Comment on “Pronounced Enhancement of the Lower Critical Field and Critical Current Deep in the Superconducting State of PrOs$_4$Sb$_{12}$”

D. E. MacLaughlin,¹ A. D. Hillier,² J. M. Mackie,¹ Lei Shu,¹,³ Y. Aoki,⁴ D. Kikuchi,⁴ H. Sato,⁴ Y. Tunashima,⁴ and H. Sugawara⁵

¹Dept. of Physics & Astronomy, Univ. of California, Riverside, California 92521, USA
²ISIS, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK
³Dept. of Physics & IPAPS, Univ. of California, San Diego, La Jolla, California 92093, USA
⁴Dept. of Physics, Tokyo Metropolitan Univ. Tokyo 192-0397, Japan
⁵Fac. of Integrated Arts & Sciences, Univ. of Tokushima, Tokushima 770-8502, Japan

(Dated: January 18, 2010)

PACS numbers: 74.25.Ha, 71.27.+a, 74.25.Op, 76.75.+i

Cichorek et al. [1] reported enhancements of the lower critical field $H_{c1}(T)$ and critical current $I_c(T)$ in superconducting PrOs$_4$Sb$_{12}$ below a transition temperature $T_{c3} \approx 0.6$ K, and speculated that this reflects a transition between superconducting phases. Features have been observed near T_{c3} in other properties, but not in the specific heat. We report muon spin rotation (μSR) measurements of the penetration depth λ in the vortex state of PrOs$_4$Sb$_{12}$ near H_{c1}, that to high accuracy exhibit no anomaly T_{c3} and therefore cast doubt on the putative phase transition.

In a Type-II superconductor $H_{c1} = \Phi_0/(4\pi \kappa^2 c^2)$, $c \approx 0.5$, where Φ_0 is the flux quantum and κ is the Ginzburg-Landau parameter [2]. Modification of the superfluid density ρ_s by a phase transition should affect both $\lambda = (mc^2/4\pi \kappa^2 \rho_s)^{1/2}$ and H_{c1}. A feature observed near T_{c3} in rf inductive measurements of λ [3] is too small to account for the observed enhancement of H_{c1} [1].

In the transverse-field μSR technique the spectrum of muon precession frequencies gives the local-field distribution function, which depends on λ in the vortex state [2]. μSR experiments were carried out at the ISIS μSR facility on a polycrystalline sample of PrOs$_4$Sb$_{12}$. Strong de Haas-van Alphen signals obtained from similarly-prepared crystals [4] attest to their high quality. Data were taken in low applied fields $H = 25$ and 40 Oe, the former corresponding to an internal field $H' \approx 32$ Oe at $H' = H_{c1}(T)$ after demagnetization correction. This is close to the estimated unenhanced value of $H_{c1}(0)$ [1], so that in the absence of enhancement H' should be H_{c1}.

The data are well fit by the Gaussian relaxation function $G(t) = \exp(-t^2/2 \sigma^2)$, $\cos(\omega_{\mu} t + \theta)$. Figure 1 gives the average muon spin precession frequency $\omega_{\mu}(T)$ and relaxation rate $\sigma(T)$ at 25 and 40 Oe. There is no discernible anomaly at T_{c3}, and no evidence that $H' < H_{c1}$. Similar results are found at higher fields [5].

The rms width δB_{rms} of the field distribution in the vortex state is estimated by σ/γ_μ, where γ_μ is the muon gyromagnetic ratio. In the London model $\delta B_{\text{rms}} = 0.00371 \Phi_0^2/\lambda^3$ [2], i.e., H_{c1} and δB_{rms} are (essentially) proportional to Φ_0/λ^2 and therefore to each other: $H_{c1}/\delta B_{\text{rms}} = 1.31(\ln \kappa + c) \approx 5.0$ in PrOs$_4$Sb$_{12}$. Thus a $\sim 50\%$ enhancement of $H_{c1}(0)$ [1] implies a similar enhancement of $\sigma(0)$ contrary to our results. From $\sigma(0)$ we estimate $H_{c1}(0) \approx 50$ Oe, of the order of the observed value, so that other broadening mechanisms, such as vortex-lattice disorder or a distribution of demagnetizing fields, are unlikely to dominate the muon relaxation.

These results and the absence of a specific heat anomaly at T_{c3} are evidence against a phase transition associated with the enhancement of H_{c1} at low temperatures in PrOs$_4$Sb$_{12}$. The enhanced critical current suggests that flux pinning effects, which generally become stronger at low temperatures, are involved.

Work supported by the U.S. NSF, Grant no. 0422674 (Riverside), and a Grant-in-Aid for Scientific Research on Priority Areas (19052003) (Tokyo).
[1] T. Cichorek et al., Phys. Rev. Lett. 94, 107002 (2005).
[2] E. H. Brandt, Phys. Rev. B 68, 054506 (2003).
[3] E. E. M. Chia, M. B. Salamon, H. Sugawara, and H. Sato, Phys. Rev. Lett. 91, 247003 (2003).
[4] Y. Aoki et al., Phys. Rev. Lett. 91, 067003 (2003).
[5] D. E. MacLaughlin et al., Physica B 403, 1132 (2008); L. Shu et al., unpublished.