Recombinant mouse prion protein alone or in combination with lipopolysaccharide alters expression of innate immunity genes in the colon of mice

Elda Dervishi¹, Tran H Lam¹, Suzana M Dunn¹, Grzegorz Zwierzchowski¹, Fozia Saleem², David S Wishart², and Burim N Ametaj¹,*

¹Department of Agricultural, Food and Nutritional Science; University of Alberta, Edmonton, AB, Canada;
²Departments of Computing Science and Biological Sciences; University of Alberta, Edmonton, AB, Canada

ABSTRACT. The objectives of this study were to test whether recombinant mouse (mo)PrP alone or in combination with LPS or under simulated endotoxemia would affect expression of genes related to host inflammatory and antimicrobial responses. To test our hypotheses colon tissues were collected from 16 male mice (FVB/N strain) and mounted in an Ussing chamber. Application of moPrP to the mucosal side of the colon affected genes related to TLR- and NLR- signaling and antimicrobial responses. When LPS was added on the mucosal side of the colon, genes related to TLR, Nlrp3 inflammasome, and iron transport proteins were over-expressed. Addition of LPS to the serosal side of the colon up-regulated genes related to TLR- and NLR-signaling, Nlrp3 inflammasome, and a chemokine. Treatment with both moPrP and LPS to the mucosal side of the colon upregulated genes associated with TLR, downstream signal transduction (DST), inflammatory response, attraction of dendritic cells to the site of inflammation, and the JNK-apoptosis pathway. Administration of moPrP to the mucosal side and LPS to the serosal side of the colon affected genes related to TLR- and NLR-signaling, DST, apoptosis, inflammatory response, cytokines, chemokines, and antimicrobial peptides. Overall this study suggests a potential role for moPrP as an endogenous ‘danger signal’ associated with activation of colon genes related to innate immunity and antibacterial responses.

KEYWORDS. Ussing chamber, mouse cellular prion protein, gene expression, antimicrobial response, lipopolysaccharide, colon, mice

ABBREVIATIONS. LPS, lipopolysaccharide; PrP°C, cellular form of the prion protein; moPrP°C, mouse cellular prion protein; TLR, toll like receptor; NLR, NOD like receptor; DST, downstream signal transduction

*Correspondence to: Burim N Ametaj; Email: bametaj@ualberta.ca
Received December 10, 2014; Revised January 26, 2015; Accepted February 10, 2015.
Color versions of one or more figures in this article can be found online at www.tandfonline.com/kprn.
INTRODUCTION

The prion protein (PrPC) is widely expressed in a number of tissues; however, its physiological functions are far from clear. There is strong evidence that PrPC plays a protective role during oxidative stress,1 myelin repair of Schwann cells,2 maintenance of long-term memory,3 and stem cell renewal.4 However, given that PrPC is abundant in the brain, lymphatic tissues, kidney, and intestine it suggests that it might play other physiological roles as well. The fact that PrPC is expressed in cell-cell junctional domains of intestinal enterocytes is of particular interest.5 Recently Petit et al.6 reported that PrPC plays a fundamental role in the maintenance of intestinal epithelial barrier functions and suggested that the protein might connect barrier integrity and susceptibility to intestinal inflammation. PrPC also was reported to have strong cytoprotective effects,7 and over-expression of PrPC in Tga20 transgenic mice provided protection against dextran sodium sulfate (DSS)-induced colitis.8 Recently PrPC was shown to act as an antimicrobial peptide. In particular, Pasupuleti et al.9 demonstrated that both the intact PrPC and N-terminal peptides derived from this molecule display membrane-disrupting effects on both Gram-negative and Gram-positive bacteria similar to those observed with the human antimicrobial peptide cathelicidin LL-37.

A contentious question in prion disease is whether exogenous prion proteins serve as activators of host innate immune responses or whether the immune system mounts a protective response against prions. Further, it is not known whether prions serve as danger signals or damage associated molecular pattern molecules (DAMPs), or as exogenous ligands or pathogen associated molecular pattern molecules (PAMPs) to the host.

Toll-like receptors (TLRs) are key pattern-recognition receptors (PRRs) that recognize both PAMPs and DAMPs. Interestingly deficiencies in TLR-4, the receptor that binds to Gram-negative bacterial LPS, have been shown to expedite the development of prion disease.10 In addition, mice with mutations in interferon-regulatory factor 3 (IRF3), which is a myeloid differentiation primary response protein 88 (MyD88)-independent transcription factor that is activated downstream of TLRs, show accelerated prion pathogenesis following intraperitoneal infection.10,11 Also, an increase in PrPC expression has been demonstrated during gastric infection by Helicobacter pylori,12 bacterial kidney infection,13 and inflammation of the skin.14

In a previous study we demonstrated that LPS from Escherichia coli 0111:B4 interacts with recombinant Syrian hamster PrP (shPrP) and converts the α-helix-rich protein into a β-sheet rich isoform that forms amyloid-like fibrils resistant to proteinase K.15 Furthermore this conversion occurs under physiological conditions. Implications of interaction of prion protein with LPS are not known. Based on our preliminary findings we hypothesized that recombinant mouse (mo)PrP alone or in combination with LPS might affect the expression of genes related to host immunity and antibacterial responses. We evaluated this hypothesis by measuring the expression of 84 genes related to inflammation and antibacterial responses using colon tissue derived from FVB/N mice placed in an Ussing chamber system and exposed to differing concentrations of PrP and/or LPS both on mucosal and serosal sides of the tissue.

RESULTS

Gene expression profiling

PrPC is widely expressed in the epithelial cells of the intestinal tract but the functions of prion protein in the GI tract are not understood yet. It is not clear also whether exogenous prion proteins serve as activators of host innate immune responses or whether the immune system mounts a protective response against prion proteins. To address these questions we added moPrP into the mucosal side of an Ussing chamber system and analyzed gene expression related to inflammation and antibacterial responses. The results of gene expression profiles are shown in Table 1. The network was
Table 1. Antibacterial gene expression in mice colon according to the treatment. Results of gene expression are shown as fold change (FC) relative to CTR group

Gene	Description	LPS	M	PrP	LPS	M	PrP	M	CTR
Toll-like Receptor Signaling									
Tlr1	Toll-like receptor 1	1.20**	1.32**	1.32**	1.44***	1.32**			
Tlr6	Toll-like receptor 6	2.87	1.69	1.69	3.46	4.21			
Tlr9	Toll-like receptor 9	7.76	2.11	4.19	3.31	3.11			
NOD-like Receptor Signaling									
Nod1	Nucleotide-binding oligomerization domain containing 1	-1.05	1.67	1.68	1.45	3.32***			
Nod2	Nucleotide-binding oligomerization domain containing 2	-1.06	1.67	1.68	1.45	3.32***			
Nod2	Nucleotide-binding oligomerization domain containing 2	-1.06	1.67	1.68	1.45	3.32***			
Mitogen-activated protein kinase kinase									
Map3k7	Mitogen-activated protein kinase kinase 7	-1.05	1.32	1.66***	1.44***	1.66**			
Interferon regulatory factor									
Irf5	Interferon regulatory factor 5	3.75**	2.11	1.32	1.15	1.15			
Mitogen-activated protein kinase									
Mapk14	Mitogen-activated protein kinase 14	1.19	1.04	1.05	1.44***	1.32**			
Mapk8	Mitogen-activated protein kinase 8	1.20	1.32	1.32	1.44***	1.66			
Apoptosis									
Card6	Caspase recruitment domain family, member 6	1.92	1.32	2.08	2.29*	2.54			
Card9	Caspase recruitment domain family, member 9	1.18	1.05	1.20	1.15	1.15			
Casp1	Caspase 1	1.20	1.32	1.32	1.44***	1.32**			
Casp8	Caspase 8	1.20	1.32	1.32	1.44***	1.66			
Mitogen-activated protein kinase									
Mapk8	Mitogen-activated protein kinase 8	1.20	1.32	1.32	1.44***	1.32**			
Myd88	Myeloid differentiation primary response gene 88	-1.33**	1.32**	1.32**	1.44***	2.29*			
Inflammatory response									
Myd88	Myeloid differentiation primary response gene 88	-1.33**	1.32**	1.32**	1.44***	2.29*			
Nlrp3	NLR family, pyrin domain containing 3	6.03***	4.16	4.17	2.85	2.67			
Rela	Rel A	1.50	1.66	1.33	1.44	1.32**			
Tlr3	Toll-like receptor 3	-1.05	1.69	1.67	1.46	1.46**			
Tollip	Toll-interleukin 1 receptor (TIR) domain-containing adapter protein	-1.20	1.05	1.32	1.05	1.05			

(Continued on next page)
Table 1. Antibacterial gene expression in mice colon according to the treatment. Results of gene expression are shown as fold change (FC) relative to CTR group (Continued)

Gene\(^{\text{a}}\)	Description\(^{\text{a}}\)	LPS M	LPS S	PrP M	PrP M + LPS M	PrP M + LPS S
Cytokines and Chemokines						
Ccl3	Chemokine (C-C motif) ligand 3	3.81	3.31*	1.02	1.44	1.02
Il18	Interleukin 18	1.51	1.31	1.66	2.28	1.65*
Antimicrobial peptides						
Camp	Cathelicidin antimicrobial peptide	1.15	1.29	1.33	-1.10	2.12*
Slpi	Secretory leukocyte peptidase inhibitor	3.83	5.26	10.55*	7.30	42.24***

Within a row, fold-change with subscript were different relative to CTR group * \(P \leq 0.05 \), ** \(P \leq 0.01 \), *** \(P \leq 0.001 \).

\(^{\text{a}}\)Gene symbol and description. **CTR**: Pyrogen-free water was added to the mucosal side of the chamber at 700 \(\mu \)L; **LPS M**: Lipopolysaccharide (LPS) from *E. coli* 0111:B4 was added to the mucosal side of the Ussing chamber at final concentration of 100 \(\mu \)g/mL; **LPS S**: LPS was added to the serosal side of the Ussing chamber at final concentration of 100 \(\mu \)g/mL; **PrP M**: moPrP (29-232) was added to the mucosal side of Ussing chamber at final concentration of 100 \(\mu \)g/mL; **PrP M + LPS M**: moPrP and LPS were applied to the mucosal compartment at final concentrations of 100 \(\mu \)g/mL; **PrP M + LPS S**: moPrP (100 \(\mu \)g/mL) was added to the mucosal side LPS (100 \(\mu \)g/mL) was added to the serosal side of the chambers.
visualized using Cytoscape version 3.0 (Fig. 1). Every node represents a gene and gene expression data, whereas their P-values are integrated as node attributes. Indeed when moPrP was applied to the mucosal side of the chamber (PrP M), 6 genes were significantly affected by the treatment. Four of them related to NLR signaling were up-regulated including Irf5, Map3k7, Akt1, and Sugt1 (P ≤ 0.05, p ≤ 0.001, p ≤ 0.01, p ≤ 0.01, respectively) compared to the control (CTR) group. Casp1, which is related to apoptosis, was down-regulated (p ≤ 0.05) and the antimicrobial peptide Slpi exhibited a 10-fold upregulated expression (p ≤ 0.05) (Table 1).

Further network analyses were performed to detect putative functional modules. The jActiveModules plugin from Cytoscape identified connected sections of the network in which the nodes have significant p values with a Z-score = 3.2 (Irf5, Map3k7, Akt1, Sugt1, Slpi and Casp1). This analysis indicates a group of nodes that may be co-regulated, suggesting a module whose activity is influenced by the treatment of PrP on the mucosal side of the colon (PrP M, Fig. 1a). To assess if the nodes with a significant p value were enriched biological processes we used the Cytoscape BiNGO plugin. The results of BiNGO in PrP M vs. CTR, revealed significant enrichment for processes relating to regulation of JNK cascade, regulation of stress-activated protein kinase signaling cascade, regulation of cellular response to stress and regulation of MAPK cascade with 2 genes (Akt1 and Map3K7).

Bacterial endotoxin, a cell wall component of all Gram-negative bacteria, is widely accepted as a potent pro-inflammatory agent,
and is ubiquitously present in the gastrointestinal (GI) tract. In this study we evaluated the colon responses to external LPS so that we could compare between LPS alone treatment and combination of LPS and moPrP. Within 40 min of the experiment, application of LPS to the mucosal side of the colon (in the Ussing chamber) up-regulated the expression of 4 genes (Table 1) related to TLR signaling (Tlr6, Irf5; p ≤ 0.05 and p ≤ 0.01, respectively) and inflammatory response (Nlrp3 and Slc11a1; p ≤ 0.001 and p ≤ 0.05, respectively). The jActiveModules plugin did not identify any putative activated module in this treatment. On the other hand, the Gene Ontology (GO) enrichment analysis with BiNGO in 4 upregulated genes in the LPS M group (LPS administered to the mucosal side) vs CTR, revealed significant enrichment for processes related to response to bacteria, activation of macrophages, immune response, activation of cells involved in the immune responses, activation of leucocytes and cytokine production with 3 genes (Tlr6, Nlrp3, and Slc11a1).

Besides administration of LPS to the mucosal side we also tested the effects of LPS administered on the serosal side of the colon (LPS S). The reason for this treatment was to simulate the effects of LPS when it is translocated into the systemic circulation (i.e., during endotoxemia). Administration of LPS to the serosal side of the colon mounted in the Ussing chamber affected the expression of 9 genes. As it is shown in Table 1, TLR signaling genes Tlr9, Irf5, and Ripk1 were up-regulated (p ≤ 0.05). Moreover Nlrp3 and Tollip, which are related to the host immune response, were upregulated (p ≤ 0.05 and p ≤ 0.001, respectively). In addition, it was observed that chemokine gene Ccl3 (p ≤ 0.05) and Sugt1 were up-regulated (p ≤ 0.001). On the contrary, the NLR signaling gene Nod2 expression and Card9, which is involved in apoptosis, were downregulated (p ≤ 0.05). The jActiveModules plugin identified one putative activated module (Z-score = 4.15) containing 11 significant genes (Fig. 1c). The GO enrichment analysis with BiNGO in PrP M + LPS M of the Ussing chamber was associated with modified expression of 12 genes, where 11 of them were upregulated and only (Card9) was down-regulated (Table 1). Toll-like receptor (TLR) signaling genes Tlr1, Map3k7, and Akt1 were up-regulated (p ≤ 0.001) and so were the downstream signal transduction genes Mapk14 and Mapk8 (p ≤ 0.001). Additionally, 4 genes related to apoptosis Card6, Ira1, Nfkbia, and Jun were overexpressed (p ≤ 0.05, p ≤ 0.001, p ≤ 0.05, and p ≤ 0.01, respectively) while Card9 remained downregulated (p ≤ 0.001). The inflammatory response genes Tollip and Rac1 were also upregulated (p ≤ 0.001). The jActiveModules plugin identified one putative activated module (Z-score = 4.15) containing 11 significant genes (Fig. 1c). The GO enrichment analysis with BiNGO in PrP M + LPS M vs CTR, revealed the most significant enrichment for processes related to signal transmission via a phosphorylation event, intracellular protein kinase cascade, intracellular signal transduction, positive regulation of cellular metabolic processes, and intracellular signaling pathway with 9 genes Map3k7, Akt1, Ira1, Mapk14, Jun, Tlr1, Rac1, Nfkbia, Mapk8. No annotation was found for Sugt1 gene.

Treatment with moPrP on the mucosal side and LPS on the serosal side (PrP M + LPS S) affected the highest number of genes, causing a dramatic response in gene expression. Twenty-one genes were up-regulated and only Casp1 remained down-regulated. TLR-signaling genes, (Tlr1, Tlr6, Irf5, Map3k7, Ripk1,
Traf6), NLR-signaling genes (Nod1, Sugt1, Xiap), downstream signal transduction (DST) genes (Mapk14), apoptosis genes (Casp8, Irak1, Tnfrsf1a, Jun), inflammatory response genes (Myd88, Rela, Tirap, Tollip), a cytokine gene (Il18), and antibacterial peptides (Camp and Slpi) were all upregulated (Table 1 for p values). The jActiveModules plugin identified one putatively activated module (Z-score = 3.15) containing 7 significant genes, Rac1, Myd88, Traf6, Irak1, Mapk14, Casp8, and Casp1 (Fig. 1d). The GO enrichment analysis with BiNGO in PrP M+ LPS S vs CTR, revealed the most significant enrichment for processes relating to regulation of immune system, stress-activated protein kinase signaling cascade, response to peptidoglycan, cellular response to lipopolysaccharide, MAPKKK cascade, intracellular signal transduction, and cell surface receptor linked signaling.

In terms of pathways, as it can be observed in Figure 2, the presence of moPrP on the mucosal side of the murine colon affected antimicrobial peptides as well as NLR and TLR pathways. Combining moPrP with LPS either on the mucosal or serosal side, caused dramatic changes in activation of pathways related to cytokine and chemokines, inflammation, apoptosis, DST as well as NLR- and TLR-pathways.

Protein measurements

Data on 2 colon protein concentrations are shown in Figure 3. Concentrations of the Camp protein (Fig. 3a), were significantly greater in PrP M treatment compared to PrP M + LPS S (1.45 ± 0.05 ng/μL vs 1.18 ± 0.05 ng/μL; p < 0.05). Concentration of colon Slpi also was affected by the treatment (p < 0.05). The Slpi protein showed greater concentrations in mice due to LPS M treatment.

FIGURE 2. Colon pathways affected by treatments. AMP (Antimicrobial peptide); Cyt+ (Chem Cytokines and chemokines); Inflamm (Inflammation); Apo (Apoptosis); DST (Downstream signal transduction); NLR (NOD-like receptor); TLR (Toll like receptor).

FIGURE 3. Protein concentrations in ng/mL of (a) Camp and (b) Slpi in mice colonic tissues. CTR: Pyrogen-free water was added to the mucosal side of the chamber at 700 μL; LPS M: Lipopolysaccharide (LPS) from E. coli 0111:B4 was added to the mucosal side of the Ussing chamber at a final concentration of 100 μg/mL; LPS S: LPS was added to the serosal side of the Ussing chamber at a final concentration of 100 μg/mL; PrP M: moPrP (29-232) was added to the mucosal side of Ussing chamber at a final concentration of 100 μg/mL; PrP M + LPS M: moPrP and LPS were applied to the mucosal compartment at a final concentrations of 100 μg/mL; PrP M + LPS S: moPrP (100 μg/mL) was added to the mucosal side LPS (100 μg/mL) was added to the serosal side of the chambers.
compared to CTR, LPS S, PrP M, and PrP M + LPS M treatments (33.73 ± 2.77 ng/μL vs 9.01 ± 2.29 ng/μL, 19.31 ± 3.24 ng/μL, 16.04 ± 3.24 pg/μL and 19.23 ± 3.24 ng/μL respectively) (p < 0.05). In addition, the concentration of Slpi in the PrP M + LPS S was greater compared to the CTR group 22.47 ± 3.24 ng/μL vs 9.01 ± 2.29 ng/μL (Fig. 3b).

DISCUSSION

Although PrPC is widely expressed in the epithelial cells of the intestinal tract the functions of prion protein in the GI tract are not known yet. Several studies have used microarray analyses to understand the functions of PrPC in the brain and mounting evidence indicates that PrP causes alterations in the expression of various genes related to proteolysis, protease inhibition, cell growth, apoptosis, signal transduction, cell adhesion, and immune responses.16-18 Our hypothesis was that recombinant moPrP alone or in combination with LPS might affect the expression of intestinal tissue genes (i.e., colon genes) related to innate immunity and antibacterial responses in FVB/N mice using an Ussing chamber model. The reason for combining moPrP with LPS was that recently we demonstrated that LPS was able to convert moPrP instantly and under normal physiological and environmental conditions into a β-rich isoform and resistant to proteinase K, which is biophysically similar to the scrapie form of the prion protein (PrPSc).15

Indeed our results clearly showed that the administration of moPrP to the mucosal side of the colon up-regulated 5 genes (Irf5, Map3k7, Act1, Sugt1, including the antimicrobial peptide Slpi) and downregulated the Casp1 when compared to the CTR group. In addition, further analysis of the PrP M gene network revealed Map3k7 and Act1 as putative activated nodes. Furthermore, results from BiNGO analysis showed significant enrichment for processes relating to regulation of the JNK cascade, regulation of the stress-activated protein kinase signaling cascade, regulation of the cellular response to stress, and regulation of the MAPKKK cascade with genes Akt1 and Map3K7. Map3k7 functions as an upstream signaling molecule for MAPKs pathways,19 Mapk8 (JNK1), Mapk14 (p38) and other inflammatory genes.20 The role of MAPKs pathway in the prion disease is not clear. The range of JNK1 and p38 actions in the cell are very complex. Nordstrom et al.21 examined the involvement of JNK and p38 in the formation of PrPSc indicating that JNK and p38 inhibit the formation of PrPSc. They suggested that a balance between intracellular signaling cascades might regulate the replication of prion. Here we report that exogenous prion protein alone might activate the MAPKs cascade activities through up-regulation of Akt1 and Map3K7 expression in the mouse colon.

Application of moPrP to the mucosal side of the colonic tissue upregulated one gene related to NLR signaling (i.e., Sugt1). This gene has been suggested to be a potential biomarker of neuron degeneration in Alzheimer’s disease because a decrease in the number of Sugt1 immunopositive neurons was found in the cerebral cortex of Alzheimer’s patients.22

One of the most interesting effects of moPrP M was the overexpression of Slpi gene. Slpi is an antibacterial protein that is secreted constitutively and in a regulated manner by intestinal epithelial cells.23 Antibacterial properties have been attributed to Slpi as it suppresses bacterial growth and is able to kill both Gram-negative (E. coli) and Gram-positive (Staphylococcus aureus) bacteria.24 Our findings are in agreement with previous research that has suggested a potential role of PrP in the regulation of Slpi gene expression.25 Concentration of colon Slpi protein in the PrP M treatment did not show significant changes with respect to other treatments. These results may be due to post-transcriptional and post-transduction modification processes. In our experiment Slpi showed the highest level of expression in presence of moPrP alone or in combination with LPS thus making the relationship between moPrP and Slpi an interesting subject of further investigation. moPrP on the mucosal side down-regulated expression of Casp1, which is known to cleave and activates pro-IL-1β and pro-IL-18.26 These results suggest that moPrP is
responsible for diminishing pro-inflammatory processes.

Our data also showed that administration of LPS to the mucosal side of the colon tissue, placed in the Ussing diffusion chamber, over-expressed 2 genes related to TLR signaling, Tlr6, and the well-known inflammasome gene Nlrp3. Our data are in agreement with previous research that shows that LPS induces upregulation of Tlr-6 in murine macrophages.27 Of note is the up-regulation of Slc11a1 gene from the inflammatory response pathway, also known as Nramp1, when LPS was administered on the mucosal side of the colon (LPS M). The product of this gene plays an important role in removal of Fe²⁺ and other divalent metals from the microenvironment that are essential for microbial growth. This suggests that colon cells are responding to the presence of LPS by lowering the availability of Fe²⁺ and other metals to reduce the growth of pathogenic bacteria.

Applying LPS to the serosal side of the colon in the Ussing chamber resulted in the over-expression of Tlr9, Irf5, Ripk1, Nlrp3, Sugt1, and Tollip. Meanwhile, Nod2 and Nlrc4 expression was downregulated (Table 1). Interestingly in our study Nod2 expression was down-regulated, whereas Tlr9 was up-regulated, suggesting activation via the MyD88-dependent pathway of Irf5. In support of this result An et al. (2002)28 showed that when macrophages are stimulated with LPS, Tlr9 gene expression is upregulated within 1 h and this expression reaches peak levels after about 3 h. Overall the application of LPS to the serosal side of the colon (LPS S) was associated with the upregulation of inflammasome, TLR- and NLR-signaling, inflammatory responses as well as one chemokine.

Administration of moPrP and LPS to the mucosal side of the colon (PrP M + LPS M), up-regulated genes related to signal transmission via a phosphorylation event, the intracellular protein kinase cascade, intracellular signal transduction, positive regulation of cellular metabolic processes, and intracellular signaling pathways with 9 genes Map3k7, Akt1, Tlr1, Rac1, Mapk14, Mapk8, Jun, Ira1, and Nfkbia. It has been noted that Map3k7 and Akt1, are involved in the activation of pro-inflammatory responses29-31 and that Tlr-1 is important for the production of chemokines related to the migration of dendritic cells (DCs) to the site of inflammation. Tlr-1 signaling in the intestinal epithelium leads to the initiation of DC migration and ultimately the generation of protective Th-17 and IgA immunity against Gram-negative bacterial infection.32 Rac1, an upstream positive modulator of Tnf-α-induced JNK activation, plays an important role in the biological regulation of apoptosis in normal small intestinal epithelial cells.33 Our data showed that this gene was also upregulated. Moreover, Mapk14, Mapk8, and Jun all of which are part of the JNK pathway and Ira1, and Nfkbia which are involved in apoptosis were up-regulated by moPrP M + LPS M. Previously we showed that LPS interacts with moPrP and converts it into a β-rich aggregated isoform that is resistant to proteinase K.15 We speculate that aggregates of moPrP and LPS were probably endocytosed by the colon epithelial cells and potentially induced overexpression of JNK-signaling pathway. JNK activation leads to phosphorylation of transcription factors controlling the apoptotic process,34 thereby resulting in cell death.35 When added alone to the mucosal side of the colon, moPrP did not have an effect on any of the genes related to apoptosis. However, when moPrP was combined with LPS, it affected genes related to apoptosis and regulated cell death. It has been shown that a relatively severe chronic stimulation with LPS exacerbates neuronal death and motor neuron axon degeneration during chronic neurodegeneration.36,37 Our results suggest that the combination of moPrP and LPS on the mucosal side of colonic tissue enhances the apoptotic processes, potentially in an effort to shed intestinal epithelial cells overloaded with LPS. This observation deserves further consideration with regards to the potential role of LPS as a co-factor in prion diseases and neuronal cell death.

The combination of moPrP M + LPS S (i.e., moPrP on the mucosal side and LPS on the serosal side) produced a much broader gene expression response for the colonic tissue. A total of 22 genes and 7 signaling pathways were affected by this treatment. TLR-signaling genes, (Tlr1, Tlr6, Irf5, Map3K7, Ripk1,
Traf6), NLR-signaling genes (Nod1, Sugt1, Xiap), DST genes (Mapk14), apoptosis genes (Casp8, lra1, Tnfrsf1a, Jun), inflammatory response genes (Myd88, Rela, Tirap, Tollip), a cytokine gene (IL18), and antibacterial peptides (Camp and Slpi) were all upregulated. NLR signaling plays a key role in recognizing PAMPs in the intracellular compartment and induces innate immune responses through cytosolic recognition of PAMPs. Once activated, Nod1 induces gene transcription through NF-κB and MAPK signaling pathways. Moreover the death-inducing signaling complex (DISC), which is mediated by the genes Tnfrsf1a and Casp8, and Jun were also up-regulated. This indicates that when moPrP was on the mucosal side and LPS on the serosal side, apoptotic signaling took place. Casp8 has been demonstrated to play a key role in mediating the Fas-induced extrinsic apoptotic pathway. Apoptosis is a vital mechanism in all multicellular organisms allowing them to readily shed cells in the GI tract. Therefore it appears that when moPrP was applied to the mucosal side of the colon tissue and LPS on the serosal side, apoptotic signaling took place. Casp8 expression remained downregulated and IL18 was upregulated showing that IL18 can also be intracellularly activated by a caspase-1-independent mechanism.

In addition, the expression of the antibacterial peptides Slpi and Camp was up-regulated by moPrP M + LPS S compared to the control group. The results of Slpi protein measurement in this treatment are in agreement with the gene expression data. This indicates that moPrP in combination with LPS might induce antibacterial and protective activities possibly through the up-regulation of Slpi and Camp. Beyond the previously mentioned functions of Slpi, Camp (cathelicidin antimicrobial peptide) is an important antibacterial compound produced by intestinal epithelial cells that has been shown to be important for survival of mice infected with E. coli O157:H7. In agreement with Hyeon (2012) it is postulated that moPrP might play a role in induction of apoptosis and in the activation of antibacterial responses in the presence of LPS or other DAMPs in the microenvironment.

Overall, the results from this study showed that applying moPrP to the mucosal side of the colon of male FVB/N mice using an Ussing chamber system induces expression of genes related to the JNK and p38 signaling cascade. In addition, moPrP strongly upregulated expression of the antimicrobial peptide Slpi, which suggests that the prion protein might serve as a "danger signal" for the presence of bacteria. The only gene down-regulated by moPrP M was Casp1, implying another role for moPrP in the negative control of inflammation. Application of moPrP and LPS to the mucosal side of the colon led to the over-expression of genes involved in the activation of pro-inflammatory responses and the attraction of DCs to the site of inflammation. Interestingly this treatment induced genes that are associated with the apoptosis of intestinal epithelial cells. Administration of moPrP to the mucosal side and LPS to the serosal compartment altered the highest number of genes (i.e., 22). These were related to TLR- and NLR-signaling, which are involved in the recognition of exogenous and endogenous bacterial molecules and the initiation of innate proinflammatory responses. Combinations of these treatments also induced genes related to apoptosis and antimicrobial peptides (Camp and Slpi).

More research is warranted to better understand the physiological functions of the prion protein in the GI tract. In particular, further examination of its role in the intestinal tract and in the activation of innate immunity and antibacterial responses in the GI tract are required. This work also suggests a possible role of LPS as a potential co-factor of moPrP in inducing intestinal epithelial cell death.

MATERIALS AND METHODS

Animals and experimental design. To test our hypotheses a total of 16 male mice of the FVB/N strain were used to collect colon samples for 2 consecutive experiments (n = 8 per experiment). The data from these 2 consecutive experiments are shown in Table 1. The reason...
for conducting 2 experiments was that the length of the mouse colon isolated from these animals was not sufficient to accommodate all the planned treatments. Mice were euthanized at age of 67 ± 7 days. All mice were fed the same diet before euthanization. The diet composition is shown in Table 2. Mice were all healthy with no clinical signs of disease prior to euthanasia. All experimental procedures were approved by the University of Alberta Animal Care and Use Committee for Health Sciences and all the animals were cared for in accordance with the guidelines of the Canadian Council on Animal Care.45

Following euthanasia, each colon (9-12 cm) was removed, and washed free of feces with Krebs buffer (Table 3). All the colons were immersed into a Krebs buffer solution and mounted into a thermostated (37°C) Ussing chamber system (6 ports in parallel per chamber), EasyMount Diffusion Chambers (Harvard Apparatus, Montreal, QC, Canada) within 40 min from the time of collection. The colon tissues (approximately 1.5 cm²) were mounted in different Ussing chambers to expose a tissue area of 0.3 cm². Krebs buffer solution (7 mL) with an optimal pH (i.e., 7.4) for murine colon tissue was added to the mucosal and serosal sides of the Ussing chamber. The chambers in these studies were gassed continuously with 95% O₂ and 5% CO₂, and the temperature kept at 37°C. Colonic tissues were allowed to equilibrate for 15 min prior to initiating the experiments. The electrophysiological responses and ionic fluxes were measured during the entire experimental procedure using a VCC MC6 multichannel voltage/current clamp and A&A software (data not shown; Harvard Apparatus, Montreal, QC, Canada). The entire Krebs solution was collected on both compartments of the Ussing chamber 40 min after the initiation of the experiment. All colonic tissues were collected at the end of the experimental procedures and stored at −86°C until gene expression analyses were performed.

Two consecutive experimental setups were established (n = 8 mice per experimental setup). In these experiments, the mucosal compartments of the chambers in the control groups (CTR) were supplemented with 700 μL of pyrogen-free dH₂O. Treatment 1 consisted of adding 700 μL of a pyrogen-free dH₂O solution containing 1 mg/mL of LPS from *Escherichia coli* O111:B4 strain (Sigma-Aldrich Co, Oakville, ON, Canada) on the mucosal side of the chamber. The chambers in these studies were gassed continuously with 95% O₂ and 5% CO₂, and the temperature kept at 37°C. Colonic tissues were allowed to equilibrate for 15 min prior to initiating the experiments. The electrophysiological responses and

| Table 2. Composition of diet fed to the mice |
|----------------|------------|
| Nutrient | Amount (%) |
| Protein | 20 |
| Fat (ether extract) | 5 |
| Fat (acid hydrolysis) | 5.6 |
| Total Saturated Fatty Acids | 0.93 |
| Total Monosaturated Fatty Acid | 0.99 |
| Fiber (Crude) | 4.7 |
| Nitrogen-Free Extract (by difference) | 52.9 |
| Total Digestive Nutrients | 76.2 |
| Gross Energy, kcal/gm | 4.07 |
| Physiological fuel Value, kcal/gm | 3.41 |
| Metabolizable Energy, kcal/gm | 3.07 |
| Ash | 6.1 |

| Table 3. Composition of Krebs buffer solution |
|----------------|------------|
| Composition | Concentration (mM) | Amount (g) |
| NaCl | 117 | 6.83748 |
| KCl | 4.8 | 0.35784 |
| CaCl₂ | 2.5 | 0.367525 |
| MgCl₂ | 1.2 | 0.243972 |
| NaHCO₃ | 25 | 2.10025 |
| NaH₂PO₄ | 1.2 | 0.143952 |
| Glucose | 11 | 1.98176 |
700 μL of a pyrogen-free dH2O solution containing moPrP at 1 mg/mL was added to the mucosal compartment (PrP M + LPS S). Before adding 700 μL of the treatment solution the same amount was removed from the same side of the Ussing chamber. Final concentrations of moPrP and LPS in the Ussing chambers for all treatments in both experiments were 100 μg/mL each. Colon samples from each treatment were collected after 40 min and analyzed.

RNA extraction and real-time PCR

Total RNA was extracted from all colonic tissues using RNeasy Mini Kit (Qiagen, Mississauga, ON, Canada). The concentration and purity of the RNA was determined using a NanoDrop 8000 spectrophotometer (Thermo Fisher Scientific, Mississauga, ON, Canada). To eliminate the possible amplification of contaminating genomic DNA, DNase treatment was carried out and total RNA (1 μg) was reverse-transcribed to cDNA using the RT^2 First Strand Kit (Qiagen, Mississauga, ON, Canada) according to the manufacturer’s instructions. The expression profiling of 84 key innate immune response genes in all colon tissues was determined by qPCR using a StepOnePlus ABI Prism platform (Applied Biosystems, Burlington, ON, Canada) and the Mice Antibacterial Response PCR Array Kit (Qiagen, Mississauga, ON, Canada). The kit measures 84 genes involved in signaling pathways such as toll-like receptor (TLR) signaling, nod-like receptor (NLR) signaling, bacterial pattern recognition receptors (PRRs), downstream signal transduction (DST), apoptosis, inflammatory response, cytokines and chemokines, and antimicrobial peptides. The kit contains primers for 84 genes and 12 controls (5 housekeeping genes including Actin β (Actb), Beta-2 microglobulin (B2m), Glyceraldehyde-3-phosphate dehydrogenase (Gapdh), Glucuronidase β (Gusb), Heat shock protein 90 α (cytosolic), class B member 1 (Hsp90ab1) as well as genomic DNA contamination-, reverse transcription-, and positive PCR-controls. The qPCR was carried out in a total of 25 μL PCR mixture, containing RT^2 SYBR Green Rox™ qPCR Master Mix (Qiagen, Mississauga, ON, Canada) and cDNA, according to the manufacturer’s recommendations. The amplification conditions were an initial step of 10 min at 95°C, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. The specificity of the amplification products was determined using a melting curve. qPCR data were normalized to the housekeeping genes and quantified using the delta-delta comparative threshold (Ct) method (ΔΔCt), employing an analysis tool from Qiagen. Normalized qPCR data were transformed from fold-change and presented in n-fold regulation relative to the CTR group according to the manufacturer’s recommendation.

Gene expression data were used to visualize the molecular changes that occurred for each treatment and network visualization was achieved by means of Cytoscape® (www.cytoscape.org) version 3.0.46 Analysis of network features was carried out using the jActiveModules plugin which identifies connected sections of the network in which the nodes have significant p-values. A module was considered significant when Z-score was greater than 3. This indicates a group of nodes that may be co-regulated, suggesting a module whose activity is influenced by the experimental context of the expression data. To determine which Gene Ontology (GO) terms were significantly over-represented in a set of genes Biological Networks Gene Ontology tool (BiNGO) was used.

Protein analysis

Commercially available ELISA kits were used to determine concentrations of proteins CAMP and SLPI in the colon samples (CAMP, BlueGene Biotech Co., Ltd., Shanghai, China, and SLPI Wuhan EIAab Science Co., Ltd. Wuhan, China). The sensitivity of the assay for CAMP measurement was 0.1 ng/mL. According to the manufacturer, the minimum detection limit of the assay for SLPI was 7.8-500 pg/mL as defined by the linear range of standard curves. All samples were tested in duplicate, as described by the manufacturer. Briefly,
standards and samples were incubated in a coated plate, followed by washing and addition of 100 μL during 2 h, followed by removing the liquid and addition of 100 μL of detection antibody for 1 h. The incubation with each of these reagents was followed by multiple washings with washing buffer (CAMP, 5 times full well, and SLPI 3 times adding 350 μL of washing buffer). The washing procedure was followed by adding 100 μL of secondary antibodies in the SLPI test. The optical densities were measured at 450 nm with a microplate spectrophotometer (Spectramax 340PC384 Molecular Devices Corporation, Sunnyvale, CA).

Statistical Analyses. Gene expression data are expressed as fold change compared to the CTR group. All statistical analyses were performed using Microsoft Excel software following manufacturer’s recommendations (www.sabioscience.com). Data for protein concentrations are expressed as mean value and SEM and were analyzed using the mixed procedures of SAS (SAS Institute Inc., Cary, NC) according to the model shown below:

\[Y_{ij} = \mu + S_i + e_{ij} \]

Where \(Y_{ij} \) = observations for dependent variables, \(\mu \) = overall mean, \(S_i \) = fixed effect treatment, sequence \(i \) (i = 1 to 6), \(e_{ij} \) = random residual effect. Results were considered significant at \(P \leq 0.05 \).

DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

No potential conflicts of interest were disclosed.

ACKNOWLEDGMENTS

We are thankful to the staff of the Center for Prions and Protein Folding Diseases at the University of Alberta for providing the mice used for these experiments. The authors also wish to thank Ashenafi Abera for contributing to preparation and purification of the moPrP used in these experiments.

FUNDING

The authors would like to thank Alberta Livestock and Meat Agency Ltd. (ALMA), Alberta Prion Research Institute (APRI), and Natural Sciences and Engineering Research Council (NSERC) of Canada for providing financial support for this project.

REFERENCES

1. Anantharam V, Kanthasamy A, Choi CJ, Martin DP, Latchoumycandane C, Richt JA, Kanthasamy AG. Opposing roles of prion protein in oxidative stress- and ER stress-induced apoptotic signaling. Free Radic Biol Med 2008; 45:1530-41; PMID:18835352; http://dx.doi.org/10.1016/j.freeradbiomed.2008.08.028

2. Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, Steele AD, Toyka KV, Nave KA, Weis J, Aguzzi A. Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 2010; 13:310-8; PMID:20098419; http://dx.doi.org/10.1038/nn.2483

3. Papassotiropoulos A, Wollmer MA, Aguzzi A, Hock C, Nitsch RM, de Quervain DJ. The prion gene is associated with human long-term memory. Hum Mol Genet 2005; 14:2241-6; PMID:15987701; http://dx.doi.org/10.1093/hmg/ddi228

4. Zhang CC, Steele AD, Lindquist S, Lodish HF. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci USA 2006; 103:2184-9; PMID:16467153; http://dx.doi.org/10.1073/pnas.0510577103

5. Morel E, Fouquet S, Chateau D, Yvernault L, Frobert Y, Pincon-Raymond M, Chambaz J, Pilott T, Roussel M. The cellular prion protein PrPc is expressed in human enterocytes in cell-cell junctional domains. J Biol Chem 2004; 279:1499-05; PMID:14576159; http://dx.doi.org/10.1074/jbc.M3085778200

6. Petit CS, Barreau F, Besnier L, Gandille B, Chateau D, Roy M, Berrebi D, Svrcek M, Cardot P, Roussel M, et al. Gastroenterology 2012; 143:122-32; PMID:22446194; http://dx.doi.org/10.1053/j.gastro.2012.03.029

7. Roucou X, LeBlanc AC. Cellular prion protein neuroprotective function: implications in prion diseases. J Mol Med 2005; 83:3-11; PMID:15645198; http://dx.doi.org/10.1007/s00109-004-0605-5
8. Martin GR, Keenan CM, Sharkey KA, Jirik FR. Endogenous prion protein attenuates experimentally induced colitis. Am J Pathol 2011; 179:2290-01; PMID:21924230; http://dx.doi.org/10.1016/j.ajpath.2011.07.025

9. Pasupuleti M, Roupe M, Rydengard V, Surewicz K, Surewicz WK, Chalupka A, Malmsen M, Sørensen OE, Schmidtchen A. Antimicrobial activity of human prion protein is mediated by its N-terminal region. PLoS One 2009; 10:e7358; PMID:19080501; http://dx.doi.org/10.1371/journal.pone.0007358

10. Spinner DS, Cho IS, Park SY, Kim JI, Meeker HC, Ye X, Lafauci G, Kerr DJ, Flory MJ, Kim BS, et al. Accelerated prion disease pathogenesis in Toll-like receptor 4 signalling-mutant mice. J Virol 2008; 82(21):10701-08; PMID:18715916; http://dx.doi.org/10.1128/JVI.00522-08

11. Ishibashi D, Atarashi R, Nishida N. Protective role of cellular prion-related protein in vitro and during inflammatory skin diseases. Am J Path 1998; 153:1353-58; PMID:9811324; http://dx.doi.org/10.1016/S0002-9440(98)065720-3

12. Konturek PC, Bazela K, Kukharskyy V, Bauer M, Hahn EG, Schuppan D. Helicobacter pylori upregulates prion protein expression in gastric mucosa: a possible link to prion disease. World J Gastroenterol 2005; 11:7651-56; PMID:16437693

13. Seeger H, Heikenwalder M, Zeller N, Kranich J, Schwarz P, Gaspert A et al. Coincident scrapie infection and nephritis lead to urinary prion excretion. Science 2005; 310:324-26; PMID:16224026; http://dx.doi.org/10.1126/science.1118829

14. Pamer J, Weninger W, Tschachler E. Human keratinocytes express cellular prion-related protein in vitro and during inflammatory skin diseases. Am J Path 1998; 153:1353-58; PMID:9811324; http://dx.doi.org/10.1016/S0002-9440(98)065720-3

15. Saleem F, Bjornsdal TC, Ladner CL, Perez-Pineiro J, Ametaj BN, Wisniewski N, Dyck MJ, Schiavinato J, Brough D. Lipopolysaccharide induced conversion of prion protein. Prion 2014; 8:221-32; PMID:24819168; http://dx.doi.org/10.1177/1750847214526526

16. Xiang W, Windl O, Wunsch G, Dugas M, Kohnmann A, Dierkes N, Westner IM, Kretzschmar HA. Identification of differentially expressed genes in scrapie-infected mouse brains by using global gene expression technology. J Virol 2004; 78:11051-60; PMID:15452225; http://dx.doi.org/10.1128/JVI.78.20.11051-11060.2004

17. Sørensen G, Medina S, Parchialuk D, Phillipson C, Robertson C, Booth S A. Comprehensive transcriptional profiling of prion infection in mouse models reveals networks of responsive genes. BMC Genomics 2008; 9:114; PMID:18315872; http://dx.doi.org/10.1186/1471-2164-9-114

18. Filali H, Martin-Burriel I, Harders F, Varona L, Lya- hyai J, Zaragoza P, Pumarola M, Badiola JJ, Bossers A, Bolea R. Gene expression profiling and association with prion-related lesions in the medulla oblongata of symptomatic natural scrapie animals. PLoS One 2011; 6:e19909; PMID:21629698

19. Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 2005; 6:1087-95; PMID:16186825; http://dx.doi.org/10.1038/ni1255

20. Hong S, Lim S, Li AG, Lee C, Lee YS, Lee EK et al. Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat Immunol 2007; 8:504-13; PMID:17384642; http://dx.doi.org/10.1038/ni1451

21. Nordstrom E, Fisone G, Kristenson K. Opposing effects of ERK and p38-JNK MAP kinase pathways on formation of prions in GT1-1 cells. FASEB J 2009; 23:613-22; PMID:18824519; http://dx.doi.org/10.1096/fj.08-115360

22. Spiechowicz M, Bumstein HG, Dobrowolny H, Lesniak W, Mawrin C, Bogerts B, Kuźniacki J, Filipak P. Density of Sgt1-immunopositive neurons is decreased in the cerebral cortex of Alzheimer’s disease brain. Neurochem Int 2006; 49:487-93; PMID:16698122; http://dx.doi.org/10.1016/j.neuint.2006.03.009

23. Si-Tahar M, Merlin D, Sitaraman S, Madara JL. Constitutively and regulated secretion of secretory leucocyte proteinase inhibitor by human intestinal epithelial cells. Gastroenterol 2000; 118:1061-71; PMID:10833481; http://dx.doi.org/10.1016/S0016-5085(00)70359-3

24. Hiemstra PS, Maassen R J, Stolk J, Heinzel-Wieland R, Steffens GJ, Dijkman JH. Antibacterial activity of antileukoprotease. Infect Immun 1996; 64:4520-24; PMID:8890201

25. Khalilé M, Young R, Passet B, Halliez S, Vilotte M, Jaffrezic F, Marthey S, Béringue V, Vaiman D, Le Provost F, et al. Transcriptomic analysis brings new insight into the biological role of the prion protein during mouse embryogenesis. PLoS One 2011; 6:e23253; PMID:21858045; http://dx.doi.org/10.1371/journal.pone.0023253

26. Denes A, Lopez-Castejon G, Brough D. Caspase-1: is it-1 just the tip of the ICEberg? Cell Death Dis 2012; 3:e338; PMID:22764097; http://dx.doi.org/10.1038/cddis.2012.86

27. Nhu QM, Cuesta N, Vogel SN. Transcriptional regulation of lipopolysaccharide (LPS)-induced Toll-like receptor (TLR) expression in murine macrophages: role of interferon regulatory factors 1 (IRF-1) and 2 (IRF-2). J Endot Res 2006; 12:285-95; PMID:17059692; http://dx.doi.org/10.1177/09680519060120050401

28. Sorensen G, Medina S, Parchialuk D, Phillipson C, Robertson C, Booth S A. Comprehensive transcriptional profiling of prion infection in mouse models reveals networks of responsive genes. BMC Genomics 2008; 9:114; PMID:18315872; http://dx.doi.org/10.1186/1471-2164-9-114

29. Filali H, Martin-Burriel I, Harders F, Varona L, Lyahyai J, Zaragoza P, Pumarola M, Badiola JJ, Bossers A, Bolea R. Gene expression profiling and association with prion-related lesions in the medulla oblongata of symptomatic natural scrapie animals. PLoS One 2011; 6:e19909; PMID:21629698
28. An H, Xu H, Yu Y, Zhang M, Qi R, Yan X, Liu S, Wang W, Guo Z, Qin Z, et al. Up-regulation of TLR9 gene expression by LPS in mouse macrophages via activation of NF-kappaB, ERK and p38 MAPK signal pathways. Immunol Lett 2002; 81:165-9; PMID:11947920; http://dx.doi.org/10.1016/S0165-2478(02)00010-X

29. Liu HH, Xie M, Schneider MD, Chen ZJ. Essential role of TAK1 in thymocyte development and activation. Proc Nat Acad Sci 2006; 103:11677-82; PMID:16857737; http://dx.doi.org/10.1073/pnas.0603089103

30. Tang M, Wei X, Guo Y, Wei W, Xia Z, Diaz M, Akira S, Zhang J. TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice. J Exp Med 2008; 205:1611-9; PMID:18573910; http://dx.doi.org/10.1084/jem.20080297

31. Schuman J, Chen Y, Podd A, Yu M, Liu HH, Wen R, Chen ZJ, Wang D. A critical role of TAK1 in B-cell receptor-mediated nuclear factor kappaB activation. Blood 2009; 113:4566-74; PMID:19196865; http://dx.doi.org/10.1182/blood-2008-08-176057

32. Sugiuira Y, Kamdar K, Khakpour S, Young G, Karpus WJ, DePaolo RW. TLR-1 induced chemokine production is critical for mucosal immunity against Yersinia enterocolitica. Mucosal Immun 2013; 6:1101-9; PMID:23443468

33. Jin S, Ray RM, Johnson LR. Rac1 mediates intestinal epithelial cell apoptosis via JNK. Am J Physiol Gastrointest Liver Physiol 2006; 291:1137-47; PMID:16798728; http://dx.doi.org/10.1152/ajpgi.00031.2006

34. Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene 2008; 27:6245-51; PMID:18931691; http://dx.doi.org/10.1038/onc.2008.301

35. Bogoyevitch MA, Boehm I, Oakley A, Ketterman AJ, Barr RK. Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential. Biochim Biophys Acta 2004; 1697:89-101; PMID:15023353; http://dx.doi.org/10.1016/j.bbaap.2003.11.016

36. Nguyen MD, D’Aigle T, Gowing G, Julien JP, Rivest S. Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. J Neurosci 2004; 24:1340-49; PMID:14960605; http://dx.doi.org/10.1523/JNEUROSCI.4786-03.2004

37. Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 2005; 25:9275-84; PMID:16207887; http://dx.doi.org/10.1523/JNEUROSCI.2614-05.2005

38. Park JH, Kim YG, Shaw M, Kanneganti TD, Fujimoto Y, Fukase K, Inohara N, Núñez G. Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. J Immunol 2007; 179:514-21; PMID:17579072; http://dx.doi.org/10.4049/jimmunol.179.1.514

39. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 1996; 85:803-15; PMID:8681376; http://dx.doi.org/10.1016/S0092-8674(00)81265-9

40. Fernandes-Alnemri T, Armstrong RC, Krebs J, Srinivasula SM, Wang L, Bullrich F, Fritz LC, Trapani JA, Tomasselli KJ, Litwack G, et al. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Nat Acad of Sci 1997; 93:7476; PMID:8755496; http://dx.doi.org/10.1073/pnas.93.15.7464

41. Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Ni J et al. FLICE, a novel apoptotic cysteine protease containing two FADD-like domains. Proc Nat Acad Sci 1997; 93:7464; PMID:8755496; http://dx.doi.org/10.1073/pnas.93.15.7464

42. Iimura MR, Gallo L, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF. Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 2005; 174:4901-7; PMID:15814717; http://dx.doi.org/10.4049/jimmunol.174.8.4901

43. Chromek M, Arvidsson I, Karpman D. The antimicrobial peptide cathelicidin protects mice from Escherichia coli O157:H7. PLoS One 2012; 7:46476; PMID:23077510; http://dx.doi.org/10.1371/journal.pone.0046476

44. Hyeon JW, Kim SY, Park JS, Choi B Y, Lee SM, Ju YR, An SS, Kim CK. The association between prion proteins and Abeta(1-42) oligomers in cytotoxicity and apoptosis. Biochem Biophys Res Commun 2012; 424:214-20; PMID:22743555; http://dx.doi.org/10.1016/j.bbrc.2012.06.056

45. Canadian Council on Animal Care. Guide to the care and use of experimental animals. vol. 1; 2nd ed. Ottawa, Ontario, Canada: CCAC; 1993

46. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. CytoScope: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13:2498-04; PMID:14597658; http://dx.doi.org/10.1101/gr.1239303