High Seroprevalence of Antibodies against Spotted Fever and Scrub Typhus Bacteria in Patients with Febrile Illness, Kenya

Jacqueline W. Thiga, Beth K. Mutai, Wurapa K. Eyako, Zipporah Ng’ang’a, Ju Jiang, Allen L. Richards, John N. Waitumbi

Serum samples from patients in Kenya with febrile illnesses were screened for antibodies against bacteria that cause spotted fever, typhus, and scrub typhus. Seroprevalence was 10% for spotted fever group, <1% for typhus group, and 5% for scrub typhus group. Results should help clinicians expand their list of differential diagnoses for undifferentiated fevers.

The Study

The study protocol was approved by the Ethical Review Committee of the Kenya Medical Research Institute (SSC #1282) and the Walter Reed Army Research Institute’s Human Subject Protection Board (WRAIR HSPB #1402). All patients provided informed consent.

Serum samples were collected from patients with fever (≥38°C) at 8 hospitals in 6 ecoregions of Kenya (online Technical Appendix Figure 1, http://wwwnc.cdc.gov/EID/article/20/4/14-1387-Techapp1.pdf). The samples were screened for IgG against whole-cell antigens of *R. conorii* for SFG, *R. typhi* for TG, and Karp and Gilliam strains of *O. tsutsugamushi* for STG as previously described (8,9). Serum samples that were reactive at 1:100 dilutions were further titrated by using 4-fold dilutions to 1:6,400.

Because scrub typhus has not been reported in Kenya, Western blot was performed to confirm specificity of the reactive serum samples, essentially as described before (5). For Western blot, 0.06 μg/well of the Otr47b antigen was applied to a 10% sodium dodecyl sulfate–polyacrylamide gel and separated by electrophoresis. The proteins were transferred to a nitrocellulose membrane (Invitrogen, Carlsbad, CA, USA). After blocking nonspecific binding at 4°C in 10% skim milk (Difco Becton, Dickinson, Franklin Lakes, NJ, USA), lanes of migrated Otr47b antigens were probed with serum samples that had titers ≥1:1,600. IgG against Otr47b antigen was detected by a horseradish peroxidase–conjugated anti-human IgG (Kirkegaard & Perry Laboratories, Gaithersburg, MD, USA) at a 1:25,000 dilution, signal visualized by chemiluminescence, and acquired on Kodak X-Ray Film (Carestream Health Inc., Toronto, Ontario, Canada).

Because scrub typhus has not been reported in Kenya, Western blot was performed to confirm specificity of the reactive serum samples, essentially as described before (5). For Western blot, 0.06 μg/well of the Otr47b antigen was applied to a 10% sodium dodecyl sulfate–polyacrylamide gel and separated by electrophoresis. The proteins were transferred to a nitrocellulose membrane (Invitrogen, Carlsbad, CA, USA). After blocking nonspecific binding at 4°C in 10% skim milk (Difco Becton, Dickinson, Franklin Lakes, NJ, USA), lanes of migrated Otr47b antigens were probed with serum samples that had titers ≥1:1,600. IgG against Otr47b antigen was detected by a horseradish peroxidase–conjugated anti-human IgG (Kirkegaard & Perry Laboratories, Gaithersburg, MD, USA) at a 1:25,000 dilution, signal visualized by chemiluminescence, and acquired on Kodak X-Ray Film (Carestream Health Inc., Toronto, Ontario, Canada).

A total of 2,225 patients 1–72 years of age (mean age 5 years) were enrolled in the study. There was no difference in the male:female ratio across age groups. Overall, 212 (10%) febrile patients were seropositive for SFG. A substantially higher prevalence rate was seen in Garissa (57/226, 25%) than in Alupe (27/176, 15%), Marigat (37/320, 12%), Malindi (9/102, 9%), Kisii (57/226, 25%) than in Alupe (27/176, 15%), Marigat (37/320, 12%), Malindi (9/102, 9%), Kisii (39/656, 6%), or Kisumu (43/745, 6%) (p<0.05) (online Technical Appendix Figure 2).

In all regions, most SFG-seropositive patients had titers ≥1:1,600 (38%), with the highest numbers coming from Garissa (29%, n = 23), followed by Kisumu (18%, n = 16), and Malindi (5%, n = 4) (Figure 1, panel A). Only 4/1,611

Author affiliations: Walter Reed Project/Kenya Medical Research Institute, Kisumu, Kenya (J.W. Thiga, B.K. Mutai, W.K. Eyako, J.N. Waitumbi); Jomo Kenyatta University of Agriculture and Technology, Itromid, Nairobi, Kenya (J.W. Thiga, Z. Ng’ang’a); Naval Medical Research Center, Silver Spring, Maryland, USA (J. Jiang, A.L. Richards)

DOI: http://dx.doi.org/10.3201/eid2104.141387
Spotted Fever and Scrub Typhus, Kenya

(<1%) febrile patients were seropositive for TG: 3 patients in Malindi and 1 in Kisumu. Antibodies against STG rickettsiae were detected in 67/1401 (5%) febrile patients. The highest prevalence was seen in Marigat District Hospital (MGT), on the floor of the Rift Valley; Malindi District Hospital (MDH), on the Indian Ocean coast; Kisii District Hospital (KSI), in the Kisii highlands; and Kisumu District Hospital and Obama Children Hospital (KSM), on the Lake Victoria basin. B) For STG, MGT had the most patients with titers of 1:400 and 1:1,600 compared with ALH, MDH, KSI, and KSM.

Table 1 shows the prevalence of SFG and STG antibodies by patient age, sex, and animal contact. Female patients were 1.88 times more likely to be exposed to STG than male patients (p = 0.0169), unlike with SFG. Seroprevalence for SFG and STG increased with patients’ age (p<0.05). Having camels and dogs was positively associated with SFG (p<0.05) and having goats with STG (p<0.05).

Conclusions
Seventy-eight percent of the study population was ≥12 years of age; >50% were <5 years of age. This age weighting may have led to underreporting of seroprevalence, because seroprevalence increased with age for SFG and STG (Table). The overall seroprevalence of SFG was 10% (212/2,225), similar to the percentage reported among febrile patients in northern Tanzania (8%) (10). Substantial differences in seroprevalence were observed among patients in the surveillance hospitals in different ecoregions of Kenya (online Technical Appendix Figure 2). Patients’ land use influenced seroprevalence; the highest rates of seroprevalence were recorded among the pastoralists of Garissa and Marigat, who keep large herds of cattle, sheep, goats, and camels. In other locales with high seroprevalence rates (Alupe, Malindi, Kisii, and Kisumu), farmers practice small-scale animal husbandry. IgG titers in most seropositive patients were high (1,600–6,400), perhaps indicating patients’ repeated exposure to other homologous or heterologous SFG organisms (Figure 1, Panel A). In contrast to seroprevalence of SFG, seroprevalence of TG rickettsioses was low (4/1,611, <1%) and comparable to that reported among febrile patients in northern Tanzania (10).
DISPATCHES

Table. Demographic characteristics of febrile patients tested for seropositivity for SFG and STG rickettsioses, Kenya*

Characteristic	SFG, no. positive/no. tested (%)	OR (95% CI)	STG, no. positive/no. tested (%)	OR (95% CI)
Sex				
F	96/1,094 (9)	1.0	43/694 (6)	1.0
M	116/1,131 (10)	1.2 (0.9–1.6)	24/707 (3)	0.5 (0.3–0.9)†*
Age, y				
<5	41/1,107 (4)	1.0	17/687 (3)	1.0
5–12	62/622 (10)	2.9 (1.9–4.4)†	29/423 (6)	2.9 (1.5–5.7)
13–26	63/290 (22)	7.2 (4.7–11.2)†	10/166 (6)	2.5 (1.0–6.0)†
>26	46/206 (22)	7.5 (4.6–12.1)†	11/125 (9)	3.8 (1.6–8.8)†
Animal contact				
Goats				
No contact	205/2,188 (9)	1.0	60/1,372 (4)	1.0
Contact	7/37 (19)	2.3 (0.8–5.3)	7/29 (24)	7.0 (2.4–17.7)†
Cows				
No contact	207/2,187 (10)	1.0	65/1,377 (5)	1.0
Contact	5/38 (13)	1.4 (0.4–3.8)	2/24 (8)	1.8 (0.2–7.7)
Donkeys				
No contact	211/2,223 (10)	1.0	67/1,399 (5)	1.0
Contact	1/2 (50)	9.5 (0.1–748.8)	0/2 (0)	0 (0–38.7)
Cats				
No contact	203/2,106 (10)	1.0	66/1,315 (5)	1.0
Contact	9/119 (8)	0.8 (0.3–1.5)	1/86 (1)	0.2 (0.05–1.3)
Sheep				
No contact	212/2,218 (10)	1.0	67/1,387 (5)	1.0
Contact	0/7 (0)	0 (0–5.2)	0/14 (0)	0.0 (0–5.5)
Dogs				
No contact	210/2,146 (10)	1.0	67/1,398 (5)	1.0
Contact	2/79 (3)	0.2 (0.03–0.9)†	0/3 (0)	0.0 (0–11)
Camels				
No contact	196/2,173 (9)	1.0	67/1,365 (5)	1.0
Contact	16/52 (31)	4.5 (2.3–8.5)†	0/36 (0)	0.0 (0–2.1)

*SFG, spotted fever group; STG, scrub typhus group; OR, odds ratio.
†Seroprevalence for both spotted fever and scrub typhus increased with age; there were significant differences (p<0.05) between those <5 years of age and those in older age groups for SFG and those >12 years of age for STG. Exposure to SFG and STG were more likely in patients who had contact with dogs and camels for SFG and goats for STG (p<0.05).

Considering that STG had not been reported in Kenya, its seroprevalence was surprisingly high (67/1,401, 5%) and was highest in Marigat (28/238, 12%) (online Technical Appendix Figure 3). Marigat also had the highest number of persons with titers of 1:400 and 1:1,600 (Figure 1, Panel B). The reported determinants for STG are presence of rodents and vectors (chigger mites, especially Leptotrombidium deliense) that infest areas of heavy scrub vegetation.

Exposure to scrub typhus increased with age; persons >26 years of age were more likely to be seropositive than younger persons. Similar results were reported in a study conducted in Sri Lanka (11). Scrub typhus seropositivity was associated with contact with goats, perhaps because the short dense shrubs that are forage for goats are also the habitat for Trombiculid mites. As in South Korea but not Japan (12), more girls and women were exposed to tsutsugamushi disease than boys and men, possibly because women’s culturally sanctioned activities expose them to plant tissues inhabited by chiggers.

This study had several limitations. First, the serum samples used were from a 1-time encounter with the patient (acute-phase sample only). Convalescent-phase serum samples would have better defined the cases. Second, to demonstrate the disease unequivocally, the Trombiculid mites and the infectious Orientia spp. will need to be identified. Last, it remains to be determined whether the finding of STG in Kenya represents spread of Orientia species outside the tsutsugamushi triangle (an area that includes Pakistan, Australia, Japan, South Korea, and Thailand), as reported recently (3,13), or identifies a hitherto unknown disease-endemic focus.

Acknowledgments

We are grateful to the patients for taking part in this study. We thank project staff, including medical officers, nurses, and laboratory technicians. This work is published with the permission of the director, Kenya Medical Research Institute.

Financial support for this study was from a grant from the Global Emerging Infection System and Division of the Armed Forces Health Surveillance Center.

At the time of this study, Ms. Thiga was a master of science student at the Jomo Kenyatta University of Agriculture and Technology. Her research interests include rickettsial diagnosis and epidemiology.
References
1. Raoult D, Fournier PE, Fenollar F, Jensenius M, Prioe T, de Pina JJ, et al. *Rickettsia africae*, a tick-borne pathogen in travelers to sub-Saharan Africa. N Engl J Med. 2001;344:1504–10. http://dx.doi.org/10.1056/NEJM200105173442003
2. La Scola B, Raoult D. Laboratory diagnosis of rickettsioses: current approaches to diagnosis of old and new rickettsial diseases. J Clin Microbiol. 1997;35:2715–27.
3. Izzard L, Fuller A, Blacksell SD, Paris DH, Richards AL, Aukkanit N, et al. Isolation of a novel *Orientia* species (*O. chuto* sp. nov.) from a patient infected in Dubai. J Clin Microbiol. 2010;48:4404–9. http://dx.doi.org/10.1128/JCM.01526-10
4. Richards AL, Jiang J, Omulo S, Dare R, Abdirahman K, Ali A, et al. Human infection with *Rickettsia felis*, Kenya. Emerg Infect Dis. 2010;16:1081–6. http://dx.doi.org/10.3201/eid1607.091698
5. Jiang J, Marienau KJ, May LA, Beecham HJ 3rd, Wilkinson R, Ching WM, et al. Laboratory diagnosis of two scrub typhus outbreaks at Camp Fuji, Japan in 2000 and 2001 by enzyme-linked immunosorbent assay, rapid flow assay, and Western blot assay using outer membrane 56-kD recombinant proteins. Am J Trop Med Hyg. 2003;69:60–6.
6. Maina AN, Knobel DL, Jiang J, Halliday J, Feikin DR, Cleaveland S, et al. *Rickettsia felis* infection in febrile patients, western Kenya, 2007–2010. Emerg Infect Dis. 2012;18:328–31. http://dx.doi.org/10.3201/eid1802.1113372
7. Mutai BK, Wainaina JM, Magiri CG, Nganga JK, Ithondeka PM, Niagi ON, et al. Zoonotic surveillance for rickettsiae in domestic animals in Kenya. Vector Borne Zoonotic Dis. 2013;13:360–6. http://dx.doi.org/10.1089/vbz.2012.0977
8. Richards AL, Soetmadji DW, Widodo MA, Sardjono TW, Yanuwiadi B, Hernowati TE, et al. Seroepidemiologic evidence for murine and scrub typhus in Malang, Indonesia. Am J Trop Med Hyg. 1997;57:91–5.
9. Graf PC, Chretien JP, Ung L, Gaydos JC, Richards AL. Prevalence of seropositivity to spotted fever group rickettsiae and *Anaplasma phagocytophilum* in a large, demographically diverse US sample. Clin Infect Dis. 2008;46:70–7. http://dx.doi.org/10.1086/524018
10. Prabhu M, Nicholson WL, Roche AJ, Kersh GI, Fitzpatrick KA, Oliver LD, et al. Q fever, spotted fever group, and typhus group rickettsioses among hospitalized febrile patients in northern Tanzania. Clin Infect Dis. 2011;53:e8–15. http://dx.doi.org/10.1093/cid/cir411
11. Reller ME, Bodinayake C, Nagahawatte A, Devasiri V, Kodikara-Arachichi W, Strouse JJ, et al. Unsuspected rickettsioses among patients with acute febrile illness, Sri Lanka, 2007. Emerg Infect Dis. 2012;18:825–9. http://dx.doi.org/10.3201/eid1805.111563
12. Bang HA, Lee MJ, Lee WC. Comparative research on epidemiological aspects of tsutsugamushi disease (scrub typhus) between Korea and Japan. Jpn J Infect Dis. 2008;61:148–50.
13. Balcetts ME, Rabagliati R, Garcia P, Poggi H, Oddo D, Concha M, et al. Endemic scrub typhus-like illness, Chile. Emerg Infect Dis. 2011;17:1639–63. http://dx.doi.org/10.3201/eid1709.100960

Address for correspondence: John N. Waitumbi, Walter Reed Project/Kenya Medical Research Institute, PO Box 54, Kisumu, Kenya; email: john.waitumbi@usamru-k.org

June 2014: Respiratory Infections Including:

- Adverse Pregnancy Outcomes and *Coxiella burnetii* Antibodies in Pregnant Women, Denmark
- Short-Term Malaria Reduction by Single-Dose Azithromycin during Mass Drug Administration for Trachoma, Tanzania
- Human Polyomavirus 9 Infection in Kidney Transplant Patients
- Genetic Evidence of Importation of Drug-Resistant *Plasmodium falciparum* to Guatemala from the Democratic Republic of the Congo
- Characteristics of Patients with Mild to Moderate Primary Pulmonary Coccidioidomycosis
- Rapid Spread and Diversification of Respiratory Syncytial Virus Genotype ON1, Kenya

http://wwwnc.cdc.gov/eid/articles/issue/20/6/table-of-contents
High Seroprevalence of Antibodies against Spotted Fever and Scrub Typhus Bacteria in Patients with Febrile Illness, Kenya

Technical Appendix

Technical Appendix Figure 1. Map of Kenya showing locations of various surveillance hospitals. Lake Victoria basin: Kisumu District Hospital, New Nyanza Provincial Hospital, and Alupe District Hospital. Kisii highlands: Kisii District Hospital. Semi-arid, on the floor of the Rift Valley: Marigat District Hospital. Arid northeastern Kenya: Garissa District Hospital and Iftin Sub-District Hospital. Coast of Indian Ocean: Malindi District Hospital.
Technical Appendix Figure 2. Seroprevalence of IgG against spotted fever group rickettsiae in patients recruited from different surveillance hospitals in Kenya. Garissa District Hospital and Iftin Sub-District Hospital (GSA) in semiarid northeastern Kenya had the highest prevalence compared with Alupe District Hospital (ALH) on the Kenya-Uganda border, Marigat District Hospital (MGT) on the floor of the Rift Valley, Malindi District Hospital (MDH) on the Indian Ocean coast, Kisii District Hospital (KSI) in the Kisii highlands, and Kisumu District Hospital and Obama Children’s Hospital (KSM) in the Lake Victoria basin.

Technical Appendix Figure 3. Seroprevalence of scrub typhus in patients recruited from surveillance hospitals. Marigat District Hospital (MGT), on the floor of the Rift Valley, had the highest prevalence compared with Alupe District Hospital (ALH) on the Kenya-Uganda border; Garissa District Hospital and Iftin Sub-District Hospital (GSA) in northeastern Kenya; Kisumu District Hospital and Obama Children’s Hospital (KSM) on the Lake Victoria basin; Kisii District Hospital (KSI) in the Kisii highlands; and Malindi District Hospital (MDH) on the Indian Ocean coast.