The competition number of a graph in which any two holes share at most one edge

JUNG YEUN LEE
National Institute for Mathematical Sciences
Daejeon 305-390, Korea

SUH-RYUNG KIM *
Department of Mathematics Education
Seoul National University, Seoul 151-742, Korea

YOSHIO SANO †‡
Pohang Mathematics Institute
POSTECH, Pohang 790-784, Korea

February 2011

Abstract
The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number

*This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (700-20100058).

†This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (No. 2010-0029638).

‡Corresponding author. e-mail address: ysano@postech.ac.kr
$k(G)$ of G is the smallest number of such isolated vertices. In general, it is hard to compute the competition number $k(G)$ for a graph G and it has been one of important research problems in the study of competition graphs to characterize a graph by its competition number.

A hole of a graph is a cycle of length at least 4 as an induced subgraph. It holds that the competition number of a graph cannot exceed one plus the number of its holes if G satisfies a certain condition. In this paper, we show that the competition number of a graph with exactly h holes any two of which share at most one edge is at most $h + 1$, which generalizes the existing results on this subject.

Keywords: competition graph; competition number; hole

Contents

1 Introduction and Preliminaries 3
 1.1 Introduction ... 3
 1.2 Relationships among conditions 4
 1.3 Preliminaries .. 8

2 Structure of graphs satisfying the condition (E1) 10
 2.1 Properties of graphs satisfying the condition (E1) 10
 2.2 Properties of X_C and X_K 10
 2.3 Properties of C-avoiding paths for a hole C of length at least 5 12
 2.4 Properties of C-avoiding paths for a hole C of length 4 14
 2.5 A classification of the holes in a graph satisfying the condition (E1) 19

3 Operations on graphs satisfying the condition (E1) 20
 3.1 Deleting an edge from a graph 20
 3.2 Adding an edge to a graph 21
 3.3 Breaking prisms in a graph 23

4 Proof of Theorem 1.7 24
 4.1 Outline of the proof .. 24
 4.2 Proof for (Case A) .. 24
 4.3 Reducing (Case B) to (Case A) 26
 4.4 Reducing (Case C) to (Case B) 27
1 Introduction and Preliminaries

1.1 Introduction

Let D be an acyclic digraph. The *competition graph* of D, denoted by $C(D)$, is the (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of an acyclic digraph. From this observation, Roberts [15] defined the *competition number* $k(G)$ of a graph G to be the smallest number k such that G together with k isolated vertices is the competition graph of an acyclic digraph.

The notion of competition graph was introduced by Cohen [2] as a means of determining the smallest dimension of ecological phase space. Since then, various variations have been defined and studied by many authors (see [4, 12] for surveys). Besides an application to ecology, the concept of competition graph can be applied to a variety of fields, as summarized in [14]. Roberts [15] observed that characterization of competition graph is equivalent to computation of competition number. It does not seem to be easy in general to compute $k(G)$ for a given graph G, as Opsut [13] showed that the computation of the competition number of a graph is an NP-hard problem (see [4, 6] for graphs whose competition numbers are known).

It has been one of important research problems in the study of competition graphs to characterize a graph by its competition number. From this point of view, we study the relationship between the competition number and the number of holes of a graph.

A cycle in a graph is called an *induced cycle* (also called a *chordless cycle* or a *simple cycle*) if it is an induced subgraph of the graph. A *hole* in a graph is an induced cycle of length at least 4 in the graph. We denote the number of holes in a graph G by $h(G)$. A graph without holes is called a *chordal graph*.

The competition number of a graph with a few holes has been studied:

Theorem 1.1 (Roberts [15]). Let G be a chordal graph. Then the competition number of G is at most 1.

Theorem 1.2 (Cho and Kim [1]). Let G be a graph with exactly one hole. Then the competition number of G is at most 2.

Theorem 1.3 (Lee, Kim, Kim, and Sano [8], Li and Chang [11]). Let G be a graph with exactly two holes. Then the competition number of G is at most 3.

Recently, it has been shown that the competition number of a graph with exactly h holes is at most $h + 1$ under several assumptions.
Definition (Li and Chang [10]). A hole C of a graph G is called independent if, for any hole C' of G,

- $|V(C) \cap V(C')| \leq 2$.
- If $|V(C) \cap V(C')| = 2$, then $|E(C) \cap E(C')| = 1$ and $|V(C)| \geq 5$.

Theorem 1.4 ([10]). Let G be a graph with exactly h holes satisfying the following property (LC):

(LC) All the holes of G are independent.

Then the competition number of G is at most $h + 1$.

Theorem 1.5 (Kamibeppu [3]). Let G be a graph with exactly h holes satisfying the following property (K):

(K) For any hole C of G, there exists an edge e_C of the hole C such that the edge e_C is not contained in any other induced cycle of G.

Then the competition number of G is at most $h + 1$.

Theorem 1.6 (Kim, Lee, and Sano [7]). Let G be a graph with exactly h holes satisfying the following property (E0):

(E0) Any two distinct holes of G are mutually edge disjoint.

Then the competition number of G is at most $h + 1$.

In this paper, we generalize the above results except Theorem 1.3. Our main result is the following:

Theorem 1.7. Let G be a graph with exactly h holes satisfying the following property:

(E1) For any two distinct holes C_1 and C_2 of G, $|E(C_1) \cap E(C_2)| \leq 1$.

Then the competition number of G is at most $h + 1$.

1.2 Relationships among conditions

We remark that the class of graphs satisfying the condition (E1) is larger than the class of graphs satisfying one of the conditions (LC), (K), and (E0). (See Figure 1, Figure 2 and Table 1. Give examples which shows that each region i in Figure 1 is not empty.)
Remark 1.8. The disjointness of the class of graphs which satisfy the condition (E0) and do not satisfy the condition (LC) (the region 14 in Figure 1) with the class of graphs satisfying the condition (K) or the class of graphs with \(h(G) = 2 \) follows from \cite[Theorem 1.4]{7} that states a graph which satisfies the condition (E0) and do not satisfy the condition (LC) must have an induced subgraph isomorphic to the complete tripartite graph \(K_{2,2,2} \). Here \(K_{2,2,2} \) has three holes which violate the condition (K).

Proposition 1.9. If a graph \(G \) satisfies the condition (LC), then \(G \) also satisfies the condition (E1).

Proof. If a graph \(G \) satisfies the condition (LC), then it holds that \(|V(C) \cap V(C')| \leq 2 \) for any distinct holes \(C \) and \(C' \). This implies that \(|E(C) \cap E(C')| \leq 1 \) holds for any distinct holes \(C \) and \(C' \). Hence \(G \) satisfies the condition (E1).

The following proposition is rather obvious:

Proposition 1.10. If a graph \(G \) satisfies the hole-edge-disjoint condition (E0), then \(G \) also satisfies the condition (E1).
Figure 2: Examples of graphs where Γ_i belongs to the region i in Figure 1

To show that the class of graphs satisfying the condition (K) is contained in the class of graphs satisfying the condition (E1), we prepare the following two lemmas:

Lemma 1.11. Let G be a graph and C be a cycle of G. Then exactly one of the
Table 1: Graphs Γ_i in Figure 2 and the conditions (LC), (K), (E0), (E1)

Graph	$h(G)$	(LC)	(K)	(E0)	(E1)
Γ_1	0	*	*	*	*
Γ_2	1	*	*	*	*
Γ_3	1	*	*	*	*
Γ_4	2	*	*	*	*
Γ_5	3	*	*	*	*
Γ_6	2	*	*	*	*
Γ_7	3	*	*	*	*
Γ_8	2	*	*	*	*
Γ_9	3	*	*	*	*
Γ_{10}	2	*	*	*	*
Γ_{11}	3	*	*	*	*
Γ_{12}	2	*	*	*	*
Γ_{13}	3	*	*	*	*
Γ_{14}	3	*	*	*	*
Γ_{15}	2	*	*	*	*
Γ_{16}	3	*	*	*	*
Γ_{17}	2	*	*	*	*
Γ_{18}	3	*	*	*	*

following holds:

(a) C is an induced cycle of G,

(b) There exist induced cycles C_1, \ldots, C_s ($s \geq 2$) in G such that

1. $V(C_i) \subsetneq V(C)$ ($i = 1, \ldots, s$),
2. Any edge e of C is an edge of C_i for some $i \in \{1, \ldots, s\}$,
3. For any edge e of $E(C_i) \setminus E(C)$, there exists unique $j \in \{1, \ldots, i - 1, i + 1, \ldots, s\}$ such that $e \in E(C_j)$.

Proof. We show by induction on $|V(C)|$. If $|V(C)| = 3$, then (a) holds and (b) does not hold since any cycle of length 3 is an induced cycle. Assume that the lemma holds for any cycle C with $|V(C)| = t$. Let $C = v_0v_1v_2 \cdots v_tv_0$ be a cycle with $|V(C)| = t + 1$. Consider the subgraph H of G induced by $V(C)$. If H is a cycle, then C is an induced cycle in G and so (a) holds. If H is not a cycle, then C is not an induced cycle in G and so (a) does not hold. Now we show (b) holds. Note that
any edge in \(E(H) \setminus E(C) \) is a chord for \(C \). Let \(e^* = v_i v_j \) be a minimum chord for \(C \), i.e., \(|i - j| \) is smallest among all the chords for \(C \). Then, the \((v_i, v_j)\)-section \(P_1 \) of the cycle \(C \) and the edge \(e^* \) form an induced cycle \(C^* \) in \(G \) satisfying \(V(C^*) \subseteq V(C) \) and \(e \in E(C^*) \) for \(e \in E(P) \), and the \((v_j, v_i)\)-section \(P_2 \) of the cycle \(C \) and the edge \(e^* \) form a cycle \(C'' \) in \(G \) with \(|V(C'')| < t + 1 \). By the induction hypothesis, one of the following holds: (a)' \(C' \) is an induced cycle of \(G \); (b)' there exist induced cycles \(C_1', \ldots, C_{s'}' \) (\(s' \geq 2 \)) in \(G \) such that the conditions (1)-(3) of \((b) \) hold. If (a)' holds, then let \(\mathcal{C} = \{C', C''\} \). If (b)' holds, then let \(\mathcal{C} = \{C_1', \ldots, C_{s'}', C''\} \). In each case, the family \(\mathcal{C} \) of induced cycles in \(G \) satisfies the conditions (1)-(3) of \((b) \). Thus (b) holds. Hence the lemma holds.

The following lemma is well-known:

Lemma 1.12. Let \(C \) and \(C' \) be two induced cycles in a graph \(G \). Then, the subgraph of \(G \) induced by the symmetric difference of \(E(C) \) and \(E(C') \) is an edge-disjoint union of cycles of \(G \).

Proposition 1.13. If a graph \(G \) satisfies the condition (K), then \(G \) also satisfies the condition (E1).

Proof. Suppose that the condition (E1) does not hold, i.e., there are two distinct holes \(C \) and \(C' \) such that \(|E(C) \cap E(C')| \geq 2 \). Consider the subgraph \(H \) of \(G \) induced by \((E(C) \cup E(C')) \setminus (E(C) \cap E(C'))\). By Lemma 1.12, \(H \) is an edge-disjoint union of cycles \(C_1, \ldots, C_k \) (\(k \geq 1 \)) of \(G \). Note that there is no triangle in \(\{C_1, \ldots, C_k\} \) (otherwise, an edge of a triangle would be a chord of the hole \(C \) or the hole \(C' \), which is a contradiction). If there is a hole \(C_i \) in \(\{C_1, \ldots, C_k\} \), then all the edges in \(C_i \) are contained in the hole \(C \) or the hole \(C' \), and so the hole \(C_i \) violates the condition (K). Therefore we may assume that any cycle in \(\{C_1, \ldots, C_k\} \) is not an induced cycle. By Lemma 1.11, there exist induced cycles \(C_{i,s} \) satisfying the conditions (1)-(3) of (b) in Lemma 1.11 for each \(C_i \) (\(1 \leq i \leq k \)). Note that we can take \(C_{i,s} \) so that every \(C_{i,s} \) is different from the holes \(C \) and \(C' \) since \(|E(C) \cap E(C')| \geq 2 \). Let \(\mathcal{C} := \{C, C'\} \cup \{C_{i,s} \mid i \in \{1, \ldots, k\}, j \in \{1, \ldots, s_i\}\} \). If there is a hole \(C_{i,j} \) in the family \(\mathcal{C} \) other than \(C \) and \(C' \), then the hole \(C_{i,j} \) violates the condition (K) since each edge in \(C_{i,j} \) is contained in an induced cycle in \(\{C, C', C_{i,1}, \ldots, C_{i,s_i}\} \). Therefore, all the induced cycles in \(\mathcal{C} \) other than \(C \) and \(C' \) should be triangles. However, then, each edge in \(E(C) \setminus E(C') \) is contained in a triangle in \(\mathcal{C} \setminus \{C, C'\} \) and each edge in \(E(C) \cap E(C') \) is contained in the hole \(C' \). Thus the hole \(C \) violates the condition (K). Hence the condition (K) does not hold in any case, and so the proposition holds.

\(\square \)
1.3 Preliminaries

A set S of vertices of a graph G is called a clique of G if the subgraph of G induced by S is a complete graph. A set S of vertices of a graph G is called a vertex cut of G if the number of connected components of $G - S$ is greater than that of G.

For a hole C in a graph G, we denote by X_C the set of vertices which are adjacent to all the vertices of C:

$$X_C := \{ v \in V(G) \mid uv \in E(G) \text{ for all } u \in V(C) \}. \quad (1.1)$$

Note that $V(C) \cap X_C = \emptyset$. Given a walk W of a graph G, we denote by W^{-1} the walk represented by the reverse of vertex sequence of W. For a graph G and a hole C of G, we call a walk (resp. path) W a C-avoiding walk (resp. C-avoiding path) if one of the following holds:

- the length of W is greater than or equal to 2 and none of the internal vertices of W are in $V(C) \cup X_C$;
- the length of W is 1 and one of the two vertices of W is not in $V(C) \cup X_C$.

Throughout this paper, we assume that all subscripts of vertices on a cycle are reduced to modular the length of the cycle.

Theorem 1.14 ([8, Theorem 2.2]). Let G be a graph and k be a nonnegative integer. Suppose that G has a subgraph G_1 with $k(G_1) \leq k$ and a chordal subgraph G_2 such that $E(G_1) \cup E(G_2) = E(G)$ and $X := V(G_1) \cap V(G_2)$ is a clique of G_2. Then $k(G) \leq k + 1$.

Lemma 1.15 ([7, Lemma 2.1]). Let G be a graph and C be a hole of G. Let x and y be two non-adjacent vertices on C. Suppose that there exists a common neighbor v of x and y not on the hole C. Then exactly one of the following holds:

(a) $v \in X_C$;

(b) There exists a hole C^* such that $v \in V(C^*)$, $|E(C) \cap E(C^*)| \geq 2$, and all the common edges are contained in exactly one of the (x,y)-sections of C.

Lemma 1.16 ([8, Lemma 2.4]). Let G be a graph and C be a hole of G. Suppose that there exists a vertex v such that v is adjacent to consecutive vertices v_i and v_{i+1} of C, and that v is not in X_C and not on any hole of G. Then, v is not adjacent to any vertex in $V(C) \setminus \{v_i, v_{i+1}\}$.
2 Structure of graphs satisfying the condition (E1)

2.1 Properties of graphs satisfying the condition (E1)

Lemma 2.1. Let G be a graph satisfying the condition (E1). Then G is $K_{2,3}$-free.

Proof. Suppose that G has an induced subgraph H isomorphic to $K_{2,3}$. Let $V(H) = \{x_1, x_2, y_1, y_2, y_3\}$ and $E(H) = \{x_iy_j \mid i \in \{1, 2\}, j \in \{1, 2, 3\}\}$. Then $C_1 := x_1y_1x_2y_2x_1$ and $C_2 := x_1y_1x_2y_3x_1$ are holes having two common edges x_1y_1 and x_2y_1, which is a contradiction to the condition (E1). \qed

Proposition 2.2. Let G be a graph satisfying the condition (E1). Then any two distinct holes of G share at most two vertices.

Proof. By contradiction. Suppose that there exist two distinct holes C_1 and C_2 in G which share at least three vertices. Let u, v, and w be three distinct common vertices of C_1 and C_2. Then they do not induce a triangle in G since C_1 and C_2 are holes. Without loss of generality, we may assume that u and v are not adjacent. Let P_1 be the (u, v)-section of C_1 containing w and let P_2 be the (u, v)-section of C_2 not containing w. (See Figure 3.)

Now we consider the subgraph H of G induced by $V(P_1) \cup V(P_2)$. Since $C_1 \neq C_2$, P_1 cannot be the other (u, v)-section of C_2 and P_2 cannot be the other section of C_1. Thus H is distinct from C_1 and C_2. If w is adjacent to an internal vertex in P_2, then the edge is a chord of C_2 and we reach a contradiction. Thus w has degree 2 in H. Since w is an internal vertex of P_1, w has its neighbors which are also on P_1. Let a be a neighbor of w closer to u on P_1 and b be the other neighbor of w. Then the (a, u)-section of P_1, P_2, and the (v, b)-section of P_1 form an (a, b)-walk in H not containing w. Let P be a shortest (a, b)-path in H. Then, the edge wa, the (a, b)-path P, and the edge bw form a cycle C. Since H is an induced subgraph of G, P is a shortest (a, b)-path in G. Therefore the cycle C is a hole in G. Since C is also a hole in H, C is distinct from the hole C_1. Now we reach a contradiction since the holes C and C_1 share the two edges wa and wb. \qed

2.2 Properties of X_C and X_K

Lemma 2.3. Let G be a graph satisfying the condition (E1) and C be a hole of G. Let x and y be two non-adjacent vertices on C. If there exists a common neighbor v of x and y not on the hole C, then $v \in X_C$.

Proof. Since G satisfies the condition (E1), Lemma 1.15 (b) cannot happen and thus the lemma holds. \qed
Lemma 2.4. Let G be a graph satisfying the condition (E1) and C be a hole of length at least 5 in G. Then X_C is a clique.

Proof. By contradiction. Suppose that there are two non-adjacent vertices x_1 and x_2 in X_C. Let $v_0v_1 \cdots v_{m-1}v_0$ be the sequence of the vertices of the hole C where $m \geq 5$. Then $C(1) := x_1v_0x_2v_1$ and $C(2) := x_1v_0x_2v_3x_1$ are distinct holes of G sharing the two edges x_1v_0 and x_2v_0, which is a contradiction.

We denote by K^m_2 a complete multipartite with m parts each of which has size 2. If $m = 3$, then we denote K^3_2 also by $K_{2,2,2}$. We say that a graph is $K_{2,2,2}$-free if it does not contain a complete tripartite graph $K_{2,2,2}$ as an induced subgraph.

Theorem 2.5. Let G be a graph satisfying the condition (E1). For any hole C in G, exactly one of the following holds:

(a) X_C is a clique.

(b) C is contained in an induced subgraph of G which is isomorphic to $K_{2,2,2}$.

Proof. Suppose that (a) does not hold. Then there are two non-adjacent vertices x_1 and x_2 in X_C. By Lemma 2.4 we have $|V(C)| = 4$. Therefore $V(C) \cup \{x_1, x_2\}$ induces $K_{2,2,2}$ and thus (b) holds. If (b) holds, then $|V(C)| = 4$ and we can easily see that there are two non-adjacent vertices which are adjacent to all the vertices of C. Thus (a) does not hold.

Corollary 2.6. Let G be a $K_{2,2,2}$-free graph satisfying the condition (E1) and C be a hole in G. Then X_C is a clique.

Proof. It immediately follows from Theorem 2.5.

For a vertex v in a graph G, we denote by $N_G(v)$ the set of vertices adjacent to v in G. We denote the set $N_G(v) \cup \{v\}$ by $N_G[v]$.

Figure 3: A picture for Proof of Proposition 2.2
For an induced subgraph K of a graph G isomorphic to K_2^m for some $m \geq 2$, we denote by X_K the set of vertices which are adjacent to all the vertices of K:

$$X_K := \{v \in V(G) \mid uv \in E(G) \text{ for all } u \in V(K)\}. \quad (2.1)$$

Lemma 2.7. Let G be a graph satisfying the condition (E1). Let m be the largest integer such that G has an induced subgraph K isomorphic to K_2^m. If $m \geq 2$, then the following hold:

(1) X_K is a clique,

(2) For two non-adjacent vertices u, v in K, $N_G(u) \cap N_G(v) \subseteq X_K \cup V(K)$.

Proof. We show (1) by contradiction. Suppose that there exist two nonadjacent vertices x_1 and x_2 in X_K. Then $V(K) \cup \{x_1, x_2\}$ induces a subgraph isomorphic to K_2^{m+1}, which contradicts the choice of m.

Now we show (2). Let u and v be two non-adjacent vertices of K. If $N_G(u) \cap N_G(v) \subseteq V(K)$, then (2) holds and so we assume that $(N_G(u) \cap N_G(v)) \setminus V(K) \neq \emptyset$. Take a vertex $w \in (N_G(u) \cap N_G(v)) \setminus V(K)$. To show that $w \in X_K$, take any vertex x of K. If $x \in \{u, v\}$, then w is adjacent to x. Now we assume that $x \in V(K) \setminus \{u, v\}$. By the definition of K, x is adjacent to both u and v. Since $m \geq 2$, there exists a vertex y of K which is not adjacent to x. If w is not adjacent to x, then $C_{(1)} := uwvxu$ and $C_{(2)} := uyvxu$ are two distinct holes sharing the two edges ux and vx, which is a contradiction. Thus the vertex w is adjacent to x. Since x is chosen arbitrarily from $V(K)$, it holds that $w \in X_K$. Hence we have $(N_G(u) \cap N_G(v)) \setminus V(K) \subseteq X_K$, and thus $N_G(u) \cap N_G(v) \subseteq X_K \cup V(K)$. \qed

2.3 Properties of C-avoiding paths for a hole C of length at least 5

Lemma 2.8. Let G be a graph satisfying the condition (E1) and C be a hole of length at least 5 in G. Then there is no C-avoiding path between two non-adjacent vertices of C.

Proof. Let $C = v_0v_1 \cdots v_{m-1}v_0$ be a hole of length at least 5 in G, where $m \geq 5$. Suppose that there is a C-avoiding (v_i, v_j)-path for some $i, j \in \{0, 1, \ldots, m-1\}$ satisfying $|i - j| \geq 2$. Let P be a shortest path among all the C-avoiding (v_i, v_j)-paths in G. Then there is no edge joining two non-consecutive vertices on P. Let P_1 and P_2 be the two (v_i, v_j)-sections of C containing v_{i-1} and v_{i+1}, respectively. Then P and P_1 form a cycle $C_{(1)}$ and P and P_2 form a cycle $C_{(2)}$ in G. Since both $C_{(1)}$ and $C_{(2)}$ share at least two edges with the hole C, these cycles cannot be holes of G. Since $C_{(1)}$ has a chord, an internal vertex of P is adjacent to an internal vertex on P_1. Let u be the first internal vertex on P which is adjacent to an internal vertex...
on \(P_1 \). Then let \(v \) be the first internal vertex on \(P_1 \) which is adjacent to \(u \). (See Figure 4) Then the \((v_i, u)\)-section of \(P \), the edge \(uv \), and the \((v, v_i)\)-section of \(P_1^{-1} \) form a triangle or a hole. In either case, it shares the edge \(v_iv_{i-1} \) with \(C \). Thus, by the condition \((E1)\), \(v = v_{i-1} \) and \(u \) is the vertex immediately following \(v_i \) on \(P \). By applying a similar argument for \(P_2 \), we can show that \(u \) is adjacent to \(v_{i+1} \). Therefore, by Lemma 2.3, we have \(u \in X_C \). However, since \(P \) is a \(C \)-avoiding path, \(u \) does not belong to \(X_C \) and thus we reach a contradiction.

\[\begin{array}{c}
\text{Figure 4: A picture for Proof of Lemma 2.8} \\
\end{array} \]

Corollary 2.9. Let \(G \) be a graph satisfying the condition \((E1)\) and \(C \) be a hole of length at least 5 in \(G \). Given a vertex \(v \) of \(C \), adding new edges joining \(v \) and any other vertices on \(C \) reduces the number of holes.

Proof. It is obvious that \(C \) is not a hole in the resulting graph \(G' \). Thus it is sufficient to show that no new hole has been created. We show it by contradiction. Suppose that there is a hole \(C' \) in \(G' \) which is not in \(G \). Then it contains an edge \(vw \), where \(w \) is a vertex on \(C \) which is not adjacent to \(v \) in \(G \). Then \(C' - vw \) is a \(C \)-avoiding \((v, w)\)-path in \(G \). This contradicts Lemma 2.8.

Lemma 2.10 ([1, Lemma 4]). Suppose that a graph \(G \) has exactly one hole \(C \). If \(G \) has a \(C \)-avoiding \((v_i, v_{i+1})\)-path for two adjacent vertices \(v_i \) and \(v_{i+1} \) on \(C \), then \(X_C \cup \{v_i, v_{i+1}\} \) is a vertex cut of \(G \).

We can extend this lemma as follows:

Lemma 2.11. Let \(G \) be a graph satisfying the condition \((E1)\) and \(C \) be a hole of length at least 5 in \(G \). If \(G \) has a \(C \)-avoiding \((v_i, v_{i+1})\)-path for two adjacent vertices \(v_i \) and \(v_{i+1} \) on \(C \), then \(X_C \cup \{v_i, v_{i+1}\} \) is a vertex cut of \(G \).
Proof. We prove by induction on the number \(h \) of holes of a graph. If a graph has exactly one hole, then it immediately follows from Lemma 2.10. Suppose that the lemma holds for any graph satisfying the condition (E1) with at most \(h-1 \) holes for \(h \geq 2 \). Now let \(G \) be a graph satisfying the condition (E1) with \(h \) holes. Suppose that \(G \) has a \(C \)-avoiding \((v_i, v_{i+1})\)-path for some hole \(C \) of \(G \) and two adjacent vertices \(v_i \) and \(v_{i+1} \) on \(C \). Since \(h \geq 2 \), there exists another hole \(C' \). Take a vertex \(w \) of \(C' \) and add new edges between \(w \) and any other vertices on \(C' \) by new edges. Then, by Corollary 2.9, the resulting graph \(G' \) has less than \(h \) holes. Since no new hole has been created, \(G' \) is still a graph satisfying the condition (E1). By the condition (E1), \(C \) and \(C' \) share at most one edge and therefore no chord for \(C \) is created in the process of adding the edges. Thus \(C \) is still a hole of \(G' \). By the induction hypothesis, \(X_C \cup \{v_i, v_{i+1}\} \) is a vertex cut of \(G' \). Since \(G \) is a spanning subgraph of \(G' \), it holds that \(X_C \cup \{v_i, v_{i+1}\} \) is a vertex cut of \(G \). \(\square\)

2.4 Properties of \(C \)-avoiding paths for a hole \(C \) of length 4

Proposition 2.12. Let \(G \) be a graph satisfying the condition (E1). Suppose that \(G \) has a hole \(C = v_0v_1v_2v_3v_0 \) of length 4 and that there exists a \(C \)-avoiding \((v_0, v_2)\)-path of length at least 3. Let \(P = x_0x_1x_2\cdots x_{l-1}x_l \) be a shortest \(C \)-avoiding \((v_0, v_2)\)-path, where \(x_0 = v_0 \), \(x_l = v_2 \), and \(l(\geq 3) \) is the length of \(P \). Then, for any \(i \in \{1, \ldots, l-1\} \), the following hold:

1. \(x_i \) is adjacent to exactly one of the vertices \(v_1, v_3 \);
2. If \(x_iv_1 \notin E(G) \), then \(x_{i+1}v_1 \in E(G) \);
3. If \(x_iv_3 \notin E(G) \), then \(x_{i+1}v_3 \in E(G) \).

Proof. We show (1) by contradiction. Suppose that there is \(i \in \{1, \ldots, l-1\} \) such that \(x_i \) is not adjacent to exactly one of the vertices \(v_1, v_3 \). First suppose that
$x_1v_1 \in E(G)$ and $x_1v_3 \in E(G)$. If $i \neq 1$, then $v_0v_1x_1v_3v_0$ is a hole and shares two edges v_0v_1 and v_0v_3 with the hole C. If $i = 1$, then $v_2v_1x_1v_3v_2$ is a hole and shares two edges v_2v_1 and v_2v_3 with C.

Suppose that $x_1v_1 \notin E(G)$ and $x_1v_3 \notin E(G)$. Let x_{i_1} (resp. x_{i_3}) be the last vertex on the (x_0, x_{i-1})-section of P that is adjacent to v_1 (resp. v_3), and let x_{i_2} (resp. x_{i_4}) be the first vertex on the (x_{i+1}, x_i)-section of P that is adjacent to v_1 (resp. v_3). Then $(1) = v_1x_{i_1}x_{i_1+1} \cdots x_{i_2}v_1$ and $(2) = v_3x_{i_3}x_{i_3+1} \cdots x_{i_4}v_3$ are holes of G, and they share two edges $x_{i-1}x_i$ and x_ix_{i+1}, which is a contradiction. Hence (1) holds.

We show (2) by contradiction. Suppose that there is $i \in \{0, \ldots, l-1\}$ such that $x_1v_1 \notin E(G)$ and $x_{i+1}v_1 \notin E(G)$. Since $x_1 = v_2$ and $v_1v_2 \in E(G)$, we have $i \neq l-1$. By (1), $x_1v_3 \in E(G)$ and $x_{i+1}v_3 \in E(G)$. Let x_i be the vertex defined in (1) and let x_{i_5} be the first vertex on the (x_{i+1}, x_i)-section of P that is adjacent to v_3. Then $(3) = v_1x_{i_1}x_{i+1} \cdots x_{i_5}v_1$ and $(4) = v_1x_{i_1}x_{i+1} \cdots x_{i_5}v_3v_2v_1$ are holes of G. The two edges $v_1x_{i_1}$ and $x_{i_1}x_{i+1}$ are contained in both $C(3)$ and $C(4)$, which is a contradiction. Hence it holds that if $x_1v_1 \notin E(G)$, then $x_{i+1}v_1 \in E(G)$.

Statement (3) can be shown by an argument similar to the proof of (2).

We denote by $[x_1y_1|x_2y_2|x_3y_3]$ the graph with vertex set $\{x_1, x_2, x_3\} \cup \{y_1, y_2, y_3\}$ and edge set $\{x_ix_j | 1 \leq i < j \leq 3\} \cup \{y_iy_j | 1 \leq i < j \leq 3\} \cup \{x_iy_i | 1 \leq i \leq 3\}$. A graph isomorphic to $[x_1y_1|x_2y_2|x_3y_3]$ is called a 3-prism graph. In this paper, we call a 3-prism graph just a prism. We say that a graph is prism-free if the graph does not contain a prism as an induced subgraph.

Proposition 2.13. Let G be a graph satisfying the condition (E1). Suppose that G has a hole $C = v_0v_1v_2v_3v_0$ of length 4, and that there is a C-avoiding (v_0, v_2)-path. Let P be a shortest C-avoiding (v_0, v_2)-path. Then the length of P is equal to 3 and the subgraph of G induced by $V(C) \cup V(P)$ is a prism $[v_0v_3|xy|v_1v_2]$ or a prism $[v_0v_1|xy|v_3v_2]$, where $P = v_0v_2v_1$.

Proof. Let $P = x_0x_1x_2 \cdots x_{l-1}x_1$ be a shortest C-avoiding (v_0, v_2)-path, where $x_0 = v_0$ and $x_1 = v_2$. Since $v_0v_2 \notin E(G)$, $l \neq 1$. If $l = 2$, then $P = v_0v_1v_2$ and so we have $x_1 \in X_C$ by Lemma 2.3 which contradicts the fact that P is a C-avoiding path. Thus the length l of P is at least 3. Suppose that $l \geq 4$. Then $x_3 \neq v_2$. By Proposition 2.12 (1), exactly one of x_1v_1, x_1v_3 is an edge of G. Without loss of generality, we may assume that $x_1v_1 \notin E(G)$ and $x_1v_3 \notin E(G)$. Then, by Proposition 2.12 (3), $x_2v_3 \in E(G)$. By (1) of the same proposition, $x_2v_1 \notin E(G)$. By (2), $x_3v_1 \in E(G)$. Then, by (1), $x_3v_3 \notin E(G)$. (See Figure 3) Then $C(1) := v_0v_1x_3v_2v_3v_0$ and $C(2) := v_1x_3x_2x_1v_1$ are holes of G. The two edges v_1x_3 and x_2x_3 are contained in both $C(1)$ and $C(2)$, which is a contradiction to the fact that G satisfy the condition (E1). Hence $l = 3$. Furthermore, by Proposition 2.12 Y the subgraph of G induced by $V(C) \cup V(P)$ is either a prism $[v_0v_3|xy|v_1v_2]$ or a prism $[v_0v_1|xy|v_3v_2]$.

Figure 6: A picture for Proof of Proposition 2.13

Let G a graph satisfying the condition (E1) and $C = v_0v_1v_2v_3v_0$ be a hole of length 4 in G. For two distinct prisms Y_1 and Y_2 containing C, we say that Y_1 and Y_2 are of the same type if a triangle in Y_1 has a common edge with one of the two triangles in Y_2, and we say that Y_1 and Y_2 are of different types if both of the two triangles in Y_1 have no common edge with the two triangles in Y_2. That is, two prisms of the forms $[v_0v_3|xy|v_1v_2]$ and $[v_0v_3|x'y'|v_1v_2]$ are of the same type, two prisms of the forms $[v_0v_1|xy|v_3v_2]$ and $[v_0v_1|x'y'|v_3v_2]$ are of the same type, and two prisms of the forms $[v_0v_1|xy|v_3v_2]$ and $[v_0v_3|x'y'|v_1v_2]$ are of different types. (See Figure 7.)

Figure 7: Prisms $[v_0v_3|xy|v_1v_2]$ and $[v_0v_1|xy|v_3v_2]$

Corollary 2.14. Let G be a graph satisfying the condition (E1). Suppose that G has a hole $C = v_0v_1v_2v_3v_0$ of length 4. Then, there is a C-avoiding (v_0, v_2)-path if and only if there is a C-avoiding (v_1, v_3)-path.

Proof. Suppose that there is a C-avoiding (v_0, v_2)-path. Let P be a shortest path among all C-avoiding (v_0, v_2)-paths. By Proposition 2.13, the length of P is equal to 3. Let $P = v_0xv_2$. By Proposition 2.13, either v_1xyv_3 or v_1yv_3 is a C-avoiding (v_1, v_3)-path. (See Figure 7) We can show the converse similarly.

Lemma 2.15. Let G be a graph satisfying the condition (E1). Suppose that G has a hole C of length 4. Then the prisms containing C must be of the same type.
Proof. Let $C := v_0v_1v_2v_3v_0$. Suppose that C is contained in prisms Y_1 and Y_2 of different types. Without loss of generality, we may assume that $Y_1 = [v_0v_1|x_1x_2|v_3v_2]$ and $Y_2 = [v_0v_3|y_1y_2|v_1v_2]$ for some $x_1, x_2, y_1, y_2 \in V(G)$. (See Figure 8.) Suppose that one of x_1, x_2 and one of y_1, y_2 are adjacent. By the symmetry, we may assume that x_1 and y_1 are adjacent. Then $C_{(1)} := v_1v_2v_3x_1y_1v_1$ is a hole of G. But the edges v_1v_2 and v_2v_3 are contained in both C and $C_{(1)}$, which is a contradiction to the condition (E1). Therefore, there is no edge between $\{x_1, x_2\}$ and $\{y_1, y_2\}$. Then $C_{(2)} := v_0x_1x_2v_2y_1v_0$ and $C_{(3)} := v_0x_1x_2v_1v_0$ are holes of G and they share the two edges v_0x_1 and x_1x_2, which is a contradiction to the condition (E1). Hence, the prisms containing C must be of the same type. \qed

![Figure 8: A picture for Proof of Lemma 2.15](image-url)

Let $K_t \Box K_2$ be the graph defined by $V(K_t \Box K_2) = \{x_1, \ldots, x_t\} \cup \{y_1, \ldots, y_t\}$ and $E(K_t \Box K_2) = \{x_ix_j \mid 1 \leq i < j \leq t\} \cup \{y_iy_j \mid 1 \leq i < j \leq t\} \cup \{x_iy_i \mid 1 \leq i \leq t\}$. (See Figure 9 for $t = 3, 4$.) Note that $K_3 \Box K_2$ is a prism.

![Figure 9: $K_3 \Box K_2$ and $K_4 \Box K_2$](image-url)

Lemma 2.16. Let G be a graph satisfying the condition (E1) and $C := v_0v_1v_2v_3v_0$ be a hole of length 4 in G. Suppose that there exist two distinct C-avoiding (v_0, v_2)-paths. Let P_1 and P_2 be two distinct shortest (v_0, v_2)-paths. Then the subgraph of G induced by $V(C) \cup V(P_1) \cup V(P_2)$ is $K_4 \Box K_2$. \hfill 17
Proof. By Lemma 2.13, the lengths of P_1 and P_2 are equal to 3. Let $P_1 := v_0x_1x_2v_2$ and $P_2 := v_0y_1y_2v_2$. By Lemma 2.13, $V(C) \cup V(P_1)$ and $V(C) \cup V(P_2)$ induce two distinct prisms Y_1 and Y_2. In addition, by Lemma 2.15, Y_1 and Y_2 are of the same type. Without loss of generality, we may assume that $Y_1 = [v_0v_1|x_1x_2|v_3v_2]$ and $Y_2 = [v_0v_1|y_1y_2|v_3v_2]$ for some $x_1, x_2, y_1, y_2 \in V(G)$.

First we show $x_1y_2, x_2y_1 \notin E(G)$. Suppose that $x_1y_2 \in E(G)$ or $x_2y_1 \in E(G)$.

Without loss of generality, we may assume that $x_1y_2 \in E(G)$. (See Figure 10 (a).) Then $C(1) := v_0x_1x_2v_1v_0$ and $C(2) := v_0x_1y_2v_1v_0$ are holes of G. The two edges v_0x_1 and v_0v_1 are contained in both $C(1)$ and $C(2)$, which is a contradiction to the condition (E1). Thus $x_1y_2, x_2y_1 \notin E(G)$. Second we show $x_1y_1 \in E(G)$. Suppose that x_1 and y_1 are not adjacent. If $x_2y_2 \in E(G)$, then let $C(3) := v_0x_1x_2y_2y_1v_0$ and $C(4) := v_3x_1x_2y_2y_1v_3$. (See Figure 10 (b).) If $x_2y_2 \notin E(G)$, then let $C(3) := v_0x_1x_2y_2y_1v_0$ and $C(4) := v_3x_1x_2y_2y_1v_3$. (See Figure 10 (c).) Then, in both cases, $C(3)$ and $C(4)$ are holes in G. Moreover, the (x_1, y_1)-section P of $C(3)$ not containing v_0 coincides with the (x_1, y_1)-section of $C(4)$ not containing v_3. Since P contains at least 2 edges, we reach a contradiction. Thus x_1 and y_1 are adjacent. The same argument holds for x_2 and y_2, and so it follows that x_2 and y_2 are adjacent. Hence, the subgraph of G induced by $V(C) \cup V(P_1) \cup V(P_2)$ is $K_4 \square K_2$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure10.png}
\caption{Pictures for Proof of Lemma 2.16}
\end{figure}

Theorem 2.17. Let G be a graph satisfying the condition (E1). For any hole $C := v_0v_1v_2v_3v_0$ of length 4 in G, exactly one of the following holds.

(a) G has no C-avoiding (v_0, v_2)-path and no C-avoiding (v_1, v_3)-path.

(b) C is contained in an induced subgraph of G which is isomorphic to $K_t \square K_2$ for some $t \geq 3$.

Proof. Suppose that (a) does not hold. By Corollary 2.14, G has a C-avoiding (v_0, v_2)-path. Let P_1, \ldots, P_s ($s \geq 1$) be the shortest C-avoiding (v_0, v_2)-paths. If
s = 1, then $V(C) \cup V(P_1)$ induces a prism $K_3 \Box K_2$ by Proposition 2.13. If $s \geq 2$, then, by Lemma 2.16, $V(C) \cup V(P_1) \cup V(P_s)$ induces $K_4 \Box K_2$ for any $1 \leq i < j \leq s$. Thus the subgraph of G induced by $V(C) \cup V(P_1) \cup \cdots \cup V(P_s)$ is isomorphic to $K_{s+2} \Box K_2$ and contains the hole C. Hence (b) holds.

Suppose that (b) holds. Let H be an induced subgraph of G isomorphic to $K_t \Box K_2$ for some $t \geq 3$ containing C. Take a vertex x_1 of H adjacent to v_0 other than v_1 and v_3. Then there exists a unique vertex x_2 which is adjacent to both vertices x_1 and v_2. Therefore, we can see that v_0,x_1,x_2,v_2 is a C-avoiding (v_0,v_2)-path and so (a) does not hold. Hence the theorem holds. \[\Box\]

2.5 A classification of the holes in a graph satisfying the condition (E1)

Theorem 2.18. Let G be a graph satisfying the condition (E1), and let C be a hole in G. Then exactly one of the following holds:

(A) There is no C-avoiding path between two non-adjacent vertices of C, and X_C is a clique.

(B) The length of C is equal to 4, and C is contained in an induced subgraph of G isomorphic to $K_t \Box K_2$ for some $t \geq 3$.

(C) The length of C is equal to 4, and C is contained in an induced subgraph of G isomorphic to K_2^m for some $m \geq 3$.

Moreover, if (B) happens, then X_C is a clique, and if (C) happens, then there is no C-avoiding path between two non-adjacent vertices of C.

Proof. First, we show by contradiction that (B) and (C) cannot happen at the same time. Suppose that both (B) and (C) hold. Let $C := v_0v_1v_2v_3v_0$ be a hole of length 4 contained in both a prism Y and an induced subgraph K isomorphic to $K_{2,2,2}$. Without loss of generality, we may assume that $Y = [v_0v_1|x_0v_3v_2]$ and $V(K) = \{v_0, v_1, v_2, v_3, u_1, u_2\}$ for some $x, y, u_1, u_2 \in V(G)$. (See Figure 11.) If $u_1x \notin E(G)$ and $u_1y \notin E(G)$, then the hole $u_1v_0x_0v_3u_1$ shares the two edges u_1v_0 and u_1v_2 with the hole $u_1v_0u_2v_2u_1$, which is a contradiction to the condition (E1). If $u_1x \notin E(G)$ and $u_1y \in E(G)$, then the hole $u_1v_0x_0u_1$ shares the two edges v_0x and xy with the hole $v_0xv_1v_0$, which is a contradiction. If $u_1x \in E(G)$ and $u_1y \notin E(G)$, then the hole $u_1x_0v_3u_1$ shares the two edges xy and yv_2 with the hole $v_2yxv_3v_2$, which is a contradiction. Thus $u_1x \in E(G)$ and $u_1y \in E(G)$. By applying the same argument for u_2 instead of u_1, we can show that $u_2x \in E(G)$ and $u_2y \in E(G)$. Then the hole $u_1v_0u_2yv_1$ shares the two edges u_1v_0 and u_2v_0 with the hole $u_1v_0u_2v_2u_1$, which is a contradiction. Thus we have shown that (B) and (C) cannot happen at the same time.
Now, we show the theorem. If the length of C is at least 5, then (A) holds by Lemmas 2.4 and 2.8 and neither (B) nor (C) can happen. Therefore, we assume that the length of C is equal to 4. Suppose that (B) holds. Then (A) does not hold since there is a C-avoiding path between two non-adjacent vertices of C, and (C) does not hold by the previous argument. Next suppose that (B) does not hold. Then it follows from Theorem 2.17 that there is no C-avoiding path between two non-adjacent vertices of C. If X_C is a clique, then (A) holds and (C) cannot happen by Theorem 2.5. If X_C is not a clique, then (A) does not hold obviously and (C) happen by Theorem 2.5. Hence exactly one of (A), (B), (C) holds.

If (B) happens, then (C) cannot happen and so X_C is a clique by Theorem 2.5. If (C) happens, then (B) cannot happen and so there is no C-avoiding path between two non-adjacent vertices of C by Theorem 2.17. \hfill \Box

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure11}
\caption{A picture for Proof of Theorem 2.18}
\end{figure}

3 Operations on graphs satisfying the condition (E1)

3.1 Deleting an edge from a graph

For a graph G and an edge uv in G, we denote by $G - uv$ the graph obtained from G by deleting the edge uv.

\textbf{Lemma 3.1.} \textit{Let G be a graph satisfying the condition (E1). Suppose that there exists a hole C and two adjacent vertices u and v on the hole C such that there is no C-avoiding (u, v)-path. If G is $K_{2,2,2}$-free, then the following hold:}

\begin{enumerate}
\item $G - uv$ also satisfies the condition (E1).
\end{enumerate}
Figure 12: Deleting an edge from a graph

(2) If the number of holes of G is h, then that of $G - uv$ is at most $h - 1$.

(3) $G - uv$ is also $K_{2,2,2}$-free.

(4) If G is prism-free, then $G - uv$ is still prism-free.

Proof. First we show that there is no new hole is created by deleting the edge uv from G. Suppose that there is a hole C' in $G - uv$ which is not a hole in G. Now consider the two distinct (u, v)-sections P_1 and P_2 of C'. If $|E(P_1)| \geq 3$ or $|E(P_2)| \geq 3$, then P_1 or P_2 is a C-avoiding (u, v)-path, which contradicts the hypothesis. Thus $|E(P_1)| = 2$ and $|E(P_2)| = 2$. Then $P_1 = uwv$ and $P_2 = uw'v$ for some vertices w and w' of G. Since G does not have a C-avoiding (u, v)-path by the hypothesis, it holds that $\{w, w'\} \subseteq X_C \cup V(C)$.

However, if $w \in V(C)$, then at least one of uw or vw is a chord of C, which is a contradiction. If $w, w' \in X_C$, then w and w' are adjacent by Corollary 2.7 since G is $K_{2,2,2}$-free. Then the edge ww' is a chord of C' in $G - uv$, which is a contradiction. Therefore $G - uv$ has no hole other than the ones of G. Since no new hole is created in $G - uv$, the graph $G - uv$ still satisfies the condition (E1). In addition, since C is not a hole in $G - uv$ and the number of holes of $G - uv$ is at most $h - 1$. Suppose that $G - uv$ has an induced subgraph H isomorphic to $K_{2,2,2}$. Then u and v consist in a part of H. Let x and y be the vertices of another part of H. Obviously neither x nor v is on C and uxv and uyv are paths in G. Since x and y are not adjacent, one of them should be a C-avoiding path by Corollary 2.6 which is a contradiction. A similar argument can applied to reach a contradiction if $G - uv$ contains a prism. \square

3.2 Adding an edge to a graph

For a graph G and two non-adjacent vertices u and v in G, we denote by $G + uv$ the graph obtained from G by joining u and v by an edge.
Lemma 3.2. Let G be a graph satisfying the condition (E1) and $C := v_0v_1v_2v_3v_0$ be a hole of length 4 in G. Then adding an edge joining two non-adjacent vertices of C does not create a new hole.

Proof. By contradiction. Suppose a new hole C' is created by adding an edge joining two vertices v_0 and v_2. Since $C' - v_0v_2$ together with edges v_0v_1 and v_2v_1 form a cycle of length at least 4 in G sharing two edges with C, v_1 must be adjacent to a vertex of $V(C') \setminus \{v_0, v_2\}$. Similarly, v_3 is adjacent to a vertex of $V(C') \setminus \{v_0, v_2\}$. If a vertex x on C is joined to both v_1 and v_3, then $v_0v_1xv_2v_0$ is a hole of G sharing two edges v_0v_1 and v_0v_2 with the hole C, a contradiction. Let y and z be vertices of C adjacent to v_1 and v_3, respectively, such that a shorter (y, z)-section P of C' is the shortest. Then no interior vertex of P is adjacent to v_0 or v_3. Then P together with the edges $v_1v_2, v_2v_3, v_1y, v_3z$ form a hole in G. However, this hole shares the two edges v_1v_2, v_2v_3 with C, which is a contradiction. Thus no new hole is created by adding an edge joining two vertices v_0 and v_2. By symmetry, no new hole is created by adding an edge joining two vertices v_1 and v_3. Hence adding an edge joining two non-adjacent vertices of C does not create a new hole.

Lemma 3.3. Let G be a graph satisfying the condition (E1). Let m be the maximum integer such that G contains an induced subgraph K isomorphic to K_2^m. Let $u, v \in V(K)$ be two non-adjacent vertices of K. Then the following hold:

(1) $G + uv$ also satisfies the condition (E1).

(2) If $m \geq 3$ and the number of holes of G is h, then that of $G + uv$ is at most $h - 2$.

(3) If G is prism-free, then $G + uv$ is still prism-free.

Proof. Since u and v are non-adjacent vertices of a hole of length 4, by Lemma 3.2 $G + uv$ has no hole other than the ones of G and so (1) holds.
If \(m \geq 3 \), then \(u \) and \(v \) belong to at least two distinct holes of length 4 in \(K \) and these holes in \(G \) are not holes anymore in \(G + uv \) as they become 4-cycles with chord \(uv \). By the previous argument, no hole is created by joining \(u \) and \(v \) and so \(G + uv \) has at most \(h - 2 \) holes. Thus (2) holds.

To show (3), suppose that \(G + uv \) contains a prism \([xy|uv|zw]\). Then \(x \) is not adjacent to \(v \), and \(y \) is not adjacent to \(u \) in \(G \). Therefore \(x \) and \(y \) cannot belong to \(K \). Let \(C^* \) be a hole of \(K \) containing \(u \) and \(v \). Then \(uxyv \) is a \(C^* \)-avoiding path, a contradiction. Thus (3) holds.

3.3 Breaking prisms in a graph

Suppose that a graph \(G \) has an induced subgraph \(H \) isomorphic to \(K_t \square K_2 \) for \(t \geq 3 \). Let \(V(H) = V_x \cup V_y = \{x_1, \ldots, x_t\} \cup \{y_1, \ldots, y_t\} \) where \(V_x \) and \(V_y \) are isomorphic to \(K_t \) and \(x_iy_i \in E(H) \). Define a graph \(G/H/ \) by \(V(G/H/) = V(G) \) and \(E(G/H/) = E(G) \cup \{x_1y_2, x_2y_3, \ldots, x_{t-1}y_t, x_ty_1\} \).

![Figure 14: Breaking prisms in a graph](image)

Lemma 3.4. Let \(G \) be a graph satisfying the condition (E1). Suppose that \(G \) has an induced subgraph \(H \) isomorphic to \(K_t \square K_2 \) for \(t \geq 3 \). Then the following hold:

1. \(G/H/ \) also satisfies the condition (E1).

2. If the number of holes of \(G \) is \(h \), then that of \(G/H/ \) is at most \(h - t \).

Proof. By Lemma 3.2, \(G/H/ \) contains no new hole other than the ones in \(G \). Moreover, adding an edge between two non-adjacent vertices of a hole of length 4 in \(H \) breaks the hole. Thus at least \(t \) holes of \(G \) are broken in \(G/H/ \). Hence (1) and (2) hold.

23
4 Proof of Theorem 1.7

4.1 Outline of the proof

Let G be a graph satisfying the condition (E1). Then exactly one of the following three cases happens:

(Case A): G is prism-free and $K_{2,2,2}$-free.

(Case B): G is prism-free and G has an induced subgraph K isomorphic to $K_{2,2,2}$.

(Case C): G has an induced subgraph Y isomorphic to a prism.

Suppose that G has exactly h holes C_1, C_2, \ldots, C_h. For each $t \in [h] := \{1, \ldots, h\}$, we let

$$C_t = v_{t,0}v_{t,1} \ldots v_{t,m_t}v_{t,0},$$

where m_t is the length of the hole C_t. For $t \in [h]$ and $i \in \{0, \ldots, m_t - 1\}$, let $S_{t,i}$ be the set of vertices each of which is an internal vertex of a C_t-avoiding walk from $v_{t,i}$ to $v_{t,i+1}$, i.e.,

$$S_{t,i} := \bigcup_{W \in W_{t,i}} V(W) \setminus \{v_{t,i}, v_{t,i+1}\},$$

where $W_{t,i}$ denotes the set of all C_t-avoiding $(v_{t,i}, v_{t,i+1})$-walks in G.

We will prove Theorem 1.7 by induction on the number of holes by taking the following steps:

Step 1: We prove (Case A) by using the operation “Deleting an edge from a graph”.

Step 2: (Case B) is reduced to (Case A) by using the operation “Adding an edge to a graph”.

Step 3: (Case C) is reduced to (Case B) by using the operation “Breaking prisms in a graph”.

4.2 Proof for (Case A)

Consider (Case A). If there are no holes of length 4 in G, then all the holes are independent. Therefore it holds that $k(G) \leq h(G) + 1$ by Theorem 1.4. Suppose that there is a hole of length 4 in G. Since G is prism-free and $K_{2,2,2}$-free, the condition (a) in Theorem 2.5 and the condition (a) in Theorem 2.17 hold for each of the holes of length 4 in G.

Theorem 4.1. Let G be a prism-free $K_{2,2,2}$-free graph satisfying the condition (E1) with exactly h holes and let Q be a clique of G containing an edge of a hole. Then there exists an acyclic digraph D such that $C(D) = G \cup I_{h+1}$ and the vertices of Q have no in-neighbors in D. Consequently, the competition number of G is at most $h + 1$.

24
Proof. We shall prove the theorem by induction on h. The competition number of G is at most 1 if $h = 0$ by Theorem 1.1. Since there is no hole, there is no clique containing an edge of a hole and so the theorem is true if $h = 0$.

We assume that $h \geq 1$ and the theorem is true for any prism-free $K_{2,2,2}$-free graph satisfying the condition (E1) with less than h holes. Suppose that $\{(v_{t,i}, v_{t,i+1}) \cup S_{t,i}) \cap Q \neq \emptyset$ for some $t \in [h]$ and $i \in \{0, \ldots, m_t - 1\}$. Take $x \in (\{v_{t,i}, v_{t,i+1}\} \cup S_{t,i}) \cap Q$. If $x = v_{t,i}$, then $v_{t,j} \notin Q$ for any $j \neq i - 1, i + 1$. Since $m_t \geq 4$, $i + 3 \neq i$ (mod m_t).

Suppose that $x' \in (\{v_{t,i+2}, v_{t,i+3}\} \cup S_{t,i+2}) \cap Q$. Then $x' \in S_{t,i+2} \cap Q$. Since Q is a clique, x' is adjacent to x. By the definitions of $S_{t,i}$ and $S_{t,i+2}$, there exists a C_t-avoiding $(v_{t,i}, v_{t,i+2})$-walk, which contradicts Theorem 2.18. Thus $\{(v_{t,i+2}, v_{t,i+3}) \cup S_{t,i+2}) \cap Q = \emptyset$. If $x = v_{t,i+1}$, we can show that $(\{v_{t,i-2}, v_{t,i-1}\} \cup S_{t,i-2}) \cap Q = \emptyset$ by a similar argument. If $x \in S_{t,i} \cap Q$ and $x' \in (\{v_{t,i-2}, v_{t,i-1}\} \cup S_{t,i-2}) \cap Q$, then x and x' are adjacent and there exists a C_t-avoiding $(v_{t,i-2}, v_{t,i})$-walk. Now Theorem 2.18 is violated. Thus $\{(v_{t,i-2}, v_{t,i-1}) \cup S_{t,i-2}) \cap Q = \emptyset$. We have just shown that there exists $j \in \{0, \ldots, m_t - 1\}$ such that $\{(v_{t,j}, v_{t,j+1}) \cup S_{t,j}) \cap Q = \emptyset$.

We claim that no vertex of $S_{t,j}$ is adjacent to a vertex of $V(G) - (X_t \cup V(C_t) \cup S_{t,j})$. Suppose otherwise, there is a C_t-avoiding $(v_{t,j}, v_{t,j+1})$-walk W that contains an internal vertex x adjacent to a vertex $y \in V(G) - (X_t \cup V(C_t) \cup S_{t,j})$. The walk W' obtained by replacing the term x with xyx in the sequence of W is a C_t-avoiding $(v_{t,j}, v_{t,j+1})$-walk, which contradicts the assumption that $y \notin S_{t,j}$. On the other hand, there is no C_t-avoiding path connecting two non-adjacent vertices of C_t by Theorem 2.18 and so no vertex of $S_{t,j}$ is adjacent to a vertex of $V(C_t) \setminus \{v_{t,j}, v_{t,j+1}\}$. Hence, $X_t \cup \{v_{t,j}, v_{t,j+1}\}$ is a vertex cut of G and no vertex in $S_{t,j}$ belongs to the component that contains $V(C_t) \setminus \{v_{t,j}, v_{t,j+1}\}$.

Consider the subgraph G_1 of the graph G induced by $V(G) - S_{t,j}$ and the subgraph G_2 of G induced by $X_t \cup \{v_{t,j}, v_{t,j+1}\} \cup S_{t,j}$. Since $V(G_1) \cap V(G_2) = X_t \cup \{v_{t,j}, v_{t,j+1}\}$ is a vertex cut of G which is a clique, the vertex set of a hole is contained in either $V(G_1) \setminus V(G_2)$ or $V(G_2) \setminus V(G_1)$. Thus, if h_1 is the number of holes of G_1, then $h_2 := h - h_1$ is the number of holes of G_2. It is obvious that $E(G_1) \cup E(G_2) = E(G)$ and that both G_1 and G_2 are prism-free, $K_{2,2,2}$-free, and satisfy the condition (E1).

Since the hole C_t is not in G_2, we have $h_2 < h$. By the induction hypothesis, there exists an acyclic digraph D_2 such that $C(D_2) = G_2 \cup I_{h_2+1}$ and the vertices of $X_t \cup \{v_{t,j}, v_{t,j+1}\}$ have only outgoing arcs in D_2. Notice that C_t is a hole in G_1 which has no C_t-avoiding walk from $v_{t,j}$ to $v_{t,j+1}$. By Lemma 3.1, $G_1 - v_{t,j}v_{t,j+1}$ has exactly $h_1 - 1$ holes and satisfy the condition (E1). By the choice of j, Q is a clique in $G_1 - v_{t,j}v_{t,j+1}$ and, by the induction hypothesis, there exists an acyclic digraph D_1 such that $C(D_1) = (G_1 - v_{t,j}v_{t,j+1}) \cup I_{h_1}$ and the vertices of Q have only
adjacent vertices of \(K = m \).

Theorem 4.1, the theorem holds. Suppose that other than the ones in an induced subgraph \(D \), hypothesis, there exists an acyclic digraph \(uv \) prey of cliques containing the edge \(h \) satisfying the condition (E1) and has at most \(A \). Assume that the theorem is true for any prism-free graph satisfying the condition (E1) with less than \(h \). By induction on \(h \).

Proof. If \(G \) is prism-free, then the competition number of \(G \) is at most \(h + 1 \).

4.3 Reducing (Case B) to (Case A)

Theorem 4.2. Let \(G \) be a graph satisfying the condition (E1) with exactly \(h \) holes. If \(G \) is prism-free, then the competition number of \(G \) is at most \(h + 1 \).

Proof. By induction on \(h \). If \(h = 0 \), then the theorem follows from Theorem 4.1. Assume that the theorem is true for any prism-free graph satisfying the condition (E1) with less than \(h \) holes. Let \(m \) be the maximum integer such that \(G \) contains an induced subgraph \(K \) isomorphic to \(K_m^2 \). If \(m \leq 2 \), then \(G \) is \(K_{2,2,2} \)-free. By Theorem 4.1, the theorem holds. Suppose that \(m \geq 3 \). Let \(u \) and \(v \) be two non-adjacent vertices of \(K \). By Lemma 4.3, the graph \(G' := G + uv \) is a prism-free graph satisfying the condition (E1) and has at most \(h - 2 \) holes. Therefore, by induction hypothesis, there exists an acyclic digraph \(D' \) such that \(C(D') = G' \cup I_{h-1} \).

In the following, we shall construct an acyclic digraph \(D \) such that \(C(D) = G \cup I_{h+1} \) from \(D' \). We first look at the vertices in \(N^+_D(u) \cap N^+_D(v) \) which play as prey of cliques containing the edge \(uv \) in \(G' \). Let \(N^+_D(u) \cap N^+_D(v) = \{w_1, \ldots, w_p\} \) for some integer \(p \geq 1 \). Let \(H_i \) be the subgraph of \(G \) induced by \(N^-_D(w_i) \). In \(G \), the edges of \(H_i \) are covered by exactly two cliques \(N^-_D(w_i) \setminus \{u\} \) and \(N^-_D(w_i) \setminus \{v\} \) unless \(N^-_D(w_i) = \{u, v\} \). Furthermore, since \(w_i \) is a common out-neighbor of \(u \) and \(v \),

\[
\bigcup_{i=1}^{p} N^-_D(w_i) \subseteq (N_G[u] \cap N_G[v]) \subseteq X_K \cup V(K),
\]

where \(X_K \) is defined by (2.1) and the last inclusion follows from Lemma 2.7 (2). Thus

\[
N_G[v] \cap \bigcup_{i=1}^{p} N^-_D(w_i) \subseteq N_G[v] \cap (X_K \cup V(K)).
\]

The vertices in \(N_G[v] \cap (X_K \cup V(K)) \) are covered by exactly two cliques in \(G \). We denote those cliques by \(Z_1 \) and \(Z_2 \). We define a digraph \(D \) as follows:

\[
V(D) = V(D') \cup \{z_1, z_2\};
\]

\[
A(D) = A(D') \setminus \bigcup_{i=1}^{p} \{(v, w_i)\} \cup \{(x, z_1) \mid x \in Z_1\} \cup \{(x, z_2) \mid x \in Z_2\}.
\]
Then it is obvious that D is acyclic and $E(C(D)) \subset E(G)$. By removing the arcs in $\bigcup_{i=1}^{t} \{ (v, w_i) \}$ from D', the competition graph of the new digraph loses the edges joining v and the vertices in $\bigcup_{i=1}^{h} N_{\overline{D'}}(w_i)$. Those edges are contained in the subgraph induced by $N_G[v] \cap (X_K \cup V(K))$ as we argued above. Thus those edges are contained in the cliques formed by Z_1 or Z_2. Hence $C(D) = G \cup I_{h+1}$ and so $k(G) \leq h + 1$. \qed

4.4 Reducing (Case C) to (Case B)

Now we complete the proof of Theorem 1.7.

Proof of Theorem 1.7. By induction on h. If $h = 0$, then the theorem follows from Theorem 1.2. Assume that the theorem is true for any graph satisfying the condition (E1) and the number of holes is less than h. Let t be the maximum integer such that G contains an induced subgraph H isomorphic to $K_t \square K_2$. If $t \leq 2$, then G is prism-free. By Theorem 1.2 the theorem holds. Suppose that $t \geq 3$. Consider the graph $G_{/H/}$. Then, by Lemma 3.4, $G_{/H/}$ satisfies the condition (E1) and the number of holes in $G_{/H/}$ is $h - t$ which is less than h. By the induction hypothesis, there exists an acyclic digraph D' such that $C(D') = G_{/H/} \cup I_{h-t+1}$. Take $i \in \{1, \ldots, t\}$ and $w \in N_{D'}^{+}(x_i) \cap N_{D'}^{+}(y_{i+1})$. Then $N_{D'}^{-}(w) \subset X_C \cup \{ x_i, x_{i+1}, y_{i+1} \}$ or $N_{D'}^{-}(w) \subset X_C \cup \{ x_i, y_i, y_{i+1} \}$ where $C_i := x_i y_i y_{i+1} x_{i+1} x_i$ (identify x_{t+1} and y_{t+1} with x_1 and y_1, respectively). By Theorem 2.18 X_C is a clique in G and so $N_{D'}^{-}(w) \setminus \{ x_i \}$ is a clique in G. Now we define a digraph D by

$$V(D) = V(D') \cup \{ z_1, \ldots, z_t \},$$

$$A(D) = \left(A(D') \setminus \bigcup_{i=1}^{t} \{ (x_i, w) \mid w \in N_{D'}^{+}(x_i) \cap N_{D'}^{+}(y_{i+1}) \} \right) \cup \bigcup_{i=1}^{t} \{ (x, z_i) \mid x \in \{ x_i, x_{i+1} \} \cup X_C \}.$$

Obviously D is acyclic. Note that

$$N_D^{-}(w) = \begin{cases} N_{D'}^{-}(w) \setminus \{ x_i \} & \text{if } w \in N_{D'}^{+}(x_i) \cap N_{D'}^{+}(y_{i+1}) \text{ for some } i \in \{ 1, \ldots, t \}; \\ N_{D'}^{-}(w) & \text{otherwise.} \end{cases}$$

Also notice that deleting the arcs in $\bigcup_{i=1}^{t} \{ (x_i, w) \mid w \in N_{D'}^{+}(x_i) \cap N_{D'}^{+}(y_{i+1}) \}$ from D' may remove edges only in the clique $\{ x_i, x_{i+1} \} \cup X_C$ for some $i \in \{ 1, \ldots, t \}$ from $C(D')$. From these observations, we can conclude that $C(D) = G \cup I_{h+1}$. Hence $k(G) \leq h + 1$. \qed

Corollary 4.3. Let G be a graph with exactly h holes satisfying the following property:
• For any two distinct holes C and C', $|V(C) \cap V(C')| \leq 2$.

Then the competition number of G is at most $h + 1$.

Proof. It follows from Theorem 1.7 and Proposition 2.2.

References

[1] H. H. Cho and S. -R. Kim: The competition number of a graph having exactly one hole, *Discrete Mathematics* 303 (2005) 32–41.

[2] J. E. Cohen: Interval graphs and food webs: a finding and a problem, *Document 17696-PR*, RAND Corporation, Santa Monica, CA (1968).

[3] A. Kamibeppu: An upper bound for the competition numbers of graphs, *Discrete Applied Mathematics* 158 (2010) 154–157.

[4] S. -R. Kim: The competition number and its variants, in J. Gimbel, J.W. Kennedy, and L.V. Quintas (eds.), *Quo Vadis Graph Theory?*, *Annals of Discrete Mathematics*, Vol. 55 (1993) 313–325.

[5] S. -R. Kim: Graphs with one hole and competition number one, *Journal of the Korean Mathematical Society* 42 (2005) 1251–1264.

[6] S. -R. Kim and F. S. Roberts: Competition numbers of graphs with a small number of triangles, *Discrete Applied Mathematics* 78 (1997) 153–162.

[7] S. -R. Kim, J. Y. Lee, and Y. Sano: The competition number of a graph whose holes do not overlap much, *Discrete Applied Mathematics* 158 (2010) 1456–1460.

[8] J. Y. Lee, S. -R. Kim, S. -J. Kim, and Y. Sano: The competition number of a graph with exactly two holes, *Ars Combinatoria* 95 (2010) 45–54.

[9] J. Y. Lee, S. -R. Kim, S. -J. Kim, and Y. Sano: Graphs having many holes but with small competition numbers, *Preprint*, arXiv:0909.5311

[10] B. -J. Li and G. J. Chang: The competition number of a graph with exactly h holes, all of which are independent, *Discrete Applied Mathematics* 157 (2009) 1337–1341.

[11] B. -J. Li and G. J. Chang: The competition number of a graph with exactly two holes, *Journal of Combinatorial Optimization*, DOI: 10.1007/s10878-010-9331-9
[12] J. R. Lundgren: Food webs, competition graphs, competition-common enemy graphs, and niche graphs, in Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, *IMH Volumes in Mathematics and Its Application* 17 Springer-Verlag, New York, (1989) 221–243.

[13] R. J. Opsut: On the computation of the competition number of a graph, *SIAM Journal on Algebraic and Discrete Methods* 3 (1982) 420–428.

[14] A. Raychaudhuri and F. S. Roberts: Generalized competition graphs and their applications, in P. Brücker and R. Pauly (eds.), Methods of Operations Research, Vol. 49, Anton Hain, Königstein, West Germany, (1985) 295–311.

[15] F. S. Roberts: Food webs, competition graphs, and the boxicity of ecological phase space, *Theory and applications of graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976)* (1978) 477–490.