Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming

Ben P. Harvey
Dylan Gwynn-Jones
Philippa J. Moore
Edit Cowan University, p.moore@ecu.edu.au

Follow this and additional works at: https://ro.ecu.edu.au/ECUworks2013

Part of the [Marine Biology Commons](https://ro.ecu.edu.au/ECUworks2013), and the [Oceanography Commons](https://ro.ecu.edu.au/ECUworks2013)

10.1002/ece3.516
Harvey, B., Gwynn-Jones, D., & Moore, P. J. (2013). Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecology and Evolution, 3(4), 1016-1030. Available [here](https://ro.ecu.edu.au/ECUworks2013/698)

This Journal Article is posted at Research Online.
https://ro.ecu.edu.au/ECUworks2013/698
Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming

Journal:	*Ecology and Evolution*
Manuscript ID:	Draft
Wiley - Manuscript type:	Original Research
Date Submitted by the Author:	n/a
Complete List of Authors:	Harvey, Ben; Aberystwyth University, Institute of Biological, Environmental and Rural Sciences Gwynn-Jones, Dylan; Aberystwyth University, Institute of Biological, Environmental, and Rural Sciences Moore, Pippa; Aberystwyth University, Institute of Biological, Environmental, and Rural Sciences
Search Terms:	Community Ecology, Conservation

Abstract:
Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using meta-analytical techniques we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. We found positive, neutral and negative biological responses that varied across taxonomic groups, life-history stages and trophic levels. Moreover, we found the combined stressors generally exhibited a stronger effect (either positive or negative) than when exposed to the stressors in isolation. Using a subset of fully factorial studies we show that the type of response (e.g. calcification, survival) determines whether multiple stressors interact in a predictable manner, or as an unpredictable ‘ecological surprise’. Interactions of the two stressors led to ‘ecological surprises’ more commonly than predictable outcomes. Additionally, although the analysis of our subset of data showed that ‘ecological surprises’ were common, meta-analysis of the full data set was not sensitive enough to detect these important interactions. The inherent variability associated with different taxonomic groups, life-history stages and trophic levels may make broad-scale meta-analyses less effective in detecting more specific ‘ecological surprises’. Given that the occurrence and importance of ‘ecological surprises’ are likely to intensify with increasing frequency of stressors interacting in marine systems, there is an urgent need to move towards a more robust, holistic and ecologically realistic approach to climate change experimentation that forewarns of the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century.
Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming

Running title: Interactions of warming and acidification

Ben P. Harvey¹, beh14@aber.ac.uk

Dylan Gwynn-Jones¹, dyj@aber.ac.uk

Pippa J. Moore¹,², *, pim2@aber.ac.uk

¹ Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, UK, SY23 3DA

² Centre for Marine Ecosystems Research, Edith Cowan University, Perth, Australia, 6027

* Correspondence: Pippa J. Moore

Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, UK, SY23 3DA

Ph: +44 (0)1970 622293; Fax: +44 (0)1970 622350; E-mail: pim2@aber.ac.uk

Keywords: Meta-analysis, climate change, ocean warming, ocean acidification, additive interactions, synergistic interactions, multiple stressors

Type of paper: Primary Research Article
ABSTRACT

Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using meta-analytical techniques we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. We found positive, neutral and negative biological responses that varied across taxonomic groups, life-history stages and trophic levels. Moreover, we found the combined stressors generally exhibited a stronger effect (either positive or negative) than when exposed to the stressors in isolation. Using a subset of fully factorial studies we show that the type of response (e.g. calcification, survival) determines whether multiple stressors interact in a predictable manner, or as an unpredictable ‘ecological surprise’. Interactions of the two stressors led to ‘ecological surprises’ more commonly than predictable outcomes. Additionally, although the analysis of our subset of data showed that ‘ecological surprises’ were common, meta-analysis of the full data set was not sensitive enough to detect these important interactions. The inherent variability associated with different taxonomic groups, life-history stages and trophic levels may make broad-scale meta-analyses less effective in detecting more specific ‘ecological surprises’. Given that the occurrence and importance of ‘ecological surprises’ are likely to intensify with increasing frequency of stressors interacting in marine systems, there is an urgent need to move towards a more robust, holistic and ecologically realistic approach to climate change experimentation that forewarns of the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century.
INTRODUCTION

The concentration of atmospheric carbon dioxide (CO$_2$) has increased from 280ppm in pre-industrial times to a present day level of 387ppm (Feely et al. 2009). Over the last 100 years this has led to changes in global sea surface temperatures (+0.74°C) and ocean carbonate chemistry (Orr et al. 2005), which have included ocean acidification by 0.1 pH units (Caldeira & Wickett, 2003; Kleypas et al. 2006). By the year 2100 sea-surface temperatures are expected to rise by a further 1-4°C while increased CO$_2$ (aq) will result in the decreased availability of carbonate ions and a further reduction in pH by 0.3-0.5 units (Caldeira & Wickett, 2005; IPCC, 2007; Gooding et al. 2009). These changes in temperature and ocean carbonate chemistry are considered two of the greatest threats to marine biodiversity (Kleypas et al. 1999; Doney et al. 2009), leading to changes in the physiological performance of individual organisms which will in turn alter biotic interactions, community structure and ecosystem functioning.

A range of marine biological responses have already been observed in response to ocean warming including hypoxia (Pörtner & Knust, 2007), coral bleaching (Hoegh-Guldberg et al. 2007), species range shifts (Parmesan & Yohe, 2003; Root et al. 2003), changes to phenology (Walther et al. 2002), and reduced organism body size (Daufresne et al. 2009). Experimental manipulations simulating predicted future ocean temperatures have suggested that warming will also lead to increased metabolic costs for plants and animals (O’Connor et al. 2009), increased consumption rates (Sanford 1999) and changed food-web structure (Petchey et al. 1999). Observed responses of marine organisms to recent ocean acidification are limited (but see Iglesias-Rodriguez et al. 2008b; Moy et al. 2009), but are expected to become increasingly apparent in the next 50-100 years (Doney et al. 2009; Feely et al. 2009).
Experimental evidence, however, suggests that responses are likely to be highly varied (Hendriks et al. 2010; Kroeker et al. 2010) and will include hypercapnic suppression of metabolism (Christensen et al. 2011), acid-base balance disturbances (Miles et al. 2007), plus both positive and negative effects on skeleton formation (related to a decrease in carbonate saturation; Doney et al. 2009; Ries et al. 2009).

The vulnerability of marine species and ecosystems to individual climate stressors, particularly temperature, is well established (for reviews; Hoegh-Guldberg & Bruno, 2010; Richardson et al. 2012; Wernberg et al. 2012), despite this, the cumulative effect of warming and acidification remains unclear (Sala et al. 2000; Fabry et al. 2008). Recent meta-analyses, across ecological systems, have shown that multiple stressors can lead to ‘ecological surprises’ (sensu Paine et al. 1998) with responses dependent on the type of stressor as well as the ecological organisation investigated (e.g. population vs. community, autotroph vs. heterotroph) (Crain et al. 2008; Darling & Côté, 2008; Tylianakis et al. 2008). Moreover, the mechanism through which the stressor acts upon the organism will affect the response. Multiple stressors acting through a similar pathway may have an additive effect (Crain et al. 2008). In contrast, any stress-induced tolerances could lead to antagonisms (Blanck, 2002), while those stressors that act on different, but dependent mechanisms may act synergistically (Kneitel & Chase, 2004).

Organisms vary widely in their individual responses to ocean warming and acidification as a result of differences in their physiological and ecological characteristics (Dupont et al. 2008; Fabry, 2008). For example, many marine organisms possessing a calcium carbonate (CaCO$_3$) structure would be considered more susceptible to ocean acidification as this process will impair their capacity to produce calcified skeletons (Doney et al. 2009). Conversely, some
species, including some calcified species, will have the capacity to buffer against the deleterious effects of acidification by utilising acid-base compensation (e.g. fishes; Claiborne & Evans, 1992; Larsen et al. 1997), active mobility and metabolism (Widdicombe & Spicer, 2008; Whiteley, 2011) or energy reallocation (Wood et al. 2008; McDonald et al. 2009).

Elevated temperature (up to a limit) may positively enhance metabolism in ectotherms, resulting in faster growth and development (Byrne, 2011). Moreover, it has been speculated that warming could even ameliorate the negative impacts of acidification (McNeil et al. 2004; Kleypas & Yates, 2009). Therefore, the concurrent effect of temperature and ocean acidification via elevated CO$_2$ remains unclear, but is likely to lead to complex biological outcomes.

Species responses to ocean warming and acidification will also vary among life-history stages (Byrne, 2011). Early life-history stages are considered more susceptible to changes in both temperature and ocean acidification (Byrne, 2011). These stressors may, however, have positive and/or negative effects for the successful recruitment of juveniles to the adult population. Trophic level is also likely to determine how species respond due to differences in environmental sensitivity (Petchey et al. 2004; Raffaelli, 2004). Previous work has suggested the effects of multiple stressors are likely to act antagonistically in autotrophs, but synergistically in heterotrophs (Crain et al. 2008). Furthermore, since higher trophic levels contain less ‘biological insurance’ (sensu Yachi & Loreau, 1999), i.e. less taxonomic, physiological, and genetic diversity, they are predicted to be more susceptible to multiple environmental perturbations (Christensen et al. 2006) which could act upon them synergistically (Crain et al. 2008).
Studies of the biological effects of elevated temperature and acidification on marine organisms in isolation have provided some insight into the potential tolerance of species to these changing conditions (Gattuso et al. 2009). However, given that these stressors are unlikely to operate independently, there is now a need to gain a more ecologically realistic understanding of how the combined effects of temperature and acidification will affect marine biota. This is vital in order to inform future adaptative management strategies. Using a meta-analytical approach of the peer-reviewed literature we assessed the impacts and interactions of ocean acidification and warming on marine biological responses. Given that variability in the strength and direction of responses was expected, we classified data according to taxonomic groups, calcifiers and non-calcifiers, life-history stage and level of trophic organisation (autotroph and heterotroph) in terms of changes in rates of calcification, growth, photosynthesis, reproduction and survival. Specifically, we aimed to address three questions: (i) How do warming and acidification impacts interact? (ii) Do stressors combine in predictable ways or as ‘ecological surprises’? (iii) Can inherent biological variability be explained by predetermined categories?

MATERIAL AND METHODS

DATA SELECTION AND SUITABILITY CRITERIA

Searches for peer-reviewed articles in which studies explicitly investigated anthropogenic climate change using either elevated temperature, ocean acidification or elevated temperature and acidification were carried out using ISI Web of Science ©, Google Scholar; the European Project on Ocean Acidification (EPOCA) blog (http://oceanacidification.wordpress.com/), citation searches; analysis of reference lists in comprehensive reviews (Hendriks et al. 2010;
Kroeker *et al.* 2010; Wernberg *et al.* 2012), and then cross-referenced with the bibliographies of identified articles.

We limited our review to studies published between 1st January 1990 and 1st January 2012, as the majority of experimental climate change studies that manipulated climate change conditions in line with IPCC AR1 predictions and subsequent updates (IPCC, 1990, 2007) were published after 1990. Only controlled manipulative experiments were used for analysis. In addition, the control treatments of the environmental stressor (e.g., pH, CO$_2$, or temperature) needed to represent current ambient levels and were based on the authors’ opinion of ‘ambient’. The experimental organisms had to be subjected to elevated temperature alone, acidification alone, or both warming and acidification. When studies included environmental variables in addition to temperature and ocean acidification (such as light availability or nutrients), these responses were only considered at ‘ambient’ levels of the other environmental variables. To explore predicted future conditions for 2100, the manipulation treatments needed to conform to the IPCC IS92a “business-as-usual” emission scenario for the year 2100 (IPCC, 2007). We omitted studies that manipulated carbonate chemistry using acid addition, because it does not reproduce the changes in HCO$_3^-$ concentration that occur as a result of increased CO$_2$(aq) (Iglesias-Rodriguez *et al.* 2008a; 2008b; but see; Gattuso & Lavigne, 2009; Schulz *et al.* 2009). Finally, only studies that reported a measurable biological response were included.

As response variables we used calcification (or dissolution) rates, growth, photosynthesis, reproduction and survival (mortality was converted to survival by using 1 - mortality). There were insufficient data on other response variables (e.g. feeding rates, metabolism) to enable quantitative analysis. A number of articles included more than one species, response,
location, or treatment level. All of the species, responses, locations and treatment levels were included if they met the suitability criteria. This ensured that a broad range of responses could be fully explored, despite lessening the independence of the data from that particular study (Gurevitch et al. 1992). To maintain independence of data we included only one response, chosen at random, from studies reporting several responses that could be classified in the same category (eg. growth expressed as changes in length and biomass). Derived metrics from studies that included time-series data were based on the final time point of exposure. To investigate inherent biological variability, records were categorised according to taxonomy, life-history stage, level of trophic organisation (autotroph, heterotroph) and whether the organism possessed a CaCO$_3$ skeletal structure.

To enable a calculation of effect size, studies that met our initial criteria could only be used if they reported a mean response value, some form of variance (standard deviation, standard error or confidence interval), and a sample size. In some instances values were only reported in graphical form, and in these situations data were extracted using the program GraphClick (v. 3.0) (Neuchatel, Switzerland).

DATA ANALYSIS

Biological responses to ocean warming and acidification were measured for each experiment to establish the proportional change between the control and treatment means using response ratios. In their original metric response ratios are weighted towards positive responses, so the response ratios were log transformed to maintain symmetry in the analysis and ease the biological interpretation (Hedges *et al.* 1999). We chose a log response ratio (lnRR), over
other methods, to estimate the effect size because of the high capacity to detect true effects and there robustness to small sample sizes (Lajeunesse & Forbes, 2003).

We selected a weighted random-effects model to estimate a summary effect size. Random-effects analysis assumes that the true effect size differs between experiments and the estimated summary effect is the mean of the effects observed across the studies. This means that even if studies have a low weighting, the individual effect sizes from all of the studies will still be incorporated into the summary effect (Borenstein et al. 2009). This ensured that the biological variation inherent in the responses was properly accounted for. Both the within-study variance (inverse of the effect size variance) and the between-study variance (σ^2_{pooled}) were used to weight the studies. Therefore studies with higher replication and/or lower variance were considered more precise and weighted accordingly (Hedges & Olkin, 1985).

Statistical significance was attributed to each summary effect size by calculating a bias-corrected 95% confidence interval (CI) and comparing it with zero. If the summary effect size did not overlap zero then it was considered to be significantly different. A total heterogeneity statistic (Q) was used to ascertain that the variation observed was a combination of both true variation (between studies) and random error (within studies) (Borenstein et al. 2009). This was tested as the observed weighted sum of squares against a chi square distribution with $n - 1$ degrees of freedom, using the null hypothesis that observations share a common effect size.

Combinations of the treatment effect (CO$_2$/pH, temperature, temperature and CO$_2$/pH) and response variables (calcification, growth, photosynthesis, reproduction, and survival) were
used as the comparison groups in all analyses. Separate exploratory analyses were also used to test the differences between \textit{a priori} defined groups; it was appreciated that this form of multiple exploratory analyses on the same dataset is prone to Type I error, however, we aimed to use these analyses to identify the underlying patterns of the biological responses. The categorical moderators used were the different taxonomic groups (corals, crustaceans, crustose coralline algae, echinoderms, fishes, non-calcifying algae, molluscs, phytoplankton and seagrasses), calcifying and non-calcifying organisms, developmental stages (embryos, larvae, juveniles and adults), and trophic organisation (autotroph and heterotroph). This process applied a summary effect size and 95% CI to each of the different categories for comparison. To formally test for differences between these categories, a test for heterogeneity (Q_M) was used; this ascertains the total heterogeneity that can be explained by that particular categorical moderator (Gurevitch \textit{et al.} 1992). A significant Q_M indicates that there is a difference between the categories. The taxonomic group of phytoplankton was initially divided into coccolithophores, cyanobacteria, diatoms, dinoflagellates and foraminifera, however, results were pooled again after detecting no difference using a test for heterogeneity (Q_M). Over all of the meta-analytical results, the summary effect sizes were not reported if there were fewer than five studies available for analysis, and categorical moderators were not reported if there were fewer than three studies. This was a pragmatic decision to ensure that a broad range of responses could be assessed, as some categories only had a few studies that met our criteria. Therefore, the categorical analyses did not always include all the observations from the full model.
INTERACTIONS BETWEEN MULTIPLE STRESSORS

Interactions between ocean warming and acidification were ascertained following the methodology of Darling and Côté (2008). The method involved using a weighted fixed-effect model to predict the combined effect of warming and acidification for each response variable. The effects of ocean warming and acidification are unlikely to operate independently, so we used a multiplicative model (± 95% CI) to predict the proportional change of their interaction (Morris et al. 2007; Crain et al. 2008). Although less conservative than an additive model (Folt et al. 1999), we considered a multiplicative model to be more appropriate since the underlying model of the metric lnRR is multiplicative (Hawkes & Sullivan, 2001; Morris et al. 2007), and this model is also thought to be more biologically realistic (Sih et al. 1998).

Results were then compared to the combined warming and acidification observed responses (also calculated using a weighted fixed-effect model ± 95% CI). If the 95% CI of the predicted and observed responses did not overlap then they were considered significantly different. Observed effect sizes that were significantly higher were classed synergistic, significantly lower were antagonistic, and those that were non-significant were multiplicative.

To be included, studies had to have carried out a controlled factorial experiment that reported the outcomes of warming and acidification individually and in combination, with a control treatment (Underwood, 1997). Therefore, not all of the observations from the full model could be analysed. Multiple observations from the same study were included if separate factorial results were provided.

SENSITIVITY ANALYSES AND PUBLICATION BIAS

Sensitivity analysis was used to investigate the influence of any experimental study that demonstrated an unusually large effect size. This was achieved in a step-wise manner by
ranking each experiment by the magnitude of effect size, removing the largest one, and re-running the analysis. Likewise, if any study contributed five or more observations to a category, the study was omitted and the analyses re-run. If studies were considered to be driving the results, then they were omitted from the analysis of that response variable.

The number of studies with an effect size of zero that would be required to change the results of the meta analysis from significant to non-significant (‘file drawer problem’) was determined using Rosenberg’s failsafe number (Rosenberg, 2005). It was decided that if five or less studies (of zero effect size) were required to change the effect size, then that categorical analysis was not considered robust.

RESULTS

OVERALL BIOLOGICAL RESPONSES

Out of 196 peer-reviewed articles that investigated the biological responses of marine organisms to ocean warming and/or acidification 107 met our criteria, giving 623 unique observations (Table S1). Observations that did not meet the selection criteria are listed in Table S2, and the results from all the heterogeneity tests for overall within-effects (Q) and between categories (Q_M) are reported in Table S3.

Meta-analysis of the whole dataset revealed that calcification was negatively affected by ocean acidification and neutrally affected by ocean warming, although there was some tendency towards a negative response. Combined warming and acidification resulted in a highly significant negative response (Fig. 1). In contrast, the effects of ocean acidification and warming (both independently and combined) had no effect on growth (Fig. 1).
Independently, both ocean acidification and warming resulted in highly variable, but non-significant effects on photosynthesis. Conversely, concurrent acidification and warming revealed a significant positive effect on photosynthesis (Fig. 1).

The independent effects of ocean acidification and warming on reproduction and survival were of similar magnitude and negative. The combined effects of ocean warming and acidification were also negative and of greater magnitude than observed for the stressors in isolation (Fig. 1).

TAXONOMIC GROUPS

The combined effects of ocean warming and acidification on calcification varied between taxonomic groups ($Q_M = 7.92$, d.f.=2, $p=0.019$; Fig. 1). For corals and crustaceans there were neutral effects in response to warming and acidification both in isolation and combination. In echinoderms, acidification had a neutral effect on calcification while ocean warming and the two stressors combined resulted in significant negative effects with the concurrent effects tending towards a synergistic interaction.

Responses of crustaceans, echinoderms, molluscs and phytoplankton to the combined effects of warming and acidification varied in terms of growth ($Q_M = 14.27$, d.f.=3, $p=0.003$; Fig. 1). Across all taxa there was no significant effect of warming or acidification in isolation or combination, with the exception of the crustaceans, which displayed a significant negative response to the combined effects of these stressors. For the non-calcifiers (fish, non-calcareous algae and seagrass), there was no significant effect on growth as a result of
warming and acidification in isolation, although effects tended towards positive. Unfortunately there were insufficient studies to determine the combined effects of these stressors.

The combined effects of ocean warming and acidification had a significant positive effect on photosynthesis in phytoplankton (Fig. 1). Although, analysis of the combined stressors was not possible for the other primary producers they all showed responses of similar magnitude to ocean acidification and warming in isolation.

For both echinoderms and molluscs, ocean warming (in isolation) had a significant negative effect on reproduction, while for molluscs ocean acidification (in isolation) also had a negative effect. Combined warming and acidification had a significant negative effect on reproduction in both taxa (Fig. 1).

The combined effects of ocean warming and acidification negatively affected survival in crustaceans and molluscs (Fig. 1). Additionally, significant negative responses were also detected in corals and molluscs under warming conditions and for molluscs under high CO₂ conditions.

CALCIFIERS/NON-CALCIFIERS

Due to an insufficient number of studies investigating the concurrent effects of warming and acidification on non-calcifiers, comparisons with calcifiers of the combined impact of these stressors was not possible. Under future ocean chemistry conditions there was, however, significant difference in growth between calcifiers and non-calcifiers ($Q_m = 12.22$, d.f. =1,
p<0.001; Fig. 2), with growth significantly negatively affected in calcifiers and significantly positively affected in non-calcifiers. Calcifiers exhibited a significantly positive photosynthetic response to the combined effects of warming and acidification (Fig 2), primarily driven by phytoplankton (Fig 1). Where sufficient data existed to enable comparisons, warming and acidification, in isolation and combination, negatively affected survival in both calcifiers and non-calcifiers (Fig 2).

LIFE-HISTORY STAGES

Ocean warming (both independently and in conjunction with acidification) had a significant negative effect on calcification in juveniles, but not in adults. Heterogeneity tests, however, did not reveal significant differences between life history stages for either calcification or growth when exposed to the two stressors in isolation or combination (Table S3). The effects of ocean warming on survival differed significantly between life-history stages with both larvae and juveniles exhibiting more negative responses than adults ($Q_M = 23.62$, d.f. =2, p<0.001; Fig. 3). Although ocean acidification had a significant negative effect on the survival of larvae and adults, there was no significant difference in responses across life-history stages (Table S3). The combined effects of warming and acidification on survival showed a significant negative response for both larvae and juveniles.

TROPHIC ORGANISATION

Calcification in autotrophs was not significantly affected by either warming or acidification in isolation or combination. The combined effects of warming and acidification had, however, a significant negative effect on calcification in heterotrophs (Fig. 4). Conversely, the effects of warming and acidification did not significantly affect growth in heterotrophs,
while in autotrophs ocean warming and acidification had a significant positive effect on growth (Fig. 4). While there were insufficient data to investigate the combined effects of warming and acidification on survival in autotrophs, these stressors in isolation had significant negative effects. In heterotrophs survival was not affected by ocean acidification, but was significantly negatively affected by warming alone and the combined effects of warming and acidification.

INTERACTIONS BETWEEN MULTIPLE STRESSORS

For calcification, growth and survival, combined warming and acidification resulted in negative ‘ecological surprises’ when compared to the multiplicative null expectation model, with a synergistic effect on calcification and an antagonistic effect for both growth and survival (Fig. 5). The observed responses for photosynthesis and reproduction were accurately predicted by the model suggesting that these responses to future warming and acidification may be predictable.

SENSITIVITY ANALYSES AND PUBLICATION BIAS

To test the robustness of our analyses against large effect sizes, we removed each comparison step-wise and re-ran each analysis, omitting experiments if they changed the significance of either heterogeneity or the mean effect size of the response variables. This resulted in twelve experiments being omitted from subsequent analyses across several treatment-response variable scenarios (see Table S2 for more detail). We used Rosenthal’s fail-safe number to assess the importance of potential publication bias and found that our response variables were robust, with the lowest values being 82 and 99 additional studies being required to change the effect size (based on original experiment quantities of 33 and 7 respectively). No individual
study contributing more than five experiments changed the significance of either the heterogeneity or mean effect size of the response variables.

DISCUSSION

Meta-analysis of the full dataset revealed that the combined effects of ocean acidification and warming had significant negative effects on calcification, reproduction and survival, and a significant positive effect on photosynthesis. There was, as would be expected, variation amongst taxonomic groups, life-history stages, trophic levels, calcifiers and non-calcifiers. More importantly, our analyses showed that responses to ocean acidification and warming in isolation often differed from the results obtained when these stressors were combined. Our results highlight the need to move away from single-stressor studies towards more ecologically realistic research incorporating multiple stressors, in order to more fully understand how near-future anthropogenic change will affect marine biodiversity.

Analysis of the full dataset did not provide evidence that the combined stressors would result in truly synergistic or antagonistic interactions. However, examination of our subset of fully factorial studies showed that three out of five of our responses generated ‘ecological surprises’ (sensu Paine et al. 1998), where the outcome was not predictable from the sum of the individual stressors (i.e. multiplicative effects; Folt et al. 1999). We observed a synergistic effect on calcification and an antagonistic effect on both growth and survival, highlighting that stressor specificity, in addition to other factors, may be involved in driving interaction types (Crain et al. 2008). Our findings suggest that the effects of combined warming and acidification may commonly generate unpredictable interactions (i.e. synergies
and antagonisms) rather than interacting in a predictable manner, with implications for our ability to predict the future impacts of multiple stressors.

Ecological synergies are anticipated to have important implications for marine systems (Paine et al. 1998; Harley et al. 2006; Sutherland et al. 2006) as they can exacerbate adverse effects and reduce ecosystem resilience (Folke et al. 2004). Although antagonistic interactions will reduce the cumulative impact compared to synergies (Didham et al. 2007; Brook et al. 2008), they will also interact unpredictably. Such unpredictable outcomes are of particular concern because ‘ecological surprises’ may additionally affect biotic interactions (Tylianakis et al. 2008) and trophic complexity (Vinebrooke et al. 2004; Darling & Côté, 2008). Multiple stressors are thought to act synergistically when affecting different physiological mechanisms, since this results in ecological trade-offs. This is because synergies are fundamentally a negative functional interaction between traits (Kneitel & Chase, 2004). Alternatively, antagonisms will occur if an individual is exposed to an additional stressor that acts upon the same mechanism as a stressor for which that individual has already adapted or become acclimated to (Blanck, 2002; Christensen et al. 2006).

The negative synergistic response detected for calcification in echinoderms, for instance, is consistent with the pattern of ecological synergies and trade-offs (Kneitel & Chase, 2004) in that it may be attributed to an energy re-allocation strategy from somatic or reproductive growth (Melzner et al. 2009). For example, an infaunal brittlestar exhibited muscle wastage as an energetic trade-off to maintain calcification under ocean acidification conditions (Wood et al. 2008). Our observed antagonistic interaction between ocean warming and acidification for both growth and survival may be consistent with the pattern of developing a stress-tolerance for stressors acting on the same pathway (Christensen et al. 2006). For example,
acidification may induce a reduced body size, a common stress-tolerance trait (Vinebrooke et al. 2004), which makes organisms less susceptible to other stressors, or in this case elevated temperature. In our analyses, the impacts of ocean acidification on survival were more subtle, with neutral or weakly negative effects, while temperature appeared to be the overriding stressor. The only exception to this was in adults in our analysis across life-history stages. This pattern is consistent with previous work (eg. McDonald et al. 2009; Findlay et al. 2010).

Interestingly, despite establishing robust predictions for near-future changes in carbonate chemistry (Roleda et al. 2012), the underlying mechanisms of the biological responses still remain unclear (Gattuso & Hansson 2011; but see Pörtner, 2008). For instance, until recently the effects of ocean acidification on calcification responses were thought to reduce an organism’s potential to calcify and enhance the dissolution of their CaCO$_3$ shells (eg. Ries et al. 2009). Recent studies have, however, demonstrated that the net calcification loss found in many studies may not demonstrate constraints on calcification, but rather that the dissolving of exposed skeleton (gross dissolution) is greater than the skeletal growth beneath healthy tissue (gross calcification) (Ries, 2011; Rodolfo-Metalpa et al. 2011). It is therefore essential to understand the mechanisms through which warming and acidification act, as well as to establish the effect that the stressors have on biological responses.

Early life-history stages are generally considered more susceptible to environmental stressors (Pechenik, 1987), and larval and juvenile stages of marine organisms typically show high mortality rates (Gosselin & Qian, 1997; Hunt & Scheibling, 1997). Our results support the hypothesis that the threshold for deleterious warming may vary between developmental stages (Byrne et al. 2009; Byrne et al. 2010) with adult survival being significantly higher compared to either larvae or juveniles under predicted warming conditions. However,
insufficient studies limited a comparison of the effects of combined warming and acidification on survival across life-history stages. Previous work suggests that for survival the interaction between different types of stressors does not differ between life stages apart from embryos (Darling & Côté, 2008). Our results support these findings, but are perhaps more indicative of differences between life-history stages being less prominent than species-specific sources of heterogeneity (Fabry, 2008; Kurihara, 2008).

In our analyses, the combined effects of warming and acidification positively affected growth in autotrophs, probably due to the effect of temperature on metabolic rate, while CO$_2$, which is a substrate for photosynthesis, may also have indirectly lead to increased growth at higher CO$_2$ concentrations. There were no effects on calcification in autotrophs but in heterotrophs calcification was adversely affected, along with survival, by the combined stressors. In heterotrophs growth was unaffected. Collectively, the differences observed are likely attributed to different modes of energy acquisition, and associated indirect effects. For instance, in some autotrophs photosynthesis is expected to increase under near-future climate change (eg. Palacios & Zimmerman, 2007; Fu et al. 2008; Hall-Spencer et al. 2008), and indirectly, photosynthesis has the potential to stimulate calcification (Ries et al. 2009) and increase growth rates (eg. phytoplankton; Loehle, 1995). Moreover, the metabolism complexes of heterotrophs (respiration-limited) are more sensitive to ocean warming than the photosynthesis-limited metabolism of autotrophs (Lopez-Urrutia et al. 2006), and thus warming is predicted to lead to stronger consumer-driven control (O'Connor et al. 2009). There were insufficient data in our analysis to make comparisons between consumer trophic levels (herbivores, detritivores, consumers and top predators). Given the greater frequency of negative effects in response to single stressors at higher tropic levels (Christensen et al. 2006), biological responses and interactions to multiple stressors are also likely to differ
between consumer trophic levels (Vinebrooke et al. 2004). Therefore, a need clearly exists to incorporate trophic complexity within experimental manipulations (eg. O'Connor, 2009; Ferrari et al. 2011) of multiple stressors.

Despite our subset of data, derived from experiments where both temperature and acidification were manipulated in isolation and combination, revealing ‘ecological surprises’ (Fig 5), analysis of our complete dataset did not reveal either synergistic or antagonistic interactions with combined warming and acidification. Broad-scale meta-analyses may therefore be ineffective in detecting the more specific ‘ecological surprises’, due to the inherent variability associated with different taxonomic groups, trophic levels and life-history stages. The implications of this are that any inferred additive interaction between acidification and warming may underestimate synergisms, and overestimate antagonisms (although conservatively) (Didham et al., 2007). Compared to additive interactions, mitigation measures on synergisms will result in greater than expected returns, however, antagonisms will lead to challenges for management because they will require multiple stressors to be mitigated before considerable recovery can be seen. In contrast to our findings, a previous synthesis of interactions between a broad range of stressors found that the overall interaction effect across all studies in marine systems was synergistic (Crain et al. 2008). However, a subsample of their more robust, fully factorial studies, resulted in over half of their studies having predictable additive interactions. Their study included only three examples of the combined impacts of temperature and ocean acidification, but our conflicting results further reinforce the role that stressor identity has in determining multiple stressor interactions. Additionally, since marine systems are subject to multiple interacting stressors (Halpern et al. 2007), it is possible that the addition of a third stressor would introduce further adverse consequences (eg. Przeslawski et al. 2005).
Although we identified and incorporated the available literature that met our selection criteria, the number of studies was limited across taxonomic groups, trophic levels and life stages leading to restrictions on the analyses we could undertake and highlighting the need for further research effort in this area. Additionally, despite a recognised tradition for effective experimental design in marine ecology (Underwood, 1997), a recent review highlighted that almost half of marine climate change experiments had design weaknesses or deficiencies (Wernberg et al. 2012). In that meta-analysis, 91% of studies either lacked treatment replication or carried out a form of pseudo-replication. We found that a third of the studies we investigated were also limited by experimental design, particularly pseudo-replication. This increases the likelihood of Type I errors, i.e. false positives (Hurlbert, 1984). Given the intense scrutiny that climate change science receives it is essential that climate change ecologists, along with all scientists, design their experiments in order to eliminate potential artifacts as a result of poor experimental design.

Substantial progress has been made in determining the impacts of climate change on marine systems, but several key areas require concerted research effort before marine climate change ecologists can provide the evidence required to inform adaptive management strategies. Studies that investigate the biological responses of individual species to multiple stressors will continue to provide insight into the potential tolerance of species to these changing conditions (Gattuso et al. 2009). However, it is likely that over multiple generations phenotypic plasticity and/or genetic evolution will influence the ability of marine organisms to develop a stress-tolerance (Ferrari et al. 2011). Therefore, areas of natural variable pH and temperature, such as CO2 vent systems (eg. Hall-Spencer et al. 2008) or areas of upwelling (eg. Bakun, 1990), may provide a method of ecosystem validation to investigate whether prolonged exposure to stressors can promote adaptation. Moreover, physiological studies are
needed to investigate the pathways driving the biological responses of marine organisms, in
order to better understand the magnitude, direction and interaction of the effects of multiple
stressors.

Individual species are responding idiosyncratically to anthropogenic climate change, and it is
likely that the temporal and spatial association between species interacting at different trophic
levels will also be affected (Harrington et al. 1999; Walther et al. 2002). Since the
complexity of biotic interactions makes it difficult to extrapolate from single-species studies
to community or ecosystem levels (Walther et al. 2002). Future studies will need to establish
the links between climatic impacts at an individual, population, community and ecosystem
level (Harley, 2006). This can be achieved by increasing both the trophic complexity and
number of stressors, with the aim to scale up to investigations with natural communities and
ecosystems. Such large-scale ecosystem level experiments would not only increase our
knowledge of the functioning and resilience of marine ecosystems, but provide explicit
evidence to policymakers on the effectiveness of conservation and management strategies in
response to climate change.

In conclusion, our findings highlight a complex set of outcomes when the combined effects
of ocean warming and acidification on marine organisms are considered. Specifically, we
established that the magnitude, direction and interaction of the effects of multiple stressors
varies between response type probably as a result of the pathways driving the biological
response. Responses also differ between taxonomic groups, trophic levels and life stages.
Most importantly, in our subset of data we identified ‘ecological surprises’ that were not
found in our broad-scale dataset, reinforcing the need for more robust assessments in this
field. However, two of our responses (photosynthesis and reproduction) did interact in a
predictable manner. Understanding the variation of these additive responses will enable more accurate assessment of the likely outcomes of mitigation measures. Importantly, we must also consider further abiotic and biotic stressors in the marine environment that are likely to also interact with warming and acidification (Halpern et al. 2007). Understanding how multiple stressors will impact and interact on different trophic levels also represents a major challenge in the marine biosciences. Experimental manipulation of multiple stressors will provide a sound scientific basis to inform climate change adaptive management strategies, but more generally will also enhance our understanding of the functioning and resilience of marine ecosystems.

ACKNOWLEDGEMENTS

We thank members of the Aquatic, Behavioural and Evolutionary Biology and Ecology Research Groups who provided valuable input into discussions surrounding this manuscript and Sonia Consuegra, Peter Dennis and John Gee for providing suggestions for improving the manuscript. The vector graphics used in Figure 2 are from the Integration and Application Network (http://ian.umces.edu/symbols/), University of Maryland Center for Environmental Science. Funding for BH was provided by an Institute of Biological, Environmental and Rural Sciences PhD Studentship. Funding for PM was provided through a Marie Curie Career Integration Grant PCIG10-GA-2011-303685.

REFERENCES

Bakun (1990) Global climate change and intensification of coastal ocean upwelling. Science, 247, 198-201.
Blanck H (2002) A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. *Human Ecology and Risk Assessment, 8*, 1003-1034.

Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) *Introduction to meta-analysis* pp. 421. John Wiley & Sons Ltd, Chichester, UK.

Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. *Trends in Ecology & Evolution, 23*, 453-460.

Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. *Oceanography and Marine Biology: An Annual Review, 49*, 1-42.

Byrne M, Ho M, Selvakumaraswamy P, Nguyen HD, Dworjanyn SA, Davis AR (2009) Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. *Proceedings of the Royal Society B-Biological Sciences, 276*, 1883-1888.

Byrne M, Ho M, Wong E et al. (2011) Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. *Proceedings of the Royal Society B-Biological Sciences, 278*, 2376-2383.

Byrne M, Soars N, Ho M et al. (2010) Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification. *Marine Biology, 157*, 2061-2069.

Caldeira K, Wickett M (2003) Anthropogenic carbon and ocean pH. *Nature, 425*, 365-365.

Caldeira K, Wickett M (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. *Journal of Geophysical Research-Oceans, 110*, C09S04.
Christensen A, Nguyen H, Byrne M (2011) Thermotolerance and the effects of hypercapnia on the metabolic rate of the ophiuroid *Ophionereis schayeri*: Inferences for survivorship in a changing ocean. *Journal of Experimental Marine Biology and Ecology*, **403**, 31-38.

Christensen MR, Graham MD, Vinebrooke RD, Findlay DL, Paterson MJ, Turner MA (2006) Multiple anthropogenic stressors cause ecological surprises in boreal lakes. *Global Change Biology*, **12**, 2316-2322.

Claiborne JB, Evans DH (1992) Acid-base-balance and ion transfers in the spiny dogfish (*Squalus acanthias*) during hypercapnia - a role for ammonia excretion. *Journal of Experimental Zoology*, **261**, 9-17.

Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human stressors in marine systems. *Ecology Letters*, **11**, 1304-1315.

Darling ES, Côté IM (2008) Quantifying the evidence for ecological synergies. *Ecology Letters*, **11**, 1278-1286.

Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. *Proceedings of the National Academy of Sciences of the United States of America*, **106**, 12788-12793.

Didham RK,Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. *Trends in Ecology & Evolution*, **22**, 489-496.

Doney S, Fabry V, Feely R, Kleypas J (2009) Ocean acidification: the other CO$_2$ problem. *Annual Review of Marine Science*, **1**, 169-192.

Dupont S, Havenhand J, Thorndyke W, Peck LS, Thorndyke M (2008) Near-future level of CO$_2$-driven ocean acidification radically affects larval survival and development in the brittlestar *Ophiothrix fragilis*. *Marine Ecology Progress Series*, **373**, 285-294.
Fabry VJ (2008) Ocean science - marine calcifiers in a high-CO$_2$ ocean. *Science*, **320**, 1020-1022.

Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. *ICES Journal of Marine Science*, **65**, 414-432.

Feely R, Doney S, Cooley S (2009) Ocean acidification: present conditions and future changes in a high-CO$_2$ world. *Oceanography*, **22**, 36-47.

Ferrari MCO, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lonnstedt Ö, Chivers DP (2011) Putting prey and predator into the CO$_2$ equation – qualitative and quantitative effects of ocean acidification on predator–prey interactions. *Ecology Letters*, **14**, 1143-1148.

Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2010) Post-larval development of two intertidal barnacles at elevated CO$_2$ and temperature. *Marine Biology*, **157**, 725-735.

Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling C (2004) Regime shifts, resilience, and biodiversity in ecosystem management. *Annual Review of Ecology, Evolution, and Systematics*, **35**, 557-581.

Folt C, Chen C, Moore M, Burnaford J (1999) Synergism and antagonism among multiple stressors. *Limnology and Oceanography*, **44**, 864-877.

Fu F-X, Zhang Y, Warner ME, Feng Y, Sun J, Hutchins DA (2008) A comparison of future increased CO$_2$ and temperature effects on sympatric *Heterosigma akashiwo* and *Prorocentrum minimum*. *Harmful Algae*, **7**, 76-90.

Gattuso J-P, Hansson L (2011) Ocean acidification: background and history. In: *Ocean Aciddification*. (eds Gattuso J-P, Hansson L) pp 352. Oxford University Press, Oxford, UK.

Gattuso J-P, Lavigne H (2009) Technical Note: Approaches and software tools to investigate the impact of ocean acidification. *Biogeosciences*, **6**, 2121-2133.
Gooding R, Harley C, Tang E (2009) Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. *Proceedings of the National Academy of Sciences of the United States of America*, **106**, 9316-9321.

Gosselin LA, Qian PY (1997) Juvenile mortality in benthic marine invertebrates. *Marine Ecology Progress Series*, **146**, 265-282.

Gurevitch J, Hedges LV (1999) Statistical issues in ecological meta-analyses. *Ecology*, **80**, 1142-1149.

Hall-Spencer JM, Rodolfo-Metalpa R, Martin S *et al.* (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. *Nature*, **454**, 96-99.

Halpern BS, Selkoe KA, Micheli F, Kappel CV (2007) Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. *Conservation Biology*, **21**, 1301-1315.

Harley CDG, Randall Hughes A, Hultgren KM *et al.* (2006) The impacts of climate change in coastal marine systems. *Ecology Letters*, **9**, 228-241.

Harrington R, Woiwod I, Sparks T (1999) Climate change and trophic interactions. *Trends in Ecology & Evolution*, **14**, 146-150.

Hawkes CV, Sullivan JJ (2001) The impact of herbivory on plants in different resource conditions: A meta-analysis. *Ecology*, **82**, 2045-2058.

Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. *Ecology*, **80**, 1150-1156.

Hedges LV, Olkin I (1985) *Statistical Methods for Meta-Analysis* pp. 369. New York Academic Press, New York, USA.

Hendriks I, Duarte C, Alvarez M (2010) Vulnerability of marine biodiversity to ocean acidification: A meta-analysis. *Estuarine Coastal and Shelf Science*, **86**, 157-164.
Hoegh-Guldberg O, Bruno J (2010) The impact of climate change on the world's marine ecosystems. *Science, 328*, 1523-1528.

Hoegh-Guldberg O, Mumby P, Hooten A *et al.* (2007) Coral reefs under rapid climate change and ocean acidification. *Science, 318*, 1737-1742.

Hunt H, Scheibling R (1997) Role of early post-settlement mortality in recruitment of benthic marine invertebrates. *Marine Ecology Progress Series, 155*, 269-301.

Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. *Ecological monographs, 54*, 187-211.

Iglesias-Rodriguez M, Buitenhuis E, Raven J *et al.* (2008a) Response to comment on "Phytoplankton calcification in a high-CO$_2$ world". *Science, 322*, 1466.

Iglesias-Rodriguez M, Halloran P, Rickaby R *et al.* (2008b) Phytoplankton calcification in a high-CO$_2$ world. *Science, 320*, 336-340.

IPCC (1990) Climate Change 1990: The IPCC Scientific Assessment. (eds Houghton JT, Jenkins GJ, Ephraums JJ) pp. 410. Cambridge University Press, Cambridge, UK.

IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment report of the intergovernmental panel on climate change. (eds Core writing team, Pachauri RK, Reisinger A) pp. 104. IPCC, Geneva, Switzerland.

Kleypas J, Buddemeier R, Archer D, Gattuso J, Langdon C, Opdyke B (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. *Science, 284*, 118-120.

Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of Ocean acidification on coral reefs and other marine calcifiers: a guide for future research, report of a workshop held 18–20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the U.S. Geological Survey. pp. 88.
Kleypas JA, Yates KK (2009) Coral reefs and ocean acidification. *Oceanography*, 22, 108-117.

Kneital JM, Chase JM (2004) Trade-offs in community ecology: linking spatial scales and species coexistence. *Ecology Letters*, 7, 69-80.

Kroeker K, Kordas R, Crim R, Singh G (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. *Ecology Letters*, 13, 1419-1434.

Kurihara H (2008) Effects of CO$_2$-driven ocean acidification on the early developmental stages of invertebrates. *Marine Ecology Progress Series*, 373, 275-284.

Lajeunesse MJ, Forbes MR (2003) Variable reporting and quantitative reviews: a comparison of three meta-analytical techniques. *Ecology Letters*, 6, 448-454.

Larsen BK, Portner HO, Jensen FB (1997) Extra- and intracellular acid-base balance and ionic regulation in cod (*Gadus morhua*) during combined and isolated exposures to hypercapnia and copper. *Marine Biology*, 128, 337-346.

Loehle C (1995) Anomalous responses of plants to CO$_2$ enrichment. *Oikos*, 73, 181-187.

Lopez-Urrutia A, San Martin E, Harris R, Irigoien X (2006) Scaling the metabolic balance of the oceans. *Proceedings of the National Academy of Sciences of the United States of America*, 103, 8739-8744.

McDonald MR, McClintock JB, Amsler CD, Rittschof D, Angus RA, Orihuela B (2009) Effects of ocean acidification on larval development and settlement of the common intertidal barnacle *Amphibalanus amphitrite*. * Integrative and Comparative Biology*, 49, E270-E270.

McNeil BI, Matear RJ, Barnes DJ (2004) Coral reef calcification and climate change: The effect of ocean warming. *Geophysical Research Letters*, 31, L22309.
Interactions of warming and acidification

Melzner F, Gutowska MA, Langenbuch M et al. (2009) Physiological basis for high CO₂ tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? *Biogeosciences, 6*, 2313-2331.

Miles H, Widdicombe S, Spicer JI, Hall-Spencer J (2007) Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin *Psammechinus miliaris*. *Marine Pollution Bulletin, 54*, 89-96.

Morris WF, Hufbauer RA, Agrawal AA et al. (2007) Direct and interactive effects of enemies and mutualists on plant performance: A meta-analysis. *Ecology, 88*, 1021-1029.

Moy AD, Howard WR, Bray SG, Trull TW (2009) Reduced calcification in modern Southern Ocean planktonic foraminifera. *Nature Geoscience, 2*, 276-280.

O’Connor MI (2009) Warming strengthens an herbivore-plant interaction. *Ecology, 90*, 388-398.

O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. *Plos Biology, 7*.

Orr J, Fabry V, Aumont O et al. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. *Nature, 437*, 681-686.

Paine RT, Tegner MJ, Johnson EA (1998) Compounded perturbations yield ecological surprises. *Ecosystems, 1*, 535-545.

Palacios SL, Zimmerman RC (2007) Response of eelgrass *Zostera marina* to CO₂ enrichment: possible impacts of climate change and potential for remediation of coastal habitats. *Marine Ecology Progress Series, 344*, 1-13.

Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. *Nature, 421*, 37-42.
Pechenik JA (1987) Environmental influences on larval survival and development. In: Reproduction of Marine Invertebrates. (eds Giese AC, Pearse JS) pp 551-608. New York Academic Press, New York, USA.

Petchey OL, Downing AL, Mittelbach GG, Persson L, Steiner CF, Warren PH, Woodward G (2004) Species loss and the structure and functioning of multitrophic aquatic systems. Oikos, 104, 467-478.

Petchey OL, Mcphearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature, 402, 69-72.

Przeslawski R, Davis A, Benkendorff K (2005) Synergistic effects associated with climate change and the development of rocky shore molluscs. Global Change Biology, 11, 515-522.

Raffaelli D (2004) How extinction patterns affect ecosystems. Science, 306, 1141-1142.

Richardson AJ, Brown CJ, Brander K et al. (2012) Climate change and marine life. Biology Letters. DOI: 10.1098/RSBL.2012.0530.

Ries JB (2011) Acid ocean cover up. Nature Climate Change, 1, 294-295.

Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology, 37, 1131-1134.

Rodolfo-Metalpa R, Houlbreque F, Tambutte E et al. (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nature Climate Change, 1, 308-312.

Roleda MY, Boyd PW, Hurd CL (2012) Before ocean acidification: calcifier chemistry lessons. Journal of Phycology. DOI: 10.1111/J.1529-8817.2012.01195.x

Root T, Price J, Hall K, Schneider S, Rosenzweig C, Pounds J (2003) Fingerprints of global warming on wild animals and plants. Nature, 421, 57-60.
Rosenberg MS (2005) The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. *Evolution*, **59**, 464-468.

Sanford E (1999) Regulation of keystone predation by small changes in ocean temperature. *Science*, **283**, 2095-2097.

Schulz K, Ramos J, Zeebe R, Riebesell U (2009) CO$_2$ perturbation experiments: similarities and differences between dissolved inorganic carbon and total alkalinity manipulations. *Biogeosciences*, **6**, 2145-2153.

Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. *Trends in Ecology & Evolution*, **13**, 350-355.

Sutherland WJ, Armstrong-Brown S, Armsworth PR et al. (2006) The identification of 100 ecological questions of high policy relevance in the UK. *Journal of Applied Ecology*, **43**, 617-627.

Tylianakis J, Didham R, Bascompte J, Wardle D (2008) Global change and species interactions in terrestrial ecosystems. *Ecology Letters*, **11**, 1351-1363.

Underwood AJ (1997) *Experiments in ecology: their logical design and interpretation using analysis of variance* pp. 524. Cambridge Univ Press, Cambridge, UK.

Vinebrooke RD, Cottingham KL, Norberg MS, Dodson SI, Maberly SC, Sommer U (2004) Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. *Oikos*, **104**, 451-457.

Walther G, Post E, Convey P et al. (2002) Ecological responses to recent climate change. *Nature*, **416**, 389-395.

Wernberg T, Smale DA, Thomsen MS (2012) A decade of climate change experiments on marine organisms: procedures, patterns and problems. *Global Change Biology*, **18**, 1491-1498.
Whiteley N (2011) Physiological and ecological responses of crustaceans to ocean acidification. *Marine Ecology Progress Series*, **430**, 257-271.

Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us? *Journal of Experimental Marine Biology and Ecology*, **366**, 187-197.

Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. *Proceedings of the Royal Society B-Biological Sciences*, **275**, 1767-1773.

Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. *Proceedings of the National Academy of Sciences of the United States of America*, **96**, 1463-1468.
SUPPORTING INFORMATION

808 Table S1 Experiments included in meta-analysis

810 Table S2 Selection criteria for exclusion from meta-analysis

812 Table S3 Heterogeneity tests – within groups (Q) and between groups (QM)
FIGURE CAPTIONS

Figure 1 The mean effect of ocean acidification (clear circles), ocean warming (grey circles), and combined ocean acidification and warming (black circles) on calcification, growth, photosynthesis, reproduction and survival for different taxonomic groups. The mean log response ratio and ±95% confidence intervals are shown for overall (combined results), calcifiers (calcifying algae, corals, crustaceans, echinoderms, molluscs and phytoplankton) and non-calcifiers (fishes, non-calcified algae, seagrass). The number of observations in each analysis is shown in parentheses. The zero line indicates no effect, and significance (*) of mean effects is determined when the ±95% confidence interval does not overlap zero.

Figure 2 The mean effect of ocean acidification (clear circles), ocean warming (grey circles), and combined ocean acidification and warming (black circles) on growth, photosynthesis and survival for calcifying and non-calcifying organisms. The mean log response ratio and ±95% confidence intervals are shown for calcifiers and non-calcifiers. The number of observations in each analysis is shown in parentheses. The zero line indicates no effect, and significance (*) of mean effects is determined when the ±95% confidence interval does not overlap zero.

Figure 3 The mean effect of ocean acidification (clear circles), ocean warming (grey circles), and combined ocean acidification and warming (black circles) on calcification, growth and survival in different life-stages. The mean log response ratio and ±95% confidence intervals are shown for embryos, larvae, juveniles and adults. The number of observations in each analysis is shown in parentheses. The zero line indicates no effect, and significance (*) of mean effects is determined when the ±95% confidence interval does not overlap zero.
Figure 4 The mean effect of ocean acidification (clear circles), ocean warming (grey circles), and combined ocean acidification and warming (black circles) on calcification, growth, photosynthesis, reproduction and survival for different levels of trophic organisation. The mean log response ratio and ±95% confidence intervals are shown for autotrophs and heterotrophs. The number of observations in each analysis is shown in parentheses. The zero line indicates no effect, and significance (*) of mean effects is determined when the ±95% confidence interval does not overlap zero.

Figure 5 The mean effect of combined ocean warming and acidification as a predicted multiplicative null expectation model (clear circles), and observed responses (filled circles) for different response variables. The mean log response ratio and ±95% confidence intervals are shown for calcification, growth, photosynthesis, reproduction and survival. The number of observations in each analysis is shown in parentheses by the associated response variable. The zero line indicates no effect, significance of mean effects is determined when the ±95% confidence interval does not overlap each other, and each significant response variables is denoted *.
Calcifiers

Mean effect size (lnRR)	Survival	Photosynthesis	Growth
-1.8	*		(143)
-1.2			(26)
-0.6			(25)
0			
0.6			
1.2			

Non-Calcifiers

Mean effect size (lnRR)	Survival	Photosynthesis	Growth
-0.6			(35)
-0.4			(16)
-0.2	*		(6)
0			
0.2			
0.4			
0.6			
0.8			

Significant differences
Growth

-1.2

Mean effect size (lnRR)

Calcification

Survival

-2.5
ST1 - Experiments included in meta-analysis
Each row represents an individual experiment that was included for meta-analysis. Columns 'B - F' describes the experiment as: the manipulated stressor, taxonomic group, species, trophic level and life-stage. Columns 'G - K' describe the number of times each response (Calcification, growth, photosynthesis, reproduction and survival) was tested.
Source	Manipulation Group	Taxonomic Group						
Aline et al., 2006	CO2	Corals						
Anestis et al., 2007	Temperature	Molluscs						
Anlauf et al., 2011	CO2	Corals						
Anlauf et al., 2011	CO2	Corals						
Anlauf et al., 2011	Temperature	Corals						
Anlauf et al., 2011	Temperature	Corals						
Anlauf et al., 2011	Temperature and CO2	Corals						
Anthony et al., 2008	CO2	Corals						
Anthony et al., 2008	CO2	Corals						
Anthony et al., 2008	CO2	Crustose Coralline Algae						
Anthony et al., 2008	Temperature	Corals						
Anthony et al., 2008	Temperature	Corals						
Anthony et al., 2008	Temperature	Crustose Coralline Algae						
Anthony et al., 2008	Temperature and CO2	Corals						
Anthony et al., 2008	Temperature and CO2	Corals						
Anthony et al., 2008	Temperature and CO2	Crustose Coralline Algae						
Arnold et al., 2009	CO2	Crustaceans						
Barcelos e Ramos et al., 2010	CO2	Phytoplankton						
Borchard et al., 2011	CO2	Phytoplankton						
Borchard et al., 2011	Temperature and CO2	Phytoplankton						
Brennand et al., 2010	CO2	Echinoderms						
Brennand et al., 2010	Temperature	Echinoderms						
Brennand et al., 2010	Temperature and CO2	Echinoderms						
Byrne et al., 2009	CO2	Echinoderms						
Byrne et al., 2009	CO2	Echinoderms						
Byrne et al., 2009	Temperature	Echinoderms						
Byrne et al., 2009	Temperature	Echinoderms						
Byrne et al., 2009	Temperature and CO2	Echinoderms						
Byrne et al., 2009	Temperature and CO2	Echinoderms						
Byrne et al., 2010	CO2	Echinoderms						
Byrne et al., 2010	CO2	Echinoderms						
Byrne et al., 2010	CO2	Echinoderms						
Byrne et al., 2010	CO2	Echinoderms						
Byrne et al., 2010	CO2	Echinoderms						
Byrne et al., 2010	CO2	Echinoderms						
Byrne et al., 2010	CO2	Molluscs						
Byrne et al., 2010	Temperature	Echinoderms						
Byrne et al., 2010	Temperature	Echinoderms						
Byrne et al., 2010	Temperature	Echinoderms						
Byrne et al., 2010	Temperature	Echinoderms						
Byrne et al., 2010	Temperature	Echinoderms						
Byrne et al., 2010	Temperature	Echinoderms						
Byrne et al., 2010	Temperature	Echinoderms						
Reference	Treatment	Organism						
-------------------------------	--------------------	----------------						
Byrne et al., 2010	Temperature	Molluscs						
Byrne et al., 2010	Temperature and CO2	Echinoderms						
Byrne et al., 2010	Temperature and CO2	Echinoderms						
Byrne et al., 2010	Temperature and CO2	Echinoderms						
Byrne et al., 2010	Temperature and CO2	Echinoderms						
Byrne et al., 2010	Temperature and CO2	Echinoderms						
Byrne et al., 2010	Temperature and CO2	Echinoderms						
Byrne et al., 2010	Temperature and CO2	Echinoderms						
Byrne et al., 2010	Temperature and CO2	Echinoderms						
Catarino et al., 2011	CO2	Echinoderms						
Chan et al., 2011	CO2	Echinoderms						
Chen and Gao, 2011	CO2	Phytoplankton						
Christensen et al., 2011	Temperature	Echinoderms						
Clarke et al., 2009	CO2	Echinoderms						
Clarke et al., 2009	CO2	Echinoderms						
Clarke et al., 2009	CO2	Echinoderms						
Clarke et al., 2009	CO2	Echinoderms						
Comeau et al., 2009	CO2	Molluscs						
Comeau et al., 2010	CO2	Molluscs						
Connell and Russell, 2010	CO2	Macroalgae						
Connell and Russell, 2010	Temperature	Macroalgae						
Connell and Russell, 2010	Temperature and CO2	Macroalgae						
Crawley et al., 2010	CO2	Corals						
Crim et al., 2011	CO2	Molluscs						
Cullen and Sherrell, 2005	CO2	Phytoplankton						
de Kluijver et al., 2010	CO2	Phytoplankton						
Diaz Pulido et al., 2011	CO2	Corals						
Diaz Pulido et al., 2011	CO2	Macroalgae						
Donelson et al., 2010	Temperature	Fishes						
Doo et al., 2011	CO2	Echinoderms						
Dupont et al., 2008	CO2	Echinoderms						
Dupont et al., 2010	CO2	Echinoderms						
Dupont et al., 2010	CO2	Echinoderms						
Edmunds et al., 2001	Temperature	Corals						
Edmunds, 2011	CO2	Corals						
Engel et al., 2005	CO2	Phytoplankton						
Epelbaum et al., 2009	Temperature	Tunicates						
Epelbaum et al., 2009	Temperature	Tunicates						
Epelbaum et al., 2009	Temperature	Tunicates						
Feng et al., 2008	CO2	Phytoplankton						
Feng et al., 2008	Temperature	Phytoplankton						
Feng et al., 2008	Temperature and CO2	Phytoplankton						
Fernandez et al., 2011	CO2	Molluscs						
Findlay et al., 2008	CO2	Molluscs						
Findlay et al., 2008	Temperature	Molluscs						
Findlay et al., 2008	Temperature and CO2	Molluscs						
Findlay et al., 2009	CO2	Crustaceans						
Findlay et al., 2009	CO2	Crustaceans						
Findlay et al., 2010	CO2	Crustaceans						
Findlay et al., 2010	CO2	Crustaceans						
Authors and Year	CO2	Organism	Authors and Year	CO2	Organism	Authors and Year	CO2	Organism
------------------	-----	----------	------------------	-----	----------	------------------	-----	----------
Findlay et al., 2010	CO2	Crustaceans	Findlay et al., 2010	Temperature	Crustaceans			
Findlay et al., 2010	Temperature	Crustaceans						
Findlay et al., 2010	Temperature	Crustaceans						
Findlay et al., 2010	Temperature	Crustaceans						
Findlay et al., 2010	Temperature and CO2	Crustaceans						
Findlay et al., 2010	Temperature and CO2	Crustaceans						
Findlay et al., 2010	Temperature and CO2	Crustaceans						
Franke and Clemmesen, 2011	CO2	Fishes						
Franke and Clemmesen, 2011	CO2	Fishes						
Fredersdorf et al., 2009	Temperature	Macroalgae						
Fredersdorf et al., 2009	Temperature	Macroalgae						
Fu et al., 2007	CO2	Phytoplankton						
Fu et al., 2007	CO2	Phytoplankton						
Fu et al., 2007	Temperature	Phytoplankton						
Fu et al., 2007	Temperature	Phytoplankton						
Fu et al., 2007	Temperature and CO2	Phytoplankton						
Fu et al., 2007	Temperature and CO2	Phytoplankton						
Fu et al., 2008	CO2	Phytoplankton						
Fu et al., 2008	CO2	Phytoplankton						
Fu et al., 2008	Temperature	Phytoplankton						
Fu et al., 2008	Temperature	Phytoplankton						
Fu et al., 2008	Temperature and CO2	Phytoplankton						
Fu et al., 2008	Temperature and CO2	Phytoplankton						
Gao and Zheng, 2010	CO2	Crustose Coralline Algae						
Garcia et al., 2011	CO2	Cyanobacteria						
Gattuso et al., 1998	CO2	Corals						
Gaylord et al., 2011	CO2	Molluscs						
Gazeau et al., 2011	CO2	Molluscs						
Gazeau et al., 2011	CO2	Molluscs						
Gooding et al., 2009	CO2	Echinoderms						
Gooding et al., 2009	Temperature	Echinoderms						
Gooding et al., 2009	Temperature and CO2	Echinoderms						
Grossart et al., 2006	CO2	Bacteria						
Gutow and Franke, 2001	Temperature	Crustaceans						
Hauty et al., 2009	CO2	Crustaceans						
Havenhand and Schlegel, 2009	CO2	Molluscs						
Havenhand and Schlegel, 2009	CO2	Molluscs						
Havenhand et al., 2008	CO2	Echinoderms						
Havenhand et al., 2008	CO2	Echinoderms						
Hoffman et al., 2003	Temperature	Macroalgae						
Hoffman et al., 2003	Temperature	Macroalgae						
Holcomb et al., 2010	CO2	Corals						
Hutchins et al., 2007	CO2	Bacteria						
Iglesias Rodriguez et al., 2008	CO2	Phytoplankton						
Imsland et al., 2007	Temperature	Fishes						
Imsland et al., 2007	Temperature	Fishes						
Isla et al., 2008	Temperature	Crustaceans						
Israel and Hophy, 2002	CO2	Macroalgae						
Israel and Hophy, 2002	CO2	Macroalgae						
Israel and Hophy, 2002	CO2	Macroalgae						
Authors	Year	CO2/Other Factors	Organism					
----------------------	----------	-------------------	------------------------------------					
Israel and Hophy, 2002		CO2	Macroalgae					
Israel and Hophy, 2002		CO2	Macroalgae					
Jury et al., 2010		CO2	Corals					
Kim et al., 2006		CO2	Phytoplankton					
Kim et al., 2006		CO2	Phytoplankton					
Koch et al., 2007	Temperature	CO2	Seagrass					
Koch et al., 2007	Temperature	CO2	Seagrass					
Kranz et al., 2009		CO2	Bacteria					
Kubler et al., 1999		CO2	Macroalgae					
Kurihara et al., 2004		CO2	Echinoderms					
Kurihara et al., 2004		CO2	Echinoderms					
Kurihara et al., 2004		CO2	Echinoderms					
Kurihara et al., 2004		CO2	Echinoderms					
Kurihara et al., 2008		CO2	Crustaceans					
Langer et al., 2006		CO2	Phytoplankton					
Leclercq et al., 2000		CO2	Corals					
Lischka et al., 2011		Temperature	Molluscs					
Lischka et al., 2011		Temperature and CO2	Molluscs					
Liu et al., 2008		Temperature	Cnidarians					
Melzner et al., 2011	CO2	Molluscs						
Munday et al., 2009	CO2	Temperature	Molluscs					
O’Connor, 2009		Temperature	Macroalgae					
Parker et al., 2010	CO2	Molluscs						
Parker et al., 2010	CO2	Molluscs						
Parker et al., 2010	CO2	Molluscs						
Parker et al., 2010	CO2	Molluscs						
Parker et al., 2010	Temperature	Molluscs						
Parker et al., 2010	Temperature	Molluscs						
Parker et al., 2010	Temperature	Molluscs						
Parker et al., 2010	Temperature	Molluscs						
Parker et al., 2010	Temperature and CO2	Molluscs						
Parker et al., 2010	Temperature and CO2	Molluscs						
Parker et al., 2010	Temperature and CO2	Molluscs						
Parker et al., 2010	Temperature and CO2	Molluscs						
Pistevos et al., 2011	CO2	Bryozoans						
Pistevos et al., 2011	CO2	Bryozoans						
Pistevos et al., 2011	Temperature	Bryozoans						
Pistevos et al., 2011	Temperature	Bryozoans						
Pistevos et al., 2011	Temperature and CO2	Bryozoans						
Pistevos et al., 2011	Temperature and CO2	Bryozoans						
Price et al., 2011	CO2	Macroalgae						
Price et al., 2011	CO2	Macroalgae						
Przeslawski et al., 2005		Temperature	Molluscs					
Putnam et al., 2008		Temperature	Corals					
Putnam et al., 2008		Temperature	Corals					
Riebesell et al., 2000		CO2	Phytoplankton					
Riebesell et al., 2000		CO2	Phytoplankton					
Ries et al., 2009	CO2	Annelids						
Author(s)	Year	CO2 Type	Species					
---------------------------------	------------	----------------	-----------------------					
Ries et al., 2009		CO2	Corals					
Ries et al., 2009		CO2	Crustaceans					
Ries et al., 2009		CO2	Crustaceans					
Ries et al., 2009		CO2	Crustose Coralline Algae					
Ries et al., 2009		CO2	Echinoderms					
Ries et al., 2009		CO2	Molluscs					
Ries et al., 2009		CO2	Molluscs					
Ries et al., 2009		CO2	Molluscs					
Ries et al., 2009		CO2	Molluscs					
Ries et al., 2010		CO2	Corals					
Rodolfo Metalpa et al., 2010		CO2	Temperature					
Rodolfo Metalpa et al., 2010		Temperature	Corals					
Rodolfo Metalpa et al., 2010		Temperature	Corals					
Roleda et al., 2011		CO2	Macroalgae					
Russell et al., 2009		CO2	Crustose Coralline Algae					
Russell et al., 2009		CO2	Macroalgae					
Russell et al., 2011		CO2	Crustose Coralline Algae					
Russell et al., 2011		CO2	Macroalgae					
Schmidt et al., 2011		Temperature	Phytoplankton					
Schmidt et al., 2011		Temperature	Phytoplankton					
Schmidt et al., 2011		Temperature	Phytoplankton					
Schram et al., 2011		CO2	Echinoderms					
Sciandrea et al., 2003		CO2	Phytoplankton					
Shirayama and Thornton, 2005		CO2	Echinoderms					
Shirayama and Thornton, 2005		CO2	Echinoderms					
Shirayama and Thornton, 2005		CO2	Molluscs					
Spielmeyer and Pohnert, 2011		CO2	Phytoplankton					
Spielmeyer and Pohnert, 2011		CO2	Phytoplankton					
Spielmeyer and Pohnert, 2011		CO2	Phytoplankton					
Stumpp et al., 2011		CO2	Echinoderms					
Stumpp et al., 2011		CO2	Echinoderms					
Suffrian et al., 2008		CO2	Cyanobacteria					
Suffrian et al., 2008		CO2	Phytoplankton					
Suffrian et al., 2008		CO2	Phytoplankton					
Suffrian et al., 2008		CO2	Phytoplankton					
Suwa et al., 2010		CO2	Corals					
Suwa et al., 2010		CO2	Corals					
Talmage and Gobler, 2009		CO2	Molluscs					
Talmage and Gobler, 2009		CO2	Molluscs					
Talmage and Gobler, 2009		CO2	Molluscs					
Talmage and Gobler, 2011		CO2	Molluscs					
Talmage and Gobler, 2011		CO2	Molluscs					
Authors	Parameter	Organism						
---------------------------------	---------------	---------------						
Talmage and Gobler, 2011	Temperature	Molluscs						
Talmage and Gobler, 2011	Temperature	Molluscs						
Talmage and Gobler, 2011	Temperature	Molluscs						
Talmage and Gobler, 2011	Temperature	Molluscs						
Talmage and Gobler, 2011	Temperature	Molluscs						
Talmage and Gobler, 2011	Temperature and CO2	Molluscs						
Talmage and Gobler, 2011	Temperature and CO2	Molluscs						
Talmage and Gobler, 2011	Temperature and CO2	Molluscs						
Thom, 1996	CO2	Seagrass						
Thom, 1996	CO2	Seagrass						
Thomsen and Melzner, 2010	CO2	Molluscs						
Tortell et al., 2008	CO2	Phytoplankton						
Vilchis et al., 2005	Temperature	Molluscs						
Vilchis et al., 2005	Temperature	Molluscs						
Walther et al., 2010	CO2	Crustaceans						
Walther et al., 2011	CO2	Crustaceans						
Wood et al., 2008	CO2	Echinoderms						
Wood et al., 2009	CO2	Echinoderms						
Wood et al., 2011	Temperature	Echinoderms						
Zou, 2005	CO2	Macroalgae						
Organism	Trophic Level	Life Stage	Calcification	Growth	Photosynthesis	Reproduction		
-----------------------	---------------	------------	---------------	--------	----------------	--------------		
Porites lobata	Autotroph	Adult						
Mytilus galloprovincialis	Heterotroph	Adult						
Porites panamensis	Autotroph	Adult						
Porites panamensis	Autotroph	Lagvae	1					
Porites panamensis	Autotroph	Lagvae	1					
Porites panamensis	Autotroph	Lagvae						
Porites panamensis	Autotroph	Lagvae						
Porites panamensis	Autotroph	Lagvae						
Porites panamensis	Autotroph	Lagvae						
Acropora intermedia	Autotroph	Adult	1 1					
Porites lobata	Autotroph	Adult	1 1					
Porolithon onkodes	Autotroph	Adult	1 1					
Acropora intermedia	Autotroph	Adult	1 1					
Porites lobata	Autotroph	Adult	1 1					
Porolithon onkodes	Autotroph	Adult	1 1					
Homarus gammarus	Heterotroph	Lagvae	12					
Emiliania huxleyi	Autotroph	Culture	2					
Emiliania huxleyi	Autotroph	Culture	2					
Emiliania huxleyi	Autotroph	Culture	1					
Tripneustes gratilla	Heterotroph	Lagvae	2					
Tripneustes gratilla	Heterotroph	Lagvae	1					
Tripneustes gratilla	Heterotroph	Lagvae	2					
Heliocidaris erythrogramma	Heterotroph	Adult				2		
Heliocidaris erythrogramma	Heterotroph	Embryos	2					
Heliocidaris erythrogramma	Heterotroph	Adult	1					
Heliocidaris erythrogramma	Heterotroph	Embryos	1					
Heliocidaris erythrogramma	Heterotroph	Adult	2					
Heliocidaris erythrogramma	Heterotroph	Embryos	2					
Centrostephanus rodgersii	Heterotroph	Adult	1					
Heliocidaris erythrogramma	Heterotroph	Adult	1					
Heliocidaris erythrogramma	Heterotroph	Adult	4					
Heliocidaris erythrogramma	Heterotroph	Juvenile	2					
Heliocidaris tuberculata	Heterotroph	Adult				2		
Patiriella regularis	Heterotroph	Adult	1					
Tripneustes gratilla	Heterotroph	Adult	2					
Haliotis coccoradiata	Heterotroph	Adult	2					
Centrostephanus rodgersii	Heterotroph	Adult	1					
Heliocidaris erythrogramma	Heterotroph	Adult	2					
Heliocidaris erythrogramma	Heterotroph	Adult	8					
Heliocidaris erythrogramma	Heterotroph	Juvenile	2					
Heliocidaris tuberculata	Heterotroph	Adult	1					
Patiriella regularis	Heterotroph	Adult	2					
Tripneustes gratilla	Heterotroph	Adult	1					
Species	Life Form	Stage	Count					
---------------------------------	-------------------	------------------	-------					
Haliotis coccoradiata	Heterotroph	Adult	2					
Centrostephanus rodgersii	Heterotroph	Adult	1					
Heliocidaris erythrogramma	Heterotroph	Adult	2					
Heliocidaris erythrogramma	Heterotroph	Adult	8					
Heliocidaris erythrogramma	Heterotroph	Juvenile	4					
Heliocidaris tuberculata	Heterotroph	Adult	2					
Patiriella regularis	Heterotroph	Adult	2					
Tripneustes gratilla	Heterotroph	Adult	2					
Haliotis coccoradiata	Heterotroph	Adult	4					
Arbacia dufresnei	Heterotroph	Larvae	1					
Dendraster excentricus	Heterotroph	Larvae	12					
Phaeocystis globosa	Autotroph	Culture	1					
Ophionereis schayeri	Heterotroph	Adult						
Evechinus chloroticus	Heterotroph	Larvae	1					
Pseudoechinus huttoni	Heterotroph	Larvae	1					
Stereochinus neumayeri	Heterotroph	Larvae	1					
Tripneustes gratilla	Heterotroph	Larvae	1					
Limacina helicina	Heterotroph	Adult	1					
Cavolinia inflexa	Heterotroph	Larvae	1					
Turf Algae	Autotroph	Adult	1					
Turf Algae	Autotroph	Adult	1					
Turf Algae	Autotroph	Adult	1					
Acropora formosa	Autotroph	Adult	2					
Haliotis kamtschatkana	Heterotroph	Larvae	1					
Natural Assemblage Phytoplankton	Autotroph	-	8					
Total phytoplankton	Autotroph	Culture	2					
Acropora intermedia	Autotroph	Adult	6					
Lobophora papenfussii	Autotroph	Adult	6					
Acanthochromis polyacanthus	Heterotroph	Adult	2					
Centrostephanus rodgersii	Heterotroph	Larvae	2					
Ophiothrix fragilis	Heterotroph	Larvae	12					
Crossaster papposus	Heterotroph	Juvenile	1					
Crossaster papposus	Heterotroph	Larvae	1					
Porites astreoides	Autotroph	Larvae	1					
Porites spp.	Autotroph	Adult	1					
Emiliania huxleyi	Autotroph	-	2					
Botryllis schlosseri	Heterotroph	Adult	1					
Botryllis schlosseri	Heterotroph	Juvenile	1					
Botrylloides violaceus	Heterotroph	Juvenile	1					
Emiliania huxleyi	Autotroph	Culture	1					
Emiliania huxleyi	Autotroph	Culture	1					
Emiliania huxleyi	Autotroph	Culture	1					
Ruditapes decussatus	Heterotroph	Juvenile	2					
Patella vulgata	Heterotroph	Adult						
Patella vulgata	Heterotroph	Adult						
Patella vulgata	Heterotroph	Adult						
Semibalanus balanoides	Heterotroph	Adult						
Semibalanus balanoides	Heterotroph	Embryos	1					
Elminius modestus	Heterotroph	Juvenile	1					
Semibalanus balanoides	Heterotroph	Juvenile	1					
Species	Trophic Category	Stage	Quantity					
-------------------------------	------------------	-----------	----------					
Semibalanus balanoides	Heterotroph	Juvenile	1					
Elminius modestus	Heterotroph	Juvenile	1					
Semibalanus balanoides	Heterotroph	Juvenile	1					
Semibalanus balanoides	Heterotroph	Juvenile	1					
Elminius modestus	Heterotroph	Juvenile	1					
Semibalanus balanoides	Heterotroph	Juvenile	1					
Clupea harengus	Heterotroph	Adult	1					
Clupea harengus	Heterotroph	Embryos	1					
Alaria esculenta	Autotroph	Adult	3					
Alaria esculenta	Autotroph	Juvenile	4					
Prochlorococcus	Autotroph	Culture	1					
Synechococcus	Autotroph	Culture	1					
Prochlorococcus	Autotroph	Culture	1					
Synechococcus	Autotroph	Culture	1					
Prochlorococcus	Autotroph	Culture	1					
Synechococcus	Autotroph	Culture	1					
Heterosigma akashiwo	Autotroph	Culture	1					
Prorocentrum minimum	Autotroph	Culture	1					
Heterosigma akashiwo	Autotroph	Culture	1					
Prorocentrum minimum	Autotroph	Culture	1					
Heterosigma akashiwo	Autotroph	Culture	1					
Prorocentrum minimum	Autotroph	Culture	1					
Corallina sessilis	Autotroph	Adult	1					
Trichodesmium erythraeum	Autotroph	Culture	1					
Stylophora pistillata	Autotroph	Adult	4					
Mytilus californianus	Heterotroph	Larvae	2					
Crassostrea gigas	Heterotroph	Adult	1					
Crassostrea gigas	Heterotroph	Embryos	1					
Pisaster ochraceus	Heterotroph	Juvenile	1					
Pisaster ochraceus	Heterotroph	Juvenile	1					
Pisaster ochraceus	Heterotroph	Juvenile	1					
Community	Heterotroph	Culture	1					
Idotea metallica	Heterotroph	Adult	2					
Gammarus locusta	Heterotroph	Adult	2					
Crassostrea gigas	Heterotroph	Adult	1					
Crassostrea gigas	Heterotroph	Larvae	1					
Heliocidaris erythrogramma	Heterotroph	Adult	1					
Heliocidaris erythrogramma	Heterotroph	Larvae	1					
Alaria marginata	Autotroph	Adult	1					
Fucus gardneri	Autotroph	Adult	1					
Astrangia pociula	Autotroph	Adult	1					
Trichodesmium spp	Heterotroph	Culture	3					
Emilianiia huxleyi	Autotroph	Culture	3					
Gadus Morhua	Heterotroph	Adult	1					
Gadus Morhua	Heterotroph	Juvenile	1					
Pseudocalanus sp.	Heterotroph	Adult	2					
Cystoseira sp	Autotroph	Adult	1					
Enteromorpha linza	Autotroph	Adult	1					
Pterocladia capillaceae	Autotroph	Adult	1					
Species	Type	Stage	Quantity					
------------------------------	---------------	----------	----------					
Sollieria sp.	Autotroph	Adult	2					
Spatoglossum sp.	Autotroph	Adult	1					
Ulva sp.	Autotroph	Adult	2					
Madracis auretenra	Autotroph	Adult	1					
Nitzschia spp.	Autotroph	Community	1					
Skeletonoma costatum	Autotroph	Community	1					
Halodule wrightii	Autotroph	Adult	2					
Thalassia testudinum	Autotroph	Adult	4					
Trichodesmium spp	Heterotroph	Culture	1					
Lomentaria articulata	Autotroph	Adult	1					
Echinometra mathaei	Heterotroph	Adult	1					
Echinometra mathaei	Heterotroph	Larvae	1					
Hemicentrotus pulcherreimus	Heterotroph	Adult	1					
Hemicentrotus pulcherreimus	Heterotroph	Larvae	1					
Palaemon pacificus	Heterotroph	Adult	2					
Emiliania huxleyi	Autotroph	Culture	8					
Community	Autotroph	Mixed	2					
Limacina helicina	Heterotroph	Juvenile	2					
Limacina helicina	Heterotroph	Juvenile	2					
Limacina helicina	Heterotroph	Juvenile	4					
Aurelia aurita	Heterotroph	Juvenile						
Mytilis edulis	Heterotroph	Adult	1					
Amphiprion percula	Heterotroph	Larvae	12					
Sargassum filipendula	Autotroph	Adult	4					
Crassostrea gigas	Heterotroph	Adult	3					
Crassostrea gigas	Heterotroph	Larvae	3					
Saccostrea glomerata	Heterotroph	Adult	3					
Saccostrea glomerata	Heterotroph	Larvae	3					
Crassostrea gigas	Heterotroph	Adult	1					
Crassostrea gigas	Heterotroph	Larvae	1					
Saccostrea glomerata	Heterotroph	Adult	1					
Saccostrea glomerata	Heterotroph	Larvae	1					
Crassostrea gigas	Heterotroph	Adult	3					
Crassostrea gigas	Heterotroph	Larvae	3					
Saccostrea glomerata	Heterotroph	Adult	3					
Saccostrea glomerata	Heterotroph	Larvae	3					
Celleporella hyalina	Heterotroph	Adult	1					
Celleporella hyalina	Heterotroph	Larvae	1					
Celleporella hyalina	Heterotroph	Adult	1					
Celleporella hyalina	Heterotroph	Larvae	1					
Celleporella hyalina	Heterotroph	Adult	1					
Celleporella hyalina	Heterotroph	Larvae	1					
Celleporella hyalina	Heterotroph	Adult	1					
Halimeda opuntia	Autotroph	Adult	1					
Halimeda taenicola	Autotroph	Adult	1					
Bembicium nanum	Heterotroph	Embryos						
Stylophora pistillata	Autotroph	Adult	1					
Stylophora pistillata	Autotroph	Larvae	1					
Emiliania huxleyi	Autotroph	Culture	2					
Gephyrocapsa oceanica	Autotroph	Culture	2					
Hydroides crucigera	Heterotroph	Adult	2					
Species	Trophic State	Life Stage	Quantity					
-------------------------------	---------------	------------	----------					
Oculina arbuscula	Autotroph	Adult	2					
Callinectes sapidus	Heterotroph	Adult	2					
Homarus americanus	Heterotroph	Adult	2					
Penaeus plebejus	Heterotroph	Adult	2					
Halimeda incrassata	Autotroph	Adult	2					
Neogoniolithon sp.	Autotroph	Adult	2					
Arbacia punctulata	Heterotroph	Adult	2					
Eucidaris tribuloides	Heterotroph	Adult	2					
Argopecten irradians	Heterotroph	Adult	2					
Crassostrea virginica	Heterotroph	Adult	2					
Crepidula fornicata	Heterotroph	Adult	2					
Littorina littorea	Heterotroph	Adult	2					
Mercenaria mercenaria	Heterotroph	Adult	2					
Mya arenaria	Heterotroph	Adult	2					
Mytilus edulis	Heterotroph	Adult	2					
Strombus alatus	Heterotroph	Adult	2					
Urosalpinx cinerea	Heterotroph	Adult	2					
Oculina arbuscula	Autotroph	Adult	4					
Cladocora caespitosa	Autotroph	Adult	2					
Cladocora caespitosa	Autotroph	Adult	2					
Cladocora caespitosa	Autotroph	Adult	2					
Macroystus pyrifer	Autotroph	Adult	1					
Lithophyllum sp.	Autotroph	Adult	1					
Feldmannia spp.	Autotroph	Adult	1					
Lithophyllum sp.	Autotroph	Adult	1					
Feldmannia spp.	Autotroph	Adult	1					
Amphistegina radiata	Autotroph	Adult	2					
Calcarina hispida	Autotroph	Adult	1					
Heterostegina depressa	Autotroph	Adult	1					
Luidia clathrata	Heterotroph	Adult	1					
Emiliania huxleyi	Autotroph	Culture	1					
Echinometra mathaei	Heterotroph	Juvenile	1					
Hemicentrotus pulcherrimus	Heterotroph	Juvenile	1					
Strombus luhuanus	Heterotroph	Juvenile	1					
Emiliania huxleyi	Autotroph	Culture	2					
Phaeodactylum tricornutum	Autotroph	Culture	1					
Thalassiosira pseudonana	Autotroph	Culture	1					
Strongylometrotus purpuratus	Heterotroph	Embryos	1					
Strongylometrotus purpuratus	Heterotroph	Larvae	1					
Cyanobacteria	Autotroph	Culture	2					
Diatoms	Autotroph	Culture	2					
Dinoflagellates	Autotroph	Culture	2					
Prymnesiophytes	Autotroph	Culture	2					
Acropora digitifera	Autotroph	Larvae	1					
Acropora tenuis	Autotroph	Larvae	1					
Argopecten irradians	Heterotroph	Larvae	1					
Crassostrea virginica	Heterotroph	Larvae	1					
Mercenaria mercenaria	Heterotroph	Larvae	1					
Argopecten irradians	Heterotroph	Larvae	1					
Mercenaria mercenaria	Heterotroph	Larvae	1					
Species	Trophic Type	Life Stage	Count					
-------------------------------	--------------	------------	-------					
Argopecten irradians	Heterotroph	Juvenile	1					
Argopecten irradians	Heterotroph	Larvae	1					
Crassostrea virginica	Heterotroph	Juvenile	1					
Mercenaria mercenaria	Heterotroph	Juvenile	1					
Mercenaria mercenaria	Heterotroph	Larvae	1					
Argopecten irradians	Heterotroph	Juvenile	1					
Argopecten irradians	Heterotroph	Larvae	1					
Mercenaria mercenaria	Heterotroph	Larvae	1					
Nereocystis luetkeana	Autotroph	Adult	4					
Zostera marina	Autotroph	Adult	3					
Mytilus edulis	Heterotroph	Adult	2					
Phytoplankton Assemblage								
Haliotis fulgens	Heterotroph	Adult	1					
Haliotis rufescens	Heterotroph	Adult	1					
Hyas araneus	Heterotroph	Larvae	3					
Hyas araneus	Heterotroph	Larvae	4					
Amphiura filiformis	Heterotroph	Adult	1					
Amphiura filiformis	Heterotroph	Adult						
Ophiocten sericeum	Heterotroph	Adult	1					
Hizikia fusiforme	Autotroph	Adult	1					
Aline T., Atkinson M. & Christopher L. (2006). Effects of elevated pCO2 on epilithic and endolithic metabolism of reef carbonates. Global Change Biol., 12, 2200-2208.

Anestis A., Lazou A., Portner H.O. & Michaelidis B. (2007). Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. Am J Physiol-Reg I, 293, R911-R921.

Anthony K., Kline D., Diaz-Pulido G., Dove S. & Hoegh-Guldberg O. (2008). Ocean acidification causes bleaching and productivity loss in coral reef builders. PNAS, 105, 17442.

Arnold K., Findlay H., Spicer J., Daniels O. & Doanhuynj D. (2009). Effect of CO2-related acidification on aspects of the larval development of the European lobster, Homarus gammarus (L.). Biogeosciences, 6, 1747-1754.

Borges A.V., Hanhae N. & Engle A. (2011). Biogeocenomal response of Euphasia nuxiei (PML B92/11) to elevated CO2 and temperature under phosphorous limitation: A chemostat study. J. Exp. Mar. Biol. Ecol., 413, 143-157.

Byrne M., Ho M., Selvakumaraswamy P., Nguyen H.D., Dworjanyn S.A. & Davis A.R. (2009). Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proc. R. Soc. B, 276, 1883-1888.

Byrne M., Soars N., Selvakumaraswamy P., Dworjanyn S.A. & Davis A.R. (2010a). Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Mar. Env. Res. 69, 234-239.

Byrne M., Soars N.A., Ho M.A., Wong E., McElroy D., Selvakumaraswamy P., et al. (2010b). Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification. Mar. Biol., 157, 2061-2069.

Catarino A.I., De Ridder C., Gonzalez M., Gallardo P. & Dubois P. (2012). Sea urchin Arbacia dufresnei (Blainville 1825) larvae response to ocean acidification. Polar. Biol., 1-7.

Chan K.Y.K., Grünbaum D. & O’Donnell M.J. (2011). Effects of ocean-acidification-induced morphological changes on larval swimming and feeding. J. Exp. Biol., 214, 3857-3867.

Chen S. & Geo R. (2011). Solar ultraviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Prymnesiophyceae). Hydrobiologia, 680, 113-123.

Comeau S., Gorsky G., Aliouane S. & Gattuso J.P. (2010). Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less. Mar. Biol., 157, 2341-2345.

Comeau S., Gorsky G., Jeffree R., Teyssie J. & Gattuso J. (2009). Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences, 6, 1877-1882.

Cullen J.T. & Sherrill R.M. (2005). Effects of dissolved carbon dioxide, zinc, and manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages. Limnol. Oceanogr., 1193-1204.
de Kluijver A., Soetaert K., Schulz K., Riebesell U., Bellerby R.G.J. & Middelburg J.J. (2010). Carbon fluxes in natural plankton communities under elevated CO2 levels: a stable isotope labeling study. *Biogeosciences Discuss.*, 7, 3257-3295.

Diaz-Pulido G., Gouezo M., Tilbrook B., Dove S. & Anthony K. (2011). High CO2 enhances the competitive strength of seaweeds over corals. *Ecol. Lett.*, 14, 156-162.

Donelson J., Munday P., McCormick M., Pankhurst N. & Pankhurst P. (2010). Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. *MEPS*, 401, 233-243.

Doo S.S., Dworjanyn S.A., Foo S.A., Soars N.A. & Byrne M. (2011). Impacts of ocean acidification on development of the meroplanktonic larval stage of the sea urchin Centrostephanus rodgersii. *ICES J. Mar. Sci.*

Dupont S., Havenhand J., Thorndyke W., Peck L. & Thorndyke M. (2008). Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. *Mar. Ecol. Prog. Ser.*, 373, 285-294.

Dupont S., Lundve B. & Thorndyke M. (2010). Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. *J. Exp. Zool. Part B.*, 314, 382-389.

Edmunds P., Gates R. & Gleason D. (2001). The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. *Mar. Biol.*, 139, 981-989.

Edmunds P.J. (2011). Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. *Limnol. Oceanogr.*, 56, 2402.

Engel A., Zondervan I., Aerts K., Beaufort L., Benthien A., Chou L., et al. (2005). Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid *Emiliania huxleyi* in mesocosm experiments. *Limnol. Oceanogr.*, 493-507.

Epelbaum A., Herborg L., Therriault T. & Pearce C. (2009). Temperature and salinity effects on growth, survival, reproduction, and potential distribution of two non-indigenous botryllid ascidians in British Columbia. *J. Exp. Mar. Biol. Ecol.*, 369, 43-52.

Feng Y., Warner M.E., Zhang Y., Sun J., Fu F.X., Rose J.M., et al. (2008). Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore *Emiliania huxleyi* (Prymnesiophyceae). *Eur. J. Phycol.*, 43, 87-98.

Fernández-Reiriz J., Range P., Álvarez-Salgado X.A. & Labarta U. (2011). Physiological energetics of juvenile clams (*Ruditapes decussatus*) in a high CO2 coastal ocean. *MEPS*, 433, 97-105.

Fredersdorf J., Müller R., Becker S., Wienske S. & Bischof K. (2009). Novel microcosm system for investigating the effects of elevated carbon dioxide and temperature on intertidal organisms. *Aquat. Biol.*, 3, 51-62.

Findlay H.S., Kendall M.A., Spicer J.I. & Widdicombe S. (2009). Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. *Mar. Ecol. Prog. Ser.*, 389, 193-202.

Findlay H.S., Kendall M.A., Spicer J.I. & Widdicombe S. (2010a). Post-larval development of two intertidal barnacles at elevated CO2 and temperature. *Mar. Biol.*, 157, 725-735.

Findlay H.S., Kendall M.A., Spicer J.I. & Widdicombe S. (2010b). Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution. *Estuar. Coast. Shelf Sci.*, 86, 675-682.

Franke A. & Clemmesen C. (2011). Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). *Biogeosciences (BG)*, 8, 3697-3707.

Fredersdorf J., Müller R., Becker S., Wienske S. & Bischof K. (2009). Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp *Alaria esculenta* (Phaeophyceae). *Cecologia*, 169, 483-493.
Fu F.X., Warner M.E., Zhang Y., Feng Y. & Hutchins D.A. (2007). Effects of increased temperature and CO$_2$ on photosynthesis, growth, and elemental ratios in marine synechococcus and prochlorococcus (Cyanobacteria). *J. Phycol.*, 43, 485-496.

Fu F.X., Zhang Y., Warner M.E., Feng Y., Sun J. & Hutchins D.A. (2008). A comparison of future increased CO$_2$ and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum. *Harmful Algae*, 7, 76-90.

Gao K. & Zheng Y. (2010). Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga *Corallina sessilis* (Rhodophyta). *Global Change Biol.*, 16, 2388-2398.

Garcia N.S., Fu F.X., Breene C.L., Bernhardt P.W., Mulholland M.R., Sohm J.A. & Hutchins D.A. (2011). Interactive effects of irradiance and CO$_2$ on CO$_2$ fixation and N$_2$ fixation in the diazotroph *Trichodesmium erythraeum* (Cyanobacteria). *J. Phycol.*

Gattuso J.P., Frankignoulle M., Bourge I., Romaine S. & Buddemeier R.W. (1998). Effect of calcium carbonate saturation of seawater on coral calcification. *Global Planet. Change*, 18, 37-46.

Gaylord B., Hill T.M., Sanford E., Lenz E.A., Jacobs L.A., Sato K.N., et al. (2011). Functional impacts of ocean acidification in an ecologically critical foundation species. *J. Exp. Biol.*, 214, 2586-2594.

Gazeau F., Gattuso J.P., Greaves M., Elderfield H., Peene J., Heip C.H.R., et al. (2011). Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (*Crassostrea gigas*). *PLoS One*, 6, e23010.

Gooding R.A., Harley C.D.G. & Tang E. (2009). Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. *PNAS*, 106, 9316.

Grossart H.P., Allgaier M., Passow U. & Riebesell U. (2006). Testing the effect of CO$_2$ concentration on the dynamics of marine heterotrophic bacterioplankton. *Limnol. Oceanogr.*, 1-11.

Gutow L. & Franke H.D. (2001). On the current and possible future status of the neustonic isopod *Idotea metallica* Bosc in the North Sea: a laboratory study. *J. Sea Res.*, 45, 37-44.

Hauton C., Tyrrell T. & Williams J. (2009). The subtle effects of sea water acidification on the amphipod *Gammarus locusta*. *Biogeosciences*, 6, 1479-1489.

Havenhand J. & Schlegel P. (2009). Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster *Crassostrea gigas*. *Biogeosciences*, 6, 3009-3015.

Havenhand J.N., Buttler F.R., Thorndyke M.C. & Williamson J.E. (2008). Near-future levels of ocean acidification reduce fertilization success in a sea urchin. *Current Biol.*, 18, R651-R652.

Hoffman J.R., Hansen L.J. & Klinger T. (2003). Interactions between UV radiation and temperature limit inferences from single-factor experiments. *J. Phycol.*, 39, 268-272.

Holcomb M., McCorkle D.C. & Cohen A.L. (2010). Long-term effects of nutrient and CO$_2$ enrichment on the temperate coral *Astrangia poculata* (Ellis and Solander, 1786). *J. Exp. Mar. Biol. Ecol.*, 386, 27-33.

Hutchins D., Fu F.X., Zhang Y., Warner M., Feng Y., et al. (2007). CO$_2$ control of Trichodesmium N$_2$ fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. *Limnol. Oceanogr.*, 1293-1304.

Iglesias-Rodriguez M., Halloran P., Rickaby R., Hall L., Colmenero-Hidalgo E., Gittins J., et al. (2008). Phytoplankton calcification in a high-CO$_2$ world. *Science*, 320, 336-340.

Imsland A., Foss A., Koedijk R., Folkvord A., Stefansson S. & Jonassen T. (2007). Persistent growth effects of temperature and photoperiod in Atlantic cod *Gadus morhua*. *J. Fish Biol.*, 71, 1371-1382.

Isla J.A., Lengfellner K. & Sommer U. (2008). Physiological response of the copepod *Pseudocalanus sp.* in the Baltic Sea at different thermal scenarios. *Global Change Biol.*, 14, 895-906.

Israel A. & Hoppy M. (2002). Growth, photosynthetic properties and kudisco activities and amounts of marine macroalgae grown under current and elevated seawater CO$_2$ concentrations. *Global Change Biol.*, 8, 331-340.
Jury C.P., Whitehead R.F. & Szmant A.M. (2010). Effects of variations in carbonate chemistry on the calcification rates of *Madracis auretenra* (= *Madracis mirabilis* sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. *Global Change Biol.*, 16, 1632-1644.

Kim J.M., Lee K., Shin K., Kang J.H., Lee H.W., Kim M., et al. (2009). The effect of seawater CO\textsubscript{2} concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. *Limbol. Oceanogr.*, 1629-1636.

Koch M., Schopmeyer S., Kyhn-Hansen C. & Madden C. (2007). Synergistic effects of high temperature and sulfide on tropical seagrass. *J. Exp. Mar. Biol. Ecol.*, 341, 91-101.

Kranz S., Sültemeyer D., Richter K.U. & Rost B. (2009). Carbon acquisition in *Trichodesmium*: The effect of pCO\textsubscript{2} and diurnal changes. *Limnol. Oceanogr.*, 54 (3), 548-559.

Kubler J.E., Johnston A.M. & Raven J.A. (1999). The effects of reduced and elevated CO\textsubscript{2} and O\textsubscript{2} on the seaweed *Lomentaria articulata*. *Plant Cell Environ.*, 22, 1303-1310.

Kurihara H., Matsui M., Furukawa H., Hayashi M. & Ishimatsu A. (2008). Long-term effects of predicted future seawater CO\textsubscript{2} conditions on the survival and growth of the marine shrimp *Palaemon pacificus*. *J. Exp. Mar. Biol. Ecol.*, 367, 41-46.

Kurihara H., Shimode S. & Shirayama Y. (2004). Sub-lethal effects of elevated concentration of CO\textsubscript{2} on planktonic copepods and sea urchins. *J. Oceanogr.*, 60, 743-750.

Langer G., Geisen M., Baumann K.H., Kläs J., Riebesell U., Thoms S., et al. (2006). Species-specific responses of calcifying algae to changing seawater carbonate chemistry. *Geochem. Geophys. Geosyst.*, 7, Q09006.

Leclercq N.I.c., Gattuso J.-P. & Jaubert J. (2000). CO\textsubscript{2} partial pressure controls the calcification rate of a coral community. *Global Change Biol.*, 6, 329-334.

Lischka S., Buedenbender J., Boixhammer T. & Riebesell U. (2010). Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod *Limacina helicina*: mortality, shell degradation, and shell growth. *Biogeosciences Discuss.*, 7, 8177-8214.

Liu W.C., Lo W.T., Purcell J.E. & Chang H.H. (2009). Effects of temperature and light intensity on asexual reproduction of the scyphozoan, *Aurelia aurita* (L.) in Taiwan. *Hydrobiologia*, 616, 247-258.

Melzner F., Stange P., Trübenbach K., Thomsen J., Casties I., Panknin U., Gorb S.N. & Gutowska M.A. (2011). Food Supply and Seawater pCO\textsubscript{2} Impact Calcification and Internal Shell Dissolution in the Blue Mussel *Mytilus edulis*. *PLoS One*, 6, e24223.

Munday P.L., Dixson D.L., Donelson J.M., Jones G.P., Pratchett M.S., Devitsina G.V., et al. (2009). Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. *PNAS*, 106, 1848-1852.

O'Connor M.I. (2009). Warming strengthens an herbivore-plant interaction. *Ecology*, 90, 388-398.

Parker L.M., Ross P.M. & O'Connor W.A. (2010). Comparing the effect of elevated pCO\textsubscript{2} and temperature on the fertilization and early development of two species of oysters. *Mar. Biol.*, 157, 2435-2445.

Pistevos J.C.A., Calosi P., Widdicombe S. & Bishop J.D.D. (2011). Will variation among genetic individuals influence species responses to global climate change? *Oikos*, 120, 675-689.

Price N.N., Hamilton S.L. & Smith J. (2011). Species-specific consequences of ocean acidification for the calcareous tropical green algae *Halimeda*. *Mar Ecol. Prog. Ser.*, 440, 67-78.

Ries J., Cohen A. & McCorkle D. (2010). A nonlinear calcification response to CO 2-induced ocean acidification by the coral *Oculina arbuscula*. *Coral Reefs*, 29, 661-674.
Rodolfo-Metalpa R., Martin S., Ferrier-Pages C. & Gattuso J. (2010). Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO₂ and temperature levels projected for the year 2100 AD. *Biogeosciences*, 7, 289-300.

Roleda M.Y., Morris J.N., McGraw C.M. & Hurd C.L. (2012). Ocean acidification and seaweed reproduction: increased CO₂ ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp *Macrocystis pyrifera* (Laminariales, Phaeophyceae). *Global Change Biol.*

Russell B.D., Passarelli C.A. & Connell S.D. (2011). Forecasted CO₂ modifies the influence of light in shaping subtidal habitat. *J. Phycol.*

Kusse B.D., Thompson J.-A.I., Falkenberg L.J. & Conne S.D. (2009). Synergistic effects of climate change and local stressors: CO₂ and nutrient-driven change in subtidal rocky habitats. *Global Change Biol.*, 15, 2153-2162.

Schmidt C., Heinz P., Kucera M. & Uthicke S. (2011). Temperature-induced stress leads to bleaching in larger benthic foraminifera hosting endosymbiotic diatoms. *Limnol. Oceanogr.*, 56, 1587-1602.

Schram J.B., McClintock J.B., Angus R.A. & Lawrence J.M. (2011). Regenerative capacity and biochemical composition of the sea star *Luidia clathrata* (Say) (Echinodermata: Asteroidea) under conditions of near-future ocean acidification. *J. Exp. Mar. Biol. Ecol.*

Scian A., Harnay J., Leerve U., Lemee K., Kimmelin P., Denis M., et al. (2011). Response of coccolithophorid *Emiliania huxleyi* to elevated partial pressure of CO₂ under nitrogen limitation. *Mar. Ecol. Prog. Ser.*, 261.

Shirayama Y. & Thornton H. (2005). Effect of increased atmospheric CO₂ on shallow water marine benthos. *Journal of Geophysical Research*, 110, C09S08.

Spielmeyer A. & Pohnert G. (2011). Influence of temperature and elevated carbon dioxide on the production of dimethylsulfoniopropionate and glycine betaine by marine phytoplankton. *Mar. Env. Res.*

Stumpp M., Dupont S., Thorndyke M. & Melzner F. (2011a). CO₂ induced acidification impacts sea urchin larval development II: Gene expression patterns in pluteus larvae. *Comp. Biochem. Phys. A*.

Stumpp M., Wren J., Melzner F., Thorndyke M. & Dupont S. (2011b). CO₂ induced seawater acidification impacts sea urchin larval development I: Elevated metabolic rates decrease scope for growth and induce developmental delay. *Comp. Biochem. Phys. A*.

Suwa R., Nakamura M., Morita M., Shimada K., Iguchi A., Sakai K. & Suzuki A. (2010). Effects of acidified seawater on early life stages of scleractinian corals (Genus Acropora). *Fish. Sci.*, 76, 93-99.

Talmage S.C. & Gobler C.J. (2010). Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. *PNAS*, 107, 17246-17251.

Talmage S.C. & Gobler C.J. (2011). Effects of Elevated Temperature and Carbon Dioxide on the Growth and Survival of Larvae and Juveniles of Three Species of Northwest Atlantic Bivalves. *PLoS One*, 6, e23641.

Thom R.M. (1996). CO₂-enrichment effects on eelgrass (*Zostera marina* L) and bull kelp (*Nereocystis luetkeana*) (Mert P & R). *Water Air Soil Poll.*, 88, 383-391.

Thomsen J. & Melzner F. (2010). Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel *Mytilus edulis*. *Mar. Biol.*, 157, 2667-2676.

Tortell P.D., Payne C., Gueguen C., Strzepek R.F., Boyd P.W. & Rost B. (2008). Inorganic carbon uptake by Southern Ocean phytoplankton. *Limnol. Oceanogr.*, 1266-1278.

Vincx E.A., Tegner M.J., Moore S.D., Friedman C.S., Riser K.L., Robbins T.M. & Dayton P.R. (2000). Ocean warming effects on growth, reproduction, and survivorship of southern California abalone. *Ecol. Appl.*, 10, 468-480.

Vilchis L., Angel R. & Forward M.O. (2010). Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79° N). *Mar. Ecol. Prog. Ser.*, 401, 155-165.

Walther G.R., Tegner M.J., Moore S.D., Friedman C.S., Riser K.L., Robbins T.M. & Dayton P.R. (2011). Effects of temperature and acidification on larval calcium incorporation of the spider crab *Hyas araneus* from different latitudes (54° vs. 79° N). *Mar. Biol.*, 11.
Wood H., Widdicombe S. & Spicer J. (2009). The influence of hypercapnia and the infrafaunal brittlestar *Amphiura filiformis* on sediment nutrient flux- will ocean acidification affect nutrient exchange? *Biogeosciences*, 6, 2015-2024.

Wood H.L., Spicer J., Kendall M., Lowe D. & Widdicombe S. (2011). Ocean warming and acidification; implications for the Arctic brittlestar *Ophiocten sericeum*. *Polar Biol.*, 34, 1033-1044.

Wood H.L., Spicer J.I. & Widdicombe S. (2008). Ocean acidification may increase calcification rates, but at a cost. *Proc. R. Soc. B*, 275, 1767-1773.

Zou D. (2005). Effects of elevated atmospheric CO₂ on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, *Hizikia fusiforme* (Sargassaceae, Phaeophyta). *Aquaculture* 250, 726-735.
ST2 - Selection criteria for exclusion in meta-analysis

Each row represents an individual observation that was omitted from subsequent analysis. Therefore, some studies may include a number of observations, in which some are included (and listed within ST1) and some are omitted. Columns 'B - F' describes the experiment as: the manipulated stressor, response, taxonomic group, species and life-stage. Columns 'G - L' describe the reason that particular experiment did not meet the criteria. Stressor Level describes when either the CO2/pH or temperature manipulation was greater than the IPCC 2100 predictions (i.e. >0.5 pH reduction, >1300ppm CO2, or >5 °C increase). Response indicates that the particular response variable of that experiment did not have a sufficient number to be quantitatively assessed. Fieldwork indicates that the experiment was carried out in the field and therefore omitted because of possible confounding factors. No Variance highlights that either the study did not provide a form of uncertainty (either standard deviation, standard error or confidence interval) or that the study only had 1 replicate. Carbonate Chemistry indicates that the carbonate chemistry of the experiment was manipulated using an HCL Addition rather than manipulating the DIC. Other reason highlights a reason that the experiment was omitted that did not fall into one of the preceding categories.
Source	Manipulation Group
Albright et al., 2008, Coral Reefs, 27:485–490	CO2
Anestis et al., 2007, Am. J. Physiol-Reg. I., 293:R911-21	Temperature
Anthony et al., 2008, Proc. Nat. Acad. Sci., 105:17442-6	Temperature and CO2
Barcelos e Ramos et al., 2010, Biogeosciences, 7:177-86	CO2
Budden and Bamber, 1996, Mar. Pollut. Bull., 32:283-287	CO2
Batten and Bamber, 1996, Mar. Pollut. Bull., 32:283-287	CO2
Batten and Bamber, 1996, Mar. Pollut. Bull., 32:283-287	CO2
Batten and Bamber, 1996, Mar. Pollut. Bull., 32:283-287	CO2
Batten and Bamber, 1996, Mar. Pollut. Bull., 32:283-287	CO2
Brennand et al., 2010, Plos One, 5:e11372	Temperature
Brennand et al., 2010, Plos One, 5:e11372	Temperature and CO2
Brennand et al., 2010, Plos One, 5:e11372	Temperature
De la Haye et al., 2011, Anim. Behav., 82:495-501 CO2	
Dias et al., 2010, J. Geol. Soc. London, 16:843-6 CO2	
Diaz-Pulido et al., 2011, Ecol. Lett., 14:156-62 CO2	
Diaz-Pulido et al., 2011, Ecol. Lett., 14:156-62 CO2	
Dissard et al., 2010, Biogeosciences, 7:81-93 CO2	
Dissard et al., 2010, Biogeosciences, 7:81-93 Temperature CO2	
Dissard et al., 2010, Biogeosciences, 7:81-93 Temperature and CO2	
Doo et al., 2011, Ices. J. Mar. Sci., doi:10.1093/icesjms/fsr123 CO2	
Doo et al., 2011, Ices. J. Mar. Sci., doi:10.1093/icesjms/fsr123 CO2	
Dupont et al., 2010, J. Exp. Zool., 314B:382-9 CO2	
Egilsdottir et al., 2009, Mar. Pollut. Bull., 58:1187-91 CO2	
Egilsdottir et al., 2009, Mar. Pollut. Bull., 58:1187-91 CO2	
Ehlers et al., 2008, Mar. Ecol. Prog. Ser., 355:1-7 Temperature	
Ellis et al., 2009, Aquat. Biol., 5:41–8 CO2	
Epelbaum et al., 2009, J. Exp. Mar. Biol. Ecol., 369:43-52 Temperature	
Epelbaum et al., 2009, J. Exp. Mar. Biol. Ecol., 369:43-52 Temperature	
Epelbaum et al., 2009, J. Exp. Mar. Biol. Ecol., 369:43-52 Temperature	
Epelbaum et al., 2009, J. Exp. Mar. Biol. Ecol., 369:43-52 Temperature	
Faxneld et al., 2010, Estuar. Coast. Shelf. S., 88:482-7 Temperature	
Faxneld et al., 2010, Estuar. Coast. Shelf. S., 88:482-7 Temperature	
Ferrari et al., 2011, Ecol. Lett., 14:1143-1148 CO2	
Ferrari et al., 2011, Glob. Change Biol., 17, 2980-86 CO2	
Ferrari et al., 2011, Glob. Change Biol., 17, 2980-86 CO2	
Findlay et al., 2008, Aquat. Biol., 3:51-62 Temperature	
Findlay et al., 2008, Aquat. Biol., 3:51-62 Temperature	
Findlay et al., 2008, Aquat. Biol., 3:51-62 Temperature	
Findlay et al., 2008, Aquat. Biol., 3:51-62 Temperature and CO2	
Findlay et al., 2009, Mar. Ecol. Prog. Ser., 389:193-202 CO2	
Findlay et al., 2010, Estuar. Coast. Shelf. S., 86:675–82 CO2	
Findlay et al., 2010, Estuar. Coast. Shelf. S., 86:675–82 CO2	
Findlay et al., 2010, Estuar. Coast. Shelf. S., 86:675–82 CO2	
Findlay et al., 2010, Estuar. Coast. Shelf. S., 86:675–82 Temperature and CO2	
Findlay et al., 2010, Estuar. Coast. Shelf. S., 86:675–82 Temperature and CO2	
Findlay et al., 2010, Estuar. Coast. Shelf. S., 86:675–82 Temperature and CO2	
Findlay et al., 2011, Biogeosciences Discuss., 8:7097-126 CO2	
Franke and Clemmesen, 2011, Biogeosciences Discuss., 8:7097-126 CO2	
Franke and Clemmesen, 2011, Biogeosciences Discuss., 8:7097-126 CO2	
Fredersdorf et al., 2009, Oecologia, 160:483-492 Temperature	
Fredersdorf et al., 2009, Oecologia, 160:483-492 Temperature	
Frommel et al, 2010, Biogeosciences, 7:3915-19 CO2	
Fu et al., 2008, Harmful Algae, 7:76-90	
Fu et al., 2008, Harmful Algae, 7:76-90	
Gattuso et al., 1998, Global Planet. Change, 18:37-46	
Gazeau et al., 2007, Geophys. Res. Lett., 34:L07603	
Gazeau et al., 2007, Geophys. Res. Lett., 34:L07603	
Gazeau et al., 2011, Plos One, 6:e23010	
Gazeau et al., 2011, Plos One, 6:e23010	
Gooding et al., 2009, Proc. Nat. Acad. Sci., 106:9316-21	
Gooding et al., 2009, Proc. Nat. Acad. Sci., 106:9316-21	
Gooding et al., 2009, Proc. Nat. Acad. Sci., 106:9316-21	
Grossart et al., 2006, Limnol. Oceanogr., 51:1–11	
Gutow and Franke, 2001, J. Sea Res., 45:37-44	
Gutow and Franke, 2001, J. Sea Res., 45:37-44	
Hale et al., 2010, Oikos, 120:661–74	
Hall Spencer et al., 2008, Nature, 454:96-9	
Hammer et al., 2011, Mar. Env. Res., 72:135-42	
Hare et al., 2007, Mar. Ecol. Prog. Ser., 352:9-16	
Hare et al., 2007, Mar. Ecol. Prog. Ser., 352:9-16	
Hare et al., 2007, Mar. Ecol. Prog. Ser., 352:9-16	
Hare et al., 2007, Mar. Ecol. Prog. Ser., 352:9-16	
Hare et al., 2007, Mar. Ecol. Prog. Ser., 352:9-16	
Hare et al., 2007, Mar. Ecol. Prog. Ser., 352:9-16	
Hare et al., 2007, Mar. Ecol. Prog. Ser., 352:9-16	
Hare et al., 2007, Mar. Ecol. Prog. Ser., 352:9-16	
Hare et al., 2007, Mar. Ecol. Prog. Ser., 352:9-16	
Hare et al., 2007, Mar. Ecol. Prog. Ser., 352:9-16	
Hare et al., 2007, Mar. Ecol. Prog. Ser., 352:9-16	
Hare et al., 2007, Mar. Ecol. Prog. Ser., 352:9-16	
Harris et al., 1999, J. Shellfish Res., 18:611-9	
Harris et al., 1999, J. Shellfish Res., 18:611-9	
Harris et al., 1999, J. Shellfish Res., 18:611-9 CO2	
Harris et al., 1999, J. Shellfish Res., 18:611-9 CO2	
Harris et al., 1999, J. Shellfish Res., 18:611-9 CO2	
Harris et al., 1999, J. Shellfish Res., 18:611-9 CO2	
Hauton et al., 2009, Biogeosciences, 6:1479-89 CO2	
Hoffman et al., 2003, J. Phycol., 39:268-272 Temperature	
Hoffman et al., 2003, J. Phycol., 39:268-272 Temperature	
Hueerkamp et al., 2001, B. Mar. Sci., 69:215-236 Temperature	
Hueerkamp et al., 2001, B. Mar. Sci., 69:215-236 Temperature	
Hueerkamp et al., 2001, B. Mar. Sci., 69:215-236 Temperature	
Hueerkamp et al., 2001, B. Mar. Sci., 69:215-236 Temperature	
Iglesias-Rodriguez et al., 2008, 320, 336-40 CO2	
Iglesias-Rodriguez et al., 2008, 320, 336-40 CO2	
Iglesias-Rodriguez et al., 2008, 320, 336-40 CO2	
Imsland et al., 2007, J. Fish Biol., 71:1371-1382 Temperature	
Imsland et al., 2007, J. Fish Biol., 71:1371-1382 Temperature	
Isla et al., 2008, Global Change. Biol., 14:895-906 Temperature	
Isla et al., 2008, Global Change. Biol., 14:895-906 Temperature	
Isla et al., 2008, Global Change. Biol., 14:895-906 Temperature	
Israel and Hophy, 2002, Global Change. Biol., 8:831-40 CO2	
Israel and Hophy, 2002, Global Change. Biol., 8:831-40 CO2	
Israel and Hophy, 2002, Global Change. Biol., 8:831-40 CO2	
Israel and Hophy, 2002, Global Change. Biol., 8:831-40 CO2	
Israel and Hophy, 2002, Global Change. Biol., 8:831-40 CO2	
Israel and Hophy, 2002, Global Change. Biol., 8:831-40 CO2	
Israel and Hophy, 2002, Global Change. Biol., 8:831-40 CO2	
Jacobson et al., 2008, Aquat. Biol., 1:269-276 Temperature	
Jacobson et al., 2008, Aquat. Biol., 1:269-276 Temperature	
Jokial et al., 2008, Coral Reefs, 27:473–83 CO2	
Koch et al., 2007, J. Exp. Mar. Biol. Ecol., 341:91-101 Temperature	
Koch et al., 2007, J. Exp. Mar. Biol. Ecol., 341:91-101 Temperature	
Koch et al., 2007, J. Exp. Mar. Biol. Ecol., 341:91-101 Temperature	
Koch et al., 2007, J. Exp. Mar. Biol. Ecol., 341:91-101 Temperature	
Kroeker et al., 2011, Proc. Nat. Acad. Sci., 108:14515-20 CO2	
Kroeker et al., 2011, Proc. Nat. Acad. Sci., 108:14515-20 CO2	
Kroeker et al., 2011, Proc. Nat. Acad. Sci., 108:14515-20 CO2	
Kroeker et al., 2011, Proc. Nat. Acad. Sci., 108:14515-20 CO2	
Kroeker et al., 2011, Proc. Nat. Acad. Sci., 108:14515-20 CO2	
Kroeker et al., 2011, Proc. Nat. Acad. Sci., 108:14515-20 CO2	
Kroeker et al., 2011, Proc. Nat. Acad. Sci., 108:14515-20 CO2	
Kubler et al., 1999, Plant Cell. Environ., 22:1303–10 CO2	
Kuffner et al., 2008, Nature Geosci., 1:114-117 CO2	
Kuffner et al., 2008, Nature Geosci., 1:114-117 CO2	
Kuffner et al., 2008, Nature Geosci., 1:114-117 CO2	
Kurihara and Shirayama, 2004, Mar. Ecol. Prog. Ser., 274:161-9 CO2	
Kurihara and Shirayama, 2004, Mar. Ecol. Prog. Ser., 274:161-9 CO2	
Kurihara et al., 2007, Aquat. Biol., 1:91-8 CO2	
Kurihara et al., 2007, Aquat. Biol., 1:91-8 CO2	
Kurihara et al., 2008, Aquat. Biol., 4:225-233 CO2	
Kurihara et al., 2008, J. Exp. Mar. Biol. Ecol., 367:41-46 CO2	
Kurihara et al., 2008, J. Exp. Mar. Biol. Ecol., 367:41-46 CO2	
Kuroyanagi et al., 2009, Mar. Micropaleontol., 73:190-195 CO2	
Langdon and Atkinson, 2005, J. Geophys. Res., 110:C09S07 CO2	
Langdon and Atkinson, 2005, J. Geophys. Res., 110:C09S07 CO2	
Langer et al., 2006, Geochem. Geophys. Geosyst., 7:Q09006 CO2	
Langer et al., 2006, Geochem. Geophys. Geosyst., 7:Q09006 CO2	
Langer et al., 2006, Geochem. Geophys. Geosyst., 7:Q09006 CO2	
Langer et al., 2006, Geochem. Geophys. Geosyst., 7:Q09006 CO2	
Lischka et al., 2011, Biogeosciences, 8:919-32 CO2	
Lischka et al., 2011, Biogeosciences, 8:919-32 Temperature and CO2	
Liu et al., 2009, Hydrobiologia, 616:247-258 Temperature	
Liu et al., 2009, Hydrobiologia, 616:247-258 Temperature	
Maestre et al., 2010, Philos. Trans. R. Soc. Lond. B, 365:2057-70 CO2	
Martin and Gattuso, 2009, Global Change. Biol., 15:2089-100 CO2	
Martin and Gattuso, 2009, Global Change. Biol., 15:2089-100 CO2	
Martin and Gattuso, 2009, Global Change. Biol., 15:2089-100 Temperature	
Martin and Gattuso, 2009, Global Change. Biol., 15:2089-100 Temperature	
Martin and Gattuso, 2009, Global Change. Biol., 15:2089-100 Temperature and CO2	
Martin and Gattuso, 2009, Global Change. Biol., 15:2089-100 Temperature and CO2	
Martin et al., 2011, J. Exp. Biol., 214:1357-68 CO2	
Marubini and Atkinson, 1999, Mar. Ecol. Prog. Ser., 188:117-21 CO2	
Marubini et al., 2001, Mar. Ecol. Prog. Ser., 220:153-62 CO2	
Marubini et al., 2001, Mar. Ecol. Prog. Ser., 220:153-62 CO2	
Marubini et al., 2001, Mar. Ecol. Prog. Ser., 220:153-62 CO2	
Marubini et al., 2001, Mar. Ecol. Prog. Ser., 220:153-62 CO2	
McCoy et al., 2011, Biogeosciences, 8:2567-79 CO2	
McCoy et al., 2011, Biogeosciences, 8:2567-79 CO2	
McCoy et al., 2011, Biogeosciences, 8:2567-79 CO2	
Melzner et al., 2011, Plos One, 6:e24223 CO2	
Metzger et al., 2007, J. Therm. Biol., 32:144-51 CO2	
Munday et al., 2009, Proc. Roy. Soc. Lond. B, 276:3275-83 Temperature	
Munday et al., 2009, Proc. Roy. Soc. Lond. B, 276:3275-83 Temperature	
Munday et al., 2009, Proc. Roy. Soc. Lond. B, 276:3275-83 Temperature	
Reference	Year
--	------
Munday et al., 2009, Proc. Roy. Soc. Lond. B, 276:3275-83	
Munday et al., 2009, Proc. Roy. Soc. Lond. B, 276:3275-83	
O'Connor, 2009, Ecology, 90:388-98	
O'Connor, 2009, Ecology, 90:388-98	
Parker et al., 2009, Global Change. Biol., 15:2123–36	
Parker et al., 2009, Global Change. Biol., 15:2123–36	
Parker et al., 2009, Global Change. Biol., 15:2123–36	
Parker et al., 2009, Global Change. Biol., 15:2123–36	
Parker et al., 2009, Global Change. Biol., 15:2123–36	
Parker et al., 2009, Global Change. Biol., 15:2123–36	
Parker et al., 2009, Global Change. Biol., 15:2123–36	
Parker et al., 2009, Global Change. Biol., 15:2123–36	
Parker et al., 2010, Mar. Biol., 157:2435-52	
Parker et al., 2010, Mar. Biol., 157:2435-52	
Parker et al., 2010, Mar. Biol., 157:2435-52	
Parker et al., 2010, Mar. Biol., 157:2435-52	
Parker et al., 2010, Mar. Biol., 157:2435-52	
Parker et al., 2010, Mar. Biol., 157:2435-52	
Parker et al., 2010, Mar. Biol., 157:2435-52	
Parker et al., 2010, Mar. Biol., 157:2435-52	
Petes et al., 2007, J. Exp. Mar. Biol. Ecol., 351:83-91	
Petes et al., 2007, J. Exp. Mar. Biol. Ecol., 351:83-91	
Petes et al., 2007, J. Exp. Mar. Biol. Ecol., 351:83-91	
Petes et al., 2007, J. Exp. Mar. Biol. Ecol., 351:83-91	
Pistevos et al., 2011, Oikos, 120:675–89	
Pistevos et al., 2011, Oikos, 120:675–89	
Pistevos et al., 2011, Oikos, 120:675–89	
Pistevos et al., 2011, Oikos, 120:675–89	
Pistevos et al., 2011, Oikos, 120:675–89	
Petes et al., 2007, J. Exp. Mar. Biol. Ecol., 351:83-91	
Petes et al., 2007, J. Exp. Mar. Biol. Ecol., 351:83-91	
Petes et al., 2007, J. Exp. Mar. Biol. Ecol., 351:83-91	
Pistevos et al., 2011, Oikos, 120:675–89	
Pistevos et al., 2011, Oikos, 120:675–89	
Pistevos et al., 2011, Oikos, 120:675–89	
Pistevos et al., 2011, Oikos, 120:675–89	
Porzio et al., 2011, J. Exp. Mar. Biol. Ecol., 400:278-87	
Przeslawski et al., 2005, Global Change. Biol., 11:515-522	
Przeslawski et al., 2005, Global Change. Biol., 11:515-522	
Przeslawski et al., 2005, Global Change. Biol., 11:515-522	
Przeslawski et al., 2005, Global Change. Biol., 11:515-522	
Przeslawski et al., 2005, Global Change. Biol., 11:515-522	
Renegar and Riegl, 2005, Mar. Ecol. Prog. Ser., 293:69-76	
Reynaud et al., 2003, Global Change. Biol., 9:1660–8	
Reynaud et al., 2003, Global Change. Biol., 9:1660–8	
Reynaud et al., 2003, Global Change. Biol., 9:1660–8	
Reynaud et al., 2003, Global Change. Biol., 9:1660–8	
Reynaud et al., 2003, Global Change. Biol., 9:1660–8	
Ries et al., 2009, Geology, 37:1131-34	
Ries et al., 2009, Geology, 37:1131-34	
Ries et al., 2009, Geology, 37:1131-34	
Ries et al., 2009, Geology, 37:1131-34	
Ries et al., 2009, Geology, 37:1131-34	
Ries et al., 2009, Geology, 37:1131-34	
Ries et al., 2009, Geology, 37:1131-34 CO2	
Ries et al., 2010, Coral Reefs, 29:661–67 CO2	
Rodolfo Metalpa et al., 2010, Biogeosciences, 7:289-300 Temperature and CO2	
Rodolfo Metalpa et al., 2010, Mar. Ecol., 31:447–56 CO2	
Rodolfo Metalpa et al., 2011, Nature, 1:308-312 Temperature	
Rodolfo Metalpa et al., 2011, Nature, 1:308-312 Temperature and CO2	
Rodolfo Metalpa et al., 2010, Biogeosciences, 7:289-300 Temperature and CO2	
Roleda et al., 2012, Global Change. Biol. CO2	
Roleda et al., 2012, Global Change. Biol. CO2	
Sanford, 2002, J. Exp. Mar. Biol. Ecol., 273:199-218 Temperature	
Sanford, 2002, J. Exp. Mar. Biol. Ecol., 273:199-218 Temperature	
Schiel et al., 2004, Ecology, 85:1833-1839 Temperature	
Schiel et al., 2004, Ecology, 85:1833-1839 Temperature	
Schmidt et al., 2011, Limnol. Oceanogr., 56:1587-1602 Temperature	
Schneider and Erez, 2006, Limnol. Oceanogr., 51:1284–93 CO2	
Schneider and Erez, 2006, Limnol. Oceanogr., 51:1284–93 CO2	
Schroer et al., 2009, J. Exp. Mar. Biol. Ecol., 372:22-30 Temperature	
Shi et al., 2009, Biogeosciences, 6:1199-1207 CO2	
Shi et al., 2009, Biogeosciences, 6:1199-1207 CO2	
Shi et al., 2009, Biogeosciences, 6:1199-1207 CO2	
Shirayama and Thornton, 2005, J. Geophys. Res., 110:C09508 CO2	
Shirayama and Thornton, 2005, J. Geophys. Res., 110:C09508 CO2	
Shirayama and Thornton, 2005, J. Geophys. Res., 110:C09508 CO2	
Sommer and Lengfeller, 2008, Global Change. Biol., 14:1199-1208 Temperature	
Spielmeyer and Pohnert, 2011, Mar. Env. Res., 73:62-69 Temperature	
Spielmeyer and Pohnert, 2011, Mar. Env. Res., 73:62-69 Temperature	
Spielmeyer and Pohnert, 2011, Mar. Env. Res., 73:62-69 Temperature	
Spielmeyer and Pohnert, 2011, Mar. Env. Res., 73:62-69 Temperature	
Spielmeyer and Pohnert, 2011, Mar. Env. Res., 73:62-69 Temperature	
Spielmeyer and Pohnert, 2011, Mar. Env. Res., 73:62-69 Temperature	
Spielmeyer and Pohnert, 2011, Mar. Env. Res., 73:62-69 Temperature	
Stillman, 2003, Science, 301:65 Temperature	
Stumpp et al., 2011, Comp. Biochem. Phys. A., 160:331-40 CO2	
Suwa et al., 2010, Fisheries Sci., 76:93–9 CO2	
Suwa et al., 2010, Fisheries Sci., 76:93–9 CO2	
Suwa et al., 2010, Fisheries Sci., 76:93–9 CO2	
Suzuki et al., 1995, Sediment Geol., 99:259-80 CO2	
Swanson and Fox, 2007, Global Change. Biol., 13:1698-709 CO2	
Talmage and Gobler, 2009, Limnol. Oceanogr., 54:2072–80 CO2	
Talmage and Gobler, 2011, Plos One, 6:e26941 CO2	
Thistle et al., 2007, Mar. Ecol. Prog. Ser., 340:9-16 CO2	
Thom, 1996, Water Air Soil Poll., 88:383-91 CO2	
Thom, 1996, Water Air Soil Poll., 88:383-91 CO2	
Thomsen and Melzner, 2010, Mar. Biol., 157:2667–76 CO2	
Torrents et al., 2007, J. Exp. Mar. Biol. Ecol., 357:7-19 Temperature	
Vilchis et al., 2005, 15, 469-480 Temperature	
Waldbusser et al., 2011, Estuar. Coast., 34:221–3 CO2	
Walther et al., 2010, Mar. Ecol. Prog. Ser., 417:159-70 CO2	
Walther et al., 2010, Mar. Ecol. Prog. Ser., 417:159-70 CO2	
Walther et al., 2010, Mar. Ecol. Prog. Ser., 417:159-70 Temperature	
Walther et al., 2010, Mar. Ecol. Prog. Ser., 417:159-70 Temperature	
Walther et al., 2010, Mar. Ecol. Prog. Ser., 417:159-70 Temperature and CO2	
Walther et al., 2011, Mar. Biol., 158:2043-53 CO2	
Walther et al., 2011, Mar. Biol., 158:2043-53 Temperature	
Walther et al., 2011, Mar. Biol., 158:2043-53 Temperature and CO2	
Winans and Purcell, 2010, Hydrobiologia, 645:39-52 CO2	
Winans and Purcell, 2010, Hydrobiologia, 645:39-52 Temperature	
Winans and Purcell, 2010, Hydrobiologia, 645:39-52 Temperature and CO2	
Wood et al., 2008, Proc. Roy. Soc. Lond. B, 275:1767-73 CO2	
Wood et al., 2008, Proc. Roy. Soc. Lond. B, 275:1767-73 CO2	
Wood et al., 2009, Biogeosciences, 6:2015-24 CO2	
Wood et al., 2011, Polar Biol., 34:1033-44 CO2	
Wood et al., 2011, Polar Biol., 34:1033-44 Temperature	
Wood et al., 2011, Polar Biol., 34:1033-44 Temperature and CO2	
Wood et al., 2011, Polar Biol., 34:1033-44 Temperature and CO2	
Yates and Halley, 2006, Biogeosciences, 3:357-69 CO2	
Yoshimura et al., 2009, Biogeosciences Discuss., 6:4143-4163 CO2	
Zimmerman et al., 1997, Plant Physiol., 115:599-607 CO2	
Zimmerman et al., 1997, Plant Physiol., 115:599-607 CO2	
Zimmerman et al., 1997, Plant Physiol., 115:599-607 CO2	
Zimmerman et al., 1997, Plant Physiol., 115:599-607	
Zimmerman et al., 1997, Plant Physiol., 115:599-607	
Zimmerman et al., 1997, Plant Physiol., 115:599-607	
Zondervan et al., 2002, Global Biogeochem. Cycles, 15:507-16	
Zondervan et al., 2002, Global Biogeochem. Cycles, 15:507-16	
Response	Taxonomic Group
----------	----------------
Growth	Corals
Survival	Corals
Survival	Molluscs
Photosynthesis	Corals
Photosynthesis	Corals
Photosynthesis	Crustose Coralline Algae
Bleaching	Corals
Bleaching	Corals
Bleaching	Crustose Coralline Algae
Calcification	Corals
Calcification	Corals
Calcification	Crustose Coralline Algae
Photosynthesis	Corals
Photosynthesis	Corals
Photosynthesis	Crustose Coralline Algae
Bleaching	Corals
Bleaching	Corals
Bleaching	Crustose Coralline Algae
Bleaching	Corals
Bleaching	Corals
Bleaching	Crustose Coralline Algae
Calcification	Corals
Calcification	Corals
Calcification	Crustose Coralline Algae
Photosynthesis	Corals
Photosynthesis	Corals
Photosynthesis	Crustose Coralline Algae
Growth	Phytoplankton
Photosynthesis	Phytoplankton
Fitness	Annelids
Fitness	Annelids
Growth	Annelids
Growth	Annelids
Survival	Annelids
Survival	Annelids
Fitness	Molluscs
Fitness	Molluscs
Growth	Molluscs
Growth	Molluscs
Fitness	Molluscs
Growth	Molluscs
Survival	Molluscs
Survival	Echinoderms
Survival	Echinoderms
Metric	Organism
----------------	------------
Survival	Crustaceans
Biodiversity	Phytoplankton
Survival	Corals
Growth	Corals
Calcification	Phytoplankton
Calcification	Phytoplankton
Calcification	Phytoplankton
Fitness	Echinoderms
Fitness	Echinoderms
Abundance	Echinoderms
Development	Crustaceans
Reproduction	Crustaceans
Abundance	Seagrass
Development	Molluscs
Reproduction	Molluscs
Growth	Tunicates
Growth	Tunicates
Survival	Tunicates
Survival	Tunicates
Photosynthesis	Corals
Survival	Corals
Feeding	Molluscs
Fitness	Molluscs
Feeding	Fishes
Interaction Strength	Fishes
Survival	Fishes
Survival	Fishes
Survival	Fishes
Survival	Fishes
Survival	Crustaceans
Development	Crustaceans
Calcification	Crustaceans
Growth	Crustaceans
Survival	Crustaceans
Calcification	Crustaceans
Growth	Crustaceans
Survival	Crustaceans
Calcification	Corals
Growth	Fishes
Reproduction	Fishes
Survival	Fishes
Photosynthesis	Macroalgae
Reproduction	Macroalgae
Reproduction	Fishes
Growth Phytoplankton	
Growth Phytoplankton	
Calcification Corals	
Calcification Molluscs	
Calcification Molluscs	
Growth Molluscs	
Reproduction Molluscs	
Feeding Echinoderms	
Feeding Echinoderms	
Feeding Echinoderms	
Abundance Bacteria	
Development Crustaceans	
Reproduction Crustaceans	
Abundance Annelids	
Abundance Arthropods	
Abundance Community	
Abundance Echinoderms	
Abundance Molluscs	
Biodiversity Annelids	
Biodiversity Arthropods	
Biodiversity Community	
Biodiversity Molluscs	
Abundance Annelids	
Abundance Arthropods	
Abundance Community	
Abundance Echinoderms	
Abundance Molluscs	
Biodiversity Annelids	
Biodiversity Arthropods	
Biodiversity Community	
Biodiversity Molluscs	
Abundance Annelids	
Abundance Arthropods	
Abundance Community	
Abundance Echinoderms	
Abundance Molluscs	
Fitness Molluscs	
Abundance Phytoplankton	
Photosynthesis Phytoplankton	
Abundance Phytoplankton	
Photosynthesis Phytoplankton	
Abundance Phytoplankton	
Photosynthesis Phytoplankton	
Feeding Molluscs	
Feeding Molluscs	
Category	Species
------------	------------------------------
Fitness	Molluscs
Growth	Molluscs
Growth	Molluscs
Survival	Molluscs
Survival	Molluscs
Survival	Crustaceans
Reproduction	Macroalgae
Survival	Macroalgae
Symbionts	Corals
Growth	Phytoplankton
Growth	Phytoplankton
Growth	Phytoplankton
Growth	Fishes
Growth	Fishes
Reproduction	Crustaceans
Reproduction	Crustaceans
Fitness	Crustaceans
Reproduction	Crustaceans
Growth	Macroalgae
Reproduction	Crustaceans
Survival	Crustaceans
Abundance	Crustose Coralline Algae
Abundance	Macroalgae
Abundance	Molluscs
Abundance	Molluscs
Calcification	Corals
Growth	Corals
Growth	Corals
Growth	Crustaceans
Growth	Crustose Coralline Algae
Reproduction	Corals
Reproduction	Corals
Abundance	Seagrass
Abundance	Seagrass
Growth	Seagrass
Photosynthesis	Seagrass
Photosynthesis	Seagrass
Abundance	Annelids
Abundance	Crustaceans
Abundance Crustaceans
Abundance Crustaceans
Abundance Crustaceans
Abundance Molluscs
Abundance Molluscs
Growth Macroalgae
Growth Crustose Coralline Algae
Growth Macroalgae
Reproduction Crustose Coralline Algae
Reproduction Echinoderms
Reproduction Echinoderms
Calcification Molluscs
Growth Molluscs
Growth Molluscs
Feeding Crustaceans
Growth Crustaceans
Growth Phytoplankton
Calcification Corals
Photosynthesis Corals
Calcification Phytoplankton
Calcification Phytoplankton
Photosynthesis Phytoplankton
Photosynthesis Phytoplankton
Fitness Molluscs
Fitness Molluscs
Fitness Molluscs
Reproduction Cnidarians
Survival Cnidarians
Calcification Corals
Calcification Crustose Coralline Algae
Calcification Corals
Calcification Corals
Calcification Corals
Calcification Corals
Calcification Corals
Growth Crustaceans
Growth Crustaceans
Reproduction Crustaceans
Growth Molluscs
Growth Molluscs
Fitness Fishes
Fitness Crustaceans
Interaction Strength Crustaceans
Growth Molluscs
Reproduction Molluscs
Growth Bryozoans
Reproduction Bryozoans
Growth Bryozoans
Reproduction Bryozoans
Growth Bryozoans
Reproduction Bryozoans
- Macroalgae
Fitness Molluscs
Fitness Molluscs
Fitness Molluscs
Survival Molluscs
Survival Molluscs
Survival Molluscs
Growth Corals
Calcification Corals
Photosynthesis Corals
Calcification Corals
Photosynthesis Corals
Calcification Annelids
Calcification Corals
Calcification Crustaceans
Calcification Crustaceans
Calcification Crustaceans
Calcification Crustose Coralline Algae
Calcification Crustose Coralline Algae
Calcification Echinoderms
| Process | Organism | | | |
|---|---|---|---|---|
| Calcification | Echinoderms |
| Calcification | Molluscs |
| Calcification | Corals |
| Calcification | Corals |
| Calcification | Bryozoaans |
| Calcification | Corals |
| Calcification | Corals |
| Growth | Molluscs |
| Calcification | Corals |
| Calcification | Corals |
| Calcification | Corals |
| Photosynthesis | Corals |
| Growth | Phytoplankton |
| Reproduction | Macroalgae |
| Feeding | Echinoderms |
| Growth | Molluscs |
| Abundance | - |
| Biodiversity | - |
| Fitness | Phytoplankton |
| Fitness | Phytoplankton |
| Photosynthesis | Corals |
| Photosynthesis | Corals |
| Photosynthesis | Corals |
| Photosynthesis | Phytoplankton |
| Survival | Echinoderms |
| Survival | Echinoderms |
| Survival | Molluscs |
| Abundance | Phytoplankton |
| Growth | Phytoplankton |
| Fitness | - |
| Abundance | Phytoplankton |
| Growth | Corals |
| Survival | Corals |
|----------|--------|
| Growth | Macroalgae |
| Growth | Macroalgae |
| Survival | Molluscs |
| Growth | Molluscs |
| Growth | Molluscs |
| Growth | Molluscs |
| Survival | Molluscs |
| Growth | Molluscs |
| Growth | Molluscs |
| Growth | Molluscs |
| Survival | Molluscs |
| Growth | Molluscs |
| Growth | Molluscs |
| Growth | Molluscs |
| Fitness | 0 |
| Photosynthesis | Seagrass |
| Growth | Molluscs |
| Calcification | Corals |
| Reproduction | Molluscs |
| Calcification | Molluscs |
| Development | Crustaceans |
| Growth | Crustaceans |
| Development | Crustaceans |
| Growth | Crustaceans |
| Development | Crustaceans |
| Growth | Crustaceans |
| Calcification | Crustaceans |
| Calcification | Crustaceans |
| Calcification | Crustaceans |
| Survival | Cnidarians |
| Survival | Cnidarians |
| Survival | Cnidarians |
| Calcification | Echinoderms |
| Growth | Echinoderms |
| Survival | Echinoderms |
| Fitness | Echinoderms |
| Growth | Echinoderms |
| Fitness | Echinoderms |
| Growth | Echinoderms |
| Calcification | Corals |
| Abundance | - |
| Calcification | Phytoplankton |
| Calcification | Phytoplankton |
| Growth | Phytoplankton |
| Growth | Phytoplankton |
|---------|---------------|
| Growth | Seagrass |
| Photosynthesis | Seagrass |
| Calcification | Phytoplankton |
| Growth | Phytoplankton |
| Organism | Life Stage | Stressor Level | Other Response |
|--------------------------|------------|----------------|----------------|
| Porites astreoides | Larvae | | |
| Porites astreoides | Larvae | | |
| Mytilus galloprovincialis | Adult | | |
| Acropora intermedia | Adult | | |
| Porites lobata | Adult | | |
| Porolithon onkodes | Adult | | |
| Porolithon onkodes | Adult | | |
| Acropora intermedia | Adult | | |
| Porites lobata | Adult | | |
| Porolithon onkodes | Adult | | |
| Porolithon onkodes | Adult | | |
| Acropora intermedia | Adult | | |
| Porites lobata | Adult | | |
| Porolithon onkodes | Adult | | |
| Acropora intermedia | Adult | | |
| Porites lobata | Adult | | |
| Porolithon onkodes | Adult | | |
| Acropora intermedia | Adult | | |
| Porites lobata | Adult | | |
| Porolithon onkodes | Adult | | |
| Acropora intermedia | Adult | | |
| Porites lobata | Adult | | |
| Nereis virens | Juvenile | | |
| Nereis virens | Adult | | |
| Nereis virens | Adult | | |
| Crassostrea gigas | Adult | | |
| Crassostrea gigas | Juvenile | | |
| Crassostrea gigas | Juvenile | | |
| Mytilus edulis | Adult | | |
| Littorina littorea | Adult | | |
| Littorina littorea | Adult | | |
| Littorina littorea | Adult | | |
| Tripneustes gratilla | Larvae | | |
| Tripneustes gratilla | Larvae | | |
| Species | Form |
|---------------------------------|------------|
| Phaeodactylum tricornutum | Culture |
| Thalassiosira weissflogii | Culture |
| Heliocidaris erythrogramma | Adult |
| Heliocidaris erythrogramma | Adult |
| Heliocidaris erythrogramma | Embryos |
| Heliocidaris erythrogramma | Adult |
| Heliocidaris erythrogramma | Embryos |
| Heliocidaris tuberculata | Adult |
| Patiriella regularis | Adult |
| Tripneustes gratilla | Adult |
| Haliotis coccoradiata | Adult |
| Centrostephanus rodgersii | Adult |
| Heliocidaris tuberculata | Adult |
| Tripneustes gratilla | Adult |
| Centrostephanus rodgersii | Adult |
| Heliocidaris erythrogramma | Adult |
| Heliocidaris tuberculata | Adult |
| Patiriella regularis | Adult |
| Tripneustes gratilla | Adult |
| Haliotis coccoradiata | Adult |
| Heliocidaris tuberculata | Adult |
| Delisea pulchra | Adult |
| Arbacia dufresnei | Larvae |
| Arbacia dufresnei | Larvae |
| Dendraster excentricus | Larvae |
| Acropora muricata | Adult |
| Ophionereis schayeri | Adult |
| Ophionereis schayeri | Adult |
| Ophionereis schayeri | Adult |
| Evechinus chloroticus | Larvae |
| Pseudoechinus huttoni | Larvae |
| Sterechinus neumayeri | Larvae |
| Tripneustes gratilla | Larvae |
| Favia fragum | Juvenile |
| Chlamydomonas reinhardtii | - |
| Cavolinia inflexa | Larvae |
| Turf Algae | Adult |
| Turf Algae | Adult |
| Turf Algae | Adult |
| Haliotis kamtschatkana | Larvae |
| Haliotis kamtschatkana | Larvae |
| Pseudochromis fuscus | Adult |
| Pseudochromis fuscus | Adult |
| Pseudochromis fuscus | Adult |
| Nematode community | Adult |
| Nematode community | Adult |
| Pagurus bernhardus | Adult |
| Species | Life Cycle | Notes |
|-------------------------------|------------|-------|
| Pagurus bernhardus | Adult | |
| Acropora intermedia | Adult | |
| Ammonia tepida | Culture | |
| Ammonia tepida | Culture | |
| Centrostephanus rodgersii | Larvae | |
| Echinogammarus marinus | Embryos | * |
| Zostera marina | Adult | |
| Littorina obtusata | Embryos | |
| Littorina obtusata | Adult | |
| Botryllis schlosseri | Juvenile | |
| Botrylloides violaceus | Juvenile | |
| Botryllis schlosseri | Juvenile | |
| Botrylloides violaceus | Juvenile | |
| Turbinaria mesenterina | Adult | |
| Turbinaria mesenterina | Adult | |
| Ruditapes decussatus | Juvenile | |
| Pseudochromis fuscus | Adult | |
| Pomacentrus amboinensis | Juvenile | |
| Pomacentrus chrysurus | Juvenile | |
| Pomacentrus moluccensis | Juvenile | |
| Pomacentrus nagasakiensis | Juvenile | |
| Elminius modestus | Adult | |
| Semibalanus balanoides | Adult | |
| Semibalanus balanoides | Juvenile | |
| Oculina patagonica | Adult | |
| Clupea harengus | Embryos | |
| Clupea harengus | Adult | |
| Alaria esculenta | Juvenile | |
| Alaria esculenta | Adult | |
| Gadus Morhua | Adult | |
| Species / Assemblage | Stage |
|----------------------------|---------|
| Heterosigma akashiwo | Culture |
| Prorocentrum minimum | Culture |
| Acropora sp | Adult |
| Crassostrea gigas | Adult |
| Mytilus edulis | Adult |
| Crassostrea gigas | Embryos |
| Crassostrea gigas | Adult |
| Pisaster ochraceus | Juvenile*|
| Pisaster ochraceus | Juvenile*|
| Pisaster ochraceus | Juvenile*|
| Community | Culture |
| Idotea metallica | Adult |
| Idotea metallica | Adult |
| Community | Community*|
| Acosta excavata | Adult |
| Phytoplankton Assemblage | - |
| Haliotis laevigata | Juvenile*|
| Haliotis rubra | Juvenile*|
| Species | Life Stage | Notes |
|-------------------------------|------------|-------|
| Haliotis laevigata | Juvenile | * |
| Haliotis laevigata | Juvenile | * |
| Haliotis rubra | Juvenile | * |
| Haliotis laevigata | Juvenile | * |
| Haliotis rubra | Juvenile | * |
| Gammarus locusta | Adult | |
| Fucus gardneri | Adult | * |
| Fucus gardneri | Adult | * |
| Pavona clavus | Adult | * |
| Pavona gigantea | Adult | * |
| Pocillopora damicornis | Adult | * |
| Pocillopora elegans | Adult | * |
| Porites lobata | Adult | * |
| Emiliania huxleyi | Culture | |
| Emiliania huxleyi | Culture | |
| Emiliania huxleyi | Culture | |
| Gadus Morhua | Adult | * |
| Gadus Morhua | Juvenile | * |
| Pseudocalanus sp. | Adult | |
| Pseudocalanus sp. | Adult | |
| Pseudocalanus sp. | Adult | * |
| Enteromorpha linza | Adult | * |
| Hypnea cornuta | Adult | * |
| Hypnea musciformis | Adult | * |
| Padina pavonia | Adult | * |
| Porphyra sp. | Adult | * |
| Pterocladia cappillacea | Adult | * |
| Sargassum vulgare | Adult | * |
| Ulva sp. | Adult | * |
| Monoporeia affinis | Adult | * |
| Monoporeia affinis | Adult | * |
| Lithophyllum, pallescens, Hydrolithon sp., Porolithon sp. | Community |
| Turf Algae | Community | |
| Dendrostrea sandwichensis | Community | |
| Serpulorbis sp. | Community | |
| Montipora capitata | Community | |
| Montipora capitata | Community | |
| Pocillopora damicornis | Juvenile | |
| Balanus sp. | Community | |
| Lithophyllum, pallescens, Hydrolithon sp., Porolithon sp. | Community |
| Montipora capitata | Community | |
| Pocillopora damicornis | Adult | |
| Halodule wrightii | Adult | * |
| Thalassia testudinum | Adult | * |
| Thalassia testudinum | Adult | * |
| Halodule wrightii | Adult | * |
| Thalassia testudinum | Adult | * |
| Polychaetes | Community | * |
| Amphipods | Community | |
| Decapods Community | Isopods Community | Tanaids Community | Bivalves Community | Gastropods Community |
|--------------------|-------------------|-------------------|--------------------|----------------------|
| Lomentaria articulata Adult | Porolithon gardineri Community | Non-calcifying algae Community | Porolithon gardineri Community | Echinometra mathaei Adult |
| Hemicentrotus pulcherrimus Adult | Crassostrea gigas Adult | Crassostrea gigas Adult | Mytilus galloprovencialis Embryos | Palæmon pacificus Adult |
| Palæmon pacificus Adult | Marginopora kudakajimensis Culture | Porites compressa, Montipora verucosa Adult | Porites compressa, Montipora verucosa Adult | Calcidiscus leptoporus Culture |
| Coccolithus pelagicus Culture | Calcicidiscus leptoporus Culture | Coccolithus pelagicus Culture | Limacina helicina Juvenile | Aurelia aurita Adult |
| Limacina helicina Juvenile | Limacina helicina Juvenile | Limacina helicina Juvenile | Aurelia aurita Juvenile | Lophelia pertusa Adult |
| Aurelia aurita Juvenile | Lithophyllum cabiocularis Adult | Lithophyllum cabiocularis Adult | Lithophyllum cabiocularis Adult | Lithophyllum cabiocularis Adult |
| Lithophyllum cabiocularis Adult |
| Lithophyllum cabiocularis Adult | Porites compressa Adult | Porites compressa Adult | Porites compressa Adult | Acropora verweyi Adult |
| Porites compressa Adult | Porites compressa Adult | Acropora verweyi Adult | Galaxea fascicularia | Pavona cactus Adult |
| Acropora verweyi Adult | Galaxea fascicularia Adult | Pavona cactus Adult | Turbinaria reniformis Adult | Amphibalanus amphitrite Juvenile |
| Pavona cactus Adult | Turbinaria reniformis Adult | Turbinaria reniformis Adult | Amphibalanus amphitrite Larvae | Amphibalanus amphitrite Adult |
| Turbinaria reniformis Adult | Amphibalanus amphitrite Adult | Mytilus edulis Adult | Mytilus galloprovencialis Juvenile | Mytilus edulis Adult |
| Mytilus galloprovencialis Juvenile | Mytilus edulis Adult | Mytilus edulis Adult | Mytilus edulis Adult | Mytilus edulis Adult |
| Mytilus edulis Juvenile |
| Ostorhinchus cyanosoma Adult |
| Ostorhinchus doederleini Adult |
Ostorhinchus cyanosoma
Adult

Ostorhinchus doederleini
Adult

Ampithoe longimana
Adult

Ampithoe longimana
Adult

Saccostrea glomerata
Larvae

Saccostrea glomerata
Adult

Saccostrea glomerata
Larvae

Saccostrea glomerata
Adult

Saccostrea glomerata
Adult

Crassostrea gigas
Larvae

Saccostrea glomerata
Larvae

Crassostrea gigas
Adult

Saccostrea glomerata
Adult

Crassostrea gigas
Larvae

Saccostrea glomerata
Larvae

Crassostrea gigas
Adult

Saccostrea glomerata
Adult

Mytilus galloprovincialis
Adult

Perna canaliculus
Adult

Mytilus galloprovincialis
Adult

Perna canaliculus
Adult

Celleporella hyalina
Larvae

Celleporella hyalina
Adult

Celleporella hyalina
Larvae

Celleporella hyalina
Adult

Celleporella hyalina
Larvae

Celleporella hyalina
Adult

Community
Bembicium nanum
Embryos

Dolabrifera brazieri
Embryos

Siphonaria denticulata
Embryos

Bembicium nanum
Embryos

Dolabrifera brazieri
Embryos

Siphonaria denticulata
Embryos

Acropora cervicornis
Adult

Stylophora pistillata
Adult

Hydroides crucigera
Adult

Oculina arbuscula
Adult

Callinectes sapidus
Adult

Homarus americanus
Adult

Penaeus plebejus
Adult

Halimeda incrassata
Adult

Neogoniolithon sp.
Adult

Arbacia punctulata
Adult

* indicates species that are not present in the sample.
| Species | Life Stage | Notes | |
|---|---|---|---|
| Eucidaris tribuloides | Adult | * |
| Argopecten irradians | Adult | * |
| Crassostrea virginica | Adult | * |
| Crepidula fornicata | Adult | * |
| Littorina littorea | Adult | * |
| Mercenaria mercenaria | Adult | * |
| Mya arenaria | Adult | * |
| Mytilus edulis | Adult | * |
| Strombus alatus | Adult | * |
| Urosalpinx cinerea | Adult | * |
| Oculina arbuscula | Adult | * |
| Cladocora caespitosa | Adult | * |
| Myriapora truncata | Adult | |
| Balanophyllia europaea | Adult | |
| Cladocora caespitosa | Adult | * |
| Patella caerulea | Adult | * |
| Cladocora caespitosa | Adult | |
| Balanophyllia europaea | Adult | |
| Balanophyllia europaea | Adult | |
| Cladocora caespitosa | Adult | |
| Emiliana huxleyi | Culture | |
| Macrocytus pyriferi | Adult | * |
| Pisaster ochraceus | | |
| Nucella canaliculata | | |
| Amphistegina radiata | Adult | * |
| Heterostegina depressa | Adult | * |
| Amphistegina radiata | Adult | * |
| Calcarina hispida | Adult | * |
| Heterostegina depressa | Adult | * |
| Acropora eurystoma | Adult | |
| Acropora eurystoma | Adult | |
| Emiliania huxleyi | Culture | |
| Emiliania huxleyi | Culture | |
| Echinometra mathaei | Juvenile | |
| Hemicentrotus pulcherrimus | Juvenile | |
| Strombus luhuanus | Juvenile | |
| Community | Culture | * |
| Emiliania huxleyi | Culture | * |
| Phaeodactylum tricornutum | Culture | * |
| Thalassiosira pseudonana | Culture | * |
| Emiliania huxleyi | Culture | * |
| Phaeodactylum tricornutum | Culture | * |
| Thalassiosira pseudonana | Culture | * |
| Strongylocentrotus purpuratus | Larvae | * |
| Acropora digitifera | Larvae | * |
| Species | Life Stage | Notes |
|-------------------------------------|------------|-------|
| Acropora digitifera | Larvae | * |
| Acropora tenuis | Larvae | * |
| Nereocystis luetkeana | Juvenile | * |
| Saccharina latissima | Juvenile | * |
| Argopecten irradians | Larvae | |
| Argopecten irradians | Larvae | * |
| Crassostrea virginica | Larvae | * |
| Mercenaria mercenaria | Larvae | * |
| Argopecten irradians | Larvae | * |
| Crassostrea virginica | Juvenile | * |
| Mercenaria mercenaria | Juvenile | * |
| Argopecten irradians | Juvenile | * |
| Argopecten irradians | Juvenile | * |
| Crassostrea virginica | Juvenile | * |
| Mercenaria mercenaria | Juvenile | * |
| Nereocystis luetkeana | Adult | * |
| Zostera marina | Adult | * |
| Mytilus edulis | Adult | * |
| Corallium rubrum | Adult | * |
| Haliotis rufescens | Adult | |
| Crassostrea gigas | Larvae | * |
| Hyas araneus | Larvae | |
| Aurelia labiata | Juvenile | * |
| Aurelia labiata | Juvenile | * |
| Aurelia labiata | Juvenile | * |
| Amphiura filiformis | Adult | * |
| Amphiura filiformis | Adult | * |
| Amphiura filiformis | Adult | * |
| Ophiocent sericeum | Adult | * |
| Ophiocent sericeum | Adult | * |
| Ophiocent sericeum | Adult | * |
| Emiliania huxleyi | Culture | |
| Gephyrocapsa oceanica | Culture | |
| Emiliania huxleyi | Culture | |
| Species | Stage |
|-------------------------|------------|
| Gephyrocapsa oceanica | Culture |
| Zostera marina | Adult * |
| Zostera marina | Adult * |
| Emiliania huxleyi | Culture |
| Emiliania huxleyi | Culture |
| Fieldwork | No Variance | Carbonate Chemistry: HCl addition | Other Reason |
|-----------|-------------|----------------------------------|--------------|
| | | * | Publication Bias |
| | | * | Publication Bias |
| | | * | Publication Bias |
| | | * | |
Upper Thermal Limit

Repeat of Ries et al., 2009
Repeat of Ries et al., 2009
Publication Bias

Publication Bias
Albright R., Mason B. & Langdon C. (2008). Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae. Coral Reefs, 27, 485-490.

Auesit A., Loew H., Foltner J.O. & Muehlstein S. (2007). Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. Am. J. Physiol. Reg. Int. 293, R410-R421.

Anthony K., Kline D., Diaz-Pulido G., Dove S. & Hoegh-Guldberg O. (2008). Ocean acidification causes bleaching and productivity loss in coral reef builders. PNAS, 105, 17442.

Batten S.D. & Barnier R.N. (1995). The effects of elevated seawater on the polychaete Nereis virens. J. Exp. Mar. Biol. Ecol. 193, 292-297.

Beniash E., Ivanina A., Lieb N.S., Kurochkin I. & Sokolova I.M. (2010). Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. MEPS, 419, 95-108.

Berje A.J., Bjerkeng B., Pettersen O., Schanung M.T. & Oxnevad S. (2006). Effects of increased sea water concentrations of CO2 on growth of the bivalve Mytilus edulis L. Chemosphere, 62, 681-687.

Bibby R., Cleall-Harding P., Rundle S., Widdicombe S. & Spicer J. (2007). Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biol. Lett., 3, 699-701.

Blenknight N.O., Seale N., Dworzajny S.A., Davis A.R. & Byrne M. (2010). Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS One, 5, e114273.

Burrhardt S., Amoroso G., Riebesell U. & Sultemeyer D. (2001). CO2 and HCO3⁻ - Uptake in Marine Diatoms Acclimated to Different CO2 Concentrations. Limnol. Oceanogr., 46, 1378-1391.

Byrne M., Ho M., Seawall, M., Nguyen N.D., Dworzajny S.A. & Davis A.R. (2009). Temperature, but not pH, compromises sea urchin fertilization and early development under near-future expected increases in seawater temperature. J. Exp. Mar. Biol. Ecol., 374, 183-188.

Catarino A.I., De Ridder C., Gonzalez M., Gallardo P. & Dubois P. (2012). Sea urchin fertilization response to ocean acidification. Polar. Biol., 35, 455-461.

Chan K.Y.K., Grünbaum D. & O’Donnell M.J. (2011). Effects of ocean-acidification-induced morphological changes on larval development and calcification. J. Exp. Biol., 214, 3857-3867.

Chauvin A., Denis V. & Cuet P. (2011). Is the response of coral calcification to seawater acidification related to nutrient loading? Coral Reefs, 30, 911-923.

Christensen S., Nguyen N. & Byrne M. (2011). Thermotolerance and the effects of hypercapnia on the metabolic rate of the ophiuroid Ophioneis schayeri: Inferences for survivorship in a changing ocean. J. Exp. Mar. Biol. Ecol., 403, 1-9.

Collins S., Sultemeyer D. & Bell G. (2006). Changes in C uptake in populations of Chlamydomonas reinhardtii selected at high CO2. Plant Cell Environ., 29, 1812-1819.

Comeau S., Gorsky G., Alliouane S. & Gattuso J.P. (2010). Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less. Mar. Biol., 157, 2341-2345.

Connell S. & Russell B. (2010). The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B, 277, 1409-1415.

Cromer D., Sunday J.M. & Harley C.D.S. (2011). Elevated Seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana). J. Exp. Mar. Biol. Ecol., 409, 303-312.

Cribb A.R., Sars, 1835.

Cripps B., Cleall-Harding P., Rundle S., Widdicombe S. & Spicer J. (2007). Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biol. Lett., 3, 699-701.

Crittenden S., Sültemeyer D. & Bell G. (2006). Changes in C uptake in populations of diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr., 46, 1378-1391.
Dias B., Hart M., Smart C. & Hall-Spencer J. (2010). Modern seawater acidification: the response or foraminifera to high-CO2 conditions in the Mediterranean Sea. *Journal of the Geological Society*, 167, 243-246.

Diaz-Pulido G., Gouezo M., Tilbrook B., Dove S. & Anthony K. (2011). High CO2 enhances the competitive strength of seaweeds over corals. *Ecol. Lett.*, 14, 156-162.

Dissard U., Nenke G., Reinsch G. & Bjom J. (2011). Impact of seawater pCO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: results from culturing experiments with *Abathomphalus marna*, *Rinorea cornuta*, *P. pachyderma* s., *S. costatum*, & *B. murrey* (2011). Effects of ocean acidification on development of the meroplanktonic larval stage of the sea urchin *Centrostephanus rodgersii*. *ICES J. Mar. Sci.*, 68, 1843-1846.

Ehlers A., Worm B. & Reusch T.B.H. (2008). Importance of genetic diversity in eelgrass *Zostera marina* for its resilience to global warming. *MEPS*, 355, 1-7.

Ellis R.P., Bersey J., Rundle S.D., Hall-Spencer J.M. & Spicer J.I. (2009). Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, *Littorina obtusata*. *Aquat. Biol.*, 5, 41-48.

Eplery D., Hines L., Neira F. & Pérez C. (2009). Temperature and salinity effects on growth, survival, reproduction, and potential distribution of two non-indigenous botryllid ascidians in British Columbia. *C. M. O., Near Mar. Sci.*, 365, 46-52.

Egilsdottir S.S., Wiencke N.A. & Riebesell U. (2010). Short-term response of the coccolithophore *Emiliania huxleyi* to an abrupt change in seawater carbon dioxide concentrations. *Biogeosciences*, 7, 177-186.

Egilsdottir S.L., Spicer J.I., Widdicombe S. & Briffa M. (2011). Reduced sea water pH disrupts resource assessment and decision making in the hermit crab *Pagurus bernhardus*. *Anim. Behav.*, 82, 495-501.

Egilsdottir S., De la Haye K., Spicer J., Widdicombe S. & Briffa M. (2011). Reduced sea water pH disrupts resource assessment and decision making in the hermit crab *Pagurus bernhardus*. *Anim. Behav.*, 82, 495-501.

Ellis R.P., Bersey J., Rundle S.D., Hall-Spencer J.M. & Spicer J.I. (2009). Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, *Littorina obtusata*. *Aquat. Biol.*, 5, 41-48.

Eplery D., Hines L., Neira F. & Pérez C. (2009). Temperature and salinity effects on growth, survival, reproduction, and potential distribution of two non-indigenous botryllid ascidians in British Columbia. *C. M. O., Near Mar. Sci.*, 365, 46-52.

Egilsdottir S.L., Spicer J.I., Widdicombe S. & Briffa M. (2011). Reduced sea water pH disrupts resource assessment and decision making in the hermit crab *Pagurus bernhardus*. *Anim. Behav.*, 82, 495-501.

Ellis R.P., Bersey J., Rundle S.D., Hall-Spencer J.M. & Spicer J.I. (2009). Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, *Littorina obtusata*. *Aquat. Biol.*, 5, 41-48.

Eplery D., Hines L., Neira F. & Pérez C. (2009). Temperature and salinity effects on growth, survival, reproduction, and potential distribution of two non-indigenous botryllid ascidians in British Columbia. *C. M. O., Near Mar. Sci.*, 365, 46-52.

Egilsdottir S.L., Spicer J.I., Widdicombe S. & Briffa M. (2011). Reduced sea water pH disrupts resource assessment and decision making in the hermit crab *Pagurus bernhardus*. *Anim. Behav.*, 82, 495-501.

Ellis R.P., Bersey J., Rundle S.D., Hall-Spencer J.M. & Spicer J.I. (2009). Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, *Littorina obtusata*. *Aquat. Biol.*, 5, 41-48.

Eplery D., Hines L., Neira F. & Pérez C. (2009). Temperature and salinity effects on growth, survival, reproduction, and potential distribution of two non-indigenous botryllid ascidians in British Columbia. *C. M. O., Near Mar. Sci.*, 365, 46-52.

Egilsdottir S.L., Spicer J.I., Widdicombe S. & Briffa M. (2011). Reduced sea water pH disrupts resource assessment and decision making in the hermit crab *Pagurus bernhardus*. *Anim. Behav.*, 82, 495-501.

Ellis R.P., Bersey J., Rundle S.D., Hall-Spencer J.M. & Spicer J.I. (2009). Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, *Littorina obtusata*. *Aquat. Biol.*, 5, 41-48.

Eplery D., Hines L., Neira F. & Pérez C. (2009). Temperature and salinity effects on growth, survival, reproduction, and potential distribution of two non-indigenous botryllid ascidians in British Columbia. *C. M. O., Near Mar. Sci.*, 365, 46-52.

Egilsdottir S.L., Spicer J.I., Widdicombe S. & Briffa M. (2011). Reduced sea water pH disrupts resource assessment and decision making in the hermit crab *Pagurus bernhardus*. *Anim. Behav.*, 82, 495-501.

Ellis R.P., Bersey J., Rundle S.D., Hall-Spencer J.M. & Spicer J.I. (2009). Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, *Littorina obtusata*. *Aquat. Biol.*, 5, 41-48.

Eplery D., Hines L., Neira F. & Pérez C. (2009). Temperature and salinity effects on growth, survival, reproduction, and potential distribution of two non-indigenous botryllid ascidians in British Columbia. *C. M. O., Near Mar. Sci.*, 365, 46-52.

Egilsdottir S.L., Spicer J.I., Widdicombe S. & Briffa M. (2011). Reduced sea water pH disrupts resource assessment and decision making in the hermit crab *Pagurus bernhardus*. *Anim. Behav.*, 82, 495-501.

Ellis R.P., Bersey J., Rundle S.D., Hall-Spencer J.M. & Spicer J.I. (2009). Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, *Littorina obtusata*. *Aquat. Biol.*, 5, 41-48.

Eplery D., Hines L., Neira F. & Pérez C. (2009). Temperature and salinity effects on growth, survival, reproduction, and potential distribution of two non-indigenous botryllid ascidians in British Columbia. *C. M. O., Near Mar. Sci.*, 365, 46-52.
F. X. Widdicombe on (2002). & (2011). comparison Hindrum Hophy J. (2008). Hutchins sp eastern Pacific corals in an El Niño-related temperature experiment.

Hueerkamp C., Glynn P.W., D'Croz L., Mate J.L. & Colley S.B. (2001). Bleaching and recovery of five Iglesias-Rodriguez M., Halloran P., Rickaby R., Hall I., Colmenero-Hidalgo E., Gittins J., effects of temperature and photoperiod in Atlantic cod Hoffman J.R., Hansen L.J. & Klinger T. (2003). Interactions between UV radiation and temperature limit the dynamics of marine heterotrophic bacterioplankton.

Jokiel P., Rodgers K., Kuffner I.B., Andersson A.J., Cox E. & Mackenzie F. (2008). Ocean acidification and temperature rise could alter community structure and biodiversity in marine carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas).

Gazeau F., Quibler C., Jansen J., Gattuso J., Middelburg J. & Heip C. (2007). Impact of elevated CO2 on shellfish calcification. Geophys. Res. Lett., 34, L07603

Gooding R., Harley C. & Tang E. (2009). Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. PNAS, 106, 9316-9321.

Grossart H.P., Allgaier M., Passow U. & Riebesell U. (2006). Testing the effect of CO2 concentration on the dynamics of marine heterotrophic bacterioplankton. Limnol. Oceanogr., 51, 1-11.

Gutow L. & Franke H.D. (2001). On the current and possible future status of the neustonic isopod Idotea metallica Bosc in the North Sea: a laboratory study. J. Sea Res., 45, 37-44.

Hare C.E., Leduc K., DiTullio G.R., Nuding R.M., Zhang Y., Lee P.A., et al. (2007). Predicted future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos, 116, 661-674.

Hall-Spencer J.M., Rodolfo-Metalpa R., Martin S., Ransome E., Fine M., Turner S.M., &a et al. (2008). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature, 454, 96-99.

Hammer K.M., Kristiansen E. & Zachariassen K.E. (2011). Physiological effects of hypercapnia in the deep-sea bivalve Acesta excavata (Fabricius, 1779) (Bivalvia; Limidae). Mar. Environ. Res., 72, 135-142.

Hare C.E., Leduc K., DiTullio G.R., Nuding R.M., Zhang Y., Lee P.A., et al. (2007). Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. MEPS, 352, 1-9.

Hall-Spencer J.M., Rodolfo-Metalpa R., Martin S., Ransome E., Fine M., Turner S.M., et al. (2008). The subtle effects of sea water acidification on the amphipod Idotea metallica in the Baltic Sea at different thermal scenarios. Biogeosciences, 6, 1479-1489.

Hoffman J.R., Hansen L.J. & Klinger T. (2003). Interactions between UV radiation and temperature limit inferences from single-factor experiments. J. Phycol., 39, 268-272.

Hueerkamp C., Glynn P.W., D'Croz L., Mate J.L. & Colley S.B. (2001). Bleaching and recovery of five eastern Pacific corals in an El Niño-related temperature experiment. B. Mar. Sci., 69, 215-236.

Iglesias-Rodriguez M., Halloran P., Rickaby R., Hall I., Colmenero-Hidalgo E., Gittins J., et al. (2008). Phytoplankton calcification in a high-CO2 world. Science, 320, 336-340.

Imsland A., Foss A., Koedijk R., Folkvord A., Stefansson S. & Jonassen T. (2007). Persistent growth effects of temperature and photoperiod in Atlantic cod Gadus morhua. J. Fish Biol., 71, 1371-1382.

Isla J.A., Lengfellner K. & Sommer U. (2008). Physiological response of the copepod Pseudocalanus sp. in the Baltic Sea at different thermal scenarios. Global Change Biol., 14, 895-906.

Israel A. & Huppi M. (2002). Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations. Global Change Biol. 8, 831-840.

Jacobson T., Prevednik A. & Sundelin B. (2008). Combined effects of temperature and a pesticide on the Baltic amphipod Monoporeia affinis. Aquat. Biol., 1, 269-276.

Jokiel P., Rodgers J.B., Andersson A.J., Cox E. & Mackenzie F. (2008). Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs, 27, 473-483.

Koch M., Schopmeyer S., Kynh-Hansen C. & Madden C. (2007). Synergistic effects of high temperature and sulfide on tropical seagrass. J. Exp. Mar. Biol. Ecol., 341, 91-101.

Kroeker K.J., Micheli F., Gambi M.C. & Martz T.R. (2011). Divergent ecosystem responses within a benthic marine community to ocean acidification. PNAS, 108, 14515-14520.
Kubler J.E., Johnston A.M. & Raven J.A. (1999). The effects of reduced and elevated CO₂ and O₂ on the seaweed Lomentaria articulata. *Plant Cell Environ.*, 22, 1303-1310.

Kuffner I.B., Andersson A.J., Jokiel P.L., Rodgers K.S. & Mackenzie F.T. (2007). Decreased abundance of crustose coralline algae due to ocean acidification. *Nat. Geosci.*, 1, 114-117.

Kurihara H., Asai T., Kato S. & Ishimatsu A. (2009). Effects of elevated pCO₂ on early development in the mussel *Mytilus galloprovincialis*. *Aquat. Biol.*, 4, 225-33.

Kurihara H., Kato S. & Ishimatsu A. (2007). Effects of increased seawater pCO₂ on early development of the oyster *Crassostrea gigas*. *Aquat. Biol.*, 1, 91-98.

Kurihara H., Irie S., Shimizu K., Fujii K. & Hata Y. (2005). Effects of ocean acidification on large benthic foraminifers: Results from laboratory experiments. *Marine Micropaleontology*, 73, 190-194.

Liu W.C., Lo W.T., Purcell J.E. & Chang H.H. (2009). Effects of temperature and light intensity on the fertilization and embryonic development of the Sydney rock oyster *P. depressus*. *Comparing CO₂-driven acidification to elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences Discuss.*, 7, 8177-8214.

Martin S. & Gattuso J.-P. (2009). Response of Mediterranean coralline algae to ocean acidification and elevated temperature. *Global Change Biol.*, 15, 2089-2100.

Marubini F., Barnett H., Langdon C. & Atkinson M. (2001). Dependence of calcification on light and carbonate ion concentration for the hermatypic coral *Porites compressa*. *MEPS*, 220, 153-162.

Metzger R., Sartoris F.J., Langenbuch M. & Pörtner H.O. (2007). Influence of elevated CO₂ concentrations on thermal tolerance of the edible crab *Cancer pagurus*. *J. Therm. Biol.*, 32, 144-151.

O’Connor M.I. (2009). Warming strengthens an herbivore-plant interaction. *Ecology*, 90, 388-398.

Petes L.E., Menge B.A. & Murphy G.D. (2007). Environmental stress decreases survival, growth, and reproduction in New Zealand mussels. *J. Exp. Mar. Biol. Ecol.*, 351, 83-91.
Pristevos J.C.A., Calosi P., Widdicombe S. & Bishop J.D.D. (2011). Will variation among genetic individuals influence species responses to global climate change? Oikos, 120, 675-689.

Puritz L., Duif M.V. & Hall-Spencer J.M. (2011). Effects of seawater assimilation on macroalgal communities. J Exp. Mar. Biol. Ecol. 400, 278-287.

Przeslawski R., Davis A. & Benkendorff K. (2005). Synergistic effects associated with climate change and the development of rocky shore molluscs. Global Change Biol., 11, 515-522.

Renegar D.A. & Rieg B.M. (2005). Effect of nutrient enrichment and elevated CO₂ partial pressure on growth rate of Atlantic scleractinian coral Acropora cervicornis. Mar Ecol Prog Ser, 293, 69-76.

Reynaud S., Legier N., Komaie-Liou S., Ferrier-Pages C., Jaudert J. & Gattuso J.P. (2003). Interacting effects of CO₂ partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biol., 9, 1660-1668.

Ries J., Cohen A. & McCorkle D. (2010). A nonlinear calcification response to CO₂-induced ocean acidification by the coral Oculina arbuscula. Coral Reefs, 29, 661-674.

Ries J.B., Cohen A.L. & McCorkle D.C. (2009). Marine calcifiers exhibit mixed responses to CO₂ induced ocean acidification. Geology, 37, 1131-1134.

Rodolfo-Metalpa R., Buia A.C., Paul J., Martin S., Ferrier-Pages C. & Gattuso J.P. (2010). Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO₂ and temperature levels projected for the year 2100 AD. Biogeosciences, 7, 289-300.

Rodolfo-Metalpa R., Buia A.C., Paul J., Martin S., Ferrier-Pages C. & Gattuso J.P. (2010). Effects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO₂ vents. Marine Ecololoy, 31, 447-456.

Roleda M.Y., Morris J.N., McGraw C.M. & Hurd C.L. (2012). Ocean acidification and seaweed reproduction: increased CO₂ ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Global Change Biol., 18, 854-864.

Sanford J. (2002). The feeding, growth, and energetics of two rocky intertidal predators (Fissurella ochraceus and Nucella canaliculata) under water temperatures simulating episodic upwelling. J. Exp. Mar. Biol. Ecol., 273, 190-218.

Schiel D.R., Steinbeck J.R. & Foster M.S. (2004). Ten years of induced ocean warming causes comprehensive changes in marine benthic communities. Ecology, 85, 1833-1839.

Schmidt C., Heinz P., Kucera M. & Uthicke S. (2011). Temperature-induced stress leads to bleeding in larger benthic foraminifera hosting endosymbiotic diatoms. Limnol. Oceanogr., 56, 1587-1602.

Schneider K. & Erez J. (2006). The effect of carbonate chemistry on calcification and photosynthesis in a tropical hermatypic coral. Coral Reefs, 25, 593-599.

Shi D., Xu Y. & Morel F. (2009). Effects of the pH/pCO₂ control method on medium chemistry and phytoplankton growth. Biogeosciences, 6, 1199-1207.

Shirayama Y. & Thornton H. (2005). Effect of increased atmospheric CO₂ on shallow water marine benthos. Journal of Geophysical Research, 110, C09S08.

Sommer U. & Lengfellner K. (2008). Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Global Change Biol., 14, 1199-1208.

Sporer M. & Uthicke S. (2001). Influence of temperature and elevated carbon dioxide on the production of dimethylsulfinopropionate and glycine betaine by marine phytoplankton. Mar. Env. Res., 32, 235-243.

Stumpp M., J., Wiemken J., Heizinger M. & Kupfer M. (2011). CO₂ induced seawater acidification impacts sea urchin larval development I: Elevated metabolic rates decrease scope for growth and induce developmental delay. Comp. Biochem. Physiol. Part A, 160, 331-340.

Suwa R., Nakamura M., Morita M., Shimada K., Iguchi A., Sakai K., et al. (2010). Effects of acidified seawater on early life stages of scleractinian corals (Genus Acropora). Fish. Sci., 76, 93-99.
Suzuki A., Nakamori T. & Kayanne H. (1995). The mechanism of production enhancement in coral reef carbonate systems: model and empirical results. Sed. Geol., 99, 259-280.

Swanson A.K. & Fox C.H. (2007). Altered kelp (Laminariales) phlorotannins and growth under elevated carbon dioxide and ultraviolet-B treatments can influence associated intertidal food webs. Global Change Biol., 13, 1696-1709.

Talmage S.C. & Gobler C.J. (2010). Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. PNAS, 107, 17246-17251.

Talmage S.C. & Gobler C.J. (2011). Effects of Elevated Temperature and Carbon Dioxide on the Growth and Survival of Larvae and Juveniles of Three Species of Northwest Atlantic Bivalves. PLoS One, 6, e22614.

Thistle D., Sedlacek L., Carman K., Fleeger J., Brewer P. & Barry J. (2007). Exposure to carbon dioxide-rich seawater is stressful for some deep-sea species: an in situ, behavioral study. MEPS, 340, 9-16.

Thom R.M. (1996). CO2-enrichment effects on eelgrass (Zostera marina L) and bull kelp (Nereocystis luetkeana (Mert) P & R). Water Air Soil Poll, 88, 383-391.

Thomsen J. & Melzner F. (2010). Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar. Biol., 157, 2667-2676.

Torrents O., Tambutté E., Caminiti N. & Garrabou J. (2008). Upper thermal thresholds of shallow vs. deep populations of the precious Mediterranean red coral Corallium rubrum (L.): Assessing the impact of warming in the NW Mediterranean. J. Exp. Mar. Biol. Ecol., 357, 7-19.

Vilchis L.I., Tegner M.J., Moore J.D., Friedman C.S., Riser K.L., Robbins T.T. & Dayton P.K. (2005). Ocean warming effects on growth, reproduction, and survivorship of southern California abalone. Ecol. Appl., 15, 469-480.

Wood H.L., Spicer J.I. & Widdicombe S. (2008). Ocean acidification may increase calcification rates, but at a cost. Proc. R. Soc. B, 275, 1767-1773.

Zimmerman R.C., Kohrs D.G., Steller D.L. & Alberte R.S. (1997). Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiol., 115, 599-607.

Zondervan I., Zebele R.E., Rost B. & Riebesell U. (2001). Decreasing marine biogenic calcification: A negative. Global Biogeochem. Cy., 15, 507-516.
ST3 - Heterogeneity Tests - Within Groups (Q) and Between Groups (Qm)
Heterogeneity statistics for each model in the different response variables. Separate analyses were conducted to compare similarity in effect size between each group.
Statistical Model

	d.f	Q	P
Full model:			
CO2	89	66.38891	0.965091
Calcifiers / Non-Calcifiers			
Between groups	-	-	-
Within groups	-	-	-
Taxonomic Groups			
Between groups	6	10.11529	0.11988
Within groups	81	56.15998	0.983939
Life Stages			
Between groups	2	0.98711	0.610453
Within groups	67	57.27249	0.795732
Autotroph / Heterotroph			
Between groups	1	0.000917	0.975848
Within groups	88	66.388	0.958555

	d.f	Q	P
Full model:			
Temperature	12	6.706097	0.876409
Calcifiers / Non-Calcifiers			
Between groups	-	-	-
Within groups	-	-	-
Taxonomic Groups			
Between groups	2	3.673571	0.159329
Within groups	10	2.99407	0.981563
Life Stages			
Between groups	1	3.373508	0.066253
Within groups	9	3.294133	0.951484
Autotroph / Heterotroph			
Between groups	1	2.856914	0.090982
Within groups	11	3.849183	0.974123

	d.f	Q	P
Full model:			
Temperature and CO2	13	10.30223	0.669053
Calcifiers / Non-Calcifiers			
Between groups	-	-	-
Within groups	-	-	-
Taxonomic Groups			
Between groups	2	7.282403	0.026221
Within groups	11	2.93331	0.991578
Life Stages			
Between groups	1	3.325488	0.068214
Within groups	10	6.890225	0.735766
Autotroph / Heterotroph			
Between groups	1	3.21096	0.073147
Within groups	12	7.09127	0.851524
Statistical Model

	d.f	Q	P	
Full model:				
CO2 Growth	184	79.50974	1	
Calcifiers / Non-Calcifiers				
Between groups	1	12.22165	0.000472	1
Within groups	183	67.28809	1	
Taxonomic Groups				
Between groups	8	16.57577	0.034843	1
Within groups	170	61.44674	1	
Life Stages				
Between groups	3	2.465172	0.481618	1
Within groups	134	56.87432	1	
Autotroph / Heterotroph				
Between groups	1	0.581635	0.445672	1
Within groups	183	78.9281	1	

	d.f	Q	P	
Full model:				
Temperature Growth	40	22.86788	0.986448	
Calcifiers / Non-Calcifiers				
Between groups	1	1.795096	0.180306	
Within groups	39	21.07279	0.991504	
Taxonomic Groups				
Between groups	6	5.951578	0.428636	
Within groups	31	16.74605	0.982598	
Life Stages				
Between groups	2	0.351527	0.838816	
Within groups	33	21.11176	0.945629	
Autotroph / Heterotroph				
Between groups	1	1.674628	0.19564	
Within groups	39	21.19326	0.991013	

	d.f	Q	P	
Full model:				
Temperature and CO2 Growth	25	16.04101	0.913602	
Calcifiers / Non-Calcifiers				
Between groups	1	-	-	-
Within groups	25	10.01303	0.996617	
Taxonomic Groups				
Between groups	3	14.26619	0.002564	
Within groups	21	1.712536	1	
Life Stages				
Between groups	1	7.130137	0.00758	
Within groups	18	6.308307	0.994778	
Autotroph / Heterotroph				
Between groups	1	6.543602	0.010526	
Within groups	24	9.497408	0.996327	
Statistical Model

d.f	Q	P		
Full model:	CO2 Photosynthesis	50	24.34661	0.999166

Calcifiers / Non-Calcifiers

d.f	Q	P	
Between groups	1	1.355637	0.244295
Within groups	49	22.99097	0.999435

Taxonomic Groups

d.f	Q	P	
Between groups	4	4.600559	0.33079
Within groups	42	18.75501	0.999267

Life Stages

d.f	Q	P	
Between groups	-	-	-
Within groups	26	18.8692	0.841904

Autotroph / Heterotroph

d.f	Q	P	
Between groups	-	-	-
Within groups	50	24.34661	0.999166

Statistical Model

d.f	Q	P		
Full model:	Temperature Photosynthesis	25	4.014843	0.999999

Calcifiers / Non-Calcifiers

d.f	Q	P	
Between groups	1	0.054102	0.816073
Within groups	24	3.96074	0.999999

Taxonomic Groups

d.f	Q	P	
Between groups	3	0.541265	0.909737
Within groups	22	3.473578	0.999998

Life Stages

d.f	Q	P	
Between groups	2	0.235583	0.888881
Within groups	18	3.769427	0.999846

Autotroph / Heterotroph

d.f	Q	P	
Between groups	-	-	-
Within groups	25	4.014843	0.999999

Statistical Model

d.f	Q	P		
Full model:	Temperature and CO2 Photosynthesis	6	4.125859	0.659649

Calcifiers / Non-Calcifiers

d.f	Q	P	
Between groups	-	-	-
Within groups	6	4.125859	0.659649

Taxonomic Groups

d.f	Q	P	
Between groups	-	-	-
Within groups	6	4.088998	0.664634

Life Stages

d.f	Q	P	
Between groups	-	-	-
Within groups	1	2.78E-17	1

Autotroph / Heterotroph

d.f	Q	P	
Between groups	-	-	-
Within groups	6	4.125859	0.659649
Statistical Model	d.f	Q	P
---------------------------	-----	-------------	------------
Full model: CO2	32	15.00094	0.995389
Calcifiers / Non-Calcifiers			
Between groups	1	3.170592	0.074975
Within groups	31	11.83035	0.999263
Taxonomic Groups			
Between groups	1	3.483788	0.061973
Within groups	30	3.979337	1
Life Stages			
Between groups	2	0.059077	0.970894
Within groups	30	14.94187	0.990064
Autotroph / Heterotroph			
Between groups	32	14.73757	0.996086

Statistical Model	d.f	Q	P
Full model: Temperature	32	26.74311	0.729845
Calcifiers / Non-Calcifiers			
Between groups	1	1.414748	0.23427
Within groups	31	25.32836	0.75284
Taxonomic Groups			
Between groups	4	11.58831	0.02069
Within groups	26	15.07243	0.955995
Life Stages			
Between groups	-	-	-
Within groups	32	14.81015	0.995903
Autotroph / Heterotroph			
Between groups	1	8.004761	0.004665
Within groups	31	18.73835	0.959136

Statistical Model	d.f	Q	P
Full model: Temperature and CO2	31	41.92531	0.091087
Calcifiers / Non-Calcifiers			
Between groups	-	-	-
Within groups	31	41.92531	0.091087
Taxonomic Groups			
Between groups	1	0.037652	0.846143
Within groups	29	41.8552	0.057864
Life Stages			
Between groups	1	17.88687	2.34E-05
Within groups	30	24.03844	0.770282
Autotroph / Heterotroph			
Between groups	-	-	-
Within groups	31	41.92531	0.091087
Statistical Model: CO2 Survival

d.f	Q	P
	21.07494	0.738085

Calcifiers / Non-Calcifiers

| Between groups | 1 | 0.344861 | 0.557037 |
| Within groups | 25| 20.73008 | 0.70756 |

Taxonomic Groups

| Between groups | 4 | 9.11735 | 0.058232 |
| Within groups | 22| 11.95759| 0.958249 |

Life Stages

| Between groups | 2 | 5.22956 | 0.073184 |
| Within groups | 24| 15.84539| 0.893576 |

Autotroph / Heterotroph

| Between groups | 1 | 2.737702 | 0.098006 |
| Within groups | 25| 18.33724 | 0.827744 |

Statistical Model: Temperature Survival

d.f	Q	P
	29.24892	0.082972

Calcifiers / Non-Calcifiers

Between groups: 1 | 1.324548 | 0.249778 |
Within groups: 19 | 27.92437 | 0.084895 |

Taxonomic Groups

Between groups: 3 | 2.643547 | 0.449906 |
Within groups: 14 | 25.28083 | 0.031894 |

Life Stages

Between groups: 2 | 23.62438 | 7.41E-06 |
Within groups: 18 | 5.624542 | 0.997496 |

Autotroph / Heterotroph

Between groups: 1 | 0.221652 | 0.637784 |
Within groups: 19 | 29.02727 | 0.065557 |

Statistical Model: Temperature and CO2 Survival

d.f	Q	P
	14.67871	0.197683

Calcifiers / Non-Calcifiers

Between groups: - | - | - |
Within groups: 11 | 14.67871 | 0.197683 |

Taxonomic Groups

Between groups: 1 | 0.013307 | 0.908162 |
Within groups: 10 | 14.6654 | 0.144745 |

Life Stages

Between groups: 1 | 3.006553 | 0.082928 |
Within groups: 10 | 11.67216 | 0.307597 |

Autotroph / Heterotroph

Between groups: - | - | - |
Within groups: 11 | 14.67569 | 0.197831 |