Seasonal variation and source apportionment of inorganic and organic components in PM$_{2.5}$: influence of organic markers application on PMF source apportionment

Qianqian Xue1 · Yingze Tian1,2 · Yang Wei1 · Danlin Song3 · Fengxia Huang3 · Shanshan Tian1 · Yinchang Feng1,2

Received: 13 December 2021 / Accepted: 31 May 2022 / Published online: 15 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
PM$_{2.5}$ samples collected over a 1-year period in a Chinese megacity were analyzed for organic carbon (OC), elemental carbon (EC), water-soluble ions, elements, and organic markers such as polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, and n-alkanes. To study the applicability of organic markers in source apportionment, the relationship between organic and inorganic components was analyzed, and four scenarios were implemented by incorporating different combinations of organic and inorganic tracers. The consistent temporal variations trend of 4-ring PAHs and SO$_4^{2-}$ prove that coal burning directly emits a portion of sulfate. The concentrations of ∑5–7-ring PAHs, NO$_3^-$, and NO$_2^-$ show a trend of simultaneous increase and decrease, implying collective impacts from the vehicle source. The concentrations of OC and EC positively correlate with the 5–7-ring PAHs and Cu and Zn, which proves that part of Cu and Zn comes from vehicle emissions. Five factors were identified by incorporating only conventional components, including secondary source (SS, 30%), fugitive dust (FD, 14%), construction dust (CD, 4%), traffic source (TS, 19%), and coal combustion (CC, 14%). Six factors were identified by incorporating conventional components and PAHs, including SS (28%), FD (15%), CD (4%), CC (13%), gasoline vehicles (GV, 12%), and diesel vehicles (DV, 10%). Eight factors were identified by incorporating conventional components, PAHs, hopanes, and n-alkanes, including SS (26%), FD (17%), CD (3%), GV (14%), DV (8%), immature coal combustion (ICC, 5%), mature coal combustion (MCC, 10%), and biogenic source (BS, 1%).

Keywords Organic markers · PMF · PM$_{2.5}$ · Source apportionment

Introduction
Source apportionment of particulate matters (PMs) is the process to identify and quantify the contribution of the emission sources, and it is vital for formulating emission reduction policies for air pollution (Liu et al. 2017, 2016; Lu et al. 2018). However, it is more difficult to identify specific sources based on only the inorganic markers (Galvao et al. 2019; Lin et al. 2010; Xue et al. 2019). Organic compounds in source apportionment can be utilized to identify specific sources. For example, PAHs (polycyclic aromatic hydrocarbons) are generated due to incomplete combustion of organic material, which can be used as markers for the vehicle exhausts, combustion of coal and biomass (Chen et al. 2016; Esmaeilrad et al. 2020; Fraser et al. 2003; Galvao et al. 2019; Lin et al. 2010; Liu et al. 2012; Oros and Simoneit 2000; Pereira et al. 2017; Xue et al. 2019). Hopanes and steranes are emitted by using lubricating oils in gasoline and diesel vehicles, while hopanes are also present in the smoke of coal combustion. Configurations of hopanes can also be employed to identify fossil fuels of different maturity (Krumal et al. 2013; Liu et al. 2012; Pereira et al. 2017). Alkanes with different carbon numbers...
Environmental Science and Pollution Research (2022) 29:79002–79015

There are some studies that use both organic and inorganic markers in PMF to improve factors interpretation (Belis et al. 2019; Choi et al. 2015; Esmaeilirad et al. 2020; Galvao et al. 2019; Wang et al. 2015, 2012; Xue et al. 2019). Some studies applied organic markers to identify the sources of OC (Kang et al. 2018; Krumal et al. 2013; Wang et al. 2009, 2017). Several approaches have previously been summarized by using organic markers to distinguish the collinearity sources of PMs, e.g., molecular marker chemical mass balance (MM-CMB) models (Ke et al. 2008; Schauer and Cass 2000; Zheng et al. 2002) and hybrid of positive matrix factorization (PMF) and MM-CMB models (Ke et al. 2008; Lu et al. 2018). PMF works by using sufficient identification information to apportion sources of PM (Dai et al. 2020; Ke et al. 2008). However, when the variables included model increase, the demand for sample size is also greater (Ke et al. 2008). Thus, the sample size is a limitation that has to be considered. Besides, PMF is unable to apportion particulate matter sources with large fractions of low signal-to-noise organic components and few inorganic makers well (Christensen and Schauer 2008; Lu et al. 2018). Simultaneously inputting a large number of organic components and a small number of inorganic components in the PMF model without screening may cause obvious deviations due to the collective influence of element and ions (Lu et al. 2018). As the organics data set increases, the influence of organics closely resembles (Christensen and Schauer 2008). However, how to better incorporate organic and inorganic markers into the PMF model for the purpose of source apportionment has been less investigated.

Despite the benefits of using organic markers in the interpretation of PMF factors, some uncertainty still remains in the source apportionment due to similar temporal variations of the organic markers. Compared with inorganics, organics are more susceptible to meteorological factors (Al-Naiema et al. 2018; Kim et al. 2013). PAHs will undergo reactions such as photolysis, oxidation, desorption, and resorption under the influence of temperature and luminosity (Al-Naiema et al. 2018; Huang et al. 2014; Kim et al. 2013; Mu et al. 2018). Therefore, the reaction activity of organics will affect whether it can be used as a marker (Lin et al. 2010).

In view of the above issues, one-year monitoring of PM$_{2.5}$ components was carried out. Conventional components including elements, ions, OC, EC, and organic components including PAHs, hopanes, steranes, and n-alkanes were analyzed. Four main objectives were established in this paper: (1) to explore the seasonal variation in concentrations and sources of inorganic and organic components; (2) to identify the relations among organic and inorganic markers, as well as the relationship between components and meteorological factors, through their temporal trends and correlation coefficients; and (3) to study the applicability of organic and inorganic markers in the PMF model by incorporating different combinations of organic and inorganic tracers.

Materials and methods

Particulate matter sampling

The sampling site is located on the 7th floor in the Environmental Protection Building (104°04′E, 30°35′N), which is located in the central city of Chengdu and belongs to residential areas and office areas. There is no obvious pollution source around except for some subway construction around during in the sampling period. PM$_{2.5}$ samples were collected using 90-mm quartz and polypropylene fiber filters by a medium-volume air sampler. The sampling was stopped during rainy and snowy days. There were 80 daily PM$_{2.5}$ samples that were collected in four seasons in 2018, including spring (April), summer (July and August), autumn (October and November), and winter (January, February, and December). Each sampling lasted for 22 h, with a flow rate of 100 L min$^{-1}$. Other conditions of quality control and quality assurance of sampling were the same as those in our previous studies (Xue et al. 2019).

Filter analysis

The detailed analysis method and instrument of 7 ions (NH_4^+, Cl^-, NO_3^-, $\text{SO}_4^{2−}$, Na^+, K^+, and Ca^{2+}), 18 inorganic elements (Al, As, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Si, Ti, V, and Zn), organic carbon (OC), and elemental carbon (EC) are provided in Supplementary context I and Table S1. For organic components, each filter was cut into a quarter for analysis of 18 PAHs, 7 hopanes, 2 steranes, and 20 n-alkanes. Samples were pretreated by ultrasound extraction for 15 min and repeated twice. Then, 10 ml of dichloromethane (DCM) and 10 ml of hexane (1:1,v:v) were added to the tubes. Florisil solid-phase extraction column (1 g/12 mL) was used to clean up the extract and the above fractions and then were eluted with 20 mL of DCM/hexane (1:1). The collected solution after the solid-phase extraction was combined and reduced to less than 5 mL (about 2 mL or 3 mL) using the rotary evaporator. The extract was then solvent-exchanged to hexane, and the volume was finally condensed to 1 mL. The mixed recovery surrogates (naphthalene-d$_8$, acenaphthene-d$_{10}$, phenanthrene-d$_{10}$, chrysene-d$_{12}$, perylene-d$_{12}$, hexamethylbenzene, and n-Tetracosane-d$_{50}$) were spiked into the sample vial. The prepared samples need to be refrigerated at −20 °C and analyzed within 30 days. The organic compounds were analyzed by a gas chromatography/mass spectrometer (GC/MS), which was equipped with a DB-5MS fused-silica capillary
column (30 m × 0.25 mm, 0.25 mm film thickness, Agilent Technology); 1 μL was injected into a splitless injector, and pure helium (purity of 99.99% or more) was used as a carrier gas at a constant flow rate of 1.0 mL min⁻¹.

Analytical procedure of GC/MS

To analyze PAHs, hopanes, and steranes, inlet and temperature transmission line temperatures were set to 230 °C and 280 °C, and the initial ionization temperature was set to 280 °C. The chromatography temperature program was set as follows: The column oven temperature was initially held at 50 °C for 2 min, increased to 240 °C at a rate of 10 °C min⁻¹, and finally increased to 280 °C at 5 °C min⁻¹ and then held for 20 min. Mass spectrometry conditions were set as follows: The EI mode was selected, and the ionization energy level was 70 eV. An internal standard (IS) (naphthalene-D8, acenaphthylene-D10, phenanthrene-D10, phenanthrene-D12, pyrene-D10, hexamethylbenzene) was applied to the samples to qualify the actual volumes of the target compounds present. As for n-alkanes, inlet and temperature transmission line temperatures were 300 °C; the initial ionization temperature was 300 °C. Chromatography temperature program followed the steps; column oven temperature was initially held at 50 °C, increased to 60 °C at a rate of 2.5 °C min⁻¹, and then increased to 280 °C at a rate of 22 °C min⁻¹, and finally increased to 325 °C at 30 °C min⁻¹ and held for 11 min.

Quality assurance and quality control

Strict quality control procedures were implemented during the experiment. All samples were collected by one instrument and analyzed by the same methods. All instruments and glassware were pretreated before use. When analyzing each batch of samples, method/lab blanks and parallel samples were used to control the data quality. The concentration range of the calibration curve of the studied substance was 0.005–20 mg mL⁻¹, with the correlation coefficients (r) exceeding 0.99. The purity of the standards used were all above 98%, and other basic information is shown in Supplementary Table S2. The recovery rates of most PAHs, hopanes, steranes, and n-alkanes were within 100 ± 20% (Supplementary Table S3). However, the recovery rates of low-molecular-weight PAHs and alkanes were low; due to the higher volatility of low molecular weight PAHs and alkanes, there may be losses during the pretreatment process such as ultrasonic extraction and rotary evaporation steps (Famiyeh et al. 2021; Xue et al. 2019). The limit of detection (LOD) for PAHs, hopanes, steranes, and n-alkanes is given in Supplementary Table S4.

Data analysis

SPSS19.0 performs descriptive analysis, principal component analysis, and cluster analysis, and R language performs correlation analysis and visualization. The United States Environmental Protection Agency Positive matrix factorization (US EPA PMF5.0) was used to identify the source categories and estimate their contributions in our study, whose principle has been well introduced in other studies (Ikemori et al. 2021; Liu et al. 2017; Tian et al. 2016, 2014; Yu and Park 2021).

To study the applicability of organic markers in source apportionment, four scenarios were implemented. The EPA PMF5.0 was applied for the source apportionment of PM₂.₅ during the four scenarios. The detailed source apportionment procedure is reported in Supplementary context 2.

1. PMFtra: The first scenario was set by incorporating only conventional components (elements, ions, OC, and EC) into the PMF, which was defined as PMFtra. A total of 18 chemical species of 80 samples were simulated.

2. PMFmore: The second scenario was set by incorporating conventional components and all organic markers (PAHs, hopanes, and n-alkanes) into the PMF, which was defined as PMFmore. The purpose of the second scenario is to investigate how to include as many organic markers as possible, and whether there is a difference between the source apportionment results. A total of 57 chemical species of 80 samples were simulated.

3. PMFless: To study whether the part organic markers can play a role in source apportionment, the third scenario was set by incorporating conventional components and PAHs into the PMF, which was defined as PMFless. A total of 29 chemical species of 80 samples were simulated.

4. PMFscr: In order to minimize the variables included in the PMFscr. This scenario was set by incorporating conventional components and organic markers (PAHs, hopanes, and n-alkanes) after screening into the PMF, which was defined as PMFscr. A total of 40 chemical species of 80 samples were simulated.

Results and discussion

Seasonal characteristics of PM₂.₅ levels and components

Seasonal trends of particulate and components with concentration during four seasons have been studied. The measured concentrations of PM₂.₅, WSI, elements, OC, EC, and the
sum of organic species are shown in Fig. 1. Concentrations of PM$_{2.5}$ are highest in the winter (114.2 ± 58.0 μg m$^{-3}$) and lowest in the summer (48.2 ± 14.3 μg m$^{-3}$). Concentrations of WSI in the autumn and winter are higher than those in summer and spring. The average concentrations of the WSI in the four seasons are 32.2 ± 20.2 μg m$^{-3}$ (winter), 32.0 ± 17.6 μg m$^{-3}$ (autumn), 20.4 ± 13.6 μg m$^{-3}$ (spring), and 13.6 ± 5.7 μg m$^{-3}$ (summer). Concentrations of NO$_3^-$ are higher in autumn and winter than in spring and summer (Supplementary Fig. S1), which might be caused by the NH$_4$NO$_3$ volatilization in the warmer spring and summer. The total concentrations of the inorganic elements are the highest in spring (14.5 ± 5.1 μg m$^{-3}$ and 4.6 ± 1.6 μg m$^{-3}$) and winter (14.7 ± 7.5 μg m$^{-3}$ and 4.5 ± 2.8 μg m$^{-3}$) are higher than those in summer (13.6 ± 5.8 μg m$^{-3}$ and 4.1 ± 1.6 μg m$^{-3}$) and spring (14.0 ± 7.5 μg m$^{-3}$ and 3.9 ± 2.9 μg m$^{-3}$). However, a slight difference was found in the seasonal variation of the sum of organic species (PAHs, hopanes, steranes, and n-alkanes), which the lowest concentration is observed in autumn. The annual average concentrations of the sum of organic species are approximately equal to 0.6 μg m$^{-3}$.

Seasonal characteristics of organic components

The PAHs concentrations of four seasons are presented in Fig. 2. The annual average concentration of total PAHs is 7.4 ng m$^{-3}$. The total PAHs are higher in winter (13.0 ng m$^{-3}$) than in spring (4.9 ng m$^{-3}$), autumn (3.9 ng m$^{-3}$), and summer (2.8 ng m$^{-3}$). DBA is the most abundant PAH (17–23% of total PAHs) in four seasons, followed by BbF (6–16%) and BghiP (9–13%). These results echo those of Ma et al. (2018), who found a higher concentration of PAHs in the winter period than in the spring and summer.

The mean concentrations of hopanes, ααα(20R)-cholestane, and ααα(20S)-cholestane in four seasons are shown in Fig. 3. The sum concentrations of hopanes and steranes are 7.7 ng m$^{-3}$, 7.6 ng m$^{-3}$, 5.5 ng m$^{-3}$, and 4.6 ng m$^{-3}$ in spring, winter, summer, and autumn, respectively. Like
PAHs, the high concentration in winter is mainly due to larger emissions from coal combustion and poor dispersion (e.g., weaker winds and lower temperature inversions). The concentration of hopanes is approximately 10 times that of steranes (Supplementary Fig. S3). \(17\alpha(H),21\beta(H)\)-Hopane is the most abundant hopane, followed by \(17\alpha(H),21\beta(H)-30\text{-norhopane}\). \(17\alpha(H),21\beta(H)\)-Hopane can be used as a marker for mature fossil fuels, and \(17\alpha(H),21\beta(H)-30\text{-norhopane}\) can indicate the maturity of coal combustion sources, such as anthracite.

Concentrations of the n-alkanes in four seasons are plotted in Fig. 4. A total of 20 n-alkanes (ranging from C14 to C33) are detected. The total n-alkane concentrations in PM2.5 range from 161.3 to 2020.4 ng m\(^{-3}\). The total concentrations of n-alkanes (Supplementary Fig. S4) in summer (854.3 ng m\(^{-3}\)) are higher than those in spring (652.9 ng m\(^{-3}\)), autumn (651.2 ng m\(^{-3}\)), and winter (586.6 ng m\(^{-3}\)). Concentrations of C14 to C21 n-alkanes are higher in spring and winter than those in summer and autumn (Fig. 4). Studies have shown that n-alkanes with lower carbon numbers (C \(\leq\) 24) are mainly from the combustion of fossil fuels, such as vehicle emission and coal combustion (Ling et al. 2008; Lyu et al. 2017; Tian et al. 2021; Wang et al. 2009). Concentrations of C22–C33 n-alkanes are higher in summer than those in autumn, spring, and winter (Fig. 4). High-carbon n-alkanes (C \(\geq\) 25) are mainly from higher plant wax emissions and other biogenic sources such as pollen and spores (Lyu et al. 2017; Wang et al. 2009).

Diagnostic ratios of organic components

The PAHs diagnostic ratios for four seasons (Table 1) are obtained since they can prove some emission sources, such as gasoline vehicles, diesel vehicles, coal, or wood combustion (Famiyeh et al. 2021; Krumal et al. 2013). The values of PAHs ratios can also be changed by the phase, transport, and degradation of PAHs (Ma et al. 2018). The ratio of BeP/BaP is related to aerosol photolysis. BeP and BaP emissions from the local PAHs contain are similar. However, BaP is more unstable and is likely to undergo photolysis or oxidation (Famiyeh et al. 2021; Kong et al. 2018; Jin et al. 2019; Iakovides et al. 2019; Oliveira et al. 2011; Pacheco et al. 2017; Pereira et al. 2017). The average BeP/BaP ratio is 1.4 in winter, 1.8 in autumn, 2.0 in spring, and 2.1 in summer, respectively. The concentration of BeP is higher than that of BaP, especially in spring and summer, mainly due to the photolysis or oxidation of the BaP in summer and spring caused by the high temperature and sufficient sunlight (Pereira et al. 2017). This suggested that the PAHs found at the site are aged. The BaP/BghiP and IcdP/(IcdP + BghiP) ratios are close to 0.4–0.7 and 0.2–0.4, similar to the ratio for the gasoline vehicles and diesel vehicle presented in Table 1. The average Phe/Ant ratio ranged between 5.6 and 7.7 in the four seasons, also approaching that of the gasoline vehicles and diesel vehicle (Cao et al. 2019; Fang et al. 2020; Famiyeh et al. 2021; Gune et al. 2019; Hu et al. 2019).

The homohopane index (22S/(22S + 22R)) of hopanes is shown in Table 1, which is much greater in summer (0.5) than in spring (0.2), autumn (0.1), and winter (0.2). The homohopane index is in the range of 0.2–0.3 for winter samples in Brno, Czech Republic, while which is higher (0.4–0.5) for summer (Krumal et al. 2013). The homohopane index is 0.3 for winter and 0.6 for summer in Baoji, China (Wang et al. 2009). It was reported that the homohopane index (22S/(22S + 22R)) for coal smoke samples increases with coal rank (lignite 0.05; brown coal 0.09; sub-bituminous coal 0.20; bituminous coal 0.35) (Oros and Simoneit 2000), and the homohopane index (22S/(22S + 22R)) for traffic emissions is about 0.5–0.6 (Tian et al. 2021). This implies vehicle exhausts contributed most to hopanes in summer; however, coal combustion also contributed to hopanes in
other seasons (Tian et al. 2021). Diagnostic ratios of C29αβ/C30αβ are 0.6–0.7 in four seasons, which are in the range of traffic emissions. As shown in Fig. 4 and Table 1, the Cmax of n-alkanes are C16, C18, and C28 in winter, while the Cmax of n-alkanes are at C28 and C30 in summer. Above all, n-alkanes in Chengdu during spring and winter mainly come from coal combustion and vehicle emissions, while n-alkanes are partly influenced by biogenic sources in summer and autumn. Previous studies showed that C29 and C31 mainly come from the emission of plant wax (Ling et al. 2008; Wang et al. 2009). The Cmax of gasoline vehicles are mainly C18 and C25, and the Cmax of diesel vehicles is C20 (Ling et al. 2008; Lyu et al. 2017; Wang et al. 2009).

Correlations of components in PM$_{2.5}$

Temporal variations of concentrations of conventional and organic components and the meteorological factors (T (temperature), relative humidity (RH), and wind speed (WS)) during the sampling period were presented in Supplementary Figs. S5 and S6. The meteorological parameters were downloaded from a website (https://rp5.ru/). Supplementary Fig. S5a presents that the concentrations of Σ5–7-ring PAHs, NO$_3^-$, and NO$_2$ have a consistent temporal variations trend, showing a trend of simultaneous peak and valley concentrations. The results show that 5–7-ring PAHs are potentially affected by the vehicle source in this study (Lin et al. 2010; Pereira et al. 2017; Xue et al. 2019). Supplementary Fig. S5b presents that the concentrations of Σ4-ring PAHs and SO$_4^{2-}$ have consistent temporal variations. Four-ring PAHs (like pyrene and benzo(a)anthracene) have been used as markers for coal emissions (Lin et al. 2010; Liu et al. 2012; Oros and Simoneit 2000). Additionally, it can be reported that burning coal can directly emit a portion of sulfate (Dai et al. 2019).

The concentrations of OC and EC exhibit a weak correlation with the sum of 5–7-ring PAHs (0.52, p value < 0.05) and Cu and Zn (0.51 and 0.70, p value < 0.01) (Supplementary Table S5), which prove that part of Cu and Zn comes from vehicle emissions; 5–7-ring PAHs are markers for traffic (Lin et al. 2010; Pereira et al. 2017; Xue et al. 2019), which are released by incomplete combustion of fossil fuels. Unlike 5–7-ring PAHs, Cu and Zn are mainly from tires and brakes wear or other vehicle parts, not fuel combustion (Birmili et al. 2006; Guan et al. 2018).

Supplementary Fig. S6 presents that the concentrations of ions and PAHs have an opposite temporal variations trend with temperature. Cl$^-$, NO$_3^-$, NH$_4^+$, and 2–4-ring PAHs are more significantly affected by temperature (Zang et al. 2021). The photochemical and secondary reactions of the most reactive species (such as 2–4-ring PAHs, NO$_3^-$, and NH$_4^+$) are more easily occurring at high temperatures (Hsu et al. 2019). Besides, due to the higher volatility of low molecular weight PAHs (2–4-ring PAHs), as the temperature increases, the G/P distribution behavior leads it to more favorably partition into the gas phase (Hsu et al. 2019). However, high-carbon n-alkanes (C29-C33) have a consistent temporal variations trend with temperature, which is consistent with that the high-carbon n-alkanes are mainly from higher plant wax emissions and other biogenic sources such as pollen and spores, which are mainly strong in the higher temperature season (Lin et al. 2008; Tian et al. 2021).
Table 1 Diagnostic ratios of organic components

	Gasoline vehicle	Diesel vehicle	Brown coal	Sub-bituminous coal	Bituminous coal	Wood burning	Road dust	References
BaP/BghiP	0.5–0.8	0.3–0.4						Famiyeh et al. (2021); Gao and Ji (2018); Gune et al. (2019)
BeP/BaP	1.1–1.3	2.0–2.5	0.8–1.6	0.4	1.4			Famiyeh et al. (2021); Kong et al. (2018); Jin et al. (2019); Iakovides et al. (2019); Oliveira et al. (2011); Pacheco et al. (2017); Pereira et al. (2017)
Phe/Ant	3.4–8.0	7.6–8.8	3		8			Cao et al. (2019); Fang et al. (2020); Famiyeh et al. (2021); Gune et al. (2019); Hu et al. (2019)
IcdP/	0.1–0.2	> 0.3	0.58	0.6				Fang et al. (2020); Famiyeh et al. (2021); Gurkan Ayyildiz and Esen (2020); Iakovides et al. (2019); Kubo et al. (2020); Zhang et al. (2018)

	Spring	Summer	Autumn	Winter			
BaP/BghiP	0.4	0.6	0.5	0.7			
BeP/BaP	2	2.1	1.8	1.4			
Phe/Ant	6.6	6.7	5.6	7.7			
IcdP/	0.4	0.4	0.3	0.2			
Table 1 (continued)	Diesel vehicle	Brown coal	Sub-bituminous coal	Bituminous coal	Wood burning	Road dust	References
---------------------	----------------	------------	---------------------	----------------	--------------	-----------	------------
Fluo/Fla+pyr	0.4	0.6–0.7	0.5	0.5	0.5	Famyeh et al. (2021); Iakovides et al. (2019); Tian et al. (2013); Wang et al. (2017)	
Cmax	C10, C25	C20	>C29	C24	C29αβ/C30αβ	Iakovides et al. (2021); Krumholz et al. (2016); Oros and Simoneit (2000); Tian et al. (2013); Wang et al. (2017)	
CPI	0.6–0.7	0.4	0.9–1.2	0.9	0.7	Iakovides et al. (2021); Krumholz et al. (2016); Oros and Simoneit (2000); Tian et al. (2013); Wang et al. (2017)	
22S/(22S+22R)	0.6	0.5	0.1–0.4	0.2	0.5	Iakovides et al. (2021); Krumholz et al. (2016); Oros and Simoneit (2000); Tian et al. (2013); Wang et al. (2017)	
2021; Lyu et al. 2017; Wang et al. 2009). All components present opposite temporal variations trend with wind speed in winter, showing a trend of higher concentrations with lower speed, and low concentrations with high speed.

Source characterization

Identification of PMF factors

US EPA PMF5.0 was used to realize source apportionment in four scenarios. Bootstrap (BS) and displacement of factor elements (DISP) were run to estimate the uncertainty of receptor modeling (Supplementary Table S6). The results of scenario 2 show that when a large number of components (conventional components and all organic markers without screening) are included, the co-linearity of the sources increases due to the large correlation between some organic components (Supplementary Fig. S7). That is, the model extracts organic components uniformly to one or two factors, thereby masking the identity of the organic components, making it impossible to distinguish the sources by its identity (Supplementary Fig. S8). Therefore, based on the analysis of the correlation between organic and inorganic markers and between organic and organic markers, the components included in the PMF were screened. Figure 5 and Supplementary Fig. S9 show the source profiles in three scenarios (PMFtra, PMFscr, and PMFless). The source categories were identified as follows.

1. Secondary source

Factortra1 (PMF model by incorporating only conventional components), Factorscr1 (PMF model by incorporating conventional components and organic markers (PAHs, hopanes, and n-alkanes after screening), and Factorless1 (PMF model by incorporating conventional components and organic markers (only PAHs)) are characterized by high loadings of SO$_4^{2-}$, NO$_3^-$, NH$_4^+$, and OC. Secondary nitrate formed via the ammonia and NO$_3^-$, and secondary sulfate was produced by ammonia and SO$_4^{2-}$ (Dai et al. 2021; Zang et al. 2021). Photochemical reactions along with the precursors like NOX and volatile organic compounds lead to the formation of secondary organic aerosol (Bari and Kindzierski 2017). Thus, SO$_4^{2-}$, NO$_3^-$, NH$_4^+$, and OC are considered as markers of sulfate and nitrate and SOA (Dai et al. 2020; Xue et al. 2019). Therefore, Factortra1, Factorscr1 and Factorless1 are called as secondary source in this study.

2. Fugitive dust

Factortra2, Factorscr2, and Factorless2 are characterized by large percentage contributions to Si, Ca, and Al, as well as some Fe, Cu, and SO$_4^{2-}$. Fugitive dust

![Fig. 5](image-url)
is entrained into the atmosphere by both natural and anthropogenic sources such as soil dust and other anthropogenic activities (Bi et al. 2019). Elements like Si, Al, Ca, Fe, and Cu are typical markers of fugitive dust (Bi et al. 2019; Dai et al. 2019; Liu et al. 2017). Thus, Factortra3, Factortra4, and Factortra5 are characterized as urban fugitive dust.

(3) Construction dust

Factortra3, Factortra5, and Factortra7 are characterized by the high weights of Si and Ca as well as some Na, Mg, and NO3−. Construction dust is mainly generated by construction activities because the construction site has not been hardened (Yang et al. 2020). Elements like Si, Ca, Na, and Mg are considered as markers of construction dust (Bi et al. 2019). Thus, Factortra3, Factortra5, Factorma1, and Factorma3 are characterized as construction dust.

(4) Traffic source

Factortra4 is characterized by high proportions of OC, EC, Al, Si, Ca, Cu, Fe, and Zn. Vehicle emissions are likely to be the predominant source of PM2.5 in urban cities in China in recent years (Bi et al. 2019; Cui et al. 2016; Zhang et al. 2015). Chengdu’s vehicle population reached more than four million in 2016, rendering Chengdu second only to Beijing in terms of levels of car ownership (Shi et al. 2018; Kong et al. 2020). It has been shown that vehicle emissions have a large amount of OC, EC, NO3−, and NH4+ (Bi et al. 2019; Sun et al. 2021; Tian et al. 2021). The fractions of Al, Si, and Ca may be associated with the resuspension of road dust (Bi et al. 2019). Cu, Fe, and Zn are indicative of tire and brake wear (Birmili et al. 2006; Guan et al. 2018; Bi et al. 2019; Sun et al. 2021; Tian et al. 2021). Thus, Factortra4 is finally identified as the traffic source, which includes exhaust and non-exhaust.

By incorporating PAHs, vehicles can be refined into gasoline and diesel vehicles in PMFscr4 and PMFless4. Factortra4 is characterized by high percentage concentrations of OC, EC, NO3−, BbF, BkF, BaP, 17α(H),21β(H)-hopane, C16, C18, and C25. The concentration of OC to EC ratio is higher than 2 (3.0) in PMFscr4. BbF, BkF, BaP, 17α(H),21β(H)-hopane, C16, C18, and C25 have been regarded as markers of gasoline vehicles (Chen et al. 2016; Choi et al. 2015; Galvao et al. 2019; Lin et al. 2010; Wang et al. 2021). Factorma1 is also characterized by high BbF, BkF, BaP, and IcdP. The concentration of OC to EC ratio is 3.5 in PMFless4. Thus, Factortra4 and Factorma1 are identified as gasoline vehicles.

Factortra5 is characterized by the high weights of OC, EC, Flt, Pyr, BbF, IcdP, DBA, BghiP, Cor, 17α(H),21β(H)-hopane, C16, C18, C20, and C28; the concentration of OC to EC ratio is lower than 1 (0.86) in Factortra5. Diesel vehicles generally emit more EC than OC, and more light PAHs (Flt, Pyr, BbF), and the n-alkanes in highest abundance were found to be C20 (Chen et al. 2016; Fraser et al. 2003; Kang et al. 2018; Lin et al. 2010; Pereira et al. 2017). Factorless5 also presents high fractions of OC, EC, BaA, Ant, and DBA. The concentration of OC to EC ratio is 0.66 in Factorless5. Therefore, Factortra5 and Factorless5 are identified as the diesel vehicles source.

(5) Coal combustion

Factortra5 is characterized by high loadings of OC, EC, and SO42−, as well as some Si and Ca. Coal is the main fuel used in China and is widely used in coal-fired power plants, coal-fired industrial boilers, and residential household stoves (Bi et al. 2019). The source profiles of coal combustion in China mainly consist of crustal materials, OC, EC, and SO42− (Belis et al. 2019; Bi et al. 2019; Xue et al. 2019; Tian et al. 2021). Thus, Factortra5 is identified as coal combustion.

Factorma4 is characterized by high loadings of OC, EC, SO42−, Si, Ca, Flt, Pyr, BaA, BbF, 17α(H),21β(H)-30-norhopane, 17α(H),21β(H)-hopane, C24, and C27. Four-ring PAHs have been regarded as markers of coal combustion (Belis et al. 2019; Bi et al. 2019; Xue et al. 2019; Tian et al. 2021). 17α(H),21β(H)-30-Norhopane can identify the marker of combustion of maturity coal (Bi et al. 2008; Oros and Simoneit 2000; Tian et al. 2021). The Cmax of n-alkanes emitted by bituminous coal and anthracite are C27 and C24 (Choi et al. 2015; Galvao et al. 2019; Oros and Simoneit 2000). Therefore, Factorma4 is identified as the mature coal combustion. Factorma7 is characterized by high loadings of OC, EC, SO42−, Si, Ca, Flt, Pyr, BaA, BbF, 17β(H),21β(H)-hopane, C16, C18, and C25. 17β(H),21β(H)-hopane, C16, and C18 have been regarded as markers of immature coal combustion source (Bi et al. 2008; Choi et al. 2015; Lin et al. 2010; Wang et al. 2009, 2015). Thus, Factorma7 is identified as immature coal combustion. Factorless5 is characterized by high loadings of OC, EC, SO42−, Si, Ca, Flt, Pyr, BaA, and BbF. Thus, Factorless6 is identified as the coal combustion. Therefore, we can conclude that by incorporating PAHs, hopanes, and n-alkanes, the PMFscr model distinguishes coal combustion source into mature coal combustion and immature coal combustion sources.

Biogenic source

The profiles of Factorma5 are characterized by high proportions of high-carbon n-alkanes, especially C29, C30, and C31. In contrast to n-alkanes derived from fossil fuel combustion, which are dominated by low molecular weight ones (<C25), n-alkanes originated from plant wax are dominated by high molecular weight ones (>C25) (Lin et al. 2010; Wang et al.
Thus, Factor$_{scr}$ is finally identified as the biogenic source. This factor was not recognized by PMF$_{tra}$ and PMF$_{less}$ due to the lack of incorporation of suitable organic markers.

Comparison of source apportionment results of three scenarios

Figure 6 presents the average percentage of PM$_{2.5}$ mass concentrations estimated by the PMF for the three scenarios. The secondary sources, urban fugitive dust, and construction dust share the same average percentage of PM$_{2.5}$ in the three scenarios. As for the coal combustion source, the average percentage of PM$_{2.5}$ mass concentrations obtained by PMF$_{tra}$ is 14%; PMF$_{less}$ incorporating PAHs and conventional components is 13%. The summed percentage of mature coal combustion and immature coal combustion source obtained by PMF$_{scr}$ is 14%; that is, the apportionment results of coal combustion source in the three scenarios are relatively consistent. The average percentage of PM$_{2.5}$ mass concentrations of traffic source obtained by PMF$_{tra}$ is 19%; the average percentage of PM$_{2.5}$ in gasoline vehicles and diesel vehicles obtained by PMF$_{less}$ is 22%. The summed percentage of gasoline and diesel vehicles source obtained by PMF$_{scr}$ is 22%; that is, the apportionment results of traffic source in the three scenarios are basically consistent.

PMF$_{tra}$, PMF$_{less}$, and PMF$_{scr}$ input different components to obtain relatively consistent results, indicating that the source apportionment results after incorporating organic markers are reliable. Correlation between modeled and measured PM$_{2.5}$ concentrations of the three scenarios are also exhibited in Supplementary Fig. S10. Comparing the correlation between modeled and measured PM$_{2.5}$ concentrations of the three PMF models, the source apportionment results of the three models are all good. Therefore, by including the organic components such as PAHs, this study can well distinguish motor vehicle sources into diesel vehicle sources and gasoline vehicle sources. By including the organic components such as PAHs, hopane, and n-alkanes, this study can well distinguish motor vehicle sources from diesel vehicle sources and gasoline vehicle sources and at the same time can distinguish coal combustion sources into maturity coal combustion and immaturity coal combustion sources. What is more, the source apportionment results have certain reliability.
Conclusions

This study explored the seasonal variations of inorganic and organic components in PM$_{2.5}$ and identified the relationship among organic markers, inorganic markers, and meteorological factors. What is more, this study carried out research on the applicability of organic markers and inorganic markers in the PMF model.

The highest and lowest concentrations of conventional components (PM$_{2.5}$, WSI, tracer elements, OC, and EC) were observed in winter and summer, respectively. While the highest concentration of the sum of organic species (PAHs, hopanes, steranes, and n-alkanes) was observed in winter and spring, and the lowest concentration was in autumn.

By including the organic markers such as PAHs, this study can well distinguish motor vehicle sources into diesel vehicle sources and gasoline vehicle sources. If the organic markers (such as PAHs, hopane, and n-alkanes) are included, this study can well distinguish motor vehicle sources into diesel vehicle and gasoline vehicle sources and at the same time distinguish coal combustion sources into maturity coal combustion and immaturity coal combustion sources, and the source apportionment results have certain reliability.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11356-022-21332-5.

Author contribution Qianqian Xue: writing – original draft, methodology. Yingze Tian: methodology, writing – review and editing. Yang Wei: grammar check. Danlin Song and Fengxia Huang: basic methodology. Yingze Tian: methodology, writing – review and editing. All authors contributed toward revising and improving the manuscript.

Funding This study is supported by the National Natural Science Foundation of China (41977181), the Young Elite Scientists Sponsorship Program by Tianjin (TJSQNTJ-2018-04), and the Fundamental Research Funds for the Central Universities, Nankai University (63211064).

Data availability All relevant data are within the manuscript and available from the corresponding author upon request.

Declarations

Ethics approval Not applicable.

Consent to participate All authors participated in this work.

Consent for publication All authors agree to publish.

Conflict of interest The authors declare no competing interests.

References

Al-Naiema IM, Hettiyadura APS, Wallace HW, Sanchez NP, Madler CJ, Cevik BK, Bui AAT, Kettler J, Griffin RJ, Stone EA (2018) Source apportionment of fine particulate matter in Houston, Texas: insights to secondary organic aerosols. Atmos Chem Phys 18:15601–15622. https://doi.org/10.5194/acp-18-15601-2018

Bari MA, Kindzierski WB (2017) Characterization of air quality and fine particulate matter sources in the town of Hinton, Alberta. Atmos Pollut Res 9:534–543. https://doi.org/10.1016/j.apr.2017.07.003

Belis CA, Pikridas M, Lucarelli F, Petralia E, Cavalli F, Calzogli G, Berico M, Sciare J (2019) Source apportionment of PM by combining high time resolution organic and inorganic composition datasets. Atmos Environ-xt 3:100046. https://doi.org/10.1016/j.aeaoa.2019.100046

Bi XH, Dai QL, Wu JH, Zhang Q, Zhang WH, Luo RX, Cheng Y, Zhang JM, Wang L, Yu ZJ, Zhang YF, Tian YZ, Feng YC (2019) Characteristics of the main primary source profiles of particulate matter across China from 1987 to 2017. Atmos Chem Phys 19:3223–3243. https://doi.org/10.5194/acp-19-3223-2019

Bi XH, Simonet BRT, Sheng Y, Fu JM (2008) Characterization of molecular markers in smoke from residential coal combustion in China. Fuel 87:112–119. https://doi.org/10.1016/j.fuel.2007.03.047

Birmili W, Allen AG, Bary F, Harrison RM (2006) Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environ Sci Technol 40:1144–1153. https://doi.org/10.1021/es0486925

Cao W, Yin L, Zhang D, Wang Y, Yuan J, Zhu Y, Dou J (2019) Contamination, sources, and health risks associated with soil PAHs in rebuilt land from a Coking Plant, Beijing. China. Int J Environ Res Public Health 16 (4). https://doi.org/10.3390/ijerph16040670

Chen YC, Chiang HC, Hsu CY, Yang TT, Lin TY, Chen MJ, Chen NT, Wu YS (2016) Ambient PM$_{2.5}$-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: seasonal variation, source apportionment and cancer risk assessment. Environ Pollut 218:372–382. https://doi.org/10.1016/j.envpol.2016.07.016

Choi JK, Ban SJ, Kim YP, Kim YH, Yi SM, Zoh KD (2015) Molecular marker characterization and source appointment of particulate matter and its organic aerosols. Chemosphere 134:482–491. https://doi.org/10.1016/j.chemosphere.2015.04.093

Christensen WF, Schauer JJ (2008) Quantifying and manipulating species influence in positive matrix factorization. Chemosphere Intell Lab Syst 94:140–148. https://doi.org/10.1016/j.chemolab.2008.07.004

Cui M., Chen, Y. J., Tian, C. G., Zhang, F., Yan, C. Q., and Zheng, M. 2016. Chemical composition of PM$_{2.5}$ from two tunnels with different vehicular fleet characteristics, Sci Total Environ 550: 123–132. https://doi.org/10.1016/j.scitotenv.01.077.2016.

Dai QL, Bi XH, Song WB, Li TK, Liu BS, Ding J, Xu J, Song CB, Yang NW, Schulze BC, Zhang YF, Feng YC, Hopke PK (2019) Residential coal combustion as a source of primary sulfate in Xi’an. China Atmos Environ 196:66–76. https://doi.org/10.1016/j.atmosenv.2018.10.002

Dai QL, Liu BS, Bi XH, Wu JH, Liang DN, Zhang YF, Feng YC, Hopke PK (2020) Dispersion normalized PMF provides insights into the significant changes in source contributions to PM$_{2.5}$ after the COVID-19 outbreak. Environ Sci Technol 54:9917–9927. https://doi.org/10.1021/acs.est.0c02776

Dai QL, Ding J, Hou LL, Li LX, Cai ZY, Liu BS, Song CB, Bi XH, Wu JH, Zhang YF, Feng YC, Hopke PK (2021) Haze episodes before and during the COVID-19 shutdown in Tianjin, China: contribution of fireworks and residential burning. Environ Pollut 286:117252. https://doi.org/10.1016/j.envpol.2021.117252

Esmaeili rad S, Lai A, Abbaszade G, Schnelle-Kreis J, Zimmermann R, Uzu G, Daellenbach K, Canonaco F, Hassankhany H, Arhami M, Baltensperger U, Prevot AS, Schauer JJ, Jafferzo J L, Hoesseini V, El Haddad I (2020) Source apportionment of fine particulate matter in a Middle Eastern Metropolis, Tehran-Iran, using PMF with
organic and inorganic markers. Sci Total Environ 705:135330. https://doi.org/10.1016/j.scitotenv.2019.135330

Faminyeh L, Chen K, Xu JS, Sun Y, Guo QJ, Wang CJ, Lv JG, Tang YT, Yu H, Snape C, He J (2021) A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons. Sci Total Environ 789:147741. https://doi.org/10.1016/j.scitotenv.2021.147741

Fang, B., Zhang, L., Zeng, H., Liu, J., Yang, Z., Wang, H., Wang, Q., Wang, M., 2020. PM$_{2.5}$-bound polycyclic aromatic hydrocarbons: sources and health risk during non-heating and heating periods (Tangshan, China). Int. J. Environ. Res. 17 (2), 483. https://doi.org/10.3390/ijerph17020483.

Fraser MP, Yue ZW, Buzcu B (2003) Source apportionment of fine particulate matter in Houston, TX, using organic molecular markers. Atmos Environ 37:2117–2123. https://doi.org/10.1016/S1352-2310(03)00070-X

Gao Y, Ji H (2018) Characteristics of polycyclic aromatic hydrocarbons components in fine particle during heavy polluting phase of each season in urban Beijing. Chemosphere 212(30):346–357. https://doi.org/10.1016/j.chemosphere.2018.08.079

Galvao ES, Reis NC Jr, Lima AT, Stuetz RM, D’Azereido Orlando MT, Santos JM (2019) Use of inorganic and organic markers associated with their directionality for the apportionment of highly correlated sources of particulate matter. Sci Total Environ 651:1332–1343. https://doi.org/10.1016/j.scitotenv.2018.09.263

Guan QY, Wang FF, Xu CQ, Pan NH, Lin JK, Zhao R, Yang YY, Luo HP (2018) Source apportionment of heavy metals in agricultural soil based on PMF: a case study in Hexi Corridor, northwest China. Chemosphere 193:189–197. https://doi.org/10.1016/j.chemosphere.2017.10.151

Gune MM, Ma W-L, Sampath S, Li W, Li Y-F, Udayashankar HN, Balakrishna K, Zhang Z (2019) Occurrence of polycyclic aromatic hydrocarbons (PAHs) in air and soil surrounding a coal-fired thermal power plant in the south-west coast of India. Environ Sci Pollut Res 26(22):22772–22782. https://doi.org/10.1007/s11356-019-05380-y

Gurkan Ayyildiz E, Esen F (2020) Atmospheric polycyclic aromatic hydrocarbons (PAHs) at two sites, in Bursa, Turkey: determination of concentrations, gas–particle partitioning, sources, and health risk. Arch Environ Contam Toxicol 78(3):339–348. https://doi.org/10.1007/s00244-019-00698-7

Hsu CY, Chiang HC, Chen MJ, Yang YT, Wu YS, Chen YC (2019) Impacts of hazardous metals and PAHs in fine and coarse particles with long-range transports in Taipei City. Environ Pollut 250:934–943. https://doi.org/10.1016/j.envpol.2019.04.038

Huang B, Liu M, Bi XH, Chaeunga C, Ren ZF, Wang XM, Sheng GY, Fu JM (2014) Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta region, China. Air Pollut Res 5:210–218. https://doi.org/10.5094/ APR.2014.026

Hu Y, Yu W, Wibowo H, Xia Y, Lu Y, Yan M (2019) Effect of catalysts on distribution of polycyclic-aromatic hydrocarbon (PAHs) in bio-oils from the pyrolysis of dewatered sewage sludge at high and low temperatures. Sci Total Environ 667:263–270. https://doi.org/10.1016/j.scitotenv.2019.02.320

Iakovides M, Stephanou EG, Apostolaki M, Hadjicharalambous M, Evans JS, Koutrakis P, Achilleos S (2019) Study of the occurrence of airborne polycyclic aromatic hydrocarbons associated with respirable particles in two coastal cities at Eastern Mediterranean: levels, source apportionment, and potential risk for human health. Atmos Res 213(May):170–184. https://doi.org/10.1016/j.atmosenv.2019.05.059

Iakovides, M., Iakovides, G., Stephanou, E.G., 2021. Atmospheric particle-bound polycyclic aromatic hydrocarbons, n-alkanes, hopanes, steranes and trace metals: PM$_{2.5}$ source identification, individual and cumulative multi-pathway lifetime cancer risk assessment in the urban environment. Sci. Total Environ. 752, 141834. https://doi.org/10.1016/j.scitotenv.2020.141834.

Ikemori F, Uranishi K, Asakawa D, Nakatsubo R, Makino M, Kido M, Mitamura N, Asano K, Nonaka S, Nishimura R, Sugata S (2021) Source apportionment in PM$_{2.5}$ in central Japan using positive matrix factorization focusing on small-scale local biomass burning. Atmos Pollut Res 12:349–359. https://doi.org/10.1016/j.apr.2021.01.006

Jin L, Xie JW, Wong CKC, Chan SKY, Abbaszade G, Schnelle-Kreis J, Zimmermann R, Li J, Zhang G, Fu PQ, Li XD (2019) Contributions of city-specific fine particulate matter (PM$_{2.5}$) to differential in vitro oxidative stress and toxicity implications between Beijing and Guangzhou of China. Environ Sci Technol 53:2881–2891. https://doi.org/10.1021/acs.est.9b04449

Kang MJ, Ren LJ, Ren H, Zhao Y, Kawamura K, Zhang HL, Wei LF, Sun YL, Zhang WF, Fu PQ (2018) Primary biogenic and anthropogenic sources of organic aerosols in Beijing, China: insights from saccharides and n-alkanes. Environ Pollut 243:1579–1587. https://doi.org/10.1016/j.envpol.2018.09.118

Ke L, Liu W, Wang Y, Russell AG, Edgerton ES, Zheng M (2008) Comparison of PM$_{1.5}$ source apportionment using positive matrix factorization and molecular-marker-based chemical mass balance. Sci Total Environ 394:290–302. https://doi.org/10.1016/j.scitotenv.2008.01.030

Kim KH, Jahan SA, Kabir E, Brown RJ (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80. https://doi.org/10.1016/j.envint.2013.07.019

Kong SF, Yan Q, Zheng H, Liu HB, Wang W, Zheng SR, Yang GW, Zheng MM, Wu J, Qi SH, Shen GF, Tang LL, Yin Y, Zhao TL, Yu H, Liu DT, Zhao DL, Zhang T, Ruan JJ, Huang MZ (2018) Substantial reductions in ambient PAHs pollution and lives saved as a co-benefit of effective long-term PM$_{2.5}$ pollution controls. Environ Int 114:266–279. https://doi.org/10.1016/j.envint.2018.03.002

Kong, L.W., Tan, Q.W., Feng, M., Qu, Y., An, J.L., Liu, X.G., Cheng, N.L., Deng, Y.J., Zhai, R.X., Wang, Z. 2020. Investigating the characteristics and source analyses of PM$_{2.5}$ seasonal variations in Chengdu, Southwest China. Chemosphere. 243,125267, https://doi.org/10.1016/j.chemosphere.2019.125267

Krumal K, Mikuska P, Vecera Z (2013) Polycyclic aromatic hydrocarbons and hopanes in PM$_{1}$ aerosols in urban areas. Atmos Environ 57:27–37. https://doi.org/10.1016/j.atmosenv.2012.10.033

Kubo T, Bai W, Nagae M, Takao Y (2020) Seasonal fluctuation of polycyclic aromatic hydrocarbons and aerosol genotoxicity in long-range transported air mass observed at the western end of Japan. Int J Environ Res 17(4):1210. https://doi.org/10.3390/ijerph17041210

Lin L, Lee ML, Eatough DJ (2010) Review of recent advances in detection of organic markers in fine particulate matter and their use for source apportionment. J Air Waste Manage Assoc 60:3–25. https://doi.org/10.3155/1047-3289.60.1.3

Ling Y., Min H.U., Zhang Y.H., Huang X.F., Yao T.T. (2008) Fine particle emissions from on-road vehicles in the Zhujiang tunnel, China. Environ Sci & Technol 42:4461. https://doi.org/10.1021/es0722658

Liu BS, Wu JH, Zhang JY, Wang L., Yang JM, Liang DN, Dai QL, Bi XH, Feng YC, Zhang YF, Zhang QX (2017) Characterization and source apportionment of PM$_{2.5}$ based on error estimation from EPA PMF 5.0 model at a medium city in China. Environ Pollut 220:10–22. https://doi.org/10.1016/j.envpol.2017.01.005

Liu Q, Baumgartner J, Zhang Y, Schauer JJ (2016) Source apportionment of Beijing air pollution during a severe winter haze event and associated pro-inflammatory responses in lung epithelial cells. Atmos Environ 126:28–35. https://doi.org/10.1016/j.atmosenv.2015.11.031

Springer
Liu SQ, Wang CH, Zhang SJ, Jiang J, Chen F, Zhao K (2012) Formation and distribution of polycyclic aromatic hydrocarbons PAHs derived from coal seam combustion: a case study of the Ulanqab lignite from Inner Mongolia, northern China. Int J Coal Geol 90:126–134. https://doi.org/10.1016/j.coal.2011.11.005
Lu ZJ, Liu QQ, Xiong Y, Huang F, Zhou JB, Schauer JJ (2018) A hybrid source apportionment strategy using positive matrix factorization PMF and molecular marker chemical mass balance MM-CMB model. Environ Pollut 238:39–51. https://doi.org/10.1016/j.envpol.2018.02.091
Lyu Y, Xu TT, Yang X, Chen JM, Cheng TT, Li X (2017) Seasonal contributions to size-resolved n-alkanes (C8–C40) in the Shanghai atmosphere from regional anthropogenic activities and terrestrial plant waxes. Sci Total Environ 579:1918–1928. https://doi.org/10.1016/j.scitotenv.2016.11.201
Ma WL, Liu LY, Jia HL, Yang M, Li YF (2018) PAHs in Chinese atmosphere Part I: concentration, source and temperature dependence. Atmos Environ 173:330–337. https://doi.org/10.1016/j.atmosenv.2017.11.029
Mu Q, Shiraawa M, Octaviani M, Ma N, Ding A, Su H, Lammel G, Pöschl U, Cheng Y (2018) Temperature effect on phase state and reactivity controls atmospheric multiphase chemistry and transport of PAHs. Sci Adv 4:7314. https://doi.org/10.1126/sciadv.aap7314
Oliveira C, Martins N, Tavares J, Pio C, Cerequeira M, Matos M, Silva H, Oliveira C, Carneiro F (2011) Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Chemosphere 83:1588–1596. https://doi.org/10.1016/j.chemosphere.2011.01.011
Oros DR, Simonet BRT (2000) Identification and emission rates of aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Fuel 79:515–536. https://doi.org/10.1016/S0016-2361(99)00153-2
Pacheco MT, Parmigiani MMM, de Fatima Andrade M, Morawska L, Kumar P (2017) A review of emissions and concentrations of particulate matter in the three major metropolitan areas of Brazil. J Transp Health 4:53–72. https://doi.org/10.1016/j.jth.2017.01.008
Pereira GM, Teinila K, Custodio D, Santos AG, Xian H, Hillamo R, Alves CA, de Andrade JB, da Rocha GO, Kumar P, Balasubramanian R, Andrade M.d.F., Vasconcellos P.d.C. (2017) Particulate pollutants in the Brazilian city of Sao Paulo: 1-year investigation for the chemical composition and source apportionment. Atmos Chem Phys 17:11943–11969. https://doi.org/10.5194/acp-17-11943-2017
Schauer JJ, Cass GR (2000) Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers. Environ Sci Technol 34:1821–1832. https://doi.org/10.1021/es981312t
Shi, K., Di, B., Zhang, K., Feng, C., Svirchev, L. 2018. Detrended cross-correlation analysis of urban traffic congestion and NO2 concentrations in Chengdu. Transport res., D, 61,165–173, https://doi.org/10.1016/j.trd.2016.12.012
Sun YM, Tian YZ, Xue QQ, Jia B, Wei Y, Song DL, Huang FX, Feng YC (2021) Source-specific risks of synchronous heavy metals and PAHs in inhalable particles at different pollution levels: variations and health risks during heavy pollution. Environ Int 146:106162. https://doi.org/10.1016/j.envint.2020.106162
Tian YZ, Chen G, Wang HT, Huang-Fu YQ, Shi GL, Han B, Feng YC (2016) Source regional contributions to PM$_2.5$ in a megacity in China using an advanced source regional apportionment method. Chemosphere 147:256–263. https://doi.org/10.1016/j.chemosphere.2015.12.132
Tian YZ, Wang J, Peng X, Shi GL, Feng YC (2014) Estimation of the direct and indirect impacts of fireworks on the physicochemical characteristics of atmospheric PM$_{10}$ and PM$_{2.5}$. Atmos Chem Phys 14:9469–9479. https://doi.org/10.5194/acp-14-9469-2014
Tian, Y.Z.; Liu, X.; Huo, R.Q.; Shi, Z.B.; Sun, Y.M.; Feng, Y.C.; Harrison, R.M. Organic compound source profiles of PM$_{2.5}$ from traffic emissions, coal combustion, industrial processes and dust. Chemosphere 2021, 278,130429. https://doi.org/10.1016/j.chemosphere.2021.130429
Tobiszewski M, Namešník J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119. https://doi.org/10.1016/j.envpol.2011.10.025
Wang G, Kawamura K, Xie M, Hu S, Gao S, Cao J, An Z, Wang Z (2009) Size-distributions of n-alkanes, PAHs and hopanes and their sources in the urban, mountain and marine atmospheres over East Asia. Atmos Chem Phys 9:8869–8882. https://doi.org/10.5194/acp-9-8869-2009
Wang Q, Feng WH, Liu M, Xu H (2021) Atmospheric elemental carbon deposition from urban and suburban sites of Shanghai: characteristics, sources and comparison with aerosols and soils. Atmos Pollut Res 12:193–199. https://doi.org/10.1016/j.apr.2020.11.001
Wang Q, He X, Huang XHH, Griffith SM, Feng Y, Zhang T, Zhang Q, Wu D, Yu JZ (2017) Impact of secondary organic aerosol tracers on tracer-based source apportionment of organic carbon and PM$_{2.5}$: a case study in the Pearl River Delta, China. Atmos Earth Space Chemistry 1:562–571. https://doi.org/10.10121/acaealthsp.chem700088
Wang QQ, Huang XHH, Zhang T, Zhang Q, Feng Y, Yuan Z, Wu D, Lai AKH, Yu JZ (2015) Organic tracer-based source analysis of PM$_{2.5}$ organic and elemental carbon: a case study at Dongguan in the Pearl River Delta. China Atmos Environ 118:164–175. https://doi.org/10.1016/j.atmosenv.2015.07.033
Wang Y, Hopke PK, Xia X, Rattigan OV, Chalupa DC, Utell MJ (2012) Source apportionment of airborne particulate matter using organic and inorganic species as tracers. Atmos Environ 55:525–532. https://doi.org/10.1016/j.atmosenv.2012.03.073
Xue QQ, Jiang Z, Wang X, Song DL, Huang FX, Tian YZ, Huang-fu YQ, Feng YC (2019) Comparative study of PM$_{10}$-bound heavy metals and PAHs during six years in a Chinese megacity: compositions, sources, and source-specific risks. Ecotoxicol Environ Saf 186:10974-109740. https://doi.org/10.1016/j.ecoenv.2019.109740
Yang SC, Liu JL, Bi XY, Ning YQ, Qiao SY, Yu QQ, Zhang J (2020) Risks related to heavy metal pollution in urban construction dust fall of fast-developing Chinese cities. Ecotoxicol Environ Saf 197:110628. https://doi.org/10.1016/j.ecoenv.2020.110628
Yu, G.H., Park, S. 2021. Chemical characterization and source apportionment of PM$_{2.5}$ at an urban site in Gwangju, Korea. Atmos. Pollut. Res. 12,101092. https://doi.org/10.1016/j.apr.2021.101092
Zang L, Zhang Y, Zhu B, Mao FY, Zhang Y, Wang ZM (2021) Characteristics of water-soluble inorganic aerosol pollution and its meteorological response in Wuhan, Central China. Atmos Pollut Res 12:315–322. https://doi.org/10.1016/j.apr.2020.11.003
Zhang JM, Yang LX, Mellouki A, Chen JM, Chen XF, Gao Y, Jiang P, Li YY, Yu H, Wang WX (2018) Diurnal concentrations, sources, and cancer risk assessments of PM$_{2.5}$-bound PAHs, NPAHs, and OPAs in urban, marine and mountain environments. Chemosphere 209:147–155. https://doi.org/10.1016/j.chemosphere.2018.06.054
Zheng M, Cass GR, Schauer JJ, Edgerton ES (2002) Source apportionment of PM$_{2.5}$ in the southeastern United States using solvent-extractable organic compounds as tracers. Environ Sci Technol 36:2361–2371. https://doi.org/10.1021/es011275x
Zhang YZ, Yao ZL, Shen X, Liu H, He KB (2015) Chemical characterization of PM$_{2.5}$ emitted from on-road heavy-duty diesel trucks in China. Atmos Environ 122:885–891. https://doi.org/10.1016/j.atmosenv.2015.07.014

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.