A Comparative Study on the Carbohydrate profile and In-vitro Glycaemic Index of Processed Basil (Ocimum basilicum) Seeds Incorporated Idlis

Arivuchudar R, Nazni P*
Department of Nutrition and Dietetics, Periyar University, Salem- 636011, Tamil Nadu, India

Article History:
Received on: 30 Oct 2020
Revised on: 26 Nov 2020
Accepted on: 30 Nov 2020

Keywords:
Carbohydrate Profile, Glycaemic Index, Idli, Ocimum Basilicum, Value Addition

ABSTRACT

The tiny black Ocimum basilicum seeds, also called as basil or sabja seeds said to keep blood sugar levels under control by decelerating the carbohydrate conversion into glucose, a simple sugar. Raw and Steamed Ocimum basilicum seeds in the proportions of 5% (RV1, SV1), 10% (RV2, SV2), 15% (RV3, SV3) and 20% (RV4, SV4) of the black gram have been incorporated in the idli formulation. The results depicted that as the proportion of O. basilicum seeds increased the total carbohydrate and sugar values showed a decline, whereas the cellulose, hemicellulose and resistant starch values increased. At 120 minutes, the mean in vitro glycaemic index of the control idli was estimated to be 66.45 ± 0.03, while the mean estimated glycaemic index value of raw O. basilicum seed incorporated variations of idli namely RV1, RV2, RV3 and RV4 were 55.09 ± 0.02, 53.19 ± 0.02, 51.44 ± 0.01 and 48.09 ± 0.01 respectively. The mean estimated glycaemic index value of steamed O. basilicum seed incorporated variations of idli SV1 was found to be 62.72 ± 0.01, SV2 was 60.43 ± 0.01, SV3 was 58.16 ± 0.02, and SV4 was 56.63 ± 0.02 at 120 minutes. Hence it is opined that the 20% raw O. basilicum seed incorporated idli is very much low in estimated G.I values can be used in idli preparation as a means to offer a lower glycaemic index to the obese, diabetic and cardiac disorder populations.

*Corresponding Author
Name: Nazni P
Phone: 9884817954
Email: naznip@gmail.com

ISSN: 0975-7538
DOI: https://doi.org/10.26452/ijrps.v11i4.3956

INTRODUCTION

Glycaemic Index indicates the rate at which the blood sugar levels rise after ingestion of a particular food in an observed period of time in comparison with the controls like glucose or white bread. The glycaemic index (GI) is considered as an important indicator of glycaemic response (Jenkins et al., 1981). Diets with a low GI are associated with decreased glycaemic response and proves beneficial for lower and more consistent postprandial insulin release, reducing body weight, total body fat and visceral fat, levels of pro-inflammatory markers and the occurrence of dyslipidemia and hypertension (Feliciano et al., 2014). (Salari-Moghaddam et al., 2019), observed a significant positive association between dietary GI and abdominal obesity, especially in women. The study result of (Zafar et al., 2019) has proved that the low-GI diets reduce glycated hemoglobin (HbA1c) levels, fasting blood glucose levels, BMI, total cholesterol, and LDL, but had no effect on fasting insulin, HOMA-IR, HDL, triglycerides, or insulin requirements. Even with these limitations, GI continues to capture the attention of physicians and nutritionists alike as it does offer a rational way of ranking carbohydrate-containing foods that has the potential to favorably affect the prevention and management of diabetes (Madhu, 2017). Idli, a South Indian staple diet which had been into controversies in recent times, has been
acknowledged as a wholesome, nutritious food by many health professionals. As it is a steamed food product, the ease in digestion brands idli as a significant diet from infants to geriatrics. The issue of concern in idli is that it is categorized as a high glycaemic food with GI around 69, making it unfit for diabetics to consume. Hence, several food scientists have taken the initiative to modify the GI of idli by processing the rice used for idli preparation (Chelliah et al., 2019), replacing the quantity of rice with millets lower the GI of idli (Nazni and Shalini, 2010).

Research study on the addition of jowar to idli has shown a low glycaemic response compared to rice Rawa idli (Jahan et al., 2018). Researchers have substituted amaranth grain flour (Nazni et al., 2014), oats and guar gum flour (Giri et al., 2017) to lower GI of idli and enhance its nutritional value making idli an ideal diet even for people suffering from non-communicable diseases. Phyto medicine the field that utilizes plants and its parts for medicinal purposes in the treatment and prevention of non-communicable diseases especially diabetes has a long history compared to the conventional medicine (Choudhury et al., 2018).

One such noteworthy plant species, basil comes from the Greek basileus or “king. The benefits of O. basilicum include improving glucose homeostasis and lipid profiles for patients with diabetes, strengthening of the immune system, alleviating stress and anxiety, enhancing memory, Oral and skin health and healing (Singleton, 2018). The presence of polyphenols and flavonoids showcases O. basilicum seeds as a vital part of the daily food regime (Sestili et al., 2018). With these glimpses of review of literature, it was decided in our study to incorporate the seeds of Ocimum basilicum in the idli formulation and read its impact on the carbohydrate profile and estimated glycaemic index of value-added idlis.

MATERIALS AND METHODS

Procurement and Processing of Raw Material

The raw materials required for the study such as parboiled rice, dehulled black gram and basil or sabja seeds (Ocimum basilicum L.) were purchased from the local market of Salem district, Tamilnadu. The ingredients rice and black gram were hand sorted, to make sure that only quality grains are used and the impurities were removed by washing with water. The basil seeds were hand-sorted and sieved to ensure quality. The seeds required for preparing idlis by incorporating steamed O. basilicum seeds were steamed for 8-10 minutes.

Formulation of Raw and Steamed Ocimum basilicum L. Seeds Incorporated Idlis

The cleaned, parboiled rice and dehulled black gram were soaked for 5 hrs in the water at room temperature separately in the ratio of 4:1 (Ghosh and Chattopadhyay, 2011), for control and in different proportions for respective variations of idli as shown in Table 1 and ground to batter. The batter was allowed to ferment for 7 hours (Nagaraju and Manohar, 2000). The batter was beaten well, raw and steamed Ocimum basilicum seeds in the proportions of 5% (RV1, SV1), 10% (RV2, SV2), 15% (RV3, SV3) and 20% (RV4, SV4) were incorporated into the respective proportions of batter and was allowed to stand for 15 minutes (Samateh et al., 2018) for the seeds to gel. The batter was poured in an idli steamer and steamed till doneness which approximated to 5 to 8 minutes. Simultaneously the control idli was prepared by following the same procedure without the addition of basil seeds.

Determination of Carbohydrate profile

The control idli and developed variations of raw and steamed O. basilicum seeds incorporated idli were subjected to estimate the carbohydrate profile indices namely total carbohydrate, sugars, cellulose, hemicellulose and resistant starch. Carbohydrate and sugar content was assessed by IS 1656 and IS 6287 procedures respectively, while cellulose, hemicellulose and resistant starch in the idli samples were analyzed using the standard procedure by (Mathews et al., 1993; AOAC, 2002).

Estimation of In Vitro Glycaemic Index

Starch Hydrolysis percentage, (C∞ %) corresponds to the concentration at equilibrium (t∞), and k is the kinetic constant. Hydrolysis index (HI) is calculated as a percentage of the total content of glucose released is compared to the standard glucose that is released between 0 and 180 minutes (Barine and Yorte, 2016). The estimated glycaemic index (EGI) was calculated using the equation,

\[
\text{EGI} = 39.71 + 0.549\text{HI}
\]

Statistical analysis

All experiments in the present analysis were conducted in triplicate, and mean values were reported. The descriptive statistical analyses were performed using IBM SPSS Statistics 16 Software package. The data were subjected to analysis of variance (One-way ANOVA) with Duncan’s Post Hoc test (P<0.05) to determine the significant difference between the means.
Carbohydrate was present in the 20% steamed seed variation of idli (RV1) and the least amount of carbohydrate was in 5% raw seed incorporated steamed variety of seed. Next to control the amount incorporation and processing whether the raw or carbohydrate values based on the quantity of seed comparisons showed a significant difference in the mean carbohydrate value of the control idli was 21.49, while Ocimum basilicum seeds incorporated a variation of idli (RV4) than the 20% cellulosic and hemicellulose content decreased sharply. reported that on exposure to steam, the cellulose and hemicellulose content decreased on steam treatment (Vel et al., 2017). The non-starch polysaccharides cellulose and hemicellulose values and the resistant starch values were directly proportional to the seed incorporation levels. On comparing the variations of idlis based on the processing, more cellulose, hemicellulose and resistant starch content were observed in 20% raw Ocimum basilicum seed incorporated variation of idli (SV4). In terms of the sugar content, as the proportion of the seed incorporation increased, the sugar content of the idlis decreased. This decrease in the carbohydrate and sugar content in steamed variation may be due to the fact that during wet heat treatment processes, there is a considerable loss of low molecular weight carbohydrates (FAO, 1997).

This effect is also similar to the study on sweet potatoes, where the starch content decreased on steaming (Wei et al., 2017). The non-starch polysaccharides cellulose and hemicellulose values and the resistant starch values were directly proportional to the seed incorporation levels. On comparing the variations of idlis based on the processing, more cellulose, hemicellulose and resistant starch content were observed in 20% raw Ocimum basilicum seed incorporated variation of idli (RV4) than the 20% steamed Ocimum basilicum seed incorporated a variation of idli (SV4). The study by (Cui et al., 2012) has also reported that on exposure to steam, the cellulose and hemicellulose content decreased sharply.

Table 1: Ingredients in the preparation of control, raw and steamed Ocimum basilicum L. seeds incorporated idlis.

Variations	Rice	Black gram dhal	Raw Ocimum basilicum seeds	Steamed Ocimum seeds
Control	100	25	-	-
RV1	100	23.75	1.25	-
RV2	100	22.5	2.5	-
RV3	100	21.25	3.75	-
RV4	100	20	5	-
SV1	100	23.75	-	1.25
SV2	100	22.5	-	2.5
SV3	100	21.25	-	3.75
SV4	100	20	-	5

Table 2: Carbohydrate profile of raw and steamed Ocimum basilicum L. seeds incorporated idlis.

Variation	Carbohydrate (%)	Sugar (%)	Cellulose (%)	Hemicellulose (%)	Resistant Starch (%)
Control	21.49±0.37d	0.22±0.02a	1.02±0.47c	1.04±0.05d	0.67±0.64e
RV1	22.24±0.27a	0.16±0.03c	0.64±0.04f	0.83±0.06e	0.90±0.02d
RV2	20.78±0.22c	0.15±0.03d	1.87±0.10e	2.16±0.09d	0.94±0.03c
RV3	20.67±0.18C	0.14±0.04e	2.02±0.09b	2.46±0.18a	0.96±0.02c
RV4	17.78±0.12d	0.14±0.02e	2.29±0.48a	2.57±0.03a	1.13±0.05e
SV1	17.41±0.19d	0.16±0.01b	1.03±0.04c	1.05±0.07d	0.96±0.03e
SV2	15.64±0.54e	0.14±0.04e	0.83±0.04f	1.24±0.09c	0.96±0.02e
SV3	15.42±0.25c	0.13±0.03f	1.59±0.04d	1.60±0.02c	0.98±0.01b
SV4	12.98±0.11f	0.09±0.02g	1.67±0.05d	2.08±0.04b	1.01±0.04b

Each value in the table are represented as Mean ± SD. Means with the same superscript are not significantly different using Duncan’s Multiple Range Test (P < 0.05).

RESULTS AND DISCUSSION

Determination of Carbohydrate profile

Carbohydrate profile is an important parameter to determine the quality of food. Based on the quantity and quality of carbohydrates in the foods consumed, certain foods prompt a marked increase trailed by a more or less fast fall in blood glucose, while others produce a smaller peak along with a steadier decline in plasma glucose (Kumar et al., 2018).

Table 2 portrays the carbohydrate profile indices of the control and developed variations of raw and steamed Ocimum basilicum seeds incorporated idlis. The mean carbohydrate value of the control idli was 21.49, while Ocimum basilicum seeds incorporated variations of idli showed a significant difference in the carbohydrate values based on the quantity of seed incorporation and processing whether the raw or steamed variety of seed. Next to control the amount of carbohydrate was more in 5% raw seed incorporated variation of idli (RV1) and the least amount of carbohydrate was present in the 20% steamed seed incorporated variation of idli (SV4).
Estimation of *In Vitro* Glycaemic Index

The in-vitro measurements are simple, and economical when compared to *in vitro* tools and will be a reliable indicator of the required values, and may act as a pilot screening method to reliable indicator of the required values, and may be associated with higher GI values (Allison *et al.*, 1995).

Also, the AUCs, calculated HI and Estimated GI values can be correlated with the resistant starch values too. The more the resistant starch in the variations, the lower is the EGI value of those variations of idli. The low GI, as well as high resistant starch, reduces the insulin resistance by lowering the blood glucose levels in diabetic patients as well improves the lipid metabolism and prevents cardiovascular diseases (Kannayiram *et al.*, 2020). To summarize, the incorporation of 20% raw *O. basilicum* seeds has resulted in a low glycaemic idli compared to all the other developed products. It should also be pointed out that the methanolic extract of *O. basilicum* seed has proved effective for the treatment of diabetes and lipid-lowering activities in streptozotocin induced diabetes rat (Parikh and Kothari, 2020).

CONCLUSION

Though, *O. basilicum* seeds owing to their pharmaceutical properties, have formed a major fragment in the treatment of many ailments especially in Chinese medicine, the inclusion of *O. basilicum* seeds as a routine food is not in practice. Hence, in order to familiarise the *O. basilicum* seeds, they were incorporated into the much familiar and routine food, Idli. The presence of mucilage, a rich source of hydrocolloid with outstanding functional properties, has helped in developing idlis of desired texture. From the study conducted, in vitro starch hydrolysis of all the variations of the idlis were significantly affected (p < 0.05) by the process used (raw & steamed seeds) and the proportion of *O. basilicum* seeds added in the formulation. Resistant starch content increased significantly (p < 0.05).
in 20% variations of raw and steamed O. basilicum seeds incorporated variations, compared with the control. It was also found that resistant starch content is inversely related with a hydrolysis index value, which resulted in lower estimated glycaemic index values in idlis with higher incorporation level of O. basilicum seeds. On comparing the raw and steamed O. basilicum seeds incorporated variations of idli, it can be concluded that all the variations of raw O.basilicum seeds incorporated idlis had a lower G.I value, while 20% of incorporation exhibited the least Estimated Glycaemic Index value. Thus, the idli (control) with medium glycaemic index value has been transformed to low Glycaemic index because of incorporation of 20% raw O. basilicum seed.

Funding Support
The authors declare that they have no funding support for this study.

Conflict of Interest
The authors declare that they have no conflict of interest for this study.

REFERENCES
Allison, D. B., et al. 1995. The use of areas under curves in diabetes research. Diabetes Care, 18(2):245–250.
AOAC 2002. Official methods of analysis of AOAC International 17th edition. W. Horwitz, ed. pages: 2200.
Argyri, K., et al. 2016. The potential of an in vitro digestion method for predicting glycemc response of foods and meals. Nutrients, 8(4):209.
Arivuchudar, R., Nazni, P. 2020. Effect of Incorporation of Roasted Ocimum basilicum L. Seeds on the In vitro Glycemic Index of Steamed Rice Cake. Bioscience Biotechnology Research Communications, 13(3):1561–1565.
Barine, K. K. D., Yorte, G. S. 2016. In Vitro Starch Hydrolysis and Prediction of Glycemic Index (PGI) in “Amala” and Plantain Based Baked Products. Journal of Food Research, 5(2):73.
Chelliah, R., et al. 2019. Effect of rice processing towards lower rapidly available glucose (rag) favors idli, a South Indian fermented food suitable for diabetic patients. Nutrients, 11(7):1–16.
Choudhury, H., et al. 2018. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of Traditional and Complementary Medicine, 8(3):361–376.
Cui, L., et al. 2012. Influence of steam explosion pretreatment on the composition and structure of wheat straw. BioResources, 7(3):4202–4213.
FAO 1997. Carbohydrates in human nutrition report of a joint FAO/WHO expert consultation rome. pages: 14-18.
Feliciano, P. P., et al. 2014. Glycemic index role on visceral obesity, subclinical inflammation and associated chronic diseases. Hospital nutrition, 30(2):237–243.
Ghosh, D., Chattopadhyay, P. 2011. Preparation of idli batter, its properties and nutritional improvement during fermentation. Journal of Food Science and Technology, 48(5):610–615.
Giri, S., et al. 2017. Starch digestibility and glycaemic index of selected Indian traditional foods: Effects of added ingredients. International Journal of Food Properties, 20(1):290–305.
Jahan, A., et al. 2018. Comparison between glycemic index and in-vitro carbohydrate digestibility in Idli using rice Rawa vs jowar rawa. The Journal of Research ANGRAU, 41(4):93–96.
Jenkins, D. J., et al. 1981. Glycemic index of foods: a physiological basis for carbohydrate exchange. The American Journal of Clinical Nutrition, 34(3):362–366.
Kannayiram, G., et al. 2020. An in-vitro study on the predicted glycemic index and a bioactive component of fortified-bread using senna auriculata. International Journal of Research in Pharmaceutical Sciences, 11(4):5248–5258.
Kumar, A., et al. 2018. Resistant starch could be decisive in determining the glycemic index of rice cultivars. Journal of Cereal Science, 79:348–353.
Madhu, S. V. 2017. Glycemic index: challenges in translating the concept to practice. International Journal of Diabetes in Developing Countries, 37(4):377–378.
Mathews, S., et al. 1993. Ocimum basilicum: A new non-conventional source of fibre. Food Chemistry, 47(4):399–401.
Nagaraju, V. D., Manohar, B. 2000. Rheology and particle size changes during idli fermentation. Journal of Food Engineering, 43(3):167–171.
Nazni, P., et al. 2014. Formulation and quality evaluation of amaranth gain flour incorporated idli using response surface methodology. International Journal of Food and Nutritional Sciences, 3(3):49–60.
Nazni, P., Shalini, S. 2010. Standardization and quality evaluation of idli prepared from pearl millet (Pennisetum glaucum). International Journal of Current Research, 5:84–87.
Parikh, N. H., Kothari, C. 2020. Therapeutic role of methanolic extract of ocimum basilicum l. Seeds
and its isolated compound as potent antidiabetic and antihyperlipidemic agents. *Natural Products Journal*, 10(3):226–235.

Salari-Moghaddam, A., *et al.* 2019. Dietary glycemic index and glycemic load in relation to general obesity and central adiposity among adults. *Clinical Nutrition*, 38(6):2936–2942.

Samateh, M., *et al.* 2018. Unravelling the secret of seed-based gels in water: the nanoscale 3D network formation. *Scientific Reports*, 8(1):7315.

Sestili, P., *et al.* 2018. The potential effects of Ocimum basilicum on health: a review of pharmacological and toxicological studies. *Expert Opinion on Drug Metabolism & Toxicology*, 14(7):679–692.

Singletonary, K. 2018. Basil: A brief summary of potential health benefits. *Nutrition Today*, 53(2):92–97.

Wei, S., *et al.* 2017. Effects of cooking methods on starch and sugar composition of sweet potato storage roots. *PloS one*, 12(8):1–10.

Widanagamage, R. 2013. Effect of extent of gelatination of starch on the glycaemic responses of carbohydrate rich breakfast meals. *Malaysian Journal of Nutrition*, 19(2):145–171.

Zafar, M. I., *et al.* 2019. Low glycaemic index diets as an intervention for obesity: a systematic review and meta-analysis. *Obesity Reviews*, 20(2):290–315.