APPENDIX

Factors Affecting the Electrocardiographic QT Interval in Malaria: A Systematic Review and Meta-analysis of Individual Patient Data

Xin Hui S Chan, Yan Naung Win, Ilse L Haeusler, Jireh Y Tan, Shanghavie Loganathan,
Sompob Saralamba, Shu Kiat S Chan, Elizabeth A Ashley, Karen I Barnes, Rita Baiden, Peter U Bassi,
Abdoulaye Djimdé, Grant Dorsey, Stephan Duparc, Borimas Hanboonkunupakarn,
Feiko O ter Kuile, Marcus VG Lacerda, Amit Nasa, François H Nosten, Cyprian O Onyeji,
Sasithon Pukrittayakamee, André M Siqueira, Joel Tarning, Walter RJ Taylor,
Giovanni Valentini, Michèle van Vugt, David Wesche, Nicholas PJ Day,
Christopher L-H Huang, Josep Brugada, Ric N Price, Nicholas J White
Table of Contents

Supplementary Methods

Section	Page
Search Strategy	4
Study-Level Data Extraction	5
Individual Patient-Level Data Standardisation	6
ECG Intervals	6
RR Interval	6
QT/QTc interval	6
Demographics	6
Age	6
Weight	6
Vital Signs	6
Temperature	6
Laboratory Parameters	7
Parasitaemia	7
Haemoglobin	7
Individual Patient-Level Data Integrity Checks	7
Data Analysis	8
Exploratory Analyses	8
Variable Selection	8
Model Formulation	8
Model Priors	8
Model Diagnostics & Posterior Predictive Checks	8
Model Checking and Comparison	9
Figure A: Principal Component Analysis Biplots of Factors Affecting the QT Interval in Malaria	10
Figure B: Directed Acyclic Graph of Factors Affecting the QT Interval in Malaria	11

Supplementary Results

Section	Page
Data Availability	12
Table A: Availability of Published Datasets by Study Year of Publication	12
Table B: Availability of Unpublished Datasets by Study Year of Enrolment	12
Figure C: Availability of Datasets by Study Location – Asia-Pacific	13
Figure D: Availability of Datasets by Study Location – Africa & Europe	14
Figure E: Availability of Datasets by Study Location – Americas	15
Data Description	16
Table C: Characteristics of Included Studies	16
Table D: Additional Characteristics of Included Population	19
Table E: Comparison of Characteristics of Included and Excluded Studies	20
Table F: Risk of Bias Assessment of Included and Excluded Studies	21
Table G: Characteristics of Excluded Participants	29
Statistical Analysis	31
Table H: Model Comparison for Main Analysis of All Participants	31
Sensitivity Analyses – Alternative RR Interval Transformation for Main Analysis of All Participants	32
Table I: Multivariable Regression Results from Hierarchical Generalised Additive Model

Table J: Predicted QT Intervals at Baseline and in Recovery from Malaria and Fever

Sensitivity Analyses – Addition of TdP Risk Factor Exclusion Term for Main Analysis of All Participants

Table K: Multivariable Regression Results from Hierarchical Generalised Additive Model

Table L: Model Comparison

Sensitivity Analyses – Addition of Haemoglobin Term for Main Analysis of All Participants

Table M: Multivariable Regression Results from Hierarchical Generalised Additive Model

Table N: Model Comparison

Sensitivity Analyses – Addition of Parasitaemia Terms for Subgroup Analysis of Malaria Patients Only

Table O: Multivariable Regression Results from Hierarchical Generalised Additive Model

Table P: Model Comparison

Sensitivity Analyses – Alternative Model Formulation for Non-Linear QT-RR Relationship for All Participants

Table Q: Multivariable Regression Results from Hierarchical Generalised Additive Model

REFERENCES
SUPPLEMENTARY METHODS

Search Strategy

An electronic literature search was conducted of the MEDLINE, EMBASE, and Global Health databases.

We searched for studies of the quinoline and structurally-related antimalarials amodiaquine, chloroquine, halofantrine, lumefantrine, mefloquine, piperaquine, primaquine, pyronaridine, and quinine for malaria-related indications in human participants with and without clinical *Plasmodium falciparum* and/or *P. vivax* malaria in which electrocardiograms (ECGs) were recorded at documented timepoints before and after drug administration.

We searched for malaria type, antimalarial drug names, and levels of repolarisation-related cardiovascular toxicity as title, abstract, and subject heading keywords, using synonyms and variant spellings as additional search terms.

We excluded animal studies, but did not apply language or publication date limits. Review articles, pooled analyses, case reports, commentary/correspondence articles, and conference abstracts were also excluded. All references were imported into EndNote bibliographic software, de-deduplicated, and screened against eligibility criteria using the Covidence software platform.

E.g. Medline search on 21 August 2017

Searches

▲
1 Malaria/
2 Malaria, Cerebral/
3 Malaria, Falciparum/
4 Malaria, Vivax/
5 plasmodium falciparum/
6 plasmodium vivax/
7 malaria.ti,ab.
8 falciparum.ti,ab.
9 vivax.ti,ab.
10 plasmodium.ti,ab.
11 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10
12 piperaquine.ti,ab.
13 chloroquine.ti,ab.
14 quinine.ti,ab.
15 amodiaquine.ti,ab.
16 lumefantrine.ti,ab.
17 benflumetol.ti,ab.
18 coartem.ti,ab.
19 halofantrine.ti,ab.
20 mefloquine.ti,ab.
21 primaquine.ti,ab.
22 (pyronaridine or pyramax).ti,ab.
23 Amodiaquine/ad, ae, ct, pk, pd, po, to, tu, me, ur, bl, aa
24 Mefloquine/ad, ae, ct, pk, pd, po, to, tu, me, ur, bl, aa
25 Chloroquine/ad, ae, ct, pk, pd, po, to, tu, me, ur, bl, aa
Study-Level Data Extraction

The following information was extracted from study publications, reports, and protocols, and where necessary, requested from study investigators:

1) Study characteristics: year of publication, recruitment period, location, antimalarial treatment indication, participant inclusion and exclusion criteria, number of study participants who had ECG monitoring

2) ECG measurement methodology: centralised or study site-based, manual or automated, cardiologist or other physician reader, intermittent or continuous, any other relevant details

3) Cardiovascular adverse events: sudden cardiac death, life-threatening ventricular tachyarrhythmias (ventricular fibrillation, ventricular tachycardia, torsade de pointes), any other clinically significant arrhythmias or cardiovascular adverse events
Individual Patient-Level Data Standardisation

This was implemented via a bespoke Application Programming Interface in Python version 3.6.3.

ECG Intervals

Where the same ECG recording was measured by more than one set of readers, the measurements from the more specialist set of ECG readers were selected.

Measurements from triplicate ECG recordings were averaged.

Only measurements from intermittent ECG readings were used.

RR Interval

Heart rates in beats per minute were converted into RR intervals in milliseconds:

- \(\text{RR interval} = \frac{60000}{\text{heart rate}} \)

RR intervals were then transformed with power functions:

- \(\sqrt{\text{RR}} = \sqrt{\frac{1}{\text{RR}}} \) (Bazett’s correction-like)
- \(\text{cbrtRR} = \sqrt[3]{\frac{1}{\text{RR}}} \) (Fridericia’s correction-like)

QT/QTc interval

Where only corrected QT intervals were available, uncorrected QT intervals were calculated as follows:

- \(QT = QTcB \times \sqrt{\frac{1}{\text{RR}}} \)
 as \(QTcB = \frac{QT}{\sqrt{\frac{1}{\text{RR}}}} \) (Bazett’s correction formula)

- \(QT = QTcF \times \sqrt[3]{\frac{1}{\text{RR}}} \)
 as \(QTcF = \frac{QT}{\sqrt[3]{\frac{1}{\text{RR}}}} \) (Fridericia’s correction formula)

where RR intervals are in units of seconds

Demographics

Age

Age was extracted as standardised to years, and otherwise calculated based on the number of years between the subject’s date of birth and the date of the start of the study.

Weight

Weight was extracted as standardised to kilogrammes.

Vital Signs

Temperature

Oral and tympanic body temperatures were extracted as documented in the original data, and converted to degrees Celsius as required. Axillary body temperatures were extracted, converted to degrees Celsius as required, then standardised by the addition of 0.5°C to original readings.

Body temperature was standardised to degrees Celsius using the following formula:

- \(\text{Temperature (°C)} = \frac{[\text{Temperature (°F)} - 32]}{1.8} \)

Temperature recordings documented to be >30 minutes apart from ECG recordings were not considered to be from the same timepoint and therefore not extracted into the pooled dataset.
Laboratory Parameters

Parasitaemia

The highest parasite density available for each timepoint was extracted.

Malaria parasite count measurements were standardised as parasite density per microlitre of blood according to the following formulae before being logarithmically transformed:

- Parasitaemia = (parasite count per 500 WBC / 500) * WBC count [if WBC count available]
- Parasitaemia = (parasite count per 500 WBC / 500) * 8000 [if WBC count missing]

where WBC counts are in units of mm3 of blood

- Parasitaemia = parasite count per 1000 RBC * 125.6 * haematocrit [if haematocrit available]
- Parasitaemia = parasite count per 1000 RBC * 125.6 * 33 [if haematocrit missing]

where haematocrit is in units of %

Haemoglobin

For studies in which only haematocrit was measured, haemoglobin was calculated as follows:

- Haemoglobin (g/dl) = [haematocrit (%) – 5.62] / 2.6 as
 Haematocrit (%) = 5.62 + 2.60 x haemoglobin (g/dl)3

Individual Patient-Level Data Integrity Checks

Individual patient data were checked for completeness, as well as for invalid, out-of-range, or inconsistent entries. Values incompatible with what would be observed in malaria clinical trials were considered missing. Queries were raised with study investigators and resolved where possible.
Data Analysis

Exploratory Analyses

Pairwise relationships among collected variables were visualised using scatterplot matrices. We also summarised correlations among individual-level variables with principal component analysis biplots to identify potential redundancy (Figure S1).

Variable Selection

Variable selection was based on directed acyclic graphs of proposed causal relationships among collected variables informed by literature review and expert consultation used to determine minimal sufficient adjustment sets for regression modelling (Figure S2).

Model Formulation

\begin{align*}
m1: & \quad QT \sim \sqrt{RR} + s(\text{age:sex}) + \text{sex} + (1|\text{study}) \\
m2: & \quad QT \sim \sqrt{RR} + s(\text{age:sex}) + \text{sex} + \text{temperature} + (1|\text{study}) \\
m3: & \quad QT \sim \sqrt{RR} + s(\text{age:sex}) + \text{sex} + \text{temperature} + \text{indication} + (1|\text{study}) \\
m4: & \quad QT \sim \sqrt{RR} + s(\text{age:sex}) + \text{sex} + \text{temperature} + \text{indication} + \sqrt{RR}:\text{indication} + (1|\text{study})
\end{align*}

where \(s() \) denotes a smooth term and : denotes an interaction between variables

Model Priors

We used weakly informative normal prior distributions summarised below:

Description	Parameter Class	Prior Distribution
Coefficients of population-level effects/predictor variables	Coefficient	Normal (0, 50)
Standard deviations of group-level/varying effects and splines	Standard deviation	Normal (0, 100)
Standard deviation of residuals	Sigma	Normal (0, 30)

Model Diagnostics & Posterior Predictive Checks

Posterior distributions were estimated using Markov chain Monte Carlo (MCMC) with the Hamiltonian algorithm. Convergence of the Hamiltonian algorithm was done by running four independent chains.

For each parameter:

- Trace plots were inspected for stationarity and mixing of chains
- Effective sample size (ESS) computed to be more than 10% of total sample size
- Gelman-Rubin (\(R \)) convergence statistic checked to be 1 at convergence

In addition, the following Hamiltonian Monte Carlo diagnostics were checked in ShinyStan5 version 2.5.0:

- Tree depth information
- Energy Bayesian Fraction of Missing Information
- Divergence information

Visual posterior predictive checks were also performed.
Model Checking and Comparison

Comparing two models on PSIS-LOO, if the absolute estimated difference in log predictive density (elpd_diff) is larger than twice the estimated standard error, this suggests one model is expected to have better predictive performance over the other. A negative elpd_diff favours the first model, while a positive elpd_diff favours the second.

Sensitivity Analyses

For all participants – alternative transformation for modelling the RR interval

- Alternative RR interval transformation into cube root instead of square root term:
 \[QT \sim \sqrt[3]{RR} + s(\text{age:sex}) + \text{sex} + \text{temperature} + \text{indication} + \sqrt[3]{RR} : \text{indication} + (1 | \text{study}) \]

For all participants – addition of potential confounder variables

- Addition of binary variable for whether individual was enrolled in a study with one or more TdP risk factors as exclusion criteria:
 \[QT \sim \sqrt{RR} + s(\text{age:sex}) + \text{sex} + \text{temperature} + \text{indication} + \sqrt{RR} : \text{indication} + \text{TdPriskexclusion} + (1 | \text{study}) \]

- Addition of haemoglobin as a continuous variable:
 \[QT \sim \sqrt{RR} + s(\text{age:sex}) + \text{sex} + \text{temperature} + \text{indication} + \sqrt{RR} : \text{indication} + \text{haemoglobin} + (1 | \text{study}) \]

In the subgroup of malaria patients only – addition of parasitaemia as a potential confounder

- Addition of log parasitaemia as a continuous variable only:
 \[QT \sim \sqrt{RR} + s(\text{age:sex}) + \text{sex} + \text{temperature} + \text{indication} + \sqrt{RR} : \text{indication} + \log \text{parasitaemia} + (1 | \text{study}) \]

- Further addition of interaction term for log parasitaemia and treatment indication:
 \[QT \sim \sqrt{RR} + s(\text{age:sex}) + \text{sex} + \text{temperature} + \text{indication} + \sqrt{RR} : \text{indication} + \log \text{parasitaemia} + \log \text{parasitaemia}:\text{indication} + (1 | \text{study}) \]

For all participants – alternative model formulation for non-linear QT-RR relationship

- Log-log linear model with base 10 logarithmic transformation of QT and RR:
 \[\log QT \sim \log RR + s(\text{age:sex}) + \text{sex} + \text{temperature} + \text{indication} + \log RR : \text{indication} + (1 | \text{study}) \]
Figure A: Principal Component Analysis Biplots of Factors Affecting the QT Interval in Malaria

HNV = healthy volunteers, IPTi = intermittent preventive therapy in infancy, IPTp = intermittent preventive therapy in pregnancy, Pv = P. vivax malaria, Pf = uncomplicated P. falciparum malaria, severe = severe P. falciparum malaria

sqrtRR = \sqrt{RR}, is_male = sex, tempc = temperature, logpara = log(parasitaemia), hb = haemoglobin
Directed acyclic graph describing proposed causal relationships among factors affecting the QT interval in malaria showing the minimal sufficient covariate adjustment set (facet label & green squares) in addition to the RR interval. The minimal adjustment set disease and demographic variables of malaria type, body temperature, age, and sex, as well as the RR interval were used as predictors and study as a varying intercept for Bayesian hierarchical multivariable regression analyses of the QT interval.
SUPPLEMENTARY RESULTS

Data Availability

48.4% (77/159) of studies for which individual patient data were sought, and 65.1% (28/43) of included studies, were published or conducted between 2007 and 2017. 65.6% (6852/10452) of included participants were enrolled between 2007 and 2017 inclusive.

Table A: Availability of Published Datasets by Study Year of Publication
Study Year of Publication

2012-2017
2007-2011
2002-2006
1997-2001
1992-1997
1988-1992
All Years

Table B: Availability of Unpublished Datasets by Study Year of Enrolment
Study Year of Last Enrolment
--
2012-2017
2007-2011
2002-2006
1997-2001
1992-1997
1988-1992
All Years
Figure C: Availability of Datasets by Study Location – Asia-Pacific

Legend

- Included
- Excluded
- Shared but not included

Base map from Natural Earth (www.naturalearthdata.com)
Figure D: Availability of Datasets by Study Location – Africa & Europe

Legend

- Included
- Excluded
- Shared but not included

Base map from Natural Earth (www.naturalearthdata.com)
Figure E: Availability of Datasets by Study Location – Americas

Legend
- Included
- Excluded
- Shared but not included

Base map from Natural Earth (www.naturalearthdata.com)
| Study ID | Country | Region | Recruitment | Malaria | Antimalarial Treatment Indication | Participants Enrolled | Participants Available | Participants Included | TdP Risk Factors Excluded | ECG Measurement Location | ECG Measurement Reader | ECG Measurement Method | Temperature Measurement Method | Published |
|-----------|------------------|-------------------------------|---------------|---|---|------------------------|------------------------|--------------------------|-----------------------------|--------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------|
| Abernethy 2001⁶ | USA Americas | 1995-1996 No | | | Healthy volunteer pharmacokinetics | 21 | 15 | 15 | Yes | Site-based | Other physician | Intermittent | Unknown | Yes |
| Ahmed 2019⁷ | Indonesia Asia | 2015-2016 No | | | Intermittent preventive therapy - pregnancy | 33 | 33 | 28 | Yes | Centralised | Cardiologist | Intermittent | Auxillary | Yes |
| Baiden 2015⁴ | Burkina Faso, Ghana, Mozambique, Tanzania Africa | 2013-2014 Yes | | Uncomplicated malaria - P. falciparum | | 1002 | 953 | 950 | Yes | Centralised | Cardiologist | Intermittent | Auxiliary | Yes |
| Bassat 2009⁹ | Burkina Faso, Kenya, Mozambique, Uganda, Zambia Africa | 2005-2006 Yes | | Uncomplicated malaria - P. falciparum | | 1548 | 1536 | 1492 | No | Centralised | Cardiologist | Intermittent | Auxiliary | Yes |
| Bassi 2004¹⁰ | Nigeria Africa | 2001 No | | | Healthy volunteer pharmacokinetics | 8 | 5 | 5 | No | Site-based | Cardiologist | Intermittent | Unknown | Yes |
| Darpo 2015¹¹ | Switzerland Europe | 2012-2013 No | | | Healthy volunteer pharmacokinetics | 59 | 59 | 59 | Yes | Centralised | Cardiologist | Intermittent & Continuous | Tympanic | Yes |
| Funck-Brentano 2019¹² France Europe | 2010 No | | | | Healthy volunteer pharmacokinetics | 282 | 281 | 281 | Yes | Centralised | Cardiologist | Intermittent & Continuous | Oral | Yes |
| Hanboonkunupakarn 2014¹³ Thailand Asia | 2012 No | | | | Healthy volunteer pharmacokinetics | 16 | 16 | 16 | Yes | Site-based | Machine | Intermittent & Continuous | Axillary | Yes |
| Hanboonkunupakarn 2019¹⁴ Thailand Asia | 2014 No | | | | Healthy volunteer pharmacokinetics | 14 | 14 | 14 | Yes | Site-based | Machine | Intermittent | Axillary | No |
| Jittamala 2011 | Thailand Asia | 2011 No | | | Healthy volunteer pharmacokinetics | 10 | 10 | 10 | Yes | Site-based | Machine | Intermittent | Axillary | No |
| Kredo 2011¹⁵ | South Africa Africa | 2008-2009 No | | | Healthy volunteer pharmacokinetics | 36 | 36 | 36 | Yes | Site-based | Cardiologist | Intermittent | Unknown | Yes |
| Kredo 2016¹⁶ | South Africa Africa | 2009 No | | | Healthy volunteer pharmacokinetics | 16 | 16 | 16 | Yes | Site-based | Cardiologist | Intermittent | Unknown | Yes |
| Krudsood 2010¹⁷ | Thailand Asia | 2004-2005 Yes | | | Uncomplicated malaria - P. falciparum | 50 | 50 | 50 | No | Centralised | Cardiologist | Intermittent | Auxiliary | Yes |
| Looareesuwan 2005 | Thailand Asia | 2005 Yes | | | Uncomplicated malaria - P. falciparum | 25 | 25 | 25 | Yes | Centralised | Cardiologist | Intermittent | Oral | No |

Data Description

Table C: Characteristics of Included Studies
Study	Location	Region	Year/Range	Type of Malaria	Plasmodiumfalciparum	BaseLine	FollowUp	Site-Based	Documenting ECGs	Physician Type	Intermittent	ECG Location	Literature Search																																																																																																																																																											
Macintyre 2017	Benin, Burkina Faso, DR Congo, Gabon, Mozambique, Uganda, Vietnam	Africa & Asia	2014-2015	Uncomplicated malaria - P. falciparum	437 440 435	Yes	Centralised	Cardiologist	Intermittent	Auxiliary or Tympnic	After literature search																																																																																																																																																													
Mytton 2007	Thailand	Asia	2002-2003	Uncomplicated malaria - P. falciparum	56 58 58	No	Site-based	Other physician	Intermittent	Tympnic	Yes																																																																																																																																																													
Navaratnam 2009	Malaysia	Asia	2005	Healthy volunteer pharmacokinetics	23 24 24	Yes	Centralised	Cardiologist	Intermittent	Unknown	Yes																																																																																																																																																													
Ndiaye 2011	Senegal	Africa	2007-2008	Uncomplicated malaria - P. falciparum	171 148 148	Yes	Centralised	Cardiologist	Intermittent	Auxiliary	Yes																																																																																																																																																													
Nosten 1993	Thailand	Asia	1992	Uncomplicated malaria - P. falciparum	51 51 17	No	Site-based	Other physician	Intermittent	Auxiliary	Yes																																																																																																																																																													
Nosten 1993i	Thailand	Asia	1992	Uncomplicated malaria - P. falciparum	10 9 7	No	Site-based	Other physician	Intermittent	Auxiliary	Yes																																																																																																																																																													
Nosten 1993ii	Thailand	Asia	1992	Uncomplicated malaria - P. falciparum	53 64 33	No	Site-based	Other physician	Intermittent	Auxiliary	Yes																																																																																																																																																													
Ogutu 2014	Kenya	Africa	2007-2008	Uncomplicated malaria - P. falciparum	54 51 51	Yes	Centralised	Cardiologist	Intermittent	Auxiliary	Yes																																																																																																																																																													
Price 1995	Thailand	Asia	1993-1994	Uncomplicated malaria - P. falciparum	140 140 84	No	Site-based	Other physician	Intermittent	Auxiliary	Yes																																																																																																																																																													
Price 1997	Thailand	Asia	1994	Uncomplicated malaria - P. falciparum	29 29 29	No	Site-based	Other physician	Intermittent	Auxiliary	Without documenting ECGs																																																																																																																																																													
Price 1997ii	Thailand	Asia	1994-1995	Uncomplicated malaria - P. falciparum	13 13 13	No	Site-based	Other physician	Intermittent	Auxiliary	Without documenting ECGs																																																																																																																																																													
Price 1998a	Thailand	Asia	1994-1995	Uncomplicated malaria - P. falciparum	6 6 5	No	Site-based	Other physician	Intermittent	Auxiliary	Without documenting ECGs																																																																																																																																																													
Price 1998b	Thailand	Asia	1994-1995	Uncomplicated malaria - P. falciparum	41 41 38	No	Site-based	Other physician	Intermittent	Auxiliary	Without documenting ECGs																																																																																																																																																													
PROMOTEi	Uganda	Africa	2014-2015	Intermittent preventive therapy - pregnancy	42 42 42	Yes	Site-based	Other physician	Intermittent	Tympnic	Yes																																																																																																																																																													
PROMOTEii	Uganda	Africa	2014-2015	Intermittent preventive therapy – pregnancy & infancy	85 85 73	Yes	Site-based	Other physician	Intermittent	Tympnic	After literature search																																																																																																																																																													
Pukrittayakamee 2014a	Thailand	Asia	2010	Healthy volunteer pharmacokinetics	16 16 16	Yes	Site-based	Machine	Intermittent	Auxiliary	Yes																																																																																																																																																													
Study	Year	Region	Country/Countries	Type	Malaria Type	Case Count	Malaria Count	Site Count	Site-based	Physician Type	Physician	Intermittent	Route	Case Count	Malaria Count	Site Count	Site-based	Physician Type	Physician	Intermittent	Route	Case Count	Malaria Count	Site Count	Site-based	Physician Type	Physician	Intermittent	Route																																																																																																																																											
-------	------	--------	-------------------	------	--------------	------------	--------------	-----------	------------	-------------	-----------	-------------	-------	------------	-------------	------------	-----------	-------------	-----------	-------------	-------	------------	-------------	------------	-----------	-------------	-----------	-------------	-------																																																																																																																																											
Pukrittayakamee 2014b	2014	Asia	Thailand	Healthy volunteer pharmacokinetics	15	15	Yes	Site-based	Machine	Intermittent	Auxillary	No	Siqueira 2017	2011-2013	Yes	Uncomplicated malaria - P. vivax	354	350	350	No	Site-based	Cardiologist	Intermittent	Auxillary	Yes	Tandon 2007	2007	No	Healthy volunteer pharmacokinetics	24	24	24	Yes	Site-based	Other physician	Intermittent	Oral	No	Toure 2015	2010-2012	Yes	Uncomplicated malaria - P. falciparum	141	141	141	Yes	Site-based	Other physician	Intermittent	Auxillary	Yes	Toure 2016	2009-2012	Yes	Uncomplicated malaria - P. falciparum	1073	1073	1031	Yes	Site-based	Other physician	Intermittent	Auxillary or Oral	Yes	Tran 1996	1992-1995	Yes	Severe malaria	302	287	286	No	Site-based	Other physician	Intermittent	Auxillary	Yes	Valecha 2010	2005-2007	Yes	Uncomplicated malaria - P. falciparum	1148	1149	1142	Yes	Centralised	Cardiologist	Intermittent	Unknown	Yes	Valecha 2012	2007-2008	Yes	Uncomplicated malaria - P. falciparum	240	240	240	Yes	Site-based	Other physician	Intermittent	Auxillary or Oral	Yes	Valecha 2016	2011-2012	Yes	Uncomplicated malaria - P. vivax	317	317	316	Yes	Site-based	Other physician	Intermittent	Auxillary or Oral	Yes	van Vugt 1999	1996-1997	Yes	Uncomplicated malaria - P. falciparum	100	100	97	No	Site-based	Cardiologist	Intermittent	Oral	Yes	van Vugt 2000	1997-1998	Yes	Uncomplicated malaria - P. falciparum	199	199	198	No	Site-based	Cardiologist	Intermittent	Oral	Yes	WANECAM	2011-2013	Yes	Uncomplicated malaria - P. falciparum	2486	2486	2485	Yes	Centralised	Cardiologist	Intermittent	Auxillary or Oral	Yes	White 1988	1985	Yes	Severe malaria	62	65	57	No	Site-based	Other physician	Intermittent	Rectal	Yes
Table D: Additional Characteristics of Included Population

	Healthy Participants (n = 674)	Malaria Patients (n = 9778)	Overall (n = 10452)
Weight (kg)			
Median (IQR)	63.6 (57.0-72.2)	33.0 (15.0-52.0)	36.9 (15.1-54.0)
Haemoglobin (g/dL)			
Mean (SD)	13.5 (1.7)	11.0 (2.3)	11.2 (2.3)
<11	51 (7.6%)	4856 (49.7%)	4907 (46.9%)
<8	0	844 (8.6%)	844 (8.1%)
<5	0	43 (0.4%)	43 (0.4%)
ECG Measurement Methodology			
Location of ECG interpretation			
Centralised and study site-based	392 (58.2%)	6778 (69.3%)	7170 (68.6%)
Study site-based only	282 (41.8%)	3000 (30.7%)	3282 (31.4%)
ECG reader			
Cardiologist	449 (66.6%)	7423 (75.9%)	7872 (75.3%)
Other physician or trained personnel	154 (22.8%)	2355 (24.1%)	2509 (24.0%)
Machine only	71 (10.5%)	0	71 (0.7%)
Temperature Measurement Method			
Axillary	99 (14.7%)	7771 (79.5%)	7870 (75.3%)
Oral	305 (45.3%)	613 (6.3%)	918 (8.8%)
Tympanic	174 (25.8%)	195 (2.0%)	369 (3.5%)
Rectal	0	57 (0.6%)	57 (0.5%)
Unknown	96 (14.2%)	1142 (11.7%)	1238 (11.8%)
Year of Enrolment			
2012-2017	247 (36.6%)	5316 (54.4%)	5563 (53.2%)
2007-2011	383 (56.8%)	906 (9.3%)	1289 (12.3%)
1997-2006	29 (4.3%)	2916 (29.8%)	2945 (28.2%)
1985-1996	15 (2.2%)	621 (6.4%)	636 (6.1%)
Not reported	0	19 (0.2%)	19 (0.2%)
Table E: Comparison of Characteristics of Included and Excluded Studies

Characteristics	Included Studies (n = 43)	Excluded Studies (n = 116)
Antimalarial Treatment Indication, studies (%)		
Severe/complicated malaria	2 (4.7%)	17 (14.7%)
Uncomplicated malaria	25 (58.1%)	61 (52.6%)
P. falciparum mono- or mixed infection	23 (53.5%)	52 (44.8%)
P. vivax mono-infection	2 (4.7%)	3 (2.6%)
P. falciparum or *P. vivax* mono- or mixed infection	0	6 (5.2%)
Intermittent preventive therapy (IPT)	4 (9.3%)	8 (6.9%)
IPT in pregnancy (IPTp)	3 (7.0%)	3 (2.6%)
IPT in infancy (IPTi)	1 (2.3%)	1 (0.9%)
Seasonal malaria chemoprevention (SMC)	0	1 (0.9%)
Occupational prophylaxis	0	3 (2.6%)
Healthy volunteer pharmacokinetics	13 (30.2%)	30 (25.9%)
Healthy volunteers only	13 (30.2%)	27 (23.3%)
Healthy volunteers and uncomplicated malaria (*P. falciparum or *P. vivax infection)	0	3 (2.6%)
Geographical Region, studies (%)		
Asia-Pacific	25 (58.1%)	57 (49.1%)
Africa	11 (25.6%)	28 (24.1%)
Americas	2 (4.7%)	6 (5.2%)
Europe	2 (4.7%)	17 (14.7%)
Asia-Pacific & Africa	3 (7.0%)	4 (3.4%)
Others (Asia-Pacific & Americas, Africa & Europe, Americas & Europe)	0	3 (2.6%)
Not reported	0	1 (0.9%)
Year Enrolment Completed, studies (%)		
2007-2017	24 (55.8%)	25 (21.6%)
Pre-2007	19 (44.2%)	80 (69.0%)
Not reported	0	11 (9.5%)
Torsade de Pointes Risk Factors Excluded, studies (%)		
	26 (60.5%)	46 (39.7%)
Mean Age in Years, median (IQR)	26.2 (17.4-32.4)	26.6 (16.2-31.5)*
Percentage of Females, median (IQR)	41.0 (24.4-53.2)	28.7 (0-48.7)*
Risk of Bias Assessment, studies (%)		
Low	39 (90.7%)	75 (64.7%)
Unclear	4 (9.3%)	39 (33.6%)
High	0	2 (1.7%)

*Mean age not available from 8 studies †Percentage not available from 14 studies
Table F: Risk of Bias Assessment of Included and Excluded Studies

Study design and objectives	Bias in selection of participants and constitution of study groups	Bias due to withdrawal or loss to follow-up (attrition)	Information bias regarding the drug safety outcome	Other information bias	Conflict of interest	SUMMARY RISK OF BIAS
Randomised Controlled Trials - Included						
Abernethy 2001a						
Bassat 2009b						
Bassi 2004c						
Darpo 2015d						
Funck-Brentano 2019d (subsequently published)						
Hanboonkunupakarn 2014d						
Hanboonkunupakarn 2019d (subsequently published)						
Krudsood 2010d						
Macintyre 2017d (subsequently published)						
Mytton 2007d						
Navaratnam 2009d						
Ndiaye 2011d						
Ogutu 2014d						
Price 1995d						
Price 1998b						
PROMOTE						
Pukrittayakamee 2014a						
Study Reference	Outcome 1	Outcome 2	Outcome 3	Outcome 4	Outcome 5	Outcome 6
---------------------------------	-----------	-----------	-----------	-----------	-----------	-----------
Pukrittayakamee 2014b (unpublished)	□	□	□	□	□	□
Siqueira 2017	□	□	□	□	□	□
Tandon 2007 (unpublished)	□	□	□	□	□	□
Toure 2015	□	□	□	□	□	□
Toure 2016	□	□	□	□	□	□
Tran 1996	□	□	□	□	□	□
Valecha 2010	□	□	□	□	□	□
Valecha 2012	□	□	□	□	□	□
Valecha 2016	□	□	□	□	□	□
van Vugt 1999	□	□	□	□	□	□
van Vugt 2000	□	□	□	□	□	□
WANECAM	□	□	□	□	□	□
White 1988	□	□	□	□	□	□
Randomised Controlled Trials - Excluded	□	□	□	□	□	□
Abdulla 2008	□	□	□	□	□	□
Abdulla 2010	□	□	□	□	□	□
Alecrim 2006	□	□	□	□	□	□
Assimadi 2002	□	□	□	□	□	□
Benjamin 2015	□	□	□	□	□	□
Bigira 2014	□	□	□	□	□	□
Bindschedler 2000	□	□	□	□	□	□
Bindschedler 2002	□	□	□	□	□	□
Bouchaud 2000	□	□	□	□	□	□
Reference	Year					
---------------------------------------	---------------					
Bouyou-Akotet 2010						
Bunnag 1989						
Cao 1997						
D’Alessandro 2006 (unpublished)						
Haroon 2005						
Hien 2011						
Jittamala 2015						
Kakuda 2013						
Karbwang 1991						
Karbwang 1992a						
Karbwang 1992b						
Karbwang 1993b						
Karbwang 1995a						
Karbwang 1995b						
Karbwang 1995c						
Karbwang 1997						
Kayentao 2012						
Kervella 2006 (unpublished)						
Khan 2011						
Kinde-Gazard 2012						
Kshirsagar 2000						
Laman 2014						

23
Reference	Year	Country	Region	Study Type	Sample Size	Outcomes	Conclusion

Legend:
- Green circle: Positive result
- Yellow circle: Negative result
- Red circle: Mixed result
| Study Reference | Column 1 | Column 2 | Column 3 | Column 4 | Column 5 | Column 6 | Column 7 | Column 8 | |
|---|---|---|---|---|---|---|---|---|---|
| Nosten 1990 | | | | | | | | |
| Nosten 1994 | | | | | | | | |
| Olliaro 2010 | | | | | | | | |
| Omoruyi 2007 | | | | | | | | |
| Orrell 2008 | | | | | | | | |
| Piola 2010 | | | | | | | | |
| Poravuth 2011 | | | | | | | | |
| Pyar 2007 | | | | | | | | |
| Pyar 2009 | | | | | | | | |
| Restrepo 1996 | | | | | | | | |
| Rueangweerayut 2012| | | | | | | | |
| Sabchareon 1988 | | | | | | | | |
| SB 1993 (unpublished)| | | | | | | | |
| Song 2011 | | | | | | | | |
| Sowunmi 1990 | | | | | | | | |
| Staedke 2018 | | | | | | | | |
| Supan 2017 | | | | | | | | |
| Taylor 1998 | | | | | | | | |
| Thapa 2007 | | | | | | | | |
| Thuma 2000 | | | | | | | | |
| Tjitra 2012 | | | | | | | | |
| Touze 2002 | | | | | | | | |
| Cohorts - Included | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
|--|------|------|------|------|------|------|------|------|------|
| Ahmed 2019 (subsequently published) | | | | | | | | | |
| Baiden 2015 | | | | | | | | | |
| Jittamala 2011 (unpublished) | | | | | | | | | |
| Kredo 2011 | | | | | | | | | |
| Kredo 2016 | | | | | | | | | |
| Looareesuwan 2005 (unpublished) | | | | | | | | | |
| Nosten 1993i | | | | | | | | | |
| Nosten 1993ii | | | | | | | | | |
| Nosten 1993iii | | | | | | | | | |
| Price 1997i | | | | | | | | | |
| Price 1997ii | | | | | | | | | |
| Price 1998a | | | | | | | | | |
| PROMOTEii (subsequently published) | | | | | | | | | |

Cohorts - Excluded									
Adjei 2012									
Auprayoon 1995									
Bhatt 2006									
Reference	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6			
-------------------------------	----------	----------	----------	----------	----------	----------			
Byakika-Kibwika 2011									
Claessen 1998									
Davis 1988									
Davis 1990									
Edwards 1988									
Falade 2005									
Haider 2013									
Hatz 2008									
Hombhanje 1998									
Jaspers 1996									
Karbwang 1993									
Karunajeewa 2004									
Khan 2006									
Krishna 1993									
Lavallee 2001									
Mansor 1990									
Matson 1996									
Minodier 2005									
Monlun 1995									
Mra 1991									
Na-Bangchang 1994									
Nyunt 2012									
As this systematic review was conducted to identify studies for an individual patient data meta-analysis, risk of bias assessment of statistical methods of individual studies was considered not relevant.
Table G: Characteristics of Excluded Participants

Characteristic	Healthy Participants (n = 17)	Malaria Patients (n = 243)	Overall (n = 260)
Antimalarial Treatment Indication			
Severe/complicated malaria	9 (3.7%)	9 (3.5%)	
Uncomplicated malaria	234 (96.3%)	234 (90%)	
P. falciparum mono- or mixed infection	233 (95.9%)	233 (89.6%)	
P. vivax mono-infection	1 (0.4%)	1 (0.38%)	
Intermittent preventive therapy (IPT)	17 (100%)		17 (6.5%)
Pregnancy (IPTp)	5 (29.4%)		5 (1.9%)
Infancy (IPTi)	12 (70.6%)		12 (4.6%)
Healthy volunteer pharmacokinetics	0		
Age (years)			
Median (IQR)	0.61 (0.61-0.62)	14.0 (5.0-24.0)	13.0 (4.0-24.0)
<15	12 (70.6%)	128 (52.7%)	140 (54.1%)
<1	12 (70.6%)	4 (1.6%)	16 (6.2%)
1-<5	0	51 (21.0%)	51 (19.7%)
5-<15	0	73 (30.0%)	73 (28.2%)
≥15	4 (23.5%)	115 (47.3%)	119 (45.9%)
≥35	1 (5.9%)	39 (16.0%)	40 (15.4%)
≥50	0	13 (5.3%)	13 (5.0%)
Weight (kg)			
Median (IQR)	7.8 (7.6-8.6)	37.6 (15.0-49.7)	37.0 (13.8-49.1)
Sex			
Female	11 (64.7%)	112 (46.1%)	123 (47.3%)
Pregnant	5 (29.4%)	0	5 (1.9%)
Male	6 (35.3%)	131 (53.9%)	137 (52.7%)
Temperature (°C)			
Mean (SD)	37.1 (0.4)	38.1 (1.3)	38.0 (1.3)
≥37.5	1 (5.9%)	74 (61.7%)	75 (54.7%)
Parasitaemia (parasites/μL)			
Median (IQR)	N/A	8327 (1306-30142)	8327 (1306-30142)
≥10,000	N/A	105 (47.3%)	105 (43.9%)
≥50,000	N/A	38 (17.1%)	38 (15.9%)
≥100,000	N/A	19 (8.6%)	19 (7.9%)
≥250,000	N/A	2 (0.9%)	2 (0.84%)
Haemoglobin (g/dL)			
Mean (SD)	10.4 (1.3)	11.7 (2.1)	11.7 (2.1)
<11	2 (66.7%)	38 (30.4%)	40 (31.3%)
<8	0	5 (4.0%)	5 (3.9%)
<5	0		
Heart Rate (beats per minute)			
Mean (SD)	122 (18)	107 (31)	108 (31)
≥140	0	40 (16.5%)	40 (15.4%)
120-139	12 (70.6%)	29 (11.9%)	41 (15.8%)
100-119	2 (11.8%)	61 (25.1%)	63 (24.2%)
80-99	3 (17.6%)	62 (25.5%)	65 (25.0%)
60-79	0	44 (18.1%)	44 (16.9%)
<60	0	7 (2.9%)	7 (2.7%)
Torsade de Pointes Risk Factors

Excluded from the individual study	Not excluded from the individual study
17 (100%)	59 (24.3%)
0	184 (75.7%)
0	184 (70.8%)

Geographical Region

Region	Excluded from the individual study	Not excluded from the individual study
Africa	12 (70.6%)	102 (42.0%)
Asia	5 (29.4%)	141 (58.0%)
		146 (56.2%)

Year of Enrolment

Year of Enrolment	Excluded from the individual study	Not excluded from the individual study
2012-2017	17 (100%)	51 (21.0%)
2007-2011	0	2 (0.82%)
1997-2006	0	51 (21.0%)
1985-1996	0	139 (57.2%)
		139 (53.5%)

*1 participant had missing age; †1 participant had missing weight; ‡123 participants had missing temperature; §21 participants had missing parasitaemia; ‡14 participants had missing haemoglobin; ¶118 participants had missing haemoglobin; ††132 participants had missing haemoglobin
Statistical Analysis

Table H: Model Comparison for Main Analysis of All Participants

For model formulations, please see *Supplementary Methods – Data Analysis* on page 8 of this appendix.

Models Compared	Difference in Estimated Log Predictive Density (elpd_diff)	Standard Error (SE)	Interpretation
m1 – m2	240.34	32.28	Favours m2
m1 – m3	240.43	32.29	Favours m3
m1 – m4	371.95	47.10	Favours m4
m2 – m3	0.09	0.89	Does not favour m2 or m3
m2 – m4	131.60	33.54	Favours m4
m3 – m4	131.52	33.54	Favours m4

Model expected predictive performance was improved by addition of temperature (m2) as well as malaria type both as an independent term and as an interaction term with \sqrt{RR} (m4) but not when malaria type was added as an independent term alone (m3). Overall, m4 was the best model.
Sensitivity Analyses – Alternative RR Interval Transformation for Main Analysis of All Participants

Table I: Multivariable Regression Results from Hierarchical Generalised Additive Model

Predictor	Number of Participants	Estimate (95% Credible Interval) / Smooth Description	Clinically Significant?
\sqrt{RR} interval, per $\sqrt{\text{millisecond}}$ increase (healthy participants)	10452	43.36 (40.82, 45.81) milliseconds	Yes
\sqrt{RR} interval, per $\sqrt{\text{millisecond}}$ increase (by malaria type vs healthy participants)	10452	Reference	Yes
Healthy participants	674	Reference	Healthy participants
Uncomplicated vivax malaria	666	1.00 (-2.09, 4.10) milliseconds	
Uncomplicated falciparum malaria	8769	7.11 (4.57, 9.73) milliseconds	
Severe/complicated malaria	343	16.87 (12.62, 21.16) milliseconds	
Age	10452	Reference	Age
Female	4252	Lengthens by \sim8 milliseconds over childhood, then lengthens more gradually by another \sim5 milliseconds in adulthood	
Male	6200	Lengthens by \sim8 milliseconds over childhood, then shortens by \sim10 milliseconds around puberty before gradually lengthening by \sim10 milliseconds in adulthood	
Sex	10452	Reference	Sex
Female	4252	Reference	Female
Male	6200	-4.23 (-4.99, -3.46) milliseconds	Male
Body temperature, per 1°C increase	10452	-2.67 (-3.04, -2.30) milliseconds	Body temperature
Malaria Type	10452	Reference	Malaria Type
Healthy participants	674	Reference	Healthy participants
Uncomplicated vivax malaria	666	-3.08 (-35.47, 29.22) milliseconds	Uncomplicated vivax malaria
Uncomplicated falciparum malaria	8769	-64.42 (-90.31, -39.01) milliseconds	Uncomplicated falciparum malaria
Severe/complicated malaria	343	-130.84 (-169.47, -91.96) milliseconds	Severe/complicated malaria

Table J: Predicted QT Intervals at Baseline and in Recovery from Malaria and Fever

Predictors	Healthy	Uncomplicated vivax	Uncomplicated falciparum	Severe malaria
QT interval at baseline, milliseconds (95% PI) [HR=100bpm]	327 (283-395) [T=36.5°C]	328 (281-371) [T=38.5°C]	318 (275-358) [T=38.5°C]	333 (288-377) [T=38.5°C]
QT interval in recovery, milliseconds (95% PI) [HR=60bpm]	396 (352-436) [T=36.5°C]	402 (356-446) [T=36.5°C]	403 (359-443) [T=36.5°C]	433 (386-477) [T=36.5°C]
QT lengthening from baseline, milliseconds	69	74	85	100
Additional QT lengthening from baseline compared to healthy subject, milliseconds	0	5	16	31
Malaria-related QT lengthening from baseline, %	0	7	19	31

PI = prediction interval, **HR** = heart rate, **bpm** = beats per minute, **T** = body temperature

Predicted values for a 25-year-old male from multivariable hierarchical generalised additive model adjusting for heart rate/RR interval (as \sqrt{RR}), age, sex, malaria type, body temperature, and individual study effects.
Table K: Multivariable Regression Results from Hierarchical Generalised Additive Model

Predictor	Number of Participants	Estimate (95% Credible Interval) / Smooth Description	Clinically Significant?
\sqrt{RR} interval, per $\sqrt{\text{millisecond}}$ increase (healthy participants)	10452	9.17 (8.60, 9.74) milliseconds	Yes
\sqrt{RR} interval, per $\sqrt{\text{millisecond}}$ increase (by malaria type vs healthy participants)	10452		Yes
Healthy participants	674	Reference	
Uncomplicated vivax malaria	666	0.62 (-0.09, 1.34) milliseconds	
Uncomplicated falciparum malaria	8769	2.24 (1.66, 2.82) milliseconds	
Severe/complicated malaria	343	4.88 (3.89, 5.91) milliseconds	
Age	10452		Yes
Female	4252	Lengthens by ~8 milliseconds over childhood, then lengthens more gradually by another ~5 milliseconds in adulthood	
Male	6200	Lengthens by ~8 milliseconds over childhood, then shortens by ~10 milliseconds around puberty before gradually lengthening by ~10 milliseconds in adulthood	
Sex	10452		Yes
Female	3909	Reference	
Male	5869	-4.23 (-5.00, -3.45) milliseconds	
Body temperature, per 1°C increase	10452	-2.80 (-3.16, -2.43) milliseconds	Yes
Malaria Type	10452		Yes
Healthy participants	674	Reference	
Uncomplicated vivax malaria	666	-11.15 (-37.34, 15.24) milliseconds	
Uncomplicated falciparum malaria	8769	-61.25 (-80.23, -42.60) milliseconds	
Severe/complicated malaria	343	-109.89 (-140.03, -78.95) milliseconds	
Torsade de Pointes Risk Factors Excluded from Individual Study	10452		
No	2819	Reference	
Yes	7633	-0.78 (-9.69, 7.88) milliseconds	

Table L: Model Comparison

For model formulations, please see *Supplementary Methods – Data Analysis* on pages 8 of this appendix.

Models Compared	Difference in Estimated Log Predictive Density (elpd_diff)	Standard Error (SE)	Interpretation
m_4 – ($m_4 + \text{TdPriskexclusion}$)	-0.97	0.32	Favours m_4

Model expected predictive performance was not improved by addition of the TdP risk factor exclusion term.
Table M: Multivariable Regression Results from Hierarchical Generalised Additive Model

Predictor	Number of Participants	Estimate (95% Credible Interval) / Smooth Description	Clinically Significant?
√RR interval, per vmillisecond increase (healthy participants)	10452	9.16 (8.59, 9.71) milliseconds	Yes
√RR interval, per vmillisecond increase (by malaria type vs healthy participants)	10452		Yes
Healthy participants	674	Reference	
Uncomplicated vivax malaria	666	0.65 (-0.05, 1.38) milliseconds	
Uncomplicated falciparum malaria	8769	2.25 (1.68, 2.83) milliseconds	
Severe/complicated malaria	343	4.81 (3.81, 5.84) milliseconds	
Age	10452	Lengthens by ~8 milliseconds over childhood, then lengthens more gradually by another ~5 milliseconds in adulthood	Yes
Female	4252	Lengthens by ~8 milliseconds over childhood, then lengthens more gradually by another ~5 milliseconds in adulthood	
Male	6200	Lengthens by ~8 milliseconds over childhood, then shortens by ~10 milliseconds around puberty before gradually lengthening by ~10 milliseconds in adulthood	
Sex	10452	Reference	
Female	3909	Reference	
Male	5869	-3.87 (-4.66, -3.07) milliseconds	
Body temperature, per 1°C increase	10452	-2.76 (-3.13, -2.38) milliseconds	Yes
Malaria Type	10452	Reference	
Healthy participants	674	Reference	
Uncomplicated vivax malaria	666	-12.67 (-38.78, 12.57) milliseconds	
Uncomplicated falciparum malaria	8769	-62.63 (-81.47, -44.08) milliseconds	
Severe/complicated malaria	343	-110.75 (-139.99, -81.57) milliseconds	
Haemoglobin, per g/dL increase	10452	-0.51 (-0.72, -0.30) milliseconds	No

Table N: Model Comparison

For model formulations, please see *Supplementary Methods – Data Analysis* on pages 8 of this appendix.

Models Compared	Difference in Estimated Log Predictive Density (elpd_diff)	Standard Error (SE)	Interpretation
m4 – (m4 + haemoglobin)	19.89	10.65	Does not favour either model

Model expected predictive performance was not improved by addition of the haemoglobin term.
Table O: Multivariable Regression Results from Hierarchical Generalised Additive Model

Predictor	Number of Participants	Estimate (95% Credible Interval) / Smooth Description	Clinically Significant?
√RR interval, per vmillisecond increase (uncomplicated falciparum malaria)	9778	11.48 (11.29, 11.67) milliseconds	Yes
√RR interval, per vmillisecond increase (by malaria type vs uncomplicated falciparum malaria)	9778	Yes	
Uncomplicated vivax malaria	666	-1.68 (-2.15, -1.21) milliseconds	
Uncomplicated falciparum malaria	8769	Reference	
Severe/complicated malaria	343	2.49 (1.55, 3.40) milliseconds	
Age	9778	Yes	
Female	3909	Lengthens by ~8 milliseconds in childhood, then lengthens more gradually by another ~5 milliseconds in adulthood	
Male	5869	Lengthens by ~8 milliseconds over childhood, then shortens by ~10 milliseconds around puberty before gradually lengthening by ~10 milliseconds in adulthood	
Sex	9778	Yes	
Female	3909	Reference	
Male	5869	-3.76 (-4.55, -2.95) milliseconds	
Body temperature, per 1°C increase	9778	-2.85 (-3.22, -2.47) milliseconds	Yes
Malaria Type	9778	Yes	
Uncomplicated vivax malaria	666	44.83 (26.33, 63.03) milliseconds	
Uncomplicated falciparum malaria	8769	Reference	
Severe/complicated malaria	343	-37.56 (-66.03, -9.28) milliseconds	
Parasitaemia, per 10-fold increase (uncomplicated falciparum malaria)	9778	0.65 (0.17, 1.14) milliseconds	No
Parasitaemia, per 10-fold increase (by malaria type vs uncomplicated falciparum malaria)	9778	No	

Table P: Model Comparison

For model formulations, please see Supplementary Methods – Data Analysis on pages 8 of this appendix.

Models Compared	Difference in Estimated Log Predictive Density (elpd_diff)	Standard Error (SE)	Interpretation
m4 – (m4 + logpara)	5.58	5.35	Does not favour either model
m4 – (m4 + logpara by indication)	3.73	8.45	Does not favour either model
(m4 + logpara) – (m4 + logpara by indication)	-1.85	8.03	Does not favour either model

Model expected predictive performance was not improved by addition of parasitaemia terms.
Table Q: Multivariable Regression Results from Hierarchical Generalised Additive Model

Predictor	Number of Participants	Estimate (95% Credible Interval) / Smooth Description	Clinically Significant?
logRR interval, per log(milliseconds) increase (healthy participants)	10452	0.36 (0.34, 0.39) log(milliseconds)	Yes
logRR interval, per log(milliseconds) increase (by malaria type vs healthy participants)	10452		Yes
Healthy participants	674	Reference	
Uncomplicated vivax malaria	666	0.014 (-0.018, 0.047) log(milliseconds)	
Uncomplicated falciparum malaria	8769	0.083 (0.055, 0.11) log(milliseconds)	
Severe/complicated malaria	343	0.20 (0.15, 0.24) log(milliseconds)	
Age	10452		
Female	4252	Lengthens over childhood, then lengthens more gradually in adulthood	
Male	6200	Lengthens over childhood, then shortens by around puberty before gradually lengthening in adulthood	
Sex	10452		
Female	4252	Reference	
Male	6200	-0.0055 (-0.0065, -0.0044) log(milliseconds)	
Body temperature, per 1°C increase	10452	-0.0037 (-0.0042, -0.0032) log(milliseconds)	Yes
Malaria Type	10452		
Healthy participants	674	Reference	
Uncomplicated vivax malaria	666	-0.034 (-0.13, 0.064) log(milliseconds)	
Uncomplicated falciparum malaria	8769	-0.24 (-0.32, -0.15) log(milliseconds)	
Severe/complicated malaria	343	-0.54 (-0.66, -0.41) log(milliseconds)	
REFERENCES

1. Viskin S, Rosovski U, Sands AJ, et al. Inaccurate electrocardiographic interpretation of long QT: the majority of physicians cannot recognize a long QT when they see one. Heart Rhythm 2005; 2(6): 569-74.
2. Chue AL, Moore RL, Cavey A, et al. Comparability of tympanic and oral mercury thermometers at high ambient temperatures. BMC Res Notes 2012; 5: 356.
3. Lee SJ, Stepniewska K, Anstey N, et al. The relationship between the haemoglobin concentration and the haematocrit in Plasmodium falciparum malaria. Malar J 2008; 7: 149.
4. World Health Organization. WHO Evidence Review Group on the Cardiotoxicity of Antimalarial Medicines. Geneva, Switzerland, 2017.
5. Stan Development Team. shinystan: Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models. 2017.
6. Abernethy DR, Wesche DL, Barbey JT, et al. Stereoselective halofantrine disposition and effect: concentration-related QTc prolongation. Br J Clin Pharmacol 2001; 51(3): 231-7.
7. Ahmed R, Poespoprodjo JR, Syafruddin D, et al. Efficacy and safety of intermittent preventive treatment and intermittent screening and treatment versus single screening and treatment with dihydroartemisinin-piperaquine for the control of malaria in pregnancy in Indonesia: a cluster-randomised, open-label, superiority trial. Lancet Infect Dis 2019; 19(9): 973-87.
8. Baiden R, Oduro A, Halidou T, et al. Prospective observational study to evaluate the clinical safety of the fixed-dose artemisinin-based combination Eurartesim(R) (dihydroartemisinin/piperaquine), in public health facilities in Burkina Faso, Mozambique, Ghana, and Tanzania. Malar J 2015; 14: 160.
9. Bassat Q, Mulenga M, Tinto H, et al. Dihydroartemisinin-piperaquine and artemether-lumefantrine for treating uncomplicated malaria in African children: a randomised, non-inferiority trial. PLoS One 2009; 4(11): e7871.
10. Bassi PU, Onyeji CO, Ukponmwan OE. Effects of tetracycline on the pharmacokinetics of halofantrine in healthy volunteers. Br J Clin Pharmacol 2004; 58(1): 52-5.
11. Darpo B, Ferber G, Siegl P, et al. Evaluation of the QT effect of a combination of piperaquine and a novel anti-malarial drug candidate OZ439, for the treatment of uncomplicated malaria. Br J Clin Pharmacol 2015; 80(4): 706-15.
12. Funck-Brentano C, Bacchieri A, Valentini G, et al. Effects of Dihydroartemisinin-Piperaquine Phosphate and Artemether-Lumefantrine on QTc Interval Prolongation. Sci Rep 2019; 9(1): 777.
13. Hanboonkunupakarn B, Ashley EA, Jittamala P, et al. Open-label crossover study of primaquine and dihydroartemisinin-piperaquine pharmacokinetics in healthy adult thai subjects. Antimicrob Agents Chemother 2014; 58(12): 7340-6.
14. Hanboonkunupakarn B, van der Pluijm RW, Hoglund R, et al. Sequential Open-Label Study of the Safety, Tolerability, and Pharmacokinetic Interactions between Dihydroartemisinin-Piperaquine and Mefloquine in Healthy Thai Adults. Antimicrob Agents Chemother 2019; 63(8).
15. Kredo T, Mauff K, Van der Walt JS, et al. Interaction between artemether-lumefantrine and nevirapine-based antiretroviral therapy in HIV-1-infected patients. Antimicrob Agents Chemother 2011; 55(12): 5616-23.
16. Kredo T, Mauff K, Workman L, et al. The interaction between artemether-lumefantrine and lopinavir/ritonavir-based antiretroviral therapy in HIV-1 infected patients. BMC Infect Dis 2016; 16: 30.
17. Krudsood S, Looreeewwan S, Tangpudee N, et al. New fixed-dose artesunate-mefloquine formulation against multidrug-resistant Plasmodium falciparum in adults: a comparative phase Ib safety and pharmacokinetic study with standard-dose nonfixed artesunate plus mefloquine. Antimicrob Agents Chemother 2010; 54(9): 3730-7.
18. Macintyre F, Adoke Y, Tiono AB, et al. A randomised, double-blind clinical phase II trial of the efficacy, safety, tolerability and pharmacokinetics of a single dose combination treatment with artefenomel and piperaquine in adults and children with uncomplicated Plasmodium falciparum malaria. BMC Med 2017; 15(1): 181.
19. Mytton OT, Ashley EA, Peto L, et al. Short report: Electrocardiographic safety evaluation of dihydroartemisinin-piperaquine in the treatment of uncomplicated falciparum malaria. *Am J Trop Med Hyg* 2007; 77(3): 447-50.

20. Navaratnam V, Ramanathan S, Wahab MS, et al. Tolerability and pharmacokinetics of non-fixed and fixed combinations of artesunate and amodiaquine in Malaysian healthy normal volunteers. *Eur J Clin Pharmacol* 2009; 65(8): 809-21.

21. Ndiaye JL, Faye B, Gueye A, et al. Repeated treatment of recurrent uncomplicated Plasmodium falciparum malaria in Senegal with fixed-dose artesunate plus amodiaquine versus fixed-dose artemether plus lumefantrine: a randomized, open-label trial. *Malar J* 2011; 10: 237.

22. Nosten F, ter Kuile FO, Luxemburger C, et al. Cardiac effects of antimalarial treatment with halofantrine. *Lancet* 1993; 341(8852): 1054-6.

23. Ogutu B, Juma E, Obonyo C, et al. Fixed dose artesunate amodiaquine - a phase IIb, randomized comparative trial with non-fixed artesunate amodiaquine. *Malar J* 2014; 13: 498.

24. Price RN, Nosten F, Luxemburger C, et al. Artesunate versus artemether in combination with mefloquine for the treatment of multidrug-resistant falciparum malaria. *Trans R Soc Trop Med Hyg* 1995; 89(5): 523-7.

25. Price RN, Nosten F, Luxemburger C, et al. Artesunate/mefloquine treatment of multi-drug resistant falciparum malaria. *Trans R Soc Trop Med Hyg* 1997; 91(5): 574-7.

26. Price R, Luxemburger C, van Vugt M, et al. Artesunate and mefloquine in the treatment of uncomplicated multidrug-resistant hyperparasitaemic falciparum malaria. *Trans R Soc Trop Med Hyg* 1998; 92(2): 207-11.

27. Price R, van Vugt M, Nosten F, et al. Artesunate versus artemether for the treatment of recrudescent multidrug-resistant falciparum malaria. *Am J Trop Med Hyg* 1998; 59(6): 883-8.

28. Kakuru A, Jagannathan P, Muhindo MK, et al. Dihydroartemisinin–Piperaquine for the Prevention of Malaria in Pregnancy. *New England Journal of Medicine* 2016; 374(10): 928-39.

29. Natureeba P, Kakuru A, Muhindo M, et al. Intermittent Preventive Treatment with Dihydroartemisin-piperaquine for the Prevention of Malaria among HIV-infected Pregnant Women. *J Infect Dis* 2017.

30. Pukrittayakamee S, Tarning J, Jittamala P, et al. Pharmacokinetic interactions between primaquine and chloroquine. *Antimicrobial agents and chemotherapy* 2014; 58(6): 3354-9.

31. Siqueira AM, Alencar AC, Melo GC, et al. Fixed-Dose Artesunate–Amodiaquine Combination vs Chloroquine for Treatment of Uncomplicated Blood Stage P. vivax Infection in the Brazilian Amazon: An Open-Label Randomized, Controlled Trial. *Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America* 2017; 64(2): 166-74.

32. Toure OA, Rulisa S, Anvikar AR, et al. Efficacy and safety of fixed dose combination of arterolane maleate and piperaquine phosphate dispersible tablets in paediatric patients with acute uncomplicated Plasmodium falciparum malaria: a phase II, multicentric, open-label study. *Malaria journal* 2015; 14: 469.

33. Toure OA, Valecha N, Tshefu AK, et al. A Phase 3, Double-Blind, Randomized Study of Arterolane Maleate-Piperaquine Phosphate vs Artemether-Lumefantrine for Falciparum Malaria in Adolescent and Adult Patients in Asia and Africa. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* 2016; 62(8): 964-71.

34. Tran TH, Day NP, Nguyen HP, et al. A controlled trial of artemether or quinine in Vietnamese adults with severe falciparum malaria. *N Engl J Med* 1996; 335(2): 76-83.

35. Valecha N, Phyoo AP, Mayxay M, et al. An open-label, randomised study of dihydroartemisinin-piperaquine versus artesunate-mefloquine for falciparum malaria in Asia. *PLoS One* 2010; 5(7): e11880.

36. Valecha N, Krudsood S, Tangpukdee N, et al. Arterolane maleate plus piperaquine phosphate for treatment of uncomplicated Plasmodium falciparum malaria: a comparative, multicenter, randomized clinical trial. *Clin Infect Dis* 2012; 55(5): 663-71.

37. Valecha N, Savargaonkar D, Srivastava B, et al. Comparison of the safety and efficacy of fixed-dose combination of arterolane maleate and piperaquine phosphate with chloroquine in acute, uncomplicated Plasmodium vivax malaria: a phase III, multicentric, open-label study. *Malaria journal* 2016; 15: 42.
38. van Vugt M, Wilairatana P, Gemperli B, et al. Efficacy of six doses of artemether-lumefantrine (benflumetol) in multidrug-resistant Plasmodium falciparum malaria. *The American journal of tropical medicine and hygiene* 1999; **60**(6): 936-42.

39. van Vugt M, Looareesuwan S, Wilairatana P, et al. Artemether-lumefantrine for the treatment of multidrug-resistant falciparum malaria. *Trans R Soc Trop Med Hyg* 2000; **94**(5): 545-8.

40. Sagara I, Beavogui AH, Zongo I, et al. Safety and efficacy of re-treatments with pyronaridine-artesunate in African patients with malaria: a substudy of the WANECAM randomised trial. *The Lancet Infectious Diseases* 2016; **16**(2): 189-98.

41. West African Network for Clinical Trials of Antimalarial D. Pyronaridine-artesunate or dihydroartemisinin-piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial. *Lancet* 2018; **391**(10128): 1378-90.

42. White NJ, Miller KD, Churchill FC, et al. Chloroquine treatment of severe malaria in children. Pharmacokinetics, toxicity, and new dosage recommendations. *N Engl J Med* 1988; **319**(23): 1493-500.

43. Abdulla S, Sagara I, Borrmann S, et al. Efficacy and safety of artemether-lumefantrine dispersible tablets compared with crushed commercial tablets in African infants and children with uncomplicated malaria: a randomised, single-blind, multicentre trial. *Lancet* 2008; **372**(9652): 1819-27.

44. Abdulla S, Amuri B, Kabanywanyi AM, et al. Early clinical development of artemether-lumefantrine dispersible tablet: palatability of three flavours and bioavailability in healthy subjects. *Malar J* 2010; **9**: 253.

45. Alecrim MG, Lacerda MV, Mourao MP, et al. Successful treatment of Plasmodium falciparum malaria with a six-dose regimen of artemether-lumefantrine versus quinine-doxycline in the Western Amazon region of Brazil. *The American journal of tropical medicine and hygiene* 2006; **74**(1): 20-5.

46. Assimadi JK, Gbadoe AD, Agbodjan-Djossou O, et al. Treatment of cerebral malaria in African children by intravenous quinine: comparison of a loading dose regimen to a regimen without a loading dose. *Archives de pediatrie : organe officiel de la Societe francaise de pediatrie* 2002; **9**(6): 587-94.

47. Benjamin JM, Moore BR, Salman S, et al. Population Pharmacokinetics, Tolerability, and Safety of Dihydroartemisinin-Piperaquine and Sulfadoxine-Pyrimethamine-Piperaquine in Pregnant and Nonpregnant Papua New Guinean Women. *Antimicrobial Agents and Chemotherapy* 2015; **59**(7): 4260-71.

48. Bigira V, Kapisi J, Clark TD, et al. Protective efficacy and safety of three antimalarial regimens for the prevention of malaria in young Ugandan children: a randomized controlled trial. *PLoS Med* 2014; **11**(8): e1001689.

49. Bindschedler M, Lefevre G, Ezzet F, Schaeffer N, Meyer I, Thomsen MS. Cardiac effects of co-artemether (artemether/lumefantrine) and mefloquine given alone or in combination to healthy volunteers. *European journal of clinical pharmacology* 2000; **56**(5): 375-81.

50. Bindschedler M, Lefevre G, Degen P, Sioufi A. Comparison of the cardiac effects of the antimalarials co-artemether and halofantrine in healthy participants. *Am J Trop Med Hyg* 2002; **66**(3): 293-8.

51. Bouchaud O, Monlun E, Muanza K, et al. Atovaquone plus proguanil versus halofantrine for the treatment of imported acute uncomplicated Plasmodium falciparum malaria in non-immune adults: a randomized comparative trial. *Am J Trop Med Hyg* 2000; **63**(5-6): 274-9.

52. Bouyou-Akotet MK, Ramharter M, Ngoungou EB, et al. Efficacy and safety of a new pediatric artemesunate-mefloquine drug formulation for the treatment of uncomplicated falciparum malaria in Gabon. *Wiener klinische Wochenschrift* 2010; **122**(5-6): 173-8.

53. Bunnag D, Harinasuta T, Looareesuwan S, et al. A combination of quinine, quinidine and cinchonine (LA 40221) in the treatment of chloroquine resistant falciparum malaria in Thailand: two double-blind trials. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1989; **83**(1): 66.

54. Cao XT, Bethell DB, Pham TP, et al. Comparison of artesiminin suppositories, intramuscular artemesunate and intravenous quinine for the treatment of severe childhood malaria. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1997; **91**(3): 335-42.

55. Haroon N, Amichandwala K, Solu MG. Comparative efficacy of quinine and artemesunate in the treatment of severe malaria: A randomized controlled trial. *Jk Science* 2005; **7**(1): 32-5.
56. Hien TT, Hanpithakpong W, Truong NT, et al. Orally formulated artemisinin in healthy fasting Vietnamese male subjects: a randomized, four-sequence, open-label, pharmacokinetic crossover study. *Clinical therapeutics* 2011; 33(5): 644-54.

57. Jittamala P, Pukrittayakamee S, Ashley EA, et al. Pharmacokinetic interactions between primaquine and pyronaridine-artesunate in healthy adult Thai subjects. 2015; 59(1): 505-13.

58. Kakuda TN, DeMasri R, van Delft Y, Mohammed P. Pharmacokinetic interaction between etravirine or darunavir/ritonavir and artemether/lumefantrine in healthy volunteers: a two-panel, two-way, two-period, randomized trial. *Antimicrobial agents and chemotherapy* 2013; 14(7): 421-9.

59. Karbwang J, Bangchang KN, Bunnag D, Harinasuta T. Pharmacokinetics and pharmacodynamics of mefloquine in Thai patients with acute falciparum malaria. *Bull World Health Organ* 1991; 69(2): 207-12.

60. Karbwang J, Na Bangchang K, Back DJ, Bunnag D, Rooney W. Effect of tetracycline on mefloquine pharmacokinetics in Thai males. *European journal of clinical pharmacology* 1992; 43(5): 505-13.

61. Karbwang J, Sukontason K, Rimchala W, et al. Preliminary report: a comparative clinical trial of artemether and quinine in severe falciparum malaria. *The Southeast Asian journal of tropical medicine and public health* 1992; 23(4): 768-72.

62. Karbwang J, Davis TM, Looareesuwan S, Molunto P, Bunnag D, White NJ. A comparison of the pharmacokinetic and pharmacodynamic properties of quinine and quinidine in healthy Thai males. *British journal of clinical pharmacology* 1993; 35(3): 265-71.

63. Karbwang J, Tin T, Rimchala W, et al. Comparison of artemether and quinine in the treatment of severe falciparum malaria in south-east Thailand. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1995; 89(6): 668-71.

64. Karbwang J, Na-Bangchang K, Thanavibul A, Laothavorn P, Ditta-in M, Harinasuta T. A comparative clinical trial of artemether and the sequential regimen of artemether-mefloquine in multidrug resistant falciparum malaria. *The Journal of antimicrobial chemotherapy* 1995; 36(6): 1079-83.

65. Karbwang J, Na-Bangchang K, Thanavibul A, Ditta-in M, Harinasuta T. A comparative clinical trial of two different regimens of artemether plus mefloquine in multidrug resistant falciparum malaria. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1995; 89(3): 296-8.

66. Karbwang J, Laothavorn P, Sukontason K, et al. Effect of artemether on electrocardiogram in severe falciparum malaria. *The Southeast Asian journal of tropical medicine and public health* 1997; 28(3): 472-5.

67. Kayentao K, Doumbo OK, Penali LK, et al. Pyronaridine-artesunate granules versus artemether-lumefantrine crushed tablets in children with Plasmodium falciparum malaria: a randomized controlled trial. *Malaria journal* 2012; 11: 364.

68. Khan SJ, Amanullah, Shah N, Ali M. Efficacy of loading versus standard doses of quinine in cerebral malaria. *Rawal Med J* 2011; 36(2): 86-8.

69. Kinde-Gazard D, Ogouyemi-Hounto A, Capo-Chichi L, Gbaguidi J, Massougbodji A. [A randomized clinical trial comparing the effectiveness and tolerability of artesinin-naphthoquine (Arco(R)) and artemether-lumefantrine (Coartem(R)) in the treatment of uncomplicated malaria in Benin]. *Bulletin de la Societe de pathologie exotique (1990)* 2012; 105(3): 208-14.

70. Kshirsagar NA, Gogtay NJ, Moorothy NS, et al. A randomized, double-blind, parallel-group, comparative safety, and efficacy trial of oral co-artemether versus oral chloroquine in the treatment of acute uncomplicated Plasmodium falciparum malaria in adults in India. *Am J Trop Med Hyg* 2000; 62(3): 402-8.

71. Laman M, Moore BR, Benjamin JM, et al. Artemisinin-naphthoquine versus artemether-lumefantrine for uncomplicated malaria in Papua New Guinean children: an open-label randomized trial. *PLoS medicine* 2014; 11(12): e1001773.

72. Lefevre G, Looareesuwan S, Treeprasertsuk S, et al. A clinical and pharmacokinetic trial of six doses of artemether-lumefantrine for multidrug-resistant Plasmodium falciparum malaria in Thailand. *The American journal of tropical medicine and hygiene* 2001; 64(5-6): 247-56.

73. Lefevre G, Carpenter P, Souppart C, Schmidli H, McClean M, Stypinski D. Pharmacokinetics and electrocardiographic pharmacodynamics of artemether-lumefantrine (Riamet) with concomitant administration of ketoconazole in healthy subjects. *British journal of clinical pharmacology* 2002; 54(5): 485-92.
74. Lefevre G, Carpenter P, Souppart C, et al. Interaction trial between artemether-lumefantrine (Riamet) and quinine in healthy subjects. *Journal of clinical pharmacology* 2002; 42(10): 1147-58.

75. Lefevre G, Bhad P, Jain JP, et al. Evaluation of two novel tablet formulations of artemether-lumefantrine (Coartem) for bioequivalence in a randomized, open-label, two-period study. *Malaria journal* 2013; 12: 312.

76. Liu Y, Hu C, Liu G, et al. A replicate designed bioequivalence study to compare two fixed-dose combination products of artesunate and amodiaquine in healthy Chinese volunteers. *Antimicrob Agents Chemother* 2014; 58(10): 6009-15.

77. Llanos-Cuentas A, Lacerda MV, Rueangweerayut R, et al. Tafenoquine plus chloroquine for the treatment and relapse prevention of Plasmodium vivax malaria (DETECTIVE): a multicentre, double-blind, randomised, phase 2b dose-selection study. *Lancet (London, England)* 2014; 383(9922): 1049-58.

78. Lon C, Manning JE, Vanachayangkul P, et al. Efficacy of two versus three-day regimens of dihydroartemisinin-piperaquine for uncomplicated malaria in military personnel in northern Cambodia: an open-label randomized trial. *PloS one* 2014; 9(3): e93138.

79. Manning J, Vanachayangkul P, Lon C, et al. Randomized, double-blind, placebo-controlled clinical trial of a two-day regimen of dihydroartemisinin-piperaquine for malaria prevention halted for concern over prolonged corrected QT interval. *Antimicrob Agents Chemother* 2014; 58(10): 6056-67.

80. Massougbdjii A, Kone M, Kinde-Gazard D, Same-Ekobo A, Cambon N, Mueller EA. A randomized, double-blind study on the efficacy and safety of a practical three-day regimen with artesunate and mefloquine for the treatment of uncomplicated Plasmodium falciparum malaria in Africa. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2002; 96(6): 655-9.

81. McGready R, Tan SO, Ashley EA, et al. Randomized controlled trial of a two-day regimen of dihydroartemisinin-piperaquine for malaria prevention halted for concern over prolonged corrected QT interval. *Antimicrob Agents Chemother* 2014; 58(10): 6056-67.

82. Miller AK, Harrell E, Ye L, et al. Pharmacokinetic interactions and safety evaluations of coadministered tafenoquine and chloroquine in healthy subjects. *British journal of clinical pharmacology* 2013; 76(6): 858-67.

83. Moore BR, Benjamin JM, Salman S, et al. Effect of coadministered fat on the tolerability, safety, and pharmacokinetic properties of dihydroartemisinin-piperaquine in Papua New Guinean children with uncomplicated malaria. *Antimicrobial agents and chemotherapy* 2014; 58(10): 5784-94.

84. Morris CA, Lopez-Lazaro L, Jung D, et al. Drug-Drug Interaction Analysis of Pyronaridine/Artesunate and Ritonavir in Healthy Volunteers. *The American journal of tropical medicine and hygiene* 2012; 86(3): 489-95.

85. Murphy S, English M, Waruiru C, et al. An open randomized trial of artesunate versus quinine in the treatment of cerebral malaria in African children. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1996; 90(3): 298-301.

86. Mutabingwa TK, Muze K, Ord R, et al. Randomized trial of artesunate-amodiaquine, sulfadoxine-pyrimethamine-amodiaquine, chlorproguanil-dapsone and SP for malaria in pregnancy in Tanzania. *PLoS One* 2009; 4(4): e5138.

87. Mzayek F, Deng H, Mather FJ, et al. Randomized dose-ranging controlled trial of AQ-13, a candidate antimalarial, and chloroquine in healthy volunteers. *PLoS Clin Trials* 2007; 2(1): e6.

88. Na-Bangchang K, Karbwang J, Palacios PA, Ubalee R, Saengtertsilapachai S, Wernsdorfer WH. Pharmacokinetics and bioequivalence evaluation of three commercial tablet formulations of mefloquine when given in combination with dihydroartemisinin in patients with acute uncomplicated falciparum malaria. *European journal of clinical pharmacology* 2000; 55(10): 743-8.

89. Na-Bangchang K, Thanavibul A, Tippawangkosol P, Karbwang J. Pharmacokinetics of the four combination regimens of dihydroartemisinin/mefloquine in acute uncomplicated falciparum malaria. *The Southeast Asian journal of tropical medicine and public health* 2005; 36(1): 23-33.

90. Nasveld PE, Edstein MD, Reid M, et al. Randomized, double-blind study of the safety, tolerability, and efficacy of tafenoquine versus mefloquine for malaria prophylaxis in nonimmune subjects. *Antimicrobial agents and chemotherapy* 2010; 54(2): 792-8.
91. Nelwan EJ, Ekawati LL, Tjahjono B, et al. Randomized trial of primaquine hypnozoitocidal efficacy when administered with artemisinin-combined blood schizontocides for radical cure of Plasmodium vivax in Indonesia. *BMC Medicine* 2015; 13: 294.

92. Newton PN, Chierakul W, Ruangveerayuth R, et al. A comparison of artesunate alone with combined artesunate and quinine in the parenteral treatment of acute falciparum malaria. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2001; 95(5): 519-23.

93. Ngouesse B, Basco LK, Ringwald P, Keundjian A, Blackett KN. Cardiac effects of amodiaquine and sulfadoxine-pyrimethamine in malaria-infected African patients. *Am J Trop Med Hyg* 2001; 65(6): 711-6.

94. Nosten F, Karbwang J, White NJ, et al. Mefloquine antimalarial prophylaxis in pregnancy: dose finding and pharmacokinetic study. *British journal of clinical pharmacology* 1990; 30(1): 79-85.

95. Nosten F, ter Kuile F, Maelankiri L, et al. Mefloquine prophylaxis prevents malaria during pregnancy: a double-blind, placebo-controlled study. *J Infect Dis* 1994; 169(3): 595-603.

96. Olliaro PL, Ramanathan S, Vaillant M, et al. Pharmacokinetics and Comparative Bioavailability of Artesunate and Mefloquine Administered Separately or as a Fixed Combination Product to Healthy Volunteers and Patients with Uncomplicated Plasmodium falciparum Malaria. *Journal of Bioequivalence & Bioavailability* 2010; 2(3): 59-66.

97. Omoruyi SI, Onyeji CO, Daniyan MO. Effects of prior administration of amodiaquine on the disposition of halofantrine in healthy volunteers. *Ther Drug Monit* 2007; 29(2): 203-6.

98. Orrell C, Little F, Smith P, et al. Pharmacokinetics and tolerability of artesunate and amodiaquine alone and in combination in healthy volunteers. *Eur J Clin Pharmacol* 2008; 64(7): 683-90.

99. Piola P, Nabasumba C, Turyakira E, et al. Efficacy and safety of artemether-lumefantrine compared with quinine in pregnant women with uncomplicated Plasmodium falciparum malaria: an open-label, randomised, non-inferiority trial. *The Lancet Infectious diseases* 2010; 10(11): 762-9.

100. Poravuth Y, Socheat D, Rueangweerayut R, et al. Pyronaridine-artesunate versus chloroquine in patients with acute Plasmodium vivax malaria: a randomized, double-blind, non-inferiority trial. *PLoS One* 2011; 6(1): e14501.

101. Pyar KP, Myint WW, Kyaw MP, et al. Comparison of efficacy and safety of different brands of oral artesunate plus mefloquine in uncomplicated falciparum malaria in adults. *Myanmar Heal Sci Res J* 2007; 21: 78-82.

102. Pyar KP, Myint WW, Kyaw MP, Zin T, Than M. Efficacy and safety of artemisinin-piperaquine (Artequick) compared to dihydroartemisinin-piperaquine (Artekin) in uncomplicated falciparum malaria in adults. *Myanmar Health Sciences Research Journal* 2009; 21(2): 78-82.

103. Restrepo M, Botero D, Marquez RE, Boudreau EF, Navaratnam V. A clinical trial with halofantrine on patients with falciparum malaria in Colombia. *Bulletin of the World Health Organization* 1996; 74(6): 591-7.

104. Rueangweerayut R, Phyoo AP, Uthaisin C, et al. Pyronaridine-artesunate versus mefloquine plus artesunate for malaria. *N Engl J Med* 2012; 366(14): 1298-309.

105. Sabchareon A, Chongsuphajaisiddhi T, Sinhasivanon V, Chanthavanich P, Attanath P. In vivo and in vitro responses to quinine and quinidine of Plasmodium falciparum. *Bulletin of the World Health Organization* 1988; 66(3): 347-52.

106. Song J, Socheat D, Tan B, et al. Randomized trials of artemisinin-piperaquine, dihydroartemisinin-piperazine phosphate and artemether-lumefantrine for the treatment of multi-drug resistant falciparum malaria in Cambodia-Thailand border area. *Malaria journal* 2011; 10: 231.

107. Sowunmi A, Salako LA, Laoye OJ, Aderoumnu AF. Combination of quinine, quinidine and cinchonine for the treatment of acute falciparum malaria: correlation with the susceptibility of Plasmodium falciparum to the cinchona alkaloids in vitro. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1990; 84(5): 626-9.

108. Staedke SG, Maiteki-Sebuguzi C, Rehman AM, et al. Assessment of community-level effects of intermittent preventive treatment for malaria in schoolchildren in Jinja, Uganda (START-IPT trial): a cluster-randomised trial. *Lancet Glob Health* 2018; 6(6): e668-e79.

109. Supan C, Mombo-Ngoma G, Kombila M, et al. Phase 2a, Open-Label, 4-Escalating-Dose, Randomized Multicenter Study Evaluating the Safety and Activity of Ferroquine (SSR97193) Plus Artesunate, versus
Amodiaquine Plus Artesunate, in African Adult Men with Uncomplicated Plasmodium falciparum Malaria. *Am J Trop Med Hyg* 2017; **97**(2): 514-25.

110. Taylor TE, Wills BA, Courval JM, Molyneux ME. Intramuscular artemether vs intravenous quinine: an open, randomized trial in Malawian children with cerebral malaria. *Tropical medicine & international health : TM & IH* 1998; **3**(1): 3-8.

111. Thapa S, Hollander J, Linehan M, et al. Comparison of artemether-lumefantrine with sulfadoxine-pyrimethamine for the treatment of uncomplicated falciparum malaria in eastern Nepal. *The American journal of tropical medicine and hygiene* 2007; **77**(3): 423-30.

112. Thuma PE, Bhat GJ, Mabeza GF, et al. A randomized controlled trial of artemotil (beta-arteether) in Zambian children with cerebral malaria. *The American journal of tropical medicine and hygiene* 2000; **62**(4): 524-9.

113. Tjitra E, Hasugian AR, Siswantoro H, et al. Efficacy and safety of artemisinin-naphthoquine versus dihydroartemisinin-piperaquine in adult patients with uncomplicated malaria: a multi-centre study in Indonesia. *Malaria journal* 2012; **11**: 153.

114. Touze JE, Heno P, Fourcade L, et al. The effects of antimalarial drugs on ventricular repolarization. *Am J Trop Med Hyg* 2002; **67**(1): 54-60.

115. Trung TN, Tan B, Van Phuc D, Song JP. A randomized, controlled trial of artemisinin-piperaquine vs dihydroartemisinin-piperaquine phosphate in treatment of falciparum malaria. *Chinese journal of integrative medicine* 2009; **15**(3): 189-92.

116. Tshefu AK, Gaye O, Kayentao K, et al. Efficacy and safety of a fixed-dose oral combination of pyronaridine-artsunate compared with artemether-lumefantrine in children and adults with uncomplicated Plasmodium falciparum malaria: a randomised non-inferiority trial. *Lancet* 2010; **375**(9724): 1457-67.

117. van Agtmael M, Bouchaud O, Malvy D, et al. The comparative efficacy and tolerability of CGP 56697 (artemether + lumefantrine) versus halofantrine in the treatment of uncomplicated falciparum malaria in travellers returning from the Tropics to The Netherlands and France. *Int J Antimicrob Agents* 1999; **12**(2): 159-69.

118. van Hensbroek MB, Kwiatkowski D, van den Berg B, Hoek FJ, van Boxtel CJ, Kager PA. Quinine pharmacokinetics in young children with severe malaria. *The American journal of tropical medicine and hygiene* 1996; **54**(3): 237-42.

119. Walker O, Salako LA, Omokhodion SI, Sowunmi A. An open randomized comparative study of intramuscular artemether and intravenous quinine in cerebral malaria in children. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1993; **87**(5): 564-6.

120. Adjei GO, Oduro-Boatey C, Rodrigues OP, et al. Electrocardiographic study in Ghanaian children with uncomplicated malaria, treated with artesunate-amodiaquine or artemether-lumefantrine. *Malar J* 2012; **11**: 420.

121. Auprayoon P, Sukontason K, Na-Bangchang K, Banmairuroi V, Molunto P, Karbwang J. Pharmacokinetics of quinine in chronic liver disease. *British journal of clinical pharmacology* 1995; **40**(5): 494-7.

122. Bhatt KM, Samia BM, Bhatt SM, Wasunna KM. Efficacy and safety of an artesunate/mefloquine combination, (artequin) in the treatment of uncomplicated P. falciparum malaria in Kenya. *East African medical journal* 2006; **83**(5): 236-42.

123. Byakika-Kibwika P, Lamorde M, Lwabi P, et al. Cardiac Conduction Safety during Coadministration of Artemether-Lumefantrine and Lopinavir/Ritonavir in HIV-Infected Ugandan Adults. *Chemotherapy research and practice* 2011; **2011**: 393976.

124. Claessen FA, van Boxtel CJ, Perenboom RM, Tange RA, Wetstein JC, Kager PA. Quinine pharmacokinetics: ototoxic and cardiotoxic effects in healthy Caucasian subjects and in patients with falciparum malaria. *Tropical medicine & international health : TM & IH* 1998; **3**(6): 482-9.

125. Davis TM, White NJ, Looaereeswuan S, Silamut K, Warrell DA. Quinine pharmacokinetics in cerebral malaria: predicted plasma concentrations after rapid intravenous loading using a two-compartment model. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1988; **82**(4): 542-7.
126. Davis TM, Supanaranond W, Pukrittayakamee S, et al. A safe and effective consecutive-infusion regimen for rapid quinine loading in severe falciparum malaria. *The Journal of infectious diseases* 1990; **161**(6): 1305-8.

127. Edwards G, Looaereeswan S, Davies AJ, Wattanagoon Y, Phillips RE, Warrell DA. Pharmacokinetics of chloroquine in Thais: plasma and red-cell concentrations following an intravenous infusion to healthy subjects and patients with *Plasmodium vivax* malaria. *Br J Clin Pharmacol* 1988; **25**(4): 477-85.

128. Falade C, Makanga M, Premji Z, Ortmann CE, Stockmeyer M, de Palacios PI. Efficacy and safety of artemether-lumefantrine (Coartem) tablets (six-dose regimen) in African infants and children with acute, uncomplicated falciparum malaria. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2005; **99**(6): 459-67.

129. Haider I, Humayun M, Badshah A. The effect of quinine on QT interval in patients in a tertiary care hospital. *Journal of Postgraduate Medical Institute* 2013; **27**(1): 20-5.

130. Hatz C, Soto J, Nothdurft HD, et al. Treatment of acute uncomplicated falciparum malaria with artemether-lumefantrine in non-immune populations: A safety, efficacy, and pharmacokinetic study. *American Journal of Tropical Medicine and Hygiene* 2008; **78**(2): 241-7.

131. Hombhanje FW, Kereu RK, Bulungol P, Paika R. Halofantrine in the treatment of uncomplicated falciparum malaria with a three-dose regimen in Papua New Guinea: a preliminary report. *Papua and New Guinea medical journal* 1998; **41**(1): 23-9.

132. Jaspers CA, Hopperus Buma AP, van Thiel PP, van Hulst RA, Kager PA. Tolerance of mefloquine chemoprophylaxis in Dutch military personnel. *The American journal of tropical medicine and hygiene* 1996; **55**(2): 230-4.

133. Karbwang J, Thanavibul A, Molunto P, Na Bangchang K. The pharmacokinetics of quinine in patients with hepatitis. *British journal of clinical pharmacology* 1993; **35**(4): 444-6.

134. Karunajeewa H, Lim C, Hung TY, et al. Safety evaluation of fixed combination piperaquine plus dihydroartemisinin (Artekin) in Cambodian children and adults with malaria. *British journal of clinical pharmacology* 2004; **57**(1): 93-9.

135. Khan MZ, Isani Z, Ahmed TM, et al. Efficacy and safety of halofantrine in Pakistani children and adults with malaria caused by *P. falciparum* and *P. vivax*. *The Southeast Asian journal of tropical medicine and public health* 2006; **37**(4): 613-8.

136. Krishna S, ter Kuile F, Supanaranond W, et al. Pharmacokinetics, efficacy and toxicity of parenteral halofantrine in uncomplicated malaria. *Br J Clin Pharmacol* 1993; **36**(6): 585-91.

137. Lavallée I, Marc E, Moulin F, Treluyer JM, Imbert P, Gendrel D. Cardiac rhythm disturbances and prolongation of the QTc interval with halofantrine. *Arch Pediatr* 2001; **8**(8): 795-800.

138. Mansor SM, Taylor TE, McGrath CS, et al. The safety and kinetics of intramuscular quinine in Malawian children with moderately severe falciparum malaria. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1990; **84**(4): 482-7.

139. Matson PA, Luby SP, Redd SC, Rolka HR, Meriwether RA. Cardiac effects of standard-dose halofantrine therapy. *The American journal of tropical medicine and hygiene* 1996; **54**(3): 229-31.

140. Minodier P, Noel G, Salles M, et al. [Mefloquine versus halofantrine in children suffering from acute uncomplicated falciparum malaria]. *Archives de pediatrie : organe officiel de la Societe francaise de pediatrie* 2005; **12** Suppl 1: S67-71.

141. Monlun E, Le Metayer P, Szwandt S, et al. Cardiovascular adverse events and complications of halofantrine in patients with moderate to severe falciparum malaria. *Trans R Soc Trop Med Hyg* 1995; **89**(4): 430-3.

142. Mra R, Myint P, Shwe T. Electrocardiographic effects of quinine and quinidine in the treatment of falciparum malaria. *Myanmar Heal Sci Res J* 1991; **3**: 1-5.

143. Na-Bangchang K, Limpaibul L, Thanavibul A, Tan-Ariya P, Karbwang J. The pharmacokinetics of chloroquine in healthy Thai subjects and patients with *Plasmodium vivax* malaria. *Br J Clin Pharmacol* 1994; **38**(3): 278-81.

144. Nyunt MM, Lu Y, El-Gasim M, Parsons TL, Petty BG, Hendrix CW. Effects of ritonavir-boosted lopinavir on the pharmacokinetics of quinine. *Clinical pharmacology and therapeutics* 2012; **91**(5): 889-95.
145. Ogunkunle OO, Fehintola FA, Ogungbamigbe T, Falade CO. Comparative cardiac effects of chlorproguanil/dapsone and chloroquine during treatment of acute uncomplicated falciparum malaria infection in Nigerian children. *Afr J Biomed Res* 2011; 14(3): 161-7.

146. Roggelin L, Pelletier D, Hill JN, et al. Disease-associated QT-shortage versus quinine associated QT-prolongation: age dependent ECG-effects in Ghanaian children with severe malaria. *Malar J* 2014; 13: 219.

147. Sowunmi A, Falade CO, Oduola AM, et al. Cardiac effects of halofantrine in children suffering from acute uncomplicated falciparum malaria. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1998; 92(4): 446-8.

148. Stein DS, Jain JP, Kangas M, et al. Open-label, single-dose, parallel-group study in healthy volunteers to determine the drug-drug interaction potential between KAE609 (cipargamin) and piperaquine. *Antimicrobial agents and chemotherapy* 2015; 59(6): 3493-500.

149. Sukontason K, Karbwang J, Rimchala W, et al. Plasma quinine concentrations in falciparum malaria with acute renal failure. *Tropical medicine & international health : TM & IH* 1996; 1(2): 236-42.

150. Supanaranond W, Suputtamongkol Y, Davis TM, et al. Lack of a significant adverse cardiovascular effect of combined quinine and mefloquine therapy for uncomplicated malaria. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1997; 91(6): 694-6.

151. Touze JE, Bernard J, Keundjian A, et al. Electrocardiographic changes and halofantrine plasma level during acute falciparum malaria. *Am J Trop Med Hyg* 1996; 54(3): 225-8.

152. von Seidlein L, Jaffar S, Greenwood B. Prolongation of the QTc interval in African children treated for falciparum malaria. *Am J Trop Med Hyg* 1997; 56(5): 494-7.

153. Win K, Than M, Thwe Y. Comparison of combinations of parenteral artemisinin derivatives plus oral mefloquine with intravenous quinine plus oral tetracycline for treating cerebral malaria. *Bulletin of the World Health Organization* 1992; 70(6): 777-82.