Water Sorption and Solubility of Light-Cured Dental Composites Prepared from Two Different Types of Matrix Monomers

Israa F Ghazi¹, Jawad K Oleiwi¹, Sihama I Salih¹ and Mohammed A Mutar²

¹ Materials Engineering Department, University of Technology, Iraq
² Chemical Engineering Departments, College of Engineering, University of AL-Qadisiyah, Iraq

Email: israa.ghazi@qu.edu.iq

Abstract. Two groups of resins reinforced by different ratios of nano-hydroxyapatite were used to produce the novel dental composite, with the main purpose of measuring the water sorption (WS) and solubility (SO) of the prepared nanocomposites. Ten experimental specimens were prepared in disk-shaped with and without filler materials, in two groups, each group was classified according to filler contents (0, 1, 2, 3, and 4) wt. % of nano-hydroxyapatite. Each specimen was stored for 7 days in water, proceeding to measure the mass of each specimen. After drying process, the specimen masses were determined. Then WS and SO were calculated from these determinations. The results showed that values of water sorption after 1 week for group A composite and group B composite ranged (9.66 to 13.07 mg/mm³) and (5.11 to 8.52 mg/mm³), respectively, while solubility was (2.97 to 3.25 mg/mm³) for the composites specimens of group A and (1.83 to 2.26 mg/mm³) for the composites specimens of group B, respectively. For composite with different filler contents the results showed a high filler contents of 4% for each group with high value of water sorption (WS) and solubility (SO). It could be concluded that the percentage of sorption and solubility of composite based on acrylic and amide were significantly lower than that based on acrylate.

Keywords. Water sorption, Solubility, Dental composite, Filler content.

1. Introduction

Human teeth can be completely or partially damaged which negatively affects a person's health and appearance; therefore, they need restoration biomaterial continuously. Composite materials are the most common materials used not only because of their facility to adhere to tooth substance but also for their aesthetic and performance characteristics. Dental composite materials consist mainly of filler particles and a polymer matrix based on different monomers, dimmers and/or oligomers of methacrylate and/or acrylates, together with additives [1]. These materials stay for long time in the oral environment and will undergo an interaction with the oral fluids. Hence, they absorb water and release unreacted components.

According previous studies, the absorbed water weakens the mechanical properties such as fatigue limit, transverse strength, and hardness, because of the effect of water plasticizing [2,3]. In addition, water sorption has an effect on the dimensional stability through a three-dimensional volumetric expansion and causes occlusal changes [4]. The dimensional change of dental composite produces...
internal stress and harmful consequences such as crack development and denture fracture [5, 6]. Polymer is exposed to water sorption because of the polarity of molecular present in the polymer, unsaturated bonds of the molecules, or unbalanced intermolecular forces in the polymers [7]. It causes reversible rupture of ill-qualified inter-chain bonds as a result of absorbed water, as well as irreversible flaws in the polymer matrix [8]. The result of this effect is a degradation of the filler/matrix interface and deteriorating of the polymer network [9, 10]. The extent of generated degradation depends on the chemical composition of the monomers, dimers and oligomers, the cross-linking grade in the polymerized matrix, the conversion rate and influence of the environment [11]. The factors of time immersion and filler content of the composite material have influence on the activity of water sorption [12]. Degradation processes will also cause erosion of filler particles. These erosion processes will lead to the loss of mass of the dental composite material [13].

Hence, the networks of polymer should be insoluble materials especially those with high thermal and chemical stability. Despite the fact that most of the monomers of polymer used in dental composite can take up water and chemicals from the environment, they cause the releasing of components into the surrounding environment [14, 15]. There, as indicated by various researchers, the polymer composite materials can be used in different biomechanical application, such as prosthetic application, [16-28], bone application, [29-31], removable partial denture, [32-36], hip joint application, [37-40], and other applications [41-53]. Then, the polymer composite can be applied to manufacturing dental composite materials.

Another significant factor in dental composite that must be considered in their water sorption (WS) and solubility (SO), rate of wear, surface roughness, and esthetic results, is the filler type and characteristics [54 -56]. The main aims in this study is preparing a new nanocomposite material used for dental applications having desirable characteristics by using new types in the resin matrix materials. Also, the study aims to examine the effect of nano-filler content on some properties such as water sorption and solubility, and comparing the result properties of all the prepared composites to attain the best materials.

2. Materials and methods

In this work two groups of polymeric composite materials have been prepared, the most important monomers used in preparing the samples are:

- The 1,6 hexanediol methacrylate, bisphenol dimethacrylate (Bis_DMA) bisphenol-A-glycidyl dimethacrylate (BIS-GMA), dimethyl aminoethyl methacrylate (DMAEMA) and camphorquinone (CQ) which were supplied by the Sigma Aldrich (USA) company.
- Methacrylamide (MM), methacrylic acid (MA), 2-E thylhexylmethacrylate, polyethylglycol (PEG) provided from Merck (Germany).
- Nano Hydroxyapatite (Hualancheh.Co.China) and Zinc Oxide (ZnO) (GCC) are the fillers used to reinforced these monomers with an average particle size of 50 nm. Each group is made with five different fillers (nano-hydroxyapatite) at (0, 1, 2, 3, and 4) %. The chemical compositions of the two groups of composite resins prepared are listed in Table (1).

Group	Resin Monomer	Filler Type	Filler wt%
A	1. BIS-GMA (40%)	Hydroxyapatite	0,1,2,3,4
	2. methacrylamide (20%)		
	3. methacrylic acid (20%)		
	4.1-hexanediolmethacrylate (20%)		
B	1. BIS-GMA (40%)	Hydroxyapatite	0,1,2,3,4
	2.2-Ethylhexylmethacrylate(20%)		
	3. polyethylglycol (10%)		
	4. bisphenol adimethacrylate (10%)		
	5.1-hexanediolmethacrylate (20%)		
2.1. Preparation of composite
Matrix monomers were selected as (Bis-GMA, MM, MA, and 1-6HNM) for group A and (Bis-GMA,2-EMA, Bis-AMA and1-6HNM) for group B. These samples components were weighed by a digital sensitive balance (Sarorius, BL210s, Germany) and then subjected to mixing process for approximately 90 minutes until the homogenous mixture are obtained. The process of adding zinc oxide (0.4gm) as antimicrobial agent, and Nanofillers (1,2,3,4) % as colorant to improve the mechanical characteristics have been implemented. Adding DMAEMA (0.5wt %) as accelerator and camphor quinine (0.5wt %) as initiator also have implemented continuously for twenty minutes as the last stage of mixing. Then, the paste has been inserted to the test moulds, and loosely hand pressed between two slides of glass to eliminate any excess material. The monomers molecules structure of matrix group (A) is shown in Figure 1 (a), which contains four different types of monomers materials as stated in Table (1). The new repeating unit for matrix group (A) is shown in Figure 1(b).

![Figure 1a. Monomers molecules structure of matrix group (A).](image1a)

![Figure 1b. Repeating unit for matrix group (A).](image1b)

On the other hand, the monomers molecules structure of matrix group (B) is shown in Figure 2 (a), which contains five different types of monomers materials as stated in Table (1). The new repeating unit for matrix group (B) is shown in Figure 2 (b).
Figure 2a. Monomers molecules structure of matrix group (B).

Figure 2b. Repeating unit for matrix group (B).

Finally, the composite resin was photo polymerized with the use of a light curing unit (EliparFreelight2LED, 3 M ESPE) at 1500 mW/cm² intensity. Light was illuminated on the two surfaces, bottom and top, via clear matrix strips for sixty seconds. The samples were exposed to irradiation in different positions for 60 s until the entire area was exposed. The distance between the specimen tip and the surface of light curing unit has been kept at 1–2 mm. After that, the specimens were removed from the mold, both sides were smoothed to a thickness of 0.85 ± 0.1 mm.

2.2. Test of specimens
Water sorption and solubility tests were determined according to the specification standard for composite (ISO 4049:2000) [57]. Fifty discs of specimens of about 15±0.2 mm in diameter and 1±0.1 mm in thickness were made as shown in figure 3. Five discs of specimens were prepared for each composite material, and the control sample (free from filler), were weighed by an analytical scale accurate up to 0.0001mg (Sarorius, BI210s, Germany). All specimens were kept on a vacuum desiccator at 37°C to obtain a constant weight (m₁). Specimens were next stored in 10 mL in distilled water for seven days. After this storage period, the samples were removed, and the excess water was removed with absorbent paper until water was no longer visualized. The weights were recorded again (M₂) after they were obtained of constant mass. Specimens were subsequently reinserted in the desiccator at 37°C and weighed daily until a constant mass of water release (M₃) was obtained.
Equations 1, 2 were used to calculate the values of water sorption (WS) and solubility (SL) respectively. [58]

\[
WS = \frac{M_2 - M_3}{V} \quad (1)
\]

\[
SL = \frac{M_1 - M_3}{V} \quad (2)
\]

Where; \(M_1\) is the initial dry constant mass (mg) prior to immersion in water, \(M_2\) is the mass of the specimen (mg) after immersion in water for seven days; \(M_3\) is the mass of the reconditioned specimen (mg), and \(V\) is the volume of specimen in mm\(^3\).

![Figure 3. The Prepared Specimens for Testing Water Sorption and Solubility.](image)

3. Results

Based on the ISO 4049 standard test, it was found that the maximum WS value dental composite was 40 mg/mm\(^3\)[57]. In this work the maximum SO value reached 13.07 mg/mm\(^3\). So, none of the prepared composite specimens exceeded the maximum WS value. The SO values for the composite resins tested in this study ranged from 5.11 to 13.07 mg/mm\(^3\). This result is related to the difference in the chemical composition of matrix material and the ratio of nano-hydroxyapatite content in composites materials. The mean WS and SO values for each specimen were listed in Table 2.

Specimens	Water Sorption, mg/mm\(^3\)	Solubility, mg/mm\(^3\)
A1	9.66733	2.970927
A2	10.80466	2.970927
A3	11.942	3.1124
A4	12.51066	3.253873
A5	13.07933	3.253873
B1	5.117998	1.839146
B2	6.255331	1.980618
B3	6.823998	2.122091
B4	7.392664	2.122091
B5	8.529997	2.263564

Through this test, it was found that all of the studied composite resins during immersion in water increased in their weight, as well as in their mean values of water sorption. Specimens of the second group (B) showed significantly lower values in these properties, while specimens of the first group showed the highest values in water sorption, which is lower than those required by ISO 4049 standard; 40 mg/mm\(^3\) [57].

Water sorption also showed difference within each studied groups. When adding nano-filler (Nano Hydroxyapatite) to matrix resin, they showed varying values of water sorption of composite samples of more than the reference specimen (free from filler). Specimen A5 within group A represents the
highest filler content with the higher value of water sorption, then decreasing is followed by A4, A3 and A2, respectively, with a decrease in the ratio of nano-hydroxyapatite in composite. For group B also, the data showed the lowest and highest mean solubility values for each specimen within this group. Increase was found in solubility values in B2, B3, B4 and B5, respectively, with increase in the ratio of nano-hydroxyapatite in composite. On the other hand, the mean values of solubility showed by the tested composite specimens varied from 1.8 to 2.263564 mg/mm\(^3\). Specimens of group A exhibited higher mean solubility than group B, varying from 2.97 to 3.83 mg/mm\(^3\). All these values were less than the maximum value mentioned by the ISO 4049 standard (<7.5 mg/mm\(^3\)) [59].

Figures (4) and (5) elucidate the effect of adding hydroxyapatite nanoparticle (for two groups different in the matrix monomers) on water sorption (WS) and solubility (SO) for nanocomposites, respectively. From these Figures, it was noticed that the addition of nanoparticles increased the values of WS and SO with addition of nano-hydroxyapatite to matrix material and these arrived to the highest values at 4\% wt. where the maximum values of WS and SO for first group (A) reached to 13.07933 mg/mm\(^3\) and 3.253873 mg/mm\(^3\), respectively, and the maximum values of WS and SO for second group (B) reached 8.529997 mg/mm\(^3\) and 2.263564 mg/mm\(^3\), respectively. On the other hand, it can be observed from these Figures, that the nanocomposite samples of first group (A) matrix material (see Table 1) have the highest values of water sorption and solubility as compared with their counterparts of the second group (B) of matrix material (see Table 2). This is related to the nature of the components of matrix material and molecules structure of repeating units for matrices A and B as shown in Figures 1b and 2b, respectively. Also, it depends on the compatibility range between hydroxyapatite nanoparticles and the components of matrix material.

![Water Sorption](image1.png) ![Water Solubility](image2.png)

Figure 4. Water sorption as a function of nano-hydroxyapatite content in nanocomposites. **Figure 5.** Water solubility as a function of nano-hydroxyapatite content in nanocomposites.

4. Discussion

The chemical composition of the prepared composites materials (i.e. hydrophobic and hydrophilic monomers, solvent material, and filler particles) of the restorative material have a direct effect on its degradation. Apparently, the extent and rate of water absorption is dependent on the nature of the polymer network and the potential binding of hydrogen and polar interactions, as proven by research [59]. The amount of water that composite resins can absorb depends on the chemical composition of hydrophilicity polymeric matrices materials and on the nature of the nanofiller materials in composite [56, 60]. So, the results obtained from the two experimental composite groups tested in this study i that differences in the indicate that polarity of each monomer has a significant role in determining the ability of absorbing water in polymers. Thus, all composites samples of group A showed high water sorption mean values after storage in water for one week, which is due to the chemical structure of its polymer repeat units being more polar because they contain carbonyl, amide, benzene and hydroxyl groups as shown previously in Figure (1b). Therefore, they are hydrophilic polymers. Hence, Figure
(4) shows the highest WS value for the specimens of group A, which has more amide groups (NH2) monomers per length of chain, which will increase the polar nature of the polymer group (A) specimens, because this functional group has more types of monomer. This leads to more hydrogen bonding between water, hence the polymer will be more hydrophilic and water soluble. On the other hand, the samples of group B contain methacrylate monomers as shown previously in Figure (2b). Therefore, they are hydrophobic polymers, which exhibited a lower value for water sorption than samples of group. A. Within the same resin group, the value of water sorption may also vary with the filler content (hydroxyapatite nanoparticle). It is indicated that there is extra weight gained by absorption and diffusion with increasing weight fraction ratio of hydroxyapatite nanoparticle, which may be due to hydroxyapatite nanoparticle which have a higher water penetrates, as well as, a higher water absorption percentage than the matrix material [61]. Additionally, the porous structure of nanocomposites materials increases with increasing the percentage of the hydroxyapatite nanoparticle content in the composite. This will increase the free volume within the polymeric matrix and create a tortuous path for the permeating molecules, and this increase is in water absorption [62].

In regard to solubility (SO) behavior in Figure 5, a number of factors affect the solubility values of composites, for example the monomers type, immersion time, number and the size of leachable species, the interface bond of resin-filler quality, the solvents, and temperature [63,64]. Another important factor is the residual monomers that do not react and are consequently lost. It is highly dependent on the degree of conversion, that is, the higher the value of the conversion degree, the lower the amount of non-reactive monomers, resulting in a lower solubility [60, 65].

The diffusion of a lot of water through the polymeric materials is undesirable because of its tendency to reduce the frictional forces between the polymeric chains, due to the problem of polymer swelling. At higher absorbed water intensity, polymeric chains may suffer a relaxation process, thus the elution of unreacted monomers and/or solvents that trapped in the polymer network become more facilitating [66]. These factors are likely responsible for the known degradation of the resin-dentin bonds over time observed by several research centers [60, 67]. Specimens noticeably materials listed in group B, are lower solubility value than the other tested specimens due to their hydrophobicity, where the highest value of water sorption is the highest solubility value, vice versa.

5. Conclusions

The following conclusions can be drawn:

1. All polymers absorb moisture in humid atmospheres and when immersed in water. The amount of water sorption and solubility of composite resins varies according to the hydrophilicity nature of the monomers and filler content.
2. The composite that contains the polymeric materials with more hydrophilic functional group have higher water sorption and solubility. Therefore, composite based on acrylic and amide had W.S and SOL% significantly higher than that based on acrylate.
3. Weight gain percentage of prepared composites increase with increase in weight percentage of fillers, where the percentage 4%wt represent the highest of water sorption and solubility values.
4. Water has a very important role in the interaction strength of filler and matrix; it merely accelerates polymer- filler failure which fails the restoration material.
5. All water sorption and solubility values were less than the maximum values mentioned by the ISO 4049 standard; therefore, the prepared composites are considered promising materials in dental applications.

6. Reference

[1] Rtengren UO, Wellendorf H, Karlsson S and I E Ruyter I E 2001 Water Sorption and Solubility of Dental Composites and Identification of Monomers Released in an Aqueous Environment (Journal of Oral Rehabilitation) vol 28 pp1106–1115
[2] Cucci AL, Vergani CE, Giampaolo ET and Afonso MC 1998 Water Sorption, Solubility, and Bond Strength of Two Autopolymerizing Acrylic Resins and one Heat-Polymerizing Acrylic
Resin (J Prosthet Dent) vol 80 pp 434–8

[3] Khaleed A, Bahrami M and Shirzadi S 2015 Effect of Food Simulating Agents on the Hardness and Bond Strength of a Silicone Soft Liner to a Denture Base Acrylic Resin* Open Dent J;9:40–8

[4] Ristic B and Carr L 1987 Water Sorption by Denture Acrylic Resin and Consequent Changes in Vertical Dimension (J Prosthet Dent) vol 58 pp 689–9

[5] Rajaee N, Vojdani M and Adibi S 2014 Effect of Food–Simulating Agents on the Flexural Strength and Surface Hardness of Denture Base Acrylic Resins (Oral Health Dent Manage) vol 15 pp 1041–7

[6] Wong DM, Cheng LY, Chow TW and Clark RK 1999 Effect of Processing Method on the Dimensional Accuracy and Water Sorption of Acrylic Resin Dentures (J Prosthet Dent) vol 81 pp 300–4

[7] Giti R, Vojdani M, Abduo J and Bagheri R 2016 The Comparison of Sorption and Solubility Behavior of Four Different Resin Luting Cements in Different Storage Media (J Dent (Shiraz) vol 17 pp 91–7

[8] Kumar Y, Kapoor A, Jindal N, Aggarwal R and Aggarwal K 2016 A Comparative Evaluation of Water Sorption of Three Different Esthetic Restorative Materials (An in Vitro Study. IOSR J Dent Med Sci) vol 15 pp 21–4

[9] Martin N and Jedynakiewicz N 1998 Measurement of Water Sorption in Dental Composites (Biomaterials) vol 19 pp 77–83

[10] Itoh S, Nakajima M, Hosaka K, Okuma M, Takahashi M, Shinoda Y et al 2010 Dentin Bond Durability and Water Sorption/Solubility of One-step Self-etch Adhesives (Dent Mater J) vol 29 pp 623–30

[11] FERRACANE and J L 1994 Elution of Leachable Components from Composites (Journal of Oral Rehabilitation) vol 21 vol 441

[12] SoEDERHOLM, K J, ZIGAN, M, RAGAN, M, FISCHLSCHWEIGER, W and BERGMAN, M 1984 Hydrolytic Degradation of Dental Composites (Journal of Dental Research) vol 63 pp 1248

[13] SoEDERHOLM, K J 1981 Degradation of Glass Filler in Experimental Composites (Journal of Dental Research) vol 60 p 1867

[14] Santerre JP, Shaji L and Leung BW 2001 Relation of Dental Composite Formulations to their Degradation and the Release of Hydrolyzed Polymeric-Resin (derived products. Crit Rev Oral Biol Med) vol 12 pp 136–51

[15] Ferracane JL 2004 Hygroscopic and Hydrolytic Effects in Polymer Networks (In: Proceedings of conference on scientific insights into dental ceramics and photopolymer networks) vol 18 pp 118–28

[16] Bashar A Bedaiwi and Jumaa S Chiad 2012 Vibration analysis and measurement in the below knee prosthetic limb part I: Experimental work (ASME 2012 International Mechanical Engineering Congress and Exposition, Proceedings (IMECE))

[17] Bashar A Bedaiwi 2013 Analyzing of Impact, Vibration Response and Stability of Artificial Upper Limb (American Society of Mechanical Engineering, ASME 2013 International Mechanical Engineering Congress and Exposition, Biomedical and Biotechnology Engineering) vol 3B

[18] Mohsin Abdullah Al-Shammari, Emad Q Hussein and Ameer Alaa Oleiwi 2017 Material Characterization and Stress Analysis of a Through Knee Prosthesis Sockets (International Journal of Mechanical & Mechatronics Engineering IJIMME-IJENS) vol 17 no 06

[19] Safi M Abbas, Ayad M Takahkh, Mohsin Abdullah Al-Shammari and Muhammad Al-Waily 2018 Manufacturing and Analysis of Ankle Disarticulation Prosthetic Socket (SYMES) (International Journal of Mechanical Engineering and Technology (IJMET)) vol 09 no 07 pp 560–569

[20] Safi M Abbas, Kadhim K Resan, Ahmed K Muhammad and Muhammad Al-Waily 2018 Mechanical and Fatigue Behaviors of Prosthetic for Partial Foot Amputation with Various
Composite Materials Types Effect (International Journal of Mechanical Engineering and Technology (IJMET)) vol 09 no 09 pp 383–394

[21] Jawad K Oleiwi and Ahmed Namah Hadi 2018 Experimental and Numerical Investigation of Lower Limb Prosthetic Foot Made from Composite Polymer Blends (International Journal of Mechanical and Production Engineering Research and Development) vol 08 no 02 pp 1319-1330

[22] Muhsin J Jweeg, Zaid S Hammoudi and Bassam A Alwan 2018 Optimised Analysis, Design, and Fabrication of Trans-Tibial Prosthetic Sockets (IOP Conference Series: Materials Science and Engineering, 2nd International Conference on Engineering Sciences) vol 433

[23] Ayad M Takhakh, Saif M Abbas and Aseel K Ahmed 2018 A Study of the Mechanical Properties and Gait Cycle Parameter for a Below-Knee Prosthetic Socket (IOP Conference Series: Materials Science and Engineering, 2nd International Conference on Engineering Sciences) vol 433

[24] Fahad M Kadhim, Ayad M Takhakh and Asmaa M Abdullah 2019 Mechanical Properties of Polymer with Different Reinforcement Material Composite That used for Fabricates Prosthetic Socket (Journal of Mechanical Engineering Research and Developments) vol 42 no 4 pp 118-123

[25] Sihama Issa Salih, Jawad Kadhim Oleiwi and Hajir Mohammed Ali 2019 Modification of Silicone Rubber by Added PMMA and Natural Nanoparticle Used For Maxillofacial Prosthesis Applications (ARPN Journal of Engineering and Applied Sciences) vol 14 no 4

[26] Ehab N Abbas, Muhsin J Jweeg and Muhanad Al-Waily 2020 Fatigue Characterization of Laminated Composites used in Prosthetic Sockets Manufacturing (Journal of Mechanical Engineering Research and Developments) vol 43 no 5 pp 384-399

[27] Muhammad Al-Waily, Moneer H Tolephih and Muhsin J Jweeg 2020 Fatigue Characterization for Composite Materials used in Artificial Socket Prostheses with the Adding of Nanoparticles (IOP Conference Series: Materials Science and Engineering, 2nd International Scientific Conference of Al-Ayen University) vol 928

[28] Fahad M Kadhim, Ayad M Takhakh and Jumaa S Chiad 2020 Modeling and Evaluation of Smart Economic Transfemral Prosthetic (Defect and Diffusion Forum Journal) vol 398 pp 48–53

[29] Ahmed M Hashim, E K Tanner and Jawad K Oleiwi 2016 Biomechanics of Natural Fiber Green Composites as Internal Bone Plate Rafted (MATEC Web of Conferences, 2016

[30] Bashar Awaied Bedaiwi and Heider Abd Ali Abdalkadum 2018 The Effect of Temperature on Stress Relaxation Behaviours in Bovine Cortical Bones (2nd International Conference on Engineering Sciences, IOP Conference Series: Materials Science and Engineering) vol 433

[31] Heider Abd Ali Abdalkadum and Bashar Awaied Bedaiwi 2018 Temperature Effects on Creep Behaviour of Bovine Cortical Bones’ International Conference on Materials Engineering and Science (IOP Conference Series: Materials Science and Engineering) vol 454

[32] Jawad K Oleiwi, Sihama I Salih and Hwazen S Fadhil 2018 Water Absorption and Thermal Properties of PMMA Reinforced by Natural Fibers for Denture Applications (International Journal of Mechanical and Production Engineering Research and Development) vol 08 no 03 pp 1105-1116

[33] Kadhim K Resan 2019 Effect of Repeated Load on Life of the PMMA molar Denture (International Journal of Energy and Environment) vol 10, no 4 pp 231-236

[34] Esraa A Abbod, Muhammad Al-Waily, Ziadoon M R Al-Hadrayi, Kadhim K Resan and Saif M Abbas 2020 Numerical and Experimental Analysis to Predict Life of Removable Partial Denture (IOP Conference Series: Materials Science and Engineering, 1st International Conference on Engineering and Advanced Technology, Egypt) vol 870

[35] Nada N Kadhim, Qahtan A Hamad and Jawad K Oleiwi 2020 Tensile and Morphological Properties of PMMA Composite Reinforced by Pistachio Shell Powder used in Denture Applications (2nd International Conference on Materials Engineering & Science, AIP Conference Proceedings)

[36] Muhammad Al-Waily, Iman Q Al Saffar, Suhair G Hussein and Mohsin Abdullah Al-Shammari
2020 Life Enhancement of Partial Removable Denture made by Biomaterials Reinforced by Graphene Nanoplates and Hydroxyapatite with the Aid of Artificial Neural Network (Journal of Mechanical Engineering Research and Developments) vol 43 no 6 pp 269-285

[37] Jawad K Oleiwi, Rana Afif Majed Anaea and Safaa Hashim Radhi 2018 Tensile Properties of UHMWPE Nanocomposites Reinforced by CNTs and nHA for Acetabular Cup in Hip Joint Replacement (Journal of Engineering and Applied Sciences) vol 13 no 13

[38] Jawad Kadhim Oleiwi, Rana Afif Anaea and Safaa Hashim Radhi 2018 Roughness, Wear And Thermal Analysis of UHMWPE Nanocomposites Asacetabular Cup In Hip Joint Replacement (International Journal of Mechanical and Production Engineering Research and Development) vol 8 no 6 pp 855-864

[39] Jawad Kadhim Oleiwi, Rana Afif Anaea and Safaa Hashim Radhi 2018 CNTS AND NHA as Reinforcement to Improve Flexural and Impact Properties of Uhmwpe Nanocomposites for Hip Joint Applications (International Journal of Mechanical Engineering and Technology) vol 9 no 11 pp 121–129

[40] Muhammad Al-Waily, Emad Q Hussein and Nibras A Aziz Al-Roubaiee 2019 Numerical Modeling for Mechanical Characteristics Study of Different Materials Artificial Hip Joint with Inclination and Gait Cycle Angle Effect (Journal of Mechanical Engineering Research & Developments (MERD)) vol 42 no 04 pp 79-93

[41] S H Bakhy 2014 Modeling of Contact Pressure Distribution and Friction Limit Surfaces for Soft Fingers in Robotic Grasping (Robotica)

[42] Sadeq Bakhy, Enass Flieh and Mortada Jabbar 2018 An Experimental Study for Grasping and Pinching Controls for an Underactuated Robotic Finger Using A PID Controller (2nd International Conference on Engineering Sciences, IOP Conference Series: Materials Science and Engineering) vol 433

[43] Mahmud Rasheed Ismail, Muhammad Al-Waily and Ameer A Kadhim 2018 Biomechanical Analysis and Gait Assessment for Normal and Braced Legs (International Journal of Mechanical & Mechatronics Engineering IJMMEE-IJENS) vol 18 no 03

[44] Ahmed Khaleel Abdulameer and Mohsin Abdullah Al-Shammari 2018 Fatigue Analysis of Syme’s Prosthesis (International Review of Mechanical Engineering) vol 12 no 03

[45] Lara E Yousif, Kadhim K Resan and Raad M Fenjan 2018 Temperature Effect on Mechanical Characteristics of A New Design Prosthetic Foot (International Journal of Mechanical Engineering and Technology (IJMET)) vol 09 no 13 pp 1431-1447

[46] Ayad M Takhakh and Saif M Abbas 2018 Manufacturing and Analysis of Carbon Fiber Knee Ankle Foot Orthosis (International Journal of Engineering & Technology) vol 07 no 04 pp 2236-2240

[47] Noor Dhia Yaseen, Jumaa S Chiad and Firas Mohammed Abdul Ghani 2018 The Study and Analysis of Stress Distribution Subjected on the Replacement Knee Joint Components using Photo-Elasticity and Numerical Methods (International Journal of Mechanical and Production Engineering Research and Development (IJMPERD)) vol 08 no 06 pp 449-464

[48] Fahad M Kadhim, Jumaa S Chiad and Ayad M Takhakh 2018 Design And Manufacturing Knee Joint for Smart Transfemoral Prosthetic’ IOP Conference Series: Materials Science and Engineering, International Conference on Materials Engineering and Science, vol 454, 2018

[49] Muhsin J Jweeg, Muhammad Al-Waily, Ahmed K Muhammad and Kadhim K Resan 2018 Effects of Temperature on the Characterisation of a New Design for a Non-Articulated Prosthetic Foot (IOP Conference Series: Materials Science and Engineering, 2nd International Conference on Engineering Sciences, Kerbala, Iraq, 26–27) vol 433

[50] Muhsin J Jweeg, Abdulkareem Abdulrazzaq Ahumday and Ali Faik Mohammed Jawad 2019 Dynamic Stresses and Deformations Investigation of the Below Knee Prosthesis using CT-Scan Modeling (International Journal of Mechanical & Mechatronics Engineering IJMMEE-IJENS) vol 19 no 01

[51] Alaa a Mohammed, Emad S Al-Hassani and Jawad K Oleiwi 2019 The Nanomechanical Characterization and Tensile Test of Polymer Nanocomposites for Bioimplants (AIP Conference Proceedings)
[52] Fahad M Kadhim, Jumaa S Chiad and Maryam Abdul Salam Enad 2020 Evaluation and Analysis of Different Types of Prosthetic Knee Joint Used by above Knee Amputee (Defect and Diffusion Forum Journal) vol 398 pp 34–40
[53] Ehab N Abbas, Muhammed Al-Waily, Tariq M Hammza and Muhsin J Jweeg 2020 An Investigation to the Effects of Impact Strength on Laminated Notched Composites used in Prosthetic Sockets Manufacturing (IOP Conference Series: Materials Science and Engineering, 2nd International Scientific Conference of Al-Ayen University) vol 928
[54] Shintani H, Satou N, Yukihiro A, Satou J, Yamane I and Kouzai T et al 1985 Water Sorption, Solubility and Staining Properties of Microfilled Resins (polished by various methods. Dent Mater J) vol 4 pp 54–62
[55] Oysaed H and Ruyter IE 1986 Water Sorption and Filler Characteristics of Composites for Use in Posterior Teeth (J Dent Res) vol 65 pp 1315-1318
[56] Yap AU and Wee KE 2002 Effects of Cyclic Temperature Changes on Water Sorption and Solubility of Composite Restoratives (Oper Dent) vol 27 pp 147–153
[57] ISO 4049 2000 Dentistry Resin-based Filling Materials (International Organization for Standardisation, Switzerland)
[58] Malacarne J, Carvalho RM, Goes MF, Svizero N, Passley DH, Tay FR et al 2006 Water sorption/solubility of dental adhesive resins (Dent Mater. Oct) vol 22 no 10 pp 973–80
[59] Jones, D W and Rizkalla, A S 1996 Characterization of Experimental Composite Biomaterials (J. Biomed. Mater. Res.: Appl. Biomater.) vol 33 pp 89–100
[60] Ferracane JL 2006 Hygroscopic and Hydrolytic Effects in Dental Polymer Networks (Dent Mater. Mar) vol 22 no 3 pp 211-22
[61] S C George and S Thomas 2001 Transport Phenomena through Polymeric System (progress in polymer science) vol 26 pp 985- 1017
[62] Toledano M, Osorio R, Osorio E, Fuentes V, Prati C and Garcia-Godoy F 2003 Sorption and Solubility of Resin-based Restorative Dental Materials (Journal of Dentistry) vol 31 no 1 pp 43-50
[63] Chutinan S, Platt JA, Cochran MA and Moore BK 2004 Volumetric Dimensional Change of Six Direct Core Materials (Dental Materials) vol 20 no 4 pp 345-351
[64] Goncalves L, Amaral CM, Poskus LT, Guimaraes JGA and Silva EM 2014 Degradation of Resin Composites in a Simulated Deep Cavity (Braz Dent J Nov- Dec25) vol 6 pp 532-7
[65] Mutar, M A, Ghazi, I F, Mahdi and M S 2020 Preparation and Characterization of Novel Bis-GMA Dental Nanocomposite and their application as dental material: Mechanical Properties and Water Sorption/Volumetric Shrinkage (Materials Science and Engineering) vol 870: 012051
[66] Koshiro K, Inoue S, Tanaka T, Koase K, Fujita M, Hashimoto M and Sano H 2004 In Vivo Degradation of Resin-Dentin Bonds Produced by a Self-Etch Vs. a Total-Etch Adhesive System (Eur J Oral Dent) vol 112 pp 368-375
[67] Osorio R, Pisani-Proenca J, Erhardt MC, Osorio E, Aguilera FS, Tay FR and Toledano M 2008 Resistance of Ten Contemporary Adhesives to Resin-Dentine Bond Degradation (J Dent) vol 36 pp 163-169