Assessment of Energy-Positive Wastewater Treatment System Design of Different Industrial Wastewater Streams

Jinze Li
Florida International University

Walter Z. Tang (✉ tangz@fiu.edu)
Florida International University https://orcid.org/0000-0002-3232-8057

Research Article

Keywords: Meat processing wastewater, Tannery wastewater, Textile wastewater, COD removal, Cost estimation Excel model

DOI: https://doi.org/10.21203/rs.3.rs-507038/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Assessment of Energy-Positive Wastewater Treatment System

Design of Different Industrial Wastewater Streams

Jinze Lia

Walter Z. Tang a, *

aDepartment of Civil and Environmental Engineering, Florida International University, Miami, FL-33174, USA.

*Corresponding author: Department of Civil and Environmental Engineering, Florida International University, Miami, US. Email address: tangz@fiu.edu (Walter Z. Tang)
Abstract

Activated sludge (AS) process has been used as the conventional industrial wastewater treatment process in the past decades. However, intensive aeration requirements made it impossible for WWTPs to be energy positive. In addition, there are few cases of research assessing the efficiency and economic feasibility of innovative technologies in treating industrial wastewater to achieve energy positive. This study tries to assess the effect of different kinds of industrial wastewater on treatment efficiency, unit energy, environmental sustainability, and unit cost of treatment systems using innovative technologies such as micro sieving, UASB, and PN/A. Our Excel model showed that micro-sieving could remove 32.50-39.72% of COD from industrial wastewater. UASB reactor could removes 15.8%-53.5%, 14.0%-49.0% and 22.9%-51.0% of COD from three different wastewater streams. Mean unit energy production by the innovative system could reach 1.80, 1.77, and 1.73 kWh/kg BOD\(_{\text{removed}}\), respectively. The average unit cost of three kinds of wastewater is 0.54, 0.57, and 1.12 $/kg COD\(_{\text{removed}}\), respectively. Treating meat processing wastewater with innovative technologies is the economical treatment method. However, this method could not be considered as the sustainable design due to the high effluent COD concentration. The economic advantages and limitations of innovative technologies in treating industrial wastewater have been quantified by energy, cost and environmental indicators. These metrics provide valuable references for future sustainable design of industrial wastewater treatment systems.

Keywords: Meat processing wastewater; Tannery wastewater; Textile wastewater; COD removal; Cost estimation Excel model
1. Introduction

Industrial wastewater has vastly different water quality. For example, the water quality of food processing, pulp and paper, textile, chemical, pharmaceutical, petroleum, tannery, and manufacturing industries varied significantly [1]. Major wastewater quality parameters include chemical oxygen demand (COD), biochemical oxygen demand (BOD), suspended solids (SS), ammonium nitrogen (\(\text{NH}_4^+_\text{N}\)), heavy metals, pH, color, turbidity, and biological parameters. Compared with municipal wastewater, industrial wastewaters usually have a high organic matter concentration and extreme physicochemical characters (e.g., pH, temperature, salinity), and humic substances that may inhibit biological treatment processes. In addition, municipal wastewater has a low strength concentration of COD (250–800 mg/L), whereas strong (>1,000 mg COD/L) to extremely strong wastewaters is often produced by industries [2]. Olive mills and beverage production industries could generate extremely strong industrial wastewaters (COD>200,000 mg/L) [3, 4]. Characteristics of industrial wastewaters strongly depend on the type of industrial wastewaters and industrial processes. Water used by meat processing industries accounts for 29% of the agricultural freshwater worldwide [5, 6]. Food processing wastewater is typically generated from the slaughtering houses. Typically, there is a large quantity of suspended organic matter, protein, and fat (i.e., bones, meat, and viscera) in meat processing wastewater. Therefore, a high concentration of COD, BOD, TN, and TSS is typical in food processing wastewater [7-9]. The average COD, BOD, TN and TSS concentration of food wastewater could reach as high as 4,221 mg/L, 1,209 mg/L, 427 mg/L, and 1,164 mg/L, respectively [10]. Meat processing wastewater is considered as one of the most detrimental food industrial wastewaters because its inadequate disposal could lead to river deoxygenation, algal blooms, and eutrophication [11, 12].
The tannery industry, which could be defined as the production process of leather by treating sheep and goat skins and bovine hides, is one of the oldest industries worldwide [13]. Leather is one of the few available materials to produce clothing and footwear because of its unique properties [14]. However, tannery industry consumes large amounts of water and chemicals. Wastewaters are mainly produced during the wet processes of tannery industry. To produce 250 kg of leather, 15–80 m3 of tannery wastewater with 230–250 kg COD, 100 kg BOD, 150 kg TSS, 5–6 kg chrome, and 10 kg sulphide is produced [15, 16]. Tannery effluents are characterized by high pollution loads of conventional pollutants and suspended solids with low BOD/COD ratio, which cause deterioration of the receiving natural water bodies if it were inadequately treated [17-24].

Textile industry, representing one of the largest and most widespread production industries in the world, produces a large number of dyestuffs (>7×105 tons) per year worldwide [25]. Textile industry produces a large amount of processing wastewater containing variety of chemicals. For example, wastewater with dyestuff, surface-active agents, and additives are generated from spent dye bath and rinsing waters [26-28]. Textile effluent is typically a complex mixture of organic and inorganic matters with strong color, high COD, high salinity, high temperature, variable pH, and low BOD [29, 30]. The direct discharge of textile wastewater into rivers and streams could cause severe environmental problems [31]. Commercial dyes in textile effluent are carcinogenic to humans and toxic to aquatic organisms [27, 32-34]. The discharge of untreated textile wastewater deteriorates water quality, adversely impacts aquatic life and crops [35-37].

Biological and chemical processes are traditionally used in treating meat processing, tannery, and textile wastewater [38-58]. Physical and chemical methods
are very expensive because they consume a large amount of energy and chemicals with excessive sludge [59-61]. Compared with oxidation process and chemical processes, biological treatment methods have numerous advantages: (1) low capital and operating costs; (2) oxidation of a wide variety of organic matters rather than phase transfer separation such as air stripping or carbon adsorption; (3) removal of reduced inorganic compounds, such as ammonia, and total nitrogen removal by nitrification and denitrification; and (4) operational flexibility to treat different kinds of wastewater with a wide range of flows.

The unit energy consumption of meat processing plants using biological process was reported as 0.81 kWh/kg COD [62]. Yang et al. [63] compared the performance and energy of textile wastewater treatment by conventional activated sludge (CAS), MBR, and Moving bed biofilm reactor (MBBR). Results showed that the unit energy consumption of CAS is 0.58 kW/kg COD. Activated sludge (AS) system with autotrophic nitrification/heterotrophic denitrification (NDN) process with primary clarifier were conventional processes in industrial and municipal wastewater treatment. However, they consume high energy, have large footprints, and produce a large amount of sludge as compared with innovative biological technologies such as micro sieving, UASB, and PN/A, which are the major focus of this study.

Micro-sieving is one of the most sustainable technologies in separate TSS from wastewater stream at the early stage of treatment processes. As a result, it significantly reduces operation costs and has less footprint. Mainstream UASB could achieve energy recovery by converting COD to biogas without consuming O$_2$ at operating temperatures between 15 and 35°C [64, 65]. PN/A, which is an innovative N removal technology discovered in the 1990s [66-68], could remove 90% of NH$_4$ _N through converting ammonia and nitrite N$_2$ in Anammox process [69-72]. Compared with the
conventional nitrification/denitrification (NDN) process, PN/A process could reduce O_2 demand during nitrification by approximately 60%, eliminate external organic carbon source, and decrease sludge by 80-90% [73-75]. Currently, there are few cases of research assessing the efficiency and economic feasibility of innovative technology in treating different kinds of industrial wastewater. Therefore, the effects of different kinds of industrial wastewater on the performance, energy, and cost of using micro-sieving, UASB, and PN/A were quantified from energy, cost, and sustainability metrics. The objectives of this study are to (1) evaluate the influence of different industrial wastewater on the performance of primary treatment and secondary treatment; (2) compare the unit energy consumption of different industrial wastewater treatment with the energy benchmark value of PN/A; (3) analyze the unit cost of the innovative treatment systems in treating three different industrial wastewater streams. In addition, the economic advantages and limitations of innovative technologies in treating different industrial wastewater are addressed to offer insight into sustainable treatment design of different industrial wastewaters.

2. Material and methods

2.1 Data and process flow

In the current study, energy and cost were calculated based on three different kinds of industrial wastewater streams, namely, meat processing, tannery, and textile wastewater. Wastewater quality data were collected from published peer-reviewed papers as shown in Table 1. Database of untreated wastewater quality included the concentrations of TSS, COD, BOD, and $NH_4^+_N$. The concentration of TSS, COD, BOD, and $NH_4^+_N$ of meat processing wastewater is higher than those of tannery wastewater and textile wastewater.
An Excel-based model was developed. One million gallons per day (MGD) wastewater treatment systems with different primary and secondary treatment processes were designed [76-81]. Figures 1 and 2 show the flow diagram of industrial wastewater treatment systems. In all systems, the screen and grit chamber were used as the preliminary treatment in removing large particulate matter from wastewater. The difference between systems is the primary and secondary treatment processes. In systems A and B, primary clarifier and micro-sieving removed particulate COD and N and produced a certain amount of primary sludge, which results in the performance difference of aerobic treatment, UASB, PN/A reactor, and side stream AD design. The nitrification-denitrification process was used as the main system of system A in treating wastewater to meet the discharge requirement by converting biodegradable COD and N to CO\(_2\) and N\(_2\). System B used mainstream UASB and PN/A as the main processes in removing soluble BOD and N, which reduces aeration consumption through decreasing BOD and N loading to the nitrification-denitrification system. To meet discharge requirements and compare the performance of the wastewater treatment system for different industrial wastewater, system B use UASB, PN/A, and NDN to achieve the same effluent BOD and N concentration as system A.

Table 1 Industrial Wastewater quality

Type of wastewater	TSS	BOD	COD	TN	Reference
Meat processing wastewater					
950.00	1200.00	2100.00	220.00		[82]
1400.00	1070.00	2350.00	317.22		[83]
1164.00	1209.00	4221.00	427.00		[10]
662.00	891.00	1697.00	246.00		[84]
625.00	1320.00	3900.00	217.00		[85]
3438.22	1602.00	5422.25	361.25		[86]
Tannery wastewater					
890.00	665.83	2290.00	282.00		[87]
2,690.00	1,470.00	3,700.00	293.93		[13]
915.00	1,024.89	2,155.00	228.00		[13]
1,147.00	1,126.00	3,114.00	131.70		[13]
2,229.00	1,760.00	5,094.00	358.00		[88]
1,150.00	1,746.00	6,240.00	327.00		[89]
1,550.00	463.25	3,280.00	260.00		[87]
Textile wastewater					
137.00	455.00	1411.00	49.20		[90]
324.00	283.00	513.00	28.70		[91]
150.00	150.00	910.00	40.00		[92]
Figure 1 Schematic graphs of wastewater treatment system A- activated sludge process with nitrification-denitrification
2.2 Equations for estimating energy, cost and environmental indicators

2.2.1 Energy production of anaerobic digestion

Wastewater quality, retention time, temperature affects COD removal and methane production of UASB. Research by Cavalcanti et al. [94] yielded detailed empiric equations that can be used to predict the division of the influent COD over the effluent based on wastewater quality, sludge age, and temperature.

\begin{equation}
\text{mSeu} = \text{fns} + 0.27 \cdot \exp\left[-0.04 \cdot (\text{Rs}_{u} - 4)\right]/1.067^{T-25}
\end{equation}

\begin{equation}
\text{mSxvu} = \text{fnp} + \text{fc}_{v} \cdot \text{Y}_{an} \cdot (1 - \text{fns} - \text{fnp}) + 0.25 \cdot \exp\left[-0.04 \cdot (\text{Rs}_{u} - 4)\right]/1.067^{T-25}
\end{equation}

\begin{equation}
\text{mSdu} = 1 - \text{mSeu} - \text{mSxvu}
\end{equation}

where:

\text{mSeu} = \text{fraction of influent COD ending up as non-settleable COD in the UASB effluent (g COD/g COD)}

\text{mSxvu} = \text{influent COD fraction converted into anaerobic excess sludge (g COD/g COD)}

\text{mSdu} = \text{fraction of influent COD digested in UASB (g COD/g COD)}

T=temperature=25^\circ\text{C}

\text{fns} = \text{non-biodegradable, soluble influent COD fraction (g COD/g COD)}

\text{fnp} = \text{non-biodegradable particulate influent COD fraction (g COD/g COD)}

\text{Rs}_{u} = \text{anaerobic sludge age in the UASB reactor}
Yan = yield coefficient in an anaerobic environment (0.05 g VSS/g COD) as determined by Cavalcanti et al. [94]. Since the sludge age of UASB is greater than 20 to 40 days [76], sludge age is assumed to be 40 d. Since biodegradable COD in wastewater could be converted into CH$_4$ at 15 and 35°C [64], operating temperature of treatment system was assumed to be 25 °C.

Energy production of UASB (kWh/d) = (mSdu) (Q$_{UASB}$) (S$_{UASB}$) (0.25 g CH$_4$/g COD)

\[(10^{-3} \text{kg/g})(13.9 \text{ kWh/kg CH}_4) (38\%)
\]

Theoretical unit energy production of UASB (kWh/kg COD$_{removed}$)

\[\frac{\text{Energy production of UASB (kWh/d)}}{\text{COD removal in UASB (kg/d)}}\]

where:

mSdu = fraction of influent COD digested in UASB (g COD/g COD)

S$_{UASB}$ = Influent COD concentration to UASB (g/m3)

Q$_{UASB}$ = Flow rate to UASB (m3/d)

COD removal in UASB (kg/d) = COD digested in UASB + COD discharged as sludge

Qasim and Zhu [95] reported that 1 kg COD could be converted to 0.25 kg CH$_4$ by UASB. It was assumed that UASB combining the heat and power (CHP) technologies could convert 38% of CH$_4$ formed in the anaerobic digestion to electricity with an energy density of approximately 13.9 kWh/kg CH$_4$ [77].

RT$_{AD}$ = 15d

T$_{AD}$ = 35°C
\(\eta_{AD} = 0.7 \) \hspace{1cm} (8)

where:

\(RT_{AD} = \text{sludge retention time in the high-rate digester (d)} \)

\(T_{AD} = \text{operation temperature (°C) in the high-rate digester} \)

\(\eta_{AD} = \text{biodegradable COD destruction value} \)

Since combined heat and power (CHP) could convert the CH\(_4\) formed in anaerobic digestion to heat to run an anaerobic digester at high temperature, operation temperature is assumed to be 35 °C in the anaerobic digester. Side stream high-rate anaerobic digester converted sludge to CH\(_4\) in the absence of air at a specific solids retention time and a specific temperature. Mean values of solids retention time and temperature shall be between 15 days at 35°C to 55 °C and 60 days at 20°C [96]. Kabouris et al. reported that the biodegradable volatile solids destruction value of anaerobic digester was 69% at a retention time of 12 days and 35°C [97]. It was reported 70% of biodegradable COD could be converted to CH\(_4\) at 35°C [77]. As a result, retention time, temperature and biodegradable COD destruction value of the high-rate digester are assumed to be 15d, 35°C and 70%.

2.2.2 Energy consumption of PN/A

The reaction of the PN/A process can be depicted as the following equation [95]:

\[
\text{NH}_4^+ + 0.799 \text{O}_2 + 1.109 \text{HCO}_3^- \rightarrow 0.436 \text{N}_2 + 0.111 \text{NO}_3^- + 1.034 \text{CO}_2 + 2.496 \text{H}_2\text{O} + \text{New biomass}
\]

(9)

The overall oxygen requirement for conversion of ammonia to nitrogen gas and nitrate is 1.83 g O\(_2\)/g NH\(_4\)N converted.
Theoretical unit energy consumption of PN/A = \(\frac{1.83 \text{ kg} O_2/\text{kg} NH_4-N}{OT_a} \)

\[= 1.32 \text{kWh/kg NH}_4\text{N} \]

where:

\(OT_a = \) Oxygen transfer efficiency (actual) = 1.2 kg O_2/kWh [76]

Since biodegradable COD in wastewater could be converted into CH_4 at 15 and 35°C [64], the operating temperature of the treatment system was assumed to be 25 °C. Therefore, energy consumption is estimated based on O_2 mass demand and oxygen transfer efficiency at 25 °C [76].

2.2.3 Unit energy of WWTP

The following equations were used in calculating the unit energy consumption, and production [76, 77]:

Unit electricity consumption (kWh/m³)

\[= \frac{\text{Aeration demand of PN/A and NDN (kgO}_2/\text{d)}}{\text{Oxygen transfer efficiency (actual)Q}} \]

Unit electricity consumption (kWh/kg N_removed)

\[= \frac{\text{Aeration demand of PN/A and NDN (kgO}_2/\text{d)}}{\text{Oxygen transfer efficiency (actual)(N removal (kg/d))}} \]

where Q=flow rate (m³/d)

Oxygen transfer efficiency (actual)= 1.2 kg O_2/kWh

\[\text{(12)} \]

Energy production (kWh/d) = (Electricity recovery) (Enthalpy of combustion) (CH_4 production from UASB and anaerobic digester (kg/d))

where Electricity recovery=38%
Enthalpy of combustion = 13.9 kWh/kg CH₄

\[\text{Unit energy production (kWh/kg BOD}_{\text{removed}}) = \frac{\text{Electricity production (kWh/d)}}{\text{BOD removal (kg/d)}} \] (14)

It was assumed that UASB combining the heat and power (CHP) technologies could convert 38% of CH₄ formed in the mainstream and the side stream anaerobic digestion to electricity with an energy density of approximately 13.9 kWh/kg CH₄ [77]. The energy demand of a WWTP mainly includes power consumption of the wastewater lift pump, aeration equipment, and sludge treatment. The energy consumption of biological treatment accounts for 50–70% of the overall energy consumption [98]. Since UASB removes COD without consuming oxygen, aeration energy of PN/A, and NDN process was the dominant energy demand. Biodegradable COD in wastewater could be converted into CH₄ at 15 and 35℃ [64], the operating temperature of the treatment system was assumed to be 25 ℃. Therefore, energy consumption is estimated based on O₂ mass demand and oxygen transfer efficiency at 25 ℃ [76].

2.2.4 Environmental indicators

Many studies selected global warming and eutrophication potential to assess the environmental performance of wastewater treatment systems [99-101]. In the current study, the effluent wastewater quality, energy consumption and energy production were converted to environmental indicators per volume of treated wastewater based on Table 2. These two environmental indicators were selected to evaluate the impact of different industrial wastewaters on environmental sustainability metrics of the innovative treatment technologies.

Table 2 Effluent wastewater quality, energy, and corresponding environmental indicators
Table

Parameter	Global warming potential (kg CO₂ eq/m³)	Eutrophication potential (kg PO₄³⁻ eq/m³)	Reference
Effluent COD (kg/m³)		0.022	[101]
Effluent nitrogen (kg/m³)		0.402	
Energy consumption (kWh/m³)	0.591	0.00115	
Energy production (kWh/m³)	-0.591	-0.00115	

2.2.5 Unit cost of WWTP

The following equations are used in calculating the unit capital cost and unit operation and maintenance (O&M) cost [76]:

Annualized capital cost($/yr) = Capital cost($) × Capital Recovery Factor (CRF)

\[
CRF = \frac{1}{\text{annualization factor}} = \frac{1}{a_{i,n}} = \frac{i(1+i)^n}{(1+i)^n - 1}
\]

where \(i\) = interest rate (annual) = 6%
\(n\) = economic lifetime of the treatment plant in years = 20 (yr)

The treatment system was financed through a 20-year loan with a fixed interest rate of 6%.

Unit capital cost($/m³) = \(\frac{\text{Annualized capital cost($/yr)}}{(Q)(365\text{d/yr})}\)

(16)

Unit O&M cost($/m³) = \(\frac{\text{Annual O&M cost($/yr)}}{(Q)(365\text{d/yr})}\)

(17)

Unit cost($/m³) = Unit capital cost($/m³) + Unit O&M cost($/m³)

Unit cost($/kg COD) = \(\frac{\text{Annualized capital cost($/yr)}}{(\text{COD removal (kg/d)})(365\text{d/yr})}\)

(17)

+ \(\frac{\text{Annual O&M cost($/yr)}}{(\text{COD removal (kg/d)})(365\text{d/yr})}\)
To compare the cost of treatment systems, the total capital costs ($) were annualized over the expected lifetime of a WWTP. Economic lifetime and interest rate were assumed to be 20 years and 6% [76]. Capital costs ($) were annualized capital costs ($/yr) based on the interest rate and lifetime. The total unit cost was calculated as the summation of the unit capital and the unit O&M costs.

3. Results and Discussions

3.1 Impact of different industrial wastewater quality

3.1.1 Treatment performance of primary treatment

Pollutant concentration and flow rate determine the mass of the contaminants removed, whereas the performance of wastewater treatment equipment depends on characteristics of wastewater such as particulate matter fraction and biodegradability. TSS/COD ratio and BOD/COD ratio are widely used as indicators of these two different types of wastewater characteristics. Figure 3 compares these indicators of different industrial wastewater. It shows that the TSS/COD ratio of textile wastewater is higher than those of other industrial wastewaters. Due to relatively high TSS concentration, micro sieving shows TSS removal of greater than 50% and significantly higher COD removal than the primary clarifier, as shown in Figure 4. For tannery wastewater, meat processing wastewater, and textile wastewater, the average COD removal by micro sieving is 35.36%, 39.08%, and 32.50%, respectively, which are higher than that by primary clarifier. Textile wastewater has a relatively lower TSS concentration than other industrial wastewaters in Table 1. However, primary clarifier in textile wastewater treatment shows higher COD removal than tannery wastewaters due to the high TSS/COD ratio of textile wastewater, as shown in Figure 4. To assess the influence of wastewater quality on COD removal of the primary clarifier and micro
seiving, Pearson correlation analysis was carried out to evaluate the correlation between COD removal and related parameters at a level of significance of $p < 0.01$.

Figure 3 TSS/COD ratio and BOD/COD ratio for different industrial wastewater
Figure 4 COD removal of primary treatment for different industrial wastewater

Table 3 shows the Pearson's correlations between COD removal of two systems, the concentration of TSS and TSS/COD. Compared with TSS concentration, the ratio between TSS and COD showed stronger positive correlations with COD removal at the 0.01 level. Therefore, regression models of COD removal are developed based on TSS/COD ratio. The trend lines for predicting COD removal of primary treatment from TSS/COD are depicted in Figure 5. TSS concentration of textile wastewater is lower than those of other industrial wastewaters. However, textile wastewater has a relatively low concentration of COD, as shown in Table 1. The particulate COD fraction of textile wastewater is higher than those of other industrial wastewaters. Since TSS/COD ratio is associated with particulate COD fraction, COD removal of two systems rises with the increasing TSS/COD ratio of influent wastewater as shown in Figure 5. Therefore, TSS/COD ratio is the key parameter for determining COD removal of primary treatment. Due to the high particulate matter fraction, primary treatment shows excellent separation performance during treatment of textile wastewater.

Table 3 Correlations between COD removal, TSS concentration, and TSS/COD ratio of influent wastewater

Pearson Correlation	COD removal of system A (%)	COD removal of system B (%)
TSS (mg/L)	0.278	0.595**
TSS/COD (%)	0.941**	0.910**

** At the 0.01 level (2-tailed), correlation is significant.
Figure 5 Variation of COD removal in primary treatment with TSS/COD ratio

Biodegradability expressed as the BOD/COD ratio represents the ability of a substance to be removed by microorganisms. It is an common index of wastewater biodegradation [102]. The higher the BOD/COD ratio, the higher is the biodegradability. Biodegradability of meat processing wastewater, tannery wastewater, and textile wastewater are shown in Figure 3 which illustrates the average BOD/COD ratio of 0.412, 0.327, and 0.314, respectively. Therefore, meat processing wastewater has higher biodegradability than other industrial wastewaters. Figure 6 shows the BOD/COD ratio of untreated wastewater and treated wastewater by primary clarifier and micro-sieving. Biodegradability rises with the increasing BOD/COD ratio of untreated wastewater. Figure 6 demonstrates that the slope of the linear fitting equation for system B is greater than that of system A, which illustrates that micro-sieving could improve the biodegradability of wastewater more significantly as compared with the primary clarifier. Primary treatment increases the biodegradability of wastewater by
reducing the particulate non-biodegradable COD fraction of industrial wastewater. As compared to system A, the BOD/COD ratio of wastewater increased by 0.59%-7.50%, 0.60%-3.57%, and 0.01%-2.19% for meat processing wastewater, tannery wastewater, and textile wastewater, respectively. Due to the relatively low TSS concentration of textile wastewater, TSS removal by primary clarifier and by micro sieving and variation of BOD/COD ratio is smaller. Meat processing wastewater has higher biodegradability and TSS concentration, micro sieving increases mean and maximum BOD/COD ratio to 0.48 and 0.63. Hence, the biodegradability of industrial wastewater with a high concentration of TSS is easier to be improved by micro-sieving.

![BOD/COD ratio of wastewater after primary treatment](image)

Figure 6 Variation of biodegradability after primary treatment

3.1.2 Treatment performance of secondary treatment

Due to high COD removal of micro sieving and UASB reactor in system B, COD removal of aerobic treatment in system B decreases by 40.7%-66.5%, 33.6-60.0%, and 23.0%-60.0% for meat processing wastewater, tannery wastewater, and textile
wastewater as compared to aerobic treatment in system A in Figure 7. Micro-sieving and UASB could reduce oxygen demand for all kinds of industrial wastewater. In secondary treatment, the UASB reactor removes 15.8%-53.5%, 14.0%-49.0%, and 22.9%-51.1% of COD for three kinds of industrial wastewater. Because of the higher BOD/COD ratio of treated meat processing wastewater by micro-sieving, UASB could convert more COD to CH$_4$ than other industrial wastewater, which resulted in less oxygen demand to remove the remaining COD.

![Figure 7 COD removal of primary and secondary treatment](image)

Figure 7 COD removal of primary and secondary treatment (1: Primary clarifier, 2: Micro sieving, 3: Aerobic treatment in system A, 4: Aerobic treatment in system B, 5: UASB reactor.)

Mainstream UASB converts biodegradable COD in wastewater to CH$_4$ for energy recovery. Since the BOD/COD ratio of treated wastewater by primary treatment is positively related to the influent wastewater quality as shown in Figure 6, CH$_4$ production/COD influent to secondary treatment (%) rises with increasing
biodegradability (BOD/COD ratio) in Figure 8. Since UASB removes COD through
the conversion of organic matter to biogas, COD removal of UASB reactor also shows
strong positive correlations with the BOD/COD ratio of raw wastewater, as shown in
Figure 8. This suggests that the biodegradability of wastewater could be used for
predicting methane conversion rate and COD removal of UASB reactor in the industrial
wastewater treatment system with micro sieving. In addition, UASB shows excellent
biogas production efficiency for treating industrial wastewater with high
biodegradability.

Figure 8 CH₄ production/influent COD to UASB and COD removal of UASB reactor

3.2 Effluent wastewater quality

Since aerobic treatment in systems A and B is designed based on low effluent BOD
and COD concentration, two treatment systems could achieve similar COD removal
and concentration in the effluent, as shown in Figures 7 and 9. Table 4 shows current
discharge standards of organics in industrial wastewater in different countries,
including European [103], the USA [11], China [104, 105], and India [106-108]. In figure 9, effluent COD concentration are 116.61-1683.80, 356.13-2952.27 and 14.19-680.48 mg/L, respectively. Most of the effluent wastewater quality in the two systems does not meet the current discharge standards. This is due to a much high concentration of COD, relatively low biodegradability (BOD/COD ratio), and the relatively high content of refractory soluble organic matter. Most of the remaining COD, which is the soluble non-biodegradable matter, is not easily removed by primary physical treatment and biological processes. Physical-chemical treatment such as adsorption might be required to remove soluble substances by the accumulation of those substances on activated carbon to increase COD removal efficiency and meet the discharge requirement. Figure 9 illustrates that the effluent of some meat processing wastewater and textile wastewater achieve the discharge requirement of several countries due to their low concentration of COD and relatively high BOD/COD ratio. Therefore, it is necessary to study the relationship between the total COD removal of primary treatment and biological processes and wastewater quality.
Figure 9 Effluent COD concentration of 3 industrial wastewater in two treatment systems

Table 4 Discharge standards of industrial wastewater in different countries

Type of wastewater	Parameter	EU	USA	Canada	China	India			
Meat processing wastewater	BOD (mg/L)	Min 25	Max 16	Min 5	Max 30	Min 20	Max 100	Min 30	Max 100
	COD (mg/L)	Min 125	Max 100	Min 100	Max 300				
Tannery wastewater	BOD (mg/L)					Min 30	Max 30		
	COD (mg/L)						Min 250		
Textile wastewater	BOD (mg/L)	Min 25	Max 80	Min 250	Max 400				
	COD (mg/L)	Min 100	Max 156		Max 400				

Table 5 shows the Pearson's correlations between COD removal, BOD/COD ratio, and TSS/COD ratio. The ratio between BOD/COD and the ratio between TSS and COD showed strong positive correlations with COD removal at the 0.01 level. Since the BOD/COD ratio and TSS/COD ratio affect COD removal of UASB and primary
treatment, regression models of COD removal are developed based on BOD/COD ratio and TSS/COD ratio. The equation for predicting COD removal of primary treatment and biological processes from BOD/COD and TSS/COD can be depicted as the following equation:

$$\text{COD removal (\%)} = 75.69(\text{BOD/COD ratio}) + 57.53(\text{TSS/COD ratio}) + 23.15 \quad R^2=0.929$$

(9)

The squared correlation coefficient R^2 represents that the BOD/COD ratio and TSS/COD ratio of influent wastewater can explain 92.9% of COD removal. The BOD/COD ratio and TSS/COD ratio are positively related to COD removal efficiency. Micro-sieving and UASB could achieve higher COD removal when treating industrial wastewater with higher particulate matter fraction and biodegradability. Effluent COD concentration could be calculated based on COD removal and influent COD concentration. Therefore, characteristics of wastewater could be used for predicting effluent COD concentration of industrial wastewater in a system with primary treatment and biological processes to determine if physical-chemical treatment is required.

Table 5 Correlations between COD removal, BOD/COD ratio and TSS/COD ratio of influent wastewater

Pearson Correlation	COD removal (%)
BOD/COD (%)	.712**
TSS/COD (%)	.804**

** At the 0.01 level (2-tailed), correlation is significant

3.3 Energy demand and production

3.3.1 Theoretical and actual energy production of UASB
In this study, empiric equations (1-5) were used to estimate theoretical COD removal and unit energy consumption of UASB, as shown in Table 6. Theoretical COD removal, unit methane production, and unit energy production at 25 °C are 54%-88%, 0.15-0.30 m³ CH₄/kg COD removal, and 0.52-1.03 kWh/kg COD.

Table 6 Theoretical COD removal, unit methane production, and unit energy production of UASB without primary treatment

BOD/COD ratio	0.57	0.46	0.29	0.53	0.34	0.30
COD concentration (mg/L)	2100.00	2350.00	4221.00	1697.00	3900.00	5422.25
COD removal (%)	88.08	85.45	53.85	82.66	54.56	79.01
Unit CH₄ production (m³ CH₄/kg COD removal at 0°C and 1 atm) *	0.27	0.22	0.17	0.26	0.21	0.14
Unit CH₄ production (m³ CH₄/kg COD removal at 25°C and 1 atm)	0.30	0.24	0.19	0.28	0.23	0.15
Unit energy consumption (kWh/kg COD removal)	1.03	0.83	0.65	0.97	0.80	0.52

* The following reaction is used for converting COD digested in UASB to methane:

\[
\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} \quad (10)
\]

1 kg COD digested could be converted to 0.25 kg CH₄ or 0.35 m³ CH₄ theoretically at 0°C and 1 atm [95].

Table 7 lists the data of COD removal and methane production of UASB in treating food processing wastewater. These data were collected from published peer-reviewed papers [109-111]. Actual COD removal, unit methane production, and unit energy production at 25 °C are 43%-95%, 0.01-0.38 m³ CH₄/kg COD removal, and 0.03-1.30 kWh/kg COD. As shown in Table 6, 7, and Figure 10, theoretical energy productions are close to the actual values, which indicates the validity of empiric equations used in this study.

Table 7 Actual COD removal and unit methane production and unit energy production of UASB

HRT (h)	22	22	22	18	18	14	14	7, 1	6, 8	6, 7	4, 1	2, 3
SRT (d)								60	23	14	14	3.3
Temperature (°C)	35	35	35	35	35	35	35	33	33	33	33	33
COD (mg/L)	28	32	42	30	65	39	63	82	57	52	54	55
COD removal (%)	83	84	89	82	75	78	90	78	73	77	83	68
L biogas/g COD removed	0.55	0.47	0.42	0.38	0.34	0.3	0.26	0.22	0.18	0.15		
------------------------	------	------	------	------	------	-----	------	------	------	------		
L CH4/kg SCOD removed (at 25°C and 1 atm)	21	25	28	20	19	21	25	28	20	19		
Unit CH4 production (m3 CH4/kg COD removal at 0°C and 1 atm) *	0.34	0.29	0.25	0.2	0.19	0.17	0.15					
Unit CH4 production (m3 CH4/kg COD removal at 25°C and 1 atm)	0.38	0.32	0.27	0.22	0.18	0.15	0.12					
Unit energy consumption (kWh/kg COD removal)	1.30	1.10	0.94	1.08	0.45	0.37	0.27					

* Unit CH4 production at the standard temperature and pressure (STP) is estimated based on the assuming methane/biogas ratio of 70% [112], 0°C, and 1 atm.
3.3.2 Theoretical and actual energy consumption of PN/A

Table 8 lists the actual unit energy consumption of PN/A is 0.8-1.92 kWh/kg N removed. Based on equations (9-10), 1.32kWh/kg NH₄⁺-N was used as the theoretical unit energy consumption of PN/A, which is close to the actual value, as shown in Figure 11. This proves the validity of the theoretical unit energy consumption. According to the benchmarking method reported by Yang et al. [113], the mean actual unit energy consumptions of 1.4 kWh/kg NH₄⁺-N could be selected as the benchmark data for comparing with actual unit energy consumption to check the energy efficiency of PN/A reactor.

Table 8 Energy consumption of PN/A reactors.

Plant	Reactor type	Unit energy demand (kWh/kg NH₄⁺-N removed)	Reference
Apeldoorn	SBR	1.1	[114]
Balingen	SBR	0.92	
Heidelberg	SBR	1.67	
Ingolstadt	SBR	1.92	
Nieuwegein	SBR	0.8	
Zurich	SBR	1.11	
Olburgen	MBBR	1.86	
Malmö	MBBR	1.45-1.75	[115]
3.3.3 Energy consumption and production of WWTP

Electricity consumption of a WWTP is mainly from the wastewater pump station, aeration equipment, and sludge treatment. Secondary biological treatment consumes 50–70% of the overall energy consumption of a WWTP [98]. Therefore, the energy required by aeration was the dominant energy consumption. Figure 12 shows that electricity consumption rises as the influent concentration of NH$_4^+$-N and soluble biodegradable organic nitrogen (sbON) increases. Therefore, unit energy consumption (kWh/kg N removal) is used for comparing energy efficiency of different industrial wastewater systems as shown in Figure 13. The oxygen requirement of PN/A process and nitrification process are 1.83 and 4.57 g O$_2$/g NH$_4^+$-N converted. PN/A process in system B effectively reduces aeration consumption for removing NH$_4^+$-N. Therefore, system B shows lower unit energy consumption than system A. In Figure 13, mean unit energy consumptions of system B for meat processing wastewater, tannery...
wastewater, and textile wastewater are 1.49, 1.37, and 1.39 kWh/kg N removal, respectively. Since primary treatment and UASB removes COD without using oxygen, most of O$_2$ is used for the PN/A process, especially in system B. Therefore, mean unit energy consumptions of system B are close to than actual unit energy consumption of PN/A, as shown in Figure 11.

Figure 12 Electricity consumption and influent NH$_4^+$-N and sbON
Except for BOD that is converted to CO₂ in aerobic treatment, most of soluble BOD (sBOD) in industrial wastewater and biodegradable particulate BOD (bpBOD) in primary and secondary sludge are converted to CH₄ to produce electricity and heat by UASB and side stream anaerobic digester. Figure 14 illustrates energy production rises with increasing influent BOD concentration. The unit energy production (kWh/kg BOD removal) is used as an indicator in assessing the influence of different industrial wastewater on two treatment systems, as shown in Figure 15. The average unit energy production of system B for meat processing wastewater, tannery wastewater, and textile wastewater are 1.80, 1.77, and 1.73 kWh/kg BOD removal, respectively. The unit energy production for food processing wastewater is higher than that of other industrial wastewaters. Meat processing wastewater has higher BOD concentration and biodegradability (BOD/COD ratio), as shown in Table 1 and Figure 3. This increases biogas production efficiency and unit energy production of UASB reactors, as shown
in Figure 16. In addition, sludge production from the PN/A process and denitrification process increase CH$_4$ production of side stream anaerobic digester. Therefore, the energy positive system for treating meat processing wastewater could produce more energy with the same BOD removal than that for treating tannery wastewater and textile wastewater.

Figure 14 Electricity production and influent BOD
3.3.4 Energy recovery

Figure 15 Unit electricity production

Figure 16 Unit energy production of UASB
Figure 17 shows the influence of different industrial wastewater on energy recovery of two treatment systems. System A for treating industrial wastewater could not produce enough electricity to satisfy the energy demand for oxygen production due to the energy ratio of less than 1. Since UASB effectively converts COD to CH₄ and PN/A decreases energy consumption for removing N, innovative technologies could help industrial wastewater treatment achieve electrical self-sufficiency, as shown in Figure 17. Meat processing wastewater has higher BOD concentration and BOD/COD ratio. However, N concentration of meat processing wastewater is higher than other industrial wastewaters. Energy consumption and energy production are influenced by BOD and N concentration, respectively. In system B, energy recovery ratio is positive related to BOD/N ratio, as shown in Figure 18. High BOD and N concentration of meat processing wastewater leads to relatively lower BOD/COD ratio and energy recovery ratio. Although textile wastewater has lower BOD concentration, the value of the energy ratio for textile treatment system B could be as high as 17.7 because of lower N concentration and higher BOD/N ratio. The minimal energy ratio is 7.0 which is seven times higher than 1. The mean energy ratio is 14.3. Therefore, BOD/N ratio significantly affects energy recovery of treatment system with innovative technologies.
Figure 17 Energy recovery ratio of system A and B

Figure 18 Energy recovery ratio as a function of daily influent BOD/TN ratio in system B
3.4 Environmental indicators

The contributors of system A and B to global warming and eutrophication potential are shown in Figure 19 and 20. Since the global warming potential is higher than 0, activated sludge process with nitrification-denitrification for treating industrial wastewater could not be considered as the sustainable design. Energy significantly affects global warming potential of treatment systems. System B could produce enough electricity to satisfy the aeration demand. The energy production could offset the overall global warming potential in system B, as shown in Figure 19. Therefore, achieving energy positive by innovative technologies could effectively reduce impacts of industrial wastewater treatment on the global warming. Due to high energy recovery ratio, the eutrophication potential of treatment system B is lower than that of system A, as shown in Figure 20. Since the eutrophication potential is affected by effluent pollutant mass, meat processing wastewater treatment has higher eutrophication potential than textile wastewater treatment. Many researchers did not consider the physical-chemical treatment when designing wastewater treatment system [76, 77, 116]. The physical-chemical treatment is not necessary because non-biodegradable COD of municipal wastewater is low enough to meet discharge requirements. However, meat processing wastewater has high concentration of COD and non-biodegradable COD. This results in a high eutrophication potential of food processing wastewater treatment. UASB and activated sludge process could not remove non-biodegradable matter. Therefore, the physical-chemical treatment is required to be applied in the future food processing wastewater treatment design for removing non-biodegradable COD.
Figure 19 Global warming potential of 3 industrial wastewater in two treatment systems

Figure 20 Eutrophication potential of three industrial wastewaters
in two treatment systems

3.5 Cost analysis

Unit cost analysis of treatment systems based on different industrial wastewater quality compares the cost of these systems. Since COD removal by primary treatment and secondary treatment are positively related to TSS/COD ratio and BOD/COD ratio, unit cost metric ($/kg COD$_{removed}$) is used as the indicator in this study. Figure 21 compares the unit cost ($/kg COD$_{removed}$) of two systems for treating different industrial wastewater. Although application of UASB and PN/A in system B increase the corresponding cost, UASB and PN/A reduces influent BOD and N loading and required size of activated sludge process with nitrification-denitrification. Figure 21 demonstrates that the unit cost of system B is lower than that of system A. Since economic income due to energy recovery and cost saving is higher than the increased cost of innovative technologies, innovative biological technologies could replace the old process. In system B, the average unit cost for meat processing wastewater, tannery wastewater, and textile wastewater are 0.54, 0.57, and 1.12 $/kg COD removal, respectively. The unit cost for meat processing wastewater is lower than that for the other wastewaters. Compared with other wastewater, meat processing wastewater has a higher biodegradability and concentration of BOD, which could produce a large amount of CH$_4$ for energy recovery to reduce the unit cost of a treatment system. On the other hand, COD removal strongly affects unit costs of the main unit process as shown in Figures 22. The unit cost of UASB systems decrease with increasing COD removal. The unit capital cost ($/reactor volume m3) of UASB is much higher than that of activated sludge tank for small-sized WWTPs, as shown in Table 9. The total cost of treatment system is significantly by the cost of UASB. Although textile wastewater has the highest energy recovery ratio, the COD concentration of textile wastewater is
lower than that of other wastewaters. This leads to higher unit costs of the UASB. The
meat processing wastewater system consumes more oxygen for removing N in PN/A.
However, this process increases the CH$_4$ production of AD through increasing biomass.
Higher biodegradability and pollutant concentration reduce the unit cost of the meat
processing wastewater treatment system. Therefore, it is more economical to treat meat
processing wastewater with innovative technologies.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure21.png}
\caption{Unit cost of different industrial wastewater treatment}
\end{figure}
Figure 22 Unit cost of UASB

Table 9 Unit capital cost for different treatment capacity of WWTPs (Population Equivalents (PE.))

Unit capital cost (US$/reactor volume m3)	UASB	Activated sludge tank	Reference		
Capacity (PE.)	Min	Max	Min	Max	[76]
25,000	600	1000	220	300	
50,000	500	700	180	250	
100,000	350	500	150	200	
200,000	250	400	120	170	

4. Conclusions

In the current study, an Excel-based model was developed to compare the unit energy and cost of energy positive systems for treating different kinds of industrial wastewater. Results showed that micro-sieving could remove 35.36%, 39.08%, and 32.50% of COD for tannery, meat processing, and textile wastewater, respectively. Due to the relatively high TSS/COD ratio, primary treatment could achieve high COD removal efficiency of textile wastewater with low TSS concentration as compared to
tannery wastewater. UASB reactor could remove 15.8%-53.5%, 14.0%-49.0%, and 22.9%-51.0% of COD for three kinds of wastewater, respectively. UASB converts more COD to CH$_4$ in meat process wastewater with high BOD concentration because of the high BOD/COD ratio. Pearson correlation analysis shows that the TSS/COD ratio and BOD/COD ratio are the key parameters in determining COD removal and methane conversion rate of primary treatment and secondary treatment. These regression equations could be used to predict COD removal by the primary and biological processes as follows:

\[
\text{COD removal (\%)} = 75.69(\text{BOD/COD ratio}) + 57.53(\text{TSS/COD ratio}) + 23.15
\]

\[R^2 = 0.929\]

For meat processing wastewater, tannery wastewater, and textile wastewater, the mean unit energy consumptions were 1.49, 1.37, and 1.39 kWh/kg N removal, which are close to actual unit energy consumption of PN/A process. Mean unit energy production for three types of wastewater in innovative system are 1.80, 1.77, and 1.73 kWh/kg BOD removal, respectively. The energy positive system for treating meat processing wastewater could produce more energy for removing the same amount of BOD than other than other industrial wastewater treatment systems. The average unit cost for meat processing wastewater, tannery wastewater, and textile wastewater are 0.54, 0.57, and 1.12 $/kg COD removal, respectively. Textile wastewater treatment has the highest energy recovery ratio. However, the low COD concentration of textile wastewater leads to high unit cost of system. Meat processing wastewater has higher COD concentration and biodegradability than other wastewaters, which reduce unit cost of UASB and increases electricity production through increasing COD loading rate to UASB and AD. A low unit cost of UASB and a high CH$_4$ production rate improves the unit cost of meat processing wastewater treatment systems. Therefore, it is more
economical and easier to treat meat processing wastewater with micro sieving, UASB, and PN/A technologies than other industrial wastewaters. Due to high energy recovery, innovative technologies could effectively reduce effect of industrial wastewater treatment on the global warming. However, meat processing wastewater treatment with innovative technologies shows high eutrophication potential because of its high non-biodegradable COD concentration. UASB with anammox treatment for treating meat processing wastewater could not be considered as the sustainable option when the eutrophication criterion and discharge requirement are prioritized. Therefore, physical-chemical treatment may be required in the future food processing wastewater treatment design to remove non-biodegradable COD. The economic advantages and limitations of innovative technologies in treating industrial wastewater have been quantified by using unit energy and cost per kg pollutant removed which provide valuable references for future sustainable design of industrial wastewater treatment systems.

5. Additional information

Availability of data and materials

The data supporting the conclusions of this study are available within the article.

Competing interests

The authors claim no conflict of interests.

Funding

The Department of Civil and Environmental Engineering at Florida International University support Jinze Li with Teaching Assistantship while Jinze Li could pursue this research.

Authors’ contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jinze Li. The first draft of the
manuscript was written by Jinze Li and all authors commented on previous versions of
the manuscript. All authors read and approved the final manuscript.

- Conceptualization: Walter Z. Tang and Jinze Li; Methodology: Jinze Li and
Walter Z. Tang; Formal analysis and investigation: Jinze Li; Writing - original draft
preparation: Jinze Li; Writing - review and editing: Walter Z. Tang; Funding
acquisition: Jinze Li; Resources: Department of Civil and Environmental Engineering,
Florida International University, Miami, Florida 33199; Supervision: Dr. Atorod
Azizinamini.

6. Acknowledgments

The authors acknowledge the financial support to Jinze Li by the Department of
Civil and Environmental Engineering, Florida International University, Miami, Florida
33199.

7. Reference

[1] Burian, S.J., Nix, S.J., Pitt, R.E., Durrans, S.R., 2000. Urban wastewater
management in the United States: Past, present, and future. Journal of Urban
Technology. 7, 33-62. https://doi.org/10.1080/713684134

[2] Tchobanoglous, G., Burton, F., Stensel, H.D., 2003. Wastewater engineering:
Treatment and reuse. American Water Works Association. Journal. 95, 201.

[3] Paraskeva, P., Diamadopoulos, E., 2006. Technologies for olive mill wastewater
(OMW) treatment: a review. Journal of Chemical Technology & Biotechnology:
International Research in Process, Environmental & Clean Technology. 81, 1475-1485.
https://doi.org/10.1002/jctb.1553

[4] Boopathy, R., Larsen, V.F., Senior, E., 1988. Performance of anaerobic baffled
reactor (ABR) in treating distillery waste water from a scotch whisky factory. Biomass.
16, 133-143. https://doi.org/10.1016/0144-4565(88)90022-4
[5] Gerbens-Leenes, P.W., Mekonnen, M.M., Hoekstra, A.Y., 2013. The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. Water Resources and Industry. 1, 25-36. https://doi.org/10.1016/j.wri.2013.03.001

[6] Mekonnen, M.M., Hoekstra, A.Y., 2012. A global assessment of the water footprint of farm animal products. Ecosystems. 15, 401-415. https://doi.org/10.1007/s10021-011-9517-8

[7] Bustillo-Lecompte, C.F., Mehrvar, M., 2015. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. Journal of Environmental Management. 161, 287-302. https://doi.org/10.1016/j.jenvman.2015.07.008

[8] Cao, W., Mehrvar, M., 2011. Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and UV/H2O2 processes. Chemical Engineering Research and Design. 89, 1136-1143. https://doi.org/10.1016/j.cherd.2010.12.001

[9] Khamtib, S., Reungsang, A., 2014. Co-digestion of oil palm trunk hydrolysate with slaughterhouse wastewater for thermophilic bio-hydrogen production by Thermoanaerobacterium thermosaccharolyticum KKU19. International Journal of Hydrogen Energy. 39, 6872-6880. https://doi.org/10.1016/j.ijhydene.2014.02.073

[10] Bustillo-Lecompte, C., Mehrvar, M., Quiñones-Bolaños, E., 2016. Slaughterhouse wastewater characterization and treatment: an economic and public health necessity of the meat processing industry in Ontario, Canada. Journal of Geoscience and Environment Protection. 4, 175-186. https://doi.org/10.4236/gep.2016.44021

[11] EPA, 2004. Effluent limitations guidelines and new source performance standards for the meat and poultry products, point source category. Environmental Protection Agency (EPA): Federal Register. 69.
[12] Kundu, P., Debsarkar, A., Mukherjee, S., 2013. Treatment of slaughter house wastewater in a sequencing batch reactor: performance evaluation and biodegradation kinetics. BioMed research international. 2013. https://doi.org/10.1155/2013/134872

[13] Durai, G., Rajasimman, M., 2011. Biological Treatment of Tannery Wastewater- A Review. Journal of Environmental science and Technology. 4, 1-17. https://doi.org/10.3923/jest.2011.1.17

[14] Famielec, S., Wieczorek-Ciurowa, K., 2011. Waste from leather industry. Threats to the environment. Czasopismo Techniczne. Chemia. 108, 43-48. https://suw.biblos.pk.edu.pl/resources/i4/i5/i4/i6/r4546/FamielecS_WasteLeather.pdf

[15] United Nations Industrial Development Organization, 1991. Tanneries and the Environment: A Technical Guide to Reducing the Environmental Impact of Tannery Operations. United Nations Environment Programme, Industry and Environment Office. https://books.google.com/books?id=FHDbAAAAMAAJ

[16] European Commission, 2001. Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques for the Tanning of Hides and Skins May 2001. https://p2infohouse.org/ref/21/20575.pdf

[17] Lofrano, G., Meriç, S., Zengin, G.E., Orhon, D., 2013. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review. Science of the Total Environment. 461, 265-281. https://doi.org/10.1016/j.scitotenv.2013.05.004

[18] Mwinyihija, M., 2010. Ecotoxicological Diagnosis in the Tanning Industry. Springer New York. https://books.google.com/books?id=a53Z9sUKAdUC
[19] Abdulla, H.M., Kamal, E.M., Mohamed, A.H., El-Bassuony, A.D. Year. Chromium removal from tannery wastewater using chemical and biological techniques aiming zero discharge of pollution. in Proceeding Of Fifth Scientific Environmental Conference. 2010.

[20] de Aquim, P.M., Hansen, É., Gutterres, M., 2019. Water reuse: An alternative to minimize the environmental impact on the leather industry. Journal of Environmental Management. 230, 456-463. https://doi.org/10.1016/j.jenvman.2018.09.077

[21] Elabbas, S., Ouazzani, N., Mandi, L., Berrekhis, F., Perdicakis, M., Pontvianne, S., Pons, M.-N., Lapicque, F., Leclerc, J.-P., 2016. Treatment of highly concentrated tannery wastewater using electrocoagulation: influence of the quality of aluminium used for the electrode. Journal of Hazardous Materials. 319, 69-77. https://doi.org/10.1016/j.jhazmat.2015.12.067

[22] Hassen, A.S., Woldeamanuale, T.B., 2017. Evaluation and Characterization of Tannery Wastewater in each process at batu and modjo tannery, Ethiopia. Int J Rural Dev Environ Health Res. 1, 17-26.

[23] Islam, B.I., Musa, A.E., Ibrahim, E.H., Sharafa, S.A.A., Elfaki, B.M., 2014. Evaluation and characterization of tannery wastewater. Journal of Forest Products & Industries. 3, 141-150.

[24] Nandy, T., Kaul, S.N., Shastry, S., Manivel, U., Deshpande, C.V., 1999. Wastewater Management in Cluster of Tanneries in Tamil Nadu through Implementation of Common Effluent Treatment Plants+. http://nopr.niscair.res.in/bitstream/123456789/17844/1/JSIR%2058%287%29%20475-516.pdf

[25] Robinson, T., McMullan, G., Marchant, R., Nigam, P., 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed
alternative. Bioresource Technology. 77, 247-255. https://doi.org/10.1016/S0960-8524(00)00080-8

[26] Villegas-Navarro, A., Ramírez-M, Y., Salvador-SB, M.S., Gallardo, J.M., 2001. Determination of wastewater LC50 of the different process stages of the textile industry. Ecotoxicology and Environmental Safety. 48, 56-61. https://doi.org/10.1006/eesa.2000.1986

[27] Wang, C., Yediler, A., Lienert, D., Wang, Z., Kettrup, A., 2002. Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri. Chemosphere. 46, 339-344. https://doi.org/10.1016/S0045-6535(01)00086-8

[28] EPA, 1997. EPA Office of Compliance Sector Notebook Project: profile of the textile industry. https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=50000HE9.PDF

[29] Volmajer Valh, J., Majcen Le Marechal, A., Vajnhandl, S., Jeric, T., Šimon, E., 2011. Water in the textile industry. Treatise on Water Science; Wilderer, P., Ed.; Elsevier: Oxford, UK. 685-706.

[30] Vijayaraghavan, G., Shanthakumar, S., 2015. Removal of sulphur black dye from its aqueous solution using alginate from Sargassum sp. (Brown algae) as a coagulant. Environmental Progress & Sustainable Energy. 34, 1427-1434. https://doi.org/10.1002/ep.12144

[31] Noreen, M., Shahid, M., Iqbal, M., Nisar, J., 2017. Measurement of cytotoxicity and heavy metal load in drains water receiving textile effluents and drinking water in vicinity of drains. Measurement. 109, 88-99. https://doi.org/10.1016/j.measurement.2017.05.030

[32] Ganesh, R., Boardman, G.D., Michelsen, D., 1994. Fate of azo dyes in sludges. Water Research. 28, 1367-1376. https://doi.org/10.1016/0043-1354(94)90303-4
807 [33] Gottlieb, A., Shaw, C., Smith, A., Wheatley, A., Forsythe, S., 2003. The toxicity of
textile reactive azo dyes after hydrolysis and decolourisation. Journal of Biotechnology.
101, 49-56. https://doi.org/10.1016/S0168-1656(02)00302-4

810 [34] Meriç, S., Kaptan, D., Ölmex, T., 2004. Color and COD removal from wastewater
containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere. 54, 435-
441. https://doi.org/10.1016/j.chemosphere.2003.08.010

813 [35] Ullah, T., Sultana, T., Khan, L., Feroz, K., Ahmad, Q.A., Hussain, S., 2017.
Histopathological alteration in Gill, Kidney and Liver of Cirrhinus mrigala, Catla catla,
Hypophthalmichys molitrix and Labeo rohita due to sub-lethal exposure of textile
industries effluents in Faisalabad, Pakistan. Pakistan. J. Entomol. Zool. Stud. 5, e62.

817 [36] Najam-us-Sahar, Hussain, A., Mustafa, A., Waqas, R., Ashraf, I., Zaman Akhtar,
M.F.U., 2017. Effect of textile wastewater on growth and yield of wheat (Triticum
aestivum L.). Soil & Environment. 36, 28-34. https://www.researchgate.net/publication/316169367_Effect_of_textile_wastewater_on_growth_and_yield_of_wheat_Triticum_aestivum_L

822 [37] Daud, M.K., Nafees, M., Ali, S., Rizwan, M., Bajwa, R.A., Shakoor, M.B., Arshad,
M.U., Chatha, S.A.S., Deeba, F., Murad, W., Malook, I., Zhu, S.J., 2017. Drinking water
quality status and contamination in Pakistan. BioMed research international. 2017.
https://doi.org/10.1155/2017/7908183

826 [38] Al-Mutairi, N.Z., Hamoda, M.F., Al-Ghusain, I.A., 2007. Slaughterhouse
wastewater treatment using date seeds as adsorbent. Journal of Environment Science
and Health. 55, 678-710.

829 [39] Boopathy, R., Bonvillain, C., Fontenot, Q., Kilgen, M., 2007. Biological treatment
of low-salinity shrimp aquaculture wastewater using sequencing batch reactor.
[40] Kim, H.S., Choung, Y.K., Ahn, S., Oh, H.S., 2008. Enhancing nitrogen removal of piggery wastewater by membrane bioreactor combined with nitrification reactor. Desalination. 223, 194-204. https://doi.org/10.1016/j.desal.2006.12.021

[41] Al-Mutairi, N.Z., Al-Sharifi, F.A., Al-Shammari, S.B., 2008. Evaluation study of a slaughterhouse wastewater treatment plant including contact-assisted activated sludge and DAF. Desalination. 225, 167-175. https://doi.org/10.1016/j.desal.2007.04.094

[42] Roy, D., Hassan, K., Boopathy, R., 2010. Effect of carbon to nitrogen (C: N) ratio on nitrogen removal from shrimp production waste water using sequencing batch reactor. Journal of industrial microbiology & biotechnology. 37, 1105-1110. https://doi.org/10.1007/s10295-010-0869-4

[43] Rajagopal, R., Rousseau, P., Bernet, N., Béline, F., 2011. Combined anaerobic and activated sludge anoxic/oxic treatment for piggery wastewater. Bioresource Technology. 102, 2185-2192. https://doi.org/10.1016/j.biortech.2010.09.112

[44] Palatsi, J., Viñas, M., Guivernau, M., Fernandez, B., Flotats, X., 2011. Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions. Bioresource Technology. 102, 2219-2227. https://doi.org/10.1016/j.biortech.2010.09.121

[45] Kern, C., Boopathy, R., 2012. Use of sequencing batch reactor in the treatment of shrimp aquaculture wastewater. Journal of Water Sustainability. 2, 221-232. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.7245&rep=rep1&type=pdf

[46] Wang, F., Liu, Y., Wang, J., Zhang, Y., Yang, H., 2012. Influence of growth manner on nitrifying bacterial communities and nitrification kinetics in three lab-scale
bioreactors. Journal of industrial microbiology & biotechnology. 39, 595-604.

https://doi.org/10.1007/s10295-011-1065-x

[47] Jawahar, A.J., Chinnadurai, M., Ponselvan, J.K., Annadurai, G., 1998. Pollution from tanneries and options for treatment of effluent. Indian Journal of Environmental Protection. 18, 672-678.

[48] Eckenfelder, W.W., 2000. Industrial Water Pollution Control. McGraw-Hill.

https://books.google.com/books?id=hRtSAAAAMAAJ

[49] Tare, V., Gupta, S., Bose, P., 2003. Case studies on biological treatment of tannery effluents in India. Journal of the air & waste management association. 53, 976-982.

https://doi.org/10.1080/10473289.2003.10466250

[50] Ahn, D.H., Chung, Y.C., Yoo, Y.J., Pak, D.W., Chang, W.S., 1996. Improved treatment of tannery wastewater using Zoogloea ramigera and its extracellular polymer in an activated sludge process. Biotechnology letters. 18, 917-922.

https://doi.org/10.1007/BF00154621

[51] Vijayaraghavan, K., Murthy, D.V.S., 1997. Effect of toxic substances in anaerobic treatment of tannery wastewaters. Bioprocess Engineering. 16, 151-155.

https://doi.org/10.1007/s004490050302

[52] Wiemann, M., Schenk, H., Hegemann, W., 1998. Anaerobic treatment of tannery wastewater with simultaneous sulphide elimination. Water Research. 32, 774-780.

https://doi.org/10.1016/S0043-1354(97)00309-6

[53] Di Iaconi, C., Lopez, A., Ramadori, R., Passino, R., 2003. Tannery wastewater treatment by sequencing batch biofilm reactor. Environmental Science & Technology. 37, 3199-3205. https://doi.org/10.1021/es030002u
[54] Farabegoli, G., Carucci, A., Majone, M., Rolle, E., 2004. Biological treatment of tannery wastewater in the presence of chromium. Journal of Environmental Management. 71, 345-349. https://doi.org/10.1016/j.jenvman.2004.03.011

[55] Schrank, S.G., Jose, H.J., Moreira, R.F.P.M., Schröder, H.F., 2004. Elucidation of the behavior of tannery wastewater under advanced oxidation conditions. Chemosphere. 56, 411-423. https://doi.org/10.1016/j.chemosphere.2004.04.012

[56] Sekaran, G., Chitra, K., Mariappan, M., Raghavan, K.V., 1996. Removal of sulphide in anaerobically treated tannery wastewater by wet air oxidation. Journal of Environmental Science & Health Part A. 31, 579-598. https://doi.org/10.1080/10934529609376375

[57] Dogrue, S., Genceli, E.A., Babuna, F.G., Orhon, D., 2004. Ozonation of nonbiodegradable organics in tannery wastewater. Journal of Environmental Science and Health, Part A. 39, 1705-1715. https://doi.org/10.1081/ESE-120037871

[58] Song, Z., Williams, C.J., Edyvean, R.G.J., 2004. Treatment of tannery wastewater by chemical coagulation. Desalination. 164, 249-259. https://doi.org/10.1016/S0011-9164(04)00193-6

[59] Churchley, J.H., 1994. REMOVAL OF DYEWASTE COLOUR FROM SEWAGE EFFLUENT-THE USE OF A FULL SCALE OZONE PLANT. Water Science and Technology. 30, 275. https://search.proquest.com/openview/7db123fa0f6d45f15604e6f854e6d5b6/1?pq-origsite=gscholar&cbl=204420

[60] Stern, S.R., Szpyrkowicz, L., Rodighiero, I., 2003. Anaerobic treatment of textile dyeing wastewater. Water Science and Technology. 47, 55-59. https://doi.org/10.2166/wst.2003.0537
[61] Chu, W., 2001. Dye removal from textile dye wastewater using recycled alum sludge. Water Research. 35, 3147-3152. https://doi.org/10.1016/S0043-1354(01)00015-X

[62] Dąbrowski, W., Żyłka, R., Rynkiewicz, M., 2016. Evaluation of energy consumption in agro-industrial wastewater treatment plant. Journal of Ecological Engineering. 17, 73--78. https://doi.org/10.12911/22998993/63306

[63] Yang, X., López-Grimau, V., Vilaseca, M., Crespi, M., 2020. Treatment of Textile Wastewater by CAS, MBR, and MBBR: A Comparative Study from Technical, Economic, and Environmental Perspectives. Water. 12, 1306. https://doi.org/10.3390/w12051306

[64] Gujer, W., Zehnder, A.J.B., 1983. Conversion Processes in Anaerobic Digestion. Water Science and Technology. 15, 127-167. https://doi.org/10.2166/wst.1983.0164

[65] Chong, S., Sen, T.K., Kayaalp, A., Ang, H.M., 2012. The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment--a state-of-the-art review. Water Research. 46, 3434-3470. https://doi.org/10.1016/j.watres.2012.03.066

[66] Abeling, U., Seyfried, C.F., 1992. Anaerobic-aerobic treatment of high-strength ammonium wastewater-nitrogen removal via nitrite. Water Science and Technology. 26, 1007-1015. https://doi.org/10.2166/wst.1992.0542

[67] van de Graaf, A.A., de Bruijn, P., Robertson, L.A., Jetten, M.S.M., Kuenen, J.G., 1996. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology. 142, 2187-2196. https://doi.org/10.1099/13500872-142-8-2187
[68] Strous, M., Kuenen, J.G., Jetten, M.S.M., 1999. Key Physiology of Anaerobic Ammonium Oxidation. Applied and Environmental Microbiology. 65, 3248-3250. https://doi.org/10.1128/AEM.65.7.3248-3250.1999

[69] Giusti, E., Marsili-Libelli, S., Spagni, A., 2011. Modelling microbial population dynamics in nitritation processes. Environmental Modelling and Software. 26, 938-949. https://doi.org/10.1016/j.envsoft.2011.02.001

[70] O'Shaughnessy, M., 2016. Mainstream Deammonification. IWA Publishing. https://doi.org/10.2166/9781780407852

[71] Rosenwinkel, K.H., Cornelius, A., 2005. Deammonification in the Moving-Bed Process for the Treatment of Wastewater with High Ammonia Content. Chemical Engineering and Technology. 28, 49-52. https://doi.org/10.1002/ceat.200407070

[72] Cui, F., 2012. Cold CANON: Anammox at low temperatures. The Netherlands: Delft University of Technology. http://resolver.tudelft.nl/uuid:2bc15934-7e46-4d5e-98a6-d8f7cfdf8d9e

[73] Bi, Z., Qiao, S., Zhou, J., Tang, X., Zhang, J., 2014. Fast start-up of Anammox process with appropriate ferrous iron concentration. Bioresource Technology. 170, 506-512. https://doi.org/10.1016/j.biortech.2014.07.106

[74] Christensson, M., Ekstrom, S., Andersson Chan, A., Le Vaillant, E., Lemaire, R., 2013. Experience from start-ups of the first ANITA Mox plants. Water Science and Technology. 67, 2677-2684. https://doi.org/10.2166/wst.2013.156

[75] Jenkins, D., Wanner, J., 2014. Activated Sludge – 100 Years and Counting. IWA Publishing. https://doi.org/10.2166/9781780404943

[76] van Haandel, A.C., van der Lubbe, J.G.M., 2012. Handbook of Biological Wastewater Treatment. IWA Publishing. https://books.google.com/books?id=rGX9sgEACAAJ
[77] Khiewwijit, R., Temmink, H., Rijnaarts, H., Keesman, K.J., 2015. Energy and nutrient recovery for municipal wastewater treatment: How to design a feasible plant layout? Environmental Modelling and Software. 68, 156-165. https://doi.org/10.1016/j.envsoft.2015.02.011

[78] Verstraete, W., Vlaeminck, S.E., 2011. ZeroWasteWater: short-cycling of wastewater resources for sustainable cities of the future. International Journal of Sustainable Development & World Ecology. 18, 253-264. https://doi.org/10.1080/13504509.2011.570804

[79] Vaccari, M., Foladori, P., Nembrini, S., Vitali, F., 2018. Benchmarking of energy consumption in municipal wastewater treatment plants - a survey of over 200 plants in Italy. Water Science and Technology. 77, 2242-2252. https://doi.org/10.2166/wst.2018.035

[80] Fitzsimons, L., Clifford, E., McNamara, G., Doherty, E., Phelan, T., Horrigan, M., Delauré, Y., Corcoran, B., 2016. Increasing Resource Efficiency in Wastewater Treatment Plants. Environmental Protection Agency, Johnstown Castle, Ireland. https://www.researchgate.net/publication/303974985_Increasing_Resource_Efficiency_in_Wastewater_Treatment_Plants

[81] Gurung, K., Tang, W.Z., Sillanpää, M., 2018. Correction to: Unit Energy Consumption as Benchmark to Select Energy Positive Retrofitting Strategies for Finnish Wastewater Treatment Plants (WWTPs): a Case Study of Mikkeli WWTP. Environmental Processes. 5, 931-931. https://doi.org/10.1007/s40710-018-0340-5

[82] Del Pozo, R., Diez, V., Beltran, S., 2000. Anaerobic pre-treatment of slaughterhouse wastewater using fixed-film reactors. Bioresource Technology. 71, 143-149. https://doi.org/10.1016/S0960-8524(99)00065-2
[83] Latiffi, N.A.A., Mohamed, R.M.S.R., Apandi, N.M., Tajuddin, R.M. Year. Preliminary assessment of growth rates on different concentration of microalgae scenedesmus sp. in industrial meat food processing wastewater. in MATEC Web of Conferences. 2017. EDP Sciences. https://doi.org/10.1051/matecconf/201710306010

[84] Vu, T., Bach, Q.D., Pham, H.B., Do, T.A., Do, Q., 2017. The Performance of a Gaslift MBR for Slaughterhouse Wastewater Treatment in 1 m3/day Scale. Modern Environmental Science and Engineering. 03, 349-354. https://pdfs.semanticscholar.org/2263/f924843e6487cbcafc6c8e9b4508ca5f2e96.pdf?_ga=2.158854392.352607616.1602798023-98483532.1585087819

[85] Rajakumar, R., Meenambal, T., 2008. Comparative Study on Start–Up Performance of HUASB and AF Reactors Treating Poultry Slaughterhouse Wastewater. International Journal of Environmental Research. 2, 401-410. https://ijer.ut.ac.ir/article_221_026486e1ef33561c63ec2f49bd6981b4.pdf

[86] Yaakob, M.A., Mohamed, R.M.S.R., Al-Gheethi, A.A.S., Kassim, A.H.M., 2018. Characteristics of chicken slaughterhouse wastewater. Chemical Engineering Transactions. 63, 637-642. https://doi.org/10.3303/CET1863107

[87] Ayoub, G.M., Hamzeh, A., Semerjian, L., 2011. Post treatment of tannery wastewater using lime/bittern coagulation and activated carbon adsorption. Desalination. 273, 359-365. https://doi.org/10.1016/j.desal.2011.01.045

[88] Doble, M., Kumar, A., 2005. Biotreatment of Industrial Effluents. Elsevier Science. https://books.google.com/books?id=4qsNn-DZPScC

[89] Durai, G., Rajamohan, N., Karthikeyan, C., Rajasimman, M., 2010. Kinetics studies on biological treatment of tannery wastewater using mixed culture. International Journal of Chemical and Biological Engineering. 3, 105-109.
[90] Yigit, N.O., Uzal, N., Koseoglu, H., Harman, I., Yukseler, H., Yetis, U., Civelekoglu, G., Kitis, M., 2009. Treatment of a denim producing textile industry wastewater using pilot-scale membrane bioreactor. Desalination. 240, 143-150. https://doi.org/10.1016/j.desal.2007.11.071

[91] Tara, N., Arslan, M., Hussain, Z., Iqbal, M., Khan, Q.M., Afzal, M., 2019. On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. Journal of Cleaner Production. 217, 541-548. https://doi.org/10.1016/j.jclepro.2019.01.258

[92] Meriç, S., Selçuk, H., Belgiorno, V., 2005. Acute toxicity removal in textile finishing wastewater by Fenton's oxidation, ozone and coagulation–flocculation processes. Water Research. 39, 1147-1153. https://doi.org/10.1016/j.watres.2004.12.021

[93] Patel, H., Vashi, R.T., 2015. Characterization and Treatment of Textile Wastewater. Elsevier Science. https://books.google.com/books?id=TvicBAAAQBAJ

[94] Cavalcanti, P.F.F., 2003. Integrated application of the UASB reactor and ponds for domestic sewage treatment in tropical regions. https://library.wur.nl/WebQuery/wurpubs/320369

[95] Qasim, S.R., Zhu, G., 2018. Wastewater Treatment and Reuse: Theory and Design Examples. Taylor & Francis, CRC Press. https://books.google.com/books?id=-kTnAQAACAAJ

[96] Davis, M.L., 2010. Water and wastewater engineering: design principles and practice. McGraw-Hill Education.
[97] Kabouris, J.C., Tezel, U., Pavlostathis, S.G., Engelmann, M., Dulaney, J.A., Todd, A.C., Gillette, R.A., 2009. Mesophilic and thermophilic anaerobic digestion of municipal sludge and fat, oil, and grease. Water Environment Research. 81, 476-485. https://doi.org/10.2175/106143008X357192

[98] Qiao, J., Zhou, H., 2018. Modeling of energy consumption and effluent quality using density peaks-based adaptive fuzzy neural network. IEEE/CAA Journal of Automatica Sinica. 5, 968-976. https://doi.org/10.1109/JAS.2018.7511168

[99] Foley, J., De Haas, D., Hartley, K., Lant, P., 2010. Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Research. 44, 1654-1666. https://doi.org/10.1016/j.watres.2009.11.031

[100] Garrido-Baserba, M., Reif, R., Molinos-Senante, M., Larrea, L., Castillo, A., Verdaguer, M., Poch, M., 2016. Application of a multi-criteria decision model to select design choices for WWTPs. Clean Technologies and Environmental Policy. 18, 1097-1109. https://doi.org/10.1007/s10098-016-1099-x

[101] Sun, Y., Garrido-Baserba, M., Molinos-Senante, M., Donikian, N.A., Poch, M., Rosso, D., 2020. A composite indicator approach to assess the sustainability and resilience of wastewater management alternatives. Science of the Total Environment. 725, 138286. https://doi.org/10.1016/j.scitotenv.2020.138286

[102] Tusseau-Vuillemin, M.H., Dispan, J., Mouchel, J.M., Servais, P., 2003. Biodegradable fraction of organic carbon estimated under oxic and anoxic conditions. Water Research. 37, 2242-2247. https://doi.org/10.1016/S0043-1354(02)00582-1

[103] CEC, 1991. Council Directive of 21. May 1991 concerning urban waste water treatment (91/271/EEC). J. Eur. Commun. 34, 40. http://translation-centre.am/pdf/Translat/EU_Direct/environment/Dir_91_271_en.pdf
[104] CMEP, 1992. Discharge standard of water pollutants for meat packing industry
GB 13457-92.

[105] Wang, Z., Xue, M., Huang, K., Liu, Z., 2011. Textile dyeing wastewater
treatment. Advances in treating textile effluent. 5, 91-116.
https://www.intechopen.com/books/advances-in-treating-textile-effluent/textile-
dyeing-wastewater-treatment

[106] CPCB, 1986. General standards for discharge of environmental pollutants part-a:
Effluents. https://cpcb.nic.in/GeneralStandards.pdf

[107] Buljan, J., Kral, I., Clonfero, G., 2011. Introduction to treatment of tannery
effluents. UNIDO, Vienna. https://www.unido.org/sites/default/files/2011-
11/Introduction_to_treatment_of_tannery_effluents_0.pdf

[108] Rajaganesh, K., Sumedha, N.C., Ameer Basha, S., 2014. Characterization of
textile dye effluent from Komarapalayam, Namakkal district, Tamilnadu, India. Indian
Streams Research Journal. 4, 2230-7850.
https://www.researchgate.net/publication/261285361_CHARACTERIZATION_OF-
TEXTILE_DYE_EFFLUENT_FROM_KOMARAPALAYAM_NAMAKKAL_DIST-
RICT_TAMILNADU_INDIA

[109] Caixeta, C.E.T., Cammarota, M.C., Xavier, A.M.F., 2002. Slaughterhouse
wastewater treatment: evaluation of a new three-phase separation system in a UASB
reactor. Bioresource Technology. 81, 61-69. https://doi.org/10.1016/S0960-
8524(01)00070-0

[110] Torkian, A., Eqbali, A., Hashemian, S.J., 2003. The effect of organic loading rate
on the performance of UASB reactor treating slaughterhouse effluent. Resources,
Conservation and Recycling. 40, 1-11. https://doi.org/10.1016/S0921-3449(03)00021-
1
[111] Musa, M.A., Idrus, S., Harun, M.R., Tuan Mohd Marzuki, T.F., Abdul Wahab, A.M., 2020. A comparative study of biogas production from cattle slaughterhouse wastewater using conventional and modified Upflow Anaerobic Sludge Blanket (UASB) reactors. International Journal of Environmental Research and Public Health. 17, 283. https://doi.org/10.3390/ijerph17010283

[112] Federation, W.E., 2017. Design of Water Resource Recovery Facilities, Manual of Practice No.8, Sixth Edition. McGraw-Hill Education. https://books.google.com/books?id=8Mw2DwAAQBAJ

[113] Yang, L.B., Zeng, S.Y., Chen, J.N., He, M., Yang, W., 2010. Operational energy performance assessment system of municipal wastewater treatment plants. Water Science and Technology. 62, 1361-1370. https://doi.org/10.2166/wst.2010.394

[114] Lackner, S., Gilbert, E.M., Vlaeminck, S.E., Joss, A., Horn, H., van Loosdrecht, M.C., 2014. Full-scale partial nitritation/anammox experiences—an application survey. Water Research. 55, 292-303. https://doi.org/10.1016/j.watres.2014.02.032

[115] Christensson, M., Ekström, S., Chan, A.A., Le Vaillant, E., Lemaire, R., 2013. Experience from start-ups of the first ANITA Mox plants. Water Science and Technology. 67, 2677-2684. https://doi.org/10.2166/wst.2013.156

[116] Garrido, J.M., Fdz-Polanco, M., Fdz-Polanco, F., 2013. Working with energy and mass balances: a conceptual framework to understand the limits of municipal wastewater treatment. Water Science and Technology. 67, 2294-2301. https://doi.org/10.2166/wst.2013.124
Figure 1

Schematic graphs of wastewater treatment system A- activated sludge process with nitrification-denitrification
Figure 2

Scheme of wastewater treatment system B: UASB and anammox treatment
Figure 3

TSS/COD ratio and BOD/COD ratio for different industrial wastewater
Figure 4

COD removal of primary treatment for different industrial wastewater
Figure 5

Variation of COD removal in primary treatment with TSS/COD ratio
Figure 6

Variation of biodegradability after primary treatment
Figure 7

COD removal of primary and secondary treatment (1: Primary clarifier, 2: Micro sieving, 3: Aerobic treatment in system A, 4: Aerobic treatment in system B, 5: UASB reactor.)
Figure 8

CH₄ production/influent COD to UASB and COD removal of UASB reactor
Figure 9

Effluent COD concentration of 3 industrial wastewater in two treatment systems
Figure 10

Actual and Theoretical unit energy production of UASB
Figure 11

Actual and Theoretical unit energy consumption of PN/A
Figure 12

Electricity consumption and influent NH$_4^+$-N and sbON
Figure 13

Unit electricity consumption
Figure 14

Electricity production and influent BOD
Figure 15

Unit electricity production
Figure 16

Unit energy production of UASB
Figure 17

Energy recovery ratio of system A and B
Figure 18

Energy recovery ratio as a function of daily influent BOD/TN ratio in system B
Figure 19

Global warming potential of 3 industrial wastewater in two treatment systems
Figure 20

Eutrophication potential of three industrial wastewaters in two treatment systems
Figure 21

Unit cost of different industrial wastewater treatment
Figure 22

Unit cost of UASB