Improvement Plan of Fire-Related Laws of Disaster Prevention Facilities of Road Tunnels

Hyo-Seon Seo · Young-Kwon Whang* · Seung-Chul Lee**†

Fire Engineer, Busan Geumjeong Fire Station,
*Graduate student, Dept. of Disaster Prevention, Kangwon National University,
**Professor, Dept. of Fire and Protection Engineering, Kangwon National University

(Received March 14, 2019; Revised March 26, 2019; Accepted March 27, 2019)

ABSTRACT

When a fire occurs in a road tunnel, it is likely to develop into a major disaster because of its sealed structural characteristics. Because of this, a range of disaster prevention facilities should be installed, and they should show their appropriate functions in fire prevention and response. In addition, the installation of essential disaster prevention facilities is missing due to the lack of considering an extension of continuous tunnels and soundproof tunnels. For these reasons, it was judged that an amendment to the law would be necessary. Therefore, this paper reviewed the changes in domestic laws related to the disaster prevention facilities of road tunnels, and the results of the study on the parts that need to be revised in the fire-related laws through a comparative analysis between laws are as follows. First, consecutive tunnels should consider the sum of the extensions of the individual tunnels and ensure that the soundproof tunnels are included in the category of tunnels in the law. In this way, the necessary disaster prevention facilities should be installed. Second, it is necessary to secure a legal justification for installing disaster prevention facilities in tunnels. Therefore, it is essential that water mist fire extinguishing system facilities, emergency broadcasting facilities, and leading lights, which are excluded from installation in tunnels, are specified in the Fire-related laws. Third, to specify in the law that air respirators must be provided in the tunnel is necessary from the viewpoint of the field response. Accordingly, it will make a great contribution to the fire-fighting activities and the life-saving efforts by fire-fighters.

Keywords: Road tunnels, Disaster prevention facilities, Fire-related laws, Continuous tunnels, Soundproof tunnels
1. 서 론

도로터널은 입구와 출구가 분명한 구조물이지만 폐쇄성이 높아서 화재 발생 시 연기로 인해 가시거리가 감소하고, 질식위험이 상존하여 대피가 지연될 경우 많은 사상자가 발생할 우려가 있다. 이러한 관점에서 도로터널은 가능한 모든 사고에 대비하여 피해를 최소화 할 수 있도록 방재시설을 갖추어야 하며, 그 시공에서 관리에 이르기까지 법적 기준은 최근의 기술을 반영하고 잘 정비되어 있어야 한다.

도로터널의 방재시설과 관련한 국내 연구로, Lee(1)는 도로터널 내 차량화재 발생 시 화재점에 직접 소방용수를 방수하여 화재 규모가 확대되는 것을 미연에 방지함으로써 시민들의 안전을 확보하는 방안을 연구하였고, 이를 바탕으로 도로터널 내 소방설비의 효율적인 유지관리 방안을 제시하였다. Kim(2)는 도로터널의 화재통계 및 국내 관련기준과 방재선진국의 기준을 비교분석을 통하여 도로터널의 소방방재시설의 문 제가 현장의 개선 대책에 대해 연구하였다. Kim(3)은 중규모 도로터널의 화재예방 및 화재로 인한 터널 내 시설의 효율적 유지관리 방안을 제안하였다. Koo(4)는 방재시스템에서 각 설비들 간의 수집된 정보들이 효율적으로 관리 및 통제가 원활히 이루어지지 않는 문제점을 개선하기 위해 터널내 광센서 감지시스템과 재난문자 통보시스템 구축을 제안하였다. Lee(5)는 소방법 그리고 도로터널 화재안전기준에서 적용하기에 현실적으로 문제가 있거나 규정을 개선할 필요가 있는 사항을 발휘하여 분석 및 연구를 진행하였다.

이상의 선행연구들은 터널 내 소방설비와 관련하여 점검 및 유지관리 등 제도개선 방안을 검토한 것이 대부분이므로 도로터널 방재시설과 관련한 국내 법령을 집약적으로 연구해 보는 필요가 있다.

2. 국내 도로터널 방재시설관련 법령 분석

2.1 도로터널 방재시설 설치 및 관리지침의 변천

우리는 2003년 2월 18일 대구지하철 참사 및 6월 6일의 홍지문 터널화재로 효과적인 방재대책이 필요하다는 것을 알게 되었다(8). 2004년 이전에는 도로터널 방재시설 설계를 위하여 도로설계편람 1권: 방재설비 설치기준(건설교통부)과 한국도로공사의 기준을 적용하였다. 하지만 사고 위험을 예방하고, 사고에 효과적으로 대응하기 위한 대책으로 '도로터널 방재시설 설치 및 관리지침'을 제정하였다(9). '도로터널 방재시설 설치 및 관리지침'은 터널화재를 예방하고 화재로 인한 인명 및 재산 피해를 최소화하기 위해 효율적인 방재시설 설치 및 유지관리 방안을 수립하는 것을 목적으로 2004년 12월에 건설교통부에서 제정하였다(8).

이후 2009년 4월에 대형화재 대응 및 사후피해 최소화 등을 위해 지침을 대폭 강화하였고, 그해 8월에 '훈령·예규 등의 발령 및 관리에 관한 규정'에 따라 행정규칙으로 승격되어 재공포 되었다(10).

이후의 기간 동안 초장대 터널이 계속해서 증가하고 터널방재의 효율성을 증대시킬 수 있는 기술개발에 따라 기존의 지침에 대한 보완이 이루어졌으며 도로터널 방재시설 설치 및 관리관련 국내 법령을 집약적으로 연구해 볼 필요가 있음을 인식하였다.

최근에는 두 개의 터널이 짧은 거리로 계속해서 존재하는 연속터널과 교통소음 해소를 위한 방음터널의 건설이 증가하고 있어 이러한 구조물을 위한 방재대책 검토도 필요할 것으로 보인다.

연속터널은 여러 개의 터널이 짧은 거리로 계속해서 존재하는 연속터널과 교통소음 해소를 위한 방음터널의 건설이 증가하고 있어 이러한 구조물을 위한 방재대책 검토도 필요할 것으로 보인다.

연속터널은 도로터널의 한 가지 특이점으로, 각각의 터널 사이의 장단점이 서로 반영되는 특징이 있어, 이에 대해 제도적 개선이 필요하다. 또한, 연속터널은 단일 터널로 보는 것이 아니라 복수의 터널로 볼 수 있어 각 터널별로 별도의 방재시설이 필요하다.

2.2 도로터널 소방관계법령의 변천

국내의 소방관계법령은 2004년 6월에 도로방재청 설치 이후 기존의 소방법에서 분리된 '소방기본법', '화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률', '소방시설공사업법', '위험물안전관리법'의 4개의 법률에 대한 시행령 및 규칙과 '국가화재안전기준(NFSC)'으로 구성되어 있다.

이 중 도로터널에 대한 방재시설의 설치기준은 '화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률'에 특정 소방대상물인 '지하주'의 일부로서 정의되어 있으며, 본 법에 정의된 소방시설의 설치 등의 시행 기준은 '국가화재안전기준(NFSC)'으로 해석되어 적용된다.

국내 소방법상의 터널규정은 1984년 포함 '지하주'의 적용이 유기적이고 균일하게 적용되어 있는 상태이다. 1997년에 이르러 소방법시행령(1997.9.27.)에 1,000 m 이상 터널에 계열설비 설치하도록 규정된
서 그 기준이 자리 잡게 되었다(1). 2004년 6월에는 ‘소방시설 설치·유지 및 안전관리에 관한 법률’이 시행되어 터널이 소방시설을 설치해야 하는 특정소방상품으로 명시되었고, ‘연설계비의 국가화재안전기준(NFSC 501)’이 제정되어 터널에 설치되는 연설계비에 대한 내용이 담겼다. 2007년 7월에는 ‘도로터널의 국가화재안전기준(NFSC 603)’이 제정되어 터널에 설치해야 하는 각 소방시설에 대한 세부적인 설치기준이 정립되었다.

3. 국내 도로터널 방재시설관련 법령 분석

2016년 개정된 ‘도로터널 방재시설 설치 및 관리지침’의 주요특강은 연속터널과 방음터널의 방재시설 설치기준을 제정하여방재시설 설치여부에 대한 혼선을 방지한 점이다.

3.1 연속터널의 방재시설 설치기준

‘도로터널 방재시설 설치 및 관리지침’,(7)에 의하면 교통측면에서전방터널의 출구와 후방터널의 입구가 500 m 미만, 제연측면에서는 전방터널의 출구와 후방터널의 입구가 30 m 미만인 터널을 연속터널로 한다. 다만, 전-후방터널의이격거리가 30 m 이상이라도 터널형설치 또는 수차량통행이 터널의 성능에 이러한 연장형설치의 영향이 후방터널의 유입할 가능성이 있는 경우에는 제연측면에서만의 연속터널로 정할 수 있다. 전방터널의 화재로 인하여 출구로 배출되는 연기가 후방터널로 유입할 가능성이 있는 터널을 제연측면에서 연속터널로 정의한다. 연속터널은 교통측면과 제연측면에서 방재시설의 설치여부를 검토하여 설치대상 방재시설을 정한다. 연속터널의 사례는 Table 1과 같다.

3.2 터널형 방음시설(방음터널)의 방재시설 설치기준

도심지의 간선도로의 경우, 주거지역을 통과하는 사례가 증가하여 교통소음 해소를 목적으로 방음터널의 수가 급격히 증가하고 있다(1). ‘도로터널 방재시설 설치 및 관리지침’,(7)에는 터널형 방음시설(방음터널)은 교통소음의 저감을 목적으로 흡음 또는 차단 효과를 얻을 수 있도록 설치하는 방음시설 중 현상이 터널과 동일하거나 유사한 구조를 갖는 방음시설을 의미한다. 일반터널과 같이 반 밀폐형 터널형 방음시설(방음터널)에서는 화재시 연기의 배출이 제한되어 인명피해가 예상되므로 방재시설 설치를 검토하여야 한다.

또한, 방음터널은 설치장소 및 형식이 다양하여 방재시설 설치대상여부를 정하는 경우 혼란을 야기하기 있기 때문에 방음시설에 대한 안내를 명확히 하는 것이 필요하다. 도로시설에 있어서는 터널형 방음시설의 형태는 Figure 1과 같이 한쪽 측벽이 개방된 반터널형 및 반 밀폐유형을 가지고 있는 터널형으로 구분되어며, 양방향 터널과 동일한 특성을 가지는 중앙분리벽 폐쇄형과 대면통행터널과 동일한 특성을 가진 중앙분리벽 개방형으로 나눌 수 있다(12).

4. 도로터널 방재시설 관련 소방관법의 문제점 및 개선 방안

4.1 방음터널 및 도로터널의 문제점

‘화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률’(13)에서는 터널을 지하가 본 도로 동통용으로 지하, 해저 또는 산을 들어서 만든 것으로 정의하고 있어도로터널 방재시설(방음터널)을 소방시설 설치대상에서 제외하고 있다.

환경부에서 고시한 ‘방음시설의 성능 및 설치기준’에 따르면 “방음시설”은 화재소음의 저감을 위해 충분한 소리의 흡음 또는 차단효과를 얻을 수 있도록 설치하는 시설이며 방음벽, 방음터널, 방음도 등으로 구분된다(14). 이 중 방음터널은 터널 내 화재발생 시 발생되는 유독가스 확산 도로 동통용으로 제외되는 점에서 도로터널과 화재 및 대피특성을 동일하므로 일반터널에 준하는방재시설의 설치가 필요하다. 따라서 ‘화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률’의 “터널” 용어의 범위를 넓히 방음터널에도 방재시설이 설치되도록 법적 당위성을 확보해야 한다.

또한, ‘도로터널의 화재안전기준’,에서 도로터널은 ‘도로의 일부로서 자동차의 통행을 위해 지하나 해저구조물’이라고 정의하고 있다(15). 국립국어원 표준국어대사전(16)에 따르면 ‘지하’의 사전적 정의는 ‘유속이나 방출을 피하고 만든 구조물의 공간’으로 대부분 산이나 해저를 둘러 만든 국내 도로터널과 둘러 맞지 않아 현실에 맞게 용어를 수정

Table 1. Continuous Tunnel Case(12)

Going Up	Tunnel Name	Paldang1	Paldang2	Paldang3	Paldang4	Paldang5	Bongan	Total Length			
Length (m)	254	184	297	146	146	60	436	768	2,327		
Going Down	Tunnel Name	Paldang1	Paldang2	Paldang3	Paldang4	Paldang5	Bongan	Total Length			
Length (m)	229	175	307	127	169	155	126	198	36	762	2,316

[Tunnel: Tunnel, Road(Separation Distance): Road]
할 필요가 있어 Table 2, 3과 같이 개정하기를 제안한다.

4.2 연속터널의 문제점

터널이 좁은 간격으로 연속하여 건설되는 연속터널은 터널 간 이격거리에 따라 전방터널에서 화재가 발생하는 경우에 후방터널로 연기가 유입하여 연기에 노출될 가능성이 있어 연속터널은 제안하듯이 하나의 터널로 보아야 하나 소방관계법령에서는 전혀 고려하지 않고 있다. 따라 서 필요 방재시설의 설치를 위해 하나의 터널 길이만을 기준으로 하고 있는 「화재예방, 소방시설 설치·유지 및 안전

Table 2. Definition of “Tunnel” Amendment among Specific Fire-fighting Objects (Act on Fire Prevention and Installation, Maintenance, and Safety Control of Fire-Fighting Systems)

Current	Amendment
Article 3 (Definitions) The definitions of terms used in this standard are as follows. 1. “Road tunnel” means a Subterranean structure with a roof for the passage of automobiles as part of the road prescribed in Article 8 of the Road Act.	Article 3 (Definitions) The definitions of terms used in this standard are as follows. 1. “Road tunnel” means Basement, seabed or a structure made by penetrating mountain, with a roof for automobile traffic as part of the road prescribed in Article 8 of the Road Act.

Table 3. Definition of “Road Tunnel” Amendment (National Fire Safety standard of Road Tunnel)

Current	Amendment
Article 3 (Definitions) The definitions of terms used in this standard are as follows. 1. “Road tunnel” means a Subterranean structure with a roof for the passage of automobiles as part of the road prescribed in Article 8 of the Road Act.	Article 3 (Definitions) The definitions of terms used in this standard are as follows. 1. “Road tunnel” means Basement, seabed or a structure made by penetrating mountain, with a roof for automobile traffic as part of the road prescribed in Article 8 of the Road Act.
관리에 관한 법률, 연속터널 길이에 대한 단서 조항을 Table 4와 같이 추가할 필요성이 있다고 사료된다.

4.3 도로터널 소방시설의 개선방안
현재 「화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률」에서 터널에 설치해야 하는 소방시설 중 제외되어 있는 것은 미분무소화설비, 비상방송설비, 유도등이다.

소방관계법령은 방재 고유의 법으로 재난에 대응하기 위한 필요시설의 기준을 잘 명시하여 안전에 사각지대가 생기게 하지는 안 된다. 또한 하위법인 예규로 세부 설치기준까지 제시하였으나 상위법인 소방관계법령에는 제외된시설을 법에 포함시켜 방재시설 설치에 혼란을 방지하고 법적 당위성을 확보해야 할 것으로 사료된다.

4.3.1 미분무소화설비
미분무소화설비는 최신 기술에 의한 소화설비로서 화재에 효과적으로 대응할 수 있다. 미분무를 물분무와는 별도로 특정화 하는 것은 적용 방호대상 및 화재에 대한 대응 특성 등 여러 면에서 특이성을 가지고 물분무소화설비보다 장점이 많기 때문이다(17).

미분무는 입자가 매우 미세하고 가벼우며 방사될 경우 빨르게 화염과 가연물에 도달하며, 화염 속에 침투한 미분무는 기류를 타고 화원에 도달한다. 단 위 증량량 표면적이 매우 크기 때문에 순간적으로 증발하며 이러한 증발효과에 의한 냉각소화 효과가 있고, 증발된 수증기는 약 1700배의 부피팽창을 통해 화염 주변의 산소농도와 가연가스를 빠르게 하며, 연기입자를 냉각하여 물 입자와 함께 낙하하도록 함으로써 연기제어 효과까지 있다(18).

터널은 반 밀폐된 공간 특성상 화재 발생시 연기 제어가 신속하게 되어야 하며 연기제어를 위해 화재시 화재확산을 방지하는 역할을 하며, 연기입자를 냉각하여 물 입자와 함께 낙하하도록 함으로써 연기제어 효과까지 있다(19).

이러한 특성상 미분무소화설비는 기존 물분무소화설비의 한계를 부분적으로 극복할 수 있는 것이다. 유럽의 도로터널에서는 미분무설비를 이미 적극 활용중이다(19).

밀폐공간인 터널에는 미분무소화설비가 큰 효과가 있다고 판단된다. 따라서 소방시설설치에 “터널의 경우에는 물분무소화설비 설치하여야 한다”고 규정하며 미분무설비를 배치시킨 기준을 ‘화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률’에 추가하는 것이 옳다고 생각되며 그 개정안은 Table 5와 같다.

4.3.2 유도등
유도등은 화재 시 피난을 안내하기 위해 사용되는 등으로 정상상태에서는 상용전원에 의해 커져, 상용전원이 정전되는 경우에는 비상전원으로 자동 전환되어 커지는 등

한국화재소방학회 논문집, 제33권 제2호, 2019년
유도등은 몇몇 시설을 제외한 모든 특정소방대상 물에 설치해야 하는 소방시설로서 화재 시 정전이나 연기로 인해 시야가 가려졌을 때 사람들을 안전하게 대피할 수 있도록 그 방향을 알려준다. 2003년 대구지하철 화재에서 건물의 환풍구와 출입구 등에서 나온 검은 연기가 앞을 제대로 분간할 수 없었으며 유도등의 불빛마저 작동되지 않아 많은 사람들이 출입구를 찾지 못하였다. 이처럼 위급한 상황에서 피난방향을 알려주는 유도등의 역할은 매우 중요하며 현행『화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률』에는 건물 등의 시설물에 대해서는 통로 유도등 설치를 의무화하고 있지만, 터널은 그 적용대상에서 제외되어있다. 터널은 어둡고 폐쇄된 구조적 특성상 화재발생 시 연기로 인해 가시거리 감소로 피난로를 찾지 못해 탈출이 지연되면 열이나 유독가스에 의해 질식사망에 이를 가능성이 높다. 특히 터널의 길이가 길어질수록 밀폐공간과도 같이 터널 이용자의 대피를 유도하여 피난통로나 출구를 알려주는 것이 꼭 필요하다. 피난을 유도하기 위한 가장 기본적인 정보를 제공하는 유도등은 터널의 필수 방재시설로서 꼭 설치되어 있어야 한다. 따라서『화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률』에 터널 유도등 설치를 의무화하여 터널 이용자의 안전을 확보할 수 있도록 그 개정안을 제안한다.

4.3.3 비상방송설비
비상방송설비는 터널 내 사고발생 시 관리사무소에서 터널에 설치된 스피커를 통하여 터널 내부에 비상방송을 하기 위한 설비이다. 터널은 어디서든 사고발생 시 앞의 환경을 잘 알 수 없기 때문에 비상생활 대비순한 화재발생 사 실을 알려기 위한 혼란과 불안이 가중된다. 따라서 비상방송설비를 이용한 음성경보로 정확한 화재정보를 제공하고 대피자의 피난시간을 감소시키는 효과적인 피난이 가능하도록 해야 할 것이다. 예로, 차 밖으로 대피할 때에는 키를 꽃아두고 내리라는 방송을 통해 차량 이동이 가능하도록 하여 소방차의 원활한 진입에도 도움을 줄 수 있을 것이다. 따라서『화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률』에 도로터널에 반드시 설치해야 하는 필수시설이 되도록 그 개정안을 제안한다.

4.3.4 공기호흡기
화재대응 및 인명구조 측면에서 터널 내에 특별한 시설로서 화재로 인해 유해 가스 속에서도 일정시간 동안 신선한 공기를 공급해주어 진압 및 구조대원의 활동에 도움이 되는 인명구조기구이다. 현재『화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률』에는 공기호흡기를 설치해야 하는 규정이 중지하되지만 포함되어 있을 터널은 포함되어 있지 않다. 터널은 화재발생 시 유독가스와 열기가 밖으로 배출되기 어렵기 때문에 소방관이 터널 내에 진입할 때에는 반드시 공기호흡기를 착용해야 한다. 장대터널에서 터널 중간에서 화재가 발생하였다고 가정하면, 입구가 차량들로 막혀있어 소방차량의 진입이 불가하고 소방대원이 화재현장까지 도착하는 데 많은 시간이 소요된다. 공기호흡기의 용량은 300 kgf/㎠로 이론상 45분 정도 사용이 가능한 양이지만 실제 현장활동 시에는 가볍게 숨을 들이 쌌으나 공기소모량이 많아지기 때문에 30분도 채 안되어 공기 저항이 심각하게 되어 대원의 안전에도 위협받게 된다. 따라서 터널 내부에 진입한 대원의 장시간 작업에 대비한 공기호흡기 및 예비용기를 터널에 비치하는 것이 필요하다고 사료된다. 또한『인명구조기구의 화재안전기준(NFSC 302)』에 따르면 공기호흡기는 보조마스크를 포함하기 때문에 비쳐 대피하지 못한 요구자체에 마스크를 써서 신선한 공기를 공급하여 인명피해 감소에도 도움이 될 수 있도록 그 개정안을 제안한다.

Table 6. Amendment of Act on Fire Prevention and Installation, Maintenance, and Safety Control of Fire-Fighting Systems (Exit Sign)

Current	Amendment
III. The objects to be installed with leading lights are as follows.	III. The objects to be installed with leading lights are as follows.
1) Emergency exit lights, pathway lights and guidance signs shall be installed with the specific fire fighting objects specified in Table 2 (However, except when any of the following applies)	1) Emergency exit lights, pathway lights and guidance signs shall be installed with the specific fire fighting objects specified in Table 2 (However, except when any of the following applies)
i) Tunnel and Subterranean Utility Tub in Underground	

이드(20), 유도등은 몇몇 시설을 제외한 모든 특정소방대상물에 설치해야 하는 소방시설로서 화재 시 정전이나 연기로 인해 시야가 가려졌을 때 사람들을 안전하게 대피할 수 있도록 그 방향을 알려준다. 2003년 대구지하철 화재에서 건물의 환풍구와 출입구 등에서 나온 검은 연기가 앞을 제대로 분간할 수 없었으며 유도등의 불빛마저 작동되지 않아 많은 사람들이 출입구를 찾지 못하였다. 이처럼 위급한 상황에서 피난방향을 알려주는 유도등의 역할은 매우 중요하며 현행『화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률』에는 건물 등의 시설물에 대해서는 통로 유도등 설치를 의무화하고 있지만, 터널은 그 적용대상에서 제외되어있다. 터널은 어둡고 폐쇄된 구조적 특성상 화재발생 시 연기로 인해 가시거리 감소로 피난로를 찾지 못해 탈출이 지연되면 열이나 유독가스에 의해 질식사망에 이를 가능성이 높다. 특히 터널의 길이가 길어질수록 밀폐공간과도 같이 터널 이용자의 대피를 유도하여 피난통로나 출구를 알려주는 것이 꼭 필요하다. 피난을 유도하기 위한 기본적인 정보를 제공하는 유도등은 터널의 필수 방재시설로서 꼭 설치되어 있어야 하는 것이다. 따라서『화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률』에 터널 유도등 설치를 의무화하여 터널 이용자의 안전을 확보할 수 있게 그 개정안을 제안한다.

4.3.3 비상방송설비
비상방송설비는 터널 내 사고발생 시 관리사무소에서 터널에 설치된 스피커를 통하여 터널 내부에 비상방송을 하기 위한 설비이다. 터널은 어디서든 사고발생 시 앞의 환경을 잘 알 수 없기 때문에 비상생활 대비순한 화재발생 사 실을 알려기 위한 혼란과 불안이 가중된다. 따라서 비상방송설비를 이용한 음성경보로 정확한 화재정보를 제공하고 대피자의 피난시간을 감소시키는 효과적인 피난이 가능하도록 해야 할 것이다. 예로, 차 밖으로 대피할 때에는 키를 꽂아두고 내리라는 방송을 통해 차량 이동이 가능하도록 하여 소방차의 원활한 진입에도 도움을 줄 수 있을 것이다. 따라서『화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률』에 도로터널에 반드시 설치해야 하는 필수시설이 되도록 그 개정안을 제안한다.

4.3.4 공기호흡기
화재대응 및 인명구조 측면에서 터널 내에 특별한 시설로서 화재로 인해 유해 가스 속에서도 일정시간 동안 신선한 공기를 공급해주어 진압 및 구조대원의 활동에 도움이 되는 인명구조기구이다. 현재『화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률』에는 공기호흡기를 설치해야 하는 규정이 중지하되지만 포함되어 있을 터널은 포함되어 있지 않다. 터널은 화재발생 시 유독가스와 열기가 밖으로 배출되기 어렵기 때문에 소방관이 터널 내에 진입할 때에는 반드시 공기호흡기를 착용해야 한다. 장대터널에서 터널 중간에서 화재가 발생하였다고 가정하면, 입구가 차량들로 막혀있어 소방차량의 진입이 불가하고 소방대원이 화재현장까지 도착하는데 많은 시간이 소요된다. 공기호흡기의 용량은 300 kgf/㎠로 이론상 45분 정도 사용이 가능한 양이 있지만 실제 현장활동 시에는 가볍게 숨을 들이 쌌으나 공기소모량이 많아지기 때문에 30분도 채 안되어 공기 저항이 심각하게 되어 대원의 안전에도 위협받게 된다. 따라서 터널 내부에 진입한 대원의 장시간 작업에 대비한 공기호흡기 및 예비용기를 터널에 비치하는 것이 필요하다고 사료된다. 또한『인명구조기구의 화재안전기준(NFSC 302)』에 따르면 공기호흡기는 보조마스크를 포함하기 때문에 비쳐 대피하지 못한 요구자체에 마스크를 써서 신선한 공기를 공급하여 인명피해 감소에도 도움이 될 수 있도록 그 개정안을 제안한다.

Fire Sci. Eng., Vol. 33, No. 2, 2019
5. 결 론
본 논문에서는 점점 장대화되고 다양해지는 도로터널의 재난에 대비하기 위하여 터널 내 방재시설 설치와 관련한 국내 법령들 간 비교분석을 통해 소방관계법령에 명시되고 추가되어야 할 사항을 검토하여 법령 개정방향에 대하여 연구한 결과 다음과 같은 결론을 얻었다.

첫째, 방음터널은 일반 도로터널에 준하는 특성을 가지고 있기 때문에 「도로터널의 화재안전기준」의 도로터널의 정의에 방음터널을 포함하여 필수 방재시설이 설치되도록 할 필요가 있다.

둘째, 연속터널은 개별 터널의 길이만으로 방재시설을 설치해야 할 것이 아니라 연속된 터널 모두의 연장의 합을 기준으로 설치해야 하므로 「도로터널의 화재안전기준」에 연속터널 길이에 대한 내용을 추가할 필요가 있다.

셋째, 도로터널 내 방재시설은 필요시설이 누락되어서는
안 되고 설치의 법적 당위성 확보가 필요함에 따라 터널에 설치가 제외된 시설인 미분무소화설비, 비상방송설비, 유효도가 '화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률'에 명시될 필요가 있다.

넷째, 현장 대응의 입장에서 터널 내에 공기호흡기를 비치하여 소방대원들의 진압활동 및 인명구조에 크게 기여할 수 있도록 할 필요가 있다.

후 기

본 연구는 “2017년도 강원대학교 대학회계 학술연구소 성비로 연구하였음(관리번호-620170028)".

References

1. G. W. Lee, “A Study on Ways to Improve Fire Protection Equipment in Road Tunnel”, Master’s Thesis, Kyonggi University (2012).
2. E. Y. Lee, “A Study on the Effective Maintenance Method of the Fire Protection System in Road Tunnels”, Master’s Thesis, Seoul National University of Science and Technology (2013).
3. Y. K. Kim, “A study on Fire Safety Improvement Measures and Problems of fire safety for Road Tunnels”, Master’s Thesis, Gachon University (2014).
4. T. W. Kim, “A Study on Evacuation Safety from Mid-Sized Road Tunnel”, Master’s Thesis, Kyonggi University (2015).
5. H. M. Koo, “A Study on Integrated System of Disaster Management on Road Tunnel”, Master’s Thesis, Gachon University (2015).
6. M. R. Lee, “A Study on the Institutional Improvement of Fire Fighting and Disaster Prevention Facilities and Engineering duties of Road Tunnels”, Master’s Thesis, Kyonggi University (2017).
7. Ministry of Land, Infrastructure and Transport, “Guidelines for Installing and Managing Disaster Prevention Facilities of Road Tunnels” (2016).
8. Ministry Of Construction and Transportation, “Guidelines for Installing Disaster Prevention Facilities of Road Tunnels” (2004).
9. Ministry Of Construction and Transportation, “Research Final Report for Revision of Disaster Prevention Facilities (Emergency Facilities) of Road Tunnels Installation Standards” (2004).
10. H. G. Kim, “Major Revisions of Guidelines for Installing and Managing Disaster Prevention Facilities of Road Tunnels”, The Magazine of the Society of Air-conditioning and Refrigerating Engineers of Korea, Vol. 39, No. 5, pp. 11-18 (2010).
11. J. O. Yu, S. U. Yun, H. G. Kim, S. H. Jo and D. H. Lee, “Current situation of Road Tunnels in Korea and Standards for Installing Disaster Prevention Facilities”, Journal of Geotechnical Professional Engineers, Vol. 4, No. 1, pp. 43-61 (2007).
12. Ministry of Land, Infrastructure and Transport, “Research Final Report for Revision of Disaster Prevention Facilities (Emergency Facilities) of Road Tunnels Installation Standards” (2015).
13. National Fire Agency, “Act on Fire Prevention and Installation, Maintenance, and Safety Control of Fire-Fighting Systems” (2018).
14. Ministry of Environment, “Performance and Installation Standards of Soundproofing” (2017).
15. NFSC 603, “National Fire Safety Codes of Road Tunnel”, National Fire Agency (2017).
16. National Institute of Korean language Republic of Korea, “National Korean Language Standard Dictionary” (2017).
17. T. S. Park, “Smoke removal effect of water mist”, Ph.D. Dissertation, Kyungil University (2015).
18. R. Crosfield, A. Cavallo, F. Colella, R. Carvel, G. Rein and J. L. Torero, “Approximate Travelling Distances of Water mist Droplets in Tunnels”, BRE Centre for Fire Safety Engineering, International Water Mist Conference, London (2009).
19. NFPA 750, “Standard on Water Mist Fire Protection Systems” (2015).
20. NFSC 303, “National Fire Safety Codes of Guide Light and Exit Sign”, National Fire Agency (2017).
21. A. R. Hong, “A Study for Evacuation Performance Improvement of Emergency Exit Light Pictogram”, Master’s Thesis, Gachon University (2016).