Angiotensin I converting enzyme inhibitors (ACEIs) are used for treatment in conditions such as hypertension, congestive heart failure, diabetic nephropathy, and others (1–8). For instance, the administration of an ACEI after a myocardial infarction and in the absence of thrombolytic therapy reduced the incidence of death or the development of severe congestive heart failure (3, 4). ACEIs were also reported to inhibit neointima formation after endothelial injury (7). Deuced the Incidence of death or the development of severe congestive heart failure (3, 4). ACEIs were also reported to inhibit neointima formation after endothelial injury (7). Despite the beneficial effects of ACEI therapy proven in many patients world-wide, the modes of action of ACEIs have not been fully characterized (5). The inhibition of ACE or kininase II blocks angiotensin II release or bradykinin (BK) inactivation (9–11), but these actions alone do not fully explain their effectiveness (5). ACEIs also potentiate the effects of BK and its ACE-resistant analogs on their B2 receptor by inducing an enzyme/receptor protein-protein interaction (12–14), a heterodimer (14). Of the two BK receptors B1 and B2, B2 is widely expressed and primarily mediates the actions of kinins under physiological conditions (11). Normally, few cell types express the B1 receptor, but various pathologic conditions such as ischemia, atheromatous disease, or exposure to inflammatory cytokines rapidly induce expression (15, 16). The elimination of the B2 receptor gene in knockout mice also up-regulated the B1 receptor (17).

The ligands of the two receptors differ, as plasma carboxypeptidase N or tissue carboxypeptidase M cleave the C-terminal Arg of the B2 receptor agonists kallidin (Lys-BK) and BK to generate B1 agonists des-Argkallidin (18). Of the products, des-ArgLys-bradykinin (des-ArgLys-bradykinin) is about three orders of magnitude more potent than des-Arg2-BK on the B1 receptor (15).

The contributions of the kinin B2 receptor to the effects of ACEIs have been established (10, 13), and a possible but not previously explored role for the B1 receptor could be deduced from the fact that many patients treated with ACEIs suffer from conditions that lead to B1-receptor induction (15). Although ACEIs do not directly affect the BK B2 receptor, they augment its function when ACE is also expressed on the cell surface (12–14). Here we report that ACEIs in nanomolar concentrations directly activate the BK B1 receptor in cells without an intermediate peptide ligand and in the absence of ACE. We also characterized the site and the mode of action of ACEIs on the human B1 receptor, resulting in the generation of nitric oxide (NO).

MATERIALS AND METHODS

Cell Culture and Transfection—Chinese hamster ovary (CHO) cells (ATCC, Manassas, VA) were grown as described (14). Human embryonic kidney (HEK 293) and COS-7 cells (ATCC) were cultured using Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum and an antibiotic solution diluted 1:100. Bovine pulmonary arterial endothelial (BPAE) cells were cultured following manufacturer’s instructions (BioWhittaker, Walkersville, MD). The medium of human fetal lung fibroblasts (IMR-90) (19) (ATCC) was supplemented with 15% fetal bovine serum.

CHO cells were stably transfected with cDNA of the human B1 receptor inserted into pcDNA3 (donated by Dr. F. Leeb-Lundberg of the University of Texas, San Antonio) using SuperFect essentially as described for the human B2 receptor (14): HEK 293 or COS-7 cells were transiently transfected with the wild type or H195A mutant human B1 receptor using SuperFect or LipofectAMINE 2000 as described by the manufacturer (Qiagen, Valencia, CA and Invitrogen). Experiments were done 24 h after transfection.

Angiotsin I converting enzyme inhibitors (ACEIs) are used for treatment in conditions such as hypertension, congestive heart failure, diabetic nephropathy, and others (1–8). For instance, the administration of an ACEI after a myocardial infarction and in the absence of thrombolytic therapy reduced the incidence of death or the development of severe congestive heart failure (3, 4). ACEIs were also reported to inhibit neointima formation after endothelial injury (7). Despite the beneficial effects of ACEI therapy proven in many millions of patients world-wide, the modes of action of ACEIs have not been fully characterized (5). The inhibition of ACE or kininase II blocks angiotensin II release or bradykinin (BK) inactivation (9–11), but these actions alone do not fully explain their effectiveness (5). ACEIs also potentiate the effects of BK and its ACE-resistant analogs on their B2 receptor by inducing an enzyme/receptor protein-protein interaction (12–14), a heterodimer (14). Of the two BK receptors B1 and B2, B2 is widely expressed and primarily mediates the actions of kinins under physiological conditions (11). Normally, few cell types express the B1 receptor, but various pathologic conditions such as ischemia, atheromatous disease, or exposure to inflammatory cytokines rapidly induce expression (15, 16). The elimination of the B2 receptor gene in knockout mice also up-regulated the B1 receptor (17).

The ligands of the two receptors differ, as plasma carboxypeptidase N or tissue carboxypeptidase M cleave the C-terminal Arg of the B2 receptor agonists kallidin (Lys-BK) and BK to generate B1 agonists des-Argkallidin (18). Of the products, des-ArgLys-bradykinin (des-ArgLys-bradykinin) is about three orders of magnitude more potent than des-Arg2-BK on the B1 receptor (15).

The contributions of the kinin B2 receptor to the effects of ACEIs have been established (10, 13), and a possible but not previously explored role for the B1 receptor could be deduced from the fact that many patients treated with ACEIs suffer from conditions that lead to B1-receptor induction (15). Although ACEIs do not directly affect the BK B2 receptor, they augment its function when ACE is also expressed on the cell surface (12–14). Here we report that ACEIs in nanomolar concentrations directly activate the BK B1 receptor in cells without an intermediate peptide ligand and in the absence of ACE. We also characterized the site and the mode of action of ACEIs on the human B1 receptor, resulting in the generation of nitric oxide (NO).
Membrane Preparation—HEK 293 cells were transiently transfected with the wild type cDNA of the human B1 receptor, as above, and the plasma membrane fraction was obtained with a slight modification of the technique in Ref. 20.

Radioiodide Binding—Binding assays were performed at room temperature with [125I]des-Arg10-kallidin in the presence and absence of enalaprilat concentrations ranging from 0.1 nM to 10 μM (modified from Ref. 20).

Use of Inhibitors—(Ethylendenedinitriilo)tetraceatic acid diacilum salt (Ca-EDTA) was added to the cells for 30 min at 1 μM concentration to bind Zn2+, then cells were washed with zinc-free medium. The undecapeptide (LLPHEAWHFAR) was synthesized by the Protein Sciences Facility (University of Illinois, Champaign) and tested as an inhibitor (10 or 100 μM) after 20 min of preequilibration.

Measurement of Changes in Intracellular Free Ca2+ ([Ca2+]i)—[Ca2+]i, was measured using the Ca2+-sensitive fluorescent probe fura-2 AM in a PTI Deltascan (Princeton, NJ) or Attofluor RatioVision (Leland, NY) instrument (14). Fura-2 fluorescence was detected at 510 nm following excitation at 340 and 380 nm, and the ratio of intensities at 340 and 380 nm were recorded in 10–100 cells simultaneously (12–14).

Site-directed Mutagenesis—The H195A mutation of the human B1 receptor was done by the PCR method using a QuikChange site-directed mutagenesis kit from Stratagene (La Jolla, CA). The wild type B1 pcDNA3 was used as the template with the two mutagenic primers shown in the following sequences: B1HA5, 5'-CTGCCTCCTCCGCTGAGGCCTGGCCTT and B1HA6, 5'-GTCGAGGAT. The sequence of the construct was confirmed by automatic sequencing at the DNA core facility of the University of Illinois, Chicago.

Detection of Nitric Oxide—NO was measured using either a porphyrinic microsensor (21, 22) or with a fluorescence assay (23) in BPAE cells. The microsensor consists of carbon fibers which are electroplated with a highly conductive polymeric porphyrin to facilitate the electron transfer on or from NO to the sensor. Cells were preincubated for a few minutes at 37 °C until a stable baseline was established. Ligands were added, and the responses (current versus time) were recorded continuously. Current generated on porphyrinic electrode was proportional to the NO released and was quantitated with a known standard NO solution.

For the fluorescence assay we used diaminofluorescein diacetate. Cellular fluorescence was measured at 515 nm following excitation at 490 nm (23).

Statistics—Statistical analysis was performed using one-way analysis of variance test.

RESULTS

Effect of Enalaprilat on IMR-90 Human Fetal Lung Fibroblasts—To investigate whether ACEIs can activate the BK B1 receptor, we tested them on IMR-90 fibroblasts that constitutively express both the B1 and B2 receptors. As a prototype of an active ACEI we used enalaprilat and measured the increase in [Ca2+]i, from cells (Fig. 1). The receptors were activated with either BK for the B2 receptor or des-Arg10-kallidin as a ligand of the B1 receptor. BK (10 nM) and des-Arg10-kallidin (10 nM) raised [Ca2+]i, in distinctly different patterns (Fig. 1, A and B). B1 receptor activation led to a very prolonged, sustained increase in [Ca2+]i, whereas BK stimulated a more transient response. Enalaprilat (1 nM) in the absence of a peptide agonist significantly enhanced the [Ca2+]i, level (Fig. 1C). Enalaprilat mediated a response which clearly differed temporally from the one caused by BK, but was very similar to that produced by des-Arg10-kallidin. These experiments indicated that enalaprilat in nanomolar concentrations directly activated the B1 receptor within seconds in the absence of added kinins. Using B1 and B2 receptor antagonists, des-Arg10-Leu9-kallidin for B2, and HOE 140 for B1 (Fig. 1, D and E), we confirmed this conclusion because the response to enalaprilat was completely inhibited by the B1 antagonist, whereas HOE 140 had no effect.

Effect of Enalaprilat on the Transfected Human B1 Receptor in CHO Cells—The data with IMR-90 cells strongly suggested that the B1 receptor was mediating the direct effect of enalaprilat. However, because IMR-90 cells have low but detectable ACE activity, we had to exclude the possibility that ACE is required for the activation of the B1 receptor, similar to the B2 receptor (12). Therefore, CHO cells, having no ACE (12), were transfected to express human B1 receptors (CHO/B1). Adding enalaprilat (10 nM) caused immediately, within seconds, a typical B1 receptor agonist response as indicated by the prolonged shape of the elevated [Ca2+]i, curve (Fig. 2, A and B). As control, we also tested transfected CHO cells expressing ACE only (CHO/ACE) or the B2 receptor (CHO/B2) with negative results; thus, enalaprilat, in the absence of the B1 receptor, was inactive in these cells (Fig. 2, C–E).

Enalaprilat Stimulates Nitric Oxide Release in Endothelial Cells—Enalaprilat also elevated [Ca2+]i, in BPAE cells, which constitutively express both the B1 and B2 receptors (24) (not shown). We determined whether the enalaprilat-induced elevation of [Ca2+]i, levels would stimulate NO production. We monitored the release of NO from cultured BPAE cells using either a fluorescence assay or an electrochemical method with a porphyrinic microsensor (see "Materials and Methods"). Enalaprilat (10 nM) did indeed stimulate NO release, and this response was more prolonged than the transient one that followed B2 receptor activation (Fig. 3A). Its pattern resembled the prolonged elevation of [Ca2+]i, (Fig. 1C) and mimicked the response of the cells to the B1 agonist des-Arg10-kallidin (Fig. 3A). The dose-response curve showed that enalaprilat in logarithmic concentrations linearly enhanced the release of NO from 10 nM to 10 μM (Fig. 3B). We repeated these experiments with another technique to measure NO release based on fluorescence detection and obtained similar results (not shown).

Enalaprilat stimulated NO production by BPAE cells via the B1 receptor. This conclusion is based on findings that enalaprilat and des-Arg10-kallidin released NO similarly (242 nM ± 5 S.E. per well and 288 ± 7 nM NO), and the B1 receptor antagonist des-Arg10-Leu9-kallidin (100 nM) reduced both effects
To explore the role of Zn\(^{2+}\) on receptor response, we preincubated BPAE cells for 30 min with 1 mM Ca-EDTA. This heavy metal sequestering agent blocked the effect of 10 nM enalaprilat completely (n = 4), whereas 10 nM des-Arg\(^{10}\)-kallidin (n = 5) raised the level of [Ca\(^{2+}\)], uninhibitedly. Enalapril (the inactive prodrug of enalaprilat), which has an esterified carboxyl group that does not bind Zn\(^{2+}\), did not activate the B\(_1\) receptor in IMR-90 cells at 1 \(\mu\)M, (n = 3) or 10 \(\mu\)M concentration. We concluded that for activation by a peptide ligand zinc is not needed, but it is essential for activation by enalaprilat.

Blockade by B\(_{1}\)-A Undecapeptide—To further confirm the importance of our finding obtained with the [H195A]B\(_{1}\) mutant, we used the synthetic undecapeptide (LL-PHEAWHFAR) corresponding to residues 192–202 of the B\(_{1}\) receptor, the putative site of activation by ACEIs. The presence of 10 or 100 \(\mu\)M of this peptide blocked the effect of the ACEI completely, whereas des-Arg\(^{10}\)-kallidin was not affected (Fig. 5; n = 3). As control, the same concentration of another peptide
(AIKLGTRRFTTTC) of similar size but unrelated sequence affected neither enalaprilat nor des-Arg\(^{10}\)-kallidin responses in the BPAE cells \((n = 3, \text{not shown}).

Competition Binding—Our experiments strongly suggested that ACEIs and des-Arg\(^{10}\)-kallidin bind at different sites of the B\(_1\) receptor. We investigated this further in competition binding assays. Membrane preparations, obtained from homogenized HEK 293 cells and transiently transfected with the wild type B\(_1\) receptor, were exposed to 1 nM \([\text{H}]\)-des-Arg\(^{10}\)-kallidin in the absence or presence of increasing concentrations of enalaprilat. Enalaprilat competed with des-Arg\(^{10}\)-kallidin binding and replaced the labeled ligand at the B\(_1\) receptor but only at a relatively high (>1 \(\mu\)M) concentration (Fig. 6). This is in contrast with the ability of nanomolar enalaprilat to release NO or raise \([\text{Ca}^{2+}]_i\), but is in agreement with the conclusion that des-Arg\(^{10}\)-kallidin and enalaprilat activate the B\(_1\) receptor at different sites.

Other ACEIs—We also tested other ACEIs to determine whether the direct B\(_1\) receptor activation is specific to enalaprilat or is rather a group-related effect. Like enalaprilat, captopril (10 nM, \(n = 4\) and 1 \(\mu\)M, \(n = 2\)) and ramiprilat (10 nM, 100 nM and 1 \(\mu\)M, \(n = 3\)) elevated \([\text{Ca}^{2+}]_i\) levels by activating the B\(_1\) receptor in these cells (data not shown).

We also tested D-penicillamine (\(\alpha\)-amino-\(\beta\)-methyl-\(\beta\)-mercaptobutyric acid), which is structurally related to captopril. D-penicillamine was inactive on the B\(_1\) receptor in BPAE cells (10 nM, \(n = 3\); 1 \(\mu\)M, \(n = 3\); 100 \(\mu\)M, \(n = 2\)). Also, bradykinin-potentiating pentapeptide (BPP5a), an ACEI (32, 33) and a slowly cleaved substrate (9), was inactive in 100 nM and 10 \(\mu\)M concentrations (\(n = 2, 5\); not shown).

DISCUSSION

Tens of millions of patients worldwide are treated with ACEIs (1–7). Because ACE has a dual action, it activates angiotensin I and inactivates BK by cleaving C-terminal dipeptides (9, 18, 28), and its inhibitors block the release of the potent vasoconstrictor and mitogen angiotensin II and augment activation of the B\(_2\) receptor by BK. Besides preventing kinin inactivation by ACE (10), these inhibitors indirectly potentiate B\(_2\) because they induce an ACE/B\(_2\) receptor cross-talk (12–14). Des-Arg\(^{10}\)-kallidin is the endogenous ligand that potently activates the second kinin receptor, B\(_1\), at a low concentration (15). The role of the B\(_1\) receptor in contributing to ACEI therapy has not been explored systematically. We showed above that ACEIs in nanomolar concentrations directly activate the human or bovine B\(_1\) receptor in cultured cells in the absence of ACE or peptide ligands at a different extracellular domain than the peptide. ACEIs were inactive on cells that did not express the BK B\(_1\) receptor.

ACEIs release NO (34, 35), which contributes to their beneficial therapeutic effects. The mechanism of NO release by ACEIs is usually attributed to blocking BK inactivation and thereby potentiating the effect of BK on B\(_3\) receptors, which stimulate endothelial NO synthesis (10). Activation of the B\(_1\) receptors by peptide ligand also releases NO (16). Enalaprilat in nanomolar concentrations did indeed stimulate NO production from pulmonary arterial endothelial cells, and the prolonged release pattern was similar to that caused by des-Arg\(^{10}\)-kallidin but not by BK (Fig. 3). The effect of enalaprilat was suppressed by des-Arg\(^{10}\)-Leu\(^{2}\)-kallidin, a B\(_1\) receptor antagonist, and NO production increased linearly with the log \(\mu\)M concentration of the inhibitor.

We found the sequence in the B\(_1\) receptor where enalaprilat activated directly after comparing the amino acid sequences of human ACE and BK B\(_2\) and B\(_1\) receptors. The second extracellular loop of the human B\(_1\) receptor contains the HEAWH (195–199) sequence (15, 25). This HEXXH motif represents a Zn\(^{2+}\)-binding sequence of the two active centers in the N- and C-domains of ACE and in other members of the zincin family of zinc-metalloenzymes (29), but it is absent in the B\(_2\) receptor (27).

The mutation of this Zn\(^{2+}\)-binding domain to remove an essential His residue abolished the effect of enalaprilat but not that of des-Arg\(^{10}\)-kallidin. In agreement with this finding, enalapril, the inactive prodrug with an esterified carboxyl group that does not bind zinc, did not activate the B\(_1\) receptor. This
and D would link ACEIs to B1 receptors. This conclusion is also supported by the fact that lisinopril was inactive on the B1 receptor; it could prevent access to a recessed zinc-binding site, or the positively charged side chain could be repelled by a positive charge on the receptor (37).

ACEIs are used extensively with few side effects (1–8). The B1 receptor can be rapidly induced under various pathological conditions (for example, by cytokines, ischemia and atherosclerosis) (15, 16) undoubtedly encountered by many subjects treated with ACEIs. A recent report (38), published after submission of this manuscript, showed that ACEIs themselves can induce expression of the B1 receptor in rodent kidney, heart, and vasculature and that B1 receptor stimulation plays a role in the hypotensive effect of ACEIs. Furthermore, the up-regulation is dependent on stimulation of the B1 receptor itself because B1 receptor antagonists blocked it (38). The mode of activation of the receptor at the cellular or molecular level was not investigated, but our results indicate it could be due to direct stimulation of the B1 receptor by ACEIs. Activation of B1 receptor by ACEIs could mediate some of the beneficial effects of these drugs by stimulating NO production. For example, administration of an ACEI shortly after acute myocardial infarction reduced the incidence of death or development of severe congestive heart failure (3, 4). Acute myocardial infarction also induces B1 receptor expression (39). The induction and activation of the B1 receptor could prove advantageous under various stressful conditions, ranging from infection to cardiovascular disorders (15). The B1 receptor may protect the heart in ischemic preconditioning (40). Activation of B1 receptors in an ischemic heart inhibited norepinephrine outflow and potentially lethal ventricular fibrillation (41). Neointima formation after balloon angioplasty was suppressed by the B1 receptor (42) and also by ACEIs after endothelial injury (7). The novel mode of action of ACEIs via B1 receptor, as described above, may add to the therapeutic effects of ACEIs in other pathological conditions (44), and furthermore it may contribute to side effects.

In conclusion, using cultured cells which express B1 receptor either constitutively or after transfection we demonstrated a direct activation of the BK B1 receptor by ACEIs and identified the site of action. To our knowledge, this is the first report showing a direct effect of ACEIs, apart from their effects on

Fig. 5. Effect of the synthetic undecapeptide LLPHEAWHFAR from the B1 receptor Zn-binding sequence. BPAE cells were stimulated with des-Arg10-kallidin (DAKD) (panels A and B) or enalaprilat (Ept) (panels C and D). The left side panels represent individual tracings obtained from simultaneous measurement of up to 100 cells; on the right side the calculated mean values are shown. The cells in panels B and D were preincubated with the undecapeptide (10 μM) for 20 min prior to addition of des-Arg10-kallidin or enalaprilat. Note that the added peptide blocked only the effect of enalaprilat but not that of des-Arg10-kallidin (n = 3).

was further supported by experiments where Ca-EDTA or a synthetic undecapeptide (LLPHEAWHFAR) that corresponds to sequence 192–202 of B1 and incorporates the suggested site of activation blocked the effect of enalaprilat. Therefore, the HEAWH sequence in the second extracellular loop of the B1 receptor is essential for the direct effect of enalaprilat on the B1 receptor. The absence of a similar sequence in the B3 receptor explains the lack of direct action of ACEIs on it (11–13). The B1 receptor may belong to a group of receptors that is modulated by zinc ions (36).

The peptide inhibitor of ACE, BPP5a, is essentially a slow substrate (9) and did not activate the B1 receptor. This is not surprising, as it is not expected of the B1 receptor to hydrolyze ACE substrates. Of the ACEIs tested for a direct effect on the B1 receptor, only lisinopril did not activate it. This consequently shows that ACE inhibition alone is not a sufficient attribute for a molecule to bind to the B1 receptor. However, for this class of clinically used ACEIs, the ability to inhibit ACE seems to be necessary for B1 receptor binding. The inactive prodrug enalapril, which only differs in structure from enalapril by an esterified carboxyl group, is inactive on the B1 receptor. ACEIs are highly active (nanomolar concentration) agonists of B1 receptors, also indicating that many of the features necessary to inhibit ACE potently are required of agonists that bind at the HEAWH receptor site. It is unlikely that a common structural element, unrelated to ACE inhibition, would link ACEIs to B1 receptors. This conclusion is also supported by the fact that lisinopril was inactive on the B1 recep-
ACE, that relates to the therapeutic efficacy of this important
class of drugs.

Acknowledgments—We thank Dr. F. Leeb-Lundberg of the University
of Texas, San Antonio, for B₁ receptor cDNA and Ms. Sara
Bahnmaier for editorial assistance.

REFERENCES

1. Pfeffer, M. (2001) in Angiotensin-Converting Enzyme (ACE): Clinical and
Experimental Insights (Giles, T. D., ed), pp. 219–225, Health Care Commu-
nications, Inc., Port. Lee, NJ
2. Pfeffer, M. A. (1993) Am. Heart J. 126, 789–793
3. Ambrosioni, E., Borghi, C., Magnani, B., and the Survival of Myocardial
Infarction Long-term Evaluation (SMILE) study investigators (1995)
N. Engl. J. Med. 322, 80–85
4. Gautron, P., Kugler, L., Hu, K., Fracarollo, D., Bauer, W., Eilles, C., and
Ertl, G. (2000) Am. J. Cardiol. 86, 129–144
5. Yasuf, S., Sleight, P., Dagenais, G., Montague, T., Bosch, J., Pogue, J., Taylor,
W., Sardo, L., and the Heart Outcomes Prevention Evaluation (HOPE)
study investigators (2000) N. Engl. J. Med. 342, 145–153
6. Lonn, E., Yusuf, S., Dzavik, V., Doris, C., Yi, Q., Smith, S., Moore-Cox, A.,
Bosch, J., Riley, W., and Teo, K. (2001) Lancet 358, 179–184
7. Minshall, R. D., Tan, F., Nakamura, F., Rabito, S. F., Becker, R. P., Marcic, B.,
Deddish, P. A., Skidgel, R. A., Erdo, I., Kintsurashvili, E., Gavras, I., Johns,
C., Bresnahan, M., and Baumgartner, H. R. (1989) J. Pharmacol. Exp. Ther.
245, 186–188
8. Lever, A. F., Hole, D. J., Gillis, C. R., McCallum, I. R., McInnes, G. T.,
Mackintosh, P. L., Meredith, P. A., Murray, L. S., Reid, J. L., and Robertson,
J. W. (1998) Lancet 352, 179–184
9. Yang, H. Y. T., Erdos, E. G., and Levin, Y. (1971) J. Pharmacol. Exp. Ther.
177, 291–300
10. Linn, W., Wiemer, G., Gohike, P., Unger, T., and Scholken, B. A. (1995)
Pharmacol. Rev. 47, 25–49
11. Bhoola, K. D., Figueroa, C. D., and Worthy, K. (1992) Pharmacol. Rev. 44, 1–80
12. Minshall, R. D., Tan, F., Nakamura, F., Rabito, S. F., Becker, R. P., Marcic, B.,
and Erdos, E. G. (1997) Circ. Res. 81, 848–856
13. Erdos, E. G., Deddish, P. A., and Marcic, B. M. (1999) Trends Endocrinol.
Metab. 10, 223–229
14. Marcic, B., Deddish, P. A., Skidgel, R. A., Erdos, E. G., Minshall, R. D., and
Tan, F. (2000) J. Biol. Chem. 275, 16110–16118
15. Marcelo, F., Hess, J. F., and Bachvarov, D. R. (1996) Pharmacol. Rev. 50,
357–386
16. McNair, P. G., Perretti, M., and Ahluwalia, A. (2000) Cardiovasc. Res. 48,
194–210
17. Duka, I., Kintsurashvili, K., Gavras, I., Johns, C., Bresnahan, M., and
Gavras, H. (2000) Circ. Res. 88, 275–283
18. Erdos, E. G., and Skidgel, R. A. (1997) in The Kinin System (Farmer, S. G., ed),
pp. 111–141, Academic Press, London
19. Phagoo, S. B., Poole, S., and Leeb-Lundberg, L. M. F. (1999) Mol. Pharmacol.
56, 825–833
20. Fathy, D. B., Kyle, D. J., and Leeb-Lundberg, L. M. F. (2000) Mol. Pharmacol.
57, 171–179
21. Brovkovych, V. V., Kalinowski, L., Muller-Peddinghaus, R., and Malinski, T.
(2001) Hypertension 37, 34–39
22. Vergnani, L., Hatrik, S., Ricci, F., Passaro, A., Manzoli, N., Zuliani, G.,
Brovkovych, V., Fellin, R., and Malinski, T. (2000) Circulation 101, 1261–1266
23. Kojima, H., Nakatsubo, N., Kikuchi, K., Kawahara, S., Kirino, Y., Nagoishi, H.,
Hirata, Y., and Nagano, T. (1998) Anal. Chem. 70, 2446–2453
24. Smith, J. A. M., Webb, C., Holford, J., and Burgess, G. M. (1995) Mol. Phar-
macol. 47, 525–534
25. Menke, J. G., Borkowski, J. A., Bierilo, K. K., MacNeil, T., Derrick, A. W.,
Schneck, K. A., Ransow, R. W., Strader, C. D., Linemeyer, D. L., and Hess,
J. F. (1994) J. Biol. Chem. 269, 21583–21586
26. Soubrier, F., Alhenc-Gelas, F., Hubert, C., Allegrini, J., John, M., Tregear, G.,
and Corvol, P. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 9386–9390
27. Hess, J. F., Borkowski, J. A., Young, J. S., Strader, C. D., and Ransow, B. W.
(1992) Biochem. Biophys. Res. Commun. 184, 260–268
28. Skidgel, R. A., and Erdos, E. G. (1993) in The Renin-Angiotensin System.
(Robertson, J. I. S., and Nichols, M. G., eds) Vol. 1, pp. 10.1–10.10, Gower
Medical Publishers, London
29. Hooper, N. M. (1994) FEBS Lett. 354, 1–6
30. Wei, L., Clauer, E., Alhenc-Gelas, F., and Corvol, P. (1992) J. Biol. Chem. 267,
13398–13405
31. Fathy, D. B., Mathis, S. A., Leeb, T., and Leeb-Lundberg, L. M. F. (1998)
J. Biol. Chem. 273, 12210–12218
32. Stewart, M. J., Ferreira, S. H., and Greene, L. J. (1971) Biochem. Pharmacol.
20, 1557–1567
33. Ondetti, M. A., Williams, N. J., Saso, E. F., Plusee, J., Weaver, E. R., and
Kocy, O. (1971) Biochemistry 10, 4033–4039
34. Zahler, S., Kupatt, C., and Becker, B. F. (1999) Immunopharmacology 44,
27–33
35. Wittstein, I. S., Kass, D. A., Pink, P. H., Maughan, W. L., Fetics, B., and Hare,
J. M. (2001) J. Am. Coll. Cardiol. 38, 429–435
36. Schetz, J. A., Chu, A., and Sibley, D. R. (1999) J. Pharmacol. Exp. Ther.
288, 956–964
37. Menard, J., and Patchett, A. A. (2001) Adv. Protein Chem. 56, 13–75
38. Marin Castaño, M. E., Schanstra, J. P., Neau, E., Praddaude, F., Pecher, C.,
Ader, J. L., Girolami, J. P., and Basendar, J. L. (2002) Circulation 105,
627–632
39. Tschesche, H., Heringer-Walther, S., Koch, M., Spillmann, F., Wendorf,
M., Leitner, E., Schultheiss, H. P., and Walther, T. (2000) Br. J. Pharmacol.
129, 1537–1538
40. Bouchard, J. F., Chouinard, J., and Lamontagne, D. (1998) Br. J. Pharmacol.
123, 413–420
41. Chahine, R., Adam, A., Yamaguchi, N., Gaspo, R., Regoli, D., and Nadeau, R.
(1995) Br. J. Pharmacol. 115, 318–322
42. Agata, J., Miao, R. Q., Yamaka, K., Chao, L., and Chao, J. (2000) Hypertension
36, 346–370
43. Gavras, H., Brunner, H. R., Laragh, J. H., Sealey, J. E., Ederer, F., Gavras, I.,
and Vukovich, R. A. (1974) N. Engl. J. Med. 291, 817–821
44. Siebeck, M., Spannagl, E., Schorr, M., Stumpf, B., Fritz, H., Whalley, E. T.,
and Cheronis, J. C. (1996) Immunopharmacology 33, 81–84