Cooperative estimation and fleet reconfiguration for multi-agent systems
Arthur Kahn, Julien Marzat, Hélène Piet-Lahanier, Michel Kieffer

To cite this version:
Arthur Kahn, Julien Marzat, Hélène Piet-Lahanier, Michel Kieffer. Cooperative estimation and fleet reconfiguration for multi-agent systems. IFAC Workshop on Multivehicle Systems, May 2015, Genova, Italy. 2015.

HAL Id: hal-01170129
https://hal.archives-ouvertes.fr/hal-01170129
Submitted on 1 Jul 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Cooperative estimation and fleet reconfiguration for multi-agent systems

Arthur Kahn ∗ Julien Marzat ∗ Hélène Piet Lahanier ∗
Michel Kieffer ∗∗

∗ ONERA – The French Aerospace Lab, F-91123 Palaiseau, France,
firstname.lastname@onera.fr
∗∗ L2S, CNRS–SUPELEC–Univ Paris-Sud, F-91192, France,
kieffer@lss.supelec.fr

Abstract: This paper considers a multi-agent system which aim is to determine the maximum of some field. For that purpose, noisy measurements are collected by each agent and exchanged between neighboring agents. The maximization task, performed by gradient climbing, has to be robust to the presence of agents equipped with sensors providing outliers. For that purpose, an outlier detection scheme is used and the optimal configuration for agents with different sensor noise characteristics is evaluated. This gives insights to derive a practical distributed control law to achieve robust maximization. The stability of the system with this control law is analyzed. The resulting performance is illustrated on an example.

Keywords: Multi agent system, cooperative estimation, fault detection, Lyapunov stability.

1. INTRODUCTION

Autonomous vehicles (moving agents) have increased ability to perform complex missions, such as exploration or surveillance of some geographical area. Such missions are more easily completed when agents cooperate (Bullo et al. (2009)). Cooperation between agents allows to use simpler sensors and vehicles and provides an increased robustness to potential failures compared to missions addressed by a single agent.

This paper considers agents equipped with sensors measuring some field (temperature, radiation, chemical agent concentration) at their location. The agents have to determine cooperatively the location of the maximum of the field over some a priori search zone, see Ahmadzadeh and Buchman (2006); Tang and Parker (2006); Choi and Horowitz (2007); Parker (2013). The main additional constraint considered in this paper is robustness against the presence of faulty sensors, as in Chamseddine et al. (2012).

For that purpose, each agent performs a local estimate of the field and of its gradient by sharing information over a wireless network. A control law which drives the agents towards the maximum while avoiding collisions is then evaluated as in Choi and Horowitz (2007). This approach, however, is very sensitive to erroneous measurements (outliers) potentially provided by agents equipped with faulty sensors. Such outliers may compromise the mission as shown in Zhang et al. (2010). The aim of this paper is to use Fault Detection and Identification (FDI) methods to isolate the faulty agents. It thus presents an adaptation of the control law to minimize the influence of the faulty agents on the success of the mission while keeping them in formation.

Numerous FDI methods have been presented in the literature, see, e.g., Elnahrawy and Nath (2004); Jeffery et al. (2006); Janakiram et al. (2006); Wu et al. (2007); Curiac et al. (2007). For example, in Wu et al. (2007), each sensor uses the median of the measurements of its neighbors to detect possible outliers. Curiac et al. (2007) estimate the expected value of the measurement of an agent using its own previous measurements. The FDI approach presented in this paper is derived from Curiac et al. (2007) as it compares the actual measurement of an agent with its estimated value obtained from the measurements provided by the agents of its neighborhood.

Reconfiguration after fault detection is usually based on modifying the control of the agents (Zhaohui and Noura (2013)) or re-planning their trajectories, as in Chamseddine et al. (2012). The reconfiguration technique introduced in this paper modifies solely the control law of the faulty agents to limit their impact on the estimates of the field and its gradient, which reduces the computational cost.

This paper is organized as follows. First, Section 2 presents the cooperative estimation problem and the agent dynamic and measurement equations. The proposed solution, including the FDI and the optimal configuration agents should adopt is described in Section 3. A pragmatic distributed control law to drive the agents towards the field maximum is introduced in Section 4 and its stability is demonstrated. Simulations illustrate the performance of the approach in Section 5.

2. PROBLEM FORMULATION

Consider a scalar spatial field $\phi(x)$, defined at any position $x = (x, y)^T$ of some search area $D \subset \mathbb{R}^2$. The field ϕ is assumed to be twice-continuously differentiable, time
invariant, and to have a unique maximum at some position \(x_M \in D \). The gradient of \(\phi \) at \(x \) is

\[
\nabla \phi(x) = \left[\frac{\partial \phi}{\partial x}(x), \frac{\partial \phi}{\partial y}(x) \right]^T.
\]

(1)

\(N \) identical agents equipped with sensors obtain measurements at discrete time instants \(t_k \)

\[
y_i(t_k) = \phi(x_i(t_k)) + n_i(t_k),
\]

(2)
of \(\phi \) at their positions \(x_i(t_k) \), \(i = 1, \ldots, N \). Each agent is characterized by the state \(\theta_i(t_k) \) of its sensor, which may be good \(\theta_i(t_k) = 0 \) or defective \(\theta_i(t_k) = 1 \). The \(\theta_i(t_k) \)'s are realization of time-invariant and independent Markov chains with transition probabilities for \(i = 1, \ldots, N \)

\[
p_{01} = \Pr (\theta_i(t_k) = 1|\theta_i(t_{k-1}) = 0) \quad (3)
p_{00} = \Pr (\theta_i(t_k) = 0|\theta_i(t_{k-1}) = 1) \quad (4)
\]

and \(p_{00} = 1 - p_{01} \) and \(p_{11} = 1 - p_{10} \). In (2), the \(n_i(t_k) \)'s are realizations of independently distributed zero-mean Gaussian variables with state-dependent variance \(\sigma^2_{\theta_i}(t_k) \), where \(\sigma^2_{\theta_i} \ll \sigma^2_\theta \). All agents are synchronized and make measurements at the same time. At each time instant \(t_k \), the \(i \)-th agent is able to communicate with a subset of agents which indexes are \(N_i(t_k) \subset \{1, \ldots, N\} \). These communications are assumed without delay and losses.

The dynamic of each agent is modeled as

\[
M \dot{x}_i + C(x_i, \dot{x}_i) \dot{x}_i = u_i \quad (5)
\]

where \(u_i(t_k) \) is the control input applied to agent \(i \) at time \(t_k \), \(M \) is its mass, and \(C(x_i, \dot{x}_i) \) a non-negative friction coefficient, see Wang (2007).

The purpose of the mission is to find

\[
x_M = \arg \max_{x \in D} \phi(x),
\]

(6)

while maintaining the formation, despite the presence of erroneous sensors.

3. Proposed Solution

The proposed solution consists in four steps that will be performed during each time interval \([t_k, t_{k+1}[^]. First, all agents take a measurement \(y_i(t_k) \) of the field at their location \(x_i(t_k) \). Second, the measurement and the current agent location are broadcast to the other agents in its neighborhood. Third, using the shared measurements, all agents estimate the state of their sensor and of the sensors of their neighbors. This estimation may be performed using the various FDI techniques described in Elnahlawy and Nath (2004); Jeffery et al. (2006); Janakiram et al. (2006); Wu et al. (2007); Curioiu et al. (2007). Next, each agent \(i \) performs an estimation of the field and of its gradient at the current estimate \(\hat{x}_i^k \) of the maximum of the field. These estimates may be different since they do not share the same information. Using gradient climbing, each agent is then able to evaluate an updated estimate \(\hat{x}_i^{k+1} \). Finally, a control law is designed in a distributed way for each agent to move towards \(\hat{x}_i^{k+1} \), keeping the agents in formation, while avoiding collisions, and trying to minimize the variance of the estimation error of the field and its gradient at \(\hat{x}_i^{k+1} \).

In the following, we focus on the last three steps and only outline the FDI step, which is assumed successfully performed for each agent.

3.1 Field and gradient estimation

A local model of \(\phi_i \) is derived from a second-order Taylor expansion of \(\phi \) considered at \(\hat{x}_i^k \)

\[
\phi_i(x) = \phi(\hat{x}_i^k) + (x - \hat{x}_i^k)^T \nabla \phi(\hat{x}_i^k) + \frac{1}{2} (x - \hat{x}_i^k)^T \nabla^2 \phi(\hat{x}_i^k) (x - \hat{x}_i^k),
\]

(7)

where \(\chi_i \) belongs to the segment joining \(x \) and \(\hat{x}_i^k \). The aim is to obtain an estimate as accurate as possible of

\[
\alpha_i^k = \frac{\phi(\hat{x}_i^k) - \nabla \phi(\hat{x}_i^k)}{\nabla \phi(\hat{x}_i^k)}
\]

using \(y_i(t_k) \), \(i = 1, \ldots, N \).

One may approximate \(\phi_i \) in (7) as follows

\[
\phi_i(x) = \phi(\hat{x}_i^k) + (x - \hat{x}_i^k)^T \nabla \phi(\hat{x}_i^k) + e_i(x, \hat{x}_i^k),
\]

(8)

introducing the approximation error

\[
e_i(x, \hat{x}_i^k) = \phi_i(x) - \phi(\hat{x}_i^k) = \frac{1}{2} (x - \hat{x}_i^k)^T \nabla^2 \phi(\chi_i) (x - \hat{x}_i^k),
\]

(9)

corresponding to the neglected second-order term of (7).

The model (8) could be extended to take into account the Hessian matrix. However, various examples provided by Zhang and Leonard (2010) illustrate the fact that the estimation of the Hessian matrix from noisy field measurements is difficult and results in poor-quality estimates.

Using (7), Agent \(i \) models the measurement \(y_j(t_k) \) provided by Agent \(j \) as follows

\[
y_j(t_k) = \phi(\hat{x}_j^k) + n_j(t_k) = \phi(\hat{x}_i^k) + (x_j(t_k) - \hat{x}_i^k)^T \nabla \phi(\hat{x}_i^k) + n_j(t_k) + e_i(x_j(t_k), \hat{x}_i^k) + \theta_j(t_k),
\]

(10)

where \(\chi_{ij} \) belongs to the segment joining \(\hat{x}_i^k \) and \(x_j(t_k) \). Then

\[
y_j(t_k) = \left(1 + (x_j(t_k) - \hat{x}_i^k)^T \right) \alpha_i^k + e_i(x_j(t_k), \hat{x}_i^k) + \theta_j(t_k).
\]

(11)

Agent \(i \) collects all the measurements available in its neighborhood \(N_i(t_k) \) at \(t_k \) to get

\[
y_{i,k} = R_{i,k} \alpha_i^k + n_{i,k} + e_{i,k}
\]

(12)

where

\[
y_{i,k} = \left(y_{i_1}(t_k), \ldots, y_{i_{N_i}}(t_k) \right)^T,
\]

\[
R_{i,k} = \left(\begin{array}{c}
1 (x_{i_1}(t_k) - \hat{x}_i^k)^T \\
\vdots \\
1 (x_{i_{N_i}}(t_k) - \hat{x}_i^k)^T
\end{array} \right),
\]

(13)

\[
n_{i,k} = \left(n_{i_1}(t_k), \ldots, n_{i_{N_i}}(t_k) \right)^T,
\]

\[
e_{i,k} = \left(\begin{array}{c}
\frac{1}{2} (x_{i_1}(t_k) - \hat{x}_i^k)^T \nabla^2 \phi(\chi_{i_1}) (x_{i_1}(t_k) - \hat{x}_i^k) \\
\vdots \\
\frac{1}{2} (x_{i_{N_i}}(t_k) - \hat{x}_i^k)^T \nabla^2 \phi(\chi_{i_{N_i}}) (x_{i_{N_i}}(t_k) - \hat{x}_i^k)
\end{array} \right)
\]

(14)
with $N_i(t_k) = \{i_1, \ldots, i_N\}$. The measurement noise vector \mathbf{n}_i is zero-mean Gaussian with diagonal covariance matrix
\[
\Sigma_n = \text{diag}\left(\sigma^2_{\mathbf{n}_1(t_k)}, \ldots, \sigma^2_{\mathbf{n}_N(t_k)}\right).
\]
In absence of \mathbf{e}_i, the maximum likelihood estimate of \mathbf{a}_i^k would correspond to the argument of the minimum of
\[
J_0(\mathbf{a}) = (\mathbf{y}_i(k) - \mathbf{R}_{i,k} \mathbf{a})^T \Sigma_n^{-1} (\mathbf{y}_i(k) - \mathbf{R}_{i,k} \mathbf{a}).
\]
Accounting for the impact of \mathbf{e}_i, more specifically, the components of \mathbf{e}_i close to x_M, the measurement noise vector \mathbf{n}_i has a zero-mean Gaussian with diagonal covariance matrix Σ_n. The measurement noise vector \mathbf{n}_i is zero-mean Gaussian with diagonal covariance matrix Σ_n.

3.2 Bank of residuals for fault detection and identification

A bank of filters is used here to identify which sensor is faulty using its bank of filters. The one which provides a faulty measurement (if any). For the i-th agent to generate a residual. This residual

\[
3.3 Updated estimate of the location of the field maximum

To solve this problem, one introduces the Lagrangian

\[
\lambda_i \geq 0, \quad \sigma_{\theta_i}^2 > 0, \quad \lambda_i \geq 0.
\]

The control law for the i-th agent has to be such that the agents remain in formation, avoid collisions, and minimize the variance of the estimation error of \mathbf{a}_i^{k+1} at x_i^{k+1}. From (18), one may deduce an approximation of the covariance of \mathbf{a}_i^{k+1} at x_i^{k+1}

\[
(\mathbf{x}_i, \mathbf{x}_N, \mu) = \sum_{i=1}^{N} \sigma_{\theta_i}^{-2} \exp\left(-\frac{\|\mathbf{x}_i - x_i^{k+1}\|^2}{k_w} \right)
\]

where $\mu_{i,j}$'s are Lagrange multipliers. Taking the partial derivatives of (24) with respect to \mathbf{x}_i, one gets

\[
\frac{\partial \mathcal{L}}{\partial \mathbf{x}_i} = 2 \sigma_{\theta_i}^{-2} (\mathbf{x}_i - x_i^{k+1}) \exp\left(-\frac{\|\mathbf{x}_i - x_i^{k+1}\|^2}{k_w} \right)
\]

3.4 Optimal agent configuration

The classical step-size adaptation scheme (20), see, e.g., Walter (2014), enables the agents to slow down when reaching the global maximum of the field ϕ.

To get a small δ^2, one chooses to determine the target position of each agent that maximizes the trace of

\[
\mathbf{W}_{i,k} = \text{diag}\left(\sigma^2_{\mathbf{n}_1(t_k)}, \ldots, \sigma^2_{\mathbf{n}_N(t_k)}\right).
\]

where k_w is some tuning parameter to be adjusted depending on the spatial correlation of ϕ. The weighted least-square estimate of \mathbf{a}_i with weighting matrix $\mathbf{W}_{i,k}$ is then

\[
\hat{\mathbf{a}}_i^k = (\mathbf{R}_{i,k}^T \mathbf{W}_{i,k} \mathbf{R}_{i,k})^{-1} \mathbf{R}_{i,k}^T \mathbf{W}_{i,k} \mathbf{y}_i(k).
\]

(22)

To get a small δ^2, one chooses to determine the target position of each agent that maximizes the trace of

\[
\hat{\mathbf{a}}_i^k = (\mathbf{R}_{i,k}^T \mathbf{W}_{i,k} \mathbf{R}_{i,k})^{-1} \mathbf{R}_{i,k}^T \mathbf{W}_{i,k} \mathbf{y}_i(k).
\]

(23)

(24)

where \mathbf{w} is a fraction of the maximum displacement an agent can perform during a time slot.

\[
\mathcal{L}(\mathbf{x}_i^{k+1}) = \sum_{i=1}^{N} \sigma_{\theta_i}^{-2} \exp\left(-\frac{\|\mathbf{x}_i - x_i^{k+1}\|^2}{k_w} \right)
\]

\[
\mathcal{L}(\mathbf{x}_i^{k+1}) = \sum_{i=1}^{N} \sigma_{\theta_i}^{-2} \exp\left(-\frac{\|\mathbf{x}_i - x_i^{k+1}\|^2}{k_w} \right)
\]

\[
\mathcal{L}(\mathbf{x}_i^{k+1}) = \sum_{i=1}^{N} \sigma_{\theta_i}^{-2} \exp\left(-\frac{\|\mathbf{x}_i - x_i^{k+1}\|^2}{k_w} \right)
\]

where \mathbf{x}_i is the i-th agent has to be such that the agents remain in formation, avoid collisions, and minimize the variance of the estimation error of \mathbf{a}_i^{k+1} at x_i^{k+1}. From (18), one may deduce an approximation of the covariance of \mathbf{a}_i^{k+1} at x_i^{k+1}

\[
\sum_{i=1}^{N} \sigma_{\theta_i}^{-2} \exp\left(-\frac{\|\mathbf{x}_i - x_i^{k+1}\|^2}{k_w} \right)
\]

where $\mu_{i,j}$'s are Lagrange multipliers. Taking the partial derivatives of (24) with respect to \mathbf{x}_i, one gets

\[
\frac{\partial \mathcal{L}}{\partial \mathbf{x}_i} = 2 \sigma_{\theta_i}^{-2} (\mathbf{x}_i - x_i^{k+1}) \exp\left(-\frac{\|\mathbf{x}_i - x_i^{k+1}\|^2}{k_w} \right)
\]

(25)

where $\mu_{i,j}$'s are Lagrange multipliers. Taking the partial derivatives of (24) with respect to \mathbf{x}_i, one gets

\[
\frac{\partial \mathcal{L}}{\partial \mathbf{x}_i} = 2 \sigma_{\theta_i}^{-2} (\mathbf{x}_i - x_i^{k+1}) \exp\left(-\frac{\|\mathbf{x}_i - x_i^{k+1}\|^2}{k_w} \right)
\]

(25)

$\hat{\mathbf{a}}_i^{k+1}$ is assumed unbiased, even if it is not the case in general, due to the presence of \mathbf{e}_i. Close to x_M, more specifically, the components of \mathbf{e}_i are likely to be negative.
Assuming first that \(\mu_{ij} = 0 \) for all \(i \neq j \) one may easily show that one should have
\[
\| x_i(t_{k+1}) - \hat{x}_i^{k+1} \|^2 = k_w - 1
\]
which is possible only provided that \(k_w > 1 \). In this case, \(x_i(t_{k+1}) \) has to be located on a circle of radius \(\sqrt{k_w - 1} \) centered in \(\hat{x}_i^{k+1} \). A necessary condition for all agents to coexist on this circle while complying with the constraint of (23) is
\[
2\pi \sqrt{k_w - 1} > N \delta. \tag{26}
\]
The condition \(k_w > 1 \) corresponds to a modeling error increasing slowly with the distance to the point where the Taylor expansion has been performed, which is satisfied when \(\phi \) varies slowly.

Assume now that \(\mu_{ij} \neq 0 \) for some \(j \neq i \). Then, at \(t_{k+1} \), the \(x_i \)'s have to satisfy for \(i = 1, \ldots, N \)
\[
\sigma^2_{\theta_i(t_{k+1})} (x_i - \hat{x}_i^{k+1}) \exp \left(-\frac{\| x_i - \hat{x}_i^{k+1} \|^2}{k_w} \right) \cdot \left(1 - \frac{1 + \| x_i - \hat{x}_i^{k+1} \|^2}{k_w} \sum_{j \neq i} \mu_{ij} (x_i - x_j) = 0. \tag{27} \right.

The general case is difficult to solve. In the case of two agents, introducing
\[
\delta_1 = x_1(t_{k+1}) - \hat{x}_i^{k+1}
\]
and
\[
\delta_2 = x_2(t_{k+1}) - \hat{x}_i^{k+1},
\]
one may show (details are omitted due to lack of space) that
- when \(\sigma^2_{\theta_i(t_{k+1})} = \sigma^2_{\theta_2(t_{k+1})} \), necessarily, \(\delta_1 = -\delta_2 \) and \(\| \delta_1 \|_2 = \| \delta_2 \|_2 \),
- when \(\sigma^2_{\theta_i(t_{k+1})} \ll \sigma^2_{\theta_2(t_{k+1})} \), \(\delta_1 \) and \(\delta_2 \) should still be collinear with \(\| \delta_1 \|_2 = \| \delta_2 \|_2 \) and \(\| \delta_1 \|_2 + \| \delta_2 \|_2 = \delta \).

4. CONTROL LAW WITH POSSIBLE RECONFIGURATION

Section 3.4 provides some insights on the way the agents should evolve to fulfill the mission described in Section 2. When \(k_w \) is larger than 1 and when \(N \) is small enough to satisfy (26), the control law of the agents should be such that they move on a circle of radius \(\sqrt{k_w - 1} \) centered in \(\hat{x}_i^{k+1} \). This result is obtained whatever the state of their sensors. When \(k_w \) is smaller than 1, or when \(N \) is too large, the agents with sensors in good state should be closer to \(\hat{x}_i^{k+1} \) than those with defective sensors.

4.1 Proposed control law

In what follows, we assume that the update of the estimate \(\hat{x}_i \) is performed at a frequency large enough to consider it as a twice-continuously differentiable function \(\hat{x}_i(t) \) of \(t \).

Each agent is controlled independently of the other agents and only requires the knowledge of the position of its neighbors for collision avoidance. The proposed control law assumes further that \(k_w < 1 \) or that \(N \geq 2\pi \sqrt{k_w - 1} \), so that agents with good sensors have to be located closer to \(\hat{x}_i(t) \) than agents with bad sensors. The structure of the control law is inspired from that of Cheah et al. (2009)
\[
u_i = M \hat{x}_i + C(x_i, \hat{x}_i) \hat{x}_i - k_1 (\hat{x}_i - \hat{\hat{x}}_i)
+ 2k_2 \sum_{j=1}^{N} (x_i - x_j) g_{ij} \theta_i - k_3 (\theta_i)(x_i - \hat{x}_i), \tag{28}
\]
where \(k_1 > 0 \) is used to adapt the speed of each agent to the speed of \(\hat{x}_i \). The constant \(k_2 > 0 \) determines the relative importance of the collision avoidance term in (28), where
\[
g_{ij} = \exp \left(-\delta_{ij}^2 \delta_{ij}/q \right), \tag{29}
\]
with \(\delta_{ij} = x_i - x_j \), the difference of position between agents \(i \) and \(j \), with \(q \) a function of the square of the minimum safety distance between agents. Finally, \(k_3 (\theta_i) \) determines the attractiveness of \(\hat{x}_i \).

4.2 Reconfiguration

As indicated in Section 3.4, agents with bad sensors should be driven farther away from \(\hat{x}_i \) than agents with good sensors. Such a behavior is obtained by modifying the value of gain \(k_3 (\theta_i) \).

To analyze the effect of a change of \(k_3 (\theta_i) \), consider first the fleet at equilibrium, with all sensors in good state. At equilibrium, (5) combined with (28) becomes for the \(i \)-th agent
\[
-k_3 (x_i - \hat{x}_i) + 2k_2 \sum_{j \neq i} (x_i - x_j) g_{ij} = 0. \tag{30}
\]
After some manipulations, (30) may be rewritten as
\[
x_i - \hat{x}_i^k = \frac{2k_2}{2k_2 \sum_{j \neq i} g_{ij}} - k_3 \sum_{j \neq i} (x_j - \hat{x}_i) g_{ij}. \tag{31}
\]

Now, assume that at a given time instant, the \(i \)-th sensor becomes defective and has been identified as such. Assuming that the positions of the other agents are not significantly affected by the modification of \(\theta_i \), \(\sum_{j \neq i} (x_j - \hat{x}_i) g_{ij}/q \) is approximately constant. To drive the \(i \)-th sensor away from \(\hat{x}_i \), one has to ensure that the absolute value of
\[
\gamma^i (\theta_i) = \frac{2k_2}{2k_2 \sum_{j \neq i} g_{ij} - k_3 (\theta_i)} \tag{32}
\]
when \(\theta_i = 1 \) is larger than its absolute value when \(\theta_i = 0 \). This is performed by appropriately modifying the value of \(k_3 (\theta_i) \).

4.3 Stability analysis

Consider the candidate Lyapunov function
\[
V = \frac{1}{2} \sum_{i=1}^{N} (x_i - \hat{x}_i^k)^T M (x_i - \hat{x}_i^k)
+ (x_i - \hat{x}_i^k)^T k_3 (\theta_i)(x_i - \hat{x}_i^k) + k_2 \sum_{j=1}^{N} g_{ij}. \tag{33}
\]
Assume that \(\theta_i \) is constant for each sensor. After some derivations following those in Cheah et al. (2009) and not