GROUPS WITH A BASE PROPERTY ANALOGOUS TO THAT OF VECTOR SPACES

PAUL APISA AND BENJAMIN KLOPSCH

Abstract. A B-group is a group such that all its minimal generating sets (with respect to inclusion) have the same size. We prove that the class of finite B-groups is closed under taking quotients and that every finite B-group is solvable. Via a complete classification of Frattini-free finite B-groups we obtain a general structure theorem for finite B-groups. Applications include new proofs for the characterization of finite matroid groups and the classification of finite groups with the basis property.

1. Introduction

Let G be a finite group. A generating set X of G is said to be minimal if no proper subset of X generates G. We denote by $d(G)$ the minimal number of generators of G, i.e., the smallest size of a minimal generating set of G, and we write $m(G)$ for the largest size of a minimal generating set of G.

Whereas the invariant $d(G)$ has been well studied for many groups G, its counterpart $m(G)$ has not received a similar degree of attention. First steps toward investigating the latter have been taken in the context of permutation groups. For instance, in [10] Whiston proved that $m(\text{Sym}(n)) = n - 1$ for the finite symmetric group of degree n. Furthermore, Cameron and Cara gave in [1] a complete description of the maximal independent generating sets of $\text{Sym}(n)$; these are precisely the minimal generating sets of maximal size. Clearly, Whiston’s result implies that

$$m(\text{Sym}(n)) - d(\text{Sym}(n)) \to \infty \quad \text{as } n \to \infty.$$

This suggests a natural ‘classification problem’: given a non-negative integer c, characterize all finite groups G such that $m(G) - d(G) \leq c$. The results of Saxl and Whiston in [10] show that for projective special linear groups $G = \text{PSL}_2(p^f)$ the difference $m(G) - d(G)$ depends on the number of prime divisors of r. In particular, $m(G) - d(G) = 1$ for all $G = \text{PSL}_2(p)$ with p not congruent to ± 1 modulo 8 or 10. Since the Frattini subgroup $\Phi(G)$ consists of all ‘non-generators’ of G, we have $d(G) = d(G/\Phi(G))$ and $m(G) = m(G/\Phi(G))$. Hence one may initially focus on groups G which are Frattini-free, i.e., for which $\Phi(G) = 1$.

In the present article we solve the above stated problem for $c = 0$. We say that the group G has property B, or the weak basis property, if all its minimal generating sets have the same size, equivalently if $m(G) = d(G)$. Groups with property B are called B-groups for short. A group is said to have the basis property if all its subgroups have property B. The Burnside basis theorem states that all finite p-groups are B-groups and, consequently, have the basis property.
Groups with the basis property as well as variants, such as matroid groups, have been considered by a number of authors; e.g., see [5] and references therein. Indeed, McDougall-Bagnall and Quick initiated in [5] the systematic study of finite B-groups and used this to classify groups with the basis property. In this context they raised the following fundamental questions. Is it true that property B is inherited by quotient groups? Is it possibly true that every finite B-group is solvable? We answer both questions positively.

Proposition 1.1. Every quotient of a finite B-group is again a B-group.

Theorem 1.2. Every finite B-group is solvable.

From these structural results we obtain a characterization of finite B-groups, based on a complete classification of Frattini-free finite B-groups. For any prime p we denote by \mathbb{F}_p the field with p elements.

Theorem 1.3. Let G be a finite group. Then G is a Frattini-free B-group if and only if one of the following holds:

1. G is an elementary abelian p-group for some prime p;
2. $G = P \rtimes Q$, where P is an elementary abelian p-group and Q is a non-trivial cyclic q-group, for distinct primes $p \neq q$, such that Q acts faithfully on P and the \mathbb{F}_pQ-module P is a direct sum of isomorphic copies of one simple module.

Remark 1.4. This means that there are no Frattini-free finite B-groups beyond the examples constructed in [5, §3]. Indeed, the groups listed in (2) of Theorem 1.3 can be concretely realized as ‘semidirect products via multiplication in finite fields of characteristic p’: the simple module in question is of the form $\mathbb{F}_p(\zeta)$, the additive group of a finite field generated by a q^kth root of unity ζ over \mathbb{F}_p, with a generator z of Q acting on $\mathbb{F}_p(\zeta)$ as multiplication by ζ.

Using the explicit description of Frattini-free finite B-groups, we determine the automorphism groups of such groups; see Theorem 1.4. From McDougall-Bagnall and Quick’s results in [5] we obtain a characterization of finite B-groups.

Theorem 1.5. Let G be a finite group. Then G is a B-group if and only if one of the following holds:

1. G is a p-group for some prime p;
2. $G = P \rtimes Q$, where P is a p-group and Q is a cyclic q-group for distinct primes $p \neq q$, such that $C_Q(P) \neq Q$ and every non-trivial element of $Q/C_Q(P)$ acts fixed-point-freely on $P/\Phi(P)$.

Moreover, in case (2) one has $\Phi(G) = \Phi(P) \times C_Q(P)$.

As applications of Theorems 1.3 and 1.3 we provide new, streamlined proofs for the characterization of finite matroid groups (cf. [8]) and the classification of finite groups with the basis property (cf. [5]). Furthermore, we record as Corollary 3.2 a description of finite groups G with $m(G) \leq 2$.

The proofs of our main results rely ultimately on consequences of the Classification of Finite Simple Groups. These enter our proofs directly as well as indirectly,
GROUPS WITH A BASE PROPERTY

namely via results of Lucchini and Menegazzo on generation properties of finite groups with a unique minimal normal subgroup; see [3] and [4].

An outline of the paper is as follows. Proposition 1.1 and Theorem 1.2 are proved in Section 2. Theorems 1.3 and 1.5 are proved in Section 3. Theorem 4.1 in Section 4 describes the automorphism group of a Frattini-free \(\mathcal{B} \)-group. In Sections 5 and 6 we use our main results to derive a characterization of finite matroid groups and a classification of finite groups with the basis property.

2. Quotients and solvability of \(\mathcal{B} \)-groups

Proof of Proposition 1.1. Let \(G \) be a finite \(\mathcal{B} \)-group with normal subgroup \(N \), and let \(\pi: G \to G/N \) denote the projection homomorphism. Writing \(d = d(G/N) \), we choose \(x_1, \ldots, x_d \in G \) such that \(x_1^\pi, \ldots, x_d^\pi \) is a minimal generating sequence of \(G/N \).

For a contradiction, assume that \(G/N \) does not have property \(\mathcal{B} \): let \(\bar{y}_1, \ldots, \bar{y}_e \) be a minimal generating sequence of \(G/N \) with \(e > d \). Express each element \(\bar{y}_i \) as a word in \(x_1^\pi, \ldots, x_d^\pi \) and then let \(y_i \) denote the same word in \(x_1, \ldots, x_d \) so that \(y_i^\pi = \bar{y}_i \). Since \(\langle y_1^\pi, \ldots, y_e^\pi \rangle = G/N \), there is a sequence \(z_1, \ldots, z_f \) in \(N \) such that \(y_1, \ldots, y_e, z_1, \ldots, z_f \) minimally generates \(G \). However, the strictly shorter sequence \(x_1, \ldots, x_d, z_1, \ldots, z_f \) also generates \(G \), contradicting the fact that \(G \) is a \(\mathcal{B} \)-group. \(\Box \)

Proposition 2.1. Let \(G \) be a finite group.

(1) Suppose that \(G \) is simple. Then \(G \) has property \(\mathcal{B} \) if and only if \(G \) is cyclic.

(2) Suppose that \(G \) is cyclic. Then \(G \) has property \(\mathcal{B} \) if and only if \(G \) has prime-power order.

Proof. (1) Suppose that \(G \) is a non-abelian simple group. Then the classification of finite simple groups implies that \(d(G) = 2 \) whereas \(m(G) \geq 3 \). The latter follows, for instance, from the fact that \(G \) is generated by involutions.

(2) As \(G \) is cyclic, \(d(G) = 1 \) and the primary decomposition of \(G \) shows that \(m(G) \) is equal to the number of primes dividing \(|G| \). \(\Box \)

The next three lemmas follow from results of Lucchini and Menegazzo in [3] and [4]. Their work relies on the Classification of Finite Simple Groups.

Lemma 2.2. Let \(G \) be a finite \(\mathcal{B} \)-group with a minimal normal subgroup \(N \). Then

\[
d(G) = \begin{cases}
 d(G/N) & \text{if } N \leq \Phi(G), \\
 d(G/N) + 1 & \text{otherwise}.
\end{cases}
\]

Proof. If \(d(G) = d(G/N) \) then every minimal generating sequence of \(G \) projects to a minimal generating sequence of \(G/N \); so elements of \(N \) never appear in a minimal generating sequence of \(G \), that is \(N \leq \Phi(G) \). Conversely, if \(N \leq \Phi(G) \), then \(d(G) = d(G/N) \). On the other hand, if \(d(G) > d(G/N) \), then \(d(G) = d(G/N) + 1 \) because \(d(G) \leq d(G/N) + 1 \) from [3]. \(\Box \)

Lemma 2.3. Let \(G \) be a non-cyclic, Frattini-free finite \(\mathcal{B} \)-group with a unique minimal normal subgroup \(N \). Then \(d(G) = 2 \) and \(G/N \) is cyclic of prime-power order.
Proof. From [4] we have $d(G) = \max\{2, d(G/N)\}$ and Lemma 2.2 yields $d(G) = d(G/N) + 1$. Thus $d(G) = 2$ and $d(G/N) = 1$ so that G/N is cyclic. Moreover, Propositions [3] and [2.1] imply that G/N has prime-power order.

Lemma 2.4. Let G be a Frattini-free finite \mathcal{B}-group with a non-abelian minimal normal subgroup N. If G/N is cyclic, then $m(G) \geq 3$.

Proof. Suppose that G/N is cyclic. Then, by Propositions [1.1] and [2.1] the quotient G/N is cyclic of p-power order for some prime p. Let P be a Sylow-p subgroup of G. Since G cannot be a p-group, we find a maximal subgroup H of G which contains P. Let q be a prime dividing $[G : H]$.

Let Q be a Sylow-q subgroup contained in N, and observe that Q is also a Sylow-q subgroup of G. From $Q \neq N$ we conclude that $N_G(Q) \neq G$. Furthermore, the Frattini argument yields $G = N_G(Q)N$. Since G/N is cyclic of p-power order, we find an element $g \in N_G(Q)$ of p-power order such that $(g)N = G$. Moreover, replacing g and Q by conjugates g^x and Q^x for a suitable $x \in G$, we may assume without loss of generality that $g \in P \leq H$.

Thus $\langle Q \cup H \rangle = G$ and $\langle (H \cap N) \cup \{g\} \rangle = H$ so that $\langle Q \cup (H \cap N) \cup \{g\} \rangle = G$.

We choose a minimal generating set X of G with $X \subseteq Q \cup (H \cap N) \cup \{g\}$. Since $\langle Q \cup (H \cap N) \rangle \subseteq N$, $\langle Q \cup \{g\} \rangle \subseteq N_G(Q)$, and $\langle (H \cap N) \cup \{g\} \rangle \subseteq H$ are all properly contained in G, we conclude that $m(G) \geq |X| \geq 3$. \qed

Proof of Theorem 1.2. Let G be a finite \mathcal{B}-group. By Proposition 1.1 every quotient of G has property \mathcal{B} and thus, by induction on the order, every proper quotient of G is solvable.

For a contradiction, assume that G is not solvable and consequently has no non-trivial solvable normal subgroups. In particular, since $\Phi(G)$ is nilpotent, this implies that G is Frattini-free. Let M be a minimal normal subgroup of G. Then M is non-abelian and G has no other minimal normal subgroup M besides M; otherwise M would embed into the solvable group G/M.

Hence Lemmas 2.3 and 2.4 yield the contradiction $2 = d(G) = m(G) \geq 3$. \qed

3. The classification of \mathcal{B}-groups

Recall that the socle $\text{Soc}(G)$ of a finite group G is the subgroup generated by all minimal normal subgroups.

Lemma 3.1. Let G be a Frattini-free finite \mathcal{B}-group. Then $G = S \rtimes K$, where $S = \text{Soc}(G)$ is elementary abelian and $C_K(S)$ is trivial.

Proof. By Theorem 1.2 the group G is solvable. Hence S is abelian. We recall that every abelian normal subgroup of a Frattini-free finite group admits a complement; e.g., see [6, Proposition 5.2.13]. Hence $G = S \rtimes K$ for a suitable subgroup K.

Now assume for a contradiction that S is not elementary abelian. Let P be a nontrivial Sylow-p subgroup of S and Q a nontrivial Sylow-q subgroup of S, for distinct primes $p \neq q$. Let L be a complement for $P \times Q$ in G so that $G = \langle P \times Q \rangle \rtimes L$.

Choose a minimal generating sequence z_1, \ldots, z_f of L and extend this to a minimal generating sequence

$$x_1, \ldots, x_d, y_1, \ldots, y_e, z_1, \ldots, z_f$$

of G of length $d + e + f$ by choosing a minimal generating sequence x_1, \ldots, x_d of P as a \mathbb{F}_pL-module and a minimal generating sequence y_1, \ldots, y_e of Q as a \mathbb{F}_pL-module. Since P and Q are non-trivial, the parameters d and e are positive. But then

$$x_1y_1, x_2 \ldots, x_d, y_2, \ldots, y_e, z_1, \ldots, z_f$$

is a generating sequence of G of shorter length $d + e + f - 1$, contradicting the fact that G is a \mathcal{B}-group.

Finally, $C_K(S)$ is invariant under conjugation by S and by K. Hence it is a normal subgroup of G which intersects the socle S trivially, and $C_K(S) = 1$. \hfill \Box

Proof of Theorem 1.3. It is shown in [5, §3] that groups of the form specified in the theorem are Frattini-free and have property \mathcal{B}.

Now suppose that G is a Frattini-free \mathcal{B}-group. By Lemma 3.1, the group G is abelian if and only if G is elementary abelian. Thus it suffices to analyse the situation where G is non-abelian. By Lemma 3.1, we have $G = P \times Q$, where $P = \text{Soc}(G)$ is an elementary abelian p-group for a prime p and the complement $Q \neq 1$ acts faithfully on P. We decompose P as a direct product $P = M_1 \times \ldots \times M_d$, where each M_i is a minimal normal subgroup of G, that is each M_i is a simple \mathbb{F}_pQ-module.

Fix a minimal generating sequence z_1, \ldots, z_e of Q. By choosing in each M_i an element $x_i \neq 1$, we obtain a minimal generating sequence $x_1, \ldots, x_d, z_1, \ldots, z_e$ of G of length $d + e$. If M_i and M_j were not isomorphic as \mathbb{F}_pQ-modules for some $i \neq j$ we could replace x_i and x_j by a single element x_ix_j to obtain a minimal generating sequence of G of length $d + e - 1$. Since G has property \mathcal{B} this cannot happen and thus all the M_i are isomorphic to one another as \mathbb{F}_pQ-modules. In particular, this implies that Q acts faithfully on each M_i.

Finally we show that Q is a cyclic q-group for some prime $q \neq p$. For this we consider the quotient group

$$\bar{G} = G/(M_2 \times \ldots \times M_d) = \bar{M}_1 \times \bar{Q}$$

which has property \mathcal{B} by Proposition 1.1. Clearly, \bar{M}_1 is an abelian minimal normal subgroup of \bar{G} and thus \bar{Q} a maximal subgroup of \bar{G}. We claim that \bar{M}_1 is the unique minimal normal subgroup of \bar{G}. Indeed, if $\bar{g} \in \bar{G} \setminus \bar{M}_1$ then $g \in G \setminus P$ and $\langle g \rangle^G \supseteq [M_1, g]^G = \bar{M}_1$; consequently, every normal subgroup of \bar{G} contains \bar{M}_1. Moreover, from $\bar{M}_1 \cap \bar{Q} = 1$ we conclude that \bar{G} is Frattini-free. Lemma 2.3 shows that $Q \cong \bar{Q}$ is a cyclic q-group for some prime q. Since G is non-abelian and Frattini-free, it cannot be a p-group, and hence $q \neq p$. \hfill \Box

Proof of Theorem 1.5. First suppose that G has property \mathcal{B}. From Proposition 1.1 we deduce that $H = G/\Phi(G)$ is a Frattini-free \mathcal{B}-group so that Theorem 1.3 gives a detailed description of H. We observe that if H is a p-group for some prime p then G is a p-group, because H is the image of any Sylow-p subgroup of G modulo $\Phi(G)$ and $\Phi(G)$ consists of the ‘non-generators’ of G. Now suppose that $H = P \times Q$ with P and Q as in (2) of Theorem 1.3.
We claim that every non-trivial element of Q acts fixed-point-freely on P, i.e., $C_P(y) = 1$ for $y \in Q \setminus \{1\}$. Recall that P is a direct sum of isomorphic copies of one simple \mathbb{F}_pQ-module M. Thus Q acts faithfully on M and, since Q is abelian, this implies that every non-trivial element of Q acts fixed-point-freely on M and therefore also on P. From [5] Proposition 3.3 and Theorem 3.2] we deduce that G is of the shape described in the theorem.

Conversely, if G has prime-power order then G is a \mathcal{B}-group by the Burnside basis theorem, and it suffices to consider the remaining case: $G \cong P \times Q$, where P is a p-group and Q is a cyclic q-group, for distinct primes $p \neq q$, such that $C_Q(P) \neq Q$ and every non-trivial element of $Q/C_Q(P)$ acts fixed-point-freely on $P/\Phi(P)$. Since P is a p-group and since $C_Q(P)$ is a proper subgroup of the cyclic q-group Q, each subset of G that generates G modulo the normal subgroup $\Phi(P) \times C_Q(P)$ already generates G. Thus $\Phi(P) \times C_Q(P) \subseteq \Phi(G)$ and in order to show that G has property \mathcal{B} we may assume that $\Phi(P) \times C_Q(P) = 1$. Then P is elementary abelian and every element of Q acts fixed-point-freely on P. It follows from [5] Proposition 3.3 and Theorem 3.2] that G has property \mathcal{B}. \hfill \square

As a consequence of Theorem 1.3, Remark 1.4 and Theorem 1.5 we record the following corollary.

Corollary 3.2. Let G be a non-trivial finite group with $m(G) \leq 2$. Then precisely one of the following holds:

1. G is cyclic of prime-power order so that $d(G) = m(G) = 1$;
2. G is cyclic of order divisible by exactly two distinct primes so that $d(G) = 1$ and $m(G) = 2$;
3. G is a group of prime-power order with $d(G) = m(G) = 2$;
4. G is a \mathcal{B}-group of order divisible by exactly two distinct primes so that $d(G) = m(G) = 2$.

In the last case $G/\Phi(G) \cong P \times Q$, where the elementary abelian p-group P is isomorphic to the additive group of a finite field $F = \mathbb{F}_p(\zeta)$, the cyclic q-group $Q = \langle \zeta \rangle$ embeds as $\langle \zeta \rangle$ into F^\times and Q acts on P via multiplication in F.

4. Automorphisms of Frattini-free \mathcal{B}-groups

Let G be a Frattini-free finite \mathcal{B}-group. By Theorem 1.3 we have $|G| = p^{rd}q^k$, where $p \neq q$ are distinct primes and the socle $\text{Soc}(G)$ is a direct product of d minimal normal subgroups, each elementary abelian of size p^r. Moreover, as indicated in Remark 1.4, the group G can be embedded into the general semi-affine group $\Gamma GL(d, F)$ of degree d over the finite field $F = \mathbb{F}_p(\zeta)$, where ζ denotes a primitive q^kth root of unity over \mathbb{F}_p and $[F : \mathbb{F}_p] = r$: writing

$$\Gamma GL(d, F) = F^d \rtimes GL(d, F) \rtimes \text{Aut}(F)$$

we can realize G as the subgroup consisting of all elements of the form

$$(v, \zeta^n I, \text{id}_F), \quad \text{where } v \in F^d \text{ and } \zeta^n I \in GL(d, F) \text{ is scalar for } 0 \leq n < q^k.$$
the full automorphism group of G. Moreover, the action of $\text{AGL}(d, F)$ on G is faithful, unless G is abelian.

Proof. Clearly, G is a normal subgroup of $\text{AGL}(d, F)$. If G is abelian, then $r = 1$, $k = 0$ and $F = \mathbb{F}_p$, so that $G = \mathbb{F}^d_p$ and $\text{AGL}(d, F) = \mathbb{F}^d_p \rtimes \text{GL}(d, \mathbb{F}_p)$. In this case $\text{Aut}(G) \cong \text{GL}(d, \mathbb{F}_p)$ is realized by the action of $\text{AGL}(d, \mathbb{F}_p)$ modulo \mathbb{F}^d_p.

Now suppose that G is non-abelian. Since $F^d \subseteq G$, the centralizer of G in $\text{AGL}(d, F)$ is contained in F^d. Since $\zeta I \in G$ acts fixed-point-freely on F^d, the centralizer of G in $\text{AGL}(d, F)$ is trivial. Hence the action of $\text{AGL}(d, F)$ on G by conjugation is faithful. It remains to show that every automorphism of G can be realized as conjugation by a suitable element of $\text{AGL}(d, F)$.

Let $\varphi \in \text{Aut}(G)$. We observe that $\text{Soc}(G) = F^d$ and that the action of G on $\text{Soc}(G)$ by conjugation induces an embedding of $G/\text{Soc}(G)$ into F^\times. The element $\zeta g \in F^\times$ corresponding to the action of $(\zeta I)^{\varphi}$ on F^d satisfies the same minimal polynomial over \mathbb{F}_p as ζ. Thus the action of φ on $G/\text{Soc}(G)$ can also be realized by an element of $\text{Aut}(F) \leq \text{AGL}(d, F)$. Without loss of generality we may therefore assume that φ acts as the identity on $G/\text{Soc}(G)$. Then φ acts on $\text{Soc}(G) = F^d$ as an F-linear isomorphism. A suitable element of $G \rtimes \text{GL}(d, F) \leq \text{AGL}(d, F)$ realizes the same action and we may further assume that φ restricts to the identity on $\text{Soc}(G)$. This means that $(\zeta I)^{\varphi} = v(\zeta I)$ for some $v \in F^d$. Finally, we notice that conjugation by $(\zeta - 1)^{-1}v \in F^d \leq \text{AGL}(d, F)$ induces the automorphism φ. \qed

5. The characterization of matroid groups

A subset X of a finite group G is called independent, respectively Frattini-independent, if there is no proper subset $Y \subset X$ such that $\langle X \rangle = \langle Y \rangle$, respectively $\langle X \cup \Phi(G) \rangle = \langle Y \cup \Phi(G) \rangle$. The group G is called a matroid group if G has property \mathcal{B} and every Frattini-independent subset of G can be extended to a minimal generating set of G. Alternatively, G is a matroid group if $H = G/\Phi(G)$ is a Frattini-free \mathcal{B}-group and every independent subset of H can be extended to an minimal generating set. The definition of a matroid group given here is the one used in [8, 9].

We obtain a small variation of the characterization of matroid groups in [8].

Theorem 5.1 (Scapellato and Verardi [8]). Let G be a finite group and let $H = G/\Phi(G)$. The group G is a matroid group if and only if one of the following holds:

1. G is a p-group for some prime p,
2. $H = P \rtimes Q$, where $P \cong \mathbb{F}^d_p$ and Q is cyclic of order q, for primes p, q such that $q \mid p - 1$, and $Q \hookrightarrow \mathbb{F}^\times_p$ acts on P via field multiplication.

Proof. By the Burnside basis theorem every finite group of prime-power order is a matroid group. From now suppose that G does not have prime-power order.

First suppose that G is a matroid group. Then, by Theorem [1.3] and Remark [1.4] the Frattini quotient H is a matroid group of the form $H = P \rtimes Q$, where P is an elementary abelian p-group and Q is a non-trivial cyclic group of order q^k, for distinct primes $p \neq q$, such that $Q \hookrightarrow F^\times$ acts faithfully on $P \cong F^d$ via multiplication in a finite field F. Here F is obtained from \mathbb{F}_p by adjoining a
primitive q^kth root of unity and we set $r = [F : \mathbb{F}_p]$. We observe that the common size of all minimal generating sets of G is $d + 1$.

Being isomorphic to an \mathbb{F}_p-vector space of dimension rd, the subgroup P contains an independent subset of size rd. This subset extends to a minimal generating set of H. We deduce that $rd \leq d$, thus $r = 1$. Let z be a generator of Q and assume for a contradiction that $k \geq 2$. Choose a minimal generating set X for P as an \mathbb{F}_pQ-module. Then $X \cup \{z^0\}$ is an independent subset of size $d + 1$ that does not generate H and does not extend to a minimal generating set of H. This implies that H is not a matroid group in contradiction to our assumptions. Hence, $k = 1$, i.e., Q is cyclic of order q. From $Q \hookrightarrow \mathbb{F}_p^\times$ we obtain $q \mid p - 1$.

Conversely, suppose that $H = P \rtimes Q$, where $P \cong \mathbb{F}_p^d$ and $Q = \langle z \rangle$ is cyclic of order q, for primes p, q such that $q \mid p - 1$, and $Q \hookrightarrow \mathbb{F}_p^\times$ acts on P via field multiplication. By Theorem [13] the group H has property \mathcal{B} and it suffices to show that every independent subset of H extends to a minimal generating set. Let $X = \{x_1, \ldots, x_m\} \subseteq H$ be an independent subset of size m. If $X \subseteq P$ then, regarding P as an \mathbb{F}_p-vector space, we extend X to a minimal generating set of P and add the generator z of Q to obtain a minimal generating set of H. Now suppose that $X \not\subseteq P$. Since H does not contain any element of order pq, we may assume without loss of generality that $x_1 = z$. Then $X = \{z, v_2z^{j_2}, \ldots, v_mz^{j_m}\}$ where $\{v_2, \ldots, v_m\} \subseteq P$ is an independent subset of size $m - 1$ and j_2, \ldots, j_m are integers. We extend $\{v_2, \ldots, v_m\}$ to a minimal generating set $\{v_2, \ldots, v_d\}$ of P. Then $X \cup \{v_{m+1}, \ldots, v_d\}$ is a minimal generating set of H. \qed

Using Theorem [1.3] we obtain the following consequence.

Corollary 5.2. Let G be a finite group. Then G is a matroid group if and only if one of the following holds:

1. G is a p-group for some prime p,
2. $G = P \rtimes Q$, where P is a p-group, Q is a cyclic q-group for primes p, q such that $q \mid p - 1$, $Q/C_Q(P)$ has order q and acts on $P/\Phi(P)$ fixed-point-freely.

6. The classification of groups with the basis property

Lemma 6.1. Let $G = P \rtimes Q$, where P is a p-group and Q a cyclic q-group, for distinct primes $p \neq q$, such that every non-trivial element of Q acts fixed-point-freely on P. Then G has property \mathcal{B}.

Proof. If $Q = 1$ then the claim follows from the Burnside basis theorem. From now assume that Q is non-trivial. Clearly, $C_Q(P) = 1$ and by Theorem [1.3] it suffices to show that every non-trivial element of Q acts fixed-point-freely on $P/\Phi(P)$. Let $y \in Q \setminus \{1\}$ and assume for a contradiction that y has a non-zero set of fixed points U in $P/\Phi(P)$. By Maschke’s theorem $P/\Phi(P)$ is a semisimple \mathbb{F}_pQ-module. Hence there is a submodule W such that $P/\Phi(P) = U \oplus W$. Then $[P, \langle y \rangle]$ is strictly smaller than P because $[P/\Phi(P), \langle y \rangle] \leq W$. By [2. Theorem 5.3.5] we have $P = C_P(\langle y \rangle)[P, \langle y \rangle]$, hence $C_P(\langle y \rangle) \neq 1$. This contradicts the fact that y acts on P fixed-point-freely. \qed
Lemma 6.2. Let $G = P \rtimes Q$, where P is a p-group and Q is a cyclic q-group, for distinct primes $p \neq q$, such that every non-trivial element of Q acts fixed-point-freely on P. Let $H \leq G$. Then one of the following holds:

1. H is a p-group or a q-group,
2. H is conjugate in G to a group of the form $R \rtimes S$ with $R \leq P$ and $S \leq Q$.

Proof. Suppose that H is a subgroup of G which is not of prime-power order. Then $H \cap P$ and $H/(H \cap P)$ are non-trivial. Choose an element $h \in H$ such that $H = (H \cap P)\langle h \rangle$ and let $y \in Q$ such that $h \equiv y$ modulo P. Since y acts fixed-point-freely on P, we have $yP = \{ y^x \mid x \in P \}$ so that $h = y^x$ for some $x \in P$. Consequently, $H = (R \rtimes S)^x$, where $R = (H \cap P)^{x^{-1}}$ and $S = \langle y \rangle$. □

Recall that a finite group G has the basis property if all its subgroups are B-groups.

Theorem 6.3 (McDougall-Bagnall and Quick [5]). Let G be a finite group. Then G has the basis property if and only if one of the following holds:

1. G is a p-group for some prime p,
2. $G \cong P \rtimes Q$, where P is a p-group and Q is a non-trivial cyclic q-group, for distinct primes $p \neq q$, such that every non-trivial element of Q acts fixed-point-freely on P.

Proof. Lemmas 6.1 and 6.2 imply that every group of the described form has the basis property. Conversely, suppose that G has the basis property and is not of prime-power order. From Theorem 1.5 we deduce that $G \cong P \rtimes Q$, where P is a p-group and Q is a non-trivial cyclic q-group. If there were non-trivial, commuting elements $x \in P$ and $z \in Q$ then the cyclic group $\langle xz \rangle = \langle x \rangle \rtimes \langle z \rangle$ would not have property B, contradicting the basis property. Hence every non-trivial element of Q acts fixed-point-freely on P. □

ACKNOWLEDGEMENT The first author gratefully acknowledges research support by the National Science Foundation through the Research Experiences for Undergraduates (REU) Program at Cornell. He thanks R. Guralnick, R. K. Dennis, and D. Collins.

REFERENCES

[1] P. J. Cameron, P. Cara, Independent generating sets and geometries for symmetric groups, J. Algebra 258 (2002), 641–650.
[2] D. Gorenstein, Finite Groups, Harper & Row, Publishers, New York-London, 1968.
[3] A. Lucchini, Generators and minimal normal Subgroups Arch. Math. (Basel) 64 (1995), 273–276.
[4] A. Lucchini, F. Menegazzo, Generators for finite groups with a unique minimal normal subgroup, Rend. Sem. Mat. Univ. Padova 98 (1997), 173–191.
[5] J. McDougall-Bagnall, M. Quick, Groups with the basis property, J. Algebra 346 (2011), 332–339.
[6] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, New York, 1982.
[7] J. Saxl, J. Whiston, On the maximal size of independent generating sets of $PSL_2(q)$, J. Algebra 258 (2002), 651–657.
[8] R. Scapellato, L. Verardi, *Groupes finis quis jouissent d’une propriété analogue au théorème des bases de Burnside*, Boll. Un. Mat. Ital. A 5 (1991), 187–194.

[9] R. Scapellato, L. Verardi, *Bases of certain finite groups*, Annales mathématiques Blaise Pascal 1 (1994), 85–93.

[10] J. Whiston, *Maximal independent generating sets of the symmetric group*, J. Algebra 232 (2000), 255–268.

Department of Mathematics, University of Chicago, Chicago, IL 60615

E-mail address: paul.apisa@gmail.com

Department of Mathematics, Royal Holloway, University of London, Egham TW20 0EX, UK

Current address: Institut für Algebra und Geometrie, Mathematische Fakultät, Otto-von-Guericke-Universität Magdeburg, 39016 Magdeburg, Germany

E-mail address: Benjamin.Klopsch@rhul.ac.uk