Supporting Information for
Accretion of the cratonic mantle lithosphere via massive regional relamination
Zhensheng Wang*, Fabio A. Capitanio, Zaicong Wang, Timothy M. Kusky*
*Zhensheng Wang and Timothy M. Kusky
Email: jasonwang@cug.edu.cn; tkusky@gmail.com
This PDF file includes:
Supplementary text
Figs. S1 to S6
Tables S1 to S3

1. Numerical method and constitutive laws

The conservation of mass is described as:
\[\nabla \cdot \mathbf{u} = 0 \] \hspace{1cm} (1)
where \(\mathbf{u} \) is the velocity vector, the conservation of momentum is:
\[\nabla \cdot [-P \mathbf{I} + \eta(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)] = -\Delta \rho g \] \hspace{1cm} (2)
where \(P \) is the pressure, \(\eta \) the effective viscosity, \(\mathbf{I} \) the identity tensor, \(\Delta \rho \) the density contrast relative to the ambient mantle, \(g \) the gravitational acceleration vector.

The conservation of energy is under the extended Boussinesq approximation, which is frequently adopted in geodynamic numerical modeling:
\[\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \kappa \nabla^2 T - \frac{\alpha u_y g T}{C_p} \] \hspace{1cm} (3)
where \(T \) is the temperature, \(t \) the time, \(\kappa \) the thermal diffusivity, \(\alpha \) the thermal expansivity, \(u_y \) the vertical component of velocity, \(C_p \) the specific heat. Both \(\kappa \) and \(\alpha \) are functions of \(T \) and \(P \) (1).

1.1 Density

The density of mantle materials is a function of \(T \), \(P \), and reference density \(\rho_{\text{stp}(CCLM)} \):
\[\rho(T, P) = \rho_{\text{stp}(CCLM)}(1 - \alpha(T, P)(T - T_0) + \beta(P - P_0)) + \Delta \rho_{\text{phase}} \] \hspace{1cm} (4)
where \(\alpha \) is the thermal expansivity mentioned above, \(\beta \) the compressibility coefficient. \(\Delta \rho_{\text{phase}} \) is density contrast at 410 and 660 km phase boundaries (2), controlled by Clapeyron
slope (γ) (3). $\rho_{\text{stp}(CCLM)}$ is the density measured under standard temperature (T_0) and pressure (P_0) (STP) condition and is a function of concentration of CLM (c_{CLM}), density of pure CLM ($\rho_{\text{CLM,stp}}$) and pure primitive mantle ($\rho_{\text{pri,stp}}$) under STP condition:

$$\rho_{\text{stp}}(c_{\text{CLM}}) = c_{\text{CLM}}\rho_{\text{CLM,stp}} + (1 - c_{\text{CLM}})\rho_{\text{pri,stp}}$$ \hspace{1cm} (5)

The c_{CLM} is the non-dimensionalized concentration of CLM particles per element, which can be calculated via the particle-in-cell method.

The density of mantle peridotites under STP conditions, including ρ_{stp}, $\rho_{\text{CLM,stp}}$, and $\rho_{\text{pri,stp}}$, can be described as a monotonic function of depletion degree (F) (Fig. S1) (4, 5). Thus, $\rho_{\text{pri,stp}}$ corresponds to $F=0$ and $\rho_{\text{CLM,stp}}$ corresponds to $F=0-50\%$, depending on what initial depletion degree is used for the CLM.

![Fig. S1. Relationship of depletion degree (F) and reference density (\(\rho_{\text{stp}}\)) (4, 5).](image)

1.2 Constitutive laws

A non-linear visco-plastic rheology is used through the definition of an effective viscosity (η), which is equivalent to the harmonic mean of the diffusion creep (η_{diff}), dislocation creep (η_{dis}), and plastic rheology (η_{plastic}). f_{vis} is the weakening factor (0.1-1.0 tested) caused by melt or fluids (6), to test the influence of regional mantle weakening on CLM recycling:

$$\eta = \left(\frac{1}{\eta_{\text{plastic}}} + \frac{\eta_{\text{diff}} + \eta_{\text{dis}}}{\eta_{\text{diff}} \cdot \eta_{\text{dis}} \cdot f_{\text{vis}}}\right)^{-1}$$ \hspace{1cm} (6)

We used a simplified pressure-dependent Drucker-Prager yield criterion to model the plastic rheology:

$$\eta_{\text{plastic}} = \frac{C_0 + C_1P}{2\dot{\varepsilon}_H}$$ \hspace{1cm} (7)

The diffusion creep and dislocation creep are defined as a function of the pressure (P), temperature (T), pre-factor (A), second invariant of the strain rate tensor ($\dot{\varepsilon}_H$), Power-law exponent (n), activation energy (E), and activation volume (V). R is the gas constant.
\[\eta_{diff,\,dist} = \frac{1}{A_1} \beta_{11}^{1-n} \exp \left(\frac{E + PV}{nRT} \right) \] (8)

The maximum of the effective viscosity is further constrained via a limiter \((\eta_{\text{max}}) \) with constant value \((10^{23} - 10^{24} \text{ Pas tested}) \), to test the influence by lithosphere maximum viscosity:

\[\eta = \min(\eta, \eta_{\text{max}}) \] (9)

The value of parameters above are given in Table S1.

Table S1. Parameters in numerical models (6-9).

Symbol	Definition	Upper mantle value	Lower mantle value	Unit
\(A_{\text{diff}} \)	Pre-exponential parameter of diffusion creep	2.4*10^{10}	1*10^{16}	Pa's
\(A_{\text{disl}} \)	Pre-exponential parameter of dislocation creep	10*10^{20}	-	Pa's
\(E_{\text{diff}} \)	Activation energy of diffusion creep	3.0*10^5	2*10^5	J/mol
\(E_{\text{disl}} \)	Activation energy of dislocation creep	5.4*10^5	-	J/mol
\(V_{\text{diff}} \)	Activation volume of diffusion creep	4.0*10^{-6}	1.1*10^{-6}	m^3/mol
\(V_{\text{disl}} \)	Activation volume of dislocation creep	10*10^{-6}	-	m^3/mol
\(n \)	Power-law exponent	3.5	-	-
\(C_0 \)	Sine of internal friction angle	0.6	-	-
\(C_1 \)	Residual rock strength	10^8	-	Pa

\(T \) | Temperature | - | °C |
\(P \)	Pressure	-	Pa
\(g \)	Gravitational acceleration	9.81	m/s^2
\(C_P \)	Specific heat	1200	J/kg/K
\(C_{\text{CLM}} \)	Concentration of CLM	-	
\(F \)	Depletion degree	0-100	%
\(\rho_{\text{st}} \)	Density at STP condition	Function of \(C_{\text{CLM}} \) and \(F \)	kg/m^3
\(\beta \)	Compressibility	0.5124*10^{-11} Pa^{-1}	Pa^{-1}
\(T_0 \)	Reference temperature	25	°C
\(P_0 \)	Reference pressure	101325	Pa
\(\gamma_{410} \)	Clapeyron slope (410 km phase transition)	3*10^6	Pa/K
\(\gamma_{660} \)	Clapeyron slope (660 km phase transition)	-2.5*10^6	Pa/K
\(\Delta \rho_{410} \)	Density contrast (410 km phase transition)	273	kg/m^3
\(\Delta \rho_{660} \)	Density contrast (660 km phase transition)	341	kg/m^3

Thermal diffusivity \(-\alpha(T, P)\) and thermal expansion coefficient \(-\alpha(T, P)\) are functions of \(T \) and \(P \). Heat production \((0 \mu\text{W m}^{-3})\) are set to be fixed for different rocks, \(R \) is the gas constant \((8.314 \text{ J/k/mol})\).

1.3 Depletion and age record

The potential partial melting degree \((\phi) \) of mantle materials is calculated using the methods by Katz et al. (10), whereas the dry solidus is updated to the newly constrained one (11). The age of mantle rocks is set to 0 at the initial step and increases with model time. The updated age is reset to 0 if the temperature of the mantle rock is greater than its solidus temperature.

The depletion degree \((F) \) of mantle rocks is caused by melt extraction after partial melting.
F is recorded on particles and is assumed to represent the historical maximum partial melting degree of the related particles without refertilization. Thus, F is updated to ϕ if the newly calculated ϕ is greater than the previously calculated F or greater than the F given as initial values marked on CLM particles. This kind of melt extraction and melt depletion method is similar to those in previous works (12).

2. Model setup

The delamination is a very common process in the Earth’s history, especially in the early time (13-15). It can be compatible with different tectonic regimes, whether subduction occurs or not, and can be induced by different triggers, including subduction, collision, plume, faulting, and rifting (14, 16-23). Thus, we do not investigate here the complex delamination processes, which are also addressed in our previous papers (24, 25). In this work, we mainly focus on the fate of the lithospheric root sinking in the mantle, once it has decoupled and delaminated. Thus, the lithosphere is initially immersed in the mantle and positioned just below a weak layer, assuming the layer with the same viscosity as that of the ambient mantle. Similar setups are adopted in previous works to facilitate the implementation of the control variable method to investigate the sinking and stagnation of subducted slab or foundered lithosphere in the mantle (e.g., 26, 27).

The modeling space extends from the surface to 1200 km depth (Fig. S2 A), where major phase transitions at 410 and 660 km depths are modeled via the Clausius - Clapeyron equation. The mantle flow is initially driven by surface motions imposed on the top boundary ($v=0$-10 cm/yr), considering different plate/lid velocities under different spatiotemporal backgrounds. Periodic boundary conditions are imposed on the side walls in the x-direction, allowing materials to freely flow laterally.
Fig. S2. Numerical model setup. a, Initial conditions for different model setups, the CLM has different depletion degrees ($F=0$-50%) in different models, CLM (solid line) and ambient mantle (dashed line) profiles are shown. b, Geotherm profiles of the CLM and ambient mantle in different models with different mantle potential temperatures ($\Delta T_p =0$, 50, 100, 150, 200, 250, 300 °C for lines from blue to red).

The CLM is modeled as a block extending from 40 to 100-200 km depths with different constant depletion degrees (F) ranging from 0-50% to investigate the fate of foundered CLM influenced by different average CLM depletion degrees (5). The initial thermal conditions in the ambient mantle are changed in different models considering different mantle potential temperatures (hereby ΔT_p) and are shown in Fig. S2 B, whereas the temperature in the block is influenced by the block thickness and increases linearly from the Moho depth (400 °C for cratonic Moho) to the bottom of the block (100-200 km depths), where the temperature is equal to the value of the ambient mantle at the same depth.

We design two modeling groups: a sensitivity test group and a main group. The sensitivity test aims to investigate the influence of the different model parameters mentioned in the main text and above, whereas the main group aims to investigate the evolution of the foundered CLM in the ambient mantle. For a common cratonic lithosphere sinking in the dry ambient mantle ($f_{vis}=1.0$), the characteristic size is usually determined by its thickness (rather than its length), which is close to mantle lithosphere thickness (14, 25, 28). Under this condition, the model evolution is mainly controlled by the F and the ΔT_p, which jointly determine CLM buoyancy, and the latter, the viscosity of the mantle. Accordingly, in the main test, we mainly focus on the influences of ΔT_p and F on the models’ evolution.
3. Sensitivity test

In the sensitivity test, we address the impact of different parameters, such as the block length and thickness, ΔT_p, V_{surf}, F, η_{max} and f_{vis} used in different model setups are given in Table S2.

Table S2. Model setups for sensitivity tests (– denotes values consistent with those in the reference model).

Length (km)	Thickness (km)	V_{surf} (cm/yr)	η_{max} (Pas)	f_{vis}	F (%)	ΔT_p (°C)
Reference model	500	160	3	10^{21}	30	150
Group test block	100, 200, 300,	-	-	-	-	-
length	400	-	-	-	-	-
Group test block thickness	-	60, 110	-	-	-	-
Group test V_{surf}	-	-	0, 1, 5, 10	-	-	-
Group test η_{max}	-	-	-	10^{21}, 10^{24}	-	-
				10^{24}	-	-
Group test f_{vis}	-	-	-	-	0.1	-
Group test f_{vis}	-	-	-	-	0.5	-
Group test F	-	-	-	-	0, 10, 20, 40,	50
Group test ΔT_p	-	-	-	-	-	0, 50, 100, 200,
						250, 300

The mixing degree of the foundered CLM with the ambient mantle can be quantified by lowering of standard deviation of CLM concentration (std_{CLM}) in the mantle:

\[
\text{std}_{\text{CLM}} = \sqrt{\frac{\sum_{i=1}^{n}(C_{\text{CLM}} - \bar{C}_{\text{CLM}})^2}{n}}
\]

(10)

where C_{CLM} is the concentration of CLM in each mesh element, \bar{C}_{CLM} the average concentration of CLM in the mantle, n the total number of elements for statistics, t the model time. This std_{CLM} value can be normalized according to its initial value $\text{std}_{\text{CLM}} t=0$.

The mixing of the CLM with the ambient mantle can lead to the decrease of std_{CLM}. Therefore, if the mixing is sensitive to some parameters, the std_{CLM} can be also sensitive to this parameter. Fig. S3 shows the sensitivity of std_{CLM} to ΔT_p, V_{surf}, F, η_{max}, block length, thickness, and f_{vis}. It indicates that the surface velocity V_{surf} and maximum CLM viscosity η_{max}, have negligible influence (Fig. S3).
Fig. S3. Sensitivity test. Chemical heterogeneities influenced by A, different CLM depletion degrees; B, different mantle potential temperatures; C, different maximum viscosity limiters; and D, different surface velocities. E, different block length; F, different block thickness; and G, different viscosity weakening factors.

The test also indicates that the evolution of the chemical anomalies is mainly influenced by the depletion degree (F) of the foundered CLM, the T_p of the ambient mantle, the size (thickness and length) of the block, and the weakening factor (f_{vis}) of the mantle. In these factors, the F and ΔT_p influence the whole process of the recycling, including the viability of relamination, whereas the size and f_{vis} mainly influence the sinking depth, CLM segment size, episode number and duration of upwelling and do not change the feasibility of relamination. For instance, Fig. S4 and Fig. S5 show some examples of these model results. They show that the characteristic size (diameter of the maximum inscribed circle, minimum value of length and thickness, usually determined by the thickness rather than length) of the foundered CLM influences the volume of the foundered CLM and thus the model evolution (Fig. S4 and Fig. S5). Small blocks are easier to be heated by the mantle to counteract its negative buoyancy, so upwelling occurs earlier. Smaller initial block sizes usually result in shallower sinking depth, and smaller lithospheric fragments yet fewer upwelling episodes (Fig. S4 and Fig. S5). Thus,
small blocks usually result in small heterogeneities in the relaminated CLM. In models with block length (200-500 km) > block thickness (160 km), the increase of block length does not significantly influence the model evolution (Fig. S3 E and Fig. S4). Thus, the evolution of a relatively short CLM (~500 km long) is likely to be representative. The weakening factor (f_{vis}) is also very important. Weaker mantle rheology ($f_{vis} < 1.0$) can also lead to smaller lithospheric fragments, more upwelling episodes and stronger mixing (Fig. S4 and Fig. S5). However, this kind of weakening mainly works in regions with melts or fluids.

Fig. S4. Evolution of CLM influenced by different block length, thickness, and weakening factor. In the reference model, block length=500 km, block thickness=160 km, $f_{vis}=1.0$. In other models, only one parameter is changed relative to the reference model, and the changed parameter is given in the related panel.
Fig. S5. Snapshots of CLM evolution influenced by different block length, thickness, and weakening factor. A-F, the reference model, block length=500 km, block thickness=160 km, $f_{vis}=1.0$. In other models, only one parameter is changed relative to the reference model. G-L, block length=100 km. M-R, block thickness=60 km. S-X, weakening factor $f_{vis}=0.1$.

For a common cratonic lithosphere sinking in the dry ambient mantle ($f_{vis}=1.0$), the characteristic size is usually determined by its thickness (rather than its length), which is close to mantle lithosphere thickness. Under this condition, the model evolution is mainly controlled by the F and the ΔT_p, which jointly determine CLM buoyancy, and the latter, the viscosity of the mantle. Accordingly, in the main test, we mainly focus on the influences of ΔT_p and F on the models’ evolution.

4. The role of excess mantle temperature ΔT_p and initial depletion degree F

In the main test, the values of ΔT_p and F investigated are given in Table S3.
Table S3. Key parameters changed in different model setups for investigation of the fate of CLM.

Run	ΔT_{p} (ºC)	F (%)
01	0	0
02	0	10
03	0	20
04	0	30
05	0	40
06	0	50
07	50	0
08	50	10
09	50	20
10	50	30
11	50	40
12	50	50
13	100	0
14	100	10
15	100	20
16	100	30
17	100	40
18	100	50
19	150	0
20	150	10
21	150	20
22	150	30
23	150	40
24	150	50
25	200	0
26	200	10
27	200	20
28	200	30
29	200	40
30	200	50
31	250	0
32	250	10
33	250	20
34	250	30
35	250	40
36	250	50
37	300	0
38	300	10
39	300	20
40	300	30
The detailed evolution of the Run01 to Run 42 is shown in Fig. S6 below.
Fig. S6. Evolution of CLM influenced by different F and ΔTp during delamination, relamination, and mantle mixing. F and ΔTp values of each run are given in Table S3. In white to red, the concentration of CLM tracers at a depth relative to their initial concentration at 40-160 km depths, across the model in time. The green dashed line denotes the average depth of the 1350 °C isotherm. This indicates the thickness of the thermal lithosphere, as it grows in the later stages of the simulations, and is less meaningful during the initial stages of the model, sinking, and stagnation.

SI References

1. N. Tosi, D. A. Yuen, N. de Koker, R. M. Wentzcovitch, Mantle dynamics with pressure- and temperature-dependent thermal expansivity and conductivity. *Physics of the Earth and Planetary Interiors* 217, 48-58 (2013).

2. U. R. Christensen, D. A. Yuen, The interaction of a subducting lithospheric slab with a chemical or phase boundary. *Journal of Geophysical Research: Solid Earth (1978–2012)* 89, 4389-4402 (1984).

3. H. Čížková, C. R. Bina, Effects of mantle and subduction-interface rheologies on slab stagnation and trench rollback. *Earth and Planetary Science Letters* 379, 95-103 (2013).

4. S. Bernstein, P. B. Kelemen, K. Hanghøj, Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene. *Geology* 35, 459-462 (2007).

5. C. A. Lee, Compositional variation of density and seismic velocities in natural peridotites at STP conditions: Implications for seismic imaging of compositional heterogeneities in the upper mantle. *Journal of Geophysical Research: Solid Earth* 108 (2003).

6. G. Hirth, D. Kohlstedt, Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. *Inside the subduction Factory* 138, 83-105 (2004).

7. R. Agrusta, J. Hunen, S. Goes, The effect of metastable pyroxene on the slab dynamics. *Geophysical Research Letters* 41, 8800-8808 (2015).

8. H. Čížková, A. P. van den Berg, W. Spakman, C. Matyska, The viscosity of Earth’s lower mantle inferred from sinking speed of subducted lithosphere. *Physics of the Earth and Planetary Interiors* 200, 56-62 (2012).

9. J. Dannberg, S. V. Sobolev, Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept. *Nature Communications* 6, 6960 (2015).

10. R. F. Katz, M. Spiegelman, C. H. Langmuir, A new parameterization of hydrous mantle melting. *Geochemistry, Geophysics, Geosystems* 4 (2003).

11. D. Andrault, et al., Deep and persistent melt layer in the Archaean mantle. *Nature Geoscience* 11, 139-143 (2018).

12. F. A. Capitanio, O. Nebel, P. A. Cawood, Thermochemical lithosphere differentiation and the origin of
13. J. H. Bédard, A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. *Geochimica Et Cosmochimica Acta* **70**, 1188-1214 (2006).
14. P. Chowdhury, T. Gerya, S. Chakraborty, Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth. *Nature Geoscience* **10**, 698-703 (2017).
15. T. E. Johnson, M. Brown, B. J. P. Kaus, J. A. Vantongeren, Delamination and recycling of Archaean crust caused by gravitational instabilities. *Nature Geoscience* **7**, 1028-1035 (2013).
16. A. P. Beall, L. Moresi, T. Stern, Dripping or Delamination? A Range of Mechanisms for Removing the Lower Crust or Lithosphere. *Geophysical Journal International* (2017).
17. P. Bird, Continental delamination and the Colorado Plateau. *Journal of Geophysical Research: Solid Earth (1978–2012)* **84**, 7561-7571 (1979).
18. T. Duretz, T. V. Gerya, Slab detachment during continental collision: Influence of crustal rheology and interaction with lithospheric delamination. *Tectonophysics* **602**, 124-140 (2013).
19. O. H. Göğüş, R. N. Pysklywec, Near-surface diagnostics of dripping or delaminating lithosphere. *Journal of Geophysical Research: Solid Earth (1978–2012)* **113**, 288-303 (2008).
20. C. A. Lee, D. L. Anderson, Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. *Science Bulletin* **60**, 1141-1156 (2015).
21. Z. H. Li, M. Liu, T. Gerya, Lithosphere delamination in continental collisional orogens: A systematic numerical study. *Journal of Geophysical Research Solid Earth* **121**, 5186-5211 (2016).
22. Y. Shi, Z. Li, L. Chen, J. P. Morgan, Connection Between a Subcontinental Plume and the Mid-Lithospheric Discontinuity Leads to Fast and Intense Craton Lithospheric Thinning. *Tectonics* **40**, e2021T-e6711T (2021).
23. T. Stern, G. Houseman, M. Salmon, L. Evans, Instability of a lithospheric step beneath western North Island, New Zealand. *Geology* **41**, 423-426 (2013).
24. Z. Wang, T. M. Kusky, The importance of a weak mid-lithospheric layer on the evolution of the cratonic lithosphere. *Earth-Science Reviews* **190**, 557-569 (2019).
25. Z. Wang, T. Kusky, F. Capitanio, On the role of lower crust and mid-lithosphere discontinuity for cratonic lithosphere delamination and recycling. *Geophysical Research Letters* **15**, 7425-7433 (2018).
26. M. D. Ballmer, N. C. Schmerr, T. Nakagawa, J. Ritsema, Compositional mantle layering revealed by slab stagnation at ~1000-km depth. *Science Advances* **1**, e1500815 (2015).
27. L. Peng, L. Liu, L. Liu, The fate of delaminated cratonic lithosphere. *Earth and Planetary Science Letters* **594**, 117740 (2022).
28. O. H. Göğüş, R. N. Pysklywec, Mantle lithosphere delamination driving plateau uplift and synconvergent extension in eastern Anatolia. *Geology* **36**, 723-726 (2008).