Finding Roots of Nonlinear Equation for Optoelectronic Device

Mohammed Rasheed¹,*, Suha Shihab¹, Osama Alabdali², Ahmed Rashid³ and Taha Rashid³, 4

¹Applied Sciences Department, University of Technology, Baghdad, Iraq
²College of Education for Pure Sciences, University Of Anbar, Al-Anbar, Iraq
³Al Iraqia University, College of Arts, Baghdad Iraq
⁴Computer and Microelectronics System, Faculty of Engineering, University Technology Malaysia (UTM), Skudai 81310, Johor Bahru, Malaysia

E-mail: rasheed.mohammed40@yahoo.com, mohammed.s.rasheed@uotechnology.edu.iq

Abstract. New three iterative methods in order to solve non-linear problems for PV cell equations with various data of R (load resistance) have been investigated. A series of hybrid algorithms Newton's, Predictor-Corrector Type (A1), Predictor-Corrector Type (A2) and Dekker's are implemented to obtain approximate solutions for non-linear functions. The purpose of the present paper is to analysis on numerical comparison between the standard Newton's algorithm with A1, A2 and DM algorithms. It is evidenced that these methods have nearly eight computations while; the proposed method has six computations per iteration. The Numerical and illustrative results reveal that the new suggested technique (DM) is more accurate, least iterations for convergence than other numerical methods and a computational Matlab 18a is used for this paper.

Keywords: Dekker's Formula; Predictor-Corrector Type (A2); Predictor-Corrector Type (A1); f(x) = 0; absolute error; roots of the equation

1. Introduction
Two, three and multipoint iterative methods for solving nonlinear equations are of good practical importance. Some of these iterative methods require second order derivative of the function while some of them need only first order of derivative of the function. The zeros of the function f(x) are defined as the values for which the value of the function becomes equal to zero. Finding the roots of f(x) means solving the equation f(x) = 0. For a large number of problems it is not possible to find exact values for the roots of the function so we have to find the approximations instead. In order to know the advantages and disadvantages of an iterative method, the error deceases rapidly with each iteration, the speed of an iterative method after comparison with other method, the convergence of the iterative method is very important. Recently, several researchers has been expressed that the iterative methods can be employ to betterment some iterative techniques in order to solve nonlinear examples in variant areas such as pure and science and engineering [1-15].
This paper presents four hybrids numerical iterative Newton's, Predictor-Corrector Type (A1), Predictor-Corrector Type (A2) and Dekker's formulas concepts in order to generate faster and more accurate technique for solving the zeros of non-linear functions have been demonstrated here. The following steps are demonstrate the procedure of the present work: section two, three, four and five investigating the analytical model and the root finding of Newton's, Predictor-Corrector Type (A1), Predictor-Corrector Type (A2) and Dekker's formulas. Section six and seven show numerical problems, discussion and conclusion.

2. Single-Diode PV Cell Modeling

The KCL Kirchhoff's law is applied on the electrical circuit of PV cell-single-diode scheme [15-58]

\[I = I_{ph} - I_D \] \hspace{1cm} \text{where} \hspace{1cm} \begin{aligned} I_D &= I_0 \left(e^{-\frac{V_{pv}}{kT}} - 1 \right), \\
V_T &= \frac{kT}{q} = 27.5 \text{ mV}, \hspace{0.5cm} k = 1.38 \times 10^{-23} \text{J/K} = \text{Boltzmann constant}, \hspace{0.5cm} I_0 = \text{reverse saturation current of the diode} = 10^{-12} \text{A}, \hspace{0.5cm} I_{ph} = \text{the photocurrent}, \hspace{0.5cm} m \text{ values is between 1 to 2 indicate the recombination factor}, \hspace{0.5cm} T = p - n \text{ junction temperature}, \hspace{0.5cm} q = 1.6 \times 10^{-19} \text{ C} = \text{electron charge}.
\]

\[I_{ph} = I_{source}, \hspace{0.5cm} I_D = I_s \left(e^{-\frac{V_D}{nVT}} - 1 \right) \]

Substitute the value of \(I \), yield

\[I_{source} = 10^{-12} \left(e^{-\frac{V}{1.3+0.026}} - 1 \right) = \frac{V}{R} \]

\[I_{pv} = \frac{V_{pv}}{R}; \hspace{0.5cm} P_{pv} = I_{pv} \times V_{pv} \]

3. Predictor-Corrector Type (A1)

Step 1: assume the initial value as \(A_0 \)

Step 2: calculate \(A_{n+1} \) (approximate solution) by the iterative scheme

\[A_{n+1} = A_n - \frac{f(A_n)}{f'(A_n)} \]

\[A_{n+1} = A_n - \frac{6 \times f(A_n)}{f(A_n) + 4 \times f(A_{n+1}) + f(A_{n+1})}, \hspace{0.5cm} n = 0, 1, 2, 3, ... \]

Step 3: If \(|A_{n+1} - A_n| < \varepsilon, |f(A_n)| < \varepsilon, \varepsilon = 10^{-9} \) as a tolerance; stop else go to Step 1.

4. Predictor-Corrector Type (A2)

Step 1: Let \(A_0 \) is a given initial value.

Step 2: calculate \(A_{n+1} \) by the iterations

\[A_{n+1} = A_n - \frac{6 \times f(A_n) \times f(A_{n+1})}{2 \times (f(A_n))^2 - f(A_{n+1}) \times f(A_n)} \]

Step 3: calculate

\[A_{n+1} = A_n - \frac{6 \times f(A_n)}{f(A_n) + 4 \times f(A_{n+1}) + f(A_{n+1})}, \hspace{0.5cm} n = 0, 1, 2, 3, ... \]

Step 4: If \(|A_{n+1} - A_n| < \varepsilon, |f(A_n)| < \varepsilon, \varepsilon = 10^{-9} \) as a tolerance; stop else go to Step 1.
5. Dekker’s Formula (DM)

This method obtain when we combine the Bisection and Secant Methods achieved by Dekker in 1969.

Step 1: The first one called linear interpolation secant method using the following formula

\[
y_{n+1} = \begin{cases}
 y_n - \frac{y_n - y_{n-1}}{f(y_n) - f(y_{n-1})} f(y_n) & \text{if } f(y_{n-1}) \neq f(y_n) \\
 m & \text{otherwise}
\end{cases}
\]

(7)

Step 2: the second one can be obtained by bisection method

\[
m = \frac{a_n + b_n}{2}
\]

(8)

Step 3: If \(|f(a_n)| \geq |f(b_n)|, |f(x_n)| < \varepsilon, \varepsilon = 10^{-9}\) as a tolerance; stop else go to Step 1.

where: \(a_n\) the "contrapoint" this means that \(f(a_n)\) and \(f(b_n)\) have opposite signs, so the interval \([a_n, b_n]\) consist of the solution.

6. Numerical Examples with Results and Discussion

The same initial value \(v_0 = 1\) is utilized for four algorithms in order to obtain the roots of Eq. 1 (non-linear formula) are obtained by means of Newton’s method (NRM), Predictor-Corrector Type (A1), Predictor-Corrector Type (A2) and Dekker’s Formula (DM) by Eqns. 3, 4, 6 and 7 with predict guess. The approximate solutions produced by these four techniques, five various numerical experiments are utilized based on Eq. 1 which are depending on the resistance values (load resistance) differs from 1 to 5 ohm.

Tables and Figs. 1 to 5 show that DM algorithm need 6 iterations while NRM, A1 and A2 need 9, 8 and 8 iterations respectively in order to reach to the convergence which proves that DM is faster than the other algorithms.

Iterations	\(V_{pv}\)-NRM	\(I_{pv}\)-NRM	\(P_{pv}\)-A1	\(V_{pv}\)-A1	\(I_{pv}\)-A1	\(P_{pv}\)-A1
1	1	1	0.956353318	0.956353318	0.914611669	
2	0.971416861	0.971416861	0.943650719	0.935681181	0.875499273	
3	0.946732606	0.946732606	0.896302627	0.924882295	0.85540726	
4	0.929865706	0.929865706	0.864650231	0.922517684	0.851038878	
5	0.923247893	0.923247893	0.852386673	0.922423278	0.850864704	
6	0.9224346	0.9224346	0.850844484	0.922423135	0.850864439	
7	0.922423135	0.922423135	0.850864443	0.922423135	0.850864439	
8	0.922423135	0.922423135	0.850864439	0.922423135	0.850864439	

Iterations	\(V_{pv}\)-A2	\(I_{pv}\)-A2	\(P_{pv}\)-A2	\(V_{pv}\)-DM	\(I_{pv}\)-DM	\(P_{pv}\)-DM
1	0.909061968	0.909061968	0.826393662	0.924812944	0.924812944	0.85527898
2	0.912675411	0.912675411	0.832976406	0.922746426	0.922746426	0.851460967
3	0.920491417	0.920491417	0.847304449	0.922425145	0.922425145	0.850868148
4	0.92259246	0.92259246	0.850746579	0.922423135	0.922423135	0.85086439
5	0.922423038	0.922423038	0.850864262	0.922423135	0.922423135	0.85086439
6	0.922423135	0.922423135	0.850864439	0.922423135	0.922423135	0.85086439
7	0.922423135	0.922423135	0.850864439	0.922423135	0.922423135	0.85086439
Iterations	ε-NRM	ε-A1	ε-A2	ε-DM		
------------	-------------------------	-----------------------	------------------------	-------------------------		
1	0.077576865	0.033930183	0.013361166	0.002389809		
2	0.048993727	0.013258047	0.009747723	0.000323292		
3	0.024309472	0.002459161	0.001931717	2.01066E-06		
4	0.007442571	9.45499E-05	6.38884E-05	9.90161E-11		
5	0.000824759	0.922423278	9.61287E-08	0		
6	1.08655E-05	3.33067E-13	2.23932E-13	0		
7	1.9025E-09	0	0	0		
8	1.11022E-16			0		
9				0		

Figure 1. The approximated roots using Newton’s method (NRM), Predictor-Corrector Type (A1), Predictor-Corrector Type (A2), Dekker’s Formula (DM) via initial value, number of iterations needed to converge and load resistance $R = 1$.
Table 2. The iteration scheme of the A1, A2 and DM methods with starting value \(v_0=1\).

Iterations	\(V_pv\)-NRM	\(l_{pv}\)-NRM	\(P_{pv}\)-A1	\(V_{pv}\)-A1	\(l_{pv}\)-A1	\(P_{pv}\)-A1
1	0.971030472	0.485515236	0.471450089	0.93345809	0.466729045	0.435672003
2	0.945421967	0.472710983	0.446911348	0.920709796	0.460354898	0.423853264
3	0.926834477	0.463417238	0.429511073	0.917245217	0.458622609	0.420669394
4	0.918438746	0.459219373	0.421764865	0.917036095	0.458518047	0.4204776
5	0.917066885	0.458533442	0.420505836	0.917035382	0.458517691	0.420476946
6	0.917035399	0.458517699	0.420476961	0.917035382	0.458517691	0.420476946
7	0.917035382	0.458517691	0.420476946	0.917035382	0.458517691	0.420476946

Iterations	\(V_{pv}\)-A2	\(l_{pv}\)-A2	\(P_{pv}\)-A2	\(V_{pv}\)-DM	\(l_{pv}\)-DM	\(P_{pv}\)-DM
1	0.904579258	0.452289629	0.409131817	0.919679286	0.459839643	0.429204994
2	0.905657295	0.452828647	0.410107568	0.917632869	0.458816434	0.421025041
3	0.914052791	0.457026396	0.417746253	0.917042599	0.458521299	0.420483564
4	0.916889024	0.458444512	0.420342741	0.917035384	0.458517692	0.420476947
5	0.917034902	0.458517451	0.420476505	0.917035382	0.458517691	0.420476946
6	0.917035382	0.458517691	0.420476946	0.917035382	0.458517691	0.420476946
7	0.917035382	0.458517691	0.420476946	0.917035382	0.458517691	0.420476946

Iterations	\(\varepsilon\)-NRM	\(\varepsilon\)-A1	\(\varepsilon\)-A2	\(\varepsilon\)-DM
1	0.082964618	0.038485631	0.012456124	0.002643903
2	0.05399509	0.016422708	0.011378087	0.000597487
3	0.028386584	0.003674413	0.002982591	7.21624E-06
4	0.009799094	0.0002982591	0.000146358	1.14432E-09
5	0.001403363	0.917036095	4.80851E-07	0
6	3.15024E-05	8.24774E-12	5.61473E-12	5.61473E-12
7	1.61176E-08	0	0	0
8	4.21885E-15			0
9				0
Figure 2. The approximated roots using Newton's method (NRM), Predictor-Corrector Type (A1), Predictor-Corrector Type (A2), Dekker's Formula (DM) via initial value, number of iterations needed to converge and load resistance $R = 2$.

Table 3. The iteration scheme of the A1, A2 and DM methods with starting value $v_0 = 1$.

Iterations	V_{pu}-A2	I_{pu}-A2	P_{pu}-A2	V_{pu}-A1	I_{pu}-A1	P_{pu}-A1
1	0.899816691	0.299938897	0.269890026	0.91301331	0.30437777	0.277864435
2	0.897407275	0.299135758	0.268446606	0.911519924	0.30389975	0.27695619
3	0.905697121	0.30189904	0.273429092	0.910432146	0.30347782	0.27695564
4	0.910042334	0.30347791	0.276278101	0.910403374	0.30347791	0.276278101
5	0.91040374	0.30347791	0.276278101	0.910403374	0.30347791	0.276278101
6	0.91040374	0.30347791	0.276278101	0.910403374	0.30347791	0.276278101
7	0.91040374	0.30347791	0.276278101	0.910403374	0.30347791	0.276278101
8	0.91040374	0.30347791	0.276278101	0.910403374	0.30347791	0.276278101
9	0.91040374	0.30347791	0.276278101	0.910403374	0.30347791	0.276278101
Iterations	ε-NRM	ε-A1	ε-A2	ε-DM		
------------	----------------------	---------------------	---------------------	------------------		
1	0.089596626	0.044277164	0.010586683	0.002609936		
2	0.060240418	0.020734471	0.012996099	0.00111655		
3	0.033680858	0.005648808	0.004706253	2.87722E-05		
4	0.013190869	0.000490459	0.00036104	1.60093E-08		
5	0.002474466	0.910407299	2.69045E-06	0		
6	9.7883E-05	2.53289E-10	1.75739E-10			
7	1.57417E-07	0	0			
8	4.07563E-13					
9	9.78883E-05	0.044277164	0.010586683	0.002609936		

Figure 3. The approximated roots using Newton's method (NRM), Predictor-Corrector Type (A1), Predictor-Corrector Type (A2), Dekker's Formula (DM) via initial value, number of iterations needed to converge and load resistance $R = 3$.
Table 4. The iteration scheme of the A1, A2 and DM methods with starting value \(v_0 = 1 \).

Iterations	\(V_{pv} \)-NRM	\(I_{pv} \)-NRM	\(P_{pv} \)-A1	\(V_{pv} \)-A1	\(I_{pv} \)-A1	\(P_{pv} \)-A1
1	0.25	0.25	0.953831829	0.238457957	0.227448789	
2	0.242564205	0.235349575	0.928714508	0.232178627	0.215627659	
3	0.23567968	0.222179646	0.910814499	0.227703625	0.207395763	
4	0.211656588	0.902979093	0.225744773	0.20384281		
5	0.205365992	0.9017659	0.225441475	0.203295434		
6	0.203284028	0.901740602	0.22543515	0.203284028		
7	0.203284028	0.901740602	0.22543515	0.203284028		
8	0.203284028	0.901740602	0.22543515	0.203284028		
9	0.203284028	0.901740602	0.22543515	0.203284028		

Iterations	\(V_{pv} \)-A2	\(I_{pv} \)-A2	\(P_{pv} \)-A2	\(V_{pv} \)-DM	\(I_{pv} \)-DM	\(P_{pv} \)-DM
1	0.223688618	0.200146392	0.903639094	0.225909773	0.204140903	
2	0.196963047	0.903806911	0.225951728	0.204216733		
3	0.199884471	0.90187436	0.22546859	0.20334434		
4	0.202834444	0.901740905	0.225435226	0.203284165		
5	0.203275931	0.901740602	0.22543515	0.203284028		
6	0.203284028	0.901740602	0.22543515	0.203284028		
7	0.203284028	0.901740602	0.22543515	0.203284028		
8	0.203284028	0.901740602	0.22543515	0.203284028		

Iterations	\(\epsilon \)-NRM	\(\epsilon \)-A1	\(\epsilon \)-A2	\(\epsilon \)-DM
1	0.052091227	0.006986128	0.001898492	
2	0.026973906	0.01430222	0.002066509	
3	0.007571778	0.000133758		
4	0.001238491	0.0009977	3.02829E-07	
5	0.9017659	1.79584E-05	0	
6	1.07408E-08	7.70016E-09		
7	1.90088E-06	0		
8	6.06911E-11			
9	0			
Figure 4. The approximated roots using Newton's method (NRM), Predictor-Corrector Type (A1), Predictor-Corrector Type (A2), Dekker's Formula (DM) via initial value, number of iterations needed to converge and load resistance $R = 4$.
Table 5. The iteration scheme of the A1, A2 and DM methods with starting value $v_0=1$.

Iterations	V_{pv}-NRM	I_{pv}-NRM	P_{pv}-A1	V_{pv}-A1	I_{pv}-A1	P_{pv}-A1
1	1	0.2	0.2	0.952974818	0.190594964	0.181632201
2	0.96986956	0.193973912	0.188129393	0.926181706	0.185236341	0.171562511
3	0.941324731	0.188264946	0.17721845	0.904877121	0.189075424	0.163760521
4	0.916395843	0.183279169	0.167956268	0.892668197	0.178533639	0.159371302
5	0.898535645	0.179707129	0.161473261	0.88930602	0.177861204	0.15817304
6	0.890477009	0.178095402	0.158598861	0.889093511	0.177818702	0.158097454
7	0.889125763	0.177825153	0.158108925	0.889092715	0.177818543	0.158097171
8	0.889092734	0.177818547	0.158097178	0.889092715	0.177818543	0.158097171
9	0.889092715	0.177818543	0.158097171			
10	0.889092715	0.177818543	0.158097171			

Iterations	V_{pv}-A2	I_{pv}-A2	P_{pv}-A2	V_{pv}-DM	I_{pv}-DM	P_{pv}-DM
1	0.889371467	0.177874293	0.158196321	0.889021793	0.177804359	0.15807195
2	0.875855338	0.175171068	0.153424515	0.892522023	0.178504405	0.159319112
3	0.876941816	0.175388363	0.15380539	0.889885306	0.177977061	0.158379171
4	0.885772918	0.177154584	0.156918733	0.889102851	0.17782057	0.158100776
5	0.888923198	0.17778464	0.158036891	0.889092717	0.177818543	0.158097172
6	0.889092712	0.17781842	0.158096953	0.889092715	0.177818543	0.158097171
7	0.889092715	0.177818543	0.158097171	0.889092715	0.177818543	0.158097171
8	0.889092715	0.177818543	0.158097171			

Iterations	ε-NRM	ε-A1	ε-A2	ε-DM
1	0.110907285	0.063882103	0.000278752	7.09216E-05
2	0.080776845	0.037088991	0.013237377	0.003429308
3	0.052232016	0.015784406	0.0012150899	0.000792591
4	0.027303128	0.003575482	0.003319796	1.01362E-05
5	0.00944293	0.000213306	0.000169516	1.82848E-09
6	0.001384294	7.96314E-07	6.12875E-07	1.11022E-16
7	3.30483E-05	1.11464E-11	8.69149E-12	0
8	1.91907E-08	0	0	0
9	6.43929E-15	0	0	0
10	0	0	0	0
Figure 5. The approximated roots using Newton's method (NRM), Predictor-Corrector Type (A1), Predictor-Corrector Type (A2), Dekker's Formula (DM) via initial value, number of iterations needed to converge and load resistance $R = 5$.

In the Figures and Tables from 1 to 5, it is conclude that the proposed method (DM) selects a lesser number of iterations (6) than the other three algorithms (NRM, A1 and A2 (9, 8 and 8), respectively in accelerating the convergence rate in order to solve non-linear functions. In addition, the results acquired in the last column for the Tables show the tolerance error's data is least for of the (DM) technique comparing with other techniques, then the computing time is reduced and the (DM) technique is faster.

7. Conclusion
In this study, we have structured new iterative methods is used in order to solve non-linear equation of solar cell based on single diode model. From the obtained results in the tables 1-5 based on a number of examples; it can be concluded that the number of iterations of the proposed method DM is five and lesser than the other iterative methods Predictor-Corrector Type (A1), Predictor-Corrector Type (A2). The stopping criterion has been taken as $|x_{n+1} - \alpha| + |f(x_{n+1})| < 10^9$ for the numerical evaluations displayed here.
References

[1] Yaseen, M. T., Ali, A. H., & Shanan, I. A. (2019). Weighted (k, n)-arcs of Type (n–q, n) and Maximum Size of (h, m)-arcs in PG (2, q). Communications in Mathematics and Applications, 10(3), 361-368. doi:10.26713/cma.v10i3.1275

[2] Ali, A. H., RASHEED, M., SHIHAB, S., RASHID, T., & Hamed, S. H. A. (2021). A Novel Blurring and Sharpening Techniques Using Different Images Based on Heat Equations. Journal of Al-Qadisiyah for computer science and mathematics, 13(1), Page-45. doi:10.29304/jqcm.2021.13.1.771

[3] Ali, A. H., RASHEED, M., SHIHAB, S., RASHID, T., & Hamed, S. H. A. (2021). A Modified Heat Diffusion Based Method for Enhancing Physical Images. Journal of Al-Qadisiyah for computer science and mathematics, 13(1), Page-77. doi:10.29304/jqcm.2021.13.1.777

[4] Ali, A. H., RASHEED, M., SHIHAB, S., RASHID, T., Sabri, A. A., & Hamed, S. H. A. (2021). An Effective Color Image Detecting Method for Colorful and Physical Images. Journal of Al-Qadisiyah for computer science and mathematics, 13(1), Page-88. doi:10.29304/jqcm.2021.13.1.778.

[5] Rasha Jalal, Suha Shihab, Mohammed Abed Alhadi, Mohammed Rasheed, "Spectral Numerical Algorithm for Solving Optimal Control Using Boubaker-Turki Operational Matrices", Journal of Physics: Conference Series, IOP Publishing, vol. 1660 (1) (2020) 012090.

[6] M. M. Abbas and M. Rasheed, "Solid State Reaction Synthesis and Characterization of Cu doped TiO2 Nanomaterials", Journal of Physics: Conference Series, IOP Publishing, vol. 1795 (2021) 012059.

[7] M. RASHEED, S. SHIHAB and Omniea Wissam Sabah, "An investigation of the Structural, Electrical and Optical Properties of Graphene-Oxide Thin Films Using Different Solvents", Journal of Physics: Conference Series. IOP Publishing, 1795 (2021) 012052.

[8] M. Enneffatia, M. Rasheed, B. Louatia, K. Guidaraa, S. Shihab and R. Barillé, "Investigation of structural, morphology, optical properties and electrical transport conduction of Li0.25Na0.75CdVO4 compound", Journal of Physics: Conference Series. IOP Publishing, 1795 (2021) 012050.

[9] M. Rasheed, O. Y. Mohammed, S. Shihab and Aqeel Al-Adili, "A comparative Analysis of PV Cell Mathematical Model", Journal of Physics: Conference Series. IOP Publishing, 1795 (2021) 012042.

[10] M Rasheed, S Shihab, O Y Mohammed and Aqeel Al-Adili, "Parameters Estimation of Photovoltaic Model Using Nonlinear Algorithms", Journal of Physics: Conference Series. IOP Publishing, 1795 (2021) 012058.

[11] M. Rasheed, O. Y. Mohammed, S. Shihab and Aqeel Al-Adili, "Explicit Numerical Model of Solar Cells to Determine Current and Voltage", Journal of Physics: Conference Series. IOP Publishing, 1795 (2021) 012043.

[12] A A Abdulrahman, M RASHEED, S. SHIHAB, "The Analytic of image processing smoothing spaces using wavelet", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[13] S Shihab, M Rasheed, O Alabdali and A A Abdulrahman, "A Novel Predictor-Corrector Hally Technique for Determining The Parameters for Nonlinear Solar Cell Equation ", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[14] M A Sarhan, S Shihab, B E Kashem and M Rasheed, "New Exact Operational Shifted Pell Matrices and Their Application in Astrophysics", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[15] M Rasheed, S. Shihab, O Alabdali and H H Hussein, "Parameters Extraction of a Single-Diode Model of Photovoltaic Cell Using False Position Iterative Method", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.
[16] M Rasheed, O Alabdali and S Shihab, "A New Technique for Solar Cell Parameters Estimation of The Single-Diode Model", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[17] M. Rasheed and R. Barillé, "Room temperature deposition of ZnO and Al: ZnO ultrathin films on glass and PET substrates by DC sputtering technique", Optical and Quantum Electronics, vol. 49 (5) (2017), pp. 1-14.

[18] M. Rasheed and Régis Barillé, Optical constants of DC sputtering derived ITO, TiO2 and TiO2: Nb thin films characterized by spectrophotometry and spectroscopic ellipsometry for optoelectronic devices, Journal of Non-Crystalline Solids, vol. 476 (2017), pp. 1-14.

[19] M. Rasheed and R. Barillé, Comparison the optical properties for Bi2O3 and NiO ultrathin films deposited on different substrates by DC sputtering technique for transparent electronics, Journal of Alloys and Compounds, vol. 728 (2017), pp. 1186-1198.

[20] T. Saidani, M. Zaabat, M. S. Aida, R. Barillé, M. Rasheed, Y. Almohamed, Influence of precursor source on sol–gel deposited ZnO thin films properties, Journal of Materials Science: Materials in Electronics, vol. 28 (13) (2017), pp. 9252-9257.

[21] K. Guergouria A. Boumezoued, R. Barillé, D. Rechemc, M. Rasheed M. Zaabata, ZnO nanopowders doped with bismuth oxide, from synthesis to electrical application, Journal of Alloys and Compounds, vol. 791 (2019), pp. 550-558.

[22] N. B. Azaza, S. Elleuch, M. Rasheed, D. Gindre, S. Abid, R. Barille, Y. Abid, H. Ammar, 3-(p-nitrophenyl) Coumarin derivatives: Synthesis, linear and nonlinear optical properties, Optical Materials, vol. 96, (2019), pp. 109328.

[23] D. Bouras, A. Mecif, R. Barillé, A. Harabi, M. Rasheed, A. Mahdjoub, M. Zaabat, Cu: ZnO deposited on porous ceramic substrates by a simple thermal method for photocatalytic application, Ceramics International, vol. 44 (17) (2018), pp. 21546-21555.

[24] W. Saidi, N. Hfaïdh, M. Rasheed, M. Girtan, A. Megriche, M. EL Maaoui, Effect of B2O 3 addition on optical and structural properties of TiO2 as a new blocking layer for multiple dye sensitive solar cell application (DSSC), RSC Advances, vol. 6 (73) (2016), pp. 68819-68826.

[25] A. AUKŠTUOLIS, M. Girtan, G. A. Mousdis, R. Mallet, M. Socol, M. Rasheed, A. Stanculescu, Measurement of charge carrier mobility in perovskite nanowire films by photo-CELIV method, Proceedings of the Romanian Academy Series a-Mathematics Physics Technical Sciences Information Science, vol. 18 (1) (2017), pp. 34-41.

[26] F. Dkhilalli, S. Megdiche, K. Guidara, M. Rasheed, R. Barillé, M. Megdiche, AC conductivity evolution in bulk and grain boundary response of sodium tungstate Na2WO4, Ionics, vol. 24 (1) (2018), pp. 169-180.

[27] F. Dkhilalli, S. M. Borchani, M. Rasheed, R. Barille, K. Guidara, M. Megdiche, Structural, dielectric, and optical properties of the zinc tungstate ZnWO4 compound, Journal of Materials Science: Materials in Electronics, vol. 29 (8) (2018), pp. 6297-6307.

[28] F. Dkhilalli, S. M. Borchani, M. Rasheed, R. Barille, S. Shihab, K. Guidara, M. Megdiche, Characterizations and morphology of sodium tungstate particles, Royal Society open science, vol. 5 (8) (2018), pp. 1-12.

[29] M. Enneffati, B. Louati, K. Guidara, M. Rasheed, R. Barillé, Crystal structure characterization and AC electrical conduction behavior of sodium cadmium orthophosphate, Journal of Materials Science: Materials in Electronics, vol. 29 (1) (2018), pp. 171-179.

[30] M. Enneffati, M. Rasheed, B. Louati, K. Guidara, R. Barillé, Morphology, UV–visible and ellipsometric studies of sodium lithium orthovanadate, Optical and Quantum Electronics, vol. 51 (9) (2019), pp. 299.

[31] E. Kadri, M. Krichen, R. Mohammed, A. Zouari, K. Khirouni, Electrical transport mechanisms in amorphous silicon/crystalline silicon germanium heterojunction solar cell: impact of passivation layer in conversion efficiency, Optical and Quantum Electronics, vol. 48 (12) (2016), pp. 1-15.
[32] E. Kadri, O. Messaoudi, M. Krichen, K. Dhahri, M. Rasheed, E. Dhahri, A. Zouari, K. Khirouni, R. Barillé, Optical and electrical properties of SiGe/Si solar cell heterostructures: Ellipsometric study, Journal of Alloys and Compounds, vol. 721 (2017), pp. 779-783.

[33] E. Kadri, K. Dhahri, A. Zaafouri, M. Krichen, M. Rasheed, K. Khirouni, R. Barillé, Ac conductivity and dielectric behavior of a–Si:H/c– Si1–yGeyp–Si thin films synthesized by molecular beam epitaxial method, Journal of Alloys and Compounds, vol. 705 (2017), pp. 708-713.

[34] Emna Kadri, Khaled Dhahri, Régis Barillé, Mohamed Rasheed. "Novel method for the determination of the optical conductivity and dielectric constant of SiGe thin films using Kato-Adachi dispersion model", Phase Transitions, 94(2), (2021), pp. 65–76.

[35] Mohammed Rasheed, Ali Hasan Ali, Osama Alabdali, Suha Shihab, Ahmed Rashid, Taha Rashid, Saad Abed Hamad, "The Effectiveness of the Finite Differences Method on Physical and Medical Images Based on a Heat Diffusion Equation", Journal of Physics: Conference Series, IOP Publishing, (2021), in press.

[36] Mohammed Rasheed, Osama Alabdali, Suha Shihab, Ahmed Rashid, Taha Rashid, "On the Solution of Nonlinear Equation for Photovoltaic Cell Using New Iterative Algorithms", Journal of Physics: Conference Series, IOP Publishing, (2021), in press.

[37] Mohammed Rasheed, Osama Alabdali, Suha Shihab, Ahmed Rashid, Taha Rashid, "Two Numerical Models for Solving Nonlinear Equation of Photovoltaic Cell", Journal of Physics: Conference Series, IOP Publishing, (2021), in press.

[38] Mohammed Rasheed, Mustafa Nuhad Al-Darraj, Suha Shihab, Ahmed Rashid, Taha Rashid, "A Fast Strategy to Investigate The Electrical and Physical Parameters of Photovoltaic Cell", Journal of Physics: Conference Series, IOP Publishing, (2021), in press.

[39] Mohammed Rasheed, Mustafa Nuhad Al-Darraj, Suha Shihab, Ahmed Rashid, Taha Rashid, "The numerical Calculations of Single-Diode Solar Cell Modeling Parameters", Journal of Physics: Conference Series, IOP Publishing, (2021), in press.

[40] Mohammed Rasheed, Mustafa Nuhad Al-Darraj, Suha Shihab, Ahmed Rashid, Taha Rashid, "Solar PV Modelling and Parameter Extraction Using Iterative Algorithms", Journal of Physics: Conference Series, IOP Publishing, (2021), in press.

[41] Mohammed Rasheed, Mustafa Nuhad Al-Darraj, Suha Shihab, Ahmed Rashid, Taha Rashid, "A Simplified and Comprehensive Approach to Characterize Photovoltaic Cell Performance", Journal of Physics: Conference Series, IOP Publishing, (2021), in press.

[42] Osama Alabdali, Suha SHIHAB, Mohammed RASHEED and Taha RASHID, "Orthogonal Boubaker-Turki Polynomials Algorithm for Problems Arising in Engineering", Journal of Physics: Conference Series, IOP Publishing, (2021), in press.

[43] Suha Shihab and Shazad Shawki Ahmed, "Discrete Spectral Tau Shifted Chebyshev Method for Solving a System Volterra Integro-Fractional Differential Equations", AIP Conference Proceedings, (2021), in press.

[44] Bushra Esaa Kashem, Suha SHIHAB, "Approximate solution of Lane-Emden problem via modified Hermite operation matrix method", Samarra Journal of Pure and Applied Science, 2(2) (2020), pp.57-67.

[45] Anam Alwan Salih, Suha SHIHAB, "New operational matrices approach for optimal control based on modified Chebyshev polynomials", Samarra Journal of Pure and Applied Science, 2(2) (2020), pp. 68-78.

[46] Anam Alwan Salih, Suha Shihab Alrawy, "Shifted modified chebyshev direct method for solving quadratic optimal control problem", Samarra Journal of Pure and Applied Science, 2(1), (2020), pp.67-75.

[47] M. A. Sarhan, S. SHIHAB and M. RASHEED, "Some Results on a Two Variables Pell Polynomials", Al-Qadisiyah Journal of Pure Science, vol. 26, (1), (2020), pp. 55-70.
[48] M. RASHEED, S. SHIHAB and T. RASHID, “Two Step and Newton- Raphson Algorithms in the Extraction for the Parameters of Solar Cell”, Al-Qadisiyah Journal of Pure Science, vol. 26 (1), (2021), pp.143-154.

[49] Semaa Hassan Aziz, Suha SHIHAB and Mohammed RASHEED, "On Some Properties of Pell Polynomials", Al-Qadisiyah Journal of Pure Science, vol. 26 (1), (2021), pp. 39-54.

[50] Mohammed G. K., Jumaa M. N., "Study of genetic variations of FTO gene and its relationship to obese in Iraqi population", Biochemical and Cellular Archives, 20(2), (2020), pp. 6715–6721.

[51] Hassan Z. A., Obaid H. H., Al-Darraj M.N., "In vivo genotoxicity assessment of gold nanoparticles of different doses by comet assays", Indian Journal of Forensic Medicine and Toxicology, 14(3), (2020), pp. 2414–2420.

[52] Jumaa M. N., Yaseen N. Y., Kurim R. M., Shehab A. F., Sagban L. H., "Study of genetic variations of FTO gene and its relationship to obese in Iraqi population", Der Pharma Chemica, 8(18), (2016), pp. 242–254.

[53] Harith Abdulrahman Ahmed, Mustafa Nuhad Al-Darraj, Gihan Hosny Abd Elsamie, "Cancer and childhood in Iraq during the years (2010-2015)", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[54] Osama Alabdali, Allal Guessab, "Sharp multidimensional numerical integration for strongly convex functions on convex polytopes", Filomat, 34(2), (2020), pp. 601-607.

[55] Osama Alabdali, Allal Guessab, Gerhard Schmeisser, "Characterizations of uniform convexity for differentiable functions", Applicable Analysis and Discrete Mathematics, 13(3), (2019), pp. 721-732.

[56] Yassine Zaim Mostafa Bachar, Osama Mohammed, Allal Guessab, "New cubature formulas and Hermite–Hadamard type inequalities using integrals over some hyperplanes in the d - dimensional hyper-rectangle", Applied Mathematics and Computation, 315 (2017), pp. 347-362.

[57] Alabdali Osama Yousif Mohammed, Allal Guessab, "On the approximation of strongly convex functions by an upper or lower operator", Applied Mathematics and Computation, 247, (2014), pp. 1129–1138.

[58] S Gharbi, R Dhahri, M Rasheed, E Dhahri, R Barille, M Rguiti, A Tozri, Mohamed R Berber, "Effect of Bi substitution on nanostructural, morphologic, and electrical behavior of nanocrystalline La1-xBixNi0. 5Ti0. 5O3 (x= 0 and x= 0.2) for the electrical devices", Materials Science and Engineering: B, 270, 115191, (2021).