Dynamics of macrozoobenthos in the Southern Bulgarian Black Sea coastal and open-sea areas

STOYKOV S. National Centre for Agrarian Sciences, Institute of Fishing Resources, Varna, 4, Primorski blvd., P.O. Box 72, Varna, 9000, Bulgaria

UZUNOVA S. National Centre for Agrarian Sciences, Institute of Fishing Resources, Varna, 4, Primorski blvd., P.O. Box 72, Varna, 9000, Bulgaria

http://dx.doi.org/10.12681/mms.273

Copyright © 2001

To cite this article:

STOYKOV, S., & UZUNOVA, S. (2001). Dynamics of macrozoobenthos in the Southern Bulgarian Black Sea coastal and open-sea areas. Mediterranean Marine Science, 2(1), 27-36. doi:http://dx.doi.org/10.12681/mms.273
Dynamics of macrozoobenthos in the Southern Bulgarian Black Sea coastal and open-sea areas

ST. STOYKOV and S. UZUNOVA

1 National Centre for Agrarian Sciences, Institute of Fishing Resources, Varna, 4, Primorski blvd., P.O. Box 72, Varna, 9000, Bulgaria
e-mail: ifr@abcis.bg

Manuscript received: 19 August 1999; accepted in revised form: 14 December 2000

Abstract

The paper presents results of analysis of 96 macrozoobenthic samples, collected on a seasonal basis in Bourgas Bay and in open-sea areas off Cape Emine (Bulgarian Black Sea) in 1996 and 1998. In total 96 taxa were established, distributed in four groups: Polychaeta, Mollusca, Crustacea and “Diversa”. The average density of populations was 1756 ind.m\(^{-2}\) with a predominating abundance of Polychaeta species. The average biomass estimated was 183.02 g.m\(^{-2}\), formed mainly by representatives of Mollusca. The latter species were measured together with the shells, which appraised their individual weights. Seven of the species found had a coefficient of constancy more than 50%. These were the most adapted species to the environmental conditions of the investigated areas. The quantitative and qualitative assessments in this study demonstrate an increasing tendency in the parameters obtained (density, biomass, species diversity) in comparison with previous investigations in the early 1990’s, when intensive anthropogenic influence was widely perceived to disturb the balance of the Black Sea ecosystem.

The method used by Warwick (1986) to characterize the water quality of the studied areas allowed us to define them as rather clean or moderately polluted aquatories.

Keywords: Black Sea, Dynamics, Macrozoobenthos, Warwick’s method.

Introduction

The organisms represented in the macrozoobenthic community of the Black Sea have always been of great scientific interest because of their sensitivity and response to environmental stress. Most of these animals live permanently attached to the bottom and anthropogenic pollution strongly influences them. In the 1980’s the Black Sea was included in the list of the most ecologically threatened bodies of water on Earth. The coastal zone was widely perceived to be heavily polluted with an increasing tendency towards change and decline (GOLEMANSKI, 1998). The peak of pollution was reached at the end of the 1980’s. Hypoxic situations were frequent at that time, leading to mass mortality of zoobenthic organisms and hyperbenthic fish (GOMOIJU, 1992;
Due to its specific geographic disposition and infrastructure, the Bourgas Bay and the neighbouring regions are characteristic in the following aspects: intensive industrial development of the populated areas in the vicinity of the bay, and especially of the city of Bourgas. The major Bulgarian port is situated here, as well as the petroleum refinery, and they discharge large amounts of pollutants into the sea (Altman, 1990). The close proximity of the bay to the Bosphorus is important in relation to the input of Mediterranean waters with higher salinity, which controls the biodiversity of the studied area.

Since 1990 a relative decrease in anthropogenic pressure in the Black Sea has been reported, explained by the collapse of the former socialist economy. This has favoured the relative restoration of the pelagic and benthic communities of coastal waters (Atanasova et al., 1995; Marinov et al., 1995; Stoikov & Uzunova, 1999).

The main purpose of this study is to investigate the changes in the biodiversity of the macrozoobenthos in the south Bulgarian Black Sea region, as well as its quantitative parameters - density and biomass. On the basis of the results obtained to apply Warwick’s method (1986) and to characterise the waters in relation to their organic matter loading.

Materials and Methods

Samples were collected on a seasonal basis in 1996 and 1998 in the south Bulgarian Black Sea waters - in Bourgas Bay and at a transect off Cape Emine at depths from 6 to 128 m (Fig. 1). The sampling was carried out, using a “Van-Veen” grab with a mouth opening of 0.1 m². A total of 96 samples were processed and analysed - 64 from Bourgas Bay and 32 from transect Emine. The onboard primary processing of samples included their washing through sieves (d=0.6 mm) and preservation by 4% formalin. The laboratory processing included secondary washing, sorting by groups and identification of species, their number and weight. Density and biomass were estimated per 1 m² surface.

![Fig. 1: Map of sampling stations.](http://epublishing.ekt.gr)
The organisms from groups Turbellaria, Nemertina, Oligochaeta and Spongia and Nematoda were not identified to a species level and they were united in the group “Diversa”.

The coefficient of constancy of a certain species was estimated by:
\[pF = \frac{m}{n} \times 100, \]
where
- \(m \) = number of stations, where the species was found;
- \(n \) = number of all stations.

Results and Discussion

A total of 96 taxa of macrozoobenthic organisms was found during the studied period. The predominating species and corresponding coefficients of constancy are presented in Table 1.

Table 1

N:	Species composition and coefficient of constancy of macrobenthic species along the Southern Black Sea coast.			
Polychaeta	**1996**	**1998**		
1.	Melinna palmata Grube, 1869	96.75	100	
2.	Neanthes succinea Frey&Lechart, 1847	70.73	32.5	
3.	Heteromastus filiformis Claparede, 1864	53.21	39.5	
4.	Capitomastus minimus Langerhans, 1880	30.4	38.5	
5.	Harmothoe reticulata Claparede, 1870	18.5	7.5	
6.	Spio filicornis O.F.Muller, 1776	26.85	30	
7.	Notomastus profundus Eisig, 1887	-	7	
8.	Nephys cirrosa Ehlers, 1868	18.41	17.75	
9.	Nephys hombergi Savugny, 1818	29.66	60.5	
10.	Terebellides stroemi Sars, 1835	31.96	61	
11.	Phyllosolea mucosa Oersted, 1843	9.46	23.5	
12.	Pectinaria korenii Malmgren, 1865	12.7	5.5	
13.	Aonides paucibranchiatus Southern, 1914	13	13	
14.	Hediste diversicolor O.F.Muller, 1776	5.29	13.75	
15.	Polydora ciliata Johnston, 1838	10.98	18.5	
16.	Prionospio cirriferia Wiren, 1883	3.2	9.75	
17.	Protodorullea kefersteini McIntosh, 1869	5.2	2.75	
18.	Eulalia viridis Linnaeus, 1767	-	7	
19.	Capitellides guiardi Mesnil, 1897	1.56	4.25	
20.	Capitella capitata Fabricius, 1780	-	2	
21.	Typosyllis prolifera Krohn, 1852	-	2	
22.	Grubeosyllis clavata Claparede, 1868	1.66	-	
23.	Cirrophorus brachiatus Ehlers, 1908	-	5.5	
24.	Glycera tridactyla Scamarda, 1861	1.65	-	
25.	Glycera alba O.F. Muller, 1788	3.13	-	
26.	Eunice vittata Delle Chiaje, 1828	1.56	-	
27.	Mysta picta Quattrefage, 1865	-	2.75	
	Scientific Name	Species	Abundance	Biomass
---	-----------------	---------	-----------	---------
28	Clymenura clypeata	Saint-Joseph, 1894	8.3	-
29	Nereis rava	Ehlers, 1868	1.65	-
30	Grubeasyllis limbata	Claparede, 1868	-	2
31	Hesionides arenaria	Friedrich, 1937	-	2
32	Harmothoe imbricata	Linnaeus, 1767	1.5	-
33	Phyllodoce tuberculata	Bobretzky, 1868	-	5

Mollusca

	Scientific Name	Species	Abundance	Biomass
34	Chamelea gallina	Linne, 1758	41	17.25
35	Mytilus galloprovincialis	Lamark, 1819	49.85	15.25
36	Spisula subtruncata	Da Costa, 1778	37.62	55.25
37	Cardium edule	L., 1916	65	25.75
38	Sqapharca inaequivalvis	Brugaiere, 1789	20.21	9.75
39	Mya arenaria	L., 1758	7.9	14.75
40	Tellina exigua	Poli, 1893	6.25	2.75
41	Paphia rugata	B.D.D., 1893	6.93	2.75
42	Parvicardium exiguum	Poli, 1790	14.95	8.25
43	Nassarius reticulatus	Linne, 1758	28.95	2.75
44	Calyptraea chinensis	Linne, 1758	7.9	7.5
45	Parvicardium simile	Milaschewitch, 1916	3.21	7.5
46	Lepidochitona cinerea	Linne, 1767	1.65	2
47	Acanthocardia paucicostata	Soverby, 1859	2.25	4.75
48	Pitar rudis	Poli, 1791	-	2
49	Mytilaster lineatus	Gmelin, 1790	2.25	-
50	Lentidium mediterraneum	Costa, 1829	2.25	-
51	Polititapes aureus	Gmelin, 1790	3.13	-
52	Cyclope neritea	Linnaeus, 1758	-	10.25
53	Gouldia minima	Montagu, 1803	4.8	-
54	Modiolus phaseolinus	Philippi, 1844	6.25	-
55	Modiolus adriaticus	Lamarck, 1819	1.6	-
56	Moerella donacina	L., 1758	3	-

Crustacea

	Scientific Name	Species	Abundance	Biomass
57	Ampelisca diadema	A. Costa, 1853	55.98	57
58	Corophium runcicorne	Della Valle, 1893	12	14.75
59	Microdeutopus versiculatus	Bate, 1856	11	4.75
60	Microdeutopus gryllotalpa	A. Costa, 1853	4.69	5.87
61	Corophium bonelli	Milne-Edwards, 1830	7.88	4.77
62	Melita palmata	Montagu, 1813	8	2.75
63	Corophium volutator	Pallas, 1766	2.8	2.75
64	Phtisica marina	Slabber, 1778	6	11.75
65	Decapoda larvae		7.8	2.75
66	Balanus improvisus	Darwin, 1854	42.68	25
67	Diogenes pugilator	Roux, 1828	15	11.8
68	Periculodes longimanus	Bate & Westwood, 1868	3.75	2
69	Brachynotus sexdentatus	Risso, 1827	1.6	2
70	Iphinoe elisae	Bacescu, 1950	2.25	7
The species were grouped in Polychaeta (33 species - 35.7% of total number), Mollusca (23 species - 22.6%), Crustacea (30 species - 32.2%) and “Diversa” (10 species - 9.5%).

The comparison between 1992 and 1996-98 results showed significant increase in species number from correspondingly 54 to 96 species, mainly due to Polychaeta species diversity - *Glycera alba*, *Polydora ciliata*, *Capitelides giardi*, etc. (Fig. 2). The new Mollusca species were *Lepidochiton cinaereus*, *Lentidium mediterraneum*, *Meretrix rudis*, and of Crustacea - *Corophium rusticerum*, *Microdeutopus gryllotalpa*, *Melita palmata*, *Phitsica marina*, etc.

In 1996-98 seven species were found with coefficient of constancy of more than 50%, which was related to their large ecological flexibility and high level of adaptation to environmental conditions. These species were listed as follows:

1. *Melinna palmata*
2. *Neanthes succinea*
3. *Ampelisca diadema*
4. *Terebellides stroemi*
5. *Heteromastus filiformis*
6. *Cardium edule*
7. *Phoronis euxinicola*

Some of the species mentioned above were found both in 1992 and 1996-98, such as the Polychaeta species *Melinna palmata* and crustacean *Ampelisca diadema* - they were well adapted to the frequent environ-
mental stress due to anthropogenic pressure in the studied areas. In 1992 the crustacean species *Corophium volutator*, the Mollusca species *Paphia rugata*, as vulnerable to hypoxic situations, showed low densities. In 1996-98 these species appeared again, due to relative improvement of environmental conditions and decrease in oxygen deficiency cases in shallow coastal waters. Nevertheless, in 1996-1998 species-indicators of high level of pollution, such as *Polydora ciliata* (PEARSON & ROSENBERG, 1978) were found in great density at some stations.

The average total density of macrozoobenthos for the period 1996-98 was 1576 ind.m⁻². The densities of macrozoobenthos per season and per annum are presented in Table 2.

In 1996 the density was 1677 ind.m⁻², higher than in 1998 - 1477 ind.m⁻². In almost all seasons, the maximum density per group was found among Polychaeta species, due to their high resistance to oxygen deficiency (less than 0.05 ml.l⁻¹, ZAITSEV & MAMAEV, 1997).

The average total biomass of macrozoobenthos was 183.022 g.m⁻² (Table 3). In all seasons (1996-98) the predominating group in the biomass was Mollusca. Some species were of especially high abundance, such as *Chamelea gallina* - up to 700.0 g.m⁻², *Squapharca inaequivalvis* - 448.0 g.m⁻², *Mytilus galloprovincialis* - 311.45 g.m⁻².

The quantitative parameters of the macrozoobenthic community are the initial

Table 2

Average density (ind.m⁻²) of macrozoobenthos of the Southern Black Sea region.

Group	1996 winter	1996 spring	1996 summer	1996 autumn	1998 winter	1998 spring	1998 summer	1998 autumn
Polychaeta	768	1187	1045	927	1305	1067	1759	918
Mollusca	107	201	527	342	71	42	71	46
Crustacea	139	140	453	137	182	48	114	109
Diversa	49	41	538	105	24	78	58	3
Total	1036	1569	2563	1511	1582	1235	2002	1076

Fig. 2: Share of main macrozoobenthic groups in 1992 and 1996-98.
data for Warwick's method (1986), which gives a qualitative assessment of the level of organic matter pollution for a certain marine area (Fig. 3, 4). According to this method, in winter and spring 1996 the studied waters were moderately polluted. For summer and autumn 1996 the disposition of the abundance and biomass curves on the graph indicated relatively clean waters. In 1998 in all seasons the abundance and biomass curves on the graph indicated relatively clean waters. In 1998 in all seasons the abundance and biomass curves on the graph indicated relatively clean waters.

Table 3
Average biomass (g.m⁻²) of macrozoobenthos of the Southern Black Sea region.

Group	1996		1998					
	winter	spring	summer	autumn	winter	spring	summer	autumn
Polychaeta	9.770	19.595	13.903	13.16	16.779	13.084	37.973	24.144
Mollusca	40.99	136.960	304.729	508.730	99.603	100.839	58.714	8.498
Crustacea	4.365	2.815	7.869	8.865	4.917	2.170	0.446	0.574
Diversa	0.900	9.270	9.768	3.645	0.123	9.567	0.373	0.018
Total	56.025	168.640	336.269	534.400	121.422	116.660	97.526	33.234

Fig. 3: ABC plots for macrozoobenthos from Southern Black Sea region in 1996.
mass curves crossed each other only once, which gave us evidence for considering the studied waters moderately polluted.

Conclusions

The macrozoobenthic communities are particularly sensitive to environmental pollution. In this sense, the increase in species number in the period 1992 - 1998 from 54 to 96 species indicates a relative decrease in the anthropogenic pressure in the studied areas - the southern Bulgarian Black Sea.

The development of some species in the late 1990’s, which had disappeared in previous periods, evidences restoration of the benthic communities in the region. The qualitative parameters obtained (abundance and biomass) also support a conclusion regarding positive tendencies and using enabledus Warwick’s method, to describe the southern Bulgarian Black Sea waters as moderately polluted.

References

ALTMANN, E. N., 1990. Practical ecology of the Black Sea. Naukova Dumka publ., 252. Hydro-meteorology and hydrochemistry of the USSR Seas. V. 1. 389-394 (in Russian).

ATANASSOVA, V., VELIKOVA, V. & MANASSIEVA, S., 1995. Dynamics of abiotic factors and struc-
ture of planktocenosis in the Bourgas Bay. Proceedings of the Institute of Fisheries V. 23. 80-108.

GOLEMANSKI, 1998. Ecosystem pathology of the Black Sea. Priroda-1-2, 93-99.

GOMOIU, M. T., 1992. Marine eutrophication syndrome in the northwestern part of the Black Sea in: Science of the total environment, Elsevier Sci., Amsterdam, 683-692.

PEARSON, T. & ROSENBERG, R., 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev., 16, 229-311.

MARINOV, T. & STOYKOV ST., 1995. Zoobenthos distribution on the Bulgarian continental shelf of the Black Sea. Proceedings of the Institute of Fisheries V. 23. 119-137.

MARINOV, T. & STOYKOV ST., 1990. Seasonal investigations of the zoobenthos in the Bulgarian Black Sea. Oceanology, 19, 49-62.

STOYKOV, ST., KOLAROV, P., STANEV, TZ., MURDJIEVA, D., ATANASSOVA, V. & KOLEMANOVA, K., 1994. Ecological state of the Bourgas Bay biota (1991-1992). Proceedings of the Institute of Fisheries V. 22. 5-57.

STOYKOV, ST. & UZUNOVA S., 1999. Dynamics of macrozoobenthos from the Bourgas Bay (Bulgarian Black Sea coast) during the period 1993-1995, V.25, 153-174.

TODOROVA, V. & KONSULOVA, T., 2000. Long term change and recent state of macrozoobenthic communities along the Bulgarian Black Sea coast. Mediterranean Marine Science. Vol. 1/1, 123-131.

ZAITSEV, YU. & MAMAEV, V., 1997. Biological diversity in the Black Sea. A study of change and decline. Sea environmental series V.3, United National Publications, New York, 208 pp.

WARWICK, R. M. 1986. A new method for detecting pollution effects on marine macrobenthic communities, Marine biology, Vol. 92, N.4.
