Somatostatin Receptors 3, 4 and 5 Play Important Roles in Gallbladder Cancer

Run-Sheng Guo1,*, Pei-Dong Shi1,*, Jie Zhou2, Yue-Yu Chen1,*

Abstract

Expression changes of somatostatin receptor subtypes (SSTRs) including SSTR1, SSTR2, SSTR3, SSTR4 and SSTR5 in the development of gallbladder cancer were assessed with attention to relationships with clinical pathological characteristics. SSTRs in 29 gallbladder cancer and 25 normal gallbladder tissue specimens were examined by immunohistochemical staining. Differences between SSTR expressions and clinical pathological parameters were analyzed by chi-square test. The five subtypes of SSTR were all expressed in gallbladder cancer tissues and SSTR3 presented the highest expression. SSTR5 expression was increased significantly in gallbladder cancer ($P<0.05$) compared with that in normal gallbladder tissue. SSTR3 expression in highly and moderately differentiated gallbladder cancer was significantly higher than that in poorly differentiated lesions ($P<0.05$). SSTR4 expression was lower in gallbladder cancer with lymph node metastasis than that in gallbladder cancer without lymph node metastasis ($P<0.05$). Therefore, these results indicated that SSTR5, SSTR3 and SSTR4 may play important roles in the formation and development of gallbladder cancer.

Keywords: Gallbladder cancer - somatostatin (SST) - somatostatin receptor (SSTR)

RESEARCH ARTICLE

Somatostatin Receptors 3, 4 and 5 Play Important Roles in Gallbladder Cancer

Run-Sheng Guo1,*, Pei-Dong Shi1,*, Jie Zhou2, Yue-Yu Chen1,*

Abstract

Expression changes of somatostatin receptor subtypes (SSTRs) including SSTR1, SSTR2, SSTR3, SSTR4 and SSTR5 in the development of gallbladder cancer were assessed with attention to relationships with clinical pathological characteristics. SSTRs in 29 gallbladder cancer and 25 normal gallbladder tissue specimens were examined by immunohistochemical staining. Differences between SSTR expressions and clinical pathological parameters were analyzed by chi-square test. The five subtypes of SSTR were all expressed in gallbladder cancer tissues and SSTR3 presented the highest expression. SSTR5 expression was increased significantly in gallbladder cancer ($P<0.05$) compared with that in normal gallbladder tissue. SSTR3 expression in highly and moderately differentiated gallbladder cancer was significantly higher than that in poorly differentiated lesions ($P<0.05$). SSTR4 expression was lower in gallbladder cancer with lymph node metastasis than that in gallbladder cancer without lymph node metastasis ($P<0.05$). Therefore, these results indicated that SSTR5, SSTR3 and SSTR4 may play important roles in the formation and development of gallbladder cancer.

Keywords: Gallbladder cancer - somatostatin (SST) - somatostatin receptor (SSTR)

Introduction

Gallbladder cancer, as a frequent cancer existing in alimentary canal, threatens human health these years. Gallbladder cancer is characterized by hiding onset, atypical symptoms, quick development, high mistake diagnosis rate, low prognosis and postoperative survival rate (de Aretxabala et al., 2004; Kim et al., 2012). In order to raise the survival rate of patients, early diagnosis and detection of metastasis need to be done in therapy of gallbladder cancer. Somatostatin (SST), as a kind of growth hormone releasing inhibiting hormone, is engaged in regulation of hormones secretion in different ways and formation of gallbladder cancer (Pisarek et al., 2009). SST is isolated from brain, which can inhibit pituitary releasing somatropin (Patel, 1999). SST exists in human endocrine and exocrine systems and possesses multiple biological effects. SST has two kinds of molecular forms: 14 peptide somatropin (SS214) and 28 peptide somatrin (SS228), which have the similar structure and bioactivity including inhibition the function of endocrine and exocrine cells, regulation the movement of biliary tract and gastrointestinal tract, adjustment the recognition function of brain as neuromediator (Reubi et al., 1997; Hofslí, 2002). Moreover, SST plays an important role in regulating cell proliferation and differentiation, which inhibits the proliferation of various kinds of cell including tumor cells (Peverelli, et al., 2012). Research shows that SST and its analogs could notably inhibit the proliferation of normal cells or tumor cells in vivo and in vitro, since SST could suppress the formation of tumor vessel, block cell cycle and induce apoptosis of tumor cells via releasing hormone or cytokines which can inhibit tumor growth (Garske et al., 2012; Hashimoto, et al., 2013; Kuriyama et al., 2013).

A plenty of researches show the regulatory action of SST counts on specific receptors expression presenting on target cells (Hall et al., 2002; Pisarek et al., 2009). Somatostatin receptor (SSTR), as a G protein coupled receptor, formed by seven specific transmembrane segments and expressed in multiple human primary tumors (Hall, et al., 2002). SSTR has five subtypes: SSTR1-5. SSTR2 has two different isomers: SSTR2A and SSTR2B. SSTR2, SSTR3, SSTR5 and synthesized SSTR analogs have higher affinity for their similarity with ligands on high selectivity and functional response (Kouroumalis et al., 1998; Barbare et al., 2009). SSTR 1, SSTR2, SSTR 4, and SSTR 5 are concerned with the blockade of cell cycle and could block cell in G1/G0periond (Buscail et al., 2002; Bousquet et al., 2004). SST can adjust apoptosis via SSTR2 and SSTR3 (Ruscica et al., 2010).

An amount of research has shown that SSTR expression has an intimately relationship with multiple tumor diseases including breast cancer, pulmonary neuroendocrine tumor and uveal melanoma (Seitz et al., 2013; Treglia et al., 2013; Valsecchi et al., 2013). However, how SSTR
participates in gallbladder cancer focus less attention. Our research designed to investigate the expressions of the five SSTR subtypes in human primary gallbladder carcinoma tissue by immunohistochemistry (IHC). We suppose to find the relationship between the SSTRs and gallbladder cancer in clinical pathology characteristics, which could provide certain supports for diagnosis, therapy and prognosis of gallbladder cancer.

Materials and Methods

Patients

Twenty-nine patients with gallbladder cancer diagnosed from January 2000 to October 2011 were obtained and assessed from the general surgery department of Shanghai Jiading Hospital. All of the cases owned entire clinical pathology records and had no history of radiotherapy, chemotherapy or hormonal therapy before surgery. The 29 specimens of gallbladder cancer tissue were obtained from 29 patients (19 women and 10 men) who were diagnosed histopathologically as adenocarcinoma. Another 25 specimens of normal gallbladder tissue were obtained from 25 patients suffering cholecystitis and cholecystolithiasis (Table 1).

Immunohistochemistry (IHC)

Samples of gallbladder tissues were fixed with 10% formalin and embedded with paraffin, and then were sliced into 4µm pieces. Slices were dehydrated in xylene for 20 min for three times and hydrated in alcohol in the gradient of 100%-100%-95%-95%-75% for 5 min in each gradient. Then slices were incubated in H2O2 for 5 min and washed by distilled water for 5 min. Slices were retrieved in retrieval buffer (containing 2% 0.5M Tris-HCl, 0.5M EDTA (pH 8.0), pH 7.8-8.0) for 10 min microwave treatment and cooled for 20 min. Slices were blocked in BSA (Bull Serum Albumin) for 10-15 min and incubated with primary antibodies including anti-SSTR1, anti-SSTR2, anti-SSTR3 (1:100 dilution, Wuhan Boster Bio-engineering Limited Company, Wuhan, China), anti-SSTR4 and anti-SSTR5 (1:2500 dilution, Shanghai Meijin Biotechnology Company, Shanghai, China) antibodies for 1.5-2 h at room temperature. This was followed by incubation with the goat anti-antibody as the secondary antibody for 30 min at room temperature. The immunoreaction was visualized with 3, 3’-diaminobenzidine (DAB) solution (Schulz et al., 1998; Pisarek et al., 2009).

IHC results assessment

The immunoreactive intensity for specific receptor proteins was scored semi-quantitatively using a descriptive scale as follows: strong staining (+++), moderate staining (++), weak staining (+) and pale staining (-). Subcellular distribution of SSTR subtypes (membranous or cytoplasmic) was also determined. The stained slices were analyzed by the same pathologist to avoid inter-observer error.

Statistical analysis

Data were analyzed by SPSS 11.0. Differences between SSTRs expression and clinical pathological parameters were analyzed by chi-square test. \(P<0.05 \) was considered statistically significant.

Results

Expressions of SSTRs in normal gallbladder tissue and gallbladder cancer tissue

Immunoreactivity of investigated gallbladder tissues was estimated in pathologically altered cells of gallbladder cancers and normal gallbladder tissues. Five subtypes of SSTR were all expressed in gallbladder cancer tissues and the brown-yellow particles mainly distributed in the cytoplasm and on cytomembrane (Figure 1). Our results showed that, the distribution of SSTR1-5 in gallbladder cancer tissue was 62.1%, 13.8%, 82.6%, 24.1% and 69.0%, respectively (Table 2). SSTR3 had the highest expression in gallbladder, and SSTR2 presented the least expression in gallbladder. The distribution of SSTR1 was higher than that of SSTR5 in normal gallbladder tissue, while the expressions of SSTR1 and SSTR5 presented an opposite condition in gallbladder cancer tissue. Thus, SSTR5 expression was increased in gallbladder cancer (\(P =0.045 \)), suggesting that SSTR5...
Somatostatin Receptors 3, 4 and 5 Play Important Roles in Gallbladder Cancer

Table 2. Expression of Somatostatin Receptor Subtypes in Gallbladder Cancer and Innormal Gallbladder Tissue of Patients Suffering Cholecystitis or Cholecystolithiasis by IHC

Gallbladder cancer tissue	Subtypes of SSTR	Total positive	+++ cytopl	++ cytopl	+ cytopl
SSTR1	18(62.1%)	9	6	3	
SSTR2	4(13.8%)	1	1	2	
SSTR3	24(82.7%)	14	6	4	
SSTR4	7(24.1%)	0	4	3	
SSTR5	20(69.0%)	10	7	3	

Normal gallbladder tissue	Subtypes of SSTR	Total positive	+++ cytopl	++ cytopl
SSTR1	11(44%)	5	4	
SSTR2	3(12%)	0	2	
SSTR3	16(64%)	7	5	
SSTR4	4(16%)	0	3	
SSTR5	6(24%)	2	3	

Figure 1. Expression of SSTRs in Gallbladder Cancer Tissue. The brown-yellow particles mainly distributed in the cytoplasm and on cytomembrane. A. Negative control group; B. Positive SSTR1 expression; C. Positive SSTR2 expression; D. Positive SSTR3 expression; E. Positive SSTR4 expression; F. Positive SSTR5 expression (×20)

Table 3. The Relationship of SSTRs Expressions with Clinicopathological Characteristics of Gallbladder Cancer Patients

Age(years)	SSTR1	SSTR2	SSTR3	SSTR4	SSTR5
<55	6	0	8	1	7
≥55	13	2	16	6	13

Gender	SSTR1	SSTR2	SSTR3	SSTR4	SSTR5
Male	7	3	7	3	8
Female	11	1	17	4	12

Histological type	SSTR1	SSTR2	SSTR3	SSTR4	SSTR5
Tubular and papillary adenocarcinoma	10	2	13	2	11
Mucinous and villous adenocarcinoma	6	2	10	4	8
Poorly differentiated cancer and others	2	0	1	1	1

Differentiation degree	SSTR1	SSTR2	SSTR3	SSTR4	SSTR5
Low	1	0	0	1	2
Middle	11	3	15	5	12
High	6	1	9	1	6

Lymph node metastasis	SSTR1	SSTR2	SSTR3	SSTR4	SSTR5
Positive	6	0	8	0	6
Negative	12	4	16	7	14

Invasion depth	SSTR1	SSTR2	SSTR3	SSTR4	SSTR5
Full-thickness	8	1	9	2	8
Subserous layer	10	3	15	5	12

Liver metastasis	SSTR1	SSTR2	SSTR3	SSTR4	SSTR5
Positive	3	1	4	1	3
Negative	15	3	20	6	17

Prognosis	SSTR1	SSTR2	SSTR3	SSTR4	SSTR5
Recovery	9	2	12	5	13
Improvement	7	2	10	2	6
Death	2	0	2	0	1

Association of SSTRs expressions with the clinical pathology

As illustrated in Table 3, SSTR3 expression in poorly differentiated gallbladder cancer was significantly decreased compared with that in high and middle differentiated gallbladder cancers (P<0.05). SSTR3 expression was concerned with the differentiation grade of cancer and malignant degree of gallbladder. Besides, SSTR4 expression was decreased markedly in gallbladder cancer tissue with lymph node metastasis compared with that in free-lymph node metastasis gallbladder cancer tissue (P<0.05) suggesting that these two subtypes of SSRT may play important roles in the formation and development of gallbladder cancer. No significant differences of SSTRs expressions were shown in the age of patients, histologic type of tumor, invasion depth or liver metastasis.

Discussion

SST, a kind of regulatory peptide, was discovered in 1973 as hypothalamic hormones to inhibit growth hormone (Gottsmann et al., 1975; De et al., 1984). SST exists in human endocrine and exocrine systems and possesses general biological effects. The main function of SST is inhibiting the secretion of hypophysis hormones including pituitary growth hormone, thyroid stimulating hormone and adrenocorticotropic hormone. SST could also inhibit the secretion of multiple endocrine and exocrine cells, depress the peristalsis of biliary and gastrointestinal tracts, conduct the motion and noetic function of brain as neurotransmitter (Olias et al., 2004; Gong et al., 2010). Besides, SST suppresses the proliferation and induction of apoptosis of tumor cells (Olias et al., 2004; Quan et al., 2010). Recent research find that SST could inhibit the proliferation of gallbladder cancer cell line GBC-SD and induce the apoptosis of GBC-SD (Gong et al., 2010; Quan et al., 2010). The synthetic analogs of SST were
applied in resisting proliferation of tumor cells on clinic and received widespread attention.

SST and its synthetic analogs develop various biologic activities via SSTR on target cell membrane. Five SSTR subtypes have been identified, i.e. SSTR 1-5 (Patel et al., 1993; Hoyer et al., 1995). All of the SSTRs belong to a group of G-protein coupled receptors (Hoyer et al., 1995; Reisine et al., 1995) and are down-regulated by adenylatecyclase and encoded by five genes presenting on separate chromosomes (Bell et al., 1995; Toumpanakis et al., 2013). The five subtypes of SSTR possess different effects and the prolonged action of SST is mediated through the combination with SSTR2, SSTR3 and SSTR5 (Kailey et al., 2012; Moss et al., 2012). The receptor follow-up effects mediated by SSTRs are decided by the affinity of SSTRs with SST or its analogs and the density of SSTRs. The density of SSTRs positively regulates the inhibitory effects of SST and its analogs on proliferation of tumor cells. SSTR5 is related to the control of trypsin and secretion of glucagon. SSTR2 and SSTR3 induce cell apoptosis and SSTR1 and SSTR5 are related with cell cycle and affect cell proliferation and differentiation (Lamberts et al., 2002). Research has shown that SSTR5 is concerned strongly with infiltration of tumor and the expression of SSTR5 in insulinoma is lower markedly than normal tissue, indicating that SSTR5 has an intimately relationship with the proliferation of tumor (de Sa et al., 2006). Thus, therapeutic drugs effects depend on the expression of SSTRs in gallbladder cancer tissue. However, SSTRs don’t express on all tumor tissue of patients suffering gallbladder cancer. Some researches indicate that the expression of different SSTRs determine the therapeutic effect of SST and its analogs towards tumors via SSTR.

In conclusion, the inhibiting effect of SST and its analogs towards tumors via SSTR is generally acknowledged. Cell canceration is a complicated process and regulated by multiple genes and growth factors. Our research provides some insights on the clinical application of SST and its analogs to gallbladder cancer therapy.

Acknowledgements

This research was supported by Shanghai Municipal Medical health Cultivation Planning of Outstanding Youth and the Shanghai Medical Key Specialist Construction Plans. ID:ZK2012A15.

References

Barbare JC, Bouche O, Bonnetain F, et al (2009). Treatment of advanced hepatocellular carcinoma with long-acting octreotide: a phase III multicentre, randomised, double blind placebo-controlled study. *Eur J Cancer, 45*, 1788-97.

Behr TM, Behe MP (2002). Cholecystokinin-B/Gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. *Semin Nucl Med, 32*, 97-109.

Bell GI, Yasuda K, Hong H, et al (1995). Molecular biology of somatostatin receptors. *Ciba Found Symp, 190*, 65-79; discussion S0-8.

Bousquet C, Guillermot J, Vernejoul F, et al (2004). Somatostatin receptors and regulation of cell proliferation. *Dig Liver Dis, 36*, S2-7.

Buscail L, Vernejoul F, Fauré P, et al (2002). [Regulation of cell proliferation by somatostatin]. *Ann Endocrinol (Paris), 63*, 2513-8.

Chopra A (2004). 99mTc-Tricarbonyl-K-H-K-H-cholecystokinin 8. in ‘Molecular Imaging and Contrast Agent Database (MICAD)’: Bethesda (MD).

de Arexubala X, Losada H, Mora J, et al (2004). [Neoadjuvant chemoradiotherapy in gallbladder cancer]. *Rev Med Chil, 132*, 51-7.

de Sa SV, Correa-Giannella ML, Machado MC, et al (2006).
Somatostatin receptor subtype 5 (SSTR5) mRNA expression is related to histopathological features of cell proliferation in insulinas. *Endocrin Relat Cancer*, **13**, 69-78.

DeYoung JL, Lien EL (1984). A long-acting injectable dosage form for a somatostatin analog. *J Parenter Sci Technol*, **38**, 234-6.

Fiebig WC, Scheithauer W, Traub T, et al (2002). Absence of therapeutic efficacy of the somatostatin analogue lanreotide in advanced primary hepatic cholangiocellular cancer and adenocarcinoma of the gallbladder despite in vivo somatostatin-receptor expression. *Scand J Gastroenterol*, **37**, 222-5.

Garske U, Sandstrom M, Johansson S, et al (2012). Minor changes in effective half-life during fractionated 177Lu-octreotide therapy. *Acta Oncol*, **51**, 86-96.

Gong W, Qin YY, Li SG, et al (2010). Somatostatin enhanced anti-tumor effect of doxorubicin on gallbladder cancer cells through the regulation of intracellular drug concentration. *Zhonghua Yi Xue Za Zhi*, **90**, 2718-22.

Gottsmann M, Landgraf R, Londong W, Werder K (1975). [Influence of somatostatin on oral glucose tolerance in autonomous hypersecretion of growth hormone, prolactin or insulin (author’s transl)]. *Klin Wochenschr*, **53**, 1161-6.

Hall GH, Turnbull LW, Richmond I, et al (2002). Localisation of somatostatin and somatostatin receptors in benign and malignant ovarian tumours. *Br J Cancer*, **87**, 86-90.

Harada K, Sato Y, Ikeda H, et al (2012). Clinicopathologic study of mixed adenoneuroendocrine carcinomas of hepatobiliary organs. *Virchows Arch*, **460**, 281-9.

Hashimoto K, Masumori N, Tanaka T, et al (2013). Zoledronic acid but not somatostatin analogs exerts anti-tumor effects in a model of murine prostatic neuroendocrine carcinoma of the development of castration-resistant prostate cancer. *Prostate*, **73**, 500-11.

Hofsli E (2002). [The somatostatin receptor family--a window from intestinal K cells in rodents. *Endocr Rev*, **23**, 157-98.

Kaczmarek P, Singh V, Cashen DE, et al (2010). Somatostatin receptor subtypes 2 and 5 mediate inhibition of egg yolk-secretion of glucose-dependent insulinotropic polypeptide from intestinal K cells in rodents. *Diabetologia*, **53**, 3094-103.

Kuriyama I, Miyazaki A, Tsuda Y, et al (2013). Inhibitory effect of novel somatostatin peptide analogues on human cancer cell growth based on the selective inhibition of DNA polymerase beta. *Bioorg Med Chem*, **21**, 403-11.

Lamberts SW, van der Lely AJ, Hofland LJ (2002). New somatostatin analogs: will they fulfil old promises? *Eur J Endocrinol*, **146**, 701-5.

Moss CE, Marsh WJ, Parker HE, et al (2012). Somatostatin receptor 5 and cannabinoid receptor 1 activation inhibit secretion of glucose-dependent insulinotropic polypeptide from intestinal K cells in rodents. *Diabetologia*, **55**, 3094-103.

Pisarek H, Stepień T, Kubiatk R, et al (2009). Expression of somatostatin receptor subtypes in human thyroid tumors: the immunohistochemical and molecular biology (RT-PCR) investigation. *Thyroid Res*, **2**, 1.

Quan ZW, Yang Y, Li JY, et al (2010). The mechanisms of somatostatin induced enhanced chemosensitivity of gallbladder cancer cell line to doxorubicin: cell cycle modulation plus target enzyme up-regulation. *Biomed Pharmacother*, **64**, 451-7.

Reisine T, Bell GI (1995). Molecular biology of somatostatin receptors. *Endocr Rev*, **16**, 427-42.

Reubi JC, Schauer JC, Markwalder R, et al (1997). Distribution of somatostatin receptors in normal and neoplastic human tissues; recent advances and potential relevance. *Yale J Biol Med*, **70**, 471-9.

Ruscica M, Arvigo M, Gatto F, et al (2010). Regulation of prostate cancer cell proliferation by somatostatin receptor activation. *Mol Cell Endocrinol*, **315**, 254-62.

Schulz S, Schulz S, Schmitt J, et al (1998). Immunocytochemical detection of somatostatin receptors sst1, sst2A, sst2B, and sst3 in paraffin-embedded breast cancer tissue using subtype-specific antibodies. *Clin Cancer Res*, **4**, 2047-52.

Seitz S, Buchholz S, Schally AV, et al (2013). Targeting triple-negative breast cancer through the somatostatin receptor with the new cytotoxic somatostatin analogue AN-162 [AEZS-124]. *Anticancer Drugs*, **24**, 150-7.

Songgang L, Jiyu L, Gongwei, et al (2009). Somatostatin enhances the chemosensitivity of GBC-SD cell line to doxorubicin through arresting the cell cycle to S phase rather than through the P53/Bax-depended apoptosis way in vitro. *Hepatogastroenterology*, **56**, 1253-60.

Susini C, Buscail L (2006). Rationale for the use of somatostatin analogs as antitumor agents. *Ann Oncol*, **17**, 1733-42.

Toumpanakis C, Caplin ME (2013). Update on the role of somatostatin analogs for the treatment of patients with gastroenteropancreatic neuroendocrine tumors. *Semin Oncol*, **40**, 56-68.

Treglia G, Lococo F, Petrone G, et al (2013). Pulmonary Neuroendocrine Tumor Incidentally Detected by 18F-CH-Sepreoscan: Case Report and Review of the Literature. *Semin Nucl Med*, **43**, 196-9.

Valsecchi ME, Coronel M, Intenzo CM, et al (2013). Somatostatin receptor scintigraphy in patients with metastatic uveal melanoma. *Melanoma Res*, **23**, 33-9.