The miR-124 family of microRNAs is critical for regeneration of the brain and visual system in the planarian *Schmidtea mediterranea*

Sasidharan Vidyanand#1,3, Srujan Marepally#1, Sarah A. Elliott2,4, Srishti Baid1, Vairavan Lakshmanan1, Nishtha Nayyar1, Dhiru Bansal1,3, Alejandro Sánchez Alvarado2,4, Praveen Kumar Vemula*1, Dasaradhi Palakodeti*1

Affiliations

1 Institute for Stem Cell Biology and Regenerative Medicine, NCBS campus, Bangalore, Karnataka, India

2 Stowers Institute for Medical Research and Howard Hughes Medical Institute, Kansas City, Missouri, United States

3 Manipal University, Manipal, Karnataka, India

4 Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States

Equal Contribution

* Corresponding Authors

Correspondence:

1. Dasaradhi Palakodeti
 Assistant Research Investigator,
 Institute for Stem Cell Biology and Regenerative Medicine,
 GKV, NCBS campus,
 Bangalore,
 India: 560065
 Email address: dasaradhip@instem.res.in
 Phone Number: +91-80-67176767

2. Praveen Kumar Vemula
Assistant Research Investigator
Institute for Stem Cell Biology and Regenerative Medicine
GKVK, NCBS campus,
Bangalore,
India: 560065
Email Address: praveenv@instem.res.in
Phone Number: +91-80-67176395

Key words: Planarians, Schmidtea mediterranea, miR-124, Brain regeneration,
Photoreceptors, Notch
Summary

Brain regeneration in planarians is mediated by precise spatiotemporal control of gene expression and is critical for multiple aspects of neurogenesis. However, the mechanisms underpinning the gene regulation essential for brain regeneration are largely unknown. Here, we investigated the role of the miR-124 family of microRNAs in planarian brain regeneration. The miR-124 family (miR-124) is highly conserved in animals and it regulates neurogenesis by facilitating neural differentiation. Yet, its role in neural wiring and brain organization is not known. In this study, we developed a novel method for delivering anti-miRs using liposomes for the functional knockdown (KD) of microRNAs. KD of Smed-miR-124 revealed a critical role for these miRNAs in neuronal organization during planarian brain regeneration. Our results also demonstrated an essential role for miR-124 in the generation of eye progenitors. Additionally, miR-124 regulates Smed-slit-1, an axon guidance protein, either by targeting slit-1 mRNA or by potentially modulating the canonical Notch pathway. Together, our results reveal a role for miR-124 in regulating the regeneration of a functional brain and visual system.
Introduction

Brain wiring is a complex process, ensuring the formation of an intricate network of intercommunicating neurons. This process involves the precise guidance of axons from the neuron to its targets, which, in most animals, happens during prenatal and early postnatal development (Tessier-Lavigne and Goodman, 1996, Stiles and Jernigan, 2010). Because of their unique capacity to regenerate a complex nervous system, planarian flatworms provide a tantalizing context in which to study factors essential for brain organization and neural patterning in adult animals. Planarians are endowed with a well-organized nervous system, which consists of a bi-lobed brain (cephalic ganglia) and a pair of ventral nerve cords interconnected by commissural neurons (Umesono et al., 1999, Cebria et al., 2002a, Cebria et al., 2002b). The eyes are located dorsal to the cephalic ganglia. The planarian eye consists of pigment cells that form a cup-shaped organ and photosensing neurons. Photo sensing neurons project rhabdomeres inside the pigment cup, while their axons form the optic chiasm (Sakai et al., 2000, Yamamoto and Agata, 2011). During planarian regeneration, the brain rudiment and eyes form within 24–48 hours post-amputation (hpa). Although the differentiating primordia of the brain and eyes are evident around 3 days post-amputation (dpa), the recovery of the functional brain is completed only after 7 dpa (Inoue et al. 2004, Ong et al. 2016). Axon guidance proteins, such as members of the Dscam, slit, netrin, and robo families, are essential for neural regeneration in planarians, and these factors are required for the patterning of the brain (Agata and Umesono, 2008, Yamamoto and Agata, 2011, Fusaoka et al., 2006, Cebria et al., 2007, Beane et al., 2012). However, the factors that regulate the spatio-temporal expression of these genes, which are
critical for the proper patterning of the planarian visual system and brain, are not known.

MicroRNAs (miRNAs) are small RNA species 21–22 nucleotides in length. They function in multiple biological processes, including neural stem cell proliferation, differentiation, and patterning (Almuedo-Castillo et al., 2011, Plasterk, 2006, Hatfield et al., 2005, Thatcher and Patton, 2010). Deep-sequencing of planarian Schmidtea mediterranea small RNAs from the regenerating tissue (blastema) identified the Smed-miR-124 family of microRNAs as the most prominent miRNAs enriched in the anterior blastema by 3 dpa (Sasidharan et al., 2013). The miR-124 family is highly conserved across metazoa and is generally enriched in the nervous system (Kosik, 2009). Although the miR-124 family is highly expressed in the adult brain of vertebrates, its role in adult neurogenesis is not known. Since whole-mount in situ hybridization (WISH) revealed that the miR-124 family is enriched in the nervous system of the adult planarian (Sasidharan et al., 2013), we aimed to explore the function of this family, including its potential roles in neurogenesis.

To do this, we developed a novel liposome-based method for efficient delivery of anti-miR-124 into live planarians to study the function of the miR-124 family (hereafter collectively referred to as miR-124). Extensive characterization of miR-124-KD phenotypes, which include drastic brain and eye defects, revealed a critical role for miR-124 in the generation and/or maintenance of discrete neural populations and eye progenitors, in addition to the patterning of neurons in the anteriorly regenerating planarian. Furthermore, miR-124-KD caused an expansion of the Smed-slit-1-expression in midline.
Target prediction analyses identified a cohort of genes essential for axon guidance, planar cell polarity, and the Notch pathway as likely targets of miR-124. To preliminarily validate our target predictions and gain insights into the mechanism of action of miR-124, we focused our efforts on the Notch pathway. The KD of Notch pathway genes recapitulated the midline defects observed after miR-124-KD, suggesting that miR-124 might regulate slit-1 expression via the canonical Notch pathway. Altogether, our study uncovered roles for miR-124 in neurogenesis and neuronal organization during adult brain and eye regeneration. Furthermore, we find that miR-124 is likely required for midline patterning through a deeply evolutionarily conserved miR-124/Notch regulatory interaction.

Results

Expression of the planarian miR-124 family is enriched in the cephalic ganglia and ventral nerve cords

The planarian genome encodes five miR-124 family members (Smed-miR-124a, -b, -c, -d, and -e), which differ from each other after the tenth nucleotide from the 5’ end. High-throughput sequencing of small RNAs from the anterior blastema of regenerating animals detected enrichment for miR-124a, -b, -c, and -e (Sasidharan et al., 2013). WISH using Locked Nucleic Acid (LNA) detection probes confirmed the expression of miR-124a, -b, and -c in the cephalic ganglia and ventral nerve cords (Fig. S1A). The miR-124e detection probe was not used for further expression studies because of its weak and inconsistent staining. Co-localization of miR-124a, -b, and -c with the pan-neural marker, Smed-PC2, and Hoechst revealed their expression in the bi-lobed cephalic ganglia. Unlike miR-124a and -b, miR-124c showed a distinct expression pattern in the brain and ventral nerve
cord, suggesting that the LNA probes effectively differentiate the expression of miR-124c from miR-124a and -b. (Fig. 1A, 1B, and S1A-C). Additionally, miR-124c showed broad expression in both the perinuclear soma and the neuronal axon bundles in the bi-lobed cephalic ganglia compared to miR-124a and -b, which are enriched in the perinuclear soma (Fig. 1B and S1B-C). Since miR-124a and -b showed similar expression patterns, all additional expression studies were performed using the miR-124b probe. Co-localization studies of miR-124b and miR-124c with other neuronal markers, including choline acetyltransferase (Smed-chat), glutamate decarboxylase (Smed-gad), tyrosine hydroxylase (Smed-th), and tryptophan hydroxylase (Smed-tph), showed broad expression of miR-124 in all of these neural subtypes (Fig. 1C-D and S2A-B). Further examination of miR-124b and miR-124c expression at different regeneration time points (1, 3, 5, and 7 dpa) revealed their enrichment in the brain primordia as early as 3 dpa (Fig. 1E). Enrichment of miR-124b and miR-124c was also observed in the regenerating brain at 5 and 7 dpa, as well as in the anterior commissure that connects the bi-lobed structure (Fig. 1E). The expression of miR-124c in the preexisting ventral nerve cords close to the regenerating brain was only seen by 3 dpa, whereas the expression of miR-124b was evident by 1 dpa (Fig. 1E). However, weak miR-124c expression was seen throughout the preexisting ventral nerve cord between 3 and 7 dpa. Prominent expression of miR-124c throughout the ventral nerve cords was observed only after 7 dpa (Fig. S1D). Interestingly, the brain and eye primordia are known to begin forming between 1–2 dpa. Since none of the miR-124 genes showed enrichment in the blastema until 3 dpa, this suggests that these miRNAs might contribute to the production of neural lineages born after 3 dpa and/or play roles in later stages of
neural regeneration. To test these possibilities, we aimed to perturb the function of miR-124 during planarian regeneration.

Design of non-viral liposomes for enhanced delivery of anti-miRs in planarians

Currently, the study of miRNAs in planarians is limited by the lack of effective methods for delivering anti-miRs into the animal's cells. Several methods, such as microinjection and soaking, were used to deliver double-stranded RNA (dsRNA) into planarians (Orii et al., 2003, Sanchez Alvarado and Newmark, 1999, Martin-Duran et al., 2008, Gonzalez-Estevez et al., 2003). However, those methods have not proved successful for delivering anti-miRs (data not shown). To overcome this, we custom-designed cationic, non-viral liposomal vectors to deliver anti-miRs into planarian cells in vivo.

We designed cationic liposomes that are fluidic at lower temperatures (~25°C) to efficiently fuse with planarian cells. Cationic lipids with symmetric (di-octadecyl, Sym-Lip) and asymmetric (octadecyl & oleyl, Asym-Lip) hydrophobic chains were synthesized and characterized by mass spectrometry (Fig. 2A and S3A-F). The fluidity of liposomes was modulated by preparation of the liposomes using a single lipid (either Sym-Lip (symmetric-liposomes) or Asym-Lip (asymmetric-liposomes)) or a 1:1 molar ratio of symmetric-asymmetric lipids (co-liposomes), along with cholesterol. The biophysical characterization of these three liposomes, including size, surface charge, and fluidity, revealed that co-liposomes are the best carriers of nucleic acids compared to symmetric and asymmetric liposomes (Fig. 2B-C). Furthermore, gel retardation studies of the three types of liposomes mixed with miRNAs at different concentrations revealed that all three liposomes efficiently
complex with miRNA at a higher lipid-to-miRNA charge ratio of 20:1, inhibiting the liposomes’ mobility in the gel (Fig. 2D and S4A).

To evaluate the fusogenicity of cationic liposomes, we performed FRET by reconstituting the liposome with planarian lipids (see Methods) using dual fluorophore lipids (NBD-PE & Rho-PE) (Fig. 2E). NBD-PE and Rho-PE in proximity have an emission wavelength of 595 nm due to FRET (Mukthavaram et al., 2009). Fusion of the liposome with the membrane leads to a spatial separation between NBD-PE and Rho-PE lipids, which result in an emission at 530 nm instead of 595 nm due to the absence of FRET. Therefore, the total percentage of fluorescence recovery at 530 nm is a direct measure of fusogenicity of the liposomes (Fig. 2E-F), which was 72%, 80%, and 93% for symmetric, asymmetric, and co-liposomes, respectively. Additionally, no significant recovery (<5%) was observed for lipofectamine RNAi Max (Fig. 2F). These data suggest that the cationic liposomes and co-liposomes were particularly efficient at inducing fusion with planarian lipid membranes when compared to lipofectamine RNAi Max.

Transmission electron microscopy was performed on the three liposomal formulations (Fig. 2G) and lipoplexes containing oligonucleotides. This demonstrated the unilamellar stable nature of the liposomes (Fig. S4B). Furthermore, fluorescently labeled oligonucleotide complexes with co-liposomes and lipofectamine LTX were incubated with regenerating planarians, and confocal imaging revealed that co-liposomes have a better penetrance into tissues compared to lipofectamine LTX (Fig. 2H and S5A). Confocal imaging of cell macerates from animals treated with co-liposomes further demonstrated that fluorescently labeled oligonucleotides successfully penetrate into the cytoplasm and nuclei of the cells (Fig. S5B).
Cumulatively, these data indicate that these custom-designed liposomes could be highly efficient delivery vehicles for nucleic acids in planarians.

Successful knockdown of ovo and multiple miRNAs using non-viral liposomes

To validate the effectiveness of our liposome-based nucleic acid delivery method, we performed ovo KD as a positive control. Ovo(RNAi) animals are known to lack eyes. As expected, delivery of ovo dsRNA using liposomes resulted in an eyeless phenotype in 100% of the treated animals (n=15), while gfp-treated controls regenerated eyes normally (n=15) (Fig. 3A). This is on par with the phenotype severity and penetrance obtained with dsRNA feeding or injection delivery methods.

Next, we examined the effectiveness of our delivery method for knocking down miRNAs. We administered an anti-miR that was predicted to target all miR-124 family members using co-liposomes in regenerating animals at 1 dpa. Animals were treated with anti-miRs at concentrations of 10, 50, and 100 µM, and a scrambled anti-miR was used as a negative control at a concentration of 100 µM.

The miRNA KD was verified by examining the expression of one of the miR-124 family members, miR-124c, by WISH using antisense LNA probes. The animals treated with 50 and 100 µM anti-miRs showed significant decreases in expression of miR-124c (Fig. 3B). While we observed a reduction in the expression of miR-124c in the 50 µM treatment condition, there was no obvious disorganization of the brain or visual system in these animals (Fig. S5C). This suggests that the reduction in miR-124c levels is not the result of a loss of brain tissue, but is specific to the inhibition of expression by the anti-miRs.

Since the anti-miRs are predicted to target all miR-124 family members, we also examined the expression levels of another member of the family, miR-124b. As
expected, we observed a significant decrease in miR-124b expression in the animals treated with 100 μM anti-miRs (Fig. S6A), suggesting that all miR-124 members are likely inhibited. To assess whether the decreased levels of miR-124 were due to reduction in brain size, we performed WISH for miR-124a and -c on both control and KD animals after the first round of regeneration when there were no observable defects in brain morphology (Fig. S6B). We observed a significant reduction in the levels of those two miRNAs, even though the cephalic ganglia was clearly present, suggesting that the observed reduction in miRNA levels is not the result of a smaller brain.

To confirm this, we performed qPCR for each miR-124 family member after treatment with either scrambled miRs or anti-miRs. We found that anti-miR-treated animals showed a 50–90%, 30–40%, and 20–40% decrease in the levels of miR-124a, -b, and -c, respectively (Fig. S6C). This suggested that our liposome-based delivery method is robust.

Liposome-mediated knockdown of miRNAs generates highly penetrant and specific regeneration phenotypes

To determine whether the observed KD of miRNA expression translated into robust and specific regeneration defects in planarians, we next examined the live phenotypes of planarians treated with anti-miR-124. Encouragingly, 81% of the animals treated with 100 μM anti-miRs showed various types of eye defects, including small eyes (25%), the complete absence of eyes (10%), cyclopia (13%), and eyes spaced abnormally far apart (14%) (Fig. 3C-E and S6D). A few animals (19%) also showed lesions in the head region and subsequently lysed (Fig. 3E).
To rule out the possibility that these regeneration defects might be due to unanticipated non-specific effects, we also treated planarians with anti-miRs targeting the miR-10 family. We observed a phenotype entirely different from that of miR-124-KD animals. No defects in the regeneration of the eyes or brain were observed. Instead, the regeneration of the intestine was disrupted, resulting in fusion of the two posterior gut branches (Fig. S6E-F).

Cumulatively, these validation experiments indicate that our liposome-based technique is highly specific and robust for delivering anti-miRs into planarian cells for functional studies.

MiR-124 is essential for regeneration of the eye in planarians

Since we observed obvious eye defects in live animals, we examined the morphology of the regenerated optic cup in miR-124-KD animals. Using an anti-ARRESTIN antibody that labels the cell bodies, rhabdomeres, and axons of the photoreceptor neurons (PRNs), we observed that miR-124-KD animals displayed obvious fasciculation and elongation defects of the axons. The optic chiasm appeared highly disorganized (Fig. 4A-B). Furthermore, the aggregation of PRN cell bodies appeared significantly reduced in miR-124-KD animals compared to scrambled controls (Fig. 4A, arrowheads), suggesting that this differentiated cell population may be missing after loss of miR-124.

Since we suspected that the numbers of differentiated cells of the eye were decreased in miR-124-KD animals, we quantified the size of the regenerated eyes. We performed FISH for ovo, which labels the entire eye lineage, including the terminally differentiated cells of the pigment cup and PRNs (Lapan and Reddien,
The size of the eyes was quantitated by measuring the area of \textit{ovo} staining in the differentiated eye normalized to the total body area or brain size (Fig. 4C, Fig. S7A). As expected, \textit{miR-124-KD} animals showed a significant decrease in the overall size of the regenerated eyes compared to scramble-treated controls, suggesting a reduction in the number of differentiated cells. To confirm this, we counted individual ARRESTIN$^+$ PRNs in the regenerated eyes. There were significantly fewer ARRESTIN$^+$ cells in \textit{miR-124-KD} animals compared to the scramble-treated controls, confirming that this cell population was lost (Fig. S7B).

A reduction in the number of differentiated cells could mean that eye progenitors are lost after KD of \textit{miR-124}. Therefore, we quantified the number of eye progenitors at 4 dpa, which are defined as \textit{ovo+} “trail” cells posterior to the eye primordia (Lapan and Reddien, 2012). Indeed, the number of \textit{ovo+} trail cells was significantly reduced in \textit{miR-124-KD} animals (Fig. 4D), suggesting that \textit{miR-124} may be required for the specification, differentiation, and/or survival of eye progenitors.

\textbf{\textit{MiR-124} is required for regeneration of the cephalic ganglia}

Since \textit{miR-124} family members are highly enriched in the nervous system, we wondered whether brain regeneration was affected by loss of these miRNAs. Indeed, we found that some \textit{miR-124-KD} animals (16%) displayed a reduction in the overall size of the brain compared to scramble-treated controls, which was evident by immunostaining with the broad neural maker, anti-SYNORF1 (Fig. 4E-F).

The planarian brain is composed of different neuronal subtypes (Roberts-Galbraith et al., 2016, Cowles et al., 2013, Ong et al., 2016). To explore these neural defects, we examined three of the major neuronal subtypes in planarians after \textit{miR-124-KD}: the dopaminergic (\textit{th$^+$}), GABAergic (\textit{gad$^+$}) and cholinergic (\textit{chat$^+$}) neurons.
FISH revealed a dramatic decrease in the numbers of gad+ and th+ cells in miR-124-KD animals compared to scramble-treated controls, suggesting a loss of GABAergic and dopaminergic neurons. Interestingly, KD of miR-124 caused a significant increase in the number of chat+ cells, indicating a likely expansion of cholinergic neurons (Fig. 4G and S7C).

Since a disruption in differentiated neural cell types and a reduction in the size of the brain might indicate defects in the generation and/or maintenance of neural progenitors, we next examined the expression of a progenitor marker for the nervous system (Smed-pax6A) (Wenemoser et al., 2012). In miR-124-KD animals, no reduction in the expression of pax6A was observed at 4 dpa (Fig. S7D). However, the KD animals showed mispatterned expression of pax6A+ cells. This suggested that miR-124 may not be required for the initial generation of neural progenitors, but it might instead be required later during the progression of the lineage. Cumulatively, these data indicate that miR-124 may be involved in the production of discrete neural subpopulations during planarian brain regeneration.

We also tested whether miR-124 is required in regeneration contexts that do not involve rebuilding these organs from scratch. First, we examined the head fragments that only regenerated tissues posterior to the brain de novo. In these animals, the pre-existing brain and eyes undergo remodeling and resizing, which is dependent on tissue turnover (Gurley et al., 2010). MiR-124-KD animals regenerating posterior tissue showed no defects in the brain, eyes, or optic chiasm, suggesting that miR-124 is not required for brain remodeling in posteriorly regenerating animals (Fig 4F).

We also examined these organs during homeostatic tissue turnover after miR-124-KD. To do this, intact animals were continuously treated with anti-miR for 1
month. No defects in the organization of the nervous system or eyes were observed after miR-124-KD compared to scramble-treated controls (Fig. S7E). These results suggest that miR-124 is primarily required during de novo regeneration of the cephalic ganglia, ventral nerve cords, and visual system in planarians.

MiR-124 eye regeneration defects are independent of brain defects

Brain malformations are known to cause secondary defects in the eyes of planarians (Cowles et al., 2013). Therefore, it is possible that the observed eye defects in miR-124-KD might be secondary to abnormalities present in brain.

To help address this, we examined the function of miR-124 during eye-only regeneration in the absence of any brain defects. We did this by first generating ovo(RNAi) worms, which lacked eyes, but did not display brain abnormalities or any other morphological defects (Lapan and Reddien, 2012) (Fig. 5A-B). Next, we stopped the treatment of ovo dsRNA, which allowed the eyes to progressively regenerate over the course of 1 month as the gene expression recovered. During this recovery period, we treated animals with either scrambled or anti-miR-124, and assessed whether the eyes could regenerate in the presence of otherwise normal anatomy (Fig. 5A-B). The scrambled-treated live animals clearly regenerated eyes, while the animals treated with anti-miR-124 showed no signs of eye recovery at the same time point (Fig. 5C). To confirm this, we visualized the differentiated PRNs (Smed-opsin), optic chiasm (anti-ARRESTIN), and pigment cells (Smed-tyrosinase) in fixed worms. Consistent with our live-animal observations, scrambled-treated worms regenerated both PRNs and pigment cells, in addition to a well-organized optic chiasm. In contrast, miR-124-KD animals possessed significantly fewer mature pigment cup cells and PRNs. Additionally, the axons projected by the few PRNs
present after miR-124-KD did form an optic chiasm, but mistargeting of some axons was observed (Fig. 5D). Cumulatively, the results of this eye-specific regeneration paradigm suggest that miR-124 has a direct role in eye regeneration, and this eye phenotype is unlikely to be a secondary effect of a generalized brain defect.

The putative targets of miR-124 are genes critical for neuronal organization and growth

In an effort to identify the transcripts regulated by miR-124, we performed target prediction using the miRanda program (Enright et al 2003). Target prediction identified a total of 1,699 putative targets that might be regulated by the miR-124 family (Table S1). Although most of the predicted targets were common between all the miR-124 family miRNAs, we identified 128 and 125 predicted targets unique to miR-124b and miR-124c, respectively. Gene set enrichment analysis (GSEA) (Subramaniam et al 2005, Mootha et al 2003) of miR-124 targets identified genes normally involved in axon guidance (slit-1, dscam, netrin-1), Notch signaling (notch-2, jagged-2), and planar cell polarity (PCP; disheveled-2 and daam-1)(Table S2, Fig. S8A). Most have been shown to regulate visual neuronal organization and neuronal growth in planarians (Yamamoto et al 2011, Fusaoko et al 2006, Cebria et al 2007, Gurley et al., 2007, Almuedo-Castillo et al, Beane et al 2012). We validated some of the predicted targets of miR-124, including dscam, slit-1, ankyrin-3, and notch-2, by cloning their miRNA binding sites into the 3'-UTR region of the Firefly luciferase gene, followed by transfection into HEK293 cells. Upon miR-124 mimic transfection, we observed a 24–50% decrease (notch-2: 24%, dscam: 37%, slit-1: 50%, ankyrin-3: 43%; P<0.05) in Firefly luciferase activity compared to the controls (Fig. 6A, S8B). These results show that the tested 3'-UTRs are likely targets of miR-124 in vivo.
Furthermore, we have performed transcriptome sequencing to determine the transcriptional changes following miR-124-KD. The transcriptome sequencing identified 2609 transcripts that were differentially expressed (P<0.05). Of these, 1523 were significantly upregulated (Table S3). We used qPCR to examine the expression levels of 30 of these transcripts, and validated 25 that were significantly upregulated after miR-124-KD (P < 0.05)(FigS8C). The other 5 were upregulated by >2 fold showing similar trend as the transcriptome data, but this was not statistically significant. Amongst the 25 validated transcripts, 9 of these were predicted as targets by miRanda. Interestingly, our data also show that most of the miRanda predicted targets were either marginally upregulated or show no change in their expression upon miR-124-KD. It has been previously reported that miR-124 could potentially function by repressing mRNA translation rather than degradation (Hendrickson et al 2009). Here we hypothesize that most of the targets of miR-124 that were marginally upregulated upon miR-124-KD could potentially be regulated by translation repression.

Medial-lateral polarity is disrupted by loss of miR-124

The disruption of anterior-posterior (A/P) or medial-lateral (M/L) polarity might cause the observed eye and brain defects in miR-124 KD animals (Gurley et al., 2008). To determine whether the miR-124-KD phenotype might be secondary to a polarity defect, we first investigated the organization of an organ system that is often disrupted by perturbation of these axes: the intestine (Smed-porcns-1+; (Rink et al., 2009, Petersen and Reddien, 2009, Gurley et al., 2010, Cebria et al., 2007). We found that the intestines were indistinguishable between the miR-124 KD animals and the controls (Fig. 6B). No fusion of the posterior gut branches, ectopic or missing
pharyngeal cavities, or additional major gut branches were observed, as is the case in worms with generalized A/P or M/L defects.

We next examined whether A/P and M/L markers were likely to be targets of *miR-124*. No genes known to be involved in A/P polarity regulation were predicted as targets of *miR-124* by *miRanda*. Furthermore, we performed WISH to check for the expression of *Smed-notum*, an anterior marker and key regulator of A/P polarity (Petersen and Reddien, 2011), at 2 dpa in *scramble*- versus *anti-miR-124* treated animals (Fig. 6C). No difference in *notum* expression was observed between control and KD animals. Cumulatively, this suggested that A/P polarity is not disrupted after *miR-124*-KD.

In contrast, *slit-1*, a broad marker for the midline, was a predicted target of *miR-124*. We therefore performed WISH for *slit-1*, and observed the presence of ectopic *slit-1*+ cells in the anterior blastema after KD of *miR-124* (Fig. 6D). Interestingly, the loss of *slit-1*—not its expansion—is typically associated with the reduction in brain size and cyclopia that we observe after *miR-124* KD (Cebria et al., 2007). Therefore, these data suggest that the eye and nervous system abnormalities present in *miR-124* KD animals are not likely secondary to a generalized loss of A/P or M/L polarity.

MiR-124 may regulate the slit-1-expressing midline via canonical Notch signaling

Finally, we aimed to provide functional evidence that this list of predicted *miR-124* targets can yield insights into the undoubtedly complex functions of this miRNA family during planarian regeneration. As a pilot experiment, we selected *notch-2* as a candidate for functional analysis. *Notch-2* was selected because a previous RNAi
screen in the lab indicated that canonical Notch signaling might be involved in regulation of the midline, which we knew to be disrupted after mir-124-KD.

Knockdown of notch-2, which is broadly expressed throughout the planarian body (Fig. 7A), resulted in conspicuous regeneration defects that are typically associated with disruption of the midline. Specifically, notch-2 (RNAi) animals displayed cyclopia and fusion of the two posterior gut branches (Fig. 7B-C). Since these defects are similar to those reported after RNAi of slit-1 (Cebria et al., 2007), we next examined the expression of slit-1 after RNAi of notch-2. As expected, notch-2(RNAi) animals displayed a significant reduction in the number of slit-1+ cells (Fig. 7D). Interestingly, we found that RNAi of other components of the canonical Notch pathway (including the core transcription factor, Su(H), and the ligand, delta-3) resulted in very similar midline defects. These included cyclopia, fusion of the posterior gut branches, and loss of slit-1 expression (Fig. S9A-J). Furthermore, RNAi of a negative regulator of Notch signaling, numb-1, yielded the opposite phenotype: a conspicuous increase in slit-1-expressing cells (Fig. 7E-F), which appeared strikingly similar to the phenotype observed for slit-1 expression after miR-124-KD.

Next, we investigated whether the effects on slit-1 expression are likely to be direct effects of notch-2/miR-124 regulation. To do this, we first examined the co-localization of the notch-2 receptor and the delta-3 ligand in the slit-1+ population. This revealed that notch-2 and delta-3 are both expressed in discrete subpopulations of slit-1+ cells and in cells directly adjacent to slit-1+ cells (Fig. S10). Since notch/delta signaling is cell-autonomous, this suggests the possibility of a direct role for Notch signaling in regulating the slit-1-expressing midline.
We also examined the expression of miR-124 in both notch-2- and slit-1-expressing cells. We found co-expression of notch-2 and miR-124c in the periphery of the brain in uninjured animals (Fig. 7G-G). Furthermore, during head regeneration, a subset of miR-124+ cells colocalized with slit-1 at 3 dpa, but not at 7 dpa (Fig.H-H', Fig.S9K). These expression dynamics suggest that miR-124 has the potential to function cell-autonomously in notch-2- and slit-1-expressing cells.

Cumulatively, these phenotype and expression data suggest that the expansion of the slit-1-expressing cell population observed after miR-124-KD may be mediated via direct regulation of notch-2 and subsequent canonical Notch signaling in planarians. Moreover, this indicates that our list of predicted targets of miR-124 promises to be extremely useful for further dissecting the complex roles of this miRNA family in the regeneration of the brain, visual system, and midline of planarians.

Discussion

Although several genes critical for anterior fate determination and nervous system regeneration have been identified (Vasquez-Doorman and Petersen, 2014, Fraguas et al., 2014, Blassberg et al., 2013, Roberts-Galbraith and Newmark, 2013, Agata and Umesono, 2008, Beane et al., 2011, Higuchi et al., 2008, Gurley et al., 2008, Rink et al., 2009, Bonar and Petersen, 2017, Seebeck et al., 2017, Currie et al., 2016, Wang et al., 2016, Roberts-Galbraith et al., 2016, Adell et al., 2010), how these genes are coordinated in time and space to establish the necessary developmental transitions required for form and function of the nervous system remains to be fully elucidated. Our study has revealed enrichment for the miR-124
family of microRNAs in the nervous system of planarians during homeostasis and discrete phases of head regeneration. The expression of \(\textit{miR-124c} \) and \(-b\) observed in anteriorly regenerating tissue at 3 dpa (\(\text{Fig. 1E} \)) suggests that these miRNAs may play a role in the organization of the brain and the patterning of visual neurons, rather than in specification of the brain primordium. We tested this hypothesis by perturbing the function of \(\textit{miR-124} \) during planarian regeneration.

To perform loss-of-function studies for \(\textit{miR-124} \) in planarians, we developed a novel vehicle to deliver \textit{anti-miRs} using co-liposomes (\textit{Fig. 2}). This method proved superior to soaking and injection, and we observed a comparably higher success rate for miRNA- and also dsRNA-mediated knockdown using co-liposomes (\textit{Fig. 3 and S5}). \(\textit{MiR-124} \)-KD animals regenerating anterior tissue showed either reduced or absent photoreceptors. Interestingly, the posterior regenerating tissue and the intact animals have not shown any regenerative defects. However, the lack of homeostatic defects in \textit{anti-miR-124} KD animals might simply reflect slow turnover rates for neural cell types and/or the targeted mRNAs and proteins.

Extensive characterization of \(\textit{miR-124} \)-KD planarians using various brain- and eye-specific markers revealed diverse defects in the organization of the brain and visual neurons. The diverse phenotypes observed could be attributed to the variability in the extent of KD or to changes in the large cohort of genes with varied functions that occurs in \(\textit{miR-124} \)-KD animals. Furthermore, our study also revealed the critical role of \(\textit{miR-124} \) in regulating neural subtype specificity and organization during planarian regeneration. For instance, \(\textit{miR-124} \)-KD led to a reduced number of GABAergic and dopaminergic neurons, in addition to an increase in cholinergic neurons. However, the pathway through which \(\textit{miR-124} \) regulates neural subtype specificity is not known. Nonetheless, our data provide robust evidence for an
important role for miR-124 in brain organization, the generation and/or maintenance of eye progenitors, and visual system patterning in regenerating planarians (Fig. 8A). Furthermore, our work also highlights the need to invest time and effort in developing novel liposome vehicles, which may help advance the development of transgenic methods in planarians.

Target prediction revealed a cohort of genes involved in PCP (disheveled-2, daam-1), axon guidance (netrin-1, slit-1, dscam), and the Notch pathway (notch-2, delta-3, serrate-1) as predicted targets of miR-124. Interestingly, miR-124 target conservation across the metazoans revealed that some of the planarian miR-124 targets, particularly notch-2, netrin-1, and slit-1, are also targets of miR-124 in vertebrates, but not in flies and nematodes (Fig. S11, Table S4). This is a notable difference given the extensive functional conservation in neurogenesis ascribed to miR-124 (Cao et al., 2007, Cao et al., 2006). There might be several biological and methodological reasons for this difference. First, it may be that only vertebrates have evolved the ability for miR-124 to target notch, netrin, and slit orthologs, and that the target predictions obtained for planarians may be an artifact. The evolutionary argument seems unlikely given that, in the invertebrate Ciona intestinalis, a feedback interaction between miR-124 and Notch signaling regulates the epidermal-peripheral nervous system (PNS) fate choice in tail midline cells (Chen et al., 2011). These findings suggest that our target predictions are not only biologically relevant, but they also point to an ancestral origin of the regulation of the Notch pathway by the miR-124 family of miRNAs. Such a regulatory nexus may have been lost in C. elegans and D. melanogaster.
Among the putative miR-124 targets, three genes encoding axon guidance proteins were uncovered. Netrin-1 and dscam are expressed in the planarian brain, while slit-1 is expressed in the midline along the length of the A/P axis of planarians (Yamamoto and Agata, 2011, Fusaoka et al., 2006, Cebria et al., 2007). It was shown that the spatial and temporal expression of these genes is essential for proper patterning of the brain and the visual neurons. For instance, perturbation of slit-1 expression in the midline resulted in the collapse of the photoreceptors in this organism, demonstrating the critical role for slit-1 in proper patterning of the visual neurons to form the optic chiasm. Furthermore, our expression study based on double FISH for slit-1 and miR-124 in regenerating animals revealed spatial and temporal changes in the expression of these genes in the midline region of anteriorly regenerating tissue. Thus, we hypothesize from these data that miR-124 expression in the brain might be critical for regulation of slit-1 expression during anterior regeneration. This hypothesis was supported by the miR-124-KD studies, which showed increased levels of slit-1 expression in the anterior region of the regenerating planarian. However, the expression of miR-124 is neuronal, except at 3 dpa, where the expression of miR-124 was seen in slit-1+ cells, while the expression of slit-1 is non-neuronal. This raises an important question regarding the molecular mechanism by which miR-124 regulates the expression of slit-1. Our study has demonstrated that the KD of notch-2 and delta-3 led to downregulation of slit-1, and the KD of its negative regulator, numb-1, caused ectopic expression of slit-1. The notch/numb KD studies were supported by the co-localization studies, which showed co-expression of delta-3 and notch-2 in slit-1+ cells, suggesting that a NOTCH-2/DELTA-3 interaction might regulate slit-1 expression. Similarly, knockdown of miR-
124 led to increased levels of notch-2 expression and ectopic expression of slit-1 in the anterior region of the planarians (Fig. S8C, 6D). These results were further supported by the co-localization studies using FISH, which revealed the co-expression of notch-2 and miR-124 in the periphery of the brain. Together, these results suggest a role for miR-124 in modulating notch-2 expression, which is critical for regulating slit-1 in the midline of the anterior regenerating tissue. However, it is still not clear how miR-124 expression in the brain regulates the notch-2 domain critical for slit-1 expression. Recent studies have shown that miRNAs can be secreted from cells after packaging into exosomes, allowing delivery to adjacent cells and target suppression (Lee et al., 2017). This exosomal-mediated mechanism to deliver miR-124 to the slit-1+ cells needs to be further investigated. Nonetheless, based on our results, we propose a mechanism by which miR-124 regulates slit-1 expression via modulation of canonical Notch signaling (Fig. 8B).

In addition, our target prediction data from miR-124-KD animals also revealed PCP genes, dvl-2 and daam-1, to be potential targets of miR-124. In planarians, knockdown of vang-1, daam-1, and ROCK in planarians resulted in supernumerary eye formation and hyperplasia of neurons throughout the body (Beane et al., 2012). Our results suggest that miR-124-KD animals behave like gain-of-function mutants of the PCP pathway, resulting in the premature termination of neural growth that leads to a significant decrease in the size of the cephalic ganglia and eyes. However, a rigorous target validation and dissection of the planar cell polarity pathway in planarians is necessary to test whether the mir-124 family plays a role in regulating this important developmental pathway.
In summary, we report on the development of a novel vehicle to deliver exogenous nucleic acids into planarian cells consisting of co-liposomes designed to have high fusogenic properties with planarian cell membranes. By combining these liposomes with anti-miRs, we were able to robustly target and knockdown the function of miR-124, resulting in cephalic regeneration phenotypes. Together, our study reveals the critical role of miR-124 in neuronal organization and axon guidance to regenerate the brain and visual system in planarians. Such a role for miR-124 may be found in other neuronal regeneration paradigms.
Materials and methods

Animal maintenance

Schmidtea mediterranea planarians were maintained in 1X Montjuic solution at 20°C. All animals were starved for a week prior to the experiments, as described previously (Sasidharan et al., 2013).

In situ hybridization and immunostaining

Whole mount in situ hybridization (WISH) was performed as described in Pearson et al (2009), Sasidharan et al (2013), and King et al (2013). MiRNA-based WISH was carried out using DIG-labeled miRCURY LNA probes procured from Exiqon. For immunostaining, animals were fixed using Carnoy’s solution as described in Sánchez Alvarado et al (1999). Rabbit anti-ARRESTIN (1:5000, clone VC-1), Mouse anti-SYNORF-1 (1:100, DHSB) primary antibodies were used. Species-appropriate secondary antibodies were obtained from Molecular Probes (1:400). Hoechst 33342 (25 µg/mL) was used as a nuclear counterstain. Animals were mounted with mowiol mounting medium and stored at 4°C until imaging.

Preparation and biophysical characterization of liposomes

Liposomes were prepared with 1:1 molar ratios of lipid and cholesterol at a total concentration of 2 mM. Dry thin-films of lipids were prepared in glass-vials, followed by overnight hydration with deionized water produced hydrated-films. Vortexing vials for 2-3 minutes produced multilamellar vesicles. Subsequently, bath sonication (Qsonica sonifier) produced small unilamellar vesicles. The size and zeta potentials of liposomes (2 mM) were measured using a Zeta sizer NanoZS (Malvern U.K.). Using same method, liposomes with planarian-lipids and dual fluorescent
lipids (1% of FRET pair, NBD-PE and N-Rho-PE) were made. Fluorescence intensities were recorded by excitation at 485 nm and emission at 530 nm. For gel retardation assay, Cy3 labelled miRNA (2 μM) was complexed with liposomes in a total volume of 30 µl in HEPES buffer (pH 7.4). The samples were electrophoresed at 80 V for 20 minutes and the miRNA bands were visualized in the Gel documentation unit. Each of the methods used for the biophysical characterization of liposomes has been elaborated in the supplementary methods.

Knockdown of miR-124, ovo and Notch pathway genes

For *miR-124* and *ovo* KD, sexual planarians were pre-pharyngeally amputated, and the head and tail fragments were treated separately with liposome complexed anti-miRs and scrambled miRs. Please refer to the supplementary methods for detailed protocol.

Notch pathway genes were KD by injecting and feeding dsRNA to intact planarians followed by amputation. Please refer to the supplementary methods for detailed protocol.

Transcriptome Analysis:

Total RNA was isolated from scramble and anti-miR treated animals (n=15) by using trizol™(Invitrogen) after two rounds of regeneration. Transcriptome library was prepared using the isolated total RNA by using *TruSeq RNA Library Prep Kit v2* - *Illumina* following manufacture’s instructions. Transcriptome library was sequenced by performing a paired end sequencing 1*150 on Nextseq-500 NGS machine (*illumina*). We obtained 54.47, 91 million reads from miR124c-KO & scrambled samples. We used reference based transcriptome assembly algorithms Tophat
v2.0.8, Cufflinks v1.0.3 pipeline to assemble the transcripts with Ox_Smed_v1 transcriptome as reference annotation to guide RABT assembly. The data generated in the study has been deposited in the National Center for Biotechnology Information (NCBI), Sequence Read Archive (SRA) database. Accession ID: SRP078739. Please refer to the supplementary methods for detailed protocol.

Real time PCR:
Sequencing data was validated using Real time PCR (Abiprism 7900HT ABI). Total RNA used for NGS was further used for q-PCR validation. Primer details are given in Table S5. Please refer to the supplementary methods for detailed protocol.

MicroRNA target prediction and validation
We used miRanda v3.3a (Enright et al., 2003) to predict targets of miR124a, -b, and -c. The targets were filtered based on the complementarity score (score \(\geq 140\)) and free energy (\(\Delta G \leq -14\) Kcal/mol). Target validation was done in HEK 293T cells transfected with pMIR REPORT plasmid containing the 3'-UTR of target and pRL-SV40 containing renilla luciferase gene (Promega) as transfection control. MiRNA mimics was procured from eurogentec and diluted as per manufacture’s instruction. Please refer to the supplementary methods for detailed protocol.

Details of LNA detection probes, miR-124 inhibitors and q-PCR primers:
The *anti-miR* was designed against 16 nucleotides at the 5' end of miR-124. Short probes were used to facilitate better penetrance substantially reduce cell toxicity, as recommended by the manufacturer. This *anti-miR* was predicted to KD all miR-124 family members because these microRNAs share the same seed region and they
differ by only 2-3 nucleotides outside the seed region. Please refer to the supplementary methods for the detailed list of detection and q-PCR probes.
Acknowledgements

We thank the lab members, Dr. Yashoda Ghanekar, Dr. Vineetha Raghavan, and Dr. Praveen Anand for proofreading the manuscript, and Aradhya Jain and Divya.L.S for helping with confocal imaging. We thank Drs. Jochen C. Rink and Kyle A. Gurley for invaluable scientific discussions, technical advice, and for performing preliminary Notch pathway RNAi screens. We thank Dr. Kiyokazu Agata for sharing the VC-1 antibody. VS performed most of the experiments. SM developed and performed biophysical characterization of the liposomes. SB and VS performed FISH experiments and cloning of the genes. VL and DP performed all bioinformatic analyses. DB prepared libraries for 3’-UTR sequencing. SAE performed Notch pathway experiments. ASA and SAE planned the Notch project and helped write the manuscript. DP, PV, VS planned the project and wrote the manuscript. DP was supported by Wellcome/DBT India Alliance intermediate fellowship. PV was supported by Ramalingaswami Fellowship, DBT, India. Funding from Wellcome/DBT India Alliance Intermediate fellowship (500160/Z/09/Z) awarded to DP supported VS and VL. ASA is an Investigator of the Howard Hughes Medical Institute and an Investigator of the Stowers Institute for Medical Research.

Conflicts of interest
References

ADELL, T., CEBRIA, F. & SALO, E. 2010. Gradients in planarian regeneration and homeostasis. *Cold Spring Harb Perspect Biol*, 2, a000505.

AGATA, K. & UMESONO, Y. 2008. Brain regeneration from pluripotent stem cells in planarian. *Philos Trans R Soc Lond B Biol Sci*, 363, 2071-8.

ALMUEDO-CASTILLO, M., SALO, E. & ADELL, T. 2011. Dishevelled is essential for neural connectivity and planar cell polarity in planarians. *Proc Natl Acad Sci U S A*, 108, 2813-8.

BEANE, W. S., MOROKUMA, J., ADAMS, D. S. & LEVIN, M. 2011. A chemical genetics approach reveals H,K-ATPase-mediated membrane voltage is required for planarian head regeneration. *Chem Biol*, 18, 77-89.

BEANE, W. S., TSENG, A. S., MOROKUMA, J., LEMIRE, J. M. & LEVIN, M. 2012. Inhibition of planar cell polarity extends neural growth during regeneration, homeostasis, and development. *Stem Cells Dev*, 21, 2085-94.

BLASSBERG, R. A., FELIX, D. A., TEJADA-ROMERO, B. & ABOOBAKER, A. A. 2013. PBX/extradenticle is required to re-establish axial structures and polarity during planarian regeneration. *Development*, 140, 730-9.

BONAR, N. A. & PETERSEN, C. P. 2017. Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration. *Development*.

CAO, X., YEO, G., MUOTRI, A. R., KUWABARA, T. & GAGE, F. H. 2006. Noncoding RNAs in the mammalian central nervous system. *Annu Rev Neurosci*, 29, 77-103.

CAO, X. W., PFAFF, S. L. & GAGE, F. H. 2007. A functional study of miR-124 in the developing neural tube. *Genes & Development*, 21, 531-536.

CEBRIA, F., GUO, T., JOPEK, J. & NEWMARK, P. A. 2007. Regeneration and maintenance of the planarian midline is regulated by a slit orthologue. *Dev Biol*, 307, 394-406.

CEBRIA, F., KUDOME, T., NAKAZAWA, M., MINETA, K., IKEO, K., GOJOBORI, T. & AGATA, K. 2002a. The expression of neural-specific genes reveals the structural and molecular complexity of the planarian central nervous system. *Mech Dev*, 116, 199-204.

CEBRIA, F., NAKAZAWA, M., MINETA, K., IKEO, K., GOJOBORI, T. & AGATA, K. 2002b. Dissecting planarian central nervous system regeneration by the expression of neural-specific genes. *Dev Growth Differ*, 44, 135-46.

CHEN, J. S., PEDRO, M. S. & ZELLER, R. W. 2011. miR-124 function during Ciona intestinalis neuronal development includes extensive interaction with the Notch signaling pathway. *Development*, 138, 4943-53.

COWLES, M. W., BROWN, D. D., NISPEROS, S. V., STANLEY, B. N., PEARSON, B. J. & ZAYAS, R. M. 2013. Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration. *Development*, 140, 4691-702.

CURRIE, K. W., MOLINARO, A. M. & PEARSON, B. J. 2016. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain. *Elife*, 5.

ENRIGHT, A. J., JOHN, B., GAUL, U., TUSCHL, T., SANDER, C. & MARKS, D. S. 2003. MicroRNA targets in Drosophila. *Genome Biol*, 5, R1.

Fraguas, S., Barberan, S., Iglesias, M., Rodríguez-Esteban, G. & Cebria, F. 2014. egr-4, a target of EGF signaling, is required for the formation of the brain primordia and head regeneration in planarians. *Development*, 141, 1835-1847.

Fusaoka, E., Inoue, T., Mineta, K., Agata, K. & Takeuchi, K. 2006. Structure and function of primitive immunoglobulin superfamily neural cell adhesion molecules: a lesson from studies on planarian. *Genes to Cells*, 11, 541-555.
GONZALEZ-ESTEVEZ, C., MOMOSE, T., GEHRING, W. J. & SALO, E. 2003. Transgenic planarian lines obtained by electroporation using transposon-derived vectors and an eye-specific GFP marker. *Proc Natl Acad Sci U S A*, 100, 14046-51.

GURLEY, K. A., ELLIOTT, S. A., SIMAKOV, O., SCHMIDT, H. A., HOLSTEIN, T. W. & SANCHEZ ALVARADO, A. 2010. Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. *Dev Biol*, 347, 24-39.

GURLEY, K. A., RINK, J. C. & SANCHEZ ALVARADO, A. 2008. Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. *Science*, 319, 323-7.

HATFIELD, S. D., SHCHERBATA, H. R., FISCHER, K. A., NAKAHARA, K., CARTHEW, R. W. & RUOHOLA-BAKER, H. 2005. Stem cell division is regulated by the microRNA pathway. *Nature*, 435, 974-978.

HIGUCHI, S., HAYASHI, T., TARUI, H., NISHIMURA, O., NISHIMURA, K., SHIBATA, N., SAKAMOTO, H. & AGATA, K. 2008. Expression and functional analysis of musashi-like genes in planarian CNS regeneration. *Mechanisms of Development*, 125, 631-645.

KING, R. S. & NEWMARK, P. A. 2013. In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea. *BMC Dev Biol*, 13, 8.

KOSIK, K. S. 2009. OPINION MicroRNAs tell an evo-devo story. *Nature Reviews Neuroscience*, 10, 754-759.

LAPAN, S. W. & REDDIEN, P. W. 2012. Transcriptome Analysis of the Planarian Eye Identifies ovo as a Specific Regulator of Eye Regeneration. *Cell Reports*, 2, 294-307.

LEE, S. T., IM, W., BAN, J. J., LEE, M., JUNG, K. H., LEE, S. K., CHU, K. & KIM, M. 2017. Exosome-Based Delivery of miR-124 in a Huntington's Disease Model. *J Mov Disord*, 10, 45-52.

MARTIN-DURAN, J. M., DUOCASTELLA, M., SERRA, P. & ROMERO, R. 2008. New method to deliver exogenous material into developing planarian embryos. *J Exp Zool B Mol Dev Evol*, 310, 668-81.

MUKTHAVARAM, R., MAREPALLY, S., VENKATA, M. Y., VEGI, G. N., SISTLA, R. & CHAUDHURI, A. 2009. Cationic glycolipids with cyclic and open galactose head groups for the selective targeting of genes to mouse liver. *Biomaterials*, 30, 2369-84.

ONG, T. H., ROMANOVA, E. V., ROBERTS-GALBRAITH, R. H., YANG, N., ZIMMERMAN, T. A., COLLINS, J. J., 3RD, LEE, J. E., KELLEHER, N. L., NEWMARK, P. A. & SWEEDLER, J. V. 2016. Mass Spectrometry Imaging and Identification of Peptides Associated with Cephalic Ganglia Regeneration in Schmidtea mediterranea. *J Biol Chem*, 291, 8109-20.

ORII, H., MOCHII, M. & WATANABE, K. 2003. A simple "soaking method" for RNA interference in the planarian Dugesia japonica. *Dev Genes Evol*, 213, 138-41.

PEARSON, B. J., EISENHOFFER, G. T., GURLEY, K. A., RINK, J. C., MILLER, D. E. & SANCHEZ ALVARADO, A. 2009. Formaldehyde-based whole-mount in situ hybridization method for planarians. *Dev Dyn*, 238, 443-50.

PETERSEN, C. P. & REDDIEN, P. W. 2009. Wnt signaling and the polarity of the primary body axis. *Cell*, 139, 1056-68.

PETERSEN, C. P. & REDDIEN, P. W. 2011. Polarized notum activation at wounds inhibits Wnt function to promote planarian head regeneration. *Science*, 332, 852-5.

PLASTERK, R. H. A. 2006. Micro RNAs in animal development. *Cell*, 124, 877-881.

RINK, J. C., GURLEY, K. A., ELLIOTT, S. A. & SANCHEZ ALVARADO, A. 2009. Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. *Science*, 326, 1406-10.

ROBERTS-GALBRAITH, R. H., BRUBACHER, J. L. & NEWMARK, P. A. 2016. A functional genomics screen in planarians reveals regulators of whole-brain regeneration. *Elife*, 5.
ROBERTS-GALBRAITH, R. H. & NEWMARK, P. A. 2013. Follistatin antagonizes Activin signaling and acts with Notum to direct planarian head regeneration. *Proceedings of the National Academy of Sciences of the United States of America*, 110, 1363-1368.

SAKAI, F., AGATA, K., ORII, H. & WATANABE, K. 2000. Organization and regeneration ability of spontaneous supernumerary eyes in planarians -eye regeneration field and pathway selection by optic nerves. *Zoolog Sci*, 17, 375-81.

SANCHEZ ALVARADO, A. & NEWMARK, P. A. 1999. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. *Proc Natl Acad Sci U S A*, 96, 5049-54.

SASIDHARAN, V., LU, Y. C., BANSAL, D., DASARI, P., PODUVAL, D., SESHASAYEE, A., RESCH, A. M., GRAVELEY, B. R. & PALAKODETI, D. 2013. Identification of neoblast- and regeneration-specific miRNAs in the planarian Schmidtea mediterranea. *Rna-a Publication of the Rna Society*, 19, 1394-1404.

SEEBECK, F., MARZ, M., MEYER, A. W., REUTER, H., VOGG, M. C., STEHLING, M., MILDNER, K., ZEUSCHNER, D., RABERT, F. & BARTSCHERER, K. 2017. Integrins are required for tissue organization and restriction of neurogenesis in regenerating planarians. *Development*.

STILES, J. & JERNIGAN, T. L. 2010. The basics of brain development. *Neuropsychol Rev*, 20, 327-48.

TESSIER-LAVIGNE, M. & GOODMAN, C. S. 1996. The molecular biology of axon guidance. *Science*, 274, 1123-33.

THATCHER, E. J. & PATTON, J. G. 2010. Small RNAs have a big impact on regeneration. *Rna Biology*, 7, 333-338.

UMESONO, Y., WATANABE, K. & AGATA, K. 1999. Distinct structural domains in the planarian brain defined by the expression of evolutionarily conserved homeobox genes. *Dev Genes Evol*, 209, 31-9.

VASQUEZ-DOORMAN, C. & PETERSEN, C. P. 2014. zic-1 Expression in Planarian neoblasts after injury controls anterior pole regeneration. *PLoS Genet*, 10, e1004452.

WANG, I. E., LAPAN, S. W., SCIMONE, M. L., CLANDININ, T. R. & REDDIEN, P. W. 2016. Hedgehog signaling regulates gene expression in planarian glia. *Elife*, 5.

WENEMOSER, D., LAPAN, S. W., WILKINSON, A. W., BELL, G. W. & REDDIEN, P. W. 2012. A molecular wound response program associated with regeneration initiation in planarians. *Genes Dev*, 26, 988-1002.

YAMAMOTO, H. & AGATA, K. 2011. Optic chiasm formation in planarian I: Cooperative netrin- and robo-mediated signals are required for the early stage of optic chiasm formation. *Dev Growth Differ*, 53, 300-11.
Figure 1. Expression of miR-124 family of miRNAs. A) Double fluorescent in situ hybridization (FISH) colocalization for miR-124 family miRNAs with pan neuronal marker (PC2). The merged images of double FISH show the expression of the miRNAs in the cephalic ganglia. B) Differential expression of miR-124 family of miRNAs. Images taken at 60x (oil immersion) objective. C, D) MiR-124b and miR-124c colocalized with different neuronal subtypes. C’, D’) Double FISH was performed using cholinergic, GABAergic, dopaminergic, and serotonergic neuronal markers for miR-124b and c. C” and D”) Dashed boxes indicate the area taken at 60x (oil immersion) objective. E) MiR-124b and -c expression during regeneration. Dashed lines represent the site of amputation. Scale bars 100 µm.
Figure 2. Biophysical characterization of liposomes/lipoplexes and their fusogenicity with membranes. A) Structures of symmetric and asymmetric cationic lipids. B) Biophysical parameters of liposomes prepared using various ratios of lipids. C) Fluorescence anisotropy measurement of DPH in three types of liposomes showing higher membrane fluidity of liposomes prepared using either asymmetric lipid or 1:1 ratio of Sym-Lip and Asym-Lip. D) Schematic of lipoplex formation with...
anti-miRs and liposomes. E) Schematic for reconstitution of the membrane using planarian lipids and fluorophore-tagged lipids (FRET pair of NBD-PE and Rho-PE). The proximity of both fluorescent lipids in reconstituted planarian membrane enables FRET. Fusion of liposomes leads to the separation of both fluorophores to inhibit the FRET. Thus, emission of NBD-PE can be recovered. F) Recovery of emission fluorescence at 530 nm suggests that fusogenic ability of cationic lipids over lipofectamine. G) TEM images of liposomes. H) Confocal microscopy of planarians that were transfected with fluorescent dye-tagged anti-miRs using either commercial agent lipofectamine LTX or cationic liposomes. Histogram represents the fluorescence intensity between the commercial agent LTX and cationic liposomes calculated using ImageJ.
Figure 3. Validation of liposome-mediated knockdown of ovo and miR-124. A) ovo(RNAi) animals (15/15) showed an eyeless regeneration phenotype in first round of anterior regeneration after 7 dpa. Scale bars 100 μm. B) WISH showing the expression of miR-124c checked at 7 dpa during the second round of regeneration in knockdown animals (n=5 animals). Scale bars 100 μm. C) Animals treated with 100 μM scrambled miRs showed no regeneration defects, while 10 μM, 50 μM, 100 μM anti-miR-treated animals showed eye regeneration defects. Scale bars 100 μm.
D) Table showing percentage of eye phenotypes observed at different concentrations of anti-miRs. E) The percentage of animals that show various categories of photoreceptor (PR) defects observed in regenerated animals following 100 μM anti-miR treatment.
Figure 4. Knockdown of miR-124 disrupts regeneration of the eyes and brain. A) Immunostaining of the optic chiasm (anti-ARRESTIN) in scrambled- versus anti-miR124-treated animals (100 μM anti-miRs each) in 7 dpa after second round of regeneration. 13/16 KD animals showed diverse eye defects (scale bars 50 μm). White arrow heads show the defects in KD animals. B) FISH showing the expression of ovo in the eye and immunostaining for photosensing neurons (anti-ARRESTIN) in the miR-124-KD (n=10) and scramble treated animals (n=7), Scale bar 50 μm. C) Quantification of the size of the eyes determined by the ratio of the area of ovo staining to the total body area in scrambled- versus anti-miR-124-treated animals (n=6 and 5, respectively). D) FISH showing the expression of ovo in the eye and the trailed cells posterior to the eye in the scrambled treated and miR-124-KD animals at 4 dpa (n=6 animals per treatment condition). Scale bar 50 μm. The ovo- trailed cells were quantified and the histogram was plotted. E) Quantification of anti-SYNORF-1 staining of anteriorly regenerating animals normalized to body area in scrambled-versus 100 μM anti-miR-124-treated animals (n=5 each). F) Organization of brain, ventral nerve cords, (anti-SYNORF-1, green) and photosensing neurons (anti-ARRESTIN, red) in scrambled (10/10)- versus miR-124-KD animals regenerating either a head (10/10) (top) or tail (13/16) (bottom). Cartoons show amputation plane (dashed line) and lighter colored areas indicate regenerated tissue. G) FISH for neuronal subtypes in the brains of scrambled- versus miR-124-KD animals, including dopaminergic (th, red, n=6), GABAergic (gad, red, n=6), and cholinergic neurons (chat, green, n=6). Hoechst stained nuclei (blue). White arrows show the neural subtypes. Scale bar: 100 μm. *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t-test).
Figure 5. **MiR-124 is required for eye-specific regeneration.** A) Methodology used for eye-specific regeneration experiments. *Ovo* dsRNA was administered by injection for 5 days, on the 6th day the animals were amputated pre-pharyngeally. LNA anti-miRs were administered on alternative days for 8 days after 25 days of head regeneration. B) Live images and anti-SYNORF staining of *ovo* KD animals after 25 days of RNAi (n=15 animals, scale bar: 100 μm). C) Live images of *ovo* KD animals showing recovery of eyes after scramble and *anti-miR-124* treatment. Anti-*miR-124*-treated animals failed to regenerate eyes (n=12/15). Scale bar 50 μm. D) Molecular characterization of eye phenotypes using anti-ARRESTIN (photosensing neurons and axons), *opsin* (photosensing neuron cell bodies), and *tyrosinase* (pigment cup cells). *MiR-124*-KD animals (10/12) showed drastic reduction in *opsin* and *tyrosinase* staining, along with mispatterned photoreceptor neurons. Scale bar 50 μm.
Figure 6. Target prediction to identify the miR-124 targets. (A) Luciferase assay was carried out to validate the miRNA targets. (B) FISH for porcupine-1 revealed that the organization of the intestine is indistinguishable between the scrambled- and anti-miR-124-treated animals. (C) WISH for notum in scramble and anti-miR-124 treated animals (D) Colorimetric WISH showing slit-1 expression in scramble and anti-miR-124 treated animals at 7 dpa from second round of regeneration. White arrows indicate show the expression of slit-1 in the midline region. *P<0.05, **P<0.01 (Student’s t-test). Scale bars for B-D, 100 µm.
Figure 7. Regulation of notch-2 and slit-1 by miR-124. (A) Colorimetric WISH shows broad expression of notch-2 in uninjured planarian. B-C) Knockdown of notch-2 leads to cyclopia (B' versus C', 14 dpa) and fusion of posterior gut branches (B'' versus C''; mat, green; DAPI, blue, 17 dpa). D) Colorimetric WISH for slit-1 after long-term notch-2 RNAi. Slit-1 is significantly reduced in notch-2(RNAi) planarians compared to controls. E) Colorimetric WISH shows broad expression for numb-1 in
uninjured planarian. F) Colorimetric WISH for slit-1 in control- versus numb-1(RNAi) planarians at 23 dpa. Inset shows a zoom-in of the head to show ectopic slit-1+ in numb-1(RNAi) planarians. G) Double FISH showing colocalization of miR-124c (red) and notch-2 (green). G’) Higher magnification of dashed box in the merged panel. Arrows indicate notch-2+ (green) cells colocalizing with miR-124c (red). (H) Double FISH for slit-1 and miR-124c during anterior regeneration. At 3 dpa, miR-124c co-localizes with slit-1 (white arrowheads), but not at 7 dpa. H’) Insets show co-localization between slit-1 and miR-124c. Scale bar, 100 µm.
Figure 8. Summary of miR-124 function during in planarian regeneration. (A) Schematic of the brain, eye, and midline after head regeneration in miR-124-KD versus control planarians. KD of miR-124 causes a reduction in the size of the cephalic ganglia, a loss of eye cells, disorganization of the optic chiasm, and an expansion of slit-1+ midline population. (B) A proposed genetic interaction in which miR-124 modulates slit-1 via inhibition of notch-2 expression. The schematic also summarizes the organization of the regenerated brain (green), gut (pink), and slit-1+ midline (black) following KD of miR-124 or notch-2.
Biophysical characterization of co-liposomes

1) Zeta Potential (ζ) and Size Measurements:
The sizes and the zeta potentials (surface charges) of the liposomes were measured by photon correlation spectroscopy and electrophoretic mobility on a Zeta sizer NanoZS (Malvern, U.K.). The sizes and potentials of liposomes were measured in deionized water with a sample refractive index of 1.59 and a viscosity of 0.89. The system was validated by using the 200 nm ± 5 nm polystyrene polymer (Duke Scientific Corps. Palo Alto, CA). The diameters of liposomes were calculated by using the automatic mode. The zeta potential was measured using the following parameters: viscosity, 0.89 cP; dielectric constant, 79; temperature, 25°C; F(Ka), 1.50 (Smoluchowski); maximum voltage of the current, V. The system was validated by using DTS0050 standard from Malvern, U.K.

2) Fluorescent Resonance Energy Transfer Study:
The membrane fusogenicities were measured for all the liposomes with the same composition used for the transfection studies, i.e., lipid/chol (1:1 mol ratio) as described previously. NBD-PE and N-Rho-PE (Avanti-Polar Lipids, USA) were used as the donor and acceptor fluorescent lipids, respectively. The model planarian biomembrane was prepared using phospholipids isolated from planaria. This model biomembrane formulation was labeled with 0.005 mM NBD-PE and N-Rho-PE lipids (i.e., 1% with respect to the total biomembrane mimicking formulation content). The total lipid concentrations used for all liposomes were the same as that of the biomembrane mimicking lipid formulation (0.5 mM). Labeled planarian model membrane liposomal formulations were placed in fluorimeter, Microplate Fluorescence Reader.
(Horiba Instruments, USA) at 24°C and equimolar amounts of liposomes with chol/lipid (1:1 mol ratio) were added. Fluorescence intensities were recorded as a function of time with excitation at 485 nm and emission at 530 nm. Fusion (100%) was determined from the NBD-PE fluorescence intensity of the labeled biomembrane liposomal formulation in the presence of 1% Triton X-100.

3) Gel Retardation assay:
MiRNA binding ability of the liposomes were assessed by their gel retardation assay on a 1% agarose gel (pre-stained with ethidium bromide) across the varying Lipid:miRNA charge ratios of 5:1, 10:1 & 20:1. Cy3 labelled miRNA (2 µM) was complexed with the varying amount of cationic liposomes in a total volume of 30 µl in HEPES buffer (pH 7.4) and incubated at room temperature for 20-25 minutes. 5µl of 6x loading buffer (0.25% Bromophenol blue in 40% (w/v) sucrose with sterile H2O was added to it and from the resulting solution 30µl was loaded on each well. The samples were electrophoresed at 80 V for 20 minutes and the miRNA bands were visualized in the Gel documentation unit.

4) Fluorescence Anisotropy Measurements:
Liposomes were prepared varying the concentration of lipids, symmetric lipid from 0.61mg to 0 mg and asymmetric lipid from 0 mg to 0.63 mg and keeping the co-lipid cholesterol concentration (0.38mg) constant to make final concentration of each individual liposome 1mM. Lipids were dissolved in chloroform along with DPH at a lipid/DPH mole ratio 300:1 and dried under gentle flow of dry nitrogen. The residual solvent was removed under high vacuum for 6-8 h. The dried lipid films were hydrated in 1ml of buffer (Tris-
HCl, pH7.4, 100mM) overnight, vortexed, and sonicated in an ice bath until clarity using a Qsonica sonifier at 100% duty cycle and 5 J output power to produce small unilamellar vesicles (SUVs). The resulting liposomes solutions were used for anisotropy experiments. Anisotropy of DPH was measured by recording the DPH fluorescence values (excitation at 350nm and emission at 420nm) in Horiba fluorescence spectrophotometer.

5) Cy3 labelled oligonucleotides delivery:
Co-liposomes were complexed with cy3 labelled oligonucleotides (IDT) at 2:1 lipid:Cy3 oligo charge ratio in planaria medium (total volume made up to 300 µL) for 15-20 min and treated to the animals. After 48 hrs, animals were treated with N-Acetyl cysteine (NAC) to remove the mucus layer of the animals followed by fixation(4% Formaldehyde) and viewed under a microscope for Cy-3 signals.

Knockdown of miR-124 and Notch pathway genes
For miR-124 KD, sexual planarians were pre-pharyngeally amputated, and the head and tail fragments were immediately separated into two different wells in a 24-well plate (nunc). Co-liposome was complexed with anti-miR-124 and the scramble (10, 50, 100 µM/well) at a 2:1 lipid:anti-miR charge ratio in planarian medium (total volume: 300 µL) for 15-20 min and treated for 1 day (until the regenerates were 1 dpa). The animals were treated with the lipoplexes once every 48 h for 7 days. The same set of experiments was repeated for another round to achieve complete knockdown.
RNAi for all Notch pathway genes was performed in asexual planarians using *C. elegans unc-22* as a control. All amputations were made pre- and post-pharyngeally within 2-3 d after last dsRNA treatment unless otherwise indicated. In 7B’ and 7C’, *in vitro* synthesized dsRNA (Rouhana et al, 2013) was injected 10 times over the course of 41 d using a Nanoject injector (Drummond Scientific, Broomall, PA, USA), and amputations were performed 4 d after last injection. For all other Notch pathway KDs, animals were fed dsRNA synthesized in *E. coli* mixed into a liver paste with 3-4 d between feedings (Gurley et al, 2008). In 7B’’ and 7C’’, animals were fed dsRNA 6 times. In 7D, animals were fed dsRNA 6 times, amputated, allowed to regenerate for 2 weeks, fed 7 more times, and fixed 1 week after final feeding. In 7F, animals were fed 6 times. Uninjured *delta-3*(RNAi) animals were fed 8 times and imaged 7 d after the final feeding. Regenerating *delta-3*(RNAi) animals were fed 12 times, amputated, and imaged at 16 dpa.

Ovo KD using co-liposomes:

For *ovo* KD, co-liposome was complexed with *ovo* dsRNA at a 2:1 lipid:dsRNA charge ratio in planarian medium (500 µl) at room temperature incubated for 30 minutes. The animals was treated with the lipoplexes once in 2 days for 5 days and amputated pre-pharyngeally on the 6th day. 7 dpa animals were scored for phenotypes.

Imaging:

All live animals and WISH staining were imaged on Olympus SX-16 Stereo microscope and Leica M205 Stereo microscope. Fluorescent Whole mount *in*
in situ animals and Immuno stained animals were mounted with mowiol and imaged using ZEISS LSM 510 & 780 confocal microscopes. The images were analyzed using Fiji imaging software.

Transcriptome Analysis:

Total RNA was isolated from scramble and anti-miR treated animals by using trizol™ (Invitrogen) after two rounds of regeneration. Transcriptome library was prepared using the isolated total RNA by using TruSeq RNA Library Prep Kit v2 - Illumina following manufacture’s instructions. Transcriptome library was sequenced by performing a paired end sequencing 1*150 on Nextseq-500 NGS machine (illumina). We obtained 54.47, 91 million reads from miR124c-KO & scrambled samples. We used reference based transcriptome assembly algorithms Tophat v2.0.8, Cufflinks v1.0.3 pipeline to assemble the transcripts with Ox_Smed_v1 transcriptome as reference annotation to guide RABT assembly. Older version of cuffdiff v1.0.3 gives better results compared to newer version when samples lack biological replicate. So we used an older version of cuffdiff v1.0.3 to identify differentially expressed genes. In the absence of the biological replicates, Cuffdiff applied a Poisson distribution to account for technical variation in the data. The variance was measured across the conditions under the assumption that most transcripts were not differentially expressed. Based on this assumption, P-values were derived for all genes. We considered that transcripts that have adjusted pvalue < 0.05 to be significantly expressed (Supplemental table). We identified 2227 transcripts as significantly expressed. We used Trinotate v-2.0.2 (http://trinotate.github.io) to annotate Ox_Smed_v1 transcriptome. We
performed GO analysis for up & down regulated transcripts using hmmer2go tool (https://github.com/alexharkess/HMMER2GO) and the GO terms were clustered using REVIGO (Supek et al., 2011). To analyze the pathways that were enriched in knock down we used GSEA(Subramanian et al., 2005, Mootha et al., 2003). Background database used for this search is BIOCARTE, KEGG, REACTOME, and CANONICAL PATHWAYS. Cut-off used for filtering is top 100 pathways with FDR qvalue < 0.05 (Supplemental table). The data generated in the study has been deposited in the National Center for Biotechnology Information (NCBI), Sequence Read Archive (SRA) database. Accession ID: SRP078739.

Details of LNA detection probes, miR-124 inhibitors and q-PCR primers:
The anti-miR was designed against 16 nucleotides at the 5' end of miR-124. Short probes were used to facilitate better penetrance substantially reduce cell toxicity, as recommended by the manufacturer. This anti-miR was predicted to KD all miR-124 family members because these microRNAs share the same seed region and they differ by only 2-3 nucleotides outside the seed region. LNA detection probes and inhibitors were procured from Exiqon,Denmark. Please find the probe details below

Detection Probe	Product no	Batch no
Sme-miR-124c 3P(dig)	32005-15	140791
Sme-miR-124a 3P(dig)	80040-15	140627
Sme-miR-124b 3P(dig)	80041-15	140628
Sme-miR-124e 3P(dig)	699998-341	620084
Sme-miR-124c 3P(Fam)	99999-04	182954
Inhibitor Probes | Product no | Batch no |
---|---|---|
i-sme-mir-scr | 199900 | 161265 |
i-sme-mir-124 | 199900 | 161264 |

Q-PCR primers	Product no	Batch no
Sme-miR-124a 3p | 2100183 | 620664 |
Sme-miR-124b 3p | 2100802 | 620655 |
Sme-miR-124c 3p | 2111945 | 620666 |

Real time PCR:
Sequencing data was validated using Real time PCR (Abiprism 7900HT ABI). Total RNA used for NGS was further used for q-PCR validation. First strand synthesis was done using Superscript II Reverse transcriptase (Invitrogen) according to manufacture’s protocol. Candidate gene expression was calculated using ct values using delta delta ct method keeping actin as control (Jozefczuk and Adjaye, 2011). Primer details are given in Table S5.

miRNA target prediction and validation:
We used miRanda v3.3a (Enright et al., 2003) to predict targets of miR124c-3p. miRanda predicts target of miRNA based on seed region complementarity with mRNA and checks whether the binding is thermodynamically favorable. The targets were filtered based on the complementarity score (score ≥140) calculated from algorithm as well as free energy of optimal strand-to-strand interaction between mRNA and miRNA sequence (ΔG ≤ -14Kcal/mol). Primers were designed to clone the 3’UTR regions of the target genes and cloned into the 3’UTR region of Firefly
luciferase in pMIR REPORT plasmid (addgene). HEK 393T cells were transfected with pMIR REPORT plasmid containing the 3'UTR of target and pRL-SV40 containing renilla luciferase gene (promega) as transfection control. MiRNA mimics was procured from eurogentec and diluted as per manufacture’s instruction. Both the constructs were co transfected with 25nM and 50nM concentration of miRNA mimics. After 36 hours post transfection cell were lysed (Dual Glo promega luciferase kit) and relative luciferase expression was measured using berthold Sirius luminometer.
Fig. S1. A) Colorimetric WISH for miR-124a, b, and c on uninjured planarians. Representative images of n=5 animals each. B) FISH for miR-124a, b, and c (red) with nuclear counterstain (Hoechst 33342, blue) shows that miR-124c displays a broader expression domain in the brain compared to miR-124a or -b. C) Double FISH for miR-124b (dig probe, green) and miR-124c (fam probe, red). Dashed box in the inset of merged figure represents the area shown in Fig. 2B. Representative image of n=5 animals. D) Colorimetric WISH for miR-124c on animals regenerating heads at indicated timepoints. White arrow indicates the posterior extent of miR-124c expression in the pre-existing ventral nerve cords. Representative images from n=4 animals each. All scale bars in A-D are 100 µm.
Figure S2

A & B) Double FISH was performed using different neural subtype markers labeling cholinergic, GABAergic, dopaminergic, and serotonergic neurons (green) and miR-124 family miRNAs (miR-124b and C, red), Counterstained with nuclear dye (Hoechst 33342, blue). These high magnification images were obtained from 3-5 microns optical section, showing co-expression of the neural subtype markers with the miR-124 family miRNAs in the same cells. Scale bar represents 12 μm.
Figure S3

(A) Synthesis of Asymmetric lipids. (B) ESI-MASS spectra of N-Octadecyloctadec-9-en-1-amine. (C) 1H-NMR spectra of N, N-bis (2-hydroxyethyl) -N-octadecyloctadec-9- en-1-aminium. (D) ESI-MASS spectra of N, N-bis (2-hydroxyethyl) -N-octadecyloctadec-9- en-1-aminium. (E) HRMS spectra of N, N bis (2-hydroxyethyl) -N-octadecyloctadec-9- en-1-aminium. (F) HPLC spectra of Asym-Lip. Two different mobile phases; top: 100% methanol and bottom: 5% water in methanol. HPLC Conditions: System: Varian series, Column: Lichrospher® 100, RP-18e (5 m), Mobile Phases: Methanol; or Methanol:Water, 95:5, v/v, Flow Rate: 2.0 mL/min Typical Column Pressure: 60-65 Bars, Detection: UV at 210 nm.
Figure S4

A

Fig S4. Characterization of Liposomes. (A) Gel retardation assay for complexes of liposomes and anti-miRs. Red arrow head shows the non-stabilized nucleic acid. (B) Scanning electron microscope images of liposomes and lipoplexes prepared from Asym-Lip and Sym-Lip and combination of both lipids.

B
Fig. S5. Delivery of cy-3 oligos into planarian tissues using co-liposomes and characterization of miR-124-KD. A) 1 dpa animals devoid of head and tail fragments were transfected with cy-3 labeled oligos using co-liposomes (Sym:Asym) or commercially available Lipofectamine (LTX). After 2 days of transfection, animals were treated with 5% n-acetyl-cysteine, followed by 4% formaldehyde fixation. Tissues were cryosectioned (16 µm-thick) and nuclear counterstained (DAPI, blue). Cy-3 oligos (red) penetrated planarian tissues more effectively when transfected using novel liposomes when compared to using LTX. Representative images of n=4 animals each. Scale bar, 100 µm. B) Transfected animals were macerated into single-cell suspensions and post-fixed using 4% formaldehyde before confocal imaging. White arrowheads indicate cells successfully transfected with Cy-3 oligos (red). Nuclei counterstained with Hoechst (blue). Scale bar, 10 µm. C) The visual neurons (anti-ARRESTIN, red) and brain (anti-SYNORF-1, green) are indistinguishable between animals treated with 10 and 50 µM anti-miR-124 in 7 dpa following 2 rounds of regeneration. Representative images of n=10 animals. Scale bar 100 µm.
Fig. S6. Delivery of miRNA inhibitors using liposomes yields robust and specific regeneration defects. A) Colorimetric WISH for miR-124b following treatment with 100 µM anti-miR-124. Compared to scrambled-treated controls, animals regenerating head tissue showed significant loss of miR-124b expression at 7 dpa of the second round of regeneration. Scale bar, 100 µm. B) Live images of animals after 1st round of anti-miR treatment. There were no phenotypes observed after 1st round of regeneration (15/15). MiR-124 anti-miR treated animals were stained with dapi to visualize the brain organization. Colorimetric WISH for miR-124a and c following treatment with 100 µM anti-miR-124 after first round of regeneration was performed. C) Fold-change in expression levels of miR-124 family miRNAs (miR-124a, -b, and -c) compared to the scrambled-treated controls. Fold-change was determined by q-PCR using specific LNA probes (Exiqon) on 100 µM anti-miR-124 KD animals. Two biological replicates (set 1, green; set 2, blue) were performed. D) Live images of animals treated with 100 µM anti-miR-124 showing representative eye regeneration deformities. Scale bar, 100 µm. E-F) To assess specificity of miRNA knockdown using liposomes, the miR-10 family was knocked down and animals were amputated pre- and post-pharyngeally at 7 dpa following two rounds of regeneration. Knockdown of miR-10 does not disrupt regeneration of the eyes (live images) or brain (Hoescht [nuclei], blue), but it does cause fusion of the posterior gut branches (porcupine-1, red) in 7/10 animals. Scale bar, 100 µm.
Figure S7

A

B

C

D

E

Development 144: doi:10.1242/dev.144758: Supplementary information
Fig. S7. Knockdown of miR-124 perturbs regeneration of discrete neural populations in brain and visual system.

A) Quantification of the size of regenerated eyes (area of ovo staining) normalized to brain area in scrambled (n=5) versus anti-miR-124-treated (n=6) planarians in 7 dpa animals following 2 rounds of regeneration. KD of miR-124 significantly reduces the size of the regenerated eyes. B) Quantification of the numbers of regenerated PRNs (anti-ARRESTIN+ cells) in similarly sized scrambled- versus anti-miR-124 treated planarians in 7 dpa animals following 2 rounds of regeneration. KD of miR-124 results in a two-fold reduction in numbers of PRNs. C) FISH for three neuronal subtypes in scrambled- versus anti-miR-124 treated planarians, and quantifications of each population normalized to brain area in 7 dpa animals following 2 rounds of regeneration. Loss of miR-124 caused a significant reduction in the numbers of th+ neurons (n=5/5 animals) and gad+ neurons (n=5/5 animals), in addition to an increase in numbers of chat+ neurons (n=6/6 animals). D) FISH for neural progenitors (pax6A, green) in scrambled- versus anti-miR-124 treated planarians (100 mM anti-miRs) anti-miR treated animals in regenerated head tissue at 4 dpa following 2 rounds of regeneration. Pax6A expression is not affected by KD of miR-124 (n=6/6 animals). E) Uninjured animals treated with scrambled- or anti-miR-124 (100 µM) for 1 month. The visual neurons (anti-ARRESTIN, red) and brain (anti-SYNORF-1, green) were unaffected during homeostasis. Representative images of n=10 animals each. Scale bars in C-E represent 100 µm. *P < 0.05, **P < 0.01, ***P < 0.001 (Student's t-test).
Fig. S8. Pathway analysis and biological function of miR-124 targets. (A) Bar graph shows the Gene Set Enrichment Analysis of miR-124 targets predicted by miRANDA. (B) Pictorial description of target prediction using luciferase assay system in a heterologous system. (C) Q-PCR validation of upregulated targets upon miR-124 KD. *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t-test).
Figure S9
Fig. S9. Canonical Notch signaling maintains midline polarity in planarians. (A) *WISH* on uninjured asexual planarian for the Notch pathway transcription factor, *Su(H)*. (B) Live control- and *Su(H)*(RNAi) planarians. A mid-body bulge and cyclopia are observed after knockdown of *Su(H)*, similar to *notch-2*(RNAi) animals. 14 dpa trunk regenerates following 10 dsRNA injections. Scale bars, 250 µm. (C) Eyes of control-versus *Su(H)*(RNAi) planarians. *FISH* for pigment cup cells (*tyrosinase*, green), photosensing neurons (*opsin*, red), and nuclei (DAPI, blue) shows cyclopia after knockdown of *Su(H)*. 10 dpa trunk regenerates following 3 dsRNA injections. (D) Photosensing neurons and their axon projections in control-versus *Su(H)*(RNAi) planarians. *Su(H)*(RNAi) planarians display fusion of photosensing neurons (cyclopia) and disruption of the optic chiasm, similar to *slit-1*(RNAi) animals (Cebrìa et al., 2007). Arrow indicates fasciculation/disorganization of ventral axonal projections. 6 dpa trunk regenerates following 3 dsRNA injections. (E) Morphology of the gastrovascular system in control-versus *Su(H)*(RNAi) planarians. *FISH* shows the gut (*mat-1*, green), pharynx (*DNAH-β3*, red), and nuclei (DAPI, blue). Arrowhead highlights posterior gut branch fusion in *Su(H)*(RNAi) planarians. 7 dpa head regenerates following 3 dsRNA injections. (F) *FISH* for midline (*slit-1*, white) and nuclei (DAPI, blue) in control- versus *Su(H)*(RNAi) planarians. *Slit-1*+ cells are reduced after RNAi of *Su(H)*. 6 dpa head regenerates following 3 dsRNA injections. (G) Colorimetric *WISH* on uninjured adult asexual planarian for *delta-3*. (H) Uninjured live control(RNAi) (*H*') versus *delta-3*(RNAi) (*H*') planarians. *Delta3* expression is reduced after knockdown of *notch-2* and *Su(H)*(RNAi) animals. 16 dpa live control(RNAi) (*I*') versus *delta-3*(RNAi) (*I*'') planarians. *Delta-3*(RNAi) planarians display cyclopia similar to *notch-2* and *Su(H)*(RNAi) animals. (J) Colorimetric *WISH* on control- versus *notch-2*(RNAi) planarians. *Delta-3* expression is reduced after knockdown of *notch-2*. (A-J) All scale bars are 100 µm unless otherwise noted. (K) *Slit-1* and *miR-124c* co expression in 3 dpa animals. These high magnification images were obtained from 3 microns optical section, showing co expression of *slit-1* with the *miR-124* family miRNAs in the same cells. Scale bar represents 15µm.
Fig. S10. Colocalization of notch pathway genes and midline marker. A) FISH of an uninjured planarian for delta-3 (red), notch-2 (cyan), slit-1 (green, midline marker), and nuclei (DAPI, blue). White arrowheads indicate representative delta-3+/notch-2- midline cells. Yellow arrowheads indicate representative delta-3-/notch-2+ midline cells. White arrows indicate representative delta-3+/notch-2+ midline cells. Three different single confocal z-slices are shown, captured from the indicated locations in the whole worm. Asterisks, eyes. PH, pharynx. Scale bar, 200 µm.
Fig. S11. **Conservation of miR-124 targets across spp.** Venn diagram showing the conservation of miR-124 targets across *H. sapiens*, *D. rerio*, *C. elegans*, *D. melanogaster*, and *S. mediterranea*.
Table S1

Click here to Download Table S1

Table S2

Click here to Download Table S2

Table S3

Click here to Download Table S3

Table S4

Click here to Download Table S4

Table S5

Click here to Download Table S5