Weyl Symmetry and the Liouville Theory*†‡

R. Jackiw

Center for Theoretical Physics
Department of Physics
Massachusetts Institute of Technology
Cambridge, MA 02139

MIT-CTP-3699

Abstract

Flat-space conformal invariance and curved-space Weyl invariance are simply related in dimensions greater than two. In two dimensions the Liouville theory presents an exceptional situation, which we here examine.

*Schnitzerfest, Waltham MA, March 2005
†Polyakovfest, Princeton NJ, November 2005
‡Novozhilov Festschrift, (Theoretical Mathematical Physics)
1 Conformally and Weyl Invariant Scalar Field Dynamics in $d > 2$

Let us begin by recording the d-dimensional Lagrange density for a scalar field φ with a scale and conformally invariant self interaction.

$$\mathcal{L}_0 = \frac{1}{2} \eta^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - \lambda \varphi^{\frac{2d}{d-2}}$$

(1.1)

Evidently the expression makes sense only for $d \neq 2$, and we take $d > 2$. The theory is invariant against

$$\delta \varphi = f^\alpha \partial_\alpha \varphi + \frac{d-2}{2d} \partial_\alpha f^\alpha \varphi,$$

(1.2)

where f^α is a (flat-space) conformal Killing vector. The usual, canonical energy momentum tensor

$$\theta_{\mu\nu}^{\text{canonical}} = \partial_\mu \varphi \partial_\nu \varphi - \eta_{\mu\nu} \left(\frac{1}{2} \eta^{\alpha\beta} \partial_\alpha \varphi \partial_\beta \varphi - \lambda \varphi^{\frac{2d}{d-2}} \right)$$

(1.3)

is conserved and symmetric, as it should be in a Poincaré invariant theory. But it is not traceless: $\eta_{\mu\nu} \theta_{\mu\nu}^{\text{canonical}} \neq 0$. Nevertheless, because of the conformal invariance (1.2), $\theta_{\mu\nu}^{\text{canonical}}$ can be improved by the addition of a further conserved and symmetric expression, so that the new tensor is traceless [1].

$$\theta_{\mu\nu} = \theta_{\mu\nu}^{\text{canonical}} + \frac{d-2}{4(d-1)} (\eta_{\mu\nu} \Box - \partial_\mu \partial_\nu) \varphi^2, \quad \eta^{\mu\nu} \theta_{\mu\nu} = 0$$

(1.4)

A variational derivation of the canonical tensor (1.3) becomes possible after the theory (1.1) is minimally coupled to a metric tensor $g_{\mu\nu}$, and its action integral is varied with respect to $g_{\mu\nu}$. $\theta_{\mu\nu}^{\text{canonical}}$ is regained in the limit $g_{\mu\nu} \rightarrow \eta_{\mu\nu}$. A similar derivation of the improved tensor (1.4) is also possible, provided (1.1), generalized to curved space, is extended by a specific non-minimal coupling [1].

$$\mathcal{L} = \frac{d-2}{8(d-1)} R \varphi^2 + \frac{1}{2} g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - \lambda \varphi^{\frac{2d}{d-2}}$$

(1.5)

$$T_{\mu\nu} = \frac{2}{\sqrt{|g|}} \delta \mathcal{L} \left(\frac{\delta}{\delta g^{\mu\nu}} \right) = \partial_\mu \varphi \partial_\nu \varphi - g_{\mu\nu} \left(\frac{1}{2} g^{\alpha\beta} \partial_\alpha \varphi \partial_\beta \varphi - \lambda \varphi^{\frac{2d}{d-2}} \right) + \frac{d-2}{4(d-1)} (g_{\mu\nu} D^2 - D_\mu D_\nu + G_{\mu\nu}) \varphi^2$$

(1.6)

Here $G_{\mu\nu}$ is the Einstein tensor, R the Ricci scalar $R = \frac{2}{d-2} g^{\mu\nu} G_{\mu\nu}$, and D_μ the covariant derivative. In the limit $g_{\mu\nu} \rightarrow \eta_{\mu\nu}$ the non-minimal term in \mathcal{L} vanishes, but it survives in the $g^{\mu\nu}$ variation.

$$T_{\mu\nu} \xrightarrow{g_{\mu\nu} \rightarrow \eta_{\mu\nu}} \theta_{\mu\nu}$$

(1.7)

Note that $g^{\mu\nu} T_{\mu\nu} = 0$, with the help of the field equation for φ.

$$D^2 \varphi + \lambda \frac{2d}{d-1} \varphi^{\frac{d+2}{d-2}} - \frac{d-2}{4(d-1)} R \varphi = 0$$

(1.8)
This ensures the vanishing of $\eta^{\mu\nu} \theta_{\mu\nu}$.

The precise form of the non-minimal coupling results in the invariance of the curved space action against Weyl transformations, involving an arbitrary function σ [2].

\[
\begin{align*}
\eta^{\mu\nu} & \xrightarrow{\text{Weyl}} e^{2\sigma} \eta^{\mu\nu} & (1.9a) \\
\phi & \xrightarrow{\text{Weyl}} e^{\frac{2-d}{2} \sigma} \phi & (1.9b)
\end{align*}
\]

The self coupling is separately invariant against $\mathbf{(1.9)}$. The kinetic term and the non-minimal coupling term are not, but their non-trivial response to the Weyl transformation cancels in their sum. Also it is the Weyl invariance of the action that results in the tracelessness of its $g^{\mu\nu}$-variation i.e. of $T_{\mu\nu}$, just as its diffeomorphism invariance ensures symmetry and covariant conservation of $T_{\mu\nu}$.

Thus we see that Weyl (and diffeomorphism) invariance in curved space is closely linked to conformal invariance in flat space [2]. But can a conformally invariant, flat space theory always be extended to a Weyl and diffeomorphims invariant theory in curved space? Evidently, the answer is “Yes” for the self-interacting scalar theories in $d > 2$, discussed previously [3]. We now examine what happens in $d = 2$.

2 Liouville Theory: Conformally Invariant Scalar Field Dynamics in $d = 2$

A 2-dimensional model with non-trivial dynamics that is conformally invariant is the Liouville theory with Lagrange density

\[
L^\text{Liouville}_0 = \frac{1}{2} \eta^{\mu\nu} \partial_\mu \psi \partial_\nu \psi - \frac{m^2}{\beta^2} e^{\beta \psi}.
\]

(2.1)

The conformal symmetry transformations act in an affine manner, so that the exponential interaction is left invariant.

\[
\delta \psi = f^\alpha \partial_\alpha \psi + \frac{1}{\beta} \partial_\alpha f^\alpha
\]

(2.2)

The canonical energy-momentum tensor

\[
\theta^\text{canonical}_{\mu\nu} = \partial_\mu \psi \partial_\nu \psi - \eta_{\mu\nu} \left(\frac{1}{2} \eta^{\alpha\beta} \partial_\alpha \psi \partial_\beta \psi - \frac{m^2}{\beta^2} e^{\beta \psi} \right)
\]

(2.3)

again is not traceless: $\eta_{\mu\nu} \theta^\text{canonical}_{\mu\nu} \neq 0$, but with an improvement it acquires that property.

\[
\theta_{\mu\nu} = \theta^\text{canonical}_{\mu\nu} + \frac{2}{\beta} (\eta_{\mu\nu} \Box - \partial_\mu \partial_\nu) \psi, \quad \eta_{\mu\nu} \theta_{\mu\nu} = 0
\]

(2.4)

Again $\theta^\text{canonical}_{\mu\nu}$ arises variationally when the Liouville Lagrange density is minimally extended by an arbitrary metric tensor. Similarly the improved tensor (2.4) is gotten when
a non-minimal interaction is inserted.

\[
\mathcal{L}^{\text{Liouville}} = \frac{1}{\beta} R \psi + \frac{1}{2} g^\mu\nu \partial_\mu \psi \partial_\nu \psi - \frac{m^2}{\beta^2} e^{\beta \psi} \quad (2.5)
\]

\[
T_{\mu\nu} = \frac{2}{\sqrt{|g|}} \frac{\delta}{\delta g^{\mu\nu}} \int \sqrt{|g|} \mathcal{L}^{\text{Liouville}}
\]

\[
= \partial_\mu \psi \partial_\nu \psi - g_{\mu\nu} \left(\frac{1}{2} g^{\alpha\beta} \partial_\alpha \psi \partial_\beta \psi - \frac{m^2}{\beta^2} e^{\beta \psi} \right) + \frac{2}{\beta} (g_{\mu\nu} D^2 - D_\mu D_\nu) \psi \quad (2.6)
\]

However, the curved-space tensor \(T_{\mu\nu} \) is not traceless,

\[
g^{\mu\nu} T_{\mu\nu} = \frac{2}{\beta^2} R \neq 0,
\]

becoming traceless only in the flat-space limit, when \(R \) vanishes. Correspondingly, the action associated with \(2.5 \) is not invariant against Weyl transformations, which take the following form for the scalar field \(\psi \).

\[
\psi \xrightarrow{\text{Weyl}} \psi - \frac{2}{\beta} \sigma \quad (2.9)
\]

This formula is needed so that the interaction density \(\sqrt{|g|} e^{\beta \psi} \) be invariant. However, the kinetic term together with the non-minimal term are not invariant, so that

\[
I^{\text{Liouville}} = \int \sqrt{|g|} \mathcal{L}^{\text{Liouville}} \quad \xrightarrow{\text{Weyl}} I^{\text{Liouville}} - \frac{2}{\beta^2} \int \sqrt{|g|} (R \sigma + g^{\mu\nu} \partial_\mu \sigma \partial_\nu \sigma) \quad (2.10)
\]

Note that the change in the action — the last term in \(2.10 \) — is \(\psi \) independent. So the field equation

\[
D^2 \psi + \frac{m^2}{\beta} e^{\beta \psi} - \frac{1}{\beta} R = 0 \quad (2.11)
\]

enjoys Weyl symmetry, even while the action does not.

3 Obtaining the \(d = 2 \) Liouville theory from the \(d > 2 \) Weyl invariant theories

We see that the 2-dimensional situation is markedly different from what is found for \(d > 2 \): for the latter theories there exists a Weyl-invariant precursor, with a traceless energy-momentum tensor in curved space, which leads to a traceless energy-momentum tensor in flat space. For \(d = 2 \) the precursor is not Weyl invariant and the energy-momentum tensor becomes traceless only in the flat-space limit.

To get a better understanding of the 2-dimensional behavior, we now construct a limiting procedure that takes the Weyl invariant models at \(d > 2 \), \(1.5 \), to two dimensions. Thereby we expose the steps at which Weyl invariance is lost.
In order to derive the $d = 2$ Liouville theory (2.5) from the $d > 2$, Weyl invariant models with polynomial interaction (1.5), we set
\[
\varphi = \frac{2d}{\beta(d-2)} \, e^{\frac{\beta}{2(d-2)} \varphi} \quad (d > 2),
\]
and take the limit $d \to 2$, from above. We examine each of the three terms in (1.5) separately.

For the self interaction, we have
\[
\lambda \varphi^{2(d-2)} = \lambda \left(\frac{2d}{\beta(d-2)} \right)^{\frac{2d}{d-2}} e^{\frac{\beta}{2(d-2)} \varphi} \rightarrow \frac{m^2}{\beta^2} e^{\frac{\beta}{2(d-2)} \varphi}. \quad (3.2)
\]
In the last step, to absorb the singular factor we renormalize the constant λ by defining $\frac{m^2}{\beta^2}$.

For the kinetic term, the limit is immediate.
\[
\frac{1}{2} g_{\mu
u} \partial_{\mu} \varphi \partial_{\nu} \varphi \rightarrow \frac{1}{2} g_{\mu
u} \partial_{\mu} \psi \partial_{\nu} \psi \quad (3.3)
\]
But the non-minimal term has no limit, so we expand the exponential.
\[
\frac{d-2}{8(d-1)} R \varphi^2 = \frac{d^2}{2\beta^2(d-1)(d-2)} R e^{\frac{\beta}{2(d-2)} \varphi} = \frac{d^2}{2\beta^2(d-1)(d-2)} R + \frac{d}{2\beta(d-1)} R \psi + \cdots \quad (3.4)
\]
In the $d = 2$ limit, (3.2) and (3.3) and the last term in (3.4) lead to the curved space Liouville Lagrange density (2.5). The first term in (3.4) gives a indeterminate result in the action.
\[
\int \sqrt{|g|} \ L_{d > 2} \ d \downarrow \frac{1}{2} \int \sqrt{|g|} \ L_{\text{Liouville}} + \frac{2}{\beta^2} \frac{\int \sqrt{|g|} R}{d-2} \quad (3.5)
\]
The indeterminacy arises from the fact that in two dimensions $\sqrt{|g|} R$ is the Euler density and its integral is just a surface term – effectively vanishing as far as bulk properties are concerned. So the last term in (3.5) gives $0/0$ at $d = 2$. Evidently, the Liouville model is regained when $0/0$ is interpreted as 0, but this leads to a loss of Weyl invariance. To maintain Weyl invariance on the limit $d \downarrow 2$, we must carefully evaluate the ψ-independent $\int \sqrt{|g|} R/(d-2)$ quantity – we need a kind of L’Hospital’s rule for dimensional reduction.

It turns out that a precise evaluation of $\int \sqrt{|g|} R/(d-2)$ in the limit $d \downarrow 2$ can be found, by reference to Weyl’s original ideas.

Before describing this, let us remark that the conformal and Weyl transformation rules for φ, (2.2) and (2.9), are correctly obtained by substituting (3.1) into the corresponding rules for ψ, (1.2) and (1.9b), and passing to limit $d \downarrow 2$. The same connection exists between the equations of motion (2.11) and (1.8). However, the reduction of the φ energy-momentum tensor (1.6) produces the ψ tensor (2.6) plus the term $\frac{1}{\beta^2} G_{\mu\nu}/(d-2)$, which is indeterminate at $d = 2$, since both the numerator and denominator vanish. Notice that taking the trace of this quantity, before passing to $d \downarrow 2$, leaves $\frac{1}{\beta^2} (1-d/2)R/(d-2) = -\frac{2}{\beta^2} R$, which cancels the non-vanishing trace of Liouville energy-momentum tensor. This again identifies the indeterminacy as the source of Weyl non-invariance.
4 Weyl's Weyl Invariance

To obtain a definite value for the behavior of \(\int \sqrt{|g|} \frac{R}{(d - 2)} \) in the limit of \(d \downarrow 2 \), we examine once again the Weyl transformation properties of the kinetic term for a scalar field theory in \(d \) dimensions. (The self-interaction is Weyl invariant, and needs no further discussion.) As already remarked, the kinetic term is not Weyl invariant, and this is compensated by the non-minimal interaction, to produce the Weyl invariant kinetic action.

\[
I_{\text{kinetic}} = \int \sqrt{|g|} \left(\frac{1}{2} g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi + \frac{d - 2}{8(d - 1)} R \varphi^2 \right)
\]

(4.1)

However, Weyl proposed a different mechanism for the construction of a Weyl invariant kinetic term: Rather than using a non-minimal interaction, he introduced a “gauge potential” \(W_\mu \) to absorb the non-variance. One verifies that

\[
I_{\text{Weyl}} = \int \sqrt{|g|} \left(\frac{1}{2} g^{\mu\nu} \left[\partial_\mu \varphi + (d - 2) W_\mu \varphi \right] \left[\partial_\nu \varphi + (d - 2) W_\nu \varphi \right] \right)
\]

(4.2)

is invariant against (1.9), provided \(W_\mu \) transforms as

\[
W_\mu \xrightarrow{\text{Weyl}} W_\mu - \frac{1}{2} \partial_\mu \sigma.
\]

(4.3)

We now demand that \(I_{\text{kinetic}} \) in (4.1) coincides with \(I_{\text{Weyl}} \) in (4.2). This is achieved when the following holds.

\[
\frac{R}{4(d - 1)} = D^\mu W_\mu + (d - 2) g^{\mu\nu} W_\mu W_\nu
\]

(4.4)

this curious Riccati-type equation is familiar in \(d = 2 \), where it states that \(\sqrt{|g|} R \) is a total derivative; a condition that is generalized by (4.4) to arbitrary \(d > 2 \).

With the help of (4.4) we evaluate, before passing to \(d \downarrow 2 \), the ambiguous contribution to the action – the last term in (3.5). We have from (4.4)

\[
\frac{\int \sqrt{|g|} R}{4(d - 1)(d - 2)} = \frac{1}{d - 2} \int \partial_\mu (\sqrt{|g|} W^\mu) + \int \sqrt{|g|} g^{\mu\nu} W_\mu W_\nu.
\]

(4.5)

The first term does not contribute, even when \(d \neq 2 \), because the integrand is a total derivative for all \(d \), while the remainder leaves

\[
\lim_{d \downarrow 2} \frac{\int \sqrt{|g|} R}{d - 2} = 4 \int \sqrt{|g|} g^{\mu\nu} w_\mu w_\nu
\]

(4.6)

where \(w_\mu \equiv W_\mu|_{d=2} \) satisfies, according to (3.4),

\[
4D^\mu w_\mu = R \quad \text{at } d = 2.
\]

(4.7)

[Note that (4.3) and (4.7) are consistent with the Weyl transformation formula for \(R \) at \(d = 2 \): \(R_{\text{Weyl}} \propto e^{-2\sigma} (R - 2D^2 \sigma) \).]
Thus to achieve Weyl invariance, the action should be supplemented by the metric-dependent, but ψ-independent term.

$$\triangle I = \frac{8}{\beta^2} \int \sqrt{|g|} \ g^{\mu\nu} w_\mu w_\nu$$ (4.8)

According to (4.3) and (4.7), the Weyl variation of $\triangle I$ is

$$\triangle I \rightarrow \triangle I + \frac{2}{\beta^2} \int \sqrt{|g|} \ (R \sigma + g^{\mu\nu} \partial_\mu \sigma \partial_\nu \sigma).$$ (4.9)

This cancels the Weyl non-invariant response of $I_{\text{Liouville}}$; see (2.10).

It remains to determine w_μ by solving (4.7). We are of course interested in a local solution, so that the Weyl-invariant Liouville action be local. Such a solution has been found [4]. It is

$$w^\mu = \frac{\varepsilon^{\mu\nu}}{4\sqrt{|g|}} \left(\frac{\varepsilon^{\alpha\beta}}{\sqrt{|g|}} \partial_\alpha g_{\beta\nu} + (\cosh \omega - 1) \partial_\nu \gamma \right).$$ (4.10)

The second term in the parenthesis is the canonical SL (2, R) 1-form, with

$$\cosh \omega = \frac{g^{++} - g^{--}}{\sqrt{|g|}} \quad \text{and} \quad e^\gamma = \sqrt{\frac{g^{++}}{g^{--}}}. \quad (4.11)$$

$[(+,-) \text{ refer to light-cone components } \frac{1}{\sqrt{2}}(x^0 \pm x^1)].$ This portion of w^μ is Weyl invariant, while the rest verifies the transformation law (4.3). The solution (4.10) is not unique. One may add to (4.10) any Weyl-invariant term of the form $\frac{\varepsilon^{\mu\nu}}{\sqrt{|g|}} \partial_\nu X$, since this will not contribute to (4.7).

Remarkably w^μ in (4.10) is not a contravariant vector, even though $D_\mu w^\mu$ is the scalar $R/4$. Consequently our Weyl invariant Liouville action $I_{\text{Liouville}} + \triangle I$ is not diffeomorphism invariant. Its $g^{\mu\nu}$ variation defines a traceless energy-momentum tensor, which however is not (covariantly) conserved.

We do not know what to make of this. Perhaps the above mentioned ambiguity can be used to remedy the diffeomorphism non-invariance, but we have not been able to do so. It would seem therefore that a local, curved-space Liouville action can be either diffeomorphism invariant or Weyl invariant, but not both.

If this conjecture is true, we are facing an “anomalous” situation in a classical field theory, which has previously been seen only in a quantized field theory. It is know that in two dimensions, the diffeomorphism invariant Lagrange density $\frac{1}{2\sqrt{|g|}} g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi$ is also invariant against Weyl transformations that transform the metric tensor, but not the scalar field φ \[i.e. Eq. (1.9) at $d = 2 \]. However, the effective quantum action that is obtained by performing the functional integral over φ, yields a metric expression which is either diffeomorphism invariant or Weyl invariant but not both [5].

If locality is abandoned, one may readily construct a covariant solution for w_μ in the form $\partial_\mu w$,

$$\omega_\mu = \partial_\mu \omega,$$ (4.12)

with w transforming under a Weyl transformation as [compare (1.8)]

$$w \rightarrow w - \frac{\sigma}{2}. \quad (4.13)$$
Evidently

\[D^2 w = R/4, \]

\[w(x) = \frac{1}{4} \int d^2 y \sqrt{|g(y)|} \frac{1}{D^2(x, y)} R(y), \]
(4.14)

where the Green’s function is defined by

\[D_x^2 \frac{1}{D^2(x, y)} = \frac{1}{\sqrt{|g|}} \delta^2(x - y). \]
(4.15)

Eq. (4.13) is verified by (4.14), and the addition to the Liouville action is just the Polyakov action [5].

\[\Delta I = \frac{1}{2\beta^2} \int \partial^2 x d^2 y \sqrt{|g(x)|} R(x) \frac{1}{D^2(x, y)} \sqrt{|g(y)|} R(y) \]
(4.16)

This then provides a diffeomorphism and Weyl invariant action for the Liouville theory, which however is non-local. Whether locality can be also achieved remains an open question.

References

[1] C. Callan, S. Coleman and R. Jackiw, “A New Improved Energy Momentum Tensor,” Ann. Phys. 59, 42 (1970).

[2] See e.g. B. Zumino, “Effective Lagrangians and Broken Symmetries,” in Lectures on Elementary Particles and Quantum Field Theory, S. Deser, M. Grisaru and H. Pendleton, eds. (MIT, Cambridge MA 1970).

[3] See e.g. A. Iorio, L. O’Raifeartaigh, I. Sachs and C. Wiesendanger, “Weyl Gauging and Conformal Invariance,” Nucl. Phys. B495, 433 (1997).

[4] S. Deser and R. Jackiw, “Energy-Momentum Tensor Improvements in Two Dimensions,” IJMP B 10, 1499 (1996).

[5] A. Polyakov, Gauge Fields and Strings, (Harwood, Chur, Switzerland, 1987).