Cysteine residues in a yeast viral A/B toxin crucially control host cell killing via pH-triggered disulfide rearrangements

Yutaka Suzuki, Sara L. Schwartz, Nina C. Mueller, and Manfred J. Schmitt*
Molecular and Cell Biology, Department of Biosciences, and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbruecken, Germany

ABSTRACT K28 is a viral A/B protein toxin that intoxicates yeast and fungal cells by endocytosis and retrograde transport to the endoplasmic reticulum (ER). Although toxin translocation into the cytosol occurs on the oxidized α/β heterodimer, the precise mechanism of how the toxin crosses the ER membrane is unknown. Here we identify pH-triggered, toxin-intrinsic thiol rearrangements that crucially control toxin conformation and host cell killing. In the natural habitat and low-pH environment of toxin-secreting killer yeasts, K28 is structurally stable and biologically active as a disulfide-bonded heterodimer, whereas it forms inactive disulfide-bonded oligomers at neutral pH that are caused by activation and thiol deprotonation of β-subunit cysteines. Because such pH increase reflects the pH gradient during compartmental transport within target cells, potential K28 oligomerization in the ER lumen is prevented by protein disulfide isomerase. In addition, we show that pH-triggered thiol rearrangements in K28 can cause the release of cytotoxic α monomers, suggesting a toxin-intrinsic mechanism of disulfide bond reduction and α/β heterodimer dissociation in the cytosol.

INTRODUCTION
Traversing biomembranes is a crucial and challenging task for microbial pathogens, viruses, and protein toxins to deliver their toxic or genetic material into the host cell cytosol. Generally, this process includes tight control of spatiotemporal structural changes in a toxin or viral particle to ensure proper timing of membrane passage at a specific subcellular compartment (Inoue et al., 2011; Ravindran and Tsai, 2016). In particular, for viruses, such control is essential to prevent cell damage during host cell entry because viruses critically rely on intact cellular machineries for viral replication and assembly.

With respect to the tight control of protein toxin trafficking in a eukaryotic host, yeast killer toxin K28 is an interesting example. As a family member of A/B toxins, K28 is naturally secreted by virus-infected killer strains of Saccharomyces cerevisiae (Schmitt and Breinig, 2006) and kills yeasts and fungi by blocking DNA synthesis and arresting cells at the G1/S boundary of the cell cycle (Schmitt et al., 1996). K28-secreting killer cells are immune to their own toxin by an intrinsic mechanism that ensures that the internalized α/β toxin, once it has reached the host cell cytosol, is rapidly complexed with the unprocessed toxin precursor (preprotoxin) and subsequently targeted for ubiquitylation and proteasomal degradation (Breinig et al., 2006). Because self-protection against K28 depends solely on the presence of the toxin precursor in the cytosol, any toxin-sensitive strain can be converted into an immune/resistant strain by cytosolic expression of the unprocessed K28 precursor, defining the cytosol as a crucial compartment for both toxin trafficking and immunity. This also implies that toxin uptake and retrograde transport to the cytosol occur equally in a sensitive target cell and a toxin-secreting killer cell, indicating that it must be tightly controlled in each scenario to prevent cell damage.
In its biologically active and cytotoxic conformation, K28 consists of two subunits (α and β) covalently linked by a single disulfide that exposes the β-C-terminal HDEL sequence for proper recognition by cellular H/KDEL receptors (Schmitt and Tipper, 1995; Riffer et al., 2002; Becker et al., 2016a,b). Toxicity, therefore, critically depends on both the presence of an HDEL motif at the C-terminus of β and a cellular H/KDEL receptor to ensure endo-ctyosin toxin internalization, retrograde transport, and subsequent endoplasmic reticulum (ER-) to-cytosol retrotranslocation (Eisfeld et al., 2000). Correspondingly, numerous essential host cell components of the endocytosis and retrotranslocation machineries have been identified as centrally involved in K28 in vivo toxicity (Eisfeld et al., 2000; Heiligenstein et al., 2006; Carroll et al., 2009). Furthermore, because K28 was shown to enter the cytosol of intoxicated cells from the ER as disulfide-bonded α/β heterodimer, it was concluded that the toxin crosses the ER membrane in an oxidized conformation and only thereafter dissociates into its subunit components (Heiligenstein et al., 2006). This contrasts K28 from A/B toxin family members that exploit cellular ER-associated degradation (ERAD) components to exit the ER and enter the cytosol. In such toxins, disulfide bond reduction occurs either before or during ER-to-cytosol transport and has been assumed to be the signal that induces toxin retrotranslocation from the ER (Majoul et al., 1996; Orlandi, 1997; Rapak et al., 1997; Tsai et al., 2001; Spooner et al., 2004; Suzuki and Schmitt, 2015).

In this study, we found that cysteine residues in the toxin’s β subunit become reactive at neutral pH and are essential for cell killing but can also cause inactivation of K28 through toxin oligomerization via thiol rearrangements. These cysteines are nonreactive under mildly acidic pH conditions, under which the toxin is naturally produced and secreted by a killer yeast, thereby keeping the toxin in a stable and biologically active heterodimeric conformation. In contrast, once the toxin has entered a target cell by endocytosis, the intracellular pH gradually increases, which would ultimately cause toxin oligomerization and inactivation. We here demonstrate that such pH-induced toxin oligomerization and inactivation is efficiently prevented by the activity of the protein disulfide isomerase (PDI) Pdi1p in the ER lumen. Although the precise function of reactive cysteine thiols in K28 is not fully understood, our data suggest that they mediate release of cytotoxic α monomers in the host cell cytosol, catalyzed by thiol rearrangements in the heterodimeric α/β toxin.

RESULTS

Disulfide bonds in K28 are rearranged by an increase in pH

Because the optimum pH for efficient cell killing by killer toxin K28 is in the range of pH 3.5–5.8 (Pfeiffer and Radler, 1984; Eisfeld et al., 2000; Riffer et al., 2002; Breinig et al., 2006; Heiligenstein et al., 2006; Carroll et al., 2009), we routinely use pH 4.7 for in vivo toxicity assays and storage of toxin samples for up to 1 yr without activity loss (unpublished data). However, when the toxin is incubated in buffer of pH > 6, its biological activity rapidly decreased (Figure 1A), resulting in a complete and irreversible loss of toxicity (Figure 1B). To gain insight into the molecular mechanism of this pH-dependent inactivation of K28, we analyzed the protein by nonreducing SDS-PAGE and Western blotting (Figure 1C). Toxin produced and stored at pH 4.7 mainly appeared as an α/β heterodimer (21 kDa) consisting of monomeric α and β subunits of similar size (~10 kDa each) and a minor band with an apparent molecular weight of ~45 kDa (Figure 1C, lane 1). In contrast, under more alkaline conditions (pH 8.0), additional toxin-specific signals appeared that indicate formation of K28 trimers, tetramers, and monomers (Figure 1C, lane 3). Because trimers and tetramers completely converted into monomers under reducing conditions, we can conclude that both originated from disulfide-bonded toxin oligomers (Figure 1C, lane 7). By incubating K28 at increasing pH between 5.0 and 9.0, we observed a tendency of oligomer formation in such a way that toxin tetramers appeared at lower pH, followed by K28 trimers and monomers (Figure 1D). Of note, toxin oligomer formation at pH 8.0 was stable and not reversed by a subsequent downshift in pH (Figure 1E). These observations were unexpected because neither reductants nor oxidants had been added during the pH shift (Figure 1, C, lanes 1–3, and D). Oxidation by air could in principle be considered, but the observed formation of both K28 trimers and monomers implies a disulfide bond cleavage reaction that cannot be explained by simple oxidation (Supplemental Figure S1). On the other hand, K28 oligomer and monomer formation could result from toxin-intrinsic disulfide bond rearrangements. Mature and biologically active K28 is an α/β heterodimer that contains three cysteine residues in β that are not part of the interchain α/β disulfide. If one of these cysteines attacked an existing disulfide in the α/β heterodimer, formation of tetramers, trimers, and monomers would be the consequence (Supplemental Figure S1). Because the deprotonated form of a cysteine represents a nucleophilic thiolate anion, whereas a protonated thiol is chemically less reactive (Jensen et al., 2009; Netto et al., 2016), it can be assumed that any cysteine-mediated rearrangement in K28 would be a direct result of pH-driven thiolate anion activation. In support of this, toxin oligomerization and monomer release were efficiently prevented by the addition of thiol-blocking N-ethylmaleimide (NEM; Figure 1C, lane 5). Note that to prevent potential changes in the oligomeric states of K28 after sample preparation, NEM was routinely added to the sample buffer in nonreducing SDS-PAGE throughout this study.

β-Subunit cysteine controls pH-dependent monomer release

In toxin-secreting killer cells, the K28 precursor (preprotoxin) is post-translationally imported into the ER, where signal peptide cleavage removes the N-terminal presequence and Pdi1p forms the α/β- connecting disulfide (Riffer et al., 2002; Schmitt and Breinig, 2006). After Kex2p/Kex1p-mediated processing in the Golgi, K28 is finally secreted as biologically active and disulfide-bonded α/β heterodimer with an exposed HDEL motif at the C-terminus of β (Riffer et al., 2002; Schmitt and Breinig, 2006; Figure 2A). In its fully processed and mature form, K28 possesses a single cysteine in α (C56) covalently linked to one of four remaining cysteines in β (C292, 307, 333, 340; Schmitt and Tipper, 1995; Figure 2A). Although C340 has been proposed to form the interchain disulfide in the α/β heterodimer (Riffer et al., 2002), the precise nature of this α/β-connecting disulfide is unknown. To identify this interchain disulfide, we constructed a series of K28 mutant variants containing single cysteine-to-serine mutations in β and analyzed their in vivo effect on K28 processing and α/β toxin secretion (Figure 2B). As positive control, we routinely coexpressed a V5-tagged variant of wild-type K28. Although three of the single cysteine mutants (exception was C292S) showed a significant decrease in secretion of the α/β heterodimer, the effect was most prominent and drastic in the C333S mutant, corresponding to only ~3% of the secretion level of wild-type toxin. From this, it can be concluded that cysteine 333 in β is the most likely candidate to form the disulfide with cysteine 56 in α. Furthermore, the decreased secretion level of the mutant toxins C307S and C340S (~30% of wild type) suggests the importance of these residues in K28 conformation and/or stability. To address this in more detail, we also determined secretion levels for toxin variants containing triple cysteine-to-serine mutations in β (Figure 2C). Because cysteines in these mutants are restricted to just a single residue in each subunit, interchain disulfide...
bond formation would be essential for α/β heterodimer secretion. As illustrated in Figure 2C, residues C292 and C307 were not capable of efficiently forming a disulfide with C56 in α and therefore resulted in significantly lower secretion levels (<0.5%) than with wild-type toxin (Figure 2C). Although inefficient, mutant variants containing only C333 or C340 in β resulted in α/β heterodimer secretion (~10 and ~6% of wild type, respectively). Assuming C333 as the partner of C56 in the wild-type toxin (Figure 2B), formation of the C56-C340 disulfide in the triple mutant suggests that C56, C333, and C340 may be disposed in close proximity of the structural folding intermediate and/or the mature form of the toxin. The severe decrease in α/β heterodimer secretion seen in the triple mutants further suggests that even cysteines that are not involved in interchain disulfide bonding are important to ensure proper toxin folding and/or stability.

Because cysteines 56 and 333 represent the likeliest candidates that form the α/β-connecting disulfide in vivo, we constructed and characterized a K28 mutant variant lacking all cysteine residues in β except for the cysteine that forms the interchain disulfide with α. In contrast to wild-type K28, this triple mutant (C292S/C307S/C340S) did not form toxin-specific oligomers or monomers at pH 8.2 (Figure 3A), strongly indicating that pH-dependent disulfide bond rearrangements in the α/β heterodimer are mediated by internal cysteines in β rather than by thiols from other toxin molecules. To further confirm the importance of the cysteines in β, we tested in vivo the toxicity of the triple cysteine mutant in an agar diffusion assay and compared it with that of wild-type toxin. Although protein concentration was comparable in both samples and in vivo killing activity was high for the wild-type toxin, the triple-cysteine mutant was completely inactive and incapable of killing cells (Figure 3, B and C). This highlights the importance of cysteines in β for in vivo toxicity.

β-Subunit cysteines control in vivo toxicity

To dissect and mechanistically understand the importance of toxin-intrinsic thiols for host cell killing, we analyzed the effect of the thiol-modifier NEM on the activity of wild-type K28. NEM is a small molecule with a molecular weight of 125.13 g/mol, which specifically interacts in a chemical addition reaction with thiolate anions to form a thioether derivative (Hansen and Winther, 2009). Thus the addition of NEM to active K28 heterodimers should exclusively modify reactive and accessible thiolate anions without affecting toxin-intrinsic disulfides and/or toxin structure. Because the resulting thioether can no longer act as nucleophile to rearrange a disulfide bond, NEM treatment is expected to negatively affect K28 toxicity if thiolates play an important role in biologically active α/β heterodimers (Supplemental Figure S2A). To test this assumption experimentally, we incubated K28 at pH 5.5 for 1 h in the presence of 200 mM NEM, dialyzed it against a buffer of pH 4.7 for NEM removal, and subsequently tested it for in vivo killing activity in an agar diffusion assay and compared it with that of wild-type toxin. Similar measurements were performed with toxin samples of different dilutions, indicating an exponential dependence between each toxin concentration and the size of the resulting inhibition zone. (B) K28 toxicity after incubation at the indicated pH and 20°C for 2 h; thereafter, the reaction was stopped by the addition of NEM (100 mM), and samples were analyzed by nonreducing SDS–PAGE. (E) As in B, but toxin samples were incubated for 1 h at pH 3.0 or 8.0, shifted to pH 5.0, and incubated for another 3 h. Reactions were stopped and samples analyzed as in D. Immunoblots (IBs) in C–E were probed with anti-α.

FIGURE 1: Effects of pH on K28 killing activity and conformational rearrangements. (A) In vivo toxicity of K28 after incubation at the indicated pH and 4°C for 20 h. Killing activity was assayed on methylene blue agar (pH 4.7) against S. cerevisiae 192.2d. Red bars indicate the radius of growth inhibition caused by the toxin. Results are as from four independent experiments (dots) and their respective averages (bars) at the indicated pH. Similar measurements were performed with toxin samples of different dilutions, indicating an exponential dependence between each toxin concentration and the size of the resulting inhibition zone. (B) K28 toxicity after incubation at pH 3.0 or 8.0 and 4°C for 20 h, followed by a shift to pH 5.0 and subsequent incubation for 16 h. (C) SDS–PAGE and Western analysis of K28 incubated at pH 4.7 or 8.0 and 20°C for 2 h in the presence or absence of 50 mM NEM. β-Mercaptoethanol (βME) was added to half of the non-NEM samples. (D) K28 incubated at the indicated pH and 20°C for 2 h; thereafter, the reaction was stopped by the addition of NEM (100 mM), and samples were analyzed by nonreducing SDS–PAGE. (E) As in B, but toxin samples were incubated for 1 h at pH 3.0 or 8.0, shifted to pH 5.0, and incubated for another 3 h. Reactions were stopped and samples analyzed as in D. Immunoblots (IBs) in C–E were probed with anti-α.
In contrast to β, the α subunit of K28 contains just a single cysteine (C56), which forms the disulfide with C333 in β, and so α should be affected by neither NEM treatment nor triple-cysteine mutation (C292S/C307S/C340S) in the α/β heterodimer. Within the cytosol, however, monomeric α represents the cytotoxic component that contains a single thiol at position C56, which might be crucial for toxicity. To verify this possibility, we took advantage of the suicidal phenotype after GAL1-driven expression of prepro-α (ppα) in the ER lumen (Breinig et al., 2006; Heiligenstein et al., 2016). By comparing the phenotype of yeast transformants after expression of wild-type ppα with that of its cysteine-free mutant variant C56S, we showed that the ppα variants induce a similar growth defect under inducing culture conditions in the presence of galactose (Figure 5), indicating that the cell-killing activity of α does not require a thiol in its subunit.

Pdi1p prevents toxin oligomerization

So far, we have shown that K28 contains thiols that are inactive at pH 4.7 but become reactive at pH 6.0 and higher (Figure 1, A, C, and D). Because the K28-producing killer yeast was originally isolated from grape and subsequent wine fermentation, reflecting environmental conditions that are generally considered mildly acidic (Pfeiffer and Radler, 1982), it can be assumed that mature and secreted K28 is biologically active and stable as α/β heterodimer in the respective pH range between 3.0 and 5.0. However, once the toxin enters a cell through endocytosis, intracellular and compartmental pH gradually increases from 6.0 in endosomes and trans-Golgi, through 6.7 in cis-Golgi, to 7.2 in ER and cytosol; remarkably, this intracomartmental pH is not affected by changes in the extracellular pH in a wide range between 3.0 and 7.5 (Orij et al., 2009). Considering the in vivo situation of intoxicated cells in which the internalized toxin is transported in a retrograde manner through the secretory pathway before it enters the cytosol (Eisfeld et al., 2000; Heiligenstein et al., 2006; Schmitt and Breinig, 2006), the question arises of how the toxin can retain its activity and conformation during transport through compartments with increasing pH. We therefore focused on ER luminal oxidoareductases, in particular, on Pdi1p, and asked whether this enzyme can prevent toxin-intrinsic subunit rearrangements that are predicted to also occur in the ER of intoxicated cells. From the five PDI family members of oxidoareductases in the yeast ER (Pdi1p, Mpd1p, Mpd2p, Eps1p, and Eug1p), only Pdi1p is essential. However, cell growth of a Δpdi1 strain carrying a chromosomal deletion in all five PDI family genes is viable when Mpd1p is overexpressed and becomes completely resistant against K28 (Heiligenstein et al., 2006). Expression of wild-type Pdi1p in this strain fully restored K28

FIGURE 2: Identification of the α/β-connecting disulfide in K28. (A) Position of cysteine residues in the K28 precursor (protoxin) and schematic outline of disulfide bond formation in the ER lumen of a toxin-secreting killer cell. After proteolytic protoxin processing in the Golgi, mature K28 is secreted as an α/β heterodimer in which the single cysteine in α is covalently linked to one of four cysteines in β. (B) Secreted α/β heterodimeric K28 in the cell-free culture supernatant of yeast coexpressing V5-tagged wild-type K28 and one of the indicated single cysteine-to-serine mutant variants. Samples were separated by nonreducing SDS–PAGE and probed with anti-α. K28 signals of the mutant variants were normalized by the positive control (WT-V5); corresponding expression levels relative to the control are shown to the right. Bars indicate the average of independent experiments, dots the value of each experiment (N = 3). Error bars indicate SD. *p < 0.025; **p < 0.001. (C) Secretion level of α/β heterodimeric K28 in the cell-free culture supernatant of yeast coexpressing wild-type K28-V5 and any of the indicated triple cysteine-to-serine mutant variants (as in B).
sensitivity and α/β heterodimer translocation from the ER into the cytosol (Heiligenstein et al., 2006), pointing to a central role of Pdi1p in K28 intoxication and in vivo killing. We now observe a similar toxin-resistant phenotype in a strain that carries a single Δpdi1 knockout but overexpresses the α’ domain of Pdi1p (Figure 6A).

To investigate any effect of Pdi1p on pH-dependent disulfide bond rearrangements in K28, we added purified Pdi1p to the toxin during the pH shift. When added directly from a stock solution, Pdi1p had no effect on the conformational pattern of the toxin, whereas pretreatment of Pdi1p with immobilized tris(2-carboxyethyl) phosphine (TCEP) to shift the oxidoreductase into its reduced conformation effectively suppressed the formation of K28 oligomers (Figure 6B); as expected, no such effects were seen in the negative control protein bovine serum albumin (BSA). These results suggest that reduced Pdi1p can prevent the formation of K28 oligomers that are favored to occur under neutral pH conditions of the ER. However, considering the in vivo situation, Pdi1p is only partially present in a reduced conformation (Xiao et al., 2004). To analyze toxin oligomerization under physiological conditions that mimic the ER environment, we chose a widely accepted condition with a total concentration of 10 mM glutathione (GSX = reduced glutathione [GSH] + 2x oxidized glutathione [GSSG]) at pH 7.2 and a GSH/GSSG ratio of 3:1 (Kim et al., 1998; Delic et al., 2010; Morgan et al., 2013; Niu et al., 2016). When Pdi1p was preincubated under such conditions and added to the toxin during the pH shift, K28 oligomer formation was effectively suppressed (Figure 6C). Because K28 retained its α/β heterodimer conformation at high pH in the presence of Pdi1p, we asked whether such a toxin is biologically active. As shown in Figure 6D, K28 treated overnight with Pdi1p at pH 8.0 and subsequently shifted back to pH 5.0 lost its in vivo killing activity completely, indicating that incubation at high pH is likely to cause some irreversible structural/conformational change(s) in the protein that, although not detectable in nonreducing SDS gels, prevent in vivo killing of a target cell.

FIGURE 4: Thiol-modifying reagents affect K28 in vivo toxicity. (A) K28 toxicity and subunit profile after incubation at pH 5.5 and 20°C for 1 h in the presence of 200 mM NEM, 500 mM DTT, or 50 mM diamide. Chemicals were removed by dialysis against buffer of pH 4.7 and subsequently analyzed for in vivo toxicity against S. cerevisiae 192.2d. (B) Subunit structure of samples used in A was analyzed by nonreducing SDS–PAGE probed with anti-α. (C) Samples used in A were shifted to pH 8.0 and incubated at 20°C for 2 h, followed by nonreducing SDS–PAGE probed with anti-α.

DISCUSSION
Microbial, plant, and viral A/B toxins such as ricin, choler toxin, botulinum toxin, Shiga toxin, and the yeast viral K28 toxin all use covalent disulfide bonding to connect the respective cytotoxic A/β subunit with the corresponding cell-binding B/β subunit(s) (Sandvig and van Deurs, 2002; Schmitt and Breinig, 2006). In this context, we demonstrate here for K28 that cysteine residues in its β subunit are also crucial for in vivo toxicity because either C/S substitutions in β or treatment with thiol-blocking NEM causes complete loss of K28 toxicity (Figures 3 and 4). In particular, the pronounced sensitivity of K28 to NEM supports that cysteine...
sulphydryls in the toxin are important for its in vivo killing activity (Figure 4). At higher pH, thiols in proteins tend to be deprotonated and become nucleophilic thiolate anions, which can attack one of the sulfur atoms in a disulfide, resulting in disulfide bond rearrangement (Jensen et al., 2009; Netto et al., 2016). In the case of α/β heterodimeric K28, we observed such disulfide bond rearrangement between and within toxin molecules triggered by an increase in pH (Figure 1). Although K28 remained fully stable as disulfide-bonded α/β heterodimer at lower pH, it converted into tetramers, trimers, and monomers at pH >6. In addition to cysteine C333 in β, which forms the connecting disulfide with C56 in α (Figure 2), the toxin contains three additional cysteines in β (C292, C307, C340), which we showed are required for pH-dependent toxin oligomerization, release of the cytotoxic α monomer, and in vivo killing activity (Figures 1C and 3C).

Although the precise redox state of the α/β heterodimeric toxin and the identity of the attacking cysteine residue have yet to be determined, the present results allow us to propose a first speculative model that highlights the importance of toxin-intrinsic disulfide bond rearrangements: 1) Because β contains four cysteines, from which only a single cysteine is involved in disulfide bond formation with α, the number of reduced cysteines in β can be predicted to be either one or three. 2) Based on the observed effect of DTT at lower pH (Figure 4), at which the toxin is inactivated but a significant amount of toxin molecules remains in the α/β conformation, the existence of an intra-β disulfide must be predicted that is important for in vivo toxicity. Taking this in conjunction with the first point, it is conceivable that the β subunit of biologically active K28 contains a single free cysteine, an intrachain disulfide, and an interchain disulfide that covalently links both subunits in the α/β heterodimer.

Intracellular pH gradients are frequently exploited by pathogens during host cell intoxication. For example, a decrease in pH seems a common factor and possible host cell signal for certain viruses and toxins to sense endosomal localization and subsequently cross a biological membrane, either through conformational changes (as in polio, adenovirus, influenza viruses and botulimum, anthrax, and diphtheria toxins) or by proteolytic activation (as in Ebola virus and reoviruses; Ren et al., 1999; Lacy et al., 2004; Marsh and Helenius, 2006; Inoue et al., 2011; Sun et al., 2011; Ravindran and Tsai, 2016). Our present results on K28 add another mechanistic variation, suggesting that the toxin can somehow sense an intracellular pH gradient although it is sensitive to higher pH. Of interest, the toxin-secreting K28 killer yeast was originally isolated from grapes and subsequent must fermentation (Pfeiffer and Radler, 1982), which represents a natural yeast habitat of low pH in the range between 3.4 and 3.7 that perfectly mirrors the optimal condition (pH 3.5) for K28 toxin production and killing activity (Pfeiffer and Radler, 1982). In contrast to this mildly acidic milieu in the extracellular environment, the toxin is exposed to a gradually increasing pH during intracellular transport...
through a target cell, which, as we show here, would directly affect its thiol reactivity and ultimately lead to K28 oligomer formation and toxin inactivation. Such a scenario is efficiently prevented in vivo by the activity of ER luminal Pdi1p, which keeps the toxin in its α/β heterodimeric conformation (Figure 6, B and C). Based on the data presented here, it can be assumed that the toxin takes advantage of conformational stability in a low-pH environment and a thiol-activated state at higher pH during intracellular trafficking. We propose a model of host cell intoxication in which the intracellular pH gradient, ranging from mildly acidic conditions in endosomes and the late secretory pathway to neutral pH in the ER, contributes to activation of the α/β heterodimer to exit the ER. In the pH-neutral environment of the cytosol, monomeric α is released from the heterodimer by nucleophilic attack of a reactive thiol in the β-subunit.

In vivo toxicity/sensitivity assay

Killing activity of K28 samples against the sensitive strain S. cerevisiae 192.2d (MATα ura3-52 leu2 ski2-2 [M28 virus infected]; Schmitt and Tipper, 1990). Plasmid-driven preprotoxin (pptox) expression of wild-type K28 and its epitope tagged or cysteine-to-serine mutant variants was performed by transforming the wild-type strain S. cerevisiae BY4742 (MATα ura3Δ0 leu2Δ0 his3Δ1, lys2Δ0) with vectors listed in Supplemental Table S1. For toxin production, yeast cultures (10 l) were grown for 5 d at 20°C in synthetic B-medium (pH 4.7) containing (per liter) 30 g glucose, 1.5 g (NH₄)₂SO₄, 1.0 g KH₂PO₄, 2.0 g MgSO₄·7H₂O, 0.5 g CaCl₂, 40 mg inositol, 20 mg malic acid, 0.5 g tri-Na citrate, 0.2 mg p-amino benzoic acid, 0.02 mg biotin, 0.02 mg folic acid, 1.0 mg niacin, 1.0 mg pantothenic acid, 1.0 mg pyridoxine hydrochloride, 0.5 mg riboflavin, 0.5 mg thiamine hydrochloride, 2.0 mg H₂BO₃, 2.0 mg FeCl₃, 2.0 mg ZnSO₄·7H₂O, 1.0 mg KI, 1.0 mg CuSO₄·5H₂O, 1.0 mg LiSO₄·2H₂O, 20 mg adenine, 20 mg uracil, 20 mg 5-arginine, 100 mg 5-asparagine, 20 mg 5-histidine, 30 mg 5-isoleucine, 100 mg 5-leucine, 30 mg 5-lysine, 20 mg 5-methionine, 50 mg 5-phenylalanine, 200 mg 5-threonine, 20 mg 5-tryptophan, 30 mg 5-tyrosine, and 150 mg 5-valine (Heerde and Radler, 1979). For GAL1-driven pptox expression from pYES plasmids, modified B-medium was used in which glucose was substituted by galactose and uracil was omitted. In each case, cells were harvested by centrifugation, and the cell-free culture supernatant was concentrated to a final volume of 100 ml by an ultrafiltration device (Sartorius; Amicon) with YM10 membranes and a molecular mass cutoff of 10 kDa (Schmitt and Radler, 1987). When necessary, the culture supernatant was further concentrated to a final volume of 1 ml by ultrafiltration through a Vivaspin (Sartorius) column, dialyzed against McIlvaine buffer (pH 4.7), and stored at −20°C.

MATERIALS AND METHODS

Plasmids

Plasmids used in this work are listed in Supplemental Table S1. In vivo recombination was performed as described by Oldenburg et al. (1997).

Toxin production

Wild-type K28 toxin was produced from the superkiller strain S. cerevisiae MS300c (MATα ura3-52 leu2 ski2-2 [M28 virus infected];...
ACKNOWLEDGMENTS
This study was supported by the Deutsche Forschungsgemeinschaft through priority program SPP 1710 and IRTG 1830 and grant LFFP 12/20 from Saarland Staatskanzlei.

REFERENCES
Becker B, Blum A, Gießelmann E, Dausend J, Rammo D, Müller NC, Tschackes K, Steimer M, Spindler J, Becherer U, et al. (2016a). H/KDEL receptors mediate host cell intoxication by a viral A/B toxin in yeast. Sci Rep 6, 31105.

Becker B, Shaebani MR, Rammo D, Bubel T, Santen L, Schmitt MJ (2016b). Cargo binding promotes KDEL receptor clustering at the mammalian cell surface. Sci Rep 6, 28940.

Breinig F, Sendzik T, Eisfeld K, Schmitt MJ (2006). Dissecting toxin immunity in virus-infected killer yeast uncovers an intrinsic strategy of self-protection. Proc Natl Acad Sci USA 103, 3810–3815.

Carroll SY, Stirling PC, Stimpson HE, Giesselmann E, Schmitt MJ, Drubin DG (2009). A yeast killer toxin screen provides insights into a/b toxin entry, trafficking, and killing mechanisms. Dev Cell 17, 552–560.

Delele M, Mattanovich D, Gasser B (2010). Monitoring intracellular redox conditions in the endoplasmic reticulum of living yeasts. FEBS Microbiol Lett 306, 61–66.

Eisfeld K, Riffer F, Mentges J, Schmitt MJ (2000). Endocytic uptake and retrograde transport of a virally encoded killer toxin in yeast. Mol Microbiol 37, 926–940.

Hansen RE, Winther JR (2009). An introduction to methods for analyzing thiols and disulfides: reactions, reagents, and practical considerations. Anal Biochem 394, 147–158.

Heeder E, Radler F (1979). Metabolism of the anaerobic formation of succinic acid by Saccharomyces cerevisiae. Arch Microbiol 117, 269–276.

Heiligenstein S, Eisfeld K, Sendzik T, Jimenez-Becker N, Breinig F, Schmitt MJ (2006). Retrotranslocation of a viral A/B toxin from the yeast endoplasmic reticulum is independent of ubiquitination and ERAD. EMBO J 25, 4717–4727.

Inoue T, Moore P, Tsai B (2011). How viruses and toxins disassemble to enter host cells. Annu Rev Microbiol 65, 287–305.

Jensen KS, Hansen RE, Winther JR (2009). Kinetic and thermodynamic aspects of cellular thiol-disulfide redox regulation. Antioxid Redox Signal 11, 1047–1058.

Kim JH, Johannes L, Goud B, Antony C, Lingwood CA, Daneman R, Grinstein S (1998). Noninvasive measurement of the pH of the endoplasmic reticulum at rest and during calcium release. Proc Natl Acad Sci USA 95, 2997–3002.

Lacy DB, Wigelsworth DJ, Melnyk RA, Harrison SC, Collier RJ (2004). Structure of heptameric protective antigen bound to an anthrax toxin receptor: a role for receptor in pH-dependent pore formation. Proc Natl Acad Sci USA 101, 13147–13151.

Majoul IV, Bastiaens PI, Soling HD (1996). Transport of an external Lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: studies with choler toxin in Vero cells. J Cell Biol 133, 777–789.

Marsh M, Helenius A (2006). Virus entry: open sesame. Cell 124, 729–740.

Morgan B, Ezerīņa D, Amoako TN, Riemer J, Seedorf M, Dick TP (2013). Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat Chem Biol 9, 119–125.

Netto LE, de Oliveira MA, Tairum CA, da Silva Neto JP (2016). Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions. Free Radiac Res 50, 206–245.

Niu Y, Zhang L, Yu J, Wang CC, Wang L (2016). Novel roles of the non-catalytic elements of yeast protein-disulfide isomerase in its interplay with endoplasmic reticulum oxidoeductin 1. J Biol Chem 291, 8283–8294.

Nørgaard P, Westphal V, Tachibana C, Alsøe L, Holst B, Winther JR (2001). Endoplasmic reticulum oxidoreductin 1. J Biol Chem 291, 8283–8294.

Oldenburg KR, Vo KT, Michaelia S, Paddon C (1997). Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res 25, 451–452.

Ojri R, Postmus J, Ter Beek A, Brul S, Smits GJ (2009). In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155, 268–278.

Orlandi PA (1997). Protein-disulfide isomerase-mediated reduction of the A subunit of choler toxin in a human intestinal cell line. J Biol Chem 272, 4591–4599.

Pfeiffer P, Radler F (1982). Purification and characterization of extracellular and intracellular killer toxin of Saccharomyces cerevisiae strain 28. J Gen Microbiol 128, 2699–2706.

Pfeiffer P, Radler F (1984). Comparison of the killer toxin of several yeasts and the purification of a toxin of type K2. Arch Microbiol 137, 357–361.
Schmitt MJ, Tipper DJ (1995). Sequence of the M28 dsRNA: preprotoxin is processed to an alpha/beta heterodimeric protein toxin. Virology 213, 341–351.

Solovyov A, Xiao R, Gilbert HF (2004). Sulfhydryl oxidation, not disulfide isomerization, is the principal function of protein disulfide isomerase in yeast *Saccharomyces cerevisiae*. J Biol Chem 279, 34095–34100.

Spooner RA, Watson PD, Marsden CJ, Smith DC, Moore KA, Cook JP, Lord JM, Roberts LM (2004). Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 383, 285–293.

Sun S, Suresh S, Liu H, Tepp WH, Johnson EA, Edwardson JM, Chapman ER (2011). Receptor binding enables botulinum neurotoxin B to sense low pH for translocation channel assembly. Cell Host Microbe 10, 237–247.

Suzuki Y, Schmitt MJ (2015). Redox diversity in ERAD-mediated protein retrotranslocation from the endoplasmic reticulum: a complex puzzle. Biol Chem 396, 539–554.

Tsai B, Rodighiero C, Lencer WI, Rapoport TA (2001). Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104, 937–948.

Xiao R, Wilkinson B, Solovyov A, Winther JR, Holmgren A, Lundström-Ljung J, Gilbert HF (2004). The contributions of protein disulfide isomerase and its homologues to oxidative protein folding in the yeast endoplasmic reticulum. J Biol Chem 279, 49780–49786.