Laparoscopic Cholecystectomy and Post-operative Pain Management Our Experience from Medical College Hospital

Ovaise Malik¹, Yaqoob Hassan², Ajaz Ahmad Rather³

¹Lecturer, Department of Anaesthesiology, SKIMS Medical College, Srinagar, Kashmir; ²Registrar, Department of General and Minimal Access Surgery, SKIMS Medical College, Srinagar, Kashmir; ³Professor and Head, Department of General and Minimal Access Surgery, SKIMS Medical College, Srinagar, Kashmir.

ABSTRACT

Aim: The study was aimed to compare the efficacy of Trans Abdominal Plane (TAP) block with port site infiltration on postoperative pain and analgesia requirement in patients undergoing laparoscopic cholecystectomy.

Methods: The Prospective observational study was conducted at SKIMS Medical College Hospital over 1 year. A total of 112 subjects between 20 to 70 years of age with the American Society of Anaesthesiologists(ASA) physical status I/II underwent laparoscopic cholecystectomy were included. The patients were divided into two groups using computer-generated random numbers; Group A included patients who received Ultrasound-guided bilateral subcostal transabdominal plane (TAP) block and Group B included patients who received port-site infiltration. The patients were assessed for pain in the first 24 hours period using the Visual analogue pain scale (VAS) at 0, 2, 6, 12 And 24 hours. The data was collected and analyzed.

Results: Among 112 patients who met the inclusion criteria, 37.5% were males with a male: female ratio of 0.6. The maximum number of patients were in the age group of 40-50 years (41.05%) with the mean age in the TAP group 43.96 years and port-site infiltration group 44.74 years. There was no statical differences between the two groups and were comparable in gender, age and American society of anaesthesiology(ASA) physical status. At 24 hours, subjects with TAP blockhead had a mean VAS score less than the port site infiltration group (0.2 vs 0.4). The overall VAS Score was significantly lower in TAP block subjects (p-value of 0.0011). No significant statistical difference with regards to time to oral intake, ambulation after surgery and hospital discharge was found between the two groups of patients. All the patients did well and were fully satisfied.

Conclusion: Ultrasound-guided TAP block is an effective, safe, efficient and satisfactory method of analgesia after laparoscopic cholecystectomy. Port-site infiltration also improves the postoperative outcome but is less efficient than TAP block in laparoscopic cholecystectomy.

Key Words: Analgesia, Laparoscopy, Cholecystectomy, Transverse abdominis plane block, Ultrasound, Post-operative pain

INTRODUCTION

Symptomatic cholelithiasis is one of the commonest disease processes treated by general surgeons. Regardless of underlying indications, laparoscopic surgery has become the procedure of choice for cholecystectomy. Laparoscopic cholecystectomy though being a minimally invasive procedure results in significant post-operative pain and therefore analgesia requirement.

Appropriate postoperative pain control is essential to relieve the patients from stress and suffering and to improve the overall postoperative status. Common methods of pain relief include Intravenous infusion of narcotics, epidural analgesia using local anaesthetics with or without narcotics, oral administration of narcotics and use of non-narcotic oral medication such as NSAIDs etc. Effective management of postoperative pain helps in wound healing, early ambulation and mobilization, prevention of deep vein thrombosis and improve acute and long-term patient outcomes.

Use of long-acting local anaesthetics or placement of indwelling catheter provides long-term pain relief. Local infiltration of anaesthesia with lidocaine is suitable for minor superficial operations including the skin and subcutaneous tissue. Bupivacaine (0.5% or 0.25% with or without adrenaline) is the long-acting local anaesthetic agent. Although being slower in onset than lidocaine, the effectiveness is prolonged for up to 8 hours...
MATERIALS AND METHODS

The Prospective observational study was conducted at SKIMS Medical College and associate hospital over 1 year. The study included a total of 112 subjects. All our patients were evaluated starting from complete history taking and clinical examination in the pre-anaesthesia check-up room. The patients were subjected to routine investigations including Full blood count, liver and kidney function test, serum electrolytes, Hepatitis and viral serology, radiograph chest and abdominal ultrasonography. All the patients between 20 to 70 years of age with the American Society of Anaesthesiologists (ASA) physical status I/II underwent laparoscopic cholecystectomy and were included in our study. The patients with ASA grade > II, allergic subjects, patients with a history of opioid medication or addiction, patients with skin infections and dermatological problems and patients who received analgesic medication within 24 hours of procedure were excluded from the study. The informed written consent was taken from each subject after explaining the nature of anaesthesia and options of post-operative analgesia.

The patients were randomly divided into two groups before the procedure. Group A included 54 patients who received Ultrasound-guided bilateral subcostal TAP block [15ml of Bupivacaine 0.2% each side] and Group B included 58 patients who received port-site infiltration [5ml bupivacaine 0.2% each site]. All our patients received the same pre-anaesthesia medication in the recovery room and induction was done with Propofol (1 to 1.5 mg/kg) and fentanyl (2 to 20 mcg/kg). Using video laryngoscopy, the patients were intubated with the properly sized cuffed endotracheal tube under the cover of short-acting muscle relaxants. Anaesthesia was maintained with a standard protocol regimen including oxygen, nitrous oxide and injectable muscle relaxants. Strict intra-operative monitoring of vitals was made throughout the procedure.

Intra-operatively each of our subjects received 1 g of paracetamol infusion and 75 mg of intravenous diclofenac. After the procedure, the patients were strictly monitored for vitals and post-operative pain in our High-dependency unit of the surgical ward. All our patients received 1 g paracetamol 12-hourly and intra-muscular Tramadol 100 mg for breakthrough pain in the post-operative period. The patients were assessed for pain at 0, 2, 6, 12 And 24 hours using Visual Analog scale scores. The data was collected and analyzed.

RESULTS

A total of 112 patients was studied including 37.5% males and 62.5% females with a male: female ratio of 0.6. Maximum number of patients were in age group of 40 to 50 years (41.05%), followed by 30-40 years (19.64%), 50-60 years (19.04%), 20-30 years (12.5%) and 60-70 years (7.14%). The mean age in the TAP group was 43.96 years and in the port-site infiltration group 44.74 years. There was no statistical differences between the two groups and were comparable in gender and other demographic characteristics. 58 patients belonged to the American society of anaesthesiology physical status I and 54 patients to ASA II. No statistically significant difference was found between the groups concerning the ASA classification of patients.

Post-operatively patients were strictly monitored and pain and analgesic requirements were recorded. We use the Visual analogue scale (VAS) as a primary assessment of post-operative pain at each point in time. VAS scores are recorded on a 10 cm horizontal line, anchored by word descriptors at each end that represents a continuum between ‘no pain’ and ‘severe pain’. The patient marks on the line the point that they feel represents their perception of pain and the VAS score is determined by measuring in millimetre from the left-hand end of the line to the point that the patient marks. On this VAS, 0 indicates no pain and 10 indicate very severe pain in the wound. This was recorded at 0, 2, 6, 12, and 24 hours post-operatively [0 = no pain; 1-3 = Mild pain; 4-6 = moderate to severe pain; 7-9 = very severe pain; 10 = worst pain possible]. The mean VAS score at 0-hour postoperative period was 1.8 in TAP group subjects while as it was 1.9 in the port-site infiltration group. At 24 hours patients with TAP block has a mean VAS score of less than port site infiltration group patients (0.2 vs 0.4). The overall VAS Score was significantly lower in TAP block subjects with a p-value of 0.0011. [Table 1].

All the subjects were encouraged for ambulation a few hours after the surgery. 59.82% of our patients were fully ambulated and started oral feeds within 12 to 24 hours of surgery. However, time to oral intake and ambulation after surgery...
was statistically insignificant between the two groups of patients. [Table: 2]

The majority of our subjects (67.85%) were discharged within 36 hours after surgery. The difference between the two groups was statistically insignificant [Table 3].

None of our patients experiences any complications during the administration of anaesthetic drugs like intravascular or intraperitoneal injection, local bleeding or infection and anaesthetic overdosage. All our subjects were discharged within 48 hours of the post-operative period on oral paracetamol 650 mg 12hourly and attached to our outpatient department on weekly follow-up. All the patients did well and were fully satisfied.

DISCUSSION

Post-operative pain is an unavoidable consequence of any surgical procedure. Since the advent of laparoscopy, about 90% of elective procedures and 70% of urgent cholecystectomies are being performed laparoscopically. Though being minimal invasive procedure with reduced surgical trauma response, patients of laparoscopic cholecystectomy experience significant postoperative pain.

The multipronged approach of opioids, peripheral nerve block and non-opioid analgesia should be incorporated for effective and satisfactory post-operative pain management in both laparoscopy and open procedures. Local anaesthesia temporally blocks nerve conduction by binding to neuronal sodium channels and is used for short-term post-operative pain relief. Field block targets the small cutaneous sensory nerve fibres, used more commonly to achieve moderate sensory blockade for postoperative analgesia. Transabdominal plane block, adductor canal block, intercostal nerve block, and local infiltration of long-acting anaesthetic agents are procedures used for postoperative analgesia. This study was done to compare the efficacy of TAP block versus local infiltration of port sites in laparoscopic cholecystectomy.

A total of 112 patients was studied including 37.5% males and 62.5% females with a male: female ratio of 0.6.54 patients received TAP block and 58 received port-site infiltration. A maximum number of patients were in the age group of 40 to 50years (41.05%) with the mean age in the TAP group 43.96 years and the port-site infiltration group 44.74 years. 58 patients had American Society of anaesthesiology physical status-1 and 54 patients with American society of anaesthesiology-11. No statistical differences between the two groups concerning age, gender and ASA physical status was noted. The findings are comparable with the study done by Suseela et al.

We use the Visual analogue (VAS) score as a primary assessment of post-operative pain at each point in time. VAS pain score considered the gold standard of pain quantification, is usually a horizontal line, 10 cm in length, anchored by word descriptors at each end. The VAS score is determined by measuring in millimetres from the left-hand end of the line to the point that the patient marks. On this VAS, 0 indicates no pain and 10 indicate very severe pain in the wound. The mean VAS score at 0-hour postoperative period was 1.8 in TAP group subjects while as it was 1.9 in the port-site infiltration group. At 24 hours patients with TAP block has a mean VAS Score of less than port site infiltration group patients (0.2 vs 0.4). The overall VAS Score was significantly lower in TAP block subjects than the local anesthesia infiltration group with a p-value of 0.0011. We found that TAP group subjects had lower mean pain scores as the time passes post-operatively. Local infiltration of anaesthesia agents is short-acting with maximum effects at 1-hour post-surgery and the effect decreases to minimal by 8 hours and vanishes at 16 hours. While as TAP block, effects lasts longer than local infiltration. Ortiz and other researchers found that the efficacy of TAP is of prolonged duration than that of LAI and demonstrates its advantages gradually over time. Literature has proven that TAP block turned out to be superior once compared with port-site infiltration and with epidural analgesia for different abdominal surgeries.

All the subjects were encouraged for ambulation a few hours after the surgery. 59.82% of our patients were fully ambulated and started orals feeds within 12 to 24 hours of surgery. 67.85% of our subjects were discharged within 36 hours after surgery. We found no statistically significant difference between the two groups with regards to postoperative feeding and ambulation time and discharge from the hospital. All our subjects were discharged within 48 hours of the post-operative period on oral paracetamol 650 mg 12hourly and attached to our outpatient department weekly follow-up. The study done by De Oliveira et al. found that TAP block subjects with reduced pain decreased opioid consumption, and provided earlier discharge readiness as compared to placebo in laparoscopic surgery.

None of our patients experiences any complications during the administration of anaesthetic drugs like intravascular or intraperitoneal injection, local bleeding or infection and anaesthetic overdosage. All the patients did well and were fully satisfied.

CONCLUSION

Post-operative pain control plays a significant role in overall outcome after laparoscopic cholecystectomy. Ultrasound-guided TAP block is an effective, safe, efficient and satisfactory method of analgesia after laparoscopic cholecystectomy. Port-site infiltration also improves the post-operative outcome but is less efficient than TAP block in laparoscopic cholecystectomy.
Source of Funding: None
Ethical Issue: None
Conflict of Interest: None

The authors have no other disclosure.

ACKNOWLEDGEMENT

The authors acknowledge the immense help received from the scholars whose articles are cited and included in references of this manuscript. The authors are also grateful to authors/editors/publishers of all those articles, journals and books from where the literature for this article has been reviewed and discussed.

Authors Contribution:

Authors 1,2 and 3 have a role in conception and designing, data collection, writing and critical review. We are taking responsibility for the authenticity and integrity of the research process.

REFERENCES

1. Ashley SW, William GC, and Herbert C. Acs Surgery: Principles and Practice. Ontario: Decker Intellectual Properties, 2014. Print Chapter 5.
2. Farquharson M., Hollingshead J., & Moran B. (2014). Farquharson’s Textbook of Operative General Surgery, 10th Edition. London: CRC Press.
3. Williams NS, O’Connell PR, &McCaskie A. (Eds.). (2018). Bailey & Love’s Short Practice of Surgery, Chapter 18, Anesthesia and pain relief, Page 291-299 (27th ed.). CRC Press.
4. Albrecht E, Kirkham KR, Endersby RV, Chan VW, Jackson T, Okrainec A, et al.: Ultrasound-guided Transversus Abdominis Plane (TAP) block for laparoscopic gastric bypass surgery; a prospective randomized controlled double-blinded trial. Obes Surg 2013, 23(8):1309–1314.
5. Petersen PL, Mathiesen O, Stjernholm P, Kristiansen VB, Torup H, Hansen EG, et al.: The effect of transversus abdominis plane block or local anaesthetic infiltration in inguinal hernia repair: a randomised clinical trial. Eur J Anaesthesiol 2013, 30(7):415–421.
6. Skjelsager A, Ruhnau B, Kistorp TK, Krudina I, Hvarness H, Mathiesen O, et al.: Transversus abdominis plane block or subcutaneous wound infiltration after open radical prostatectomy: a randomized study. Acta Anaesthesiol Scand 2013, 57(4):502–508.
7. Araco A, Pooney J, Araco F, Gravante G: Transversus abdominis plane block reduces the analgesic requirements after abdomino-plasty with flank liposuction. Ann Plast Surg 2010, 65(4):385–388.
8. Sforza M, Andjelkov K, Zaccheddu R, Nagi H, Colic M: Transversus abdominis plane block anaesthesia in abdominoplasties. Plast Reconstr Surg 2011, 128(2):529–535.
9. Atim A, Bilgin F, Kilikaya O, Purtuloglu T, Alanbay I, Orhan ME, et al.: The efficacy of ultrasound-guided transversus abdominis plane block in patients undergoing hysterectomy. Anaesthesia Intensive Care 2011, 39(4):630–634.
10. Sivapurapu V, Vasudevan A, Gupta S, Badhe AS: Comparison of analgesic efficacy of transversus abdominis plane block with direct infiltration of local anaesthetic into the surgical incision in lower abdominal gynaecological surgeries. J Anaesthesiol Clin Pharmacol 2013, 29(1):71–75.
11. Belavy D, Cowlishaw PJ, Howes M, Phillips F: Ultrasound-guided transversus abdominis plane block for analgesia after Caesarean delivery. Br J Anaeth 2009, 103(5):726–730.
12. Johns N, O’Neill S, Ventham NT, Barron F, Brady RR, Daniel T: Clinical effectiveness of Transversus Abdominis Plane (TAP) block in abdominal surgery: a systematic review and meta-analysis. Colorectal Dis 2012, 14(10):e635–e642.
13. Duncan CB, Riäll TS. Evidence-based current surgical practice: calculous gallbladder disease. J Gastrointest Surg. 2012 Nov;16(11):2011-25. doi: 10.1007/s11605-012-2024-1. Epub 2012 Sep 18. PMID: 22986769; PMCID: PMC3496004.
14. Suseela I, Anandan K, Aravind A, Kaniyl S. Comparison of ultrasound-guided bilateral subcostal transversus abdominis plane block and port-site infiltration with bupivacaine in laparoscopic cholecystectomy. Indian J Anaesth 2018;62:497-501.
15. Myles PS, Urquhart N. The linearity of the visual analogue scale in patients with severe acute pain. Anaesth Intensive Care 2005, 33(1):54–58.
16. Ayman M, Materazzi G, Bericotti M, Rago R, Nidal Y, Miccoli P: Bupivacaine 0.5% versus ropivacaine 0.75% wound infiltration to decrease.
17. Ortiz J, Suliburk JW, Wu K, Baird NS, Mason C, Minard CG, et al.: Bilateral transversus abdominis plane block does not decrease postoperative pain after laparoscopic cholecystectomy when compared with local anaesthetic infiltration of trocar insertion sites. Reg Anesth Pain Med 2012, 37(2):188–192.
18. Tolchard S, Davies R, Martindale S. Efficacy of the subcostal transversus abdominis plane block in laparoscopic cholecystectomy: Comparison with conventional port-site infiltration. J Anaesthesiol Clin Pharmacol 2012;28(3):339–43.
19. Niraj G, Kelkar A, Jeyapalan I, Graff-Baker P, Williams O, Darbar A, et al. Comparison of analgesic efficacy of subcostal transversus abdominis plane blocks with epidural analgesia following upper abdominal surgery. Anaesthesia. 2011;66(6):465–71.
20. De Oliveira GS Jr, Fitzgerald PC, Marcus RJ, Ahmad S, McCarthy RJ. A dose-ranging study of the effect of transversus abdominis block on postoperative quality of recovery and analgesia after outpatient laparoscopy. Anesth Analg. 2011 Nov;113(5):1218-25. doi:10.1213/ANE.0b013e3182303a1a. Epub 2011 Sep 16. PMID: 21926373.
Table 1: VAS-Score in the study population

Time	TAP Block Group (Mean)	Port-site Infiltration Group (Mean)
0 hour	1.8	1.9
2 hours	1.6	1.8
6 hours	0.90	1.2
12 hours	0.65	0.72
24 hours	0.20	0.40

p-value = 0.0011

Table 2: Time to oral intake and full ambulation

Oral intake and Ambulation	TAP Group (Frequency/% age)	Port Site Infiltration Group (Frequency/% age)
<6 hours	4(7.4%)	2(3.45%)
6-12 hours	20(37.04%)	14(24.14%)
12-24 hours	28(51.85%)	39(67.24%)
>24 hours	2(3.70%)	3(5.17%)

p-value = 0.0720

Table 3: Stay in hospital

Stay in Hospital	TAP Group (Frequency/% age)	Port site infiltration Group (Frequency/% age)
<24 hours	4(7.4%)	3(5.17%)
24-36 hours	40(74.07%)	36(62.09%)
>36 hours	10(8.52%)	19(32.76%)

p-value=0.222