Assessing Public Satisfaction of Freeway Closure Measures in Fog and Haze Weather: A Questionnaire-Based Study in Hubei Province, China

Jinhua Tan*, Xuqian Qin and Li Gong
School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, Hubei, 430073, China
*Corresponding author’s e-mail: tanjh2007@163.com

Abstract. In the current work, freeway closure measures in fog and haze weather are studied from the perspective of public satisfaction, in order to improve traffic management in Hubei province, China. Through an Internet survey to collect data, a structural equation model of public satisfaction of freeway closure measures in fog and haze weather is developed with public expectations, perceived quality, perceived value, public satisfaction, public complaints, support and understanding as variables. The results show that public’s supporting degree is not very high on the freeway closure measures. However, freeway intermittent release measures are the acceptable measures in fog and haze weather, which not only ensure traffic safety but also reduce economic losses and guarantee sustainable operation of freeway. Even though freeway closure measures are frequently taken due to serious fog and haze weather, intermittent release measures should also be taken into consideration so as to enhance public satisfaction and strengthen adaptive capacity of freeway to adverse weather.

1. Introduction
Many regions of China frequently encounter serious fog and haze weather in recent years [1–2]. Road traffic is affected by both weather environment and management measures. In adverse weather, the traffic management level affects the utilization of facility resources, human’s adaptability to the climate change and their ability to resist disasters. According to the goal of China’s National Plan on Implementation of the 2030 Agenda for Sustainable Development [3], in the traffic field, on the one hand, it is necessary to “develop quality, reliable, sustainable and resilient infrastructure, including regional and trans-border infrastructure.” On the other hand, it should also “strengthen resilience and adaptive capacity to climate-related hazards and natural disasters” with the specific goal of providing “access to safe, affordable, accessible and sustainable transport systems for all.”

In fog and haze weather, the visibility of freeway is poor, which is likely to cause traffic accidents [4]. In order to ensure traffic safety, traffic management department typically takes freeway closure measures, which affects public's normal trip seriously [5]. With the frequent occurrence of fog and haze weather, this problem has become increasingly prominent. Therefore, intermittent release measures have started to be used in some regions in China, where traffic management departments release a limited number of small vehicles within a specified time interval [6–7]. Tan et al. firstly proposed improved cellular automaton models of traffic to study the freeway intermittent release measures, which showed that the measures could reduce traffic accidents, as well as energy dissipation.
and emissions [8–9]. However, there is no relevant research on people's satisfaction on freeway closure measures or intermittent release measures in fog and haze weather.

Satisfaction referred to the feeling whether the sacrifices they had made were consistent with the rewards they had earned [10]. In the field of consumption, satisfaction was the customers’ feeling of using the product [11]. Woodside et al. believed that customer satisfaction was a post-purchase evaluation, which was not only the consumer's preference after consumption, but also an experience-based overall consumption attitude [12]. Fornell et al. constructed the American Customer Satisfaction Index (ACSI), which included: customer expectations, perceived quality, perceived value, customer satisfaction, customer loyalty, and customer complaints [13]. The research on public satisfaction in traffic field is mainly based on ACSI [14–15]. Some scholars have done the specific regional road traffic public satisfaction research by investigation on the social service capacity of freeway transportation [16–17].

This paper proposes a structural equation model (SEM) of freeway closure measures in fog and haze weather from the perspective of public satisfaction, in order to improve traffic management and guarantee sustainable operation of freeway in Hubei Province, China. The rest of this paper is organized as follows. In Sec. 2, a public satisfaction model of freeway closure measures is established. In Sec. 3, the empirical study is carried out. Results and discussion are presented in Sec. 4, and conclusions are given in Sec. 5.

2. Methodology
This study adopts the opinion of Howard [10], and the public satisfaction refers to their subjective reaction of the freeway closure in fog and haze weather when compared with their prior expectations. The proposed model consists of six variables: public expectations, perceived quality, perceived value, public satisfaction, public complaints, support and understanding.

2.1. Connotation of Latent Variables
In this study, public expectation is public's estimate of the impact of closure before the freeway is closed. Perceived quality represents public's actual feeling after the freeway is closed. Perceived value is defined as the public's perception of loss caused by closure, and the perceived level of hazard that may be caused by fog and haze weather when the freeway is not closed. Through the analysis of these factors, we know the disparity between public's expected level and actual feeling of closures in fog and haze weather, namely public satisfaction. The level of satisfaction will result in “public complaints” or “support and understanding”.

2.2. Observation Variable Design
As mentioned above, the variables contain several aspects within their respective scopes. This study established a public satisfaction survey scale by setting observation variables (Table 1).

Latent variable	Observation variable
Public expectations ε	Expectation of the timeliness of freeway information release X₁
	Expectation of the rationality of freeway closure X₂
	Expectation of the attitude of staff X₃
	Expectation of whether the suggestion channels are available X₄
	Expectation of whether the departments accept the supervision X₅
Perceived quality η	Perception of the timeliness of freeway information release Y₁
	Perception of implementation of speed limit control Y₂
	Perception of prohibition of dangerous goods transport vehicles Y₃
	Perception of prohibition of large trucks Y₄
Table 1. Cont.

Latent variable	Observation variable
Perceived quality η_1	Perception of richness of information releasing channels Y_5
	Perception of the attitude of staff Y_6
	Perception of whether the suggestion channels are available Y_7
	Perception of whether the departments accept the supervision Y_8
Perceived value η_2	Influence on public’s trip Y_9
	Perception of freeway closure measures Y_{10}
	Perception of ordinary road closure measures Y_{11}
	Understanding of the purpose of freeway closure Y_{12}
Public satisfaction η_3	Acceptance of freeway closure measures to ensure traffic safety Y_{13}
	Perceived disparity between actual condition and expected condition of freeway closure Y_{14}
	Perceived disparity between actual condition and best condition of closure Y_{15}
	Overall satisfaction with freeway closure Y_{16}
Public complaints η_4	Possibility of complaining about freeway closure Y_{17}
	Possibility of complaining about freeway closure measures Y_{18}
	Degree of public’s support if ordinary road is closed instead Y_{19}
	Degree of complaining about freeway closure Y_{20}
Support and understanding η_5	Degree of understanding for freeway closure measures Y_{21}
	Degree of support for freeway closure measures Y_{22}
	Degree of support and understanding for freeway departments Y_{23}
	Degree of support for intermittent release measures Y_{24}

Based on the ACSI model, the public satisfaction model of freeway closure measures (for short, PSFCM) is developed (Figure 1). The model includes two sub-models, a structural sub-model and a measurement sub-model. The structural sub-model reflects the relationship between the various latent variables. The measurement sub-model reflects the relationship between each latent variable and its corresponding observation variable. To verify the proposed model, empirical data should be collected to confirm the relationship between the latent variables, as well as the consistency degree between latent variable and its corresponding observation variable [18].

![Figure 1. Public satisfaction model framework of freeway closure measures.](image-url)
3. Empirical Study

3.1. Data Collection
The empirical data of this study is obtained by publishing a survey entitled "Survey of Public Satisfaction of Freeway Closure Measures in Fog and Haze Weather in Hubei Province" on the website https://www.wjx.cn/jq/25211604.aspx. The survey scale adopts the seven-level scoring method (the highest score of the scale is 7 and lowest score is 1), and the respondents were asked to complete the survey according to their own real situations. In this survey, 405 questionnaires were collected after removing 16 invalid questionnaires.

3.2. Reliability Test
Reliability is an indicator of the consistency or stability of measurement results [19]. Reliability test is to verify the authenticity of the survey sample and whether the data reflects the true situations of the respondents. Cronbach’s alpha coefficient is commonly used as the indicator, and when it is larger, the reliability of the data is better. When the Cronbach’s alpha coefficient is greater than (inclusive) 0.7, it can be considered that the internal consistency of the variable is high; when it is between 0.6 and 0.7, it’s also acceptable [20]. SPSS 20.0 is applied to test the reliability of the data. The results showed that the Cronbach’s alpha coefficient of the overall reliability test was 0.683, nearly 0.7, so the overall reliability was well (Table 2). Therefore, the survey data is reliable.

Table 2. Cronbach’s alpha values of the questionnaire.

Variable name	Number of items	Cronbach’s alpha value
Public expectations E^2	5 (X_1 - X_5)	0.669
Perceived quality I^1	8 (Y_1 - Y_8)	0.572
Perceived value I^2	5 (Y_9 - Y_{13})	0.342
Public satisfaction I^3	3 (Y_{14} - Y_{16})	0.745
Public complaints I^4	4 (Y_{17} - Y_{20})	0.446
Support and understanding I^5	4 (Y_{21} - Y_{24})	0.502
Total	29	0.683

3.3. Validity Test
Because the latent variables contain several aspects within their respective scopes, it is difficult for the respondents to describe all of these aspects directly. Therefore, an indirect method is applied to acquire the respondents’ perception of latent variables. Undoubtedly, whether the observation variables can describe the meaning of latent variable accurately has a great impact on the results.

The "validity" is introduced to measure whether the observation variables express the meaning of the corresponding latent variable accurately. The factor loading is adopted to indicate the validity. When the coefficient is no less than 0.4, the observation variable is considered to have a high validity [20]. The higher the validity is, the more consistent the observation variables are with the content to be investigated, and vice versa. This study applies SPSS 20.0 to verify the correspondence between the variables, and the factor loading of each observation variable is obtained. The results indicate that the variable validity is acceptable.

4. Results and Discussion
The questionnaire results are shown in Table 3. Among the expectations, the highest is the expectation of timeliness of closure information release (AV=6.380, SD=1.248), and subsequently the expectation of staff attitude (AV=6.269, SD=0.990); whether the traffic management departments accept the supervision is the lowest (AV=6.042, SD=0.963). The public has the highest perceived quality of prohibiting the dangerous goods transport vehicles (AV=6.062, SD=1.110), but the feeling is not good for the richness of information releasing channels (AV=3.780, SD=1.530). It is thus clear that there is a disparity between actual situation and public's expectation.
Comparing “public complaints” with “support and understanding”, we can find that the average value of “support and understanding” is bigger than “complaints”, but the standard deviation of “support and understanding” is smaller. This result means the public supports traffic management department to take appropriate measures which can avoid losses from road closures and ensure traffic safety. What’s more, the respondents’ supporting degree is not very high on freeway closure measures (AV=4.993, SD=1.431). However, they desire the freeway intermittent release measures (AV=5.654, SD=1.220). It indicates that the freeway closure measures could be replaced by intermittent release measures under certain conditions in fog and haze weather.

In order to study the effect between variables, AMOS is applied to estimate the normalized path coefficients between latent variables of the PSFCM model (Figure 2). When the coefficient is positive (negative), the two variables are positive (negative) relationship. The following results can be obtained by analyzing the normalized path coefficients.

![Figure 2. Results of the PSFCM model.](image)

Among the three determinants affecting public satisfaction of freeway closure measures in fog and haze weather, the direct impact coefficients of perceived quality and perceived value are 0.605 and 0.618 respectively, while the public expectation is -0.012. The results indicate that public expectation has a negative impact on satisfaction. The higher the expectation, the lower the satisfaction is. Public expectation has a negative impact on the perceived quality. Due to the influence of psychological factors, the higher the expectation, the lower the perceived quality level is when people have the same experience.

Public satisfaction has a negative impact on public complaints, and the impact coefficient is -0.135, while the direct impact coefficient on support and understanding is 0.835. Public complaint has a negative impact on support and understanding, and the impact coefficient is -0.154. It goes without saying that the higher the complaints, the lower the possibility of support and understanding is, and the higher the satisfaction, the higher the possibility of support and understanding is.

The normalized path coefficients of the PSFCM model show that we could improve public satisfaction by reducing expectation or increasing perceived quality and perceived value, which also could improve public support and understanding. However, the average value of each observation variable of public satisfaction is less than 4.8, and it's hard to become higher. That's because freeway closure measure is not the best way of human adaptation to frequent fog and haze weather. Freeway closure measures will bring a great deal of economic losses [4]. Take Shanghai-Nanjing freeway as an example, the mileage is 274.35 km, and there were 57 closures due to fog weather from 2006 to 2009, resulting in direct economic losses of more than RMB67.81 million [6]. In addition, drivers who are forbidden to drive on freeway have to drive on ordinary road where traffic accidents also easily happen in fog and haze weather [5]. Therefore, intermittent release measures are more applicable which could guarantee that no rear-end collisions occur and avoid losses [9].
Table 3. The average value and standard deviation of the observation variables.

Latent variable	Observation variable	Average value (AV)	Standard deviation (SD)
Public expectations ε	X₁	6.380	1.248
	X₂	6.257	0.997
	X₃	6.269	0.990
	X₄	6.094	1.054
	X₅	6.042	0.963
Perceived quality η₁	Y₁	4.333	1.706
	Y₂	5.398	1.161
	Y₃	6.062	1.110
	Y₄	5.667	1.257
	Y₅	3.780	1.530
	Y₆	4.733	1.232
	Y₇	4.133	1.376
	Y₈	4.309	1.386
Perceived value η₂	Y₉	2.331	1.220
	Y₁₀	3.672	1.518
	Y₁₁	4.121	1.443
	Y₁₂	4.652	1.867
	Y₁₃	5.938	1.175
Public satisfaction η₃	Y₁₄	4.620	1.196
	Y₁₅	4.501	1.310
	Y₁₆	4.798	1.270
Public complaints η₄	Y₁₇	4.017	1.686
	Y₁₈	5.728	1.229
	Y₁₉	4.425	1.485
	Y₂₀	4.262	1.570
Support and understanding η₅	Y₂₁	5.743	1.155
	Y₂₂	4.993	1.431
	Y₂₃	4.990	1.284
	Y₂₄	5.654	1.220

5. Conclusions
In this paper, the PSFCM model is proposed to study public satisfaction of freeway closure measures in fog and haze weather in Hubei Province, China. We find that although freeway closure measures are frequently taken by the traffic management department in recent years, the respondents’ supporting degree is not very high on the measures. Furthermore, freeway intermittent release measures are the acceptable measures in fog and haze weather, which not only ensure traffic safety but also reduce economic losses and guarantee sustainable operation of freeway. In order to strengthen adaptive capacity of freeway to frequent fog and haze weather, we will do further research on intermittent release measures to promote sustainable development of traffic in the future.

Acknowledgments
This work was partly funded by the Fundamental Research Funds for the Central Universities, Zhongnan University of Economics and Law (2722019PY049, 201911403, 201911404) and Soft Science Research Project of Hubei Province of China (2017ADC146).
References

[1] China Meteorological Administration. (2016) China Climate Bulletin 2015. China Meteorological Press, Beijing, China.

[2] Meng, X.Y., Yu, Y., Zhang, Z.F., Li, G., Wang, S., Du, L. (2014) Preliminary study of the dense fog and haze events’ formation over Beijing-Tianjin-Hebei Region in January of 2013. Environ. Sci. Technol., 37:190-194.

[3] Ministry of Foreign Affairs of the People's Republic of China. (2016) China’s National Plan on Implementation of the 2030 Agenda for Sustainable Development. https://www.fmprc.gov.cn/web/ziliao_674904/zt_674979/dnzt_674981/qtzt/2030kcxfzyc_686343/P020170414689023442403.pdf (accessed on 6 November 2018).

[4] Zou, C.X. (2011) The Distribution Characteristics and Risk Assessment of Fog Disaster in Huning Highway. M.S. thesis, Nanjing University of Information Science & Technology, Nanjing, China.

[5] Tan, J.H. (2015) Rear-end collision risk management of freeways in heavy fog. Ph.D. thesis, Tsinghua University, Beijing, China.

[6] Shi, J., Tan, J.H. (2013) Effect analysis of intermittent release measures in heavy fog weather with an improved CA model. Discrete Dyn. Nat. Soc., 2013: 812562.

[7] Shi, J., Tan, J.H. (2015) Traffic accident and emission reduction through intermittent release measures for heavy fog weather. Mod. Phys. Lett. B, 29: 1550148.

[8] Tan, J.H., Shi, J. (2013) Impact of intermittent vehicle release on freeway energy dissipation and emissions. J. Tsinghua Univ. (Sci. and Tech.), 53: 499-502.

[9] Tan, J.H., Shi, J. (2016) Two-lane freeway intermittent release measures in heavy fog. J. Tsinghua Univ. (Sci. and Tech.), 56: 985-990.

[10] Howard, J. A. (1969) The Theory of Buyer Behavior. Wiley, New York, USA.

[11] Woodruff, R. B., Cadotte, E.R., Jenkins, R.L. (1983) Modeling Consumer Satisfaction Processes Using Experience—Based Norms. J. Market Res., 20: 296-304.

[12] Woodside, A. G., Frey, L. L., Daly, R. T. (1989) Linking Service Quality, Customer Satisfaction and Behavioral Intention. J. Health Market., 9: 5-17.

[13] Fornell, C., Johnson, M. D., Anderson, E.W., Cha, J.S., Bryant, B.E. (1996) The American Customer Satisfaction Index: Nature, Purpose and Findings. J. Market., 60: 7-18.

[14] Cheng, X.Y., Cao, Y., Huang, K., Wang, Y.J. (2018) Modeling the Satisfaction of Bus Traffic Transfer Service Quality at a High-Speed Railway Station. J. Adv. Transport., 2018: 7051789.

[15] Kim, S.H., Chung, J.H. (2016) Reinterpretation of the Likert Scale for Public Transportation User Satisfaction: Pattern Recognition Approach. Transport. Res. Rec., 2541: 90-99.

[16] Wang, F. (2013) Survey and evaluation of public satisfaction of highway traffic services in Guangdong province. Transpo World, 8: 240-243.

[17] Liu, X.L., Li, T.T. (2016) Green transportation development of Changsha, Zhuzhou and Xiangtan urban agglomeration from the perspective of public satisfaction. Financ. Economy, 2: 109-112.

[18] Beura, S.K., Chellapilla, H., Bhuyan, P.K. (2017) Urban road segment level of service based on bicycle users' perception under mixed traffic conditions. J. Mod. Transport., 25: 90-105.

[19] Wu, S. (2014) SPSS statistical analysis. Tsinghua University Press, Beijing, China.

[20] Saris, W. E., Batista, F. J. M., Coenders, G. (2007) Selection of indicators for the interaction term in structural equation models with interaction. Qual. Quant., 41: 55-72.