Number-of-Particle Fluctuations and Stability of Bose-Condensed Systems

C.-H. Zhang

1Department of Physics, Indiana University, 727 E. 3rd Street, Bloomington, IN 47405

(Dated: March 23, 2022)

In this paper we show that a normal total number-of-particle fluctuation can be obtained consistently from the static thermodynamic relation and dynamic compressibility sum rule. In models using the broken U(1) gauge symmetry, in order to keep the consistency between statics and dynamics, it is important to identify the equilibrium state of the system with which the density response function is calculated, so that the condensate particle number N_0, the number of thermal depletion particles \hat{N}, and the number of non-condensate particles N_{nc} can be unambiguously defined. We also show that the chemical potential determined from the Hugenholtz-Pines theorem should be consistent with that determined from the equilibrium equation of state. The $N^{4/3}$ anomalous fluctuation of the number of non-condensate particles is an intrinsic feature of the broken U(1) gauge symmetry. However, this anomalous fluctuation does not imply the instability of the system. Using the random phase approximation, which preserves the U(1) gauge symmetry, such an anomalous fluctuation of the number of non-condensate particles is completely absent.

PACS numbers: 05.30.Jp, 03.75.Kk, 67.40.Db

I. INTRODUCTION

The number-of-particle fluctuation $\langle \delta N^2 \rangle$ in an equilibrium system is a fundamental statistic problem since its scaling with the number of particles $\langle \delta N^2 \rangle \propto N^\gamma$ relates to the stability of the system. The fluctuation is called normal if $\gamma = 1$ and anomalous if $\gamma > 1$. In the latter case, it implies the system is unstable, since the isothermal compressibility $\kappa_T \to \infty$ in the thermodynamic limit (see Eq. (1) below). For example, for a non-interacting uniform Bose system below the critical temperature, the fluctuation of the number of condensate particles $\langle \delta N_0^2 \rangle \propto N^2$, and that of the number of non-condensate particles $\langle \delta N_{nc}^2 \rangle \propto N^{4/3}$ in the grand canonical ensemble, while $\langle \delta N_{nc}^2 \rangle = \langle \delta N_0^2 \rangle \propto N^{4/3}$ in the canonical ensemble [1]; all are anomalous since $\gamma > 1$. However, for a trapped ideal Bose gas, the fluctuation of the number particles is normal, since the confinement effectively suppresses the thermal fluctuation [2].

Recently the number-of-particle fluctuation of interacting Bose-condensed systems has attracted much theoretical attention, but whether or not it is anomalous still has not been resolved, since different methods predict different values of γ [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Particularly, even for the Bogoliubov approximation, both $\gamma = 4/3$ [3, 4, 5, 6, 7, 10, 11] and $\gamma = 1$ [4, 12] scaling laws have been obtained.

In order to see how these controversies arise, it is useful to examine the bases of these model calculations. Refs. [3, 4] use an energy functional of the total number of particles N, the number of thermal excited particles N_{tr}, and the single-particle spectrum $\varepsilon_{\vec{q}}$. Using this energy functional, the fluctuations of the number of condensate and non-condensate particles can be calculated using the partition function in either the grand canonical ensemble, canonical ensemble, or microcanonical ensemble, and a $\gamma = 1$ scaling law was obtained for both the condensate and non-condensate number-of-particles fluctuations. One important observation, which is essential to obtain the $\gamma = 1$ scaling law in this approach, is that phonon excitations have been excluded from the single-particle spectrum. The $\gamma = 1$ scaling law for the condensate fluctuation is also obtained in Ref. [10], in which a single-condensate-mode Hamiltonian is used. In Refs. [3, 4, 5, 6, 7, 11], the spectrum obtained by the Bogoliubov approximation was used and a $\gamma = 4/3$ scaling law was obtained for the non-condensate number-of-particle fluctuation. However using the compressibility sum rule (see Eq. (2)), a $\gamma = 1$ scaling law was obtained in Refs. [3, 4, 5] for the total number-of-particle fluctuation in the same Bogoliubov approximation.

But the contradictory results in Refs. [3, 7, 8, 11] with $\gamma = 4/3$ scaling laws obtained in Refs. [3, 6, 8, 11] within the same Bogoliubov approximation deserve further investigation. As can be shown, the total number-of-particle fluctuations of any equilibrium system can be calculated from the static thermodynamic relation

$$\frac{\langle \delta N^2 \rangle}{N} = \frac{\langle \hat{N}^2 \rangle - \langle \hat{N} \rangle^2}{N} = k_B T \frac{\partial N}{\partial \mu} \bigg|_{T \Omega} = \rho k_B T \kappa_T, \quad (1)$$

where \hat{N} is the particle number operator with expectation value $\langle \hat{N} \rangle$, $k_B T$ is the temperature, μ is chemical potential, Ω is the volume of the system, and $\rho = N/\Omega$ is the number density. On the other hand, the total number-of-particle fluctuation can be also determined by the following dynamic compressibility sum rule

$$\frac{\langle \delta N^2 \rangle}{N} = -\frac{k_B T}{\rho} \lim_{\omega \to 0} \chi_{nn}(q, \omega = 0), \quad (2)$$

where $\chi_{nn}(q, \omega)$ is the density response function. The number-of-particle fluctuations calculated from these two
relations must be consistent in any approximation. However, we have seen that the static result $\gamma = 4/3$ obtained in Refs. [3, 8, 11] is not consistent with the dynamic result $\gamma = 1$ obtained in Ref. [3, 12]. This leads to a contradictory conclusion about the stability of the system since, as argued by Yukalov [12], an anomalous fluctuation of the number of non-condensate particles would inevitably lead the system to be unstable while an interacting Bose-condensed system is stable.

We have seen that the above inconsistency of the statics with the dynamics in the Bogoliubov approximation is related to the separation of the condensate and non-condensate components when the broken Bose $U(1)$ gauge symmetry is used. In this case, the Bose field operator $\hat{\psi}$ is split as

$$\hat{\psi}(\vec{r}) = \Psi(\vec{r}) + \delta\hat{\psi}(\vec{r}),$$

where $\Psi(\vec{r}) \neq 0$ is the Bogoliubov order parameter, and $\delta\hat{\psi}(\vec{r})$, usually called the non-condensate field operator, represents both the dynamic excitation and thermal depletion out of the condensate. This subtlety in $\delta\hat{\psi}$ shows that the condensate and non-condensate components are strongly correlated, and the condensate component cannot be treated just as a static reservoir. Instead, the dynamics aspect of Ψ must be taken into account in calculation of the number of condensate and non-condensate particles for the purpose of calculating the number-of-particle fluctuation from Eq. (1). To resolve the inconsistency of statics with dynamics and to treat Ψ as a dynamic quantity, it is crucial to identify the equilibrium state with which the density response function χ_{nn} is determined. Using this equilibrium state as a reference, the number of condensation particles N_0, the number of dynamically excited particles N_{nc}, and the number of thermally depleting particle \tilde{N} can be unambiguously defined.

We will also show that the anomalous fluctuation of the number of non-condensate particles is an intrinsic feature of the broken $U(1)$ gauge symmetry. It is well known that a direct consequence of the above broken $U(1)$ gauge symmetry is that the poles of the single-particle Green function defined with $\delta\hat{\psi}$ and the total density response function are identical. Therefore, the fluctuation of the number of non-condensate particles inevitably follows the $N^{4/3}$ anomalous law, since the momentum distribution of this non-condensate particle always has a $1/k^2$ singularity in the long-wavelength limit, regardless of at what level the interacting Bose Hamiltonian is truncated. However, we shall show that this anomalous fluctuation does not imply the instability of the interacting Bose system. This is because, as we shall show, the condensate and non-condensate components cannot be treated as linearly independent terms so that an anomalous fluctuation of the number of non-condensate particles does not necessarily indicate that the system is unstable.

One way to avoid such an anomalous fluctuation of the number of non-condensate particles is to work with an ensemble in which the gauge symmetry is not broken [13], so that we can avoid the entangling of particle-conserving collective excitations and single-particle excited state in the pole of the non-condensate single-particle Green function. Indeed, using the random phase approximation with inclusion of exchange (RPAE) developed by Minguzzi and Tosi [14], which keeps the $U(1)$ gauge symmetry, we are able to show that while the total number-of-particle fluctuation is normal and consistently determined from statics and dynamics, the anomalous fluctuation of the number of non-condensate particles is completely absent.

This paper is organized as follows. In Sec. III we briefly summarize the rules to build the non-condensate single-particle Green function and the density response function with the broken $U(1)$ gauge symmetry. In Sec. III we examine how the consistency between Eqs. (1) and (2) can be obtained in calculating the number-of-particle fluctuation, and interpret the physical meaning of the anomalous fluctuation of the number of non-condensate particles in the Bogoliubov approximation. In Sec. IV we carry out a calculation in the random phase approximation with inclusion exchange and in the dielectric formalism to support our interpretations presented in Sec. III. The discussions and conclusion are presented in the last section.

II. SINGLE-PARTICLE GREEN FUNCTION AND DENSITY RESPONSE FUNCTION WITH BROKEN U(1) GAUGE SYMMETRY

In this section, we briefly summarize the rules to construct the single-particle Green function and density response function with broken $U(1)$ gauge symmetry. The details can be found in Refs. [15, 16, 17].

We start from the Hamiltonian for a homogeneous interacting Bose system in the second-quantized form

$$\hat{H} = \sum_k E_k \hat{a}_k^{\dagger} \hat{a}_k + \frac{g}{\sqrt{\Omega}} \sum_{\vec{q}, k_1, k_2} \hat{a}_{k_1+\vec{q}}^{\dagger} \hat{a}_{k_2} \hat{a}_{k_2} \hat{a}_{k_1},$$

where a contact two-body potential with strength g is used, $E_k = \frac{\hbar^2 k^2}{2m} - \mu = \epsilon_k - \mu$ is the non-interacting single-particle energy with respect to the chemical potential, and \hat{a}_k^{\dagger} and \hat{a}_k are creation and annihilation operators for the interacting Bose particle.

Now using Eq. (5) in its momentum space form, i.e., replacing \hat{a}_k^{\dagger} and \hat{a}_k with $\sqrt{N_0}$, where N_0 is the number of particles condensed onto the ground state $\hat{\tilde{a}}_k = 0$, one obtains the approximated Hamiltonian [17]

$$\hat{H} \approx \frac{gN_0^2}{2\Omega} - \mu N_0 + \sum_k E_k \hat{a}_k^{\dagger} \hat{a}_k + \frac{g\rho_0}{2} \sum_{\vec{q} \neq 0} \hat{A}_{\vec{q}} \hat{A}_{-\vec{q}} + \frac{g\sqrt{N_0}}{2\Omega} (\hat{\tilde{a}}_{\vec{q}} \hat{\tilde{a}}_{-\vec{q}} + \hat{\tilde{a}}_{\vec{q}} \hat{\tilde{a}}_{-\vec{q}}) + \frac{g}{2\Omega} \sum_{\vec{q} \neq 0} \hat{\tilde{a}}_{\vec{q}} \hat{\tilde{a}}_{-\vec{q}}.$$
where \(\rho = N_0/\Omega \) is the condensate density, \(\hat{A}_q = a_q + a_q^\dagger \), and

\[
\dot{\hat{\rho}}_q = \sum_{\vec{k} \neq \vec{q}, \vec{q}'} a_{\vec{k}}^\dagger a_{\vec{k} + \vec{q}}^\dagger \tag{6}
\]
is the density operator for the non-condensate particles. The total density operator is

\[
\hat{\rho}_q = \sqrt{N_0} \hat{A}_q + \dot{\hat{\rho}}_q. \tag{7}
\]

Equation (6) provides the starting point for many approximations in which the broken \(U(1) \) gauge symmetry is used.

The single-particle Green function matrix defined with \(\delta \hat{\psi} \) is \([15, 17]\)

\[
G_{\alpha\beta}(q \neq 0, \tau) = -\langle T_\tau a_{\vec{q}}(\tau) a_{\vec{q}}^\dagger(0) \rangle, \tag{8}
\]

where

\[
a_{\vec{q}} = \begin{cases} a_{\vec{q}} & \alpha = +, \\ a_{\vec{q}}^\dagger & \alpha = - . \end{cases} \tag{9}
\]

Solving the Dyson equation involving a \(2 \times 2 \) matrix self-energy \(\Sigma_{\alpha\beta} \), the single-particle Green function \(G_{\alpha\beta} \) has the general form \([15, 16]\)

\[
G_{\alpha\beta}(k) = \frac{(\alpha i \omega_n + \xi_k) \delta_{\alpha\beta} + \alpha \beta \Sigma_{\alpha\beta}(k)}{D(k)}, \tag{10}
\]

where

\[
D(k) = \left[i \omega_n - \xi_k - \Sigma_{++}(k) \right] \left[i \omega_n + \xi_k + \Sigma_{--}(k) \right] + \Sigma_{+-}(k) \Sigma_{-+}(k). \tag{11}
\]

Here notation \(k = (\vec{k}; i \omega_n) \) is used. Various truncations of the Hamiltonian \([5]\) correspond to select certain types of self-energy diagrams in such a way that the Hugenholtz-Pines theorem \([18]\)

\[
\mu = \Sigma_{++}(0) - \Sigma_{--}(0) \tag{12}
\]
is satisfied, so that the pole determined by \(D(k) = 0 \) is gapless in the long-wavelength limit.

The density response function defined as

\[
\chi_{nn}(q; \tau) = -\langle T_\tau \hat{\rho}_q(\tau) \hat{\rho}_{-q}(0) \rangle \tag{13}
\]
can be written as \([17]\)

\[
\chi_{nn}(q) = \sum_{\alpha\beta} \Lambda_{\alpha}(q) G_{\alpha\beta}(q) \Lambda_{\beta}(q) + \chi_{nn}^R(q), \tag{14}
\]

where \(\Lambda_{\alpha} \) is the vertex function describing process of (de)excitations (in)out of the condensate and \(\chi_{nn}^R \) is the regular part response function. It is not obvious in this approach to identify the equilibrium state with which the density response function \(\chi_{nn} \) is determined. We shall show in the next two sections that the identification of such an equilibrium state is important to unambiguously define the equilibrium condensate particle number \(N_0 \), thermal depletion particle number \(N \), and the corresponding thermal depletion single-particle Green function, which are used to build \(\Lambda_{\alpha}, \Sigma_{\alpha\beta}, G_{\alpha\beta}, \) and \(\chi^R \), and to calculate the non-condensate particle number \(N_{nc} \), so that the consistency between statics and dynamics in calculating the number-of-particle fluctuation can be obtained.

III. NUMBER-OF-PARTICLE FLUCTUATION IN BOGOLIUBOV APPROXIMATION

We now reexamine the number-of-particle fluctuation problem in the Bogoliubov approximation at finite temperature. A comment is deserved: even though we work at finite temperature, there are no thermal depletion particles.

The vertex function is \(\Lambda_{\alpha} = \sqrt{\rho_0} \), and the self-energies are

\[
\Sigma_{++}(q; i \omega_n) = \Sigma_{--}(q; i \omega_n) = 2g \rho_0, \tag{15}
\]

\[
\Sigma_{+-}(q; i \omega_n) = \Sigma_{-+}(q; i \omega_n) = g \rho_0, \tag{16}
\]

and the chemical potential determined by Hugenholtz-Pines theorem is

\[
\mu = \Sigma_{++}(0) - \Sigma_{--}(0) = g \rho_0. \tag{17}
\]

Substituting the above \(\Sigma_{\alpha\beta}, \Lambda_{\alpha} \) and \(\mu \) into Eq. (10), one gets the corresponding single-particle Green functions for the non-condensate particles \([16, 17]\)

\[
G^{BA}_{++}(k; i \omega_n) = \frac{u_k^2}{i \omega_n - \omega_k} - \frac{v_k^2}{i \omega_n + \omega_k},
\]

\[
G^{BA}_{+-}(k; i \omega_n) = -u_k v_k \left(\frac{1}{i \omega_n - \omega_k} - \frac{1}{i \omega_n + \omega_k} \right), \tag{18}
\]

where

\[
\omega_k^2 = [\epsilon_k - \Delta] [\epsilon_k + 2g \rho_0 - \Delta], \tag{19}
\]

and

\[
u_k^2 = \frac{\epsilon_k - \Delta + g \rho_0 + \omega_k}{2 \omega_k}, \tag{20}
\]

\[
v_k^2 = \frac{\epsilon_k - \Delta + g \rho_0 - \omega_k}{2 \omega_k}. \tag{21}
\]

Here \(\Delta = \mu - g \rho_0 \) has been introduced for future convenience, and \(\Delta = 0 \) for temperatures below \(T_c \).

Substituting the vertex functions and the Green function into Eq. (14), one gets the density response function \(\chi_{nn}^{BA}(q, i \omega_n) \) for the interacting Bose gas

\[
\chi_{nn}^{BA}(q, i \omega_n) = \frac{\rho_0 \xi_q}{\omega_q} \left(\frac{1}{i \omega_n - \omega_q} - \frac{1}{i \omega_n + \omega_q} \right). \tag{22}
\]
We first calculate the number-of-particle fluctuation from dynamics. Substituting Eq. 22 into Eq. 2, one gets

$$\frac{\langle \delta N^2 \rangle_{BA}}{N} = \frac{k_B T}{mc_B^2} \frac{\partial N_{nc}}{\partial \mu} \bigg|_{\mu = g\rho_0} = \frac{k_B T}{N} \frac{\partial N_{nc}}{\partial \Delta} \bigg|_{\Delta = 0} = \frac{1}{N} \sum_{k \neq 0} \left[(u_k^2 + v_k^2) n_k + \frac{v_k^2}{\sqrt{\tau}} \right],$$

(23)

where $c_B = \sqrt{g\rho_0/m}$ is the Bogoliubov phonon velocity. Therefore, we get a normal number-of-particle fluctuation from the dynamics.

Now let’s use Eq. 1 to calculate the number-of-particle fluctuation of this non-interacting system, which is given by keeping the terms that have non-zero expectation values in a subclass of states built from Gross-Pitaevskii ground state. If we adopt this identification:

(i) The number-of-particle fluctuation from statics is given by Eq. 27, which is now completely consistent with Eq. 23. Both are normal, and therefore the system is proved to be stable, as it should be.

(ii) N_{nc} is the number of particles excited out of the condensate due to its oscillation, i.e. it is the depletion of the Gross-Pitaevskii equilibrium state 10. N_0 in Eq. 24 should be replaced by $N_0' = N_0 - N_{nc}$.

The anomalous $N^{4/3}$ behavior of this equation can be seen, since in the long-wavelength limit, $u_k^2 \sim v_k^2 \sim \frac{1}{k}$, and $n_k \sim \frac{1}{k}$, so the integrand has a $\frac{1}{k}$ singularity.

On the other hand, using the chemical potential $\mu = g\rho_0$, one gets

$$\frac{k_B T}{N} \frac{\partial N_0}{\partial \mu} \bigg|_{\mu = g\rho_0} = \frac{k_B T}{N} \frac{\partial N_{nc}}{\partial \Delta} \bigg|_{\Delta = 0} = \frac{k_B T}{mc_B^2}. \quad (27)$$

The number-of-particle fluctuation is the sum of Eqs. 26 and 27, which is clearly not consistent with Eq. 23. This is the inconsistency of the result in Refs. 4, 6, 8, 11 with that in Refs. 4, 12. We should remind ourselves that Eq. 11 is a thermodynamic relation for an equilibrium system which is described by a set of equations of state. Also, according to finite-temperature linear-response theory, the density response function is calculated from an equilibrium state. Of course the equilibrium states that are used in Eqs. 11 and 22 should be the same. So what is the equilibrium state for the Bogoliubov approximation at finite temperature? To find the answer, we notice that Eq. 27 is identical to Eq. 23 and we get it from relation $\mu = g\rho_0$. Therefore, the equilibrium state in the Bogoliubov approximation is identified to be a state that all particles occupy in the $k = 0$ level and its equation of state is given by $\mu = g\rho_0 = g\rho$. This identification is sound since the relation $\mu = g\rho_0$ is exactly the time-independent Gross-Pitaevskii equation for a uniform system without thermal depletion particles. Indeed, as proved by Leggett 13, the Bogoliubov Hamiltonian can be obtained from the Hamiltonian 11 given

$$N = N_0 + N_{nc}, \quad (24)$$

where N_{nc} is calculated as

$$N_{nc} = -\frac{1}{\beta} \sum_{n,k} G_{11}^{BA}(\vec{k}; i\omega_n) = \sum_{k \neq 0} \left[(u_k^2 + v_k^2) n_k + \frac{v_k^2}{\sqrt{\tau}} \right]. \quad (25)$$

Direct calculation shows that

$$\chi_{nn,nc}(\vec{q}; i\omega_n) = -\frac{1}{\Omega_\beta} \sum_{m \neq 0} \left[G_{++}^{BA}(\vec{k} + \vec{q}, i\omega_m) G_{++}^{BA}(\vec{k} + \vec{q}, i\omega_m + i\omega_n) + G_{+}^{BA}(\vec{k}, i\omega_m) G_{+}^{BA}(\vec{k}, i\omega_m + i\omega_n) \right]. \quad (29)$$
A similar result with Eq. (29) is obtained by Meier and Zwerger by calculating the phase fluctuation of the order parameter \(\Psi(\vec{r}) \) of Eq. (3). It is important to point out the difference of the physical meanings between Eqs. (29) and (20). According to Eq. (2), the number-of-particle fluctuation of the non-interacting system is

\[
\frac{\langle \delta N^2_{\text{nc}} \rangle}{N} = -\frac{k_BT}{\rho} \lim_{\vec{q} \to 0} \chi^{BA}_{nn,nc}(\vec{q}; 0) = \frac{1}{N} \sum_{\vec{k} \neq 0} \left\{ \left(u_k^2 + v_k^2 \right)^2 + 4u_k^2v_k^2 \right\} n_{\vec{k}} (n_{\vec{k}} + 1) + u_k^2v_k^2 ,
\]

where \(n_{\vec{k}} = (e^{\beta\omega_{\vec{k}}} - 1)^{-1} \). Here \(\omega_{\vec{k}} = \sqrt{\varepsilon_{\vec{k}}(\varepsilon_{\vec{k}} + 2g\rho_0)} \) is the Bogoliubov mode. This is exactly the same as Eq. (7) in Ref. 3 obtained by Giorgini et al. for the fluctuation of non-condensate particles \(\langle \delta N^2_{\text{nc}} \rangle/N \). We notice that the leading order terms of this result is identical to those of Eq. (20) in \(\vec{k} \sim 0 \) region, where the anomalous behavior arises, since \(k_BT/\omega_{\vec{k}} \approx n_{\vec{k}} \). Therefore, for this non-interacting system, the number-of-particle fluctuations obtained from statics and dynamics are also consistent, even though they are anomalous. However, this anomalous fluctuation is not an implication of instability of the interacting Bose gas, since we have proved from both statics and dynamics that the total number-of-particle fluctuation is normal. This can also be seen by substituting Eq. (24) into Eq. (11) but replacing \(N_0 \) with \(N_0^t \); the anomalous fluctuation due to \(N_{\text{nc}} \) is completely canceled out. This calculation clearly shows the importance of the dynamic aspect of the condensate reservoir.

(iii) There is a new consistency. The chemical potential as a functional of the total number of particles \(N \) and the equilibrium number of particles \(N_0 \) in condensate can be determined both dynamically from the Hugenholtz-Pines theorem (7) and statically from the equilibrium equation of state. These two must be consistent with each other. However, there is a deeper physical meaning of this consistency. The equilibrium state described by the equation of state has a definite number of particles (here is \(N_0 \)). Therefore, this new consistency shows that the Hugenholtz-Pines theorem is to restore the conservation of the number of particles. Indeed, it is well known that the Hugenholtz-Pines theorem is required by the continuity equation (20, 21).

In the next section, we shall show that these interpretations about the number-of-particle fluctuation, \(N_0^t, N_{\text{nc}} \), and the single-particle Green function \(G_{\alpha\beta} \), as well as the Hugenholtz-Pines theorem in the Bogoliubov approximation remain valid at the level of approximation in which all the terms in Eq. (6) are kept. As examples, we consider the random-phase approximation with inclusion of exchange (RPAE) developed by Minguzzi and Tosi (14) and the dielectric formalism by Fliesser et al. (22). We shall not give the detailed derivations, since they are available in the literature. The steps presented here highlight the physics at hand.

IV. RANDOM-PHASE APPROXIMATION AND DIELECTRIC APPROACH WITH INCLUSION EXCHANGE

In the RPAE, the equilibrium equations of state of the Bose-condensed system are the time-independent finite-temperature Gross-Pitaevskii equation for the condensate and static Hartree-Fock equation for the thermal depletion particles. For a homogenous system, they are

\[\mu = g\rho_0 + 2g\rho - \mu \]
\[h_{HF}(\vec{k}; \vec{\pi}, \vec{\sigma}) = \varepsilon_{HF}^k(\vec{k}, \vec{\pi}, \vec{\sigma}) \]

where

\[h_{HF} = -\frac{\nabla^2}{2m} + 2g\rho - \mu \]
\[\varepsilon_{HF} = \varepsilon_k^0(\vec{k}) + 2g\rho - \mu \]

are the static Hartree-Fock Hamiltonian and single-particle energy with respect to the chemical potential for the thermal depletion particles. Here \(\rho_0 = N_0/\Omega, \rho = N/\Omega \) are the equilibrium condensate, thermal depletion, and total densities with \(N_0, N \) and \(\Omega \) the corresponding equilibrium condensate, thermal depletion, and total number of particles. We emphasize again that the number of particles in this equilibrium system is conserved. By neglecting the thermal depletion \(N \), we arrive at the equilibrium equation of state for the Bogoliubov approximation. We notice that single-particle orbits for the condensate and thermal depletion particles are governed by two different Hamiltonians and therefore, they are not generally orthogonal. However, for a uniform system, these single-particle orbits are simple orthogonal plane waves. We also notice that there is a gap in the single-particle spectrum

\[\lim_{k \to 0} \varepsilon_{HF}^k = g\rho_0 \]

This gap has important effects on many properties of a Bose-condensed system. We will come back this issue in the last section.

In this paper, we concern its effect on the stability of the system, as we shall show in the following.

We define a thermal depletion single-particle Green function for the static \(h_{HF} \)

\[G_{HF}(\vec{k}; i\omega_n) = \frac{1}{i\omega_n - \varepsilon_{HF}^k} \]

The steps presented in this analysis highlight the physics at hand.
The number of thermal depletion particles is found to be
\[\tilde{N}_0 = \frac{1}{\beta} \sum_{\vec{n}, \vec{k} \neq 0} \tilde{G}_{HF}(\vec{k}, i\omega_n) = \frac{\Omega}{\lambda^2 T} \tilde{g}_{3/2}(z), \] (37)
where \(\lambda_T = \sqrt{2\pi/m_b \beta T} \) and \(z = e^{\beta(\mu - 2\rho \tilde{\rho})} = e^{\beta g_{\rho 0}} \) and \(g_\rho(z) \) is the Bose function. Equation (37) is the equation of state equivalent to Eq. (32) for the thermal depletion particles. The self-consistent relations among \(N, N_0, \tilde{N} \) and \(\mu \) are given by Eq. (31) and
\[N(\mu) = N_0(\mu) + \tilde{N}(\mu) = N_0(\mu) + \frac{\Omega}{\lambda^2 T} \tilde{g}_{3/2}(\mu). \] (38)

The number-of-particle fluctuation can be calculated by substituting Eq. (38) into Eq. (1). Using the equations of states (31) and (37), we find
\[\frac{\partial N_0}{\partial \mu} = -\frac{\Omega}{g} + 2 \frac{\partial N}{\partial \mu}, \]
\[\frac{\partial \tilde{N}}{\partial \mu} = \frac{\beta}{\lambda^2 T} \tilde{g}_{3/2}(z) \left(\Omega - 2g \frac{\partial \tilde{N}}{\partial \mu} \right), \] (39)
and as a consequence
\[\frac{\langle \delta \tilde{N}^2 \rangle}{N} = k_B T \left| \frac{\partial N}{\partial \mu} \right|_T = \frac{\rho_0}{\rho} \frac{k_B T}{mc^2_0 B} \left(1 + 2g \tilde{P}_0 \right), \] (40)
where \(\tilde{P}_0 \) is defined as
\[\tilde{P}_0 = -\frac{\beta}{\lambda^2 T} \tilde{g}_{1/2} \left(e^{-\beta g_{\rho 0}} \right). \] (41)

Equation (40) reduces to Eq. (27), obtained in Bogoliubov approximation when one sets \(P_0 = 0 \) and \(\rho_0 = \rho \).

We must also point out that \(k_B T \frac{\partial N_0}{\partial \mu} \neq \langle \delta N_0^2 \rangle \) and \(k_B T \frac{\partial \tilde{N}}{\partial \mu} \neq \langle \delta \tilde{N}^2 \rangle \). Because of the ensemble used in the RPAE (26), \(\langle \delta N_0^2 \rangle \) and \(\langle \delta \tilde{N}^2 \rangle \) are actually
\[\langle \delta N_0^2 \rangle = 0, \]
\[\langle \delta \tilde{N}^2 \rangle = \sum_\vec{k} \tilde{n}_\vec{k} \tilde{n}_\vec{k} + 1 = -z \frac{\partial \tilde{N}}{\partial z} = \frac{\Omega \beta}{\lambda^2 T} \tilde{g}_{1/2}(z). \] (42)

These two results are clearly not the same those given by Eq. (38). Therefore,
\[\langle \delta N^2 \rangle \neq \langle \delta N_0^2 \rangle + \langle \delta \tilde{N}^2 \rangle. \] (43)

This shows that, even in the mean-field level approximation, the condensate and the thermal depletion components are strongly correlated. This is not surprising, since below the critical temperature, the presence of the condensate pins down the chemical potential to be \(\mu = 2g \tilde{\rho} + g_{\rho 0} \) and Eq. (38) is a self-consistent relation between \(N \) and \(\mu \). Even in the Bogoliubov approximation, it is this self-consistent relation that predicts a number-of-particle fluctuation given by Eq. (27) consistent with Eq. (38) while the fluctuation of the condensate itself is identically zero. Similar calculations for the RPA without the exchange show that \(\langle \delta N^2 \rangle \) follows the \(N^{4/3} \) anomalous scaling law, but the total number-of-particle fluctuation is
\[\frac{\langle \delta \tilde{N}^2 \rangle}{N} = k_B T \left| \frac{\partial N}{\partial \mu} \right|_T = \frac{k_B T}{mc^2_0}, \] (45)
which is now.

We now calculate the density response function around the above equilibrium state and calculate the number-of-particle fluctuation from dynamics.

The linearized equations for the density fluctuation have the matrix form (14)
\[\begin{pmatrix} \delta \rho_0 \\ \delta \tilde{\rho} \end{pmatrix} = \begin{pmatrix} \chi_{cc} & \chi_{cn} \\ \chi_{nc} & \chi_{nn} \end{pmatrix} \begin{pmatrix} \delta U^c \\ \delta U^n \end{pmatrix}, \] (46)
where \(\delta U^c \) and \(\delta U^n \) are the spatially and time-varying external potentials for the condensate and thermal depletion components. We emphasize here that the matrix form (14) of the density response function is simply a result by splitting the system into a condensate and a thermal depletion component, in which the number of particles is conserved, instead of a result of using the broken \(U(1) \) gauge symmetry (8) as claimed by Minguzzi and Tosi (14).

The total density response function is then given by
\[\chi_{nn} = \chi_{cc} + \chi_{cn} + \chi_{nc} + \chi_{nn}. \] (47)

On the other hand, according to the linear response theory,
\[\delta \rho_0 = \chi_{0}^c \delta U_{HF}^c = \chi_{0}^c \delta U^c + g \delta \tilde{\rho} + 2g \delta \rho, \]
\[\delta \tilde{\rho} = \chi_{0}^n \delta U_{HF}^n = \chi_{0}^n \delta U^n + 2g \delta \rho + 2g \delta \tilde{\rho}, \] (48)
where \(\chi_{0}^c \) and \(\chi_{0}^n \) are the density response functions of the condensate and the thermal depletion around the equilibrium state, respectively. From the above two equations, the four components are found
\[\chi_{cc} = (1 - 2g \chi_{0}^c) D^{-1} \chi_{cc}, \]
\[\chi_{cn} = 2g \chi_{0}^c D^{-1} \chi_{cn}, \]
\[\chi_{nc} = 2g \chi_{0}^n D^{-1} \chi_{nc}, \]
\[\chi_{nn} = (1 - g \chi_{0}^n) D^{-1} \chi_{nn}, \] (49)
where
\[D = (1 - g \chi_{0}^c)(1 - 2g \chi_{0}^n) - 4g^2 \chi_{0}^c \chi_{0}^n. \] (50)

For homogenous systems, the density response functions of the condensate and of the thermal depletion component can be obtained by linearizing the time-dependent Gross-Pitaevskii equation for the condensate around Eq. (31), and the time-dependent Hartree-Fock equation for the non-condensate around Eq. (32), respectively. They are given by
\[\chi_{0}^c(\vec{q}, i\omega_n) = \frac{2 \rho_0 \varepsilon_\vec{q}}{(i\omega_n)^2 - \varepsilon_\vec{q}^2}, \] (51)
\[\chi_{0}^n(\vec{q}, i\omega_n) = \frac{1}{\Omega} \sum_{\vec{k} \neq 0} \frac{\tilde{\delta}_{\vec{q} + \vec{k} - \tilde{\delta}_{\vec{k}}}{i\omega_n + \varepsilon_{HF} - \varepsilon_{HF} q^2 - \varepsilon_{HF} k^2}. \] (52)
where \(\bar{n}_F = (z^{-1}e^\beta \mu_F - 1)^{-1} \) is the occupation number of the static Hartree-Fock single-particle level of the thermal depletion particles. Therefore, the total density response function for the homogenous Bose-condensed system is

\[
\chi_{nn}(\vec{q}; i\omega_n) = \frac{(i\omega_n)^2 - \varepsilon^2_{\vec{q}}}{[i\omega_n]^2 - \varepsilon^2_{\vec{q}}} \chi_0^0(\vec{q}; i\omega_n) + 2\rho\varepsilon_{\vec{q}} \left[1 + g\chi_0^0(\vec{q}; i\omega_n) \right],
\]

(53)

Now substituting Eq. (53) into Eq. (2), one gets the total number-of-particle fluctuation from dynamics

\[
\frac{\langle \delta N^2 \rangle}{N} = \frac{\rho_0 k_B T}{\hbar m c_p} \frac{1 + g\bar{P}_0}{1 + 2g\bar{P}_0}.
\]

(54)

Here we have made use of the fact that \(\lim_{|\vec{q}| \to 0} \chi_0^0(\vec{q}, 0) = -\frac{2}{\hbar^2} g_{1/2} (e^{-\beta g\rho_0}) = \bar{P}_0 \) as given by Eq. (23). One can see that Eq. (54) is exactly the same as Eq. (10).

We have shown the total number-of-particle fluctuation is normal and consistent between statics and dynamics in the RPAE, and therefore, the interacting Bose system is proved to be stable. In the above derivations, the number of particles is conserved and there is not any anomalous number-of-particle fluctuation. This is because in this RPAE, the numbers of particles in the condensate and thermal depletion component are not time-dependent and do not change with the external potential because of entropy conservation. Therefore, they always take the equilibrium values. The above results can be derived in a more general time-dependent Hartree-Fock scheme which preserves the \(U(1) \) gauge symmetry.

Now in order to see how the anomalous fluctuation arises when the broken \(U(1) \) gauge symmetry is used, we can follow the steps in Ref. 23 to build the vertex function \(\Lambda_\alpha \), self-energy \(\Sigma_{\alpha\beta} \), and the single-particle Green function \(G_{\alpha\beta} \) by using Eqs. (31) and (32) as the reference. This means that the equilibrium condensate \(N_0 \), thermal depletion \(\bar{N} \), and Eq. (50) should be used to build up \(\Lambda_\alpha \), \(\Sigma_{\alpha\beta} \), and regular \(\chi_R \), not the as yet to be determined \(N_0 \), \(G_{\alpha\beta} \), and \(N_{nc} \). Here we skip those steps and just cite the final results for the single-particle Green function matrix below

\[
G_{++}(\vec{q}; i\omega_n) = G_{--}(\vec{q}; -i\omega_n) = \frac{(i\omega_n - \varepsilon_{\vec{q}})}{[i\omega_n]^2 - \varepsilon^2_{\vec{q}}} \left\{ \begin{array}{l}
[1 - 2g\chi_0^0(\vec{q}; i\omega_n)] + g\rho_0 \left[1 + g\chi_0^0(\vec{q}; i\omega_n) \right] \\
[1 - 2g\chi_0^0(\vec{q}; i\omega_n)] - 2\rho\varepsilon_{\vec{q}} \left[1 + 2g\chi_0^0(\vec{q}; i\omega_n) \right],
\end{array} \right.
\]

(55)

and the density response function \(\chi_{nn}(\vec{q}; i\omega_n) \), which is the same as Eq. (53).

Since both the equilibrium state and the density response function are the same as in RPAE, therefore, one gets the same consistent number-of-particle fluctuations from statics and dynamics in this dielectric formalism as those in the RPAE.

The chemical potential from the Hugenholtz-Pines theorem in this approximation turns out to be

\[
\mu_{HP} = \Sigma_{++}(0; 0) - \Sigma_{+-}(0; 0) = g\rho_0 + 2g\bar{\rho},
\]

(56)

which is the exactly same as Eq. (10).

Using \(G_{++}(\vec{q}; i\omega_n) \), the number non-condensate particles \(N_{nc} \) and its fluctuation \(\langle \delta N_{nc} \rangle \) are found to be the same as Eqs. (23), (24), and (30). For a dilute gas \(\rho a^3 \ll 1 \), where \(a = \frac{\hbar \omega}{\mu_F} \), \(P \) is usually very small because of the single-particle gap. It is thus straightforward to show that the single-particle Green function \(G_{\alpha\beta} \) given by Eq. (55) has the similar form as that in Bogoliubov approximation for small \(\bar{k} \). For example, the pole is given by \(\omega_F \approx e_B k \left[1 + 2g\bar{P}_0 (\bar{K}, \omega = e_B k) \right] \). Therefore, following the steps as in the Bogoliubov approximation, one can show that \(\langle \delta N_{nc} \rangle \) follows the \(\gamma = 4/3 \) scaling law.

Since \(\bar{N} \) from Eq. (37) is the number of thermal depletion particles, the difference

\[
\delta N_0 = N_{nc} - \bar{N}
\]

(57)
can be interpreted as the number of particles excited out of the condensate by the oscillation of the whole system induced by the external time-dependent potential. Indeed, in the Bogoliubov approximation $\delta N_0 = N_{nc}$ since the depletion of the condensate is completely caused by the dynamic collective excitation. Therefore, the single-particle Green functions can be interpreted as dynamic ones comparing to the thermal depletion G_{HF} defined by Eq. (55). As in Bogoliubov approximation, this interpretation is allowed only because of the broken $U(1)$ gauge symmetry. The total number of particles is expressed as

$$N = N_0' + N_{nc},$$

(58)

where $N_0' = N_0 - \delta N_0$. When substituting Eq. (55) into Eq. (1) to calculate the number-of-particle fluctuation, the anomalous fluctuation due to N_{nc} is exactly canceled out by the one from N_0', so that the total number-of-particle fluctuation is normal, which is given by Eq. (10).

We can see that the anomalous fluctuation of the number of non-condensate particles (δN_{nc}) is solely due to the single-particle Green functions defined by Eq. (10) whose poles entangle the single-particle and particle-conserving collective excitations, a directly consequence of the $U(1)$ symmetry breaking rather than an implication of the instability of the Bose system since the total number-of-particle fluctuation is normal and consistent from statics and dynamics. More than thirty years ago, Straley advised caution in using such a single-particle Green function to describe the zero-sound characteristic spectrum of the superfluid 4He. Leggett also argued that there are no circumstances in which Eq. (3) is physically correct.

V. DISCUSSIONS AND CONCLUSION

We have shown that the anomalous fluctuation of the number of non-condensate particles is an intrinsic feature of the broken $U(1)$ gauge symmetry and is completely absent in the RPAE in which the $U(1)$ gauge symmetry is preserved. This may be just related to the different interpretations of the dynamic process of the condensate of these models, as we point out in previous sections. But since this anomalous fluctuation of the number of non-condensate particles has not any physical significance, we can safely say that it is just a by-product of using the broken $U(1)$ gauge symmetry.

An advantage to keep the $U(1)$ gauge symmetry is that the single-particle spectrum and the collective excitation spectrum are distinguished. As shown in the RPAE, they are the poles of thermal depletion single-particle Green function and the density response function, respectively. But single-particle spectrum has important effects on the collective mode. For example, because of the gap, χ_0 is quite small for a dilute gas so that the thermal depletion component does not sustain a zero sound mode. The whole effect of the thermal depletion particles is to shift the Bogoliubov mode. Also the gap causes the damping of the thermal depletion particles to the collective mode exponentially decreases when the temperature drops. As we recently discussed, this single-particle gap is also responsible for the completely screening of the external potential by the condensate.

By using the broken $U(1)$ gauge symmetry, the boundary of the single-particle spectrum and the collective mode are entangled together if the poles of $G_{\alpha\beta}$ are interpreted as the single-particle excitations. But as far as the dielectric formalism in Ref. 22 concerned, there is a gapped single-particle spectrum as same as that in the RPAE for the equilibrium reference. In this sense, a gapped single-particle spectrum and a gapless collective mode do coexist even in the dielectric formalism. This is another point to identify the equilibrium state with which the density response function is calculated.

As pointed out by Meier and Zwerger, the anomalous fluctuation of the non-condensate particles is related to the gapless mode in the superfluid Bose system. Our analysis shows this is the case if one uses the broken Bose $U(1)$ gauge symmetry. In the RPAE, which preserves this gauge symmetry, there is no such an anomalous number-of-particle fluctuation related to the gapless superfluid mode.

In conclusion, we have shown that in models using the broken $U(1)$ gauge symmetry, the number-of-particle fluctuation is normal and can be calculated consistently from the static thermodynamic relation and dynamic compressibility sum rule if the equilibrium states are identified. We also show that the chemical potential determined from the Hugenholtz-Pines theorem should also be consistent with that determined from the equilibrium equation of state. The $N^{4/3}$ anomalous fluctuation of the number of non-condensate particles is an intrinsic feature of the broken $U(1)$ gauge symmetry. However, this anomalous fluctuation does not imply the instability of the system. Using the RPAE, which preserves the $U(1)$ gauge symmetry, such an anomalous fluctuation of the number of non-condensate particles is completely absent.

Acknowledgments

This work was supported by the NSF Grant No. DMR0454699. The author thanks H. A. Fertig and V. I. Yukalov for helpful discussions which inspired this work. The author also thanks David Cardamone for reading the manuscript.
[1] E.H. Hauge, Physica Norv. 4, 19 (1969); Robert M. Ziff, George E. Uhlenbeck and Mark Kac, Phys. Rep. 32, 169 (1977); I. Fujiwara, D. ter Haar, and H. Wergeland, J. Stat. Phys. 2, 329 (1970).

[2] M. Wilkens and C. Weiss, J. Mod. Opt. 44, 1801 (1997); H.D. Politzer, Phys. Rev. A 54, 5048 (1996); M. Gajda and K. Rzaweski, Phys. Rev. Lett. 78, 2686 (1997); S. Grossmann and M. Holthaus, Phys. Rev. Lett. 79, 3557 (1997).

[3] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 80, 5040 (1998).

[4] F. Illuminati, P. Navez, and M. Wilkens, J. Phys. B: At. Mol. Opt. Phys. 32, L461 (1999).

[5] F. Meier and W. Zwerger, Phys. Rev. A 60, 5133 (1999).

[6] M. Idziaszek, Z. and Gajda, P. Navez, M. Wilkens, and K. Rzewski, Phys. Rev. Lett. 82, 4376 (1999).

[7] H. Xiong, S. Liu, G. Huang, and Z. Xu, Phys. Rev. A. 65, 033609 (2002).

[8] S. Liu, H. Xiong, G. Huang, and Z. Xu, Phys. Rev. A. 68, 065601 (2003).

[9] L. Pitaevskii, Bose-Einstein Condensation (Clarendon Press, Oxford, 2003).

[10] A. Y. Cherny, Phys. Rev. A. 71, 043605 (2005).

[11] Z. Idziaszek, Phys. Rev. A. 71, 053604 (2005).

[12] V. I. Yukalov, Phys. Lett. A 340, 369 (2005); Laser Phys. Lett. 2, 156 (2005); Laser Phys. Lett. 1, 345 (2004).

[13] Y. Castin and R. Dum, Phys. Rev. A 57, 3008 (1998); C.W. Gardiner and P. Zoller, Phys. Rev. A 61, 033601 (2000); S.A. Morgan, Phys. Rev. A 69, 023609 (2004).

[14] A. Minguzzi and M. P. Tosi, J. Phys.: Condens. Matter 9, 10211 (1997).

[15] P. Szépfalusy and I. Kondor, Ann. Phys. (N.Y.) 82, 1 (1974).

[16] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill Book Company, New York, 1971).

[17] A. Griffin, Excitations in a Bose-Condensed Liquid (Cambridge University Press, Cambridge, 1993).

[18] N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959).

[19] A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).

[20] K. Huang and A. Klein, Ann. Phys. (New York) 30, 203 (1964).

[21] P. C. Hohenberg and P. C. Martin, Ann. Phys. (New York) 34, 291 (1965).

[22] M. Flieser, J. Reidl, P. Szépfalusy, and R. Graham, Phys. Rev. A 64, 013609 (2001).

[23] C.-H. Zhang and H. A. Fertig, Submitted to Phys. Rev. Lett., cond-mat/0509693.

[24] J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (The MIT Press, London, England, 1986).

[25] J. P. Straley, Phys. Rev. A 5, 338 (1972).

[26] One can see that the ensemble used to obtained Eqs. 41 and 52 is identical to the constraint grand canonical ensemble used by Huse and Siggia in J. Low Temp. Phys. 46, 137 (1982), in which N_0 is fixed.