A Weighted Version of the Mishou Theorem

Antanas Laurinčikasa, Darius Šiaučiūnasb and Gediminas Vadeikisa

aInstitute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University
Naugarduko g. 24, LT-03225 Vilnius, Lithuania
bInstitute of Regional Development, Šiauliai University
P. Višinskio g. 25, LT-76351 Šiauliai, Lithuania
E-mail (corresp.): darius.siauciunas@su.lt
E-mail: antanas.laurincikas@mif.vu.lt
E-mail: gediminas.vadeikis@mif.vu.lt

Received April 9, 2020; revised September 27, 2020; accepted September 27, 2020

Abstract. In 2007, H. Mishou obtained a joint universality theorem for the Riemann and Hurwitz zeta-functions \(\zeta(s) \) and \(\zeta(s, \alpha) \) with transcendental parameter \(\alpha \) on the approximation of a pair of analytic functions by shifts \((\zeta(s + i\tau), \zeta(s + i\tau, \alpha)) \), \(\tau \in \mathbb{R} \). In the paper, the Mishou theorem is generalized for the set of above shifts having a weighted positive lower density. Also, the case of a positive density is considered.

Keywords: Hurwitz zeta-function, Mishou theorem, Riemann zeta-function, universality.

AMS Subject Classification: 11M06; 11M41.

1 Introduction

The Riemann zeta-function \(\zeta(s) \), \(s = \sigma + it \), and the Hurwitz zeta-function \(\zeta(s, \alpha) \) with parameter \(0 < \alpha \leq 1 \) are defined, for \(\sigma > 1 \), by the Dirichlet series

\[
\zeta(s) = \sum_{m=1}^{\infty} \frac{1}{m^s} \quad \text{and} \quad \zeta(s, \alpha) = \sum_{m=0}^{\infty} \frac{1}{(m + \alpha)^s},
\]

and have analytic continuation to the whole complex plane, except for a simple pole at the point \(s = 1 \) with residue 1. The functions \(\zeta(s) \) and \(\zeta(s, \alpha) \) play an important role not only in analytic number theory but in mathematics in
general. The definitions of $\zeta(s)$ and $\zeta(s, \alpha)$ are similar, however, their analytic properties are quite different. For example, since the function $\zeta(s)$, for $\sigma > 1$, has the Euler product over primes

$$\zeta(s) = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1},$$

$\zeta(s) \neq 0$ in the half-plane $\sigma > 1$, while the function $\zeta(s, \alpha)$ has zeros in that half plane if $\alpha \neq 1$ or $1/2$. On the other hand, the functions $\zeta(s)$ and $\zeta(s, \alpha)$ have a common feature, they are universal in the sense that their shifts $\zeta(s + i\tau)$ and $\zeta(s + i\tau, \alpha)$ approximate wide classes of analytic functions. We recall that universality of the function $\zeta(s)$ was discovered by S.M. Voronin in [31]. For a statement of the Voronin theorem, it is convenient to use the following notation. For $D = \{s \in \mathbb{C} : 1/2 < \sigma < 1\}$, denote by K the class of compact subsets of the strip D with connected complements, by $H(K)$ with $K \in K$ the class of continuous functions on K that are analytic in the interior of K, and by $H_0(K)$ the subclass of $H(K)$ of non-vanishing functions on K. Then the modern version of the Voronin theorem, see, for example, [1, 6, 13, 30] asserts that, for every $K \in K$, $f(s) \in H_0(K)$, and $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas}\left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + i\tau) - f(s)| < \varepsilon \right\} > 0.$$

The latter inequality shows that there are infinitely many shifts $\zeta(s + i\tau)$ approximating a given function $f(s) \in H_0(K)$. Here $\operatorname{meas}A$ denotes the Lebesgue measure of a measurable set $A \subset \mathbb{R}$.

Universality of the Hurwitz zeta-function is a more complicated problem. At the moment, the following result is known. Suppose that α is a transcendental or rational $\neq 1, 1/2$. Then, for every $K \in K$, $f(s) \in H(K)$, and $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas}\left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + i\tau, \alpha) - f(s)| < \varepsilon \right\} > 0.$$

The case of rational α was obtained by Voronin [32] and B. Bagchi [1], while the case of transcendental α was treated by S.M. Gonek [6], and, by a different method, in [23]. In [14], the transcendence of α was replaced by a weaker condition on the linear independence of the set $L(\alpha) = \{\log(m + \alpha) : m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}\}$ over the field of rational numbers \mathbb{Q}.

H. Mishou in [29] began to study a joint approximation property of the functions $\zeta(s)$ and $\zeta(s, \alpha)$. More precisely, he proved that if α is transcendental, then, for every $K_1, K_2 \in K$, $f_1(s) \in H_0(K_1)$, $f_2 \in H(K_2)$ and $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas}\left\{ \tau \in [0, T] : \sup_{s \in K_1} |\zeta(s + i\tau) - f(s)| < \varepsilon, \right.\left.\sup_{s \in K_2} |\zeta(s + i\tau, \alpha) - f(s)| < \varepsilon \right\} > 0.$$

The Mishou theorem is the first so-called mixed joint universality theorem because the function $\zeta(s)$ has Euler’s product over primes, while the function
\(\zeta(s, \alpha)\) with transcendental \(\alpha\) has no such a product. Mixed joint universality theorems were studied in [2, 5, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 22, 24].

The aim of this paper, is a joint weighted universality theorem for the functions \(\zeta(s)\) and \(\zeta(s, \alpha)\). The weighted universality of zeta-functions was began to study in [12]. In weighted universality theorems, the positivity of a lower density of the shifts approximating a given analytic function is replaced by the positivity of that weighted analogue. Let \(w(\tau)\) be positive function for \(\tau \geq T_0 > 0\) such that

\[
\lim_{T \to \infty} W(T, w) = \infty, \quad W(T, w) = \int_{T_0}^{T} w(\tau) \, d\tau,
\]

and, for every interval \([a, b] \subset [T_0, \infty)\), the variation \(V_{\alpha}^b w\) satisfies the inequality \(V_{\alpha}^b w \leq c w(a)\) with certain \(c > 0\). Moreover, let \(I(A)\) denote the indicator function of the set \(A\). Under the above hypotheses on the weight function \(w\), it was obtained in [12] that, for every \(K \in \mathcal{K}, f(s) \in H_0(K),\) and \(\varepsilon > 0,\)

\[
\liminf_{T \to \infty} \frac{1}{W(T, w)} \int_{T_0}^{T} w(\tau) I\left(\left\{\tau \in [T_0, T] : \sup_{s \in K} |\zeta(s + i\tau,f(s))| < \varepsilon \right\}\right) \, d\tau > 0.
\]

A weighted discrete universality for \(\zeta(s)\) was proved in [25]. Weighted universality theorems for periodic zeta-functions were obtained in [26, 27].

A weighted universality theorem for the Hurwitz zeta-function was proved in [3]. Denote by \(W\) the above class of weight functions.

Theorem 1. Suppose that \(\alpha\) is transcendental and \(w \in W\). Let \(K \in \mathcal{K}\) and \(f(s) \in H(K)\). Then, for every \(\varepsilon > 0,\)

\[
\lim_{T \to \infty} \frac{1}{W(T, w)} \int_{T_0}^{T} w(\tau) I\left(\left\{\tau \in [T_0, T] : \sup_{s \in K} |\zeta(s + i\tau, f(s))|^2 < \varepsilon \right\}\right) \, d\tau > 0.
\]

The main result of this paper is the following weighted theorem.

Theorem 2. Suppose that \(\alpha\) is transcendental and \(w \in W\). Let \(K_1, K_2 \in \mathcal{K}\) and \(f(s) \in H_0(K_1), f_2(s) \in H(K_2)\). Then, for every \(\varepsilon > 0,\)

\[
\liminf_{T \to \infty} \frac{1}{W(T, w)} \int_{T_0}^{T} w(\tau) I\left(\left\{\tau \in [T_0, T] : \sup_{s \in K_1} |\zeta(s + i\tau, f(s))| < \varepsilon, \sup_{s \in K_2} |\zeta(s + i\tau, f(s))| < \varepsilon \right\}\right) \, d\tau > 0.
\]

Moreover, the limit

\[
\lim_{T \to \infty} \frac{1}{W(T, w)} \int_{T_0}^{T} w(\tau) I\left(\left\{\tau \in [T_0, T] : \sup_{s \in K_1} |\zeta(s + i\tau, f(s))| < \varepsilon, \sup_{s \in K_2} |\zeta(s + i\tau, f(s))| < \varepsilon \right\}\right) \, d\tau > 0
\]

exists for all but at most countably many \(\varepsilon > 0\).

If \(w(\tau) = 1\), then the first assertion of Theorem 2 reduces to the Mishou theorem [29]. For example, we may take \(w(\tau) = \tau \) and \(\alpha = 1/e\).

For the proof of Theorem 2, we will use the probabilistic approach based on weak convergence of probability measures in the space of analytic functions.

Math. Model. Anal., 26(1):21–33, 2021.
2 A weighted limit theorem on the product of two tori

In what follows, we denote by $B(X)$ the Borel σ-field of the space X, by P the set of all prime numbers, and $N_0 = \mathbb{N} \cup \{0\}$.

Let $\gamma = \{s \in \mathbb{C} : |s| = 1\}$. Define two tori $\Omega_1 = \prod_{p \in P} \gamma_p$ and $\Omega_2 = \prod_{m \in N_0} \gamma_m$, where $\gamma_p = \gamma$ for all $p \in P$ and $\gamma_m = \gamma$ for all $m \in N_0$. With product topology and pointwise multiplication, the infinite-dimensional tori Ω_1 and Ω_2 are compact topological Abelian groups. Therefore, $\Omega = \Omega_1 \times \Omega_2$ is again a compact topological Abelian group. Hence, on $(\Omega, B(\Omega))$, the probability Haar measure m_H can be defined, and we obtain the probability space $(\Omega, B(\Omega), m_H)$. Denote by $\omega_1(p)$ the pth component of an element $\omega_1 \in \Omega_1$, $p \in P$, and by $\omega_2(m)$ the mth component of an element $\omega_2 \in \Omega_2$, $m \in N_0$. The elements of Ω are of the form $\omega = (\omega_1, \omega_2)$.

In this section, we will consider the weak convergence for

$$Q_{T,w}(A) = \frac{1}{W(T,w)} \int_{T_0}^{T} w(\tau) I (\{\tau \in [T_0,T] : ((p^{-i\tau} : p \in P), ((m+\alpha)^{-i\tau} : m \in N_0)) \in A\}) \, d\tau, \quad A \in B(\Omega).$$

Theorem 3. Suppose that α is transcendental and $w \in W$. Then $Q_{T,w}$ converges weakly to the Haar measure m_H as $T \to \infty$.

Proof. The characters of the group Ω are of the form

$$\prod_{p \in P} \omega_1^{k_p}(p) \prod_{m \in N_0} \omega_2^{l_m}(m),$$

where the sign “$'$” means that only a finite number of integers k_p and l_m are distinct from zero. Therefore, the Fourier transform $g_{T,w}(k,l)$, $k = (k_p : k_p \in \mathbb{Z}, p \in P)$, $l = (l_m : l_m \in \mathbb{Z}, m \in N_0)$, of $Q_{T,w}$ is defined by

$$g_{T,w}(k,l) = \int_{\Omega} \prod_{p \in P} \omega_1^{k_p}(p) \prod_{m \in N_0} \omega_2^{l_m}(m) \, dQ_{T,w}.$$

Therefore, by the definition of $Q_{T,w}$,

$$g_{T,w}(k,l) = \frac{1}{W(T,w)} \int_{T_0}^{T} w(\tau) \prod_{p \in P} p^{-i k_p \tau} \prod_{m \in N_0} (m+\alpha)^{-i l_m \tau} \, d\tau$$

$$= \frac{1}{W(T,w)} \int_{T_0}^{T} w(\tau) \exp \left\{ -i \tau \left(\sum_{p \in P} k_p \log p + \sum_{m \in N_0} l_m \log(m+\alpha) \right) \right\} \, d\tau. \quad (2.1)$$

Clearly,

$$g_{T,w}(0,0) = \frac{1}{W(T,w)} \int_{T_0}^{T} w(\tau) \, d\tau = 1. \quad (2.2)$$
Suppose that \((k, l) \neq (0, 0)\). Then

\[
A(k, l) \overset{\text{def}}{=} \sum_{p \in \mathbb{P}}' k_p \log p + \sum_{m \in \mathbb{N}_0} ' l_m \log (m + \alpha) \neq 0. \tag{2.3}
\]

Actually, if the latter inequality is not true, then

\[
\prod_{p \in \mathbb{P}}' p^{k_p} \prod_{m \in \mathbb{N}_0} ' (m + \alpha)^{l_m} = 1.
\]

From this, it follows that

\[
\prod_{m \in \mathbb{N}_0} ' (m + \alpha)^{l_m}
\]

is a rational number. However, this contradicts the transcendence of \(\alpha\). If all \(l_m = 0\), then \(\sum_{p \in \mathbb{P}}' k_p \log p \neq 0\) because the set \(\{\log p : p \in \mathbb{P}\}\) is linearly independent over the field of rational numbers. Thus, (2.3) is true. Now, by (2.1), we find

\[
g_{T,w}(k, l) = \frac{1}{-i W(T, w)A(k, l)} \int_{T_0}^T w(\tau) \exp\{-i\tau A(k, l)\}
\]

\[
\ll (W(T, w)|A(k, l)|)^{-1} (1 + \int_{T_0}^T |dw(\tau)|) \ll (W(T, w)|A(k, l)|)^{-1}
\]

in view of a property of the variation of \(w(\tau)\). Since \(\lim_{T \to \infty} W(T, w) = \infty\), this shows that

\[
\lim_{T \to \infty} g_{T,w}(k, l) = 0.
\]

Therefore, by (2.2),

\[
\lim_{T \to \infty} g_{T,w}(k, l) = \begin{cases} 1 & \text{if } (k, l) = (0, 0), \\ 0 & \text{if } (k, l) \neq (0, 0), \end{cases}
\]

and the theorem is proved because the right-hand side of the latter equality is the Fourier transform of the Haar measure \(m_H\). \(\Box\)

3 Case of absolute convergence

Theorem 3 implies a weighted joint limit theorem in the space \(H^2(D)\), where \(H(D)\) is the space of analytic functions on \(D\) endowed with the topology of uniform convergence on compacta. Thus, let \(\theta > 1/2\) be a fixed number, for \(m, n \in \mathbb{N}\),

\[
v_n(m) = \exp \left\{ - \left(\frac{m}{n} \right)^\theta \right\},
\]

and, for \(m \in \mathbb{N}_0, n \in \mathbb{N}\),

\[
v_n(m, \alpha) = \exp \left\{ - \left(\frac{m + \alpha}{n + \alpha} \right)^\theta \right\}.
\]
Define the series
\[\zeta_n(s) = \sum_{m=1}^{\infty} \frac{v_n(m)}{m^s} \quad \text{and} \quad \zeta_n(s, \alpha) = \sum_{m=0}^{\infty} \frac{v_n(m, \alpha)}{(m + \alpha)^s}, \]
Then the latter series are absolutely convergent for \(\sigma > 1/2 \), see [13, 23], respectively. For brevity, let
\[\zeta_n(s, \alpha) = (\zeta_n(s), \zeta_n(s, \alpha)). \]
Extend the functions \(\omega_1(p) \), to the set \(\mathbb{N} \) by the formula
\[\omega_1(m) = \prod_{p | m} \omega_1(p), \quad m \in \mathbb{N}, \]
and, additionally to \(\zeta_n(s) \) and \(\zeta_n(s, \alpha) \), define
\[\zeta_n(s, \omega_1) = \sum_{m=1}^{\infty} \frac{\omega_1(m)v_n(m)}{m^s} \quad \text{and} \quad \zeta_n(s, \omega_2, \alpha) = \sum_{m=0}^{\infty} \frac{\omega_2(m)v_n(m, \alpha)}{(m + \alpha)^s}, \]
and put \(\zeta_n(s, \omega, \alpha) = (\zeta_n(s, \omega_1), \zeta_n(s, \omega_2, \alpha)). \) Obviously, the series \(\zeta_n(s, \omega_1) \) and \(\zeta_n(s, \omega_2, \alpha) \) are absolutely convergent for \(\sigma > 1/2 \) as well.
Consider the function \(u_n : \Omega \to H^2(D) \) given by \(u_n(\omega) = \zeta_n(s, \omega, \alpha). \) Since the above series are absolutely convergent for \(\sigma > 1/2 \), the function \(u_n(\omega) \) is continuous. For \(A \in \mathcal{B}(H^2(D)) \), define
\[\mathcal{P}_{T,n,w}(A) = \frac{1}{W(T, w)} \int_{T_0}^{T} w(\tau) I \left(\{ \tau \in [T_0, T] : \zeta_n(s + i\tau, \alpha) \in A \} \right) \, d\tau. \]
Then we have \(\mathcal{P}_{T,n,w}(A) = Q_{T,w}(u^{-1}_n A). \) Thus, the equality \(\mathcal{P}_{T,n,w} = Q_{T,w}u^{-1} \) is true. This, the continuity of \(u_n(\omega) \), Theorem 3 together with Theorem 5.1 of [4] lead to the following theorem.

Theorem 4. Suppose that \(\alpha \) is transcendental and \(w \in W \). Then \(\mathcal{P}_{T,n,w} \) converges weakly to the measure \(V_n \equiv m_Hu_n^{-1} \) as \(T \to \infty \).

The measure \(V_n \) plays an important role in the proof of the limit theorem for
\[\mathcal{P}_{T,w}(A) = \frac{1}{W(T, w)} \int_{T_0}^{T} w(\tau) I \left(\{ \tau \in [T_0, T] : \zeta(s + i\tau, \alpha) \in A \} \right) \, d\tau, \]
where \(\zeta(s, \alpha) = (\zeta(s), \zeta(s, \alpha)). \) From the proof of the Mishou theorem [29], the following properties of \(V_n \) follows. On the probability space \((\Omega, \mathcal{B}(\Omega), m_H) \), define the \(H^2(D) \)-valued random element
\[\zeta(s, \omega, \alpha) = \left(\prod_{p \in \mathbb{P}} \left(1 - \frac{\omega_1(p)}{p^s} \right)^{-1}, \sum_{m=0}^{\infty} \frac{\omega_2(m)}{(m + \alpha)^s} \right), \]
and let P_{ζ} be the distribution of $\zeta(s, \omega, \alpha)$, i.e.,

$$P_{\zeta}(A) = m_H \{ \omega \in \Omega : \zeta(s, \omega, \alpha) \in A \}, \quad A \in B(H^2(D)).$$

Moreover, let $S = \{ g \in H(D) : g(s) \neq 0 \text{ or } g(s) \equiv 0 \}$. Under the above notation, we have

Lemma 1. Suppose that α is transcendental. Then V_n converges weakly to P_{ζ} as $n \to \infty$. Moreover, the support of P_{ζ} is the set $S \times H(D)$.

To prove that $P_{T,w}$, as $T \to \infty$, also converges weakly to the measure P_{ζ}, some approximation of $\zeta(s, \alpha)$ by $\zeta_n(s, \alpha)$ is needed.

4 Approximation in the mean

For $g_1, g_2 \in H(D)$, define

$$\rho(g_1, g_2) = \sum_{l=1}^{\infty} 2^{-l} \frac{\sup_{s \in K_l} |g_1(s) - g_2(s)|}{1 + \sup_{s \in K_l} |g_1(s) - g_2(s)|},$$

where $\{K_l : l \in \mathbb{N}\} \subset D$ is a sequence of compact subsets such that $D = \bigcup_{l=1}^{\infty} K_l$, $K_l \subset K_{l+1}$ for all $l \in \mathbb{N}$, and if $K \subset D$ is a compact set, then K lies in some K_l. Then ρ is a metric on $H(D)$ that induces its topology of uniform convergence on compacts.

Now, let $g_1 = (g_{11}, g_{12}), g_2 = (g_{21}, g_{22}) \in H^2(D)$. Then putting

$$\rho(g_1, g_2) = \max_{1 \leq j \leq 2} \rho(g_{1j}, g_{2j})$$

gives a metric on $H^2(D)$ inducing the product topology.

The following statement is true.

Theorem 5. Suppose that $w \in W$. Then

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{W(T, w)} \int_{T_0}^{T} w(\tau) \rho \left(\zeta(s + i\tau, \alpha), \zeta_n(s + i\tau, \alpha) \right) d\tau = 0$$

for all $0 < \alpha \leq 1$.

Proof. By the definition of the metric ρ, it suffices to prove the equalities

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{W(T, w)} \int_{T_0}^{T} w(\tau) \rho \left(\zeta(s + i\tau), \zeta_n(s + i\tau) \right) d\tau = 0 \quad (4.1)$$

and

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{W(T, w)} \int_{T_0}^{T} w(\tau) \rho \left(\zeta(s + i\tau, \alpha), \zeta_n(s + i\tau, \alpha) \right) d\tau = 0. \quad (4.2)$$

Math. Model. Anal., 26(1):21–33, 2021.
Obviously, (4.1) is a corollary of (4.2) with \(\alpha = 1 \). Moreover, to prove (4.2) it suffices to show that, for every compact set \(K \subset D \),
\[
\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{W(T, w)} \int_{T_0}^{T} w(\tau) \sup_{s \in K} |\zeta(s+i\tau, \alpha) - \zeta_n(s+i\tau, \alpha)| \, d\tau = 0. \tag{4.3}
\]
Let
\[
l_n(s, \alpha) = \frac{s}{\theta} \Gamma \left(\frac{s}{\theta} \right) (n+\alpha)^s, \quad n \in \mathbb{N},
\]
where \(\Gamma(s) \) is the Euler gamma-function. Then the classical Mellin formula implies, for \(\sigma > 1/2 \), the equality
\[
\zeta_n(s, \alpha) = \frac{1}{2\pi i} \int_{\theta-i\infty}^{\theta+i\infty} \zeta(s+z, \alpha) l_n(z, \alpha) \frac{dz}{z}. \tag{4.4}
\]
We take an arbitrary compact set \(K \subset D \), and fix \(\varepsilon > 0 \) such that \(1/2 + 2\varepsilon \leq \sigma \leq 1 - \varepsilon \) for points \(s = \sigma + iv \in K \). Then, by (4.4) and the residue theorem, for \(\theta_1 > 0 \),
\[
\zeta_n(s, \alpha) - \zeta(s, \alpha) = \frac{1}{2\pi i} \int_{-\theta_1-i\infty}^{-\theta_1+i\infty} \zeta(s+z, \alpha) l_n(z, \alpha) \frac{dz}{z} + R_n(s, \alpha), \tag{4.5}
\]
where \(R_n(s, \alpha) = l_n(1-s, \alpha)/(1-s) \). Suppose that \(\theta_1 = \sigma - \varepsilon - 1/2 \). Then (4.5) shows that, for \(s \in K \),
\[
|\zeta_n(s, \alpha) - \zeta(s, \alpha)| \leq \frac{1}{2\pi} \int_{-\infty}^{\infty} |\zeta(s+i\tau - \theta_1 + it, \alpha)| \left| \frac{l_n(-\theta_1 + it, \alpha)}{|-\theta_1 + it|} \right| \, dt + |R_n(s+i\tau, \alpha)|.
\]
Hence, after shifting \(v + t \) to \(t \), we obtain
\[
\frac{1}{W(T, w)} \int_{T_0}^{T} w(\tau) \sup_{s \in K} |\zeta(s+i\tau, \alpha) - \zeta_n(s+i\tau, \alpha)| \, d\tau \ll I_1 + I_2, \tag{4.6}
\]
where
\[
I_1 = \int_{-\infty}^{\infty} w(\tau) \left(\frac{1}{W(T, w)} \int_{T_0}^{T} |\zeta(1/2 + \varepsilon + i(t+\tau), \alpha)| \, d\tau \right) \times \sup_{s \in K} \frac{|l_n(1/2 + \varepsilon - s + it, \alpha)|}{|1/2 + \varepsilon - s + it|} \, dt,
\]
\[
I_2 = \frac{1}{W(T, w)} \int_{T_0}^{T} w(\tau) \sup_{s \in K} |R_n(s+i\tau, \alpha)| \, d\tau.
\]
It is well known that \(\Gamma(\sigma + it) \ll \exp\{-c|t|\} \) uniformly in \(\sigma_1 \leq \sigma \leq \sigma_2 \) for every \(\sigma_1 < \sigma_2 \) with an absolute constant \(c > 0 \). Therefore, putting \(\theta = 1/2 + \varepsilon \), we find that, for \(s \in K \),
\[
\frac{|l_n(1/2 + \varepsilon - s + it, \alpha)|}{|1/2 + \varepsilon - s + it|} = \frac{(n+\alpha)^{1/2+\varepsilon-\sigma}}{\theta} \left| \Gamma \left(\frac{1/2 + \varepsilon - \sigma}{\theta} + \frac{i(t-\nu)}{\theta} \right) \right| \ll_{\alpha} \frac{n^{-\varepsilon}}{\theta} \exp \left\{ -c \frac{|t-\nu|}{\theta} \right\} \ll_{K, \alpha} n^{-\varepsilon} \exp \{-c_1|t|\}, \tag{4.7}
\]
with $c_1 > 0$. In [3] it was obtained that, for $\sigma, 1/2 < \sigma < 1$, and $t \in \mathbb{R}$,

$$
\int_{T_0}^{T} w(\tau) |\zeta(\sigma + i(t + \tau), \alpha)|^2 \, dt \ll W(t, w)(1 + |t|^2).
$$

Hence,

$$
\int_{T_0}^{T} w(\tau) |\zeta(\sigma + i(t + \tau), \alpha)|^2 \, d\tau
\ll \left(\int_{T_0}^{T} w(\tau) \, d\tau \int_{T_0}^{T} w(\tau) |\zeta(1/2 \pm \varepsilon + i(t + \tau), \alpha)|^2 \, d\tau \right)^{1/2}
\ll W(t, w)(1 + |t|^2).
$$

This together with (4.7) shows that

$$
I_1 \ll_K n^{-\varepsilon} \int_{-\infty}^{\infty} (1 + |t|) \exp\{-c_1|t|\} \, dt \ll_K n^{-\varepsilon}. \tag{4.8}
$$

Similarly, we find that, for $s \in K$,

$$
|R_n(s + i\tau, \alpha)| \ll_K n^{1-\sigma} \exp\left\{-c_2 \frac{|\tau - v|}{\theta}\right\}
\ll_K n^{1-\sigma} \exp\{ -c_2 |\tau| \}
$$

with $c_2 > 0$. Thus,

$$
I_2 \ll_K n^{1/2 - 2\varepsilon} \frac{1}{W(T, w)} \int_{T_0}^{T} w(\tau) \exp\{-c_2|\tau|\} \, d\tau
\ll_K n^{1/2 - 2\varepsilon} \frac{1}{W(T, w)}.
$$

If $T \to \infty$, then $I_2 \to 0$, because $W(T, w) \to \infty$. Moreover, by (4.8), if $n \to \infty$, then $I_1 \to 0$. Therefore, (4.6) implies (4.3). The lemma is proved. \(\square\)

5 A limit theorem for $\zeta(s, \alpha)$

Now we are ready to prove the weak convergence for $P_{T, w}$ as $T \to \infty$.

Theorem 6. Suppose that α is transcendental and $w \in W$. Then $P_{T, w}$ converges weakly to the measure P_{ζ} as $T \to \infty$.

Proof. On a certain probability space with measure μ, define a random variable $\theta_{T, w}$ by

$$
\mu\{\theta_{T, w} \in A\} = \frac{1}{W(T, w)} \int_{T_0}^{T} w(\tau) I(A) \, d\tau, \quad A \in \mathcal{B}(\mathbb{R}).
$$

Consider the $H^2(D)$-valued random element

$$
X_{T, n, w} = X_{T, n, w}(s) = \zeta_n(s + i\theta_{T, w}, \alpha).
$$

Then, in view of Theorem 4,

$$
X_{T, n, w} \xrightarrow{D_{T \to \infty}} Y_n, \tag{5.1}
$$

Math. Model. Anal., 26(1):21–33, 2021.
where Y_n is the $H^2(D)$-valued random element with the distribution V_n. Lemma 1 implies the relation

$$Y_n \xrightarrow{\mathcal{D}}_{n \to \infty} P_{\zeta}.$$

Moreover, an application of Theorem 5 shows that, for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \mu \left(\rho \left(X_{T,w}(s), X_{T,n,w}(s) \right) \right) \geq \varepsilon$$

$$\ll \lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{\varepsilon W(T,w)} \int_{T_0}^{T} w(\tau) \rho \left(\zeta(s+i\tau, \alpha), \zeta_n(s+i\tau, \alpha) \right) \, d\tau = 0, \quad (5.2)$$

where the $H^2(D)$-valued random element $X_{T,w} = X_{T,w}(s)$ is defined by

$$X_{T,w}(s) = \zeta(s + i\theta_{T,w}, \alpha).$$

Now, relations (5.1)–(5.2) show that all hypotheses of Theorem 4.2 from [4] are satisfied. Therefore, we obtain that

$$X_{T,w} \xrightarrow{\mathcal{D}}_{T \to \infty} P_{\zeta},$$

and this is equivalent to the assertion of the theorem. \square

6 Proof of universality

Theorem 2 follows easily from Theorem 6 and the Mergelyan theorem on the approximation of analytic functions by polynomials [28].

Proof. (Proof of Theorem 2). By the Mergelyan theorem, there exist polynomials $p_1(s)$ and $p_2(s)$ such that

$$\sup_{s \in K_1} \left| f_1(s) - e^{p_1(s)} \right| < \frac{\varepsilon}{2}, \quad \sup_{s \in K_2} \left| f_2(s) - p_2(s) \right| < \frac{\varepsilon}{2}. \quad (6.1)$$

Define the set

$$G_\varepsilon = \left\{ g_1, g_2 \in H(D) : \sup_{s \in K_1} \left| g_1(s) - e^{p_1(s)} \right| < \frac{\varepsilon}{2}, \sup_{s \in K_2} \left| g_2(s) - p_2(s) \right| < \frac{\varepsilon}{2} \right\}.$$

We observe that, in virtue of Lemma 1, $(e^{p_1(s)}, p_2(s))$ is an element of the support of the measure P_ζ. Since G_ε is an open neighbourhood of an element of the support of P_ζ, the inequality

$$P_\zeta(G_\varepsilon) > 0 \quad (6.2)$$

is true. Therefore, using the equivalent of the weak convergence of probability measures in terms of open sets and taking into account Theorem 6, we have

$$\liminf_{T \to \infty} P_{T,w}(G_\varepsilon) \geq P_\zeta(G_\varepsilon) > 0.$$
Hence, by the definitions of $P_{T,w}$ and G_{ε},

$$
\lim_{T \to \infty} \inf \frac{1}{W(T, w)} \int_{T_0}^{T} w(\tau) I \{ \tau \in [T_0, T] : \sup_{s \in K_1} \left| \zeta(s + i\tau) - e^{p_1(s)} \right| < \frac{\varepsilon}{2} , \sup_{s \in K_2} \left| \zeta(s + i\tau, \alpha) - p_2(s) \right| < \frac{\varepsilon}{2} \} d\tau > 0.
$$

(6.3)

It remains to replace $e^{p_1(s)}$ and $p_2(s)$ by $f_1(s)$ and $f_2(s)$, respectively. Suppose that τ satisfy inequalities

$$
\sup_{s \in K_1} \left| \zeta(s + i\tau) - e^{p_1(s)} \right| < \frac{\varepsilon}{2} , \quad \sup_{s \in K_2} \left| \zeta(s + i\tau, \alpha) - p_2(s) \right| < \frac{\varepsilon}{2}.
$$

Then inequalities (6.1) imply

$$
\sup_{s \in K_1} \left| \zeta(s + i\tau) - f_1(s) \right| < \varepsilon , \quad \sup_{s \in K_2} \left| \zeta(s + i\tau, \alpha) - f_2(s) \right| < \varepsilon.
$$

Consequently,

$$
\left\{ \tau \in [T_0, T] : \sup_{s \in K_1} \left| \zeta(s + i\tau) - e^{p_1(s)} \right| < \frac{\varepsilon}{2} , \sup_{s \in K_2} \left| \zeta(s + i\tau, \alpha) - p_2(s) \right| < \frac{\varepsilon}{2} \right\}
\subset
\left\{ \tau \in [T_0, T] : \sup_{s \in K_1} \left| \zeta(s + i\tau) - f_1(s) \right| < \varepsilon , \sup_{s \in K_2} \left| \zeta(s + i\tau, \alpha) - f_2(s) \right| < \varepsilon \right\}.
$$

This and (6.3) prove the first assertion of the theorem.

Define one more set

$$
\hat{G}_{\varepsilon} = \left\{ g_1, g_2 \in H(D) : \sup_{s \in K_1} \left| g_1(s) - f_1(s) \right| < \varepsilon , \sup_{s \in K_2} \left| g_2(s) - f_2(s) \right| < \varepsilon \right\}.
$$

Then the boundaries $\partial \hat{G}_{\varepsilon_1}$ and $\partial \hat{G}_{\varepsilon_2}$ do not intersect for different positive ε_1 and ε_2. This shows that the set \hat{G}_{ε} is a continuity set of the measure P_{ζ} for all but at most countably many $\varepsilon > 0$. Therefore, using the equivalent of weak convergence of probability measures in terms of continuity sets, we obtain by Theorem 6 that

$$
\lim_{T \to \infty} P_{T,w}(\hat{G}_{\varepsilon}) = P_{\zeta}(\hat{G}_{\varepsilon})
$$

(6.4)

for all but at most countably many $\varepsilon > 0$. Moreover, inequalities (6.1) imply the inclusion $G_{\varepsilon} \subset \hat{G}_{\varepsilon}$. Thus, by (6.2), the inequality $P_{\zeta}(\hat{G}_{\varepsilon}) > 0$ holds. This, the definitions of $P_{T,w}$ and \hat{G}_{ε}, and (6.4) prove the second assertion of the theorem. \square

Acknowledgements

The research of the first author is funded by the European Social Fund (project No. 09.3.3-LMT-K-712-01-0037) under grant agreement with the Research Council of Lithuania (LMT LT).
References

[1] B. Bagchi. *The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series*. PhD Thesis, Indian Statistical Institute, Calcutta, 1981.

[2] A. Balčiūnas, V. Garbaliauskienė, J. Karaliūnaitė, R. Macaitienė, J. Petuškinaitė and A. Rimkevičienė. Joint discrete approximation of a pair of analytic functions by periodic zeta-functions. *Math. Modell. Anal.*, 25(1):71–87, 2020. https://doi.org/10.3846/mma.2020.10450.

[3] A. Balčiūnas and G. Vadeikis. A weighted universality theorem for the Hurwitz zeta-function. *Šiauliai Math. Semin.*, 12(20):5–18, 2017.

[4] P. Billingsley. *Convergence of Probability Measures*. Willey, New York, 1968.

[5] V. Garbaliauskienė, J. Karaliūnaitė and A. Laurinčikas. On zeros of some combinations of Dirichlet L-functions and Hurwitz zeta-functions. *Math. Modell. Anal.*, 22(6):733–749, 2017. https://doi.org/10.13982/mma.2017.1365313.

[6] S.M. Gonek. *Analytic Properties of Zeta and L-Functions*. PhD Thesis, University of Michigan, 1979.

[7] R. Kačinskaitė and B. Kazlauskaitė. Two remarks related to the universality of zeta-functions with periodic coefficients. *Results Math.*, 73(3):95, 2018. https://doi.org/10.1007/s00025-018-0856-z.

[8] R. Kačinskaitė and A. Laurinčikas. The joint distribution of periodic zeta-functions. *Studia Sci. Math. Hungarica*, 48(2):257–279, 2011. https://doi.org/10.1556/sscmath.48.2011.2.1162.

[9] R. Kačinskaitė and K. Matsumoto. The mixed joint universality for a class of zeta-functions. *Math. Nachr.*, 288(16):1900–1909, 2015. https://doi.org/10.1002/mana.201400366.

[10] R. Kačinskaitė and K. Matsumoto. Remarks on the mixed joint universality for a class of zeta-functions. *Bull. Austral. Math. Soc.*, 95(2):187–198, 2017. https://doi.org/10.1017/S0004972716000733.

[11] R. Kačinskaitė and K. Matsumoto. On mixed joint discrete universality for a class of zeta-functions. II. *Lith. Math. J.*, 59(1):54–66, 2019. https://doi.org/10.1007/s10986-019-09432-1.

[12] A. Laurinčikas. On the universality of the Riemann zeta-function. *Lith. Math. J.*, 35(4):399–402, 1995. https://doi.org/10.1007/BF02348827.

[13] A. Laurinčikas. *Limit Theorems for the Riemann Zeta-Function*. Kluwer Academic Publishers, Dordrecht, Boston, London, 1996. https://doi.org/10.1007/978-94-017-2091-5.

[14] A. Laurinčikas. The joint universality of Hurwitz zeta-functions. *Šiauliai Math. Semin.*, 3(11):169–187, 2008.

[15] A. Laurinčikas. Joint universality of zeta-functions with periodic coefficients. *Izv. Math.*, 74(3):515–539, 2010. https://doi.org/10.1070/IM2010v074n03ABEH002497.

[16] A. Laurinčikas. Universality theorems for zeta-functions with periodic coefficients. *Siber. Math. J.*, 57(2):330–339, 2016. https://doi.org/10.1134/S0037446616020154.

[17] A. Laurinčikas. A discrete version of the Mishou theorem. II. *Proc. Steklov Inst. Math.*, 296(1):172–182, 2017. https://doi.org/10.1134/S008154381701014X.
[18] A. Laurinčikas. Joint value distribution theorems for the Riemann and Hurwitz zeta-functions. *Moscow Math. J.*, **18**(2):349–366, 2018. https://doi.org/10.17323/1609-4514-2018-18-2-349-366.

[19] A. Laurinčikas. Joint discrete universality for periodic zeta-functions. *Quaest. Math.*, **42**(5):687–699, 2019. https://doi.org/10.2989/16073606.2018.1481891.

[20] A. Laurinčikas. Non-trivial zeros of the Riemann zeta-function and joint universality theorems. *J. Math. Anal. Appl.*, **475**(1):385–402, 2019. https://doi.org/10.1016/j.jmaa.2019.02.047.

[21] A. Laurinčikas. On the Mishou theorem with algebraic parameter. *Siber. Math. J.*, **60**(6):1075–1082, 2019. https://doi.org/10.1134/S0037446619060144.

[22] A. Laurinčikas. Joint discrete universality for periodic zeta-functions. II. *Quaest. Math.*, 2020. https://doi.org/10.2989/16073606.2019.1654554.

[23] A. Laurinčikas and R. Garunkštis. *The Lerch Zeta-Function*. Kluwer Academic Publishers, Dordrecht, Boston, London, 2002. https://doi.org/10.1007/978-94-017-6401-8.

[24] A. Laurinčikas and R. Macaitienė. Joint approximation of analytic functions by shifts of the Riemann and periodic Hurwitz zeta-functions. *Appl. Anal. Discrete Math.*, **12**(2):508–527, 2018. https://doi.org/10.2298/AADM170713016L.

[25] A. Laurinčikas, D. Šiaučiūnas and G. Vadeikis. Weighted discrete universality of the Riemann zeta-function. *Math. Modell. Anal.*, **25**(1):21–36, 2020. https://doi.org/10.3846/mma.2020.10436.

[26] R. Macaitienė, M. Stoncelis and D. Šiaučiūnas. A weighted discrete universality theorem for periodic zeta-functions. II. *Math. Modell. Analysis*, **22**(6):750–762, 2017. https://doi.org/10.3846/13926292.2017.1365779.

[27] R. Macaitienė, M. Stoncelis and D. Šiaučiūnas. A weighted universality theorem for periodic zeta-functions. *Math. Modell. Analysis*, **22**(1):95–105, 2017. https://doi.org/10.3846/13926292.2017.1269373.

[28] S.N. Mergelyan. Uniform approximations to functions of complex variable. *Uspekhi Mat. Nauk.*, **7**(3):31–122, 1952 (in Russian).

[29] H. Mishou. The joint value distribution of the Riemann zeta-function and Hurwitz zeta-functions. *Lith. Math. J.*, **47**(1):32–47, 2007. https://doi.org/10.1007/s10986-007-0003-0.

[30] J. Steuding. *Value-Distribution of L-Functions*. Lecture Notes Math. vol. 1877, Springer, Berlin, Heidelberg, 2007. https://doi.org/10.5555/PUBLMAT_PJTN05_12.

[31] S.M. Voronin. Theorem on the “universality” of the Riemann zeta-function. *Izv. Akad. Nauk SSSR, Ser. Matemat.*, **39**(3):475–486, 1975 (in Russian).

[32] S.M. Voronin. *Analytic Properties of Generating Function of Arithmetic Objects*. Diss. doktor fiz.-matem. nauk, Steklov Math. Inst., Moscow, 1977 (in Russian).