Supplementary Information

Unexpected assembly machinery for 4(3H)-quinazolinone scaffold synthesis

Xi-Wei Chen¹, Li Rao¹, Jia-Li Chen¹ and Yi Zou*,¹

¹ College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China

* E-mail: zouyi31@swu.edu.cn
Table of contents

1. Supplementary Methods... 5
 1.1 Strains and culture conditions.. 5
 1.2 Isolation of the gDNA and cDNA synthesis............................ 5
 1.3 Plasmid construction... 5
 1.4 The protein expression and purification in E. coli..................... 7
 1.5 The preparation and transformation of A. nidulans protoplasts.... 8
 1.6 MALDI-TOF mass data acquisition.. 9
 1.7 Bioinformatic analysis.. 10
 1.8 Purification and structural characterization of compounds 11

2. Supplementary Tables ... 14
 Supplementary Table 1. Plasmids used in this study 14
 Supplementary Table 2. Products from gene (chyC, chyE and chyH) individual KO mutant of
 P. chrysogenum ... 16
 Supplementary Table 3. Analysis of ftchy gene cluster from F. tricinctum 17
 Supplementary Table 4. HRMS data of compounds in this study 18
 Supplementary Table 5. NMR data of compound 1 in DMSO-d6 20
 Supplementary Table 6. NMR data of compound 2 in DMSO-d6 21
 Supplementary Table 7. NMR data of compound 3 in DMSO-d6 22
 Supplementary Table 8. NMR data of compound 4 in DMSO-d6 23
 Supplementary Table 9. NMR data of compound 5 in DMSO-d6 24
 Supplementary Table 10. NMR data of compound 6 in DMSO-d6 24
 Supplementary Table 11. NMR data of compound 7 in DMSO-d6 25
 Supplementary Table 12. NMR data of compound 8 in DMSO-d6 26
 Supplementary Table 13. NMR data of compound 9 in DMSO-d6 27
 Supplementary Table 14. NMR data of compound 10 in DMSO-d6 28
 Supplementary Table 15. NMR data of compound 11 in DMSO-d6 29
 Supplementary Table 16. NMR data of compound 14 in DMSO-d6 30

3. Supplementary Figures.. 32
 Supplementary Fig. 1 Marketed drugs with 4(3H)-quinazolinone scaffold 32
 Supplementary Fig. 2 Representative natural 4(3H)-quinazolinone peptidyl alkaloids from fungi. 33
 Supplementary Fig. 3 Representative natural 4(3H)-quinazolinone alkaloids from plants and bacteria. 34
 Supplementary Fig. 4 Construction of plasmids for overexpression of ftchy cluster in A. nidulans 35
 Supplementary Fig. 5 Confirmation of the on-pathway intermediates of 1 by chemical feeding experiments. 36
 Supplementary Fig. 6 SDS-PAGE of proteins purified from E. coli BL21 in this study 37
 Supplementary Fig. 7 ftChyC-catalysed reduction or dehydrogenation reactions with different substrates 38
 Supplementary Fig. 8 Schematic diagrams of ftChyA and its mutants 39
 Supplementary Fig. 9 Time-course assays of the stability of 10 40
 Supplementary Fig. 10 LC-MS analyses of the AN-ftchyA with feeding different concentrations of Ant 41
 Supplementary Fig. 11 Sequence clustering analysis of the ftChyA-C1 and ftChyA-C7 with other fungal C domains ... 42
Supplementary Fig. 12 Sequences alignments of ftChyA-C with other identified fungal NRPS C domains ... 43
Supplementary Fig. 13 The genome-mined homologous chy clusters from different fungi 44
Supplementary Fig. 14 Sequence alignments of ftChyA-C_T with homologous domains from other chy clusters ... 45
Supplementary Fig. 15 The ftChyA-C_T domain is essential for catalysing the formation of 10 and 3 .. 46
Supplementary Fig. 16 Bioinformatic analysis of ftChyD ... 47
Supplementary Fig. 17 Biochemical confirmation of the amidation of ftChyD towards 3 48
Supplementary Fig. 18 The kinetic parameters of ftChyD toward 3 and 10 49
Supplementary Fig. 19 Sequence alignments of ftChyE with homologous enzymes and other identified glutaminase subunits of class I glutamine amidotransferases .. 50
Supplementary Fig. 20 LC-MS analysis of the AN-fichyACDEHM in H_2^{18}O-medium showing the oxygen atom of the α-OH group of 1 could be from water ... 51
Supplementary Fig. 21 Conserved domain analysis of ftChyH and ftChyM ... 52
Supplementary Fig. 22 Sequence clustering analysis of ftChyM with other fungal α-ketoglutarate dependent dioxygenases .. 53
Supplementary Fig. 23 The biochemical assays of ftChyM with different substrates 54
Supplementary Fig. 24 The biochemical assays of ftChyM with 11 in ~80% H_2^{18}O-Tris-HCl buffer .. 55
Supplementary Fig. 25 The biochemical assays of ftChyM with 11 in ~80% H_2^{18}O-Tris-HCl buffer .. 56
Supplementary Fig. 26 Time-course assays of the spontaneous conversion of 4 to 6 57
Supplementary Fig. 27 Spontaneous cyclization of compound 2, 5 and 4 in Tris-HCl buffer (pH 7.5) .. 58
Supplementary Fig. 28 Biochemical confirmation of the function of ftChyH 59
Supplementary Fig. 29 SDS-PAGE analyses of the expression of ftChyH-His, ftChyH-MBP and ftChyH-GST in E. coli BL21, respectively ... 60
Supplementary Fig. 30 Biochemical assay of ftChyM with 14 in vitro ... 61
Supplementary Fig. 31 LC-MS analyses of the A. nidulans with feeding 2 showing that 2 was converted to 7 by an unknown acetyltransferase of A. nidulans ... 62
Supplementary Fig. 32 HRMS spectrum (positive ionization) of compound 1 63
Supplementary Fig. 33 HRMS spectrum (positive ionization) of compound 2 64
Supplementary Fig. 34 HRMS spectrum (positive ionization) of compound 3 65
Supplementary Fig. 35 HRMS spectrum (positive ionization) of compound 4 66
Supplementary Fig. 36 HRMS spectrum (positive ionization) of compound 5 67
Supplementary Fig. 37 HRMS spectrum (positive ionization) of compound 6 68
Supplementary Fig. 38 HRMS spectrum (positive ionization) of compound 7 69
Supplementary Fig. 39 HRMS spectrum (positive ionization) of compound 8 70
Supplementary Fig. 40 HRMS spectrum (positive ionization) of compound 9 71
Supplementary Fig. 41 HRMS spectrum (positive ionization) of compound 10 72
Supplementary Fig. 42 HRMS spectrum (positive ionization) of compound 11 73
Supplementary Fig. 43 HRMS spectrum (positive ionization) of compound 12 74
Supplementary Fig. 44 HRMS spectrum (positive ionization) of compound Ant-Me-3 75
Supplementary Fig. 45 HRMS spectrum (positive ionization) of compound Ant-Me-10 76
Supplementary Fig. 46 ^1H NMR spectrum of compound 1 in DMSO-d_6(400 MHz) 77
Supplementary Fig. 47 ^13C NMR spectrum of compound 1 in DMSO-d_6(100 MHz) 78
Supplementary Fig. 48

Supplementary Fig. 48: 1H NMR spectrum of compound 2 in DMSO-d_6 (400 MHz).

Supplementary Fig. 49

Supplementary Fig. 49: 13C NMR spectrum of compound 2 in DMSO-d_6 (100 MHz).

Supplementary Fig. 50

Supplementary Fig. 50: HMBC spectrum of compound 2 in DMSO-d_6.

Supplementary Fig. 51

Supplementary Fig. 51: HSQC spectrum of compound 2 in DMSO-d_6.

Supplementary Fig. 52

Supplementary Fig. 52: 1H-1H-COSY spectrum of compound 2 in DMSO-d_6.

Supplementary Fig. 53

Supplementary Fig. 53: 1H NMR spectrum of compound 3 in DMSO-d_6 (400 MHz).

Supplementary Fig. 54

Supplementary Fig. 54: 13C NMR spectrum of compound 3 in DMSO-d_6 (100 MHz).

Supplementary Fig. 55

Supplementary Fig. 55: HMBC spectrum of compound 3 in DMSO-d_6.

Supplementary Fig. 56

Supplementary Fig. 56: HSQC spectrum of compound 3 in DMSO-d_6.

Supplementary Fig. 57

Supplementary Fig. 57: 1H-1H-COSY spectrum of compound 3 in DMSO-d_6.

Supplementary Fig. 58

Supplementary Fig. 58: 1H NMR spectrum of compound 4 in DMSO-d_6 (400 MHz).

Supplementary Fig. 59

Supplementary Fig. 59: 13C NMR spectrum of compound 4 in DMSO-d_6 (100 MHz).

Supplementary Fig. 60

Supplementary Fig. 60: 1H NMR spectrum of compound 5 in DMSO-d_6 (400 MHz).

Supplementary Fig. 61

Supplementary Fig. 61: 13C NMR spectrum of compound 5 in DMSO-d_6 (100 MHz).

Supplementary Fig. 62

Supplementary Fig. 62: 1H NMR spectrum of compound 6 in DMSO-d_6 (400 MHz).

Supplementary Fig. 63

Supplementary Fig. 63: 13C NMR spectrum of compound 6 in DMSO-d_6 (100 MHz).

Supplementary Fig. 64

Supplementary Fig. 64: 1H NMR spectrum of compound 7 in DMSO-d_6 (400 MHz).

Supplementary Fig. 65

Supplementary Fig. 65: 13C NMR spectrum of compound 7 in DMSO-d_6 (100 MHz).

Supplementary Fig. 66

Supplementary Fig. 66: 1H NMR spectrum of compound 8 in DMSO-d_6 (400 MHz).

Supplementary Fig. 67

Supplementary Fig. 67: 13C NMR spectrum of compound 8 in DMSO-d_6 (100 MHz).

Supplementary Fig. 68

Supplementary Fig. 68: 1H NMR spectrum of compound 9 in DMSO-d_6 (400 MHz).

Supplementary Fig. 69

Supplementary Fig. 69: 13C NMR spectrum of compound 9 in DMSO-d_6 (100 MHz).

Supplementary Fig. 70

Supplementary Fig. 70: 1H NMR spectrum of compound 10 in DMSO-d_6 (400 MHz).

Supplementary Fig. 71

Supplementary Fig. 71: 13C NMR spectrum of compound 10 in DMSO-d_6 (100 MHz).

Supplementary Fig. 72

Supplementary Fig. 72: HMBC spectrum of compound 10 in DMSO-d_6.

Supplementary Fig. 73

Supplementary Fig. 73: HSQC spectrum of compound 10 in DMSO-d_6.

Supplementary Fig. 74

Supplementary Fig. 74: 1H-1H COSY spectrum of compound 10 in DMSO-d_6.

Supplementary Fig. 75

Supplementary Fig. 75: DEPT-135° spectrum of compound 10 in DMSO-d_6.

Supplementary Fig. 76

Supplementary Fig. 76: 1H NMR spectrum of compound 11 in DMSO-d_6 (400 MHz).

Supplementary Fig. 77

Supplementary Fig. 77: 13C NMR spectrum of compound 11 in DMSO-d_6 (100 MHz).

Supplementary Fig. 78

Supplementary Fig. 78: HMBC spectrum of compound 11 in DMSO-d_6.

Supplementary Fig. 79

Supplementary Fig. 79: HSQC spectrum of compound 11 in DMSO-d_6.

Supplementary Fig. 80

Supplementary Fig. 80: 1H-1H COSY spectrum of compound 11 in DMSO-d_6.

Supplementary Fig. 81

Supplementary Fig. 81: DEPT-135° spectrum of compound 11 in DMSO-d_6.

Supplementary Fig. 82

Supplementary Fig. 82: 1H NMR spectrum of compound 14 in DMSO-d_6 (400 MHz).

Supplementary Fig. 83

Supplementary Fig. 83: 13C NMR spectrum of compound 14 in DMSO-d_6 (100 MHz).

Supplementary Fig. 84

Supplementary Fig. 84: An efficient self-circulation system among ftChyA, ftChyD and ftChyM-catalysed reactions.

4. Supplementary References

...
1. Supplementary Methods

1.1 Strains and culture conditions

Fusarium tricinctum CGMCC 3.4731 was cultured at 25 °C, 7 days on PDA medium (26 g/L Potato Dextrose Water, 2% agar) for sporulation or culture at 25 °C on PDB medium for 4 days to extract genome DNA (gDNA). *A. nidulans* L08030 was culture at 37 °C for 3-4 days on solid CD medium (10 g/L glucose, 50 mL/L 20 × nitrate salts, 1 mL/L trace elements, 20 g/L agar) containing 10 mM uridine, 5 mM uracil, 1 μg/mL pyridoxine HCl and 0.25 μg/mL riboflavin for sporulation. The *A. nidulans* mutants was culture at 25 °C for 3.5 days on solid CD-ST medium (20 g/L starch, 10 g/L casein hydrolysate (acid), 50 mL nitrate salts, 1 mL/L trace elements, 20 g/L Agar) for heterologous expression and compounds production.

1.2 Isolation of the gDNA and cDNA synthesis

Fusarium tricinctum was cultured in PDB medium (26 g/L Potato Dextrose Water) at 25 °C and 220 rpm for 4 days. The mycelium was collected and used for gDNA extraction by Cetyltrimethylammonium Bromide (CTAB) method (20 g/L CTAB, 81.8 g/L NaCl, 186.1 g/L Na₂EDTA·2H₂O and 0.1 M Tris-HCl pH 8.0). The total RNA of the *A. nidulans*∷ftchy was isolated from the strain grown in liquid CD-ST production medium (20 g/L starch, 20 g/L casein hydrolysate, 50 mL nitrate salts and 1 mL/L trace elements) at 25 °C and 220 rpm for 3 days. RNA was extracted by TRLZOL® Reagent (Ambion), followed by cDNA reverse transcription with the Transcriptor First Strand cDNA Synthesis Kit (Roche).

1.3 Plasmid construction

The sequence of *ftchy* gene cluster is deposited in GenBank under accession number OP651004. The gDNA sequences of *ftchy* gene, the protein sequences of ftChy protein, the primer sequences are listed in the Source Data file. The plasmids are summarized in Supplementary Table 1.

To construct the expression plasmids of *ftchyA–H* genes for *A. nidulans*, each gene with its terminator (~ 400 bp) was amplified from the gDNA of *F. tricinctum* CGMCC 3.4731 by PCR using primer pairs pANR-ftchyA-F1/R1, pANR-ftchyA-F2/R2, pANR-ftchyA-F3/R3, pANU-ftchyC-F/R, pANU-ftchyD-F/R, pANU-ftchyE-F/R, pANP-ftchyM-F/R, pANP-ftchyH-F/R, pANU-ftchyC-F/R2, pANU-ftchyH-F/R2, pANP-ftchyM-F2/R yielding plasmids pIM 3201-3206, through yeast homologous recombination in *S. cerevisiae* BJ5464-NpgA. The glaA, gpdA and amyB promoters were amplified from vectors pANU, pANR and pANP by using primer pairs glaA-F/glaA-R, gpdA-F/gpdA-R and amyB-F/amyB-R, respectively. Gene *ftchyA* was cloned into vector pANR with gpdA promoter yielding plasmid pIM 3201. Genes *ftchyC, ftchyD* and *ftchyE* were cloned into vector pANU yielding plasmid pIM 3202, while the promoters gpdA, glaA and amyB were used for *ftchyC, ftchyD* and *ftchyE*, respectively.
Genes \textit{ftchyM} and \textit{ftchyH} were cloned into vector pANP yielding plasmid pIM 3203, while the promoters \textit{gpdA} and \textit{amyB} were used for \textit{ftchyM} and \textit{ftchyH}, respectively. Genes \textit{ftchyC} and \textit{ftchyD} were cloned into vector pANU yielding plasmid pIM 3204, while the promoters \textit{gpdA} and \textit{glaA} were used for \textit{ftchyC} and \textit{ftchyD}, respectively. Genes \textit{ftchyH} and \textit{ftchyM} were cloned into vector pANP with the promoter \textit{amyB} yielding plasmid pIM 3205 and pIM 3206, respectively.

To express \textit{ftchyA} in \textit{E. coli} BL21, intron-free \textit{ftchyA} was cloned from the cDNA of \textit{A. nidulans} containing \textit{ftchy} cluster using the primer pairs pYEU-\textit{ftchyA}-F1/R1, pYEU-\textit{ftchyA-F2}/pANR-\textit{ftchyA-R1}, pANR-\textit{ftchyA-F2}/pYEU-\textit{ftchyA-R2}. The corresponding overlapping fragments were ligated to vector pYEU by yeast homologous recombination to obtain plasmid pIM 3207. The plasmid pIM 3207 was further digested with \textit{BamH} I and \textit{EcoR} I to obtain \textit{ftchyA} and subsequently inserted into the \textit{BamH} I and \textit{EcoR} I digested pColdI (an expression vector with His tag on N-terminus) to yield plasmid pIM 3208. The mutated expression plasmids pIM 3209-3211 were constructed through yeast homologous recombination in \textit{S. cerevisiae} BJ5464-NpgA. The mutated fragments were amplified by PCR using primer pairs pYEU-\textit{ftchyA-F1}/pANR-\textit{ftchyA-R1}, pANR-\textit{ftchyA-F2}/pYEUF-\textit{ftchyA-C1-H987A-R}, pYEUF-\textit{ftchyA-C1-H987A-F}/pANR-\textit{ftchyA-R2}, pANR-\textit{ftchyA-F2}/pYEUF-\textit{ftchyA-C1*-R}, pYEUF-\textit{ftchyA-C1*-F}/pANR-\textit{ftchyA-R2}, pANR-\textit{ftchyA-F3}/pYEUF-\textit{ftchyA-C7-H2075A-R}, pYEUF-\textit{ftchyA-C7-H2075A-F}/pYEUF-\textit{ftchyA-R2}. The plasmids pIM 3209-3211 were digested and ligated into pColdI by same method to generate plasmids pIM 3212-3214, respectively. To express the stand-alone \textit{ftChyA-A1}, \textit{ftChyA-A2} and \textit{ftChyA-C7} domain in \textit{E. coli} BL21, the plasmids pIM 3215-3217 were constructed, respectively. The intron-free \textit{ftchyA-A1} was amplified by PCR using primer pairs pColdI-\textit{ftchyA-A1-F}/R. The products were digested with \textit{Kpn} I and \textit{EcoR} I, and subsequently inserted into the \textit{Kpn} I and \textit{EcoR} I digested pColdI to create plasmid pIM 3215. The intron-free \textit{ftchyA-A2} was amplified by PCR using primer pairs pQ8-\textit{ftchyA-A2-F}/R. The products were digested with \textit{EcoR} I and \textit{Not} I, and subsequently inserted into the \textit{EcoR} I and \textit{Not} I digested pQ8 (an expression vector with MBP tag on N-terminus) to yield plasmid pIM 3216. The intron-free \textit{ftchyA-C7} was amplified by PCR using primer pairs pColdI-\textit{ftchyA-C7-F}/R. The products were digested with \textit{BamH} I and \textit{EcoR} I, and then cloned into pColdI to yield plasmid pIM 3217. The PCR products were amplified by PCR using primer pairs pColdI-\textit{ftchyAΔC7-F}/R and digested with \textit{Spe} I and \textit{EcoR} I. The products were cloned into the \textit{Spe} I and \textit{EcoR} I digested pIM 3208 to generate plasmid pIM 3218. The plasmid pIM 3218 was used to purify the C7 domain-truncated \textit{ftChyAΔC7} (\textit{A1-T1-C1-A2-T2}) from \textit{E. coli} BL21. To express the \textit{ftChyA-A1T1} in \textit{E. coli} BL21, the intron-free \textit{ftchyA-A1T1} was amplified by PCR using primer pairs pColdI-\textit{ftchyA-A1-F}/pColdI-\textit{ftchyA-A1T1-R}. The products were digested with \textit{Kpn} I and \textit{EcoR} I, and then cloned into pColdI to yield plasmid pIM 3219.

To express \textit{NpgA} without N-His tag in \textit{E. coli} BL21, intron-free \textit{NpgA} was cloned from the cDNA of \textit{A. nidulans} by using the primer pairs pET28a-\textit{NpgA-F}/R. The PCR products were digested with \textit{Hind} III and \textit{Nco} I and subsequently inserted into the \textit{Hind}
III and Neo I digested pET28a to yield plasmid pIM 3220. To express NpgA with N-His tag, intron-free NpgA was cloned using the primer pairs pColdI-NpgA-F/R. The PCR products were digested with Sac I and Hind III and subsequently inserted into pColdI to yield plasmid pIM 3221. The plasmid pIM 3222 used for protein expression \textit{ftchyC} in \textit{E. coli} BL21 was constructed by amplifying open reading frames from cDNA reverse transcribed from \textit{A. nidulans} containing \textit{ftchy} cluster using primer pairs pColdI-\textit{ftchyC}-F/R. The PCR products were digested with Kpn I and EcoR I and subsequently inserted into the Kpn I and EcoR I digested pColdI to yield plasmid pIM 3222. Intron-free \textit{ftchyD} was cloned from the cDNA of \textit{A. nidulans} containing \textit{ftchy} cluster using the primer pairs pET-Duet-\textit{ftchyD}-F/R. The PCR products were digested with BamHI and Not I, and subsequently inserted into the BamHI and Not I digested pET-Duet (an expression vector with His tag on N-terminus) to yield plasmid pIM 3223. Intron-free \textit{ftchyE} was amplified by PCR using primer pairs pQ8-\textit{ftchyE}-F/R. The PCR products were digested with EcoRI and Not I and subsequently inserted into the EcoRI and Not I digested pQ8 to yield plasmid pIM 3224. To express \textit{ftchyM} in \textit{E. coli} BL21, intron-free \textit{ftchyM} was cloned using the primer pairs pColdI-\textit{ftchyM}-F/R. The PCR products were digested with Kpn I and BamHI I and subsequently inserted into the Kpn I and BamHI I digested pColdI to yield plasmid pIM 3225. The intron-free \textit{ftchyH} was amplified by PCR using primer pairs pColdI-\textit{ftchyH}-F/R. The fragments were digested with Kpn I and BamHI I and subsequently inserted into the Kpn I and BamHI I digested pColdI to yield plasmid pIM 3226. The \textit{ftchyH} was also cloned into the EcoRI and Not I digested pQ8 and pGEX-4t-1 (an expression vector with Glutathione S-transferase tag on N-terminus) to create plasmids pIM 3227 and pIM 3228, respectively.

The plasmid used for protein expression of \textit{ftchyH} in \textit{S. cerevisiae} BJ5464-NpgA was constructed by amplifying open reading frames from \textit{A. nidulans} containing \textit{ftchy} cluster using primer pairs pYEU-\textit{ftchyH}-F/pYEU-\textit{ftchyH}-R. The fragments were ligated to vector pYEU (an expression vector with Flag tag on N-terminus and His tag on C-terminus) with the promoter ADH2P and the terminator ADH2T by yeast homologous recombination to obtain plasmid pIM 3229.

All the plasmids were confirmed by DNA sequencing by Sangon Biotech (Shanghai) Co., Ltd.

1.4 The protein expression and purification in \textit{E. coli}

Recombinant plasmids pIM 3208, pIM 3212-3218 and pIM 3221-3228 were transformed into \textit{E. coli} BL21 (DE3) strain by heat shock transformation, respectively. The mono colony was cultivated in liquid LB medium (25 g/L LB broth) with 100 μg/mL ampicillin (for ftChyA and its mutants, NpgA, ftChyC, ftChyH-N-His, ftChyH-N-GST, ftChyA-A1, ftChyA-C7, ftChyM, ftChyD) or 50 μg/mL of kanamycin (for ftChyH-N-MBP, ftChyE, ftChyA-A2) at 37 °C overnight. The bacterial solution was then transferred in liquid LB medium (1 L) containing 100 μg/mL ampicillin or 50 μg/mL of kanamycin at 37 °C and 220 rpm to OD600 of 0.4-0.6. And then, the cultures were maintained at 16 °C for 30 min. Protein expression was induced at 16 °C and 220
rpm for 20 h after adding 0.2 mM isopropylthio-β-D-galactoside (IPTG). Cells were collected by centrifugation at 4 °C, 3000 g for 8 min.

The cells of ftChyA were resuspended in 20 mL buffer A (50 mM Tris-HCl, 500 mM NaCl, 10% glycerol, pH 7.5) and were lysed by sonication on ice. Cellular debris were removed by centrifugation at 4 °C, 23000 g for 40 min. The protein was purified by nickel nitritotriacetic acid (Ni-NTA) agarose resin. And then, the protein was eluted by buffer A containing 250 mM imidazole. The purified protein was passed through a PD-10 desalting column (GE Healthcare) and eluted with buffer C (50 mM Tris-HCl, 50 mM NaCl, 5% glycerol, pH 7.5). The protein was concentrated using ultrafiltration centrifugal tube (Millipore Amicon ® Ultra-15 mL). Finally, the protein was flash frozen in liquid nitrogen and saved at -80 °C. ftChyA mutants, NpgA, ftChyC, ftChyA-A1, ftChyA-A1T1, ftChyA-C1, ftChyAΔC1 and ftChyD were treated in the same way. ftChyM was also treated in the same way, but it was resuspended in buffer A containing 1 mM DTT (DL-Dithiothreitol) and eluted buffer containing 250 mM imidazole and 1mM DTT.

ftChyA-A2 and ftChyE were expressed with N-MBP tag, respectively. The cells of ftChyA-A2 or ftChyE were resuspended in 20 mL binding buffer (20 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.5) and were lysed by sonication on ice. Cellular debris were removed by centrifugation at 4 °C, 23000 g for 40 min. The protein was purified using dextrin sepharose resin. The protein-bound resin was washed with elution buffer (10 mM maltose in binding buffer). The pooled fraction was concentrated and was exchanged into buffer C.

The purified enzyme was analyzed by SDS-PAGE, and the concentration was measured by BCA protein quantification kit (Beijing Dingguo Changsheng Biotechnology Co., Ltd).

1.5 The preparation and transformation of *A. nidulans* protoplasts

A. nidulans was cultured in solid CD medium containing 10 mM uridine, 5 mM uracil, 1 μg/mL pyridoxine HCl and 0.25 μg/mL riboflavin at 37 °C for 4 days, and then spores were collected in 20% glycerol. The spores were inoculated in 40 mL liquid CD medium and cultured at 37 °C and 220 rpm for 9 h. After the germination of spores, cultures were centrifuged at 4 °C, 2500 g for 8 min to harvest the mycelia. The precipitation was washed two times with 15 mL osmotic buffer (1.2 M MgSO4·7H2O, 10 mM sodium phosphate, pH 5.8) at 4 °C, 2500 g for 8 min. Then the precipitation was resuspended with 10 mL osmotic buffer containing 30 mg Lysing Enzymes (Sigma) and 20 mg Yatalase (Takara). The suspension was transferred into 50 mL Erlenmeyer flask, and cultured at 28 °C, 80 rpm for 14 h. The culture fluid was poured directly in a sterile 50 mL centrifugal tube and overlaid gently with 10 mL of trapping buffer (0.6 M sorbitol, 0.1 M Tris-HCl, pH 7.0), then centrifuged at 4 °C, 3000 g for 20 min. The protoplasm layer was transferred and fully scattered into 2 × STC buffer (1.2 M sorbitol, 10 mM CaCl2, 10 mM Tris-HCl, pH 7.5), and centrifuged at 4 °C, 3000 g for 8 min. The supernatant was removed and STC buffer was added to resuspend the protoplasts.
To gain holo form of ftChyA-A₁T₁, the recombinant plasmids pIM 3219 and pIM 3220 were co-transformed into E. coli BL21 (DE3) strain. The mono colony with ftchyA-A₁T₁ and NpgA was selected in solid LB medium with 100 μg/mL ampicillin and 50 μg/mL of kanamycin at 37 ℃ overnight. Protein induction and co-expression of ftChyA-A₁T₁ and NpgA as described above. The protein of ftChyA-A₁T₁-holo was purified by Ni-NTA agarose resin. The 50 μL reaction mixture containing 40 μM ftChyA-A₁T₁-holo, 20 mM Tris-HCl (pH 8.5), 100 mM NaCl, 10 mM MgCl₂·6H₂O, 4 mM ATP, 1 mM L-Glu, 1 mM L-Ala and 1 mM Ant for 2 hours at 25 ℃.

To analysis of ftChyA-A₁ recognized and loaded amino acid to the Ser binding site (S₈₀₀) of ftChyA-T₁ by MALDI-TOF mass, the following steps will be performed. The 50 μL reaction mixture and 150 μL urea solution (8 M) were added to a 10 kDa ultrafiltration centrifugal tube, and then centrifuged at room temperature (RT), 12,000 g for 20 min. 200 μL urea solution (8 M) was added and centrifuged, which process will be repeated twice. 4 μL DTT (1 M) and 150 μL urea solution (8 M) were added and the nozzle of tube was sealed with parafilm, which incubated at 37 ℃ for 2 h. Next, 15 μL iodoacetamide solution (1 M) was added and incubated at RT for 1 h in the dark, subsequently centrifuged at RT, 12,000 g for 20 min. 200 μL urea solution (8 M) was added and centrifuged, which process will be repeated twice. 200 μL NH₄HCO₃ solution (50 mM) was added and centrifuged, which process will be repeated three times. The outer tube of the ultrafiltration centrifugal tube was replaced with a new outer tube. 200 μL trypsin solution (10 μg/mL) was added and the nozzle of tube was sealed with parafilm, which incubated at 37 ℃ for 36 h to decompose the protease into peptide fragments. The parafilm was removed and centrifuged. 40 μL NH₄HCO₃ solution (50 mM) was added and centrifuged. The lyophilized peptide sample was
freeze-dried at 4°C. The sample was reconstituted with 200 μL 0.1% TFA (trifluoroacetic acid) and centrifuged with a transient. A Zip Tip C18 micro desalting column was used for desalting peptide fragments. Elution buffer (90% acetonitrile (ACN) with 0.1% TFA) was used to elute the peptide, which was freeze-dried at 4 °C. MALDI-TOF mass data was recorded by a Bruker MALDITOF mass spectrometer Autoflex Speed and α-cyano-4-hydroxycinnamic acid (CHCA) (Sigma-Aldrich) was used as the matrix for intact precursor peptide. In general, the sample dissolved in 50 μL 0.1% MeOH, and then 2 μL sample was spotted and dried on the target. Subsequently, 2 μL matrix solution (5 mg/mL CHCA dissolved in 50% ACN and 0.1% TFA) was spotted on top of the sample. MALDI-TOF mass data was acquired using the following parameters. Tuning: reflectron; Mass range: 800-2000; Laser diameter: 100 μm; Laser power: 80-100 mV. Cytochrome C and TOFMixTM (SHIMADZU) was used for calibration.

1.7 Bioinformatic analysis

To obtain ftchy gene cluster from F. tricinctum CGMCC 3.4731, we used chyA protein sequence from P. chrysogenum to retrieve chyA orthologues by using local-blast in public fungal genome from NCBI (National Center for Biotechnology Information) database and the private database of our lab. For gene cluster annotation of ftchy, 2ndFind program was used to predict the open reading frame and intron. The gene function was assigned based on NCBI Blast search. The domains of ftChyA were analyzed by interpro website. Active sites analyses of the ftChyA-C₁, ftChyA-C₇, ftChyE, ftChyD and ftChyM were performed using DNAMAN8.0 software, respectively. The conserved domain analysis of ftChyM and ftChyH were performed using NCBI Blast.

To analyze the phylogenetic relationships of ftChyA-C₁ and ftChyA-C₇ domain, multiple sequence alignment of the ftChyA-C₁ and ftChyA-C₇ domain sequences and other C domain sequences (TqaA, AmpA, AmpB, BenZ, PsyA, RoqA, IvoA, SimA, Aba1, EasA, FGSG_08209, FPSE_09183, Glip, Sirp, HasD, NFIA_064400, PENFLA_c013G03821) obtained from NCBI database were performed using ClustalW. Evolutionary analyses were conducted in MEGA7 software, and the phylogenetic tree was inferred by using neighbor-joining method.

TqaA: ADY16697.1, https://www.ncbi.nlm.nih.gov/protein/ADY16697.1.
AmpA: A0A1W6BT53.1, https://www.ncbi.nlm.nih.gov/protein/A0A1W6BT53.1.
AmpB: A0A1W6BT46.1, https://www.ncbi.nlm.nih.gov/protein/A0A1W6BT46.1.
BenZ: P9WEU9.1, https://www.ncbi.nlm.nih.gov/protein/P9WEU9.1.
PsyA: AMQ36132.1, https://www.ncbi.nlm.nih.gov/protein/AMQ36132.1.
RoqA: B6HJU6.1, https://www.ncbi.nlm.nih.gov/protein/B6HJU6.1.
IvoA: C8V7P4.1, https://www.ncbi.nlm.nih.gov/protein/C8V7P4.1.
SimA: CAA82227.1, https://www.ncbi.nlm.nih.gov/protein/CAA82227.1.
Aba1: ACJ04424.1, https://www.ncbi.nlm.nih.gov/protein/ACJ04424.1.
EasA: C8VPS9.1, https://www.ncbi.nlm.nih.gov/protein/C8VPS9.1.
FGSG_08209: I1RVD9.1, https://www.ncbi.nlm.nih.gov/protein/I1RVD9.1.
FPSE_09183: K3VDP2.1, https://www.ncbi.nlm.nih.gov/protein/K3VDP2.1.
Glip: Q4WMJ7.1, https://www.ncbi.nlm.nih.gov/protein/Q4WMJ7.1.
Sirp: Q6Q883.1, https://www.ncbi.nlm.nih.gov/protein/Q6Q883.1.
HasD: XP_754329.2, https://www.ncbi.nlm.nih.gov/protein/XP_754329.2.
NFIA_064400: XP_001263173.1, https://www.ncbi.nlm.nih.gov/protein/XP_001263173.1.
PENFLA_c013G03821: OQE22222.1, https://www.ncbi.nlm.nih.gov/protein/OQE22222.1.
The enzyme function initiative-enzyme similarity tool (EFI-EST) was used to
generate protein sequence similarity networks (SSNs) of ftChyM with fungal α-
ketoglutarate dependent dioxygenases or the ftChyA-C₁ and ftChyA-C_T with other
fungal C domains. Cytoscape (v3.8.2) software was used for visualizing complex
networks of ftChyM or ftChyA-C₁ and ftChyA-C_T.

1.8 Purification and structural characterization of compounds

To isolate 1, 4, 5, 6, 7, 8, and 9, the AN-<i>fichyACDEHM</i> transformants were cultured
in 16 L solid CD-ST medium at 25 °C for 4 days. And then, the culture was extracted
with ethyl acetate/acetone (v/v, 3/1) for three times. The organic extracts were
evaporated to dryness. The extracts were separated by Medium pressure liquid
chromatography (MPLC) Reveleris® X2 (BUCHI, Switzerland) with a linear gradient
of 10% MeOH-H₂O for 10 min, 10%-50% MeOH-H₂O in 40 min, 50%-100% MeOH-
H₂O in 15 min, followed by 100% MeOH-H₂O for 15 min with flow rate of 30 mL/min
on C18 column. The fractions containing 1 further separated by semi-preparative HPLC
(column: YMC-Pack ODS-A, 5 μm, 10 × 250 mm; solvent: MeOH-H₂O, 35:65; flow:
2.5 mL/min; detector: 210 nm; <i>t</i>_R = 21.0 min) to yield 1 (10 mg). The compound 4 was
purified by HPLC (column: YMC-Pack ODS-A, 5 μm, 10 × 250 mm; solvent: MeCN-
H₂O (water with 0.1% v/v formic acid), 26:74; flow: 2.5 mL/min; detector: 210 nm;
<i>t</i>_R = 18.0 min) to give 4 (2 mg). The compound 5 was purified by semi-preparative HPLC
(column: YMC-Pack ODS-A, 5 μm, 10 × 250 mm; solvent: MeCN-H₂O, 10:90; flow:
2.5 mL/min; detector: 210 nm) to give 5 (4 mg, <i>t</i>_R = 35.0 min). The compound 6 was
further purified by semi-preparative HPLC (column: YMC-Pack ODS-A, 5 μm, 10 ×
250 mm; solvent: MeOH-H₂O (water with 0.1% v/v formic acid), 42:58; flow: 2.5
mL/min; detector: 210 nm; <i>t</i>_R = 30.0 min) to yield 6 (3.7 mg). The compound 7 further
purified by semi-preparative HPLC (column: YMC-Pack ODS-A, 5 μm, 10 × 250 mm;
solvent: MeOH-H₂O, 18:82; detector: 265 nm) to give 7 (12 mg, <i>t</i>_R = 33.0 min). The
compound 8 (8.8 mg) was isolated using 11% (v/v) MeCN-H₂O as the mobile phase
by semi-preparative HPLC (column: YMC-Pack ODS-A, 5 μm, 10 × 250 mm; flow:
2.5 mL/min; detector: 210 nm; <i>t</i>_R = 45.0 min). The compound 9 (10 mg) was separated
by semi-preparative HPLC (column: YMC-Pack ODS-A, 5 μm, 10 × 250 mm; MeCN-H₂O, 10:90; flow: 2.5 mL/min; detector: 210 nm; tᵣ=24.0 min).

To isolate 10, the AN-ftchyA transformants were cultured in 4.8 L solid CD-ST medium containing 10 mM uridine, 5 mM uracil and 0.25 μg/mL riboflavin at 25 °C for 4 days. And then, the culture was extracted with MeOH for three times. The extracts were evaporated to dryness. The extracts were separated by Medium pressure liquid chromatography (MPLC) Reveleris® X2 (BUCHI, Switzerland) with a linear gradient of 10% MeOH-H₂O for 10 min, 10%-50% MeOH-H₂O in 30 min, 50%-100% MeOH-H₂O in 20 min, followed by 100% MeOH-H₂O for 20 min with flow rate of 25 mL/min on C18 column. The fractions containing 10 further separated by semi-preparative HPLC (column: YMC-Pack ODS-A, 5 μm, 10 × 250 mm; solvent: MeOH-H₂O (water with 0.1% v/v formic acid), 40:60; flow: 2.5 mL/min; detector: 210 nm; tᵣ = 18.0 min) to yield 10 (12 mg).

To isolate 3, the large-scale in vitro biochemical assays of ftChyA with L-Ala and Ant were performed. The purified 10 μM ftChyA was converted to its holo form by incubation in 20 mM Tris-HCl (pH 7.5), 100 mM NaCl, 20 μM NpgA, 0.1 mM CoA and 10 mM MgCl₂·6H₂O in buffer C (pH 7.5) (total volume 52 mL) at 25 °C for 1 h. Reactions were initiated by the addition of 5 mM ATP, 1 mM Ant and 1 mM L-Ala. The reaction mixture was incubated at 25 °C overnight and then freeze-dried. The products were dissolved in MeOH and purified by semipreparative HPLC with a C18 column (YMC-Pack ODS-A, 5 μm, 10 × 250 mm) (water with 0.02% v/v formic acid), 25:75; flow: 2.5 mL/min; detector: 210 nm; tᵣ = 12.5 min; 2 mg).

To isolate 11 and 2, the large-scale in vitro biochemical assays of ftChyD with 10 and 3 were performed, respectively. The reaction mixture containing 20 μM ftChyD, 200 μM 10, 10 mM MgCl₂·H₂O, 4 mM ATP, 2 mM L-Gln and 20 mM Tris-HCl (pH 7.5) in buffer C (pH 7.5) (total volume 75 mL) at 25 °C overnight. The reaction mixture containing 20 μM ftChyD and 200 μM 3 in buffer C (pH 7.5) (total volume 120 mL) under the same conditions. The reaction mixture was freeze-dried, and the products were dissolved in MeOH. Compound 11 was purified by semipreparative HPLC (column: YMC-Pack ODS-A, 5 μm, 10 × 250 mm; solvent: MeOH-H₂O (water with 0.1% v/v formic acid), 20:80; flow: 2.5 mL/min; detector: 210 nm; tᵣ = 22.5 min) to yield 11 (4.1 mg).

To isolate 11 and 2, the large-scale in vitro biochemical assays of ftChyD with 10 and 3 were performed, respectively. The reaction mixture containing 20 μM ftChyD, 200 μM 10, 10 mM MgCl₂·H₂O, 4 mM ATP, 2 mM L-Gln and 20 mM Tris-HCl (pH 7.5) in buffer C (pH 7.5) (total volume 75 mL) at 25 °C overnight. The reaction mixture containing 20 μM ftChyD and 200 μM 3 in buffer C (pH 7.5) (total volume 120 mL) under the same conditions. The reaction mixture was freeze-dried, and the products were dissolved in MeOH. Compound 11 was purified by semipreparative HPLC (column: YMC-Pack ODS-A, 5 μm, 10 × 250 mm; solvent: MeOH-H₂O (water with 0.1% v/v formic acid), 20:80; flow: 2.5 mL/min; detector: 210 nm; tᵣ = 22.5 min) to yield 11 (4.1 mg).

1H NMR (400 MHz, DMSO-d₆): δ 11.94 (s, 1H), 8.71 (d, J = 6.6 Hz, 1H), 8.48 (dd, J = 8.4, 1.2 Hz, 1H), 8.27 (s, 1H), 7.91 (s, 1H), 7.77 (dd, J = 8.0, 1.6 Hz, 1H), 7.48 (td, J = 8.0, 1.5 Hz, 1H), 7.11 (td, J = 7.6, 1.2 Hz, 1H), 4.20 (m, 1H), 3.30 (t, J = 6.2 Hz, 1H), 2.44 (t, J = 7.7 Hz, 2H), 1.98 (m, 1H), 1.90 (m, 1H), 1.32 (d, J = 7.3 Hz, 3H).
Hz, 3H); 13C NMR (100 MHz, DMSO-d_6): δ 172.6, 171.6, 170.7, 170.0, 139.1, 132.0, 128.5, 122.4, 120.2, 119.9, 53.8, 50.2, 31.7, 26.6, 17.2; UV/Vis: 212, 250, 293 nm; HRMS (m/z): [M]$^+$ calcd. for C$_{15}$H$_{21}$N$_4$O$_5$, 337.1506; found, 337.1506.

Compound 2 was separated by semipreparative HPLC (column: YMC-Pack ODS-A, 5 μm, 10 × 250 mm; MeOH-H$_2$O (water with 0.02% v/v formic acid), 5:95; flow: 2.5 mL/min; detector: 210 nm) to yield 2 (3.5 mg, t_R=12.5 min).

To isolate 14 from large-scale spontaneous conversion of 2 in Tris-HCl buffer (pH 7.5). Compound 2 (3 mg) was added to 500 mL buffer C (pH 7.5). The reaction mixture was kept at 25 °C for 36 h and extracted with ethyl acetate 4 times. The ethyl acetate layer was evaporated until dry and separated by semipreparative HPLC (column: YMC-Pack ODS-A, 5 μm, 10 × 250 mm; solvent: MeCN-H$_2$O (water with 0.1% v/v formic acid), 12:88; flow: 2.5 mL/min; detector: 210 nm; t_R = 10 min) to yield 14 (1.6 mg).
2. Supplementary Tables

Supplementary Table 1. Plasmids used in this study.

Name	Description	Enzyme site	Aim	
pIM 3201	*ftchyA* gDNA with downstream 387 bp, in pANR	BamH1	*A. nidulans* overexpression	
pIM 3202	*ftchyC* gDNA with downstream 425 bp, *ftchyD* gDNA with downstream 264 bp, *ftchyE* gDNA with downstream 395 bp, in pANU	Not1	*A. nidulans* overexpression	
pIM 3203	*ftchyM* gDNA with downstream 267 bp, *ftchyH* gDNA with downstream 426 bp, in pANP	BamH1	*A. nidulans* overexpression	
pIM 3204	*ftchyC* gDNA with downstream 425 bp, *ftchyD* gDNA with downstream 264 bp, in pANU	Not1	*A. nidulans* overexpression	
pIM 3205	*ftchyH* gDNA with downstream 426 bp, in pANP	BamH1	*A. nidulans* overexpression	
pIM 3206	*ftchyM* gDNA with downstream 267 bp, in pANP	BamH1	*A. nidulans* overexpression	
pIM 3207	*ftchyA* cDNA in pYEU with Flag and His tag	Spe1-Pml1	To provide *ftchyA* gene	
pIM 3208	*ftchyA* cDNA in pColdI with His tag	BamH1-EcoRI	*E. coli* overexpression	
pIM 3209	*ftchyA-C7-H987A* cDNA in pYEU with Flag and His tag	Spe1-Pml1	To provide *ftchyA-C7-H987A* gene	
pIM 3210	*ftchyA-C7-H987A* cDNA in pYEU with Flag and His tag	Spe1-Pml1	To provide *ftchyA-C7-H987A* gene	
pIM 3211	*ftchyA-C7* (A986A987XXXA991) cDNA in pYEU with Flag and His tag	Spe1-Pml1	To provide *ftchyA-C7* gene	
pIM 3212	*ftchyA-C7-H987A* cDNA in pColdI with His tag	BamH1-EcoRI	To prove the active residues of *ftChyA-C7* domain	
pIM 3213	*ftchyA-C7-H987A* cDNA in pColdI with His tag	BamH1-EcoRI	To prove the active residues of *ftChyA-C7* domain	
pIM 3214	*ftchyA-C7* (A986A987XXXA991) cDNA in pColdI with His tag	BamH1-EcoRI	To prove the active residues of *ftChyA-C7* domain	
pIM 3215	*ftchyA-A1* cDNA in pColdI with His tag	Kpn1-EcoRI	*E. coli* overexpression	
pIM 3216	*ftchyA-A2* cDNA in pQ8 with MBP tag	EcoRI-Not1	*E. coli* overexpression	
pIM 3217	*ftchyA-C7* cDNA in pColdI with His tag	BamH1-EcoRI	*E. coli* overexpression	
pIM 3218	*ftchyA1C7* cDNA in pColdI with His tag	BamH1-EcoRI	To prove the *ftChyA-C7* domain	
pIM 3219	*ftchyA-A1T1* cDNA in pColdI with His tag	Kpn1-EcoRI	*E. coli* overexpression	
pIM 3220	*NpgA* cDNA in pET28a without His tag	HindIII-Not1	*E. coli* overexpression	
Plasmid	Insert	Vector	Restriction Sites	Expression System
---------	--------	--------	-------------------	-------------------
pIM 3221	NpgA cDNA	pColdI	Sac I-Hind III	E. coli overexpression
pIM 3222	fchyc cDNA	pColdI	Kpn I-EcoR I	E. coli overexpression
pIM 3223	fchyd cDNA in pET-Duet		BamH I-Not I	E. coli overexpression
pIM 3224	fchye cDNA in pQ8		EcoR I-Not I	E. coli overexpression
pIM 3225	fchym cDNA	pColdI	Kpn I-BamH I	E. coli overexpression
pIM 3226	fchyh cDNA	pColdI	Kpn I-Hind III	E. coli overexpression
pIM 3227	fchyh cDNA in pQ8		EcoR I-Not I	E. coli overexpression
pIM 3228	fchyh cDNA in pGEX-4t-1		EcoR I-Not I	E. coli overexpression
pIM 3229	fchyh cDNA in pYEU		Spe I-Pml I	S. cerevisiae overexpression
Supplementary Table 2. Products from gene (*chyC, chyE* and *chyH*) individual KO mutant of *P. chrysosogenum*.

Products	Chemical Formula	Molecular Weight	KO chyC	KO chyE	KO chyH
![Chemical Structure 1](image1)	$C_{10}H_{12}N_3O_4$	275	✓	✓	✓
![Chemical Structure 2](image2)	$C_{13}H_{15}N_3O_3$	249	✓	✓	✓
![Chemical Structure 3](image3)	$C_{13}H_{15}N_3O_5$	293	✓	✓	✓
![Chemical Structure 4](image4)	$C_{13}H_{14}N_2O_6$	294	✓	✓	✓
![Chemical Structure 5](image5)	$C_{15}H_{20}N_4O_5$	336	✓	✓	✓
![Chemical Structure 6](image6)	$C_{15}H_{19}N_3O_6$	337	✓	✓	✓
![Chemical Structure 7](image7)	$C_{10}H_{10}N_2O_2$	190	✓	✓	✓
Supplementary Table 3. Analysis of ftchy gene cluster from *F. tricinctum*.

Gene	Size(bp)	Gene function	*P. chrysogenum* (identity/similarity)	*F. graminearum* (identity/similarity)
ftchyA	7274	NRPS (A1-T1-C1-A2-T2-C1)	64/76	64/78
ftchyC	786	short-chain dehydrogenase (SDR)	79/87	82/91
ftchyD	2287	class II amidotransferase	80/89	87/95
ftchyE	824	glutaminase	31/47	56/74
ftchyH	1743	flavin-dependent oxidase	69/82	74/84
ftchyM	1179	α-KG dioxygenase	71/82	73/83
Supplementary Table 4. HRMS data of compounds in this study.

Com.	Structure	Ion Formula	Meas. m/z [M+H]^+	Meas. m/z [M+Na]^+	Calc. m/z [M+H]^+	Calc. m/z [M+Na]^+	Err (ppm)
1	![Structure](image1.png)	C10H11N2O2	191.0815	191.0815			0.1
2	![Structure](image2.png)	C10H14N3O2	208.1081	208.1081			-0.3
3	![Structure](image3.png)	C10H13N2O3	209.0921	209.0921			-0.4
4	![Structure](image4.png)	C10H10N2NaO3	229.0584	229.0584			0.0
5	![Structure](image5.png)	C10H12N2NaO3	231.0741	231.0740			-0.3
6	![Structure](image6.png)	C10H14N2O2	189.0655	189.0659			2.0
7	![Structure](image7.png)	C12H13N3NaO3	272.1007	272.1006			-0.3
8	![Structure](image8.png)	C12H14N2O2	232.1082	232.1081			-0.8
9	![Structure](image9.png)	C7H9N2O	137.0706	137.0709			2.8
	![Chemical Structure](image)	Chemical Formula	Experimentally Measured Mass (Da)	Theoretical Mass (Da)	Delta Mass (Da)		
---	-----------------------------	-----------------	-----------------------------------	----------------------	-----------------		
10	![Chemical Structure](image)	C_{15}H_{20}N_{3}O_{6}	338.1346	338.1347	0.2		
11	![Chemical Structure](image)	C_{15}H_{21}NaO_{5}	337.1506	337.1506	0.2		
14	![Chemical Structure](image)	C_{10}H_{12}N_{3}O	190.0977	190.0975	-0.9		
Ant-Me-3	![Chemical Structure](image)	C_{11}H_{15}N_{3}O_{3}	223.1077	223.1077	0.1		
Ant-Me-10	![Chemical Structure](image)	C_{14}H_{21}N_{3}NaO_{6}	374.1323	374.1323	-0.1		
Supplementary Table 5. NMR data of compound 1 in DMSO-d_6.

![Chemical Structure](image)

(400 MHz for 1H NMR, 100 MHz for 13C NMR)

NO.	δc, type 2	δc, type	δH (mult, J in Hz) 3	δH (mult, J in Hz)
1				
2	159.6, C	159.9, C		
3			11.79 (1H, br s, NH)	11.83 (1H, br s, NH)
4	161.4, C	161.7, C		
4a	121.2, C	121.2, C		
5	125.7, CH	125.8, CH	8.10 (1H, d, 7.6)	8.10 (1H, dd, 8.0,1.5)
6	126.2, CH	126.8, CH	7.48 (1H, t, 7.5)	7.48 (1H, t, 8.0)
7	134.3, CH	134.4, CH	7.79 (1H, t, 7.6)	7.79 (1H, td, 8.0,1.5)
8	126.9, CH	126.3, CH	7.63 (1H, d, 8.1)	7.64 (1H, d, 8.0)
8a	148.4, C	148.3, C		
1’	67.1, CH	67.2, CH	4.59 (1H, m)	4.59 (1H, q, 6.6)
2’	21.5, CHs	21.6, CHs	1.43 (3H, d, 6.6)	1.43 (3H, d, 6.6)
$1’$-OH			5.65 (1H, d, 7.6)	5.67 (1H, br s)
Supplementary Table 6. NMR data of compound 2 in DMSO-\textit{d}_6.

\begin{table}[h]
\centering
\begin{tabular}{llllll}
\hline
NO. & δ_H (mult, J in Hz) & δ_C, type & COSY & HMBC \\
\hline
1 & 12.01 (1H, s) & & & C2, C8 \\
2 & 167.9, C & & & \\
4 & 170.4, C & & & \\
4a & 120.9, C & & & \\
5 & 7.84 (1H, dd, 7.9, 1.5) & 128.7, CH & H6 & C4, C7, C8a \\
6 & 7.20 (1H, td, 8.0, 1.2) & 123.5, CH & H5, H7 & C4a, C5, C8 \\
7 & 7.55 (1H, td, 8.0, 1.5) & 132.2, CH & H6, H8 & C5, C8, C8a \\
8 & 8.32 (1H, dd, 8.3, 1.2) & 120.8, CH & H7 & C4a, C6 \\
8a & 138.3, C & & & \\
1' & 4.18 (1H, q, 7.0) & 49.3, CH & H2' & C2', C2 \\
2' & 1.49 (3H, d, 7.0) & 16.4, CH$_3$ & H1' & C1', C2 \\
1'-NH$_2$ & 8.31 (2H, overlapped) & & & \\
4-NH$_a$ & 7.79 (1H, s) & & & C4a \\
4-NH$_b$ & 8.31 (1H, overlapped) & & & \\
\hline
\end{tabular}
\end{table}

(400 MHz for 1H NMR, 100 MHz for 13C NMR)
Supplementary Table 7. NMR data of compound 3 in DMSO-d_6.

(400 MHz for 1H NMR, 100 MHz for 13C NMR)

NO.	δ_H (mult, J in Hz)	δ_C, type	COSY	HMBC
1	11.33 (1H, s)			
2		168.2, C		
4		169.0, C		
4a		118.9, C		
5	8.00 (1H, dd, 7.8, 1.2)	131.1, CH	H6	C4, C7, C8a
6	7.24 (1H, m)	123.8, CH	H5, H7	C4a
7	7.63 (1H, m)	133.7, CH	H6, H8	C5, C8a
8	8.26 (1H, dd, 8.4, 1.2)	121.1, CH	H7	C4a, C6
8a		139.0, C		
1'	4.22 (1H, q, 7.0)	49.3, CH	H2'	C2', C2
2'	1.51 (3H, d, 6.8)	16.5, CH	H1'	C1', C2
Supplementary Table 8. NMR data of compound 4 in DMSO-d_6.

![Chemical Structure of Compound 4](image)

(400 MHz for 1H NMR, 100 MHz for 13C NMR)

NO.	δ_c, type 3	δ_c, type	δ_H (mult, J in Hz)3	δ_H (mult, J in Hz)
1	158.6, C	158.6, C	12.65 (1H, s)	12.66 (1H, s)
2	158.7, C	158.7, C		
4	170.2, C	170.3, C		
4a	120.6, C	120.7, C		
5	128.7, CH	128.8, CH	7.84 (1H, dd, 8.2, 1.2)	7.85 (1H, d, 8.0)
6	123.3, CH	123.4, CH	7.20 (1H, td, 8.2, 1.2)	7.21 (1H, t, 8.0)
7	132.2, CH	132.3, CH	7.56 (1H, td, 8.2, 1.2)	7.57 (1H, t, 8.0)
8	119.8, CH	119.8, CH	8.58 (1H, dd, 8.2, 1.2)	8.59 (1H, d, 7.8)
8a	138.0, C	138.1, C		
$1'$	196.3, C	196.4, C		
$2'$	24.1, CH$_3$	24.1, CH$_3$	2.43 (3H, s)	2.42 (3H, s)
4-NH$_a$			8.28 (1H, br s)	8.31 (1H, br s)
4-NH$_b$			7.73 (1H, br s)	7.77 (1H, br s)
Supplementary Table 9. NMR data of compound 5 in DMSO-d_6.

![Chemical structure of compound 5](image)

(400 MHz for 1H NMR, 100 MHz for 13C NMR)

NO.	δ_c, type1	δ_c, type	δ_H (mult, J in Hz)1	δ_H (mult, J in Hz)
1			11.88 (1H, s)	11.99 (1H, s)
2	174.7, C	174.1, C		
4	170.8, C	170.2, C		
4a	121.4, C	120.9, C		
5	128.8, CH	128.5, CH	7.70 (1H, dd, 7.8, 1.5)	7.74 (1H, dd, 7.8, 1.0)
6	123.2, CH	122.4, CH	7.11 (1H, t, 7.8)	7.11 (1H, td, 8.0, 1.0)
7	132.4, CH	131.8, CH	7.46 (1H, dt, 7.8, 1.5)	7.47 (1H, td, 8.0, 1.1)
8	120.4, CH	119.8, CH	8.45 (1H, d, 7.8)	8.57 (1H, d, 8.4)
8a	138.7, C	138.7, C		
1’	68.3, CH	67.9, CH	4.09 (1H, q, 7.0)	4.10 (1H, m)
2’	21.2, CHb	20.8, CHb	1.28 (3H, d, 7.0)	1.30 (3H, d, 6.8)
1’-OH			6.05 (1H, br s)	5.97 (1H, d, 5.0)
4-NHa			8.13 (1H, br s)	8.16 (1H, br s)
4-NHb			7.05 (1H, br s)	7.60 (1H, br s)
Supplementary Table 10. NMR data of compound 6 in DMSO-d_6.

(400 MHz for 1H NMR, 100 MHz for 13C NMR)

NO.	δc, type	δc, type	δH (mult, J in Hz)	δH (mult, J in Hz)
1				
2	147.1, C	147.2, C		
3		12.20 (1H, br s)	12.26 (1H, br s)	
4	159.9, C	160.8, C		
4a	123.6, C	123.2, C		
5	126.1, CH	126.1, CH	8.20 (1H, m, H-Ar)	8.19 (1H, dd, 7.9, 1.5)
6	128.8, CH	128.9, CH	7.66 (1H, td, 8.2, 1.5)	
7	134.7, CH	134.8, CH	7.40-7.90 (3H, m)	7.91 (1H, td, 8.2, 1.5)
8	128.5, CH	128.5, CH	7.85 (1H, dd, 7.9, 1.5)	
8a	147.3, C	147.4, C		
1'	194.0, C	193.9, C		
2'	24.7, CH$_3$	24.7, CH$_3$	2.70 (3H, s)	2.64 (3H, s)
Supplementary Table 11. NMR data of compound 7 in DMSO-d_6.

![Chemical Structure](image)

(400 MHz for 1H NMR, 100 MHz for 13C NMR)

NO.	δ c, type a	δ c, type	δ H (mult, J in Hz)	δ H (mult, J in Hz)
1			12.05 (1H, s)	12.09 (1H, s)
2	171.8, C	171.7, C		
4	170.7, C	170.6, C		
4a	119.7, C	119.6, C		
5	128.7, CH	128.6, CH	7.78 (1H, dd, 7.8, 1.3)	7.80 (1H, dd, 7.8, 0.8)
6	122.4, CH	122.4, CH	7.10 (1H, dd, 7.8, 0.8)	7.11 (1H, td, 7.8, 0.9)
7	132.3, CH	132.2, CH	7.48 (1H, dd, 7.9, 1.3)	7.49 (1H, td, 8.4, 1.2)
8	119.7, CH	119.7, CH	8.53 (1H, dd, 7.9, 0.8)	8.55 (1H, d, 8.4)
8a	139.5, C	139.5, C		
1'	50.1, CH	50.0, CH	4.20 (1H, dq, 7.3, 6.8)	4.21 (1H, m)
2'	17.3, CH$_3$	17.3, CH$_3$	1.31 (3H, d, 7.3)	1.31 (1H, d, 7.3)
3'			8.47 (1H, d, 6.8)	8.51 (1H, d, 6.8)
4'	169.8, C	169.7, C		
5'	22.7, CH$_3$	22.6, CH$_3$	1.94 (3H, s)	1.96 (3H, s)
4-NH$_a$			8.23 (1H, br s)	8.26 (1H, br s)
4-NH$_b$			7.69 (1H, br s)	7.73 (1H, br s)
Supplementary Table 12. NMR data of compound 8 in DMSO-d_6.

![Diagram](image)

(400 MHz for 1H NMR, 100 MHz for 13C NMR)

NO.	δ_c, type	δ_c, type	δ_H (mult, J in Hz)	δ_H (mult, J in Hz)
1				
2	159.0, C	158.5, C		
3			12.16 (1H, s)	12.18 (1H, s)
4	162.1, C	161.6, C		
4a	121.6, C	121.1, C		
5	127.4, CH	126.9, CH	8.08 (1H, d, 8.0)	8.09 (1H, dd, 7.8, 1.0)
6	126.8, CH	126.3, CH	7.48 (1H, t, 7.5)	7.48 (1H, t, 7.3)
7	134.9, CH	134.4, CH	7.78 (1H, t, 7.5)	7.79 (1H, td, 7.8, 1.2)
8	126.3, CH	125.8, CH	7.61 (1H, d, 8.0)	7.62 (1H, d, 8.1)
8a	149.1, C	148.6, C		
1'	48.2, CH	47.7, CH	4.72 (1H, m)	4.72 (1H, m)
2'	19.7, CH$_3$	19.2, CH$_3$	1.38 (3H, d, 7.2)	1.39 (3H, d, 7.0)
3'			8.32 (1H, d, 7.05)	8.34 (1H, d, 7.0)
4'	169.8, C	169.3, C		
5'	23.0, CH$_3$	22.5, CH$_3$	1.87 (3H, s)	1.88 (3H, s)
Supplementary Table 13. NMR data of compound 9 in DMSO-d_6.

![Structure of compound 9]

(400 MHz for 1H NMR, 100 MHz for 13C NMR)

NO.	δ_c, type	δ_c, type	δ_H (mult, J in Hz)	δ_H (mult, J in Hz)
1	113.7, C	113.7, C		6.67 (1H, dd, 7.8, 1.3)
2	150.1, CH	150.2, CH	6.67 (1H, dd, 8.2, 1.0)	
3	114.3, CH	114.4, CH	7.12 (1H, td, 7.8, 1.3)	7.12 (1H, td, 8.0, 1.4)
4	131.8, CH	131.9, CH	6.47 (1H, td, 7.8, 1.3)	6.47 (1H, td, 8.2, 1.0)
5	116.3, CH	116.4, CH	7.52 (1H, dd, 7.8, 1.3)	7.52 (1H, dd, 8.0, 1.4)
6	128.7, C	128.7, C		
7	171.3, C	171.4, C		

a-CONH$_2$ 7.68 (1H, br s) 7.67 (1H, br s)

b-CONH$_2$ 7.01 (1H, br s) 7.02 (1H, br s)

ArNH$_2$ 6.53 (2H, br s) 6.53 (2H, br s)
Supplementary Table 14. NMR data of compound 10 in DMSO-d_6.

(400 MHz for 1H NMR, 100 MHz for 13C NMR)

NO.	δ_H (mult, J in Hz)	δ_C, type	COSY	HMBC
1	12.25 (s)			C8, C4a, C2
2	171.5, C			
4	169.4, C			
4a	122.0, C			
5	7.94 (dd, 7.9, 1.7)	131.3, CH	H6	C7, C8, C4
6	7.06 (td, 7.6, 1.2)	122.3, CH	H7, H5	C8, C4a, C7, C8a
7	7.42 (td, 7.9, 1.7)	131.7, CH	H6, H8	C8, C6, C5, C8a
8	8.53 (dd, 8.6, 1.0)	118.9, CH	H7	C8a, C6, C5, C4a
8a	139.3, C			
1'	4.20 (m)	50.4, CH	H2'	C2', C2
2'	1.35 (d, 7.4)	17.3, CH3	C1', C2	
3'	8.64 (d, 6.5)		H1'	C2', C1', C4'
4'	171.4, C			
5'a	2.54 (m)	29.9, CH2	C6', C7', C4'	
5'b	2.45 (m)			C6', C7', C4'
6'a	2.18 (m)	26.0, CH2	H6'b, H5'a, H5'b	C7', C4', C5
6'b	1.82 (m)			C7', C4'
7'	3.64 (dd, 9.4, 4.7)	52.0, CH	H6'a, H6'b	C6', C5', C8'
8'	171.7, C			
Supplementary Table 15. NMR data of compound 11 in DMSO-d_6

(400 MHz for 1H NMR, 100 MHz for 13C NMR)

NO.	δ_H (mult, J in Hz)	δ_C, type	COSY	HMBC
1	11.94 (s)			
2	171.6, C			
3a	8.27 (s)			
3b	7.91 (s)			
4	170.7, C			
4a	120.2, C			
5	7.77 (dd, 8.0, 1.6)	128.5, CH, H6	C4a, C7, C8a, C4	
6	7.11 (td, 7.6, 1.2)	122.4, CH, H7, H5	C4a, C5, C7	
7	7.48 (td, 8.0, 1.5)	132.0, CH, H6, H8	C8, C5, C8a	
8	8.48 (dd, 8.4, 1.2)	119.9, CH, H7	C4a, C6, C8a	
8a	139.1, C			
1'	4.20 (m)	50.2, CH	C2', C2	
2'	1.32 (d, 7.3)	17.2, CH$_1$, H1'	C2, C1'	
3'	8.71 (d, 6.6)	53.8, CH	C6', C7', C8', C4'	
4'	172.6, C			
5'	2.44 (t, 7.7)	31.7, CH$_2$, H6'a, H6'b	C6', C7', C4'	
6'a	1.98 (m)	26.6, CH$_2$, H7'	C5', C7', C8', C4'	
6'b	1.90 (m)	26.6, CH$_2$, H7'	C5', C7', C8', C4'	
7'	3.30 (t, 6.2)	53.8, CH	C6', C5', C8'	
8'	170.0, C			
Supplementary Table 16. NMR data of compound 14 in DMSO-\textit{d}_6.

(400 MHz for 1H NMR, 100 MHz for 13C NMR)

NO.	\(\delta_c\), type	\(\delta_H\) (mult, \(J\) in Hz)
2	160.7, C	
4	161.8, C	
4a	121.1, C	
5	125.8, CH	8.10 (1H, m)
6	126.8, CH	7.50 (1H, m)
7	134.4, CH	7.80 (1H, m)
8	126.2, CH	7.63 (1H, m)
8a	148.5, C	
1'	49.8, C	3.90 (1H, m)
2'	21.5, CH\textsubscript{3}	1.36 (3H, s)
1'-NH_2		8.26 (1H, br s)
3. Supplementary Figures

Supplementary Fig. 1 Marketed drugs with 4(3H)-quinazolinone scaffold.
Supplementary Fig. 2 Representative natural 4(3H)-quinazolinone peptidyl alkaloids from fungi.
Supplementary Fig. 3 Representative natural 4(3H)-quinazolinone alkaloids from plants and bacteria.
Supplementary Fig. 4 Construction of plasmids for overexpression of *ftchy* cluster in *A. nidulans*.
Supplementary Fig. 5 Confirmation of the on-pathway intermediates of 1 by chemical feeding experiments. The extracted ion chromatograms (EICs) were extracted at \(m/z\) 191 \([M + H]^+\) for 1, \(m/z\) 229 \([M + Na]^+\) for 4, \(m/z\) 231 \([M + Na]^+\) for 5, \(m/z\) 189 \([M + H]^+\) for 6, \(m/z\) 272 \([M + Na]^+\) for 7, \(m/z\) 232 \([M + H]^+\) for 8 and \(m/z\) 137 \([M + H]^+\) for 9.
Supplementary Fig. 6 SDS-PAGE of proteins purified from *E. coli* BL21 in this study. (a) ftChyA (264.8 kDa). (b) ftChyA-C1-H987A (264.7 kDa). (c) ftChyA-C1* (264.6 kDa). (d) ftChyA-C1-H2075A (264.7 kDa). (e) ftChyAΔC1T (218.1 kDa). (f) ftChyAΔC1T-holo (98.34 kDa). (g) ftChyA-A1 (85.7 kDa). (h) ftChyA-A2 (108.3 kDa) with N-MBP tag. (i) ftChyA-C1T (55.2 kDa). (j) NpgA (40.1 kDa). (k) ftChyC (31.3 kDa). (l) ftChyE (73.6 kDa) with N-MBP tag. (m) ftChyD (77.6 kDa). (n) ftChyM (45.8 kDa). M: marker. All experiments were repeated independently more than three times with similar results.
Supplementary Fig. 7 ftChyC-catalysed reduction or dehydrogenation reactions with different substrates. The spontaneous cyclization of 4 to form 6 is observed in control experiment.
Supplementary Fig. 8 Schematic diagrams of ftChyA and its mutants.
Supplementary Fig. 9 Time-course assays of the stability of 10. (a) in Tris-HCl buffer (pH 7.5), (b) with ftChyA addition.
Supplementary Fig. 10 LC-MS analyses of the AN-ftchyA with feeding different concentrations of Ant.
Supplementary Fig. 11 Sequence clustering analysis of the ftChyA-C$_1$ and ftChyA-C$_T$ with other fungal C domains. SSN of 273 fungal C domains homologs generated by Cytoscape (v3.8.2). Each node in the network represents a protein sequence and the alignment score is 45.
Supplementary Fig. 12 Sequences alignments of ftChyA-C₁ with other identified fungal NRPS C domains. The black box shows the conserved HHxxxxD motif in ftChyA-C₁.

TqaA: ADY16697.1 (https://www.ncbi.nlm.nih.gov/protein/ADY16697.1),
AmpA: A0A1W6BT53.1 (https://www.ncbi.nlm.nih.gov/protein/A0A1W6BT53.1),
AmpB: A0A1W6BT46.1 (https://www.ncbi.nlm.nih.gov/protein/A0A1W6BT46.1),
BenZ: P9WEU9.1 (https://www.ncbi.nlm.nih.gov/protein/P9WEU9.1),
PsyA: AMQ36132.1 (https://www.ncbi.nlm.nih.gov/protein/AMQ36132.1),
RoqA: B6HJU6.1 (https://www.ncbi.nlm.nih.gov/protein/B6HJU6.1).
Supplementary Fig. 13 The genome-mined homologous *chy* clusters from different fungi.
Supplementary Fig. 14 Sequence alignments of ftChyA-C_T with homologous domains from other chy clusters. The black box shows the conserved PHxxxD motif in ftChyA-C_T.

AnChyA: XP_015403503.1 (https://www.ncbi.nlm.nih.gov/protein/XP_015403503.1),
CoChyA: TDZ15643.1 (https://www.ncbi.nlm.nih.gov/protein/TDZ15643.1),
PcChyA: B6HLP9.1 (https://www.ncbi.nlm.nih.gov/protein/B6HLP9.1),
FgChyA: I1S3K7.1 (https://www.ncbi.nlm.nih.gov/protein/I1S3K7.1),
FaChyA: KIL85360.1 (https://www.ncbi.nlm.nih.gov/protein/KIL85360.1),
FcChyA: QPC63060.1 (https://www.ncbi.nlm.nih.gov/protein/QPC63060.1),
FpChyA: XP_009262411.1 (https://www.ncbi.nlm.nih.gov/protein/XP_009262411.1).
McChyA: XP_002842771.1 (https://www.ncbi.nlm.nih.gov/protein/XP_002842771.1).
Supplementary Fig. 15 The ftChyA-C_T domain is essential for catalysing the formation of 10 and 3.
Supplementary Fig. 16 Bioinformatic analysis of ftChyD. (a) Conserved domain analysis of ftChyD. (b) Sequence alignments of ftChyD with asparagine synthetase B (AsnB). The black arrow shows the Cys for hydrolysis. The black box shows the conserved ExxDE motif for ATP binding site. AsnB: AJE54988.1 (https://www.ncbi.nlm.nih.gov/protein/AJE54988.1).
Supplementary Fig. 17 Biochemical confirmation of the amidation of ftChyD towards 3. (a) ftChyD uses NH₄Cl or L-Gln-amide to catalyse the amidation of 3 to form 2. (b) LC-MS analysis of the incorporation of ^15N into 2. The EICs were extracted at m/z 209 [M + H]⁺ for 3 and ^15N-labelled 2, and m/z 208 [M + H]⁺ for 2. (c) Mass of 2 and ^15N-labelled 2. (d) HRMS analysis of the incorporation of ^15N into 2.
Supplementary Fig. 18 The kinetic parameters of ftChyD toward 3 and 10. These values were calculated by analyzing production of 2 and 11 by LC-MS analysis. This measurement was conducted in four times. K_M and k_{cat} values represent the mean ± SEM.
Supplementary Fig. 19 Sequence alignments of ftChyE with homologous enzymes and other identified glutaminase subunits of class I glutamine amidotransferases. The black arrow shows the catalytic triad C-H-E in ftChyE. PcChyE from *Penicillium chrysogenum*. FgChyE: XP_011325839.1 (https://www.ncbi.nlm.nih.gov/protein/XP_011325839.1), TrpG: 1QDL_B (https://www.ncbi.nlm.nih.gov/protein/1QDL_B), YaaE: 1R9G_A (https://www.ncbi.nlm.nih.gov/protein/1R9G_A), HisH: 1KA9_H (https://www.ncbi.nlm.nih.gov/protein/1KA9_H).
Supplementary Fig. 20 LC-MS analysis of the AN-fitchyACDEHM in H$_2^{18}$O-medium showing the oxygen atom of the α-OH group of 1 could be from water. The extracted ion chromatograms (EICs) were extracted at m/z 191[M + H]$^+$ for 1 and m/z 193 [M + H]$^+$ for 18O-labelled 1.
Supplementary Fig. 21 Conserved domain analysis of ftChyH and ftChyM. (a) ftChyH is a flavin-dependent oxidase that contains a berberine bridge enzyme (BBE) conserved domain. The red box shows that the berberine bridge enzyme (BBE) conserved domain is existed in ftChyH. (b) ftChyM is an α-KGD contains HxD motif and RxS motif. GA4 desaturase: CAD10289.1 (https://www.ncbi.nlm.nih.gov/protein/CAD10289.1). The black box shows the HxD motif for binding Fe^{2+}. The blue box shows the RxS motif for binding α-ketoglutarate.
Supplementary Fig. 22 Sequence clustering analysis of ftChyM with other fungal α-ketoglutarate dependent dioxygenases. SSN of 239 fungal α-ketoglutarate dependent dioxygenases homologs generated by Cytoscape (v3.8.2). Each node in the network represents a protein sequence and the alignment score is 60.
Supplementary Fig. 23 The biochemical assays of ftChyM with different substrates. (a) Time course assays of ftChyM with 2. (b) ftChyM catalyse dehydrogenation of 5 to form 4. (c) Time course assays of ftChyM with 11. (d) Time course assays of in situ synthesized 12 spontaneously converted to 4 and 6 in room temperature.
Supplementary Fig. 24 The biochemical assays of ftChyM with 11 in ~80% H$_2^{18}$O-Tris-HCl buffer. (a) LC-MS analysis of the ftChyM with 11 in H$_2^{18}$O show that 18O was incorporated into 4 and 6. (b) Analysis of unlabeled and 18O-labelled 4 and 6 (in sum). Data was shown as mean ± SEM for 3 independent experiments.
Supplementary Fig. 25 The proposed mechanism of the (a) ftChyM-catalyzed C-N bond oxidative cleavage 11 to form 4; (b) the ftChyM-catalyzed oxidative deamination of 2 to form 4; (c) the alkaline-induced spontaneous C-2-N-3 bond closure of 4 to form 6.
Supplementary Fig. 26 Time-course assays of the spontaneous conversion of 4 to 6. (a) Tris-HCl buffer (pH 7.5); (b) with ftChyM addition.
Supplementary Fig. 27 Spontaneous cyclization of compound 2, 5 and 4 in Tris-HCl buffer (pH 7.5). (a) cyclization of 2 to form 14; (b) cyclization of 5 to form 1; (c) cyclization of 4 to form 6.
Supplementary Fig. 28 Biochemical confirmation of the function of ftChyH. (a) LC-MS analyses of the AN-ftchyACDM showing elimination of ftchyH accumulates 5. (b) Biochemical assay of ftChyH cell-free extracts with 5, 2 and 11, respectively. The extracted ion chromatograms (EICs) were extracted at m/z 208 [M + H]+ for 2, m/z 229 [M + Na]+ for 4, m/z 231 [M + Na]+ for 5, m/z 189 [M + H]+ for 6, m/z 337 [M + H]+ for 11.
Supplementary Fig. 29 SDS-PAGE analyses of the expression of ftChyH-His, ftChyH-MBP and ftChyH-GST in *E. coli* BL21, respectively. All experiments were repeated independently more than three times with similar results.
Supplementary Fig. 30 Biochemical assay of ftChyM with 14 in vitro. The extracted ion chromatograms (EICs) were extracted at \(m/z \) 190 [M + H]\(^+\) for 14 and \(m/z \) 189 [M + H]\(^+\) for 6.
Supplementary Fig. 31 LC-MS analyses of the *A. nidulans* with feeding 2 showing that 2 was converted to 7 by an unknown acetyltransferase of *A. nidulans*. The extracted ion chromatograms (EICs) were extracted at m/z 208 [M + H]⁺ for 2 and m/z 272 [M + Na]⁺ for 7.
Supplementary Fig. 32 HRMS spectrum (positive ionization) of compound 1.

Supplementary Fig. 33 HRMS spectrum (positive ionization) of compound 2.
Supplementary Fig. 34 HRMS spectrum (positive ionization) of compound 3.

Supplementary Fig. 35 HRMS spectrum (positive ionization) of compound 4.
Supplementary Fig. 36 HRMS spectrum (positive ionization) of compound 5.

Supplementary Fig. 37 HRMS spectrum (positive ionization) of compound 6.
Supplementary Fig. 38 HRMS spectrum (positive ionization) of compound 7.

Supplementary Fig. 39 HRMS spectrum (positive ionization) of compound 8.
Supplementary Fig. 40 HRMS spectrum (positive ionization) of compound 9.

Supplementary Fig. 41 HRMS spectrum (positive ionization) of compound 10.
Supplementary Fig. 42 HRMS spectrum (positive ionization) of compound 11.

Supplementary Fig. 43 HRMS spectrum (positive ionization) of compound 14.
Supplementary Fig. 44 HRMS spectrum (positive ionization) of compound Ant-Me-3.

Supplementary Fig. 45 HRMS spectrum (positive ionization) of compound Ant-Me-10.
Supplementary Fig. 46 1H NMR spectrum of compound 1 in DMSO-d_6 (400 MHz).
Supplementary Fig. 47 13C NMR spectrum of compound 1 in DMSO-d_6 (100 MHz).
Supplementary Fig. 48 1H NMR spectrum of compound 2 in DMSO-d_6 (400 MHz).
Supplementary Fig. 49 13C NMR spectrum of compound 2 in DMSO-d_6 (100 MHz).
Supplementary Fig. 50 HMBC spectrum of compound 2 in DMSO-d_6.
Supplementary Fig. 51 HSQC spectrum of compound 2 in DMSO-d_6.
Supplementary Fig. 52 1H-1H-COSY spectrum of compound 2 in DMSO-d_6.
Supplementary Fig. 53 1H NMR spectrum of compound 3 in DMSO-d_6 (400 MHz).
Supplementary Fig. 54 13C NMR spectrum of compound 3 in DMSO-d_6 (100 MHz).
Supplementary Fig. 55 HMBC spectrum of compound 3 in DMSO-d_6.
Supplementary Fig. 56 HSQC spectrum of compound 3 in DMSO-d_6.
Supplementary Fig. 57 1H-1H-COSY spectrum of compound 3 in DMSO-d_6.
Supplementary Fig. 58 1H NMR spectrum of compound 4 in DMSO-d_6 (400 MHz).
Supplementary Fig. 59 13C NMR spectrum of compound 4 in DMSO-d_6 (100 MHz).
Supplementary Fig. 60 1H NMR spectrum of compound 5 in DMSO-d_6 (400 MHz).
Supplementary Fig. 61 13C NMR spectrum of compound 5 in DMSO-d_6 (100 MHz).
Supplementary Fig. 62 1H NMR spectrum of compound 6 in DMSO-d_6 (400 MHz).
Supplementary Fig. 63 13C NMR spectrum of compound 6 in DMSO-d_6 (100 MHz).
Supplementary Fig. 64 1H NMR spectrum of compound 7 in DMSO-d_6 (400 MHz).
Supplementary Fig. 65 13C NMR spectrum of compound 7 in DMSO-d_6 (100 MHz).
Supplementary Fig. 66 1H NMR spectrum of compound 8 in DMSO-d_6 (400 MHz).
Supplementary Fig. 67 13C NMR spectrum of compound 8 in DMSO-d_6 (100 MHz).
Supplementary Fig. 68 1H NMR spectrum of compound 9 in DMSO-d_6 (400 MHz).
Supplementary Fig. 69 13C NMR spectrum of compound 9 in DMSO-d_6 (100 MHz).
Supplementary Fig. 70 1H NMR spectrum of compound 10 in DMSO-d_6 (400 MHz).
Supplementary Fig. 71 13C NMR spectrum of compound 10 in DMSO-d_6 (100 MHz).
Supplementary Fig. 72 HMBC spectrum of compound 10 in DMSO-\textit{d}_6.
Supplementary Fig. 73 HSQC spectrum of compound 10 in DMSO-d_6.
Supplementary Fig. 74 $^1\text{H}-^1\text{H}$ COSY spectrum of compound 10 in DMSO-d_6.
Supplementary Fig. 75 DEPT-135° spectrum of compound 10 in DMSO-d_6.
Supplementary Fig. 76 1H NMR spectrum of compound 11 in DMSO-d_6 (400 MHz).
Supplementary Fig. 77 13C NMR spectrum of compound 11 in DMSO-d_6 (100 MHz).
Supplementary Fig. 78 HMBC spectrum of compound 11 in DMSO-d_6.
Supplementary Fig. 79 HSQC spectrum of compound 11 in DMSO-d_6.
Supplementary Fig. 80 1H-1H COSY spectrum of compound 11 in DMSO-d_6.
Supplementary Fig. 81 DEPT-135° spectrum of compound 11 in DMSO-d_6.
Supplementary Fig. 82 1H NMR spectrum of compound 14 in DMSO-d_6 (400 MHz).
Supplementary Fig. 83 13C NMR spectrum of compound 14 in DMSO-d_6 (100 MHz).
Supplementary Fig. 84 An efficient self-circulation system among ftChyA, ftChyD and ftChyM-catalysed reactions.
4. Supplementary References

1. Viggiano, A. et al. Pathway for the biosynthesis of the pigment chrysogine by *Penicillium chrysogenum*. *Appl. Environ. Microbiol.* **84**, e02246-17 (2018).

2. Zhuo, S. et al. Chemical profile of the secondary metabolites produced by a deep-sea sediment-derived fungus *Penicillium commune* SD-118*. *CHIN. J. OCEANOL. LIMNOL.*, **30**, 305-314 (2012).

3. Tezuka, Y. et al. Studies on the metabolites of mycoparasitic fungi. I. metabolites of *Cladobotryum varium*. *Chem. Pharm. Bull.* **42**, 2612-2617 (1994).

4. Thi, Q.V. et al. Secondary metabolites from an actinomycete from Vietnam's east sea. *Nat. Prod. Commun.* **11**, 401-404 (2016).

5. Bergman J. et al. Synthesis of chrysogine, a metabolite of *Penicillium chrysogenum* and some related 2-substituted 4-(3H)-quinazolinones. *Tetrahedron*. **46**, 1295-1310 (1990).

6. Onuki, H., Miyashige, H., Hasegawa, H. & Yamashita, S. NI15501A, a novel anthranilamide derivative from a marine fungus *Penicillium* sp. *J. Antibiot. (Tokyo)*. **51**, 442-444 (1998).

7. Jankowski, F. et al. Efficient microwave-assisted two-step procedure for the synthesis of 1,3-disubstituted-imidazo[1,5-a]quinazolin-5-(4H)-ones. *Tetrahedron* **66**, 128-133 (2010).

8. Chen, GD. et al. Benzamides and quinazolines from a mangrove actinomycetes *Streptomyces* sp. (No. 061316) and their inhibiting caspase-3 catalytic activity *in vitro*. *Chem. Pharm. Bull. (Tokyo)*. **59**, 447-451 (2011).