M153R Mutation in a pH-Sensitive Green Fluorescent Protein Stabilizes Its Fusion Proteins

Yusuke V. Morimoto¹, Seiji Kojima², Keiichi Namba¹, Tohru Minamino¹,³*

¹ Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan, ² Division of Biological Science, Graduate School of Science, Nagoya University, Chikusaku, Nagoya, Japan, ³ Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan

Abstract

Background: Green fluorescent protein (GFP) and its fusion proteins have been used extensively to monitor and analyze a wide range of biological processes. However, proteolytic cleavage often removes GFP from its fusion proteins, not only causing a poor signal-to-noise ratio of the fluorescent images but also leading to wrong interpretations.

Methodology/Principal Findings: Here, we report that the M153R mutation in a ratiometric pH-sensitive GFP, pHluorin, significantly stabilizes its fusion products while the mutant protein still retaining a marked pH dependence of 410/470 nm excitation ratio of fluorescence intensity. The M153R mutation increases the brightness in vivo but does not affect the 410/470-nm excitation ratios at various pH values.

Conclusions/Significance: Since the pHluorin(M153R) probe can be directly fused to the target proteins, we suggest that it will be a potentially powerful tool for the measurement of local pH in living cells as well as for the analysis of subcellular localization of target proteins.

Introduction

Green fluorescent protein (GFP) and related fluorescent proteins have been utilized to monitor and analyze a wide range of biological processes such as gene expression, protein localization and cell motility. These fluorescent proteins can also be used as the indicator of Ca²⁺ or ATP concentrations, or pH because they provide a high sensitivity in detection and are not toxic to living cells [1–3]. A GFP-derivative, pHluorin, is a ratiometric pH indicator with excitation wavelength at 410 and 470 nm and emission at 508 nm [3]. The relative emission intensity of the indicator, a precise and quantitative pH measurement of living cells [1–3]. A GFP-derivative, pHluorin, is a ratiometric pH sensitive GFP, which provides a high sensitivity in detection and is not toxic to living cells. GFP fusion proteins are fairly efficient and useful method in various fields of biological sciences. However, the fusion proteins were susceptible to proteolytic digestion in the cell, making the high sensitivity pH imaging difficult.

Since local pH is one of the most important parameters for probing the activities of live cells, pH imaging is becoming an efficient and useful method in various fields of biological sciences. Unlike GFP itself, however, GFP fusion proteins are fairly susceptible to proteolytic cleavage and so GFP is often released from target proteins, resulting in the poor signal-to-noise ratio of the fluorescent images. We therefore tried to improve the stability of fusion proteins in the experimental system that we study.

The flagellar motor of Salmonella enterica is powered by the electrochemical proton gradient across the cytoplasmic membrane. Two integral membrane proteins, MotA and MotB, form a proton channel to couple proton flow to torque generation. An interaction of MotA with a rotor protein FliG is required for torque generation [5]. The rotation-dependent proton influx has been estimated to be about 1,200 protons per revolution [6]. Since a decrease in intracellular pH significantly reduces flagellar motor rotation [7,8], the proton release from the proton channel to the cytoplasm plays an important role in the torque generation process, and local pH near the motor must be tightly controlled. We therefore tried to measure local pH of the cytoplasmic side of the motor by expressing pHluorin fusion proteins to flagellar motor proteins, such as pHluorin-FliG and pHluorin-MotB. However, the fusion proteins were susceptible to proteolytic digestion in the cell, making the high sensitivity pH imaging difficult.

In this study, we show that the M153R mutation in pHluorin markedly improves the stability of its fusion proteins while the mutant protein still retaining the pH dependence of 410/470 nm excitation ratio of fluorescence intensity to be useful as a pH sensor.
Results

To investigate local pH near the bacterial flagellar motor, the ratiometric pHluorin probe must be localized to the motor. Since it has been reported that the GFP-FliG and GFP-MotB fusion proteins are partially functional [9,10], we fused pHluorin to the N-termini of FliG and MotB to produce Salmonella pHluorin-FliG and pHluorin-motB strains, respectively. However, these fusion proteins were unstable, and about a half of them were cleaved into a 47 kDa fragment as shown on the immunoblots (Figure 1A, lane 2 in both panels). Neither intact FliG nor MotB was observed, suggesting that the cleavage must occur within pHluorin. To identify the cleavage sites, a His8 tag was attached to pHluorin-MotB at its C terminus to facilitate protein purification. The cleavage product of pHluorin-MotB-His8 was purified by Ni-NTA affinity chromatography, and its molecular mass was measured by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The molecular mass was around 43.2–44.8 kDa. In search of possible proteolytic fragments having these masses, we identified possible cleavage sites to be at Met-153, Ala-154, Lys-162 or Ala-163 of pHluorin. Therefore, we carried out site-directed mutagenesis of these residues to see if any of such mutations have a stabilizing effect on the fusion proteins. The M153R mutation markedly stabilized both pHluorin-FliG and pHluorin-MotB (Figure 1A, lane 3 in both panels) while the other mutations showed no improvement (data not shown).

We next investigated whether the M153R mutation increases the signal to noise (S/N) ratio. Since the turnover of GFP-FliG between the cytoplasmic pool and functional motors does not occur [11], we analyzed the subcellular localization of pHluorin-FliG and pHluorin(M153R)-FliG by epi-illumination fluorescence microscopy. The M153R mutation substantially increased the number of fluorescent spots of pHluorin-FliG (Figure 1B). The fluorescence intensities of the pHluorin-FliG and pHluorin(M153R)-FliG spots were 1,065±278 A.U. (n = 109) and 3,560±1322 A.U. (n = 126), respectively, indicating that the M153R mutation resulted in a remarkable improvement in the S/N ratio of the fluorescent images.

To test whether the M153R mutation affects the brightness of pHluorin in vivo, we transformed a Salmonella wild-type strain, SJW1103, with a plasmid encoding pHluorin(M153R)-FliG on pKK223-3 and analyzed the fluorescent intensity with a spectrophotometer (Figure 2A). We used SJW1103 expressing pHluorin as a control. Immunoblotting with polyclonal GFP antibody revealed that the expression level of pHluorin(M153R) was the same as that of pHluorin in Figure 2A, inset and wild-type GFP (data not shown), indicating that the M153R mutation does not alter the stability of pHluorin itself. Interestingly, the fluorescent intensity of pHluorin(M153R) was approximately 2.5-fold brighter than that of pHluorin. When the fluorescence intensities of purified pHluorin and pHluorin(M153R) were measured at the same protein concentration, there was no difference in the fluorescence intensity (Figure 2B). This result indicates that the M153R mutation does not increase the intrinsic brightness of properly matured pHluorin molecules. Therefore, we conclude that the M153R mutation improves the folding efficiency of pHluorin in vivo.

It has been reported that the M153A mutation shifts the excitation wavelength of GFP(S65T) to a longer wavelength [12]. We therefore measured the excitation spectra of purified pHluorin and pHluorin(M153R) (Figure 3). The M153R mutation changed neither the excitation wavelengths nor the emission intensity ratios at the excitation wavelengths of 410 and 470 nm over a pH range from 5.5 to 8.5.

Discussion

GFP has been used to determine subcellular protein localization. A peptide linker between GFP and the target protein is required for the stability and function of fusion proteins. However, GFP is often removed from fusion proteins by proteolytic cleavage. Here, we directly fused the ratiometric pHluorin probe to the N-termini of Salmonella FliG and MotB and found that these fusion proteins are also unstable in vivo (Figure 1A). As pHluorin itself is...
stable (Figure 2, inset), the fusion to target proteins presumably induces a conformational change in pHluorin, resulting in proteolytic cleavage of the fusion proteins. Site-directed mutagenesis revealed that the M153R mutation in pHluorin considerably improved the stability of its fusion proteins (Figure 1A). The M153R mutation also increased not only the number of fluorescent spots of pHluorin-FliG in \(\textit{Salmonella} \) cells but also their fluorescence intensity, improving the S/N ratio of the images (Figure 1B). The M153R mutation did not change the 410/470-nm excitation ratios of pHluorin (Figure 3), indicating that pHluorin(M153R) can be used as a pH sensor. The 410/470-nm excitation ratios of pHluorin(M153R)-FliG-His6 also showed a similar pH-dependence (Figure 4). Since the pHluorin(M153R) probe can be directly fused to the target proteins, we believe that the pHluorin(M153R) probe can be a potentially powerful tool not only for the analysis of subcellular localization of target proteins but also for local pH measurement in living cells. We are currently developing a high-resolution pH imaging system using pHluorin(M153R) as a probe.

Materials and Methods

Bacteria, plasmids, DNA manipulations and media

Bacterial strains and plasmids used in this study are listed in Table 1. Procedures for DNA manipulation were carried out as described previously [13]. L-broth, T-broth and motility medium were prepared as described [7]. TcS plates were prepared as described by Maloy and Nunn [14]. Ampicillin and tetracycline were added to LB at a final concentration of 100 \(\mu \text{g/ml} \) and 15 \(\mu \text{g/ml} \), respectively.

Construction of \(\textit{Salmonella} \) strains expressing pHluorin-fusion proteins

To construct \(\textit{Salmonella} \) pHluorin-fliG, and pHluorin-motB strains, the fliG or motB gene on the chromosome was replaced by the gfp-fliG or gfp-motB allele, respectively, by using the \(\lambda \text{Red} \) homologous recombination system developed by Datsenko and Wanner [15]. First, the tetR1 genes were inserted into the 5'-end of fliG or motB to create \(\text{fliG tetR1} \) or \(\text{motB tetR1} \), respectively. Then, to replace the tetR1 genes by pHluorin (GenBank accession No. AF058694), the pHluorin or pHluorin(M153R) gene was amplified by PCR.
using pYC001 or pYVM001 as a template and primers shown in Table 2. The PCR products were purified using a QIAquick PCR purification kit (QIAGEN). The fliG::tetRA or motB::tetRA strain transformed pKD46 [15], which has a temperature-sensitive replicon, was grown in 5-ml L-broth containing ampicillin and 0.2% L-arabinose at 30°C until OD600 had reached 0.6. The cells were washed three times with ice-cold H2O and suspended in 50 ml of ice-cold H2O. 50 ml of cells were electroporated with 100 to 200 ng of purified PCR products using 0.1-cm cuvettes at 1.8 kV. Shocked cells were incubated in 1 ml L-broth for 1 h at 37°C. Then one-half were spread onto Tc S plates because tetracycline-resistant cells cannot grow in TcS plates [15] and incubated overnight at 42°C to remove pKD46. The constructs were confirmed by DNA sequencing. The pHluorin-fliG, pHluorin(M153R)-fliG, pHluorin-motB, and pHluorin(M153R)-motB alleles are placed under the control of their native promoters.

Preparation of whole cell proteins and immunoblotting
Salmonella cells were grown overnight at 30°C in T-broth with shaking. Cell pellets were suspended in a SDS-loading buffer and normalized by cell density to give a constant amount of cells. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting with polyclonal anti-FliG, anti-MotB and anti-GFP antibodies was carried out as described previously [16].

Table 1. Strains and Plasmids used in this study.

Strains and Plasmids	Relevant characteristics	Source or reference
E. coli BL21(DE3) pLysS	T7 expression host	Novagen
Salmonella SJW1103	Wild type for motility and chemotaxis	[19]
YVM1001 pHluorin-motB	This study	
YVM1002 pHluorin-fliG	This study	
YVM1003 pHluorin(M153R)-motB	This study	
YVM1004 pHluorin(M153R)-fliG	This study	
YVM001 motB::tetRA	This study	
YVM002 fliG::tetRA	This study	
Plasmids		
pGST-pHluorin	pGEX2T/GST-pHluorin	[3]
pYC001	pKK223-3/pHluorin	[8]
pNSK22pH	pTrc99A/MotA+ pHluorin-MotB-His8*	This study
pNSK22pH(M153R)	pTrc99A/MotA+ pHluorin(M153R)-MotB-His8*	This study
pYVM001	pKK223-3/pHluorin(M153R)	This study
pYVM007	pGEX2T/GST-pHluorin(M153R)	This study
pYVM013	pTrc99A/pHluorin(M153R)-FliG-His6	This study

*In this pHluorin-MotB-His8 fusion construct, N-terminal 28 residues of MotB (Met1-Lys28) are attached to the N-terminus of pHluorin as described before [9].

doi:10.1371/journal.pone.0019598.t001

Table 2. Primers used for construction of pHluorin-fliG and pHluorin-motB strains.

Name	Sequence
pH-motB_Fw	5'-gcagtgagaaccaacagcagcagcagct-5'
pH-motB_Rv	5'-gcagtgagaaccaacagcagcagcagctccttatttttagatcagctcagt-3'
pH-fliG_Fw	5'-gcagtgagaaccaacagcagcagcagctccttatttttagatcagctcagt-3'
pH-fliG_Rv	5'-gcagtgagaaccaacagcagcagcagctccttatttttagatcagctcagt-3'

doi:10.1371/journal.pone.0019598.t002
Site-directed mutagenesis

Site-directed mutagenesis was carried out using QuickChange site-directed mutagenesis method as described in the manufacturer’s instructions (Stratagene). The mutations were confirmed by DNA sequencing.

Fluorescence microscopy

Epi-fluorescence of pHluorin fusion proteins was observed by an inverted fluorescence microscope (IX-71, Olympus) with a 150 × oil immersion objective lens (UApol50XOTIRFM, NA 1.45, Olympus) and an Electron-Multiplying Charge-Coupled Device (EMCCD) camera (C9100-02, Hamamatsu Photonics) as described before [10].

Purification and Spectroscopy of pHluorin, pHluorin(M153R) and pHluorin(M153R)-FlIG-His₆

pHluorin and pHluorin(M153R) were purified as described before [8]. pHluorin-FlIG-His₆ was purified by Ni-NTA affinity chromatography as described [17]. Fluorescence excitation spectra of purified pHluorin, pHluorin(M153R), and pHluorin-FlIG-His₆ in buffers of defined pH were recorded on a fluorescence spectrophotometer (RF-5300PC, Shimadzu), and the 410/470-nm excitation ratios were calculated and converted to pH values based on the calibration curve previously generated.

Acknowledgments

We thank M. K. Macnab for critically reading the manuscript, helpful comments and continuous support and encouragement, J. Rothman for a gift of the pHluorin probe, and J. Armitage and J. Chandler for suggestions and advice on constructing a pHluorin-MotB fusion protein.

Author Contributions

Conceived and designed the experiments: YVM SK TM. Performed the experiments: YVM SK. Analyzed the data: YVM SK TM. Wrote the paper: YVM KN TM.

References

1. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca²⁺. Proc Natl Acad Sci USA 98: 3197–3202.
2. Imamura H, Nhat KP, Togawa H, Saito K, Iino R, et al. (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci USA 106: 15651–15656.
3. Minenbock G, De Angelis DA, Rothman JE (1996) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394: 192–195.
4. Hess ST, Heikal AA, Webb WW (2004) Fluorescence Photoconversion Kinetics in Novel Green Fluorescent Protein pH Sensors (pHluorins). J Phys Chem B 108: 10138–10148.
5. Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72: 19–54.
6. Meister M, Lowe G, Berg HC (1987) The proton flux through the bacterial flagellar motor. Cell 49: 643–650.
7. Minamino T, Imae Y, Oosawa F, Kobayashi Y, Oosawa K (2003) Effect of intracellular pH on the rotational speed of bacterial flagellar motors. J Bacteriol 185: 1190–1194.
8. Nakamura S, Kami-ike N, Yokota PJ, Namba K, Minamino T, et al. (2009) Effect of intracellular pH on the torque-speed relationship of bacterial proton-driven flagellar motor. J Mol Biol 386: 332–338.
9. Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, et al. (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443: 555–558.
10. Morimoto YV, Nakamura S, Kami-ike N, Namba K, Minamino T (2010) Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Mol Microbiol 78: 1117–1129.
11. Fukuoka H, Inoue Y, Terasawa S, Takahashi H, Ishiihama A (2010) Exchange of rotor components in functioning bacterial flagellar motor. Biochem Biophys Res Commun 394: 130–135.
12. Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6: 178–182.
13. Saji-Hamano Y, Minamino T, Macnab RM, Namba K (2004) Structural and functional analysis of the C-terminal cytoplasmic domain of FlhA, an integral membrane component of the type III flagellar protein export apparatus in Salmonella. J Mol Biol 343: 457–466.
14. Maloy SR, Nunn WD (1981) Selection for loss of tetracycline resistance by Escherichia coli J Bacteriol 145: 1110–1111.
15. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–6645.
16. Minamino T, Macnab RM (1999) Components of the Salmonella flagellar export apparatus and classification of export substrates. J Bacteriol 181: 1389–1394.
17. Minamino T, Macnab RM (2000) Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol Microbiol 35: 1052–1064.
18. Morimoto YV, Che Y-S, Minamino T, Namba K (2010) Proton-conductivity assay of plugged and unplugged MotA/B proton channel by cytoplasmic pHluorin expressed in Salmonella. FEBS Lett 584: 1268–1272.
19. Yamaguchi S, Fujita H, Sugata K, Taira T, Iino T (1984) Generic analysis of H2, the structural gene for phase-2 flagellum in Salmonella. J Gen Microbiol 130: 253–265.