Perinatal Diagnostic Approach to Fetal Skeletal Dysplasias: Six Years Experience of a Tertiary Center

Havva Serap Toru, 1 Banu Guzel Nur, 2 Cem Yasar Sanhai, 3 Ercan Mihci, 2 İnanç Mendilcioğlu, 3 Elanur Yilmaz, 4 Gulden Tasova Yilmaz, 1 Irem Hicran Ozbudak, 1 Kamil Karaali, 5 Ozgul M. Alper, 4 and Fatma Şeyda Karaveli 1

1 School of Medicine, Department of Pathology, Akdeniz University, Antalya, Turkey; 2 School of Medicine, Department of Pediatric Genetics, Akdeniz University, Antalya, Turkey; 3 School of Medicine, Department of Gynecology and Obstetrics, Akdeniz University, Antalya, Turkey; 4 School of Medicine, Department of Medical Biology and Genetics, Akdeniz University, Antalya, Turkey; 5 School of Medicine, Department of Radiology, Akdeniz University, Antalya, Turkey

Skeletal dysplasias (SDs) constitute a group of heterogeneous disorders affecting growth morphology of the chondro-osseous tissues. Prenatal diagnosis of SD is a considerable clinical challenge due to phenotypic variability. We performed a retrospective analysis of the fetal autopsies series conducted between January 2006 and December 2012 at our center. SD was detected in 54 (10%) out of 542 fetal autopsy cases which included; 11.1% thanatophoric dysplasia (n = 6), 7.4% achondroplasia (n = 4), 3.7% osteogenesis imperfect (n = 2), 1.9% Jarcho-Levin Syndrome (n = 1), 1.9% arthrogryposis (n = 1), 1.9% Dyggve-Melchior-Clausen syndrome (n = 1), 72.1% of dysostosis cases (n = 39). All SD cases were diagnosed by ultrasonography. In 20 of the cases, amniocentesis was performed, 4 cases underwent molecular genetic analyses. Antenatal identification of dysplasia is important in the management of pregnancy and in genetic counseling. Our data analysis showed that SD is usually detected clinically after the 20th gestational week. Genetic analyses for SD may provide early diagnosis and management.

Keywords: skeletal malformations, genetic, fetal autopsy

INTRODUCTION

In general, skeletal dysplasias (SDs) constitute a group of heterogeneous disorders affecting growth morphology of the chondro-osseous tissues [1]. Since the 1960s numerous new entities have been identified by the expansion of the knowledge of the osteochondrodysplasias [2]. It is well known that the classification of skeletal dysplasias has evolved from that based on clinical-radiologic-pathologic features to that which includes the underlying molecular abnormality for conditions in which the genetic defect is known [3].

Received 23 March 2015; revised 2 June 2015; accepted 3 June 2015.
Address correspondence to Havva Serap Toru, School of Medicine, Department of Pathology, Akdeniz University, Konyaaltı, Antalya 07058, Turkey. E-mail: serap_toru@yahoo.com, seraptoru@akdeniz.edu.tr
The overall prevalence of skeletal dysplasias among perinatal deaths was 9.1 per 1000 cases [4]. Estimated prevalence of SDs is 2.4 to 4.5 per 10,000 births [1, 5]. Despite the recent advances in imaging, it is still difficult to diagnose certain subtypes of SD in utero due to large number of SDs and their phenotypic variability with overlapping features. For this reason, integrated clinical, pathological and genetic approach is needed. Prenatal diagnosis is easier when a positive family history is present [1]. SD is usually suspected in ultrasonographic evaluation when a shortened and/or dysmorphic long bone or abnormal skeletal findings are observed [6]. In addition, delineating the differential diagnosis to recognize the lethality of the case is important [1].

International nomenclature of constitutional bone diseases was initially formulated in 1972 and regularly revised by international working group on Constitutional Diseases of Bone [7]. The international nomenclature of constitutional (intrinsic) bone disease was adopted by European Society of Pediatric Pathology in 1977. Afterward, the nomenclature was modified in 1983, 1992 and 1997. In 1999, International Skeletal Dysplasia Society (ISDS) was established and revisions of nosology have been delegated to an expert group. In 2001, genetic dysostoses-osteochondrodysplasias was added [8]. Last revision was made in 2006 and 372 conditions have been listed in 37 groups defined by molecular biochemical and/or radiological criteria according to ISDS Statutes and Guidelines [7]. In 2010, categorization of the skeletal abnormalities was revised using clinical, radiologic, pathologic and molecular information. Therefore, revised 456 disorders are recognized within the 40 total nosology groups [9]. And nowadays, genetic counseling is given to families [2]. SD occurs singly or associated with other abnormalities. Widespread disturbance of bone growth, beginning during the early stages of fetal development causes SD and evolves throughout life due to active gene involvement [8].

Prenatal diagnosis of SD is a considerable clinical challenge due to phenotypic variability. Our study provides information regarding the frequency of perinatal skeletal dysplasias and encourages multidisciplinary working teams for accurate diagnosis and outlines the autopsy findings of the affected patients. The aim of this study is to discuss the (including associated anomalies) the findings of skeletal dysplasias, including associated anomalies, in our center in the south coast of Turkey. We expect that our preliminary findings will lead us to perform the meta-analyses if more skeletal dysplasia autopsy cases are reported.

METHODS

In this study, the fetal autopsy records were retrospectively examined at Akdeniz University, Prenatal Pathology Department between the period for January 2006 and December 2012. Our institution is a tertiary center on the south coast of Turkey which has an important consultation practice on perinatology and perinatal pathology. The analysis was performed by identifying the maternal and gestational ages, macroscopic assessments, baby-gram findings, the type of SD-associated abnormalities and clinical findings for each case in the data set.

Among 542 fetal autopsies, 54 cases had SD diagnosis by prenatal ultrasonography. Among them 20 cases underwent amniocentesis, one case underwent chorionic villous sampling. Twenty cases underwent cytogenetic analysis and four cases underwent molecular genetic analyses.

Autopsy Analysis
In our institution, all fetal autopsies are performed on fresh materials. Before starting the autopsy, we check the autopsy permission of the parents and the type of consent.
given, the identity of the infant and consult the clinicians, to determine the questions that have to be answered by the autopsy. A radiograph of the whole body in mammography dose called baby-gram is performed on all fetuses. Macroscopic photos of fetus are taken. Measurements of crown heel, crown rump, head circumference, foot length and weight are taken for comparison with standard charts. Wigglesworth provides weights and measurements for stillborn and live born infants by using data from the Women & Infants Hospital, Providence, Rhode Island, USA [10]. Foot length is used to determine gestational age, which can then be compared with chronological age. The external examination is systematically performed on all fetuses regardless of gestational age. We use a standard autopsy protocol form of Turkish Federation of Pathology Societies, Perinatal and Pediatric Pathology study group [11]. Timing of the fetal death is determined by the degree of maceration. Standard fetal autopsy procedures were performed [12]. In SDs, in addition to baby-gram findings, the growth zone of femur and humerus are sampled for histopathological examination.

RESULTS

Within this retrospective autopsy series, 54 (10%) of 542 fetal and perinatal autopsy cases with diagnosis of skeletal dysplasia were evaluated. Twenty-one (38.9%) of 54 cases were female, 33 (61.1%) of 54 cases were male. Mean of maternal age is 27.81 ± 5.73 and mean of gestational age is 21.17 ± 5.43. Among 54 cases, 6 cases of thanatophoric dysplasia (TD, 11.1%) (Figure 1), 4 cases of achondroplasia (ACH, 7.4%) (Figure 2), 3 cases of osteogenesis imperfecta (OI, 5.5%) (Figure 3), 1 case of Jarcho-Levin Syndrome (JLS, 1.9%) (Figure 4), 1 case of arthrogryposis (1.9%), one case of Dyggve-Melchior-Clausen Syndrome (DMCS, 1.9%) and 38 cases of dysostosis (unclassified) (70.4%) were terminated.

Some of the cases (ACH, OI and TD) were screened for mutation analysis. ACH cases had shortened extremities, narrowed growth zone in baby-gram (Figure 1) and disordered chondrocytes in growth zone. Only one case was screened for FGFR3 gene mutations, and no mutation was detected. Three cases (case 5, 38, 39) were type 2 OI, characterized by intrauterine multiple rib and long bone fractures, and broad long bones (Figure 2). None of the cases had mutations. Among TD cases, one of the cases had heterozygous p.Arg248Cys and the other had heterozygous p.Gly370Cys missense mutations at the FGFR3 gene. All of the cases had bilateral rhizomelic extremities, bowed femur which is given in Figure 3.

From the clinical view, one case of JLS had segmentation anomalies of vertebral bones (hemivertebrae, absent vertebrae, fused vertebrae, sickle-shaped vertebrae), costal defects (posterior fusion of the ribs and absent, irregular and bifid ribs) and pulmonary hypoplasia (Figure 4). The arthrogryposis case (case 7) had multiple joint contractures in upper and lower extremities associated with agenesis of cerebellum, dilatation of bilateral cerebral ventricles and hypoplasia of psoas muscle.

Interestingly, one of the cases (case 8) which had Trisomy 18 had multiple anomalies such as hyperplasia of radius, long fourth finger of bilateral hands and feet, hyperplastic fifth finger of bilateral feet, omphalocele, cleft-lip and palate, dysplastic ears and this case was terminated at gestational age of 14 weeks. Besides, the other case (case 9) which had Trisomy 13 also had multiple anomalies; bilateral agenesis of 11th and 12th ribs, bone defect of vertex, rocker-bottom foot, polycystic kidney disease, uterus bicornis, clitoromegaly, microgastria, low-set ears and this case was terminated at gestational age of 24 weeks (Table 1).

Three of the cases (case 4, 33 and 40) had specific gene mutations as following: p.Gly370Cys and p.Arg248Cys, heterozygous missense mutations at fibroblast growth factor receptor (FGFR3) gene (NM_000142) and homozygous c.1878delA/c.1878delA
Figure 1. Baby-gram of thanatophoric dysplasia.

Figure 2. (a) Baby-gram of achondroplasia. (b). Growth zone, chondrocyte columnization is absent and cartilaginous spicules in the metaphysis are reduced, small and distorted in the femoral physeal growth zone of a fetus with achondroplasia.
mutation at *dymeclin* gene (*DYM*; NM_017653). In all of the cases, ultrasonographic findings were detected at gestational ages of 20th and 25th weeks. Fetus (case 40) which was terminated at 16 weeks gestation had a *dymeclin* gene formation, also had a sibling with Dyggve-Melchior-Clausen syndrome (DMCS; OMIM 223800).

Overall, 31 (57.4%) of the cases were associated with at least one additional congenital anomaly which is given in Table 2. Twenty-two (42.6%) cases had only skeletal abnormalities (Table 3).

DISCUSSION

To our knowledge, there is very limited number of reports about the associated anomalies for skeletal dysplasia, focused on perinatal autopsy cases all over the world [13–16]. This study reviews all skeletal dysplasia cases and summarizes the six years experience at a tertiary care center on the south coast of Turkey. Unfortunately, most of the published reports are case reports or case series from Turkey, and no comparative data is available. There has been only two meeting reports focused on skeletal dysplasia by Basbug et al. in 2007 and our preliminary report by Toru et al. in 2013 from Turkey [17, 18].

In 2007, Basbug et al. reported 27 fetuses with skeletal dysplasia, and emphasized that most common type was Roberts syndrome (18.5%) [17]. It is known that Roberts syndrome (OMIM 268300), a kind of dysostosis, is a rare autosomal recessive condition caused by mutations in the *ESCO2* gene which is characterized by long bone deficiencies associated with cleft lip-palate [19]. However, our series did not contain any cases.
with Roberts syndrome. Mean gestational age at diagnosis was found as 26.5 (range 15–35) in Basbug et al.’s study [17]. In our series, mean gestational age was 21.17 ± 5.43, with an earlier prenatal diagnosis compared to published reports.

To date, there have been two reports on fetal autopsy from Hatay and Cukurova regions which are located on the southern east of Turkey. Based on Hakverdi et al.’s report, 36 of 274 cases (22.5%) were associated with musculoskeletal anomalies [20]. In Acikalin et al.’s study, 2150 fetal autopsies were reported and 97 of 2150 (8.3%) cases had musculoskeletal anomalies [21]. Thus, as there is no available data to compare the frequencies of SDs, our series is limited on the skeletal dysplasias, and discusses intensive genetic, radiologic and morphologic features.

Skeletal dysplasia is a group of disorders of the skeleton; defined as derangement of growth, development and/or differentiation of the skeleton [7]. Accurate prenatal diagnosis of SD is still a clinical challenge due to phenotypic variability and lack of a precise molecular diagnosis in many cases. Moreover, the phenotypic characteristics of some skeletal disorders are not manifested until later in pregnancy. In 1988, Spranger classified hypochondroplasia, ACH and thanatophoric dysplasias (TD-I and TD-II) in the family of dysplasias, denominated generically as SDs. All of the dysplasias display common phenotypic characteristics with different grades of severity [22].

Figure 4. Baby-gram of Jarcho-Levin syndrome.
Table 1. Associated anomalies in Turkish skeletal dysplasias.

SD type (n)	Associated anomalies
Achondroplasia (3)	Immature lungs and kidneys, depressed nasal bridge, low-set ears, Cleft-lip and palate, dysplastic ears, immature lungs
Thanatophoric dysplasia (1)	Pulmonary hypoplasia, immature kidneys
Osteogenesis imperfecta (1)	Cliteromegaly, immature kidneys
Jarcho-Levin syndrome (1)	Pulmonary hypoplasia
Arthrogryposis (1)	Agenesis of cerebellum, dilatation of bilateral cerebral ventricles, hypoplasia of psoas muscle
Dysostosis (24)	Abdominal wall: Omphalocele, gastroschisis
	Craniofacial: cleft-lip and palate, dysplastic ears, micrognathia, low-set ears, depressed nasal bridge, agenesis of external auditory channel, agenesis of the nose, agenesis of right eye-lid.
	Genitourinary system: Polycystic kidney disease, renal agenesis, immature kidneys, ureteropelvic dilatation of kidneys, bilateral adrenal gland agenesis, bladder agenesis, uterus bicornis, agenesis of uterus and vagina, cliteromegaly, agenesis of external urethral ostium, distal located penis, localized cystic disease of right kidney, hydroureteronephrosis
	Central Nervous system: Neural tube defect, pachygyria, hydrocephalus, dolicocephaly
	Gastrointestinal system: Imperforate anus, anal atresia, fibrous bant of ileocecal valve
	Respiratory system: Pulmonary hypoplasia, hypolobulated right lung
	Cardiac anomaly: Hypoplastic left heart, ventricular septal defect, single cardiac outlet, agenesis of truncus pulmonalis, hypoplastic right heart
	Others: Single artery in umbilical cord, early involutions in thymic gland, hydrops fetalis, Sacrococcygeal teratoma

Categorizing SDs is important because some of them are lethal. ACH and hypochondroplasia dysplasias not only exhibit phenotypic but also genetic features. Ninety-nine percent of ACH dysplasias have two common FGFR3 gene mutations in p.Gly380Arg amino acid substitutions and, 10% of ACH is caused by p.Asn540Lys which is typical for hypochondroplasias [21]. However, 7% of hypochondroplasia cases are shown to have p.Gly380Arg mutation [23]. These findings indicate that there are overlapping phenotypic and genotypic characteristics for ACH and hypochondroplasias.

Thanatophoric dysplasia (OMIM 187600) is the most frequent sporadic lethal skeletal dysplasia with a prevalence of about 1 in 17 000–50 000 births [1]. Characteristic features of TD include markedly shortened limbs, narrow thorax with short ribs but normal trunk length, macrocephaly with frontal bossing, and low depressed nasal bridge [1, 24]. It has been shown that expected mutations in TD include p.Arg248Cys, p.Tyr373Cys and p.Lys650Glu mutations [23]. In our series, all TD cases had typical radiologic and morphologic features of TD. Only three cases underwent genetic analysis and two cases (case 4, 33) showed specific heterozygous mutations (p.Gly370Cys and p.Arg248Cys) at FGFR3 gene and case 34 did not have any mutations.

It is well known that ACH (OMIM 100800) is the most common type of human dwarfism as a result of decreased endochondral ossification and is prenatally characterized mainly by rhizomelic micromelia, macrocephaly with frontal bossing, and midface hypoplasia [25]. Both of our cases had typical findings of ACH, accompanied by prenatally ultrasonographic findings that also suggested ACH. Only one case under-
Table 2. Clinical features of Turkish skeletal dysplasia patients associated with at least one anomaly.

Case	Maternal age (years)	Gestational age (weeks)	Fetal gender	Genetic analysis	Skeletaldysplasia	Detailedskeletal anomalies	Associated anomalies
Case 1	17	20	M	** ***	Achondroplasia	Rhizomelic extremities, narrowed epiphysis, disordered chondrocytes in the growth zone of the femur (microscopic)	Immature lungs and kidneys, depressed nasal bridge, low-set ears
Case 2	28	24	F	** ***	Achondroplasia	Rhizomelic extremities, narrowed epiphysis, disordered chondrocytes in the growth zone of the femur (microscopic)	Cleft-lip and palate
Case 3	29	20	M	No FGFR3 gene mutation in exon 7 and 10. Chromosomal analyze was normal	Achondroplasia	Rhizomelic extremities, frontal bossing, mechanic bowing of distal radius	Depressed nasal bridge, dysplastic ears, immature lungs
Case 4	31	20	M	p.Gly370Cys/+ mutation in FGFR3 gene	Thanatophoric dysplasia	Bilateral rhizomelic extremities, bowed femur, distorted growth zone of femur (microscopic) Pulmonary hypoplasia, immature kidneys	
Case 5	30	16	F	Osteogenesis imperfecta	Broad and short long bones with broad and beaded ribs (macroscopic), multiple fractures and healing long bones and ribs (radiology)	Cliteromegaly, immature kidneys	
Case 6	26	25	M	Chromosomal analysis was normal	Jarcho-Levin syndrome	Segmentation anomaly of vertebral bones (hemivertebrae, absent vertebrae, fused vertebrae, block/wedge vertebrae, sickle shaped vertebrae), costal defects (posterior fusion of the ribs and absent, irregular and bifid ribs)	Pulmonary hypoplasia
Case 7	22	27	F	Arthrogryposis	Multiple joint contractures in upper and lower extremities	Agenesis of cerebellum, dilatation of bilateral cerebral ventricles, hypoplasia of psoas muscle	
Case 8+	44	14	M	47,XY, +18	Dysostosis	Hyperplasia of radius, long 4th finger of bilateral hands and feet, hyperplastic Omphalocele, cleft-lip and palate, dysplastic ears	

(Continued on next page)
Table 2. Clinical features of Turkish skeletal dysplasia patients associated with at least one anomaly (Continued)

Case	Maternal age (years)	Gestational age (weeks)	Fetal gender	Genetic analysis	Skeletal dysplasia	Detailed skeletal anomalies	Associated anomalies
Case 9*	21	24	F		47,XX, +13	Dysostosis	Bilateral agenesis of 11th and 12th ribs, bone defect of vertex, rocker-bottom foot
Case 10	19	21	F			Hypoplastic fingers (right hand third and fourth fingers)	Meningoencephalocele, single artery in umbilical cord
Case 11	27	22	M			Dysostosis	Polydactyly (left hand and bilateral feet), Club foot, short neck
Case 12	25	17	M			Dysostosis	Polydactyly (bilateral hands and feet), rhizomelic extremities
Case 13	23	19	M			Dysostosis	Syndactyly (bilateral third and fourth fingers of the hands), rocker-bottom foot
Case 14	29	24	F			Dysostosis	Bilateral radius aplasia and mesomelic upper extremities, oligodactyly (bilateral 1st finger)

*Case 9 had a detailed skeletal anomaly of the 1st finger of bilateral feet.
Case 15	30	20	Dysostosis	agenesis of hands, Polydactyly (bilateral hands and feet)	Cardiac anomaly (Hypoplastic left heart, Ventricular septal defect)	Dysostosis	agenesis of 12th rib
Case 16	28	23	Dysostosis	Short neck and bilateral dislocated phalanges of hands, Short right arm	Clubbing and palmar depression, low-set ears, Bridge, low-set ears	Dysostosis	agenesis of the hand
Case 17	37	17	Dysostosis	Polydactyly (bilateral hands and feet), O-bain deformity of the hands	Clubbing and palmar depression, Low-set ears, Agenesis of the nose	Dysostosis	Polydactyly (bilateral hands and feet)
Case 18	30	17	Dysostosis	Chromosomal analyze was normal	Dysostosis	Polycystic kidney disease, Neural tube defect (encephalocele), Deformed nasal bridge, Low-set ears	
Case 19	20	17	Dysostosis	Hemivertebrae, agenesis of 12th rib, Bilateral renal agenesis, Imperforate anus, Pulmonary hypoplasia, Agenesis of uterus and vagina, Frontal bossing, dolicocephaly			
Case 20	32	24	Dysostosis	Scoliosis, Syndactyly	Pulmonary hypoplasia, Pedal deformity		
Case 21	22	21	Dysostosis		(Continued on next page)		
Case	Maternal age (years)	Gestational age (weeks)	Fetal gender	Genetic analysis	Skeletal dysplasia	Detailed skeletal anomalies	Associated anomalies
------	---------------------	------------------------	--------------	------------------	-------------------	--------------------------	----------------------
Case 22	28	17	M	Chromosomal analysis was normal	Dysostosis	Polydactyly (right foot), Syndactyly (second, third, fourth and fifth fingers of right hand; fourth and fifth fingers of left hand)	Immature kidneys and lung, cleft-lip and palate, nasal deformity, low-set ears
Case 23	32	20	M		Dysostosis	Costa bifida (right fourth rib)	Neural tube defect (meningomyelocele), fibrous bant of ileocecal valve, ureteropelvic dilatation of kidneys.
Case 24	37	15	M	Chromosomal analysis was normal	Dysostosis	Bilateral agenesis of hands and feet, agenesis of left radius, tibia and fibula	Anal atresia, bilateral renal agenesis, bladder agenesis, cardiac anomaly (single cardiac outlet, agenesis of truncus pulmonalis, hypoplastic right heart), hypolobulated right lung, low-set ears
Case 25	18	39	F	Chromosomal analysis was normal	Dysostosis	Syndactyly (second, third and fourth fingers of right hand; all fingers of left hand; third,	Agenesis of left kidney, localized cystic disease of right kidney, agenesis of right eye-lid
Case	Age	Sex	Chromosomal analyze was normal	Dysostosis	Extraordinary Conditions		
-------	-----	-----	---------------------------------	-----------	-------------------------		
26	24	M		Dysostosis	Hydrocephalia, hydroureronephrosis, low-set ears		
				Rhizomelic lower extremities, disorganization and retardation of physeal growth zone of femur (microscopic)			
27	25	M		Dysostosis	Anal atresia, polycystic kidney disease, agenesis of external urethral ostium, distal located penis, low-set ears		
				Agenesis of right ulna and radius			
28	23	M		Dysostosis	Polycystic kidney disease, depressed nasal bridge, low-set ears, micrognathia		
				Bilateral polydactyly			
29	26	F		Dysostosis	Neural tube defect (meningocele)		
				Scoliosis, vertebral fusion defects, agenesis of 11th and 12th ribs			
30	19	F		Dysostosis	Sacral agenesis		
31	22	F		Dysostosis	Sacrococcygeal teratoma		
				Olgodactyly (left hand), hypoplastic finger (right hand first finger)			

*Case 8: Edwards Syndrome (Trisomy 18).
**Case 9: Patau Syndrome (Trisomy 13).
***F: Female.
****M: Male.
Case	Maternal age (years)	Gestational age (weeks)	Fetal gender	Genetic analysis	Skeletal dysplasia	Detailed skeletal anomalies
32	27	22	M*		Achondroplasia	Rhizomelic extremities,
						narrowed epiphysis,
						disordered chondrocytes
						in the growth zone of
						the femur (microscopic)
33	22	25	M	p.Arg248Cys/+	Thanatophoric dysplasia	Bilateral rhizomelic
				mutation in FGFR3		extremities, bowed
				gene		femur, frontal bossing,
				46,XX t(1,19)		narrowed thorax,
				(p11.1;p11),		distorted growth zone
				13pss		of femur (microscopic)
34	33	26	F**	Chromosomal	Thanatophoric	Bilateral rhizomelic
				analyze was	dysplasia	extremities, bowed
				normal		femur, frontal bossing,
						narrowed thorax,
						pectus carinatum,
						distorted growth zone
						of femur (microscopic)
35	29	16	M	Thanatophoric		Bilateral rhizomelic
				dysplasia		extremities, bowed
						femur, narrowed thorax,
						shortened ribs, platyspondyly,
						small-squared iliac
						bones; distorted growth
						zone of femur (microscopic)
Case	Age	Gender	Diagnosis	Description		
------	-----	--------	-----------	-------------		
36	26	F	Thanatophoric dysplasia	Bilateral rhizomelic extremities, bowed femur, frontal bossing, platyspondyly, small-squared iliac bones, distorted growth zone of femur (microscopic)		
37	30	F	Thanatophoric dysplasia	Bilateral rhizomelic extremities, bowed femur, short trunk, platyspondyly		
38	24	M	Osteogenesis imperfecta	Broad and short long bones with broad and beaded ribs, calvarial ossification defect (macroscopic), multiple fractures and healing long bones and ribs (radiology)		
39	24	M	Osteogenesis imperfecta	Broad and short long bones with broad and beaded ribs (macroscopic), multiple fractures and healing long bones and ribs (radiology)		
40	33	M	Chromosomal analyze was normal	Homozygous c.1878delA mutation in DYM gene		

(Continued on next page)
Table 3. Clinical features of Turkish isolated skeletal dysplasia (*Continued*).

Maternal age (years)	Gestational age (weeks)	Fetal gender	Genetic analysis	Skeletal dysplasia	Detailed skeletal anomalies	
Case 41	33	31	M	Chromosomal analyze was normal	Dysostosis	Mildly shortened extremities and mild irregularity in iliac crests (radiology).
Case 42	33	21	M	Chromosomal analyze was normal	Dysostosis	Amelia (Bilateral upper extremity)
Case 43	26	18	F	Dysostosis	Dysostosis	Amelia (agenesis of right hand)
Case 44	29	22	F	Dysostosis	Dysostosis	Bilateral clinodactyly, shortened right tibia
Case 45	35	14	M	Dysostosis	Dysostosis	Agenesis of left radius
Case 46	25	18	M	Dysostosis	Dysostosis	Intrauterine aplasia of distal ulna and radius of left arm
Case 47	32	16	F	Chromosomal analyze was normal	Dysostosis	Syndactyly (third and fourth finger of left hand)
Case 48	28	34	M	Dysostosis	Dysostosis	Bilateral phalangeal agenesis of hands
Case	Age	Gender	Chromosomal Analysis	Syndrome		
--------	-----	--------	------------------------------	---		
49	30	M	Chromosomal analyze was normal	Dysostosis Bilateral agenesis of ulna, radius and lower extremities.		
50	23	M	Chromosomal analyze was normal	Dysostosis Bilateral shortened arms (hyoplastic ulna, radius, humerus)		
51	41	M	Chromosomal analyze was normal	Dysostosis Shortened lower extremities		
52	35	M	Chromosomal analyze was normal	Dysostosis Syndactyly (left hand and right foot)		
53	27	M	Chromosomal analyze was normal	Dysostosis Shortened right lower extremity		
54	33	M	Chromosomal analyze was normal	Dysostosis Hypoplastic right femur		

*F: Female. **M: Male.
went genetic analysis and we did not find any mutation on 7 and 10 exons of \textit{FGFR3} gene. Fetal autopsy confirmed the prenatal diagnosis.

On the other hand, hypochondroplasia is characterized by a similar but milder phenotype compared to ACH, which includes the main features of micromelia, short stature and lumbar lordosis as well as \textit{FGFR3} gene defect \cite{25}. This is due to the wide spectrum between ACH and TD. In our series, we did not have any hypochondroplasia cases. However, we should keep in mind that DMCS (OMIM 223800), an autosomal recessive spondylo-epimetaphyseal dysplasia, is also characterized by short trunk dwarfism, microcephaly, a coarse facial appearance and mental retardation. Radiographic findings of our cases showed multiple abnormalities including vertebral platyspondyly, lacy iliac wings, laterally displaced irregularly ossified femoral heads and a hypoplastic odontoid. Since all these findings usually manifest themselves at 2 or 3 years after birth, it is almost impossible to diagnose DMCS prenatally without genetic analyses \cite{26}. However, one of our cases had a sibling diagnosed with DMCS; diagnosed by genetic analysis and is still being followed-up at the Department of Pediatrics in our Institution.

On the other hand, OI (OMIM 166210) is a heterogeneous heritable disorder and involves connective tissues. It is characterized by bone fragility, decreased bone mass, other connective tissue manifestations such as blue sclera, hyperlaxity of skin and ligaments and hearing loss \cite{27,28}. It is well known that OI type II is lethal and results in intrauterine death or perinatal death \cite{29}. All of our cases were also type II (case 5, 38 and 39), and presented with multiple fractures and intrauterine death.

The Jarcho-Levin syndrome (spondylocostal dysostosis; OMIM 277300) is a kind of dysostosis effecting spine and ribs. It is characterized by short-neck, short-trunk, normal-sized limbs and multiple vertebral and rib defects \cite{30}. This syndrome was first described by Jarcho and Levin, in 1938 \cite{31}. One of our cases had segmentation anomalies of vertebral bones (hemivertebrae, absent vertebrae, fused vertebrae, block/ wedge vertebrae, sickle shaped vertebrae), costal defects (posterior fusion of the ribs and absent, irregular and bifid ribs) and pulmonary hypoplasia.

Moreover, in our series, 72.1% of the cases belonged to the dysostosis group. Since this group sometimes is clinically severe, a detailed and complete pathology report with a true diagnosis is important for further new classifications of dysostosis. Thus, prenatal and pathological examination plays an important role in determining the cause of the mortality and morbidity of the fetus.

In summary, identification of dysplasias antenatally is important in the management of pregnancy and in genetic counseling. Many disorders in this group involve disproportionate short stature of prenatal onset and structural abnormalities that may lead to intrauterine death or fatal perinatal complication. Our retrospective archive search showed that SD is usually detected clinically after 20 gestational weeks. This gestational age could be considered as late to plan termination of pregnancy because of the psychological and clinical complications. It is important to perform genetic analyses for SDs, which can provide benefits for early diagnosis and management.

\textbf{Authors’ Contributions}

Havva Serap Toru carried out clinical analysis of the patients and drafted the manuscript; Havva Serap Toru conceived, designed and performed the experiments and analysis of the pathologic data; Havva Serap Toru, Gulden Tasova Yilmaz, and Fatma Şeyda Karaveli collected and reviewed the pathologic data; Banu Guzel Nur, Cem Yasar Sanhal, İnanç Mendilcioğlu, and Ercan Mihci carried out clinical analysis of the patients and reviewed the manuscript; Ozgul M. Alper and Elanur Yılmaz per-
formed the experiments and analysis of the genetic data; Ozgul M. Alper reviewed the final form of drafted manuscript.

Declaration of Interest
All authors have read and approved the manuscript and declare no competing financial interests. The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article. This study was supported by Akdeniz University, Scientific Research Project Management Unit.

REFERENCES

[1] Dighe M, Fligner C, Cheng E, et al. Fetal skeletal dysplasia: an approach to diagnosis with illustrative cases. Radiographics 2008;28(4):1061–1077.
[2] Gilbert-Barness E (ed.). Potter’s Pathology of the Fetus, Infant and Child, Second ed. Philadelphia: Elsevier; 2007.
[3] Savarirayan R, Rimoin DL. The skeletal dysplasias. Best Pract Res Clin Endocrinol Metab 2002;16(3):547–560.
[4] Camera G, Mastroiacovo P. Birth prevalence of skeletal dysplasias in the Italian Multicentric Monitoring System for Birth Defects. Prog Clin Biol Res 1982;104:441–449.
[5] Rasmussen SA, Bieber FR, Benacerraf BR, et al. Epidemiology of osteochondrodysplasias: Changing trends due to advances in prenatal diagnosis. Am J Med Genet 1996;61(1):49–58.
[6] Parilla BV, Leeth EA, Kambich MP, et al. Antenatal detection of skeletal dysplasias. J Ultrasound Med 2003;22(3):255–258; quiz 259–261.
[7] Rimoin DL, Cohn D, Krakow D, et al. The skeletal dysplasias: Clinical-molecular correlations. Skeletal Biology and Medicine, Pt B 2007;1117:302–309.
[8] Hall CM. International nosology and classification of constitutional disorders of bone (2001). Am J Med Genet 2002;113(1):65–77.
[9] Warman ML, Cormier-Daire V, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 2011;155A(5):943–968.
[10] Gilbert-Barness E, Debich-Spicer DE. Handbook of Pediatric Autopsy Pathology. Totowa, New Jersey: Humana Press; 2005.
[11] Toru HS, Sanhal CY, Uzun ÖC, et al. Associated anomalies with neural tube defects in fetal autopsies. J Matern Fetal Neonatal Med 2015; doi:10.3109/14767058.2015.1019456
[12] Gilbert-Barness E, Debich-Spicer DE. Techniques. In: Handbook of Pediatric Autopsy Pathology. ed. Gilbert-Barness E, Totowa, New Jersey: Humana Press; 2005, pp. 7–75.
[13] Schramm T, Tutschek B, Minderer S, et al. Prenatal diagnosis of skeletal dysplasias in a single institution. Ultrasound Obstetr Gynecol 2007;30:439.
[14] Kulkarni ML, Samuel K, Bhagyavathi M, et al. Skeletal dysplasias in a hospital in southern India. Indian Pediatr 1995;32(6):657–665.
[15] Nampoothiri S, Yesodharan D, Sainulabdin G, et al. Eight years experience from a skeletal dysplasia referral center in a tertiary hospital in Southern India: a model for the diagnosis and treatment of rare diseases in a developing country. Am J Med Genet A 2014;164A(9):2317–2323.
[16] Barakova E, Mohan U, Chitayat D, et al. Fetal skeletal dysplasias in a tertiary care centre: Radiology, pathology, and molecular analysis of 112 cases. Clin Genet 2015;87(4):330–7.
[17] Basbug M, Ozgun MT, Serin IS, et al. Prenatal diagnosis of Skeletal dysplasias: 12-year single-center experience. Ultrasound Obstetr Gynecol 2007;30:439.
[18] Toru HS, Tasova Yilmaz G, Ozbudak IÍH, et al. Prenatal diagnostic approach to fetal skeletal dysplasia. Virchows Archiv 2013;463:184–184.
[19] Vega H, Waisfisz Q, Gordillo M, et al. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nature Genet 2005;37(5):468–470.
[20] Hakverdi S, Guzelmansur I, Gungoren A, et al. Evaluation of fetal autopsy findings in the hatay region: 274 cases. Turkish J Pathol 2012;28(2):154.
[21] Acikalin A, Bagir EK, Torun G, et al. Perinatal autopsy evaluation of 2150 autopsies in the Cukurova region of Turkey. Turk Patoloji Dergisi 2014;30(3):189–194.
[22] Spranger J. Bone dysplasia ‘families’. Pathol Immunopathol Res 1988;7(1–2):76–80.
[23] Xue Y, Sun A, Mekikian PB, et al. FGF3mutation frequency in 324 cases from the International Skeletal Dysplasia Registry. Mol Genet Genomic Med 2014;2(6):497–503.
[24] Pazzaglia UE, Donzelli CM, Izzo C, et al. Thanatophoric dysplasia. Correlation among bone X-ray morphometry, histopathology, and gene analysis. Skeletal Radiology 2014;43(9):1205–1215.
Brown RR, Monsell F. Understanding the skeletal dysplasias. *Current Orthopaedics* 2003;17(1):44–55.

Aglan MS, Temtamy SA, Fateen E, et al. Dyggve-Melchior-Clausen syndrome: clinical, genetic, and radiological study of 15 Egyptian patients from nine unrelated families. *J Children’s Orthopaed* 2009;3(6):451–458.

Steiner RD, Pepin M, Byers PH. Studies of collagen synthesis and structure in the differentiation of child abuse from osteogenesis imperfecta. *J Pediatr* 1996;128(4):542–547.

Rauch F, Glorieux FH. Osteogenesis imperfecta. *Lancet* 2004;363(9418):1377–1385.

Van Dijk FS, Silence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. *Am J Med Genet A* 2014;164A(6):1470–1481.

Suri M, Madhulika, Pemde H, et al. Jarcho-Levin syndrome. *Indian Pediatr* 1994;31(9):1119–1122.

Jarcho S, Levin PM. Hereditary malformations of the vertebral bodies. *Bull Johns Hopkins Hospital* 1938;62:216–226.