C*-ALGEBRAS GENERATED BY MULTIPLICATION OPERATORS AND COMPOSITION OPERATORS BY FUNCTIONS WITH SELF-SIMILAR BRANCHES II

HIROYASU HAMADA

Abstract. Let K be a compact metric space and let $\varphi : K \to K$ be continuous. We study a C^*-algebra MC_φ generated by all multiplication operators by continuous functions on K and a composition operator C_φ induced by φ on a certain L^2 space. Let $\gamma = (\gamma_1, \ldots, \gamma_n)$ be a system of proper contractions on K. Suppose that $\gamma_1, \ldots, \gamma_n$ are inverse branches of φ and K is self-similar. We consider the Hutchinson measure μ_H of γ and the L^2 space $L^2(K, \mu_H)$. Then we show that the C^*-algebra MC_φ is isomorphic to the C^*-algebra $O_{\gamma}(K)$ associated with γ under the open set condition and the measure separation condition. This is a generalization of our previous work, in which we studied the case where γ satisfied the finite branch condition.

1. Introduction

Several authors considered C^*-algebras generated by composition operators (and Toeplitz operators) on the Hardy space $H^2(\mathbb{D})$ on the open unit disk \mathbb{D} ([2], [5], [7], [8], [14], [15], [16], [18], [20], [21], [22]). On the other hand, there are some studies on C^*-algebras generated by composition operators on L^2 spaces, for example [3], [4], [17]. Matsumoto [17] introduced some C^*-algebras associated with cellular automata generated by composition operators and multiplication operators.

Let R be a rational function of degree at least two, let J_R be the Julia set of R and let μ^L be the Lyubich measure of R. In [3], we studied the C^*-algebra MC_R generated by all multiplication operators by continuous functions in $C(J_R)$ and the composition operator C_R induced by R on $L^2(J_R, \mu^L)$. We showed that the C^*-algebra MC_R is isomorphic to the C^*-algebra $O_R(J_R)$ associated with the complex dynamical system $\{R^n\}_{n=1}^\infty$ introduced in [10].

Let (K, d) be a compact metric space, let $\gamma = (\gamma_1, \ldots, \gamma_n)$ be a system of proper contractions on K and let $\varphi : K \to K$ be continuous. Suppose that $\gamma_1, \ldots, \gamma_n$ are inverse branches of φ and K is self-similar. Let μ_H be the Hutchinson measure of γ. In [4], we studied the C^*-algebra MC_φ generated by all multiplication operators by continuous functions in $C(K)$ and the composition operator C_φ induced by φ on $L^2(K, \mu_H)$. Assume that the system $\gamma = (\gamma_1, \ldots, \gamma_n)$ satisfies the open set condition, the finite branch condition and the measure separation condition in K. We showed that the C^*-algebra MC_φ is isomorphic to the C^*-algebra $O_{\gamma}(K)$ associated with γ introduced in [11].

In this paper we consider a generalization of [4]. We can remove the second condition that the system γ satisfy the finite branch condition. We also show that

2020 Mathematics Subject Classification. Primary 46L55, 47B33; Secondary 28A80, 46L08.

Key words and phrases. composition operator, multiplication operator, C^*-algebra, self-similar.
\mathcal{MC}_φ is isomorphic to $\mathcal{O}_\gamma(K)$ associated with γ. In this proof, we do not use a countable basis of a Hilbert bimodule.

There is an applications of the main theorem. Let τ be the tent map $\tau : [0, 1] \to [0, 1]$ defined by
\[
\tau(x) = \begin{cases}
2x & 0 \leq x \leq \frac{1}{2}, \\
-2x + 2 & \frac{1}{2} < x \leq 1
\end{cases}
\]
and let φ be the map $\varphi : [0, 1] \times [0, 1] \to [0, 1] \times [0, 1]$ defined by $\varphi(x, y) = (\tau(x), \tau(y))$ for $x, y \in [0, 1]$. Suppose that $\gamma_1, \gamma_2, \gamma_3, \gamma_4$ are inverse branches of φ. Since the system $\gamma = (\gamma_1, \gamma_2, \gamma_3, \gamma_4)$ does not satisfy the finite branch condition, we cannot adapt [4] Theorem 4.4. However we can adapt this main theorem in this paper and the C*-algebra \mathcal{MC}_φ is isomorphic to the Cuntz algebra \mathcal{O}_∞.

2. Covariant relations

Let (K, d) be a compact metric space. A continuous map $\gamma : K \to K$ is called a proper contraction if there exists constants $0 < c_1 \leq c_2 < 1$ such that
\[
c_1d(x, y) \leq d(\gamma(x), \gamma(y)) \leq c_2d(x, y), \quad x, y \in K.
\]

Let $\gamma = (\gamma_1, \ldots, \gamma_n)$ be a family of proper contractions on (K, d). We say that K is called self-similar with respect to γ if $K = \bigcup_{i=1}^n \gamma_i(K)$. See [1] and [13] for more on fractal sets. We say that γ satisfies the open set condition in K if there exists a non-empty open set $V \subset K$ such that
\[
\bigcup_{i=1}^n \gamma_i(V) \subset V \quad \text{and} \quad \gamma_i(V) \cap \gamma_j(V) = \emptyset \quad \text{for} \quad i \neq j.
\]

For a system γ of proper contractions on a compact metric space K, we introduce the following subsets of K.
\[
B_\gamma = \{ y \in K \mid y = \gamma_i(x) = \gamma_j(x) \text{ for some } x \in K \text{ and } i \neq j \}, \\
C_\gamma = \{ x \in K \mid \gamma_i(x) = \gamma_j(x) \text{ for some } i \neq j \}.
\]

We say that γ satisfies the finite branch condition if C_γ is finite set.

Let us denote by $\mathcal{B}(K)$ the Borel σ-algebra on K.

Lemma 2.1 ([6]). Let K be a compact metric space and let γ be a system of proper contractions. If $p_1, \ldots, p_n \in \mathbb{R}$ satisfy $\sum_{i=1}^n p_i = 1$ and $p_i > 0$ for i, then there exists a unique probability measure μ on K such that
\[
\mu(E) = \sum_{i=1}^n p_i \mu(\gamma_i^{-1}(E))
\]
for $E \in \mathcal{B}(K)$.

We call the measure μ given by Lemma 2.1 the self-similar measure on K with $\{p_i\}_{i=1}^n$. In particular, we denote by μ^H the self-similar measure with $p_i = \frac{1}{n}$ for i and call this measure the Hutchinson measure. We say that γ satisfies the measure separation condition in K if $\mu(\gamma_i(K) \cap \gamma_j(K)) = 0$ for any self-similar measure μ and $i \neq j$.

For $a \in L^\infty(K, \mathcal{B}(K), \mu^H)$, we define the multiplication operator M_a on $L^2(K, \mathcal{B}(K), \mu^H)$ by $M_af = af$ for $f \in L^2(K, \mathcal{B}(K), \mu^H)$. Let $\varphi : K \to K$ be measurable. Suppose that $\gamma_1, \ldots, \gamma_n$ are inverse branches of φ, that is, $\varphi(\gamma_i(x)) = x$ for $x \in K$ and
functions.

For $f \in C(K)$, we can easily see that $L_\varphi f \in C(K)$ since $\gamma_1, \ldots, \gamma_n$ are continuous functions.

Proposition 2.2 ([1] Proposition 2.5). Let $\gamma = (\gamma_1, \ldots, \gamma_n)$ be a system of proper contractions. Assume that K is self-similar and the system $\gamma = (\gamma_1, \ldots, \gamma_n)$ satisfies the measure separation condition in K. Then C_φ is an isometry on $L^2(K, \mathcal{B}(K), \mu^H)$, L_φ is bounded on $L^\infty(K, \mathcal{B}(K), \mu^H)$, and

$$C_\varphi^* M_a C_\varphi = M_{L_\varphi(a)}$$

for $a \in L^\infty(K, \mathcal{B}(K), \mu^H)$.

The operator C_φ is called the *composition operator* on $L^2(K, \mathcal{B}(K), \mu^H)$ induced by φ.

3. **C*-algebras associated with self-similar sets**

We recall the construction of Cuntz-Pimsner algebras [19] (see also [12]). Let A be a C*-algebra and let X be a right Hilbert A-module. We denote by $L(X)$ the C*-algebra of the adjointable bounded operators on X. For $\xi, \eta \in X$, the operator $\theta_{\xi, \eta}$ is defined by $\theta_{\xi, \eta}(\zeta) = \xi(\eta, \zeta)A$ for $\zeta \in X$. The closure of the linear span of these operators is denoted by $K(X)$. We say that X is a *Hilbert bimodule* (or C*-correspondence) over A if X is a right Hilbert A-module with a *-homomorphism $\phi : A \to L(X)$.* We always assume that ϕ is injective.

A *representation* of the Hilbert bimodule X over A on a C*-algebra D is a pair (ρ, V) constituted by a *-homomorphism $\rho : A \to D$ and a linear map $V : X \to D$ satisfying

$$\rho(a)V_\xi = V_{\phi(a)\xi}, \quad V_\xi^* V_\eta = \rho(\langle \xi, \eta \rangle A)$$

for $a \in A$ and $\xi, \eta \in X$. It is known that $V_\xi \rho(b) = V_{\xi b}$ follows automatically (see for example [12]). We define a *-homomorphism $\psi_V : K(X) \to D$ by $\psi_V(\theta_{\xi, \eta}) = V_\xi V_\eta^*$ for $\xi, \eta \in X$ (see for example [19 Lemma 2.2]). A representation (ρ, V) is said to be *covariant* if $\rho(a) = \psi_V(\phi(a))$ for all $a \in J(X) := \phi^{-1}(K(X))$.

Let (i, S) be the representation of X which is universal for all covariant representations. The *Cuntz-Pimsner algebra* \mathcal{O}_X is the C*-algebra generated by $i(a)$ with $a \in A$ and S_ξ with $\xi \in X$. We note that i is known to be injective [19] (see also [12 Proposition 4.11]). We usually identify $i(a)$ with a in A.

Let $\gamma = (\gamma_1, \ldots, \gamma_n)$ be a system of proper contractions on a compact metric space K. Assume that K is self-similar. Let $A = C(K)$ and $Y = C(C)$, where $C = \bigcup_{i=1}^n \{ (\gamma_i(y), y) \mid y \in K \}$ is the cograph of γ_i. Then Y is an A-A bimodule over A by

$$(a \cdot f \cdot b)(\gamma_i(y), y) = a(\gamma_i(y))f(\gamma_i(y), y)b(y), \quad a, b \in A, f \in Y.$$

We define an A-valued inner product $\langle \cdot, \cdot \rangle_A$ on Y by

$$\langle f, g \rangle_A(y) = \sum_{i=1}^n f(\gamma_i(y), y) g(\gamma_i(y), y), \quad f, g \in Y, y \in K.$$
Then Y is a Hilbert bimodule over A. The C^*-algebra $O_\gamma(K)$ is defined as the Cuntz-Pimsner algebra of the Hilbert bimodule $Y = C(C)$ over $A = C(K)$.

4. Main Theorem

Definition. Let $\varphi : K \to K$ be continuous. Suppose that composition operator C_φ on $L^2(K, B(K), \mu^K)$ is bounded. We denote by MC_φ the C^*-algebra generated by all multiplication operators by continuous functions in $C(K)$ and the composition operator C_φ on $L^2(K, B(K), \mu^K)$.

Let $\varphi : K \to K$ be continuous. Let $A = C(K)$ and $X = C(K)$. Then X is an A-A bimodule over A by

$$(a \cdot \xi \cdot b)(x) = a(x)\xi(x)b(\varphi(x)) \quad a, b \in A, \xi \in X.$$ We define an A-valued inner product $\langle \ , \ \rangle_A$ on X by

$$\langle \xi, \eta \rangle_A(x) = \frac{1}{n} \sum_{i=1}^{\infty} \xi(\gamma_i(x)) \eta(\gamma_i(x)) \quad (= (L_\varphi(\xi \eta))(x)), \quad \xi, \eta \in X.$$ Then X is a Hilbert bimodule over A. The left multiplication of A on X gives the left action $\phi : A \to \mathcal{L}(X)$ such that $\phi(a)\xi(x) = a(x)\xi(x)$ for $a \in A$ and $\xi \in X$. Let $\Phi : Y \to X$ be defined by $(\Phi(f))(x) = \sqrt{n}f(x, \varphi(x))$ for $f \in Y$. It is easy to see that Φ is an isomorphism and X is isomorphic to Y as Hilbert bimodules over A. Hence the C^*-algebra $O_\gamma(K)$ is isomorphic to the Cuntz-Pimsner algebra O_X constructed from X.

For $x \in K$, we define

$$I(x) = \{ i \in \{1, \ldots, n\} \mid \text{there exists } y \in K \text{ such that } x = \gamma_i(y) \}.$$

Lemma 4.1 ([11] Lemma 2.2). Let $x \in K \setminus B_\gamma$. Then there exists an open neighbourhood U_x of x the following

1. $U_x \cap B(\gamma_1, \ldots, \gamma_n) = \emptyset,$
2. If $i \in I(x)$, then $\gamma_i^{-1}(U_x) \cap U_x = \emptyset$ for $j \neq i$.
3. If $i \notin I(x)$, then $U_x \cap \gamma_i(K) = \emptyset$.

We now recall a description of the ideal $J(X)$ of A. Assume that $\gamma = (\gamma_1, \ldots, \gamma_n)$ satisfies the open set condition in K. By [11] Proposition 2.6, we can write $J(X) = \{ a \in A \mid a \text{ vanishes on } B_\gamma \}$. We define a subset $J(X)^0$ of $J(X)$ by $J(X)^0 = \{ a \in A \mid a \text{ vanishes on } B_\gamma \text{ and has compact support on } K \setminus B_\gamma \}$. Then $J(X)^0$ is dense in $J(X)$.

Lemma 4.2. Assume that $\gamma = (\gamma_1, \ldots, \gamma_n)$ satisfies the open set condition in K. Then, for $a \in J(X)^0$, there exists $\xi_1, \ldots, \xi_m, \eta_1, \ldots, \eta_m \in X$ such that

$$\sum_{i=1}^{m} \theta_{\xi_i, \eta_i} = \phi(a).$$

Proof. For $x \in \text{supp}(a)$, choose an open neighbourhood U_x of x as in Lemma 4.1. By the same argument in the proof of [11] Proposition 2.4, we can choose $\{ f_i \}_{i=1}^{m+1}$ in A such that $0 \leq f_i \leq 1$, supp(f_i) $\subset U_x$, for $i = 1, \ldots, m$ and $\sum_{i=1}^{m} f_i(x) = 1$ for $x \in \text{supp}(a)$. Define $\xi_i, \eta_i \in X$ by $\xi_i(x) = na(x)\sqrt{f_i(x)}$ and $\eta_i(x) = \sqrt{f_i(x)}$. By a similar argument in the proof of [11] Proposition 2.4, we have $\sum_{i=1}^{m} \theta_{\xi_i, \eta_i} = \phi(a).$
We regard the following lemma as an operator version of Lemma 4.2.

Lemma 4.3. Let $\gamma = (\gamma_1, \ldots, \gamma_n)$ be a system of proper contractions. Assume that K is self-similar and the system $\gamma = (\gamma_1, \ldots, \gamma_n)$ satisfies the open set condition and the measure separation condition in K. Suppose that $\xi_1, \ldots, \xi_m, \eta_1, \ldots, \eta_m \in X$ are in Lemma 4.2. Then, for $a \in J(X)^0$, we have

$$\sum_{i=1}^m M_{\xi_i} C_\varphi C_\varphi^* M_{\eta_i}^* = M_a.$$

Proof. Let $b \in C(K)$. By Lemma 4.2 there exists $\xi_1, \ldots, \xi_m, \eta_1, \ldots, \eta_m \in X$ such that

$$\sum_{i=1}^m \xi_i \cdot \langle \eta_i, b \rangle_A = ab.$$

Since $b = M_b C_\varphi 1$, we have

$$\sum_{i=1}^m M_{\xi_i} C_\varphi C_\varphi^* M_{\eta_i}^* b = \sum_{i=1}^m M_{\xi_i} C_\varphi C_\varphi^* M_{\eta_i}^* M_b C_\varphi 1$$

$$= \sum_{i=1}^m M_{\xi_i} C_\varphi C_\varphi^* M_{\eta_i}^* b$$

$$= \sum_{i=1}^m M_{\xi_i} C_\varphi M_{L_\varphi(\eta_i) 1}$$ by Proposition 2.2

$$= \sum_{i=1}^m M_{\xi_i} M_{L_\varphi(\eta_i) 1} \circ \varphi$$

$$= \sum_{i=1}^m \xi_i \cdot \langle \eta_i, b \rangle_A$$

$$= M_a b.$$

Since the Hutchinson measure μ^H on K is regular, $C(K)$ is dense in $L^2(K, B(K), \mu^H)$, the proof is complete.

The following theorem is the main result of the paper. This is a generalization of [4, Theorem 4.4].

Theorem 4.4. Let (K, d) be a compact metric space, let $\gamma = (\gamma_1, \ldots, \gamma_n)$ be a system of proper contractions on K and let $\varphi : K \to K$ be continuous. Suppose that $\gamma_1, \ldots, \gamma_n$ are inverse branches of φ. Assume that K is self-similar and the system $\gamma = (\gamma_1, \ldots, \gamma_n)$ satisfies the open set condition and the measure separation condition in K. Then MC_φ is isomorphic to $O_\gamma(K)$.

Proof. Put $\rho(a) = M_a$ and $V_\xi = M_\xi C_\varphi$ for $a \in A$ and $\xi \in X$. Then we can show $\rho(a) V_\xi V_\eta = V_a \xi$ and $V_\xi V_\eta = \rho(\langle \xi, \eta \rangle_A)$ for $a \in A$ and $\xi, \eta \in X$ as in the proof of [4, Theorem 4.4].
Let $a \in J(X)^0$. By Lemma 4.2 there exits $\xi_1, \ldots, \xi_m, \eta_1, \ldots, \eta_m \in X$ such that

$$\phi(a) = \sum_{i=1}^{m} \theta_{\xi_i, \eta_i}.$$

From Lemma 4.3 it follows that

$$\psi_V(\phi(a)) = \psi_V \left(\sum_{i=1}^{m} \theta_{\xi_i, \eta_i} \right) = \sum_{i=1}^{m} V_{\xi_i}V^*_{\eta_i} = \sum_{i=1}^{m} M_{\xi_i}C_\varphi C^*_\varphi M^*_{\eta_i} = M_a = \rho(a).$$

Since $J(X)^0$ is dense in $J(X)$, we have $\psi_V(\phi(a)) = \rho(a)$ for $a \in J(X)$.

By the universality and the simplicity of $O_\gamma(K)$ ([1, Theorem 3.8]), the C*-algebra MC_φ is isomorphic to $O_\gamma(K)$.

\[\square\]

5. Examples

We give some examples for C*-algebras generated by a composition operator C_φ and multiplication operators.

Example. A tent map $\tau : [0, 1] \to [0, 1]$ is defined by

$$\tau(x) = \begin{cases}
2x & 0 \leq x \leq \frac{1}{2}, \\
-2x + 2 & \frac{1}{2} \leq x \leq 1.
\end{cases}$$

Let $\varphi : [0, 1] \times [0, 1] \to [0, 1] \times [0, 1]$ be given by $\varphi(x, y) = (\tau(x), \tau(y))$ for $x, y \in [0, 1]$. Then inverse branches of φ are $\gamma_1, \gamma_2, \gamma_3, \gamma_4$ such that

$$\gamma_1(x, y) = \left(\frac{1}{2}x, \frac{1}{2}y \right), \quad \gamma_2(x, y) = \left(\frac{1}{2}x, -\frac{1}{2}y + 1 \right)$$

and

$$\gamma_3(x, y) = \left(-\frac{1}{2}x + 1, \frac{1}{2}y \right), \quad \gamma_4(x, y) = \left(-\frac{1}{2}x + 1, -\frac{1}{2}y + 1 \right)$$

for $x, y \in [0, 1]$. The maps $\gamma_1, \gamma_2, \gamma_3, \gamma_4$ are proper contractions and $K = [0, 1] \times [0, 1]$ is the self-similar set with respect to $\gamma = (\gamma_1, \gamma_2, \gamma_3, \gamma_4)$. The system γ satisfies the open set condition in K. Since $C_\gamma = ([0, 1] \times \{1\}) \cup (\{1\} \times [0, 1])$, the system γ does not satisfy the finite branch condition. The Hutchinson measure μ^K on K coincides with the Lebesgue measure m on K. By [23], the system γ satisfies the measure separation condition in K. We consider the composition operator C_φ on $L^2(K, \mathcal{B}(K), m)$. By Theorem 4.4, the C*-algebra MC_φ is isomorphic to $O_\gamma(K)$.

Since

$$B_\gamma = \left([0, 1] \times \left\{ \frac{1}{2} \right\} \right) \cup \left(\left\{ \frac{1}{2} \right\} \times [0, 1] \right),$$

we have $K_0(C(B_\gamma)) \cong \mathbb{Z}$ and $K_1(C(B_\gamma)) \cong 0$. Since $K_0(C(K)) \cong \mathbb{Z}$ and $K_1(C(K)) \cong 0$, it follows that $K_0(J(X)) \cong 0$ and $K_1(J(X)) \cong 0$. By the six-term exact sequence of the Cuntz-Pimsner algebra $O_\gamma(K)$ due to [19], we have $K_0(MC_\varphi) \cong \mathbb{Z}$, $K_1(MC_\varphi) \cong 0$ and the unit $[I]_0$ in K_0 maps to 1 in \mathbb{Z}. Hence MC_φ is isomorphic to the Cuntz algebra O_∞.

Example. A map $\sigma : [0, 1] \to [0, 1]$ is defined by

$$\sigma(x) = \begin{cases}
3x & 0 \leq x \leq \frac{1}{3}, \\
-3x + 2 & \frac{1}{3} \leq x \leq \frac{4}{3}, \\
3x - 2 & \frac{4}{3} \leq x \leq 1.
\end{cases}$$
Let \(\varphi : [0, 1] \times [0, 1] \to [0, 1] \times [0, 1] \) be given by \(\varphi(x, y) = (\tau(x), \sigma(y)) \) for \(x, y \in [0, 1] \).

Then inverse branches of \(\varphi \) are \(\gamma_1, \ldots, \gamma_6 \) such that

\[
\begin{align*}
\gamma_1(x, y) &= \left(\frac{1}{2} x, \frac{1}{3} y \right), \\
\gamma_2(x, y) &= \left(\frac{1}{2} x, -\frac{1}{3} y + \frac{2}{3} \right), \\
\gamma_3(x, y) &= \left(\frac{1}{2} x, \frac{1}{3} y + \frac{2}{3} \right), \\
\gamma_4(x, y) &= \left(-\frac{1}{2} x + 1, \frac{1}{3} y \right), \\
\gamma_5(x, y) &= \left(-\frac{1}{2} x + 1, -\frac{1}{3} y + \frac{2}{3} \right), \\
\gamma_6(x, y) &= \left(-\frac{1}{2} x + 1, \frac{1}{3} y + \frac{2}{3} \right),
\end{align*}
\]

for \(x, y \in [0, 1] \). The maps \(\gamma_1, \ldots, \gamma_6 \) are proper contractions and \(K = [0, 1] \times [0, 1] \) is the self-similar set with respect to \(\gamma = (\gamma_1, \ldots, \gamma_6) \). The Hutchinson measure \(\mu_H \) on \(K \) coincides with the Lebesgue measure \(m \) on \(K \). The system \(\gamma \) satisfies the open set condition and the measure separation condition in \(K \). Similar to the previous example, we have \((\mathcal{K}_0(\mathcal{M}_\varphi), [I]_0, \mathcal{K}_1(\mathcal{M}_\varphi)) \cong (\mathbb{Z}, 1, 0) \). Hence the \(C^* \)-algebra \(\mathcal{M}_\varphi \) is isomorphic to the Cuntz algebra \(\mathcal{O}_\infty \).

Remark. Let \(\varphi : [0, 1] \to [0, 1] \) be given by \(\varphi(x) = \tau(x) \) for \(x \in [0, 1] \). By [4] Example, the \(C^* \)-algebra \(\mathcal{M}_\psi \) is isomorphic to the Cuntz algebra \(\mathcal{O}_\infty \). On the other hand, let \(\psi : [0, 1] \to [0, 1] \) be given by \(\psi(x) = \sigma(x) \) for \(x \in [0, 1] \). We have \(\mathcal{K}_0(\mathcal{M}_\psi) \cong \mathbb{Z}^2 \) and \(\mathcal{K}_1(\mathcal{M}_\psi) \cong \mathbb{Z} \). Hence the \(C^* \)-algebra \(\mathcal{M}_\psi \) is not isomorphic to the Cuntz algebra \(\mathcal{O}_\infty \).

References

[1] K. J. Falconer, Fractal Geometry, Wiley, Chichester, 1997.
[2] H. Hamada, Quotient algebras of Toeplitz-composition \(C^* \)-algebras for finite Blaschke products, Complex Anal. Oper. Theory 8 (2014), 843–862.
[3] H. Hamada, \(C^* \)-algebras generated by multiplication operators and composition operators with rational functions, J. Operator Theory 75 (2016), 289–298.
[4] H. Hamada, \(C^* \)-algebras generated by multiplication operators and composition operators by functions with self-similar branches, arXiv:1911.09983.
[5] H. Hamada and Y. Watatani, Toeplitz-composition \(C^* \)-algebras for certain finite Blaschke products, Proc. Amer. Math. Soc. 138 (2010), 2113–2123.
[6] J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713–747.
[7] M. T. Jury, The Fredholm index for elements of Toeplitz-composition \(C^* \)-algebras, Integral Equations Operator Theory 58 (2007), 341–362.
[8] M. T. Jury, \(C^* \)-algebras generated by groups of composition operators, Indiana Univ. Math. J. 56 (2007), 3171–3192.
[9] T. Kajiwara, C. Pinzari and Y. Watatani, Ideal structure and simplicity of the \(C^* \)-algebras generated by Hilbert bimodules, J. Funct. Anal. 159 (1998), 295–322.
[10] T. Kajiwara and Y. Watatani, \(C^* \)-algebras associated with complex dynamical systems, Indiana Math. J. 54 (2005), 755–778.
[11] T. Kajiwara and Y. Watatani, \(C^* \)-algebras associated with self-similar sets, J. Operator Theory 56 (2006), 225–247.
[12] T. Katsura, On \(C^* \)-algebras associated with \(C^* \)-correspondences, J. Funct. Anal. 217 (2004), 366–401.
[13] J. Kigami, Analysis on Fractals, Cambridge University Press, Cambridge, 2001.
[14] T. L. Kriete, B. D. MacCluer and J. L. Moorhouse, Toeplitz-composition \(C^* \)-algebras, J. Operator Theory 58 (2007), 135–156.
[15] T. L. Kriete, B. D. MacCluer and J. L. Moorhouse, Spectral theory for algebraic combinations of Toeplitz and composition operator, J. Funct. Anal. 257 (2009), 2378–2409.
[16] T. L. Kriete, B. D. MacCluer and J. L. Moorhouse, Composition operators within singly generated composition \(C^* \)-algebras, Israel J. Math. 179 (2010), 449–477.
[17] K. Matsumoto, \(C^* \)-algebras associated with cellular automata, Math. Scand. 75 (1994), 195–216.
[18] E. Park, *Toeplitz algebras and extensions of irrational rotation algebras*, Canad. Math. Bull. 48 (2005), 607–613.
[19] M. V. Pimsner, *A class of C*-algebras generating both Cuntz-Krieger algebras and crossed product by Z*, Free Probability Theory, Fields Inst. Commun., Vol 12, Amer. Math. Soc., Providence, RI, pp. 189–212.
[20] K. S. Quertermous, *A semigroup composition C*-algebra*, J. Operator Theory 67 (2012), 581–604.
[21] K. S. Quertermous, *Fixed point composition and Toeplitz-composition C*-algebras*, J. Funct. Anal. 265 (2013), 743–764.
[22] M. K. Sarvestani and M. Amini, *The C*-algebra generated by irreducible Toeplitz and composition operators*, Rocky Mountain J. Math. 47 (2017), 1301–1316.
[23] A. Schief, *Separation properties for self-similar sets*, Proc. Amer. Math. Soc. 122 (1994), 111–115.

National Institute of Technology (KOSEN), Sasebo College, Okishin, Sasebo, Nagasaki, 857-1193, Japan.
Email address: h-hamada@sasebo.ac.jp