A summary of the body of knowledge on physical activity for people following stroke: a scoping review

Claire McFeetersa,b, Katy Pedlowc, Niamh Kennedyd, Heather Colquhounc and Suzanne McDonoughd

aSchool of Health Sciences, Ulster University, Londonderry, Northern Ireland; bSchool of Psychology, Ulster University, Coleraine, Northern Ireland; cDepartment of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Canada; dSchool of Physiotherapy, Royal College of Surgeons in Ireland, Dublin, Ireland

\textbf{ABSTRACT}

\textbf{Background:} There are challenges implementing physical activity interventions for people across the stroke pathway of care. There is a need to understand the intervention content in addition to the effects.

\textbf{Objective:} This scoping review maps out the existing systematic review evidence in relation to five objectives.

\textbf{Design:} Intervention data were extracted to identify and clarify definitions of physical activity as well as key emerging themes, gaps and recommendations for implementation approaches and consensus.

\textbf{Results:} 50 systematic reviews fulfilled the predefined inclusion criteria. Most reviews (n = 31) focused on a subset of physical activity rather than day to day physical activity (n = 19). In addition, a description of theories underpinning the interventions were lacking. Only 11 reviews used a definition of physical activity. Physical activity outcome measures were reported in 22 reviews.

\textbf{Conclusions:} Better reporting of physical activity interventions is required to improve implementation. Research should include physical activity outcome measures across the stroke pathway. Determining which physical activity modes and parameters of each intervention would be useful in determining the optimal intervention for stroke survivors with different physical activity capacity levels.

\textbf{Introduction}

The lifetime risk of stroke has increased to one in four people [1], with one-quarter of reported strokes reoccurring [2]. One of the risk factors associated with stroke reoccurrence is the lack of physical activity (PA) post stroke [3]. There is increasing interest in physical activity levels and implementation of physical activity interventions for people across the stroke pathway of care who have varying degrees of physical impairments and physical capacity levels [2]. Physical activity levels, measured in steps per day, remain low in people with stroke, much less than a healthy older adult [2]. The causes of low levels of physical activity post-stroke appear to be multifactorial. Stroke often leads to long term physical impairments such as limited mobility and movement. These impairments may result in difficulty engaging with physical activity [4] and consequently the inability to adhere to physical activity guidance [5].

Clinical guidelines are an essential bridge in translating advice on the effectiveness of a physical activity intervention into clinical practice. The United Kingdom (UK) stroke guidelines [6,7] encourage physical activity without referring specifically to changing physical activity behaviour in people with stroke. The most recent UK Stroke practice guidelines recommend that people with stroke should aim to be active every day and participate in physical activity unless there are contraindications [6,7]. The evidence underpinning the guidelines include primary studies only which focus on, strengthening interventions [8], circuit class therapy [9], cardiorespiratory fitness [10], and aerobic exercise [11]; all of which do not focus on physical activity promotion as a change in long term lifestyle.

The UK physical activity guidelines [12] do not use evidence from the stroke population to inform their guidelines. The 2019 guidelines suggest analogous health benefits for disabled adults engaging in physical activity as for the rest of the adult population. This statement is based on a review completed for the UK Chief Medical Officers’ (CMO) physical activity guidelines for disabled persons [13]. These 2018 guidelines do not provide specific guidance for...
persons following a stroke and do not capture the evidence relevant to the stroke population.

Since the first seminal paper in 1953 by Morris [14], which found an association between increased physical activity levels and reduced incidence of coronary events; the term physical activity has been used interchangeably with various other terms. Physical activity is defined as any movement produced by skeletal muscles resulting in energy expenditure [15], and includes all physical activity done as part of daily living such as social and domestic activities, commuting, recreational and leisure activities [16,17]. Physical activity may or may not include exercise: exercise is a subset of physical activity that is planned, structured or repetitive [16], with a purpose of improvement or maintenance of one or more components of physical fitness as an objective [15]. Currently, there are four dimensions of physical activity, which are widely accepted [18,19]. These include mode or type of activity, frequency of performing activity, duration of performing activity, and intensity of performing activity. In addition, early physical activity research was largely uninformed by behaviour theory [20]. Today, theories of behaviour change are essential to understand physical activity and provide an organizing framework underpinning effective physical activity interventions [20]. Despite the terms of dimensions being widely accepted, there continues to be variation in physical activity terminology used within the literature and clinical guidelines, with most published studies being carried out as a subset of physical activity; for a specific purpose such as improving strength or cardiovascular fitness [17] rather than physical activity promotion as a change in long term lifestyle.

There is an existing large body of work in the promotion of physical activity for the stroke population which demonstrates positive outcomes [9,21–26]. These studies focus on the effects on clinical endpoints such as mobility, function, and pain rather than changing physical activity behaviour as an outcome, of which there is less clarity. In addition, there remain complexities with regards to the reporting of evidence in the area. Poor reporting of heterogeneous and complex evidence as well as the absence of analysis using the latest implementation guidelines has made it difficult for evidence to be implemented into practice [27–29].

Implementation is defined as the promotion and uptake of research findings and identifies ‘how to’ implement evidence to change healthcare practice. Work by Proctor et al. [29] provides a set of guidelines by which the body of evidence would provide sufficient detail in order for it to be more easily implemented; these guidelines were used to guide the data extraction of the current scoping review; specifically naming, defining, and operationalizing strategies in terms of the following criteria: action (provider of intervention), the action (intervention including definitions), action targets (population demographics, stroke pathway of care) and dose (physical activity dimensions and domains).

The lack of implementation and variation in reporting of this evidence across the stroke pathway warrants further investigation into the content of physical activity interventions. Therefore, a scoping review of systematic reviews within the area of physical activity and stroke is timely to learn more about these interventions, the terminology and outcome measures used and the key emerging themes from all the reviews that need some consensus building.

Our specific objectives are to:

1. Describe the focus of the reviews (aims, objectives, research questions, physical activity terminology used and theoretical description of the intervention)
2. Identify the overall level of reporting
3. Describe the actor (provider of intervention)
4. Describe the action (intervention including definitions), action targets (population demographics) and dose (physical activity dimensions and domains) across the stroke pathway of care (setting)
5. Identify physical activity intervention outcome measures (how these interventions were evaluated)
6. Identify key emerging themes, gaps and recommendations informing future research and clinical implementation

Methods

A scoping review was conducted to identify and describe available systematic review evidence on physical activity in the adult stroke population. The scoping review was reported using the Preferred Reporting Items for Systematic Reviews and Meta-analyses protocols extension for Scoping reviews (PRISMA-ScR) [30]. The Scoping review methods followed the five steps outlined in the framework devised by Arksey and O’Malley [31] and further developed by Levac et al. [32] with additional reference to the recently updated Joanna Briggs Institute (JBI) scoping review guide [33]. The published scoping review protocol is accessible here: https://www.tandfonline.com/doi/abs/10.1080/10833196.2020.1846237 and registered with the Open Science Framework (https://osf.io/vjfp4).
Eligibility criteria

This scoping review’s search and inclusion criteria were based on the dimensions and domains of physical activity outlined by Strath et al. [19] (Tables 1 and 2).

Study design was limited to systematic reviews, however within those reviews there were no restrictions on primary study design. Included reviews had been determined to be within the field of physical activity and included adults 18 years or older with a diagnosis of stroke. Language was limited to English. Reviews were not excluded based on population demographics such as severity of stroke, physical or cognitive impairment level, gender, variation of time since onset of stroke and settings. Reviews were included as being physical activity related if the core intervention(s) explicitly included a dimension and/or domain of physical activity approach or concept defined in Tables 1 and 2. Reviews were included if they had primary or secondary physical activity related outcome measures. Reviews that had combined specific rehabilitation (e.g., Constrained Induced Movement Therapy, Dual task training) and physical activity interventions and outcome measures, were only included if over 50% of the interventions were focused on physical activity (determined by research team).

Information sources

Comprehensive literature searches were defined and conducted with support from a research librarian. We searched the following electronic databases from inception until 1st June 2021: MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), EMBASE, PsycInfo and Scopus. A set of keywords and Medical Subject Headings (MeSH) was used, related to physical activity and stroke, with search limits to systematic reviews or meta-analysis. The final search strategy for the MEDLINE database including limits is presented in Appendix 1. Additional search strategies are available from the corresponding author, upon request. Reference lists of all identified reviews were also hand searched for additional relevant reviews.

Selection of sources of evidence

Search results were imported into Covidence Systematics [34], an online systematic review software system. 5% of the results titles and abstracts were assessed independently by two the research team (CMcF, KP) to pilot the suitability and clarity of the eligibility criteria [33,35]. The final list of titles and abstracts were divided among the core research team (100% CMcF, 50% NK, 50% KP) for screening using eligibility criteria, followed by a screen of full texts using the eligibility criteria. All screening was performed independently by two of three team members (100% CMcF, 50% NK, 50% KP), and discrepancies were resolved by consensus or involvement of a fourth team member (SMcD). Data was extracted electronically using Microsoft Excel software [35] and supported by Covidence software [34].

Data charting process

The data extraction and charting framework (Appendix 2) aligned to the research objectives [32] were developed and subsequently piloted on a random sample of 10 included papers and modified as required based on feedback from the research team. Aligning with the research objectives, for each of the included reviews, the following data was extracted from the pooled reporting of the results:

1. Review details: title, citation, review aim and objective(s), review question(s), physical activity

Table 1. Physical activity dimensions: mode, frequency, duration, and intensity [19] (a four section table outlining the definitions according to Strath et al. (2013) used to present information on dimensions of physical activity).

Dimension	Definition and context
Mode	Specific activity performed (e.g. walking, gardening, cycling). Mode can also be defined in the context of physiological and biomechanical demands/types (e.g. aerobic versus anaerobic activity, resistance or strength training, balance, and stability training).
Frequency	Number of sessions per day or per week. In the context of health-promoting physical activity, frequency is often qualified as number of sessions (bouts) ≥10 min in duration/length.
Duration	Time (minutes or hours) of the activity bout during a specified time frame (e.g. day, week, year, past month).
Intensity	Rate of energy expenditure. Intensity is an indicator of the metabolic demand of an activity. It can be objectively quantified with physiological measures (e.g. oxygen consumption, heart rate, respiratory exchange ratio), subjectively assessed by perceptual characteristics (e.g. rating of perceived exertion, walk-and-talk test), or quantified by body movement (e.g. stepping rate, 3-dimensional body accelerations).
terminology or other terms used and the theoretical description underpinning the intervention
2. Review methods: actual inclusion/exclusion criteria, multi component or single, types of studies, number of studies and sample size.
3. Intervention characteristics (description of intervention, dimensions and domains of intervention and provider of the intervention and whether there was behaviour change associated with the intervention).
4. Population demographics across the stroke pathway of care (gender, age, severity of stroke, physical or cognitive impairment level, classification; acute, subacute, chronic, variation of time since onset of stroke and setting).
5. Intervention outcome measures used.
6. Recommendations and key points of review (emerging themes, gaps, recommendations for implementation approaches and areas where a consensus is required).

Full data extraction of each included review was completed by two team members (100% CMcF, 50% NK, 50% KP) independently (using Covidence), and subsequent consensus gained. Discrepancies were resolved by consensus or involvement of a fourth team member (SMcD). Where investigators published several reviews based on data from a single study population, the most recent or most complete review was selected for data extraction. Methodological quality or risk of bias of the included reviews was not completed, which is consistent with guidance on scoping review conduct [33].

Data items

Intervention evaluation (outcome measures)
Evaluation of interventions; the outcome measures reported in the reviews were presented separately for the following: physical activity measures, sedentary behaviour and physical performance and physiological measures.

Outcome measures for physical activity levels (including sedentary behaviour) were identified, including subjective self-report (e.g. International Physical Activity Questionnaire, recall diary) and/or objective measurement using devices (e.g. pedometers, actigraphy, activity monitoring global positioning systems) [16]. Physical performance and physiological measures and outcomes indicate potential physical activity capacity; however, they are not considered a measure of physical activity [36]. Examples identified included walking capacity (6 m Walk Test MWT) and walking speed (10 m Walk Test MWT).

Theoretical descriptions underpinning the intervention
Theoretical descriptions underpinning the intervention were identified from the reporting/interpretation of the authors of each included review.

Data retrieval
Data were extracted directly from the results published from each review (e.g. the results pooled from the studies included in each systematic review). Primary study data was not analysed beyond what was reported within the systematic review. Basic descriptive values were collated in Microsoft excel to gain averages and ranges of values that were reported in the reviews (e.g. reporting of dimensions of physical activity, age of participants).

Analysis of results
The analysis of results included descriptive analysis of both quantitative and qualitative data. These descriptive results were then presented using a diagrammatic or tabular form and/or in a descriptive format that aligns with the objective(s) and scope of the review. Qualitative summary information was extracted directly from the discussion section of each included review. One of the research team (CMcF) synthesised and categorised this information under the following themes: gaps in the research and recommendations for implementation strategies. The research team discussed the themes and made group decisions on the categorisations.

Domain	Contextual Definition or Examples
Occupational	Work-related: involving manual labour tasks, walking, carrying, or lifting objects
Domestic	Housework, yard work, childcare, chores, self-care, shopping, incidental
Transportation	Purpose of going somewhere: walking, bicycling, climbing/descending stairs to public transportation, standing while riding transportation
Leisure time	Discretionary or recreational activities: sports, hobbies, exercise, volunteer work
Results

Results have been presented below based on the information included within the systematic reviews, which relate to this scoping review’s objectives. This is information extracted directly from each individual review which reflects the review authors interpretation of their included primary studies (i.e. the studies included in each original systematic review). Topic headings, clear explanations and level of reporting are provided aligned to each objective.

Results of the search

The electronic searches returned 11151 records. After removal of duplicates, 10488 titles and abstracts were screened against the inclusion criteria. In total, 130 records underwent full text review. 50 systematic reviews fulfilled the predefined inclusion criteria (Figure 1 PRISMA flowchart). The reviews were published between 2014 and 2021 except for one review published in 2006 [8]. Appendix 3 describes an overview of the 50 included systematic reviews.

Study designs

All 50 systematic reviews described whether study design was reported by their included primary studies \((n = 935, \text{mean } n = 19 \text{ and range per review 3 to 103})\). Of these, 546 were RCT’s \((58\%)\), 191 primary study designs were not reported \((21\%)\), 77 primary studies were cross sectional \((8\%)\) and 35 primary studies were qualitative \((4\%)\). The remaining 86 studies were made up of other reported \(n = 41 \text{ (5\%)}; \text{retrospective } n = 2, \text{ crossover } n = 16, \text{ cohort } n = 8, \text{ ...
longitudinal $n = 3$, mixed methods $n = 1$, pilot $n = 2$, non-randomised, repeated measures $n = 2$, pre/post interventional $n = 7$ and other not reported $n = 45$ (5%).

Focus of the reviews

The focus of all reviews ($n = 50$) was consistent with an aim to change physical activity or a subset of physical activity. There was a broad set of aims, objectives and interventions across the scoping review that included anything pertinent to physical activity and stroke including reviews that focused on physical activity as day to day physical activity ($n = 19$); and reviews that focused on a subset (e.g. exercise) of physical activity ($n = 31$); the latter were usually carried out as part of a rehabilitation programme; 16 such reviews did not refer to the term physical activity within their text.

Physical activity terminology

Of the 50 reviews, 11 reviews defined physical activity (22%). Seven of these reviews referenced the Casperson 1985 definition; “Physical activity is defined as any bodily movements produced by the contractions of the skeletal muscles, that increase energy expenditure, such as those executed during leisure activities, at work, at home, or while travelling” [15]. Three reviews did not reference their definition of physical activity, and within these there was little commonality. One additional review had an unreferenced definition specific to stroke [37].

Theoretical description underpinning the intervention

Data on theories underpinning interventions was not dominant across the included reviews. 26% of reviews ($n = 13$) described whether behaviour change theories were reported by their included primary studies. Of those, behaviour change theories were not reported by the primary studies in 4 reviews. Of the remaining nine reviews that reported, there were four theories used to underpin a total of seven primary study interventions (Transtheoretical $n = 4$, Health belief $n = 1$, Social Cognitive Theory $n = 1$ and Health action $n = 1$). In addition, there were several broadly defined individual constructs of these theories (e.g. goal setting, action planning) targeted by intervention components described across 30 primary studies (of a total of 935).

Population demographics

Participant sex was reported in 30% of reviews ($n = 15$). The average percentage ratio of male and female participants ratio was 58:42. Participant age was reported in 70% ($n = 35$), the range was 48–75 ($n = 21$) and mean was 63 years ($n = 20$).

Time since onset of stroke

64% of reviews ($n = 32$) described whether the participants time since onset (TSO) of Stroke was reported by their included primary studies. 26 of 32 reviews reported the range (2.9- 89.3 months), five of these reviews also reported an average TSO (22 months).

Classification

40% of reviews ($n = 20$) described whether classification of participants in terms of acute, sub-acute and chronic was reported by their included primary studies. Of these 20 reviews, there were reviews that included a mix of classifications $n = 11$ and reviews that reported only one classification $n = 7$ (acute $n = 1$, chronic $n = 6$). Of the 20 reviews, classifications were reported as follows: acute ($n = 10$), sub-acute ($n = 4$), chronic ($n = 16$).

Severity

28% of reviews ($n = 14$) described whether classification of participants in terms of stroke severity at baseline was reported by their included primary studies. How severity was measured also varied; the Barthel index ($n = 6$) as a measure of impairment to indicate severity, was the most reported (see Table 3).

Ambulatory status of participants

72% of reviews ($n = 36$) reported or implied ambulatory status. 92% of these reviews ($n = 33$) were based on ambulant participants. 22 reviews reported participants were ambulant, with 11 additional reviews implying the participants were of ambulant status. This implication was based on the requirements to undertake the intervention, i.e. walking intervention. Three reviews focused on non-ambulant participants specifically and five reviews stipulated a mix of all ambulatory statuses.

Table 3. Frequency of measures of impairment severity used by included systematic reviews (a two section table presenting descriptions of measurement of impairment and the numerical number of reviews aligned to each. Most instances occur for the Barthel index measurement).
Cognitive impairment

49 of 50 reviews did not report on cognitive impairment level. One review reported participants were ‘able to communicate with investigators and follow a two-stage command’. One further review reported participants were ‘across the spectrum’ of cognitive impairment. Neither used a validated cognitive assessment. No review stipulated cognitive status within their inclusion/exclusion criteria.

Setting

A similar number of reviews reported the setting \((n = 23)\) as did not report it \((n = 27)\). Of the 23 reviews that reported, a total of 211 primary studies were within those reviews (23% of overall primary studies). The most prevalent setting was in a home or community setting \((n = 98\) primary studies) rather than in a healthcare setting (see Figure 2).

Intervention delivery

See Figure 3 for the number of occurrences across 18 reviews (36%) that reported the provider of interventions. Most instances occur for physiotherapists

Intervention characteristics

Physical activity dimensions: Mode, frequency, duration, and intensity (Strath et al. 2013)

There were 27 modes of physical activity interventions described across the 50 included systematic reviews (see Figure 4). Mode(s) were described in every review. The most prevalent included cycle ergometry \((n = 11)\) and treadmill training \((n = 10)\) (see Figure 3). For reviews that included general physical activity \((n = 6)\), this was described as; time spent in activity and inactivity, multimodal lifestyle interventions including any type of exercise (aerobic, strengthening, progressive, tailored, group), or any type of activity aimed at improving a skill or ability.

Frequency was the most reported dimension of physical activity (see Figure 3) in 84% of reviews \((n = 42)\). Time/duration was reported in 74% of reviews \((n = 37)\). The intensity was the least reported dimension of physical activity in 30% of reviews \((n = 15)\).

Physical activity domains

The domains in which physical activity occurred (i.e. occupational; work-related; domestic; housework, transportation; the purpose of going somewhere and leisure time; recreational activities) were not explicitly reported in any review. However, many could have been defined as leisure time as they consisted of an exercise or some other form of class.

Intervention evaluation (outcome measures)

Results of outcome measures used are presented separately for the following: physical activity measures, sedentary behaviour and physical performance and physiological measures.

Physical activity measures

Physical activity measures were reported in 44% of reviews \((n = 22)\). Of those, there was a total of 36 types of outcomes measuring physical activity. There were 30 types of self-report measures reported including validated tools (see Figure 6 for most prevalent). Self-reported measures occurred 62 times across the 22 reviews that measured physical activity.

Objective measures of physical activity occurred 47 times across the 22 reviews that measured physical activity. There were six types of objective measures of physical activity reported e.g. accelerometers
Eight reviews reported physical activity measured as steps per day, although the device or method to measure was not reported. Behavioural mapping was reported in three reviews, therapist recording (\(n = 1\)) and video recording (\(n = 1\)); all of which

\[
(n = 16 \text{ reviews}) \quad \text{and pedometers} \quad (n = 5 \text{ reviews}).
\]

Figure 3. Professions of the provider of physical activity interventions (A column chart plotting the number of occurrences across 18 reviews that reported the provider of interventions. Most instances occur for physiotherapists).

Figure 4. Modes of physical activity interventions (A column chart plotting the description of the mode of physical activity and the number of reviews that reported for each mode. There is a wide range of modes presented with marginally most instances occurring in cycle ergometry).

Figure 5. Reporting of frequency, duration and intensity of physical activity interventions (A bar chart plotting three dimensions of physical activity and the number of reviews that reported each dimension data. Significantly less instances occur for the dimension intensity).
were completed in inpatient settings. Various dimensions of physical activity were reported e.g. time spent in light intensity \((n = 3) \); time spent in moderate -vigorous intensity \((n = 4) \); change in number engaging in regular physical activity \((n = 4) \); number meeting minimum requirements of physically activity for 30 mins/5 days a week \((n = 2) \) and change from passive to active stage of physical activity \((n = 2) \) (see Figure 7).

Sedentary behaviour

Three (6%) reviews \([2,38,39]\) defined sedentary behaviour as activities expending \(<1.5\) metabolic equivalents (METs) and measured it via behavioural mapping, wearable devices, and questionnaires.

Physical performance and physiological measures

There was a total of 57 types of Physical Performance and Physiological outcome measures reported across the scoping review \((n = 50) \). The most prevalent of these were 6MWT \((n = 28) \), VO2 Peak/Max \((n = 22) \), 10MWT \((n = 21) \), BBS \((n = 17) \), Timed Up and Go \((n = 12) \), Heart rate \((n = 6) \) and walking ability measured using the Holden functional ambulation category scale \((n = 4) \).

Key emerging themes; gaps in the research and recommendations for implementation strategies

Each theme was explored with supporting text provided in Tables 4 and 5.

Summary of key findings

Discussion

We conducted a comprehensive scoping review that included a total of 935 primary studies within 50 systematic reviews. 58% of these primary studies
were RCTs indicating a vastly growing evidence base in this area. In response to the low level of physical activity occurring in the stroke population, coupled with the large volume of research completed in this area, this scoping review mapped out the existing systematic review evidence to better understand the heterogeneity in reporting of research in this area, as well as the intervention
content indicating emerging gaps and themes embedded throughout this discussion.

We used Proctor et al. [29] implementation reporting guidelines like TIDieR (Template for Intervention Description and Replication) [45] in terms of intervention detail but extracted additional implementation detail such as implementation outcomes affected. This reporting guideline was used to collate what is known and not known from the systematic review evidence. This included the focus, terminology, characteristics, and outcome measures used in the physical activity and post stroke body of knowledge. Our review has been successful in outlining where there are inconsistencies and gaps in the current research knowledge. Given there were no published reviews that focused on implementation of existing evidence, our findings in terms of implementation are more limited.

Focus of the reviews

Many reviews focused on a subset of physical activity (n=31) rather than day to day physical activity (n=19). In addition, a description of theories underpinning the interventions was lacking. There is extensive evidence that the most effective physical activity interventions are based on behaviour change that supports people to incorporate physical activity into their daily routines [46]. From our scoping review there is emerging evidence that this applies also to people with stroke. Moore et al. (2018) [42] outlined six trials that showed an increase in physical activity behaviour (very or quite promising). These interventions were explicitly designed to increase physical activity in daily living such as counselling-based physical activity promotion. Most reviews in this scoping review, however, are focused on a subset of physical activity intervention that do not include behaviour change. The reason for this remains unclear.

Future physical activity interventions and programmes should move away from repeating what is already known and from adopting strategies that are less likely to lead to sustainable behaviour change across the stroke pathway of care [47].

Across the scoping review, only 11 reviews used a definition of physical activity: seven of those reviews referenced the well renowned Casperson 1985

Table 5. A summary of the key findings of this review (a seven section table presenting descriptive summary information on the key findings from the results).

Proctor	Key finding
Focus of reviews/ Name	19 reviews focused on physical activity as day-to-day physical activity and 31 reviews focused on a subset (e.g. physical fitness, aerobic exercise) of physical activity.
The action (intervention including definitions),	Of the 50 reviews, only 11 reviews defined physical activity (22%). Three reviews did not reference their definition of physical activity, and within these there was little commonality. Only one review had an unreferenced definition of physical activity specific to the stroke population [37].
Action targets (population demographics, stroke pathway of care)	Data on population demographics was not well reported across the scoping review; except for time since onset of stroke (64% of reviews reporting) and age (70%). This review indicated gender (30% of reviews reporting), cognitive impairment (2%), severity of stroke (28%) and stroke classification (40%) were underreported. The average participant was 64 years old, marginally male (ratio 58:42), approximately 22 months post stroke, without cognitive impairment and more likely to be classified as chronic in the stroke pathway of care. Due to insufficient information, average severity levels were not available.
Outcome measures	Physical activity outcome measures were reported in 22 reviews. Self-reported measures of physical activity occurred more often than device based and varied greatly with 30 types described. The most used self-reported measure was the PASE (n=9). There were six types of device based physical activity outcomes with accelerometers most common, used in 16 reviews. Physical Performance and Physiological outcome measures were reported to be used in every review (n=50), with a total of 57 types described.
Actor (provider of intervention)	18 reviews (36%) reported who delivered the intervention. Physiotherapists were most common with a range of other combinations of professions also reported (see Figure 5).
Mode of PA interventions	A wide range of modes of physical activity (n=27) was described within reviews. The most prevalent was cycle ergometry (n=11)
Dose (physical activity dimensions and domains)	Frequency was the most reported dimension of physical activity (see Figure 3) in 84% of reviews (n=42). Time/ duration was reported in 74% of reviews (n=37). The intensity was the least reported dimension of physical activity in 30% of reviews (n=15). A similar number of reviews reported the setting (n=23) as did not report it (n=27). The most prevalent setting was in a home or community setting (n=98 primary studies) rather than in a healthcare setting (see Figure 4). Data on behaviour change was not reported across the scoping review.
definition [15] and one review outlined a specific definition appropriate for those on the stroke pathway of care who were non-ambulant [37] called ‘Adapted Physical activity (APA)’; “APA is a form of non-medical movement activity especially designed for individuals with specific health status alterations or chronic diseases. It is aimed to prevent disabilities mainly caused by immobility and to maintain residual motor skills (muscular tropism, joint flexibility, cardio-respiratory function, balance, ambulation, bone mass), bringing lifestyle changes”. Morris (2012) [40] reported a variation in physical activity definitions across studies, however did not determine a definition within the review text. These results highlight the use of a physical activity definition is not prevalent in research for this population. This may be linked to the lack of reporting and clarity in defining physical activity intervention dimensions and domains across all of the stroke pathway (including varying levels of physical capacities) and population demographics. Future research should focus on which physical activity measures (i.e. self-reported, device-based measures) are most appropriately aligned to the various physical capacity levels of the stroke population.

Population demographics

There is an overall lack of reporting of key demographics, such as gender (30% reported); age (41% reported); classification (41% reported); severity (27% reported) and cognitive impairment (2% reported). As a result, we are unable to decide what works well and for whom, particularly for those with cognitive impairments which make up a pooled prevalence of 53.4% (16% with a major impairment) of the stoke population yet only considered in one review [43,48].

The 32 reviews that reported the participants time since onset of stroke indicated that although research is being conducted across the whole stroke pathway (range 2.9–89.3 months), the average participant was 22 months post stroke. Whilst most reviews were based on the ambulant population (n = 33), some research has been conducted with non-ambulant participants specifically (n = 3), again indicating the wide scope of research overall, however with a clear majority of ambulant participants.

The main provider of physical activity interventions is Physiotherapists and given that the context of these reviews is generating evidence rather than implementation, there is a need to review what is happening in clinical practice. The qualitative review summaries frequently highlight the need for increased support for stroke survivors to engage with physical activity, such as peer and professional support. In addition, the roles of non-therapy staff in physical activity promotion, and collaboration with other exercise providers in providing physical activity interventions has been explored. The resulting conclusion is that physical activity promotion, as part of an intervention, should be a generic skill across health care and does not belong to one profession. Positively, many studies reported research being conducted in a home or community setting enhancing the likelihood of their findings being implementable.

Intervention characteristics and intervention evaluation (outcome measures)

27 modes of physical activity interventions were described across the scoping review, indicating a range of domains that could be implemented with this population. The most used mode (cycle ergometry) which in terms of current physical activity definition, is not considered a day-to-day activity. The most prevalent mode that people can fit into daily activities was walking (n = 11) and is therefore not implementable for the 20% of the stroke population who are non-ambulant [49,50].

There has been a predominance of studies measuring physical function and physical capacity (n = 31) without also then measuring how these translate into day to day increases in physical activity. This would suggest that those delivering the interventions (mainly physiotherapists), may have challenges implementing physical activity interventions and/or measuring their outcomes across the stroke pathway of care. There is a current gap in knowing what these challenges are in current practice. However, this trend is starting to change with more recent reviews also including self-report and device-based measures of physical activity which can inform both on the domains in which physical activity takes places and its dimensions. Physical activity dimensions such as intensity in relation to physical capacity levels need to be defined, measured, and clearly reported to determine the optimum dose (and guidelines) for specific stroke capacity levels. Additionally, a consensus is required to determine terminology when describing physical capacity levels i.e. ambulation, severity, classification, weakness.

Limitations of the review

There are some limitations of this review. All non-English studies were excluded from the search strategy which may have led to incomplete synthesis of data in this area. Heterogeneity in reporting of reviews also made the interpretation of results
challenging. Due the nature of this review, the authors did not go to the original papers for raw data if it was not reported within the systematic review. As the aim of this review was to look at a wide breadth of literature, reviews were included regardless of quality. Although the search strategy did not include implementation as a key term, a subsequent use of a more comprehensive framework such as the Consolidated Framework for Implementation Research (CFIR) [51] may have extracted more implementation detail. Given the volume and value of the information retrieved within this review, there is an opportunity for future research to follow on from this and include such implementation detail.

Conclusion

Better reporting of physical activity interventions is required to allow implementation and a clear focus for future research. In addition, future research should include physical activity outcome measures to measure the effects of different physical activity interventions across the stroke pathway. Determining which physical activity modes of interventions and establishing the physical activity parameters of each intervention would be useful in determining the optimal intervention for stroke survivors with different physical activity capacity levels and at each stage of the stroke pathway. Defining physical activity, specific to the stroke population, is uncommon and therefore an appropriate definition should be determined which aligns to the various physical activity levels of the stroke population. Research into clinician knowledge and routine practice of physical activity promotion and its outcomes should be completed in the first instance as a starting point of implementation.

Disclosure statement

The authors report there are no competing interests to declare.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

ORCID

Claire McFeeters http://orcid.org/0000-0001-6153-8718

References

1. Feigin V, Brainin M, Norrving B, et al. World stroke organization (WSO): global stroke fact sheet 2022. Int J Stroke. 2022;17(1):18–29.

2. Fini N, Holland A, Keating J, et al. How physically active are people following stroke? Systematic review and quantitative synthesis. Phys Ther. 2017; 97(7):707–717.

3. Chaturvedi S, Turan T, et al. reviewing Neurology 2016. The Importance of Physical Activity in Preventing Recurrent Stroke. 2017. Available at https://www.jwatch.org/na43192/2017/01/04/import-ance-physical-activity-preventing-recurrent-stroke. (Accessed 02/04/20)

4. National Audit Office. Reducing brain damage: faster access to better stroke care. 2005. London: NAO.

5. Fletcher S, Kuhnik ST, Demain S, et al. The problem with self-management: problematising self-management and power using a foucauldian lens in the context of stroke care and rehabilitation. PLoS One. 2019;14(6):e0218517. Gordon N, Gulanick M, Costa F, American Heart Association Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention; the Council on Cardiovascular Nursing; the Council on Nutrition, Physical Activity, and Metabolism; and the Stroke Council, et al. Physical activity and exercise recommendations for stroke survivors. A scientific statement from the American heart association. Circulation. 2004;109(16):2031–2041.

6. National Institute for Clinical Care and Excellence (NICE). Stroke rehabilitation: long term rehabilitation after stroke. 2013. Clinical guideline 162. Retrieved from http://www.nice.org.uk/guidance/cg162/evidence/full-guideline-pdf-190076509.

7. Royal College of Physicians (RCP). National clinical guideline for stroke. 2016. Retrieved from https://www.strokeaudit.org/Guideline/Full-Guideline.aspx.

8. Ada L, Dorsch S, Canning CG. Strengthening interventions increase strength and improve activity after stroke: a systematic review. Aust J Physiother. 2006;52(4):241–248.

9. English C, Hillier SL. Circuit class therapy for improving mobility after stroke. London, United Kingdom: Cochrane Database of Systematic Reviews, 2010. CD007513.

10. Marsden DL, Dunn A, Callister R, et al. Characteristics of exercise training interventions to improve cardiorespiratory fitness after stroke: a systematic review with Meta-analysis. Neurorehabil Neural Repair. 2013;27(9):775–788.

11. Kendall BJ, Gothe NP. Effect of aerobic exercise interventions on mobility among stroke patients: a systematic review. American Journal of Physical Medicine & Rehabilitation. 2016;95(3):214–224.

12. UK Chief Medical Officers’ (CMO). Physical Activity Guidelines. 2019. Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/832868/uk-chief-medical-officers-physical-activity-guidelines.pdf.

13. UK Chief Medical Officers’ (CMO). Physical Activity for general health benefits in disabled adults. 2018. Retrieved from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/748126/Physical_activity_for_general_health_benefits_in_disabled_adults.pdf.
14. Morris JN, Heady JA, Raffle PAB, et al. Coronary heart disease and physical activity of work. Lancet. 1953;262(6796):1111–1120.

15. Caspersen C, Powell K, Christenson G. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–131.

16. Marley J. Improving the effectiveness of physical activity and exercise interventions in the management of low back pain (E-pub ahead of print). International Society for the Study of the Lumbar Spine: Lumbar Spine Online Textbook. Maryland, United States: Wheelless Textbook of Orthopaedics, Section 10. 2018.

17. Rausch Osthoff AK, Niedermann K, Braun J, et al. EULAR recommendations for physical activity in people with inflammatory arthritis and osteoarthritis. Ann Rheum Dis. 2018;77(9):1251–1260.

18. Kohl H, Murray T, Salvo D. Foundations of physical activity and public health. 2019. 2nd Ed. Champaign, United States: Human Kinetics.

19. Strath S, Kaminsky L, Ainsworth B, American Heart Association Physical Activity Committee of the Council on Lifestyle and Cardiometabolic Health and Cardiovascular Exercise, Cardiac Rehabilitation and Prevention Committee of the Council on Clinical Cardiology, and Council, et al. Guide to the assessment of physical activity: clinical and research applications. A scientific statement from the American heart association. Circulation. 2013;128(20):2259–2279.

20. Rhodes RE, McEwan D, Rebar AL. Theories of physical activity: behaviour change: a history and synthesis of approaches. Psychol Sport Exercise. 2019;42:100–109.

21. Saunders DH, Sanderson M, Hayes S, et al. Physical fitness training for stroke patients. Cochrane Database Syst Rev. 2020;3:CD003316.

22. Lynch E, Jones T, Simpson D, on behalf of the ACTIoNs Collaboration, et al. Monitors for increasing physical activity in adult stroke survivors. Cochrane Database Syst Rev. 2018.

23. Barclay R, Stevenson T, Poluha W, Cochrane Stroke Group, et al. Interventions for improving community ambulation in individuals with stroke. Cochrane Database Syst Rev. 2015.

24. Lawrence M, Celestino F, Jr Matozinho H, Cochrane Stroke Group, et al. Yoga for stroke rehabilitation. Cochrane Database Syst Rev. 2017;2017(12):1465–1858.

25. Laver K, Schoene D, Crotty M, Cochrane Stroke Group, et al. Telerehabilitation services for stroke. Cochrane Database Syst Rev. 2013;(1):1465–1858.

26. Vloothuis J, Mulder M, Veerbeek J, Cochrane Stroke Group, et al. Caregiver-mediated exercises for improving outcomes after stroke. Cochrane Database Syst Rev. 2016;2016(12):1465–1858.

27. Kim Y, Byron Lai MS, Mehta T, et al. Exercise training guidelines for multiple sclerosis, stroke, and parkinson disease. Am J Phys Med Rehabil. 2019;98(7):613–621.

28. Morris J, Bernhardsson S, Bird M, et al. Implementation in rehabilitation: a roadmap for practitioners and researcher. Disability Rehabilitation. 2020;42(22):3210–3265.

29. Proctor EK, Powell BJ, McMillen JC. Implementation strategies: recommendations for specifying and reporting. Implement Sci. 2013;8:139.

30. Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-447ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–473.

31. Arkesey H, O’Malley L. Scoping studies: towards a methodological framework. Intern J Social Res Method. 2010;5:69.

32. Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2013;8:5.

33. Peters M, Marnie C, Tricco A, et al. Updated methodological guidance for the conduct of scoping reviews. J Evid Synth. 2020;18(10):2119–2126.

34. Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia. Available at www.covidence.org.

35. Microsoft Corporation. 2018. Microsoft Excel. Retrieved from https://office.microsoft.com/excel.

36. Portegijs E, Karavirta L, Saajahono M, et al. Assessing physical performance and physical activity in large population-based aging studies: home-based assessments or visits to the research Centre? BMC Public Health. 2019;19(1):1570.

37. Belliore P, Miele A, Gallê F, et al. Adapted physical activity and stroke: a systematic review. J Sports Med Phys Fitness. 2018;58(12):1867–1875.

38. English C, Mannis PJ, Tucak C, et al. Physical activity and sedentary behaviors in people with stroke living in the community: a systematic review. Phys Ther. 2014;94(2):185–196.

39. Kringle EA, Barone-Gibbs B, Campbell G, et al. Influence of interventions on daily physical activity and sedentary behavior after stroke: a systematic review. PM&R. 2020;12(2):186–201.

40. Morris J, Oliver T, Kroll T, et al. The importance of psychological and social factors in influencing the uptake and maintenance of physical activity after stroke: a structured review of the empirical literature. Stroke Res Treat. 2012;2012:195249.

41. Thilarajah S, Mentiplay B, Bower K, et al. Factors associated with Post-Stroke physical activity: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2018;99(9):1876–1889.

42. Moore S, Hirso N, Flynn D, et al. How should long-term free-living physical activity be targeted after stroke? A systematic review and narrative synthesis. Int J Behav Nutr Phys Act. 2018;15(1):100.

43. Barbay M, Diouf M, Roussel M, GRECO/GAVSC study group, et al. Systematic review and Meta-analysis of prevalence in post-stroke neurocognitive disorders in hospital-based studies. Dement Geriatr Cogn Disord. 2018;46(5-6):322–334.

44. Nicholson S, Sniehotta FF, van Wijck F, et al. A systematic review of perceived barriers and motivators to physical activity after stroke. Int J Stroke. 2013;8(5):357–364.

45. Hendrickx W, Vlietstra L, Valken et al. General lifestyle interventions on their own seem insufficient to improve the level of physical activity after stroke or TIA: a systematic review. BMC Neurol. 2020;20(1):168.

46. Heath G, Parra D, Sarmiento O, et al. Evidence-based intervention in physical activity: lessons from around the world. The Lancet. 2012;380(9838):272–281.
47. Ding D, Ramirez Varela A, Bauman AE, et al. Towards better evidence-informed global action: lessons learnt from the lancet series and recent developments in physical activity and public health. Br J Sports Med. 2020;54(8):462-468.

48. Sexton E, McLoughlin A, Williams DJ, et al. Systematic review and meta-analysis of the prevalence of cognitive impairment no dementia in the first year post-stroke. Eur Stroke J. 2019;4(2):160-171.

49. Kwah LK, Harvey LA, Diong J, et al. Models containing age and NIHSS predict recovery of ambulation and upper limb function six months after stroke: an observational study. J Physiother. 2013;59(3):189-197.

50. Veerbeek JM, Van Wegen EE, Harmeling-Van der Wel BC, for the EPOS Investigators, et al. Is accurate prediction of gait in nonambulatory stroke patients possible within 72 hours post stroke?: the EPOS study. Neurorehabil Neural Repair. 2011;25(3):268-274.

51. Damschroder LJ, Aron DC, Keith RE, et al. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implement Sci. 2009;4(1):50.
Appendix 1. MEDLINE search strategy (a twenty-five-point list of the search strategy terms used, for the database MEDLINE)

Step	Search	Retrieval
1	exp Exercise	210086
2	(Physical extsuperscript{5} or activ extsuperscript{5} or Physical extsuperscript{5} fitness or Physical exercise or physical exertion or physical endurance).mp.	231378
3	(Exercise extsuperscript{5} or Fit extsuperscript{5} or Activ extsuperscript{5} or Sedentary or sport extsuperscript{5} or walk extsuperscript{5} or running or jogging or pilates or yoga)).mp.	4637198
4	(cycle or cycling) adj5 (school extsuperscript{10} or work or workplace or commute extsuperscript{4} or travel extsuperscript{4} or equipment or facility extsuperscript{4} or rack extsuperscript{4} or store extsuperscript{4} or storing or park extsuperscript{6} or friendly or infrastructure)).mp.	4876
5	(bicycl extsuperscript{5} or bike extsuperscript{4} or biking or swim extsuperscript{1} or swimming or exertion extsuperscript{1} or strength training or resistance training or travel mode extsuperscript{5}).mp.	171731
6	(exercis extsuperscript{5} or exercise extsuperscript{5} or aerobic extsuperscript{4}).mp.	14114
7	(active adj (travel extsuperscript{4} or transport extsuperscript{4} or commute extsuperscript{4})).mp.	20976
8	(active adj (travel extsuperscript{4} or transport extsuperscript{4} or commute extsuperscript{4})).mp.	20976
9	(multimodal transportation or alternative transport extsuperscript{4} or alternative travel extsuperscript{4} or recreation extsuperscript{4}).mp.	34675
10	("use" adj3 stair extsuperscript{4}).mp.	248
11	(pedestrian extsuperscript{4} or rehabilitat extsuperscript{4} or ambulat extsuperscript{5}).mp.	510110
12	(graded adj2 activit extsuperscript{3}).mp.	480
13	(exercise extsuperscript{4} or leisure activity extsuperscript{4} or "activities adj2 daily living" or adl or physiotherap extsuperscript{4} or physical therap extsuperscript{4}).mp.	423112
14	(Cardiorespiratory train extsuperscript{6} or circuit train extsuperscript{7} or hit train extsuperscript{6} or aerobic train extsuperscript{6}).mp.	3085
15	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14	5313279
16	exp Stroke/	144198
17	(stroke or brain infarction or cerebrovasc extsuperscript{5} or brain vasc extsuperscript{5} or cerebral vasc extsuperscript{5} or cva5 or apoplex extsuperscript{5} or SAH or post/stroke).mp.	441386
18	(brain extsuperscript{5} or cerebel extsuperscript{5} or cerebell extsuperscript{5} or intracran extsuperscript{5} or intracerebral) adj5 (ischemi extsuperscript{5} or infarc extsuperscript{5} or thrombo extsuperscript{5} or emboli extsuperscript{5} or occlu extsuperscript{5}).mp.	165190
19	(brain extsuperscript{5} or cerebel extsuperscript{5} or cerebell extsuperscript{5} or intracranial or subarachnoid) adj5 (hemorrhage extsuperscript{5} or hemorrhag extsuperscript{5} or haemorrhage extsuperscript{5} or hematoma extsuperscript{5} or hematom extsuperscript{5} or bleed extsuperscript{5}).mp.	97414
20	(hemipleg extsuperscript{5} or hemipar extsuperscript{5} or pareis or paretic).mp.	31883
21	16 or 17 or 18 or 19 or 20	587021
22	15 and 21	112660
23	limit 22 to english language	102624
24	(systematic review or SR or meta-analysis or meta-synthesis).mp.	376903
25	23 and 24	3249
Appendix 2. Data extraction framework (a seven section colour table outlining details of the framework used and content extracted for each systematic review)

Section	Question	Further Questions	Further Questions	Instructions	Answer
Systematic Review Details	Review title:	Enter Description or NR	Enter Narrative / reference to physical activity/ relationship to physical activity		
	Review aims/ objectives:	Enter Description or NR	Enter Narrative / reference to physical activity/ relationship to physical activity		
	Review Physical activity focus				
	Review Physical activity focus				
	Review questions:	Enter Description or NR	Enter Narrative / reference to physical activity/ relationship to physical activity		
	Study citation details:	Enter Description or NR	Enter Narrative / reference to physical activity/ relationship to physical activity		
	Links to physical activity	Enter Description or NR	Enter Narrative / reference to physical activity/ relationship to physical activity		
	Is there a theory underpinning the intervention?	No? Type No	Yes? Describe the intervention and the Theoretical underpinning i.e. BCT Taxonomy v1 (Michie et al. 2013)		
Methods	Actual Inclusion/ exclusion criteria	Is the review on one intervention or multi? Number	Is the review on one intervention or multi? Number		
	Multi-component/single				
	Number of studies in review	Sum number of participants across studies if reported (list the studies both in methods and results)	Description/ Not reported (Insert NR)	(Actual studies included) Not reported (Insert NR)	
	Total sample size				
	Types of Study	Types of Study	Methods/ desired studies	Description/ Not reported (Insert NR)	
	Methods/ desired studies				
	Results				
	RCT	enter number	enter number	enter number	enter number
	Cohort	enter number	enter number	enter number	enter number
	Qual	enter number	enter number	enter number	enter number
	Mixed	enter number	enter number	enter number	enter number
	Other	enter number	enter number	enter number	enter number
Definition of Physical Activity	Is the term physical activity used?	Yes (Enter Y)/ No (Enter N) / Can’t answer (Enter CA) / Other term used (OT) for specific domain of physical activity	Yes (Enter Y)/ No (Enter N) / Can’t answer (Enter CA) / Other term used (OT) for specific domain of physical activity		
	Is there a definition of the term physical activity?	Yes (Enter Y)/ No (Enter N) / Can’t answer (Enter CA) / Other term used (OT) for specific domain of physical activity	Yes (Enter Y)/ No (Enter N) / Can’t answer (Enter CA) / Other term used (OT) for specific domain of physical activity		
	If Yes	Physical Activity definition Details and/or reference used	Enter definition /description		
	If No, Other Term Used				
Intervention characteristics	Intervention delivery	Name of intervention	This is the intervention name (or list of intervention names) and will capture the description of the interventions i.e. behaviour change, Tai chi, progressive exercises interventions will be described and included here.		

(continued)
Section	Question	Further Questions	Further Questions	Instructions	Answer
Provider	Who delivered the Physical Activity related intervention e.g. physio, exercise professional, community leader				
Execution of delivery	Group (face to face) Individual (face to face)	Group (online) Individual (online) Self directed by service user	Other		
Dimension	Mode	Execution of delivery Tick box if applicable – use ‘other’ to type description such as telehealth/ text service/ combination etc			
Dimension Domain	Frequency	Specific activity performed (e.g. walking, gardening, cycling) OR context of physiological and biomechanical demands/ types (e.g. aerobic versus anaerobic activity, resistance or strength training, balance and stability training).			
	Intensity	Number of sessions per day or per week			
	Duration	Rate of energy expenditure			
	Duration	Time (minutes or hours) of the activity bout during a specified time frame (e.g. day, week, year, past month).			
	Occupational				
Domain Demographics	Domestic	Work-related: involving manual labour tasks, walking, carrying or lifting objects			
	Transportation	Housework, yard work, childcare, chores, self-care, shopping, incidental			
	Leisure Time	Purpose of going somewhere: walking, bicycling, climbing/ descending stairs to public transportation, standing while riding transportation			
Physical or Cognitive Impairment Level		Discretionary or recreational activities: sports, hobbies, exercise, volunteer work			
Population demographics across the stroke population	Demographics	Severity	Description if summarised, ‘NR’ if not reported		
	Classification (Acute/ sub-acute/ chronic)	Description if summarised, ‘NR’ if not reported			
	Variation of time since onset	Description if summarised, ‘NR’ if not reported			
	Gender	Description if summarised, ‘NR’ if not reported			
	Age	Description if summarised			
	Setting	N/%, ‘NR’ if not reported			
Settings	Setting Was Physical activity measured?	Yes (Y) No (N)	Number of reviews from summary		
	Healthcare				
	Community	Number of reviews from summary			
	Lab	Number of reviews from summary			
	Care homes / Nursing homes/ assisted living	Number of reviews from summary			
	Not Reported	Enter ‘NR’			

(continued)
Intervention Outcomes

Section	Question	Further Questions	Instructions
	If Yes	Physical Activity outcome measure used	OM 1
		Physical Activity outcome measure used	OM 2 … Enter each outcome used as listed
	If No	Physical Activity related outcome measure used	OM 1
		Physical Activity related outcome measure used	OM 2 … Enter each outcome used as listed
		Emerging Themes	**Brief description/ Summary**

Review Recommendations

Section	Question	Further Questions	Instructions
	Research Gaps	Brief description/ summary	
	Recommendations for implementation approaches	Brief description/ summary	
	Recommended areas where consensus is required	Brief description/ summary	
	Any other significant detail/ Recommendations from review	Brief description/ summary	
Appendix 3. An overview of included systematic reviews (a seven section table with a descriptive summary outlining details of each of the 50 included systematic reviews.)

Study citation details	Title	Year of publication	Review aims/objectives/questions	Number of primary studies in review	No of participants	Intervention
Ada L, Dorsch S,	Strengthening interventions	2006	This systematic review examines not only whether strength training after stroke	21	476	Strengthening interventions
Canning CG.			is effective (i.e. does it increase strength), but whether it is harmful (i.e. does it increase			
			spasticity) and whether it is worthwhile (i.e. does it improve activity)			
Ammann BC, Knols RH,	Application of principles of exercise training in sub-acute and chronic stroke survivors: a systematic review.	2014	Objectives of this systematic review were (1) to investigate whether training	37	2135	The employed interventions were varied including
Baschung P, de Bie RA,			principles for physical exercise interventions are reported in RCTs for sub-acute and chronic			aerobic exercise; treadmill training
de Bruin ED.			stroke survivors, (2) to evaluate whether the RCTs reported			with or without body weight support; resistance
			the prescription of the FITT components of the exercise			training; circuit classes with
			interventions as well as (3) patients’ adherence to this prescription, and (4) to assess the			progressive strength training and combined
			risk of bias of the included studies.			interventions of aerobic and resistive strength
						exercise
Belfiore P, Miele A,	Adapted physical activity and stroke: a systematic review. J Sports Med Phys Fitness 2018;58:1867-75.	2018	The purpose of this systematic review was to explore the role of adapted physical activity and	14	645	Adapted physical activity and exercise
Galli F, Liguori G.			exercise in the post-stroke period by referring not only to the rehabilitation stage but also			
			to the post rehabilitation one, in order to address future care policies			
Bonini-Rocha AC, de	Effectiveness of Circuit-Based Exercises on Gait Speed, Balance, and Functional Mobility in People Affected by Stroke: A Meta-	2018	To examine the effectiveness of circuit-based exercise in the treatment of people affected by	11	750	Task-oriented circuit class training defined as
Andrade ALS,	Analysis.	Apr;10(4):398-409.	stroke			therapy provided to more than 2 participants
Moraes AM, Gomide						simultaneously, which involved a series of
Matheus LB, Diniz LR,						workstations focusing on gait practice and
Martins WR.						functional gait-related tasks.
Boyne P, Welge J,	Factors Influencing the efficacy of Aerobic Exercise for Improving Fitness and Walking Capacity After Stroke: A Meta-	2017	To assess the influence of dosing parameters and patient characteristics on the efficacy of	20	1747	Aerobic exercise (AEX)
Kissela B, Dunning K.	Analysis With Meta-Regression.	Apr;10(4):398-409.	aerobic exercise (AEX) post stroke.			
Study citation details	Title	Year of publication	Review aims/objectives/questions	Number of primary studies in review	No of participants	Intervention
------------------------	-------	---------------------	----------------------------------	------------------------------------	--------------------	--------------
Church G, Parker J, Powell L, Mawson S.	The effectiveness of group exercise for improving activity and participation in adult stroke survivors: a systematic review. Physiotherapy. 2019;105(4):399-411.	2019	Therefore, the aim of this systematic review was to examine how group exercise interventions improves the ICF domain of function and participation in adult stroke survivors. The secondary aim was to explore if and how the mechanism of progressive intensity has been measured for group exercise interventions.	14	1039	Group exercise including water based, aquatic, tai chi, circuit, exercise, education, Resistance training, balance exercise, fitness and mobility exercises, stretching, weight lifting.
Da Campo L, Hauck M, Marcolino MAZ, Pinheiro D, Plentz RDM, Cechetti F.	Effects of aerobic exercise using cycle ergometry on balance and functional capacity in post-stroke patients: a systematic review and meta-analysis of randomised clinical trials. Disabil Rehabil. 2019 Oct 2:1-7.	2019	The objective of this systematic review and meta-analysis are to evaluate evidence about the effects of aerobic exercise with cycle ergometer on the balance of post-stroke patients, evaluated by the Berg Balance Scale (BBS), and functional capacity, evaluated by the maximal oxygen intake and six-minute walk test (6MWT). This study aims to systematically review randomised clinical trials (RCT) which applied aerobic exercise with cycle ergometer alone, compared to conventional therapy or other interventions on balance and functional capacity outcomes in post-stroke patients.	5	258	Cycle ergometry
Dorsch S, Ada L, Alloggia D.	Progressive resistance training increases strength after stroke but this may not carry over to activity: a systematic review. J Physiother. 2018 Apr;64(2):84-90.	2018	Objectives are: 1. What is the effect of progressive resistance training on strength after stroke? 2. Does any increase in strength carry over to activity?	11	314	Progressive resistance strength training
Dorstyn D, Roberts R, Kreiboeve I, Kennedy P, Liesu C.	Systematic review of leisure therapy and its effectiveness in managing functional outcomes in stroke rehabilitation. Top Stroke Rehabil. 2014 Jan-Feb;21(1):40-51.	2014	The aim of this study was to perform a systematic review on the exercise trials post stroke.	15	722	Aerobic training 60% of studies used cycle ergometer, 33.3% used a treadmill and 6.7% a combination of the two
English C, Hillier SL, Lynch EA.	Circuit class therapy for improving mobility after stroke. Cochrane Database Syst Rev. 2017 Jun 26(6)	2017	To examine the effectiveness and safety of CCT on mobility in adults with stroke	17	1297	Circuit Class training
English C, Manns PJ, Tucak C, Bernhardt J.	Physical activity and sedentary behaviors in people with stroke living in	2014	This systematic review aimed to update current knowledge of physical activity and sedentary behaviors among people	26	983	Description of the time spent active
Study citation details	Title	Year of publication	Review aims/objectives/questions	Number of primary studies in review	No of participants	Intervention
------------------------	-------	---------------------	----------------------------------	-------------------------------------	-------------------	--------------
with stroke living in the community: a systematic review. Phys Ther. 2014 Feb;94(2):185-96.	How Physically Active Are People Following Stroke? Systematic Review and Quantitative Synthesis. Phys Ther. 2017 Jul 1;97(7):707-717.	2018	The aim of this study is to evaluate the effectiveness of tai chi on rehabilitation in stroke patients, in order to help clinicians to make evidence-based decisions on the use of tai chi in stroke patients	5	346	Tai chi comprises slow, graceful and precise movements, performed with a low centre of gravity
Fini NA, Holland AE, Keating J, Simek J, Bernhardt J. How Physically Active Are People Following Stroke? Systematic Review and Quantitative Synthesis. Phys Ther. 2017 Jul 1;97(7):707-717.	Effects of Tai Chi on Balance and Gait in Stroke Survivors: a Systematic Meta-Analysis of Randomized Controlled Trials	2018	The aim of this study is to evaluate the effectiveness of tai chi on rehabilitation in stroke patients, in order to help clinicians to make evidence-based decisions on the use of tai chi in stroke patients	103	5306	Devices/behaviour map
Francia JV, Bigongiari A, Mochizuki L, Miranda ML, Rodrigues B. Aerobic program in persons with stroke: a systematic review. Acta Med Port. 2014 Jan-Feb;27(1):108-15.	General lifestyle interventions on their own seem insufficient to improve the level of physical activity after stroke or TIA: a systematic review	2020	What is the effect of lifestyle interventions on the level of physical activity performed by people with stroke or TIA?	11	2403	General lifestyle/physical activity interventions
Galloway M, Marsden DL, Callister R, Erickson KJ, Nilsson M, English C. What Is the Dose-Response Relationship Between Exercise and Cardiorespiratory Fitness After Stroke? A Systematic Review. Phys Ther. 2019 Jul 1;99(7):821-832.	Exercise Interventions on Mobility among Stroke Patients	2016	The objective of this systematic review was to assess the impact of these aerobic exercise interventions on mobility outcomes among long-term stroke survivors.	9	529	The aerobic intervention groups comprised walking, which was done either indoors or outdoors on a track or treadmill.
Hendrickx, W, Vlietstra, L, Valkenet, K. et al. General lifestyle interventions on their own seem insufficient to improve the level of physical activity after stroke or TIA: a systematic review. BMC Neurol 20, 168 (2020).	Effect of Aerobic Exercise Interventions on Mobility among Stroke Patients: A Systematic Review. Am J Phys Med Rehabil. 2016 Mar;95(3):214-24.	2020	The purpose of this study was to systematically review and quantify the effects of aerobic exercise training on cardiorespiratory fitness, muscle strength, and walking capacity after stroke	19	602	Structured exercise intervention based on combined Aerobic Training and Resistance Training
Kendall BJ, Gothe NP. Effect of Aerobic Exercise Interventions on Mobility among Stroke Patients: A Systematic Review. Am J Phys Med Rehabil. 2016 Mar;95(3):214-24.	Combined Aerobic and Resistance Training for Cardiorespiratory Fitness, Muscle Strength, and Walking Capacity after Stroke: A Systematic Review and Meta-Analysis	2020	The purpose of this study was to systematically review and quantify the effects of aerobic exercise training on cardiorespiratory fitness, muscle strength, and walking capacity after stroke	19	602	Structured exercise intervention based on combined Aerobic Training and Resistance Training
Kringel, E. A., Barone Gibbs, B, Campbellbell, G., McCue, M, Terhorst, L., Kersey, J., & Skidmore, E. R. (2020). Influence of Interventions on Daily Physical Activity and Sedentary Behavior	Physical fitness interventions for non-ambulatory stroke survivors: A mixed-methods systematic review and meta-analysis.	2018	The aim of this mixed-methods systematic review and meta-analysis was to synthesize published literature on physical fitness interventions for non-ambulatory stroke survivors and evaluate the evidence for their effects on fitness, function, activity and participation, quality of life.	33	910	Most studies were characterised as assisted walking training (using electromechanical and other devices), 5 studies used cycle ergometer 3 studies had other training (dance, pilates,
Study citation details	Title	Year of publication	Review aims/objectives/questions	Number of primary studies in review	No of participants	Intervention
------------------------	-------	---------------------	---------------------------------	-------------------------------------	--------------------	--------------
after Stroke: A Systematic Review. Pm&r, 12(2), 186-201.	Larissa Tavares Aguiar, Sylvie Nadeau, J A Ila Caetano Martins, Luci FuscaldiTeixeira-Salmela, Raquel Rodrigues Britto & Christina Danielli Coelho de Morais Faria (2020) Efficacy of interventions aimed at improving physical activity in individuals with stroke: a systematic review, Disability and Rehabilitation, 42:7, 902-917.	2020	Efficacy of interventions aimed at improving physical activity in individuals with stroke: a systematic review.	18	1314	mixed walking/ cycling and health education; none of these were RCTs. The employed interventions were varied including aerobic training; lower-limb resistance training ; and functional task training.
Lawrence M, Kerr S, McVey MC, Godwin J. A systematic review of the effectiveness of secondary prevention lifestyle interventions designed to change lifestyle behaviour following stroke. JBI Libr Syst Rev. 2011;9(43):1782-1827.	Stroke survivors and family members perspectives of multimodal lifestyle interventions for secondary prevention of stroke and transient ischemic attack: a qualitative review and meta-aggregation	2016	This review and meta-aggregation aimed to improve understanding of stroke survivor and family member perspectives of secondary prevention interventions.	5	84	The employed interventions were varied including cardiac rehab programme; community-based exercise; self-management programme and exercise and education group.
Lawrence M, Pringle J, Kerr S, Booth J. Stroke survivors' and family members' perspectives of multimodal lifestyle interventions for secondary prevention of stroke and transient ischemic attack: a qualitative review and meta-aggregation. Disabil Rehabil. 2016;38(1):1-21.	Lifestyle interventions for secondary disease prevention in stroke and transient ischemic attack: a systematic review.	2014	This systematic review and meta-analysis examine the totality of evidence in relation to the impact of lifestyle changes specifically on the secondary prevention of vascular events post stroke or TIA.	15	2534	The employed interventions were varied including aerobic exercise and healthy lifestyle advice modelled on cardiac rehabilitation; aerobic interventions; education, advice and/or counselling.
Lennon O, Galvin R, Smith K, Doody C, Blake C. Lifestyle interventions for secondary disease prevention in stroke and transient ischaemic attack: a systematic review. Eur J Prev Cardiol. 2014 Aug;21(8):1026-39.	A systematic review of exercise trials post stroke	2003	To perform a systematic review of exercise trials post stroke.	3	75	One to one supervised exercise/ cycle ergometer/ class exercises including ROM and strength.
Lee J, Stone AJ. Combined Aerobic and Resistance Training for Cardiorespiratory Fitness, Muscle and	Influence of Interventions on Daily Physical Activity and Sedentary Behavior after	2020	To describe the effects of interventions on levels of daily physical activity and sedentary behavior among people with stroke.	31	NR	Nonpharmacological rehabilitation interventions on daily activity levels. Intervention components were
Study citation details	Title	Year of publication	Review aims/objectives/questions	Number of primary studies in review	No of participants	Intervention
--	---	---------------------	--	-------------------------------------	--------------------	--
Strength, and Walking Capacity after Stroke: A Systematic Review and Meta-Analysis. J Stroke Cerebrovasc Dis. 2020 Jan;29(1):104498.	Stroke: A Systematic Review	2019	The primary aim of this systematic review was to determine the effect of different doses of exercise on cardiorespiratory fitness in people after stroke.	9	279	classified as exercise, behavior change techniques, and education
Li CY, Wang W, Liu GL, Zhang Y. Effects of Tai Chi on balance and gait in stroke survivors: A systematic meta-analysis of randomized controlled trials. J Rehabil Med. 2018 Jul 17;50(7):582-588.	What is the dose-response relationship between exercise and cardiorespiratory fitness after stroke? A systematic review	2019	This systematic review aimed to establish whether lifestyle interventions designed to help prevent recurrent stroke are effective in terms of effecting positive changes to lifestyle risk factor behaviour.	3	581	Walking for Exercise
Lloyd M, Skelton DA, Mead GE, Williams B, van Wijk F. Physical fitness interventions for nonambulatory stroke survivors: A mixed-methods systematic review and meta-analysis. Brain Behav. 2018 Jul;8(7)	A review of the effectiveness of secondary prevention lifestyle interventions designed to change lifestyle behaviour following stroke.	2011	This review therefore aims to: a. identifies studies of fatigue after stroke that are linked to physical activity and physical fitness; b. determine how fatigue after stroke is measured; c. explore whether there is a relationship between poststroke fatigue and reduced physical activity and physical fitness efficiency; and d. establish the impact of fatigue poststroke on physical activity and physical fitness.	19	2072	The employed interventions were varied including Physical fitness, ADL interventions, Mobility/ Activity or Not described
Loureiro, A. P. C., Guarita-Souza, L. C., Lerdal, A., & Langhammer, B. (2014). A review of the relationship between poststroke fatigue and physical activity. Topics in Geriatric Rehabilitation, 30(4), 296-306.	A Review of the Relationship Between Poststroke Fatigue and Physical Activity	2014	Effect of high-intensity exercise on cardiorespiratory fitness in stroke survivors: A systematic review and meta-analysis.	17	707	An exercise intervention with high intensity includes high-intensity training (HIT) and high-intensity interval training (HIIT), HIT refers to a high intensity exercise
Luo L, Meng H, Wang Z, Zhu S, Yuan S, Wang Y, Wang Q. Effect of high-intensity exercise on cardiorespiratory fitness in stroke survivors: A systematic review and meta-analysis. Ann Phys Rehabil Med. 2020 Jan;63(1):59-68..	Effect of high-intensity exercise on cardiorespiratory fitness in stroke survivors: A systematic review and meta-analysis.	2020	Effect of high-intensity exercise on cardiorespiratory fitness in stroke survivors: A systematic review and meta-analysis.	17	707	Most of high intensity interventions included treadmill (n = 13) and cycle ergometer (n = 8)
Luo L, Zhu S, Shi L, Wang P, Li M, Yuan S. High Intensity Exercise for Walking Competency in Individuals with Stroke: A Systematic Review and Meta-Analysis. J Stroke Cerebrovasc Dis. 2019 Dec 28;28(12):104414.	High Intensity Exercise for Walking Competency in Individuals with Stroke: A Systematic Review and Meta-Analysis	2019	To evaluate the evidence and safety of high intensity interventions related to improving walking functional outcomes after stroke.	22	952	Activity monitors for increasing
Lynch EA, Jones TM, Simpson DB, Fini	Activity monitors for increasing	2018	To summarise the available evidence regarding the	15	245	An activity monitor to be any wearable or
Study citation details	Title	Year of publication	Review aims/objectives/questions	Number of primary studies in review	No of participants	Intervention
------------------------	-------	---------------------	---------------------------------	-------------------------------------	--------------------	--------------
NA, Kuys SS, Borschmann K, Kramer S, Johnson L, Callisaya ML, Mahendran N, Janssen H, English C; ACTIONs Collaboration. Activity monitors for increasing physical activity in adult stroke survivors. Cochrane Database Syst Rev. 2018 Jul 27;7(7).	Physical activity in adult stroke survivors	Effectiveness of commercially available, wearable activity monitors and smartphone applications for increasing physical activity levels in people with stroke.	1	35	1293	Portable electronic device that provided feedback (in either real time, or on a regular basis, e.g. Daily or weekly) on physical activity.
Lyu D, Lyu X, Zhang Y, Ren Y, Yang F, Zhou L, Zou Y and Li Z (2018)	Tai Chi for stroke rehabilitation: A systematic review and meta-analysis of randomized controlled trials.	Activity monitors for increasing physical activity in adult stroke survivors.	2018	35	1293	Tai Chi
Marsden DL, Dunn A, Callister R, Levi CR, Spratt NJ. Characteristics of exercise training interventions to improve cardiorespiratory fitness after stroke: a systematic review with meta-analysis. Neurorehabil Neural Repair. 2013 Nov-Dec;27(9):775-88.	Resistance training for gait speed and total distance walked during the chronic stage of stroke: A meta-analysis.	The objective of this study was to determine whether resistance training is an effective solution in increasing gait endurance and speed 6 months post stroke.	2012	10	406	The employed interventions were varied including: Progressive resistance training; Max concentric isokinetic strength training; Body weight supported treadmill training; Task orientated progressive resistance strength training; Sham aerobic exs and progressive resistance training and Strengthening exs for LL and functional task 10 walking related tasks 12 circuit exercise sessions.
Meek C, Pollock A, Potter J, Langhorne P. A systematic review of exercise trials post stroke. Clin Rehabil. 2003 Feb;17(1):6-13.	Effect of high-intensity exercise on cardiorespiratory fitness in stroke survivors: A systematic review and meta-analysis.	This systematic review will provide specific information on high-intensity exercise programs and their efficacy in improving CRF in individuals with stroke.	2020	17	707	An exercise intervention with high intensity includes high-intensity training (HIT) and high-intensity interval training (HIIT). HIT refers to a high intensity exercise program performed continuously, HIIT is characterized by maximum exercise intensity by short bursts of concentrated effort alternating with low activity or rest.
Mehta S, Pereira S, Vorwa R, Mays R, McIntyre A, Janzen S, Teasell RW. Resistance training Cardiovascular	Conditioning for Comfortable Gait Speed and Total Distance Walked	To determine whether cardiorespiratory exercise interventions initiated 6 months or more post stroke are effective in	2012	7	254	The employed interventions were varied including Water based leg exercises; Body
Study citation details	Title	Year of publication	Review aims/objectives/questions	Number of primary studies in review	No of participants	Intervention
---	--	---------------------	--	------------------------------------	-------------------	---
for gait speed and total distance walked during the chronic stage of stroke: a meta-analysis. Top Stroke Rehabil. 2012 Nov-Dec;19(6):471-8.	During the Chronic Stage of Stroke: A Meta-Analysis		Improving gait speed and total distance walked (as measured by the 6-minute walk test [6MWT])			
Mehta S, Pereira S, Janzen S, Mays R, Viona R, Lobo L, Teasell RW. Cardiovascular conditioning for comfortable gait speed and total distance walked during the chronic stage of stroke: a meta-analysis. Top Stroke Rehabil. 2012 Nov-Dec;19(6):463-70.	A systematic review of perceived barriers and motivators to physical activity after stroke	2013	The aim of the present study was to systematically review the literature to identify all studies examining perceived barriers and motivators to physical activity after stroke, with the specific objectives to (i) identify the most commonly reported barriers and motivators to physical activity after stroke and (ii) identify any tools/questionnaires specifically designed to explore perceived barriers and motivators to physical activity after stroke.	6	174	Interviews and focus groups
Moore SA, Hrisos N, Flynn D, Errington L, Price C, Avery L. How should long-term free-living physical activity be targeted after stroke? A systematic review and narrative synthesis. Int J Behav Nutr Phys Act. 2018 Oct 17;15(1):100.	Interventions to promote long-term participation in physical activity after stroke: A systematic review of the literature	2014	To investigate the effects of interventions to promote long-term participation in PA on measures of frequency, duration, and intensity of PA at 3 months or longer in community-dwelling stroke survivor.	11	1704	The employed interventions were varied including: Tailored counselling; Mapping/setting/monitoring of PA goals; motivational interviewing/counseling; goal setting and reviewing techniques or follow-up visits/phone calls to promote adherence. Tailored exercises with activity advice (n = 5) The exercise interventions focused on walking, falls prevention.
Morris JH, Macgillivray S, McFarlane S. Interventions to promote long-term participation in physical activity after stroke: a systematic review of the literature. Arch Phys Med Rehabil. 2014 May;95(5):956-67.	The Importance of Psychological and Social Factors in Influencing the Uptake and Maintenance of Physical Activity after Stroke: A Structured Review of the Empirical Literature	2012	Objectives: (1) What is the role of psychological factors in influencing the uptake and/or maintenance of PA after stroke? (2) What is the role of social factors in influencing the uptake and/or maintenance of PA after stroke? (3) Within the literature that explores the role of psychosocial factors in the uptake and/or maintenance of PA after stroke, which health behaviour models have been investigated	20	NR	Any type of PA aimed at improving a particular skill or ability
Morris J, Oliver T, Kroll T, Macgillivray S. The importance of psychological and social factors in influencing the uptake and maintenance of physical activity after stroke: a	Characteristics of Exercise Training Interventions to Improve Cardiorespiratory Fitness After Stroke: A Systematic Review With Meta-analysis	2013	To determine the effectiveness of exercise interventions to improve cardiorespiratory fitness after stroke.	30	NR	The employed interventions were varied including Aerobic training (n = 16) [treadmill, n = 8; cycle, n = 6; deep-water exercise, n = 1; cycle and recumbent stepper, n = 1], 11 used a
Study citation details	Title	Year of publication	Review aims/objectives/questions	Number of primary studies in review	No of participants	Intervention
------------------------	-------	---------------------	----------------------------------	-------------------------------------	-------------------	-------------
Nicholson S, Sniehotta FF, van Wijck F, Greig CA, Johnston H, McMurdo ME, Dennis M, Mead GE. A systematic review of perceived barriers and motivators to physical activity after stroke. Int J Stroke. 2013 Jul;8(5):357-64.	Effectiveness of walking training on balance, motor functions, activity, participation and quality of life in people with chronic stroke: a systematic review with meta-analysis and meta-regression of recent randomized controlled trials.	2021	The purpose of the present systematic review, meta-analysis and meta-regression was to review and quantify the effects of various walking training protocols versus other physical exercises for the improvement of balance, motor functions, walking endurance, walking speed, participation, and quality of life in people with chronic stroke.	15	653	Walking training is any activity/exercise that involves walking including recreational or free-living walking within the community, walking for fitness, and competitive race-walking as well as rehabilitative walking training (e.g. walking with expensive robotics, body weight supported training, aquatic pool floor walking).
Peurala SH, Karttunen AH, Sjőgren T, Paltamaa J, Heinonen A. Evidence for the effectiveness of walking training on walking and self-care after stroke: a systematic review and meta-analysis of randomized controlled trials. 2014. J Rehabil Med. May;46(5):387-99.	Evidence for the effectiveness of walking training on walking and self-care after stroke: a systematic review and meta-analysis of randomized controlled trials.	2014	To examine the effect of randomized controlled trials of walking training on walking and self-care in patients with stroke.	44	NR	Walking training-Traditional walking training includes walking with essential walking aids/orthosis combined with verbal and manual guidance.
Pogrebovy D, Dennett A. Exercise Programs Delivered According to Guidelines Improve Mobility in People With Stroke: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil. 2020 Jan;101(1):154-165.	Exercise Programs Delivered According to Guidelines Improve Mobility in People With Stroke: A Systematic Review and Meta-analysis.	2020	To determine if prescribing a combined aerobic and resistance training exercise program in accordance with American Stroke Association physical activity guidelines improves mobility and physical activity levels of people after stroke. The primary aim of this systematic review was to determine the effectiveness of combined aerobic and resistance training exercise programs, prescribed according to guidelines, for improving mobility and physical activity levels of people with stroke.	8	499	The employed interventions were varied including Cardic Walking: Exercise bike; treadmill; steps ; Resistance; functional strengthening, resistance bands and lower limb strengthening machines. the aerobic training component included walking, exercise bike, treadmill, and steps. Interventions for the resistance training component included functional strengthening, resistance bands, or lower limb strengthening.
Study citation details	Title	Year of publication	Review aims/objectives/questions	Number of primary studies in review	No of participants	Intervention
------------------------	--	---------------------	---	-------------------------------------	-------------------	--------------
Saltychev M, Sjögren T,BArvärd E, Laimi K, Paltamaa J. Do aerobic exercises really improve aerobic capacity of stroke survivors? A systematic review and meta-analysis. Eur J Phys Rehabil Med. 2016 Apr;52(2):233-43.	Do aerobic exercises really improve aerobic capacity of stroke survivors? A systematic review and meta-analysis	2016	The purpose of our study was to investigate: 1) if there is evidence that aerobic capacity of stroke survivors, measured by maximal oxygen consumption (Vo2max), can be improved by aerobic training and, if so; 2) what is the evidence on clinically significant magnitude of this effect?	13	689	strengthening machines Comparison interventions included unsystematic physical activity, 17home exercise programs22or seated upper extremity programs, 26relaxation, 27and unstructured usual care19, 23Two trials24, 25 compares a combined program with an aerobic-only training program
Saunders DH, Sanderson M, Hayes S, Johnson L, Kramer S, Carter DD, Jarvis H, Brazzelli M, Mead GE. Physical fitness training for stroke patients. Cochrane Database of Systematic Reviews 2020, Issue 3. Art. No.:	Physical fitness training for stroke patients	2020	The primary objectives of this updated review were to determine whether fitness training after stroke reduces death, death or dependence, and disability. The secondary objectives were to determine the effects of training on adverse events, risk factors, physical fitness, mobility, physical function, health status and quality of life, mood, and cognitive function.	75	3617	Physical fitness training
Stoller, O., de Bruin, E.D., Knols, R.H. et al. Effects of cardiovascular exercise early after stroke: systematic review and meta-analysis. 2012. BMC Neurol 12, 45	Effects of cardiovascular exercise early after stroke: systematic review and meta-analysis.	2012	The aim is to provide an overview of the evidence for the use of CV training in the early stages post stroke.	11	423	Body weight supported treadmill training; strength, balance, cycle ergometry; Treadmill training; Leg cycle ergometry; Task orientated circuit class training and Handbike
Stretton CM, Mudge S, Kayes NM, McPherson KM. Interventions to improve real-world walking after stroke: a systematic review and meta-analysis. Clin Rehabil. 2017 Mar;31(3):310-318.	Interventions to improve real-world walking after stroke: A systematic review and meta-analysis	2017	This study aimed to determine the effectiveness of current interventions to improve real-world walking for people with stroke and specifically whether benefits are sustained.	10	NR	Interventions were grouped as either (a) primarily consisting of progressive exercise or (b) explicitly including at least one or more of the 40 behaviour change techniques as outlined by the CALO-RE taxonomy for use in interventions to improve physical activity.

(continued)
Study citation details	Title	Year of publication	Review aims/objectives/questions	Number of primary studies in review	No of participants	Intervention	
Thilarajah S, Mentiplay BF, Bower KJ, Tan D, Pua YH, Williams G, Koh G, Clark RA.	Factors Associated With Post-Stroke Physical Activity: A Systematic Review and Meta-Analysis	2018	To investigate factors associated with PR among community dwelling stroke survivors	26	NR	NR	
Veldema J, Jansen P.	Ergometer Training in Stroke Rehabilitation: Systematic Review and Meta-analysis	2020	To summarise controlled studies investigating the potential of ergometer training for stroke recovery and evaluate their findings.	28	1115	Ergometer training versus no intervention; Ergometer training versus another intervention; Ergometer training versus another ergometer training	HITT A training protocol commonly referred to as high-intensity interval training (HIT) consists of intermittent bursts of effort separated by periods of recovery
Wiener, J., McIntyre, A., Janssen, S., Chow, J.T., Batay, C. and Teassell, R. (2019), Effectiveness of High Intensity Interval Training for Fitness and Mobility Post Stroke: A Systematic Review. Journal of Injury, Function and Rehabilitation, 11: 868-878. doi:10.1002/pmrj.12154	Effectiveness of High-Intensity Interval Training for Fitness and Mobility Post Stroke: A Systematic Review.	2019	To evaluate the evidence on the effectiveness of high-intensity interval training (HIIT) in improving fitness and mobility post stroke	6	146	Physical activity	
West T and Bernhardt J.	Physical Activity in Hospitalised Stroke Patients Stroke Research and Treatment. Volume 2012 (2012), Article ID 813765, 13	2012	The purpose of this paper was to examine common methods of monitoring activity in hospitalised stroke patients and summarise the amount and type of physical activity undertaken by stroke patients managed in a range of hospital settings.	24	NR	Physical activity	
Wevers L, van de Port I, Vermue M, Mead G, Kwakkel G.	Effects of task-oriented circuit class training on walking competency after stroke: A systematic review	2009	Our aim was to systematically review randomized, controlled trials of task-oriented circuit class training on gait and gait-related activities in patients with stroke	6	307	Task orientated circuit class training	
Wu S, Chen J, Wang S, Jiang M, Wang X, Wen Y.	Effect of Tai Chi Exercise on Balance Function of Stroke Patients: A Meta-Analysis. Med Sci Monit Basic Res. 2018 Dec 3;24:210-215.	2018	Evaluate the effectiveness of Tai chi for stroke rehab to help clinicians make evidence based decisions.	6	347	Tai Chi	
Young RE, Broom D, Sage K, Crossland K, Smith C.	Experiences of venue-based exercise interventions for people with	2019	The aim of this review of qualitative data is to provide a systematic search and synthesis of evidence about the experiences and	7	76	The employed interventions were varied including Circuits; resistance training; flexibility;	(continued)
Study citation details	Title	Year of publication	Review aims/objectives/questions	Number of primary studies in review	No of participants	Intervention	
------------------------	-------	---------------------	---------------------------------	-----------------------------------	-------------------	--------------	
exercise interventions for people with stroke in the UK: a systematic review and thematic synthesis of qualitative research. Physiotherapy. 2019 Jun 14;50031-9406(19)30075-6.	Stroke in the UK: a systematic review and thematic synthesis of qualitative research.	reported impact of participation in venue based exercise following stroke in the UK				CV circuit; ARNI; Gym based exercise group; Stroke specific exercise group and Exercise on prescription scheme	