Species Transferability of Klebsiella pneumoniae Carbapenemase-2 Isolated from a High-Risk Clone of Escherichia coli ST410

Miyoung Lee¹,² and Tae-Jin Choi¹*

¹Department of Microbiology Pukyoung National University Busan 48513, Republic of Korea
²Department of Laboratory Medicine, BHS Hanseo Hospital Busan 48253, Republic of Korea

Introduction

The gram-negative bacteria family Enterobacteriaceae includes pathogens that are responsible for a large number of infections and deaths worldwide each year. Furthermore, the continuously increase in the prevalence of antibiotic resistance in this bacteria family poses a serious problem [1]. Carbapenemases that endow bacteria with carbapenem resistance often jeopardize allopathic treatment for infectious diseases caused by common nosocomial pathogens. Currently, Klebsiella pneumoniae carbapenemases (KPCs), belonging to the Ambler class A carbapenemases, are the most clinically concerning enzymes because of their global presence and capability of using a broad spectrum of substrates, including most β-lactam drugs, except cephamycins [2, 3]. Molecular epidemiological studies on multilocus sequence typing (MLST) for KPC-producing Escherichia coli have revealed 131 more widespread strains than the ST410, ST69, ST93, ST167, ST354, and ST3948 strains based on their sequence type (ST) [4-7].

E. coli ST 410 has been reported worldwide as an extraintestinal pathogen and associated with resistance to fluoroquinolones, third-generation cephalosporins, and carbapenems. Recent studies on ten extended-spectrum β-lactamase (ESBL)-producing E. coli ST410 isolates from Germany indicated that this lineage includes a new successful clone with cross-sectorial transmission among wildlife, humans, pets, and animals used for commercial purposes through various environmental modes [8, 9]. The accumulation of multidrug resistance in E. coli ST410 over the past two decades, along with its potential for transmission between patients, indicates its high risk in clinical settings [10]. Previous studies on carbapenemase-producing Enterobacteriaceae (CPE) among inpatients demonstrated the clonal spreading of CPE between patients [11, 12].
The transposon Tn4401, which is based on highly mobile Tn3, facilitates the dissemination of \textit{blaKPC} [13], potentially resulting in horizontal gene transfer to other bacterial species. As the mortality rate associated with invasive infections caused by CPE is high [14], the increasing incidence of carbapenem-resistant bacteria, which are resistant to nearly all antibiotics, is of great concern [15]. This study was performed to investigate the horizontal propagation pathway of the KPC-producing high-risk clone of \textit{E. coli} ST410 in one patient. The mechanism and KPC delivery pathways based on the acquisition of multidrug resistance, including resistance to carbapenem, were investigated using whole-genome sequencing. This study elucidated the risk of this \textit{E. coli} clone to spread genes involved in antibiotic resistance across species, providing clues that can be integrated in the management of high-risk clones in South Korea.

Materials and Methods

Patient description

A 79-year-old man with chronic kidney disease was admitted to a general hospital (Busan, Korea) on December 12, 2017, owing to kidney disease. Upon admission, a KPC-2 \textit{E. coli} isolate (CPEc171209) was detected in rectal swabs, and on December 21, 2017, the 9th day of hospitalization, KPC-2 \textit{K. pneumoniae} (CPKp171210) was isolated. This prospective study was conducted under the approval of the Institutional Review Board of the BHS Hanseo Hospital, Busan, Korea (approval number CTS-19-002).

Bacterial Isolates and Antimicrobial Susceptibility Testing

We evaluated the clinical strains of \textit{E. coli} (CPEc171209) and \textit{K. pneumoniae} (CPKp171210) isolated from the rectal swabs harvested from the patient. Bacteria were identified through standard microbiological procedures and VITEK-2 (bioMérieux, Marcy-l’Etoile, France). The identification of all isolates was confirmed through 16S rDNA sequencing [16], VITEK 2 AST N224 cards (bioMérieux) and disk diffusion tests on Mueller-Hinton agar (BD Biosciences, Franklin Lakes, NJ, USA) were used to determine antimicrobial susceptibilities in accordance with the Clinical and Laboratory Standards Institute (CLSI) guidelines [17]. The susceptibility test was conducted with ampicillin, aztreonam, cefotaxime, cefoxitin, ciprofloxacin, amikacin, gentamicin, imipenem, meropenem, ertapenem, and colistin. The minimum inhibitory concentrations (MIC) for colistin were determined using the broth microdilution method with Mueller-Hinton broth (BD Biosciences) in accordance with the European Committee on Antimicrobial Susceptibility Testing guidelines [18]. The susceptibility results for tigecycline were confirmed through the E-test (bioMérieux).

For the modified carbapenem inactivation method (mCIM) test, organisms were incubated with a meropenem disk in tryptic soy broth (Becton, Dickinson and Company, Sparks, Maryland, USA) to determine whether the test organisms degrade meropenem. Clearance zones were measured and interpreted according to the CLSI guidelines [17].

Genotyping of β-Lactamases and Outer Membrane Proteins

The β-lactamase-encoding gene was selected through polymerase chain reaction (PCR). Genes encoding carbapenemases (IMP-1-type, VIM-2-type, NDM, KPC, KPC-2, GES, and OXA-48-like) and extended-spectrum β-lactamases (CTX-M-1-, CTX-M-9-, TEM-, and SHV-type) were assessed by PCR as previously described [19]. CPE isolates were examined for the presence of 16S ribosomal methyltransferases (armA, rmtA, rmtB, and rmtD) [20, 21], and quinolones (qepA, qnrA, qnrB, and qnrS), as previously described [22], and of genes encoding outer membrane proteins (ompK35 and ompK36) [23].

MLST

PCR and sequencing of the amplified DNA fragments were performed for seven housekeeping genes: \textit{adk}, \textit{fumC}, \textit{gyrB}, \textit{icd}, \textit{mdh}, \textit{parA}, and \textit{recA} of \textit{E. coli} [24] and \textit{gapA}, \textit{infB}, \textit{mdh}, \textit{pgi}, \textit{phoE}, \textit{rpoB}, and \textit{tonB} of \textit{K. pneumoniae} [25]. Nucleotide sequences were compared to those available in the MLST database (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli) to identify allelic numbers and STs.

Bacterial Conjugation

Bacterial conjugation was conducted using the \textit{E. coli} strain CPEc171209 and \textit{Klebsiella pneumoniae} CPKp171210 strains as donors and sodium azide-resistant \textit{E. coli} J53 strain as the recipient, following a standard agar mating method [26]. After overnight incubation at 37°C on brain-heart infusion agar (MB Cell, USA), transconjugants were selected on brain-heart infusion agar supplemented with 100 μg/ml sodium azide and 0.5 μg/ml imipenem.

Whole-Genome Sequencing

Whole-genome sequencing of CPEc171209 and CPKp171210 was performed. Single-molecule real-time sequencing was performed using a PacBio RSII instrument (Pacific Biosciences, USA). Schematic diagrams of the multiple alignments of plasmids were generated manually by realigning the linear plasmid maps generated using the SnapGene Viewer software (http://www.snapgene.com/products/snapgene viewer/). Prokka 1.11 (http://www.vicbioinformatics.com/software/prokka.shtml) was used for sequence annotation. ResFinder (https://cge.cbs.dtu.dk/services/ResFinder/), IS-Finder (https://isfinder.biouol.fr/), Plasmid Finder (https://cge.cbs.dtu.dk/services/PlasmidFinder/), Virulence Factor Database (http://www.mgc.ac.cn/VFs/), Restriction-Modification
Finder (https://cge.cbs.dtu.dk/services/Restriction-ModificationFinder/), Serotype Finder (https://cge.cbs.dtu.dk/services/SerotypeFinder/), Fim Typer (https://cge.cbs.dtu.dk/services/FimTyper/), CH Typer (https://cge.cbs.dtu.dk/services/CHTyper/), and TA Finder 1.0 (http://202.120.12.133/TAfinder/index.php) were used to identify resistance genes, insertion elements, replication origins, virulent elements, and toxin and antitoxin systems, respectively.

Data Availability
GenBank accession numbers for the two sequenced genomes are WMHS01000001-WMHR01000006 (CPEc171209) and WMHR01000001-WMHR01000004 (CPKp171210).

Results
Antimicrobial Susceptibilities and Molecular Typing
The antimicrobial susceptibility profiles of the E. coli and K. pneumoniae strains are presented in Table 1. According to the antibiotic susceptibility profiles, both isolates were resistant to ampicillin, aztreonam, cefotaxime, cefazidime, cefoxitin, ciprofloxacin, gentamicin, imipenem, meropenem, and ertapenem but susceptible to amikacin, tigecycline, and colistin. Carbapenemase susceptibility tests revealed that both isolates were resistant (Table 2). Furthermore, transconjugant strains displayed multidrug resistance (MDR) patterns during drug susceptibility assays, albeit with reduced cephalosporin and aminoglycoside resistance (Table 3). Differentiation tests for Phenotypic carbapenemase were positive for KPC production in both isolates. PCR of β-lactamase genes and sequence analysis of the resulting products supported the presence of blaKPC-2 and blaSHV-like in both isolates. Also, ompK36 was obliterated from CPKp171210.

Sequencing and Annotation of CPEc171209
The E. coli strain CPEc171209 genome comprised 5,293,485-bp with a 4,787,633-bp chromosome and five plasmids. They harbored the virulence factors gad and lpfA as well as S83L and D87N substitutions in gyrA, an S80I substitution in parC, an S458A substitution in parE, and unknown mutations in parC, pmrA, 23S, 16S_rsC, pmrB, 16S_rsH, and 16S_rsB. The type II restriction enzyme M.EcoJA03PDcm, and M.EcoGVI genes were

Table 1. Antimicrobial susceptibilities and epidemiological properties of KPC-producing Enterobacteriaceae isolates.
Isolate ID

CPEc171209
CPKp171210

The breakpoints were applied according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. Tigecycline susceptibility was confirmed by E-test (bioMérieux), and colistin susceptibility was confirmed by broth microdilution.

The eCIM is only interpreted when the mCIM result is positive. In contrast to mCIM, when the eCIM result is interpreted, pinpoint colonies within the zone of growth inhibition around the meropenem disk incubated in the presence of EDTA should be ignored. An indeterminate mCIM result occurs when the zone size is 16–18 mm, when the zone size is ≥19 mm with pinpoint colonies in the zone of growth inhibition, or when carbapenemase production cannot be confirmed. An eCIM zone size of 16–18 mm with pinpoint colonies in the zone of growth inhibition is also considered a positive mCIM result.

Table 2. Carbapenem susceptibility profiles of KPC-producing Enterobacteriaceae isolates.

Antibiotics	MIC (mg/L)	Zone diameter (mm)							
	CPEc171209	CPKp171210	TCPEc171209	TCPCp171210	CPEc171209	CPKp171210	TCPEc171209	TCPCp171210	Interpretation
IMP	≥16	≥16	≥16	≥16	0	0	0	0	R
MEM	0	0	0	0	0	0	0	0	R
ETP	4	0	0	0	0	0	0	0	R

The breakpoints were applied according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. Tigecycline susceptibility was confirmed by E-test (bioMérieux), and colistin susceptibility was confirmed by broth microdilution.
detected. CPEc171209 belonged to ST410, the serotype belonged to STO8, and H21 and its subtype belonged to fim C4 and fim H24, respectively. Furthermore, outer membrane proteins F and C were detected. Chromosomes included mph (A) for macrolide resistance. The 90,979-bp plasmid (pECBHS_9_3) and 85,870-bp plasmid (pECBHS_9_4) did not contain any acquired antimicrobial resistance factors.

pECBHS_9_1 plasmid composition. The pECBHS_9_1 plasmid consisted of a 188,153-bp circular DNA molecule with an average G+C content of 51.1% and 126 annotated open reading frames (ORFs).

The IncA/C2 plasmid (pECBHS_9_1) carried \(\text{bla}_{\text{CTX-M-14}}\) and \(\text{bla}_{\text{TEM-1C}}\) for \(\beta\)-lactam resistance, \(\text{aadA5}\), and \(\text{armA}\) for aminoglycoside resistance, \(\text{mph} (A)\) for macrolide resistance, \(\text{catA1}\) for phenicol resistance, \(\text{sul1}\) and \(\text{sul2}\) for sulfonamide resistance, and \(\text{dfrA17}\) for trimethoprim resistance. The plasmid harbored class 1 integrons with a truncated Tn3 transposon with \(\text{bla}_{\text{TEM-1C}}\) (Fig. 1; Table 4).

pECBHS_9_2 plasmid composition. The incompatible pECBHS_9_2 plasmid contained three origins of replication for IncFIA, IncFIB, and IncFII groups and conjugal transfer (\(\text{tra}\) and \(\text{trb}\)). It also contained \(\text{aac (3)-IIa}\) for aminoglycoside resistance, \(\text{bla}_{\text{CTX-M-14}}\) for \(\beta\)-lactam resistance, and \(\text{tet (a)}\) for tetracycline resistance. Along with drug resistance determinants, pECBHS_9_2 contained three toxin/antitoxin systems, including \(\text{iucA}\), \(\text{iucB}\), \(\text{iucC}_1\), \(\text{iucC}_2\), \(\text{iucD}\), and \(\text{iutA}\), associated with hydroxamate siderophore aerobactin synthesis.

Table 3. Antibiotic susceptibility profiles of KPC-producing Enterobacteriaceae isolates.

Isolate ID	AMP	AMOX-CLA	TZP	CFZ	FOX	CTX	CAZ	FEP	AM	ET	IMP	AK	GN	CIP	SXT	TIG	CST
CPEc171209	≥32	≥32	≥128 ≥64 ≥64 ≥64 ≥64 ≥8 ≥16	4	≥16	≥24	≤0.5	0.075	0.25								
CPKp171210	≥32	≥32	≥128 #64 ≥64 ≥64 ≥64 ≥8 ≥16 ≤2 ≤1	≥4	2	0.25	0.25										
TCPEc171209	≥32	≥32	≥128 ≥64 ≥64 ≥64 ≥64 ≥64 ≥8 ≥16 ≤2 ≤1	≥4	≥16	≥24	≤0.5	0.075	0.25								
TCPKp171210	≥32	≥32	≥128 ≥64 ≥64 ≥64 ≥64 ≥64 ≥64 ≥64 ≥64 ≥16	8	≥16	≥24	≤0.5	0.075	0.25								

The breakpoints were applied according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. CPEc171209 and CPKp171210 are pre-conjugation strains, and TCPEc171209 and TCPKp171210 are the conjugated strains. Abbreviations: AMP, ampicillin; AMOX-CLA, amoxicillin/clavulanic acid; TZP, piperacillin/tazobactam; CFZ, ceftazolin; FOX, cefoxitin; CTX, cefotaxime; CAZ, ceftazidime; FEP, cefepime; ATM, aztreonam; ETP, ertapenem; IPM, imipenem; AK, amikacin; GN, gentamicin; CIP, ciprofloxacin; SXT, trimethoprim/sulfamethoxazole; TIG, tigecycline; CST, colistin. MIC; minimum inhibitory concentration.
Table 4. Antibiotic resistance genes and integrative conjugative elements in KPC-producing *Enterobacteriaceae* isolates.

Strain	Plasmid	pKPC Replicon	β-lactam	Aminoglycoside	Tetracycline	Macrolide	Phenicol	Trimethoprim	Sulphonamide	Quinolone	Conjugants
CPEc171209	blaKPC-2	bluTEM-1, bluCTX-M-1, bluCTX-M-9, bluSHV	armA								+
TCPeC171209*	blaKPC-2	bluTEM-1, bluCTX-M-1, bluCTX-M-9, bluSHV	armA								
pECBHS_9_1	IncA/C2	bluCTX-M-14, aadA5, armA	mph(A)	catA1	dfyA17	sul1, sul2					
pECBHS_9_2	IncFIA, IncFII, IncX3	bluCTX-M-14	aac(3)-IIa	tet(A)							
pECBHS_9_5	IncX3	bluKPC-2, bluSHV-182									
CPKp171210	blaKPC-2	bluTEM-1, bluCTX-M-14, bluSHV	rmtC								+
TCPkP171210*	blaKPC-2	bluSHV									
pKPBS_10_1	IncFIB(K)	bluOXA-1	aac(6′)-Ib-cr	tet(A)	catB3	dfyA14	qnrB1				
pKPBS_10_3	IncX3	bluKPC-2, bluSHV-182									

CPEc171209 and CPkP171210 are pre-conjugation strains, and TCPeC171209 and TCPkP171210* are the conjugated strains. DNA sequencing was performed for strains that are underlined. Whole-genome sequencing was performed for the indicated plasmids.

Fig. 2. Comparison of the *blaKPC-2* regions of pECBHS_9_5 and pKPBS_10_3. (A) Linear map of pECBHS_9_5 harboring ΔTn4401a with *blaKPC-2*, *blaSHV-182*, and conjugative elements. (B) Linear map of pKPBS_10_3 harboring ΔTn4401a with *blaKPC-2*, *blaSHV-182*, and conjugative elements. The colored box indicates the gene. Most genes were well preserved but inverted. Genes are denoted by arrow colors based on the following gene function classification: green, plasmid replication; blue, plasmid stability; yellow, transcription and translation; sky blue, conjugative elements; pink, recombination and repair; red, antibiotic resistance; purple, other genes. Key: Pink line, *blaSHV-182*; red line, ΔTn4401a with *blaKPC-2*; sky blue line, conjugative elements.

J. Microbiol. Biotechnol.
Sequencing and Annotation of CPKp171210 DNA regions for plasmid replication (located on a Tn G+C content average of 48.0% and harbored 59 coding sequences and 25 annotated ORFs (Fig. 2). incompatibility group and harbored pKPBHS_10_3. Fig. 3.

Discussion
In this study, two clinical isolates, KPC-2 E. coli and KPC-2 K. pneumoniae, were obtained from rectal swabs. Recent studies on E. coli ST410 have suggested this strain as another successful pandemic extraintestinal pathogenic E. coli strain, with a lineage similar to that of ST131 [8]. Our results are largely concurrent with those of Roer et al. [10], with the E. coli (CPEC171209) ST410 strain belonging to the serotype O8:H21 containing antibacterial clade C4/H24 [10]. Roer et al. [10] reported that the E. coli ST410 lineage persists and causes recrudescence infections, such as hematological infections, in humans. ST410 has high worldwide prevalence and is widely distributed in the bloodstream, indicating that it can be transmitted between patients and cause hospital outbreaks [10]. K. pneumoniae (CPEK171210) ST307 harbors unknown mutations in ompK36 and ompK37. In whole-genome sequencing analysis, these mutations were considered deletion mutations in DNA sequences. Isolates harboring blaKPC and expressing ompK36 reportedly have lower carbapenem MICs. Furthermore, alterations in outer membrane proteins are reportedly associated with increased MICs of carbapenems [23].

Herein, both strains exhibited high or intermediate resistance to all tested antimicrobial agents, except for amikacin, tigecycline, and colistin. Resistance to a particular antibiotic can affect resistance to another antibiotic.
For example, cross-resistance, such as those between cephalosporin and β-lactam, quinolone and methicillin-resistant *Staphylococcus aureus*, and macrolide and pneumococcal resistance, have been reported. MDR *E. coli* CPEC171209 and *K. pneumoniae* CPKp171210 also cause cross-resistance to various antibiotics (Table 1).

The genes responsible for conjugal transfer of the IncX3 plasmid include tra/trb clusters and pil genes coding the type IV pilus. The IncX3 type is a predominant plasmid associated with blaNDM-1 [28] and occasionally harbors blaKPC [29], often accompanying a second plasmid including IncPα and ColI types [30]. Plasmid pECBHS_9_5 of CPEC171209 harbored blaKPC-2 bracketed by the Tn3-type transposon Tn4401 to pKPBSH_10_3 of CPKp171210 (Figs. 2A and 2B). The blaKPC-2 gene was located within a truncated Tn4401 transposon; Tn4401 harbors the trnP gene encoding a transposase, the trnP gene encoding a resolvase, and two insertion sequence elements, ISKpn7 and ISKpn6, located at each end of the blaKPC gene [31]. Furthermore, both CPEC171209 and CPKp171210 harbored transconjugation factors and the Tn3-type transposon, potentially resulting in cross-infection and horizontal migration. Therefore, the risk of interspecies mobility and infection is high. Plasmid pECBHS_9_2 harbors genes encoding virulence factors and toxin/antitoxin systems, which results in the enhancement of bacterial fitness in human hosts and prolonged persistence [32]. KPC-2 *E. coli* and KPC-2 *K. pneumoniae* were continuously monitored by rectal swab detection over the course of 3 months until the patient died. Plasmids pKPBSH_10_1 and pKPBSH_10_2 harbor various genes related to the resistance against diverse kinds of antimicrobial agents and defend themselves through type I and II restriction enzymes. The pKPBSH_10_1 plasmid also harbors CusCFBA proteins mediating resistance to copper and silver through cation efflux. Gram-negative bacteria, including *E. coli* frequently use tripartite efflux complexes of the resistance-nodulation-cell division superfamily transporters to pump out diverse toxic compounds [33, 34]. The efflux system CusCFBA is liable for removing biocidal Cu (I) and Ag (I) ions [35, 36], and the Cus determinant of Gram-negative bacteria encodes CusCFBA proteins. CusA and CusB are essential for copper resistance, while CusC and CusF are required for overall resistance.

This study investigated a case of persistent infection in a patient because of interspecies migration of carbapenem-resistant *Enterobacteriaceae* caused by an *E. coli* ST410 strain. Molecular genetic evidence obtained herein reveals the nature of this occurrence and indicates the risk of ST410 *E. coli* infections. The emergence of KPC-producing *E. coli* is concerning because the blaKPC-2-bearing plasmid may result in interspecies propagation of resistance. *E. coli* ST410 represents a globally distributed lineage and is responsible for diverse antimicrobial resistance determinants, including extended-spectrum β-lactamas, AmpC, carbapenemas, and colistin resistance genes. Furthermore, the present results suggest that ST410 is a high-risk bacterium when it infects the host. Common sequences of virulence factors were observed in plasmids in ST410 *E. coli* ST410 and in another high-risk group, ST307 CPKp1210, indicating the potential for cross-transmission, thus limiting treatment alternatives and maintaining long-term pathogenicity.

Carbapenem-resistant bacteria can undergo transgenic translocation and may spread rapidly via horizontal migration in patients. Together with its demonstrated high trainability among patients, *E. coli* ST410 poses an elevated risk in clinical settings; therefore, it should be considered as a lineage with emerging “high-risk” clones and be closely monitored. Although the number of patients analyzed in this study was limited (1 patient), this study clearly elucidates the propagation pattern of KPC-producing *E. coli* (ST410) strains, which frequently occur in South Korea. Further investigation of the molecular genetics of KPC-producing *E. coli* (ST410) are needed.

Acknowledgment

We would like to thank the BHS Hanseo Hospital for the kind gesture of accommodating us and for allowing us to continue our study.

Conflict of Interest

The authors have no financial conflicts of interest to declare.

References

1. Rhomberg PR, Deshpande LM, Kirby JT, Jones RN. 2007. Activity of meropenem as serum carbapenemases evolve in US Medical Centers: monitoring report from the MYSTIC Program (2006). **Diagn. Microbiol. Infect. Dis.** 59: 425-432.
2. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, et al. 2013. Clinical epidemiology of the global expansion of *Klebsiella pneumoniae* carbapenemases. **Lancet Infect. Dis.** 13: 785-796.
3. Pitout JD, Nordmann P, Poirel L. 2015. Carbapenem-resistant *E. coli* poses an elevated risk in clinical settings; therefore, it should be considered as a lineage with emerging “high-risk” clones and be closely monitored. Although the number of patients analyzed in this study was limited (1 patient), this study clearly elucidates the propagation pattern of KPC-producing *E. coli* (ST410) strains, which frequently occur in South Korea. Further investigation of the molecular genetics of KPC-producing *E. coli* (ST410) are needed.

Acknowledgment

We would like to thank the BHS Hanseo Hospital for the kind gesture of accommodating us and for allowing us to continue our study.

Conflict of Interest

The authors have no financial conflicts of interest to declare.

References

1. Rhomberg PR, Deshpande LM, Kirby JT, Jones RN. 2007. Activity of meropenem as serum carbapenemases evolve in US Medical Centers: monitoring report from the MYSTIC Program (2006). **Diagn. Microbiol. Infect. Dis.** 59: 425-432.
2. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, et al. 2013. Clinical epidemiology of the global expansion of *Klebsiella pneumoniae* carbapenemases. **Lancet Infect. Dis.** 13: 785-796.
3. Pitout JD, Nordmann P, Poirel L. 2015. Carbapenemase-producing *Klebsiella pneumoniae*, a key pathogen set for global nosocomial dominance. **Antimicrob. Agents Chemother.** 59: 5873-5884.
4. Adler A, Miller-Roll T, Assous MV, Geffen Y, Paikin S, Schwartz D, et al. 2015. A multicenter study of the clonal structure and resistance mechanism of KPC-producing *Enterobacteriaceae* isolates in Israel. **Clin. Microbiol. Infect.** 21: 230-235.
5. Piazza A, Caltagirone M, Bitar I, Nucleo E, Spalla M, Fogato E, et al. 2016. Emergence of *Escherichia coli* sequence type 131 (ST131) and ST3948 with KPC-2, KPC-3 and KPC-8 carbapenemas from a long-term care and rehabilitation facility (LTCRF) in northern Italy. **Adv. Exp. Med. Biol.** 901: 77-89.
6. Chavda KD, Chen L, Jacobs MR, Bonomo RA, Kreiswirth BN. 2016. Molecular diversity and plasmid analysis of KPC-producing *E. coli* (ST410) strains, which frequently occur in South Korea. Further investigation of the molecular genetics of KPC-producing *E. coli* (ST410) are needed.
10. Roer L, Overballe-Petersen S, Hansen F, Schonning K, Wang M, Reder BL, et al. 2018. Escherichia coli sequence type 410 is causing new international high-risk clones. mSphere 3e:e00337-18.

11. Solgi H, Badmasti F, Aminzadeh Z, Giske CG, Pouhradmad M, Vaziri E, et al. 2017. Molecular characterization of intestinal carriage of carbapenem-resistant Enterobacteriaceae among inpatients at two Iranian university hospitals: first report of co-production of blaNDM-7 and blaOXA-48. Eur. J. Clin. Microbiol. Infect. Dis. 36:2127-2135.

12. Ohno Y, Nakamura A, Hashimoto E, Matsutani H, Abe N, Fukuda et al. 2017. Molecular epidemiology of carbapenemase-producing Enterobacteriaceae in a primary care hospital in Japan, 2010–2013. J. Infect. Chemother. 23:224–229.

13. He S, Chandler M, Varani AM, Hickman AB, Dekker JP, Dyda F. 2016. Mechanisms of evolution in high-consequence drug resistance plasmids. MBio 7:e01987-16.

14. Moudloudi E, Protonotariou E, Zagoraiou A, Iosifidis E, Karapanagiotou A, Giametsova T, et al. 2010. Bloodstream infections caused by metallo-beta-lactamase Klebsiella pneumoniae carbapenemase-producing K. pneumoniae among intensive care unit patients in Greece: risk factors for infection and impact of type of resistance on outcomes. Infect. Control Hosp. Epidemiol. 31:1250-1256.

15. Walsh TR, Weeks J, Livermore DM, Toleman MA. 2011. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect. Dis. 11:355–362.

16. Copur Cicek A, Ozad Duzgun A, Saral A, Sandalli C. 2014. Determination of a novel integron-located variant (blaOXA-320) of Class D beta-lactamase in Proteus mirabilis. J. Basic Microbiol. 54:1030-1035.

17. Clinical and Laboratory Standards Institute. 2018. Methods for dilution antimicrobial susceptibility tests for bacteria that grow anaerobically. Clinical and Laboratory Standards Institute, Wayne, P. A.

18. EUCAST. Antimicrobial susceptibility testing of bacteria. Available from http://www.eucast.org/ast_of_bacteria/ (Updated on Jan 7 2020). Accessed April 30, 2019.

19. Jeong S, Kim JO, Jeong SH, Bae IK, Song W. 2015. Evaluation of peptide nucleic acid-mediated multiplex real-time PCR kits for rapid detection of carbapenemase genes in gram-negative clinical isolates. J. Microbiol. Methods. 113: 4–9.

20. Pérez-Pérez FJ, Hanson ND. 2002. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40:2153–2162.

21. Byoo NH, Kim EC, Hong SG, Park YJ, Lee K, Bae IK, et al. 2005. Dissemination of SHV-12 and CTX-M-type extended-spectrum beta-lactamasas among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J. Antimicrob. Chemother. 56: 698-702.

22. Yamane K, Wachino J, Suzuki S, Arakawa Y. 2008. Plasmid-mediated qepA gene among Enterobacteriaceae isolated from patients in Greece: risk factors for infection and impact of type of resistance on outcomes. Infect. Control Hosp. Epidemiol. 31:1250-1256.

23. Landman D, Bratu S, Quale J. 2009. Contribution of ompK36 to carbapenem susceptibility in KPC-producing Klebsiella pneumoniae. J. Med. Microbiol. 58:1303-1308.

24. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, et al. 2006. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60:1136-1151.

25. Bikbek E, Verboj F, Grimson PA, Bisse S. 2005. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 43: 4178–182.

26. Jeong SH, Lee KM, Lee J, Bae IK, Kim JS, Kim HS, et al. 2015. Clonal and horizontal spread of the blaOXA-232 gene among Enterobacteriaceae in a Korean hospital. Diagn. Microbiol. Infect. Dis. 82: 70-72.

27. Nias T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. 2008. Genetic structures at the origin of acquisition of the beta-lactamase blaNDM gene associated with transposon Tn4401a. Antimicrob. Agents Chemother. 52:5154-5158.

28. Kaijser L, Faustmann M, Brinkmann V, von Meyenburg H, Jendrossek D, et al. 2005. Dissemination of SHV-12 and CTX-M-type extended-spectrum beta-lactamasas among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J. Antimicrob. Chemother. 56: 698-702.

29. Yoo JS, Kim JS, Lee J, Bae IK, et al. 2005. Dissemination of SHV-12 and CTX-M-type extended-spectrum beta-lactamasas among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J. Antimicrob. Chemother. 56:698-702.

30. Yamane K, Wachino J, Suzuki S, Arakawa Y. 2008. Plasmid-mediated qepA gene among Enterobacteriaceae clinical isolates from Japan. Antimicrob. Agents Chemother. 52:1564-1566.

31. Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. 2008. Genetic structures at the origin of acquisition of the beta-lactamase blaOXA-232 gene among Enterobacteriaceae isolated from patients in Greece: risk factors for infection and impact of type of resistance on outcomes. Infect. Control Hosp. Epidemiol. 31:1250-1256.

32. Landman D, Bratu S, Quale J. 2009. Contribution of ompK36 to carbapenem susceptibility in KPC-producing Klebsiella pneumoniae. J. Med. Microbiol. 58:1303-1308.

33. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, et al. 2006. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60:1136-1151.

34. Bikbek E, Verboj F, Grimson PA, Bisse S. 2005. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 43: 4178–182.

35. Jeong SH, Lee KM, Lee J, Bae IK, Kim JS, Kim HS, et al. 2015. Clonal and horizontal spread of the blaOXA-232 gene among Enterobacteriaceae in a Korean hospital. Diagn. Microbiol. Infect. Dis. 82: 70-72.

36. Nias T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. 2008. Genetic structures at the origin of acquisition of the beta-lactamase blaNDM gene associated with transposon Tn4401a. Antimicrob. Agents Chemother. 52:5154-5158.

37. Yang Q, Fang L, Fu Y, Du X, Shen Y, Yu Y. 2015. Dissemination of NDM-1-producing Enterobacteriaceae mediated by the IncX3-type plasmid. PLoS One 10: e0129454.

38. Chen L, Chavda KD, Melano RG, Jacobs MR, Levi MH, Bonomo RA, et al. 2013. Complete sequence of a bla (KPC-2)-harboring IncFI (K1) plasmid from a Klebsiella pneumoniae sequence type 258 strain. Antimicrob. Agents. Chemother. 57:1542-1545.

39. Kassis-Chikhani N, Frangeul L, Drieux L, Sengelín C, Jarlier V, Brisse S, et al. 2013. Complete nucleotide sequence of the first KPC-2- and SHV-12-encoding IncX plasmid, pKpS90, from Klebsiella pneumoniae. Antimicrob. Agents Chemother. 57:618-620.

40. Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. 2008. Genetic structures at the origin of acquisition of the beta-lactamase blakPC gene. Antimicrob. Agents Chemother. 52:1257-1263.

41. Jeong S, Kim J, Lee S, Lee JH, Bae IK, et al. 2014. Extensively drug-resistant Escherichia coli sequence type 1642 carrying an IncX3 plasmid containing the blakPC-2 gene associated with transposon Tn4401a. Ann. Lab. Med. 36: 17-22.

42. Tseng TT, Greaves WF, Kollman J, Park D, Nies DM, Goffeau A, et al. 1999. The RND permease superfamily: an ancient, ubiquitous, and diverse family that includes human disease and development protein. J. Mol. Microbiol. Biotechnol. 1: 107-125.

43. Nies DH. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27: 313-339.

44. Franke S, Grass G, Nies DH. 2001. The product of the ybeGE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology 147: 965-972.

45. Franke S, Grass G, Rensing C, Nies DH. 2003. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J. Bacteriol. 185: 3804-3812.