A novel surface protein of *Trichomonas vaginalis* is regulated independently by low iron and contact with vaginal epithelial cells

V Mundodi, AS Kucknoor, T-H Chang and JF Alderete*

Address: Department of Microbiology, University of Texas Health Science Center, San Antonio, TX, USA

Email: V Mundodi - mundodi@uthscsa.edu; AS Kucknoor - kucknoor@uthscsa.edu; T-H Chang - changt@uthscsa.edu; JF Alderete* - alderete@uthscsa.edu

* Corresponding author

Abstract

Background: Trichomoniasis caused by *Trichomonas vaginalis* is the number one, non-viral sexually transmitted disease (STD) that affects more than 250 million people worldwide. Immunoglobulin A (IgA) has been implicated in resistance to mucosal infections by pathogens. No reports are available of IgA-reactive proteins and the role, if any, of this class of antibody in the control of this STD. The availability of an IgA monoclonal antibody (mAb) immunoreactive to trichomonads by whole cell (WC)-ELISA prompted us to characterize the IgA-reactive protein of *T. vaginalis*.

Results:

An IgA mAb called 6B8 was isolated from a library of mAbs reactive to surface proteins of *T. vaginalis*. The 6B8 mAb recognized a 44-kDa protein (TV44) by immunoblot analysis, and a full-length cDNA clone encoded a protein of 438 amino acids. Southern analysis revealed the gene (*tv44*) of *T. vaginalis* to be single copy. The *tv44* gene was down-regulated at both the transcriptional and translational levels in iron-depleted trichomonads as well as in parasites after contact with immortalized MS-74 vaginal epithelial cells (VECs). Immunofluorescence on non-permeabilized organisms confirmed surface localization of TV44, and the intensity of fluorescence was reduced after parasite adherence to VECs. Lastly, an identical protein and gene were present in Tritrichomonas foetus and Trichomonas tenax.

Conclusion:

This is the first report of a *T. vaginalis* gene (*tv44*) encoding a surface protein (TV44) reactive with an IgA mAb, and both gene and protein were conserved in human and bovine trichomonads. Further, TV44 is independently down-regulated in expression and surface placement by iron and contact with VECs. TV44 is another member of *T. vaginalis* genes that are regulated by at least two independent signaling mechanisms involving iron and contact with VECs.

Background

The amitochondriate protist *Trichomonas vaginalis* is responsible for the number one incidence of sexually transmitted disease (STD) worldwide with ~9 million new cases of vaginitis in the US and 250 million cases worldwide [1-3]. There are serious health consequences for women, including adverse pregnancy outcomes, risk for cervical cancer, pelvic inflammatory disease, infertility,
T. vaginalis surface immunofluorescence by monoclonal antibody (mAb) 6B8 and immunoblot detection of a trichomonad protein. A. Fluoresceine isothiocyanate-conjugated goat anti-IgA antibody reacts with the surface of non-permeabilized T. vaginalis (A1), T. foetus (A2), and T. tenax (A3) incubated with IgA mAb 6B8. Brightfield microscopy is provided below the fluorescence panels to illustrate the integrity of the organisms. Fluorescence experiments were performed at least 5 times, and the distinct patchy pattern of fluorescence for T. tenax contrasted with the similar overall surface fluorescence for T. vaginalis and T. foetus. B. Total proteins of 10^7 trichomonads of T. vaginalis (lane 1), T. foetus (lane 2), and T. tenax (lane 3) were separated on 10% polyacrylamide gels by SDS-PAGE prior to blotting onto Hybond-P™ membranes. Blots were probed with mAb 6B8. Molecular weight of the protein is indicated in kilodaltons (kDa) (×1000).
Figure 2

TV44 amino acid sequence alignment with proteins of BLAST search. The corresponding proteins of Entamoeba histolytica [XM 645307.1], Saccharomyces cerevisiae [P 53040], Arabidopsis thaliana [AY463621.1], Homo sapiens [AAH18115], and Candida albicans [XM 71002.1] were aligned by the Clustal W program. The conserved residues are indicated by black shading, and similarity is indicated by grey shading. TV44 had partial homology to transcription initiation factor (TFIID) of E. histolytica (13% identity) and S. cerevisiae (16%). TV44 had homology to the TATA-binding protein associated factor of A. thaliana (15%) and H. sapiens (13%) and, in addition, to the RNA pol II transcription factor of C. albicans (17%).
and infection by other STD agents [4-8]. Symptomatic women may experience foul-smelling discharge, severe irritation, and abdominal pain while some men will have a non-gonococcal, non-chlamydial urethritis. Trichomonosis is now appreciated to increase the portal of entry and exit for HIV [9,10], and the disproportionate incidence of this STD among American minorities is evidence that this STD is a health disparities disease. Equally troubling is that unlike other STDs like Chlamydia, the prevalence of T. vaginalis does not decrease with age [11-13]. Offering hope for control of this STD is the development of a new point-of-care diagnostic [11,14,15]. Given the significant human morbidity caused by T. vaginalis, there is an urgency towards identifying virulence factors and elucidating the mechanisms of disease pathogenesis.

Immunoglobulin A (IgA) antibodies in external secretions may be important in innate immunity and provide for specific defense against mucosal infections. IgA has been shown to be protective against viral, bacterial and parasitic infections [16-18], and inhibition of adherence and agglutination may be mechanisms for clearance [19-21]. Intestinal infection stimulates the mucosal production of secretory IgA antibodies shown to block the in vitro adherence of Entamoeba histolytica trophozoites to epithelial cells thereby preventing lysis of host cells and damage to tissues [22,23]. In Giardia lamblia, IgA antibodies act as a first line of defense for immune exclusion of the parasite at the mucosal surface [24]. Studies performed with mice have shown that protection against Chlamydia trachomatis genital infection is attributed to IgA. For example, there is a direct correlation between mice cervical IgA level and clearance of cervical chlamydial antigen [25]. Furthermore, IgA mAb against chlamydial major outer membrane protein confers passive protection in mice [26], and likewise, IgA mAb protects against murine experimental shigellosis [27] and oral challenge of the invasive Salmonella typhimurium [18].

In this report we identify a novel 44-kDa (TV44) surface protein of T. vaginalis that is recognized by an IgA mAb. The tv44 is single copy in the trichomonad genome and is yet another gene found to be down-regulated at the transcriptional and translational levels among iron-depleted organisms [28-30]. Remarkably, in contrast to adhesins that are increased in amounts and surface expression upon contact with immortalized vaginal epithelial cells (VECs) [29,31], decreased synthesis and amounts of surface TV44 follow interaction of parasites with VECs. This makes TV44 of T. vaginalis another member of proteins, including adhesins and α-actinin, with at least two independent signaling pathways involving iron and VEC adherence [32]. Lastly, the gene and surface protein were also detected in the bovine trichomonad responsible for fetal wastage, T. foetus, and the oral trichomonad, T. tenax.
ever observed with secondary antibody alone, as before, [29,31]. Interestingly, mAb 6B8 also gave uniform surface fluorescence with *T. foetus*, the bovine trichomonad (panel A2). A different pattern of surface fluorescence was observed for *T. tenax*, the oral trichomonad (panel A3).

Next, we probed nitrocellulose blots of total proteins after SDS-PAGE with mAb 6B8. Figure 1B shows a single band of identical mobility identified by the IgA mAb in *T. vaginalis* (lane 1), *T. foetus* (lane 2) and *T. tenax* (lane 3), indicating the presence of a similar-sized immuno-crossreactive protein among the human and bovine trichomonads. As controls, no proteins were detected in nitrocellulose blots of total proteins handled identically but in the absence of mAb, as before [29,31].

Isolation of the tv44 cDNA and sequence homology comparisons of TV44

We next screened a cDNA expression library using mAb 6B8. Three of eight clones encoding recombinant proteins detected by mAb 6B8 were sequenced, and one clone with an insert size of 1422-bp represented a full-length cDNA with an open reading frame (ORF) of 1314-bp [Gene bank: AY963297] encoding a protein of 438 amino acids. The tv44 coding region was PCR amplified for *T. vaginalis*, *T. foetus* and *T. tenax*, and the DNA sequences had 100%
identity, indicating the complete conservation of the tv44 gene among the human and bovine trichomonads (data not shown). Furthermore, we performed a BLAST search in the NCBI data bank for sequence homology, and Figure 2 shows the alignment of the complete sequence with 5 proteins that gave the highest percent of homology ranging from 13% to 17%. Interestingly, these proteins represented transcription initiation factors, albeit the

Figure 5

Surface expression of TV44 on trichomonads decreases after contact with VECs. FITC-conjugated goat anti-IgA antibody bound to IgA mAb 6B8 on the surface of non permeabilized *T. vaginalis* organisms as evident by uniform fluorescence seen in panel B1. In contrast, parasites isolated after contact with MS-74 VECs and handled identically had little or no detectable fluorescence as seen in panel B2. Brightfield pictures show the integrity of parasites used for the assay. No fluorescence was detectable in the absence of the mAb 6B8 as negative controls (not shown).
Figure 6
T. vaginalis contact with VECs results in decreased *tv44* transcription (A and C) and amounts of TV44 (B and D). A. Decreased amounts of *tv44* RT-PCR products as evidenced by ethidium bromide-stained gels after electrophoresis in 1% agarose from trichomonads after contact with immortalized MS-74 VECs (lane 2) compared to parasites without contact to VECs (lane 1). The equal quantities of the *α*-tubulin (*α*-tub) RT-PCR products show equal amounts of RNA in the PCR reactions. B. Decreased amounts of TV44 detected by mAb 6B8 on immunoblots of total proteins of trichomonads after contact with VECs (lane 2) compared to control organisms (lane 1). Proteins for SDS-PAGE were from equal numbers of organisms as described in the legend of Figure 1C and D. The relative amounts of the *tv44* gene RT-PCR product in stained agarose gels (A) and TV44 on immunoblots (B) were obtained by scanning the bands from parts A and B using the Scion image beta program. The amounts of PCR product and protein obtained from parasites without contact with VECs was normalized to 100% (bars 1) for comparison with PCR product of organisms after contact with host cells (bars 2).
significance of this homology for function of TV44 is unknown.

The tv44 is a single copy gene

We then performed Southern analysis of the gene in the *T. vaginalis* genome. Genomic DNA was restricted with *Eco*RI and *Hind*III, which cut outside the gene and *Pst*I that digests close to the 3’-end of the gene. Blots were probed with a PCR-derived 1.3-kb radiolabeled fragment representing the coding region. As presented in a representative blot in Figure 3, a single hybridizing band in the different restriction digests was obtained for tv44. No additional band was evident for the *Pst*I-digested DNA, which is likely due to hybridization of the probe with the larger full-length DNA gene fragments coupled with a diminished signal from a 3’-end fragment with only a small portion of the gene. This data suggests that tv44 is a single copy gene in *T. vaginalis* genome.

Independent down-regulation of TV44 in parasites grown in low-iron medium and after contact with immortalized VECs

Trichomonads were grown in medium replete with or depleted of iron and compared to organisms cultured in normal medium. RT-PCR was performed on total RNA using primers to amplify a 550-bp fragment of the tv44 coding region (Figure 4A). The amount of the tv44 transcript PCR product was decreased in parasites grown in low-iron medium (lane 2) compared to organisms cultured in normal (lane 1) or high-iron (lane 3) medium. As a control, PCR was performed using primers to α-tubulin (α-tub), and equal amounts of transcript were obtained regardless of the iron status of the parasites, showing equivalent amounts of RNA in the reactions. The amounts of TV44 detected by mAb 688 in nitrocellulose blots of total proteins from equal number of trichomonads corresponded to the RT-PCR data. As presented in Figure 4B, TV44 was decreased in amounts in trichomonads grown in low-iron medium (lane 2) compared to parasites grown in normal (lane 1) and high-iron (lane 3) medium, which had equivalent amounts of protein. Equal amounts of protein from identical numbers of parasites were electrophoresed and blotted. These data suggest that expression of the tv44 gene is regulated by low-iron medium conditions.

We recently demonstrated the up-regulation of parasite genes following adherence of trichomonads to immortalized human VECs [32]. Therefore, we tested for the expression of TV44 following contact of normal grown trichomonads with immortalized MS-74 VECs. To our surprise as shown in Figure 5 and in contrast to adhesins and other genes increased in expression [32], we observed an immediate decreased fluorescence by mAb 688 after adherence (panel B2) when compared to trichomonads handled identically in the absence of VECs (panel B1). We then performed combined RT-PCR and immunoblot analysis, and *T. vaginalis* organisms after contact had decreased amounts of both tv44 PCR product (Figure 6A, lane 2) and TV44 protein (Figure 6B, lane 2) in contrast to duplicate trichomonads without VECs (lane 1). Amounts of RT-PCR product and protein were decreased 80% (Figure 6C, bar 2) and 53% (Figure 6D, bar 2), respectively, when compared to controls (bar 1). As a control we showed equal amounts of RNA for the RT-PCR reaction by performing RT-PCR with primers specific to α-tubulin (α-tub). Further, equivalent amounts of total proteins for identical number of parasites without and with VECs was evident by equal intensities of duplicate stained gels. As these experiments were done with organisms grown in normal medium, these data reinforce the notion that contact with VECs is an alternative signal to low iron in modulating expression of TV44.

Discussion

To our knowledge, this is the first report describing IgA mAb reactivity to a surface protein of *T. vaginalis*. Other novel features of this protein are as follows: First, TV44 is identical to a protein in *T. tenax*, the oral trichomonad of humans, and in *T. foetus*, the bovine trichomonad responsible for fetal wastage [33,34]. Second, TV44 becomes a member of other trichomonad protein families down-regulated in expression by low-iron, such as the adhesins [28,29]. Third, expression of TV44 is down-regulated independently by either growth of organisms in a low-iron environment or by trichomonads grown in normal medium after contact with host VECs. In this respect, the tv44 gene and TV44 represent members of other genes and proteins, like adhesins and α-actinin, with distinct regulatory networks involving iron and adherence [32]. Therefore, it is now evident that multiple signaling pathways are functional for distinct surface proteins of *T. vaginalis*. It is likely that structure-function characterization of TV44 will help determine the significance of these two distinct regulatory pathways for this surface protein. Nonetheless, this finding makes clear that *T. vaginalis* responds during infection both to environmental cues like iron and to adherence to the vaginal epithelium by up- and down-regulating expression of genes [32], a theme that has been consistent for this mucosal pathogen.

With regard to function, the low percent homology of TV44 with higher eukaryotic transcription initiation factors (Figure 2) may not be significant, and it would be unreasonable at this time to hypothesize such a function for TV44. Nonetheless, these are the only known proteins in the NCBI data bank to which any homology was observed. Given the surface localization and the fact that TV44 is not detected in purified nuclear extracts by immunoblot analysis (data not shown), it seems unlikely that
this protein functions in transcription regulation. However, the complex regulatory pathways for gene expression of TV44 are consistent with those of other known virulence factors of *T. vaginalis* [32], and therefore, a role for this protein in virulence and pathogenesis cannot be discounted. The down-regulation in transcription and surface expression upon contact with VECs may be indicating a role for TV44 for maintenance of morphologic integrity in an ellipsoid form for non-adherent, free-swimming parasites compared to the amoeboid adherent forms [31]. Alternatively, TV44 may interfere with efficient cytoadherence thereby necessitating immediate removal of the protein from the surface upon contact, essentially involving surface remodeling by *T. vaginalis*. It is not inconceivable that a similar function may exist for the opportunistic *T. tenax* and the pathogenic bovine trichomonad. Indeed, *Neisseria meningitidis* has extensive surface remodeling [35], and *Candida albicans* undergoes both up- and down-regulation of surface proteins after host cell contact [36]. Future work will be required to fully understand the function of this contact-modulating protein in the host-trichomonad interrelationship.

The biological protective role of IgA in recognition of surface protein immunogens in trichomonosis is poorly understood. The IgA immunoglobulin has been associated with resistance to a number of mucosal pathogens [16-18,21,37]. A positive correlation has been established in *E. histolytica* between the presence of IgA antibodies and the lower incidence of amoebiasis among breast-fed children and individuals from endemic areas [38,39]. There also appears to be protection through inhibiting trophozoite adherence, a blocking ability of human IgA antibodies [40]. A mucosal IgA anti-lectin antibody response was also associated with immune protection against *E. histolytica* colonization [41]. It is significant that IgA mAb has been shown to be protective for *C. trachomatis* in rodent studies [25,26], and likewise, IgA mAb protects against murine experimental shigellosis [27] and oral challenge of the invasive *S. typhimurium* [18]. Moreover, IgA-deficient mice exhibit increased susceptibility to mycobacteria infections [37]. It is noteworthy that no inhibition of adherence was evident when trichomonads pretreated with the mAb at concentrations known to give intense fluorescence (Figure 1) were added to VECs (Methods and data not shown). This apparent absence of a role for this surface protein in adherence was not surprising given that a ligand assay to identify adhesins [29-32] did not show TV44 bound to VECs (data not shown). Furthermore, that contact with VECs results in disappearance of the surface TV44 (Figure 5) suggests only a temporal role, if any, for TV44 in any adherence event. Of interest is whether this IgA mAb can be evaluated in animal protection studies [42]. Indeed, these types of experiments may provide clues as to the importance of this protein to the biology of these parasites and the conservation of identical TV44 proteins in different human species and in the bovine trichomonad. Therefore, it is important that the nature of antibody responses in patients insofar as protection by IgA through recognition of specific surface proteins of *T. vaginalis* be better characterized in the future.

Conclusion

This paper describes the identification and characterization of a novel *T. vaginalis* IgA-reactive surface protein called TV44. Among the unique features of this single copy gene is identity to a gene in the human oral trichomonad, *T. tenax*, and in the bovine trichomonad, *T. foetus*. The tv44 gene is another in this parasite regulated in expression by two independent signaling mechanisms involving iron and contact with host cells. This makes TV44 a member of a growing number of *T. vaginalis* proteins with complex regulatory networks.

Methods

Parasite culture

T. vaginalis isolate T016 [29,31] and *T. foetus* isolate 02-97 were grown in trypticase-yeast-extract-maltose (TYM) medium with 10% heat-inactivated donor horse serum at 37°C [43]. *T. tenax* strain Hs-4:NIH was grown in YL-S medium from ATCC (American Type Culture Collection, Manassas, VA, USA) with 10% heat-inactivated donor horse serum at 37°C. For iron replete organisms, TYM-medium was supplemented with 200 µM ferrous ammonium sulphate (Sigma Chemical Co., St. Louis, MO), and iron depleted parasites were obtained by cultivation in medium depleted of iron with 50 µM 2, 2-dipyridyl (Sigma) [28].

Generation of mAb (6B8) to methanol fixed T. vaginalis

Trichomonads at the logarithmic phase of growth suspended in cold PBS were fixed overnight at 4°C with 20% methanol. After washing and resuspending in PBS, BALB/c mice were immunized by subcutaneous injection with 0.5 ml containing 5 x 10^6 fixed *T. vaginalis* emulsified in Freund’s complete adjuvant followed by two additional boosts of the same amount of antigen mixed with Freund’s incomplete adjuvant performed on days 14 and 28. A final boost of the same amount of antigen in saline was given intravenously at day 42. The mice with higher antibody titers were used for hybridoma production using published protocols [44,45]. A whole cell-ELISA was used to identify antibodies reactive with the surface of trichomonads [44]. Hybridoma cells were single cell cloned and supernatant used for fluorescence and immunoblot assays.

Parasite adherence

To demonstrate that contact with host cells resulted in loss of surface expression of TV44, immortalized MS-74
human VECs [46] were used for adherence experiments and were grown in Dulbecco's modified Eagle medium (D-MEM) (Invitrogen-Life Technologies, Carlsbad, CA) supplemented with 10% fetal bovine serum, at 37°C in the presence of 5% CO₂. The immortalized human MS-74 VECs were used for adherence as recently detailed [47].

Experiments were also carried out to determine if the IgA mAb pretreatment of organisms inhibited cytoadherence. For the adherence assay, confluent monolayers of MS-74 VECs on individual 96-well microtiter plates were stabilized with 3% glutaraldehyde, as before [30], prior to addition of labeled parasites. Organisms (5 × 10⁶) at late logarithmic phase of growth were washed in PBS and suspended in 1 ml TYM without serum for labeling with calcine for 30 min at 37°C. After washing in PBS, trichomonads were suspended in 1 ml TYM medium without serum containing hybridoma supernatant with mAb 6B8 diluted 1:100. Then, 2.5 × 10⁵ parasites washed once in PBS were added to individual wells of confluent fixed VECs and the parasite-VEC interaction incubated at 37°C [29-32]. After 30 min, the wells were washed three times with warm PBS, and adherent organisms were lysed with 200 µl of 0.1% Triton X-100. The level of adherence to VECs was determined by the intensity of fluorescence of the lysate at 494-nm with a VersaFluor Fluorometer (BioRad Laboratories, Hercules, CA).

Immunoblot detection

Total proteins from 10⁷ *T. vaginalis* parasites were obtained as before using trichloroacetic acid (TCA) [48] for analyses by sodium dodecylsulphate-polyacrylamide gel (SDS-PAGE) electrophoresis [49] using 10% acrylamide prior to blotting onto Hybond-P™ membranes (Amersham Pharmacia Biotech). Immunoblot analysis was carried out with the IgA mAb 6B8, and protein bands were visualized with alkaline phosphatase-conjugated goat anti-IgA antibody and substrate, using standard procedures as above.

Immunofluorescence detection of TV44 on the parasite surface

Immunofluorescence of TV44 on the surface of non-permeabilized trichomonads was carried out using a modification of a recent procedure [29]. Briefly, 1 × 10⁶ *T. vaginalis, T. foetus* and *T. tenax* parasites at the logarithmic phase of growth were washed twice with cold PBS and fixed with 4% paraformaldehyde for 30 min at room temperature (RT). Trichomonads washed in PBS were suspended in 1 ml PBS and treated with 5% BSA for 1 h at RT. Organisms were washed and resuspended again in 1 ml PBS prior to incubation for 1 h with hybridoma supernatants of mAb 6B8 diluted 1:100. Parasites were washed with PBS and incubated for 1 h at 37°C with affinity-purified goat anti-mouse IgA (α-chain specific) antibody conjugated to fluoresceine isothiocyanate (Sigma) diluted 1:100. Finally parasites were washed twice with PBS and observed under 100× magnification using the Olympus BX41 microscope.

cDNA library construction

T. vaginalis isolate T016 [29,31] cDNA library was constructed in the Lambda Zap II vector from 5 µg poly(A)+ RNA using the poly(A) Quick mRNA isolation kit and the cDNA synthesis kit (both from Stratagene, La Jolla, CA). Immunological screening with the mAb 6B8 was carried out as described [51]. After two rounds of screening and plaque purification, phagemids were excised with Exassist interference-resistant helper phage according to the manufacturer’s instructions. Sequencing was performed at the Advanced Nucleic Acid Core Facility of University of Texas Health Science at San Antonio.

Computer analysis of sequence data

The nucleotide sequence of the cDNA clone was translated into the corresponding amino acid sequence with BioEdit program. The BLAST program was used to find...
related proteins in the data bank [52]. Sequences were aligned using Clustal W [53] program.

RNA isolation and RT-PCR

Total RNA was isolated using the trizol reagent (Invitrogen-Life Technologies). In vivo expression of tv44 gene was analyzed by semi-quantitative RT-PCR. Total RNA from iron depleted and iron enriched T. vaginalis parasites was reverse transcribed with oligo (dt)15 primer using Superscript II reverse transcriptase (Invitrogen-Life Technologies). PCR amplification of cDNA was carried out using the following tv44 specific primers: sense primer (5′-GGTCTGATCCGCATCAGAGAG-3′) and antisense primer (5′-CTCTCGTGTGTT CAGCTGTTC-3′). Trichomonad α-tubulin gene was used as an internal control. The PCR was performed for 25 cycles.

Genomic DNA isolation and Southern blot

Genomic DNA from T. vaginalis was obtained as described [54]. For Southern blot hybridization analysis, genomic DNA (10 µg) was digested with restriction endonucleases EcoRI and HindIII that digests outside the gene and PstI that cuts once inside the gene ~200 nucleotides of the 3′-end stop codon. Digested DNA was electrophoresed on 0.9% agarose gel. DNA was transferred on to Hybond™-N+ membrane (Amersham Pharmacia Biotech) using a vacuum blotter (Boekel Scientific, Feasterville, PA). Hybridization was performed by following the standard procedure [51]. The probe represented the entire coding region of TV44 and was generated by PCR and labeled with 32P using Quick prime labeling kit (Amersham Pharmacia Biotech).

PCR amplification of tv44 from T. foetus and T. tenax

To isolate the coding regions of TV44 from T. foetus and T. tenax, a common sense (5′-TATGACGTGCGGATGGCGAAAGCGAAG-3′) and antisense (5′-CTATCTCGTGTGTT CAGCTGTTC-3′) primers were designed based on the tv44 sequence [Gene Bank: AV 963297]. Five hundred nanograms of T. vaginalis genomic DNA was used per 50 µl standard PCR reactions. The PCR products were separated on an agarose gel, and the DNA was purified using the QIA quick Gel Extraction Kit (Qiagen, Inc., Valencia, CA). After DNA sequencing, the sequences were compared to the T. vaginalis tv44 gene sequence.

Reproducibility of experiments

Unless otherwise stated in the text, all experiments were performed numerous times and no less than on three different occasions.

List of abbreviations

IgA, immunoglobulin A; D-MEM, Dulbecco’s modified Eagle medium; kb, kilobase; kDa, kilodalton; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TYM, trypticase-yeast extract-maltose; MS-74 VECs, immortalized vaginal epithelial cells.

Authors’ contributions

VM designed the study and carried out the cDNA library construction, library screening, Southern and immunoblot analyses, and RT-PCR. ASK performed immunofluorescence assays and generated T. vaginalis parasites with and without contact with VECs. THC generated the hybridoma producing the mAb 688. JFA participated in the design of the experiments, offered suggestions during the experiments, and helped VM to write the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by Public Health Service grants AI43940 and AI45429 from the National Institutes of Health. Members of the laboratory are also acknowledged for their suggestions and discussion of our work.

References

1. Cates W Jr: Estimates of the incidence and prevalence of sexually transmitted diseases in the United States. American Social Health Association Panel. Sex Transm Dis 1999, 26:52-7.

2. Weinstock H, Berman S, Cates W Jr: Sexually transmitted diseases among American youth: incidence and prevalence estimates, 2000. Perspect Sex Reprod Health 2004, 36:6-10.

3. World Health Organization: three hundred, thirty-three million new, STD curable cases in 1995. AIDS Wkly 1995:15-16.

4. Gotoff JS, Pastorek JG 2nd, Nugent RP, Hillier SL, Gibbs RS, Martin DH, Eschenbach DA, Edelman R, Carey JC, Regan JA: Trichomonas vaginalis associated with low birth weight and preterm delivery. The Vaginal Infections and Prematurity Study Group. Sex Transm Dis 1997, 24:333-360.

5. Moodley P, Wilkinson D, Connolly C, Moodley J, Sturm AW: Trichomonas vaginalis is associated with pelvic inflammatory disease in women infected with human immunodeficiency virus. Clin Infect Dis 2002, 34:519-522.

6. Viikki M, Pukkala E, Nieminen P, Hakama M: Gynaecological infections as risk determinants of subsequent cervical neoplasia. Acta Oncol 2000, 39:71-75.

7. Gottlieb SL, Douglas JM Jr, Schmid DS, Bolan G, Iatesta M, Malotte CK, Zenilman J, Foster M, Baron AE, Steiner JF: Seroprevalence and correlates of herpes simplex virus type 2 infection in five sexually transmitted-disease clinics. J Infect Dis 2002, 186:1381-1389.

8. Zhang ZF, Bless CB: Is Trichomonas vaginalis a cause of cervical neoplasia? Results from a combined analysis of 24 studies. Int J Epidemiol 1994, 23:682-690.

9. Hobbs MM, Kampebo P, Reed AW, Miller WC, Nikata E, Zimba D, Daly CC, Chakraborty H, Cohen MS, Hoffman I: Trichomonas vaginalis as a cause of urethritis in Malawian men. Sex Transm Dis 1999, 26:381-387.

10. Sorvillo F, Smith L, Kerndt P, Ash L: Trichomonas vaginalis, HIV, and African-Americans. Emerg Infect Dis 2001, 7:927-932.

11. Huppner JS, Bategger BE, Bradley P, Feldman JA, Hobbs MM, Sankey HZ, Sena AC, Wendel KA: Use of an immunochromatographic assay for rapid detection of Trichomonas vaginalis in vaginal specimens. J Clin Microbiol 2005, 43:684-687.

12. Ohlemeyer CL, Hornberger LL, Lynch DA, Swierkosz EM: Diagnosis of Trichomonas vaginalis in adolescent females: InPouch TV culture versus wet-mount microscopy. J Adolesc Health 1998, 22:205-208.

13. Miller WC, Swygard H, Hobbs MM: The prevalence of trichomoniasis in young adults in the United States. Sex Trans Dis 2004.

14. Pillay A, Lewis J, Ballard RC: Evaluation of Xenotrip-Tv, a rapid diagnostic test for Trichomonas vaginalis infection. J Clin Microbiol 2004, 42:3853-3856.
Basic research to vaccine development. Ann N Y Acad Sci 2002, 975:202-216.

16. Mazmanian SB, Kasper DL. Protective monomeric antibody defines a circumopozite-like glycopeptide exoantigen of Cryptosporidium parvum sporozoites and merozoites. J Immunol 1997, 158:1787-1795.

17. Michetti P, Mahan MJ, Slauch JM, Mekalanos JJ. Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium. Infect Immun 1992, 60:1786-1792.

18. Carrero JC, Diaz MY, Viveros M, Espinoza B, Acosta E, Ortiz-Ortiz L. Induction of antibody response to 59:686-689.

19. Kraehenbuhl JP. Neutra MR: Transepithelial transport and mucosal defence II: secretion of IgA. Trends Cell Biol 1992, 2:76-80.

20. Renegar KB, Small PA Jr: Immunglobulin A mediation of murine nasal anti-influenza virus immunity. J Virol 1991, 65:2146-2148.

21. Winner L, Mack J, Welszin R, Mekalanos JJ, Kraehenbuhl JP, Neutra MR: Neutrophil-mediated analysis of murine mucosal immunity: intestinal secretion of specific monoclonal immunoglobulin A from hybirdoma tumors protects against Vibrio cholerae infection. Infect Immun 1991, 59:977-982.

22. Carrero JC, Diaz MY, Viveros M, Espinoza B, Acosta E, Ortiz-Ortiz L. Human secretory immunoglobulin A anti-Entamoeba histolytica antibodies inhibit adherence of amebae to MDCK cells. Infect Immun 1994, 62:764-767.

23. Kelsall BL, Ravdin JI: Immunization of rats with the 260-kilodalton Entamoeba histolytica galactose-inhibitable lectin elicits an intestinal secretory immunoglobulin A response that has in vitro adhearsion-inhibitory activity. Infect Immun 1995, 63:686-689.

24. Kaur H, Samra H, Ghosh S, Vinayak VK, Ganguly NK: Immune effector responses to an excretory-secretory product of Giardia lamblia. FEMS Immunol Med Microbiol 1999, 19:313-315.

25. Cui ZD, Tristram D, LaScolea LJ, Kwiatkowski T Jr, Kopti S, Ogra PL: Induction of antibody response to Chlamydia trachomatis in the genital tract by oral immunization. Infect Immun 1991, 59:1465-1469.

26. Pal S, Theodor I, Peterson EM, de la Maza LM: Monoclonal immunoglobulin A antibody to the major outer membrane protein of the Chlamydia trachomatis mouse pneumonitis biovar protects mice against a chlamydial genital infection. Vaccine 1993, 11:255-262.

27. Phalipon A, Kaufmann P, Michetti JM, Cavaillon M, Huerre M, Sansonetti P, Kraehenbuhl JP: Monoclonal immunoglobulin A antibody directed against serotype-specific epitope of Shigella flexneri lipopolysaccharide protects against murine experimental shigellosis. J Exp Med 1995, 182:769-778.

28. Lehker MW, Arroyo R, Alderete JF: The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis. J Exp Med 1991, 174:311-318.

29. Garcia AF, Chang TH, Benchimol M, Klupp DJ, Lehker MW, Alderete JF: Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis. Mol Microbiol 2003, 47:1207-1224.

30. Arroyo R, Engbring J, Alderete JF: Molecular basis of host epithelial cell recognition by Trichomonas vaginalis. Mol Microbiol 2002, 45:683-692.

31. Arroyo R, Gonzalez-Robles A, Martinez-Palomos A, Alderete JF: Signalling of Trichomonas vaginalis for amoeboid transformation and adhesion synthesis follows cytoadherence. Mol Microbiol 1999, 33:299-309.

32. Kucknoor AS, Mundadi V, Alderete JF: Adherence to human vaginal epithelial cells signals for increased expression of Trichomonas vaginalis genes. Infect Immun 2005, 73:6472-6478.

33. Hersh SM: Pulmonary trichomoniiasis and Trichomonas tenax. J Med Microbiol 1985, 20:1-10.

34. Felleisen RS: Host-parasite interaction in bovine infection with Tritrichomonas foetus. Microbes Infect 1999, 1:807-816.

35. Grifantini R, Bartolini E, Muzzi A, Draghi M, Frigimelica E, Berger J, Randazzo F, Grandi G: Gene expression profile in Neisseria meningitidis and Neisseria lactamica upon host-cell contact. From basic research to vaccine development. Ann N Y Acad Sci 2002, 975:202-216.

36. Chiang G, Vrazhik A, Wallig MA, Fidel PL Jr, Trupin SR, Hoyer LL: Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun 2005, 73:1656-1663.

37. Rodriguez A, Tarnlund A, Ivanj J, Singh M, Garcia I, Williams A, Marsh PD, Troye-Blomberg M, Fernandez C: Role of IgA in the defense against respiratory infections IgA deficient mice exhibited increased susceptibility to intranasal infection with Mycobacterium bovis BCG. Vaccine 2005, 23:2565-2572.

38. Lehker MW, Arroyo R, Alderete JF: The prevalence of Entamoeba histolytica in lactating women and in their infants in Bangladesh. Trans R Soc Trop Med Hyg 1988, 82:99-103.

39. Choudhuri G, Prakash V, Kumar A, Shahi SK, Sharma M: Protective immunity to Entamoeba histolytica infection in subjects with antiamoebic antibodies residing in a hyperendemic zone. Scand J Infect Dis 1991, 23:771-776.

40. Leyva O, Rico G, Ramos F, Moran P, Melendro EI, Ximenez C: Inhibition of adhesion process mediated by anti- Entamoeba histolytica specific monoclonal IgA antibodies. Arch Med Res 1992, 23:227-229.

41. Haque R, Ali IM, Sack RB, Farr BM, Ramakrishnan G, Petri WA Jr: Amebiasis and mucosal IgA antibody against the Entamoeba histolytica adherence lectin in Bangladeshi children. J Infect Dis 2004, 189:1891-1894.

42. Lehker MW, Arroyo R, Alderete JF: Enzyme linked immunosorbent assay for detecting antibody to Trichomonas vaginalis: use of whole cells and aqueous extract as antigen. Br J Vener Dis 1984, 60:164-170.

43. Lehker MW, Alderete JF, Kasimala L: Monoclonal antibody to a major glycoprotein immunogen mediates differential complement-independent lysis of Trichomonas vaginalis. Infect Immun 1986, 53:697-699.

44. Klumpff DJ, Forrestal SG, Karr JE, Mudge CS, Anderson BE, Schaeffer AJ: Epithelial differentiation promotes the adherence of type 1-piliated Escherichia coli to human vaginal cells. J Infect Dis 2002, 186:1631-1638.

45. Kucknoor A, Mundadi V, Alderete JF: Trichomonas vaginalis adherence mediates differential gene expression in human vaginal epithelial cells. Cell Microbiol 2005, 7:887-905.

46. Lehker MW, Arroyo R, Alderete JF: Adherence to human vaginal epithelial cells signals for increased expression of Trichomonas vaginalis genes. Infect Immun 2005, 73:6472-6478.

47. Hersh SM: Pulmonary trichomoniiasis and Trichomonas tenax. J Med Microbiol 1985, 20:1-10.

48. Felleisen RS: Host-parasite interaction in bovine infection with Tritrichomonas foetus. Microbes Infect 1999, 1:807-816.