COMpletely co–bouNded sChur multipli ers

Gilles Pisier

Abstract. A linear map \(u: E \to F \) between operator spaces is called completely co-bounded if it is completely bounded as a map from \(E \) to the opposite of \(F \). We give several simple results about completely co-bounded Schur multipliers on \(B(\ell_2) \) and the Schatten class \(S_p \). We also consider Herz-Schur multipliers on groups.

Mathematics subject classification (2010): 47L07, 47L25.

Keywords and phrases: Completely bounded map; operator space; transposition; multiplier.

REFERENCES

[1] M. Bożejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Unione Mat. Ital. (6) 3-A (1984), 297–302.

[2] E. G. Effros and Z. J. Ruan, Operator Spaces, The Clarendon Press, Oxford University Press, New York, 2000, xvi+363 pp.

[3] U. Haagerup and M. Musat, The Effros–Ruan conjecture for bilinear forms on \(C^* \)-algebras, Invent. Math. 174 (2008), 139–163.

[4] W. Majewski and M. Marciniak, \(k \)-decomposability of positive maps, Quantum probability and infinite dimensional analysis, 362–374, QP–PQ: Quantum Probab. White Noise Anal., 18, World Sci. Publ., Hackensack, NJ, 2005.

[5] M. Marciniak, On extremal positive maps acting between type I factors, arXiv:0812.2311.

[6] G. Pisier, Non-commutative vector valued \(L_p \)-spaces and completely \(p \)-summing maps, Astérisque 247 (1998), vi+131 pp.

[7] G. Pisier, Similarity problems and completely bounded maps, Springer Lecture Notes 1618, Second Expanded Edition. (Incl. the solution to “the Halmos Problem”) (2001), 1–198.

[8] G. Pisier, Introduction to operator space theory, London Mathematical Society Lecture Note Series, 294, Cambridge University Press, Cambridge, 2003, viii+478 pp.

[9] G. Pisier and D. Shlyakhtenko, Grothendieck’s theorem for operator spaces, Invent. Math. 150, 1 (2002), 185–217.

[10] Q. Xu, Operator-space Grothendieck inequalities for noncommutative \(L_p \)-spaces, Duke Math. J. 131 (2006), 525–574.