Net assimilation rate, growth and yield of rice (*Oryza sativa* L cv Inpago Unsoed 1) with the application of PGPR in different rate of nitrogen

Purwanto, T Widiatmoko and B R Wijonarko

Agrotechnology Departement, Faculty of Agriculture, Jenderal Soedirman University
Jl. Dr. Suparno KP 125 Purwokerto, Central Java, Indonesia 53122

Corresponding author: purwanto.unsoed@gmail.com

Abstract. The aims of this research was to study the net assimilation rate, growth and yield of rice with the application of PGPR in different rate of nitrogen fertilizer. The experimental was conducted in experimental farm of Agriculture Faculty of UNSOED Purwokerto. The research was arranged in Randomized Block Design with three replications. The first factor is PGPR consortium, and the second factor is dosage of nitrogen fertilizer. The observed variables were plant height, number of tillers, plant biomass, leaf greenness, plant biomass, net assimilation rate, relative growth rate and yield. Data were analyzed using ANOVA followed with DMRT test for mean comparison between group. The results showed that PGPR consortium inoculation and nitrogen fertilization have effect on root growth, leaf greenness, and plant biomass. The PGPR consortium R08 isolate + R11 isolate and nitrogen fertilizer at dose of 1.36 g plant⁻¹ gave highest net assimilation rate of 5.87 g dm⁻² week⁻¹. The highest grain yield was achieved at nitrogen fertilizer dose of 2.72 g plant⁻¹ at 36.17 g per hill.

1. **Introduction**

Nitrogen is an essential macro nutrient for the growth of rice plants, hence without nitrogen its growth and yield will be disrupted. Among rice farmers, mostly, the nitrogen source was obtained from urea as type of fertilizer. Currently in 2020, government provide fertilizer subsidies for both urea sources, SP-36 and NPK compounds, which reach 7.9 million tons [1]. The availability and its ease to obtaining made the application of urea fertilizer among the farmers was done in excessive dosage by most of the farmers [2]. This practice causing low fertilizer application efficiency, and could ne impact to the environmental damage due to NO₂ emissions resulting from ammonification, nitrification and denitrification processes [3]. Previous study [4] stated that the loss of nitrogen in the plant-soil system is estimated between 50-70% of the fertilizer dose application.

The application of nitrogen in high dosage causes nutrient imbalance in the soil. Long-term nitrogen application without application of organic fertilizers has effect on reducing soil organic matter content and affects the soil biological diversity [5]. Application of urea fertilizer will produce NH₄⁺ and it inhibit the methanotroph bacteria in the soil [6]. On the other hand, the application of nitrogen fertilizers for a long period in mulberry field soil had effect on reducing the levels of organic matter content and soil pH, thereby suppressing the population of Acidobacteria [7]. Application of nitrogen fertilizers at a dose of 50 kg ha⁻¹ increased the diazotrophic bacteria population in the
rhizosphere of rice plants due to low NH₄ concentrations in the soil, but increasing the N dose actually decreased the diazotrophic bacteria population [8].

Increasing rice production needs to be rationalized without having a negative impact from excessive N fertilizer doses on the soil and agricultural environment. Increasing soil biological fertility can be done by applying rhizobacteria indigenous paddy soil. The application of biofertilizer in rice plants aims to increase the yield and quality of grain yields [9]. Rhizobacteria indigenous of wetland soils that have been isolated are Rhizobium sp. LM-5 as N₂ fixer bacteria, R08 isolate and R11 isolate as rhizobacteria producing IAA [10,11]. As reported earlier Pittol et al [9] biofertilizer cannot replace inorganic fertilizers, but as a key to increasing nutrient availability, the application of biofertilizer must be precise with the dosage of inorganic fertilizers, especially nitrogen. Previous study Marlina et al [12] reported that application of biofertilizer at 300-400 kg ha⁻¹ combined with inorganic fertilizers at 75% of the recommended dose increased NPK nutrient uptake and grain yield. Inoculation of Stenotrophomonas maltophilia at a nitrogen level of 50 kg ha⁻¹ increased photosynthesis and biomass of rice plants, but an increase in nitrogen doses to 300 kg ha⁻¹ actually had a negative impact on plant photosynthetic activity [8]. Furthermore, the inoculation of Pseudomonas putida-1 at a nitrogen fertilizer dose of 200 mg kg⁻¹ of soil increased leaf chlorophyll content, and the application of Pseudomonas putida-1 + Azotobacter in 200 mg nitrogen fertilizer mg kg⁻¹ soil increases grain yield [13]. According to the previous facts, this study was aimed to know the effect of PGPR inoculation in rice to increase net assimilation rate, growth and yield of rice at different rate of nitrogen fertilizer.

2. Material and methods

The experiment was conducted in Experimental Farm faculty of Agriculture, Jenderal Soedirman Purwokerto, Central Java, Indonesia from May until October 2019, using Inpago Unsoed 1 aromatic and high yielding rice variety. The experiment was carried out in Randomized Completely Block Design (RCBD) with factorial treatments and three replications. The treatments consisted of two factors i.e. consortium of PGPR, and nitrogen dosage. The first factors consisted of K₀: control (without PGPR application), K₁: R08 isolate+R11 isolate, K₂: R08 isolate + Rhizobium sp. LM-5, K₃: R08 isolate + R11 isolate + Rhizobium sp. LM-5. The second factor consisted of N₀: without nitrogen fertilizer application, N₁: 100 kg ha⁻¹ nitrogen fertilizer (equivalent to 1.36 g urea pot⁻¹), N₂: 200 kg ha⁻¹ nitrogen fertilizer (equivalent to 2.72 g urea pot⁻¹).

Rice seeds were sown on wet paper in petri dish. Before sowing, rice seeds were sterilized using HgCl₂ 0.1% for a minute, then rinsed with sterile water. The sterile seeds were germinated on moist paper in the petri dish for 2 weeks. Inoculant PGPR was prepared by inoculating a use of bacterial isolate into 500 ml of NB (Himedia) media, then culturing it in a shaker for 24 h at a speed of 120 rpm. Bacterial culture was ready for use once it reaches a population density above 10⁷ cfu ml⁻¹.

Inceptisol soil was prepare as growth medium of rice, it was sieved and powdered with a 2 mm sieve. The pots were filled with 12 kg of Inceptisol soils. The phosphate and potassium fertilizer were applied before planting with 0.94 g of SP-36 and KCl per pot, respectively. The pot containing the soil was watering until it stagnates before planting. The PGPR treatment was carried out by immersing the roots of rice seedlings in bacterial culture for 15 minutes, then planting one seedling into per pot. After planting, the soil is kept moist by providing adequate irrigation. After the plants are 2 weeks old, 2 to 5 cm of water was maintained on the soil surface of each pot. Nitrogen fertilizer application was carried out at the age of 7 weeks after planting and 35 days after planting each half the dose of treatment.

Observations were made during vegetative growth until harvest, and harvesting was carried out after physiologically maturity of rice grains. The observed variables were root length (measured by intersection method, [14]), leaf greenness (Chlorophyl meter SPAD-502Plus Minolta), leaf area, plant biomass, nett assimilation rate [15], and grains yield. The data was analyzed by ANOVA with the help of SAS 9.1 software, and followed by DMRT at α = 5% for mean comparison.
3. Results and discussion

Based on the analysis of variance, it shows that the application of the PGPR consortium has effect on the total root length of rice plants, but not on leaf greenness, stomata density, and stomata opening width. On the other hand, an increase in the level of nitrogen fertilization had an effect on total root length and leaf greenness, but not on stomata density and stomatal opening width.

Table 1. The effect of PGPR consortium and dosage of nitrogen fertilizer on total root length and leaf greenness

Treatments	Total Root Length (cm)	Leaf Greenness (SPAD unit)
PGPR Consortium		
Control	2448.80 b	29.47 a
R08 isolate + R11 isolate	4396.50 a	27.82 a
R08 + *Rhizobium* sp. LM-5	3231.50 ab	29.55 a
R08 isolate + R11 isolate + *Rhizobium* sp. LM-5	3154.20 ab	29.30 a
Dosage of Nitrogen Fertilizer (urea)		
0 g plant⁻¹	2396.40 b	22.87 c
1.36 g plant⁻¹	4045.80 a	29.72 b
2.72 plant⁻¹	3481.00 ab	34.49 a

Remark: The number following by same letter in the same column and treatments were not significant different according DMRT 5%.

Table 2. The effect of PGPR consortium and dosage of nitrogen fertilizer on stomata density stomata opening width

Treatments	Stomata Density (unit/mm²)	Stomata Opening Width (µm)
PGPR Consortium		
Control	2085.7 a	3.44 a
R08 isolate + R11 isolate	2271.2 a	3.61 a
R08 + *Rhizobium* sp. LM-5	2670.4 a	3.61 a
R08 isolate + R11 isolate + *Rhizobium* sp. LM-5	2338.7 a	3.67 a
Dosage of Nitrogen Fertilizer (urea)		
0 g plant⁻¹	2255.8 a	3.63 a
1.36 g plant⁻¹	2390.7 a	3.67 a
2.72 plant⁻¹	2378.1 a	3.46 a

Remark: The number following by same letter in the same column and treatments were not significant different according DMRT 5%.

The PGPR consortium application shows that it affects the total root length, where the consortium isolate R08 + isolate R11 gives the longest root length of 4396.50 cm, greater than the consortium R08 + *Rhizobium* sp. LM-5, R08 + isolate R11 + *Rhizobium* sp. LM-5, and control, respectively 3231.50 cm, 3154.20 cm and 2448.80 cm (Table 1). The application of the consortium isolate R08 + isolate R11 was able to increase the total root length of rice plants by 79.54 percent for plants without PGPR application. This shows that the application of the PGPR consortium increased the total root length compared to the control, even though the application of the consortium R08 + *Rhizobium* sp. LM-5, R08 + isolate R11 + *Rhizobium* sp. LM-5 did not show a significant different total root length compared to the treatment without the PGPR consortium application. The PGPR isolates R08 and R11 were isolates of indigenous paddy soil that were able to produce the auxin group phytohormones, namely IAA and were able to increase the roots of rice seedlings [11]. IAA is one of the phytohormones that are classified as important natural hormones and can be produced by rhizobacteria.
so that inoculation with bacteria capable of producing IAA will induce the proliferation of lateral roots and root hairs [16]. The inoculation of Bacillus paenibacillus and Comamonas on kiwifruit cuttings was able to stimulate root formation, this correlated with the ability of bacteria to produce indole-3-acetic acid [17].

Nitrogen is a macro nutrient which needed by plants in the vegetative phase, its also plays an important role in photosynthetic organelles, especially chlorophyll. The results showed that the application of nitrogen derived from urea affected the total root length and leaf greenness of rice plants. Application of urea 1.26 g plant\(^{-1}\) gave a total root length of 4045.80 cm, however, increasing the dose of urea to 2.72 g plant\(^{-1}\) actually decreased the total root length and was not significantly different from that without urea fertilization of 3481.00 cm and 2396.40 cm, respectively. The results of this study were in line with earlier finding [18], where the nitrogen application significantly increases root length than without nitrogen. The nitrogen dosage of 240 kg ha\(^{-1}\) was a moderate dose, and its giving longer root length, however increasing the nitrogen dose would decreases root length.

The leaf greenness variable showed that an increase in the dose reached 2.72 g plant\(^{-1}\) gave the highest leaf greenness value of 34.49, significantly different from the 1.72 g plant\(^{-1}\) dose and without urea application of 29.72 and 22.87, respectively (Table 1). Leaf greenness values correlate with chlorophyll content in rice leaves [19]. Nitrogen is one of the important nutrients in chlorophyll biosynthesis, where the synthesis of chlorophyll depends on mineral nutrients so that nitrogen availability will play a role in cell division and the formation of photosynthetic active pigments [20]. Chlorophyll a and total chlorophyll contents of sunflower plants increased along with the increase in nitrogen availability, but the chlorophyll b levels decreased [21].

Table 3. The effect of PGPR consortium and dosage of nitrogen fertilizer on leaf area (cm\(^2\))

Treatments	3 WAP	5 WAP	7 WAP
PGPR Consortium			
Control	61.81 a	527.80 a	849.40 a
R08 isolate + R11 isolate	38.89 b	673.30 a	1312.00 a
R08 + *Rhizobium* sp. LM-5	35.87 b	594.30 a	1201.00 a
R08 isolate + R11 isolate +	48.19 ab	513.00 a	1162.50 a
Rhizobium sp. LM-5			
Dosage of Nitrogen			
Fertilizer (urea)			
0 g plant\(^{-1}\)	42.33 a	421.46 b	885.20 a
1.36 g plant\(^{-1}\)	46.39 a	708.03 a	1188.70 a
2.72 g plant\(^{-1}\)	49.84 a	601.80 ab	1320.00 a

Remark: a value followed by same letter in the same column and treatments were not significant different according DMRT 5%. WAP: week after planting.

The results showed that the plant height at 7 weeks after planting (WAP) did not show any difference in both PGPR consortium and nitrogen fertilizer. However, at the age of 7 WAP, it was seen that the total leaf area increased in PGPR consortium isolate R08 + R11, isolate R08 + *Rhizobium* sp. LM-5, as well as isolates R08 + R11 + *Rhizobium* sp. LM-5 when compared without inoculation were 1321.00 cm\(^2\), 1201.00 cm\(^2\), 1162.00 cm\(^2\) and 849.40 cm\(^2\), respectively. Nitrogen application tends to increase the leaf area of rice plants, it can be seen that the widest leaf area was reached at a dose of 2.72 g plant\(^{-1}\) of 1320.00 cm\(^2\), which is greater than that at a dose of 1.26 g plant\(^{-1}\) and without nitrogen application was 1188.70 cm\(^2\) and 885.20 cm\(^2\), respectively (Table 3).

PGPR consortium inoculation and nitrogen fertilization until the age of 7 WAP showed a significant effect on plant dry biomass. PGPR consortium inoculation has an effect on increasing plant biomass compared to without inoculation. Without PGPR inoculation, plant biomass was only 20.27 g plant\(^{-1}\), lower than the consortium R08 isolate + R11 isolate, R08 + *Rhizobium* sp. LM-5, and R08 isolate + R11 isolate + *Rhizobium* sp. The LM-5 was 46.22 g plant\(^{-1}\), 26.96 g plant\(^{-1}\), and 23.27 g plant\(^{-1}\), respectively (Table 4). These results indicate that the PGPR consortium inoculation was able to
increase plant biomass by an average of 58.61 percent against the control, and the inoculation of R08 isolate + R11 isolate was the PGPR consortium which was able to increase the highest biomass of rice plants, namely an increase of 128.02 percent. This is related to the ability of the consortium R08 isolate + R11 isolate which stimulates plant roots. In this treatment, the ability to absorb nutrients and water is better, further the supply of nutrients to the leaves is increases and then the plant photosynthesis is more optimal.

Table 4. The effect of PGPR consortium and dosage of nitrogen fertilizer on plant biomass (g)

Treatments	3 WAP	5 WAP	7 WAP
PGPR Consortium			
Control	0.32 a	6.82 a	20.27 b
R08 isolate + R11 isolate	0.23 a	7.19 a	46.22 a
R08 + Rhizobium sp. LM-5	0.23 a	7.13 a	26.96 a
R08 isolate + R11 isolate +	0.28 a	6.40 a	23.27 a
Rhizobium sp. LM-5			
Dosage of Nitrogen Fertilizer (urea)			
0 g plant⁻¹	0.24 a	5.31 a	20.09 b
1.36 g plant⁻¹	0.21 a	7.42 a	37.66 a
2.72 plant⁻¹	0.34 a	7.93 a	29.85 ab

Remark: a value followed by same letter in the same column and treatments were not significant different according DMRT 5%. WAP: week after planting

Table 5. Interaction effect between PGPR consortium and dosage of nitrogen fertilizer on net assimilation rate (g dm⁻² week⁻¹) of rice plant

Treatments	Dosage of N Fertilizer (urea)		
	0 g plant⁻¹	1.36 g plant⁻¹	2.72 plant⁻¹
Control	1.11 b	2.20 a	1.44 ab
R08 isolate + R11 isolate	2.05 b	5.87 a	2.12 b
R08 + Rhizobium sp. LM-5	1.94 a	1.40 a	2.16 a
R08 isolate + R11 isolate +	2.06 a	1.91 a	1.40 a
Rhizobium sp. LM-5	A	B	A

Remark: a value in the same row following by lower letter and the number in the same column following by capital letter were not significant different according DMRT 5%.

The results showed that nitrogen fertilization had an effect on rice biomass. Fertilization of nitrogen at a dose of 1.26 g plant⁻¹ gave the highest plant biomass of 37.66 g, greater than control which was only 20.09 g. Increasing the nitrogen dose to 2.72 g plant⁻¹ actually reduced plant biomass by 29.85 g. The results of this study was in line with earlier study Ayuni et al [8] which found that nitrogen fertilization was able to increase the biomass of rice plants, both inoculated and not inoculated by PGPR, and an increase in nitrogen doses. Nitrogen application, urea at high doses, will reduce plant biomass due to the high concentration of NH₄⁺ [22].

Plant biomass is the net result of photosynthesis which is translocated as plant dry matter. Photosynthesis is the main process responsible for plant growth, and photosynthesis metabolism which regulate plant growth in a variety of different nitrogen sources [23]. The increase in biomass will be measured by the change in the accumulation of plant dry matter per unit leaf area per unit time or known as the net assimilation rate. The results showed that the interaction between the PGPR
consortium and nitrogen application dose had effect on the net assimilation rate of rice plants. The increase in the dosage of nitrogen application without inoculation of PGPR showed that the highest net assimilation rate of rice was achieved at a dose of 1.26 g plant$^{-1}$ at 2.20 g dm$^{-2}$ week$^{-1}$, greater than the control which was only 1.11 g dm$^{-2}$ week$^{-1}$. Increasing the dose to 2.72 g plant$^{-1}$ decreased the net assimilation rate by 1.44 g dm$^{-2}$ week$^{-1}$. Inoculation of consortium R08 isolate + R11 isolate at various doses of nitrogen fertilizer showed that the nitrogen fertilization dose of 1.26 g plant$^{-1}$ gave the highest net assimilation rate of 5.87 g dm$^{-2}$ week$^{-1}$, higher than without nitrogen fertilization which was only 2.05 g dm$^{-2}$ week$^{-1}$. Increasing the nitrogen dose actually decreased the net assimilation rate by 2.12 g dm$^{-2}$ week$^{-1}$. Inoculation of the PGPR consortium R08 + *Rhizobium* sp. LM-5 and R08 isolate + R11 isolate + *Rhizobium* sp. LM-5 at various nitrogen fertilization doses had no effect on the net assimilation rate of rice (Table 5).

Previous study Ayuni et al [8] reported that increasing dosage of nitrogen after addition of 300 kg ha$^{-1}$ reduced photosynthetic activity of rice plant of 56 percent, and photosynthetic activity tended to be high at low nitrogen doses possibly due to the initial low requirement of N application. The inoculation of *Azotobacter* and *Azospirillum* showed better photosynthetic activity during the growth phase of the maize plant due to greener leaves, high accumulation of plant dry matter [24].

Increasing the dosage of nitrogen in the soil tends to suppress the soil microbial population. In addition, high nitrogen concentrations in diazotrophic bacteria will suppress the nitrogenase enzyme activity so that the N$_2$ fixing activity decreases. It can be seen that the consortium contains *Rhizobium* sp. LM-5 has not been able to increase the net assimilation rate of rice plants even though the nitrogen dose is increased. *Rhizobium* sp. LM-5 is one of the diazotrophic bacteria that are free living bacteria in the rhizosphere of rice plants [10]. The application of nitrogen fertilizers with high doses will reduce the population and number of bacteria that colonize the roots, as well as suppress the nitrogenase activity of diazotrophic bacteria in sugarcane, and *Stenotrophomonas maltophilia*. in rice plants [8, 25]. Furthermore, energy-intensive nitrogen fixation by diazotrophic bacteria is suppressed when alternative nitrogen sources are available in the rhizosphere, then nitrogenase activity decreases at high nitrogen doses [26].

![Figure 1. Rice yield under treatments of consortium PGPR and Dosage of Nitrogen fertilizer](image-url)

Figure 1. Rice yield under treatments of consortium PGPR and Dosage of Nitrogen fertilizer

Based on the results of the analysis of variance, the PGPR consortium application has not shown an effect on grain yield per hill, but nitrogen fertilization up to 2.72 g plant$^{-1}$ shows an increase in grain yield per hill. The yield of grain per hill shows that the consortium of PGPR R08 isolate + R11 isolate and R08 isolate + *Rhizobium* sp. LM-5 gave the highest grain yield of 29.94 g per hill and 24.95 g per hill respectively, which was greater than without inoculation and consortium PGPR R08 isolate + R11 isolate + *Rhizobium* sp. LM-5 was 22.06 g per hill and 23.39 g per hill, respectively. Nitrogen fertilization increased yield with increasing nitrogen fertilizer dosage. The highest grain yield was
achieved at a nitrogen fertilization dose of 2.72 g plant$^{-1}$ of 36.17 g per clump (Figure 1). Nitrogen fertilization up to a dose of 2.72 g plant$^{-1}$ can increase grain yield by 273.66 percent compared to without nitrogen fertilization. The increase in nitrogen fertilizer dosage from 1.36 g plant$^{-1}$ to 2.72 g plant$^{-1}$ stimulated an increase in grain yield by 40.96 percent.

4. Conclusion
PGPR consortium inoculation and nitrogen fertilization have effect on root growth, leaf greenness, and plant biomass. The PGPR consortium R08 isolate + R11 isolate and nitrogen fertilization at a dose of 1.36 g plant$^{-1}$ gave highest net assimilation rate of 5.87 g dm$^{-2}$ week$^{-1}$. The highest grain yield was achieved at nitrogen fertilization of 2.72 g plant$^{-1}$ at 36.17 g per hill.

References
[1] Ministry of Agriculture 2020 Tanggapi Isu Kelangkaan Pupuk. Kementan: Pupuk 2020 Cukup (Jakarta: Kementan) www.pertanian.go.id/home/?show=news&act=view&id=4196
[2] Darwis V and Saptana 2010 Analisis Kebijakan Pertanian 8 167–86
[3] Wahid A S 2003 Jurnal Litbang Pertanian 22 156–61
[4] Good A G, Shrawat A K and Muench D G 2004 J. Trends Plant Sci. 9 597–605
[5] Hu C, Li S, Qiao Y, Liu D and Chen Y 2015 Expl Agric. 51 355–69
[6] Zheng Y, Zhang L, Zheng Y, Di H and He J 2008 J. Soils Sediments 8 406–14
[7] Yu C, Hu X, Deng W, Li Y, Han G and Xiong C 2016 PLoS ONE 11 1–12
[8] Ayuni N, Othman R, Naher U A, Panhwar Q A and Halimi M S 2015 The Journal of Animal & Plant Sciences 25 1358–64
[9] Pittol M, Durso L, Valiati V H and Fiuza L M 2016 Ann Microbiol. 66 511–27
[10] Purwanto, Yuwariah Y, Sumadi S and Simarmata T 2017 Agrivita 39 31–7
[11] Purwanto, Agustono T, Widjonarko B R and Widiatmoko T 2019 Planta Tropika: Jurnal Agrosains (Journal of Agro Science) 7 1–7
[12] Marlina N, Gofar N, Subakti A H P K and Rahim A M 2014 Agrivita 36 48–56
[13] Ghaflari H, Gholizadeh A, Biabani A, Fallah A and Mohammadian M 2018 Pertanika J. Trop. Agric. Sci. 41 715–28
[14] Bohm W 1979 Method of Studying Root Systems (Berlin: Springer-Verlag)
[15] Gardner F P, Pearce R B and Mitchell R L 1991 Fisioologi Tanaman Budidaya Translated by Herawati Susilo and Subiyanto (Jakarta: UI Press)
[16] Maharana P K 2019 Int. J. of Life Science 7 333–6
[17] Erturk Y, Ercisli S, Haznedar A and Cakmakci R 2010 Biol Res 43 91–8
[18] Chen J, Liu Z, Wang Z, Zhang Y, Sun H, Song S, Bai Z, Lu Z and Li C 2020 Front. Plant Sci. 11 00880
[19] Purwanto 2009 Growth and yield of four rice varieties in organic, semiorganic and conventional farming Master Thesis (Yogyakarta: Gadjah Mada University)
[20] Razaq M, Zhang P, Shen H and Salahuddin 2017 PLoS ONE 12 e0171321
[21] Kumari S 2017 Journal of Agricultural Science 9 208–19
[22] Guo J, Jia Y, Chen H, Zhang L, Yang Y, Zhang J, Hu X, Ye X, Li Y and Zhou Y 2019 Nature 9 1248
[23] Zhou Y, Zhang Y, Wang X, Cui J, Xia X, Shi K and Yu J 2011 J Zheijiang Univ-Sci B (Biomed & Biotechnol) 12 126–34
[24] Soleymanifard A, Piri I and Naseri R 2013 Bull. Env. Pharmacol. Life Sci. 2 55–64
[25] Yin T T, Pin U L and Ghazali A H A 2015 Tropical Life Sciences Research 26 101–10
[26] Bahulikar R A, Chaluvadi S R, Torres-Jerez I, Mosali J, Bennetzen J L and Udvardi M 2020 Phytobiomes Journal doi.org/10.1094/PBIOMES-09-19-0050-FI