A finite rank separable approximation for the quasiparticle RPA with Skyrme interactions is applied to study the low lying quadrupole and octupole states in some S isotopes and giant resonances in some spherical nuclei. It is shown that characteristics calculated within the suggested approach are in a good agreement with available experimental data.

1. INTRODUCTION

The random phase approximation (RPA) \cite{1,2,3,4} with the self-consistent mean-field derived with making use of the Gogny’s interaction \cite{5} or the Skyrme-type interactions
\[7 \] is nowadays one of the standard tools to perform nuclear structure calculations. Many properties of the nuclear collective states can be described successfully within such models \[8,9,10,11,12,13,14 \].

Due to the anharmonicity of vibrations there is a coupling between one-phonon and more complex states \[2,4 \]. The main difficulty is that the complexity of calculations beyond the standard RPA increases rapidly with the size of the configuration space and one has to work within limited spaces. It is well known that using simple separable forces one can perform calculations of nuclear characteristics in very large configuration spaces since there is no need to diagonalize matrices whose dimensions grow with the size of configuration space. For example, the well-known quasiparticle-phonon model (QPM) \[4 \] belongs to such a model. Very detailed predictions can be made by QPM for nuclei away from closed shells \[15,16,17 \].

That is why a finite rank approximation for the particle–hole (p-h) interaction resulting from Skyrme-type forces has been suggested in our previous work \[18 \]. Thus, the self-consistent mean field can be calculated in the standard way with the original Skyrme interaction whereas the RPA solutions would be obtained with the finite rank approximation to the p-h matrix elements. It was found that the finite rank approximation reproduces reasonably well the dipole and quadrupole strength distributions in Ar isotopes \[18 \].

Recently, we extended the finite rank approximation for p-h interactions of Skyrme type to take into account pairing \[19 \]. We tested our approach to calculate characteristics of the low-lying quadrupole and octupole states in some spherical nuclei. In this paper we apply our approach to study the low lying quadrupole and octupole states in some S isotopes. Choosing as examples some spherical nuclei we demonstrate an ability of the method to describe correctly the strength distributions in a broad excitation energy interval.
II. BASIC FORMULAE AND DETAILS OF CALCULATIONS

We start from the effective Skyrme interaction [6] and use the notation of Ref. [20] containing explicit density dependence and all spin-exchange terms. The single-particle spectrum is calculated within the HF method. The continuous part of the single-particle spectrum is discretized by diagonalizing the HF hamiltonian on the harmonic oscillator basis [21]. The p-h residual interaction \tilde{V}_{res} corresponding to the Skyrme force and including both direct and exchange terms can be obtained as the second derivative of the energy density functional with respect to the density [22]. Following our previous papers [18,19] we simplify \tilde{V}_{res} by approximating it by its Landau-Migdal form. For Skyrme interactions all Landau parameters F_l, G_l, F'_l, G'_l with $l > 1$ are zero. Here, we keep only the $l = 0$ terms in V_{res} and in the coordinate representation one can write it in the following form:

$$V_{\text{res}}(r_1, r_2) = N_0^{-1} \left[F_0(r_1) + G_0(r_1)\sigma_1\sigma_2 + (F'_0(r_1) + G'_0(r_1)\sigma_1\sigma_2)\tau_1\tau_2 \right] \delta(r_1 - r_2)$$ \hspace{1cm} (1)

where σ_i and τ_i are the spin and isospin operators, and $N_0 = 2k_Fm^*/\pi^2\hbar^2$ with k_F and m^* standing for the Fermi momentum and nucleon effective mass. The expressions for F_0, G_0, F'_0, G'_0 in terms of the Skyrme force parameters can be found in Ref. [20]. Because of the density dependence of the interaction the Landau parameters of Eq.(1) are functions of the coordinate r.

The p-h residual interaction can be presented as a sum of N separable terms. To illustrate a procedure for making the finite rank approximation we examine only the contribution of the term F_0. In what follows we use the second quantized representation and V_{res} can be written as:

\[
\hat{V}_{\text{res}} = \frac{1}{2} \sum_{1234} V_{1234} : a_1^+ a_2^+ a_4 a_3 :
\]

where a_1^+ (a_1) is the particle creation (annihilation) operator and 1 denotes the quantum numbers $(n_1 l_1 j_1 m_1)$,

\[
V_{1234} = \int \phi_1^*(r_1) \phi_2^*(r_2) V_{\text{res}}(r_1, r_2) \phi_3(r_1) \phi_4(r_2) d\mathbf{r}_1 d\mathbf{r}_2,
\] \hspace{1cm} (3)
\[V_{1234} = \sum_{JM} \hat{J}^{-2} \langle j_1 | Y_J | j_3 \rangle \langle j_2 | Y_J | j_4 \rangle I(j_1j_2j_3j_4) \times \]
\[(-1)^{j_3+j_4-M-m_3-m_4} \langle j_1 m_1 j_3 - m_3 | J - M \rangle \langle j_2 m_2 j_4 - m_4 | JM \rangle. \]

In the above equation, \(\langle j_1 | Y_J | j_3 \rangle \) is the reduced matrix element of the spherical harmonics \(Y_{J\mu} \), \(\hat{J} = \sqrt{2J+1} \), and \(I(j_1j_2j_3j_4) \) is the radial integral:

\[I(j_1j_2j_3j_4) = N_0^{-1} \int_0^\infty F_0(r) u_{j_1}(r)u_{j_2}(r)u_{j_3}(r)u_{j_4}(r) \frac{dr}{r^2}, \]

where \(u(r) \) is the radial part of the HF single-particle wavefunction. As it is shown in [18,19] the radial integrals can be calculated accurately by choosing a large enough cutoff radius \(R \) and using a \(N \)-point integration Gauss formula with abscissas \(r_k \) and weights \(w_k \).

\[I(j_1j_2j_3j_4) \simeq N_0^{-1} \frac{R^2}{2} \sum_{k=1}^N w_k F_0(r_k) u_{j_1}(r_k)u_{j_2}(r_k)u_{j_3}(r_k)u_{j_4}(r_k) \]

So we employ the hamiltonian including an average nuclear HF field, pairing interactions, the isoscalar and isovector particle–hole residual forces in the finite rank separable form [19]. This hamiltonian has the same form as the QPM hamiltonian with \(N \) separable terms [1,23], but in contrast to the QPM all parameters of this hamiltonian are expressed through parameters of the Skyrme forces.

In what follows we work in the quasiparticle representation defined by the canonical Bogoliubov transformation:

\[a_{jm}^\dagger = u_j \alpha_{jm}^\dagger + (-1)^{j-m} v_j \alpha_{j-m}. \]

The single-particle states are specified by the quantum numbers \((jm)\) The quasiparticle energies, the chemical potentials, the energy gap and the coefficients \(u,v \) of the Bogoliubov transformations (7) are determined from the BCS equations.

We introduce the phonon creation operators

\[Q_{\lambda\mu}^\dagger = \frac{1}{2} \sum_{jj'} \left(X_{jj'}^{\lambda\mu} A^+(jj';\lambda\mu) - (-1)^{\lambda-\mu} Y_{jj'}^{\lambda\mu} A(jj';\lambda - \mu) \right) \]

where
\[
A^{+}(jj'; \lambda \mu) = \sum_{mm'} \langle jmjm' | \lambda \mu \rangle \alpha_{jm}^{+} \alpha_{jm'}^{+}.
\]

(9)

The index \(\lambda \) denotes total angular momentum and \(\mu \) is its z-projection in the laboratory system. One assumes that the QRPA ground state is the phonon vacuum \(| 0 \rangle \), i.e. \(Q_{\lambda \mu} | 0 \rangle = 0 \). We define the excited states for this approximation by \(Q_{\lambda \mu}^{+} | 0 \rangle \).

Making use of the linearized equation-of-motion approach \([1]\) one can derive the QRPA equations \([3,4]\):

\[
\begin{pmatrix}
A & B \\
-B & -A
\end{pmatrix}
\begin{pmatrix}
X \\
Y
\end{pmatrix}
= w
\begin{pmatrix}
X \\
Y
\end{pmatrix}.
\]

(10)

In QRPA problems there appear two types of interaction matrix elements, the matrix related to forward-going graphs \(A^{(\lambda)}_{j_1j_1'}(j_2j_2') \) and the matrix related to backward-going graphs \(B^{(\lambda)}_{j_1j_1'}(j_2j_2') \). Solutions of this set of linear equations yield the eigen-energies and the amplitudes \(X, Y \) of the excited states. A dimension of the matrixes \(A, B \) is a space size of the two-quasiparticle configurations. Expressions for \(A, B \) and \(X, Y \) are given in \([19]\).

Using the finite rank approximation we need to invert a matrix having a dimension \(4N \times 4N \) independently of the configuration space size. One can find a prescription how to solve the system \((10)\) within our approach in \([18,19]\). The QRPA equations in the QPM \([4,23]\) have the same form as the equations derived within our approach \([18,19]\), but the single-particle spectrum and parameters of the p-h residual interaction are calculated making use of the Skyrme forces.

In this work we use the standard parametrization SIII \([24]\) of the Skyrme force. Spherical symmetry is assumed for the HF ground states. It is well known \([11,12]\) that the constant gap approximation leads to an overestimating of occupation probabilities for subshells that are far from the Fermi level and it is necessary to introduce a cut-off in the single-particle space. Above this cut-off subshells don’t participate in the pairing effect. In our calculations we choose the BCS subspace to include all subshells lying below 5 MeV. The pairing constants are fixed to reproduce the odd-even mass difference of neighboring nuclei. In order to perform RPA calculations, the single-particle continuum is discretized \([21]\) by diagonalizing the HF
hamiltonian on a basis of twelve harmonic oscillator shells and cutting off the single-particle spectra at the energy of 160 MeV. This is sufficient to exhaust practically all the energy-weighted sum rule. Our investigations [19] enable us to conclude that $N=45$ is enough for multipolarities $\lambda \leq 3$ in nuclei with $A \leq 208$. Increasing N, for example, up to $N=60$ in ^{208}Pb changes results for energies and transition probabilities not more than by 1%, so all calculations in what follows have been done with $N=45$. Our calculations show that, for the normal parity states one can neglect the spin-multipole interactions as a rule and this reduces by a factor 2 the total matrix dimension. For example, for the octupole excitations in ^{206}Pb [19] we need to invert a matrix having a dimension $2N=90$ instead of diagonalizing a 1376×1376 matrix as it would be without the finite rank approximation. For light nuclei the reduction of matrix dimensions due to the finite rank approximation is 3 or 4. So, for heavy nuclei our approach gives a large gain in comparison with an exact diagonalization. It is worth to point out that after solving the RPA problem with a separable interaction, to take into account the coupling with two-phonon configurations demands to diagonalize a matrix having a size that does not exceed 40 for the giant resonance calculations in heavy nuclei whereas one would need to diagonalize a matrix with a dimension of the order of a few thousands at least for a non-separable case.

III. RESULTS OF CALCULATIONS

As a first example we examine the 2^+_1 and 3^-_1 state energies and transition probabilities in some S isotopes. The results of our calculations for the energies and B(E2)-values and the experimental data [25] are shown in Table 1. One can see that there is a rather good agreement with experimental data. Results of our calculations for S isotopes are close to those of QRPA with Skyrme forces [26]. The evolution of the B(E2)-values in the S isotopes demonstrates clearly the pairing effects. The experimental and calculated B(E2)-values in ^{36}S are two times less than those in $^{34,38}\text{S}$. The neutron shell closure leads to the vanishing of the neutron pairing and a reduction of the proton gap. As a result there is a remarkable
reduction of the E2 transition probability in 36S. Some overestimate of the energies in 34,38S indicates that there is room for two-phonon effects. The study of the influence of two-phonon configurations on properties of the low-lying states within our approach is in progress now.

Results of our calculations for the 3_1^- energies and the transition probabilities B(E3) are compared with experimental data [27] in Table 2. Generally there is a good agreement between theory and experiment.

An additional information about the structure of the first $2^+, 3^-\text{ states can be extracted by looking at the ratio of the multipole transition matrix elements } M_n/M_p \text{ that depend on the relative contributions of the proton and neutron configurations. In the framework of the collective model for isoscalar excitations this ratio is equal to } M_n/M_p = N/Z \text{ and any deviation from this value can indicate an isovector character of the state. The } M_n/M_p \text{ ratio can be determined experimentally by using different external probes [28,29,30]. Recently [20], QRPA calculations of the } M_n/M_p \text{ ratios for the } 2_1^+ \text{ states in some S isotopes have been done. The predicted results are in good agreement with experimental data [20]. Our calculated values of the } M_n/M_p \text{ ratios for the } 2_1^+ \text{ and } 3_1^- \text{ states are shown in Tables 1 and 2, respectively. Our results support the conclusions of Refs. [26] about the isovector character of the } 2_1^+ \text{ states in } ^{36}\text{S. As one can see from Table 2 our calculations predict that the } M_n/M_p \text{ ratios for the } 3_1^- \text{ states are rather close to } N/Z, \text{ thus indicating their isoscalar character.}

To test our approach for high lying states we examine the dipole strength distributions. The calculated dipole strength distributions (GDR) in 36Ar, 112Sn and 208Pb are displayed in Fig. 1. For the energy centroids (m_1/m_0) we get 19.9 MeV, 15.8 MeV and 12.7 MeV in 36Ar, 112Sn and 208Pb respectively. The calculated energy centroid for 208Pb is in a satisfactory agreement with the experimental value [31] (13.4 MeV). The values of energy centroids for 36Ar and 112Sn are rather close to the empirical systematics [32] $E_c = 31.2A^{-1/3} + 20.6A^{-1/6}$ MeV. For 36Ar the QRPA gives results that are very similar to our previous calculations with the particle-hole RPA [15] because the influence of pairing on the giant resonance properties is weak. It is worth to mention that experimental data for the giant resonances in light nuclei are very scarce.
The octupole strength distribution in ^{208}Pb is rather well studied in many experiments [33,34]. The calculated octupole strength distribution up to the excitation energy 35 MeV is shown in Fig. 2. According to experimental data [33] for the 3^{-}_1 state in ^{208}Pb the excitation energy equals to $E_x = 2.62$ MeV and the energy-weighted sum rule (EWSR) is exhausted by 20.4% that can be compared with the calculated values $E_x = 2.66$ MeV and EWSR=21%. For the low-energy octupole resonance below 7.5 MeV our calculation gives the centroid energy $E_c = 5.96$ MeV and EWSR=12% and experimental values are 5.4 MeV and 15.2% accordingly. For the high-energy octupole resonance we get values $E_c = 20.9$ MeV and EWSR=61% that are in a good agreement with experimental findings $E_c = 20.5 \pm 1$ MeV and EWSR=75 ± 15% [34]. One can conclude that present calculations reproduce correctly not only the 3^{-}_1 characteristics, but the whole octupole strength distribution in ^{208}Pb.

IV. CONCLUSION

A finite rank separable approximation for the QRPA calculations with Skyrme interactions that was proposed in our previous work is applied to study the evolution of dipole, quadrupole and octupole excitations in several nuclei. It is shown that the suggested approach enables one to reduce remarkably the dimensions of the matrices that must be inverted to perform structure calculations in very large configuration spaces.

As an illustration of the method we have calculated the energies and transition probabilities of the $1^{-}, 2^{+}$ and 3^{-} states in some S, Ar, Sn and Pb isotopes. The calculated values are very close to those that were calculated in QRPA with the full Skyrme interactions. They are in an agreement with available experimental data.

V. ACKNOWLEDGMENTS

A.P.S. and V.V.V. thank the hospitality of IPN-Orsay where a part of this work was done. This work is partly supported by INTAS Fellowship grant for Young Scientists (Fellowship Reference N YSF 2002-70), by IN2P3-JINR agreement and by the Bulgarian Science
Foundation (contract Ph-801).
REFERENCES

[1] D.J. Rowe, *Nuclear Collective Motion, Models and Theory* (Barnes and Noble, 1970).

[2] A. Bohr and B. Mottelson, *Nuclear Structure vol.2* (Benjamin, New York, 1975).

[3] P. Ring and P. Schuck, *The Nuclear Many Body Problem* (Springer, Berlin, 1980).

[4] V.G. Soloviev, *Theory of Atomic Nuclei: Quasiparticles and Phonons* (Institute of Physics, Bristol and Philadelphia, 1992).

[5] D. Gogny, in *Nuclear Self-consistent Fields*, eds. G. Ripka and M. Porneuf (North-Holland, Amsterdam, 1975).

[6] D. Vautherin and D.M. Brink, Phys. Rev. C 5, 626 (1972).

[7] A.B. Migdal, *Teoriya Konechnykh Fermi-Sistem i svoistva Atomnih Yader* (2nd edn., Nauka, Moscow, 1983).

[8] H. Flocard and P. Quentin, Ann. Rev. Nucl. Part. Sci. 28, 523 (1978).

[9] J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Chinn and J. Dechargé, Phys. Rev. C 53, 2809 (1996).

[10] G. Colò, N. Van Giai, P.F. Bortignon and R.A. Broglia, Phys. Rev. C50, 1496 (1994).

[11] E. Khan and Nguyen Van Giai, Phys. Lett. B 472, 253 (2000).

[12] G. Colò and P.F. Bortignon, Nucl. Phys. A696, 427 (2001).

[13] S.A. Fayans et al., Nucl. Phys. A676, 49 (2000).

[14] E.E. Saperstein, S.A. Fayans and V.A. Khodel, Phys. of Part. & Nucl., 9, 221 (1978).

[15] V.V. Voronov and V.G. Soloviev, Phys. of Part. & Nucl., 14, 583 (1983).

[16] A.I. Vdovin, V.V. Voronov, V.G. Soloviev and Ch. Stoyanov, Phys. of Part. & Nucl., 16, 245 (1985).
[17] S. Galès, Ch. Stoyanov and A.I. Vdovin, Phys. Rep. 166, 127 (1988).

[18] Nguyen Van Giai, Ch. Stoyanov and V.V. Voronov, Phys. Rev. C57, 1204 (1998).

[19] A.P. Severyukhin, Ch. Stoyanov, V.V. Voronov, Nguyen Van Giai, Phys. Rev. C66, 034304 (2002).

[20] Nguyen Van Giai and H. Sagawa, Phys. Lett. 106 B, 379 (1981).

[21] J.P. Blaziot and D. Gogny, Nucl. Phys. A284, 429 (1977).

[22] G.F. Bertsch and S.F. Tsai, Phys. Reports 18 C, 126 (1975).

[23] V.G. Soloviev, Yad. Fiz. 50, 40 (1989).

[24] M. Beiner, H. Flocard, Nguyen Van Giai and Ph. Quentin, Nucl. Phys. A238, 29 (1975).

[25] S. Raman, C.W. Nestor Jr. and P. Tikkanen, At. Data and Nucl. Data Tables 78, 1 (2001).

[26] E. Khan et al., Nucl. Phys. A694, 103 (2001).

[27] T. Kibedi and R.H. Spear, At. Data and Nucl. Data Tables 80, 35 (2002).

[28] A.M. Bernstein, V.R. Brown and V.A. Madsen, Comments Nucl. Part. Phys., 11, 203 (1983).

[29] M.A. Kennedy, P.D. Cottle and K.W. Kemper, Phys. Rev., C 46, 181, (1992).

[30] J.K. Jewell et al., Phys. Lett. B 454, 181 (1999).

[31] S.S. Dietrich and B.L.Berman, At. Data and Nucl. Data Tables 38, 199 (1988).

[32] A. Van der Woude, Prog. in Part. and Nucl. Phys. 18, 217 (1987).

[33] Y. Fujita et al., Phys. Rev. C32, 425 (1985).

[34] T. Yamagata et al., Phys. Rev. C23, 937 (1981)
TABLES

TABLE I. Energies, B(E2)-values and \((M_n/M_p)/(N/Z)\) ratios for up-transitions to the first \(2^+\) states

Nucleus	Energy (MeV)	B(E2↑) \((e^2\text{fm}^4)\)	\((M_n/M_p)/(N/Z)\)			
	Exp.	Theory	Exp.	Theory	Exp.	Theory
\(^{32}\text{S}\)	2.23	3.34	300±13	340	0.94±0.16	0.92
\(^{34}\text{S}\)	2.13	2.48	212±12	290	0.85±0.23	0.87
\(^{36}\text{S}\)	3.29	2.33	104±28	130	0.65±0.18	0.40
\(^{38}\text{S}\)	1.29	1.55	235±30	300	1.09±0.29	0.73

TABLE II. Energies, B(E3)-values and \((M_n/M_p)/(N/Z)\) ratios for up-transitions to the first \(3^-\) states

Nucleus	Energy (MeV)	B(E3↑) \((e^2\text{fm}^6)\)	\((M_n/M_p)/(N/Z)\)		
	Exp.	Theory	Exp.	Theory	Theory
\(^{32}\text{S}\)	5.01	7.37	12700±2000	8900	0.89
\(^{34}\text{S}\)	4.62	5.66	8000±2000	8500	1.06
\(^{36}\text{S}\)	4.19	3.86	8000±3000	7200	1.15
\(^{38}\text{S}\)	–	5.68	–	6200	1.01
FIGURES

FIG. 1. Strength distributions of the GDR in 36Ar, 112Sn and 208Pb

FIG. 2. The octupole strength distribution in 208Pb
