Expression of hepatitis B virus X protein in transgenic mice

Jun Xiong, Yu-Cheng Yao, Xiao-Yuan Zi, Jian-Xiu Li, Xin-Min Wang, Xu-Ting Ye, Shu-Min Zhao, Yong-Bi Yan, Hong-Yu Yu, Yi-Ping Hu

INTRODUCTION

Human hepatitis B virus (HBV) is the prototype for a family of viruses, referred to as Hepadnaviridae[1,2]. It has at least 4 subtypes, ayw, adr, ayr, and adw, among which adr is the most prevailing subtype in China. The complete genomic DNA of subtype adr has been cloned and demonstrated only 3.2kb in length, and which is different from the other 3 subtypes in DNA and protein sequence[3]. HBV genome has 4 open reading frames (ORFs), including envelope genes coding region (pre-s1, pre-s2 and s gene coding region), precore (pc) gene and core(c) gene coding region, polymerase (p) gene coding region, x gene coding region[4,5].

Chronic HBV infection is associated with a high incidence of liver disease, including hepatocellular carcinoma (HCC)[6-9]. Based on epidemiologic studies involving chronic HBV infection, it is estimated that the relative risk of developing HCC for HBV carriers may be 100- to 200-fold higher than that for non-carriers. It is proposed that the role of HBV played in HCC predisposition is modifying host gene regulation. Integration of viral DNA into the host genome can mediate host gene deregulation by a variety of mechanisms[10-12]. X protein may alter host gene expression leading to the development of HCC[13]. It has been demonstrated that X protein is a transactivator of a variety of viral and cellular promoter/enhancer elements and can mediate the activation of signal transduction pathways. Besides, it may affect DNA repair, cell cycle control, and apoptosis[17-22]. It is now clear that X-defective virus is unable to initiate infection in vivo. However, the physiological role of X protein during the course of an infection remains a major issue unresolved in hepatadnavirus biology[23-27].

To explore the function of HBx gene in vivo, we generated transgenic mice harboring HBx gene from subtype adr by microinjection method, in which HBx gene could be expressed. This model might be valuable for the study of HBx biology and its associated biomedical issues in vivo.

MATERIALS AND METHODS

Reagents, antibodies, cells and animals

Restriction Endonucleases and T4 DNA ligase were obtained from Promega Co. (USA). The mouse monoclonal antibody against X protein was purchased from DAKO (USA). Sheep anti mouse IgG-HRP was obtained from CALBIOCHEM (Germany). Gel extraction kit was purchase from QIAGEN. Hela cells were preserved in our laboratory. C57BL/6 mice were maintained in our Transgenic Animal Laboratory (SPF level).
Plasmid constructions

Plasmids pBR322-HBV (containing two tandem copies of the HBV genome of adr subtype) and pcDNA3 (containing CMV promoter) were preserved in our laboratory. Expression plasmid pcDNA3.1 (containing CMV promoter) was generously provided by Dr. Yu Hong-Yu. An 0.894-Kilobase pair DNA fragment containing HBx gene was isolated by gel extraction from plasmid pBR322-HBV after HindIII and BglII restriction digest. The fragment was then subcloned into plasmid pcDNA3.1 that has been digested by HindIII and BamHI to yield intermediate plasmid pcDNA3.1-HBx, which was employed as a template for polymerase chain reaction (PCR) amplification of the HBx coding fragments. The primers (A: 5'-ACACA AGCTT CATAT GGCTG CTCGG G-3', B: 5'-CATGA ATTCT AGATG ATTAG GCAGA GGTG-3') were synthesized by Sangon Co. (Shanghai). Thirty five cycles of amplification were done in a total volume of 50 µl with an annealing temperature of 58 °C. PCR product and pcDNA3 were isolated after HindIII and XbaI digestion. After ligation, the plasmid of pcDNA3-HBx was confirmed by restriction endonucleases digestion and direct DNA sequencing.

Cell culture and DNA transfection

Hela cells were cultured in DMEM (Gibco) supplemented with 10 % FCS (Gibco) to confluence. Cells at 50 % confluency were transfected with pcDNA3-HBx or control pcDNA3 plasmids using FuGENE6 Transfection Reagent (Roche) with a total of 1 ug of DNA per 3.5-cm plate of cells. Selection in medium containing genetin (G418; Gibco) at a concentration of 500 µg/ml was started 48 hours later. After 2 weeks selection, positive clones that were named Hela-HBx were isolated and further expanded.

Assay pcDNA3-HBx expression in hela cells

Hela-HBx cells cultured in 10-cm dishes were rinsed with phosphate-buffered saline (pH7.4) three times and collected in a microcentrifug tube by trypsinization. Cells were lysed with lysis buffer⁴¹. Supernatants were then diluted 5 times with phosphate-buffered saline (pH7.4) to assay the expression of the transfected pcDNA3-HBx vectors in Hela cells by Western blotting.

Microinjection and production of HBx transgenic mice

The pcDNA3-HBx plasmid was digested by Sal I and purified by gel extraction (Qiagen gel extraction kit). Purified coding fragment containing CMV promoter and HBx ORF were dissolved in TE buffer (10 mM Tris-HCl, 0.2 mM EDTA, pH7.5) at a final concentration of 2 ug/L (~4 000 copies/pl) and microinjected into zygotes. Microinjection and embryo manipulation were performed according to standard protocols.

Analysis of HBx gene integration

Genomic DNA was extracted from tail tissue of pups mice or normal mouse and dissolved in TE buffer. It was used for PCR assays to identify founders of transgenic mice with HBx gene. In order to set an internal control of the efficiency of PCR amplification, we developed a multiplex PCR, using two sets of primers to amplify the HBx gene and the autosomal IL3 gene in the same reaction tube. PCR reaction was performed using 1 µl of dissolved DNA, 0.2 µM HBx gene specific primers (C: 5'-GGACG TCCTC TTGTCT AGGTG CGTC-3', D: 5'- CCTAA TACTC TCCCC CAACC CCTCTC-3'), synthesized by Sangon Co. (Shanghai), and 0.1 µM IL3 gene specific primers (E: 5'-GGGAC TCCCA GCTTC ATTAG CCAGA-3', F: 5'-TGAG GAGAG AGAAA CCGAA-3'), synthesized by Sangon Co. (Shanghai) in a total volume of 50 µl according to the cycling program: 94 °C, 40 s; 61 °C, 40 s; 72 °C, 60 s; 35 cycles.

Analysis of HBx gene expression in transgenic mice

Western blotting Liver samples were obtained from the transgenic mice with HBx gene and normal C57BL/6 mice. Specimens (approximately 100 mg) were homogenized in a screw-capped 1.5 ml microcentrifuge tube and lysed in lysis buffer (0.5 % Nonidet P-40, 10 mM Tris (pH7.4), 150 mM NaCl, 1 mM EDTA and 1 mM phenylmethanesulfonyl fluoride). 100 mg lysate was separated via 15 % SDS-polyacrylamide gel electrophoresis with Tris-Glycine buffer (pH8.3). One electrophoresis gel was stained with commassie brilliant blue R-250, and another was blotted to nitrocellulose filter. After blocked with 50 g/L defatted milk, the filter was incubated with X protein mouse monoclonal antibody for 40 min at 37 °C, then washed with TBS (three times, 15 min each time) and incubated with HRP-conjugated sheep anti-mouse IgG for 30 min at 37 °C. Finally, the filter was incubated with peroxidase substrate solution Diaminobenzidine (DAB) for 5 min to visualize the positive bands.

Immunohistochemistry analysis Hepatic tissue samples were fixed in 10 % neutral buffered formalin, paraffin-embedded and sectioned. Briefly paraffin-embedded sections were blocked with 3 % hydrogen peroxide (H₂O₂) for 10 min at 37 °C and washed with PBS. Subsequently, the sections were incubated in the X protein mouse monoclonal antibody (diluted 1:100) for 2hr at 37 °C. After washing with PBS, the sections were incubated in horseradish peroxidase-labeled sheep anti mouse IgG (diluted 1:50) for 40 min at 37 °C. Washed with PBS three times, the sections were subjected to color reaction with 0.02 % 3, 3-diaminobenzidine tetrahydrochloride containing 0.005 % H₂O₂ in PBS and counterstained with hematoxylin lightly.

Immunogold transmission electron microscopy The immunohistochemical X protein-positive mouse liver tissue was selected to be cut into small pieces (0.1 cm in diameter) and fixed in 2 % paraformaldehyde and 0.5 % glutaraldehyde mixture buffer for 2hr at 4 °C, washed three times with PBS, acted upon by 0.25 % Triton X-100 for 10 min. After being blocked with blocking buffer, the pieces were incubated with X protein mouse monoclonal antibody over night at 4 °C, washed with TBS and incubated with avidin-gold (15 nm) for 2hr at room temperature; then postfixed in 1 % osmium tetroxide for 1hr at room temperature, dehydrated in gradient ethanol and embedded in epoxy resin. The sections were cut on an LKB Ultralome III, mounted on copper grids, stained with uranyl acetate and led citrate, and examined by transmission electron microscope.

RESULTS

pcDNA3-HBx vector construction and expression in Hela cells

A 0.46kb HBx gene was amplified from HBV genomic DNA and subcloned into the expression vector pcDNA3, with which the pcDNA3-HBx was constructed. The sequence of HBx gene in the plasmid was coincident with that reported before⁴¹, as identified by restriction endonucleases digestion and confined by DNA direct sequencing. After purification by gel extraction, pcDNA3-HBx plasmids were transfected into Hela cells. Positive clones, Hela-HBx cells were isolated by G418 selection. With Western blotting, hepatitis X protein was detected in Hela cells, suggesting pcDNA3-HBx plasmids expressed in eukaryotic cells (Figure 1).

Production of transgenic mice

The pcDNA3-HBx plasmid was digested by Sal I and target fragments containing CMV promoter and HBx ORF were purified by gel extraction. Target fragments then were microinjected into male pronuclei of zygotes from C57BL/6

Xiong J et al. Expression of X protein in transgenic mice
mice. 45 zygotes were microopreated. 41 microinjected eggs were implanted into oviducts of 3 pseudopregnant recipient mice, and 4 pups were born and survived. The born rate was 11 %. By multiplex PCR screening, two of the pups were identified to harbour HBx gene in their genomic DNA, named C57-TgN HMU1 and C57-TgN(HBx)SMMU3 (Figure 2).

Expression of HBx gene in transgenic mouse
To detect the expression of hepatitis X protein in transgenic mice, liver samples were obtained from C57-TgN(HBx) SMMU1 mice and normal C57BL/6 mice. Specimens were homogenized and lyzed in lysis buffer. 100 mg lysate was used to assay HBX protein. A component of relative molecular mass 17 000 befitting the X protein was specifically detected with anti X protein monoantibody by Western blotting (Figure 3A), suggesting the transgenic mice with HBx gene could express X protein in the liver tissue. The distribution of X protein in hepatocytes was determined by immunohistochemistry and immunogold electron microscopy, which revealed that X protein was mainly distributed in hepatocytic cytoplasm, little on plasm membrane and in nucleus (Figure 3B-3D).

DISCUSSION
Transgenic mice are the valuable animal models to study the functions of genes[30]. Although transgenic mice containing different HBV genes, including the entire viral genome, have been established and analysed before, there is little evidence to suggest that the virus plays a direct role in inducing hepatocellular carcinoma[31-41]. Hepatitis X protein is essential for HBV genes expression and replication[42,43]. In vitro, X protein exhibits a plethora of activities. From cell culture studies, it is believed that X protein can activate the transcription of host genes, including the major histocompatibility complex and c-myc, as well as viral genes. Aside from the transactivation of many promoters, the other activities linked to X protein include stimulation of signal transduction and binding, to various degrees, to well-known protein targets such as p53, proteasome subunit, and UV-damaged DNA binding protein[44-58].

However, the role of HBx gene in the course of HBV infection and in inducing HCC is unknown. In the present study, we constructed an HBx gene (adr subtype) expression vector pcDNA3-HBx containing CMV promoter and HBx gene ORF. By Western blotting, we found that it could express X protein in eukaryotic cells. pcDNA3-HBx may be a useful vector to study the role of X protein and explore the mechanism of transactivation in vitro. We also generated two founders of transgenic mice with HBx gene(adr subtype) by microinjections,
named C57-Tg(NHBx)SMMU1 and C57-Tg(NHBx)SMMU3, which harboured HBx gene in their genomic DNA. The birth rate of the pups was lower than that of other transgenic mice, including entire hepatitis viral genome transgenic mice. This indicated that X protein was probably involved in some phases of development. The hepatitis X protein was expressed in the liver tissue of transgenic mice and distributed mainly in hepatocytes cytoplasm by Western blotting, immunohistochemistry and immunogold electron microscopy, which suggested that the transgenic mice could be an important tool in studying the function of HBx gene in vivo. Besides, we also developed a multiplex PCR to rapidly and accurately screen the transgenic mice with HBx gene. This method, using an optimized ratio of primer pairs, allows for the detection of HBx gene in transgenic mice, which can not only amplify target genes, but also shows its amplification efficiency.

In conclusion, we have established HBx mice, which can not only amplify target genes, but also indicate that X protein was probably involved in some phases of cell cycle checkpoint controls. The transgenic mice could be an important tool in studying the function of HBx gene in vivo. And the multiplex PCR is a rapidly and accurately method to detect the transgenic mice with HBx gene.

REFERENCES

1. Tiollais P, Pourcel C, Dejean A. The hepatitis B virus. Nature 1985; 317: 490-495
2. Ganem D, Varmus HE. The molecular biology of the hepatitis B virus. Annu Rev Biochem 1987; 56: 651-693
3. Gan RB, Chu MJ, Shen LP, Oian SW, Li ZP. The complete nucleotide sequence of the cloned DNA of hepatitis B virus subtype adr in pAD-R1. Sci Sin B 1987; 30: 507-521
4. Seeger C, Mason WS. Hepatitis B virus biology. Micro M bio Rev 2000; 64: 51-66
5. Stuyver LJ, Locarnini SA, Lok A, Richman DD, Carman WF, Dienstzgl JL, Schinazi RF. Nomenclature for antiviral-resistance human hepatitis B virus mutations in the polymerase region. Hepatol 2001; 33: 751-757
6. Wu X, Zhu L, Li ZP, Koshy R, Wang Y. Functional organization of enhancer (EN) of hepatitis B virus. Virology 1992; 191: 490-494
7. Chisari FV, Ferran C. Hepatitis B virus immunopathogenesis. Annu Rev Immunol 1995; 13: 29-60
8. Chisari FV. Viruses, immunity, and cancer: lessons from hepatitis B. Am J Pathol 2000; 156: 1117-1132
9. Montalto G, Cervello M, Giannitrapani L, Dantona F, Terranova A, Castagnetta LA. Epidemiology, risk factors, and natural history of hepatocellular carcinoma. Ann N Y Acad Sci 2002; 963: 13-20
10. Arbuthnot P, Kew M. Hepatitis B virus and hepatocellular carcinoma. Int J Exp Pathol 2001; 82: 77-100
11. Honda M, Kaneko S, Kawai H, Shirata Y, Kobayashi K. Differential gene expression between chronic hepatitis B and C hepatic lesion. Gastroenterology 2001; 120: 955-966
12. Liu H, Wang Y, Zhou Q, Gui SY, Li X. The point mutation of p53 gene exon7 in hepatocellular carcinoma from Anhui Province, a non HCC prevalent area in China. World J Gastroenterol 2002; 8: 480-482
13. Li Y, Tang ZY, Ye SL, Liu YK, Chen J, Xue Q, Chen J, Gao DM, Bao WH. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHC7C97. World J Gastroenterol 2001; 7: 630-636
14. Cao XY, Liu J, Lian ZR, Clayton M, Hu JL, Zhu MH, Fan DM, Feitelson M. Differentially expressed genes in hepatocellular carcinoma induced by woodchuck hepatitis B virus in mice. World J Gastroenterol 2001; 7: 575-578
15. Lee HJ, Ku JL, Park YJ, Lee KU, Kim WH, Park JG. Establishment and characterization of four human hepatocellular carcinoma cell lines containing hepatitis B virus DNA. World J Gastroenterol 1995; 5: 289-295
16. Madden CR, Finegold MJ, Slagle BL. Hepatitis B virus X protein acts as a tumor promoter in development of diethylnitrosamine-induced preneoplastic lesions. J Virol 1995; 75: 3851-3858
17. Koike K, Moriyaka K, Yotsuyanagi H, Iino S, Kurokawa K. Induction of cell cycle progression by hepatitis B virus HBx gene expression in quiescent mouse fibroblasts. J Clin Invest 1994; 94: 44-49
18. Shih WL, Kuo ML, Chuang SE, Cheng AL, Doong SL. Hepatitis B virus X protein inhibits transforming growth factor-α-induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway. J Bio Chem 2000; 275: 25958-25964
19. Benn J, Schneider RJ. Hepatitis B virus HBx protein deregulates cell cycle checkpoint controls. Proc Natl Acad Sci 1995; 92: 11215-11219
20. Ogden SK, Lee KC, Barton MC. Hepatitis B viral transactivator HBx alleviates p53-mediated repression of α-fetoprotein gene expression. J Bio Chem 2000; 275: 27806-27814
21. Su F, Theodosis CN, Schneider RJ. Role of N K-kappaB and myc proteins in apoptosis induced by hepatitis B virus HBx protein. J Virol 2001; 75: 215-225
22. Diao J, Garces R, Richardson CD. X protein of hepatitis B virus modulates cytokine and growth factor related signal transduction pathways during the course of viral infections and hepatocarcinogenesis. Cytokine Growth Factor Rev 2001; 12: 189-205
23. Kaneko S, Miller RH. X-region-specific transcript in mammalian hepatitis B virus infected liver. J virol 1988; 62: 3979-3984
24. Terradillos O, Pollicino T, Lecoeur H, Tripodi M, Gouegon ML, Tiollais P, Buendia MA. p53-independent apoptotic effects of the hepatitis B virus HBx protein in vivo and in vitro. Oncogene 1998; 17: 2115-2123
25. Su F, Schneider RJ. Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor alpha. Proc Natl Acad Sci U S A 1997; 94: 8744-8749
26. Murakami S. Hepatitis B virus X protein: a multifunctional viral regulatory. J Gastroenterol 2001; 36: 651-660
27. Feitelson MA, Duan LX. Hepatitis B virus x antigen in the pathogenesis of chronic infections and the development of hepatocellular carcinoma. Am J Pathol 1997; 150: 1141-1157
28. Miyatake S, Yokota T, Lee F, Aral KA. Structure of the chromosome gene for murine interleukin 3. Proc Natl Acad Sci USA 1985; 82: 316-320
29. Lambert JF, Benoît BO, Colvin GA, Carlson J, Delville Y, Queenenberry JP. Quick sex determination of mouse fetuses. J Neurosci Methods 2000; 95: 127-132
30. Rall GF, Lawrence DM, Patterson CE. The application of transgenic and knockout mouse technology for the study of viral pathogenesis. Virology 2000; 271: 220-226
31. Koike K. Hepatocarcinogenesis in viral hepatitis: lessons from transgenic mouse studies. J Gastroenterol 2002; 37 (suppl13): 55-64
32. Chen XS, Wang GJ, Cai X, Yu HY, Hu YP. Inhibition of hepatitis B virus by oxymatrine in vivo. World J Gastroenterol 2001; 7: 49-52
33. Aragona E, Burk RD, Ott M, Shafritz DA, Gupta S. Cell type-specific mechanisms regulate hepatitis B virus transgene expression in liver and other organs. J Pathol 1996; 180: 441-449
34. Xu Z, Yen TS, Wu L, Madden CR, Tan W, Slagle BL, Ou JH. Enhancement of hepatitis B virus replication by its X protein in transgenic mice. J Virol 2002; 76: 2579-2584
35. Guidetti LG, MatzkeB, Schaller H, Chisari FV. High-level hepatitis B virus replication in transgenic mice. J Virol 1995; 69: 6158-6169
36. Zhu HZ, Cheng GX, Chen JQ, Kuang SY, Cheng Y, Zhang XL, Li HD, Xu SF, Shi JQ, Qian GS, Gu JR. Preliminary study on the production of transgenic mice harboring hepatitis B virus X gene. World J Gastroenterol 1998; 4: 536-539
37. Chemin I, Ohgaki H, Chisari FV, Wild CP. Altered expression of hepatic carcinogen metabolizing enzymes with liver injury in HBV transgenic mouse lines expressing various amounts of hepatitis B surface antigen. Liver 1999; 19: 81-87
38. Schweizer J, Valenza-Schaerly P, Goret F, Pourcel C. Control of expression and methylation of a hepatitis B virus transgene by strain-specific modifiers. DNA Cell Biol 1998; 17: 427-435
39. Kim CM, Koike K, Saito I, Miyamura T, Jay G. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 1991; 351: 317-320
40. Hu YP, Hu WJ, Zheng WC, Li JX, Dai DS, Wang XM, Zhang SZ, Yu HY, Sun W, Hao GR. Establishment of transgenic mouse harboring hepatitis B virus (ad subtype) genomes. World J Gastroenterol 2001; 7: 111-114
41. Hu YP, Yao YC, Li JX, Wang XM, Li H, Wang ZH, Lei ZH. The
cloning of 3’-truncated preS/S gene from HBV genomic DNA and its expression in transgenic mice. World J Gastroenterol 2000; 6: 734-737

42 Ganem D. The X files-one step closer to closure. Science 2001; 294: 2299-2300

43 Bouchard MJ, Wang LH, Schneider RJ. Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science 2001; 294: 2376-2378

44 Yun C, Um HR, Jin YH, Wang JH, Lee MO, Park S, Lee JH, Cho H. NF-kappaB activation by hepatitis B virus X (HBx) protein shifts the cellular fate toward survival. Cancer Lett 2002; 184: 97-104

45 Bergametti F, Sitterlin D, Transy C. Turnover of hepatitis B virus X protein is regulated by damaged DNA-binding complex. J Virol 2002; 76: 6495-6501

46 Li J, Xu Z, Zheng Y, Johnson DL, Ou JH. Regulation of hepatocyte nuclear factor 1 activity by wild-type and mutant hepatitis B virus X proteins. J Virol 2002; 76: 5875-5881

47 Han HJ, Jung EY, Lee WJ, Jang KL. Cooperative repression of cyclin-dependent kinase inhibitor p21(Cip-1/WAF1/MDA6) and p27(Kip-1) in primary mouse hepatocytes, leading to reduced cell cycle progression. Hepatology 2001; 34: 906-917

48 Qiao L, Leach K, McKinstry R, Gilfor D, Yaouab A, Park JS, Grant S, Hylemon PB, Fisher PB, Dent P. Hepatitis B virus X protein increases expression of p21(Cip-1/WAF1/MDA6) and p27(Kip-1) in primary mouse hepatocytes, leading to reduced cell cycle progression. Hepatology 2001; 34: 906-917

49 Waris G, Huh KW, Siddiqui A. Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-kappaB via oxidative stress. Mol Cell Biol 2001; 21: 7721-7730

50 Nag A, Datta A, Yoo K, Bhattacharyya D, Chakrabortty A, Wang X, Slagle BL, Costa RH, Raychaudhuri P. DDB2 induces nuclear accumulation of the hepatitis B virus X protein independently of binding to DDB1. J Virol 2001; 75: 10383-10392

51 Li J, Xu Z, Zheng Y, Johnson DL, Ou JH. Regulation of hepatocyte nuclear factor 1 activity by wild-type and mutant hepatitis B virus X proteins. J Virol 2002; 76: 5875-5881

52 Lin-Maq N, Bontron S, Leupin O, Strubin M. Hepatitis B virus X protein interferes with cell viability through interaction with the p127 kDa UV-damaged DNA-binding protein. Virology 2003; 287: 266-274

53 Tarn C, Lee S, Hu Y, Ashendel C, Andrisani OM. Hepatitis B virus X protein differentially activates RAS-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes. J Biol Chem 2001; 276: 34671-34680

54 Jaitovich-Grosman I, Benlimame N, Slagle BL, Perez MH, Alpert L, Song DJ, Fotouhi-Ardakani N, Galipeau J, Alaoui-Jamali MA. Transcriptional regulation of the TFIIF transcription repair components XPD and XPB by the hepatitis B virus X protein in liver cells and transgenic liver tissue. J Biol Chem 2001; 276:14124-14132

55 Pan J, Duan LX, Sun BS, Feltelson MA. Hepatitis B virus X protein protects against anti-Fas-mediated apoptosis in human liver cells by inducing NF-kappaB. J Gen Virol 2001; 82: 171-182

56 Sitterlin D, Bergametti F, Transy C. UVDBP p127-binding modulates activities and intracellular distribution of hepatitis B virus X protein. Oncogene 2000; 19: 4417-4426

Edited by Zhu L