PERIODIC BILLIARD ORBITS OF SELF-SIMILAR SIERPINSKI CARPETS

JOE P. CHEN AND ROBERT G. NIEMEYER

Abstract. We identify a collection of periodic billiard orbits in a self-similar Sierpinski carpet billiard table $\Omega(S_a)$. Based on a refinement of the result of Durand-Cartagena and Tyson regarding nontrivial line segments in S_a, we construct what is called an eventually constant sequence of compatible periodic orbits of prefractal Sierpinski carpet billiard tables $\Omega(S_{a,n})$. The trivial limit of this sequence then constitutes a periodic orbit of $\Omega(S_a)$. We also determine the corresponding translation surface $S(S_{a,n})$ for each prefractal table $\Omega(S_{a,n})$, and show that the genera $\{g_n\}_{n=0}^{\infty}$ of a sequence of translation surfaces $\{S(S_{a,n})\}_{n=0}^{\infty}$ increase without bound. Various open questions and possible directions for future research are offered.

Contents

1. Introduction 1
2. Background 3
 2.1. Self-similarity and Sierpinski carpets 3
 2.2. Mathematical billiards 6
 2.3. Fractal billiards 12
3. A refinement of Theorem 4.1 in [Du-CaTy] 14
4. Eventually constant sequences of compatible periodic orbits of S_a 18
 4.1. The translation surface $S(S_{a,n})$ 25
5. Concluding remarks and open questions 26
Acknowledgements 28
References 28

1. INTRODUCTION

The subject of polygonal billiards is well-developed; see, e.g., [Gut1] [Gut2] [HuSc] [KaZe] [MasTa] [Sm] [Ta1] [Ta2] [Zo] and the pertinent references therein for excellent surveys on the subject and the current state of the art. There is a particular family of fractal sets, each of which can be viewed as the limit of a sequence of polygonal approximations. M. L. Lapidus and the second author have begun investigating the billiard dynamics on the Koch snowflake fractal billiard table and the so-called T-fractal billiard table; see [LapNie1] [LapNie2] [LapNie3]. Besides determining periodic orbits of these two fractal billiard tables, these articles proposed a possible...
framework in which one could begin investigating the billiard dynamics on an arbitrary billiard table with fractal boundary.

In this article, we proceed to identify a collection of periodic billiard orbits in the self-similar Sierpinski carpet billiard table $\Omega(S_a)$, where $a := \{a_i\}_{i=1}^\infty$ is a constant sequence of positive odd integers with $a_i \geq 3$ for every $i \geq 1$; see Figure 1. To fix notations, we regard S_a as a subset of the unit square Q in \mathbb{R}^2, and fix the lower-left corner of Q to be the origin $(0,0)$. The boundary of an open square removed in the construction of S_a is referred to as a peripheral square of S_a.

The basis for our work is the recent result of [Du-CaTy] by E. Durand-Cartagena and J. Tyson, who identified all the possible slopes of nontrivial line segments in a given Sierpinski carpet S_a. This set of slopes, denoted by $\text{Slopes}(S_a)$, is a finite set of rational values, and equals the disjoint union of A_a and B_a, where (see Theorem 4.1 of [Du-CaTy])

$$A_a = \left\{ \pm \frac{p}{q} : p + q \leq a, 0 \leq p < q \leq a - 1, p, q \in \mathbb{N} \cup \{0\}, p + q \text{ is odd} \right\},$$

$$B_a = \left\{ \pm \frac{p}{q} : p + q \leq a - 1, 0 \leq p \leq q \leq a - 2, p, q \in \mathbb{N}, p \text{ and } q \text{ are odd} \right\}.$$

We note that $A_{a-2} \subsetneq A_a$ and $B_{a-2} \subsetneq B_a$. Roughly speaking, a nontrivial line segment of slope $\alpha \in A_a$ can emanate from the origin $(0,0)$, and a nontrivial line segment of slope $\alpha \in B_a$ can emanate from $(\frac{1}{2},0)$, although the association between the slope set and starting point is not absolute. For example in S_7, the line segments emanating from, respectively, $(0,0)$ and $(\frac{1}{2},0)$, with slope $\frac{5}{7} \in A_7$ are both nontrivial line segments; see §4.

Key to our description of particular family of periodic orbits of a self-similar Sierpinski carpet is analyzing whether nontrivial line segments hit or avoid peripheral squares of S_a. It has already been shown in [Du-CaTy] that nontrivial line segments of slope $\alpha \in B_a$ starting from $(\frac{1}{2},0)$ avoid all peripheral squares of S_a. We show below in Theorem 3.4 an important distinction between nontrivial line segments of slope $\alpha \in A_{a-2}$ and those of slope $\alpha \in A_a \setminus A_{a-2}$. Our result is as follows. Suppose that the line segment starts from $(0,0)$. If the segment has slope $\alpha \in A_{a-2}$, then it avoids all peripheral squares of S_a. If the segment has slope $\alpha \in A_a \setminus A_{a-2}$, then it must intersect with the corner of some peripheral square of S_a. This distinction was not stated in Theorem 4.1 of [Du-CaTy], and turns
out to play an important role in identifying particular periodic billiard orbits of a self-similar Sierpinski carpet billiard.

We then apply the results about nontrivial line segments to obtain information about the billiard orbits. This is achieved via a sequence of arguments regarding the scaling of cells and reflected-unfolding of particular orbits. We view a Sierpinski carpet as the unique fixed point attractor of a sequence of rational polygonal approximations (or prefractal approximations). As such, we investigate the limiting behavior of particular sequences of compatible periodic orbits of prefractal billiard tables. Our main result, stated more precisely in Theorem 4.2, says that the following orbits in $\Omega(S_a)$ are periodic:

- Those starting from $(0, 0)$ with slope $\alpha \in A_{a-2}$.
- Those starting from $\left(\frac{r}{2^n}, 0\right)$ with slope $\alpha \in B_a$, for any $n \in \mathbb{N}$ and any positive odd integer $r < 2a^n$.

A priori, this list does not exhaust all of the initial conditions giving rise to periodic orbits of $\Omega(S_a)$. In addition to describing particular periodic orbits, we can understand what constitutes the larger collection of closed orbits of $\Omega(S_a)$. In Proposition 4.3, we show that an orbit starting from $\left(k a^n, 0\right)$ with slope $\alpha \in A_{a-2}$, some $n \in \mathbb{N}$, and some positive integer $k < a^n$ is always closed, but not always periodic.

We believe that investigating the self-similar Sierpinski carpet billiard may inspire further studies on related polygonal billiards of infinite genus. Indeed, while we can identify the translation surface of the pre-Sierpinski carpet billiard table $S_{a,n}$, and show that their genera grow unboundedly as $n \to \infty$ (§4.1), it is unclear how one may define a translation surface for the fractal billiard table $\Omega(S_a)$, since S_a has zero Lebesgue area. In §5, we suggest two related billiard tables which share similar features with S_a, but have nonzero Lebesgue area.

The paper is organized as follows: In §2 we provide some background on the Sierpinski carpet, mathematical billiards, and translation surfaces. Our result on nontrivial line segments in S_a, which clarifies part of Theorem 4.1 in [Du-CaTy], is described in §3. The core of this article is contained in §4, where we identify the two types of periodic billiard orbits in S_a, and describe the translation surface corresponding to the pre-Sierpinski carpet billiard table. Open problems are addressed in §5.

2. Background

In this section, we provide the necessary background for understanding the remainder of the article. We will give the necessary definitions from the field of fractal geometry and mathematical billiards, as well as the pertinent terms from [Du-CaTy]. In addition to this, we will draw upon the vocabulary of the emerging field of fractal billiards when discussing a self-similar Sierpinski carpet billiard $\Omega(S_a)$ in §4, see [LapNie1, LapNie2, LapNie3].

2.1. Self-similarity and Sierpinski carpets.

Definition 2.1 (A self-similar Sierpinski carpet via an IFS). Let $a \geq 3$ be an positive odd integer and $\phi_i : \mathbb{R}^2 \to \mathbb{R}^2$ a similarity contraction defined as:
where \(u_i, v_i \in \mathbb{N} \cup \{0\}, \) \(0 \leq u_i \leq a - 1, \) \(0 \leq v_i \leq a - 1 \) and \((u_i, v_i) \neq (\frac{a-1}{2}, \frac{a-1}{2}) \). Then, \(\{\phi_i\}_{i=1}^{n-1} \) is an iterated function system. The unique fixed point attractor of the map \(\Phi(\cdot) := \bigcup_{i=1}^{n-1} \phi_i(\cdot) \) is called a self-similar Sierpinski carpet.

We recall the notation used in constructing Sierpinski carpets in [Du-CaTy]. Let

\[
\mathbf{a} = (a_1^{-1}, a_2^{-1}, \ldots) \in \left\{\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots\right\}^\mathbb{N}.
\]

Let \(Q \) be the unit square. Beginning with \(S_0 := Q, \) partition \(S_0 \) into \(a_1^2 \) equal squares of side-length \(a_1^{-1} \) and remove the middle open square, leaving \(a_1^2 - 1 \) many squares. We denote the union of the remaining squares by \(S_{1,1} \) and refer to \(S_{n,1} \) as the first level approximation of the Sierpinski carpet \(S_a \). Then, partition each remaining square with side-length \(a_1^{-1} \) into \(a_2^2 \) many squares with side-length \(a_1^{-1} \cdot a_2^{-1} \). From each square with side-length \(a_1^{-1} \), remove the middle open square of side-length \(a_1^{-1} \cdot a_2^{-1} \). The union of the remaining squares of side-length \(a_1^{-1} \cdot a_2^{-1} \) constitutes the second level approximation \(S_{n,2} \) of a Sierpinski carpet \(S_a \). Continuing this process ad infinitum, we construct the Sierpinski carpet \(S_a \). More precisely,

\[
S_a = \bigcap_{n=0}^{\infty} S_{a,n},
\]

where \(S_{a,0} = S_0 \).

Definition 2.2 (A self-similar Sierpinski carpet). If \(\mathbf{a} = \{a_i^{-1}\}_{i=0}^{\infty} \), with \(a_i = 2k_i + 1 \) and \(k_i \in \mathbb{N} \), is a periodic sequence, then the Sierpinski carpet \(S_a \) is called a self-similar Sierpinski carpet.

Both Definitions 2.1 and 2.2 are equivalent. More precisely, when \(\mathbf{a} \) is a constant sequence, then it is clear how the two definitions are equivalent. When \(\mathbf{a} \) is a nonconstant periodic sequence, then there exists \(a' \) such that \(S_a \) is the unique fixed point attractor of an appropriately defined iterated function system \(\{\phi_i\}_{i=1}^{n-1} \).

For the purposes of this paper, it may be advantageous to use one definition over another, depending on the context of the situation.

Definition 2.3 (A cell of \(S_a \)). Let \(a_0 = 2k_0 + 1, \ k_0 \in \mathbb{N} \). Consider a partition of the unit square \(Q = S_0 \) into \(a_0^2 \) many squares of side-length \(a_0^{-1} \). A subsquare of the partition is called a cell of \(S_0 \) and is denoted by \(C_{0,a_0} \). Let \(S_a \) be a Sierpinski carpet. Consider a partition of the prefractal approximation \(S_{a,n} \) into subsquares with side-length \((a_0 \cdot a_1 \cdots a_n)^{-1} \). A subsquare of the partition of \(S_{a,n} \) is called a cell of \(S_{a,n} \) and is denoted by \(C_{n,a_{0} \cdot a_1 \cdots a_n} \) and has side-length \((a_0 \cdot a_1 \cdots a_n)^{-1} \).

Let \(\mathbf{a} \) be a constant sequence of odd, positive integers such that \(S_a \) is a self-similar Sierpinski carpet and \(\{\phi_i\}_{i=1}^{n-1} \) an iterated function system for which \(S_a \) is the

2For a more detailed discussion of self-similar sets and iterate function systems, see [HBr]. For a more complete treatment of the subject of fractal geometry, see [FD].
Figure 2. We see here an example of a cell $C_{1,a}$ of $S_{7,1}$. While this cell is clearly shown as a subset of $S_{7,2}$, it has a side-length that indicates it is called a cell of $S_{7,1}$.

unique fixed point attractor. If C_{n,a^n} is a cell of $S_{a,n}$, then $C_{n,a^n} = \phi_{i_n} \circ \cdots \circ \phi_{i_1}(Q)$ for suitably chosen i_1, i_2, \ldots, i_n.

We now define the important notion of a peripheral square.

Definition 2.4 (Peripheral square). In accordance with the convention established in [Du-CaTy], the boundary of an open square removed in the construction of S_a is called a *peripheral square* of S_a. By convention, the unit square $Q = S_0$ is not a peripheral square.

Example 2.5 (A cell of the prefractional $S_{7,1}$). In Figure 2, we see an example of a cell of the prefractional approximation $S_{7,1}$. We wish to emphasize the fact that the cell with the middle open square removed constitutes the scaling of $S_{7,1}$ (relative to the origin) by $\frac{1}{7}$. At times, we may make reference to a cell C_{m,a^m}, even when such a region is considered as a subset of $S_{a,n}$ for $n > m$. In such a case, a cell C_{m,a^m} will contain peripheral squares of $S_{a,n}$ with side length a^{-k} for all k such that $m < k \leq n$.

Also of great importance is the notion of a *nontrivial line segment*.

Definition 2.6 (Nontrivial line segment of S_a). A *nontrivial line segment* of a Sierpinski carpet S_a is a (straight-line) segment of the plane contained in S_a that has nonzero length.

Notation 2.7. Let S_a be a Sierpinski carpet. We denote by $\text{Slope}(S_a)$ the set of slopes, with values in $[0, 1]$, of nontrivial line segments in S_a. There is no loss of generality, since applying an isometry of the square to a slope $\alpha \in \text{Slope}(S_a)$ yields a slope of $\frac{1}{\alpha}, -\alpha$, or $-\frac{1}{\alpha}$.

Theorem 4.1 of [Du-CaTy]. Let $a = (\frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \ldots)$ be a constant sequence. Then the set of slopes of nontrivial line segments $\text{Slope}(S_a)$ is the union of the following two sets:
Slope for the first four self-similar Sierpinski carpets: \(S \in S_a \) any maximal nontrivial line segment in \(S_a \) with slope \(\alpha \) touches vertices of peripheral squares, while if \(\alpha \in B_a \), then each nontrivial line segment in \(S_a \) with slope \(\alpha \) is disjoint from all peripheral squares. For each \(\alpha \in A_a \cup B_a \), there exist maximal line segments in \(S_a \) with slope \(\alpha \). Finally, if \(b < a \), then any maximal nontrivial line segment in \(S_b \) is also contained in \(S_a \). In particular, \(\text{Slope}(S_b) \subseteq \text{Slope}(S_a) \).

Observe that \(A_{a-2} \subset A_a \) and \(B_{a-2} \subset B_a \). For concreteness, we give \(\text{Slope}(S_a) \) for the first four self-similar Sierpinski carpets:

\[
A_3 = \left\{ \frac{0}{1}, \frac{1}{2} \right\}, \quad B_3 = \{1\},
\]

\[
A_5 = \left\{ \frac{0}{1}, \frac{1}{2}, \frac{2}{3} \right\}, \quad B_5 = \{1, \frac{1}{3}\},
\]

\[
A_7 = \left\{ \frac{0}{1}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{7}{8}, \frac{9}{10} \right\}, \quad B_7 = \{1, \frac{1}{5}, \frac{3}{5}\},
\]

\[
A_9 = \left\{ \frac{0}{1}, \frac{1}{8}, \frac{1}{6}, \frac{1}{4}, \frac{2}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5} \right\}, \quad B_9 = \{1, \frac{1}{3}, \frac{3}{5}, \frac{5}{7}\}.
\]

We have presented the slopes in color in order to represent those in, respectively, \(A_{a-2}, A_a \setminus A_{a-2}, B_{a-2}, \) and \(B_a \setminus B_{a-2} \). Note that the elements of \(A_a \setminus A_{a-2} \) (resp., \(B_a \setminus B_{a-2} \)) are bolded while the elements of \(A_{a-2} \) (resp., \(B_{a-2} \)) are not bolded. For example, the elements \(\frac{1}{2}, \frac{3}{5}, \) and \(\frac{7}{10} \) in \(\text{Slope}(S_5) \) listed above are bolded, while the elements \(0, \frac{1}{2} \), and 1 in \(\text{Slope}(S_5) \) are not. The distinction between slopes in \(A_{a-2} \) and slopes in \(A_a \setminus A_{a-2} \) will be crucial to our refinement of Theorem 4.1 of [Du-CaTy] stated below as Theorem 3.4 as well as our main results stated in Theorem 4.2 and Proposition 4.3.

2.2. Mathematical billiards. Consider a point mass making a collision in a boundary subject to a Law of Reflection. That is, the angle of reflection is equal to the angle of incidence. Alternatively (and equivalently), one may consider the incoming vector reflected through the tangent at the point of collision; see Figure 3. Furthermore, we require, prior to colliding in the boundary, that the point mass be traveling in a straight line. For the remainder of the article, we assume that a mathematical billiard table \(\Omega(D) \) with boundary \(D \) is a path-connected region in the plane with sufficiently piecewise smooth boundary\(^3\) that is also simple and connected; see Figure 3 for an example of such a billiard table.

An initial condition of the billiard flow is given by \((x^0, \theta^0)\), where we take \(x^0 \) to be on the boundary \(D \) of the billiard table \(\Omega(D) \) and \(\theta^0 \) to be an angle measured relative to the tangent line at \(x^0 \). The next point of collision \(x^1 \) in the boundary is determined by the billiard map \(f_D \). That is, \(f_D(x^0, \theta^0) = (x^1, \theta^1) \), where \(\theta^1 \) is

\(^3\)In the case of a polygonal billiard table, there are finitely many vertices where a well-defined tangent does not exist.
an inward pointing vector based at x^1. Then, successive iterates f^k, $k \geq 1$, of the billiard map f determine the collision point x^k of the billiard ball in the boundary D of the billiard table. To be clear, the angle of reflection θ^k, determined from the Law of Reflection, is the angle made by the vector based at x^k pointing inward towards the interior of $\Omega(D)$, measured relative to the tangent based at x^k. Then, one can describe an equivalence relation \sim on $\Omega(D) \times S^1$ that amounts to identifying the outward pointing vector based at a point x^k with the inward pointing vector based at x^k.\footnote{For a more complete treatment of the billiard map f_D, the billiard flow ϕ^t in the phase space and an equivalence relation placed on $\Omega(D) \times S^1$, see \cite{Sm}.}

Then $f_D((x^0, \theta^0)) = [(x^1, \theta^1)]$, where θ^1 is the angle made by the inward pointing vector, measured relative to the tangent at x^1. For now, we shall denote by (x, θ) the equivalence class of $[(x, \theta)]$, relative to the equivalence relation \sim. That is, (x, θ), such that θ is the angle determined from the inward pointing vector, is the representative element of the equivalence class $[(x, \theta)]$. In order to reduce the complexity of the phase space, we only consider the space $(D \times S^1)/\sim$.

Definition 2.8 (An orbit of $\Omega(D)$). Let f_D be the billiard map describing the discrete billiard flow in the phase space $(\Omega(D) \times S^1)/\sim$. An orbit $\Theta(x^0, \theta^0)$ of $\Omega(D)$ is then given by $\{f^n_D(x^0, \theta^0)\}_{n=0}^\infty$.

We frequently make an abuse of notation and say that an orbit is the path traversed by the billiard ball connecting the base points x^i of $f_D(x^0, \theta^0)$, $0 \leq i \leq N$.

Definition 2.9 (A closed orbit of $\Omega(D)$). An orbit $\Theta(x^0, \theta^0)$ of $\Omega(D)$ is said to be closed if the orbit consists of finitely many elements.
Definition 2.10 (A periodic orbit of $\Omega(D)$). Let $\mathcal{O}(x^0, \theta^0)$ be a closed orbit of $\Omega(D)$. If there exists a least integer $m \geq 1$ such that $f^m(x^0, \theta^0) = (x^0, \theta^0)$, then we say the orbit $\mathcal{O}(x^0, \theta^0)$ is a periodic orbit.

Remark 2.11. One does not call an orbit closed simply because one decides to arbitrarily terminate the billiard flow. If, under the billiard flow, the billiard ball intersects a point of the boundary for which reflection cannot be determined in a well-defined manner, then the billiard ball trajectory terminates at that point. Such an orbit is then called singular. If $\mathcal{O}(x^0, \theta^0)$ is a singular orbit and there exists $k \in \mathbb{N}$ such that the base point x^{-k} of $f^{-k}(x^0, \theta^0)$ is a point of D not admitting a well defined derivative, then we say $\mathcal{O}(x^0, \theta^0)$ forms a saddle connection. In such a case, $\mathcal{O}(x^0, \theta^0)$ is also a closed orbit.

Definition 2.12 (A dense orbit of $\Omega(D)$). If the path traversed by a billiard ball is dense in $\Omega(D)$ (forward or backward in time), then the orbit $\mathcal{O}(x^0, \theta^0)$ is said to be dense in $\Omega(D)$.

Definition 2.13 (Rational polygonal billiard). A rational polygon is a polygon where each interior angle v_i is of the form $\frac{p_i \pi}{q_i}$, $p_i, q_i \in \mathbb{Z}$, $q_i \neq 0$. A rational polygonal billiard is a billiard table with boundary D, where D is a rational polygon.

2.2.1. Translation surfaces via rational polygonal billiard tables. Consider a rational polygonal billiard $\Omega(D)$ with interior angles $\frac{p_1 \pi}{q_1}, \ldots, \frac{p_k \pi}{q_k}$. If $N = \text{lcm}(q_1, \ldots, q_k)$, then, by appropriately identifying the sides of $2N$ many copies of $\Omega(D)$, we can construct a compact, connected orientable surface with finitely many conic singularities, with the coordinate changing functions given by translations. In addition, if the conic angle about a conic singularity is 2π, then the singularity is called a removable singularity; if the conic angle is greater than 2π, then the singularity is called a non-removable singularity.

Consider the unit square Q. Then, $N = \text{lcm}(2, 2, 2, 2) = 2$. In Figure 5, we indicate how the sides of $2N = 4$ many copies of $\Omega(Q)$ must be identified so as to produce a translation surface. In this example, each corner is identified with three other corners to produce a singularity of the translation surface. In each case, such a singularity has a conic angle of 2π. This implies that the billiard flow at each vertex can be made well defined. We note that, in this case of the square, the translation surface is topologically equivalent to the flat torus.

If $\{u_1, u_2\}$ is a basis for \mathbb{R}^2, then a vector $z \in \mathbb{R}^2$ is called rational with respect to $\{u_1, u_2\}$ if $z = mu_1 + nu_2$, for some $m, n \in \mathbb{Z}$. Combining the results of [GutJu1] with Theorem 3 of [Gut2], we can state the following result, which we do not claim as a new theorem, but which we rephrase in a way that is suitable for our purposes.\footnote{For a more complete definition of translation surface as well as descriptions of closely related types of surfaces, please see [MasTa, Gut2, HiSc] and the relevant references therein.}

Theorem 2.14 (Gut2). Let $S(D)$ be a translation surface determined from a rational polygonal billiard $\Omega(D)$. If $S(D)$ is a branched cover of a singly punctured torus, then a geodesic on $S(D)$ is periodic or forms a saddle connection if and only if the geodesic has an initial direction that is rational. In addition, a geodesic on $S(D)$ is dense if and only if the geodesic has an initial direction that is irrational.

Theorem 2.14 is equivalent to the following, similarly attributed to E. Gutkin.\footnote{This same statement is also given in [LapNie9] and is similarly attributed to E. Gutkin.}
Figure 5. A translation surface constructed from the unit square billiard $\Omega(R)$. Opposite and parallel sides are identified.

Figure 6. Partially unfolding an orbit of the square billiard $\Omega(Q)$.

Theorem 2.15 ([Gut2]). Let $\Omega(D)$ be a rational billiard table that is tiled by an integrable billiard\(^7\) table $\Omega(P)$. Then an orbit on $\Omega(D)$ is closed if and only if the orbit has an initial direction that is rational. In addition, an orbit on $\mathcal{S}(D)$ is dense if and only if the orbit has an initial direction that is irrational.

If $\Omega(D)$ is a rational polygon with k many sides and interior angles $\frac{p_i}{q_i} \pi$, $i \leq k$ and $N = \text{lcm}\{q_1, q_2, \ldots, q_k\}$, then the genus g of a translation surface constructed from a rational polygonal billiard $\Omega(D)$ is given by\(^8\)

$$g = 1 + \frac{N}{2} \left(k - 2 - \sum_{i=1}^{k} \frac{1}{n_i} \right). \tag{2.5}$$

2.2.2. Unfolding a billiard orbit and equivalence of flows. Consider a rational polygonal billiard $\Omega(D)$ and an orbit $\mathcal{O}(x^0, \theta^0)$ of $\Omega(D)$. Reflecting the billiard $\Omega(D)$ and the orbit in the side of the billiard table containing the base point x^1 of the orbit (x^1 being the first point of collision after starting from x^0) partially unfolds the orbit $\mathcal{O}(x^0, \theta^0)$; see Figure 8 for the case of the square billiard. Continuing this process until the orbit is a straight line produces as many copies of the billiard table as there are base points of the orbit; see Figure 7. That is, if the period of an orbit $\mathcal{O}(x^0, \theta^0)$ is some positive integer p, then the number of copies of the billiard table in the unfolding is also p. We refer to such a straight line as the unfolding of the billiard orbit.

We note that the construction of a translation surface from a rational billiard $\Omega(D)$ amounts to letting a group of symmetries act on $\Omega(D)$; see §2.2.1. That is, a rational billiard $\Omega(D)$ can be acted on by a dihedral group \mathcal{D}_N to produce a

\(^7\)If $\Omega(D)$ is a billiard table that tiles the plane, then $\Omega(D)$ is called an integrable billiard table.

\(^8\)See [MasTa] for an explanation of the formula describing the genus of a translation surface determined from a rational billiard table $\Omega(D)$.
Figure 7. Unfolding an orbit of the square billiard $\Omega(Q)$.

Figure 8. Rearranging the unfolded copies of the unit square from Figure 7 and correctly identifying sides so as to recover the flat torus, we see that the unfolded orbit corresponds to a closed geodesic on the translation surface.

translation surface in a way that is similar to unfolding the billiard table. Hence, we can quickly see how the billiard flow is dynamically equivalent to the geodesic flow on the associated translation surface; see Figure 8 and the corresponding caption.

One may modify the notion of “reflecting” so as to determine orbits of a billiard table tiled by a rational polygonal billiard $\Omega(D)$. As an example, we consider the unit-square billiard table. An appropriately scaled copy of the unit-square billiard table can be tiled by the unit-square billiard table by making successive reflections in the sides of the unit square. One may then unfold an orbit of the unit-square billiard table into a larger square billiard table. When the unfolded orbit of the original unit-square billiard intersects the boundary of the appropriately scaled (and larger) square, then one continues unfolding the billiard orbit in the direction determined by the Law of Reflection.

We will refer to such an unfolding as a \textit{reflected-unfolding}.

We may continue this process in order to form an orbit of a larger scaled square billiard table. Suppose that an orbit $\mathcal{O}(x, \theta)$ has period p. If s is a positive integer, then we say that $\mathcal{O}^s(x, \theta)$ is an orbit that traverses the same path as $\mathcal{O}(x, \theta)$ s-many times. For sufficiently large $s \in \mathbb{N}$, an orbit that traverses the same path as an orbit $\mathcal{O}(x, \theta)$ s-many times can be reflected-unfolded in an appropriately scaled square billiard table to form an orbit of the larger billiard table; see Figure 9. Such a tool is useful in understanding the relationship between the billiard flow on a rational polygonal billiard $\Omega(D)$ and a billiard table tiled by $\Omega(D)$, and will be particularly useful in understanding the material presented in the sequel.

2.2.3. The billiard table $\Omega(S_{a,n})$. We note that $S_{a,n}$ does not have a connected boundary. However, the boundary of S_0 and the boundary of each omitted square

\footnote{That is, assuming the unfolded orbit is long enough to reach a side of the larger square.}
is connected. In addition, the notation “Ω(D)” indicates that D is the boundary of the billiard table. To be technically correct, Ω(∂S_{a,n}) is the proper way of referring to the prefractal billiard table. In order to simplify notation, we refer to the prefractal billiard table by Ω(S_{a,n}).

Clearly, each prefractal billiard Ω(S_{a,n}) can be interpreted as a square billiard with open subsquares removed. In fact, every prefractal billiard Ω(S_{a,n}) is a rational billiard table.

Notation 2.16. Due to the fact that Theorem 4.1 in [Du-CaTy] refers to the slope of a nontrivial line segment and we frequently refer to the main result of [Du-CaTy], we will denote the initial condition \((x_0^n, \theta_0^n)\) of an orbit of Ω(S_{a,n}) by \((x_0^n, \alpha_0^n)\), where \(\alpha_0^n = \tan(\theta_0^n)\).

Definition 2.17 (An orbit of the cell \(C_{k,a^k}\) of \(Ω(S_{a^k})\)). Consider the boundary of a cell \(C_{k,a^k}\) of Ω(S_{a^k}) as a barrier to the billiard flowThen an orbit determined by reflecting in the boundary of the cell and with an initial condition contained in the cell is called an orbit of the cell \(C_{k,a^k}\) of Ω(S_{a^k}).

Example 2.18. In Figure 2 we saw an example of a cell of \(S_7\). In Figure 10 we see an example of an orbit of the same cell. The orbit of the cell shown has an initial condition of \(((0,0), \frac{\pi}{3})\).

Remark 2.19. So as to be clear, the boundary of the cell \(C_{k,a^k}\) does not form a barrier to the billiard flow on Ω(S_{a^k}). Rather, we are treating the cell \(C_{k,a^k}\) as a billiard table in its own right, embedded in the larger prefractal approximation Ω(S_{a,k}). Our motivation for doing so is found in the fact that we can proceed to reflect-unfold an orbit of a cell in Ω(S_{a,k}).

Recall from Definition 2.1 that a self-similar Sierpinski carpet \(S_a\) is the unique fixed point attractor of a suitably chosen iterated function system \(\{φ_j\}_{j=1}^{a^2-1}\) consisting of similarity contractions. In light of this, an orbit of a cell \(C_{k,a^k}\) of Ω(S_{a,k}) is the image of an orbit \(O_0(x_0^n, \alpha_0^n)\) of the unit-square billiard Ω(S_0) under the action

10Here, \(C_{k,a^k}\) is a cell of the \(k\)th prefractal approximation \(S_{a,k}\), as given in Definition 2.3 with each \(a_j\) equal to \(a\).
of a composition of contraction mappings $\phi_{m_k} \circ \cdots \circ \phi_{m_1}$, with $1 \leq m_i \leq a^2 - 1$ and $1 \leq i \leq k$, determined from the iterated function system $\{\phi_j\}_{j=1}^{a^2-1}$ for which S_a is the unique fixed point attractor.

2.3. Fractal billiards. We recall various definitions from [LapNie3]. So that the reader may find the definitions more accessible, we phrase the following in terms of a self-similar Sierpinski carpet S_a and a prefractal approximation $S_{a,n}$.

Definition 2.20 (Compatible initial conditions). Without loss of generality, suppose that n and m are nonnegative integers such that $n > m$. Let $(x_n^0, \alpha_n^0) \in (\Omega(S_{a,n}) \times S^1)/\sim$ and $(x_m^0, \alpha_m^0) \in (\Omega(S_{a,m}) \times S^1)/\sim$ be two initial conditions of the orbits $\mathcal{O}_n(x_n^0, \alpha_n^0)$ and $\mathcal{O}_m(x_m^0, \alpha_m^0)$, respectively, where we are assuming that
\(\alpha_0^n \) and \(\alpha_0^m \) are both inward pointing. If \(\alpha_0^n = \alpha_0^m \) and if \(x_0^n \) and \(x_0^m \) lie on a segment determined from \(\alpha_0^n \) (or \(\alpha_0^m \)) that intersects \(\partial S_{a,m} \) only at \(x_0^n \), then we say that \((x_0^n, \alpha_0^n) \) and \((x_0^m, \alpha_0^m) \) are compatible initial conditions.

Remark 2.21. When two initial conditions \((x_0^n, \alpha_0^n) \) and \((x_0^m, \alpha_0^m) \) are compatible, then we simply write each as \((x_0^n, \alpha_0^n) \) and \((x_0^m, \alpha_0^m) \). If two orbits \(\mathcal{O}_m(x_0^m, \alpha_0^m) \) and \(\mathcal{O}_n(x_0^n, \alpha_0^n) \) have compatible initial conditions, then we say such orbits are compatible.

It may be the case that an initial condition \((x_0^n, \alpha_0^n) \) is not compatible with \((x_0^m, \alpha_0^m) \), for any \(m < n \). As such, in Definitions 2.22 and 2.23 we consider sequences beginning at \(i = N \), for some \(N \geq 0 \); see Figure 12 and the corresponding caption.

Definition 2.22 (Sequence of compatible initial conditions). Let \(\{ (x_0^i, \alpha_0^i) \}_{i=N}^{\infty} \) be a sequence of initial conditions, for some integer \(N \geq 0 \). We say that this sequence is a sequence of compatible initial conditions if for every \(m \geq N \) and for every \(n > m \), we have that \((x_0^n, \alpha_0^n) \) and \((x_0^m, \alpha_0^m) \) are compatible initial conditions. In such a case, we then write the sequence as \(\{ (x_0^i, \alpha_0^i) \}_{i=N}^{\infty} \).

Definition 2.23 (Sequence of compatible orbits). Consider a sequence of compatible initial conditions \(\{ (x_0^n, \alpha_0^n) \}_{n=N}^{\infty} \). Then the corresponding sequence of orbits \(\{ \mathcal{O}_n(x_0^n, \alpha_0^n) \}_{n=N}^{\infty} \) is called a sequence of compatible orbits.

If \(\mathcal{O}_m(x_0^m, \alpha_0^m) \) is an orbit of \(\Omega(S_{a,m}) \), then \(\mathcal{O}_m(x_0^m, \alpha_0^m) \) is a member of a sequence of compatible orbits \(\{ \mathcal{O}_n(x_0^n, \alpha_0^n) \}_{n=N}^{\infty} \) for some \(N \geq 0 \). It is clear from the definition of a sequence of compatible orbits that such a sequence is uniquely...
determined by the first orbit $\mathcal{O}_N(x_0^0, \alpha^0)$. Since the initial condition of an orbit determines the orbit, we can say without any ambiguity that a sequence of compatible orbits is determined by an initial condition (x_0^0, α^0).

Definition 2.24 (A sequence of compatible \mathcal{P} orbits). Let \mathcal{P} be a property (resp., $\mathcal{P}_1, ..., \mathcal{P}_j$ a list of properties). If every orbit in a sequence of compatible orbits has the property \mathcal{P} (resp., a list of properties $\mathcal{P}_1, ..., \mathcal{P}_j$), then we call such a sequence a sequence of compatible \mathcal{P} (resp., $\mathcal{P}_1, ..., \mathcal{P}_j$) orbits.

Considering the fact that $\Omega(S_{a,n})$ is tiled by a square (i.e., an integrable billiard), Theorems 2.14 and 2.15 allow us to construct sequences of compatible closed orbits and sequences of compatible dense orbits. Furthermore, under the right conditions, we will be able to construct sequences of compatible periodic orbits. That is, we will be able to construct sequences of compatible orbits in which each orbit is a nonsingular, closed orbit in its respective billiard table $\Omega(S_{a,n})$.

3. A Refinement of Theorem 4.1 in [Du-CaTy]

We now discuss Theorem 4.1 in [Du-CaTy] and provide various examples indicating the necessity for refining the latter half of their statement.

In Part 1a of the proof of Theorem 4.1 of [Du-CaTy], it is determined that nontrivial line segments with slope $\alpha \in A$ necessarily avoid omitted squares of S_a (recall that the omitted squares are the open squares removed in the construction of S_a). However, in stating their result, the authors of [Du-CaTy] say that such nontrivial line segments necessarily intersect corners of peripheral squares, which is more restrictive than what is concluded in the proof. We provide an example where a nontrivial line segment beginning at $(0,0)$ (in accordance with their proof) with a slope $\alpha \in A$ does not intersect any corner of any peripheral square. Furthermore, in the proof of Theorem 4.1 in [Du-CaTy], the authors assume in Part 1a that a nontrivial line segment with slope $\alpha \in A$ starts from the origin $(0,0)$ and in Part 1b that a nontrivial line segment with slope $\alpha \in B$ starts from $(\frac{1}{2}, 0)$, but they do not state this in the assumptions of their theorem. This does not invalidate their characterization of self-similar Sierpinski carpets, but can be included in the statement of the Theorem 4.1 in [Du-CaTy] and further expanded upon. As our examples will show, such assumptions are necessary to state and can actually be made more robust to allow for an explicit description of other nontrivial line segments (some of which are not maximal but are nontrivial nonetheless).

In Remark 4.3 of [Du-CaTy], the authors indicate that one can translate the initial base point of a nontrivial line segment however one chooses (so long as the translation of the base point remains within the base of the unit square and not outside the unit square) and still maintain that the line segment starting from the new base point and having the same slope as before remains as a nontrivial line segment of S_a. We provide two examples for which this is not the case.

We summarize the above discussion by listing the examples indicating that the latter half of the statement in Theorem 4.1 in [Du-CaTy] must be refined or stated separately as an additional theorem. These examples will be discussed in greater detail in §4.

\[11\] A maximal nontrivial line segment is a nontrivial line segment that connects two segments of the boundary of S_a corresponding to the boundary unit square S_0.
Figure 13. In this figure, we see a nontrivial line segment beginning from the origin \((0, 0)\) and having a slope of \(\frac{2}{3}\). Such a segment will avoid every peripheral square of \(S_7\).

1. A nontrivial line segment of \(S_7\) with slope \(\alpha = \frac{2}{3} \in A\) beginning at \((0, 0)\) that avoids corners of every peripheral square.
2. A nontrivial line segment of \(S_7\) with slope \(\alpha = \frac{2}{3} \in A\) beginning at \((\frac{1}{2}, 0)\) that avoids corners of every peripheral square.
3. A nontrivial line segment of \(S_5\) with slope \(\alpha = \frac{1}{3} \in B\) beginning from \((\frac{1}{2}, 0)\) that, when translated to the origin \((0, 0)\), constitutes a trivial line segment of \(S_5\).
4. A nontrivial line segment of \(S_7\) with slope \(\alpha = \frac{3}{4} \in A\) beginning from \((0, 0)\) that, when translated to \((\frac{1}{2}, 0)\), constitutes a trivial line segment of \(S_7\).

The above examples indicate the necessity to distinguish between slopes in \(A_{a-2}\) and slopes in \(A_a \setminus A_{a-2}\). This is the key point of our Theorem 3.4.

In preparation for our result, we give three lemmas.

Lemma 3.1. Let \(S_a\) be a self-similar Sierpinski carpet. Then,

\[
A_a \setminus A_{a-2} = \left\{ \frac{p}{q} : 1 \leq p < q, \ p + q = a, \ p \text{ and } q \text{ are coprime} \right\}.
\]

Proof. We first note that if \(\alpha \in A_a\), then \(\alpha = \frac{p}{q}\) such that

\[
p + q \leq a \text{ and } 0 \leq p < q \leq a - 1.
\]

Likewise, if \(\frac{p}{q} \in A_{a-2}\), then

\[
p + q \leq a - 2 \text{ and } 0 \leq p < q.
\]

Hence, \(\frac{p}{q} \in A_a \setminus A_{a-2}\) satisfies either

\[
a - 2 < p + q \leq a \text{ and } 1 \leq p < q \leq a - 1,
\]

or

\[
p + q \leq a, \ 1 \leq p < q \leq a - 1 \text{ and } q > a - 3,
\]
in addition to $p + q$ being odd and p, q being coprime. It can be deduced from the inequalities given on line (3.1) that $p + q = a$. Similarly, since p and q are nonnegative integers, it can be deduced from the inequalities on line (3.2) that $q = a - 2$ or $q = a - 1$, which forces $p = 2$ or $p = 1$, respectively. (Otherwise, $p + q$ would be even or exceed the value a.) The union of these two sets comprises all $\frac{p}{q}$ for which $p + q = a$, $1 \leq p < q$, and p and q being coprime. ■

Lemma 3.2. Let S_a be a self-similar Sierpinski carpet. If $\alpha \in B_a$, $n \geq 1$, and r an odd positive integer with $r \leq 2a^n$, then the line $y = \alpha(x - \frac{r}{2a^n})$ avoids points of the plane of the form $(\frac{u}{a^n}, \frac{v}{a^n})$, $u, v, l, m \in \mathbb{Z}$.

Proof. Let S_a be a self-similar Sierpinski carpet billiard, $\alpha \in B_a$, $n \geq 1$, and r a positive odd integer with $r \leq 2a^n$. Suppose there exist $u, v, l, m \in \mathbb{Z}$, $l, m \geq 0$ such that $y = \alpha(x - \frac{r}{2a^n})$ intersects the point $(\frac{u}{a^n}, \frac{v}{a^n})$. Then,

\begin{align*}
(3.3) & \quad \frac{v}{a^m} = \alpha \left(\frac{u}{a^l} - \frac{r}{2a^n} \right) \\
(3.4) & \quad 2va^{n+l} = \alpha a^m(2ua^n - ra^l).
\end{align*}

Since $\alpha = \frac{a}{\alpha}$, $p, q \in \mathbb{Z}$, p and q both odd and positive, we have that

\begin{equation}
(3.5) \quad 2qa^{n+l} = pa^m(2ua^n - ra^l).
\end{equation}

The left-hand side of Equation (3.5) is even and the right-hand side is odd, so we have an immediate contradiction. Therefore, no line of the form $y = \alpha(x - \frac{r}{2a^n})$ will ever intersect any point of the form $(\frac{u}{a^n}, \frac{v}{a^n})$, $u, v, l, m \in \mathbb{Z}$, $l, m \geq 0$. ■

Lemma 3.3. Let $b, c \in \mathbb{N}$, $d = \gcd(b, c)$, and $k \in \mathbb{Z}$. If d divides k, then the equation $bx + cy = k$ has integer solutions (x, y). If (x_0, y_0) is one such integer solution, then all integer solutions can be expressed in the form

\begin{equation}
(3.6) \quad (x, y) = \left(x_0 + m \frac{c}{d}, y_0 - m \frac{b}{d} \right)
\end{equation}

for some $m \in \mathbb{Z}$.

Proof. This is an application of the elementary fact (see e.g. Theorem 1.3 of [NiZuMc]) that there exist $x_1, y_1 \in \mathbb{Z}$ such that $\gcd(b, c) = bx_1 + cy_1$. ■

We are ready to state our refinement of Theorem 4.1 of [Du-CaTy].

Theorem 3.4 (A refinement of Theorem 4.1 in [Du-CaTy]). Let $a = \left(\frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \ldots \right)$ be a constant sequence. Then the set of slopes $\text{Slope}(S_a)$ is the union of the following two sets:

\begin{align*}
(3.7) & \quad A_a = \left\{ \frac{p}{q} : p + q \leq a, 0 \leq p < q \leq a - 1, p, q \in \mathbb{N} \cup \{0\}, p + q \text{ is odd} \right\}, \\
(3.8) & \quad B_a = \left\{ \frac{p}{q} : p + q \leq a - 1, 0 \leq p < q \leq a - 2, p, q \in \mathbb{N}, p \text{ and } q \text{ are odd} \right\}.
\end{align*}

Moreover, if $\alpha \in A_a \setminus A_{a-2}$, then each nontrivial line segment in S_a with slope α beginning from $(0, 0)$ touches vertices of peripheral squares, while if $\alpha \in A_{a-2}$, then each nontrivial line segment in S_a with slope α beginning from $(0, 0)$ is disjoint from all peripheral squares. If $\alpha \in B_a$, then each nontrivial line segment in S_a with
slopes \(\alpha \) beginning at \((\frac{a}{2q},0) \), \(n \geq 1 \) and \(r < 2a^n \) being a positive odd integer, is disjoint from all peripheral squares with side-length \(\frac{1}{e} \).

In addition, for each \(\alpha \in A_n \cup B_n \), there exist maximal line segments in \(S_n \) with slope \(\alpha \). Finally, if \(b < a \), then any maximal nontrivial line segment in \(S_b \) is also contained in \(S_n \). In particular, \(\text{Slope}(S_b) \subseteq \text{Slope}(S_n) \).

Proof. We know from the proof of Theorem 4.1 in [Du-CaTy] that the set \(\text{Slope}(S_n) \) can be partitioned as described in Equations (3.11) and (3.12). Moreover, the proof of Theorem 4.1 in [Du-CaTy] is valid for the case when \(\alpha \in B_n \) and the nontrivial line segment with slope \(\alpha \) begins at \((\frac{a}{2q},0) \); the proof also remains valid for when \(\alpha \notin \text{Slope}(S_n) \). Hence, we focus on the cases where \(\alpha \in A_n \setminus A_{n-2} \) and a nontrivial line segment with slope \(\alpha \) begins at \((0,0) \); \(\alpha \in A_{n-2} \) and a nontrivial line segment with slope \(\alpha \) begins at \((0,0) \); and \(\alpha \in B_n \) and a nontrivial line segment with slope \(\alpha \) begins at \((\frac{2a}{2q},0) \), for some \(n \geq 1 \), \(r \neq a \) and \(r \) an odd positive integer.

Case 1: \(\alpha \in A_n \setminus A_{n-2} \). First note that the inferior right corner of a peripheral square of \(S_n \) has coordinate

\[
(3.9) \quad \left(\frac{a+1}{2a^{n+1}}, \frac{a-1}{2a^{n+1}} \right) + \left(\frac{u}{a^n}, \frac{v}{a^n} \right)
\]

for some \(u,v \in \mathbb{N} \setminus \{0\} \), with \(0 \leq u,v \leq a^n - 1 \) and \(u \neq v \). We wish to show that any line segment emanating from \((0,0) \) with slope \(\alpha = \frac{2}{q} \in A_n \setminus A_{n-2} \) hits the inferior right corner of some peripheral square: that is, there exist \(0 \leq u,v \leq a^n - 1 \) such that the equation

\[
(3.10) \quad \frac{1}{q} \left(u + \frac{a+1}{2a} \right) = \frac{1}{p} \left(v + \frac{a-1}{2a} \right)
\]

holds.

By Lemma 3.1, \(p + q = a \) for any \(\frac{p}{q} \in A_n \setminus A_{n-2} \), so Equation (3.10) can be rewritten as

\[
(3.11) \quad 2(a-q)u - 2qv = 2q - a - 1.
\]

Geometrically speaking, the next step is to find, in the \(uv \)-plane (regarding \(u \) and \(v \) as real-valued rather than integer-valued), the intersections between the line defined by Equation (3.11) and the lattice \(\{(u,v) : u,v \in \mathbb{Z} \cap [0,a^n-1], u \neq v\} \). Observe that the line defined by Equation (3.11) has \(v \)-intercept \(\frac{a+1}{2q} - 1 \), which is between \(-\frac{1}{2} + \frac{1}{a-1} \) and 0 (because \(\frac{a+1}{2q} \leq a - 1 \) by Lemma 3.1). If \(a+1-2q = 0 \) (or \(p = q - 1 \)), then immediately \((u,v) = (0,0) \) is an intersection point. If not, we move along the line in integer increments of \(u \), and check whether or not the \(v \)-coordinate is an integer. The successive \(v \)-coordinates can be written as

\[
(3.12) \quad v = \left(\frac{a+1}{2q} - 1 \right) + u \left(\frac{a-q}{q} \right)
\]

\[
(3.13) \quad = \frac{(a+1) + 2au}{2q} - (u+1),
\]

with \(u \in \mathbb{Z} \cap [0,a^n-1] \). Thus it is enough to find a \(u \in \mathbb{Z} \cap [0,a^n-1] \) such that \(q \) divides \(\frac{a+1}{2q} + au \) (note that \(a+1 \) is even). An equivalent way to say this is that we’re looking for integer solutions \((u,r)\) of the equation

\[
(3.14) \quad au + qr = -\frac{a+1}{2}.
\]

Using that \(\gcd(a, q) = \gcd(p, q) = 1\) by Lemma 3.1 we apply Lemma 3.3 to deduce that there is a unique pair of integers \((u^*, r^*) \in \{0, 1, \ldots, q - 1\} \times \mathbb{Z}\) which solves (3.14): then \(q\) divides \(\left(\frac{a+1}{2} + au^*\right)\). Denote \(v^* = \left(\frac{a+1}{2q} - 1\right) + u^* \cdot \frac{a-q}{q}\) and note that \(v^* < u^*\). It follows that the line segment emanating from \((0, 0)\) with slope \(\frac{a-q}{q} \in A_n \setminus A_{n-2}\) hits the inferior right corner of a peripheral square whose coordinate is \(\frac{1}{a^n}(u^* + \frac{a+1}{2a}, v^* + \frac{a-1}{2a})\).

Case 2: \(\alpha \in A_{n-2}\). Consider a nontrivial line segment with slope \(\alpha\) beginning at \((0, 0)\). We suppose the nontrivial line segment intersects a peripheral square at a corner, whose coordinate is given by (3.16). Then, if \(\alpha = \frac{p}{q} \in A_{n-2}\), we have

\[
\frac{1}{q} \left(u + \frac{a+1}{2a} \right) = \frac{1}{p} \left(v + \frac{a-1}{2a} \right),
\]

which reduces to

\[
q + 2vq - p - 2up = \frac{p + q}{a}.
\]

While the left-hand side of Equation (3.16) is an integer, the right-hand side is not, since \(p + q \leq a - 2 < a\). This contradiction then implies that the nontrivial line segment cannot intersect any lower-right corner of any peripheral square (and, by symmetry, any upper-left corner of any peripheral square).

Case 3: \(\alpha \in B_n\). Consider a nontrivial line segment of \(S_n\) with slope \(\alpha \in B_n\) emanating from \((\frac{1}{a}, 0)\), the existence of which follows from the proof of Theorem 4.1 in [Du-CaTy]. We claim that a line segment emanating from \((\frac{1}{a^n}, 0)\) with slope \(\alpha\) will also be a nontrivial line segment of \(S_n\) and never intersect the sides of any peripheral square with side-length \(\frac{1}{a^n}\), \(k \geq n\).

To such end, consider \(n \geq 0\), and \(r\) an odd positive integer with \(r \leq 2a^n\). We scale the nontrivial line segment emanating from \((\frac{1}{a}, 0)\) by \(\frac{1}{a^n}\). Then the scaled nontrivial line segment is a nontrivial line segment of the cell. Then, there exists \((c \leq a^n, 0)\) such that translating the line segment of the cell by \(\frac{c}{a^n}\) results in a nontrivial line segment of a cell with \((\frac{1}{a^n}, 0)\) as the midpoint of the base of the cell. Moreover, the translated nontrivial line segment emanates from \((\frac{1}{a^n}, 0)\) with slope \(\alpha\).

We now consider a tiling of the plane by the cell having \((\frac{1}{a^n}, 0)\) as the midpoint of the base. Then, a line \(y = \alpha(x - \frac{1}{a^n})\) avoids every peripheral square in the tiling. If not, then the resulting line must also intersect a side of a peripheral square contained in the cell that does not correspond to a corner of the peripheral square by virtue of Lemma 3.2. Since \(S_n\) is a self similar Sierpinski carpet, any line segment with slope \(\alpha \in B_n\) beginning from \((\frac{1}{a^n}, 0)\) must, by construction, be a trivial line segment in \(S_n\).

4. **Eventually constant sequences of compatible periodic orbits of \(S_n\)**

In this section, we prove that the examples described in Items (1)–(4) in [3] do in fact indicate a necessity for refining the latter half of the statement made in Theorem 4.1 in [Du-CaTy]. In so doing, we will provide proper motivation for our main results stated in Theorem 4.2 and Proposition 4.3. Finally, we will determine a family of periodic orbits of self-similar Sierpinski carpets.
Figure 14. The corners of a square billiard table constitute removable singularities of the billiard flow on the square billiard table $\Omega(S_0)$; see §2.2.1 for a discussion of removable and nonremovable singularities of a translation surface. Consequently, every corner of a prefractal approximation of a Sierpinski carpet S_n corresponding to a corner of the original square constitutes a removable singularity of the billiard flow on $\Omega(S_{n,n})$.

We first note that the corners of the square billiard table constitute removable singularities of the billiard flow. That is, reflection can be defined in the corners of the square in a well-defined manner. Moreover, in every prefractal approximation of a Sierpinski carpet, reflection in the corners of the original square boundary can be made well-defined, as well. Specifically, a billiard ball entering into a corner of the original square of any prefractal approximation of a Sierpinski carpet will exit the corner in a direction that makes an angle γ that constitutes the reflection of the incoming angle θ as reflected through the angle bisector of the vertex; see Figure 14.

In Item (1) of §3, we stated that a nontrivial line segment of S_7 with an initial starting point of $(0,0)$ and a slope $\alpha = \frac{2}{3}$ avoids corners of every peripheral square of S_7. Consider an orbit $\mathcal{O}_0((0,0), \frac{2}{3})$ of the square billiard table $\Omega(S_0)$. We claim that this orbit avoids corners of every peripheral square of $\Omega(S_7)$.

To such end, consider the orbit shown in Figure 15, which has an initial condition $((0,0), \alpha)$, $\alpha = \frac{2}{3}$. It is clear that this orbit avoids peripheral squares of $\Omega(S_{7,2})$. Then, scaling $\Omega(S_{7,2})$ and the orbit together, relative to the origin, we see that $\frac{1}{7}\mathcal{O}((0,0), \alpha)$ avoids peripheral squares of the cell $C_{1,a}$ (i.e., the cell with side length $\frac{1}{7}$ and lower left corner corresponding to the origin); see Figure 16. Not only does the orbit of the cell avoid the peripheral square with side-length $\frac{1}{3}$, it also avoids the peripheral squares with side length $\frac{1}{7}$, since the orbit $\mathcal{O}((0,0), \alpha)$ avoided every peripheral square of length $\frac{1}{7}$ in $\Omega(S_{7,2})$.

Now, the reflected-unfolding of the orbit of the cell $C_{1,a}$ must follow the same path as $\mathcal{O}((0,0), \alpha)$ on account of both orbits having the same initial condition and reflection being an isometry; see Figure 17. This then means that $\mathcal{O}((0,0), \alpha)$ is an orbit of $\Omega(S_{7,3})$ that avoids all peripheral squares of side-length $\frac{1}{7}$.

Suppose there exists $N \in \mathbb{N}$, $N \geq 3$ such that for every $n \leq N$, the orbit $\mathcal{O}((0,0), \alpha)$ avoids corners of peripheral squares with side-length $\frac{1}{7^n}$. Then, scaling $\mathcal{O}((0,0), \alpha)$ together with $\Omega(S_{7,N})$ by $\frac{1}{7}$, we see that the orbit of the cell $C_{1,k}$ avoids the peripheral square of side-length $\frac{1}{7^N}$ since $\mathcal{O}((0,0), \alpha)$ avoids peripheral
Figure 15. In this figure, we see an orbit that avoids peripheral squares of $\Omega(S_{7,2})$, the second level approximation of the self-similar Sierpinski carpet billiard table $\Omega(S_7)$. As noted in the text, the fact that the orbit intersects corners does not pose a problem for determining the trajectory in a well-defined way.

Figure 16. We see here the billiard table $\Omega(S_{7,2})$ and the orbit scaled by $\frac{1}{7}$. Such a scaled orbit is then an orbit of the cell $C_{1,a}$. We then proceed to reflect-unfold this orbit to recover the orbit before scaling; see Figure 17.
Figure 17. In this figure, we see the scaled orbit unfolded. Rather, we see $\mathcal{O}^s((0,0), 2/3)$ unfolded, for sufficiently large s. Indeed, we see that we can recapture the original orbit $\mathcal{O}((0,0), 2/3)$ by reflecting-unfolding the scaled orbit. Moreover, reflecting-unfolding is an isometry, so no peripheral squares are intersected.

squares of side length $\frac{1}{7^n}$, for all $n \leq N$. In addition, $\frac{1}{7} \mathcal{O}((0,0), \alpha)$ avoids peripheral squares of side-length $\frac{1}{7^n}$ contained in the cell, since $\mathcal{O}((0,0), \alpha)$ avoided peripheral squares of side-length $\frac{1}{7^n}$ (recall that peripheral squares of side-length $\frac{1}{7^n}$ are scaled by $\frac{1}{7}$ when constructing $S_{7,N+1}$ from $S_{7,N}$ via an iterated function system comprised of contraction mappings).

We may then reflect-unfold the orbit $\frac{1}{7} \mathcal{O}((0,0), \alpha)$ of the cell in $\Omega(S_{7,N+1})$. The reflected-unfolded orbit $\frac{1}{7} \mathcal{O}((0,0), \alpha)$ must then retrace the exact path of $\mathcal{O}((0,0), \alpha)$ in $\Omega(S_{7,N})$, but now in $\Omega(S_{7,N+1})$. Since reflection is an isometry, the reflected-unfolding of the orbit of the cell must then avoid peripheral squares of $\Omega(S_{7,N+1})$.

Therefore, we have concluded that $\mathcal{O}((0,0), \alpha)$ must avoid all peripheral squares of $\Omega(S_{7,N})$, for every $n \geq 1$.

In verifying that the example in Item (1) of [3] constitutes a counter example to one aspect of the latter half of Theorem 4.1 of [Du-CaTy], we see how we can quickly build upon it to verify that Item (2) of [3] is also a counter example to another aspect of the latter half of the main result in [Du-CaTy]. If $\alpha = \frac{2}{3} \in A_5 \subseteq A_7$, then a nontrivial line segment of S_7 beginning at $(\frac{1}{7}, 0)$ with slope α necessarily avoids all peripheral squares of S_7. A similar reasoning as above can be used to demonstrate the validity of this statement. In fact, the path traversed by the orbit $\mathcal{O}_n((0,0), \frac{2}{3})$ is identical to the path traversed by the orbit $\mathcal{O}_n((\frac{1}{7}, 0), \frac{2}{3})$, for every $n \geq 0$.

The third example referred to in Item (3) of [3] consists of a nontrivial line segment of S_5 beginning at $(\frac{1}{7}, 0)$ with a slope $\alpha = \frac{2}{5} \in B_5$. As illustrated in Figure
when a nontrivial line segment beginning at \((\frac{1}{2}, 0)\) with slope \(\alpha = \frac{1}{3}\) is translated to \((0, 0)\) and extended so as to intersect the right side of the portion of the boundary corresponding to the unit square \(S_0 = Q\), we see that the new segment intersects omitted squares. Since \(S_7\) is self-similar, such a segment will intersect infinitely many omitted squares. Hence, the new segment must be a trivial line segment of \(S_5\).

Our fourth example referred to in Item (4) of §3 consists of a nontrivial line segment of \(S_7\) beginning at \((0, 0)\) with a slope \(\alpha = \frac{3}{4}\). Consider the translation of the nontrivial line segment with slope \(\alpha = \frac{3}{4}\) from \((0, 0)\) to \((\frac{1}{2}, 0)\). As illustrated in Figure 19 such a segment intersects omitted squares of \(S_7\). Since \(S_7\) is self-similar, it must be the case that the translated segment intersects infinitely many omitted squares of \(S_7\). Hence, a segment starting from \((\frac{1}{2}, 0)\) with a slope \(\alpha = \frac{3}{4}\) must be a trivial line segment.

Definition 4.1 (Constant sequence of compatible orbits). Given a nonnegative integer \(N\), we say that a sequence of compatible orbits \(\{O_n(x_0^n, \alpha_0^n)\}_{n=N}^{\infty}\) is a *constant sequence of compatible orbits* if the path traversed by \(O_{n+1}(x_0^{n+1}, \theta_0^{n+1})\) is identical to the path traversed by \(O_n(x_0^n, \theta_0^n)\), for every \(n \geq N\). Furthermore, we say that a sequence of compatible orbits \(\{O_n(x_0^n, \alpha_0^n)\}_{n=0}^{\infty}\) is *eventually constant* if there exists a nonnegative integer \(N\) such that \(\{O_n(x_0^n, \alpha_0^n)\}_{n=N}^{\infty}\) is constant, in the above sense.

Theorem 4.2. Let \(\alpha \in \text{Slope}(S_a)\).

1. If \(\alpha \in A_a - 2\), then the sequence of compatible orbits \(\{O_n((0, 0), \alpha)\}_{n=0}^{\infty}\) is a sequence of compatible periodic orbits.
2. If \(\alpha \in B_a\) and \(r < 2a^n\) is an odd positive integer, then the sequence of compatible orbits \(\{O_n((\frac{r}{2a^n}, 0), \alpha)\}_{n=0}^{\infty}\) is a sequence of compatible periodic orbits.
Proof. Part 1: Suppose $\alpha \in A_{a-2}$ and an orbit of $\Omega(S_0)$ has an initial condition \(((0,0), \alpha)\). Consider an orbit of $\vartheta_1((0,0), \alpha)$ of $\Omega(S_{a,1})$. We claim that such an orbit avoids the peripheral square of $\Omega(S_{a,1})$. If not, then unfolding the orbit in the tiling of the plane by $\Omega(S_{a,1})$ must intersect a peripheral square in the tiling. Then, appropriately scaling the unfolded orbit and the tiling by a factor of $\frac{1}{a}$ results in a nontrivial line segment intersecting a peripheral square. In Theorem 3.4, we showed that a nontrivial line segment with a slope $\alpha \in A_{a-2}$ cannot intersect any point of a peripheral square of any approximation $S_{a,m}$, $m \geq 1$. Now suppose there exists $N > 0$ such that an orbit $\vartheta_n((0,0), \alpha)$ avoids corners of peripheral squares of $\Omega(S_{a,n})$, for all $n \leq N$. Then, scaling $\Omega(S_{a,n})$ and the orbit by $\frac{1}{a}$ results in an orbit of a cell with side length $\frac{1}{a}$. By construction, the orbit of the cell avoids all peripheral squares contained in the cell, meaning the orbit avoids peripheral squares with side-length $\frac{1}{a}$, for all $k \leq N + 1$. Then, reflecting-unfolding the orbit of the cell, as well as the peripheral squares of the cell, we see that the reflected-unfolded orbit $\vartheta_{N+1}^*(((0,0), \alpha)$ of $\Omega(S_{a,N+1})$ avoids all peripheral squares. Hence, for all $n \geq 1$, the orbit $\vartheta_n((0,0), \alpha)$ avoids peripheral squares of $\Omega(S_{a,n})$.

Part 2: Let $\alpha \in B_a$ and $(x_0^0, y_0^0) = \left(\frac{1}{a}, 0\right)$. Then, the orbit $\vartheta_1((\frac{1}{a}, 0), \alpha)$ avoids the peripheral square of $\Omega(S_{a,1})$. This follows from the fact that the unfolded orbit must avoid peripheral squares of the tiling of the plane by $\Omega(S_{a,1})$. Moreover, for every $m \geq 1$, $\vartheta_n((\frac{1}{a}, 0), \alpha)$ must avoid peripheral squares of $\Omega(S_{a,m})$ and $\vartheta_m((\frac{1}{a}, 0), \alpha)$ is identical to $\vartheta_0((\frac{1}{a}, 0), \alpha)$. Therefore, the compatible sequence of periodic orbits $\{\vartheta_n((\frac{1}{a}, 0), \alpha)\}_{n=0}^{\infty}$ is an eventually constant sequence of compatible periodic orbits.
Figure 20. In $\Omega(S_{7,2})$, $O_2((\frac{1}{2},0), \frac{\pi}{2})$ is a singular orbit (the line segment connecting with the singularity is shown as a segment with a greater weight than the other segments in the orbit), while $O_2((\frac{1}{3},0), \frac{\pi}{2})$ is a periodic orbit.

Let $n \geq 0$, r a positive, odd integer and $r \leq 2^n$. Consider again the orbit $O_0((\frac{1}{2},0), \alpha)$. We know that $O_0((\frac{1}{2},0), \alpha)$ avoids peripheral squares of $\Omega(S_{a,n})$ for every $n \geq 1$. Therefore, scaling $O_0((\frac{1}{2},0), \alpha)$ relative to $(\frac{1}{2},0)$ by $\frac{1}{a^n}$ and making a sufficient translation so that $x_0^n = \frac{1}{a^n}$ results in an orbit of a cell with side length $\frac{1}{a^n}$ that avoids all peripheral squares contained in the cell. By Theorem 3.4, we know that the unfolding of the orbit of the cell must not intersect any peripheral squares of a tiling of the plane by the cell (as well as the scaled copy of $\Omega(S_a)$ contained in the cell). Hence, the reflected-unfolding of the orbit of the cell must then also avoid peripheral squares with side-length $\frac{1}{a^k}$, for all $k \geq n$. Moreover, by Lemma 3.2, the reflected-unfolding of the orbit of the cell cannot intersect any corners of any peripheral squares of $\Omega(S_a)$ with side-length $\frac{1}{a^j}$, $j < n$. Therefore, $\{O_n((\frac{k}{a^m},0), \alpha)\}_{n=0}^\infty$ is an eventually constant sequence of compatible periodic orbits.

Remark 4.4. Note that Proposition 4.3 does not say whether $O_n((\frac{k}{a^m},0), \alpha_n^0)$ is a periodic or singular orbit of $\Omega(S_{a,n})$. The focus of Proposition 4.3 is on determining a sequence of compatible closed orbits, which can include both periodic and singular orbits of prefractal billiards. If it hits a corner of some larger peripheral square...
Figure 21. We see here four copies of the prefractional approximation \(\Omega(S_{T,2}) \) properly identified in such a way that the resulting translation surface is no longer a torus, but a higher genus surface. The geodesic shown here further indicates exactly how sides of \(\Omega(S_{T,2}) \) are identified in the construction of \(S(S_{T,2}) \). Furthermore, the way in which sides of \(\Omega(S_{T,2}) \) are identified makes the geodesic equivalent to a billiard orbit under the action of the group of symmetries acting on the billiard table to produce the translation surface. In the terminology introduced in §2.2, one could consider the geodesic in this figure to be the billiard orbit unfolded in the translation surface.

(which has conic angle \(6\pi \)), then we must terminate the billiard trajectory at the corner and declare the orbit \(\mathcal{O}_n((a,0), \alpha_0^n) \) to be singular. On the other hand, if the orbit avoids corners of peripheral squares, then it will constitute a periodic orbit. See Figure 20 for examples of both types of orbits.

4.1. The translation surface \(S(S_{a,n}) \). Recall from §2.2.1 that a rational billiard \(\Omega(D) \) can be used to construct a translation surface by appropriately identifying \(2N \) many copies of \(\Omega(D) \), where \(N = \text{lcm}\{q_1, q_2, \ldots, q_k\} \). Suppose \(\Omega(S_a) \) is a self-similar Sierpinski carpet billiard table and \(\Omega(S_{a,n}) \) is an approximation of \(\Omega(S_a) \). Then, each interior angle has a denominator 2. Therefore, \(N = \text{lcm}\{2, \ldots, 2\} = 2 \), meaning that, when four copies of \(\Omega(S_{a,n}) \) are appropriately identified, we recover the corresponding translation surface \(S(S_{a,n}) \); see Figure 21 for the case of a translation surface constructed from \(\Omega(S_{T,2}) \), as well as an illustration of how a billiard ball would traverse the corresponding translation surface.

As previously shown in Figure 14, reflection in a corner with an angle measuring \(\frac{\pi}{2} \) in the square can be made well-defined. The justification for this is provided by the fact that in the associated translation surface, a vertex of the unit square is identified with three other vertices in such a way that the conic angle about the conic singularity is \(2\pi \). In Figure 22, we see the effect that a removable singularity (i.e., a singularity with conic angle \(2\pi \)) has on the straight-line flow. Specifically, each point of \(S(S_{a,n}) \) corresponding to a corner of the zeroth level approximation \(\Omega(S_0) \)
Figure 22. In this figure, we see a geodesic that of the translation surface $S(S_{7,2})$ that intersects removable conic singularities of the surface. As such, the straight-line flow can continue unimpeded. Since the geodesic is equivalent to a billiard orbit in $\Omega(S_{n,2})$, reflection in the corners with angles measuring $\frac{\pi}{2}$ can be determined from how an equivalent geodesic passes through the corresponding removable singularity.

(or, the unit square billiard table), is a removable singularity of the translation surface; each point of $S(S_{a,n})$ corresponding to a corner of a peripheral square of $\Omega(S_{a,n})$ is a nonremovable singularity of the translation surface, with the conic angle about each nonremovable singularity measuring 6π.

Using the formula given in Equation (2.5), the genus g_n of a translation surface $S(S_{a,n})$ is calculated as follows.

\[
g_n = 1 + 2 \sum_{m=1}^{n} a^{-m-1}.
\]

Then, for a sequence of rational (prefractal) billiard tables $\{\Omega(S_{a,n})\}_{n=0}^{\infty}$ approximating $\Omega(S_a)$, we have that $\lim_{n \to \infty} g_n = \infty$. Hence, if there is a translation surface associated with the (yet to be properly defined) self-similar billiard table $\Omega(S_a)$, then such a translation surface presumably has infinite genus. On the other hand, if such a surface is given as a suitable limit of translation surfaces $S(S_{a,n})$, then such a surface will presumably have no surface area. In other words, it is reasonable to expect that a suitable translation surface cannot be constructed as a suitable limit of a sequence of translation surfaces $S(S_{a,n})$.

5. Concluding remarks and open questions

In this paper we have made progress in identifying a family of periodic orbits in the self-similar carpet billiard $\Omega(S_a)$. As of now, an orbit of a self-similar Sierpinski carpet billiard is the trivial limit of an eventually constant sequence of compatible periodic orbits. As an interim goal, we would like to identify sequences of compatible periodic orbits that are not eventually constant, but converge (in a suitable sense)
PERIODIC BILLIARD ORBITS OF SELF-SIMILAR SIERPINSKI CARPETS

27

to a set that constitutes a periodic orbit of a self-similar Sierpinski carpet billiard table \(\Omega(S_a) \). Ultimately, we would like to construct a well-defined (topological) dynamical system on a self-similar Sierpinski carpet billiard table and determine whether or not there exists a topological dichotomy for the billiard flow.

Question 5.1. If one can construct a well-defined notion of reflection for \(\Omega(S_a) \), is it possible to show that, for a fixed direction \(\alpha^0 \), the billiard flow in the direction \(\alpha^0 \) is either closed or dense in \(\Omega(S_a) \)?

In constructing the translation surface corresponding to \(\Omega(S_{a,n}) \), we have come up with a concrete example of a sequence of translation surfaces whose genera increase to infinity as \(n \to \infty \). However, because \(S_a \) has zero Lebesgue area, it is unclear exactly how to describe the limit of the sequence of translation surfaces as a translation surface, let alone a surface with any specific structure.

Question 5.2. Can one apply a suitable notion of limit to a sequence of translation surfaces \(\{S(S_{a,i})\}_{i=0}^{\infty} \) so as to recover a ‘surface’ with some structure that is analogous to that of a translation surface?

If Question 5.2 can be answered in the affirmative, a natural question to ask is whether one can determine a flow on \(S(S_a) \), and whether such a flow can be shown to be equivalent to the (yet to be determined) billiard flow on \(\Omega(S_a) \).

A related (and interesting) problem involves investigating the behavior of a sequence of compatible orbits of billiard tables which share a similar construction with the self-similar Sierpinski carpet billiard table \(\Omega(S_a) \), but occupy nonzero area. A clear candidate is the non-self-similar Sierpinski carpet \(S_a \) with \(a = (a_1^{-1}, a_2^{-1}, \ldots) \) being a sequence in \(l^2 \) (i.e., \(\sum_{j=1}^{\infty} a_j^{-2} < \infty \)). Since \(\limsup a = 0 \) in this setting, [Du-CaTy, Theorem 5.3(a)] implies that \(S_a \) contains nontrivial line segments of every rational slope, and contains no nontrivial line segments of any irrational slope. One may then begin to discuss and analyze the behavior of a sequence of compatible orbits with each orbit having an initial direction given by \(\alpha^0 \in \text{Slope}(S_a) = \mathbb{Q} \).

A related Sierpinski carpet billiard we may consider investigating is a so-called fat Sierpinski carpet billiard table, constructed as follows. Begin by fixing a positive odd integer \(a \geq 3 \), and partition the unit square into \(a^2 \) many squares of side-length \(a^{-1} \). Rather than removing the open middle square of side-length \(a^{-1} \) as in the first-stage of the construction of a self-similar Sierpinski carpet, one removes an open square of side-length \((1 - \delta)a^{-1}, 0 < \delta < 1 \). In the second stage of the construction, a square of side-length \((1 - \delta)a^{-2} \) centered within each of the remaining \(a^2 - 1 \) squares of side-length \(a^{-1} \) is removed. This process is then repeated ad infinitum. In effect, each removed square of side-length \((1 - \delta)a^{-n} \) is surrounded by a solid square annulus of width \((\delta/2)a^{-n} \). Such a carpet admits nontrivial line segments of irrational slopes, and there will be additional base points from which a nontrivial line segment can emanate. We can then ask the following question.

Question 5.3. How does the existence and behavior of a sequence of compatible dense orbits depend on \(\delta \)? Moreover, can one recover a dense orbit of the self-similar Sierpinski carpet billiard \(\Omega(S_a) \) in the limit as \(\delta \to 0 \)?

The development of our understanding of the Sierpinski carpet billiard table may be possibly aided by studying the results for other types of billiard tables. In particular, the so-called wind-tree billiard tables (and generalizations of them)
investigated in [CoGut, De, HuLeTr] are very reminiscent of a Sierpinski carpet billiard table.

Alternatively, we may be able to approach the problem of determining billiard dynamics on $\Omega(S_a)$ by taking an algebraic perspective. For each translation surface $S(S_{a,n})$, there is an associated Veech group. A Veech group of a translation surface $S(D)$ determined from a rational billiard table $\Omega(D)$ is the stabilizer of $S(D)$. The work of [We-Sc] may prove useful in determining a well-defined translation structure on a suitable limit of a sequence of translation surfaces $S(S_{a,n})$. In particular, analyzing the inverse limit of an inverse limit sequence of Veech groups $\{\Gamma(S_{a,n})\}_{n=0}^\infty$ (assuming such an inverse limit sequence can be properly constructed) may yield a group that is the stabilizer of some surface. With such a surface and an associated stabilizer defined, we may begin to investigate whether or not the proposed surface contains saddle connections. The directions of such saddle connections may then indicate directions for which closed geodesics are occurring.

Acknowledgements

We wish to thank Jeremy Tyson for several useful discussions regarding his work with Estibalitz Durand-Cartagena. We also thank our respective Ph.D. advisors, Robert S. Strichartz and Michel L. Lapidus, for their support of the project.

References

[CoGut] Conze, J.-P., Gutkin, E.: On recurrence and ergodicity for geodesic flows on noncompact periodic polygonal surfaces, Erg. Th. and Dyn. Syst. 32 (2012), 491–515.

[De] Delecroix, V.: Divergent directions in some periodic wind-tree models, 29 pages, e-print, arXiv:1107.2418v2, 2011.

[Du-CaTy] Durand-Cartagena, E., Tyson, J. T.: Rectifiable curves in Sierpiński carpets, Indiana Univ. Math. J. 60 (2011), 285–310.

[Fa] Falconer, K. J.: Fractal Geometry: Mathematical foundations and applications, John Wiley & Sons, Chichester, 1990. (2nd edition, 2003.)

[GaStVo] Galperin, G., Vorobets, Ya. B., Stepin, A. M.: Periodic billiard trajectories in polygons, Russian Math. Surveys No. 3, 47 (1992), 5–80.

[Gut1] Gutkin, E.: Billiards in polygons: Survey of recent results, J. Stat. Phys. 83 (1996), 7–26.

[Gut2] Gutkin, E.: Billiards on almost integrable polyhedral surfaces, Erg. Th. and Dyn. Syst. 4 (1984), 569–584.

[GutJu1] Gutkin, E., Judge, C.: The geometry and arithmetic of flat surfaces with applications to polygonal billiards, Math. Res. Lett. 3 (1996), 391–403.

[GutJu2] Gutkin, E., Judge, C.: Affine mappings of flat surfaces: Geometry and arithmetic, Duke Math. J. 103 (2000), 191–213.

[HuLeTr] Hubert, P., Lelièvre, S., Troubetzkoy, S.: The Ehrenfest wind-tree model: periodic directions, recurrence, diffusion, Journal für die Reine und Angewandte Mathematik 656 (2011), 223–244.

[HuSc] Hubert, P., Schmidt, T.: An introduction to Veech surfaces, in: Handbook of Dynamical Systems, vol. 1B (A. Katok and B. Hasselblatt, eds.), Elsevier, Amsterdam, 2006, pp. 501–526.

[Hut] Hutchinson, J. E.: Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713–747.

[KaZe] Katok, A., Zemlyakov, A.: Topological transitivity of billiards in polygons, Math. Notes 18 (1975), 760–764.

[LapNie1] Lapidus, M. L., Niemeyer, R. G.: Towards the Koch snowflake fractal billiard—Computer experiments and mathematical conjectures, in “Gems in Experimental Mathematics” (T. Amdeberhan, L. A. Medina and V. H. Moll, Eds.), Contemporary Mathematics, Amer. Math. Soc., Providence, R. I., 517 (2010), 231–263. [E-print: arXiv:math.DS.0912.3948v1, 2009.]
[LapNie2] Lapidus, M. L., Niemeyer, R. G.: Sequences of compatible periodic hybrid orbits of prefractal Koch snowflake billiards, to appear in Disc. and Cont. Dyn. Sys. A, 21 pages, 2012.

[LapNie3] Lapidus, M. L., Niemeyer, R. G.: The current state of fractal billiards, to appear in Contemporary Mathematics, 36 pages, 2012.

[Mas] Masur, H.: Closed trajectories for quadratic differentials with an applications to billiards, Duke Math. J. 53 (1986), 307–314.

[MasTa] Masur, H., Tabachnikov, S.: Rational billiards and flat structures, in: Handbook of Dynamical Systems, vol. 1A (A. Katok and B. Hasselblatt, eds.), Elsevier, Amsterdam, 2002, pp. 1015–1090.

[NiZuMo] Niven, I., Zuckerman, H. S., Montgomery, H. L.: An Introduction to the Theory of Numbers (5th ed.), John Wiley & Sons, Inc., New York, 1991.

[Sm] Smillie, J.: Dynamics of billiard flow in rational polygons, in: Dynamical Systems, Encyclopedia of Math. Sciences, vol. 100, Math. Physics 1 (Ya. G. Sinai, ed.), Springer-Verlag, New York, 2000, pp. 360–382.

[Ta1] Tabachnikov, S.: Billiards, Panoramas et Synthèses, Soc. Math. France, Paris, 1995.

[Ta2] Tabachnikov, S.: Geometry and Billiards, Amer. Math. Soc., Providence, RI, 2005.

[Vee] Veech, W. A.: The billiard in a regular polygon, Geom. Funct. Anal. 2 (1992), 341–379.

[Vo] Vorobets, Ya. B.: Plane structures and billiards in rational polygons: The Veech alternative, Russian Math. Surveys 51 (1996), 779–817.

[We-Sc] Weitze-Schmithüsen, G.: An algorithm for finding the Veech group of an origami, Experimental Mathematics No.4, 13 (2004), 459–472.

[Zo] Zorich, A.: Flat surfaces, in: Frontiers in Number Theory, Physics and Geometry 1 (P. Cartier, et al., eds.), Springer-Verlag, Berlin, 2002, pp. 439–585.

DEPARTMENTS OF PHYSICS & MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NY 14853, USA
E-mail address: joe.p.chen@cornell.edu

DEPARTMENT OF MATHEMATICS & STATISTICS, UNIVERSITY OF NEW MEXICO, ALBUQUERQUE, ALBUQUERQUE, NM 87131, USA
E-mail address: niemeyer@math.unm.edu