Vascular Flora of a Cerrado sensu stricto remnant in Pratânia, state of São Paulo, southeastern Brazil

Marina Begali Carvalho, Katia Losano Ishara and Rita C. S. Maimoni-Rodella *

Universidade Estadual Paulista, Instituto de Biociências, Departamento de Botânica. Caixa Postal 510. CEP 18618-000. Botucatu, SP, Brazil.
* Corresponding author. E-mail: rita@ibb.unesp.br

ABSTRACT: The Cerrado (Brazilian savanna) has suffered massive destruction in recent years, mainly due to the expansion of agricultural areas. Many remnants of this vegetation are still poorly studied. Therefore, the purpose of this study was to carry out a floristic survey in a remnant of Cerrado in the municipality of Pratânia, central-west region of state of São Paulo, southeastern Brazil. In total, 120 species (38 families, 88 genera) were registered. The families with greater richness were: Fabaceae (23 species), Asteraceae (15), Myrtaceae (10), Malpighiaceae and Rubiaceae (seven each) and Bignoniaceae (five). The shrub component was predominant in the study area representing 37.5 % of the recorded species. A comparison among eight Cerrado areas showed greater similarity between areas with similar altitude.

INTRODUCTION

The Brazilian savanna, so-called Cerrado, is the second largest biome of Brazil (Ribeiro and Walter 1998) and occupies the intermediate region between the two largest Neotropical moist forests: the Amazon forest and Atlantic forest (Méo et al. 2003).

The typical vegetation landscape of this biome consists of savanna of very variable structure, encompassing different vegetation physiognomies, and is termed Cerrado sensu lato. Depending on some environmental characteristics a series of physiognomies can be found, ranging from open grasslands (campo limpo) to dense woodlands (cerradão), with three intermediate physiognomies: campo sujo, grassland with a scattering of shrubs and small trees; campo Cerrado, where there are more shrubs and trees but still a larger proportion of grassland; and Cerrado sensu stricto, where trees and shrubs dominate but with a fair amount of herbaceous vegetation (Coutinho 2002). These differences are due to the wide area and distribution of Cerrado vegetation which provides a variety of environmental conditions related to seasonal precipitation, soil fertility and drainage, temperature and fire regime (Durigan et al. 2003). These variations condition the settlement of a Cerrado vegetation mosaic even in small areas (Coutinho 2002). According to Rizzini (1971), more than half of Brazil’s central savanna flora is originated from other vegetation types, which also contributes to its floristic heterogeneity. Besides the ecological importance of the Cerrado, many elements of the Cerrado flora have some economic potential, for example, as a source of active ingredients for the pharmaceutical industry among other uses (Cavassan 2002).

Despite its relevance, the Cerrado has been continuously destroyed to create pastures and field crops. In São Paulo state, southeastern Brazil, the Cerrado remnants are today very reduced and fragmented (Durigan et al. 2004) and only 0.5 % of the original area is protected in some kind of conservation unit (Durigan et al. 2006). Even so, these remnants are notably rich in species and therefore highly representative (Ratter et al. 2003) since 34 % of the total Cerrado species set can be found in São Paulo state (Cavassan 2002).

The Cerrado is included in the list of global hotspots or areas with high concentrations of endemic species, which suffered heavy habitat losses (Myers et al. 2000). The flora inventory is the first step to vegetation knowledge and its best use, serving as a basis for ecological studies and the planning of conservation projects (Felfili et al. 1993; Mendonça et al. 1998). Considering this, in the central-west region of São Paulo state, municipality of Pratânia, a Cerrado sensu stricto remnant was inventoried to provide a vascular flora check list. This study is part of a larger project which intends to perform a more detailed vegetation study concerning the structure and dynamics of the woody component of a Cerrado fragment in Pratânia Municipality, and was developed aiming to add information to the initial inventory performed by Machado et al. (2005), which included all three Cerrado physiognomies occurring in the area.

MATERIALS AND METHODS

The studied area is a Cerrado sensu stricto remnant located within a larger Cerrado fragment of nearly 180 ha that also presents other two Cerrado physiognomies: a cerradão and a campo Cerrado remnant. The fragment belongs to a private reserve of Cerrado (22°48’50” S, 48°44’36” W: 720 m average altitude), located in Pratânia Municipality, at the central-west region of São Paulo state, southeastern Brazil (Figure 1). The fragment is surrounded by pastures, sugar cane and eucalyptus plantations. The climate of the region is Cwa according to Köeppen classification, that is, humid subtropical climate with hot summers and no prolonged drought, annual average temperature of 21°C and annual average rainfall of 1,128
The floristic survey was carried from January to October 2008, on a weekly basis. Approximately 1 ha of the Cerrado sensu stricto area was inventoried and all species in reproductive phase were collected and identified. Voucher specimens were deposited in the Herbarium BOTU (Herbarió "Irina Delanova Gemtčůjńicov", Instituto de Biociências de Botucatu, UNESP). The floristic similarity was estimated using the Jaccard Index (Mueller-Dombois and Ellenberg 1974) and included the present study and other seven previously published studies on Cerrado sensu lato vegetation performed in São Paulo state. Species with incomplete identification (only genus, aff. or cf.) were excluded as well as those whose occurrence was reported in just one area, according to methodology adopted by Ratter et al. (2003). Only floristic surveys which included all plant habitats were compared. A cluster analysis among these eight areas was also performed using the Jaccard Index of Similarity and the UPGMA algorithm for the dendrogram elaboration (Sneath and Sokal 1973). These eight areas was also performed using the Jaccard Index of Similarity and the UPGMA algorithm for the dendrogram elaboration (Sneath and Sokal 1973).

In the center of the sampled area a 5 x 30 m transect was delimited and every woody plant with stem basal diameter equal or superior to 3 cm was recorded and drawn, in order to make a profile diagram, according to Albuquerque and Rodrigues (2000).

Results and Discussion

A total of 119 species of Angiosperms (37 families, 87 genera) and one pteridophyte were registered (Table 1). Although this number may seem small compared to core Cerrado (see Gottsberger and Silberbauer-Gottsberger 2006), many São Paulo state Cerrado areas have similar species number (see references in Table 2). Gottsberger and Silberbauer-Gottsberger (2006) also quoted these regional variations and provided an extensive discussion about this matter, pointing out that local edaphic condition and climate characteristics may interfere on the floristic composition, contributing to the extreme Cerrado flora heterogeneity.

The most species-rich families were Fabaceae with 23 species in total (10 species on Faboideae, seven on Mimosoideae and 6 on Caesalpinoideae), Asteraceae (15 species), Myrtaceae (10), Malpighiaceae and Rubiaceae (seven species each) and Bignoniaceae (five). These families account for 56 % of the surveyed species. The richest genera were *Eugenia* (five species), *Byrsonima*, *Miconia*, *Mimosa* and *Vernonia* (four species each). Among the angiosperms, 20 families and 69 genera had one single species.

Several weeds (17 species) were found in the area: *Baccharis dracunculifolia*, *Bidens gardineri*, *Chamaecrista desvauixii*, *C. flexuosa*, *Commelina diffusa*, *Cuphea cartaginensis*, *Emilia sonchifolia*, *Lantana camara*, *Mikania cordifolia*, *Pterocaulon lanatum*, *Pyrostegia venusta*, *Sida linearifolia*, *Solanum americanum*, *S. lycocarpum*, *Spermacoce capitata*, *Vernonia cognata* and *V. polyanthes*. This indicates some disturbance, probably caused by the proximity of agricultural areas. Four Cerrado species found in the study area - *Arrabidaea brachypoda*, *A. florida*, *Byrsonima intermedia* and *Dimorphandra mollis* – are frequently quoted as weeds (Lorenzi 2008) in areas where the original Cerrado vegetation was removed for the introduction of crops or pastures.

Shrubs make up 37.5 % of the inventoried flora, followed by herbs (27.5 %), trees (23 %), and vines (12 %). Among the shrub species, the richest families were Asteraceae and Myrtaceae (seven species each) and Fabaceae (five). Apocynaceae, Dilleniaceae, Erytroxylaceae, Euphorbiaceae, Lamiaceae and Proteaceae showed only one shrub species each. Among the herbs the richest families were: Fabaceae (nine species), Asteraceae (seven) and Rubiaceae (three). Acanthaceae, Amaranthaceae, Commelinaceae, Convolvulaceae, Euphorbiaceae, Lythraceae, Polygodiaceae and Sapotaceae had only one herbaceous species each. The arboreal component had Fabaceae (seven species), Malpighiaceae and Myrtaceae (three species each) as the richest families. Araliaceae, Chrysobalanaceae, Ebenaceae, Malvaceae, Ochnaceae, Salicaceae and Vochysiaceae had only one tree species each. The families with the highest number of vines were Apocynaceae and Bignoniaceae, both with three species each, and Fabaceae with two species. The other families where vines were represented had only one species each (see Table 1).

Machado et al. (2005), in an inventory of all Cerrado physiognomies in the same fragment quoted 168 species in total, but there was no indication of the class or classes of physiognomy where the plant species were found. This makes the comparisons difficult. However, it was possible to observe that 66 species were common to our inventory and that 54 species that we found were not collected by Machado et al. (2005), while they quote 102 other species that were not observed by us. These conflicting results are possibly due to the fact that our research was limited to the Cerrado sensu stricto area, while Machado et al. (2005) inventoried all the Cerrado physiognomies. On the other hand, the results highlight the fact that even in a restrict area more species can be found depending on the inventory effort.

The profile diagram of the vegetation (Figure 2) shows the occurrence of a dense woody layer, consisting of trees of small to medium size (three to six m tall), shrubs and sub-shrubs with multiple stems. A low, almost continuous canopy was observed, characterizing a dense Cerrado.

The overall number of species sampled in the eight localities chosen to be compared in relation to floristic similarity (Table 2) was 752. From this total, 431 species were discarded because they occurred in just one location.

Figure 1. Location of study area in Pratânia, state of São Paulo, southeastern Brazil.
The remaining set revealed that only 10 species were recorded in all eight Cerrado areas: *Anadenanthera falcata*, *Byrsonima cocclobifolia*, *B. verbascifolia*, *Machaerium acutifolium*, *Miconia albicans*, *Myrcia bella*, *Ouratea spectabilis*, *Schefflera vinosa*, *Styrax ferrugineus* and *Vochysia tucanorum*. Only 125 species occurred in more than four Cerrado areas. There were also nine species that occurred only in the Cerrado of Pratânia: *Aspilia reflexa*, *Chromolaena congesta*, *Commelina diffusa*, *Crotalaria longifolia*, *Dalechampia micromeria*, *Icthyothere elliptica*, *Mimosa xanthocentra*, *Pterocaulon lanatum* and *Serjania caracasana*.

The highest similarity index (54 %) was found between the Cerrado areas located in Botucatu Municipality, at altitudes around 500 m (Table 3). The similarity among the other sites was lower, but there was a trend leading to higher similarity between neighboring areas or between areas with similar altitude. In this category lies the Cerrado of Pratânia (720 m altitude) which was more similar to another Botucatu Cerrado (830 m altitude).

The cluster analysis (Figure 3) show the segregation of three major groups, one including areas of Assis, one including only the area of Pratânia and one area of Botucatu, both with higher altitudes (720 and 830 m, respectively) and other group joined areas with elevations ranging from 500 to 600 m. The higher similarity was observed between Cerrado areas within the same municipality or neighbor areas (Table 3). These results support the statement that the Cerrado vegetation is extremely variable even in very close locations, as noted before in other Cerrado biome areas (Bridgewater et al. 2004).

The species-richness and the peculiarities of the Cerrado of Pratânia indicate the importance of this fragment as a remnant of the original Cerrado vegetation in the area and may possibly serve as a floristic reference for future conservation measures.

Table 1. Species recorded in the Cerrado sensu stricto area in Pratânia, SP.

SPECIES	POPULAR NAME	HABIT
Pteridophyta		
Polyplodiaceae		
Polypodium latipes	Polipódio-de-pé-largo	Herb
Acanthaceae		
Ruellia geminiflora	Ipecaconha	Herb
Amaranthaceae		
Gomphrena macrocephala	Para-tudo-do-Cerrado	Herb
Apocynaceae		
Blepharodon bicupidatum	–	Vine
Blepharodon nitidum (Veill.) J.F. Macbr.	–	Vine
Mandevilla velutina	Jalapa	Shrub
Temnadenia violacea (Veil) Miers	–	Vine
SPECIES	POPULAR NAME	HABIT
---------	--------------	-------
Araliaceae		
Schefflera vinosa (Cham. & Schltdl.) Frodin & Fiaschi	mandioqueira	Tree
Asteraceae		
Aspilia reflexa Baker	bem-me-quer	Herb
Baccharis dracunculifolia DC.	alecrim-do-campo	Shrub
Bidens gardneri Baker	piçao	Herb
Chromolaena compestris (DC.) R.M. King & H. Rob.	–	Shrub
Chromolaena congesta (Hook. & Arn.) R.M. King & H. Rob.	–	herb
Emilia sonchifolia (L.) DC.	bela-emilia	Herb
Gochnatia barrosii Cabrera	cambará-veludo	Shrub
Ichthyothere elliptica H. Rob.	lixa	Herb
Mikania cordifolia (L. f.) Willd.	cipó-cabeludo	Vine
Piptocarpus rotundifolia (Less.) Baker	solidão	Shrub
Pterocaulon lanatum Kuntze	branqueja	Shrub
Vernonia cognata Less.	assa-peixe-roxo	Herb
Vernonia geminata Kunth.	–	Shrub
Vernonia grandiflora Less.	saudades-do-campo	Herb
Vernonia polyanthes Less.	assa-peixe	Shrub
Bignoniaceae		
Arrabidaea brachypoda (DC. Bureau)	cipó-uma	Vine
Arrabidaea florida DC.	cipó-neve	Vine
Jacaranda oxyphylla Cham.	caroba-de-são-paulo	Shrub
Pyrostegia venusta (Ker Gawl.) Miers	cipó-de-são-joão	Vine
Zeyheria montana Mart.	bolsa-de-pastor	Shrub
Bromeliaceae		
Ananas ananassoides (Baker) L.B. Sm.	abacaxi-do-Cerrado	Herb
Dyckia leptostachya Baker	gravatazinho	Herb
Chrysochonaceae		
Couepia grandiflora (Mart. & Zucc.) Bent. ex Hook.f.	oiti-do-sertão	Tree
Clusiaceae		
Kielmeyera coriacea Mart. & Zucc.	para-tudo	Tree
Kielmeyera rubriflora Cambess.	para-tudo	Tree
Commelinaceae		
Commelina diffusa Burm. f.	trapoeraba	Herb
Convolvulaceae		
Evolvulus canescens Meisn.	–	Herb
Cucurbitaceae		
Cayaponia espena (Silva Manso) Cogn.	espelina-verdadeira	Vine
Dilleniaceae		
Davilla elliptica A. St.-Hil.	cipó-vermelho	Shrub
Ebenaceae		
Diospyros hispida A. DC.	caqui-do-Cerrado	Tree
Erythroxylaceae		
Erythroxylum tortuosum Mart.	galinha-choca	Shrub
Euphorbiaceae		
Dalechampia micromeria Ball.	goela-de-pato	Vine
Manihot caerulescens Pohl	mandioca-brava	Shrub
Sebastiania serrulata (Mart.) Mullenders	–	Herb
Fabaceae-Caesalpinioideae		
Bauhinia rufa (Bong.) Steud.	pata-de-vaca	Shrub
Chamaecrista cathartica (Mart.) H.S.Irwin & Barneby	sene-do-campo	Herb
Chamaecrista desvauxii (Collad.) Killip	sene	Shrub
Chamaecrista flexuosa (L.) Greene	mimosa	Herb
Dimorphandra mollis Benth.	falsa-barbatimão	Tree
Senna rugosa (G. Don.) H.S. Irwin & Barneby	boi-gordo	Shrub
SPECIES	POPULAR NAME	HABIT
---------	--------------	-------
Fabaceae-Faboideae		
Acosmium subelegans (Mohlenbr.) Yakovlev	amendoim-falso	Tree
Bowedichia virgilioides Kunth	sucupira-preta	Tree
Clitoria simplicifolia (Kunth) Benth.	–	Herb
Crotalaria longifolia Lam.	crotalária	Herb
Crotalaria maypurensis Kunth	crotalária	Herb
Galactia erosematoides Harms	–	Shrub
Glycine sp.	Vine	
Machaerium acutifolium Vogel	jacarandá-do-campo	Tree
Stylosanthes acuminata M. B. Ferreira & S. Costa	meladinho	Herb
Vigna sp.	Vine	
Fabaceae-Mimosoideae		
Anadenanthera falcata (Benth.) Speg.	angico-do-Cerrado	Tree
Mimosa capillipes Benth.	mimosa	Herb
Mimosa dolens Vell.	juquiri	Shrub
Mimosa rixosa Mart.	mimosa	Herb
Mimosa xanthocentra Mart.	juquiri	Herb
Stryphnodendron adstringens (Mart.) Coville	barbatimão	Tree
Stryphnodendron polyphyllum Mart.	barbatimão	Tree
Lamiaceae		
Aegiphila lhotszkyana Cham.	tamanqueira	shrub
Hypenia macrantha (A. St.-Hil. ex Benth.) Harley	–	herb
Hyptis crinita Benth.	–	herb
Lythraceae		
Cuphea cartaginensis (Jacq.) Machbr.	sete-sangrias	herb
Malpighiaceae		
Banisteriopsis variabilis B. Gates	–	shrub
Byronima basiloba A. Juss.	murici-amargoso	tree
Byronima cocolobifolia Kunth	murici-pequeno	tree
Byronima intermedia A. Juss.	canjica	shrub
Byronima verbascifolia (L.) DC.	murici	tree
Heteropterys umbellata A. Juss.	–	shrub
Tetrapterys ramiflora A. Juss.	cipó-preto	shrub
Malvaceae		
Eriotheca gracilipes (K. Schum.) A. Robyns	paina-do-campo	tree
Peltophorum pterocarpum (A. St.-Hil.) Krapov. & Cristóbal	mahá-do-campo	shrub
Sida lineanotifolia A. St.-Hil.	–	shrub
Waltheria communis A. St.-Hil.	–	shrub
Melastomataceae		
Miconia albicans (Sw.) Triana	quaresmeira-branca	tree
Miconia fallax DC.	–	shrub
Miconia ligustroides (DC.) Naudin	vassoura-preta	tree
Miconia stenostachya DC.	papaterra	shrub
Myrsinaceae		
Myrsine guianensis Aubl.	caporão-ca-comum	tree
Myrsine umbellata (Mart.) Mez	caporão-ca-verdeira	tree
Myrtaceae		
Eugenia aurata O. Berg	murtinha	shrub
Eugenia bimarginata DC.	aperta-goela	shrub
Eugenia livida Elmer	–	shrub
Eugenia obversa O. Berg	fruta-de-perdiz	shrub
Eugenia paniculata (Kunth) DC.	cereja-do-Cerrado	shrub
Myrcia bella Cambess.	cambuí	tree
Myrcia guianensis (Aubl.) DC.	guamirim-vermelho	tree
Myrcia lingua (O. Berg) Mattos & D. Legrand	brasa-viva	tree
SPECIES	POPULAR NAME	HABIT
---------	--------------	--------
Psidium cinereum Mart. ex DC.	araçá	shrub
Psidium inaequilaterum Mart. ex DC.	araçá	shrub
Ochnaceae		
Ochna spectabilis (Mart. ex Engl.) Engl.	batiputá	tree
Poaceae		
Loudetia chrysophylla (Nees) Conert	–	herb
Panicum olyroides Kunth	–	herb
Proteaceae		
Roupala montana Willd.	carne-de-vaca	shrub
Rubiaceae		
Alibertia concolor (Cham.) K. Schum.	marmelinho-do-campo	shrub
Alibertia sessilis (Veill.) K. Schum.	marmelada	shrub
Coccolobus lanceolatus (Ruiz & Pav.) Pers.	piririca	herb
Declaena fruticosa (Willd. ex Roem. & Schult.) Kuntze	–	herb
Palicourea rigida Kunth	douradinha	shrub
Spermacoce capitata Ruiz & Pav.	poaia-da-praia	herb
Tocoyena formosa (Cham. & Schltdl.) K. Schum.	jenipapo-bravo	shrub
Salicaceae		
Casearia sylvestris Sw.	guaçatonga	tree
Sapindaceae		
Serjania caracasana (Jacq.) Willd.	–	vine
Sapotaceae		
Pouteria subcaerulea Pierre ex Dubard	curriola-rasteira	herb
Smilacaceae		
Smilax montana Griseb.	–	vine
Solanaceae		
Solanum americanum Mill.	maria-preta	shrub
Solanum lycocarpum A. St.-Hil.	lobeira	shrub
Styracaceae		
Styrax camporum Pohl	laranjeira-do-mato	tree
Styrax ferrugineus Nees & Mart.	laranjeira-do-campo	tree
Verbenaceae		
Lantana camara L.	cambarazinho	shrub
Lippia lapulina Cham.	rosa-do-campo	shrub
Lippia velutina Schauer	–	shrub
Vitaceae		
Cissus ineris (Baker) Planch.	–	vine
Vochysiaceae		
Vochysia tucanorum Mart.	pau-de-tucano	tree
Table 2. Areas of Cerrado sensu lato in São Paulo state compared with this study.

CODE FOR THE AREAS	STUDY SITE	PHYSIOGAMY	GEOGRAPHIC COORDINATES	CLIMATE TYPE*	ALTITUDE (M)	N OF TAXONS	REFERENCE
A	Pratânia	Cerrado sensu stricto	22°48'50" S, 48°44'36" W	Cwa	720	120	Present study
B	Agudos	Cerrado sensu stricto	22° to 23° S, 49°30' to 48°56' W	Cwa	550	212	Bentocini (unpublished data)
C	Assis	Cerrado sensu stricto	22°33'6.5" to 22°36'68" S, 50°23'0" to 50°22'29" W	Cwa	520 a 590	298	Durigan et al. (1999)
D	Assis	Cerrado sensu stricto	22°33'6.5" to 22°36'68" S, 50°23'0" to 50°22'29" W	Cwa	520 a 590	242	Durigan et al. (1999)
E	Botucatu	Cerrado	22°48' S, 48°17' W	Cfa	500	260	Bicudo (unpublished data)
F	Botucatu	Cerrado sensu stricto	22°45' S, 48°25' W	Cfa	550	301	Gottsberger and Silberbauer-Gottsberger (2006)
G	Botucatu	Cerrado sensu stricto	22°57'34" S, 48°31'20" W	Cfa	830	184	Ishara et al. (2008)
H	Santa Rita do Passa Quatro	Cerrado sensu stricto	21°43' S, 47°35' W	Cwa	600	141	Weiser and Godoy (2001)

* According to the Koeppen Classification

Table 3. Jaccard’s Index among eight Cerrado sensu lato areas in São Paulo state. In bold the highest rates obtained. The areas are identified by letters (A to H) which are described in table 2.

A	B	C	D	E	F	G	H
A	34.02	25.56	15.84	33.97	26.01	36.09	25.75
B	34.44	24.11	39.06	45.74	34.98	35.83	
C	45.37	37.05	36.90	30.09	31.73		
D	20.65	20.08	22.77	21.92			
E	54.02	28.95	29.24				
F	27.70	33.49					
G	29.48						
H	29.48						

Acknowledgments: We are grateful to the owners of the Private Reserve of Cerrado “Fazenda Palmeira da Serra” for research license, to FAPESP for a grant conceded to the first author and to CAPES for a grant conceded to the second author. We also thank Dr. Silvia Rodrigues Machado for suggestions and logistic support which contributed to the development of the present research.

Literature Cited

Albuquerque, G.B. and R.R. Rodrigues. 2000. A vegetação do Morro de Ançaoalba, Floresta Nacional de Ipanema, Iperó (SP). *Scientia Florestalis* 58: 145-159.

Bridgewater, S., J.A. Ratter and J.F. Ribeiro. 2004. Biogeographic patterns, β-diversity and dominance in the Cerrado biome of Brazil. *Biodiversity and Conservation* 13: 2295-2318.

Cavassan, O. 2002. O Cerrado do Estado de São Paulo; p. 93-106 *In: A.L. Klein* (ed.). *Eugen Warming e o Cerrado brasileiro: um século depois*. São Paulo: Editora UNESP; Imprensa Oficial do Estado.

Coutinho, L.M. 2002. O bioma do Cerrado; p. 77-91 *In: A.L. Klein* (ed.). *Eugen Warming e o Cerrado brasileiro: um século depois*. São Paulo: Editora UNESP; Imprensa Oficial do Estado.

Déstro, G.F.G. and S. Campos. 2006. SIG-SPRING na caracterização do uso dos solos a partir de imagens do satélite CBERS. *Energia na Agricultura* 21: 26-35.

Durigan, G., M.C. Bacic, G.A.D.C. Franco and M.F. Siqueira. 1999. Inventário florístico do Cerrado na Estação Ecológica de Assis, SP. *Hoehnea* 26: 149-172.

Durigan, G., J.A. Ratter, S. Bridgewater, M.F. Siqueira and G.A.D.C. Franco. 2003. Padrões fitogeográficos do Cerrado paulista sob uma nova perspectiva regional. *Hoehnea* 30: 39-51.

Durigan, G., G.A.D.C. Franco and M.F. Siqueira. 2004. A vegetação dos remanescentes de cerradão no estado de São Paulo; p. 29-56 *In: M.D. Bitencourt and R.R. Mendonça* (eds.). *Viabilidade do desenvolvimento dos remanescentes de cerradão no Estado de São Paulo*. São Paulo: Annablume.
Ratter, J.A., S. Bridgewater, and J.F. Ribeiro. 2003. Analysis of the floristic composition of the Brazilian Cerrado vegetation III: comparison of the woody vegetation of 376 areas. *Edinburgh Journal of Botany* 60: 57-109.

Ribeiro, J.F. and B.M.T. Walter. 1998. Fitofisionomias do bioma Cerrado; p. 89-166 In: S.M. Sano and S.P. Almeida (eds.). *Cerrado: ambiente e flora*. Brasilia: EMBRAPA.

Rizzini, C.T. 1971. A flora do Cerrado: análise florística das savanas centrais; p. 107-153 In M.G. Ferri (ed). *Simpósio sobre o Cerrado*. São Paulo: EDUSP.

Sneath, P.H. and R.R. Sokal. 1973. *Numerical taxonomy*. San Francisco: W.H. Freeman & Co. 573 p.

Weiser, V.L. and S.A.P. Godoy. 2001. Florística de um hectare de Cerrado stricto sensu na ARIE - Cerrado Pé-de-Gigante, Santa Rita do Passa Quatro, SP. *Acta Botanica Brasilica* 15: 201-212.

RECEIVED: April 2010
REVISED: April 2010
ACCEPTED: April 2010
PUBLISHED ONLINE: August 2010
EDITORIAL RESPONSIBILITY: Angelo Gilberto Manzatto