On quasi-Poisson homogeneous spaces of quasi-Poisson Lie groups

Eugene Karolinsky, Kolya Muzykin

1 Introduction

The notion of Poisson Lie group and its infinitesimal counterpart, Lie bialgebra, was introduced by Drinfeld [4]. Later it was explained that these objects are quasiclassical limits of Hopf QUE algebras. In [5] the more general objects, quasi-Hopf QUE algebras, were introduced along with their quasiclassical limits, Lie quasi-bialgebras. The corresponding geometric objects, quasi-Poisson Lie groups, were first studied by Kosmann-Schwarzbach [8].

It is well known that Lie bialgebra structures on \mathfrak{g} are in a natural 1-1 correspondence with Lie algebra structures on $D(\mathfrak{g}) = \mathfrak{g} \oplus \mathfrak{g}^*$ such that \mathfrak{g} and \mathfrak{g}^* are subalgebras in $D(\mathfrak{g})$ and the natural bilinear form on $D(\mathfrak{g})$ is invariant. Respectively, in order to get a Lie quasi-bialgebra structure on \mathfrak{g}, one should drop the condition that \mathfrak{g}^* is a subalgebra in $D(\mathfrak{g})$.

Along with (quasi-)Poisson Lie groups it is natural to study their (quasi-)Poisson actions [1, 2] and, in particular, (quasi-)Poisson homogeneous spaces. Drinfeld in [6] presented an approach to the classification of Poisson homogeneous spaces. Namely, he showed that if G is a Poisson Lie group, \mathfrak{g} is the corresponding Lie bialgebra, then the isomorphism classes of Poisson homogeneous G-spaces are essentially in a 1-1 correspondence with the G-orbits of Lagrangian subalgebras in $D(\mathfrak{g})$.

The main goal of this paper is to generalize this result to the quasi-Poisson case (see Theorem [3]). We also study the behavior of quasi-Poisson homogeneous spaces under twisting. Some examples showing the technique of Lagrangian subalgebras are also provided.

It also turns out that quasi-Poisson homogeneous spaces, as well as Poisson ones, are related to solutions of the classical dynamical Yang-Baxter equation (see [7, 10] for the Poisson case). This topic will be discussed in a forthcoming paper.

Acknowledgements

The authors are grateful to Alexander Stolin for useful discussions on the topic of the paper.
2 Preliminaries

2.1 Notation

We will use the following normalization of the wedge product of multivector fields on a smooth manifold. If \(v \) is a \(m \)-vector field, \(w \) is a \(n \)-vector field, then

\[
v \wedge w = \frac{1}{n!m!} \text{Alt}(v \otimes w),
\]

where

\[
\text{Alt}(x_1 \otimes x_2 \otimes \cdots \otimes x_k) = \sum_{\sigma \in S_k} \text{sign}(\sigma)x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \cdots \otimes x_{\sigma(k)}.
\]

We will denote by \([,]\) the Schouten bracket of multivector fields (see, e.g., [2]).

Let \(G \) be a Lie group, \(\mathfrak{g} = \text{Lie} G \) its Lie algebra. For any \(v \in \bigwedge^k \mathfrak{g} \) denote by \(v^\lambda \) (resp. \(v^\rho \)) the left (resp. right) invariant multivector field that corresponds to \(v \), i.e., \(v^\lambda(g) = (l_g)_*^{} v \), \(v^\rho(g) = (r_g)_*^{} v \) for all \(g \in G \), where \(l_g \) (resp. \(r_g \)) is the left (resp. right) translation by \(g \).

Suppose that \(G \) acts smoothly on a smooth manifold \(X \). Then for any \(v \in \mathfrak{g} \) we denote by \(v_X \) the corresponding vector field on \(X \), i.e.,

\[
(v_X f)(x) = \frac{d}{dt}\Big|_{t=0} f(\exp tv \cdot x)
\]

for any \(x \in X \). Similarly, for \(v \in \bigwedge^k \mathfrak{g} \) one can define the multivector field \(v_X \). For any \(x \in X \) consider the map \(\rho_x : G \to X \), \(\rho_x(g) = g \cdot x \). Then \((\rho_x)_*^{} v = v_X(x) \) for \(v \in \mathfrak{g} \).

For any point \(x \in X \) we denote by \(H_x = \{ g \in G \mid g \cdot x = x \} \) its stabilizer. Let \(\mathfrak{h}_x = \text{Lie} H_x \subset \mathfrak{g} \).

Suppose now that \(X \) is a homogeneous \(G \)-space. In this case we will identify \(T_xX \) with \(\mathfrak{g}/\mathfrak{h}_x \) for all \(x \in X \). Fix \(x \in X \) and for any \(f \in \mathcal{C}^\infty X \) define \(f^G \in \mathcal{C}^\infty G \) by the formula \(f^G(g) = f(\rho_x)(g) = f(g \cdot x) \). Note that the mapping \(f \mapsto f^G \) is an isomorphism between the spaces of smooth functions on \(X \) and right \(H_x \)-invariant smooth functions on \(G \).

2.2 Quasi-Poisson Lie groups and quasi-Poisson actions

Following [1], we define the notion of quasi-Poisson Lie group and the notion of quasi-Poisson action.

Definition 1. Let \(G \) be a Lie group, \(\mathfrak{g} \) its Lie algebra, \(P_G \) a bivector field on \(G \), and \(\varphi \in \bigwedge^3 \mathfrak{g} \). A triple \((G, P_G, \varphi)\) is called a quasi-Poisson Lie group.
\[PG \text{ is multiplicative, i.e., } PG(gg') = (l_g)_*PG(g') + (r_{g'})_*PG(g), \]
(1)
\[\frac{1}{2}[PG, PG] = \varphi^\rho - \varphi^\lambda, \]
(2)
\[[PG, \varphi^\rho] = 0. \]
(3)

The notion of Poisson Lie group is a special case of the notion of quasi-Poisson Lie group. Namely, for any Poisson Lie group \((G, PG)\) the triple \((G, PG, 0)\) is a quasi-Poisson Lie group.

Consider the mapping \(\eta : G \to \mathfrak{g} \wedge \mathfrak{g}\) defined by
\[
\eta(g) = (r_{g}^{-1})_*PG(g).
\]
It is a \(\mathfrak{g} \wedge \mathfrak{g}\)-valued 1-cocycle of \(G\) with respect to the adjoint action of \(G\) on \(\mathfrak{g} \wedge \mathfrak{g}\), i.e.,
\[
\eta(g_1 g_2) = \eta(g_1) + \text{Ad}_{g_1} \eta(g_2).
\]

Here \(\text{Ad}_{g}(x \otimes y) = (\text{Ad}_{g} x) \otimes (\text{Ad}_{g} y)\). The cocyclicity of \(\eta\) is equivalent to the multiplicativity condition \(1\).

Consider \(\delta = d\eta : \mathfrak{g} \to \mathfrak{g} \wedge \mathfrak{g}\). It is a 1-cocycle of \(\mathfrak{g}\) with respect to the adjoint action of \(\mathfrak{g}\) on \(\mathfrak{g} \wedge \mathfrak{g}\), i.e.,
\[
\delta([x, y]) = \text{ad}_x \delta(y) - \text{ad}_y \delta(x),
\]
where \(\text{ad}_x(y \otimes z) = [x \otimes 1 + 1 \otimes x, y \otimes z] = \text{ad}_x y \otimes z + y \otimes \text{ad}_x z\).

Definition 2. Suppose \((G, PG, \varphi)\) is a quasi-Poisson Lie group, \(G\) acts smoothly on a smooth manifold \(X\), \(PX\) is a bivector field on \(X\). The action of \(G\) on \(X\) is called quasi-Poisson if
\[
PX(gx) = (l_g)_*PX(x) + (\rho_x)_*PG(g),
\]
(4)
\[
\frac{1}{2}[PX, PX] = \varphi_X
\]
(5)

(here \(l_g\) denotes the mapping \(x \mapsto g \cdot x\)).

Let us consider the case \(\varphi = 0\), i.e., \(G\) is a Poisson Lie group. Then the condition \(5\) means that \(X\) is a Poisson manifold, and from \(4\) it follows that the action of \(G\) on \(X\) is Poisson.

Definition 3. Suppose that \((G, PG, \varphi)\) is a quasi-Poisson group, \(G\) acts smoothly on a manifold \(X\) equipped with a bivector field \(PX\), and this action is quasi-Poisson. We call \(X\) a quasi-Poisson homogeneous \(G\)-space if the action of \(G\) on \(X\) is transitive.

Lemma 1. Suppose that \((G, PG, \varphi)\) is a quasi-Poisson group, \(X\) is a homogeneous \(G\)-space, \(PX\) is a bivector field on \(X\). Then the condition \(4\) is equivalent to
\[
P_X(gx) = \text{Ad}_g PX(x) + \eta(g),
\]
(6)
where \(\text{Ad}_g : \bigwedge^2 (\mathfrak{g}/h_x) \to \bigwedge^2 (\mathfrak{g}/h_{gx}) \) is the isomorphism of the vector spaces induced by the automorphism \(\text{Ad}_g : \mathfrak{g} \to \mathfrak{g} \), and \(\eta(g) \) is the image of \(\eta(g) \) in \(\bigwedge^2 (\mathfrak{g}/h_{gx}) \).

2.3 Lie quasi-bialgebras

Recall that a Poisson Lie structure on a Lie group \(G \) induces the structure of a Lie bialgebra on the Lie algebra \(\mathfrak{g} = \text{Lie} G \). A quasi-Poisson structure on a Lie group \(G \) induces a similar structure on \(\mathfrak{g} \). We follow [5] in defining the notion of Lie quasi-bialgebra.

Definition 4. Let \(\mathfrak{g} \) be a Lie algebra, \(\delta \in \mathfrak{g} \wedge \mathfrak{g} \) a \(\mathfrak{g} \wedge \mathfrak{g} \)-valued 1-cocycle of \(\mathfrak{g} \), and \(\varphi \in \bigwedge^3 \mathfrak{g} \). A triple \((\mathfrak{g}, \delta, \varphi)\) is called a **Lie quasi-bialgebra** if

\[
\frac{1}{2} \text{Alt}(\delta \otimes \text{id}) \delta(x) = \text{ad}_x \varphi \quad \text{for any } x \in \mathfrak{g},
\]

\[
\text{Alt}(\delta \otimes \text{id} \otimes \text{id}) \varphi = 0,
\]

where \(\text{ad}_x(a \otimes b \otimes c) = [x \otimes 1 \otimes 1 + 1 \otimes x \otimes 1 + 1 \otimes 1 \otimes x, a \otimes b \otimes c] \).

The equation (7) is called the quasi co-Jacobi identity.

If we set \(\varphi = 0 \), then the notion of Lie quasi-bialgebra coincides with the notion of Lie bialgebra. In this case the equation (7) becomes the ordinary co-Jacoby identity, and the condition (8) is obviously satisfied.

For any quasi-Poisson Lie group \((G, P_G, \varphi)\) there exists a Lie quasi-bialgebra structure on \(\mathfrak{g} \) given by the 1-cocycle \(\delta = d e \eta \) and \(\varphi \). Conversely, to any Lie quasi-bialgebra there corresponds a unique connected and simply connected quasi-Poisson Lie group (see [9]).

Given any linear map \(\delta : \mathfrak{g} \to \mathfrak{g} \wedge \mathfrak{g} \subset \mathfrak{g} \otimes \mathfrak{g} \) we can define the skew-symmetric bilinear operation on \(\mathfrak{g}^* \): for all \(l, m \in \mathfrak{g}^* \) set \([l, m]_\delta = \delta^*(l \otimes m) \).

Recall that for any Lie quasi-bialgebra \((\mathfrak{g}, \delta, \varphi)\) one can construct the so-called double Lie algebra \(\mathcal{D}(\mathfrak{g}) \) (see [3]):

1. \(\mathcal{D}(\mathfrak{g}) = \mathfrak{g} \oplus \mathfrak{g}^* \) as a vector space;
2. define the bilinear operation \([,]_{\mathcal{D}(\mathfrak{g})}\) on \(\mathcal{D}(\mathfrak{g}) \) by the following conditions:
 1. \([a, b]_{\mathcal{D}(\mathfrak{g})} = [a, b] \quad \text{for } a, b \in \mathfrak{g};\)
 2. \([l, m]_{\mathcal{D}(\mathfrak{g})} = [l, m]_\delta - (l \otimes m \otimes \text{id}) \varphi \quad \text{for } l, m \in \mathfrak{g}^*;\)
 3. \([a, l]_{\mathcal{D}(\mathfrak{g})} = \text{coad}_a l - \text{coad}_l a \quad \text{for } a \in \mathfrak{g}, l \in \mathfrak{g}^*.\)

where \(\text{coad}_l : \mathfrak{g} \to \mathfrak{g} \) is defined by \(\langle \text{coad}_l a, m \rangle = -\langle [l, m]_\delta, a \rangle = -\langle l \otimes m, \delta(a) \rangle \), and \(\text{coad}_a : \mathfrak{g}^* \to \mathfrak{g}^* \) is defined by \(\langle \text{coad}_a l, b \rangle = -\langle l, [a, b] \rangle \). Here and below \(\langle , \rangle \) denotes the standard pairing between \(\mathfrak{g} \) and \(\mathfrak{g}^* \).

We denote by \(Q(,) \) the following invariant symmetric bilinear form on \(\mathcal{D}(\mathfrak{g}) \):

\[
Q(a + l, b + m) = \langle l, b \rangle + \langle m, a \rangle.
\]
Suppose \(G \) is a quasi-Poisson Lie group, \(\mathfrak{g} \) is the corresponding Lie quasi-bialgebra, \(\mathcal{D}(\mathfrak{g}) \) is its double Lie algebra. Then the adjoint action of \(G \) on \(\mathfrak{g} \) can be extended to the action of \(G \) on \(\mathcal{D}(\mathfrak{g}) \) defined by

\[
g \cdot (a + l) = \text{Ad}_g a + (l' \otimes \text{id})\eta(g) + l',
\]

where \(l' = (\text{Ad}_g^{-1})^*l \). The differential of this action is the adjoint action of \(\mathfrak{g} \) on \(\mathcal{D}(\mathfrak{g}) \).

3 Main results

In [6] the characterization of all Poisson homogeneous structures on a given homogeneous \(G \)-space in terms of Lagrangian subalgebras in \(\mathcal{D}(\mathfrak{g}) \) is presented. We generalize this result to the quasi-Poisson case.

Suppose \(G \) is a quasi-Poisson Lie group, \(X \) is a quasi-Poisson homogeneous \(G \)-space. Recall that we identify \(T_xX \) and \(\mathfrak{g}/\mathfrak{h}_x \) for all \(x \in X \). For any \(x \in X \) define

\[
L_x = \left\{ a + l \mid a \in \mathfrak{g}, \ l \in (\mathfrak{g}/\mathfrak{h}_x)^* = \mathfrak{h}_x^* \subset \mathfrak{g}^*, \ (l \otimes \text{id})P_X(x) = \overline{a} \right\},
\]

where \(\overline{a} \) is the image of \(a \) in \(\mathfrak{g}/\mathfrak{h}_x \).

Lemma 2. \(L_x \) is Lagrangian (that is, maximal isotropic) subspace in \(\mathcal{D}(\mathfrak{g}) \), and \(L_x \cap \mathfrak{g} = \mathfrak{h}_x \). \(\square \)

Denote by \(\Lambda \) the set of all Lagrangian subalgebras in \(\mathcal{D}(\mathfrak{g}) \).

Theorem 3. Suppose \((G, P_G, \varphi) \) is a quasi-Poisson Lie group, \((X, P_X) \) is a quasi-Poisson homogeneous \(G \)-space. Then the following statements hold:

1. \(L_x \) is a subalgebra in \(\mathcal{D}(\mathfrak{g}) \) for all \(x \in X \);
2. \(L_{gx} = g \cdot L_x \);
3. Thus we get a bijection between the set of all \(G \)-quasi-Poisson structures on \(X \) and the set of \(G \)-equivariant maps \(x \mapsto L_x \) from \(X \) to \(\Lambda \) such that \(L_x \cap \mathfrak{g} = \mathfrak{h}_x \) for all \(x \in X \).

Corollary 4. There is a bijection between the set of all isomorphism classes of quasi-Poisson homogeneous \(G \)-spaces and the set of \(G \)-conjugacy classes of pairs \((L, H) \), where \(L \subset \mathcal{D}(\mathfrak{g}) \) is a Lagrangian subalgebra, \(H \) is a closed subgroup in \(G_L = \{ g \in G \mid g \cdot L = L \} \), and \(L \cap \mathfrak{g} = \text{Lie} H \). \(\square \)

The rest of this section is devoted to the proof of Theorem 3. We start with a technical lemma.
Lemma 5. Let P be a bivector field on a smooth manifold X. Define \(\{ f_1, f_2 \} = P(df_1, df_2) \) for all $f_1, f_2 \in C^\infty X$. Then
\[
\oint \{ \{ f_1, f_2 \}, f_3 \} = -\frac{1}{2} \left[[P, P] (df_1, df_2, df_3) \right],
\]
where \oint denotes the sum over all cyclic permutations of f_1, f_2, f_3.

Proof. Straightforward computation.

Lemma 6. $L_{gx} = g \cdot L_x$ iff (4) holds.

Proof. By definition,
\[
L_x = \{ a + l \mid a \in \mathfrak{g}, l \in (\mathfrak{g}/\mathfrak{h}_x)^*, (l \otimes \text{id})P_X(x) = \overline{a} \},
\]
\[
L_{gx} = \left\{ a' + l' \mid a' \in \mathfrak{g}, l' \in (\mathfrak{g}/\mathfrak{h}_{gx})^*, (l' \otimes \text{id})P_X(gx) = \overline{a'} \right\}.
\]
It is enough to check that
\[
g \cdot L_x = \left\{ a' + l' \mid a' \in \mathfrak{g}, l' \in (\mathfrak{g}/\mathfrak{h}_{gx})^*, (l' \otimes \text{id})(\text{Ad}_g P_X(x) + \eta(g)) = \overline{a'} \right\}.
\]
Consider $a' + l' = g \cdot (a + l), a \in \mathfrak{g}, l \in (\mathfrak{g}/\mathfrak{h}_x)^*$, that is,
\[
l' = (\text{Ad}_g^{-1})^* l, \quad a' = \text{Ad}_g a + (l' \otimes \text{id})\eta(g).
\]
We have
\[
(l' \otimes \text{id})(\text{Ad}_g P_X(x) + \eta(g)) = (l \otimes \text{id})(\text{Ad}_g^{-1} \otimes \text{id})(\text{Ad}_g \otimes \text{Ad}_g) P_X(x) + (l' \otimes \text{id})\eta(g) = \text{Ad}_g(l \otimes \text{id}) P_X(x) + (l' \otimes \text{id})\eta(g).
\]
So $(l' \otimes \text{id})(\text{Ad}_g P_X(x) + \eta(g)) = \overline{a'}$ if and only if $a + l \in L_x$. This proves the required equality.

Now we are heading for the first statement of the theorem.

Let e_i form a basis in \mathfrak{g}, ∂_i (resp. ∂'_i) be the right (resp. left) invariant vector field on G that corresponds to e_i.

Suppose $\eta(g) = \eta^{ij}(g)e_i \wedge e_j$. Then $P_G = \eta^{ij} \partial_i \wedge \partial_j$. Choose any $r \in \bigwedge^2 \mathfrak{g}$ such that the image of r in $\bigwedge^2 (\mathfrak{g}/\mathfrak{h}_x)$ equals $P_X(x)$. Define
\[
\text{CYB}(r) = [r^{12}, r^{13}] + [r^{12}, r^{23}] + [r^{13}, r^{23}].
\]

Lemma 7. Assume that (4) holds. Then the image of
\[
\varphi - \text{CYB}(r) + \frac{1}{2} \text{Alt}(\delta \otimes \text{id})(r)
\]
in $\bigwedge^3 (\mathfrak{g}/\mathfrak{h}_x)$ vanishes iff (5) holds.
Proof. From (4) it follows that
\[P_X(gx)(d_{gx}f_1, d_{gx}f_2) = ((l_g)_*P_X(x) + (\rho_x)_*P_G(g)) (d_{gx}f_1, d_{gx}f_2) = P_X(x)(d_x(f_1 \circ l_g), d_x(f_2 \circ l_g)) + P_G(g)(d_g(f_1 \circ \rho_x), d_g(f_2 \circ \rho_x)) =\]
\[r(d_x(f_1 \circ l_g)^G, d_x(f_2 \circ l_g)^G) + P_G(g)(d_gf_1^G, d_gf_2^G) = (r^\lambda(g) + P_G(g))(d_gf_1^G, d_gf_2^G).\]

For any \(f_1, f_2 \in C^\infty G \) define the bracket
\[\{f_1, f_2\}(g) = (r^\lambda(g) + P_G(g))(d_gf_1, d_gf_2).\]

Using Lemma 3 we see that
\[\oint \{f_1, f_2\} x, f_3) x (g \cdot x) = \oint \{f_1^G, f_2^G\}, f_3^G\}(g) = -\frac{1}{2}[P_G + r^\lambda; P_G + r^\lambda](df_1^G, df_2^G, df_3^G)(g).\]

Lemma 8. \([P_G + r^\lambda, P_G + r^\lambda] = 2(\varphi^o - \varphi^\lambda + \text{CYB}(r)^\lambda - \frac{1}{7} \text{Alt}(\delta \otimes \text{id})(r)^\lambda)\]

Proof. Using the graded anticommutativity of Schouten bracket, we get
\[[P_G + r^\lambda, P_G + r^\lambda] = [P_G, P_G] + 2[P_G, r^\lambda] + [r^\lambda, r^\lambda].\]

From (2) it follows that
\[[P_G, P_G] = 2(\varphi^o - \varphi^\lambda).\]

We will calculate the rest of the terms on the right hand side using coordinates. Let \(r = r^{ij}e_i \wedge e_j \). Then \(r^\lambda = r^{ij}\partial_i^l \wedge \partial_j^l \), and
\[[r^\lambda, r^\lambda] = -4r^{\mu\nu}r^{ij}[[\partial^l_{\mu}, \partial^l_{\nu}] \wedge \partial_i^l \wedge \partial_j^l =\]
\[-4r^{\mu\nu}r^{ij} \text{Alt} (\partial_i^l, \partial_j^l) = -\frac{1}{2} \text{Alt}(\delta \otimes \text{id})(r)^\lambda = 2 \text{CYB}(r)^\lambda.\]

Now we prove that \([P_G, r^\lambda] = -\frac{1}{2} \text{Alt}(\delta \otimes \text{id})(r)^\lambda\). We have
\[[P_G, r^\lambda] = [\eta^{\mu\nu}\partial_{\mu} \wedge \partial_{\nu}, r^{ij}\partial_i^l \wedge \partial_j^l] =\]
\[r^{ij}(\partial_i^l, \eta^{\mu\nu}\partial_{\mu} \wedge \partial_{\nu} - [\partial_i^l, \eta^{\mu\nu}\partial_{\mu}] \wedge \partial_j^l \wedge \partial_{\nu}) = 2r^{ij}(\partial_i^l, \eta^{\mu\nu}\partial_{\mu} \wedge \partial_{\nu} \wedge \partial_j^l).\]

Using the cyclicity of \(\eta \), we get
\[\partial_i^l \eta^{\mu\nu}(g)e_\mu \wedge e_\nu = \left. \frac{d}{dt}\right|_{t=0} \eta^{\mu\nu}(g \exp te_i)e_\mu \wedge e_\nu =\]
\[\left. \frac{d}{dt}\right|_{t=0} (\eta^{\mu\nu}(g)e_\mu \wedge e_\nu + \text{Ad}_g(\eta^{\mu\nu}(\exp te_i)e_\mu \wedge e_\nu)) =\]
\[\left. \frac{d}{dt}\right|_{t=0} \eta^{kl}(\exp te_i)(\text{Ad}_g)^{l}_{k}(\text{Ad}_g)^{l}_{k}e_\mu \wedge e_\nu =\]
\[\partial_i^l \eta^{kl}(\text{Ad}_g)^{l}_{k}(\text{Ad}_g)^{l}_{k}e_\mu \wedge e_\nu,\]
where \(\text{Ad}_g e_k = (\text{Ad}_g)^\mu_k e_\mu \). So, \(\partial'_{\mu_1} \eta^{\mu_2}(g) = \partial'_{\mu_1} \eta^{kl}(e)(\text{Ad}_g)^\mu_k (\text{Ad}_g)^\nu_l \).

Continuing our calculations, we have

\[
\begin{align*}
[P_G, r^\lambda](g) &= -2r^{ij}(\partial'_{\mu_1} \eta^{\mu_2})(g) \partial_{\nu_i}(g) \wedge \partial_{\nu_j}(g) = \\
-2r^{ij} \partial'_{\mu_1} \eta^{kl}(e)(\text{Ad}_g)^\mu_k (\text{Ad}_g)^\nu_l \partial_{\nu_i}(g) \wedge \partial_{\nu_j}(g) = \\
-2r^{ij} \partial'_{\mu_1} \eta^{\mu_2}(e) \partial'_{\nu_i}(g) \wedge \partial'_{\nu_j}(g) = \\
-2r^{ij} \partial'_{\mu_1} \eta^{\mu_2}(e) \operatorname{Alt}(\partial'_{\nu_i}(g) \otimes \partial'_{\nu_j}(g)) = \\
-\frac{r^{ij}}{2} \operatorname{Alt}(\delta \otimes \text{id})r^\lambda(g).
\end{align*}
\]

\(\square \)

Now we finish the proof of Lemma 9. From the definition of a quasi-Poisson action it follows that

\[
\oint \{ f_1, f_2 \} x \cdot f_3 x (g \cdot x) = -\varphi x (df_1, df_2, df_3)(g \cdot x) = \\
-\varphi^G (df_1^G, df_2^G, df_3^G)(g).
\]

It means that for all \(f_1, f_2, f_3 \in C^\infty X \) we have

\[
\left(\varphi - \text{CYB}(r) + \frac{1}{2} \operatorname{Alt}(\delta \otimes \text{id})r \right)^\lambda (df_1^G, df_2^G, df_3^G) = 0.
\]

Consequently, for all \(l, m, n \in \mathfrak{h}_x^\perp \) we get

\[
\langle \varphi - \text{CYB}(r) + \frac{1}{2} \operatorname{Alt}(\delta \otimes \text{id})r, l \otimes m \otimes n \rangle = 0,
\]

which proves the statement of the lemma. \(\square \)

Lemma 9. Assume that \(11 \) holds. Then \(L_x \) is a subalgebra in \(\mathcal{D}(g) \) if and only if the image of the tensor \(\varphi + \frac{1}{2} \operatorname{Alt}(\delta \otimes \text{id})r - \text{CYB}(r) \) in \(\wedge^3 (\mathfrak{g}/\mathfrak{h}_x) \) vanishes.

Proof. Consider the mapping \(R : \mathfrak{g}^* \to \mathfrak{g} \) that corresponds to \(r \in \wedge^2 \mathfrak{g} \):

\[
R(l) = (l \otimes \text{id})r = \sum_i l(r_i^l)r_i^\mu,
\]

where \(r = \sum_i r_i^l \otimes r_i^\mu \).

Then

\[
L_x = \{ a + l \mid a \in \mathfrak{g}, l \in (\mathfrak{g}/\mathfrak{h}_x)^*, (l \otimes \text{id})\overline{\tau} = \overline{\pi} \} = \\
\{ a + l \mid a \in \mathfrak{g}, l \in \mathfrak{h}_x^\perp, R(l) = \overline{\tau} \} = \{ l + R(l) \mid l \in \mathfrak{h}_x^\perp \} + \mathfrak{h}_x.
\]

8
From Lemma 6 it follows that $h \cdot L_x = L_{hx} = L_x$ for any $h \in H_x$. Consequently, for all $a \in h_x$ we have $\text{ad}_a(L_x) \subset L_x$. So L_x is a Lie subalgebra in $\mathcal{D}(g)$ if and only if $[l_1 + R(l_1), l_2 + R(l_2)] \in L_x$ for any $l_1, l_2 \in h_x^\perp$.

Choose any $l_1, l_2, l_3 \in h_x^\perp$. We are going to check that

$$Q([l_1 + R(l_1), l_2 + R(l_2)], l_3 + R(l_3)) =$$

$$\langle l_1 \otimes l_2 \otimes l_3, -\varphi + \text{CYB}(r) - \frac{1}{2} \text{Alt}(\delta \otimes \text{id})r \rangle.$$

Indeed,

$$\langle l_1 \otimes l_2 \otimes l_3, [r^{12}, r^{13}] \rangle = \langle l_1 \otimes l_2 \otimes l_3, \sum_{i,j} [r_i', r_j'] \otimes r''_i \otimes r''_j \rangle =$$

$$\langle l_1, \sum_{i,j} ([l_2, r''_i] r_i', [l_3, r''_j] r_j') \rangle = Q(l_1, [R(l_2), R(l_3)]) =$$

$$Q([l_1, R(l_2)], R(l_3)).$$

Similarly,

$$\langle l_1 \otimes l_2 \otimes l_3, [r^{12}, r^{23}] \rangle = Q([R(l_1), l_2], R(l_3)),$$

$$\langle l_1 \otimes l_2 \otimes l_3, [r^{13}, r^{23}] \rangle = Q([R(l_1), R(l_2)], l_3).$$

It is easy to see that $\frac{1}{2} \text{Alt}(\delta \otimes \text{id})r = (\delta \otimes \text{id})r + \tau(\delta \otimes \text{id})r + \tau^2(\delta \otimes \text{id})r$,

where $\tau(x \otimes y \otimes z) = z \otimes x \otimes y$. We have

$$\langle l_1 \otimes l_2 \otimes l_3, (\delta \otimes \text{id})r \rangle = \sum_i \langle l_1 \otimes l_2, \delta(r_i') \rangle \langle l_3, r''_i \rangle =$$

$$\sum_i \langle [l_1, l_2], \delta, l_3, r''_i \rangle r_i' = -Q([l_1, l_2], R(l_3)),$$

$$\langle l_1 \otimes l_2 \otimes l_3, \tau(\delta \otimes \text{id})r \rangle = -Q([R(l_1), l_2], l_3),$$

$$\langle l_1 \otimes l_2 \otimes l_3, \tau^2(\delta \otimes \text{id})r \rangle = -Q([l_1, R(l_2)], l_3),$$

$$\langle l_1 \otimes l_2 \otimes l_3, \varphi \rangle = -Q([l_1, l_2], l_3).$$

Adding up all the terms on the right hand side and using the fact that $Q([R(l_1), R(l_2)], R(l_3)) = 0$ we see that

$$Q([l_1 + R(l_1), l_2 + R(l_2)], l_3 + R(l_3)) =$$

$$\langle l_1 \otimes l_2 \otimes l_3, -\varphi + \text{CYB}(r) - \frac{1}{2} \text{Alt}(\delta \otimes \text{id})r \rangle.$$

The r.h.s. of this equality vanishes for any $l_1, l_2, l_3 \in (g/h_x)^*$ iff the image of $\varphi - \text{CYB}(r) + \frac{1}{2} \text{Alt}(\delta \otimes \text{id})r$ in $\wedge^3 (g/h_x)$ vanishes.

The l.h.s. vanishes for any $l_1, l_2, l_3 \in (g/h_x)^*$ iff $Q([l_1 + R(l_1), l_2 + R(l_2)], L_x)$ vanishes, i.e., since L_x is maximal isotropic, iff $[l_1 + R(l_1), l_2 + R(l_2)] \in L_x$.

This finishes the proof of the lemma. □
Suppose \(v \in \bigwedge^2(\mathfrak{g}/\mathfrak{h}_x) \). Consider the mapping \(v \mapsto L_v \), where

\[
L_v = \{ a + l \mid a \in \mathfrak{g}, l \in \mathfrak{g}/\mathfrak{h}_x, (l \otimes \text{id})v = \overline{a} \}.
\]

This is a bijection between \(\bigwedge^2(\mathfrak{g}/\mathfrak{h}_x) \) and the set of all Lagrangian subspaces \(L \subset \mathcal{D}(\mathfrak{g}) \) such that \(L \cap \mathfrak{g} = \mathfrak{h}_x \).

Further, there is a bijection between bivector fields \(P_X \) on \(X \) and smooth maps \(x \mapsto L_x \) from \(X \) to the set of all Lagrangian subspaces in \(\mathcal{D}(\mathfrak{g}) \) such that \(L_x \cap \mathfrak{g} = \mathfrak{h}_x \) for all \(x \in X \).

From Lemmas 6, 7 and 9 it follows that \((X, P_X)\) is a quasi-Poisson homogeneous \(G \)-space iff the corresponding map \(x \mapsto L_x \) is \(G \)-equivariant, subalgebra-valued, and \(L_x \cap \mathfrak{g} = \mathfrak{h}_x \) for all \(x \in X \).

This finishes the proof of Theorem 3.

4 Twisting

Let \(G \) be a Lie group. Suppose \((P_G, \varphi)\) and \((P'_G, \varphi')\) are quasi-Poisson structures on \(G \).

Definition 5 (see [9]). \((G, P'_G, \varphi')\) is obtained by twisting (by \(r \in \bigwedge^2 \mathfrak{g} \)) from \((G, P_G, \varphi)\) if

\[
P'_G = P_G + r^\lambda - r^\rho,
\]

\[
\varphi' = \varphi + \frac{1}{2} \text{Alt}(\delta \otimes \text{id})r - \text{CYB}(r).
\]

There is a similar relation on Lie quasi-bialgebras. Let \(\mathfrak{g} \) be a Lie algebra, \((\delta, \varphi)\) and \((\delta', \varphi')\) are Lie quasi-bialgebra structures on \(\mathfrak{g} \).

Definition 6 (see [5, 9]). \((\mathfrak{g}, \delta', \varphi')\) is obtained by twisting (by \(r \in \bigwedge^2 \mathfrak{g} \)) from \((\mathfrak{g}, \delta, \varphi)\) if

\[
\delta'(x) = \delta(x) + \text{ad}_x r \quad \text{for all } x \in \mathfrak{g},
\]

\[
\varphi' = \varphi + \frac{1}{2} \text{Alt}(\delta \otimes \text{id})r - \text{CYB}(r).
\]

Twisting is an equivalence relation.

If \((G, P'_G, \varphi')\) is obtained by twisting from \((G, P_G, \varphi)\) then the corresponding Lie quasi-bialgebra \((\mathfrak{g}, \delta', \varphi')\) is obtained by twisting from \((\mathfrak{g}, \delta, \varphi)\).

The converse holds if \(G \) is connected.

Denote by \(\mathcal{D}(\mathfrak{g}, \delta, \varphi) \) and \(\mathcal{D}(\mathfrak{g}, \delta', \varphi') \) the double Lie algebras of Lie quasi-bialgebras \((\mathfrak{g}, \delta, \varphi)\) and \((\mathfrak{g}, \delta', \varphi')\) respectively. The following result is obtained in [5].

Theorem 10. \((\mathfrak{g}, \delta', \varphi')\) is obtained by twisting from \((\mathfrak{g}, \delta, \varphi)\) if and only if there exists a Lie algebra isomorphism \(f_r : \mathcal{D}(\mathfrak{g}, \delta, \varphi) \rightarrow \mathcal{D}(\mathfrak{g}, \delta', \varphi') \) fixing all the elements of \(\mathfrak{g} \) and preserving the canonical bilinear forms on the doubles.
Suppose that \((G, P'_G, \varphi')\) is obtained by twisting from \((G, P_G, \varphi)\). Let \(r \in \Lambda \frac{1}{2} g\) be the corresponding bivector. Then \(f_r : D(g, \delta, \varphi) \to D(g, \delta', \varphi')\),
\[f_r(a + l) = a + l + (l \otimes \text{id})r\] is the corresponding Lie algebra isomorphism.

Using \(f_r\) we can identify \(D(g, \delta, \varphi)\) and \(D(g, \delta', \varphi')\). Since \(f_r\) preserves the canonical bilinear forms, the sets of Lagrangian subalgebras under this identification are the same.

Theorem 11. Let \((X, P_X)\) be a homogeneous quasi-Poisson \((G, P_G, \varphi)\)-space. Then \((X, P_X - r_X)\) is a homogeneous quasi-Poisson \((G, P'_G, \varphi')\)-space, and the map \(P_X \mapsto P_X - r_X\) is a bijection between the set of all \((G, P_G, \varphi)\)- and \((G, P'_G, \varphi')\)-quasi-Poisson structures on \(X\).

Proof. Denote by \(\Lambda\) (resp. \(\Lambda'\)) the set of all Lagrangian Lie subalgebras in \(D(g, \delta, \varphi)\) (resp. \(D(g, \delta', \varphi')\)).

Theorem \(\square\) gives us the \(G\)-equivariant map \(x \mapsto L_x\) from \(X\) to \(\Lambda\) such that \(L_x \cap g = h_x\) defined by

\[L_x = \{a + l | a \in g, \ l \in h_x, \ (l \otimes \text{id})P_X(x) = \overline{a}\}\]

On the other hand, consider the map \(x \mapsto L'_x\) from \(X\) to the set of subspaces in \(D(g, \delta', \varphi')\) corresponding to \(P_X - r_X\):

\[L'_x = \{a + l | a \in g, \ l \in h_x, \ (l \otimes \text{id})(P_X(x) - r_X) = \overline{a}\}\]

It is easy to see that \(f_r(L_x) = L'_x\). Since \(f_r\) is a Lie algebra isomorphism, preserves the canonical bilinear forms on the doubles and commutes with the action of \(G\) on the doubles, the map \(x \mapsto L'_x\) is a \(G\)-equivariant map from \(X\) to \(\Lambda'\). Since \(f_r\) fixes all the points of \(g\), we have \(L'_x \cap g = h_x\). From Theorem \(\square\) it follows that \(P_X - r_X\) defines a \((G, P'_G, \varphi')\)-quasi-Poisson structure on \(X\).

Obviously, the map \(P_X \mapsto P_X - r_X\) from the set of all \((G, P_G, \varphi)\)-quasi-Poisson structures on \(X\) to the set of all \((G, P'_G, \varphi')\)-quasi-Poisson structures on \(X\) is injective. Similarly, the map \(P'_X \mapsto P'_X + r_X\) transforms a \((G, P'_G, \varphi')\)-structure to a \((G, P_G, \varphi)\)-structure. Thus, we have a bijection. \(\square\)

5 Examples

Recall that if \((G, P_G)\) is a Poisson Lie group, then the homogeneous \(G\)-spaces \(X = \{x\}\) and \(Y = G\) admit the structure of Poisson homogeneous \((G, P_G)\)-spaces. Here we consider the quasi-Poisson case.

Example 1. Let \((G, P_G, \varphi)\) be a quasi-Poisson Lie group, \(X = \{x\}\) is a homogeneous \(G\)-space, \(P_X = 0\) is the only bivector field on \(X\). Then the (trivial) action of \(G\) on \(X\) is quasi-Poisson. The corresponding Lagrangian subalgebra is \(g\).
Example 2. Consider the action of a connected quasi-Poisson Lie group (G, P_G, φ) on $Y = G$ by left translations. By Theorem 3 there is a bijection between the set of G-quasi-Poisson structures on Y and the set of G-conjugacy classes of Lagrangian subalgebras $L \subset D(g)$ such that $L \cap g = 0$.

The map $r \mapsto L_r = \{a + l \in D(g) \mid (l \otimes \text{id})r = a\}$ from $\bigwedge^2 g$ to the set of Lagrangian subspaces in $D(g)$ transversal to g is a bijection. On the other hand, L_r is a Lie subalgebra iff $\varphi + \frac{1}{2} \text{Alt}(\delta \otimes \text{id})r - \text{CYB}(r) = 0$.

Thus Y can be a quasi-Poisson homogeneous G-space if and only if G is obtained by twisting from a Poisson Lie group. In this case there is a 1-1 correspondence between the solutions of the equation

$$\text{CYB}(r) - \frac{1}{2} \text{Alt}(\delta \otimes \text{id})r = \varphi$$

and (G, P_G, φ)-quasi-Poisson structures on Y given by $P_Y = P_G + r^\lambda$.

Let us also introduce the following purely quasi-Poisson example.

Example 3. Suppose g is a finite-dimensional Lie algebra with a non-degenerate invariant symmetric bilinear form $(\cdot | \cdot)$. Let G be a connected Lie group such that $\text{Lie } G = g$. Consider the “Manin quasi-triple” (see [1]) (a, a_1, a_2), where $a = g \times g$,

$$a_1 = \{(x, x) \mid x \in g\} \simeq g, \quad a_2 = \{(x, -x) \mid x \in g\},$$

and a is equipped with a non-degenerate invariant symmetric bilinear form $((a, b), (c, d)) \mapsto \frac{1}{2} ((a|c) - (b|d))$. It is easy to calculate that the corresponding Lie quasi-bialgebra structure on g is given by $\delta = 0$, $\varphi = [\Omega^{12}, \Omega^{23}] = -\text{CYB}(\Omega)$, where $\Omega \in (S^2 g)^g$ corresponds to $(\cdot | \cdot)$. This Lie quasi-bialgebra gives rise to the quasi-Poisson Lie group $(G, 0, \varphi)$.

Pick any $g \in G$, and consider the Lagrangian subalgebra

$$L_g = \{(x, y) \mid y = \text{Ad}_g x\} \subset a.$$

It can be shown that it corresponds to the quasi-Poisson homogeneous space (C_g, P), where $C_g \subset G$ is the conjugacy class of g, and

$$P(g) = (r_g \otimes l_g - l_g \otimes r_g)(\Omega).$$

Moreover, one can show that (G, P) is a quasi-Poisson G-manifold with respect to the action by conjugation, and (C_g, P) are “quasi-Poisson G-submanifolds” of (G, P) (see [2], where this example was introduced and studied for a compact Lie group G).
References

[1] A. Alekseev and Y. Kosmann-Schwarzbach. Manin pairs and moment maps. *J. Diff. Geom.*, 56:133–165, 2000.

[2] A. Alekseev, Y. Kosmann-Schwarzbach, and E. Meinrenken. Quasi-Poisson manifolds. *Canad. J. Math.*, 54:3–29, 2002.

[3] M. Bangoura and Y. Kosmann-Schwarzbach. The double of a Jacobian quasi-bialgebra. *Lett. Math. Phys.*, 28:13–29, 1993.

[4] V. G. Drinfeld. Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang-Baxter equations. *Soviet Math. Dokl.*, 27:68–71, 1983.

[5] V. G. Drinfeld. Quasi-Hopf algebras. *Leningrad J. Math.*, 1(6):114–148, 1990.

[6] V. G. Drinfeld. On Poisson homogeneous spaces of Poisson-Lie groups. *Theor. Math. Phys.*, 95:226–227, 1993.

[7] E. Karolinsky and A. Stolin. Classical dynamical r-matrices, Poisson homogeneous spaces, and Lagrangian subalgebras. *Lett. Math. Phys.*, 60:257–274, 2002.

[8] Y. Kosmann-Schwarzbach. Quasi-bigèbres de Lie et groupes de Lie quasi-Poisson. *C. R. Acad. Sci. Paris*, 312:391–394, 1991.

[9] Y. Kosmann-Schwarzbach. Jacobian quasi-bialgebras and quasi-Poisson Lie groups. *Contemp. Math.*, 132:459–489, 1992.

[10] J.-H. Lu. Classical dynamical r-matrices and homogeneous Poisson structures on G/H and K/T. *Commun. Math. Phys.*, 212:337–370, 2000.

E.K.: Department of Mathematics, Kharkov National University, 4 Svobody Sq., Kharkov, 61077, Ukraine; Institute for Low Temperature Physics & Engineering, 47 Lenin Avenue, Kharkov, 61103, Ukraine e-mail: eugene.a.karolinsky@univer.kharkov.ua; karol@sky.net.ua

K.M.: Department of Mathematics, Kharkov National University, 4 Svobody Sq., Kharkov, 61077, Ukraine e-mail: ono@ukr.net