Abstract. In this paper, we introduce and study some new classes of α weakly generalized locally closed sets in the context of intuitionistic fuzzy topological spaces.

1. Introduction

Fuzzy set was proposed by Zadeh [8] in 1965 and fuzzy topology by Chang [4] in 1968, Atanassov [1] proposed intuitionistic fuzzy set (IFS) in 1986. In 1997, Coker [5] introduced the concept of intuitionistic fuzzy topological space. The first step of locally closedness topological space was done by Bourbaki [3]. Ganster and Reilly [6] used locally closed sets to define LC-continuity and LC-irresoluteness. Sundaram [2] introduced the concepts of generalized locally closed sets, GLC-continuous maps, GLC-irresolute maps and investigated some of their properties. The purpose of this paper is to introduce and study the concepts of new classes of intuitionistic fuzzy sets namely intuitionistic fuzzy α weakly generalized locally closed set, intuitionistic fuzzy α weakly generalized locally closed* set, intuitionistic fuzzy α weakly generalized locally closed** set and study some of their properties. For terms and notations used but left undefined we refer to [1, 5, 7].

2. Preliminaries

Definition 2.1: [7] An IFS $A = \{(x, \mu_A(x), \nu_A(x)) / x \in X\}$ in an IFTS (X, τ) is said to be an intuitionistic fuzzy α weakly generalized closed set (IFαWGCS in short) if $\text{cl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is an IFαOS in X.

The family of all IFαWGCSs of an IFTS (X, τ) is denoted by IFαWGC(X).

Definition 2.2: [7] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy α weakly generalized interior and intuitionistic fuzzy α weakly generalized closure are defined by

$\alpha\text{wgint}(A) = \cup \{ G / G \text{ is an IF} \alpha \text{WGOS in } X \text{ and } G \subseteq A \}$,

$\alpha\text{wgcl}(A) = \cap \{ K / K \text{ is an IF} \alpha \text{WGCS in } X \text{ and } A \subseteq K \}$.
Definition 2.3: [7] An IFTS \((X, \tau)\) is said to be an intuitionistic fuzzy \(\alpha\ wgT_{1/2}\) space (IF\(\alpha\ wgT_{1/2}\) space in short) if every IF\(\alpha\ WGCS\) in \(X\) is an IFCS in \(X\).

Result 2.4: [7] If an IFTS \((X, \tau)\) is an IF\(\alpha\ wgT_{1/2}\) space, then for every subset \(A\) of \(X\), IF\(\alpha\ wgcl(A)\) is an IFCS in \(X\).

3. \(\alpha\) weakly generalized locally closed sets in intuitionistic fuzzy topological spaces

In this section, we introduce three new classes of intuitionistic fuzzy locally closed sets namely intuitionistic fuzzy \(\alpha\) weakly generalized locally closed sets, intuitionistic fuzzy \(\alpha\) weakly generalized locally closed* sets, intuitionistic fuzzy \(\alpha\) weakly generalized locally closed** sets and study some of their properties.

Definition 3.1: An IFS \(A = \langle x, \mu_A, v_A \rangle\) of an IFTS \((X, \tau)\) is said to be

(i) intuitionistic fuzzy \(\alpha\) weakly generalized locally closed set (IF\(\alpha\ WGlcs\) in short) if \(A = B \cap C\) where \(B = \langle x, \mu_B, v_B \rangle\) is an IF\(\alpha\ WGOS\) and \(C = \langle x, \mu_C, v_C \rangle\) is an IF\(\alpha\ WGCS\) in \(X\),

(ii) intuitionistic fuzzy \(\alpha\) weakly generalized locally closed* set (IF\(\alpha\ WGlc*s\) in short) if \(A = B \cap C\) where \(B = \langle x, \mu_B, v_B \rangle\) is an IF\(\alpha\ WGOS\) and \(C = \langle x, \mu_C, v_C \rangle\) is an IFCS in \(X\),

(iii) intuitionistic fuzzy \(\alpha\) weakly generalized locally closed** set (IF\(\alpha\ WGlc**s\) in short) if \(A = B \cap C\) where \(B = \langle x, \mu_B, v_B \rangle\) is an IFOS and \(C = \langle x, \mu_C, v_C \rangle\) is an IF\(\alpha\ WGCS\) in \(X\).

The family of all IF\(\alpha\ WGlcs\) (respectively IF\(\alpha\ WGlc*s, IF\(\alpha\ WGlc**s\)) of an IFTS \((X, \tau)\) is denoted by IF\(\alpha\ WGLC(X)\) (respectively IF\(\alpha\ WGLC*(X), IF\(\alpha\ WGLC**(X))\).

Theorem 3.2: For an IFTS \((X, \tau)\), the following inclusions hold.

(i) IFLC(X) \(\subseteq\) IF\(\alpha\ WGLC(X)\).

(ii) IFLC(X) \(\subseteq\) IF\(\alpha\ WGLC**(X) \(\subseteq\) IF\(\alpha\ WGLC(X)\).

(iii) IFLC(X) \(\subseteq\) IF\(\alpha\ WGLC**(X) \(\subseteq\) IF\(\alpha\ WGLC(X)\).

Proof: Obvious.

Example 3.3: Let \(X = \{a, b\}\) be a nonempty set. Let \(T_1 = \langle x, \left(\begin{array}{c} a \\ 0.1 \\ 0.2 \\ 0.4 \\ 0.5 \end{array}\right), \left(\begin{array}{c} a \\ 0.4 \\ 0.5 \end{array}\right)\rangle\) and \(T_2 = \langle x, \left(\begin{array}{c} a \\ 0.2 \\ 0.3 \\ 0.4 \end{array}\right), \left(\begin{array}{c} a \\ 0.3 \\ 0.4 \end{array}\right)\rangle\) be the IFSs of \(X\). Then the family \(\tau = \{0, T_1, T_2, 1\}\) is an IFT on \(X\). The IFSs \(\begin{array}{c} E = T_1 \cap T_2 \cap T_1 \\ F = T_2 \cap T_1 \end{array}\) are intuitionistic fuzzy \(\alpha\) weakly generalized locally closed set, intuitionistic fuzzy \(\alpha\) weakly generalized locally closed** set and intuitionistic fuzzy \(\alpha\) weakly generalized locally closed** set in \(X\).

Theorem 3.4: Let \((X, \tau)\) be an IF\(\alpha\ wgT_{1/2}\) space. Then the following statements hold.

(i) Every IF\(\alpha\ WGlcs\) is an IFICS in \(X\).

(ii) Every IF\(\alpha\ WGlc*s\) is an IFICS in \(X\).

(iii) Every IF\(\alpha\ WGlc**s\) is an IFICS in \(X\).

Proof: Obvious.
Theorem 3.5: Every intuitionistic fuzzy α weakly generalized locally closed* set and intuitionistic fuzzy α weakly generalized locally closed** set is an intuitionistic fuzzy α weakly generalized locally closed set but not conversely.

Proof: Obvious

The converse of the above Theorem need not be true in general as seen from the following examples.

Example 3.6: Let $X = \{a, b\}$ be a nonempty set. Let $T_1 = \left\langle x, \left(\begin{array}{c}
\frac{a}{0.3}, \frac{b}{0.4} \\
\frac{a}{0.6}, \frac{b}{0.5}
\end{array}\right)\right\rangle$ and $T_2 = \left\langle x, \left(\begin{array}{c}
\frac{a}{0.3}, \frac{b}{0.4} \\
\frac{a}{0.5}, \frac{b}{0.5}
\end{array}\right)\right\rangle$ be the IFSs of X. Then the family $\tau = \{0, T_1, T_2, 1\}$ is an IFT on X. Let the IFS $A = \left\langle x, \left(\begin{array}{c}
\frac{a}{0.3}, \frac{b}{0.3} \\
\frac{a}{0.6}, \frac{b}{0.6}
\end{array}\right)\right\rangle$ be an IFWGCS in X. The IFS $E = T_2 \cap A = \left\langle x, \left(\begin{array}{c}
\frac{a}{0.3}, \frac{b}{0.3} \\
\frac{a}{0.6}, \frac{b}{0.6}
\end{array}\right)\right\rangle$ is an intuitionistic fuzzy α weakly generalized locally closed set but not an intuitionistic fuzzy α weakly generalized locally closed* set in X.

Example 3.7: Let $X = \{a, b\}$ be a nonempty set. Let $T_1 = \left\langle x, \left(\begin{array}{c}
\frac{a}{0.7}, \frac{b}{0.4} \\
\frac{a}{0.5}, \frac{b}{0.5}
\end{array}\right)\right\rangle$ and $T_2 = \left\langle x, \left(\begin{array}{c}
\frac{a}{0.7}, \frac{b}{0.4} \\
\frac{a}{0.5}, \frac{b}{0.5}
\end{array}\right)\right\rangle$ be the IFSs of X. Then the family $\tau = \{0, T_1, T_2, 1\}$ is an IFT on X. Let the IFS $A = \left\langle x, \left(\begin{array}{c}
\frac{a}{0.8}, \frac{b}{0.7} \\
\frac{a}{0.5}, \frac{b}{0.5}
\end{array}\right)\right\rangle$ be an IFαWGCS in X. The IFS $E = A^c \cap T_2^c = \left\langle x, \left(\begin{array}{c}
\frac{a}{0.4}, \frac{b}{0.7} \\
\frac{a}{0.5}, \frac{b}{0.5}
\end{array}\right)\right\rangle$ is an intuitionistic fuzzy α weakly generalized locally closed set but not an intuitionistic fuzzy α weakly generalized locally closed** set in X.

Theorem 3.8: Let (X, τ) be an IFαWG$T_{1/2}$ space. Then the following statements hold.

(i) Every IFαWGGlcs is an IFαWGGlcs* in X.

(ii) Every IFαWGGlcs is an IFαWGGlcs** in X.

Proof: Obvious.

Remark 3.9: IFαWGGlcs* and IFαWGGlcs** are independent to each other in general as seen from the following example.

Example 3.10: Let $X = \{a, b\}$ be a nonempty set. Let $T_1 = \left\langle x, \left(\begin{array}{c}
\frac{a}{0.1}, \frac{b}{0.4} \\
\frac{a}{0.6}, \frac{b}{0.5}
\end{array}\right)\right\rangle$ and $T_2 = \left\langle x, \left(\begin{array}{c}
\frac{a}{0.1}, \frac{b}{0.4} \\
\frac{a}{0.5}, \frac{b}{0.6}
\end{array}\right)\right\rangle$ be the IFSs of X. Then the family $\tau = \{0, T_1, T_2, 1\}$ is an IFT on X. Let the IFS $A = \left\langle x, \left(\begin{array}{c}
\frac{a}{0.1}, \frac{b}{0.2} \\
\frac{a}{0.7}, \frac{b}{0.8}
\end{array}\right)\right\rangle$ be an IFαWGCS in X. The
IFS $E = T_2 \cap A = \left\{ x \left(\begin{array}{l} \frac{a}{0.1} \cdot \frac{b}{0.2} \\ \frac{a}{0.7} \cdot \frac{b}{0.8} \end{array} \right) \right\}$ is an IFαWGlc**s but not an IFαWGlc*s in X. The
IFS $F = A^c \cap T_2^c = \left\{ x \left(\begin{array}{l} \frac{a}{0.5} \cdot \frac{b}{0.6} \\ \frac{a}{0.1} \cdot \frac{b}{0.4} \end{array} \right) \right\}$ is an IFαWGlc*s but not an IFαWGlc**s in X.

Remark 3.11: From the above discussions the following implications hold:

However none of the above implication is reversible.

Remark 3.12: The union of two IFαWGlc*s need not be an IFαWGlc*s in general as seen from the following example.

Example 3.13: Let $X = \{a, b\}$ be a nonempty set. Let T_1 be the IFS
of X. Then the family $\tau = \{0, T_1, 1\}$ is an IFT on X. Let the IFSs $A = \left\{ x \left(\begin{array}{l} \frac{a}{0.1} \cdot \frac{b}{0.2} \\ \frac{a}{0.8} \cdot \frac{b}{0.2} \end{array} \right) \right\}$ and $B = \left\{ x \left(\begin{array}{l} \frac{a}{0.6} \cdot \frac{b}{0.7} \\ \frac{a}{0.4} \cdot \frac{b}{0.3} \end{array} \right) \right\}$ be IFαWGClcs in X. The IFS $E = T_1 \cap A = \left\{ x \left(\begin{array}{l} \frac{a}{0.6} \cdot \frac{b}{0.7} \\ \frac{a}{0.4} \cdot \frac{b}{0.3} \end{array} \right) \right\}$ and the IFS $F = T_1 \cap B = \left\{ x \left(\begin{array}{l} \frac{a}{0.6} \cdot \frac{b}{0.7} \\ \frac{a}{0.4} \cdot \frac{b}{0.3} \end{array} \right) \right\}$ are IFαWGlc*s in X. But the IFS $E \cup F = \left\{ x \left(\begin{array}{l} \frac{a}{0.6} \cdot \frac{b}{0.8} \\ \frac{a}{0.4} \cdot \frac{b}{0.2} \end{array} \right) \right\}$ is not an IFαWGlc*s in X.

Theorem 3.14: Let A be an IFαWGlc*s in X and B be an IFαWGOS in X. Then $A \cap B$ is an IFαWGlc**s in X if (X, τ) is an IF$_{awg}$T$_{1/2}$ space.

Proof: Since A is an IFαWGlc*s in X, we have $A = P \cap Q$ where P is an IFαWGOS and Q is an IFαWGCS in X. Now

$A \cap B = (P \cap Q) \cap B = P \cap (Q \cap B) = P \cap (B \cap Q) = (P \cap B) \cap Q$.

Since P and Q are IFαWGOS in X and (X, τ) is an IF$_{awg}$T$_{1/2}$ space, $P \cap B$ is an IFαWGOS in X. Hence $A \cap B$ is an IFαWGlc*s in X.

Theorem 3.15: Let A be an IFαWGlc**s in X and B be an IFαWGOS in X. Then $A \cap B$ is an IFαWGlc**s in X if (X, τ) is an IF$_{awg}$T$_{1/2}$ space.
Proof: Since A is an IF\alpha WGlc\ast{s} in X, we have A = P \cap Q where P is an IF\alpha WGOS and Q is an IFCS in X. Now

\[A \cap B = (P \cap Q) \cap B = P \cap (Q \cap B) = P \cap (B \cap Q) = (P \cap B) \cap Q. \]

Since P and Q are IF\alpha WGOS in X and (X, \tau) is an IF\alpha wg T_{1/2} space, P \cap B is an IF\alpha WGOS in X. Hence A \cap B is an IF\alpha WGlc\ast{s} in X.

4. References
[1] Atanassov K T 1986 Intuitionistic fuzzy sets Fuzzy Sets and Systems vol 20 pp 87-96.
[2] Balachandran K Sundaram P and Maki H 1996 Generalized locally closed sets and GLC-continuous functions Indian J. Pure appl. Math vol 27 pp 235-244.
[3] Bourbaki N 1966 General Topology Addison-Wesley, Reading, Mass.
[4] Chang C L 1968 Fuzzy topological spaces J.Math.Anal.Appl., vol 24 pp 182-190.
[5] Coker D 1997 An introduction to intuitionistic fuzzy topological spaces Fuzzy Sets and Systems vol 88 pp 81-89.
[6] Ganster M and Reilly I L 1989 Locally closed sets and LC-continuous functions International Journal of Mathematics and Mathematical Sciences vol 12 pp 417-424.
[7] Krishna Moorthy R Meena piyaradharshi S Rajasingh J and Perumal R \alpha-weakly generalized closed sets in intuitionistic fuzzy topological spaces (communicated).
[8] Zadeh L A 1965 Fuzzy sets Information and control vol 8 pp 338-353.
