Effects of NPK, Bio-Fertilizers and Manures on Growth of Maize (Zea mays L.) and Soil Nutrients Content in Maiduguri, Nigeria

Adam L. Ngala, Falmata U. Digmari, Rakiya Abdullahi, and Joshua B. Ndirmbula

ABSTRACT

A pot experiment was carried out at screen house, Faculty of Agriculture, University of Maiduguri to compare the effect of NPK, bio-fertilizers and manures applications on growth and nutrient uptake by maize. The experiment consisted of 9 treatments of combined application of NPK at half and full recommended rates for maize, Azotobacter chroococcum, Bacillus megaterium and Pseudomonas fluorescens biofertilizers and cow dung and poultry manures and replicated three times in a Completely Randomized Design (CRD). Result of the treatment having half recommended dose of NPK, biofertilizers and poultry manure recorded the highest plant height at 3, 6 and 9 weeks after planting (95.19 cm, 148.63 cm, 149.63 cm, respectively) the highest total shoot and root fresh and dry weights (74.40 g, 196.93 g, 28.83 g, 46.93 g/plant, respectively). Higher nitrogen, phosphorus, and potassium contents of the soil (2.76 g/kg N 0.13 mg/kg P2O5 and 1.41 Cmol/kg K2O soil) were also recorded with the above treatments. Low values of growth parameters are obtained in pot treated with biofertilizers solely due to the absence of other nutrients and this can be overcome by adding organic and chemical fertilizers containing nitrogen and other nutrients such as potassium and phosphorus to plant inoculated with bacteria.

Keywords: Bio-fertilizers, maize, manure, nutrient uptake, yield.

I. INTRODUCTION

Maize (Zea mays L.) is an important crop in Nigeria mainly as an energy giving food. Based on cropped land and quantity produced, maize is Nigeria’s third most important cereal crop after sorghum and millet [1]. Maize production in the sub Saharan Africa has been reported to have an increasing trend of between 2-3% annually [2] thereby making maize an important crop to the growth and sustenance of Nigeria’s agricultural sector. Total maize production in Nigeria has been reported to be 10 mt/ha compared to India with 22.23 mt/ha [3]. Therefore, maize production in Nigeria needs to be improved. Most of the required nutrients for maize productions are usually applied in form of inorganic fertilizers [4]. However, the high cost of inorganic fertilizers coupled with their inability to condition the soil has directed farmer’s attention to organic fertilization or complementary application [5].

Organic manures apart from supplying all essential nutrients required by plants improve soil structure, aeration and encourage good root growth. Organic manure includes farm yard manure, farm compost, town compost, sludge, green manure and other bulky sources of organic matter. All these manures contain organic matter in large quantities and supply nutrients to plants in small quantities. The manures have direct effect on plant growth like any other commercial fertilizer. This phenomenon is very important in most of the arable soils. Organic manure provides nutrients for the soil micro-organisms, thus increases the activities of microbes in soil, which in turn help to convert unavailable plant nutrients into available form for plant growth promotion. The use of bio-fertilizer as an organic source accelerates mineralization of organic residues in soil, therefore makes the nutrients more available [6].

Biofertilizer is defined as a substance which contains living microorganisms and is known to help with expansion of the root system and better seed germination. Biofertilizers are products containing living cells of different types of microorganisms, which have an ability to convert nutritionally important elements to available form through biological processes. [7]. There is a great interest in establishing novel associations between higher plants and various N2-fixing microorganisms [8]. For the last one-decade, biofertilizers are used extensively as an eco-friendly
approach to minimize the use of chemical fertilizers, improve soil fertility status and for enhancement of crop production by their biological activity in the rhizosphere. Application of beneficial microbes in agricultural practices started 60 years ago and there is now increasing evidence that these beneficial microbial populations can also enhance plant resistance to adverse environmental stresses, e.g., water and nutrient deficiency and heavy metal contamination [9].

Biofertilizers include nitrogen fixing microorganisms such as Rhizobium, Azotobacter, Azospirillum and cyanobacteria and phosphate solubilizers like Bacillus megatherium var. phosphaticum or Bacillus subtilis or Pseudomonas florescens and phosphorus mobilizing fungi like mycorrhizae, plant growth promoting rhizobacteria, organic matter decomposers, etc. The purpose of applying biofertilizers is to bring such beneficial organisms in contact with radial and seminal roots and immediately after seed germination. Azotobacter inoculation has been found to be economically most advantageous at lower doses of N fertilizer which not only increased yields but resulted in saving of N fertilizer application when applied with FYM. The presence of high population surrounding the seed helps to ensure prompt and effective colonization. Therefore, this study was conducted to compare the effect of biofertilizers with NPK and different sources of manures on growth and nutrient uptake by maize and residual N, P and K content of soil.

II. MATERIALS AND METHODS

A. Description of the Study Area

A pot experiment was conducted during the dry season of 2019 at the Screen House of the Faculty of Agriculture, University of Maiduguri, in order to evaluate the effects of NPK, bio-fertilizers and manures and on growth, and nutrient uptake by maize. The soil used for the experiment was collected at the Teaching and Research Farm of the University of Maiduguri, (11° 8’ N; 13° 13’ E; 322 m above sea level). The environment is semi-arid with long term mean annual rainfall of 553 mm. Rainfall is unimodal, starting on average in mid-June and lasting till end of September. The soil was sandy loam in texture and classified as Typic ustipsamment [10], having parent material of aeolian sand. Crops grown in the area were millet, maize, groundnut, cowpea and sesame.

B. Treatments and Experimental Design

The experiment consisted of 9 treatments of NPK, biofertilizers and manures in various combinations. Half the recommended NPK fertilizer was combined with biofertilizers of Azotobacter, Bacillus and Pseudomonas species and manures from cow dung, and poultry. Azotobacter was included to produce plant growth promoting hormones, increased soil nitrogen through nitrogen fixation and nitrogen balance; Bacillus and Pseudomonas were included as plant growth promoting rhizobacteria, phosphate solubilizers and bio-control agents against soil borne plant pathogen. The full treatment combinations were as follows:

i. control (no fertilizer applied);
ii. ½ NPK + A. chroococcum + B. megaterium + cow dung (7.0 t/ha);
iii. ½ NPK + A. chroococcum + B. megaterium + poultry (6 t/ha);
iv. ½ NPK + A. chroococcum + P. fluorescence + cow dung (7.0 t/ha);
v. ½ NPK + A. Chroococcum + P. florescens + poultry manure (6.0 t/ha);
vii. ½ NPK + A. chroococcum + B. megaterium + P. florrescens + cow dung (7.0 t/ha);
vii. Azotobacter, chroococcum + Bacillus megaterium + Pseudomonas fluorescens;
viii. cow dung (7.0 t/ha) + poultry manure (6.0 t/ha).

These treatments were replicated three times in a completely randomized design (CRD). The biofertilizers were applied at the rate of 10 kg/ha, 10 days after application of the chemical fertilizers.

C. Data Collection and Analyses

The Bulk soil used for the experiment was collected at a depth of (0-15 cm) at the University of Maiduguri Teaching and Research Farm. The soil was air dried and sub sample collected and sieved through 2 mm sieve and used for the determination of the physico-chemical properties of the soil before the experiment. Texture of the soil was determined by hydrometer method, pH by using 1:2.5 soil-water extract and determined with pH meter. Electrical conductivity (EC) was determined on the extract for the pH using conductivity meter, organic carbon by wet oxidation method, total nitrogen by micro Kjeldahl procedure, available phosphorus by Bray-1 method, exchangeable bases determined after extraction with ammonium acetate. Calcium (Ca) and Magnesium (Mg) were determined by EDTA titration method, while potassium (K) by flame photometer. After harvest soil samples were collected from each pot and analyzed for residual NPK content using standard procedures.

Crop data were collected at three-week intervals for nine weeks after sowing (WAS). The parameters measured were plant height, number of leaves, stem girth, fresh and dried root and shoot weights. The plant height was measured from the soil surface to the apical tip of the plant using a measuring tape. Number of leaves was counted from each plant in the pot. Stem girth was measured using Vernier caliper, the caliper was held at right angle to the shoots with jaws on either side of the shoots. The fresh weights of root and shoot were recorded using a weighing balance. The samples were subjected to drying using an oven drying machine at temperature of 65 °C for 24 hours and then reweighed to obtain the dry weights. The oven dried shoot samples were finely ground and subjected to laboratory analysis for N, P, and K content determination and uptake calculated. The nutrient uptake was calculated from the analyzed nutrient content (NC) of the plant tissue and the weight of the plant biomass yield (PBY) as shown below:

\[
\text{Nutrient Uptake} = \frac{\text{NC} \times \text{PBY}}{100}
\]

The data collected were statistically analyzed using analysis of variance (ANOVA) with the help of a statistical software statistic 10.0. Differences between treatment means...
were compared using Duncan’s new Multiple Range Test (DnMRT) at 5% level of probability.

III. RESULTS AND DISCUSSION

A. Physico-chemical Properties of the Soil and Manure

The result of the physico-chemical analysis of the soil used for the experiment (Table I) indicates that the soil is sandy loam in texture, the pH of the soil is neutral (7.1) with low nitrogen and phosphorous contents. Exchangeable calcium (4.3 Cmol/kg), magnesium (4.6 Cmol/kg), potassium (0.68 Cmol/kg), and sodium (0.07 Cmol/kg) were low in the soil, but percent base saturation was high. The analysis of the manure used (Table II) also indicated low nutrient in cow dung but adequate in poultry droppings.

Parameters	Values
pH in water (1:2.5)	7.08
Electrical conductivity (dS/m)	0.19
Organic carbon (%)	0.35
Total Nitrogen (g/kg)	1.10
Available phosphorus (mg/kg)	1.05
Exchangeable cations (Cmol/kg)	
Potassium	0.68
Sodium	0.07
Calcium	4.6
Magnesium	4.3
Cation exchange capacity (% Base saturation)	96.54
Exchangeable acidity (Cmol/kg)	0.50
Clay (g/kg)	107
Silt (g/kg)	197
Sand (g/kg)	696
Textural class	Sandy loam

B. Effects of Treatments on Plant Height

Plant height was significantly (P < 0.05) affected by the treatments (Table III). The tallest plants were recorded at 3, 6, and 9 WAS with values of 1.87 cm, 2.51 cm, and 2.58 cm, respectively, while the lowest was recorded with control (1.45 cm, 1.46 cm, and 1.56 cm, respectively). Apart from these there was no statistically significant difference among all the other treatments means. Reference [13] reported similar results that stem diameter increased by increasing nutrient application.

Treatments	Plant height (cm)
Control	1.35
½ NPK + A+B+CD	1.55
½ NPK + A+B+PM	1.52
½ NPK + A+P+CD	1.51
½ NPK + A+P+PM	1.32
½ NPK + A+B+P+CD	1.81
½ NPK + A+B+P+PM	1.87
A+B+P	1.45
CD+PM	1.54
S.E	0.016

C. Effects of Treatments on Stem Girth

The effect of NPK, manures and biofertilizers on stem girth of maize is presented in Table IV. The highest stem girth at 3, 6, and 9 WAS was recorded on plant treated with half recommended rate of NPK, Azotobacter chroococcum, Bacillus megaterium, Pseudomonas fluorescens and poultry manure with values 1.87 cm, 2.51 cm, and 2.58 cm, respectively. This treatment effect was at par with the recommended rate of NPK, Azotobacter chroococcum, Bacillus megaterium, Pseudomonas fluorescens and poultry manure at 9 WAS (1.97 cm, 2.66 cm, and 2.76 cm, respectively). The effect of NPK and manure on stem girth was recorded to control with values of 1.45 cm, 2.16 cm, and 2.26 cm, respectively. This was at par with half the recommended rate of NPK, Azotobacter chroococcum, Bacillus megaterium and Pseudomonas fluorescens and Cow dung at 9 WAS. The lowest number of leaves was recorded with control with values of 6.07, 7.33, and 6.33, respectively.

D. Effects of Treatments on Number of Leaves

The effects of NPK, manure and biofertilizers on number of leaves are presented in Table V. The highest average number of leaves at 3, 6, and 9 WAS were recorded with plant treated with half recommended rate of NPK, Azotobacter chroococcum, Bacillus megaterium, Pseudomonas fluorescens and poultry manure (9.67, 12.67 and 12.00, respectively). This treatment effect was at par with the recommended rate of NPK, Azotobacter chroococcum, Bacillus megaterium and Pseudomonas fluorescens and Cow dung at 9 WAS. The lowest number of leaves was recorded with control with values of 6.07, 7.33, and 6.33, respectively.

The stunted growth of maize and yellowing of leaves which were seen in the control and some of the ones that were treated with the different forms of biofertilizers solely could be attributed to nitrogen deficiency because nitrogen encourages vigorous vegetative growth and impacts dark green colour to the leaves. Nitrogen deficiency symptoms could also be due to leaching, and/or low nitrogen content in the original soil.

DOI: http://dx.doi.org/10.24018/ejfood.2021.3.5.34
Coccum consulted in enhanced eight, and cow dung (176.40 kg soil) was significant difference between these two. Treatment that received sole biofertilizers than their respective counterparts. The experiment recorded significantly higher than the other treatments.

TABLE V: EFFECT OF NPK, MANURE AND BIO-FERTILIZERS ON NUMBER OF LEAVES AT 3, 6 AND 9 WAS

Treatments	3 WAS	6 WAS	9 WAS
Control			
½ NPK + A + B + CD			
½ NPK + A + B + PM			
½ NPK + A + P + CD			
½ NPK + A + P + PM			
½ NPK + A + B + P + CD			
½ NPK + A + B + P + PM			
A + B + P			
CD + PM			

S.E. 0.314 0.314 0.401

E. Effects of Treatments on Root and Shoot Fresh and Dry Weights

The effect of NPK, manure and biofertilizers on root and shoot fresh weight and dry weight is presented in Table VI. The highest root and shoot fresh weight (g) at harvest was recorded with plant treated with half recommended rate of NPK, Azotobacter chroococcum, Bacillus megaterium, Pseudomonas fluorescens and Poultry Manure (74.40 g, 196.93 g, 28.83 g, 46.93 g, respectively) while the lowest root weight was recorded with control (27.03 g, 45.00 g, 5.83 g, 18.97 g). The values for shoot fresh weight and dry weight for the treatment that received half recommended rate of NPK, Azotobacter chroococcum, Bacillus megaterium, Pseudomonas fluorescens and poultry manure (196.93 g/ plant) and the treatment with half recommended rate of NPK, the 3 microbial inoculant and Cowdung (176.40 g/ plant) did not differ significantly with each other, but significantly higher than the other treatments.

The result obtained was similar to the work of [14] and [15] who reported such increase in yield attributes of maize due to Pseudomonas inoculation. This might be due to more availability of nutrients from poultry manure and beneficial effects accrued due to Azotobacter and phosphate solubilizing bacteria inoculation which provide nitrogen and phosphorus to plant growth. It may also be due to production of amino acids, vitamins and growth promoting substances like indole acetic acid and gibberellic acid secreted by these introduced beneficial microorganisms which resulted in enhanced nutrient uptake, translocation and synthesis of photosynthate assimilates which resulted to increased plant growth characters and in obtaining economically profitable yield [16].

TABLE VI: EFFECT OF NPK, MANURES AND BIO-FERTILIZERS ON ROOT AND SHOOT FRESH AND DRY WEIGHT AFTER HARVEST

Treatment	Root	Shoot	Shoot
Control	27.03	5.83	45.00
½ NPK + A + B + CD	35.33	10.40	92.53
½ NPK + A + P + PM	36.10	10.33	146.70
½ NPK + A + B + CD	31.10	9.60	131.93
½ NPK + A + P + PM	35.06	10.73	146.87
½ NPK + A + B + P + CD	56.83	24.30	176.40
½ NPK + A + B + P + PM	74.40	28.83	196.93
A + B + P	28.80	8.73	58.18
CD + PM	30.63	10.43	127.67

S.E. 0.489 0.884 7.515 1.604

F. Effects of Treatments on Nutrient Uptake

The effect of NPK, manure and bio-fertilizers on nutrient content and uptake are presented in Table VIIA & VIIB. N content was high in treatment application of recommended dose of NPK + A. chroococcum + B. megaterium + P. fluorescens + poultry manure. P and K contents were higher in treatment that received half recommended NPK dose, Azotobacter, Bacillus, Pseudomonas and cow dung. Application of half NPK recommended rate + Azotobacter chroococcum, + Bacillus megaterium + Pseudomonas fluorescens and poultry manure recorded significantly higher NPK uptake in the crop (2.47 N, 0.13 P O₃ and 1.90 K₂O kg/kg soil, respectively). Also, the application of half NPK dose and the 3 microbial inoculants and cow dung recorded higher uptake (2.76 N, 0.13 P O₃, 1.91 K₂O kg/kg soil). Uptake of nutrient was found to be low in control (0.68 N, 0.009 P O₃, 0.51K₂O kg/kg soil, respectively). The N uptake in control (0.68 N kg/kg soil) and treatment that received sole biofertilizers (0.82 N kg/kg soil)

TABLE VII A: EFFECT OF NPK, MANURE AND BIO-FERTILIZERS ON NUTRIENT CONTENT

Treatments	SDW	N	P	K
Control	18.97	3.60	0.08	3.76
½ NPK + A + B + CD	32.33	4.45	0.24	2.94
½ NPK + A + B + PM	30.27	4.40	0.19	3.13
½ NPK + A + P + CD	26.43	5.27	0.24	3.84
½ NPK + A + P + PM	35.23	3.89	0.19	3.42
½ NPK + A + B + P + CD	46.93	4.15	0.39	5.62
½ NPK + A + B + P + PM	42.40	5.81	0.32	4.50
A + B + P	20.13	3.06	0.22	4.09
CD + PM	28.20	4.14	0.24	3.90

S.E. 1.604 0.533 0.579 0.355

TABLE VII B: EFFECT OF NPK, MANURE AND BIO-FERTILIZERS ON NUTRIENT UPTAKE

Treatments	Nutrient uptake (g/kg)		
Control	0.68	0.06	0.51
½ NPK + A + B + CD	1.44	0.06	0.94
½ NPK + A + B + PM	1.33	0.05	0.94
½ NPK + A + P + CD	1.34	0.06	0.98
½ NPK + A + P + PM	1.36	0.06	1.20
½ NPK + A + B + P + CD	2.76	0.13	1.41
½ NPK + A + B + P + PM	2.47	0.13	1.90
A + B + P	0.82	0.03	0.61
CD + PM	1.33	0.05	1.02

S.E. 0.355 0.167 0.160

CD = Cowdung, PM = Poultry Manure, A = Azotobacter chroococcum, P = Pseudomonas fluorescens, B = Bacillus megaterium.

did not differ significantly, while the P and K uptake were greater in treatment that received sole biofertilizers than control. There was significant difference between these two treatments. Higher uptake of nutrients was due to better root proliferation induced by microbial inoculation and availability of nutrients which resulted in better uptake of nutrients. Similar findings were reported by [17].

DOI: http://dx.doi.org/10.24018/ejfood.2021.3.5.34

Vol 3 | Issue 5 | October 2021
Effects of Treatments on Residual Soil Nutrient Contents

The effect of NPK, manure and biofertilizers on residual N, P and K contents of maize is presented in Table VIII. The highest residual N, P and K in the soil was recorded with plant treated with half recommended rate of NPK, Azotobacter chroococcum, Bacillus megaterium, Pseudomonas fluorescence and poultry manure (1.05 g/kg N, 19.00 mg/kg P, and 1.52 Cmol/kg K2O, respectively) followed by plant that received half recommended rate of NPK, Azotobacter chroococcum, Bacillus megaterium and Pseudomonas fluorescence and cow dung (1.04 g/kg N, 15.98 mg/kg P, and 1.51 Cmol/kg K2O, respectively). These two results did not differ significantly from each other. While the lowest residual N was recorded with application of half recommended rate of NPK, Azotobacter chroococcum Bacillus megaterium, Cow dung and control. Although there was no significant difference between all the treatments with regards to P, lowest value was recorded with control (7.07 mg/kg P2O5) while lowest K was recorded with application of sole microbial inoculant (1.17 K2O Cmol/kg).

More availability of nutrients in soil can be attributed to the efficiency of PSB resulting in better P solubilization and increased availability of nitrogen by Azotobacter in soil and slowly release of nutrients by poultry manure and cow dung. This led to increased concentration of nutrients that improved the soil chemical parameters. These results are in conformity with the findings of [18]. Low availability of nutrient can be attributed to lack of available nutrient in the original soil, similar results were also reported by [19, 20].

Treatments	N (g/kg)	P (mg/kg)	K (Cmol/kg)
Control	0.85	7.07	1.17
½ NPK + A+B+CD	0.84	12.69	1.12
½ NPK + A+B+PM	0.86	12.38	1.14
½ NPK + A+P+CD	0.85	13.00	1.14
½ NPK + A+P+PM	0.86	14.69	1.14
⅛ NPK+1/2 A+B+CD	1.05	15.98	1.51
⅛ NPK+1/2 A+B+PM	1.05	19.00	1.52
A+B+P	0.88	10.51	1.09
CD + PM	0.85	16.02	1.13
S.E.	0.02	0.91	0.01

IV. CONCLUSION

The study revealed that there was a positive response of maize crop to treatments tested and that good growth, yield and nutrient uptake by maize is promoted with the application of half recommended rate of NPK, Azotobacter chroococcum, Bacillus megaterium, Pseudomonas fluorescence, and poultry manure as evidenced by an increase in above ground biomass. In general, it appears that, as expected, application of biofertilizers improved yield and other plant criteria. From the results of the experiment, it is clear that biofertilizers shows better results as compare to that of the control. Low values of growth parameters are obtained in pot treated with biofertilizers solely due to the absence of other nutrients and this can be overcome either by adding organic and chemical fertilizers containing nitrogen and other nutrients such as potassium and phosphorus to plant inoculated with bacteria as shown in this study. It is however recommended that cultivation of the plant should be done in the field instead of pots experiment, to provide an appropriate environment to the bacteria. Microbial analysis should also be done after the experiment to see the effect of microbial inoculants on soil chemical properties and micro flora.

ACKNOWLEDGMENT

The authors wished to acknowledge the Departments of Soil Science and Crop Protection, University of Maiduguri for providing the facilities during laboratory analyses.

REFERENCES

[1] FAO, “Quarterly bulletin of statistics,” Food and Agricultural Organization of the United Nation, Rome, Italy. pp. 8, 1996.
[2] R. A. Bokali, “Post-harvest technology of quality protein maize: storage and processing. Choosing the right technology,” final report Chatam U.K. NRI, pp. 44, 2000.
[3] FAOSTAT, “Quarterly bulletin of statistics,” Food and Agricultural Organization of the United Nation, Rome, Italy. pp. 47, 2017.
[4] H. A. Akintoye, and A. B. Olaniyan, “Yield of sweet corn in response to fertilizer sources”, Global Advance Research Journal of Agricultural Science, vol. 1, no. 5, pp. 110-116, 2012.
[5] S. Agyenim-Boateng, J. Zickermann, and M. Kornahrens, “Poultry manure effect on growth and yield of maize,” West African Journal of Applied Ecology, vol. 9, pp. 1-11, 2006.
[6] D. J. Udoh, B. A. Ndon Asuquo P. E. Ndaeyo NU (2005). Crop production techniques for the tropics. Concept Publisher, Lagos, Nigeria. pp. 223-247.
[7] M. Marozs/En1, S. Veres, V. Gajdos, N. B/Ekonyi, B. Tth, and L. LOvai, “The possible role of biofertilizers in agriculture,” Rutarstvo, pp. 585-588, 2005.
[8] S. Al-Khiat, H. Ali, “Effect of Cyanobacteria as a Soil Conditioner and Biofertilizer on Growth and Some Biochemical Characteristics of Tomato (Lycopersicon esculentum L.) Seedlings,” Thesis Submitted in partial fulfillment of the requirements of the Degree of Master of Science (M. Sc.) Microbiology (Algae), King Saud University. Special Publication, vol. 6, pp. 1-4, 2006.
[9] S. C. Wu, Z. H. Cao, Z. G. Lib, K. C. Cheunga and M. H. Wonga, “Effects of bio-fertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial,” Geoderma, vol. 125, pp. 155-166, 2004.
[10] A. J. Rayar, “Decline in fertility of a semi-arid savanna soil of northeastern Nigeria under continuous cropping,” Journal of Arid Agriculture, vol.1/2, pp. 227-241, 1988.
[11] A. Bari, A. Gholami, and H. A. Rahmani, “Growth promotion and enhanced nutrient uptake of maize (Zea mays L.) by application of plant growth promoting rhizobacteria in arid region of Iran,” J. Biol. Sci., vol. 8, no.6, pp. 1015-1020, 2008.
[12] S. Agyenim-Boateng, J. Zickermann and M. Kornahrens, “Poultry manure effect on growth and yield of maize,” West African Journal of Applied Ecology, vol. 9, pp. 1-11, 2006.
[13] A. G. Akonguwb, U. Ewa, A. Prince, O. Jude, A. Martin O. Simon, O. Nicholas, “Evaluation of Agronomic of Maize (Zea Mays L.) Under Different Rates of Poultry Manure Application in an Ultisol of Obubra, Cross River State Nigeria,” International Journal of Agriculture and Forestry, vol. 2, no. 4, pp. 138-144, 2012.
[14] K.S. Prabhakar, “Interaction effect of phosphate solubilizing bacteria and Azospirillumbrasiliense SP7 on growth and uptake of nutrients in maize,” M. Sc. (Agr.) Thesis, University of Agricultural Sciences, Bangalore. 1989.
[15] B. Shaharoona, M. Arshad, Z.A. Zahir and A. Khalid, “Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer,” Soil Biol. Biochem., vol. 38, pp. 2971-2975, 2006.
[16] R. Singh, D. P. Singh and P. K. Tyagi, “Effect of Azotobacter, farmyard manure and nitrogen fertilization on productivity of pearl millet hybrids (Pennisetum glaucum) in semi-arid tropical environment,” Arch. of Agron. Soil Sci., vol. 49, pp. 21–24, 2006.
[17] J. K. Balyan and B. S. Kumpawat, “Nutrient content and their Uptake influenced by integrated nutrient management in maize,” Inter. J. Agric. Sci., vol. 4, no. 2 pp. 453-456, 2008.

DOI: http://dx.doi.org/10.24018/ejfood.2021.3.5.34
Adam Lawan Ngala was born in Amasaburu village of Rann District in Kala-Balge Local Government Area of Borno State, Nigeria, on the 20th September 1972. He obtained B.Sc. Agriculture in 1998, M.Sc. Soil Science in 2007 and Ph.D. Soil Fertility and Plant Nutrition in 2017, all in the University of Maiduguri, Maiduguri, Borno State, Nigeria. He works in the Department of Soil Science, Faculty of Agriculture, University of Maiduguri as GRADUATE ASSISTANT in 2002, ASSISTANT LECTURER in 2007, LECTURER II in 2008, LECTURER I in 2011, SENIOR LECTURER in 2016 and ASSOCIATE PROFESSOR in 2019. Currently he is the head, Department of Soil Science, University of Maiduguri. He published 45 research works that included journal articles, Book chapters and conference papers. Notable among them are:

1. I. Y. Dugje, A. L. Ngala, “Influence of cowpea planting date and phosphorus level on striga infestation and performance of pearl millet in mixture with cowpea in a Nigerian Sudan Savanna,” The African Journal of Plant Science and Biotechnology, vol. 6, no. 1, pp. 38-43, 2012.
2. A. L. Ngala, H. Yakubu, I. J. Tewka, “Partial balance of N, P and K in a sole millet crop on a sandy loam soil of northeast Nigeria,” Journal of Soil Science and Environmental Management, vol. 4, no. 2, pp. 17-22, 2013.
3. G. Makinta, A. L. Ngala, M. K. Sandabe, “Distribution of available Sulphur in some soils of South Chad Irrigation Project area, Lake Chad Basin, Borno state, Nigeria,” International Journal of Plant and Soil Science, vol. 28, no. 3, pp. 1-9, 2019.

His current and previous research interests include nutrient omission trials and nutrient balance studies.

Dr. Ngala belongs to Soil Science Society of Nigeria (SSSN), International Union of Soil Science (IUSS), National Society of Organic Agriculture (NSOA) and Nigeria Institute of Soil Science (NISS). He obtained the Chancellors award for the best graduating student during 1998/1999 session and federal government scholarship award. He is a reviewer to many national and international journals.

Falmata Umar Digmari was born in Maiduguri, Borno State of Nigeria on 4th of September 1995 and attended my primary and secondary education at Future Hope Private School and Mairi Islamic Secondary school respectively. She obtained her first degree in GENERAL AGRICULTURE with a specialty in soil science in esteemed University of Maiduguri, Maiduguri, Borno state of Nigeria in the year 2019. She served as a youth corps member after her graduation rendering a one-year compulsory service as her quota to the growth and development of her father land, Nigeria in one of the prestigious states of the nation called Yobe state.

Mrs. Falmata now a housewife living at House No 39, Eyadema street, Asokoro, Abuja, Nigeria.

Rakiya Abdullahi is currently a Senior Lecturer with the Department of Soil Science, University of Maiduguri. She obtained her PhD in Soil Microbiology and was a winner of the ZAMALAH postgraduate scholarship in 2012 at University Malaysia Sarawak. She is a member and a reviewer to some referred academic journals. Aside her lecturing job, she mentor women in her community on conversion of food waste to organic fertilizer.

She is an environmentalist who seeks to improve and protect the quality of the natural environment, and an advocate in an agricultural scheme of organic farming. Her chief interest is directed towards the utilization of micro-organisms in the soil for bio-fertilization, bioremediation, and maintenance of soil health.

Joshua B. Ndirmbula was born in Chibok town in Chibok Local Government Area of Borno State, Nigeria, on the 21st March, 1966. He obtained B.Sc. Microbiology in 2014, M.Sc. Applied Entomology and Parasitology in view, all in the University of Maiduguri, Maiduguri, Borno State, Nigeria. He works in the Department of Crop Protection, Faculty of Agriculture, University of Maiduguri as SENIOR LABORATORY ASSISTANT in 1989, LABORATORY SUPERVISOR in 1993, TECHNOLOGIST II in 1995, TECHNOLOGIST I in 2002, SENIOR TECHNOLOGIST in 2007, PRINCIPAL TECHNOLOGIST in 2011, ASSISTANT CHIEF TECHNOLOGIST in 2014 and CHIEF TECHNOLOGIST in 2017. Currently he is the Head of Laboratory Unit, Department of Crop Protection, University of Maiduguri. He carried out several researches, notable among them are: Production of Amylase Enzyme from Trichoderma harzianum and Saccharomyces cerevisiae; Bioremediation of Ternary Waste Using Aspergillus niger; Bioremediation of Chromium and Lead of Different Concentration Using Cypothius and Botritis acalda. His current and previous research interests include Fungal Associated with Contaminants of Tomato Fruits; Kinetics of Ethanol Production Using Sugar Cains Bargers among others.

Mr. Ndirmbula belongs to Nigerian Institute of Science and Technology (NISTL).