A Geometric Interpretation of the χ_y Genus on Hyper-Kähler Manifolds

George Thompson

ICTP
P.O. Box 586
34100 Trieste
Italy

Abstract

The group $SL(2)$ acts on the space of cohomology groups of any hyper-Kähler manifold X. The χ_y genus of a hyper-Kähler X is shown to have a geometric interpretation as the super trace of an element of $SL(2)$. As a by product one learns that the generalized Casson invariant for a mapping torus is essentially the χ_y genus.

\footnote{email: thompson@ictp.trieste.it}
Contents

1 Introduction 1

2 The SL(2) Action on X 3

3 Proof of Theorem 1.1 3

References 4

1 Introduction

The χ_y genus of Hirzebruch is a very interesting and rather powerful invariant. There are three significant values for y. At $y = -1$ the χ_y genus is the Euler characteristic, at $y = 0$ it is the Todd genus while at $y = 1$ it is the signature. There seems to be, however, no geometric understanding of the genus away from these preferred values of y.

In this short note, I prove that for (compact) hyper-Kähler manifolds, there is, in fact, quite a clear geometric meaning to the genus.

For hyper-Kähler manifolds there is a natural $SL(2)$ action, associated with the holomorphic 2-form, on the cohomology groups $\bigoplus_p H^q(X, \Omega^p_X)$ which preserves q and shifts p by even integers. This means that $(-1)^{q+p}$ is preserved. One can, therefore, take the graded trace of an $SL(2)$ element, with the grading given by $(-1)^{p+q}$. Denote the graded trace of $U \in SL(2)$ by $\text{STr} U$.

The geometric meaning of the χ_y genus for hyper-Kähler X is the content of the following

Theorem 1.1 Let X be an irreducible compact hyper-Kähler manifold of real dimension $4n$. Let $U \in SL(2)$ and y an eigenvalue of U, in the two dimensional representation, then

$$\text{STr} U = \frac{\chi - y}{y^n}. \quad (1.1)$$

Remarks:

1) Note that, since $h_p^{(p,q)} = h^{(2n-p,q)}$, the right hand side is invariant under $y \to 1/y$ so that it does not depend on which eigenvalue one picks.

2) Once one expects that a result of this kind is true the proof turns out to be embarrassingly easy.

The motivation for this result comes from the study of 3-manifold invariants. Rozansky and Witten [RW] indicated how, given a hyper-Kähler manifold X, one could associate to the Mapping Torus T_U, the invariant $\text{STr} U$. In [I], I showed that one could perform
the associated path integral. The solution found there is, in fact, the Riemann-Roch formula for the \(\chi_y \) genus divided by \(y^n \). This motivated the above theorem, which can be proven without recourse to physics. However, one can now read the derivation in [1] as a path integral proof of the Riemann-Roch formula for the \(\chi_y \) genus.

That path integral calculation of \(\text{STr} \, U \) gave,

\[
\int_X \text{Todd} \left(TX_C \right) \text{Det} \left(U \otimes I - I \otimes e^R \right)^{1/2}.
\]

(1.2)

Which can be re-written as

\[
\int_X \text{Todd} \left(TX_C \right) \prod_{i=1}^n \left(t - 2 \cosh x_i \right),
\]

(1.3)

where \(t \) is the character of \(U \) in the 2-dimensional representation. The \(\chi_y \) genus is given by Riemann-Roch as [NR]

\[
\chi_{-y}(X) = \int_X \text{Todd} \left(TX_C \right) \prod_{i=1}^{2n} \left(1 - ye^{-x_i} \right),
\]

(1.4)

but since \(X \) is hyper-Kähler one has that \(x_{i+n} = -x_i \) for \(i \leq n \). This means that

\[
\chi_{-y}(X) = \int_X \text{Todd} \left(TX_C \right) \prod_{i=1}^n \left((1 + y^2) - 2y \cosh(x_i) \right),
\]

(1.5)

so that this suggests (1.1) on setting \(ty = 1 + y^2 \).

Consequently we have, in the notation of [T],

Corollary 1.2 The Rozansky-Witten invariant \(Z_{RW}^X[T_U] = \chi_{-y}/y^n \), for \(U \in SL(2, \mathbb{Z}) \).

Further Remarks:

1) The essential feature used here is the \(SL(2) \) action that is made available by the holomorphic 2-form. Hence this is not the same as thinking of \(X \) as a Kähler manifold and making use of the usual \(SL(2) \) action that comes from the symplectic 2-form (Lefschetz decomposition).

2) There is a rather more general formula that was suggested by the work of [RW]. If one considers a “mapping Riemann surface”, for a Riemann surface, \(\Sigma \), of genus \(g \), then the Rozansky-Witten invariant \(Z_{RW}^X[\Sigma_U] = \text{STr} \, U \) where \(U \in \text{Sp}(g) \) and this group acts on \(\bigoplus H^q \left(X, (\Omega_X^*)^\otimes g \right) \). In [T] a Riemann-Roch formula for this super trace was given which looks like a Riemann-Roch formula for a generalized \(\chi_y \) genus. That suggests that the corresponding generalized \(\chi_y \) can be rigorously shown to be the super trace. This has important implications for 3-manifold invariants.

3) Similar, though not identical, path integral formulae are available for general holomorphic symplectic manifolds.

4) Justin Sawon [S] has made use of the weight system in [RW] in an ingenious way to get constraints on the Chern numbers of \(X \).
2 The $\text{SL}(2)$ Action on X

The $SL(2, \mathbb{C})$ action on the cohomology groups of X, that we are interested in, is perhaps best explained at the level of the Lie algebra, $\text{Lie} \ SL(2) := sl(2)$. Let $L_\epsilon : H^q(X, \Omega^p_X) \to H^q\left(X, \Omega^{p+2}_X\right)$ be the map given by the cup-product with the holomorphic 2-form ϵ. Let $\iota_\epsilon : H^q(X, \Omega^p_X) \to H^q\left(X, \Omega^{p-2}_X\right)$ be contraction with respect to ϵ. To fix conventions we note that in local holomorphic coordinates if $\omega \in \Omega^{(p,q)}(X)$, then, suppressing the anti-holomorphic factors, (the Einstein summation convention is in force)

$$\omega = \omega_{I_1,\ldots,I_p} dz^{I_p} \wedge \cdots \wedge dz^{I_1}, \quad (2.1)$$

and

$$\iota_\epsilon \omega = \frac{p(p-1)}{2} \omega_{I_1,I_2,I_3,\ldots,I_p} \epsilon^{I_1I_2} dz^{I_3} \wedge \cdots \wedge dz^{I_p}. \quad (2.2)$$

The algebra satisfied by these operators is, by a straightforward computation,

$$[\iota_\epsilon, L_\epsilon] = (n-p) \quad (2.3)$$

understood as a map $H^q(X, \Omega^p_X) \to H^q(X, \Omega^p_X)$. The generators of $sl(2)$ are then realized as

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \sim L_\epsilon \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \sim \iota_\epsilon \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \sim (n-p). \quad (2.4)$$

The following is taken from the survey by Huybrechts [H] (but see also the original work by Fujiki [F]). Let,

$$H^q(X, \Omega^p_X) _\epsilon := \ker L_{\epsilon}^{n-p+1}, \quad (2.5)$$

then the Lefschetz decomposition theorem tells us that

$$H^q(X, \Omega^p_X) \bigoplus_{(p-l) \geq \max(p-n,0)} L_{\epsilon}^{p-l} H^q(X, \Omega^{2l-p}_X) _\epsilon. \quad (2.6)$$

One thinks of L_ϵ as a raising operator, and the $H^q(X, \Omega^p_X) _\epsilon$, for $0 \leq p \leq n$, are the highest weight vectors of the $n-p+1$ dimensional irreducible representations of $SL(2, \mathbb{C})$. One also has, by a straightforward count, that

$$\dim \mathbb{R} H^q(X, \Omega^p_X) _\epsilon := h^{(p,q)}_\epsilon = h^{(p,q)} - h^{(p-2,q)}. \quad (2.7)$$

3 Proof of Theorem 1.1

The proof is by direct computation.
Let t_r be the character of U in the r dimensional irreducible representation of $SL(2,\mathbb{C})$ and set $t_2 = t$. Note that $t_1 = 1$, and I use the convention that $t_r = 0$ for $r \leq 0$, as well as $h^{(p,q)} = 0$ if $p < 0$. Then

$$\text{STr } U = \sum_{q=0}^{2n} \sum_{p=0}^{n} (-1)^{p+q} t_{n-p+1} h^{(p,q)}. \quad (3.1)$$

One can re-write this expression as

$$\text{STr } U = \sum_{q=0}^{2n} \sum_{p=0}^{n} (-1)^{p+q} h^{(p,q)} (t_{n-p+1} - t_{n-p-1}) . \quad (3.2)$$

Now notice that, on making use of Serre duality, which implies that $h^{(p,q)} = h^{(2n-p,q)}$, that the χ_y genus satisfies,

$$\frac{\chi_y}{y^n} = \sum_{q=0}^{2n} \sum_{p=0}^{n-1} (-1)^{p+q} h^{(p,q)} (y^{p-n} + y^{n-p}) + \sum_{q=0}^{2n} (-1)^{q} h^{(n,q)}. \quad (3.3)$$

A comparison of (3.2) and (3.3) shows us that they agree if we can set

$$t_{r+1} - t_{r-1} = y^r + y^{-r} \quad r > 0. \quad (3.4)$$

For $r = 1$ this reads as

$$ty = y^2 + 1, \quad (3.5)$$

which is simply the characteristic polynomial for the two-dimensional representation of U, where y is an eigenvalue and t is the trace. We make this identification, then (3.4) is a standard relationship between characters and eigenvalues for $SL(2)$.

\[\square\]

Acknowledgments

I would like to thank M. Blau, L. Göttche and I. King for discussions. Special thanks are due to M. S. Narasimhan who made the right observations and the right remarks at the right time.

References

[F] A. Fujiki, On the de Rham Cohomology Group of a compact Kähler Symplectic Manifold, in Algebraic Geometry Sendai, 1985 (Advanced Studies in Pure Mathematics 10), T. Oda ed., North Holland (1987).

[H] D. Huybrechts, Compact Hyper-Kähler Manifolds: Basic Results, alg-geom/9705025.
[NR] M. S. Narasimhan and S. Ramanan, Generalized Prym Varieties as Fixed Points, J. Indian Math. Soc. 39, 1975, 1-19.

[RW] L. Rozansky and E. Witten, Hyper-Kähler Geometry and Invariants of Three Manifolds, hep-th/9612216.

[S] J. Sawon, The Rozansky-Witten Invariants of Hyper-Kähler Manifolds, preprint of a talk presented at the Brno conference.

[T] G. Thompson, On the Generalized Casson Invariant, to appear in Adv. in Theor. Math. Physics 3, hep-th/9811199.