Polymer-based oral rehydration solution for treating acute watery diarrhoea (Review)

Gregorio GV, Gonzales MLM, Dans LF, Martinez EG

Gregorio GV, Gonzales MLM, Dans LF, Martinez EG. Polymer-based oral rehydration solution for treating acute watery diarrhoea. Cochrane Database of Systematic Reviews 2009, Issue 2. Art. No.: CD006519. DOI: 10.1002/14651858.CD006519.pub2.

www.cochranelibrary.com
TABLE OF CONTENTS

1 HEADER .. 1
1 ABSTRACT ... 1
2 PLAIN LANGUAGE SUMMARY ... 2
2 BACKGROUND .. 2
3 OBJECTIVES ... 3
3 METHODS ... 3
5 RESULTS ... 5
 Figure 1. ... 8
 Figure 2. ... 9
 Figure 3. ... 10
6 DISCUSSION .. 10
7 AUTHORS’ CONCLUSIONS .. 11
11 ACKNOWLEDGEMENTS ... 11
12 REFERENCES ... 12
16 CHARACTERISTICS OF STUDIES 16
46 DATA AND ANALYSES .. 46
 Analysis 1.1. Comparison 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS, Outcome 1 Total stool output: during first 24 hours. .. 48
 Analysis 1.2. Comparison 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS, Outcome 2 Duration of diarrhoea. .. 49
 Analysis 1.3. Comparison 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS, Outcome 3 Unscheduled use of intravenous fluid. .. 50
 Analysis 1.4. Comparison 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS, Outcome 4 Vomiting (no. participants). .. 51
 Analysis 1.5. Comparison 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS, Outcome 5 Hyponatraemia (no. participants). .. 53
 Analysis 1.6. Comparison 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS, Outcome 6 Hypokalaemia (no. participants). .. 54
 Analysis 1.7. Comparison 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS, Outcome 7 Developed persistent diarrhoea (no. participants). .. 54
 Analysis 2.1. Comparison 2 Type of polymer: polymer-based ORS vs glucose-based ORS, Outcome 1 Total stool output during the first 24 hours. .. 55
 Analysis 2.2. Comparison 2 Type of polymer: polymer-based ORS vs glucose-based ORS, Outcome 2 Duration of diarrhoea. .. 56
 Analysis 2.3. Comparison 2 Type of polymer: polymer-based ORS vs glucose-based ORS, Outcome 3 Unscheduled use of intravenous fluid. .. 57
 Analysis 3.1. Comparison 3 Effects of age and pathogen: rice-based ORS vs glucose-based ORS, Outcome 1 Total stool output during the first 24 hours, by age group. .. 59
 Analysis 3.2. Comparison 3 Effects of age and pathogen: rice-based ORS vs glucose-based ORS, Outcome 2 Duration of diarrhoea, by age group. .. 60
 Analysis 3.3. Comparison 3 Effects of age and pathogen: rice-based ORS vs glucose-based ORS, Outcome 3 Total stool output during the first 24 hours, by pathogen. .. 61
 Analysis 3.4. Comparison 3 Effects of age and pathogen: rice-based ORS vs glucose-based ORS, Outcome 4 Duration of diarrhoea, by type of pathogen. .. 62
7 APPENDICES ... 62
8 CONTRIBUTIONS OF AUTHORS .. 65
9 DECLARATIONS OF INTEREST .. 66
10 SOURCES OF SUPPORT ... 66
11 DIFFERENCES BETWEEN PROTOCOL AND REVIEW 66
12 INDEX TERMS ... 66
Polymer-based oral rehydration solution for treating acute watery diarrhoea

Germana V Gregorio¹, Maria Liza M Gonzales¹, Leonila F Dans², Elizabeth G Martinez¹

¹Department of Pediatrics, College of Medicine-Philippine General Hospital, University of the Philippines, Manila, Philippines.
²Departments of Pediatrics and Clinical Epidemiology, Philippine General Hospital, University of the Philippines, Manila, Philippines

Contact address: Germana V Gregorio, Department of Pediatrics, College of Medicine-Philippine General Hospital, University of the Philippines, Taft Avenue, Manila, National Capital Region, 1000, Philippines. germana1@hotmail.com.

Editorial group: Cochrane Infectious Diseases Group.
Publication status and date: Unchanged, published in Issue 1, 2010.
Review content assessed as up-to-date: 10 November 2008.
Citation: Gregorio GV, Gonzales MLM, Dans LF, Martinez EG. Polymer-based oral rehydration solution for treating acute watery diarrhoea. Cochrane Database of Systematic Reviews 2009, Issue 2. Art. No.: CD006519. DOI: 10.1002/14651858.CD006519.pub2.

Copyright © 2010 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

A B S T R A C T

Background
Acute diarrhoea is one of the principal causes of morbidity and mortality among children in low-income countries. Glucose-based ORS helps replace fluid and prevent further dehydration from acute diarrhoea. Since 2004, the World Health Organization has recommended the osmolarity < 270 mOsm/L (ORS ≤ 270) over the > 310 mOsm/L formulation (ORS ≥ 310). Glucose polymer-based ORS (eg prepared using rice or wheat) slowly releases glucose and may be superior.

Objectives
To compare polymer-based ORS with glucose-based ORS for treating acute watery diarrhoea.

Search methods
In September 2008, we searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (The Cochrane Library 2008, Issue 3), MEDLINE, EMBASE, LILACS, and mRCT. We also contacted researchers, organizations, and pharmaceutical companies, and searched reference lists.

Selection criteria
Randomized controlled trials of people with acute watery diarrhoea (cholera and non-cholera associated) comparing polymer-based and glucose-based ORS (with identical electrolyte contents).

Data collection and analysis
Two authors independently assessed the search results and risk of bias, and extracted data. In multiple treatment arms with two or more treatment groups, we combined outcomes as appropriate and compared collectively with the control group.

Main results
Thirty-four trials involving 4214 participants met the inclusion criteria: 27 in children, five in adults and two in both. Twelve trials used adequate methods to conceal allocation. Most compared polymer-based ORS with ORS ≥ 310. There were fewer unscheduled intravenous infusions in the polymer-based ORS group compared with glucose-based ORS (ORS ≥ 310 and ≤ 270 groups combined) (RR 0.75, 95% CI 0.59 to 0.95; 2235 participants, 19 trials). Adults positive for Vibrio cholerae had a shorter duration of diarrhoea
with polymer-based ORS than with ORS ≤ 270 (MD -7.11 hours, SD -11.91 to -2.32; 228 participants, 4 trials). Wheat-based ORS resulted in lower total stool output in the first 24 hours compared with ORS ≤ 270 (MD -119.85 g/kg, SD -114.73 to -124.97; 129 participants, 2 trials). Adverse effects were similar for polymer-based ORS and glucose-based ORS.

Authors’ conclusions
Polymer-based ORS shows some advantages compared to ORS ≥ 310 for treating all-cause diarrhoea, and in diarrhoea caused by cholera. Comparisons favoured the polymer-based ORS over ORS ≤ 270, but the analysis was underpowered. If specialists consider a potential role for polymer-based ORS, further trials against the current standard (ORS ≤ 270) will be required.

Plain Language Summary
Polymer-based oral rehydration solution (ORS) ORS for acute diarrhoea

Acute diarrhoea is a common cause of death and illness in developing countries. Oral rehydration solutions (ORS) have had a massive impact worldwide in reducing the number of deaths related to diarrhoea.

Most ORS is in the form of a sugar-salt solution, but over the years people have tried adding a variety of compounds ('glucose polymers') such as whole rice, wheat, sorghum, and maize. The aim is to slowly release glucose into the gut and improve the absorption of the water and salt in the solution. This review updates and expands on a 1998 Cochrane Review of rice-based ORS, and assesses the available evidence on the use of polymer-based ORS (both rice and non-rice based) in comparison with the glucose-based ORS.

The original ORS was based on glucose and had an osmolarity of ≥ 310 mOsm/L (ORS ≥ 310). Glucose-based ORS with a lower osmolarity was later introduced in attempts to improve efficacy, and is considered better at reducing the amount and duration of diarrhoea.

Thirty-four trials involving 4214 participants met the inclusion criteria: 27 in children; five in adults; and two in both. Most trials compared polymer-based ORS with a sugar-salt ORS with a particular strength (ORS ≥ 310), which is slightly more salty than the currently agreed best formula (≤ 270 mOsm/L). The trials’ methodological quality was variable.

Fewer people in the polymer-based ORS group needed a drip to be rehydrated compared with those in the glucose-based ORS group. Adverse events were similar for polymer-based ORS and glucose-based ORS.

The authors conclude that polymer-based ORS show some advantages compared to glucose-based ORS for treating diarrhoea of any cause and in diarrhoea caused by cholera. Limited evidence favoured the polymer-based ORS over ORS ≤ 270.

Further trials should compare the efficiency of ORS ≤ 270 with a polymer-based ORS.

Background
Acute diarrhoea, which is defined as three or more loose bowel movements in a 24-hour period (WHO/ICDDRB 1995), is one of the principal causes of morbidity and mortality among children in low-income countries. A 2003 review of 27 prospective studies from 20 countries published from 1990 to 2000 estimated the incidence of diarrhoea as 3.8 episodes per child per year for children less than 11 months of age and 2.1 episodes per child per year for children aged one to four years (Kosek 2003). It has a negative impact on quality of life and can result in considerable healthcare costs. Most of these diarrhoeal illnesses occur in low-income countries and are largely caused by infection. The cause is mainly viral in children aged less than five years, while both bacterial and viral pathogens are implicated in adults (Casburn-Jones 2004). Other causes of acute diarrhoea are disordered motility, such as irritable bowel syndrome, intake of certain drugs, or ileal bile acid malabsorption.

Since the 1980s, efforts to decrease the number of deaths from diarrhoea have been based on several interventions, including the improvement of water quality and sanitation, promotion of breastfeeding, and the introduction of treatment programmes that in-
clude oral rehydration therapy (Claeson 1990). Oral rehydration solution (ORS) was introduced in 1979 by the World Health Organization (WHO), and it rapidly became the cornerstone of programmes for the control of diarrhoeal diseases (Claeson 1990). The osmolarity of the original formulation is 310 mOsm/L (referred to as ORS ≥ 310) and consists of glucose (111 mmol/L), sodium (90 mmol/L), potassium (20 mmol/L), chloride (80 mmol/L), and citrate (10 mmol/L) or bicarbonate (30 mmol/L). The ORS was shown to improve signs of dehydration, including thirst, sunken eyeballs, sunken fontanelles, poor skin turgor, or a decreased or absence of urine output (WHO/ICDDRB 1995). It is considered as both safe and effective (Santosham 1991), and, since its introduction, it has been considered to be mainly responsible for the decrease in case-fatality rates from acute dehydrating diarrhoea (Victora 2000).

The physiological basis for the use of ORS ≥ 310 was the co-transport of glucose and sodium across the intestinal membrane (Santosham 1991). While this glucose-based ORS is effective in replacing the fluid from acute diarrhoea thus preventing further dehydration, it neither reduces stool loss nor shortens the duration of illness (Santosham 1991). Increasing the glucose concentration to greater than 111 mmol/L increases the osmotic load of the solution, which may further aggravate the fluid loss and induce hypernatraemia (Hunt 1992). In 2004, the WHO recommended a different formulation in which the glucose and sodium content were each reduced to 75 mmol/L to give a total osmolarity of 245 mOsm/L (referred to as ORS ≤ 270) (WHO 2004). ORS ≤ 270 reduces stool volume, shortens the duration of diarrhoea, and decreases the need for unscheduled intravenous therapy compared with ORS ≥ 310 (Hahn 2002).

New ORS formulations have been evaluated in attempts to improve the efficacy of ORS ≥ 310. Glucose polymer-based ORS (referred to as polymer-based ORS) may contain whole rice (amylopectins), as in rice-based ORS or rice syrups (maltodextrins). The difference is that the latter contains only a small amount of amino acids and protein. Other sources of polymers are wheat, sorghum, and maize (high amylase-resistant starch). In these polymer-based solutions, the glucose is slowly released after digestion and is absorbed in the small bowel, enhancing the reabsorption of water and electrolyte secreted into the bowel lumen during diarrhoea (Carpenter 1988; Pizarro 1991). Although ORS ≥ 310 is no longer recommended it remains unknown whether a polymer-based ORS is indeed more effective than a glucose-based ORS (ie ORS ≥ 310 or ORS ≤ 270).

A 1998 Cochrane Review of rice-based ORS for treating diarrhoea concluded that it significantly reduced the mean 24-hour stool output in adults and children with cholera or cholera-like diarrhoea, but results were inconclusive for infants and children with non-cholera diarrhoea (Fontaine 1998). Our Cochrane Review has updated the evidence on the use of polymer-based ORS (both rice and non-rice based) and expanded the primary outcome measures to include the number of participants who required unscheduled use of intravenous fluid therapy. Other primary outcome measures focus on the duration of diarrhoea and the stool output in the first 24 hours since these are considered crucial in the management of these patients and the first 24 hours is the period of greatest stool loss. Our Cochrane Review also aims to provide more insights into whether polymer-based ORS is more effective than glucose-based ORS, and to inform future research.

Patients are dehydrated during the first six to eight hours, but once rehydrated, feeding is initiated and stool losses are replaced volume per volume with the ORS. The effect of feeding a rice-based or starch-based food as soon as the participants are rehydrated could confound the effects of glucose polymer-based ORS (Alam 1992).

OBJECTIVES
To compare polymer-based oral rehydration solution (ORS) with glucose-based ORS for treating acute watery diarrhoea.

METHODS
Criteria for considering studies for this review

Types of studies
Randomized controlled trials.

Types of participants
Infants, children, and adults with acute watery diarrhoea (cholera and non-cholera associated) and mild, moderate, or severe dehydration, as defined by trial authors. We excluded trials enrolling patients who were unable to drink or take in oral fluids, those in shock, and those with bloody diarrhoea or dysentery.

Types of interventions

Intervention: polymer-based ORS
ORS in which glucose was replaced by a commercial or a local preparation of a polymer (eg rice, wheat, maltodextrins, maize, sorghum, or corn), the electrolyte composition remaining unchanged between the two solutions.
Control: glucose-based ORS
ORS that contains glucose as a carbohydrate source with either 90 or 60 to 75 mmol/L of sodium.

Types of outcome measures

Primary
- Total stool output (g/kg) during the first 24 hours after randomization.
- Total stool output (g/kg) from randomization to cessation of diarrhoea.
- Duration of diarrhoea (hours) from randomization until cessation of diarrhoea.

Secondary
- Unscheduled intravenous fluid therapy.
- Cases of vomiting.

Adverse events
- All adverse events including hyponatraemia (serum sodium level ≤ 130 mmol/L) (low sodium), hypokalaemia (≤ 3 mol/L) (low potassium), and development of persistent diarrhoea.

Search methods for identification of studies
All relevant trials regardless of language or publication status (published, unpublished, in press, and ongoing).

Databases
We searched the following databases using the search terms and strategy described in Appendix 1: Cochrane Infectious Diseases Group Specialized Register (September 2008); Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library (2008, Issue 2); MEDLINE (1966 to September 2008); EMBASE (1974 to September 2008); and LILACS (1982 to September 2008). We also searched the metaRegister of Controlled Trials (mRCT) using ‘diarrhoea’ and ‘oral rehydration solution’ as search terms.

Researchers, organizations, and pharmaceutical companies
To help identify unpublished and ongoing trials, we conducted a communications or website search (May 2006 to September 2008) with individual researchers working in the field of general paediatrics and gastroenterology, and the following organizations who may be funding a similar study: WHO - Dr. Kevin Palmer, Regional Adviser, Waterborne and Parasitic Diseases, WHO Regional Office for the Western Pacific, Manila, Philippines; INCLEN (www.inclen.org); USAID (www.usaid.gov); Asian Development Bank (www.adb.org); and World Bank (www.worldbank.org). We also searched United Laboratories Philippines (www.unilab.com.ph) and Abbott International (www.abbott.com.ph) (pharmaceutical companies who manufacture oral rehydration solution) for any unpublished or ongoing trials.

Reference lists
We checked the reference lists of all studies identified by the above methods.

Data collection and analysis

Selection of studies
Two authors (GV Gregorio and LF Dans) independently assessed the results of the literature search to determine whether the title or abstract cited a randomized controlled trial. We retrieved the full reports of clinical trials considered by one or both authors to be potentially relevant as well as trials with unclear treatment allocation. We independently assessed the inclusion criteria of these trials using a standard eligibility form. We resolved any disagreements through discussion, or if this failed, by consulting another author (MLM Gonzales). We scrutinized trial reports to ensure multiple publication would be detected. We listed the excluded studies and the reasons for the exclusion.

Data extraction and management
Two authors (GV Gregorio and EG Martinez or MLM Gonzales) independently extracted the data from the trials using pre-tested data extraction forms. We extracted the number of participants who were randomized and the number analysed for all outcomes for each treatment arm in each trial to determine loss to follow up, whether loss was comparable across treatments, and to determine the type of analysis used. Since the primary outcome measures were continuous, we extracted arithmetic means and standard deviations for each treatment group and noted the number of participants in each group. In trials with multiple interventions (two or more different polymer-based ORS that were used as treatment groups) we pooled the means and standard deviations of the different polymer-based ORS across the treatment arms.

For dichotomous outcome measures, we recorded the number(s) experiencing the event and the numbers analysed in each treatment group. In the meta-analysis, for multiple treatment arms, we combined the numbers experiencing the outcome in two or more
experimental interventions as appropriate and compared collectively with the control group. We resolved any disagreements about data extracted by referring to the trial report and through discussion, or, if that failed, by consulting with another author. Where data were insufficient or missing, we attempted to contact the trial authors. GV Gregorio entered the data into Review Manager 5.

Assessment of risk of bias in included studies
Two authors (GV Gregorio and LF Dans or MLM Gonzales) independently assessed the risk of bias (methodological quality) of each trial using a prepared assessment form. We assessed the generation of allocation sequence and allocation concealment as adequate, inadequate, or unclear according to Juni 2001. We also noted who was blinded, such as the trial participants, care providers, or outcome assessors, and classified the inclusion of randomized participants in the analysis as adequate if greater than 90% or inadequate if 90% or less. We used the results of the assessment to perform a sensitivity analysis. In the case of unclear or missing information, we made attempts to contact the authors. We resolved disagreements by discussion between review authors.

Assessment of reporting biases
We assessed the presence of publication bias by looking for asymmetry in the funnel plots. We also assessed asymmetry of the funnel plots using StatsDirect and considered a P value < 0.05 on Egger's bias test as significant.

Data synthesis
GV Gregorio analysed the data using Review Manager 5 and presented the results with 95% confidence intervals (CI). We determined and reported the percentage lost to follow up for all trials from the numbers randomized and the numbers analysed in each treatment group. Analyses were based on a complete-case approach. For the participants who did not adhere to the study protocol, their outcome was based on what was reported by the author (if an intention-to-treat analysis was done) or on data sought from the trial authors (if there was no intention-to-treat analysis). We presented risk ratios (RR) for dichotomous outcomes. We determined continuous outcomes summarized as arithmetic means and standard deviations data using the mean difference (MD). We checked the normality of the data by calculating the ratio of the mean over the standard deviation. If the ratio (mean/SD) was less than two, then it was likely that the data were skewed and therefore were not combined in the meta-analysis.

Subgroup analysis and investigation of heterogeneity
We evaluated the presence of statistical heterogeneity among the interventions by inspecting the forest plot and by performing a Chi² test for heterogeneity using a P value of 0.10 to determine statistical significance. Also, we used a I² value of 50% as an indication of moderate heterogeneity. If there was statistically significant heterogeneity, we used the random-effects model (DerSimonian and Laird method) to combine data, otherwise we applied a fixed-effect model. We investigated heterogeneity using subgroup analyses. We subgrouped trials according to the osmolarity of glucose ORS (ORS ≥ 310 or ORS ≤ 270) and type of polymer (rice, wheat, maltodextrins, and sorghum). We also evaluated the effect of the participant age (< 19 years (paediatric) and ≥ 19 years (adult)) and of cholera as a pathogen. When there was substantial statistical heterogeneity (ie I² = 100%), we did not combine the trials in the meta-analysis.

Sensitivity analysis
We performed sensitivity analyses to assess the robustness of the meta-analysis by excluding trials of a low methodological quality, that is, those that used an inadequate method of randomization, uncontrolled allocation, and inadequate inclusion of randomized participants in the analysis.

RESULTS

Description of studies

Search results
Of the 212 clinical trials included in the primary search until 26 September 2008, 69 were assessed for inclusion in the review (none were multiple publications). Thirty-five trials met the inclusion criteria (see 'Characteristics of included studies'). We excluded the remaining 35 trials for the following reasons (see also 'Characteristics of excluded studies'): electrolyte composition of the intervention and the control group were not identical or not known (11); composition of treatment group was either unknown or not a polymer (eight); not a clinical trial on ORS but on the use of drugs in acute diarrhoea (four); control group used an oral saline solution (one) or an ORS that did not contain either a 90 or 310 or ORS ≤ 270) and type of polymer (rice, wheat, maltodextrins, and sorghum). We also evaluated the effect of the participant age (< 19 years (paediatric) and ≥ 19 years (adult)) and of cholera as a pathogen. When there was substantial statistical heterogeneity (ie I² = 100%), we did not combine the trials in the meta-analysis.

Sensitivity analysis
We performed sensitivity analyses to assess the robustness of the meta-analysis by excluding trials of a low methodological quality, that is, those that used an inadequate method of randomization, uncontrolled allocation, and inadequate inclusion of randomized participants in the analysis.

RESULTS

Description of studies

Search results
Of the 212 clinical trials included in the primary search until 26 September 2008, 69 were assessed for inclusion in the review (none were multiple publications). Thirty-five trials met the inclusion criteria (see 'Characteristics of included studies'). We excluded the remaining 35 trials for the following reasons (see also 'Characteristics of excluded studies'): electrolyte composition of the intervention and the control group were not identical or not known (11); composition of treatment group was either unknown or not a polymer (eight); not a clinical trial on ORS but on the use of drugs in acute diarrhoea (four); control group used an oral saline solution (one) or an ORS that did not contain either a 90 or 310 or ORS ≤ 270) and type of polymer (rice, wheat, maltodextrins, and sorghum). We also evaluated the effect of the participant age (< 19 years (paediatric) and ≥ 19 years (adult)) and of cholera as a pathogen. When there was substantial statistical heterogeneity (ie I² = 100%), we did not combine the trials in the meta-analysis.

Sensitivity analysis
We performed sensitivity analyses to assess the robustness of the meta-analysis by excluding trials of a low methodological quality, that is, those that used an inadequate method of randomization, uncontrolled allocation, and inadequate inclusion of randomized participants in the analysis.

RESULTS

Description of studies

Search results
Of the 212 clinical trials included in the primary search until 26 September 2008, 69 were assessed for inclusion in the review (none were multiple publications). Thirty-five trials met the inclusion criteria (see 'Characteristics of included studies'). We excluded the remaining 35 trials for the following reasons (see also 'Characteristics of excluded studies'): electrolyte composition of the intervention and the control group were not identical or not known (11); composition of treatment group was either unknown or not a polymer (eight); not a clinical trial on ORS but on the use of drugs in acute diarrhoea (four); control group used an oral saline solution (one) or an ORS that did not contain either a 90 or 310 or ORS ≤ 270) and type of polymer (rice, wheat, maltodextrins, and sorghum). We also evaluated the effect of the participant age (< 19 years (paediatric) and ≥ 19 years (adult)) and of cholera as a pathogen. When there was substantial statistical heterogeneity (ie I² = 100%), we did not combine the trials in the meta-analysis.

Sensitivity analysis
We performed sensitivity analyses to assess the robustness of the meta-analysis by excluding trials of a low methodological quality, that is, those that used an inadequate method of randomization, uncontrolled allocation, and inadequate inclusion of randomized participants in the analysis.
Setting
Most trials were conducted in India (10) and Bangladesh (nine). Other study centres were in Egypt (three) (El-Mougi 1988; Fayad 1993; El-Mougi 1996), Chile (two) (Guiraldes 1995a; Guiraldes 1995b), Mexico (two) (Maulen-Radovan 1994; Maulen-Radovan 2004), and one trial each was done in Australia (Wall 1997), Colombia (Bernal 2005), Madagascar (Razafindrakoto 1993), Malaysia (Iyngkaran 1998), Pakistan (Islam 1994), Philippines (Santos Ocampo 1993), Romania (Nanulescu 1999), and Sudan (Mustafa 1995). Only two trials were not done in a hospital setting. One was done in a paediatric clinic (Nanulescu 1999) and one in a rural treatment centre (Zaman 2007).

Participants
The 34 eligible trials included 4214 participants: 2269 used polymer-based ORS and 1945 used glucose-based ORS. In the individual trials, there was no statistically significant difference in the baseline characteristics between the two groups.

Age
Twenty-seven trials included children only (26 in children < five years old), five included adults only (Alam 1992; Bhattacharya 1998; Ramakrishna 2000; Hussain 2003), and two included both adults and children (Molla 1985; Dutta 1998). The two trials that included both adults and children randomized and reported the outcomes separately for each group.

Pathogen
In terms of the aetiology of diarrhoea, only eight trials randomized exclusively Vibrio cholerae positive patients (Molla 1989a; Alam 1992; Bhattacharya 1998; Ramakrishna 2000; Hussain 2003), while 21 included participants with mixed pathogens (both cholera and non-cholera), and five did not report the pathogen (El-Mougi 1988; Molla 1989b; Fayad 1993; Mustafa 1995; Sharma 1998).

Interventions
Twenty-eight trials compared two interventions (polymer versus glucose-based ORS), five trials compared three interventions (rice ORS versus non-rice ORS versus glucose-based ORS) (Alam 1987; Dutta 1988; Mustafa 1995; Ramakrishna 2000), and one trial ≤ (Molla 1989b) compared six interventions (rice, millet, maize, potatoes, sorghum, and wheat ORS versus glucose-based ORS). Only five trials used an ORS ≤ 270 mOsm/L (Bhattacharya 1998; Iyngkaran 1998; Nanulescu 1999; Dutta 2000; Maulen-Radovan 2004), while 29 used ORS ≥ 310 mOsm/L. Twenty-five trials used a variety of rice (uncooked, cooked, powdered, and pop rice) as a source of polymer, three utilized maltodextrins (Akbar 1991; Santos Ocampo 1993; El-Mougi 1996), two trials used amylase-resistant starch (Ramakrishna 2000; Ramakrishna 2008), and one trial each employed plain flour (Bernal 2005), mung beans (Bhan 1987) (with another arm of the trial using pop rice), and wheat (Alam 1987) (another arm using rice). One trial compared the efficacy of glucose ORS with several polymers in the form of wheat, millet, maize, rice, sorghum, and potatoes (Molla 1989b).

The polymer was prepared locally in 23 trials and obtained commercially in eight trials (Santos Ocampo 1993; Maulen-Radovan 1994; Guiraldes 1995a; Guiraldes 1995b; El-Mougi 1996; Faruque 1997; Zaman 2001; Maulen-Radovan 2004). The source was not reported in three trials (Akbar 1991; Nanulescu 1999; Hussain 2003). Only one trial withheld feeding in the first 24 hours (Molla 1989). In another trial (Alam 1992), the patients were randomized into the rice- and glucose-based ORS and further stratified as with and without food intake (Alam 1992). In this, only the data on participants with food intake were used in the review. Feeding was immediately started after hydration in 25 trials, while in seven the onset of refeeding was unclear (Patra 1982; Molla 1985; Bhattacharya 1998; Dutta 1998; Iyngkaran 1998; Dutta 2000; Ramakrishna 2000).

Outcomes reported
Most of the 34 trials reported the total stool output in the first 24 hours (25), total stool output from randomization to discharge (18), duration of diarrhoea (26), and unscheduled use of intravenous fluid (19). However, some of these outcomes were measured and reported in different units by the different studies and therefore not all the data could be used in the meta-analysis. Furthermore, we did not include the data in the meta-analyses if they were skewed: data for total stool output in 24 hours (Molla 1989a; Santos Ocampo 1993; Maulen-Radovan 2004; Bernal 2005); data on duration of diarrhoea (Santos Ocampo 1993; Mustafa 1995; Wall 1997); and data on total stool output from randomization to discharge (Santos Ocampo 1993).

There were a few trials that reported the number of participants with vomiting (nine) (Patra 1982; Bhan 1987; El-Mougi 1988; Mohan 1988; Alam 1992; Islam 1994; Mustafa 1995; Dutta 1998; Iyngkaran 1998), hyponatraemia (six) (Dutta 1988; Guiraldes 1995a; Bhattacharya 1998; Dutta 2000; Zaman 2001; Ramakrishna 2008), hypokalaemia (two) (Bhan 1987; Zaman 2007), and development of persistent diarrhoea (two) (Fayad 1993; Faruque 1997).

Risk of bias in included studies
See Appendix 2 for a summary of the assessment and the characteristics of included studies for details of each trial’s methods.

Of the 34 trials, the methods used to generate the allocation sequence were adequate (computer-generated or random-numbers table) in 24 trials and unclear in the remaining 10 trials (Patra 1982; Bhan 1987; Mohan 1988; Molla 1989a; Razafindrakoto...
Less than half of the trials (12) used an adequate method to conceal allocation. The method was unclear in the other 22 trials. Blinding of the participants, providers, and assessors was only done in three trials (Akbar 1991; Santos Ocampo 1993; El-Mougi 1996). Blinding was difficult or impossible in most trials because of the difference in the appearance of the ORS formulation after reconstitution. All but two trials included an adequate (> 90%) number of randomized participants in the analysis. The number was assessed as inadequate in two trials (Akbar 1991; Nanulescu 1999).

Effects of interventions

There were two trials that reported the effects on adults and children separately (Molla 1985; Dutta 1998). Thus, in the following results, there are some analyses that have more comparison groups than the number of trials reported.

Type of glucose ORS

Five trials compared polymer-based ORS with ORS ≤ 270, and 30 trials with ORS ≥ 310. Overall, the stool volume during the first 24 hours was lower in the polymer-based ORS group (1375 participants, 12 trials, Analysis 1.1). There was substantial, significant heterogeneity (Chi² test P < 0.00001, I² = 100%). One trial with ORS ≤ 270 also showed lower stool volume (99 participants, Nanulescu 1999, Analysis 1.1). The duration of diarrhoea varied from 30 to 81 and 34 to 91 hours in the polymer-based ORS and glucose-based ORS groups, respectively.

For ORS ≥ 310, overall duration was shorter in the polymer-based ORS group (977 participants, 12 trials, Analysis 1.2) (Chi² test P < 0.00001, I² = 100%). For ORS ≤ 270, there was a similar difference (MD -5.98 g/kg, 95% CI -2.08 to -9.89; 194 participants, 3 trials, Analysis 1.2), but we observed significant heterogeneity when we excluded Nanulescu 1999, the one trial with incomplete outcome data (Chi² test P < 0.10, I² = 63%). There was a trend toward slightly fewer unscheduled intravenous infusions in the polymer-based ORS group compared with both the ORS ≥ 310 and ≤ 270 groups; neither was significant, but when both ORS groups were combined the difference was significant in favour of the polymer-based ORS (RR 0.75, 95% CI 0.59 to 0.95; 2235 participants, 19 trials, Analysis 1.3, Figure 1). There was no statistically significant difference between the polymer-based and glucose-based ORS groups in the number of participants with vomiting (Analysis 1.4), hyponatraemia (Analysis 1.5), hypokalaemia (Analysis 1.6), and development of persistent diarrhoea (Analysis 1.7).
Type of polymer

Stratification by types of polymer showed that participants in the rice-based ORS group had a lower stool output (1262 participants, 12 trials, \textit{Analysis 2.1}: subgroup 1) and duration of diarrhoea (1097 participants, 15 trials, \textit{Analysis 2.2}: subgroup 1) (Chi2 test $P < 0.00001$, I2 = 100%). Results with wheat-based ORS were consistent with this (MD -119.85 g/kg, 95% CI -114.73 to -124.97; 129 participants, 2 trials; \textit{Analysis 2.1}; subgroup 2). For sorghum (1 trial) and maltodextrin ORS (1 trial) the data were clearly skewed (mean/SD > 2) so the results are difficult to interpret. A sensitivity analysis showed similar results.

There was a decrease in the number of participants requiring intravenous fluid for those given rice-based ORS (RR 0.75, 95% CI 0.58 to 0.98; 1962 participants, 16 trials, \textit{Analysis 2.3}), but not for those given wheat-based ORS and maltodextrin-based ORS.

Effects of age and pathogen

The effects of age and type of pathogen were evaluated using trials that compared rice-based ORS with glucose-based ORS. In children, there was a significant decrease in the total stool output (\textit{Analysis 3.1}) and duration of diarrhoea (\textit{Analysis 3.2}) (Chi2 test, $P < 0.00001$, I2 = 100%). Among the adults, there was a significant decrease in the duration of diarrhoea (MD -7.11 hours, 95% CI -2.32 to -11.91; 228 participants, 4 trials, \textit{Analysis 3.2}; subgroup 2, \textit{Figure 2}). All four trials were conducted with participants positive for \textit{V. cholerae}.
Participants positive for *V. cholerae* had a lower stool output (Analysis 3.3) when given a rice-based ORS. These effects were not seen among participants with non-cholera diarrhea (Chi² test, P < 0.00001, I² = 100%). The duration of diarrhea was significantly shorter among those given rice-based ORS, regardless of the pathogen (Analysis 3.4) (Chi² test, P < 0.00001, I² = 100%). Sensitivity analysis of the above outcomes showed similar results.

Publication bias

We observed substantial, significant heterogeneity in the primary outcomes and therefore decided to use a funnel plot for the secondary outcome, where the data were homogenous. We constructed a funnel plot of 19 trials comparing polymer-based ORS, and glucose-based ORS and measuring the outcome of unscheduled use of intravenous fluid (Figure 3). The funnel plot is asymmetric due to the absence of smaller trials at the base and to the right of the pooled estimate. This was confirmed by the test for funnel plot asymmetry, which indicated significant asymmetry (Egger: bias = -0.856208 (95% = -1.699023 to -0.013393, P = 0.0469)). Asymmetry in the funnel plot could result from possible selection bias where smaller studies reporting greater treatment benefit for the experimental group were published (publication bias). The gap in the bottom corner of the graph suggests that smaller studies without statistically significant effects remain unpublished. Differences in inclusion criteria (e.g. cholera positive versus any pathogen) and method of assessment of unscheduled use of intravenous fluid may also account for the asymmetry.
Figure 3. Funnel plot on the trials of polymer-based ORS vs glucose-based ORS, measuring the outcome of unscheduled use of intravenous fluid.

DISCUSSION

The biochemical basis for the use of a polymer-based ORS is the presence of starch in rice, wheat, sorghum, and some fruits and vegetables (Carpenter 1988; Pizarro 1991). Even during diarrhoea, the digesting enzyme (amylase) is present in large amounts in the small intestine, so this starch is slowly broken down into glucose molecules. This glucose in turn provides the carrier molecules for co-transport of sodium and water across the intestinal epithelium, without the corresponding osmotic penalty that results if the quantity of glucose is further increased by the use of ORS ≥ 310.

There are three significant findings in this systematic review of 34 randomized controlled trials. First, there was a decrease in the need for unscheduled intravenous fluid among the participants given polymer-based ORS and in the subgroup of participants who were given rice-based ORS as compared with a glucose-based ORS. This indicates a decrease in the failure rate of oral rehydration when patients are given a polymer-based as compared to a glucose-based oral rehydration therapy. These results remained significant when a sensitivity analysis was carried out. However, the risk difference between the two ORS formulations is only 3%, with 34 patients needing treatment with a polymer-based ORS to prevent one episode of oral rehydration therapy failure. Is this result clinically important? While the use of polymers, such as rice, wheat, maize or potatoes, may be more acceptable as a treatment for diarrhoea, being foods that are familiar and readily available in the household, the preparation of the solution is more tedious. Polymers from local sources require cooking and have to be consumed within eight hours, especially in humid countries, to prevent bacterial growth and contamination. This is in contrast to the glucose-based ORS whose preparation only requires mixing the sachet of glucose and electrolytes in boiled water, and the solution may be consumed up to 12 hours in room temperature. It also has to be borne in mind that the clinical trials that were included in this meta-analysis do not allow one to conclude whether polymer-based ORS is indeed physiologically better than glucose-based ORS, as most of the trials immediately re-fed the patients after hydration. Patients with diarrhoea are dehydrated during the first six to eight hours, but once rehydrated, feeding is initiated. The effect of feeding a rice-based or starch-based food as soon as the participants are rehydrated could confound the effects of poly-
mer-based ORS (Alam 1992) and may have led to an underestimate of the effect of glucose-based ORS (Molla 1989a). In a large multicentre trial, the use of a reduced osmolarity ORS (ORS ≤ 270) compared to a glucose-based ORS (ORS ≥ 310) was shown to decrease the need for unscheduled use of intravenous fluid by 33% (Choice 2001). In this review, most of the included clinical trials used ORS ≥ 310 compared to the newer ORS ≤ 270, which has a lower osmolarity. Whether polymer-based ORS is as effective as, or more effective than the reduced osmolarity ORS, which is presently recommended, remains a subject for investigation.

A second observation of this meta-analysis is the decrease in the duration of diarrhoea among V. cholerae positive adults who were given polymer-based ORS, which was not seen when the analysis was limited to participants with non-cholerae or mixed pathogens. This positive result was not demonstrated in children. The efficacy of rice-based ORS has previously been reported to decrease the stool output in the first 24 hours among V. cholerae positive patients, in both adults and children (Fontaine 1998). These findings, however, were not confirmed in the present review, possibly due to the marked heterogeneity of the pooled data. Moreover, in some of the trials, the data were skewed and could not be used in the meta-analysis. Nonetheless, the efficacy of polymer-based ORS in reducing the duration of diarrhoea among cholera-positive patients but not in patients with other types of pathogens maybe due to the difference in the diarrhoeal mechanisms between the two groups (Casburn-Jones 2004). In cholera, which is an enterotoxin-mediated diarrhoea, intestinal secretory processes are activated by the bacteria, leading to massive fluid and electrolyte losses, without any macro- or micro-damage to the intestinal mucosa. On the other hand, commonly encountered enteric pathogens in childhood diarrhoea, such as rotavirus, Salmonella spp, and Shigella spp cause injury to the intestinal mucosa leading to a decrease in intestinal absorption of fluid, electrolytes, and nutrients.

Lastly, an interesting finding of this meta-analysis is the decrease in the total stool output during the first 24 hours in patients given wheat-based ORS who were enrolled in two trials (Alam 1987, wheat; Molla 1989b, wheat). Apart from its carbohydrate content, the proteins present in wheat may also help in the transport of salt and water across the intestinal mucosa, further decreasing the stool output and duration of diarrhoea (Dagher 1996). The available data in this review, however, are only derived from two trials. The chemical quality and digestibility of wheat-based ORS, as well as its clinical efficacy and safety, warrants further research. The ultimate goal is to find an ORS that is cheap, readily available, acceptable, and effective in all types of diarrhoea.

A major limitation of this review is the substantial heterogeneity in the clinical trials, despite statistically significant results in the primary outcomes. Heterogeneity in the treatment effect may have been affected by the way the outcomes have been measured (methodological diversity). Ideally, measurement of stool output should be made by taking the difference in the weight of the diaper before and after use. In some studies in which both males and females were included (especially in the paediatric group) the urine output may have been inadvertently mixed with the stool, giving an erroneously higher stool output. In adults, three trials used a cholera cot to measure stool output (Bhattacharya 1998; Dutta 2000; Ramakrishna 2000), while one trial did not state the measurement method used (Alam 1992). The cholera cot has a bucket underneath to measure the stool output more accurately. It was also unclear in most of the trials whether the duration of diarrhoea was measured from the initial onset of the disease, before admission to the study, or only from admission up to the time of discharge. Different trials may also have used different criteria to define patients who warrant an unscheduled use of intravenous fluid. Despite these limitations, however, sensitivity analyses did not change the results when trials with unclear randomization, unclear allocation, and inadequate numbers of patients analysed were excluded, suggesting that the results of this review are robust.

Authors’ conclusions

Implications for practice

Polymer-based ORS decreases the duration of diarrhoea among adults positive for V. cholerae and lowers the risk of unscheduled use of intravenous fluid, compared with a glucose-based ORS ≥ 310. Trial participants who were given a wheat-based ORS were also shown to have a decrease in total stool output in the first 24 hours; however, the data on wheat ORS were only derived from two trials. Glucose-based ORS, when accompanied by early feeding, may be just as effective.

Implications for research

The rationale for the use of polymer-based ORS is the slow release of glucose from starch, which provides the carrier molecules for sodium without the osmotic penalty that results if the quantity of glucose is increased by the use of ORS ≥ 310. Since the ORS presently recommended already has a reduced osmolarity (ORS ≤ 270), it will be of interest to compare the efficacy of ORS ≤ 270 with a polymer-based ORS in reducing the total stool output, the total volume of ORS intake, the duration of diarrhoea, and the risk of unscheduled intravenous fluid therapy. There is also a need for more trials on the efficacy of wheat-based ORS.

Acknowledgements

This document is an output from a project funded by the UK Department for International Development (DFID) for the benefit of developing countries. The views expressed are not necessarily those of DFID.
References to studies included in this review

Akbar 1991 [published data only]
Akbar M, Baker K, Aziz M, Khan W, Salim A. A randomised double-blind clinical trial of a maltodextrin containing oral rehydration solution in acute infantile diarrhea. *Journal of Diarrheal Disease Research* 1991;9(1):33–7.

Alam 1987 [published data only]
* Alam A, Sarker S, Molla A, Rahaman M, Greenhough W. Hydrolyzed wheat based oral rehydration solution for acute diarrhea. *Archives of Disease in Childhood* 1987;62(5):440–4.

Alam 1987, rice [published data only]
Alam 1987 results for those given rice ORS.

Alam 1987, wheat [published data only]
Alam 1987 results for those given wheat ORS.

Alam 1992 [published data only]
Alam NH, Ahmed T, Kharun M, Molla A. Effects of food with two oral rehydration therapies: a randomised controlled clinical trial. *Gut* 1992;33(4):560–2.

Bhan 1987 [published data only]
* Bhan MK, Ghai OP, Khoshoo V, Vasudev A, Bhatnagar S, Arora N, et al. Efficacy of mung bean (lentil) and pop rice based rehydration solutions in comparison with standard glucose electrolyte solution. *Journal of Pediatric Gastroenterology and Nutrition* 1987;6(3):392–9.

Bhan 1987, mung bean [published data only]
Bhan 1987 results for those given mung bean ORS.

Bhan 1987, rice [published data only]
Bhan 1987 results for those given rice ORS.

Bhattacharya 1998 [published data only]
Bhattacharya M, Bhattacharya S, Dutta D, Deb A, Deb M, Dutta A, et al. Efficacy of oral hypoosmolar glucose-based and rice-based oral rehydration salt solutions in the treatment of cholera in adults. *Scandinavian Journal of Gastroenterology* 1998;33(2):159–63.

Dutta 1988 [published data only]
Dutta P, Dutta S, Bhattacharya M, Bhattacharya S, Sinha A, Mondal B, et al. Comparative efficacy of three different oral rehydration solutions for treatment of dehydration in children. *Indian Journal of Medical Research* 1988;87:229–33.

Dutta 1998 [published data only]
* Dutta D, Bhattacharya A, Deb A, Chowdhury A, Nair G, Ramakrishna B, et al. Uncooked rice powder in oral rehydration solution: an alternative to glucose or cooked rice powder. *Indian Journal of Medical Research* 1998;107:257–62.

Dutta 1998, adults [published data only]
Dutta 1998 results for adults.

Dutta 1998, children [published data only]
Dutta 1998 results for children.

Dutta 2000 [published data only]
Dutta D, Bhattacharya MK, Deb A, Sarkar D, Chatterjee A, Biswas A, et al. Evaluation of oral hypo-osmolar glucose-based and rice-based oral rehydration solutions in the treatment of cholera in children. *Acta Paediatrica* 2000;89(7):787–90.

El-Mougi 1988 [published data only]
El-Mougi M, Hegazi E, Galal O, El Akkad N, El-Abhar A, Nour N, et al. Controlled clinical trial on the efficacy of rice powder-based oral rehydration solution on the outcome of acute diarrhea in infants. *Journal of Pediatric Gastroenterology and Nutrition* 1988;7(4):572–6.

El-Mougi 1996 [published data only]
El-Mougi M, Hendawi A, Koura H, Hegazi E, Fontaine O, Pierce N. Efficacy of standard glucose-based and reduced osmolarity maltodextrin-based oral rehydration solutions: effect of sugar malabsorption. *Bulletin of the World Health Organization* 1996;74(5):471–7.

Faruque 1997 [published data only]
Faruque ASG, Hoque SS, Fuchs GJ, Mahalanabis D. Randomized controlled clinical trial of rice versus glucose oral rehydration solutions in infants and young children with acute watery diarrhoea. *Acta Paediatrica* 1997;86(12):1308–11.

Fayad 1993 [published data only]
Fayad IM, Hasham M, Duggan C, Refar M, Bakir M, Fontaine O, et al. Comparative efficacy of rice-based and glucose-based oral rehydration salts plus early introduction of food. *Lancet* 1993;342(8874):772–5.

Guiraldes 1995a [published data only]
Guiraldes E, Trivino X, Figueroa G, Parker M, Gutierrez C, Vasquez A, et al. Comparison of an oral rice-based electrolyte solution and a glucose-based electrolyte solution in hospitalized infants with diarrheal dehydration. *Journal of Pediatric Gastroenterology and Nutrition* 1995;20(4):417–24.

Guiraldes 1995b [published data only]
Guiraldes E, Trivino X, Hodgson M, Quintana J, Quintana C. Treatment of acute infantile diarrhoea with a commercial rice-based oral rehydration solution. *Journal of Diarrheal Disease Research* 1995;13(4):207–11.

Hossain 2003 [published data only]
Hossain M, Salam M, Rabbani G, Kahir I, Biswas R, Mahalanabis D. Rice-ORS versus glucose-ORS in management of severe cholera due to *Vibrio cholerae* 0139 Bengal: a randomized, controlled clinical trial. *Journal of Health Population and Nutrition* 2003;21(4):325–31.
Polymer-based oral rehydration solution for treating acute watery diarrhoea

13

Copyright © 2010 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Molla 1995, rice [published data only]
Mustafa 1995 results for those given rice ORS.

Mustafa 1995, sorghum [published data only]
Mustafa 1995 results for those given sorghum ORS.

Nanulescu 1999 [published data only]
Nanulescu M, Popa M, Panta P, Butanaria A, Muresan M, Gocan S, et al. The efficacy of an oral-rice based electrolyte solution in infants with acute diarrhea as compared to a glucose-based electrolyte solution. Romanian Journal of Gastroenterology 1999;8(3):177–82.

Putra 1982 [published data only]
Putra FC, Mahalanabis D, Jalan K, Sen A, Banerjee P. Is oral rice electrolyte solution superior to glucose electrolyte solution in infantile diarrhoea? Archives of Disease in Childhood 1982;57(12):910–2.

Ramakrishna 2000 [published data only]
Ramakrishna B, Venkataraman S, Srinivasan P, Dash P, Young G, Binder H. Amylase-resistant starch plus oral rehydration solution for cholera. New England Journal of Medicine 2000;342(5):308–13.

Ramakrishna 2000, amylase [published data only]
Ramakrishna 2000 results for those given amylase resistant starch.

Ramakrishna 2000, rice [published data only]
Ramakrishna 2000 results for those given rice ORS.

Ramakrishna 2008 [published data only]
Ramakrishna B, Subramanian V, Mohan V, Sebastian B, Young G, Farthing M, et al. A randomized controlled trial of glucose versus amylase resistant starch hypotsmolar oral rehydration solution for adult acute dehydrating diarrhea. PLoS ONE 2008;3(2):e1587.

Razafindrakoto 1993 [published data only]
Razafindrakoto O, Ravelomanana N, Randriamiharisoa F, Rasoriavao V, Ramialimana V, Rakotoarimananana D, et al. Rice-based rehydration solution: an alternative to glucose-based solutions in acute diarrhea in malnourished children [La solution de rehydratation orale (SRO) a base de riz, alternative de la SRO de l’OMS dans la diarrhee aigue des malnuris]. Archives Francaises de Pediatrie 1993;50(2):101–5.

Santos Ocampo 1993 [published data only]
Santos Ocampo P, Bravo L, Rogacion J, Battad G. A randomized double-blind clinical trial of a maltodextrin-containing oral rehydration solution in acute infantile diarrhea. Journal of Pediatric Gastroenterology and Nutrition 1993;16(1):23–8.

Sharma 1998 [published data only]
Sharma A, Pradhan R. Comparative study of rice-based oral rehydration salt solution versus glucose-based oral rehydration salt solution (WHO) in children with acute dehydrating diarrhoea. Journal of Indian Medical Association 1998;96(12):367–8.

Wall 1997 [published data only]
Wall C, Swanson C, Cleghorn G. A controlled trial comparing the efficacy of rice-based and hypotonic glucose...
oral rehydration solutions in infants and young children with gastroenteritis. *Journal of Gastroenterology and Hepatology* 1997;12(1):24–8.

Zaman 2001 *(published data only)*
Zaman K, Yunus M, Rahman A, Chowdhury H, Sack D. Efficacy of a packaged rice oral rehydration solution among children with cholera and cholera-like illness. *Acta Paediatrica* 2001;90(5):505–10.

References to studies excluded from this review

Agustina 2007 *(published data only)*
Agustina R, Lukito W, Suhardjo H, Murniati D, Bindels J. The effect of nutritional supplementation with a mixture of probiotic, prebiotic, fiber and micronutrients in infants with acute diarrhea in Indonesia. *Asia Pacific Journal of Clinical Nutrition* 2007;16:435–42.

Alam 2008 *(published data only)*
Alam N, Ashraf H, Szeker S, Olesen M, Troup J, Salam M, et al. Efficacy of partially hydrolyzed guar gum added oral rehydration solution in the treatment of severe cholera in adults. *Digestion* 2008;8:24–9.

Ansaldi 1990 *(published data only)*
Ansaldi N, Dell’olio D, Poli E, Grandi G. Oral rehydration therapy in acute diarrhea in infancy. Comparison between two rehydration solutions [Importanza della reidratazione orale nelle diarree acute infantili]. *Minerva Pediatrica* 1990;42(1-2):9–14.

Barclay 1995 *(published data only)*
Barclay D, Gil-Ramos J, Mora J, Dirren H. A packaged rice-based oral rehydration solution for acute diarrhea. *Journal of Pediatric Gastroenterology and Nutrition* 1995;20(4):408–16.

Barragan-Guzman 1998 *(published data only)*
Barragan-Guzman B, Orozco-Alatorre L, Martiscal-Zuno S. Corn meal solution compared to oral saline solution in the treatment of children with acute diarrhea and high fecal output [Atole de maiz comparado con Vida Suero Oral en el tratamiento de ninos con diarrea aguda de gasto fecal alto]. *Boletin Medico del Hospital Infantil de Mexico* 1998;55(2):65–8.

Bhandari 2008 *(published data only)*
Bhandari N, Mazumder S, Tanega S, Dube B, Agarwal R, Mahalanabis D, et al. Effectiveness of zinc supplementation plus oral rehydration salts compared with oral rehydration salts alone as a treatment for acute diarrhea in a primary care setting: a cluster randomised trial. *Pediatrics* 2008;121(1):e1279–85.

Cohen 1995 *(published data only)*
Cohen M, Mezoff A, Laney W, Bezerra J, Beane B, Drazner D, et al. Use of a single solution for oral rehydration and maintenance therapy of infants with diarrhea and mild to moderate dehydration. *Pediatrics* 1995;95(5):639–45.

Gutierrez 2007 *(published data only)*
Gutierrez C, Villa S, Mota F, Calva J. Does an L-glutamine containing glucose free oral rehydration solution reduce stool output and time to rehydrate in children with acute diarrhea? A double blind randomized clinical trial. *Journal of Health Population and Nutrition* 2008;25:278–84.

Hoekstra 2004 *(published data only)*
Hoekstra J, Szajewska H, Abu Zikri M, Micetic-Turk D, Weizman Z, Papadopoulou A, et al. Oral rehydration solution containing a mixture of non-digestible carbohydrates in the treatment of acute diarrhea: a multicenter randomized placebo controlled study on behalf of the ESPGHAN working group on intestinal infections. *Journal of Pediatric Gastroenterology and Nutrition* 2004;39(3):239–45.

Jirapinyo 1996 *(published data only)*
Jirapinyo P, Moran J. Comparison of oral rehydration solutions made with rice syrup solids or glucose in the treatment of acute diarrhea in infants. *Journal of the Medical Association of Thailand* 1996;79(3):154–60.

Kassaye 1994 *(published data only)*
Kassaye M, Larson C, Carlson D. A randomized community trial of prepackaged and homemade oral rehydration therapies. *Archives of Pediatrics and Adolescent Medicine* 1994;148(12):1288–92.

Kenya 1989 *(published data only)*
Kenya P, Odongo H, Oundo G, Wiswa K, Muttunga J, Molla A, et al. Cereal based oral rehydration solutions. *Archives of Disease in Childhood* 1989;47(4):226–9.

Lebenthal 1995 *(published data only)*
Lebenthal E, Khin-Maung-U, Khin-Myat-Tun, Tin-Nu-Swe, Thein-Thein-Myint, Jirapinyo P, et al. High-calorie, rice-derived, short-chain, glucose polymer-based oral rehydration solution in acute watery diarrhea. *Acta Paediatrica* 1995;84(2):165–72.

Molina 1995 *(published data only)*
Molina S, Vettorazzi C, Peerson J, Solomons N, Brown K. Clinical trial of glucose-oral rehydration solution, rice dextrin-ORS and rice flour-ORS for the management of children with acute diarrhea and mild or moderate dehydration. *Pediatrics* 1995;95(2):191–7.

Molla 1982 *(published data only)*
Molla A, Sarker S, Hossain M, Molla A, Greenough W. Rice-powder electrolyte solution as oral-therapy in diarrhoea due to Vibrio cholerae and Escherichia coli. *Lancet* 1982;1(8285):1317–9.

Molla 2000 *(published data only)*
Molla A, Bari A, Greenough W, Molla A, Budhiraja P, Sharma P. Bangladeshi rural mothers prepare safer rice oral rehydration solutions. *Acta Paediatrica* 2000;89(7):791–4.

Mota-Hernandez 1991 *(published data only)*
Mota-Hernandez F, Bross-Soriano D, Perez-Ricardez M, Velasquez-Jones L. Rice solution and World Health Organization solution by gastric infusion for high stool output diarrhea. *American Journal of Diseases of Childhood* 1991;145(8):937–40.
Murphy 1996 [published data only]
Murphy H, Bari A, Molla A, Zaidi A, Hirschhorn N. A field trial of wheat-based oral rehydration solution among Afghan refugee children. Acta Paediatrica 1996;85(2):151–7.

Patra 1984 [published data only]
Patra F, Mahalanabis D, Jalan K, Sen A, Banerjee P. In search of a super solution: controlled trial of glycine-glucose oral rehydration solution in infantile diarrhoea. Acta Paediatrica Scandinavica 1984;73(1):18–21.

Pelleboer 1990 [published data only]
Pelleboer R, Felius A, Goje B, Van Gelderen H. Sorghum-based oral rehydration solution in the treatment of acute diarrhoea. Tropical and Geographical Medicine 1990;42(1):63–8.

Pizarro 1991 [published data only]
Pizarro D, Posada G, Sandi L, Moran J. Rice-based oral electrolyte solutions for the management of infantile diarrhoea. New England Journal of Medicine 1991;325(6):882–8.

Prasad 1993 [published data only]
Prasad B. Rice-based oral rehydration solution: a controlled clinical trial in Nepal. Journal of Tropical Pediatrics 1993;39(6):368–9.

Rabbani 2005 [published data only]
Rabbani G, Sack D, Ahmed S, Peterson J, Saha S, Marni F, et al. Antidiarrheal effects of L-histidine supplemented rice-based oral rehydration solution in the treatment of male adults with severe cholera in Bangladesh: a double-blind randomized trial. Journal of Infectious Diseases 2005;191(9):1507–14.

Raghupathy 2006 [published data only]
Raghupathy P, Ramakrishna B, Oommen S, Ahmed M, Priyas G, Dziura J, et al. Antidiarrheal effects of L-histidine supplemented rice-based oral rehydration solution in infantile diarrhoea. Journal of Pediatrics 2006;191(9):1507–14.

Roslund 2008 [published data only]
Roslund G, Hepps T, McQuillen K. The role of ondansetron in children with vomiting as a result of acute gastritis/gastroenteritis who have failed oral rehydration therapy: a randomized controlled trial. Annals of Emergency Medicine 2008;52:22–9.

Sabetghasei 1992 [published data only]
Sabetghasei A, Chongsuphajaisiddhi T, Kittikoon P. Chanthavanich P. Rice-powder salt solution in the treatment of acute diarrhoea in young children. Southeast Asian Journal of Tropical Medicine and Public Health 1992;23(3):427–32.

Sarker 2001 [published data only]
Sarker S, Mahalanabis D, Alam N, Sharmin S, Khan A, Fuchs G. Reduced osmolarity oral rehydration solution for persistent diarrhoea in infants: a randomized controlled clinical trial. Journal of Pediatrics 2001;138(4):532–8.

Sirivichayakul 2000 [published data only]
Sirivichayakul C, Chokejindachai W, Vithayasai N, Chanthavanich P, Pongsan P, Wisetsing P, et al. Effects of rice powder salt solution and milk-rice mixture on acute watery diarrhoea in young children. Southeast Asian Journal of Tropical Medicine and Public Health 2000;31(2):354–9.

Teferedegn 1993 [published data only]
Teferedegn B, Larson C, Carlson D. A community-based randomized trial of home-made oral rehydration therapies. International Journal of Epidemiology 1993;22(5):917–22.

Yang 2007 [published data only]
Yang D, Guo W, Tian D, Luo X, He Y, Dai Y, et al. Efficacy and safety of reduced osmolality oral rehydration salts in treatment of dehydration in children with acute diarrhea - a multicenter, randomized, double blind clinical trial. Zhonghua Er Ke Za Zhi [Chinese Medical Journal] 2007;45:252–5.

Yarteve 1995 [published data only]
Yarteve J, Nkrumah F, Hor H, Harrison K, Armar D. Clinical trial of fermented maize-based oral rehydration solution in the management of acute diarrhoea in children. Annals of Tropical Pediatrics 1995;15(1):61–8.

Yurdakok 1995 [published data only]
Yurdakok K, Yalcin S. Comparative efficacy of rice-ORS and glucose-ORS in moderately dehydrated Turkish children with diarrhoea. The Turkish Journal of Pediatrics 1995;37(4):315–21.

Zaman 2007 [published data only]
Zaman S, Mannan J, Lange S, Lönnroth I, Hanson LA. B 221, a medical food containing antisecretory factor reduces child diarrhoea: a placebo controlled trial. Acta Paediatrica 2007;96(11):1655–9.

Zavaleta 2007 [published data only]
Zavaleta N, Figueroa D, Rivera J, Sanchez J, Alfaro S, Lonnerdal B. Efficacy of rice-based oral rehydration solution containing recombinant human lactoferrin and lysozyme in Peruvian children with acute diarrhoea. Journal of Pediatric Gastroenterology and Nutrition 2007;44(2):258–64.

Additional references
Alam 1992
Alam NH, Ahmed T, Khatun M, Molla AM. Effects of food with two oral rehydration therapies: a randomised controlled clinical trial [Effects of food with two oral rehydration therapies: a randomised controlled clinical trial]. Gut 1992;33(4):560–2.

Carpenter 1988
Carpenter CC, Greenough WB, Pierce NF. Oral-rehydration therapy—the role of polymeric substrates. New England Journal of Medicine 1988;319(20):1346–8.

Casburn-Jones 2004
Casburn-Jones AC, Farthing MJ. Management of infectious diarrhoea. Gut 2004;53(2):296–305.

Choice 2001
Choice Study Group. Multicenter, randomized double blind clinical trial to evaluate the efficacy and safety of a reduced osmolality oral rehydration salts solution in

Polymer-based oral rehydration solution for treating acute watery diarrhoea (Review) 15

Copyright © 2010 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
children with acute watery diarrhea. *Pediatrics* 2001;107(4):613–8.

Claeson 1990

Claeson M, Merson MH. Global progress in the control of diarrhoeal diseases. *Pediatric Infectious Disease Journal* 1990; 9(5):345–55.

Dagher 1996

Dagher PC, Egnor RW, Taglietta-Kohlbrecher A, Charney AN. Short chain fatty acids inhibit cAMP-mediated chloride secretion in rat colon. *American Journal of Physiology* 1996; 271(6 Pt 1):1853–60.

Fontaine 1998

Fontaine O, Gore SM, Pierce NF. Rice-based oral rehydration solution for treating diarrhoea. *Cochrane Database of Systematic Reviews* 1998, Issue 4. [DOI: 10.1002/14651858.CD001264.pub2]

Hahn 2002

Hahn S, Kim Y, Garner P. Reduced osmolarity oral rehydration solution for treating diarrhoea caused by acute diarrhoea in children. *Cochrane Database of Systematic Reviews* 2002, Issue 1. [DOI: 10.1002/14651858.CD002847]

Hunt 1992

Hunt JB, Elliott EJ, Fairclough PD, Clark ML, Farthing MJ. Water and solute absorption from hypotonic glucose-electrolyte solutions in human jejunum. *Gut* 1992;33(4):479–83.

Jüni 2001

Jüni P, Altman DG, Eggers M. Systematic reviews in health care: Assessing the quality of controlled clinical trials. *BMJ* 2001;323(7303):42–6.

Kosek 2003

Kosek M, Bern C, Guerrant RL. The global burden of diarrhoeal disease as estimated from studies published between 1992 and 2000. *Bulletin of the World Health Organization* 2003;81(3):197–204.

Lefebvre 2008

Lefebvre C, Manheimer E, Glanville J. Chapter 6: Searching for studies. In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.0 (updated February 2008). The Cochrane Collaboration, 2008. Available from www.cochrane-handbook.org.

Pizarro 1991

Pizarro D, Posada G, Sandi L, Moran JR. Rice-based oral electrolyte solutions for management of infantile diarrhoea. *New England Journal of Medicine* 1991;324(8):517–21.

Review Manager 5 [Computer program]

The Nordic Cochrane Centre, The Cochrane Collaboration. Review Manager (RevMan). Version 5.0. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2008.

**Santosh M, Greenough WB 3rd. Oral rehydration therapy: a global perspective. *Journal of Pediatrics* 1991;118(4 pt 2):44–51.

StatsDirect [Computer program]

StatsDirect Ltd. StatsDirect. Version 2.6. Altrincham: StatsDirect Ltd, 1 June 2008.

Victora 2000

Victora CG, Bryce J, Fontaine O, Monasch R. Reducing deaths from diarrhoea through oral rehydration therapy. *Bulletin of the World Health Organization* 2000;78(10):1246–55.

WHO 2004

World Health Organization. Dept. of Child and Adolescent Health and Development. *Clinical management of acute diarrhoea: WHO/UNICEF joint statement [WHO/FCH/CAH/04.7]*. Geneva: World Health Organization, 2004.

WHO/ICDDRB 1995

Joint WHO/ICDDR, B Consultative Meeting on ORS Formulation. *25 years of ORS: Joint WHO/ICDDR, B Consultative Meeting on ORS Formulation, Dhaka, Bangladesh, 10-12 December 1994 [CDR/CDD/95.2]*. Geneva: World Health Organization, 1995.

* Indicates the major publication for the study.
Characteristics of included studies [ordered by study ID]

Akbar 1991

| Methods | Randomized controlled trial
| **Generation of allocation sequence:** block randomization
| **Allocation concealment:** code broken at the end of the study
| **Blinding:** participants, providers, outcome assessors
| Inclusion of participants in analysis: 81% (maltodextrin group 33/43, 77%; glucose group 36/43, 84%)
| Duration: 20 months, from January 1987 to August 1988 |

| Participants | Number: 86 enrolled
| Inclusion criteria: male; 4 to 36 months; diarrhoea < 3 days; mild to moderate dehydration
| Exclusion criteria: bloody diarrhoea; antibiotic treatment in the last 3 days; severe malnutrition; presence of systemic illness |

| Interventions | 1. Glucose oral rehydration solution (ORS): 43 participants
| 2. Maltodextrin ORS: 43 participants |

| Outcomes | 1. Total stool output in first 24 hours
| 2. Total stool output from randomization to discharge
| 3. Duration of diarrhoea
| 4. Number with unscheduled use of intravenous fluid |

| Glucose-based ORS osmolarity | ≥ 310 mOsm/L |

| Setting | Hospital-based trial
| Location: Dhaka, Bangladesh |

| Notes | - |

Alam 1987

| Methods | Randomized controlled trial
| **Generation of allocation sequence:** permuted block design
| **Allocation concealment:** not reported
| **Blinding:** none
| Inclusion of participants in analysis: > 90%
| Duration: 13 months, from April 1983 to April 1984 |

| Participants | Number: 72 enrolled
| Inclusion criteria: age 1 to 8 years; watery diarrhoea < 3 days; presence of moderate to severe dehydration
| Exclusion criteria: antibiotic treatment before admission; severe malnutrition; presence of systemic illness |
Alam 1987

Interventions
- 1. Glucose oral rehydration solution (ORS): 24 participants
- 2. Wheat ORS: 24 participants
- 3. Rice ORS: 24 participants

Outcomes
- 1. Total stool output in first 24 hours
- 2. Duration of diarrhoea
- 3. Number of participants with unscheduled use of intravenous fluid
- 4. Number of participants with vomiting

Glucose-based ORS osmolarity \(\geq 310 \text{ mOsm/L} \)

Setting
- Hospital-based trial
 - Location: Dhaka, Bangladesh

Notes
- Participants who were given rice ORS were less dehydrated compared to those given glucose ORS, but the difference was not statistically significant

Alam 1987, rice

Methods
- Rice arm of Alam 1987

Participants
- -

Interventions
- 1. Glucose oral rehydration solution (ORS): 30 participants
- 2. Rice ORS: 30 participants

Outcomes
- -

Glucose-based ORS osmolarity
- -

Setting
- -

Notes
- -

Alam 1987, wheat

Methods
- Wheat arm of Alam 1987

Participants
- -

Interventions
- 1. Glucose oral rehydration solution (ORS): 30 participants
- 2. Wheat ORS: 30 participants

Outcomes
- -

Glucose-based ORS osmolarity
- -
Alam 1987, wheat (Continued)

| Setting | - |
| Notes | - |

Alam 1992

Methods Randomized controlled trial
Generation of allocation sequence: random numbers
Allocation concealment: not reported
Blinding: none
Inclusion of participants in analysis: > 90%
Duration: 30 months, from July 1986 to December 1988

Participants
Number: 182 enrolled
Inclusion criteria: age 15 to 60 years; acute watery diarrhoea; presence of dehydration; positive for *Vibrio cholerae*
Exclusion criteria: history of antidiarrhoeal or antimicrobial intake before admission

Interventions
1. Glucose oral rehydration solution (ORS) with no food intake: 47 participants
2. Rice ORS with no food intake: 46 participants
3. Glucose ORS with food intake: 42 participants
4. Rice ORS with food intake: 47 participants

Outcomes
1. Total stool output in first 24 hours
2. Total stool output from randomization to discharge
3. Duration of diarrhoea
4. Number of participants with unscheduled use of intravenous fluid
5. Number of participants with vomiting

Glucose-based ORS osmolarity ≥ 310 mOsm/L

Setting Hospital-based trial
Location: Dhaka, Bangladesh

Notes
Analysed separately with or without food intake

Bernal 2005

Methods Randomized controlled trial
Generation of allocation sequence: permuted blocks of variable length
Allocation concealment: sealed, opaque envelopes
Blinding: unclear
Inclusion of participants in analysis: > 90%
Duration: 17 months, from March 2001 to July 2002
Bernal 2005

Participants
- **Number:** 101 enrolled
- **Inclusion criteria:** age 1 to 48 months; acute watery diarrhoea < 7 days; presence of dehydration but without hypovolaemic shock
- **Exclusion criteria:** malnourished, kwashiorkor type; presence of paralytic ileus

Interventions
1. Glucose oral rehydration solution (ORS): 54 participants
2. Plain flour ORS: 47 participants

Outcomes
1. Total stool output in first 24 hours

Glucose-based ORS osmolarity\(\geq 310\) mOsm/L

Setting
- Hospital-based trial
 - **Location:** Medellin, Colombia

Notes
Data on total stool output in first 24 hours are skewed

Bhan 1987

Methods
- Randomized controlled trial
 - **Generation of allocation sequence:** randomly assigned using sealed envelopes
 - **Allocation concealment:** sealed envelopes
 - **Blinding:** none
 - **Inclusion of participants in analysis:** > 90%
 - **Duration:** not specified; only stated that trial was done for 10 consecutive months

Participants
- **Number:** 93 enrolled
- **Inclusion criteria:** males; age 3 months to 5 years; watery diarrhoea < 5 days; presence of dehydration; weight for height > 70% of 50th centile of reference standard
- **Exclusion criteria:** female; persistent vomiting; bloody diarrhoea; temperature > 39 °C; other associated medical illness; intake of antibiotics during illness

Interventions
1. Glucose oral rehydration solution (ORS): 33 participants
2. Pop rice ORS: 31 participants
3. Mung bean ORS: 29 participants

Outcomes
1. Total stool output in first 24 hours
2. Total stool output from randomization to discharge
3. Duration of diarrhoea
4. Number of participants with unscheduled use of intravenous fluid
5. Number of participants with vomiting

Glucose-based ORS osmolarity\(\geq 310\) mOsm/L

Setting
- Hospital-based trial
 - **Location:** New Delhi, India
Participants who were given glucose ORS were more malnourished as compared to the treatment groups, but the difference was not statistically significant.

Bhan 1987, mung bean

Methods	Mung bean ORS arm of Bhan 1987
Participants	-
Interventions	1. Glucose oral rehydration solution (ORS): 33 participants
2. Mung bean ORS: 29 participants |
| Outcomes | - |
| Glucose-based ORS osmolarity | - |
| Setting | - |
| Notes | - |

Bhan 1987, rice

Methods	Pop rice ORS arm of Bhan 1987
Participants	-
Interventions	1. Glucose oral rehydration solution (ORS): 33 participants
2. Pop rice ORS: 31 participants |
| Outcomes | - |
| Glucose-based ORS osmolarity | - |
| Setting | - |
| Notes | - |
Bhattacharya 1998

Methods	Randomized controlled trial
Generation of allocation sequence:	permuted block of random numbers
Allocation concealment:	not reported
Blinding:	none
Inclusion of participants in analysis:	> 90%
Duration:	32 months, from August 1993 to March 1996

Participants	Number: 123 enrolled
Inclusion criteria:	adult males; acute watery diarrhoea; presence of severe dehydration; no antibiotic or intravenous fluid intake; no systemic illness
Exclusion criteria:	presence of systemic illness; use of intravenous fluid before admission

Interventions	1. Glucose oral rehydration solution (ORS) ≥ 310: 30 participants
	2. Glucose ORS ≤ 270: 33 participants
	3. Rice ORS with electrolytes as glucose ORS ≥ 310: 27 participants
	4. Rice ORS with electrolytes as glucose ORS ≤ 270: 33 participants

Outcomes	1. Total stool output in first 24 hours
	2. Total stool output from randomization to discharge
	3. Duration of diarrhoea

Glucose-based ORS osmolarity ≥ 310 mOsm/L and ≤ 270 mOsm/L.

Setting	Hospital-based trial
Location:	Calcutta, India

| Notes | - |

Dutta 1988

Methods	Randomized controlled trial
Generation of allocation sequence:	random-numbers table
Allocation concealment:	not reported
Blinding:	unclear
Inclusion of participants in analysis:	> 90%
Duration:	not stated

Participants	Number: 105 enrolled
Inclusion criteria:	age 4 months to 4 years; males; acute watery diarrhoea; presence of severe dehydration
Exclusion criteria:	presence of systemic illness; antibiotic intake before admission

Interventions	1. Glucose oral rehydration solution (ORS): 33 participants
	2. Rice ORS: 35 participants
	3. Pop rice ORS: 37 participants

Outcomes	1. Total stool output in first 24 hours
	2. Total stool output from randomization to discharge
	3. Duration of diarrhoea
Dutta 1988 (Continued)

Glucose-based ORS osmolarity	≥ 310 mOsm/L
Setting	Hospital-based trial
	Location: Calcutta, India
Notes	Results of rice ORS and pop rice ORS were combined both for the continuous and dichotomous outcomes, and compared with glucose ORS. These were all reported as rice-based ORS

Dutta 1998

Methods	Randomized controlled trial
	Generation of allocation sequence: permuted block of random numbers
	Allocation concealment: not reported
	Blinding: none
	Inclusion of participants in analysis: > 90%
	Duration: 14 months, from May 1995 to June 1996
Participants	Number: 50 adults and 20 children enrolled
	Inclusion criteria: age 3 to 12 years for children, and 18 to 55 years for adults; acute watery diarrhoea; severe dehydration
	Exclusion criteria: presence of systemic illness; with intake of drug or intravenous fluid before admission
Interventions	Adults:
	1. Glucose oral rehydration solution (ORS): 25 participants
	2. Rice ORS: 25 participants
	Children:
	1. Glucose ORS: 10 participants
	2. Rice ORS: 10 participants
Outcomes	1. Total stool output from randomization to discharge
	2. Duration of diarrhoea
	3. Number of participants with unscheduled use of intravenous fluid
	4. Number of participants with vomiting
Glucose-based ORS osmolarity	≥ 310 mOsm/L
Setting	Hospital-based trial
	Location: Calcutta, India
Notes	Children and adults were randomized separately
Dutta 1998, adults

Methods	Adult arm of Dutta 1998
Participants	1. Glucose oral rehydration solution (ORS): 25 participants
2. Rice ORS: 25 participants |
| Interventions | - |
| Outcomes | - |
| Glucose-based ORS osmolarity | - |
| Setting | - |
| Notes | - |

Dutta 1998, children

Methods	Children arm of Dutta 1998
Participants	1. Glucose oral rehydration solution (ORS): 10 participants
2. Rice ORS: 10 participants |
| Interventions | - |
| Outcomes | - |
| Glucose-based ORS osmolarity | - |
| Setting | - |
| Notes | - |

Dutta 2000

| Methods | Randomized controlled trial
Generation of allocation sequence: permuted blocks of random numbers
Allocation concealment: not reported
Blinding: none
Inclusion of participants in analysis: > 90%
Duration: 34 months, from August 1995 to May 1998 |
|---------|---|
| Participants | *Number:* 58 enrolled
Inclusion criteria: age 2 to 10 years; acute watery diarrhoea; presence of severe dehydration; positive for *Vibrio cholerae*
Exclusion criteria: presence of systemic illness; with intake of drug or intravenous fluid before admission |
Dutta 2000 (Continued)

| Interventions | 1. Glucose oral rehydration solution (ORS) ORS ≥ 310: 20 participants
| | 2. Glucose ORS ≤ 270: 19 participants
| | 3. Rice ORS with electrolyte content of glucose ORS ≤ 270: 19 participants
| Outcomes | 1. Total stool output from randomization to discharge
| | 2. Duration of diarrhoea
| | 3. Number of participants with hypo- or hypernatraemia
| Glucose-based ORS osmolarity | ≥ 310 mOsm/L and ≤ 270 mOsm/L
| Setting | Hospital-based trial
| | Location: Calcutta, India
| Notes | Only the data on glucose ORS ≤ 270 were used as this is the one with same electrolyte composition as the rice ORS

El-Mougi 1988

| Methods | Randomized controlled trial
| | Generation of allocation sequence: random permuted blocks
| | Allocation concealment: not reported
| | Blinding: none
| | Inclusion of participants in analysis: > 90% of randomized participants included in the final analysis
| | Duration: not stated
| Participants | Number: 60 enrolled
| | Inclusion criteria: age 4 months to 4 years; males; acute watery diarrhoea; presence of moderate to severe dehydration; on milk formula intake
| | Exclusion criteria: presence of bloody diarrhoea; severe dehydration; febrile (temperature > 38.5 °C); marasmic-kwashiorkor malnutrition
| Interventions | 1. Glucose oral rehydration solution (ORS): 30 participants
| | 2. Rice ORS: 30 participants
| Outcomes | 1. Total stool output in first 24 hours
| | 2. Duration of diarrhoea
| | 3. Number of participants with vomiting
| | 4. Number of episodes of vomiting
| Glucose-based ORS osmolarity | ≥ 310 mOsm/L
| Setting | Hospital-based trial
| | Location: Cairo, Egypt
| Notes | -

Polymer-based oral rehydration solution for treating acute Watery diarrhoea (Review)
Copyright © 2010 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
El-Mougi 1996

Methods
- Randomized controlled trial
- **Generation of allocation sequence:** random blocks of fixed length
- **Allocation concealment:** serially numbered identical oral rehydration solution (ORS) packets
- **Blinding:** participants, providers, outcome assessors
- **Inclusion of participants in analysis:** > 90%
- **Duration:** not stated

Participants
- **Number:** 89 enrolled
- **Inclusion criteria:** age 3 to 24 months; acute watery diarrhoea; presence of mild to moderate dehydration; non-cholera diarrhoea
- **Exclusion criteria:** presence of bloody diarrhoea; severe malnutrition; with no or severe dehydration

Interventions
1. Glucose ORS: 44 participants
2. Maltodextrin ORS: 45 participants

Outcomes
1. Total stool output in first 24 hours
2. Duration of diarrhoea
3. Number of participants with unscheduled intravenous fluid

Glucose-based ORS osmolarity \(\geq 310 \text{ mOsm/L} \)

Setting
- Hospital-based trial
- **Location:** Cairo, Egypt

Notes
-

Faruque 1997

Methods
- Randomized controlled trial
- **Generation of allocation sequence:** randomized
- **Allocation concealment:** not reported
- **Blinding:** none
- **Inclusion of participants in analysis:** > 90%
- **Duration:** 17 months, from August 1990 to December 1991

Participants
- **Number:** 471 enrolled
- **Inclusion criteria:** age 3 to 35 months; acute watery diarrhoea; presence of mild and moderate dehydration
- **Exclusion criteria:** presence of severe dehydration; severe malnutrition; intercurrent illness or chronic disease

Interventions
1. Glucose oral rehydration solution (ORS): 235 participants
2. Rice ORS: 236 participants

Outcomes
1. Total stool output in first 24 hours
2. Duration of diarrhoea
3. Number of episodes of vomiting
4. Number of participants who developed persistent diarrhoea
Faruque 1997

Glucose-based ORS osmolarity	≥ 310 mOsm/L
Setting	Hospital-based trial
Location:	Dhaka, Bangladesh
Notes	-

Fayad 1993

Methods	Randomized controlled trial
Generation of allocation sequence:	random permuted blocks of variable length
Allocation concealment:	sealed, serially numbered envelopes
Blinding:	unclear
Inclusion of participants in analysis:	> 90%
Duration:	not stated

Participants	Number: 441 enrolled
Inclusion criteria:	age 3 to 18 months, acute watery diarrhoea < 7 days; presence of dehydration
Exclusion criteria:	bloody diarrhoea; severe malnutrition; presence of systemic illness; exclusively or mostly breastfed

Interventions	1. Glucose oral rehydration solution (ORS): 222 participants
	2. Rice ORS: 219 participants

Outcomes	1. Total stool output in first 24 hours
	2. Duration of diarrhoea during the maintenance phase (not from the time of admission)
	3. Number of participants with unscheduled use of intravenous fluid
	4. Number of participants with diarrhoea > 7 days

Glucose-based ORS osmolarity	≥ 310 mOsm/L
Setting	Hospital-based trial
Location:	Cairo, Egypt
Notes	-

Guiraldes 1995a

Methods	Randomized controlled trial
Generation of allocation sequence:	permuted block randomization
Allocation concealment:	code was kept
Blinding:	none
Inclusion of participants in analysis:	> 90%
Duration:	not stated
Guiralde 1995a (Continued)

| Participants | Number: 100 enrolled
| | Inclusion criteria: age 3 to 18 months; acute watery diarrhoea; presence of moderate dehydration; non-breastfed
| | Exclusion criteria: presence of systemic illness; presence of moderate to severe malnutrition
| Interventions | 1. Glucose oral rehydration solution (ORS): 49 participants
| | 2. Rice ORS: 51 participants
| Outcomes | 1. Total stool output in first 24 hours
| | 2. Total stool output from randomization to discharge
| | 3. Duration of diarrhoea
| | 4. Number of participants with unscheduled use of intravenous fluid
| | 5. Number of participants with hypo- or hypernatraemia
| Glucose-based ORS osmolarity | $\geq 310 \text{ mOsm/L}$
| Setting | Hospital-based trial
| Location: Santiago, Chile
| Notes | -

Guiralde 1995b

| Methods | Randomized controlled trial
| Generation of allocation sequence: block randomization
| Allocation concealment: code was kept until end of trial
| Blinding: none
| Inclusion of participants in analysis: $> 90\%$
| Duration: not stated
| Participants | Number: 48 enrolled
| Inclusion criteria: age 3 to 24 months; acute watery diarrhoea; presence of moderate dehydration; non-breastfed
| Exclusion criteria: presence of systemic illness; moderate to severe malnutrition
| Interventions | 1. Glucose oral rehydration solution (ORS): 24 participants
| | 2. Rice ORS: 24 participants
| Outcomes | 1. Total stool output in first 24 hours
| | 2. Duration of diarrhoea
| | 3. Number of participants with unscheduled use of intravenous fluid
| Glucose-based ORS osmolarity | $\geq 310 \text{ mOsm/L}$
| Setting | Hospital-based trial
| Location: Santiago, Chile

Polymer-based oral rehydration solution for treating acute watery diarrhoea (Review) Copyright © 2010 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Hossain 2003

Methods
Randomized controlled trial
Generation of allocation sequence: computer-generated randomization
Allocation concealment: sealed envelopes
Blinding: none
Inclusion of participants in analysis: > 90%
Duration: not stated

Participants
Number: 113 enrolled
Inclusion criteria: adult males 18 to 60 years old; acute watery diarrhoea; presence of severe dehydration; positive for *Vibrio cholerae*
Exclusion criteria: presence of concomitant illness; received antibiotic and oral rehydration solution (ORS) before admission

Interventions
1. Glucose ORS: 56 participants
2. Rice ORS: 57 participants

Outcomes
1. Total stool output in first 24 hours
2. Duration of diarrhoea
3. Number of participants with unscheduled use of intravenous fluid

Glucose-based ORS osmolarity
≥ 310 mOsm/L

Setting
Hospital-based trial
Location: Dhaka, Bangladesh

Notes
Data for primary outcomes reported as median (range)

Islam 1994

Methods
Randomized controlled trial
Generation of allocation sequence: permuted block randomization
Allocation concealment: not reported
Blinding: none
Inclusion of participants in analysis: > 90%
Duration: 14 months, from March 1989 to April 1990

Participants
Number: 52 enrolled
Inclusion criteria: age < 6 months; acute watery diarrhoea; presence of mild to moderate dehydration; weight for height > 75% of 50th centile
Exclusion criteria: presence of bloody diarrhoea; systemic illness; unable to take oral rehydration solution (ORS); intake of antibiotic

Islam 1994 *(Continued)*

| Interventions | 1. Glucose ORS: 25 participants
	2. Rice ORS: 27 participants
Outcomes	1. Total stool output in first 24 hours
	2. Duration of diarrhoea (but only in those who were successfully treated)
	3. Number of participants with unscheduled use of intravenous fluid, number of participants with vomiting
Glucose-based ORS osmolarity	≥ 310 mOsm/L
Setting	Hospital-based trial (diarrhoea training unit)
Location	Karachi, Pakistan
Notes	Participants who were given rice ORS were younger compared to those given glucose ORS, but the difference is not statistically significant

Iyngkaran 1998

Methods	Randomized controlled trial
	Generation of allocation sequence: randomized
	Allocation concealment: not reported
	Blinding: none
	Inclusion of participants in analysis: > 90%
	Duration: not stated
Participants	*Number:* 63 enrolled
	Inclusion criteria: age < 6 months; loose stools < 7 days' duration
	Exclusion criteria: presence of systemic illness; intake of antibiotic/anti-diarrhoeal before admission; severe dehydration
Interventions	1. Glucose oral rehydration solution (ORS): 32 participants
	2. Rice ORS: 31 participants
Outcomes	1. Duration of diarrhoea
	2. Number of episodes of vomiting
Glucose-based ORS osmolarity	≤ 270 mOsm/L
Setting	Hospital-based trial
Location	Kuala Lumpur, Malaysia
Notes	-
Maulen-Radovan 1994

| Methods | Randomized controlled trial
| Generation of allocation sequence: randomly assigned permuted blocks
| Allocation concealment: serially numbered sealed envelopes
| Blinding: none
| Inclusion of participants in analysis: > 90%
| Duration: not stated |

| Participants | Number: 97 enrolled
| Inclusion criteria: age 1 to 6 months; acute watery diarrhoea < 5 days; presence of mild to moderate dehydration
| Exclusion criteria: presence of bloody diarrhoea; systemic illness; severe malnutrition; history of diarrhoea in the last 2 weeks |

| Interventions | 1. Glucose oral rehydration solution (ORS): 48 participants
| 2. Rice ORS: 49 participants |

| Outcomes | 1. Total stool output in first 24 hours
| 2. Duration of diarrhoea
| 3. Number of participants with unscheduled intravenous fluid |

| Glucose-based ORS osmolarity | ≥ 310 mOsm/L |

| Setting | Hospital-based trial (emergency department)
| Location: Mexico City, Mexico |

| Notes | Results for primary outcome skewed |

Maulen-Radovan 2004

| Methods | Randomized controlled trial
| Generation of allocation sequence: block randomization
| Allocation concealment: serially numbered sealed envelopes
| Blinding: none
| Inclusion of participants in analysis: > 90%
| Duration: not stated |

| Participants | Number: 189 enrolled
| Inclusion criteria: age 3 to 24 months; males; acute watery diarrhoea; presence dehydration
| Exclusion criteria: presence of bloody diarrhoea; systemic illness; severe malnutrition |

| Interventions | 1. Glucose oral rehydration solution (ORS): 92 participants
| 2. Rice ORS: 97 participants |

| Outcomes | 1. Total stool output in first 24 hours during the maintenance phase only
| 2. Duration of diarrhoea
| 3. Number of participants with unscheduled use of intravenous fluid |

| Glucose-based ORS osmolarity | ≤ 270 mOsm/L |
Maulen-Radovan 2004

Setting
- Hospital-based trial
 - Location: Mexico City, Mexico

Notes
-

Mohan 1988

Methods
- Randomized controlled trial
 - Generation of allocation sequence: randomized
 - Allocation concealment: not reported
 - Blinding: none
 - Inclusion of participants in analysis: > 90%
 - Duration: not stated

Participants
- Number: 50 enrolled
 - Inclusion criteria: age 3 to 36 months, acute watery diarrhoea, presence of dehydration
 - Exclusion criteria: none reported

Interventions
1. Glucose oral rehydration solution (ORS): 23 participants
2. Rice ORS: 23 participants

Outcomes
1. Total stool output in first 24 hours
2. Number of participants with unscheduled use of intravenous fluid
3. Number of participants with vomiting

Glucose-based ORS osmolarity
- ≥ 310 mOsm/L

Setting
- Hospital-based trial
 - Location: New Delhi, India

Notes
-

Molla 1985

Methods
- Randomized controlled trial
 - Generation of allocation sequence: predetermined random numbers
 - Allocation concealment: not reported
 - Blinding: none
 - Inclusion of participants in analysis: > 90%
 - Duration: 4 months, from December 1982 to March 1983

Participants
- Number: 342 enrolled
 - Inclusion criteria: children aged < 10 years and adults; acute watery diarrhoea; presence of moderate and severe dehydration
 - Exclusion criteria: presence of systemic illness; intake of antibiotics and oral rehydration solution (ORS) before admission
| Interventions | Adults: |
|---------------|---------|
| | 1. Glucose ORS: 72 participants |
| | 2. Rice ORS: 85 participants |
| Children: | 1. Glucose ORS: 101 participants |
| | 2. Rice ORS: 84 participants |

Outcomes	1. Total stool output in first 24 hours
	2. Number of participants with unscheduled use of intravenous fluid

Glucose-based ORS osmolarity	≥ 310 mOsm/L

Setting	Hospital-based trial
Location:	Dhaka, Bangladesh

Notes	Separate analysis for children and adults

Molla 1985, adults

Methods	Adult arm of Molla 1985
Participants	-

Interventions	1. Glucose oral rehydration solution (ORS): 72 participants
	2. Rice ORS: 85 participants

Outcomes	-

Glucose-based ORS osmolarity	-

Setting	-

Notes	-

Molla 1985, children

Methods	Children arm of Molla 1985
Participants	-

Interventions	1. Glucose oral rehydration solution (ORS): 101 participants
	2. Rice ORS: 84 participants

Outcomes	-

Glucose-based ORS osmolarity	-

Setting	-

| Notes | - |
Molla 1985, children (Continued)

| Setting | - |
| Notes | - |

Molla 1989a

| Methods | Randomized controlled trial
Generation of allocation sequence: randomly assigned
Allocation concealment: not reported
Blinding: unclear
Inclusion of participants in analysis: > 90%
Duration: not stated |
| Participants | Number: 93 enrolled
Inclusion criteria: children aged < 5 years; acute watery diarrhoea; presence of moderate and severe dehydration; positive for *Vibrio cholerae*
Exclusion criteria: breastfed; those with previous treatment |
| Interventions | 1. Glucose oral rehydration solution (ORS): 46 participants
2. Rice ORS: 47 participants |
| Outcomes | 1. Total stool output in first 24 hours
Glucose-based ORS osmolarity \(\geq 310 \text{ mOsm/L} \) |
| Setting | Hospital-based trial
Location: Dhaka, Bangladesh |
| Notes | Data on total stool output in first 24 hours are skewed |

Molla 1989b

| Methods | Randomized controlled trial
Generation of allocation sequence: permuted block design
Allocation concealment: not reported
Blinding: participants and providers not blinded; outcome assessors unclear
Inclusion of participants in analysis: > 90%
Duration: not stated |
| Participants | Number: 276 enrolled
Inclusion criteria: age 1 to 5 years; acute watery diarrhoea < 48 hours; presence of moderate to severe dehydration; no complications
Exclusion criteria: none reported |
| Interventions | 1. Glucose oral rehydration solution (ORS): 42 participants
2. Rice ORS: 37 participants
3. Maize ORS: 38 participants |
Molla 1989b (Continued)

Participant Groups	Details
4. Sorghuma ORS	35 participants
5. Millet ORS	39 participants
6. Wheat ORS	39 participants
7. Potatoes ORS	36 participants

Outcomes

1. Total stool output in first 24 hours

Glucose-based ORS osmolarity

≥ 310 mOsm/L

Setting

Hospital-based trial
Location: Dhaka, Bangladesh

Notes

Study with 6 treatment groups vs 1 control group

Molla 1989b, rice

Methods

Rice arm of Molla 1989b

Participants

- 1. Glucose oral rehydration solution (ORS): 42 participants
 2. Rice ORS: 37 participants

Interventions

1. Glucose oral rehydration solution (ORS): 42 participants
2. Rice ORS: 37 participants

Setting

-

Notes

-

Molla 1989b, sorghum

Methods

Sorghum arm of Molla 1989b

Participants

-

Interventions

1. Glucose oral rehydration solution (ORS): 42 participants
2. Sorghum ORS: 35 participants

Setting

-

Notes

-

Molla 1989b, sorghum (Continued)

Notes	-

Molla 1989b, wheat

Methods	Wheat arm of Molla 1989b
Participants	-

| Interventions | 1. Glucose oral rehydration solution (ORS): 42 participants
2. Wheat ORS: 39 participants |
|----------------|--|
| Outcomes | - |
| Glucose-based ORS osmolarity | - |
| Setting | - |
| Notes | - |

Mustafa 1995

| Methods | Randomized controlled trial
Generation of allocation sequence: randomly assigned
Allocation concealment: not reported
Blinding: unclear
Inclusion of participants in analysis: > 90%
Duration: 9 months, from April to December 1990 |
|---------|---|
| Participants | Number: 96 enrolled
Inclusion criteria: males aged < 5 years; acute watery diarrhoea; presence of moderate and severe dehydration
Exclusion criteria: presence of bloody diarrhoea; no systemic illness |
| Interventions | 1. Glucose oral rehydration solution (ORS): 30 participants
2. Rice ORS: 32 participants
3. Sorghum ORS: 34 participants |
| Outcomes | 1. Duration of diarrhoea
2. Number of episodes of vomiting
3. Number of participants with vomiting |
| Glucose-based ORS osmolarity | ≥ 310 mOsm/L |
| Setting | Hospital-based trial
Location: Khartoum, Sudan |
Study with 3 treatment arms: 2 polymer-based ORS vs 1 control group. Data on duration of diarrhoea are skewed

Mustafa 1995, rice

Methods	Rice arm of Mustafa 1995
Participants	-
Interventions	1. Glucose oral rehydration solution (ORS): 30 participants
 2. Rice ORS: 32 participants |
Outcomes	-
Glucose-based ORS osmolarity	-
Setting	-
Notes	-

Mustafa 1995, sorghum

Methods	Sorghum arm of Mustafa 1995
Participants	-
Interventions	1. Glucose oral rehydration solution (ORS): 30 participants
 2. Sorghum ORS: 34 participants |
Outcomes	-
Glucose-based ORS osmolarity	-
Setting	-
Notes	-
Nanulescu 1999

Methods	Randomized controlled trial
Generation of allocation sequence: randomly assigned	
Allocation concealment: not reported	
Blinding: none	
Inclusion of participants in analysis: 88% (rice group, 48/56, 86%; glucose group, 51/57, 89%)	
Duration: 12 months, from 1 May 1995 to 1 May 1996	

Participants	Number: 113 enrolled
Inclusion criteria: age 1 to 12 months; acute watery diarrhoea; presence of mild or moderate dehydration; weight for age > 80% of 50th centile	
Exclusion criteria: newborn; presence of bloody diarrhoea; systemic illness; intake of antibiotics; severe dehydration; moderate to severe malnutrition	

Interventions	1. Glucose oral rehydration solution (ORS): 48 participants
	2. Rice ORS: 51 participants

Outcomes	1. Total stool output in first 24 hours
	2. Duration of diarrhoea
	3. Number of participants with unscheduled use of intravenous fluid

| Glucose-based ORS osmolarity | ≤ 270 mOsm/L |

Setting	Paediatric clinic
Location:	Cluj-Napoca, Romania

| Notes | - |

Patra 1982

Methods	Randomized controlled trial
Generation of allocation sequence: randomly assigned	
Allocation concealment: sealed envelopes	
Blinding: none	
Inclusion of participants in analysis: > 90%	
Duration: not stated	

Participants	Number: 52 participants
Inclusion criteria: age 3 months to 5 years; acute watery diarrhoea; presence of moderate to severe dehydration	
Exclusion criteria: none reported	

Interventions	1. Glucose oral rehydration solution (ORS): 24 participants
	2. Rice ORS: 24 participants

Outcomes	1. Total stool output in first 24 hours
	2. Duration of diarrhoea
	3. Number of participants with unscheduled intravenous fluid
	4. Number of participants with vomiting
Patra 1982 (Continued)

Glucose-based ORS osmolarity	≥ 310 mOsm/L

Setting
Hospital-based trial
- **Location:** Calcutta, India

Notes
-

Ramakrishna 2000

Methods
- **Randomized controlled trial**
- **Generation of allocation sequence:** block randomization
- **Allocation concealment:** not reported
- **Blinding:** participants and providers partially blinded; outcome assessors unclear
- **Inclusion of participants in analysis:** > 90%
- **Duration:** 27 months, from May 1994 to July 1996

Participants
- **Number:** 48 enrolled
- **Inclusion criteria:** age 14 to 58 years old; acute watery diarrhoea < 72 hours; positive for *Vibrio cholerae*
- **Exclusion criteria:** presence of systemic illness; intake of antibiotics

Interventions
1. Glucose oral rehydration solution (ORS): 16 participants
2. Rice ORS: 16 participants
3. Amylase-resistant starch ORS: 16 participants

Outcomes
- **1. Total stool output in first 24 hours (measured in g and not in g/kg), duration of diarrhoea**

Glucose-based ORS osmolarity
- ≥ 310 mOsm/L

Setting
Hospital-based trial
- **Location:** Vellore, India

Notes
- *Study with 3 treatment arms:* 2 polymer-based ORS vs glucose ORS

Ramakrishna 2000, amylase

Methods
- Amylase arm of *Ramakrishna 2000*

Participants
-

Interventions
1. Glucose oral rehydration solution (ORS): 16 participants
2. Amylase-resistant starch ORS: 16 participants

Outcomes
-

Glucose-based ORS osmolarity
-

Note: The text is a part of a Cochrane review on Polymer-based oral rehydration solution for treating acute watery diarrhoea.

Ramakrishna 2000, amylase

(Continued)

| Setting | - |
| Notes | - |

Ramakrishna 2000, rice

| Methods | Rice arm of Ramakrishna 2000 |
| Participants | - |
| Interventions | 1. Glucose oral rehydration solution (ORS): 16 participants
2. Rice ORS: 16 participants |
Outcomes	-
Glucose-based ORS osmolarity	-
Setting	-
Notes	-

Ramakrishna 2008

| Methods | Randomized controlled trial
Generation of allocation sequence: table of random numbers
Allocation concealment: serially numbered oral rehydration solution (ORS) packages
Blinding: assessors but not the participants or providers were blinded because of the nature of the study
Inclusion of participants in analysis: 100%
Duration: not stated |
| Participants | Number: 50 enrolled
Inclusion criteria: males; 18 to 65 years old; acute watery diarrhoea
Exclusion criteria: presence of bloody diarrhoea; presence of systemic illness |
| Interventions | 1. Glucose ORS: 25 participants
2. High amylose maize starch ORS: 25 participants |
| Outcomes | 1. Total stool output (g) in first 24 hours
2. Duration of diarrhoea
3. Unscheduled use of intravenous fluid
4. Number of participants with hyponatraemia |
| Glucose-based ORS osmolarity | ≤ 270 mOsm/L |
| Setting | Hospital-based trial
Location: Vellore, India |
Ramakrishna 2008

(Continued)

Notes
-

Razafindrakoto 1993

Methods
Randomized controlled trial
Generation of allocation sequence: randomized
Allocation concealment: not reported
Blinding: none
Inclusion of participants in analysis: > 90%
Duration: 27 months, from January 1988 to March 1990 |

Participants
Number: 150 enrolled
Inclusion criteria: age 6 to 36 months; males; acute watery diarrhoea; mild to moderate dehydration; severe malnutrition < 70% of reference standard
Exclusion criteria: presence of bloody diarrhoea; presence of systemic illness; patients in shock |

Interventions
1. Glucose oral rehydration solution (ORS): 68 participants
2. Rice ORS: 82 participants |

Outcomes
1. Total stool output in first 24 hours
2. Duration of diarrhoea |

Glucose-based ORS osmolarity
≥ 310 mOsm/L

Setting
Hospital-based trial
Location: Antananarivo, Madagascar |

Notes
-

Santos Ocampo 1993

Methods
Randomized controlled trial
Generation of allocation sequence: table of random numbers
Allocation concealment: code was kept until the end of trial
Blinding: participants, providers, outcome assessors
Inclusion of participants in analysis: > 90%
Duration: not stated |

Participants
Number: 120 enrolled
Inclusion criteria: age 3 to 36 months; males; acute diarrhoea < 5 days; mild to moderate dehydration
Exclusion criteria: presence of bloody diarrhoea; systemic illness; intake of antibiotics; severe dehydration; severe malnutrition; history of diarrhoea in the last 2 weeks |

Interventions
1. Glucose oral rehydration solution (ORS): 60 participants
2. Maltodextrin ORS: 60 participants |
Santos Ocampo 1993 (Continued)

| Outcomes | 1. Total stool output in first 24 hours
2. Total stool output from randomization to discharge
3. Duration of diarrhoea |
|-----------|--|
| Glucose-based ORS osmolarity | $\geq 310 \text{ mOsm/L}$ |
| Setting | Hospital-based trial
Location: Manila, Philippines |
| Notes | Results of total stool output in first 24 hours, total stool output from randomization to discharge, and duration of diarrhoea are skewed |

Sharma 1998

| Methods | Randomized controlled trial
Generation of allocation sequence: randomized
Allocation concealment: not reported
Blinding: none
Inclusion of participants in analysis: $> 90\%$
Duration: not stated |
|-----------|--|
| Participants |
Number: 100 enrolled
Inclusion criteria: age 7 to 36 months; acute diarrhoea; some dehydration; non-cholerae; weight $> 80\%$ of reference standard
Exclusion criteria: presence of bloody diarrhoea; presence of systemic illness; severe dehydration; malnutrition; abdominal distension |
| Interventions | 1. Glucose oral rehydration solution (ORS): 50 participants
2. Rice ORS: 50 participants |
| Outcomes | 1. Total stool output (g, not in g/kg) in first 24 hours
2. Duration of diarrhoea
3. Number of participants with unscheduled intravenous fluid |
| Glucose-based ORS osmolarity | $\geq 310 \text{ mOsm/L}$ |
| Setting | Hospital-based trial
Location: Rohtak, India |
| Notes | - |
Wall 1997

Methods
- Randomized controlled trial
 - *Generation of allocation sequence:* table of random numbers
 - *Allocation concealment:* not reported
 - *Blinding:* participants and providers not blinded; outcome assessors unclear
 - *Inclusion of participants in analysis:* > 90%
 - *Duration:* not stated

Participants
- *Number:* 100 enrolled
 - *Inclusion criteria:* age 4 weeks to 5 years old; acute diarrhoea; mild to moderate dehydration
 - *Exclusion criteria:* presence of systemic illness; intake of antibiotics/antidiarrhoeals; severe dehydration; previous surgery

Interventions
1. Glucose oral rehydration solution (ORS): 50 participants
2. Rice ORS: 50 participants

Outcomes
1. Duration of diarrhoea

Glucose-based ORS osmolarity
- ≥ 310 mOsm/L

Setting
- Hospital-based trial
 - *Location:* Brisbane, Australia

Notes
- Data on duration of diarrhoea are skewed

Zaman 2001

Methods
- Randomized controlled trial
 - *Generation of allocation sequence:* table of random numbers
 - *Allocation concealment:* not specified whether envelope is opaque and sealed
 - *Blinding:* none
 - *Inclusion of participants in analysis:* > 90% of randomized participants included in the final analysis
 - *Duration:* September 1996 to May 1997

Participants
- *Number:* 167 enrolled
 - *Inclusion criteria:* age 5 to 15 years; acute diarrhoea; moderate to severe dehydration; purging rate > 2 mL/kg/hour
 - *Exclusion criteria:* presence of bloody diarrhoea; systemic illness; intake of antibiotics; malnutrition $< 65\%$ weight for age

Interventions
1. Glucose oral rehydration solution (ORS): 82 participants
2. Rice ORS: 85 participants

Outcomes
1. Total stool output in first 24 hours
2. Duration of diarrhoea
3. Number of unscheduled use of intravenous fluid
4. Number of participants with hyponatraemia and hypokalaemia

Glucose-based ORS osmolarity
- ≥ 310 mOsm/L
Setting

| Location | Rural treatment centre

| Location: Matlab, Bangladesh |

Notes

-

Characteristics of excluded studies

Study	Reason for exclusion
Agustina 2007	Not a clinical trial on oral rehydration solution
Alam 2008	Guar gum, a soluble fibre and not a polymer, was added to the oral rehydration solution
Ansaldi 1990	Different electrolyte composition of the 2 groups
Barclay 1995	Different electrolyte composition of the 2 groups
Barragan-Guzman 1998	Control group given oral saline solution, not oral rehydration solution
Bhandari 2008	Not a clinical trial on oral rehydration solution
Cohen 1995	Different electrolyte composition of the 2 groups
Gutierrez 2007	L-glutamine, an amino acid and not a polymer was added in the oral rehydration solution
Hoekstra 2004	Investigated the use of non-digestible carbohydrates, which are not polymers
Jirapinyo 1996	Different electrolyte composition of the 2 groups
Kassaye 1994	Composition of home-made oral rehydration solution is not known
Kenya 1989	The 2 groups have different sources of bicarbonate: polymer-based oral rehydration solution used sodium bicarbonate and glucose oral rehydration solution, trisodium citrate dihydrate
Lebenthal 1995	Polymer-based oral rehydration solution has an additional amino acid
Molina 1995	Glucose-based oral rehydration solution contained 50 mmol/L sodium. The inclusion criteria of the review specified 90 or 60 to 75 mmol/L of sodium
Molla 1982	Used a sucrose and not a glucose-based oral rehydration solution as a control group
Molla 2000	Not an efficacy study. The study compared the biochemical analysis of home-made rice oral rehydration solution vs glucose-based oral rehydration solution
Study Reference	Key Finding
--------------------	---
Mota-Hernandez 1991	Different electrolyte composition of the 2 groups
Murphy 1996	Unknown electrolyte composition of the wheat-based oral rehydration solution
Patra 1984	Treatment group used an amino acid-based oral rehydration solution, not a polymer-based oral rehydration solution
Pelleboer 1990	Not a randomized trial, alternate allocation of participants in the 2 interventions was done
Pizarro 1991	Different electrolyte composition of the 2 groups
Prasad 1993	The primary outcome of interest relevant to the study was not evaluated
Rabbani 2005	Study has no control group that uses glucose-based oral rehydration solution. The control group contains L-histidine, an amino acid
Raghupathy 2006	Polymer was not used in place of glucose. Instead, the amylase-resistant starch was added to the glucose-based oral rehydration solution
Roslund 2008	Not a clinical trial on oral rehydration solution
Sabchareon 1992	Different electrolyte content of rice oral rehydration solution and glucose-based oral rehydration solution
Sarker 2001	Participants with persistent diarrhoea (> 14 days)
Sirivichayakul 2000	Different electrolyte composition of the 2 groups
Teferedegn 1993	Not an efficacy but an effectiveness study
Yang 2007	A clinical trial on the use of reduced osmolarity oral rehydration solution in acute diarrhoea. Not a clinical trial on the use of polymer-based oral rehydration solution
Yartev 1995	Different electrolyte composition of the 2 groups
Yurdakok 1995	Patients were only observed during the rehydration phase. The primary outcome of interest relevant to the study was not evaluated
Zaman 2007	Not a clinical trial on oral rehydration solution
Zavaleta 2007	Different electrolyte composition of the 2 groups
DATA AND ANALYSES

Comparison 1. Type of glucose ORS: any polymer-based ORS vs glucose-based ORS

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Total stool output: during first 24 hours	13		Mean Difference (IV, Random, 95% CI)	Totals not selected
1.1 ORS ≥ 310	12		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
1.2 ORS ≤ 270	1		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
2 Duration of diarrhoea	15		Mean Difference (IV, Random, 95% CI)	Totals not selected
2.1 ORS ≥ 310	12		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
2.2 ORS ≤ 270	3		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
3 Unscheduled use of intravenous fluid	21	2235	Risk Ratio (M-H, Fixed, 95% CI)	0.75 [0.59, 0.95]
3.1 ORS ≥ 310	18	1909	Risk Ratio (M-H, Fixed, 95% CI)	0.78 [0.60, 1.01]
3.2 ORS ≤ 270	3	326	Risk Ratio (M-H, Fixed, 95% CI)	0.62 [0.36, 1.08]
4 Vomiting (no. participants)	10	617	Risk Ratio (M-H, Fixed, 95% CI)	0.83 [0.65, 1.05]
4.1 ORS ≥ 310	9	554	Risk Ratio (M-H, Fixed, 95% CI)	0.87 [0.68, 1.11]
4.2 ORS ≤ 270	1	63	Risk Ratio (M-H, Fixed, 95% CI)	0.56 [0.24, 1.34]
5 Hyponatraemia (no. participants)	6	480	Risk Ratio (M-H, Fixed, 95% CI)	1.03 [0.52, 2.01]
5.1 ORS ≥ 310	3	335	Risk Ratio (M-H, Fixed, 95% CI)	2.25 [0.34, 14.92]
5.2 ORS ≤ 270	3	145	Risk Ratio (M-H, Fixed, 95% CI)	0.88 [0.43, 1.82]
6 Hypokalaemia (no. participants)	2	260	Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
6.1 ORS ≥ 310	2	205	Risk Ratio (M-H, Fixed, 95% CI)	1.29 [0.74, 2.25]
7 Developed persistent diarrhoea (no. participants)	2	885	Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
7.1 ORS ≥ 310	2	885	Risk Ratio (M-H, Fixed, 95% CI)	1.28 [0.68, 2.41]

Comparison 2. Type of polymer: polymer-based ORS vs glucose-based ORS

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Total stool output during the first 24 hours	17		Mean Difference (IV, Random, 95% CI)	Totals not selected
1.1 Rice-based ORS	13		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
1.2 Wheat-based ORS	2		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
1.3 Sorghum-based ORS	1		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
1.4 Maltodextrin-based ORS	1		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
2 Duration of diarrhoea	18		Mean Difference (IV, Random, 95% CI)	Totals not selected
2.1 Rice-based ORS	15		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
2.2 Wheat-based ORS	1		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
2.3 Sorghum-based ORS	1		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
2.4 Maltodextrin-based ORS	1		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
3 Unscheduled use of intravenous fluid

Condition	No. of studies	No. of participants	Statistical method	Effect size
3.1 Rice-based ORS	18	1962	Risk Ratio (M-H, Fixed, 95% CI)	0.75 [0.58, 0.98]
3.2 Wheat-based ORS	1	48	Risk Ratio (M-H, Fixed, 95% CI)	1.0 [0.15, 6.53]
3.3 Maltodextrin-based ORS	2	158	Risk Ratio (M-H, Fixed, 95% CI)	0.79 [0.31, 2.02]

Comparison 3. Effects of age and pathogen: rice-based ORS vs glucose-based ORS

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Total stool output during the first 24 hours, by age group	13		Mean Difference (IV, Random, 95% CI)	Totals not selected
1.1 Paediatric	11		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
1.2 Adults	2		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
2 Duration of diarrhoea, by age group	15	998	Mean Difference (IV, Random, 95% CI)	-7.19 [-11.80, -2.58]
2.1 Paediatrics	11	770	Mean Difference (IV, Random, 95% CI)	-6.81 [-12.10, -1.52]
2.2 Adults	4	228	Mean Difference (IV, Random, 95% CI)	-7.11 [-11.91, -2.32]
3 Total stool output during the first 24 hours, by pathogen	11		Mean Difference (IV, Random, 95% CI)	Totals not selected
3.1 Cholera	3		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
3.2 Non-cholera	4		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
3.3 Mixed pathogens	5		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
4 Duration of diarrhoea, by type of pathogen	12		Mean Difference (IV, Random, 95% CI)	Totals not selected
4.1 Cholera	7		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
4.2 Non-cholera	3		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
4.3 Mixed pathogens	2		Mean Difference (IV, Random, 95% CI)	0.0 [0.0, 0.0]
Analysis 1.1. Comparison 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS, Outcome 1 Total stool output: during first 24 hours.

Review: Polymer-based oral rehydration solution for treating acute watery diarrhoea

Comparison: 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS

Outcome: 1 Total stool output: during first 24 hours

Study or subgroup	Polymer-based ORS	Glucose-based ORS	Mean Difference	95% CI
Alam 1987	52 148.85 (18.75)	24 238.9 (27.53)	-90.05	[-102.19, -77.91]
Alam 1992	47 223 (128)	42 366 (174)	-143.00	[-207.10, -78.90]
Dutta 1988	72 91.2 (8.85)	33 103.2 (9.6)	-12.00	[-15.86, -8.14]
El-Mougi 1988	30 163.2 (21.8)	30 245 (25.3)	-81.80	[-93.75, -69.85]
Islam 1994	27 101 (60.5)	25 137.1 (14.6)	-36.10	[-59.63, -12.57]
Mohan 1988	23 88.56 (11.52)	23 110.16 (14.4)	-21.60	[-29.14, -14.06]
Molla 1985, adults	85 115 (10)	72 158.7 (12.8)	-43.70	[-47.34, -40.06]
Molla 1985, children	84 155 (13)	101 204 (13.9)	-49.00	[-52.88, -45.12]
Molla 1989b	224 208.59 (109.56)	42 343 (151)	-134.41	[-182.28, -86.54]
Patra 1982	24 97 (3.28)	24 166 (4.69)	-69.00	[-71.29, -66.71]
Razafindrakoto 1993	68 91 (6)	56 81 (5)	10.00	[8.06, 11.94]
Zaman 2001	85 195 (1.58)	82 227.3 (1.99)	-32.30	[-32.85, -31.75]

### Study or subgroup	2 ORS ≤ 270	Polymer-based ORS	Glucose-based ORS	Mean Difference	95% CI
Nanulescu 1999	48 77.4 (47)	51 102 (33)	-24.60	[-40.69, -8.51]	

Favours polymer-based ORS *Favours glucose-based ORS*
Analysis 1.2. Comparison 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS, Outcome 2 Duration of diarrhoea.

Review: Polymer-based oral rehydration solution for treating acute watery diarrhoea

Comparison: 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS

Outcome: 2 Duration of diarrhoea

Study or subgroup	Polymer-based ORS	Glucose-based ORS	Mean Difference	Mean Difference	
N	Mean (SD)	N	Mean (SD)	IV (Random), 95% CI	IV (Random), 95% CI
1 ORS ≥ 310					
Dutta 1998, children	10	30.65 (4.21)	10	35.95 (7.37)	-5.30 [-10.56, -0.04]
Dutta 1988	72	75.33 (8.29)	33	79.2 (6.4)	-3.87 [-6.77, -0.97]
El-Mougi 1988	30	28.4 (5.2)	30	34.3 (2.3)	-5.90 [-7.93, -3.87]
Sharma 1998	25	33.9 (8.03)	25	38.8 (8.03)	-4.90 [-9.35, -0.45]
Patra 1982	24	30 (0.82)	24	43 (0.92)	-13.00 [-13.49, -12.51]
Alam 1987	48	79 (1.65)	24	90 (1.78)	-11.00 [-11.85, -10.15]
Dutta 1998, adults	25	41.32 (6.08)	25	45.68 (6.91)	-4.36 [-7.97, -0.75]
Zaman 2001	85	35.3 (0.22)	82	35.8 (0.23)	-0.50 [-0.57, -0.43]
Ramakrishna 2000	32	63.75 (20.4)	16	90.9 (29.5)	-27.15 [-43.24, -11.06]
Alam 1992	47	81.1 (23.8)	42	85.2 (19.9)	-4.10 [-13.18, 4.98]
Rasafindrakoto 1993	68	68 (4)	56	89 (6)	-21.00 [-22.84, -19.16]
Guiraldes 1995b	24	72 (10)	24	77 (12)	-5.00 [-12.25, 2.25]
2 ORS ≤ 270					
Bhattacharya 1998	27	36.5 (12.8)	30	46.9 (11.9)	-10.40 [-16.84, -3.96]
Dutta 2000	19	29.34 (4.83)	19	33.9 (3.77)	-4.56 [-7.32, -1.80]
Nanulescu 1999	48	51 (24)	51	54 (40)	-3.00 [-15.91, 9.91]

Favours polymer-based ORS Favours glucose-based ORS
Analysis 1.3. Comparison 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS, Outcome 3 Unscheduled use of intravenous fluid.

Review: Polymer-based oral rehydration solution for treating acute watery diarrhoea

Comparison: 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS

Outcome: 3 Unscheduled use of intravenous fluid

Study or subgroup	Polymer-based ORS n/N	Glucose-based ORS n/N	Risk Ratio M-H,Fixed,95% CI	Weight	Risk Ratio M-H,Fixed,95% CI
1 ORS ≥ 310					
Akbar 1991	1/33	4/36	3.1 %	0.27	0.03, 2.32
Alam 1987	4/48	2/24	2.1 %	1.00	0.20, 5.08
Alam 1992	20/47	20/42	16.9 %	0.89	0.56, 1.41
Bhan 1987	0/60	3/33	3.6 %	0.08	0.00, 1.50
Dutta 1998, adults	0/25				
Dutta 1998, children	0/10				
El-Mougi 1996	6/45	5/44	4.0 %	1.17	0.39, 3.57
Fayad 1993	2/210	6/204	4.9 %	0.32	0.07, 1.59
Guiraldes 1995a	5/51	6/49	4.9 %	0.80	0.26, 2.45
Guiraldes 1995b	4/24	7/24	5.6 %	0.57	0.19, 1.70
Hassain 2003	12/57	14/56	11.3 %	0.84	0.43, 1.66
Islam 1994	5/27	3/25	2.5 %	1.54	0.41, 5.80
Maulen-Radovan 1994	11/49	12/48	9.7 %	0.90	0.44, 1.84
Mohan 1988	1/23	1/23	0.8 %	1.00	0.07, 15.04
Molla 1985, adults	0/85	2/72	2.2 %	0.17	0.01, 3.48
Molla 1985, children	0/84	4/101	3.3 %	0.13	0.01, 2.44
Patra 1982	2/24	2/24	1.6 %	1.00	0.15, 6.53
Zaman 2001	7/85	5/82	4.1 %	1.35	0.45, 4.09
Subtotal (95% CI)	**987**	**922**	**80.6 %**	**0.78**	**0.60, 1.01**

Total events: 80 (Polymer-based ORS), 96 (Glucose-based ORS)

Heterogeneity: Chi2 = 10.37, df = 15 (P = 0.80); I2 =0.0%

Test for overall effect: Z = 1.89 (P = 0.059)

2 ORS ≤ 270

Study or subgroup	Polymer-based ORS n/N	Glucose-based ORS n/N	Risk Ratio M-H,Fixed,95% CI	Weight	Risk Ratio M-H,Fixed,95% CI
Maulen-Radovan 2004	1/93	8/84	6.7 %	0.11	0.01, 0.88
Nanulescu 1999	5/48	4/51	3.1 %	1.33	0.38, 4.66
Ramakrishna 2008	9/25	12/25	9.6 %	0.75	0.39, 1.46

(Continued . . .)
Analysis 1.4. Comparison 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS, Outcome 4 Vomiting (no. participants).

Review: Polymer-based oral rehydration solution for treating acute watery diarrhoea.

Comparison: 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS

Outcome: 4 Vomiting (no. participants)

Study or subgroup	Polymer-based ORS n/N	Glucose-based ORS n/N	Risk Ratio M-H,Fixed 95% CI	Weight	Risk Ratio M-H,Fixed 95% CI	
Subtotal (95% CI)	166/160	19.4 %	0.62 [0.36, 1.08]	1153/1082	100.0 %	0.75 [0.59, 0.95]
Total events: 15 (Polymer-based ORS), 24 (Glucose-based ORS)		Heterogeneity: Chi² = 4.35, df = 2 (P = 0.11); I² = 54%	Test for overall effect: Z = 1.68 (P = 0.093)	Total events: 95 (Polymer-based ORS), 120 (Glucose-based ORS)	Heterogeneity: Chi² = 14.83, df = 18 (P = 0.67); I² = 0.0%	Test for overall effect: Z = 2.42 (P = 0.016)

(Continued...)
Study or subgroup

Polymer-based ORS	Glucose-based ORS	Risk Ratio	Weight	
n/N	n/N	M-H,Fixed,95% CI	M-H,Fixed,95% CI	
Subtotal (95% CI)				
Total events: 78 (Polymer-based ORS), 69 (Glucose-based ORS)				
Heterogeneity: Chi2 = 7.84, df = 6 ($P = 0.25$); I2 = 23%				
Test for overall effect: $Z = 1.15$ ($P = 0.25$)				
2 ORS ≤ 270				
Iyngkaran 1998	6/31	11/32	12.5 %	0.56 [0.24, 1.34]
Subtotal (95% CI)				
Total events: 6 (Polymer-based ORS), 11 (Glucose-based ORS)				
Heterogeneity: not applicable				
Test for overall effect: $Z = 1.30$ ($P = 0.19$)				
Total (95% CI)				
Total events: 84 (Polymer-based ORS), 80 (Glucose-based ORS)				
Heterogeneity: Chi2 = 9.05, df = 7 ($P = 0.25$); I2 = 23%				
Test for overall effect: $Z = 1.55$ ($P = 0.12$)				

Polymer-based oral rehydration solution for treating acute watery diarrhoea (Review)

Copyright © 2010 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Analysis 1.5. Comparison 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS, Outcome 5 Hyponatraemia (no. participants).

Review: Polymer-based oral rehydration solution for treating acute watery diarrhoea

Comparison: 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS

Outcome: 5 Hyponatraemia (no. participants)

Study or subgroup	Polymer-based ORS	Glucose-based ORS	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	n/N	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
1 ORS ≥ 310					
Dutta 1988	0/35	0/33			
Guiraldes 1995a	2/51	1/49	7.2 %	1.92 [0.18, 20.52]	
Zaman 2001	1/85	0/82	3.6 %	2.90 [0.12, 70.07]	
Subtotal (95% CI)	**171**	**164**	**10.7 %**	**2.25 [0.34, 14.92]**	
Total events: 3 (Polymer-based ORS), 1 (Glucose-based ORS)					
Heterogeneity: Chi² = 0.04, df = 1 (P = 0.84); I² = 0.0%					
Test for overall effect: Z = 0.84 (P = 0.40)					
2 ORS ≤ 270					
Bhattacharya 1998	4/27	5/30	33.2 %	0.89 [0.27, 2.97]	
Dutta 2000	4/19	6/19	42.1 %	0.67 [0.22, 1.99]	
Ramakrishna 2008	3/25	2/25	14.0 %	1.50 [0.27, 8.22]	
Subtotal (95% CI)	**71**	**74**	**89.3 %**	**0.88 [0.43, 1.82]**	
Total events: 11 (Polymer-based ORS), 13 (Glucose-based ORS)					
Heterogeneity: Chi² = 0.63, df = 2 (P = 0.73); I² = 0.0%					
Test for overall effect: Z = 0.34 (P = 0.73)					

Total (95% CI)

| Total events: 14 (Polymer-based ORS), 14 (Glucose-based ORS) |
| Heterogeneity: Chi² = 1.52, df = 4 (P = 0.82); I² = 0.0% |
| Test for overall effect: Z = 0.08 (P = 0.94) |
Analysis 1.6. Comparison 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS, Outcome 6 Hypokalaemia (no. participants).

Review: Polymer-based oral rehydration solution for treating acute watery diarrhoea
Comparison: 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS
Outcome: 6 Hypokalaemia (no. participants)

Study or subgroup	Polymer-based ORS n/N	Glucose-based ORS n/N	Risk Ratio M-H,Fixed 95% CI	Weight	Risk Ratio M-H,Fixed 95% CI
I ORS ≥ 310					
Bhan 1987	4/60	3/33	21.4 % 0.73 [0.17, 3.08]		
Zaman 2001	21/85	14/82	78.6 % 1.45 [0.79, 2.65]		
Subtotal (95% CI)	**145**	**115**	**100.0 % 1.29 [0.74, 2.25]**		

Total events: 25 (Polymer-based ORS), 17 (Glucose-based ORS)
Heterogeneity: Chi² = 0.73, df = 1 (P = 0.39); I² = 0.0%
Test for overall effect: Z = 0.92 (P = 0.36)

Analysis 1.7. Comparison 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS, Outcome 7 Developed persistent diarrhoea (no. participants).

Review: Polymer-based oral rehydration solution for treating acute watery diarrhoea
Comparison: 1 Type of glucose ORS: any polymer-based ORS vs glucose-based ORS
Outcome: 7 Developed persistent diarrhoea (no. participants)

Study or subgroup	Polymer-based ORS n/N	Glucose-based ORS n/N	Risk Ratio M-H,Fixed 95% CI	Weight	Risk Ratio M-H,Fixed 95% CI
I ORS ≥ 310					
Faruque 1997	5/236	4/235	24.8 % 1.24 [0.34, 4.58]		
Fayad 1993	16/210	12/204	75.2 % 1.30 [0.63, 2.67]		
Subtotal (95% CI)	**446**	**439**	**100.0 % 1.28 [0.68, 2.41]**		

Total events: 21 (Polymer-based ORS), 16 (Glucose-based ORS)
Heterogeneity: Chi² = 0.00, df = 1 (P = 0.96); I² = 0.0%
Test for overall effect: Z = 0.77 (P = 0.44)
Analysis 2.1. Comparison 2 Type of polymer: polymer-based ORS vs glucose-based ORS, Outcome 1 Total stool output during the first 24 hours.

Review: Polymer-based oral rehydration solution for treating acute watery diarrhoea

Comparison: 2 Type of polymer: polymer-based ORS vs glucose-based ORS

Outcome: 1 Total stool output during the first 24 hours

Study or subgroup	Polymer-based ORS	Glucose-based ORS	Mean Difference	IV, Random	95% CI		
	N	Mean(SD)	N	Mean(SD)	IV, Random	95% CI	
1 Rice-based ORS							
Alam 1987, rice	24	130 (6.12)	24	290 (12.2)	-160.00	[-165.46, -154.54]	
Alam 1992	47	223 (128)	42	366 (174)	-143.00	[-207.10, -78.90]	
Dutta 1988	72	75.33 (8.29)	33	103.2 (9.6)	-27.87	[-31.66, -24.08]	
El-Mougi 1988	30	163.2 (21.8)	30	245 (25.3)	-81.80	[-93.75, -69.85]	
Islam 1994	27	101 (60.5)	25	137.1 (14.6)	-36.10	[-59.63, -12.57]	
Mohan 1988	23	88.56 (11.52)	23	110.16 (14.4)	-21.60	[-29.14, -14.06]	
Molla 1985, adults	85	115 (10)	72	159 (13)	-44.00	[-47.68, -40.32]	
Molla 1985, children	84	155 (13)	101	204 (13.9)	-49.00	[-52.88, -45.12]	
Molla 1989b, rice	37	162 (56)	42	343 (151)	-181.00	[-230.10, -131.90]	
Nanelescu 1999	48	77.4 (47)	51	102 (33)	-24.60	[-40.69, -8.51]	
Patra 1982	24	97 (3.27)	24	166 (23)	-69.00	[-78.29, -59.71]	
Razafindrakaoto 1993	68	91 (6)	56	81 (5)	10.00	[8.06, 11.94]	
Zaman 2001	85	195 (1.58)	82	227.3 (1.99)	-32.30	[-32.85, -31.75]	
2 Wheat-based ORS							
Alam 1987, wheat	24	170 (4.08)	24	290 (12.2)	-120.00	[-125.15, -114.85]	
Molla 1989b, wheat	39	240 (96)	42	343 (151)	-103.00	[-157.71, -48.29]	
3 Sorghum-based ORS							
Molla 1989b, sorghum	35	215 (197)	42	343 (151)	-128.00	[-207.66, -48.34]	
4 Maltodextrin-based ORS							
Santos Ocampo 1993	58	162.8 (138.2)	59	135.4 (107.9)	27.40	[-17.58, 72.38]	
Analysis 2.2. Comparison 2: Type of polymer: polymer-based ORS vs glucose-based ORS, Outcome 2: Duration of diarrhoea.

Review: Polymer-based oral rehydration solution for treating acute watery diarrhoea

Comparison: Type of polymer: polymer-based ORS vs glucose-based ORS

Outcome: Duration of diarrhoea

Study or subgroup	Polymer-based ORS	Glucose-based ORS	Mean Difference	Mean Difference
	N Mean(SD)	N Mean(SD)	IV,Random,95% CI	IV,Random,95% CI
Rice-based ORS				
Alam 1987, rice	24 78 (1.43)	24 90 (1.78)	12.00 [-12.91, -11.09]	
Alam 1992	47 81.1 (23.8)	42 85.2 (19.9)	4.10 [-13.18, 4.98]	
Bhattacharya 1998	27 36.5 (12.8)	30 46.9 (11.9)	10.40 [-16.84, -3.96]	
Dutta 1988	72 75.33 (8.29)	33 79.2 (6.4)	-3.87 [-6.77, -0.97]	
Dutta 1998, adults	25 41.32 (6.08)	25 45.68 (6.91)	-4.36 [-7.97, -0.75]	
Dutta 1998, children	10 30.65 (4.21)	10 35.95 (7.37)	-5.30 [-10.56, -0.04]	
Dutta 2000	19 29.34 (4.83)	19 33.9 (3.77)	-4.56 [-7.32, -1.80]	
El-Mougi 1988	30 28.4 (5.2)	30 34.3 (2.3)	5.90 [-7.93, -3.87]	
Guiraldez 1995b	24 72 (10)	24 77 (12)	5.00 [-11.25, 1.25]	
Nanulescu 1999	48 51 (24)	51 54 (40)	-3.00 [-15.91, 9.91]	
Patra 1982	24 30 (0.82)	24 43 (0.92)	-13.00 [-13.49, -12.51]	
Ramakrishna 2000, rice	16 70.8 (20.2)	16 90.9 (29.5)	-20.10 [-37.62, -2.58]	
Razafindrakoto 1993	68 68 (4)	56 89 (6)	-21.00 [-22.84, -19.16]	
Sharma 1998	25 33.9 (8.03)	25 38.8 (8.03)	-4.90 [-9.35, -0.45]	
Zaman 2001	85 35.3 (0.22)	82 35.8 (0.23)	-0.50 [-0.57, -0.43]	
Wheat-based ORS				
Alam 1987, wheat	24 80 (1.22)	24 90 (1.78)	-10.00 [-10.86, -9.14]	
Sorghum-based ORS				
Mustafa 1995, sorghum	34 46.7 (35.97)	32 63.1 (35.2)	-16.40 [-33.57, 0.77]	
Maltodextrin-based ORS				
Santos Ocampo 1993	58 52.6 (32.2)	58 57.2 (37.3)	-4.60 [-17.28, 8.08]	

Favours polymer-based ORS Favours glucose-based ORS

Polymer-based oral rehydration solution for treating acute watery diarrhoea (Review)

Copyright © 2010 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Analysis 2.3. Comparison 2 Type of polymer: polymer-based ORS vs glucose-based ORS, Outcome 3 Unscheduled use of intravenous fluid.

Review: Polymer-based oral rehydration solution for treating acute watery diarrhoea

Comparison: 2 Type of polymer: polymer-based ORS vs glucose-based ORS

Outcome: 3 Unscheduled use of intravenous fluid

Study or subgroup	Polymer-based ORS	Glucose-based ORS	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Rice-based ORS					
Alam 1987, rice	1/12	2/24	1.2 % 1.00 [0.10, 9.96]		
Alam 1992	20/47	20/42	18.8 % 0.89 [0.56, 1.41]		
Bhan 1987, rice	0/31	3/33	3.0 % 0.15 [0.01, 2.82]		
Dutta 1998, adults	0/25	0/25			
Dutta 1998, children	0/10	0/10			
Fayad 1993	2/210	6/204	5.4 % 0.32 [0.07, 1.59]		
Guiraldes 1995a	5/51	6/49	5.4 % 0.80 [0.26, 2.45]		
Guiraldes 1995b	4/24	7/24	6.2 % 0.57 [0.19, 1.70]		
Hossain 2003	12/57	14/56	12.6 % 0.84 [0.43, 1.66]		
Islam 1994	5/27	3/25	2.8 % 1.54 [0.41, 5.80]		
Maulen-Radovan 1994	11/49	12/48	10.8 % 0.90 [0.44, 1.84]		
Maulen-Radovan 2004	1/93	8/84	7.5 % 0.11 [0.01, 0.88]		
Mohan 1988	1/23	1/23	0.9 % 1.00 [0.07, 15.04]		
Molla 1985, adults	0/85	2/72	2.4 % 0.17 [0.01, 3.48]		
Molla 1985, children	0/84	4/101	3.6 % 0.13 [0.01, 2.44]		
Nanulescu 1999	5/48	4/51	3.4 % 1.33 [0.38, 4.66]		
Patra 1982	2/24	2/24	1.8 % 1.00 [0.15, 6.53]		
Zaman 2001	7/85	5/82	4.5 % 1.35 [0.45, 4.09]		

Subtotal (95% CI): 985 977 90.3 % 0.75 [0.58, 0.98]

Total events: 76 (Polymer-based ORS), 99 (Glucose-based ORS)

Heterogeneity: Chi^2 = 12.15, df = 15 (P = 0.67); I^2 = 0.0%

Favours polymer-based ORS Favours glucose-based ORS

(Continued...)

Polymer-based oral rehydration solution for treating acute watery diarrhoea (Review)

Copyright © 2010 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Subtotal (95% CI)	24	24	1.8%	1.00 [0.15, 6.53]

Total events: 2 (Polymer-based ORS), 2 (Glucose-based ORS)
Heterogeneity: not applicable
Test for overall effect: Z = 2.14 (P = 0.033)

Subtotal (95% CI)	78	80	7.9%	0.79 [0.31, 2.02]

Total events: 7 (Polymer-based ORS), 9 (Glucose-based ORS)
Heterogeneity: Chi² = 1.44, df = 1 (P = 0.23); I² = 31%
Test for overall effect: Z = 0.50 (P = 0.62)

Total (95% CI) 1087 1081 100.0% 0.76 [0.59, 0.97]
Total events: 85 (Polymer-based ORS), 110 (Glucose-based ORS)
Heterogeneity: Chi² = 13.61, df = 18 (P = 0.75); I² = 0.0%
Test for overall effect: Z = 2.16 (P = 0.031)

0.001 0.01 0.1 1 10 100 1000
Favours polymer-based ORS Favours glucose-based ORS
Analysis 3.1. Comparison of Effects of age and pathogen: rice-based ORS vs glucose-based ORS, Outcome 1

Total stool output during the first 24 hours, by age group.

Review: Polymer-based oral rehydration solution for treating acute watery diarrhoea

Comparison: 3 Effects of age and pathogen: rice-based ORS vs glucose-based ORS

Outcome: 1 Total stool output during the first 24 hours, by age group

Study or subgroup	Rice-based ORS	Glucose-based ORS	Mean Difference	Mean Difference		
	N	Mean(SD)	N	Mean(SD)	IV,Random,95% CI	IV,Random,95% CI
1 Paediatric						
Alam 1987, rice	24	130 (6.12)	24	290 (12.2)	-160.00 [-165.46, -154.54]	
Dutta 1988	72	91.2 (8.85)	33	103.2 (9.6)	-12.00 [-15.86, -8.14]	
El-Mougi 1988	30	163.2 (21.8)	30	245 (25.3)	-81.80 [-93.75, -69.85]	
Islam 1994	27	101 (60.5)	25	137.1 (14.6)	-36.10 [-59.63, -12.57]	
Mohan 1988	23	88.56 (11.52)	23	110.16 (14.4)	-21.60 [-29.14, -14.06]	
Molla 1985, children	84	155 (13)	101	204 (13.9)	-49.00 [-52.88, -45.12]	
Molla 1989a, rice	37	162 (56)	42	343 (151)	-181.00 [-230.10, -131.90]	
Nanulescu 1999	48	77.4 (47)	51	102 (33)	-24.60 [-40.69, -8.51]	
Patra 1982	24	97 (3.28)	24	166 (4.69)	-69.00 [-71.29, -66.71]	
Razafindraroko 1993	68	91 (6)	56	81 (5)	10.00 [8.06, 11.94]	
Zaman 2001	85	195 (1.58)	82	227.3 (1.99)	-32.30 [-32.85, -31.75]	
2 Adults						
Alam 1992	47	223 (128)	42	366 (174)	-143.00 [-207.10, -78.90]	
Molla 1985, adults	85	115 (10)	72	158.7 (12.8)	-43.70 [-47.34, -40.06]	
Analysis 3.2. Comparison of age and pathogen: rice-based ORS vs glucose-based ORS, Outcome 2

Duration of diarrhoea, by age group.

Review: Polymer-based oral rehydration solution for treating acute watery diarrhoea

Comparison: 3 Effects of age and pathogen: rice-based ORS vs glucose-based ORS

Outcome: 2 Duration of diarrhoea, by age group

Study or subgroup	Rice-based ORS	Glucose-based ORS	Mean Difference	Weight	Mean Difference	
	N	Mean(SD)	N	Mean(SD)	IV, Random, 95% CI	IV, Random, 95% CI
Alam 1987, rice	24	78 (1.43)	24	90 (1.78)	7.5 % -12.00 [-12.91, -11.09]	
Dutta 1988	35	81.5 (6.3)	33	79.2 (6.4)	7.3 % 2.30 [0.72, 5.32]	
Dutta 1998, children	10	30.6 (4.21)	10	35.95 (7.37)	6.8 % -5.30 [-10.56, -0.04]	
Dutta 2000	19	29.34 (4.83)	19	33.9 (3.77)	7.3 % -4.56 [-7.32, -1.80]	
El-Mougi 1988	30	28.4 (5.2)	30	34.3 (2.3)	7.4 % -5.90 [-7.93, -3.87]	
Guinaldes 1995b	24	72 (10)	24	77 (12)	6.6 % -5.00 [-11.25, 1.25]	
Nanulescu 1999	48	51 (24)	51	54 (40)	4.7 % -3.00 [-15.91, 9.91]	
Patra 1982	24	30 (0.82)	24	43 (0.92)	7.5 % -7.50 [-13.49, -12.51]	
Razafindrakoto 1993	68	68 (4)	56	89 (6)	7.4 % -21.00 [-22.84, -19.16]	
Sharma 1998	25	33.9 (8.03)	25	38.8 (8.03)	7.0 % -4.90 [-9.35, -0.45]	
Zaman 2001	82	35.3 (0.22)	82	35.8 (0.23)	7.5 % -0.50 [-0.57, -0.43]	
Subtotal (95% CI)	392	378	76.9 % -6.81 [-12.10, -1.52]			

Heterogeneity: Tau² = 74.94; Chi² = 3510.56, df = 10 (P<0.00001); I² =100%

Test for overall effect: Z = 2.52 (P = 0.012)

- **2 Adults**
 - Alam 1992 | 47 | 81.1 (23.8) | 42 | 85.2 (19.9) | 5.8 % -4.10 [-13.18, 4.98] |
 - Bhattacharya 1998 | 27 | 36.5 (12.8) | 30 | 46.9 (11.9) | 6.5 % -10.40 [-16.84, -3.96] |
 - Dutta 1998, adults | 25 | 41.32 (6.08) | 25 | 45.68 (6.91) | 7.2 % -4.36 [-7.97, -0.75] |
 - Ramakrishna 2000 | 16 | 70.8 (20.2) | 16 | 90.9 (29.5) | 3.6 % -20.10 [-37.62, -2.58] |
| **Subtotal (95% CI)** | 115 | 113 | 23.1 % -7.11 [-11.91, -2.32] |

Heterogeneity: Tau² = 9.86; Chi² = 5.24, df = 3 (P = 0.15); I² =43%

Test for overall effect: Z = 2.91 (P = 0.0037)

- **Total (95% CI)** | 507 | 507 | 100.0 % -7.19 [-11.80, -2.58] |

Heterogeneity: Tau² = 73.85; Chi² = 3527.85, df = 14 (P<0.00001); I² =100%

Test for overall effect: Z = 3.06 (P = 0.0022)
Analysis 3.3. Comparison of Effects of age and pathogen: rice-based ORS vs glucose-based ORS, Outcome 3
Total stool output during the first 24 hours, by pathogen.

Review: Polymer-based oral rehydration solution for treating acute watery diarrhoea
Comparison: 3 Effects of age and pathogen: rice-based ORS vs glucose-based ORS
Outcome: 3 Total stool output during the first 24 hours, by pathogen

Study or subgroup	Rice-based ORS	Glucose-based ORS	Mean Difference	95% CI	IV, Random
Alam 1987, rice	24 130 (6.12)	24 290 (12.2)	-160.00	-165.46, -154.54	
Alam 1992	47 223 (128)	42 366 (174)	-143.00	-207.10, -78.90	
Zaman 2001	85 195 (1.58)	82 227.3 (1.99)	-32.30	-32.85, -31.75	
Alam 1987, rice	24 140 (2.04)	24 100 (5.1)	40.00	37.80, 42.20	
Mohan 1988	23 88.56 (11.52)	23 110.16 (14.4)	-21.60	-29.14, -14.06	
Nanulescu 1999	48 77.4 (47)	51 102 (33)	-24.60	-40.69, -8.51	
Razafindrakoto 1993	68 91 (6)	56 81 (5)	10.00	8.06, 11.94	
Dutta 1988	35 96.6 (6.9)	33 103.2 (9.6)	-6.60	-10.59, -2.61	
Islam 1994	27 101 (60.5)	25 137.1 (14.6)	-36.10	-59.63, -12.57	
Molla 1985, adults	85 115 (10)	72 158.7 (12.8)	-43.70	-47.34, -40.06	
Molla 1985, children	84 155 (13)	101 204 (13.9)	-49.00	-52.88, -45.12	
Patra 1982	24 97 (3.28)	24 166 (4.69)	-69.00	-71.29, -66.71	

Favours rice-based ORS Favours glucose-based ORS
Analysis 3.4. Comparison 3 Effects of age and pathogen: Rice-based ORS vs Glucose-based ORS, Outcome 4 Duration of diarrhoea, by type of pathogen

Review: Polymer-based oral rehydration solution for treating acute watery diarrhoea

Comparison: 3 Effects of age and pathogen: Rice-based ORS vs glucose-based ORS

Outcome: 4 Duration of diarrhoea, by type of pathogen

Study or subgroup	Rice-based ORS	Glucose-based ORS	Mean Difference	Mean Difference		
	N	Mean (SD)	N	Mean (SD)	IV, Random, 95% CI	IV, Random, 95% CI
1 Cholera						
Alam 1992	47	81.1 (23.8)	42	85.2 (19.9)	-4.10 [-13.18, 4.98]	
Bhattacharya 1998	27	36.5 (12.8)	30	46.9 (11.9)	-10.40 [-16.84, -3.96]	
Dutta 1998, adults	25	41.32 (6.08)	25	45.68 (6.91)	-4.36 [-7.97, -0.75]	
Dutta 1998, children	10	30.65 (4.21)	10	35.95 (7.37)	-5.30 [-10.56, -0.04]	
Dutta 2000	19	29.34 (4.83)	19	33.9 (3.77)	-4.56 [-7.32, -1.80]	
Ramakrishna 2000	16	70.8 (20.2)	16	90.9 (29.5)	-20.10 [-37.62, -2.58]	
Zaman 2001	85	35.3 (0.22)	82	35.8 (0.23)	-0.50 [-0.57, -0.43]	
2 Non-cholera						
Guiraldes 1995b	24	72 (10)	24	77 (12)	-5.00 [-11.25, 1.25]	
Nanulescu 1999	48	51 (24)	51	54 (40)	-3.00 [-15.91, 9.91]	
Razafindrakoto 1993	68	68 (4)	56	89 (6)	-21.00 [-22.84, -19.16]	
3 Mixed pathogens						
Dutta 1988	35	81.5 (6.3)	33	79.2 (6.4)	2.30 [0.72, 5.32]	
Patra 1982	24	30 (0.82)	24	43 (0.92)	-13.00 [-13.49, -12.51]	

-100 -50 0 50 100
Favours rice-based ORS Favours glucose-based ORS

Polymer-based oral rehydration solution for treating acute watery diarrhoea (Review)

Copyright © 2010 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Appendix 1. Search methods: detailed search strategies

Search set	MEDLINE^b	EMBASE^b	OTHER^b
1	REHYDRATION SOLUTIONS	FLUID THERAPY	oral rehydration
2	FLUID THERAPY	ORAL REHYDRATION THERAPY	fluid therapy
3	oral rehydration solution	oral rehydration solution	ORS
4	ORS	ORS	1 or 2 or 3
5	1 or 2 or 3 or 4	1 or 2 or 3 or 4	glucose
6	STARCH	GLUCOSE-POLYMER	rice
7	glucose	STARCH	amylase
8	rice	glucose	amylopectin
9	amylase	rice	corn
10	amylopectins	amylase	sorghum
11	corn	amylopectins	maize
12	sorghum	corn	6-11/or
13	maize	sorghum	4 and 12
14	6-13/or	maize	-
15	5 and 14	6-14	-
16	Limit 15 to human	5 and 15	-
17	-	Limit 16 to human	-

^aSearch terms used in combination with the search strategy for retrieving trials developed by The Cochrane Collaboration (Lefebvre 2008); upper case: MeSH or EMTREE heading; lower case: free text term.

^bUsed for Cochrane Infectious Diseases Group Specialized Register, CENTRAL, and LILACS.
Appendix 2. Risk of bias assessment

Trial	Allocation sequence	Allocation concealment	Blinding	Inclusion of randomized participants in analysis
Akbar 1991	Adequate	Adequate	Participants, providers, outcome assessors	Inadequate
Alam 1987	Adequate	Unclear	None	Adequate
Alam 1992	Adequate	Unclear	None	Adequate
Bernal 2005	Adequate	Adequate	Unclear	Adequate
Bhan 1987	Unclear	Unclear	None	Adequate
Bhattacharya 1998	Adequate	Unclear	None	Adequate
Dutta 1988	Adequate	Unclear	Unclear	Adequate
Dutta 1998	Adequate	Unclear	None	Adequate
Dutta 2000	Adequate	Unclear	None	Adequate
El-Mougi 1988	Adequate	Unclear	None	Adequate
El-Mougi 1996	Adequate	Adequate	Participants, providers, outcome assessors	Adequate
Faruque 1997	Unclear	Unclear	None	Adequate
Fayad 1993	Adequate	Adequate	Unclear	Adequate
Guiraldes 1995a	Adequate	Adequate	None	Adequate
Guiraldes 1995b	Adequate	Adequate	None	Adequate
Hossain 2003	Adequate	Adequate	None	Adequate
Islam 1994	Adequate	Unclear	None	Adequate
Iyngkaran 1998	Unclear	Unclear	None	Adequate
Maulen-Radovan 1994	Adequate	Adequate	None	Adequate
Maulen-Radovan 2004	Adequate	Adequate	None	Adequate
Authors	Allocation	Blinding	Outcome Assessment	Overall Quality
------------------	------------	----------	--------------------	-----------------
Mohan 1988	Unclear	Unclear	None	Adequate
Molla 1985	Adequate	Unclear	None	Adequate
Molla 1989a	Unclear	Unclear	Unclear	Adequate
Molla 1989b	Adequate	Unclear	Participants and providers not blinded; outcome assessors unclear	Adequate
Mustafa 1995	Unclear	Unclear	Unclear	Adequate
Nanulescu 1999	Unclear	Unclear	None	Inadequate
Patra 1982	Unclear	Adequate	None	Adequate
Ramakrishna 2000	Adequate	Unclear	Participants and providers partially blinded; outcome assessors unclear	Adequate
Ramakrishna 2008	Adequate	Adequate	Assessors but not the participants or providers were blinded because of the nature of the study	Adequate
Razafindrakoto 1993	Unclear	Unclear	None	Adequate
Santos Ocampo 1993	Adequate	Adequate	Participants, providers, outcome assessors	Adequate
Sharma 1998	Unclear	Unclear	None	Adequate
Wall 1997	Adequate	Unclear	Participants and providers not blinded; outcome assessors unclear	Adequate
Zaman 2001	Adequate	Unclear	None	Adequate
CONTRIBUTIONS OF AUTHORS

GV Gregorio was the principal investigator, wrote the protocol, carried out the risk of bias (methodological quality) assessment, data extraction and analysis, and wrote the final manuscript.

MLM Gonzales helped in writing the protocol, carried out the risk of bias (methodological quality) assessment and data extraction, and commented on the final manuscript.

LF Dans carried out the risk of bias (methodological quality) assessment.

EG Martinez carried out the data extraction and commented on the final manuscript.

DECLARATIONS OF INTEREST

None known.

SOURCES OF SUPPORT

Internal sources
- Effective Health Care Research Programme Consortium, UK.

External sources
- Department for International Development (DFID), UK.

DIFFERENCES BETWEEN PROTOCOL AND REVIEW

- Change in title: The title was changed to highlight the fact that this is a review of polymer-based ORS (not glucose-based ORS).
- New author: EG Martinez joined the author team after the protocol was published.
- Data extraction: We originally planned to extract count data by determining the total number of episodes in each group (if the episode is rare) or the number of person years in each group for each treatment arm (if the episode is common). However, during the assessment of the trials, the trials reported the number of participants with unscheduled use of intravenous fluid, and thus it was considered to be a dichotomous rather than a count outcome. Similarly, in the data extraction for number of episodes of vomiting, there were only four trials that reported this outcome, while nine clinical trials reported the number of participants with vomiting. It was decided that the latter would be reported. Other adverse effects that were reported in the trials, including number of participants with hypokalaemia (low potassium levels) and those with development of persistent diarrhoea (diarrhoea of more than 10 days’ duration from onset), were also included in the review.
- Data analysis: In multiple treatment arms with two or more polymer-based ORS as treatment groups, the outcomes were combined as appropriate and compared collectively with the control group. Most of the trials included both cholera and non-cholera cases, and this group was collectively termed as having mixed pathogens rather than non-cholera related diarrhoea.
- Subgroup analyses: These were limited to the osmolarity of the glucose ORS, the type of polymer, and the effects of participant’s age and pathogen. The source of the polymer and the effect of feeding were no longer evaluated as most of the polymers were locally prepared and all but two trials withheld feeding after hydration.
- Publication bias: The presence of publication bias was confirmed with StatsDirect, a statistical software program.
INDEX TERMS

Medical Subject Headings (MeSH)
Acute Disease; Cholera [complications]; Dehydration [etiology; *therapy]; Diarrhea [complications; *therapy]; Fluid Therapy [*methods]; Polymers [therapeutic use]; Randomized Controlled Trials as Topic; Rehydration Solutions [chemistry; *therapeutic use]

MeSH check words
Adult; Child; Humans; Infant