An atypical case of giant intradiploic epidermoid tumor

Sanjeev Dua1, Anil Dhar1, Hershdeep Singh1, Vikrant Katyar1, Rooma Ambastha2, Aditi Shukla1

1Department of Neurosurgery, Max Super Speciality Hospital, New Delhi, India, 2Department of Pathology, Max Super Speciality Hospital, New Delhi, India

Address for correspondence: Hershdeep Singh, Department of Neurosurgery, Max Super Speciality Hospital, New Delhi, India.
Phone: +91-9888225136.
E-mail: singh.hershey@gmail.com

ABSTRACT

Intradiploic epidermoid tumors are uncommon and giant epidermoid with dural involvement is scarcer. We report a unique case of a giant frontal epidermoid tumor presenting without typical features of swelling or bulge in scalp. A 61-year-old male presented with the complaints of forgetfulness and headache. Contrast magnetic resonance imaging brain revealed a large left frontal epidermoid tumor. A tumor measuring $13 \times 11 \times 4$ cm, involving the dura but sparing the brain parenchyma, was excised through left frontal craniotomy. Such a presentation of giant epidermoid tumor with dural involvement is highly unusual. Complete surgical excision is the final aim and vigilant follow-up for recurrence is a must.

Keywords: Diploic, epidermoid, frontal, intracranial

Introduction

Epidermoid tumors are benign in nature and can be intracranial or spinal. They can be intradural or extradural and occur usually near the cerebellopontine or para sellar cisterns.[1-3] The intradiploic epidermoids are rarely reported in the literature and the stated frequency of involvement is 46% in both tables, 31% in outer table, 10% in both tables and dura, 7% in inner table, 3% in inner table and dura and 3% in inner table, and dura and brain.[4]

We present a unique case report of a 61-year-old male patient with an unusual presentation of giant epidermoid tumor of intradiploic origin with dural involvement.

Case Report

A 61-year-old male presented with the complaints of off and on forgetfulness for three months and left sided headache for 15 days. He was conscious and fully oriented with a GCS of E4V5M6. No focal neurological deficit was observed and there was no similar past history. Contrast-enhanced magnetic resonance imaging (MRI) of brain was suggestive of the left frontal space occupying lesion, features of which were consistent with epidermoid tumor [Figures 1 and 2] (Extra-axial lesion hypointense on T1W image and hyperintense on T2W and ADCC image showing diffusion restriction).

Tumor was approached by performing left frontal craniotomy. The tumor was found to be enveloped with a thin capsule and originating from frontal diploe. It perforated the dura and compressed the underlying brain, thereby displacing the superior sagittal sinus toward right. Pearly white in appearance, the tumor was, avascular, non-suckable, firm, and waxy, like cholesterol crystals with a well-defined plane of cleavage. The overlying frontal bone was found eroded with multiple osteolytic lesions [Figure 3]. The tumor was excised, taking care to remove its capsule along-with. To prevent any recurrence, duraplasty was done using pericranium patch and involved bone flap was removed, cranioplasty was undertaken using titanium mesh. Subdural and a subgaleal drains were used. Postoperatively, the patient recovered well and had no neurological deficits. Drains were removed on the 2nd post-operative day. On the 3rd post-operative day, the patient was discharged on antibiotics and analgesics. The patient has had no significant complaints. Brain MRI done at 6 months of follow-up showed no recurrence.

Histopathology

Tumor tissue, grossly included multiple gray white and pearly white soft tissues measuring $(13 \times 11 \times 4)$ cm and bone fragment/flap, included single hard tissue measuring $(7 \times 6 \times 4)$ cm. On microscopic examination, sections showed wall of a cyst lined by stratified squamous epithelium, keratinous material, and cholesterol crystals. No features of malignancy were seen. The bone fragment/flap showed signs of erosion [Figure 4].
Discussion

Epidermoid is slow growing congenital tumors. Cruveilhier, a French pathologist regarded them as the “most beautiful tumors of all the tumors” based on their pearly appearance. They grow at a rate similar to the epidermal cells of skin, multiplying along the cisternal spaces barring a few of those extending into the parenchyma. These tumors are known to occur through ectopic inclusions of epithelial cells at the time of the closure the neural tube. On the other hand, Dias and Walker considered gastrulation dysembryogenesis to be the offending event.

Typical computed tomography appearance is that of a homogeneously non-enhancing hypodense mass in the subarachnoid space sans peritumoral edema. At times, epidermoid tumors present as significantly more dense lesions (known as “white epidermoids”), hence confounding the diagnosis. MRI appearance includes a spectrum of appearances, varying from hypointense to hyperintense. Multiloculated appearance is quite common. More commonly, the tumor is heterogeneous and hypointense on T1-weighted images and hyper intense on T2-weighted images. On histopathological examination, the tumor capsule is typically thin, consisting of stratified, keratinized squamous epithelium. Also accumulation of desquamated epithelial cells were seen with cholesterol and keratin. Epidermoid tumors may rarely give rise to squamous cell carcinoma.

Epidermoid tumor may occur anywhere in the neuroaxis, more commonly in the cerebellopontine angles (40–50% of the cases) and the parasellar region. Atypical locations, like
Dua, et al.: An atypical case of giant intradiploic epidermoid tumor

Intra-axial, constitute <1.5% of all intracranial epidermoid lesions\(^{(12)}\) and intradiploic epidermoid tumor consist of <3% of such tumors.\(^{(13)}\) Among the intraparenchymal epidermoid tumors, most occur in the frontal and temporal lobes.\(^{(12)}\) Such tumors are scarce in the pineal gland\(^{(14)}\) or the brainstem.\(^{(15)}\)

Intradiploic epidermoid tumors have been mentioned in only as case reports or case series.\(^{(12,16-18)}\) A PubMed central search done by the keywords “frontal intradiploic epidermoid cyst,” produced 27 results including case reports [Table 1], case series, and review studies [Table 2].\(^{(19-41)}\)

Table 1: Review of case reports

S. No.	Country	Year	Gender	Age	Location	C/F	Size (cm)	Dura involvement	Remarks
1.	Brazil	2019	M	23	Frontal (L)	Proptosis, diplopia	N/A	No	Only intradiploic, extending to orbit
2.	India	2019	F	42	Frontal (L)	Headache, seizures	2.4×3	No	History of meningioma surgery. Initial diagnosis? mets. FDG – PET done
3.	India	2018	F	14	Frontal (midline)	Pain, Swelling	5.1×5.2	No	Extending from frontal sinus to ACF
4.	India	2018	F	46Y	Occipital (R)	Headache, swelling	4×7×6.7	No	Giant epidermoid
5.	China	2018	M	54	Frontal (L)	Headache, confusion	N/A	No	Concurrent chronic epidural hematoma
6.	USA	2016	F	47	Frontal (L)	Seizure	2.5×3	No	Post traumatic
7.	Mexico	2015	M	42	Occipital Frontal	Headache, Delirium with ICH	N/A	No	Intracranial hypertension syndrome+
8.	Turkey	2014	F	14 m	Frontal	Asymptomatic	N/A	No	Craniosynostosis +
9.	India	2013	F	24	Frontal (L) + Orbital	Headache, diplopia, swelling, ocular movements decreased	N/A	No	Post traumatic
10.	Turkey	2013	M	69	Frontal	Bulge, headache	8×5	No	–
11.	Germany	2012	M	81	Frontal + Temporal + parietal	Swelling	15×12×10	No	Only biopsy done, surgery refused by patient
12.	Turkey	2011	M	4	Frontal + orbital (L)	Ulcer of left eyelid	N/A	No	Fistulisation of eyelid
13.	USA	2010	M	69	Frontal (L)	Headache, diplopia	1.8×2.8×4.2	No	–
14.	South Korea	2006	M	69	Frontoparietal (L)	Swelling, mass, seizure	N/A	Yes	Parenchymal invasion+
15.	Italy	2005	M	23	Frontal- Midline	Swelling	N/A	No	Post traumatic
16.	Italy	2002	M	24	Frontal (R)	Swelling followed by rupture	N/A	No	Traumatic rupture of epidermoid cyst
17.	Spain	2001	F	22	Frontal + sphenoid + orbital	Proptosis	N/A	No	–
18.	Switzerland	1997	F	52	Frontal (R)	Left sided hemiparesis, anisocoria	N/A	No	Traumatic pneumocephalus
Table 2: Case series and review studies

S. No.	Country	Year	Gender	Age	Location	C/F	Size	Dura involvement	Remarks	
1.	Italy	2018	M 112	26.99m ± 32.7	47/237-frontal	N/A	NA	No	2/237 epidermoid. 22/237 intradiploic 7 partial thickness bone erosion 15 full thickness erosion. (Epidermoid-partial thickness erosion)	
2.	USA	2016	Male: 60.5% Female 39.5%	Mean age of presentation was 38.1	30.5% frontal	Swelling, neurological deficits, headache	N/A	30/167 dural involvement +.10/30 were frontal	30% Frontal	
3.	Turkey	2004	F 122	F 46	Occipital (L)	Headache, dizziness	N/A	N/A	No	2 lesions
4.	Spain	1995	M 26	F 18	Frontal (L)	Proptosis	N/A	No	Operated 4 times	
5.	Netherlands	1991	M 23	F 52	Sphenoid bone	Proptosis	N/A	No	Intradural extension	
6.	U.K	1989	M 52	M 29	Occipital (L)	Headache, vision impairment.	N/A	Yes	Intradural extension	

In the cases with lesion of more than 5 cm, swelling is a common presenting feature.[21,28] On the contrary, in our case, a swelling or a bulge in the scalp was not present, which is highly unusual for a tumor of such large dimensions.

Such large tumors have been reported to be adherent to dura, although dural perforation has not been mentioned.[21]

In a review done by Arko et al. out of 167 tumors, 30 were found to have dural involvement. Ten tumors out of these 30 were found to be in frontal region.[24] Overall, in 434 cases reviewed in the literature, only 34 were seen to involve dura [Tables 1 and 2]. In our case, the dura was observed to be invaded causing extensive perforations at mandating a pericranial patch cranioplasty.

Figure 3: Intraoperative findings—epidermoid with thin capsule, invading the bone (a). Skull bone with areas of erosion (b). Pearly white epidermoid tumor being excised (c). Total excision of the tumor tissue with the involved dura, underlying brain parenchyma is compressed under pressure from tumor (d)
Conclusions

Epidermoid is a congenital tumor occurring in cranial as well as extracranial locations. This tumor usually restricts itself to certain common locations. As exemplified by this case, it needs to be borne in mind that a large intradiploic epidermoid may not present with a typical swelling or a bulge in the scalp. Dural invasion and perforation are needs to be anticipated in such a large sized tumors. In cases of dural involvement, it is imperative that the surgeon excise the involved dura and do duraplasty, preferably autologous. Such a measure may also decrease recurrence. Furthermore, a pre-operative preparation for mesh cranioplasty must be done. Treatment aim should be total surgical excision of the tumor without causing neurological deficit and minimizing the chances of recurrence.

Authors’ contributions

Dr Sanjeev Dua, Dr Anil Dhar – Conceptualization and review; Dr Hersheep Singh- Writing, reviewing, and preparation of manuscript; Dr Roomba Ambasta- performed histopathology; and Dr Vikrant Katyar, Dr Aditi Shukla – performed data collection.

References

1. Caldarelli M, Massimi L, Kondageski C. Intracranial midline dermoid and epidermoid cysts in children. J Neurosurg 2004;100:473-80.
2. Darrouzet V, Franco-Vidal V, Hilton M, Nguyen DQ, Lacher-Fougere S, Guerin J, et al. Surgery of cerebellopontine angle epidermoid cysts: Role of the widened retrolabyrinthine approach combined with endoscopy. Otolaryngol Head Neck Surg 2004;131:120-5.
3. Kumari R, Guglani B, Gupta N. Intracranial epidermoid cyst: Magnetic resonance imaging features. Neurol India 2009;57:359-60.
4. Skandalakis JE, Godwin JT, Mabon RF: Epidermoid cyst of the skull. Report of four cases and review of the literature. Surgery 1958;43:990-1001.
5. Cruveilhier J. Anatomie Pathologique Du Corps Humain. Vol. 1. Paris: J B. Baillière; 1829.
6. Ulrich J. Intracranial epidermoids-a study on their distribution and spread. J Neurosurg 1964;21:1051-8.
7. Gormley WB, Tomecek FJ, Qureshi N, Malik GM. Cerebellopontine epidermoid and dermoid tumours: A review of 32 cases. Acta Neurochir (Wien) 1994;128:115-21.
8. Dias MS, Walker ML. The embryogenesis of complex dysraphic malformations: A disorder of gastrulation? Pediatr Neurosurg 1992;18:229-53.
9. Li F, Zhu S, Liu Y, Chen G, Chi L, Qu F. Hyperdense intracranial epidermoid cysts: A study of 15 cases. Acta Neurochir (Wien) 2007;149:31-9.
10. Osborn AG, Preece MT. Intracranial cysts: Radiologic-pathologic correlation and imaging approach. Radiology 2006;239:650-64.
11. Vellutini EA, de Oliveira MF, Ribeiro AP, Rotta JM. Malignant transformation of intracranial epidermoid cyst. Br J Neurosurg 2014;28:507-9.
12. Aribandi M, Wilson NJ. CT and MR imaging features of intracerebral epidermoid-a rare lesion. Br J Radiol 2008;81:e97-9.
13. Ichimura S, Hayashi T, Yazaki T, Yoshida K, Kawase T. Dumbbell-shaped intradiploic epidermoid cyst involving the dura mater and cerebellum. Neurol Med Chir (Tokyo) 2008;48:83-5.
14. MacKay CI, Baeesa SS, Ventureyra EC. Epidermoid cysts of the pineal region. Childs Nerv Syst 1999;15:170-8.
15. Sari A, Ozdemir O, Kocakucu P, Ahmetoglu A. Intra-axial epidermoid cysts of the brainstem. J Neuroradiol 2005;32:283-4.
16. Ciappetta P, Artico M, Salvati M, Raco A, Galgardi FM. Intradiploic epidermoid cysts of the skull: Report of 10 cases and review of the literature. Acta Neurochir (Wien) 1990;102:33-7.
17. Demaerel P, Wilms G, Lammens M, Nuttin B, Plets C, Baert AL. Extradural epidermoid tumor of the frontal bone. Neuroradiology 1991;33:349-51.
18. Enchev Y, Kamenov B, William A, Karakostov V. Posttraumatic giant extradural intradiploic epidermoid cysts of posterior cranial fossa: Case report and review of the literature. J Korean Neurosurg Soc 2011;49:53-7.
Dua, et al.: An atypical case of giant intradiploic epidermoid tumor

19. Diniz SB, Chahud F, Cruz AA. Orbital extension of a frontal bone intradiploic epidermoid cyst. Ophthalmic Plast Reconstr Surg 2019;35:158.

20. Medara ST, Manthri RG, Mohan VS, Shaik M, Kalawat TC. F-18 fluorodeoxyglucose positron emission tomography/computed tomography in the evaluation of intradiploic epidermoid cyst. Indian J Nucl Med 2019;34:51-3.

21. Gollapudi PR, Musali SR, Mohammed I, Pittala SR. A frontal giant intradiploic giant pearl (epidermoid cyst) with intracranial and extracranial extension: A rare entity. J Pediatr Neurosci 2018;13:480-2.

22. Oommen A, Govindan J, Peroor DS, Azeez CR, Rashmi R, Jalal MJ. Giant occipital intradiploic epidermoid cyst. Asian J Neurosurg 2018;13:514-7.

23. Zheng J, Zhang H, Wang C. Synchronous diagnosis of intradiploic epidermoid cyst and anatomically close associated chronic epidural hematoma. World Neurosurg 2018;117:115-9.

24. Arko L4th, Berry CT, Desai AS, Weaver M. Intradiploic epidermoid tumors of the cranium: Case report with review of the literature. J Neurol Surg A Cent Eur Neurosurg 2017;78:167-79.

25. Moreira-Holguin JC, Medélez-Borbonio R, Quintero-Lopez E, García-González U, Gómez-Amador JL. Intradiploic epidermoid cyst with intracranial hypertension syndrome: Report of two cases and literature review. Int J Surg Case Rep 2015;16:81-6.

26. Yildiz K, Sagir HÖ, Tosuner Z, Canter HI, Guneren E. Asymptomatic intradiploic epidermoid cyst eroding frontal bone in a patient with craniosynostosis. J Craniofac Surg 2015;26:e58-9.

27. Samdani S, Kalra GS, Rawat DS. Posttraumatic intradiploic epidermoid cyst of frontal bone. J Craniofac Surg 2015;26:e128-30.

28. Hasturk AE, Basmaci M, Yilmaz ER, Kertmen H, Gurer B, Atligan AO. Giant intradiploic epidermoid cyst presenting as solitary skull mass with intracranial extension. J Craniofac Surg 2013;24:2169-71.

29. Krupp W, Heckert A, Holland H, Meixensberger J, Fritsch D. Giant intradiploic epidermoid cyst with large osteolysis lesions of the skull: A case report. J Med Case Rep 2012;6:85.

30. Akbabak M, Karslıoğlu S, Damlak A, Karçoğlu ZA. Intradiploic epidermoid cyst of frontal bone with spontaneous fistulization to eyelid. Ophthalmic Plast Reconstr Surg 2012;28:e15-7.

31. Ormond DR, Omeis I, Abrahams J. Uncommon presentation of an intradiploic orbital epidermoid tumor: Case report. Oral Maxillofac Surg 2011;15:165-7.

32. Cho JH, Jung TY, Kim IY, Jung S, Kang SS, Kim SH. A giant intradiploic epidermoid cyst with perforation of the dura and brain parenchymal involvement. Clin Neurol Neurosurg 2007;109:368-73.

33. Locatelli M, Alimehmeti R, Rampini P, Prada F. Intradiploic frontal epidermoid cyst in a patient with repeated head injuries: Is there a causative relationship? Acta Neurochir (Wien) 2006;148:1107-10.

34. Schönauer C, Conrad M, Barbato R, Capuano C, Moraci A. Traumatic rupture into frontal sinus of a frontal intradiploic epidermoid cyst. Acta Neurochir (Wien) 2002;144:401-2.

35. Blanco G, Esteban R, Galarreta D, Saornil MA. Orbital intradiploic epidermoid cyst. Arch Ophthalmol 2001;119:771-3.

36. Jakubowski E, Kirsch E, Mindermann T, Ettl D, Gratzl O, Radü EW. Intradiploic epidermoid cyst of the frontal bone presenting with tension pneumocephalus. Acta Neurochir (Wien) 1997;139:86-7.

37. Prior A, Anania P, Pacetti M, Secchi F, Ravegnani M, Pavanello M, et al. Dermoid and epidermoid cysts of scalp: Case series of 234 consecutive patients. World Neurosurg 2018;120:119-24.

38. Bikmaz K, Cosar M, Bek S, Gokduman CA, Arslan M, Iplikecioglu AC. Intradiploic epidermoid cysts of the skull: A report of four cases. Clin Neurol Neurosurg 2006;108:262-7.

39. Arana E, Latorre FF, Revert A, Menor F, Riesgo P, Liaño F, et al. Intradiploic epidermoid cysts of the bony orbit. Acta Neurochir (Wien) 1996;138:306-11.

40. Eijpe AA, Koornneef L, Verbeeten B Jr., Peeters FL, Zonneveld FW, Bras J. Intradiploic epidermoid cysts of the bony orbit. Ophthalmology 1991;98:1737-43.

41. Dias PS, May PL, Jakubowski J. Giant epidermoid cysts of the skull. Br J Neurosurg 1989;3:51-7.