Conceptual Elements Course Inventory

FOR MORE INFORMATION CONTACT:
Tawnya Cary & Janet Branchaw, University of Wisconsin - Madison
Conceptual Elements Course Inventory

Instructions: Indicate whether each conceptual element is addressed in the course in the Y/N column. If yes, then identify the specific topic or course content that is taught and at what scale(s).

Course: PATHWAYS AND TRANSFORMATIONS OF ENERGY AND MATTER (PTEM)
PTEM1: Energy is neither created nor destroyed, but can be transformed from one form to another to generate biological activity.
Y / N
☐
☐
☐
PTEM2: Input of energy, which can be from different sources, is needed to build and maintain biological entities, thereby lowering entropy in the system.
Y / N
☐
☐
☐
PTEM3: Biological entities harness potential energy stored in electrochemical gradients and released from chemical reactions.
Y / N
☐
☐
☐
PTEM4: Matter is recycled through the re-arrangement of chemical bonds in biological entities.
Y / N
☐
☐
☐
PTEM5: Biological entities regulate the synthesis, storage and mobilization of biological compounds to meet energy demands.
Y / N
☐
☐
☐
PTEM6: Many chemical elements can serve as electron donors and acceptors to drive biological processes.
Y / N
☐
☐
☐
PTEM7: Matter can transfer between the abiotic and biotic components of biological systems.
Y / N
☐
☐
☐

FOR MORE INFORMATION CONTACT:
Tawnya Cary & Janet Branchaw, University of Wisconsin - Madison
Conceptual Elements Course Inventory

Instructions: Indicate whether each conceptual element is addressed in the course in the Y/N column. If yes, then identify the specific topic or course content that is taught and at what scale(s).

Course:	Y / N	Topic/Course Content	Scale(s)
INFORMATION FLOW, EXCHANGE AND STORAGE (IFES)			
IFES1: Information exists in many forms and is relayed within and across biological molecules, cells, tissues, organisms, populations and ecosystems.	☐		cell/molec organismal ecosystem
IFES2: Genetic information is stored in nucleic acids (DNA and RNA); epigenetic information is stored in proteins that associate with DNA and in reversible DNA modifications.	☐		cell/molec organismal ecosystem
IFES3: The process of protein synthesis results from the flow of genetic information through various pathways.	☐		cell/molec organismal ecosystem
IFES4: Information from the environment regulates protein synthesis and activity, which control cellular processes and thereby organismal and population-level activity.	☐		cell/molec organismal ecosystem
IFES5: Organisms transmit genes and epigenetic information to their offspring.	☐		cell/molec organismal ecosystem

FOR MORE INFORMATION CONTACT:
Tawnya Cary & Janet Branchaw, University of Wisconsin - Madison
Conceptual Elements Course Inventory

Instructions: Indicate whether each conceptual element is addressed in the course in the Y/N column. If yes, then identify the specific topic or course content that is taught and at what scale(s).

Course:	Y / N	Topic/Course Content	Scale(s)
STRUCTURE AND FUNCTION (SF)			
SF1: Biological structures from the molecular to the ecosystem scale and their interactions are determined by chemical and physical properties that both enable and constrain function.	☐		cell/molec organismal ecosystem
SF2: Individual structures can be arranged into organized units that enable more complex functions.	☐		cell/molec organismal ecosystem
SF3: Structural features of biological entities undergo changes during development that are determined by the regulation of gene expression.	☐		cell/molec organismal ecosystem
SF4: Structural features are dynamic and modifications can be made in response to environmental changes that are compensatory to restore lost function, or non-compensatory to eliminate functions that are no longer needed.	☐		cell/molec organismal ecosystem
SF5: Comparable changes in structure can have small or large effects on function, depending on the spatial location.	☐		cell/molec organismal ecosystem

For more information contact: Tawnya Cary & Janet Branchaw, University of Wisconsin - Madison
Conceptual Elements Course Inventory

Instructions: Indicate whether each conceptual element is addressed in the course in the Y/N column. If yes, then identify the specific topic or course content that is taught and at what scale(s).

Course:	Y / N	Topic/Course Content	Scale(s)
EVOLUTION (E)			
E1: All living organisms share common ancestors at some time in the past.	☐		cell/molec, organismal, ecosystem
E2: The phenotypes of living organisms result from the gain and loss of traits along their lineage.	☐		cell/molec, organismal, ecosystem
E3: Genetic variation within a population can be generated by mutation, which results in the generation of novel traits, and by sexual recombination, endosymbiosis and horizontal gene transfer.	☐		cell/molec, organismal, ecosystem
E4: Phenotypes, based upon underlying genotypes and environmental factors, can be subject to selective pressure.	☐		cell/molec, organismal, ecosystem
E5: Organisms have greater fitness if they have a phenotype that increases their ability to survive and reproduce in a particular environment.	☐		cell/molec, organismal, ecosystem
E6: Populations are composed of individual organisms that vary in their fitness, leading to differential rates of survival and reproduction and therefore changes in allele frequency over time.	☐		cell/molec, organismal, ecosystem
E7: Evolution in a population may be due to events not related to fitness, including genetic drift and gene flow.	☐		cell/molec, organismal, ecosystem
E8: The rate of evolutionary change varies and is influenced by many factors, including mutation rate, generation time, and environmental variation.	☐		cell/molec, organismal, ecosystem
E9: Speciation occurs when subpopulations can no longer exchange genetic material, allowing them to diverge over time in their physiological and ecological traits.	☐		cell/molec, organismal, ecosystem

FOR MORE INFORMATION CONTACT:
Tawnya Cary & Janet Branchaw, University of Wisconsin - Madison
Conceptual Elements Course Inventory

Instructions: Indicate whether each conceptual element is addressed in the course in the Y/N column. If yes, then identify the specific topic or course content that is taught and at what scale(s).

Course:	Y / N	Topic/Course Content	Scale(s)
SYSTEMS (S)			
S1: Biological entities interact through chemical and physical signals that can be transient, depend on spatial organization, and are influenced by environmental factors.			☐ cell/molec ☐ organismal ☐ ecosystem
S2: Changes in one component of a biological system can affect or be regulated by other components of the same system.			☐ cell/molec ☐ organismal ☐ ecosystem
S3: Biological systems can be defined at different scales, interact within and across scales, and together form complex networks.			☐ cell/molec ☐ organismal ☐ ecosystem
S4: Biological systems include and are affected by biotic and abiotic factors in the environment.			☐ cell/molec ☐ organismal ☐ ecosystem
S5: Interactions between and among biological entities can generate new system properties.			☐ cell/molec ☐ organismal ☐ ecosystem
Conceptual Elements Department Inventory
Conceptual Elements Department Inventory

Instructions: Use individual course inventories to map the conceptual elements that are covered at each scale across the curriculum.

Courses:					
PATHWAYS AND TRANSFORMATIONS OF ENERGY AND MATTER (PTEM)					
PTEM1: Energy is neither created nor destroyed, but can be transformed from one form to another to generate biological activity.	☐	☐	☐	☐	☐
PTEM2: Input of energy, which can be from different sources, is needed to build and maintain biological entities, thereby lowering entropy in the system.	☐	☐	☐	☐	☐
PTEM3: Biological entities harness potential energy stored in electrochemical gradients and released from chemical reactions.	☐	☐	☐	☐	☐
PTEM4: Matter is recycled through the re-arrangement of chemical bonds in biological entities.	☐	☐	☐	☐	☐
PTEM5: Biological entities regulate the synthesis, storage and mobilization of biological compounds to meet energy demands.	☐	☐	☐	☐	☐
PTEM6: Many chemical elements can serve as electron donors and acceptors to drive biological processes.	☐	☐	☐	☐	☐
PTEM7: Matter can transfer between the abiotic and biotic components of biological systems.	☐	☐	☐	☐	☐

FOR MORE INFORMATION CONTACT:
Tawnya Cary & Janet Branchaw, University of Wisconsin - Madison
Conceptual Elements Department Inventory

Instructions: Use individual course inventories to map the conceptual elements that are covered at each scale across the curriculum.

Courses:				

INFORMATION FLOW, EXCHANGE AND STORAGE (IFES)

IFES1: Information exists in many forms and is relayed within and across biological molecules, cells, tissues, organisms, populations and ecosystems.	☐ cell/molec	☐ cell/molec	☐ cell/molec	☐ cell/molec
	☐ organismal	☐ organismal	☐ organismal	☐ organismal
	☐ ecosystem	☐ ecosystem	☐ ecosystem	☐ ecosystem

IFES2: Genetic information is stored in nucleic acids (DNA and RNA); epigenetic information is stored in proteins that associate with DNA and in reversible DNA modifications.	☐ cell/molec	☐ cell/molec	☐ cell/molec	☐ cell/molec
	☐ organismal	☐ organismal	☐ organismal	☐ organismal
	☐ ecosystem	☐ ecosystem	☐ ecosystem	☐ ecosystem

IFES3: The process of protein synthesis results from the flow of genetic information through various pathways.	☐ cell/molec	☐ cell/molec	☐ cell/molec	☐ cell/molec
	☐ organismal	☐ organismal	☐ organismal	☐ organismal
	☐ ecosystem	☐ ecosystem	☐ ecosystem	☐ ecosystem

IFES4: Information from the environment regulates protein synthesis and activity, which control cellular processes and thereby organismal and population-level activity.	☐ cell/molec	☐ cell/molec	☐ cell/molec	☐ cell/molec
	☐ organismal	☐ organismal	☐ organismal	☐ organismal
	☐ ecosystem	☐ ecosystem	☐ ecosystem	☐ ecosystem

IFES5: Organisms transmit genes and epigenetic information to their offspring.	☐ cell/molec	☐ cell/molec	☐ cell/molec	☐ cell/molec
	☐ organismal	☐ organismal	☐ organismal	☐ organismal
	☐ ecosystem	☐ ecosystem	☐ ecosystem	☐ ecosystem

FOR MORE INFORMATION CONTACT:
Tawnya Cary & Janet Branchaw, University of Wisconsin - Madison
Conceptual Elements Department Inventory

Instructions: Use individual course inventories to map the conceptual elements that are covered at each scale across the curriculum.

Courses:					
STRUCTURE AND FUNCTION (SF)					
SF1: Biological structures from the molecular to the ecosystem scale and their interactions are determined by chemical and physical properties that both enable and constrain function.	☐ cell/molec				
	☐ organismal				
	☐ ecosystem				
SF2: Individual structures can be arranged into organized units that enable more complex functions.	☐ cell/molec				
	☐ organismal				
	☐ ecosystem				
SF3: Structural features of biological entities undergo changes during development that are determined by the regulation of gene expression.	☐ cell/molec				
	☐ organismal				
	☐ ecosystem				
SF4: Structural features are dynamic and modifications can be made in response to environmental changes that are compensatory to restore lost function, or non-compensatory to eliminate functions that are no longer needed.	☐ cell/molec				
	☐ organismal				
	☐ ecosystem				
SF5: Comparable changes in structure can have small or large effects on function, depending on the spatial location.	☐ cell/molec				
	☐ organismal				
	☐ ecosystem				

FOR MORE INFORMATION CONTACT:
Tawnya Cary & Janet Branchaw, University of Wisconsin - Madison
Conceptual Elements Department Inventory

Instructions: Use individual course inventories to map the conceptual elements that are covered at each scale across the curriculum.

Courses:				
EVOLUTION (E)				
E1: All living organisms share common ancestors at some time in the past.	☐ cell/molec	☐ cell/molec	☐ cell/molec	☐ cell/molec
	☐ organismal	☐ organismal	☐ organismal	☐ organismal
	☐ ecosystem	☐ ecosystem	☐ ecosystem	☐ ecosystem
E2: The phenotypes of living organisms result from the gain and loss of traits along their lineage.	☐ cell/molec	☐ cell/molec	☐ cell/molec	☐ cell/molec
	☐ organismal	☐ organismal	☐ organismal	☐ organismal
	☐ ecosystem	☐ ecosystem	☐ ecosystem	☐ ecosystem
E3: Genetic variation within a population can be generated by mutation, which results in the generation of novel traits, and by sexual recombination, endosymbiosis and horizontal gene transfer.	☐ cell/molec	☐ cell/molec	☐ cell/molec	☐ cell/molec
	☐ organismal	☐ organismal	☐ organismal	☐ organismal
	☐ ecosystem	☐ ecosystem	☐ ecosystem	☐ ecosystem
E4: Phenotypes, based upon underlying genotypes and environmental factors, can be subject to selective pressure.	☐ cell/molec	☐ cell/molec	☐ cell/molec	☐ cell/molec
	☐ organismal	☐ organismal	☐ organismal	☐ organismal
	☐ ecosystem	☐ ecosystem	☐ ecosystem	☐ ecosystem
E5: Organisms have greater fitness if they have a phenotype that increases their ability to survive and reproduce in a particular environment.	☐ cell/molec	☐ cell/molec	☐ cell/molec	☐ cell/molec
	☐ organismal	☐ organismal	☐ organismal	☐ organismal
	☐ ecosystem	☐ ecosystem	☐ ecosystem	☐ ecosystem
E6: Populations are composed of individual organisms that vary in their fitness, leading to differential rates of survival and reproduction and therefore changes in allele frequency over time.	☐ cell/molec	☐ cell/molec	☐ cell/molec	☐ cell/molec
	☐ organismal	☐ organismal	☐ organismal	☐ organismal
	☐ ecosystem	☐ ecosystem	☐ ecosystem	☐ ecosystem
E7: Evolution in a population may be due to events not related to fitness, including genetic drift and gene flow.	☐ cell/molec	☐ cell/molec	☐ cell/molec	☐ cell/molec
	☐ organismal	☐ organismal	☐ organismal	☐ organismal
	☐ ecosystem	☐ ecosystem	☐ ecosystem	☐ ecosystem
E8: The rate of evolutionary change varies and is influenced by many factors, including mutation rate, generation time, and environmental variation.	☐ cell/molec	☐ cell/molec	☐ cell/molec	☐ cell/molec
	☐ organismal	☐ organismal	☐ organismal	☐ organismal
	☐ ecosystem	☐ ecosystem	☐ ecosystem	☐ ecosystem
E9: Speciation occurs when subpopulations can no longer exchange genetic material, allowing them to diverge over time in their physiological and ecological traits.	☐ cell/molec	☐ cell/molec	☐ cell/molec	☐ cell/molec
	☐ organismal	☐ organismal	☐ organismal	☐ organismal
	☐ ecosystem	☐ ecosystem	☐ ecosystem	☐ ecosystem

FOR MORE INFORMATION CONTACT:
Tawnya Cary & Janet Branchaw, University of Wisconsin - Madison
Conceptual Elements Department Inventory

Instructions: Use individual course inventories to map the conceptual elements that are covered at each scale across the curriculum.

Courses:				
SYSTEMS (S)				
S1: Biological entities interact through chemical and physical signals that can be transient, depend on spatial organization, and are influenced by environmental factors.	□ cell/molec			
	□ organismal			
	□ ecosystem			
S2: Changes in one component of a biological system can affect or be regulated by other components of the same system.	□ cell/molec			
	□ organismal			
	□ ecosystem			
S3. Biological systems can be defined at different scales, interact within and across scales, and together form complex networks.	□ cell/molec			
	□ organismal			
	□ ecosystem			
S4: Biological systems include and are affected by biotic and abiotic factors in the environment.	□ cell/molec			
	□ organismal			
	□ ecosystem			
S5: Interactions between and among biological entities can generate new system properties.	□ cell/molec			
	□ organismal			
	□ ecosystem			

FOR MORE INFORMATION CONTACT:
Tawnya Cary & Janet Branchaw, University of Wisconsin - Madison