Uniformly most reliable three-terminal graph of dense graphs

Sun Xie¹,², Haixing Zhao†

¹College of Computer, Qinghai Normal University, Xining, Qinghai 810008, China
²Teaching and Research Department of Basic Courses, Qinghai University, Xining, Qinghai 810008, China

Abstract: Suppose that every edge of a graph G survives independently with a fixed probability between 0 and 1. The three-terminal reliability is the connection probability of the fixed three target vertices r, s and t in a three-terminal graph. This research focuses on the uniformly most reliable three-terminal graph of dense graphs with n vertices and m edges in some ranges. First, we give the locally most reliable three-terminal graphs of n and m in a certain range for p close to 0 and for p close to 1. And then, we prove that there is no uniformly most reliable three-terminal graph with certain ranges of n and m. Finally, some uniformly most reliable graphs are given for $(\binom{n}{2}) - 2$ ($4 \leq n \leq 6$) and $(\binom{n}{2}) - 1$ ($n \geq 5$). This study of uniformly or locally most reliable three-terminal graph provides helpful guidance for constructing highly reliable network structures involving three key vertices as target vertices.

Keywords: target vertices, rst-subgraph, three-terminal graph, locally most reliable graph, uniformly most reliable graph.

1 Introduction

In many applications, the reliability aspect of a network with n vertices and m edges can be modeled as a graph G with the same number of vertices, edges, and interconnections as the network. For all-terminal reliability (connection probability of all vertices of a graph), many studies have been done to determine the existence of a uniformly most reliable (all-terminal) graph for various values of n and m [13, [17], [18], [19]]. However, the research on k-terminal reliability (connection probability of a given set of target vertices with size k in a graph) is
mainly about the algorithm of computing the k-terminal reliability polynomial \cite{5,6,9,10,12}, and only a few results on the construction of the most reliable k-terminal graph.

For large m (m is the number of edges of a graph), it is clear that there is only one graph for a complete graph (that is, $m = \binom{n}{2}$) and a complete graph with one edge removed (that is, $m = \binom{n}{2} - 1$), so they are the uniformly most reliable graphs. In \cite{16}, it is shown that for \((\binom{n}{2}) - \left\lfloor \frac{n}{2} \right\rfloor \leq m \leq (\binom{n}{2}) - 2\) \((\left\lfloor \frac{n}{2} \right\rfloor\) is the largest integer not greater than \(\frac{n}{2}\)), the uniformly most reliable graph is a complete graph with a matching removed (the matching of a graph is a set of edges in a graph that have no common vertices with each other). These results have great significance in network design practices. In fact, in a real network, the design of the network often only needs to ensure the connectivity of k ($2 \leq k < n$) key vertices (target vertices) in the network. Therefore, the construction of the most reliable k-terminal graph has high application value. However, by the literature available to the authors of the present research, there is a few research work on the construction of the most reliable k-terminal structure. Betrand et al. \cite{2} demonstrated in 2018 that for \((\binom{n}{2}) - \left\lfloor \frac{n-3}{2} \right\rfloor \leq m \leq (\binom{n}{2}) - 2\) \((n \geq 7)\), there is no uniformly most reliable two-terminal graph and for $m = \binom{n}{2} - 1$, the uniformly most reliable two-terminal graph is a complete graph with an edge between non-target vertices removed. Therefore, it is natural to consider the following problem.

Problem. For large m, is there a uniformly most reliable three-terminal graph? If it exists, how is it constructed? If it does not exist, can we construct the locally most reliable three-terminal graph and how to construct it?

With these questions, we further study the existence of uniformly most reliable three-terminal graphs for large m. For three-terminal graphs with m in the range \((\binom{n}{2}) - \left\lfloor \frac{n-3}{2} \right\rfloor \leq m \leq (\binom{n}{2}) - 2\) \((n \geq 7)\), it is proved that there is no uniformly most reliable graph, and the locally most reliable three-terminal graphs are determined, one case is for p close to 0 and the other is for p close to 1. It also determines the uniformly most reliable three-terminal graph with \((\binom{n}{2}) - 2\) \((4 \leq n \leq 6)\) and \((\binom{n}{2}) - 1\) \((n \geq 5)\) edges, respectively.

This present research is organized as follows. In section 2, some related basic definitions and notations are given. In section 3, the locally most reliable three-terminal graphs for m in a certain range are determined and show that there is no uniformly most reliable three-terminal graph for \((\binom{n}{2}) - \left\lfloor \frac{n-3}{2} \right\rfloor \leq m \leq (\binom{n}{2}) - 2\) \((n \geq 7)\) and give the uniformly most reliable graphs for $n = 4, 5, 6$ and $m = \binom{n}{2} - 2$. In section 4, a uniformly most reliable three-terminal graph with n vertices and $m = \binom{n}{2} - 1$ edges is determined. Section 5 summarizes the results of this research.
2 Basic concepts and notations

A graph $G = (V(G), E(G))$ with three specified target vertices r, s and t in $V(G)$ is a three-terminal graph. Using $G_{n,m}$ denotes the set of all simple three-terminal graphs with n vertices and m edges. The connectivity probability of the three specified target vertices r, s, t in graph $G \in G_{n,m}$ when each edge of G survives independently with a fixed probability p is called the three-terminal reliability of G, or the three-terminal reliability polynomial of G, denote by $R_3(G; p)$. A $v_1v_2 \cdots v_n$-subgraph is a subgraph of G in which vertices $v_1v_2 \cdots v_n$ are connected in the subgraph. The three-terminal reliability polynomial of the graph $G \in G_{n,m}$ can be written as

$$R_3(G; p) = \sum_{i=2}^{m} N_i(G)p^i(1-p)^{m-i},$$

where $N_i(G)$ or simply N_i is the number of rst-subgraphs of graph G with i edges.

Example 1. Figure 1 shows all types of simple three-terminal graph in $G_{4,4}$ with three target vertices r, s, t. Each edge of these graphs survives independently with probability p.

By definition, there are

3 rst-subgraphs with 2 edges: $\{rs, rt\}$, $\{rs, st\}$, $\{rt, st\}$;

4 rst-subgraphs with 3 edges: $\{rs, rt, st\}$, $\{rs, rt, sv_4\}$, $\{rs, st, sv_4\}$, $\{rt, st, sv_4\}$;

1 rst-subgraph with 4 edges: $\{rs, rt, st, sv_4\}$.

Thus $N_2(G_1) = 3$, $N_3(G_1) = 4$ and $N_4(G_1) = 1$.

Similarly, by definition, we can calculate $N_i(G_j)$, $2 \leq i, j \leq 4$, are as follows:

$N_2(G_2)$: 1, 3, 1; $N_3(G_3)$: 1, 4, 1; $N_4(G_4)$: 0, 3, 1.

Figure 2 shows a visualization among all graphs in $G_{4,4}$. Clearly, for all $0 < p < 1$, $R_3(G_1; p) > R_3(G_3; p) > R_3(G_2; p) > R_3(G_4; p)$, so, G_1 is the uniformly most reliable graph in $G_{4,4}$.

Figure 1: All simple three-terminal graph in $G_{4,4}$ with three target vertices r, s, t.
Example 2. Figure 3 shows two special simple three-terminal graphs in $G_{8,26}$ with three target vertices r, s, t. Each edge of these graphs survives independently with probability p.

Directly calculated by Matlab, we give a plot of $R_3(H_1;p) - R_3(H_2;p)$ as shown in Figure 4. Clearly, for p close to 1, $R_3(H_1;p) > R_3(H_2;p)$ and for p close to 0, $R_3(H_1;p) < R_3(H_2;p)$.

In fact, this research later proved that H_1 is the locally most reliable graph for p close to 1 and H_2 is the locally most reliable graph for p close to 0 in $G_{8,26}$.

Figure 3. Two special three-terminal graphs in $G_{8,26}$ with three target vertices r, s, t. The red dotted lines indicate the deleted edges.

Figure 4. A plot of $R_3(H_1;p) - R_3(H_2;p)$.
In fact, many researches on reliability focuses on determining a uniformly most reliable graph for a given number of vertices n and edges m, as shown in Example 1; if there is no uniformly most reliable graph, researchers usually focuses on determining the locally most reliable graph for p close to 0 or 1, as shown in Example 2. So, similar to the definition of uniformly (locally) most reliable graph [1, 4], we give the following definition of uniformly (locally) most reliable three-terminal graph.

Definition 2.1 A graph G is the uniformly most reliable graph in $\mathcal{G}_{n,m}$, if $R_3(G;p) \geq R_3(H;p)$, $H \in \mathcal{G}_{n,m}$ for all $0 \leq p \leq 1$. In particular, if $R_3(G;p) \geq R_3(H;p)$, $H \in \mathcal{G}_{n,m}$ for p close to 0 (for p close to 1), then G is the locally most reliable graph in $\mathcal{G}_{n,m}$ for p close to 0 (for p close to 1).

Here are some notations used in the following. If G is a simple graph, let $N_G(H)$ denote the number of subgraphs as H, whose vertices is the subset of non-target vertices in G, and G is obtain by deleting the existing edges of G and introducing an edge between all two pairs of non-adjacent vertices in G. $G \cup e$ denotes the addition of the edge e to the graph G, and $G - e$ denotes the deletion of the edge e from the graph G. The union of simple graphs G and H, denoted by $G \cup H$, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. In addition, P_n is the path with n vertices, and let K_n denote the complete graph with n vertices, in which there is exactly one edge between each pair of vertices, and $K_{1,n}$ denotes a star with $n + 1$ vertices and n edges.

3 Some locally most reliable three-terminal graphs

In this section, the locally most reliable three-terminal graph for $\left(\begin{array}{c} n \end{array}\right) - (n - 4) \leq m \leq \left(\begin{array}{c} n \end{array}\right) - 2$ for p close to 0 is determined and the locally most reliable three-terminal graph for $\left(\begin{array}{c} n \end{array}\right) - \left\lfloor \frac{n-3}{2} \right\rfloor \leq m \leq \left(\begin{array}{c} n \end{array}\right) - 2$ for p close to 1 is also determined. Then, it is shown that for $n \geq 7$ and $\left(\begin{array}{c} n \end{array}\right) - \left\lfloor \frac{n-3}{2} \right\rfloor \leq m \leq \left(\begin{array}{c} n \end{array}\right) - 2$, there is no uniformly most reliable graph in $\mathcal{G}_{n,m}$, and for $n = 4, 5, 6$ and $m = \left(\begin{array}{c} n \end{array}\right) - 2$, there is a uniformly most reliable graph. To prove these results, we first introduce some related definitions and lemmas.

If the rst-subgraph with i edges does not contain any rst-subgraph with less than i edges, then it is minimal, otherwise it is non-minimal. A rst-cutset is a set of edges whose deletion results in the disconnection of vertices r, s and t in the graph and the number of edges is its size. The edge connectivity of r, s and t is the smallest size of a rst-cutset, denoted by $\lambda(rst)$ or simply λ.
In general, the calculation of the three-terminal reliability polynomial of a graph is NP-hard \[15,17\]. Therefore, we study the locally most reliable graph by the following lemma.

Lemma 3.1 Let the three-terminal reliable polynomials of \(G, H \in \mathcal{G}_{n,m}\) be

\[
R_3(G; p) = \sum_{i=2}^{m} N_i(G)p^i(1-p)^{m-i} \quad \text{and} \quad R_3(H; p) = \sum_{i=2}^{m} N_i(H)p^i(1-p)^{m-i}.
\]

Let \(N_i(G) = N_i(H)\) for \(1 \leq i < k\) and for \(l < i \leq m\) and \(k \leq l\), where \(k\) and \(l\) are integers. Then

1. For \(p\) close to 0, \(R_3(G; p) > R_3(H; p)\) if \(N_k(G) > N_k(H)\),
2. For \(p\) close to 1, \(R_3(G; p) > R_3(H; p)\) if \(N_l(G) > N_l(H)\).

Proof. Assume that \(G\) and \(H\) satisfy the given conditions, we have

\[
R_3(G; p) - R_3(H; p) = \sum_{i=2}^{m} (N_i(G) - N_i(H))p^i(1-p)^{m-i} = \sum_{i=2}^{k} (N_i(G) - N_i(H))p^i(1-p)^{m-i} \sum_{i=k}^{m} (N_i(G) - N_i(H))p^i(1-p)^{m-i}.
\]

It is clear to see that for \(p\) close to 0, if \(N_k(G) > N_k(H)\), then \(R_3(G; p) - R_3(H; p) > 0\), that is, \(R_3(G; p) > R_3(H; p)\). Similarly, for \(p\) close to 1, if \(N_l(G) > N_l(H)\), then \(R_3(G; p) > R_3(H; p)\).

By Lemma 3.1, we get the following conclusions.

1. If \(G \in \mathcal{G}_{n,m}\) is the locally most reliable graph for \(p\) close to 0, then it must contain the triangle \(rst\) and the value of \(N_3(G)\) is the maximum among all graphs in \(\mathcal{G}_{n,m}\) containing the triangle \(rst\).
2. If \(G \in \mathcal{G}_{n,m}\) is the locally most reliable graph for \(p\) close to 1, then it must have the largest edge connectivity \(\lambda\). Since \(N_i = \binom{m}{i} (m-\lambda+1 \leq i \leq m)\) and \(N_{m-\lambda} = \binom{m}{\lambda}\) – the number of the \(rst\)-cutsets of size \(\lambda\), the number of the \(rst\)-cutsets with size \(\lambda\) of graph \(G\) must be minimized.

Now, we demonstrate the locally most reliable graph for three-terminal graphs. We first introduce two important graphs for this section, as follows.

Let \(n \geq 7\) and \(2 \leq l \leq n-4\) be positive integers. Using \(A_{n,l}\) denotes the three-terminal graph on \(n\) vertices and \(\binom{n}{2} - l\) edges with vertex set \(V(A_{n,l}) = \{r = v_1, s = v_2, t = v_3, v_4, \ldots, v_n\}\) and edge set \(E(A_{n,l}) = \{v_i v_j | 1 \leq i < j \leq n\} - \{v_4 v_{i+3} | 2 \leq i \leq l+1\}\).
Let \(n \geq 7 \) and \(2 \leq l \leq \left\lfloor \frac{n-3}{2} \right\rfloor \) be positive integers. Using \(A'_{n,l} \) denotes the three-terminal graph on \(n \) vertices and \((\binom{n}{2}) - l\) edges with vertex set \(V(A'_{n,l}) = \{r = v_1, s = v_2, t = v_3, v_4, \ldots, v_n\} \) and edge set \(E(A'_{n,l}) = \{v_i v_j | 1 \leq i < j \leq n\} - \{v_2 v_2+i | 2 \leq i \leq l + 1\} \).

Figure 5 depicts these two three-terminal graphs with 11 vertices and 51 edges.

![Figure 5: Graph \(A_{11,51} \) (left) and Graph \(A'_{11,51} \) (right)](image)

The red dotted lines indicate the deleted edges.

Lemma 3.2 \cite{2} Let \(n \geq 1 \) and \(0 \leq m \leq n - 1 \) be positive integers.

If \(m \neq 3 \), then the unique simple graph on \(n \) vertices and \(m \) edges with the maximum number of \(P_3 \) is \(K_{1,m} \cup \overline{K_{n-m-1}} \).

If \(m = 3 \), there are two simple graphs with the maximum number of \(P_3 \): \(K_3 \cup \overline{K_{n-3}} \) and \(K_{1,3} \cup \overline{K_{n-4}} \).

We give the following Theorem 3.1.

Theorem 3.1 Let \(n \geq 7 \), \(2 \leq l \leq n - 4 \) and \(m = \binom{n}{2} - l \) be positive integers. Then

1. If \(l = 3 \), then the graph \(A^{*}_{n,3} = A_{n,3} \cup \{v_4 v_7\} - \{v_5 v_6\} \) is the unique locally most reliable graph in \(G_{n,m} \) for \(p \) close to 0,

2. If \(l \neq 3 \), then the graph \(A_{n,l} \) is the unique locally most reliable graph in \(G_{n,m} \) for \(p \) close to 0.

Proof. Suppose that \(n, l \) and \(m \) satisfy the conditions and \(G \) is the locally most reliable graph in \(G_{n,m} \) for \(p \) close to 0 and the vertex set is \(V(G) = \{r = v_1, s = v_2, t = v_3, v_4, \ldots, v_n\} \). Then by Lemma 3.1, \(G \) must contain the triangle \(rst \) and the value of \(N_3 \) must reach the maximum among all graphs in \(G_{n,m} \) containing the triangle \(rst \).
It is no hard to see that \(N_3 = a + b + c + d \), where \(a \) is the number of set \(\{rs, rt, st\} \); \(b \) is the number of sets \(\{rs, st, v_iv_j\}, \{rs, rt, v_iv_j\} \) and \(\{rt, st, v_iv_j\} \) \((1 \leq i \leq n, 4 \leq j \leq n)\), \(c \) is the number of sets \(\{v_iv_j, tv_iv_j \in \{1, 2\}\}; \{v_iv_j, sv_iv_j, rt\} \in \{1, 3\}\}, \{rv_iv_j, sv_iv_j, st\} \in \{2, 3\}\) \((4 \leq i \leq n)\) and \(d \) is the number of set \(\{v_ir, v_is, v_it\} \) \((4 \leq i \leq n)\).

Clearly, for all graphs in \(G_{n,m} \) containing the triangle \(rst \), \(a = 3 \) and \(b = 3(m - 3) \) are constants and \(N_3 \) take the maximum value if and only if \(c \) and \(d \) attains the maximum value. Note that if \(d \) takes the maximum value \(n - 3 \), then the value of \(c \) also reaches its maximum, that is, \(E(G) \) contains the edges \(v_ir, v_is, v_it \) for all \(4 \leq i \leq n \).

Now, consider the remaining \(\binom{n}{2} - l - 3n - 6 \) edges between non-target vertices in \(G \) that have not been described. Since \(G \) is a dense graph, it is often easier to consider the position of the \(l \) edges deleted between non-target vertices.

By Lemma 3.1, we need to continue to calculate the coefficients \(N_i = b_i + c_i \), where \(b_i \) and \(c_i \) are the number of minimal \(rst \)-subgraphs and non-minimal \(rst \)-subgraphs with \(i \) edges, respectively. We now calculate \(N_4 = b_4 + c_4 \).

Clearly, the value of \(b_4 \) is the sum of the numbers of sets \(\{sv_i, v_it, sv_j, v_jr\}, \{sv_i, v_iv_j, v_jt, sr\} \) and \(\{sv_i, v_iv_j, v_jt, v_jr\} \) and the non-minimal \(rst \)-subgraph with 4 edges includes two parts: the smallest \(rst \)-subgraph is the minimal \(rst \)-subgraph with 2 edges and the smallest \(rst \)-subgraph is the minimal \(rst \)-subgraph with 3 edges. By calculation, \(b_4 = 6^{(n-3)} + 12(m - 3n + 6) + 6(m - 3n - 6) \) and \(c_4 = 3^{(m-3)} + (m - 3) + (n - 3)(m - 3) + 6(n - 3)(m - 6) \) are constants. So, \(N_4 \) is a constant. Then we calculate \(N_5 = b_5 + c_5 \).

Clearly, the value of \(b_5 \) is the sum of the numbers of sets \(\{sv_i, v_iv_j, v_jr, rv_kv_k, v_kt\}, \{sv_i, v_iv_j, v_jk, v_kr, v_kt\} \) and \(\{rv_i, sv_i, v_iv_j, v_jv_k, v_kt\} \) \((4 \leq i, j, k \leq n, i \neq j \neq k)\) and the non-minimal \(rst \)-subgraph with 5 edges includes three parts: the smallest \(rst \)-subgraph is the minimal \(rst \)-subgraph with 2 edges, the smallest \(rst \)-subgraph is the minimal \(rst \)-subgraph with 3 edges and the smallest \(rst \)-subgraph is the minimal \(rst \)-subgraph with 4 edges. By calculation, \(c_5 = 3^{(m-3)} + \binom{m-3}{2} + 7(n - 3)(m - 6) + 3(n - 3)(m - 6) - 12^{(n-3)} + 18(m - 3n + 6)(m - 10) + 6(m - 3n + 6) + 6(m - 9)^{(n-3)} \) is a constant and

\[
b_5 = 12(m - 3n + 6)(n - 5) + 24 \sum_{i=4}^{n} \frac{d(v_i) - 3}{2}
\]
\[
= 12 \sum_{i=4}^{n} (d(v_i) - 3)^2 + 12(m - 3n + 6)(n - 7)
\]
\[
= 24 \sum_{i=4}^{n} \frac{d_i^2}{2} + 24l + 12(n - 3)(n - 4)^2 - 48(n - 4)l + 12(m - 3n + 6)(n - 7),
\]

where \(d(v_i) \) is the degree of the vertex \(v_i \), which is the number of edges associated with vertex.
v_i and d_i is the number of edges deleted on the non-target vertex v_i ($4 \leq i \leq n$).

Note that the value of $\sum_{i=4}^{n} \binom{d_i}{2}$ is the number of subgraphs as P_3, whose vertices is the subset of non-target vertices in G.

(1) By Lemma 3.2, if $l = 3$, then the number of P_3 in a simple graph with $n - 3$ vertices and l edges reaches the maximum if the graph is either $K_3 \cup \overline{K_{n-6}}$ or $K_{1,3} \cup \overline{K_{n-7}}$. So, we get that $N_5(A_{n,3}) = N_5(A_{n,3}^*)$ attains the maximum among the graphs whose N_i ($1 \leq i \leq 4$) satisfy the above calculations, that is, G is either $A_{n,3}$ or $A_{n,3}^*$. So, we need to calculate the value of $N_6(A_{n,3}) - N_6(A_{n,3}^*)$.

Similar to the analysis and solution process of N_5, it can be calculated,

$$N_6(A_{n,3}) - N_6(A_{n,3}^*) = 30[N_{A_{n,3}}(P_4) - N_{A_{n,3}^*}(P_4)] + 6[N_{A_{n,3}}(K_1,3) - N_{A_{n,3}^*}(K_1,3)]$$

$$- 66[N_{A_{n,3}}(K_3) - N_{A_{n,3}^*}(K_3)].$$

By calculation, we can get $N_{A_{n,3}}(P_4) = N_{A_{n,3}^*}(P_4)$, $N_{A_{n,3}}(K_1,3) - N_{A_{n,3}^*}(K_1,3) = -1$ and $N_{A_{n,3}}(K_3) - N_{A_{n,3}^*}(K_3) = 1$. So, $N_6(A_{n,3}) - N_6(A_{n,3}^*) = -72 < 0$.

Therefore, if $l = 3$, then the graph $A_{n,l}^*$ is the graph G which is the unique locally most reliable graph in $G_{n,m}$ for p close to 0.

(2) By Lemma 3.2, if $l \neq 3$, then the number of P_3 in a simple graph with $n - 3$ vertices and l edges is maximized only if the graph is $K_{1,l} \cup \overline{K_{n-4-l}}$. So, we get that $N_5(A_{n,l})$ attains the maximum among the graphs whose N_i ($1 \leq i \leq 4$) satisfy the above calculations.

Therefore, if $l \neq 3$, then the graph $A_{n,l}$ is the graph G which is the unique locally most reliable graph in $G_{n,m}$ for p close to 0.

Now, we will show that for $\binom{n}{2} - \left\lfloor \frac{n-3}{2} \right\rfloor \leq m \leq \binom{n}{2} - 2$ ($n \geq 7$), $A_{n,l}^*$ is the unique locally most reliable graph in $G_{n,m}$ for p close to 1, as shown in Theorem 3.2. To prove this, we need to give some lemmas first.

Lemma 3.3 For positive integers $n \geq 7$ and $2 \leq l \leq \left\lfloor \frac{n-3}{2} \right\rfloor$ and every graph $G \in G_{n,m}$ with $m = \binom{n}{2} - l$ edges, let C be a minimal rst-cutset and the component containing r in $G - C$ with $k + 1$ vertices ($0 \leq k \leq \left\lfloor \frac{n-3}{2} \right\rfloor$) and if s is not in the component containing r in $G - C$, the component containing s has k' ($1 \leq k' \leq n - k - 1$) vertices. Then

$$n - 1 - l + k(n - k - 2) \leq |C| \leq n - 1 + k(n - k - 2) + k'(n - k - k' - 1)$$

Proof. Suppose that $G \in G_{n,m}$ and C satisfy the given hypotheses. Then when all the components obtained by $G - C$ are both complete graphs, the number of edges in the graph $G - C$ is the maximum. There are two cases of components obtained by the graph $G - C$:
Case 1. Obtain two components: one containing \(r \) (or \(rs \) or \(rt \)), and the other containing \(st \) (or \(t \) or \(s \)).

Case 2. Obtain three components containing \(r, s, t \) respectively.

In Case 1, the two components contain \(k+1 \) and \(n-k-1 \) vertices, respectively. Thus, the number of edges in \(G-C \) is \(\binom{k+1}{2} + \binom{n-k-1}{2} \). In Case 2, since the component containing \(s \) has \(k' \) vertices with \(1 \leq k' \leq n-k-1 \), the number of edges in \(G-C \) is \(\binom{k+1}{2} + \binom{k'}{2} + \binom{n-k-1-k'}{2} \).

By calculation,

\[
\left(\binom{k+1}{2} + \binom{n-k-1}{2} \right) - \left(\binom{k+1}{2} + \binom{k'}{2} + \binom{n-k-1-k'}{2} \right) = k'[(n-k-1)-k'] \geq 0. \ (1 \leq k' \leq n-k-1)
\]

Thus, the maximum number of the edges in \(G-C \) is \(\binom{k+1}{2} + \binom{n-k-1}{2} \). Then

\[
|C| \geq \left(\binom{n}{2} - l - \left(\binom{k+1}{2} + \binom{n-k-1}{2} \right) \right) = n-1-l+k(n-k-2).
\]

On the other hand, the minimum number of the edges in \(G-C \) is \(\binom{k+1}{2} + \binom{k'}{2} + \binom{n-k-1-k'}{2} - l \).

Thus, we have

\[
|C| \leq \left(\binom{n}{2} - l - \left(\binom{k+1}{2} + \binom{k'}{2} + \binom{n-k-1-k'}{2} - l \right) \right) = \left(\binom{n}{2} - \left(\binom{k+1}{2} + \binom{k'}{2} + \binom{n-k-1-k'}{2} \right) \right) = n-1+k(n-k-2)+k'(n-k-k'-1).
\]

The proof is thus complete.

Lemma 3.4 For positive integers \(n \geq 7 \) and \(2 \leq l \leq \lfloor \frac{n-3}{2} \rfloor \) and every graph \(G \in G_{n,m} \) with \(m = \binom{n}{2} - l \) edges, the smallest \(rst \)-cutset of \(G \) contains all edges incident with one of the target vertices \(r, s, t \) and the next smallest minimal \(rst \)-cutset of \(G \) will obtain an order 2 components containing either \(r \) or \(s \) or \(t \) when it is removed.

Proof. By Lemma 3.3, if \(C \) is a minimal \(rst \)-cutset of \(G \), then the component containing either \(r \) or \(s \) or \(t \) in \(G-C \) has \(k+1 \ (0 \leq k \leq \lfloor \frac{n-3}{2} \rfloor) \) vertices. Without loss of generality, let \(C \) be a minimal \(rst \)-cutset of \(G \) and the component containing \(r \) in \(G-C \) has \(k+1 \ (0 \leq k \leq \lfloor \frac{n-3}{2} \rfloor) \) vertices.
By Lemma 3.3, \(n - 1 - l + k(n - k - 2) \leq |C| \leq n - 1 + k(n - k - 2) + k'(n - k' - 1) \), \(0 \leq k \leq \lfloor \frac{n-3}{2} \rfloor \). It is easy to see that \(k(n - k - 2) \) increases as \(0 \leq k \leq \lfloor \frac{n-3}{2} \rfloor \) increases, so, we have

If \(k = 0 \) (that is, \(r \) is the unique vertex in the component that contains \(r \) in \(G - C \)), then \(|C| \leq n - 1 + k'(n - k' - 1) \).

If \(k \geq 1 \), then

\[
|C| \geq n - 1 - l + k(n - k - 2) \\
\geq n - 1 - \frac{n - 3}{2} + 1(n - 1 - 2) \\
\geq 2n - 4 - \frac{n - 3}{2} \\
= \frac{3n - 5}{2}.
\]

Since for \(k = 0 \), \(|C| \leq n - 1 \) when \(k' = 0 \) and \(n - 1 < \frac{3n-5}{2} \) \((n \geq 7) \), so, when \(k = 0 \), the smallest \(rst \)-cutset of \(G \) can be obtained, that is, the smallest \(rst \)-cutset of \(G \) contains all the edges incident with either \(r \) or \(s \) or \(t \).

If \(k = 1 \) (that is, there exist \(r \) and one other vertex in the component that contains \(r \) in \(G - C \)), then \(|C| \leq 2n - 4 + k'(n - k' - 1) \).

If \(k \geq 2 \), then

\[
|C| \geq n - 1 - l + k(n - k - 2) \\
\geq n - 1 - \frac{n - 3}{2} + 2(n - 2 - 2) \\
\geq 3n - 9 - \frac{n - 3}{2} \\
= \frac{5n - 15}{2}.
\]

Since for \(k = 1 \), \(|C| \leq 2n - 4 \) when \(k' = 0 \) and \(2n - 4 \leq \frac{5n-15}{2} \) \((n > 7) \) and no hard to get that the size of the next smallest minimal \(rst \)-cutset of \(G \) for \(k = 1 \) is smaller than for \(k \geq 2 \) \((n = 7) \), so, when \(k = 1 \), the next smallest minimal \(rst \)-cutset of \(G \) can be obtained, that is, the next smallest minimal \(rst \)-cutset of \(G \) will obtain an order 2 components containing either \(r \) or \(s \) or \(t \) when it is removed.

The proof is now complete.
Theorem 3.2 Let \(n \geq 7, \ 2 \leq l \leq \lfloor \frac{n-3}{2} \rfloor \) and \(m = \binom{n}{2} - l \) be positive integers. Then \(A_{n,l}' \) is the unique locally most reliable graph in \(G_{n,m} \) for \(p \) close to 1.

Proof. Assume that \(n, l \) and \(m \) satisfy the given hypotheses. Let \(G \in G_{n,m} \) be the unique most reliable graph for \(p \) close to 1. Then by Lemma 3.1, \(G \) must have the largest edge connectivity \(\lambda \), that is, the size of the smallest \(rst \)-cutset of \(G \) must be as large as possible. By Lemma 3.4, we get that for \(G, \lambda = d(r) = d(s) = d(t) = n - 1 \). There are many graphs satisfying this condition, so, the size of the next smallest minimal \(rst \)-cutset of \(G \) also must be as large as possible with \(\lambda = n - 1 \).

By Lemma 3.4, the next smallest minimal \(rst \)-cutset leaves \(r \) and one other vertex \(v \) in a component, whose size is \(n - 3 + d(v) \). Thus, for each \(v \in V(G) - \{r\}, d(v) \geq n - 2 \).

Therefore, \(A_{n,l}' \) is the unique locally most reliable graph in \(G_{n,m} \) for \(p \) close to 1.

As a straightforward consequence of Theorems 3.1 and 3.2, we obtain the following Theorem 3.3.

Theorem 3.3 Let \(n \geq 7, \ 2 \leq l \leq \lfloor \frac{n-3}{2} \rfloor \) be positive integers. If \(m = \binom{n}{2} - l \), then there is no uniformly most reliable three-terminal graph in \(G_{n,m} \).

Remark 3.1 For \(n = 4 \) and \(m = \binom{4}{2} - 2 = 4 \), there is a uniformly most reliable three-terminal graph in \(G_{4,4} \) (see Example 1). For \(n = 5 \) or \(6 \), \(m = \binom{5}{2} - 2 \), there is also a uniformly most reliable three-terminal graph in \(G_{n,m} \) (see Appendix A).

4 A uniformly most reliable three-terminal graph

For the three-terminal graph with \(m = \binom{n}{2} \) edges, there is only one graph, thus, it is easy to see that it is the uniformly most reliable graph in \(G_{n,\binom{n}{2}} \). In this section, we determine a uniformly most reliable graph in \(G_{n,m} \) with \(m = \binom{n}{2} - 1 \) edges. First, we introduce three graphs used in the following Theorem.

Clearly, when we remove one edge, there are only three distinct cases: the edge between target vertices; the edge between a target vertex and a non-target vertex; the edge between non-target vertices. Let \(n \geq 5 \) and \(m = \binom{n}{2} - 1 \) be positive integers.

1. Using \(X_n \) denotes the three-terminal graph on \(n \) vertices and \(m \) edges with vertex set \(V(X_n) = \{r = x_1, s = x_2, t = x_3, x_4, \ldots, x_n\} \) and edge set \(E(X_n) = \{x_ix_j | 1 \leq i < j \leq n\} \) - \{rs\}.

12
(2) Using Y_n denotes the three-terminal graph on n vertices and m edges with vertex set $V(Y_n) = \{r = y_1, s = y_2, t = y_3, y_4, \ldots, y_n\}$ and edge set $E(Y_n) = \{y_iy_j|1 \leq i < j \leq n\} - \{ry_4\}.$

(3) Using Z_n denotes the three-terminal graph on n vertices and m edges with vertex set $V(Z_n) = \{r = z_1, s = z_2, t = z_3, z_4, \ldots, z_n\}$ and edge set $E(Z_n) = \{z_iz_j|1 \leq i < j \leq n\} - \{z_4z_5\}.$

Now, we can give a uniformly most reliable graph in $G_{n,m}$ for $n \geq 5$ and $m = \binom{n}{2} - 1$, as shown in Theorem 4.1.

Theorem 4.1 Let $n \geq 5$ and $m = \binom{n}{2} - 1$ be positive integers. Then Z_n is the unique uniformly most reliable graph in $G_{n,m}.$

Proof. To prove this theorem, we will prove that there are more rst-subgraphs with i ($2 \leq i \leq \binom{n}{2} - 1$) edges in Z_n than in X_n and Y_n.

We complete this proof by construct two injective maps f_X and f_Y, from the rst-subgraphs with i edges in X_n and Y_n to the rst-subgraphs with i edges in Z_n, respectively.

Construct the map f_X:

Let S be a rst-subgraph with i edges in X_n, where $2 \leq i \leq \binom{n}{2} - 1$.

Case 1. If S does not contain the edge x_4x_5, then $f_X(S) = \{z_iz_j|x_ix_j \in S\}$.

The image is a rst-subgraph of Z_n with the same number of edges as S. And this image does not contain the edge rs.

Case 2. Assume that S contains the edge x_4x_5.

Case 2.1. If $S - \{x_4x_5\}$ is still a rst-subgraph, then $f_X(S) = \{z_iz_j|x_ix_j \in S\} \cup \{rs\} - \{z_4z_5\}$.

The image is a rst-subgraph of Z_n with the same number of edges as S. Since this image contains the edge rs, it is distinct from Case 1. And $f_X(S) - \{rs\}$ is still a rst-subgraph.

Case 2.2. If $S - \{x_4x_5\}$ is not a rst-subgraph, but a rt-subgraph or a st-subgraph, then $f_X(S) = \{z_iz_j|x_ix_j \in S\} \cup \{rs\} - \{z_4z_5\}$.

The image is a rst-subgraph of Z_n with the same number of edges as S. Since the image contains rs and $f_X(S) - \{rs\}$ is not a rst-subgraph, it is distinct from the above cases. It is clear to see that in $f_X(S)$, it contains either the edge st and an edge rz_i for some $4 \leq i \leq n$ or the edge rt and an edge sz_j for some $4 \leq j \leq n$ or an edge rz_i and an edge sz_j for some $4 \leq i, j \leq n$. 13
Case 2.3. Assume that $S - \{x_4x_5\}$ is neither a rst-subgraph, nor a rt-subgraph, nor a st-subgraph.

It is easy to see that for this case, all rst-subgraph and all rt-subgraph and all st-subgraph in S contains the edge x_4x_5. Thus, the image of the map defined by the above cases is not a rst-subgraph of Z_n. Let S' be a minimal rst-subgraph in S. Then S' consists of a minimal rsx_4-subgraph, the edge x_4x_5 and a minimal x_5t-subgraph.

Case 2.3.1. If S' consists of an edge sx_j, a minimal x_4x_j-subgraph, the edge rx_4, the edge x_4x_5 and a minimal x_5t-subgraph, then $f_X(S) = \{z_i|z_j \in S\} \cup \{z_5z_j|sx_j \in S\} \cup \{rs\} - \{z_4z_5\}$.

According to the condition of S, S does not have both edges x_5x_j and sx_j, otherwise, an edge x_5x_j, an edge sx_j and a x_5t-subgraph will get a st-subgraph that does not contain the edge x_4x_5. Therefore, $f_X(S)$ has the same size as S. In $f_X(S)$, we have a rst-subgraph of Z_n which consists of an edge z_5z_j, a x_5z_j-subgraph, the edge rz_4, a z_5t-subgraph and the edge rs. Thus, the image of the map defined by the above cases is not a rst-subgraph and it does not contain any edge sz_j $(3 \leq j \leq n)$, it is distinct from the above cases. In $f_X(S)$, it contains the edge rz_4.

Case 2.3.2. If S' consists of an edge rx_j, a minimal sx_4x_j-subgraph, the edge x_4x_5 and a minimal x_5t-subgraph, then $f_X(S) = \{z_i|z_j \in S\} \cup \{z_5z_j|rx_j \in S\} \cup \{rs\} - \{z_4z_5\}$.

Similarly, S does not have both edges x_5x_j and rx_j. Therefore, $f_X(S)$ has the same size as S. In $f_X(S)$, we have a rst-subgraph of Z_n which consists of an edge z_5z_j, a z_4z_j-subgraph, a z_5t-subgraph and the edge rs. Since $f_X(S)$ contains the edge rz_4 and $f_X(S) - \{rs\}$ is not a rst-subgraph and it contains an edge sz_j for some $4 \leq j \leq n$ and does not contain any edge z_i $(3 \leq i \leq n)$, it is distinct from the above cases.

Case 2.3.3. If S' consists of the edge rx_4, the edge sx_4, the edge x_4x_5 and a minimal x_5t-subgraph, then $f_X(S) = \{z_i|z_j \in S\} \cup \{rz_5|sx_4 \in S\} \cup \{rs\} - \{z_4z_5\}$.

It is easy to see that $f_X(S)$ has the same size as S. In $f_X(S)$, we have a rst-subgraph of Z_n consists of the edge rz_4, the edge rz_5, a z_5t-subgraph and the edge rs. Since the image has no inverse image in the above mappings, it is distinct from the above cases.

Therefore, all of these mappings are different. Since the map $f_X(S)$ defined on each of these cases of Z_n as disjoint images, the map is injective.

Because there are at least as many rst-subgraphs with i edges in Z_n as in X_n for $2 \leq i \leq \binom{9}{2} - 1$, Z_n is more reliable than X_n for all p $(0 \leq p \leq 1)$.

Construct the map f_Y:
Let S be a rst-subgraph with i edges in Y_n, where $2 \leq i \leq \binom{n}{2} - 1$.

Case 1. If S does not contain the edge y_4y_5, then $f_Y(S) = \{z_iz_j | y_iy_j \in S\}$.

The image is a rst-subgraph of Z_n with the same number of edges as S. And this image does not contain the edge rz_4.

Case 2. Assume that S contains the edge y_4y_5.

Case 2.1. If $S - \{y_4y_5\}$ is still a rst-subgraph, then $f_Y(S) = \{z_iz_j | y_iy_j \in S\} \cup \{rz_4\} - \{z_4z_5\}$.

The image is a rst-subgraph of Z_n with the same number of edges as S. Since the image contains the edge rz_4, it is distinct from Case 1. And $f_Y(S) - \{rz_4\}$ is still a rst-subgraph.

Case 2.2. If $S - \{y_4y_5\}$ is not a rst-subgraph, but a rsy_5-subgraph and a y_4t-subgraph, or a ry_5-subgraph and a sty_4-subgraph, or a $rtys$-subgraph and a sy_4-subgraph, then $f_Y(S) = \{z_iz_j | y_iy_j \in S\} \cup \{rz_4\} - \{z_4z_5\}$.

The image is a rst-subgraph of Z_n with the same number of edges as S. Since the image contains rz_4 and $f_Y(S) - \{rz_4\}$ is not a rst-subgraph, it is distinct from the above cases. Since S contains an edge ry_j for some $2 \leq j \leq n$ and $n \neq 4$, the image also contains an edge rz_j for some $2 \leq j \leq n$ and $j \neq 4$.

Case 2.3. Assume that $S - \{y_4y_5\}$ does not satisfy all of the following four cases: a rst-subgraph; a rsy_5-subgraph and a y_4t-subgraph; a ry_5-subgraph and a sty_4-subgraph; a $rtys$-subgraph and a sy_4-subgraph.

It is easy to see that for this case, all rst-subgraph in S contains the edge y_4y_5. And $S - \{y_4y_5\}$ is either a rsy_4-subgraph and a y_4t-subgraph, or a $rtys$-subgraph and a sy_4-subgraph, or a y_4t-subgraph and a sty_4-subgraph. Therefore, the image of the map defined for the above cases is not a rst-subgraph of Z_n. Let S' be a minimal rst-subgraph in S.

Case 2.3.1. If S' consists of an edge ry_j, a minimal sy_4y_j-subgraph, the edge y_4y_5 and a minimal y_4t-subgraph, then $f_Y(S) = \{z_iz_j | y_iy_j \in S\} \cup \{z_5z_j | ry_j \in S\} \cup \{rz_4\} - \{z_4z_5\}$.

According to the condition of S, S does not have both edges y_5y_j and ry_j. Because if S contains both edges y_5y_j and ry_j, then an edge y_5y_j, an edge ry_j, a sy_4y_j-subgraph and a y_5t-subgraph will get a rst-subgraph that does not contain the edge y_4y_5. Therefore, $f_Y(S)$ has the same size as S. In $f_Y(S)$, we have a rst-subgraph of Z_n which consists of an edge z_5z_j, a sz_4z_j-subgraph, a szt-subgraph and the edge rz_4. Since $f_Y(S)$ contains the edge rz_4 and $f_Y(S) - \{rz_4\}$ is not a rst-subgraph and it does not contain any edge $rz_j (2 \leq j \leq n, j \neq 4)$, it is distinct from the above cases. In $f_Y(S)$, any rs-subgraph does not contain z_5.

Case 2.3.2. If S' consists of an edge ry_j, a minimal ty_4y_j-subgraph, the edge y_4y_5 and a
minimal sy_5-subgraph, then $f_Y(S) = \{z_iz_j|yi,j \in S\} \cup \{z_5z_j|ry_j \in S\} \cup \{rz_4\} - \{z_4z_5\}$.

Similarly, S does not have both edges y_5y_j and ty_j. Therefore, $f_Y(S)$ has the same size as S. In $f_Y(S)$, we have a rst-subgraph of Z_n which consists of an edge z_5z_j, a tz_4z_j-subgraph, a sz_5-subgraph and the edge rz_4. Since $f_Y(S)$ contains the edge rz_4 and $f_Y(S) - \{rz_4\}$ is not a rst-subgraph and it does not contain any edge rz_j ($2 \leq j \leq n, j \neq 4$) and all rs-subgraph in $f_Y(S)$ contain z_5, it is distinct from the above cases. In $f_Y(S)$, any rt-subgraph does not contain z_5.

Case 2.3.3. If S' consists of an edge ry_j, a minimal y_4y_j-subgraph, the edge y_4y_5 and a minimal $styz_5$-subgraph, then $f_Y(S) = \{z_iz_j|yi,j \in S\} \cup \{z_5z_j|ry_j \in S\} \cup \{rz_4\} - \{z_4z_5\}$.

Similarly, S does not have both edges y_5y_j and ry_j. Therefore, $f_Y(S)$ has the same size as S. In $f_Y(S)$, we have a rst-subgraph of Z_n which consists of an edge z_5z_j, a z_4z_j-subgraph, a $styz_5$-subgraph and the edge rz_4. Since $f_Y(S)$ contains the edge rz_4 and $f_Y(S) - \{rz_4\}$ is not a rst-subgraph and it does not contain any edge rz_j ($2 \leq j \leq n, j \neq 4$) and all rs-subgraphs and rt-subgraphs in $f_Y(S)$ contain z_5, it is distinct from the above cases.

Therefore, all of these mappings are different. Since the map $f_Y(S)$ defined on each of these cases of Z_n as disjoint images, the map is injective.

Because there are at least as many rst-subgraphs with i edges in Z_n as in Y_n for $2 \leq i \leq \binom{n}{2} - 1$, Z_n is more reliable than Y_n for all p ($0 \leq p \leq 1$).

From the above argument, we conclude that the graph Z_n is the unique most reliable graph in $G_{n,m}$ for all p ($0 \leq p \leq 1$).

5 Conclusion

This research focuses on determining the existence of the uniformly most reliable graph for three-terminal graphs with number of edges in a given large range. If there is a uniformly most reliable graph, the uniformly most reliable graph is given; if there is no uniformly most reliable graph, the locally most reliable graphs are given. Based on the results of this research, the following conclusions can be drawn.

- When the number of vertices is $n = 4$ or 5 or 6 and the number of edges is $m = \binom{n}{2} - 2$, the uniformly most reliable graph is determined with comparisons in Example 1 and Appendix A.

- Under the conditions of $n \geq 7$ and $\binom{n}{2} - (n - 4) \leq m \leq \binom{n}{2} - 2$, the locally most reliable graph in $G_{n,m}$ for p close to 0 is determined with proofs and for $\binom{n}{2} - \lfloor \frac{n-3}{2} \rfloor \leq m \leq \binom{n}{2} - 2$, the locally most reliable graph in $G_{n,m}$ for p close to 1 is determined with proofs.
the locally most reliable graph in $\mathcal{G}_{n,m}$ for p close to 1 is also determined with proofs. Then it shows that there is no uniformly most reliable three-terminal graph for $(n\choose 2) - \lfloor \frac{n-3}{2} \rfloor \leq m \leq (n\choose 2) - 2$. It is worth considering whether there is a uniformly most reliable graph in the class of three-terminal graphs which delete more edges.

• With a complex proof, the uniformly most reliable graph in $\mathcal{G}_{n,(n\choose 2)-1}$ is determined, which is a graph with $(n\choose 2)$ edges that removes an edge between non-target vertices. This conclusion is significant in comparison with the conclusion given by Bertrand et al. [2], which states that the uniformly most reliable graph with $(n\choose 2) - 1$ edges for two-terminal graphs is also a graph with $(n\choose 2)$ edges that removes an edge between non-target vertices. By these comparison, for $m = (n\choose 2) - 1$, it is most probably that the uniformly most reliable graph for k-terminal graphs is a graph with $(n\choose 2)$ edges that removes an edge between non-target vertices.

The results of the research provide guiding significance for characterizing and determining the uniformly most reliable graphs or the locally most reliable graphs of general k-terminal networks. In fact, the results of the research can be useful for designing highly reliable networks with three key vertices (target vertices).

References

[1] K. Archer, C. Graves, D. Milan, Classes of uniformly most reliable graphs for all-terminal reliability, Discrete Applied Mathematics 267(2019) 12–29.
[2] H. Bertrand, O. Goff, C. Graves, M. Sun, On uniformly most reliable two-terminal graphs, Networks 72(2)(2018) 200–216.
[3] P. Romero, Building uniformly most-reliable networks by iterative augmentation, International Workshop on Resilient Networks Design & Modeling. IEEE (2017).
[4] J.I. Brown, D. Cox, Nonexistence of optimal graphs for all terminal reliability, Networks 63(2)(2014) 146–153.
[5] Y.F. Niu, Y.H. Wang, X.Z. Xu, New decomposition algorithm for computing two-terminal network reliability, Computer Engineering and Application 47(30)(2011) 79–82.
[6] H. Zhang, L.C. Zhao, L. Wang, H.J. Sun, An New Algorithm of computing K-terminal network reliability, Science technology and engineering 5(7)(2005) 387–390.
[7] Y. Ath, M. Sobel, Some conjectured uniformly optimal reliable networks, Probab Eng Infor Sci 14(3)(2000), 375–383.
[8] D. Gross, J.T. Saccoman, Uniformly optimally reliable graphs, Networks 31(4)(1998) 217–225.

[9] A. Satyanarayana, R. K. Wood, L. Camarinopoulos, G. Pampoukis, Note on ”A Linear-Time Algorithm for Computing K-Terminal Reliability in a Series-Parallel Network”, Siam Journal on Computing 25(2)(1996) 290–290.

[10] Y.P. Wang, X.L. Su, An algorithm for computing K-terminal reliability of undirected network with random edges, Journal of University of Posts and Telecommunications 17(2)(1994) 48–53.

[11] O. Goldschmidt, P. Jaillet, R. Lasota, On reliability of graphs with node failures, Networks 24(4)(1994) 251–259.

[12] H.Z. Chi, D.K. Li, A K-tree algorithm for computing K-terminal reliability in networks, Journal of northeast university of technology 14(4)(1993) 424–428.

[13] F.T. Boesch, X. Li, C. Suffel, On the existence of uniformly optimal networks, Networks 21(2)(1991) 181–194.

[14] W. Myrvold, K.H. Cheung, L.B. Page, J.E. Perry, Uniformly-most reliable networks do not always exist, Networks 21(4)(1991) 417–419.

[15] J.S. Provan, M.O. Ball, The complexity of counting cuts and of computing the probability that a graph is connected, SIAM J. Comput. 12(4)(1983) 777–788.

[16] A.K. Kelmans, On graphs with randomly deleted edges, Acta Math. Acad. Sci. Hungar 37(1)(1981) 77–88.

[17] M.O. Ball, Complexity of network reliability computation, Networks 10(2)(1980) 153–165.
Appendix A Reliability polynomials for three-terminal graphs
with \(n < 7 \) vertices and \(m = \binom{n}{2} - 2 \) edges

All three-terminal graphs with 5 vertices and 8 edges

Calculated by Matlab, the reliable polynomials of these graphs are:

\[
R_3(G_1; p) = 3p^2(1-p)^6 + 25p^3(1-p)^5 + 60p^4(1-p)^4 + 55p^5(1-p)^3 + 28p^6(1-p)^2 + 8p^7(1-p) + p^8;
\]
\[
R_3(G_2; p) = 3p^2(1-p)^6 + 23p^3(1-p)^5 + 57p^4(1-p)^4 + 54p^5(1-p)^3 + 28p^6(1-p)^2 + 8p^7(1-p) + p^8;
\]
\[
R_3(G_3; p) = 3p^2(1-p)^6 + 20p^3(1-p)^5 + 51p^4(1-p)^4 + 50p^5(1-p)^3 + 27p^6(1-p)^2 + 8p^7(1-p) + p^8;
\]
\[
R_3(G_4; p) = 3p^2(1-p)^6 + 20p^3(1-p)^5 + 56p^4(1-p)^4 + 54p^5(1-p)^3 + 28p^6(1-p)^2 + 8p^7(1-p) + p^8;
\]
\[
R_3(G_5; p) = p^2(1-p)^6 + 16p^3(1-p)^5 + 55p^4(1-p)^4 + 54p^5(1-p)^3 + 28p^6(1-p)^2 + 8p^7(1-p) + p^8;
\]
\[
R_3(G_6; p) = p^2(1-p)^6 + 12p^3(1-p)^5 + 46p^4(1-p)^4 + 49p^5(1-p)^3 + 27p^6(1-p)^2 + 8p^7(1-p) + p^8;
\]
\[
R_3(G_7; p) = p^2(1-p)^6 + 13p^3(1-p)^5 + 51p^4(1-p)^4 + 53p^5(1-p)^3 + 28p^6(1-p)^2 + 8p^7(1-p) + p^8;
\]
\[
R_3(G_8; p) = 6p^3(1-p)^5 + 42p^4(1-p)^4 + 48p^5(1-p)^3 + 27p^6(1-p)^2 + 8p^7(1-p) + p^8.
\]

It is clear to see that, \(G_1 \) is the uniformly most reliable graph in \(G_{5,8} \).

All three-terminal graphs with 6 vertices and 13 edges

Calculated by Matlab, the reliable polynomials of these graphs are:
Figure 7: All simple three-terminal graph in $G_{6,13}$ with three target vertices r, s, t.

$$R_3(G_1; p) = 3p^2(1-p)^{11} + 52p^3(1-p)^{10} + 337p^4(1-p)^9 + 1017p^5(1-p)^8 + 1605p^6(1-p)^7 + 1689p^7(1-p)^6 + 1284p^8(1-p)^5 + 715p^9(1-p)^4 + 286p^{10}(1-p)^3 + 78p^{11}(1-p)^2 + 13p^{12}(1-p) + p^{13};$$

$$R_3(G_2; p) = 3p^2(1-p)^{11} + 47p^3(1-p)^{10} + 304p^4(1-p)^9 + 955p^5(1-p)^8 + 1550p^6(1-p)^7 + 1661p^7(1-p)^6 + 1276p^8(1-p)^5 + 714p^9(1-p)^4 + 286p^{10}(1-p)^3 + 78p^{11}(1-p)^2 + 13p^{12}(1-p) + p^{13};$$

$$R_3(G_3; p) = 3p^2(1-p)^{11} + 47p^3(1-p)^{10} + 297p^4(1-p)^9 + 953p^5(1-p)^8 + 1552p^6(1-p)^7 + 1662p^7(1-p)^6 + 1276p^8(1-p)^5 + 714p^9(1-p)^4 + 286p^{10}(1-p)^3 + 78p^{11}(1-p)^2 + 13p^{12}(1-p) + p^{13};$$

$$R_3(G_4; p) = 3p^2(1-p)^{11} + 45p^3(1-p)^{10} + 283p^4(1-p)^9 + 907p^5(1-p)^8 + 1501p^6(1-p)^7 + 1634p^7(1-p)^6 + 1268p^8(1-p)^5 + 713p^9(1-p)^4 + 286p^{10}(1-p)^3 + 78p^{11}(1-p)^2 + 13p^{12}(1-p) + p^{13};$$

$$R_3(G_5; p) = 3p^2(1-p)^{11} + 42p^3(1-p)^{10} + 259p^4(1-p)^9 + 849p^5(1-p)^8 + 1428p^6(1-p)^7 + 1577p^7(1-p)^6 + 1240p^8(1-p)^5 + 705p^9(1-p)^4 + 285p^{10}(1-p)^3 + 78p^{11}(1-p)^2 + 13p^{12}(1-p) + p^{13};$$

$$R_3(G_6; p) = 3p^2(1-p)^{11} + 42p^3(1-p)^{10} + 264p^4(1-p)^9 + 889p^5(1-p)^8 + 1494p^6(1-p)^7 + 1633p^7(1-p)^6 + 1268p^8(1-p)^5 + 713p^9(1-p)^4 + 286p^{10}(1-p)^3 + 78p^{11}(1-p)^2 + 13p^{12}(1-p) + p^{13};$$

$$R_3(G_7; p) = p^2(1-p)^{11} + 26p^3(1-p)^{10} + 227p^4(1-p)^9 + 863p^5(1-p)^8 + 1486p^6(1-p)^7 + 1632p^7(1-p)^6 + 1268p^8(1-p)^5 + 713p^9(1-p)^4 + 286p^{10}(1-p)^3 + 78p^{11}(1-p)^2 + 13p^{12}(1-p) + p^{13};$$

$$R_3(G_8; p) = p^2(1-p)^{11} + 22p^3(1-p)^{10} + 188p^4(1-p)^9 + 761p^5(1-p)^8 + 1365p^6(1-p)^7 + 1548p^7(1-p)^6 + 1232p^8(1-p)^5 + 704p^9(1-p)^4 + 285p^{10}(1-p)^3 + 78p^{11}(1-p)^2 + 13p^{12}(1-p) + p^{13};$$

$$R_3(G_9; p) = p^2(1-p)^{11} + 23p^3(1-p)^{10} + 199p^4(1-p)^9 + 805p^5(1-p)^8 + 1432p^6(1-p)^7 + 1604p^7(1-p)^6 + 1260p^8(1-p)^5 + 712p^9(1-p)^4 + 286p^{10}(1-p)^3 + 78p^{11}(1-p)^2 + 13p^{12}(1-p) + p^{13};$$

$$R_3(G_{10}; p) = 9p^3(1-p)^{10} + 132p^4(1-p)^9 + 687p^5(1-p)^8 + 1308p^6(1-p)^7 + 1520p^7(1-p)^6 + 1224p^8(1-p)^5 + 703p^9(1-p)^4 + 285p^{10}(1-p)^3 + 78p^{11}(1-p)^2 + 13p^{12}(1-p) + p^{13}. $$

It is clear to see that, G_1 is the uniformly most reliable graph in $G_{6,13}$.

20