1. Introduction

TiN has been widely used as a protective coating for cutting tools, forming tools, and dies because of its hardness and wear, corrosion, and oxidation resistance. Over the last several decades, ternary Ti-based nitrides such as Ti$_{1-x}$Al$_x$N, Ti$_{1-x}$Cr$_x$N, Ti$_{1-x}$Zr$_x$N, Ti$_{1-x}$Si$_x$N, and Ti$_{1-x}$Ni$_x$N have been developed by the incorporation of foreign metals into the basic TiN structure, resulting in microstructural transitions leading to improvements in physical and chemical properties as a function of time. For instance, the microhardness of Ti$_{1-x}$Al$_x$N gradually increases from 20 to 32 GPa between X = 0 and 0.6 while maintaining a NaCl-type cubic structure. Corresponding to the transformation or the precipitation of ZnS-type wurtzite structure beyond X = 0.6, the microhardness rapidly decreases down to 14 GPa. Similarly, in the case of Ti$_{1-x}$Si$_x$N and Ti$_{1-x}$Ni$_x$N, the maximum hardness is obtained due to the prevention of plastic deformation and the propagation of dislocations when the polycrystalline TiN changes to a nanocomposite comprising nanocrystallites and amorphous phases at certain X values.

Tungsten has been recognized as a key element in various tooling materials such as cemented carbide, cermet, and high-speed steel. To harden TiN, Ti$_{1-x}$W$_x$N has been prepared from various Ti$_{1-x}$W$_x$ alloy targets under a N$_2$-Ar atmosphere at different N$_2$/Ar partial pressures. Shaginyan et al. reported that the microhardness of the Ti$_{1-x}$W$_x$N deposited from a Ti$_{100-x}$W$_x$ target was dependent on the nitrogen concentration, crystal structure, morphology, and residual stress. Silva et al. prepared several Ti$_{1-x}$W$_x$N samples from a Ti$_{80}$W$_{20}$ target and showed that their hardness, friction coefficients, and wear coefficients change because the nitrogen content affects the ratio of Ti to W.

However, a comprehensive study of the microstructure, mechanical, and thermal properties of Ti$_{1-x}$W$_x$N with differing X values has not been reported to date. In this study, we synthesized Ti$_{1-x}$W$_x$N from Ti$_{100-x}$W$_x$ (0 ≤ X ≤ 1) alloy targets using the radiofrequency (RF) magnetron sputtering method using alloy targets of Ti$_{1-x}$W$_x$ with X = 0, 0.25, 0.5, 0.75, and 1.0. The Si wafers were used for X-ray analyses and hardness evaluations whereas the stainless-steel substrates were used for oxidation tests. These films were synthesized under pure N$_2$ and Ar atmosphere at a total pressure of 1.0 Pa, with a N$_2$ partial pressure of 0.1 Pa. The power density of the targets was 10.6 W/cm2, and the deposition temperature was 250 °C. The substrate negative bias voltage and the target-to-substrate distance were fixed at ~50 V and 45 mm for all the depositions, respectively. The films thicknesses were adjusted to 1.0-3.0 μm to prevent the films from peeling off.

The metal compositions were measured using energy dispersive X-ray fluorescence analysis (EDXRF; Shimadzu Rayny EDX-800HS) after calibration using a standard specimen, Al (99.99% purity). The sample crystal structures and lattice parameters were evaluated by X-ray diffraction (XRD; Shimadzu XRD-7000) using Cu-Kα radiation at 40 kV and 30 mA. The microhardness of the samples was measured with a conventional micro-Vickers hardness tester (Mitutoyo HM-221) under a load of 98.0 × 10$^{-3}$ N. The isothermal oxidation tests were conducted in a thermogravimetric analyzer (TGA; Shimadzu TGA-51H). To eliminate the influence of the substrate material in the TGA measurements, the films were chemically removed from the stainless-steel substrates using a diluted hydrochloric acid solution. After filtering and cleaning, the films were reduced to powders. The mass gain of powders was recorded during isothermal oxidation at 600 °C as a function of time. The surface morphologies of films after atmospheric annealing at 600 °C for 1 h were observed using scanning electron microscopy (SEM; Hitachi SU-1500).

2. Experimental details

Ti$_{1-x}$W$_x$N films were deposited onto polished (111)-oriented Si wafers and stainless-steel substrates by the RF magnetron sputtering method using alloy targets of Ti$_{1-x}$W$_x$ with X = 0, 0.25, 0.5, 0.75, and 1.0. The Si wafers were used for X-ray analyses and hardness evaluations whereas the stainless-steel substrates were used for oxidation tests. These films were synthesized under pure N$_2$ and Ar atmosphere at a total pressure of 1.0 Pa, with a N$_2$ partial pressure of 0.1 Pa. The power density of the targets was 10.6 W/cm2, and the deposition temperature was 250 °C. The substrate negative bias voltage and the target-to-substrate distance were fixed at ~50 V and 45 mm for all the depositions, respectively. The films thicknesses were adjusted to 1.0-3.0 μm to prevent the films from peeling off.

The metal compositions were measured using energy dispersive X-ray fluorescence analysis (EDXRF; Shimadzu Rayny EDX-800HS) after calibration using a standard specimen, Al (99.99% purity). The sample crystal structures and lattice parameters were evaluated by X-ray diffraction (XRD; Shimadzu XRD-7000) using Cu-Kα radiation at 40 kV and 30 mA. The microhardness of the samples was measured with a conventional micro-Vickers hardness tester (Mitutoyo HM-221) under a load of 98.0 × 10$^{-3}$ N. The isothermal oxidation tests were conducted in a thermogravimetric analyzer (TGA; Shimadzu TGA-51H). To eliminate the influence of the substrate material in the TGA measurements, the films were chemically removed from the stainless-steel substrates using a diluted hydrochloric acid solution. After filtering and cleaning, the films were reduced to powders. The mass gain of powders was recorded during isothermal oxidation at 600 °C as a function of time. The surface morphologies of films after atmospheric annealing at 600 °C for 1 h were observed using scanning electron microscopy (SEM; Hitachi SU-1500).

3. Results and discussion

The Ti$_{1-x}$W$_x$N had W contents of X = 0, 0.34, 0.66, 0.84, and 1.0. Fig. 1 shows the XRD patterns of the Ti$_{1-x}$W$_x$N samples.
with the expected peak positions for TiN and W2N. Here, c- indicates the cubic structure of the metastable nitride. The XRD spectrum of TiN (X = 0) indicated a cubic (NaCl-type) polycrystalline microstructure with (111) and (200) preferred orientations. The relatively strong (111) peak and the small broad (200) peak were identified for X = 0.34, where the (111) peak shifted toward to lower diffraction angles while maintaining a NaCl-like structure. At X > 0.66, the peaks moved closer to the peak positions of c-W2N. From the obtained XRD results, it was determined that the microstructure of the Ti1-xWxN samples exhibited a NaCl-type substitutional solid solution with replacement of Ti atoms by W atoms.

The shifting of the diffraction angles indicates lattice shrinkage or expansion of TiN. Fig. 2 shows the lattice parameters of the Ti1-xWxN samples with X values ranging from 0 to 1.0. The lattice parameter in cubic structure increased from 0.422 nm (X = 0) to 0.427 (X = 0.34), and subsequently decreased to 0.423 nm (X = 1.0). These changes in lattice parameter likely arise from differences in the ionic radii of Ti and W atoms, e.g., Ti2+ (86 pm), Ti3+ (67 pm), Ti4+ (42 pm), W4+ (66 pm), W5+ (62 pm), and W6+ (42 pm).

The microhardness increased from 21 GPa at X = 0 to 28 GPa at X = 0.66 due to solid solution hardening, and then gradually decreased to 22 GPa at X = 1.0. The microhardness increased from 21 GPa at X = 0 to 28 GPa at X = 0.66 due to solid solution hardening, and then gradually decreased to 22 GPa at X = 1.0. The microhardness increased from 21 GPa at X = 0 to 28 GPa at X = 0.66 due to solid solution hardening, and then gradually decreased to 22 GPa at X = 1.0. The microhardness increased from 21 GPa at X = 0 to 28 GPa at X = 0.66 due to solid solution hardening, and then gradually decreased to 22 GPa at X = 1.0.

Fig. 2 Changes in lattice parameter and microhardness for Ti1-xWxN.

Fig. 3 Oxidation behaviors of Ti1-xWxN at 600 ℃. (a) Isothermal TGA curves and (b) surface micrographs after atmospheric annealing
progresses slowly and the incorporation of W atoms into TiN enhances this initial oxidation resistance. As shown in Fig. 3(b), the surface micrographs after atmospheric annealing at 600 °C indicated that several defects, such as pores and cracks, were formed in the oxide films with increasing X values. Because oxygen diffuses into the film through these defects, the films with X = 0.66-1.0 have higher mass gains than TiN (Fig. 3(a)).

4. Conclusions

Ti$_{1-X}$W$_X$N films with X = 0-1.0 were synthesized by the RF magnetron sputtering method, and their microstructure, microhardness, and oxidation behavior were studied. All the films exhibited solid solution properties with a cubic structure, and their lattice parameter increased from 0.422 nm (at X = 0) to 0.427 nm (at X = 0.34), and then decreased to 0.423 nm (at X = 1.0). The microhardness changed with the W content (X), and a maximum hardness of 28 GPa was obtained at X = 0.66. During isothermal oxidation at 600 °C, a minimum mass gain of 3% was observed for samples with X = 0.34. Our results suggest that the incorporation of W atoms into TiN was effective at enhancing the surface properties of the material, such as microhardness and oxidation resistance.

Acknowledgments

This work was supported by Japan Keirin Autorace (JKA), and its promotion funds from autorace. We would like to thank Editage (https://www.editage.jp) for English language editing.

(Received December 19, 2017; Accepted January 17, 2018)

References

1) S. Paldey, S. C. Deevi; Mater. Sci. Eng. A-Struct. Mater., 342, 58 (2003).
2) Y. Massiani, P. Gravier, L. Fedrizzi, F. Marchetti; Thin Solid Films, 261, 202 (1995).
3) V.V. Uglov, D.P. Rusalski, S.V. Zlotski, A.V. Sevriuk, G. Abadias, S.B. Kislitin, K.K. Kadyrzhano, I.D. Gorlachev, S.N. Dub; Surf. Coat. Technol., 204, 2095 (2010).
4) J. B. Choi, K. Cho, M.-H. Lee, K. H. Kim; Thin Solid Films, 447-448, 365 (2004).
5) A. Akbari, J. P. Riviere, C. Templier, E. L. Bourhis; Surf. Coat. Technol., 200, 6298 (2006).
6) L.R. Shaginyan, M. Mišina, J. Zemek, J. Musil, F. Regent, V.F. Britun; Thin Solid Films, 408, 136 (2002).
7) P.N. Silva, J.P. Dias, A. Cavaleiro; Surf. Coat. Technol., 200, 186 (2005).
8) P.N. Silva, J.P. Dias, A. Cavaleiro; Surf. Coat. Technol., 202, 2338 (2008).
9) R. D. Shannon; Acta Crystallogr. Sect. A, 32, 751 (1976).
10) I. Barin; Thermochemical Data of Pure Substance, p. 1-89 (VCH, Weinhein Germany, 1989).