Nonextensive Entropies
derived from Form Invariance of Pseudoadditivity

Hiroki Suyari

Department of Information and Image Sciences,
Faculty of Engineering, Chiba University
1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522 Japan

(Dated: October 31, 2018)

Abstract

The form invariance of pseudoadditivity is shown to determine the structure of nonextensive entropies. Nonextensive entropy is defined as the appropriate expectation value of nonextensive information content, similar to the definition of Shannon entropy. Information content in a nonextensive system is obtained uniquely from generalized axioms by replacing the usual additivity with pseudoadditivity. The satisfaction of the form invariance of the pseudoadditivity of nonextensive entropy and its information content is found to require the normalization of nonextensive entropies. The proposed principle requires the same normalization as that derived in [A.K. Rajagopal and S. Abe, Phys. Rev. Lett. 83, 1711 (1999)], but is simpler and establishes a basis for the systematic definition of various entropies in nonextensive systems.

*Electronic address: suyari@tj.chiba-u.ac.jp
I. INTRODUCTION

Since the first proposal of nonextensive entropy by Tsallis [1, 2], there have been many successful studies and applications analyzing physical systems such as long-range interactions, long-time memories, and multi-fractal structures in the nonextensively generalized Boltzmann-Gibbs statistical mechanics [3]. In the rapid progress in this field, some modifications have been made to mathematical formulations in the generalized statistical mechanics in order to maintain the physical consistency. One of the most important modifications was the introduction of an appropriate definition of the generalized expectation value. This modification has already appeared in the literature [4], but has been applied as a candidate for satisfying the physical requirements in a given situation without a systematic framework. The necessity to apply such modifications invites the establishment of guiding principles that will provide a clear basis for proposed generalizations of Boltzmann-Gibbs statistical mechanics. In a recent paper [5], Rajagopal and Abe presented a principle for determining the structure of nonextensive entropies. Their principle was the form invariance of the Kullback-Leibler entropy when generalized to nonextensive situations.

In the present paper, a much simpler principle for determining the structure of nonextensive entropies is presented. The original Tsallis entropy is determined for the given appropriate axioms [3, 7, 8]. In contrast to these axiomatic approaches, we define nonextensive entropy in another way; in terms of the appropriate expectation value of nonextensive information content similar to the definition for Shannon entropy [9]. This definition has already been applied to the generalization of the Shannon source coding theorem using the normalized q-expectation value of nonextensive information content [10]. Nonextensive information content $I_q(p)$ is defined by $I_q(p) = -\ln_q p$ in [10] as an intuitively natural generalization of the standard information content $I_1(p) = -\ln p$ (referred to as self-information or self-entropy in Shannon information theory [3]), where $\ln_q x$ is a q-logarithm function defined by $\ln_q x \equiv (x^{1-q} - 1)/(1 - q)$. However, in [10], the form invariance presented in this paper was not mentioned. We introduce the axioms for nonextensive information content $I_q(p)$ as a slight generalization of that for the standard information content, and obtain $I_q(p)$ uniquely from the generalized axioms. The requirement of form invariance of pseudoadditivity when we define nonextensive entropy $S_q(p)$ as the appropriate expectation value of $I_q(p)$,

$$S_q(p) \equiv E_{q,p} [I_q(p_i)], \quad (1)$$
leads to the determination of the structure of the nonextensive entropy, where \(E_{q,p} \) is the expectation value satisfying the following form invariance of the pseudoadditivity:

\[
\frac{I_q(p_1p_2)}{k} = \frac{I_q(p_1)}{k} + \frac{I_q(p_2)}{k} + \varphi(q) \cdot \frac{I_q(p_1)}{k} \cdot \frac{I_q(p_2)}{k}
\] (2)

and

\[
\frac{S_q(p^{AB})}{k} = \frac{S_q(p^A)}{k} + \frac{S_q(p^B)}{k} + \varphi(q) \cdot \frac{S_q(p^A)}{k} \cdot \frac{S_q(p^B)}{k}
\] (3)

where \(k \) is a positive constant. \(\varphi(q) \) is any function of the nonextensivity parameter \(q \) and satisfies the conditions (7) given below.

Note that information content means the amount of information provided by a result of an observation in a physical sense. The standard information content \(I_1(p) = -\ln p \) has been called surprise by Watanabe [11], and unexpectedness by Barlow [12].

II. NONEXTENSIVE SELF-INFORMATION

The axioms of standard information content \(I_1 : [0, 1] \to R^+ \) satisfying \(I_1(1) = 0 \) are given as follows [9]:

[S1] \(I_1 \) is differentiable with respect to any \(p \in (0, 1) \),

[S2] \(I_1(p_1p_2) = I_1(p_1) + I_1(p_2) \) for any \(p_1, p_2 \in [0, 1] \).

Axiom [S2] means that the information content for two stochastically independent events is given by the sum of the two sets of information.

For the above axioms, \(I_1(p) \) is determined uniquely by

\[
I_1(p) = -k \ln p
\] (4)

where \(k \) is a positive constant [9].

The above axioms are generalized in nonextensive situations as follows.

Nonextensive information content \(I_q : [0, 1] \to R^+ \) for any fixed \(q \in R^+ \), satisfying

\[
\lim_{q \to 1} I_q(p) = I_1(p) = -k \ln p,
\] (5)

should have the following properties.

[T1] \(I_q \) is differentiable with respect to any \(p \in (0, 1) \) and \(q \in R^+ \),
[T2] \(I_q(p) \) is convex with respect to \(p \in [0, 1] \) for any fixed \(q \in \mathbb{R}^+ \),

[T3] there exists a function \(\varphi : R \rightarrow R \) such that
\[
\frac{I_q(p_1 p_2)}{k} = \frac{I_q(p_1)}{k} + \frac{I_q(p_2)}{k} + \varphi(q) \cdot \frac{I_q(p_1)}{k} \cdot \frac{I_q(p_2)}{k} \tag{6}
\]
for any \(p_1, p_2 \in [0, 1] \), where \(\varphi(q) \) is differentiable with respect to any \(q \in \mathbb{R}^+ \),
\[
\lim_{q \to 1} \frac{d \varphi(q)}{dq} \neq 0, \quad \lim_{q \to 1} \varphi(q) = \varphi(1) = 0, \quad \text{and} \quad \varphi(q) \neq 0 \ (q \neq 1). \tag{7}
\]

Equation (6) is called pseudoadditivity in many studies [3], as a special form of composability [13, 14].

Note that in these generalized axioms, [T2] is needed to maintain nonnegativity of the Kullback-Leibler entropy for any \(q \in \mathbb{R}^+ \) when generalized to nonextensive situations [15, 16]. In general, Kullback-Leibler entropy \(K\left(p^A \parallel p^B\right) \) is defined by the appropriate expectation value of the difference between two information contents [4].
\[
K\left(p^A \parallel p^B\right) \equiv E_{p^A} \left[I\left(p_i^B\right) - I\left(p_i^A\right) \right] \tag{8}
\]
Therefore the nonnegativity of the Kullback-Leibler entropy leads to Gibbs inequality [17, 18]:
\[
K\left(p^A \parallel p^B\right) \geq 0 \iff S\left(p^A\right) = E_{p^A} \left[I\left(p_i^A\right) \right] \leq E_{p^A} \left[I\left(p_i^B\right) \right] . \tag{9}
\]
When \(E_p \) is a normalized expectation value (i.e., \(E_p \left[1 \right] = 1 \)) and \(p^B = \left(\frac{1}{W}, \cdots, \frac{1}{W} \right) \), the right-hand side \(E_{p^A} \left[I\left(p_i^B\right) \right] \) of the above Gibbs inequality is equal to the maximum entropy.
\[
E_{p^A} \left[I\left(\frac{1}{W}\right) \right] = I\left(\frac{1}{W}\right) = E_{1/W} \left[I\left(\frac{1}{W}\right) \right] = S\left(\frac{1}{W}, \cdots, \frac{1}{W}\right) \tag{10}
\]
This inequality coincides with the maximality condition which is one of the Shannon-Khinchin axioms [13, 20], that is, the simplest form of the maximum entropy principle without constraints. Therefore the satisfaction of the nonnegativity of the Kullback-Leibler entropy for any \(q \in \mathbb{R}^+ \) is needed when generalized to nonextensive systems. In order to satisfy the requirement of the nonnegativity, the information content \(I_q(p) \) should be convex with respect to \(p \in [0, 1] \) for any fixed \(q \in \mathbb{R}^+ \) and its corresponding appropriate expectation value should be applied. Such examples of expectation value are \(q\)-expectation value and normalized \(q\)-expectation value [2, 4]. Under these two conditions (convex information content
and appropriate expectation value), the nonnegativity of the nonextensive Kullback-Leibler can be proved. The proof is given in appendix A.

Using the axioms [T1]∼[T3], we determine \(I_q(p) \) uniquely in the following procedures. Using (\[T1]\), for any \(1 + \Delta \in (0, 1) \), we have

\[
\frac{I_q(p(1+\Delta))}{k} = \frac{I_q(p+\Delta p)}{k} = \frac{I_q(p)}{k} + \frac{I_q(1+\Delta)}{k} + \varphi(q) \cdot \frac{I_q(p)}{k} \cdot \frac{I_q(1+\Delta)}{k}.
\]

This can be rewritten as

\[
\frac{I_q(p+\Delta p) - I_q(p)}{\Delta p} = \frac{1}{k} \cdot \frac{I_q(1+\Delta)}{\Delta} \cdot \frac{k + \varphi(q) I_q(p)}{p}.
\]

Taking the limit \(\Delta \to 0 \) on both sides of equation (\[T2]\), we obtain

\[
\frac{dI_q(p)}{dp} = \beta \cdot \frac{k + \varphi(q) I_q(p)}{p}
\]

where \(\beta \equiv \lim_{\Delta \to 0} \frac{I_q(1+\Delta)}{\Delta} \) and the first axiom [T1] is applied. The differential equation is given by

\[
\frac{1}{k + \varphi(q) y} dy = \frac{\beta}{k} \cdot \frac{1}{x} dx
\]

where \(x \equiv p \) and \(y \equiv I_q(p) \). This can be solved analytically; the rigorous solution is

\[
y = k \cdot \left(C x^\beta \right)^{\frac{\varphi(q)}{\varphi(q)}} - 1, \quad \text{that is,} \quad I_q(p) = k \cdot \left(C p^\beta \right)^{\frac{\varphi(q)}{\varphi(q)}} - 1
\]

where \(C \) is a constant. Then, from the initial condition \(\lim_{q \to 1} I_q(p) = I_1(p) = -k \ln p \), we have that \(C = 1 \) and \(\beta = -k \), where conditions (\[T7]\) are applied. Thus, the nonextensive information content \(I_q(p) \) is derived as \(I_q(p) = k \cdot \frac{p^{-\varphi(q)} - 1}{\varphi(q)} \).

Moreover, by [T2], the second differential of \(I_q(p) \) with respect to \(p \) should be nonnegative for any fixed \(q \in R^+ \). Thus, we can derive a constraint \(\varphi(q) + 1 \geq 0 \) for any \(q \in R^+ \).

Summarizing these results, the nonextensive information content \(I_q(p) \) obtained from the axioms [T1]∼[T3] is

\[
I_q(p) = k \cdot \frac{p^{-\varphi(q)} - 1}{\varphi(q)}
\]

where \(k \) is a positive constant and

\[
\varphi(q) + 1 \geq 0 \quad \text{for any} \quad q \in R^+.
\]

For example, \(\varphi(q) = q - 1 \) implies \(I_q(p) = -k \ln q p \).
Note that there have been already remarks on the alternative candidates for nonextensive information content to define the original Tsallis entropy \[3\]. They are

\[
I_q^{(1)} (p) \equiv -k \ln_q p \quad \text{and} \quad I_q^{(2)} (p) \equiv k \ln_q p^{-1},
\]

and they only coincide for \(q = 1 \).

\[
S_{q}^{\text{org}} (p) \equiv k \cdot \frac{1 - \sum_{i=1}^{W} p_i^q}{q - 1} = \sum_{i=1}^{W} p_i^q I_q^{(1)} (p_i) = \sum_{i=1}^{W} p_i I_q^{(2)} (p_i)
\]

(19)

\(I_q^{(1)} (p) \) and \(I_q^{(2)} (p) \) correspond to \(\varphi^{(1)} (q) \equiv q - 1 \) and \(\varphi^{(2)} (q) \equiv 1 - q \) as \(\varphi (q) \) in \((17)\), respectively. However, the latter case \(\varphi^{(2)} (q) = 1 - q \) does not satisfy the identity \((17)\) for any \(q \in R^+ \), that is, \(I_q^{(2)} (p) \) does not possess the property of convexity \[T2\]. Therefore, \(I_q^{(2)} (p) \) cannot be information content. Even if \(I_q^{(2)} (p) \) is applied as information content, then the nonnegativity property of the nonextensive Kullback-Leibler entropy is not held for any \(q \in R^+ \) for lack of the convexity of \(I_q^{(2)} (p) \), as stated above. The convexity of information content is applied to Jensen’s inequality in order to prove the nonnegativity of the nonextensive Kullback-Leibler entropy. See the appendix A for the details.

In case of \(\varphi (q) = q - 1 \) and \(k = 1 \), the pseudoadditivity \((6)\) of \(I_q (p) \) is remarkably similar to the relation of the Jackson basic number in \(q\)-deformation theory \[21, 22\] as follows. Let \([X]_q\) be the Jackson basic number of a physical quantity \(X\), that is, \([X]_q \equiv (q^X - 1)/(q - 1)\). Then the Jackson basic number of \(X+Y\) satisfies the identity \([X+Y]_q = [X]_q + [Y]_q + (q - 1) [X]_q [Y]_q\). The surprising similarity to pseudoadditivity \((6)\) can be seen if we consider a quantity \(f (x) = p^{-(x-1)}\). Clearly, \(f (1) = 1\). Standard information content \(I_1 (p)\) is expressed as \(I_1 (p) = df (x)/dx|_{x=1};\) nonextensive information content is given by \(I_q (p) = D_q f (x)|_{x=1} \equiv (f (qx) - f (x))/(qx - x)|_{x=1}\), where \(D_q\) is the Jackson differential. According to \(q\)-deformation theory, the property \(\lim_{q \to 1} I_q (p) = I_1 (p)\) originates from the convergence \(\lim_{q \to 1} D_q = d/dx\).

III. EFFECTS OF RENORMALIZATION OF NONEXTENSIVE ENTROPIES

The normalized nonextensive entropies follows naturally from the form invariance between entropy and its information content. In this section we assume \(k = 1\) for simplicity.

Similar to Shannon entropy, nonextensive entropy \(S_q (p)\) is defined as the expectation value of the information content \(I_q (p)\) obtained in \((16)\). For example, the nonextensive
entropy S_q^{org} using the unnormalized expectation value $E_{q,p}^{\text{org}} [\cdot]$ is given by

$$S_q^{\text{org}} (p) = E_{q,p}^{\text{org}} [I_q (p)] = \sum_{i=1}^{W} p_i^q I_q (p_i) \quad (20)$$

where W is the total number of microscopic configurations with probabilities $\{p_i\}$. In the definition of $E_{q,p}^{\text{org}}$ in (20), the q-expectation value $[2, 4]$ is used. If we let $\varphi (q) = q - 1$, then $S_q^{\text{org}} (p)$ is concretely derived from (16) and (20) as follows:

$$S_q^{\text{org}} (p) = \frac{1 - \sum_{i=1}^{W} p_i^q}{q - 1} \quad (21)$$

This is the original Tsallis entropy [1].

Let A and B be two independent systems in the sense that the probabilities $p_{i,j}^{AB}$ of the total system $A + B$ factorize into those of A and of B, i.e.,

$$p_{i,j}^{AB} = p_i^A p_j^B \quad \text{for any } i = 1, \cdots, W_A \text{ and } j = 1, \cdots, W_B. \quad (22)$$

The nonextensive entropy $S_q^{\text{org}} (p^{AB})$ of the total system $A + B$ can then be expanded using definitions (20) and (22) as follows:

$$S_q^{\text{org}} (p^{AB}) = E_{q,p}^{\text{org}} [I_q (p^{AB})] = \sum_{i=1}^{W_A} \sum_{j=1}^{W_B} (p_{i,j}^{AB})^q I_q (p_{i,j}^{AB}) = \sum_{i=1}^{W_A} \sum_{j=1}^{W_B} (p_i^A p_j^B)^q I_q (p_i^A p_j^B) \quad (23)$$

Applying the pseudoadditivity (3) for information content $I_q (p)$, we obtain

$$S_q^{\text{org}} (p^{AB}) = \sum_{i=1}^{W_A} \sum_{j=1}^{W_B} (p_i^A p_j^B)^q \{I_q (p_i^A) + I_q (p_j^B) + \varphi (q) I_q (p_i^A) I_q (p_j^B)\}$$

$$= \left(\sum_{j=1}^{W_B} (p_j^B)^q \right) S (p^A) + \left(\sum_{i=1}^{W_A} (p_i^A)^q \right) S (p^B) + \varphi (q) S (p^A) S (p^B) \quad (24)$$

where we used

$$S_{\text{org}} (p^A) = \sum_{i=1}^{W_A} (p_i^A)^q I_q (p_i^A) \quad \text{and} \quad S_{\text{org}} (p^B) = \sum_{j=1}^{W_B} (p_j^B)^q I_q (p_j^B). \quad (25)$$

Dividing both sides of (24) by

$$\sum_{i=1}^{W_A} \sum_{j=1}^{W_B} (p_{i,j}^{AB})^q = \left(\sum_{i=1}^{W_A} (p_i^A)^q \right) \left(\sum_{j=1}^{W_B} (p_j^B)^q \right) (\neq 0) \quad (26)$$

yields

$$S_q^{\text{org}} (p^{AB}) = \frac{S_q^{\text{org}} (p^A)}{\sum_{i=1}^{W_A} \sum_{j=1}^{W_B} (p_{i,j}^{AB})^q} + \frac{S_q^{\text{org}} (p^B)}{\sum_{j=1}^{W_A} \sum_{j=1}^{W_B} (p_{i,j}^{AB})^q} + \frac{\varphi (q)}{\sum_{i=1}^{W_A} \sum_{j=1}^{W_B} (p_{i,j}^{AB})^q} \quad (27)$$
In order to preserve the form of pseudoadditivity between nonextensive entropy $S_q(p)$ and the corresponding information content $I_q(p)$, the nonextensive entropy is modified as

$$S_{q}^{\text{nor}}(p) \equiv \frac{S_{q}^{\text{org}}(p)}{\sum_{j=1}^{W} p_j^q} = \left(\frac{\sum_{i=1}^{W} p_i^q I_q(p_i)}{\sum_{j=1}^{W} p_j^q}\right)$$ (28)

which is the expectation value of the information content $I_q(p_i)$ with respect to the escort distribution $[24]$ of p of order q. Then, by substituting (28) into (27), the following equation with respect to $S_{q}^{\text{nor}}(p)$ is obtained.

$$S_{q}^{\text{nor}}(p^{AB}) = S_{q}^{\text{nor}}(p^A) + S_{q}^{\text{nor}}(p^B) + \varphi(q) S_{q}^{\text{nor}}(p^A) S_{q}^{\text{nor}}(p^B).$$ (29)

This is the same pseudoadditivity of nonextensive entropy $S_q(p)$ as (8). We have thus derived from the expectation value of $I_q(p)$ the form invariance of the pseudoadditivity of nonextensive entropy and its information content. Moreover, the nonextensive entropy $S_{q}^{\text{nor}}(p)$ defined by (28) is actually the q-normalized nonextensive entropy $[3, 23]$. Thus, according to the principle of the form invariance of pseudoadditivity between nonextensive entropy $S_q(p)$ and its information content $I_q(p)$, $S_{q}^{\text{nor}}(p)$ should be used as nonextensive entropy instead of $S_{q}^{\text{org}}(p)$. If $E_{q,p}^{\text{nor}}$ denotes the normalized q-expectation value with respect to $\{p_i\}$, defined by

$$E_{q,p}^{\text{nor}}[A] \equiv \frac{E_{q,p}^{\text{org}}[A]}{\sum_{j=1}^{W} p_j^q} = \left(\frac{\sum_{i=1}^{W} p_i^q A_i}{\sum_{j=1}^{W} p_j^q}\right)$$ (30)

where A is a physical quantity, then q-normalized nonextensive entropy $S_{q}^{\text{nor}}(p)$ is given by

$$S_{q}^{\text{nor}}(p) = E_{q,p}^{\text{nor}}[I_q(p_i)].$$ (31)

For the most typical case $\varphi(q) = q - 1$, $S_{q}^{\text{nor}}(p)$ is concretely given by

$$S_{q}^{\text{nor}}(p) = \frac{1 - \sum_{i=1}^{W} p_i^q}{(q - 1) \sum_{j=1}^{W} p_j^q}.$$ (32)

This normalized Tsallis entropy $[32]$ is concave only if the nonextensivity parameter q lies in $(0, 1)$ $[3, 3]$. Note that definition (20) can be easily replaced with a more general unnormalized expectation value, leading to almost the same conclusion as that derived in this study. For
example, if we use a more general form (14) as information content, then the expectation value \(E_{q,p}^{g-\text{org}} \) defined by \(\text{(A4)} \) can be applied to the definition of the generalized original Tsallis entropy \(S_q^{g-\text{org}} \).

\[
S_q^{g-\text{org}}(p) \equiv E_{q,p}^{g-\text{org}}[I_q(p_i)] = \sum_{i=1}^{W} p_i^{\varphi(q)+1} I_q(p_i) = \frac{1 - \sum_{i=1}^{W} p_i^{\varphi(q)+1}}{\varphi(q)}.
\]

(33)

Then, along the same procedure as that presented in this section, the following \(S_q^{g-\text{nor}} \) can be obtained in order to preserve the form invariance of pseudoadditivity between nonextensive entropy and its information content.

\[
S_q^{g-\text{nor}}(p) \equiv \frac{S_q^{g-\text{org}}(p)}{\sum_{j=1}^{W} p_j^{\varphi(q)+1}} = \frac{1 - \sum_{i=1}^{W} p_i^{\varphi(q)+1}}{\varphi(q) \sum_{j=1}^{W} p_j^{\varphi(q)+1}}.
\]

(34)

In fact, when \(\varphi(q) = q - 1 \), the formulas \(\text{(33)} \) and \(\text{(34)} \) coincide with \(\text{(21)} \) and \(\text{(32)} \), respectively.

A dissatisfaction of the form invariance of the pseudoadditivity in the original Tsallis entropy can be revealed through the following simple calculation. Here we take \(k = 1 \) for simplicity. When \(\varphi(q) = q - 1 \), and substituting \(\text{(14)} \) into \(\text{(20)} \), \(S_q^{\text{org}}(p) \) coincides with the original Tsallis entropy \(\text{(1)} \) as shown in \(\text{(21)} \). The original Tsallis entropy \(S_q^{\text{org}}(p) \) given by \(\text{(21)} \) is widely known to satisfy the following pseudoadditivity \(\text{(3)} \):

\[
S_q^{\text{org}}(p^{AB}) = S_q^{\text{org}}(p^A) + S_q^{\text{org}}(p^B) + (1 - q) S_q^{\text{org}}(p^A) S_q^{\text{org}}(p^B)\]

(35)

However, the pseudoadditivity \(\text{(3)} \) of \(I_q(p) \) for the same condition (i.e., \(\varphi(q) = q - 1 \)) is given by

\[
I_q(p_1 p_2) = I_q(p_1) + I_q(p_2) + (q - 1) I_q(p_1) I_q(p_2) .
\]

(36)

By comparing \(\text{(35)} \) and \(\text{(36)} \), the coefficient \((q - 1) \) of the cross term of pseudoadditivity \(\text{(35)} \) differs from the \((1 - q) \) in \(\text{(37)} \) when \(E_{q,p}^{\text{org}}[\cdot] \) defined by \(\text{(20)} \) is used. This clearly reveals that the form of the pseudoadditivity of \(S_q^{\text{org}}(p) \) and \(I_q(p) \) is not invariant in the computation of \(E_{q,p}^{\text{org}}[\cdot] \). In other words, the form of the pseudoadditivity is not fixed when the unnormalized expectation value \(E_{q,p}^{\text{org}}[\cdot] \) is applied to the definition of Tsallis entropy.

More generally, for the generalized original Tsallis entropy \(S_q^{g-\text{org}} \) obtained in \(\text{(33)} \), the following pseudoadditivity is held.

\[
S_q^{g-\text{org}}(p^{AB}) = S_q^{g-\text{org}}(p^A) + S_q^{g-\text{org}}(p^B) - \varphi(q) \cdot S_q^{g-\text{org}}(p^A) S_q^{g-\text{org}}(p^B)\]

(37)
By comparing (6) and (37), a “\(\varphi(q) \) versus \(-\varphi(q)\) inconsistency” can be found as similar as the above discussion. Note that when \(q = 1 \), the form invariance discussed here holds because both \(E_{q,p}^{\text{org}}[\cdot] \) and \(E_{q,p}^{\text{g-org}}[\cdot] \) become a normalized expectation value when \(q = 1 \).

Therefore the unnormalized expectation value such as \(E_{q,p}^{\text{org}}[\cdot] \) result in an inconsistency in the form invariance of the pseudoadditivity for the original Tsallis entropy.

If we let \(\varphi(q) = q - 1 \), then from (29) the following pseudoadditivity holds.

\[
S_{\text{nor}}^q(p^{AB}) = S_{\text{nor}}^q(p^A) + S_{\text{nor}}^q(p^B) + (q - 1) S_{\text{nor}}^q(p^A) S_{\text{nor}}^q(p^B) \quad (38)
\]

In other words, \(S_{\text{nor}}^q(p) \) given by (32) satisfies the same pseudoadditivity (38) as (36). Therefore, the form invariance of pseudoadditivity requires the change from the familiar identity (35) to the modified one (38). This follows clearly from the above discussion, because when \(E_{q,p}^{\text{org}}[\cdot] \) defined by (20) is applied to the definition of \(S_{q}(p) \), the form invariance of the pseudoadditivity is not held as shown above.

Note that the obtained pseudoadditivity (38) is same as the relation of the Jackson basic number:

\[
[X + Y]_q = [X]_q + [Y]_q + (q - 1) [X]_q [Y]_q \quad \text{where} \quad [X]_q \equiv \left(q^X - 1 \right)/(q - 1)
\]

[3]. Consider a quantity \(\tilde{f}(x) \equiv 1/\sum_i (p_i)^x \). Clearly, \(\tilde{f}(1) = 1 \). Shannon entropy \(S_1(p) \) is expressed as \(S_1(p) = d\tilde{f}(x)/dx|_{x=1} \); normalized Tsallis entropy is given by \(S_{\text{nor}}^q(p) = D_q \left[\tilde{f}(x) \right]|_{x=1} \equiv \left(\tilde{f}(qx) - \tilde{f}(x) \right)/(qx - x)|_{x=1} \), where \(D_q \) is the Jackson differential.

IV. CONCLUSION

We have established a self-consistent principle for the form invariance of the pseudoadditivity of nonextensive entropy and its information content. The present principle is drawn from Shannon information theory and leads to the same normalization of the original Tsallis entropy as that derived in [3].

Once a set of an information content and an expectation value is given, various entropies such as Kullback-Leibler entropy (relative entropy) and mutual entropy can be formulated systematically. In nonextensive systems, an information content (16) and two expectation values (20) and (30) are given in the previous sections. Therefore we can formulate two sets of various entropies based on two sets of the information content (16) and the expectation value (20) or (30), respectively. Please see the concrete formulas in appendix B.

Note that the alternative selection from the original Tsallis entropy or the normalized
Tsallis entropy should be careful in each application. From the mathematical point of view, the normalized Tsallis entropy has nice properties such as the form invariance of the pseudoadditivity, the unified application of the normalized q-expectation value, the form invariance of the statement of the maximum entropy principle and so on. However, from the physical point of view, the original Tsallis entropy has many advantages over the normalized version. For example, the results derived from the Kolmogorov-Sinai entropy using the original Tsallis entropy have the perfect matching with nonlinear dynamical behavior such as the sensitivity to the initial conditions in chaos. On the other hand, the normalized Tsallis entropy does not have these convenient properties. Please see the references [25, 26, 27, 28] for the details.

The principle discussed here is based on the usual formulation for information in Shannon information theory. Therefore, the ideas presented in this paper are an application of information theory to statistical mechanics, similar to the philosophy of Jaynes’ work [29]. There remain many other applications of Shannon information theory to this interesting field.

Acknowledgments

The author would like to thank Prof. Yoshinori Uesaka and Prof. Makoto Tsukada for their valuable comments and discussions. The author is grateful to Prof. Sumiyoshi Abe for reading the first draft and his useful comments. The author is very much obliged to the second referee for his significant comments.

APPENDIX A: GIBBS INEQUALITY DERIVED FROM CONVEXITY OF INFORMATION CONTENT AND APPROPRIATE EXPECTATION VALUE

As presented in (8), the Kullback-Leibler entropy is generally defined by means of the information content,

$$K_q \left(p^A \| p^B \right) = E_{q,p^A} \left[I_q \left(p^B_i \right) - I_q \left(p^A_i \right) \right].$$ \hspace{1cm} (A1)

Our result (16) implies that

$$I_q \left(p_2 \right) - I_q \left(p_1 \right) = \tilde{p}_1 \varphi(q) I_q \left(\frac{p_2}{p_1} \right).$$ \hspace{1cm} (A2)
Substituting this relation into (A1), the Kullback-Leibler entropy is
\[K_q \left(p_A \parallel p_B \right) = E_{q,p^A} \left[\left(p_i^A \right)^{-\varphi(q)} I_q \left(\frac{p_i^B}{p_i^A} \right) \right]. \]
(A3)

If we take an unnormalized expectation value:
\[E_{q,p}^{g-org} [X] \equiv \sum_{i=1}^W p_i^{\varphi(q)+1} X_i, \]
(A4)

then
\[K_q \left(p_A \parallel p_B \right) = \sum_{i=1}^W p_i^A I_q \left(\frac{p_i^B}{p_i^A} \right). \]
(A5)

\(I_q (p) \) is a convex function with respect to \(p \in [0, 1] \) for any \(q \in \mathbb{R}^+ \). Thus, we can use Jensen’s inequality [9]: if \(f \) is a convex function and \(X \) is a physical quantity (random variable in mathematics), then
\[E [f (X)] \geq f (E [X]) \]
(A6)

where \(E \) is the usual expectation value when \(q = 1 \). Therefore (A5) satisfies
\[K_q \left(p_A \parallel p_B \right) = \sum_{i=1}^n p_i^A I_q \left(\frac{p_i^B}{p_i^A} \right) \geq I_q \left(\sum_{i=1}^W p_i^A \frac{p_i^B}{p_i^A} \right) = I_q \left(\sum_{i=1}^W p_i^B \right) = I_q (1) = 0. \]
(A7)

If we take a normalized expectation value:
\[E_{q,p}^{g-nor} [X] \equiv \sum_{i=1}^n \frac{p_i^{\varphi(q)+1}}{\sum_{j=1}^n p_j^{\varphi(q)+1}} X_i, \]
(A8)

then the same Gibbs inequality as (A7) can be obtained. When \(\varphi (q) = q - 1 \), the expectation values (A4) and (A8) coincide with \(q \)-expectation value defined by (20) and normalized \(q \)-expectation value defined by (30), respectively. Thus, if an expectation value is chosen appropriately for a given self-information, then the nonnegativity condition of the Kullback-Leibler entropy is held.

APPENDIX B: SYSTEMATIC FORMULATIONS OF VARIOUS NONEXTENSIVE ENTROPIES

The proposed procedure for defining nonextensive entropy using an information content and an expectation value is applicable to the systematic formulations of various nonextensive entropies such as Kullback-Leibler entropy (relative entropy) and mutual entropy in accordance with the formulations in Shannon information theory [9].
In nonextensive systems, an information content and two expectations are given in section III. Therefore we can formulate various nonextensive entropies in the following two cases.

Case 1: the information content (16) and the q-expectation value (20)

Case 2: the information content (16) and the normalized q-expectation value (30)

In each formulation $\varphi(q) = q - 1$ is used as the most typical function of $\varphi(q)$.

1. Various nonextensive entropies using q-expectation value E_o^q \{\[\]

The information content (16) and the q-expectation value (20) are applied to the definitions of various entropies as follows.

(O-1) (nonextensive joint entropy)

\[
S^o_q(p^{AB}) \equiv E^o_{q,p^{AB}} \left[I_q \left(p_{ij}^{AB} \right) \right] = \frac{1 - \sum_{i=1}^{W_A} \sum_{j=1}^{W_B} \left(p_{ij}^{AB} \right)^q}{q - 1}, \quad (B1)
\]

(O-2) (nonextensive conditional entropy)

\[
S^o_q(p^{B|A}) \equiv E^o_{q,p^A} \left[S_q \left(\frac{p_{ij}^{AB}}{p_i^A} \right) \right] = \sum_{i=1}^{W_A} \left(p_i^A \right)^q \left[1 - \sum_{j=1}^{W_B} \left(\frac{p_{ij}^{AB}}{p_i^A} \right)^q \right] \left[q - 1 \right] \quad (B2)
\]

where \(\left\{ \frac{p_{ij}^{AB}}{p_i^A} \right\} = \left\{ \frac{p_{1ij}^{AB}}{p_1^A}, \ldots, \frac{p_{W_Aij}^{AB}}{p_{W_A}^A} \right\} \) for \(i = 1, \ldots, W_A \),

(O-3) (nonextensive Kullback-Leibler entropy)

\[
K^o_q(p^A || p^B) \equiv E^o_{q,p^A} \left[I_q \left(p_i^B \right) - I_q \left(p_i^A \right) \right] = \frac{1 - \sum_{i=1}^{W_A} p_i^B \left(\frac{p_i^A}{p_i^B} \right)^q}{1 - q}, \quad (B3)
\]

(O-4) (nonextensive mutual entropy)

\[
I^o_q(p^A; p^B) \equiv K^o_{q,p^A} \left(p_{ij}^{AB} || p_i^A p_j^B \right) = E^o_{q,p^{AB}} \left[I_q \left(p_i^A p_j^B \right) - I_q \left(p_{ij}^{AB} \right) \right] = \frac{1 - \sum_{i=1}^{W_A} \sum_{j=1}^{W_B} \left(p_{ij}^{AB} \right)^q \left(\frac{p_i^A}{p_i^B} \right)^q}{1 - q}. \quad (B4)
\]
2. Various nonextensive entropies using normalized q-expectation value E_{q}^{nor} \[\text{(B4)}\]

The information content (16) and the q-expectation value (30) are applied to the definitions of various entropies as follows.

(N-1) (nonextensive joint entropy)

\[S_{q}^{\text{nor}} (p^{AB}) \equiv E_{q,p^{AB}}^{\text{nor}} \left[I_{q} \left(p_{i,j}^{AB} \right) \right] = \frac{1 - \sum_{i=1}^{W_{A}} \sum_{j=1}^{W_{B}} (p_{i,j}^{AB})^{q}}{(q - 1) \sum_{i=1}^{W_{A}} \sum_{j=1}^{W_{B}} (p_{i,j}^{AB})^{q}}, \quad \text{(B5)}\]

(N-2) (nonextensive conditional entropy)

\[S_{q}^{\text{nor}} (p^{B|A}) \equiv E_{q,p^{A}}^{\text{nor}} \left[S_{q} \left(\frac{p_{i}^{AB}}{p_{i}^{A}} \right) \right] = \frac{\sum_{i=1}^{W_{A}} \left[\left(\frac{p_{i}^{A}}{p_{i}^{A}} \right)^{q} - \sum_{i=1}^{W_{B}} \frac{p_{i}^{AB}}{p_{i}^{A}}^{q} \right]^{q}}{(q - 1) \sum_{j=1}^{W_{B}} \left(\frac{p_{j}^{A}}{p_{j}^{A}} \right)^{q}}, \quad \text{(B6)}\]

where \(\left\{ p_{i,j}^{AB} \right\} = \left\{ \frac{p_{i}^{AB}}{p_{i}^{A}}, \ldots, \frac{p_{i}^{AB}}{p_{i}^{A}} \right\} \) for \(i = 1, \ldots, W_{A} \),

(N-3) (nonextensive Kullback-Leibler entropy)

\[K_{q}^{\text{nor}} (p^{A} \parallel p^{B}) \equiv E_{q,p^{A},p^{B}}^{\text{nor}} \left[I_{q} \left(p_{i}^{B} \right) - I_{q} \left(p_{i}^{A} \right) \right] = \frac{1 - \sum_{i=1}^{W_{A}} p_{i}^{B} \left(\frac{p_{i}^{A}}{p_{i}^{B}} \right)^{q}}{(1 - q) \sum_{j=1}^{W_{B}} \left(p_{j}^{A} \right)^{q}}, \quad \text{(B7)}\]

(N-4) (nonextensive mutual entropy)

\[\mathcal{I}_{q}^{\text{nor}} (p^{A}; p^{B}) \equiv K_{q}^{\text{nor}} (p^{AB} \parallel p^{A}, p^{B}) = E_{q,p^{A,B}}^{\text{nor}} \left[I_{q} \left(p_{i}^{A} p_{j}^{B} \right) - I_{q} \left(p_{i,j}^{AB} \right) \right] = \frac{1 - \sum_{i=1}^{W_{A}} \sum_{j=1}^{W_{B}} (p_{i}^{A} p_{j}^{B}) \left(\frac{p_{i}^{AB}}{p_{i}^{A}} \right)^{q}}{(1 - q) \sum_{s=1}^{W_{A}} \sum_{t=1}^{W_{B}} (p_{s,t}^{AB})^{q}}, \quad \text{(B8)}\]

Note that both of nonextensive mutual entropies respectively defined by (B4) and (B8) are clearly symmetric with respect to \(\left\{ p_{i}^{A} \right\} \leftrightarrow \left\{ p_{j}^{B} \right\} \) in each formulation. Furthermore, the nonnegativity of mutual entropies (B4) and (B8) is directly derived from that of the nonextensive Kullback-Leibler entropy, i.e.,

\[\mathcal{I}_{q} (p^{A}; p^{B}) = K_{q} (p^{AB} \parallel p^{A}, p^{B}) \geq 0 \quad \text{for any } q \in R^{+}, \quad \text{(B9)}\]
with equality \(p_{ij}^{AB} = p_i^A p_j^B \) for any \(i = 1, \cdots, W_A \) and \(j = 1, \cdots, W_B \).

[1] C. Tsallis, J. Stat. Phys. 52, 479 (1988)
[2] E.M.F. Curado and C. Tsallis, J. Phys. A 24, L69 (1991); Corrigenda 24, 3187 (1991); 25, 1019 (1992).
[3] C. Tsallis et al., Nonextensive Statistical Mechanics and Its Applications, edited by S. Abe and Y. Okamoto (Springer-Verlag, Heidelberg, 2001); see also the comprehensive list of references in http://tsallis.cat.cbpf.br/biblio.htm
[4] C. Tsallis, R.S. Mendes and A.R. Plastino, Physica A 261, 534 (1998).
[5] A.K. Rajagopal and S. Abe, Phys. Rev. Lett. 83, 1711 (1999).
[6] R.J.V. dos Santos, J. Math. Phys. 38, 4104 (1997).
[7] K.S. Fa, J. Phys. A: Math. Gen. 31, 8159 (1998).
[8] S. Abe, Phys. Lett. A 271, 74 (2000).
[9] A.J. Viterbi and J.K. Omura, Principles of digital communication and coding, (McGraw-Hill, 1979); T.M. Cover and J.A. Thomas, Elements of information theory, (Wiley, 1991); John G. Proakis and Masoud Salehi, Communication systems engineering, (Prentice-Hall, 1994).
[10] T. Yamano, Phys. Rev. E 63, 046105 (2001).
[11] S. Watanabe, Knowing and Guessing, (Wiley, New York, 1969).
[12] H. Balow, Vision. Res. 30, 1561 (1990).
[13] M. Hotta and I. Joichi, Phys. Lett. A 262, 302 (1999).
[14] S. Abe, Phys. Rev. E 63, 061105 (2001).
[15] C. Tsallis, Phys. Rev. E 58, 1442 (1998).
[16] L. Borland, A.R. Plastino and C. Tsallis, J. Math. Phys. 39, 6490 (1998) [Errata: J. Math. Phys. 40, 2196 (1999)].
[17] J.W. Gibbs, Collected Works, (Tale University Press, New Haven, 1948).
[18] A. Isihara, Statistical Physics, (Academic Press, New York, 1971).
[19] C.E. Shannon and W. Weaver, The Mathematical Theory of Communication, (University of Illinois Press, Urbana, 1963).
[20] A.I. Khinchin, Mathematical Foundations of Information Theory, (Dover, New York, 1957).
[21] S. Abe, Phys. Lett. A 224, 326 (1997); 244, 229 (1998).
[22] R.S. Johal, Phys. Rev. E 58, 4147 (1998).
[23] P.T. Landsberg and V. Vedral, Phys. Lett. A 247, 211 (1998).
[24] C. Beck and F. Schlögl, *Thermodynamics of chaotic systems*, (Cambridge University Press, Cambridge, 1993).
[25] C.Tsallis, A.R.Plastino and W.-M.Zheng, Chaos, Solitons and Fractals 8, 885 (1997).
[26] U.M.S.Costa, M.L.Lyra, A.R.Plastino, and C.Tsallis, Phys. Rev. E 56, 245 (1997).
[27] M.L.Lyra and C.Tsallis, Phys. Rev. Lett. 80, 53 (1998).
[28] E.P. Borges, C.Tsallis, G.F.J. Ananos, P.M.C. Oliverira, preprint (2002) [cond-mat/0203342] and references therein.
[29] E.T. Jaynes, *Papers on Probability, Statistics and Statistical Physics*, edited by R.D. Rosenkrantz (D. Reidel, Boston, 1983).