Supplementary Information for
An integrative skeletal and paleogenomic analysis of prehistoric stature variation suggests relatively reduced health for early European farmers

Stephanie Marciniak*, Christina M. Bergey, Ana Maria Silva, Agata Haluszko, Mirosław Furmanek, Barbara Veselka, Petr Velemínský, Giuseppe Vercellotti, Joachim Wahl, Gunita Zariņa, Cristina Longhi, Jan Kolář, Rafael Garrido-Pena, Raúl Flores-Fernández, Ana M. Herrero-Corral, Angela Simalcsik, Werner Müller, Alison Sheridan, Žydrūnė Miliauskienė, Rimantas Jankauskas, Vyacheslav Moiseyev, Kittí Köhler, Ágnes Király, Beatriz Gamarra, Olivia Cheronet, Vajk Szeverényi, Viktória Kiss, Tamás Szeniczey, Krisztián Kiss, Zsuzsanna K. Zoffmann †, Judit Koós, Magdolna Hellebrandt, Robert M. Maier, László Domboróczki, Cristian Virag, Mario Novak, David Reich, Tamás Hajdu, Noreen von Cramon-Taubadel, Ron Pinhasi, and George H. Perry*

† Deceased

*Corresponding authors: ghp3@psu.edu, szm316@psu.edu

This PDF file includes:
- Figures S1 to S12
- Tables S1 to S21
- Legend for Dataset S1
- SI References

Other supplementary materials for this manuscript include the following:
- Dataset S1
Fig S1. Linear regressions and residuals of osteological height and genetic height score with sex as a co-variate without deamination filtering. **A)** The relationship between polygenic height score and estimated osteological stature (cm) for females and males. **B)** Residuals of the relationship between polygenic height score and osteological height with sex as a co-variate for all individuals, by cultural period. Mean and median are represented by the black and blue dashed lines, respectively. **C)** Residuals of the relationship between polygenic height score and osteological height with sex as a co-variate for females and males plotted separately. Mean is represented by a thin line and median by the rectangle. Females are represented by circles and males by squares. Full results in Table S3.
Residuals of osteological height and genetic height score with sex, latitude and longitude as co-variates.

A) For females and males combined, pre-Neolithic individuals (average residual = +1.94 ± 7.2 cm) were ~3.82 cm taller than expected relative to Neolithic individuals (average residual = -1.88 ± 7.1 cm; \(P=0.043 \)). The average osteological vs. genetic height score residual then increased steadily in the Copper Age (+2.03 cm relative to the Neolithic), Bronze Age (+2.59 cm), and Iron Age (+3.39 cm). Post-Neolithic individuals were +2.22 cm taller on average relative to Neolithic individuals (\(P=0.067 \)). Mean is in black and median is the blue dashed line.

B) Females and males represented separately across cultural periods. Latitude gradient (north to south) is indicated. Mean is represented by a thin line and median by the rectangle. Females are represented by circles and males by squares. Full results in Table S7.
Fig. S3. Residuals of osteological height and genetic height score with sex as a co-variate. Females (circles) and males (squares) are plotted side by side based on the residuals of the relationship between polygenic height score and osteological height with sex as a co-variate. Mean is represented by the thin line and median by the rectangle. Full results in Table S6.
Fig. S4. Replicability of the residuals of osteological height and genetic height score with sex as a co-variate using long bone lengths. Residuals of the relationship between polygenic height score and long bone lengths for the femur (A), tibia (B), humerus (C) and radius (D) with sex as a co-variate for all individuals, by cultural period. Mean is represented by the thin line and median by the rectangle. Females are represented by circles and males by squares. Full results in Table S8.
Gender	Culture	Femur Length (cm)	Tibia Length (cm)	Humerus Length	Radius Length
Females	Upper Paleolithic	r²=0.065, P=0.092	r²=0.066, P=0.035	r²=0.119, P=0.040	r²=-0.062, P=0.084
Males	Upper Paleolithic	r²=0.076, P=0.028	r²=0.076, P=0.019	r²=0.087, P=0.056	r²=0.066, P=0.035

Fig. S5. Linear regressions of osteological height and genetic height score using long bone lengths. The relationship between polygenic height score and long bone length (cm) for females and males for the femur (A), tibia (B), humerus (C) and radius (D) by cultural period. Females are represented by circles and males by squares.
Fig. S6. Residuals of osteological height and genetic height score with sex and ancestries as co-variates. Genetic ancestries based on four MDS clusters are included as co-variates in the main linear model. A) Females and males combined, mean is in black and median is the blue dashed line. B) Females and males represented separately, with mean as the thin line and median as the rectangle. Females are represented by circles and males by squares. Full results in Table S9.
Fig. S7. Residuals of osteological height and genetic height score with sex as a co-variate for individuals with 1, 2, 3 paleopathological indicators of stress (n=58 individuals). Residuals of osteological height and genetic height score with sex as a co-variate for 58 individuals who could be assessed for all three non-specific stress indicators. Individuals with 1, 2, 3 paleopathological indicators of stress are represented for females (circles) and males (squares). The mean is represented by the black line and the median the blue dashed line. Full results in Table S11.
A. Presence/absence of paleopathological indicators of stress (healed) and the relationship between osteological height and polygenic height score across cultural periods (affected/observed).

B. Presence/absence of porotic hyperostosis and the relationship between osteological height and polygenic height score across cultural periods (affected/observed).

C. Presence/absence of cribra orbitalia and the relationship between osteological height and polygenic height score across cultural periods (affected/observed).

Fig. S8. Residuals of osteological height and genetic height score with sex as a co-variate for individuals with healed cribra orbitalia and healed porotic hyperostosis. A) Residuals of osteological height and genetic height score with sex as a co-variate are compared to individuals with healed cribra orbitalia and healed porotic hyperostosis. The data is also represented across cultural periods for porotic hyperostosis (B) and cribra orbitalia (C). Means are represented by the thin lines. Numbers above the bars indicate number of individuals. Full results in Tables S12 and S13.
Fig. S9. Residuals of osteological height and genetic height score with sex as a co-variate for individuals with linear enamel hypoplasia and porotic hyperostosis across cultural periods. Comparison of the residuals generated from the main linear model to individuals with paleopathological indicators across cultural periods for linear enamel hypoplasia (A) and porotic hyperostosis (B). Means are represented by the thin lines. Numbers above the bars indicate number of individuals. Full results in Table S14.
Fig. S10. Residuals of osteological height and genetic height score for UK Biobank GWAS cohort individuals and those excluded from the GWAS cohort. Predictive accuracy between phenotypic and predicted height (r^2) for two sample sets (n=361,182 GWAS and n=4,712 non-GWAS individuals), each stratified by sex and for both sexes combined. A set of 784,256 genotyped SNPs were subject to LD-clumping and 5,183 SNPs were retained at the genome-wide significance level. For females and males combined, the non-GWAS individuals (right panel) exhibit slightly lower variance relative to the GWAS cohort (left panel). Males are represented by orange squares and females by blue circles.
A. Diagnostic residual plots for deamination filtered data set

B. Diagnostic residual plots for non-deamination filtered data set

Fig. S11. Diagnostic residual plots for the linear model of osteological height and genetic height score with sex as a co-variate. Residual diagnostic plots generated using ‘ggResidpanel’ (v0.3.0) for the deamination filtered data set (A) and the non-deamination filtered data set (B).
Fig. S12. Residuals of osteological height and genetic height score with sex and ancestries (MDS axes 5 to 8) as co-variates. Genetic ancestries based on 5 (A), 6 (B), 7 (C) and 8 (D) MDS clusters are included as co-variates in the main linear model for females and males combined. Mean is in black and median is the blue dashed line. Females are represented by circles and males by squares. Full results in Table S21.
Skeletal element	Region	Sex	Equation
Femur	All	Males	2.72(femur_length)+42.85
		Females	2.69(femur_length)+43.56
Tibia	North	Males	3.09(tibia_length)+52.04
		Females	2.92(tibia_length)+56.94
	South	Males	2.78(tibia_length)+60.76
		Females	3.05(tibia_length)+49.68
Humerus	All	Males	3.83(humerus_length)+41.42
		Females	3.38(humerus_length)+54.6
Radius	All	Males	4.85(radius_length)+47.46
		Females	4.2(radius_length)+83.08

Table S1. Average osteological heights (cm, with standard deviation) across cultural periods based on stature regression formula from Ruff et al. (2012)\(^1\).
Cultural period comparisons	P-value	df	t	95% CI
Pre-Neolithic - Neolithic	0.012	43.482	2.61	1.096 8.537
Neolithic - Post-Neolithic	0.046	74.825	2.02	0.034 4.895

Combined Comparisons	Mean of residuals	Std. dev.
Pre-Neolithic	2.636	7.244
Upper Paleolithic	5.112	8.842
Mesolithic	1.316	6.163
Neolithic	-2.18	7.195
Copper Age	-0.19	5.765
Bronze Age	1.201	5.695
Iron Age	1.979	5.895
Post-Neolithic	0.284	5.748

Table S2. Comparisons of the residuals from a linear model of osteological stature and sex
Combined Comparisons

	P-value	df	t	95% CI
Pre-Neolithic - Neolithic	0.016	45.273	2.504	0.891 - 8.211
Neolithic - Post-Neolithic	0.037	73.057	-2.123	-5.026 - 0.159

Females: Comparisons

	P-value	df	t	95% CI
Pre-Neolithic - Neolithic	0.053	17.348	2.072	-0.104 - 12.477
Neolithic - Post-Neolithic	0.048	20.368	-2.1	-8.576 - -0.035

Males: Comparisons

	P-value	df	t	95% CI
Pre-Neolithic - Neolithic	0.1238	24.981	1.593	-1.100 - 8.603
Neolithic - Post-Neolithic	0.266	52.785	1.125	-1.353 - 4.810

Combined Comparisons

	Mean of residuals	Std. dev.
Pre-Neolithic	2.337	7.047
Upper Paleolithic	4.484	8.653
Mesolithic	1.192	6.047
Neolithic	-2.214	7.254
Copper Age	0.009	5.523
Bronze Age	1.092	5.819
Iron Age	1.955	5.059
Post-Neolithic	0.378	5.617

Females: Comparisons

	Mean of residuals	Std. dev.
Pre-Neolithic	3.291	7.013
Upper Paleolithic	8.334	10.396
Mesolithic	0.694	5.694
Neolithic	-3.795	7.197
Copper Age	0.451	5.774
Bronze Age	0.643	4.682
Iron Age	3.88	5.807
Post-Neolithic	0.51	5.4

Males: Comparisons

	Mean of residuals	Std. dev.
Pre-Neolithic	2.302	7.334
Upper Paleolithic	3.201	8.678
Mesolithic	1.628	6.699
Neolithic	-1.449	7.274
Copper Age	-0.352	5.373
Bronze Age	1.377	6.544
Iron Age	-0.611	2.984
Post-Neolithic	0.279	5.825

Table S3. Comparisons of the residuals from a linear model of osteological stature and polygenic height score with sex as a co-variate for data not filtered for deamination.
Individual	Deamination_filtered	No_deamination_filter																																										
Ajvide58	-7.51E-05	-0.000125735																																										
BDB001	-4.30E-05	3.39E-05																																										
Bichon	1.44E-05	-9.64E-06																																										
Brandysek26	1.89E-05	-4.12E-05																																										
Brandysek71	-0.000231567	-0.00023012																																										
BUD4a	-0.000207535	-0.000161335																																										
Canes1	5.42E-05	2.36E-05																																										
Chan_Meso	-9.58E-06	8.98E-06																																										
Cheddar man	-7.87E-05	-5.95E-05																																										
CSAT19a	1.36E-06	5.52E-05																																										
Donkalnis1	7.37E-05	5.19E-05																																										
Donkalnis4	0.000272809	2.54E-05																																										
Donkalnis6	-2.57E-05	-1.38E-05																																										
Dzielnica243	0.000195233	0.000188845																																										
ELMiron	4.15E-05	4.09E-05																																										
GB1_Eneo	-0.000261064	-0.000276753																																										
GEN15a	0.000140877	0.000246451																																										
GEN16a	-0.000160559	-0.000329706																																										
GEN58	-0.000156011	-8.13E-05																																										
GEN59	-9.00E-05	-0.000147259																																										
GEN62	2.29E-05	-1.49E-05																																										
GEN71	-0.000111029	-9.34E-05																																										
GEN72	0.000164855	0.000106642																																										
Gyvakarai	8.82E-05	0.00013729																																										
HAJE7a	-0.000234718	-0.000229872																																										
Hume21	7.92E-05	-8.60E-05																																										
Hume4	0.000183755	4.20E-05																																										
Hume5	-0.000182867	-0.000233154																																										
Hung127	-3.35E-05	-9.22E-05																																										
Hung130	0.0001407	6.15E-05																																										
Hung136	-0.000147448	-6.37E-05																																										
Hung137	-0.000249027	-0.000275379																																										
Hung148	0.000348272	0.000306409																																										
Hung149	0.000150221	5.48E-05																																										
Hung152	0.000316939	0.000306																																										
Hung154	1.41E-05	-0.000119496																																										
Hung155	-0.000196275	-0.000132634																																										
Hung160	-4.89E-05	-0.000112089																																										
Hung162	-0.000270412	-0.000323389																																										
Hung331	0.000233155	0.000229946																																										
Hung849	-0.000213957	-0.000213362																																										
Hung969	-0.000162083	-7.11E-05																																										
Iwiny83	-0.000179239	-0.000224765																																										
JAG06	-9.27E-05	-0.000107996																																										
Location	Value 1	Value 2																																										
--------------	-------------	-------------																																										
Jinonice59	0.000103694	0.000114679																																										
Jinonice84a	-0.000103032	8.72E-05																																										
Jinonice88	0.000115584	7.13E-05																																										
Jinonice94	0.000170819	0.000217661																																										
Kivutkalns153	0.000173614	0.000137455																																										
Kivutkalns19	3.70E-05	4.11E-05																																										
Kivutkalns25	2.25E-06	-7.19E-05																																										
Kivutkalns42	0.000135495	5.85E-05																																										
KON2a	-0.000135544	-9.71E-05																																										
Kornice1561	-9.25E-05	-3.34E-05																																										
Kornice34	0.00014143	0.000153345																																										
Kostenki14	3.52E-05	0.000160783																																										
Kretuonas1	4.12E-05	0.000195008																																										
Kretuonas5	-2.05E-05	0.000280834																																										
LaBrana1	-3.58E-05	-8.52E-05																																										
LBK1976	-6.96E-05	5.86E-05																																										
LBK2155	9.66E-05	3.60E-05																																										
LEPI_54E	4.30E-05	8.77E-05																																										
LGCS1a	-1.30E-05	1.91E-05																																										
Loschbour	3.52E-05	1.30E-06																																										
M9984	-4.38E-05	-0.000121324																																										
MA110	-6.51E-05	0.00016102																																										
MC337A	-6.53E-05	0.000182958																																										
MEMO2b	-0.000214316	-0.000233353																																										
MG104	0.000286081	0.000140714																																										
MX191	-4.59E-05	5.87E-05																																										
MX195	0.000190987	0.000204788																																										
MX196	0.000200022	0.000103785																																										
OC1	0.000150312	0.000201249																																										
OC32	4.52E-05	4.18E-05																																										
OHV6.1	-9.02E-05	-0.000134465																																										
OHV7.1	-0.000191489	-0.000269854																																										
Ostuni	8.51E-05	1.65E-05																																										
PADN12	0.000115032	-2.07E-05																																										
Pavlov	7.14E-05	0.00016532																																										
PULE1.13a	0.000133271	8.60E-05																																										
PULE1.18a	-0.00017404	-0.000120638																																										
PULE1.23a	1.09E-05	-8.15E-05																																										
PULE1.24	0.000220781	0.000239844																																										
PULE1.9a	-2.41E-05	0.000158594																																										
Raciborze	-2.57E-05	-6.49E-05																																										
Rathlin1	0.000134032	0.000107336																																										
RDVS02	0.000145888	0.000261309																																										
RDVS116	2.63E-05	0.000126496																																										
RDVS117	-1.73E-05	2.47E-05																																										
Location	RDVS53	RDVS59	RDVS67	RDVS68	RISE154	RISE480	RISE483	RISE486	RISE489	RISE586	SCH011	SCH016	SCH018	Smyadovo12	Smyadovo21	Smyadovo23	Smyadovo26	Smyadovo40	Spiginas2	Spiginas4	Strachow	SunghirSI	Sushina28	Sushina29	Sushina32	Thurston Mains sk 1	TIDO2a	Turlojiške1	Turlojiške3	Tyrolean Iceman	Urzi10	Urzi12	Urzi13	Urzi21	Urzi26	Urzi31	Urzi37	Urzi39	Urzi41	Urzi44	Urzi48	Urzi51	Urzi60	Urzi65a
------------------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	------------	------------	------------	------------	------------	----------	----------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------									
RDVS53	0.000309311	0.00026497																																										
RDVS59	1.28E-05	0.000132088																																										
RDVS67	-0.000240956	-0.000286988																																										
RDVS68	3.42E-05	0.000124182																																										
RISE154	-7.25E-05	-0.00013318																																										
RISE480	0.000322747	0.000200215																																										
RISE483	3.05E-05	8.16E-05																																										
RISE486	-0.000192781	-0.000183235																																										
RISE489	5.82E-05	5.06E-05																																										
RISE586	0.000216884	0.000173996																																										
SCH011	3.96E-05	5.15E-05																																										
SCH016	-0.000138607	-8.36E-05																																										
SCH018	3.02E-05	1.04E-05																																										
Smyadovo12	-0.000179991	-0.000297124																																										
Smyadovo21	8.90E-05	0.000157171																																										
Smyadovo23	-1.37E-05	7.97E-05																																										
Smyadovo26	3.93E-05	2.81E-05																																										
Smyadovo40	-8.37E-05	-0.000159608																																										
Spiginas2	5.29E-05	0.000184151																																										
Spiginas4	6.74E-05	4.77E-05																																										
Strachow	0.000277662	0.000103543																																										
SunghirSI	0.000288803	0.000282335																																										
Sushina28	9.60E-05	0.000121669																																										
Sushina29	-5.15E-05	-6.50E-06																																										
Sushina32	-0.00014956	-0.000180516																																										
Thurston Mains sk 1	0.000361401	0.000268465																																										
TIDO2a	0.000156977	5.83E-05																																										
Turlojiške1	8.16E-05	6.58E-05																																										
Turlojiške3	-3.00E-05	2.05E-05																																										
Tyrolean Iceman	-4.80E-05	-0.000107601																																										
Urzi10	-9.91E-05	-6.85E-05																																										
Urzi12	-7.00E-05	-7.10E-06																																										
Urzi13	-1.75E-05	7.61E-06																																										
Urzi21	-0.000106645	-2.17E-05																																										
Urzi26	0.000147851	4.08E-05																																										
Urzi31	-0.000340407	-0.00041114																																										
Urzi37	-1.43E-05	-7.90E-05																																										
Urzi39	-0.00013508	-0.000229477																																										
Urzi41	-0.000107558	-4.30E-05																																										
Urzi44	-9.11E-05	-0.00016093																																										
Urzi48	-4.64E-05	-7.45E-05																																										
Urzi51	-0.000186477	-0.000256737																																										
Urzi60	-0.000131645	-0.000140025																																										
Urzi65a	-0.000108877	-0.000117267																																										
Location	Filtered Value	Not Filtered Value																																										
--------------	----------------	-------------------																																										
Urzi68	-0.000196495	-0.00015488																																										
Urzi70	-0.00025477	-0.000239259																																										
V228	-0.000105479	-0.000104364																																										
V229	-0.000124943	-0.000190834																																										
V242	0.000121595	1.51E-05																																										
V243	-2.98E-05	7.19E-05																																										
V247	4.99E-05	2.01E-05																																										
V575	0.000263181	0.000263508																																										
VEJ5a	-0.000299315	-0.0001608																																										
Vestonice16	-0.000120289	-4.46E-05																																										
Villabruna1	8.73E-05	7.35E-05																																										
VLSC_80a	-9.80E-05	-9.03E-05																																										
XN164	5.23E-05	0.000119422																																										
XN167	9.83E-05	0.000196308																																										
XN168	-6.33E-05	7.60E-05																																										
XN170	0.000156719	7.96E-05																																										
XN172	8.00E-05	0.000162877																																										
XN174	-3.67E-05	-6.12E-06																																										
XN175	-2.25E-05	2.83E-05																																										
XN206	9.18E-05	0.000143401																																										
XN215	0.000117353	0.000276593																																										
YABA2	0.000198061	0.000172738																																										
YABA4	4.18E-05	-3.89E-05																																										
ZEM7	-0.000197509	-0.000211304																																										
ZEM8	-0.000195558	-0.000232087																																										
ZEM13	-0.000220359	-0.000198162																																										
ZEM24	-0.000192685	-0.000216087																																										
ZEM33	-0.000146501	-0.000146876																																										
ZEM35	-0.000106752	-0.000115839																																										
Zerniki1	8.81E-05	9.19E-05																																										
ZVEJ21	-2.50E-05	-2.40E-05																																										
ZVEJ30	0.000269671	0.000128841																																										
ZVEJ31	6.42E-05	6.00E-05																																										
ZVEJ32	-1.49E-05	-3.07E-05																																										

Table S4. Polygenic height scores for deamination filtered and not deamination filtered data
Females: Comparisons	P-value	df	t	95% CI
Pre-Neolithic - Neolithic	0.401	20.951	0.857	-4.804e-05 1.153e-04
Neolithic - Post-Neolithic	0.587	31.574	0.549	-6.374e-05 1.108e-04
Males: Comparisons				
Pre-Neolithic - Neolithic	0.022	26.263	2.441	1.646e-05 1.915e-04
Neolithic - Post-Neolithic	0.613	66.205	0.508	-4.716e-05 7.934e-05

Table S5. Polygenic height score t-test results
Combined Comparisons	P-value	df	t	95% CI
Pre-Neolithic - Neolithic	0.040	44.207	2.118	0.186 7.461
Neolithic - Post-Neolithic	0.068	73.042	1.852	-0.168 4.581

Females: Comparisons

| Pre-Neolithic - Neolithic | 0.067 | 17.774 | 1.952 | -0.500 12.072|
| Neolithic - Post-Neolithic | 0.087 | 19.834 | 1.799 | -0.594 8.031|

Males: Comparisons

| Pre-Neolithic - Neolithic | 0.246 | 23.856 | 1.188 | -2.050 7.614|
| Neolithic - Post-Neolithic | 0.326 | 53.608 | 0.991 | -1.501 4.436|

Combined Comparisons	Mean of residuals	Std. dev.
Pre-Neolithic	1.957	7.062
Upper Paleolithic	4.298	8.384
Mesolithic	0.709	6.199
Neolithic	-1.866	7.079
Copper Age	0.085	5.421
Bronze Age	0.835	5.65
Iron Age	1.402	4.965
Post-Neolithic	0.341	5.48

Females: Comparisons

Pre-Neolithic	2.461	6.908
Upper Paleolithic	7.914	9.862
Mesolithic	0.903	5.889
Neolithic	-3.35	7.309
Copper Age	0.494	5.636
Bronze Age	0.087	4.498
Iron Age	3.428	4.772
Post-Neolithic	0.369	5.256

Males: Comparisons

Pre-Neolithic	1.634	7.399
Upper Paleolithic	3.092	8.485
Mesolithic	0.54	6.859
Neolithic	-1.148	6.972
Copper Age	-0.249	5.303
Bronze Age	1.308	6.343
Iron Age	-1.298	4.543
Post-Neolithic	0.319	5.693

Table S6. Comparisons of the residuals from a linear model of osteological stature and polygenic height score with sex as a co-variate for deamination filtered data.
Table S7. Comparisons of the residuals from a linear model of osteological stature and polygenic height score with sex, latitude and longitude as co-variates.

Combined Comparisons	P-value	df	t	95% CI
Pre-Neolithic - Neolithic	0.043	43.755	2.083	0.124 7.510
Neolithic - Post-Neolithic	0.067	71.565	1.861	-0.159 4.597

Females: Comparisons

| *Pre-Neolithic - Neolithic* | 0.065 | 17.375| 1.967 | -0.428 12.558|
| *Neolithic - Post-Neolithic* | 0.077 | 19.352| -1.865| -8.262 0.471|

Males: Comparisons

| *Pre-Neolithic - Neolithic* | 0.273 | 23.787| 1.122 | -2.209 7.470|
| *Neolithic - Post-Neolithic* | 0.348 | 52.911| -0.947| -4.347 1.559|

Combined Comparisons	Mean of residuals	Std. dev
Pre-Neolithic	1.94	7.196
Upper Paleolithic	4.424	8.474
Mesolithic	0.615	6.33
Neolithic	-1.877	7.132
Copper Age	0.153	5.284
Bronze Age	0.709	5.606
Iron Age	1.51	4.958
Post-Neolithic	0.342	5.371

Females: Comparisons

Pre-Neolithic	2.564	7.233
Upper Paleolithic	8.536	10.202
Mesolithic	0.858	6.094
Neolithic	-3.5	7.438
Copper Age	0.604	5.494
Bronze Age	-0.073	4.385
Iron Age	3.498	4.903
Post-Neolithic	0.395	5.130

Males: Comparisons

Pre-Neolithic	1.539	7.416
Upper Paleolithic	3.053	8.408
Mesolithic	0.403	6.942
Neolithic	-1.092	6.966
Copper Age	-0.217	5.163
Bronze Age	1.204	6.321
Iron Age	-1.139	4.389
Post-Neolithic	0.302	5.595
Combined Comparisons	P-value	df	t	95% CI
FEMUR				
Pre-Neolithic - Neolithic	0.164	34.147	1.423	-0.525 - 2.980
Neolithic - Post-Neolithic	0.028	32.075	-2.308	-2.783 - 0.174
TIBIA				
Pre-Neolithic - Neolithic	0.024	18.599	2.535	0.418 - 4.406
Neolithic - Post-Neolithic	0.134	11.918	-1.606	-3.068 - 0.466
HUMERUS				
Pre-Neolithic - Neolithic	0.48	15.504	0.723	-1.001 - 2.033
Neolithic - Post-Neolithic	0.277	45.084	-1.1	-1.117 - 0.328
RADIUS				
Pre-Neolithic - Neolithic	0.017	22.222	2.588	0.329 - 2.974
Neolithic - Post-Neolithic	0.015	33.779	-2.572	-1.624 - 0.190

Combined Comparisons: FEMUR	Mean of residuals	Std. dev.
Pre-Neolithic	0.082	2.553
Upper Paleolithic	1.537	2.914
Mesolithic	-1.049	1.599
Neolithic	-1.145	2.783
Copper Age	0.184	2.115
Bronze Age	0.752	2.129
Iron Age	1.171	0.963
Post-Neolithic	0.333	2.116

Combined Comparisons: TIBIA	Mean of residuals	Std. dev.
Pre-Neolithic	1.013	2.245
Upper Paleolithic	0.922	2.732
Mesolithic	1.074	2.036
Neolithic	-1.399	2.386
Copper Age	-0.075	1.972
Bronze Age	-0.141	1.806
Iron Age	0.928	2.779
Post-Neolithic	-0.097	1.894

Combined Comparisons: HUMERUS	Mean of residuals	Std. dev.
Pre-Neolithic	0.238	2.258
Upper Paleolithic	1.244	2.813
Mesolithic	-0.767	0.936
Neolithic	-0.278	1.394
Copper Age	0.231	1.331
Bronze Age	-0.184	1.715
Iron Age	-0.975	0.374
Post-Neolithic	0.117	1.44

Combined Comparisons: RADIUS	Mean of residuals	Std. dev.
Pre-Neolithic	0.822	2.17
Upper Paleolithic	1.524	2.193
Era	t-value	p-value
----------------	---------	---------
Mesolithic	0.471	2.184
Neolithic	-0.83	1.403
Copper Age	-0.054	1.154
Bronze Age	0.268	1.334
Iron Age	0.649	0.658
Post-Neolithic	0.078	1.228

Table S8. Output of t-test results for comparisons of the residuals from a linear model of average long bone length and polygenic height score with sex as a co-variate for deamination-filtered data.
Combined Comparisons	P-value	df	t	95% CI	
Pre-Neolithic - Neolithic	0.12	43.671	1.587	-0.762	6.400
Neolithic - Post-Neolithic	0.74	71.153	0.333	-1.914	2.682

Females: Comparisons

	P-value	df	t	95% CI	
Pre-Neolithic - Neolithic	0.093	15.898	1.788	-1.003	11.768
Neolithic - Post-Neolithic	0.244	21.299	-1.198	-6.407	1.720

Males: Comparisons

	P-value	df	t	95% CI	
Pre-Neolithic - Neolithic	0.525	25.032	0.645	-3.164	6.049
Neolithic - Post-Neolithic	0.659	48.702	0.443	-2.228	3.488

Combined Comparisons	Mean of residuals	Std. dev
Pre-Neolithic	2.224	6.981
Upper Paleolithic	4.798	8.646
Mesolithic	0.852	5.78
Neolithic	-0.594	6.904
Copper Age	-0.267	5.249
Bronze Age	-0.1	5.063
Iron Age	-0.672	4.848
Post-Neolithic	-0.210	5.160

Females: Comparisons

	Mean of residuals	Std. dev
Pre-Neolithic	3.079	7.346
Upper Paleolithic	9.508	11.4
Mesolithic	1.242	5.708
Neolithic	-2.303	6.782
Copper Age	0.427	5.66
Bronze Age	-0.831	5.021
Iron Age	1.320	4.932
Post-Neolithic	0.040	5.437

Males: Comparisons

	Mean of residuals	Std. dev
Pre-Neolithic	1.675	6.96
Upper Paleolithic	3.228	8.175
Mesolithic	0.51	6.214
Neolithic	0.233	6.919
Copper Age	-0.835	4.903
Bronze Age	0.362	5.17
Iron Age	-3.328	3.937
Post-Neolithic	-0.398	4.985

Table S9. Output of t-test results for comparisons of the residuals from a linear model of osteological stature and polygenic height score with sex and ancestries (four MDS components) as a co-variates.
Individual	Cribra orbitalia	Porotic hyperostosis	LEH	Cribra orbitalia (healed?)	Porotic hyperostosis (healed?)	Source of paleopathological data																																	
Bichon	FALSE	FALSE	TRUE	FALSE	FALSE	Werner Mueller (unpublished)																																	
Brandysek26	TRUE	FALSE	NA	TRUE	FALSE	New																																	
Brandysek71	FALSE	TRUE	TRUE	FALSE	TRUE	New																																	
Canes1	NA	FALSE	NA	NA	FALSE	Drak Hernández, F. & Sanin Matias, M. (2017). Forensic anthropological report of Elba. In: Cademos Lab. Xeolóxico de Laxe Coruña, vol. 39, pp. 35 - 72.																																	
Chan_Meso (Elba)	TRUE	TRUE	TRUE	NA	NA	Serrullia Rech, F. & Sanin Matias, M. (2017). Early Holocene populations in the Cantabrian region: environmental changes and human microevolution. [Thesis]																																	
Donkalnis1	TRUE	NA	TRUE	TRUE	NA	New																																	
Donkalnis6	NA	NA	FALSE	NA	NA	New																																	
Dzielnica243	FALSE	FALSE	TRUE	FALSE	FALSE	New																																	
GB1_Eneo	FALSE	TRUE	NA	FALSE	TRUE	New																																	
GEN71	FALSE	TRUE	NA	FALSE	TRUE	New																																	
GEN72	FALSE	TRUE	FALSE	FALSE	TRUE	New																																	
Gyvakarai	NA	NA	FALSE	NA	NA	New																																	
Hume5	NA	NA	TRUE	NA	NA	New																																	
Hung127	FALSE	FALSE	TRUE	FALSE	FALSE	New																																	
Hung130	TRUE	FALSE	TRUE	TRUE	FALSE	New																																	
Hung136	NA	FALSE	TRUE	NA	FALSE	New																																	
Hung137	FALSE	FALSE	TRUE	FALSE	FALSE	New																																	
Hung148	FALSE	FALSE	FALSE	FALSE	FALSE	New																																	
Hung149	FALSE	FALSE	FALSE	FALSE	FALSE	New																																	
Hung152	NA	FALSE	TRUE	NA	FALSE	New																																	
Hung154	NA	FALSE	NA	FALSE	NA	New																																	
Hung155	FALSE	FALSE	TRUE	FALSE	FALSE	New																																	
Hung160	TRUE	FALSE	TRUE	TRUE	FALSE	New																																	
Hung162	FALSE	FALSE	NA	FALSE	FALSE	New																																	
Hung331	NA	FALSE	TRUE	NA	FALSE	New																																	
Hung969	FALSE	FALSE	FALSE	FALSE	FALSE	New																																	
Iwiny83	FALSE	TRUE	TRUE	FALSE	TRUE	New																																	
JAG06	FALSE	FALSE	TRUE	FALSE	TRUE	New																																	
Jinonice59	FALSE	FALSE	NA	FALSE	FALSE	New																																	
Jinonice84a	FALSE	TRUE	TRUE	FALSE	TRUE	New																																	
Jinonice88	TRUE	FALSE	FALSE	TRUE	FALSE	New																																	
Kivutkalns19	TRUE	FALSE	TRUE	TRUE	FALSE	New																																	
Kivutkalns25	FALSE	FALSE	TRUE	FALSE	FALSE	New																																	
Kornic1561	FALSE	TRUE	NA	FALSE	TRUE	New																																	
Kornic34	FALSE	TRUE	TRUE	FALSE	TRUE	New																																	
Kretoonas1	FALSE	NA	TRUE	FALSE	NA	New																																	
Kretoonas5	FALSE	NA	TRUE	FALSE	NA	New																																	
MC337A	FALSE	FALSE	FALSE	FALSE	FALSE	New																																	
MG104	NA	FALSE	FALSE	NA	FALSE	New																																	
Location	OC32	OHV6.1	OHV7.1	Raciborza	RDVS02	RDVS116	RDVS117	RDVS83	RDVS59	RDVS67	RDVS68	RISE154	SCH011	SCH016	Spginas2	Spginas4	Strachow	SunghirSI	Turlojiške3	Urzi10	Urzi12	Urzi13	Urzi21	Urzi31	Urzi37	Urzi41	Urzi48	Urzi51	Urzi60	Urzi65a	Urzi68	Urzi70	V228	V229	V242	V243	V247	V575	
--------------	------	--------	--------	----------	--------	---------	---------	---------	---------	---------	---------	--------	---------	---------	----------	----------	-----------	----------	----------	----------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------
Sample	Porotic	Hyperostosis	Pathology	Published in																																			
--------	---------	--------------	-----------	--------------																																			
Villabruna1	TRUE	TRUE	FALSE	TRUE	Vercelliotti, G., Caramella, D., Formicola, V., Formaciari, G., & Larsen, C. S. (2010). Porotic Hyperostosis in a late upper Palaeolithic skeleton (Villabruna 1, Italy). International Journal of Osteoarchaeology, 20(3), 358-368.																																		
XN164	TRUE	TRUE	FALSE	TRUE	Ash, A., Francken, M., Pap, I., Tvrdý, Z., Wahl, J., & Pinhasi, R. (2016). Regional differences in health, diet and weaning patterns amongst the first Neolithic farmers of central Europe. Scientific reports, 6(1), 1-10.																																		
XN167	FALSE	TRUE	TRUE	FALSE	Ash, A., Francken, M., Pap, I., Tvrdý, Z., Wahl, J., & Pinhasi, R. (2016). Regional differences in health, diet and weaning patterns amongst the first Neolithic farmers of central Europe. Scientific reports, 6(1), 1-10.																																		
XN168	FALSE	TRUE	FALSE	FALSE	Ash, A., Francken, M., Pap, I., Tvrdý, Z., Wahl, J., & Pinhasi, R. (2016). Regional differences in health, diet and weaning patterns amongst the first Neolithic farmers of central Europe. Scientific reports, 6(1), 1-10.																																		
XN170	FALSE	TRUE	FALSE	FALSE	Ash, A., Francken, M., Pap, I., Tvrdý, Z., Wahl, J., & Pinhasi, R. (2016). Regional differences in health, diet and weaning patterns amongst the first Neolithic farmers of central Europe. Scientific reports, 6(1), 1-10.																																		
XN172	FALSE	TRUE	FALSE	FALSE	Ash, A., Francken, M., Pap, I., Tvrdý, Z., Wahl, J., & Pinhasi, R. (2016). Regional differences in health, diet and weaning patterns amongst the first Neolithic farmers of central Europe. Scientific reports, 6(1), 1-10.																																		
XN174	FALSE	TRUE	FALSE	FALSE	Ash, A., Francken, M., Pap, I., Tvrdý, Z., Wahl, J., & Pinhasi, R. (2016). Regional differences in health, diet and weaning patterns amongst the first Neolithic farmers of central Europe. Scientific reports, 6(1), 1-10.																																		
XN175	FALSE	TRUE	TRUE	FALSE	Ash, A., Francken, M., Pap, I., Tvrdý, Z., Wahl, J., & Pinhasi, R. (2016). Regional differences in health, diet and weaning patterns amongst the first Neolithic farmers of central Europe. Scientific reports, 6(1), 1-10.																																		
XN206	FALSE	TRUE	FALSE	FALSE	Ash, A., Francken, M., Pap, I., Tvrdý, Z., Wahl, J., & Pinhasi, R. (2016). Regional differences in health, diet and weaning patterns amongst the first Neolithic farmers of central Europe. Scientific reports, 6(1), 1-10.																																		
XN215	TRUE	TRUE	FALSE	TRUE	Ash, A., Francken, M., Pap, I., Tvrdý, Z., Wahl, J., & Pinhasi, R. (2016). Regional differences in health, diet and weaning patterns amongst the first Neolithic farmers of central Europe. Scientific reports, 6(1), 1-10.																																		
ZEM7	FALSE	FALSE	FALSE	FALSE	New																																		
ZEM8	FALSE	FALSE	FALSE	FALSE	New																																		
ZEM13	FALSE	FALSE	FALSE	FALSE	New																																		
ZEM24	FALSE	TRUE	NA	FALSE	New																																		
ZEM33	FALSE	TRUE	FALSE	FALSE	New																																		
ZEM35	FALSE	FALSE	NA	FALSE	New																																		
Zemiki1	NA	TRUE	TRUE	FALSE	New																																		
ZVEJ21	FALSE	FALSE	NA	FALSE	New																																		
ZVEJ30	FALSE	FALSE	FALSE	FALSE	New																																		
ZVEJ32	FALSE	FALSE	FALSE	FALSE	New																																		

Table S10. Paleopathological summary for 98 individuals.
Table S11. Comparison of residuals from the main linear model for individuals with 0, 1+ and 2+ indicators of paleopathological stress (n=58 individuals).

# of indicators	Mean of residuals	Std. dev
0 indicators	1.943	4.872
1+ indicators	1.026	6.345
2+ indicators	0.768	6.846

n=58 individuals	P-value	df	t	95% CI	
0 vs 1+ indicator	0.555	38.753	0.595	-2.202 4.037	
0 vs 2+ indicator	0.561	30.73	0.587	-2.906 5.256	
Paleopathology	P-value	FDR	df	t	95% CI
-------------------------------------	---------	------	-------	-------	--------------
Cribra orbitalia	0.461	0.771	33.253	-0.746	-4.587 - 2.126
Linear enamel hypoplasia	0.838	0.838	71.862	0.205	-2.523 - 3.101
Porotic hyperostosis	0.514	0.771	58.52	-0.656	-3.707 - 1.876
Paleopathology (healed)					
Cribra orbitalia	0.584	0.584	30.924	-0.553	-4.372 - 2.507
Porotic hyperostosis	0.574	0.584	55.769	-0.565	-3.650 - 2.044
Linear enamel hypoplasia	0.838	0.838	71.862	0.205	-2.523 - 3.101

Paleopathology (all)	Mean of residuals	Std. dev
Cribra orbitalia_TRUE	-0.372	6.607
Cribra orbitalia_FALSE	0.859	6.221
Porotic hyperostosis_TRUE	0.261	6.676
Porotic hyperostosis_FALSE	1.177	5.29
Linear enamel hypoplasia_TRUE	0.736	6.554
Linear enamel hypoplasia_FALSE	0.447	5.988

Table S12. Comparisons for individuals with LEH and active/healed cribra orbitalia or porotic hyperostosis with the residuals from a linear model of osteological height and polygenic height score with sex as a covariate.
Condition	Group 1	Group 2	P-value	FDR	df	t	95% CI
Cribra orbitalia							
PreNeolithic-PreNeolithic	0.294	0.8225	5.27	-1.164	-10.983	4.065	
Upper Paleolithic-Upper Paleolithic	NA						
Mesolithic-Mesolithic	NA						
Neolithic-Neolithic	0.329	0.8225	7.583	-1.042	-13.339	5.090	
Copper Age-Copper Age	0.973	0.973	18.977	-0.034	-4.040	3.911	
Bronze Age-Bronze Age	0.901	0.973	2.829	-0.136	-13.661	12.580	
Iron Age-Iron Age	NA						
PostNeolithic-PostNeolithic	0.975	0.975	22.915	-0.031	-3.461	3.358	
Porotic hyperostosis							
PreNeolithic-PreNeolithic	0.588	0.932	3.586	-0.594	-16.614	10.973	
Upper Paleolithic-Upper Paleolithic	NA						
Mesolithic-Mesolithic	0.712	0.932	1.462	-0.447	-49.395	42.787	
Neolithic-Neolithic	0.634	0.932	19.99	0.483	-4.188	6.711	
Copper Age-Copper Age	0.932	0.932	23.85	0.086	-3.881	4.220	
Bronze Age-Bronze Age	0.889	0.932	8.01	-0.143	-6.290	5.552	
Iron Age-Iron Age	NA						
PostNeolithic-PostNeolithic	0.974	0.974	37.091	0.032	-3.026	3.124	
Linear enamel hypoplasia							
PreNeolithic-PreNeolithic	0.735	0.8901	4.022	-0.362	-10.042	7.718	
Upper Paleolithic-Upper Paleolithic	NA						
Mesolithic-Mesolithic	0.696	0.8901	1.26	0.49	-16.086	18.210	
Neolithic-Neolithic	0.645	0.8901	8.911	0.476	-7.418	11.367	
Copper Age-Copper Age	0.343	0.8901	16.803	0.975	-2.159	5.866	
Bronze Age-Bronze Age	0.071	0.497	13.38	-1.958	-7.936	0.379	
Iron Age-Iron Age	0.763	0.8901	3.978	0.323	-11.627	14.684	
PostNeolithic-PostNeolithic	0.891	0.891	40.454	-0.138	-3.211	2.801	
Cribra orbitalia (healed)							
PreNeolithic-PreNeolithic	0.294	0.975	5.27	-1.164	-10.983	4.065	
Upper Paleolithic-Upper Paleolithic	NA						
Mesolithic-Mesolithic	NA						
Neolithic-Neolithic	0.436	0.975	5.364	-0.841	-15.730	7.856	
Copper Age-Copper Age	0.973	0.975	18.977	-0.034	-4.040	3.911	
Bronze Age-Bronze Age	0.901	0.975	2.829	-0.136	-13.661	12.580	
Iron Age-Iron Age	NA						
PostNeolithic-PostNeolithic	0.975	0.975	22.915	-0.031	-3.461	3.358	
Porotic hyperostosis (healed)							
PreNeolithic-PreNeolithic	0.451	0.974	1.532	-0.993	-38.537	27.341	
Upper Paleolithic-Upper Paleolithic	NA						
Mesolithic-Mesolithic	NA						
Neolithic-Neolithic	0.634	0.974	19.99	0.483	-4.188	6.711	
Copper Age-Copper Age	0.932	0.974	23.85	0.086	-3.881	4.220	
Bronze Age-Bronze Age	0.889	0.974	8.01	-0.143	-6.290	5.552	
Cribrum orbitalia	Mean of residuals	Std. dev.					
------------------	------------------	-----------					
PreNeo_T	-1.711	2.323					
PreNeo_F	1.748	6.068					
UP_T	-0.069	NA					
UP_F	-3.224	NA					
Meso_T	-3.354	NA					
Meso_F	2.742	6.214					
Neo_T	-5.401	8.701					
Neo_F	-1.276	7.608					
CA_T	1.503	4.371					
CA_F	1.438	5.311					
BA_T	2.942	6.315					
BA_F	2.401	5.554					
IA_T	5.674	NA					
IA_F	2.292	5.028					
PostNeo_T	1.862	4.644					
PostNeo_F	1.812	5.335					
Porotic hyperostosis							
PreNeo_T	2.201	6.978					
PreNeo_F	-0.619	5.611					
UP_T	-0.069	NA					
UP_F	-3.224	NA					
Meso_T	3.336	9.461					
Meso_F	0.032	6.257					
Neo_T	-1.649	8.403					
Neo_F	-0.387	3.85					
CA_T	1.609	4.393					
CA_F	1.778	5.606					
BA_T	2.262	3.89					
BA_F	1.895	6.046					
IA_T	NA	NA					
IA_F	1.402	4.965					
PostNeo_T	1.783	4.137					
PostNeo_F	1.832	5.705					
LEH							
PreNeo_T	0.105	5.881					
PreNeo_F	-0.105	2.209					
UP_T	2.822	8.551					
UP_F	-0.069	NA					
Meso_T	-2.162	1.048					
-----	-----	-----					
Mesop F	-1.551	2.88					
Neo T	-3.322	9.98					
Neo F	-1.348	7.606					
CA T	0.633	4.567					
CA F	2.487	4.689					
BA T	3.095	5.657					
BA F	-0.684	2.248					
IA T	1.133	6.003					
IA F	2.661	5.57					
PostNeo T	2.088	5.269					
PostNeo F	1.883	4.469					

Cribra orbitalia (healed)

PreNeo T	-1.711	2.323
PreNeo F	1.748	6.068
UP T	-0.069	NA
UP F	-3.224	NA
Meso T	-3.354	NA
Meso F	2.742	6.214
Neo T	-5.213	9.714
Neo F	-1.276	7.608
CA T	1.503	4.371
CA F	1.438	5.311
BA T	2.942	6.315
BA F	2.401	5.554
IA T	5.674	NA
IA F	2.292	5.028
PostNeo T	1.862	4.644
PostNeo F	1.812	5.335

Porotic hyperostosis (healed)

PreNeo T	4.979	7.138
PreNeo F	-0.619	5.611
UP T	-0.069	NA
UP F	-3.224	NA
Meso T	10.026	NA
Meso F	0.032	6.257
Neo T	-1.649	8.403
Neo F	-0.387	3.85
CA T	1.609	4.393
CA F	1.778	5.606
BA T	2.262	3.89
BA F	1.893	6.046
IA T	NA	NA
IA F	1.402	4.965
Table S13. Comparisons for individuals with LEH, cribra orbitalia or porotic hyperostosis with the residuals from a linear model of osteological height and polygenic height score with sex as a co-variate within cultural periods.

	PostNeo_T	4.137
PostNeo_F	1.832	5.705
Condition	Pre-Neolithic - Neolithic	Neolithic - Post-Neolithic
-------------------------------	---------------------------	---------------------------
Linear enamel hypoplasia		
P-value	0.49	0.101
df	8.904	6.466
t	0.721	1.913
95% CI	-7.349 14.203	-1.866 16.393
Cribrar orbitalia		
P-value	0.382	0.171
df	5.996	20.411
t	0.943	1.419
95% CI	-5.887 13.267	-1.606 8.470
Porotic hyperostosis		
P-value	0.457	0.208
df	3.291	7.116
t	0.842	1.386
95% CI	-10.002 17.703	-3.789 14.609
Cribrar orbitalia (healed)		
P-value	0.486	0.183
df	4.83	4.782
t	0.754	1.556
95% CI	-8.564 15.568	-4.773 18.924
Porotic hyperostosis (healed)		
P-value	0.393	0.171
df	1.4	20.411
t	1.206	1.419
95% CI	-29.936 43.192	-1.606 8.470

Table S14. Output of t-test results for individuals with LEH, cribrar orbitalia or porotic hyperostosis with the residuals from a linear model of osteological height and polygenic height score with sex as a co-variate.
	MDS4*	Estimate	Std. Error	tvalue	Pr(>	t)
MDS 1	58.625	38.486	1.523	0.1296			
MDS 2	98.696	49.609	1.989	0.0483			
MDS 3	269.855	76.977	3.506	0.0006			
MDS 4	-72.707	93.479	-0.778	0.4378			

*Residual standard error: 6.251 on 162 degrees of freedom
*Multiple R-squared: 0.1058, Adjusted R-squared: 0.08374
*F-statistic: 4.793 on 4 and 162 DF, p-value: 0.00113

	MDS5**	Estimate	Std. Error	tvalue	Pr(>	t)
MDS 1	58.624	38.594	1.519	0.1307			
MDS 2	98.697	49.748	1.984	0.0490			
MDS 3	269.855	77.193	3.496	0.0006			
MDS 4	-72.707	93.741	-0.776	0.4391			
MDS 5	30.502	97.874	0.312	0.7557			

**Residual standard error: 6.268 on 161 degrees of freedom
**Multiple R-squared: 0.1064, Adjusted R-squared: 0.07861
**F-statistic: 3.832 on 5 and 161 DF, p-value: 0.002625

	MDS6***	Estimate	Std. Error	tvalue	Pr(>	t)
MDS 1	58.624	38.712	1.514	0.1319			
MDS 2	98.697	49.901	1.978	0.0497			
MDS 3	269.855	77.429	3.485	0.0006			
MDS 4	-72.707	94.028	-0.773	0.4405			
MDS 5	30.502	98.174	0.311	0.7564			
MDS 6	14.081	101.229	0.139	0.8895			

***Residual standard error: 6.288 on 160 degrees of freedom
***Multiple R-squared: 0.1065, Adjusted R-squared: 0.07296
***F-statistic: 3.177 on 6 and 160 DF, p-value: 0.005673

	MDS7****	Estimate	Std. Error	tvalue	Pr(>	t)
MDS 1	58.627	37.426	1.566	0.1192			
MDS 2	98.721	48.243	2.046	0.0423			
MDS 3	269.855	74.857	3.605	0.0004			
MDS 4	-72.707	90.904	-0.8	0.4250			
MDS 5	30.502	94.912	0.321	0.7483			
MDS 6	14.082	97.867	0.144	0.8858			
MDS 7	352.510	100.991	3.491	0.0006			

****Residual standard error: 6.079 on 159 degrees of freedom
****Multiple R-squared: 0.1701, Adjusted R-squared: 0.1335
****F-statistic: 4.654 on 7 and 159 DF, p-value: 9.121e-05

	MDS8*****	Estimate	Std. Error	tvalue	Pr(>	t)
MDS 1	58.625	37.466	1.565	0.1196			
MDS 2	98.726	48.294	2.044	0.0426			
MDS 3	269.855	74.937	3.601	0.0004			
MDS 4	-72.707	91.001	-0.799	0.4255			
MDS 5	30.502	95.014	0.321	0.7486			
MDS 6	14.081	97.971	0.144	0.8859			
MDS 7	352.510	101.098	3.487	0.0006			
------------	---------	---------	-------	--------			
MDS 8	84.531	103.915	0.813	0.4172			

*****Residual standard error: 6.085 on 158 degrees of freedom
*****Multiple R-squared: 0.1735, Adjusted R-squared: 0.1317
*****F-statistic: 4.147 on 8 and 158 DF, p-value: 0.0001607

Table S15. Output of linear models of osteological height with sex and ancestries using MDS components 4, 5, 6, 7 and 8 (excluding polygenic height score).
MDS4*

| | Estimate | Std. Error | tvalue | Pr(>|t|) |
|------------------|----------|------------|--------|----------|
| Polygenic height score | 1.19E+04 | 3.45E+03 | 3.458 | 0.0007 |
| MDS 1 | 9.16E+01 | 3.85E+01 | 2.383 | 0.0183 |
| MDS 2 | 5.98E+01 | 4.93E+01 | 1.213 | 0.2270 |
| MDS 3 | 2.11E+02 | 7.64E+01 | 2.756 | 0.0065 |
| MDS 4 | -6.12E+01 | 9.05E+01 | -0.676 | 0.5000 |

*Residual standard error: 6.05 on 161 degrees of freedom
*Multiple R-squared: 0.1677, Adjusted R-squared: 0.1418
*F-statistic: 6.486 on 5 and 161 DF, p-value: 1.603e-05

MDS5**

| | Estimate | Std. Error | tvalue | Pr(>|t|) |
|------------------|----------|------------|--------|----------|
| Polygenic height score | 1.19E+04 | 3.46E+03 | 3.451 | 0.0007 |
| MDS 1 | 9.16E+01 | 3.86E+01 | 2.377 | 0.0186 |
| MDS 2 | 5.98E+01 | 4.95E+01 | 1.209 | 0.2285 |
| MDS 3 | 2.11E+02 | 7.67E+01 | 2.748 | 0.0067 |
| MDS 4 | -6.12E+01 | 9.08E+01 | -0.674 | 0.5013 |
| MDS 5 | 3.28E+01 | 9.47E+01 | 0.346 | 0.7300 |

**Residual standard error: 6.066 on 160 degrees of freedom
**Multiple R-squared: 0.1683, Adjusted R-squared: 0.1371
**F-statistic: 5.395 on 6 and 160 DF, p-value: 4.211e-05

MDS6***

| | Estimate | Std. Error | tvalue | Pr(>|t|) |
|------------------|----------|------------|--------|----------|
| Polygenic height score | 1.19E+04 | 3.47E+03 | 3.442 | 0.0007 |
| MDS 1 | 9.27E+01 | 3.72E+01 | 2.494 | 0.0137 |
| MDS 2 | 5.85E+01 | 4.77E+01 | 1.227 | 0.2217 |
| MDS 3 | 2.09E+02 | 7.39E+01 | 2.822 | 0.0054 |
| MDS 4 | -6.08E+01 | 8.76E+01 | -0.695 | 0.4884 |
| MDS 5 | 3.28E+01 | 9.14E+01 | 0.359 | 0.7198 |
| MDS 6 | 1.60E+01 | 9.42E+01 | 0.169 | 0.8657 |
| MDS 7 | 3.64E+02 | 9.72E+01 | 3.741 | 0.0003 |

***Residual standard error: 6.085 on 159 degrees of freedom
***Multiple R-squared: 0.2361, Adjusted R-squared: 0.1974
***F-statistic: 4.6 on 7 and 159 DF, p-value: 0.0001044

MDS7****

| | Estimate | Std. Error | tvalue | Pr(>|t|) |
|------------------|----------|------------|--------|----------|
| Polygenic height score | 1.23E+04 | 3.34E+03 | 3.695 | 0.0003 |
| MDS 1 | 9.27E+01 | 3.72E+01 | 2.494 | 0.0137 |
| MDS 2 | 5.85E+01 | 4.77E+01 | 1.227 | 0.2217 |
| MDS 3 | 2.09E+02 | 7.39E+01 | 2.822 | 0.0054 |
| MDS 4 | -6.08E+01 | 8.76E+01 | -0.695 | 0.4884 |
| MDS 5 | 3.28E+01 | 9.14E+01 | 0.359 | 0.7198 |
| MDS 6 | 1.60E+01 | 9.42E+01 | 0.169 | 0.8657 |
| MDS 7 | 3.64E+02 | 9.72E+01 | 3.741 | 0.0003 |

****Residual standard error: 5.85 on 158 degrees of freedom
****Multiple R-squared: 0.2361, Adjusted R-squared: 0.1974
****F-statistic: 6.104 on 8 and 158 DF, p-value: 7.598e-07

MDS8*****

| | Estimate | Std. Error | tvalue | Pr(>|t|) |
|------------------|----------|------------|--------|----------|
| Polygenic height score | 1.22E+04 | 3.36E+03 | 3.625 | 0.0004 |

*****Residual standard error: 5.85 on 158 degrees of freedom
*****Multiple R-squared: 0.2361, Adjusted R-squared: 0.1974
*****F-statistic: 6.104 on 8 and 158 DF, p-value: 7.598e-07
	MDS 1	MDS 2	MDS 3	MDS 4	MDS 5	MDS 6	MDS 7	MDS 8
	9.23E+01	3.73E+01	2.476	0.0143				
	5.90E+01	4.78E+01	1.234	0.2189				
	2.09E+02	7.41E+01	2.826	0.0053				
	-6.10E+01	8.78E+01	-0.695	0.4883				
	3.28E+01	9.16E+01	0.358	0.7207				
	1.59E+01	9.44E+01	0.169	0.8662				
	3.64E+02	9.75E+01	3.731	0.0003				
	5.15E+01	1.01E+02	0.512	0.6091				

*****Residual standard error: 5.864 on 157 degrees of freedom
*****Multiple R-squared: 0.2374, Adjusted R-squared: 0.1936
*****F-statistic: 5.429 on 9 and 157 DF, p-value: 1.772e-06

Table S16. Output of linear models of osteological height and polygenic height score with sex and ancestries using MDS components 4, 5, 6, 7 and 8.
Number of SNPs	P-value clumping threshold	Population	Sex	Total number of individuals (N)	r^2 subset 167: mean	r^2 subset 167: std. deviation
5183	5.00E-08	GWAS	Female	194167	0.078	0.0936
5183	5.00E-08	GWAS	Male	167015	0.076	0.0938
5183	5.00E-08	GWAS	Both combined	361182	0.0398	0.0433
5183	5.00E-08	other European	Female	2771	0.0595	0.0721
5183	5.00E-08	other European	Male	1941	0.0578	0.0652
5183	5.00E-08	other European	Both combined	4712	0.0312	0.0369

Table S17. Correlation between osteological height and polygenic height score for UK Biobank GWAS cohort and non-GWAS individuals as well as a downsampled subset of 167 individuals.
URI	Value	Value	Value	Value													
WA1301	0.108	56882	321504	0.981751													
WA1301	0.108	268074	2502412	0.911935													
WA1301	13.9	2474078	806978	0.245835													
RDVS218	3.523	491914	2794972	0.85009													
RDVS5117	3.173	454685	2827301	0.861618													
RDVS5117	3.097	412517	288889	0.874166													
RDVS593	4.109	523884	2730222	0.836877													
RDVS596	1.143	37134	3246562	0.900329													
RDVS597	3.203	466404	2814692	0.857864													
RDVS598	3.566	486165	2793221	0.811232													
RDVS594	0.175	151458	3120923	0.935843													
RDVS480	0.11	166926	3114440	0.941929													
RDVS483	0.1	123522	3107446	0.902253													
RDVS486	0.25	163575	3117811	0.950151													
RDVS489	0.49	254693	3036693	0.922832													
RDVS586	0.15	116885	3168051	0.965688													
SCH011	0.002	3281398	1	0													
SCH016	0.0401	316209	3249717	0.990361													
SCH018	0.004	3281398	1	0													
Smyadovci12	0.63	346385	2535001	0.894439													
Smyadovci2	0.063	30102	3251284	0.906826													
Smyadovci3	0.06	25553	3020209	0.920061													
Smyadovci3	1.27	327518	2953868	0.901189													
Smyadovci4	1.13	321409	2959871	0.902051													
Sipinga1	3.164	53331	3228055	0.983747													
Sipinga2	1.522	523	3275103	0.908065													
Srapčow	0.022	10123	3271263	0.996915													
Sunghir1	1.1	1171468	2136924	0.658645													
Sušinža8	0.215	85337	3189849	0.971393													
Sušinža9	0.026	10870	3207515	0.996887													
Sušinža32	1.492	381615	2890771	0.853703													
Thurston	0.999	330242	2551144	0.985359													
Tibo2a	0.446	206697	3086098	0.938338													
Turqijaca1	0.131	38691	3222425	0.902032													
Turqijaca3	0.671	58691	3222425	0.902032													
Tyrekan kisan	7.6	2085058	1153528	0.334275													
Uži10	0.254	507051	2774335	0.845477													
Uži12	0.323	562842	2728544	0.831522													
Uži13	0.255	55505	2774749	0.845825													
Uži21	0.251	509099	2771877	0.844728													
Uži26	0.249	498775	2794607	0.848807													
Uži31	0.374	614058	2667328	0.812868													
Uži37	0.179	449093	3232293	0.863139													
Zernik1	ZEM8	ZEM33	ZEM24	YABA4	XN206	XN175	XN170	VLSC_80a	VEJ5a	V229	V228	Urzi68	Urzi65a	Urzi51	Urzi48	Urzi39	
--------	------	-------	-------	-------	------	------	------	--------	------	------	------	-------	-------	-------	-------	-------	-----
1.099	2.43	3.22	0.945	1.37	0.0202	0.0342	0.669	0.109	0.365	0.175	0.284	0.109	0.365	0.175	0.284	0.109	
516719	467658	392408	596678	364170	477941	426700	339025	265898	353509	298757	2803445	2945687	2942361	3266236	3281386	3272316	3281386
0.84254	0.142518	0.17157	0.126773	0.103318	0.000246	0.10383	0.00461	0.00383	0.04792	0.03283	0.03666	0.03612	0.03694	0.03272	0.03666	0.03612	
30761499	30761499	30761499	30761499	30761499	30761499	30761499	30761499	30761499	30761499	30761499	30761499	30761499	30761499	30761499	30761499	30761499	

Table S18. Per-individual coverage and pre/post-imputation metrics.
Coverage level	all_correct=counts['REF/REF'] + counts['ALT_1/ALT_1'] + counts['ALT_2/ALT_2']	all_total= het_total + (counts['REF/ALT_1'] + counts['REF/ALT_2'] + counts['REF/REF'] + counts['REF/MISSING_ENTRY_'].format(sample_name)) + counts['ALT_2/ALT_2'] + counts['ALT_2/ALT_1'] + counts['ALT_2/REF'] + counts['ALT_2/MISSING_ENTRY_']	Proportion correct
3x | 1651039 | 1663075 | 0.9928
2x | 1536362 | 1545724 | 0.9939
1x | 1425122 | 1432173 | 0.9951
0.7x | 1366946 | 1372489 | 0.9960
0.5x | 1311063 | 1314487 | 0.9974
0.4x | 1294473 | 1297030 | 0.9980
0.3x | 1270668 | 1298111 | 0.9789

Table S19. Assessing imputation accuracy in high coverage vs. low coverage paleogenomic data
Coverage level	het_nonmissing = (counts["ALT_1/REF"] + counts["ALT_1/ALT_2"] + counts["ALT_1/ALT_1"]	het_total=counts["ALT_1/REF"] + counts["ALT_1/ALT_2"] + counts["ALT_1/ALT_1"] + counts["ALT_1/MISSING_ENTRY_{}"	Proportion of heterozygote sites recovered
3x | 1217 | 1238 | 0.9830
2x | 767 | 788 | 0.9734
1x | 518 | 539 | 0.9610
0.7x | 348 | 369 | 0.9431
0.3x | 148 | 173 | 0.8555

Table S20. Assessing imputation of heterozygote sites in imputed data.
Combined: MDS5				
	P-value	df	t	95% CI
Pre-Neolithic - Neolithic	0.118	43.802	1.594	-0.747 - 6.405
Neolithic - Post-Neolithic	0.729	71.053	0.347	-1.899 - 2.700
Combined: MDS6				
	P-value	df	t	95% CI
Pre-Neolithic - Neolithic	0.117	43.794	1.597	-0.742 - 6.411
Neolithic - Post-Neolithic	0.725	71.03	0.353	-1.892 - 2.706
Combined: MDS7				
	P-value	df	t	95% CI
Pre-Neolithic - Neolithic	0.198	46.893	1.305	-1.174 - 5.505
Neolithic - Post-Neolithic	0.679	70.475	0.416	-1.785 - 2.726
Combined: MDS8				
	P-value	df	t	95% CI
Pre-Neolithic - Neolithic	0.191	47.144	1.327	-1.136 - 5.539
Neolithic - Post-Neolithic	0.638	70.074	0.472	-1.724 - 2.794

Combined: MDS5	Mean of residuals	Std. dev.
Pre-Neolithic	2.226	6.965
Upper Paleolithic	4.83	8.63
Mesolithic	0.837	5.75
Neolithic	-0.603	6.911
Copper Age	-0.234	5.247
Bronze Age	-0.141	5.055
Iron Age	-0.724	4.843
Post-Neolithic	-0.202	5.154

Combined: MDS6	Mean of residuals	Std. dev.
Pre-Neolithic	2.227	6.996
Upper Paleolithic	4.843	8.631
Mesolithic	0.833	5.746
Neolithic	-0.607	6.911
Copper Age	-0.222	5.241
Bronze Age	-0.157	5.059
Iron Age	-0.731	4.849
Post-Neolithic	-0.200	5.152

Combined: MDS7	Mean of residuals	Std. dev.
Pre-Neolithic	1.627	6.348
Upper Paleolithic	4.269	8.499
Mesolithic	0.218	4.592
Neolithic	-0.538	6.793
Copper Age	-0.309	4.997
Bronze Age	0.398	5.082
Iron Age	-0.923	4.185
Post-Neolithic	-0.068	5.009

Combined: MDS8	Mean of residuals	Std. dev.
Pre-Neolithic	1.612	6.331
Period	T-value	P-value
------------	---------	---------
Upper Paleolithic	4.312	8.567
Mesolithic	0.172	4.462
Neolithic	-0.589	6.816
Copper Age	-0.254	4.989
Bronze Age	0.332	5.04
Iron Age	-0.72	4.262
Post-Neolithic	-0.054	4.986

Table S21. Output of t-test results for comparisons of the residuals from a linear model of osteological stature and polygenic height score with sex and ancestries with MDS axes 5, 6, 7 and 8.
Legend for Dataset S1

Dataset S1. Description of individuals in data set (n=167) including individual ID, genetic sex, radiocarbon dates, archaeological/cultural period, geographical coordinates, publication sources for the ancient DNA data and long bone measurements/terminal stature.
SI References

1. C. B. Ruff, et al., Stature and body mass estimation from skeletal remains in the European Holocene. *Am. J. Phys. Anthropol.* **148**, 601–617 (2012).