Realizability of metamaterials with prescribed electric permittivity and magnetic permeability tensors

Graeme W Milton
Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
E-mail: milton@math.utah.edu

New Journal of Physics 12 (2010) 033035 (11pp)
Received 15 January 2010
Published 23 March 2010
Online at http://www.njp.org/
doi:10.1088/1367-2630/12/3/033035

Abstract. We show that any pair of real symmetric tensors ε and μ can be realized as the effective electric permittivity and effective magnetic permeability of a metamaterial at a given fixed frequency. The construction starts with two extremely low-loss metamaterials, with arbitrarily small microstructure, whose existence is ensured by the work of Bouchitté and Bourel and Bouchitté and Schweizer: one having, at the given frequency, a permittivity tensor with exactly one negative eigenvalue, and a positive permeability tensor; and the other having a positive permittivity tensor, and a permeability tensor having exactly one negative eigenvalue. To achieve the desired effective properties, these materials are laminated together in a hierarchical multiple rank laminate structure, with widely separated length scales, and varying directions of lamination, but with the largest length scale still much shorter than the wavelengths and attenuation lengths in the macroscopic effective medium.

Contents

1. Introduction 2
2. Starting materials and Tartar’s formulae for the effective tensors of laminates 3
3. Realizing a material with a desired tensor ε^* using lamination 5
4. Realizing any desired pair of tensors (ε^*, μ^*) 6
Acknowledgments 8
References 8
1. Introduction

Isotropic materials with negative values of permittivity ε and/or permeability μ (with low loss) have some fascinating properties. The colors of some stained glass windows are due to a resonance effect caused by metal spheres, which have a negative permittivity, embedded in the glass [1]. Veselago [2] found that a slab of material with $\varepsilon = \mu = -1$ at a given frequency would have a negative refractive index and act as a lens. Nicorovici et al [3] found that a cylindrical shell with permeability $\varepsilon = -1$ would, in the quasi-static limit and for TM waves, magnify the core material and produce a perfect image of a line dipole in the limit as the loss goes to zero. Pendry [4] made the remarkable assertion that the Veselago lens would behave as a superlens, not limited by diffraction, providing perfect images of point sources, and not just in the quasi-static limit. Today the validity of this assertion is beyond any reasonable doubt, provided one adds an infinitesimal loss to the lens; see, for example, [5]–[9]. Polarizable dipoles can be cloaked by such lenses [10]–[14], and larger objects can be cloaked by embedding the matching ‘antiobject’ in the lens [15]. However, any reasonable losses in the material can almost destroy these effects. From a practical viewpoint, losses are always present and even extremely tiny losses can prevent the functioning of the Pendry superlens if the wavelength is short compared with the lens thickness [8, 16]. However, the negative refractive index property is robust: materials with a negative refractive index have been manufactured by Shelby et al [17].

Other remarkable applications are associated with anisotropic materials having permittivity tensors ε and permeability tensors μ with $\varepsilon = \mu$. It has long been known that time-harmonic Maxwell’s equations are invariant under curvilinear coordinate transformations [18], and Dolin [19] realized that the transformed equations can be viewed as a solution of Maxwell’s equations in a new material. Using such transformations, empty space with $\varepsilon = \mu = 1$ is transformed in a material with $\varepsilon(x) = \mu(x)$; thus Dolin recognized that certain inhomogeneous inclusions with $\varepsilon(x) = \mu(x)$ are equivalent to empty space and are hence invisible. Pendry et al [20] went one step further and, similar to what Greenleaf et al [21] had done in the context of conductivity equations, found that by using a transformation that maps a point to a sphere, one could create a cloak having $\varepsilon(x) = \mu(x)$, which completely shields an object, making it invisible to a fixed frequency of incident radiation. Rigorous mathematical justifications of this cloaking, and its generalizations, have been given [22]–[24]; various approximate cloaks have been proposed and some have been physically constructed [25]–[30]. This and other types of cloaking have been surveyed in reviews [31, 32]. The growing field of transformation optics uses coordinate transformations to achieve unusual effects, such as rotators [33], concentrators [34], wormholes [35] and novel superlenses [36]–[39], but requires one to tailor materials with prescribed tensors ε and μ. In the geometric optics limit, one can use transformations of the refractive index to achieve cloaking [40, 41] and novel Eaton lenses [42].

Extreme values of ε and μ, near zero or infinity, also have striking applications, leading to new types of circuits [43]–[45] and the tunneling of energy through narrow channels [46].

Despite these tantalizing results, many of which are summarized in the book of Cai and Shalaev [47], to my knowledge no one has experimentally, numerically or theoretically shown that any given pair of prescribed symmetric real tensors ε and μ, and in particular given tensor pairs with $\varepsilon = \mu$, including isotropic materials with $\varepsilon = \mu = -1$, can be almost realized at a fixed frequency. (Isotropic materials with negative real permittivity and permeability have been realized [48], but it is unclear if they can be realized with $\varepsilon = \mu = -1$.) This paper accomplishes that goal from a theoretical perspective. It shows that there are no hidden constraints restricting
the possible real tensor pairs \((\varepsilon, \mu)\) that can exist at one given frequency. The construction uses hierarchical microstructures with structure on many widely separated length scales, and component metamaterials with arbitrarily low loss. It seems likely that the same effective properties can be achieved with more realistic designs, but it is doubtful that their properties could be calculated analytically.

2. Starting materials and Tartar's formulae for the effective tensors of laminates

In this paper, we assume an idealized world where the continuum and Maxwell's equations extend down to arbitrarily small length scales. We also assume the existence of two metamaterials. Material A has arbitrarily small microstructure and an effective permittivity tensor with a bounded real part \((\varepsilon^A)^\prime\) that is diagonal, with exactly one negative and two positive diagonal elements, and an effective permeability tensor with a real part \((\mu^A)^\prime\) that is not necessarily diagonal but bounded and strictly positive definite, i.e. there exist constants \(\beta_A > \alpha_A > 0\) such that

\[
\beta_A I > (\varepsilon^A)^\prime > \alpha_A I. \tag{1}
\]

The imaginary parts \((\varepsilon^A)^\prime\) and \((\mu^A)^\prime\) of these two tensors are assumed to be vanishingly small, but nonzero, i.e. there exist constants \(\eta > \nu > 0\) such that

\[
\eta I > (\varepsilon^A)^\prime > \nu I, \quad \eta I > (\mu^A)^\prime > \nu I, \tag{2}
\]

where the loss parameters \(\eta\) and \(\nu\) are vanishingly small. (Strictly speaking, we should talk about a sequence of materials A, parameterized by \(\eta\), and consider what happens in the limit as \(\eta \to 0\), when \((\varepsilon^A)^\prime\) and \((\mu^A)^\prime\) do not depend on \(\eta\), while \(\nu\) and the scale and material constants of the microstructure within the metamaterial do depend on \(\eta\).) Material B has arbitrarily small microstructure and an effective permittivity tensor with a real part \((\varepsilon^B)^\prime\) that is strictly positive definite, i.e. satisfying the bounds

\[
\beta_B I > (\varepsilon^B)^\prime > \alpha_B I, \tag{3}
\]

for some choice of \(\beta_B > \alpha_B > 0\), and with an effective permeability with a bounded real part \((\mu^B)^\prime\) that is diagonal, with exactly one negative and two positive diagonal elements. The imaginary parts \((\varepsilon^B)^\prime\) and \((\mu^B)^\prime\) of these two tensors are assumed to be vanishingly small, but nonzero, i.e. satisfying the bounds

\[
\eta I > (\varepsilon^B)^\prime > \nu I, \quad \eta I > (\mu^B)^\prime > \nu I, \tag{4}
\]

where, without loss of generality, \(\eta\) and \(\nu\) are the same parameters that appear in (2). (Again, strictly speaking, we should consider a sequence of materials B, parameterized by \(\eta\), and consider what happens in the limit as \(\eta \to 0\).)

Material A could be a metamaterial comprised of a cubic lattice of well-separated cubes, where each cube has a microstructure of highly conducting rods aligned in the \(x_1\)-direction. A rigorous mathematical proof that such a material has the desired effective properties, with a more precise description of the needed microgeometry, has been given by Bouchitté and Bourel [49]. Based on the results of Pendry et al [50] and Bouchitté and Felbacq [51], one might think that a periodic array of highly conducting thin rods aligned in the \(x_1\)-direction would suffice for material A. However, Bouchitté and Felbacq [52] show that in a finite sample of such a material, the associated effective equations can have non-local behavior.
Material B could be a metamaterial comprised of a periodic lattice of highly conducting split-ring resonators with axes aligned in the x_1-direction, with one split-ring per unit cell. The split rings behave like polarizable magnetic dipoles, and if one is just above resonance these can have negative permeability in the x_1-direction. This method of creating artificial magnetism has been discussed by Schelkunoff and Friis [53], and although their formula showed negative permeability in the x_1-direction, they did not draw attention to this fact. The microstructure was rediscovered by Pendry et al [54], who realized the significance of negative permeability. A rigorous mathematical proof that such a material has the desired effective properties has been given by Bouchitté and Schweizer [55], following earlier work [56]–[60] (see also the Introduction of [61]). Bouchitté and Schweizer also prove that one can obtain isotropic effective magnetic permeability tensors with negative permeability.

We explore the effective permittivity and permeability tensors that can be generated from composites of these two metamaterials A and B and all rotations of them within classical homogenization in the limit as η tends to zero. The first step will be to recover the result of Bouchitté and Bourel [49] that a material with any real symmetric permittivity tensor ε_* can be approximately achieved. Then the same argument applies to show that a material with any real symmetric permeability tensor μ_* can be approximately achieved. Finally, by combining these two results we show that any pair of real symmetric tensors (ε_*, μ_*) can be approximately achieved.

The composites we consider are multiple rank laminates. This class of composites was first introduced by Maxwell [62] and has been extensively studied in the homogenization literature (see, for example, [63] and references therein). They are obtained by laminating the starting (rank 0) materials together on an extremely small length scale to obtain rank 1 laminates and then laminating these rank 1 laminates with other rank 1 or rank 0 laminates on a much larger, but still extremely small, length scale, using a possibly different direction of lamination, to obtain rank 2 laminates and so forth. The advantage of considering this class of composites is that their effective tensors can be explicitly calculated, in the limit in which the ratio of successive length scales approaches infinity. The bounds (2) and (4) ensure that one can use reiterated homogenization theory: to calculate the effective tensor in the limit of widely separated scales of a multiple rank laminate, which is a simple laminate of two (possibly multiple) rank laminates C and D, one can replace C and D by homogeneous materials with material tensors the same as the effective tensors of C and D.

The use of classical homogenization, except inside metamaterials A and B, should be valid, provided, when we replace materials A and B by homogeneous materials with material tensors the same as the effective tensors of A and B, the wavelengths and attenuation lengths within each substructure are much larger than the microstructure at that level. For any fixed $\eta > 0$, this should be ensured by (2) and (4), in the limit in which the overall microstructure tends to zero and the ratio between scales tends to infinity.

If a set of materials are laminated in direction x_1, then the formulae obtained by Tartar [64] (using an idea that goes back to Backus [65]) for the effective permittivity and permeability are

$$\tilde{\varepsilon}^* = \langle \tilde{\varepsilon} \rangle, \quad \tilde{\mu}^* = \langle \tilde{\mu} \rangle,$$

where $\varepsilon(x_1)$ and $\mu(x_1)$ are the local permittivity and permeability tensors (that could themselves be effective tensors) that only depend on x_1. Angular brackets denote volume averages and, for any symmetric matrix C with elements c_{ij}, the matrix \tilde{C} is symmetric and has elements

$$\tilde{c}_{11} = -1/c_{11}, \quad \tilde{c}_{1k} = c_{1k}/c_{11}, \quad \tilde{c}_{k\ell} = c_{k\ell} - c_{k1}c_{1\ell}/c_{11},$$

New Journal of Physics 12 (2010) 033035 (http://www.njp.org/)
for all $k \neq 1, \ell \neq 1$. Conversely if a symmetric matrix \tilde{C} is given, then C is symmetric with elements

$$c_{11} = -1/\tilde{c}_{11}, \quad c_{kk} = -\tilde{c}_{kk}/\tilde{c}_{11}, \quad c_{k\ell} = \tilde{c}_{k\ell} - \tilde{c}_{k1}\tilde{c}_{1\ell}/\tilde{c}_{11},$$

(7)

for all $k \neq 1, \ell \neq 1$.

In the case where ε is diagonal, (5) and (6) reduce to the familiar harmonic and arithmetic averages

$$1/\varepsilon_{11}^* = \langle 1/\varepsilon_{11} \rangle, \quad \varepsilon_{kk}^* = \langle \varepsilon_{kk} \rangle \quad k \neq 1,$$

(8)

with similar formulae applying when μ is diagonal.

In the limit as the imaginary part of ε approaches zero, (5) implies that the imaginary part of ε^* will also tend to zero unless one is at resonance where the real part of $\langle 1/\varepsilon_{11} \rangle$ or the real part of $\langle 1/\mu_{11} \rangle$ vanishes. We will always prevent this from happening. Then the limiting tensors ε^* and μ^* can be obtained by replacing ε and μ in (5) with their real parts, i.e. the vanishingly small imaginary parts do not affect the effective tensors except at resonance. From now on we will drop the primes and treat ε and μ as real, while recalling that they do have vanishingly small imaginary parts, to ensure that we can apply the rules of classical reiterated homogenization.

3. Realizing a material with a desired tensor ε^* using lamination

Now let us explore which effective permittivity tensors ε^* can be obtained by hierarchically laminating material A with itself (and its rotations by 90° about the axes) in directions parallel to the axes, calculating the effective tensors at each stage using harmonic and arithmetic averages (8). Let us assume the axes have been chosen so that $\varepsilon^A = \text{Diag}[-a, b, c]$, with a, b and c all positive: here $\text{Diag}[-a, b, c]$ denotes a diagonal matrix with $-a$, b and c as its diagonal elements. The following remark is helpful:

Remark 1. If $\varepsilon = \text{Diag}[-a, b, c]$, with a and b both positive, is realizable, then so is $\varepsilon^* = \text{Diag}[-a/\delta, b\delta, c]$ for any finite $\delta \neq 0$.

To prove this remark, let us laminate $\text{Diag}[-a, b, c]$ with the rotated material $\text{Diag}[b, -a, c]$ in direction x_1 in volume fractions f_1 and $f_2 = 1 - f_1$. The resulting material has effective tensor $\varepsilon^* = \text{Diag}[-a/\delta, b\delta, c]$, with $\delta = f_1 - f_2(b/a)$ taking all values inside the interval between 1 and $-a/b$ as f_1 ranges between 0 and 1, excepting $\delta = 0$ where one of the eigenvalues of ε^* becomes infinite and one is at resonance. Alternatively, let us laminate these two materials in direction x_2. The resulting material then has effective tensor $\varepsilon^* = \text{Diag}[-a/\delta, b\delta, c]$, with $\delta = [f_1 - f_2(b/a)]^{-1}$ taking all values outside the interval between 1 and $-a/b$ as f_1 ranges between 0 and 1. Using one of the two constructions, any finite value of $\delta \neq 0$ is possible.

Starting from $\varepsilon^A = \text{Diag}[-a, b, c]$, with a, b and c all positive, and applying remark 1, we obtain a material with effective tensor $\text{Diag}[a/\delta_0, -b\delta_0, c]$, with $\delta_0 > 0$. Applying remark 2 again, we obtain a material with effective tensor $\text{Diag}[a/\delta_0, -b\delta_0/\delta_1, c\delta_1]$ and, by rotation (and replacing δ_1 with $1/\delta_2$), a material with effective tensor $\text{Diag}[a/\delta_0, c/\delta_2, -b\delta_2\delta_0]$. Laminating these last two materials together in equal proportions in direction x_1 gives a material with effective tensor $\text{Diag}[a/\delta_0, e, g]$, where

$$e = (c/\delta_2 - b\delta_0/\delta_1)/2, \quad g = (c\delta_1 - b\delta_2\delta_0)/2.$$

(9)
Given prescribed values of $e > 0$ and $g \neq 0$, we may choose nonzero
\[
\delta_1 = \frac{g \pm \sqrt{g^2 - (\delta_0 bcg/e)}}{c}, \quad \delta_2 = \frac{c\delta_1 - 2g}{b\delta_0},
\]
so that (9) is satisfied provided we choose δ_0 with
\[
0 < \delta_0 < |ge|/(bc)
\]
to ensure that the roots of (10) are real. Since (11) remains valid if we change the sign of e, we can also realize a material with effective tensor $\text{Diag}[a/\delta_0, -e, g]$, and hence by remark 1, a material with effective tensor $\text{Diag}[-a/\delta_0, e, g]$. By laminating this material in direction x_2 with $\text{Diag}[a/\delta_0, e, g]$, we can obtain a material with a prescribed effective tensor $\text{Diag}[h, e, g]$ with $e > 0$, provided δ_0 is chosen sufficiently small to satisfy both (11) and the constraint $\delta_0 < a|h|$ (which ensures that h lies between a/δ_0 and $-a/\delta_0$). So any diagonal tensor with nonzero diagonal elements, at least one of which is positive, is realizable.

The only case left to treat is when h, e and g are all negative. Let t be bigger than both $-e$ and $-g$. Then the tensors $\text{Diag}[h, e + t, g - t]$ and $\text{Diag}[h, e - t, g + t]$ are both realizable, and by laminating them together in direction x_1, we see that the tensor $\text{Diag}[h, e, g]$ is also realizable as an effective permittivity tensor for any nonzero finite choice of h, e and g.

4. Realizing any desired pair of tensors $(\varepsilon^* \mu^*)$

By rotating the material just obtained, we see that any symmetric matrix ε^{A*}, except possibly those that are singular, is realizable as an effective permittivity tensor. The associated effective permeability tensor μ^{A*} (in the limit as the loss goes to zero) must satisfy the classical homogenization Weiner bounds [66]
\[
\langle \mu \rangle \geq \mu^{A*} \geq \langle \mu^{-1} \rangle^{-1},
\]
where $\mu(x)$ is the local permeability tensor, which is locally a rotation of μ^A. Since μ^A satisfies (1), we conclude that μ^{A*} also satisfies the inequality
\[
\beta_A I > \mu^{A*} > \alpha_A I.
\]
Let us call U the family of materials thus obtained.

Similarly (because we can interchange the roles of ε and μ), using material B and its rotations, any symmetric matrix μ^{B*}, except possibly those that are singular, is realizable as an effective permeability tensor, and the associated effective permittivity ε^{B*} satisfies the bounds
\[
\beta_B I > \varepsilon^{B*} > \alpha_B I.
\]
We let V denote this family of materials.

Now we are free to take any set of materials in the set $W = U \cup V$ and laminate them together in direction x_1 to form a larger set of materials LW containing W. By an abuse of notation, we let W (and U and V) also denote the set of tensor pairs (ε^*, μ^*) derived from effective tensors (ε, μ) of materials in W (and U and V), and we let LW also denote the set of tensor pairs $(\tilde{\varepsilon}, \tilde{\mu})$ derived from effective tensors (ε^*, μ^*) of materials in LW. A schematic illustration of the sets U and V is given in figure 1. Now (5) implies that the tensor pairs in LW (being arithmetic averages) correspond to all convex combinations of the tensor pairs in W, except for possibly those tensor pairs for which either $\tilde{\varepsilon}_{11}^* = 0$ or $\tilde{\mu}_{11}^* = 0$, where one is at resonance. So aside from a set of measure zero, the set of tensor pairs LW is a convex set.
Figure 1. Sketch of the sets U and V in the $(\tilde{\varepsilon}^*, \tilde{\mu}^*)$ plane. The figure is schematic in that each axis is not really one-dimensional, but rather six-dimensional representing symmetric 3×3 matrices. The projection of U onto the $\tilde{\varepsilon}^*$ ‘axis’ consists of all symmetric 3×3 matrices, whereas its projection onto the $\tilde{\mu}^*$ ‘axis’ is bounded. Similarly, the projection of V onto the $\tilde{\mu}^*$ ‘axis’ consists of all symmetric 3×3 matrices, whereas its projection onto the $\tilde{\varepsilon}^*$ ‘axis’ is bounded.

Figure 2. The convex hull of any set of points $\{u_1, u_2, \ldots, u_n\}$ is characterized by the Legendre transform $f(\mathbf{v}) = \min_i \mathbf{v} \cdot \mathbf{u}_i$, which gives the positions of the tangent planes to the convex hull, where \mathbf{v} determines the orientation of each tangent plane.

whose convex hull, like the convex hull of any set of points (see figure 2), is characterized by the Legendre transform,

$$f(\mathbf{P}, \mathbf{Q}) = \inf_{(\tilde{\varepsilon}^*, \tilde{\mu}^*) \in \mathcal{W}} \sum_{i=1}^{3} \sum_{j=1}^{3} p_{ij} \tilde{\varepsilon}^*_{ij} + q_{ij} \tilde{\mu}^*_{ij},$$

as a function of symmetric matrices \mathbf{P} and \mathbf{Q}. If we can show that $f(\mathbf{P}, \mathbf{Q})$ is minus infinity for every choice of \mathbf{P} and \mathbf{Q}, both not zero, then we can conclude that the pair of real symmetric matrices $(\tilde{\varepsilon}^*, \tilde{\mu}^*)$ is approximately realizable.

First observe that

$$f(\mathbf{P}, \mathbf{Q}) = \min\{f_A(\mathbf{P}, \mathbf{Q}), f_B(\mathbf{P}, \mathbf{Q})\},$$

as a function of symmetric matrices \mathbf{P} and \mathbf{Q}. If we can show that $f(\mathbf{P}, \mathbf{Q})$ is minus infinity for every choice of \mathbf{P} and \mathbf{Q}, both not zero, then we can conclude that the pair of real symmetric matrices $(\tilde{\varepsilon}^*, \tilde{\mu}^*)$ is approximately realizable.

$$f(\mathbf{P}, \mathbf{Q}) = \min\{f_A(\mathbf{P}, \mathbf{Q}), f_B(\mathbf{P}, \mathbf{Q})\},$$

as a function of symmetric matrices \mathbf{P} and \mathbf{Q}. If we can show that $f(\mathbf{P}, \mathbf{Q})$ is minus infinity for every choice of \mathbf{P} and \mathbf{Q}, both not zero, then we can conclude that the pair of real symmetric matrices $(\tilde{\varepsilon}^*, \tilde{\mu}^*)$ is approximately realizable.

$$f(\mathbf{P}, \mathbf{Q}) = \min\{f_A(\mathbf{P}, \mathbf{Q}), f_B(\mathbf{P}, \mathbf{Q})\},$$

as a function of symmetric matrices \mathbf{P} and \mathbf{Q}. If we can show that $f(\mathbf{P}, \mathbf{Q})$ is minus infinity for every choice of \mathbf{P} and \mathbf{Q}, both not zero, then we can conclude that the pair of real symmetric matrices $(\tilde{\varepsilon}^*, \tilde{\mu}^*)$ is approximately realizable.
where

\[
\begin{align*}
 f_A(P, Q) &= \inf_{(\tilde{\varepsilon}_A^*, \tilde{\mu}_A^*) \in U} \sum_{i=1}^{3} \sum_{j=1}^{3} p_{ij} \tilde{\varepsilon}_{ij}^A + q_{ij} \tilde{\mu}_{ij}^A, \\
 f_B(P, Q) &= \inf_{(\tilde{\varepsilon}_B^*, \tilde{\mu}_B^*) \in V} \sum_{i=1}^{3} \sum_{j=1}^{3} p_{ij} \tilde{\varepsilon}_{ij}^B + q_{ij} \tilde{\mu}_{ij}^B.
\end{align*}
\]

Since almost every matrix \(\varepsilon^A \) is realizable as a permittivity tensor, it follows that almost every matrix \(\tilde{\varepsilon}^A \) is realizable: given \(\tilde{\varepsilon}^A \), we realize, or almost realize, the tensor \(\varepsilon^A \) whose elements are given according to (7). In particular, we can realize a tensor \(\tilde{\varepsilon}^A \approx -\lambda P \) for any value of \(\lambda \), no matter how large. The associated permeability tensor \(\mu^A \) satisfies (13), which implies

\[
\beta_A > \mu_{ii}^A > \alpha_A, \quad \beta_A > |\mu_{ij}^A| \quad \text{for all } i \neq j,
\]

where the latter condition follows from the positivity of the determinant of the associated 2 \times 2 submatrix of \(\mu^A \). It follows that the elements of \(\tilde{\mu}^A \), given according to (6), satisfy the bounds

\[
|\tilde{\mu}_{11}^A| < 1/\alpha_A, \quad |\tilde{\mu}_{1k}^A| < \beta_A/\alpha_A, \quad |\tilde{\mu}_{k1}^A| < \beta_A + \beta_A^2/\alpha_A,
\]

irrespective of the choice of \(\lambda \). Consequently, for any fixed choice of \(P \neq 0 \) and \(Q \),

\[
\sum_{i=1}^{3} \sum_{j=1}^{3} p_{ij} \tilde{\varepsilon}_{ij}^A \approx -\lambda \text{Tr}(P^2)
\]

approaches \(-\infty \) as \(\lambda \rightarrow \infty \), while

\[
\sum_{i=1}^{3} \sum_{j=1}^{3} q_{ij} \tilde{\mu}_{ij}^A
\]

remains bounded. It follows that \(f_A(P, Q) \) is minus infinity unless \(P = 0 \). Similarly, \(f_B(P, Q) \) is minus infinity unless \(Q = 0 \), and thus \(f(P, Q) \) is minus infinity unless both \(P \) and \(Q \) are zero. We conclude that any given pair of real symmetric matrices \((\varepsilon^*, \mu^*) \) is realizable to an arbitrarily high degree of approximation as the (effective permittivity, effective permeability) of a metamaterial.

Acknowledgments

The author is grateful to Guy Bouchitté for stimulating conversations and is thankful for support from the National Science Foundation through grant DMS-070978.

References

[1] Maxwell Garnett J C 1904 Colours in metal glasses and in metallic films Phil. Trans. R. Soc. 203 385–420
[2] Veselago V G 1967 The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \), Usp. Fiz. Nauk 92 517–26
Veselago V G 1968 Sov. Phys.—Usp 10 509–14 (Engl. Transl.)
[3] Nicorovici N A, McPhedran R C and Milton G W 1994 Optical and dielectric properties of partially resonant composites Phys. Rev. B 49 8479–82
[4] Pendry J B 2000 Negative refraction makes a perfect lens Phys. Rev. Lett. 85 3966–9

New Journal of Physics 12 (2010) 033035 (http://www.njp.org/)
[5] Cummer S A 2003 Simulated causal subwavelength focusing by a negative refractive index slab Appl. Phys. Lett. 82 1503–5
[6] Shvets G 2003 Photonic approach to making a material with a negative index of refraction Phys. Rev. B 67 035109
[7] Merlin R 2004 Analytical solution of the almost-perfect-lens problem Appl. Phys. Lett. 84 1290–2
[8] Podolskiy V A and Narimanov E E 2005 Near-sighted superlens Opt. Lett. 30 75–7
[9] Milton G W, Nicorovici N-A P, McPhedran R C and Podolskiy V A 2005 A proof of superlensing in the quasistatic regime and limitations of superlenses in this regime due to anomalous localized resonance Proc. R. Soc. A 461 3999–4034
[10] Milton G W and Nicorovici N-A P 2006 On the cloaking effects associated with anomalous localized resonance Proc. R. Soc. A 462 3027–59
[11] Nicorovici N-A P, Milton G W, McPhedran R C and Botten L C 2007 Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance Opt. Express 15 6314–23
[12] Milton G W, Nicorovici N-A P and McPhedran R C 2007 Opaque perfect lenses Physica B 394 171–5
[13] Bruno O P and Lintner S 2007 Superlens-cloaking of small dielectric bodies in the quasistatic regime J. Appl. Phys. 102 124502
[14] Bouchitè G and Schweizer B 2010 Cloaking of small objects by anomalous localized resonance http://eldorado.tu-dortmund.de:8080/bitstream/2003/26457/1/mathematicalPreprint14-09.pdf
[15] Lai Y, Chen H, Zhang Z-Q and Chan C T 2009 Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell Phys. Rev. Lett. 102 093901
[16] Kuhta N A, Podolskiy V A and Efros A L 2007 Far-field imaging by a planar lens: diffraction versus superresolution Phys. Rev. B 76 205102
[17] Shelby R A, Smith D R and Schultz S 2001 Experimental verification of a negative index of refraction Science 292 77–9
[18] Post E J 1962 Formal Structure of Electromagnetics: General Covariance and Electromagnetics (Amsterdam: North-Holland)
[19] Dolin I S 1961 To the possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling Izv. Vyssh. Uchebn. Zaved. Radiot. 4 964–7
[20] Pendry J B, Schurig D and Smith D R 2006 Controlling electromagnetic fields Science 312 1780–2
[21] Greenleaf A, Lassas M and Uhlmann G 2003 Anisotropic conductivities that cannot be detected by EIT Physiol. Meas. 24 413–9
[22] Greenleaf A, Kurylev Y, Lassas M and Uhlmann G 2007 Full-wave invisibility of active devices at all frequencies Commun. Math. Phys. 275 749–89
[23] Weder R 2008 A rigorous analysis of high-order electromagnetic invisibility cloak J. Phys. A: Math. Theor. 41 065207
[24] Kohn R V, Onofrei D, Vogelius M S and Weinstein M I 2010 Cloaking via change of variables for the Helmholtz equation Commun. Pure Appl. Math. to appear
[25] Schurig D et al 2006 Metamaterial electromagnetic cloak at microwave frequencies Science 314 977–80
[26] Cai W, Chettiar U K, Kildishev A V and Shalaev V M 2007 Optical cloaking with metamaterials Nat. Photon. 1 224–7
[27] Cai W, Chettiar U K, Kildishev A V, Shalaev V M and Milton G W 2007 Non-magnetic cloak with minimized scattering Appl. Phys. Lett. 91 111105
[28] Li J and Pendry J B 2008 Hiding under the carpet: a new strategy for cloaking Phys. Rev. Lett. 101 203901
[29] Liu R et al 2009 Broadband ground-plane cloak Science 323 366–9
[30] Valentine J, Li J, Zentgraf T, Bartal G and Zhang X 2009 An optical cloak made of dielectrics Nat. Mater. 8 568–71
[31] Alù A and Engheta N 2008 Plasmonic and metamaterial cloaking: physical mechanisms and potentials J. Opt. A: Pure Appl. Opt. 10 093002

New Journal of Physics 12 (2010) 033035 (http://www.njp.org/)
Greenleaf A, Kurylev Y, Lassas M and Uhlmann G 2009 Cloaking devices, electromagnetic wormholes and transformation optics SIAM Rev. 51 3–33
Chen H and Chan C T 2007 Transformation media that rotate electromagnetic fields Appl. Phys. Lett. 90 241105
Rahm M et al 2008 Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations Photon. Nanostruct.: Fundam. Appl. 6 87–95
Greenleaf A, Kurylev Y, Lassas M and Uhlmann G 2008 Electromagnetic wormholes and virtual magnetic monopoles from metamaterials Phys. Rev. Lett. 99 183901
Kildishev A V and Narimanov E E 2007 Impedance-matched hyperlens Opt. Lett. 32 3432–4
Milton G W, Nicorovici N-A P, McPhedran R C, Cherednichenko K and Jacob Z 2008 Solutions in folded geometries and associated cloaking due to anomalous resonance New J. Phys. 10 115021
Yan M, Yan W and Qiu M 2008 Cylindrical superlens by a coordinate transformation Phys. Rev. B 78 125113
Tsang M and Psaltis D 2008 Magnifying perfect lens and superlens design by coordinate transformation Phys. Rev. B 77 035322
Leonhardt U 2006 Optical conformal mapping Science 312 1777–80
Leonhardt U and Tyc T 2009 Broadband invisibility by non-Euclidean cloaking Science 323 110–2
Tyc T and Leonhardt U 2008 Transmutation of singularities in optical instruments New J. Phys. 10 115038
Engheta N, Saldanrino A and Alù A 2005 Circuit elements at optical frequencies: nanoinductors, nanocapacitors and nanoresistors Phys. Rev. Lett. 95 095504
Milton G W and Seppecher P 2010 Electromagnetic circuits Netw. Heterog. Media to appear (arXiv:0805.1079v2 [physics.class-ph])
Milton G W and Seppecher P 2010 Hybrid electromagnetic circuits Physica B doi:10.1016/ j.physb.2010.01.007
Silveirinha M and Engheta N 2006 Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials Phys. Rev. Lett. 97 157403
Cai W and Shalaev V 2010 Optical Metamaterials: Fundamentals and Applications (Dordrecht: Springer)
Efros A L and Pokrovsky A L 2004 Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability Solid State Commun. 129 643–7
Bouchitté G and Bourel C 2010 Homogenization of finite metallic fibers and 3D-effective permittivity tensor Commun. Comput. Phys. to appear
Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Extremely low frequency plasmons in metallic mesostructures Phys. Rev. Lett. 76 4773–6
Bouchitté G and Felbacq D 1997 Homogenization of a set of parallel fibers Waves Random Media 7 1–12
Bouchitté G and Felbacq D 2006 Homogenization of a wire photonic crystal: the case of small volume fraction SIAM J. Appl. Math. 66 2061–84
Schelkunoff S A and Friis H T 1952 Antennas: The Theory and Practice (New York: Wiley) pp 584–5
Pendry J, Holden A J, Robbins D J and Stewart W J 1999 Magnetism from conductors and enhanced nonlinear phenomena IEEE Trans. Microw. Theory Tech. 47 2075–84
Bouchitté G and Schweizer B 2010 Homogenization of Maxwell’s equations with split rings SIAM J. Multiscale Model. Simul. to appear
Zhikov V V 2000 On an extension and an application of the two-scale convergence method Mat. Sbornik 191 31–72
Zhikov V V 2000 Sbornik: Math. 191 9731014 (Engl. Transl.)
Zhikov V V 2004 Gaps in the spectrum of some elliptic operators in divergent form with periodic coefficients Algebra Anal. 16 34–58
Zhikov V V 2005 St. Petersburg Math. J. 16 773–90 (Engl. Transl.)
Bouchitté G and Felbacq D 2004 Homogenization near resonances and artificial magnetism from dielectrics C. R. Math. Acad. Sci. 1 339 377–82

New Journal of Physics 12 (2010) 033035 (http://www.njp.org/)
[59] Felbacq D and Bouchitté G 2005 Theory of mesoscopic magnetism in photonic crystals Phys. Rev. Lett. 94 183902

[60] Kohn R V and Shipman S P 2008 Magnetism and homogenization of microresonators SIAM J. Multiscale Modeling Simul. 7 62–92

[61] Smyshlyaev V P 2009 Propagation and localization of elastic waves in highly anisotropic periodic composites via two-scale homogenization Mech. Mater. 41 434–47

[62] Maxwell J C 1873 A Treatise on Electricity and Magnetism vol 1 (Oxford: Clarendon) article 322, pp 371–2

[63] Milton G W 2002 The Theory of Composites (Cambridge Monographs on Applied and Computational Mathematics vol 6) (Cambridge: Cambridge University Press)

[64] Tartar L 1977 Estimation de coefficients homogénéisés Computing Methods in Applied Sciences and Engineering: 3rd Int. Symp. (Versailles, France, December 5–9, 1977) (Lecture Notes in Mathematics vol 704) ed R Glowinski and J-L Lions (Berlin: Springer) pp 364–73

Tartar L 1997 Estimation of homogenization coefficients Computing Methods in Applied Sciences and Engineering: 3rd Int. Symp. (Versailles, France, December 5–9, 1977) Topics in the Mathematical Modelling of Composite Materials ed A Cherkaev and R Kohn (Cambridge, MA: Birkhäuser Boston) pp 9–20 (Engl. Transl.)

[65] Backus G E 1962 Long-wave elastic anisotropy produced by horizontal layering J. Geophys. Res. 67 4427–40

[66] Wiener O 1912 Die Theorie des Mischkörpers für das Feld des stationären Strömung. Erste Abhandlung die Mittelwertsätze für Kraft, Polarisation und Energie (German) [The theory of composites for the field of steady flow. First treatment of mean value estimates for force, polarization and energy] Abh. Math.-Phys. Klasse Königl. Säch. Ges. Wiss. 32 509–604