Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Comparative effectiveness of membrane technologies and disinfection methods for virus elimination in water: A review

Chao Chen a,1, Lihui Guo a,1, Yu Yang a,⁎, Kumiko Oguma b, Li-an Hou a,c,⁎⁎

a State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
b Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
c Xi'an High-Tech Institute, Xi'an 710025, China

HIGHLIGHTS
• Research hotspots about virus removal in water are demonstrated.
• In-depth mechanisms on membrane and disinfection for virus removal are discussed.
• Virus removal efficiency in membrane and disinfection treatments is compared.
• Some perspectives and suggestions to eliminate viruses are proposed.

GRAPHICAL ABSTRACT

ABSTRACT

The pandemic of the 2019 novel coronavirus disease (COVID-19) has brought viruses into the public horizon. Since viruses can pose a threat to human health in a low concentration range, seeking efficient virus removal methods has been the research hotspots in the past few years. Herein, a total of 1060 research papers were collected from the Web of Science database to identify technological trends as well as the research status. Based on the analysis results, this review elaborates on the state-of-the-art of membrane filtration and disinfection technologies for the treatment of virus-containing wastewater and drinking water. The results evince that membrane and disinfection methods achieve a broad range of virus removal efficiency (0.5–7 log reduction values (LRVs) and 0.09–8 LRVs, respectively) that is attributable to the various interactions between membranes or disinfectants and viruses having different susceptibility in viral capsid protein and nucleic acid. Moreover, this review discusses the related challenges and potential of membrane and disinfection technologies for customized virus removal in order to prevent the dissemination of the waterborne diseases.

© 2021 Elsevier B.V. All rights reserved.

Keywords:
Virus removal
Drinking water treatment
Wastewater treatment
Membrane
Disinfection

* Corresponding author.
** Correspondence to: L. Hou, Xi'an High-Tech Institute, Xi'an 710025, China.
E-mail addresses: charleschen@mail.bnu.edu.cn (C. Chen), 201931180053@mail.bnu.edu.cn (L. Guo), yangyu@bnu.edu.cn (Y. Yang), oguma@env.t.u-tokyo.ac.jp (K. Oguma), houla@cae.cn (L. Hou).
1 These authors contributed equally to this work.
1. Introduction

Global outbreaks of infectious diseases induced by viruses are escalating and seriously threatening human health. Viruses are noncellular biological entities with a simple structure composed of proteins and nucleic acids. Compared with bacteria and fungi, viruses have the characteristics of a small size, special structure, wide distribution, low infectious dose and strong pathogenicity (Xiao et al., 2013). It is well-documented that the global number of phages is estimated to be 4.80×10^{33} (Guemes et al., 2016), which is much higher than the number of organisms with a cellular structure.

According to epidemiological studies, human and animal excreta often contain numerous virus particles, which can enter the water environment via sewage discharge, septic-tank system filtrate, and runoff from agricultural areas (Rzezutka and Cook, 2004). For instance, human enteroviruses can be excreted at high concentrations (10^{14} viruses/g–feces) from infected individuals and disseminated through the fecal-oral route (Haramoto et al., 2018). It is estimated that 2 to 12 million people die from waterborne diseases every year (US EPA, 2006a), and waterborne diseases can pose a substantial threat to the world public health security. The novel coronavirus (SARS-CoV-2) causing symptoms called COVID-19, causes respiratory infection, thus the major route of transmission is believed to be the inhalation of the virus. Still, the SARS-CoV-2 is also typified by fecal-oral transmission (Arslan et al., 2020), with important pollution sources from urban sewage and sewer overflow (Zhu et al., 2020). Wastewater treatment plants (WWTPs) with conventional procedures such as conventional activated sludge process serving as a significant barrier can essentially impede the spread of waterborne viruses to a certain degree (Sano et al., 2016), but more enhanced methods should be conducted to fulfill more rigorous standards.

At present, there is extensive research on pathogenic bacteria in wastewater treatment processes but relatively fewer studies on viruses. The occurrence, states of existence and decay of viruses are distinct from those of pathogenic bacteria. Hence, in this paper, we analyzed the research hotspots and development about virus removal in virus-containing wastewater/drinking water treatment in recent years. Subsequently, the membrane and disinfection technologies were reviewed along with a comprehensive evaluation and comparative analysis. Finally, we proposed some detailed conclusions regarding the removal effects and mechanisms of several common viruses by membrane and disinfection processes, along with the related challenges and comprehensive perspectives, to provide guidance for the further efficient elimination of waterborne viruses in future practical applications.

2. Research development of virus removal in water bodies

2.1. Overview of virus removal in water from Web of Science

To track the latest research progresses and hotspots, publications about virus removal in water were analyzed. A total of 1321 results were selected between 1st of Jan. 2000 and 16th of July 2021 from the core collection in web of science database with the topic “virus”, and the search terms were designed as (TS = (virus removal AND “water”)). Fig. 1(b) portrays that the field has received increasing attention over the past two decades, as the number of scientific articles has nearly tripled from 2007 to 2016 (Fig. 1(a)).
Fig. 1. (a) Annual distribution and (b) cumulative quantities of the studies on virus removal from water from the Web of Science. (All the documents were collected until July 16, 2021).

The global geographic distribution map of research production is visualized using ArcGis (as shown in Fig. 2) to identify the distribution of countries and institutions performing virus removal research in water, and the specific publication number in some countries as a function of year is displayed in Fig. S1. The research units are mainly distributed in North America (the United States and Canada), Europe (the Netherlands, France, Spain, etc.) and Asia (China, Japan, Korea, etc.). Typically, the USA has played a leading role during this period, generating 29.8% of the total publication number, followed by China and Japan, accounting for 7.2% and 6.02%, respectively, and more detailed data are shown in Table S1. In general, this field has been appealing to increasing attention.

2.2. Categories and elimination of viruses in water treatment

Viruses are tiny (10–100 nm) noncellular particles with nucleic acids (DNA and RNA) wrapped in a protein shell (Hata et al., 2011). Compared with other pathogens (i.e., bacteria and protozoa), viruses survive in the host for its lifetime in their natural state and retain their infectivity, making them difficult to be eliminated (Brooks et al., 2020). For example, AdVs, which have double-stranded DNA and are the abundant human viruses in WWTPs (Hata et al., 2013), are resistant to UV disinfection. Additionally, EVs, RVs, HAV and NoVs, etc., can survive in natural water with strong infectivity for more than one month (Brooks et al., 2020; WHO, 2011). Wastewater treatment is one of effective approaches to remove viruses, and the systematic diagram of virus control in water treatment is exhibited in Fig. 3. In the influent of WWTPs, most viruses are negatively charged because their isoelectric point (IEP) is lower than the pH of the influent (Michen and Graule, 2010), and the seasonal differences can also indirectly affect the virus distribution and their treatment effects (Pang et al., 2019; Nordgren et al., 2009), notably, viruses in untreated wastewater will contaminate surface water in periods of heavy rain and melting snow. Viruses usually exist in two states: one is exposed to various physical, chemical, and biological environments and the other is parasitic in host cells and coexists with microorganisms (Templeton et al., 2008). Some common viruses in water bodies and their elimination in WWTPs are tabulated in Table S1. Virus removal efficiency is usually expressed as the log reduction values (LRVs).

From Table 1, we can observe that the removal efficiency of WWTPs for viruses exists discrepancies, and the overall removal (0.47–2.32 LRVs) is still incomplete when deploying conventional activated sludge or trickling filter as the treatment approach. Therefore, technical improvement of these processes or the introduction of some advanced treatment processes may be the effective measures to ensure the effluent quality in WWTPs as well as the safety of water quality, especially during the period of epidemic outbreak.

2.3. Keyword analysis of virus removal from water

Keyword analysis plays an important role in clarification of current hot topics in virus removal. The co-occurrence of the collected keywords in the integrated cluster view was analyzed using CiteSpace 5.6. R5 from the 1060 research articles (from 2000 to 2020) listed in Web of Science. After executing threshold configuration, the term in the Node Types function panel was selected, and Top 1.0% of most cited or occurring analysis of keywords and the trend of the evolution of keywords recommended by authors is illustrated in Fig. S2. For virus removal technologies and evaluation, the cluster titles are “microfiltration” and “quantitative microbial risk assessment”, manifesting that membrane filtration and the prevention of waterborne diseases have attracted more attention recently. Moreover, the title “inactivation” denotes that disinfection technology is a good choice for virus removal. According to the size of the nodes and the number of interleaving points, the keywords “virus removal”, “drinking water”, “wastewater treatment”, “membrane filtration”, “removal efficiency” and “disinfection” appear more frequently than others, with numbers of 171, 102, 73, 59, 44 and 39, respectively, and the relevant values are shown in Table S2. Additionally, the timeline shown in Fig. S2 embodies that research has been covering an increasing number of keywords over
time and mainly rest with membrane filtration and disinfection technology, therefore, we picked these two methods as the review highlights.

3. Membrane and disinfection technologies for virus elimination

3.1. MBR process for virus removal

Secondary treatment covers microbial metabolism, dissolution of organic matter, and precipitation and separation of biological metabolites. Virus removal in the conventional activated sludge (CAS) process is at 0.3–3.1 LRVs (Taboada-Santos et al., 2020), which is 1 LRV more removal than in primary treatment. Membrane bioreactors (MBRs), which integrate CAS with membrane filtration, have a relatively high virus removal capacity, reaching 1.4 to 6.8 LRVs (Simmons and Xagoraraki, 2011; Sano et al., 2016) so that they are widely used as an advanced treatment technology.

In general, the removal efficacy of the MBR mainly relies on the following four mechanisms (Chaudhry et al., 2015b; Hai et al., 2014): i) the adsorption of viruses to sludge particles. Viruses existing as aggregates can attach to sludge particles which consist of many bacteria and organic compounds that are larger than the pore size of membranes, rendering smaller probability of viruses’ passing; ii) membrane interception. During membrane separation process, viruses that are larger than membrane pores or have the same electric charge as membrane can be validly intercepted; iii) adsorption and retention of the cake layer and gel layer on the membrane surface. Membrane fouling, including reversible and irreversible fouling, plays an important role in virus removal (Marti et al., 2011). The fouling caused by activated sludge on the membrane surface forms a dynamic filter layer composed of a cake layer and a gel layer that changes the separation performance of the membrane (Marti et al., 2011); iv) decay and inactivation. Proteases in enzymatic catalysis will break the viral capsid protein to inhibit viability of viruses. Besides, the virus decay by the predation by other microorganisms will also increase the virus removal. Normally, the membrane interception together with the adsorption and retention caused by the cake/gel layer accounts for over 50% of the total removal when the 0.04 μm nominal pore size of membrane module was used in MBR, otherwise the...
virus removal was mainly caused by cake layer and biomass considering the membrane module is 0.4 μm nominal pore size (Chaudhry et al., 2015b; Shang et al., 2005; Wu et al., 2010). The scheme of the MBR removal mechanisms is revealed in Fig. S3.

Membrane modules of MBRs with different pore sizes show no obvious variation in retention of the same virus (Hirani et al., 2010), while the removal efficiency of MBR systems varies for different viruses (Purnell et al., 2016). Presumably, besides mechanical sieving action, the biofilm and sludge particles attached to the membrane surface also play a certain role in virus removal in MBRs (O’Brien and Xagoraraki, 2020). These mechanisms are meanwhile influenced by the surface properties of viruses, such as the electrostatic charge and hydrophobicity of the viral capsid protein (Armanious et al., 2016). Miura et al. (2015) evaluated the removal performance of a MBR system and found that the contents of NV GI and parvovirus in solid phase were equal to or higher than in liquid phase, indicating that the adhesion between EVs and sludge was not strong. A similar conclusion was also drawn in the research of Sima et al. (2011), they discovered that NoVs were more efficiently removed than SaVs in full- and pilot-scale MBR plants, although they have a similar structure, morphology and size.

In addition, water quality parameters, including pH, temperature, suspended solids concentration, particle size distribution, dissolved organic concentration, viscosity, etc., can impact viruses’ behavior is decided by viral protein (such as hydrophobic and charged regions) in aqueous medium (Prado et al., 2019a). Operational changes in MBRs have affected virus elimination owing to changing the composition of microbial community and membrane surfaces. For example, a longer hydraulic retention time (HRT) can enhance the adsorption of viruses by sludge particles, thereby improving the virus removal efficiency (Prado et al., 2019a). High sludge retention times (SRTs) can endow MBR facilities with high mixed liquor suspended solids (MLSS) concentration and abundant microbial community to produce nitrified effluents so that increasing removal performance (Hirani et al., 2014). The addition of powdered activated carbon or polymer flocculant has been verified to effectively alleviate the blockage of MBR membrane pores and improve the removal of bacteria, antibiotic resistance genes and viruses (Ravindran et al., 2009; Nnadozie et al., 2017); Besides, Delanka-Pedige et al. (2020) proposed a low-energy algae wastewater treatment system to substitute for MBRs that can be translated to lower disinfection by-products (DBPs) formation while reducing pathogens via virus inactivation by algae. Therefore, it is more reasonable to optimize the design of MBR for further applications.

The pore size of membrane module used in MBRs normally ranges from 0.1 to 0.4 μm which is far beyond the size of most viruses (usually at nanometer), so the virus removal presented in MBRs predominantly rests on adsorption and aggregation processes by biofilm and cake layer instead of size exclusion. Herein, it would be prudent to elucidate the law of virus diffusion and adsorption and explore the interaction between viruses and different membrane foulant layers (Zhu et al., 2021).

3.2. Virus separation by membrane technology

Membrane technology, including mainly microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), is often used as an advanced treatment. The membrane virus retention mechanisms (illuminated pictorially in Fig. 5) are usually divided into four types (Duek et al., 2012; Gentile et al., 2018; Goswami and Pugazhenthi, 2020): mechanical screening, electrostatic interactions, adsorption retention, and hydrophilic and hydrophobic interactions. Mechanical sieving, i.e., size exclusion, basically occurs on the membrane surface; electrostatic interactions are associated with the charge of viruses and the membrane; adsorption retention as well as hydrophilic-hydrophobic interactions are ascribed to physicochemical properties of the viruses and membranes themselves, which allow viruses to penetrate the membrane surface to be deposited on the membrane internal matrix. The size of most viruses is normally smaller than the pore size of MF membranes but larger than that of NF membranes and RO membranes, in this condition, size exclusion plays a decisive role in virus removal. While the pore size of UF membranes is comparable to virus particle size, the virus removal efficiency depends on both the surface properties of viruses and membrane. Specifically, the removal effect of MF for viruses is approximately 0.3–2.2 LRVs (Qiu et al., 2015). In UF, removal of NoV, AdV and RV is greater than 3 LRVs (Qiu et al., 2015), while NF and RO can normally achieve greater than 5 or 6 LRVs, respectively (Cetlin et al., 2018). Furthermore, the external
Table 1
Categories and the corresponding diseases caused by waterborne viruses as well as quantitative virus reduction in WWTPs.

Viruses	Genome	Dimension (nm)	Major diseases	Influent (GC/mL)	Effluent (GC/mL)	Virus reduction (log₁₀)	Technologies	Detection methods	References
Enteroviruses	ssRNA	20–100	Minor febrile illness, gastroenteritis, aseptic meningitis, paralysis, myocarditis	3.3 × 10⁷	7.6 × 10⁶	0.63	Italy; grid separation, primary sedimentation, secondary bio-logical treatment and disinfection	RT-qPCR, Real-time qPCR	(Rosa et al., 2010)
Coxsackieviruses				3.24 × 10⁵ copies/L	1.54 × 10⁵ copies/L	2.32	Arizona, United States; activated sludge and trickling filter	RT-qPCR	(Kitajima et al., 2015)
Astroviruses	ssRNA	25–35	Gastroenteritis (Vu et al., 2019)	NG	2.69 × 10⁵ copies/L	–	France; primary decantation and biological secondary treatment From May 2013 to May 2014	RT-qPCR	(Prevost et al., 2015)
Pepper mild mottle virus	ssRNA	–	Infections to solanaceous plants, mottled or yellow and green floral leaves on plants, malformation or bump spots on fruits	3.7–4.4 × 10⁷/3.2–9.4 × 10⁶ copies/L	4.6–6.3 × 10⁵/10⁸ copies/L	0.76–0.99/1.8 ± 0.2	Southern Arizona, USA; Plant A (conventional activated sludge process); Plant B (biological trickling filter process)	TaqMan-based qPCR	(Kitajima et al., 2014)
Norovirus genotypes GI/GII	ssRNA	25–40	Acute gastroenteritis (evacuation, vomiting, fever, abdominal pain)	8.8 × 10⁴ GC/L	3 × 10⁴ GC/L	0.47	North Wales, UK; WWTP with filter beds for secondary treatment and serves ca. 4000 inhabitants	RT-qPCR	(Farkas et al., 2018)
Sapoviruses	ssRNA	25–40		7.8 × 10⁵ GC/L	NG	–	New Caledonia; sample collected from April 2012 to March 2013	RT-qPCR	(Kaas et al., 2016)
Rotaviruses	dsRNA	55 (double-capsid)	Gastroenteritis, diarrhea (especially for young children)	1.2 × 10⁵ GC/L	2.6 × 10⁴ GC/L	0.66	Eastern Cape, South Africa; activated sludge system with 40,000 m³/day flow rate	Quantitative TaqMan real-time PCR	(Osuolale and Okoh, 2017)
Adenoviruses	dsDNA	75–90	Respiratory disease, gastroenteritis, pneumonia, urinary disease, conjunctivitis, hepatitis, myocarditis, encephalitis (Iaconelli et al., 2017)	4.3 × 10⁸–8.7 × 10⁸ GC/mL	1.22 × 10⁸–3.7 × 10⁸ GC/mL	–	Egypt; 330,000 m³/day capacity	Real time PCR	(Elmahdy et al., 2019)
Aichi viruses	ssRNA	30	Acute gastroenteritis	9.7 × 10⁷/2.0 × 10⁸ copies/L	1.1 × 10⁷/2.0 × 10⁸ copies/L	0.94–0.99	Southern Arizona, USA; conventional activated sludge process/biological trickling filter process	TaqMan-based qPCR	(Cheetham et al., 2006)
Hepatitis A virus	ssRNA	27–30	Sporadic hepatitis (Iaconelli et al., 2017)	2.01 × 10⁷–8.39 × 10⁷ copies/L	1.93 × 10⁷–8.70 × 10⁷ copies/L	–	Kampala, Uganda; conventional activated sludge method, in summer 2016	qPCR and quantitative RT-qPCR	(O’Brien et al., 2017)
Polymaviruses	dsDNA	40	Malignancies, cancer (skin, prostate, colorectal) (Igo, 2018)	3.9 × 10⁷ GC/L	4.51 × 10⁵ GC/L	1.93	Greater Cairo, Egypt; activated sludge as secondary treatment process with 600,000 m³/day	Real time PCR	(Hamza and Hamza, 2018)
SARS-CoV	ssRNA	80–120	Respiratory disease, lung/liver/kidney injury, multiorgan dysfunction, shock, metabolic acidosis (Li et al., 2020)	NG	2.4 × 10⁷ copies/L	–	Japan; Conventional activated sludge process	RT-qPCR	(Hara-moto et al., 2020)

Notes for abbreviations: NG: not given, GC/L: genome copies/L, ssRNA: single-stranded RNA, ds RNA: double-stranded RNA, ssDNA: single-stranded DNA, dsDNA: double-stranded DNA, qPCR: quantitative polymerase chain reaction, RT-(q)PCR: reverse transcriptase-(quantitative) polymerase chain reaction.
surface of most viruses is primarily composed of proteins that endow them with physicochemical properties similar to colloids and proteins, so the virus removal mechanisms of the membrane can be elucidated by Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theories to some extent (Gentile et al., 2018). For those reasons, several aspects related to the materials, modification, fouling and hybrid processes of the membrane are further explained below.

![Diagram of virus removal in membrane separation](image)

Fig. 4. Cluster view of co-occurring analysis of keywords from the scientific literature on virus removal from water with the minimized overlap. The schematic representation of the keyword timeline and its corresponding elaboration are provided in Fig. S2 (the time threshold is set from 2000 to 2020 on CiteSpace 5.6.R5).

Fig. 5. Schematic illustration of virus removal in membrane separation: (a) size exclusion, performing a dominant removal efficiency when the size of virus particles is bigger than the nominal pore size of membranes, (b) electrostatic interactions that is more prone to be affected by the PH of feed water, (c) adsorption and elution, and (d) hydrophilic and hydrophobic interactions that are highly influenced by the properties of membrane material and virus particles (Goswami and Pugazhenthi, 2020).
3.2.1. Membrane modification

Membranes have different removal effects on different viruses. Fig. 54 shows the discrepancy in virus removal between MF and UF. This distinction depends on the pore size of the membrane, size and structure of the virus and electrostatic interactions (Gentile et al., 2018). The pore size of the membrane displays a distribution range. Different membrane modules with similar average pore sizes may have different rejection rates for the same virus, and the more uneven the pore size distribution of the membrane, the lower the retention rate of viruses (Fallahianbijan et al., 2017). Madaeni (1999) used a 0.2 μm MF membrane with a retention efficiency of 2 LRVs for poliovirus. However, Herath et al. (1999) used a hydrophilic membrane with a smaller pore size of 0.05 μm but found only a 0.2 to 0.7 LRVs removal of the bacteriophage Qβ, which is almost same size as poliovirus.

3.2.1.1. Reinforcing interaction. Viruses can easily be adsorbed on the membrane surface or within its pores (Michen and Graule, 2010), and the adsorption behavior varies according to membrane material (Goswami and Pugazhenthi, 2020). Meanwhile, electrostatic and hydrophobic interactions between viruses and membrane surfaces can increase the removal efficiency, which often happens in modified membranes by introducing functionalized materials, such as the functionalization of the yttria-stabilized zirconia capillary membranes with n-hexyltriethoxysilane and n-octyltriethoxysilane, for virus removal based on hydrophobic and electrostatic adsorption (Larson et al., 2018; Bartels et al., 2019) (as shown in Fig. 6(a)). The structure and removal effects of the modified composite membranes used in existing research for virus separation are tabulated in Table 2. UF membrane grafted with a zwitterionic polymer hydrogel enhances the electrostatic repulsion between viruses and the membrane surface to remarkably facilitate the removal of viruses, which can increase 4 LRV in HAdV and 3 LRV in MS2 higher removal than the unmodified membrane (Lu et al., 2017) (as portrayed in Fig. 6(b)).

Using terephthalaldehyde (TA) as a cross-linking agent, polyethyleneimine (PEI) was assembled layer by layer on the surface of a polyethersulfone (PES) MF membrane to form a positively charged membrane that can trap and inactivate viruses and eventually achieved 4.5–5 LRVs of virus reduction (Sinclair et al., 2019) (as shown in Fig. 7(a)). What’s more, self-assembled block polymer membranes functionalized with macromolecular template capacitate highly selective separations (as shown in Fig. 7(b)). Gu et al. (2018) fabricated a highly porous and permeable functionalized monoliths with well-defined pore structures for the separation of large molecular virus particles, and a self-standing composite membrane with regular mesoporous has been designed, which realized highly size-selective permeation of biomolecules at the nanometer-level (Yamauchi and Kimura, 2013).

The current materials used in fabrication methods for membranes are primarily based on empirical approaches and lack molecular-level design (Werber et al., 2016). The introduction of nanoparticles has been shown to reinforce the structural integrity and hydrophilicity of the membrane as well as the electrostatic interaction between the membrane and viruses to increase the water flux while improving the virus removal efficiency (Khin et al., 2012). Introducing metal nanoparticles (Liu et al., 2019), carbon nanotubes (Németh et al., 2019) and liquid crystals (Kuo et al., 2020) into the membrane or onto the membrane surface is currently an effective strategy. Y2O3 nanoparticles have the merits of a high isoelectric point (Zhao et al., 2018), large specific surface area (Zhang et al., 2019b), and multiple active surface sites (Meng et al., 2016). The positively charged plum-shaped SiO2–Y2O3 composite nanofiber membrane shown in Fig. 7(c) has a high adsorption capacity of 87.96 mg/cm² for viruses and can reach 5 LRVs (Liu et al., 2019). Loading AgNPs onto a polysulfone membrane also leads to a significant improvement in virus removal (Zodrow et al., 2009). In addition, a novel microporous nano-MgO-diatomite ceramic membrane has been prepared, which may provide a feasible method based on the strongly positive charge for virus removal (Meng et al., 2016). Moreover, a new type of composite film, in which nanoparticles of copper oxide, titanium oxide, and iron oxide are coated on a polytetrafluoroethylene membrane with an inorganic composite-based multilayer carbon nanotube (MWCNT) carrier, has been introduced to remove viruses efficiently by increasing the electrostatic interaction between the membrane and viruses (Németh et al., 2019).

3.2.1.2. Enhancing precise screening. Meanwhile, a nanostructured liquid-crystalline (LC) membrane has received widespread attention due to its ability to form ordered nanostructures via a self-organization process (Marets et al., 2017). As portrayed in Fig. S5, the nanostructures can be classified as cubic, columnar and layered shapes (Marets et al., 2017; Hamaguchi et al., 2019; Kuo et al., 2020). Marets et al. (2017) demonstrated for the first time the possibility of using an LC-structured membrane with precise nanochannels for virus removal in water purification. These channels can supply pathways larger enough for water molecules to permeate but small for virus to pass through. Here, a nanostructured bicontinuous cubic LC thin film was photopolymerized onto a polysulfone support layer to make a regular and controllable pore structure, and its removal of bacteriophage Qβ reached 6 LRVs. To further increase the water flux while efficiently rejecting viruses, a smectic A liquid-crystalline (SmA-LC) material with layered nanochannels and two-component columnar LC

Fig. 6. Schematic diagram pertaining to modified membranes. (a) Hydrophobic yttria-stabilized zirconia capillary membranes are hydrophobized with n-hexyltriethoxysilane and n-octyltriethoxysilane, which can be beneficially utilized for virus retention as a result of hydrophobic interaction (Bartels et al., 2019); (b) graft-polymerization functionalization of 150 kDa ultrafiltration polyether-sulfone membrane with zwitterionic [3-(methacryloylamo) propyl] dimethyl (3-sulfopropyl) ammonium hydroxide, achieving a higher virus removal on account of the weakened virus accumulation upon the modified membrane surface (Lu et al., 2017).
membranes was prepared, providing prefitted channels with hydrophilic conditions, which were more conducive to water molecules to penetrate. The removal of these two membranes on viruses reached 4.4 ± 0.3 and 7.3 LRVs, and the water fluxes were 20 ± 6 and 15 L m⁻² h⁻¹, respectively, 40 times and 30 times the flux of the cubic LC membrane (0.54 ± 0.05 L m⁻² h⁻¹) (Hamaguchi et al., 2019; Kuo et al., 2020). In addition, Lee et al. (2018) employed a bioconjugated method to load feline calcivirus (FCV), a model virus with a structure similar to NoVs, onto the membrane surface, creating a dual functional membrane capable of both easily detecting and blocking NoVs. This concept of using 2D materials could likely endow the increase of the regular size and the transport nanochannels of pores, and the minimum pinholes for the fabrication of membranes to achieve precise sieving.

3.2.2. Membrane fouling

The presence of membrane fouling improves the retention of the membrane by either clogging breach or forming a cake layer on the membrane surface, which can impact the composition of membrane surfaces to remove viruses as a secondary barrier. As shown in Fig. S6, one study used four membranes to investigate their separation performance and found that the LRVs for MS2 ranked as follows: fouled membrane > backwashed membrane > chemically cleaned membrane ≈ pristine membrane (Lu et al., 2013), which implies that membrane fouling plays a positive role in virus retention. An analogous conclusion was also reflected in another investigation in which the LRVs gradually increased when the time after the membrane wash increased from 0 to 24 h (Chaudhry et al., 2015b), hence grasping the influence of fouling on virus reduction is a pivotal consideration.

Organic fouling can alter the nature and location of nanoparticle caps on the membrane surface, while SiO₂ particles is too porous to effectively reject adenovirus yet may lead to the accumulation of virus near the cake-membrane interface. The removal of these two membranes on viruses reached 4.4 ± 0.3 and 7.3 LRVs, and the water fluxes were 20 ± 6 and 15 L m⁻² h⁻¹, respectively, 40 times and 30 times the flux of the cubic LC membrane (0.54 ± 0.05 L m⁻² h⁻¹) (Hamaguchi et al., 2019; Kuo et al., 2020). In addition, Lee et al. (2018) employed a bioconjugated method to load feline calcivirus (FCV), a model virus with a structure similar to NoVs, onto the membrane surface, creating a dual functional membrane capable of both easily detecting and blocking NoVs. This concept of using 2D materials could likely endow the increase of the regular size and the transport nanochannels of pores, and the minimum pinholes for the fabrication of membranes to achieve precise sieving.

Table 2

Membrane specification/charge (pH = 7.4)	Average pore size	Viruses	Operating conditions	Removal efficiency (LRVs)	References
Microfiltration/0.1–1 μm					
Polysulfone membrane coated with PEI/positive	0.45 μm	Bacteriophages MS2, E. coli phage	0.2 bars (4 ± 0.9) × 10⁶ PFU/mL	>3	Sinclair et al., 2018
TiO₂ tubular ceramic microfilters	0.8 μm	Bacteriophage F22	5 × 10⁶ PFU/mL	5	Guo et al., 2015
Nano-composite electrosprun nanofiber membrane (PAN-ATM, PAN-TEOS)	0.8 μm	Semliki Forest virus	10⁶ PFU/mL	1.96	Al-Attari et al., 2019
Chitosan membranes modified by pyromellitic dihydride	0.73 μm	Bacteriophages MS2, E. coli phage	10⁶ PFU/mL	3	Majiyya et al., 2019
Microporous ceramics with ZrO₂ and Y₂O₃ coatings/positive	0.2–2 μm	Bacteriophages MS2, E. coli phage	3 bars	4	Wang et al., 2013
SiO₂–Y₂O₃ composite nanofiber membrane/positive	0.1 μm	Bacteriophages MS2, E. coli phage	10⁷ PFU/mL	7	Wegmann et al., 2009
PEI-TA-PES membrane (LBL); PEI-Ag/CuNPs-PES membrane	0.45 μm	Bacteriophages MS2, E. coli phage	4 × 10⁹ PFU/mL	4.5–5	Sinclair et al., 2019
Coating of the ceramic membrane with HTS and OTS	0.15 μm	Bacteriophages MS2, E. coli phage	2.5 bars	0.3 ± 0.1	Bartels et al., 2019
Nano-TiO₂–PVDF flat membrane	0.2 μm	Phage F2	1.35 × 10⁷ PFU/mL	3.4 ± 0.2	Zheng et al., 2013
Coating of fiber filter with MWCNTs-copper hydroxide precipitate	0.4 μm	Bacteriophages MS2, E. coli phage	10³ PFU/mL, pH = 5	>5	Domagala et al., 2020
Spray-dried alumina granules modified with copper (oxide) nanoparticles on ceramic filter	1–2 μm	Bacteriophages MS2, E. coli phage	10⁴ PFU/mL	3.1	Mazurkow et al., 2020, 3.2
Ultrafiltration/2–100 nm					
Polysulfone (capillary)	20 nm	Bacteriophages MS2, E. coli phage	10⁶–10⁷ PFU/mL, 0.69 bar	2.5–6	Kreißel et al., 2012
Graft-polymerized zwiterionic SPP on polysulfone membrane	50 nm	Bacteriophages MS2, Human adenovirus	2.3–3.0 × 10⁹ PFU/mL	>6, 6.6–7.8	Lu et al., 2017
Polysulfone membrane coated with Columnar LC-PET film	3.5 nm	Bacteriophages Qβ, Aichi virus	0.3 MPa	>6.7, 6.3, 7.6	Kuo et al., 2020
Coating of the polysulfone ultrafiltration membrane with nAg/negative	–	Bacteriophages MS2, E. coli phage	5 ± 0.2 × 10⁶ PFU/mL	4	Zodrow et al., 2009
Nano-TiO₂–PAN flat membrane	50 nm	Phage F2	1.35 × 10⁷ PFU/mL	6.4	Zheng et al., 2013
Nanofiltration/1–2 nm					
Polysulfone membrane coated with Two-Component Columnar LC-PET film	1.6 nm	Bacteriophages Qβ	0.3 MPa	4.4 ± 0.3	Kreißel et al., 2012
Polysulfone membrane coated with Columnar LC/PET film	1.8 nm	Bacteriophages Qβ	0.3 MPa	4.7 ± 0.3	Gupta et al., 2019
Reverse osmosis/<1 nm					
Polysulfone membrane coated with Cu₁₀₀BC	0.6 nm	Bacteriophages Qβ	0.8 MPa NaCl 500 mg/L	>6.3	Marets et al., 2017

Notes: PEI: polyethylenimine; PAN: polycrylonitrile; ATTM: ammonium tetrathiomolybdate; TEOS: tetraethyl orthosilicate; PET: poly(ethylene terephthalate); TA: terephthalaldehyde; PES: polysulfone; LBL: layer-by-layer; HTS: n-hexyltriethoxysilane; OTS: n-octyltriethoxysilane; PVDF: polyvinylidene fluoride; SPP: [3-(methacryloylamino) propyl]trimethyl (3-sulfopropyl) ammonium hydroxide; LC: liquid-crystalline; Cu₁₀₀BC: bicontinuous cubic; MWCNTs: multi-walled carbon nanotubes.
The increase in virus removal owing to irreversible fouling is higher than reversible fouling (ElHadidy et al., 2014). Membrane biofouling, generally regarded as an irreversible fouling (Nagaraj et al., 2018), will help to achieve more than 7 LRVs of virus removal during long-term filtration in various membrane processes, including the coagulation-MF system, MBR, UF and coagulation-ceramic MF, etc. (Shirasaki et al., 2008; Chaudhry et al., 2015a; Alansari et al., 2012). During these processes, the effect on virus removal by different mechanisms, such as physical sieving, adsorption, cake and gel layer formation that could be expounded by biofouling surface characteristics and structural properties.

Meanwhile, some studies have demonstrated that irreversible fouling is one of the main factors that causes membrane aging (Antony et al., 2016), and the effect of aged RO membranes on virus removal shows certain improvements (Chesters et al., 2013; Pype et al., 2016). Intermittent operation can retain some microbes and organics in the interval of the RO element and increase their propagation during shutdown, leading to irreversible fouling, which can partially enhance virus retention (Torii et al., 2019b). However, intermittent operation can also cause deterioration of the surface of the membrane, which would lead to an increase in permeability but with compromised virus retention (Wang et al., 2017). A study has shown that virus retention is reduced to 2 LRVs after repeated pressurization for 10,000 times (Torii et al., 2019a).

Although membrane fouling is one of major drawbacks of the membrane treatment procedure, fouling will increase virus separation to some degree. By performing an in-depth study of the different types and degrees of membrane fouling and of the mechanism of virus retention to find the best equilibrium point, the operation cost of the membrane treatment can be greatly reduced to provide a theoretical proposal for membrane cleaning and strengthened virus separation during long-term operation.

3.2.3. Hybrid processes

The application of membrane-based hybrid processes can also further enhance inactivation and removal of viruses (Matsushita et al., 2011). A graph of the integration of coagulation and membrane filtration as well as of practical treatment effects is displayed in Fig. S7.

Adding an iron electrocoagulant to an MF system or the addition of glycine before NF can aggregate viruses into larger particles, making virus removal up to 6.5 LRVs (pH = 6.4) (Tanneru and Chellam, 2012). By adding polyaluminum chloride (PACL) as pretreatment coagulant for ceramic membrane filtration, the floc size was increased to form a looser and more porous filter cake layer so as to render more MS2 transferring to the floc phase and reduce the number of small particles that can lead to pore plugging, so the virus removal and membrane anti-fouling performance were all promoted (Im et al., 2019). One study that utilized UF process combined with coagulation and sedimentation to treat virus-containing wastewater showed removal of 1.8–4.2 LRVs more than UF alone (Lee et al., 2017), the introduction of sedimentation could limit the load of coagulation floc on membrane, which achieving a continuous operation in practical use.

Furthermore, the incorporation of two membrane systems can provide a double guarantee of effluent quality. UF integrated with RO can achieve 7.7 LRVs for high norovirus concentrations (Yasui et al., 2017). The MBR combined with the RO process, which takes advantage of size exclusion, electrostatic repulsion, hydrophilic and hydrophobic interaction, sorption of the membrane, and the adsorption of attached and suspended biomass, demonstrated excellent performance for the removal of viruses, emerging pathogens and micropollutants and was suitable for reclaimed water production (Prado et al., 2019b). In short, both the addition of coagulants prior to membrane filtration and the combination of different membrane process systems are capable of increasing virus retention to ensure favorable effluent conditions.

As for membranes, owing to the limitations of membrane materials and membrane fabrication methods, traditional separation membranes have an uneven pore size distribution and thick selective separation layers, which restrict improvements of water flux and separation selectivity (Werber et al., 2016). Therefore, overcoming the “trade-off” between flux and retention by designing and preparing high-performance membranes with a uniform pore size and nanometer thickness is an advisable direction for progress. It is important to effectively control virus transmission in water by understanding how virus
removal is affected by interactions between viruses and membranes instead of only relying on membrane retention.

3.3. Disinfection for virus inactivation

To date, the major disinfection methods include chlorine (including free chlorine, chlorine dioxide, monochloramine), ozone and ultraviolet radiation. Various strains of the same virus usually have different susceptibilities to these disinfectants. For example, some mutant NoV strains were less sensitive to disinfectants than others and can still be alive even after wastewater treatment (Rachmadi et al., 2018). Meister et al. (2018) also found that the inactivation kinetics of EVs with diverse serotypes isolated in the laboratory or outdoors vary considerably. Therefore, it is necessary to select an appropriate disinfection strategy under specific conditions.

3.3.1. Chlorination

At present, the dominant disinfection is still chlorination. Free chlorine commonly damages the proteins and nucleic acids of viruses, while chlorine dioxide (ClO₂) and monochloramine (NH₂Cl) mainly damage the viral capsid (Wigginton et al., 2012). The corresponding inactivation mechanism is shown in Fig. 8(a). During the disinfection process, the CT value, which is obtained by multiplying the disinfectant concentration by the contact time and is affected by temperature and pH, can be adjusted to achieve satisfying disinfection outcomes. The US EPA notes that CT value needs to be 3-, 4-, and 6-mg x min/L to attain 2, 3, and 4 LRVs, respectively, at a temperature of 10 °C and pH of 6.0-9.0 when using chlorination disinfection (US EPA, 1991).

Generally, the disinfectant type and its initial concentration as well as the virus category have a certain impact on the disinfection efficiency. Rachmadi et al. (2020) utilized Tobit and simple linear regression analysis to calculate the CT values required to reach 4 LRVs of virus removal in chlorine and NH₂Cl disinfections (as shown in Fig. 8(b)). It shows that the CT values in free chlorine disinfection are much lower than those in NH₂Cl disinfection for the same virus, which probably means that the subcellular components (e.g., viral DNA, RNA, capsid) are more susceptible to free chlorine than NH₂Cl and the activity of free chlorine still remains outstanding. A study showed that HRV inactivation reached up to 5 LRVs by increasing the initial concentration of the disinfectant, whereas the inactivation could not be further increased by only prolonging the contact time (Xue et al., 2013), this phenomenon demonstrates that the initial concentration of the disinfectant is a necessary factor for disinfection. In addition, the CT values for CVB and ECHO were higher than those for AdVs and MNV with free chlorine and the AdVs demanded higher CT values than others with monochloramine, which may be due to the different chemical reactivities of the viral proteins and genomes to these disinfectants or because of the enhanced resistance of the viruses to the disinfectants from the high rate of mutation in the evolutionary process (Rachmadi et al., 2020).

However, chlorination disinfectants can often react with organics or nitrogen in wastewater, producing toxic and harmful DBPs, such as trihalomethanes (THMs) or haloacetic acid (HAA) carcinogens, haloacetonitrile (HANs) and N-nitrosodimethylamine (NDMA) (Zhang et al., 2020b). Therefore, we can take full advantage of some natural or synthetic compounds to replace chlorination disinfectants. Park et al. (2018) and Dunkin et al. (2017) used a micrometer-sized silica hybrid composite decorated with silver nanoparticles (AgNP-SiO₂) and peroxyacetic acid (PAA) to successfully remove hNoV, MNV and bacteriophage MS2 from different water media. In addition, ferrate, as a newly emerging disinfectant, has a better disinfection efficiency than other materials due to its higher redox potential. Some research results adopting pseudo-second-order kinetics and Chick-Watson inactivation dynamic models expounded that H₂FeO₄ and HFeO₄ had far higher MS2 MNV inactivation than FeO₄²⁻ and the increase of pH decreased the amount of H₂FeO₄ to reduce the inactivation rate constant (κₕ) (Wu et al., 2019; Manoli et al., 2020). On the other side, the intracellular algal organic matter (IAOM) that exhibited a stronger reaction with ferrate has a stronger inhibitory effect on MS2 inactivation than extracellular algal organic matter (EAOM). Therefore, it is significant to explore the influence of disinfectant types and their initial concentration, virus category and sensitivity, DBP generation, pH and temperature, coexisting substances, etc. in detail when using chlorination disinfection.

3.3.2. Ultraviolet radiation

The radiation in the wavelength range of ultraviolet (UV) has relatively high energy, and microorganisms absorb protons in high absorption coefficient between 200 and 300 nm. UV radiation disinfection does not produce detrimental byproducts that appear in chlorination disinfection. Employing UV to irradiate viruses can destroy the viral genome (including the phosphate bond between DNA/RNA) and the cross-link between capsid proteins (Wigginton et al., 2012). Different wavelengths of UV have distinguishable inactivation mechanisms for viruses. Bravo et al. (2018) found that UV254 and UV280 can cause mutations in the viral genome and thus inhibit DNA replication, while UV224 irradiation barely affects the integrity of the HADV-2 genome, but the changes it causes in the capsid structure may restrain the translocation of the viral genome into the nucleus in host cells (As depicted in Fig. 8(c)).

However, traditional UV mercury vapor lamps are fragile and pose a risk associated with mercury. Therefore, some believe that UV light-emitting diodes (UV-LEDs) are expected to substitute for traditional UV lamps for virus disinfection (Li et al., 2019; Nguyen et al., 2019). The development of UV-LEDs will evidently reduce the need of energy and the price of electricity ascribed to the higher use of wind power and sun power. Song et al. (2019) used UV-LEDs to irradiate E. coli and

Fig. 8. (a) Principle of different disinfections for damaging the virus structure. UV irradiation and free chlorine caused inactivation primarily by damaging both viral genome and protein, O₃ caused inactivation by impairing genome replication and ClO₂ by the degradation of proteins (Wigginton et al., 2012); (b) CT values needed to achieve 4 LRVs of the removal of AdV, CVB, ECHO and MNV using free chlorine at pH 6–9 and temperature 5–20 °C (above) and using monochloramine at pH 7–8 and temperature 5–15 °C (below) (Rachmadi et al., 2020); (c) distinctive inactivation mechanism of UV radiation at different wavelengths. UV224 mainly affected the integrity of viral capsid to inhibit the delivery of viral genome into the host cell, while UV254 and UV280 mainly restrained the DNA replication (Bravo et al., 2018).
bacteriophage MS2 and found that compared with *E. coli* removal, the damaged RNA of MS2 could not be repaired owing to the lack of repair enzyme. The application of UV-LEDs to virus disinfection has only attracted attention in recent years (Keshavarzfathy et al., 2021; Rattanakul and Oguma, 2018), so deeper studies need to be performed.

To further improve the disinfection efficiency, altering work pattern or adding other substances including sodium hypochlorite, chlorine dioxide, ozone or Fenton’s reagent can be employed. For some insensitive viruses, Zyara et al. (2016) combined UV with chlorine to successfully reduce the chlorine-resistant strains by 3–5 LRVs with reduced DBP production. Additionally, Schijven et al. (2019) conducted a microbiological quantitative risk assessment (QMRA) and used somatic coliphages and bacteriophage MS2 as indicators of AdVs to explore the inactivation efficiency of UV and ClO₂, proving that the predetermined target could be realized if low-concentration ClO₂ (0.05–0.1 mg/L) was added during UV (40 mj/cm² or 73 mj/cm²) disinfection.

The adsorption and aggregation of viruses must be considered in UV disinfection. Feng et al. (2016) discovered that MS2 formed aggregates and was less inactivated if cations such as sodium (at pH 3) or calcium (at pH 7) were introduced, as the virions situated inside the aggregates and was less inactivated if cations such as sodium (at pH 3) or calcium (at pH 7) were introduced, as the virions situated inside the aggregates were prevented from the UV irradiation, but MS2 was more likely to adsorb to particles in the presence of organic particles such as microcystis aeruginosa. As for WWTPs that adopt UV for disinfection, ozone, the bromide ion in water is easily oxidated to bromate that is received a good disinfection efficiency (Wolf et al., 2019; Wolf et al., 2018). What’s more, arising from the extraordinary instability of ozone, the bromide in water is easily oxidated to bromate that is mentioned as a kind of DBPs in the drinking water standard in many countries (US EPA, 2009; China, Standards for drinking water quality (GB5749-2006), 2006; Japan, Water Quality Standard, 2015), which is a remarkable barrier for its extensive application. As such, we should optimize treatment process to minimize the formation potential of DBP precursors and reasonably control the disinfection amount and time.

3.3.4. Catalytic oxidation

Light irradiation excites electrons in the valence band (VB) of semiconductors to the conduction band (CB), and the holes formed in the VB and the excited electrons can both participate in redox reactions. Photocatalysts include natural photocatalysts (García-Gil et al., 2020; Ryberg et al., 2018), semiconductor oxides (such as titanium dioxide) (Reddy et al., 2017; Liga et al., 2011; Zheng et al., 2018), plasma (Guo et al., 2018), metal oxides, and graphene-based photocatalysts (such as g-C₃N₄) (Zhang et al., 2019a; Cheng et al., 2018).

Semiconductor oxide-based photocatalysis has recently been one of the hottest research topics. Under light irradiation at ambient temperature, semiconductor catalysts will yield many kinds of reactive species (RS), including hydroxyl radical (•OH), superoxide radical (•O₂⁻), singlet oxygen (¹O₂), hydroxyl peroxide (H₂O₂), etc. (Li et al., 2008; Lee et al., 2011; Wu et al., 1998), to destruct viral genome and protein for virus inactivation. Among these photocatalysts, titanium dioxide (TiO₂) is widely applied in the field of drinking water and wastewater treatment since it can generate reactive oxygen species (ROS), including a surface-produced •OH and free metal ions to damage the capsid protein (Reddy et al., 2017). To overcome inherent limitation of the slow reaction kinetics and reduce the electron-hole recombination rate in TiO₂, catalyze, Liga et al. (2011) and Liga et al. (2013) studied the ability of photocatalytically silver-doped and SiO₂-doped titanium dioxide nanoparticles (nAg-TiO₂ and SiO₂-TiO₂) to inactivate bacteriophage MS2 and found that compared to TiO₂ alone, the MS2 inactivation rates induced by nAg-TiO₂ and SiO₂-TiO₂ increased by more than 5 and 2.7 times, respectively, mainly attributed to the increased generation of free •OH from silver and the larger adsorption surface area of the catalyst with the addition of silica (as shown in Fig. 9(a)). Zheng et al. (2018) mentioned that the addition of Cu-TiO₂ can provide a large active surface of catalysts and produce more free •OH, but with its continuous increment, the increase in solution turbidity and the decrease of photon penetration ability as well as enhanced catalyst agglomeration led to a decline in catalytic performance. When the visible light intensity and temperature were increased, the catalysts were fully excited to generate more holes and electrons, intensifying the oxidation effect of the catalyst. In addition to TiO₂, Hu et al. (2010) also used Ag-AgI/Al₂O₃ as a plasma to achieve a 3.2 LRVs for RV removal under visible light, which mainly because the generated inorganic anion radicals caused by plasmon resonance of Ag nanoparticles not only boost the electron transfer but have high bactericidal activity. Sarkar et al. (2018) prepared nanopores by electrospray deposition of silver ions on a single-layer molybdenum disulphide (MoS₂) nanosheet, the caused molybdenum-rich defects can efficaciously generate ROS under visible light to remove 7 LRVs of bacteriophage MS2 in water.

For some nonmetallic photocatalysts, besides common graphene oxide-based catalysts (Akhanvat et al., 2012), graphitic carbon nitride (g-C₃N₄), a visible-light-response semiconductor with a two-dimensional conjugated structure characterized by robust physico-chemical stability, low cytotoxicity, facile synthesis and suitable electronic band structures (~2.7 eV), has been studied extensively (Zhang et al., 2019a; Lin et al., 2014). The mechanism of g-C₃N₄ for virus inactivation under visible-light irradiation is shown in Fig. 9(b) (Zhang et al., 2019a). Cheng et al. (2018) prepared the Ag₃PO₄-g-C₃N₄ (AgCN) photocatalytic composite and observed that this composite could completely
inactivate 3 × 10^6 PFU/mL bacteriophage f2 within 80 min and exhibited superior stability because of the production of photogenerated holes (h^+) •OH and •O_2^− (Fig. 9(c)). Others incorporated g-C_3N_4 with a low-density porous expanded perlite (EP) mineral (Fig. 9(d)) to achieve 8 LRVs of MS2 inactivation in 240 min under visible-light irradiation, in which the increments of dissolved oxygen (DO), proton concentration, salinity (Na^+) and hardness (Ca^{2+}) decreased the electrostatic repulsion between MS2 and the photocatalyst to facilitate MS2 inactivation (Zhang et al., 2018).

As a green and sustainable technology, advanced oxidation processes (AOPs), especially the photo-Fenton technique, have been increasingly utilized to achieve conspicuous treatment of chemical pollutants but have been less applied to microbes. Therefore, Giannakis et al. (2017) introduced H_2O_2 or Fenton’s reagent along with light to inactivate viruses (Fig. 9(e)) and discovered that higher iron concentrations were able to improve virus inactivation and that Fe(II) could interact with key constituents in the viral capsid, generating intermediate ROS near viruses to inactivate them. Furthermore, the ROS that formed from the complexation reaction of iron and dissolved organic matter (DOM) also played a role in photocatalytic disinfection. Sun et al. (2016) also combined UV with peroxy chemicals, including H_2O_2 and peroxysulfate (PDS), to achieve disinfection in which three reactive species, •OH, sulfate radical (SO_4^{2−}) and carbonate radical (CO_3^{2−}), were responsible for MS2 inactivation.

Photocatalysis has also been emerging in another promising technology, the Photocatalytic Membrane Reactor (PMR), to inhibit viruses and other microorganisms. The PMR is a hybrid reactor that combines photocatalysis and membranes. Zhang et al. (2020a) employed a PMR driven by visible light-emitting diodes (Vis-LEDs) and used a self-made metal-free heterojunction with the merits of efficient virucidal effects and easy recovery via microfiltration as a catalyst to totally inactivate HAdV under optimal conditions. Other researchers proposed a Ni-doped TiO_2-coated Al_2O_3 photocatalytic membrane reactor to remove MS2 (as shown in Fig. 9(f)), and the results demonstrated that the removal of MS2 absorbed to the coated membrane in the PMR throughout photocatalysis due to the •OH was 4.9 ± 0.1 LRVs. Meanwhile, natural organic matter (NOM) has obviously been shown to be a negatively charged photocatalytic inhibitor (Horovitz et al., 2018).

Solar water disinfection (SODIS) is inherent clean, simple, economical and space-saving and has therefore been implemented in developing countries. The water is placed into polyethylene terephthalate (PET) or polypropylene (PP) bottles which are later exposed to the direct sunlight for 6 h in clear days or for 48 h in cloudy weather in order to ensure the safety of drinking water (Luzzi et al., 2016; Oates et al., 2003; García-Gil et al., 2020). The optical and thermal effects act synergistically for the inactivation of organisms, in the meantime, the aluminum foil reflectors, container volume and the turbidity of water can retard the radiation efficiency (Kehoe et al., 2001), so some avenues like filter prior to solar exposure are deployed (Reed, 1997). Viruses are generally inactivated through indirect sunlight-mediated inactivation induced by ROS, notably •O_2, produced by exogenous photosensitizers (e.g., humic acids) in waters (Kohn and Nelson, 2007). SODIS is able to inactivate some ssRNA viruses but requires extra auxiliary measures when effectively reducing DNA viruses resistant to sunlight (Carratalà et al., 2016). Walker et al. (2004) reduced the F-specific RNA bacteriophage MS2 by 3.5 LRVs after 6 h of natural sunlight via applying a solar disinfection pouch. To improve the efficacy of solar disinfection, Ryberg et al. (2018) proposed an enhanced SODIS method using a food dye—erythrosine—as a photosensitizer and disinfection indicator, finally accomplishing more than 4 LRVs of bacteriophage MS2 inactivation within 5 min (as shown in Fig. 9(g)). It must be noticed that the working life span of plastic bottles is limited. On the other hand, SODIS might be inefficient in places with weak sunlight radiation and inadequate heat, such as places far from the equator or lacking sunshine.

For systems in which it is difficult to remove viruses with ordinary disinfectants, we can consider electrochemical treatment. Electrocatalytic oxidation adopts an electrolysis cell where the electrodes under redox reactions with an applied voltage to remove microbial pathogens. When using chlorine as the disinfectant, the generated reactive chlorine species (RCS, such as (Cl_2), (HOCl), (ClO^−), and chlorine free radicals (such as (Cl^•), (Cl_2^•)) are the main disinfection agents, while water or other saline solutions are used as the electrolyte and the formed •OH, H_2O_2, ozone (O_3) and O_2^− serve as the main roles in disinfection, as evidenced in Fig. 9(h) (Huang et al., 2016). Heffron et al. (2019) first applied sequential electrocoagulation-electrooxidation (using boron-doped diamond electrodes) to better mitigate bacteriophages MS2,
FX174 and human echovirus, which resulted principally from the positive stimulation effect in the physical reduction of coagulation–filtration, ferrous iron–based disinfection and electrooxidation disinfection. To date, there has been little research on (photo–) electrocatalytic oxidation for virus treatment, but as a developing technology, this kind of oxidation is worthy of more public attention.

On the whole, catalytic oxidation technology possesses the strengths of easy operation, mild reaction condition, toxicity-free, high permanent oxidative stability and environmental friendliness. Different catalyst loadings, light intensities and wavelengths, as well as different doped elements including metal ions, non-metal, sulfide, etc., can influence the disinfection effect by changing the type and quantity of reactive species. Generally, there is electrostatic repulsion between viruses and catalysts, which can be weakened by increasing DO, proton concentrations and cation amount as well as by reducing NOM to improve the catalytic effect. It should be noted that lower synthesis cost, superior catalytic efficiency and the large-scale availability ought to be the imperative goal for the following research.

3.4. Comparison of virus elimination processes

Numerous research studies are dedicated to finding a way to yield highly productive and high-quality water from wastewater. The removal efficiency varies for different technologies and viruses. The comparison shown in Fig. 10 indicates that NF/RO have relatively stable removal values of 4.1–7 LRVs, while the removal efficiency of MBR, MF and UF is more affected by the heterogeneous infectivity of viruses and shows a removal range of 1.4–7.1, 0.7–4.7 and 0.5–5.9 LRVs, respectively. Among the disinfections, the deviation of chlorination is relatively small, which may be one of the reasons for its widespread application, and by adjusting the CT values can we achieve sufficient virus removal. As for UV radiation, ozonation and catalytic disinfection, different levels of virus inactivation can be achieved (with 0.09–5, 0.6–7.7 and 1–8 LRVs, respectively) through various disinfectant concentration, light intensity, photocatalyst type (for generating validly reactive substances) and the contact probability between viruses and disinfectants. On the whole, all the methods have acceptable effects for virus removal, and we can opt for an appropriate method to increase selectively targeted virus elimination as much as possible.

Recent studies have revealed that various technologies have already been used for virus-containing wastewater/drinking water treatment. Fig. 11 summarizes the range of the various types of virus removal in each process, and all processes are compared in Table 3. Overall, virus elimination by means of membrane filtration and disinfection technology was within the range of 0.5–7 LRVs and 0.09–8 LRVs, respectively.

In the case of enteric viruses (such as Coxsackievirus and HAV), UF has a relatively higher retention efficiency for HAV than even for AdVs with a large size, which indicates that electrostatic and hydrophobic interactions may play crucial roles in determining virus retention. As for NoVs, more removal occurs in the MBR than in MF and UF, which may suggest stronger reactivity between NoVs and activated sludge or that NoVs may be prone to adsorb on sludge particles with subsequent separation by a membrane, and NoVs GI shows more resistant to remove than NoVs G II. The smaller removal values of PMMoV obtained in MBR denote that this virus is significantly resistant to biological treatment. Separation of viruses using a membrane cannot be regarded as a simple screening process, and the generalization of the behaviors of these viruses has not been unified. The influence of the characteristics of the viruses themselves must also be considered.

The inactivation of all the disinfection methods for the same virus is mostly between 1 and 4 LRVs, and the inactivation is sometimes over 5 LRVs. The data collected so far have indicated that chlorine or chlorine dioxide is sufficient for SARS–CoV reduction (Li et al., 2020); chlorination and ozonation show slightly better inactivation for PMMoV; ozonation and photocatalysis are better for AdVs (highly resistant to monochloramine and UV irradiation (Hu et al., 2010)) and CVB elimination; chlorination is better for RVs, JC PyV and ECHO removal; and UV radiation is better for NoVs reduction, and all the methods are acceptable for bacteriophage MS2 reduction. Some assumptions can be made: (1) since the phage MS2 is a non-pathogenic bacterial virus, its special nature may be more facilely sensitive to external disinfection conditions, so its inactivation has adequate effects overall; (2) judging from the available results, UV relatively exhibits less preponderance for most virus inactivation, probably because of its non-durable disinfection efficiency and the adverse consequences from coexisting ions, or obtaining better inactivation would be costly and the different wavelengths of UV light needs to be optimized to promote virus inactivation; (3) during photocatalysis and other processes involving free radicals for oxidation, viruses have different resistances, and the activity of free radicals under different conditions is also an important factor.

4. Conclusions and future perspectives

Viruses are distinct from other pathogens and show varying reactions in treatment processes, leading to discrepancies in their fate and behavior in water. Better understanding the characteristics, behavior and migration laws of viruses in water treatment and improving the comprehensive assessment of virus contamination along will help guide future research and provide theoretical guidance for the control of waterborne diseases.

The removal efficiencies for AdVs, NoVs GI and Bacteriophage MS2 are comparable in the MBR process, which demonstrates that the MS2 can be regarded as a good indicator or surrogate for AdVs and NoVs GI in MBR. Nevertheless, it has not yet been clearly determined whether virus reduction is attributable to decomposition by activated sludge or retention by membranes. In the former case, determining which one of the microbial communities plays a leading role will be the focus, and the coexistence relationship and interactive mechanisms (like adsorption) between some component (such as particulate matter, other microorganisms, chemical substances and protozoa) in activated sludge and viruses need to be intentionally explored. While in the latter condition, the decisive function from membrane ought to come into people's sight.
Even though the inherent nature of viruses, such as difference in nucleic acid, has a few influences over their removal from membrane, the removal effect is more closely dependent on the membrane properties like the pore size distribution and the interaction between the virus and membrane. In most of cases, the pore sizes in MF and UF membranes are often bigger than the diameter of viruses, thus the acquired propensities of virus removal are susceptibly affected by electrostatic and hydrophobic interactions. Introducing nanoparticles or nano-sheets including liquid crystals, carbon nanotubes, and block polymers (Kuo et al., 2020) that have uniform-sized nano-channels, large specific surface area and high reactivity can be treated as a measure to obtain filtration membrane with high pore interconnectivity and long-term antiviral performance, where the extra removal attributed by the fouling layer is certainly worth to be concerned. A single antiviral strategy can only weaken typical interactions between viruses and the membrane surface, limiting the scope of pollutants that can be treated. However, the synergistic effect achieved by multiple antiviral methods is still vague, which makes it hard to be controlled with high accuracy.

Moreover, it is expected to develop integrated membrane processes to promote virus elimination such as coagulation, adsorption, precipitation and disinfection. Yet different combinations may provide more or less effective removal of the viruses, and place one technique in

Fig. 11. Ranges of the removal efficiency of viruses by various water/wastewater processes originating from information in Table S3.

Processes	Bacteriophage MS2	Adenoviruses
Electrocatalysis		
Photocatalysis	Murine norovirus	Echoviruses
	Coxsackievirus B	Adenoviruses
Ozonation	Bacteriophage MS2	Reoviruses
	Murine norovirus	Echoviruses
	Coxsackievirus B	Adenoviruses
Ultraviolet	Bacteriophage MS2	Human rotavirus
	Pepper mild mottle virus	Murine norovirus
		Echoviruses
Chlorination	Bacteriophage MS2	Hepatitis A virus
	Other Bacteriophages	
	Ultrafiltration	Norovirus GII
	Microfiltration	Coxsackievirus
Reverse osmosis	Bacteriophage MS2	Aichi viruses
Nanofiltration	Bacteriophage MS2	Murine minute virus
	Other Bacteriophages	
Ultrafiltration	Bacteriophage MS2	Hepatitis A virus
Microfiltration	Other Bacteriophages	

Filtration membrane with high pore interconnectivity and long-term antiviral performance, where the extra removal attributed by the fouling layer is certainly worth to be concerned. A single antiviral strategy can only weaken typical interactions between viruses and the membrane surface, limiting the scope of pollutants that can be treated. However, the synergistic effect achieved by multiple antiviral methods is still vague, which makes it hard to be controlled with high accuracy.

Moreover, it is expected to develop integrated membrane processes to promote virus elimination such as coagulation, adsorption, precipitation and disinfection. Yet different combinations may provide more or less effective removal of the viruses, and place one technique in
pretreatment or posttreatment would also produce discrepant results (Im et al., 2019). Furthermore, there is a need to judge the type of the treated water. Compared with domestic sewage and industrial wastewater, the medical wastewater contains more pathogens like viruses, as such, it deserves more exceptional cautions. On the other hand, maintaining good property stability during the long-term operation in large-scale application is of great importance, and it is also apparent that there is a large deviation between the laboratory simulation experiment which is more inclined to mechanism investigation and the large-scale application to verify actual treatment effects, so we must seek strategies to close the gap between them.

Major disinfection treatments include chlorination, UV radiation, ozonation and catalytic oxidation. Some alternatives or combined techniques, such as ferrate and novel g-C3N4 and TiO2-based photocatalytic composites, can be considered as beneficial measures to increase virus inactivation. Many factors should be considered for disinfection, such as the type and initial concentration of the disinfectant and virus and the pH, temperature and matrices (such as particles, DOM, coexisting ions, dissolved oxygen) of the treated water and others. If some coexisting substances cause flocculation to wrap viruses or compete with viruses to react with disinfectants, the disinfection efficiency will be compromised. Otherwise, the efficiency will increase if the adsorption between particles and viruses dominates.

Viruses have different disinfectant-resistance due to their unique genome structure and morphology (i.e., icosahedral or helical symmetry, whether containing envelope and spike). The disinfection mechanism for virus reduction and inactivation primarily lies in the interaction between the disinfectants and viruses to destroy the viral capsid protein and nucleic acid, thereby irreversibly inhibiting the transmission of viruses to host cells as well as their reproduction. Other biological factors such as bacterial compounds will influence the disinfection effect, for example, in drinking water production, adding lipopolysaccharide or peptidoglycan of bacterial origin to enterovirus defended the viral capsid from thermal breakdown when the capsid was the prime disinfection target (Waldman et al., 2017), and mixture with E. coli 285 obviously affected the removal of bacteriophage F2 (Zheng et al., 2018). Till now, enteric viruses with ssDNA genome are few. Albeit chlorination probably gives rise to secondary pollution, it displays relatively better inactivation effects for JC PyV (dsDNA), PMoV (ssRNA), and RVs (dsRNA) than other disinfections. UV radiation, less susceptible to temperature and pH than other disinfectants, is relatively effective when eliminating ssRNA (e.g., NoVs) through mutating viral genome or changing capsid protein under different wavelengths. Ozonation with short operation time has over 4 LRVs of reduction for dsDNA (e.g., AdVs) and ssRNA (e.g., CVB, bacteriophage MS2 and PMoV) but less for dsRNA by generating hydroxyl radicals to oxide and damage nucleic acid. Catalytic oxidation has less satisfactory removal for some ssRNA viruses such as RVs and ssRNA viruses including NoVs and ECHO but exhibits good results for other dsRNA viruses (e.g., AdVs) and ssRNA viruses like CVB by means of producing reactive species (including free radicals) for the purpose of protein oxidation, capsid rupture and genome breakage. In the near future, new emerging disinfection technology especially photocatalysis or photo-electrocatalysis with fantastic disinfection performance has great potential in virus inactivation in water. Of course, it is worth noting that during the disinfection process, the damaged protein may self-repair and regenerate under appropriate conditions (Nelson et al., 2018), so we are supposed to pay our attention to destroying viral genome so as to inactivate viruses thoroughly.

With regard to the quantitative virus removal, the evidence from this study suggests that membrane filtration and disinfection technologies can treat virus-containing wastewater/drinking water over a wide range (0.5–7 LRVs and 0.09–8 LRVs, respectively). From another perspective, the combination of membrane-based separation and other technologies may harness the strengths and circumvent their respective shortcomings. Tertiary treatment including membrane filtration and disinfection technology will be indispensable in the near future. The presence of organic matters and inorganic ions will impact the inactivation by disinfectant toward viruses (Cai et al., 2014), so membrane separation can be necessary prior to disinfection in some cases. UF and MF membranes are generally an effective barrier for protozoa and bacteria but have limited effects to remove viruses due to their small size. Studies have suggested that a hybrid MF-UV process with a photocatalytic membrane for the removal and inactivation of bacteriophage P22 was more effective (LRV = 5.0 ± 0.7) than stand-alone MF/UV disinfection or MF-UV with a non-photocatalytic membrane (Guo et al., 2015), and

Process	Removal (LRV)	Major function mechanism	Strength	Weakness
Microfiltration	0.7–4.6	Adsorption largely onto membrane surface or within its pores; follow by size exclusion	High permeability; low pressure-driven process	Low removal effect; health risk potential for humans
Ultrafiltration	0.5–5.9	Retention by membrane and attachment of virus onto membrane surface or sorption within its pores	High flux and permeability; low energy cost and effective removal of high molecular weight matter	High capital investment and operation; removal efficiency is unstable
Nanofiltration/reverse osmosis	4.1–7	Size exclusion; Electrostatic interactions	High performance, security and reliability, dedicated removal of enveloped and nonenveloped viruses based only on size-exclusion	High requirements for influent quality
Chlorination disinfection	1–5.5	Damage in protein, nucleic acid and viral capsid	Easy to handle, economical, long residual life	DBP formation, corrosive, residual toxicity
UV radiation disinfection	0.09–5	Formation of lesions in viral genome and destruction of the cross-link between genome and protein	No DBP formation, short contact time, less operating process and space, no extra chemicals, less susceptible to temperature and pH	No residual disinfection efficiency, relatively high level of energy consumption with a certain compromise in UV-LEDs
Ozonation disinfection	0.6–7.7	Free radical formation from reaction between ozone and water	Short contact time, inactivation of viruses	No residual disinfection efficiency, high energy consumption, relatively hard to detect
Photocatalysis disinfection	1–8	Redox reaction of some reactive species (h+−, e−, OH, O2−, O3, H2O2, etc.) with visible or UV light	Facile preparation, favorable catalytic performance, low operation cost, good stability	Electricity consumption
Electrocatalysis disinfection	3.4–5	Redox reaction of some reactive species (HClO4, Cl, OH, O2−, O3, H2O2, etc.) in electrolysis cell	Applicable to some hard-removing viruses	
C. Chen, L. Guo, Y. Yang et al. Science of the Total Environment 801 (2021) 149678

the integrated coagulation-MF/UF filtration-UV obtained the highest removal of fluorescent-conjugated MS2 at 5 mg Al3+/L (Guo and Hu, 2014). Specifically, some inspiring results in our work can be proposed: for AlVs, it is suggested to use a combined UF-disinfection process; for AdVs, adopting an MBR system alone or using UF/MBF with ozonation/photocatalysis (also suitable for CVB) can be considered; for NoVs, linking MF/UF and UV disinfection together may lead to superior virus removal outcomes; and for PMMoV reduction, simultaneously supplementing the UF/MBR unit with chlorination/ozonation would be a nice choice.

In all processes for eliminating viruses, we should avoid the secondary pollution that may be caused by building extra components such as disinfection-by-products and removing viruses may encounter the low-come and specialization issues in small-scale water supply plants. In the context of COVID-19 pandemic, it may be a smart strategy to combine disinfection and membrane separation with molecular imprinting technology to enhance the selective targeted removal of viruses, at the same time, some traditional and emerging monitoring equipment can be deployed to online real-time water quality monitoring of viruses to reduce the higher risk that may be caused by the leakage of the pipe network. Finally, since there is a large number of viral strains in water, some indicators or surrogates that have behaviors similar to viral pathogens and are easy to detect and quantify should be used to assess water pollution, virus attenuation and virus migration in water. Importantly, bac-

teriphage MS2 can be adopted as a substitute for NoVs and RVs to explore the disinfection efficiency of UV, but MS2 is often detected with higher LRVs and usually does not have the strong correlation with other indigenous viruses regarding removal efficiency in chlorine and photocatalysis disinfection, which may lead to an overestimation of the effectiveness of water treatment. Thus, it is recommended to look for adequate potential indicators of indigenous viruses.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Grant No. 52070018 and No. 51920105012) and Beijing Municipal Natural Science Foundation (Grant No. L180230).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2021.149678.

References

Akhavan, O., Choobtashani, M., Ghaderi, E., 2012. Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light ir-

radiation. J. Phys. Chem. C 116 (17), 9653–9659.

Alansari, A., Selbes, M., Karanfil, T., Amburgey, J., 2015. Optimization of coagulation pre-
treatment conditions in a ceramic membrane system. J. Am. Water Works Ass. 107 (12), E701–E709.

Al-Haddad, A.M., Feldszus, S., Van Dyke, M.L., 2014. Effect of hydraulically reversible and hy-
draulically irreversible fouling on the removal of MS2 and O174 bacteriophage by an ultrasound

membrane. Water Res. 61, 297–307.

Almarah, M., Xu, B., El-Din, M.G., 2020. Transmission of SARS-CoV-2 via fecal-oral and

aerosols. Environ. Sci. Technol. 55 (2), 732–740.

Akhavan, O., Choobtashani, M., Ghaderi, E., 2012. Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light ir-

radiation. J. Phys. Chem. C 116 (17), 9653–9659.

Alansari, A., Selbes, M., Karanfil, T., Amburgey, J., 2015. Optimization of coagulation pre-
treatment conditions in a ceramic membrane system. J. Am. Water Works Ass. 107 (12), E701–E709.

Al-Arabi, R., Rodríguez-Andres, J., Schütz, J.A., Bechelany, M., Chen, X., Kong, L.X., Morsi, A., Alansari, A., Selbes, M., Karanfil, T., 2016. Pathogenesis in a geogroup II human norovirus in gnotobiotic pigs. J. Virol. 80, 10372–10381.

Cheng, R., Shen, L.J., Yu, J.H., Xiang, S.Y., Zheng, X., 2018. Photocatalytic inactivation of bac-
teriphage f2 with Ag3PO4/g-C3N4 composite under visible light irradiation: perfor-
mancent and mechanism. Catalysts 8 (10), 406.

Chesters, S.P., Pena, N., Gallego, S., Fazela, M., Armstrong, M.W., Vigo, F., 2013. Results from 99 seawater RO membrane autopsies. IDA J. Desalination. Water Reuse 5 (1), 40–47.

Delanka-Pedige, H.M.K., Munasinghe-Archichäge, S.P., Zhang, Y.Y., Nirmalakhandan, N., 2020. Bacteria and virus reduction in secondary treatment: potential for minimizing post disinfectant demand. Water Res. 117, 115802.

Domagala, M., Jaccquin, C., Borlaf, M., Sinnet, B., Julian, T., Kata, D., Graule, T., 2020. Efficiency and stability evaluation of Cu2O/MWCNTs filters for virus removal from water. Water Res. 179, 115879.

Duc, E., Arkhangelsky, E., Krush, R., Brenner, A., Gitis, V., 2012. New and conventional pore size tests in virus-removing membranes. Water Res. 46 (8), 2505–2514.

Dunker, N., Weng, S.C., Coulter, C.G., Schwab, K.J., 2018. Reduction of human norovirus GI, GII, and surrogates by peracetic acid and monochloramine in municipal secondary wastewater effluent. Environ. Sci. Technol. 51 (20), 11918–11927.

ElHaddad, A.M., Feldszus, S., Van Dyke, M.L., 2014. Effect of hydraulically reversible and hy-
draulically irreversible fouling on the removal of MS2 and O174 bacteriophage by an ultrasound

membrane. Water Res. 61, 297–307.

Elmady, E.M., Ahmed, N.I., Shalhen, M.M.F., Mohamed, E.C.B., Lostuy, S.A., 2019. Molecular detection of human adenosine in urban wastewater in Egypt and among children suffering from acute gastroenteritis. J. Water Health 17, 287–294.

Fallahianbijan, F., Giglia, S., Carcello, C., Zydowe, A.L., 2017. Use of fluorescently-labeled nanoparticles to study pore morphology and virus capture in virus filtration mem-

branes. J. Membrane Sci. 530, 52–58.

Fallahianjavan, F., Giglia, S., Carcello, C., Bell, D., Zydowe, A.L., 2019. Impact of protein foul-

ing on nanoparticle capture within the virosel pro and virosel NFP virus removal membranes. Biotechnol. Bioeng. 116 (9), 2285–2291.

Farks, K., Cooper, D.M., McDonald, J.E., Malham, S.K., de Rougemont, A., Jones, D.L., 2018. Seasonal and spatial dynamics of enteric viruses in wastewater and in riverine and estuarine receiving waters. Sci. Total Environ. 634, 1174–1183.

Feinstein, S.M., Kapikian, A.Z., Purcell, R.H., 1973. Hepatitis a: detection by immune electron microscopy of a virus like antigen associated with acute illness. Science 182, 1026–1028.

Feng, Z., Lu, R.Q., Yuan, B.L., Zhou, Z.M., Wu, Q.Q., Nguyen, T.H., 2016. Influence of solution chemistry on the inactivation of particle-associated viruses by UV irradiation. Colloids Surf. B: Biointerfaces 148, 622–628.

García-Gil, P., Pablós, C., García-Muñoz, R.A., Mcguinan, K.G., Marugán, J., 2020. Material selection and prediction of solar irradiance in plastic devices for application of solar wa-

ter disinfection (SODIS) to inactivate viruses, bacteria and protozoa. Sci. Total En-

viron. 730, 139126.

Gentile, C.J., Cruz, M.C., Rajal, V.B., de Cortalezzi, M.M.F., 2018. Electrostatic interactions in virus removal by ultrafiltration membranes. J. Environ. Chem. Eng. 6 (1), 1314–1321.

Giannakos, S., Liu, S.T., Carratala, A., Ritimi, S., Bensimon, P., Gulcin, C., 2017. Effect of Fe (II)/Fe(III) species, pH, irradiance and bacterial presence on viral inactivation in wastewater by the photo-Fenton process: kinetic modeling and mechanistic inter-

pretation. Appl. Catal. B: Environ. 204, 156–166.

Gomes, J., Frasson, D., Ferreira, R.M.Q., Matos, A., Martins, R.C., 2019. Removal of enteric pathogens from real wastewater using single and catalytic ozone. Water 11 (1), 1038.

Goswami, K.P., Pugazhenthii, G., 2020. Credibility of polymeric and ceramic membrane fil-

tration in the removal of bacteria and virus from water: a review. J. Environ. Manag. 268, 110563.

Gu, Y., Liu, Y.R., Yin, D.Z., Cai, L.K., Zhang, B.L., Zhang, Q.Y., 2018. Heparin-immobilized polymeric monolithic column with submicron skeletons and well-defined macropores for highly efficient purification of enterovirus 71. Macromol. Mater. Eng. 303 (12), 1800411.
Hirani, Z.M., Bukhari, Z., Oppenheimer, J., Jjemba, P., Lechevallier, M.W., Jacangelo, J.G., Kitajima, M., Iker, B.C., Pepper, I.L., Gerba, C.P., 2014. Relative abundance and treatment
Guo, H., Hu, J.Y., 2014. Fluorescent-conjugated MS2 as surrogates for viruses during drink-
Gupta, M., Suzuki, Y., Sakamoto, T., Yoshio, M., Torii, S., Katayama, H., Kato, T., 2019. Optimization study of a hybrid alum coagulation-membrane
Hamza, H., Hamza, I.A., 2018. Oncogenic papillomavirus and polyomavirus in urban sew-
Huang, X., Qu, Y., Cid, C.A., Frinke, C., Hoffmann, M.R., Lim, K., Jiang, S.C., 2016. Electro-
Hata, A., Katayama, H., Kitajima, M., Visvanathan, C., Nol, C., Furumai, H., 2011. Validation
Iaconelli, M., Muscillo, M., Della Libera, S., Fratini, M., Meucci, L., De Ceglia, M., Giacosa, D., Japanese Ministry of Health, Labour, and Welfare, 2015. Water Quality Standard.
Im, D., Nakada, N., Fujima, Y., Kato, Y., Tanaka, H., 2019. Pretreatment of ceramic membrane process for wastewater reclamation: effect of optimi-
Iriarte, M., Michen, B., Graule, T., 2010. Isoelectric points of viruses. J. Appl. Microbiol. 109 (2),
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Ivnitski, J., Hristov, D., Popov, T., Matev, T., Kneissl, T., Mihaylova, I., 2018. Nanocomparative study of biocidal nanomaterials for advanced wastewater treatment and disinfection. Biocatal. Agric. Biotechnol. 17, 34–41.
Nazem-Bokaee, C., Chen, D.Y., O’Donnell, S.M., Zydney, A.L., 2020. Visualizing effects of P-type photocatalytic disinfection on virus inactivation and antibiotic residues in wastewater treatment systems. Rev. Environ. Sci. Bio. 16 (3), 495–515.

Nordgren, J., Matussek, A., Mattsson, A., Lindgren, P.E., 2009. Prevalence of enteroviruses and noroviruses in raw sewage, secondary effluent and drinking water at a drinking water treatment plant. Water Res. 43 (12), 3595–3598.

O’Sullivan, J., Pesavento, P.A., 2019. Fatal bronchopneumonia caused by skunk adenovirus 1 in an adolescent Inuit boy in Nunavut, Canada. C. Clin. Virol. 12, 105–111.

San Martin, C., Burnett, R.M., 2003. Structural studies on adenoviruses. adenoviruses: model systems in virus-host interactions. Book Series: Current Topics in Microbiology and Immunology. 292, 373–433.

Sano, D., Amarsi, M., Hata, A., Watanabe, T., Katayama, H., 2016. Risk management of viral infectious diseases in wastewater reclamation and reuse: review. Environ. Int. 91, 220–229.

San Martin, C., Ducastel, M., Som, A., Ravindran, S.J., Jana, S.K., Manju, C.K., Pradeep, T., 2018. Holey MoS2 nanosheets with photocatalytic metal rich edges by ambient electrospay deposition for solar water disinfection. Glob. Chall. 2, 1800052.

Shang, C., Wong, H.M., Chen, G.H., 2005. Bacteriophage M52-2 removal by submerged membrane bioreactor. Water Res. 39 (17), 4211–4219.

Shirakasi, N., Matsushita, T., Matsu, Y., Ohno, K., 2008. Effects of reversible and irreversible inactivation of Norovirus (NoV) by a coagulation –microfiltration system. Water Supply Res Technol. 57 (1), 501–506.

Sim, L.C., Schaeffer, J., Lea S.J., Parnaud, B., Elimelech, M, Le Guayder, F.S., 2011. Bacteriophage removal in a membrane bioreactor wastewater treatment plant. Appl. Environ. Microbiol. 77 (15), 5170–5177.

Simmons, F.J., Xagorari, I., 2011. Release of infectious human enteric viruses by full-scale wastewater utilities. Water Res. 45 (12), 3590–3598.

Sinclair, T.R., Robles, D., Raza, B., van den Hengel, S., Rutjes, S.A., Husman, A.M.D., de Vos, W.M., Roesink, H.D.W., 2018. Virus inactivation through microfiltration membranes modified with a cationic polymer for drinking water applications. Colloids Surf. A Physicochem. Eng. Asp. 551, 33–41.

Song, K., Mohseni, M., Taghipour, F., 2019. Mechanisms investigation on bacterial inactivation through combination of UVC and WUV wavelengths. J. Membrane Sci. 570, 494–503.

Torii, S., Hashimoto, T., Do, A.T., Furumai, H., Katayama, H., 2019b. Repeated pressurization and repeated backwashing effect on virus removal in a hollow-fiber membrane bioreactor. J. Membrane Sci. 547, 239–248.

Vu, D.L., Sabrià, A., Aregall, N., Michl, K., Garrido, V.R., Goterris, L., Bosch, A., Pintó, R.M., 2019. Inactivation of health-relevant microorganisms in water: a review of mechanisms and implications. Environ. Sci. Technol. 54 (4), 2068–2087.

Walker, D.C., Len, S.V., Sheehan, B., 2004. Development and evaluation of a re-useable membrane disinfection pouch for treatment of drinking water. Appl. Environ. Microbiol. 70 (4), 1363–1367.

Wegmann, M., Michen, B., Graule, T., 2009. Nanostructured surface modification for efficient virus filtration. J. Eur. Ceram. Soc. 28 (8), 1603–1612.
Wigginton, K.R., Pecson, B.M., Sigstam, T., Bosshard, F., Kohn, T., 2012. Virus inactivation.

Wen, M.C., Wang, C.L., Wang, M.L., Cheng, C.H., Wu, M.J., Chen, C.H., Shu, K.H., 2004. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1 (5), 16018.

Wigginton, K.R., Kohn, T., 2012. Virus disinfection mechanisms: the role of virus composition, structure, and function. Curr. Opin. Virol. 2, 84–89.

Wigginton, K.R., Pecson, B.M., Sigstam, T., Bosshard, F., Kohn, T., 2012. Virus inactivation mechanisms: impact of disinfectants on virus function and structural integrity. Environ. Sci. Technol. 46 (21), 12069–12078.

Wolf, C., Gunten, U., Kohn, T., 2018. Kinetics of inactivation of waterborne enteric viruses by ozone. Environ. Sci. Technol. 52 (4), 2170–2177.

Wolf, C., Paveze, A., Gunten, U., Kohn, T., 2019. Proxies to monitor the inactivation of viruses by ozone in surface water and wastewater effluent. Water Res. 166, 115088.

World Health Organization (WHO). 2011. Guidelines for drinking-water quality. http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf.

Wu, T.X., Liu, G.M., Zhao, J.C., Hidaka, H., Serpone, N., 1998. Photoassisted degradation of dye pollutants. V. Self-photooxidized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B 102, 5845–5851.

Wu, J.L., Li, H.T., Huang, X., 2010. Indigenous somatic coliphage removal from a real municipal wastewater by a submerged membrane bioreactor. Water Res. 44 (6), 1853–1862.

Wu, X.Y., Tang, A.X., Bi, X.C., Nguyen, T.H., Yuan, B.L., 2019. Influence of algal organic matter of Microcystis aeruginosa on ferrate decay and MS2 bacteriophage inactivation. Chemosphere 236, 124727.

Xiao, H., Guan, D., Chen, R., Chen, P., Monagin, C., Li, W., Su, J., Ma, C., Zhang, W., Ke, C., 2013. Molecular characterization of echovirus 30-associated outbreak of aseptic meningitis in Guangdong in 2012. Virol. J. 10, 623.

Xue, B., Jin, M., Yang, D., Guo, X., Chen, Z.L., Shen, Z.Q., Wang, X.W., Qiu, Z.G., Wang, J.F., Zhang, B., Li, J.W., 2013. Effects of chlorine and chlorine dioxide on human rotavirus infectivity and genome stability. Water Res. 47 (10), 3329–3338.

Yamauchi, Y., Kimura, T., 2013. Self-standing mesoporous membranes toward highly selective molecular transportation. Chem. Commun. 49 (97), 11424–11426.

Yasui, N., Sowa, M., Minamiyama, M., 2017. Infectious risk assessment of reclaimed water by UF membrane treatment process focusing attention on norovirus. Water Sci. Technol. 18 (1), 270–278.

Yin, Z.Q., Tarabora, V.V., Kogarsaki, I., 2015. Human adenovirus removal by hollow fiber membranes: effect of membrane fouling by suspended and dissolved matter. J. Membrane Sci. 482, 120–127.

Zhang, C.M., Xu, L.M., Xu, P.C., Wang, X.C., 2016. Elimination of viruses from domestic wastewater: requirements and technologies. World J. Microbiol. Biotechnol. 32 (4), 69.

Zhang, Y.Z., Mulvenna, R.A., Qu, S.Y., Boudouris, B.W., Phillip, W.A., 2017. Block polymer membranes functionalized with nanoconfined polyelectrolyte brushes achieve sub-nanometer selectivity. ACS Macro Lett. 6 (7), 726–732.

Zhang, C., Li, Y., Shuai, D.M., Zhang, W.L., Niu, L.H., Wang, L.F., Zhang, H.J., 2018. Visible-light-driven, water-surface-floating antimicrobials developed from graphitic carbon nitride and expanded perlite for water disinfection. Chemosphere 208, 84–92.

Zhang, C., Li, Y., Shuai, D.M., Shen, Y., Xiong, W., Wang, L.Q., 2019a. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: a review. Chemosphere 214, 462–479.

Zhang, Y., Song, X., Xu, Y., Shen, H., Kong, X., Xu, H., 2019b. Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. J. Clean. Prod. 210, 366–375.

Zhang, C., Li, Y., Li, J., 2020a. Improved disinfection performance towards human adenoviruses using an efficient metal-free heterojunction in a Vis-LED photocatalytic membrane reactor: operation analysis and optimization. Chem. Eng. J. 392, 123687.

Zhang, H., Tang, W.Z., Chen, Y.S., Yin, W., 2020b. Disinfection threatens aquatic ecosystems. Science 368 (8487), 146–147.

Zhao, S.S., Ba, C.Y., Yao, Y.X., Zheng, W.H., Economy, J., Wang, P., 2018. Removal of antibiotics using polyethyleneimine cross-linked nanofiltration membranes: relating membrane performance to surface charge characteristics. Chem. Eng. J. 335, 101–109.

Zheng, X., Chen, D., Wang, Z., Lei, Y., Cheng, R., 2013. Nano-TiO2 membrane adsorption reactor (MAR) for virus removal in drinking water. Chem. Eng. J. 230, 180–187.

Zheng, X., Shen, Z.P., Cheng, C., Shi, L., Cheng, R., Yuan, D.H., 2018. Photocatalytic disinfection performance in virus and virus/bacteria system by Cu-TiO2 nanofibers under visible light. Environ. Pollut. 237, 452–459.

Zhu, N., Zhang, D.Y., Wang, W.L., Li, X.W., Yang, B., Song, J.D., Zhao, X., Huang, Y.R., Shi, W.F., Lu, R.J., Niu, P.H., Zhan, F.X., Ma, X.J., Wang, D.Y., Xu, W.B., Wu, G.Z., Gao, G.G.F., Tan, W.J., 2020. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382 (8), 727–733.

Zhu, Y.F., Chen, K., Li, Y.Y., Sano, D., 2021. Virus removal by membrane bioreactors: a review of mechanism investigation and modeling efforts. Water Res. 188, 115522.

Zodrow, K., Brunet, L., Mahendra, S., Li, D., Zhang, A., Li, Q., Alvarez, P.J., 2009. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 43 (3), 715–723.

Zyara, A.M., Torvinen, E., Veijalainen, A.M., Heinonen-Tanski, H., 2016. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection. J. Water Health 14 (4), 640–649.