A review on the occurrence of companion vector-borne diseases in pet animals in Latin America

Ricardo G. Maggi1* and Friederike Krämer2

Abstract

Companion vector-borne diseases (CVBDs) are an important threat for pet life, but may also have an impact on human health, due to their often zoonotic character. The importance and awareness of CVBDs continuously increased during the last years. However, information on their occurrence is often limited in several parts of the world, which are often especially affected. Latin America (LATAM), a region with large biodiversity, is one of these regions, where information on CVBDs for pet owners, veterinarians, medical doctors and health workers is often obsolete, limited or non-existent. In the present review, a comprehensive literature search for CVBDs in companion animals (dogs and cats) was performed for several countries in Central America (Belize, Caribbean Islands, Costa Rica, Cuba, Dominican Republic, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Puerto Rico) as well as in South America (Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, French Guiana, Guyana (British Guyana), Paraguay, Peru, Suriname, Uruguay, Venezuela) regarding the occurrence of the following parasitic and bacterial diseases: babesiosis, heartworm disease, subcutaneous dirofilariosis, hepatozoonosis, leishmaniosis, trypanosomosis, anaplasmosis, bartonellosis, borreliosis, ehrlichiosis, mycoplasmosis and rickettsiosis. An overview on the specific diseases, followed by a short summary on their occurrence per country is given. Additionally, a tabular listing on positive or non-reported occurrence is presented. None of the countries is completely free from CVBDs. The data presented in the review confirm a wide distribution of the CVBDs in focus in LATAM. This wide occurrence and the fact that most of the CVBDs can have a quite severe clinical outcome and their diagnostic as well as therapeutic options in the region are often difficult to access and to afford, demands a strong call for the prevention of pathogen transmission by the use of ectoparasitidal and anti-feeding products as well as by performing behavioural changes.

Keywords: Companion vector-borne diseases (CVBDs), Dog, Cat, Occurrence, Vector, Latin America (LATAM), Prevalence

Background

Companion vector-borne diseases (CVBDs) have among others a major impact on the welfare of pets. They may also represent a constant risk to humans due to their zoonotic nature, which emphasizes the importance of pets as reservoirs.

In Latin America (LATAM), a region with one of the largest biodiversities in the world, a combination of factors such as intensification of agricultural practices, landscape modification, poor ecosystem protection and potentially slight unstable economics, creates host populations conducive to the performance and persistence of parasites and vectors.

This is especially important for CVBDs affecting dogs and cats as companion animals, as a significant proportion of those (i.e. 52–75%) [1, 2], even though owned by pet holders, roam freely, besides an exploding number of stray dogs and cats. In LATAM, the lack of sensitive awareness of animal welfare and disease issues, the
restricted economic and technological access to proper veterinary care, and the absence of responsible pet ownership, have created conditions for the emergence and persistence of many diseases that ultimately will affect people, livestock, and wildlife [3–10]. Besides, socioeconomic, demographic and ecological factors, including globalization, increase in international trade, tourism and travel, climate change and its effect on vector distribution in time and space, have also to be reconsidered.

This article summarizes the data of reported detection (or prevalence when available) of the most significant CVBDs affecting companion animals in LATAM in tabular form and as detailed information per country and discusses research gaps to be addressed in future studies. In case of very scarce published data, additionally the occurrence of the pathogens in potential vectors, wild canids or felids and in humans is listed, to illustrate the fact that the pathogen is occurring in a respective region, even though not officially reported in companion animals so far. Beforehand a brief introduction on the diseases, usually followed by a short summary or references for more detailed data on diagnostic methods, treatment indications and ways of prevention are given.

Generally, for many of the vector-borne diseases (VBDs) described here, diverse diagnostic tests are available (microscopic, serological, molecular). Nevertheless, besides their different performance regarding sensitivity and specificity in acute and chronic disease, only few are readily available as diagnostic tools at most clinical practices in the reported LATAM regions.

Parasitic diseases

Babesiosis

Babesiosis in pet animals in LATAM is mainly caused by *Babesia vogeli* and *Babesia gibsoni* [11–13]. The disease has been reported in many areas especially of South America, whereas reports from Central America are scarce so far. *Babesia vogeli* is transmitted directly via tick bites [*Rhipicephalus sanguineus (sensu lato)*], whereas *B. gibsoni* in LATAM is expected to be transmitted via blood transfer through dog bites, blood transfusions and transplacental supply [14–18]. Clinical signs, depending on the species, and further details on clinical and laboratory findings can be found in Irwin [14]. As diagnosis microscopy remains the simplest and most accessible diagnostic test. Different sensitivity during the cause of disease may be supported by molecular methods (see Irwin [14] for details). Treatment does not eliminate the parasite, but only reduces parasitemia and supports resolution of clinical signs and is summarized elsewhere [14]. Animals diagnosed with *Babesia* spp. should be considered permanent carriers of the infection. Due to the missing elimination of the pathogen during treatment, vaccines have been introduced with variable efficacy (see Irwin [14] for summary). According to the authors’ knowledge, the vaccines are only available in Europe, so that prevention of vector exposure in form of acaricidal treatment is essential especially for LATAM.

Dirofilariosis

Dirofilariosis is caused by *Dirofilaria immitis*, presenting as an important disease, causing cardiopulmonary problems and even death in dogs worldwide and commonly known as canine heartworm disease, and by *Dirofilaria repens*, a subcutaneous parasite of dogs and cats in Europe, Africa and Asia.

Canine heartworm disease

Canine heartworm disease has a wide distribution in LATAM (except Belize, Guatemala, Panama, French Guinea, Chile and Uruguay; for specific data see individual country sections). The pathogen is transmitted by several mosquito species. As a mosquito-transmitted disease, it is more prevalent in tropical and subtropical regions, due to favorable conditions for mosquito propagation [19–21]. Clinical signs vary from nearly asymptomatic to very severe and are listed elsewhere [22–24]. Diagnostic methods include microfilaria testing of blood samples, ideally after a concentration technique (modified Knott’s test or filtration test), and antigen testing. For details on different test sensitivities and combinations please see the guidelines of the American Heartworm Society (AHS) [25]. Treatment against heartworm varies depending on the severity of the disease and always aims to improve the clinical condition and to eliminate all life stages of the heartworms with minimal post-treatment complications. Prevention by the use of chemoprophylactic drugs is strongly recommended year-round in endemic areas. For full recommendations see the guidelines of the Tropical Council of Companion Animal Parasites (TroCCAP) [26] and the AHS [25]. Prevention of vector exposure on the basis of antifeeding and/or insecticidal treatments and by the use of mosquito screens etc. and reduction of suitable breeding sites for mosquitoes support a successful prevention scheme.

Subcutaneous dirofilariosis

Subcutaneous dirofilariosis is a filarial disease caused by *D. repens*. Again, transmitted by diverse mosquito species, adult worms are located mainly in subcutaneous tissues. The presence of adult *D. repens* worms in subcutaneous tissues and/or subcutaneous nodules [27] often goes unnoticed but can also cause cutaneous disorders [28–31], as well as extradermic symptoms [32]. For further details on the parasite see also Genchi et al. [33] and Simón et al. [34]. The disease is mainly distributed
in Europe, Africa and Asia, and only single reports with closely related variants for LATAM exist [35, 36]. Diagnostic methods usually rely on the detection of microfilariae in blood samples as described for *D. immitis*. If clinically apparent, surgical excision and subsequent histopathological confirmation is the general treatment option. From the medical standpoint, here especially regarding the Old World, *D. repens* is the most frequent and most widely distributed in comparison to *D. immitis* and other *Dirofilaria* species [37] and thus especially of zoonotic importance. For the New World, different species might be involved.

Hepatozoonosis

Hepatozoonosis has been described infrequently in LATAM, despite high prevalences reported from some rural areas of Brazil and Costa Rica [38–41]. Canine hepatozoonosis is caused by *Hepatozoon canis*, a protozoan transmitted by ingestion of ticks containing mature *H. canis* oocysts. Clinical signs of hepatozoonosis and laboratory changes can be found in Sherding [42] and Baneth [43]. The disease is debilitating and often fatal if not treated. *Hepatozoon canis* infection is frequently diagnosed by microscopic detection of intracellular gamonts in stained blood smears. Antibody detection and molecular detection *via* PCR are also available; see Baneth [43] for further details. Complete elimination may frequently not be achievable [44]; for details on treatment see Baneth [43]. Prognosis of treated dogs depends on the parasitaemia. Prevention of vector exposure in form of ectoparasiticidal treatment is supporting the protection against *H. canis*.

Leishmaniosis

Leishmaniosis in LATAM is mainly caused by *Leishmania infantum* (syn. *Leishmania chagasi*). Other species (e.g. *Leishmania braziliensis*, *Leishmania amazonensis*) can also be involved in causing disease. While *L. infantum* is the most important causative agent of canine visceral leishmaniosis in South America [45], *L. amazonensis* has as well been reported causing visceral leishmaniosis in dogs [46], whereas *L. braziliensis* has been detected in dogs with cutaneous leishmaniosis [47]. The parasites are transmitted mainly by sand flies (for LATAM, species of the genus *Lutzomyia* [48, 49]). Clinical signs can vary from very subtle (asymptomatic) to very severe. Clinical staging has been deeply elaborated by LeishVet and published in Solano-Gallego et al. [50, 51] for dogs and in Pennisi et al. [52] for cats. The most useful diagnostic approaches include demonstration of the parasite DNA in blood or other tissues and detection of specific serum anti-leishmanial antibodies [50, 51, 53–55], but might not be available in all regions in LATAM. Direct parasite detection by cytology and further diagnostic approaches are described and evaluated in the LeishVet guidelines for the practical management of canine leishmaniosis [51]. Treatment for leishmaniosis is controversial in many countries and includes several antileishmanial drugs. Treatment regimens for the different stages of disease have been published in Solano-Gallego et al. [50, 56]. In South America, canine leishmaniosis treatment might often not routinely be performed. The elimination of seropositive dogs (euthanasia/culling program) has been practiced, e.g. in Brazil, even though for Brazil this control measure has been subject of intense, ongoing debate, due to ethical reasons and the lack of scientific evidence supporting the effectiveness of this strategy [57–59]. Meanwhile, a veterinary drug based on oral miltefosine has been authorized for marketing in Brazil [60]. As *L. infantum* has zoonotic potential, and dogs are regarded as the main reservoir for this pathogen, prevention is essential from the standpoint of animal welfare as well as under the aspect of One Health. Besides a reduced exposure to sand flies based on behavioral codes, insecticidal prophylaxis is strongly recommended. Another approach to help controlling canine leishmaniosis was the introduction of a vaccine, which has been licensed in Brazil in 2014 and which proved to be effective to reduce the number of canine visceral leishmaniosis cases in vaccinated animals [61].

Trypanosomosis

Trypanosomosis is a disease of human medical and veterinary importance caused mainly by *Trypanosoma cruzi*. This disease, also known as Chagas disease or American trypanosomosis, has been recognized by the World Health Organization (WHO) as the most important parasitic disease in the Americas by disability adjusted life years (DALYs) [62]. An estimated 99.8% of the disease burden occurs in LATAM and the Caribbean region [63–67]. Dogs are considered the predominant domestic reservoir for Chagas disease (*T. cruzi*) in many areas of endemicity [68]. Other trypanosomatid pathogen species such as *Trypanosma evansi* and *Trypanosoma rangeli* have been also implicated in infections in dogs. The recognized vectors for *T. cruzi* are triatomine species, while *T. evansi* is transmitted in several ways *via* biting insects, sucking insects and vampire bats [69, 70]. Clinical signs of *T. cruzi* infection in dogs may vary from acute to chronic disease [71]. Regarding *T. evansi*, dogs usually experience acute fatal infections [72, 73]. The most common and easiest diagnostic method for *Trypanosoma* infection is microscopic identification in a blood smear or the buffy coat, successful during the acute stage. For chronic Chagas disease, diagnosis relies on serological tests. Recommendations on serological tests in the
chronic phase [74–81] and a detailed review [82] offer further information. Regarding dogs, there are few studies focusing on the diagnosis of T. cruzi infection [83–87] and even fewer in naturally infected dogs using recombinant antigens [88]. Different antigens have been tested by Brasil et al. [82] for their suitability in dogs. The drug of choice for treatment is benzimidazole, but nifurtimox can also be used [89]. Symptomatic treatment for heart failure and arrhythmias is also recommended [90]. Prevention of disease transmission especially in humans is among others heavily relying in vector control [68]. As the dog is a major reservoir for human Chagas disease, vector control should also include the prevention of disease transmission in dogs.

Bacterial diseases

Anaplasmosis

Anaplasmosis in dogs and cats can be caused by Anaplasma phagocytophilum, causative agent of canine granulocytic anaplasmosis (CGA), mainly occurring in temperate zones of the world, and Anaplasma platys, the pathogenic agent of canine cyclic thrombocytopenia, occurring worldwide with a higher incidence in tropical and and subtropical areas [91]. For LATAM, both species have been reported in infections, but mainly with A. platys.

Even though most dogs naturally infected with A. phagocytophilum probably remain healthy, clinical signs [92–95] and hematological changes [94] have been reported. In general, infection with A. platys may go along subclinically (e.g. in the USA and Australia), but distinct clinical abnormalities have also been reported, besides hematological abnormalities (in Europe and Israel [96, 97]). A good overview for both pathogens is given in Sainz et al. [98]. In the majority of dogs both types of anaplasmoses pose a diagnostic challenge and clinical and hematological abnormalities should be combined with laboratory and diagnostic tests. Microscopic detection of morulae (intracytoplasmatic inclusions) in neutrophils (for A. phagocytophilum) or platelets (for A. platys) in stained blood smears is indicative for an infection with an intracytoplasmic coccus, but not distinguishing between A. phagocytophilum and other Ehrlichia spp. [98], respectively sensitivity appears to be rather low for A. platys [99], so that serology and ideally PCR should also be performed additionally for definitive diagnosis. For details on diagnostic interpretation see Sainz et al. [98] and Carrade et al. [100]. For treatment of both pathogen infections doxycycline is effective (see Sainz et al. [98] for a summary on treatment parameters). The prevention of anaplasmosis in dogs must be focused on tick control, even though the vector of A. platys is still unknown or unproven. But ticks of various genera (e.g. Rhipicephalus, Dermacentor and Ixodes) have been found naturally infected by A. platys around the world [101–105]. Regarding A. phagocytophilum, tick control is an essential demand enforced even by the zoonotic character of the pathogen.

Bartonellosis

Bartonellosis has been described in dogs and cats sporadically in LATAM. The most common species detected in dogs are Bartonella henselae and Bartonella vinsonii berkhoffii, while B. henselae and Bartonella clarridgeiae are the most commonly detected species in cats [106]. Bartonella species can be transmitted to companion animals and humans by several insects, including fleas, sand flies, lice, bed bugs, mites and ticks (e.g. [107–131]), and also directly by cat scratches, bites, blood transfusion and organ transplant (even though the last two have been mostly reported in humans) (e.g. [130, 132–150]). Clinical appearance may include a large variety of signs (e.g. [143, 144, 151–170] and laboratory abnormalities [165, 167, 171–173]). Diagnosis of Bartonella infection can be performed by IFA test, PCR, or blood culture. Unfortunately, their use is mostly restricted to research due to their limited access (especially in antigen types used for IFA test). In recent years, DNA amplification after blood culture pre-enrichment became the gold standard for diagnosis of Bartonella infection [174]. Treatment of bartonellosis is very difficult, requiring long term treatment with a combination of antibiotics (i.e. azithromycin/minocycline) (e.g. [175–181]. As the pathogens possess a zoonotic potential, prevention of pathogen transmission is essential especially in form of ectoparasite control. This must include also cats as a major reservoir for Bartonella spp.

Lyme borreliosis

Lyme borreliosis (LB) caused by spirochetes of the Borrelia burgdorferi (sensu lato) species complex is a zoonotic disease affecting humans, dogs, horses and other mammalian species. Vectors in focus are hard ticks of the genus Ixodes, but neither the role of the different tick species in the transmission cycle nor the clinical relevance of the different B. burgdorferi (s.l.) species detected in those tick species in South America is clarified [182–184]. Moreover, a report of the detection of B. burgdorfei (sensu stricto) in Dermacentor nitens ticks in Brazil suggests that the etiolog of LB in LATAM is far from being understood [185]. LB has hardly and mainly only based on seroprevalence data been described in pets in LATAM, especially in Mexico [186, 187] and Brazil [38, 188]. Clinical signs in dogs are listed elsewhere [189–194] and only few reports on LB exist in cats [195–198]; for more detailed data see Pantchev et al. [198]. The clinical
diagnosis of borreliosis in dogs is very difficult since compatible clinical symptoms with other vector-borne pathogens are very common. Direct detection methods (PCR and/or culture) are difficult and of little practical relevance as the organisms are rarely detected in body fluids [199–201]. Regarding serological diagnosis, detection of specific antibodies does not necessarily correlate with the presence of clinical disease [189]. The method of choice for serological diagnosis is a two-tiered laboratory test [202], consisting of an enzyme-linked immunosorbent assay (ELISA) and immunoblotting (Western blotting); for more detailed information see also Krupka & Straubinger [189]. Furthermore, a commercial ELISA based on C6 peptide is also widely used for serodiagnosis (see Krupka & Straubinger [189] for additional information and further literature). Treatment of LB should be initiated as early as possible [189]. Whether dogs (or cats) should be treated when specific antibodies are detected in the absence of clinical signs is controversial [203–205]. Treatment is recommended for a period of 28 to 30 days, and the most commonly used drug is doxycycline. For further information on treatment regimens etc., see Krupka & Straubinger [189]. Again, prevention of pathogen transmission by ectoparasiticidal control is an essential aspect, especially also because of the zoonotic potential of the pathogens.

Ehrlichiosis

Ehrlichiosis in dogs and cats has been reported in LATAM. The causative agents are *Ehrlichia canis* (responsible for canine monocytic ehrlichiosis [CME]), *Ehrlichia chaffeensis* and *Ehrlichia ewingii*, with ticks as the transmitting vectors [206–208]. Clinical signs of CME are very similar to the ones presented in granulocytic anaplasmosis and partly also occur in cats. *Ehrlichia ewingii* infection is also reported to go along with clinical signs in dogs, but none in cats, whereas *E. chaffeensis* infection usually presents mildly or subclinically unless present in co-infection, and again with no reported signs in cats. For more details on CME see Sainz et al. [98] and on all three pathogens see Allison & Little [209]. Detection of *E. canis* morulae (an aggregate of *E. canis* organisms) in a blood smear, ideally a buffy coat smear, is indicative, but rather rare in clinical cases [210]. Further diagnostic tests, such as serology or molecular techniques (PCR) must be performed. CME can be diagnosed with IFA test or ELISA [211–213]. A fourfold increase in IgG antibodies over time has been suggested to be taken as evidence of an ongoing infection [213], as well as the combination of serology and PCR has been recommended for diagnosis of infection [214]. Nevertheless, use of some of these test systems might not be available for whole of LATAM. Additionally, rapid serological tests are available; for more detailed information on diagnostics see also Sainz et al. [98] and Allison & Little [209]. Doxycycline is considered the treatment of choice for rickettsial infections [100, 215, 216], thus also for ehrlichiosis; for details on the treatment regimen see among others Allison & Little [209] and Sainz et al. [98]. Again, avoidance of tick exposure and prevention of transmission by use of ectoparasiticidal compounds are essential. This is of vital importance as the mentioned pathogens may have zoonotic character (Venezuela [217], LATAM [218–223]).

Hemotropic mycoplasmosis

Hemotropic mycoplasmosis (formerly known as hemobartonellosis) has rarely been reported in LATAM. The disease in dogs is caused mainly by *Mycoplasma haemocanis* and *Mycoplasma haemotaparvum*. In cats, the disease can be caused by single- or co-infections with *Mycoplasma haemofelis*, *Mycoplasma haemonatum* and *Mycoplasma turicensis*. Blood transfusions have been reported as a source of infections (e.g. [224, 225]), but blood-sucking arthropods are likely to be involved in the transmission as well [226–231]. Generally, little is known on the ecology and form of transmission of these bacteria. Clinical signs may vary and are listed elsewhere [232, 233]. Specific conventional and quantitative real-time PCR systems have been introduced and are now considered the gold standard [234–239]. Treatment is performed depending on the severity of the infection. Antibiotics such as doxycycline or tetracycline should be effective, but consistent clearance of infection was not seen with a range of antibiotics [233]; for more details on treatment see among others Messick [233] and Willi et al. [240]. As with all potentially vector-transmitted pathogens, prevention in form of vector control is essential.

Rickettsiosis

Rickettsiosis has long been associated only with tick-borne *Rickettsia* species from the spotted fever group, with two very prominent representatives: *Rickettsia rickettsii* [agent of Rocky Mountain spotted fever (RMSF) and Brazilian spotted fever (BSF), also called fiebre manchada in Mexico and febre maculosa in Brazil] [241] and *Rickettsia conorii* [agent of Mediterranean spotted fever (MSF) or Boutonneuse fever] [242]. Meanwhile several further species have been identified as human and partly also companion animal pathogens, which are not only tick-borne (e.g. *Rickettsia massiliae*, *Rickettsia parkeri*, *Rickettsia felis*). Several tick species, among others from the genera *Amblyomma*, *Dermacentor* and *Rhipicephalus*, but also flea species from the genera *Ctenocephalides* and *Archeopsylla*, have been identified as vectors for the above-mentioned different *Rickettsia* species.
Infection of dogs and cats with *Rickettsia* species is often subclinical, inapparent, but may also result in severe disease (especially in the case of *R. rickettsii* [244], potentially being even fatal [245]. For an overview on the different *Rickettsia* species see also Nicholson et al. [215] and Allison & Little [209]. Diagnosis of rickettsial pathogens is usually achieved by PCR assays, serological assays or response to treatment in most clinical cases. When PCR is not practical or available, serology, and here particularly documentation of seroconversion in an acutely ill individual, should be used. For detailed information on the different diagnostic approaches in *Rickettsia* spp. see also Allison & Little [209]. The antibiotic treatment of choice is doxycycline [215, 246]. Prompt treatment is critical as delays can result in fatality [209]. Besides the clinical effect of some *Rickettsia* species in dogs, dogs are important sentinels of infection and disease (e.g. in *R. conorii* [247, 248]. They are also expected to play an important role as biological hosts of the ticks and serve to increase the infected tick population in close association with human habitation (again for *R. conorii*) [215]. Thus, ectoparasitic control is essential also under the zoonotic aspect and the concept of One Health.

At the end of the presentations of the relevant VBDs we want to remark that veterinarians should be aware of synergistic effects and clinically relevant immunosuppression in co-infected animals [249] as well as an altered clinical appearance in co-infected animals, potentially making diagnosis more difficult and probably leading to a more serious disease outcome [250]. This is relevant for the whole LATAM region as exposure to several pathogens seems possible.

Country files

Subsequently a listing of occurrence of the pathogens respectively of corresponding seroprevalence data in LATAM by country in alphabetical order follows, based on an actual literature search. Additionally, all described data are summarized in Table 1.

Argentina

Parasitic diseases

As in many countries in LATAM, the most common parasitic diseases reported in Argentina are trypanosomosis (responsible for Chagas disease in humans), dirofilariosis and leishmaniosis.

Babesiosis due to *B. vogeli* has been described in three dogs from Buenos Aires [12, 251] and detected in 10% (2/21) and 6.8% (3/41) of shelter dogs from Córdoba and Santa Fé, respectively, by molecular methods [252]. Large piroplasms have furthermore been detected in 0.2% of tested animals in a large canine survey with more than 16,000 dogs [12, 251]. *Babesia vogeli* was also detected in cat fleas (*Ctenocephalides felis*) collected from shelter dogs in Córdoba and Santa Fé (R. Maggi, unpublished data). Interestingly, *Babesia* was not detected in any of 48 free ranging Pampas gray foxes (*Lycalopex gymnecercus*) from Rio Negro that showed high prevalence for hepatozoonosis [253].

Dirofilariosis caused by *D. immitis* has been reported in Buenos Aires [254–256] and Mendoza [257]. Epidemiological studies in Argentina suggest that the prevalence of dirofilariosis in dogs is highly variable, showing a significantly heterogeneous temporal and spatial distribution [254–256, 258, 259]. In Buenos Aires, screening of 19,298 blood samples from 65 localities showed prevalence values of 1.63% by microhematocrit tube technique, 3.65% by modified Knott’s test, and 14.41% by antigen test [255].

Hepatozoonosis has been reported in dogs (infected with *H. canis*) from Buenos Aires [251, 260], and in up to 50% of 48 blood samples from free ranging Pampas gray foxes (*L. gymnecercus*) from Rio Negro (infected with *Hepatozoon* sp.) [253, 261]. *Hepatozoon* sp. infection has further been described in single canine cases in the Buenos Aires region [262]. No prevalence studies are available up to date.

For leishmaniosis, only few records are available regarding the overall prevalence in Argentina. *Leishmania braziliensis* and *L. infantum* have been associated with canine leishmaniosis in several provinces of the country, including Entre Ríos, Santa Fé, Misiones, Chaco, Salta and Santiago del Estero [263–270]. Reports from Misiones, which represents one of the areas with highest endemicity for the disease in Argentina, indicate prevalences as high as 57% in dogs (43.6% seropositive and 47.3% positive by PCR) [266]. In other provinces, i.e. Salta, a significant seroprevalence (13.0–27.4%) has also been reported [263, 268].

Trypanosomiasis is one of the most important endemic VBDs in Argentina. Serological surveys in the northern rural regions have shown prevalences in dogs ranging between 23–84%; while seroprevalence in cats has been reported at 28.7% [83, 263, 271–277]. In hyperendemic regions, such as Chaco, molecular prevalence as high as 53% has been reported in dogs [278].

Bacterial diseases

Anaplasmosis due to *A. platys* infection was reported in prevalences ranging between 13.5–37.5% in sick dogs from Buenos Aires [251, 279, 280] detected by molecular techniques, and in 12.5% and 17.4% of dogs from Córdoba and Santa Fé [252], respectively. No data are available from other provinces. Nevertheless, *A. platys* was detected in *R. sanguineus* (s.l.) ticks from Chaco Province [281], and from cat fleas (*C. felis*) collected from...
Table 1 Tabular overview on the occurrence of CVBDs in dogs, cats, humans and wild carnivores in LATAM based on an actual literature search (partly only based on seroprevalence data; single case reports included; questionable cross-reactivities neglected)

Country	Host	Bab	HWD	SD	Hep	Lesh*	Trypb	Ana	Bart	Bor	Ehr	Myc	Rick
Argentina	Dogs	Y	Y	–	Y	Y	Y	Y	–	Y	Y	–	–
	Cats	–	–	–	–	–	–	–	–	–	–	–	–
	Humans	–	–	–	Y	(CL, VL)	Y	–	Y	–	–	–	–
	Wild carnivores	–	–	–	Y	(CL, VL)	Y	–	Y	–	–	–	–
Belize	Dogs	–	–	–	–	–	–	–	–	–	–	–	–
	Cats	–	–	–	–	–	–	–	–	–	–	–	–
	Humans	–	–	–	Y	(CL)	Y	–	–	–	–	–	–
Brazil	Dogs	Y	Y	–	Y	Y	Y	Y	Y	Y	Y	–	–
	Cats	–	–	–	–	–	–	–	–	–	–	–	–
	Humans	–	–	–	Y	(CL, VL)	Y	–	Y	–	–	–	–
	Wild carnivores	–	–	–	Y	(CL, VL)	Y	–	Y	–	–	–	–
Caribbean Islands	Dogs	Y	Y	–	Y	–	Y	Y	Y	–	Y	–	–
	Cats	Y	Y	–	Y	–	Y	Y	Y	–	Y	–	–
	Humans	–	–	–	Y	(CL, VL)	Y	–	Y	–	–	–	–
Chile	Dogs	–	Y	–	–	–	Y	Y	–	Y	–	–	–
	Cats	–	–	–	–	–	–	–	–	–	–	–	–
	Humans	–	–	–	Y	(CL)	Y	–	–	–	–	–	–
	Wild carnivores	–	–	–	Y	(CL, VL)	Y	–	Y	–	–	–	–
Colombia	Dogs	Y	Y	–	Y	Y	Y	Y	Y	Y	Y	–	–
	Cats	–	–	–	–	–	–	–	–	–	–	–	–
	Humans	–	–	–	Y	(CL, VL)	Y	–	Y	–	–	–	–
Costa Rica	Dogs	Y	Y	–	Y	–	Y	Y	Y	Y	Y	–	–
	Cats	–	–	–	–	–	–	–	–	–	–	–	–
	Humans	–	–	–	Y	(CL)	Y	–	–	–	–	–	–
Cuba	Dogs	–	Y	–	–	–	–	–	–	–	–	–	–
	Cats	–	–	–	–	–	–	–	–	–	–	–	–
	Humans	–	–	–	Y	(CL)	Y	–	–	–	–	–	–
Dominican Republic	Dogs	–	Y	–	–	–	–	–	–	Y	–	–	–
	Cats	–	–	–	–	–	–	–	–	–	–	–	–
	Humans	–	–	–	Y	(CL)	Y	–	–	–	–	–	–
Ecuador	Dogs	Y	Y	–	Y	Y	Y	Y	Y	–	Y	–	–
	Cats	–	Y	–	–	–	–	–	–	–	–	–	–
	Humans	–	–	–	Y	(CL)	Y	–	–	–	–	–	–
El Salvador	Dogs	–	Y	–	–	–	–	–	–	–	–	–	–
	Cats	–	–	–	–	–	–	–	–	–	–	–	–
	Humans	–	–	–	Y	(CL)	Y	–	–	–	–	–	–
French Guiana	Dogs	–	–	–	Y	–	Y	–	–	Y	–	–	–
	Cats	–	–	–	–	–	–	–	–	–	–	–	–
	Humans	–	–	–	Y	Y	–	–	–	–	–	–	–
Guatemala	Dogs	–	–	–	Y	Y	–	–	–	–	–	–	–
	Cats	–	–	–	–	–	–	–	–	–	–	–	–
	Humans	–	–	–	Y	(CL)	Y	–	–	–	–	–	–
Guyana (British Guyana)	Dogs	Y	–	–	–	–	–	–	–	–	–	–	–
	Cats	–	–	–	–	–	–	–	–	–	–	–	–
	Humans	–	–	–	Y	(CL)	Y	–	–	–	–	–	–
shelter dogs in Córdoba and Santa Fé (R. Maggi, unpublished data).

Bartonellosis due to *B. vinsonii berkhoffii* has been detected in dogs with endocarditis in Buenos Aires (R. Maggi, unpublished data). *Bartonella* infection has been detected at a molecular prevalence of 3% in shelter dogs from Córdoba (*B. tribocorum*), and from Santa Fé (*B. clarridgeiae*). *Bartonella clarridgeiae* has also been detected in cat fleas (*C. felis*) collected from shelter dogs in Córdoba and Santa Fé (R. Maggi, unpublished data). Additionally, *B. henselae* and *B. clarridgeiae* have been detected at a molecular prevalence of 17.8% in cats from Buenos Aires [282].

Lyme borreliosis in dogs or cats in Argentina has not been reported yet. Nevertheless, the detection of *B. burgdorferi* (s.l.) infecting ticks in northern provinces [184], as well as the detection of antibodies against *B. burgdorferi* in farm workers has been reported [283].

Ehrlichiosis due to *E. canis* has been reported at a molecular prevalence in 7% of sick dogs from Buenos Aires [251]. No data are available on detection or prevalence of *Ehrlichia* spp. infecting dogs from other provinces, although *E. canis* was detected in *R. sanguineus* (s.l.) ticks from Formosa Province [281]. *Ehrlichia chaffeensis* has been found at a prevalence of 14% in people from Jujuy [221] and detected in *A. parvum* ticks.
collected from several mammal species (including a dog and humans) from Santiago del Estero [208].

Hemotropic mycoplasmosis mainly due to infection with *M. haemocanis* or *M. haematoparvum* has been detected at molecular prevalences of 83.3% and 73.9% in shelter dogs from Córdoba and Santa Fé, respectively [252]. Similarly, both pathogens were also detected in cat fleas (*C. felis*) collected from shelter dogs in Córdoba and Santa Fé (R. Maggi, unpublished data). Other species (*Mycoplasma suis*) have also been described in dogs [252]. Hemotropic mycoplasmas were also detected in up to 8.3% of 48 blood samples from free ranging Pampas gray foxes (*L. gymnocercus*) from Rio Negro [253].

Rickettsiosis has not been reported in dogs or cats yet in Argentina, but in 2.1% from 48 blood samples from free ranging Pampas gray foxes (*L. gymnocercus*) from Rio Negro [253]. Cases of human rickettsiosis due to *R. rickettsii* and *R. parkeri* infection have been reported in Jujuy and Buenos Aires [221, 284–287]. *Rickettsia* species have been reported in several tick species: *R. parkeri* and *R. bellii* in *Amblyomma triste* from Entre Ríos, Santa Fé, Córdoba, Buenos Aires, La Rioja, and in other northern provinces, and *R. massiliae* in *R. sanguineus* (s.l.) in Buenos Aires [279, 280]. Meanwhile *R. felis* has been detected in single cat fleas (*C. felis*) collected from dogs [288].

Bolivia

Data on VBDs in pet animals from Bolivia are very scarce or not existent.

Parasitic diseases

Leishmaniosis and trypanosomosis are the only two VBDs reported in people and vectors and as such their pathogens could be recognized as potential infectious agents for pets. *Leishmania donovani*, *L. braziliensis* and *L. mexicana* have been reported in people and sand flies [289–295], and meanwhile *Trypanosoma* has been reported in people and *Triatoma* species [296, 297].

Bacterial diseases

Rickettsiosis: spotted fever group rickettsiae, especially *R. amblyommae* and *R. parkeri*, were detected in *Amblyomma* species among others from dogs, suggesting a risk of tick-borne rickettsioses to humans and animals in Belize [298].

Belize

Data on VBDs in pet animals from Belize are very scarce or not existent.

Parasitic diseases

Leishmaniosis has not been reported in dogs or cats yet in Argentina, but in 2.1% from 48 blood samples from free ranging Pampas gray foxes (*L. gymnocercus*) from Rio Negro [253]. Cases of human rickettsiosis due to *R. rickettsii* and *R. parkeri* infection have been reported in Jujuy and Buenos Aires [221, 284–287]. *Rickettsia* species have been reported in several tick species: *R. parkeri* and *R. bellii* in *Amblyomma triste* from Entre Ríos, Santa Fé, Córdoba, Buenos Aires, La Rioja, and in other northern provinces, and *R. massiliae* in *R. sanguineus* (s.l.) in Buenos Aires [279, 280]. Meanwhile *R. felis* has been detected in single cat fleas (*C. felis*) collected from dogs [288].

Brazil

A comprehensive review on VBDs has been published by Dantas-Torres [38].

Parasitic diseases

Babesiosis due to *B. vogeli* has been recognized in Brazil since the beginning of the 20th century. *Babesia gibsoni* infection in dogs has also been reported virtually in all Brazilian regions. The reported seroprevalence of infection in dogs ranges between 35.7–72.0% [38, 306–314]. In cats, *B. vogeli* has been reported at a molecular prevalence ranging between 11.9–16.0% [315, 316].

Dirofilariosis: Canine heartworm infections due to *D. immitis* are frequently reported in Brazil with prevalences that range from 2% to up to 23.1% [38, 174, 317–320].

Hepatozoonosis due to *H. canis* is present in almost all regions. Prevalences of 39.2–58.8% have been reported in rural and urban areas [38, 39, 307, 321, 322].

Leishmaniosis was firstly recognized in Brazil during the 1930s. Canine visceral leishmaniosis by *L. infantum* is endemic in all Brazilian regions, meanwhile also occurring in the South of the country [38, 306, 323–326]. Canine cutaneous leishmaniosis is also prevalent in all regions with prevalences ranging between 3.2–50.3%, depending on the area and methods of diagnosis used [323, 327–335]. The seroprevalence of *Leishmania* infection in dogs varies widely and can be as high as 67% in highly endemic foci [336]. In cats, seroprevalence of 54% has been also reported [337].

Trypanosomosis has been reported in almost all areas of Brazil. In areas where American trypanosomosis (or Chagas disease) is endemic, seroprevalences to *T. cruzi* between 16.0–71.6% in dogs were reported [338–340]. Clinically, the infection is of minor significance, as
infected dogs are often asymptomatic carriers [38]. In cats, T. cruzi seroprevalence of 51% has been reported [337]. Trypanosoma evansi infection in dogs is found predominately in the Center-West and the South regions [341–350]. The seroprevalence of infection in dogs with T. evansi ranges between 15.7–30.0% [38, 341, 351].

Bacterial diseases

Anaplasmosis caused by A. platys in dogs is found in all regions according to Dantas-Torres [38] but has only sporadically been published. Molecular prevalences in dogs are ranging between 1.6–48.8% [306, 308, 309, 352, 353]. Anaplasma phagocytophilum has been reported at molecular prevalences between 6–7% in dogs [354, 355], 8% in cats [315] and in ixodid ticks [354].

Bartonellosis has been described in dogs and cats in southern Brazil. In sick dogs from southern states, prevalences in dogs of 1.9–3.9% have been reported to infection with B. vinsonii berkholfii and B. henselae [324, 356–358]. In addition, B. vinsonii berkholfii and B. claridgeiae were detected by serology in captive wild canids (at seroprevalences ranging between 8–13%) from 19 zoos in São Paulo and Mato Grosso states [359]. In feral cats, the molecular prevalence for Bartonella infection can be as high as 17% [360, 361].

Lyme borreliosis has been recognized in humans in Brazil since 1989 [188, 362]. Serological surveys in dogs from Southeast Brazil showed ranges from less than 1% up to 20% [38]; while seroprevalences of up to 51% have been reported from Espírito Santo [188]. The pathogen has been recovered from Ixodes spp. (B. burgdorferi s.l.) group and from D. nitens ticks (B. burgdorferi B31 strain) [185, 363], but the role of the vector and the clinical relevance of the species have yet to be determined.

Ehrlichiosis, due to infection with E. canis, was firstly recognized in Brazil in the 1970s, and is prevalent in virtually all regions (for a comprehensive review on ehrlichiosis in Brazil, see Vieira et al. [364]). The seroprevalence of infection varies between the southern, Central-West and northern-northeastern regions of Brazil, but it can be as high as 62.8% in asymptomatic and 78% in symptomatic dogs [38, 306, 309–312, 324, 352, 364–375]. Molecular prevalence for E. canis has been found in dogs at a range of 15–88% [316, 364]. Infections in dogs with other Ehrlichia species, i.e. E. chaffeensis and E. ewingii, have also been reported [376]. In cats, E. canis or a closely related species have also been reported at a molecular level, with a prevalence ranging between 9.4–20.0% [377, 378].

Hemotropic mycoplasmosis has been recognized in Brazil and has been reported in several wild canids and felids as well as in humans [379–382]. Several species of hemotropic mycoplasmas have been detected in dogs and cats [308, 361, 382–388]. The most predominant species in dogs is M. haemocanis, which has been recognized in South and Southeast Brazil. Other species such as M. haematoparvum, M. haemofelis, M. turicensis and M. haemominutum, have been detected in neotropical and exotic wild canids and felids from Brazilian zoos, and in feral cats [380]. Molecular prevalence of up to 32% has been reported in cats [315] and prevalences of 7–45% have been reported in dogs [382, 388].

Rickettsiosis due to several species of the spotted fever Rickettsia group, has been reported among others in humans and dogs [389–393]. Seroprevalence for R. rickettsii in dogs ranges between 2.7–64.0%, while seroprevalence of 2.7–7.3% has been reported for R. parkeri [371, 373, 389, 390, 392, 393]. Rickettsial species have also been reported in several tick species of the genera Amblyomma, in R. sanguineus (s.l.), and in cat fleas (e.g. [393–404]).

Parasitic diseases

Babesiosis has been described on several islands. Molecular screening of dogs in St. Kitts showed an overall prevalence of 24% for Babesia spp., of which 48% and 40% were due to B. vogeli and B. gibsoni, respectively, 2% were due to co-infections with both species and in 10% Babesia species was unidentified [13]. Babesia vogeli was also detected by PCR in 7% of dogs surveyed in Grenada [405] and in dogs in Trinidad [406]. Interestingly, B. vogeli infection was also detected in cats in Trinidad by PCR at 6.7% prevalence [406]. Finally, there is anecdotal record on B. canis (sp.) infection in dogs in Aruba [407]; Babesia infection has been reported by microscopy or serology in dogs visiting the Dutch Antilles [408].

Dirofilariosis has been reported in Turk and Caicos, Curaçao and Grenada. In Grenada, infection with D. immitis was documented by microfilarial identification with prevalences ranging between 9.1–26.8% in dogs affected with caval syndrome and submitted for necropsy [409]. Combining the results of four studies on live dogs and five studies on necropsied dogs (n = 1,245) between 2002 and 2009, an estimated overall D. immitis infection rate of 13.9% is reported [410]. A survey on feral cats, also in Grenada, showed a seroprevalence of 8% for D. immitis [411]. In Turk and Caicos, seroprevalence for D. immitis was 58% and 8% for feral and pet dogs, respectively [412]. In Curaçao, two canine surveys detected prevalences of 7.2% and 12.8% for female and for male dogs, respectively.
an overall prevalence of 9.0% (3.4% in feral and 13.5% in pet dogs) [413, 414].

Hepatocooniosis due to *H. canis* was described in St. Kitts at an overall molecular prevalence of 6% [13]. Meanwhile in Grenada, a molecular prevalence of 7% has been reported for dogs [405]. There are also anecdotal data on *H. canis* infection in dogs in Aruba [407].

Leishmaniosis in the Caribbean Islands has been rarely reported in dogs. In Grenada, screening of dogs using antibodies to visceral leishmaniosis failed to detect positives [415]. Nevertheless, leishmaniosis has been described in humans in Martinique [416, 417] and Guadalup [418].

Trypanosomosis in wild animals and triatomine vectors has been reported since 1960 in Aruba, Curaçao, Jamaica and Trinidad [419, 420]. In Grenada, a seroprevalence of 13.2% and 4.3–6.4% in stray and pet dogs, respectively has been reported [63, 415].

Bacterial diseases

Anaplasmosis was detected in the region at a relatively high prevalence. In St. Kitts, a prevalence of 4% in healthy dogs was reported [13, 421]. In Grenada, prevalences of 19.2% (molecular prevalence) and 24% (seroprevalence) were reported for *Anaplasma* species [405, 422]. *Anaplasma* infections have also been reported in dogs in Trinidad [406].

Bartonellosis in cats and dogs has been reported on a few Caribbean Islands. Infections with *B. henselae*, *B. claridgeiae*, or both have been reported in 51% of pet cats, and in a range of 52–63% in feral cats from St. Kitts [423]. Similarly, 24% of pet cats and 59% of feral cats were positive for one or both species (*B. henselae* and *B. claridgeiae*) in Trinidad [424]. In dogs, *Bartonella* species have been also detected at a molecular prevalence of 1.4% for *B. vinsonii berkoffii*, and at a seroprevalence of 8.2% for *Bartonella* spp. in Grenada [405].

Ehrlichia infection in the region has also been reported on several islands. In St. Kitts, an overall (serological and/or PCR) prevalence of 24% has been reported in dogs [13]. In Trinidad, 14.1% (molecular prevalence) and 44.6% (seroprevalence) have been reported for *E. canis* in healthy and stray dogs, respectively [406, 425]. Prevalences ranging from 24.7% (molecular prevalence) to 31% (seroprevalence) have been reported for *Ehrlichia* species in dogs from Grenada [405, 422]. In Turk and Caicos, seroprevalences of 71% and 18% were reported for feral and pet dogs, respectively [412]. In Aruba 4 of 7 dogs were reported to be infected with *E. canis* confirmed by microscopy [407]. *Ehrlichia* infection has further been reported by microscopy or serology in dogs visiting the Dutch Antilles [408]. *Ehrlichia canis* has been detected in cats in Trinidad at a molecular prevalence of 6.7% [406].

Hemotropic mycoplasmosis due to *M. haemotoparum* and *M. haemocanis* has been reported in dogs in Trinidad at a prevalence of 8.1% [239]. *Mycoplasma haemofelis* and *M. haemominutum* have been reported in 31.6% and 33.3% of cats in Trinidad [406, 426].

Chile

Parasitic diseases

Dirofilariosis has been described in dogs from a semi-rural district near Santiago. Microscopic and molecular analysis showed that microfilariae, similar to *D. repens*, were present in about 22% of the dogs with (32%) or without (12%) dermatological symptoms or signs compatible with filarial infections [36]. A single human case with a subcutaneous infection of an unidentified *Dirofilaria* sp. is also reported [427].

Hepatocooniosis: There are no reports on dogs or cats, but *Hepatozoon* spp. has been detected in hard and soft ticks from different regions of Chile [428].

Trypanosomosis in people (Chagas disease) has been recognized to exist in seven of the 13 administrative regions of the country [429–433]. The seroprevalence in dogs has been reported to be over 4.6% in the northern areas [430]. In a large perurban survey, 7.9% of cats and 7.0% of dogs were positive by indirect hemagglutination test [439].

Bacterial diseases

Anaplasmosis due to *A. platys* has been reported in sick dogs from Santiago at a molecular prevalence of 20% [444]. Other studies revealed a much higher seroprevalence (69%) against *A. phagocytophilum* in dogs exposed to ticks in the same region [445]. It is not clear whether these results are a consequence of serological cross-reaction with *A. platys*. *Anaplasma* species has been also detected in soft ticks in Chile [428].

Bartonellosis has been described in cats but not in dogs from Chile even though *Bartonella* (*B. rochalimae*) has been reported in fleas from dogs [123]. In cats, seroprevalence of *B. henselae* is very high (71–73%) in pet cats [446, 447], and even higher (90%) in stray cats [447]. In addition, *B. henselae* and *B. claridgeiae* were also reported in fleas from cats [447].

Lyme borreliosis has not been described in dogs, even though there is some debate on Lyme disease in Chile [448, 449]. *Borrelia burgdorferi* (s.l.) species have recently been detected in *Ixodes stilesi* ticks [183]. The role of this species in the transmission of Lyme borreliosis has yet to be determined. Different *Borrelia* species, some of them closely related to *Borrelia turicatae* and *Borrelia garinii*, have been detected in hard and soft ticks from different regions of Chile [428].
Ehrlichiosis due to *E. canis* has been reported in single canine cases, confirmed by serology and molecular methods [450] or only by serology [451]. Nevertheless, no data are available for the prevalence and distribution of the disease. Seropositivity in single dogs to *E. chaffeensis* has also been reported [223]. In addition, *Ehrlichia* spp. has been detected in soft ticks from the Chañaral region of Chile [428].

Hemotropic mycoplasmosis due to *M. haemocanis*, *M. haemofelis* and a species closely related to *M. turicenisis*, has been reported in wild carnivores (Darwin’s foxes) with a prevalence of up to 57% on Chiloé Island [452].

Rickettsiosis due to *R. conorii* has been reported in dogs from Santiago de Chile with a seroprevalence of 35%, but rickettsial species should be confirmed by molecular studies [445]. *Rickettsia felis* has also been reported in wild foxes (Darwin’s foxes) from Chiloé, with a prevalence of 3% [452], in *R. sanguineus* (s.l.) ticks from dogs [453], as well as in *C. felis* fleas from dogs and cats and *Ctenocephalides canis* fleas from dogs [454].

Colombia

Parasitic diseases

Babesiosis due to *B. vogeli* has been frequently described in Colombia. Seroprevalence in dogs has been reported at 4.8% in Bogota, 58% in Villavicencio and 71.8% in Bucaramanga [455].

Dirofilarialis due to *D. immitis* has been reported at prevalences of 1.6% (seroprevalence) [456], 4.8% (Knott’s test) [457], and 3.8% (Knott’s test) to 4.6% (Knott’s test plus antigen ELISA) [458]. In the Colombian Amazon in two Tikuna Indian communities 53.8% (7/13 dogs) of the tested dogs were positive for *D. immitis* by modified Knott’s test [459].

Hepatozoonosis by *H. canis* has been reported in 31.8% of dogs in the central-western region by molecular and/or microscopic methods [460].

Leishmaniosis in dogs has been frequently described in Colombia. Overall prevalence of infection averaging 33.6% has been reported in northern territories [461], while a seroprevalence of 44.1% (by IFA test) to 50.2% (by ELISA) has been reported from Tolima [462]. Interestingly, a very low seroprevalence (1.6%) has been reported in dogs from Bogota using IFA test [325]. Pathogens of cutaneous leishmaniosis (*L. panamensis*, *L. braziliensis*) have been reported in humans in several areas of Colombia [463–471].

Trypanosomosis has been known to be present in Colombia. In dogs, seroprevalence of 71.6% on Margarita Island [338] and molecular prevalence of 31% for *T. cruzi* in dogs from the Northeast has been reported [472].

Bacterial diseases

Anaplasmosis due to *A. platys* has been detected by serology in 53% of dogs from Barranquilla [473]. Additionally, two single *A. phagocytophilum* seropositive dogs have been detected in the same study [473]. Further reports of anaplasmosis due to *A. phagocytophilum* have been published for Colombia at an average seroprevalence of 33% (12% for Medellin, 40% for Barranquilla and 51% for Cartagena) using rapid tests [456]. Nevertheless, caution should be considered regarding cross-reactivity with *A. platys* in this data.

 Bartonellosis has been detected at a seroprevalence of 10% in dogs from Bogota testing against *B. vinsonii berthoffii*, *B. clarridgeiae* and *B. henselae* antigens [356]. Lyme borreliosis has not been detected in dogs [456], even though the disease has been detected in people from rural areas of Colombia [474].

Ehrlichiosis due to *E. canis* has been reported in Colombia at an average seroprevalence of 22% (26% in Medellin, 67% in Bogota, 74–83% in Barranquilla, 80% in Cartagena, 83.9% in Villavicencio and 89.7% in Bucaramanga) [455, 456, 473]. Molecular prevalence for *E. canis* has been reported in Villavicencio at 45.2%, and in Bucaramanga at 59% [455]. Interestingly, a serological survey in rural areas near Bogota showed a 31.8% seroprevalence against *E. chaffeensis* in dogs [475]. Nevertheless, caution should be considered for cross-reactivity with *E. canis*.

Rickettsiosis due to *R. rickettsii* has been reported at a seroprevalence of 18.2% in dogs from rural areas near Bogota [475]. Seropositivity to spotted fever group rickettsiae was also detected in 40.7% of tested dogs in the Caribbean region of Colombia [476]. *Rickettsia amblyommii* respectively “Candidatus Rickettsia amblyommii” has been detected by PCR in Amblyomma cajennense ticks close to the Colombian border in Panama and in Colombia (Villeta) itself [477, 478], while *R. bellii* and *R. felis* have been detected in Amblyomma ovale ticks and in fleas (*C. felis, C. canis* and *Pulex irritans*) collected from domestic animals and small mammals [476], respectively, from dogs and cats [479].

Costa Rica

Parasitic diseases

Babesiosis in dogs due to *B. vogeli* was reported at an overall molecular prevalence ranging between 2.4–20.0% [40, 41]. Interestingly, the prevalence varied significantly depending on regions [40]. Babesiosis due to *B. gibsoni* has also been reported in Costa Rica at a molecular prevalence of 5% [41].

Dirofilarialis in dogs due to *D. immitis* infection has been reported at prevalences of 2.3–11.0% (by serology) and 22.6% (by molecular methods) [41, 480–482].
Positive rates were strongly dependent on region, climate, and test system used. The influence of the test system used was especially demonstrated in studies by Rojas et al. [481].

Hepatozoon infection in dogs due to *H. canis* was reported at an overall molecular prevalence ranging between 2.4–37.5% [40, 41] with huge differences between the tested regions [40].

Leishmaniosis has not been detected in surveys of dogs from the regions central, Pacific and Atlantic [40].

Trypanosomosis due to *T. cruzi* has been reported in dogs from Costa Rica at a seroprevalence ranging between 1.6–27.7% [85, 483–485].

Bacterial diseases

Anaplasmosis due to *A. platys* has been reported in Costa Rica at a molecular prevalence ranging between 1–10% in dogs [40, 41, 486–488], with obvious differences between the tested regions [40]. *Anaplasma phagocytophilum* has been reported in single canine cases by PCR [486, 489] and at a seroprevalence of 2.7% [486] and 3.8% [490], with questionable capability to differentiate between the two pathogen species in the latter study. Finally, Montenegro et al. [482] reported an overall seroprevalence in all seven provinces for *Anaplasma* spp. of 6.4%, with no differentiation between the two species due to cross-reactions in the test system used.

Bartonellosis was not reported in dogs or cats in Costa Rica. Nevertheless, *B. clarridgeiae* and *B. henselae* have been detected in cat fleas, whereas *B. vinsonii berkholffii* and *B. rochalimae* have been detected in dog fleas [491].

Lyme borreliosis in form of seropositivity to *B. burgdorferi* (s.l.) antigen has been documented in a single dog from Costa Rica [482] with questionable autochthonous character. A further single seropositive canine case without a proof of an actual infection by PCR has been reported [492].

Ehrlichiosis due to *E. canis* has been reported from Costa Rica at a molecular prevalence ranging between 3.2–50.0% [40, 41, 493, 494]. Interestingly, *E. canis* prevalence varies massively depending on the region [40]. Seroprevalence in dogs for *E. canis* has been reported at a range of 3.5–38.2% [480, 482, 490, 494]. Furthermore, *E. chaffeensis* has been detected at a molecular prevalence of 59% in dogs [495].

Rickettsiosis due to *R. rickettsii*, *R. amblyommii*, *R. felis*, *R. rhipicephali* and *R. parkeri* has been reported at varying seroprevalences in dogs from San Jose [496]. Furthermore, *R. felis* has been detected in cat fleas [497, 498] and *R. amblyommii* has been detected in *A. cajennense* ticks [497].

Cuba

The information on vector-borne pathogens on Cuba is very scarce and fragmented.

Parasitic diseases

Dirofilariosis due to *D. immitis* was reported on Cuba in a range between 6.7–40.0% in dogs [499–501].

Bacterial diseases

Lyme borreliosis: The disease has not been officially reported in Cuba. However, clinical cases resembling Lyme disease and serologically positive cases have been reported in humans [502, 503], but existence of *B. burgdorferi* (s.l.) is still much debated [504, 505]. No prevalence data for dogs or cats are available for the region.

Dominican Republic

The information on vector-borne pathogens in the Dominican Republic is extremely scarce or non-existent.

Parasitic diseases

Dirofilariosis by antigen detection or microfilaria evidence in dogs has been reported at a prevalence of 18.2% on Samana Peninsula [506] and at a prevalence of 18% in Santo Domingo [507]. An autochthonous focus for cutaneous leishmaniosis in humans has been described within the last 20 years is the Dominican Republic [508–511]. Nevertheless, no prevalence data for dogs are available.

Ecuador

Parasitic diseases

Babesiosis due to *Babesia* spp. has been reported in dogs from Cuenca (by blood smear analysis) at a prevalence of 40.6% [512]. No *Babesia* spp. antibodies were detected in a screening for different *Babesia* species of dogs on Isabela Island, Galapagos [7].

Dirofilariosis has been reported only on Isabela Island, Galapagos, with 34% seroprevalence in dogs and 2% in cats [7].

Leishmaniosis in dogs was reported on the Pacific coast of Ecuador and in other areas [513, 514]. Seroprevalence of 4% against *L. donovani* was also detected in dogs on Isabela Island, Galapagos [7].

Trypanosomosis in people (Chagas disease) was described in Ecuador in 1930 in the province of Guayas and thereafter in various other provinces [515–522]. A serosurvey on dogs, performed in two towns in Guayas province detected seroprevalences of 9.1% and 14.3%, determined by ELISA [518]. *Trypanosoma* infection
was not detected in dogs or cats from Isabela Island, Galapagos [7].

Bacterial diseases

Anaplasmosis due to *A. platys* was reported in a single dog from Isabela Island, Galapagos [7]. *Anaplasma phagocytophilum* was reported by blood smear analysis in Cuenca at a prevalence of 3.1% [512] and by rapid test at different seroprevalences (26–48%) in dogs in Manta and Guayaquil [523], but cross-reaction with *A. platys* especially in the latter survey should be borne in mind. In addition, an *Anaplasma* species closely related to *A. phagocytophilum* was described in *Amblyomma multipunctum* and *Rhipicephalus microplus* ticks collected from the Antisana Ecological Reserve and Cayambe-Coca National Park [524].

Bartonellosis was detected on Isabela Island, Galapagos, at a prevalence of 75% in cats, and at a molecular prevalence of 13% in dogs [7]. The most common species identified by DNA amplification in cats were *B. henselae* and *B. clarridgeiae*, while *B. henselae*, *B. clarridgeiae*, and *B. elizabethae* were detected in dogs [7].

Lyme borreliosis was not detected in dogs surveyed on Isabela Island, Galapagos [7].

Ehrlichiosis due to *E. canis* estimated by blood smear analysis has also been reported from Cuenca at a prevalence of 56.3% [512] and by rapid test at different seroprevalences (66–78%) in dogs in Guyaquil and Manta [523]. *Ehrlichia* infection (determined by IFA test or PCR) was not detected in dogs from Isabela Island, Galapagos [7].

Hemotropic mycoplasmosis has been reported at a molecular prevalence of 2% in cats and of 1% in dogs on Isabela Island, Galapagos [7].

Rickettsiosis has not been reported in Guatemala in dogs or cats. Nevertheless, *R. felis* has been reported in cat fleas [498].

Parasitic diseases

Dirofilariosis: Infection with *D. immitis* has been described in dogs from northern El Salvador at a seroprevalence of 3% [526]. In a study performed on dogs from the coastal areas of El Puerto de La Libertad (La Libertad), prevalences ranging between 11–19%, depending on the type of methods used, were detected [527].

Leishmaniosis: The pathogen of visceral leishmaniosis *L. infantum* (syn. *L. chagasi*) has been isolated in a human case of cutaneous leishmaniosis in El Salvador [528], but no data on dogs or cats are available.

Trypanosomosis has been known to be present in El Salvador affecting people as Chagas disease since 1913. In 1976, prevalences (by xenodiagnosis) of 5% and 7.1% were reported for *T. cruzi* and *T. rangeli* in dogs, respectively [529], while prevalence values of 1.4% and 4.2% were reported for the same species, respectively, in cats [529].

French Guiana

As mentioned beforehand to a number of countries, the information on CVBDs in French Guiana is very scarce.

Parasitic diseases

Leishmaniosis has been widely reported in people [530–537]. Only two canine cases (one with questionable autochthonous character) and one clinical case of cutaneous leishmaniosis due to *L. braziliensis* in a domestic cat have been reported [538, 539]. Trypanosomosis has been known to be present in French Guiana affecting people (Chagas disease) [540–546].

Bacterial diseases

Anaplasmosis has been described in dogs from French Guiana at a molecular prevalence for *A. platys* of 15.4% [547]. Ehrlichiosis due to *E. canis* has been reported at a seroprevalence of 6.6% in dogs imported from French Guiana to France [548]. No other data are available for *Ehrlichia* species prevalence in the region.

Guatemala

The state of knowledge is very scarce for CVBDs in Guatemala.

Parasitic diseases

Leishmaniosis has been reported in the Peten Region with a seroprevalence of 28% in dogs [549]. Trypanosomosis has been described in dogs at a seroprevalence of 37% [550].

Bacterial diseases

Bartonellosis due to *Bartonella* species has been reported in cats [551], but not in dogs. Rickettsiosis has not been reported in Guatemala in dogs or cats. Nevertheless, *R. felis* has been reported in cat fleas [498].

Guyana (British Guyana)

The information on vector-borne pathogens in Guyana is extremely scarce or non-existent.
Parasitic diseases
Dirofilariasis by *D. immitis* was reported in 1964 at an overall prevalence of 14.1% in 2135 dogs screened *via* Knott’s test [552]. Leishmaniosis in people has been described frequently [553–555], but no published data on dogs or cats are available. Trypanosomosis due to *T. cruzi* has been sporadically reported in humans [542]. No reports on infection or prevalence are available for dogs or cats.

Honduras
Parasitic diseases
Dirofilariasis has been detected and reported in dogs from Roatán, Islas de la Bahia, at a prevalence of 30% (Knott’s test) [556].

Leishmaniosis due to *L. donovani* was detected at a seroprevalence of 25% in cats [557] and ranging between 1.4–8.6% in dogs [557–560], but caution should be taken due to cross-reactivity with *T. cruzi*. Visceral and cutaneous leishmaniose have been reported in humans in Honduras for some time with *L. chagasi* and *L. mexicana* as underlying pathogens [560, 561].

Trypanosomosis in people due to *T. cruzi* and *T. rangeli* is present in Honduras [558, 559]. A study in cats revealed a 16% prevalence rate for *T. cruzi* [557]. Although official reports on trypanosomosis in dogs are not available, apart from a single described canine isolate by Acosta et al. [558], the presence of the disease in dogs has been suggested due to the serological cross-reactivity between *T. cruzi* and *L. donovani* [559].

Bacterial diseases
Lyme borreliosis in form of seropositivity has been detected in cats at 25% prevalence [557]. Ehrlichiosis has been detected in dogs at a molecular prevalence of 23.7% for *E. canis*. Ticks collected from dogs have also been tested positive for *E. canis* [562]. Rickettsiosis due to *R. rickettsii* has been reported in cats at 16% seroprevalence [557].

Mexico
Parasitic diseases
Babesiosis has been described in 3 of 22 sick dogs from Morelos (13.6%), using DNA amplification [563] and in 3 of 30 dogs from Veracruz (10%) using indirect haemagglutination test [564].

Dirofilariasis has been described in dogs from all regions. Prevalence of 1.3% in central Mexico, 60% in Celestum, and 8.3% in Yucatan for *D. immitis* have been reported [565–567]. *Dirofilaria repens* has also been reported in a single dog in Guanajuato [35].

Leishmaniosis was described to affect dogs and cats in several regions. In dogs, seroprevalences ranging between 7.5–32.8% for *L. braziliensis*, 4.7–41.4% for *L. mexicana*, and 6.1–11.9% for *L. infantum*, have been reported in Quintana Roo and the Yucatan peninsula [568–570]. A prevalence of 19% of visceral leishmaniosis has been reported also in dogs from Chiapas [571]. In cats, prevalences of infection with *L. mexicana*, *L. braziliensis* and *L. panamensis* at 10%, 11.6% and 22.1%, respectively, have been reported in Yucatan [569].

Trypanosomosis due to *T. cruzi* has been reported in dogs at seroprevalences of 8.1% in Jalisco, 7.6% in Campeche, between 4.5–42.8% in Chiapas, 20.0–21.3% in Quintana Roo, 21.0–24.5% in Tejupilco, 17.5% in Toluca and 9.8–34.0% in Yucatan [84, 572–579]. In cats, *T. cruzi* infection has been reported at a seroprevalence of 7.4–8.6% in the Yucatan Peninsula [580, 581].

Bacterial diseases
Anaplasmosis due to *A. phagocytophilum* was described in sick dogs from Oaxaca at a seroprevalence of 7.4% [582] and of 3% from Monterrey [583], but potential cross-reactivity in the used test system with *A. platys* antibodies should be borne in mind. *Anaplasma* sp. was also detected in a large countrywide screening at 0.61–16.4% seroprevalences all over the area, depending on the region [186]. A molecular prevalence of 31% for *Anaplasma* sp. was reported for Coahuila and Durango with 3% of the dogs confirmed as *A. platys* infection [584].

Lyme borreliosis in dogs due to *B. burgdorferi* (s.l.) is reported in variable range among different regions of Mexico. It was reported in 0.9% of dogs from Nuevo Leon (by PCR), in 16% from Monterrey, in 8.2% from Mexicali, and in 0.23% of dogs including 21 Federate Mexican states (by seroprevalence) [186, 187, 585, 586]. Seroprevalence in humans was 3.4% in Mexico City, 6.2% in northeastern regions, and 0.3% in a nationwide survey [587, 588], with the Northeast considered as a zone where Lyme disease is endemic [589].

Ehrlichiosis due to *E. canis* was reported at a seroprevalence ranging between 8.7–44.1% in dogs from Yucatan [590, 591], a seroprevalence of 74.3% in clinically suspected dogs from Sinaloa [592] and at a molecular prevalence of 45% in shelter dogs from Yucatan [593]. Similarly, a seroprevalence of 37% was reported in sick dogs from Oaxaca [582]. *Ehrlichia canis* was also detected in a large countrywide screening at seroprevalences of 2.4–51%, depending on the region [186].

Rickettsiosis due to *R. felis* or *R. rickettsii* has been reported in people, but not in dogs [594]. Nevertheless, *R. akari* has been reported in a dog from Yucatan, whereas *R. felis* has been reported at a prevalence of 20% in fleas collected from dogs also on the Yucatan Peninsula [595, 596] and *R. rickettsii* has been reported in *A. cajennense* collected from dogs [597].
Nicaragua

Parasitic diseases

Babesiosis in form of Babesia spp. infection has been reported in dogs at a molecular prevalence of 26% (10/39), with four dogs being infected with B. gibsoni and six being infected with B. vogeli [598].

Dirofilarlariosis due to D. immitis has been described in two dogs from Managua [599], but autochthonous character of the two dogs is questionable. In a screening of 329 dogs a seroprevalence of 1.8% was detected. Additionally, in the same study in single dogs microfilariae were detected by microscopy and D. immitis infection was confirmed by PCR in two dogs [492].

Hepatozoonosis due to H. canis was detected at a molecular prevalence of 51% [598]. Leishmaniosis in different clinical scenarios and caused by different species has been reported in man [600, 601], but no prevalence data in dogs or cats could be found.

Trypanosomosis due to T. cruzi has been described in people in Nicaragua [602, 603]. No information about the prevalence of the pathogen is available in dogs or cats.

Bacterial diseases

Anaplasmosis in dogs due to A. platys infection has been reported at a molecular prevalence of 13% [598] and at a seroprevalence to Anaplasma spp. of 28.6% [492]. In the latter screening, A. platys and A. phagocytophylum infection could be confirmed on a molecular basis in 21.3% and 18.1% of seropositive dogs, respectively [492]. Lyme borreliosis could not be confirmed in a serosurvey of 329 dogs [492].

Ehrlichiosis in dogs has been found at a molecular prevalence of 56% [598] and at a seroprevalence of 63% for E. canis [604] and 62.9% for Ehrlichia spp. [492]. In the last study, 58.5% of all seropositive dogs were confirmed to be infected with E. canis by molecular methods [492].

Ehrlichiosis in dogs due to E. canis has been detected and identified at a molecular prevalence of 55% for R. amblyommi, 20% for R. rickettsii, 5% for R. bellii, 25% for R. rhipicephali, 10% for R. parkeri and 15% for R. felis [614]. Similarly, R. felis and R. amblyommi/Candidatus R. amblyommi have been detected in fleas and ticks, respectively, from dogs and cats [477, 614–617].

Paraguay

The information on vector-borne pathogens in Paraguay is extremely scarce or non-existent.

Parasitic diseases

Babesiosis in domestic dogs has been detected at an overall prevalence of 6% from 384 animals surveyed from Asuncion, with B. vogeli being the most predominant piroplasmid species [618]. Dirofilarlariosis by D. immitis has been reported by necropsy in eight dogs of 200 street animals [619]. Leishmaniosis has been reported at seroprevalences ranging between 6.6–69.0% in dogs [620–622]. Trypanosomosis was detected in dogs at seroprevalences of 36.4% and 38% [623, 624] and in cats at 37.5% [624].

Bacterial diseases

Anaplasmosis has been detected in a larger population of dogs (n = 384) sampled from Asuncion; A. platys was detected and identified at a molecular prevalence 10.67% [625]. Ehrlichiosis has been reported in the same population of dogs (n = 384) from Asuncion with E. canis detected and identified at a molecular prevalence of 10.41% [625].

Peru

Parasitic diseases

Dirofilarlariosis due to D. immitis has been reported at a seroprevalence of 4.4% in dogs from Lima [626, 627] and ranging between 0–12.8% seroprevalence in further studies from Lima [628–630].

Leishmaniosis has been reported in Peru at molecular prevalences ranging between 5.4–7.6% in asymptomatic and 18–45% in symptomatic dogs [631–634]. Prevalence was highly dependent on the detection method [631], as well as on the type of sample and the molecular target used for testing [632, 635].
Trypanosomosis due to \textit{T. cruzi} infection in dogs has been reported in southern Peru at a seroprevalence of 12.3% [636], while in northern Peru seroprevalences ranged between 19.8–40.0% [637, 638].

\textbf{Bacterial diseases}

Anaplasmosis due to \textit{A. phagocytophilum} infection has been reported in a single dog from Lima [639]. Caution should be enforced due to potential cross-reactivity of the used test with \textit{A. platys}. \textit{Anaplasma platys} infection as suggested by inclusion bodies in platelets, was identified in 29.2% of pet dogs from Lima, and a prevalence of 1.4% for \textit{A. platys} was detected by molecular methods in the same dog population [640].

Bartonellosis due to infection with \textit{B. rochalimae} or \textit{B. vinsonii berkhoffii} was detected by molecular methods in 10% of asymptomatic dogs [641]. The same survey also showed a seroprevalence of 62% for \textit{B. rochalimae} and of 40% for \textit{B. vinsonii berkhoffii}. Infection with \textit{Bartonella} species in cats has been reported [642], but no prevalence values are available.

Lyme borreliosis has been reported in people in Peru [643, 644]. Furthermore, potential vectors have been detected [643], but information is scarce. Seropositivity has been reported in two dogs from Lima one of which was suspected to be of autochthonous character [639].

Ehrlichiosis has been reported in dogs [626, 645] as well as in humans, here in form of seropositivity to \textit{E. canis} and \textit{E. chaffeensis} [222, 645, 646]. A survey of a small cohort of dogs showed a molecular prevalence of 44% for \textit{E. canis} [645] and a seroprevalence of 16.5% for \textit{E. canis} in a population of 140 dogs [626].

Rickettsiosis in Peru has been reported in people and vectors [647]. A seroprevalence of 59.2% in dogs and of 7.7% in cats has been reported for spotted fever group rickettsiae [647]. Similarly, \textit{R. felis} and \textit{R. parkeri} have been detected in fleas and ticks from domestic animals [648].

\textbf{Puerto Rico}

The information on vector-borne pathogens in Puerto Rico is scarce.

\textbf{Parasitic diseases}

Dirofilariosis due to \textit{D. immitis} in dogs has been detected at a seroprevalence of 19% in 123 dogs tested from Guaynabo and Ponce regions [649] and of 6.7% in 1,723 dogs with massively varying prevalences (up to 20.4%) in the different tested locations on the island using Knott’s test [650]. A seroepidemiological study in humans revealed 2.66% \textit{D. immitis} seropositives [651].

\textbf{Bacterial diseases}

Anaplasmosis due to \textit{A. phagocytophilum}, showed a seroprevalence of 30.9% for 123 dogs from Ponce, Guaynabo and Vieques Island [649], but caution should be considered due to cross-reactivity with \textit{A. platys} antibodies in the used test system. Lyme borreliosis in dogs has not been detected by a serological survey in Guaynabo, Ponce or Vieques Island [649]. Ehrlichiosis due to \textit{E. canis} has been detected at a seroprevalence of 45.5% in dogs [649].

\textbf{Suriname}

The information on vector-borne pathogens in Suriname is extremely scarce or non-existent.

\textbf{Parasitic diseases}

Dirofilariosis in dogs by \textit{D. immitis} infection has been reported in old dissection studies [652–655] and by Panday et al. [656] detecting 26% of positive dogs using modified Knott’s test and 5.7% of seropositive dogs using IFA test. Leishmaniosis in form of human cutaneous leishmaniosis is endemic in the hinterland [657–661] and has been detected in a population of 47 dogs with a seroprevalence of 4.3% [662, 663]. Trypanosomosis suspected to be caused by \textit{T. evansi} has been reported in four single cases in hunting dogs [664] and due to \textit{T. cruzi} is reported in people [665].

\textbf{Uruguay}

\textbf{Parasitic diseases}

Leishmaniosis has recently been reported in 11/45 dogs by serology in Salto, Uruguay. Typing revealed \textit{L. infantum} as corresponding pathogen. Additionally, \textit{Leishmania} DNA was also detected in sand flies [666]. Trypanosomosis has been described in people in Uruguay [667–670], but no reports or prevalence data are available for dogs or cats.

\textbf{Bacterial diseases}

Anaplasmosis due to \textit{A. platys} infection has been reported in 4.2% of dogs surveyed in northwestern Uruguay [671]. Bartonellosis was not reported in dogs or cats, but has been described in children [672, 673]. Lyme borreliosis was not described in people, dogs or cats. Nevertheless, \textit{B. burgdorferi} (s.l.) genospecies have been detected in \textit{Ixodes pararicinus} (\textit{I. ricinus} complex group) ticks in the region [182]. Rickettsiosis due to seroreactivity against antigens of \textit{R. felis}, \textit{R. parkeri} and \textit{R. rhipicephali} has been described in dogs at an overall seroprevalence of 20.3% [674]. From that study, it is estimated that at least 14% of dogs were seropositive for \textit{R. parkeri}, or a \textit{R. parkeri}-like organism. \textit{Rickettsia}}
parkeri and *R. felis* have furthermore been detected in ticks and/or fleas [674–678], and there have been reports on *R. conorii* infections in humans [679, 680], but with some debate on cross-reactivity [678].

Venezuela

Parasitic diseases

Babesiosis due to *B. vogelii* has been reported at a molecular prevalence of 2.2% in dogs [681].

Dirofilariosis has been reported using modified Knott’s test at a prevalence of 15.8% in dogs from Sucre [682] and, using ELISA, at a prevalence of 13% in Barquisimeto [683] and of 44.9% in Maracaibo [684]. D’Alessandro [685] reported an overall prevalence of 28.9% in dogs from Aragua using microscopic blood examination; the author detected a higher prevalence in hunting dogs (58.5%) compared to shelter or owned dogs (11.7%). Furthermore, there are also single feline case reports published for Venezuela [686–688].

Hepatozoon infection in dogs due to *H. canis* has been reported at a prevalence of 44.8% [681].

Leishmaniosis in dogs has been reported at prevalences ranging between 3–57%, depending on the region, the year and the type of test [323, 689–692]. On Margarita Island, seroprevalences of 21.0–33.1% have also been reported for dogs [693].

Trypanosomiasis has been reported in dogs at seroprevalences ranging between 6.4–67.6% [694–698].

Bacterial diseases

Anaplasmiosis in dogs due to *A. platys* has been reported [699, 700], and in one study even a prevalence of 16% by PCR was documented [701]. Lyme borreliosis has been described in humans [702, 703], but no reports on dogs or cats are available. Ehrlichiosis due to *E. canis* infection has been reported at a molecular prevalence of 31% in dogs [704]. A co-infection in a dog with *E. canis* and *E. chaffeensis* has been also reported [705].

Summary and priorities in companion vector-borne disease management

As illustrated by the prevalence data presented in this review, vector-borne pathogens are ubiquitous in LATAM, and represent a challenge for animal and, due to the zoonotic character of several of them, public health systems in both, urban and rural environments.

Unfortunately, diagnosis of VBDs as well as the system of VBD surveillance, reporting, prevention and control in the region is relatively weak, very limited, and in most cases inexistent.

During the last ten years, significant improvements in vector control and surveillance, clinical diagnosis, and medical practices have been achieved in the area of VBDs globally, but this seems not to be the case for several areas in LATAM. Regrettably, LATAM is characterized by an expanding human population with marked social, cultural and economic inequalities. Several factors have created conditions for the emergence and persistence of previously unrecognized vector-borne and zoonotic diseases in most of the countries of the region [11, 38, 706], such as drastic changes in economic development and land use; poor waste disposal management practices (conducing to an uncontrolled growth of feral dog and cat populations); absence of responsible pet ownership; lack of awareness of animal welfare and disease prevention; restricted economic constrains to proper veterinary care; and extremely limited access to technological advances in diagnostic tools. Under these circumstances, it is clear that one of the most important steps towards control of CVBDs is prevention. In this context, companion animals, often having higher exposure and risk factors to VBDs than humans, could play a valuable role in minimizing the zoonotic potential of CVBDs by controlling this reservoir through proper prevention.

Prevention of infection should be based on actions aimed at averting infection in three main areas: vector control through use of repellent ectoparasiticides/insecticides and through environmental control (control of water accumulation, waste management, insecticidal treatment, mosquito screens etc.), vaccination, where applicable, and behavioral prophylaxis (cleaning of animals’ residues, avoidance of daily phases with high vector activity like e.g. twilight, no abandonment of pets etc.).

Several previously unrecognized or overshadowed vector-borne pathogens that affect companion animals are present in LATAM. Most, if not all of the diseases presented here are zoonotic, which not only represents a concrete risk for pet animals, but also for people. Unfortunately, the information to the veterinary, public and medical community is either very scarce, limited, inexistent or not accessed and due to non-awareness in the people concerned.

In order to address the challenges that CVBDs impose to the region, some of the following priorities should be considered:

- Availability of affordable diagnostic techniques with solid interpretation and easy access to diagnostic reference laboratories in order to maintain consistent methodologies and updated diagnostic techniques.
- Easy access to formal (i.e. scientific and medical journals) and informal (i.e. conference and meeting proceedings, white papers, etc.) information regarding occurrence of VBDs, new or improved diagnostic tools, clinical findings, treatment protocols, and
options of prevention aimed at veterinarians and medical professionals.

- Creation of cooperative extension services and outreach programs fostering the collaboration between veterinarians, physicians, scientists, health workers, social workers, educators and farm communities.
- Development of impactful educational programs aiming at pet owners, farmers, and the general public regarding responsible pet ownership, vector control and VBD prophylaxis.
- Development of VBD surveillance network systems in collaboration with state and local health departments.

For veterinarians these priorities can be expanded into concrete actions as summarized also in Baneth et al. in a similar way [707]:

- Forget about exotic diseases as any disease can occur in the practice.
- Stay informed with up-to-date research data via diverse channels.
- Prevent transmission as best approach to CVBD management.
- Include fleas onto the list of potential vectors.
- Consider non-vectorial transmission in the case of leishmaniosis, Bartonella and hemotropic mycoplasmas.
- Check for the patients’ travel schedule.
- Inform yourself on proper diagnostic methods.
- Consider treatment not necessarily as end of an infection.
- Inform and keep in touch with your clients.
- Alert public health authorities where appropriate.

VBDs are among the most complex of all infectious diseases and may pose a challenge to mitigate, control and prevent. A true One Health approach is required to respond to the current challenges presented by these diseases in both humans and animals. In LATAM, the actions towards mitigating the impact that CVBDs impose to both animal welfare and public health are intimately tied to the economic, social, and political values of the people in the region.

An interdisciplinary cooperation between professionals in human and animal medicine, scientists, ecologists and sociologists, a truly One Health approach, should be encouraged to ensure that surveillance is linked to actions. The creation of extension services at community levels providing culturally and economical acceptable veterinary services, including access to information, prevention, diagnosis and treatment to underserved regions, will be the key to minimize the impact of these diseases in the region. For the start, as preventing is always preferable to curing, the presumably easiest action to be taken here is a strong call for year-round prevention of pets with suitable and highly effective ectoparasiticides and microfilaricides (and where applicable also vaccines).

Conclusions

VBDs in companion animals possess a wide distribution in LATAM. But in contrast to this wide distribution, data availability and accessibility on the occurrence of the different diseases are very different for the individual countries of LATAM and often scarce. Some countries, e.g. Argentina and Brazil, possess profound data availability, whereas especially in some of the smaller ones international accessible data is missing. Generally, none of the examined LATAM countries is completely free from the listed pathogens in companion animals. The fact that some of the discussed diseases and pathogens possess zoonotic character demands for a strong call for disease prevention in companion animals by repellent ectoparasiticidal/insecticidal control, environmental control, vaccination, where applicable, and behavioral prophylaxis. Behavioral priorities especially also for veterinarians and a One Health approach are needed for the region.

Abbreviations

AHS: American Heartworm Society; CVBD: companion vector-borne disease; LATAM: Latin America; LB: Lyme borreliosis; TroCCAP: Tropical Council of Companion Animal Parasites; VBD: vector-borne disease.

Acknowledgements

The authors want to thank Susanne Siebert, Bettina Schunack and Maria de Lourdes Mottier (Bayer Animal Health GmbH) for critical review of the manuscript. Publication of this paper has been sponsored by Bayer Animal Health in the framework of the 14th CVBD World Forum Symposium.

Funding

The work on the manuscript was funded by Bayer Animal Health GmbH. FK received funding for a Bayer project at Leipzig University.

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article.

Authors’ contributions

RM and FK both gathered corresponding publications and data, generated the table and drafted the manuscript. Both authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References

1. Jackman J, Rowan A. Free-roaming dogs in developing countries: the benefits of capture, neuter, and return programs. In: Salem DJ, Rowan AN, editors. The state of the animals 2007. Washington, DC: Humane Society Press; 2007. p. 55–78.

2. Hartwell S. The indoor outdoor debate. 2008. http://messybeast.com/

3. Ryan MP, Adley CC. Spingonomas pauzimobilis: a persistent Gram-negative nosocomial infectious organism. J Hosp Infect. 2010;75:153–7.

4. Biondo AW, Dos Santos AP, Guimaraes AMS, Vieira RF, Vidotto O, Macciara DB, et al. A review of the occurrence of hemoplasmas (hemotropic mycoplasmas) in Brazil. Rev Bras Parasitol Vet. 2009;18:1–7.

5. Fung HL, Calzada J, Saldana A, Santamaria AM, Pineda V, Gonzalez K, et al. Domestic dog health worsens with socio-economic deprivation of their home communities. Acta Trop. 2014;135:67–74.

6. Jenkins EJ, Schurer JM, Gesy KM. Old problems on a new playing field: helmint zoonoses transmitted among dogs, wildlife, and people in a changing northern climate. Vet Parasitol. 2011;182:54–69.

7. Levy JK, Crawford PC, Lappin MR, Dubovi EJ, Levy MG, Allemann R, et al. Infectious diseases of dogs and cats on Isabela Island. Galapagos. J Vet Intern Med. 2008;22:60–5.

8. Trotman M. Regional realities: Impact of stray dogs and cats on the community impact on economy, including tourism impact on live-stock, wildlife and the environment. 2006. http://www.hsi.org/assets/pdfs/regional_realities.pdf. Accessed 1 Feb 2018.

9. Weston MA, Fitzsimons JA, Wescott G, Miller K, Ekayake KB, Schneider T. Bark in the park: a review of domestic dogs in parks. Environ Manage. 2014;54:373–82.

10. Woodruffe R, Prager KC, Munson L, Conrad PA, Dubovi EJ, Mazet JAK. Managing zoonoses in dogs: a new perspective. Vet Parasitol. 2006;141:197–203.

11. Dantas-Torres F, Figueredo LA. Canine babesiosis: a Brazilian perspective. Vet Parasitol. 2009;164:1421–3.

12. Bredal WP, Gjerde B, Eberhard ML, Aleksandersen M, Wilhelmson DK, Mafnfeld LS. Adult Dirofilaria repens in a subcutaneous granuloma on the chest of a dog. J Small Anim Pract. 1998;39:595–7.

13. Hargis AM, Lewis TF, Duclos DD, Loeffler DG, Rauch RL. Dermatitis associated with microfilariae (filarioidea) in 10 dogs. Vet Dermatol. 1999;10:95–107.

14. Baneth G, Volansky Z, Anug Y, Favia G, Bain O, Goldstein RE, Harris S. Dirofilaria repens infection in a dog: diagnosis and treatment with melarsomine and doramectin. Vet Parasitol. 2002;105:173–8.

15. Hermosilla C, Pantoche N, Dyachenko V, Guttmann M, Baur C. First autochthonous case of canine ocular Dirofilaria repens infection in Germany. Vet Rec. 2008;16:154–5.

16. Tarello W. Clinical aspects of dermatitis associated with Dirofilaria repens in pets: a review of 100 canine and 31 feline cases (1990–2010) and a report of a new clinic case imported from Italy to Dubai. J Parasitol Res. 2011;2011:578385.

17. Gencchi C, Kramer LH, Rivasi F. Dirofilarial infections in Europe. Vector Borne Zoonotic Dis. 2011;11:1307–17.

18. Simon F, Siles-Lucass M, Morchon R, Gonzalez-Miguel J, Mellado I, Carreton E, Montoya-Alonzo JA. Human and animal dirofilariasis: the emergence of a zoonotic mosaic. Clin Microbiol Rev. 2012;25:507–44.

19. Ramos-Lopez S, León-Galván MF, Salas-Alatorre M, Lechuga-Arana AA, Valencia-Posadas M, Gutiérrez-Chávez AJ. First molecular identification of Dirofilaria repens in a dog blood sample from Guanajuato, Mexico. Vector Borne Zoonotic Dis. 2016;16:734–6.

20. López J, Valiente-Echeverría F, Carrasco M, Mercado R, Abacar K. Identi- ficación morfológica y molecular de filarias caninas en una comuna semi-rural de la Región Metropolitana, Chile. Rev Chilena Infectol. 2012;29:284–9.

21. Canestri Troiti G, Pampiglione S, Rivasi F. The species of the genus Dirofilaria. Railliet & Henry, 1911. Parasitologia. 1997;39:369–74.

22. Dantas-Torres F. Canine vector-borne diseases in Brazil. Parasit Vectors. 2008;1:25.

23. de Miranda RL, D’Oswego LH, de Castro JT, Metzger B, Rubini AS, Mundi AV, et al. Prevalence and molecular characterization of Hepatozoon canis in dogs from urban and rural areas in Southeast Brazil. Res Vet Sci. 2014;97:325–8.

24. Rojas A, Rojas D, Montenegro V, Gutierrez R, Yasur-Landau D, Baneth G. Vector-borne pathogens in dogs from Costa Rica: first molecular detection of Babesia vogeli and Hepatozoon canis infections with a high prevalence of monocytic ehrlichiosis and the manifestations of co-infection. Vet Parasitol. 2014;199:121–8.

25. Wei L, Kelly P, Ackerson K, El-Mahawlay HS, Kaltenboeck B, Wang C. Molecular detection of Dirofilaria immitis, Hepatozoon canis, Babesia spp., Anaplasma platys and Ehrlichia canis in dogs on Costa Rica. Acta Parasitol. 2015;60:213–5.
42. Sherding RG. Toxoplasmosis and other systemic protozoal infections. In: Birdheart SJ, Sherding RG, editors. Saunders manual of small animal practice. 3rd ed. St. Louis: Elsevier Saunders; 2006. p. 219–29.

43. Baneth G. Perspectives on canine and feline hepatoparasitosis. Vet Parasitol. 2013;191:3–11.

44. Sasanelli M, Paradies P, Greco B, Eyal O, Zaza V, Baneth G. Failure of imidacarb dipropionate to eliminate *Toxoplasma gondii* in naturally infected dogs based on parasitological and molecular evaluation methods. Vet Parasitol. 2010;171:194–9.

45. Dantas-Torres F. Canine leishmaniosis in South America. Parasit Vectors. 2009;2(Suppl. 1):51.

46. Tolezano JE, Ullana SR, Tanjucg HH, Araújo MF, Barbosa JA, Barbosa JE, et al. The first records of *Leishmania (Leishmania) amazonensis* in dogs (*Canis familiaris*) diagnosed clinically as having canine visceral leishmaniasis from Araçatuba County, São Paulo State, Brazil. Vet Parasitol. 2007;149:280–4.

47. Reithinger R, Davies CR. Is the domestic dog (*Canis familiaris*) a reservoir host of American cutaneous leishmaniasis? A critical review of the current evidence. Am J Trop Med Hyg. 1999;61:530–41.

48. Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A historical overview of the classification, evolution, and dispersion of *Leishmania* parasites and sandflies. PLoS Negl Trop Dis. 2016;10:e0004349.

49. Young DG, Duncan MA. Guide to the Identification and Geographic Distribution of Lutzomyia Sandflies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). Memoirs of the American Entomological Institute no. 54. Gainesville: Associate Publishers; 1994. p. 881.

50. Solano-Gallego L, Koutsinas A, Miro G, Cardoso L, Pennisi MG, Ferrer P, et al. Early reduction of *Leishmania* DNA by fret-based real-time PCR in urine from dogs with natural clinical leishmaniosis. Vet Parasitol. 2009;165:1–18.

51. Solano-Gallego L, Miro G, Koutsinas A, Cardoso L, Pennisi MG, Ferrer P, et al. Leish*Vet* guidelines for the practical management of canine leishmaniosis. *Parasit Vectors*. 2011;4:86.

52. Pennisi M-G, Cardoso L, Baneth G, Bourdeau P, Koutsinas A, Miro G, et al. Leish*Vet* update and recommendations on feline leishmaniasis. *Parasit Vectors*. 2013;8:302.

53. Baneth G, Koutsinas AF, Solano-Gallego L, Bourdeau P, Ferrer L. Canine leishmaniosis - new concepts and insights on an expanding zoonosis: part one. Trends Parasitol. 2008;24:324–30.

54. Solano-Gallego L, Rodriguez-Cortes A, Trotta M, Zampieron C, Razia L, Perea LM, et al. The first records of *Hepatozoon canis* in stray and pet dogs in the *Los Altos* region of the *Jalisco* state, Mexico. *Rev Argent Microbiol*. 2014;46:85–90.

55. Solano-Gallego L, Villanueva-Saz S, Carbonell M, Trotta M, Furlanello P, et al. *Hepatozoon canis* and *Trypanosoma cruzi* in naturally infected dogs in the *Jalisco* state, Mexico. *Rev Argent Microbiol*. 2016;48:151–6.

56. Brazil - Ministério da Agricultura, Pecuária e Abastecimento. Nota Técnica Nº 11/2016/CPV/DFIP/SDA/GM/MAPA. 2016. http://www.tgmt.org.br/portal/wp-content/uploads/2016/09/nota-tecnica.pdf. Accessed 1 Mar 2019.

57. Regina-Silva S, Feres AMLT, Franca-Silva JC, Dias ES, Michalsky EM, de Andrade HM, et al. Field randomized trial to evaluate the efficacy of the Leish*Vet*® vaccine against canine visceral leishmaniasis in an endemic area of Brazil. Vaccine. 2016;34:2233–9.

58. World Health Organization (WHO). The global burden of disease. update. Geneva: WHO Press; 2004. p. 2008.

59. Chikweto A, Kumthekar S, Chawla P, Tiwari KP, Perea LM, Paterson T, Sharma RN. Seroprevalence of *Trypanosoma cruzi* in stray and pet dogs in Grenada, West Indies. Trop Biomed. 2014;31:97–50.

60. Lee BY, Bacon KM, Bottazzi ME, Hotez PJ. Global economic burden of Chagas disease: a computational simulation model. *Lancet Infect Dis*. 2013;13:342–8.

61. Rassi A, Rassi A, Marin-Neto JA. Chagas disease. *Lancet*. 2010;375:388–402.

62. Hotez PJ, Dumonteil E, Heffernan MJ, Bottazzi ME. Innovation for the 'bottom 100 million': eliminating neglected tropical diseases in the Americas. *Adv Exp Med Biol*. 2013;764:1–12.

63. Hotez PJ, Dumonteil E, Woc-Colburn L, Serpa JA, Bezek S, Edwards MS, et al. Chagas disease: “the new HIV/AIDS of the Americas”. *PLoS Negl Trop Dis*. 2012;6:e1498.

64. Esch KJ, Petersen CA. Transmission and epidemiology of zoonotic protozoal diseases of companion animals. *Clin Microbiol Rev*. 2013;26:58–85.

65. Desquesnes M, Dargentes A, Lai DH, Lun ZR, Holzmuller P, Jittapalapong S. *Trypanosoma evansi* and surra: a review and perspectives on transmission, epidemiology and control, impact, and zoonotic aspects. *Bio Med Res Int*. 2013;2013:321373.

66. Hoare CA. The trypanosomes of mammals: a zoological monograph. Oxford: Blackwell Scientific Publications; 1972. p. 749.

67. Barr SC. Canine Chagas’ disease (American trypanosomiasis) in North America. *Vet Clin North Am Small Anim Pract*. 2009;39:1055–64.

68. Mahmoud MM, Gray AR. Trypanosomiasis due to *Trypanosoma evansi* (Steel, 1885) Balbiani. 1888. A review of recent research. *Trop Anim Health Prod*. 1980;12:35–47.

69. Antoine-Moussiaux M, Desmecht D. Épidémiologie de l’infection par *Trypanosoma evansi* et surra. Étude rétrospective et perspectives en termes de prévention, contrôle et impact. *Am J Trop Med Hyg*. 1999;61:530–41.

70. MPPS - Ministerio del Poder Popular para la Salud de Venezuela. Guía para el diagnóstico, atención y manejo clínico de la enfermedad de Chagas en Venezuela. 2014. http://svmi.web.ve/wh/documentos/Guia_Chagas_2015.pdf Accessed 1 Feb 2018.

71. Gascón J, Grupo de Trabajo del Taller «Enfermedad de Chagas: ¿un nuevo reto de Salud Pública?». Diagnóstico y tratamiento de la Enfermedad de Chagas importada. *Med Clin (Barc)*. 2005;125:230–5.

72. MS/SVS - Ministerio de Salud, Dirección de Regulación y Legislación en Salud, Unidad de Vigilancia y control de la enfermedad de Chagas. *Rev Soc Bras Med Trop*. 2008;41:587–94.

73. Fernandez I, Martinez-Ibarra A, Arce-Fonseca M, Rodriguez-Morales A. Chagas disease: “the new HIV/AIDS of the Americas”. *PLoS Negl Trop Dis*. 2012;6:e1498.

74. Rodrigo AA, Perez-Morales D, Reyes Lopez PA, et al. Seroprevalence and major anti-gens recognized by sera from *Trypanosoma cruzi*-infected dogs from Jalisco, Mexico. *Rev Argent Microbiol*. 2014;46:685–90.
130. Breitschwerdt EB, Maggi RG, Sigmon B, Nicholson WL. Isolation of *Bartonella quintana* from a woman and a cat following putative bite transmission. J Clin Microbiol. 2007;45:270–7.

131. Breitschwerdt EB, Maggi RG, Duncan AW, Nicholson WL, Hegarty BC, Woods CW. *Bartonella* species in blood of immunocompetent persons with animal and arthropod contact. Emerg Infect Dis. 2007;13:938–41.

132. Psarros G, Riddell J, Gandhi T, Kauffman CA, Cinti SK. *Bartonella henselae* infections in solid organ transplant recipients: report of 5 cases and review of the literature. Medicine (Baltimore). 2012;91:111–21.

133. Mosepele M, Mazo D, Cohn J. Bartonella infection in immunocompromised hosts: immunology of vascular infection and vasoproliferation. Clin Dev Immunol. 2012;2012:612809.

134. Atamanyuk I, Raja SG, Kostolny M. *Bartonella henselae* endocarditis of percutaneously implanted pulmonary valve: a case report. J Heart Valve Dis. 2011;20:945–7.

135. Ahsan N, Holman MJ, Riley TR, Abendroth CS, Langhoff EG, Yang HC. *Bartonella quintana* bacteremia in cynomolgus monkeys. J Clin Microbiol. 2008;46:1943–4.

136. Kalogeropoulos C, Koupoulis I, Mentis A, Pappa C, Zafeiropoulos P, Aspiots M. *Bartonella* and intraocular inflammation: a series of cases and review of literature. Clin Ophthalmol. 2011;5:817–29.

137. Breitschwerdt EB, Blann KR, Stebbins ME, Muñana KR, Davidson MG, Jackson HA, Willard MD. Clinicopathological abnormalities and treatment response in 24 dogs seroreactive to *Bartonella vinsonii* (berkhoffii) antigens. J Am Anim Hosp Assoc. 2004;40:92–101.

138. Breitschwerdt EB, Maggi RG, Lantos PM, Woods CW, Hegarty BC, Bradley JM. *Bartonella vinsonii* subsp. *berkhoffii* and *Bartonella henselae* bacteremia in a father and daughter with neurological disease. Parasit Vectors. 2010;3:29.

139. Schaller JL, Burkland GA, Langhoff PJ. Do *Bartonella* infections cause agitation, panic disorder, and treatment-resistant depression? MedGenMed. 2007;9:54.

140. Donnio A, Jean-Charles A, Merle H. Macular hole following *Bartonella henselae* neuroretinitis. Eur J Ophthalmol. 2008;18:456–8.

141. Chomel BB, Wey AC, Kasten RW. Isolation of *Bartonella w约翰hensoni* from a dog with mitral valve endocarditis. J Clin Microbiol. 2003;41:5327–32.

142. Pérez Vera C, Diniz PPV, Peltorak EL, Maggi RG, Breitschwerdt EB. An unmatched case-controlled study of clinicopathologic abnormalities in dogs with *Bartonella* infection. Comp Immunol Microbiol Infect Dis. 2013;36:481–7.

143. Duncan AW, Morr HS, Birkenheuer AJ, Maggi RG, Hepatic BC, Bradley JM. *Bartonella henselae* bacteremia in a renal transplant patient. Skeletal Radiol. 1997;26:431–3.

144. Maggi RG, Mascarelli PE, Schweickert LA, Maggi RG, Hegarty BC, Bradley JM, Woods CW. Hallucinations, sensory neuropathy, and peripheral visual deficits in a young woman infected with *Bartonella koehnei*. J Clin Microbiol. 2011;49:5415–7.

145. Breitschwerdt EB, Maggi RG, Lantos PM, Woods CW, Hegarty BC, Bradley JM. *Bartonella vinsonii* subsp. *berkhoffii* and *Bartonella henselae* bacteremia in a father and daughter with neurological disease. Parasit Vectors. 2010;3:29.

146. Michau TM, Breitschwerdt EB, Gilger BC, Davidson MG. *Bartonella henselae* in the blood and lymph nodes of Golden Retrievers with lymphoma and in healthy controls. J Vet Intern Med. 2008;22:89–95.

147. Morales SC, Breitschwerdt EB, Washabau RJ, Mattei I, Maggi RG, Duncan AW. Detection of *Bartonella henselae* DNA in the blood and lymph nodes of Golden Retrievers with lymphoma and in healthy controls. J Vet Intern Med. 2008;22:89–95.

148. Michau TM, Breitschwerdt EB, Gilger BC, Davidson MG. *Bartonella henselae* bacteremia in dogs with pyogranulomatous lymphadenitis. J Vet Med Assoc. 2007;20:2681–5.

149. Besada E, Woods A, Caputo M. An uncommon presentation of *Bartonella*-associated neuroretinitis. Optom Vis Sci. 2002;79:479–88.

150. Verma CP, Maggi RG, Woods CW, Mascarelli PE, Breitschwerdt EB. Spontaneous onset of complex regional pain syndrome Type I in a woman infected with *Bartonella koehnei*. Med Microbiol Immunol. 2014;203:101–7.

151. Balakrishnan N, Cherry NA, Linder KE, Pierce E, Sontakke N, Hegarty BC, et al. Experimental infection of dogs with *Bartonella henselae* and *Bartonella vinsonii* subspp. *berkhoffii*. Vet Immunol Immunopathol. 2013;156:153–8.

152. Pérez C, Maggi RG, Diniz PPV, Breitschwerdt EB. Molecular and serological diagnosis of *Bartonella* infection in 61 dogs from the United States. J Vet Intern Med. 2011;25:805–10.
173. Mexas AM, Hancock SI, Breitschwerdt EB. Bartonella henselae and Bartonella elizabethae as potential canine pathogens. J Clin Microbiol. 2002;40:4670–4.

174. Labanthe NV, Peneva Pava J, Reifur L, Mendes-de-Almeida F, Merlo A, Carvalho Pinto CJ, et al. Updated canine infection rates for Dirofilaria immitis in areas of Brazil previously identified as having a high incidence of heartworm-infected dogs. Parasit Vectors. 2014;7:13.

175. Berkowitz ST, Gannon KM, Carberry CA, Cortes Y. Resolution of spontaneous hemobdomen secondary to pelliosis hepatitis following surgery and azothymycin treatment in a Bartonella species infected dog. J Vet Emerg Crit Care (San Antonio). 2016;26:851–7.

176. Rossi MA, Balakrishnan N, Linder KE, Messa JB, Breitschwerdt EB. Concurrent Bartonella henselae infection in a dog with panniculitis and owner with ulcerated nodular skin lesions. Vet Dermatol. 2015;26:60–3.

177. Breitschwerdt EB, Broadhurst JJ, Cherry NA.

178. Lösch B, Wank R. Life-threatening angioedema of the tongue: the need for diagnosis and management. J Med Case Rep. 2010;4:325.

179. Bradley JM, Mascarelli PE, Trull CL, Maggi RG, Breitschwerdt EB.

180. Barbieri AM, Venzal JM, Marcili A, Almeida AP, Gonzalez EM, Labruna MB. Bartonella henselae infection in a dog with pelvic hematoma following surgery. Vet Dermatol. 2015;26:60–3.

181. Panchev N, Vihovec MG, Pluta S, Stauberger R. Seropositivity of Bartonella species in a cohort of symptomatic cats from Europe based on a C6-peptide assay with discussion of implications in disease aetiology. Berliner Münchener Tierärztliche Wochenschr. 2016;129:333–9.

182. Lesnich MK, Kirtz G, Khanakábg D, Duscher G, Leidinger E, Thalhammer JG, et al. Humoral immune response in dogs naturally infected with Bartonella burgdorferi sensu lato and in dogs after immunization with a Bartonella vaccine. Clin Vaccine Immunol. 2010;17:827–33.

183. Cohen ND, Carter CN, Thomas MA, Angulo AB, Eusticker AK. Clinical and epizootiologic characteristics of dogs seropositive for Bartonella burgdorferi in Texas: 110 cases (1988). J Am Vet Med Assoc. 1990;197:983–9.

184. Hutton TA, Goldstein RE, Naja BL, Atwater DZ, Chang Y-F, Simpson KW. Search for Bartonella burgdorferi in kidneys of dogs with suspected ‘Lyme nephritis’. J Vet Emerg Crit Care. 2008;22:960–5.

185. Magnerelli LA, Anderson JF, Levine H, Levy SA. Tick parasitism and antibodies to Bartonella burgdorferi in cats. J Am Vet Med Assoc. 1990;197:63–6.

186. Levy SA, O’Connor TP, Hanscom JL, Shields P. Evaluation of a canine C6 ELISA Lyme disease test for the determination of the infection status of cats naturally exposed to Bartonella burgdorferi. Vet Ther. 2003;4:172–7.

187. Peterhans E, Peterhans E. “Lyme disease” as a possible cause for lameness in the cat. Schweiz Arch Tierheilkd. 2010;152:295–7 (In German).

188. Steere AC, McG Hugh D, G amble N, S nikand VK. Prospective study of serologic tests for Lyme disease. Clin Infect Dis. 2006;43:188–95.

189. Littman MP. Canine borreliosis. J Vet Clin North Am Small Anim Pract. 2003;33:827–62.

190. Littman MP, Goldstein RE, Labato MA, Lappin MR, Moore GE. ACVIM small animal consensus statement on Lyme disease in dogs: diagnosis, treatment, and prevention. J Vet Intern Med. 2006;20:422–34.

191. Greene CE, Stauberger R. Bartonellosis. In: Greene CE, editor. Infectious diseases of the dog and cat. 3rd ed. St. Louis: Elsevier Saunders; 2006. p. 417–35.

192. Wright CL, Gaff HD, Hynes WN. Prevalence of Ehrlichia chaffeensis and Ehrlichia ewingii in Amblyomma americanum and Dermacentor variabilis collected from southeastern Virginia, 2010–2011. Ticks Tick Borne Dis. 2014;5:978–82.

193. G aines DN, Operario DJ, Stroup S, Stromdahl E, Wright C, Gh g H, et al. Ehrlichia and spotted fever group Rickettsiae surveillance in Amblyomma americanum in Virginia through use of a novel six-plex real-time PCR assay. Vector Borne Zoonotic Dis. 2014;14:307–16.

194. Tomassone L, Nunez P, Gurtler RE, Ceballos LA, Orozco MM, Kitron UD, Farber M. Molecular detection of Ehrlichia chaffeensis in Amblyomma parvum ticks, Argentina. Emerg Infect Dis. 2008;14:1935–5.

195. Allison RW, Little SE. Diagnosis of rickettsial diseases in dogs and cats. Vet Clin Pathol. 2013;42:127–44.

196. Mylonakis ME, Koutinas AF, Billinis C, Leonidites LS, Kontos V, Papadopoulos O, et al. Evaluation of cytology in the diagnosis of acute canine monocytic ehrlichiosis (Ehrlichia canis): a comparison between five methods. Vet Microbiol. 2003;91:197–206.

197. Litt Mueller J, Harrus S, Alleman AR, Bark H, Mahan SM, Wanner T. Comparison of three enzyme-linked immunosorbent assays with the indirect immunofluorescent antibody test for the diagnosis of canine infection with Ehrlichia canis. Vet Microbiol. 2002;86:356–8.

198. W aner T, Harrus S, Jongejan F, Bark H, Keysary A, Cornelissen AW. Significance of serological testing for ehrlichial diseases in dogs with special emphasis on the diagnosis of canine monocytic ehrlichiosis caused by Ehrlichia canis. Vet Parasitol. 2001;95:1–15.

199. Magnerelli LA, Breitschwerdt EB. Comparison of serological and molecular panels for diagnosis of Borrelia burgdorferi in vector-borne diseases. J Am Vet Med Assoc. 1992;200:344–7.

200. Magnerelli LA, Breitschwerdt EB, Fiecke CM. Clinical and serologic studies of canine borreliosis. J Am Vet Med Assoc. 1987;191:1089–94.
216. Neer TM, Breitschwerdt EB, Greene RT, Lappin MR. Consensus statement on ehrlichia disease of small animals from the infectious disease study group of the AVMA. J Vet Intern Med. 2002;16:309–15.

217. Perez M, Rikihisa Y, Wen B. Ehrlichis canis-like agent isolated from a man in Venezuela: antigenic and genetic characterization. J Clin Microbiol. 1996;34:2133–9.

218. Calic SB, Galvao MAM, Bacellar F, Rocha CMBM, Mafra CL, Leite RC, da Costa PSG, Brigatte ME, Greco DB. Antibodies to Moro PL, Shah J, Li O, Gilman RH, Harris N, Moro MH. Short report: Gary AT, Richmond HL, Tasker S, Hackett TB, Lappin MR. Survival of Willi B, Boretti FS, Cattori V, Meli ML, et al. Development and use of real-time PCR to detect and quantify Mycoplasma haemominutum and "Candidatus Mycoplasma haematoparvum" in dogs. Vet Microbiol. 2010;140:167–70.

219. Willi B, Novacco M, Meli M, Wolf-Jackel G, Boretti F, Wengi N, et al. Haemotropic mycoplasmas of cats and dogs: transmission, diagnosis, prevalence and importance in Europe. Schweiz Arch Tierheilkd. 2010;152:237–44.

220. Childs JE, Paddock CD. Rocky Mountain spotted fever. In: Raoult D, Parola P, editors. Rickettsial Diseases. New York: Informa Healthcare; 2007. p. 97–116.

221. Moro PL, Shah J, Li O, Gilman RH, Harris N, Moro MH. Short report: serologic evidence of human ehrlichiosis in Peru. Am J Trop Med Hyg. 2009;80:242–4.

222. Lopez J, Puerta M, Concha JC, Gatica S, Loehefholz M, Barriga O. Ehrlichia huamana en Chile, evidencia serológica. Rev Med Chile. 2003;131:67–70.

223. Gary AT, Richmond HL, Tasker S, Hackett TB, Lappin MR. Survival of Mycoplasma haemofelis and "Candidatus Mycoplasma haemominutum" in blood of cats used for transfusions. J Feline Med Surg. 2006;8:321–6.

224. Willi B, Boretti FS, Baumgartner C, Tasker S, Wenger B, Cattori V, et al. Prevalence, risk factor analysis, and follow-up of infections caused by three feline hemoplasma species in cats in Switzerland. J Clin Microbiol. 2006;44:961–9.

225. Taton M, Sunahara A, Nakashima N, Iwaza M, Matsuo T, Setoguchi A, Endo Y. Molecular survey of arthropod-borne pathogens in ticks obtained from Japanese wildcats. Ticks Tick Borne Dis. 2011;6:281–9.

226. Assarasakorn S, Veir JK, Hawley JR, Brewer MM, Morris AK, Hill AE, Lappin MR. Prevalence of Bartonella species, haemoplasma species, and Rickettsia felis DNA in blood and fleas of cats in Bangkok, Thailand. Res Vet Sci. 2012;93:1213–6.

227. Barrs VR, Beatty JA, Wilson BJ, Evans N, Gowan R, Baral RM, et al. Prevalence of Bartonella species, Rickettsia felis, haemoplasmas and the Ehrlichia group in the blood of cats and fleas in eastern Australia. Aust Vet J. 2010;88:160–5.

228. Horkon S, Melli ML, Perreten A, Farkas R, Willi B, Beugnet F, et al. Molecular investigation of hard ticks (Acari: Ixodidae) and fleas (Siphonaptera: Pulicidae) as potential vectors of rickettsial and mycoplasmal agents. Vet Microbiol. 2010;140:98–104.

229. Lappin MR, Griffin B, Brunt J, Riley A, Burney D, Hawley J, et al. Prevalence of Bartonella species, haemoplasma species, Ehrlichia species, Anaplasma phagocytophilum, and Neorickettsia risticii DNA in the blood of cats and their fleas in the United States. J Feline Med Surg. 2006;8:85–90.

230. Chalker VJ. Canine mycoplasmas. Res Vet Sci. 2005;79:1–8.

231. Messick JB. New perspectives about hemotrophic mycoplasma (formerly, Haemobartonella and Eperythrozoon species) infections in dogs and cats. Vet Clin North Am Small Anim Pract. 2003;33:1453–65.

232. Tasker S, Helps CR, Ray MJ, Crufflytt-Dones TJ, Harbour DA. Use of real-time PCR to detect and quantify Mycoplasma haemofelis and "Candidatus Mycoplasma haemominutum" DNA. J Clin Microbiol. 2003;41:439–41.

233. Willi B, Filioni C, Catto-Dias JI, Cattori V, Melli ML, Vargas A, et al. Worldwide occurrence of feline hemoplasma infections in wild felid species. J Clin Microbiol. 2007;45:1159–66.

234. Willi B, Melli ML, Luthy R, Honegger H, Wengi N, Hoelzel LE, et al. Development and application of a universal hemoplasma screening assay based on the SYBR green PCR principle. J Clin Microbiol. 2004;42:409–54.

235. Peters IR, Helps CR, Willi B, Hofmann-Lehmann R, Tasker S. The prevalence of three species of feline haemoplasmas in samples submitted to a diagnostics service as determined by three novel real-time duplex PCR assays. Vet Microbiol. 2008;126:142–50.

236. Wengi N, Willi B, Boretti FS, Cattori V, Riond B, Melli ML, et al. Real-time PCR-based prevalence study, infection follow-up and molecular characterization of canine hemotropic mycoplasmas. Vet Microbiol. 2008;126:132–41.

237. Barker EN, Tasker S, Day MJ, Warman SM, Woolley K, Birtles R, et al. Development and use of real-time PCR to detect and quantify Mycoplasma haemocanis and "Candidatus Mycoplasma haematoparvum" in dogs. Vet Microbiol. 2010;140:167–70.

238. Willi B, Novacco M, Meli M, Wolf-Jackel G, Boretti F, Wengi N, et al. Haemotropic mycoplasmas of cats and dogs: transmission, diagnosis, prevalence and importance in Europe. Schweiz Arch Tierheilkd. 2010;152:237–44.
257. Cuervo PF, Sierra R, Waisman L, Sidoti L, Albonico F, et al. Detection of Dirofilaria immitis in mid-western and Argentina. Acta Parassitologica. 2013;58:612–4.

258. Vezzani D, Mespleat M, Eiras DF, Fontanarrosa MF, Schmittler L. PCR detection of Dirofilaria immitis in Aedes aegypti and Culex pipiens from urban temperate Argentina. Parasitol Res. 2011;108:985–9.

259. Rosa A, Betti M, Bistermann JC, Cardillo N, Basso N, Hallu R. Prevalence of canine dirofilariosis in the City of Buenos Aires and its outskirts (Argentina). Vet Parasitol. 2002;109:261–4.

260. Eiras DF, Basabe S, Cordero FF, Sattier DH, Matos ML, Kistermann JC, et al. Evaluation of asymptomatic Hepatozoon canis infection in dogs from Buenos Aires. Vet Parasitol. 2007;149:275–9.

261. Giannitti F, Diab SS, Uzal FA, Fransen K, Rossi D, Talmi-Frank D, et al. Hepatozoonosis in dogs from a wild Pampas grays fox (Lycalopex -Lycalopex-gymnocercus) co-infected with canine distemper virus. Vet Parasitol. 2012;186:497–502.

262. Esarte MS, Barroso PA, Calvopina M, Kumazawa H, Furuya M, Korenaga J, et al. Hepatozoonosis in dogs in a rural area of northeastern Argentina. Am J Trop Med Hyg. 2005;72:606–11.

263. Cruz I, Acosta L, Gurtler RE, Petersen RM, Rubel DN, Schweigmann NJ. Prevalence of canine dirofilariosis in the City of Buenos Aires and its infection in Baneth G. First molecular characterization of canine hepatozoonosis in Lycalopex -Lycalopex-gymnocercus in a wild Pampas gray fox. Acta Trop. 2002;80:101–10.

264. Marco JD, Padilla AM, Diosque P, Fernandez MM, Malchiodi EL, Basombrio MA. Force of infection and evolution of lesions of canine tegumentary leishmaniasis in northern Argentina. Mem Inst Oswaldo Cruz. 2001;96:649–52.

265. Marco JD, Barroso PA, Calvopina M, Kumazawa H, Furuya M, Korenaga J, et al. Species assignation of Leishmania from human and canine American tegumentary leishmaniasis cases by multilocus enzyme electrophoresis in North Argentina. Am J Trop Med Hyg. 2005;72:606–11.

266. Padilla AM, Marco JD, Diosque P, Fernandez MM, Malchiodi EL, Basombrio MA. Force of infection and evolution of lesions of canine tegumentary leishmaniasis in northern Argentina. Mem Inst Oswaldo Cruz. 2001;96:649–52.

267. Gurtler RE, Ceccere MC, Ribeiro DN, Schweigmann NJ. Chagas disease in north-west Argentina: Association between nutritional indicators and infectivity of dogs seroreactive for Trypanosoma cruzi in a rural area of northwestern Argentina. Parasitol Res. 2001;87:208–14.

268. Bürger RE, Ceccere MC, Petersen RM, Ribeiro DN, Schweigmann NJ, Lauricella MA, et al. Chagas disease in north-west Argentina: infected dogs as a risk factor for the domestic transmission of Trypanosoma cruzi. Trans R Soc Trop Med Hyg. 1991;85:741–5.

269. Petersen RM, Bürger RE, Ceccere MC, Ribeiro DN, Lauricella MA, Hansen D, Colomagno MA. Association between nutritional indicators and infectivity of dogs seroreactive for Trypanosoma cruzi in a rural area of northwestern Argentina. Parasitol Res. 2001;87:208–14.

270. Monge-Rumi MM, Brandan CP, Ragona PG, Tommasi N, Lautieri J, Damato AM, et al. Trypanosoma cruzi diversity in the Gran Chaco: mixed infections and differential host distribution of TCV and TCV. Infect Genet Evol. 2015;29:53–9.

271. García NC, Vidal P, Salvo M, Beltrán FJ, Gury Doughmen FE. Detection molecular of Rickettsia massiliae and Anaplasm a phagocytophilum in garrapatas Rhipicephalus sanguineus canis and caninos domesticos del municipio de Bahía Blanca (Argentina). Rev Chilena Infectol. 2014;31:565–8.

272. García NC, Brambati DF, Rodrigo Degrugli JI, Lebreno CG, de Salvo MN, Beltrán FJ, et al. Molecular characterization of Rickettsia massiliae and Anaplasma phagocytophilum in Rhipicephalus sanguineus ticks and domestic dogs, Buenos Aires (Argentina). Ticks Tick Borne Dis. 2014;5:484–8.

273. García NC, Brambati DF, et al. Bartonella spp. in cats from Buenos Aires, Argentina. Vet Microbiol. 2014;168:225–8.

274. Stanche NO, Balague LJ. Lyme disease: antibodies against Borrelia burgdorferi in farm workers in Argentina. Rev Saude Publica. 1993;27:305–7.

275. Romer Y, Nava S, Guevedo F, Cicuttini G, Denison AM, Singleton J, et al. Rickettsia parkeri rickettsiosis in different ecological regions of Argentina and its association with Amblyommia tigrina as a potential vector. Am J Trop Med Hyg. 2014;91:1156–60.

276. Romer Y, Seijo AC, Crucio F, Nicholson WL, Varela-Stokes A, Lash RR, Paddock CD. Rickettsia parkeri rickettsiosis, Argentina. Emerg Infect Dis. 2011;17:1169–73.

277. Paddock CD, Fernandez S, Echenique GA, Sumner JW, Zaki SR, Remondegui CE. Rocky Mountain spotted fever in Argentina. Am J Trop Med Hyg. 2008;78:687–92.

278. Nava S, Elshenawy Y, Eremeeva ME, Sumner JW, Mastropaolo D, Carlomagno MA. Association between nutritional indicators and infectivity of dogs seroreactive for Trypanosoma cruzi in rural northwestern Argentina. Parasitology. 2007;134:69–82.

279. Trypanosoma cruzi. Ticks Tick Borne Dis. 2014;5:484–8.

280. Otegui JA, et al. Heterogeneities in the ecoepidemiology of Chagas disease in north-west Argentina. Ann Trop Med Parasitol. 1998;92:671–83.

281. Williams P. Phlebotomine sandflies and leishmaniasis in British Honduras (Belize). Trans R Soc Trop Med Hyg. 1970;64:371–8.

282. Jaramillo R, Bryan JR, Schur J, Pan AA. Prevalence of antibody to Trypanosoma cruzi in three populations in Belize. Am J Trop Med Hyg. 1995;57:298–301.

283. Polonio R, Ramirez-Sierra MJ, Dumontell E. Dynamics and distribution of house infestation by Triatoma dimidiata in central and southern Belize. Vector Borne Zoonotic Dis. 2009;9:19–24.

284. Bottemboon S, Hoel DB, Murphy J, Linton YM, Motoki M, Robbins RG, et al. Molecular detection and identification of Rickettsia species in ticks (Acari: Ixodidae) collected from Belize, Central America. J Med Entomol. 2017;54:1718–26.
299. Bronson E, Emmons LH, Murray S, Dubovi EJ, Deem SL. Serosurvey of pathogens in domestic dogs on the border of Noel Kempff Mercado National Park, Bolivia. J Zoo Wildl Med. 2008;39:26–36.

300. Fiorello CV, Noss AJ, Deem SL. Demography, hunting ecology, and pathogen exposure of domestic dogs in the losos of Bolivia. Conserv Biol. 2006;20:762–71.

301. Parrado R, Rojas E, Delgado R, Torrico MC, Rethinger R, Garcia AL. Prevalence of Leishmania spp. infection in domestic dogs in Chapare, Bolivia. Vet Parasitol. 2011;177:171–7.

302. Guarachi F, Cruz PJ. Seroprevalence del mal de Chagas en canes del area urbana de Lagunillas. Vet Med Thesis, Univ Autonoma Gabriel Rene Moreno, Santa Cruz de la Sierra, Bolivia, 2006.

303. Ciceroni L, Bartolotti A, Carroccio S, Pinto A, Guglielmetti P, Valdez Vasquez C, et al. Serologic survey for antibodies to *Borrelia burgdorferi* in sheep, goats and dogs in Cordillera Province, Bolivia. Zentralblatt Veterinarmedizin Reihe B. 1997;44:133–7.

304. Ciceroni L, Bartolotti A, Guglielmetti P, Paradisi F, Barahona HG, Roselli M, et al. Prevalence of antibodies to *Borrelia burgdorferi* in human settlements of the Cordillera Province, Bolivia. J Trop Med Hyg. 1994;97:13–7.

305. Tomassone L, Conte V, Parilla G, de Meneghi D. Ricchettsia infection in dogs and Ricchettsia parkeri in Amblyomma tigrinum ticks, Cochabamba Department, Bolivia. Vector Borne Zoonotic Dis. 2010;10:953–8.

306. de Sousa KCM, Andre MR, Herrera HM, Andre MA, dos Santos LL, et al. Molecular and serological detection of tick-borne pathogens in dogs from an area endemic for *Leishmania infantum* in Mato Grosso do Sul, Brazil. Rev Bras Parasitol Vet. 2013;22:525–31.

307. O’Dwyer LH, Massard CL, Souza JC. Hepatozoon canis infection associated with dog ticks of rural areas of Rio de Janeiro State, Brazil. Vet Parasitol. 2001;94:143–50.

308. Ramos R, Ramos C, Araujo F, Oliveira R, Souza I, Pimentel D, et al. Molecular survey and genetic characterization of tick-borne pathogens in dogs in metropolitan Recife (north-eastern Brazil). Parasitol Res. 2010;107:1115–20.

309. Santos F, Cappede JS, Pereira ALA, Oliveira LP, Roberto PG, Benedetti RBR, et al. Molecular evaluation of the incidence of *Ehrlichia canis*, *Anaplasma platys* and *Babesia* spp in dogs from Ribeirao Preto, Brazil. Vet J. 2009;179:145–8.

310. Spolidorio MG, Minervino AHH, Valadas SYOB, Soares HS, Neves KAL, et al. Molecular evaluation of the incidence of *Ehrlichia canis*, *Anaplasma platys* and *Babesia* spp in dogs from Ribeirao Preto, Brazil. Vet J. 2009;179:145–8.

311. Trapp SM, Dagnone AS, Vidotto O, Freire RL, Arnude AM, de Morais HSA. Seroepidemiology of canine babesiosis and ehrlichiosis in a hospital community in northeastern Brazil. Genet Mol Res. 2016;15:15038623.

312. Vieira TSJW, Vieira RFC, Nascimento DAG, Tamekuni K, Toledo RS, Chandrashekar R, et al. Serosurvey of tick-borne pathogens in dogs from rural and urban areas from Parana State, Brazil. Rev Bras Parasitol Vet. 2013;22:104–9.

313. Krawczak FS, Reis IA, Silveira JA, Avelar DM, Marcelino AP, Werneck GL, et al. Prevalence of antibodies to *Leishmania infantum* in domestic dogs in Porto Velho: first record, distribution map and occurrence of positive mosquitoes. Rev Bras Parasitol Vet. 2013;22:559–64.

314. Refur L, Thomaz-Soccol V, Montani-Ferreira F. Epidemiological aspects of filariasis in dogs on the coast of Paraná state, Brazil: with emphasis on *Dirofilaria immitis*. Vet Parasitol. 2004;122:273–86.

315. Harvey TV, Guedes PEB, Oliveira TNA, Assunção MS, Carvalho FS, Albuquerque GR, et al. Canine hepatozoonosis in southeastern Bahia, Brazil. Genet Mol Res. 2016;15:15038623.

316. Rosypal AC, Cortes-Vecino JA, Gennari SM, Dubey JP, Lindsay DS. Serological survey of *Leishmania infantum* and *Trypanosoma cruzi* in dogs from urban areas of Brazil and Colombia. Vet Parasitol. 2007;149:172–7.

317. Tarratollis AT, Donini MA, dos Anjos C, Ramos RR. Vigilância de res-ervatórios caninos. Boletim Epidemiológico. 2011;13:5–6.

318. Barbosa GMS, Marzochi MCA, Massard CL, Lima GPS, Confort EM. Epi- demiological aspects of canine American tegumentary leishmaniasis in the Municipality of Paraty, State of Rio de Janeiro, Brazil. Cad Saúde Publica. 1999;15:641–6.

319. Castro EA, Thomaz-Soccol V, Augur C, Luz E. *Leishmania (Viannia)* braziliensis: epidemiology of canine cutaneous leishmaniasis in the state of Paraná (Brazil). Exp Parasitol. 2007;117:13–21.

320. Dantas-Torres F, Paiva-Cavalcanti M, Figueredo LA, Melo MF, Silva FJ, Silva AL, et al. Canine, Canine and visceral leishmaniasis in dogs from a rural community in northeastern Brazil. Vet Parasitol. 2010;170:313–7.

321. Reifur L, Thomaz-Soccol V, Montiani-Ferreira F. Epidemiological aspects of canine vector-borne infections using sick dogs from southeastern Brazil. Vector Borne Zoonotic Dis. 2010;10:1877–80.

322. Harvey TV, Guedes PEB, Oliveira TNA, Assunção MS, Carvalho FS, Albuquerque GR, et al. Canine hepatozoonosis in southeastern Bahia, Brazil. Genet Mol Res. 2016;15:15038623.

323. Rosypal AC, Cortes-Vecino JA, Gennari SM, Dubey JP, Lindsay DS. Serological survey of *Leishmania infantum* and *Trypanosoma cruzi* in dogs from urban areas of Brazil and Colombia. Vet Parasitol. 2007;149:172–7.

324. Tarratollis AT, Donini MA, dos Anjos C, Ramos RR. Vigilância de res-ervatórios caninos. Boletim Epidemiológico. 2011;13:5–6.

325. Barbosa GMS, Marzochi MCA, Massard CL, Lima GPS, Confort EM. Epi- demiological aspects of canine American tegumentary leishmaniasis in the Municipality of Paraty, State of Rio de Janeiro, Brazil. Cad Saúde Publica. 1999;15:641–6.

326. Castro EA, Thomaz-Soccol V, Augur C, Luz E. *Leishmania (Viannia)* braziliensis: epidemiology of canine cutaneous leishmaniasis in the state of Paraná (Brazil). Exp Parasitol. 2007;117:13–21.

327. Dantas-Torres F, Paiva-Cavalcanti M, Figueredo LA, Melo MF, Silva FJ, Silva AL, et al. Canine, Canine and visceral leishmaniasis in dogs from a rural community in northeastern Brazil. Vet Parasitol. 2010;170:313–7.

328. Reifur L, Thomaz-Soccol V, Montiani-Ferreira F. Epidemiological aspects of canine vector-borne infections using sick dogs from southeastern Brazil. Vector Borne Zoonotic Dis. 2010;10:1877–80.

329. Harvey TV, Guedes PEB, Oliveira TNA, Assunção MS, Carvalho FS, Albuquerque GR, et al. Canine hepatozoonosis in southeastern Bahia, Brazil. Genet Mol Res. 2016;15:15038623.

330. Reifur L, Thomaz-Soccol V, Montiani-Ferreira F. Epidemiological aspects of canine vector-borne infections using sick dogs from southeastern Brazil. Vector Borne Zoonotic Dis. 2010;10:1877–80.
339. Constantino C, Pellizaro M, Paula EFE, Vieira TSWJ, Brando APD, Ferreira F, et al. Serosurvey for Leishmania spp, Toxoplasma gondii, Trypanosoma cruzi and Neospora caninum in neighborhood dogs in Cunha-Paraná, Brazil. Rev Bras Parasitol Vet. 2016;25:504–10.

340. Perez TD, Figueiredo FB, Junior AAMV, Silva VL, Madeira MF, Brazil RP, Coura JR. Prevalence of American trypanosomiasis and leishmaniasis in domestic dogs in a rural area of the municipality of São João do Pau, Piauí State, Brazil. Rev Inst Med Trop Sao Paulo. 2016;58:79.

341. Franke CR, Greiner M, Mehlitz D. Investigations on naturally occurring Trypanosoma evansi infections in horses, cattle, dogs and capybaras (Hydrochoeris hydrochaeris) in Pantanal de Pocone (Mato Grosso, Brazil). Acta Trop. 1994;58:159–69.

342. Colpo CB, Monteiro SG, Stainki DR, Colpo ETR, Henriques GB. Infecção natural por Trypanosoma evansi em cães. Ciência Rural. 2005;35:717–721.

343. Dávila AM, Herrera HM, Schlebiner T, Souza SS, Taub-Czeck YM. Using PCR for unraveling the cryptic epizootiology of livestock trypanosomosis in the Pantanal, Brazil. Vet Parasitol. 2003;117:1–13.

344. Franciscato C, Lopes STA, Teixeira MMG, Monteiro SG, Garmatz BC, Paim CB. Cão naturalmente infectado por Trypanosoma evansi em Santa Maria, RS. Ciência Rural. 2007;37:288–91.

345. Herrera HM, Dávila AM, Norek A, Abreu UG, Souza SS, Carneiro MA, Herrera HM, Norek A, Freitas TP, Rademaker V, Fernandes O, Jansen AM. Enzootiology of Trypanosoma evansi infection in dogs in the rural area of the Brazilian Pantanal region. Parasitol Res. 2005;96:121–6.

346. Queiroz AO, Cabello PH, Jansen AM. Biological and biochemical characterization of isolates of Trypanosoma evansi from Pantanal of Matogrosso-Goiás. Vet Parasitol. 2000;92:107–18.

347. Savani ESMM, Nunes VL, Galati EA, Castilho TM, Araujo FS, Ilha MA, Cama-rgo MCGO, Dauria SRN, Floeter-Winter LM. Occurrence of co-infection by Leishmania (Leishmania) chagasi and Trypanosoma (Trypanozoon) evansi in a dog in the state of Mato Grosso do Sul, Brazil. Mem Inst Oswaldo Cruz. 2005;100:739–41.

348. Silva AS, Zanette RA, Colpo CB, Santorino JM, Monteiro SG. Sinais clínicos de Trypanosoma evansi em cães naturalmente infectados com Leishmania amazonensis. Clín Vet. 2008;13:66–8.

349. Stevens JR, Nunes VL, Lanham SM, Oshiro ET. Isoenzyme characterization of Trypanosoma evansi isolated from capybaras and dogs in Brazil. Acta Trop. 1989;46:213–22.

350. Greiner M, Franke CR, Böhning D, Schlattmann P. Construction of an intrinsic cut-off value for the sero-epidemiological study of Trypanosoma evansi infections in a canine population in Brazil: a new approach towards an unbiased estimation of prevalence. Acta Trop. 1994:56:97–109.

351. Lasta CS, Dos Santos AP, Messick JB, Oliveira ST, Biondo AW, Vieira RFC, et al. Molecularenatoire de Ehrlichia canis and Anaplasma platis in southern Brazil. Vet Parasitol. 2013;22:360–6.

352. Freire RF, Cerqueira EMMF, Pereira AM, Guimarães CM, Sá AG, Abreu FS, Santos HA, Thome SL, Baldani CD, Silva CB, Peixoto MP, Pires MS, et al. Detection of Anaplasma platis in dogs: comparison between morphological and molecular tests. Int J Appl Res Vet Med. 2007;5:113–9.

353. Santos HA, Thome SMG, Baldani CD, Silva CB, Peixoto MP, Pires MS, et al. Molecular epidemiology of the emerging zoonosis agent Anaplasma phagocytophilum (Foggie, 1949) in dogs and ixodid ticks in Brazil. Parasit Vectors. 2013;6:348.

354. Santos HO, Pires MS, Vieira JAR, Santos TM, Faccoli JH, Baldani CD, et al. Detection of Anaplasma phagocytophilum in Brazilian dogs by real-time polymerase chain reaction. J Vet Diagn Invest. 2011;23:770–4.

355. Brenner EC, Chomel BB, Singhasivanon O-U, Namekata DY, Kasten RW, Kass PH, et al. Bartonella henselae in cats, dogs, Rickettsia spp, and Borrelia burgdorferi sensu lato in cats and dogs. Vet Pathol. 2007;44(Suppl):53–4.

356. Fraga IA, Santos LGF, Ramos DGS, Melo ALT, Lopes MC, Almeida MR, Concejiao LG, et al. First report of Ehrlichia ewingii detected by molecular investigation in dogs from Brazil. Clin Microbiol Infect. 2009;15(Suppl 2):55–6.

357. Oliveira LS, Oliveira KA, Pescatore AM, Almeida MR, Concejiao LG, Almosny NRP. Prevalence of Ehrlichia canis infection in thrombocytopenic dogs from Rio de Janeiro, Brazil. Vet Clin Pathol. 2005;34:44–8.

358. Labarthe N, de Campos Pereira M, Barbábari O, McKee W, Coimbra CA, Hoskins J. Serologic prevalence of D Nicholsia annulata, Ehrlichia canis, and Borelia burgdorferi in Brazil. Vet J. 2005;174:673–6.

359. Labruna MB, McBride JW, Camargo LMA, Aguiar DM, Yabesky MJ, Davidson WR, et al. A preliminary investigation of Ehrlichia species in ticks, humans, dogs, and capybaras from Brazil. Vet Parasitol. 2007;143:189–95.

360. Macieira DB, Messick JB, Cerqueira AMF, Freire IA, Linhares LHC, Cupples MJ, Almeida NKO, Almosny NRP. Prevalence of Ehrlichia canis infection in thrombocytopenic dogs from Rio de Janeiro, Brazil. Vet Clin Pathol. 2005;34:44–8.

361. Melo ALT, Martins TF, Horta MC, Morais-Filho J, Pacheco RC, Labruna MB, Aguiar DM. Seroprevalence and risk factors to Ehrlichia spp. and Rickettsia spp. in dogs from the Pantanal Region of Mato Grosso State, Brazil. Ticks Tick Borne Dis. 2011;2:213–8.

362. Mundim AV, Morais IA, Tavares M, Cury MC, Mundim MS. Clinical and hematological signs associated with dogs naturally infected by Hepato- zoon spp. and with other hematozoa: a retrospective study in Uberlandia, Minas Gerais, Brazil. Vet Parasitol. 2008;153:3–8.

363. Saito TB, Cunha-Filho NA, Pacheco RC, Ferreira F, Peppen FG, Farias NR, et al. Canine infection by rickettsiae and ehrlichiae in southern Brazil. Am J Trop Med Hyg. 2008;79:102–8.

364. Santos LGF, Melo ALT, Morais-Filho J, Witter R, Labruna MB, Aguiar DM. Molecular detection of Ehrlichia canis in dogs from the Pantanal of Mato Grosso State, Brazil. Rev Bras Parasitol Vet. 2013;22:114–8.

365. Dantas-Torres F, da Silva YY, Miranda DE, Sales KG, Figueiredo LA, Otranto D. Ehrlichia canis spf infection in rural dogs from remote indigenous villages in north-eastern Brazil. Parasit Vectors. 2018;11:139.

366. Oliveira LS, Oliveira KA, Mourao LC, Pescatore AM, Almeida MR, Concejiao LG, et al. Prevalence of Bartonella henselae and Bartonella clarridgeiae in dogs in Brazil. J Vet Diagn Invest. 2018;30:641–5.
of infectious agents in captive Brazilian neotropic and exotic felines. J Vet Diagn Invest. 2012;24:166–73.

381. Guimaraes AM, Javouzirski ML, Bonat M, Lacerta O, Balbinotti B, Queiroz LGPB, et al. Molecular detection of "Candidatus Mycoplasma haemominutum" in a lion (Panthera leo) from a Brazilian zoological garden. Rev Inst Med Trop Sao Paulo. 2007;49:195–6.

382. Vieira RFC, Vidotto O, Vieira TSJ, Guimaraes AM, Santos AP, Nascimento MC, et al. Molecular investigation of hematrophic mycoplasmas in human beings, dogs and horses in a rural settlement in southern Brazil. Rev Inst Med Trop Sao Paulo. 2015;57:353–7.

383. Braga WSCO, Andre MR, Freschi CR, Teixeira MCA, Machado RD. Molecular detection of hemoplasma infection among cats from Sao Luis island, Maranhao, Brazil. Braz J Microbiol. 2012;43:569–75.

384. de Bortoli CP, Andre MR, Seki MC, Pinto AA, Machado STZ, Machado ACGA, Herrera HM, de Sousa KCM, Goncalves LR, Denardi Valle SF, Messick JB, Dos Santos AP, Kreutz LC, Duda NCB, Machado Batista FG, Silva DM, Green KT, Tezza LBL, Vasconcelos SP, Carvalho SGS, Toledo RS, Tamekuni K, de Filho M, Haydu VB, Pacheco RC, Labruna Silveira I, Martins TF, Olegario MM, Peterka C, Guedes E, Ferreira F, Horta MC, Scott FB, Correia TR, Fernandes JI, Richtzenhain LJ, Labruna MB, Whitworth T, Horta MC, Bouyer DH, McBride JW, Pinter AP, Souza AP, Moura AB, Lavina MS, Bellato V, Sartor AA, et al. Molecular investigation of hemotropic mycoplasmas in human beings, dogs and horses in a rural settlement in southern Brazil. Rev Inst Med Trop Sao Paulo. 2007;49:195–6.

385. de Santis ACGA, Herrera HM, de Sousa KCM, Goncalves LR, Denardi Valle SF, Messick JB, Dos Santos AP, Kreutz LC, Duda NCB, Machado Batista FG, Silva DM, Green KT, Tezza LBL, Vasconcelos SP, Carvalho SGS, Toledo RS, Tamekuni K, de Filho M, Haydu VB, Pacheco RC, Labruna Silveira I, Martins TF, Olegario MM, Peterka C, Guedes E, Ferreira F, Horta MC, Scott FB, Correia TR, Fernandes JI, Richtzenhain LJ, et al. Rickettsial infection in ticks (Acari: Ixodidae) collected on birds in southern Brazil. J Med Entomol. 2012;49:710–6.

386. Pacheco RC, Arzua M, Nien-Bastos FA, Moraes-Filho J, Marchi A, Richtzenhain LJ, et al. Rickettsial infection in ticks (Acari: Ixodidae) collected on birds in southern Brazil. J Med Entomol. 2012;49:710–6.

387. Ramos DGS, Melo ALT, Martins TF, Alves AD, Pacheco TA, Pinto LB, et al. Rickettsial infection in ticks from wild birds from Cerrado and the Pantanal region of Mato Grosso, midwestern Brazil.Ticks Ticks Borne Dis. 2015;6:836–42.

388. Szabo MP, Nien-Bastos FA, Spolidorio MG, Martins TF, Barbieri AM, Labruna MB. In vitro isolation from Amblyomma ovalae (Acari: Ixodidae) and ecological aspects of the Atlantic rainforest Rickettsia, the causative agent of a novel spotted fever rickettsiosis in Brazil. Parasitology. 2013;140:719–28.

389. Yabsley MJ, McIBiben J, Macpherson CN, Cattan PF, Cherry NA, Hegarty BC, et al. Prevalence of Ehrlichia canis, Anaplasma platys, Babesia canis var. canis, Babesia vogeli, and Ehrlichia canis in dogs. Ann Trop Med Parasitol. 1996;90:259–74.

390. Labruna MB. Rickettsial infection in animals, humans and ticks in feral and domestic cats in the Pantanal region of Mato Grosso, midwestern Brazil. J Med Entomol. 2012;49:710–6.

391. Ramos DGS, Melo ALT, Martins TF, Alves AD, Pacheco TA, Pinto LB, et al. Rickettsial infection in ticks from wild birds from Cerrado and the Pantanal region of Mato Grosso, midwestern Brazil.Ticks Ticks Borne Dis. 2015;6:836–42.

392. Chikweto A, Bhaiyat MI, Lanza-Perea M, Tiwari K, de Allie C, Sharma RN. Retrospective study of canine heartworm disease with visceral leishmaniasis in a rural community in Lusungu, Zambia. Parasitol Res. 2010;108:1245–50.

393. Petana WB. American trypanosomiasis (Chagas' disease) in the Caribbean. Bull Pan Am Health Organ. 1978;12:45–50.

394. Moham-Maharaj J. Studies on vectors of Trypanosoma cruzi in Trinidad, West Indies. Med Vet Entomol. 1992;6:115–20.
421. Lofts AD, Kelly PJ, Freeman MD, Fitzharris S, Beeler-Marfisi J, Wang C. Tick-borne pathogens and disease in dogs on St. Kitts, West Indies. Vet Parasitol. 2013;196:4–9.

422. Quirullo BA, Chandrashekar R, Hegarty BC, Beall MJ, Stillman BA, Liu J, et al. A serological survey of tick-borne pathogens in dogs in North America and the Caribbean as assessed by Anaplasma phagocytophilum, A. platys, Ehrlichia canis, E. chaffeensis, E. ewingii, and Borelia burgdorferi species-specific peptides. Infect Ecol Epidemiol. 2014;4:24699.

423. Kelly PJ, Moura L, Miller T, Thurik J, Ferreault N, Weil A, et al. Feline immunodeficiency virus, feline leukemia virus and Bartonella species in stray cats on St. Kitts, West Indies. J Feline Med Surg. 2010;12:447–50.

424. Ramperstad JW, Watkins JD, Samal MS, Deonaran R, Ramsusbeik S, Ammons DR. A nested-PCR with an internal amplification control for the detection and differentiation of Bartonella henselae and B. claridgeiae, an examination of cats in Trinidad. BMC Infect Dis. 2005;5:63.

425. Asgarali Z, Pargass I, Adam J, Mutani A, Ezeokoli C. Haematological parameters in stray dogs seropositive and seronegative to Ehrlichia canis in North Trinidad. Ticks Tick Rome Dis. 2012;3:207–11.

426. Georges K, Ezeokoli C, Auguste T, Seppelt N, Pottinger A, Spara-gano O, Tasker S. A comparison of real-time PCR and reverse line blot hybridization in detecting feline haemoplasmas of domestic cats and an analysis of risk factors associated with haemoplasma infections. BMC Vet Res. 2012;8:103.

427. Pérez LC, Aréa JD. Nódulos parasitarios cutáneos: estudio ultrasonográfico de tres casos poco frecuentes en la edad pediátrica. Rev Chilena Radiol. 2007;13:163–8.

428. Muñoz-Leala S, Lopes MG, Marcili A, Martins TF, González-Acuñac Correa V, Zuniga J, Briceno J, Contreras MC, Aranda JC, Valdes J, et al. An ento-mpecies-specific peptides. Infect Ecol Epidemiol. 2014;4:24699.

429. Gonzalez CR, Reyes C, Canals A, Parra A, Munoz X, Rodriguez K. An ento-mpecies-specific peptides. Infect Ecol Epidemiol. 2014;4:24699.

430. Lawrence A, Hood B, Zuniga J, Briceno J, Contreras MC, Aranda JC, Valdes J, et al. Panorama general de la epidemiología de la enfermedad de Chagas en Chile. Bol Chil Parasitol. 1991;46:19–30.

431. Schenone H, Villarroel F, Contreras MC, Borgono JM, Sandoval L, Rojas A, et al. Enfermedad de Chagas en Chile. Sectores rurales y periurbanos. Tasas de positividad de la reacción de hemaglutinación indirecta (RHAI) para el diagnóstico de la parasitosis según el numero de personas examinadas por vivienda. Bol Chil Parasitol. 1986;41:27–30.

432. Venegas L, Rojas A, Villarroel F, Contreras MC, Sandoval L, Schenone H. Epidemiologia de la enfermedad de Chagas en Chile. Sectores rurales. Infestacion triatomidica domiciliaria e infeccion por Trypanosoma cruzi del vector y mamiferos domesticos de la VI Region del Libertador General Bernardo O’Higgins, 1983. Bol Chil Parasitol. 1984;38:1392–72.

433. Villarroel F, Rojas A, Contreras MC, Schemone H. Epidemiologia de la enfermedad de Chagas en Chile. Sectores rurales. Infestacion triat-moidicana domiciliaria e infeccion por Trypanosoma cruzi de los vectores y mamiferos domesticos de la region metropolitana, 1982–1984. Bol Chil Parasitol. 1984;38:1392–72.

434. Villarroel F, Schenone H, Contreras MC, Rojas A, Hernandez E. Enferme-dad de Chagas en el Alto Plano chileno Aspectos epidemiologicos, parasitologicos y clinicos. Bol Chil Parasitol. 1991;46:61–9.

435. Abarca K, Lopez J, Perret C, Guerrero J, Godoy P, Veloz A, et al. Ana-plasma platys in dogs, Chile. Emerg Infect Dis. 2007;13:1392–5.

436. Del Lopez P, Abarca VK, Azocar AF. Evidencia clinica y serología de rickettsiosis canina en Chile. Rev Chilena Infet Dis. 2007;24:189–93.

437. Zaror L, Ernst S, Navarette M, Bailleres A, Boroscheck D, Ferres M, Thibaut J. Detecion serologica de Bartonella henselae en gatos en la ciudad de Valdivia, Chile. Arch Med Vet. 2002;34:103–10.

438. Ferres M, Abarca K, Godoy P, Garcia P, Palavecino E, Mendez G, et al. Presencia de Bartonella henselae en gatos: cuantificacion del reservorio natural y riesgo de exposicion humana de esta zoonosis en Chile. Rev Med Chile. 2005;133:1465–71.

439. Abarca K, Riera M, Prado P, Lobos T, Palacios O, Ferres M, et al. Neurroborrelia en Chile. Caso pediátrico de probable adquisicion por mascotas importadas. Rev Méd Chile. 1996;124:975–9.

440. Neira O, Cerda C, Alvarado MA, Palma S, Ambumohor P, Wainstein E, et al. Enfermedad de Lyme en Chile. Estudio de prevalencia en grupos. Rev Méd Chile. 1996;124:537–44.

441. Abarca K, Abumohor P, Mundaca M, Caballero C, Valente-Echeverria F, Identification molecular of Ehrlichia canis in a canino de la ciudad de Arica, Chile. Rev Chilena Infectol. 2012;29:527–30.

442. Lopéz J, Castillo A, Muñoh O, Hildebrandt S. Hallazgo de Ehrlichia canis en dos distantes Chilean cities. Vector Zoonotic Dis. 2013;13:607–9.

443. Poo-Muñoz DA, Elizondo-Patrone C, Escobar LE, Astorga F, Bermúdez Vargas-Hernandez G, Andre MR, Faria JLM, Munhoz TD, Hernandez-Mendivil J, Gil, J, et al. Endemic Rickettsiosis in the Endangered Darwin rhipicephalus sanguineus from two distant Chilean cities. Vector Borne Zoonotic Dis. 2013;23:2927–30.

444. Poo-Muñoz DA, Elizondo-Patrone C, Escobar LE, Astorga F, Bermúdez Vargas-Hernandez G, Andre MR, Faria JLM, Munhoz TD, Hernandez-Mendivil J, Gil, J, et al. Endemic Rickettsiosis in the Endangered Darwin rhipicephalus sanguineus from two distant Chilean cities. Vector Borne Zoonotic Dis. 2013;23:2927–30.

445. McCown ME, Monterroso VH, Cardona W. Surveillance for Dirofilaria immitis in dogs from three cities in Colombia. J Spec Oper Med. 2014;14:86–90.

446. Guerrero J, Genchi C, Vezzoni A, Ducos de Lahitte J, Bussieras J, Rojo FA, et al. Detection of Dirofilaria immitis in the endangered Darwin fox (Lycalopex fulvipes): high prevalence and diversity of hemotrophic mycoplasmas. Vet Microbiol. 2013;167:448–54.

447. Abarca K, Lopez J, Acosta-Jamett G, Martinez-Valdebenito C, et al. Fleas and ticks in carnivores from a domestic-wildlife interface: implications for public health and wildlife. J Med Entomol. 2016;53:1433–43.

448. Vargas-Hernandez G, Andre MR, Farra JLM, Muñoh JD, Hernandez-Rodriguez M, Machado RZ, Tinucci-Costa M. Molecular and serological detection of Ehrlichia canis and Babesia vogeli in dogs in Colombia. Vet Parasitol. 2012;186:254–60.

449. McCown ME, Monterroso VH, Cardona W. Surveillance for Ehrlichia canis, Anaplasma phagocytophilum, Borelia burgdorferi, and Dirofilaria immitis in dogs from three cities in Colombia. J Spec Oper Med. 2014;14:86–90.

450. Guerrero J, Genchi C, Vezzoni A, Ducos de Lahitte J, Bussieras J, Rojo FA, et al. Detection of Dirofilaria immitis in selected areas of Europe and South America. In: Otto GF, editor. In: Proceedings of the Heartworm Symposium ’89 Washington, DC: American Heartworm Society; 1989. p 13–8.
460. Vargas-Hernandez G, Andre MR, Munhoz TD, Faria JML, Machado RZ, Paternina Gómez M, Díaz-Olmos Y, Paternina LE, Bejarano EE. Alta prevalencia de infección por Leishmania (Kinetooplastidae: Trypanosomatidae) en perros del norte de Colombia. Biomedica. 2013;33:375–82.

461. Romero M, Lopez M, Echeverry M, Rivas F. Leishmaniasis visceral canina: pruebas diagnósticas no identifican Estados Reales de la infección. Rev Salud Pública. 2009;10:290–8.

462. Blanco VA, Cossio A, Martinez JD, Saravia NG. Clinical and epidemiologic profile of cutaneous leishmaniasis in Colombian children: considerations for local treatment. Am J Trop Med Hyg. 2013;89:359–64.

463. Martinez LP, Rebollo JA, Luna AL, Cochero S, Bejarano EE. Molecular identification of the parasites causing cutaneous leishmaniasis on the Caribbean coast of Colombia. Parasitol Res. 2010;106:647–52.

464. Patiño-Londoño SY, Salazar LM, Acero CT, Bernal IDV. Aspectos sociopediátricos y culturales de la leishmaniasis cutánea: concepciones, actitudes y prácticas en las poblaciones de Tierralta y Valencia, (Córdoba, Colombia). Salud Colect. 2017;13:123–38.

465. Pérez-Rózaro M, Ocampo CB, Valderrama-Ardila C, Alexander N. Spatial modeling of cutaneous leishmaniasis in the Andean region of Colombia. Mem Inst Oswaldo Cruz. 2016;111:433–42.

466. Rincon MY, Silva SY, Duenas RE, Lopez-Jaramillo P. Leishmaniasis cutánea diseminada: reporte de dos casos en Santander, Colombia. Rev Salud Pública. 2009;11:145–50.

467. Rodriguez-Barraque I, Gongora G, Prager M, Pacheco R, Montero LM, Navas A, et al. Etiologic agent of an epidemic of cutaneous leishmaniasis in Tolima, Colombia. Am J Trop Med Hyg. 2008;78:276–82.

468. Rosales-Chilama M, Gongora RE, Valderrama L, Jojoa J, Alexander N, Rubiano LC, et al. Parasitological confirmation and analysis of Leishmania diversity in asymptomatic and subclinical infection following resolution of cutaneous leishmaniasis. PLoS Negl Trop Dis. 2015;9:e0004273.

469. Vélez ID, Camillo LM, López E, Rodríguez E, Robledo SM. An epidemic outbreak of canine cutaneous leishmaniasis in Colombia caused by Leishmania braziliensis and Leishmania panamensis. Am J Trop Med Hyg. 2012;86:807–11.

470. Vélez ID, Jiménez A, Vásquez D, Robledo SM. Disseminated cutaneous leishmaniasis in Colombia: report of 27 cases. Case Rep Dermatol. 2015;7:275–86.

471. Ramirez-Hernandez A, Montoya V, Martinez A, Perez JE, Mercado M, La Ossa A, et al. Molecular detection of Rickettsia felis in different fleas species from Caldas, Colombia. Am J Trop Med Hyg. 2013;89:453–9.

472. Scorsa AV, Duncan C, Miles L. Lappin MR. Prevalence of selected zoonotic and vector-borne agents in dogs and cats in Costa Rica. Vet Parasitol. 2011;183:178–83.

473. Montenegro VM, Bonilla MC, Kaminsky D, Romero-Zúñiga JJ, Siebert S, Krämer F. Serological detection of antibodies to Anaplasma spp., Borrelia burgdorferi sensu lato and Ehrlichia canis and of Dirofilaria immitis antigen in dogs from Costa Rica. Vet Parasitol. 2015;218:57–70.

474. Reyes L, Silesky E, Cedras C, Chinchilla M, Guerrero D. Presencia de anticuerpos contra Trypanosoma cruzi en perros de Costa Rica. Parasitol Latinoam. 2002;57:6.8–

475. Zeledon R, Solano G, Burstin L, Swartzwelder JC. Epidemiological pattern of Chagas’ disease in an endemic area of Costa Rica. Am J Trop Med Hyg. 1975;24:214–25.

476. Montenegro VM, Jimenez M, Dias JCP, Zeledon R. Chagas disease in dogs from endemic areas of Costa Rica. Mem Inst Oswaldo Cruz. 2002;97:491–94.

477. Bonilla MC. Prevalencia de Anaplasma phagocytophilum y Anaplasma plSENS2 en perros y garrapatas de perros que visitan parques públicos de Costa Rica. Vet Med Thesis, Univ Nacional Costa Rica, Heredia, Costa Rica. 2014.

478. Ábrego L, Dolz G, Romero JJ, Vargas B, Meneses A. Detection molecular de Anaplasma plSENS2 en perros de Costa Rica. Cienc Vet. 2009;27:71–80.

479. Ábrego L, Dolz G, Romero Zúñiga JJ, Vargas Leitón B, Meneses Guevara A, Dolz G. Detección molecular de Anaplasma plSENS2 en perros de Costa Rica. Acta Med Costarric. 2013;55:89, B-8.

480. Campos I, Salazar L, Dolz G. Detección molecular del agente zoonótico Anaplasma phagocytophilum en muestras de sangre de caballos, sangre y garrapatas de perros de Costa Rica. Acta Med Costarric. 2013;55:91, B-12.

481. Barrantes-González A, Bonilla MC, Jiménez-Rocha AE, Montenegro VM, Romero-Zúñiga JJ, Dolz G. Seroprevalencia de Ehrlichia canis y Anaplasma phagocytophilum en perros que visitan parques recreativos de Costa Rica - estudios preliminares. Acta Med Costarric. 2013;55:68.

482. Rojas N, Troyo A, Castillo D, Gutierrez R, Harrius S. Molecular detection of Bartonella species in fleas collected from dogs and cats from Costa Rica. Vector Borne Zoonotic Dis. 2015;15:630–2.

483. Schicht S, Montenegro VM, Pantchev N, Siebert S, Balzer J, Strube C. Determination of Rickettsia amblyommii in ticks from domestic mammals in eastern Panama. J Med Entomol. 2013;50:65.

484. Varona A, Dolz G, Robledo SM. Detección molecular de Anaplasma phagocytophilum en perros de Costa Rica. Acta Med Costarric. 2013;55:65.

485. Hun L, Troyo A, Barbieri AM, Labruna MB. First report of the coexistence of Rickettsia amblyommii and Rickettsia felis in Central America: Vector Borne Zoonotic Dis. 2011;11:1395–7.

486. Troyo A, Alvarez D, Taylor L, Abdalla G, Calderon-Arguedas O, Zambrano ML, et al. Rickettsia felis in Ctenocephalides felis from Guatemala and Costa Rica. Am J Trop Med Hyg. 2012;86:1054–6.
499. Sotolongo Guerra F. Incidencia de la Dirofilaria immitis en los perros de la ciudad de La Habana. Rev Cubana Med Trop. 1977;29:9–12.

500. Dumening Ripoll B, Aguiar Prieto PH, Galvez MD. Prevalencia de Dirofilaria immitis en perros de Ciudad de la Habana. Rev Cubana Med Trop. 1982;54:262–8.

501. Perez O, Lastre M, Aguar PM, Galvez M. Busqueda de Dirofilaria immitis en perros en la provincia Ciudad de La Habana. Rev Cubana Med Trop. 1985;37:174–7.

502. Rodríguez I, Fernandez C, Cinco M, Pedroso R, Fuentes O. Do antiborrelial antibodies suggest Lyme disease in Cuba? Emerg Infect Dis. 2004;10:1668–70.

503. Rodríguez I, Fernández C, Sanchez L, Martinez B, Siegrist HH, Lienhard R. Prevalence of antibodies to Borelia burgdorferi sensu stricto in humans from a Cuban village. Braz J Infect Dis. 2012;16:82–5.

504. Rodríguez I, Fernández C, Sánchez L, Martínez B, Siegrist HH, Lienhard R. Serological evidences suggest Borrelia burgdorferi sensu lato infection in Cuba. Braz J Infect Dis. 2012;16:405–9.

505. Dessau RB. Infection due to Borrelia burgdorferi most likely does not occur in Cuba. Braz J Infect Dis. 2012;16:404 (Author reply: 405–6).

506. Duran-Strueck R, Jost C, Hernandez AH. Dirofilaria immitis prevalence in a canine population in the Samana Peninsula (Dominican Republic)-June 2001. Vet Parasitol. 2005;133:323–7.

Manda JA. Transplacental migration of Dirofilaria immitis microfilariae. Comp Anim Med J. 1989;19:18–20.

508. Johnson RN, Young DG, Butler JF, Bogaert-Diaz H. Possible determinants of Leishmaniose en Equateur 4 Infestation naturelle du chien par Leishmania donovani: roidiosis ans et vector control in southern Ecuador. Trop Med Health. 2017;45:5.

509. Schnur LF, Walton BC, Bogaert-Diaz H. On the identity of the parasite causing diffuse cutaneous leishmaniasis in the Dominican Republic. Trans R Soc Trop Med Hyg. 1983;77:756–62.

510. Shaw J, Protifong F, Floret-Winter L, Ishikawa E, El Baidouri F, Ravel C, Dedet JP. Characterization of Leishmania (Leishmania) walti n. sp. (Kinoplastida: Trypanosomatidae), the parasite responsible for diffuse cutaneous leishmaniasis in the Dominican Republic. Am J Trop Med Hyg. 1995;53:552–8.

511. Bogaert Díaz H, Martínez D, Quiñones M, de Estévez FN. Leishmaniose en Equateur 4 Infestation naturelle du chien par Leishmania donovani: roidiosis ans et vector control in southern Ecuador. Trop Med Health. 2017;45:5.

512. Pérez-Peleteiro L, Pérez-Cárdenas E, Chaves S, Sánchez L, Martínez B, Siegrist HH, Lienhard R. Serological evidences suggest Borrelia burgdorferi sensu lato infection in Cuba. Braz J Infect Dis. 2012;16:405–9.

513. Dereure J, Espinel I, Barrera C, Guerrini F, Martini A, Echeverria R, et al. Determination of prevalence of the guano del cara (Dirofilaria immitis) in perros domésticos (Canis lupus familiaris) in El Puerto de La Libertad, Departamento de La Libertad y Suchitoto, Departamento de Cuscatlán, El Salvador. Vet Med Thesis, Univ El Salvador, Facul Agron Sci, Dep Zootec, San Salvador, El Salvador; 2005.

514. Alvarado Sorto JM, Orellana Menjívar SE, Pichinte Gálvez LA. Determination of prevalence of canine visceral leishmaniasis (Dirofilaria immitis) in dogs from Santeicrobial and vector control in southern Ecuador. Trop Med Health. 2017;45:5.

515. Carrera Vargas C, Narváez AO, Muzzio Aroca J, Shiguango G, Robles LM, Oteo JA. Determination of the presence of Anaplasma phagocytophilum in the Dominican Republic. Mem Inst Oswaldo Cruz. 2015;110:299–309.

516. Nieto-Sanchez C, Baus EG, Guerrero D, Grijalva MJ. Positive deviance study to inform a Chagas disease control program in southern Ecuador. Mem Inst Oswaldo Cruz. 2015;110:299–309.

517. Quinde-Calderón L, Rios-Quitsuiza F, Solorzano L, Dumonteil E. Ten years (2004–2014) of Chagas disease surveillance and vector control in Ecuador: successes and challenges. Trop Med Int Health. 2016;21:84–92.

518. McCown M, Monterroso VH, Grzeszak B. Surveillance of zoonotic and infectious diseases in Ecuador: implications for special operations forces medical operations, personnel, and canines. J Spec Oper Med. 2011;11:61–5.

519. Peñuela C, Portillo A, Palomar AM, Oteo JA. Investigation of tick-borne bacteria (Rickettsia spp, Anaplasma spp, Ehrlichia spp and Borelia spp) in ticks collected from Andean tapirs, cattle and vegetation from a protected area in Ecuador. Parasit Vectors. 2015;8:46.

520. Oteo JA, Portillo A, Faroello A, Zavala-Castro J, Venzal JM, Labruna MB. “Candidatus Rickettsia asboemoensis” and Wolbachia spp in Ctenocephalides felis and Aëtes ventias removed from dogs in Ecuador. Parasit Vectors. 2014;7:455.

521. Conde Landaverde IM, Escobar Rodriguez AM, Gómez Vides WM. Determinación de la presencia del antiguo de Dirofilaria immitis por inmu- nocrumografía en pacientes caninos de cinco clínicas veterinarias en la zona norte de San Salvador. Vet Med Thesis, Univ El Salvador, Facul Agron Sci, Dep Zootec, San Salvador, El Salvador; 2005.

522. Villamil Playas-Posorja. Seroprevalence of Trypanosoma cruzi in schoolchildren and in pregnant women from an Amazonian region of Ecuador. Am J Trop Med Hyg. 2012;93:774–8.

523. Herrera C, Dumonteil E. Seroprevalence of Trypanosoma cruzi infection among pregnant women in Ecuador. Am J Trop Med Hyg. 2011;85:61–5.

524. Nieto-Sanchez C, Baus EG, Guerrero D, Grijalva MJ. Positive deviance study to inform a Chagas disease control program in southern Ecuador. Mem Inst Oswaldo Cruz. 2015;110:299–309.

525. Quinde-Calderón L, Rios-Quitsuiza F, Solorzano L, Dumonteil E. Ten years (2004–2014) of Chagas disease surveillance and vector control in Ecuador: successes and challenges. Trop Med Int Health. 2016;21:84–92.

526. McCown M, Monterroso VH, Grzeszak B. Surveillance of zoonotic and infectious diseases in Ecuador: implications for special operations forces medical operations, personnel, and canines. J Spec Oper Med. 2011;11:61–5.

527. Conde Landaverde IM, Escobar Rodriguez AM, Gómez Vides WM. Determinación de la presencia del antiguo de Dirofilaria immitis por inmu- nocrumografía en pacientes caninos de cinco clínicas veterinarias en la zona norte de San Salvador. Vet Med Thesis, Univ El Salvador, Facul Agron Sci, Dep Zootec, San Salvador, El Salvador; 2005.

528. Melby PC, Keutz RD, McMahon-Pratt D, Gam AA, Neva FA. Cutaneous leishmaniasis: review of 59 cases seen at the National Institutes of Health. Clin Infect Dis. 1992;15:924–7.

529. Cedillos RA, Warren M, Wilton DP, Jeffery GM, Sauerbery M. Estudio epidemiológico del Trypanosoma cruzi en El Salvador. Rev Inst Invest Med El Salvador. 1976;5:119–30.

530. Dedet JP. Cutaneous leishmaniasis in French Guiana: a review. Am J Trop Med Hyg. 1990;43:25–8.

531. Dedet JP, Pradinaud R, Gay F. Epidemiological aspects of human cutaneous leishmaniasis in French Guiana. Trans R Soc Trop Med Hyg. 1989;83:616–20.

532. Martin-Blondel G, Iriart X, El Baidouri F, Simon S, Mills D, Dermar M, et al. Outbreak of Leishmania braziliensis cutaneous leishmaniasis, Sául, French Guiana. Emerg Infect Dis. 2015;21:892–4.

533. Hombic JM, Ristig E, del Hoyo F, Del Pozo J, Artigas C, Jover R, et al. Molecular epidemiology of Leishmania (Viannia) guyanensis in French Guiana: canine visceral leishmaniasis imported from the Old World. J Clin Microbiol. 2006;44:668–73.

534. Maggi and Krämer Parasites Vectors (2019) 12:145 Page 32 of 37
583. Salinas Meléndez JA, Hernández Escareño JJ, Rojas Valdés VM, Avalos Ramírez R, Zanate Ramos JJ, Zamora Ávila DE, et al. Prevalencia de Anaplasma phagocytophilum en caninos de Monterrey. 2011. In: Proceedings XXVI Congreso Nacional de Investigación en Medicina. Cintermex, Monterrey, Nuevo León, Mexico, 22–24 September, 2011.

584. Almazán C, González-Álvarez VH, Mera IG, Cabezas-Cruz A, Rodríguez-Martínez R, La Fuente J. Molecular identification and characterization of Anaplasma platys and Ehrlichia canis in dogs in Mexico.Ticks Tick Borne Dis. 2016;7:276–83.

585. Galaviz-Silva L, Perez-Trevino KC, Molina-Garza JZ. Distribution of ixodid ticks on dogs in Nuevo León, Mexico, and their association with Borrelia burgdorferi sensu lato. Exp Appl Acarol. 2013;61:491–501.

586. Tinoco-Gracia L, Quiróz-Romero H, Quintero-Martínez MT, Rentería-Evangelista TB, Barreras-Serrano A, Lopez-Valencia G, et al. Seroprevalence of Borrelia burgdorferi in dogs from a Mexico-US border desert region: pilot study. J Anim Vet Adv. 2007;6:787–9.

587. Gordillo-Gomez G, Torres J, Solorzano-Santos F, Rivera A, Solórzano-Santos F, Rivera A, et al. Molecular identification and characterization of Borrelia burgdorferi sensu stricto and Borrelia burgdorferi amblyommii in Zecken aus Mittelamerika. In: Proceedings Tagung DVG-Fachgruppe "Parasitologie und parastiräre Krankheiten" Hannover, Germany, 12–14 June, 2017. Geißen, Germany: DVG Service GmbH; 2017. p. 159–61.

588. Her rer A, Christensen HA. Epidemiological patterns of cutaneous leishmaniasis in Panama. I. Epidemics among small groups of settlers. Ann Trop Med Parasitol. 1976;70:59–65.

589. Her rer A, Christensen HA. Natural cutaneous leishmaniasis among dogs in Panama. Am J Trop Med Hyg. 1976;25:59–63.

590. Her rer A, Christensen HA. Epidemiological patterns of cutaneous leishmaniasis in Panama. III. Endemic persistence of the disease. Am J Trop Med Hyg. 1976;25:54–8.

591. Her rer A, Christensen HA, Beumer RJ. Epidemiological patterns of cutaneous leishmaniasis in Panama. II. Incidental occurrence of cases in non-endemic settlements. Ann Trop Med Parasitol. 1976;70:67–71.

592. Calzada JE, Saldana A, Gonzalez K, Rigg C, Pineda V, Santamaria AM, et al. Cutaneous leishmaniasis in dogs: is high seroprevalence indicative of a reservoir role? Parasitology. 2015;142:1202–14.

593. Pineda V, Saldana A, Monfante I, Santamaria A, Gottdenker NL, Yabsley MJ, et al. Prevalence of trypanosome infections in dogs from Chagas disease endemic regions in Panama, Central America. Vet Parasitol. 2011;178:360–3.

594. Santamaria A, Calzada JE, Saldana A, Yabsley MJ, Gottdenker NL. Molecular diagnosis and species identification of Ehrlichia and Anaplasma infections in dogs from Panama, Central America. Vector Borne Zoonotic Dis. 2014;14:368–70.

595. Ermeevea ME, Karpathy SE, Levin ML, Caballero CM, Bermudez S, Dasch GA, Motta JA. Spotted fever rickettsiae, Ehrlichia and Anaplasma, in ticks from peridomestic environments in Panama. Clin Microbiol Infect. 2009;15(Suppl. 2):124–2.

596. Bermúdez CSE, Zaldívar AT, Solapiorio MG, Morales-Filho J, Miranda RJ, Caballero CM, et al. Rickettsial infection in domestic mammals and their ectoparasites in El Valle de Anton, Cocle, Panama. Vet Parasitol. 2011;177:134–8.

597. Bermúdez S, Miranda R, Zaldívar Y, González P, Berguido G, Trejos D, et al. Detection of Rickettsios spp. in ectoparasitoses of animals domestics and wilds in the city of Panama, Panama, and their vectors in the area of El Valle de Anton, Cocele, Panama, and the urban areas of Panama. Vector Borne Zoonotic Dis. 2014;14:368–70.

598. Bermúdez SE, Castro AM, Trejos D, García GG, Gabster A, Miranda R, et al. Distribution of spotted fever group rickettsiae in hard ticks (Ixodida: Ixodidae) from Panamanian urban and rural environments (2007–2013). EcolHealth. 2016;13:274–84.

599. Fernell AM, Brinkhoff RJ, Bernal J, Bermúdez SE. Ticks and tick-borne pathogens of dogs along an elevational and land-use gradient in Chiriquí Province, Panamá. Exp Appl Acarol. 2017;71:371–85.

600. Inácio EL, Pérez-Macchi S, Albá A, Bintencourt P, Muller A. Prevalence and molecular characterization of piroplasms in domestic dogs from Paraguay. Ticks Tick Borne Dis. 2019;10:321–7.

601. Rami P, Salas P, Minero J, Lázaro-Marín A, Velázquez S, et al. Prevalence of Coxiella burnetii in dogs and their ticks in the area of El Valle de Anton, Cocle, Panama. Vet Parasitol. 2011;177:134–8.

602. Rami P, Salas P, Minero J, Lázaro-Marín A, Velázquez S, et al. Prevalence of Coxiella burnetii in dogs and their ticks in the area of El Valle de Anton, Cocle, Panama. Vet Parasitol. 2011;177:134–8.

603. Rami P, Salas P, Minero J, Lázaro-Marín A, Velázquez S, et al. Prevalence of Coxiella burnetii in dogs and their ticks in the area of El Valle de Anton, Cocle, Panama. Vet Parasitol. 2011;177:134–8.
623. Chapman MD, Baggaley RC, Godfrey-Faussett P, Malpas TJ, White G, Maggi and Krämer. *Parasites Vectors* (2019) 12:145.

625. Pérez-Macchi S, Pedrozo R, Bittencourt P, Müller A. Prevalence, Adrianzén JG, Chávez AV, Casas EA, Li OE. Seroprevalencia de la dirofilariosis y ehrlichiosis canina en tres distritos de Lima. Rev Invest Vet Perú. 2003;14:43–8.

627. Labarthe N, Guerrero J. Epidemiology of heartworm: what is happening in the tick *Rhipicephalus sanguineus*. Vector Borne Zoonotic Dis. 2013;13:505–8.

628. Acuña PU, Chávez AV. Determination of the prevalence of Dirofilaria immitis in the districts of San Martín de Porrés, Rímac and Cercado de Lima. Rev Invest Vet Perú. 2002;13:108–10.

629. Bravo RM, Chávez AV, Casas EA, Suárez FA. Dirofilariosis canina en los distritos colindantes con la ribera del río Lurin. Rev Invest Vet Perú. 2002;13:80–3.

630. Chipana CQ, Chávez AV, Casas EA, Suárez FA. Estudio de la dirofilariosis canina en la ribera del río Chillón, Lima. Rev Invest Vet Perú. 2002;13:72–6.

631. Llanos-Cuentas EA, Roncal N, Villaseca P, Paz L, Ogusuku E, Perez JE, Reithinger R, Espinoza JC, Davies CR. The transmission dynamics of *Anaplasma platys* molecular characterization and risk factor analysis of *Ehrlichia canis* in domestic dogs from Paraguay. Comp Immunol Microbiol Infect Dis. 2019;62:31–9.

633. Reithinger R, Canales Espinoza J, Llanos-Cuentas A, Davies CR. Domestic anaplasmosis and ehrlichiosis in Peru: 2002–2012. Rev Invest Vet Perú. 2013;24:64–71.

635. Barrios LA, Li OE, Suárez FA, Manchego AS, Hoyos LS. Evidencia hematólogica y serológica de *Ehrlichia* spp. en propietarios de caninos domésticos con antecedentes de ehrlichiosis en Lima Metropolitana. Rev Invest Vet Perú. 2013;12:64–71.

636. Forshey BM, Stewart A, Morrison AC, Galvez H, Rocha C, Astete H, et al. Epidemiology of spotted fever group and typhus group rickettsial infection in the Amazon basin of Peru. Am J Trop Med Hyg. 2010;82:683–90.

638. Flores-Mendoza C, Florin D, Felices V, Pozo EJ, Graf PFC, Burruss RG, Richards AL. Detection of *Rickettsia parkeri* from within Piura, Peru, and the first reported presence of *Candidatus Rickettsia andeanae* in the tick *Rhipicephalus sanguineus*. Vector Borne Zoonotic Dis. 2013;13:505–8.

640. McComb ME, Opel T, Grzeszak B. Vector-borne disease surveillance in Puerto Rico: pathogen prevalence rates in canines-implications for public health and the U.S. Military-applying the One Health concept. J Spec Oper Med. 2013;13:59–63.

642. Reithinger R, Espinoza JC, Davies CR. The transmission dynamics of canine American cutaneous leishmaniasis in Huanuco, Peru. Am J Trop Med Hyg. 1999;48:536–41.

643. Frickers J. Het voorkomen van *Dipylidium caninum* (Linne 1758); *Toxocara canis* (Werner 1782); *Ancylostoma caninum* (Ercolani 1859); *Dirofilaria immitis* (Leidy 1856); en *Spirocerca suayana* (Rudolphi 1819) bij den hond (*Canis familiaris*) in Suriname. Tijdschr Diergeneesk. 1938;65:921–4.

645. Villanueva EJ, Rodriguez-Perez J. Immunodiagnosis of human dirofilariosis in Puerto Rico. Am J Trop Med Hyg. 1999;38:51–5.

647. Langelier J. Aangetekeningen bij de in Suriname meest voorkomende ziekten van huisdieren. Tijdschr Diergeneesk. 1956;81:147–29.

648. Rep BH. Hook worms and other helminths in dogs, cats and man in Surinam. Trop Geogr Med. 1968;20:262–70.

649. Rep BH, Henemann DW. Changes in hookworm distribution in Surinam. Trop Geogr Med. 1976;28:104–10.

650. Panday RS, Joe RG, Moll KF, Oemrawsingh P. *Dirofilaria immitis* in dogs of Surinam. Vet Q. 1981;3:25–30.

652. Barrios LA, Li OE, Suárez FA, Manchego AS, Hoyos LS. Evidencia hematólogica y serológica de *Ehrlichia* spp. en propietarios de caninos domésticos con antecedentes de ehrlichiosis en Lima Metropolitana. Rev Invest Vet Perú. 2013;24:64–71.

653. Llanos-Cuentas EA, Roncal N, Villaseca P, Paz L, Ogusuku E, Perez JE, Reithinger R, Espinoza JC, Davies CR. The transmission dynamics of *Anaplasma platys* molecular characterization and risk factor analysis of *Ehrlichia canis* in domestic dogs from Paraguay. Comp Immunol Microbiol Infect Dis. 2019;62:31–9.

655. Rep BH, Heinemann DW. Changes in hookworm distribution in Surinam. Trop Geogr Med. 1976;28:104–10.

656. Panday RS, Joe RG, Moll KF, Oemrawsingh P. *Dirofilaria immitis* in dogs of Surinam. Vet Q. 1981;3:25–30.

657. van der Meide W, de Vries H, Pratlong F, van der Wal A, Sabajo L, Hu RVPF, Kent AD, Ramkalup P, Mans D, Schallig H. Is the dog a possible reservoir for B. burgdorferi? J Spec Oper Med. 2013;13:59–63.

658. van der Meide W, de Vries H, Pratlong F, van der Wal A, Sabajo L, Hu RVPF, Kent AD, Ramkalup P, Mans D, Schallig H. Is the dog a possible reservoir for B. burgdorferi? J Spec Oper Med. 2013;13:59–63.

659. van der Meide W, de Vries H, Pratlong F, van der Wal A, Sabajo L. Is the dog a possible reservoir for B. burgdorferi? J Spec Oper Med. 2013;13:59–63.

660. van der Meide W, de Vries H, Pratlong F, van der Wal A, Sabajo L, Hu RVPF, Kent AD, Ramkalup P, Mans D, Schallig H. Is the dog a possible reservoir for B. burgdorferi? J Spec Oper Med. 2013;13:59–63.

661. van der Meide W, de Vries H, Pratlong F, van der Wal A, Sabajo L, Hu RVPF, Kent AD, Ramkalup P, Mans D, Schallig H. Is the dog a possible reservoir for B. burgdorferi? J Spec Oper Med. 2013;13:59–63.

662. Kent A, Ramkalup P, Mans D, Schallig H. Is the dog a possible reservoir for B. burgdorferi? J Spec Oper Med. 2013;13:59–63.

663. van der Meide W, de Vries H, Pratlong F, van der Wal A, Sabajo L, Hu RVPF, Kent AD, Ramkalup P, Mans D, Schallig H. Is the dog a possible reservoir for B. burgdorferi? J Spec Oper Med. 2013;13:59–63.

664. van der Meide W, de Vries H, Pratlong F, van der Wal A, Sabajo L, Hu RVPF, Kent AD, Ramkalup P, Mans D, Schallig H. Is the dog a possible reservoir for B. burgdorferi? J Spec Oper Med. 2013;13:59–63.
707. Baneth G, Bourdeau P, Bourdoiseau G, Bowman D, Breitschwerdt E, Capelli G, et al. Vector-borne diseases—constant challenge for practicing veterinarians: recommendations from the CVBD World Forum. Parasit Vectors. 2012;5:55.

708. World Health Organization (WHO). Status of endemicity of visceral leishmaniasis. Data by country. 2017. http://apps.who.int/gho/data/node.main.NTDLEISHVEN?lang=en. Accessed 19 July 2018.

709. World Health Organization (WHO). Status of endemicity of cutaneous leishmaniasis. Data by country. 2017. http://apps.who.int/gho/data/node.main.NTDLEISHVEND?lang=en. Accessed 19 July 2018.

710. World Health Organization (WHO). Vector borne diseases (VBD) in the region of the Americas. http://ais.paho.org/phip/viz/cha_cd_vectorborneDiseases.asp. Accessed 19 July 2018.