Reduce Problems From Braid Groups To Braid Monoids.

Abstract. This paper proposes for every n, linear time reductions of the word and conjugacy problems on the braid groups B_n to the corresponding problems on the braid monoids B_n^+ and moreover only using positive words representations.

0. Introduction.

Given a group G presented with generators $[g_1, g_2, \ldots]$, a word representation W of an element g of G is said positive if W contains no letter g_i^{-1}. A powerful tool in group theory is what we will call a division procedure. That consists to put any word W in an equivalent form $P.Q^{-1}$ where P and Q are both positive. This idea was already present in the work of Garside ([3]). Assume we have such a division method. Two elements of G represented with two words U and V are equal if and only if the word $W = U.V^{-1} \equiv 1$ in G. By division of W we obtain the equivalence to $P.Q^{-1} \equiv 1$ that is to say $P \equiv Q$. Hence the word problem on the group G is reduced to the word problem on the monoid G^+. Observe that for that aim, one does not need a complete division but only a pseudo-division. That consists to find for any word W some positive words P and Q such that $W \equiv 1$ if and only if $P.Q^{-1} \equiv 1$. That seems easier since P and Q can be taken here in a finite set, for instance:

For $W \equiv 1$, take $P = Q = 1$

For $W \not\equiv 1$, take $P = g_i$ and $Q = 1$ where $g_i \not\equiv 1$.

However, in this paper we will perform divisions that have more semantical power. The key tool of this paper will be a linear time division method for the n strands braid groups B_n presented with standard generators $[\sigma_1, \sigma_2, \ldots, \sigma_{n-1}]$. We will deduce many methods for braids and linear time reductions of problems from the braid groups B_n to the braid monoids B_n^+. We obtain the quite surprising result that classical problems on the braid groups are ”easier” than corresponding problems on the braid monoids B_n^+. Since the converse is obvious ($B_n^+ \subset B_n$) the problems belong to the same complexity classes. Moreover, since there exists a well-ordering on B_n^+ (see [1]), one can use now this strong structure for braids in general. For instance, we directly obtain that the word problem on the group B_3 is solvable in linear time since that is the case for B_3^+ by computing normal forms in this well-ordering ([1],[2]).
1. Extented Generators of Braid Groups.

Assume we are working with \(n \geq 3 \) strands braids. Denote \(\Delta \) the classical Garside positive braid on \(n \) strands resulting from a positive half-turn of the trivial braid. We have the well known relations:

\[
\begin{align*}
\sigma_i \cdot \Delta &= \Delta \cdot \sigma_{n-i} \\
\sigma_i^{-1} \cdot \Delta &= \Delta \cdot \sigma_{n-i}^{-1}
\end{align*}
\]

and \(\Delta^2 \) belongs to the center of \(B_n \). That is to say, for any \(X \):

\[
X \cdot \Delta^2 = \Delta^2 \cdot X
\]

Definition. (generators). For \(n > i \geq 1 \), let

\[
\begin{align*}
0\sigma_i &:= \sigma_i \\
1\sigma_i &:= \Delta \cdot \sigma_{i}^{-1} \\
2\sigma_i &:= \sigma_{n-i} \\
3\sigma_i &:= \Delta \cdot \sigma_{n-i}^{-1}
\end{align*}
\]

Observe that for every \(n > i \geq 1 \) and \(a \in \{0, 1, 2, 3\} \), \(a\sigma_i \) is a positive braid.

Definition. (conversion). Every braid word \(V \) on standard generators \(\sigma_i \) will be called a standard word. Every braid word \(W \) on extended generators \(a\sigma_i \) will be called an extended word. The extension of a standard word \(V \) is the extended word \(0V \) obtained by replacing in \(V \) every letter \(\sigma_i \) by \(0\sigma_i \). The standardization of an extended word \(W \) is the standard word \(S(W) \) obtained by replacing in \(W \):

- every \(0\sigma_i \) by \(\sigma_i \),
- every \(1\sigma_i \) by \(D_i \),
- every \(2\sigma_i \) by \(\sigma_{n-i} \),
- every \(3\sigma_i \) by \(D_{n-i} \),

where \(D_i \) is some standard positive word of length \(n(n - 1)/2 - 1 \) equivalent to \(\Delta \cdot \sigma_{i}^{-1} \).

Observe that if an extended word \(W \) has \(k \) extended letters \(a\sigma \), its standardization \(S(W) \) will have at most \(k \cdot (n(n - 1)/2 - 1) \leq k \cdot n^2 \) letters \(\sigma \). More precisely, if \(W \) has:

- \(p \) extended letters \(a\sigma \) with \(a \in \{0, 2\} \) and
- \(q \) extended letters \(b\sigma \) with \(b \in \{1, 3\} \)

the length of \(S(W) \) will be exactly \(p + q(n(n - 1)/2 - 1) \).

2. Extended Division in Braid Groups.
Proposition 1. (commutation). For every \(n > i \geq 1 \) and \(n > j \geq 1 \) and \(a \in \{0, 1, 2, 3\} \) and \(b \in \{0, 1, 2, 3\} \), the following relation holds:
\[
a_{\sigma_i} \cdot b\sigma_j^{-1} = a\sigma_i^{-1} \cdot B\sigma_j
\]
where \(A = (a + 1)[4] \) and \(B = (b + 1)[4] \).

Proof. First, we verify in all cases that:
\[
a_{\sigma_i} \cdot \Delta^{-1} = a\sigma_i^{-1}
\]
\[
\Delta \cdot b\sigma_j^{-1} = B\sigma_j
\]
That is quite obvious by definition:
\[
o_{\sigma_i} \cdot \Delta^{-1} = 1\sigma_i^{-1}
\]
\[
1_{\sigma_i} \cdot \Delta^{-1} = \Delta \cdot \sigma_i^{-1} \cdot \Delta^{-1} = \Delta \cdot \Delta^{-1} \cdot \sigma_i^{-1} = 2\sigma_i^{-1}
\]
\[
2_{\sigma_i} \cdot \Delta^{-1} = \sigma_{n-i} \cdot \Delta^{-1} = 3\sigma_i^{-1}
\]
\[
3_{\sigma_i} \cdot \Delta^{-1} = \Delta \cdot \sigma_{n-i} \cdot \Delta^{-1} = \Delta \cdot \Delta^{-1} \cdot \sigma_i^{-1} = 0\sigma_i^{-1}
\]
\[
\Delta \sigma_j^{-1} = 1\sigma_j
\]
\[
\Delta \sigma_j^{-1} = \Delta \cdot \sigma_j \cdot \Delta^{-1} = \Delta \cdot \Delta^{-1} \cdot \sigma_j = 2\sigma_j
\]
\[
\Delta \sigma_j^{-1} = \sigma_{n-j} \cdot \Delta^{-1} = 3\sigma_j
\]
\[
\Delta \sigma_j^{-1} = \Delta \cdot \sigma_{n-j} \cdot \Delta^{-1} = \Delta \cdot \Delta^{-1} \cdot \sigma_j = 0\sigma_j
\]
Hence
\[
a_{\sigma_i} \cdot b\sigma_j^{-1} = a_{\sigma_i} \cdot \Delta^{-1} \cdot b\sigma_j^{-1} = a\sigma_i^{-1} \cdot B\sigma_j
\]

Definition. (Shift). For every \(d \in \mathbb{Z}/4\mathbb{Z} \) and every extended letter \(x = a\sigma_j^e \) where \(a \in \mathbb{Z}/4\mathbb{Z} \) and \(e \in \{+1, -1\} \), let \(sh(d, x) \) be the extended letter \(y = A\sigma_j^f \) where \(A = a + d[4] \) and
\[
f = \begin{cases}
eq & \text{if } d \in \{0, 2\} \\ -e & \text{if } d \in \{1, 3\} \end{cases}
\]
Let \(W = w_1w_2 \ldots w_k \) be an extended braid word and \(L = [d_1, d_2, \ldots, d_k] \) be a list of numbers in \(\mathbb{Z}/4\mathbb{Z} \). The extended braid word \(SH(L, W) \) is \(w_1', w_2', \ldots, w_k' \) where \(w_i' = sh(d_i, w_i) \).

For instance, for \(L = [0, 1, 2, 3] \) and \(W = \sigma_1 \cdot \sigma_2^{-1} \cdot 2\sigma_3^{-1} \cdot 3\sigma_4 \),
\[
SH(L, W) = \sigma_1 \cdot 2\sigma_2 \cdot 0\sigma_3^{-1} \cdot 2\sigma_4^{-1}
\]
In order to obtain linear time algorithms, one must be careful on the counting methods. For instance, given an input word \(W \) with \(k \) letters, working with numbers in the interval \([1, \ldots, k]\) introduces a time factor in \(\log_2(k) \) which may be too much for a real linear time algorithm. That aim motivates for instance to introduce the following notion.
Definition. (Bishift). Let \(W = w_1.w_2 \ldots w_k \) be an extended braid word. For \(0 \leq p \leq k \), let \(L = [d_1, d_2, \ldots, d_p] \) and \(L' = [d_{p+1}, d_{p+2}, \ldots, d_k] \) be two lists of numbers in \(\mathbb{Z}/4\mathbb{Z} \) and \(\delta \) be another number in \(\mathbb{Z}/4\mathbb{Z} \). Such a triple \((L, \delta, L')\) is called a trip of \(W \). The extended braid word \(SH2(L, \delta, L', W) \) is \(w'_1.w'_2 \ldots w'_k \) where:

\[
w'_1.w'_2 \ldots w'_p = SH(L, w_1.w_2 \ldots w_p) \quad \text{and} \quad w'_q = sh(\delta + d_q, w_q).
\]

The Bishift corresponds to a Shift where all the elements of the second list \(L' \) are translated by the factor \(\delta \). For instance, for \(W = 0\sigma_1.1\sigma_2^{-1}.2\sigma_3^{-1}.3\sigma_4 \)

\[
SH2([0, 1], 2, [0, 1], W) = SH([0, 1, 2, 3], W) = 0\sigma_1.2\sigma_2.0\sigma_3^{-1}.2\sigma_4^{-1}
\]

As usual, for two lists \(L, L' \), denote \(L.L' \) the concatenation of these lists. For instance, \([0, 1].[2, 3] = [0, 1, 2, 3]\).

Definition. (Separation). Let \(W \) be an extended braid word. The separation of \(W \) is a trip \((L, \delta, L')\) of \(W \) defined inductively as follows.

The separation of the empty word is \(([], 0, [])\).

For \((L, \delta, L')\) the separation of \(W \), the separation of \(W.x \) is:

\[
\begin{cases}
(L, \delta, L'.[-\delta]) & \text{if } x \text{ is a negative letter,} \\
(L.[0], \delta, L') & \text{if } L' = [] \text{ and } x \text{ is a positive letter,} \\
(L.[a + \delta + 1], \delta + 2, L''.[3 - \delta]) & \text{if } L' = [a].L'' \text{ and } x \text{ is a positive letter.}
\end{cases}
\]

Observe that with this inductive definition, the separation of \(W \) can be computed in \(O(|W|) \) steps since we only use numbers in \(\mathbb{Z}/4\mathbb{Z} \) and we have to perform a constant number of operations for each letter. Observe also that if \(L' \) is empty, then \(\delta = 0 \) since it is modified if and only if \(L' \) is non empty. Moreover \(\delta \) always belongs to \(\{0, 2\} \) since from the null value, \(\delta \) can only be translated by 2 in \(\mathbb{Z}/4\mathbb{Z} \) and it is obvious that \(\delta = 0 \) if and only \(W \) is positive or the number of positive letters after the first negative letter in \(W \) is even.

Theorem 2. (general extended division). There exists a linear time algorithm \(GED \) that computes for every \(n \) and from every extended word \(W \) of \(B_n \), two extended positive words \(P, Q \) of \(B_n \) such that

\[
W \equiv PQ^{-1}
\]

in \(O(|W|) \) steps. Moreover \(W \) and \(PQ^{-1} \) have exactly the same lengths, the same number of positive letters and the same sequences of right indices.
Proof. Let $W = w_1w_2\ldots w_k$ be an extended word. We are going to show by induction on k that the separation (L, δ, L') of W satisfies

$$SH2(L, \delta, L', W) = P.q$$

where P is positive, q is negative and for $Q = q^{-1}$ we have the expected properties.

For $W = 1$, that is obvious since $SH2([], 0, [], 1) = 1$.

Assume that for the separation (L, δ, L') of some W, $SH2(L, \delta, L', W) = P.q$.

Let us verify the property for $W.x$.

• If x is negative, we just have to see that $W.x \equiv P.q'$ where $q' = q.x$. Since the separation of $W.x$ is $(L, \delta, L', [\delta])$ the last letter x of $W.x$ will be transformed by $SH2$ in $sh(\delta - \delta, x) = sh(0, x) = x$ and we will obtain $P.q.x$. That was expected.

• If x is positive and $L' = []$ then $W \equiv P.q$ and $q = 1$. Hence $W.x \equiv P'.q$ where $P' = P.x$. Since the separation of $W.x$ is $(L, 0, L')$, the last letter x of $W.x$ will be transformed by $SH2$ in $sh(0, x) = x$ and we will obtain $P.x$. That was expected.

• If x is positive and $L' = [a].L''$ then $W \equiv P.z.q$ where $z = sh(a + \delta, w_{p+1})$ is the first negative letter in $P.z.q$. The positive letter x has to commute with all the negative letters of $z.q$. Applying the commutation principle on $z.q.x$:

the letter x is translated once and becomes negative,
all the letters in q are translated twice and remain negative,
the letter z is translated once and becomes positive.

Since the separation of $W.x$ is $(L, [a + \delta + 1, \delta + 2, L'', [3 - \delta])]$ and :

$sh(1, z) = sh(a + \delta + 1, w_{p+1})$
$sh(\delta + 2 + 3 - \delta, x) = sh(5, x) = sh(1, x)$

we obtain the expected form. ■

3. Results.

Theorem 3. (fixed standard division). For every n, there exists a linear time algorithm FSD_n that computes from every standard word V of B_n, two positive standard words P, Q of B_n such that

$$V \equiv P.Q^{-1}$$

in $O(|V|)$ steps.
Proof.

0. Compute the extension σV of V in $|V|$ steps.
1. Perform the general extended division of σV in $P_e.Q_e^{-1}$ in $O(|\sigma V|) = O(|V|)$ steps.
2. Compute $P = S(P_e)$ in $O(|P_e|.n^2) \leq O(|V|.n^2)$ steps.
3. Compute $Q = S(Q_e)$ in $O(|Q_e|.n^2) \leq O(|V|.n^2)$ steps.
Observe that n is fixed, hence n is a constant and $O(|V|.n^2) = O(|V|)$. ■

Observe that, by symmetry one can also compute in $O(|V|)$ steps an equivalent form $Q^{-1}.P$.

Theorem 4. (general standard division). There exists an algorithm GSD that computes for every n and from every standard word V of B_n, two positive standard words P,Q of B_n such that

\[V \equiv P.Q^{-1} \]

in $O(|V|.n^2)$ steps.

Proof. The method is the same as in FSD_n. However, the number of strands n is not constant any more. ■

Theorem 5. (word problems reduction). For every n, there exists a linear time reduction of the word problem on B_n to the word problem on B_n^+ positively presented.

Proof. Let X,Y be two standard words of B_n. One has $X \equiv Y$ if and only if $V = X.Y^{-1} \equiv 1$. This word V has length $|X| + |Y|$ and is computed in linear time. Compute the fixed standard division $P.Q^{-1}$ of V in $O(|V|)$ steps. One has $X \equiv Y$ in B_n if and only if $P \equiv Q$ in B_n^+. ■

Hence, the word problems on B_n and on B_n^+ have the same time complexity. Since there exists a linear time algorithm for the word problem on the monoid B_3^+, there also exists a linear time algorithm for the word problem on the group B_3 (see [2]).

Theorem 6. (conjugacy decision problems reduction). For every n, there exists a linear time reduction of the conjugacy decision problem on B_n to the following problem on B_n^+ positively presented:

Given four positive standard words A,B,C,D.

Is there a positive standard word M such that $A.M.B \equiv C.M.D$?
Proof. Let U, V be two standard braid words of B_n. They are conjugate if and only if there exists a braid word X such that $U \equiv X.V.X^{-1}$.

First, it is well known that one can also assume that X is positive since any braid word X is equivalent to some $\Delta^{2k}.M$ for $k \in \mathbb{Z}$ and M a positive braid:

\[
U \equiv X.V.X^{-1} \\
\equiv \Delta^{2k}.M.V.M^{-1} \Delta^{-2k} \\
\equiv \Delta^{2k}.\Delta^{-2k}.M.V.M^{-1} \\
\equiv M.V.M^{-1}
\]

1. Compute in $O(|U|)$ steps a division $C^{-1}.A$ of U.
2. Compute in $O(|V|)$ steps a division $D.B^{-1}$ of V.
3. One obviously have $U \equiv M.V.M^{-1}$ if and only if $A.M.B \equiv C.M.D$

and we immediatly obtain the following

Theorem 7. (conjugacy search problems reduction). For every n, there exists a linear time reduction of the conjugacy search problem on B_n to the following problem on B_n^+ positively presented:

Given four positive standard words A, B, C, D.

Find a positive standard word M such that $A.M.B \equiv C.M.D$

4. Conclusion.

The methods we presented here enable the reductions of problems on braids to equivalent problems on positive braids. First, this general framework could be generalized for other groups G than the braid groups B_n. Second, it is likely that the word problems for every B_n (like for B_3) have linear time solutions. The fact that B_n^+ has a well-ordering that is completely described in term of trees with normal forms defined inductively by blocs give some hope for the generalization of the efficient constructions of normal forms for B_3^+. Third, one can expect to reduce the conjugacy problems to simpler problems. A first idea is that if W is divided to $P.Q^{-1}$ which is itself divided in the other way to $R^{-1}.S$, then some non trivial relations hold between P, Q, R and S.

References.

[1] S. Burckel, The Well Ordering on Positive Braids, Journal of Pure and Applied Algebra 120 (1997) 1–17.

[2] S. Burckel, Syntactical Methods for Braids of Three Strands, Journal of Symbolic Computation 31(5) (2001) 557–564.
[3] F. Garside, *The braid group and other groups*, Quart. J. Math. Oxford 20 (1969) 235–254.

Serge Burckel.
INRIA-LORIA,
615 rue du Jardin Botanique
sergeburckel@orange.fr