NON-LOCALITY OF EQUIVARIANT STAR PRODUCTS ON $T^*\mathbb{RP}^n$

RANEE BRYLINSKI

Abstract. Lecomte and Ovsienko constructed $SL_{n+1}(\mathbb{R})$-equivariant quantization maps Q_λ for symbols of differential operators on λ-densities on \mathbb{RP}^n.

We derive some formulas for the associated graded equivariant star products \star_λ on the symbol algebra $\text{Pol}(T^*\mathbb{RP}^n)$. These give some measure of the failure of locality.

Our main result expresses (for n odd) the coefficients $C_p(\cdot, \cdot)$ of \star_λ when $\lambda = \frac{1}{2}$ in terms of some new $SL_{n+1}(\mathbb{C})$-invariant algebraic bidifferential operators $Z_p(\cdot, \cdot)$ on $T^*\mathbb{CP}^n$ and the operators $(E + \frac{2}{s} \pm s)^{-1}$ where E is the fiberwise Euler vector field and $s \in \{1, 2, \cdots, \lceil \frac{p}{2} \rceil \}$.

1. Introduction

Lecomte and Ovsienko ([L-O]) constructed $SL_{n+1}(\mathbb{R})$-equivariant quantization maps Q_λ for symbols of differential operators on λ-densities on \mathbb{RP}^n.

We derive some formulas for the associated graded equivariant star products $\phi \star_\lambda \psi = \phi \psi + \sum_{p=1}^\infty C_p^\lambda(\phi, \psi)t^p$ on the symbol algebra $\text{Pol}_\infty(T^*\mathbb{RP}^n)$. The star products \star_λ is “algebraic” in that (Proposition 3.1) it restricts to the subalgebra R generated by the momentum functions μ^x, $x \in \mathfrak{sl}_{n+1}(\mathbb{R})$.

We compute some special values of $\phi \star_\lambda \psi$ in Proposition 4.1. We conclude in Corollary 4.2 that $C_p^\lambda(\cdot, \cdot)$ fails to be bidifferential, except if $\lambda = \frac{1}{2}$ and $p = 1$. The reason is that $C_p^\lambda(\cdot, \cdot)$ involves operators of the form $(E + r)^{-1}$ where E is the fiberwise Euler vector field on $T^*\mathbb{RP}^n$ and r is a positive number.

In our main result (Theorem 5.1), we write, for n odd, the coefficients $C_p^\lambda(\cdot, \cdot)$ when $\lambda = \frac{1}{2}$ in terms of some new $SL_{n+1}(\mathbb{C})$-invariant algebraic bidifferential operators $Z_p(\cdot, \cdot)$ on \mathbb{CP}^n and the operators $(E + \frac{2}{s} \pm s)^{-1}$ where $s \in \{1, 2, \cdots, \lceil \frac{p}{2} \rceil \}$. Our proofs in §4 and §5 are applications of the formulas in [L-O], §5.5] for Q_λ.

The operator $Z_p(\cdot, \cdot)$ ($p \geq 2$) is quite subtle as it has total homogeneous degree $-p$. It is not the pth power of the Poisson tensor (with respect to some coordinates) because we can show that the total order of $Z_p(\cdot, \cdot)$ is too large. It would be very interesting to find a way to construct Z_p using the method of Levasseur and Stafford ([L-S]).

I thank Christian Duval and Valentin Ovsienko for several interesting discussions.

2. The Lecomte-Ovsienko quantization maps

In [L-O], Lecomte and Ovsienko constructed, for each $\lambda \in \mathbb{C}$, an $SL_{n+1}(\mathbb{R})$-equivariant (complex linear) quantization map Q_λ from $A = \text{Pol}_\infty(T^*\mathbb{RP}^n)$ to $B^\lambda = \mathcal{D}_\infty(\mathbb{RP}^n)$. Here $A = \bigoplus_{d=0}^\infty A^d$ is the graded Poisson algebra of smooth complex-valued functions on $T^*\mathbb{RP}^n$ which are polynomial along the cotangent fibers, and $B^\lambda = \bigcup_{d=0}^\infty B^\lambda_d$ is the filtered algebra of smooth (linear) differential operators on λ-densities on \mathbb{RP}^n. Then
Q_λ is a quantization map in the sense that Q_λ is a vector space isomorphism and ϕ is the principal symbol of $Q_\lambda(\phi)$ if $\phi \in \mathcal{A}^d$.

The natural action of $SL_{n+1}(\mathbb{R})$ on \mathbb{R}^n lifts canonically to a Hamiltonian action on $T^*\mathbb{R}^n$ with moment map $\mu: T^*\mathbb{R}^n \rightarrow \mathfrak{sl}_{n+1}(\mathbb{R})^*$. The density line bundle on \mathbb{R}^n is homogeneous for $SL_{n+1}(\mathbb{R})$. This geometry produces natural (complex linear) representations of $SL_{n+1}(\mathbb{R})$ on \mathcal{A} and B^λ; Q_λ is equivariant for these representations.

The procedure of Lecomte and Ovsienko was to construct ([L-O, Thm. 4.1]) an $\mathfrak{sl}_{n+1}(\mathbb{R})$-equivariant quantization map Q_λ from $\text{Pol}_\infty(T^*\mathbb{R}^n)$ to $\mathcal{D}_\infty^\lambda(\mathbb{C}^n)$, where \mathbb{R}^n is the big cell in \mathbb{R}^n. They show their map is unique. Then Q_λ restricts to a quantization map from \mathcal{A} to B^λ ([L-O, Cor. 8.1]).

We can represent points in \mathbb{R}^n in homogeneous coordinates $[u_0, \ldots, u_n]$. Then u_1, \ldots, u_n are linear coordinates on the big cell \mathbb{R}^n defined by $u_0 = 1$. These, together with the conjugate momenta ξ_1, \ldots, ξ_n, give Darboux coordinates on $T^*\mathbb{R}^n$.

For any vector field η on \mathbb{R}^n, let $\mu_\eta \in A^1$ be its principal symbol and let η_λ be its Lie derivative acting on λ-densities so that $\eta_\lambda \in B^1_\lambda$. Then $Q_\lambda(\mu_\eta) = \eta_\lambda$; this follows by [L-O, §4.3].

The quantization map Q_λ defines a star product; see [L-O, §8.2]. For $\phi, \psi \in \mathcal{A}$, we put $\phi \ast_\lambda \psi = Q_\lambda^{-1}(Q_{\lambda t}(\phi)Q_{\lambda t}(\psi))$ where $Q_{\lambda t}$ is the linear map $\mathcal{A} \rightarrow B^\lambda[t]$ such that $Q_{\lambda t}(\phi) = t^d Q_\lambda(\phi)$ if $\phi \in \mathcal{A}^d$. Then \ast_λ makes $\mathcal{A}[t]$ into an associative algebra over $\mathbb{C}[t]$. This satisfies

$$\phi \ast_\lambda \psi = \sum_{p=0}^{\infty} C^\lambda_p(\phi, \psi)t^p$$

where $C^\lambda_0(\phi, \psi) = \phi \psi$ and $C^\lambda_1(\phi, \psi) = C^\lambda_1(\psi, \phi) = \{\phi, \psi\}$. Also $C^\lambda_p(\phi, \psi) \in \mathcal{A}^{j+k-p}$ if $\phi \in \mathcal{A}^j$ and $\psi \in \mathcal{A}^k$. So \ast_λ is a graded star product on \mathcal{A}.

We say that \ast_λ has parity iff $C^\lambda_p(\phi, \psi) = (-1)^p C^\lambda_p(\psi, \phi)$; then $C^\lambda_1(\phi, \psi) = \frac{1}{2}\{\phi, \psi\}$.

Lemma 2.1. \ast_λ has parity iff $\lambda = \frac{1}{2}$.

Proof. Let $\beta: B^\lambda \rightarrow B^{1-\lambda}$ be the canonical algebra anti-isomorphism and let $\alpha: \mathcal{A} \rightarrow \mathcal{A}$ be the Poisson algebra anti-involution defined by $\phi^\alpha = (-1)^d \phi$ if $\phi \in \mathcal{A}^d$. Then $Q_\lambda(\phi^\alpha) = Q_{1-\lambda}(\phi)$ by [L-O, Lem. 6.5]. This implies $C^\lambda_p(\phi, \psi) = (-1)^p C^\lambda_{1-\lambda}(\psi, \phi)$. So we have parity if $\lambda = \frac{1}{2}$. Otherwise parity is violated, already for C^λ_1. Indeed, if $\phi \in \mathcal{A}^0$ and $\mu \in \mathcal{A}^1$, then $\phi \ast_\lambda \mu = \phi \mu + \lambda\{\phi, \mu\}t$, and so $C^\lambda_1(\phi, \mu) = \lambda\{\phi, \mu\}$ while $C^\lambda_1(\mu, \phi) = -C^\lambda_1(\phi, \mu) = (\lambda - 1)\{\phi, \mu\}$. □

3. Algebraicity of \ast_λ

Each $x \in \mathfrak{sl}_{n+1}(\mathbb{R})$ defines a vector field η^x on $T^*\mathbb{R}^n$. The principal symbols $\mu^x = \mu_{\eta^x}$ are the momentum functions for $SL_{n+1}(\mathbb{R})$. The $SL_{n+1}(\mathbb{R})$-equivariance of Q_λ is equivalent to $\mathfrak{sl}_{n+1}(\mathbb{R})$-equivariance, i.e., $Q_\lambda(\{\mu^x, \phi\}) = [\eta^x, Q_\lambda(\phi)]$. Then Q_λ is $\mathfrak{sl}_{n+1}(\mathbb{C})$-equivariant, where we define μ^x and η^x for $x \in \mathfrak{sl}_{n+1}(\mathbb{C})$ by $\mu^{x+iy} = \mu^x + i\mu^y$ and so on.

The algebra $R(T^*\mathbb{C}P^n)$ of regular functions (in the sense of algebraic geometry) on (the quasi-projective complex algebraic variety) $T^*\mathbb{C}P^n$ identifies, by restriction, with a subalgebra \mathcal{R} of \mathcal{A}. Similarly the algebra of $\mathcal{D}^\lambda(\mathbb{C}P^n)$ of twisted algebraic (linear)
differential operators for the formal λth power of the canonical bundle \(K \) identifies with a subalgebra \(D^\lambda \) of \(B^\lambda \).

Then \(\mathcal{R} \) is generated by the momentum functions \(\mu^x \), \(D^\lambda \) is generated by the operators \(\eta^x_\lambda \), and \(\text{gr} \, D^\lambda = \mathcal{R} \). These statements follow, for instance, by [Bo-Bi, Lem. 1.4 and Thm. 5.6], since the proofs of the relevant results there generalize immediately to the twisted case. We get natural identifications \(\mathcal{R} = \mathcal{S}/I \) and \(D^\lambda = \mathcal{U}(\mathfrak{g})/J \) where \(I \) is graded Poisson ideal in the symmetric algebra \(\mathcal{S} = \mathcal{S}(\mathfrak{sl}_{n+1}(\mathbb{C})) \), \(J \) is a two-sided ideal in the enveloping algebra \(\mathcal{U} = \mathcal{U}(\mathfrak{sl}_{n+1}(\mathbb{C})) \), and \(\text{gr} \, J = I \).

Notice \(\mathcal{R} \) carries a natural representation of \(SL_n(\mathbb{C}) \), which then extends the \(SL_{n+1}(\mathbb{R}) \)-symmetry it inherits from \(\mathcal{A} \).

Proposition 3.1. For every \(\lambda \), \(*_\lambda \) restricts to a graded \(G \)-equivariant star product on the momentum algebra \(\mathcal{R} \).

Proof. It suffices to check that \(Q_\lambda \) maps \(\mathcal{R} \) onto \(D^\lambda \) (which is stated for \(\lambda = 0 \) in [L-O, §1.5, Remark (c)]). This follows easily in any number of ways. For instance, the formula for \(Q_\lambda \) in [L-O, (4.15)] implies \(Q_\lambda(\xi_1 \cdots \xi_n) = \frac{\partial^\lambda}{\partial u_1^\lambda} \cdots \frac{\partial^\lambda}{\partial u_n^\lambda} \). But \(\{\xi^d\}_{d=0}^\infty \) is a complete set of lowest weight vectors in \(\mathcal{R} \) and \(D^\lambda \).

Remark 3.2. The restriction of \(*_\lambda \) to \(\mathcal{R} \) has parity iff (i) \(\lambda = \frac{1}{2} \) or (ii) \(n = 1 \); see [A-Bi, §3]. Notice that (ii) does not contradict the proof of Lemma 2.1, as \(\mathcal{R}^0 = \mathbb{C} \).

4. SOME SPECIAL VALUES OF \(\phi *_\lambda \psi \)

Pol\(_\infty(T^*\mathbb{R}^n)\) is the tensor product of two maximal Poisson commutative subalgebras, namely the algebra \(\mathbb{C}_\infty[u] = \mathbb{C}_\infty[u_1, \ldots, u_n] \) of smooth functions on the big cell \(\mathbb{R}^n \) and the polynomial algebra \(\mathbb{C}[\xi] = \mathbb{C}[\xi_1, \ldots, \xi_n] \). Let \(E \) be the fiberwise Euler vector field \(\sum_{i=1}^n \xi_i \frac{\partial}{\partial \xi_i} \). Set \(D = \sum_{i=1}^n \frac{\partial}{\partial \xi_i} \).

Proposition 4.1. If \(\phi \in \mathbb{C}_\infty[u] \) and \(\psi \in \mathbb{C}[\xi] \) then \(\phi *_\lambda \psi = g_\lambda(\phi \psi) \) where

\[
g_\lambda = 1 + \sum_{d=1}^\infty g_{\lambda,d} D^d t^d \quad \text{and} \quad g_{\lambda,d} = \frac{1}{d!} \prod_{j=0}^{d-1} \frac{-E - j - \lambda(n + 1)}{2E + j + n + 1} \quad (4.1)
\]

Proof. Let \(Q_{\text{norm}} : \text{Pol}_\infty(T^*\mathbb{R}^n) \to \mathcal{D}_\infty(\mathbb{R}^n) \) be the normal ordering quantization map. The construction of \(Q_\lambda \) in [L-O] gives \(Q_\lambda = Q_{\text{norm}} h_\lambda \) where \(h_\lambda = 1 + \sum_{d=1}^\infty h_{\lambda,d} D^d t^d \) and \(h_{\lambda,d} \) are certain operators. Here \(\mathcal{D}_\infty(\mathbb{R}^n) \) identifies with \(\mathcal{D}_\infty^\lambda(\mathbb{R}^n) \) in the usual way.

In [L-O, Th. 4.1] they give a very nice formula for the \(h_{\lambda,d} \) when \(\lambda = \frac{1}{2} \). Going back to [L-O, (4.15)], we get a similar formula for all \(\lambda \). We find

\[
h_{\lambda,d} = \frac{1}{d!} \prod_{j=0}^{d-1} \frac{E + j + \lambda(n + 1)}{2E + j + n + d} \quad (4.2)
\]

Thus for \(\phi, \psi \in \text{Pol}_\infty(T^*\mathbb{R}^n) \) we have

\[
\phi *_\lambda \psi = g_\lambda(h_\lambda(\phi) \# h_\lambda(\psi)) \quad (4.3)
\]

where \(\# \) denotes the graded star product defined by \(Q_{\text{norm}} \) and \(g_\lambda = h_\lambda^{-1} \). We find, directly from [L2] or using [L-O (4.10)], that \(g_\lambda \) is given by (1.1).
More succinctly, $C_g p_r T_i \phi \psi = \sum_{p=0}^{\infty} N_p(\phi, \psi) t^p$ where $N_k(\phi, \psi) = \frac{1}{k!} \sum_{\alpha \in \{1, \ldots, n\}^k} \partial^k \phi \partial^k \psi \frac{\partial^k \phi \partial^k \psi}{\partial x_\alpha \partial u_{\alpha}}$. Now, for $\phi \in \mathbb{C}_\infty[u]$ and $\psi \in \mathbb{C}[\xi]$, \((1.3)\) gives $\phi \ast \lambda \psi = g_{\lambda}(\phi \psi)$.

\[\Box \]

Corollary 4.2. None of the operators $C^\lambda_p (p \geq 1, \lambda \in \mathbb{C})$ is bidifferential on $T^* \mathbb{R}^n$, with one exception: $2C_1^\frac{1}{2}$ is the Poisson bracket.

Proof. We just showed that $C^\lambda_p(\phi, \psi) = g_{\lambda} p D_p(\phi \psi)$ if $\phi \in \mathbb{C}_\infty[u]$ and $\psi \in \mathbb{C}[\xi]$. This implies, if C^λ_p is bidifferential, that $g_{\lambda} p$ is a differential operator on $T^* \mathbb{R}^n$. Looking at our expression for $g_{\lambda} p$, we deduce $E + j + \lambda(n + 1) = E + \frac{1}{2} + \frac{1}{2}(n + 1)$ for $j = 0, \ldots, p - 1$. But this forces $p = 1$ and $\lambda = \frac{1}{2}$. By parity, $C^1_1 \frac{1}{2} \{ \cdot, \cdot \}$.

The corollary contradicts the claim in \cite{LO}, \[8.2\]. They no doubt meant that for each pair j, k, the restricted map $C^\lambda_p : \mathcal{A}^j \times \mathcal{A}^k \to \mathcal{A}^{j+k-p}$ is given by some bidifferential operator.

\[5. \text{ Coefficients } C^\lambda_p \text{ for } \lambda = \frac{1}{2} \]

In this section, we set $\lambda = \frac{1}{2}$ and suppress the corresponding super(sub)scripts. We put $E' = E + n \frac{1}{2}$ where E is the fiberwise Euler vector field on $T^* \mathbb{R}^n$. See \cite{AB} for an interpretation of the shift $\frac{1}{2}$.

We put $T_p = \prod_{i=1}^{\frac{n}{2}} (E' + i)$ and $S_p = \prod_{i=1}^{\frac{n}{2}} (E' - i)$. These are both invertible on \mathcal{A} if n is odd. Our main result is

Theorem 5.1. Assume n is odd and let $p \geq 1$. Then C_p has the form

\begin{equation}
C_p(\phi, \psi) = \frac{1}{T_p} Z_p \left(\frac{1}{S_p} \phi \frac{1}{S_p} \psi \right), \quad \phi, \psi \in \mathcal{A}
\end{equation}

where Z_p is an $\text{SL}_{n+1}(\mathbb{R})$-invariant bidifferential operator on $T^* \mathbb{R}^n$.

Z_p is uniquely determined by \((5.1)\), even if we just take $\phi, \psi \in \mathcal{R}$. Thus \ast is uniquely determined by its restriction to \mathcal{R}, once we know that $(\phi, \psi) \mapsto T_p C_p(S_p \phi, S_p \psi)$ is bidifferential.

Finally, Z_p, like E', extends uniquely to an $\text{SL}_{n+1}(\mathbb{C})$-invariant algebraic bidifferential operator on $T^* \mathbb{C}^n$.

Proof. We return to the proof of Proposition \[(1.1)\]. Let $g_d = g_d d^d$ and $h_d = h_d d^d$, with $g_0 = h_0 = 1$. Writing out \[(1.3)\] termwise, we get, for $p \geq 1$,

\[C_p(\phi, \psi) = \sum_{i+j+k+m=p} g_m N_k(h_i \otimes h_j) \]

More succinctly, $C_p = \sum_{i+j+k+m=p} g_m N_k(h_i \otimes h_j)$.

For $\lambda = \frac{1}{2}$, the formula \[(1.2)\] simplifies in that $\left[\frac{d+1}{2} \right]$ factors cancel out. Then $h_d = U_d V^{-1}_d$ where $U_d = \frac{1}{2^n d!} \prod_{i=1}^{\frac{d}{2}} (E' + i - \frac{1}{2})$ and $V_d = \prod_{i=[\frac{d}{2}+1]}^{\frac{d}{2}+1} (E' + i)$. Then $h_d = U_d V^{-1}_d d^{d} = U_d d^{d} S^{-1}_d$. This is a formal relation, valid for n odd since then S_d is invertible. Similarly, \[(1.1)\] gives $g_d = T^{-1}_d F_d d^d$ where $F_d = \frac{1}{2^n d!} \prod_{i=[\frac{d}{2}+1]}^{\frac{d}{2}+1} (-E' - i - \frac{1}{2})$. We put $U_0 = F_0 = 1$.

4
We put $Z_p(\phi, \psi) = T_p C_p(S_p \phi, S_p \psi)$. Let $T_{p;j} = T_p T_j^{-1}$ and $S_{p;j} = S_j^{-1} S_p$. Now (5.2) gives $Z_p = \sum_{i+j+k+m=p} Z^{mkij}$ where
\[
Z^{mkij} = T_{p;m} F_m D_m N_k \left(U_i D_i S_{p;i} \otimes U_j D_j S_{p;j} \right)
\]
Each Z^{mkij}, and so also their sum Z_p, is a bidifferential operator on $T^* \mathbb{R}^n$ with polynomial coefficients. I.e., Z_p lies in $\mathcal{E} \otimes_p \mathcal{E}$ where $\mathcal{E} = \mathbb{C}[u_i, \xi_j, \frac{\partial}{\partial u_i}, \frac{\partial}{\partial \xi_j}]$ and $\mathcal{P} = \mathbb{C}[u_i, \xi_j]$.

Now Z_p is invariant under $\mathfrak{sl}_{n+1}(\mathbb{R})$; this is clear since T_p, C_p and S_p are all invariant. It follows by projective geometry (as in [L-O, §8.1]) that Z_p extends uniquely to a global $SL_{n+1}(\mathbb{R})$-invariant bidifferential operator on $T^* \mathbb{R}^n$.

We have $\{C_p(\phi, \psi) \mid \phi, \psi \in \mathcal{R}\} \to \{Z_p(\phi, \psi) \mid \phi, \psi \in \mathcal{R}\} \to \{Z_p(\phi, \psi) \mid \phi, \psi \in \mathcal{A}\}$ where the arrows indicate that one set of values completely determines the next set. The middle arrow follows because any bidifferential operator on $T^* \mathbb{R}^n$ is completely determined by its values on \mathcal{R} ([E, Lemma 5.1]).

Clearly Z_p extends naturally (and uniquely) to an algebraic differential operator \tilde{Z}_p on $T^* \mathbb{C}^n$; this amounts to replacing our Darboux coordinates u_i, ξ_j by their holomorphic counterparts z_i, ζ_j. Then \tilde{Z}_p is $\mathfrak{sl}_{n+1}(\mathbb{C})$-invariant and (by projective geometry again) extends to $T^* \mathbb{C}^n$.

Notice that this proof gives an explicit formula (in the coordinates u_i, ξ_j) for Z_p.

Remarks 5.2. (i) Suppose n is even. Then this proof still shows that the formula $Z_p(\phi, \psi) = T_p C_p(S_p \phi, S_p \psi)$ defines an operator Z_p in $\mathcal{E} \otimes_p \mathcal{E}$. Then (5.1) is valid as long as ϕ and ψ lie in $\mathcal{A}^* = \oplus_{d=0}^{\infty} [\xi]_{d+n+1} \mathcal{A}^d$. We can show that all the other results in Theorem [5.1] are still true, so that (5.1) determines Z_p uniquely even for $\phi, \psi \in \mathcal{R} \cap \mathcal{A}^*$.

(ii) The maps Q_{norm} and h_{λ} are equivariant with respect to only a parabolic subgroup P of $SL_{n+1}(\mathbb{R})$, even though their product $Q_{\lambda} = Q_{\text{norm}} h_{\lambda}$ is equivariant for $SL_{n+1}(\mathbb{R})$. Here P is the subgroup of the affine transformations of \mathbb{R}^n (i.e., the one which fixes the subspace $(u_0 = 0)$ in \mathbb{R}^n). Our formula (5.1) is manifestly equivariant for $SL_{n+1}(\mathbb{R})$.

6. **Operators $C_p(\phi, \cdot)$ for $\lambda = \frac{1}{2}$**

Next we recover part of the results found for $\mathfrak{g} = \mathfrak{sl}_{n+1}(\mathbb{C})$ in [A-B1], Prop. 4.2.3 and [A-B2], Thm. 6.3 and Cor. 8.2.

Corollary 6.1. Let $n \geq 1$. For any momentum function μ^x, $x \in \mathfrak{sl}_{n+1}(\mathbb{C})$, we have
\[
C_2(\mu^x, \psi) = \frac{1}{E'(E'+1)} L^x(\psi), \quad \psi \in \mathcal{A}
\] (6.1)

where L^x is an order 4 differential operator on $T^* \mathbb{R}^n$.

Neither E' nor $E'+1$ left divides $L^x (x \neq 0)$ over T^*U for any open set U in \mathbb{R}^n.

Hence $C_2(\mu^x, \cdot)$ is not a differential operator on T^*U.

Finally, L^x extends uniquely to an algebraic differential operator on $T^* \mathbb{C}^n$.

Proof. Suppose n is odd. For $\psi \in \mathcal{A}$, (5.1) gives
\[
C_2(\mu^x, \psi) = \frac{1}{E'+1} Z_2 \left(\frac{1}{E'-1} \mu^x, \frac{1}{E'-1} \psi \right) = \frac{2}{nE'(E'+1)} Z_2(\mu^x, \psi)
\] (6.2)

The last equality follows because the operator $Z_2(\mu^x, \cdot)$ is graded of degree -1.

For \(n \) even, (5.2) is still true on account of Remark 5.2(i), except in the case where \(n = 2 \) and \(\psi \notin \bigoplus_{d=1}^{\infty} \mathcal{A}^d \). But if \(\psi \in \mathcal{A}^0 \) then both \(C_2(\mu^x, \psi) \) and \(Z_2(\mu^x, \psi) \) vanish for degree reasons and so the first and third expressions in (5.2) are still equal.

This proves (6.1), for all \(n \), where \(L^x = \frac{2}{n} Z_2(\mu^x, \cdot) \). Then \(L^x \) extends to an algebraic differential operator on \(T^* \mathbb{C}P^n \); this follows since both \(Z_2 \) and \(\mu^x \) so extend.

The \(L^x \), for \(x \neq 0 \), all have the same order. This follows because the \(L^x \), like the \(\mu^x \), transform in the adjoint representation of \(SL_{n+1}(\mathbb{C}) \). We can choose \(\mu^x = \xi_m \) (the choice of \(m \in \{1, \ldots, n\} \) is arbitrary). Let \(L^{(m)} \) be the corresponding operator \(L^x \).

Using (5.2) we find after some calculation

\[
C_2(\cdot, \xi_m) = -\frac{1}{16 E'} \frac{1}{(E' + 1)} \xi_m D^2 + \frac{1}{8 E'} \frac{1}{1 \partial u_m} D
\]

So \(L^{(m)} = -\frac{1}{16} (\xi_m D - 2 E' \frac{\partial}{\partial u_m}) D \). Clearly \(L^{(m)} \) has order 4. Using principal symbols, we see that \(L^{(m)} \) has no left factors of the form \(E' + c \) if \(n \geq 2 \). For \(n = 1 \), (5.3) gives \(L^{(m)} = \frac{1}{16} (E' + \frac{1}{2}) \frac{\partial^3}{\partial \xi_1^3} \), and so the only such factor is \(E' + \frac{1}{2} \).

Corollary 6.2. Assume \(n \) is odd and let \(p \geq 1 \). If \(\phi \in \mathcal{A}^d \) then

\[
C_p(\phi, \cdot) = \frac{1}{\prod_{i=1}^{\left\lfloor \frac{n}{2} \right\rfloor} (E' + i)(E' - i + p - d)} L_p^\phi
\]

where \(L_p^\phi \) is a differential operator on \(T^* \mathbb{R}P^n \). If \(\phi \in \mathcal{R} \), then \(L_p^\phi \) is an algebraic differential operator on \(T^* \mathbb{C}P^n \).

Proof. This follows because \(L_p^\phi = Z_p(S_p^{-1} \phi, \cdot) \).

References

[A-B1] A. Astashkevich, R. Brylinski, *Exotic Differential Operators on Complex Minimal Nilpotent Orbits*, Advances in Geometry, Progress in Mathematics, Vol. 172, Birkhauser, 1998, 19–51.

[A-B2] A. Astashkevich and R. Brylinski, *Non-Local equivariant star product on the minimal nilpotent orbit*, posted at http://front.math.ucdavis.edu on QA, SG, RT.

[A-B3] A. Astashkevich, R. Brylinski, *Geometric quantization of classical complex minimal nilpotent orbits*, in preparation.

[B] R. Brylinski, *Equivariant Deformation Quantization for the Cotangent Bundle of a Flag Manifold*, posted at http://front.math.ucdavis.edu on QA, SG, RT.

[Bo-Br] W. Borho and J-L. Brylinski, *Differential operators on homogeneous spaces I. Irreducibility of the associated variety for annihilators of induced modules*, Invent. Math. 69 (1982), 437–476.

[D-L-O] C. Duval, P. Lecomte and V. Ovsienko, *Methods of equivariant quantization*, in Noncommutative Differential Geometry and its Applications to Physics, Shonan-Kokusaimura, Japan, Kluwer, 1999

[L-O] P. B. A. Lecomte and V. Yu. Ovsienko, *Projectively equivariant symbol calculus*, Letters in Math. Phys. 49 (1999), 173–196

[L-S] T. Levasseur and J.T. Stafford, *Differential operators on some nilpotent orbits*, Rep. Theory 3 (1999), 457–473

Department of Mathematics, Penn State University, University Park 16802

E-mail address: rkb@math.psu.edu

URL: www.math.psu.edu/rkb

6