Cooling of nanomechanical resonator by thermally activated single-electron transport

F. Santandrea, L. Y. Gorelik, R. I. Shekhter, and M. Jonson

1 Department of Physics, University of Gothenburg, SE - 412 96 Göteborg, Sweden
2 Department of Applied Physics, Chalmers University of Technology, SE - 412 96 Göteborg, Sweden
3 SUPA, Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
4 Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-107, Korea

We show that the vibrations of a nanomechanical resonator can be cooled to near its quantum ground state by tunnelling injection of electrons from an STM tip. The interplay between two mechanisms for coupling the electronic and mechanical degrees of freedom results in a bias-voltage dependent difference between the probability amplitudes for vibron emission and absorption during tunneling. For a bias voltage just below the Coulomb blockade threshold we find that absorption dominates, which leads to cooling corresponding to an average vibron population of the fundamental bending mode of 0.2.

PACS numbers: 85.35.Kt, 85.85.+j

Remarkable steps are now being taken towards achieving conditions under which quantum effects are experimentally accessible in nano-electromechanical systems (NEMS)\(^\text{1}\). This is encouraging both for the prospects of realizing a plethora of applications that depend on our ability to control and monitor the coherent dynamics of nanometer-scale mechanical systems and for shedding light on purely fundamental issues, such as the nature of the crossover from classical to quantum physics\(^\text{2}\).

A number of proposals have been put forward in order to reach the extremely low temperatures \(T\) of order \(\hbar \omega/k_B\), where quantum effects become observable in mechanical resonators of eigenfrequency \(\omega\). Their aim has been to replace the conventional dilution refrigerators by more efficient active cooling methods.

Most of them are based on well-established principles for laser cooling of atoms and molecules\(^\text{3}\), but alternative approaches have been proposed by several authors who suggest that the coupling between mechanical and electronic degrees of freedom can be exploited for inducing energy to flow from the former to the latter\(^\text{4}\). All these schemes for ground state cooling are based on quantum resolved sideband transitions between discrete quantum levels of the refrigerant, a cooling mechanism that relies on energy conservation in order to suppress processes which involve emission of vibrational energy quanta (vibrons) with respect to those that lead to absorption of such quanta.

In this Letter we suggest a new mechanism for ground state cooling of a nanomechanical resonator, which is based on passing a current through the resonator under conditions such that the probability amplitude for tunneling electrons to emit vibrons is much lower than it is to absorb them. As such it has the advantage that it does not require the refrigerant to have a discrete energy spectrum, which puts fewer constraints on the experimental design.

To be specific we consider the model system sketched in Fig.\(^\text{1}\) where electrons are injected from the tip of a scanning tunneling microscope (STM) into a suspended metallic carbon nanotube. Low-temperature tunneling spectroscopy studies on a similar device\(^\text{2}\) have shown that inelastic electron tunneling can create a non-thermal equilibrium population of vibronic states in the nanotube. Below, we will show that the probability for vibron emission can be suppressed as a result of the interference between two different mechanisms for coupling the mechanical and electronic degrees of freedom of the system. One of these mechanisms is the nanotube-position dependent probability amplitude for electron tunneling from the STM tip to the nanotube, the other is the electrostatic force on the nanotube when it is charged.

It turns out that the effect of the interference depends on the voltage bias between the STM tip and the leads. Our analysis shows that the destructive interference is maximal for a bias voltage slightly below the threshold voltage for lifting the Coulomb blockade of electron tunneling through the system. If the nanotube is weakly enough coupled to the environment, the suppression of vibron emission is strong enough to drive the nanotube to near its vibrational ground state and hence effectively “cool” the mechanical degrees of freedom.

In order to analyze the dynamics of the nanotube and of the tunneling electrons in the quantum regime we in-
roduce a model Hamiltonian,
\[ H = H_e + H_m + H_t + H_C, \]  
(1)
where
\[ H_e = \sum_{q,\alpha} E_q a_{q,\alpha}^\dagger a_{q,\alpha} + \sum_q \xi_q c_q^\dagger c_q, \]  
(2)
\[ H_m = \hbar \omega (b^\dagger b + 1/2), \]  
(3)
\[ H_t = \sum_{q,q'} e^{i\varphi} c_q^\dagger \left[ t_S(\dot{X})a_{q,S} + t_L a_{q,L} \right] + h.c., \]  
(4)
and where \( a_{q,\alpha}^{(\dagger)} \) and \( c_q^{(\dagger)} \) are annihilation (creation) operators for electrons in the STM tip (\( \alpha = S \)), in the leads (\( \alpha = L \)), and in the nanotube, respectively.

The first term of (1), \( H_e \), describes the STM tip, the leads, and the nanotube as reservoirs of non-interacting electrons. The second term, \( H_m \), describes the nanotube’s mechanical degrees of freedom, which we restrict to the fundamental bending mode considered as a simple harmonic oscillator with angular frequency \( \omega \), \( b^{(\dagger)} \) being the annihilation (creation) operator for an elementary excitation (vibron) of this mode.

Electron tunneling between the STM tip and the nanotube and between the nanotube and the leads are described by \( H_t \), the third term of the Hamiltonian, in terms of the tunneling amplitudes \( t_S \) and \( t_L \). Here the operator \( e^{i\varphi} \) changes the number \( N \) of excess electrons on the nanotube by one, \( e^{-i\varphi} \dot{N} e^{i\varphi} = \dot{N} + 1 \). Since \( t_S \) depends on the overlap between electronic states in the STM tip and the nanotube, it depends on the deflection of the tube through the operator \( \dot{X} = \Delta x_{gs} (b^\dagger + b) \), where \( \Delta x_{gs} \equiv \sqrt{\hbar/(2M\omega)} \) is the displacement uncertainty in the vibrational ground state and \( M \) is an effective oscillator mass. For simplicity we assume that the STM tip is positioned above the midpoint of the nanotube (see Fig. 1) and model the deflection dependence of the tunneling amplitudes \( t_S(\dot{X}) \equiv t_S \exp(\dot{X}/\lambda) \), where \( \lambda \) is the characteristic tunneling length of the barrier (\( \lambda \simeq 10^{-10} \) m). This dependence amounts to a coupling between the electronic and mechanical degrees of freedom that we will refer to as a tunneling electromechanical (TEM) coupling. In contrast, the distance between the nanotube and the leads is fixed, so that \( t_L \) does not depend on the nanotube deflection.

The last term, \( H_C \), in (1) describes the electrostatic interactions in the system, which we will treat in the framework of the capacitance model. In this approximation \( H_C \) only depends on the total charge on the nanotube and on the voltages applied to the bulk electrodes. Assuming the supporting leads to be grounded and that a negative electrostatic potential \(-V (V > 0)\) is applied to the STM electrode, we restrict our analysis to the Coulomb blockade regime in which at most one extra electron may reside on the nanotube. Under such conditions \( H_C \) can be written as
\[ H_C = e \left[ \frac{C_g(V_C - V)}{C_S} + V \right] \dot{N} - \frac{C_S C_g V^2}{2C_S}, \]  
(5)
where \( C_S = C_S + C_g \), \( C_S \) is the total capacitance between nanotube and STM tip, \( C_g \) is the total capacitance between nanotube and ground, \( V_C = e/2C_g \) is the threshold value of \( V \) for lifting the Coulomb blockade and \(-e \) is the electronic charge.

In general, \( C_S \) and \( C_g \) both depend on the geometry of the system and therefore on the nanotube deflection. Here we will only take the dominant deflection dependence of the STM-nanotube capacitance into account. Hence \( C_S = C_S(h - \dot{X}) \), where \( h \) is the distance between the STM and the straight nanotube. For small displacements of the nanotube we may linearize the interaction Hamiltonian (6) and use an approximation that for \( C_S \ll C_g \) takes the form
\[ H_C = U_C(V)\dot{N} - \mathfrak{g}X\ddot{N} - \alpha(\dot{X})V^2, \]  
(6)
where \( \mathfrak{g} \equiv 2(\partial C_S/\partial x)_0 V_C\delta V \), and \( \delta V \equiv V_C - V \). The first term of (6) determines the Coulomb blockade effect in the absence of nanotube deflections, while the second is a deflection-dependent electromechanical interaction term. Due to a formal analogy with the interaction term in the model Hamiltonian for the polaron problem, we will refer to the origin of this term as a polaronic electromechanical (PEM) coupling. The last term of (6) is a contribution that does not depend on whether the nanotube is charged or not.

It is important for what follows that the sign of the polaronic force constant \( \mathfrak{g} \) in (6) depends on the bias voltage. If the bias voltage is below the Coulomb blockade threshold, so that only thermally activated transport is possible, i.e. if \( \delta V > 0 \), then \( \mathfrak{g} > 0 \) and hence if charged by an electron the nanotube will be attracted to the STM tip. On the other hand, if \( \delta V < 0 \), then \( \mathfrak{g} < 0 \) and the charged nanotube is repelled from the STM.

Note that the possibility to change the direction of the force by varying the bias voltage crucially relies on the discrete nature of the tunneling charge. If this charge could be arbitrarily small, then \( V_C \to 0 \) and hence \( \mathfrak{g} \propto -V \). For any (positive) value of \( V \) the polaronic force would therefore be negative and push the charged nanotube away from the STM tip, decreasing the tunneling matrix element [3].

As we have seen above, the electromechanical interaction is described by two separate terms in the Hamiltonian, one due to what we call TEM coupling and the other due to PEM coupling. The cooling mechanism to be discussed below results from the interplay between these different types of coupling. In order to analyze this interplay, it is convenient to apply a unitary transformation that removes the polaronic term from the Hamiltonian and instead makes the tunneling amplitudes dependent on both the midpoint position \( \dot{X} \) of the nanotube...
and its conjugate momentum $\hat{P} = i\hbar(b^\dagger - b)/2\Delta x_{gs}$. This is achieved by the transformation $H \rightarrow \tilde{H} = UHU^\dagger$, where $U \equiv \exp(i\Delta x_e \hat{N}/\hbar)$. Here $\Delta x_e = \delta/2M\omega^2$ is the difference between the equilibrium positions of the charged and neutral nanotube. To leading order in the small dimensionless parameters $\varepsilon_t = \Delta x_{gs}/\lambda$ and $\varepsilon_p = \Delta x_e/\Delta x_{gs}$ ($\varepsilon_p \sim 0.1-0.01$) the transformed tunneling Hamiltonian (4) is

$$
\hat{H}_t = t_S \sum_{k,q} (1 - (\varepsilon_t + \varepsilon_p)b + (\varepsilon_t - \varepsilon_p)b^\dagger) c_{k,q}^\dagger a_{k,q} + t_L \sum_{k,q} (1 - \varepsilon_p b + \varepsilon_p b^\dagger) a_{k,L}^\dagger c_{q} + h.c.
$$

From Eq. (7), it follows that in the Born approximation the rate of inelastic single-electron tunneling from the STM tip to the nanotube accompanied by the absorption (+) or emission (−) of a vibron is

$$
\Gamma_{S,\pm} = \Gamma_S(c_i^2 + c_p^2 \pm 2\varepsilon_t \varepsilon_p),
$$

where $\Gamma_S = \Gamma_S(V,T)$ is the rate of elastic electron tunneling across the STM-nanotube junction. The first (second) term of (8) gives the probability for tunneling assisted by either absorption or emission of a vibron due to the TEM (PEM) coupling alone, while the third term corresponds to the “interference” between these two mechanisms in the case of vibron emission (−) and absorption (+). Clearly, the probability for vibron-assisted electron tunneling is different depending on whether a vibron is absorbed or emitted and the difference can be controlled by the bias voltage since $\varepsilon_p \propto \Delta x_e(\delta V)$.

In particular, $\Delta x_e > 0$ if $\delta V > 0$ so that the interference is destructive (constructive) for tunneling accompanied by vibron emission (absorption). If $\delta V < 0 < \Delta x_e$ the situation is reversed in the sense that $\Delta x_e < 0$ and the interference is constructive (destructive) for emission (absorption) processes.

The case of constructive interference for emission processes has been analyzed in Ref. [8] where it was shown that a promotion of emission over absorption processes may lead to an electromechanical instability of the system if $V$ exceeds a certain dissipation-dependent threshold. Here we will focus on the reverse situation.

A complete suppression of the emission processes would eventually drive the mechanical subsystem to its ground state. However, there are two more types of electronic transitions that may generate vibron emission remain to be considered. The first is the tunneling of an electron from the nanotube to the STM. By virtue of time reversal symmetry, the mechanism responsible for the suppression of vibron emission during tunneling from the STM to the nanotube stimulates the emission of vibrons during tunneling in the reverse direction. In order to make the effect of such transitions negligible in the energy balance for the mechanical subsystem, an electron that has tunneled from the STM should escape from the nanotube to the leads before it can tunnel back to the STM by an inelastic transition. This requires that $|t_S| \ll |t_L|$ and $k_B T \ll eV_c$, where the latter constraint ensures an exponential suppression of the probability for electrons to tunnel from the leads to the nanotube. These conditions are satisfied in the real experimental situation.

In addition to the “backward” tunneling transitions, vibrons can also be emitted when electrons tunnel from the nanotube to the leads, but then only by virtue of the polaron coupling mechanism (see Eq. (4)).

From Eqs. (8) and (7) and the definitions of $\varepsilon_t$ and $\varepsilon_p$, it follows that the ratio between the total rate of vibron emission and the total rate of vibron absorption reaches an absolute minimum for the bias voltage $V^* = V_c - \delta V^*$ that verifies the condition

$$
\bar{G}(\delta V^*) = \frac{\hbar \omega}{\sqrt{2\lambda}}.
$$

From the above considerations, we conclude that cooling of the nanotube vibrations can only occur for bias voltages below the Coulomb blockade threshold ($\delta V > 0$).

However, below the Coulomb blockade threshold voltage, charge transport is blocked at zero temperature. The temperature required to overcome the Coulomb blockade is determined by $k_B T \geq \delta V$. On the other hand, the temperature cannot be too high, since otherwise “backward” transitions from the leads to the nanotube would no longer be negligible and possibly compensate for the vibrons absorbed during the “forward” transitions. These conditions restrict the range of possible temperatures to the interval: $eV_c \gg k_B T \geq \delta V \equiv e\delta V^*$. The order of magnitude of the lower bound can be found by means of the condition (9) and by estimating the capacitance between the STM tip and the nanotube as $C_S \approx 2\pi \varepsilon_0 D/(2h/r_0)$, where $h \sim 1$, $\varepsilon_0$ is the vacuum permittivity, $D \sim 10$ nm is the characteristic radius of the STM tip, $r_0 \sim 0.5$ nm is the nanotube radius. One finds that the temperature required in order to overcome the Coulomb blockade at $\delta V^*$ is about 0.1 K.

For a quantitative analysis of the cooling mechanism described above, we followed the standard procedure to derive a generalized master equation for the reduced density matrix that describes the nanotube degrees of freedom [9]. After tracing out the charge degrees of freedom and applying a perturbation approach with respect to the small parameters $\varepsilon_t, \varepsilon_p$ one gets a set of equations for the probabilities $p_n$ to find the nanotube in the Fock state $|n\rangle$ characterized by $n$ vibrons. If the rate $\Gamma_n$ of tunneling from the nanotube to the leads is much larger than the rate $\Gamma_S$ of tunneling from the STM to the nanotube these equations reduce to

$$
[(4n + 2)\varepsilon_p^2 + (2n + 1)\varepsilon_t^2 - 2\varepsilon_t \varepsilon_p] p_n - \frac{\mathcal{L}_S[p_n]}{\Gamma_S} = 0
$$

$$
[(\varepsilon_p + \varepsilon_t)^2 + \varepsilon_p^2] (n + 1)p_{n+1} + [(\varepsilon_p - \varepsilon_t)^2 + \varepsilon_p^2] np_{n-1},
$$

where $\mathcal{L}_S[p_n] = p_n(t_S - t_L) - p_{n-1}(t_S + t_L)$.
where $\mathcal{L}_n$ describes the interaction with the environment, which takes the standard form \[\mathcal{L}_n[p_n] = \gamma(n+1)(n_{th}+1)p_{n+1} - \gamma n(n_{th}+1)p_n - n_{th}p_{n-1},\]
where $\gamma = \omega/Q$, $Q$ being the quality factor of the nanotube resonator, and $n_{th} = (e^\delta V/k_B T - 1)^{-1}$ is the thermal average number of vibrons.

Equation (10) can be solved for the stationary probability distribution $p_n$ with the result \[p_n = (1 - r)r^n, \quad r = \frac{\varepsilon_p^2 + (\varepsilon_t - \varepsilon_p)^2 + (\gamma/\Gamma_S)n_{th}}{\varepsilon_p^2 + (\varepsilon_t + \varepsilon_p)^2 + (\gamma/\Gamma_S)(n_{th} + 1)}.\]

The average number of vibrons, $\langle n \rangle = \sum_m m p_m = r/(1 - r)$ is plotted as a function of the bias voltage defined by $\varepsilon_p(\delta V^*) = \varepsilon_t/\sqrt{2}$ in the limit $Q \to \infty$. Equation (11) implies that the corresponding average number of excitations is $n_{min} = (\sqrt{2} - 1)/2 \approx 0.2$.

In order to investigate the signatures of the cooling mechanism in a directly measurable property, we have calculated the current $I$ perturbatively to second order in $\varepsilon_t, \varepsilon_p$ with the result \[I = I_0 (1 + \varepsilon_t^2 (1 + 2\langle n \rangle)) . \]

Here $I_0 = e\Gamma_S(V, T)$ with $\Gamma_S \sim k_B T / k_B T$ if $k_B T \gg e\delta V^*$ and $\Gamma_S$ remains independent of voltage in a certain voltage interval, where the differential conductance will be completely determined by the derivative of the average number of vibrons with respect to voltage, i.e. $\partial I/\partial V \cong 2I_0\varepsilon_t^2 \partial \langle n \rangle/\partial V$. Therefore, the cooling effect will be reflected in the structure of the $dI/dV - V$ curves and accessible for experimental investigation.

In conclusion we have proposed a novel mechanism for ground-state cooling of nanomechanical resonators based on the injection of a tunneling current from a voltage-biased STM tip. For the model system considered we have shown that the direction of the electrostatic force that acts on a suspended charged nanotube can be flipped by changing the voltage bias. This makes it possible to control the interference between two distinct contributions to the quantum mechanical probability amplitudes for vibron absorption and emission during electron tunneling. For a bias voltage slightly below the Coulomb blockade threshold voltage, the probability amplitude for vibron emission becomes very small. At this bias a thermally activated current therefore leads to a cooling of the nanomechanical vibrations. Our analysis shows that the effective temperature that can be reached may correspond to an average vibron population of the fundamental bending mode as low as 0.2. The cooling mechanism, which should be observable by its effect on the differential conductance of the system, is crucially dependent on the Coulomb blockade phenomenon and hence on the quantization of electric charge.

Partial support from the Swedish VR and SSF, the EC project QNEMS (FP7-ICT-233952), the Faculty of Science at the University of Gothenburg through its Nanoparticle Research Platform and from the Korean WCU program funded by MEST/NFR (R31-2008-000-10057-0) is gratefully acknowledged.

[1] A. D. O’Connell et al., Nature 464, 697 (2010).
[2] M. Blencowe, Phys. Rep. 395, 159 (2004).
[3] I. Wilson-Rae, P. Zoller, and A. Imamoğlu, Phys. Rev. Lett. 92, 075507 (2004).
[4] S. Zippilli, G. Morigi, and A. Bachtold, Phys. Rev. Lett. 102, 096804 (2009); F. Pistolesi, J. Low Temp. Phys. 154, 199 (2009); S.-H. Ouyang, J. Q. You, and F. Nori, Phys. Rev. B 79, 075304 (2009); G. Sonne et al., Phys. Rev. Lett. 104, 226802 (2010).
[5] B. J. LeRoy, S. G. Lemay, J. Kong, and C. Dekker, Nature 432, 371 (2004).
[6] L. D. Landau and E. M. Lifshitz, Electrodynamic of continuous media (Butterworth-Heinemann, Oxford, 1998).
[7] L. M. Jonsson, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Nano Lett. 5, 1165 (2005).
[8] T. Nord and L. Y. Gorelik, Low Temp. Phys. 31, 534 (2005).
[9] L. Y. Gorelik, D. Fedorets, R. I. Shekhter, and M. Jonson, New J. Phys. 7, 242 (2005).
[10] H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, 2002).