41% of DALYs) (GBD 2017 Risk Factor Collaborators 2018). Household solid fuel use is also the dominant source (22–56%) of APM\textsubscript{2.5} concentrations in India (Chafe et al 2014, Lelieveld et al 2015, Butt et al 2016, Silva et al 2016, Karagulian et al 2017, Conibear et al 2018, Guo et al 2018, GBD MAPS Working Group 2018, Gao et al 2018, Upadhyay et al 2018, Reddington et al 2019, Chowdhury et al 2019a). The implication is that more than half of the loss of...
healthy life associated with air pollution exposure in India is attributed to household solid fuel use (GBD 2017 Risk Factor Collaborators 2018).

Incomplete combustion of solid fuels leads to substantial emissions of toxic air pollutants (Naheer et al 2007, Gordon et al 2014, Adetona et al 2016). Epidemiological studies have found that a transition from solid to clean fuels in Indian homes can improve respiratory and cardiovascular outcomes (Arlington et al 2019, Sukhshohale et al 2013, Lewis et al 2017, Hystad et al 2019, Balmes 2019). Up until 2015, 700 million people across India primarily used solid fuels, a number that has not changed for several decades (Smith 2017a). Residential solid fuel use includes a wide range of fuels including firewood, charcoal, and animal dung. Past solid fuel interventions in India, such as the National Programme on Improved Chulhas and the National Biomass Cookstoves Initiative, focused on clean and efficient combustion of biomass in ‘improved cookstoves’ (Venkataraman et al 2010, Smith and Sagar 2014). However, the penetration of these stoves remained lower than aimed (Smith 1993, Hanbar and Karve 2002, Government of India 2011) and the emission reductions of these improved cookstoves are more limited in the field than laboratory studies suggest (Sambandam et al 2015, Aung et al 2016, Pope et al 2017, Grieshop et al 2017).

Since 2015, three programmes have promoted liquefied petroleum gas (LPG) access to poor households (Mittal et al 2017). The Pratyaksh Hanstantrit Labh scheme directly pays fuel subsidies into individuals bank accounts (Smith 2017b, Ministry of Petroleum and Natural Gas 2018c). The Pradhan Mantri Ujjwala Yojana scheme aims to provide connections to distributors and enable access to subsidised LPG to 80 million poor households by 2020 (Dabadge et al 2018, Goldemberg et al 2018, Ministry of Petroleum and Natural Gas 2018a, 2018b, 2019). The ‘Give it up’ scheme aims to persuade middle-class households to give up their fuel subsidies which are then redirected to poor households (Government of India 2018). The combined aims of these programmes are to provide clean cooking to 80% of all households by 2019, and 90% by the early 2020s (Goldemberg et al 2018). The Ujjwala scheme’s aim to provide LPG access to 80 million poor households was achieved ahead of schedule in September 2019. The Ujjwala scheme is now in hiatus with a updated version in development (Harish and Smith 2019). Following these programmes, and the continued growth of LPG use for the middle-class without subsidies, the number of solid fuel users is likely to decline.

The transition to clean household energy has the potential to substantially improve public health in India, dependent on access and usage (Gould and Urpelainen 2018, Tripathi and Sagar 2019, Kar et al 2019, Pattanayak et al 2019, Harish and Smith 2019). Access is essential and these LPG programmes have overcome various access issues, such as supply chain distribution problems, connections, and financial access for many. Access alone is not sufficient for a complete transition to clean household energy, as continued usage is required replacing solid fuel use. Usage issues, such as continual affordability, awareness, and stacking with solid fuels, can be common after access is achieved, potentially offsetting public health benefits (Lewis and Pattanayak 2012, Rehfuess et al 2014, Pillarissetti et al 2014, Lozier et al 2016, Clark et al 2017).

The potential of these LPG programmes to reduce total PM_{2.5} (TPM_{2.5}, i.e. APM_{2.5} and HPM_{2.5}) exposure and the associated disease burden have not yet been established. We used a regional chemical transport model with a novel residential emission inventory to explore how hypothetical transitions to clean household energy could change TPM_{2.5} exposure and the loss of healthy life under different access and usage scenarios. We do not attempt to evaluate the impact of specific ongoing clean household energy programmes.

2. Methods

2.1. Model description

Simulations were conducted using the Weather Research and Forecasting model online–coupled with Chemistry (WRF–Chem) version 3.7.1 (Grell et al 2005), incorporating various model improvements, including updated anthropogenic emissions, aqueous chemistry, and a more complex secondary organic aerosol scheme. Detailed information on the model setup is provided in supplementary table 1 (stacks.iop.org/ERL/15/094096/mmedia) and the supplementary methods. Simulations were for the year of 2016 with one month spin–up. The model domain covered South Asia at 30 km (0.3°) horizontal resolution.

Anthropogenic emissions of black carbon (BC), organic matter (OM), non–methane volatile organic compounds (NMVOC), nitrogen oxides (NO\textsubscript{x}), other PM_{2.5}, and sulphur dioxide (SO\textsubscript{2}) for residential biomass (wood, dung, and crop residues for cooking, space heating, and water heating), residential LPG (including biogas), residential kerosene, and residential lighting are for 2010 from a new residential inventory for India (Lam and Bond 2020). These emissions were produced at 1 km spatial resolution based on village surveys of energy services required, then aggregated to 0.25° × 0.25° horizontal resolution. Emission factors for the residential sector were completely reassessed to include field–measured emission factors that have recently become available. Residential kerosene use is diminishing in India without the need for further incentives.

Anthropogenic emissions of BC, organic carbon (OC), NMVOC, NO\textsubscript{x}, other PM_{2.5}, and SO\textsubscript{2} for open burning, power plant coal (thermal), industrial coal (heavy and light), brick production, transportation
(on—road gasoline/compressed natural gas, on—road diesel, and railways), distributed diesel (agricultural tractors, agricultural pumps, and diesel generator sets), and other sources (informal industry, trash burning, and urban fugitive dust) were taken from (Venkataraman et al 2018) as used by the Global Burden of Disease from Major Air Pollution Sources study for 2015 at 0.25° × 0.25° horizontal resolution (GBD MAPS Working Group 2018, Venkataraman et al 2018). Anthropogenic emissions of carbon monoxide (CO), ammonia (NH3), acetylene (C2H2), and methane (CH4) were from the Emission Database for Global Atmospheric Research with Task Force on Hemispheric Transport of Air Pollution version 2.2 for 2010 at 0.1° × 0.1° horizontal resolution (Janssens-Maenhout et al 2015).

2.2. Household energy scenarios
To understand the impacts of interventions to replace solid fuel use with LPG, we completed annual simulations using five different emission scenarios (table 1). Household energy scenarios were split by access and usage issues, relative to a complete transition.

Figure 1 shows the annual anthropogenic emission totals from these scenarios. In the BASELINE scenario, residential biomass makes a substantial contribution to anthropogenic OC and NMVOC emissions. Power plant and industrial coal use dominate anthropogenic emissions of other chemical components of PM2.5, SO2, and NOX. Anthropogenic dust, open burning, and trash burning contribute strongly to anthropogenic PM2.5 emissions. Transportation and distributed diesel contribute heavily to anthropogenic NOX and NMVOC emissions. Under the ALLLPG scenario, total BC emissions are reduced by 47%, and OC emissions by 77%, contributing to a 44% reduction in total primary PM2.5 emissions relative to the BASELINE. There are also substantial reductions in NMVOC (28%) emissions, while SO2 and NOX emissions are reduced by less than 2%. Applying the spatial constraint to the intervention as in URB15, resulted in half the emission reduction that was achieved in ALLLPG. The stove stacking scenario in EMIS50 resulted in similar total emission reductions to URB15, but with different spatial patterns.

2.3. Model evaluation
Model evaluation was conducted using measurements obtained from OpenAQ (OpenAQ 2019). Following Manning et al (2018), sites were accepted for evaluation when there was more than 16 h of data per day, more than 50 d of data, and when hourly–mean PM2.5 concentrations were greater than 5 µg m−3 (93% acceptance). Measurements were aggregated to annual–means. There were 34 OpenAQ measurement sites in India for 2016 that passed this criteria. We compared the same days in the model with measurements from OpenAQ were primarily collected following Manning et al (2018). The measurements from OpenAQ were primarily collected from the Central Pollution Control Board (Ministry of Environment and Forests 2018). To increase the sample size of measurement sites for evaluation, these were combined with the World Health Organization Global Ambient Air Quality Database for measured

Scenario	Description
BASELINE	A counterfactual scenario representative of 2015 before these LPG programmes begun. Household solid fuel use based on energy use characteristics with emissions informed by village and town data in the 2011 census and other sources (Government of India 2011, Lam and Bond 2020).
ALLLPG	Energy services currently met with biomass were completely replaced by fuels with LPG–equivalent energy and emission characteristics for cooking, water heating, space heating services, and zero–emission electric sources for residential lighting. The residential emissions here do not account for LPG leakages at point of use or in the delivery system. This scenario reflects the theoretical potential of a complete transition to clean household energy, assuming complete coverage and adoption. We do not attempt to simulate specific LPG programmes in India. We note that there are currently no clean–fuel interventions for space, water, and fodder heating.
URB15	An access scenario, where energy transition characteristics of ALLLPG but only for households within 15 km from urban areas. This scenario considered that programmes have limited effectiveness outside of urban areas, driven by a variety of factors, including plausible access to commercially distributed fuels.
STATE50	An access scenario, where emission reductions in URB15 were applied evenly across each state. Anthropogenic emission totals were the same within the URB15 and STATE50 scenarios, but the spatial distributions were different.
EMIS50	A usage scenario, where all households were assumed to have access to LPG (as in ALLLPG) but households continued to use solid fuels 50% of the time (stacking) in addition to using LPG. Residential emissions were estimated as 50% of residential emissions from the BASELINE scenario added to the residential emissions from the ALLLPG scenario. The extent of stove stacking was a conservative approximation of the recently updated CEEW dataset of energy access across 6 Indian states (Jain et al 2018).
annual–mean PM$_{2.5}$ concentrations in 2016 (World Health Organization 2018).

The model captures the spatial variation and magnitude of annual–mean APM$_{2.5}$ concentrations across India, with greatest concentrations over the Indo–Gangetic Plain (figure 2). The model slightly underestimates observed APM$_{2.5}$ concentrations (NMBF = −0.12 and NMAEF = 0.39). Our previous work used a similar model configuration and similarly underestimated measured APM$_{2.5}$ concentrations (Conibear et al 2018a). Overall, the simulated APM$_{2.5}$ concentrations show adequate skill to address questions of relative change in long–term APM$_{2.5}$ concentrations over India.

2.4. Health impact assessment

All the health impact assessments were for the same year (2015) to remove confounding influences of changing population size, population age, and baseline mortality rates. The health impact assessment estimated the disease burden attributable to PM$_{2.5}$ exposure using population attributable fractions (PAF). Intervention–driven variations in exposure were used to predict associated variations in outcome. This study followed the approach of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 (GBD 2017 Risk Factor Collaborators 2018). The GBD2017 apportioned the disease burden attributable to TPM$_{2.5}$ between APM$_{2.5}$

Figure 1. Anthropogenic emission totals for other fine particulate matter (PM$_{2.5}$) excluding black carbon (BC) and organic carbon (OC), then individual totals for BC, OC, sulphur dioxide (SO$_2$), nitrogen oxides (NO$_x$), and non–methane volatile organic compounds (NMVOC), from all sectors. Subplots (a)–(d) show the emission scenarios used in this study based on Global Burden of Disease from Major Air Pollution Sources emissions (GBD MAPS Working Group 2018, Venkataraman et al 2018) with the residential emissions from (Lam and Bond 2020) for the BASELINE, ALLLPG, URB15 and STATE50, and EMIS50 scenarios, respectively. Emission totals (Mt) per pollutant shown above each corresponding bar, with the percentage reduction relative to the BASELINE for subplots (b)–(d).
and HPM$_{2.5}$ for solid fuel users and non–solid fuel users following relationships in supplementary table 2. The proportional PAF allowed for the individual disease burdens to be additive, due to the joint effects of APM$_{2.5}$ and HPM$_{2.5}$ being considered on single integrated exposure–response (IER) function per disease. The primary metrics used in the health impact assessment are the annual number of premature mortalities (MORT) and the rate of DALYs per 100 000 population, i.e. the total loss of healthy life. Detailed information on the methodology for the health impact assessment for APM$_{2.5}$ and HPM$_{2.5}$ are in the supplementary methods, where supplementary figure 1 shows the HPM$_{2.5}$ concentrations and supplementary figure 2 shows the IER. The epidemiological data underlying health impact assessments are rapidly developing and a range of uncertainties remain (see supplementary methods). Recent developments to the IER for GBD2017 allow a better understanding of the combined impacts of household and ambient PM$_{2.5}$ exposure. As the main results of this paper are comparative, future epidemiological developments that influence the absolute disease burdens will not impact the comparative lessons drawn from this paper.

3. Results and discussion

3.1. Current disease burden associated with PM$_{2.5}$ exposure in India

We calculated annual–mean population–weighted APM$_{2.5}$ concentrations of 75.4 µg m$^{-3}$. This estimate is lower than the annual–mean measured APM$_{2.5}$ concentrations (90 µg m$^{-3}$, figure 2(b)) and the latest GBD (91 µg m$^{-3}$, GBD 2017 Risk Factor Collaborators 2018), but higher than Chowdhury et al (2019b) (55 µg m$^{-3}$) (supplementary figure 3). We estimated annual–mean population–weighted HPM$_{2.5}$ based on data from Shupler et al (2018), of 248.6 µg m$^{-3}$, 178.9 µg m$^{-3}$, and 216.2 µg m$^{-3}$ for females, males, and children, respectively.

Figure 3 shows the disease burden associated with TPM$_{2.5}$ exposure under the BASELINE scenario. We estimated 1 190 000 (95UI: 764 000–1 601 000) premature mortalities per year associated with TPM$_{2.5}$ exposure, with 44% from APM$_{2.5}$ exposure and 56% from HPM$_{2.5}$ exposure. The DALYs rate associated with TPM$_{2.5}$ exposure was 2900 (95UI: 1900–3900) per 100 000 population, with 45% from APM$_{2.5}$ exposure and 55% from HPM$_{2.5}$ exposure. The individual disease burdens associated with APM$_{2.5}$ and HPM$_{2.5}$ exposure are shown in supplementary figures 4 and 5, respectively.

Our estimates for the disease burden associated with TPM$_{2.5}$ exposure are slightly larger (+5% for MORT) than those from the GBD2017 (Institute for Health Metrics and Evaluation 2019). This is the result of our larger estimated disease burdens associated with HPM$_{2.5}$ exposure (+31% for MORT), and smaller estimates of disease burdens associated with APM$_{2.5}$ (-17% for MORT). The larger disease burden estimates associated with HPM$_{2.5}$ exposure are due to our use of higher HPM$_{2.5}$ exposures and the state–specific solid fuel use, both with higher estimates in the densely populated Indo–Gangetic Plain. Overall, our disease burden estimates associated with PM$_{2.5}$ exposure in India are in general agreement with those from the GBD2017.

The health impact assessment was also estimated for ambient ozone (O$_3$) exposure, following the methodology of the GBD2017 (supplementary figure 6 and supplementary methods). The model under–estimated O$_3$ concentrations (NMBF = −0.40 and NMAEF = 0.49), though the magnitude of the bias is similar to many regional modelling studies over India.

![Figure 2. Evaluation of simulated (WRF–Chem; BASELINE emissions) ambient fine particulate matter (APM$_{2.5}$) against measurements from OpenAQ (OpenAQ 2019) and the World Health Organization (2018). (a) Simulated (background) and measurements (circles) annual–mean APM$_{2.5}$ concentrations. (b) Simulated versus measured annual–mean APM$_{2.5}$ concentrations. Normalised mean bias factor (NMBF) = −0.12 and normalised mean absolute error factor (NMAEF) = 0.39.](image-url)

5
Figure 3. Disease burden associated with total fine particulate matter (TPM$_{2.5}$) exposure in India from the BASELINE. (a) Premature mortalities (MORT) and (b) rate of disability–adjusted life years (DALYs) per 100 000 population.

Figure 4. The impact of clean household energy on air quality and public health in India. (a) Annual–mean ambient fine particulate matter (APM$_{2.5}$) concentrations from the ALLLPG minus BASELINE scenario. The difference in the disease burden from the ALLLPG scenario relative to the BASELINE associated with the change in total fine particulate matter (TPM$_{2.5}$) exposure in India. (b) Premature mortalities (MORT) and (c) rate of disability–adjusted life years (DALYs) per 100 000 population. Negative numbers indicate a reduction in disease burden.

(supplementary figure 7 and supplementary methods). We found no difference between the disease burden estimates across the five scenarios. Hence, we focus on the public health impacts associated with TPM$_{2.5}$ exposure.

3.2. Public health benefits of clean household energy

A complete transition to clean household energy (i.e. ALLLPG relative to BASELINE) reduced APM$_{2.5}$ concentrations by 25% (population–weighted from 75.4 µg m$^{-3}$ to 56.4 µg m$^{-3}$, annual–mean) as shown in figure 4(a). Improvements in air quality occur across India, with the largest reductions in pollution across the Indo–Gangetic Plain. The 25% reduction in APM$_{2.5}$ concentrations found here is similar to the 24% reduction estimated by the GBD MAPS Working Group (2018) with similar emissions. Previous studies estimated that a complete removal of residential emissions, without any replacement fuel, would lead to a 22–56% reduction in APM$_{2.5}$ concentrations (Chafe et al 2014, Lelieveld et al 2015, Butt et al 2016, Silva et al 2016, Karagulian et al 2017, Conibear et al 2018, Guo et al 2018, GBD MAPS Working Group 2018, Gao et al 2018, Upadhyay et al 2018, Reddington et al 2019, Chowdhury et al 2019b).

We estimate that a complete transition to clean household energy would prevent 29% of the present–day disease burden associated with PM$_{2.5}$ exposure, preventing 348 000 (95UI: 284 000–373 000) premature mortalities each year (figure 4). A complete transition to LPG reduces DALYs by 800 (95UI: 600–900) per 100 000 population.

Chowdhury et al (2019b) found a complete transition to household LPG in India could reduce the number of premature mortalities associated with APM$_{2.5}$ exposure by 13%, where the population–weighted APM$_{2.5}$ concentrations reduced by 31% to 38 µg m$^{-3}$. We find that a complete transition to clean household energy can reduce the disease burden associated with TPM$_{2.5}$ by 29%, when the...
population–weighted $\text{APM}_{2.5}$ concentrations reduce by 25% to 56.4 $\mu g \text{ m}^{-3}$. A key finding of Chowdhury et al (2019b) is that a transition to clean household energy would allow India to meet the National Ambient Air Quality Standard of 40 $\mu g \text{ m}^{-3}$. While we found a similar percentage reduction in $\text{APM}_{2.5}$ concentrations, annual–mean $\text{APM}_{2.5}$ concentrations in India remained above the National Ambient Air Quality Standard due to higher baseline population–weighted $\text{APM}_{2.5}$ concentrations (75.4 $\mu g \text{ m}^{-3}$ relative to 55 $\mu g \text{ m}^{-3}$). The key novelties of our study are the consideration of $\text{TPM}_{2.5}$ exposure to account for the joint risks between $\text{APM}_{2.5}$ and $\text{HPM}_{2.5}$ exposure, and the use of a high spatial resolution (1 km) residential emission inventory based on village surveys of energy services required. As we account for $\text{TPM}_{2.5}$ exposure, the disease burden estimates associated with $\text{APM}_{2.5}$ exposure are not directly comparable to those from Chowdhury et al (2019b). Despite these differences, our study confirms the major findings of Chowdhury et al (2019b), namely that a complete transition to clean household energy can substantially improve public health in India.

3.3. Incomplete transition to clean household energy

Table 2 and figure 5 summarise the impacts of different household energy scenarios on air quality and public health at the national scale in India. Detailed data per state are provided in the Supplementary Data.

Table 2. The impacts of clean household energy on air quality and public health in India. Total primary fine particulate matter ($\text{PM}_{2.5}$) emissions per year (Mt yr$^{-1}$). Annual–mean, population–weighted, concentrations from ambient fine particulate matter ($\text{APM}_{2.5}$) and household fine particulate matter ($\text{HPM}_{2.5}$). Disease burden estimates for premature mortalities (MORT, annual–sum) and rate of disability–adjusted life years (DALYs, annual–mean) per 100 000 population for $\text{PM}_{2.5}$ pollution ($\text{APM}_{2.5}$, $\text{HPM}_{2.5}$, and $\text{TPM}_{2.5}$). Results per scenario of BASELINE, ALLLPG, URB15, STATE50, and EMISS50. Values in parentheses represent the 95% uncertainty intervals.

Scenario	BASELINE	ALLLPG	URB15	STATE50	EMISS50
Total primary $\text{PM}_{2.5}$ emissions (Mt yr$^{-1}$)	8.8	4.9	6.9	6.9	6.9
$\text{APM}_{2.5}$ ($\mu g \text{ m}^{-3}$)	75.4	56.4	66.3	66.4	65.9
Female	248.6	0.0	129.6	140.8	136.3
Male	178.9	0.0	93.3	101.3	98.1
Child	216.2	0.0	112.8	122.5	118.5
$\text{APM}_{2.5}$ MORT	522 000	842 000	686 000	584 000	570 000
Female	(327 000–716 000)	(481 000–1 228 000)	(408 000–974 000)	(356 000–813 000)	(349 000–790 000)
Male	1300 (800–1800)	2100 (1200–3100)	1600 (1000–2200)	1500 (900–2100)	1400 (900–2000)
$\text{APM}_{2.5}$ DALYs rate per 100 000	668 000	0 (0–0)	352 000	510 000	527 000
Female	(438 000–885 000)	(232 000–465 000)	(325 000–689 000)	(332 000–716 000)	
Male	1600 (1000–2100)	0 (0–0)	1100 (700–1500)	1200 (800–1700)	1200 (800–1700)
Child	1 190 000	842 000	1 038 000	1 094 000	1 097 000
$\text{APM}_{2.5}$ MORT	(764 000–1 601 000)	(481 000–1 440 000)	(640 000–1 440 000)	(681 000–1 502 000)	(681 000–1 506 000)
Female	2900 (1900–3900)	2100 (1200–3100)	2600 (1700–3700)	2700 (1700–3700)	2700 (1700–3700)
Male	1 440 000	1 228 000	1 228 000	1 228 000	1 228 000
Child	689 000	1 228 000	1 228 000	1 228 000	1 228 000
$\text{APM}_{2.5}$ DALYs rate per 100 000	716 000	716 000	716 000	716 000	716 000
Female	(332 000–716 000)	(408 000–974 000)	(356 000–813 000)	(349 000–790 000)	
Male	1 440 000	1 228 000	1 228 000	1 228 000	1 228 000
Child	689 000	1 228 000	1 228 000	1 228 000	1 228 000
$\text{APM}_{2.5}$ DALYs rate per 100 000	716 000	716 000	716 000	716 000	716 000
Female	(332 000–716 000)	(408 000–974 000)	(356 000–813 000)	(349 000–790 000)	
Male	1 440 000	1 228 000	1 228 000	1 228 000	1 228 000
Child	689 000	1 228 000	1 228 000	1 228 000	1 228 000
$\text{APM}_{2.5}$ DALYs rate per 100 000	716 000	716 000	716 000	716 000	716 000

An incomplete transition to clean household energy might be limited by spatial access to LPG distribution (i.e. URB15 relative to ALLLPG). This transition, which reaches 80% of the population, nevertheless reduces the potential health benefits of a clean fuel transition by about 50%. Under this scenario, $\text{APM}_{2.5}$ concentrations are reduced by 12%, in contrast to the 25% reduction in the complete transition. This incomplete transition to clean household fuels results in a 13% reduction in total premature mortality, compared to a 29% reduction in the complete transition to clean fuels. Spatial constraints on access to LPG, falling under the category of ‘distribution potential’ (Lam and Bond 2020), therefore reduce the avoided premature mortalities by 197 000 (95UI: 160 000–211 000) per year. This scenario also reduces the avoided DALYs by 600 (95UI: 400–600) per 100 000 population (supplementary figure 9).

If emission reductions are spread evenly among remote rural areas compared with urban centres (i.e. STATE50 relative to URB15), the national–mean $\text{APM}_{2.5}$ concentrations are also reduced by 12%. The spatial distribution of emission reductions means that $\text{APM}_{2.5}$ concentrations under STATE50 are larger in urban areas (up to + 15 $\mu g \text{ m}^{-3}$ in Delhi) and smaller in rural areas (up to −15 $\mu g \text{ m}^{-3}$ in Uttar Pradesh and Bihar) relative to URB15 (supplementary figure 10(a)). The disease burden from $\text{TPM}_{2.5}$ exposure under STATE50 increases by 5% relative to URB15, and the number of premature mortalities increases by 55 000 (95UI: 41 000–62 000) per year (supplementary figure 10(b)). This increase is the net of two opposing changes: a 45% increase in the disease...
burden from HPM_{2.5} exposure under STATE50 relative to URB15, because all households using solid fuels under the BASELINE retain some solid fuel use in STATE50, and a 15% decrease in the disease burden from APM_{2.5} exposure caused by reduced emissions in high-population urban areas. The dominating role of HPM_{2.5} is due to the proportional PAF and the non-linear IER, where large HPM_{2.5} exposures under STATE50 drive large disease burdens from TPM_{2.5} exposure. Comparing STATE50 to ALLLPG, where remote rural areas have relatively small emission reductions, the health benefits of the clean fuel transition are reduced by approximately 75%. The implication here is that in addition to reaching remote rural areas, the reductions in HPM_{2.5} exposure need to be substantial.

Stove stacking with solid fuels (i.e. EMIS50 relative to ALLLPG) reduces the public health benefits of a clean fuel transition by approximately 75%. Under the stove stacking scenario, APM_{2.5} concentrations are reduced by 13%, compared to 25% in the complete transition. Stove stacking reduces the number of avoided premature mortalities by 255,000 (95UI: 201,000–278,000), and reduces the avoided DALYs by 600 (95UI: 500–700) per 100,000 population (supplementary figure 11). The implication of these constraints, coupled to the non-linear IER where risk decreases substantially at the lowest TPM_{2.5} concentrations, suggests that large public health benefits are possible, but only if there is a nearly complete and exclusive transition to clean household energy.

A key implication of these results is that it is critical for air pollution studies of residential emissions to consider the disease burden attributed to TPM_{2.5} exposure, and not only the portion of TPM_{2.5} attributed to either APM_{2.5} or HPM_{2.5} exposure. This is important because the exposure–outcome associations are non-linear and the joint effects of APM_{2.5} and HPM_{2.5} are proportional. This means that as the disease burden attributed to HPM_{2.5} exposure decreases, the disease burden attributed to APM_{2.5} exposure can increase, and vice versa. For example, under the BASELINE scenario 522,000 (95UI: 327,000–716,000) premature mortalities were attributed to APM_{2.5} exposure, while under the ALLLPG scenario this attribution increased to 842,000 (95UI: 481,000–1,228,000) premature mortalities, despite a 25% reduction in APM_{2.5} exposure. This increased attribution to APM_{2.5} exposure when HPM_{1.5} exposure is removed is due to the non-linear exposure–outcome association, where both APM_{2.5} and HPM_{2.5} exposures are individually high enough so that the relative risk is in the flatter section of the response (supplementary figure 2). Hence, a slightly lower total risk from TPM_{2.5} exposure is now entirely attributed to APM_{2.5} exposure, rather than being attributed approximately evenly between APM_{2.5} and HPM_{2.5} exposures. The importance of these joint
effects are also demonstrated by the variation in frequency distributions between the URB15, STATE50, and EMISS50 scenarios (supplementary figure 8). All three scenarios have similar frequency distributions of APM₂.₅ exposure (supplementary figure 8(a)), however, they vary in HPM₂.₅ exposures (supplementary figure 8(b)) which drives variations in the overall disease burden associated with TPM₂.₅ exposure (supplementary figure 8(f)), and the corresponding attribution between APM₂.₅ and HPM₂.₅ exposure (supplementary figure 8(d) and 8(e)). The importance of integrating APM₂.₅ and HPM₂.₅ exposures in India and other areas of high residential solid fuel use has been emphasised in previous studies (Balakrishnan et al 2014, Aunan et al 2018). High residential solid fuel use leads to large HPM₂.₅ exposures and substantial source contributions to APM₂.₅ exposures, whereby the reduction of residential emissions is an important equity issue in India (Kathuria and Khan 2007, Cowling et al 2014).

3.4. The importance of a complete transition to clean household energy

We showed that the transition to clean household energy has the potential to reduce the disease burden associated with PM₂.₅ exposure by 29%, preventing 348 000 (95UI: 284 000–373 000) premature mortalities every year. These potential public health benefits are dependent on the complete transition to clean fuels. Limited spatial access to LPG reduced health benefits by 50%, and stove stacking with solid fuels reduced health benefits by 75%. This dependency of public health benefits on a complete transition to clean fuels has been seen in India (Pillarisetti et al 2014, 2018, Hanna et al 2016, Smith 2017a, Aung et al 2018).

To complete the transition to clean household energy and provide these substantial public health benefits, remaining access and usage issues need to be overcome (Gould and Urpelainen 2018, Tripathi and Sagar 2019, Kar et al 2019, Pattanayak et al 2019, Harish and Smith 2019). These include extending access to all, especially the most remote, poor, and vulnerable (Harish and Smith 2019), increasing refill rates (Jain et al 2018, Pillarisetti et al 2019), improving continual affordability (Harish and Smith 2019, Tripathi and Sagar 2019), and improving awareness of the need for continual use of clean fuels (Smith 2018, Harish and Smith 2019). The complete transition to clean household energy may also provide multiple benefits to sustainable development, human wellbeing, the climate, ecosystems, and the economy (Smith and Haigler 2008, Wilkinson et al 2009, Venkataraman et al 2010, Smith et al 2014, Bailis et al 2015, World Health Organization 2016, Rosenthal et al 2018).

We explored how hypothetical transitions to clean household energy could change air pollution exposure and the consequent change in associated health outcomes. We did not attempt to evaluate the impact of specific clean energy programmes. The isolated impacts of exposure change were quantified by holding demographics and background mortality rates constant. To directly assess effectiveness of specific air quality policies to improve human health, causal epidemiology study designs will be required once the policies are complete and the appropriate data is available (van Erp et al 2012, Zigler and Dominici 2014, Zigler et al 2016, Boogaard et al 2017, Burns et al 2019). Exposure–outcome differentials and effect modification among equity groups are important future research topics for air pollution studies in India.

4. Conclusion

We quantified the impacts of a nationwide transition from household solid fuel to LPG in India on the total loss of healthy life. We used WRF–Chem simulations to estimate that the transition to clean household energy would reduce ambient PM₂.₅ concentrations by 25%. Reduced total PM₂.₅ (ambient and household) exposure results in an estimated 29% reduction in the loss of healthy life, preventing 348 000 (95UI: 284 000–373 000) premature mortalities every year. These health benefits are contingent on a complete transition to LPG. If access to LPG is restricted to within 15 km of urban centres, corresponding to 80% of the national population, then the health benefits of the clean fuel transition are reduced by 50%. If half of original solid fuel users continue to use solid fuels in addition to LPG, health benefits of the clean fuel transition are reduced by 75%. As the exposure–outcome associations are non–linear, it is critical for air pollution studies of residential emissions to consider both ambient and household PM₂.₅ exposures. Our work shows that a transition to clean household energy can substantially improve public health in India, but the large public health benefits are dependent on reaching a complete transition to clean household fuels.

Acknowledgments

We gratefully acknowledge support from the AIA Group, a European Research Council Consolidator Grant (771492), the Engineering and Physical Sciences Research Council Centre for Doctoral Training in Bioenergy (Grant No.EP/L014912/1), and Assistance Agreement Nos. EPA RD–83542301 and RD–83542501 awarded by the US Environmental Protection Agency (USEPA). This work was undertaken on the Advanced Research Computing facility, part of the High Performance Computing facilities at the University of Leeds, UK. This work used WRFotron version 2.0, a tool to automate WRF–Chem runs with re–initialised meteorology (Conibear and Knote 2020). We acknowledge the
use of the WRF–Chem preprocessor tools mozbc, fire_emiss, anthro_emiss, bio_emiss provided by the Atmospheric Chemistry Observations and Modeling Laboratory of the National Center for Atmospheric Research. We acknowledge the use of the Model for Ozone and Related Chemical Tracers global model output available at http://www.acom.ucar.edu/wrf-chem/mozart.shtml. We acknowledge the use of the emission pre–processor available at https://github.com/douglowe/WRF_UoM_EMIT. We acknowledge the Python Software Foundation, Python Language Reference, available at http://www.python.org. This document has not been formally reviewed by USEPA.

The views expressed in this document are solely those of the authors and do not necessarily reflect those of USEPA. USEPA does not endorse any products or commercial services mentioned in this publication. We declare no competing financial interests. The boundaries shown on any maps in this work do not imply any judgement concerning the legal status of any territory or the endorsement or acceptance of such boundaries.

Contributions

LC, DVS, SRA, EWB, and TCB designed the research. KT and CV provided disaggregated emissions from the Global Burden of Disease from Major Air Pollution Sources project and the shapefile for India. TCB and NL provided residential emissions. CK provided WRFotron, a tool to automatize WRF–Chem runs with re–initialized meteorology. LC preprocessed model inputs, setup the model, performed the model simulations, performed the model evaluation, derived the exposure–outcome functions, conducted the data analysis and interpretation, created the figures, and wrote the manuscript. All authors commented on the manuscript.

Data availability

Air pollution and health impact assessment data per Indian state that support the findings of this study are included in the Supplementary Data for this article. Code to setup and run WRF–Chem (using WRFotron version 2.0) is available through Conibear and Knote (2020). Further data that support the findings of this study are available upon request from the authors.

ORCID iDs

Luke Conibear ⯈ https://orcid.org/0000-0003-2801-8862
Nicholas L Lam ⯈ https://orcid.org/0000-0001-7480-0535
Dominick V Spracklen ⯈ https://orcid.org/0000-0002-7551-4597
Tami C Bond ⯈ https://orcid.org/0000-0001-5968-8928

References

Adetona O, Reinhardt T E, Domitro维奇 J, Broyles G, Adetona A M, Kleinman M T, Ottmar R D and Naeher L P 2016 Review of the health effects of wildland fire smoke on wildland firefighters and the public *Inhal. Toxicol.* 28 95–139

Arlington L, Patel A B, Id E S and Karhe K 2019 Duration of solid fuel cookstove use is associated with increased risk of acute lower respiratory infection among children under six months in rural central *India* *PLoS ONE* 14 19

Aunan K, Ma Q, Land M T and Wang S 2018 Population–weighted exposure to PM2.5 pollution in China: an integrated approach *Environ. Int.* 120 111–20

Aung T, Baumgartner J, Jain G, Sethuraman K, Reynolds C, Marshall J and Brauer M 2018 Blood pressure and eye health symptoms from a randomized cookstove intervention in rural *India* *Environ. Res.* 166 658–67

Aung T W, Jain G, Sethuraman K, Baumgartner J, Reynolds C C O, Grieshop A P, Marshall J D and Brauer M 2016 Health and climate–relevant pollutant concentrations from a carbon–finance approved cookstove intervention in rural *India* *Environ. Sci. Technol.* 50 7228–38

Bailis R, Drigo R, Ghilardi A and Masera O 2015 The carbon footprint of traditional woodfuels *Nat. Clim. Change* 5 266–72

Balakrishnan K, Cohen A and Smith K R 2014 Addressing the burden of disease attributable to air pollution in India: the need to integrate across household and ambient air pollution exposures *Environ. Health Perspect.* 122 6–7

Balmes J R 2019 Household air pollution from domestic combustion of solid fuels and health *J. Allergy Clin. Immunol.* 143 1998

Boogaard H, van Erp A M, Walker K D and Shaikh R 2017 Accountability studies on air pollution and health: the HEI experience *Curr. Environ. Health. Rep.* 4 514–22

Burns J, Boogaard H, Polus S, Pfadenhauer L, Rohwer A, Erp van A, Turley R and Refuexes E 2019 Interventions to reduce ambient particulate matter air pollution and their effect on health *Cochrane Database Syst. Rev.* S CD010919

Butt E W et al 2016 The impact of emissions from residential combustion on atmospheric aerosol, human health and climate *Atmos. Chem. Phys.* 16 873–905

Chafe Z A, Brauer M, Klitzmont Z, Dingenen Van R, Mehta S and Rao S 2014 Household Cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease *Environ. Health Perspect.* 122 1314–20

Chowdhury S, Chafe Z A, Pillarissetti A, Lelieveld J, Guttikunda S and Dey S 2019a The Contribution of Household Fuels to Ambient Air Pollution in *India*: A Comparison of Recent Estimates *Climb. Clean Air Policy Centre, New Delhi* CCAP/C/2019/01 (https://ccap.org.in/policynotes/2019/5/30/the-contribution-of-household-fuels-to-ambient-air-pollution-in-india-a-comparison-of-recent-estimates)

Chowdhury S, Dey S, Guttikunda S, Pillarissetti A, Smith K R and Di Girolamo L 2019b Indian annual ambient air quality standard is achievable by completely mitigating emissions from household sources *Proc. Natl Acad. Sci.* 116 10711–6

Clark S et al 2017 Adoption and use of a semi–gasifier cooking and water heating stove and fuel intervention in the tibetan plateau, *China Environ. Res. Lett.* 12 075004

Conibear L, Butt E W, Knote C, Arnold S R and Spracklen D V 2018 Residential energy use emissions dominate health impacts from exposure to ambient particulate matter in *India* *Nat. Commun.* 9 1–9

Conibear L and Knote C 2020 wrfchem-leeds/WRFotron: WRFotron 2 Zenodo (http://doi.org/10.5281/zenodo.3624087)

Cowling K, Dandona R and Dandona L 2014 Social determinants of health in *India*: progress and inequities across states *Int. J. Equity Health* 13 1–2
Dabade A, Sreenivas A and Josey A 2018 What has the pradhan mantri ujjwala yojana achieved so far? *Econ. Polit.* Wky 53 20
Debroy B and Malik A 2017 *India@70 Modi@3.5* (New Delhi: Wisdom Tree) ch 3, pp 45–53
Debroy B, Gangu L and Desai K 2018 Making of New India: *Transformation Under Modi Government* (New Delhi: Wisdom Tree) ch 29, pp 401–10
Gao M et al 2018 The impact of power generation emissions on ambient PM2.5 pollution and human health in China and India *Environ. Int.* 121 250–9
GBD MAPS Working Group 2018 *Burden of Disease Attributable to Major Air Pollution Sources in India* (https://healtheffects.org/publication/gbd-air-pollution-india)
GBD 2017 Risk Factor Collaborators 2018 Global, regional, and national comparative risk assessment of 84 behaviourail, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study *Lancet* 392 1923–94
Goldemberg J, Martinez-Gomez I, Sagar A and Smith K R 2018 Household air pollution, health, and climate change: cleaning the air *Environ. Res. Lett.* 13 050201
Gordon S B et al 2014 Respiratory risks from household air pollution in low and middle income countries *Lancet* 2 823–60
Gould C F and Urpelainen J 2018 LPG as a clean cooking fuel: adoption, use, and impact in rural India *Energy Policy* 122 395–408
Government of India 2011 Census of India 2011 (https://censusindia.gov.in/2011-Common/CensusData2011.html)
Government of India 2018 Give it Up LPG Scheme (http://mpygin.in/index.aspx)
Grell A, Peckham S E, Schmitz R, Mckeen S A, Frost G, Skamarock W C and Eder B 2005 Fully coupled “online” chemistry within the WRF model *Atmos. Environ.* 39 6957–75
Grishop A, Jain G, Sethuraman K and Marshall J D 2017 Emission factors of health- and climate-relevant pollutants measured in home during a carbon-finance-approved cookstove intervention in rural India *GeoHealth* 1 222–36
Guo H, Kota S H, Chen K, Sahu S K, Hu J and Ying Q 2018 Source contributions and potential reductions to health effects of particulate matter in India *Atmos. Chem. Phys.* 18 15219–29
Hanhar R D and Karve P 2002 National programme on improved chulha (NPIC) of the Government of India: an overview *Counc. Energy Environ. Water* 8 80–114
Harish S and Smith K R 2019 Ujjwala 2.0: from access to sustained usage *Collab. Clean Air Policy Centre, New Delhi* CCACP/2019/03 (https://ccapp.in/policy-briefs/2019/8/6/ujjwala-2-from-access-to-sustained-use)
Hysat P et al 2019 Health effects of solid fuel use: findings from 11 countries within the prospective urban and rural epidemiology study *Environ. Health Perspect.* 127 057003
India State-Level Disease Burden Initiative Air Pollution Collaborators 2019 The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the global burden of disease study 2017 *Lancet Planet. Heal.* 3 369
Institute for Health Metrics and Evaluation 2019 GBD Compare Data Visualizations, (Seattle, WA: IHME, University Washington) http://healthdata.org/data-visualization/gbd-compare
Jain A, Tripathi S, Mani S, Patnaik S, Shahidi T and Ganesan K 2018 Access to clean cooking energy and electricity - survey of states 2018 *Counc. Energy Environ. Water* (https://crow.in/publications/access-clean-cooking-energy-and-electricity)
Janssens-Maenhout G et al 2015 HTAP-v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution *Atmos. Chem. Phys.* 15 11411–32
Kar A, Pachauri S, Bails R and Zerriffi H 2019 Using sales data to assess cooking gas adoption and the impact of India’s Ujjwala programme in rural Karnataka *Nat. Energy* 4 806–14
Karagulian F, Dengenge Van R, Belis C A, Janssens-Maenhout G, Crippa M, Guizzardi D and Dentener F 2017 Attribution of anthropogenic PM2.5 to emission sources. A global analysis of source-receptor model results and measured source-apportionment data *Euro. Comm. JRC Tech. Rep.* 104676 69 (https://publications.jrc.ec.europa.eu/repository/bitstream/JRC104676/jrc_technical_report_final_identif.pdf)
Kathuria V and Khan N A 2007 Vulnerability to air pollution: is there any inequity in exposure? *Econ. Polit.* Wky 42 3158–65
Lam N L and Bond T C 2020 High-resolution residential emissions for India (in preparation)
Lelièvre J, Evans J S, Faina M, Giannadaki D and Pozzer A 2015 The contribution of outdoor air pollution sources to premature mortality on a global scale *Nature* 523 367–71
Lewis J et al 2017 Biogas stoves reduce firewood use, household air pollution, and hospital visits in odisha, *India Environ. Sci. Technol.* 51 560–9
Lewis J and Pattanayak S K 2012 Who adopts improved fuels and cookstoves? A systematic review *Environ. Health Perspect.* 120 637–45
Lozier M J et al 2016 Use of temperature sensors to determine exclusivity of improved stove use and associated household air pollution reductions in Kenya *Environ. Sci. Technol.* 50 4564–71
Manning M I, Martin R V, Hasenkopf C, Flasher J and Li C 2018 Diurnal patterns in global fine particulate matter concentration *Environ. Sci. Technol. Lett.* 5 687–91
Ministry of Environment and Forests 2018 Continuous ambient air quality monitoring (caaqm). central pollution control board (cpcb). Government of India (http://www.cpcb.gov.in/CAQM/)
Ministry of Petroleum and Natural Gas 2018a Pradhan Mantri Ujjwala Yojana (PMUY) Government of India (http://www.pmujjwalayojana.com/)
Ministry of Petroleum and Natural Gas 2018b Pradhan Mantri Ujjwala Yojana achieves 5 core mark *Press Inf. Bur. Gov. India* http://pib.nic.in/newsite/reprintrelease.aspx?PID=1541545
Ministry of Petroleum and Natural Gas 2018c Pratayshik Haanstantrit Lahib (PAHAL) - Direct Benefits Transfer for LPG (DBTL) Consumers Scheme Government of India (http://petroleum.nic.in/dbtl/index.php)
Ministry of Petroleum and Natural Gas 2019 The Ujjwala saga - Unending happiness & health Government of India (http://pure.iiasa.ac.at/idi/eprint/15741/1/Ujjwala.Saga.pdf)
Mittal N, Mukherjee A and Gelb A 2017 Fuel Subsidy Reform in Developing Countries: Direct Benefit Transfer of LPG Cooking Gas Subsidy in India (https://cgdev.org/publication/fuel-subsidy-reform-developing-countries-india)
Nacher I, P, Brauer M, Lipsett M, Zelikoff J T, Simpson C D, Koenig J Q and Smith K R 2007 Woodsomke health effects: a review *Inhal. Toxicol.* 19 67–106
OpenAQ 2019 (https://openaq.org)
Pattanayak S K et al 2019 Experimental evidence on promotion of electric and improved biomass cookstoves *Proc. Natl Acad. Sci.* 116 13282–7
Pillarisetti A et al 2019 Promoting LPG usage during pregnancy: a pilot study in rural Maharashtra, *India Environ. Int.* 127 540–9
Pillarisetti A, Gill M, Allen T, Madhavan S, Dhongade A, Ghorpade M, Roy S, Balakrishnan K, Juvkar S and
Smith K R 2018 A low-cost stove use monitor to enable conditional cash transfers *Ecological Health* **15** 768–76

Pillaristetti A, Vassani M, Jack D, Balakrishnan K, Bates M N, Arora N K and Smith K R 2014 Patterns of stove usage after introduction of an improved cookstove: the long-term application of household sensors *Environ. Sci. Technol.* **48** 14525–33

Pope D, Bruce N, Dherani M, Jagoe K and Rehfuess E 2017 Real-life effectiveness of ‘improved’ stoves and clean fuels in reducing PM2.5 and CO: systematic review and meta-analysis *Environ. Int.* **101** 7–18

Reddington C, Conibear L, Silver B, Knote C, Arnold S R and Spracklen D V 2019 Exploring the impacts of anthropogenic emission sectors on PM2.5 and human health in South and East Asia *Atmos. Chem. Phys.* **19** 11887–910

Rehfuess E A, Puzzolo E, Stanistreet D, Pope D and Bruce N G 2014 Enablers and barriers to large-scale uptake of improved solid fuel stoves: A systematic review *Environ. Health Perspect.* **122** 120–30

Rosenthal J, Quinn A, Grieshop A P, Pillarisetti A and Glass R I 2018 Clean cooking and the SDGs: integrated analytical approaches to guide energy interventions for health and environment goals *Energy Sustain. Dev.* **42** 152–9

Sambandam S, Balakrishnan K, Ghosh S, Sadasivam A, Madhav S, Ramasany R, Samanta M, Mukhopadhyay K, Rehman H and Ramanathan V 2015 Can currently available advanced combustion biomass cook-stoves provide health relevant exposure reductions? Results from initial assessment of select commercial models in India *Ecological Health* **12** 23–41

Shupler M, Godwin W, Frostad J, Gustafson P, Arku R E and Brauer M 2018 Global estimation of exposure to fine particulate matter (PM2.5) from household air pollution *Environ. Int.* **120** 354–63

Silva R A, Adelman Z, Fry M M and West J J 2016 The impact of individual anthropogenic emissions sectors on the global burden of human mortality due to ambient air pollution *Environ. Health Perspect.* **124** 1776–84

Smith K R 1993 Fuel combustion, air pollution exposure, and health: the situation in developing countries *Annu. Rev. Energy Environ.* **18** 529–66

Smith K R 2017b Why both gas and biomass are needed today to address the solid fuel cooking problem in India: A challenge to the biomass stove community *Energy Sustain. Dev.* **38** 102–3

Smith K R and Haigler E 2008 Co-benefits of climate mitigation and health protection in energy systems: scoping methods *Annu. Rev. Public Health* **29** 11–25

Smith K R and Sagar A 2014 Making the clean available: escaping India’s Chulha Trap *Energy Policy* **35** 21–30

Smith K R, Woodward A, Campbell-Lendrum D, Chadee D, Honda Y, Liu Q, Olwoch J, Revich B and Sauerborn R 2014 Human health: impacts, adaptation, and co-benefit. *Clim. Chang. 2014 Impacts, Adapt. Vulnerability. Part A Glob. Sect. Asp. Contrib. Work. Gr. II to Fifth Assess. Rep. Intergov. Panel Clim. Chang.* 709–54 (http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-Chap11_FINAL.pdf)

Sukhshohale N D, Narlawar U W, Phatak M S, Agrawal S B and Ughade S N 2013 Effect of indoor air pollution during cooking on peak expiratory flow rate and its association with exposure index in rural women *Indian J. Physiol. Pharmacol.* **57** 184–8

Tripathi A and Sagar A 2019 Ujjwala, V2.0: what should be done next? *Collab. Clean Air Policy Centre, New Delhi* CCAPC/2019/02 (https://ccapc.org.in/policy-briefs/2019/6/15/ujjwala-v2-what-should-be-done-next)

Upadhyay A, Dey S, Chowdhury S and Goyal P 2018 Expected health benefits from mitigation of emissions from major anthropogenic PM2.5 sources in India: statistics at state level *Environ. Pollut.* **242** 1817–26

van Erp A M, Kelly F J, Demerjian K L, Pope C A and Cohen A J 2012 Progress in research to assess the effectiveness of air quality interventions towards improving public health *Air Qual. Atmos. Heal.* **5** 217–30

Venkataraman C et al 2018 Source influence on emission pathways and ambient PM2.5 pollution over India (2015–2050) *Atmos. Chem. Phys.* **18** 8017–39

Venkataraman C, Sagar A D, Habib G, Lam N and Smith K R 2010 The indian national initiative for advanced biomass cookstoves: the benefits of clean combustion *Energy Sustain. Dev.* **14** 63–72

Wilkinson P et al 2009 Public health benefits of strategies to reduce greenhouse-gas emissions: household energy *Lancet* **374** 1917–29

World Health Organization 2016 Burning opportunity: clean household energy for health, Sustainable Development, and Wellbeing of Women and Children 129 (https://who.int/airpollution/publications/burning-opportunities/en/)

World Health Organization 2018 Global Ambient Air Quality Database (update 2018) (www.who.int/airpollution/data/cities/en/)

Yu S, Eder B, Dennis R, Chu S-H and Schwartz S E 2006 New unbiased symmetric metrics for evaluation of air quality models *Atmos. Sci. Lett.* **7** 26–34

Zagler C M and Dominici F 2014 Point: clarifying policy evidence with potential-outcomes thinking-beyond exposure-response estimation in air pollution epidemiology *Am. J. Epidemiol.* **180** 1133–40

Zagler C M, Kim C, Chiofart C, Hansen J B, Wang Y, Hund L, Samet J, King G and Dominici F 2016 Causal inference methods for estimating long-term health effects of air quality regulations *Health Effects Institute research report* **187** (https://healtheffects.org/publication/causal-inference-methods-estimating-long-term-health-effects-air-quality-regulations)