Uncertainty in gap filling and estimating the annual sum of carbon dioxide exchange for the desert Tugai forest, Ebinur Lake Basin, Northwest China

Dexiong Teng 1, 2, Xuemin He 1, 2, Jingzhe Wang 1, 2, Jinlong Wang 1, 2, Guanghui Lv Corresp. 1, 2

1 College of Resources and Environment Science, Xinjiang University, Urumqi, Xinjiang, China
2 Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China

Corresponding Author: Guanghui Lv
Email address: Guanghui_xju@sina.com

In most eddy covariance studies, carbon flux measurements have a high defect rate for a variety of reasons. Obtaining the annual sum of carbon dioxide exchange requires imputation of data gaps with high precision and accuracy. This study used five methods to fill the gaps in carbon flux data and estimate the total annual carbon dioxide exchange of the Tugai forest in the arid desert ecosystem of Ebinur Lake Basin, Northwest China. The Monte Carlo method was used to estimate the random error and bias caused by gap filling. The results revealed that (1) there was a seasonal difference in the friction velocity threshold of nighttime flux, with values in the growing season and non-growing season of 0.12 and 0.10 m/s, respectively; (2) the five gap-filling methods explained 77%-84% of the data variability in the fluxes, and the random errors estimated by these methods were characterized by non-normality and leptokurtic heavy tail features, following the Laplacian (or double-exponential) distribution; (3) estimates of the annual sum of carbon dioxide exchange using the five methods at the study site in 2015 ranged from -178.25 to -155.21 g C m⁻² yr⁻¹, indicating that the Tugai forest in the Ebinur Lake Basin is a net carbon sink. The standard deviation of the total annual carbon dioxide exchange sums estimated by the five different methods ranged from 3.15 to 19.08 g C m⁻² yr⁻¹, with bias errors ranging from -13.69 to 14.05 g C m⁻² yr⁻¹. This study provides a theoretical basis for the carbon dioxide exchange and carbon source/sink assessment of the Tugai forest in an arid desert ecosystem. In order to explore the functioning of the Tugai forest at this site, a greater understanding of the underlying ecological mechanisms is necessary.
Uncertainty in gap filling and estimating the annual sum of carbon dioxide exchange for the desert Tugai forest, Ebinur Lake Basin, Northwest China

Dexiong Teng 1,2, Xuemin He 1,2, Jingzhe Wang 1,2, Jinlong Wang 1,2, Guanghui Lv 1,2*

1 College of Resources and Environment Science, Xinjiang University, Urumqi, Xinjiang, China;
2 Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China

Corresponding Author: Guanghui Lv
Email address: ler@xju.edu.cn.
Abstract: In most eddy covariance studies, carbon flux measurements have a high defect rate for a variety of reasons. Obtaining the annual sum of carbon dioxide exchange requires imputation of data gaps with high precision and accuracy. This study used five methods to fill the gaps in carbon flux data and estimate the total annual carbon dioxide exchange of the Tugai forest in the arid desert ecosystem of Ebinur Lake Basin, Northwest China. The Monte Carlo method was used to estimate the random error and bias caused by gap filling. The results revealed that (1) there was a seasonal difference in the friction velocity threshold of nighttime flux, with values in the growing season and non-growing season of 0.12 and 0.10 m/s, respectively; (2) the five gap-filling methods explained 77%–84% of the data variability in the fluxes, and the random errors estimated by these methods were characterized by non-normality and leptokurtic heavy tail features, following the Laplacian (or double-exponential) distribution; (3) estimates of the annual sum of carbon dioxide exchange using the five methods at the study site in 2015 ranged from -178.25 to -155.21 g C m$^{-2}$ yr$^{-1}$, indicating that the Tugai forest in the Ebinur Lake Basin is a net carbon sink. The standard deviation of the total annual carbon dioxide exchange sums estimated by the five different methods ranged from 3.15 to 19.08 g C m$^{-2}$ yr$^{-1}$, with bias errors ranging from -13.69 to 14.05 g C m$^{-2}$ yr$^{-1}$. This study provides a theoretical basis for the carbon dioxide exchange and carbon source/sink assessment of the Tugai forest in an arid desert ecosystem. In order to explore the functioning of the Tugai forest at this site, a greater understanding of the underlying ecological mechanisms is necessary.

1. Introduction

In recent decades, with the development of sonic anemometers, the eddy covariance method has become one of the direct techniques for determining the surface–atmosphere carbon dioxide exchange (Baldocchi, 2014). This method consists of calculating the covariance of fluctuations in vertical wind speed and gas concentration, providing valuable data on the dynamic interactions of the surface and atmosphere. At present, more than 800 eddy covariance stations around the world are monitoring the carbon dioxide and water exchange of the surface–atmosphere. These stations are located in forests, grasslands, farmlands, and other terrestrial ecosystems, concentrated in the grasslands of North America, Europe, and Africa, as well as in forest ecosystems (Baldocchi et al., 2018; Rebane et al., 2019). However, there have been few consecutive observations of material fluxes in arid desert ecosystems, leading to great difficulties in understanding the role of arid desert ecosystems in the global carbon cycle.

Eddy covariance (EC) is influenced by numerous factors during the measurement of carbon dioxide (CO$_2$) flux (e.g., limited turbulence, non-stationarity, blizzards, sand, precipitation, and instrument resolution), usually resulting in data loss or abnormalities. One study found that missing or abnormal data in carbon flux observations account for approximately 20%–60% of the total (Papale et al., 2006). This poses enormous difficulties for estimating the annual sum of carbon dioxide exchange. The important step in this estimation is gap filling. To solve this problem, a number of approaches have been proposed, including non-linear regression, look-up tables, mean diurnal variation methods (Falge et al., 2001), artificial neural networks (Braswell et al., 2005; Moffat et al., 2007; Papale and Valentini, 2003), marginal distribution sampling (Reichstein et al., 2005), data assimilation, and Bayesian model approaches (Gove and Hollinger, 2006). The
differences among gap-filling methods for missing data and their impacts on the estimation of carbon dioxide exchange vary temporally and spatially in urban, forest, and grassland ecosystems (Kunwor et al., 2017; Liu et al., 2010; Moffat et al., 2007). Establishing a standard set of gap-filling methods can enhance comparability between different sites in regional and global flux networks (Falge et al., 2001). Models based on the light and temperature response are widely used for filling gaps in carbon flux observations of natural vegetation (Desai et al., 2005). Gap-filling approaches that rely on the average temperature underestimate flux values compared to those that preserve the observed variance as a consequence of Jensen’s inequality, adding further bias to the long-term estimates of carbon dioxide exchange (Moffat et al., 2007). The introduction of additional predictors, such as vapor pressure deficit and soil moisture content, may reduce the bias that has been found to be proportional to the percentage of gaps filled in the annual sums of carbon dioxide exchange (Falge et al., 2001). Hagen et al. (2006) utilized two regression models to fill the gaps of carbon dioxide exchange in Howland Forest, Maine, USA, concluding that the greatest uncertainty comes from model differences. The Gaussian processes model and the radial basis function neural network have been shown to significantly improve model performance by capturing complex relationships in carbon dioxide exchange studies (Menzer et al., 2013; Menzer et al., 2015; Schmidt et al., 2007). There have been few studies on gap filling and the annual sum of carbon dioxide exchange in arid desert ecosystems, and uncertainty still remains in the estimation and evaluation of the annual sum of carbon dioxide exchange (Soloway et al., 2017). The evaluation of gap-filling uncertainty plays an important role in estimating regional carbon sink strength. The scientific comparison and evaluation of carbon flux gap-filling and the carbon budget in arid desert ecosystems are conducive to the sharing of flux data and its related research.

Arid desert ecosystems are playing an increasingly important role in the global carbon cycle (Donohue et al., 2013) and may even supplant tropical rainforests, affecting the interannual variation in the global carbon cycle (Poulter et al., 2014). Recent findings that desert regions remove carbon dioxide from the atmosphere at a magnitude of ~100 g C m\(^{-2}\) yr\(^{-1}\) suggest that these systems may explain at least a portion of the terrestrial carbon sink that has not been fully identified nor had its mechanisms explained in the global carbon cycle (Jasoni et al., 2005; Ma et al., 2014; Stone, 2008; Wohlfahrt et al., 2008; Xie et al., 2009). Irrigated saline/alkaline arid land is a potentially large carbon sink in the terrestrial ecosystem (Li et al., 2015). The study of carbon flux has direct implications for the missing global carbon sink. The Ebinur Lake Basin is a typical salinized area (Wang et al., 2019b). The Tugai forest is the only natural forest community in the Ebinur Lake Basin, and its contribution to the carbon dioxide exchange of the region cannot be overlooked. Estimating the annual sum of the carbon dioxide exchange of the Tugai forest can provide insight into the issue of the missing carbon sink to a certain extent.

In this study, EC techniques were used to obtain continuous records of the carbon flux of the Tugai forest on the northern bank of the Aqikesu River in the Ebinur Lake Wetland National Nature Reserve, Northwest China. We evaluated the ability of five gap-filling methods to analyze random uncertainties and bias in order to provide more robust estimations of the annual sums of the carbon dioxide exchange from the Tugai forest. In addition, the impacts of these different gap-filling methods—the artificial neural network for backward propagation algorithm (ANN), the
radial basis function (RBF) neural network, the Gaussian processes model (GP), the regularized hierarchical linear model (HLM) with a Bayesian framework, and marginal distribution sampling (MDS)—on the annual carbon dioxide exchange in the Tugai forest were examined and the random uncertainties were studied.

2. Materials and Methods

2.1 Site description

The study site is located in the Ebinur Lake Wetland National Nature Reserve in the Bortala Mongolian Autonomous Prefecture of the Xinjiang Uygur Autonomous Region, Northwest China (44°37′05″–45°10′35″N, 82°30′47″–83°50′21″E). The Xinjiang Ebinur Lake Wetland National Natural Protection Zone Management Bureau approved site access. With a temperate continental climate, the reserve located in the Alataw Pass (Fig. 1a) is a typical arid desert, featuring high temperatures, drought, and sufficient sunshine in summer, and dry and cold conditions in winter. With strong winds from the Alataw Mountain Pass, the loose and relatively thick Quaternary sediment provides a rich sand source for sand shifting, and the soil salinization is generally pronounced. Typical soils in the study area are gray desert soil, gray-brown desert soil, and aeolian sandy soil. The azonal soil is dominated by saline soil, and supplemented by meadow soil, bog soil, and brown calcic soil (Jin et al., 2010; Wang et al., 2019a). The annual average temperature in the basin is 6–8°C, the annual precipitation is approximately 100 mm, and the annual average sunshine is 2,800 h. The ecological environment is relatively fragile and consists primarily of two ecological ecosystems: the wetland ecosystem and the arid grassland–forest ecosystem (Fig. 1b). The flux observation tower stands near the Aqikesu River (44°37′4.8″N, 83°33′59.4″E) in the forest-desert transitional zone influenced by lakes and rivers (Fig. 1e). The dominant species of plants in this region are *Populus euphratica*, *Haloxylon ammodendron*, and *Phragmites australis*, with a combined coverage of more than 60%, accompanied by a variety of shrubs, herbs, and desert-specific short-lived plants (He et al., 2014; He et al., 2015; Wang et al., 2019). During the observation period, the annual average temperature at the flux tower was 9°C, the highest temperature was 43°C, and the lowest temperature was -26°C. More weather conditions are shown in Fig. 2.

Fig. 1. Aerial photograph of the tower site

(a) Location map of the Ebinur Lake Basin, (b) Location map of the measurement tower, (c) aerial photo of the tower site in August (Photograph credit: Jinlong Wang), (d) photograph of the tower site in May (Photograph credit: Dexiong Teng), and (e) remote sensing image in June and the average footprint for the entire observation period (Kormann and Meixner, 2001). The measurement tower is marked with a red circle. The white lines represent isopleths of the average contributions.

Fig. 2. Meteorological observations during the year of measurement

Half-hour averaged values of (a) air temperature (T_{air}), (b) precipitation, (c) global radiation
129 (Rg), (d) wind speed, and (e) relative humidity (RH) during the observation period

2.2 Carbon flux data observation and processing

The data for this study were obtained from the Ebinur Lake Desert Ecosystem Flux Tower (2012XJ-AibiHu-OPEC) using an eddy covariance system consisting of a 3-D sonic anemometer (CSAT3, Campbell Scientific, USA) and an open-path infrared gas analyzer (EC150, Campbell Scientific, USA). The instruments were installed on the southwest side of the tower above the forest canopy at a height of 15.0 m (~4.0 m above the mean canopy height). Total CO$_2$ fluxes were measured from January 1, 2015 to December 31, 2015. Using EddyPro 6.2.1 software, 30-min averaged values were calculated, resulting in 17,520 observations (Table 1). Webb, Pearman, and Leuning (WPL) correction was used during the data pre-processing (Webb et al., 2010). Due to extremely low temperatures and instrument failure, 4,858 (approximately 27.73%) of the data observations were missing. Based on the stationarity test (Foken and Wichura, 1996; Mauder et al., 2013), the observations were divided into 3 quality classes (0, 1, and 2). Only high-quality data were selected to establish the model, and 5,784 (approximately 33.01%) of the data observations with a rank other than 0 were excluded. Based on changes in surface vegetation, the year can be divided into the growing season (May–September) (Munir et al., 2015) and the non-growing season (January–April and October–December). This study divided the data into daytime and nighttime periods based on the sunrise and sunset times at the location of the flux tower. The observation time of the daytime data extended from sunrise to sunset, and the observation time of the nighttime data extended from sunset to sunrise. There were 8,924 daytime observations, accounting for 50.94% of the total and 8,596 nighttime observations, accounting for 49.06%. The total count of null and low-quality observations was 6,735, accounting for 38.44%. Thus, there was a large amount of missing data, and data gap-filling faced enormous challenges.

Corresponding to the 30-min carbon dioxide flux (F_C) observation data, eight explanatory variables, including soil temperature, air temperature, relative humidity, incident radiation, scattered radiation, saturated vapor pressure deficit, normalized difference vegetation index (NDVI), and water vapor partial pressure, were selected as the driving factors for the gap-filling models. Partial explanatory variables needed to be converted (Table 1). The selected meteorological variables were normalized by mapping all explanatory variables to (0, 1) via linear transformation and using the 2 variables of growing and non-growing to describe the season, both of which are binary (0 or 1). Based on the sunrise and sunset times, the data were classified into 2 types, daytime and nighttime, which were represented by binary variables. The observation data were divided into 3 parts: high-quality data used for training and testing models; data used to calculate the annual exchange of carbon flux; and gaps.

Table 1. Data source of the driving factors and their corresponding pre-processing

2.3 Net ecosystem carbon dioxide exchange

The net ecosystem carbon dioxide exchange (NEE) between the ecosystem and the atmosphere can be estimated as the sum of the vertical eddy covariance and the storage term:
\[
\text{NEE} = F_C + F_S
\]

(1)

The low density of the Tugai forest canopies, which is favorable to eddy penetration, can reduce the importance and frequency of storage events. The lower the vegetation height, the less storage of CO\(_2\). In addition, the effect of the storage terms on the carbon uptake characteristics over long-term time scales is not significant since the cumulative value of the storage terms in the long-term is approximately equal to 0 (Massman and Lee, 2002). In this study, the storage terms were considered to be negligible compared with the terms associated with eddy covariance fluctuation.

2.4 Night friction velocity threshold

The friction velocity \(u^*\) is intended to capture the turbulence characteristics in the vicinity of the surface. In a general way, \(u^*\) can be expressed as a fraction of the average wind speed \(u\):

\[
u^* \approx \frac{u}{\Pi},
\]

(2)

where the parameter \(\Pi\) is the roughness index. We used standardized major axis (SMA) regression to compare the roughness difference between the growing season and the non-growing season (Warton et al., 2012).

Due to the relatively stable atmospheric stratification at night, the carbon flux observed using eddy covariance techniques cannot truly represent the surface–atmosphere carbon dioxide exchange. Nighttime data processing was an important step in the flux data processing. The uncertainty of the annual sum of ecosystem carbon exchange caused by different treatment methods can reach 150 g C m\(^{-2}\) yr\(^{-1}\) (Williams et al., 2009). The bias due to the data processing methods in this study area, as well as the estimated bias from the gap-filling techniques, may be greater. To correct selective systematic errors, the international flux community usually excludes nighttime observations below the friction velocity threshold in order to ensure that eddy covariance techniques are measured under strong turbulence conditions (Aubinet and Feigenwinter, 2010).

Currently, despite theoretical and practical deficiencies, the empirical and effective method for processing nighttime negative flux is filtered by the friction velocity threshold (Aubinet and Feigenwinter, 2010). The friction velocity threshold can be determined by testing the relationship between the flux and the friction velocity, since, in theory, carbon dioxide flux and friction velocity are independent. When the friction velocity is lower than this threshold, \(F_C\) decreases as the friction velocity decreases. The nighttime flux data of the growing and non-growing seasons were sorted based on the increment of \(u^*\), and the friction velocity thresholds for the growing and non-growing seasons were then determined. A total of 45 levels were set, and the thresholds were derived by statistically comparing (using the two-sample Wilcoxon test) the flux average at each \(u^*\) level with the flux average at the next higher \(u^*\) level.

2.5 Detection of abnormal data points

The technique of using eddy covariance to observe carbon flux is susceptible to environmental factors such as rapid changes in turbulence, as well as the instrumentation itself.
The 30-min data obtained from processing the observed raw data contained a large number of gaps and abnormal values, which deviated from the range of normal data variation (Li et al., 2005). Given the relatively clear daily variation of the carbon flux data, this study divided the carbon flux data into 48 parts according to the time of day and defined any carbon flux data beyond the upper and lower limits as abnormal points. For outliers in the continuous data, this study used 7 days as the window to determine the difference between the median of 3 consecutive data points (\(D_i\)). The specific algorithm (Papale et al., 2006) was as follows:

\[D_i = (F_{Ci} - F_{Ci+1}) - (F_{Ci+1} - F_{Ci}) \]

where \(F_C\) is the carbon dioxide flux, and \(i\) is the ordinal number of the observation data for 30 min. When \(D_i\) satisfies the relationship

\[Md + (z \times \text{MAD}/0.6745) > D_i > Md - (z \times \text{MAD}/0.6745), \]

the corresponding \(i^{th}\) observation data point is normal; otherwise, it is defined as an “abnormal point” and is eliminated. (Daytime and nighttime data were processed separately.) \(Md\) is the median of the \(F_C\) differences between all sets of two adjacent points. MAD = median (\(|D_i - Md|\)) and is the median of all \(|D_i - Md|\) for a 7-day window. In this study, the sensitivity coefficient \(z\) of the artificially defined outlier identification was set to 5.5.

2.6 Gap-filling methods

Given the actual conditions of a site, selecting the appropriate flux data processing method and reducing the uncertainty of the flux data estimation are important issues that need to be understood and analyzed by the flux community. The effectiveness of different methods for filling gaps in carbon dioxide flux (\(F_C\)) data has been investigated. This study used ANN, RBF, GP, HLM, and MDS to fill the gaps. The high-quality data were randomly divided into 2 parts, 80% of which were used to train the model and 20% to test the model. In order to avoid overfitting, 4 different methods (ANN, GP, HLM, and RBF) were used for model training before the best model for each method was selected and used for prediction. In the data analysis, the neuralnet, RSNNS, laGP, and INLA packages (R language) were used to train and test ANN, RBF, GP, and HLM, respectively. The gap-filling model was evaluated in terms of 3 statistical factors: the coefficient of determination (\(R^2\)), root mean square error (RMSE), and bias error (BE).

2.6.1 ANN and RBF

For artificial neural network training, the input data were passed through the nodes using weighted connections, the error between the predicted and actual output values was calculated by backpropagation, and the weight was adjusted to minimize the error (Braswell et al., 2005; Papale and Valentini, 2003). The training data were pre-sampled to ensure equal coverage under different conditions, and fuzzy values were used to represent additional information such as time (Moffat et al., 2007; Papale and Valentini, 2003). By testing the structure of the artificial neural network, the network was built to be as simple as possible, and overfitting was avoided.

During the model training process, with the exception of the input and output layers, only 1 hidden layer was needed to obtain sufficient results; additional hidden layers did not improve model performance. In the output layer, a linear transfer function was used. Both the ANN and
RBF were built using the input variables listed in Table 1, as well as the 30-min data points of F_C, with the same parameters presented by Schmidt et al., 2007. The number of neurons in the ANN hidden layer was 5, and the number of neurons in the RBF hidden layer was 181.

2.6.2 Regularized hierarchical linear regression model with Bayesian framework

Since signals may be less pronounced than random errors, overfitting is a potential problem in regression models in which parameters estimate noise rather than the underlying signal. In earlier works, hierarchical modeling produced more accurate predictions than regular regression and also tended to reduce overfitting in the presence of a hierarchical data structure (Gelman, 2006). There have been some detailed examples highlighting uses of Bayesian and hierarchical Bayesian methods in plant physiology and ecosystem ecology (Ogle and Barber, 2008). Hierarchical modeling has been proposed to predict monthly streamflow (Lima and Lall, 2010) and extreme flooding (Lima et al., 2016). This study used varying intercepts of hierarchical modeling for the carbon flux data with a temporally hierarchical structure. The form of the model was as follows:

$$y_{ij} \sim N(\alpha_j + \beta x_{ij}, \sigma_y^2), \text{ for } i = 1, \ldots, 365; j = 1, \ldots, 48,$$

$$\alpha_j \sim N(y_j, \sigma_{\alpha_j}^2),$$

$$\beta | \sigma_{\beta}^2 \sim N(0, \sigma_{\beta}^2 I),$$

where y_{ij} is F_C at time j within Julian Day i, and x_{ij} is a vector for the environmental measurement (Table 1) corresponding to F_C. The hyperparameters of the prior distribution of α_j are y_j and $\sigma_{\alpha_j}^2$.

In previous studies, the prior ridge has been chosen for shrinking coefficients due to its weaker penalization of large coefficients (Fahrmeir et al., 2009). Therefore, we assumed that $\beta | \sigma_{\beta}^2 \sim N(0, \sigma_{\beta}^2 I)$.

2.6.3 Gaussian processes

As nonlinear regression tools, Gaussian processes have nonparametric flexibility and can be used to fit arbitrary functions or surfaces (Azmy et al., 2009). Therefore, the Gaussian process is often used to replace the supervised neural network in nonlinear regression. The GP can be described by a mean function $m(x)$ (a vector) and a covariance function $k(x, x')$ (a matrix):

$$f(x) = GP(m(x), k(x, x')),$$

where $f(x)$ is a random variable. In this study, $f(x)$ was the modeled F_C. This assumes that the mean function $m(x)$ is equal to 0 since our data were standard normalized, and $k(x, x')$ is a function of the Euclidean distance between the predictors x and x'. The squared exponential covariance function was chosen with automatic relevance determination (Bishop, 2006):
\[\text{cov}(f(x), f(x')) = k(x, x') = \sigma_f^2 \exp \left(-\frac{1}{2} \sum_{i=1}^{D} \frac{\|x_i - x'_i\|^2}{\sigma_i^2} \right), \]

where \(\sigma_f^2 \) is a hyperparameter for the amplitude variance. The width hyperparameter \(\sigma_i^2 \) is separate for each input variable \(x_i \).

2.7 Characteristics of random uncertainty

The correlation between the predicted carbon flux and its corresponding residual is represented by Kendall’s tau (\(\tau \)) coefficient. If \(\tau \) is close to 0, the posterior residual does not contain structural error from the model. Conversely, if \(\tau \) is close to 1, the predicted value should contain the model structure error of the influence, and such interpretation information may be passed to the posterior residual (Wang et al., 2015).

The relationship between the standard deviation of the random uncertainty of carbon flux observations and the magnitude of the observed values is commonly expressed as follows:

\[\sigma(\varepsilon) = a + b|F_C|. \] (10)

The intercept term \(a \) varies from site to site, with a typical range of 0.9–3.5 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) (Richardson et al., 2008). The larger the value of \(a \), the greater the uncertainty. The range of the slope \(b \) is usually 0.1–0.2; the smaller the value of \(b \), the closer the probability distribution of the uncertainty to white noise.

2.8 Uncertainty in the cumulative carbon dioxide exchange

To determine the random error of carbon flux and the error caused by interpolation, this study used the bootstrap method to estimate the deviation of the annual sum of ecosystem carbon exchange and its 95% confidence interval. Estimating the root mean square error (RMSE), variance, and bias of the annual sum of carbon exchange required a complete carbon flux time series (1,000 bootstrap sequences). The variance of the total annual carbon exchange can be directly estimated, but due to vacancies in the carbon flux data, the deviation of the total annual carbon exchange cannot be directly estimated. To estimate the (potential) bias in carbon flux vacancy data, we used the bootstrap method to simulate and analyze the bias of high-quality modeling data in order to extend it to an annual scale (Richardson et al., 2006; Wang et al., 2015).

The estimation steps used to determine the bias of the annual sum of carbon exchange were as follows:

1. The vector \(\hat{\varepsilon} \), which is the estimation of the random error \(\varepsilon \), was estimated by subtracting the observed \(F_C \) from the \(F_C \) estimated by the models.
2. All data (observed \(F_C \) with gaps as well as modeled \(F_C \)) were divided in terms of the growing season, daytime, non-growing season, and nighttime. The daytime data of the growing season were divided according to the incident radiation intensity (limited to 400 W·m\(^{-2}\)), resulting in 6 parts.
3. \(\hat{\varepsilon} \) was repeatedly sampled in order to obtain a new complete bias sequence (a total of 17,520 repeated extractions per year).
4. A cumulated summation of the new complete bias sequence was calculated.
(5) Steps (3) and (4) were repeated 1,000 times.
(6) The empirical distribution of the 1,000 biases of the annual sum of ecosystem carbon exchange, along with the 95% confidence interval of the annual sum of carbon exchange, were estimated.

3. Results
3.1 Carbon dioxide flux data characteristics

To model the high-quality carbon flux data, the 30-min carbon flux data with high signal quality were screened. It can be seen that the flux observation points exhibit more obvious carbon uptake characteristics during the growing season (Fig. 3). To extract the nighttime flux error, the nighttime friction velocity thresholds for the growing and non-growing seasons were estimated, and the data on friction velocities less than the threshold were screened and eliminated. This amounted to approximately 2.4% of the data (415 data points). After processing for outliers and nighttime friction velocity threshold screening, approximately 35.9% (or 6,293 observations) of the high-quality data remained, which was then used to build and test the model (Table 2). Among these measurements, there were 2,892 valid daytime observations (~16.5%) and 1,032 valid nighttime observations during the growing season (~5.9%). There were 1,583 valid daytime observations (~9%) and 786 (~4.5%) valid nighttime observations during the non-growing season.

Fig. 3. Mean diurnal courses of high-quality 30-min F_C measurements averaged over 2-month periods after filtering: (a) Jan–Feb, (b) Mar–Apr, (c) May–Jun, (d) Jul–Aug, (e) Sep–Oct, and (f) Nov–Dec.

Within the boxes, the horizontal bars indicate medians, while the tops and bottoms of the boxes illustrate the 75th and 25th quartiles, respectively. Small circles represent outliers in the observations.

Fig. 4. Histogram of the data gap distribution

This study defined the length of time in which data were continuously missing as the missing time window. A histogram plot was used to display the distribution of the missing time window (Fig. 4). The average length of the missing time window for the flux data was 5.8 h; a total of 24 missing time windows were longer than 24 h, mainly concentrated in the non-growing season; the longest missing time window was 30 days (Fig. 5). It can be seen that wind speed and friction velocity u^* differed significantly between the growing and non-growing seasons (Fig. 6). The details of the relationship between u^* and wind speed using SMA regression are presented in Table 3 and Fig. 6c. The slopes of the SMA regression for the growing and non-growing seasons were not equal, indicating that the roughness index varied considerably with season.

Table 2. Quality control procedures for the 30-min flux data

Fig. 5. Time of F_C and friction velocity u^* observation times over the study year

Red, orange, and gray represent $Q_c = 0$, $Q_c = 1$, and $Q_c = 2$, respectively.
The nighttime friction velocity threshold during the growing season was 0.12 m/s, and the corresponding value for the non-growing season was 0.10 m/s. Detailed information concerning the quality filtering procedures is listed in Table 2. A total of 42 negative F_C values were observed at night in this study, accounting for 1.9% of the nighttime data. After removal by the friction velocity threshold and other quality filtering procedures, the number of nighttime negative values was reduced to 16 (~0.7%).

Table 3. Standardized major axis estimation and statistical inference

Fig. 6. Values of nighttime friction velocity u^* and wind speed

(a) Nighttime friction velocity u^*. (b) Nighttime wind speed. (c)The relationship between friction velocity and wind speed for all data was grouped by season. Green and gray represent the growing and non-growing seasons, respectively. Columns with different capital letters are significantly different ($p < 0.05$) according to Fisher’s least significant difference test.

3.2 Results and residual analysis of gap-filling methods

The results of the ANN, GP, HLM, RBF, and MDS methods are illustrated in Fig. 7. The test set R^2 obtained by these different methods ranged from 0.77 to 0.84 and the RMSE ranged from 2.04 to 2.50 μmol m$^{-2}$ s$^{-1}$. There were differences in the R^2 and RMSE obtained by these methods. The GP and MDS methods represented the full range of scatter in the observations, while the others all exhibited the upper and lower limits (Fig. 7). The training set fit curve overlapped with the test set fit curve, and they were equally close to the 1:1 line, indicating that there was no overfitting phenomenon in these methods. The gap-filled F_C for the five methods exhibited a relatively obvious diurnal variation (Fig. 8).

Fig. 7. Training and test performances of the models for the dataset with 6,293 points

(a) ANN, (b) GP, (c) HLM, (d) RBF, (e) MDS. For comparison, the plotted lines consist of the training fit (solid black line), the test fit (green dotted line), and the 1:1 line (solid red). Units of RMSE and BE are μmol m$^{-2}$ s$^{-1}$.

Fig. 8. Fingerprints of the complete F_C gap-filled by the (a) ANN, (b) GP, (c) HLM, (d) RBF, and (e) MDS methods

When model error is quantified, the model residuals can quantify the random uncertainty. In this study, it was assumed that model error was negligible. Thus, the model residuals could be attributed almost entirely to random error. The empirical distribution of the model residuals and the fitted curves (Fig. 9) can describe the uncertainty of the random error and largely reflects the nature of the carbon flux observations. The model residual distributions obtained by the five methods exhibited characteristics of sharp peaks and thick tails, indicating non-normality. Comparing the kurtosis for the empirical distributions of the residuals obtained by these methods (Fig. 9), it was found that GP > MDS > ANN > HLM > RBF. Additionally, the empirical
distribution of these residuals was discovered to approximate the Laplace (or double-exponential) distribution by the Wilcoxon rank sum test (p > 0.05).

Fig. 9. Empirical distributions of the residuals predicted by the five gap-filling methods and their corresponding Laplacian distributions

(a)ANN, (b)GP, (c)HLM, (d)RBF, (e)MDS.

Comparing the correlations between the carbon flux observations and the corresponding residuals obtained by the 5 different methods (Table 4), it was found that during the day in the non-growing season, \(R_d \leq 400\) W m\(^{-2}\) showed a significant weak positive correlation; the same was true at night in the non-growing season. Additionally, it was shown that the random uncertainty during the non-growing season increased with increasing carbon flux. The correlations between the flux prediction values and the residuals obtained by the 5 methods differed during the growing season. In the growing season, the GP and MDS methods each exhibited a significant positive correlation, while the other methods showed either a relatively weak correlation (\(\tau\) close to 0) or no significant correlation.

Table 4. Kendall’s tau (\(\tau\)) coefficient between the 5 different methods of carbon flux prediction and the corresponding residuals

The standard deviation of the random flux measurement error varied linearly with the magnitude of the \(F_C\). Results are summarized in Table 5. The range of the intercept term \(a\) of the flux observation station in this study was 1.3209–1.5550 \(\mu\)mol m\(^{-2}\) s\(^{-1}\), which is within the typical range. The largest values came from the MDS method; the smallest from the GP. The uncertainties of the carbon flux gap-filling from these 5 methods were ranked as follows: GP < ANN < RBF < HLM < MDS. The slope \(b\) ranged from 0.0579–0.1092, which was slightly less than the typical range. The smallest slope came from the HLM; the largest from the MDS. The posterior residual of the carbon flux gap-filling from the HLM method was closer to white noise than that from the MDS method. The carbon flux data gaps were filled by the different methods. The probability distributions of the measured random errors varied with changes in the different gap-filling methods; the gap-filling methods also affected the estimation of the annual sum of carbon dioxide exchange.

Table 5. Relationship between the magnitude of carbon flux and the standard deviation of random uncertainty

3.3 Annual sum of carbon dioxide exchange

Utilizing the gap-filling from the 5 methods, the complete carbon flux data were obtained. As shown in Table 6, the gap-filled annual \(F_C\) sums from MC simulations were estimated to be -159.91 ± 18.35 g C m\(^{-2}\) yr\(^{-1}\) for ANN, -178.25 ± 8.01 g C m\(^{-2}\) yr\(^{-1}\) for GP, -167.16 ± 19.08 g C m\(^{-2}\) yr\(^{-1}\) for RBF, -156.95 ± 3.15 g C m\(^{-2}\) yr\(^{-1}\) for HLM, and -155.21 ± 5.16 g C m\(^{-2}\) yr\(^{-1}\) for MDS. The \(CO_2\) exchange sums from MC simulations for the growing and non-growing seasons are listed in
Table 7. Given that five different gap-filling models were used, it was definitely necessary to correct the model error. Based on the chosen fusion method (Kuncheva, 2002), it was assumed that the mean of the 5 methods was close to the true value of the annual sum of carbon dioxide exchange. The annual sum of CO₂ exchange in 2015 at the observed site was estimated to be \(-163.50 \pm 9.43\) g C m\(^{-2}\) yr\(^{-1}\), indicating that the desert Tugai forest in the Ebinur Lake Basin is a net carbon sink on an annual basis.

Table 6. Annual sum and deviation of the CO₂ exchange estimated by the different methods.

Table 7. Seasonal sum of CO₂ exchange estimated by the different methods.

The averages of the annual sum of CO₂ exchange obtained by the 5 methods ranged from \(-178.25\) to \(-155.21\) g C m\(^{-2}\) yr\(^{-1}\), and the standard deviation ranged from \(3.15\)–\(19.08\) g C m\(^{-2}\) yr\(^{-1}\) (Table 6). The smallest (in terms of absolute value) came from the MDS method, and the largest from the RBF. The average bias of the annual sum of ecosystem carbon exchange for the 5 methods ranged from \(-13.69\) to \(14.05\) g C m\(^{-2}\) yr\(^{-1}\). The HLM and MDS tended to underestimate, while the other methods tended to overestimate (Table 6). The smallest mean bias of the annual sum of carbon exchange came from the ANN; the largest was from the RBF. The GP had the smallest 95% confidence interval for the bias of the annual sum of carbon dioxide exchange, while the HLM had the largest. Comparing the carbon accumulation losses of ecosystems estimated by the different methods (Fig. 10), it was found that these five methods exhibited a consistent performance during the growing season and large differences during the non-growing season.

Fig. 10. Cumulative carbon dioxide exchange obtained by the different methods.

The data sources were composed of 3 parts, which were high-quality modeling data, data used to calculate annual sum of carbon dioxide exchange, and predictions from the different gap-filling methods.

4. Discussion

4.1 Differences in annual sums of CO₂ exchange among gap-filling methods for the Tugai forest

The annual sum of carbon dioxide exchange from the Tugai forest in our study was estimated to range from \(-178.25\) to \(-155.21\) g C m\(^{-2}\) yr\(^{-1}\). In a previous study, a total annual carbon exchange ranging from \(-155\) to \(-55\) g C m\(^{-2}\) yr\(^{-1}\) for oak/grass savanna from 2000–2006 was obtained (Ma et al., 2007), slightly less than the estimated value in this investigation. For comparison, Wohlfahrt et al. (2008) reported a net sink from 102 to 110 g C m\(^{-2}\) yr\(^{-1}\) in the Mojave desert ecosystem. For a desert shrub community in Baja California/Mexico, the total annual carbon dioxide exchange was determined to range from \(-52\) to \(-39\) g C m\(^{-2}\) yr\(^{-1}\) (Hastings et al., 2005). In a riparian forest with similar mean annual temperature and precipitation, Ma et al. (2017) reported a net carbon sink from \(278\) g C m\(^{-2}\) yr\(^{-1}\) to \(427\) g C m\(^{-2}\) yr\(^{-1}\). Thus, the carbon sink capacity of the Tugai forest in the Ebinur Lake Basin is higher than that of the savanna in the Mojave Desert ecosystem of California and the desert shrub in Baja California/Mexico, while lower than the riparian forest.
The performances of the gap-filling methods in this study were comparatively good. It is difficult to determine the best applicability of the gap-filling methods in the desert Tugai forest via a single statistical parameter. Therefore, this study comprehensively evaluated the gap-filling models using R^2, RMSE, and BE. It was found that the test set R^2 obtained by the ANN method was 0.827. The test set R^2 obtained by Menzer et al. (2015) using the ANN method was 0.740, which was 8% lower than this study. The R^2 value obtained by the GP method was 0.844, which was 6% higher than that of Menzer et al. (2015); R^2 obtained by the RBF method was 0.790, which was 39% higher than that of Lärvi et al. (2012) and 3% higher than that of Menzer et al. (2015). The RMSE of the test set obtained by the 5 methods ranged from 2.04–2.50 μmol m$^{-2}$ s$^{-1}$, which was smaller than that of Lärvi et al. (2012) and Menzer et al. (2015). This may be primarily due to the fact that the estimations by Lärvi et al. (2012) and Menzer et al. (2015) were conducted on urban ecosystems in which the underlying surface of the observation sites was rougher, and the environmental factors affecting carbon dioxide exchange were more complex. Although the eddy covariance method requires that the underlying surface be uniform and flat, the position of the terrain is not absolutely guaranteed in the actual selection process of the underlying surface. In addition, when screening the modeling data, data with a signal quality of 2 were excluded (Järvi et al., 2012). In the current study, however, all data with a signal quality other than 0 (including 1 and 2) were excluded, resulting in high modeling data quality. It is clear that the selection of modeling data is particularly important when training models.

There were minor differences among the standard deviations of the annual sum of carbon dioxide exchange obtained by the 5 methods. Due to the low annual sum of arid desert ecosystem carbon dioxide exchange, its estimation is sensitive to data processing methods, with some methods possibly leading to bias (Liu et al., 2010). In addition, the soil volume water content data were distorted as a result of the high degree of soil salinization. Therefore, this study ignored the impact of soil moisture on carbon dioxide flux, leading to a very large difference in the annual sum of carbon dioxide exchange obtained by the 5 methods. It should be noted that this study was limited to the seasonal signal from only a single year’s worth of data at the site. Future studies should utilize a longer dataset, which would provide more insight into the ecological functioning of the site.

The bias error of the annual sum of carbon dioxide exchange obtained by the 5 methods ranged from -13.69 to 14.05 g C m$^{-2}$ yr$^{-1}$. The minor differences found in the bias error may be related to the fact that the carbon source/sink function of the Tugai forest is more affected by environmental factors than that of other ecosystems, especially soil moisture content. The impact of data processing methods on the estimation of the annual sum of carbon dioxide exchange was discovered to be highly variable, which may be related to the sensitivity of arid desert ecosystems to environmental factors, as well as the definition of valid data.

4.2 Carbon dioxide exchange during nighttime and non-growing season daytime

This study used a quantile-based method to determine the outliers, and also identified and deleted the anomalies in the F_C time series. After careful screening during data preprocessing, a total of 42 negative values of carbon dioxide exchange at night were observed, accounting for
1.9% of the nighttime data, which was far less than the 28% of temperate broadleaf forest observations (Thomas et al., 2011). The negative carbon flux observations indicate that there was carbon uptake in the underlying vegetation of the flux tower at night, although this phenomenon was unlikely (Thomas et al., 2011). There is currently no unified view to explain this phenomenon, ignoring atmospheric advection and precipitation as possible causes. Moreover, there is also a systematic error that stems from ignoring the atmospheric advection and precipitation measurements. Even though advection correction is attractive from a theoretical point of view, it is unlikely that air advection characteristics varied over the observed period and sites (Feigenwinter et al., 2008).

The accumulation of carbon dioxide exchange obtained by the 5 different methods performed consistently during the growing season and exhibited very large differences during the non-growing season (Fig. 10). During the growing season, the carbon flux data were relatively complete, with no long gaps; the carbon flux data during the non-growing season, however, had more gaps, and the continuously missing time windows were long (Fig. 5), leading to very large differences in method performance. The five methods displayed obvious carbon uptake characteristics in February (Fig. 10), which was consistent with the daily variation characteristics of the selected high-quality modeling data from January and February (Fig. 3a). This result may have been influenced by ignoring the advection and storage terms, which produced a certain systematic error (Bowling et al., 2010). In addition, the high saline alkali water and soil played an important role in the carbon uptake (Li et al., 2015; Ma et al. 2013; Xie et al. 2009).

To some extent, the valid data observed at the site depend on independent processes influenced by the geographic environment of the observatory. The resulting uncertainty is primarily random, depending on both the missing time window and the gap-filling method. The friction velocity u^* is intended to capture the turbulent characteristics in the vicinity of the surface. Nighttime data under unsteady conditions are often removed by u^* threshold screening. Each site has a specific u^* threshold that is expected to vary over time (Béziat et al., 2009; Moureaux et al., 2008). The nighttime friction velocity threshold (0.12 m/s) during the growing season was greater than the corresponding value for the non-growing season (0.10 m/s), indicating that the flux observation station experienced different air turbulence characteristics during different seasons (Fig. 6). A possible reason for this is simply that the air temperature during the growing season is higher than during the non-growing season. According to the turbulence intensity theorem, the turbulence intensity is a function of both velocity and temperature shears (Hu et al., 2007). The near-surface temperature changes more rapidly during the growing season night than during the non-growing season night. Thus, in the near-surface layer, the temperature shear formed during the growing season night is larger than that formed during the non-growing season night. In addition, due to vegetation growth, the underlying surface roughness of the observatory is higher during the non-growing season than during the growing season (Fig. 6c). Uncertainty may still exist after u^* threshold screening. There is no guarantee that the data screening process will eliminate all bad data, nor that only bad data will be removed.

4.3 Uncertainty analysis
All measurements have errors or uncertainties (Taylor 1997), and measurement uncertainty includes random and systematic uncertainties (ISO/IEC 2008). Systematic error is considered to be a constant but unknown deviation (Abernethy et al., 1985) and must be estimated by empirical, theoretical, or supplementary measurements. Systematic error cannot be determined by statistical analysis of the measured data itself, nor can it be reduced by averaging. The bootstrapping method has been used to quantify the random uncertainty of the flux integral at different time scales (Wang et al., 2015). In addition, the Monte Carlo method is used to estimate the transmission of uncertainty over longer time scales, particularly the uncertainty associated with gap filling (Moffat et al., 2007).

Comparing the change in the empirical distribution of the residuals obtained by the five gap-filling methods (Fig. 9), it was discovered that the empirical distribution of these residuals approximated the Laplace (or double-exponential) distribution. Actually, the distribution of the F_C random error from the Tugai forest ($|F_C| < 10 \mu mol m^{-2} s^{-1}$) is leptokurtic. As a characteristic of random uncertainty, the leptokurtic distribution has been shown to be robust across a variety of sites and ecosystem types (Hollinger and Richardson, 2005; Richardson et al., 2008; Stauch et al., 2008; Lasslop et al., 2008; Liu et al., 2008; Wang et al., 2015). It has been suggested that the leptokurtic distribution is the result of a superposition of Gaussian distributions and a non-constant variance (Hollinger et al., 2004; Lasslop et al., 2008). After normalizing the error (i.e., dividing each flux observation by the expected standard deviation), its distribution approximated a Gaussian distribution (Richardson et al., 2008).

We also found that the random uncertainty increased with increasing carbon flux (Table 5). This was consistent with the findings of Richardson et al. (2008) for the uncertainty of carbon flux measurements from model residuals. Using different methods to fill gaps leads to the differences among the distributions of the measured random errors and affects the estimation of the annual sum of carbon dioxide exchanges. Considering the differences in site characteristics and types of ecosystems, as well as the degree to which the valid flux data are contaminated with data from a separate (nonbiological or atmospheric) process, it is necessary to evaluate random uncertainty carefully and site specifically. This study may provide a valid method for evaluating the gap-filling uncertainty of other types of ecosystems.

5. Conclusions

This study estimated the annual sum of carbon dioxide exchange of the Tugai forest in the Ebinur Lake Basin of Northwest China in 2015. Selective system errors were corrected by determining the friction velocity threshold and utilizing it to extract high-quality data on the growing and non-growing seasons. Five different methods were used to fill the gaps in the carbon flux time series. These methods all exhibited higher R^2 and lower RMSE values than previous techniques. The GP method was the best of these gap-filling techniques. Uncertainty was inferred from the model residuals; the distribution of the residuals exhibited non-normal properties of spikes and thick tails. The ultimate goal of this investigation was not to select the best gap-filling method by comparing the merits of each but to estimate the uncertainty caused by the gap-filling and to correct model error. The total annual carbon exchange of the Tugai forest at the observation
site in 2015 was -163.50 ± 9.43 g C m⁻² yr⁻¹, indicating that the Tugai forest in the Ebinur Lake Basin is a carbon sink. The errors from different sources were complex, making it difficult to give accurate estimates; therefore, this study only estimated the random errors and bias. Estimating errors from different sources will be the focus of uncertainty studies on the cumulants of carbon dioxide exchange in the future. Exploring the function of the Tugai forest in arid regions still requires additional understanding of the underlying ecological mechanisms.

Acknowledgments: This research was supported by the National Natural Science Foundation of China (No. 31560131). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

References

Abernethy R, Benedict R, and Dowdell R. 1985. ASME measurement uncertainty. *Journal of Fluids Engineering* 107:161.

Aubinet M, and Feigenwinter C. 2010. Direct CO₂ advection measurements and the night flux problem. *Agricultural and Forest Meteorology* 150:651-654. 10.1016/j.agrformet.2010.03.007

Azmy WM, El Gayar N, Atiya AF, and El-Shishiny H. 2009. MLP, Gaussian Processes and Negative Correlation Learning for Time Series Prediction. *Multiple Classifier Systems, Proceedings* 5519:428-+.

Baldocchi D. 2014. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - the state and future of the eddy covariance method. *Global Change Biology* 20:3600-3609. 10.1111/gcb.12649

Baldocchi D, Chu HS, and Reichstein M. 2018. Inter-annual variability of net and gross ecosystem carbon fluxes: A review. *Agricultural and Forest Meteorology* 249:520-533. 10.1016/j.agrformet.2017.05.015

Béziat P, Ceschia E, and Dedieu G. 2009. Carbon balance of a three crop succession over two cropland sites in South West France. *Agricultural and Forest Meteorology* 149:1628-1645.

Bishop CM. 2006. *Pattern Recognition and Machine Learning* (Information Science and Statistics).

Bowling DR, Beters-Marchetti S, Lunch CK, Grote EE, and Belnap J. 2010. Carbon, water, and energy fluxes in a semiarid cold desert grassland during and following multiyear drought. *Journal of Geophysical Research* 115. 10.1029/2010jg001322

Braswell BH, Sacks WJ, Linder E, and Schimel DS. 2005. Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. *Global Change Biology* 11:335-355. 10.1111/j.1365-2486.2005.00897.x

Desai AR, Bolstad PV, Cook BD, Davis KJ, and Carey EV. 2005. Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA. *Agricultural and Forest Meteorology* 128:33-55. 10.1016/j.agrformet.2004.09.005

Donohue RJ, Roderick ML, McVicar TR, and Farquhar GD. 2013. Impact of CO₂ fertilization on maximum foliage cover across the globe's warm, arid environments. *Geophysical Research Letters* 40:3031-3035. 10.1002/grl.50563

Fahrmeir L, Kneib T, and Konrath S. 2009. Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection. *Statistics and Computing* 20:203-219. 10.1007/s11222-009-9158-3

Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law
BE, Meyers T, Moncrieff H, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, and Wofsy S. 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. *Agricultural and Forest Meteorology* 107:43-69. Doi 10.1016/S0168-1923(00)00225-2

Feigenwinter C, Bernhofer C, Eichelmann U, Heinesch B, Hertel M, Janous D, Kolle O, Lagergren F, Lindroth A, Minerbi S, Moderow U, Mölder M, Montagnani L, Queck R, Rebmann C, Vestin P, Yernaux M, Zeri M, Ziegler W, and Aubinet M. 2008. Comparison of horizontal and vertical advective CO\(_2\) fluxes at three forest sites. *Agricultural and Forest Meteorology* 148:12-24. 10.1016/j.agrformet.2007.08.013

Foken T, and Wichura B. 1996. Tools for quality assessment of surface-based flux measurements. *Agricultural & Forest Meteorology* 78:83-105.

Gelman, and Andrew. 2006. Multilevel (Hierarchical) Modeling: What It Can and Cannot Do. *Technometrics* 48:432-435.

Gove JH, and Hollinger DY. 2006. Application of a dual unscented Kalman filter for simultaneous state and parameter estimation in problems of surface-atmosphere exchange. *Journal of Geophysical Research* 111. 10.1029/2005jd006021

Hagen SC, Braswell BH, Linder E, Frolking S, Richardson AD, and Hollinger DY. 2006. Statistical uncertainty of eddy flux–based estimates of gross ecosystem carbon exchange at Howland Forest, Maine. *Journal of Geophysical Research*.

Hastings SJ, Oechel WC, and Muhlia-Melo A. 2005. Diurnal, seasonal and annual variation in the net ecosystem CO\(_2\) exchange of a desert shrub community (Sarcocaulisent) in Baja California, Mexico. *Global Change Biology* 11:927-939. 10.1111/j.1365-2486.2005.00951.x

He X, Lv G, and Qin L. 2014. Research on data characteristics during non-growing season of desert-wetland ecosystem in Ebinur Lake. *Acta Ecologica Sinica* 34:6655-6665.

He X, Lv G, Qin L, Chang S, Yang M, Yang J, and Yang X. 2015. Effects of Simulated Nitrogen Deposition on Soil Respiration in a Populus euphratic Community in the Ebinur Lake Area, a Desert Ecosystem of Northwestern China. *Plos One* 10:e0137827.

Hollinger DY, Aber J, Dail B, Davidson EA, Goltz SM, Hughes H, Leclerc MY, Lee JT, Richardson AD, Rodrigues C, Scott NA, Achuatavarier D, and Walsh J. 2004. Spatial and temporal variability in forest-atmosphere CO\(_2\) exchange. *Global Change Biology* 10:1689-1706. 10.1111/j.1365-2486.2004.00847.x

Hollinger DY, and Richardson AD. 2005. Uncertainty in eddy covariance measurements and its application to physiological models. *Tree Physiology* 25:873-885. DOI 10.1093/treephys/25.7.873

Hu Y, Chen J, and Zuo H. 2007. Theorem of turbulent intensity and macroscopic mechanism of the turbulence development. *Science in China Series D: Earth Sciences* 50:789-800.

Hu Y, Chen J, and Zuo H. 2007. Theorem of turbulent intensity and macroscopic mechanism of the turbulence development. *Science in China Series D: Earth Sciences* 50:789-800.

Järvi L, Nordbo A, Junninen H, Riikonen A, Moilanen J, Nikinmaa E, and Vesala T. 2012. Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006–2010. *Atmospheric Chemistry and Physics Discussions* 12:8355-8396. 10.5194/acpd-12-8355-2012

Jasoni RL, Smith SD, and III JAA. 2005. Net ecosystem CO\(_2\) exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO\(_2\). *Global Change Biology* 11:749–756.

Jin H, Bai X, Man Z, and Zan M. 2010. Space difference of soil in Xinjiang Ebinur Lake Wetland Natural Reserve...
Kormann R, and Meixner FX. 2001. An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorology 99:207-224. DOI 10.1023/A:1018991015119

Kuncheva LI. 2002. A theoretical study on six classifier fusion strategies. IEEE Transactions on pattern analysis and machine intelligence 24:281-286.

Kunwor S, Starr G, Loescher HW, and Staudhammer CL. 2017. Preserving the variance in imputed eddy-covariance measurements: Alternative methods for defensible gap filling. Agricultural and Forest Meteorology 232:635-649. DOI 10.1016/j.agrformet.2016.10.018

Lasslop G, Reichstein M, Kattge J, and Papale D. 2008. Influences of observation errors in eddy flux data on inverse model parameter estimation. Biogeosciences Discussions 5:751-785.

Li S, Asanuma J, Eugster W, Kotani A, Liu J, Urano T, Oikawa T, Davaa G, Oyunbaatar D, and Sugita M. 2005. Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Change Biology 11:1941-1955.

Li Y, Wang Y-G, Houghton RA, and Tang L-S. 2015. Hidden carbon sink beneath desert. Geophysical Research Letters 42:5880-5887. DOI 10.1002/2015gl064222

Lima CHR, and Lall U. 2010. Spatial scaling in a changing climate: A hierarchical bayesian model for non-stationary multi-site annual maximum and monthly streamflow. Journal of Hydrology 383:307-318.

Lima CHR, Lall U, Troy T, and Devineni N. 2016. A hierarchical Bayesian GEV model for improving local and regional flood quantile estimates. Journal of Hydrology 541:816-823.

Liu M, He H, Yu G, Luo Y, Sun X, and Wang H. 2008. Uncertainty analysis of CO₂ flux components in subtropical evergreen coniferous plantation. Science in China Series D: Earth Sciences 52:257-268. DOI 10.1007/s11430-009-0010-6

Liu M, He H, Yu G, Sun X, Zhu X, Zhang L, Zhao X, Wang H, Shi P, and Han S. 2010. Impacts of uncertainty in data processing on estimation of CO₂ flux components. Chinese Journal of Applied Ecology 21:2389-2396.

Ma J, Wang ZY, Stevenson BA, Zheng XJ, and Li Y. 2013. An inorganic CO₂ diffusion and dissolution process explains negative CO₂ fluxes in saline/alkaline soils. Scientific Reports 3:2025. DOI 10.1038/srep02025

Ma J, Liu R, Tang L-S, Lan Z-D, and Li Y. 2014. A downward CO₂ flux seems to have nowhere to go. Biogeosciences Discussions 11:6251-6262.

Ma S, Baldocchi DD, Xu L, and Hehn T. 2007. Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agricultural & Forest Meteorology 147:157-171.

Ma X, Feng Q, Yu T, Su Y, and Deo R. 2017. Carbon Dioxide Fluxes and Their Environmental Controls in a Riparian Forest within the Hyper-Arid Region of Northwest China. Forests 8. DOI 10.3390/f8100379

Massman W J, Lee X, Eddy Covariance Flux Corrections and Uncertainties in Long Term Studies of Carbon and Energy Exchanges. Agricultural and Forest Meteorology 113:121-144.

Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid HP, Schmidt M, and Steinbrecher R. 2013. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agricultural & Forest Meteorology 169:122-135.

Menzer O, Meiring W, Kyriakidis PC, and McFadden JP. 2015. Annual sums of carbon dioxide exchange over a heterogeneous urban landscape through machine learning based gap-filling. Atmospheric Environment 101:312-327. DOI 10.1016/j.atmosenv.2014.11.006

Menzer O, Moffat AM, Meiring W, Lasslop G, Schukat-Talamazzini EG, and Reichstein M. 2013. Random errors in
carbon and water vapor fluxes assessed with Gaussian Processes. *Agricultural and Forest Meteorology* 178:161-172. 10.1016/j.agrformet.2013.04.024

Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai AR, Falge E, Gove JH, Heimann M, Hui D, Jarvis AJ, Kattge J, Noormets A, and Stauch VJ. 2007. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. *Agricultural and Forest Meteorology* 147:209-232. 10.1016/j.agrformet.2007.08.011

Moureaux C, Debacq A, Hoyaux J, Suleau M, Tourneur D, Vancutsem F, Bodson B, and Aubinet M. 2008. Carbon balance assessment of a Belgian winter wheat crop (Triticum aestivum L.). *Global Change Biology* 14:1353-1366.

Munir TM, Perkins M, Kaing E, and Strack M. 2015. Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change. *Biogeosciences* 12:1-21.

Ogle K, and Barber JJ. 2008. Bayesian Data—Model Integration in Plant Physiological and Ecosystem Ecology. *Progress in Botany* 69:281-311.

Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, and Yakir D. 2006. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. *Biogeosciences* 3:571-583. DOI 10.5194/bg-3-571-2006

Papale D, and Valentini R. 2003. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. *Global Change Biology* 9:525-535. DOI 10.1046/j.1365-2486.2003.00609.x

Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, and Liu Y.Y. 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. *Nature* 509:600.

Rebane S, Jõgiste K, Põldveer E, Stanturf JA, and Metslaid M. 2019. Direct measurements of carbon exchange at forest disturbance sites: a review of results with the eddy covariance method. *Scandinavian Journal of Forest Research*:1-13. 10.1080/02827581.2019.1659849

Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J-M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, and Valentini R. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. *Global Change Biology* 11:1424-1439. 10.1111/j.1365-2486.2005.001002.x

Richardson AD, Hollinger DY, Burba GG, Davis KJ, Flanagan LB, Katul GG, William Munger J, Ricciuto DM, Stoy PC, Suyker AE, Verma SB, and Wofsy SC. 2006. A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. *Agricultural and Forest Meteorology* 136:1-18. 10.1016/j.agrformet.2006.01.007

Richardson AD, Mahecha MD, Falge E, Kattge J, Moffat AM, Papale D, Reichstein M, Stauch VJ, Braswell BH, Churkina G, Kruijt B, and Hollinger DY. 2008. Statistical properties of random CO$_2$ flux measurement uncertainty inferred from model residuals. *Agricultural and Forest Meteorology* 148:38-50. 10.1016/j.agrformet.2007.09.001

Ruppert J, Mauder M, Thomas C, and Lüers J. 2006. Innovative gap-filling strategy for annual sums of CO$_2$ net ecosystem exchange. *Agricultural and Forest Meteorology* 138:5-18. 10.1016/j.agrformet.2006.03.003
Schmidt A, Wrzesinsky T, and Klemm O. 2007. Gap Filling and Quality Assessment of CO₂ and Water Vapour Fluxes above an Urban Area with Radial Basis Function Neural Networks. *Boundary-Layer Meteorology* 126:389-413. 10.1007/s10546-007-9249-7

Soloway AD, Amiro BD, Dunn AL, and Wofsy SC. 2017. Carbon neutral or a sink? Uncertainty caused by gap-filling long-term flux measurements for an old-growth boreal black spruce forest. *Agricultural and Forest Meteorology* 233:110-121. 10.1016/j.agrformet.2016.11.005

Stauch VJ, Jarvis AJ, and Schulz K. 2008. Estimation of net carbon exchange using eddy covariance CO₂ flux observations and a stochastic model. *Journal of Geophysical Research* 113. 10.1029/2007jd008603

Stone R. 2008. Have Desert Researchers Discovered a Hidden Loop in the Carbon Cycle? *Science* 320:1409-1410.

Taylor J. 1997. *Introduction to error analysis, the study of uncertainties in physical measurements*.

Thomas MV, Malhi Y, Fenn KM, Fisher JB, Morecroft MD, Lloyd CR, Taylor ME, and McNeil DD. 2011. Carbon dioxide fluxes over an ancient broadleaved deciduous woodland in southern England. *Biogeosciences* 8:1595-1613.

Wang H, Cai Y, Yang Q, Gong Y, Lv G, 2019. Factors that alter the relative importance of abiotic and biotic drivers on the fertile island in a desert-oasis ecotone. *Science of The Total Environment* 697, doi.org/10.1016/j.scitotenv.2019.134096

Wang HJ, Riley WJ, and Collins WD. 2015. Statistical uncertainty of eddy covariance CO₂ fluxes inferred using a residual bootstrap approach. *Agricultural and Forest Meteorology* 206:163-171. 10.1016/j.agrformet.2015.03.011

Wang J, Ding J, Li G, Liang J, Yu D, Aishan T, Zhang F, Yang J, Abulimiti A, and Liu J. 2019a. Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment. *Catena* 177:189-201.

Wang J, Ding J, Yu D, Ma X, Zhang Z, Ge X, Teng D, Li X, Liang J, and Lizaga I. 2019b. Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China. *Geoderma* 353:172-187.

Warton DI, Duursma RA, Falster DS, and Taskinen S. 2012. smatr 3- an R package for estimation and inference about allometric lines. *Methods in Ecology and Evolution* 3:257-259. 10.1111/j.2041-210X.2011.00153.x

Webb EK, Pearman GI, and Leuning R. 2010. Correction of flux measurements for density effects due to heat and water vapour transfer. *Quarterly Journal of the Royal Meteorological Society* 106:85-100.

Williams M, Richardson AD, Reichstein M, Stoy PC, Peylin P, Verbeeck H, Carvalhais N, Jung M, Hollinger DY, and Kattge J. 2009. Improving land surface models with FLUXNET data. *Biogeosciences* 6:1341-1359.

Wohlfahrt G, Fenstermaker LF, and Arnone III JA. 2008. Large annual net ecosystem CO₂ uptake of a Mojave Desert ecosystem. *Global Change Biology* 14:1475-1487.

Xie J, Li Y, Zhai C, Li C, and Lan Z. 2009. CO₂ absorption by alkaline soils and its implication to the global carbon cycle. *Environmental Geology* 56:953-961.
Figure 1

Aerial photograph of the tower site.

(a) Location map of the Ebinur Lake Basin, (b) Location map of the measurement tower, (c) aerial photo of the tower site in August (Photograph credit: Jinlong Wang), (d) photograph of the tower site in May (Photograph credit: Dexiong Teng), and (e) remote sensing image in June and the average footprint for the entire observation period (Kormann and Meixner, 2001). The measurement tower is marked with a red circle. The white lines represent isopleths of the average contributions.
Figure 2

Meteorological observations during the year of measurement

Half-hour averaged values of (a) air temperature (T_{air}), (b) precipitation, (c) global radiation (Rg), (d) wind speed, and (e) relative humidity (RH) during the observation period
Figure 3

Mean diurnal courses of high-quality 30-min F_c measurements averaged over 2-month periods after filtering: (a) Jan–Feb, (b) Mar–Apr, (c) May–Jun, (d) Jul–Aug, (e) Sep–Oct, and (f) Nov–Dec.

Within the boxes, the horizontal bars indicate medians, while the tops and bottoms of the boxes illustrate the 75th and 25th quartiles, respectively. Small circles represent outliers in the observations.
Figure 4

Histogram of the data gap distribution
The graph shows the distribution of review intervals in hours.

- The interval (0, 0.5] has a count of 629.
- The interval (0.5, 4] has a count of 534.
- The interval (4, 32] has a count of 240.
- The intervals (32, 288], (288, 720], and (720, 724] each have a count of 5, 2, and 1, respectively.

The x-axis represents the interval (unit: hour), and the y-axis represents the count.
Figure 5

Time of F_c and friction velocity u^* observation times over the study year

Red, green, and blue represent $Q_c = 0$, $Q_c = 1$, and $Q_c = 2$, respectively.
Figure 6

Values of nighttime friction velocity u^* and wind speed

(a) Nighttime friction velocity u^*. (b) Nighttime wind speed. (c) The relationship between friction velocity and wind speed for all data was grouped by season. Green and gray represent the growing and non-growing seasons, respectively. Columns with different capital letters are significantly different ($p < 0.05$) according to Fisher’s least significant difference test.
Figure 7

Training and test performances of the models for the dataset with 6,293 points

(a) ANN, (b) GP, (c) HLM, (d) RBF, (e) MDS. For comparison, the plotted lines consist of the training fit (solid black line), the test fit (green dotted line), and the 1:1 line (solid red). Units of RMSE and BE are μmol m$^{-2}$ s$^{-1}$.
Figure 8

Fingerprints of the complete F_c gap-filled by the (a) ANN, (b) GP, (c) HLM, (d) RBF, and (e) MDS methods
Figure 9

Empirical distributions of the residuals predicted by the five gap-filling methods and their corresponding Laplacian distributions

(a)ANN, (b)GP, (c)HLM, (d)RBF, (e) MDS.
Figure 10

Cumulative carbon dioxide exchange obtained by the different methods

The data sources were composed of 3 parts, which were high-quality modeling data, data used to calculate annual sum of carbon dioxide exchange, and predictions from the different gap-filling methods.
Table 1 (on next page)

Data source of the driving factors and their corresponding pre-processing
Variable	Name	Filled?	Pre-processing
Daytime	hour_N	No	Cos conversion to daily time.
Daytime	hour_D	No	Sin conversion to daily time.
Daytime, Night	Night	No	Calculated the sunrise and sunset times at the observation area location and marked the data from post-sunset to pre-sunrise as nighttime.
Daytime, Day	Day	No	Calculated the sunrise and sunset time at the observation area location and marked the data from post-sunrise to pre-sunset as daytime.
Season	Season_G	No	Marked the data from May–September as the growing season.
Season	Season_N	No	Marked data from January–April and October–December as the non-growing season.
Vegetation index	NDVI	Yes	NDVI from 250 m resolution MODIS/Aqua remote sensing image for 16 days.
Air temperature	T_air	Yes	Measured at a height of 15 m on the flux tower.
Soil temperature	T_soil	Yes	Measured at a soil depth of 5 cm under the flux tower.
Water vapor partial pressure	E	Yes	Measured at a height of 15 m on the flux tower.
Heating degree days	hdd	Yes	When T_air < 18°C, equal to 18°C - T_air; otherwise, equal to 0.
Incident radiation	Rd	Yes	The sum of incident shortwave radiation and incident longwave radiation measured by NR01, Campbell Scientific, USA.
Scattered radiation	Ru	Yes	The sum of scattered shortwave radiation and scattered longwave radiation measured by NR01, Campbell Scientific, USA.
Water vapor pressure deficit	VPD	Yes	Measured at a height of 15 m on the flux tower.
Relative humidity	Rh	Yes	Measured at a height of 15 m on the flux tower.
Table 2 (on next page)

Quality control procedures for the 30-min flux data
Table 2. Procedures of quality control of the half-hourly flux data

Processing	The number of outliers	Description	
	Growing season	Non-growing season	
Quality control	856	1021	Cleaning carbon flux data based on QC flags and removing values while QC flags equal to 2.
Distributional cleaning	679	464	Cleaning carbon flux data based on flux distribution for each hour of the day.
Filtering	62	26	Detecting and removing outliers in the continuous carbon flux data.
$u^* $ screening	216	192	Cleaning carbon flux data based on friction vorticity threshold.
Table 3 (on next page)

Standardized major axis estimation and statistical inference
Table 3. Standardized major axis estimation and statistical inference

Parameter	Non-growing season	Growing season				
	Estimate	Lower (2.5%)	Upper (97.5%)	Estimate	Lower (2.5%)	Upper (97.5%)
Elevation	-4.039e-3	-8.112e-3	3.399e-5	-0.011	-0.015	-0.006
Slope	0.095	0.094	0.097	0.106	0.104	0.107

H₀: variables uncorrelated.

P-value < 2.22e-16

R² 0.730

H₀: slopes are equal.

P-value < 2.22e-16

 Likelihood ratio statistic: 129.8 with 1 degrees of freedom
Table 4 (on next page)

Kendall’s tau (τ) coefficient between the 5 different methods of carbon flux prediction and the corresponding residuals
Table 4. Kendall’s tau (τ) coefficient between the four different methods of carbon flux prediction and corresponding residuals

Method	Non-growing season		Growing season			
	DAY$_{Rd=400}$	DAY$_{Rd>400}$	NIGHT	DAY$_{Rd=400}$	DAY$_{Rd>400}$	NIGHT
GP	0.148**	0.171**	0.221**	0.077**	0.145**	0.118**
RBF	0.048*	0.057	0.202**	-0.290**	0.082**	0.005
ANN	0.058**	0.005	0.134**	0.009	-0.009	-0.059**
HLM	0.079**	0.014	0.192**	-0.175**	0.033*	-0.060**
MDS	0.070***	0.071**	0.074**	0.182***	0.075***	0.012

Notes: *** indicates p-value < 0.01; ** indicates 0.01 < p-value < 0.05; * indicates 0.05 < p-value < 0.1.
Table 5 (on next page)

Relationship between the magnitude of carbon flux and the standard deviation of random uncertainty
Table 5. Relationship between the magnitude of carbon flux and the standard deviation of random uncertainty

Method	Intercept \((a)\)	Slope \((b)\)	\(R^2\)
HLM	1.5477***	0.0579***	0.3191
ANN	1.4001***	0.0608***	0.3047
GP	1.3290***	0.1082***	0.5906
RBF	1.5208***	0.0777***	0.4190
MDS	1.5550***	0.1092***	0.4513

Notes: *** indicates \(p\)-value < 0.01; \(R^2\) indicates the coefficient of determination.
Table 6 (on next page)

Annual sum and deviation of the carbon dioxide exchange estimated by the different methods
Table 6. Annual sum and deviation of the carbon dioxide exchange estimated by the different methods

Gap-filling method	Annual sum of CO₂ exchange	Bias of Annual sum of CO₂ exchange			
	Mean	SD	Mean	Lower (2.5%)	Upper (97.5%)
ANN	-159.91	18.35	0.84	-9.55	10.73
GP	-178.25	8.01	11.22	1.37	21.71
RBF	-167.16	19.08	14.05	2.63	25.89
HLM	-156.95	3.15	-2.64	-14.65	9.55
MDS	-155.21	5.16	-13.69	-23.70	-4.20
Table 7 (on next page)

Seasonal sum of carbon dioxide exchange estimated by the different methods
Table 7. Seasonal sum of carbon dioxide exchange estimated by the different methods

Method	Non-growing season	Growing season				
	Mean	Lower (2.5%)	Upper (97.5%)	Mean	Lower (2.5%)	Upper (97.5%)
GP	39.788	33.877	46.264	-220.245	-227.814	-212.417
RBF	68.292	62.380	74.767	-232.510	-240.080	-224.682
ANN	56.000	50.088	62.476	-216.624	-224.194	-208.796
HLM	61.033	55.121	67.508	-227.859	-235.428	-220.031
MDS	74.954	69.042	81.429	-229.959	-237.529	-222.131