We analyze the extreme high-magnification microlensing event OGLE-2008-BLG-279, which peaked at a maximum magnification of $A \sim 1600$ on 2008 May 30. The peak of this event exhibits both finite-source effects and terrestrial
parallax, from which we determine the mass of the lens, $M_l = 0.64 \pm 0.10 ~ M_\odot$, and its distance, $D_l = 4.0 \pm 0.6$ kpc. We rule out Jupiter-mass planetary companions to the lens star for projected separations in the range 0.5–20 AU. More generally, we find that this event was sensitive to planets with masses as small as $0.2 ~ M_{\oplus} \lesssim 2 ~ M_{\text{Mars}}$ with projected separations near the Einstein ring (~ 3 AU).

Key words: gravitational lensing – planetary systems – planetary systems: formation

1. INTRODUCTION

A complete census of planets beyond the snow line will be crucial for testing the currently favored core-accretion theory of planet formation since that is the region where this model predicts that giant planets form. For example, Ida & Lin (2004) find that gas giant planets around solar-type stars preferentially form in the region between the snow line at 2.7 AU and ~ 10 AU. While radial velocity and transit searches account for most of the more than 300 planets known to date, microlensing has the ability to probe a different region of parameter space that reaches far beyond the snow line and down to Earth-mass planets. Microlensing is most sensitive to planets near the Einstein ring radius, which Gould & Loeb (1992) showed lies just outside the snow line:

$$r_E \approx 4 \left(\frac{M_l}{M_\odot} \right)^{1/2} \text{AU},$$

for reasonable assumptions. This sensitivity to planets beyond the snow line is demonstrated by the nine announced planets found by microlensing, which range in mass from super-Earths to Jupiters and more massive objects (Bond et al. 2004; Udalski et al. 2005; Beaulieu et al. 2006; Gould et al. 2006; Bennett et al. 2008; Dong et al. 2009; Gaudi et al. 2008; Janczak et al. 2009).

In high-magnification microlensing events (A $\gtrsim 100$), the images finely probe the full angular extent of the Einstein ring, making these events particularly sensitive to planets over a wide range of separations (Griest & Safizadeh 1998). Additionally, because the time of maximum sensitivity to planets (the peak of the event) can be determined in advance, intensive observations can be planned resulting in improved coverage of the event, particularly given limited resources. Even when a planet is not detected, the extreme sensitivity of such an event can be used to put broad constraints on planetary companions.

High magnification events are also useful because it is more likely that secondary effects such as the finite-source effect and terrestrial parallax can be measured (Gould 1997). These effects can be used to break several microlensing degeneracies and allow a measurement of the mass of the lens and its distance. This allows us to determine a true mass of a planet rather than the planet/star mass ratio and a true projected separation rather than a relative one. Thus, in addition to being more sensitive to planets, high-magnification events allow us to make more specific inferences about the nature of the system.

Previous work has empirically demonstrated the sensitivity of high-magnification events to giant planets by analyzing observed events without detected planets and explicitly computing the detection sensitivity of these events to planetary companions. The first high-magnification event to be analyzed in such a way was MACHO 1998-BLG-35 (Rhee et al. 2000).

2. DATA COLLECTION

On 2008 May 13 (HJD$^\prime = \text{HJD}-2,450,000 = 4600.3604$), the OGLE collaboration announced the discovery of a new microlensing event candidate OGL-2008-BLG-279 at R.A. = $17^\circ 58^\prime 36^\prime^m 17^s$ decl. = $-30^\circ 22^\prime 08^\prime^m 4^s$ (J2000.0). This event was independently announced by the MOA collaboration on 2008 May 26 as MOA-2008-BLG-225. Based on the available OGLE and MOA data, μFUN began observations of this event on 2008 May 27 from the CTIO SMARTS 1.3 m in Chile, acquiring observations in both the V and I bands, and the next day identified it as likely to reach very high magnification 2 days hence. This event was monitored intensively over the peak by MOA, the PLANET collaboration, and many μFUN observatories. Specifically, the μFUN observatories Bronberg, Hunters Hill, Farm Cove, and Wise obtained data over the peak of this event (see Figure 1). OGLE-2008-BLG-279 peaked on 2008 May 30 at HJD$^\prime = 4617.3481$ with a magnification $A \sim 1600$.

Because there were so many data sets, this analysis focuses on the μFUN data from observatories that covered the peak of the event (μFUN Bronberg (South Africa), Hunters Hill (Australia), Farm Cove (New Zealand), and Wise (Israel)) and PLANET Canopus (Australia) combined with the data from OGLE and

36 Microlensing Follow Up Network (μFUN).

37 Optical Gravitational Lens Experiment (OGLE).

38 Microlensing Observations in Astrophysics (MOA).

39 Probing Lensing Anomalies NETwork (PLANET).

40 Dong et al. (2006) also analyzed the event OGLE-2004-BLG-343, which reached a peak magnification of $A \sim 3000$. Although this is the highest magnification event analyzed for planets, sparse observational coverage over the peak greatly reduced its sensitivity.
Figure 1. Light curve of OGLE-2008-BLG-279 near its peak. The left panel shows the entire event, while the right panel shows a close-up of the peak with residuals from the point-lens model including finite-source effects. The black solid line shows this best-fit model. For clarity, the data have been binned and rescaled to the OGLE flux.

MOA which cover both peak and baseline. We used the data from CTIO to measure the colors of the event but not in other analyses. Early fits of the data indicated that the Bronberg data from HJD 4617.0-4617.32 suffer from systematic residuals that are more severe than those seen in any of the other data, so these data were excluded from subsequent analysis.

The data were all reduced using difference imaging analysis (DIA; Wozniak 2000) with the exception of the CTIO data which were reduced using the DoPHOT package (Schechter et al. 1993). The uncertainties in all the data sets were normalized so that \(\chi^2/\text{degree of freedom} \sim 1 \), and we removed \(>3\sigma \) outliers whose deviations were not confirmed by near simultaneous data from other observatories. The normalization factors for each observatory are as follows: OGLE(1.8), MOA(1.0), \(\mu \)FUN Bronberg(1.4), \(\mu \)FUN Hunters Hill I(2.7) and U(1.5), \(\mu \)FUN Farm Cove(2.1), \(\mu \)FUN Wise(3.8), PLANET Canopus(4.6), and \(\mu \)FUN CTIO I(1.4) and V(2.0).

3. POINT-LENS ANALYSIS

The data for OGLE-2008-BLG-279 appear to be consistent with a very high magnification, \(A = 1570 \pm 120 \), single-lens microlensing event. We therefore begin by fitting the data with a point-lens model and then go on to place limits on planetary companions in Section 5. In this section, we describe our fits to the data and address the second-order, finite-source and parallax effects on the light curve.

3.1. Angular Einstein Ring Radius

From the \(V \)- and \(I \)-band images taken with CTIO both during the peak and after the event, we construct a color–magnitude diagram (CMD) of the event (Figure 2). We calibrate this CMD using stars that are also in the calibrated OGLE-III field. For the source, we measure \([I, (V-I)]_0 = [19.23 \pm 0.09, 2.53 \pm 0.01] \). If we assume that the source is in the bulge and thus behind the same amount of dust as the clump, we can compute the dereddened color and magnitude. We measure the color and magnitude of the clump: \([I, (V-I)]_{cl} = [16.48, 2.71] \). The absolute color and magnitude of the clump are \([M_I, (V-I)]_{cl} = [-0.20, 1.05] \), which at a distance of 8.0 kpc would appear to be \([I, (V-I)]_{0,cl} = [14.32, 1.05] \).

We find \(A_I = I_{cl} - I_{0,cl} = 16.48 - 14.32 = 2.16 \) and \(E(V-I) = (V-I)_{cl} - (V-I)_{0,cl} = 1.66 \). We then calculate the dereddened color and magnitude of the source to be \([I, (V-I)]_{0} = [19.23, 0.87] \).

The angular Einstein ring radius can be determined by combining information from the light curve and the CMD. Finite source effects in the light curve enable us to determine the ratio of the source size, \(\theta_s \), to the Einstein radius, \(\theta_E \):

\[
\rho_s = \frac{\theta_s}{\theta_E}.
\]

We can then estimate \(\theta_s \) from the color and magnitude of the source measured from the CMD, and solve for \(\theta_E \).
3.1. Finite-source Effects

If the source passes very close to the lens star, finite-source effects will smooth out the peak of the light curve and allow a measurement of the source size \(\rho_s \). Although finite-source effects are not obvious from a visual inspection of the light curve, including them yields a dramatic improvement in the fit, as shown in Figure 3. In order to fit for finite-source effects, we first estimate the limb darkening of the source from its color and magnitude. We combine the color and magnitude of the source with the surface brightness relations in Kervella et al. (2004), assuming a microturbulent velocity of 2 km s\(^{-1}\). We calculate the limb-darkening parameters \(\Gamma_V \) and \(\Gamma_I \), using \(\Gamma = 2\mu/(3 - \mu) \) to find \(\Gamma_V = 0.65 \) and \(\Gamma_I = 0.47 \). We use these values in our finite-source fits to the data. We find that a point-lens fit including finite-source effects is preferred by \(\Delta \chi^2 \) of 2647.85 over a fit assuming a point source. We search a grid of \(u_0 \) and \(\rho_s \) near the minimum to confirm that this is a well-constrained result. We use \(z_0 = u_0/\rho_s \) as a proxy for \(\rho_s \), following Yoo et al. (2004). The resultant \(\chi^2 \) map in the \(u_0-z_0 \) plane is shown in Figure 3. Our best-fit value for \(\rho_s \) is \((6.6 \pm 0.6) \times 10^{-4} \). For this value of \(\rho_s \), \(z_0 \) is almost unity, indicating that the source just barely grazed the lens star. The other parameters for our best-fit including finite-source effects are given in Table 1.

3.1.2. Source Size

We convert the dereddened color and magnitude of the source to \((V - K) \) using Bessell & Brett (1988), and combine them with the surface brightness relations in Kervella et al. (2004) to derive a source size of \(\theta_* = 0.54 \pm 0.4 \) mas. The uncertainty in \(\theta_* \) comes from two sources: the uncertainty in the flux and the uncertainty in the conversion from the observed \((V - I) \) color to surface brightness. The uncertainty in the flux (i.e., the model fit parameter \(f_{s,i} \)) is 8.5%, and we adopt 7% as the uncertainty due to the surface brightness conversion. From Equation (2), we find that \(\theta_L = \theta_*/\rho_s = 0.81 \pm 0.07 \) mas. We also calculate the (geocentric) proper motion of the source: \(\mu_{geo} = \theta_L/t_E = 2.7 \pm 0.2 \) mas yr\(^{-1}\). Because the peak flux \((\propto f_{s,i}/\rho_s) \) and source crossing time \((\rho_s t_E) \) are both essentially direct observables, and so are well constrained by the light curve, the fractional uncertainties in \(\theta_L \) and \(\mu_{geo} \) are comparable to the fractional uncertainty in \(\theta_* \). This result is generally applicable to point-lens/finite-source events and is discussed in detail in the Appendix.

3.2. Parallax

Given that we have a measurement for \(\theta_L \), if we can also measure microlens parallax, \(\pi_E \), we can combine these quantities to derive the mass of the lens and its distance. The mass of the lens is given by

\[
M_l = \frac{\theta_L}{\kappa \pi_E}, \quad \kappa \equiv \frac{4G}{c^2} \Delta \approx 8.14\text{ mas}\frac{M_{\odot}}{8\text{kpc}}.
\]

Its distance \(D_l \) is

\[
\frac{1\text{ AU}}{D_l} = \pi_l = \pi_s + \pi_{rel},
\]

where \(\pi_l \) is the parallax of the lens, \(\pi_s = 0.125 \) mas is the parallax of the source (assuming a distance of \(D_s = 8 \) kpc), and \(\pi_{rel} = \theta_0 \pi_E \).

Microlens parallax is the combination of two observable parallax effects in a microlensing event. Terrestrial parallax occurs because observatories located on different parts of the Earth have slightly different lines of sight toward the event and so observe slight differences in the peak magnification and in the timing of the peak, described by the parameters \(u_0 \) and \(t_0 \), respectively (Hardy & Walker 1995; Holz & Wald 1996). Orbital parallax occurs because the Earth moves in its orbit during the event, again, changing the apparent line of sight. Gould (1997) argued that one might expect to measure both finite-source effects and terrestrial parallax in extreme high-magnification events. We fit the light curve for both of the sources of parallax, including finite-source effects. Fitting for both kinds of parallax simultaneously yields a \(\Delta \chi^2 \) improvement of 165 (see Table 1). We find \(\pi_E = (\pi_{E,E},\pi_{E,N}) = (-0.15 \pm 0.02, 0.02 \pm 0.02) \), where \(\pi_{E,E} \) and \(\pi_{E,N} \) are the projections of \(\pi_E \) in the east and north directions, respectively.

Smith et al. (2003) showed that for orbital parallax and a constant acceleration, \(u_0 \) has a sign degeneracy. This degeneracy may be broken if terrestrial parallax is observed (see also Gould 2004). In the fits described above, we assumed \(u_0 > 0 \). We repeat the parallax fit fixing \(u_0 < 0 \). We find that the +\(u_0 \) solution is preferred over the −\(u_0 \) case by \(\Delta \chi^2 = 37 \) (see Table 1).

We perform a series of fits in order to isolate the source of the parallax signal, i.e., whether it is primarily due to orbital parallax or terrestrial parallax. We first fit the light curve for orbital parallax alone and then fit for terrestrial parallax alone. The results are given in Table 1. For +\(u_0 \), the orbital parallax fit gives \((\pi_{E,E},\pi_{E,N}) = (1.5 \pm 0.4, -0.3 \pm 0.2) \) and a \(\Delta \chi^2 \) improvement of \(\approx 16 \) over the finite-source fit without parallax. In contrast, the +\(u_0 \) fit for terrestrial parallax alone yields \(\Delta \chi^2 = 166 \) and \((\pi_{E,E},\pi_{E,N}) = (-0.16 \pm 0.02, 0.03 \pm 0.02) \). While the orbital and terrestrial parallaxes are nominally inconsistent at more than 3\(\sigma \), from previous experience (Poindexter et al. 2005) we know that low-level orbital parallax can be caused by small systematic errors or xallarap (the orbital motion of the source due to a companion), so we ignore this discrepancy. From the \(\Delta \chi^2 \) values, it is clear that terrestrial parallax dominates the microlens parallax signal in this event, so any spurious orbital parallax signal does not affect our final results.

We also confirm that the terrestrial parallax signal is seen in multiple observatories, and thus cannot be attributed to
The centroid of the light at baseline when the source is faint is different from the centroid at peak magnification, indicating that light from a third star is blended into the point-spread function (PSF). The measured color and magnitude of blended light are \([I, (V - I)]_{0,b} = [17.21 \pm 0.01, 2.32 \pm 0.02] \). Stars of this magnitude are relatively rare, and so the most plausible initial guess is that the third star is either a companion to the source or a companion to the lens. If the former, we can use the values of \(A_I \) and \(E(V-I) \) we found above to derive the intrinsic color of the blend: \([I, (V-I)]_{0,b} = [15.05, 0.66] \). This assumes that the blend is in the bulge at a distance of 8 kpc, giving an absolute magnitude of \(M_{I,b} = 0.53 \) and \(M_{V,b} = 1.19 \). Figure 4 shows this point (open square) compared to solar (Z=0.02) and sub-solar metallicity (Z=0.001) Yale–Yossei isochrones at 1.5, and 10 Gyr (Demarque et al. 2004). These isochrones show that the values of \([M_{V, (V-I)_0}]_b \) may be consistent with a sub-giant that is a couple Gyr old, but a more precise determination of age is not possible since the age is degenerate with the unknown metallicity of the blend.

If the blend is a companion to the lens, however, it lies in front of some fraction of the dust. In order to derive a dereddened color and absolute magnitude to this star, we need a model for the dust. We explore this scenario using a simple model for the extinction that is constant in the plane of the disk and decreases exponentially out of the plane with a scale height of \(H_0 = 100 \) pc:

\[
A_I(d) = K_1 \left[1 - \exp \left(\frac{-D \sin b}{H_0} \right) \right],
\]

where \(D \) is the distance to a given point along the line of sight, \(b \) is the Galactic latitude, and \(K_1 \) is a constant. We can solve for \(K_1 \) by substituting in the value of \(A_I \) that we find for the source at 8 kpc. We then model the selective extinction in a similar manner:

\[
E(V-I) = K_2 \left[1 - \exp \left(\frac{-D \sin b}{H_0} \right) \right],
\]

and solve for \(K_2 \) using the value of \(E(V-I) \) calculated for the source at 8 kpc. From Equations 5 and 6, we can recover the intrinsic color and magnitude of the blend assuming it is at various distances. In Figure 4, we plot a point assuming that the blend is at a distance of the lens, 4.0 kpc. By interpolating the isochrones and assuming a solar metallicity, we find that the blend is consistent with being a 1.4 \(M_\odot \) sub-giant companion to the lens with an age of 3.8 Gyr. For comparison, we also plot a line showing how the inferred color and magnitude of the blend vary with the assumed distance.
4.1. Astrometric Offset

From the measured blend flux, one can determine the astrometric offset of the source and blend by comparing the centroid of light during and after the event. At a given epoch, the centroid is determined by the ratio of the flux of the blend to the sum of the fluxes of the source and lens. That ratio depends on the magnification of the source. Thus, if we know the magnification of the source at two different epochs and the intrinsic magnitude of the source and the blend, we can solve for the separation of the lens and the blend. We find $\Delta \theta = 153 \pm 18$ mas. Given this offset, we will show below that based on the lack of shear observed in the light curve, the blended light cannot lie far in the foreground and thus cannot be the sub-giant companion to the lens hypothesized above.

4.2. Search for Shear

Because all stars have gravity, if the blend described above lies between the observer and the source, it will induce a shear γ in the light curve. We can estimate the size of the shear using the observed astrometric offset and assuming that the blend is a 1.4 M_\odot companion to the lens:

$$\gamma = \frac{\theta_{E,b}^2}{\Delta \theta^2} = \frac{\kappa \pi_{rel,b} M_b}{\pi_{rel}} \left(\frac{M_b}{1.4 M_\odot} \right)^{-2} \left(\frac{\Delta \theta}{153 \text{ mas}} \right)^{-2}.$$

Using the 1 σ upper limit on the separation (171 mas), we find a minimum shear of $\gamma = 4.9 \times 10^{-5}$ if the blend is a companion to the lens. To determine if this value is consistent with the light curve, we perform a series of fits to the data using binary-lens models that cover a wide range of potential shears. The effect of the shear is to introduce two small bumps into the light curve, we perform a series of fits to the data using binary-lens models for planetary companions to our data as advocated by Gaudi & Sackett (2000), rather than fitting binary models for planetary companions to our data as advocated by Gaudi & Sackett (2000), we generate a binary model from the data and fit it with a point-lens model. When the single-lens parameters are well constrained (as is the case with OGLE-2008-BLG-279), these two approaches are essentially equivalent (see the discussion in Gaudi et al. 2002 and Dong et al. 2006). We create a magnification map assuming an impact parameter, d, and star/planet mass ratio, q, using a lens with the characteristics from

![Figure 5. Shear as a function of α (angular position with respect to the motion of the source). Open symbols indicate an improved χ^2 compared to the finite-source point-lens fit. Filled symbols indicate a worse fit. The magnitude of $\Delta \chi^2$ is indicated by the color legend shown. The solid line indicates our calculated limits on the shear assuming the blend is at the same distance as the lens. The shaded area shows the 1σ limits on this value from the uncertainty in the centroid of the PSF (see the text).](image)

Since we have ruled out the scenario where the blend is a companion to the lens, we need to ask what possible explanations for the blend are consistent both with γ_{max} and with the observed color and magnitude. Given γ_{max}, we can place constraints on the distance to the blend, D_b, for a given mass. The distance is given by

$$D_b = \frac{1}{\pi_b},$$

where

$$\pi_b = \pi_s + \pi_{rel,b} = \pi_s + \frac{\gamma (\Delta \theta)^2}{\kappa M_b}.$$

If we assume $M_b = 1 M_\odot$, $\gamma = \gamma_{\text{max}}$, and use previously stated values for the other parameters, we find $D_b > 5.8$ kpc. A metal-poor sub-giant with this mass located at or beyond this distance would be consistent with the observed color and magnitude of the blend given the simple extinction model described above. However, other explanations are also possible. For example, if the mass of the blend were decreased, π_b would increase, and a slightly closer distance would be permitted. Thus, we cannot definitively identify the source of the blended light. However, given that γ_{max} is very small, we can ignore any potential shear contribution in later analysis.

5. LIMITS ON PLANETS

We use the method described by Rhee et al. (2000) to quantify the sensitivity of this event to planets. This approach is used for events such as this one for which the residuals are consistent with a point lens. Rather than fitting binary models for planetary companions to our data as advocated by Gaudi & Sackett (2000), we generate a binary model from the data and fit it with a point-lens model. When the single-lens parameters are well constrained (as is the case with OGLE-2008-BLG-279), these two approaches are essentially equivalent (see the discussion in Gaudi et al. 2002 and Dong et al. 2006). We create a magnification map assuming an impact parameter, d, and star/planet mass ratio, q, using a lens with the characteristics from
Figure 6. Planet sensitivity as a function of distance from the lens in units of Einstein radii. The white/black circle indicates the Einstein ring ($d = 1$). The mass ratios and corresponding planet masses are indicated on each plot. The colors indicate the $\Delta \chi^2$ that would be caused by a planet at that location.

our finite-source fit. The method for creating the magnification map is described in detail in Dong et al. (2006, 2009). For each epoch of our data, we generate a magnification due to the binary lens assuming some position angle, α, of the source’s trajectory relative to the axis of the binary and assign it the uncertainty of the datum at that epoch. As in Section 4.2, we use binned data for this analysis.

For $q = 10^{-3}, 10^{-4}, 10^{-5}$, and 10^{-6} we search a grid of d, α and compute the $\Delta \chi^2$. Based on the systematics in our data, we choose a threshold $\Delta \chi^2_{\text{min}} = 160$ (Gaudi & Sackett 2000). For $\Delta \chi^2 > \Delta \chi^2_{\text{min}}$, the fit is excluded by our data, and we are sensitive to a planet of mass ratio q at that location. We repeat the analysis using unbinned data for a small subset of points and confirm that the $\Delta \chi^2$ for fits with the unbinned data is comparable to fits with binned data. Figure 6 shows the sensitivity maps for four values of q. These maps show good sensitivity to planets with mass ratios $q = 10^{-3}, 10^{-4}$, and 10^{-5} and some sensitivity to planets with $q = 10^{-6}$. For our measured value of $M_f = 0.64 \, M_\odot$, a mass ratio of $q = 10^{-3}$ corresponds to a planet mass $m_p = 0.67 \, M_{\text{Jup}}$ and a mass ratio of $q = 10^{-6}$ corresponds to $m_p \approx 2 \, M_{\text{Mars}}$. The results bear a striking resemblance to the hypothetical planet sensitivity of the $A_{\text{max}} \sim 3000$ event OGLE-2004-BLG-343 if it had been observed over the peak (Dong et al. 2006). In particular, this event shows nearly uniform sensitivity to planets at all angles α for large mass ratios. The hexagonal shape of the sensitivity map is the imprint of the difference between the magnification maps of planetary-lens models and their corresponding single-lens models (see upper panel of Figure 3 in Dong et al. 2009).

Figure 7 shows a map of the planet detection efficiency for this event. The efficiency is the percentage of trajectories, α, at a given mass ratio and separation that have $\Delta \chi^2 > \Delta \chi^2_{\text{min}}$ (Gaudi & Sackett 2000). The efficiency contours are all quite close together because of the angular symmetry described above for the planet sensitivity maps. Because we measure the distance to the lens, we know the projected separation, r_\perp, in physical units:

$$r_\perp = d \theta_E D_l.$$ \hspace{1cm} (10)

Since we know M_l, we also know the planet mass, $m_p = q M_l$. We can rule out Neptune-mass planets with projected separations of 1.5–7.2 AU ($d = 0.5$–2.2) and Jupiter-mass planets with separations of 0.54–19.5 AU ($d = 0.2$–6.0). We are also able to detect Earth-mass planets near the Einstein ring, although the efficiency is low. The region where this event is sensitive to giant planets probes well beyond the snow line of this star, which we estimate to be at 1.1 AU assuming $\alpha_{\text{snow}} = 2.7 \, AU (M_*/M_\odot)^{1/2}$ (Iida & Lin 2004). The observed absence of planets, especially Neptunes, immediately beyond the snow line of this star is interesting given that core-accretion theory predicts that Neptune-mass planets should preferentially form around low-mass stars (Laughlin et al. 2004; Ida & Lin 2005).

It is also interesting to consider how the sensitivity of this event to planets compares to the sensitivity of other planet-search techniques. Obviously, because of the long timescales involved, most transit searches barely probe the region of sensitivity for this event. As a space-based mission, the Kepler satellite has the best opportunity to probe some of the microlensing parameter space using transits. Using Equation (21) from Gaudi & Winn (2007), we can estimate Kepler’s sensitivity to transits around this star:

$$m_p = 0.22 \left(\frac{S/N}{10} \right)^{3/2} \left(\frac{a}{1 \, \text{AU}} \right)^{3/4} 10^{(m_V - 12)} M_{\text{Earth}},$$ \hspace{1cm} (11)

where (S/N) is the signal-to-noise ratio, a is the semimajor axis of the planet, and m_V is the apparent magnitude of the star.
Figure 7. Detection efficiency map in the (d, q) plane, i.e., projected separation in units of θ* and planet-star mass ratio. The contours show detection efficiencies of 0.99, 0.90, 0.75, 0.50, 0.25, and 0.10 from inside to outside. The inner spike is due to resonant caustic effects at the Einstein ring. The upper and right axes translate (d, q) into physical units (r, m_p), i.e., physical projected separation and planet mass. The vertical solid line shows the position of the snow line for this star. The dotted line shows Kepler’s sensitivity to planets around the lens star assuming for this star. The dotted line shows Kepler’s sensitivity to planets around the lens star assuming \(m_V = 12 \). The cutoff in separation (d \(\gtrsim 0.6 \)) occurs where a planet’s orbital period is equal to Kepler’s mission lifetime of 3.5 yr. The dashed line shows the sensitivity limit for radial velocity observations with 1 m s\(^{-1}\) precision. The dot-dashed line shows the sensitivity limit for a space-based astrometry mission with a precision of 3 μas assuming the star is at 10 pc.

We have assumed that the density of the planet is the same as the density of the Earth and the stellar mass–radius relation \(R_\star = k M_\star^{0.5} \) (Cox 2000, p. 389). Kepler is also limited by its mission lifetime of 3.5 yr. For periods longer than this, it becomes increasingly unlikely that Kepler will observe a transit (Yee & Gaudi 2008). This limits the sensitivity to planets within \(\sim 2 \) AU where the period is less than the mission lifetime. These boundaries are plotted in Figure 7.

For comparison, we can also estimate the sensitivity of the radial velocity technique to planets around a star of this mass assuming circular orbits and an edge-on system. Radial velocity is sensitive to planets of mass

\[
m_p = 8.9 \left(\frac{\sigma_{RV}}{1 \text{ m s}^{-1}} \right) \left(\frac{S/N}{10} \right) \left(\frac{N}{100} \right)^{1/2} \left(\frac{a}{1 \text{ AU}} \right)^{1/2} M_{\text{Earth}},
\]

where \(\sigma_{RV} \) is the precision, and \(N \) is the number of observations. The limit of radial velocity sensitivity is plotted in Figure 7 as a function of separation assuming a precision of 1 m s\(^{-1}\). Additionally, we can consider how this microlensing event compares to the sensitivity of a space-based astrometry mission with microarcsecond precision (\(\sigma_\mu = 3 \) μas):

\[
m_p = 6.4 \left(\frac{\sigma_\mu}{3 \text{ μas}} \right) \left(\frac{S/N}{10} \right) \left(\frac{N}{100} \right)^{1/2} \left(\frac{a}{1 \text{ AU}} \right)^{-1/2} \left(\frac{d}{10} \right) M_{\text{Earth}}.
\]

While these contours encompass a large region of the parameter space, they do not take into account the time it takes to make the observations, which increases with increasing semimajor axis. Furthermore, we only expect this kind of astrometric precision from a future space mission, whereas this event shows that microlensing is currently capable of finding these planets from the ground. This discussion shows that microlensing is sensitive to planets in regions not probed by transits and radial velocity and will be particularly important for finding planets at wide separations where the periods are long. For example, for the semimajor axis \(a = 4 \) AU (near the maximum sensitivity shown in Figure 7), the period is \(P \approx 10 \) yr.

6. SUMMARY

The extreme magnification microlensing event OGLE-2008-BLG-279 allowed us to place broad constraints on planets around the lens star. Even with a more conservative detection threshold (\(\Delta \mu^2 > 160 \)), this event is more sensitive than any previously analyzed event (the prior record holder was MOA-2003-BLG-32; Abe et al. 2004). Furthermore, because we observe both parallax and finite-source effects in this event, we are able to measure the mass and distance of an isolated star (\(M_L = 0.64 \pm 0.10 M_\odot \), \(D_L = 4.0 \pm 0.6 \text{ kpc} \)). Using these properties of the lens star, we convert the mass ratio and projected separation to physical units. We can exclude giant planets around the lens star in the entire region where they are expected to form, out beyond the snow line. For example, Jupiter-mass planets are excluded from 0.54–19.5 AU. Events like this that can detect or exclude a broad range of planetary systems out beyond the snow line will be important for determining the planet frequency at large separations and constraining models of planet formation and migration.

We acknowledge the following support: NSF AST-0757888 (A.G., S.D., J.C.Y.), NASA NNG04GL51G (D.D., A.G., and R.P.), Polish MNiSW N20303032 (A.G., S.D., J.C.Y.), NASA NNG04GL51G (D.D., A.G., and R.P.), Polish MNiSW N20303032/4275 (A.U.), Korea Astronomy and Space Science Institute (B.-G.P. and C.-U.L.), Creative Research Initiative Program (2009-008561) of Korea Science and Engineering Foundation (C.H.), and David Warren for his support of Mt. Canopus Observatory.

APPENDIX

UNCERTAINTY IN \(\theta_*, \mu, \) AND \(\theta_E \)

In the present case, the fractional errors in \(\theta_*, \mu, \) and \(\theta_E \) are all very nearly the same, although for somewhat different reasons. Since the same convergence of errors is likely to occur in many point-lens/finite-source events, we briefly summarize why this is the case. We first write (generally),

\[
\theta_* = \sqrt{f_s/Z},
\]

where \(f_s \) is the source flux as determined from the model, and \(Z \) is the remaining set of factors, which generally include the surface brightness of the source, uncertainties due to the calibration of the source flux, and numerical constants. Next, we write

\[
\mu = \frac{\theta_E}{\tau_*} = \frac{\theta_*}{\mu_*} = \frac{1}{\sqrt{Z} f_s} f_{\text{grand}},
\]

where \(f_{\text{grand}} \equiv f_s/\rho \) and \(\tau_* \equiv \rho \tau_E \). We note that for point-lens events with strongly detected finite source effects, \(\tau_* \) and \(f_{\text{grand}} \) are quasi-observables, and so have extremely small errors. For
example, if \(u_0 = 0 \), then \(2t_{\star} \) is just the observed source crossing time while \(2f_{\text{grand}}[1 + (3\pi/8 - 1)\Gamma] \) is the observed peak flux. Even for \(u_0 \neq 0 \), these quantities are very strongly constrained, with errors \(\sigma_{f_{\text{grand}}} = 0.4\% \) and \(\sigma_{t_{\star}} = 0.3\% \) in the present case. Since the errors in \(f_s \) and \(Z \) are independent, the fractional errors in \(\theta_{\star} \), \(\mu \), and \(\theta_E \) are each equal to \(\sqrt{(1/4)(\sigma_{f_s}/f_s)^2 + (\sigma_Z/Z)^2} \). In the present case, \(\sigma_{f_s}/f_s \) is given by the fitting code to be 8.5\%, while we estimate \(\sigma_Z/Z \) to be 7\%, and therefore find a net error in all three quantities \((\theta_{\star}, \theta_E, \) and \(\mu) \) of 8\%.

REFERENCES

Abe, F., et al. 2004, Science, 305, 1264
Batista, V., et al. 2009, A&A, submitted (arXiv:0907.3471)
Beaulieu, J.-P., et al. 2006, Nature, 439, 437
Bennett, D. P., et al. 2008, ApJ, 684, 663
Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134
Bond, I. A., et al. 2002, MNRAS, 333, 71
Bond, I. A., et al. 2004, ApJ, 606, L155
Claret, A. 2000, A&A, 363, 1081
Cox, A. N. 2000, Allen’s Astrophysical Quantities (Melville, NY: AIP)
Demarque, P., Woo, J.-H., Kim, Y.-C., & Yi, S. K. 2004, ApJS, 155, 667
Dong, S., et al. 2006, ApJ, 642, 842
Dong, S., et al. 2009, ApJ, 698, 1826
Gaudi, B. S., & Sackett, P. D. 2000, ApJ, 528, 56
Gaudi, B. S., & Winn, J. N. 2007, ApJ, 655, 550
Gaudi, B. S., et al. 2002, ApJ, 566, 463
Gaudi, B. S., et al. 2008, Science, 319, 927
Gould, A. 1997, ApJ, 480, 188
Gould, A. 2004, ApJ, 606, 319
Gould, A., & Loeb, A. 1992, ApJ, 396, 104
Gould, A., et al. 2006, ApJ, 644, L37
Griest, K., & Safizadeh, N. 1998, ApJ, 500, 37
Hardy, S. J., & Walker, M. A. 1995, MNRAS, 276, L79
Holz, D. E., & Wald, R. M. 1996, ApJ, 471, 64
Ida, S., & Lin, D. N. C. 2004, ApJ, 604, 388
Ida, S., & Lin, D. N. C. 2005, ApJ, 626, 1045
Janczak, J., et al. 2009, ApJ, submitted (arXiv:0908.0529)
Kervella, P., Thévenin, F., Di Folco, E., & Ségransan, D. 2004, A&A, 426, 297
Laughlin, G., Bodenheimer, P., & Adams, F. C. 2004, ApJ, 612, L73
Poindexter, S., Afonso, C., Bennett, D. P., Glicenstein, J.-F., Gould, A., Szymański, M. K., & Udalski, A. 2005, ApJ, 633, 914
Rhie, S. H., et al. 2000, ApJ, 533, 378
Schechter, P. L., Mateo, M., & Saha, A. 1993, PASP, 105, 1342
Smith, M. C., Mao, S., & Paczyński, B. 2003, MNRAS, 339, 925
Udalski, A., et al. 2005, ApJ, 628, L109
Wozniak, P. R. 2000, Acta Astron., 50, 421
Yee, J. C., & Gaudi, B. S. 2008, ApJ, 688, 616
Yoo, J., et al. 2004, ApJ, 616, 1204