Sequentially Constrained Monte Carlo

Shirin Golchi · David A. Campbell

Received: date / Accepted: date

Abstract. Constraint can be interpreted in a broad sense as any kind of explicit restriction over the parameters by enforcing known behaviors. While some constraints are intuitively defined on the parameter space, transformation of constraints into features on the parameter space may not be possible when the constraints are defined by known behavior on the model. Difficulties in sampling from the posterior distribution as a result of incorporation of constraints into the model is a common challenge leading to truncations in the parameter space and inefficient sampling algorithms. We propose a variant of sequential Monte Carlo algorithm for posterior sampling in presence of constraints by defining a filtering sequence through the imposition of the constraint. Particles generated from an unconstrained or mildly constrained distribution are filtered and moved through sampling and resampling steps to obtain a sample from the fully constrained target distribution. The Sequentially Constrained Monte Carlo algorithm is demonstrated on constraints defined by monotonicity of a function, adherence a theoretically derived model, and model feature matching.

Keywords. Particle Filtering · Constraints · Differential Equation Models · Parameter Estimation · Approximate Bayesian Computation · Sequential Monte Carlo

1 Introduction

Constraints are tools to enforce external information and ensure parameters remain interpretable. In non-linear or high dimensional models, parameter constraints are complex to define, even when constraints on the model expectation surface may remain simple. Constraints can be defined in a broad sense as any explicit restriction over the parameter or model space. A few examples are: inequality constraints over model parameters to enforce physical laws such as conservation of mass and energy; ensuring monotonicity or convexity of functions in regression or non-parametric smoothing; conforming to theoretical behavior governed by a model.

Imposition of constraints induces multi modality and/or zero probability regions resulting in challenges in sampling random variable θ from a target distribution and in the Bayesian context may also lead to disagreements between the prior and likelihood. In this paper we extend the utility of Sequential Monte Carlo (SMC) samplers Moral et al (2006) by defining a sequence of distributions by their enforcement of a constraint through the proposed Sequentially Constrained Monte Carlo (SCMC) algorithm. We connect a “simple” distribution, $\pi_0(\theta)$ to the target distribution, $\pi_T(\theta)$, via a path defined by the strictness of constraint enforcement, thereby generalizing the usual transitions of SMC between $\pi_0(\theta)$ and $\pi_T(\theta)$. Further-

S. Golchi
Department of Statistics and Actuarial Science, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6
Tel.: +177-89-861422
Fax:
E-mail: sgolchi@sfu.ca

D. Campbell
Department of Statistics and Actuarial Science, Simon Fraser University, 13450 102nd Avenue, Surrey, BC, V3T 0A3
more, we show general applicability of SCMC by creatively defining constraints.

To showcase SCMC, we begin with the toy problem of polynomial regression on noisy observations of monotone functions. Sequentially imposing the monotonicity information by defining a “soft” positivity constraint over the derivative polynomial produces more accurate predictions while satisfying the monotonicity constraints. In our second application we estimate a mixture of discrete and continuous parameters of an ordinary differential equation model where we generalize the usual definition of constraint to include model adherence. In this case, full constraint enforcement produces multiple disjoint modes. The third example focuses on parameter estimation for a chaotic stochastic differential equation model where we generalize the usual definition of constraint to include model adherence.

The rest of the paper is organized as follows: in Section 2, we provide a background on SMC samplers and the commonly used versions of it. We explain the novel choice of the filtering sequence that outlines the SCMC in Section 3. In Section 4, we apply SCMC to the monotone polynomial regression model. Parameter estimation for ODE models in a sequential framework is explained in Section 5. In Section 6, the Sequentially Constrained Approximate Bayesian Computation (SCMC ABC) algorithm is introduced and Section 7 follows with concluding remarks.

2 Sequential Monte Carlo

SMC samplers are a family of algorithms that can be used in many challenging scenarios where random walk Markov chain Monte Carlo (MCMC) methods fail in efficiently sampling θ from its target distribution. SMC algorithms take advantage of a filtering sequence of bridging distributions that bridge between $\pi_0(\theta)$, a distribution that is straightforward to sample, and $\pi_T(\theta)$, a difficult to sample target distribution. In Bayesian inference, these distributions are typically the prior $\pi_0(\theta)$ and posterior $\pi_T(\theta)$.

SMC discretizes a filtering sequence

$$\left\{ \pi_t(\theta) = \frac{\eta_t(\theta)}{Z_t} \right\}_{t=0}^T,$$

between $\pi_0(\theta)$ and $\pi_T(\theta)$; where Z_t is the normalizing constant that may be unknown and η_t is a kernel that can be evaluated for a given θ. The initial sample of particles, $\theta^{1:N}_0 \sim \pi_0(\theta)$ are filtered through iterative jittering and importance resampling steps to eventually obtain a sample from $\pi_T(\theta)$ as outlined in Algorithm 1 Moral et al (2006).

Algorithm 1 Sequential Monte Carlo Sampler

Input:	Forward and backward kernels, K_t and L_t.
1:	Generate an initial sample $\theta^{1:N}_0 \sim \pi_0$;
2:	$W^0_j \leftarrow \frac{1}{N}, j = 1, \ldots, N$;
3: for	$t := 1, \ldots, T$ do
	if ESS = $\frac{\sum_{j=1}^N (W^t_j)^2}{N} < \frac{2}{N}$ then
	resample $\theta^{1:N}_t$ with weights $W^{1:N}_{t-1}$
	$W^{1:N}_{t-1} \leftarrow \frac{1}{N}$
	end if
	Sample $\theta^{1:N}_t \sim K_t$
	$W^t_j \leftarrow W^t_{j-1}w^t_j$ where $w^t_j = \frac{\eta_t(\theta^{j-1})K_t(\theta^{j-1}, \theta^j)}{\eta_{t-1}(\theta^{j-1})K_t(\theta^{j-1}, \theta^j)}, j = 1, \ldots, N$;
4: end for	

Return: Particles $\theta^{1:N}_T$.

The above backward kernels are referred to as the “sub-optimal” by Moral et al (2006) since they are obtained by replacing the marginal importance distributions that do not have a closed form representation by π_t in the optimal backward kernels. This choice of the forward and backward kernels results in the simplified form of the incremental weights,

$$w^t_j = \frac{\eta_t(\theta^{j-1})}{\eta_{t-1}(\theta^{j-1})},$$

which means that the resampling weights, $W^{1:N}_t$, are independent of K_t and $L_t - 1$. By postponing sampling from K_t in Algorithm 1 until after the w^t_j are evaluated and particles are resampled
we obtain Algorithm 2. Algorithm 2 is the generic algorithm that is used as a basis for all the algorithms tailored to our examples.

The main advantage of SMC over MCMC is the facility of embarrassingly parallel computation; in the time consuming steps of the algorithm, i.e., weight calculation and jittering the particles via forward kernel, computation is performed independently for each particle allowing the particles to be split into batches for parallel, independent computation.

A potential problem that can break SMC is particle degeneracy. This term describes a state in which all but a few particles acquire small or zero resampling weights, W_j^t, and therefore few unique particles θ_j^t are resampled and filtered into the next step of the sequence. The distance between two consecutive distributions plays a role in particle degeneracy. When the difference between π_t and π_{t+1}, is small, there is little chance of filtering a large number of particles out via negligible values of W_j^t. As an additional fix to particle degeneracy, particles are jittered by the forward kernel, K_t, moving the particles under the current distribution. However, as sampling from K_t is typically performed by Metropolis-Hasting, an adequate acceptance rate is necessary to prevent particle degeneracy.

3 Filtering Sequences of Bridging Distributions

The key component of SMC is the filtering sequence of distributions through which the particles evolve towards the target distribution. The two main SMC filtering sequences of bridging distributions are based on gradually introducing the likelihood in the posterior. Starting from a sample generated from $\pi_0(\theta)$, for the vector of parameters, θ, parameter values are filtered into samples from the posterior distribution, $\pi_T(\theta) = \pi(\theta | y)$, with data, y. In the first approach, the posterior is the target distribution of interest and the likelihood is tempered with a sequence of temperature parameters, $0 = \tau_0 < \tau_1 < \ldots < \tau_T = 1$, giving rise to a power posterior,$
\pi_T(\theta) = \pi(\theta | y) \propto P(y | \theta)^\tau \pi_0(\theta)
$ (1)
and associated filtering sequence $\{\pi_t(\theta | y)\}_{t=0}^T$ for the SMC algorithm (Moral et al., 2006). The second likelihood induction method, often referred to as particle filtering, has a natural discretization where, in this case, the parameter defining the sequence, τ, is used to denote inclusion of the first τ elements of the data vector y. The t^{th} sequential distribution, where $0 = \tau_0 \leq \tau_1 \leq \ldots \leq \tau_T = N$ is given by:

$$\pi_t(\theta | y) \propto P(y_1, \ldots, y_{\tau_t} | \theta) \pi(\theta) = P(y_{\tau_t} | \theta) P(y_{\tau_t+1}, \ldots, y_{\tau_{t-1}} | \theta) \pi(\theta) \propto P(y_{\tau_t} | \theta) \pi_{\tau_{t-1}}(\theta | y).$$
(2)

This case works well for online estimation where data is available sequentially. The posterior defined by the inclusion of all of the current data becomes the prior for the next stage of the algorithm where more data becomes available. At each stage particles are moved towards the target posterior while the target itself shifts at the next stage due to the inclusion of new data (Doucet et al., 2001).

In order for us to be able to define suitable bridging distributions, the features of the target distribution that create challenges in sampling need to be investigated. We consider the case that imposition of a constraint on the model is the factor responsible for difficulties faced in sampling from the target distribution. The novelty of our approach is in the way that the sequence, $\{\tau_t\}_{t=0}^T$, is defined. The filtering sequence is constructed by relaxation of a constraint, either fully or partially, such that sampling is feasible. Suppose that τ is a tuning parameter that controls the rigidity of the constraint incorporated into the model. We define the t^{th} distribution in the sequence as

$$\pi_t(\theta) = \pi(\theta; \tau = \tau_t).$$

Suppose that by increasing τ the constraint is more strictly imposed and $\tau = \tau_T$ assures full imposition of the constraint. The filtering sequence is therefore determined by an increasing schedule over the constraint parameter, τ,

$$\tau_0 < \tau_1 < \ldots < \tau_T.$$
The proposed SCMC algorithm can be used as long as the strictness of the model constraints can be systematically increased to construct the filtering sequence. Defined with this sequence, the associated incremental weights w_t^j and backwards kernel $L_{t-1}(\theta_t, \theta_{t-1})$ used in Algorithms 1 and 2 ensure detailed balance is met and algorithmic convergence is subject to the usual SMC considerations (Moral et al, 2006). Note that the parametrization of the constraint is problem specific and in some cases the constraint is not explicitly defined in the model. In the examples that follow, the constraint is generally defined as the model feature that induces difficulty in sampling. We begin the examples with a toy problem involving a traditional monotonicity constraint, and then extend to more complex model adherence constraints to demonstrate the adaptation of SCMC in different frameworks.

4 Monotone Polynomial Regression

In this section we use the SCMC algorithm to model noisy observations from a monotone function. We fit a fixed order polynomial regression model to data generated from monotone increasing functions. While a rich literature exists on monotonicity constraint defines the filtering sequence of distributions, the posterior distribution in the unconstrained case $(\pi_t)_{t=0}^T$, $\pi_t \equiv \pi(\beta, \sigma^2 | X, y, \tau_t)$, with an increasing sequence of monotonicity parameters, $0 = \tau_0 < \tau_1 < \ldots < \tau_T \to \infty$. The incremental weights in the SCMC implementation of Algorithm 2 simplifies to

$$w_t^j = \frac{\prod_{i=1}^n \Phi \left(\tau_{i-1} \partial_x X \beta_{i-1} | x=x_i \right)}{\prod_{i=1}^n \Phi \left(\tau_i \partial_x X \beta_i | x=x_i \right)},$$

where the likelihood does not need to be evaluated in order to calculate the incremental weights.

With the choice of conjugate prior distributions, the posterior distribution in the unconstrained case ($\tau = 0$) can be obtained analytically (Box and Tiao, 1973) facilitating sampling from τ_0 at the first step of the algorithm.

The monotone polynomial regression described above is fitted to data generated from the following

The target posterior distribution given the data and the monotonicity constraint is given by

$$\pi \left(\beta, \sigma^2 | X, y, \frac{\partial X \beta}{\partial x} > 0 \right).$$

To sample from (3), we define a filtering sequence for the parametrization of the constraint that admits (3) as its limit. In this case, a probit function adds the monotonicity information to the posterior distribution (Riihimaki and Vehtari, 2010):

$$\pi (\beta, \sigma^2 | X, y, \tau) \propto \pi(\beta, \sigma^2) \mathcal{N}(y - X\beta; 0, \sigma^2 I) \prod_{i=1}^n \Phi \left(\tau \frac{\partial X \beta}{\partial x} | x=x_i \right),$$

where $\Phi(\cdot)$ is the standard normal cumulative distribution function. As $\tau \to \infty$, the term $\Phi \left(\tau \frac{\partial X \beta}{\partial x} | x=x_i \right)$ becomes an indicator function taking a value of 1 only if the derivative is positive at the observation point x_i. Positive values of the derivatives at a finite set of points does not guarantee monotonicity in general; however, since polynomials are smooth functions restricting the derivatives at the values of x to be positive will normally impose monotonicity as long as x is not too sparse. Consequently (4) converges to (3) as $\tau \to \infty$.

The above parametrization of the monotonicity constraint defines the filtering sequence of distributions, $(\pi_t)_{t=0}^T$,

$$\pi_t \equiv \pi(\beta, \sigma^2 | X, y, \tau_t),$$

with an increasing sequence of monotonicity parameters,

$$0 = \tau_0 < \tau_1 < \ldots < \tau_T \to \infty.$$
monotone functions with additive normal noise at a grid of size $n = 30$;

$$f_1(x) = 0.1 + 0.3x^3 + 0.5x^5 + 0.7x^7 + 0.9x^9,$$

$$f_2(x) = \log(20x + 1),$$

$$f_3(x) = \frac{2}{1 + \exp(-10x + 5)}.$$

Figure 1 shows the polynomial regression fits together with 95% pointwise credible intervals at three steps of the SCMC with monotonicity parameters, $\tau = 0$ (unconstrained polynomial regression), $\tau = 1$, and $\tau = 10^5$.

5 Differential Equation Models

Ordinary Differential Equation (ODE) models implicitly describe the rate of change of system states $x(\theta, \nu)$ with respect to time ν with the vector of parameters $\theta \in \Theta$:

$$\frac{dx(\theta, \nu)}{d\nu} = f(x(\theta, \nu), \theta). \tag{5}$$

Because they are mechanistic models built from a theoretical understanding of a system, ODEs have the ability to model complex phenomena using relatively few but highly interpretable parameters. The objective is to make inference about unknown parameters, θ, based on noisy observations, $y = (y_1, \ldots, y_n)^T$, that are available from the states (or a subset of them) at times, ν_1, \ldots, ν_n. Analytic solutions to (5) often do not exist, consequently a numerical solver must be used to obtain $x(\theta, \nu)$ for a given initial condition x_0. When the initial condition is unknown, it is appended to the vector θ with all other unknowns to estimate. The posterior of θ given the data is given by

$$\pi(\theta|y) \propto \pi_0(\theta) P(y|x(\theta, \nu), \theta), \tag{6}$$

where $\pi_0(\theta)$ is the prior and the likelihood, $P(y|x(\theta, \nu), \theta)$, is centered on $x(\theta, \nu)$ (Gelman et al., 1996). Small changes in parameters can lead to large changes in the dynamics described by the ODE. Consequently, multi-modality, ripples, ridges, and flat sections are common topological features of an ODE based likelihood (Campbell and Steele, 2011; Calderhead and Girolami, 2009), resulting in high rejection rates in random walk MCMC sampling schemes. Exacerbating the challenging topology, when parameters are a mixture of discrete and continuous variables, the high posterior density regions can become separated into multiple distant modes. To overcome topological difficulties, several groups have proposed model relaxation methods through the introduction of a smoothing based approximation $\hat{x}(\theta, \nu, b, \xi) \approx x(\theta, \nu)$ (Ramsay et al., 2007; Calderhead et al., 2009; Brunel, 2008; Liang and Wu, 2008; Campbell and Steele, 2011). The smoothing parameters b and ξ could represent the number of spline knots and penalty parameter, parameters related to kernel smoothing, or gaussian process parameters depending on the smoothing method employed. The resulting approximation replaces the likelihood in (6) with $P(y|x(\theta, \nu, b, \xi), \theta)$.

From a similar perspective, we consider dependence on $x(\theta, \nu)$ to be a model constraint and define the SCMC sequence using $\hat{x}(\theta, \nu, b, \xi)$ as a relaxation from the strict adherence to the model. Here, the model relaxation is performed through the inclusion of an additive residual fitting term defined by a kernel smoother whose role in the model diminishes gradually to facilitate filtering of the particles towards the target (6).

Specifically, we make the approximation in the likelihood of (6)

$$x(\theta, \nu) \approx \hat{x}(\theta, \nu, b, \xi) = x(\theta, \nu) + \xi e(\theta, \nu, b), \tag{7}$$

where $e(\theta, \nu, b) = K\left(y(\nu)-x(\theta, \nu)\right)$ is a model discrepancy term estimated by smoothing the residuals $y(\nu) - x(\theta, \nu)$ with a Nadaraya-Watson kernel $K(\cdot)$ with bandwidth b. The scalar weight ξ controls the contribution of the kernel smooth to the model.

As $b \to 0$, $\hat{x}(\theta, \nu, b, \xi)$ is a data interpolator able to completely absorb the discrepancy between $x(\theta, \nu)$ and $y(\nu)$ for $\theta \in \Theta$. In this case $P(y|x(\theta, \nu, b, \xi), \theta) = 1 \forall \theta \in \Theta$, eliminating any impact of the likelihood from the posterior. To sequentially enforce the model fidelity constraint, b increases from a small value while holding ξ fixed. As b becomes large enough to make the Kernel effectively uniform over the range of ν, the model (7) reduces to the ODE solution plus a constant, E, i.e.,

$$\lim_{b \to \infty} \hat{x}(\theta, \nu, b, \xi) = x(\theta, \nu) + \xi \lim_{b \to \infty} e(\theta, \nu, b) = x(\theta, \nu) + \xi E.$$

The coefficient ξ controls the impact of the additive discrepancy between the estimated states and the ODE solution:

$$\lim_{\xi \to 0} \hat{x}(\theta, \nu, b, \xi) = x(\theta, \nu) + \lim_{\xi \to 0} \xi E = x(\theta, \nu).$$
In this model, the SCMC algorithm defines a sequence of models initially corresponding to an increasing schedule over the bandwidth parameter, b, while ξ is held fixed at 1. The constraint enforcement continues with a decreasing schedule over ξ, with b held fixed at its large value. That is, the t^{th} distribution in the filtering sequence is given by

$$
\pi_t \propto \pi_0(\theta) P(y|\mathbf{x}(\theta, \nu, b_t, \xi_t), \theta).
$$

for

$$
0 = b_0 < b_1 < \ldots < b_T = b_{T+1} = \ldots = b_T,
$$
and

$$
1 = \xi_0 = \xi_1 = \ldots = \xi_t > \xi_{t+1} > \ldots > \xi_T = 0.
$$

5.1 Epidemiological ODE Model

We illustrate SCMC using (8) on a Susceptible-Infected-Removed (SIR) epidemiological model for deaths due to the black plague. During the black plague epidemic of 1666, the village of Eyam, UK, chose to quarantine themselves to avoid spreading the disease to neighboring villages. As the plague swept through Eyam, the grave digger kept records of all those who perished during the outbreak. Restricting ourselves to the second outbreak of the plague from June 19, 1666 to November 1, 1666, we partition the population of fixed size $N = 261$ at time ν into groups of Susceptible $S(\nu)$, Infected, $I(\nu)$, and Removed, $R(\nu)$ (Raggett, 1982; Campbell and Lele, 2013). Because there is no recovery from the plague, $R(\nu)$ corresponds to the number of deaths up to time ν. The epidemiological model for the rates of change of states $S(\nu), I(\nu)$ and $R(\nu)$ is given by:

$$
\frac{dS(\nu)}{dt} = -\beta S(\nu) I(\nu),
$$

$$
\frac{dI(\nu)}{dt} = \beta S(\nu) I(\nu) - \alpha I(\nu),
$$

$$
\frac{dR(\nu)}{dt} = \alpha I(\nu),
$$

5.1 Epidemiological ODE Model

We illustrate SCMC using (8) on a Susceptible-Infected-Removed (SIR) epidemiological model for
where β describes the plague transmissivity and α describes the rate of death once an individual is infected. More complex models have been considered elsewhere including vectors for disease transmission (See for example Massad et al, 2004), but the limitations of the Eyam dataset do not support parameter estimation for more complex models.

At time 0 the population only consists of susceptible and infectious individuals therefore we have, $R(0) = 0$ and $S(0) = N - I(0)$. Consequently $I_0 = I(0)$ is included in the vector of parameters to estimate: $\theta = (\alpha, \beta, I_0)$.

Based on a closed population of size N, the likelihood for the $n = 136$ observed cumulative deaths $y(\nu)$ at times $\{\nu_1, \ldots, \nu_n\}$ are modelled as a binomial with expected value equal to the solution to $R(\theta, \nu)$ from (9):

$$P(y | R(\theta, \nu)) = \prod_{i=1}^{n} \left(\frac{N}{y_i} \left(\frac{R(\theta, \nu_i)}{N} \right)^{y_i} \times \left(1 - \frac{R(\theta, \nu_i)}{N} \right)^{(N-y_i)} \right).$$

To evaluate the likelihood for θ using (7) we first solve the ODE numerically to obtain $R(\theta, \nu)$, and then apply the kernel smoother to $y(\nu) - R(\theta, \nu)$.

Prior distributions for α and β were chosen to be gamma (1,1). The prior distribution for I_0 was chosen to be a binomial($N, 5/N$). Having both discrete and continuous parameters in the model compounds the difficulty of sampling from the posterior; MCMC can easily get trapped in local modes for α and β corresponding to discrete values of I_0. The challenge of multi-modality is overcome by sequential enforcement of the model constraint.

Figures 2a, 2b and 2c present the marginal posterior of (8) for α and β for three increasing values of b, while holding $\xi = 1$ fixed. The parameter densities are distributed in the shape of a boomerang in Figure 2b. The lower part of the boomerang refers to parameter values whose corresponding states are non-smooth and deviate from the ODE solution in such a way that can be sufficiently accommodated by the smoother. By increasing b, the smoother reduces to a constant and the corresponding particles are filtered out.

Figures 2d, 2e and 2f show the joint posterior samples holding $b = 26$ fixed and decreasing $\xi \to 0$. Figure 3 shows the posterior sample for the final step of the algorithm based on (6) after fully enforcing the model and rescaling axes for better visualization. The three large clouds of parameter values represent the posterior modes that refer to $I_0 = 6$, $I_0 = 5$ and $I_0 = 4$ from left to right, respectively. The marginal and bivariate joint posterior distributions are illustrated in Figure 4 highlighting the multimodality and topological challenges of the model.

A sample of 100 fits to the data is given in Figure 5 based on the posterior at early ($b = 2$ and $\xi = 1$), intermediate ($b = 26$ and $\xi = 1$), and final ($b = 26$ and $\xi = 0$) steps of filtering schedule. Although the fits to the data are quite similar in the panels of Figure 5, they correspond to extreme differences in $\pi_t(\theta | y)$ as seen in Figure 2.
Fig. 2: The SIR model: evolution of the posterior as a result of increasing the bandwidth, \(b \), (a-c), and decreasing the coefficient, \(\xi \), (d-f).

6 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is used for inference in cases where the likelihood is intractable or expensive to evaluate but simulated data can be easily generated from the model (Tavare et al., 1997). For a given set of parameters \(\theta \), simulated data, \(z \), is generated and an approximation to the posterior is constructed by replacing the likelihood with an indicator function \(\mathbb{1}_A(z) \) over the matching set, \(A \), comparing \(y \) and the \(\theta \) generated \(z \) in the ABC posterior:

\[
\pi_A(\theta, z|y) = \frac{\pi(\theta) P(z|\theta) \mathbb{1}_A(z)}{\int_{A} \pi(\theta) P(z|\theta) \, dz}.
\] (10)

The matching criteria defining \(A \) is a measure of similarity between the summary statistics, \(s(\cdot) \), of the simulated and observed data. The approximation error of ABC depends on this matching criteria and is reduced to zero if \(s(\cdot) \) is sufficient for \(\theta \) and \(A \) is defined based on an exact match, i.e.

\[
A = \{ z \mid s(z) = s(y) \}.
\]

For continuous data \(P(z \in A) = 0 \), consequently, a distance metric \(\rho(\cdot, \cdot) \) and tolerance level \(\epsilon > 0 \) are introduced to reduce the ABC approximation error giving the matching criteria:

\[
A = \{ z \mid \rho(s(z), s(y)) < \epsilon \}.
\] (11)

In practice, (even for discrete data where an exact match is possible) non-trivial sufficient statistics are rarely known. Instead, an “approximately sufficient” set is used for \(s(\cdot) \). Selection of a most informative subset of summary statistics has been explored in the literature; Joyce and Marjoram (2008) consider sequential addition of summary statistics where the effectiveness of addition of a new summary statistic is tested using a likelihood ratio test. Some drawbacks of their method are discussed in Marin et al. (2012). Ratman et al. (2009) considers a similar approach; they assess the sensitivity of summaries to change in the model parameters by measuring the derivative of their expectations with respect to the corresponding parameters. Summaries with smaller variance and higher sensitivity to parameter changes are preferable choices as they are more informative and hence bring \(s(\cdot) \) closer to sufficient statistics.

When a collection of candidate summary statistics are available for \(s(\cdot) \), a safe strategy to reduce the approximation error is to use the entire collection in (11), since including more summary statistics should make \(s(\cdot) \) closer to the sufficient statistics. However this comes with a computational trade off and makes the matching criteria more difficult to apply.

In the simplest version of the ABC algorithm, parameter values, \(\theta^* \), are generated from the prior. If the associated simulated data \(z \in A \), \(\theta^* \) is accepted as a sample value from the posterior and it
is otherwise rejected. Note that this can be deeply inefficient for diffuse prior distributions. SMC ABC algorithms define bridging distributions of ϵ (see for example, Sisson et al, 2009; Beaumont et al, 2009; Moral et al, 2009). While decreasing ϵ is one way of increasing the strictness of a model constraint and therefore fits into the SCMC framework, in this section we showcase the flexibility of using a constraint based algorithm by developing an alternative strategy. Here, an alternative definition of sequentially increasing the model adherence constraint is developed through the iterative addition of summary statistics to the matching criteria. Suppose that $s(\cdot) = (s_1(\cdot), \ldots, s_T(\cdot))^T$ is the collection of available summary statistics. The target posterior is one that corresponds to a matching criteria that uses the entire collection of T summary statistics. An approximate posterior with a smaller set of summary statistics is likely to be more diffuse over the parameter space and therefore easier to sample. The sequence of approximate posterior distributions, $\{\pi_{A_t}\}_{t=1}^T$, is defined based on a decreasing sequence of acceptance sets, $A_1 \supseteq A_2 \supseteq \ldots \supseteq A_T$, where

$$A_t = \{z | \rho (s_1 (z) , s_1 (y)) < \epsilon_1, \ldots, \rho (s_T (z) , s_T (y)) < \epsilon_T \}.$$

The constraint parameter in this case is the number of summary statistics included up to stage $t \in \{0, 1, \ldots, T\}$. The filtering sequence of posteriors defined by adherence to additional summary statistics results in sequentially constraining the posterior. At each iteration the bridging distribution will move θ closer to the target posterior. The exception to this sequential constraining is if the newly included summary statistic is based on redundant information already contained in the set of summaries, in which case the bridging distribution will remain unaffected at its inclusion.

Algorithm 3 outlines the SCMC ABC algorithm that generates parameter values according to a sequence of approximate posterior distributions constructed as described above. In the following section, Algorithm 3 is used for parameter estimation.
Algorithm 3 SCMC ABC

Input: Sequence of matching criteria \(\{ A_i \}_{i=1}^T \)
MCMC transition kernels \(K_t \).

1: Generate a sample from \(\pi_{A_i}(\theta, Z|y) \):
 \(i \leftarrow 0 \)
 while \(i < N \) do
 generate \(\theta \sim \pi(\theta) \)
 generate \(Z = (z_1, \ldots, z_M) \)
 \(w \leftarrow \sum_{k=1}^M I_{A_i}(z_k) \)
 if \(w > 0 \) then
 \(\theta^{(i+1)}, Z^{(i)}, w^{(i)} \leftarrow (\theta, Z, w) \)
 end if
 end while
 Resample \(\theta^{1:N}, Z^{1:N} \) with weights \(w^{1:N} \) and \(w^{1:N} \leftarrow \frac{1}{N} \)
2: for \(t = 2, \ldots, T \) do
 \(\theta^{1:N}, Z^{1:N} \leftarrow \theta^{(t-1:N), Z^{(t-1:N)}}, w^{(t-1)} \leftarrow \sum_{s=1}^{t-1} (z_{i,s}^{(t-1)}), \sum_{s=1}^{t-1} \)
 resample \(\theta^{1:N}, Z^{1:N} \) with weights \(w^{1:N} \) and \(w^{1:N} \leftarrow \frac{1}{N} \)
 Sample \(\theta^{1:N} \sim K_t \)
3: end for
Return: Particles \(\theta^{1:N}_T \).

from a chaotic dynamical model to illustrate the effectiveness of the algorithm.

6.1 Chaotic Stochastic Model

Likelihood-based inference breaks down for chaotic dynamics since small changes in the system parameters produce large changes in the system states later in time producing likelihoods which do not depend smoothly on the parameters (Berliner 1991). An alternative, Wood (2010) propose an ABC related synthetic likelihood method based on a set of summary statistics that captures the important dynamics in the data rather than the noise-driven detail. Using the Ricker map chaotic ecological model (Turchin, 2003; Wood, 2010), and some of our summary statistics from Wood (2010), we employ the SCMC ABC algorithm, described above, to make inference about the model parameters.

The scaled Ricker map describes the dynamics of a discrete population, \(N_\nu \), over time as,
\[
N_{\nu+1} = r N_\nu \exp \left(-N_\nu + e_\nu \right),
\]
where \(e_\nu \) are independent normal errors with mean zero and variance, \(\sigma^2_\nu \), that represent the process noise, and \(r \) is the growth rate parameter. The data are the outcome of a Poisson distribution observed at \(n = 50 \) time steps,
\[
y \sim \text{Poisson}(\phi N_\nu),
\]
where \(\phi \) is a scaling parameter. The vector of parameters that inference is made about is given by \(\theta = (r, \sigma^2_\nu, \phi)^T \). The likelihood, \(P(y|\theta) \), is obtained by integrating over \(e_\nu \), and is therefore analytically and numerically intractable (Davison, 2003), thereby, raising the demand for a likelihood-free approach. The summary statistics used in the SCMC ABC algorithm are,
\[
s = \{ \text{med}(y), \frac{1}{n} \sum_{i=1}^n y_i, \frac{1}{n} \sum_{i=1}^n y_i \}, \quad \sum_{i=1}^n \| y_i \| (1, \infty), \quad \sum_{i=1}^n \| y_i \| (1, \infty)
\]
where \(\text{med}(y) \) is the median and \(Q_{0.75}(y) \) is the 75% quantile. The distance measure used is
\[
\rho(s(z), s(y)) = |s(z) - s(y)|.
\]
The corresponding vector of tolerances used were chosen as 1% quantiles of the distribution of the deviations \(\rho(s(z), s(y)) \) that were estimated by simulation; \(\epsilon = (1, 1.88, 6.25, 1, 2, 10, 35) \).

Algorithm 3 is used to sample from the joint posterior based on data simulated from \(\theta = (\exp(3.8), 10, 0.09) \) as per Wood (2010). The prior distributions are defined independently over the components of \(\theta \) as a log-Gaussian distribution over \(r \) with mean 4 and variance 1, a chi-squared distribution with 10 degrees of freedom for \(\phi \) and an inverse gamma distributions with shape parameter 3 and scale parameter 0.5 for \(\sigma^2_\nu \). Sampling \(\theta^{1:N}_t \) from \(K_t \) was performed through a Metropolis Hastings step using a \(\chi^2 \) transition density. The number of summary statistics determines the number of steps taken in the SCMC ABC algorithm since we enter only one summary statistic at each time step, i.e., \(T = 7 \). The results are presented in Figure 6 as kernel density estimates of the approximate marginal posteriors at the seven time steps and in Figure 7 as the marginal posterior boxplots together with the true parameter values. The transition of the particles towards high probability regions and therefore focusing about the true value by addition of more summary statistics is evident from the plots.

With any ABC analysis, the quality of the parameter estimates depend primarily on the ability of \(s \) to summarize the important features of the data and the model. When using Algorithm 3, the specific order of inclusion of those summaries into \(A_t \) can make the algorithm easier or harder to apply due to its potential for particle degeneracy. If
Fig. 6: The Ricker model- kernel density estimates of the approximate marginal posteriors at times, \(t = 0, 1, \ldots, T \), the color of the curves grows darker with time; the dashed, light gray curve is the prior density. The vertical lines are drawn at the true values of the parameters.

Fig. 7: The Ricker model- approximate posterior boxplots evolving by sequential addition of summary statistics; the horizontal line is drawn at the true values of the parameters

addition of \(s_t(\cdot) \) to \(A_t \) induces a significant shift to the posterior, few or no particles remain with positive weights. Figure 7 showcases the occasionally dramatic impact of summary inclusions and therefore the potential for large proportions of near zero resampling weights.

Setting the order of summary statistic inclusions can be done by maximizing the correlation between the summary statistics and/or pilot runs. In cases of severe particle degeneracy, inclusion of summary statistics may need to be combined with a decreasing schedule for \(\epsilon \) to control the effective sample size in practice. However, in this example no manipulations of order or \(\epsilon \) were necessary.

7 Discussion

This paper introduces a sequential constraint based approach to defining the filtering sequence of bridging distributions in SMC where part of the novelty of the algorithm is in facilitating posterior sampling through flexible definitions of constraints. While some constraints have clear and interpretable impacts on the parameter space, such as parameter inequalities, model constraints often can not be readily transformed into constraints on the parameter space. Consequently imposition of the constraint produces potentially serious challenges in posterior sampling. In this paper we have proposed a new variant of the SMC samplers that can be used in the case that imposition of a constraint creates challenges in sampling from the target distribution. By defining the filtering sequence of distributions using the specific parametrization of the constraints in each case we sequentially increase the rigidity of the constraint and through weighting, resampling and sampling steps obtain a sample from the fully constrained target distribution. Just as there is no single optimization algorithm which will out-perform all other optimizers (Wolpert and Macready, 1997), there is no single optimal strategy that will outperform all others for posterior sampling in all cases. Consequently, recent methodological literature has begun to focus on application specific adaptations of algorithms.

SCMC expands the SMC framework for such application specific sampling modifications.

Our three examples illustrate the variety of frameworks in which the SCMC algorithm can be used. This wide scope of application is due to our broad interpretation of constraints; any restriction over the parameter space or the model that could be imposed through a number of intermediate steps can be assembled in the SCMC to provide the means of efficient posterior sampling. Consequently the SCMC approach provides a non-unique path between the prior and posterior due to a non-unique set of constraints for any problem. In Section 4 the path was defined so as to make use of the simplicity of sampling from the unconstrained regression model. In Section 5 a model relaxation constraint was introduced to simplify the topological difficulties associated with ODE models. Some of the challenges of this section were due to the mixture of discrete and continuous parameters. Consequently, alternative constraint strategies include relaxing the discrete nature of \(I(0) \), or using an alternative smoothing based analogue.
to the smooth functional tempering approach of Campbell and Steele (2011). Our model relaxation technique was chosen due to the computational speed of the kernel smoothing step and obtaining the numerical solution to the ODE. In Section 6, the SCMC was defined based on constraining parameters to meet an increasing set of summary statistic based criteria, but one could similarly define a strategy based on increasing the strictness of meeting all summaries at once through a decreasing set of ϵ. While both of these strategies hold advantages, one may prefer to choose a hybrid approach simultaneously adding new summaries and decreasing ϵ for previously included summaries.

References

Beaumont M, Cornuet JM, Marin JM, Robert C (2009) Adaptive approximate bayesian computation. Biometrika 96:983–990
Berliner LM (1991) Likelihood and bayesian prediction of chaotic systems. Journal of the American Statistical Association 86(416):938–952
Box GEP, Tiao GC (1973) Bayesian Inference in Statistical Analysis. Wiley
Brunel NJ (2008) Parameter estimation of odes via nonparametric estimators. Electronic Journal of Statistics
Calderhead B, Girolami M (2009) Estimating bayes factors via thermodynamic integration and population mcmc. Computational Statistics and Data Analysis 53:4028–4045
Calderhead B, Girolami M, Lawrence N (2009) Accelerating bayesian inference over nonlinear differential equations with gaussian processes. Advances in Neural Information Processing Systems
Campbell D, Steele RJ (2011) Smooth functional tempering for nonlinear differential equation models. Statistics and Computing DOI 10.1007/s11222-011-9234-3
Campbell DA, Lele S (2013) An anova test for parameter estimability using data cloning with application to statistical inference for dynamic systems. Computational Statistics and Data Analysis http://dx.doi.org/10.1016/j.csda.2013.09.013
Davison AC (2003) Statistical Models. 94-160, 456-458, 605-619, Cambridge University Press
Dette H, N N, Pilz KF (2006) A simple nonparametric estimator of a strictly monotone regression function. Bernoulli 12:469–490
Doucet A, De Freitas N, Gordon N (eds) (2001) Sequential Monte Carlo Methods in Practice. Springer-Verlag
Gelman A, Bois FY, Jiang J (1996) Physiological pharmacokinetic analysis using population modeling and informative prior distributions. Journal of the American Statistical Association 91(436):1400–1412
He X, Shi P (1998) Monotone b-spline smoothing. Journal of the American Statistical Association 93:643–650
Joyce P, Marjoram P (2008) Approximately sufficient statistics and bayesian computation. Statistical Applications in Genetics and Molecular Biology 7
Liang H, Wu H (2008) Parameter estimation for differential equation models using a framework of measurement error in regression models. Journal of the American Statistical Association 103
Marin JM, Pudlo P, Robert CP, Ryder RJ (2012) Approximate bayesian computational methods. Statistics and Computing 22:1167–1180
Massad E, Coutinho F, Burattini M, Lopez L (2004) The eyam plague revisited: did the village isolation change transmission from fleas to pulmonary? Med Hypotheses 63:911915
Moral P, Doucet A, Jasra A (2006) Sequential monte carlo samplers. J R Statist Soc B 68:411436
Moral P, Doucet A, Jasra A (2009) An adaptive sequential monte carlo method for approximate bayesian computation. Tech. rep., University of British Columbia
Raggett GF (1982) Modelling the eyam plague. Institute of Mathematics and its Applications 18:221–226
Ramsay J, Hooker G, Cao J (2007) Parameter estimation for differential equations: a generalized smoothing approach. Journal of the Royal Statistical Society B 69
Ramsay JO (1998) Estimating smooth monotone functions. Journal of the Royal Statistical Society Series B 60:365–375
Ratman nO, Andrieu C, Wiuf C, Richardson S (2009) Model criticism based on likelihood-free inference, with an application to protein network evolution. Proceedings of the National Academy of Sciences of the United States of America 106:10,576–10,581
Riihimaki J, Vehtari A (2010) Gaussian processes with monotonicity information. Journal of Machine Learning Research: Proceedings of the Thirteenth International Conference on Artifi-
Sisson SA, Fan Y, Tanaka M (2009) Sequential monte carlo without likelihoods. Errata Proceedings of the National Academy of Sciences 106:16889

Tavare S, Balding DJ, R C Griffiths JRC, Donnelly P (1997) Inferring coalescence times from dna sequence data. Genetics 145:505–518

Turchin P (2003) Complex Population Dynamics. 8-11, 47-77, Princeton University Press

Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. Evolutionary Computation, IEEE Transactions on 1(1):67–82

Wood SN (2010) Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466:1102–1104