Cost-effectiveness of prehabilitation prior to elective surgery compared to usual preoperative care: protocol for a systematic review of economic evaluations

Tanja Rombey, Helene Eckhardt, Wilm Quentin

ABSTRACT

Introduction Preoperative functional capacity is an important predictor of postoperative outcomes. Prehabilitation aims to optimise patients’ functional capacity before surgery to improve postoperative outcomes. As prolonged hospital stay and postoperative complications present an avoidable use of healthcare resources, prehabilitation might also save costs. The aim of this systematic review is to investigate the cost-effectiveness of prehabilitation programmes for patients awaiting elective surgery compared with usual preoperative care. The results will be useful to inform decisions about the implementation of prehabilitation programmes and the design of future economic evaluations of prehabilitation programmes.

Methods and analysis We will search PubMed, Embase, the Centre for Reviews and Dissemination Database, the WHO International Clinical Trials Registry Platform and ClinicalTrials.gov for full or partial economic evaluations of preoperative prehabilitation programmes conducted in any population compared with usual preoperative care. Studies will be included regardless of the type, design and perspective of the economic evaluation, and their publication year, language or status. Initial searches were performed between 30 April and 4 May 2020. Study selection, data extraction and assessment of the included studies’ risk of bias and methodological quality will initially be performed by two independent reviewers and, if agreement was sufficiently high, by one reviewer. We will extract data regarding the included studies’ basic characteristics, economic evaluation methods and cost-effectiveness results. A narrative synthesis will be performed. The primary endpoint will be cost-effectiveness based on cost–utility analyses. We will discuss heterogeneity between the studies and assess the risk of publication bias. The certainty of the evidence will be determined using the Grading of Recommendations, Assessment, Development and Evaluation approach.

Ethics and dissemination Ethics approval is not required as the systematic review will not involve human participants. We plan to present our findings at scientific conferences, pass them on to relevant stakeholder organisations and publish them in a peer-reviewed journal.

Strengths and limitations of this study

► A strength of this study is that the search strategy was developed involving an experienced information specialist using the Peer Review of Electronic Search Strategies 2015 Evidence-Based Checklist.

► Furthermore, the selection of electronic databases was based on research of the most efficient combination of healthcare databases that should be used to identify studies for systematic reviews of economic evaluations.

► The findings of this systematic review might be limited by the fact that economic evaluations are generally prone to publication bias, as they will usually only be performed if the intervention is effective.

► Furthermore, the quality of the evidence generated through this systematic review will depend on the risk of bias/methodological quality and reporting quality of the included studies.

► Lastly, as both prehabilitation programmes and economic evaluations are by nature heterogeneous, it might not be possible to draw firm conclusions from this systematic review, which are transferable to a range of health systems.

BACKGROUND

Rationale

Each year, millions of surgical procedures are performed worldwide. For example, in Germany, 17 million surgeries requiring hospitalisation were performed in 2018. A major concern in the surgical context is the prevention of postoperative complications, which are devastating for patients and burdensome for health systems as they present avoidable use of healthcare resources, for example, through a prolonged length of hospital stay or readmissions. Preoperative functional capacity is an important predictor of postoperative outcomes, therefore, it can be hypothesised that prehabilitation...
prior to elective surgery might prevent complications and thereby save costs.

While rehabilitation has long been an essential part of healthcare in developed countries, prehabilitation has only received increased attention in the past two decades. The word consists of the prefix *pre* and the noun rehabilitation and is defined as the process of ‘enhancing an individual’s functional capacity to enable him or her to withstand a forthcoming stressor’. The idea behind prehabilitation is to begin the rehabilitation process to optimise an individual’s functional capacity before the stressor, for example, a surgery, takes place and thus to enhance outcomes and recovery afterwards, see figure 1. Prehabilitation programmes may include one or more modalities, such as medical optimisation (eg, smoking cessation or control of blood glucose), physical exercise and promotion of physical activity, nutritional support or psychological support and are usually provided by a multidisciplinary team.

The first randomised controlled trial (RCT) on prehabilitation prior to elective surgery was published in 2000. It investigated the effect of a multimodal preoperative intervention for low-risk patients awaiting elective coronary artery bypass graft surgery compared with usual care. The authors found that prehabilitation reduced length of hospital stay by 1 day, resulting in an approximate net saving of €133 per patient per day. Their RCT was followed by a large number of primary studies whose results have been synthesised in various systematic reviews, the majority of which looked at abdominal surgery.

The cost-effectiveness of an intervention, that is, its value for money, is an important factor for health policy-makers deciding about the implementation of a new programme. However, despite the growing interest in prehabilitation programmes by healthcare professionals and policy-makers, only a subset of studies has evaluated the cost-effectiveness of prehabilitation. To date, there is no systematic review that provides an overview of the cost-effectiveness of prehabilitation programmes across different surgical disciplines. Hence, it still needs to be determined if prehabilitation prior to elective surgery is cost-effective.

This systematic review is part of a larger project that investigates prehabilitation of frail or prefrail patients before elective surgery as a new model of care in Germany. An RCT enrolling more than 1400 patients and an accompanying economic evaluation is planned. Therefore, we are not only interested in the findings of previous economic evaluations of prehabilitation programmes prior to elective surgery but also in their methods to guide our own economic evaluation.

Objective

The aim of this systematic review is to answer the question: What is the cost-effectiveness of prehabilitation programmes for patients awaiting elective surgery compared with usual preoperative care?

Our objectives are to identify all eligible economic evaluations, assess their validity and systematically present their characteristics, methods and findings to inform decisions about the implementation of prehabilitation programmes and guide the design of future rigorous economic evaluations of prehabilitation programmes.

METHODS

The design of our systematic review followed the five-step approach to prepare a systematic review of economic evaluations for informing evidence-based healthcare decisions. Furthermore, we consulted the Cochrane Handbook for Systematic Reviews of Interventions and guidance for undertaking reviews in healthcare by the Centre for Reviews and Dissemination (CRD) of the University of York, in particular chapter 5. This protocol is reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement (see online supplemental appendix 1).

Registration

After checking that there is no similar published or ongoing systematic review, we have submitted a record for our systematic review on PROSPERO on 30 April 2020 (CRD42020182813).

Eligibility criteria

The study inclusion and exclusion criteria can be found in table 1.

As we aim to provide a comprehensive overview of the available evidence on the cost-effectiveness of prehabilitation, we decided to include both full and partial economic evaluations as well as economic evaluations based on both RCTs and non-randomised studies of interventions (NRSI). While full economic evaluations should generally be preferred over partial economic evaluations, partial economic evaluations might still be useful for decision-makers to understand the costs and consequences of an intervention.

Information sources

We will search the following electronic databases and trial registries from their inception:
PICOS Inclusion criteria

Population
Patients from any country undergoing elective surgery

Intervention
A preoperative prehabilitation programme (any setting), defined as a (set of) intervention(s) aimed to optimise functioning and reduce disability in individuals awaiting surgery. The intervention(s) had to include at least one component of physiotherapy or occupational therapy or a prehabilitation therapy programme without any in-person meetings (eg, purely web/app based).

Control
Usual preoperative care as defined by the study authors, that is, the routine care that patients with a given condition receive in the respective hospital (extended only by the baseline measurements performed as part of the trial).

Exclusion criteria

Population
Patients undergoing emergency surgery or non-surgical treatments (eg, chemotherapy)

Intervention
Another prehabilitation intervention with more in-person meetings (eg, purely web/app based).

Control
Systematic reviews, mere cost analyses (ie, studies that simply calculated the costs of the intervention but did not compare it to the control treatment), commentaries/letters, animal studies, reviews of economic evaluations, cost-effectiveness studies performed for the economic evaluations, cost–utility analyses performed for the economic evaluations, decision analysis performed for the economic evaluations, and effectiveness studies that did not include a cost perspective.

Outcome
Clinical effectiveness only

Study type

Full (ie, cost–benefit, cost–effectiveness and cost–utility analyses) or partial (ie, model based) economic evaluations (ie, cost–utility analyses) based (any design, publication year, language and status (ie, full article, protocol/registration record, conference abstract).

Search strategy

The selection of electronic databases was based on recommendations by the CRD and a study by Arber et al who found that the most efficient combination of healthcare databases was Embase, the HTA database and PubMed.33

In addition, we will screen the reference lists of any relevant systematic reviews on prehabilitation identified and of the included studies, and perform a forward citation search in Web of Science (WoS), or in Google Scholar if a study was not indexed in WoS. To identify ongoing or (yet) unpublished studies (grey literature), we will search Open Access Theses and Dissertations and the DART-Europe E-theses Portal. We will also contact the authors of the included studies who we consider content experts about whether they know of any further eligible studies.

Search strategy

Following initial scoping searches, the draft search strategies for PubMed and Embase were developed by one reviewer (TR). An experienced information specialist (HE) reviewed the draft search strategies using the Peer Review of Electronic Search Strategies 2015 Evidence-Based Checklist.

The revised search strategy (see online supplemental appendix 2) consists of three sets of terms, relating to the population, intervention and study type, respectively: (1) terms to search for the population (such as preoperative), (2) terms to search for the intervention (such as exercise) and (3) terms to search for the economic evaluations (such as cost). The term prehabilitation is included in the set of terms relating to the population as well as the intervention. Both, controlled vocabulary (such as Medical Subject Headings (MeSH) terms in MEDLINE) and free-text terms (including truncations where appropriate) are used and no limits will be applied. We will report the final search strategies following the PRISMA Search Reporting Extension (PRISMA-S).34

To identify economic evaluations in MEDLINE, we will use the following terms: cost[tiab] OR costs[tiab] economic*[-tiab] OR budget*[-tiab] OR “Costs and cost analysis”[MeSH]
OR “Exercise/economics”[Mesh] OR “Rehabilitation/economics”[Mesh]. These terms were inspired by a filter by Wilczynski et al34 that had the best optimisation of sensitivity and specificity in identifying economic evaluations in MEDLINE according to a study by Glanville et al36. To identify economic evaluations in Embase, we will use a filter (adapted for the Embase search surface) by McKinlay et al37 that had the best optimisation of sensitivity and specificity in identifying economic evaluations in Embase according to Glanville et al36: cost:ti,ab,kw OR costs:ti,ab,kw. Analogue to the PubMed search strategy, these terms were supplemented by the following terms: economic*:ti,ab,kw OR budget*:ti,ab,kw OR 'economic aspect'/exp.

Once the first round of study selection has been completed, we will calculate the search strategies’ relative recall (identified eligible records/all eligible records indexed in the database) for the electronic databases. If one of the search strategies’ relative recall will be below 90%, we will revise it and perform a new search in that database. Weekly alerts for new studies identified with our search strategy will be activated for PubMed (using MyNCBI) and Embase. All searches will be repeated at completion of the systematic review to ensure that it is up to date and any new studies included in a second round of study selection can be incorporated before publication.

Data management
All records will be imported to EndNote X9.3.2 (Clarivate Analytics, Philadelphia, Pennsylvania USA) where they will be deduplicated and screened for eligibility. Full-text articles will also be stored in EndNote.

Selection process
Two reviewers (TR and HE) will screen a random 10% sample of all unique records based on their titles and abstracts and discuss their results until consensus has been reached. If agreement between them was sufficiently high (at least 80% raw agreement), the remaining records will be screened by one reviewer (TR). If agreement was below 80%, another 10% sample will be screened by the same two reviewers and the process will be repeated. We will mark any relevant systematic reviews on prehabilitation.

We will retrieve the full-text articles for all records deemed potentially eligible after title/abstract screening and of relevant systematic reviews on prehabilitation. Two reviewers (TR and HE) will independently screen all full-text articles of potentially eligible studies and capture reasons for exclusion. Eligible articles will then be mapped to studies (as the unit of interest). Records of ongoing studies (eg, protocol publications or registration records) will be included, as we are interested in the methods of ongoing studies, too. The references of all eligible studies and all relevant systematic reviews on prehabilitation will be screened for further eligible studies.

Results of the study selection process will be displayed in form of a flow diagram.38 A list of articles excluded after full-text screening with reasons for exclusion will be provided.

Data collection process
All eligible studies will be checked for errata or retractions before data extraction. Data will be extracted into a standardised Excel sheet. One reviewer (TR) will pilot the extraction sheet using n=2 randomly selected studies to test its user-friendliness and completeness, then two reviewers (TR, HE/WQ) will perform a calibration exercise by independently extracting the data of a random 20%-sample of the included studies. If less than n=15 studies are included, n=3 studies will randomly be selected for independent data extraction by two reviewers. Discrepancies will be discussed until consensus has been reached and the extraction sheet will be revised where necessary. If agreement between the reviewers was sufficiently high (at least 80% raw agreement), the data of the remaining studies will be extracted by one reviewer (TR). If agreement was below 80%, the process will be repeated.

We will contact the study authors via email to obtain missing data or resolve any uncertainties regarding their data. A reminder email will be sent after 2 weeks if necessary. Missing data will not be imputed if emails remain unanswered. Unresolved uncertain data will be marked as such.

Data items
We will extract data on various items (see table 2).

In addition, we will extract details on the methods of the economic evaluations (see table 3).

This selection of items was informed by Wijnen et al39. A draft data extraction form can be found in online supplemental appendix 3.

Outcomes and prioritisation
Our primary outcome is the cost-effectiveness of prehabilitation prior to elective surgery based on results from cost-utility analyses, as these provide a cost-effectiveness measure (cost per quality-adjusted life year (QALY) gained) that is comparable across disciplines and for which willingness to pay thresholds are available for several countries. Therefore, they are most meaningful to health policy-makers.

Secondary outcomes are the clinical effectiveness- and cost outcomes of prehabilitation prior to elective surgery based on results from other types of economic evaluations. We will only consider clinical effectiveness outcomes that are patient-relevant (eg, mortality, morbidity or quality of life). Surrogates (eg, duration of surgery or laboratory parameters) will not be considered. If there are different cost outcomes (eg, costs during hospital stay, costs following hospital stay and total costs), we will only consider the total costs. If no total costs are reported, we will aim to calculate them based on the cost data provided.

Risk of bias in and methodological quality of individual studies
Trial-based economic evaluations: We will assess the risk of bias on study level using the current gold standard
tool, which currently would be the Cochrane RoB V.2.0 tool for RCTs and the ROBINS-I tool for NRSI. In addition, we will assess the methodological quality of all full economic evaluations using the Consensus on Health Economic Criteria checklist. For model-based studies, we will only assess the methodological quality of the economic evaluation using the International Society for Pharmacoeconomics and Outcomes Research checklist.

Two reviewers (TR, HE/WQ) will independently assess a random 20%-sample of the included studies. If less than n=15 studies are included, n=3 studies will randomly be selected for assessment. If agreement between them was sufficiently high (at least 80% raw agreement), the remaining studies will be assessed by one reviewer (TR). If agreement was below 80%, another 20% sample will be assessed by the same two reviewers and the process will be repeated.

Data synthesis

We will perform a meta-analysis using standard methods if we identify two or more methodologically homogenous studies reporting on the same outcome. However, as both prehabilitation programmes and economic evaluations are by nature rather heterogeneous, we do not expect to be able to meta-analyse the included studies’ results. Thus, we will perform a narrative synthesis by comparing their results in detail in table format and summarising them in text form. We will present the included studies’ basic characteristics (including details on the prehabilitation programmes) and economic evaluation methods. For completed studies, we will also present the results of our risk of bias/ methodological quality assessment and the studies’ cost-effectiveness results (presented alongside their overall risk of bias/methodological quality).

Results will be presented in aggregated (eg, as an incremental cost-effectiveness ratio) and disaggregated form in natural units if possible. For example, the primary outcome (cost-effectiveness of prehabilitation based on a cost-utility analysis) will be reported as cost per QALY gained and as change in health-related quality of life, length of life, quantities of resource use and unit costs. This is to allow decision-makers to apply the results to their own context and to facilitate the reuse of these data as inputs to of future model-based economic evaluations. Costs will be reported in the original monetary units as well as converted to 2020 Euros. For conversion, we will use the Campbell and Cochrane Economics Methods Group and the Evidence for Policy and Practice Information and Coordinating Centre Cost Converter, a free web-based tool for adjusting estimates of cost expressed in one currency and price year to a specific target currency and price year. We will not aim to rank the studies based on their cost-effectiveness results, but we may present their results in cost-effectiveness planes where common metrics were used.

Studies will be ordered alphabetically by study identifier (ID). Depending on the number of included studies, we may group studies according to their setting, population, intervention or methods. We will narratively discuss heterogeneity between the studies.

Metabias(es)

We will address selective reporting within studies by comparing study reports with their study protocols whenever such are available.
To address publication bias across studies, we will search comprehensively for relevant trial registration records and study protocols. We will contact authors if their record/protocol implies that the study has already been completed to follow up on the study’s status.

Confidence in cumulative evidence and transferability
We will determine the quality (high, moderate, low or very low) of the evidence for each cost-effectiveness outcome following the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach, particularly following part 10 of the GRADE Guidelines (Considering Resource Use and Rating the Quality of Economic Evidence). We will summarise our assessment in form of a GRADE evidence profile and in Summary of Findings tables using disaggregated data. Furthermore, we will discuss the transferability of our results to different health systems using a checklist by Welte et al.

Study dates
The systematic review is currently ongoing. We started with the conception and preliminary searches on 1 April 2020. The anticipated date of completion is 31 March 2021.

Table 3 Further data extraction items

Item	Specification
Type of analysis	Cost-minimisation analysis, cost–consequence analysis, cost–benefit analysis, cost-effectiveness analysis, cost–utility analysis; other (with description)
Design of economic evaluation	Trial based, model based If trial based: RCT or NRSI If model based: Markov, decision tree and discrete event simulation
Cost perspective	Societal perspective, healthcare payer perspective, healthcare provider perspective, patient perspective; other (with description)
Time horizon	For effects and costs; in months
Effects	Data source of effects Measurement of effects Valuation of effects
Costs	Type (direct/indirect) Approach (top-down/bottom-up) Data source of resource use Measurement of resource use Valuation (methods used to calculate unit costs)
Missing data	Handling of missing data
Discounting	No, yes (with description of discount rate for effects and costs)
Inflation rate	No, yes (with description)
Reference year and currency	State year and currency
Statistical analysis	Details of the analysis of cost-effectiveness For model-based studies: model assumptions
Uncertainty	Details of the analyses of uncertainty (eg, statistical comparison, bootstrapping, sensitivity analysis (one way, multiway), threshold analysis (eg, using a cost-effectiveness acceptability curve), analysis of extremes and best/worst case analysis) and probabilistic sensitivity analysis
Willingness-to-pay threshold	Sum per unit of health outcome (eg, 20,000 pound sterling per QALY)

NRSI, non-randomised studies of interventions; QALY, Quality-adjusted life year; RCT, randomised controlled trial.

We plan to update this systematic review in summer 2022, as we expect that our own economic evaluation and some of the ongoing studies that we might identify in this initial systematic review will have been completed by then.

Patient and public involvement
Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

Ethics and dissemination
Our systematic review will not involve human participants or contain personal and/or medical information about an identifiable living individual. Therefore, ethics approval or consent to participate is not required.

We plan to present our findings at scientific conferences, pass them on to relevant stakeholder organisations and publish them in a peer-reviewed journal. We will report our systematic review in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) or the updated PRISMA Statement if available by then. Furthermore, we will disseminate links to this protocol, the PROSPERO record.
DISCUSSION
This systematic review of economic evaluations will provide its readers with a summary and synthesis of studies that have evaluated or will evaluate the cost-effectiveness of prehabilitation prior to elective surgery compared with usual preoperative care. Our systematic review will be helpful both for decision-makers who consider the implementation of a prehabilitation programme as well as for researchers aiming to perform an economic evaluation of a prehabilitation programme in the future. As we will include studies on patients from all surgical disciplines without restrictions, we may be able to identify knowledge gaps for certain groups of patients, for whom no studies were found or who did not meet the studies' eligibility criteria.

We anticipate a number of limitations. First, economic evaluations are generally prone to publication bias, as many study authors will only consider performing an economic evaluation if there is conclusive evidence that the study intervention is more effective than the control intervention. We will address this issue by searching comprehensively for relevant trial registration records and study protocols and following-up on any studies that are supposed to be completed but have not yet been published.

Second, as there is currently no gold-standard tool to assess the methodological quality of economic evaluations, we had to choose the aforementioned tools based on their user friendliness and feasibility in the context of our systematic review. Furthermore, instead of having to use two tools for trial-based and model-based economic evaluations, a single validated tool to assess the risk of bias in both types of economic evaluations would be much welcomed. In addition, both the Cochrane RoB V.2.0 tool and the ROBINS-I tool are relatively new tools that still need to be validated.

Third, the quality of the evidence generated through this systematic review will depend on the risk of bias/methodological quality of the included studies. For example, in case of prehabilitation, it is not usually possible to blind patients or investigators to the intervention. We will discuss the risk of bias/methodological quality of the included studies when reporting their results and make recommendations of how to improve the validity of economic evaluations’ findings.

Fourth, trial-based studies that present partial economic evaluations and/or are reported alongside the trial results are likely to report their economic evaluation methods only briefly. Therefore, we might not be able to extract data in the same manner for them as for full economic evaluations/trial-based economic evaluations that were published separately. Lastly, as both prehabilitation programmes and economic evaluations are usually heterogeneous in their design, it might not be possible to draw firm conclusions from this systematic review, which are transferable to a range of health systems.

Contributors TR and WG conceptualised the review. TR drafted the protocol. HE and WG revised the protocol. All authors were involved in the conception of the protocol, approved the final version of the manuscript to be published and agree to be accountable for all aspects of the planned systematic review.

Funding The systematic review is part of a larger project which is supported by the Innovation Fund coordinated by the Innovation Committee of the Federal Joint Committee in Germany (Innovationsausschuss beim Gemeinsamen Bundesausschuss (G-BA)), grant number 01/11F18024. Furthermore, we acknowledge support by the Open Access Publication Fund of TU Berlin who covered the Article Processing Charge for this protocol.

Disclaimer The funders had no role in developing the protocol.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES
1 Statistisches Bundesamt. Operationen und Prozeduren der vollstationären Patientinnen und Patienten in Krankenhäusern (4-Steller) - 2018. Wiesbaden: Statistisches Bundesamt (Destatis). 2019. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Publikationen/Downloads.Krankenhaeuser/operationen-prozeduren-5231401187014.html
2 Patel AS, Bergman A, Moore BW, et al. The economic burden of complications occurring in major surgical procedures: a systematic review. Appl Health Econ Health Policy 2013;11:577–92.
3 Moonesinghe SR, Mythen MG, Grocott MPW. Patient-Related risk factors for postoperative adverse events. Curr Opin Crit Care 2009;15:320–7.
4 Snowden CP, Prentis J, Jacques B, et al. Cardiorespiratory fitness predicts mortality and hospital length of stay after major elective surgery in older people. Ann Surg 2013;257:999–1004.
5 Prentis JM, Trenell MI, Vassdev N, et al. Impaired cardiopulmonary reserve in an elderly population related to postoperative morbidity and length of hospital stay after radical cystectomy. BJU Int 2013;112:E13–19.
6 Sinclair RCF, Phillips AW, Navidi M, et al. Pre-Operative variables including fitness associated with complications after oesophagectomy. Anaesthesia 2017;72:1501–7.
7 World Health Organization. Rehabilitation in health systems. Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO, 2017.
8 Carl F, Zavorsky GS. Optimizing functional exercise capacity in the elderly surgical population. Curr Clin Nutr Metab Care 2005;8:23–32.
9 Banugo P, Amoako D. Prehabilitation. BJU Educ 2017;17:401–5.
10 Wynter-Blyth V, Moorthy K. Prehabilitation: preparing patients for surgery. BMJ 2017;358:j3702.

11 Arthur HM, Daniels C, Mc Kelvie R, et al. Effect of a preoperative intervention on preoperative and postoperative outcomes in low-risk patients awaiting elective coronary artery bypass graft surgery. A randomized, controlled trial. Ann Intern Med 2000;133:253–62.

12 Gillis C, Buhrer K, Breese L, et al. Effects of Nutritional Prehabilitation, With and Without Exercise, on Outcomes of Patients Who Undergo Colorectal Surgery: A Systematic Review and Meta-analysis. Gastroenterology 2018;155:391–410.

13 Moran J, Quinan E, McCormick P, et al. The ability of prehabilitation to influence postoperative outcome after intra-abdominal operation: a systematic review and meta-analysis. Surgery 2016;160:1189–201.

14 Hijazi Y, Gondal U, Aziz O. A systematic review of prehabilitation programs in abdominal cancer surgery. Int J Surg 2017;39:156–62.

15 Hughes MJ, Hackney RJ, Lamb PJ, et al. Prehabilitation before major abdominal surgery: a systematic review and meta-analysis. World J Surg 2019;43:1661–8.

16 Luther A, Gabriel J, Watson RP, et al. The impact of total body prehabilitation on post-operative outcomes after major abdominal surgery: a systematic review. World J Surg 2018;42:2781–91.

17 Bolsinsky V, Li MH-G, Ismail H, et al. Multimodal prehabilitation programs as a bundle of care in gastrointestinal cancer surgery: a systematic review. Dis Colon Rectum 2018;61:124–38.

18 Looijaard SMLM, Slee-Valentijns M, Otten RHJ, et al. Physical and nutritional prehabilitation in older patients with colorectal carcinoma: a systematic review. J Geriatr Phys Ther 2018;41:236–44.

19 Bruns ERJ, van den Heuvel B, Buskens CJ, et al. The effects of prehabilitation in elderly patients undergoing colorectal surgery: a systematic review. Colorectal Dis 2016;18:O267–77.

20 Thomas G, Tahir MR, Bongers BC, et al. Prehabilitation before major intra-abdominal cancer surgery: a systematic review of randomised controlled trials. Eur J Anaesthesiol 2019;36:933–45.

21 Heger P, Probst P, Wiskemann J. A systematic review and meta-analysis of physical exercise prehabilitation in major abdominal surgery (prospero 2017 CRD42017003966). J Gastrointest Surg 2019.

22 Teo JYK, Turner R, Self M. Effect of exercise prehabilitation on functional status of patients undergoing bowel resection: a systematic review. ANZ J Surg 2020;90:693–701.

23 Lavis J, Davies H, Oxman A, et al. Towards systematic reviews that inform health care management and policy-making. J Health Serv Res Policy 2005;10 Suppl 1:35–48.

24 Innovationsausschuss, PRÄP-GO – Prähabilitation von älteren Patienten mit Gebrechlichkeitssyndrom vor elektiven Operationen. Berlin: Gemeinsamer Bundesausschuss, 2019. Available: https://innovationsfonds.g-ba.de/projekte/neue-versorgungsformen/prae-p-go-praehabilitation-von-aelteren-patienten-mit-gebrechlichkeitssyndrom-vor-elektiven-operationen.276 [Accessed 14 April 2020].

25 van Matrigt GAGP, Hiligsmann M, Arts JJC, et al. How to prepare a systematic review of economic evaluations for informing evidence-based healthcare decisions: a five-step approach (part 1/3). Expert Rev Pharmacoecon Outcomes Res 2016;16:899–704.

26 Higgins JPT TJ, Chandler J, Cumpston M. Cochrane Handbook for systematic reviews of interventions version 6.0 (updated July 2019). Cochrane, 2019. https://training.cochrane.org/cochrane-handbook/systematic-reviews-interventions

27 Centre for Reviews and Dissemination University of York. Systematic Reviews: CRD’s guidance for undertaking reviews in health care. CRD, University of York, York, 2009.

28 Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015;4:1.

29 Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 2015;350:g7647.

30 Wijnen B, Van Matrigt G, Redekop WK, et al. How to prepare a systematic review of economic evaluations for informing evidence-based healthcare decisions: data extraction, risk of bias, and transferability (part 3/3). Expert Rev Pharmacoecon Outcomes Res 2016;16:723–32.

31 Drummond MF, Sculpher MJ, Claxton K. Methods for the economic evaluation of health care programmes. 4th. Oxford University Press: Oxford, 2015.

32 World Health Organization. International clinical trials registry platform (ICTRP). Geneva: World Health Organization, 2020. https://www.who.int/ictrp/search/en/

33 Arber M, Glavnic J, Isajovic J, et al. Which databases should be used to identify studies for systematic reviews of economic evaluations? Int J Technol Assess Health Care 2018;34:547–54.

34 SchüPFer M, Avaya AP, Kirtley S, PRISMA-S: PRISMA search reporting extension 2019. Available: https://osf.io/yn9w9/[Accessed 14 April 2020].

35 Wilczynski NL, Haynes RB, Lavis JN, et al. Optimal search strategies for detecting health services research studies in MEDLINE. CMAJ 2004;171:1179–85.

36 Glavnic J, Kaunelis D, Mensinkai S. How well do search filters perform in identifying economic evaluations in MEDLINE and EMBASE. Int J Technol Assess Health Care 2009;25:522–9.

37 McKinlay RJ, Wilczynski NL, Haynes RB, et al. Optimal search strategies for detecting cost and economic studies in EMBASE. BMC Health Serv Res 2006;6:67.

38 Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366:j4898.

39 Brune JA, Hervani A, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016;355:j4919.

40 Evers S, Goossens M, de Vet H, et al. Criteria list for assessment of methodological quality of economic evaluations: consensus on health economic criteria. Int J Technol Assess Health Care 2005;21:240–5.

41 Jaime Caro J, Eddy DM, Kan H, et al. Questionnaire to assess relevance and credibility of modeling studies for informing health care decision making: an ISPOR-AMCP-NPC good practice Task force report. Value Health 2014;17:174–80.

42 Shemilt IAP, Graybilly E, Craig D, on behalf of the Campbell and Cochrane Economics Methods Group. Chapter 20: Economic evidence. In: Higgins JPT, Thomas J, Chandler J, eds. Cochrane Handbook for systematic reviews of interventions version 6.0 (updated July 2019). Cochrane, 2019. www.training.cochrane.org/handbook

43 Shemilt I, Thomas J, Morciano M. A web-based tool for adjusting costs to a specific target currency and price year. Evidence & Policy: A Journal of Research, Debate and Practice 2010;6:51–9.

44 et alSchüPFenmann H, Brozek J, Guyatt G. Handbook for grading the quality of evidence and the strength of recommendations using the grade approach, 2013. Available: https://gdt-gradepro.org/app/handbook/handbook.html [Accessed 14 April 2020].

45 Brunetti M, Shemilt I, Pregno S, et al. Grade guidelines: 10. considering resource use and rating the quality of economic evidence. J Clin Epidemiol 2013;66:140–50.

46 Welte R, Feenstra T, Jager H, et al. A decision chart for assessing and improving the transferability of economic evaluation results between countries. PharmacoEconomics 2004;22:857–76.

47 Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009;339:b2535.

48 Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700.

49 PagE MU. Updating the PRISMA reporting guideline for systematic reviews and meta-analyses 2018. Available. https://osf.io/p93ge/ [Accessed 14 April 2020].

50 Luhnen M, Prediger B, Neugebauer EAM, et al. Systematic reviews of economic evaluations in health technology assessment: a review of characteristics and applied methods. Int J Technol Assess Health Care 2018;34:537–46.

51 Jayaraman MM, Rabbani R, Al-Yousif N, et al. Inter-Rater reliability and concurrent validity of ROBINS-I: protocol for a cross-sectional study. Syst Rev 2020;9:12.

52 Birkelbach O, Mörgel R, Balzer F. Why and how should I assess frailty? A guide for the preoperative anesthesia clinic. Anästhesiol Intensivmed Notfallmed Schmerzther 2017;52:765–76.