Association Between Apolipoprotein Gene Polymorphisms and Hyperlipidemia: A Meta-analysis

Xiao-Ning Zhao
Guizhou Medical University
Quan Sun
Hebei Medical University
You-Qin Cao
Guizhou Medical University
Xiao Ran
Guizhou Medical University
Yu Cao (✉ 2692327139@qq.com)
School of Health, Guizhou Medical University, Dong Qing Road, Huaxi District, Guiyang, 550000, China https://orcid.org/0000-0002-9918-2013

Research article

Keywords: Apolipoprotein, APO, Gene polymorphism, Hyperlipidemia, Meta-analysis

DOI: https://doi.org/10.21203/rs.3.rs-76751/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Hyperlipidemia plays an important role in the etiology of cardio-cerebrovascular disease. Over recent years, a number of studies have explored the impact of apolipoprotein genetic polymorphisms in hyperlipidemia, but considerable differences and uncertainty have been found in their association for different populations from different regions.

Objective: To correlate apolipoprotein gene expression with hyperlipidemia through a systematic review of case-control studies.

Methods: Comprehensive identification of relevant articles in Pubmed, Web of Science, ScienceDirect, CNKI, Wangfang, and VIP published to June 9, 2020. A systematic review of hyperlipidemia case-control studies was conducted to evaluate the quality of data in articles included in the review, and a meta-analysis was conducted using Stata 11 software.

Results: A total of 59 articles were included, containing in total 13843 hyperlipidemia patients in the case group and 15398 healthy controls in the control group. Meta-analysis of the data indicated that APOA5-1131T>C, APOA1-75bp, APOB XbaI and APOE gene polymorphisms were significantly associated with hyperlipidemia, with OR values of 1.996, 1.228, 1.444 and 1.710, respectively, for allele models. All P values were less than 0.05.

Conclusions: Meta-analysis of the data indicated that the C allele of APOA5 1131T>C, the A allele at APOA1-75bp, the APOB XbaI T allele, and the ε4 allele of APOE were each a risk factor for susceptibility for hyperlipidemia.

Background

Cardio-cerebrovascular disease is the leading cause of death among urban and rural residents in China, and also the disease with the highest mortality and morbidity globally. Recently, studies have shown that the fatality rate from cardio-cerebrovascular disease accounts for approximately 30% of the total global death toll. Hyperlipidemia is a chronic non-communicable disease caused by an imbalance in the structure of plasma lipids caused by a fat metabolism disorder. It is the primary risk factor for atherosclerosis, the pathological basis for cardio-cerebrovascular disease. In addition, a large number of manuscripts have demonstrated that hyperlipidemia is a pathogenic factor of digestive and urinary diseases such as diabetes, hepatopathy, pancreatitis. Hyperlipidemia can be divided into hypercholesteremia, hypertriglyceridemia, mixed hyperlipidemia, and low density lipoproteinemia, etc. Medical research has established that the mechanism of hyperlipidemia is not only determined by environmental factors, such as long-term consumption of large amounts of saturated fatty acids, cholesterol, and sugar, it is also influenced by genetic factors at gene loci. There are multiple academic reports that apolipoprotein (APO) gene mutations are closely related to disorders of blood lipid metabolism. APO is an important component of lipoprotein. So far, more than 20 forms of APO have been identified, including APOA, APOB, APOC, APOD, APOE, APOH, APOM, etc.

Single nucleotide polymorphisms (SNPs) are changes to a single nucleic acid in a protein caused by the insertion, deletion, or substitution of a single nucleotide base in the gene sequence. Of the existing apolipoprotein candidate genes, researchers have correlated APOA1, APOA5, APOB, and APOE gene polymorphisms with hyperlipidemia. APOA1 and APOA5 genes are located in the long arm region of chromosome 11. APOA1 is located in the APOA1-C3-A4 gene cluster, the principal site controlling the expression of lipids and lipoproteins. APOAS is located downstream of APOA4, and its distance from the APOA1/C3/A4 gene cluster is approximately 30 kb. The APOA5 gene is most commonly altered at the −1131T>C site, this polymorphism closely associated with a number of diseases, such as hypertriglyceridemia and coronary heart disease. The APOB gene is located in the short arm of chromosome 2 and contains 29 exons and 28 introns. The cleavage sites Mspl and XbaI are located on exon 26 of the APOB gene. The EcoRI cleavage site is located in exon 29. A number of studies have clearly indicated that the APOB gene affects lipid metabolism to a certain extent. The APOE gene is located on chromosome 19 with a polymorphic gene structure. The isomers are encoded by three alleles ε2, ε3, and ε4, forming 6 genotypes E2/2, E3/3, E4/4, E2/3, E2/4 and E3/4, among which E3/3 is the most common within the population.

Over recent years, there have been multiple studies that have explored the correlation between genetic polymorphism and hyperlipidemia for the apolipoprotein gene loci described above, but there are great differences and uncertainties in different populations from different regions. Therefore, in the present review, we systematically searched the literature and reviewed case-control studies of hyperlipidemia. A meta-analysis was conducted to explore the relationship between APOA (A1-75 bp, A1 + 83 bp, A5-1131T>C), APOB (Mspl, XbaI, EcoRI), APOE with hyperlipidemia in order to provide an evidence-base for the prevention and control of hyperlipidemia.

Methods

Literature search strategy

The Pubmed, Web of Science, ScienceDirect, CNKI, Wangfang, and VIP manuscript databases were searched to identify studies that evaluated the association of APO gene polymorphisms with the risk of hyperlipidemia, where publication date was prior to June 9, 2020. The keywords “apolipoprotein”, “APO”, “hyperlipidemia”, “dyslipidemias”, “hypercholesteremia”, “hypertriglyceridemia”, “mixed hyperlipidemia”, “low density lipoproteinemia”, “APOA”, “APOB”, “APOC”, “APOD”, “APOE”, “APOA5-1131T>C”, “rs662799”, “APOA1-75bp”, “rs670”, “APOA1+83bp”, “rs5069”, “APOB Mspl”, “rs1801701”, “APOB XbaI”, “rs693”, “APOB EcoRI”, “rs1042031”, “gene”, “polymorphism”, and “genetic polymorphism” were searched. The references of all eligible studies were also searched manually in order to find other studies missed in the main search activity.

Identification of studies to include
The inclusion criteria for the present meta-analysis were as follows: (1) studies that evaluated the association between APO and risk of hyperlipidemia; (2) studies with an appropriate statistical design and selection methods; (3) case-control and RCT studies; (4) diagnostic criteria for dyslipidemia were clear and uniform; (5) the distribution of APO genotypes in controls group were consistent with the Hardy-Weinberg equilibrium (HWE); (6) allele typing methods were accurate; (7) data included in studies were complete, and there were no omissions. Duplicated data, reviews, abstracts, case reports, animal studies, and studies that did not meet the inclusion criteria were excluded.

Data extraction

Two reviewers (XNZ and QS) independently conducted literature screening and evaluation. The following information was extracted from each study included in the review: first author, year of publication, area, age, source of control, sample size of controls and cases, genotyping method, Hardy-Weinberg equilibrium (HWE), the distribution of genotypes and frequencies of alleles in cases and controls. Any disputes were resolved by discussion with a third investigator.

Quality evaluation

The quality of the selected case-control studies was evaluated according to the NOS (Newcastle-Ottawa Scale)[12], in which data with a score higher than 7 were considered high quality[13].

Statistical analyses

The included hyperlipidemia data were analyzed by meta-analysis using Stata 11 software. The correlation between apolipoprotein gene polymorphism and hyperlipidemia was expressed by odds ratio (OR) and 95% confidence intervals (CI). In order to better evaluate the presence of heterogeneity between the studies, an I^2 test was also used. Where homogeneity (I^2<50%) was identified in the meta-analysis, a fixed-effects model was adopted; otherwise, a random-effects model was used to integrate incorporated data. The data was assessed using Egger's and Begg's tests to evaluate publication bias. Sensitivity analysis was conducted, delete the data with large deviation shown by the analysis results, and recalculate the OR value. All P-values were two-sided, with a significance threshold set at α = 0.05.

Results

Study characteristics

A total of 3706 selected articles were obtained from Chinese and English databases, of which 59 articles were finally selected, including 22 that analyzed APOA, 28 APOB, and 30 APOE. Three sites in the APOA gene were studied: A5-1131T>C was included in 10 case-control studies, including 1211 cases and 1495 controls; A1-75bp was included in 5 case-control studies, including 1284 cases and 1312 controls; and A1+83bp was included in 7 case-control studies, including 1452 cases and 1620 controls. The APOB gene was investigated at three sites: MspI was studied in 6 case-control studies, including a hyperlipidemia group of 1155 cases and 1043 controls; XbaI was studied in 12 case-control studies, including 1900 cases and 1836 controls; and EcoRI in 10 case-control studies, including 1633 cases and 1686 controls. The APOE gene is co-coded by the three ε2, ε3, and ε4 alleles, and 30 case control studies were included, including 5208 cases in the hyperlipidemia group and 6406 cases in the control group. No NOS score of any studies included in the review was less than 7. The comparison between case and control groups was highly credible. The specific process for literature retrieval is displayed in Figure 1.

Meta-analysis result of APOA5-1131T>C(rs662799)

This gene locus was included in 10 case-control studies, involving a total of 2706 subjects, including 1211 in the hyperlipidemia group and 1496 in the control group. The baseline data and quality evaluation of each study are displayed in Table 1. Analysis of the relationship between C vs T alleles and hyperlipidemia (allele model) revealed heterogeneity (P^2 = 73.9%, P < 0.000), so a random-effects model was used to analyze the combined effects. Individuals with the C allele had a higher risk of hyperlipidemia than those with the T allele, a difference that was statistically significant (OR=1.996, 95% CI=1.529-2.606, P < 0.000) (Figure 2). Other gene models at this site showed consistent results, suggesting that a single nucleotide polymorphism of APOA5-1131T>C is associated with hyperlipidemia, with the C allele posing a risk factor for hyperlipidemia susceptibility (Table 2).

Meta-analysis result of APOA1-75bp(rs670)

This site on APOA was included in 5 case-control studies, involving a total of 2596 subjects, of which 1284 were in the hyperlipidemia group and 1312 in the control group. Baseline data and quality evaluation are displayed in Table 1. Analysis of the relationship between A vs G alleles and hyperlipidemia was expressed by odds ratio (OR) and 95% confidence intervals (CI). In order to better evaluate the presence of heterogeneity between the studies, an I^2 test was also used. Where homogeneity (I^2<50%) was identified in the meta-analysis, a fixed-effects model was adopted; otherwise, a random-effects model was used to integrate incorporated data. The data was assessed using Egger's and Begg's tests to evaluate publication bias. Sensitivity analysis was conducted, delete the data with large deviation shown by the analysis results, and recalculate the OR value. All P-values were two-sided, with a significance threshold set at α = 0.05.

Meta-analysis result of APOA1+83bp(rs5069)

This site was included in 7 case-control studies, involving a total of 3072 subjects, including 1452 in the hyperlipidemia group and 1620 in the control group. The baseline data and quality evaluation of each study are shown in Table 1. Analysis of the relationship between A vs G alleles and hyperlipidemia (allele model) indicated that there was no significant heterogeneity (P^2 = 0.0%; P=0.472). Therefore, a fixed-effects model was selected to analyze the pooled effect. There was no significant difference in risk among individuals carrying the T and C alleles (OR=0.928, 95% CI=0.771-1.116, P= 0.425) (Figure 4). Other gene
models of this locus indicated that the P values were all higher than 0.05, suggesting that there was no significant difference. It was considered that an association between APOA1+83bp gene polymorphism and hyperlipidemia susceptibility did not exist (Table 2).

Meta-analysis of APOB Mspi(rs1801701)

This gene locus was included in 6 case-control studies, involving a total of 2198 subjects, including 1155 in the hyperlipidemia group and 1043 in the control group. Baseline data and quality evaluation are shown in Table 3. Analysis of the association between M- vs M+ alleles and hyperlipidemia (allele model) indicated heterogeneity (\(I^2=0.0\%\), \(P=0.731\)), therefore, a fixed-effects model was selected to analyze the pooled effects. There was no significant difference in risk among individuals carrying M- and M+ alleles \((OR=0.892, 95\%CI=0.756-1.053, \ P=0.178)\). The P values of other gene models at this site were also higher than 0.05, indicating that there was no significant difference. Thus, no association between genetic polymorphism of APOB Msp\(i\) and risk of hyperlipidemia was found (Table 4).

Meta-analysis of APOB Xba1(rs693)

This was included in 12 case-control studies, involving a total of 3736 subjects, including 1900 in the hyperlipidemia group and 1836 in the control group. Baseline data and quality evaluation are shown in Table 3. Analysis of the association between T vs C alleles and hyperlipidemia (allele model) indicated heterogeneity (\(I^2=72.4\%\), \(P=0.000\)) and so a random-effects model was used to analyze the pooled effects. The risk of hyperlipidemia in the T allele population was higher than that in the C allele population, the difference of which was statistically significant \((OR=1.444, 95\%CI=1.061-1.966, \ P=0.020)\) (Figure 5). There was no significant difference between the dominant and codominant models of this locus, with \(P\) values of 0.100 and 0.140, respectively. The results of other gene models were consistent with those of the allele model. Therefore, it is considered that there is an association between APOB Xba\(1\) gene single nucleotide polymorphism and hyperlipidemia and that the T allele is a risk factor for hyperlipidemia (Table 4).

Meta-analysis of APOB EcoR1(rs1042031)

This site was included in 10 case-control studies, involving a total of 3319 subjects, including 1633 in the hyperlipidemia group and 1686 in the control group. Baseline data and quality evaluation are shown in Table 3. Analysis of the association between A vs G alleles and hyperlipidemia (allele model) indicated heterogeneity (\(I^2=70.0\%\), \(P=0.000\)), so the pooled effects were analyzed using a random-effects model. There was no significant difference in risk among people carrying A and G alleles \((OR=1.333, 95\%CI=0.942-1.885, \ P=0.104)\). Other gene models at this site provided consistent results, and so no association between the genetic polymorphism of APOB EcoR\(1\) and susceptibility to hyperlipidemia (Table 4) can be considered to exist.

Meta-analysis of APOE

This site was included in 30 case-control studies, involving a total of 11614 subjects, including 5208 in the hyperlipidemia group and 6406 in the control group. The baseline data and quality evaluation of various studies are displayed in Table 5. The APOE ε3 allele was used as a reference to analyze the relationship between alleles and hyperlipidemia. Analysis of \(\varepsilon2\) \((I^2=63.0\%, \ P=0.000)\) and \(\varepsilon4\) \((I^2=73.3\%, \ P=0.000)\) data indicate that there was heterogeneity between them, so the pooled effects were analyzed using a random-effects model. The difference in risk between individuals with \(\varepsilon2\) and \(\varepsilon3\) alleles was not statistically significant \((OR=1.167, 95\%CI=0.955-1.426, \ P=0.131)\). The risk of hyperlipidemia in people with the \(\varepsilon4\) allele higher than that in those with the \(\varepsilon3\) allele, a difference that was statistically significant \((OR=1.710, 95\%CI=1.405-2.083, \ P<0.000)\) (Figure 5).

Correlations in the APOE genotype \((\varepsilon2/\varepsilon2, \varepsilon2/\varepsilon3, \varepsilon2/\varepsilon4, \varepsilon3/\varepsilon4, \varepsilon4/\varepsilon4)\) and hyperlipidemia were analyzed using the wild type \(\varepsilon3/\varepsilon3\) genotype as a reference. The heterogeneity and \(95\%\) CI of these data are shown in Table 6. The significance level was adjusted to \(\alpha\prime=\alpha/(k-1)=0.01\). There was a significant difference in the risk of hyperlipidemia between carriers of genotypes \(\varepsilon2/\varepsilon4, \varepsilon3/\varepsilon4, \varepsilon4/\varepsilon4\) with carriers of genotype \(\varepsilon3/\varepsilon3\), \(95\%\) values all less than 0.01. It can be concluded that APOE gene polymorphism is closely related to hyperlipidemia and that the \(\varepsilon4\) allele is a risk factor for hyperlipidemia.

Publication bias and sensitivity analysis

There was no apparent asymmetry in each Begg's funnel plot (Figure 6), indicating that publication bias was slight. In addition, from the statistical analysis of the symmetry of the Begg's funnel plot using an Egger's test, the publication bias of each gene locus indicated that the \(P\) values were all higher than 0.05, and that no apparent publication bias existed.

For groups with a large deviation shown in the analysis, after excluding the associated manuscripts, the meta analysis was performed again and OR and \(P\) values re-calculated. When the literature\(^{[21]}\) for the APOA5-1131T>C allele model with the largest OR value deviation was excluded, the results were similar to those of the original data and consistent with the original conclusions \((OR=1.800, 95\%CI=1.454-2.229, \ P<0.000)\). The results of the APOA1-75bp and APOA1+83bp allele models were stable, with no literature having excessive deviation found.

For the APOB Xba\(1\) locus allele model, exclusion of the literature with the largest OR value deviation\(^{[65]}\) provided conclusions of the meta-analysis consistent with the original conclusions \((OR=1.365, 95\%CI=1.001-1.862, \ P=0.049)\). Exclusion of the corresponding APOB EcoR\(1\) literature\(^{[62]}\) indicated differences in meta-analysis that were not statistically significant, consistent with the original conclusions \((OR=1.260, 95\%CI=0.892-1.779, \ P=0.190)\). For the APOB Msp\(i\) loci alleles model, the results were stable and no manuscripts with excessive deviation was found.

When the manuscripts\(^{[64]}\) having the maximum deviation for data of the \(\varepsilon2\) allele of APOE was eliminated, the meta-analysis concluded that the \(\varepsilon2\) allele was not associated with hyperlipidemia \((OR=1.150, 95\%CI=0.943-1.402, \ P=0.167)\). Correspondingly, exclusion of the literature with the largest deviation for the APOE \(\varepsilon4\) allele\(^{[64]}\), resulted in conclusions consistent with those originally made following recalculation, so carrying the \(\varepsilon4\) allele is considered a risk factor for
Discussion

The APOE gene, located on chromosome 19, contains 4 exons and 3 introns, with 3 isomers, and has the function of regulating plasma total cholesterol (TC) and lipoprotein metabolism. APOE3 is the most common phenotype. A principal function is to bind low-density lipoprotein receptor (LDL-R) and APOE receptor as a ligand. Compared with APOE3, the ability of APOE4 to bind to its receptor is relatively strong, causing the metabolism of chylomicron (CM) and very low-density lipoprotein (VLDL) residues to be accelerated and the conversion of VLDL to LDL to increase. Additionally, the rate of liver internalization and catabolism of CM and VLDL residues is accelerated, resulting in increased free cholesterol in hepatocytes and feedback causing a down-regulation of LDL-R on their surface, resulting in a decrease in the metabolic rate of LDL. Furthermore, the low intestinal cholesterol absorption capacity of ε4 carriers also increases, resulting in higher plasma levels of TC and LDL. This is consistent with the conclusion that the ε4 allele is a risk factor for hyperlipidemia in the present review, although the protective effects of the ε2 allele on blood lipid levels were not observed. This might be related to the heterogeneity of the study population and the small number of ε2 alleles included. The existence of a medical mechanism to explain why the ε2 allele did not protect blood lipid levels could not be ruled out.

APOB is the principal protein component of LDL and plays a role in transporting endogenous cholesterol to maintain its balance within the body. The APOB gene is located in region 23-24 of the short arm of human chromosome 2. The APOB gene plays a key role in the production, transport, and removal of LDL and VLDL from plasma and regulates the concentration of plasma cholesterol. The polymorphism of the APOB XbaI restriction site is due to a mutation of nucleotide C→T at position 7673 of the APOB gene cDNA, which changes the codon sequence at position 2488 (ACC→ACT), thus producing an XbaI endonuclease recognition site. The T allele may be related to a reduction in LDL degradation rate mediated by the receptor. A number of studies have also speculated that a single nucleotide polymorphism at this locus is a genetic marker and has linkage disequilibrium with other nearby DNA sequence variants that affect cholesterol levels. This molecular mechanism could explain the result that the T allele was a risk factor for hyperlipidemia. Other studies further confirm the conclusions that this polymorphism of the APOB XbaI gene might increase the risk of cerebral infarction, and that the T allele is such a risk factor. The T allele was associated with lower levels of HDL-C, which might be associated with incidence of coronary heart disease.

The APOA1 gene is located in the terminal region of the long arm of chromosome 11 and consists of 3 introns and 4 exons. APOA1 is the main apolipoprotein that creates high-density lipoprotein (HDL), maintaining the stability and integrity of the HDL structure, and promoting cholesterol (TC) esterification. The APOA1-75bp polymorphism not only destroys the endonuclease recognition site but also changes the GGCCGG sequence which can activate transcription. A change to the sequence may affect the synthesis of APOA1. This mechanism was consistent with the conclusion that there was an association between the A1-75bp gene single nucleotide polymorphism and hyperlipidemia. The APOA5 gene, located in 23 regions of the long arm of chromosome 11, has 1889 bp and consists of 4 exons, 2 introns and 4 silencing molecules. APOA5 can reduce triglyceride (TG) and increase HDL, and represents a protective factor for coronary heart disease. Some manuscripts also clearly state that the mutation APOA5-1131T>C is closely related to increased triglyceride levels and that the CC genotype of this locus was positively correlated with serum TG levels and negatively correlated with APOA5 levels.

A meta-analysis can effectively make up for the lack of statistical efficacy and other problems within a single study. However, although the present review developed a scientifically-based and comprehensive search strategy with strict unified screening criteria, limitations still remain. (1) There were few relevant Chinese and English manuscripts on the acquisition of particular gene loci, such as APOAI and APOB MspI, so the number of case-control studies included in the analysis was small, possibly reducing the effectiveness of the Egger's and Begg's tests, in addition to sensitivity analysis; (2) The data included in the review could not unify racial and ethnic information, also leading to heterogeneity to some extent; (3) It is unknown whether there were statistical differences in sex and age among individuals included in the study; (4) The effects of gene-environmental interactions and genetic linkage disequilibrium were not considered. In the future, we shall include more reliable data in this respect and update the meta-analysis, thereby providing a more reliable evidence base for the prevention and control of hyperlipidemia from the perspective of the apolipoprotein gene.

Conclusions

The results of this present meta-analysis revealed that the C allele of APOA5 1131T>C, the A allele at APOA1-75bp, the APOB XbaI T allele, and the ε4 allele of APOE might represent genetic risk factors for susceptibility for hyperlipidemia. In addition, we find it is consistent with the current study on the pathological mechanisms of hyperlipidemia. However, there is a need for further larger-scale studies, including larger case-control study and analysis of other loci of the APO genes, to confirm our conclusions and elucidate the influence of gene–environment interactions.

Abbreviations

APO: Apolipoprotein; SNPs: Single nucleotide polymorphisms; HWE: Hardy-Weinberg Equilibrium; NOS: Newcastle-Ottawa Scale; TC: Total cholesterol; LDL-R: Low-density lipoprotein receptor; CM: Chylomicron; VLDL: Very low-density lipoprotein; HDL: High-density lipoprotein.

Declarations

Ethics approval and consent to participate

This work has been approved by the Ethics Committee of The University Town Hospital of Guizhou Medical University.
Consent for publication

All authors have read and agreed with the published version of the paper.

Availability of data and material

Data openly available in a public repository that issues datasets with DOIs.

Competing interests

We declare that none of the work contained in this manuscript is published in any language or currently under consideration at any other journal, and there are no conflicts of interest to declare.

Author Contribution

Writing-Original draft preparation: XNZ, QS, Methodology and data curation: QS, XNZ, Writing-review and editing: YQC, XR and XNZ, Supervision: YC, QS.

Funding

This work was supported by the first-class discipline construction project in Guizhou Province - Public Health and Preventive Medicine (NO.2017[85]), and by the 15th provincial Capital construction Project of Guizhou Development and Reform Commission in 2018 (NO.[2018]1571); Soft Science Project of Yunyan District (No.[2016] 2).

Acknowledgements

We would like to acknowledge all the individuals who participated in this study. We thank all the staffs of the School of Public Health and the School of Health of Guizhou Medical University and the School of Public Health of Hebei Medical University for their collaboration.

References

[1] Zhao L, Xue S, Chen F, Stan H. Inflammation, Atherosclerosis and Cardiovascular and Cerebrovascular Diseases. Adv Cardiovasc Dis. 2005;26:193-196.

[2] Bora K, Pathak M S, Borah P, Hussain MI, Das D. Association of the Apolipoprotein A-I Gene Polymorphisms with Cardiovascular Disease Risk Factors and Atherogenic Indices in Patients from Assam, Northeast India. Balkan J Med Genet. 2017;20:59-70.

[3] Cui XM. Study on hyperlipidemia status of a district departments staff in Tianjin City. Journal of Qiqihar Medical University. 2016;37:2580-2581.

[4] Zeng Q, Xie Y, Wang JS. Epidemiological status of cardiovascular and cerebrovascular diseases in population of Yangzhou City in Jiangsu Province. Journal of Clinical Medicine in Practice. 2019;23:37-40.

[5] Ou HJ. The relationship of APOA5/A4/C3/A1 gene cluster and APOB gene polymorphisms With Dyslipidemia [D]. Shihezi city: Shihezi University; 2014.

[6] Meng Q, Zhang XH, Zhang XW. Meta-analysis on association of ApoE gene polymorphism with hyperlipidemia. Chinese Preventive Medicine. 2015;16:304-307.

[7] Feng DW. Association between Polymorphisms of APOA1 Gene and Susceptibility for Uyghur and Kazak’s Dyslipidemia [D]. Shihezi city: Shihezi University; 2016.

[8] Han Y. Association between the Subclasses of HDL and APOA5 Gene Polymorphism in Hypertriglyceridemia[D]. Hengyang city: University of South China; 2012.

[9] Zhang PZ, Tian Y. Relationship of Apolipoprotein B and E Gene Polymorphisms to Dyslipidemia and the Influence of Exercise Training. China Sport Science. 2006;26:65-69.

[10] Zhang Y, Zeng T, Xu J, Liu L. Apolipoprotein Gene Polymorphism in Coronary Heart Disease. Adv Cardiovasc Dis. 2019;40:1294-1297.

[11] Chinese Joint Committee for revision of guidelines for Prevention and treatment of Adult Dyslipidemia. Guidelines for the prevention and treatment of dyslipidemia in Chinese adults (revised in 2016). Chinese Circulation Journal. 2017;32:53.

[12] WELLS G A. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses: Symposium on Systematic Reviews: Beyond the Basics, 2000.

[13] Zhao QR, Lei YY, Li J, Jiang N, Shi JP. Association between apolipoprotein E polymorphisms and premature coronary artery disease: a meta-analysis. Clin Chem Lab Med. 2017;55:284-298.

[14] Zhao DD. Relationship between apolipoprotein A5, C3 and E gene polymorphisms and phlegm and blood stasis syndrome and therapeutic effect in patients with hyperlipidemia [D]. Beijing: China Academy of Chinese Medical Sciences; 2007.
[15] Niu ZB. Association study between lipid metabolism-related genepolymorphisms and polymorphisms and hyperlipidemia in aged patients with long-term aerobic exercise [D]. Shanghai: Shanghai University of Sport; 2016.

[16] Huang MC, Wang TN, Wang HS, Sung YC, Ko YC, Chiang HC. The -1131T>C polymorphism in the apolipoprotein A5 gene is related to hypertriglyceridemia in Taiwanese aborigines. Kaohsiung J Med Sci. 2008;24:171-179.

[17] Long SY, Chen ZJ, Han Y, Christopher DM, Zhang CP, Yang Y, et al. Relationship between the distribution of plasma HDL subclasses and the polymorphisms of APOA5 in hypertriglyceridemia. Clin Biochem. 2013;46:733-739.

[18] Di Taranto MD, Staiano A, D’Agostino MN, D’Angelo A, Bloise E, Morgante A, et al. Association of USF1 and APOA5 polymorphisms with familial combined hyperlipidemia in an Italian population. Mol Cell Probes. 2015;29:19-24.

[19] Ferreira CN, Carvalho MG, Fernandes AP, Santos IR, Rodrigues KF, Lana AMQ, et al. The polymorphism -1131T>C in apolipoprotein A5 gene is associated with dyslipidemia in Brazilian subjects. Gene. 2013;516:171-175.

[20] Brito DD, Fernandes AP, Gomes KB, Coelho FF, Cruz NG, Sabino AP, et al. Apolipoprotein A5-1131T>C polymorphism, but not APOE genotypes, increases susceptibility for dyslipidemia in children and adolescents. Mol Biol Rep. 2011;38:4381-4388.

[21] Liu ZK, Hu M, Baum L, Thomas GN, Tomlinson B. Associations of polymorphisms in the apolipoprotein A1/C3/A4/A5 gene cluster with familial combined hyperlipidaemia in Hong Kong Chinese. Atherosclerosis. 2010;208:427-432.

[22] Henneman P, van der Sman-de Beer F, Moghadam PH, Huijts P, Stalenhoef AFH, Kastelein JJP, et al. The expression of type III hyperlipoproteinemia: involvement of lipolysis genes. Eur J Hum Genet. 2009;17:620-628.

[23] Huang G, Zhong H, Re HM, Mao HM, Chi YH. Association of polymorphisms of apoB genes EcoRI, XbaI, and Mspl and apoAI gene - 75 bp and + 83 bp with dyslipidemia in Kazaks. The Journal of Practical Medicine. 2011;27:3518-3522.

[24] Chi YH. Relationship between ApoB gene EcoR I, XbaI, Mspl and apoAI gene-75bp, + 83bp polymorphisms and blood lipids [D]. Shihezi city: Shihezi University; 2012.

[25] Xie YJ. The Association of APoB and APoAI Gene Polymorphism With Dyslipidemia in Han Chinese of Xinjiang Shihezi [D]. Shihezi city: Shihezi University; 2011.

[26] Zhu H, Liu Y, Bai H, Liu BW. Apolipoprotein A: Gene Mspl Polymorphism in Relation to Endogenous Hypertriglyceridemia in Chinese Population. Chin J Arterioscler. 2001;9:332-336.

[27] Jia LQ, Bai H, Fu MD, Xu YH, Gou LT. Relationship of subclasses of serum HDL and Apo A: gene polymorphism in hyperlipidemia. Chinese Journal of Pathophysiology. 2006(04):796-800.

[28] Cao WJ, Sheng L, Yang J, Zhou D, Cheng J. Relationship between Mspl polymorphism of apolipoprotein B gene and blood-fat of Hazakh inhabitant. Journal of Practical Medical Techniques. 2009.16:770-772.

[29] Chi YH, Huang G, Xie YJ, Guo ZL. Study on relationship between joint action of EcoR I, Xba I and Mspl I polymorphisms of apoB gene and dyslipidemia. Journal of Clinical and Experimental Medicine. 2012;11:481-483.

[30] Jin YN, Zhou L, Tang M, Zhang MJ, Tang XJ. Relationship between ApoB gene Mspl /XbaI /EcoR polymorphisms and serum lipid level in male Han population in Chongqing,China. Academic Journal of Second Military Medical University. 2015;36:966-971.

[31] Cavalli SA, Hirata MH, Salazar LA, Diamant J, Forti N, Giannini SD, et al. Apolipoprotein B gene polymorphisms: prevalence and impact on serum lipid concentrations in hypercholesterolemic individuals from Brazil. Clin Chim Acta. 2000;302:189-203.

[32] Qian J, Hu DC, Zhao XL, Shao JC. Study on relationship between apolipoprotein B gene polymorphisms frequencies distributionand and essential hyperlipidemia of an nationality in Kunming area. Int J Lab Med. 2010;31:1262-1264.

[33] Feng JS, Xie XQ, Lin CL. Apolipoprotein B Gene Polymorphisms in Patients with Hyperlipidemia or Coronary Heart Disease. Journal of Jinan University (Natural Science & Medicine Edition). 1997;18:14-18.

[34] Ma ZZ, Huang WB, He FP, Zhang SB. Relationship between apolipoprotein B gene polymorphisms and lipid levels in Yao population of Yuebei area. J Mol Diagn Ther. 2012;4:333-335.

[35] Zhang PZ, Tian Y. Influence of Apolipoprotein B Gene Polymorphisms over Effect of Exercise on Blood Lipid. China Sport Science. 2015;35:38-47.

[36] Talmud PJ, Barni N, Kessling AM, Carlsson P, Darnfors C, Bjursell G, et al. Apolipoprotein B gene variants are involved in the determination of serum cholesterol levels: a study in normo- and hypelipidaemic individuals. Atherosclerosis. 1987;67:81-9.

[37] Gong LG, Liu XR, Qiu GB, Li HF, Cui XW. Analysis of Xbal polymorphism in the ApoB gene to hypertriglycerideremias in Chinese population. Chin J Lab Diagn. 2003;7:306-308.
Choong ML, Sethi SK, Koay ES. Effects of intragenic variability at 3 polymorphic sites of the apolipoprotein B gene on serum lipids and lipoproteins in a multiethnic Asian population. Hum Biol. 1999;71:381-397.

Timirci O, Darendeliler F, Bas F, Arzu EH, Umit Z, Isbir T. Comparison of lipid profiles in relation to APOB EcoRI polymorphism in obese children with hyperlipidemia. In Vivo. 2010;24:65-69.

Liang JP, Yang HM, Sheng T, Han LB, Yuan YJ, Niu XH, et al. Study on the relationship between ApoE gene polymorphism and plasma lipid levels of phlegm-blood-stasis syndrome of hyperlipemia. China Journal of Traditional Chinese Medicine and Pharmacy. 2008;23:633-635.

Wu XH, Cheng J, Zhou ZZ, Qin JM, He L. Relationship between apolipoprotein E gene polymorphism and blood lipids in Kazakh population in Xinjiang. Chinese Journal of Clinical Laboratory Science. 2007;25:447-449.

Hu HN, Chen W, Yang G, Lv M. Association of polymorphisms of apoprotein E and lipid levels with hyperlipidemia. Chinese Journal of Tissue Engineering Research. 2007;11:1453-1456.

Zeng ZW, Peng S, Peng J, Gong WX. Relationship between apolipoprotein E gene polymorphism and hyperlipidemia. Guangdong Medical Journal. 2001;22:120-121.

Zeng WW, Lv XY, Chen BS. The Study on the Association between Polymorphism of Apolipoprotein E Gene and Hyperlipidemia. Chin J Arterioscler. 1996;4:185-189.

Wang R, Xie RL, Huang WF, Yang MQ. Apolipoprotein E gene polymorphism and its relationship with type-II hyperlipidemia. Sichuan Medical Journal. 2005;26:400-401.

Zhu CL, Zhou X, Liu F, Hu HL. The Relationship Between Polymorphisms of Apolipoprotein E Gene and Serum Lipid. Chinese Journal of Arteriosclerosis. 2005;13:203-206.

Tian Y, Long SY, Xu YH, Fu MD, Zhang XM, Liu BW. Study on apoE gene polymorphism and subclasses of serum high density lipoprotein in type-II hyperlipidemia. Chin J Med Genet. 2005;22:100-102.

Zhang YH, Dou XF, Shang W, Dou XF, Wang YF, Liu YQ, et al. Association Between Familial Combined Hyperlipidemia (FCHL) and Apolipoprotein E Polymorphism. Chinese Journal of Hypertension. 2004;22:29-32.

Jiang WM, Fang ZY, Zhu CL, Tang SH. Effects of ApoE Gene Polymorphism on Anti-inflammatory Action of Xuezhikang Capsule. Chinese Journal of Integrated Traditional and Western Medicine. 2013;33:35-39.

Qian J, Jiang WM, Chen XH, Zhu CL, Xie L. Study on the Relation between ApoE Gene Polymorphisms and the Plasma Lipids in Hyperlipemia Patients. Chinese General Practice. 2011;14:840-842.

Liu YL, Li JK, Yan ZQ, Chen YJ. Correlation between apolipoprotein E gene polymorphism and plasma lipid level. J Fourth Mil Med Univ. 2006;27:460-461.

Zhan CY. Study on the relationship between Apolipoprotein E Gene Polymorphism and Blood Lipid level and Lipid-regulating effect in Hyperlipidemia with phlegm and Blood stasis Syndrome[D]. Beijing: Beijing University of Chinese Medicine; 2006.

Long SY, Zhang XM, Fu MD, Xu YH, Liu BW. Relationship of APOE gene polymorphism with subclasses of serum high density lipoprotein in hyperlipidemia. Chin J Med Genet. 2004;21:83-86.

Zhang XM, Liu BW, Bai H, Fan P. Study on apoE gene polymorphism in Chinese endogenous hypertriglyceridemia. Chin J Med Genet. 2001;18:21-25.

Wiegman A, Sijbrands EJG, Rodenburg J, Defesche JC, de Jongh S, Bakker HD, et al. The apolipoprotein epsilon4 allele confers additional risk in children with familial hypercholesterolemia. Pediatr Res. 2003;53:1008-1012.
Alharbi TH, Batais MA, Hasanato RM, Alharbi FK, Khan IA, Alharbi KK. Role of Apolipoprotein E gene polymorphism in the risk of familial hypercholesterolemia: a case-control study. Acta Biochim Pol. 2018;65:415-420.

Corella D, Guillén M, Portolés Q, Sabater A, Cortina S, Folch J, et al. Apolipoprotein E gene polymorphism and risk of hypercholesterolemia: a case control study in a working population of Valencia. Med Clin. 2000;115:170-175.

Kobori S, Nakamura N, Uzawa H, Shichiri M. Influence of apolipoprotein E polymorphism on plasma lipid and apolipoprotein levels, and clinical characteristics of type III hyperlipoproteinemia due to apolipoprotein E phenotype E2/2 in Japan. Atherosclerosis. 1988;69:81-8.

Cenarro A, Etxebarria A, de Castro-Orós I, Stef M, Bea AM, Palacios L, et al. The p.Leu167del Mutation in APOE Gene Causes Autosomal Dominant Hypercholesterolemia by Down-regulation of LDL Receptor Expression in Hepatocytes. J Clin Endocrinol Metab. 2016;101:2113-2121.

Meena K, Misra A, Vikram N, Ali S, Pandey RM, Luthra K. Cholesterol ester transfer protein and apolipoprotein E gene polymorphisms in hyperlipidemic Asian Indians in North India. Mol Cell Biochem. 2011;352:189-196.

Solanas-Barca M, de Castro-Orós I, Mateo-Gallego R, Cofán M, Plana N, Puzo J, et al. Apolipoprotein E gene mutations in subjects with mixed hyperlipidemia and a clinical diagnosis of familial combined hyperlipidemia. Atherosclerosis. 2012;222:449-55.

Ferreira CN, Carvalho MG, Fernandes APSM, Lima LM, Loures-Valle AA, Dantas J, et al. Comparative study of apolipoprotein-E polymorphism and plasma lipid levels in dyslipidemic and asymptomatic subjects, and their implication in cardio/cerebro-vascular disorders. Neurochem Int. 2010;56:177-182.

Fumeron F, Rigaud D, Berti MC, Bardon S, Dely C, Apfelbaum M. Association of apolipoprotein epsilon 4 allele with hypertriglyceridemia in obesity. Clin Genet. 1988;34:258-264.

Hou YH, Nie B, Shen XX. ApoE-knockout Mice for Study of Atherosclerosis. Adv Cardiovasc Dis. 2017;38:679-683.

Zhao SP. Apolipoprotein E Polymorphism and Blood Lipid Metabolism and its Clinical Significance. Journal of Clinical and Pathological Research. 1994;14:231-233.

Chen YD, Zhao X, Tan YQ, Rao SQ. A Meta-analysis of the Association Apo B Eco RI Polymorphism and Coronary Heart Disease in Chinese Population. Chin J Arterioscler. 2015;23:1056-1060.

Benn M, Nordestgaard BG, Jensen JS, Grande P Sillesen H, Tybjaerg-Hansen A. Polymorphism in APOB associated with increased low-density lipoprotein levels in both genders in the general population. J Clin Endocrinol Metab. 2005;90:5797-5803.

Zhang S, Guo Y, Ma Y. Meta-analysis on relationship between ApoB gene XbaI polymorphism and cerebral infarction in Chinese population. Journal of Clinical Neurology. 2007;20:423-425.

Song WW, Hu RM, Luo BY. Study on angiopathy and metabolic disorder of serum TC, LDL-C and Apo-B in patients with type 2 diabetes mellitus. Chin J Endocrinol Metab. 1998;14:71-72.

Li Q. The association of -75bp/ +83bp polymorphism of the Apo A1Apo A11 gene with dyslipidemia [D]. Dalian city: Dalian Medical Universit; 2009.

Wu MM, Wang H, Yang LJ, Han TT, Sun X, Xiao S. Relationship between apolipoprotein A5, apolipoprotein C3 and coronary heart disease. Clinical Focus. 2019;34:477-480.

Chang J. Effect between Apolipoprotein A5 and the metabolism of serum and related disease[D]. Jinan city: Shandong University; 2006.

Kim M, Kim M, Yoo HY, Lee E, Chae JS, Lee SH, et al. A promoter variant of the APOA5 gene increases atherogenic LDL levels and arterial stiffness in hypertriglyceridemic patients. PloS one. 2017;12:e186693.

Zhai GH, Ma JL, Li MF. Association between apolipoprotein A5-1131T/C polymorphism and type 2 diabetes mellitus in Chinese Han population:A meta-analysis. Int J Lab Med. 2019;40:1321-1324.

Tables

Table 1: Main characteristics of studies of APOA included in the review.
SNP	First author	Year	Area	Sample size	Age (y)	Source of control	Genotyping method	Genotypes	Cases	Controls	Cases	
				Case	Control	Case	Control					
APOA5-1131	Zhao DD	2007	Beijing, China	172	80	NR	NR	HB	PCR-RFLP	63	86	
T>C	Niu ZB	2016	Shanghai, China	156	262	NR	NR	PB	MALDI-TOF	68	68	
	Huang M	2008	Taiwan, China	76	240	59.57±10.2	60.98±13.58	PCR-RFLP	15	41		
	Long SY	2013	Hunan, China	95	102	61 ± 12	62 ± 12	HB	PCR-RFLP	46	36	
	Maria	2014	Napoli, Italian	165	142	47.5 ± 12.2	43.9 ± 9.6	HB	TaqMan	111	49	
	Cláudia	2012	Minas Gerais, Brazil	108	107	48.4±6.8	46.7±6.6	PB	PCR-RFLP	52	52	
	Brito	2010	Belo Horizonte, Brazil	53	77	10.4 ± 2.7	11.2 ± 3.4	HB	PCR-RFLP	34	14	
	ZK Liu	2009	Hongkong, China	56	176	49.6±12.3	50.1±9.4	HB	PCR	9	27	
	Peter H	2008	Netherlands	254	240	NR	NR	HB	PCR	142	72	
	Han Y	2012	Hunan, China	109	117	60.3±12.1	62.9±12.0	HB	PCR-RFLP	52	43	
APOA1-75bp	Huang G	2011	Xinjiang, China	275	252	47.7±7.9	48.23±7.6	HB	PCR-RFLP	135	102	
	Feng DW	2016	Xinjiang, China	365	370	46.8±15.9	45.21±16.4	PB	PCR	248	104	
	Feng DW	2016	Xinjiang, China	345	391	43.9±14.3	41.5±13.3	PB	PCR	250	87	
	Chi YH	2012	Xinjiang, China	200	200	58.5±11.8	58.3±11.5	PB	PCR-RFLP	116	82	
	Bora K	2017	Assam, India	100	100	43.1±11.6	43.0±11.6	PB	PCR-RFLP	62	35	
APOA1+83bp	Xie YJ	2011	Xinjiang, China	150	150	56.8±10.8	58.1±10.5	HB	PCR-RFLP	126	24	
	Ou HJ	2014	Xinjiang, China	241	246	49.1±0.7	48.3±0.8	HB	MALDI-TOF	160	80	
	Feng DW	2016	Xinjiang, China	365	370	46.8±15.9	45.2±16.4	PB	PCR	317	48	
	Feng DW	2016	Xinjiang, China	345	391	43.91±14.27	41.51±13.28	PB	PCR	299	44	
	Zhu H	2001	Sichuan, China	134	255	54.7±12.6	51.7±10.9	PB	PCR	123	11	
	Jia LQ	2005	Sichuan, China	118	109	58.1±8.9	54.5±9.6	NR	PCR	105	13	
	Bora K	2017	Assam, India	100	100	43.12 ± 11.64	42.95 ± 11.60	PB	PCR-RFLP	89	11	

SNP: single nucleotide polymorphism; PB: population-based; HB: hospital-based; HWE: Hardy-Weinberg equilibrium; NR: not reported.

Table 2: Summary of the meta-analysis of the association of APOA gene polymorphisms and hyperlipidemia.
SNP	Analysis model	Genotype model	Heterogeneity	OR (95% CI)	P	Publication bias P
APOA5-1131T>C	A	C vs T	73.9% / 0.000	1.996(1.529~2.606)	0.000	0.353
	D	TC+CC vs TT	71.2% / 0.000	2.179(1.565~3.035)	0.000	0.258
	R	CC vs TC+TT	5.5% / 0.390	2.790(2.055~3.789)	0.000	0.991
	C	CC vs TT	45.7% / 0.056	3.604(2.589~5.017)	0.000	0.899
		TC vs TT	67.2% / 0.001	1.932(1.395~2.674)	0.000	0.465
APOA1-75bp	A	A vs G	1.2% / 0.400	1.228(1.067~1.413)	0.004	0.086
	D	AA+GA vs GG	0.0% / 0.704	1.246(1.056~1.471)	0.009	0.067
	R	AA vs GA+GG	15.9% / 0.313	1.458(0.976~2.180)	0.066	0.086
	C	AA vs GG	17.4% / 0.304	1.520(1.008~2.291)	0.046	0.086
		GA vs GG	0.0% / 0.828	1.212(1.020~1.439)	0.029	0.221
APOA1+83bp	A	T vs C	0.0% / 0.472	0.928(0.771~1.116)	0.425	0.440
	D	TT+TC vs CC	0.0% / 0.478	0.950(0.780~1.157)	0.607	0.371
	R	TT vs TC+CC	0.0% / 0.799	0.310(0.076~1.271)	0.104	0.315
	C	TT vs CC	0.0% / 0.775	0.308(0.075~1.259)	0.101	0.346
		TC vs CC	0.0% / 0.607	0.967(0.793~1.180)	0.740	0.466

A: allelic model; D: dominant model; R: recessive model; C: codominant model; Publication bias P using Begg’s or Egger’s tests.

Table 3: Principal characteristics of the studies of APOB included in the review.
SNP	First author	Year	Area	Sample size	Age (y)	Source of control	Genotyping method	Cases	N/G
APOB Msp									
Cao WJ	2009	Xinjiang, China	100 90	46±11 44±11	HB	PCR-RFLP	0 4 9		
Chi YH	2012	Xinjiang, China	247 221	48.7±7.7 47.3±6.2	HB	PCR-RFLP	9 70 1		
Huang G	2011	Xinjiang, China	275 252	47.7±7.9 48.2±7.6	HB	PCR-RFLP	25 68 1		
Jin YN	2015	Chongqing, China	157 180	48.1±3.8 49.1±4.2	HB	DNA chips	0 26 1		
Chi YH	2012	Xinjiang, China	200 200	58.5±11.8 58.3±11.5	PB	PCR-RFLP	6 66 1		
Selma	2000	Sao Paulo, Brazil	177 100	58 44	HB	PCR	2 25 1		
APOB Xbal									
Qian JL	2010	Yunnan, China	91 76	46.9±11.4 47.5±8.1	HB	DNA chips	0 7 8		
Feng JS	1997	Guangdong, China	108 128	40-70	HB	DNA probe	0 8 1		
Ma ZZ	2012	Guangdong, China	250 250	45.5±13.20	PB	PCR-RFLP	0 52 1		
Chi YH	2012	Xinjiang, China	247 221	48.7±7.7 47.3±6.2	HB	PCR-RFLP	4 54 1		
Xie YJ	2011	Xinjiang, China	150 150	56.8±10.8 58.1±10.5	HB	PCR-RFLP	2 29 1		
Jin YN	2015	Chongqing, China	157 180	48.1±3.8 49.1±4.2	HB	DNA chips	0 28 1		
Zhang	2015	Beijing, China	100 100	60.0±5.0	HB	PCR	0 20 8		
Ou HJ	2014	Xinjiang, China	241 246	49.1±0.7 48.3±0.8	HB	MALDI-TOF	0 19 2		
Selma	2000	Sao Paulo, Brazil	177 100	58 44	HB	PCR	30 94 5		
Philippa	1987	London, U.K.	133 62	NR	HB	PCR-RFLP	43 59 3		
Gong LG	2003	Liaoning, China	115 150	54.2±11.7 52.5±13.1	HB	PCR-RFLP	1 29 8		
CHOONG	1999	Singapore	131 173	NR	HB	PCR-RFLP	0 25 1		
APOB EcoR									
Qian JL	2010	Yunnan, China	91 76	46.9±11.4 47.5±8.06	HB	DNA chips	0 13 7		
Ma ZZ	2012	Guangdong, China	250 250	45.5±13.20	PB	PCR-RFLP	0 41 2		
Huang G	2011	Xinjiang, China	275 252	47.7±7.9 48.2±7.6	HB	PCR-RFLP	12 73 1		
Xie YJ	2011	Xinjiang, China	150 150	56.8±10.8 58.1±10.5	HB	PCR-RFLP	1 55 9		
Jin YN	2015	Chongqing, China	157 180	48.1±3.8 49.1±4.2	HB	DNA chips	0 12 1		
Zhang	2015	Beijing, China	100 120	60.0±5.0	HB	PCR	1 19 8		
Ou HJ	2014	Xinjiang, China	241 246	49.1±0.7 48.3±0.8	HB	MALDI-TOF	0 19 2		
Chi YH	2012	Xinjiang, China	200 200	58.5±11.8 58.3±11.5	PB	PCR-RFLP	6 52 1		
CHOONG	1999	Singapore	131 173	NR	HB	PCR-RFLP	0 9 1		
Timirci	2010	Capa-Istanbul, Turkey	38 39	11.5±3.6 11.4±3.2	HB	PCR	0 4 3		

SNP: single nucleotide polymorphism; PB: population-based; HB: hospital-based; HWE: Hardy-Weinberg equilibrium; NR: not reported.

Table 4: Summary of meta-analysis results of the association of APOB gene polymorphisms and hyperlipidemia.
SNP	Analysis model	Genotype model	Heterogeneity $[I^2/P]$	OR [95% CI]	P	Publication bias P
APOB MspI	A	M- vs M+	0.0% / 0.731	0.892 / 0.756 to 1.053	0.178	0.452
D	M-M/M+ vs M+M+	0.0% / 0.716	0.868 / 0.716 to 1.053	0.152	0.707	
R	M-M vs M+ / M+M+	0.0% / 0.513	0.932 / 0.596 to 1.456	0.757	0.908	
C	M+M- vs M+M+	0.0% / 0.555	0.903 / 0.574 to 1.421	0.660	0.883	
	M+M- vs M+M+	0.0% / 0.654	0.864 / 0.705 to 1.057	0.156	0.746	
APOB XbaI	A	T vs C	72.4% / 0.000	1.444 / 1.061 to 1.966	0.020	0.732
D	TT+CT vs CC	73.5% / 0.000	1.360 / 0.943 to 1.962	0.100	0.945	
R	TT vs CT+CC	0.0% / 0.747	1.613 / 1.022 to 2.545	0.040	0.707	
C	TT vs CC	0.0% / 0.774	1.432 / 0.851 to 2.411	0.017	0.724	
	CT vs CC	73.5% / 0.000	1.322 / 0.912 to 1.917	0.140	0.837	
APOB Ecor	A	A vs G	70.0% / 0.000	1.333 / 0.942 to 1.885	0.104	0.474
D	AA+AG vs GG	72.9% / 0.000	1.366 / 0.924 to 2.020	0.118	0.283	
R	AA vs AG+GG	0.0% / 0.942	1.183 / 0.628 to 2.299	0.603	0.221	
C	AA vs GG	0.0% / 0.886	1.166 / 0.617 to 2.202	0.637	0.086	
	AG vs GG	72.6% / 0.000	1.356 / 0.913 to 2.015	0.131	0.371	

A: allelic model; D: dominant model; R: recessive model; C: codominant model; Publication bias P using Begg's or Egger's tests.

Table 5: Main characteristics of studies of APOE included in the review.
Year	Area	Sample size	Age (y)	Source of control	Genotyping method	Cases
2008	Beijing, China	210/94	58.48	NR	PCR-RFLP	155
2007	Xinjiang, China	100/91	48.7±10.5	43.1±10.8	PCR-RFLP	69
2007	Beijing, China	172/80	NR	HB	PCR-RFLP	124
2007	Hubei, China	165/108	60.5±8.3	63.8±6.2	ARMS-PCR	109
2001	Guangdong, China	163/87	56.4±3.2	58.0±2.4	PCR-RFLP	104
1996	Beijing, China	133/122	41.60	PB	PCR	88
2005	Sichuan, China	206/250	52	51	PCR-RFLP	135
2005	Hubei, China	113/108	62.5±7.2	63.8±6.2	ARMS-PCR	74
2005	Sichuan, China	103/146	56.9±8.5	56.3±9.8	PCR-RFLP	64
2004	Beijing, China	160/328	47.3±13.8	40.1±13.5	PCR-RFLP	114
2013	Jiangsu, China	102/100	48.4±9.7	50.2±15.1	DNA sequencing	64
2011	Jiangsu, China	212/100	54.6±11.9	50.2±15.1	DNA sequencing	127
2006	Shanxi, China	72/95	NR	ARMS-PCR	45	
2007	Beijing, China	96/95	60.0±8.3	NR	PCR	75
2006	Hubei, China	164/156	58.3±7.1	53.1±4.7	PCR-RFLP	101
2001	Sichuan, China	74/230	56.8±12.4	51.3±10.3	PCR-RFLP	56
2013	Jiangsu, China	93/100	56.0±11.85	50.2±15.1	DNA sequencing	57
2012	Jiangsu, China	212/100	54.6±11.85	50.2±15.1	DNA sequencing	127
2004	Sichuan, China	112/73	58.2±7.9	55.1±9.7	PCR-RFLP	68
2001	Sichuan, China	225/230	53.0±15.5	51.3±10.3	PCR-RFLP	156
2003	Amsterdam, Netherland	450/2018	10.8	NR	PCR	243
2018	Riyadh, Saudi Arabia	104/100	57.8±9.9	44.0±6.3	TaqMan	74
2000	Valencia, Spain	330/330	38.8±9.1	37.6±8.4	PCR	237
1988	Kumamoto, Japan	447/188	30.69	SRID	323	
2016	Zaragoza, Spain	288/220	47.9±11.5	44.8±16.0	RT-PCR	186
2011	New Delhi, India	219/352	42.0±7.9	35.2±9.6	PCR-RFLP	143
2012	Zaragoza, Spain	312/264	48.4±9.7	43.5±16.9	PCR	189
2010	Minas Gerais, Brazil	109/107	48.4±6.8	46.7±6.6	PCR-RFLP	77
1988	Paris, France	59/113	NR	PCR	35	
1988	Helsinki, Finland	21/21	45.2±0.8	46.7±1.5	PCR	2

SNP: single nucleotide polymorphism; PB: population-based; HB: hospital-based; HWE: Hardy-Weinberg equilibrium; NR: not reported; SRID: single radial immunodiffusion.

Table 6: Summary of the meta-analysis of the association of APOE gene polymorphisms and hyperlipidemia.
Genotype model	Heterogeneity: I^2/P	OR:95%CI	P	publication bias P
E2/E2	0.0%/0.634	1.746:1.081~2.819	0.023	0.131
E2/E3	50.3%/0.001	1.076:0.883~1.311	0.467	0.400
E2/E4	0.0%/0.790	1.693:1.227~2.336	0.001	0.054
E3/E4	67.8%/0.000	1.578:1.276~1.951	0.000	0.073
E4/E4	2.7%/0.424	2.346:1.723~3.195	0.000	0.851

Publication bias P using Begg's or Egger's tests.