A Structure Theorem for Positive Density Sets
Having the Minimal Number of 3-Term
Arithmetic Progressions

Ernie Croot
February 17, 2022

Abstract
Assuming the well known conjecture that for any $\gamma > 0$ and x sufficiently large the interval $[x, x + x^\gamma]$ always contains a prime number, we prove the following unexpected result: There exist numbers $0 < \rho < 1$ arbitrarily close to 0, and arbitrarily large primes q, such that if S is any subset of $\mathbb{Z}/q\mathbb{Z}$ of density at least ρ, having the least number of 3-term arithmetic progressions among all such sets S (of density $\geq \rho$), then there exists an integer $1 \leq b \leq q - 1$ and a real number $0 < d < 1$ (depending only on ρ) such that

$$|S \cap (S + bj)| = |S| \left(1 - O\left(\frac{1}{|\log \rho|}\right)\right), \text{ for every } 0 \leq j < q^d.$$

This result says that S is “nearly translation invariant” in a very strong sense.

A curious feature of the proof is that F. A. Behrend’s result on large subsets of $\{1, 2, ..., x\}$ containing no 3-term arithmetic progressions is a key ingredient. The proof also uses exponential sums, a result of K. F. Roth, as well as a result of P. Varnavides.

1 Introduction
Given a subset S of $\mathbb{Z}/q\mathbb{Z}$, we will say that S has density ρ if $|S| = \rho q$. A well known result of K. F. Roth [2] asserts that for q sufficiently large, and
for \((\log \log q)^{-1} < \rho \leq 1\), any subset of \(\mathbb{Z}/q\mathbb{Z}\) having density at least \(\rho\), must contain a non-trivial three term arithmetic progression; that is, a triple of numbers, \(a, b, c\), \(a \not\equiv b \pmod{q}\), satisfying
\[
a + b \equiv 2c \pmod{q}.
\]

(1)

E. Szemerédi \cite{6}, R. Heath-Brown \cite{4}, and J. Bourgain \cite{2} have improved considerably on Roth’s result, with the Bourgain’s work being the most recent:

Theorem 1 (J. Bourgain) For \(q\) sufficiently large and

\[
B \sqrt{\frac{\log \log q}{\log q}} < \rho \leq 1, \text{ where } B > 0 \text{ is some constant},
\]

any subset of \(\mathbb{Z}/q\mathbb{Z}\) of density \(\rho\) contains a triple \(a, b, c\) (with \(a \neq b \neq c\)) satisfying \((1)\).

As a consequence of Roth’s result mentioned above, Varnavides \cite{7} proved the following

Theorem 2 (P. Varnavides) Given \(0 < \rho \leq 1\), and a sufficiently large prime \(q\), if \(S\) is any subset of \(\mathbb{Z}/q\mathbb{Z}\) of density \(\rho\), there exists \(\kappa > 0\) so that
\[
\mu_q(S) = \frac{\# \{a, b, c \in S : a + b \equiv 2c \pmod{q}\}}{q^2} > \kappa.
\]

In fact, one can take
\[
\kappa = \frac{\rho}{16h(\rho/2)^2},
\]
where \(h(\rho)\) is defined to be the least integer such that if \(m \geq h(\rho)\) and \(T\) is any subset of \(\{1, ..., m\}\) with density at least \(\rho\), then \(T\) contains a three term arithmetic progression.

The version of the theorem appearing in \cite{7} does not give such an explicit value for \(\kappa\), and the result is stated in terms of subsets of \(\{1, 2, ..., x\}\), rather
than \(\mathbb{Z}/q\mathbb{Z} \). For these reasons, we give our own proof of this result in section 3.

Although the function \(\mu_q(S) \) counts both non-trivial and trivial solutions to \(a + b \equiv 2c \pmod{q} \) (trivial means \(a \equiv b \equiv c \pmod{q} \)), if \(q \) is large enough in terms of \(\rho \), we can deduce that

\[
\frac{\# \{a, b, c \in S, a \neq b \pmod{q} : a + b \equiv 2c \pmod{q}\}}{q^2} > \kappa, \tag{2}
\]

since there can be at most \(|S| < q \) triples \(a, b, c \in S \) with \(a \equiv b \equiv c \pmod{q} \); and so, the contribution of these trivial solutions to \(\mu_q(S) \) is thus only \(O(1/q) \), which tends to 0 as \(q \) tends to infinity, which thus proves (2).

Combining Varnavides's and Bourgain's results, one can show that if \(S \) has density \(\geq \rho \) modulo \(q \), and if \(q \) is a sufficiently large prime, then

\[
\mu_q(S) \geq \exp \left(-D \frac{|\log \rho|}{\rho^2} \right), \tag{3}
\]

where \(D > 0 \) is an absolute constant.

It is of interest to try to find, for a given density \(0 < \rho \leq 1 \), the smallest value of \(\kappa \) so that the conclusion of Varnavides's theorem still holds. This smallest \(\kappa \) is given by the following function:

\[
r_q(\rho) = \min_{S \subseteq \mathbb{Z}/q\mathbb{Z}, |S| \geq \rho q} \mu_q(S).
\]

One approach to understanding \(r_q(\rho) \) is to try to understand the structure of critical sets, which are subsets \(S \) of \(\mathbb{Z}/q\mathbb{Z} \) of density \(\rho \) and

\[
\mu_q(S) = r_q(\rho).
\]

It would seem that the problem of understanding the structure of these critical sets is a much more difficult problem than that of understanding the behavior of \(r_q(\rho) \); and so, it would seem that we should try to make progress on the order of growth of \(r_q(\rho) \) by some other method first before trying to tackle questions about such sets. Even so, one might would think that they have very little structure; however, motivated by the main result of this paper (theorem 3), we have the following conjecture, which claims, on the contrary, that these sets have a considerable amount of additive structure:
Conjecture 1 Given $0 < \rho < 1$, and q sufficiently large, there exists $0 < d < 1$ such that if S is a critical set of $\mathbb{Z}/q\mathbb{Z}$ of density ρ, then there exists a number $1 \leq b \leq q - 1$ such that

$$|S \cap (S + jb)| > (1 - n(\rho))|S|,$$

for every $0 \leq j < q^d$,

where $n(\rho)$ is a function of ρ only, and which tends to 0 as ρ tends to 0.

The main theorem of the paper is a weakened version of this conjecture. Before we state it, first define

$$r(\rho) = \liminf_{q \geq 3 \text{ prime}} r_q(\rho).$$

We will need the following, famous conjecture from prime number theory:

Conjecture 2 Given $\theta > 0$, we have for all x sufficiently large that $[x, x+x^\theta]$ contains a prime number.

From [1] the conjecture is known to hold for all $\theta > 0.525$.

Our main theorem is as follows:

Theorem 3 Assume conjecture [2] holds. For any $0 < \rho_0 < 1$, there exist numbers $0 < \rho_1 < \rho_0$ and $0 < d < 1$, and infinitely many primes q such that the following holds: If $S \subseteq \mathbb{Z}/q\mathbb{Z}$ has density $\geq \rho_1$, and has the least number of 3-term arithemtic progressions modulo q among all sets of density $\geq \rho_1$ (that is, $\mu_q(S) = r_q(\rho_1)$), then there exists a number $1 \leq b \leq q - 1$ such that

$$|S \cap (S + bj)| \geq |S| \left(1 - O \left(\frac{1}{\log \rho_1}\right)\right),$$

for every $0 \leq j \leq q^d$,

where the implied constant in the big-O is absolute.

If we could prove the following conjecture on the behavior of $r_q(\rho)$, then we could remove the assumption that Conjecture [2] holds in the above theorem:

1At the end of the proof of Theorem 3 in section 2 we show how the truth of this conjecture implies this stronger version of our main theorem.
Conjecture 3 There exists a constant $A > 1$ such that for every $0 < \rho \leq 1$, every $0 < \theta < 1$, and n sufficiently large,

$$\frac{r_q(\rho)}{r_n(\rho)} \in \left[\frac{1}{A}, A\right],$$

for every $q \in [n, n + n^\theta]$.

We now briefly mention the main ideas and ingredients in the proof of Theorem 3 by describing how to prove a certain toy version of the theorem: For a given set of integers T having density at least ρ modulo q, define the exponential sum

$$f_T(t) = \sum_{s \in T} e(st),$$

where $e(u) = \exp(2\pi i u)$. Using the identity

$$\frac{1}{q} \sum_{j=0}^{q-1} e\left(\frac{ja}{q}\right) = \begin{cases} 1, & \text{if } q \text{ divides } a; \\ 0, & \text{if } q \text{ does not divide } a, \end{cases}$$

one can easily show that

$$q^2 \mu_q(T) = \#\{a, b, c \in T : a + b \equiv 2c \pmod{q}\} = \frac{1}{q} \sum_{|a| < q/2} f_T\left(\frac{a}{q}\right)^2 f_T\left(-\frac{2a}{q}\right). \quad (4)$$

It turns out that to estimate the sum on the right to within an error of size less than $\epsilon|T|q < \epsilon q^2$, we need only sum over values a in a set with at most $(\rho\epsilon^2)^{-1}$ elements. Now, given a critical set S of density ρ, we show that we can multiply the set by an integer (not divisible by q), to produce a new set W modulo q, where we think of W as being a subset of $\{0, 1, ..., q-1\}$, such that if

$$\left|f_W\left(\frac{a}{q}\right)\right| \geq \epsilon|W|, \left|\frac{a}{q}\right| < \frac{1}{2},$$

then

$$\left|\frac{a}{q}\right| < q^{-\epsilon^2}, \text{ and } a \text{ is divisible by } 4. \quad (5)$$

Now suppose that p is a prime number very close to $q/2$. As a consequence of (4), we show that the sum on the right-hand-side of (4) is, for small values
of ϵ,

$$q^2 \mu_\rho(T) \approx \frac{1}{q} \sum_{|a|<p/2} f_W \left(\frac{a}{p} \right)^2 f_W \left(\frac{-2a}{p} \right) = \frac{p}{q} \# \{ a, b, c \in W : a + b \equiv 2c \pmod{p} \}, \quad (6)$$

where, in this context, we will use the notation $u(x) \approx v(x)$ to loosely mean that the functions $u(x)$ is “extremely close” to $v(x)$; and, as $\epsilon \to 0$ and $q \to \infty$, the ratio of these two functions tends to 1.

Next, we show that for certain special values of ρ, the proportion of residue classes modulo p occupied by W is very nearly ρ; so, most residue classes modulo p contain either 0 or 2 elements of W. A consequence of this is that if V_0 is the set of all elements of W that are in $[0, p-1]$, and if V_1 is the set of all elements of W in $[p, q-1]$, then

$$|V_0 \cap (V_1 - p)| \geq |V_0| \left(1 - O \left(\frac{1}{|\log \rho|} \right) \right).$$

Using an additional trick that involves rotating the set W modulo q (translating by an integer k), we can show that

$$|W \cap (W - p)| \geq |W| \left(1 - O \left(\frac{1}{|\log \rho|} \right) \right),$$

and so there exists an integer b, not divisible by q, so that

$$|S \cap (S + b)| \geq |S| \left(1 - O \left(\frac{1}{|\log \rho|} \right) \right),$$

since the elements of S are multiples of elements of W modulo q. The additional parameter j in the intersection $S \cap (S + jb)$ stated in theorem 3 comes about via only a slight generalization of the above argument.

The way we deduce that the proportion of residue classes modulo p occupied by W is nearly the same as the proportion modulo q is as follows. First, we need the following result of F. A. Behrend:

Theorem 4 For sufficiently large q there exists a subset S of $\mathbb{Z}/q\mathbb{Z}$ with

$$|S| > \frac{q}{\exp(C \sqrt{\log q})},$$

for some constant $C > 0$,

such that S contains no three term arithmetic progressions modulo q. 6
As a consequence of this theorem, we show that

Corollary 1 Given $0 < \rho < 1$, we have that

$$r(\rho) \leq \left(-\frac{1}{C^2} \log^2(4\rho) \right).$$

So, Behrend’s result shows that the function $r(\rho)$ decays quite rapidly compared with ρ.

Now, W must occupy at least ρ of the residue classes modulo p. As a consequence of the above corollary, one can show that for certain values of ρ, if W had density more than

$$\rho \left(1 + \frac{G}{|\log \rho|} \right),$$

modulo p, where $G > 0$ is some particular constant, then the number of solutions $a + b \equiv 2c \pmod{p}$, $a, b, c \in W$, would have to be a large multiple of the number of such solutions modulo q, and so we would have that (6) could not hold.

The rest of the paper is organized as follows. In the next section, we give a proof of theorem 3 as well as an indication of how conjecture 3 can be used to replace the assumption that conjecture 2 holds. In several of the sections after the proof of the main theorem, we prove several propositions that are used in the proof of theorem 3 as well as in the proofs of other propositions. Finally, in section 7, we state and prove several technical lemmas and corollaries that appear throughout the paper.

2 Proof of Theorem 3.

We first pin down the value of ρ_1 for which we will prove that S satisfies the conclusion of the theorem, and the following proposition gives us the answer we seek:

2 In my terminology, “proposition” is synonymous with “large lemma” or perhaps “meta-theorem”; that is, a proposition is a result whose proof is either too large, or is too technical to be considered a lemma, yet is not sufficiently general or interesting to be considered a theorem.
Proposition 1 Suppose that $0 < \rho_0 < 1$ and $k > 1$. Then, there exists a number $0 < \rho_1 < \rho_0$ such that for all

$$\rho > \rho_1 \left(1 + \frac{2C^2 \log k}{\log \rho_1} \right),$$

we will have

$$r(\rho) > k \cdot r(\rho_1),$$

where C is the same constant that appears in Theorem 4 mentioned in the introduction.

The proof of this proposition appears in section 4.

We will assume henceforth that ρ_1 is any number satisfying the conclusion of this proposition for $k = 100$. Then, for $0 < \epsilon < 1$, to be chosen later, let q be any sufficiently large prime so that

$$r(\rho_1) > \frac{r_q(\rho_1)}{2}, \quad (7)$$

and so that for every prime

$$p \in \left[\frac{q}{2}, \frac{q}{2} + q^{\rho_1 \epsilon / 2} \right]$$

we have

$$r_p \left(\rho_1 \left(1 + \frac{2C^2 \log 100}{\log \rho_1} \right) \right) > \frac{1}{2} \cdot r \left(\rho_1 \left(1 + \frac{2C^2 \log 100}{\log \rho_1} \right) \right). \quad (8)$$

Note: Since we have assumed conjecture 2, we have that the interval above always contains a prime for sufficiently large q. We also note that every sufficiently large prime p will satisfy (8), and infinitely many primes q will satisfy (7). Thus, we will have that both (7) and (8) hold for infinitely many primes q.

Define the exponential sum

$$f_s(t) = \sum_{s \in S} e(st),$$
where \(e(u) = \exp(2\pi iu) \). We first claim that

\[
\# \left\{ a \in \mathbb{Z}, \ |a| < \frac{q}{2} : \ |f_s \left(\frac{a}{q} \right)| > \epsilon |S| \right\} \leq \frac{1}{\rho_1 \epsilon^2}.
\]

To see this, we have from Parseval’s identity (lemma 3 in section 7) that

\[
\sum_{|a|<q/2} \left| f_s \left(\frac{a}{q} \right) \right|^2 = q |S|.
\]

Now, if there were more than \((\rho_1 \epsilon^2)^{-1}\) values of \(a\) for which \(|f_s(a/q)| > \epsilon |S|\), then the sum on the left hand side would exceed \(|S|^2/\rho = q |S|\), and so couldn’t equal \(q |S|\) as claimed.

We next need the following lemma:

Lemma 1 There exists an integer \(1 \leq h \leq q - 1\) such that the set

\[
S' = hS = \{ hs \pmod{q} : s \in S \}
\]

has the property that

\[
\left| f_{S'} \left(\frac{a}{q} \right) \right| > \epsilon |S|, \ |a| \leq q/2 \implies |a| < q^{1-\rho_1 \epsilon^2}. \tag{9}
\]

The proof of this lemma makes use of the pigeonhole principle and can be found in section 7. Now, for integers \(k\) and \(1 \leq v < q^{\rho_1 \epsilon^2/4}\), to be chosen later, let

\[
W = W(k, v) = (4v)^{-1}S' + k = \{ (4v)^{-1}s + k \pmod{q} : s \in S' \}
= \{ (4v)^{-1}hs + k \pmod{q} : s \in S \}. \tag{10}
\]

We note that the number of solutions to \(a + b \equiv 2c \pmod{q}\), \(a, b, c \in W\), is the same as the number of solutions among the elements of \(S\); also, one can easily see that for \(|a| \leq q/2\),

\[
\left| f_{S'} \left(\frac{(4v)^{-1}a}{q} \right) \right| = \left| f_W \left(\frac{a}{q} \right) \right| > \epsilon |S| \implies |a| < 4v q^{1-\rho_1 \epsilon^2}, \text{ and } 4v|a|. \tag{11}
\]

We now require the following proposition:
Proposition 2 Suppose \(p \in [q/2, q/2 + q^{\rho_1^2/2}] \) and that \(1 \leq v \leq q^{\rho_1^2/4} \) is an integer. Then, for \(W = W(k, v) \), we have

\[
\mu_q(W) = \frac{p^3}{q^3} \mu_p(W) + O \left(\left(\frac{\epsilon}{\rho_1} \right)^{1/3} \rho_1^2 \right),
\]

where the constant in the big-O is absolute.

The proof of this result can be found in section 5.

Now suppose that \(R(k, v) \) is the set of residue classes modulo \(p \) that are occupied by \(W(k, v) \). If

\[
|R(k, v)| > \rho_1 \left(1 + \frac{2C^2 \log 100}{|\log \rho_1|} \right) p,
\]

then we would have from (7), (8), and proposition 2 that

\[
r(\rho_1) > \frac{r_q(\rho_1)}{2} = \frac{\mu_q(W)}{2} = \frac{p^3 \mu_p(W)}{2q^3} + O \left(\left(\frac{\epsilon}{\rho_1} \right)^{1/3} \rho_1^2 \right) \\
\geq \frac{p^3}{2q^3} \rho_1 \left(1 + \frac{2C^2 \log 100}{|\log \rho_1|} \right) + O \left(\left(\frac{\epsilon}{\rho_1} \right)^{1/3} \rho_1^2 \right) \\
> \frac{p^3}{4q^3} r(\rho_1) \left(1 + \frac{2C^2 \log 100}{|\log \rho_1|} \right) + O \left(\left(\frac{\epsilon}{\rho_1} \right)^{1/3} \rho_1^2 \right) \\
> \frac{100p^3}{4q^3} r(\rho_1) + O \left(\left(\frac{\epsilon}{\rho_1} \right)^{1/3} \rho_1^2 \right),
\]

which is impossible once \(\epsilon > 0 \) is small enough. Thus, we conclude

\[
\frac{|S|}{2} \leq |R(k, v)| \leq \rho_1 \left(1 + \frac{2C^2 \log 100}{|\log \rho_1|} \right) p \\
= |S| \left(\frac{1}{2} + O \left(\frac{1}{|\log \rho_1|} \right) \right);
\]

and so,

\[
|R(k, v)| = |S| \left(\frac{1}{2} + O \left(\frac{1}{|\log \rho_1|} \right) \right). \tag{12}
\]
This tells us that a typical residue class modulo p in $R(k, v)$ contains either 0 or 2 elements of $W(k, v)$; more precisely, it says that the number of progressions modulo p containing only one element of $W(k, v)$ is $O(|S|/|\log \rho_1|)$. Thus, if we let $W_0(k, v)$ denote the integers in $W(k, v)$ that lie in $[0, p-1]$, and if we let $W_1(k, v)$ denote the integers in $W(k, v)$ that lie in $[p, q-1]$, then our equation for $R(k, v)$ says that

$$|W_0(k, v) \cap (W_1(k, v) - p)| = |S| \left(\frac{1}{2} - O\left(\frac{1}{|\log \rho_1|}\right)\right).$$ \hspace{1cm} (13)

We will now show that

$$|W(0, v) \cap W(-p, v)| \geq |S| \left(1 - O\left(\frac{1}{|\log \rho_1|}\right)\right).$$ \hspace{1cm} (14)

Here is the proof: First, suppose that $w \in W_0(0, v) \cap (W_1(0, v) - p)$, and note that $0 \leq w \leq p - 1$. For such w we will have $w \in W(0, v) \cap W(-p, v)$. Next, suppose that $w - p \in W_0(-p, v) \cap (W_1(-p, v) - p)$, and note that $w \geq p$. For these integers w we will also have that $w \in W(0, v) \cap W(-p, v)$. Since the two sets of integers w considered are disjoint, we must have

$$|W(0, v) \cap W(-p, v)| \geq |W_0(0, v) \cap (W_1(0, v) - p)| + |W_0(-p, v) \cap (W_1(-p, v) - p)|,$$

and so (14) follows from this inequality and (13).

From this it follows that

$$|S \cap (S - (4v)h^{-1}p)| = |W(0, v) \cap W(-p, v)| \geq |S| \left(1 - O\left(\frac{1}{|\log \rho_1|}\right)\right),$$

which proves the theorem, since we can take v to be any integer in $[1, q^{\rho_1 c^2/4}]$. Note that here we are thinking of the set $S - (4v)h^{-1}p$ as a set of integers in $\{0, 1, ..., q - 1\}$.

The reason that conjecture 3 allows us to remove the assumption that conjecture 2 holds is as follows: The proof of the above theorem actually shows more than is stated. It shows that if S satisfies the hypotheses of the theorem, and if q is a prime satisfying

$$r(\rho_1) > \frac{r_q(\rho_1)}{2},$$

11
and if \(n \in (q/2, q/2 + q^{\rho_1^2/2}) \) is some integer all of whose non-trivial divisors are greater than \(q^{\rho_1^2/4} \), and which satisfies

\[
 r_n(\rho_2) > F r(\rho_2), \text{ where } 0 < F \leq 1 \text{ does not depend on } \rho_2, \tag{15}
\]

where

\[
 \rho_2 = \rho_1 \left(1 + \frac{2C^2 \log 100}{|\log \rho_1|} \right),
\]

then the conclusion of the theorem holds if \(q \) is sufficiently large. We know that this last condition (15) holds for all sufficiently large primes \(n \), but it is not clear that it holds for all sufficiently large integers.

Now, if we assume conjecture 3, then for every \(0 < \rho < 1 \) we will have that there exists \(A \geq 1 \) so that

\[
 r(\rho) = \liminf_{q \geq 3} r_q(\rho) \leq A \liminf_{n \geq 3} r_n(\rho). \tag{16}
\]

To see this, we first note from the result in [1], the interval \([n, n + n^{0.53}]\) contains a prime number. For each such \(n \), let \(p_n \) denote a prime in this interval. Then, from conjecture 3 we get that there exists an \(A > 0 \) (which does not depend on \(n \) or \(\rho_1 \)), such that

\[
 r_{p_n}(\rho) \leq A r_n(\rho),
\]

and this implies the inequality (16) above.

From (16) one now sees that (15) holds for all sufficiently large integers \(n \) (prime or not); and so, our assertion that conjecture 3 can be used to remove the assumption conjecture 2 follows.

3 Proof of Theorem 2

Suppose \(q > h(\rho/2) \). Set \(k = \lfloor h(\rho/2) \rfloor + 1 \), and let \(P \) be the set of all \(k \)-term arithmetic progressions \(a, a + d, a + 2d, \ldots, a + (k - 1)d \) modulo \(q \), \(d \) is not \(0 \) modulo \(q \). We treat the progression \(a + (k - 1)d, \ldots, a \) as distinct from \(a, \ldots, a + (k - 1)d \). Clearly,

\[
 |P| = q(q - 1),
\]
since there are \(q\) choices for \(a\) and \(q - 1\) choices for \(d\).

Given a progression \(h \in P\), we let

\[
R(h) = \frac{|h \cap S|}{k}.
\]

If \(R(h) \geq \rho/2\), then \(h \cap S\) must contain a non-trivial 3-term arithmetic progression, from the way we have defined \(h(\rho)\) (and \(h(\rho/2)\)). When \(q\) is sufficiently large, such a progression can obviously only be a subset of at most \(k^2\) progressions \(h \in P\); and so, for \(q\) sufficiently large,

\[
q^2 \mu_q(S) = \# \{a, b, c \in S : a + b \equiv 2c \pmod{q}\} \geq \frac{\# \{h \in P : R(h) \geq \rho/2\}}{k^2}.
\]
(17)

To bound this last quantity from below, we first note that

\[
\sum_{h \in P} R(h) = \frac{1}{k} \sum_{h \in P} |S \cap h| = \frac{1}{k} \sum_{s \in S} \sum_{h \in P, s \in h} 1 = \frac{1}{k} \sum_{s \in S} k(q - 1) = |S|(q - 1).
\]

The second to the last line follows since each \(s \in S\) can be in any one of the \(k\) terms of a \(k\)-term progression (hence the factor \(k\)); and, once this term is specified, there are \(q - 1\) choices for the common difference of such a progression (that \(s\) lies in).

Now, we get

\[
\sum_{\substack{h \in P \quad | \quad R(h) \geq \rho/2}} 1 \geq \sum_{h \in P} \left(R(h) - \frac{\rho}{2}\right) \geq |S|(q - 1) - \frac{\rho}{2} |P| = \rho q (q - 1) - \frac{\rho}{2} q(q - 1) \geq \frac{\rho q^2}{4}.
\]

Combining this with (17) now gives

\[
\mu_q(S) \geq \frac{\rho}{4k^2} \geq \frac{\rho}{16r(\rho/2)^2}.
\]
which proves the theorem.

4 Proof of Proposition 1

As a consequence of theorem 4 and corollary 1, both of which appear in the introduction, we have the following lemma, which we will need for our proof:

Lemma 2 For any sequence of numbers \(x_1, x_2, x_3, ... \) in \([0,1]\) that converges to 0, there are infinitely many integers \(n \) such that

\[
\frac{r(x_{n+1})}{r(x_n)} < \exp \left(-\frac{1}{2C^2} \left(\log^2 x_{n+1} - \log^2 x_n \right) \right).
\]

Given \(k \geq 1 \) define the sequence

\[
x_1 = \exp(-2C^2 \log k), \quad x_{n+1} = x_n \left(1 - \frac{C^2 \log k}{|\log x_n|} \right).
\]

We note that \(x_1 \) was chosen so that the following holds for all \(n \geq 1 \):

\[
x_n < x_{n+1} \left(1 + \frac{2C^2 \log k}{|\log x_{n+1}|} \right),
\]

for \(x_n \) sufficiently close to 0.

Clearly this sequence tends to 0 and lies in \([0,1]\). Thus, the conditions of the above lemma are satisfied; and so there exist terms \(x_n \) arbitrarily close to 0 such that

\[
\frac{r(x_{n+1})}{r(x_n)} < \exp \left(-\frac{1}{2C^2} \left(\log^2 \left(x_n \left(1 - \frac{C^2 \log k}{|\log x_n|} \right) \right) - \log^2 x_n \right) \right)
\]

\[
= \exp \left(-\frac{1}{2C^2} \left(\log x_n + \log \left(1 - \frac{C^2 \log k}{|\log x_n|} \right)^2 - \log^2 x_n \right) \right)
\]

\[
< \exp \left(-\frac{1}{2C^2} \left(\log x_n - \frac{C^2 \log k}{|\log x_n|} \right)^2 - \log^2 x_n \right)
\]

\[
= \exp \left(-\frac{1}{2C^2} \left(2C^2 \log k + \frac{C^4 \log^2 k}{\log^2 x_n} \right) \right)
\]

\[
< \exp (-\log k) = \frac{1}{k}.
\]
Now, if we let \(\rho_1 = x_{n+1} \), where \(x_n \) and \(x_{n+1} \) satisfy the conclusion of the lemma above, and so that \(x_{n+1} \) lies in \((0, \rho_0)\), then

\[
\rho > \rho_1 \left(1 + \frac{2C^2 \log k}{|\log \rho_1|} \right),
\]

implies \(r(\rho) \geq r(x_n) \), which implies that

\[
\frac{r(\rho_1)}{r(\rho)} \leq \frac{r(x_{n+1})}{r(x_n)} < \frac{1}{k}.
\]

5 Proof of Proposition 2

We note that

\[
p^2 \mu_p(W) = \#\{x, y, z \in W : x + y \equiv 2z \pmod{p}\} = \frac{1}{p} \sum_{|a| < p/2} f_W \left(\frac{a}{p} \right)^2 f_W \left(\frac{-2a}{p} \right) = \Sigma_1 + \Sigma_2,
\]

where \(\Sigma_1 \) is the contribution of the terms when we sum with \(|a| < 5vq^{1-\rho_1 \epsilon^2} \), and \(\Sigma_2 \) is the contribution coming from terms with \(5vq^{1-\rho_1 \epsilon^2} \leq |a| < p/2 \).

We will now show that \(\Sigma_1 \) gives a good approximation to the sum in (18). First, we will require the following two results:

Proposition 3 For

\[
5vq^{-\rho_1 \epsilon^2} \leq |u| \leq \frac{1}{2},
\]

for \(\epsilon > 0 \) sufficiently small, and \(q \) sufficiently large, we have that

\[
|f_W(u)| < 2\pi \left(\frac{\epsilon}{\rho_1} \right)^{1/3} |S|.
\]

Lemma 3 Suppose \(|2b| < Q \) and that \(p = q/2 + \delta \), where \(Q|\delta| < q/3 \). Then, we have that

\[
f_W \left(\frac{2b}{q} \right) = f_W \left(\frac{b}{p} \right) + O \left(\frac{\delta Q|S|}{q} \right).
\]
Note: The proof of proposition 3 can be found in section 6 and the proof of lemma 3 can be found in section 7.

We now establish that

$$5vq^{-\rho_1\epsilon^2} \leq |a| < p/2 \implies f_W \left(\frac{-2a}{p} \right) = O \left(\left(\frac{\epsilon}{\rho_1} \right)^{1/3} |S| \right). \quad (20)$$

The proof goes as follows: Suppose $5vq^{-\rho_1\epsilon^2} \leq |a| < p/2$, and let b be the number in $(-p/2, p/2)$ that is congruent to $-2a$ modulo p. If $|b| < 5vq^{-\rho_1\epsilon^2}$, then b must be odd, and so from lemma 3 we have that

$$f_W \left(\frac{-2a}{p} \right) = f_W \left(\frac{2b}{q} \right) + O \left(\epsilon \rho_1^{1/4} \right) = O(\epsilon |S|),$$

where the last inequality follows from (11) since b is odd. If $|b| \geq 5vq^{-\rho_1\epsilon^2}$, then we have from proposition 3 that $f_W(b/p)$ is $O((\epsilon \rho_1^{-1})^{1/3} |S|)$. Thus, (20) follows.

From (20) and Parseval's identity we get

$$|\Sigma_2| = O \left(\frac{|S|}{p} \left(\frac{\epsilon}{\rho_1} \right)^{1/3} \right) \sum_{5q^{-\rho_1\epsilon^2} \leq |a| < p/2} \left| f_W \left(\frac{a}{p} \right) \right|^2$$

$$= O \left(|S|^2 \left(\frac{\epsilon}{\rho_1} \right)^{1/3} \right). \quad (21)$$

Applying corollary 2, which appears just after the statement of Parseval's identity in section 7 and makes use of Parseval's identity and Cauchy's inequality, together with lemma 3, we get that

$$\Sigma_1 = \frac{1}{p} \sum_{|a| \leq 5vq^{-\rho_1\epsilon^2}} f_W \left(\frac{a}{p} \right)^2 \left(f_W \left(\frac{-4a}{q} \right) + O(\epsilon^{-1/3} \rho_1^{1/4}) \right)$$

$$= \frac{1}{p} \sum_{|a| \leq 5vq^{-\rho_1\epsilon^2}} f_W \left(\frac{a}{p} \right)^2 f_{S''} \left(\frac{-4a}{q} \right) + O \left(\epsilon^{-1/4} \rho_1^{1/4} \right)$$

$$= \frac{1}{p} \sum_{|a| \leq 5vq^{-\rho_1\epsilon^2}} f_W \left(\frac{a}{p} \right) f_W \left(\frac{-4a}{q} \right)$$

$$\times \left(f_W \left(\frac{2a}{q} \right) + O(\epsilon^{-1/3} \rho_1^{1/4}) \right) + O \left(\epsilon^{-1/4} \rho_1^{1/4} \right)$$

16
\[\sum_{|a| \leq 10vq^{1-\rho_1^2}} f_W\left(\frac{a}{q}\right) f_W\left(-\frac{2a}{q}\right) + O\left(q^{2-\rho_1^2/4}\right) \]

\[= \frac{1}{p} \sum_{|a| \leq 5vq^{1-\rho_1^2}} f_W\left(\frac{2a}{q}\right) f_W\left(-\frac{4a}{q}\right) \times \left(f_W\left(\frac{2a}{q}\right) + O(q^{1-\rho_1^2/4})\right) + O\left(q^{2-\rho_1^2/4}\right) \]

\[= \frac{1}{p} \sum_{|a| \leq 5vq^{1-\rho_1^2}} f_W\left(\frac{2a}{q}\right)^2 f_W\left(-\frac{4a}{q}\right) + O\left(q^{2-\rho_1^2/4}\right) \]

\[= \frac{1}{p} \sum_{|a| \leq 10vq^{1-\rho_1^2}} f_W\left(\frac{a}{q}\right)^2 f_W\left(-\frac{2a}{q}\right) + O(q^{2-\rho_1^2/4}). \tag{22} \]

Let \(J \) be the set of all integers \(a \) where either \(|a| \leq 10vq^{1-\rho_1^2} \) and \(a \) is odd, or where \(10vq^{1-\rho_1^2} < |a| < q/2 \). Note that this set \(J \) is the set of all integers \(a \) “missing” from the sum in the last line of (22). For each \(a \in J \), let \(|b| < q/2\) be congruent to \(-2a \pmod{q}\). We will show that for each such \(a \in J \),

\[f_W\left(-\frac{2a}{q}\right) = f_W\left(\frac{b}{q}\right) = O(\varepsilon|S|). \tag{23} \]

To see this, we first consider the case where \(10vq^{1-\rho_1^2} < |a| < q/2 \). For this case, either \(b \) is odd, or else \(|b| > 10vq^{1-\rho_1^2}\). In either case, we deduce (23) from (11). For the case \(|a| \leq 10vq^{1-\rho_1^2} \), \(a \) odd, we also get from (11) that (23) holds, because \(-2a\) is not divisible by 4.

Now, by Parseval’s identity we have that

\[\frac{1}{p} \sum_{a \in J} f_W\left(\frac{a}{q}\right)^2 f_W\left(-\frac{2a}{q}\right) = O\left(\frac{|S|}{p} \sum_{|a| < q/2} \left|f_W\left(\frac{a}{q}\right)\right|^2\right) \]

\[= O(\varepsilon|S|^2). \tag{24} \]

Thus, from (22) and (24) we get

\[\Sigma_1 = \frac{1}{p} \sum_{|a| < q/2} f_W\left(\frac{a}{q}\right)^2 f_W\left(-\frac{2a}{q}\right) + O\left(\varepsilon|S|^2\right) \]
\[
\frac{q^3}{p} \mu_q(W) + O(\epsilon |S|^2).
\]
Combining this with our estimate for \(\Sigma_2 \) above, as well as (18), we have

\[
p^2 \mu_p(W) = \Sigma_1 + \Sigma_2 = \frac{q^3}{p} \mu_q(W) + O \left(\left(\frac{\epsilon}{\rho_1} \right)^{1/3} |S|^2 \right),
\]
which proves the proposition.

6 Proof of Proposition 3

Suppose that \(u \) satisfies (19), and let \(a \) be any integer so that

\[
\left| u - \frac{a}{q} \right| \leq \frac{1}{2q}.
\]
Since the set \(W \) satisfies (11), we have that

if \(b \in \mathbb{Z} \), \(|b| < \nu q^{1-\rho_1 \epsilon^2} - 1 \), then

\[
\left| f_W \left(\frac{a-b}{q} \right) \right| \leq \epsilon |S|.
\]
One basic consequence of this fact is the following lemma, which is proved in section 7:

\textbf{Lemma 4} If \(N \) and \(H \) are non-negative integers such that \([N+1, N+H] \subseteq [0, q-1] \), \(u \) satisfies (20), \(\epsilon > 0 \) is sufficiently small, and \(q \) is sufficiently large in terms of \(\rho \) and \(\epsilon \), then we have that

\[
\left| \sum_{s \in W} e \left(sa \right) \right| < 2 |S| \left(\frac{\epsilon H}{\rho_1 q} \right)^{1/3}.
\]
To finish the proof of our proposition, we apply this lemma together with partial summation: Let \(\delta = u - a/q \), and observe that \(|\delta| \leq 1/(2q) \). Let

\[
h(x) = \sum_{s \leq x} e \left(\frac{sa}{q} \right).
\]
Then, we have
\[
|f_W(u)| = |f_W\left(\frac{a}{q} + \delta\right)| = \left|\int_0^q e(\delta x) dh(x)\right|
\]
\[
= \left|e(\delta x)h(x)|_0^q - 2\pi i \delta \int_0^q e(\delta x) h(x) dx\right|
\]
\[
\leq |f_W\left(\frac{a}{q}\right)| + 2\pi \delta \int_0^q |h(x)| dx
\]
\[
\leq |f_W\left(\frac{a}{q}\right)| + 4\pi \delta |S| \left(\frac{e}{\rho_1 q}\right)^{1/3} \int_0^q x^{1/3} dx
\]
\[
\leq \left(\epsilon + 3\pi \delta q \left(\frac{e}{\rho_1}\right)^{1/3}\right) |S|.
\]

Using the fact that $|\delta| < 1/(2q)$, the proposition now follows.

7 Technical Lemmas

In this section we will state a few technical lemmas that were used throughout the paper, as well as provide proofs of these and other lemmas appearing in the paper.

Lemma 5 For $-1/2 \leq t \leq 1/2$, $t \neq 0$, we have
\[
\left|\sum_{j=N+1}^{N+H} e(jt)\right| \leq \min\left(H, \frac{1}{2|t|}\right).
\]

Lemma 6 (Parseval’s Identity) If
\[
f(t) = \sum_{j=0}^{q-1} \lambda_j e(jt),
\]
then
\[
\sum_{a=0}^{q-1} \left|f\left(\frac{a}{q}\right)\right|^2 = q \sum_{j=0}^{q-1} |\lambda_j|^2.
\]
An almost immediate corollary of this lemma, which follows by combining it with Cauchy’s inequality, is as follows:

Corollary 2 Suppose \(W \subseteq \{0, 1, ..., q-1\} \), that \(q/2 < p < 2q \), and that both \(b_1 \) and \(b_2 \) are integers such that \((b_1, q) = (b_2, p) = 1\). Then, we have

\[
\sum_{|a|<q/2} \left| f_W\left(\frac{b_1 a}{q}\right) \right| \left| f_W\left(\frac{b_2 a}{p}\right) \right| = O(q|S|).
\]

The proof of this result appears at the end of this section.

Proof of Corollary

Set

\[
L(x) = \exp(C \sqrt{\log x}),
\]

where \(C \) is as given in theorem 4. Let \(x \) be the integer satisfying

\[
4L(x) < \frac{1}{\rho} \leq 4L(x + 1),
\]

and suppose that \(q \) is any prime larger than \(4x \). Further, let \(S \subseteq \{1, 2, ..., x\} \) be any set of density at least \(L(x)^{-1} \) having only trivial 3-term arithmetic progressions, as given by Theorem 4.

Define the set

\[
T \subseteq \left\{ 0, 1, 2, ..., \frac{q-1}{2} \right\}
\]

as follows:

\[
T = \left\{ s + 2kx : s \in S, \ 0 \leq k \leq K = \left\lfloor \frac{q}{4x} \right\rfloor \right\}.
\]

Note that

\[
\frac{|T|}{q} = \frac{|S|(K + 1)}{q} > \frac{|S|}{4x} > \frac{1}{4L(x)} > \rho,
\]

and so we see that \(T \) contains density \(> \rho \) of the residue classes modulo \(q \).

We note that if \(a, b, c \in T, \ 0 \leq a, b, c \leq q - 1 \), then

\[
a + b = 2c \iff a + b \equiv 2c \pmod{q},
\]

20
since T satisfies (27); also, since S contains only trivial 3-term arithmetic progressions, we have that
\[a + b = 2c \iff a = s + 2xk, \ b = s + 2x(k + d), \ c = s + 2x(k + d), \]
where $s \in S$. Thus, the number of triples $a, b, c \in T$ satisfying $a + b = 2c$ is at most
\[|S| \#\{k, d : 0 \leq k < k + d < k + 2d < K\} < |S|K^2 \leq \frac{q^2}{x + 1} \leq \frac{q^2}{\exp\left(\frac{1}{x^2 \log^2(4\rho)}\right)}, \]
which proves the corollary.

Proof of Lemma 1

The proof is via the pigeonhole principle: Let a_1, \ldots, a_t be all the integers in $(0, q/2)$ such that
\[|f\left(\frac{a}{q}\right)| > \epsilon |S|, \quad (28) \]
for $a = a_1, \ldots, a_t$.

We have that $t \leq (\rho_1 \epsilon^2)^{-1}/2$. To see this, first note that $|f_S(a/q)| = |f_S(-a/q)|$, and so the number of integers a in $(0, q/2)$ satisfying (28) is at most half the total number of integers a with $|a| < q/2$ satisfying (28), and this total number we know to be at most $(\rho_1 \epsilon^2)^{-1}$.

Now, we note that to prove the lemma, it suffices to find an integer $1 \leq j \leq q - 1$ such that if b_1, \ldots, b_t are the smallest numbers in absolute value that are congruent to ja_1, \ldots, ja_t modulo q, respectively, then
\[|b_i| \leq q^{1-\rho_1 \epsilon^2}, \text{ for all } i = 1, 2, \ldots, t. \quad (29) \]
For if so, then if we let $h \equiv j^{-1} \pmod{q}$ and $S' = hS$, then we get that
\[|f_S\left(\frac{hb}{q}\right)| = |f_{S'}\left(\frac{b}{q}\right)| > \epsilon |S| = \epsilon |S'| \]
\[\iff hb \equiv \pm a_i \pmod{q} \text{ where } i = 1, 2, \ldots, t, \]
or $b \equiv 0 \pmod{q}$;
but then this would mean that either \(b \equiv 0 \mod q \) or
\[
 \begin{align*}
 b \equiv \pm h^{-1}a_i \equiv \pm ja_i \equiv \pm b_i \mod q,
 \end{align*}
\]
which means that the least residue in absolute value of \(b \mod q \) is \(\leq q^{1-\rho_1 \epsilon^2} \).

We now show how to find an integer \(1 \leq j \leq q - 1 \) so that (29) holds:
Partition the cube \([0, q - 1]^t\) into the sub-cubes
\[
 \begin{align*}
 & [j_1 q^{1-\rho_1 \epsilon^2}, (j_1 + 1) q^{1-\rho_1 \epsilon^2}] \times [j_2 q^{1-\rho_1 \epsilon^2}, (j_2 + 1) q^{1-\rho_1 \epsilon^2}] \\
 & \times \cdots \times [j_t q^{1-\rho_1 \epsilon^2}, (j_t + 1) q^{1-\rho_1 \epsilon^2}],
 \end{align*}
\]
where \(0 \leq j_1, \ldots, j_t < q^{\rho_1 \epsilon^2} \). Clearly, there are at most
\[
 \left(q^{\rho_1 \epsilon^2} + 1 \right)^t < q
\]
such sub-cubes. Now, consider the sequence
\[
 (ra_1 \mod q, ra_2 \mod q, \ldots, ra_t \mod q), \quad \text{where } 0 \leq r \leq q - 1.
\]
Since this sequence contains \(q \) terms that lie inside the box \([0, q - 1]^t\), we must have that at least two of these terms lie in the same sub-cube. If \(r = r_1 \) and \(r = r_2 \) are two such terms that correspond to points lying in the same sub-cube, then it follows that
\[
 ((r_1 - r_2)a_1 \mod q, \ldots, (r_1 - r_2)a_t \mod q) \in [-q^{1-\rho_1 \epsilon^2}, q^{1-\rho_1 \epsilon^2}],
\]
where here we take the least residue in absolute value for the entries. Letting \(j = |r_1 - r_2| \) satisfies (29). We now have that (9) follows for this choice of \(j \) (and \(h \)).

Proof of Lemma 2

If the conclusion of the lemma were false, then there exists \(N \geq 1 \) so that if \(n > N \), then
\[
 \frac{r(x_{n+1})}{r(x_n)} \geq \exp \left(-\frac{1}{2C^2} \left(\log^2 x_{n+1} - \log^2 x_n \right) \right).
\]
Thus, for any \(n > N \),
\[
 r(x_n) = r(x_N) \prod_{j=N+1}^{n} \frac{r(x_j)}{r(x_{j-1})} \geq r(x_N) \exp \left(-\frac{1}{2C^2} \left(\log^2 x_n - \log^2 x_N \right) \right).
\]

\[(30) \]
Noting here that \(r(x_N) > 0 \), which follows from (3) from the introduction, we arrive at a contradiction, because from proposition \([4]\) we get that

\[
r(x_n) < \exp \left(-\frac{1}{C^2} \log^2 x_n \right),
\]

which cannot be consistent with (30) once \(x_n \) is small enough (that is, once \(n \) is large enough), Thus, the lemma follows.

Proof of Lemma 3

If \(|2b| \leq Q \), and if \(0 \leq s \leq q - 1 \), then we have that

\[
e \left(\frac{2bs}{2p - 2\delta} \right) = e \left(\frac{2bs}{2p} + \frac{2\delta}{2p(2p - 2\delta)} \right) = e \left(\frac{bs}{p} \right) \left(1 + O \left(\frac{bs\delta}{p(2p - 2\delta)} \right) \right) = e \left(\frac{bs}{p} \right) + O \left(\frac{\delta Q}{q} \right).
\]

So,

\[
f_W \left(\frac{2b}{q} \right) = \sum_{s \in W} e \left(\frac{2bs}{q} \right) = \sum_{s \in W} \left(e \left(\frac{bs}{p} \right) + O \left(\frac{\delta Q}{q} \right) \right) = f_W \left(\frac{b}{p} \right) + O \left(\frac{\delta Q |S|}{q} \right),
\]

which proves the lemma.

Proof of Lemma 4

For \([N + 1, N + H] \subseteq [0, q - 1] \), let

\[
g(t) = \sum_{s \in W, s \in [N+1,N+H]} e(st),
\]

set

\[
D(t) = \sum_{j=N+1}^{N+H} e(jt),
\]

23
and let
\[0 \leq K < vq^{1-\rho_1\epsilon^2} - 1 < q^{1-3\rho_1\epsilon^2/4} - 1 \tag{31} \]
be some parameter, which is to be chosen later.

Then, we have for \(a \) satisfying (25) and \(u \) satisfying (19),
\[
\left| g \left(\frac{a}{q} \right) \right| = \left| \frac{1}{q} \sum_{|b|<q/2} D \left(\frac{b}{q} \right) f \left(\frac{a-b}{q} \right) \right| \\
\leq \frac{1}{q} \sum_{|b|\leq K} \left| D \left(\frac{b}{q} \right) \right| \left| f \left(\frac{a-b}{q} \right) \right| + \Sigma \\
\leq \frac{2\epsilon KH|S|}{q} + \Sigma, \tag{32}
\]
where
\[
\Sigma = \frac{1}{q} \sum_{K<|b|\leq q/2} \left| D \left(\frac{b}{q} \right) \right| \left| f \left(\frac{a-b}{q} \right) \right|.
\]
We note that the last line of (32) follows from (26).

To bound \(\Sigma \) from above we will use Cauchy’s inequality, Parseval’s identity, and the upper bound for \(|D(t)|\) given by Lemma \(\text{[6]} \) (which appears at the beginning of this section). We have
\[
\Sigma \leq \frac{1}{q} \left(\sum_{K<|b|\leq q/2} \left| D \left(\frac{b}{q} \right) \right|^2 \right)^{1/2} \left(\sum_{K<|b|\leq q/2} \left| f \left(\frac{a-b}{q} \right) \right|^2 \right)^{1/2} \\
< \frac{1}{q} \left(\sum_{|b|>K} \frac{q^2}{4b^2} \right)^{1/2} \left(\sum_{j=0}^{q-1} \left| f \left(\frac{j}{q} \right) \right|^2 \right)^{1/2} \\
< \frac{1}{2} \sqrt{q|S|} \leq \frac{|S|}{2} \sqrt{\frac{1}{\rho_1 K}}.
\]

The value of \(K \) that minimizes the last line of (32) is
\[
K = \left(\frac{q^2}{16\rho_1\epsilon^2H^2} \right)^{1/3}.
\]

24
and we note that for \(q \) sufficiently large and \(\epsilon > 0 \) sufficiently small this will satisfy (31); and, with this choice of \(K \), we get that

\[
\left| g \left(\frac{a}{q} \right) \right| < 2|S| \left(\frac{\epsilon H}{\rho_1 q} \right)^{1/3},
\]

which proves the lemma.

Proof of Lemma 5. From the geometric series identity, we have for \(t \neq 0 \),

\[
\left| \sum_{j=N+1}^{N+H} e(jt) \right| = \left| \frac{e(Ht) - 1}{e(t) - 1} \right| \leq \frac{2}{|e(t/2) - e(-t/2)|} = \frac{1}{\sin(\pi |t|)} \leq \frac{1}{2|t|}.
\]

The last inequality follows from the fact that for \(0 \leq u \leq \pi/2 \),

\[
\sin(u) \geq \frac{2u}{\pi}.
\]

Proof of Corollary 2. From Parseval’s identity and Cauchy’s inequality we have:

\[
\sum_{|a|<q/2} \left| f_W \left(\frac{b_1 a}{q} \right) \right| \left| f_W \left(\frac{b_2 a}{p} \right) \right| \\
\leq \left(\sum_{|a|<q/2} \left| f_W \left(\frac{b_1 a}{q} \right) \right|^2 \right)^{1/2} \left(\sum_{|a|<q/2} \left| f_W \left(\frac{b_2 a}{p} \right) \right|^2 \right)^{1/2} \\
\leq \left(\sum_{|a|<q/2} \left| f_W \left(\frac{a}{q} \right) \right|^2 \right)^{1/2} \left(2 \sum_{|a|<p/2} \left| f_W \left(\frac{a}{p} \right) \right|^2 \right)^{1/2} \\
\leq (q|S|)^{1/2} (8p|S|)^{1/2} = O(q|S|).
\]

(33)
8 Acknowledgements

I would like to thank Ben Green for pointing out the reference [7] below in an email many months ago, related to an earlier paper of mine.

References

[1] R. C. Baker, G. Harman, J. Pintz, The Difference Between Consecutive Primes, II, Proc. London Math. Soc. 83 (2001), 532-562.

[2] J. Bourgain, On Triples in Arithmetic Progression, Geom. and Funct. Anal. 9 (1999), 968-984.

[3] F. A. Behrend, On Sets of Integers Which Contain No Three Terms in Arithmetical Progression, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 331-332.

[4] R. Heath-Brown, Integer Sets Containing No Arithmetic Progressions, J. London Math. Soc. 35 (1987), 385-394.

[5] K. F. Roth, On Certain Sets of Integers, J. London Math. Soc. 28 (1953), 245-252.

[6] E. Szemeredi, Integer Sets Containing No Arithmetic Progressions, Acta Math. Hungar. 56 (1990), 155-158.

[7] P. Varnavides, On Certain Sets of Positive Density, J. Lond. Math. Soc. 34 (1959), 358-360.