Theoretical Calculation of the Electron Transport Parameters and Energy Distribution Function for CF3I with noble gases mixtures using Monte Carlo simulation program

Enas A Jawad

physics department, College of education for pure sciences-Ibn Alhaitham, University of Baghdad, Iraq

Abstract. In this paper, The Monte Carlo simulation program has been used to calculation the electron energy distribution function (EEDF) and electric transport parameters for the gas mixtures of The trifluoroiodomethane (CF3I) ‘environment friendly’ with a noble gases (Argon, Helium, Kryptos, Neon and Xenon).

The electron transport parameters are assessed in the range of E/N (E is the electric field and N is the gas number density of background gas molecules) between 100 to 2000 Td (1 Townsend =10^-17 V cm2) at room temperature. These parameters, namely are electron mean energy (ε), the density -normalized longitudinal diffusion coefficient (NDL) and the density –normalized mobility (μN).

In contrast, the impact of CF3I in the noble gases mixture is strongly apparent in the values for the electron mean energy, the density –normalized longitudinal diffusion coefficient and the density –normalized mobility. Note in the results of the calculation agreed well with the experimental results.

1. Introduction

The electron transport parameters have been studied for a wide range of applied electric field. These parameters, such as, the drift velocity, mobility, diffusion coefficient, ionization coefficient, and electron mean energy are knowledge in collision cross section and EEDF personification the backbone of the electron swarm behavior of gas in discharge of plasma [1].

The numerical solution of the Boltzmann EQUATION yields the electron energy distribution with the electric field E and gas number density N as parameters.

trifluoroiodomethane (CF3I) has been found to be a potential high voltage insulator[2,3]. Generally, CF3I is colorless and nonflammable [4,5]. From an environmental point of view, CF3I presents a weak global warming potential (GWP) of 1–5 against approximately 23900 for SF6[6,7].

CF3I is considered as a low environmental impact gas and is attracting widespread attention for comprehensive study. However, CF3I has a high boiling point -22.5 C0, as reported in Ref. [8,9].

The electron transport in a gas under the effect of an electric field E can be simulated with the help of a Monte Carlo method [10-15].

In this work the Monte Carlo simulation technique for ion transport that accounts for limited gas temperature is used to calculate electron transport parameters of CF3I with noble gas mixture at temperature T=300 K. transport parameters are determined as a function of E/N for various rates of increase of the electric field [16].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
In this paper is calculation the electron energy distribution function and electron transport parameters for trifluoroiodomethane mixtures with a noble gases (Argon, Helium, kryptos, Neon and Xenon) by using Monte Carlo simulation program.

2. Theory

The Boltzmann equation describes the time evolution of the electron energy distribution function $f(r, v, t)$.

The Boltzmann equation for electrons in an ionized gas is [17]:

$$\frac{\partial f}{\partial t} + V \cdot \nabla f - \alpha \cdot \nabla f = \beta(f)$$

Where $\alpha = -eE/m$ represents the acceleration of the electrons due to the external electric field E, and β is the collision operator.

The Boltzmann equation maybe written as [18,19]:

$$\left(\frac{\partial}{\partial t} + v \cdot \nabla_r + \frac{eE}{m} \cdot \nabla_V \right) f(r, v, t) = \left(\frac{\delta}{\partial t} \right)$$

where $f(r, v, t)$ is the electrons distribution at time t and spatial location r, v is the velocity of charge particles and ∇_V is the gradient in V-space.

The electron mean energy is, [22,23]:

$$\varepsilon = \int_0^\infty \varepsilon^{3/2} f_0 d\varepsilon$$

Values of f_0 are calculated from Boltzmann’s equation using all collision cross-sections.

The relation between drift velocity w and distribution function of electron energy is given by [24,25]:

$$w = -\frac{1}{3} \left(\frac{2}{m} \right)^{1/2} \frac{eE}{N} \int_0^\infty \frac{e}{q_m(\varepsilon)} d\varepsilon$$

Where ε is the electron energy in (eV), m is the electron mass, e is the elementary charge and q_m is the momentum transfer cross section (in cm2).

The mobility is defined as the proportionally coefficient between the drift velocity of a charged particle and electric field. The mobility of electrons is (in cm²/V)[26,27]:

$$\mu_e = \frac{e}{m_{pe} E}$$
Where ν_m represent the electron momentum-transfer collision frequency.

The density-normalized mobility (μN) is defined as:

$$
(\mu N) = -\frac{\partial}{\partial N} \int_0^\infty \frac{e^{\gamma/2}}{\frac{qT}{\partial N}} \frac{\partial f_0}{\partial N} d\varepsilon .
$$

And the density-normalized longitudinal diffusion coefficient is defined as:

$$
ND_L = \frac{V_1}{2N} \left[B \int_0^\infty \frac{e^{\gamma/2}}{\frac{qT}{\partial N}} (f_1 \varepsilon^{-1/2}) d\varepsilon + \int_0^\infty \frac{e^{\gamma/2}}{qT} f_0 d\varepsilon \right] - (\bar{w}_0 A_2 - \bar{w}_1 A_1 - \bar{w}_2) .
$$

Where V_1 is the speed of electron, q_T is the total cross section, f_n and n ($n = 0, 1, 2$) are respectively the electron energy distributions of various orders and their eigen values. V_1, n ($n = 0, 1, 2$), and A_n are given by [28-30]

$$
V_1 = \left(\frac{2e}{m} \right)^{1/2}.
$$

$$
\bar{w}_0 = V_1 N \int_0^\infty \varepsilon^{1/2} q_0 f_0 d\varepsilon .
$$

$$
\bar{w}_1 = -\frac{V_1}{3N} \int_0^\infty \varepsilon^{1/2} q_1 f_1 d\varepsilon + (\bar{w}_0 A_1 - \bar{w}_2) .
$$

$$
\bar{w}_{01} = V_1 N \int_0^\infty \varepsilon^{1/2} q_1 f_0 d\varepsilon .
$$

$$
A_n = \int_0^\infty f_n d\varepsilon .
$$

Where q_i is the ionization cross section.

3. Result

To calculate the electron mean energy and the others transport parameters using the Monte Carlo simulation program, find out about the accreditation of the momentum transfer cross section on the electron energy is basis, We present the results of The electron mean energy, the density – normalized longitudinal diffusion coefficient and the density – normalized mobility as functions of E/N for mixtures CF3I gas with noble gases (Ar, Kr, Xe, He and Ne) have been calculated in the E/N range $100 < E/N < 2000$ Td are recorded in Table (1-6).

Tables (1-3) note the computed results for the electron mean energy, the density – normalized longitudinal diffusion coefficient and the density – normalized mobility as a function of E/N, respectively in pure CF3I and pure noble gases.

Tables (4) clarify the calculated results for the electron mean energy, in various ratios of CF3I mixtures with (Argon, Helium, kryptos, Neon and Xenon) gases.

Tables (5) clarify the computed results for the density – normalized longitudinal diffusion coefficient, in different ratios of CF3I mixtures with (Argon, Helium, kryptos, Neon and Xenon) gases.

Tables (6) explain the calculated results for the density – normalized mobility in various proportions of CF3I mixtures with (Argon, Helium, kryptos, Neon and Xenon) gases.
'Figure (1)' exhibit the behavior of the electrons energy dependence distribution function for different cases of the factor (E/N) and , figure (2) show the variety in the mean energy of electrons as a function of (E/N), which increases with increase of E/N and they appear clearly effect of adding noble gases (Argon, Helium, kryptos, Neon and Xenon) to the trifloroiodo methane (CF$_3$I) gas in increasing due to the change in the various types of collision processes.

Figure (3) show the density -normalized mobility for different ratios of mixtures CF$_3$I with noble gases, we notice that it decreases by increasing E/N.

The gas density normalized longitudinal diffusion coefficient ND_L, the product of the gas number density N and the longitudinal diffusion coefficient D_L for CF$_3$I mixtures with noble gases, is plotted in Figure (4) as a function of E/N.

in figure (5) for pure CF$_3$I. The results demonstrate a good agreement with the experimental values [31].

4. Conclusion

In this study, we have examined the behavior of electrons in uniform electric fields using a Monte Carlo simulation. Electron transport parameters were calculated as a function of reduced electric fields E/N.

 calculation the electron energy distribution function and the transport parameters for The trifloroiodo methane (CF$_3$I) ‘environment friendly’ with a noble gases (Argon, Helium, kryptos, Neon and Xenon) in the E/N range of 100 - 2000 Td.

In this work, the simulation results give values for electron mean energy, the density -normalized longitudinal diffusion coefficient (ND$_L$) the density -normalized mobility (μN) and electron energy distribution as functions of reduced electric field.

Table 1. The calculate electron Mean Energy(ε)(eV) in pure of CF3I and Noble gases (Ar, He, Kr, Ne and Xe).

E/N(Td)	Xe	Ne	Kr	He	Ar	CF3I
100	4.486	12.87	5.607	12.82	6.666	2.938
200	4.642	13.93	5.827	14.87	6.978	3.215
300	4.819	15.25	6.078	18.12	7.275	3.52
400	5.025	16.85	6.361	23.64	7.61	3.846
500	5.272	18.81	6.998	32.44	8.012	4.191
600	5.578	21.23	7.106	44.96	8.507	4.557
700	5.969	24.3	7.614	61.71	9.134	4.946
800	6.484	27.88	8.262	83.97	9.955	5.366
900	7.18	32.45	9.106	113.9	11.006	5.829
1000	8.138	38.12	10.21	155.3	12.62	6.352
1200	9.472	45.21	11.67	215.1	14.94	6.963
1400	11.32	54.2	13.58	305.3	18.52	7.706
1600	13.83	65.89	16.03	449.9	24.18	8.901
1800	17.17	81.69	19.16	688.13	33	9.901
2000	21.52	104.1	23.08	1153	46.64	11.62
Table 2: The calculated density-normalized mobility ($\mu_N \times 10^{23} (\text{mVs})^{-1}$) for electron in pure of CF$_3$I and Noble gases (Ar, He, Kr, Ne and Xe).

E/N(Td)	Xe	Ne	Kr	He	Ar	CF$_3$I
100	5.444	24.16	7.356	2.83	8.195	6.84
200	5.431	22.91	7.196	3.14	7.847	6.365
300	5.441	21.66	7.052	3.638	7.651	5.986
400	5.476	20.43	6.924	4.39	7.494	5.675
500	5.537	19.23	6.814	5.267	7.359	5.41
600	5.631	18.07	6.719	6.019	7.247	5.178
700	5.764	16.92	6.642	6.514	7.167	4.969
800	5.945	15.89	6.58	6.772	7.138	4.779
900	6.175	14.87	6.535	6.83	7.169	4.604
1000	6.44	13.88	6.486	6.777	7.286	4.443
1200	6.727	12.93	6.413	6.674	7.496	4.295
1400	6.97	12.03	6.298	6.582	7.791	4.167
1600	7.123	11.2	6.115	6.559	8.152	4.066
1800	7.127	10.48	5.856	6.559	8.524	3.997
2000	6.988	9.914	5.528	6.896	8.82	3.95

Table 3: The calculated density-normalized longitudinal diffusion coefficient (ND_T) $\times 10^4$(m s$^{-1}$) for electron in pure of CF$_3$I and Noble gases (Ar, He, Kr, Ne and Xe).

E/N(Td)	Xe	Ne	Kr	He	Ar	CF$_3$I
100	4.034	25.15	7.346	24.27	6.761	1.985
200	3.963	25.66	7.026	32.94	6.594	1.993
300	3.881	26.27	6.65	52.11	6.457	2.009
400	3.791	27.03	6.237	94.28	6.332	2.031
500	3.7	27.97	5.849	164.6	6.23	2.06
600	3.613	29.17	5.517	255.1	6.167	2.093
700	3.553	30.62	5.275	359.3	6.17	2.133
800	3.576	32.47	5.147	479.4	6.289	2.179
900	3.726	34.74	5.159	622.5	6.597	2.233
1000	4.079	37.52	5.329	806.3	7.255	2.296
1200	4.702	40.9	5.671	1061	8.546	2.375
1400	5.641	45.11	6.194	1444	10.9	2.482
1600	6.911	50.6	6.881	2076	15.14	2.642
1800	8.499	58.42	7.705	3223	21.93	2.895
2000	10.36	70.56	8.64	5527	32.41	3.293

Table 4: The calculated electron Mean Energy(ε(eV)) in various mixture of CF$_3$I with Noble gases (Ar, He, Kr, Ne and Xe).

E/N(Td)	20% ε(eV)	40% ε(eV)								
	Xe	Ne	Kr	He	Ar	Xe	Ne	Kr	He	Ar
100	3.067	3.21	3.148	3.172	3.176	3.244	3.596	3.425	3.496	3.5
200	3.355	3.515	3.444	3.475	3.477	3.541	3.928	3.739	3.825	3.822
300	3.666	3.842	3.763	3.801	3.8	3.851	4.278	4.069	4.173	4.161
400	3.992	4.187	4.099	4.145	4.14	4.172	4.648	4.412	4.541	4.516
500	4.335	4.552	4.453	4.509	4.544	4.507	5.044	4.773	4.934	4.89
600	4.627	4.941	4.826	4.897	4.87	4.862	5.473	5.155	5.36	5.278
Table 5. The calculate density–normalized mobility (μN) (mVs)^{-1} for electron in various mixture of CF_4 with Noble gases (Ar, He, Kr, Ne and Xe).

E/N(Td)	Xe	Ne	Kr	He	Ar	Xe	Ne	Kr	He	Ar
700	5.084	5.36	5.226	5.315	5.282	5.246	5.946	5.567	5.831	5.712
800	5.507	5.822	5.661	5.776	5.726	5.673	6.483	6.023	6.366	6.301
900	5.981	6.343	6.146	6.296	6.221	6.165	7.112	6.542	6.994	6.827
1000	6.53	6.949	6.706	6.902	6.79	6.754	7.876	7.156	7.763	7.445
1200	7.191	7.683	7.375	7.638	7.971	7.488	8.842	7.913	8.749	8.204
1400	8.018	8.61	8.211	8.571	8.322	8.439	10.11	8.884	10.07	9.181
1600	9.1	9.827	9.298	9.807	9.435	9.716	11.81	10.17	11.89	10.49
1800	10.56	11.48	10.76	11.5	10.95	11.47	14.13	11.91	14.42	12.47
2000	12.58	13.75	12.75	13.85	13.05	13.87	17.26	14.25	17.88	15.15

E/N(Td)	Xe	Ne	Kr	He	Ar	Xe	Ne	Kr	He	Ar
60%	μ (eV)	4.179	3.812	3.973	3.962	3.889	5.26	4.411	4.825	4.712
80%	μ (eV)	4.544	4.137	4.333	4.303	4.147	5.706	4.73	5.258	5.068

E/N(Td)	Xe	Ne	Kr	He	Ar	Xe	Ne	Kr	He	Ar
20% μN x 10^3 (m Vs)^{-1}										
40% μN x 10^3 (m Vs)^{-1}										
Table 6. The calculate density –normalized longitudinal diffusion coefficient (ND×) (m s)\(^{-1}\) for electron in various mixture of CF\(_3\)I with Noble gases (Ar, He, Kr,Ne and Xe).

E/N(Td)	Xe	Ne	Kr	He	Ar
100	5.763	11.81	7.375	9.916	8.659
200	5.177	12.27	6.874	9.551	8.062
300	5.35	10.79	6.469	9.231	7.547
400	5.236	10.34	6.134	8.947	7.1
1000	5.154	9.925	5.85	8.693	6.757
2000	5.1	9.531	5.607	8.465	6.388
100	5.386	9.157	5.398	8.265	6.074
200	5.051	8.806	5.218	8.101	5.585
300	5.053	8.482	5.063	7.99	5.645
400	5.076	8.192	4.93	7.959	5.5
1000	5.124	7.937	4.822	8	5.418
1400	5.195	7.703	4.739	8.08	5.38
1600	5.277	7.462	4.681	8.141	5.4
1800	5.339	7.184	4.63	8.09	5.452
2000	5.34	6.851	4.564	7.9	5.477

E/N(Td)	Xe	Ne	Kr	He	Ar
100	2.079	2.418	2.283	2.242	2.339
200	2.077	2.433	2.284	2.268	2.346
300	2.085	2.453	2.292	2.303	2.36
400	2.102	2.502	2.307	2.344	2.338
500	2.126	2.544	2.328	2.392	2.405
600	2.159	2.593	2.356	2.446	2.435
700	2.23	2.649	2.391	2.509	2.472
800	2.252	2.714	2.435	2.58	2.517
900	2.315	2.79	2.489	2.66	2.57
1000	2.396	2.88	2.559	2.767	2.639
1200	2.504	3.008	2.653	2.904	2.732
1400	2.659	3.188	2.791	3.106	2.872
1600	2.899	3.466	3.005	3.419	3.097
1800	3.27	3.899	3.339	3.911	3.465
2000	3.827	4.355	3.838	4.632	4.035

E/N(Td)	Xe	Ne	Kr	He	Ar					
100	5.763	11.81	7.375	9.916	8.659					
200	5.52	11.27	6.874	9.551	8.062					
300	5.35	10.79	6.469	9.231	7.547					
400	5.236	10.34	6.134	8.947	7.1					
500	5.154	9.925	5.85	8.693	6.757					
600	5.1	9.531	5.607	8.465	6.388					
---	-----	-----	-----	-----	-----	-----	-----	-----	-----	
700	5.066	9.157	5.398	8.265	6.074	5.298	12.94	6.01	1.179	6.482
800	5.051	8.806	5.218	8.101	5.585	5.5661	12.35	5.912	1.199	6.299
900	5.053	8.482	5.063	7.99	5.654	5.458	11.79	5.836	1.235	6.176
1000	5.076	8.192	4.93	7.959	5.5	5.585	11.26	5.779	1.277	6.119
1200	5.124	7.937	4.822	8	5.418	5.74	10.72	5.731	1.31	6.13
1400	5.195	7.703	4.739	8.08	5.38	5.903	10.17	5.678	1.322	6.205
1600	5.277	7.462	4.681	8.141	5.4	6.043	9.588	5.593	1.307	6.322
1800	5.339	7.184	4.63	8.09	5.452	6.109	8.976	5.454	1.269	6.44
2000	5.34	6.851	4.564	7.9	5.477	6.066	8.348	5.48	1.218	6.512
Figure(1). The electron energy distribution function versus the electron energy for pure CF3I and mixture with noble gaseous (50/50%).
Figure (2). The electron mean energy as a function of E/N in various mixture of CF₃I with Noble gases (Ar, He, Kr, Ne and Xe).
Figure (3). The density–normalized mobility as a function of E/N in various mixture of CF$_3$I with Noble gases (Ar, He, Kr, Ne and Xe).
Figure (4). density–normalized longitudinal diffusion coefficient as a function of E/N in various mixture of CF$_3$I with Noble gases (Ar, He, Kr, Ne and Xe).
Figure (5). density –normalized longitudinal diffusion coefficient as a function of E/N of pure CF$_3$I.

Reference:

[1] Dahl Dominik A., Teich Timm H., and Christian Franck M.,(2012), "Obtaining precise electron swarm parameters from a pulsed Townsend setup", J.Phys. D: Appl. Phys. 45, 485201 (p99).
[2] S. Nakauchi, D. Tosu, S. Matsuoka, Kumada A, Hidaka K, 2006, Proc. XVI Int. Conf. on Gas Discharges and their Applications. 1, pp 365-369, Xi’an, China.
[3] Taki M, Hiromi O, Maekawa . Mizoguchi D, Mizoguchi H, Yanabu S, 2006, Proc. XVI Int. Conf. on Gas Discharges and their Applications. 2, pp 793-796, Xi’an, China.
[4] Christophorou L G and Olthoff J K 2000 J. Phys. Chem. Ref. Data 29553.
[5] Solomon S, Burkholder J.B, Ravishankra A.R, and. García R.R, 1994 J. Geophys. Res. D 99, 20929.
[6] Cressault Y, Connord V, Hingana H, Teulet P and Gleizes A 2011 J. Phys. D: Appl. Phys. 44 495202
[7] Solomon S, Burkholder J, Ravishankara .A and Garcia R 1994 J. Geophys. Res. 99 20929
[8] Duan Y Y, Zhu M S and Han L Z 1996 Fluid Phase Equilibr. 121 227
[9] I. Rozum, P. Limão-Vieira, S. Eden, J. Tennyson, and N.J. Mason, 2006 J. Phys. Chem. Ref. Data 35, 267.
[10] Grapperhaus M. J. and Kushner M. J. (1997). A Semi-analytic Radio Frequency Sheath Model Integrated into a two dimensional Hybrid Model for Plasma Processing Reactors, J Appl. Phys. 81(2): 569-577.
[11] Tessarotto M., WhiteR. B. and Zheng L-J. (1994). Monte Carlo approach to Collisional Transport, Phys. Plasmas 1(8): 2603-2613.
[12] Ardehali M. (1994). Monte Carlo Simulation of Ion Transport through Radio Frequency Collisional Sheaths, J Vac. Sci. Techno!. A. 12(6): 3242-3244.
[13] Helin W., Zuli L. and Darning L. (1996). Monte Carlo Simulation for Electron Neutral Collision Processes in Normal and Abnormal Discharge Cathode Sheath Region, Vacuum 47(9): 1065-1072.

[14] Stache J. (1994). Hybrid Modeling of Deposition Profiles in Magnetron Sputtering Systems, J Vac. Sci. Technol. A. 12(5); 2867-2873.

[15] Nathan S. S., Rao G. M. and Mohan S. (1998). Transport of Sputtered Atoms in Facing Targets Sputtering Geometry: A Numerical Simulation Study, J. Appl. Phys. 84(1): 564-571.

[16] Rabie M, Haefliger P, Chachereau A and Franck C M, (2015), "Obtaining electron attachment cross sections by means of linear inversion of swarm parameters", J. Phys. D: Appl. Phys. 48 .075201 (7pp).

[17] Morgan W.L., Penetrange B.M., Computer physics communication CPC, Vol.58, PP. 127-152, 1990.

[18] Edward A. and Eral Mc Daniel W., 1988, "Transport properties of ions in gases", John Wiley and Sons, Inc.

[19] Morgan W.L. and Penetrange B.M., 1990, Computer physics communication CPC, Vol.58, PP. 127-152.

[20] Willett C. S.: Introduction to gas lasers: population inversion mechanisms; with emphasis on selective excitation processes, 1st Ed, Pergamon Press, New York(1974).

[21] Christophorou L.G. and Olthoff JK, 2000 J. Phys. Chem. Ref. Data, 29 553.

[22] Wang Y. & Olthoff J.K, (1999) : Ion energy distributions in inductively coupled radio-frequency discharges in argon, nitrogen, oxygen, chlorine, and their mixtures, Journal of Applied Physics, vol.85, 6358-6365.

[23] Houghton J.T., Meira Filho L.G., Callander B.A., N. Harris, Kattenberg A., Maskell K., Climate Change 1995: The Science of Climate Change (Cambridge University Press, Cambridge, 1996).

[24] 24 Nighan W. L., Electron energy distribution and collision rats in electrically excited N2, CO and CO2, Phys. Rev., 1970, 2, 1989-2000.

[25] Morgan W.L.:Electron collision cross sections for tetraethoxysilane, Journal of Applied Physics, vol. 92, pp. 1663-1667 (2002).

[26] Truesdell C., J. Chem. Phys, Vol. 37, P. 2336, (1962).

[27] Hernández-Ávila J.L., Basurto E., and de Urquijo J., 2002 J. Phys. D 35, 2264, 2012 "Determination of Electron Collision Cross Sections for F2, Cl2 Molecules, and Electron Transport Coefficients in Mixture Gases as Pro-spective Substitutes for the SF6 Gas in Industrial Applications",PhD Dissertation, Dongguk Univ., Korea.

[28] Kimura M and Nakamura Y 2010 J. Phys. D: Appl. Phys. 43 145202

[29] Phelps A and Pitchford L 1985 Phys. Rev. A 31 2932.

[30] de Urquijo J, Ju`arez A M, Basurto E and Herna´ndez-A´vila J L, 2007 J. Phys. D: Appl. Phys. 40 2205.