In the February 2011 issue of EHP, Manuel (2011) took an important look at some potential adverse health implications of home energy retrofits. Here, we further discuss the complexity of possible indoor environmental concerns and encourage incorporation of comprehensive homeowner education campaigns in weatherization programs.

The reduction of air infiltration by air sealing is a common energy retrofit measure (McCold et al. 2008). Several field studies of weatherized homes have reported average reductions in air leakage of 13–40% (Berry 1997; Judkoff et al. 1988), although the impact of weatherization on actual air exchange rates and indoor pollutant concentrations is poorly understood. Moreover, studies have seldom evaluated the effects of weatherization on low-income groups or vulnerable populations (e.g., asthmatic or elderly), although occupants in low-income residences are at higher risk for many indoor environmental hazards (Evans and Kantrowitz 2002), and some population subgroups may also be disproportionately affected by indoor air pollution (Hunt et al. 2009).

Although some research exists on the impact of weatherization on indoor concentrations of combustion products, radon, and moisture, other indoor pollutants deserve attention. For example, Logue et al. (2011) identified nine priority indoor air pollutant hazards in U.S. residences, which, among others, have been associated with a wide range of both chronic and acute health effects (e.g., benzene, 1,4-dichlorobenzene, formaldehyde, naphthalene, particulate matter < 2.5 μm in aerodynamic diameter). Moreover, reducing air exchange rates in residences will likely increase indoor concentrations of reactive pollutants and the probability of chemical reactions occurring between them indoors (Weschler and Shields 2000), generating by-products associated with respiratory symptoms and asthma, such as low-molecular-weight aldehydes, dicarbonyls, and secondary organic aerosols (Jaris et al. 2005). On the other hand, reductions in air infiltration should decrease penetration of outdoor pollutants, which is of particular importance in traditionally leakier low-income households (Chan et al. 2005) in neighborhoods with high outdoor air pollution. Thus, we urge the environmental health community to investigate the net effects of weatherization on a wide variety of indoor and outdoor pollutants and health outcomes.

Implementation of home energy retrofits also creates an opportunity to incorporate innovative, engaging homeowner education strategies to reduce both energy consumption and indoor environmental risks. Occupant behavior has a major influence on both energy consumption (Allcott and Mullainathan 2010) and indoor exposures to pollutants (Meng et al. 2005). Furthermore, many indoor air quality risks can be mitigated with relatively simple home behavior practices, such as using exhaust fans, avoiding toxic cleaning chemicals, and using appropriate air cleaners (Brugge et al. 2003). However, we have learned from research on household energy consumption that educational materials alone usually fail to alter behaviors (Charles 2009). Greater energy savings from home retrofits could be achieved by complementing homeowner education campaigns with regular feedback on energy use and economically motivational programs.
Second, Grandjean et al. (2010) mentioned the “diagnostic difficulties” of methylmercury poisoning cases. Lack of investigation of the Minamata disease incident as food poisoning resulted in unnecessary diagnostic difficulties; such difficulties do not usually arise in food-poisoning incidents in Japan. In the case of Minamata disease, in 1977 the Japanese Ministry of Environment (JME) established the criteria for diagnosis, which required combinations of signs that were advocated by the JME to be medically correct. However, the truth is that the JME recognized a lack of medical evidence on the criteria (Committee on Research on Human Rights/Japanese Society and Psychiatry and Neurology (CRHR-JSPN)) 2003. Moreover, medical researchers in Japan have pointed out that the criteria were medically incorrect (CRHR-JSPN 1998). The “diagnostic difficulties” may have obscured who was affected and had neurological signs.

Third, Grandjean et al. (2010) stated that, “Only in 2009 was a law enacted to provide compensation to most of the remaining group of victims.” However, it was not compensation. For Minamata disease, unless the affected persons are diagnosed by the above-mentioned criteria, they are not counted as patients and are thus not properly compensated. About 2,200 patients have been diagnosed with Minamata disease and have been compensated, whereas at least several tens of thousands of victims who have neurological signs characteristic of methylmercury poisoning have not been recognized as patients and have not been properly compensated (McCurry 2006).

Fourth, Grandjean et al. (2010) described the “scientific account” of the cat experiment in 1959, which was published after a 40-year delay (Eto et al. 2001). However, the report provided only pathological findings, and the detailed explanation of the cat experiment had already been published in 1965 (Tomita 1965). The latter would be enough for prevention and control.

Finally, because the JME and local governments have been defendants in Minamata disease lawsuits, research funds from JME and the local governments may affect researchers’ attitudes, possibly causing conflicts of interest.

T.T. and M.H. have provided expert testimony on Minamata disease. The other author declares he has no actual or potential competing financial interests.

Toshio Tsuda
Department of Environmental Epidemiology
Okayama University Graduate School of Environmental Science
Okayama, Japan
E-mail: tsudatos@md.okayama-u.ac.jp

Methymercury: Grandjean et al. Respond
doi:10.1289/ehp.1103580R

We thank Tsuda et al. for sharing their views. Along with their previous publications on Minamata disease, we find their comments useful as a complement to our brief historical review of the mass poisonings in Japan and associated events (Grandjean et al. 2010). However, the specific issues raised in their letter do not affect our conclusions on the research implications of the history of methymercury science.

P.G. has provided paid expert testimony on mercury toxicology in a legal case concerning environmental pollution from coal-powered power plants. The other authors declare that they have no actual or potential competing financial interests.