Is it necessary to perform control diagnostic 131I whole body scan after remnant ablation in differentiated thyroid carcinoma patients who have stimulated Tg levels under 2 ng/ml?

Ebuzer Kalender¹, Umut Elboga¹*, Y. Zeki Celen¹, Hasan Deniz Demir¹, Ertan Sahin² and Mustafa Yilmaz¹

¹Gaziantep University, Department of Nuclear Medicine, Gaziantep, Turkey.
²Namık Kemal University, Department of Nuclear Medicine, Tekirdag, Turkey.

Abstract

Background: The aim of this retrospective study is to evaluate whether diagnostic 131I whole body scan (DWBS) performed 6-12 months after thyroid remnant ablation is necessary or not in differentiated thyroid carcinoma (DTC) patients with thyroglobulin (Tg) levels under 2 ng/ml and negative anti-Tg antibodies.

Methods: The study included 812 DTC patients undergoing the first control DWBS with Tg levels under 2 ng/ml and negative anti-Tg antibodies in the hypothyroid state, 6 months after postsurgical radioablation of residual thyroid tissue. Second DWBS was performed 18 months after ablative 131I treatment (AIT) to 572 patients who had negative first control DWBS. These 572 patients had a stimulated Tg level under 2 ng/ml at 18th month control.

Results: The first control DWBS, 6 months after thyroid ablation, was negative in 789 (97.2%) patients and was positive for minimal residual uptake in the thyroid bed in 23 (2.8%) patients. Nine of the 23 patients with residual thyroid bed uptake, received a second dose of radioiodine therapy for complementary ablation of residual thyroid. Fourteen patients were not retreated. Second DWBS performed 18 months after AIT, was negative in all patients.

Conclusion: Our data suggest that in patients with stimulated Tg level under 2 ng/ml, DWBS performed 6 months after AIT, is informative only in minority of patients for residual uptake in the thyroid bed which is usually clinically not relevant. Therefore, we suggest that the DWBS may be avoided in patients with stimulated Tg level under 2 ng/ml.

Keywords: Diagnostic whole body 131I scan, Thyroglobulin, 131I ablation treatment, thyroid carcinoma

Introduction

Differentiated thyroid carcinoma (DTC) is a common malignancy with excellent survival rates [1]. Post surgical thyroid remnant ablation and suppression of thyroid-stimulating hormone (TSH) is a key element in treatment for DTC patients [2,3]. Life long follow-up of patients is important because recurrences may occur [4–6]. The follow-up of these patients mainly includes serum thyroglobulin (Tg) measurements and diagnostic 131I whole-body scan (DWBS). Six months after thyroid ablation in the hypothyroid state, undetectable Tg levels with negative DWBS results are usually associated with complete remission, provided that anti-Tg antibodies are not present in the circulation, whereas detectable or elevated serum Tg levels correlate with persistent disease [7,8]. Serum Tg measurement is a more sensitive test than DWBS to detect residual functioning thyroid cells, benign or malignant [9–11]. Serum Tg levels during thyroid hormone withdrawal usually are correlated with the results of DWBS [12,13]. However, discordant results of Tg measurements and DWBS have been reported [6,14–16]. A positive Tg test and negative DWBS were found in almost all of these cases [6,14–16]. In patients with undetectable Tg levels, DWBS may add the information of minimal residual uptake in the thyroid bed in a minority of cases which is usually clinically not relevant. Some studies have shown that the DWBS is almost no informative in patients with undetectable serum Tg and negative Tg antibodies [9,11]. On this basis, these researchers recommended to follow-up of DTC patients with serum Tg measurement alone and to abandon the routine use of DWBS.

The aim of this retrospective study is to evaluate whether DWBS performed 6 months after thyroid remnant ablation is necessary or not in DTC patients with Tg levels under 2 ng/ml and negative anti-Tg antibodies.

Methods

The study included 812 DTC patients (661 males, 151 females with mean age 45±14) undergoing the first control DWBS with Tg levels under 2 ng/ml and negative anti-Tg antibodies in the hypothyroid state, 6 months after postsurgical radioablation of residual thyroid tissue, between January 2008 and January 2013. Firstly, a near-total or total thyroidectomy was performed 6 months after postsurgical radioablation of residual thyroid tissue. Second DWBS was performed 5-10 days after

© 2013 Elboga et al; licensee Herbert Publications Ltd. This is an Open Access article distributed under the terms of Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0). This permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Soon after surgery, all patients underwent thyroid ablation with \(^{131}I\) treatment (AIT) to all patients. To control the AIT efficacy, DWBS was planned approximately 6 months later while the patients were off hormonal therapy. Three weeks before undergoing DWBS, patients discontinued taking triiodothyronine, and followed a low-iodine diet during that period. Just before DWBS, Tg and anti-Tg antibodies levels were measured when TSH>30 IU/ml. Tg levels were measured using immunoradiometric analyzer that uses paramagnetic microparticles and chemiluminescent detection technology with a lower detection limit of 0.2 ng/ml. After TSH stimulation, 5 mCi (185 MBq) I-131 was given orally to the patients and 2-3 days later, DWBS was performed to all patients.

Second DWBS was performed 18 months after AIT to 572 patients who had negative first control DWBS. Tg and anti-Tg antibodies levels were measured before second DWBS when TSH>30 IU/ml. During the follow-up, Tg and anti-Tg antibody levels were also measured in three months intervals while the patients on thyroid hormone replacement. Patients were followed up for the period of 6 months to 5 years. Statistical analysis and the calculations were performed using SPSS 11.0 for Windows. Differences were considered statistically significant at P<0.05.

Results

Soon after surgery, all patients underwent thyroid ablation with \(^{131}I\), at doses ranging from 75–100 mCi, followed by PWBS. Thyroid remnants were present on PWBS in all patients and there was no foci of pathologic radioiodine uptake outside the thyroid bed. Six months later, all patients underwent the first control DWBS and serum Tg measurement in the hypothyroid state. Thyroglobulin levels of all patients were measured just before DWBS after a low-iodine diet without hormone therapy when TSH>30 IU/ml. At this time, all patients had a serum Tg level under 2 ng/ml. The control DWBS, 6 months after thyroid ablation, was negative in 789 (97.2%) patients and was positive for residual uptake at different levels in the thyroid bed in 23 (2.8%) patients. No patient had scintigraphic or clinical evidence of local or distant metastases.

Nine of the 23 patients with residual thyroid bed uptake, received a second dose of radioiodine therapy for complementary ablation of residual thyroid. Retreated patients were scanned 6 months after second treatment with 5 mCi \(^{131}I\) and scan results were negative in all 9 patients. Fourteen patients were not retreated. A second DWBS was performed to these 14 patients approximately 1 year after first DWBS and second DWBS was negative in 3 patients and positive just like first DWBS in 11 patients. These 11 patients who had postablative thyroid remnant, were followed up 2-4 years and no signs for recurrence were detected. There was no statistically significant difference between Tg level and residual uptake in the thyroid bed on the first control DWBS (p=0.34), because Tg was undetectable (<0.2) in 16 patients and 0.8±0.5 ng/ml (range 0.3-1.6 ng/ml) in 7 patients.

Second DWBS performed 18 months after AIT, was negative in 572 (100%) patients and stimulated Tg levels of patients measured before second DWBS were under 2 ng/ml. PWBS, first control DWBS and second control DWBS results were given in Table 1.

Discussion

The principal diagnostic tests used in the follow-up of patients with DTC are serum Tg measurements and DWBS after surgery and radioiodine ablation [3]. Also neck ultrasonograpy (US) is an important component of follow-up and \(^{18}F\)-fluorodeoxyglucose-positron emission tomography (FDG-PET) can be useful in patients who have positive Tg level and negative radioiodine whole body scan. The follow-up is mainly based on serum Tg measurement. Tg is a thyroid-specific protein with a diameter of 660 kDa which is the precursor element of thyroid hormone biosynthesis [17]. It is secreted from either normal thyroid tissue or functioning malign cells of thyroid cancer. Ablation of remnant thyroid tissue after surgery improves the accuracy of long-term patient monitoring with serum Tg measurements [18,19]. Serum Tg can be measured during thyroid hormone treatment or after withdrawal of thyroid hormone.

Six months after remnant ablation, a negative DWBS and stimulated Tg level under 2 ng/ml suggest that the thyroid tissue is totally ablated. Normally, there is a concordance between DWBS and Tg levels, but sometimes discordance is seen. Majority of this situation is a positive Tg test and negative DWBS. Negative results from DWBS may be caused by factors such as an insufficient increase in serum TSH or iodine contamination [20]. Another reason for negative DWBS is dedifferentiation of the tumor, leading to a loss of its ability to trap iodine. Finally, metastases may be too small to detect by DWBS. PWBS may detect new foci of tumor not seen on DWBS in up to 50% of patients [14,21]. Serum Tg measurement is superior to DWBS for detecting residual or metastatic lesions in patients with DTC.

Many researchers have found that in their study populations, DWBS added no diagnostic value to that provided by stimulated Tg measurement on the follow-up patients with DTC [9,11,22-27]. On this basis, these researchers suggested that the follow-up to DTC patients on serum Tg measurement alone and to abandon the routine use of DWBS. Routine

Positive (%)	Negative (%)	
PWBS	812 (100%)	--
First control DWBS	23 (2.8%)	789 (97.2%)
Second control DWBS	--	572 (100%)
Local or distant metastasis	--	812 (100%)

Table 1. PWBS, first control DWBS and second control DWBS results.
DWBS is advised for patients positive for anti-Tg antibody [19]. Because the presence of anti-Tg antibodies, levels of Tg can be mistakenly low.

Baudin et al., concluded that DWBS has a limited role for the follow-up of DTC patients and they suggested that follow up should rely on serum Tg level and prognostic parameters [27]. Siegrid et al., indicated that routine DWBS added no diagnostic value to stimulated Tg measurement in a large population of patients with high risk DTC [26]. Pacini et al., found that the combination of measurement of recombinant human thyrotropin stimulated serum Tg levels and neck US had highest sensitivity (96%) and negative predictive value (99%) for monitoring patients with DTC [9]. In a study Calleux et al., incuding 210 patients with a Tg less than 1 ng/ml while they were hypothyroid, the control DWBS was negative in the large majority of patients (195/210) and positive in the thyroid bed in a minority of patients (15/210) [9]. In another study Pacini et al., found that, with the exception of persistent thyroid bed uptake in a minority of cases, the control DWBS is not informative that could influence the follow-up therapeutic strategy [11]. They showed that the control DWBS, 6 months after thyroid ablation, was negative in 225 (71.4%) patients and was positive for residual uptake in the thyroid bed in 90 (28.6%) patients when stimulated Tg level under 3 ng/ml. In our study, first control DWBS performed 6 months after AIT, was negative in 789 patients and was positive for residual uptake in the thyroid bed in 23 (28.6%) patients when stimulated Tg level under 2 ng/ml. Second DWBS performed 18 months after AIT to 572 patients who had negative first control DWBS, was negative again in all patients when stimulated Tg level under 2 ng/ml. There was no statistically significant difference between first and second control DWBS after AIT (p=0.31).

The results reported by Robbins et al., seem to differ from the other and our studies. They found that using cut-off of 2 ng/ml, stimulated Tg measurement alone failed to detect 13% of metastatic patients [29]. The DWBS was informative in nearly half of these cases. Therefore, they concluded that Tg measurement alone is insufficient to detect all recurrences or metastases and the combination of DWBS and serum Tg measurement was superior to serum Tg measurement alone.

Conclusion

Our data suggest that in patients with stimulated Tg level under 2 ng/ml, DWBS performed 6 months after AIT, is informative only in minority of patients for minimal residual uptake in the thyroid bed which is usually clinically not relevant. Therefore, we suggest that the DWBS may be avoided in patients with stimulated Tg level under 2 ng/ml. The follow-up of these patients may be continued with periodic serum Tg measurements, neck US and clinical examination. If the clinician prefer to perform DWBS on the first control 6-12 months after remnant ablation, there is no need to perform DWBS for subsequent follow-up of these patients except in cases with increased Tg levels. Diagnostic [31] whole-body scan may be benefical in patients with positive anti-Tg antibody. Also in patients with Tg levels higher than 2 ng/mL, DWBS is one of the methods that can be used to detect recurrent or metastatic disease.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Authors’ contributions	UE	EK	YC	HD	ES	MY
Research concept and design	✓	--	--	--	--	--
Collection and/or assembly of data	--	--	--	--	--	--
Data analysis and interpretation	--	✓	--	--	--	--
Writing the article	--	--	✓	--	--	--
Critical revision of the article	✓	--	✓	--	--	--
Final approval of article	--	--	✓	--	--	--
Statistical analysis	--	--	--	✓	--	--

Acknowledgement

All authors contributed towards the work in design of study, data acquisition analysis and interpretation, draft manuscript preparation and critical revision.

Publication history

Editor: Umid Kumar Shrestha, Manipal College of Medical Sciences, Nepal.
EIC: Fabio Angeli, University of Perugia, Italy.
Received: 28-Jul-2013 Revised: 25-Sep-2013
Re-revised: 27-Sep-2013 Accepted: 03-Oct-2013
Published: 22-Oct-2013

References

1. Sciuto R, Romano L, Rea S, Marandino F, Sperduti I and Maini CL. Natural history and clinical outcome of differentiated thyroid carcinoma: a retrospective analysis of 1503 patients treated at a single institution. Ann Oncol. 2009; 20:1728-35. | Article | PubMed
2. Mazzaferri EL and Robyn J. Postsurgical management of differentiated thyroid carcinoma. Otolaryngol Clin North Am. 1996; 29:637-62. | Article | PubMed
3. Schlumberger MJ. Papillary and follicular thyroid carcinoma. N Engl J Med. 1998; 338:297-306. | Article | PubMed
4. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McVier B, Pacini F, Schlumberger M, Sherman SI, Steward DL and Tuttle RM. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009; 19:1167-214. | Article | PubMed
5. Pacini F, Cetani F, Miccoli P, Mancusi F, Ceccarelli C, Lippi F, Martino E and Pinchera A. Outcome of 309 patients with metastatic differentiated thyroid carcinoma treated with radiiodine. World J Surg. 1994; 18:600-4. | Article | PubMed
6. Mazzaferri EL and Kloos RT. Clinical review 128: Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab. 2001; 86:1447-63. | Article | PubMed
7. Schlumberger M and Baudin E. Serum thyroglobulin determination in the follow-up of patients with differentiated thyroid carcinoma. Eur J Endocrinol. 1998; 138:249-52. | Article | PubMed
8. Spencer CA, LoPresti JS, Fatemi S and Nicoloff JT. Detection of residual and recurrent differentiated thyroid carcinoma by serum thyroglobulin measurement. Thyroid. 1999; 9:435-41. | Article | PubMed
9. Cailleux AF, Baudin E, Travagl JP, Ricard M and Schlumberger M. Is diagnostic iodine-131 scanning useful after total thyroid ablation for differentiated thyroid cancer? J Clin Endocrinol Metab. 2000; 85:175-8. | Article | PubMed

10. Mazzaferri EL and Klooos RT. Is diagnostic iodine-131 scanning with recombinant human TSH useful in the follow-up of differentiated thyroid cancer after thyroid ablation? J Clin Endocrinol Metab. 2002; 87:1490-8. | Article | PubMed

11. Pacini F, Capezzone M, Elisei R, Ceccarelli C, Taddei D and Pinchera A. Diagnostic 131-Iodine whole-body scan may be avoided in thyroid cancer patients who have undetectable stimulated serum Tg levels after initial treatment. J Clin Endocrinol Metab. 2002; 87:1499-501. | Article | PubMed

12. Ozata M, Suzuki S, Miyamoto T, Liu RT, Fierro-Navoy F and DeGroot LJ. Serum thyroglobulin in the follow-up of patients with treated differentiated thyroid cancer. J Clin Endocrinol Metab. 1994; 79:98-105. | Article | PubMed

13. Pacini F and Pinchera A. Serum and tissue thyroglobulin measurement: clinical applications in thyroid disease. Biochimie. 1999; 81:463-7. | Article | PubMed

14. Pacini F, Agate L, Elisei R, Capezzone M, Ceccarelli C, Lippi F, Molinaro E and Pinchera A. Outcome of differentiated thyroid cancer with detectable serum Tg and negative diagnostic (131)I whole body scan: comparison of patients treated with high (131)I activities versus untreated patients. J Clin Endocrinol Metab. 2001; 86:4092-7. | Article | PubMed

15. de Keizer B, Koppeschaar HP, Zelissen PM, Lips CJ, van Rijk PP, van Dijk A and de Klerk JM. Efficacy of high therapeutic doses of iodine-131 in patients with differentiated thyroid cancer and detectable serum thyroglobulin. Eur J Nucl Med. 2001; 28:198-202. | Article | PubMed

16. Koh JM, Kim ES, Ryu JS, Hong SJ, Kim WB and Shong YK. Effects of therapeutic doses of 131I in thyroid papillary carcinoma patients with elevated thyroglobulin level and negative 131I whole-body scan: comparative study. Clin Endocrinol (Oxf). 2003; 58:421-7. | Article | PubMed

17. Low TH, Delbridge L, Sidhu S, Learoyd D, Robinson B, Roach P and Sywak M. Lymph node status influences follow-up thyroglobulin levels in papillary thyroid cancer. Ann Surg Oncol. 2008; 15:2827-32. | Article | PubMed

18. Cooper DS, Doherty GM, Haugen BR, Klooos RT, Lee SL, Mandel SJ, Mazzaferri EL, McVier B, Sherman SI and Tuttle RM. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2006; 16:109-42. | PubMed

19. Pacini F, Schlumberger M, Drale H, Elisei R, Smit JW and Wiensing W. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006; 154:787-803. | Article | PubMed

20. Mazzaferri EL. Treating high thyroglobulin with radioiodine: a magic bullet or a shot in the dark? J Clin Endocrinol Metab. 1995; 80:1485-7. | Article | PubMed

21. Reynolds JC. Percent 131I uptake and post-therapy 131I scans: their role in the management of thyroid cancer. Thyroid. 1997; 7:281-4. | Article | PubMed

22. Verburg FA, de Keizer B, de Klerk JM, Lentjes EG, Lips CJ and van Iselt JW. Value of diagnostic radioiodine scintigraphy and thyroglobulin measurements after rHSTH injection. Nuklearmedizin. 2009; 48:26-9. | Article | PubMed

23. Huang SH, Wang PW, Huang YE, Chou FF, Liu RT, Tung SC, Chen JS, Kuo MC, Hsieh JR and Hsieh HH. Sequential follow-up of serum thyroglobulin and whole body scan in thyroid cancer patients without initial metastasis. Thyroid. 2006; 16:1273-8. | Article | PubMed

24. Taylor H, Hyer S, Vini L, Pratt B, Cook G and Harmer C. Diagnostic 131I whole body scan after thyroidectomy and ablation for differentiated thyroid cancer. Eur J Endocrinol. 2004; 150:649-53. | Article | PubMed

25. David A, Blotta A, Bondanelli M, Rossi R, Roti E, Braverman LE, Busutti L and degli Uberti EC. Serum thyroglobulin concentrations and (131)I whole-body scan results in patients with differentiated thyroid carcinoma after administration of recombinant human thyrotropin-stimulating hormone. J Nucl Med. 2001; 42:1470-5. | Article | PubMed

26. de Meer SG, Vrieis MR, Zelissen PM, Borel Rinkes IH and de Keizer B. The role of routine diagnostic radiodiode whole-body scintigraphy in patients with high-risk differentiated thyroid cancer. J Nucl Med. 2011; 52:56-9. | Article | PubMed

27. Baudin E, Do Cao C, Cailleux AF, Leboulleux S, Travagl JP and Schlumberger M. Positive predictive value of serum thyroglobulin levels, measured during the first year of follow-up after thyroid hormone withdrawal, in thyroid cancer patients. J Clin Endocrinol Metab. 2003; 88:1107-11. | Article | PubMed

28. Pacini F, Molinaro E, Castagna MG, Agate L, Elisei R, Ceccarelli C, Lippi F, Taddei D, Grasso L and Pinchera A. Recombinant human thyrotrpin-stimulated serum thyroglobulin combined with neck ultrasonography has the highest sensitivity in monitoring differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2003; 88:3668-73. | Article | PubMed

29. Robbins RJ, Chon JT, Fleisher M, Larson SM and Tuttle RM. Is the serum thyroglobulin response to recombinant human thyrotropin sufficient, by itself, to monitor for residual thyroid carcinoma? J Clin Endocrinol Metab. 2002; 87:3242-7. | Article | PubMed

Citation: Kalender E, Elboga U, Celen YZ, Demi HD, Sahin E and Yilmaz M. Is it necessary to perform control diagnostic 131I whole body scan after remnant ablation in differentiated thyroid carcinoma patients who have stimulated Tg levels under 2 ng/ml? Intern Med Inside. 2013; 1:10. http://dx.doi.org/10.7243/2052-6954-1-10