Comparison of adjuvant gemcitabine plus S-1 with S-1 monotherapy for pancreatic ductal adenocarcinoma: Retrospective real-world data

Abstract

Background

S-1 has been recognized as one of the standard adjuvant chemotherapies for pancreatic ductal adenocarcinoma (PDAC) in East Asia, but the optimal adjuvant chemotherapy regimen has not been determined. We aimed to compare the efficacy and safety of adjuvant gemcitabine plus S-1 (GS) with S-1 monotherapy for PDAC.

Methods

Patients with resected PDAC who received adjuvant GS or S-1 chemotherapy in Peking Union Medical College Hospital between May 2014 and May 2022 were reviewed. Data retrieved from medical records were used to evaluate efficacy and toxicity.

Results

A total of 241 patients were included, with 167 receiving GS and 74 receiving S-1. The patients who received GS were generally younger (median [range] age: 62 [36-78] versus 64 [44-87] years, p = 0.004), but chemotherapy began later (median [range] interval between chemotherapy and surgery: 49 [17-125] versus 40 [16-100] days, p < 0.001). The median disease-free survival (DFS, 15.1 versus 15.9 months, p = 0.52) and overall survival (OS, 34.8 versus 27.1 months, p = 0.34) did not differ significantly between the GS and S-1 groups, even after adjustment for the biases. However, the chemotherapy completion rate was higher in the patients treated with S-1 (52.4% versus 75.7%, p = 0.006), while grade 3-4 neutropenia occurred more frequently in the GS group (49.5% versus 18.2%, p = 0.015).

Conclusions

Adjuvant S-1 monotherapy demonstrated noninferiority to the GS regimen in DFS and OS with better tolerability for PDAC following surgery.

Keywords: Pancreatic cancer, Adjuvant chemotherapy, S-1, Gemcitabine, Real-life data
Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers, and is speculated to be the second leading cause of tumor-related mortality in 2030, with a 5-9% five-year survival rate [1]. Surgery is the only potential curative way for PDAC, with a 20% five-year survival rate even after R0 resection [2]. Nevertheless, the recurrence rate after radical resection remains as high as 80%, since occult tumor metastasis may occur early in PDAC even if the patients are still asymptomatic [3]. Hence, adjuvant chemotherapy following surgery is the standard of care for PDAC, since studies have proved improved survival of patients with resectable PDAC treated with adjuvant chemotherapy [4–8].

In 2013, the CONKO-001 trial comparing gemcitabine as adjuvant therapy versus observation alone in patients undergoing complete resection of pancreatic cancer, showed a statistically superior disease-free survival (DFS) and overall survival (OS) for gemcitabine (13.4 and 22.8 months, respectively) than for observation (6.7 and 20.2 months, respectively) [5]. Subsequently, in 2016 the JASPAC 01 trial comparing oral S-1 versus intravenous gemcitabine as adjuvant chemotherapy in resected pancreatic cancer, indicated a prolonged DFS and OS in the S-1 group (22.9 and 45.5 months, respectively) than that in the gemcitabine group (11.3 and 25.5 months, respectively) [4]. S-1 is a fourth-generation oral fluoropyrimidine, consisting of tegafur, gimeracil, and oteracil potassium at a 1:0.4:1 molar ratio [9]. In East Asia, both S-1 and gemcitabine are standard adjuvant chemotherapy regimens for PDAC. Furthermore, a single-arm clinical trial has confirmed that patients with PDAC receiving adjuvant gemcitabine plus S-1 (GS) chemotherapy may achieve a desirable survival outcome [10]. However, there is no head-to-head comparison of adjuvant GS with other standard regimens, and the optimal adjuvant regimen for PDAC has not been determined [11]. In this study, we aimed to compare the efficacy and safety of adjuvant GS with S-1 monotherapy for PDAC at a single institution.

Materials and methods

Patients

Patients who received adjuvant GS or S-1 chemotherapy after PDAC surgery in Peking Union Medical College Hospital (PUMCH) between May 2014 and May 2022 were reviewed using the Electronic Medical Record Analytical Database (PUMCH-EMERALD). Inclusion criteria were as follows: 1) patients with PDAC who had undergone curative-intent surgery (R0 or R1 resection); 2) received at least 1 cycle of adjuvant GS or S-1 chemotherapy; 3) age 18 years or older. The exclusion criteria were as follows: 1) died, tumor recurred, or lost of follow-up within one month after adjuvant chemotherapy initiation; 2) received any preoperative neoadjuvant therapy; 3) distant metastasis or malignant ascites was found before chemotherapy initiation; 4) survival outcomes could not be assessed; 5) combined with secondary primary tumors. Data retrieved from medical records and telephone follow-up was used to evaluate efficacy and toxicity. Consent to participate was not required due to the retrospective design and the anonymization of data.

Procedures and assessments

Testing results of carbohydrate antigen 19-9 (CA199) within one month before chemotherapy onset and after surgery were screened. R1 resection was defined as any margin ≤1 mm from tumor cells [12]. Eligibility criteria for the initiation of chemotherapy included an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1, and adequate bone marrow, liver, and renal function (leucocyte count ≥3000 cells/μL; hemoglobin concentration ≥8 g/dL; platelet count ≥100000/μL; total serum bilirubin concentration ≤3 mg/dL; serum creatinine concentration ≤1.5 mg/dL). After surgery, patients would receive adjuvant chemotherapy with 8 cycles of GS or S-1 monotherapy. Each cycle of adjuvant chemotherapy consisted of oral S-1 40 mg for body-surface area (BSA) <1.25 m², 50 mg for BSA ≥1.25 m² but <1.5 m², or 60 mg for BSA ≥1.5 m², twice per day for 14 consecutive days, followed by a 7-day pause (1 cycle). Patients in the GS group received additional intravenous gemcitabine (1000 mg/m²) on days 1 and 8 in each cycle of chemotherapy.

All patients were followed up until loss of contact or death, with a follow-up deadline of June 2022. To detect tumor recurrence, all patients were investigated by computed tomography (CT) scans and/or magnetic resonance imaging (MRI) every 3 to 6 months after surgery. OS was measured as the time from the initiation of adjuvant chemotherapy until death from any cause. DFS was defined as the time from chemotherapy onset to tumor recurrence, local-regional or distant metastases, or death due to any cause. Treatment-related adverse event (AE) severity was graded according to the Common Terminology Criteria for Adverse Events version 5.0.

Statistical analysis

Continuous or categorical variables were compared using Mann-Whitney U test or Pearson’s chi-square test and Fisher’s exact test. Survival outcome was estimated by the Kaplan-Meier method and compared using a log-rank test. Additionally, propensity-score matching (PSM) was utilized to minimize the impact of confounding factors. The propensity scores were calculated based on gender, age, tumor location, ECOG performance status score, CA199 level, histological grade, lymphovascular invasion (LVI), perineural invasion (PNI), resection margin status, and TNM stage. Furthermore, a Cox proportional hazard model was used to calculate the hazard ratios (HR) with 95% confidence intervals (CI) of variables associated with survival outcomes in patients. All statistical analyses were conducted using R software (version 3.6.1, https://www.r-project.org/). All the tests were two-sided, with statistically significant level set at p value < 0.05.

Result

Patient characteristics

A total of 241 patients were included. The baseline characteristics are shown in Table 1. Among those patients, 167 (69.3%) received GS as the adjuvant chemotherapy and 74 (30.7%) were treated with S-1 monotherapy. The median age was 63 years (range, 36-87), 54.8% of the patients were male, and 56.0/38.6% of the patients had ECOG performance status 0/1. Most patients underwent R0 resection (80.9%) and did not receive adjuvant radiotherapy after surgery (92.5%). Pathological results of surgical specimens demonstrated that 99 (41.1%), 112 (46.5%), and 30 (12.4%) patients were stage I, II, and III, respectively. Furthermore, patients treated with GS were generally younger (median [range] age: 62 [36-78] versus 64 [44-87] years, p = 0.004), but chemotherapy began later (median [range] interval between chemotherapy and surgery: 49 [17-125] versus 40 [16-100] days, p < 0.001) and the chemotherapy complete rate was lower (52.4% versus 75.7%, p = 0.006).

Efficacy

The median follow-up time was 16.7 months (range, 1.3-93.4). The median DFS (15.1 versus 15.9 months, HR 1.12 [95% CI 0.63-1.27], p = 0.524) did not differ significantly between the GS and S-1 groups (Fig. 1A). Consistently, the median OS was 34.8 months in the GS group and 27.1 months in the S-1 group (HR 0.81 [95% CI 0.53-1.24], p = 0.338) (Fig. 1B). By minimizing the influence of confounding factors using PSM, the DFS and OS were still comparable between the two treatment groups (Fig. 1C-D).
The results of the Cox analyses performed to estimate potential variables associated with DFS and OS for all 241 patients are presented in Tables 2 and 3, respectively. In the first univariate analysis for DFS, smoking history, resection margin, and CA199 concentration before chemotherapy began were associated with the DFS of patients with PDAC. Further multivariate analysis confirmed that R1 resection and elevated CA199 were independent indicators of poor DFS (Table 2). Likewise, multivariate analysis demonstrated smoking history, resection margin, and TNM stage were significantly associated with the OS of those patients (Table 3). However, adjuvant chemotherapy regimen choice (GS or S-1) was neither an independent predictor of DFS nor OS.

Subgroup analyses showed comparable DFS and OS between the adjuvant GS and S-1 groups in almost all subgroups (Fig. 2A-B). Intriguingly, patients with smoking history, positive LVI, or stage 1 PDAC receiving adjuvant GS chemotherapy may achieve prolonged OS than those receiving S-1 monotherapy (Fig. 2B). Moreover, considering some researchers are concerned that adjuvant chemotherapy is less effective in stage IA or node-negative PDAC [13, 14], survival analyses were performed after excluding patients with stage IA or nodal-negative PDAC, respectively. Nevertheless, adjuvant chemotherapy regimen choice (GS or S-1) was still not associated with survival outcomes (both DFS and OS) in patients with resected PDAC (Fig. 3A-B).

Adverse Events

There were 117 patients with evaluable safety data. Grade 3 or 4 AEs reported in 64 of 95 (67.4%) patients receiving GS and 9 of 22 (40.9%) patients receiving S-1 monotherapy. Of those patients, grade 3 or 4 AEs frequently (≥5%) experienced in the GS group were abnormal neutrophil, leucocyte, hemoglobin, platelet, nausea, fatigue, vomiting, and rash. Grade 3 or 4 AEs frequently (≥5%) observed in the S-1 group were abnormal neutrophil, leucocyte, hemoglobin, platelet, nausea, fatigue, and vomiting (Table 4). Specially, the incidence of neutropenia in the GS group was

Table 1

Baseline characteristics of all 241 included patients.

Characteristics	Adjuvant chemotherapy regimen	P-value	
	GS (N = 167)	S-1 (N = 74)	
Age, median (range), years	62 (36, 78)	64 (44, 87)	0.004
Sex, male	94 (56.3%)	38 (51.4%)	0.569
ECOG performance status			
0	96 (57.5%)	39 (52.7%)	<0.001
1	68 (40.7%)	25 (33.8%)	
Unknown	3 (1.8%)	10 (13.5%)	
Smoking history			
Yes	59 (35.3%)	17 (23.0%)	0.079
No	108 (64.7%)	57 (77.0%)	
Drinking history			
Yes	43 (25.7%)	14 (18.9%)	0.324
No	124 (74.3%)	60 (81.1%)	
Preoperative diabetes			
Yes	51 (30.5%)	22 (29.7%)	1
No	116 (69.5%)	52 (70.3%)	
Tumor location			
Head	89 (53.3%)	36 (48.6%)	0.599
Body or tail	78 (46.7%)	38 (51.4%)	
CA199, median (range), U/ml	23.1 (0.6, 957)	18.9 (1, 278)	0.594
Histological grade			
G1	33 (19.8%)	16 (21.6%)	0.686
G2	80 (47.9%)	31 (41.9%)	
G3	54 (32.3%)	27 (36.5%)	
Lymphovascular invasion			
Yes	66 (39.5%)	23 (31.1%)	0.268
No/unknown	101 (60.5%)	51 (68.9%)	
Perineural invasion			
Yes	123 (73.7%)	57 (77.0%)	0.693
No/unknown	44 (26.3%)	17 (23.0%)	
Resection margin			
R0	134 (80.2%)	61 (82.4%)	0.824
R1	33 (19.8%)	13 (17.6%)	
TNM stage			
I	65 (38.9%)	34 (45.9%)	0.311
II	83 (49.7%)	29 (39.2%)	
III	19 (11.4%)	11 (14.9%)	
Adjuvant radiotherapy			
Yes	14 (8.4%)	4 (5.4%)	0.585
No	153 (91.6%)	70 (94.6%)	
Gap between chemotherapy initiation and surgery, median (range), days	49 (17, 125)	40 (16, 100)	<0.001
Eight cycles of chemotherapy complete	75/143 (52.4%)	40/53 (75.7%)	0.006
Comparison of adjuvant gemcitabine plus S-1 with S-1 monotherapy for pancreatic cancer

H. Tang et al.
Neoplasia Vol. 34, No. xxx 2022

Fig. 1. Kaplan-Meier curves of disease-free survival and overall survival in patients treated with adjuvant gemcitabine plus S-1 and S-1 monotherapy before (A, B) and after (C, D) propensity-score matching.

Table 2
Univariate and multivariate analyses of factors for disease-free survival.

Variables	Univariate analysis	Multivariate analysis		
	HR (95% CI)	P	HR (95% CI)	P
Age/years (years)	1.01(0.99,1.03)	0.349	-	-
Sex (Female vs. Male)	0.77(0.55,1.09)	0.137	-	-
ECOG Performance status (1 vs. 0)	1.12(0.78,1.62)	0.541	-	-
Smoking history (Yes vs. No)	1.44(1.01,2.05)	**0.043**	1.43(0.99,2.09)	0.059
Drinking history (Yes vs. No)	1.27(0.87,1.86)	0.222	-	-
Preoperative diabetes (Yes vs. No)	0.96(0.66,1.4)	0.827	-	-
Tumor location (Head vs. Body or tail)	1.12(0.8,1.57)	0.518	-	-
Elevated CA199 (Yes vs. No)	1(1,1)	**0.002**	1(1,1)	**0.006**
Histological grade (G2 vs. G1)	1.16(0.72,1.86)	0.543	-	-
Histological grade (G3 vs. G1)	1.44(0.88,2.35)	0.145	-	-
Lymphovascular invasion (Yes vs. No/unknown)	1.28(0.91,1.81)	0.159	-	-
Perineural invasion (Yes vs. No/unknown)	1.2(0.81,1.77)	0.361	-	-
Resection margin (R1 vs. R0)	1.68(1.13,2.51)	**0.011**	1.72(1.13,2.6)	**0.011**
TNM stage (II vs. I)	1.33(0.92,1.91)	0.132	-	-
TNM stage (III vs. I)	1.08(0.6,1.93)	0.797	-	-
Adjuvant radiotherapy (Yes vs. No)	0.47(0.21,1.06)	0.068	-	-
Gap between chemotherapy initiation and surgery/days	0.99(0.58,1)	0.262	-	-
Regimen (GS vs. S-1)	0.89(0.63,1.27)	0.524	-	-
Table 3

Univariate and multivariate analyses of factors for overall survival.

Variables	Univariate analysis	Multivariate analysis		
	HR (95% CI)	P	HR (95% CI)	P
Age/years	1.01(0.99,1.03)	0.357	-	-
Sex (Female vs. Male)	0.66(0.43,1.02)	0.063	-	-
ECOG Performance status (1 vs. 0)	1.44(0.92,2.29)	0.125	-	-
Smoking history (Yes vs. No)	1.63(1.06,2.51)	0.027	1.61(1.04,2.48)	0.031
Drinking history (Yes vs. No)	1.01(0.62,1.63)	0.977	-	-
Preoperative diabetes (Yes vs. No)	0.820.5,1.33	0.414	-	-
Tumor location (Head vs. Body or tail)	1.33(0.87,2.02)	0.183	-	-
Elevated CA199 (Yes vs. No)	1(1.1)	0.304	-	-
Histological grade (G2 vs. G1)	1.08(0.6,1.97)	0.792	-	-
Histological grade (G3 vs. G1)	1.52(0.83,2.77)	0.177	-	-
Lymphovascular invasion (Yes vs. No/unknown)	1.35(0.89,2.07)	0.163	-	-
Perineural invasion (Yes vs. No/unknown)	1.27(0.78,2.05)	0.336	-	-
Resection margin (R1 vs. R0)	2.5(1.56,4.02)	<0.001	2.54(1.57,4.11)	<0.001
TNM stage (II vs. I)	1.62(1.01,2.59)	0.045	1.66(1.03,2.67)	0.036
TNM stage (III vs. I)	1.92(0.97,3.82)	0.062	1.7(0.85,3.39)	0.13
Adjuvant radiotherapy (Yes vs. No)	0.78(0.32,1.92)	0.586	-	-
Gap between chemotherapy initiation and surgery/days	0.99(0.97,1)	0.124	-	-
Regimen (GS vs. S-1)	0.81(0.53,1.24)	0.338	-	-

Fig. 2. Forest plot of the treatment effect on disease-free survival (A) and overall survival (B) in selected subgroups.

Discussion

More than one-quarter of all new pancreatic cancer-related diagnoses and deaths occur in China, making it the country most affected by the disease [15, 16]. Adjuvant chemotherapy has been repeatedly shown to improve prognosis in patients with resected PDAC, but the optimal adjuvant chemotherapy regimen for PDAC remains controversial [17]. The PRODIGE24 trial reported the longest survival outcome in pancreatic cancer patients who received adjuvant mFOLFIRINOX (oxaliplatin, irinotecan, leucovorin, and fluorouracil) regimen following surgery, but with a higher incidence of AEs, particularly neutropenia and diarrhea [8]. Therefore, mFOLFIRINOX is regarded as the best adjuvant regimen in very fit and well-selected patients [18]. Notably, some meta-analyses argued that S-1 adjuvant chemotherapy provides DFS and OS similar to or better than mFOLFIRINOX, and S-1 is better for overall and hematologic grade 3 or 4 toxicities [11, 19]. Considering that S-1 and gemcitabine are both standard regimens for adjuvant chemotherapy in resected PDAC, and that the GS regimen (gemcitabine plus S-1) has shown promising effects in advanced PDAC [20], we compared the efficacy and safety of adjuvant GS and S-1 monotherapy for PDAC.

In this study, we included 241 patients who underwent curative-intent surgery, and found that patients treated with GS were younger, but chemotherapy began later. This may be because the GS regimen is usually administered after hospitalization, which leads to a slight delay in the start time of chemotherapy. Moreover, with highly selected patients, the completion rate of chemotherapy in clinical trials ranges from 54 to 79% [21]. We reported a similar completion rate of chemotherapy, but those...
of GS were lower than those of S-1 monotherapy. The JASPAC 01 trial showed the median DFS and OS in patients with PDAC receiving curative-intent surgery and adjuvant S-1 monotherapy were 22.9 and 46.5 months [4], whereas median DFS and OS in another trial using the GS regimen as adjuvant chemotherapy were 23.8 and 35.4 months, respectively [10]. In unresectable pancreatic cancer, the GEST trial demonstrated a non-inferior survival outcome of S-1 to GS in the first-line setting [20]. Likewise, our result suggested that the median DFS (15.1 versus 15.9 months, \(p = 0.52 \)) and OS (34.8 versus 27.1 months, \(p = 0.34 \)) were comparable between the GS and S-1 groups, even after adjustment for the impact of confounding factors using PSM. Furthermore, the safety profiles of GS and S-1 chemotherapy in this study are consistent with those reported in previous studies [4, 20]. Notably, the incidence of neutropenia in the patients receiving adjuvant GS was higher than that in the S-1 group. Intriguingly, subgroup analyses showed that patients with smoking history, positive LVI, or stage I PDAC receiving adjuvant GS chemotherapy achieved better OS than those treated with S-1 monotherapy, suggesting adjuvant GS regimen may be advisable in selected and fit patients with resected PDAC.

The role of adjuvant radiotherapy in patients with PDAC after surgery remains controversial. The ESPAC-1 trial suggested adjuvant radiotherapy might even be harmful [22]. Nevertheless, the RTOG 9704 trial demonstrated that patients treated with chemoradiotherapy followed by chemotherapy had a lower local recurrence rate than those receiving chemotherapy alone [11]. Furthermore, a study based on National Cancer Database showed that patients with R0 resection of node-positive PDAC could benefit from adjuvant radiotherapy [23]. The meta-analysis involving 5 randomized trials concluded that adjuvant chemoradiotherapy provides survival benefits in patients with R1 resection [24]. Regrettably, in our study, radiotherapy was mainly conducted (13/18, 72.2%) in patients undergoing R1 resection, and due to limited sample size, the prognostic effects of radiotherapy could not be analyzed separately in patients with different resection margin statuses. Intriguingly, a previous retrospective study at our institution included 266 PDAC patients with a node-positive disease or R1 resection and found that adjuvant chemotherapy followed by chemoradiotherapy was associated with prolonged OS and lower local recurrence rate compared to chemotherapy alone (HR 0.284, \(p = 0.014 \)) [25].

Our results suggested that the adjuvant chemotherapy regimen (GS or S-1) had no significant effect on prognosis. We also noticed that elevated CA199 and R1 resection indicated poor DFS in patients with resected PDAC, and smoking history, resection margin, and TNM stage were associated with OS. However, the factors that influence survival after surgery in patients with PDAC are also controversial. For example, the ESPAC-1 trial reported that current smoking, R1 resection, and node-positive disease indicated worse OS [22], whereas the CONKO-001 trial and other studies showed lymph node metastasis was associated with DFS and OS, but resection margin was not [5, 26]. In contrast, most studies support CA199 level and tumor stage as prognostic indicators for patients with PDAC [6, 27, 28]. Furthermore, gene expression (such as MLH1) and circulating tumor DNA as prognostic factors of chemotherapy also deserve further exploration [29, 30].

To the best of our knowledge, this is the first study to compare the efficacy and safety of GS with S-1 in patients with resected PDAC in the adjuvant setting. Unexpectedly, the addition of gemcitabine to S-1 did not confer more survival benefits but increased toxicity. Our study adds to novel evidence supporting the use of S-1, rather than GS, in patients with resected PDAC as adjuvant chemotherapy. However, this study has some limitations.

Fig. 3. Kaplan-Meier curves of disease-free survival and overall survival in patients treated with adjuvant gemcitabine plus S-1 and S-1 monotherapy after excluding patients with stage IA (A, B) or nodal-negative (C, D) pancreatic ductal adenocarcinoma.
First, inherent selection bias cannot be eliminated due to the retrospective nature. Moreover, the incidence of AEs might be affected by monitoring bias. Second, we failed to analyze the effect of gene mutation profiles or expression levels on tumor prognosis. Third, similar to the JASPAC 01 trial, our study was conducted on the Chinese population. Given the pharmacokinetics and pharmadynamics of S-1 [31], the results of our study may cannot be generalizable to Caucasian patients.

Conclusion

In summary, the results of this study suggested that adjuvant S-1 monotherapy demonstrated noninferiority to the GS regimen in DFS and OS, with a lower incidence of neutropenia. Further prospective studies are warranted to determine the optimal adjuvant chemotherapy regimen for patients with resected PDAC.

Ethics approval and consent to participate

This study was approved by the Medical Ethics Committee of Peking Union Medical College Hospital (S-K2099) and carried out following the Helsinki Declaration on experimentation involving human subjects. Consent to participate and publication were not required due to the retrospective design and the anonymization of data.

Consent for publication

Not applicable.

Availability of data and materials

All inquiries can be directed to the corresponding authors.

Authors’ contributions

HT, YW conceived the research. HT and CQ carried out literature search. HT, JL, YC, DH, TZ, and JG conducted data collection and analysis. HT and CQ participated in data visualization. HT and YW drafted the manuscript, and YC, CB and YW reviewed the manuscript. All authors read and approved the submitted version.

Competing interests

The authors declare that no competing interest exists.

Acknowledgments

Thanks to the help offered by Jinya Zhou from Department of Medical Record of Peking Union Medical College Hospital for providing the data retrieving services through Electronic Medical Record Analytical Database (PUMCH-EMERALD).

References

[1] Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol 2021;18(7):493–502. doi:10.1038/s41575-021-00457-x.

[2] Gervaso L, Lordick F, Fazio N. Adjuvant Chemotherapy for Stage I Pancreatic Ductal Adenocarcinoma-Is It Based on Evidence or Clinical Wisdom? JAMA Oncol 2021;7(12):1759–60. doi:10.1001/jamaoncol.2021.3603.

[3] Tanaka M, Mihaljevic AL, Probat P, Heckler M, Klaiber U, Heger U, et al. Meta-analysis of recurrence pattern after resection for pancreatic cancer. Br J Surg 2019;106(12):1590–601. doi:10.1002/bjs.11295.

[4] Uesaka K, Boku N, Fukumori A, Okamura Y, Konishi M, Matsumoto I, et al. Adjuvant chemotherapy of S-1 versus gemcitabine for resected pancreatic cancer: a phase 3, open-label, randomised, non-inferiority trial (JASPAC 01). Lancet 2016;388(10041):248–57. doi:10.1016/s0140-6736(16)30583-9.

[5] Oertle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA 2013;310(14):1473–81. doi:10.1001/jama.2013.279201.

[6] Neoptolemos JP, Palmer DH, Ghanem P, Pizzielli EE, Valle JW, Halloran CM, et al. Comparison of adjuvant gemcitabine and capicitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet 2017;389(10073):1011–24. doi:10.1016/s0140-6736(16)32409-6.
Comparison of adjuvant gemcitabine plus S-1 with S-1 monotherapy for pancreatic cancer

Neoplasia Vol. 34, No. xxx 2022

[7] Neoptolemos JP, Dunn JA, Stocken DD, Almond J, Link K, Beger H, et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. *Lancet* 2001;358(9293):1576–85. doi:10.1016/s0140-6736(01)06651-x.

[8] Conroy T, Hammel P, Hebbel M, Ben Abdelghani M, Wei AC, Raoul JL, et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. *N Engl J Med* 2018;379(25):2395–406. doi:10.1056/NEJMoa1809775.

[9] Shirasaka T, Shimamoto Y, Ohshima H, Yamaguchi M, Kato T, Yonekura K, et al. Development of a novel form of an oral 5-fluorouracil derivative (S-1) directed to the potentiation of the tumor selective cytotoxicity of 5-fluorouracil by two biochemical modulators. *Anticancer Drugs* 1996;7(5):548–57. doi:10.1097/00001813-199607000-00010.

[10] Murakami Y, Uemura K, Sudo T, Hashimoto Y, Nakashima A, Kondo N, et al. Long-term results of adjuvant gemcitabine plus S-1 chemotherapy after surgical resection for pancreatic carcinoma. *J Surg Oncol* 2012;106(2):174–80. doi:10.1002/jso.23068.

[11] Kamarają SK, Bunded JR, Alrawashdeh W, Manas D, White SA. A systematic review and network meta-analysis of phase III randomised controlled trials for adjuvant therapy following resection of pancreatic ductal adenocarcinoma (PDAC). *HPB (Oxford)*. 2020;22(5):649–659. doi:10.1016/j.hpb.2019.12.001.

[12] Bockhorn M, Uzunoglu FG, Adham M, Imrie C, Milicevic M, Sandberg AA, et al. Borderline resectable pancreatic cancer: a consensus statement by the International Study Group of Pancreatic Surgery (ISGPS). *Surgery*. 2014;156(6):977–988. doi:10.1016/j.surg.2014.02.001.

[13] Flamm N, Hubner RA, Valle JW, Amir E, McNamara MG. Adjuvant chemotherapy and outcomes in patients with nodal and resection margin-negative pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. *J Surg Oncol* 2019;119(7):932–40. doi:10.1002/jso.25440.

[14] Turner KM, Delman AM, Ammann AM, Sohal D, Olowokure O, Choe KA, et al. Is There a Benefit to Adjuvant Chemotherapy in Resected, Early Stage Pancreatic Ductal Adenocarcinoma? *Ann Surg Oncol* 2022. doi:10.1245/s10434-022-11580-7.

[15] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2018;68(6):394–424. doi:10.3322/caac.21492.

[16] Cui H, Guan J, Deng G, Yuan J, Lou C, Zhang W, et al. A Chinese Retrospective Multicenter Study of First-Line Chemotherapy for Advanced Pancreatic Cancer. *Med Sci Monit* 2020;26:e927654. doi:10.12659/msm.927654.

[17] Hu Q, Wang X, Chen Y, Li X, Cao P, Cao D. Which is the optimal adjuvant chemotherapy for resected pancreatic ductal adenocarcinoma?: A protocol for a network meta-analysis of randomized controlled trials. *Medicine (Baltimore)* 2019;98(21):e15761. doi:10.1097/md.0000000000015761.

[18] Pappalardo A, Giunta EF, Tirino G, Pompella L, Federico P, Dianetti B, et al. Adjuvant treatment in pancreatic cancer: shaping the future of the curative setting. *Front Oncol* 2021;11:695627. doi:10.3389/fonc.2021.695627.

[19] Parmar A, Chaves-Portas J, Saluja R, Perry K, Rahmadian AP, Santos SD, et al. Adjuvant treatment for resected pancreatic adenocarcinoma: a systematic review and network meta-analysis. *Crit Rev Oncol Hematol* 2020;145:102817. doi:10.1016/j.critrevonc.2019.102817.

[20] Ueno H, Ioka T, Ikedo M, Ohkawa S, Yanagimoto H, Boku N, et al. Randomized phase III study of gemcitabine plus S-1, S-1 alone, or gemcitabine alone in patients with locally advanced and metastatic pancreatic cancer in Japan and Taiwan: GEST study. *J Clin Oncol* 2013;31(13):1640–8. doi:10.1200/jco.2012.43.3680.

[21] Oneda E, Zaniboni A. Are we sure that adjuvant chemotherapy is the best approach for resectable pancreatic cancer? Are we in the era of neoadjuvant treatment? A review of current literature. *J Clin Med* 2019;8(11). doi:10.3390/jcm8111922.

[22] Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. *N Engl J Med* 2004;350(12):1200–10. doi:10.1056/NEJMoa032925.

[23] Kamarają SK, Sonnenday CJ, Cho CS, Frankel TL, Bednar F, Lawrence TS, et al. Association of adjuvant radiotherapy with survival after margin-negative resection of pancreatic ductal adenocarcinoma: a propensity-matched National Cancer Database (NCDB) Analysis. *Ann Surg* 2021;273(3):587–94. doi:10.1097/sla.0000000000005242.

[24] Stocken DD, Büchler MW, Dervensis C, Bassi C, Jeekel H, Klinkenbijl JH, et al. Meta-analysis of randomised adjuvant therapy trials for pancreatic cancer. *Br J Cancer* 2005;92(8):1372–81. doi:10.1038/sj.bjc.6602515.

[25] Xing J, Yang B, Hou X, Jia N, Gong X, Li X, et al. Prognostic factors and effect of adjuvant chemoradiation following chemotherapy in resected pancreatic cancer patients with lymph node metastasis or R1 resection. *Front Oncol* 2021;11:660215. doi:10.3389/fonc.2021.660215.

[26] Regine WF, Winter KA, Abrams RA, Safran H, Hoffman JP, Komski A, et al. Fluorouracil vs gemcitabine chemotherapy before and after fluorouracil-based chemoradiation following resection of pancreatic adenocarcinoma: a randomized controlled trial. *JAMA* 2008;299(9):1019–26. doi:10.1001/jama.299.9.1019.

[27] Groot VP, Gemmertzis G, Blair AB, Rivero-Soto RJ, Yu J, Jawed AA, et al. Defining and predicting early recurrence in 957 patients with resected pancreatic ductal adenocarcinoma. *Ann Surg* 2019;269(6):1154–62. doi:10.1097/sla.0000000000002734.

[28] Petrou A, Souanwalla Z, Silva MA, Manuzelli A, Moris D, Tabet PP, et al. Prognostic indicators following curative pancreaticoduodenectomy for pancreatic cancer: a retrospective multivariate analysis of a single centre experience. *J Clin Oncol* 2016;24(1):874–82.

[29] Groot VP, Mosier S, Jawed AA, Teinor JA, Gemmertzis G, Ding D, et al. Circulating tumor DNA as a clinical test in resected pancreatic cancer. *Clin Cancer Res* 2019;25(16):4973–84. doi:10.1158/1078-0432.Ccr-19-0197.

[30] Lawrence YR, Mouhag J, Magliocco AM, Klimowicz AC, Regine WF, Mowat RB, et al. Expression of the DNA repair gene MLH1 correlates with survival in patients who have resected pancreatic cancer and have received adjuvant chemoradiation: NRG Oncology RTOG Study 9704. *Cancer* 2018;124(3):491–8. doi:10.1002/cncr.31058.

[31] Chuah B, Goh BC, Lee SC, Soong R, Lau F, Mulay M, et al. Comparison of the pharmacokinetics and pharmacodynamics of S-1 between Caucasian and East Asian patients. *Cancer Sci* 2011;102(2):478–83. doi:10.1111/j.1349-7006.2010.01793.x.