The functioning of the central nervous system (CNS) is the result of the integration of bidirectional messages between the brain and peripheral organs. Despite the anatomical separation, gut microbiota, i.e., the microorganisms colonising the gastrointestinal tract, is related to the CNS through the so-called “gut–brain axis” that is also involved in immune processes. The recent literature indicates that the gut microbiota may affect brain functions through endocrine and metabolic pathways, antibody production and the enteric network, while supporting its possible role in the onset and maintenance of several neuropsychiatric and neurodevelopmental disorders, such as autism spectrum disorders (ASDs). The term ASDs includes autistic disorder, Asperger’s syndrome, childhood disintegrative and pervasive developmental disorders not otherwise specified different. All these conditions are characterised by persistent deficits in social communication and social interaction, as well as limited and repetitive behaviours, interests or activities. In the last two decades, an impressive number of cross-sectional studies reported significant differences in microbiota composition between children with an ASD and controls, thus strengthening the

ECP0014

Early Career Psychiatrists in Education and Academia in Europe – Challenges and Ways Forward

F. Baessler

Centre for Psychosocial Medicine, Department Of General Internal And Psychosomatic Medicine, Heidelberg, Germany

doi: 10.1192/j.eurpsy.2022.205

Academic research and publications can serve as important drivers of career development for early-career psychiatrists. However, the current focus on clinical teaching during the postgraduate program leaves much less room for scholastic training for young professionals. Combined with a lack of standardized European curricula despite automatically recognized qualifications in European Union countries, early-career psychiatrists encounter challenging job prospects across Europe, often faced with the hard choice of pursuing careers in clinical practice or opt for academia. In recent years, academia has attracted more and more young psychiatrists eager to contribute as researchers, teachers and/or administrators within academic and higher education institutions. What are the challenges they face and how can they overcome them to combine clinical work, teaching and research? The component of teaching and research varies widely in European psychiatry training and mostly early-career psychiatrists are unaware about the importance of publications, formal qualifications, stipends, international experiences, participating in studies, writing grant applications, etc, for their academic career. Often, they are not clearly informed about the advantages/disadvantages of pursuing an academic career and learn at a later stage about the important steps towards a successful career combining clinical work, research and teaching. In this session, we will share a brief insight into the challenges of academia and the possible ways forward with some real-life experiences of the speaker, who is leading several interdisciplinary research projects at the Heidelberg University Hospital along with handling patients and family at the same time. An interactive discussion and exchange of knowledge is desired.

Disclosure: No significant relationships.

ECP0015

Microbiota, Immune System and Autism Spectrum Disorders: An Integrative Model Towards Novel Treatment Options

D. Marazziti1,4, B. Carpita2, S. Palermo3, E. Parra1 and L. Dell’Osso1,5

1University of Siena, Department Of Chemistry- Biotechnology And Pharmacology, Siena, Italy; 2University of Pisa, Department Of Clinica Amdf Experimental Medicine, Section Of Psychiatry, Pisa, Italy; 3University of Pisa, Section of Psychiatry, Clinical And Experimental Medicine, Pisa, Italy; 4University of Pisa, Department Of Clinical And Experimental Medicine, Pisa, Italy and 5University of Pisa, Dept. Of Clinical And Experimental Medicine, Pisa, Italy

*Corresponding author.

doi: 10.1192/j.eurpsy.2022.206

The functioning of the central nervous system (CNS) is the result of the integration of bidirectional messages between the brain and peripheral organs. Despite the anatomical separation, gut microbiota, i.e., the microorganisms colonising the gastrointestinal tract, is related to the CNS through the so-called “gut–brain axis” that is also involved in immune processes. The recent literature indicates that the gut microbiota may affect brain functions through endocrine and metabolic pathways, antibody production and the enteric network, while supporting its possible role in the onset and maintenance of several neuropsychiatric and neurodevelopmental disorders, such as autism spectrum disorders (ASDs). The term ASDs includes autistic disorder, Asperger’s syndrome, childhood disintegrative and pervasive developmental disorders not otherwise specified different. All these conditions are characterised by persistent deficits in social communication and social interaction, as well as limited and repetitive behaviours, interests or activities. In the last two decades, an impressive number of cross-sectional studies reported significant differences in microbiota composition between children with an ASD and controls, thus strengthening the