NATURAL DISTRIBUTION OF HYMENOPTERAN PARASITOIDS OF SPODOPTERA FRUGIPERDA (LEPIDOPTERA: NOCTUIDAE) LARVAE IN MEXICO

Authors: Molina-Ochoa, Jaime, Carpenter, James E., Lezama-Gutiérrez, Roberto, Foster, John E., González-Ramírez, Martín, et. al.

Source: Florida Entomologist, 87(4) : 461-472

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/0015-4040(2004)087[0461:NDOHPO]2.0.CO;2
NATURAL DISTRIBUTION OF HYMENOPTERAN PARASITOIDS OF SPODOPTERA FRUGIPERDA (LEPIDOPTERA: NOCTUIDAE) LARVAE IN MEXICO

JAIME MOLINA-OCHOA¹, JAMES E. CARPENTER², ROBERTO LEZAMA-GUTIÉRREZ¹, JOHN E. FOSTER³, MARTÍN GONZÁLEZ-RAMÍREZ⁴, CESAR ANGEL-SAHAGÚN¹ AND JAVIER FARIAS-LARIOS¹
¹Universidad de Colima, Facultad de Ciencias Biológicas y Agropecuarias
Apartado postal 36, Tecoman, Colima 28100, México
²United States Department of Agriculture, Agricultural Research Service
Crop Protection & Management Research Laboratory, P.O. Box 748, Tifton, GA 31793-0748, USA
³University of Nebraska Lincoln, Department of Entomology
312F Plant Industry Building, Lincoln, NE 68583-0816, USA

ABSTRACT

A survey of parasitoids of fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), larvae was conducted in six Mexican states during August and September 2000. Thirteen genera of hymenopteran parasitoids were recovered representing the following 3 families, Braconidae: Aleoideae, Chelonus, Cotesia, Glyptapanteles, Homolobus, and Meteorus; Ichneumonidae: Campoletis, Eiphosoma, Ophion, and Pristomerus; and Eulophidae: Aprostocetus, Euplectrus, and Horismenus. Out of 5591 FAW larvae collected, 772 produced parasitoids, for a parasitism rate of 13.8%. The highest rate of parasitism from a single collection was 42.2%, representing three species of parasitoids in Michoacán. Chelonus insularis Cresson was the most widely distributed species occurring in 45.3% of the locations. Pristomerus spinator (F.), and Meteorus laphygmae (Viereck), exhibited the highest rates of parasitism for a single collection with 22.2% and 22.1%, in Sinaloa, and Michoacán, respectively. The results supported the hypothesis that natural distribution and rates of parasitism of FAW larvae may be related to more diverse habitats with more forests, orchards, and pastures near to cornfields.

Key Words: fall armyworm, Chelonus, Pristomerus, Meteorus, Ophion, Campoletis, corn, survey.

RESUMEN

Se llevó a cabo un inventario de parasitoides de larvas del gusano cogollero, Spodoptera frugiperda (J. E. Smith) (FAW) colectadas principalmente de maizales en estado de verticilio en seis estados mexicanos durante Agosto y Septiembre de 2000. Trece géneros de parasitoides himenópteros fueron recuperados, representando a tres familias, Braconidae: Aleoideae, Chelonus, Cotesia, Glyptapanteles, Homolobus, y Meteorus; Ichneumonidae: Campoletis, Eiphosoma, Ophion, y Pristomerus; y Eulophidae: Aprostocetus, Euplectrus, y Horismenus. De un total de 5591 larvas colectadas, 772 produjeron parasitoides, para una tasa de parasitismo de 13.8%. La tasa de parasitismo más alta para una colecta simple fue de 42.2%, representando a tres especies de parasitoides en Michoacán. La especie más ampliamente distribuida fue Chelonus insularis Cresson, presentándose en 45.3% de las localidades inventariadas. Pristomerus spinator (F.), y Meteorus laphygmae (Viereck), mostraron las tasas más altas de parasitismo para una colecta simple con 22.2% y 22.1%, en Sinaloa, y Michoacán, respectivamente. Los resultados apoyan la hipótesis de que la distribución natural y las tasas de parasitismo pueden estar relacionadas a lo diverso de los hábitat con la cercanía de más bosques, huertas y pastizales a los maizales.

Translation provided by the authors.

The therapeutic approach of killing pest organisms with toxic chemicals has prevailed as a pest control strategy for over 50 years (Lewis et al. 1997). In the 1950s environmental effects of persistent organochlorine insecticides such as DDT began to be observed. Currently, in agricultural pest control, the adverse effects of the use of insecticides are leading scientists to search for alternatives to chemical control of insect pests based on health, environmental, wild life, and economic concerns (Johnson et al. 1998; Mattsson et al. 2000; Solomon & Schettler 2000).

Native insects and pathogens are normal parts of functioning agro-ecosystems and can profoundly influence the agricultural structure, species composition, and diversity. Agro-ecosystems...
giperda

cost and one state in the Gulf of Mexico, during
grass fields from five Mexican states in the Pacific
region (Carrillo 1980; Lezama-Gutiérrez et al. 2001;
have been carried out in different regions of Mex-
ical location, soil, and climatic characteristics, as
well as human factors. Scientific evidence sug-
gests that biodiversity can be used for improved
pest management (Altieri 1991). The increased
use of beneficial insects and interference with the
colonization of fall armyworm in multiple crop-
ning systems have prevented outbreaks in Latin
America (Altieri 1994).

The fall armyworm (FAW), Spodoptera fru-
giperda (J. E. Smith), is a voracious pest inflict-
ing damage to a multiplicity of annual crops in the
Americas, and it is commonly controlled with syn-
thetic insecticides, although insecticide resistance
has been observed and is a concern (Yu 1991,
1992). Moreover, two strains of FAW have been
identified according to their host preference, a
corn-associated strain that feeds principally on
corn, and a rice-associated strain that feeds primar-
ily on forage grasses and rice (Pashley et al. 1987).
Both FAW strains exhibited differences in resis-
tance to chemical and biological insecticides (Ad-
amczyk et al. 1997; López-Edwards et al. 1999),
and have differences in their genetic population
structure and population ecology (Pashley 1988;
Lu & Adang 1996; Bossart & Prowell 1998; Levy et
al. 2002; Meagher & Gallo-Meagher 2003; Nagoshi &
Meagher 2003). These differences between FAW
strains complicate the management of this pest.

Biological control is a highly desirable alterna-
tive to insecticides for controlling FAW infesta-
tions (Gross & Pair 1986). The value of
parasitoids in reducing larval populations of this
noctuid has long been recognized (Luginbill 1928;
Vickery 1929). In order to develop a better under-
standing of the natural distribution of the FAW
parasitoid complex and natural enemies, surveys
have been carried out in different regions of Mex-
ico (Carrillo 1980; Lezama-Gutiérrez et al. 2001;
Molina-Ochoa et al. 2001, 2003a).

Here, we report the natural distribution of par-
asitoids of FAW larvae collected from whorl-stage
corn, grain sorghum, forage sorghum, and Sudan
grass fields from five Mexican states in the Pacific
coast and one state in the Gulf of Mexico, during
the summer of 2000.

MATERIALS AND METHODS

During August and September of 2000, S. fru-
giperda larvae were collected from whorl-stage
corn, grain and forage sorghum, and Sudan grass
fields in 64 locations in the Mexican Pacific coast
states of Sinaloa, Nayarat, Jalisco, Colima, and
Michoacán, and in the Gulf of Mexico state of Ve-
racruz. Egg masses and pupae were not collected.

FAW larvae were individually placed into 30-
cc plastic cups with pinto bean diet (Burton &
Perkins 1989), and held in the laboratory (Labo-

RESULTS AND DISCUSSION

Out of 5591 FAW larvae collected, 772 pro-
duced parasitoids, for a parasitism rate of 13.8%.
These parasitoids represented 13 genera from
three families of Hymenoptera: six Braconidae,
four Ichneumonidae, and three Eulophidae. Nine
of the 64 collections produced no parasitoids, six
of 12 collections from whorl-stage corn in Mich-
ocaín, two of 13 in Jalisco, and only one of 11 in
Colima. The highest rates of parasitism in each
state were found in C4 (33.3%) in Colima, J12
(21.1%) in Jalisco, M12 (14.4%) in Michoacán, N9
(18.9%) in Nayarit, S5 (27.4%) in Sinaloa, and V4
(11.5%) in Veracruz (Table 1). The most diverse
collections of parasitoids were found in the loca-
tions C5, J12, and N9 with 5, 4, and 4 species, re-
spectively, (Tables 2 and 3). The collection from S5
produced the highest rate of parasitism for a sin-
gle species with 22.1%; the braconid Meteorus la-
phygmae Viereck was the most common
parasitoid collected from Sudangrass. Other
parasitoids in that collection were the eulophid Eu-
pectrus plathypenae Howard (2 individuals), and
the ichneumonid Ophion flavidus Brulle (1 indi-
vidual). The braconid C. insularis occurred in 29
of the 64 collections from the six states, and it was
the most widely distributed parasitoid. Another
important braconid was M. laphygmae, occurring
in 21 of the 64 collections. The ichneumonid para-
sitoids, O. flavidus, and Pristomerus spinator F.,
occurred in 18, and 17 of the 64 collections, re-
spectively. E. plathypenae was the most impor-
tant and widely distributed eulophid, occurring in
16 of the 64 collections (Tables 2 and 3).

Chelonus insularis was the most widely dis-
tributed parasitoid of FAW larvae in this survey,
occuring in all the six Mexican States, and it was
the braconid species with the second highest par-
asitism rate per location with 16.7%. Thus, C. in-
TABLE 1. GEOGRAPHIC LOCATION, DATE, ALTITUDE, CROP (*), SAMPLE SIZE (N), AND TOTAL PERCENT *SPODOPTERA FUGIPERDA* LARVAE PARASITIZED IN SIX MEXICAN STATES (**) DURING 2000.

Code	Date	Location	Coordinates	Alt (m)	N	Percentage parasitized
C1	08/04	El poblado, Coquimatlán	19°3.698'N 103°47.722'W	422	C	90 17.8
C2	08/04	Pueblo Juárez, Coquimatlán	19°10.752'N 103°54.634'W	279	C	90 4.4
C3	08/04	Amachico, Coquimatlán	19°10.667'N 103°56.351'W	328	C	90 12.2
C4	08/06	Los mezcales, Comala	19°20.811'N 103°47.176'W	608	C	90 33.3
C5	08/06	El remate, Comala	19°24.825'N 103°47.639'W	817	C	90 13.3
C6	08/06	Carrizalillo, Quesería	19°25.389'N 103°41.000'W	1550	C	90 1.1
C7	08/06	Quesería	19°23.362'N 103°34.882'W	1304	C	90 10.0
C8	08/06	Villa de Alvarez	19°17.201'N 103°47.030'W	515	c	90 4.4
C9	08/06	Juluapan, Villa de Alvarez	19°18.880'N 103°49.611'W	539	c	90 4.4
C10	08/07	Tepames, Colima	19°08.231'N 103°37.996'W	519	c	90 0.0
C11	08/07	Estapilla, Colima	18°59.549'N 103°31.140'W	304	c	90 21.1
J1	08/08	Ciudad Guzmán	19°40.011'N 103°28.830'W	1557	c	90 0.0
J2	08/15	Los pinitos, Tonila	19°25.343'N 103°32.447'W	1326	c	90 2.2
J3	08/15	Pialla, Tuxpan	19°27.293'N 103°28.514'W	1079	c	90 0.0
J4	08/15	Atenqueique, Tuxpan	19°31.778'N 103°27.851'W	1338	c	90 1.1
J5	08/17	Canoa, Zapotiltic	19°34.073'N 103°27.324'W	1391	c	90 3.3
J6	08/17	Apastepe	19°38.060'N 103°30.950'W	1709	c	90 1.1
J7	08/17	Teocuitatlán	20°07.035'N 103°32.704'W	1369	c	90 10.0
J8	08/17	Zacoalco de Torres	20°11.988'N 103°33.806'W	1425	c	90 4.4
J9	08/17	Acatlán de Juárez	20°25.362'N 103°33.406'W	1575	c	96 2.1
J10	08/17	Tlajomulco de Zúñiga	20°29.396'N 103°28.298'W	1607	c	92 4.3
J11	08/18	Zapopan	20°43.129'N 103°29.041'W	1670	c	90 4.4
J12	08/18	Magdalena	20°53.008'N 103°55.477'W	1496	c	93 21.5
J13	08/23	Crucero de Magdalena	20°56.300'N 104°02.509'W	1386	c	92 2.2
M1	08/09	Totolán	19°58.890'N 102°40.183'W	1590	c	90 0.0
M2	08/09	Santa Inés Tocumbo	19°44.502'N 102°34.967'W	1630	c	90 1.1
M3	08/09	Peribán	19°33.106'N 102°26.586'W	1475	c	90 1.1
M4	08/10	Cointzio	19°41.609'N 101°16.398'W	1932	c	90 0.0

* *Corn (c), gran sorghum (gs), forage sorghum (fs), and Sudan grass (sg).*
Colima (C), Jalisco (J), Michoacan (M) Nayarit (N), Sinaloa (S), and Veracruz (V).
TABLE 1. (CONTINUED) GEOGRAPHIC LOCATION, DATE, ALTITUDE, CROP (*), SAMPLE SIZE (N), AND TOTAL PERCENT *Spodoptera frugiperda* LARVAE PARASITIZED IN SIX MEXICAN STATES (**) DURING 2000.

Code	Date	Location	Coordinates	Alt (m)	*	N	Percentage parasitized
M5	08/10	Cerro “La Esperanza”	19°41.223’N 101°18.980’W	1998	c	90	1.1
M6	08/11	Tejabán	19°13.342’N 101°53.714’W	587	c	90	0.0
M7	08/11	Carretera a Nueva Italia	19°03.290’N 102°02.458’W	442	c	90	0.0
M8	08/11	Presa de Zicuirán	18°56.191’N 101°54.650’W	292	c	63	0.0
M9	08/11	El ceñidor, Nueva Italia	18°59.651’N 102°11.577’W	350	c	57	1.8
M10	08/12	La Guadalupe Parácuaro	18°07.472’N 102°12.519’W	540	fs	90	1.1
M11	08/12	Las yeguas Parácuaro	18°57.308’N 102°16.733’W	359	fs	90	1.1
M12	08/12	El cirián, Nueva Italia	18°53.661’N 102°07.483’W	255	c	90	42.2
N1	08/18	Santa María del Oro	21°20.121’N 104°40.174’W	1160	c	90	3.3
N2	08/18	El rincón, Tepic	21°32.472’N 104°56.123’W	849	c	96	10.4
N3	08/18	El pichón, Tepic	21°33.479’N 104°56.937’W	774	c	95	4.2
N4	08/19	Xalisco	21°19.601’N 104°55.060’W	1042	c	107	2.8
N5	08/19	El refilión, Xalisco	21°19.407’N 104°55.323’W	964	c	90	8.9
N6	08/19	Compostela	21°17.858’N 104°54.044’W	920	c	93	1.1
N7	08/19	La presa, Compostela	21°13.714’N 104°52.162’W	928	c	90	1.1
N8	08/20	Las lumbres, Acaponeta	22°20.795’N 105°18.141’W	48 C&gs	60	5.0	
N9	08/23	Seboruco	21°20.850’N 104°40.749’W	1134	c	90	18.9
N10	08/23	Ahuacatlán	21°06.331’N 104°27.427’W	1120	c	90	5.6
S1	08/21	Bacurimi, Culiacán	24°51.668’N 107°29.478’W	70	gs	97	4.1
S2	08/21	La campana, Culiacán	24°58.415’N 107°33.517’W	143	gs	100	5.0
S3	08/21	Pericos, Mocorito	25°03.574’N 107°39.547’W	80	gs	95	9.5
S4	08/21	Rancho viejo, Mocorito	25°06.033’N 107°43.165’W	89	gs	98	13.3
S5	08/22	Aguanepito, Mocorito	25°03.861’N 107°39.547’W	68	sg	95	27.4
S6	08/22	Comanito, Mocorito	25°09.006’N 107°39.645’W	91	gs	95	3.2
S7	08/22	La poma, Badiraguato	25°15.749’N 107°40.739’W	157	c	100	13.0
S8	08/22	La majada, Badiraguato	25°14.076’N 107°39.781’W	145	c	92	7.6
V1	09/02	Seis de Enero, Xalapa	19°34.115’N 96°50.207’W	950	c	91	6.6
V2	09/02	Altolucero, Almolonga	19°35.063’N 96°47.384’W	908	c	33	12.1

*Corn (c), gran sorghum (gs), forage sorghum (fs), and Sudan grass (sg).

**Colima (C), Jalisco (J), Michoacan (M) Nayarit (N), Sinaloa (S), and Veracruz (V).
sularis is one of the most abundant natural enemies of fall armyworm larvae in the Western Coast and Gulf of Mexico. *Chelonus insularis* has been reported as an important parasitoid controlling FAW populations in the US (Luginill 1928; Vickery 1929). Ashley (1986) and Andrews (1988) listed *C. insularis* occurring in Central America and the US, highlighting its role as parasitoid of FAW in southern Florida where 63% of the FAW larvae were attacked. Recently, Molina-Ochoa et al. (2003b) reported *C. insularis* *syn. C. texanus* as the braconid with the broadest distribution in Latin America, including South America (Uruguay and Venezuela), the Caribbean Basin (Trinidad and Puerto Rico), and the US. In that inventory *Chelonus* sp. is also reported in Brazil, Mexico, and Peru. Lewis and Nordlund (1980) emphasized its role considering it as an excellent candidate for the following augmentative approaches: a) release throughout its overwintering zone; b) early-season colonization, and c) direct therapeutic release on target crops.

In a previous survey, Molina-Ochoa et al. (2001) commented on the importance and need of more study in Mexico on the taxonomy of the genus *Chelonus* (P. M. Marsh, pers. comm.).

Meteorus laphygmae occurred in 21 of the 64 collections. The highest rate of parasitism for a single location was obtained in S5 with 22.1%. This parasitoid occurred in all of the collections from Sinaloa, and the rate of parasitism ranged from 2.1 to 22.1%. *Meteorus laphygmae* was also collected in Colima, Nayarit, Michoacán, Jalisco, and Veracruz occurring in 45.5%, 30%, 25%, 10%, and 8.3% of the collections, respectively. This braconid was reported by Ashley (1986) occurring in the Continental US, exhibiting its greatest impact on FAW collected from grass. Other reports were made by Alvarado-Rodríguez (1987) in Sinaloa, Mexico attacking *Spodoptera exigua* (Hubner) infesting tomatoes with a parasitism rate of 9.0%. A similar rate of parasitism was reported by Molina-Ochoa et al. (2001) in a single collection of FAW larvae made in El Mante, Tamaulipas with 10.3%. Molina-Ochoa et al. (2003b) listed several reports from countries of Central and South America, such as Honduras, Nicaragua, Mexico, Chile, Colombia, and Suriname, where *M. laphygmae* was collected from other crops such as maize, rice, cotton, sorghum, peanuts, and Bermudagrass, and was one of the most prevalent parasitoids in South America.

Low rates of occurrence and parasitization of *Cotesia* sp. probably *marginiventris* (Cresson), *Glyptapanteles* sp. probably *militaris* (Walsh), *Aleiodes* sp., and *Homolobus* sp. probably *mellea* (Cresson) were recorded. They were found in 5, 2, 1, and 1 of the 64 collections, respectively. *Cotesia* sp. occurred in Colima, Jalisco, Nayarit with lower parasitization rates than 2.3%. Similar rates were reported by Molina-Ochoa et al. (2001) in a previous survey conducted in four Mexican States. This parasitoid is reported attacking FAW larvae in Argentina, Brazil, Chile, Honduras, Lesser Antilles, Mexico, Nicaragua, Puerto Rico, Suriname (Molina-Ochoa et al. 2003b), but it has been often reported as a parasitoid of FAW in the US (Ashley 1986) with parasitization rates of 6.3% on FAW larvae collected from maize (Riggin et al. 1993) and from less than 1% to 40% collected from maize and Bermudagrass, respectively (Ashley et al. 1983).

Table 1. (CONTINUED) GEOGRAPHIC LOCATION, DATE, ALTITUDE, CROP (*), SAMPLE SIZE (N), AND TOTAL PERCENT *SPODOPTERA FRUGIPERDA* LARVAE PARASITIZED IN SIX MEXICAN STATES (***) DURING 2000.

Code	Date	Location	Coordinates	Alt (m)	*	N	Percentage parasitized
V3	09/02	Actopan	19°34.623N 96°48.589W	775	c	64	3.1
V4	09/02	Los González, Actopan	19°31.894N 96°41.294W	432	c	113	11.5
V5	09/02	Bocana, Actopan	19°24.416N 96°36.731W	311	c	119	4.2
V6	09/03	El volador, Coatepec	19°21.594N 96°51.037W	709	c	90	3.3
V7	09/03	Palmillas	19°12.293N 96°46.221W	702	c	59	6.8
V8	09/03	Tierra Colorada	19°13.255N 96°21.916W	46	c	45	4.4
V9	09/04	Cerro gordo	19°25.252N 96°39.566W	443	c	45	8.9
V10	09/04	La cumbre	19°23.320N 96°38.807W	366	c	66	6.1

*Corn (c), grain sorghum (gs), forage sorghum (fs), and Sudan grass (sg).

**Colima (C), Jalisco (J), Michoacan (M) Nayarit (N), Sinaloa (S), and Veracruz (V).
Table 2. Percentage of *Spodoptera frugiperda* larvae parasitized by each species of *Braconidae* at each location.

Code*	Aleoides	Chelonus	Cotesia	Glyptapanteles	Homolobus	Meteorus
C1	0.0	3.3	0.0	0.0	0.0	2.2
C2	0.0	0.0	0.0	0.0	0.0	1.1
C3	0.0	7.8	0.0	0.0	0.0	0.0
C4	0.0	16.7	1.1	0.0	0.0	0.0
C5	0.0	1.1	1.1	0.0	0.0	4.4
C6	0.0	0.0	0.0	0.0	0.0	0.0
C7	0.0	1.1	1.1	0.0	0.0	0.0
C8	0.0	2.2	0.0	0.0	0.0	1.1
C9	0.0	1.1	0.0	0.0	0.0	2.2
C10	0.0	0.0	0.0	0.0	0.0	0.0
C11	0.0	14.4	0.0	0.0	0.0	0.0
J1	0.0	0.0	0.0	0.0	0.0	0.0
J2	0.0	0.0	0.0	0.0	0.0	0.0
J3	0.0	0.0	0.0	0.0	0.0	0.0
J4	0.0	0.0	0.0	0.0	0.0	0.0
J5	0.0	0.0	0.0	0.0	0.0	0.0
J6	0.0	1.1	0.0	0.0	0.0	0.0
J7	0.0	3.3	0.0	0.0	0.0	1.1
J8	0.0	4.4	0.0	0.0	0.0	0.0
J9	0.0	0.0	0.0	0.0	0.0	0.0
J10	0.0	3.3	0.0	0.0	0.0	0.0
J11	0.0	1.1	0.0	0.0	0.0	0.0
J12	0.0	15.1	1.1	0.0	0.0	0.0
J13	0.0	1.1	0.0	0.0	0.0	0.0
M1	0.0	0.0	0.0	0.0	0.0	0.0
M2	0.0	0.0	0.0	0.0	0.0	1.1
M3	0.0	0.0	0.0	0.0	0.0	0.0
M4	0.0	0.0	0.0	0.0	0.0	0.0
M5	0.0	0.0	0.0	0.0	0.0	0.0
M6	0.0	0.0	0.0	0.0	0.0	0.0
M7	0.0	0.0	0.0	0.0	0.0	0.0
M8	0.0	0.0	0.0	0.0	0.0	0.0
M9	0.0	0.0	0.0	0.0	0.0	1.8
M10	0.0	1.1	0.0	0.0	0.0	0.0
M11	0.0	0.0	0.0	0.0	0.0	1.1
M12	0.0	14.4	0.0	0.0	0.0	0.0
N1	0.0	0.0	0.0	0.0	0.0	0.0
N2	1.0	1.0	0.0	8.3	0.0	0.0
N3	0.0	1.1	0.0	0.0	0.0	2.1
N4	0.0	0.0	0.0	1.9	0.0	0.9
N5	0.0	1.1	0.0	0.0	0.0	2.2
N6	0.0	0.0	0.0	0.0	0.0	0.0
N7	0.0	0.0	0.0	0.0	0.0	0.0
N8	0.0	5.0	0.0	0.0	0.0	0.0
N9	0.0	5.6	2.2	0.0	0.0	0.0
N10	0.0	2.2	0.0	0.0	0.0	0.0
S1	0.0	0.0	0.0	0.0	0.0	2.1
S2	0.0	1.0	0.0	0.0	0.0	4.0
S3	0.0	0.0	0.0	0.0	0.0	8.4
S4	0.0	1.0	0.0	0.0	0.0	12.2
S5	0.0	0.0	0.0	0.0	0.0	22.1
S6	0.0	0.0	0.0	0.0	0.0	3.2

Aleiodes sp., *Chelonus* sp. Probably *insularis* Cresson, *Cotesia* sp. probably *marginiventris* Cresson, *Glyptapanteles* sp. probably *militaris* Walsh, *Homolobus* sp. probably *mellea* Cresson, *Meteorus* sp. probably *laphygmae* Viereck.
Zele mellea (Riggin et al. 1993). FAW larvae (12.8% parasitism) in South Georgia. This braconid, with a low parasitism rate (0.3%) on FAW larvae in perennial and ornamental crops. Conids were attacking insect pest of annual, abundant with 10% of the individuals, these braconids were the second more abundant ichneumonid parasitoid. It was recovered in 18, 17, and 14 of the 64 collections, respectively. Parasitism by this species was low (1.1%), but finding it contributes to our knowledge on the occurrence and diversity of beneficial insects affecting FAW populations in Michoacán.

The ichneumon parasitoids, O. flavidus, P. spinator, and C. flavicincta were the most frequently reared species in 18, 17, and 14 of the 64 collections, respectively. Ophion flavidus was recovered in more locations in Michoacán, and Colima (5 and 4 locations, respectively), but the highest parasitism rate for a single location was obtained in Colima (C7) with 6.7%. Similar results were reported by Molina et al. (2003b) reported that Ophion sp. attacked FAW larvae developing on volunteer corn and Paragrass at Homestead, Florida. Gross & Pair (1991) emphasized that the tachinid parasitoids, P. spinator and Archytas marginiventris (Townsend) and O. flavidus provide opportunities for advancing biological strategies for managing FAW, with the development of economical methods for mass-propagation.

TABLE 2. (CONTINUED) PERCENTAGE OF Spodoptera frugiperda Larvae parasitized by each species of Braconidae at each location.

Code*	Aleoides	Chelonus	Cotesia	Glyptapanteles	Homolbus	Meteorus
S7	0.0	2.0	0.0	0.0	0.0	10.0
S8	0.0	0.0	0.0	0.0	0.0	6.5
V1	0.0	3.3	0.0	0.0	0.0	1.1
V2	0.0	0.0	0.0	0.0	0.0	0.0
V3	0.0	0.0	0.0	0.0	0.0	0.0
V4	0.0	0.0	0.0	0.0	0.0	0.0
V5	0.0	0.0	0.0	0.0	0.0	0.0
V6	0.0	1.1	0.0	0.0	0.0	0.0
V7	0.0	0.0	0.0	1.7	0.0	0.0
V8	0.0	0.0	0.0	0.0	0.0	0.0
V9	0.0	0.0	0.0	0.0	0.0	0.0
V10	0.0	0.0	0.0	0.0	0.0	0.0

Aleoides sp., Chelonus sp. Probably insularis Cresson, Cotesia sp. probably marginiventris Cresson, Glyptapanteles sp. probably mellea Cresson, Homolbus sp. probably laphygmae Vieeck.
TABLE 3. PERCENTAGE OF *Spodoptera frugiperda* LARVAE PARASITIZED BY EACH SPECIES OF ICHNEUMONIDAE AND EULOPHIDAE AT EACH LOCATION.

Code*	Ichneumonidae				Eulophidae		
	C.f	E.v	O.f	P.s	A.sp	E.p	H.sp
C1	0.0	0.0	0.0	12.2	0.0	0.0	0.0
C2	0.0	2.2	0.0	1.1	0.0	0.0	0.0
C3	0.0	0.0	0.0	4.4	0.0	0.0	0.0
C4	0.0	1.1	0.0	14.4	0.0	0.0	0.0
C5	0.0	0.0	5.6	1.1	0.0	0.0	0.0
C6	1.1	0.0	0.0	0.0	0.0	0.0	0.0
C7	0.0	0.0	6.7	1.1	0.0	0.0	0.0
C8	0.0	0.0	1.1	0.0	0.0	0.0	0.0
C9	0.0	0.0	1.1	0.0	0.0	0.0	0.0
C10	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C11	0.0	0.0	0.0	6.7	0.0	0.0	0.0
J1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J2	0.0	0.0	0.0	2.2	0.0	0.0	0.0
J3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J4	0.0	0.0	1.1	0.0	0.0	0.0	0.0
J5	0.0	0.0	0.0	3.3	0.0	0.0	0.0
J6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J7	1.1	0.0	4.4	0.0	0.0	0.0	0.0
J8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J9	2.1	0.0	0.0	0.0	0.0	0.0	0.0
J10	1.1	0.0	0.0	0.0	0.0	0.0	0.0
J11	3.3	0.0	0.0	0.0	0.0	0.0	0.0
J12	3.2	0.0	2.1	0.0	0.0	0.0	0.0
J13	0.0	0.0	0.0	0.0	0.0	0.0	1.1
M1	3.3	0.0	1.1	0.0	0.0	0.0	0.0
M2	2.2	0.0	2.1	0.0	0.0	0.0	0.0
M3	0.0	0.0	3.3	1.1	0.0	0.0	0.0
M4	0.0	0.0	1.1	1.1	0.0	0.0	0.0
M5	1.1	0.0	0.0	0.0	0.0	0.0	0.0
M6	0.0	3.3	0.0	0.0	0.0	0.0	0.0
M7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
M8	0.0	0.0	0.0	0.0	0.0	0.0	1.6
M9	0.0	0.0	1.8	0.0	0.0	0.0	0.0
M10	0.0	0.0	1.1	0.0	0.0	0.0	1.1
M11	0.0	2.2	0.0	0.0	0.0	0.0	0.0
M12	0.0	5.6	0.0	22.2	0.0	0.0	0.0
N1	2.2	0.0	0.0	1.1	0.0	0.0	0.0
N2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N3	0.0	1.1	0.0	0.0	0.0	0.0	0.0
N4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N5	1.1	0.0	1.1	3.3	0.0	0.0	0.0
N6	0.0	0.0	1.1	0.0	0.0	0.0	0.0
N7	1.1	0.0	0.0	0.0	0.0	0.0	0.0
N8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N9	3.3	0.0	0.0	7.8	0.0	0.0	0.0
N10	2.2	0.0	0.0	1.1	0.0	0.0	0.0
S1	0.0	0.0	0.0	2.1	0.0	0.0	0.0
S2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S3	0.0	0.0	1.1	0.0	0.0	0.0	0.0
S4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S5	0.0	0.0	0.0	0.0	0.0	0.0	1.6
S6	0.0	0.0	0.0	0.0	0.0	0.0	0.0

C.f = Campoletis flavicincta Ashmead, E.v = *Eiphosoma vitticolle* Cresson, O.f = *Ophion flavidus* Brulle, P.s = *Pristomerus spinator* Fabricius, A.sp = *Aprostocetus* sp., E.p = *Euplectrus plathypenae* Howard, H.sp = *Horismenus* sp.
Two collections from Michoacán during 1998 and 2000 exhibited the highest parasitism rates for a single location (El Hueso, and El Cirián, Nueva Italia) with 12.7%, and 22.2%, respectively. The ichneumonid was previously reported from Brazil, Honduras, Mexico, Nicaragua, and the US (Molina-Ochoa et al. 2003b).

Campeotis flavicincta was found in 14 of 64 collections, one in Colima, 5 in Jalisco, 3 in Michoacán, and 5 in Nayarit, but it was not recovered in Sinaloa, and Veracruz. *Campeotis flavicincta* had an overall parasitism range from 0 to 3.3%. The highest parasitism rate for a single location was obtained in N9. In a previous survey conducted by Molina-Ochoa et al. (2001), *C. flavicincta* accounted for 23% of parasitism in El Batillero, Michoacán, a location surrounded by avocado orchards and pine forest near to Apo, Michoacán; however, the FAW larvae from nearby locations in this survey (M1 and M2) showed low parasitism rates (3.3%, and 2.2%, respectively) by this parasitoid. It appears that, *C. flavicincta* prefers or was associated with locations with high altitude; in this survey, it was found in locations with altitudes with an average of 1417 meters, as well as in locations near forests mainly constituted with pine and oak trees. Molina-Ochoa et al. (2003b) reported *C. flavicincta* occurring in Brazil, Honduras, Mexico, Nicaragua, and the US. This species was also reported attacking beet armyworm larvae fed on cotton in Georgia, USA (Ruberson et al. 1993, 1994).

Eiphosoma vitticole was the ichneumonid with the most limited distribution in this survey, found in 6 of the 64 collections. *E. vitticole* occurred in 2 locations in Colima, 3 locations in Michoacán, and 1 location in Nayarit. The highest rate of parasitism for a single location was recorded in M12 with 5.6%. This species showed low parasitism rates, and it was not found in Jalisco, Sinaloa, and Veracruz. It was collected from locations with an average altitude of 472m, with a range between 255 and 744m. Pair et al. (1986) reported the occurrence of *E. vitticole* in Texas, and Tamaulipas, Mexico. It also has been reported from Bolivia, Brazil, Colombia, Honduras, and Nicaragua (Molina-Ochoa et al. 2003b).

Three species of eulophid parasitoids were found in this survey, *Aprostocetus* sp., *Euplectrus plathypenae* Howard, and *Horismenus* sp. *Euplectrus plathypenae* was the most widely distributed eulophid, occurring in 16 of the 64 collections. It was found in Veracruz in all collections (10), Sinaloa in 3 collections, 2 in Michoacán, and one in Jalisco. Molina-Ochoa et al. (2001) reported a parasitism rate of 8.3% by *E. plathypenae* in a single collection in El Mante, Tamaulipas, similar rates in several locations in Veracruz, and low rate of about 1% in Michoacán. We also did not find levels higher than 1.6% in Michoacán; however, we found a range of parasitism in Sinaloa between 1% and 4.2%. The highest level of parasitism for a single location was obtained in the location V4 with 11.5%. Montoya-Burgos (1980) reported natural parasitism of about 15% by *Euplectrus* sp. against L2 FAW developing on corn in Veracruz. *Euplectrus plathypenae* is an important and well distributed parasitoid in the tropical Americas, and the US (Molina-Ochoa et al. 2003b).

The other eulophids, *Aprostocetus* sp. and *Horismenus* sp., occurred only in the location V2, with a parasitism rate of 3.0% for both species. This is the first report of *Aprostocetus* sp. and *Horismenus* sp. as parasitoids of FAW larvae. *Aprostocetus* sp. has been reported as a hyperparasitoid of *Gelechia senticetella* (Stgr.) (Lepidoptera: *Spodoptera frugiperda* Larva 469

Code*	Ichneumonidae	Eulophidae					
	C.f	E.v	O.f	Ps	A.sp	E.p	H.sp
S7	0.0	0.0	0.0	0.0	0.0	1.0	0.0
S8	0.0	0.0	0.0	0.0	0.0	1.1	0.0
V1	0.0	0.0	0.0	0.0	0.0	2.2	0.0
V2	0.0	0.0	0.0	0.0	3.0	6.1	3.0
V3	0.0	0.0	0.0	0.0	0.0	3.1	0.0
V4	0.0	0.0	0.0	0.0	0.0	11.5	0.0
V5	0.0	0.0	0.0	0.0	0.0	4.2	0.0
V6	0.0	0.0	0.0	0.0	0.0	2.2	0.0
V7	0.0	0.0	0.0	0.0	0.0	5.1	0.0
V8	0.0	0.0	0.0	0.0	0.0	4.4	0.0
V9	0.0	0.0	0.0	0.0	0.0	8.9	0.0
V10	0.0	0.0	0.0	0.0	0.0	6.1	1.0

C.f = *Campeotis flavicincta* Ashmead, E.v = *Eiphosoma vitticole* Cresson, O.f = *Ophion flavidus* Brulle, Ps = *Pristomerus spinator* Fabricius, A.sp = *Aprostocetus* sp., E.p = *Euplectrus plathypenae* Howard, H.sp = *Horismenus* sp.
Gelechiidae) fed on Juniperus excelsa in Bulgaria (Mirchev et al. 2001). Aprostocetus sp. also was reported as an egg parasitoid of mango leaffoppers (Fasih & Srivatava 1990). Aprostocetus diplosis Crawford is a parasitoid of Stenodiplosis sorghicola, a dipterous pest of sorghum in Brazil (Campos et al. 1998). Horismenus sp. has been reported to be a parasitoid of prepupae and pupae of the Citrus leafminer, Phylocnistis citrella (Lepidoptera: Gracillariidae) in Mexico (Perales et al. 1996, Bautista-Martínez et al. 1998). Coffelt & Schultz (1993) mentioned that it is very common to find species of this genus acting as hyperparasitoids. Our results demonstrate that hymenopteran parasitoids of FAW differentially occurred throughout the six Mexican states surveyed. However, this may have been influenced by the size of the FAW larvae collected. The hymenopteran parasitoids caused significant mortality of FAW larvae in most of the localities of this survey. It is important to highlight the occurrence and role on the FAW larval mortality caused by the braconids, C. insularis, and M. la phygmae, the ichneumonids, O. flavidus, P. spinator, and C. flavicincta, as well as the eulophid E. plathypenae. Our findings agree with Ashley (1986) in that no single parasitoid species exerted significant mortality throughout a major portion of the range of FAW. Another important aspect to note is the need for more taxonomic studies on two genera, Chelonus and Meteorus, which are important sources of mortality for FAW larvae.

ACKNOWLEDGMENTS

The authors thank Dr. R. W. Carlson, Dr. E. E. Grissett, Dr. P. M. Marsh, Dr. N. E. Woodley, and Dr. N. W. Gates (USDA-ARS, Systematic Entomology Laboratory, Beltsville, MD) for the insect identifications, and J. J. Molina-Cárdenas, M. A. Rodriguez-Vega, and F. Arco-Palacios (Universidad de Colima, Tecolmán, Colima) for assistance during the collections and preparation of the specimens. The authors express gratitude to Dr. Carlos Salazar-Silva, Rector of the Universidad de Colima, and CONACYT-Mexico for supporting this research, and for a grant to the senior author, respectively. This paper is a contribution of the Universidad de Colima-Facultad de Ciencias Biológicas y Agropecuarias, Tecolmán, Colima, México, the USDA-ARS Crop Protection & Management Research Laboratory, Tifton, GA 31793, and the University of Nebraska Agricultural Research Division, Lincoln, NE 68583, Journal Series No.14482, Department of Entomology, University of Nebraska Lincoln. The authors also thank Dr. John J. Hamm USDA-ARS, Crop Protection & Management Research Laboratory, P.O. Box 748, Tifton, GA 31793-0748, USA, and Dr. John R. Ruberson, Department of Entomology, University of Georgia Tifton, Tifton, GA 31793, USA, for critical review of the manuscript.

REFERENCES CITED

Adamczyk, J. J., Jr., J. W. Holloway, B. R. Leonard, and J. B. Graves. 1997. Susceptibility of fall armyworm collected from different plant hosts to selected insecticides and transgenic Bt cotton. J. Cotton Sci. 1: 21-28.

Altieri, M. A. 1991. Increasing biodiversity to improve insect pest management in agro-ecosystems. Chapter XIV, pp. 165-182 In D. L. Hawksworth [ed.] The Biodiversity of Microorganisms and Invertebrates: Its Role in Sustainable Agriculture. CAB International, Wallingford, UK.

Altieri, M. A. 1994. Biodiversity and pest management in agroecosystems. Haworth Press, New York.

Alvabado-Rodríguez, B. 1987. Parasites and disease associated with larvae of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae), infesting processing tomatoes in Sinaloa, Mexico. Florida Entomol. 70: 444-449.

Andrews, K. L. 1988. Latin American Research on Spodoptera frugiperda (Lepidoptera: Noctuidae). Florida Entomol. 71: 630-653.

Ashley, T. R., C. S. Barfield, V. H. Waddill, and E. R. Mitchell. 1983. Parasitization of fall armyworm larvae on volunteer corn, Bermudagrass, and para grass. Florida Entomol. 66: 267-271.

Ashley, T. R. 1986. Geographical distributions and parasitization levels for parasitoids of the fall armyworm, Spodoptera frugiperda. Florida Entomol. 69: 516-524.

Bautista-Martínez, N., J. L. C Arrillo-Sánchez, H. Bravo-Mojaica, and S. D. Koch. 1998. Natural parasitism of Phyllocnistis citrella (Lepidoptera: Gracillariidae) at Cuíltlahuac, Veracruz, México. Florida Entomol. 81: 30-37.

Bossart, J. L., and D. P. Prowell. 1998. Genetic estimates of population structure and gene flow: limitations, lessons and new directions. TREE 13:202-206.

Burton, R. L., and W. D. Perkins. 1989. Rearing the corn earworm and fall armyworm for maize resistance studies, pp. 37-45 In CIMMYT, 1989. Toward Insect Resistant Maize for Third World: Proceedings of the International Symposium on Methodologies for Developing Host Plant Resistance to Maize Insects, México, D. F., CIMMYT.

Campos, A. R., F. M. Lara, and O. R. Campos. 1998. Influencia de genotipos de sorgo sobre a mosca Stenodiplosis sorghicola (Diptera: Cecidomyiidae) e seus parasitoides Aprostocetus diplosis Crawford, 1907 (Hymenoptera: Eulophidae). Cult. Agron. 7: 91-100.

Carrillo, H. 1980. Determinación del parasitismo natural de gusano cogollero, Spodoptera frugiperda (J. E. Smith) en Quintana Roo. Folia Entomol. Méx. 45: 111-112.

Cave, R. D. 1993. Parasitoides larvales y pupales de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) en Centro América con una clave para las especies encontradas en Honduras. Ceiba 34: 33-56.

Coffelt, M. A., and P. B. Schultz. 1993. Larval parasitism of orangestriped oakworm (Lepidoptera: Saturniidae) in the urban shade tree environment. Dept. Entomology. University of Virginia. Biological Control 3: 127-134.

Fasih, M., and R. P. Srivastava. 1990. Parasites and predators of insect pest of mango. Int. Pest. Control 32: 39-41.

Gross, H. R., Jr., and S. D. Pair. 1986. The fall armyworm: Status and expectations of biological control with parasitoids and predators. Florida Entomol. 69: 502-515.

Gross, H. R., and S. D. Pair. 1991. Seasonal distribution, response to host developmental stage, and
Screened-cage performance of *Archytas marmoratus* (Diptera: Tachinidae) and *Ophion flavidus* (Hymenoptera: Ichneumonidae) on *Spodoptera frugiperda* (Lepidoptera: Noctuidae) Florida Entomol. 74: 237-245.

Huis, A. V. 1981. Integrated pest management in the small farmer’s maize crop in Nicaragua. Med. Landb. Wageningen 81: 221 pp.

Johnson, D. E., F. J. Seidler, and T. A. Slotkin. 1998. Early biochemical detection of delayed neurotoxicity resulting from developmental exposure to chlorpyri-fos. Brain Research Bulletin 45: 143-147.

Lewis, W. J., and D. A. Nordlund. 1980. Employment of parasitoids and predators for fall armyworm control. Florida Entomol. 63: 433-438.

Lewis, W. J., J. C. Van Lenteren, S. C. Phatak, and J. H. Tumlison, III. 1997. A total system approach to sustainable pest management. Proc. Natl. Acad. Sci. 94: 12243-12248.

Lézama-Gutierrez, R., J. J. Hamm, J. Molina-Ochoa, M. López-Edwards, A. Pescador-Rubio, M. González-Ramírez, and E. Styger. 2001. Occurrence of entomopathogens of *Spodoptera frugiperda* (Lepidoptera: Noctuidae) in the Mexican States of Michoacán, Colima, Jalisco and Tamaulipas. Florida Entomol. 84: 23-30.

Levy, H. C., A. García-Maruniak, and J. E. Maruniak. 2002. Strain identification of *Spodoptera frugiperda* (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase C subunit I gene. Florida Entomol. 85: 186-190.

López-Edwards, M., J. L. Hernández-Mendoza, A. Pescador-Rubio, J. Molina-Ochoa, R. Lézama-Gutierrez, J. J. Hamm, and B. R. Wiseman. 1999. Biological differences between five populations of fall armyworm (Lepidoptera: Noctuidae) collected from corn in Mexico. Florida Entomol. 82: 254-262.

Luy, A., and A. Dadang. 1996. Distinguishing fall armyworm (Lepidoptera: Noctuidae) strains using a diagnostic mitochondrial DNA marker. Florida Entomol. 79: 48-55.

Luginbill, P. 1928. The fall armyworm. U.S. Dep. Agric. Tech. Bull. No. 34.

Mattson, J. L., J. P. J. Maurissen, R. J. Nolan, and D. K. A. Brak. 2000. Lack of differential sensitivity to cholinesterase inhibition in fetuses and neonates compared to dams treated perinatally with chlorpyrifos. Toxicological Sciences 53: 438-446.

Meagher, R. L. Jr., and M. Gallo-Meagher. 2003. Identifying host strains of fall armyworm (Lepidoptera: Noctuidae) in Florida using mitochondrial markers. Florida Entomol. 86: 450-455.

Michev, P., T. Georgiev, and G. Tsankov. 2001. Studies on the parasitoids of *Gelechia senticetella* (Stgr)(Lepidoptera: Gelechiidae) in Bulgaria. Anzeiger für Schädlingskunde 74: 94-96.

Molina-Ochoa, J., J. J. Hamm, R. Lézama-Gutierrez, M. López-Edwards, M. González-Ramírez, and A. Pescador-Rubio. 2001. A survey of fall armyworm (Lepidoptera: Noctuidae) parasitoids in the Mexican States of Michoacán, Colima, Jalisco, and Tamaulipas. Florida Entomol. 84: 31-36.

Molina-Ochoa, J., R. Lézama-Gutierrez, M. Ramírez-González, M. López-Edwards, M. A. Robles, F. Arceo-Palafox, P. Pashley, and D. J. Isenhour. 1998. Pathogens and parasitic nematodes associated with populations of fall armyworm (Lepidoptera: Noctuidae) larvae in México. Florida Entomol. 86(3): 244-253.
STEFFEY, K. 2001. Parasitoids of armyworm have been common. http://www.ag.uiuc.edu/cespubs/pest/articles/200114d.html

VICKERY, R. A. 1929. Studies of the fall armyworm in the Gulf Coast district of Texas. U.S. Dep. Agric. Tech. Bull. No. 138.

WILSON, J. W. 1933. The biology of parasites and predators of Laphygma exigua Huebner reared during the season of 1932. Florida Entomol. 17: 1-15.

YU, S. J. 1991. Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pestic. Biochem. Physiol. 39: 84-91.

YU, S. J. 1992. Detection and biochemical characterization of insecticide resistance in fall armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 85: 675-682.