Massive scalar field quasinormal modes of a Schwarzschild black hole surrounded by quintessence

Chunrui Ma and Yuanxing Gui, Wei Wang, Fujun Wang
School of Physics and Optoelectronic Technology, Dalian, 116024, People’s Republic of China
machunrui0312@163.com and thphys@dlut.edu.cn

Abstract. We present the quasinormal frequencies of the massive scalar field in the background of a Schwarzschild black hole surrounded by quintessence with the third-order WKB method. The mass of the scalar field u plays an important role in studying the quasinormal frequencies, the real part of the frequencies increases linearly as mass u increases, while the imaginary part in absolute value decreases linearly which leads to damping more slowly and the frequencies having a limited value. Moreover, owing to the presence of the quintessence, the massive scalar field damps more slowly.
1. Introduction

The quasinormal modes of black holes have drawn much attention in recent years. Vishveshwara first put forward the concept of quasinormal modes in calculations of the scattering of gravitational radiation by a Schwarzschild black-hole[1] and Press proposed the term quasinormal frequencies[2]. The quasinormal frequencies are an important characteristic of a black hole, because the frequencies only depend on the black hole parameters rather than the initial perturbation. In addition, the properties of quasinormal modes have been explored in the Ads/CFT correspondence[3] and loop quantum gravity[4].

On the other hand, a large number of astronomical observations, such as type Ia supernovae [5], CMB[6] and large scale structure[7], indicate that the expansion of the universe is speeding up rather than slowing down. To explain this accelerated expansion, the universe is regarded as being dominated by an exotic component with large negative pressure called ”dark energy” which constitutes about 70% of the energy density of the universe. There are several candidates for dark energy: the cosmological constant[8] and dynamic candidates(for example phantom[9], quintessence[10], k-essence[11] and quintom[12]). The difference of these candidates for dark energy is the size of the parameter ω_q, namely, the ratio of the pressure and energy density of the dark energy and for quintessence $-1 \leq \omega_q \leq -\frac{1}{3}$.

The quasinormal modes of different fields perturbation around different black holes have been widely investigated[13]-[32], especially the massless scalar field[33]. Although the massive field was studied in different black holes[34]-[37], the massive field quasinormal modes still have gaps. Kiselev[38] recently considered Einstein’s field equations for a black hole surrounded by quintessence and obtained a new solution related to state parameter ω_q of the quintessence. In this paper, we use the third-order WKB method to explore the quasinormal modes of massive scalar field perturbation around a Schwarzschild black hole surrounded by quintessence.

The outline of this paper is as follows: in section 2, we evaluate the quasinormal frequencies of the low overtones quasinormal modes. The discussion and summary are presented in section 3.

2. Massive scalar field quasinormal modes of a Schwarzschild black hole surrounded by Quintessence

Kiselev[38] stated a new static spherically-symmetric exact solution of Einstein equations describing a black hole charged or not and surrounded by the quintessence under the condition of additivity and linearity in the energy-momentum tensor. For the Schwarzschild black hole, the metric is given by[39]:

$$ds^2 = \left(1 - \frac{2M}{r} - \frac{c}{r^{3\omega_q+1}}\right)dt^2 - \left(1 - \frac{2M}{r} - \frac{c}{r^{3\omega_q+1}}\right)^{-1}dr^2 - r^2(d\theta^2 + \sin^2 \theta d\phi^2),$$ (1)

where M is the mass of the black hole, ω_q is the quintessential state parameter, c is the normalization factor dependent on $\rho_q = -\frac{\epsilon}{2^{3\omega_q+1}p_{m}^2}$, and ρ_q is the density of quintessence.
Massive scalar field quasinormal modes of a Schwarzschild black hole surrounded by quintessence

The massive scalar field in a curved background is governed by the Klein-Gordon equation:

\[\Box \Phi - u^2 \Phi = \frac{1}{\sqrt{-g}} \left(g^{\mu \nu} \sqrt{-g} \Phi_{,\nu} \right)_{,\mu} - u^2 \Phi = 0, \tag{2} \]

where \(\Phi \) is the scalar field.

After substituting equation (1) into equation (2) and separating angular and time variables, we obtain the radial equation:

\[\left(\frac{d^2}{dr_*^2} + \omega^2 - V(r) \right) \Phi(r) = 0, \tag{3} \]

where:

\[V(r) = (1 - \frac{2M}{r} - \frac{c}{r^{3\omega_q + 1}})(l(l + 1) + \frac{2M}{r^2} + \frac{c(3\omega_q + 1)}{r^{3\omega_q + 3}} + u^2), \tag{4} \]

\[dr_* = \frac{dr}{1 - \frac{2M}{r} - \frac{c}{r^{3\omega_q + 1}}}, \tag{5} \]

and \(l = 0, 1, 2, 3... \) parameterizes the field angular harmonic index. The effective potential \(V(r) \) approaches to a constant both at the event horizon and at spatial infinity. It is clear that the effective potential relates to the value of \(r \), angular harmonic index \(l \), the state parameter \(\omega_q \), the scalar field mass \(u \), the normalization factor \(c \) and the mass of the black hole \(M \). However, in this paper, we only want to investigate the relationship between the state parameter \(\omega_q \) or the scalar field mass \(u \) and the quasinormal modes. Therefore, taking \(M = 1 \) and \(c = 0.001 \), we compute the quasinormal frequencies stipulated by above potential using the third-order WKB method developed by Schutz, Will and Iyer[40]-[42]:

\[\omega^2 = [V_0 + (-2V_0')^{1/2}] \Lambda - i(n + \frac{1}{2})(-2V_0')^{1/2}(1 + \Omega), \tag{6} \]

where

\[\Lambda = \frac{1}{(-2V_0')^{1/2}} \left\{ \frac{1}{8} \left(\frac{V_0^{(4)}}{V_0''} \right) (\frac{1}{4} + \alpha^2) - \frac{1}{288} \left(\frac{V_0'''}{V_0''} \right)^2 (7 + 60\alpha^2) \right\}, \tag{7} \]

\[\Omega = \frac{1}{(-2V_0')^{1/2}} \left\{ \frac{5}{6912} \left(\frac{V_0'''}{V_0''} \right)^4 (77 + 188\alpha^2) \right. \\
- \frac{1}{384} \left(\frac{V_0'^4}{V_0''} \right) (51 + 100\alpha^2) + \frac{1}{2304} \left(\frac{V_0'^4}{V_0''} \right)^2 (67 + 68\alpha^2) \\
+ \frac{1}{288} \left(\frac{V_0''^6}{V_0''^2} \right) (19 + 28\alpha^2) - \frac{1}{288} \left(\frac{V_0''^6}{V_0''^2} \right) (5 + 4\alpha^2) \right\}, \tag{8} \]

and

\[\alpha = n + \frac{1}{2}, \tag{9} \]

\[V_0^{(n)} = \left. \frac{d^n V}{dr_*^n} \right|_{r_* = r_p}, \tag{10} \]

where \(n \) is the overtone number.
Massive scalar field quasinormal modes of a Schwarzschild black hole surrounded by quintessence

Table 1. Values of the quasinormal frequencies for low overtones in the Schwarzschild black hole without quintessence ($c = 0$) for fixed $l = 5$, $u = 0.2$

$\omega(n = 0)$	$\omega(n = 1)$	$\omega(n = 2)$	$\omega(n = 3)$	$\omega(n = 4)$
1.065754-0.095396i	1.055414-0.287524i	1.036163-0.483127i	1.010110-0.683090i	0.9790981-0.887095i

Table 2. Values of the quasinormal frequencies for low overtones in the Schwarzschild black hole surrounded by quintessence ($c = 0.001$) for fixed $l = 5$, $u = 0.2$

$3\omega_q + 1$	$\omega(n = 0)$	$\omega(n = 1)$	$\omega(n = 2)$	$\omega(n = 3)$	$\omega(n = 4)$
0.0	1.064163-0.095203i	1.053847-0.286942i	1.034639-0.482147i	1.008645-0.681703i	0.977700-0.885292i
-0.2	1.063768-0.095151i	1.053458-0.286786i	1.034262-0.481884i	1.008282-0.681329i	0.977355-0.884806i
-0.4	1.062374-0.095089i	1.052972-0.286597i	1.033790-0.481566i	1.007828-0.680878i	0.976921-0.884220i
-0.6	1.062656-0.095104i	1.052364-0.286373i	1.033200-0.481186i	1.007261-0.680339i	0.976380-0.883517i
-0.8	1.061885-0.094943i	1.051606-0.286107i	1.032465-0.480738i	1.006556-0.679700i	0.975710-0.882638i
-1.0	1.060920-0.094825i	1.050659-0.285798i	1.031552-0.480214i	1.005685-0.678952i	0.974885-0.881701i
-1.2	1.059714-0.094710i	1.049480-0.285446i	1.030420-0.479613i	1.004615-0.678084i	0.973881-0.880551i
-1.4	1.058205-0.094581i	1.048013-0.285053i	1.029026-0.478931i	1.003310-0.677091i	0.972671-0.879211i
-1.6	1.056320-0.094443i	1.046191-0.284623i	1.027316-0.478172i	1.001373-0.675948i	0.971230-0.877652i
-1.8	1.053963-0.094300i	1.043933-0.284170i	1.025229-0.477343i	0.999850-0.674662i	0.969539-0.875834i
-2.0	1.051018-0.094162i	1.041143-0.283715i	1.022701-0.476462i	0.997622-0.673216i	0.967584-0.873701i

Substituting the effective potential (4) into the formula above, we can get the quasinormal frequencies for the massive scalar field in the Schwarzschild black hole surrounded by quintessence background and the quasinormal frequencies are shown in table 1, table 2, table 3 and figures 1-2.

The date of table 1 is the quasinormal frequencies of a Schwarzschild black hole without quintessence and under the quintessence is given in table 2. Figure 1 shows that the real part and the imaginary part of the quasinormal frequencies change as the quintessential state parameter ω_q changes for fixed mass u. Comparing the table 1 with the table 2, we find the real part and the magnitude of imaginary part in the Schwarzschild space-time without quintessence are larger. It means that due to the presence of quintessence, the oscillations damp more slowly. Furthermore, the imaginary part in absolute value and the real part decrease as the value of ω_q decreases, as shown in figure 1 and table 1.

We present the quasinormal frequencies for different values of the mass of scalar field u in figs 2 and table 3. Notice that, The real part of the quasinormal frequencies grows with increasing of the mass field u, while the imaginary part of quasinormal frequencies in absolute value falls down. Moreover, the frequencies change linearly as u changes as shown in figure 2.
Massive scalar field quasinormal modes of a Schwarzschild black hole surrounded by quintessence

Figure 1. Quasinormal frequencies of the black hole surrounded by quintessence for $c = 0.001, n = 0, u = 0, 0.1, 0.2, 0.3, 3\omega_q + 1$ runs the values from 0 to -2.0 at intervals of -0.2. (a): $l = 2$, (b): $l = 3$, (c): $l = 4$, (d): $l = 5$.

3. Discussion and summary

We have thoroughly investigated the quasinormal modes for massive scalar field perturbation in a Schwarzschild black hole surrounded by quintessence background. The paper proposes the quasinormal modes are greatly influenced by the quintessence and the mass of scalar field, because the introduction of the quintessence and the mass u leads to less damping of the quasinormal modes. Actually c may be too smaller than 0.001 to neglect the influence of the quintessence. However, if the density of quintessence surrounding the black hole is high enough to influence distinctly the quasinormal modes, we can study the character of quintessence by the experimental date.

Another new phenomena found here is for given l, n, and ω_q, the real part of the frequencies linearly increase, while the magnitude of imaginary part linearly decrease as the mass of the scalar field u increases. As we know, the mass of the scalar field u has a maximum
Table 3. Values of the quasinormal frequencies for fixed $l = 3, n = 0$, in the Schwarzschild black hole surrounded by quintessence ($c = 0.001$) for different values of mass u.

$3\omega_q + 1$	$u = 0$	$u = 0.1$	$u = 0.2$	$u = 0.3$
0.0	0.674185-0.096319i	0.676547-0.095748i	0.683650-0.094028i	0.695548-0.091132i
-0.2	0.673930-0.096267i	0.676292-0.095696i	0.683395-0.093977i	0.695291-0.091082i
-0.4	0.673611-0.096204i	0.675973-0.095634i	0.683074-0.093915i	0.694968-0.091022i
-0.6	0.673212-0.096129i	0.675572-0.095559i	0.682671-0.093842i	0.694561-0.090952i
-0.8	0.672711-0.096041i	0.675071-0.095472i	0.682167-0.093757i	0.694051-0.090871i
-1.0	0.672084-0.095940i	0.674442-0.095372i	0.681534-0.093660i	0.693411-0.090780i
-1.2	0.671299-0.095825i	0.673655-0.095258i	0.680740-0.093552i	0.692607-0.090680i
-1.4	0.670317-0.095698i	0.672670-0.095134i	0.679746-0.093434i	0.691597-0.090575i
-1.6	0.669089-0.095562i	0.671438-0.095001i	0.678501-0.093312i	0.690331-0.090471i
-1.8	0.667553-0.095425i	0.669897-0.094868i	0.676944-0.093193i	0.688745-0.090377i
-2.0	0.665636-0.095295i	0.667972-0.094745i	0.674997-0.093089i	0.686761-0.090308i

Figure 2. Quasinormal frequencies of the black hole surrounded by quintessence for $c = 0.001, n = 0, u = 0, 0.1, 0.2, 0.3, 3\omega_q + 1 = -1.0$ (a): $l = 2$, (b): $l = 3$.

value dependent on the mode under consideration[43]. That is mean, the quasinormal frequencies have a limited value. Thereby, the introduction of the the quintessence and the mass u has enriched the quasinormal frequencies of the Schwarzschild black hole.
Massive scalar field quasinormal modes of a Schwarzschild black hole surrounded by quintessence

4. Acknowledgments

I would like to acknowledge Zhanhui Wang and Ming Liu for helpful discussions. This work is supported by the National Natural Science Foundation of China under Grant No. 10573004.

References

[1] Vishveshwara C V 1970 Nature 227 936
[2] Press W H 1971 Astrophys.J. 170 L105
[3] Maldacena J M 1998 Adv.Theor.Math.Phys. 2 231
 Gubser S S 2001 Phys.Rev.D 63 084017
 Cardoso V and Lemos J P S 2001 Class.Quantum.Grav. 18 5257
 Birmingham D, Sachs I and Solodukhin S N 2002 Phys.Rev.Lett. 88 151301
 Konoplya R A 2002 Phys.Rev.D 66 044009
 Wang B et al 2004 Phys.Rev.D 70 064025
[4] Hod S 1998 Phys.Rev.Lett. 81 4293
 Corichi A 2003 Phys.Rev.D 67 087502
 Dreyer O 2003 Phys.Rev.Lett. 90 081301
[5] Perlmutter S et al 1999 Astrophys.J. 517 565
 Knop R A et al 2003 Astrophys.J. 598 102
 Riess A G et al 2004 Astrophys.J. 607 665
 Zhang X and Wu F Q 2005 Phys.Rev.D 72 043524
[6] De Bernardis P et al 2000 Nature 404 955
 Halverson N W et al 2002 Astrophys.J. 568 38
 Lamon R and Durrer R 2006 Phys.Rev.D 73 023507
[7] Bacon D J et al 2000 Mon.Not.R.Astron.Soc. 318 625
 Bacon D J et al 2003 Mon.Not.R.Astron.Soc. 344 673
 Tegmark et al 2004 Phys.Rev.D 69 103501
[8] Padmanabhan T 2003 Phys Rep 380 235
 Alcaniz J S 2004 Phys.Rev.D 69 083521
[9] Caldwell R R 2002 Phys.Lett.B 545 23
 Chimento L P and Lazkoz R 2003 Phys.Rev.Lett. 91 211301
 Vikman A 2005 Phys.Rev.D 71 023515
[10] Caldwell R R et al 1998 Phys.Rev.Lett. 80 1582
 Sahni V and Wang L M 2000 Phys.Rev.D 62 103517
 Capozziello S et al 2006 Class.Quantum.Grav. 23 1205
 Rogerio Rosenfeld and Joshua A Frieman 2006 [astro-ph/0611241]
[11] Chiba T et al 2000 Phys.Rev.D 62 023511
 Scherrer R J 2004 Phys.Rev.Lett. 93 011301
[12] Wei H et al 2005 Class.Quantum.Grav. 22 3189
 Zhao G B et al 2005 Phys.Rev.D 72 123515
 Feng B et al 2006 Phys.Lett.A 20 2075
[13] Regge T and Wheeler J A 1957 Phys.Rev. 108 1063
[14] Zerill F J 1970 Phys.Rev.Lett. 24 737
[15] Ferrari V and Mashhoon V 1984 Phys.Rev.D 30 295
[16] Nollert H P 1993 Phys.Rev.D 47 5253
[17] Cardoso V and Lemos P S J 2001 Phys.Rev.D 64 084017
 Zhidenko A 2004 Class.Quantum.Grav. 21 273
 Cardoso V and Lemos P S J 2003 Phys.Rev.D 67 084020
[18] Leaver E W 1985 Proc.R.Soc.A 402 285
Massive scalar field quasinormal modes of a Schwarzschild black hole surrounded by quintessence

[19] Konoplya R A 2002 Phys.Rev.D 66 044009
[20] Khanal U 1985 Phys.Rev.D 32 879
 Park M I 1998 Phys.Letters.B 440 275
[21] Shao C C and Wang B et al Phys.Rev.D 71 044003
[22] Cardoso V and Lemos P S J 2001 Phys.Rev.D 63 124015
 Gupta K S and Sen S 2005 Phys.Letters.B 618 237
[23] Miranda A S and Zanchin V T 2006 Phys.Rev.D 73 064034
 Du D P et al 2004 Phys.Rev.D 70 064024
 Govindarajan T R and Suneeta V 2001 Class.Quantum.Grav. 18 265
 Horowitz G T and Hubeny V E 2000 Phys.Rev.D 62 024027
[24] Chang J F and Shen Y G 2005 Nuclear.Phys.B 712 347
[25] Konoplya R A 2002 Phys.Rev.D 66 084007
 Leaver E W 1990 Phys.Rev.D 41 2986
 Konoplya R A 2002 Phys.Letters.B 550 117
[26] Berti E and Kokkotas K D 2003 Phys.Rev.D 68 044027
 Hod S 2003 Phys.Rev.D 67 081501(R)
[27] Jing J L and Pan Q Y 2005 Nuclear.Phys.B 728 109
 Berti E and Kokkotas K D 2005 gr-qc/0502065v2
[28] Cho H T 2003 Phys.Rev.D 68 024003
 Konoplya R A and Abdalla E 2005 Phys.Rev.D 71 084015
 Nollert H P 1992 Phys.Rev.D 47 5253
[29] Berti E et al 2004 Phys.Rev.D 70 124006
 Chen S B and Jing J L 2005 Class.Quantum.Grav. 22 4651
[30] Jing J L 2004 Phys.Rev.D 69 084009
[31] Giammatteo M and Moss I G 2005 Class.Quantum.Grav. 22 1803
[32] Daghigh R G and Kunstatter G 2005 Class.Quantum.Grav. 22 4113
[33] Fiziev P P 2006 Class.Quantum.Grav. 23 2447
 Konoplya R A 2005 Phys.Rev.D 71 024038
 Ghosh A et al 2006 Class.Quantum.Grav. 23 1851
[34] Konoplya R A 2002 Phys.Letters.B 550 117
 Xue H L et al 2002 Phys.Rev.D 66 024032
[35] Simone L E and Will C M 1992 Class.Quantum.Grav. 9 963
[36] Burko L M and Khanna G 2004 Phys.Rev.D 70 044018
[37] Konoplya R A and Zhidenko A V 2006 Phys.Rev.D 72 124040
[38] Kiselev V V 2003 Class.Quantum.Grav. 20 1187
[39] Chen S B and Jing J L 2005 Class.Quantum.Grav. 22 4651
[40] Schutz B F and Will C M 1985 Astrophys.J.Lett.Ed. 291 L33
[41] Iyer S and Will C M 1987 Phys.Rev.D 35 3621
[42] Iyer S 1987 Phys.Rev.D 35 3632
[43] Simone L E and Will C M 1992 Class.Quantum.Grav. 9 963