Polymorphism of glutathione S-transferase mu 1 and theta 1 genes and hepatocellular carcinoma in southern Guangxi, China

Zhuo-Lin Deng, Yi-Ping Wei, Yun Ma

Zhuo-Lin Deng, Yun Ma, Department of Pathology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China

Yi-Ping Wei, Nurse College, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China

Supported by: The Natural Scientific Foundation of China No. 39860032; by the Education Department of Guangxi Zhuang Autonomous Region No. 98-2-8

Correspondence: Dr. Zhuo-Lin Deng, Department of Pathology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China. zhuolindeng@hotmail.com

Abstract

AIM: Glutathione S-transferase mu 1 (GSTM1) and theta 1 (GSTT1) genes are involved in the metabolism of a wide range of carcinogens, but deletions of the genes are commonly found in the population. The present study was undertaken to evaluate the association between GSTM1 and GSTT1 gene polymorphisms and hepatocellular carcinoma (HCC) risk.

METHODS: The genetic polymorphisms were studied at an aflatoxin highly contaminated region in Guangxi, China. Polymerase chain reaction (PCR) technique was used to detect the presence or absence of the GSTM1 and GSTT1 genes in blood samples. The case group was composed of 181 patients of HCC identified by the pathologists and the control group was composed of 360 adults without any tumor.

RESULTS: The frequencies of GSTM1 and GSTT1 null genotypes in the control were 47.8% and 59.7%, respectively, and the difference was significant (P<0.01). GSTM1 and GSTT1 combined null genotypes in HCC group and control group were 38.2% and 18.5% respectively, and the difference was significant (P<0.05).

CONCLUSION: The GSTM1 and GSTT1 null genotypes are associated with an increased risk of HCC in a special geographic environment. Combination of the two null genotypes in an individual is substantially increased twice the risk of HCC.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Hepatocellular carcinoma; Glutathione S-transferase mu 1; Glutathione S-transferase theta 1; Polymorphism

INTRODUCTION

Glutathione S-transferases (GSTs) M1 and T1 are most important detoxified enzymes in the body that participate in the metabolism of a wide range of chemical carcinogens that are ubiquitous in the environment ([9,10], but the enzyme deficiency is common in humans. Are there any cause and effect on the high prevalence of hepatocellular carcinoma (HCC) in a local region? Epidemiological investigations and animal experiments have identified that the major risk factors involved in the prevalence of HCC in southern Guangxi are hepatitis B virus (HBV) infection and aflatoxin B1 (AFB1) exposure ([6,7], and etiological studies have given evidence to support the existence of a synergistic relationship between HBV and AFB1 ([6-8]. AFB1 is a mycotoxin that is produced by Aspergillus flavus. Since aflatoxin was discovered in food in early 1960 s, the search for mycotoxins has led to the identification of over 100 toxigenic fungi and more than 300 mycotoxins. While AFB1 is the most vigorous carcinogen, its mutagenic metabolites binding to DNA are capable of inducing G to T transversions and the liver is a primary target organ ([6,10]). It has been found that AFB1 could contaminate foods such as corn and peanut in the world, and it is known that the southwest of Guangxi is one of the areas with a rather high level of contamination and a high prevalence of HCC ([6,7]). Therefore, study need to lay stress on detoxification of AFB1 by enzymes in an individual and susceptibility to HCC. AFB1 is not harmful prior to metabolic activation via oxidase of cytochrome P450 to form a DNA damaging agent, AFB1-8, 9-epoxide ([6]). Several enzymes in the body can resist this toxin and are good for health. The present study emphasized the importance of polymorphisms of GSTM1 and GSTT1, especially their genetic deletion polymorphisms and susceptibility to HCC.

MATERIALS AND METHODS

Patients and controls

One hundred and eighty-one HCC patients and 360 controls participated in the present investigation. The HCC cases were recruited from the Affiliated Hospital of Guangxi Medical University from January 1998 to December 2002. All HCCs were confirmed by pathologic diagnosis. There were 145 male and 36 female patients aged from 28 to 70 years with an average age of 49 years. The control group came from the same hospital with their age and sex matched for the case group.

Blood samples

Three mL of blood was taken by venous puncture. The blood was used for lymphocyte isolation using buffy coat extraction kit. Genomic DNA was prepared by standard phenol-chloroform extraction.

Genotypes for the GSTM1 and GSTT1 deletions were determined by polymerase chain reaction (PCR) on the genomic DNA. Primers binding to the 5’ region of exon 4 (5’-CTGCCCTCA CTTGATGTGGG-3’) and the 3’ region of exon 5 (5’-CTGGAT TGAGCAGATCAGC-3’) of GSTM1 were used to amplify a 273 base pair (bp) fragment. Primers for the 5’ region of GSTT1 (5’-TCTCCCTACTGTCCTCACATCTC-3’) and the 3’ region (5’TACCCGGATGCCAGCA-3’) were used to amplify a 480 bp fragment. In both assays, the absence of PCR products was
indictive of the null genotypes[12,13]. In the cases of GSTM1 or GSTT1 null genotypes, the samples must have internal controls by a pair of β-globin or p53 gene primer co-amplification repeat analysis to monitor the quality control to exclude possible pseudo-negative reactions[13]. PCR reaction was carried out in a “BIO-RAD” amplified instrument. A commercial PCR kit was used with 5 μg of DNA, 2.5 mmol/L of dNTP, 5 umol/L of each primer, 25 mmol/L of MgCl\(_2\) and 0.5 units of Taq polymerase in a total volume of 25 μL, then overlaid with a drop of mineral oil and proceeded to amplification.

PCR amplified conditions

The samples were denatured at 94 ℃ for 5 min, then treated in a different way for GSTM1 and GSTT1 gene amplification. As for the amplification of GSTM1 gene, the best condition was for 30 s at 93 ℃ and for 45 s at 50 ℃ and at 72 ℃ for 45 s, while for the GSTT1 gene, the best condition was for 45 s at 94 ℃ and 50 s at 61 ℃ and at 72 ℃ for 60 s, respectively. After 35 cycles, a final step of extension at 72 ℃ for 10 min was followed. The amplified products were subjected to electrophoresis on a 2% agarose gel and stained with ethidium bromide, observed under violet light.

Statistical analysis

The experimental results were analyzed by χ\(^2\)-test.

RESULTS

PCR products from amplification of GSTT1 (480 bp) and GSTM1 (273 bp) on agarose gels are shown in Figure 1.

![Figure 1](image)

The frequencies of GSTT1 null genotype in HCC group and control group were 59.7% (108/181) and 42.7% (154/360) respectively. The frequencies of GSTM1 null genotype in HCC group and control group were 64.6% (117/181) and 47.8% (172/360) respectively. The differences were very significant (P<0.01, Table 1). In some of the cases, both GSTM1 and GSTT1 null genotypes that occurred in HCC group and control group were 38.2% and 18.5% respectively, and the difference was significant (P<0.05). GSTM1-positive but GSTT1-negative cases accounted for 21.8% and 20.7%, GSTM1-negative but GSTT1-positive cases were 25.5% and 28.9% respectively, and the two groups had no significant difference compared with the controls.

Table 1 Polymorphisms of GSTM1 and GSTT1 genes in HCC patients and controls

Group	n	GSTM1	GSTT1				
		Null	Present	Deletion	Null	Present	Deletion
		rate (%)	rate (%)		rate (%)	rate (%)	
HCC	181	117	64	64.6	108	73	59.7
Control	360	172	188	47.8	154	206	42.7

HCC group compared with control \(^1\) \(\chi^2 = 13.7643, P<0.01\), \(^2\) \(\chi^2 = 13.7585, P<0.01\).

DISCUSSION

GSTs are a super family, in which seven classes have been found, but only class μ (GSTM1) and class θ (GSTT1) have gene deficiency (null genotype)[22-24] and completely lack of respective enzyme activity. Carcinogen AFB1-8, 9-epoxide is a substrate of both GSTM1 and GSTT1[13,14], GSTs are dimeric proteins that catalyze conjugation reaction between glutathione and epoxides facilitate excretion and detoxification[13,14]. As a result, GSTs may play an important role in anti-carcinogenesis. The absence of these enzymes might susceptible to several cancers[13,14]. A previously report failed to detect a statistically significant relationship between GSTM1 genotype and HCC case/control status might be due to an inadequate sample size[11]. In our previous study[10] we found that HCC patients were significantly associated with tumor suppressor gene p53 mutation at codon 249 G to T transversion which may be involved in environmental mutagen AFB1[19]. Here, we are interested in the GSTM1 and GSTT1 genotypes associated with susceptibility to HCC in the natives of Guangxi and whether HCC patients possess more GSTM1 or GSTT1 null genotypes than other people.

Cheng[20] reported that smokers of deficiency in GSTM1 and GSTT1 genes were predisposed to head and neck squamous cell carcinoma. Dialyn[21] found that GSTM1 and GSTT1 null genotypes were correlated with lung cancer in heavy smokers. The present results suggest that natives in southwest Guangxi had a rather higher level of GSTM1 and GSTT1 null genotypes, their GSTM1 null genotype accounted for 47.8%, a high level in the world. While GSTT1 null genotype accounted for 42.7%, much higher than the average level reported[22-24]. It is known that people with high GSTs null genotypes who have never contacted with relevant chemical toxins such as AFB1 will never increase the risk of HCC. However, the people who live in an AFB1 contaminated area for a long time would fully reveal genetic defects and susceptibility to HCC. The present study showed that GSTM1 or GSTT1 null genotypes were higher in the HCC group than in control group, and the differences were very significant (P<0.01). There was not any relationship between their age and sex status (P>0.05). The frequency of combined GSTM1 and GSTT1 deletions in HCC group versus control group was 38.2% and 18.5%, respectively (P>0.05). Actually, there was twice more the risk of HCC in the GSTM1 and GSTT1 combined null genotypes in patients than in control.

In conclusion, the risk of HCC is associated with GSTM1 and GSTT1 null genotypes, especially in people contacted with AFB1. The natives in Guangxi have a high level of GSTM1 or/and GSTT1 null genotypes. AFB1 undergoes metabolism by GSTM1 and GSTT1 enzymes, an individual lacking of these enzymes should predispose to HCC. Genetic susceptibility due to GSTM1 and GSTT1 null genotypes in humans occurs in conjunction with exposure to environmental carcinogens such as AFB1 involved in the pathogenesis of HCC, especially in an area with hepatitis B prevalence.
REFERENCES

1 Yeh FS, Yu MC, Mo CC, Luo S, Tong MJ, Henderson BE. Hepatitis B virus, aflatoxins, and hepatocellular carcinoma in southern Guangxi, China. Cancer Res 1989; 49: 2506-2509

2 Stern MC, Umbach DM, Yu MC, London SJ, Zhang QZ, Taylor JA. Hepatitis B, aflatoxin B (1), and p53 codon 249 mutation in hepatocellular carcinomas from Guangxi, People's Republic of China, and a meta-analysis of existing studies. Cancer Epidemiol Biomarkers Prev 2001; 10: 617-625

3 Srivastava DS, Kumar A, Mittal B, Mittal RD. Polymorphism of GSTM1 and GSTT1 genes in bladder cancer: a study from North India. Arch Toxicol 2004; 78: 430-434

4 Shupe T, Sell S. Low hepatic glutathione S-transferase and increased hepatic DNA adduction contribute to increased tumorigenicity of aflatoxin B1 in newborn and partially hepatotomized mice. Toxicol Lett 2004; 148: 1-9

5 Sell S. Mouse models to study the interaction of risk factors for human liver cancer. Cancer Res 2003; 63: 7553-7562

6 Kew MC. Synergistic interaction between aflatoxin B1 and hepatitis B virus in hepatocarcinogenesis. Liver Int 2003; 23: 405-409

7 Su JJ, Li Y, Ban KC, Qin LL, Wang HY, Yang C, Ou C, Duan XX, Lee Yi Yl, Yan RQ. Alteration of the p53 gene during tree shrews' hepatocarcinogenesis. Hepatobiliary Pancreat Dis Int 2003; 2: 612-616

8 Su JJ, Li Y, Ban KC, Qin LL, Wang HY, Yang C, Ou C, Duan XX, Li YY, Yan RQ. Alteration of p53 gene during tree shrews' hepatocarcinogenesis. Zhonghua Ganzangbing Zazhi 2003; 11: 159-161

9 Wang JS, Groopman JD. DNA damage by mycotoxins. Mutat Res 1999; 424: 167-181

10 Deng ZL, Ma Y. Aflatoxin sufferer and p53 gene mutation in hepatocellular carcinoma. World J Gastroenterol 1998; 4: 28-29

11 McGlynn KA, Rosvold EA, Lustbader ED, Hu Y, Clapper ML, Zhou T, Wild CP, Xia XL, Bafroee-Bonnie A, Ofori-Adjei D. Susceptibility to hepatocellular carcinoma is associated with genetic variation in the enzymatic detoxification of aflatoxin B1. Proc Natl Acad Sci USA 1995; 92: 2384-2387

12 Shea TC, Claflin G, Comstock KE, Sanderson BJ, Burstein NA, Keenan EJ, Mannervik B, Henner WD. Glutathione transferase activity and isoenzyme composition in primary human breast cancers. Cancer Res 1990; 50: 6848-6853

13 Garcia-Closas M, Kelsey KT, Hankinson SE, Spiegelman D, Springer K, Willett WC, Speizer FE, Hunter DJ. Glutathione S-transferase mu and theta polymorphisms and breast cancer susceptibility. J Natl Cancer Inst 1999; 91: 1960-1964

14 Wiencke JK, Kelsey KT, Lamela RA, Toscano WA. Human glutathione S-transferase deficiency as a marker of susceptibility to epoxide-induced cytogenetic damage. Cancer Res 1990; 50: 1585-1590

15 Tiemersma EW, Omer RE, Bunschoten A, van’t Veer P, Kok FJ, Idriss MO, Kadaru AM, Fedail SS, Kampman E. Role of genetic polymorphism of glutathione-S-transferase T1 and microsomal epoxide hydrolase in aflatoxin-associated hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev 2001; 10: 785-791

16 Ma Y, Deng ZL, Wei YP. Study of the deletion mutation of glutathione S-transferase M1 gene and its role in susceptibility to hepatocellular carcinoma. Chinese J Can Res 2001; 13: 176-178

17 Esaki H, Kumagai S. Glutathione-S-transferase activity toward aflatoxin epoxide in livers of mastomys and other rodents. Toxicol 2002; 40: 941-945

18 Deng Z, Wei Y, Ma Y. Glutathione-S-transferase M1 genotype in patients with hepatocellular carcinoma. Zhonghua Zhongliu Zazhi 2001; 437: 477-479

19 Olivier M, Hussain SP, Caron de Fromentel C, Hainaut P, Harris CC. TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ 2004; 157: 247-270

20 Cheng L, Sturgis EM, Eicher SA, Char D, Spitz MR, Wei Q. Glutathione S-transferase polymorphisms and risk of squamous-cell carcinoma of the head and neck. Int J Cancer 1999; 84: 220-224

21 Dialyna IA, Miyakis S, Georgatou N, Spandidos DA. Genetic polymorphisms of CYP1A1, GSTM1 and GSTT1 genes and lung cancer risk. Oncol Rep 2003; 10: 1829-1835

22 Kargas C, Krupa R, Walter Z. Combined genotype analysis of GSTM1 and GSTT1 polymorphisms in a Polish population. Hum Biol 2003; 75: 301-307

23 Lasso N, Lafuente MJ, Mas S, Trías M, Ascáso C, Molina R, Ballesta A, Rodríguez F, Lafuente A. Glutathione S-transferase (GSTM1 and GSTT1)-dependent risk for colorectal cancer. Anticancer Res 2002; 22: 3399-3403

24 Dandara C, Sayi J, Masimirembwa CM, Magimba A, Kaaya S, De Sommers K, Snyman JR, Hasler JA. Genetic polymorphism of cytochrome P450 1A1 (Cyp 1A1) and glutathione transferases (M1, T1, and P1) among Africans. Clin Chem Lab Med 2002; 40: 952-957

Edited by Wang XL and Zhang JZ