Tree peony (Paeonia suffruticosa Andrews; Paeoniaceae) has been cultivated for more than 1600 years in China, and there are approximately 2000 tree peony cultivars worldwide (Wang, 1997). The first written description of this genus was in 200 BC as a medicinal plant. In the fifth century, with the selection of multiple flower shapes and colors, it became known as an ornamental plant (Li et al., 2011). Studies have shown that the seed oil of tree peony contains abundant unsaturated fatty acids that are beneficial to human health (Sarker et al., 1999; Su et al., 2016). Owing to its multiple uses, the peony genus has spread through Asia, to the Mediterranean, Caucasus Mountains, the mountainous regions of Europe, the United States, and Australia (Rogers, 1995).

The greatest number of cultivated varieties and the largest distribution area of tree peony are found in central China, which has long been characterized by an arid climate. Nevertheless, severe water deficiency stress can limit the cultivation area, lead to smaller leaves and flowers, inhibit the synthesis of organic substances and flower pigments, and reduce the ornamental value and seed yield of tree peony (Li et al., 2011). Recent studies, however, have mainly focused on oil extraction (Chen et al., 2016a, b; Cui et al., 2016; Han et al., 2016). In addition, efficient protocols for the micropropagation of tree peony and the effects of different medium compositions and exogenous hormones on the browning of tree peony callus in tissue culture were recently investigated (Wen et al., 2016; Zhou et al., 2016a). Surprisingly, however, the desiccation tolerance strategies in tree peony cultivars have not yet been investigated.

Transcriptome analysis that uses deep sequencing technology now permits large-scale gene expression detection in the absence of a reference genome. Although there have been several investigations of transcriptome sequencing of tree peony (Gai et al., 2012; Zhou et al., 2013; Zhang et al., 2014, 2015; Zhao et al., 2014; Barghini et al., 2015; Li et al., 2015; Shi et al., 2015; Gao et al., 2016; Wang...
et al., 2016b), studies of drought-responsive differential expression genes in tree peonies have not yet been reported in the literature. Two separate studies of reference gene selection in tree peony—one in plants with different flower colors and another during flower development—were recently reported (Li et al., 2016; Zhou et al., 2016b).

Screening of drought-tolerant tree peony cultivars revealed that ‘Luo Yang Hong’ (LYH) is tolerant to drought, whereas ‘Wu Long Peng Sheng’ (WLPS) is tolerant to flooding (Kong et al., 2011), making the two cultivars ideal study material for investigating mechanisms of drought response in plants. With a view toward improving plant structure, perfecting bloom quality, and mitigating damage from desiccation, this study used LYH and WLPS with their contrasting water sensitivity to characterize unigenes during dehydration and rehydration to explore the complex mechanisms of drought response networks.

MATERIALS AND METHODS

Plant material treatment and sample collection

Four-year-old LYH and WLPS seedlings were cultured in pots using soil collected from the Luoyang National Peony Garden (Luoyang, China). The pots were buried deep in the ground from October until May to avoid freezing injury. The pots were then dug out and irrigated once every two days and cultured under natural conditions before they were used for the water deficiency treatments. Five individuals were used per treatment. The drought treatment (DR) was initiated by tap water irrigation until the soil moisture content reached 80%, after which plants were dehydrated naturally for seven days until the leaves had severely wilted. For the rehydration treatment (RE), the tree peonies were re-watered until the soil moisture content again reached 80%, after which they were cultured for one more day to let the leaf blades completely unfold. Tree peonies cultured in pots with a constant soil moisture content of 80% served as the control treatment (CK). The soil moisture content was measured by gravimetric methods (Bao, 2000). For all three treatments, the third and fourth leaves were sampled and immediately frozen in liquid nitrogen and stored at −80°C.

RNA extraction, cDNA library construction, and sequencing

The leaves sampled from the three different treatments (DR, RE, and CK) were assigned to six independent pools. Total RNA was extracted using the modified cetyltrimethylammonium bromide (CTAB) method (Gambino et al., 2008). The integrity of RNA was examined by an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, California, USA). An in-house library preparation method was used for mRNA sequencing, using fragment sizes of 200 bp. Libraries were quantified by an Agilent Bioanalyzer and qualified by the ABI StepOnePlus Real-Time PCR System (Thermo-Fisher Scientific, Waltham, Massachusetts, USA) during the quality control steps. Libraries were sequenced using the Illumina HiSeq 2000 (Illumina, Shenzhen, Guangzhou, China) at the Beijing Genomics Institute (BGI). Each library was run on a separate lane of the HiSeq. The cDNA library was deposited in the National Center for Biotechnology Information (NCBI) Transcriptome Shotgun Assembly database (BioSample accession no. SRS1180651).

De novo assembly and protein-coding region prediction

Reads with adapters, unknown nucleotides larger than 5%, and low-quality reads (bases quality ≤10) were discarded. Only reads longer than 90 bp were used for assembly. Reads from all treatments and/or cultivars were assembled together by Trinity 3.4 (Grabherr et al., 2011; open source code publicly available at http://TrinityRNASeq.sourceforge.net). Because a reference genome is not available for tree peony, reads were mapped to the assembled unigene set.

Unigenes were first aligned by BLASTX (E-value <0.00001) to protein databases in the following order of NCBI’s nonredundant protein database (nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), and NCBI’s Clusters of Orthologous Groups (COG) database. Unigenes aligned to a higher-priority database were not aligned to lower-priority databases. The best alignment results were used to decide sequence direction of unigenes. When a unigene was not aligned with any of the above databases, ESTScan was used to determine its sequence direction (Iseli et al., 1999).

Proteins with the highest ranks in the BLAST results were used to decide the coding region sequences of unigenes, then the coding region sequences were translated into amino sequences with the standard codon table. Unigenes that could not be aligned to any database were scanned by ESTScan (Iseli et al., 1999), producing nucleotide sequence (5′–3′) direction and amino sequence of the predicted coding region.

Gene ontology classification and metabolic pathway analysis

Unigene functional classification and annotation was performed by WEGO (http://wego.genomics.org.cn/) (Ye et al., 2006). Gene function in cellular processes and gene products during metabolism process were analyzed by KEGG (http://www.genome.jp/kegg) (Kanehisa et al., 2008).

Real-time quantitative PCR (qPCR) verification analysis

Twenty dehydrin-related unigenes were selected for the assessment of expression profiles. Total RNA was converted into single-stranded cDNA using an M-MLV reverse transcriptase (Promega Corporation, Madison, Wisconsin, USA). The ABI StepOnePlus Real-Time PCR System (Thermo-Fisher Scientific) was utilized to perform the expression profile verification. The reaction was carried out as described in our previous publication (Pang et al., 2015), using three biological replicates per sample. The relative gene expression levels of the selected unigenes were normalized to 18S rRNA and calculated using the 2-ΔΔCt method (Livak and Schmittgen, 2001). The primer sequences are shown in Table 1.

RESULTS

Sequencing output statistics, assembly metrics, and protein-coding region classification

The total number of clean nucleotides generated from the six libraries of the two tree peony cultivars (LYH and WLPS) by three treatments (CK, DR, and RE) exceeded 4.6 Gbp. The number of clean reads of LYH–CK, LYH–DR, LYH–RE, WLPS–CK, WLPS–DR, and WLPS–RE were 54, 52, 52, 51, and 52 million, respectively. The Q20 values exceeded 97%, and the GC contents were
approximately 46% of all samples, which meant that the sequencing data were robust for further analysis. After assembling all sequences from all samples, 81,725 unigenes were obtained. Their aggregate length was 62,310,011 nucleotides, with a mean length of 762 nucleotides.

A total of 41,808 protein-coding regions from the unigenes were translated into amino sequences. Detailed information of their length distributions is given in Appendix 1. The COG analysis showed that 14,768 unigenes were assigned to 25 classifications. The largest category was ‘General function prediction only’; ‘Transcription,’ ‘Replication, recombination, and repair,’ ‘Post transcriptional modification, protein turnover, chaperones,’ and ‘Signal transduction mechanisms’ were comparatively high; and ‘RNA processing and modification’ had the smallest number of responding unigenes (Fig. 1).

Functional annotation of the unigenes

A total of 43,977 unigenes were successfully allocated to the three main gene ontology categories: biological process, molecular function, and cellular component (Fig. 2). The biological process category contained 22 classes subsumed under five larger groups: cellular process (18,310), metabolic process (17,809), single-organism process (12,415), stimulus (8,451), and biological regulation (6,850). The cellular components category consisted of 17 classes, dominated by cell (21,823), cell part (21,822), and organelle.
Identification of dehydration- and rehydration-responsive unigenes

A total of 971 drought-responsive unigenes in LYH were identified by comparison of LYH-CK vs. LYH-DR (8979), LYH-CK vs. LYH-RE (5650), and LYH-DR vs. LYH-RE (9397) (Fig. 3A), whereas 1064 drought-responsive unigenes in WLPS were identified by comparison of WLPS-CK vs. WLPS-DR (14,446), WLPS-CK vs. WLPS-RE (5593), and WLPS-DR vs. WLPS-RE (13,327) (Fig. 3B). Further comparison identified 373 unigenes in both LYH and WLPS. Excluding the 83 unigenes accessed by the comparison of LYH-CK vs. LYH-DR and WLPS-CK vs. WLPS-DR (Fig. 3C), 290 unigenes lacking any relationship with

Within a cultivar but also between the cultivars (LYH and WLPS) for a given treatment. The unigenes responded to stimuli, including abiotic, endogenous, biotic, and chemical stimuli that were identified extensively in LYH and WLPS. Unigenes’ response to stress was detected only in the CK vs. RE treatments of LYH (Appendix 2). For the molecular function category, unigenes were identified in DR vs. RE of LYH, while oxidoreductase and catalytic activity were largely detected both between cultivars and among the treatments. None of the other candidate molecular functions were identified, except the above two functions between LYH and WLPS (Appendix 3). For the cellular component category, the membrane, cell periphery, plasma membrane, and extracellular region were extensively detected in the LYH and WLPS treatments separately. Within the same treatment, however, none of the unigenes responded to the cellular component between the cultivars (LYH and WLPS) apart from two exceptions: the membrane detected in DR and the extracellular region identified in RE (Appendix 4).
genotype yet responding to dehydration and rehydration were detected. Hierarchical clustering of LYH-CK, LYH-DR, LYH-RE, WLPS-CK, WLPS-DR, and WLPS-RE indicated that CK, DR, and RE were clustered together, revealing dehydration- and rehydration-responsive unigenes (Fig. 4). We note that our differential expression results are preliminary, as our experiments lack replication. Follow-up experiments will be needed to fully validate our observations.

Pathway analysis using the KEGG database

BLAST analysis of 81,725 unigenes against the KEGG database was performed to analyze gene products during metabolism processes and related gene functions in cellular processes. A total of 23,518 unigenes were involved in 128 KEGG pathways. More than one-fifth (21.77%) were related to metabolic pathways, whereas 11.82% were related to the biosynthesis of secondary metabolites, 5.51% were related to plant–pathogen interaction, and 4.69% were related to plant hormone signal transduction (Table 2).

The KEGG pathways of unigenes with annotation for the two cultivars (LYH vs. WLPS) within the same treatment and among treatments (CK, DR, and RE) within the same cultivar were also analyzed. The metabolic pathways, biosynthesis of secondary metabolites, plant–pathogen interactions, and plant hormone signal transduction had similar percentages in all pathways identified. Abscisic acid, jasmonic acid, ethylene, brassinosteroids, salicylic acid, gibberellins, cytokinin, and auxin signaling pathways were all detected in this study. It is interesting to note that when analyzing the pathway between LYH and WLPS, the plant hormone signal transduction pathway was not detected in CK and RE (Table 3). LYH and WLPS exhibited higher plant–pathogen interaction after dehydration than the control, which might be caused by plant interaction with a pathogen such as arbuscular mycorrhizal fungi. However, it was unclear why a plant–pathogen interaction apparently went undetected after rehydration.

Unigene validation by qPCR

To validate the expression profiling of the dehydrin-responsive unigenes, 20 genes predicted to participate in the dehydrin response pathway were selected (1) to determine their relative expression in the dehydration (DR), rehydration (RE), and non-treatment of tree peony (CK) and (2) to validate the transcriptome sequencing results. Abundance of the target genes was normalized relative to the abundance of 18S RNA; the Ct values (i.e., the number of cycles corresponding to the inflection point from baseline to exponential growth) of 18S rRNA for all samples ranged from 24.0 to 26.0. The results of the qPCR verification showed a differential expression pattern under both the DR and RE treatments. Dehydrin Xero 2-like was significantly upregulated after dehydration but then downregulated during rehydration of tree peony seedlings (Table 4).

DISCUSSION

Drought stress is one of the main abiotic stresses, and it may alter plant growth, metabolism, and yield (Ajithkumar and Panneerselvam, 2014). In tree peonies cultivated in central and northwestern China, water deficiency is a common problem. This drought stress limits the growth of leaves and flowers, inhibits the synthesis of organic compounds and anthocyanin, and reduces seed yield (Li et al., 2011). Plants that receive drought signals initiate a range of physiological, morphological, and biochemical defense responses at both the cellular and molecular level (Verslues et al., 2006). An overexpression of genes in response to drought stress could alleviate drought-induced damage while promoting plant growth. Drought tolerance strategies, as revealed by transcriptome sequencing in poplar (Barghini et al., 2015) and sorghum (Fracasso et al., 2016), have uncovered a number of drought-responsive genes. To diminish the damage caused by water deficiency in tree peony, two cultivars with contrasting water sensitivity were selected for unigene characterization to investigate the molecular mechanisms driving their drought response.

Plants can adapt to desiccation stresses and stay alive by alternating the accumulation of osmolytes (Parida et al., 2007). Proline, one of the most important osmolytes, is quickly accumulated and involved in the plant response to dehydration to maintain a cellular balance of water content and turgor potential (Vendruscolo et al., 2007). A previous study showed that proline accumulates after
TABLE 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway statistics.

Pathway ID	Pathway	No. of genes with pathway annotation (%)a
ko01100	Metabolic pathways	5121 (21.77%)
ko01110	Biosynthesis of secondary metabolites	2781 (11.82%)
ko04626	Plant–pathogen interaction	1296 (5.51%)
ko04075	Plant hormone signal transduction	1103 (4.69%)
ko03040	Spliceosome	972 (4.13%)
ko03013	mRNA transport	953 (4.05%)
ko03018	RNA degradation	746 (3.17%)
ko03008	Ribosome biogenesis in eukaryotes	745 (3.17%)
ko04141	Protein processing in endoplasmic reticulum	627 (2.67%)
ko00056	Glycosphingolipid metabolism	538 (2.29%)
ko00240	Pyrimidine metabolism	510 (2.17%)
ko03015	mRNA surveillance	505 (2.15%)
ko00230	Purine metabolism	503 (2.14%)
ko04120	Ubiquitin-mediated proteolysis	433 (1.84%)
ko00564	Phenylpropanoid biosynthesis	380 (1.62%)
ko00565	Ether lipid metabolism	366 (1.56%)
ko00908	Zeatin biosynthesis	310 (1.32%)
ko00100	Glycolysis/glucogenesis	310 (1.32%)
ko00190	Oxidative phosphorylation	300 (1.28%)
ko00900	Terpenoid backbone biosynthesis	285 (1.21%)
ko02010	ABC transporters	279 (1.19%)
ko03020	RNA polymerase	259 (1.1%)
ko00040	Pentose and glucuronate interconversions	245 (1.04%)
ko00520	Amino sugar and nucleotide sugar metabolism	244 (1.04%)
ko03440	Homologous recombination	239 (1.02%)

Pathway analysis of unigenes with pathway annotation (P ≤ 0.05).

TABLE 3. Pathway analysis of unigenes with pathway annotation (P ≤ 0.05).*

Unigene comparison	Metabolic pathways	Biosynthesis of secondary metabolites	Plant–pathogen interaction	Plant hormone signal transduction
LYH-CK vs. LYH-DR	985/3972 = 24.8	622/3972 = 15.66	317/3972 = 798	260/3972 = 65.5
LYH-CK vs. LYH-RE	574/2366 = 24.26	378/2366 = 15.98	179/2366 = 7.57	170/2366 = 7.19
LYH-DR vs. LYH-RE	1131/4142 = 27.31	697/4142 = 16.83	355/4142 = 8.57	331/4142 = 7.99
WLPS-CK vs. WLPS-DR	1430/5905 = 24.22	838/5905 = 14.19	411/5905 = 6.96	368/5905 = 6.23
WLPS-CK vs. WLPS-RE	567/2234 = 25.38	334/2234 = 14.95	172/2234 = 7.7	159/2234 = 7.12
WLPS-DR vs. WLPS-RE	1455/5503 = 26.44	841/5503 = 15.28	416/5503 = 7.56	383/5503 = 6.96
LYH-CK vs. WLPS-CK	652/2332 = 27.96	409/2332 = 17.54	170/2332 = 7.29	—
LYH-CK vs. WLPS-DR	835/2843 = 29.37	507/2843 = 17.83	229/2843 = 8.05	160/2843 = 5.63
LYH-RE vs. WLPS-RE	596/2011 = 29.64	348/2011 = 17.3	—	—

*Values are number/total = percentage.
maximum efficiencies of PSII photochemistry (Ryan et al., 2014). Reduced photosynthetic pigment contents resulting from drought stress might decrease ROS formation by regulating chlorophyll synthesis and other components of the photosynthetic machinery.

ROS generation is considered to be closely related to lipid peroxidation under drought stress (Ryan et al., 2014; Uzilday et al., 2014). For example, lipid peroxidation analysis showed that transgenic Agrostis stolonifera L. root exhibited less cellular damage when compared with the wild type under drought stress conditions (Xu et al., 2016). The alleviation of adverse effects of drought stress is partially attributable to an increased antioxidant ability and decreased lipid peroxidation induced by early ROS accumulation (Xing et al., 2016). Tobacco plants treated with low and moderate levels of riboflavin accumulated higher levels of ROS and lipid peroxide with enhanced drought tolerance (Deng et al., 2014). In the present study, 666 unigenes involved in lipid transport and metabolism were identified according to the COG classification. This clearly illustrates the close relationship between lipid peroxidation and the drought stress response in plants.

Calcium mobilization is one of the downstream events modulated by H₂O₂ (Neill et al., 2002). The calcium ion (Ca²⁺) functions as a secondary messenger in modulating diverse physiological processes that are important for stress adaptation in plants. Both Ca²⁺ and Ca²⁺/calmodulin (CaM)-binding protein and transcription factors have been identified, and their functional analysis suggests that they play key roles in plant stress signaling pathways (Reddy et al., 2011). Previous studies have indicated that drought stress activates ABA-dependent and ABA-independent gene expression (Yoshida et al., 2014). The cis-regulatory element ABA-responsive element (ABRE) (CAGCTG [T/C/G]) and their coupling elements ([C/A]ACGCG[T/C/G]) in the upstream region were observed in the upregulated genes (Kaplan et al., 2006). Hence, it was concluded that for some specific Ca²⁺ transients, ABREs function as Ca²⁺-responsive cis-regulatory elements (Reddy et al., 2011).

ABRE and calcium-dependent protein kinase (CDPK) have been found to be related to drought stress in other plant species (Yoshida et al., 2010; Zou et al., 2010). In the present study, ABREs (CL3759.Contig1_All and CL3759.Contig2_All) and CDPKs (unigene21495_All, unigene21823_All, CL5185.Contig3_All, and CL3906.Contig3_All) were identified. In addition, transcript accumulation of the myeloblastosis (MYB) transcription factor, the APETALA2/Ethylene Responsive Factor (AP2/ERF), the NAM, ATAF, AND CUC (NAC) transcription factor, the basic helix-loop-helix (bHLH) protein, and the zinc RING finger protein (RING-H) were all identified after desiccation stress, which agrees

TABLE 4. Real-time quantitative PCR (qPCR) validation of 20 unigenes in three tree peony treatment groups: dehydration, rehydration, and a control group.

Gene ID	Nr annotation	2-ΔΔCT	Log2 (DR_FPKM or RE_FPKM/CK_FPKM)
Unigene8873_All_LYH-DR	Dehydrin (Paeonia suffruticosa)	5.3658	4.4933
CL8710.Contig2_All_LYH-DR	Ethylene response factor 11 (Actinidia delicosa)	−0.1155	−1.4333
Unigene5006_All_LYH-DR	Ethylene responsive transcription factor 1A (Prunus salicina)	5.0722	3.5543
Unigene16234_All_LYH-DR	Ethylene-responsive transcription factor 1B, putative (Ricinus communis)	9.1154	4.4226
CL2427.Contig2_All_LYH-DR	GDSL esterase/lipase EXL3 (Vitis vinifera)	−2.7565	−3.0232
Unigene383_All_LYH-DR	GDSL esterase/lipase 1 (Vitis vinifera)	4.5329	2.5685
Unigene18390_All_LYH-DR	RING-H2 finger protein ATL60-like (Vitis vinifera)	5.7046	3.3146
CL9864.Contig2_All_LYH-DR	RING-H2 finger protein ATL78 (Vitis vinifera)	−1.6611	−2.444
Unigene1202_All_LYH-DR	RING-H2 zinc finger protein RH4A (Vitis vinifera)	−3.5098	−4.4392
Unigene1395_All_LYH-DR	Transcription factor bHLH135 (Vitis vinifera)	−0.0729	−2.4395
CL4531.Contig1_All_LYH-RE	Transcription factor bHLH63-like (Vitis vinifera)	−1.4411	−1.5683
CL154.Contig2_All_LYH-RE	NAC domain-containing protein 72 (Vitis vinifera)	−0.3531	−2.7657
Unigene4037_All_LYH-RE	Zinc finger CCH domain-containing protein S3-like (Glycine max)	−1.0864	−2.9649
Unigene25204_All_LYH-RE	MYBF1 (Vitis vinifera)	−0.5343	−1.4983
CL3906.Contig3_All_LYH-RE	Uncharacterized calcium-binding protein At1g02270 (Vitis vinifera)	6.7048	4.9768
CL10838.Contig2_All_LYH-RE	Universal stress protein A-like protein (Vitis vinifera)	9.8757	3.6137
Unigene15264_All_LYH-RE	TIR-NBS type disease resistance protein (Populus trichocarpa)	7.0632	5.5444
Unigene32639_All_LYH-RE	Heavy metal-associated isoprenylated plant protein 26-like (Fragaria vesca subspp. vesca)	13.1831	3.3610
CL7346.Contig2_ALL_LYH-RE	Glutamate dehydrogenase, putative (Ricinus communis)	14.1086	7.3002
CL7474.Contig3_All_LYH-RE	17.9 kDa class II heat shock protein isoform 1 (Vitis vinifera)	−1.4672	−3.6081

Note: CK = control treatment; DR = drought treatment; FPKM = fragments per kilobase of transcript per million mapped reads; Nr = National Center for Biotechnology Information nonredundant protein database; RE = rehydration treatment.
perfectly with ABA accumulation (Nakashima and Yamaguchi-Shinozaki, 2013; Furlan et al., 2014). Further studies are required to reveal their mechanisms of regulating drought resistance in tree peonies.

Heat stress can trigger the higher expression of heat-shock proteins (HSPs), which might coordinate with other stress-response mechanisms to mitigate cellular damage and re-establish cellular homeostasis (Wang et al., 2004). Copper applied to tree peony revealed an increase in dehydration-responsive element–binding (DREB) protein (Wang et al., 2016a). In the present study, we identified one class II HSP isoform 1 (CL7474.Contig3_All) and one heavy metal–associated isoprenylated plant protein (HIPP) (Unigene32639_All), both of which were unrelated to genotype but responsive to dehydration and rehydration. Regulation of HSP and HIPP by dehydration and rehydration in tree peony illustrates the synergistic interaction of drought with other stress-response mechanisms to alleviate cellular damage and re-establish cellular homeostasis.

CONCLUSIONS

Transcriptome profiling analysis demonstrated unigene response to dehydration and rehydration in tree peony, namely MYB, AP2/ERF, NAC, HILH, RING-H, HSP, and HIPP. These newly identified unigenes will increase our understanding of drought stress–responsive mechanisms, and they may be quite useful as novel genes for the molecular breeding of tree peony to improve its drought tolerance. Further research is necessary to reveal and understand how antioxidant enzymes interact with key hormones in the signaling responses of plants to drought stress.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of Henan Province (grant no. 162300410079), the Education Department Project of Henan Province (grant no. 17A180003), and the Innovative Research Team in Henan University of Science and Technology (grant no. 2015TTTD003).

DATA ACCESSIBILITY

The cDNA library was deposited in the National Center for Biotechnology Information (NCBI) Transcriptome Shotgun Assembly database (BioSample accession no. SRS1180651).

LITERATURE CITED

Ajithkumar, I. P., and R. Panneerselvam. 2014. ROS Scavenging system, osmotic maintenance, pigment and growth status of Panicum sumatrense Roth. under drought stress. Cell Biochemistry and Biophysics 68: 587–595.

Bao, S. 2000. Soil and agriculture chemical analysis. China Agriculture Press, Beijing, China.

Barghini, E., R. M. Cossu, A. Cavallini, and T. Giordani. 2015. Transcriptome analysis of response to drought in poplar interspecific hybrids. Genomics Data 3: 143–145.

Bartwal, A., A. Pande, P. Sharma, and S. Arora. 2016. Intervarietal variations in various oxidative stress markers and antioxidant potential of finger millet (Eleusine coracana) subjected to drought stress. Journal of Environmental Biology 37: 517–522.

Bian, S., and Y. Jiang. 2009. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Scientia Horticulturae 120: 264–270.

Chen, F., X. Zhang, X. Du, L. Yang, Y. Zu, and F. Yang. 2016a. A new approach for obtaining trans-resveratrol from tree peony seed oil extracted residues using ionic liquid-based enzymatic hydrolysis in situ extraction. Separation and Purification Technology 170: 294–305.

Chen, F., X. Zhan, Q. Zhang, X. Du, L. Yang, Y. Zu, and F. Yang. 2016b. Simultaneous synergistic microwave-ultrasonic extraction and hydrolysis for preparation of trans-resveratrol in tree peony seed oil-extracted residues using imidazolium-based ionic liquid. Industrial Crops and Products 94: 266–280.

Cui, H., F. Cheng, and L. Peng. 2016. Determination of the fatty acid composition in tree peony seeds using near-infrared spectroscopy. Journal of the American Oil Chemists Society 93: 943–952.

Deng, B. L., X. H. Jin, Y. Yang, Z. W. Lin, and Y. L. Zhang. 2014. The regulatory role of riboflavin in the drought tolerance of tobacco plants depends on ROS production. Plant Growth Regulation 72: 269–277.

Fracasso, A., L. M. Trindade, and S. Amaducci. 2016. Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biology 16(1): 115.

Furlan, A. L., E. Bianucci, M. del Carmen Tordable, S. Castro, and K. J. Dietz. 2014. Antioxidant enzyme activities and gene expression patterns in peanut nodules during a drought and rehydration cycle. Functional Plant Biology 41: 704–713.

Gai, S., Y. Zhang, P. Mu, C. Liu, S. Liu, L. Dong, and G. Zheng. 2012. Transcriptome analysis of tree peony during chilling requirement fulfillment: Assembling, annotation and markers discovering. Gene 497: 256–262.

Gambino, G., I. Perrone, and I. Gribaudo. 2008. A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochemical Analysis 19: 520–525.

Gao, L., H. Yang, H. Liu, J. Yang, and Y. Hu. 2016. Extensive transcriptome changes underlying the flower color intensity variation in Paeonia ostii. Frontiers in Plant Science 6: 1205.

Gechev, T. S., C. Dinakar, M. Benina, V. Toneva, and D. Bartels. 2012. Molecular mechanisms of desiccation tolerance in resurrection plants. Cellular and Molecular Life Sciences 69: 175–3186.

Grabber, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29(7): 644–652.

Han, J., L. Liu, X. Li, J. Li, and Y. Hu. 2016. Diversity in seed oil content and fatty acid composition in three tree peony species with potential as sources of omega-3 fatty acids. Journal of Horticultural Science and Biotechnology 91: 175–179.

Hossain, M. A., S. H. Wani, S. Bhattacharjee, D. J. Burritt, and L. S. P. Tran. 2016. Drought stress tolerance in plants, Vol. 1: Physiology and biochemistry. Springer, Berlin, Germany.

Iseli, C., C. V. Jongeneel, and P. Bucher. 1999. ESTScan: A program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. In T. Lengauer, R. Schneider, P. Bork, D. Brutlag, J. Glasgow, H.-W. Mewes, and R. Zimmer [eds.], Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology in Heidelberg, Germany, 1999, 138–148. AAAI Press, Palo Alto, California, USA.

Kanekhiisa, M., M. Araki, S. Goto, M. Hirakawa, M. Itoh, T. Katayama, et al. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research 36: D480–D484.

Kaplan, B., O. Davydov, H. Knight, Y. Galon, M. R. Knight, R. Fluhr, and H. Fromm. 2006. Rapid transcriptome changes induced by cytosolic Ca²⁺ transients reveal ABRE-related sequences as Ca²⁺-responsive cis elements in Arabidopsis. Plant Cell 18: 2733–2748.

Klumpen, E., N. Hoffschroer, B. Zeis, U. Gigengack, E. Dohmen, and R. J. Paul. 2016. Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes. Biology of the Cell 110(1): 39–64.
Kong, X., M. Zhang, X. Wang, R. Wang, Y. Dong, and L. Sheng. 2011. Comparative studies on the physiological and biochemical characteristics of two *Paeonia suffruticosa* varieties under water stress. *Science Silvae Sinicae* 47: 162–167.

Li, J., X. Zhang, and X. Zhao. 2011. Tree peony in China, 20–22. Encyclopedia of China Publishing House, Beijing, China.

Li, J., X. Kong, J. Li, G. Liu, and L. Guo. 2014. Effect of gradual drought stress on physiological indexes of *Paeonia suffruticosa* Andr. *Northern Horticulture* 16: 99–102.

Li, S., L. Wang, Q. Shu, J. Wu, L. Chen, S. Shao, and D. Y in. 2015. Fatty acid composition of developing tree peony (*Paeonia section Moutan* DC.) seeds and transcriptome analysis during seed development. *BMC Genomics* 16: 208.

Li, J., J. Han, Y. Hu, and J. Yang. 2016. Selection of reference genes for quantitative real-time PCR during flower development in tree peony (*Paeonia suffruticosa* Andr.). *Frontiers in Plant Science* 7: https://doi.org/10.3389/fpls.2016.00516.

Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression using real-time quantitative PCR and the 2−ΔΔCT method. *Methods* 25: 402–408.

Miller, G., N. Suzuki, S. Cifci-Yilmaz, and R. Mittler. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. *Plant, Cell & Environment* 33: 453–467.

Nakashima, K., and K. Yamaguchi-Shinozaki. 2013. ABA signaling in stress-response and seed development. *Plant Cell Reports* 32: 959–970.

Neill, S. J., R. Desikan, A. Clarke, R. D. Hurst, and J. T. Hancock. 2002. Hydrogen peroxide and nitric oxide as signalling molecules in plants. *Journal of Experimental Botany* 53: 1237–1247.

Pang, T., L. Guo, D. Shim, N. Cannon, S. Tang, J. Chen, X. Xia, et al. 2015. Characterization of the transcriptome of the xerophyte *Amorphophallus mongolicus* leaves under drought stress by 454 pyrosequencing. *PLoS One* 10: e0136495.

Parida, A. K., V. S. Dagaonkar, M. S. Phalak, G. Umalkar, and L. P. Aurangabadkar. 2007. Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. *Plant Biotechnology Reports* 1: 37–48.

Pinnola, A., S. Cazzaniga, A. Alborei, R. Nevo, S. Levin Zaidman, Z. Reich, and R. Bassi. 2015. Light-harvesting complex-stress-related proteins catalyze excess energy dissipation in both photosystems of *physcomitrella patens*. *Plant Cell* 27: 3213–3227.

Qin, X., M. Suga, T. Kuang, and J.-R. Shen. 2015. Structural basis for energy transduction pathways in the plant PSI-LHCI supercomplex. *Science* 348: 989–995.

Reddy, A. S., G. S. Ali, H. Celesnik, and I. S. Day. 2011. Coping with stresses: Roles of cytokinin synthesis by overexpressing ipt alleviated drought stress and root growth through activating ROS-scavenging systems in *Agrostis stolonifera*. *Journal of Experimental Botany* 67: 1979–1992.

Ye, J., L. Fang, H. Zheng, Y. Zhang, J. Chen, Z. Zhang, J. W ang, and et al. 2006. *WEGO*: A web tool for plotting GO annotations. *Nucleic Acids Research* 34: W293–W297.

Yoshida, T., Y. Fujita, H. Sayama, S. Kidokoro, K. Maruyama, J. M. K. Shinozaki, and K. Y. Shinozaki. 2010. *AREB1, AREB2*, and *ABF3* are master transcription factors that cooperatively regulate *ABRE*-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. *Plant Journal* 61: 672–685.

Zhou, F. F., Z. Wang, L. Shi, J. J. Niu, W. Shang, D. He, and S. L. He. 2016a. Effects of different medium composition and exogenous hormones on browning of tree peony (*Paeonia suffruticosa* Andr.) callus in tissue culture. *Flower Research Journal* 24: 96–102.
Zhou, L., Q. Shi, Y. Wang, K. Li, B. Zheng, and K. Miao. 2016b. Evaluation of candidate reference genes for quantitative gene expression studies in tree peony. *Journal of the American Society for Horticultural Science* 141:99–127.

Zou, J. J., F. J. Wei, C. Wang, J. J. Wu, D. Ratnasekera, W. X. Liu, and W. H. Wu. 2010. *Arabidopsis* calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca²⁺-mediated stomatal regulation in response to drought stress. *Plant Physiology* 154:1232–1243.

APPENDIX 1. Length distribution of the protein-coding region (CDS) prediction. (A) Length distribution of CDS using BLASTX. (B) Length distribution of CDS using ESTScan. (C) Length distribution of proteins using BLASTX. (D) Length distribution of proteins using ESTScan.

APPENDIX 2. Gene ontology enrichment analysis of biological processes (*P* ≤ 0.05).^a^

Biological process	LYH-CK vs. LYH-DR (3785)	LYH-CK vs. LYH-RE (2241)	LYH-DR vs. LYH-RE (4038)	WLPS-CK vs. WLPS-DR (2073)	WLPS-CK vs. WLPS-RE (5482)	WLPS-DR vs. WLPS-RE (2614)	LYH-CK vs. WLPS-CK (2758)	LYH-DR vs. WLPS-DR (1759)
Oxygen-containing compound	14.5%	18.3%	14.6%	14.5%	16.4%	14.4%	14.0%	
Oxidation-reduction process	15.7%	15.7%	15.1%	16.5%	15.1%	16.6%	16.3%	
Stimulus	41.7%	45.9%	43.1%	40.9%	43.1%	41.7%		
Abiotic stimulus	19.2%	22.3%	19.7%	19.2%	19.9%	18.8%		
Endogenous stimulus	10.5%	13.4%	11.6%	10.9%	11.9%	10.8%		

(continues)
APPENDIX 2. (continued)

Biological process	LYH-CK vs. LYH-DR (3785)	LYH-CK vs. LYH-RE (2241)	LYH-DR vs. LYH-RE (4038)	WLPS-CK vs. WLPS-DR (5682)	WLPS-CK vs. WLPS-RE (2073)	WLPS-DR vs. WLPS-RE (5482)	LYH-CK vs. WLPS-CK (2087)	LYH-DR vs. WLPS-DR (2614)	LYH-RE vs. WLPS-RE (1759)
Biotic stimulus	10.5%	10.9%	10.2%	10.4%	10.6%				
Chemical stimulus	23.2%	27.0%	23.6%	22.4%	22.9%				
Stress									
Organic substance									
Single-organism									
metabolic process	35.2%	36.6%	36.1%	35.1%	34.5%				
Single-organism									
biosynthetic process									
Single-organism									
transport									
Single-organism									
signaling									
Signaling									
Signal transduction									
Cell communication									
Other organism									
inorganic substance									
Organic acid metabolic process									
Oxoacid metabolic process									
Carboxylic acid metabolic process									

Note: CK = control treatment; DR = drought treatment; LYH = ‘Luo Yang Hong’ cultivar; RE = rehydration treatment; WLPS = ‘Wu Long Peng Sheng’ cultivar.

*Numbers in parentheses in the column headings represent the number of unigenes.

APPENDIX 3. Gene ontology enrichment analysis of molecular functions (P ≤ 0.05).*

Molecular function	LYH-CK vs. LYH-DR (3697)	LYH-CK vs. LYH-RE (2196)	LYH-DR vs. LYH-RE (3996)	WLPS-CK vs. WLPS-DR (5522)	WLPS-CK vs. WLPS-RE (2017)	WLPS-DR vs. WLPS-RE (5340)	LYH-CK vs. WLPS-CK (2106)	LYH-DR vs. WLPS-DR (2634)	LYH-RE vs. WLPS-RE (1792)
Oxidoreductase activity	17.6%	19.3%	19.1%	16.4%	15.9%	18.2%	17.0%	17.6%	18.2%
Catalytic activity	68.8%	70.8%	67.1%	68.1%	69.4%	68.5%	70.3%		
Transporter activity	11.5%	2.1%	11.5%	11.5%					
Protein kinase activity	11.0%								
Phosphotransferase activity, alcohol group as acceptor	11.9%	11.5%							
Kinase activity									13.8%
Transmembrane transporter activity									10.0%

Note: CK = control treatment; DR = drought treatment; LYH = ‘Luo Yang Hong’ cultivar; RE = rehydration treatment; WLPS = ‘Wu Long Peng Sheng’ cultivar.

*Numbers in parentheses in the column headings represent the number of unigenes.

APPENDIX 4. Gene ontology enrichment analysis of cellular components (P ≤ 0.05).*

Cellular component	LYH-CK vs. LYH-DR (3683)	LYH-CK vs. LYH-RE (2031)	LYH-DR vs. LYH-RE (3800)	WLPS-CK vs. WLPS-DR (5503)	WLPS-CK vs. WLPS-RE (1879)	WLPS-DR vs. WLPS-RE (5235)	LYH-CK vs. WLPS-CK (1969)	LYH-DR vs. WLPS-DR (2373)	LYH-RE vs. WLPS-RE (1609)
Membrane	43.6%	43.2%	48.3%	43.8%	41.6%	46.3%	42.3%		
Cell periphery	27.8%	28.4%	31.0%	27.3%	26.8%	28.2%			
Plasma membrane	22.3%	23.7%	25.7%	23.1%					
Extracellular region	10.7%	9.8%	10.9%	9.1%	9.7%	9.2%	9.3%		
Chloroplast	25.7%								
Plastid	29.2%								

Note: CK = control treatment; DR = drought treatment; LYH = ‘Luo Yang Hong’ cultivar; RE = rehydration treatment; WLPS = ‘Wu Long Peng Sheng’ cultivar.

*Numbers in parentheses in the column headings represent the number of unigenes.