Pharmacology and Physiology of Perivascular Nerves Regulating Vascular Function

Sympathetic Modulation of Nitrergic Neurogenic Vasodilation in Cerebral Arteries

Tony J.F. Lee*

Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, U.S.A.

Received October 2, 2001 Accepted November 12, 2001

ABSTRACT—The presence of close apposition between the adrenergic and the non-adrenergic or nitrergic nerve terminals in large cerebral arteries in several species is well documented. The axo-axonal distance between these different types of nerve terminals is substantially closer than the synaptic distance between the adventitial nerve terminals and the outermost layer of smooth muscle in the media. This feature suggests that a functional axo-axonal interaction between nerve terminals is more likely to occur than that between the nerve and muscle. Thus, transmitters released from one nerve terminal may modulate release of transmitters from the neighboring nerve terminals, resulting in a neurogenic response. We have reported that nicotine-induced nitric oxide (NO)-mediated neurogenic vasodilation is dependent on intact sympathetic innervation in porcine and cat cerebral arteries. Evidence also has been presented to indicate that nicotine acts on α_7-nicotinic receptors located on sympathetic nerve terminals, resulting in release of norepinephrine which then diffuses to act on β_2-adrenoceptors located on the neighboring nitrergic nerve terminals to release NO and therefore vasodilation. The predominant facilitatory effect of β_2-adrenoceptors in releasing NO is compromised by presynaptic α_7-adrenoceptors located on the same nerves. Activation of cerebral sympathetic nerves may cause NO-mediated dilation in large cerebral arteries at the base of the brain.

Keywords: Nicotine, Nitric oxide, Cerebral neurogenic vasodilation, Presynaptic β_2-adrenoceptor, Presynaptic α_7-nicotinic acetylcholine receptor

Sympathetic adrenergic innervation in the cerebral circulation

It is well established that cerebral arteries and veins at the base of the brain from several species receive a dense unilateral supply of adrenergic, sympathetic nerves of superior cervical ganglionic origin (1, 2). The endogenous catecholamine is exclusively norepinephrine (NE) (3, 4), which can be released experimentally upon electrical stimulation of these nerves (5–7). Transmural nerve stimulation (TNS)-induced constriction in isolated cerebral arteries of rabbits and dogs, however, was not blocked by α-adrenoceptor antagonists (1, 8, 9). These results suggest that endogenous NE plays a minimal role in the direct constriction of postsynaptic smooth muscle. This is consistent with the relatively long adrenergic synaptic distance in cerebral arteries (3, 10) and the insensitivity of cerebral vascular smooth muscle to α-adrenoceptor agonists (1, 3). The residual constriction after α-adrenoceptor antagonists is suggested to be due to an as yet unidentified non-catecholamine substance (1, 11). Furthermore, the cerebral arterial smooth muscle of the large arteries at the base of the pig brain, which has been shown to contain mainly β_1-adrenoceptors with fewer β_2-adrenoceptors and not significant α-adrenoceptors, relaxes exclusively upon application of exogenous NE (4, 12, 13). TNS of these isolated cerebral arteries exclusively elicited neurogenic vasodilation, a result similar to that found in the large cerebral arterial smooth muscle of the cat, which contains mainly α-adrenoceptors (1, 14). This tetrodotoxin-sensitive vasodilation in large cerebral arteries of the pig and cat elicited by TNS was not affected by propranolol or guanethidine (1, 4, 12). These results support the hypothesis that endogenous NE released from cerebral perivas-
Nitrergic innervation in the cerebral circulation

Cerebral arteries from all species examined have been shown to receive dense NO synthase-immunoreactive (NOS)-I fibers (15–20) of multiple origins (16, 17, 21). Compelling evidence indicates that NO mediates a major component (>90%) of the cerebral neurogenic vasodilation in isolated arterial preparations (22). Evidence for the neuronal origin of NO in mediating cerebral neurogenic vasodilation is supported by results from immunohistochemical, biochemical and pharmacological studies indicating that cerebral perivascular nerves can recycle L-citrulline, the byproduct of NO synthesis, to L-arginine for synthesizing NO (18–20, 23, 24). All the enzymes necessary for recycling L-citrulline to L-arginine (argininosuccinate synthase and argininosuccinate lyase) and for synthesizing NO (NOS) are axoplasmic enzymes and are co-localized in the same neurons, providing convincing evidence that NO is synthesized in and released from perivascular nerves (18–20, 23, 24) (Fig. 1).

Axon-axonal interaction in cerebral arteries

Results from ultrastructural studies have demonstrated that cerebral arteries from several species receive two types of nerves based on vesicle appearance fixed in KmnO₂ (3, 10). Those with nerve terminals containing dense core granular vesicles (resulting from precipitation of MnO₂ in the presence of catecholamines) are adrenergic vasconstrictor nerves of superior cervical ganglionic origin. The second type of nerve terminals containing agranular vesicles is the nonsympathetic nerve. The nonsympathetic nerve can be cholinergic, peptidergic or nitrergic (22). It has been frequently found that the adrenergic nerve terminals and the nonadrenergic nerve terminals come in close apposition in the neuro-effector region (10, 25, 26). The close apposition of different types of nerve terminals suggests possible functional interactions between them. It is very likely that transmitters or modulators released from one nerve terminal may act on presynaptic receptors on the neighboring nerve terminals to modulate the release of the transmitters or modulators from these nerves (10, 27). Since the axon-axonal distance is always found to be much closer than the nerve-muscle synaptic distance, it is logical to assume that axon-axonal transmitter interactions are highly possible. This axon-axonal interaction may play an important role in regulating cerebral vascular tone, particularly since most potential transmitters (except NO) have not been shown to significantly exhibit direct effects on postsynaptic smooth muscle (22).

Fig. 1. Summary diagram showing close apposition of an adrenergic and a nitrergic (NOergic) nerve terminal in large cerebral arteries at the base of the brain of the pig and cat. The axo-axonal distance between these two different nerve terminals is closer than that between the nerves and the smooth muscle. Nicotine (NIC) acts on presynaptic α1-nicotinic receptors located on the adrenergic nerve terminal, causing (+) release of NE (norepinephrine) which then acts on presynaptic β2-adrenoceptors located on the adjacent nitrergic nerve terminal. This effect of NE results in stimulating (+) NO release, which activates GC (guanylate cyclase), increases cGMP synthesis from GTP (guanosine triphosphate) and relaxes the smooth muscle. This nerve-released NE can also stimulate α2-adrenoceptors on NOergic nerve terminals, resulting in inhibition (−) of NO release. NE released from sympathetic nerves, however, is a weak postsynaptic transmitter (as indicated by a question mark), although post-synaptic β1- and α1-adrenergic receptors on smooth muscle have been demonstrated. Stimulation of β2-adrenergic receptors by exogenously applied NE activates AC (adenylate cyclase), resulting in increasing cAMP synthesis from ATP (adenosine triphosphate) and relaxation. α1-Adrenoceptors on the smooth muscle cells play a negligible role in the cat and pig, although these receptors mediate exogenous NE-induced-constriction in large cerebral arteries. NO is not stored in vesicles and is synthesized from L-Arginine (L-Arg) in the presence of NOS (nitric oxide synthase). L-Citrulline (L-Cit), the by-product of NO synthesis, is actively converted to L-Arg (23). This L-Cit-L-Arg cycle provides evidence for the neuronal source of NO.
Nicotine-induced NO-mediated cerebral neurogenic vasodilation is dependent on intact sympathetic innervation

It is well established that nicotine releases NE by acting on nicotinic receptors located on sympathetic adrenergic nerve terminals in peripheral vascular beds (28, 29). In cerebral arteries, nicotine, like TNS, induces predominant vasodilation, which was blocked by inhibitors of NO synthase, supporting the role of NO as the primary mediator for nicotine-induced cerebral neurogenic vasodilation (30, 31). Accordingly, nicotine was assumed to act directly on nitrergic nerve terminals to release NO, resulting in NO-mediated cerebral neurogenic vasodilation in many species (32). This assumption, however, is questioned, since recent studies have demonstrated that nicotine-induced NO-mediated relaxation in porcine and feline cerebral arteries is dependent exclusively on the intact sympathetic innervation (33–35). Following a complete blockade of sympathetic transmission with guanethidine, or chemical denervation of sympathetic nerves with 6-hydroxydopamine (Fig. 2), nicotine-induced relaxation was blocked, although TNS-elicited NO-mediated relaxation in the same preparations remained unchanged. This latter finding was consistent with morphological observations that nitrergic innervation remained intact while adrenergic nerves were completely denervated following treatment with 6-hydroxydopamine (33). Furthermore, relaxation induced by exogenous NE in porcine basilar arterial rings was blocked by nitro-L-arginine (L-NNA) (33). Similar results were found in isolated large cerebral arteries at the base of the cat brain that nicotine-induced vasodilation was sensitive to L-NNA (33). In these cerebral arteries of the cat, postsynaptic α-adrenoceptors are predominant, and exogenous NE induces a constriction exclusively (14, 36). These findings clearly indicate that nicotine-induced vasodilation in the cat cerebral arteries cannot be due to a direct effect of NE on the postsynaptic smooth muscle cells. NE acts more likely on presynaptic adrenoceptors located on nitrergic nerves to cause release of NO, which then induces vasodilation. This conclusion is consistent with the reported biochemical findings that neurogenic vasodilation in cerebral arteries from different species induced by either TNS or nicotine is accompanied by an increase in cGMP but not cAMP (15, 37, 38), suggesting that the terminal transmitter acting on the smooth muscle to induce a relaxation is NO (known to increase cGMP synthesis) or a related substance but not NE (known to increase cAMP synthesis via its β-adrenoceptor action) (Fig. 1).

It is evident that in large cerebral arteries at the base of the brain of several species nicotine does not act directly on nitrergic nerves to release transmitter NO. Rather, nicotine acts on the nicotinic receptors located on sympathetic nerves to release NE, which then diffuses to act on the adrenoceptors located on the neighboring nitrergic nerves, causing release of NO from these nerves and therefore vasodilation (33–35). Recent evidence indicates that nicotinic acetylcholine receptor (nAChR) on the sympathetic nerves in porcine basilar arteries mediating nicotine-induced nitrergic vasodilation contains predominantly α7 subunit (35) (Fig. 1).

Nicotine-induced neurogenic vasodilation is blocked by β- but not α-adrenoceptor antagonists

Clarification of adrenoceptors mediating nicotine-induced relaxation of isolated large cerebral arteries has provided evidence that NE is the mediator in nicotine-induced NO-mediated neurogenic vasodilation (34). In the presence of active muscle tone induced by U46619 (0.3 µM) in isolated porcine basilar arteries without endothelial cells, nicotine (100 µM)-induced relaxation was significantly inhibited by propranolol (0.1–10 µM) in a
concentration-dependent manner (Fig. 3), which does not affect the TNS-elicited relaxation in the same preparations. The latter finding is consistent to previous reports (4). Furthermore, nicotine-induced relaxation is diminished by ICI 118,551 and butoxamine (selective β2-adrenoceptor antagonists), but is not appreciably affected by β1-adrenoceptor antagonists such as atenolol and CGP 20712A (34).

At similar concentrations, ICI 118,551, atenolol, butoxamine and CGP 20712A did not affect the TNS-elicited relaxation in the same preparations. Similar results were found in cat middle cerebral arteries (our unpublished data). The presence of presynaptic β2-adrenoceptors on the nitrergic nerves is supported further by results from double-labeling immunohistochemical studies that β2-adrenoceptors are localized on NADPH diaphorase-reactive fibers (markers for NOS-I fibers) (18). Evidence has been presented that NE but not dopamine or epinephrine is found in cerebral arteries including basilar and middle cerebral arteries from different species (3, 4), further indicating that NE is the most likely transmitter released by nicotine from sympathetic nerves to cause release of NO from the neighboring nitrergic nerves (Fig. 1).

NE is generally considered to be a weak agonist for β2-adrenoceptors in the cardiovascular system (39). The possibility that other receptor subtypes such as the β1-adrenoceptors and β2-adrenoceptors (40) are involved in NE-mediated NO release remains to be clarified. However, the complete blockade of nicotine-induced relaxation by propranolol, which is not a ligand for β2-adrenoceptors (40), and the failure of CGP 20712A, which is a β1- and β2-adrenoceptor antagonist (40), in blocking nicotine-induced relaxation render this possibility tenuous.

Nicotine-induced neurogenic vasodilation is enhanced by α2- but not α1-adrenoceptor antagonists

The involvement of the presynaptic α2-adrenoceptors in mediating inhibition of NO release from nitrergic nerves and NE release from adrenergic nerves in peripheral vascular preparations has been reported (41). This appears to be true also in porcine cerebral arteries, since nicotine-induced relaxation was potentiated by yohimbine but not by prazosin. This is consistent with the hypothesis that increased NE release after blocking presynaptic α2-adrenoceptors on the sympathetic nerves by yohimbine can result in increased NO release from the nitrergic nerves and enhanced vasodilation (Fig. 1). The relative significance of α2-adrenoceptors located on adrenergic sympathetic nerve terminals and nitrergic nerve terminals in mediating nicotine-induced NO-mediated relaxation remains to be determined. The presynaptic β2-adrenoceptors on nitrergic nerve terminals, however, appear to be predominant in cerebral perivascular nerves, since nicotine-induced NE-mediated nitrergic vasodilation in the absence of yohimbine was demonstrated (34).

Different mechanisms in relaxation induced by TNS and nicotine

Results have been presented to indicate that nicotine-induced NO-mediated neurogenic vasodilation is indirectly mediated by release of NE from sympathetic nerves. Nicotine does not act directly on nitrergic nerves to elicit an NO-mediated vasodilation (33). This mechanism of action of nicotine in inducing NO-mediated neurogenic vasodilation is different from NO-mediated neurogenic vasodilation elicited by TNS. The latter depolarizes the nitrergic and sympathetic nerve terminals simultaneously resulting in NO release and relaxation. NE also is released upon TNS (7). However, NE has been shown to be a weak postsynaptic transmitter (1, 4). It is possible that direct depolarization of the nitrergic nerves by TNS at various frequencies, resulting in NO release, is already at the maximum enzyme capacity of each stimulating frequency.
An additional modulatory effect elicited by simultaneous release of NE from the sympathetic nerves may be relatively small and therefore is not detected. This may explain the well-established findings of the failure of guanethidine (a sympathetic neuronal blocker), propranolol, preferential β_2-adrenoceptor antagonists, and yohimbine and other α-adrenoceptor antagonists in affecting TNS-elicited NO-mediated neurogenic vasodilation in cerebral arteries (4, 12, 33, 34, 36).

Conclusion

For the first time, nicotine-induced NO-mediated relaxation in large cerebral arteries at the base of the brain of the pig and cat has been shown to be dependent on the intact sympathetic, adrenergic innervation. Evidence has been presented to indicate that nicotine acts on presynaptic α_7-nAChRs on sympathetic nerves to release NE, which then diffuses to act on β_2-adrenoceptors located on the neighboring nitriergic nerve terminals to release NO, and therefore vasodilation (Fig. 1). NE appears to exhibit weak or negligible direct effect on postsynaptic vascular smooth muscle cells. NE therefore acts predominantly as a presynaptic transmitter. Accordingly, it is possible that regional vasoconstriction of large cerebral arteries, if any, induced by electrical stimulation of the sympathetic nerves in vivo may be offset by immediate vasodilation in the same regions due to NO release from nitriergic nerves. The sympathetic innervation elicited vasodilation may not occur in small pial vessels which receive only sympathetic innervation. This finding may provide an explanation for the reported observations that electrical stimulation of the sympathetic nerves to cerebral circulation in normal experimental animals in general results in a very weak effect or no response in cerebral vascular tone and cerebral blood flow (2, 42, 43). This sympathetic innervation-dependent neurogenic vasodilation also has been demonstrated in the mesenteric vascular beds (44). This concept of presynaptic modulation of nitriergic nerves in the cerebral arteries (33) and peptidergic nerves in the mesenteric vascular bed (44) by sympathetic adrenergic nerves appears to be supported by reports from some in vivo experimentation that the functional consequence of neuronal NO and NE interaction may play a role in blood pressure regulation (45).

Furthermore, identification of α_7-nAChRs on perivascular postganglionic, sympathetic nerves of SCG origin in porcine basilar arteries (35) provides further evidence for the functional significance of the sympathetic innervation in regulating cerebral circulation. Choline, a metabolite of ACh and is present in significant concentration in the cerebral spinal fluid (46) and blood serum (47), has been shown to be a preferential α_7-nAChR agonist (48, 49). Accordingly, activation of α_7-nAChRs by endogenous choline may play an important role in regulating cerebral sympathetic activity and vascular tone.

Acknowledgments

This work was supported by Grants HL 27763 and HL 47574 from the National Institutes of Health, AHA/IHA (9807871) and SIU-CRC/EAM.

REFERENCES

1. Lee TJF, Su C and Bevan JA: Neurogenic sympathetic vasoconstriction of the rabbit basilar artery. Circ Res 39, 120 – 126 (1976)
2. Edvinsson L, Mackenzie ET and McCulloch J: Cerebral Blood Flow Metabolism. Raven Press, New York (1993)
3. Lee TJF, Chieueh M and Adams M: Synaptic transmission of vasoconstrictor nerves in the rabbit basilar artery. Eur J Pharmacol 61, 55 – 70 (1980)
4. Lee TJF, Kinkead LR and Sarwinski SJ: Norepinephrine and acetylcholine transmitter mechanisms in large cerebral arteries of the pig. J Cereb Blood Flow Metab 2, 439 – 450 (1982)
5. Duckles SP and Rapoport R: Release of endogenous norepinephrine from a rabbit cerebral artery. J Pharmacol Exp Ther 211, 219 – 224 (1979)
6. Sanchez-Merine JA, Marin J, Balfagon G and Ferrer M: Involvement of alpha 2-adrenoceptors and protein kinase C on nicotine-induced facilitation of noradrenaline release in bovine cerebral arteries. Gen Pharmacol 26, 827 – 833 (1995)
7. Satoh E, Nishimura M and Lee TJF: Comparison of ability to release norepinephrine from four portions of porcine cerebral arteries. Jpn J Pharmacol 73, Suppl 1, 268P (1997)
8. Toda N: Relaxant responses to transmural nerve stimulation and nicotine of dog and monkey cerebral arteries. Am J Physiol 243, H145 – H153 (1982)
9. Lee TJF: Sympathetic and nonsympathetic transmitter mechanisms in cerebral vasodilation and constriction. In Neural Regulation of Brain Circulation, Edited by Owman C and Hardebo JE, pp 285 – 296, Elsevier, Amsterdam (1986)
10. Lee TJF: Ultrastructural distribution of vasodilator and constrictor nerves in cat cerebral arteries. Circ Res 49, 971 – 979 (1981)
11. Van Riper DA and Bevan JA: Evidence that neuropeptide Y and norepinephrine mediate electrical field-stimulated vasoconstriction of rabbit middle cerebral artery. Circ Res 68, 568 – 577 (1991)
12. Winquist RJ, Webb RC and Bohr DF: Relaxation to transmural nerve stimulation and exogenously added norepinephrine in porcine cerebral vessels: a study utilizing cerebrovascular intrinsic tone. Circ Res 51, 769 – 776 (1982)
13. Miyamoto A, Ito K and Nishio A: Characterization of beta-adrenoceptors in pig basilar artery from functional and radioligand binding studies. Jpn J Pharmacol 61, 93 – 99 (1993)
14. Miao FJP and Lee TJF: Effects of billirubin on cerebral arterial tone in vitro. J Cereb Blood Flow Metab 9, 666 – 674 (1989)
15. Gonzalez C, Barroso C, Martin C, Gulbenkian S and Estrada C: Neuronal nitrergic oxide synthase activation by vasoactive intestinal peptide in bovine cerebral arteries. J Cereb Blood Flow Metab 17, 977 – 984 (1997)
16. Kimura T, Yu JG, Edvinsson L and Lee TJF: Cholinergic, nitric oxideergic innervation in cerebral arteries of the cat. Brain Res
Cerebral Nitrergic Vasodilation

773, 117 – 124 (1997)

17 Nozaki K, Maskowitz MA, Maynard KI, Koketsu N, Dawson TM, Bredeh DS and Snyder SH: Possible origins and distribution of immunoreactive nitric oxide synthase containing nerve fibers in cerebral arteries. J Cereb Blood Flow Metab 13, 70 – 79 (1993)

18 Yu JG, Ishine T, Kimura T, O’Brien WE and Lee TJF: l-Citrulline conversion to l-arginine in sphenopalatine ganglia and cerebral perivascular nerves in the pig. Am J Physiol 273, H2192 – H2199 (1997)

19 Yu JG, O’Brien WE and Lee TJF: Morphological evidence for l-citrulline conversion to l-arginine via the argininosuccinate pathway in porcine cerebral perivascular nerves. J Cereb Blood Flow Metab 17, 884 – 893 (1997)

20 Yu JG, Kimura T, Chang XF and Lee TJF: Segregation of VIPergic-nitric oxidergic and cholinergic-nitric oxidergic innervation in porcine middle cerebral arteries. Brain Res 801, 78 – 87 (1998)

21 Edvinsson L, Elsa T, Suzuki N, Shima T and Lee TJF: Origin and colocalization of nitric oxide synthase, CGRP, PACAP, and VIP in the cerebral circulation of the rat. Microsc Res Tech 53, 221 – 228 (2001)

22 Lee TJF: Putative transmitters in cerebral neurogenic vasodilation. In The Human Brain Circulation: Functional Changes in Disease, Edited by Bevan JA, Bevanv RD and Walters CL, pp 73 – 91, Humana Press, Totowa, NJ (1994)

23 Chen FY and Lee TJF: Arginine synthesis from citrulline in cerebral perivascular nerves of cerebral arteries. J Pharmacol Exp Ther 273, 895 – 901 (1995)

24 Lee TJF, Sarwinski S, Ishine T, Lai C and Chen FY: Inhibition of cerebral oxidergic vasodilation by L-glutaminine and nitric oxide synthase inhibitors. J Pharmacol Exp Ther 267, 353 – 358 (1996)

25 Iwayama T, Furness JB and Burnstock G: Dual adrenergic and cholinergic innervation of the cerebral arteries of the rat. An ultrastructural study. Circ Res 26, 635 – 646 (1970)

26 Barroso CP, Edvinsson L, Zhang W, Cunha e Sa M, Springall DR, Polark JM and Gulbenkin S: Nitrooxidergic innervation of guinea pig cerebral arteries. J Auton Nerv Syst 58, 108 – 114 (1996)

27 Edvinsson L, Falcon B and Owman C: Possibilities for a cholinergic action on smooth muscle and on sympathetic axons in brain vessels mediated muscarinic and nicotinic receptors. J Pharmacol Exp Ther 200, 117 – 126 (1977)

28 Su C and Bevan JA: Blockade of the nicotine-induced norepinephrine release by cocaine, phenoxbenzamine and desipramine. J Pharmacol Exp Ther 175, 533 – 540 (1970)

29 Haass M, Richardt G, Brenn T, Schomig E and Schomia A: Nicotine-induced release of noradrenaline and neuropeptide Y in guinea-pig heart: role of calcium channels and protein kinase C. Naunyn Schmiedebergs Arch Pharmacol 344, 527 – 531 (1991)

30 Toda N and Okamura T: Modification of l-Nω-monomethyl arginine (l-NAME) of the response to nerve stimulation in isolated dog mesentric and cerebral arteries. Jpn J Pharmacol 52, 170 – 173 (1990)

31 Lee TJF and Sarwinski S: Nitric oxidergic neurogenic vasodilation in basilar arteries of the pig. Blood Vessels 28, 407 – 412 (1991)

32 Toda N, Ayajiki K and Okamura T: Inhibition of nitric oxidergic nerve function by neurogenic acetylcholine in monkey cerebral arteries. J Physiol (Lond) 498, 453 – 461 (1997)

33 Zhang W, Edvinsson L and Lee TJF: Mechanism of nicotine-induced neurogenic vasodilation in the porcine basilar artery. J Pharmacol Exp Ther 288, 790 – 797 (1998)

34 Lee TJF, Zhang W and Sarwinski S: Presynaptic bet-2-adrenoceptors mediate nicotine-induced NOergic neurogenic vasodilation in the pig cerebral arteries. Am J Physiol Heart Circ Physiol 279, H808 – H816 (2000)

35 Si ML and Lee TJF: Presynaptic α7-nicotinic acetylcholine receptors mediate nicotine-induced NOergic neurogenic vasodilation in porcine basilar arteries. J Pharmacol Exp Ther 298, 122 – 128 (2001)

36 Lee TJF, Hume WR, Su C and Bevan JA: Neurogenic vasodilation of cat cerebral arteries. Circ Res 42, 335 – 342 (1978)

37 Lee TJF, Fang XY and Nichols GA: Cyclic nucleotides and cerebral neurogenic vasodilation. In Neurotransmission and Cerebrovascular Function, Edited by Selzaj J and MacKenzie ET, pp 277 – 280, Elsevier, Amsterdam (1989)

38 Toda N and Okamura T: Cerebral vasodilators. Jpn J Pharmacol 76, 349 – 367 (1998)

39 Nedergaard OA and Abrahamsen J: Modulation of noradrenaline release by activation of presynaptic β-adrenoceptors in the cardiovascular system. Am NY Sci 604, 528 – 544 (1990)

40 Kaumann AJ: Four β-adrenoceptor subtypes in the mammalian heart. Trends Pharmacol Sci 18, 70 – 76 (1997)

41 Bocekstaeans GE, De Man JG, De Winter BY, Moreels TG, Herman AG and Pelekinmans PA: Bioassay and pharmacological characterization of the nitricergic neurotransmitter. Arch Int Pharmacodyn Ther 329, 11 – 26 (1995)

42 Busija DW and Heistad DD: Factors involved in the physiological regulation of the cerebral circulation. Rev Physiol Biochem Pharmacol 101, 161 – 211 (1984)

43 Faraci FM, Mayhan WG, Werber AH and Heistad DD: Cerebral circulation: effects of sympathetic nerves and protective mechanisms during hypertension. Circ Res 61, I102 – I106 (1987)

44 Shiraki H, Kawasaki H, Tezuka S, Nakayama A and Kurosaki I: RBC and plasma choline levels in control and depressed individuals: a critical evaluation. Psychiatry Res 88, 61 – 13 (1999)

45 Sander M and Victor RG: Neural mechanisms in nitric-oxide-deficient hypertension. Curr Opin Nephrol Hypertens 8, 61 – 73 (1999)

46 Flintte F, Beeger JH, Mulder-Hajonides van der Meulen WR and Teelken AW: CSF choline levels in neurologically disturbed children. Acta Neurol Scand 79, 160 – 165 (1989)

47 Hanin I, Kopp U, Spiker DG, Neil JF, Shaw DH and Kupfer DJ: RBC and plasma choline levels in control and depressed individuals: a critical evaluation. Psychiatry Res 3, 345 – 355 (1980)

48 Mike A, Castro NG and Albuquerque EX: Choline and acetylcholine have similar kinetic properties of activation and desensitization on the alpha7 nicotinic receptors in rat hippocampal neurons. Brain Res 882, 155 – 168 (2000)

49 Si ML and Lee TJF: α7-nAChRs on sympathetic nerves mediate nicotine-induced nitricergic neurogenic vasodilation in the pig basilar arteries. Soc Neurosci abstract 242.10 (2001)