Mean Field Behavior during the Big Bang for Coalescing Random Walk

Dong Yao
Jiangsu Normal University

THU-PKU-BNU Probability Webinar

Oct. 13, 2021
Joint work with
Jonathan Hermon (University of British Columbia)
Shuangping Li (Princeton University)
Lingfu Zhang (Princeton University)

arXiv preprint: 2105.11585
Coalescing Random Walk (CRW) on a graph G:

- Initially one walker at each vertex of graph G.
- Each walker performs independent continuous time random walk. Jump rate equals 1 along each edge.
- Whenever two walkers meet (collide), they merge into one walker. This walker continues to perform random walk.
CRW

Coalescing Random Walk (CRW) on a graph G:

- Initially one walker at each vertex of graph G.
- Each walker performs independent continuous time random walk. Jump rate equals 1 along each edge.
- Whenever two walkers meet (collide), they merge into one walker. This walker continues to perform random walk.

Can be defined for general Markov chain with jump rate $\{r_{x,y}\}$.

Common choices

- $r_{x,y} = 1[x \sim y]$ for general graph
- $r_{x,y} = 1[x \sim y]/d(x)$ for regular graph
CRW

Coalescing Random Walk (CRW) on a graph G:

- Initially one walker at each vertex of graph G.
- Each walker performs independent continuous time random walk. Jump rate equals 1 along each edge.
- Whenever two walkers meet (collide), they merge into one walker. This walker continues to perform random walk.

Can be defined for general Markov chain with jump rate $\{r_{x,y}\}$.

Common choices

- $r_{x,y} = 1[x \sim y]$ for general graph
- $r_{x,y} = 1[x \sim y]/d(x)$ for regular graph

Motivation: duality with the voter model.
An example

Black = occupied, Green = vacant

Diagram of a triangle with three nodes, two of which are connected by a line.
An example

Black = occupied, Green = vacant
An example

Black = occupied, Green = vacant
An example

Black = occupied, Green = vacant
CRW on the complete graph

G is a complete graph (clique). $r_{x,y} = 1/(n - 1)$.
L_t: # of walkers at time t.
$L_0 = n$. $L_t \to L_t - 1$ at rate $L_t(L_t - 1)/(n - 1)$.
$	au_{\text{coal}}$: (random) coalescence time (only one walker left)
$	au_{\text{coal}} = \sum_{i=1}^{n} e_i (i - 1)/n$.
$e_i, i \geq 1$ are i.i.d. with dist. $\text{Exp}(1)$.
$e_i (i - 1)/n$ is the time it takes for the $n - i + 1$-th coalescence to occur (corresponding to L_t from i to $i - 1$).
Related model: Kingman's coalescent.
$L_0 = \infty$. $L_t \to L_t - 1$ at rate $L_t(L_t - 1)/2$.
CRW on the complete graph

G is a complete graph (clique). $r_{x,y} = 1/(n-1)$.

L_t: # of walkers at time t.

$L_0 = n$. $L_t \to L_t - 1$ at rate $L_t(L_t - 1)/(n-1)$. τ_{coal}: (random) coalescence time (only one walker left)

$$\tau_{\text{coal}} = \sum_{i=1}^{n} \frac{e_i}{i(i-1)/n}.$$

- e_i, $i \geq 1$ are i.i.d. with dist. Exp(1).
- $\frac{e_i}{i(i-1)/n}$ is the time it takes for the $n-i+1$-th coalescence to occur (corresponding to L_t from i to $i-1$).
CRW on the complete graph

G is a complete graph (clique). $r_{x,y} = 1/(n - 1)$.

L_t: # of walkers at time t.

$L_0 = n$. $L_t \rightarrow L_t - 1$ at rate $L_t(L_t - 1)/(n - 1)$. τ_{coal}: (random) coalescence time (only one walker left)

\[
\tau_{\text{coal}} = \sum_{i=1}^{n} \frac{e_i}{i(i-1)/n}.
\]

- $e_i, i \geq 1$ are i.i.d. with dist. Exp(1).
- $\frac{e_i}{i(i-1)/n}$ is the time it takes for the $n - i + 1$-th coalescence to occur (corresponding to L_t from i to $i - 1$).

Related model: Kingman’s coalescent. $L_0 = \infty$. $L_t \rightarrow L_t - 1$ at rate $L_t(L_t - 1)/2$.
Decay of density on the complete graph

Define the expected density (expected fraction of occupied sites)

\[P_t = \frac{\mathbb{E}(L_t)}{n} \]

Determine \(L_t \): the time it takes to make \(h \) coalescences

\[
\sum_{i=n-h+1}^{n} \frac{e_i}{i(i-1)/(n-1)} \sim n \left(\frac{1}{n-h} - \frac{1}{n} \right)
\]

for \(1 \ll h \ll n \). Set this expression to be \(t \), we get

\[L_t = n - h \sim \frac{n}{t+1}. \]

Thus

\[P_t \sim \frac{1}{t+1}. \]
Spatial structure

Often there is a spatial structure.

- \mathbb{Z}^d.
- T^d.
- General vertex transitive graphs.
- Random graphs (e.g., configuration model).
Heuristic argument [van den Berg-Kesten, 2000]

Consider \mathbb{Z}^d. $P_t = P_t(o)$: prob. that origin is occupied at time t. Take $1 \ll \Delta(t) \ll t$.

$$- \frac{dP_t}{dt} = P(o \text{ and } e_1 \text{ occupied at } t)$$

$$\sim \sum_{x,y} P(x \text{ and } y \text{ occupied at } t - \Delta(t)) \times$$

$$P(x + S_{\Delta(t)} = o, y + S'_{\Delta(t)} = e_1, x + S_r \neq y + S'_r, \forall r \leq \Delta(t))$$

$$\sim P_{t-\Delta(t)}^2 \alpha \Delta(t).$$

- x and y are the location of the walkers that later come to o and e_1. S, S': independent random walks starting from o.
- $\alpha \Delta(t)$: the probability that two time-reversed random walk starting from o and e_1 don’t collide by time $\Delta(t)$.
Results on \mathbb{Z}^d

Assuming $P_t \sim P_{t-\Delta(t)}$ and $\alpha_t \sim \alpha_{t-\Delta(t)}$. The heuristic suggests that $P_t \approx 1/(t\alpha_t)$ for moderately large t. This was known to be true for SRW on \mathbb{Z}^d, $d \geq 2$.

Theorem (Bramson-Griffeath, 1980)

Consider the CRW on \mathbb{Z}^d. We have, as $t \to \infty$,

$$P_t \sim \begin{cases} \frac{1}{\pi} \frac{\log t}{t} & d = 2 \\ (\gamma_d t)^{-1} & d \geq 3 \end{cases}$$

where γ_d is the probability that a simple random walk in \mathbb{Z}^d starting from origin never returns to it.
Results on \mathbb{Z}^d

Assuming $P_t \sim P_{t-\Delta(t)}$ and $\alpha_t \sim \alpha_{t-\Delta(t)}$. The heuristic suggests that $P_t \approx 1/(t \alpha_t)$ for moderately large t. This was known to be true for SRW on $\mathbb{Z}^d, d \geq 2$.

Theorem (Bramson-Griffeath, 1980)

Consider the CRW on \mathbb{Z}^d. We have, as $t \to \infty$,

$$P_t \sim \begin{cases} \frac{1}{\pi} \frac{\log t}{t} & d = 2 \\ (\gamma_d t)^{-1} & d \geq 3 \end{cases}$$

where γ_d is the probability that a simple random walk in \mathbb{Z}^d starting from origin never returns to it.

By justifying previous heuristic argument, [van der Berg-Kesten, 2000] proved the same result for $d \geq 3$.

Approximation for coalescence time

\(\pi \): stationary distribution.
Mean meeting time (the time it take for two indep. walkers to meet)

\[t_{\text{meet}} = \mathbb{E}_{\pi^2}(\tau_{\text{meet}}). \]

For complete graph \(t_{\text{meet}} = (n - 1)/2. \)
Approximation for coalescence time

π: stationary distribution.
Mean meeting time (the time it takes for two independent walkers to meet)

$$t_{\text{meet}} = \mathbb{E}_{\pi^2}(\tau_{\text{meet}}).$$

For complete graph $t_{\text{meet}} = (n - 1)/2$.

Aldous and Fill conjectured that for finite transitive graph (transitivity means the graph looks the same from every vertex)

$$\frac{\tau_{\text{coal}}}{t_{\text{meet}}} \sim \sum_{i=2}^{\infty} \frac{e_i}{i(i - 1)/2}.$$

Equality holds for complete graph (replacing ∞ by n). $e_i \sim \text{Exp}(1)$.
Approximation for coalescence time

\(\pi \): stationary distribution.
Mean meeting time (the time it take for two indep. walkers to meet)

\[
t_{\text{meet}} = E_{\pi^2}(\tau_{\text{meet}}).
\]

For complete graph \(t_{\text{meet}} = (n - 1)/2 \).
Aldous and Fill conjectured that for finite transitive graph (transitivity means the graph looks the same from every vertex)

\[
\frac{\tau_{\text{coal}}}{t_{\text{meet}}} \sim \sum_{i=2}^{\infty} \frac{e_i}{i(i - 1)/2}.
\]

Equality holds for complete graph (replacing \(\infty \) by \(n \)). \(e_i \sim \text{Exp}(1) \).
The factor \(i(i - 1)/2 \) counts the number of pairs

- Why exponential?
Aldous-Brown approximation

Lemma (Aldous-Brown, 1992)

For an irreducible reversible Markov chain on a finite state set V with stationary distribution π and $A \subset V$, if we denote the hitting time of A by T_A and its density function w.r.t. the stationary chain by f_{T_A}, then

$$\left| \mathbb{P}_\pi (T_A > t) - \exp \left(- \frac{t}{\mathbb{E}_\pi (T_A)} \right) \right| \leq \frac{t_{\text{rel}}}{\mathbb{E}_\pi (T_A)},$$

and

$$\frac{1}{\mathbb{E}_\pi (T_A)} \left(1 - \frac{2t_{\text{rel}} + t}{\mathbb{E}_\pi (T_A)} \right) \leq f_{T_A}(t) \leq \frac{1}{\mathbb{E}_\pi (T_A)} \left(1 + \frac{t_{\text{rel}}}{2t} \right).$$

Consider the product chain and take A to be the diagonal set. We have $E_\pi (T_A) = t_{\text{meet}}$.
Second Prediction

[Oliveira, 2013] proved the Aldous-Fill conjecture under the condition $t_{\text{mix}} \ll t_{\text{meet}}$ (equivalent to $t_{\text{rel}} \ll t_{\text{meet}}$ due to Hermon). t_{mix} and t_{rel} quantify the rate of convergence to stationary distribution (See Markov Chains and Mixing Times).
Second Prediction

[Oliveira, 2013] proved the Aldous-Fill conjecture under the condition $t_{\text{mix}} \ll t_{\text{meet}}$ (equivalent to $t_{\text{rel}} \ll t_{\text{meet}}$ due to Hermon). t_{mix} and t_{rel} quantify the rate of convergence to stationary distribution (See Markov Chains and Mixing Times).

The time it takes to make h coalescences is about

$$t_{\text{meet}} \sum_{i \geq n-h+1} \frac{e_i}{i(i-1)/2} \sim \frac{2t_{\text{meet}}}{n-h}.$$

$$\frac{2t_{\text{meet}}}{n-h} = t \Rightarrow n - h = \frac{2t_{\text{meet}}}{t}.$$

Hence we have another prediction

$$P_t = \frac{E(L_t)}{n} = \frac{n - h}{n} \sim \frac{2t_{\text{meet}}}{nt}.$$
Equivalence of the two predictions

Two predictions for P_t

$P_t \sim \frac{1}{t \alpha_t}$

where $\alpha_t = r(o) \mathbb{P}_{o, \nu_o}(\tau_{\text{meet}} > t)$ (ν_o is a random neighbor of o)

$P_t \sim \frac{2t_{\text{meet}}}{nt}$ for finite graphs

They are equivalent to each other for many graphs by Kac’s formula (in continuous time) and Aldous-Brown approximation:

$\frac{1}{t_{\text{meet}}} \sim f_{T_A}(t) = \frac{2}{n} \mathbb{P}_{o, \nu_o}(\tau_{\text{meet}} > t)$ for $r(o) = 1$.
Main Results: finite graphs

Theorem (Hermon-Li-Yao-Zhang, 2021)

Two predictions holds as long as $1 \ll t \ll t_{\text{coal}}$ (called the Big Bang regime since the number of particles is evolving rapidly in this regime) for

- transitive graphs G_n such that $\text{diam}(G_n)^2 \ll n/\log n$,
- Configuration Model $\text{CM}(n, D)$ with $3 \leq D < M$.

If D is a constant d then $\text{CM}(n, D)$ is random d-regular graph.
Main Results: finite graphs

Theorem (Hermon-Li-Yao-Zhang, 2021)

Two predictions hold as long as $1 \ll t \ll t_{\text{coal}}$ (called the Big Bang regime since the number of particles is evolving rapidly in this regime) for

- transitive graphs G_n such that $\text{diam}(G_n)^2 \ll n/\log n$,
- Configuration Model $\text{CM}(n, D)$ with $3 \leq D < M$.

If D is a constant d then $\text{CM}(n, D)$ is random d-regular graph.

Remarks:

- For such graphs t_{coal} and t_{meet} both have order n.
- By [Tessera and Tointon, 2019], $\text{diam}(G_n)^2 \ll n/\log n$ implies

$$\lim_{s \to \infty} \lim_{n \to \infty} \sup_{x,y} \int_{s \land t_{\text{rel}}}^{t_{\text{rel}}} p_s(x, y) \, ds = 0.$$
Configuration model

Construction of the configuration model $\mathcal{CM}_n(D)$

- Let D be a probability measure on \mathbb{Z}_+, and $n \in \mathbb{Z}_+$.
- We take n vertices labeled $1, \ldots, n$, and d_1, \ldots, d_n i.i.d. sampled from D.
- For each vertex i we attach d_i half edges to it. Then we get G_n by uniformly matching all half edges, conditioned on $\sum_{i=1}^n d_i$ being even.
Configuration model

Construction of the configuration model $\mathcal{CM}_n(D)$

- Let D be a probability measure on \mathbb{Z}_+, and $n \in \mathbb{Z}_+$.
- We take n vertices labeled $1, \ldots, n$, and d_1, \ldots, d_n i.i.d. sampled from D.
- For each vertex i we attach d_i half edges to it. Then we get G_n by uniformly matching all half edges, conditioned on $\sum_{i=1}^n d_i$ being even.

The local weak limit $\mathcal{UGT}(D)$ of $\mathcal{CM}_n(D)$ is a unimodular Galton-Watson tree where

- the root has offspring distribution D
- later generations have offspring distribution D^*:

$$
P(D^* = k) := \frac{(k + 1)P(D = k + 1)}{\sum_{i=0}^{\infty} iP(D = i)}$$
Main Results: infinite Graphs

Theorem (Hermon-Li-Yao-Zhang, 2021)

The prediction $P_t(o) \sim 1/(t^\alpha)$ as $t \to \infty$ where

$$\alpha = \mathbb{E}(r(o)P_{o,\nu_o}(\tau_{meet} = \infty))$$

holds for

- all transient transitive unimodular graphs, including
 - Cayley graphs
 - amenable graphs (= graphs with subexponential decay of return probability)
- unimodular Galton-Watson tree $UGT(D)$. If D is a constant d then $UGT(D) = \mathbb{T}^d$.
Duality with voter model

Voter model: at rate $r_{x,y}$, x adopts the opinion of y.
A site is occupied in CRW \iff the opinion is not lost in VM.

Figure: Left panel: CRW; right panel: voter model
Proof Sketch of [Bramson-Griffeath, 1980]

\(n_t \): \# walkers that end up at origin at time \(t \).

\(\eta_t \): the voter model starting from different opinions at every site.

\(\hat{N}_t \) := \{ \(x \): \(\eta_t(x) = \eta_t(o) \} \). [Kelly, 1977] gives

\[
\mathbb{P}(\hat{N}_t = j) = j\mathbb{P}(n_t = j), \quad j \geq 0, \quad (\text{i.e., size-biased version of } n_t)
\]

\[
P_t = \mathbb{P}(n_t > 0) = \mathbb{E}(\hat{N}_t^{-1}) = \mathbb{E} \left[\left(\frac{\hat{N}_t}{\mathbb{E}(\hat{N}_t)} \right)^{-1} \right] \mathbb{E}(\hat{N}_t)^{-1}.
\]

\(\mathbb{E}(\hat{N}_t) \) is equal to \(\mathbb{E}(R_{2t}) \) where \(R \) is the range of a random walk.
Proof Sketch of [Bramson-Griffeath, 1980]

\(n_t \): \# walkers that end up at origin at time \(t \).
\(\eta_t \): the voter model starting from different opinions at every site.
\(\hat{N}_t := \{ x : \eta_t(x) = \eta_t(o) \} \). [Kelly, 1977] gives

\[
P(\hat{N}_t = j) = jP(n_t = j), j \geq 0, \text{ (i.e., size-biased version of } n_t)\]

\[
P_t = P(n_t > 0) = \mathbb{E}(\hat{N}_t^{-1}) = \mathbb{E} \left[\left(\frac{\hat{N}_t}{\mathbb{E}(\hat{N}_t)} \right)^{-1} \right] \mathbb{E}(\hat{N}_t)^{-1}.
\]

\(\mathbb{E}(\hat{N}_t) \) is equal to \(\mathbb{E}(R_{2t}) \) where \(R \) is the range of a random walk.

Theorem (Sawyer, 1979)

Consider CRW on \(\mathbb{Z}^d, d \geq 2 \).

\[
\lim_{t \to \infty} \mathbb{E} \left[\left(\frac{\hat{N}_t}{\mathbb{E}(\hat{N}_t)} \right)^k \right] = \frac{(k + 1)!}{2^k}.
\]
A remark from [Bramson-Griffeath,1980]: Sawyer’s theorem comes tantalizingly close to determining the asymptotics of P_t. Gap: the function $f(x) = x^{-1}$ is unbounded near $x = 0$.
Proof Sketch of [Bramson-Griffeath, 1980]-cont’d

A remark from [Bramson-Griffeath, 1980]: Sawyer’s theorem comes tantalizingly close to determining the asymptotics of P_t.

Gap: the function $f(x) = x^{-1}$ is unbounded near $x = 0$.

Theorem (Bramson-Griffeath, 1980)

$$P_t = \begin{cases} O \left(\frac{\log t}{t} \right) & d = 2, \\ O \left(\frac{1}{t} \right) & d \geq 3. \end{cases}$$

Lemma (Bramson-Griffeath, 1980)

Sawyer’s Theorem + upper bound on P_t gives the asymptotics of P_t.

Basically, the upper bound on P_t implies the $\hat{N}_t/E(\hat{N}_t)$ doesn’t have too much mass near 0.
Transform to coalescence probability

Let N_t be the number of walkers that collide with the walker starting at U. $N_0 = 1$.

$$N_t = \sum_x 1[\text{the particle starting at } x \text{ coalesced with } U \text{ by time } t]$$

$$P_t = \mathbb{E}(N_t^{-1}) = [\mathbb{E}(N_t)]^{-1} \mathbb{E} \left[\left(\frac{N_t}{\mathbb{E}(N_t)} \right)^{-1} \right].$$

(A graph rooted at a uniform vertex is unimodular.)
Transform to coalescence probability

Let N_t be the number of walkers that collide with the walker starting at U. $N_0 = 1$.

$$N_t = \sum_x 1[\text{the particle starting at } x \text{ coalesced with } U \text{ by time } t]$$

$$P_t = \mathbb{E}(N_t^{-1}) = \left[\mathbb{E}(N_t)\right]^{-1} \mathbb{E} \left[\left(\frac{N_t}{\mathbb{E}(N_t)} \right)^{-1} \right].$$

(A graph rooted at a uniform vertex is unimodular.)

C: coalescence time for $k+1$ walkers.

$$\mathbb{E}(N_t^k) = \frac{1}{n} \sum_{x_1, \ldots, x_{k+1} \in V} \mathbb{E} \left[1[X_i(0) = x_i, \forall 1 \leq i \leq k + 1] \right]$$

$$\times 1[C(X_1, \ldots, X_{k+1}) \leq t]$$

$$= n^k \mathbb{P}_{\pi \otimes k+1}(C(X_1, \ldots, X_{k+1}) \leq t),$$
Ingredients of the proof

Using the machinery in the proof of \mathbb{Z}^d case by Braomson-Griffeath, it suffices to

- give an upper bound of P_t that differs from the ‘true value’ of P_t by a multiplicative constant,
- show that the coalescence probability

$$P_{\pi^{k+1}}(\mathcal{C}(X_1, \ldots, X_{k+1}) \leq t) \sim (k+1)! \left(\frac{t}{t_{\text{meet}}}\right)^k.$$

Another indication of mean field! B-G proof heavily relies on the specific geometric structure of \mathbb{Z}^d.
Solution

• For the first part, we show that for any $t > 0$,

$$
\inf_{x \in G} \frac{\int_0^t p_s(x, x) ds}{t} \leq P_t \leq \sup_{x \in G} \frac{\int_0^t p_s(x, x) ds}{t}.
$$

where c and C are universal constants.

• For the second part, we use the reversibility of random walk to transform collision probability to non-colliding probability. If two forward paths collide at t then (after reversing time) the backward paths don’t collide in $[0, t]$.
We want to estimate $P_{\pi \otimes k+1}(C(X_1, \ldots, X_{k+1}) \leq t)$.

Consider the case $k = 1$. The probability that X_1 and X_2 collide within time interval $[t, t + dt]$ is about

$$2 \sum_{u, v} P(X_1(t) = u, X_2 \text{ jumps from } u \text{ to } v \text{ in } [t, t + dt])$$

$$\sim 2 \sum_{u, v} P(X_1(t) = u, X_2(t) = v, \text{ no collisions in } [0, t]) r_{v, u} dt$$

$$\sim 2 \sum_u P(\gamma_1(0) = u) r(u) \times$$

$$\sum_v \frac{r_{u, v}}{r(u)} P(\gamma_2(0) = v) P_{u, v}(\gamma_1(s) \neq \gamma_2(s), \forall 0 \leq s \leq t) dt,$$

where γ_1 and γ_2 are the time-reversals of X_1, X_2 on $[0, t]$.
Collision Pattern and Branching Structure

We can imagine γ_1 is the parent of γ_2 and interpret the term $r_{u,v}/r(u)$ as the probability of the particle at u giving birth to a particle at location v. Can be generalized to $k \geq 3$ paths.
If two walkers don't collide in time $O(t_{\text{rel}})$, then they will also not collide before time t.

Lemma

For any $x \neq y$ and $0 < s < t$, the probability that two walkers starting from x and y collide between time s and t is bounded by

$$2 \exp\left(-\frac{s}{t_{\text{rel}}}\right) \frac{\max_z \int_0^{2s} p_s(z, z) \, ds}{\min_z \int_0^{2s} p_s(z, z) \, ds} + \frac{8t}{n} \left(s^{-1} \lor r_{\text{max}}\right).$$

$r_{\text{max}} = \max_x r(x)$. The error is small for $t_{\text{rel}} \ll s \leq t \ll n$.
Open Question

For finite graphs our results (the expectation of the number of occupied sites) can be upgraded to a weak law of large numbers using negative correlation

\[P(\text{both } x \text{ and } y \text{ occupied at } t) \leq P(x \text{ occupied at } t)P(y \text{ occupied at } t). \]

What about fluctuations? Do we have a Gaussian limit as in the mean field case ([Aldous, 1999])?
References

[1] David J Aldous and Mark Brown. Inequalities for rare events in time-reversible markov chains I. Lecture Notes-Monograph Series, pages 1–16, 1992.

[2] Itai Benjamini, Eric Foxall, Ori Gurel-Gurevich, Matthew Junge, and Harry Kesten. Site recurrence for coalescing random walk. Electronic Communications in Probability, 21, 2016.

[3] Maury Bramson and David Griffeath. Asymptotics for interacting particle systems on \mathbb{Z}^d. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 53(2): 183–196, 1980.

[4] Eric Foxall, Tom Hutchcroft, and Matthew Junge. Coalescing random walk on uni-modular graphs. Electronic Communications in Probability, 23, 201.
References II

[5] Roberto Oliveira. On the coalescence time of reversible random walks. Transactions of the American Mathematical Society, 364(4):2109–2128, 2012.

[6] Roberto Oliveira. Mean field conditions for coalescing random walks. The Annals of Probability, 41(5):3420–3461, 2013.

[7] Stanley Sawyer. A limit theorem for patch sizes in a selectively-neutral migration model. Journal of Applied Probability, 16(3):482–495, 1979.

[8] Romain Tessera and Matthew Tointon. A finitary structure theorem for vertex-transitive graphs of polynomial growth ArXiv preprint:1908.06044, 2019.

[9] J. van den Berg and Harry Kesten. Asymptotic density in a coalescing random walk model. Annals of Probability, pages 303–352, 2000.
Thanks!