Research Article

Asymptotic Behavior of Solutions to Free Boundary Problem with Tresca Boundary Conditions

Abdelkader Saadallah,1 Nadhir Chougui,1 Fares Yazid,2 Mohamed Abdalla3,4 Bahri Belkacem Cherif5,6 and Ibrahim Mekawy6

1Applied Math Lab, Department of Mathematics, Setif 1 University, 19000, Algeria
2Laboratory of Pure and Applied Mathematics, University of Laghouat, Algeria
3Mathematics Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
4Mathematics Department, Faculty of Science, South Valley University, Qena 83523, Egypt
5Preparatory Institute for Engineering Studies in Sfax, Tunisia
6Department of Mathematics, College of Sciences and Arts, ArRas, Qassim University, Saudi Arabia

Correspondence should be addressed to Bahri Belkacem Cherif; bahi1968@yahoo.com

Received 24 March 2021; Revised 6 April 2021; Accepted 12 April 2021; Published 24 April 2021

Academic Editor: Liliana Guran

Copyright © 2021 Abdelkader Saadallah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we study the asymptotic behavior of an incompressible Herschel-Bulkley fluid in a thin domain with Tresca boundary conditions. We study the limit when the ε tends to zero, we prove the convergence of the unknowns which are the velocity and the pressure of the fluid, and we obtain the limit problem and the specific Reynolds equation.

1. Introduction

In 1926, the model of Herschel-Bulkley fluid introduced is called a non-Newtonian fluid, whose flow properties differ in any way from those of any Newtonian fluids. There are many phenomena in nature and industry exhibiting the behavior of the Herschel-Bulkley fluid medium and has been used in various publications to describe the flow of metals, plastic solids, and some polymers. The literature concerning this topic is extensive (see e.g., [1–14]). Further, let us mention the works which is realized by many authors in this area, for example, (see [2, 4, 9, 10, 13–21]).

This paper is to discuss the asymptotic behavior of steady flow of Herschel-Bulkley fluid in a three-dimensional thin layer with Tresca boundary conditions.

The paper is organized as follows. In Section 2, we introduce some notations, preliminaries, and the mechanical problem of the steady flow of Herschel-Bulkley fluid in a three-dimensional thin layer. In Section 3, we investigate some estimates and convergence theorem. To this aim, we use the change of variable x_3/ε, to transform the initial problem posed in the domain Ω^ε into a new problem posed on a fixed domain Ω independent of the parameter ε. Finally, the a priori estimate allows us to pass to the limit when ε tends to zero, and we prove the convergence results and limit problem with a specific weak form of the Reynolds equation and two-dimensional constitutive equation of the model flow.

2. Problem Statement and Variational Formulation

Let ω be a fixed region in plan $x = (x_1, x_2) \in \mathbb{R}^2$. We assume that ω has a Lipschitz boundary and is the bottom of the fluid domain. The upper surface I^ε_x is defined by $x_3 = \varepsilon h(x)$ where $(0 < \varepsilon < 1)$ is a small parameter that will tend to zero and h a smooth bounded function such that $0 < h_* < h(x) < h^*$ for all $(x, 0) \in \omega$ and I^ε_x the lateral surface. We denote by Ω^ε the domain of the flow:

$$\Omega^\varepsilon = \{(x, x_3) \in \mathbb{R}^3 : (x, 0) \in \omega, 0 < x_3 < \varepsilon h(x)\}. \quad (1)$$
The boundary of Ω^ε is Γ^ε. We have $\Gamma^\varepsilon = \Gamma^\varepsilon_1 \cup \Gamma^\varepsilon_L \cup \omega$ where Γ^ε_L is the lateral boundary.

(i) The law of conservation of momentum is defined by

$$u^\varepsilon \nabla u^\varepsilon = \text{div} (\sigma^\varepsilon) + f^\varepsilon \text{ in } \Omega^\varepsilon,$$

where $\text{div} (\sigma^\varepsilon) = (\sigma^\varepsilon_{ij})$ and $f^\varepsilon = (f^\varepsilon_j)_{1 \leq j \leq 3}$ denote the body forces.

(ii) The stress tensor σ^ε is decomposed as follows

$$\sigma^\varepsilon_{ij} = \sigma^\varepsilon_{ij}^\varepsilon - p^\varepsilon \delta_{ij},$$

$$\tilde{\sigma}^\varepsilon = \alpha^\varepsilon \frac{D(u^\varepsilon)}{|D(u^\varepsilon)|} + \mu |D(u^\varepsilon)|^{-2} D(u^\varepsilon) \text{ if } D(u^\varepsilon) \neq 0,$$

$$|\tilde{\sigma}^\varepsilon| \leq \alpha^\varepsilon \text{ if } D(u^\varepsilon) = 0.$$

(iii) The incompressibility equation

$$\text{div} (u^\varepsilon) = 0 \text{ in } \Omega^\varepsilon.$$

Our boundary conditions is described as

(iv) At the surface $\Gamma^\varepsilon_1 \cup \Gamma^\varepsilon_L$, we assume that

$$u^\varepsilon = 0.$$

(v) On ω, there is a no-flux condition across ω so that

$$u^\varepsilon \times n = 0.$$

(vi) The tangential velocity on ω is unknown and satisfies Tresca boundary conditions:

$$\begin{cases} |\sigma^\varepsilon_{ij}| < k^\varepsilon u^\varepsilon_{ij} = 0 \\ |\sigma^\varepsilon_{ij}| = k^\varepsilon \exists \alpha \geq 0, u^\varepsilon_{ij} = -\lambda \sigma^\varepsilon_{ij} \text{ in } \omega. \end{cases}$$

Here, k^ε is the friction yield coefficient and $|.|$ is the Euclidean norm in \mathbb{R}^2; $n = (n_1, n_2, n_3)$ is the unit outward normal to Γ^ε_1, and

$$u^\varepsilon = u^\varepsilon.n_1u^\varepsilon.n_2n_3,$$

$$u^\varepsilon_{ij} = u^\varepsilon_{ij} - u^\varepsilon_{n_3}n_3,$$

$$\sigma^\varepsilon_{n_3} = (\sigma.n)n = \sigma^\varepsilon_{n_3}n_3n_3,$$

$$\sigma^\varepsilon_{n_3} = \sigma^\varepsilon_{n_3}n_3 - \sigma^\varepsilon_{n_3}n_3.$$

In order to, we observe that

$$K^\varepsilon = \left\{ \varphi \in W^{1,1}(\Omega^\varepsilon)^3 : \varphi = 0 \text{ on } \Gamma^\varepsilon_1 \cup \Gamma^\varepsilon_L, \varphi.n = 0 \text{ on } \omega \right\},$$

$$K^\varepsilon_{\text{div}} = \{ \varphi \in K^\varepsilon : \text{div } (\varphi) = 0 \},$$

$$L^\varepsilon_0 (\Omega^\varepsilon) = \left\{ q \in L^\varepsilon (\Omega^\varepsilon) : \int_{\Omega^\varepsilon} q dx dx = 0 \right\}.$$

A formal application of Green’s formula, using (1)–(6), leads to the following weak formulation:

Find a velocity field $u^\varepsilon \in K^\varepsilon_{\text{div}}$ and $p^\varepsilon \in L^\varepsilon_0 (\Omega^\varepsilon)$, $(1/r + 1/r' = 1)$ such that

$$a(u^\varepsilon, \varphi - u^\varepsilon) + B(u^\varepsilon, u^\varepsilon, \varphi - u^\varepsilon) - (p^\varepsilon, \text{div } \varphi) + j(\varphi)$$

$$- j(u^\varepsilon) \geq (f^\varepsilon, \varphi - u^\varepsilon),$$

for all $\varphi \in K^\varepsilon$, where

$$a(u^\varepsilon, \varphi - u^\varepsilon) = \mu \int_{\Omega^\varepsilon} |D(u^\varepsilon)|^{-2} D(u^\varepsilon)D(v^\varepsilon) dx dx,$$

$$B(u^\varepsilon, u^\varepsilon, v) = \frac{3}{2} \int_{\Omega^\varepsilon} u^\varepsilon_i \frac{\partial u^\varepsilon_j}{\partial x_i} v dx dx,$$

$$j(v) = \int_{\omega} k^\varepsilon |x| dx + \alpha^\varepsilon \int_{\Omega^\varepsilon} |D(v)| dx dx,$$

$$f^\varepsilon(v) = \int_{\Omega^\varepsilon} f^\varepsilon v dx dx = \frac{3}{2} \int_{\Omega^\varepsilon} f^\varepsilon v dx dx.$$

As in [6,8], we can show that this variational problem has a unique solution.

Now, we state some the following results (see, [15]).

$$|| \nabla u^\varepsilon ||_{L^2(\Omega^\varepsilon)} \leq C || D(u^\varepsilon) ||_{L^2(\Omega^\varepsilon)} \text{ (Korn inequality),}$$

$$|| u^\varepsilon ||_{L^2(\Omega^\varepsilon)} \leq C || \frac{\partial u^\varepsilon}{\partial x_i} ||_{L^2(\Omega^\varepsilon)} \text{ for } i = 1, 2 \text{ (Poincare’ inequality),}$$

$$ab \leq a^\varepsilon \frac{r}{r} + b^\varepsilon \frac{r}{r} \forall (a, b) \in \mathbb{R}^2 \text{ (Young inequality).}$$
3. Change of the Domain and Study of Convergence

Here, we apply the technique of scaling in \(\Omega^\varepsilon\) on the coordinate \(z\). With the variables \(z = x_j / \varepsilon\), we get

\[
\Omega = \{(x, z) \in \mathbb{R}^3 : (x, 0) \in \omega, 0 < z < h(x)\}. \tag{15}
\]

Next, we denote by \(\Gamma = \Gamma_1 \cup \Gamma_2 \cup \tilde{\omega}\) its boundary, then, we define the following functions in \(\Omega\):

\[
\tilde{u}_i^\varepsilon(x, z) = u_i^\varepsilon(x, x_j), \quad i = 1, 2,
\]
\[
\tilde{p}_i^\varepsilon(x, z) = \varepsilon^{-1} u_i^\varepsilon(x, x_j),
\]
\[
\tilde{\nu}_i^\varepsilon(x, z) = \varepsilon \tilde{p}_i^\varepsilon(x, x_j).
\]

Now, we assume that

\[
\tilde{f}(x, z) = \varepsilon \tilde{f}^\varepsilon(x, x_j), \quad \tilde{\alpha} = \varepsilon^{-1} \alpha', \quad \tilde{k} = \varepsilon^{-1} K',
\]
and we consider the sets

\[
K(\Omega) = \left\{ \tilde{\varphi} \in (W^{1,\infty}(\Omega))^3 : \tilde{\varphi} = 0 \text{ on } \Gamma_1 \cup \Gamma_2 ; \tilde{\varphi}_n = 0 \text{ on } \omega \right\},
\]
\[
K_{\text{div}}(\Omega) = \{ \tilde{\varphi} \in K(\Omega) : \text{div} \tilde{\varphi} = 0 \},
\]
\[
V_z = \left\{ \tilde{\varphi} \in (L^r(\Omega))^3 : \alpha \frac{\partial \tilde{\varphi}}{\partial z} \in L^r(\Omega) : \tilde{\varphi} = 0 \text{ on } \Gamma_1 \cup \Gamma_2 \right\},
\]
\[
\tilde{V}_z = \left\{ \tilde{\varphi} \in V_z : \tilde{\varphi} \text{ satisfies } (D') \right\},
\]
where the condition \((D')\) is given by

\[
\int_\omega \left(\tilde{\varphi}_1 \frac{\partial \tilde{\varphi}}{\partial x_1} + \tilde{\varphi}_2 \frac{\partial \tilde{\varphi}}{\partial x_2} \right) dx dz = 0,
\]
for all \(\tilde{\varphi} \in (L^r(\Omega))^3\) and \(\theta \in C_{00}^\infty(\Omega)\).

By injecting the new data, unknown factors in (10) and after multiplication by \(\varepsilon^{-1}\), we deduce that

\[
a_0(\tilde{u}^\varepsilon, \tilde{\varphi} - \tilde{u}^\varepsilon) + B_0(\tilde{u}^\varepsilon, \tilde{\varphi}, \tilde{\nu}^\varepsilon) + (\tilde{p}^\varepsilon, \text{div } (\tilde{\varphi} - \tilde{u}^\varepsilon)) + j_0(\tilde{\varphi}) - j_0(\tilde{u}^\varepsilon) \geq \tilde{f}^\varepsilon, \tilde{\varphi} - \tilde{u}^\varepsilon, \forall \tilde{\varphi} \in K(\Omega),
\]
where

\[
a_0(\tilde{u}^\varepsilon, \tilde{\varphi} - \tilde{u}^\varepsilon) = \sum_{i,j=1}^2 \int_\Omega \varepsilon^2 \mu |\tilde{D}(\tilde{u}^\varepsilon)|^{-2} \left(\frac{\partial \tilde{u}_i^\varepsilon}{\partial x_j} + \frac{\partial \tilde{u}_j^\varepsilon}{\partial x_i} \right) \frac{\partial \tilde{\varphi}_i}{\partial x_j} dx dz + \sum_{i=1}^2 \int_\Omega \mu |\tilde{D}(\tilde{u}^\varepsilon)|^{-2} \frac{\partial \tilde{\varphi}_i}{\partial x_j} dx dz.
\]

We now establish the estimates for the velocity field \(\tilde{u}^\varepsilon\) and the pressure \(\tilde{p}^\varepsilon\) in \(\Omega\).

Theorem 1. Let \((\tilde{u}^\varepsilon, \tilde{p}^\varepsilon) \in K_{\text{div}}(\Omega) \times \tilde{L}'_{0}(\Omega)\) be the solution of variational problem (20), then there exists a constant \(C > 0\) independent of \(\varepsilon\) such that:

\[
\sum_{i,j=1}^2 \left\| \varepsilon \frac{\partial \tilde{u}_i^\varepsilon}{\partial x_j} \right\|_{L^r(\Omega)} + \left\| \varepsilon \frac{\partial \tilde{u}_i^\varepsilon}{\partial x_j} \right\|_{L^r(\Omega)} \leq C.
\]

Proof. Choosing \(\tilde{\varphi} = 0\) as test function in inequality (10), we get

\[
\int_\omega k^\varepsilon |\tilde{u}^\varepsilon| dx \leq (f^\varepsilon, \tilde{u}^\varepsilon),
\]

Thus, we have

\[
\sum_{i,j=1}^2 \left\| \varepsilon \frac{\partial \tilde{u}_i^\varepsilon}{\partial x_j} \right\|_{L^r(\Omega)} + \left\| \varepsilon \frac{\partial \tilde{u}_i^\varepsilon}{\partial x_j} \right\|_{L^r(\Omega)} \leq C.
\]
and because $B(u^e, u^f, u^e) = 0$, we obtain

$$a(u^f, u^r) + \alpha' \int_{\partial \Omega} |D(u^f)|dx + \int_{\Omega} k' |u^e - s|dx \leq (f^e, u^r). \quad (24)$$

Using now (13) and (14) will yield after some algebra

$$\left(f^e, u^r \right) \leq \epsilon h \left\| \nabla u^f \right\|_{L^r(\Omega)} \left\| f^e \right\|_{L^r(\Omega)} + \frac{1}{2} \mu C_k \left\| \nabla u^f \right\|_{L^r(\Omega)} + \frac{\left(\epsilon h \right)'}{r' (1/2 \mu C_k)^{r'/r}} \left\| f^e \right\|_{L^{r'}(\Omega)}'. \quad (25)$$

From (24) and (25), we deduce that

$$a(u^f, u^r) + \alpha' \int_{\partial \Omega} |D(u^f)|dx + \int_{\Omega} k' |u^e - s|dx \leq \frac{1}{2} \mu C_k \left\| \nabla u^f \right\|_{L^r(\Omega)} + \frac{\left(\epsilon h \right)'}{r' (1/2 \mu C_k)^{r'/r}} \left\| f^e \right\|_{L^{r'}(\Omega)}'. \quad (26)$$

We multiply (26) by ϵ^{-1}, we get

$$\epsilon^{-1} a(u^f, u^r) + \alpha \int_{\partial \Omega} |D(\tilde{u}^f)|dx + \int_{\Omega} \tilde{k} |\tilde{u}^f|dx \leq \frac{1}{2} \mu C_k \epsilon^{-1} \left\| \nabla u^f \right\|_{L^r(\Omega)} + \epsilon^{-1} \frac{\left(\epsilon h \right)'}{r' (1/2 \mu C_k)^{r'/r}} \left\| f^e \right\|_{L^{r'}(\Omega)}'. \quad (27)$$

Now, since $\epsilon^{-1} \left\| f^e \right\|_{L^{r'}(\Omega)}' = \epsilon h \left\| f^e \right\|_{L^{r'}(\Omega)}'$, it follows that

$$\epsilon^{-1} a(u^f, u^r) + \alpha \int_{\partial \Omega} |D(\tilde{u}^f)|dx + \int_{\Omega} \tilde{k} |\tilde{u}^f|dx \leq \frac{1}{2} \mu C_k \epsilon^{-1} \left\| \nabla u^f \right\|_{L^r(\Omega)} + \frac{\left(\epsilon h \right)'}{r' (1/2 \mu C_k)^{r'/r}} \left\| f^e \right\|_{L^{r'}(\Omega)}'. \quad (28)$$

According to Korn’s inequality and (28), such that C_k independent of ϵ, we have

$$\frac{1}{2} \mu C_k \epsilon^{-1} \left\| \nabla u^f \right\|_{L^r(\Omega)} + \alpha \int_{\partial \Omega} |D(\tilde{u}^f)|dx + \int_{\Omega} \tilde{k} |\tilde{u}^f|dx \leq \frac{\left(\epsilon h \right)'}{r' (1/2 \mu C_k)^{r'/r}} \left\| f^e \right\|_{L^{r'}(\Omega)}'. \quad (29)$$

Using (29), we deduce (22), with $C = (1/2 \mu C_k)^{-1} \left(\epsilon h \right)'/r' (1/2 \mu C_k)^{r'/r(r')},$ and $\epsilon^{-1} \left\| \nabla u^f \right\|_{L^r(\Omega)}' = \left\| \nabla u^f \right\|_{L^r(\Omega)}' = \sum_{i=1}^m \left\| \frac{\partial \tilde{u}^f}{\partial x^i} \right\|_{L^r(\Omega)}' + \epsilon \left\| \frac{\partial \tilde{u}^f}{\partial z} \right\|_{L^r(\Omega)}'$

$$+ \frac{\epsilon^{-1} \left\| \nabla u^f \right\|_{L^r(\Omega)}'}{r' (1/2 \mu C_k)^{r'/r}} \left\| f^e \right\|_{L^{r'}(\Omega)}'. \quad (30)$$

Theorem 2. Under the conditions in Theorem (1), there exists a constant $C' > 0$ independent of ϵ such that

$$\frac{\left\| \frac{\partial \tilde{u}^f}{\partial x^i} \right\|_{L^{r'}(\Omega)}}{r' (1/2 \mu C_k)^{r'/r}} \leq C' \quad \text{for} \quad i = 1, 2, \quad (31)$$

$$\frac{\left\| \frac{\partial \tilde{u}^f}{\partial z} \right\|_{L^{r'}(\Omega)}}{r' (1/2 \mu C_k)^{r'/r}} \leq C'. \quad (32)$$

Proof. To get the first estimate on the pressure in (31)–(32), we choose in (20), $\tilde{q} = \tilde{u}^r + \psi, \psi \in W^{1}_{0}(\Omega)^3$, to obtain

$$a_0(\tilde{u}^r, \psi) + B_0(\tilde{u}^r, \tilde{u}^f, \psi) - (\tilde{p}^e, \text{div} \psi)$$

$$+ \tilde{\alpha} \int_{\Omega} |D(\tilde{u}^f + \psi)|dx - \tilde{\alpha} \int_{\Omega} |D(\tilde{u}^r)|dx$$

$$\geq \left(\tilde{f}^e, \psi \right).$$

$$\left(\tilde{p}^e, \text{div} \psi \right) \leq a_0(\tilde{u}^e, \psi) + B_0(\tilde{u}^e, \tilde{u}^f, \psi)$$

$$+ \tilde{\alpha} \int_{\Omega} |D(\tilde{u}^f + \psi)|dx - \tilde{\alpha} \int_{\Omega} |D(\tilde{u}^r)|dx$$

$$- \left(\tilde{f}^e, \psi \right). \quad (33)$$

Keeping in mind that $|D(\tilde{u}^r + \psi) - D(\tilde{u}^r) + \tilde{D}(\psi)|$, it follows that

$$\left(\tilde{p}^e, \text{div} \psi \right) \leq \mu |D(\tilde{u}^e)\|_{W^{1}_{r}(\Omega)}' \|\psi\|_{W^{1}_{r}(\Omega)} + |\tilde{u}^e|_{W^{1}_{r}(\Omega)}$$

$$+ \tilde{\alpha} \sqrt{2} \int_{\Omega} |D(\psi)|dx + \left(\sqrt{2} - 1 \right) \tilde{\alpha} \int_{\Omega} |D(\tilde{u}^r)|dx - \tilde{\alpha} \int_{\Omega} |D(\tilde{u}^r)|dx$$

$$= \left(\tilde{f}^e, \psi \right). \quad (34)$$

Using Hölder formula, we get

$$\left(\tilde{p}^e, \text{div} \psi \right) \leq \mu |D(\tilde{u}^e)\|_{W^{1}_{r}(\Omega)}' \|\psi\|_{W^{1}_{r}(\Omega)} + |\tilde{u}^e|_{W^{1}_{r}(\Omega)}'$$

$$+ \tilde{\alpha} \sqrt{2} |\tilde{D}(\tilde{u}^r)|dx + \left(\sqrt{2} - 1 \right) \tilde{\alpha} |\tilde{D}(\tilde{u}^r)|dx$$

$$+ \|f^e\|_{L^r(\Omega)}'. \quad (35)$$

By similar arguments, we choose in (20) $\tilde{q} = \tilde{u}^r - \psi$ and $\psi \in W^{1}_{0}(\Omega)^3$ to obtain
\[-(\bar{p}', \text{div} \, \psi) \leq \mu \|D(\bar{u}')\|^2_{L'(\Omega)} \|\psi\|_{W^{1,r}(\Omega)}^2 + C \|\bar{u}'\|_{W^{1,r}(\Omega)}^2 \|\psi\|_{W^{1,r}(\Omega)}^2 + \hat{\alpha} \sqrt{\Omega} \|\psi\|_{W^{1,r}(\Omega)}^2 + \left(\sqrt{2} - 1\right) \hat{\alpha} \|\bar{D}(\bar{u}')\|_{L'(\Omega)}^2 + \|\bar{f}\|_{L'(\Omega)} \|\psi\|_{W^{1,r}(\Omega)}^2.\]

(36)

We combine now (35) and (36) to see that
\[
\left|\int_{\Omega} \frac{\partial \bar{p}'}{\partial x_i} \psi dx dz\right| \leq \left(C_1 + \hat{\alpha} \sqrt{\Omega} \|\psi\|_{W^{1,r}(\Omega)} + \|\bar{f}\|_{L'(\Omega)}\right) \cdot \|\psi\|_{W^{1,r}(\Omega)} + \left(\sqrt{2} - 1\right) \hat{\alpha} C,
\]

where \(|\Omega| = \text{mes}(\Omega)|. Then, (31) holds for \(i = 1, 2, \)

To get (32), we take \(\psi = (0, 0, \psi_3)\) in the inequality (37) to see that
\[
\frac{1}{\varepsilon} \left|\int_{\Omega} \frac{\partial \bar{p}'}{\partial x_i} \psi dx dz\right| \leq \left(C_1 + \hat{\alpha} \sqrt{\Omega} \|\psi\|_{W^{1,r}(\Omega)} + \|\bar{f}\|_{L'(\Omega)}\right) \cdot \|\psi\|_{W^{1,r}(\Omega)} + \left(\sqrt{2} - 1\right) \hat{\alpha} C.
\]

(39)

The question which naturally arises is to know what will be the asymptotic behavior of the fluid when the thickness of the thin film is very small. Mathematically, it is about knowing: do the speed field and the pressure admit a limit when \(\varepsilon\) tends towards zero and what is the limit problem who should check this limit?

The answer to the first question is given in Theorem (3). However, the answer to the second question will be dealt with in Theorems (4), (7), and (8).

Theorem 3. Under the same assumptions as in Theorem (1) and Theorem (2), there exist \(u^* = (u_i^*, u_j^*) \in \bar{V}_x\) and \(p^* \in L^r_0(\Omega)\) such that:

\[
\bar{u}_i' \to u_i^*, \ i = 1, 2 \ \ \text{weakly in} \ \bar{V}_x, \quad (40)
\]

\[
\varepsilon \frac{\partial \bar{u}_j'}{\partial x_j} \to 0, \ i, j = 1, 2 \ \ \text{weakly in} \ L'(\Omega), \quad (41)
\]

\[
\bar{p}' \to p^*, \ \text{weakly in} \ L'(\Omega), \quad (42)
\]

\[
\varepsilon \frac{\partial \bar{u}_j'}{\partial x_i} \to 0, \ i = 1, 2 \ \ \text{weakly in} \ L'(\Omega), \quad (43)
\]

\[
e \bar{u}_j' \to 0, \ \text{weakly in} \ L'(\Omega), \quad (44)
\]

\[
\bar{p}' \to p^*, \ \text{weakly in} \ L'(\Omega), \quad (45)
\]

Proof. By Theorem (1), there exists a constant \(C\) independent of \(\varepsilon\) such that
\[
\left\|\frac{\partial \bar{u}_i'}{\partial x_i}\right\|_{L'(\Omega)} \leq C, \ i = 1, 2, \quad (46)
\]

and using Poincare’s inequality, we deduce that
\[
\left\|\bar{u}_i'\right\|_{L'(\Omega)} \leq \delta_{\bar{u}} \left\|\frac{\partial \bar{u}_i'}{\partial x_i}\right\|_{L'(\Omega)}, \ i = 1, 2. \quad (47)
\]

that is to say, \(\bar{u}_i'\) is bounded in \(V_\varepsilon\), \(i = 1, 2\), this implies the existence of \(\bar{u}_i^*\) in \(V_x\) such that \(\bar{u}_i^*\) converges to \(\bar{u}_i'\) in \(L'(\Omega)\). The same, the inequality (22), we give
\[
\varepsilon \left\|\frac{\partial \bar{u}_j'}{\partial x_j}\right\|_{L'(\Omega)} \leq C, \quad (48)
\]

so \(\varepsilon \delta_{\bar{u}} \bar{u}_j'/\partial x_j\) converges to \(\delta_{\bar{u}} \bar{u}_j'/\partial x_j\) and as \(\left\|\bar{u}_j'\right\|_{L'(\Omega)} \leq C\), then \(\delta_{\bar{u}} \bar{u}_j'/\partial x_j\) converges weakly to \(\delta_{\bar{u}} \bar{u}_j'/\partial x_j\) which gives the converges weakly of \(\bar{u}_j'/\partial x_j\) to 0 in \(L'(\Omega)\). Well thanks to the inequality: \(\varepsilon^2 \|\delta_{\bar{u}} \bar{u}_j'/\partial x_j\|_{L'(\Omega)} \leq C\), we have the convergence \(\varepsilon^2 \|\delta_{\bar{u}} \bar{u}_j'/\partial x_j\|_{L'(\Omega)} \leq C\), and \(\varepsilon \delta_{\bar{u}} \bar{u}_j'/\partial x_j\) converges weakly to \(\delta_{\bar{u}} \bar{u}_j'/\partial x_j\). This shows that \(\delta_{\bar{u}} \bar{u}_j'/\partial x_j\) converges weakly to 0 in \(L'(\Omega)\). Finally, using (31) and (32), we get (45).

4. Study of the Limit Problem

In this section, we give both the equations satisfied by \(p^*\) and \(u^*\) in \(\Omega\) and the inequalities for the trace of the velocity \(u^*(x, 0)\) and the stress \(\partial u^*/\partial z(x, 0)\) on \(\omega\).
Theorem 4. With the same assumptions of Theorem (3) the solution \((u^*, \rho^*)\) satisfying the following relations

\[
\mu \sum_{i=1}^{2} \left(\frac{1}{2} \sum_{j=1}^{2} \left(\frac{\partial u_i^*}{\partial z} \right)^2 \frac{\partial (\rho_i^*)}{\partial z} \frac{\partial (\rho_j^*)}{\partial z} \right) dx dz \\
- \int_{\Omega} \rho^* \left(\frac{\partial \rho_i}{\partial x_1} + \frac{\partial \rho_j}{\partial x_2} \right) dx dz \\
+ \tilde{\alpha} \sqrt{2} \int_{\Omega} \left(\frac{\partial \rho_i}{\partial z} - \frac{\partial u_i^*}{\partial z} \right) dx dz + \int_{\partial \Omega} \tilde{f}_i (\rho_i^* - u_i^*) \rho_i^* \partial z dxdz, \forall \rho_i \in W_{\Gamma_1 \cup \Gamma_2},
\]

(49)

where

\[
W_{\Gamma_1 \cup \Gamma_2} = \{ \rho = (\rho_1, \rho_2) \in W^{1, r} (\Omega)^2 : \rho = 0 \text{ on } \Gamma_1 \cup \Gamma_2 \}.
\]

(50)

The proof of this theorem is based on the following lemma.

Lemma 5 (Minty). Let \(E \) be a Banach spaces, \(T : E \to E' \) a monotone and hemicontinuous operator, and \(J : E \to [-\infty, +\infty] \) a proper and convex functional. Let \(u \in E \) and \(f \in E' \). Then, the following assertions are equivalent:

\[
\langle Tu; v - u \rangle_{E \times E} + f(v) - J(u) \geq \langle f; v - u \rangle_{E \times E}, \forall v \in E, \langle Tv; v - u \rangle_{E \times E} + f(v) - J(u) \geq \langle f; v - u \rangle_{E \times E}, \forall v \in E.
\]

(51)

Proof. By using Minty’s Lemma (5) and the fact that \(\text{div} (\tilde{u}^*) = 0 \) in \(\Omega \), then (20) is equivalent to

\[
a_0 (\tilde{\rho}, \tilde{\rho} - \tilde{u}^*) + B_0 (\tilde{\rho}, \tilde{\rho} - \tilde{u}^*) \\
- \frac{2}{\mu} \int_{\Omega} \tilde{f}_i (\tilde{\rho}_i - \tilde{u}_i^*) dx dz + \int_{\Omega} \frac{\partial \tilde{\rho}_i}{\partial x_1} \frac{\partial \tilde{\rho}_j}{\partial x_2} dx dz \\
\geq \sum_{i=1}^{2} \int_{\Omega} \tilde{f}_i (\tilde{\rho}_i^* - \tilde{u}_i^*) dx dz + \int_{\partial \Omega} \tilde{f}_i (\tilde{\rho}_i^* - \tilde{u}_i^*) \tilde{u}_i^* \partial z dxdz.
\]

(52)

Using Theorem (3) and the fact that \(j_0 \) is convex and lower semicontinuous, \((\lim \inf j_0 (\tilde{u}^*) \geq j_0 (u^*)) \), we obtain

\[
\mu \sum_{i=1}^{2} \left(\frac{1}{2} \sum_{j=1}^{2} \left(\frac{\partial \tilde{\rho}_i}{\partial z} \right)^2 \frac{\partial (\tilde{\rho}_j^*)}{\partial z} \frac{\partial (\tilde{\rho}_j)}{\partial z} \right) dx dz \\
- \int_{\Omega} \rho^* \left(\frac{\partial \tilde{\rho}_i}{\partial x_1} + \frac{\partial \tilde{\rho}_j}{\partial x_2} \right) dx dz \\
+ j_0 (\tilde{\rho}) - j_0 (u^*) \geq \sum_{j=1}^{2} \int_{\partial \Omega} \tilde{f}_i (\tilde{\rho}_i^* - \tilde{u}_i^*) \tilde{u}_i^* \partial z dxdz.
\]

and as \(\int_{\Omega} \rho^* \partial \tilde{\rho}_i / \partial z dx dz = 0 \), because \(\rho^* \) independent of \(z \), we deduce that

\[
\mu \sum_{i=1}^{2} \left(\frac{1}{2} \sum_{j=1}^{2} \left(\frac{\partial \tilde{\rho}_i}{\partial z} \right)^2 \frac{\partial (\tilde{\rho}_j)}{\partial z} \frac{\partial (\tilde{\rho}_j^*)}{\partial z} \right) dx dz \\
- \int_{\Omega} \rho^* \left(\frac{\partial \tilde{\rho}_i}{\partial x_1} + \frac{\partial \tilde{\rho}_j}{\partial x_2} \right) dx dz + j_0 (\tilde{\rho}) - j_i (u^*) \\
\geq \sum_{j=1}^{2} \int_{\partial \Omega} \tilde{f}_i (\tilde{\rho}_i^* - \tilde{u}_i^*) dx dz.
\]

(53)

Using again Minty’s Lemma for the second time, thus, (54) is equivalent to (49).

Theorem 6. The variational inequality (49) is equivalent the following system

\[
\mu \int_{\Omega} \left(\frac{1}{2} \right)^{\frac{1}{2}} \frac{\partial u^*}{\partial z} dx dz + \tilde{\alpha} \int_{\partial \Omega} \frac{\partial u^*}{\partial z} \frac{\partial \tilde{\rho}}{\partial z} dx dz + \int_{\partial \Omega} \tilde{f}_i (\tilde{\rho}_i^* - \tilde{u}_i^*) \tilde{u}_i^* \partial z dxdz
\]

\[
= \int_{\Omega} \tilde{f}_i u^* dx dz,
\]

(55)

\[
\mu \int_{\Omega} \left(\frac{1}{2} \right)^{\frac{1}{2}} \frac{\partial u^*}{\partial z} \frac{\partial \tilde{\rho}}{\partial z} \frac{\partial \tilde{\rho}}{\partial z} dx dz + \tilde{\alpha} \int_{\partial \Omega} \frac{\partial \tilde{\rho}}{\partial z} dx dz + \int_{\partial \Omega} \tilde{f}_i \tilde{\rho}_i dx dz, \forall \tilde{\rho} \in \Sigma (K),
\]

where

\[
\Sigma (K) = \left\{ \tilde{\rho} = (\tilde{\rho}_1, \tilde{\rho}_2) \in H^1 (\Omega)^2 : \tilde{\rho} \text{ satisfy } (D') \right\}.
\]

(56)

Theorem 7. Let us set

\[
\sigma^* = \tilde{\sigma}^* - \nabla p^* \text{ and } \tilde{\sigma}^* = \left(\frac{1}{2} \right)^{\frac{1}{2}} \mu \left[\frac{\partial u^*}{\partial z} \frac{\partial \tilde{\rho}}{\partial z} + \tilde{\alpha} \pi \right],
\]

(57)

then

\[
\frac{\partial}{\partial z} \left[\left(\frac{1}{2} \right)^{\frac{1}{2}} \mu \sum_{i=1}^{2} \left(\frac{1}{2} \sum_{j=1}^{2} \left(\frac{\partial \tilde{\rho}_i}{\partial z} \right)^2 \right) \frac{\partial u^*}{\partial z} + \sqrt{2} \tilde{\alpha} \frac{\partial u^*}{\partial z} \frac{\partial \tilde{\rho}}{\partial z} \right] = f - \nabla p^*,
\]

(58)

in \(W^{1, r} (\Omega)^2 \), where \(p \in L^\infty (\Omega)^2 \) and \(\| \pi \|_{\text{Lip}(\Omega)} \leq 1 \).

Proof. For the proof of this theorem, we follow the same steps as in [13] (Theorem (9)).
Theorem 8. Under the assumptions of preceding theorems, \(u^* \) and \(p^* \) satisfy the following inequality

\[
\int_\omega \left[\frac{h^3}{12} \mathcal{V}p^* + \bar{F} + \frac{\mu}{2} \int_0^h \nabla u^*(x, \xi) \frac{\partial u^*(x, \xi)}{\partial \xi} \right] \, d\xi \, dy + \frac{\alpha}{2} \int_0^h \int_0^\Omega \left| \frac{\partial u^*}{\partial \xi} \right| (x, \xi) \, d\xi \, dy \\
- \frac{h\mu}{2} \int_0^h A^*(x, \xi) \frac{\partial u^*(x, \xi)}{\partial \xi} \, d\xi \\
- \frac{\alpha h}{2} \int_0^h \frac{\partial u^*}{\partial \xi} \left| (x, \xi) \right| \frac{\partial \varphi}{\partial x} \, dx = 0,
\]

for all \(\varphi \in W^{1/2}(\omega) \), where

\[
\bar{F}(x) = \int_0^h F(x, y) \, dy - \frac{h}{2} F(x, h), \quad F(x, y) = \int_0^y f(x, t) \, dt \, d\xi,
\]

\[
A^*(x, \xi) = \frac{1}{2} \left(\frac{2}{2} \sum_{i=1}^{r/2} \left(\frac{\partial u^*}{\partial \xi} (x, \xi) \right)^2 \right) r^{-2/2}.
\]

Proof. The proof can be found in [13]. The uniqueness of the limit velocity and pressure are given by the following theorem.

Theorem 9. The solution \((u^*, p^*) \) in \(V \times L^p(\omega) \) of inequality (49) is unique.

Proof. Let \((u_1^*, p_1^*) \) and \((u_2^*, p_2^*) \) be two solutions of (49); taking \(\varphi = u_1^* \) and \(\varphi = u_2^* \), respectively, as test function in (59), we get

\[
\frac{\mu}{2} \sum_{i=1}^{r/2} \left(\frac{1}{2} \left(\sum_{i=1}^{r/2} \left(\frac{\partial u_i^*}{\partial \xi} \right)^2 \right)^2 \right)^{r-2/2} \frac{\partial u_i^*}{\partial \xi} \frac{\partial u_i^*}{\partial \xi} (u_i^* - u_i^*) \, dx \, dz \\
\leq \frac{\mu}{2} \sum_{i=1}^{r/2} \left(\frac{1}{3} \left(\sum_{i=1}^{r/2} \left(\frac{\partial u_i^*}{\partial \xi} \right)^2 \right)^2 \right)^{r-2/2} \frac{\partial u_i^*}{\partial \xi} \frac{\partial u_i^*}{\partial \xi} (u_i^* - u_i^*) \, dx \, dz.
\]

Keeping in mind that for every \(x, y \in \mathbb{R}^n \)

\[
(|x| - |y| - 3|y|, x - y) \geq (r - 1)(|x| + |y|)^{-2} |x - y|^2, \forall 1 < r \leq 2,
\]

we obtain

\[
\int_\omega \left[\left| \frac{\partial u_i^*}{\partial \xi} \right| + \left| \frac{\partial u_2^*}{\partial \xi} \right| \right]^{r-2} \left| \frac{\partial u_i^*}{\partial \xi} \right| \frac{\partial u_i^*}{\partial \xi} \, dx \, dz = 0,
\]

where \(|\partial u_i^*|/\partial \xi| = \left(\frac{1}{2} \sum_{j=1}^{r/2} \left(\frac{\partial u_i^*}{\partial \xi} \right)^2 \right)^{1/2} \), \(j = 1, 2 \).

Using Hölder’s inequality, we deduce

\[
\int_\omega \left(\frac{\partial (u_i^* - u_2^*)}{\partial \xi} \right) \, dx \, dz \\
\leq C \left(\int_\omega \left[\left| \frac{\partial u_i^*}{\partial \xi} \right| + \left| \frac{\partial u_2^*}{\partial \xi} \right| \right]^{r-2} \left| \frac{\partial u_i^*}{\partial \xi} \right| \frac{\partial u_i^*}{\partial \xi} \, dx \, dz \right)^{2-r/2} \times \left(\int_\omega \left| \frac{\partial u_i^*}{\partial \xi} \right| + \left| \frac{\partial u_2^*}{\partial \xi} \right| \, dx \, dz \right)^{r/2} ,
\]

from (63) and (64), we deduce that \(\|u_i^* - u_2^*\|_{L^r(\omega)} = 0 \).

Finally, to prove the uniqueness of the pressure, we use equation (59) with the two pressures \(p_i^* \) and \(p_2^* \), we find

\[
\int_\omega \frac{h^3}{12} \nabla (p_i^* - p_2^*) \, \varphi \, dx = 0.
\]

Taking \(\varphi = p_1^* - p_2^* \) and using Poincaré inequality, we obtain \(\|p_i^* - p_2^*\|_{L^r(\omega)} = 0 \). Then, \(p_i^* = p_2^* \).

5. Conclusion

In this work, the asymptotic behavior of an incompressible Herschel-Bulkley fluid in a thin domain with Treca boundary conditions is considered, where we prove the convergence of the unknowns which are the velocity and the pressure of the fluid when the \(\epsilon \) tends to zero. In addition, the limit problem and the specific Reynolds equation are studied. The aim of our next study is to complement and improve our current results, which is to weaken the hypotheses of fixed point theory by using the following concepts: weak contractual applications, applications that verify some characteristics, normal global operating system, and closed graph applications. We will state and give conclusions on the fixed point theory using the concepts mentioned in recent references. On the other hand, we will study the uniform convergent behavior of a series of designations, of Banach space towards itself, with fixed points, or nearly fixed points in order to show some results in the fixed point theory applied on the problem studied in this paper. With the help of these results, we will introduce some applications and provide some examples and some notes regarding weak contraction mappings. In addition, we will mention and give some results of the fixed point theory of weak contraction mappings by using the studied algorithm in ([15, 22–35]).
Data Availability

No data were used to support the study.

Conflicts of Interest

The authors declare that they have no competing interests.

Acknowledgments

The fourth author extends their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant (R.G.P.2/1/42).

References

[1] M. Boukrouche and G. Lukasiewicz, “Asymptotic analysis of solutions of a thin film lubrication problem with Coulomb fluid-solid interface law,” International Journal of Engineering Science, vol. 41, no. 6, pp. 521–537, 2003.

[2] M. Dilmi, H. Benseridi, and A. Saadallah, “Asymptotic analysis of a Bingham fluid in a thin domain with Fourier and Tresca boundary conditions,” Advances in Applied Mathematics and Mechanics, vol. 6, no. 6, pp. 797–810, 2014.

[3] N. H. Sweilam, A. A. El-Sayed, and S. Boulaaras, “Fractional-order advection-dispersion problem solution via the spectral collocation method and the non-standard finite difference technique,” Chaos, Solitons & Fractals, vol. 144, article 110736, 2021.

[4] A. Massmeyer, E. Di Giuseppe, A. Davaille, T. Rolf, and P. J. Tackley, “Numerical simulation of thermal plumes in a Herschel-Bulkley fluid,” Journal of Non-Newtonian Fluid Mechanics, vol. 195, pp. 32–45, 2013.

[5] A. J. Munoz-Vazquez, J. D. Sanchez-Torres, M. Defoort, and S. Boulaaras, “Predefined-time convergence in fractional-order systems,” Chaos, Solitons & Fractals, vol. 143, article 110571, 2021.

[6] J. Malek, "Mathematical properties of flows of incompressible power-law-like fluids that are described by implicit constitutive relations," Electronic Transactions on Numerical Analysis, vol. 31, pp. 110–125, 2008.

[7] F. Messelmi, "Effects of the yield limit on the behaviour of Herschel-Bulkley fluid," Nonlinear Science Letters A, vol. 2, no. 3, pp. 137–142, 2011.

[8] F. Messelmi, B. Merouani, and F. Bouzeghaya, "Steady-state thermal Herschel-Bulkley flow with Tresca’s friction law, electronic," Journal of Differential Equations, vol. 2010, no. 46, pp. 1–14, 2010.

[9] C. Nouar, M. Lebouché, R. Devienne, and C. Riou, "Numerical analysis of the thermal convection for Herschel-Bulkley fluids," International Journal of Heat and Fluid Flow, vol. 16, no. 3, pp. 223–232, 1995.

[10] C. Nouar, C. Desaubry, and H. Zenaidi, "Numerical and experimental investigation of thermal convection for a thermoderpendent Herschel-Bulkley fluid in an annular duct with rotating inner cylinder," European Journal of Mechanics - B/Fluids, vol. 17, no. 6, pp. 875–900, 1998.

[11] S. Pouyiadji, K. D. Housiadas, K. Kaouri, and G. C. Georgiou, "Asymptotic solutions of weakly compressible Newtonian Poi-seuille flows with pressure-dependent viscosity," European Journal of Mechanics - B/Fluids, vol. 49, pp. 217–225, 2015.

[12] Y. Qin, X. Liu, and X. Yang, "Global existence and exponential stability of solutions to the one-dimensional full Newtonian fluids," Nonlinear Analysis: Real World Applications, vol. 13, no. 2, pp. 607–633, 2012.

[13] A. Saadallah, H. Benseridi, and M. Dilmi, "Asymptotic convergence of a generalized non-Newtonian fluid with Tresca boundary conditions," Acta Mathematica Scientia, vol. 40, no. 3, pp. 700–712, 2020.

[14] K. C. Sahu, P. Valluri, P. D. M. Spelt, and O. K. Matar, "Linear instability of pressure-driven channel flow of a Newtonian and a Herschel–Bulkley fluid," Physics of Fluids, vol. 19, no. 12, p. 122101, 2007.

[15] M. Boukrouche and R. El Mir, "Asymptotic analysis of a non-Newtonian fluid in a thin domain with Tresca law," Nonlinear Analysis: Theory, Methods & Applications, vol. 59, no. 1-2, pp. 85–105, 2004.

[16] A. Choucha, D. Ouchenane, S. M. Boulaaras, B. B. Cherif, and M. Abdalla, "Well-posedness and stability result of the nonlinear thermofluidification full von Kármán beam with thermal effect and time-varying delay," Journal of Function Spaces, vol. 2021, Article ID 9974034, 16 pages, 2021.

[17] A. Choucha, S. M. Boulaaras, D. Ouchenane, B. B. Cherif, and M. Abdalla, "Exponential stability of swelling porous elastic with a viscoelastic damping and distributed delay term," Journal of Function Spaces, vol. 2021, Article ID 5581634, 8 pages, 2021.

[18] A. Menaceur, S. M. Boulaaras, A. Makhlof, K. Rajagobal, and M. Abdalla, “Limit cycles of a class of perturbed differential systems via the first-order averaging method,” Complexity, vol. 2021, Article ID 5581423, 6 pages, 2021.

[19] S. M. Boulaaras, A. Choucha, A. Zara, M. Abdalla, and B.-B. Cherif, "Global existence and decay estimates of energy of solutions for a new class of -Laplacian heat equations with logarithmic nonlinearity," Journal of Function Spaces, vol. 2021, Article ID 5558818, 11 pages, 2021.

[20] A. Choucha, S. M. Boulaaras, D. Ouchenane, S. Alkhalaf, I. Mekawy, and M. Abdalla, "On the system of coupled non-degenerate Kirchhoff equations with distributed delay: global existence and exponential decay," Journal of Function Spaces, vol. 2021, Article ID 5577277, 13 pages, 2021.

[21] D. Ouchenane, A. Choucha, M. Abdalla, S. M. Boulaaras, and B. B. Cherif, "On the porous-elastic system with thermoelasticity of type III and distributed delay: well-posedness and stability," Journal of Function Spaces, vol. 2021, Article ID 9948143, 12 pages, 2021.

[22] S. Boulaaras and M. Haiour, “The finite element approximation of evolutionary Hamilton-Jacobi-Bellman equations with nonlinear source terms,” Indagationes Mathematicae, vol. 24, no. 1, pp. 161–173, 2013.

[23] S. Boulaaras, M. E. A. Bencheikh le Hocine, and M. Haiour, "A new error estimate on uniform norm of a parabolic variational inequality with nonlinear source terms via the subsolution concept," Journal of Inequalities and Applications, vol. 2020, article 78, 2020.

[24] S. Boulaaras, M. S. T. Brahim, S. Bouzenada, and A. Zarai, "An asymptotic behavior and a posteriori error estimates for the generalized Schwartz method of advection-diffusion equation," Acta Mathematica Scientia, vol. 38, no. 4, pp. 1227–1244, 2018.

[25] S. Boulaaras and N. Doudi, "Global existence and exponential stability of coupled Lamé system with distributed delay and
source term without memory term,” *Boundary Value Problems*, vol. 2020, no. 1, 2020.

[26] S. Boulaaras and M. Haiour, “L∞-asymptotic behavior for a finite element approximation in parabolic quasi-variational inequalities related to impulse control problem,” *Applied Mathematics and Computation*, vol. 217, no. 14, pp. 6443–6450, 2011.

[27] N. Mezouar and S. Boulaaras, “Global existence and exponential decay of solutions for generalized coupled non-degenerate Kirchhoff system with a time varying delay term,” *Boundary Value Problems*, vol. 2020, no. 1, 2020.

[28] N. Mezouar and S. Boulaaras, “Global existence and decay of solutions of a singular nonlocal viscoelastic system with damping terms,” *Topological Methods in Nonlinear Analysis*, vol. 56, no. 1, pp. 1–312, 2020.

[29] R. Guefaifia, S. Boulaaras, and F. Kamache, “On the existence of three solutions of Dirichlet fractional systems involving the p-Laplacian with Lipschitz nonlinearity,” *Boundary Value Problems*, vol. 2020, no. 1, 2020.

[30] S. Boulaaras, F. Kamache, Y. Bouizem, and R. Guefaifia, “General decay and blow-up of solutions for a nonlinear wave equation with memory and fractional boundary damping terms,” *Boundary Value Problems*, vol. 2020, no. 1, 2020.

[31] S. Boulaaras, “Some new properties of asynchronous algorithms of theta scheme combined with finite elements methods for an evolutionary implicit 2-sided obstacle problem,” *Mathematical Methods in the Applied Sciences*, vol. 40, no. 18, pp. 7231–7239, 2017.

[32] S. Boulaaras and M. Haiour, “A new proof for the existence and uniqueness of the discrete evolutionary HJB equations,” *Applied Mathematics and Computation*, vol. 262, pp. 42–55, 2015.

[33] S. Boulaaras, R. Guefaifia, B. Cherif, and T. Radwan, “Existence result for a Kirchhoff elliptic system involving p-Laplacian operator with variable parameters and additive right hand side via sub and super solution methods,” *AIMS Mathematics*, vol. 6, no. 3, pp. 2315–2329, 2021.

[34] F. Kamache, R. Guefaifia, and S. Boulaaras, “Existence of three solutions for perturbed nonlinear fractional p-Laplacian boundary value systems with two control parameters,” *Journal of Pseudo-Differential Operators and Applications*, vol. 11, no. 4, pp. 1781–1803, 2020.

[35] N. Doudi and S. Boulaaras, “Global existence combined with general decay of solutions for coupled Kirchhoff system with a distributed delay term,” *Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas*, vol. 114, no. 4, p. 204, 2020.