New results on top-quark mass, including new methods, in ATLAS

KAVEN YAU WONG, ON BEHALF OF THE ATLAS COLLABORATION

Physikalisches Institut
Universität Bonn, D-53115 Bonn, GERMANY

Recent results on top-quark mass measurements with the ATLAS detector using proton-proton collisions at the Large Hadron Collider are presented. These results correspond to the measurements in the $t\bar{t}$ all-hadronic and dilepton channels at $\sqrt{s} = 8$ TeV collisions and an integrated luminosity of 20 fb$^{-1}$.

PRESENTED AT

9th International Workshop on Top Quark Physics
Olomouc, Czech Republic, September 19–23, 2016

1 The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme ERC Grant Agreement n. 617185.
1 Introduction

The top quark is the heaviest elementary particle in the Standard Model (SM) and its mass is a fundamental parameter that needs to be determined experimentally. The top-quark mass has an important effect in electroweak radiative corrections and a precise measurement is relevant, in particular, for theories of physics beyond the SM. Furthermore, its value is an important test for the consistency of the SM.

The ATLAS detector [1] is a general purpose detector located at the Large Hadron Collider (LHC). Two top-quark mass measurements were performed in the last year using data from the ATLAS detector at a center-of-mass energy of $\sqrt{s} = 8$ TeV:

- the top-quark mass measurement in the dilepton channel [2] and
- the top-quark mass measurement in the all-hadronic channel [3].

Both measurements use the template method to extract the top-quark mass, where the templates are derived using Monte-Carlo simulations.

2 Top-quark measurement in the dilepton channel

This analysis [2] uses the full $\sqrt{s} = 8$ TeV ATLAS data, which gives an integrated luminosity of 20 fb$^{-1}$.

Although the $t\bar{t}$ dilepton channel has a small branching ratio (6%), this is compensated by an extremely high purity, of the order of 99%. The main disadvantage is the presence of two neutrinos which makes the full reconstruction of the event difficult, since the missing transverse momentum (p_T^{miss}) and the missing transverse energy (E_T^{miss}) can only be associated to the combined effects of two particles. The use of the template method circumvents this problem, since it exploits the expected distribution of the $m_{\ell b}$ variable to extract the top-quark mass.

The $m_{\ell b}$ variable is defined as the invariant mass of the two lepton–b-jet pairs. Since the correct pairing between each lepton and their corresponding b-jet is not known a priori, both combinations are computed and the combination giving the smallest value of $m_{\ell b}$ is taken as the correct pairing.

In order to select signal events and reject background, the events are required to have exactly two reconstructed leptons with opposite-sign charges, at least two reconstructed jets and at least one reconstructed jet must be b-tagged (tagger efficiency: 70%). All the reconstructed leptons and jets must have a transverse momentum (p_T) larger than 25 GeV. For the ee and $\mu\mu$ channels, it is also required that $E_T^{\text{miss}} > 60$ GeV and the invariant mass of the two reconstructed leptons ($m_{\ell\ell}$) must satisfy $m_{\ell\ell} > 15$ GeV and $|m_{\ell\ell} - m_Z| > 10$ GeV, where m_Z is the mass of the Z boson. For the $e\mu$ channel, the scalar sum of the p_T of all reconstructed jets and leptons must be larger than 130 GeV.
In order to increase the pairing efficiency of the lepton—b-jet pairs, events are also required to satisfy $30 \text{ GeV} < m_{\ell b} < 170 \text{ GeV}$ and the average transverse momentum of the two lepton—b-jet pairs ($p_{T,\ell b}$) must be larger than 120 GeV. The distribution of $m_{\ell b}$ after applying all the cuts is shown in Figure 1 (left).

After applying the final selection, 10100 ± 770 events are expected, of which 10030 ± 770 are predicted to be signal events. The expected matching efficiency for the lepton—b-jet pairing is $(95.3 \pm 0.4)\%$. Applying this selection to the data, 9426 events are found.

In order to measure the top-quark mass, the template shown in Figure 1 (right) is used. This template is created by modelling the signal as the sum of a Gaussian and a Landau distribution, while the background is modelled with a Landau distribution. The final template depends only on the top-quark mass.

Fitting this template to the data, a measurement of:

$$m_{\text{top}} = 172.99 \pm 0.41\,(\text{stat.}) \pm 0.74\,(\text{syst.}) \text{ GeV}$$

is obtained, where the systematic uncertainty is dominated by the jet energy scale (0.54 GeV).

This result is combined with the ATLAS top-quark mass measurements in the single-lepton and dilepton channels performed at $\sqrt{s} = 7 \text{ TeV}$ [4] using the Best Linear Unbiased Estimate method [5]. The combined measurement gives a combined top-quark mass value of:

$$m_{\text{top}} = 172.84 \pm 0.34\,(\text{stat.}) \pm 0.61\,(\text{syst.}) \text{ GeV}.$$
3 Top-quark mass measurement in the all-hadronic channel

This mass measurement \cite{3} also uses the full $\sqrt{s} = 8$ TeV ATLAS data, which gives an integrated luminosity of 20 fb$^{-1}$.

In the all-hadronic channel, both W bosons decay hadronically, giving a signature of four light jets and two b jets. Unlike the dilepton channel, the all-hadronic channel has the advantage of having the largest branching ratio of all channels, no neutrinos and, hence, the ability to perform a full kinematic reconstruction of the event. The main disadvantage of the all-hadronic channel is the large amount of jets, which poses a complex combinatorics problem to properly identify and reconstruct events. Furthermore, the kinematic reconstruction of an event depends heavily on the jet energy scale. Finally, the multijet background is significant.

The $R_{3/2}$ variable is used for the template method. It is defined, in a top quark hadronic decay, as the ratio between the invariant mass of the three jets (one b jet and two coming from the decay of the W boson) and the invariant mass of the two jets that are the product of the W-boson decay. Since there are two top-quark decays per $t\bar{t}$ event, two $R_{3/2}$ values can be computed per event. The correlation between the two values of $R_{3/2}$ per event is 0.59 and such correlation is considered in the estimation of the uncertainties.

The events are required to have no reconstructed leptons, at least six reconstructed jets with $p_T > 25$ GeV, of which at least five reconstructed jets must have $p_T > 60$ GeV and at least two of the six leading-p_T jets must be b-tagged (tagger efficiency: 57%). It is also required that $E_T^{\text{miss}} < 60$ GeV and that the azimuthal separation between the two b jets with the highest b-tagging weights must be larger than 1.5. Furthermore, after performing the $t\bar{t}$ kinematic fit explained in the next paragraph, the average azimuthal separation between the corresponding b jets and W bosons of both decay chains must be smaller than 2 and the smallest value of χ^2 must be less than 11. The final selection gives an expected purity of 34%.

In order to fully reconstruct the $t\bar{t}$ event, a kinematic fit is performed by minimizing the value of:

$$\chi^2 = \frac{(m_{b1j1j2} - m_{b2j3j4})^2}{\sigma_{\Delta m_{bjj}}^2} + \frac{(m_{j1j2} - m_W^{MC})^2}{\sigma_{m_W^{MC}}^2} + \frac{(m_{j3j4} - m_W^{MC})^2}{\sigma_{m_W^{MC}}^2},$$

where b_1 is the b jet originating from the top quark decay, b_2 is the b jet originating from the antitop quark decay, j_1 and j_2 are the jets originating from the W^+ decay, while j_3 and j_4 are the jets originating from the W^- decay. The values of $m_W^{MC} = 81.18 \pm 0.04$ (stat.) GeV, $\sigma_{\Delta m_{bjj}} = 21.60 \pm 0.16$ (stat.) GeV and $\sigma_{m_W^{MC}} = 7.89 \pm 0.05$ (stat.) GeV are determined from Monte-Carlo simulations using the correct combination of jets, which is obtained from the event generator.
During the $t\bar{t}$ event reconstruction, all the possible jet combinations are tried, and the combination giving the smallest value of χ^2 is considered the correct jet combination of the event.

The QCD multijet background is the largest background contribution and it is estimated using data-driven methods. Its uncertainty is expected to have an impact of 0.16 GeV in the final top-quark mass measurement.

In order to measure the top-quark mass, the template shown in Figure 2 (left) is used. This template is created by modelling the signal distribution with a Novosibirsk distribution, while the background distribution is modelled with a Landau distribution. The final template depends on the top-quark mass and the background fraction parameter (F_{bkgd}).

![Figure 2](image.png)

Figure 2: Left: template used to measure the top-quark mass using the $R_{3/2}$ variable. Right: result of the template fit to the distribution of the $R_{3/2}$ variable in data [3].

Fitting the template to the data, as shown in Figure 2 (right), a top-quark mass of

$$m_{\text{top}} = 173.80 \pm 0.55(\text{stat.}) \pm 1.01(\text{syst.}) \text{ GeV}$$

is measured, where the systematic uncertainty is dominated by the hadronization modelling (0.64 GeV) and the jet energy scale (0.60 GeV).

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme ERC Grant Agreement n. 617185.
References

[1] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003.

[2] ATLAS Collaboration, Measurement of the top quark mass in the $t\bar{t} \rightarrow$ dilepton channel from $\sqrt{s} = 8$ TeV ATLAS data, Phys. Lett. B761 (2016) 350-371.

[3] ATLAS Collaboration, Measurement of the top quark mass in the all-hadronic $t\bar{t}$ decay channel at $\sqrt{s} = 8$ TeV with the ATLAS detector, ATLAS-CONF-2016-064, http://cds.cern.ch/record/2206204.

[4] ATLAS Collaboration, Measurement of the top quark mass in the $t\bar{t} \rightarrow$ lepton + jets and $t\bar{t} \to$ dilepton channels using $\sqrt{s} = 7$ TeV ATLAS data, Eur. Phys. J. C 75 (2015) 330.

[5] L. Lyons et al., How to combine correlated estimates of a single physical quantity, Nucl. Instr. Meth. A 270 (1988) 110.