Multilinear fractional integral operators on non-homogeneous metric measure spaces

Huajun Gong¹,², Rulong Xie³,⁴* and Chen Xu¹,²

*Correspondence: xierl@mail.ustc.edu.cn
³School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, PR China
⁴Department of Mathematics, Chaohu University, Hefei, 238000, PR China

Full list of author information is available at the end of the article

Abstract
In this paper, the boundedness in Lebesgue spaces for multilinear fractional integral operators and commutators generated by multilinear fractional integrals with an RBMO(μ) function on non-homogeneous metric measure spaces is obtained.

MSC: Primary 42B25; secondary 47B47

Keywords: multilinear fractional integrals; commutators; non-homogeneous metric measure spaces

1 Introduction and preliminaries
A measure μ is called a doubling measure, if there exists a positive constant C such that
μ(B(x, 2l)) ≤ Cμ(B(x, l)), for all x ∈ supp μ and all l > 0, which is the main condition in homogeneous spaces. Also μ is a non-doubling measure, if there exists an integer k ∈ (0, n] and a positive constant C₀, such that
μ(B(x, l)) ≤ C₀lk.

This innovation caused the tremendous development of harmonic analysis (see [1–8]). It is worthy to mention that this theory solves the Painlevé’s problem and Vitushkin’s conjectures (see [7, 9]). Hytönen [10] introduced the non-homogeneous metric measure spaces (X, d, μ), which contains the homogeneous spaces and non-doubling measure spaces. Many researchers obtained the boundedness of operators on the non-homogeneous metric measure spaces; see, e.g., [10–25].

For multilinear integral operators, the bilinear theory for Calderón-Zygmund operators was studied by Coifman-Meyers [26], then, the boundedness on Lebesgue spaces or Hardy spaces for multilinear singular integrals was proved by Gorafakos-Torres [27, 28]. In non-doubling measure spaces, Xu [29, 30] and Lian-Wu [31] obtained the boundedness of multilinear singular integrals or multilinear fractional integrals and commutators respectively. In non-homogeneous metric measure spaces, Hu et al. [32] established the weighted norm inequalities for multilinear Calderón-Zygmund operators. The authors of [23] proved the boundedness on Lebesgue spaces for commutators of multilinear singular integrals.

In this paper, we introduce multilinear fractional integrals and its commutators on non-homogeneous metric spaces, then we study the boundedness in Lebesgue spaces for these...
operators, provided that fractional integral is bounded from $L'(\mu)$ to $L'(\mu)$, for some $r \in (1,1/\beta)$ and $1/s = 1/r - \beta$ with $0 < \beta < 1$. Our results include both the results for the homogeneous spaces and the non-doubling measure spaces.

Throughout this paper, $L^\infty(\mu)$ denotes $L^\infty(\mu)$ with compact support. C always denotes a positive constant independent of the main parameters involved, but it may be different in different currents. And p' is the conjugate index of p, namely, $1/p + 1/p' = 1$. Next let us give some definitions and notations.

Definition 1.1 ([10]) A metric space (X, d) is geometrically doubling, if there is a positive integer N_0 such that, for all ball $B(x, r) \subset X$, one can find a finite ball covering $\{B(x_j, r/2)\}_{j=1}^{N_0}$.

Definition 1.2 ([10]) For a metric measure space (X, d, μ), if μ is a Borel measure on X, and there is a function $\lambda : X \times (0, +\infty) \rightarrow (0, +\infty)$ and a positive constant C_λ, such that for all $x \in X$, the function $l \mapsto \lambda(x, l)$ is non-decreasing, and for all $x \in X, l > 0$, the following holds:

$$\mu(B(x, l)) \leq \lambda(x, l) \leq C_\lambda \lambda(x, l/2),$$

then (X, d, μ) is called upper doubling.

Remark 1.3

(i) If $\lambda(x, l)$ equals $\mu(B(x, l))$, then the homogeneous spaces is upper doubling spaces. Also, if $\lambda(x, l)$ equals $C d^k$, then a metric space (X, d, μ) satisfying (1.1) is upper doubling.

(ii) By [18], we know that there exists another function $\tilde{\lambda} \leq \lambda$, $\forall x, y \in X$ with $d(x, y) \leq l$, and the following holds:

$$\tilde{\lambda}(x, l) \leq \lambda \tilde{\lambda}(y, l).$$

Thus one always assumes that λ satisfies (1.3) throughout this paper. Because the singularity of the commutators is stronger than that of the fractional integral, we need to assume $\lambda(x, 4l) \geq a^m \lambda(x, l)$, for all $x \in X$ and $a, l > 0$, in the proof of boundedness of commutators.

(iii) The upper doubling condition is equivalent to the weak growth condition introduced by Tan-Li in [33].

A measure μ is (α, β)-doubling, if $\mu(\alpha B) \leq \beta \mu(B)$, for $\alpha, \beta \in (0, +\infty)$ and all ball $B \subset X$. Bui-Duong [11] pointed out that there exist many doubling balls. One always means that (α, β)-doubling ball is a $(6, \beta_0)$-doubling ball throughout this paper, for some fixed number $\beta_0 > \max\{C_\lambda^{\log_2 6}, 6^n\}$, where $n = \log_2 N_0$ is viewed as a geometric dimension of the space, except α and β are designated.

Definition 1.4 ([15]) For $0 \leq \gamma < 1$, B and R be two arbitrary balls with $B \subset R$ and $N_{B,R}$ be the smallest integer satisfying $6^{N_{B,R}}l_B \geq l_R$. One defines

$$K^{(\gamma)}_{B,R} = \sum_{j=1}^{N_{B,R}} \frac{\mu(6^j B)}{\lambda(x_B, 6^j l_B)} \left(1 - \frac{\lambda(x_{B_j}, 6^j l_{B_j})}{\lambda(x_B, 6^j l_B)}\right)^{(1-\gamma)}.$$

For $\gamma = 0$, one simply writes $K^{(0)}_{B,R} = K_{B,R}$.

Definition 1.5 Let $\alpha \in (0, m)$. We call K is an m-linear fractional integral kernel, if

$$K(\cdot, \ldots, \cdot) \in L^1_{\text{loc}} \left((\mathbb{X})^{m+1} \setminus \{(x, y_1, \ldots, y_i, \ldots, y_m) : x = y_i, 1 \leq i \leq m \} \right)$$

and the following two items hold:

(i) For any $m' \leq m$, there is a constant $C > 0$ such that,

$$|K(x, y_1, \ldots, y_i, \ldots, y_m)| \leq \frac{C}{\prod_{i=1}^{m} \lambda(x, d(x, y_i))}^{m-\alpha},$$

$$(1.5)$$

(ii) there is a constant $0 < \delta \leq 1$,

$$|K(x, y_1, \ldots, y_i, \ldots, y_m) - K(x', y_1, \ldots, y_i, \ldots, y_m)|$$

$$\leq \frac{Cd(x, x')^{\delta}}{\prod_{i=1}^{m} \lambda(x, d(x, y_i))}^{m-\alpha},$$

$$(1.6)$$

if $Cd(x, x') \leq \max_{1 \leq i \leq m} d(x, y_i)$, and for every i,

$$|K(x, y_1, \ldots, y_i, \ldots, y_m) - K(x, y_1, \ldots, y_i', \ldots, y_m)|$$

$$\leq \frac{Cd(y_i, y_i')^{\delta}}{\prod_{i=1}^{m} \lambda(x, d(x, y_i))}^{m-\alpha},$$

$$(1.7)$$

if $Cd(y_i, y_i') \leq \max_{1 \leq i \leq m} d(x, y_i)$.

For any m compactly supported bounded functions f_1, \ldots, f_m, and any point $x \notin \bigcap_{i=1}^{m} \text{supp} f_i$, the multilinear fractional integral operators $I_{a,m}$ is defined by

$$I_{a,m}(f_1, \ldots, f_m)(x) = \int_{\mathbb{X}^m} K(x, y_1, \ldots, y_m)f_1(y_1) \cdots f_m(y_m) \, d\mu(y_1) \cdots d\mu(y_m).$$

$$(1.8)$$

Remark 1.6 As $\max_{1 \leq i \leq m} d(x, y_i) \leq \sum_{i=1}^{m} d(x, y_i) \leq m \max_{1 \leq i \leq m} d(x, y_i)$, (ii) in Definition 1.5 is equivalent to the following:

(iii) There is a constant $0 < \delta \leq 1$,

$$|K(x, y_1, \ldots, y_i, \ldots, y_m) - K(x', y_1, \ldots, y_i, \ldots, y_m)|$$

$$\leq \frac{Cd(x, x')^{\delta}}{\prod_{i=1}^{m} \lambda(x, d(x, y_i))}^{m-\alpha},$$

if $Cd(x, x') \leq \max_{1 \leq i \leq m} d(x, y_i)$, and for every i,

$$|K(x, y_1, \ldots, y_i, \ldots, y_m) - K(x, y_1, \ldots, y_i', \ldots, y_m)|$$

$$\leq \frac{Cd(y_i, y_i')^{\delta}}{\prod_{i=1}^{m} \lambda(x, d(x, y_i))}^{m-\alpha},$$

if $Cd(y_i, y_i') \leq \max_{1 \leq i \leq m} d(x, y_i)$.

Definition 1.7 ([11]) Given $\rho > 1$, $b \in L^1_{\text{loc}}(\mu)$ is an RBMO(μ) function, if there is a positive constant C, for all B, we have

\[
\frac{1}{\mu(\rho B)} \int_B |b(x) - m_B^b| \, d\mu(x) \leq C,
\]

(1.9)

and for all two doubling balls B, R with $B \subset R$,

\[
|m_B(b) - m_R(b)| \leq CK_{B,R},
\]

(1.10)

where \tilde{B} is the smallest (α, β)-doubling ball with the form $6^k B$, $k \in \mathbb{N} \cup \{0\}$, and

\[
m_B^b(b) = \frac{1}{\mu(B)} \int_B b(x) \, d\mu(x).
\]

The RBMO(μ) norm of b, denoted by $\|b\|_{\ast}$, is the minimal constant C in (1.9) and (1.10).

For $1 \leq j \leq m$, let C^m_j be the family of subsets $\sigma = \{\sigma(1), \sigma(2), \ldots, \sigma(j)\}$ of $\{1, 2, \ldots, m\}$ with j different elements. For each $\sigma \in C^m_j$, $\sigma' = \{1, 2, \ldots, m\} \setminus \sigma$. For $b_j \in \text{RBMO}(\mu)$, $j = 1, \ldots, m$, set $b = (b_1, b_2, \ldots, b_m)$, $\tilde{b}_\sigma = (b_{\sigma(1)}, \ldots, b_{\sigma(j)})$, $b_{\sigma}(x) = b_{\sigma(1)}(x) \cdots b_{\sigma(j)}(x)$. Denote $\tilde{f} = (f_1, \ldots, f_m)$, $\tilde{f}_\sigma = (f_{\sigma(1)}, \ldots, f_{\sigma(j)})$, and $\tilde{b}_\sigma \tilde{f}_\sigma = (b_{\sigma'(j+1)} f_{\sigma'(j+1)}, \ldots, b_{\sigma'(m)} f_{\sigma'(m)})$.

Definition 1.8 For $b_j \in \text{RBMO}(\mu)$, $j = 1, \ldots, m$, and multilinear fractional integral operators $I_{\alpha,m}$, we define the commutators $[\tilde{b}, I_{\alpha,m}]$ by

\[
[\tilde{b}, I_{\alpha,m}](\tilde{f})(x) = \sum_{j=0}^{m} \sum_{\sigma \in C^m_j} (-1)^{m-j} b_\sigma(x) I_{\alpha,m}(\tilde{f}_\sigma, \tilde{b}_\sigma \tilde{f}_\sigma)(x).
\]

For $m = 2$,

\[
[b_1, b_2, I_{\alpha,2}](f_1, f_2)(x) = b_1(x) b_2(x) I_{\alpha,2}(f_1, f_2)(x) - b_1(x) I_{\alpha,2}(b_1 f_1, f_2)(x) - b_2(x) I_{\alpha,2}(b_2 f_2, f_1)(x),
\]

(1.11)

and $[b_1, I_{\alpha,2}]$ and $[b_2, I_{\alpha,2}]$ are defined thus:

\[
[b_1, I_{\alpha,2}](f_1, f_2)(x) = b_1(x) I_{\alpha,2}(f_1, f_2)(x) - I_{\alpha,2}(b_1 f_1, f_2)(x),
\]

\[
[b_2, I_{\alpha,2}](f_1, f_2)(x) = b_2(x) I_{\alpha,2}(f_1, f_2)(x) - I_{\alpha,2}(b_2 f_2, f_1)(x).
\]

In this paper, one only considers the case of $m = 2$ for simplicity.

Theorem 1.9 Let $0 < \alpha < 2$, $1 < p_1, p_2 < +\infty$, $0 < \frac{1}{q} = \frac{1}{p_1} + \frac{1}{p_2} - \alpha < 1$, $g_1 \in L^{p_1}(\mu)$ and $g_2 \in L^{p_2}(\mu)$. If I_β is bounded from $L^1(\mu)$ into $L^1(\mu)$, for some $r \in (1, 1/\beta)$ and $1/s = 1/r - \beta$, with $0 < \beta < 1$, then there is a positive constant C,

\[
\|I_{\alpha,2}(g_1, g_2)\|_{L^q(\mu)} \leq C \|g_1\|_{L^{p_1}(\mu)} \|g_2\|_{L^{p_2}(\mu)},
\]
where I_ρ is defined by

$$I_\rho f(x) := \int_X \frac{f(y)}{[\lambda(y, d(x, y))]^{1-\rho}} d\mu(y).$$

Theorem 1.10 Set $\|\mu\| = \infty$, $0 < \alpha < 2, 1 < p_1, p_2 < +\infty$, $0 < \frac{1}{q} = \frac{1}{p_1} + \frac{1}{p_2} - \alpha < 1, g_1 \in L^{p_1}(\mu)$, $g_2 \in L^{p_2}(\mu)$, $b_1, b_2 \in \text{RBMO}(\mu)$ and if I_β is bounded from $L^r(\mu)$ into $L^s(\mu)$ for some $r \in (1, 1/\beta)$, $1/s = 1/r - \beta$ with $0 < \beta < 1$, then there is a positive constant C,

$$\left\| [b_1, b_2, I_{a,2}](g_1, g_2) \right\|_{L^s(\mu)} \leq C \|g_1\|_{L^{p_1}(\mu)} \|g_2\|_{L^{p_2}(\mu)}.$$

Remark 1.11 For the case that $\|\mu\| < \infty$, by Lemma 2.1 in Section 2 below, Theorem 1.10 also holds, if we assume that

$$\int_X I_{a,2}(g_1, g_2)(x) d\mu(x) = 0, \quad \int_X [b_1, I_{a,2}](g_1, g_2)(x) d\mu(x) = 0,$$

$$\int_X [b_2, I_{a,2}](g_1, g_2)(x) d\mu(x) = 0 \quad \text{and} \quad \int_X [b_1, b_2, I_{a,2}](g_1, g_2)(x) d\mu(x) = 0.$$

This paper is organized as follows. Theorem 1.9 and Theorem 1.10 are proved in Section 2. In Section 3, some applications are stated.

2 Proof of main results

Proof of Theorem 1.9 Let $\alpha = \alpha_1 + \alpha_2$, $0 < \alpha_i < 1/p_i < 1$, $i = 1, 2$. It is easy to check that

$$\prod_{i=1}^{2} [\lambda(x, d(x, y_i))]^{1-\alpha_i} \leq \left[\sum_{i=1}^{2} \lambda(x, d(x, y_i)) \right]^{2-\alpha}.$$

Thus

$$|I_{a,2}(g_1, g_2)(x)| \leq C \int_X \frac{|g_1(y_1)| |g_2(y_2)|}{\left[\sum_{i=1}^{2} \lambda(x, d(x, y_i)) \right]^{2-\alpha}} d\mu(y_1) d\mu(y_2) \leq \sum_{i=1}^{2} \int_X \frac{|g_i(y_i)|}{\lambda(x, d(x, y_i))^{1-\alpha_i}} d\mu(y_i) \leq \prod_{i=1}^{2} I_{a_i}(|g_i|)(x).$$

Let $1/q_1 = 1/p_1 - \alpha_1$ and $1/q_2 = 1/p_2 = 1/q_1$, $1 < q_1 < \infty$. It follows from the Hölder’s inequality and the $L^{p_1}(\mu) – L^{q_1}(\mu)$ boundedness of I_{a_i}, $i = 1, 2$, that

$$\|I_{a,2}(g_1, g_2)\|_{L^s(\mu)} \leq \left\| \prod_{i=1}^{2} I_{a_i}(|g_i|) \right\|_{L^s(\mu)} \leq \|I_{a_1}(|g_1|)\|_{L^{q_1}(\mu)} \|I_{a_2}(|g_2|)(x)\|_{L^{q_2}(\mu)} \leq \|g_1\|_{L^{p_1}(\mu)} \|g_2\|_{L^{p_2}(\mu)}.$$

Thus the proof of Theorem 1.9 is completed. \qed
In order to prove Theorem 1.10, we need some lemmas. For \(f \in L^1_{\text{loc}}(\mu) \) and \(0 < \beta < 1 \), one defines the sharp maximal operator

\[
M^{\sharp}(\beta)f(x) = \sup_{B \ni x} \frac{1}{\mu(\beta B)} \int_B |f(y) - m_B(f)| \, d\mu(y) + \sup_{(B,R) \in \Delta_x} \frac{|m_B(f) - m_R(f)|}{K^{(\beta)}_{B,R}},
\]

here \(\Delta_x := \{(B,R) : x \in B \subset R \text{ and } B, R \text{ are doubling balls}\}. \)

One defines the non-centered doubling maximal operator

\[
Nf(x) = \sup_{B \ni x, B \text{ doubling}} \frac{1}{\mu(B)} \int_B |f(y)| \, d\mu(y).
\]

It is easy to see

\[|f(x)| \leq Nf(x), \]

for every \(f \in L^1_{\text{loc}}(\mu) \) and \(\mu \)-a.e. \(x \in X \).

For \(\rho > 1, \alpha \in (0,1) \) and \(t \in (1,\infty) \), one defines the non-centered maximal operator \(M^{(\alpha)}_{t,\rho} f \) as follows:

\[
M^{(\alpha)}_{t,\rho} f(x) = \sup_{B \ni x} \left\{ \frac{1}{[\mu(\rho B)]^{1/\alpha t}} \int_B |f(y)|^t \, d\mu(y) \right\}^{1/t}.
\]

For simplicity, write \(M^{(0)}_{t,\rho} f(x) = M_{t,\rho} f \). If \(\rho \geq 5 \) and for every \(p > 1 \), then \(\|M_{t,\rho} f\|_{L^p(\mu)} \leq C\|f\|_{L^p(\mu)} \) and for \(p \in (t,1/\alpha) \) and \(1/q = 1/p - \alpha \), \(\|M^{(\alpha)}_{t,\rho} f\|_{L^q(\mu)} \leq C\|f\|_{L^p(\mu)} \) (see [15]).

Lemma 2.1 ([15]) For \(f \in L^1_{\text{loc}}(\mu) \), \(\int_X f(x) \, d\mu(x) = 0 \) if \(\|\mu\| < \infty \). Assume \(0 < \beta < 1 \) and \(\inf(1,Nf) \in L^p(\mu) \), \(1 < p < \infty \), then

\[
\|Nf\|_{L^p(\mu)} \leq C\|M^{\sharp}(\beta)f\|_{L^p(\mu)}.
\]

Lemma 2.2 ([11, 15]) For \(1 < \rho < \infty \) and \(1 \leq p < \infty \), if \(b \in \text{RBMO}(\mu) \), then for all balls \(B \in X \),

\[
\left\{ \frac{1}{\mu(\rho B)} \int_B \|b_B - m_B(b)\|^p \, d\mu(X) \right\}^{1/p} \leq C\|b\|_*.
\]

Lemma 2.3 ([3]) For \(b \in \text{RBMO}(\mu) \),

\[
\|m_{\rho B}(b) - m_B(b)\| \leq C\|b\|_*.
\]

Lemma 2.4 For \(0 < \alpha < 2, 1 < p_1, p_2, q < \infty, 1 < r < q \) and \(b_1, b_2 \in \text{RBMO}(\mu) \). If \(f_B \) is bounded from \(L^{r}(\mu) \) to \(L^{\rho}(\mu) \), for some \(r \in (1,1/\beta) \) and \(1/s = 1/r - \beta \), with \(0 < \beta < 1 \), then, for every \(x \in X, g_1 \in L^{p_1}(\mu) \), and \(g_2 \in L^{p_2}(\mu) \),

\[
M^{(\alpha)}_{t,\rho} \left\{ b_1, b_2, I_{r,\beta}(g_1,g_2) \right\}(x)
\leq C\|b_1\|_{L^{p_1}(\mu)} \|b_2\|_{L^{p_2}(\mu)} M^{(\alpha)}_{r,\beta}(g_1,g_2)(x) + \|b_1\|_* M^{(\alpha)}_{r,\beta}(b_2,I_{r,\beta}(g_1,g_2))(x)
+ \|b_2\|_* M^{(\alpha)}_{r,\beta}(b_1, I_{r,\beta}(g_1,g_2))(x) + \|b_1\|_* \|b_2\|_* M^{(\alpha)}_{r,\beta}(b_1, b_2, I_{r,\beta}(g_1,g_2))(x),
\]

(2.2)
Choose $b_1, b_2 \in L^\infty(\mu)$ according to Lemma 3.11 in [14]. As $L_c^\infty(\mu)$ is dense in $L^p(\mu)$ for $1 < p < \infty$, by standard density arguments, we only need to consider the case that $g_1, g_2 \in L_c^\infty(\mu)$.

Similar to Theorem 9.1 in [6], in order to obtain (2.2), we only need to prove that, for every $x \in B$,

$$
\frac{1}{\mu(6B)} \int_B [b_1, b_2, I_{u,2}](g_1, g_2)(x) - H_B \right] d\mu(z) \leq C \left[\|b_1\|_H \|b_2\|_H \|M_{r,60}(I_{u,2}(g_1, g_2))(x) + \|b_1\|_H \|M_{r,60}([b_2, I_{u,2}](g_1, g_2))(x)
\right.
$$

$$
+ \|b_2\|_H \|M_{r,60}([b_1, I_{u,2}](g_1, g_2))(x) + C \|b_1\|_H \|b_2\|_H \|M_{r,60}^p(\mu)(x)M_{r,60}^{(u,2)}(g_1, g_2)(x),
$$

(2.5)

and, for every ball $B \subset R$, with $x \in B$, R is a doubling ball,

$$
|H_B - H_R| \leq CK_{R,R}^2 K_{R,R}^{(u,2)} \left[\|b_1\|_H \|b_2\|_H \|M_{r,60}(I_{u,2}(g_1, g_2))(x)
\right.
$$

$$
+ \|b_1\|_H \|b_2\|_H \|M_{r,60}^p(\mu)(x)M_{r,60}^{(u,2)}(g_1, g_2)(x)
\right.
$$

$$
+ \|b_1\|_H \|M_{r,60}([b_2, I_{u,2}](g_1, g_2))(x)
\right.
$$

$$
+ \|b_2\|_H \|M_{r,60}([b_1, I_{u,2}](g_1, g_2))(x).
$$

(2.6)

For every ball B, let

$$
H_B := m_B(I_{u,2}((b_1 - m_B(b_1))g_1, \chi_{X \setminus \frac{1}{2}B}, (b_2 - m_B(b_2))g_2, \chi_{X \setminus \frac{1}{2}B})).
$$

$$
H_R := m_R(I_{u,2}((b_1 - m_R(b_1))g_1, \chi_{X \setminus \frac{1}{2}R}, (b_2 - m_R(b_2))g_2, \chi_{X \setminus \frac{1}{2}R})).
$$

It is easy to see that

$$
[b_1, b_2, I_{u,2}] = I_{u,2}((b_1 - b_1(z))g_1, (b_2 - b_2(z))g_2)
$$

and

$$
I_{u,2}((b_1 - m_B(b_1))g_1, (b_2 - m_B(b_2))g_2)
$$

$$
= I_{u,2}((b_1 - b_1(z) + b_1(z) - m_B(b_1))g_1, (b_2 - b_2(z) + b_2(z) - m_B(b_2))g_2)
$$

$$
= (b_1(z) - m_B(b_1))(b_2(z) - m_B(b_2))I_{u,2}(g_1, g_2)
$$

$$
- (b_1(z) - m_B(b_1))I_{u,2}(g_1, (b_2 - b_2(z))g_2)
$$

$$
- (b_2(z) - m_B(b_2))I_{u,2}((b_1 - b_1(z))g_1, g_2)
$$

$$
+ I_{u,2}((b_1 - b_1(z))g_1, (b_2 - b_2(z))g_2).
$$
Thus

\[
\frac{1}{\mu(B)} \int_B \left| [b_1, b_2, I_{a,2}](g_1, g_2)(z) - H_B \right| d\mu(z)
\]

\[
\leq C \left(\frac{1}{\mu(B)} \int_B \left| (b_1(z) - m_B b_1)(b_2(z) - m_B b_2)I_{a,2}(g_1, g_2)(z) \right| d\mu(z) \right)
\]

\[
+ C \left(\frac{1}{\mu(B)} \int_B \left| (b_1(z) - m_B b_1)I_{a,2}(g_1, (b_2 - b_2(z))g_2)(z) \right| d\mu(z) \right)
\]

\[
+ C \left(\frac{1}{\mu(B)} \int_B \left| (b_2(z) - m_B b_2)I_{a,2}((b_1 - b_1(z))g_1, g_2)(z) \right| d\mu(z) \right)
\]

\[
+ C \left(\frac{1}{\mu(B)} \int_B \left| I_{a,2}((b_1 - m_B b_1)g_1, (b_2 - m_B b_2)g_2)(z) - H_B \right| d\mu(z) \right)
\]

\[
= F_1 + F_2 + F_3 + F_4. \tag{2.7}
\]

For F_1, choose $r_1, r_2 > 1$, such that $\frac{1}{r} + \frac{1}{r_1} + \frac{1}{r_2} = 1$. It follows from Hölder’s inequality that

\[
F_1 \leq C \left(\frac{1}{\mu(B)} \int_B \left| b_1(z) - m_B b_1 \right|^{r_1} d\mu(z) \right)^{1/r_1}
\]

\[
\times \left(\frac{1}{\mu(B)} \int_B \left| b_2(z) - m_B b_2 \right|^{r_2} d\mu(z) \right)^{1/r_2}
\]

\[
\times \left(\frac{1}{\mu(B)} \int_B \left| I_{a,2}(g_1, g_2) \right|^r d\mu(z) \right)^{1/r}
\]

\[
\leq C \| b_1 \| \| b_2 \| \| M_r(0)(I_{a,2}(g_1, g_2)) \|(x).
\]

For F_2, choose $s > 1$ such that $\frac{1}{s} + \frac{1}{r} = 1$, it follows that

\[
F_2 \leq C \left(\frac{1}{\mu(B)} \int_B \left| b_1(z) - m_B b_1 \right|^s d\mu(z) \right)^{1/s}
\]

\[
\times \left(\frac{1}{\mu(B)} \int_B \left| I_{a,2}(g_1, g_2) \right|^r d\mu(z) \right)^{1/r}
\]

\[
\leq C \| b_1 \| \| M_r(0)(I_{a,2}(g_1, g_2)) \|(x).
\]

For F_3, in the same way, one obtains

\[
F_3 \leq C \| b_2 \| \| M_r(0)([b_1, I_{a,2}](g_1, g_2)) \|(x).
\]

For F_4, let $g^1_k = g_k \chi_{\frac{B}{2}}$ and $g^2_k = g_k - g^1_k$ for $k = 1, 2$. Therefore,

\[
F_4 \leq C \left(\frac{1}{\mu(B)} \int_B \left| I_{a,2}((b_1 - m_B b_1)g_1^1(z), (b_2 - m_B b_2)g_2^1(z)) \right| d\mu(z) \right)
\]

\[
+ C \left(\frac{1}{\mu(B)} \int_B \left| I_{a,2}((b_1 - m_B b_1)g_1^2(z), (b_2 - m_B b_2)g_2^2(z)) \right| d\mu(z) \right)
\]

\[
+ C \left(\frac{1}{\mu(B)} \int_B \left| I_{a,2}((b_1 - m_B b_1)g_1^2(z), (b_2 - m_B b_2)g_2^2(z)) \right| d\mu(z) \right)
\]

\[
= F_1 + F_2 + F_3 + F_4. \tag{2.7}
\]
\[+ C \left(\frac{1}{\mu(6B)} \int_{B} |l_{a,2}((b_{1} - m_{B}b_{1})g_{1}^{2}(z), (b_{2} - m_{B}b_{2})g_{2}^{2})(z) - H_{B}| \, d\mu(z) \right) \]

\[= F_{41} + F_{42} + F_{43} + F_{44}. \]

For \(1 < p_{1} < \infty, i = 1, 2, \) choose \(s_{1} = \sqrt{p_{1}}, s_{2} = \sqrt{p_{2}}, \frac{1}{2} = \frac{1}{p_{1}} + \frac{1}{s_{1}} - \alpha, \frac{1}{2} = \frac{1}{p_{2}} + \frac{1}{s_{2}} \) and \(\frac{1}{p_{2}} = \frac{1}{p_{1}} + \frac{1}{s_{2}}. \) It follows from Hölder’s inequality and Theorem 1.9 that

\[F_{41} \leq C \frac{\mu(B)^{1-1/p}}{\mu(6B)} \left\| l_{a,2}((b_{1} - m_{B}b_{1})g_{1}^{2}, (b_{2} - m_{B}b_{2})g_{2}^{2}) \right\|_{L^{p}(\mu)} \]

\[\leq C \frac{1}{\mu(6B)^{1/p}} \left(\int_{\frac{B}{2}} |b_{1} - m_{B}b_{1}|^{p} \, d\mu(z) \right)^{1/p_{1}} \left(\int_{\frac{B}{2}} |g_{1}(z)|^{p_{1}} \, d\mu(z) \right)^{1/p_{2}} \]

\[\leq C \prod_{i=1}^{2} \left(\frac{1}{\mu(B)} \int_{\frac{B}{2}} |b_{i} - m_{B}b_{i}|^{p} \, d\mu(z) \right)^{1/p_{1}} \left(\frac{\int_{\frac{B}{2}} |g_{i}(z)|^{p_{1}} \, d\mu(z)}{\mu(6B)^{1-\alpha/p_{1}}(2)} \right)^{1/p_{2}} \]

\[\leq C \left\| b_{1} \right\|_{s_{1}} \left\| b_{2} \right\|_{s_{2}} M_{P_{1}(s_{1})}^{(a/2)}(x) M_{P_{2}(s_{2})}^{(a/2)}(x). \]

For \(F_{42}, \) it follows from (i) of Definition 1.5, Lemmas 2.2-2.3, the condition of \(\lambda(x, a) \geq a^{m}\lambda(x, l), \) and Hölder’s inequality that

\[F_{42} \leq C \frac{1}{\mu(6B)} \int_{B} \int_{X} \int_{X} \frac{|b_{1}(y_{1}) - m_{B}b_{1}|}{|\lambda(z, d(z, y_{1}) + \lambda(z, d(z, y_{2}))|^{2-a}} \]

\[\times |b_{2}(y_{2}) - m_{B}b_{2}| \left\| g_{2}^{2}(y_{2}) \right\| \, d\mu(y_{1}) \, d\mu(y_{2}) \, d\mu(z) \]

\[\leq C \frac{1}{\mu(6B)} \int_{B} \int_{\frac{B}{2}} |b_{1}(y_{1}) - m_{B}b_{1}| \left\| g_{1}(y_{1}) \right\| \, d\mu(y_{1}) \]

\[\times \int_{\frac{B}{2}} \left(\frac{b_{2}(y_{2}) - m_{B}b_{2}}{|\lambda(z, d(z, y_{2}))|^{2-a}} \right) \left\| g_{2}(y_{2}) \right\| \, d\mu(y_{2}) \]

\[\leq C \left(\frac{1}{\mu(6B)} \right)^{1/p_{1}} \left(\frac{1}{\mu(B)^{1-\alpha/2}} \right)^{1/p_{2}} \left(\frac{\mu(6B)}{\lambda(x, 6^{-1/2}B)} \right)^{1-\alpha/2} \]

\[\times \sum_{i=1}^{\infty} \frac{1}{\left[\lambda(x, 5 \times 6^{i/2}B) \right]^{1/2-a}} \int_{6^{i/2}B} |b_{2}(y_{2}) - m_{B}b_{2}| \left\| g_{2}(y_{2}) \right\| \, d\mu(y_{2}) \]

\[\leq C \left\| b_{1} \right\|_{s_{1}} \left\| b_{2} \right\|_{s_{2}} M_{P_{1}(s_{1})}^{(a/2)}(x) M_{P_{2}(s_{2})}^{(a/2)}(x) \]

\[\times \int_{6^{i/2}B} |b_{2}(y_{2}) - m^{2}_{B}b_{2}| \left\| g_{2}(y_{2}) \right\| \, d\mu(y_{2}) \]
\[F_{43} \leq C \| b_1 \| \| b_2 \| M_{p_1, 5/3}^{(a/2)}(x) \| M_{p_2, 5/3}^{(a/2)}(x) \| M_{p_1, 5/3}^{(a/2)}(x). \]

For \(F_{44} \), let \(z, z_0 \in B \), it follows from (ii) of Definition 1.5, Lemmas 2.2-2.3, the condition of \(\lambda \), and Hölder’s inequality that

\[|I_{a, 2}((b_1 - m_B b_1)g^2_k, (b_2 - m_B b_2)g^2_k)(z) - I_{a, 2}((b_1 - m_B b_1)g^2_k, (b_2 - m_B b_2)g^2_k)(z_0)| \leq C \int_{X \times B} \int_{X \times B} |K(z, y_1, y_2) - K(z_0, y_1, y_2)| \times \prod_{j=1}^{2} |(b_j(y_j) - m_B b_j)g(y_j)| \, d\mu(y_j) \]

\[\leq C \int_{X \times B} \int_{X \times B} d(z, z_0) \prod_{j=1}^{2} |(b_j(y_j) - m_B b_j)g(y_j)| \, d\mu(y_j) \]

\[\leq C \int_{X \times B} \int_{X \times B} \frac{d(z, z_0)^3 \prod_{j=1}^{2} |(b_j(y_j) - m_B b_j)g(y_j)| \, d\mu(y_j)}{d(z, y_1) + d(z, y_2)^2 \left| \sum_{j=1}^{2} \lambda(x, d(x, y_j)) \right|^{1/2}} \]

\[\leq C \prod_{j=1}^{2} \int_{X \times B} 6^{-k} \int_{X \times B} \frac{d(z, z_0)^3 |b_j(y_j) - m_B b_j||g(y_j)| \, d\mu(y_j)}{d(z, y_j)^3 \left| \lambda(z, 5 \times 6^{k/2} B) \right|^{1/3} \left| \lambda(z, 6^{k/2} B) \right|^{1/3} \left| \lambda(z, 5 \times 6^{k/2} B) \right|^{1/3}} \]

\[\leq C \prod_{j=1}^{2} \sum_{k=1}^{\infty} 6^{-k} \left(\int_{X \times B} |b_j(y_j) - m_B b_j|^p \, d\mu(y_j) \right)^{1/p_j} \]

\[\times \left(\int_{X \times B} |g(y_j)|^p \, d\mu(y_j) \right)^{1/p_j} \]

\[\leq C \prod_{j=1}^{2} \sum_{k=1}^{\infty} 6^{-k} \left(\int_{X \times B} |b_j(y_j) - m_B b_j|^p \, d\mu(y_j) \right)^{1/p_j} \]

\[\times \left(\int_{X \times B} |g(y_j)|^p \, d\mu(y_j) \right)^{1/p_j} \]
\[\leq C \prod_{j=1}^{2} \sum_{k=1}^{\infty} 6^{-k\delta} k \| b_j \| M_{P_j,6}(g(x)) \]
\[\leq C \| b_1 \| \| b_2 \| M_{P_1,6}(g_1(x)) M_{P_2,6}(g_2(x)), \]

where \(\delta = \delta_1 + \delta_2, \delta_1, \delta_2 > 0. \)

It follows from taking the mean over \(z_0 \in B \) that
\[F_{44} \leq C \| b_1 \| \| b_2 \| M_{P_1,6}(g_1(x)) M_{P_2,6}(g_2(x)). \] (2.8)

Thus (2.5) is obtained from (2.7) to (2.8).

Now we turn to the proof of (2.6). Set \(N = N_{B,R} + 1 \). For two balls \(B \subset R \) with \(x \in B \), here \(R \) is a doubling ball and \(B \) is an every ball,
\[\| m_B [L_{a,2}((b_1 - m_B b_1)g_1^2, (b_2 - m_B b_2)g_2^2)] - m_B [L_{a,2}((b_1 - m_B b_1)g_1^2, (b_2 - m_B b_2)g_2^2)] \]
\[\leq m_B [L_{a,2}((b_1 - m_B b_1)g_1 X_{\{B\}}^N B, (b_2 - m_B b_2)g_2 X_{\{B\}}^N B)] - m_B [L_{a,2}((b_1 - m_B b_1)g_1 X_{\{B\}}^N B, (b_2 - m_B b_2)g_2 X_{\{B\}}^N B)] \]
\[+ |m_B [L_{a,2}((b_1 - m_B b_1)g_1 X_{\{B\}}^N B, (b_2 - m_B b_2)g_2 X_{\{B\}}^N B)]| - m_B [L_{a,2}((b_1 - m_B b_1)g_1 X_{\{B\}}^N B, (b_2 - m_B b_2)g_2 X_{\{B\}}^N B)] \]
\[+ m_B [L_{a,2}((b_1 - m_B b_1)g_1 X_{\{B\}}^N B, (b_2 - m_B b_2)g_2 X_{\{B\}}^N B)] \]
\[+ m_B [L_{a,2}((b_1 - m_B b_1)g_1 X_{\{B\}}^N B, (b_2 - m_B b_2)g_2 X_{\{B\}}^N B)] \]
\[+ m_B [L_{a,2}((b_1 - m_B b_1)g_1 X_{\{B\}}^N B, (b_2 - m_B b_2)g_2 X_{\{B\}}^N B)] \]
\[=: G_1 + G_2 + G_3 + G_4 + G_5 + G_6. \] (2.9)

Similar to the estimate of \(F_{44} \),
\[G_1 \leq C \| b_1 \| \| b_2 \| M_{P_1,6}(g_1(x)) M_{P_2,6}(g_2(x)). \]

For \(G_2 \), it is easy to see that
\[L_{a,2}((b_1 - m_{B_R} b_1)g_1 X_{\{B\}}^N B, (b_2 - m_{B_R} b_2)g_2 X_{\{B\}}^N B)(z) \]
\[- L_{a,2}((b_1 - m_{B_R} b_1)g_1 X_{\{B\}}^N B, (b_2 - m_{B_R} b_2)g_2 X_{\{B\}}^N B)(z) \]
\[= (m_{B_R} b_2 - m_{B_R} b_2) L_{a,2}((b_1 - m_{B_R} b_1)g_1 X_{\{B\}}^N B, (b_2 - m_{B_R} b_2)g_2 X_{\{B\}}^N B)(z) \]
\[+ (m_{B_R} b_1 - m_{B_R} b_1) L_{a,2}((b_1 - m_{B_R} b_1)g_1 X_{\{B\}}^N B, (b_2 - m_{B_R} b_2)g_2 X_{\{B\}}^N B)(z) \]
\[+ (m_{B_R} b_1 - m_{B_R} b_1)(m_{B_R} b_2 - m_{B_R} b_2) L_{a,2}((b_1 - m_{B_R} b_1)g_1 X_{\{B\}}^N B, (b_2 - m_{B_R} b_2)g_2 X_{\{B\}}^N B)(z). \]

Thus
\[G_2 \leq \left| m_{B_R} b_2 - m_{B_R} b_2 \right| \frac{1}{\mu(R)} \int_{B} L_{a,2}((b_1 - m_{B_R} b_1)g_1 X_{\{B\}}^N B, (b_2 - m_{B_R} b_2)g_2 X_{\{B\}}^N B)(z) d\mu(z) \]
\[+ \left| m_{B_R} b_1 - m_{B_R} b_1 \right| \frac{1}{\mu(R)} \int_{B} L_{a,2}((b_1 - m_{B_R} b_1)g_1 X_{\{B\}}^N B, (b_2 - m_{B_R} b_2)g_2 X_{\{B\}}^N B)(z) d\mu(z) \]
\[+ \left| m_{B_R} b_1 - m_{B_R} b_1 \right| \frac{1}{\mu(R)} \int_{B} (m_{B_R} b_2 - m_{B_R} b_2) L_{a,2}((b_1 - m_{B_R} b_1)g_1 X_{\{B\}}^N B, (b_2 - m_{B_R} b_2)g_2 X_{\{B\}}^N B)(z) d\mu(z) \]
Therefore, for G_{21},

$$I_{a,2}((b_1 - m_R b_1)g_1, g_2)(z) = I_{a,2}((b_1 - m_R b_1)g_1, g_2)(z) - T((b_1 - m_R b_1)g_1, g_2)(z)$$

$$+ I_{a,2}((b_1 - m_R b_1)g_1, g_2)(z) - I_{a,2}((b_1 - m_R b_1)g_1, g_2)(z)$$

$$= E_1(z) + E_2(z) + E_3(z) + E_4(z) + E_5(z) + E_6(z) + E_7(z).$$

For $E_1(z)$, it is easy to see that

$$\frac{1}{\mu(R)} \int_R \left| I_{a,2}((b_1 - b_1(z))g_1, g_2)(z) \right| d\mu(z) \leq CM_{r,16}([b_1, I_{a,2}g_1, g_2](x)).$$

It follows from Hölder’s inequality that

$$\frac{1}{\mu(R)} \int_R \left| (b_1(z) - m_R(b_1))I_{a,2}(g_1, g_2)(z) \right| d\mu(z) \leq C\|b_1\|_*M_{r,16}((I_{a,2}g_1, g_2))(x).$$

Therefore

$$|m_R(E_1)| \leq |m_R(I_{a,2}(b_1 - b_1(z))g_1, g_2)| + |m_R((b_1(z) - m_R(b_1))I_{a,2}(g_1, g_2))|$$

$$\leq C\{M_{r,16}([b_1, I_{a,2}g_1, g_2](x)) + \|b_1\|_*M_{r,16}((I_{a,2}g_1, g_2))(x)\}.$$

For $E_2(z)$, denote $s_1 = \sqrt{p_1}$, $s_2 = p_2$, $\frac{1}{v} = \frac{1}{n} + \frac{1}{p_1} - \alpha$ and $\frac{1}{s_1} = \frac{1}{p_1} + \frac{1}{p_2}$. Noting that R is a doubling ball, by Theorem 1.9, one obtains

$$|m_R(E_2)| \leq C\frac{\mu(R)^{\frac{1-v}{v}}}{\mu(6R)} \left\| I_{a,2}((b_1 - m_R b_1)g_1, g_2) \right\|_{L^v(\mu)}$$

$$\leq C\mu(6R)^{-\frac{1}{v}} \left\| (b_1 - m_R b_1)g_1, g_2 \right\|_{L^v(\mu)} \|g_2\|_{L^2(\mu)}$$

$$\leq C\frac{1}{\mu(6R)^{\frac{1}{p_1}}} \left(\int_{\frac{R}{6}} |b_1 - m_R b_1|^p d\mu(z) \right)^{1/p_1} \left(\int_{\frac{R}{6}} |g_1(z)|^p d\mu(z) \right)^{1/p_1}$$

$$\times \left(\int_{\frac{R}{6}} |g_2(z)|^p d\mu(z) \right)^{1/p_2}$$

$$\leq C \left(\frac{1}{\mu(R)} \int_{\frac{R}{6}} |b_1 - m_R b_1|^p d\mu(z) \right)^{1/p_1}.$$
\[\times \prod_{j=1}^{2} \left(\frac{1}{\mu(6R)^{1-q_p/2}} \int_{\frac{3}{2}R} |g(z)|^{p_j} d\mu(z) \right)^{1/p_j} \leq C \| b_1 \|_{M^{(a/2)}_{P_1(5)\mathcal{G}_1}(x)M^{(a/2)}_{P_2(5)\mathcal{G}_2}(x)}. \]

Also one deduces

\[|m_{R}(E_3)| + |m_{R}(E_4)| \leq C \| b_1 \|_{M^{(a/2)}_{P_1(5)\mathcal{G}_1}(x)M^{(a/2)}_{P_2(5)\mathcal{G}_2}(x)}. \]

For \(E_5 \), as \(z \in R \), noting that \(R \) is a doubling ball, it follows from (i) of Definition 1.5, Lemmas 2.2-2.3, and the conditions of \(\lambda \) that

\[|E_5(z)| \leq C \int_{\frac{3}{2}R} \int_{\frac{3}{2}R} \frac{|b_1(y_1) - m_{R}b_1||g_1(y_1)||g_2(y_2)| d\mu(y_1) d\mu(y_2)}{[\sum_{j=1}^{2} \lambda(x,d(x,y_i))]^{2-a}} \]

\[\leq C \int_{\frac{3}{2}R} |g_2(y_2)| d\mu(y_2) \sum_{j=1}^{\infty} \int_{\frac{3}{2}R} \frac{|b_1(y_1) - m_{R}b_1||g_1(y_1)| d\mu(y_1)}{[\lambda(z,5 \times 6^i \frac{3}{2}l_R)]^{2-a}} \]

\[\leq C \int_{\frac{3}{2}R} |g_2(y_2)| d\mu(y_2) \sum_{j=1}^{\infty} 6^{-jm(1-a/2)} \]

\[\times \int_{\frac{3}{2}R} \frac{1}{[\lambda(z,5 \times 6^i \frac{3}{2}l_R)]^{1-a/2}} \left[\int_{\frac{3}{2}R} |b_1(y_1) - m_{R}b_1||g_1(y_1)| d\mu(y_1) \right. \]

\[\left. + \int_{\frac{3}{2}R} |m_{R}b_1(b_1) - m_{R}b_1||g_1(y_1)| d\mu(y_1) \right] \]

\[\leq C \int_{\frac{3}{2}R} |g_2(y_2)| d\mu(y_2) \sum_{j=1}^{\infty} 6^{-jm(1-a/2)} \]

\[\times \left[\left(\frac{1}{\lambda(z,5 \times 6^i \frac{3}{2}l_R)} \int_{\frac{3}{2}R} |b_1(y_1) - m_{R}b_1(b_1)|^{p_1} d\mu(y_1) \right)^{1/p_1} \right. \]

\[\times \left. \left(\frac{1}{\lambda(z,6^{i+1} \frac{3}{2}l_R)} \int_{\frac{3}{2}R} |g_1(y_1)|^{p_1} d\mu(y_1) \right)^{1/p_1} \right] \]

\[+ \| b_1 \|_{M^{(a/2)}_{P_1(5)\mathcal{G}_1}(x)} \sum_{j=1}^{N_{R,5}} \int_{\frac{3}{2}R} |g_1(y_1)| d\mu(y_1) \]

\[\leq C \| b_1 \|_{M^{(a/2)}_{P_1(5)\mathcal{G}_1}(x)} \sum_{j=1}^{N_{R,5}} \int_{\frac{3}{2}R} |g_2(y_2)| d\mu(y_2) \]

\[\leq C \| b_1 \|_{M^{(a/2)}_{P_1(5)\mathcal{G}_1}(x)} \sum_{j=1}^{N_{R,5}} \int_{\frac{3}{2}R} |g_2(y_2)| d\mu(y_2) \]

\[\leq C \| b_1 \|_{M^{(a/2)}_{P_1(5)\mathcal{G}_1}(x)} \sum_{j=1}^{N_{R,5}} \int_{\frac{3}{2}R} |g_2(y_2)| d\mu(y_2) \]

\[\leq C \| b_1 \|_{M^{(a/2)}_{P_1(5)\mathcal{G}_1}(x)} \sum_{j=1}^{N_{R,5}} \int_{\frac{3}{2}R} |g_2(y_2)| d\mu(y_2) \]

\[\leq C \| b_1 \|_{M^{(a/2)}_{P_1(5)\mathcal{G}_1}(x)} \sum_{j=1}^{N_{R,5}} \int_{\frac{3}{2}R} |g_2(y_2)| d\mu(y_2) \]
\[
\times \left[\frac{\mu(2 + 6^{1/5}B)}{\lambda(z, 5 \times 6^{1/5}I_\beta)} \right]^{1-\alpha/2} \left[\frac{\lambda(z, 5 \times 6^{1/5}I_\beta)}{\lambda(z, 6I_\beta)} \right]^{1-\alpha/2} \\
+ C \|b_1\|_*M(\alpha/2)_{P_1,5}g_1(x) \frac{1}{\lambda(z, 6I_\beta)^{1-\alpha/2}} \int_{6I_\beta} |g_2(y_2)| \, d\mu(y_2) \\
\leq CK_{B,R}^{(α/2)} \|b_1\|_*M(\alpha/2)_{P_1,5}g_1(x)M(\alpha/2)_{P_2,5}g_2(x).
\]

Therefore
\[
|m_R(E_3)| \leq CK_{B,R}^{(α/2)} \|b_1\|_*M(\alpha/2)_{P_1,5}g_1(x)M(\alpha/2)_{P_2,5}g_2(x).
\]

Similar to the estimate of \(m_R(E_3)\),
\[
|m_R(E_6)| + |m_R(E_7)| \leq CK_{B,R}^{(α/2)} \|b_1\|_*M(\alpha/2)_{P_1,5}g_1(x)M(\alpha/2)_{P_2,5}g_2(x).
\]

By (1.10), it yields
\[
G_{21} \leq C \left[\|b_1\|_*M(\alpha/2)_{P_1,5}(I_{a,2}(g_1, g_2))(x) + \|b_1\|_*M(\alpha/2)_{P_1,5}(b_2, I_{a,2})(g_1, g_2))(x) \right. \\
+ \|b_2\|_*M(\alpha/2)_{P_1,5}(b_1, I_{a,2})(g_1, g_2))(x) + \left. \|b_1\|_*\|b_2\|_*M(\alpha/2)_{P_1,5}g_1(x)M(\alpha/2)_{P_2,5}g_2(x) \right].
\]

For \(G_{22}\) and \(G_{23}\), they are similar to \(G_{21}\), thus
\[
G_2 \leq C \left[\|b_1\|_*\|b_2\|_*M(\alpha/2)_{P_1,5}(I_{a,2}(g_1, g_2))(x) + \|b_1\|_*M(\alpha/2)_{P_1,5}(b_2, I_{a,2})(g_1, g_2))(x) \right. \\
+ \|b_2\|_*M(\alpha/2)_{P_1,5}(b_1, I_{a,2})(g_1, g_2))(x) + \left. \|b_1\|_*\|b_2\|_*M(\alpha/2)_{P_1,5}g_1(x)M(\alpha/2)_{P_2,5}g_2(x) \right].
\]

For \(G_3\) to \(G_6\), in the same way as \(E_3(z)\), it yields
\[
G_1 + G_4 + G_5 + G_6 \leq C \|b_1\|_*\|b_2\|_*M(\alpha/2)_{P_1,5}g_1(x)M(\alpha/2)_{P_2,5}g_2(x).
\]

Thus (2.6) is obtained from (2.9) to (2.10) and (2.2) is proved. Also, one obtains (2.3) and (2.4) in a similar way to (2.2). Here the details is omitted. Thus Lemma 2.4 is proved. □

Proof of Theorem 1.10: Set \(0 < \alpha < 2, 1 < p_1, p_2 < \infty, 0 < \frac{1}{\theta} = \frac{1}{p_1} + \frac{1}{p_2} - \alpha < 1, 1 < r < q, \)
\(f_1 \in L^{p_1}(\mu), g_2 \in L^{p_2}(\mu), b_1, b_2 \in \text{RBMO}(\mu).\) Noticing that \(|g(x)| \leq N\rho(x)\), recalling the boundedness of \(M(\alpha/2)\) and \(M(\alpha)\), for \(\rho \geq 5\), and using Hölder’s inequality, it follows from Lemmas 2.1-2.4 and Theorem 1.9 that
\[
\|b_1, b_2, I_{a,2}(g_1, g_2)\|_{L^\theta(\mu)} \\
\leq \|N(b_1, b_2, I_{a,2}(g_1, g_2))\|_{L^\theta(\mu)} \\
\leq C \|M(\alpha/2)_{P_1,5}(b_1, b_2, I_{a,2})(g_1, g_2)\|_{L^\theta(\mu)} \\
\leq C \|b_1\|_*\|b_2\|_*\|M(\alpha/2)_{P_1,5}(I_{a,2}(g_1, g_2))\|_{L^\theta(\mu)} \\
+ C \|b_1\|_*\|M(\alpha/2)_{P_1,5}(b_2, I_{a,2})(g_1, g_2))\|_{L^\theta(\mu)} \\
+ C \|b_2\|_*\|M(\alpha/2)_{P_1,5}(b_1, I_{a,2})(g_1, g_2)\|_{L^\theta(\mu)}
\]
+ C\|b_1\|_\ast\|b_2\|_\ast\|M_{p_1,3}(g_1)M_{p_2,3}(g_2)\|_{L^q(\mu)}
\leq C\|b_1\|_\ast\|b_2\|_\ast\|g_1\|_{L^p(\mu)}\|g_2\|_{L^p(\mu)}
+ C\|b_1\|_\ast\|[b_2, L_2]\{(g_1, g_2)\}\|_{L^q(\mu)}
+ C\|b_2\|_\ast\|[b_1, L_2]\{(g_1, g_2)\}\|_{L^q(\mu)}
\leq C\|b_1\|_\ast\|b_2\|_\ast\|g_1\|_{L^p(\mu)}\|g_2\|_{L^p(\mu)}
+ C\|b_1\|_\ast\|M_{r, 6}(I_{\alpha} g_1, g_2)\|_{L^q(\mu)}
+ C\|b_1\|_\ast\|M_{p_1, 3}(g_1)M_{p_2, 3}(g_2)\|_{L^q(\mu)}
+ C\|b_2\|_\ast\|M_{r, 6}(I_{\alpha} g_1, g_2)\|_{L^q(\mu)}
+ C\|b_2\|_\ast\|M_{p_1, 3}(g_1)M_{p_2, 3}(g_2)\|_{L^q(\mu)}
\leq C\|b_1\|_\ast\|b_2\|_\ast\|g_1\|_{L^p(\mu)}\|g_2\|_{L^p(\mu)}.

This proves Theorem 1.10.

3 Applications

In this section, we apply Theorem 1.9 and Theorem 1.10 to the study of a fractional integral operator.

Lemma 3.1 ([15]) Suppose diam(X) = \infty, \alpha \in (0, 1), p \in (1, 1/\alpha), and 1/q = 1/p - \alpha. If \lambda satisfies the \epsilon-weak reverse doubling condition, for some \epsilon \in (0, \min\{\alpha, 1 - \alpha, 1/q\}), then

\|T_\alpha f\|_{L^q(\mu)} \leq C\|f\|_{L^p(\mu)},

where T_\alpha is defined by

T_\alpha f(x) := \int_X \frac{f(y)}{[\lambda(y, d(x, y))]^{1-\alpha}} d\mu(y).

Theorem 3.2 Under the same conditions as that in Lemma 3.1, the results of Theorem 1.9 and Theorem 1.10 hold true, on replacing I_\beta there by T_\alpha.

4 Conclusion

In this paper, we prove that multilinear fractional integral operators and commutators, generated by multilinear fractional integrals, with an RBMO(\mu) function on non-homogeneous metric measure spaces, are bounded in Lebesgue spaces. The results are established for both the homogeneous spaces and the non-doubling measure spaces.

Competing interests

The authors declare that they have no competing interests.
Authors' contributions
HG and RX proposed this problem and finished the proof of Theorem 1.9 and Theorem 1.10 together. CX finished the proof of Lemma 2.4. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank the referees for their careful reading and valuable suggestions. Huajun Gong is partially supported by the Natural Science Foundation of China (No. 12171462) and Shenzhen University. (No. 2017-52). Rulong Xie is partially supported by NSFC (No. 11471051). Guangdong Provincial Science and Technology Plan Project (No. 2013B010101009). The authors would like to thank the referees for their careful reading and valuable suggestions. Huajun Gong is partially supported by the Natural Science Foundation of China (No. 12171462) and Shenzhen University. (No. 2017-52). Rulong Xie is partially supported by NSFC (No. 11471051). Guangdong Provincial Science and Technology Plan Project (No. 2013B010101009). The authors would like to thank the referees for their careful reading and valuable suggestions. Huajun Gong is partially supported by the Natural Science Foundation of China (No. 12171462) and Shenzhen University. (No. 2017-52). Rulong Xie is partially supported by NSFC (No. 11471051). Guangdong Provincial Science and Technology Plan Project (No. 2013B010101009).

Received: 21 April 2016 Accepted: 24 October 2016 Published online: 04 November 2016

References
1. Chen, W, Sawyer, E: A note on commutators of fractional integrals with RBMO(μ) functions. Ill. J. Math. 46, 1287-1298 (2002)
2. García-Cuerva, J, María-Martell, J: Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces. Indiana Univ. Math. J. 50, 1241-1280 (2001)
3. Hu, G, Meng, Y, Yang, D: Multilinear commutators of singular integrals with non doubling measures. Integral Equ. Operator Theory 51, 235-255 (2005)
4. Hu, G, Meng, Y, Yang, D: New atomic characterization of H^1 space with nondoubling measures and its applications. Math. Proc. Camb. Philos. Soc. 138, 151-171 (2005)
5. Nazarov, F, Treil, S, Volberg, A: The Tb-theorem on non-homogeneous spaces. Acta Math. 190, 151-239 (2003)
6. Tolsa, X: BMO, H^1 and Calderón-Zygmund operators for non-doubling measures. Math. Ann. 319, 89-101 (2001)
7. Tolsa, X: Painlevé’s problem and the semadditivity of analytic capacity. Acta Math. 190, 105-149 (2003)
8. Xie, R, Shu, L: Θ-Type Calderón-Zygmund operators with non-doubling measures. Acta Math. Sinica (Engl. Ser.) 29, 263-280 (2013)
9. Tolsa, X: Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón-Zygmund Theory. Progress in Mathematics, vol. 307. Springer, Cham (2014)
10. Hytönen, T: A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ. Mat. 54, 485-504 (2010)
11. Bui, T, Duong, X: Hardy spaces, regularized BMO spaces, and the boundedness of Calderón-Zygmund operators on non-homogeneous spaces. J. Geom. Anal. 23, 895-952 (2013)
12. Cao, Y, Zhou, J: Morrey spaces for nonhomogeneous metric measure spaces. Abstr. Appl. Anal. 2013, Article ID 196459 (2013)
13. Fu, X, Lin, H, Yang, D, Yang, D: Hardy spaces H^1 over non-homogeneous metric measure spaces and their applications. Sci. China Math. 58, 309-388 (2015)
14. Fu, X, Yang, D, Yuan, W: Boundedness of multilinear commutators of Calderón-Zygmund operators on Orlicz spaces over non-homogeneous spaces. Taiwan. J. Math. 16, 2203-2238 (2012)
15. Fu, X, Yang, D, Yuan, W: Generalized fractional integrals and their commutators over non-homogeneous metric measure spaces. Taiwan. J. Math. 18, 509-557 (2014)
16. Hytönen, T, Martikainen, H: Non-homogeneous Tb theorem and random dyadic cubes on metric measure spaces. J. Geom. Anal. 22, 1071-1107 (2012)
17. Hytönen, T, Liu, S, Yang, D, Yang, D: Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces. Can. J. Math. 64, 892-923 (2012)
18. Hytönen, T, Yang, D, Yang, D: The Hardy space H^1 on non-homogeneous metric spaces. Math. Proc. Camb. Philos. Soc. 153(1), 9-31 (2012)
19. Lin, H, Yang, D: Spaces of type BLO on non-homogeneous metric measure spaces. Front. Math. China 6, 271-292 (2011)
20. Lin, H, Yang, D: An interpolation theorem for sublinear operators on non-homogeneous metric measure spaces. Banach. J. Math. Anal. 6, 168-179 (2012)
21. Lin, H, Yang, D: Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces. Sci. China Math. 57, 123-144 (2014)
22. Liu, S, Yang, D, Yang, D: Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces: equivalent characterizations. J. Math. Anal. Appl. 386, 258-272 (2012)
23. Xie, R, Gong, H, Zhou, X: Commutators of multilinear singular integral operators on non-homogeneous metric measure spaces. Taiwan. J. Math. 19, 703-723 (2015)
24. Yang, D, Yang, D, Fu, X: The Hardy space H^1 on non-homogeneous spaces and its applications - a survey. Eurasian Math. J. 4, 104-139 (2013)
25. Yang, D, Yang, D, Hu, G: The Hardy Space H^1 with Non-doubling Measures and Their Applications. Lecture Notes in Mathematics, vol. 2084. Springer, Berlin (2013)
26. Grafakos, L, Meyer, Y: On commutators of singular integrals and bilinear singular integrals. Trans. Am. Math. Soc. 366, 115-331 (2015)
27. Grafakos, L, Torres, R: Multilinear Calderón-Zygmund theory. Adv. Math. 165, 124-164 (2002)
28. Grafakos, L, Torres, R: On multilinear singular integrals of Calderón-Zygmund type. Publ. Mat., 57, 51-91 (2003)
29. Xu, J: Boundedness of multilinear singular integrals for non-doubling measures. J. Math. Anal. Appl. 327, 471-480 (2007)
30. Xu, J: Boundedness in Lebesgue spaces for commutators of multilinear singular integrals and RBMO functions with non-doubling measures. Sci. China Ser. A 50, 361-376 (2007)
31. Lian, J, Wu, H: A class of commutators for multilinear fractional integrals in nonhomogeneous spaces. J. Inequal. Appl. 2008, Article ID 373050 (2008)
32. Hu, G, Meng, Y, Yang, D: Weighted norm inequalities for multilinear Calderón-Zygmund operators on non-homogeneous metric measure spaces. Forum Math. 5, 1289-1322 (2014)
33. Tan, C, Li, J: Littlewood-Paley theory on metric measure spaces with non doubling measures and its applications. Sci. China Math. 58, 983-1004 (2015)