Examples of certain kind of
minimal orbits of Hemann actions

Naoyuki Koike

Abstract
We give examples of certain kind of minimal orbits of Hermann actions and
discuss whether each of the examples is austere.

1 Introduction
Let \(N = G/K \) be a symmetric space of compact type equipped with the \(G \)-invariant
metric induced from the Killing form of the Lie algebra of \(G \). Let \(H \) be a symmetric
subgroup of \(G \) (i.e., \((\text{Fix} \tau)_0 \subset H \subset \text{Fix} \tau \) for some involution \(\tau \) of \(G \)),
where \(\text{Fix} \tau \) is the fixed point group of \(\tau \) and \((\text{Fix} \tau)_0 \) is the identity component of \(\text{Fix} \tau \). The
natural action of \(H \) on \(N \) is called a Hermann action (see [HPTT], [Kol]). Let \(\theta \) be
an involution of \(G \) with \((\text{Fix} \theta)_0 \subset K \subset \text{Fix} \theta \). According to [Co], when \(G \) is simple,
we may assume that \(\theta \circ \tau = \tau \circ \theta \) by replacing \(H \) to a suitable conjugate group of
\(H \) if necessary except for the following three Hermann action:

(i) \(\text{Sp}(p + q) \lhd SU(2p + 2q)/S(U(2p - 1) \times U(2q + 1)) \quad (p \geq q + 2) \),
(ii) \(\text{U}(p + q + 1) \lhd \text{Spin}(2p + 2q + 2)/\text{Spin}(2p + 1) \times \mathbb{Z}_2 \text{Spin}(2q + 1) \quad (p \geq q + 1) \),
(iii) \(\text{Spin}(3) \times \mathbb{Z}_2 \text{Spin}(5) \lhd \text{Spin}(8)/\mu(\text{Spin}(3) \times \mathbb{Z}_2 \text{Spin}(5)) \),

where \(\mu \) is the triality automorphism of \(\text{Spin}(8) \). Here we note that we remove
transitive Hermann actions.

Assumption. In the sequel, we assume that \(\theta \circ \tau = \tau \circ \theta \). Then the Hermann
action \(H \lhd G/K \) is said to be commutative.

Let \(\mathfrak{g}, \mathfrak{k} \) and \(\mathfrak{h} \) be the Lie algebras of \(G, K \) and \(H \), respectively. Denote the in-
volutions of \(\mathfrak{g} \) induced form \(\theta \) and \(\tau \) by the same symbols \(\theta \) and \(\tau \), respectively.
Set \(\mathfrak{p} := \text{Ker}(\theta + \text{id}) \) and \(\mathfrak{q} := \text{Ker}(\tau + \text{id}) \). The vector space \(\mathfrak{p} \) is identified with
\(T_e K(G/K) \), where \(e \) is the identity element of \(G \). Denote by \(B_\mathfrak{g} \) the Killing form of \(\mathfrak{g} \).
Give G/K the G-invariant metric arising from $B_g|_{xp}$. Take a maximal abelian subspace b of $p \cap q$. For each $\beta \in b^*$, we set $p_\beta := \{ X \in p \mid \text{ad}(b)^2(X) = -\beta(b)^2X \ (\forall b \in b) \}$ and $\Delta' := \{ \beta \in b^* \setminus \{ 0 \} \mid p_\beta \neq \{ 0 \} \}$. This set Δ' is a root system. Let $\Pi' = \{ \beta_1, \ldots, \beta_\gamma \}$ be the simple root system of the positive root system $\Delta'_+ \subseteq \Delta'$ under a lexicographic ordering of b^*. Set $\Delta^V_+ := \{ \beta \in \Delta'_+ \mid p_\beta \cap q \neq \{ 0 \} \}$ and $\Delta^H_+ := \{ \beta \in \Delta'_+ \mid p_\beta \cap h \neq \{ 0 \} \}$. Define a subset \tilde{C} of b by

$$\tilde{C} := \{ b \in b \mid 0 < \beta(b) < \pi (\forall \beta \in \Delta^V_+), \frac{\pi}{2} < \beta(b) < \pi (\forall \beta \in \Delta^H_+) \}.$$

The closure $\overline{\tilde{C}}$ of \tilde{C} is a simplicial complex. Set $C := \text{Exp}(\overline{\tilde{C}})$, where Exp is the exponential map of G/K at eK. Each principal H-orbit passes through only one point of C and each singular H-orbit passes through only one point of $\text{Exp}(\partial \overline{\tilde{C}})$. For each simplex σ of $\overline{\tilde{C}}$, only one minimal H-orbit through $\text{Exp}(\sigma)$ exists. See proofs of Theorems A and B in [K2] (also [I]) about this fact. For $\beta \in \Delta'_+$, we set $\beta = \sum_{i=1}^{r} n_i^\beta \beta_i$, $m_\beta := \dim p_\beta$, $m^V_\beta := \dim(p_\beta \cap q)$ and $m^H_\beta := \dim(p_\beta \cap h)$. Let Z_0 be a point of b. We consider the following two conditions for Z_0:

(I) \[\begin{array}{l}
\beta(Z_0) \equiv 0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{6} \pmod{\pi} \quad (\forall \beta \in \Delta^V_+) \quad \& \quad \beta \in \Delta^V_+ \text{ s.t. } \beta(Z_0) \equiv \frac{\pi}{6} \pmod{\pi} \\
\quad + \quad \sum_{\beta \in \Delta^V_+ \text{ s.t. } \beta(Z_0) \equiv \frac{\pi}{3} \pmod{\pi}} 3n_i^\beta m^V_\beta \\
\quad + \quad \sum_{\beta \in \Delta^V_+ \text{ s.t. } \beta(Z_0) \equiv \frac{2\pi}{3} \pmod{\pi}} n_i^\beta m^V_\beta \\
\quad + \quad \sum_{\beta \in \Delta^H_+ \text{ s.t. } \beta(Z_0) \equiv \frac{\pi}{6} \pmod{\pi}} 3n_i^\beta m^H_\beta \\
\quad + \quad \sum_{\beta \in \Delta^H_+ \text{ s.t. } \beta(Z_0) \equiv \frac{5\pi}{6} \pmod{\pi}} n_i^\beta m^H_\beta \\
\end{array} \]

and

(II) \[\begin{array}{l}
\beta(Z_0) \equiv 0, \frac{\pi}{4}, \frac{3\pi}{4} \pmod{\pi} \quad (\forall \beta \in \Delta'_+) \quad \& \quad \beta \in \Delta'_+ \text{ s.t. } \beta(Z_0) \equiv \frac{\pi}{4} \pmod{\pi} \\
\quad + \quad \sum_{\beta \in \Delta'_+ \text{ s.t. } \beta(Z_0) \equiv \frac{3\pi}{4} \pmod{\pi}} 3n_i^\beta m^H_\beta \\
\quad + \quad \sum_{\beta \in \Delta'_+ \text{ s.t. } \beta(Z_0) \equiv \frac{\pi}{6} \pmod{\pi}} n_i^\beta m^H_\beta \\
\quad + \quad \sum_{\beta \in \Delta'_+ \text{ s.t. } \beta(Z_0) \equiv \frac{5\pi}{6} \pmod{\pi}} 3n_i^\beta m^H_\beta \\
\quad + \quad \sum_{\beta \in \Delta'_+ \text{ s.t. } \beta(Z_0) \equiv \frac{7\pi}{6} \pmod{\pi}} n_i^\beta m^H_\beta \\
\end{array} \]

Denote by L the isotropy group of H at $\text{Exp} Z_0$. Denote by h (resp. l) the Lie algebra of H (resp. L) and B_g the Killing form of g. Also, denote by g_l the induced metric
on the submanifold M in G/K and ∇^\perp the normal connection of the submanifold M.

In the case where $(\mathfrak{h},\mathfrak{l})$ admits a reductive decomposition $\mathfrak{h} = \mathfrak{l} + \mathfrak{m}$, we denote the canonical connection of the principal L-bundle $\pi : H \to H/L(= M)$ with respect to this reductive decomposition by ω_m. Let $F^\perp(M)$ be the normal frame bundle of M. Define a map $\eta : H \to F^\perp(M)$ by $\eta(h) = h^* u_0$ ($h \in H$), where u_0 is an arbitrary fixed element of $F^\perp(M)_{\text{Exp} Z_0}$, where $F^\perp(M)_{\text{Exp} Z_0}$ is the fibre of $F^\perp(M)$ over $\text{Exp} Z_0$. This map η is an embedding. By identifying H with $\eta(H)$, we regard $\pi : H \to H/L(= M)$ as a subbundle of $F^\perp(M)$. Denote by the same symbol ω_m the connection of $F^\perp(M)$ induced from ω_m and ∇_{ω_m} the linear connection on $T^\perp M$ associated with ω_m.

In this paper, we prove the following results for the orbit $M = H(\text{Exp} Z_0)$ of the Hermann action $H \curvearrowright G/K$.

Theorem A. If Z_0 satisfies the condition (I) or (II), then the orbit M is a minimal submanifold satisfying the following conditions:

(i) $(\mathfrak{h},\mathfrak{l})$ admits a reductive decomposition $\mathfrak{h} = \mathfrak{l} + \mathfrak{m}$ such that $B_0(\mathfrak{l},\mathfrak{m}) = 0$,

(ii) $\nabla^\perp = \nabla_{\omega_m}$ holds.

Also, $\cap_{v \in T^\perp_M} \text{Ker } A_v$ is equal to

$$g_0*(\mathfrak{z}_{\mathfrak{p} \cap \mathfrak{h}}(\mathfrak{b})) + \sum_{\beta \in \Delta^V_+ \text{ s.t. } \beta(Z_0) \equiv \frac{2}{T} \text{ (mod } \pi)} g_0*(\mathfrak{p}_{\beta} \cap \mathfrak{q}) + \sum_{\beta \in \Delta^H_+ \text{ s.t. } \beta(Z_0) \equiv 0 \text{ (mod } \pi)} g_0*(\mathfrak{p}_{\beta} \cap \mathfrak{h}),$$

where $\mathfrak{z}_{\mathfrak{p} \cap \mathfrak{h}}(\mathfrak{b})$ is the centralizer of \mathfrak{b} in $\mathfrak{p} \cap \mathfrak{h}$.

Let M be a submanifold in a Riemannian manifold N. If, for any unit normal vector v, the spectrum of the shape operator A_v is invariant with respect to the (-1)-multiple (with considering the multiplicities), then M is called an **austere submanifold**. By using Theorem A, we can show the following fact.

Theorem B. Assume that Z_0 satisfies the condition (I) or (II). If $m^V_\beta = m^H_\beta$ for all $\beta \in \Delta^V_+$ and if Z_0 satisfies $\beta(Z_0) \equiv 0, \frac{\pi}{T}, \frac{2\pi}{3} \text{ (mod } \pi)$ for all $\beta \in \Delta^V_+$, then the orbit M is an austere submanifold satisfying the conditions (i) and (ii) in Theorem A.

Remark 1.1. The austere orbits of the commutative Hermann actions were classified in [I].

Also, we can show the following facts.
Theorem C. Assume that Z_0 satisfies the condition (I). In particular, if $\Delta^\prime H \cap \Delta^\prime_+ = \emptyset$, if $\beta(Z_0) \equiv 0$, $\frac{\pi}{2}$, $\frac{2\pi}{3}$ (mod π) for all $\beta \in \Delta^\prime_+$ and if $\beta(Z_0) \equiv \frac{2\pi}{3}$, $\frac{4\pi}{3}$ (mod π) for all $\beta \in \Delta^\prime_+$, then M is a minimal submanifold satisfying the conditions (i), (ii) in Theorem A. Furthermore, if the cohomogeneity of the H-action is equal to the rank of G/K, then $(g_1)_{eL} = \frac{1}{2}B_{g|\mathfrak{m} \times \mathfrak{m}}$ and $\bigcap_{v \in T^\perp_x M} \text{Ker} A_v = \{0\}$ hold.

Theorem D. Assume that Z_0 satisfies the condition (I). In particular, if $\Delta^\prime V \cap \Delta^\prime_+ \cap \Delta^\prime H = \emptyset$, if $\beta(Z_0) \equiv 0$, $\frac{\pi}{2}$, $\frac{2\pi}{3}$ (mod π) for all $\beta \in \Delta^\prime_+$ and if $\beta(Z_0) \equiv \frac{2\pi}{3}$, $\frac{4\pi}{3}$ (mod π) for all $\beta \in \Delta^\prime_+$, then M is a minimal submanifold satisfying the conditions (i), (ii) in Theorem A. Furthermore, if the cohomogeneity of the H-action is equal to the rank of G/K, then $(g_1)_{eL} = \frac{1}{2}B_{g|\mathfrak{m} \times \mathfrak{m}}$ and $\bigcap_{v \in T^\perp_x M} \text{Ker} A_v = \{0\}$ hold.

Theorem E. Assume that Z_0 satisfies the condition (II). In particular, if $\Delta^\prime V \cap \Delta^\prime_+ \cap \Delta^\prime H = \emptyset$, if $\beta(Z_0) \equiv 0$, $\frac{\pi}{2}$, $\frac{2\pi}{3}$ (mod π) for all $\beta \in \Delta^\prime_+$ and if $\beta(Z_0) \equiv \frac{2\pi}{3}$, $\frac{4\pi}{3}$ (mod π) for all $\beta \in \Delta^\prime_+$, then M is a minimal submanifold satisfying the conditions (i), (ii) in Theorem A. Furthermore, if the cohomogeneity of the H-action is equal to the rank of G/K, then $(g_1)_{eL} = \frac{1}{2}B_{g|\mathfrak{m} \times \mathfrak{m}}$ and $\bigcap_{v \in T^\perp_x M} \text{Ker} A_v = \{0\}$ hold.

Theorem F. If $\Delta^\prime V \cap \Delta^\prime_+ \cap \Delta^\prime H = \emptyset$, if $\beta(Z_0) \equiv 0$, $\frac{\pi}{2}$ (mod π) for all $\beta \in \Delta^\prime_+$, then M is a totally geodesic submanifold satisfying the conditions (i), (ii) in Theorem A. Furthermore, if the cohomogeneity of the H-action is equal to the rank of G/K, then $(g_1)_{eL} = B_{g|\mathfrak{m} \times \mathfrak{m}}$ holds.

Remark 1.2. (i) If $H = K$ then we have $\Delta^\prime H = \emptyset$ and hence $\Delta^\prime V \cap \Delta^\prime_+ \cap \Delta^\prime H = \emptyset$.

(ii) In Theorems C~F, when G is simple, there exists an inner automorphism ρ of G with $\rho(K) = H$ by Proposition 4.39 of [1].

In the final section, we give examples of Hermann actions $H \curvearrowright G/K$ and $Z_0 \in \mathfrak{b}$ as in Theorems B, C and F.

2 Basic notions and facts

In this section, we recall some basic notions and facts.

Shape operators of orbits of Hermann actions

Let $H \curvearrowright G/K$ be a Hermann action and θ (resp. τ) an involution of G with $(\text{Fix} \theta)_0 \subset K \subset \text{Fix} \theta$ (resp. $(\text{Fix} \tau)_0 \subset H \subset \text{Fix} \tau$). Assume that $\theta \circ \tau = \tau \circ \theta$.

4
Let $\mathfrak{k}, \mathfrak{p}, \mathfrak{h}, \mathfrak{q}, \mathfrak{b}, \mathfrak{p}_\beta, \Delta', \Delta^V_+ \text{ and } \Delta^H_+$ be as in Introduction. Fix $Z_0 \in \mathfrak{b}$. Set $M := H(\text{Exp} Z_0)$ and $g_0 := \text{exp} Z_0$, where Exp is the exponential map of G/K at eK and exp is the exponential map of G. Set

$$\Delta^V_{Z_0} := \{ \beta \in \Delta^V_+ \mid \beta(Z_0) \equiv 0 \mod \pi \}$$

and

$$\Delta^H_{Z_0} := \{ \beta \in \Delta^H_+ \mid \beta(Z_0) \equiv \frac{\pi}{2} \mod \pi \}.$$

Denote by A the shape tensor of M. The tangent space $T_{\text{Exp} Z_0} M$ of M at $\text{Exp} Z_0$ is given by

$$T_{\text{Exp} Z_0} M = g_0_\ast \left(\mathfrak{h} - \mathfrak{q} + \sum_{\beta \in \Delta^V_+ \setminus \Delta^V_{Z_0}} (\mathfrak{p}_\beta \cap \mathfrak{q}) + \sum_{\beta \in \Delta^H_+ \setminus \Delta^H_{Z_0}} (\mathfrak{p}_\beta \cap \mathfrak{h}) \right)$$

and hence

$$T_{\text{Exp} Z_0} ^\perp M = g_0_\ast \left(\mathfrak{b} + \sum_{\beta \in \Delta^V_0} (\mathfrak{p}_\beta \cap \mathfrak{q}) + \sum_{\beta \in \Delta^H_0} (\mathfrak{p}_\beta \cap \mathfrak{h}) \right).$$

Denote by L the isotropy group of the H-action at $\text{Exp} Z_0$. The slice representation $\rho_{Z_0}^S : L \to G(L(T_{\text{Exp} Z_0} ^\perp M)$ of the H-action at $\text{Exp} Z_0$ is given by $\rho_{Z_0}^S(h) = h_\ast T_{\text{Exp} Z_0} ^\perp M \ (h \in H_{Z_0})$. Then we have $\bigcup_{h \in H_{Z_0}} \rho_{Z_0}^S(h)(g_0_\ast \mathfrak{b}) = T_{\text{Exp} Z_0} ^\perp M$ and

$$A_{\rho_{Z_0}^S(h)(g_0_\ast \mathfrak{b})} \rho_{Z_0}^S(h)(g_0_\ast (\mathfrak{h} - \mathfrak{q} + \sum_{\beta \in \Delta^V_0} (\mathfrak{p}_\beta \cap \mathfrak{q}))) = 0,$$

$$A_{\rho_{Z_0}^S(h)(g_0_\ast \mathfrak{q})} \rho_{Z_0}^S(h)(g_0_\ast (\mathfrak{p}_\beta \cap \mathfrak{q})) = -\frac{\beta(v)}{\tan \beta(Z_0)} \text{id} \ (\beta \in \Delta^V_0 \setminus \Delta^V_{Z_0}),$$

$$A_{\rho_{Z_0}^S(h)(g_0_\ast \mathfrak{h})} \rho_{Z_0}^S(h)(g_0_\ast (\mathfrak{p}_\beta \cap \mathfrak{h})) = \beta(v) \tan \beta(Z_0) \text{id} \ (\beta \in \Delta^H_0 \setminus \Delta^H_{Z_0}),$$

where $h \in L$ and $v \in \mathfrak{b}$.

The canonical connection

Let H/L be a reductive homogeneous space and $\mathfrak{h} = \mathfrak{l} + \mathfrak{m}$ be a reductive decomposition (i.e., $[\mathfrak{l}, \mathfrak{m}] \subset \mathfrak{m}$), where \mathfrak{l} (resp. \mathfrak{l}) is the Lie algebra of H (resp. L). Also, let $\pi : P \to H/L$ be a principal G-bundle, where G is a Lie group. Assume that H acts on P as $\pi(h \cdot u) = h \cdot \pi(u)$ for any $u \in P$ and any $h \in H$. Then there uniquely exists a connection ω of P such that, for any $X \in \mathfrak{m}$ and any $u \in P$, $t \mapsto (\text{exp} tX)(u)$ is a horizontal curve with respect to ω, where exp is the exponential map of H. This connection ω is called the canonical connection of P associated with the reductive decomposition $\mathfrak{h} = \mathfrak{l} + \mathfrak{m}$.

5
3 Proof of Theorems A∼F

In this section, we shall first prove Theorems A∼F. We use the notations in Introduction. Let \(H \sim G/K \) be a Hermann action and \(Z_0 \) be an element of \(b \). Set \(M := H(\text{Exp}Z_0) \).

Proof of Theorem A. Denote by \(\mathcal{H} \) the mean curvature vector of \(M \). From (2.1) and (2.3), we have

\[
\langle \mathcal{H}_{\text{Exp}Z_0}, \rho_{Z_0}^S(h)(g_0v) \rangle = -\sum_{i=1}^r \sum_{\beta \in \Delta_+^{\mathcal{V}} \setminus \Delta_{Z_0}^{\mathcal{V}}} \frac{n_i^\beta m_{\beta}^{\mathcal{V}}}{\tan \beta(Z_0)} \beta_i(v) + \sum_{i=1}^r \sum_{\beta \in \Delta_+^{\mathcal{H}} \setminus \Delta_{Z_0}^{\mathcal{H}}} n_i^\beta m_{\beta}^{\mathcal{H}} \tan \beta(Z_0) \beta_i(v)
\]

for any \(v \in b \) and any \(h \in L \). Hence, \(\mathcal{H}_{\text{Exp}Z_0} \) vanishes if and only if the following relations hold:

\[
(3.1) \sum_{\beta \in \Delta_+^{\mathcal{V}} \setminus \Delta_{Z_0}^{\mathcal{V}}} \frac{n_i^\beta m_{\beta}^{\mathcal{V}}}{\tan \beta(Z_0)} = \sum_{\beta \in \Delta_+^{\mathcal{H}} \setminus \Delta_{Z_0}^{\mathcal{H}}} n_i^\beta m_{\beta}^{\mathcal{H}} \tan \beta(Z_0) \quad (i = 1, \ldots, r).
\]

Since \(Z_0 \) satisfies the condition (I) or (II) in Theorem A, (3.1) holds, that is, \(\mathcal{H}_{\text{Exp}Z_0} \) vanishes. Therefore \(M \) is minimal.

Next we shall show that there exists a reductive decomposition \(\mathfrak{h} = \mathfrak{l} + \mathfrak{m} \) with \(B_0(\mathfrak{l}, \mathfrak{m}) = 0 \). Easily we have

\[
(3.2) \mathfrak{l} = \mathfrak{z}_{\mathfrak{r} \cap \mathfrak{h}}(\mathfrak{b}) + \sum_{\beta \in \Delta_{Z_0}^{\mathcal{V}}} (\mathfrak{e}_\beta \cap \mathfrak{h}) + \sum_{\beta \in \Delta_{Z_0}^{\mathcal{H}}} (\mathfrak{p}_\beta \cap \mathfrak{h}).
\]

Define a subspace \(\mathfrak{m} \) of \(\mathfrak{h} \) by

\[
(3.3) \mathfrak{m} := \mathfrak{z}_{\mathfrak{p} \cap \mathfrak{h}}(\mathfrak{b}) + \sum_{\beta \in \Delta_{Z_0}^{\mathcal{V}}} (\mathfrak{e}_\beta \cap \mathfrak{h}) + \sum_{\beta \in \Delta_{Z_0}^{\mathcal{H}}} (\mathfrak{p}_\beta \cap \mathfrak{h}).
\]

Easily we can show that \(\mathfrak{h} = \mathfrak{l} + \mathfrak{m} \) is a reductive decomposition and that \(B_0(\mathfrak{l}, \mathfrak{m}) = 0 \).

Next we shall show that \(\nabla_{\omega^m} = \nabla^\perp \). Take \(v \in \mathfrak{b} \subset g_0^{-1} T_{\text{Exp}Z_0}M \). Set \(g_s := \exp(1-s)Z_0 \). Let \(Z : [0,1] \to \mathfrak{b} \) be a \(C^\infty \)-curve such that \(Z(0) = Z_0 \) and that \(Z((0,1]) \) is contained in a fundamental domain of the Coxeter group associated with the principal \(H \)-orbit at an intersection point of the orbit and \(\mathfrak{b} \). Set \(M_s := H(\text{Exp}Z(1-s)) \ (0 \leq s \leq 1) \). Denote by \(A^s \) the shape tensor of \(M_s \) and \(\nabla \) the
Levi-Civita connection of G/K. Let \tilde{v}^s be the H-equivariant normal vector field of M_s ($0 \leq s < 1$) arising from $g_{s*}v$. Since M_s ($0 \leq s < 1$) is a principal orbit of a Hermann (hence hyperpolar) action, \tilde{v}^s is well-defined and it is a parallel normal vector field with respect to ∇^\perp. Take $X \in \mathfrak{t}_\beta \cap \mathfrak{h} (\subset \mathfrak{m})$ ($\beta \in \Delta^H \setminus \Delta^H_{Z_0}$). Then, by using (2.3), we have

$$\tilde{\nabla}_{X_{\exp Z(1-s)}}^s = -A_\beta^s X^*_{\exp Z(1-s)} = \frac{\beta(v)}{\tan \beta(Z_0)} X^*_{\exp Z(1-s)},$$

and hence

$$\tilde{\nabla}_{X^*_{\exp Z_0}} (\exp tX)_{*\exp(Z_0)}(v) = \lim_{s \to 1-0} \tilde{\nabla}_{X^*_{\exp Z(1-s)}}^s = \frac{\beta(v)}{\tan \beta(Z_0)} X^*_{\exp Z_0} \in T_{\exp Z_0}M.$$

Hence we obtain $\nabla^\perp_{X^*_{\exp Z_0}} (\exp tX)_{*\exp(Z_0)}(v) = 0$. Take $Y \in \mathfrak{p}_\beta \cap \mathfrak{h} (\subset \mathfrak{m})$ ($\beta \in \Delta^H \setminus \Delta^H_{Z_0}$). Then, by using (2.3), we have

$$\tilde{\nabla}_{Y^*_{\exp Z(1-s)}}^s = -A_\beta^s Y^*_{\exp Z(1-s)} = -\beta(v) \tan \beta(Z_0) Y^*_{\exp Z(1-s)},$$

and hence

$$\tilde{\nabla}_{Y^*_{\exp Z_0}} (\exp tY)_{*\exp Z_0}(v) = \lim_{s \to 1-0} \tilde{\nabla}_{Y^*_{\exp Z(1-s)}}^s = -\beta(v) \tan \beta(Z_0) Y^*_{\exp Z_0} \in T_{\exp Z_0}M.$$

Hence we obtain $\nabla^\perp_{Y^*_{\exp Z_0}} (\exp tY)_{*\exp(Z_0)}(v) = 0$. Therefore, it follows from the arbitrariness of X, Y and β that $t \mapsto (\exp t\hat{X})_{*\exp Z_0}(v)$ is ∇^\perp-parallel along $t \mapsto (\exp t\hat{X})(\exp Z_0)$ for any $\hat{X} \in \mathfrak{m}$. Take any $h \in L$. Similarly, we can show that $t \mapsto (\exp t\hat{X})_{*\exp Z_0}(\rho_{Z_0}^S(h)(g_{0*}v))$ is ∇^\perp-parallel along $t \mapsto (\exp t\hat{X})(\exp Z_0)$ for any $\hat{X} \in \mathfrak{m}$. Note that this fact has been showed in [IST] in different method. On the other hand, it follows from the definition of ω that $t \mapsto (\exp t\hat{X})_{*\exp Z_0}(\rho_{Z_0}^S(h)(g_{0*}v))$ is ∇^ω-parallel along $t \mapsto (\exp t\hat{X})(\exp Z_0)$ for any $\hat{X} \in \mathfrak{m}$. Therefore we obtain $\nabla^\perp = \nabla^\omega$. The statement for $v \in T^*_L M$ follows from (2.3) directly.

$q.e.d.$

Next we prove Theorem B.

Proof of Theorem B. This statement of this theorem follows from (2.3) directly.

$q.e.d.$
Next we prove Theorems C~F.

Proof of Theorems C~F. Define a diffeomorphism \(\psi : H/L \to M \) by \(\psi(hL) := h \cdot \exp Z_0 \) \((h \in H)\). Next we shall show that \((\psi^* g_t)_{eL} = cB_g|_{m \times m}\), where

\[
\begin{align*}
 c &= \begin{cases}
 3 & \text{(in case of Theorems C)} \\
 1 & \text{(in case of Theorem D)} \\
 \frac{7}{6} & \text{(in case of Theorem E)} \\
 \frac{11}{6} & \text{(in case of Theorem F)}.
 \end{cases}
\end{align*}
\]

In the sequel, we omit the notation \(\psi^* \). For each \(X \in \mathfrak{m} = T_{eL}(H/L) = T_{\exp Z_0} M \), denote by \(X^* \) the Killing field on \(M \) associated with \(X \), that is, \(X_p^* := \frac{d}{dt} |_{t=0} (\exp tX)(p) \) \((p \in M)\). From the definition of \(\psi \), we have \(\psi_{eL} X = X^*_{\exp Z_0} \). Take \(S_{\beta_1} \in f_{\beta_1} \cap \mathfrak{h} \) \((\beta_1 \in \Delta_+^H \setminus \Delta_{Z_0}^V)\) and \(\hat{S}_{\beta_2} \in p_{\beta_2} \cap \mathfrak{h} \) \((\beta_2 \in \Delta_+^V \setminus \Delta_{Z_0}^V)\). Let \(T_{\beta_1} \) be the element of \(p_{\beta_1} \cap \mathfrak{g} \) such that \(\text{ad}(b)(S_{\beta_1}) = \beta_1(b)T_{\beta_1} \) for any \(b \in \mathfrak{g} \). Then we have

\[
(3.4) \quad \psi_{eL}(S_{\beta_1}) = (S_{\beta_1}^*)_{\exp Z_0} = -\sin \beta_1(Z_0)(\exp Z_0)_*(T_{\beta_1})
\]

and

\[
(3.5) \quad \psi_{eL}(\hat{S}_{\beta_2}) = (\hat{S}_{\beta_2}^*)_{\exp Z_0} = \cos \beta_2(Z_0)(\exp Z_0)_*(\hat{T}_{\beta_2}).
\]

Hence, since \(H \) and \(Z_0 \) is as in Theorems C~F, we have \((g_t)_{eL}(S_{\beta_1}, S_{\beta_1}) = cB_g(S_{\beta_1}, S_{\beta_1}) \) and \((g_t)_{eL}(\hat{S}_{\beta_2}, \hat{S}_{\beta_2}) = cB_g(\hat{S}_{\beta_2}, \hat{S}_{\beta_2}) \). If the cohomogeneity of the \(H \)-action is equal to the rank of \(G/K \), then we have \(\text{Ker } A_v = \emptyset \). Therefore we obtain \((g_t)_{eL} = cB_g|_{m \times m}\). Also, in Theorems C~E, \(\cap_{v \in T_{\beta_1}^H M} \text{Ker } A_v = \{0\} \) follows from the statement for \(\cap_{v \in T_{\beta_1}^H M} \text{Ker } A_v \) in Theorem A directly. q.e.d.

4 Examples

In this section, we give examples of a Hermann action \(H \curvearrowright G/K \) and \(Z_0 \in \bar{C} \) as in Theorems B, C and F. We use the notations as in Introduction.

Example 1. We consider the isotropy action of \(SU(3n+3)/SO(3n+3) \). Then we have \(\Delta_+ = \Delta'_+ = \Delta''_+ \) (which is of \((a_{3n+2}) \)-type) and \(\Delta'_+ = 0 \). Let \(\Pi = \{\beta_1, \ldots, \beta_{3n+2}\} \) be a simple root system of \(\Delta'_+ \), where we order \(\beta_1, \ldots, \beta_{3n+2} \) as the Dynkin diagram of \(\Delta'_+ \) is as in Fig. 1. \(\Delta'_+ = \{\beta_i + \cdots + \beta_j | 1 \leq i, j \leq 3n+2\} \). For any \(\beta \in \Delta'_+ \), we have \(m_{\beta} = 1 \). Let \(Z_0 \) be the point of \(\mathfrak{b} \) defined by \(\beta_{n+1}(Z_0) = \beta_{2n+2}(Z_0) = \frac{\pi}{2} \) and \(\beta_i(Z_0) = 0 \) \((i \in \{1, \ldots, 3n+2\} \setminus \{n+1, 2n+2\})\). Clearly we have \(m'_{\beta} = 1 \),
$m^H_\beta = 0$ and $\beta(Z_0) \equiv 0, \frac{\pi}{3}$ or $\frac{2\pi}{3}$ (mod π) for any $\beta \in \Delta'_+$. For simplicity, set $\beta_{ij} := \beta_i + \cdots + \beta_j$ ($1 \leq i \leq j \leq 3n + 2$). Easily we can show

\[
\{\beta \in \Delta^V_+ \mid \beta(Z_0) \equiv \frac{\pi}{3} \text{ (mod } \pi)\} \\
= \{\beta_{ij} \mid 1 \leq i \leq n + 1 \leq j < 2n + 2, \text{ or } n + 1 < i \leq 2n + 2 \leq j \leq 3n + 2\}
\]

and

\[
\{\beta \in \Delta^V_+ \mid \beta(Z_0) \equiv \frac{2\pi}{3} \text{ (mod } \pi)\} \\
= \{\beta_{ij} \mid 1 \leq i \leq n + 1, 2n + 2 \leq j \leq 3n + 2\}.
\]

From these facts, it follows that the condition (I) holds. Thus Z_0 is as in the statement of Theorem C. Also, it is easy to show that M is not austere.

\[
\begin{array}{c}
\beta_1 & \beta_2 \\
\beta_{n+1} & \beta_{n+2}
\end{array}
\]

Figure 1.

Example 2. We consider the isotropy action of $SU(6n+6)/Sp(3n+3)$. Then we have $\Delta_+ = \Delta'_+ = \Delta^V_+$ (which is of (a_{3n+2})-type) and $\Delta^H_+ = \emptyset$. Let $\Pi = \{\beta_1, \cdots, \beta_{3n+2}\}$ be a simple root system of Δ'_+, where we order $\beta_1, \cdots, \beta_{3n+2}$ as above. We have $m_\beta = 4$ for any $\beta \in \Delta'_+$. Let Z_0 be the point of the closure of b defined by $\beta_{n+1}(Z_0) = \beta_{2n+2}(Z_0) = \frac{\pi}{3}$ and $\beta_i(Z_0) = 0$ ($i \in \{1, \cdots, 3n + 2\} \setminus \{n + 1, 2n + 2\}$).

Clearly we have $m^V_\beta = 4$, $m^H_\beta = 0$ and $\beta(Z_0) \equiv 0, \frac{\pi}{3}$ or $\frac{2\pi}{3}$ (mod π) for any $\beta \in \Delta'_+$. For simplicity, set $\beta_{ij} := \beta_i + \cdots + \beta_j$ ($1 \leq i \leq j \leq 3n + 2$). Easily we can show

\[
\{\beta \in \Delta^V_+ \mid \beta(Z_0) \equiv \frac{\pi}{3} \text{ (mod } \pi)\} \\
= \{\beta_{ij} \mid 1 \leq i \leq n + 1 \leq j < 2n + 2, \text{ or } n + 1 < i \leq 2n + 2 \leq j \leq 3n + 2\}
\]

and

\[
\{\beta \in \Delta^V_+ \mid \beta(Z_0) \equiv \frac{2\pi}{3} \text{ (mod } \pi)\} \\
= \{\beta_{ij} \mid 1 \leq i \leq n + 1, 2n + 2 \leq j \leq 3n + 2\}.
\]

From these facts, it follows that the condition (I) holds. Thus Z_0 is as in the statement of Theorem C. Also, it is easy to show that M is not austere.

Example 3. We consider the isotropy action of $SU(3)/S(U(1) \times U(2))$ (2-dimensional complex projective space). Then we have $\Delta_+ = \Delta'_+ = \Delta^V_+ = \{\beta, 2\beta\}$ and $\Delta^H_+ = \emptyset$, $m_\beta = 2$ and $m_{2\beta} = 1$. Let Z_0 be the point of b defined by $\beta(Z_0) = \frac{\pi}{3}$. Clearly Z_0 satisfies the condition (I). Thus Z_0 is as in the statement of Theorem C. Also, it is easy to show that M is not austere.
Example 4. We consider the isotropy action of $Sp(3n + 2)/U(3n + 2)$. Then we have $\Delta_+ = \Delta'_+ = \Delta^V_+$ (which is of $(3n+2)$-type) and $\Delta^H_+ = 0$. Let $\Pi = \{\beta_1, \cdots, \beta_{3n+2}\}$ be a simple root system of Δ'_+, where we order $\beta_1, \cdots, \beta_{3n+2}$ as the Dynkin diagram of Δ'_+ is as in Fig. 2. We have $m_\beta = 1$ for any $\beta \in \Delta'_+$. Let Z_0 be the point of b defined by $\beta_{n+1}(Z_0) = \beta_{2n+2}(Z_0) = \beta_{3n+2}(Z_0) = \frac{\pi}{3}$ and $\beta_i(Z_0) = 0$ ($i \in \{1, \cdots, 3n + 2\} \setminus \{n + 1, 2n + 2, 3n + 2\}$). Clearly we have $m_{\beta}^V = 1$, $m_{\beta}^H = 0$ and $\beta(Z_0) \equiv 0, \frac{\pi}{3}$ or $\frac{2\pi}{3}$ (mod π) for any $\beta \in \Delta'_+$. For simplicity, set $\beta_{ij} := \beta_i + \cdots + \beta_j$ ($1 \leq i \leq j \leq 3n + 2$), $\hat{\beta}_i := 2(\beta_i + \cdots + \beta_{3n+1}) + \beta_{3n+2}$ and $\hat{\beta}_{ij} := \beta_i + \cdots + \beta_{j-1} + 2(\beta_j + \cdots + \beta_{3n+1}) + \beta_{3n+2}$ ($1 \leq i < j \leq 3n + 1$). Easily we can show

$\{\beta \in \Delta^V_+ | \beta(Z_0) \equiv \frac{\pi}{3} \pmod{\pi}\}$

$= \{\beta_{ij} | 1 \leq i \leq n + 1 \leq j < 2n + 2 \text{ or } n + 1 < i \leq 2n + 2 \leq j < 3n + 2$

or $2n + 3 \leq i \leq j = 3n + 2\}$

$\cup \{\hat{\beta}_i | 2n + 3 \leq i \leq 3n + 1\}$

$\cup \{\hat{\beta}_{ij} | 2n + 3 \leq i < j \leq 3n + 1 \text{ or } 1 \leq i < n + 1 \leq j \leq 2n + 2\}$

and

$\{\beta \in \Delta^V_+ | \beta(Z_0) \equiv \frac{2\pi}{3} \pmod{\pi}\}$

$= \{\beta_{ij} | "1 \leq i \leq n + 1 \& 2n + 2 \leq j \leq 3n + 1" \text{ or } "n + 2 \leq i \leq 2n + 2 \& j = 3n + 2"\}$

$\cup \{\hat{\beta}_i | 1 \leq i \leq n + 1\}$

$\cup \{\hat{\beta}_{ij} | 1 \leq i < j \leq n + 1 \text{ or } n + 2 \leq i \leq 2n + 2 < j \leq 3n + 1\}$.

From these facts, it follows that the condition (I) holds. Thus Z_0 is as in the statement of Theorem C. Also, it is easy to show that M is not austere.

From Table 1 and 2 in [K2], we shall list up Hermann actions of cohomogeneity two on irreducible symmetric spaces of compact type and rank two satisfying

(i) $m_\beta^V = m_\beta^H$ (for $\beta \in \Delta'_+$) or (ii) $\Delta^V_+ \cap \Delta^H_+ = \emptyset$.

All of such Hermann actions satisfying (i) are as in Table 1. In Table 1, β means

$m_\beta^V = m_\beta^H = m$. All of such Hermann actions satisfying (ii) are the dual actions (see Table 3) of Hermann actions on symmetric spaces of non-compact type as in
Table 2. In Table 3, \(\beta \) means \(m_\beta^V \) or \(m_\beta^H \) is equal to \(m \). Since the Hermann actions in Table 2 are commutative, so are also the Hermann actions in Table 3. Also, since \(\Delta^V_+ \cap \Delta^H_+ = \emptyset \) as in Table 3 and \(G/K \) is irreducible, there exists an inner automorphism \(\rho \) of \(G \) with \(\rho(K) = H \) by Proposition 4.39 in [I]. According to the proof of the proposition, \(\rho \) is given explicitly by \(\rho = \text{Ad}_G(\exp b) \), where \(\text{Ad}_G \) is the adjoint representation of \(G \) and \(b \) is the element of \(b \) satisfying

\[
(\beta_1(b), \beta_2(b)) = \begin{cases}
(0, \frac{\pi}{2}) & \text{(in case of (1),(2),(3),(4),(6),(9),(10),(11))} \\
(\frac{\pi}{2}, 0) & \text{(in case of (5),(7))} \\
(\frac{\pi}{2}, \frac{\pi}{2}) & \text{(in case of (8)).}
\end{cases}
\]

\(H \wr G/K \)	\(\Delta^V_+ = \Delta^H_+ \)
\(SO(6) \wr SU(6)/Sp(3) \)	\(\{\beta_1, \beta_2, \beta_1 + \beta_2\} \)
\(SO(2)^2 \times SO(3)^2 \wr (SO(5) \times SO(5))/SO(5) \)	\(\{\beta_1, \beta_2, \beta_1 + \beta_2, 2\beta_1 + \beta_2\} \)
\(SU(2)^4 \wr (Sp(2) \times Sp(2))/Sp(2) \)	\(\{\beta_1, \beta_2, \beta_1 + \beta_2, 2\beta_1 + \beta_2\} \)
\(Sp(4) \wr E_6/F_4 \)	\(\{\beta_1, \beta_2, \beta_1 + \beta_2\} \)
\(SU(2)^4 \wr (G_2 \times G_2)/G_2 \)	\(\{\beta_1, \beta_2, \beta_1 + \beta_2, 2\beta_1 + \beta_2, 3\beta_1 + \beta_2, 3\beta_1 + 2\beta_2\} \)

Table 1.

\(\)	\(\)
(1)	\(SO_0(1,2) \wr SL(3,\mathbb{R})/SO(3) \)
(2)	\(Sp(1,2) \wr SU^*(6)/Sp(3) \)
(3)	\(U(2,3) \wr SO^*(10)/U(5) \)
(4)	\(SO_0(2,3) \wr SO(5,\mathbb{C})/SO(5) \)
(5)	\(U(1,1) \wr Sp(2,\mathbb{R})/U(2) \)
(6)	\(Sp(2,\mathbb{R}) \wr Sp(2,\mathbb{C})/Sp(2) \)
(7)	\(Sp(1,1) \wr Sp(2,\mathbb{C})/Sp(2) \)
(8)	\(SO^*(10) \cdot U(1) \wr E_6^{-14}/Spin(10) \cdot U(1) \)
(9)	\(F_4^{\cdot 20} \wr E_6^{\cdot 26}/F_4 \)
(10)	\(SL(2,\mathbb{R}) \times SL(2,\mathbb{R}) \wr G_2^2/\text{SO}(4) \)
(11)	\(G_2^2 \wr G_2^2/\text{SO}(4) \)

Table 2.
Denote by \(a \) (non-totally geodesic) austere submanifold.

Proposition 4.1. Let \(H \ltimes G/K \) be a Hermann action in Table 1 and \(Z_0 \) an element of \(\mathfrak{b} \) satisfying \((\beta_1(Z_0),\beta_2(Z_0)) = (0, \frac{\pi}{4}), \left(\frac{\pi}{4}, 0\right) \) or \(\left(\frac{\pi}{4}, \frac{\pi}{4}\right) \). Then \(M = H(\exp Z_0) \) is a (non-totally geodesic) austere submanifold.

Denote by \(Z_{(a,b)} \) the element \(Z \) of \(\mathfrak{b} \) satisfying \((\beta_1(Z),\beta_2(Z)) = (a,b)\). In the case where \(\triangle' \) is of type \((a_2) \), three points of \(\mathfrak{b} \) as in Proposition 4.1 are as in Figure 3.

\[
\begin{array}{|c|c|c|}
\hline
& H \ltimes G/K & \triangle' \ltimes V \\
\hline
(1) & SO_0(1,2) \ltimes SU(3)/SO(3) & \{\beta_1\} \quad \{\beta_2, \beta_1 + \beta_2\} \\
\hline
(2) & Sp(1,2) \ltimes SU(6)/Sp(3) & \{\beta_1\} \quad \{\beta_2, \beta_1 + \beta_2\} \\
\hline
(3) & U(2,3) \ltimes SO(10)/U(5) & \{\beta_1, 2\beta_1, 2\beta_1 + 2\beta_2\} \quad \{\beta_2, \beta_1 + \beta_2, 2\beta_1 + \beta_2\} \\
\hline
(4) & SO_0(2,3) \ltimes (SO(5) \times SO(5))/SO(5) & \{\beta_1\} \quad \{\beta_2, \beta_1 + \beta_2, 2\beta_1 + \beta_2\} \\
\hline
(5) & U(1,1) \ltimes Sp(2)/U(2) & \{\beta_2, 2\beta_1 + \beta_2\} \quad \{\beta_1, \beta_1 + \beta_2\} \\
\hline
(6) & Sp(2,\mathbb{R}) \ltimes (Sp(2) \times Sp(2))/Sp(2) & \{\beta_1\} \quad \{\beta_2, \beta_1 + \beta_2, 2\beta_1 + \beta_2\} \\
\hline
(7) & Sp(1,1) \ltimes (Sp(2) \times Sp(2))/Sp(2) & \{\beta_2, 2\beta_1 + \beta_2\} \quad \{\beta_1, \beta_1 + \beta_2\} \\
\hline
(8) & (SO(10) \cdot U(1)) \ltimes E_6/Spin(10) \cdot U(1) & \{\beta_1, 2\beta_1, 2\beta_1 + 2\beta_2\} \quad \{\beta_2, \beta_1 + \beta_2, 2\beta_1 + \beta_2\} \\
\hline
(9) & (F_4^{-20})^* \ltimes E_6/F_4 & \{\beta_1\} \quad \{\beta_2, \beta_1 + \beta_2\} \\
\hline
(10) & (SL(2,\mathbb{R}) \times SL(2,\mathbb{R}))^* \ltimes G_2/\mathbb{S}O(4) & \{\beta_1, 3\beta_1 + 2\beta_2\} \quad \{\beta_2, \beta_1 + \beta_2, 2\beta_1 + \beta_2, 3\beta_1 + \beta_2\} \\
\hline
(11) & (G_2^2)^* \ltimes (G_2 \times G_2)/G_2 & \{\beta_1, 3\beta_1 + 2\beta_2\} \quad \{\beta_2, \beta_1 + \beta_2, 2\beta_1 + \beta_2, 3\beta_1 + \beta_2\} \\
\hline
\end{array}
\]

Table 3.

According to Theorem B, we obtain the following fact.

Proposition 4.1. Let \(H \ltimes G/K \) be a Hermann action in Table 1 and \(Z_0 \) an element of \(\mathfrak{b} \) satisfying \((\beta_1(Z_0),\beta_2(Z_0)) = (0, \frac{\pi}{4}), \left(\frac{\pi}{4}, 0\right) \) or \(\left(\frac{\pi}{4}, \frac{\pi}{4}\right) \). Then \(M = H(\exp Z_0) \) is a (non-totally geodesic) austere submanifold.

Denote by \(Z_{(a,b)} \) the element \(Z \) of \(\mathfrak{b} \) satisfying \((\beta_1(Z),\beta_2(Z)) = (a,b)\). In the case where \(\triangle' \) is of type \((a_2)\), three points of \(\mathfrak{b} \) as in Proposition 4.1 are as in Figure 3.
Proposition 4.2. Let $H \acts G/K$ be a Hermann action in Table 3 and Z_0 an element of the closure of $\tilde{C}(\subset \mathfrak{b})$ such that $H(\text{Exp} \ Z_0)$ is minimal. Then, as in Tables 4 ~ 13, Z_0 satisfies the condition in Theorem C or F, or it does not satisfy the conditions in Theorems C~F.

Remark 4.1. There exist exactly seven elements Z_0 of the closure of $\tilde{C}(\subset \mathfrak{b})$ such that $H(\text{Exp} \ Z_0)$ is minimal.

(a, b)	$Z_{(a,b)}$	$M = SO_0(1, 2)^* (\text{Exp} \ Z_{(a,b)})$	$\dim M$
$(0, -\frac{\pi}{2})$	as in Theorem F	one-point set	0
$(0, \frac{\pi}{2})$	as in Theorem F	one-point set	0
$(\pi, -\frac{\pi}{2})$	as in Theorem F	one-point set	0
$(0, 0)$	as in Theorem F	totally geodesic	2
$(\frac{\pi}{2}, 0)$	as in Theorem F	totally geodesic	2
$(\frac{\pi}{2}, -\frac{\pi}{2})$	as in Theorem F	totally geodesic	2
$(\pi, \frac{\pi}{2})$	as in Theorem C	not austere	3

$SO_0(1, 2)^* \acts SU(3)/SO(3)$
$(\dim SU(3)/SO(3) = 5)$

Table 4.

The positions of Z_0’s in Table 4 are as in Figure 4.

![Figure 4](image-url)
\[
Z_{(a,b)}(a,b) = \text{Sp}(1,2)^*(\text{Exp} Z_{(a,b)}) \\quad \text{dim} \ M
\]

\[
\begin{array}{|c|c|c|c|}
\hline
(a, b) & Z_{(a,b)} & M = \text{Sp}(1,2)^*(\text{Exp} Z_{(a,b)}) & \text{dim} \ M \\
\hline
(0, -\frac{\pi}{4}) & \text{as in Theorem F} & \text{one-point set} & 0 \\
(0, \frac{\pi}{4}) & \text{as in Theorem F} & \text{one-point set} & 0 \\
(\pi, -\frac{\pi}{4}) & \text{as in Theorem F} & \text{one-point set} & 0 \\
(0,0) & \text{as in Theorem F} & \text{totally geodesic} & 8 \\
\left(\frac{\pi}{2}, 0\right) & \text{as in Theorem F} & \text{totally geodesic} & 8 \\
\left(\frac{\pi}{2}, -\frac{\pi}{2}\right) & \text{as in Theorem F} & \text{totally geodesic} & 8 \\
\left(\frac{\pi}{4}, -\frac{\pi}{4}\right) & \text{as in Theorem C} & \text{not austere} & 12 \\
\hline
\end{array}
\]

\[
\text{Sp}(1,2)^* \retimes SU(6)/\text{Sp}(3) \\
(\text{dim} \ SU(6)/\text{Sp}(3) = 14)
\]

Table 5.

The positions of \(Z_0\)'s in Table 5 are as in Figure 4.

\[
\begin{array}{|c|c|c|c|}
\hline
(a, b) & Z_{(a,b)} & M = U(2,3)^*(\text{Exp} Z_{(a,b)}) & \text{dim} \ M \\
\hline
(0, \frac{\pi}{2}) & \text{as in Theorem F} & \text{one-point set} & 0 \\
(0,0) & \text{as in Theorem F} & \text{totally geodesic} & 12 \\
\left(\frac{\pi}{2}, -\frac{\pi}{2}\right) & \text{as in Theorem F} & \text{totally geodesic} & 8 \\
\left(\arctan\sqrt{\frac{7}{3}}, \arctan\frac{\pi}{2}\right) & \text{not as in Theorems C-F} & \text{not austere} & 14 \\
\left(0, \arctan\frac{1}{\sqrt{13}}\right) & \text{not as in Theorems C-F} & \text{not austere} & 13 \\
\left(\arctan\frac{\pi}{2}, -\arctan\frac{\pi}{3}\right) & \text{not as in Theorems C-F} & \text{not austere} & 17 \\
\left(a_0, b_0\right) & \text{not as in Theorems C-F} & \text{not austere} & 18 \\
\hline
\end{array}
\]

\[
U(2,3)^* \retimes SO(10)/U(5) \\
(\text{dim} \ SO(10)/U(5) = 20)
\]

Table 6.

The positions of \(Z_0\)'s in Table 6 are as in Figure 5. Also, the numbers \(a_0\) and \(b_0\) in Table 6 are real numbers such that \(a_0, b_0 \not\equiv \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{4}, \frac{3\pi}{4} \pmod{\pi}\).
\[(2\beta_1 + \beta_2)^{-1}(\frac{\pi}{2}) \]

\[Z_{(\frac{\pi}{2}, -\frac{\pi}{2})} \]

\[Z_{(\arctan \sqrt{\frac{3}{2}}, -\arctan \sqrt{\frac{3}{2}})} \]

\[(\beta_1)^{-1}(0) \quad Z_{(0,0)} \]

\[(\beta_1 + \beta_2)^{-1}(0) \quad Z_{(0, \arctan \frac{1}{\sqrt{13}})} \]

Figure 5.

\((a, b)\)	\(Z_{(a, b)}\)	\(M = SO_0(2, 3)^*(\text{Exp } Z_{(a, b)})\)	\(\dim M\)
\((0, -\frac{a}{\pi})\)	as in Theorem F	one-point set	0
\((0, \frac{a}{\pi})\)	as in Theorem F	one-point set	0
\((\frac{\pi}{2}, -\frac{\pi}{2})\)	as in Theorem F	totally geodesic	4
\((0,0)\)	as in Theorem F	totally geodesic	6
\((\arctan \sqrt{\frac{3}{2}}, -\frac{\pi}{2})\)	not as in Theorems C~F	not austere	6
\((\arctan \sqrt{\frac{3}{2}}, \frac{a}{\pi} - 2 \arctan \sqrt{3})\)	not as in Theorems C~F	not austere	6
\((\arctan \frac{1}{\sqrt{13}}, -\arctan \frac{1}{\sqrt{13}})\)	not as in Theorems C~F	not austere	8

\(SO_0(2, 3)^* \vartriangleleft (SO(5) \times SO(5))/SO(5)\)

\((\dim (SO(5) \times SO(5))/SO(5) = 10)\)

Table 7.

The positions of \(Z_0\)'s in Table 7 are as in Figure 6.

Figure 6.

15
\[(a, b)\] \[Z_{(a,b)}\] \[M = U(1, 1)^*(\text{Exp } Z_{(a,b)})\] \[\dim M\]
\[
\begin{array}{|c|c|c|}
\hline
(a, b) & Z_{(a,b)} & M = U(1, 1)^*(\text{Exp } Z_{(a,b)}) & \dim M \\
\hline
\left(\frac{\pi}{2}, 0\right) & \text{as in Theorem F} & \text{one-point set} & 0 \\
\left(-\frac{\pi}{2}, \pi\right) & \text{as in Theorem F} & \text{one-point set} & 0 \\
(0, 0) & \text{as in Theorem F} & \text{totally geodesic} & 2 \\
\left(\frac{\pi}{2}, 0\right) & \text{as in Theorem C} & \text{not austere} & 3 \\
\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) & \text{as in Theorem C} & \text{not austere} & 3 \\
(0, \frac{\pi}{2}) & \text{as in Theorem F} & \text{totally geodesic} & 3 \\
(0, \arctan \sqrt{2}) & \text{not as in Theorems C~F} & \text{not austere} & 4 \\
\hline
\end{array}
\]

\[U(1, 1)^* \cong Sp(2)/U(2)\]
\[(\dim Sp(2)/U(2) = 6)\]

Table 8.

The positions of \(Z_0\)’s in Table 8 are as in Figure 7.

\[\beta_2^{-1}(0)\]
\[Z(0, \arctan \sqrt{2})\]
\[(\beta_1 + \beta_2)^{-1}(\frac{\pi}{2})\]
\[Z(\frac{\pi}{2}, 0)\]
\[Z(\frac{\pi}{2}, 0)\]
\[Z(0, \frac{\pi}{2})\]
\[Z(0, 0)\]
\[\beta_2^{-1}(0)\]
\[Z(\frac{\pi}{2}, 0)\]
\[(2\beta_1 + \beta_2)^{-1}(0)\]

Figure 7.
$$Z(a,b) = \text{as in Theorem F}$$

$$M = \text{one-point set}$$

$$\dim M = 0$$

$$\rightarrow (\text{Exp } Z(a,b))$$

$$\dim (\text{Exp } Z(a,b)) = 0$$

Table 9.

The positions of Z_0's in Table 9 are as in Figure 6.

Table 10.

The positions of Z_0's in Table 10 are as in Figure 7.
\[
(\text{dim } E_6/\text{Spin}(10) \cdot U(1) = 32)
\]

Table 11.

The positions of \(Z_0\)'s in Table 11 are as in Figure 8. The numbers \(a_i\) \((i = 1, 2, 3, 4)\) and \(b\) in Table 11 are real numbers such that \(a_i, b \neq \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{4}, \frac{3\pi}{4}\mod \pi\).
\[
M = (F_4^{-20} \setminus \text{Exp } Z_{(a,b)}) \, \dim M
\]

Table 12.

The positions of \(Z_0\)'s in Table 12 are as in Figure 4.

\((a, b) \)	\(Z_{(a,b)} \)	\(M = (F_4^{-20} \setminus \text{Exp } Z_{(a,b)}) \)	\(\dim M \)
\((0, -\frac{\pi}{2}) \)	as in Theorem F	one-point set	0
\((0, \frac{\pi}{4}) \)	as in Theorem F	one-point set	0
\((\pi, -\frac{\pi}{2}) \)	as in Theorem F	one-point set	0
\((0, 0) \)	as in Theorem F	totally geodesic	16
\((\frac{\pi}{4}, 0) \)	as in Theorem F	totally geodesic	16
\((\frac{\pi}{2}, -\frac{\pi}{2}) \)	as in Theorem F	totally geodesic	16
\((\frac{\pi}{4}, -\frac{\pi}{2}) \)	as in Theorem C	not austere	24

\[
(F_4^{-20})^* \, \lhd \, E_6/F_4
\]

\[(\dim E_6/F_4 = 26)\]

Table 13.

The positions of \(Z_0\)'s in Table 13 are as in Figure 9. The numbers \(a_4\) and \(b_2\) in Table 13 are real numbers such that \(a_4, b_2 \not\equiv \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{4}, \frac{3\pi}{4} \pmod{\pi}\).

\((a, b) \)	\(Z_{(a,b)} \)	\(M = (SL(2, \mathbb{R}) \times SL(2, \mathbb{R}))^* \setminus \text{Exp } Z_{(a,b)} \)	\(\dim M \)
\((0, -\frac{\pi}{2}) \)	as in Theorem F	one-point set	0
\((0, \frac{\pi}{4}) \)	as in Theorem F	one-point set	0
\((\frac{\pi}{4}, -\frac{\pi}{2}) \)	as in Theorem F	totally geodesic	4
\((\frac{\pi}{2}, -\frac{\pi}{2}) \)	as in Theorem C	not austere	3
\(\left(\arctan \sqrt{5}, \frac{\pi}{2} - 2 \arctan \sqrt{5}\right) \)	not as in Theorems C~F	not austere	5
\((a_4, b_2) \)	not as in Theorems C~F	not austere	6

\[
(SL(2, \mathbb{R}) \times SL(2, \mathbb{R}))^* \, \lhd \, G_2/SO(4)
\]

\[(\dim G_2/SO(4) = 8)\]

Table 13.
\[(2\beta_1 + \beta_2)^{-1}\left(\frac{\pi}{2}\right) \]
\[(\beta_2)^{-1}\left(-\frac{\pi}{2}\right) \]
\[Z\left(\frac{\pi}{2}, \frac{\pi}{2}\right) \]
\[Z\left(0, \frac{\pi}{2}\right) \]
\[Z\left(0, -\frac{\pi}{2}\right) \]
\[Z\left(\arctan\sqrt{5}, \frac{\pi}{2} - 2\arctan\sqrt{5}\right) \]
\[(\beta_1)^{-1}(0) \]
\[Z_{(a_4, b_2)} \]
\[Z_{(0, 0)} \]
\[Z_{(0, \frac{\pi}{2})} \]

Figure 9.

\((a, b)\)	\(Z_{(a,b)}\)	\(M = (G_2^2)^\ast(\text{Exp } Z_{(a,b)})\)	\(\dim M\)
\(0, -\frac{\pi}{2}\)	as in Theorem F	one-point set	0
\(0, \frac{\pi}{2}\)	as in Theorem F	one-point set	0
\(\frac{\pi}{2}, -\frac{\pi}{2}\)	as in Theorem F	totally geodesic	8
\(\frac{\pi}{2}, \frac{\pi}{2}\)	as in Theorem C	not austere	6
\((\arctan\sqrt{5}, \frac{\pi}{2} - 2\arctan\sqrt{5})\)	not as in Theorems C~F	not austere	10
\((a_5, b_3)\)	not as in Theorems C~F	not austere	12

\[(G_2^2)^\ast \succ (G_2 \times G_2)/G_2 \]
\[\dim (G_2 \times G_2)/G_2 = 14 \]

Table 14.

The positions of \(Z_0\)'s in Table 14 are as in Figure 9. The numbers \(a_5\) and \(b_3\) in Table 14 are real numbers such that \(a_4, b_2 \not\equiv \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{4}, \frac{3\pi}{4} \pmod{\pi}\).

Acknowledgement The author wishes to thank the referee for his valuable comments.

References

[B] R. Bott, The index theorem for homogeneous differential operators, Differential and
Combinatorial Topology, Princeton University Press, 1965, 167-187.

[BCO] J. Berndt, S. Console and C. Olmos, Submanifolds and Holonomy, Research Notes in Mathematics 434, CHAPMAN & HALL/CRC Press, Boca Raton, London, New York Washington, 2003.

[Co] L. Conlon, Remarks on commuting involutions, Proc. Amer. Math. Soc. 22 (1969) 255-257.

[GT] O. Goertsches and G. Thorbergsson, On the Geometry of the orbits of Hermann actions, Geom. Dedicata 129 (2007) 101-118.

[He] S. Helgason, Differential geometry, Lie groups and Symmetric Spaces, Academic Press, New York, 1978.

[HPTT] E. Heintze, R.S. Palais, C.L. Terng and G. Thorbergsson, Hyperpolar actions on symmetric spaces, Geometry, topology and physics for Raoul Bott (ed. S. T. Yau), Conf. Proc. Lecture Notes Geom. Topology 4, Internat. Press, Cambridge, MA, 1995 pp214-245.

[HTST] D. Hirohashi, H. Tasaki, H. Song and R. Takagi, Minimal orbits of the isotropy groups of symmetric spaces of compact type, Differential Geom. Appl. 13 (2000) 167-177.

[HIT] D. Hirohashi, O. Ikawa and H. Tasaki, Orbits of isotropy groups of compact symmetric spaces, Tokyo J. Math. 24 (2001) 407-428.

[I] O. Ikawa, The geometry of symmetric triad and orbit spaces of Hermann actions, J. Math. Soc. Japan 63 (2011) 79-139.

[IST] O. Ikawa, T. Sakai and H. Tasaki, Orbits of Hermann actions, Osaka J. Math. 38 (2001) 923-930.

[K1] N. Koike, Actions of Hermann type and proper complex equifocal submanifolds, Osaka J. Math. 42 (2005) 599-611.

[K2] N. Koike, Collapse of the mean curvature flow for equifocal submanifolds, Asian J. Math. 15 (2011) 101-128.

[Kol] A. Kollross, A Classification of hyperpolar and cohomogeneity one actions, Trans. Amer. Math. Soc. 354 (2001) 571-612.

[TT] C.L. Terng and G. Thorbergsson, Submanifold geometry in symmetric spaces, J. Differential Geometry 42 (1995) 665-718.

Department of Mathematics, Faculty of Science
Tokyo University of Science, 1-3 Kagurazaka
Shinjuku-ku, Tokyo 162-8601 Japan
(koike@ma.kagu.tus.ac.jp)