Homo sapiens Systemic RNA Interference-defective-1 Transmembrane Family Member 1 (SIDT1) Protein Mediates Contact-dependent Small RNA Transfer and MicroRNA-21-driven Chemoresistance

Citation for published version:
Elhassan, MO, Christie, J & Duxbury, MS 2012, ‘Homo sapiens Systemic RNA Interference-defective-1 Transmembrane Family Member 1 (SIDT1) Protein Mediates Contact-dependent Small RNA Transfer and MicroRNA-21-driven Chemoresistance’, Journal of Biological Chemistry, vol. 287, no. 8, pp. 5267-5277. https://doi.org/10.1074/jbc.M111.318865

Digital Object Identifier (DOI):
10.1074/jbc.M111.318865

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Biological Chemistry

Publisher Rights Statement:
© 2012 by The American Society for Biochemistry and Molecular Biology, Inc

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Molecular Bases of Disease: *Homo sapiens* Systemic RNA Interference-defective-1 Transmembrane Family Member 1 (SIDT1) Protein Mediates Contact-dependent Small RNA Transfer and MicroRNA-21-driven Chemoresistance

Mohamed O. Elhassan, Jennifer Christie and Mark S. Duxbury

J. Biol. Chem. 2012, 287:5267-5277.
doi: 10.1074/jbc.M111.318865 originally published online December 15, 2011

Access the most updated version of this article at doi: 10.1074/jbc.M111.318865

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2011/12/16/M111.318865.DC1.html

This article cites 62 references, 27 of which can be accessed free at http://www.jbc.org/content/287/8/5267.full.html#ref-list-1
Homo sapiens Systemic RNA Interference-defective-1 Transmembrane Family Member 1 (SIDT1) Protein Mediates Contact-dependent Small RNA Transfer and MicroRNA-21-driven Chemoresistance

Mohamed O. Elhassan§, Jennifer Christie§, and Mark S. Duxbury†§

From 1Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, Scotland, United Kingdom and the 2Pancreatic Cancer Biology Group, Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, Scotland, United Kingdom

Background:	The SID family is a highly conserved group of transmembrane channel-like proteins.
Results:	SIDT1 facilitates rapid contact-dependent intercellular small RNA transfer and mediates chemoresistance driven by microRNA-21 in human adenocarcinoma cells.
Conclusion:	By mediating small RNA transfer, SIDT1 contributes to cancer chemoresistance mechanisms.
Significance:	A better understanding of non-cell-autonomous RNA-based intercellular communication may yield novel anti-cancer therapeutics.

Locally initiated RNA interference (RNAi) has the potential for spatial propagation, inducing posttranscriptional gene silencing in distant cells. In *Caenorhabditis elegans*, systemic RNAi requires a phylogenetically conserved transmembrane channel, SID-1. Here, we show that a human SID-1 orthologue, SIDT1, facilitates rapid, contact-dependent, bidirectional small RNA transfer between human cells, resulting in target-specific non-cell-autonomous RNAi. Intercellular small RNA transfer can be both homotypic and heterotypic. We show SIDT1-mediated intercellular transfer of microRNA-21 to be a driver of resistance to the nucleoside analog gemcitabine in human adenocarcinoma cells. Documentation of a SIDT1-dependent small RNA transfer mechanism and the associated phenotypic effects on chemoresistance in human cancer cells raises the possibility that conserved systemic RNAi pathways contribute to the acquisition of drug resistance. Mediators of non-cell-autonomous RNAi may be tractable targets for novel therapies aimed at improving the efficacy of current cytotoxic agents.

RNA interference (RNAi) is initiated locally by double-stranded RNA (dsRNA) but has the capacity to propagate systemically (sysRNAi),² inducing non-cell-autonomous posttranscriptional gene silencing in distant cells. Although best described as an antiviral mechanism in plants (1–3), sysRNAi also occurs in animals (4). In *Caenorhabditis elegans*, sysRNAi is dependent on a member of the systemic RNA interference-defective (SID) family of channels, SID-1 (5). SID-1 was initially identified following a screen of *C. elegans* mutants lacking the wild-type sysRNAi phenotype (5, 6). However, a range of organisms, including mice and humans, exhibit striking SID gene conservation (7–9).

SID channels have relative specificity for small RNA molecules (10, 11). Although organism-wide sysRNAi phenomena are not apparent in mammals, both SID-1 and its human orthologue SIDT1 (SID-1 transmembrane family member 1) have been shown to facilitate small interfering RNA (siRNA) uptake in human systems (12–14). The increased uptake of extracellular siRNA into human cells that SIDT1 mediates can result in highly specific posttranscriptional gene silencing (12, 13). We previously demonstrated that SIDT1 functions as a transmembrane channel for siRNA and localizes to the plasma membrane in human cells (12). This observation led us to hypothesize that SIDT1 might also play a role in the complex contact-dependent intercellular communication that is not only essential for normal histogenesis but, when dysregulated, also drives malignant progression and therapeutic resistance.

Small RNAs have a capacity to convey highly specific sequence-encoded signaling information (15). The microRNA (miRNA) system plays critical roles in the genesis, progression, and cytotoxic drug resistance of a range of human malignancies (16). Both the functional complexity of the “miRNome” and the diversity of miRNA targets suggest that regulation of gene function by miRNAs can be extremely subtle and adaptable (17). Within the tumor microenvironment, contact-dependent intercellular communication that is critical to the development of chemoresistance (18–20) is directly influenced by perturbation of the miRNome (21). This form of intercellular commu-
SIDT1 Mediates Contact-dependent Small RNA Transfer

TABLE 1: Oligonucleotide sequences
Oligonucleotide
miR-21
miR-21 reporter oligonucleotides
miR-21-resistant single-base mismatch control oligonucleotides
SIDT1-specific siRNA 1 target sequence
SIDT1-specific siRNA 2 target sequence
SIDT1-specific siRNA 3 target sequence
Cy3/control siRNA

shRNA, Oligonucleotides, Plasmids, and Transfection and Electroporation—pCMV-AC, pCMV-AC-tGFP, pCMV6-AC-tGFP-SIDT1 (NM_017699), and pCMV6-Connexin-43/GJA1 (NM_000165) plasmids originated from Origene. Turbo green fluorescent protein (tGFP) was excised by NotI/Pmel digestion, fill-in, and ligation to derive pCMV-AC-SIDT1. Virus-incompetent pTRIPZ-based shRNA vectors (Open Biosystems) were used for microRNA expression. A miR-21 dual luciferase reporter construct was engineered using oligonucleotides designed to include Sgfl and Pmel sites (see Table 1 for oligonucleotide sequences). A miR-21-resistant single base mismatch insert served as a control. Oligonucleotides were directionally cloned into the corresponding sites of the ppsiCHECK2 vector (Promega), in accordance with the manufacturer’s protocol. Renilla luciferase substrate luminescence was normalized to that of firefly luciferase substrate to allow quantification of Renilla luciferase-miR-21 target sequence mRNA degradation by miR-21. The Dual-Glo luciferase assay system (Promega) was read using a VICTOR3-1420 multilabel reader (PerkinElmer Life Sciences). Transfection was performed using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol. Stable cell lines were derived using G418 (0.3 mg/ml) or puromycin (5 μg/ml; both from Sigma) selection, as appropriate. All constructs were verified by sequencing. SIDT1-specific siRNA and mismatch control and Cy3-siRNA (supplemental material) were obtained from Dharmaco, Sigma, and Eurogentec. Lucifer yellow introduction was performed by electroporation in accordance with the manufacturer’s cell type-specific protocols using the Nucleofector™ system (Lonza). Gap junction intercellular communication was quantified by flow cytometric quantification of Lucifer yellow transfer as described previously (30). Recipient cells were labeled with far red membrane linker as described above.

Direct Coculture and Flow Cytometric Analysis of Intercellular siRNA Transfer—Cocultured labeled cell subpopulations were encouraged to conjugate by centrifugation at 500 rpm for 1 min and cocultured at 37 °C or 4 °C. Following coculture, cells were washed and resuspended in 5 ml EDTA/PBS and kept on ice. Multiparametric flow cytometry data were obtained from 10,000 single cell events with stringent doublet exclusion gating FACSARia™ II using FACSCdiva software (BD Biosciences). Flow cytometry data were analyzed using FlowJo V8 (TreeStar). Viable single cells were identified based on forward scatter and side scatter characteristics (width, height, and area).
RESULTS

Analysis of Stable HEK293-derived Transfectant Cell Lines—HEK293 cells were transfected with pCMV-based plasmids encoding SIDT1 alone or in combination with tGFP and the aminoglycoside 3'-phosphotransferase neomycin resistance selection marker. Levels of SIDT1 expression were quantified by Western blotting in the following stable transfectants, which were derived using G418 selection: HEKSIDT1, which overexpresses SIDT1; HEKSIDT1/tGFP, which overexpresses SIDT1 and tGFP; and HEKSIDT1-tGFP, which overexpresses a fusion protein comprising SIDT1 and C terminus tGFP. Stable tGFP (HEKtGFP) and empty vector transfectants (HEKVector) served as controls. The electrophoretic migration of SIDT1 and SIDT1-tGFP fusion protein was consistent with predicted respective molecular masses of 94 and 120 kDa (Fig. 1a). The transfectant cell lines demonstrated no significant differences in respective rates of cellular proliferation or fraction of apoptotic cells (TUNEL) under standard culture conditions (supplemental Fig. S1).

SIDT1 Mediates Contact-dependent Small RNA Transfer—A direct coculture assay was used to investigate the role of SIDT1 in contact-dependent siRNA transfer. "Donor" (HEKSIDT1 or HEKtGFP) and "acceptor" (HEKSIDT1/tGFP or HEKtGFP) cell subpopulations were subjected to direct coculture, allowing cell-cell contact as schematized (Fig. 1b). Cy3-labeled 21-mer siRNA was introduced into donor cells by electroporation alone to eliminate potentially confounding effects of persisting transfection reagent. To mitigate against donor epifluorescence signal decay, as might occur due to Cy3-siRNA degradation, and to control for trogocytosis or cell fusion events, donor cells were co-labeled with a far red fluorescent plasma membrane linker. This linker is highly persistent (t1/2 = 12 days), is biochemically inert, does not affect cell viability or membrane function, and has an emission spectrum that is readily distinguishable from that of Cy3 (35–37). Far red label transfer to unlabeled cells was not observed during any direct or indirect coculture experiments. Potential artifact arising from contact-independent medium-borne siRNA transfer was minimized by postelectroporation washing and RNase treatment, which degrades extracellular RNA to nucleoside monophosphates (supplemental Fig. S2a) (38, 39). SIDT1-overexpressing (HEKSIDT1 and HEKSIDT1/tGFP) and control (HEKtGFP and HEKtGFP) donor and acceptor cells were cocultured at 1:1 ratios. Following coculture for 90 min, cell conjugates were disrupted to form single cell suspensions by EDTA treatment and agitation. Additional RNase treatment ensured removal of cell surface-associated Cy3-siRNA and free RNA that may have been released from lysed cells. Intercellular Cy3-siRNA transfer to acceptor cells was quantified by flow cytometry using stringent doublet exclusion. We quantified Cy3-siRNA-positive, tGFP-positive, far red-negative acceptor cells, defining a new subset of acceptor cells that had acquired Cy3-siRNA from donor cells (Fig. 1c, I–VI). Transfer of Cy3-siRNA between HEKSIDT1 donor and HEKSIDT1/tGFP acceptor cells was insensitive to RNase treatment and occurred rapidly (Fig. 1c, VII). In contrast, transfer of Cy3-siRNA between HEKtGFP donor and HEKtGFP acceptor cells was negligible (Fig. 1c, l). Direct coculture using HEKSIDT1 donor and HEKtGFP acceptor cells (Fig. 1c, II), as well as HEKtGFP donor and HEKSIDT1/tGFP acceptor cells (Fig. 1c, III), resulted in no significant difference in siRNA transfer (i.e. SIDT1 increased Cy3-siRNA acquisition regardless of whether it was overexpressed by donor or acceptor cells, indicating that facilitation of intercellular siRNA transfer by SIDT1 overexpression is bidirectional). Transfer of Cy3-siRNA from HEKSIDT1 to HEKSIDT1/tGFP was abolished by preincubation with polyclonal anti-SIDT1 (10 μg/ml; Fig. 1c, IV).

Although free Cy3-siRNA was eliminated from the culture medium, we were cognizant that nascent or RNase-resistant exosome-borne Cy3-siRNA arising from donor cells could also potentially contribute to the acceptor Cy3-siRNA signal, through contact-independent acquisition. To control for contact-independent Cy3-siRNA transfer, we performed indirect
SIDT1 Mediates Contact-dependent Small RNA Transfer

coculture of identical donor and acceptor cell groups, separated by permeable (0.4-μm diameter pore) Transwell insert membranes. In addition, acceptor cells were exposed to cell-free (0.4-μm filtered) donor conditioned medium. After either 90 min of indirect coculture or 90 min of exposure to donor conditioned medium, Cy3 epifluorescence was quantified by flow cytometry, as described above. No transfer of Cy3-siRNA to either HEKsidt1/tGFP or HEKtGFP acceptor cells was detected either following indirect coculture with donor cells or following exposure to donor conditioned medium (supplemental Fig. S2b). Contact-independent uptake of extracellular Cy3-siRNA therefore did not account for the Cy3 signal acquired by the acceptor cell subpopulation.

SIDT1 Mediates Contact-dependent Small RNA Transfer Is Gap Junction-independent—The contribution of GJIC to Cy3-siRNA acquisition was predicted to be small in HEK293 cells, given their low levels of connexin junction formation and GJIC (40–42). However, gap junction-mediated intercellular transfer of small RNAs has been reported in some cell types (43, 44). We therefore took steps to distinguish the contribution of SIDT1 to the acquisition of Cy3-siRNA transfer to be independent of GJIC. Indirect coculture and conditioned medium exposure (90 min in each case) did not result in significant acceptor Cy3-siRNA acquisition (supplemental Fig. S3b). VI, Cy3-siRNA transfer was abolished by preincubation with anti-SIDT1 antibody. VII, time course of Cy3-siRNA transfer from HEKsidt1 donor to HEKsidt1/gfp acceptor cells. Shown is a histogram representation of tGFP/Cy3-siRNA/FarRed acceptor cells at specified time points. VIII, data presented are typical of quadruplicate biological repeat experiments. In each sample, 10,000 single cell events were recorded.

FIGURE 1. SIDT1 facilitates rapid contact-dependent intercellular Cy3-siRNA transfer between donor and acceptor subpopulations. a, characterization of SIDT1 protein expression in HEK293-derived stable transfectant cell lines. Shown is representative Western blot analysis of SIDT1 expression in control HEK293 cells (HEKvector), tGFP control (HEKtGFP), SIDT1 (HEKsidt1), SIDT1 and tGFP (SIDT1/tGFP, clones 1 and 2), and SIDT1-tGFP fusion (HEKsidt1-tGFP) transfectants (clones 1–3) and β-actin loading control. Electrophoretic mobility of SIDT1 with C-terminal fusion tGFP protein (SIDT1-tGFP) corresponded to a predicted molecular mass of 120 kDa versus 94 kDa for SIDT1. b, schematic representation of siRNA transfer coculture experimental design. Donor subpopulations comprised stable HEKvector or HEKsidt1 transfectants. Acceptor subpopulations comprised HEKtGFP or HEKsidt1/tGFP transfectants. The donor subpopulation was tagged with far red membrane linker, and Cy3-siRNA was introduced by electroporation. Donor and acceptor subpopulations were directly cocultured for 90 min at 37 °C, and single cell suspensions were generated and analyzed by flow cytometry. Quantification of tGFP/Cy3-siRNA/FarRed cells allowed donor to acceptor Cy3-siRNA transfer to be measured. c, I, in the absence of SIDT1 overexpression, Cy3-siRNA transfer was negligible. II–IV, SIDT1 overexpression resulted in a marked increase in Cy3-siRNA transfer. SIDT1 overexpression in either donor or acceptor subpopulation was sufficient for this increase in Cy3-siRNA transfer to occur, indicating that SIDT1 facilitates bidirectional siRNA transfer. V, preincubation with AGA had no effect on Cy3-siRNA transfer efficiency, indicating the effects of SIDT1 overexpression on Cy3-siRNA transfer to be independent of GJIC. Indirect coculture and conditioned medium exposure (90 min in each case) did not result in significant acceptor Cy3-siRNA acquisition (supplemental Fig. S3b). VI, Cy3-siRNA transfer was abolished by preincubation with anti-SIDT1 antibody. VII, time course of Cy3-siRNA transfer from HEKsidt1 donor to HEKsidt1/tGFP acceptor cells. Shown is a histogram representation of tGFP/Cy3-siRNA/FarRed acceptor cells at specified time points. VIII, data presented are typical of quadruplicate biological repeat experiments. In each sample, 10,000 single cell events were recorded.
SIDT1 Mediates Contact-dependent Small RNA Transfer

FIGURE 2. A minority subpopulation increases non-autonomous miR-21 activity in adenocarcinoma cells. a, BxPC3miR21 (doxycycline-inducible miR-21) or irrelevant miRNA (BxPC3miRN/S) controls were directly cocultured with miR-21 reporter cells (BxPC3CkmiR21) at the indicated ratios (±1 μg/ml doxycycline). Renilla luciferase luminescence (levels decreased by miR-21) was normalized to firefly luciferase luminescence to allow quantitative comparison (relative luminescence units (RLU)). Doxycycline-induced BxPC3miR21 activation increased miR-21 activity in BxPC3CkmiR21 reporter cells. Coculture of BxPC3CkmiR21 with BxPC3miRN/S had no effect on normalized Renilla activity in BxPC3CkmiR21. Indirect coculture was insufficient to induce non-autonomous miR-21 activity. The first white column indicates BxPC3CkmiR21 in standard monoculture. *, p < 0.05 versus BxPC3miR21 + BxPC3CkmiR21, # no doxycycline by multifactorial analysis of variance, n = 4, b, representative Western blot analysis of SIDT1 expression in pancreatic adenocarcinoma (BxPC3, MIAPaCa2, and Capan2) and immortalized normal ductal epithelial cells (HPDE4), demonstrating differential expression of SIDT1. Densitometric quantification (means ± S.D. (error bars)) of SIDT1 signal, normalized to that of β-actin. Shown are mean values ± S.D. (n = 3); AU, arbitrary absorbance units.

BxPC3miR21 and BxPC3CkmiR21 cells were subjected to direct coculture at high total cell density (80–90% cell-cell contact) at BxPC3miR21/BxPC3CkmiR21 ratios ranging from 1:10 to 1:1000, in the presence or absence of 1 μg/ml doxycycline. Doxycycline-induced BxPC3miR21 activation (confirmed by RFP epifluorescence) led to a decrease in normalized Renilla luciferase activity of directly cocultured BxPC3CkmiR21 reporter cells, reflecting increased miR-21 activity within the BxPC3CkmiR21 reporter cell subpopulation. Direct coculture with BxPC3miRN/S had no effect on normalized Renilla activity of BxPC3CkmiR21 cells, confirming specificity for the miR-21 sequence. Significant decreases in normalized Renilla luciferase activity were observed even when BxPC3miR21 cells were present as a minority of 0.1% (Fig. 2a). This non-autonomous increase in miR-21 activity within the BxPC3CkmiR21 subpopulation was not observed when BxPC3CkmiR21 cells were subjected to indirect coculture with BxPC3miR21 cells (0.4-μm pore diameter; Transwell; Fig. 2a).

Non-autonomous miR-21 Activity Is SIDT1-dependent—Our previous observations led us to hypothesize that the SIDT1 channel could facilitate miR-21 transfer between contacting cells. SIDT1 channel protein expression varies considerably between pancreatic adenocarcinoma and immortalized normal ductal epithelial cell (HPDE4) lines. Among adenocarcinoma cells, BxPC3 expresses relatively high levels of SIDT1 (Fig. 2b). Increased miR-21 activity in BxPC3CkmiR21 induced by the doxycycline-activated minority BxPC3miR21 subpopulation was abrogated by pretreatment with siRNAs directed against different regions of the SIDT1 sequence, including the SIDT1 3'-untranslated region (3'-UTR), but not control siRNA (Fig. 3). The specificity of this siRNA-induced effect was further confirmed by a "rescue step" in which a SIDT1 expression construct lacking the SIDT1 3'-UTR target sequence or empty vector control

 tant HEK- and BxPC3-derived cell lines following pretreatment with the specific small molecule gap junction inhibitor 18-α-glycyrrhetinic acid (AGA (25 μM); supplemental Fig. S3) (46, 47). Coculture and flow cytometric analysis of Cy3-siRNA transfer was repeated following pretreatment with AGA prior to a 90-min coculture at 37 °C, as described above. Cy3-siRNA transfer was not significantly affected by AGA. Together, these observations indicate that SIDT1 overexpression does not facilitate GJIC; nor is the resulting increase in Cy3-siRNA transfer dependent on functional GJIC.

Induction of Non-autonomous miRNA Activity through Physical Contact with Subpopulation of miR-21-overexpressing BxPC3 Cells—miR-21 is a critical driver of resistance to the nucleoside analog gemcitabine in human pancreatic adenocarcinoma, an exemplar of a chemoresistant human malignancy (26, 27). The human pancreatic ductal adenocarcinoma cell line BxPC3 was selected as a model system because it exhibits relatively low levels of miR-21 activity under standard culture conditions (26).

We stably transplanted a subpopulation of BxPC3 cells with a non-viral pTRIPZ-derived miR-21 expression construct. These cells (BxPC3miR21) generate miR-21 in a doxycycline-inducible manner. Irrelevant miRNA-generating transfectants (BxPC3miRN/S), derived from RHS4346, served as controls. A miR-21 reporter cell line (BxPC3CkmiR21) was derived from BxPC3 by stable transfection of a psiCHECK-2-based miR-21 reporter construct. This dual luciferase reporter system allows Renilla luciferase activity, which decreases in the presence of miR-21, to be normalized to firefly luciferase, controlling for variations in reporter construct abundance. A single nucleotide mismatch reporter cell line (BxPC3CkmiR21 mm) was employed to confirm the specificity of the reporter system for miR-21 (supplemental Fig. S4).
was co-transfected with SIDT1–3′-UTR siRNA 1. SIDT1 over-expression “rescued” the abrogation of miR-21 induction in the BxPc3CKmiR21 reporter subpopulation that was observed with SIDT1–3′-UTR siRNA 1 treatment (Fig. 3).

Minority Subpopulation of miR-21-overexpressing Adenocarcinoma Cells Increases Global Cellular Chemoresistance to Gemcitabine—Given the ability of a minority subpopulation of BxPc3CKmiR21 cells to increase miR-21 activity in physically contacting BxPc3CKmiR21 cells, we examined the effect of a 1% subpopulation of BxPc3CKmiR21 on the gemcitabine IC50 for the total mixed cell population. Cells were exposed to clinically relevant concentrations of gemcitabine (48–52), and the IC50 was derived for the whole cell population. The gemcitabine IC50 was increased from 6 \times 10^{-8} to 3 \times 10^{-6} M by direct coculture of doxycycline-activated BxPc3CKmiR21 with BxPc3CKmiR21 cells (ratio 1:100). Importantly, firefly luciferase activity normalized to total cell number remained constant, indicating preservation of the BxPc3CKmiR21/BxPc3CKmiR21 ratio over the duration of the experiment. The gemcitabine IC50 approximated control levels when doxycycline was withdrawn and was unaffected by direct coculture of BxPc3CKmiRNA with BxPc3CKmiR21, confirming specificity of the effect to the miR-21 sequence (Fig. 4a). Transfer of miR-21 and IC50 were unaffected by 25 \mu M AGA (Fig. 4d and supplemental Fig. S3).

SIDT1 Deficiency Attenuates Chemoresistance Induced by Minority miR-21-overexpressing Subpopulation of Adenocarcinoma Cells—The increase in global cellular chemoresistance to gemcitabine that miR-21 induced was cell contact-dependent, the IC50 being unaffected when BxPc3CKmiR21 and BxPc3CKmiR21 cells were subjected to indirect coculture (BxPc3CKmiR21/BxPc3CKmiR21 = 1:100; Fig. 4b). The miR-21-induced increase in IC50 was significantly attenuated when cells were treated with SIDT1–3′-UTR siRNA 1 but not control siRNA. A SIDT1 re-expression rescue step, as described above, confirmed that the decrease in gemcitabine IC50 induced by SIDT1–3′-UTR siRNA 1 could be abolished by restoring levels of SIDT1 (Fig. 4c). Corresponding impairment of colony forming capacity and increased caspase 3 activities were observed when BxPc3CKmiR21 and BxPc3CKmiR21 were cocultured in the presence of gemcitabine following treatment with SIDT1–3′-UTR siRNA 1. Re-introduction of SIDT1 abolished these effects on colony formation and caspase activities (Fig. 5).

SIDT1 Contributes to Cell Adhesion-mediated Drug Resistance (CAM-DR)—Given the capacity for small RNA transfer observed between adenocarcinoma cells, we examined whether a similar process might contribute to the complex tumor-stromal cell interactions that can enhance chemoresistance in a range of human cancers (53). Human pancreatic stellate cells (hPSC) were isolated from surgical resection specimens, and their morphology and immunophenotype (54) were confirmed (Fig. 6a). SIDT1 was relatively highly expressed in all three hPSC lines tested (Fig. 6b). We repeated the flow cytometric Cy3-siRNA transfer assay, as before, and observed rapid Cy3-siRNA transfer between adenocarcinoma and hPSC cells that was sensitive to anti-SIDT1 antibody treatment (Fig. 6c). In order to quantify CAM-DR, we subjected BxPc3GFP cells to direct coculture with hPSC in the presence of 1 \mu M gemcitabine and measured GFP fluorescence, which correlates with adenocarcinoma cell number (27), normalizing GFP fluorescence to MTT-based total cell quantification. BxPc3GFP proliferation in the presence of clinically relevant gemcitabine levels was markedly increased by hPSC coculture. Furthermore, this effect was abrogated by treatment with 10 \mu g/ml anti-SIDT1 antibody but not control-matched immunoglobulin. Although this aspect of SIDT1 biology requires further investigation, this
result demonstrates that heterotypic intercellular small RNA transfer can occur and that SIDT1 contributes to this process.

In summary, SIDT1 facilitates rapid bidirectional, contact-dependent, RNase-insensitive transfer of Cy3-siRNA that is independent of GJIC. Contact-independent siRNA transfer was insignificant in comparison with SIDT1-mediated contact-dependent Cy3-siRNA acquisition. SIDT1-dependent Cy3-siRNA intercellular transfer is not restricted to adenocarcinoma cells and can occur between stromal cells, influencing CAM-DR.

DISCUSSION

Although organism-wide sysRNAi is not apparent in mammals, significant phylogenetic molecular conservation suggests that sysRNAi pathways may be relevant to human physiology and pathophysiology (7). The C. elegans orthologue of SIDT1, SID1, has recently been shown to be a dsRNA-gated channel capable of selective bidirectional intercellular dsRNA transfer (11). Our findings demonstrate first that SIDT1 facilitates contact-dependent small RNA transfer and non-cell-autonomous posttranscriptional regulation; second, they support the assertion that small RNA-based signaling represents a further level of adaptive capacity and complexity within the tumor microenvironment; and third, they indicate that disruption or exploitation of sysRNAi pathways may have therapeutic utility, particularly as a means of impairing the acquisition of resistance to cytotoxic agents.

Contact-dependent intercellular communication not only maintains normal tissue organization but can also drive neoplasia. However, to date, studies of SID family proteins have generally focused on these proteins as conduits for the contact-independent uptake of free small RNAs from the extracellular milieu (12, 13). In addition to characterizing the role of SIDT1 in the context of contact-dependent small RNA intercellular transfer, this study provides new evidence that contact-dependent non-cell-autonomous RNAi can shape therapeutic resistance in pancreatic cancer and that SIDT1 can act as a mediator of this form of RNA-based intercellular communication.

The miRNome is a highly complex and adaptable system, with each miRNA exerting pleiotropic effects. Recent studies illustrate miRNA biogenesis to be exquisitely sensitive to cell context, miRNA levels increasing in a contact-dependent manner (55). miR-21 was the focus of this study because it promotes chemoresistance to gemcitabine in human adenocarcinoma cells (22–25). The ability of a minority subpopulation of miR-21-overexpressing cells to influence global chemoresistance through a contact-mediated, SIDT1-dependent mechanism raises the intriguing possibility that subgroups of cells within a
SIDT1 Mediates Contact-dependent Small RNA Transfer

Our results demonstrate SIDT1-mediated siRNA transfer to be independent of GJIC. GJIC can increase the susceptibility of heterogeneous tumor population can influence resistance within the wider tumor microenvironment through contact-dependent non-cell-autonomous RNAi. Subpopulations of drug-tolerant tumor cells employ dynamic survival strategies that result in therapeutic resistance (34). Parallels can be drawn with microbial resistance, in which a small number of tolerant organisms can influence the “fitness” of the populations as a whole. Similarly, cells exposed to cytotoxic drug may, through small RNA-based communication, influence survival pathways within contacting cells over significant distances.

The rapid nature of SIDT1-mediated small RNA transfer is particularly striking and significantly precedes RNA transfer via contact-independent mechanisms, such as exosomal shuttling and free RNA transfer (38). Tumor cells that are capable of rapid adaptation are more likely to gain selective advantage in the presence of a toxic perturbation. Rapid small RNA transfer and resulting posttranscriptional gene regulation would allow more timely adaptive changes than those resulting from “classic” genetic mutation. This study supports the premise that small RNAs have the capacity to act as signaling intermediaries.

The absence of disseminating fluorescent protein expression to small RNAs have the capacity to act as signaling intermediaries. These observations are in keeping with the relative specificity for dsRNA exhibited by SID1 (11).

Our results demonstrate SIDT1-mediated siRNA transfer to be independent of GJIC. GJIC can increase the susceptibility of cancer cells to cytotoxic agents through connexin-mediated “bystander effects” in pancreatic cancer (56). BxPC3 cells in which GJIC is artificially increased exhibit bystander cytotoxicity when exposed to gemcitabine (56–58). Interestingly, connexin expression and GJIC are frequently decreased in cancer, re-expression of connexins commonly suppressing tumorigenicity (59). In contrast to the relatively non-selective nature of connexin-mediated communication, SIDT1 overexpression does not increase Lucifer yellow transfer. SIDT1 may therefore represent a means by which tumor cells can adapt to maintain small RNA–based intercellular communication, without experiencing greater bystander cytotoxicity that increased GJIC would incur.

Recent data from other groups indicate that non-cell-autonomous small RNA effects may be of general relevance to human cancer. Katakowski et al. (60) reported microvesicle-independent microRNA transfer between U87 human glioma cells. Although this study did not directly examine chemoresistance, the authors demonstrated non-autonomous microRNA effects in contacting cells. Zhao et al. (61) have demonstrated that SNB19 glioma cells can undergo intercellular transfer of PTEN-silencing siRNA in coculture. Interestingly, this effect was only observed in direct (contact-dependent) but not indirect (contact-independent) coculture. The PTEN tumor suppressor mRNA is a target of miR-21 and a number of other microRNAs. PTEN deficiency is clinically associated with chemoresistance in a range of human cancers. These data also suggest that non-autonomous gene silencing can result in molecular events that promote clinical chemoresistance.

We have demonstrated that SIDT1-dependent small RNA transfer can also operate between adenocarcinoma and stromal cells, in this case pancreatic stellate cells. The important chemoprotective effects of direct tumor-stromal cell contact are increasingly recognized (27). CAM-DR that develops in the tumor microenvironment may represent a future therapeutic opportunity. Follicular dendritic cells can protect B-cell lymphoma cells from drug-induced apoptosis through contact-mediated microRNA-dependent mechanisms (21, 62). miR-181a was found to be increased by direct contact between dendritic and lymphoma cells but not when cells were cultured under indirect coculture conditions, suggesting that free RNA, RNA bound to proteins (e.g. Argonaute or lipoproteins), or exosomal RNA transfer is less likely to mediate the effects on chemoresistance in this setting. This is in keeping with our observations. Although the possibility that the non-autonomous increase in miR-181a levels could result from intercellular RNA transfer was not explored, interestingly, SIDT1 is also relatively overexpressed in dendritic cells.

The clinical implications of SIDT1 expression levels are likely to be complex and will be influenced by the prevailing miRNome within the tumor. Preliminary studies of primary breast cancer mRNA and microRNA expression arrays are consistent with the hypothesis that SIDT1 may have a “permissive” role in some of the phenotypic effects of miR-21 overexpression. High levels of miR-21 expression result in poorer survival for patients with SIDT1-overexpressing tumors relative to those with low SIDT1 expression (supplemental Fig. S5). Further clinical studies are ongoing to address this question.
SIDT1 Mediates Contact-dependent Small RNA Transfer

In conclusion, SIDT1 mediates contact-dependent siRNA and miRNA transfer and non-cell-autonomous RNAi, which can enhance pancreatic adenocarcinoma chemoresistance to gemcitabine that is driven by miR-21. SIDT1-dependent small RNA transfer may also contribute to CAM-DR. Although systemic RNAi in humans appears not to be the organism-wide phenomenon observed in C. elegans, comparable processes may support adaptation to perturbations and selective pressures within the tumor microenvironment, such as those induced by cytotoxic therapy. Therapeutic exploitation of sysRNAi pathways may have utility in human cancer and warrants further experimental evaluation.

Acknowledgments—We thank Drs. Nick Gilbert and Bernard Ramsahoye, Prof. John Iredale, and members of the Frame and Brunton laboratories for helpful advice and reagents. We thank Dr. Jacqueline Dickson for the pTRIPZ-IRES-GFP construct, Elizabeth Freyer (Flow Cytometry Facility, Medical Research Council Human Genetics Unit, Edinburgh) for technical assistance with flow cytometry, and Dr. Andy Sims for bioinformatics advice.

REFERENCES

1. Chitwood, D. H., and Timmermans, M. C. (2010) Small RNAs are on the move. Nature 467, 415–419.
2. Herr, A. J., and Baulcombe, D. C. (2004) RNA silencing pathways in plants. Nature 431, 356–363.
3. Jose, A. M., and Hunter, C. P. (2007) Transport of sequence-specific RNA interference information between cells. Annu. Rev. Genet. 41, 305–330.
4. Winston, W. M., Molodowitch, C., and Hunter, C. P. (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295, 2456–2459.
5. Feinberg, E. H., and Hunter, C. P. (2003) Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301, 1545–1547.
6. Li, H., Coghlan, A., Ruan, J., Coin, L. J., Hériché, J. K., Osmotherly, L., Li, R., Liu, T., Zhang, Z., Bolund, L., Wong, K. G., Zheng, W., Dehal, P., Wang, J., and Durbin, R. (2006) TreeFam. A curated database of phylogenetic trees of animal gene families. Nucleic Acids Res. 34, D572–580.
7. Tomoyasu, Y., Miller, S. C., Tomita, S., Schoppmeier, M., Grossmann, D., and Bucher, G. (2008) Exploring systemic RNA interference in insects. A genome-wide survey for RNAi genes in Tribolium. Genome Biol. 9, R10.
8. Su, A. I., Willshire, T., Batalov, S., Lapp, H., Ching, K. A., Block, D., Zhang, J., Soden, R., Hayakawa, M., Kreiman, G., Cooke, M. P., Walker, J. R., and Hogness, J. B. (2004) A gene atlas of the mouse and human protein–encoding transcripts. Proc. Natl. Acad. Sci. U.S.A. 101, 6062–6067.
9. Hunter, C. P., Winston, W. M., Molodowitch, C., Feinberg, E. H., Shih, J., Sutherlin, M., Wright, A. I., and Fitzgerald, M. C. (2006) Systemic RNAi in Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol. 71, 95–100.
10. Shih, J. D., and Hunter, C. P. (2011) SID-1 is a dsRNA-selective dsRNA-gated channel. RNA 17, 1057–1065.
11. Duxbury, M. S., Ashley, S. W., and Whang, E. E. (2005) RNA interference. A mammalian SID-1 homologue enhances siRNA uptake and gene silencing efficacy in human cells. Biochem. Biophys. Res. Commun. 331, 459–463.
12. Wolfrum, C., Shi, S., Jayaprakash, K. N., Jayaraman, M., Wang, G., Pandey, R. K., Rajeev, K. G., Nakayama, T., Charrise, K., Ndungo, E. M., Zimmer-
mann, T., Kotelsianysky, V., Manoharan, M., and Stoffel, M. (2007) Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol. 25, 1149–1157

14. Tsang, S. Y., Moore, J. C., Huizen, R. V., Chan, C. W., and Li, R. A. (2007) Ectopic expression of systemic RNA interference-defective protein in embryonic stem cells. Biochem. Biophys. Res. Commun. 357, 480–486

15. Dinger, M. E., Mercer, T. R., and Mattick, J. S. (2008) RNAs as extracellular signaling molecules. J. Mol. Endocrinol. 40, 151–159

16. Macfarlane, I. A., and Murphy, P. R. (2010) MicroRNA: Biogenesis, Function, and Role in Cancer. Curr. Genomics 11, 537–561

17. Inui, M., Martello, G., and Piccolo, S. (2010) MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol. 11, 252–263

18. Patek, P. Q., Lin, Y., and Case, P. G. (1989) Cell lines cultured at high density are resistant to lysis by tumor necrosis factor and natural cytotoxic cells. Proc. Soc. Exp. Biol. Med. 190, 234–239

19. Kobayashi, H., Man, S., Graham, C. H., Kapitain, S. J., Teicher, B. A., and Kerbel, R. S. (1993) Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc. Natl. Acad. Sci. U.S.A. 90, 5294–5298

20. Green, S. K., Frankel, A., and Kerbel, R. S. (1999) Adhesion-dependent multicellular drug resistance. Anticancer Drug Des. 14, 153–168

21. Lwin, T., Lin, J., Choi, Y. S., Zhang, X., Moscinski, L. C., Wright, K. L., Sotomayor, E. M., Dalton, W. S., and Tao, J. (2010) Folicidin dendritic cell-dependent drug resistance of non-Hodgkin lymphoma involves cell adhesion-mediated Bid down-regulation through induction of microRNA-181a. Blood 116, 5228–5236

22. Krichevsky, A. M., and Gabriely, G. (2009) miR-21. A small multifaceted miRNA. Curr. Genomics 10, 537–561

23. Bai, H., Xu, R., Cao, Z., Wei, D., and Wang, C. (2011) Involvement of SIDT1 Mediates Contact-dependent Small RNA Transfer

24. Duxbury, M. S., Ito, H., Benoit, E., Waseem, T., Ashley, S. W., and Whang, E. E. (2007) RRM2 induces NF-κB. J. Biol. Chem. 282, 31575–31581

25. Bachem, M. G., Schünemann, M., Ramadani, M., Siech, M., Beger, H., Del Chiaro, M., Erozenci, L. A., Giovannetti, E., Funel, N., Peters, G. J., and Moore, J. S. (2007) CellVue Claret, a new far-red dye, facilitates polychromatic assessment of immune cell proliferation. Immunol. Invest. 36, 581–605

26. Horan, P. K., and Slezak, S. E. (1989) Stable cell membrane labeling. Nature 340, 167–168

27. Wallace, P. K., Palmer, L. D., Perry-Lalley, D., Bolton, E. S., Alexander, R. B., Horan, P. K., Yang, J. C., and Muihead, K. A. (1993) Mechanisms of adaptive immunotherapy. Improved methods for in vivo tracking of tumor-infiltrating lymphocytes and lymphokine-activated killer cells. Cancer Res. 53, 2358–2367

28. Rechavi, O., Erlich, Y., Amram, H., Slomiflubit, L., Karginov, F. V., Goldenstein, I., Hori, M., and Tada, M. (1998) Intercellular calcium signaling via gap junction in connexin-43 transfected cells. J. Biol. Chem. 273, 1519–1528

29. John, S. A., Kondo, R., Wang, S. Y., Goldhaber, J. I., and Weiss, J. N. (1999) Connexin-43 hemichannels opened by metabolic inhibition. J. Biol. Chem. 274, 236–240

30. McSpadden, L. C., Kirkton, R. D., and Bursac, N. (2009) Electrotodynamic anisotropic cardiac monolayers by unexcitable cells depends on connexin type and expression level. Am. J. Physiol. Cell Physiol. 297, C339–351

31. Woltveteg, E. J., Pera, M. F., and Zuckerman, K. S. (2007) Gap junction mediated transport of shRNA between human embryonic stem cells. Biochem. Biophys. Res. Commun. 363, 610–615

32. Valiunas, V., Kolesina, Y. Y., Miller, H., Potapova, I. A., Valuniene, L., Doronin, S., Mathias, R. T., Robinson, R. B., Satterlee, S. W., Shi, S. Y., and Brink, P. R. (2005) Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J. Physiol. 568, 459–468

33. Kuncic, Z., Abbruzzese, J. L., Tarassoff, P., and Plunkett, W. (1991) Phase I and pharmacokinetic study of two sequences of gemcitabine. Oncol. Res. 3, 234–239

34. Bantly, A. D., Gray, B. D., Breslin, E., Weinstein, E. G., Muirhead, K. A., Campani, D., Verheul, H. M., and Boggii, U. (2010) MicroRNA-21 in pancreatic cancer. Correlation with clinical outcome and pharmacologic as aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 70, 4528–4538

35. Satomayor, E. M., Dalton, W. S., and Tao, J. (2010) Follicular dendritic cell-dependent drug resistance of non-Hodgkin lymphoma involves cell adhesion-mediated Bid down-regulation through induction of microRNA-181a. Blood 116, 5228–5236

36. Duxbury, M. S., Ito, H., Ashley, S. W., and Whang, E. E. (2004) CEACAM6 cross-linking induces caveolin-1–dependent, Src-mediated focal adhesion kinase phosphorylation in BxPC3 pancreatic adenocarcinoma cells. J. Biol. Chem. 279, 23176–23182

37. Bachem, M. G., Schumann, M., Ramadani, M., Siech, M., Beger, H., Buck, A., Zhou, S., Schmid-Kotsas, A., and Adler, G. (2005) Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 128, 907–921

38. Kiang, D. T., Kollander, R., Lin, H. H., LaVilla, S., and Atkinson, M. M. (1994) Measurement of gap junction conduction by fluorescence activated cell sorting. In Vitro Cell. Dev. Biol. Anim. 30A, 796–802

39. Duxbury, M. S., and Whang, E. E. (2007) RRM2 induces NF-κB-dependent MMP-9 activation and enhances cellular invasiveness. Biochem. Biophys. Res. Commun. 354, 190–196

40. Raitano, A. B., Scuderi, P., and Korc, M. (1990) Binding and biological effects of tumor necrosis factor and interleukin in human pancreatic carcinoma cells. Pancreas 5, 267–277

41. Duxbury, M. S., Ito, H., Benoit, E., Waseem, T., Ashley, S. W., and Whang, E. E. (2004) A novel role for carcinoembryonic antigen-related cell adhesion molecule 6 as a determinant of gemcitabine chemoresistance in pancreatic adenocarcinoma cells. Cancer Res. 64, 3987–3993

42. Sharma, S. V., Lee, D. Y., Li, B., Quinlan, M. P., Takahashi, F., Maheswaran, S., McDermott, U., Azzizian, N., Zou, L., Fischbach, M. A., Wong, K. K., Brandstetter, K., Wittner, B., Ramasamy, S., Classon, M., and Settleman, J. (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80

43. Banty, A. D., Gray, B. D., Breslin, E., Weinistein, E. G., Muihead, K. A., Ohlsson-Wilhelm, B. M., and Moore, J. S. (2007) CellVive Claret, a new far-red dye, facilitates polychromatic assessment of immune cell proliferation. Immunol. Invest. 36, 581–605

44. van Riel, J. M., Peters, G. J., Mammatas, L. H., Honeywell, R. J., Laan, A. C., McDermott, U., Azizian, N., Zou, L., Fischbach, M. A., Wong, K. K., Veltkamp, S. A., Beijnen, J. H., and Schellens, J. H. (2008) Prolonged versus hepatic arterial infusion.
standard gemcitabine infusion. Translation of molecular pharmacology to new treatment strategy. Oncologist 13, 261–276
53. Dalton, W. S. (1999) The tumor microenvironment as a determinant of drug response and resistance. Drug Resist. Updat. 2, 285–288
54. Bachem, M. G., Schneider, E., Gross, H., Weidenbach, H., Schmid, R. M., Menke, A., Siech, M., Beger, H., Grünert, A., and Adler, G. (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115, 421–432
55. Hwang, H. W., Wentzel, E. A., and Mendell, J. T. (2009) Cell-cell contact globally activates microRNA biogenesis. Proc. Natl. Acad. Sci. U.S.A. 106, 7016–7021
56. Garcia-Rodríguez, L., Pérez-Torras, S., Carrió, M., Cascante, A., García-Ribas, I., Mazo, A., and Fillat, C. (2011) Connexin-26 is a key factor mediating gemcitabine bystander effect. Mol. Cancer Ther. 10, 505–517
57. Cottin, S., Ghani, K., de Campos-Lima, P. O., and Caruso, M. (2010) Gemcitabine intercellular diffusion mediated by gap junctions. New implications for cancer therapy. Mol. Cancer 9, 141
58. Ammerpohl, O., Trauzold, A., Schniewind, B., Griep, U., Pilarsky, C., Grutzmann, R., Saeger, H. D., Janssen, O., Sipos, B., Kloppel, G., and Kalthoff, H. (2007) Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells. Br. J. Cancer 96, 73–81
59. Zhang, Z. Q., Zhang, W., Wang, N. Q., Bani-Yaghoub, M., Lin, Z. X., and Naus, C. C. (1998) Suppression of tumorigenicity of human lung carcinoma cells after transfection with connexin43. Carcinogenesis 19, 1889–1894
60. Katakowski, M., Buller, B., Wang, X., Rogers, T., and Chopp, M. (2010) Functional microRNA is transferred between glioma cells. Cancer Res. 70, 8259–8263
61. Zhao, T. Y., Zou, S. P., Alimova, Y. V., Wang, G., Hauser, K. F., Ghandour, M. S., and Knapp, P. E. (2006) Short interfering RNA-induced gene silencing is transmitted between cells from the mammalian central nervous system. J. Neurochem. 98, 1541–1550
62. Lin, J., Lwin, T., Zhao, J. J., Tam, W., Choi, Y. S., Moscinski, L. C., Dalton, W. S., Sotomayor, E. M., Wright, K. L., and Tao, J. (2011) Follicular dendritic cell-induced microRNA-mediated up-regulation of PRDM1 and down-regulation of BCL-6 in non-Hodgkin’s B-cell lymphomas. Leukemia 25, 145–152