I. INTRODUCTION

Dynamical responses to experimental probes from the high-temperature superconductors are an important subject in the condensed matter physics, since they may hold key information to resolve the origin of the superconductivity\(^1\). While enormous efforts have been made to understand the novel behaviors appearing at low energy (\(\sim 100 \text{ meV}\)), including but not limited to, angle resolved photoemission spectroscopy (ARPES),\(^6\) inelastic neutron scattering,\(^4\) point contact spectroscopy,\(^2\)\(^,\)\(^3\)\(^,\)\(^11\) and quasiparticle interferences (QPI),\(^12\) the study of dynamical responses at frequency in mid-infrared regime or even higher receives much less attentions. Perhaps it is due to the belief that although the physics at high energy may play a role in the pairing mechanism at low energy, it is unlikely affected by the superconductivity, given the superconducting gap is only around the order of 10 meV.

In this regard, the observation of significant changes in optical conductivity due to the superconductivity up to energy as high as the order of 1 eV in cuprates\(^12\)\(^,\)\(^13\)\(^,\)\(^16\) and iron-based superconductors\(^17\) is a shocking result. These experiments found significant differences in the optical conductivity between the normal and superconducting states in a wide range of frequency. According to the BCS theory, regardless of the origin of the pairing mechanism, only the electronic structure at energy scales comparable to the superconducting gap are strongly modified. As a result, the dynamical responses should remain unchanged at frequency much higher than the superconducting gap, as shown in the seminar papers of Anderson’s on the theory of plasmon excitation in superconductors\(^18\)\(^,\)\(^19\). Therefore these unusual changes at high energy are naively attributed to the strong local interaction like Hubbard \(U\) or Heisenberg \(J\), but a detailed theory is still lacking.

A even more fundamental question raised by Turlakov and Leggett\(^20\)\(^,\)\(^21\) places more constraints on the study of the superconductivity-induced changes in the optical conductivity. Based on a rigorous consideration of the following three sum rules

\[
J_n = -\frac{1}{3} \int d\omega \omega |\chi(\mathbf{q},\omega)|^2 \quad \text{for} \quad n = 0, 1, 2, 3
\]

where \(\chi(\mathbf{q},\omega)\) is the density-density correlation function, they found a general statement about the upper and the lower bounds on the Coulomb energy at long wavelength by applying Cauchy-Schwartz inequalities. Moreover, it is shown that without processes breaking the conservation of total momentum of electrons, no observable change in the density-density correlation function at long wavelength shall be allowed. Since the optical conductivity is directly related to density-density correlation function at long wavelength, the same conclusion applies to optical conductivity as well. In other words, the strong local interactions like \(U\) and \(J\) alone can not explain the changes in optical conductivity, and the interaction breaking the conservation of total momentum of electrons has to be identified to understand this experimental puzzle.

Since all the high temperature superconductors known up to date are crystalline and have Fermi surfaces close to the Brillouin zone boundary, Umklapp processes are the most ubiquitous momentum-conservation-breaking terms. While in the semiconductors, the Umklapp processes have been included in the first principle calculations, known as local field effect\(^22\)\(^,\)\(^23\), the role of Umklapp processes in the correlated materials as well as in the superconducting states is still not understood. In this paper, we investigate the effects due to Umklapp processes on the density-density correlation function in both normal and superconducting states. We find that
significant amount of spectral weight is created at frequency below the plasmon frequency due to the presence of Umklapp processes. In superconducting state, the interplay between the nature of electron pairing between \((\vec{k} \uparrow)\) and \((-\vec{k} \downarrow)\) and the odd parity of the matrix elements associated with Umklapp processes substantially suppresses the effects from Umklapp processes. This superconductivity-induced suppression of Umklapp processes results in the decrease of the spectral weights in the frequency range well above the gap but below the plasmon frequency should occur as the system undergoes the superconducting phase transition, consistent with the changes of optical conductivity observed experimentally. Moreover, we predict that a downward shift of plasmon frequency below the plasmon frequency due to the presence of Umklapp processes substantially results in the decrease of the spectral weights in the plasmon modes should occur simultaneously. We will show that these signatures could be revealed from the analyses on the existing data of Ref. \[16\] and recent measurements by Levallois et. al. in optimally doped Bi\(_2\)Sr\(_2\)Ca\(_2\)Cu\(_3\)O\(_{10}\). Further experiments on optical conductivity and electron energy loss spectroscopy (EELS) will be necessary for the future study.

II. HAMILTONIAN OF A TWO-DIMENSIONAL SYSTEM WITH PERIODIC POTENTIAL ALONG \(\hat{x}\) DIRECTION

We start from the general Hamiltonian with a periodic potential along \(\hat{x}\) direction

\[H = H_{K} + H_{\text{Coul}} \]

\[H_{K} = \int d\vec{r} \psi_{\vec{r} \sigma}^{\dagger} \left[-\frac{\hbar^{2}}{2m} \nabla^{2} - \mu + 2U \cos(\vec{K}_{x} \cdot \vec{r}) \right] \psi_{\vec{r} \sigma}, \]

\[H_{\text{Coul}} = \frac{1}{2D} \sum_{\vec{q} \neq 0} v_{q} \left[\hat{\rho}(\vec{q}) \hat{\rho}(-\vec{q}) - \hat{N} \right], \]

where \(v_{q} = e^{2}/2\epsilon_{0}\epsilon_{\infty}q\) for 2D and \(\vec{K}_{x} = 2\pi(\hat{x}, 0)\). \(\hat{\rho}(\vec{q})\) and \(\hat{N}\) are the density and total electron number operators respectively. Performing the Fourier transformation on \(H_{K}\), we have

\[H_{K} = \sum_{l=-\infty}^{\infty} \sum_{\vec{k}_{\sigma}} \epsilon(\vec{k} + l\vec{K}_{x}/2) c_{\vec{k}+l\vec{K}_{x}/2, \sigma}^{\dagger} c_{\vec{k}+l\vec{K}_{x}/2, \sigma} + U \left[c_{\vec{k}+l\vec{K}_{x}/2, \sigma}^{\dagger} c_{\vec{k}+l\vec{K}_{x}/2, \sigma} c_{\vec{k}+l\vec{K}_{x}/2, \sigma}^{\dagger} c_{\vec{k}+l\vec{K}_{x}/2, \sigma} + h.c. \right], \]

where we have introduced a short-hand notation for the integration over momentum as:

\[\sum_{\vec{k}_{\sigma}} = \sum_{l=-\infty}^{\infty} \frac{1}{4\pi^{2}} \int \frac{dk_{x}}{2\pi} \int_{-\infty}^{\infty} dk_{y} \]

Moreover, \(\epsilon(\vec{k}) \equiv \frac{\hbar^{2}}{2m} k^{2} - \mu\), and \(\epsilon_{\vec{p}, \sigma}\) is the Fourier component of \(\psi_{\vec{r} \sigma}\) defined as

\[\psi_{\vec{r} \sigma} = \frac{1}{4\pi^{2}} \int dp_{x} dp_{y} e^{i\vec{p} \vec{r}} c_{\vec{p}, \sigma}. \]

The simplest case is to consider only two \(l\), which we pick \(l = \pm 1\). This choice satisfies all the necessary symmetries including time-reversal, parity, etc., and therefore it serves as an excellent example for the proof of principles. We can then reduce the \(H_{K}\) to:

\[H_{K} = \sum_{\vec{k}_{\sigma}} \epsilon(\vec{k}) c_{\vec{k}+\vec{K}_{x}/2, \sigma}^{\dagger} c_{\vec{k}+\vec{K}_{x}/2, \sigma} + c_{\vec{k}+\vec{K}_{x}/2, \sigma}^{\dagger} c_{\vec{k}+\vec{K}_{x}/2, \sigma} + U \left[c_{\vec{k}+\vec{K}_{x}/2, \sigma}^{\dagger} c_{\vec{k}+\vec{K}_{x}/2, \sigma} + c_{\vec{k}+\vec{K}_{x}/2, \sigma}^{\dagger} c_{\vec{k}+\vec{K}_{x}/2, \sigma} \right], \]

which can be diagonalized as:

\[H_{K} = \sum_{\vec{k}_{\sigma}} E_{\vec{k}_{\sigma}}^{+} c_{\vec{k}_{\sigma}+\vec{K}_{x}/2, \sigma}^{\dagger} c_{\vec{k}_{\sigma}+\vec{K}_{x}/2, \sigma} + E_{\vec{k}_{\sigma}}^{-} c_{\vec{k}_{\sigma}-\vec{K}_{x}/2, \sigma}^{\dagger} c_{\vec{k}_{\sigma}-\vec{K}_{x}/2, \sigma} \]

where

\[E_{\vec{k}_{\sigma}}^{\pm} = \epsilon_{1}(\vec{k}) \pm D(\vec{k}) \]

\[\epsilon_{1}(\vec{k}) = \epsilon(\vec{k} - \vec{K}_{x}/2) + \epsilon(\vec{k} + \vec{K}_{x}/2) = \frac{\hbar^{2}}{2m} (k^{2} + \frac{1}{4} K_{x}^{2}) - \mu \]

\[\epsilon_{2}(\vec{k}) = \epsilon(\vec{k} - \vec{K}_{x}/2) - \epsilon(\vec{k} + \vec{K}_{x}/2) = -\frac{\hbar^{2}}{2m} k_{x} \vec{K}_{x} \]

\[D(\vec{k}) = \sqrt{\epsilon_{2}(\vec{k})^{2} + U^{2}} \]

The eigenvectors and the original fermionic operators are related by

\[c_{\vec{k}+\vec{K}_{x}/2, \sigma} = \cos \theta_{k} c_{+\vec{K}_{x}/2, \sigma} - \sin \theta_{k} c_{-\vec{K}_{x}/2, \sigma} \]

\[c_{\vec{k}+\vec{K}_{x}/2, \sigma} = \sin \theta_{k} c_{+\vec{K}_{x}/2, \sigma} + \cos \theta_{k} c_{-\vec{K}_{x}/2, \sigma} \]

where \(\cos 2\theta_{k} = \frac{\epsilon_{2}(\vec{k})}{D(\vec{k})}, \) and \(0 \leq \theta_{k} \leq \frac{\pi}{2}\).

It is important to note that instead of using quasimomentum on a tight-binding model in the reduced Brillouin zone scheme, we have chosen to work on real momentum from a full Hamiltonian with periodic potential included explicitly. The advantage of our choice is that Umklapp processes in this formalism are corresponding to processes conserving the real momentum but not the momentum in the band we are interested in. Therefore, Umklapp channels can be expressed as a series of new density operators with matrix elements as functions of \(\theta_{k}\), which can be done in a straightforward way. We will see how this works in next section.

III. RPA THEORY FOR DENSITY-DENSITY CORRELATION FUNCTION IN NORMAL STATE

In order to extract the Umklapp processes from the Hamiltonian in Eq. 2 we need to expand \(H_{\text{Coul}}\) in the band basis to determine the vertex lines required in the diagrammatic approach. With the consideration of the periodic potential along \(\hat{x}\) direction, the annihilation operator in Eq. 5 can be written as:

\[\psi_{\vec{r}, \sigma} = \sum_{\alpha \in Z + 1} \sum_{\vec{k}} e^{i(\vec{k}-a\vec{K}_{x}/2) \cdot \vec{r}} c_{\vec{k}-a\vec{K}_{x}/2, \sigma} \]
Using Eq. 9 we can express \(c_{\pm,\vec{k}} \) in terms of Bloch bands \(c_{\pm,\vec{k}} \). We restrict our interest only in the band on which the Fermi surface lies to highlight the new features emerging entirely due to the Umklapp processes instead of inter-band scatterings. Assume that the Fermi surface lies on the \(c_{\pm,\vec{k}} \) band, the components in \(H_{\text{Coul}} \) involving only \(c_{\pm,\vec{k}} \) band are

\[
H_{\text{Coul}}^\beta = \frac{1}{2\Omega} \sum_{\vec{q} \neq 0} \sum_{a,b,c,d=1,1} \sum_{\vec{k},\sigma} V_q^{a,b,c,d}(\vec{k},\vec{p}) c_{\vec{k}+\vec{q},\sigma}^\dagger c_{\vec{k},\sigma} c_{\vec{k}-\vec{q},\sigma} c_{\vec{k}+\vec{q}+\vec{p},\sigma}
\]

where \(V_q^{a,b,c,d}(\vec{k},\vec{p}) \) can be read off Eq. 9. Now it is clear that Eq. 11 describes the components of the Coulomb interaction on \(c_{\pm,\vec{k}} \), with both normal and Umklapp processes included, and the corresponding vertex lines are plotted in Fig. 1.

The final form of \(H_{\text{Coul}} \) in our consideration becomes

\[
H_{\text{Coul}} = \frac{1}{2\Omega} \sum_{\vec{q} \neq 0} v_q \hat{\rho}_n^{\text{full}}(\vec{q}) \hat{\rho}_n^{\text{full}}(-\vec{q})
\]

where

\[
\hat{\rho}_n^{\text{full}}(\vec{q}) = \sum_{\vec{k},\sigma} \cos(\theta_{\vec{k}} - \theta_{\vec{k}-\vec{q}}) c_{\vec{k}+\vec{q},\sigma} c_{\vec{k},\sigma} c_{\vec{k}-\vec{q},\sigma} c_{\vec{k},\sigma} + \sum_{\vec{k},\sigma} \sin(\theta_{\vec{k}} - \theta_{\vec{k}-\vec{q}}) c_{\vec{k}+\vec{q},\sigma} c_{\vec{k},\sigma} c_{\vec{k}-\vec{q},\sigma} c_{\vec{k}+\vec{q},\sigma}
\]

Now we can follow the standard approach to perform the generalized RPA calculations. First we define:

\[
\hat{\rho}_1(\vec{q}) = \sum_{\vec{k},\sigma} \cos(\theta_{\vec{k}} - \theta_{\vec{k}-\vec{q}}) c_{\vec{k}+\vec{q},\sigma} c_{\vec{k},\sigma} c_{\vec{k}-\vec{q},\sigma} c_{\vec{k},\sigma} \]

\[
\hat{\rho}_2(\vec{q}) = -\sum_{\vec{k},\sigma} \sin(\theta_{\vec{k}} - \theta_{\vec{k}-\vec{q}}) c_{\vec{k}+\vec{q},\sigma} c_{\vec{k},\sigma} c_{\vec{k}-\vec{q},\sigma} c_{\vec{k}+\vec{q},\sigma} \]

\[
\hat{\rho}_3(\vec{q}) = -\sum_{\vec{k},\sigma} \cos(\theta_{\vec{k}} - \theta_{\vec{k}-\vec{q}}) c_{\vec{k}+\vec{q},\sigma} c_{\vec{k},\sigma} c_{\vec{k}-\vec{q},\sigma} c_{\vec{k}+\vec{q},\sigma}
\]

The bare susceptibility becomes a matrix and each component can be expressed by the Lindhard function:

\[
\hat{\chi}_0^{\vec{p}_i,\vec{p}_j}(\vec{q},\omega) = \frac{n_F(E^-((\vec{k}-\vec{q}) \pm \vec{K})) - n_F(E^-((\vec{k})) \pm \vec{K}))}{\hbar\omega + i\delta + E^-((\vec{k}-\vec{q}) \pm \vec{K})) - E^-((\vec{k})) \pm \vec{K}))}
\]

where

\[
f_1(\vec{k},\vec{q}) = \cos(\theta_{\vec{k}} - \theta_{\vec{k}-\vec{q}}),
\]

\[
f_2(\vec{k},\vec{q}) = -\sin(\theta_{\vec{k}} - \theta_{\vec{k}-\vec{q}}),
\]

\[
f_3(\vec{k},\vec{q}) = -\cos(\theta_{\vec{k}} - \theta_{\vec{k}-\vec{q}})
\]

and the factor of two in Eq. 15 comes from the spin degrees of freedom. The final expression of the density-density response function with RPA is

\[
(\hat{\chi}(\vec{q},\omega))^{-1} = (\hat{\chi}_0(\vec{q},\omega))^{-1} + \hat{U}_q
\]

where the interaction kernel

\[
\hat{U}_q = \left(\begin{array}{ccc}
\frac{v_q}{1 - \frac{v_q}{2K_x}} & \frac{v_{q+K_x}}{v_q} & \frac{v_{q+2K_x}}{v_q} \\
\frac{v_{q-K_x}}{v_q} & \frac{v_q}{1 - \frac{v_q}{2K_x}} & \frac{v_{q-2K_x}}{v_q} \\
\frac{v_{q+K_x}}{v_q} & \frac{v_{q-2K_x}}{v_q} & \frac{v_q}{1 - \frac{v_q}{2K_x}}
\end{array} \right)
\]

In the limit of long wavelength (small \(q \)), \(f_1 \approx 1 \) and \(v_{\vec{q}+\vec{K}} < v_q \). As a result, the density-density response function in the normal process that we are interested in is \(\hat{\chi}(\vec{q},\omega)_{1,1} \), which describes the scatterings between particle-hole pairs with a total momemtum of \(\vec{q} \). \(\hat{\chi}(\vec{q},\omega)_{2,2} \) and \(\hat{\chi}(\vec{q},\omega)_{3,3} \) describe the scatterings between particle-hole pairs with a total momemtum of \(\vec{q} \pm K_x \). Off-diagonal terms in \(\hat{\chi}(\vec{q},\omega) \) describe the scatterings between particle-hole pairs whose total momenta differ by \(nK_x \), which are just the Umklapp processes.

It is worthy of mentioning that our formalism satisfies the f-sum rule,

\[
J_1(\vec{q}) = \frac{2}{\pi} \int_0^{\infty} d\omega \text{Im} \left[\hat{\chi}(\vec{q},\omega) \right]_{11} = \frac{m q^2}{\pi},
\]
which only depends on \vec{q} as the Fermi energy is fixed. We have checked that $J_i(\vec{q})$ is the same in both normal and superconducting states (the formalism for superconducting state will be discussed in the next section), scaling with q^2 as shown in Fig. 2.

To demonstrate the features emerging from the Umklapp processes, we introduce an effective parameter V_{Um} into $\chi(\vec{q}, \omega)$

$$[\chi'(\vec{q}, \omega)]_{ij} = [\chi(\vec{q}, \omega)]_{ij}, \ i = j$$
$$= V_{Um} [\chi(\vec{q}, \omega)]_{ij}, \ i \neq j.$$ \hspace{1cm} (19)

It is instructive to analyze the case of $V_{Um} = 0$ first. In this case, $\chi(\vec{q}, \omega)$ only has the diagonal terms and a collective excitation occurs when

$$(\chi^0(\vec{q}, \omega))^{-1}_{ii} + v_q = 0$$ \hspace{1cm} (20)

The collective excitation in $i = 1$ channel is just the familiar plasmon excitation. We have checked that the frequency of this excitation scales with \sqrt{q} as expected from a two-dimensional system. For $i = 2, 3$, there are new collective excitations enabled entirely due to the periodic potential U. To see this, one can check that if $U = 0$, $f_2 = f_3 = 0$ in Eq. 19. Consequently, there is no any collective excitation for $i = 2, 3$ channels. On the other hand, finite U results in non-zero f_2 and f_3, producing collective excitations at energies lower than the plasmon excitation due to the fact that $f_2, f_3 < 1$. However, since there are no Umklapp processes (no off-diagonal terms), these collective excitations can not be seen in $[\chi(\vec{q}, \omega)]_{33}$ channel, the density-density correlation function of experimental interest.

Nevertheless, once the Umklapp processes are turned on, these new collective excitations couple to the plasmon excitation, resulting in two important consequences. First, because the plasmon excitation is at highest energy, the couplings (Umklapp processes) push the plasmon frequency upward while the new collective excitations at $i = 2, 3$ channels are pushed downward. Second, because of the coupling, the collective excitations at $i = 2, 3$ channels have finite spectral weights even in the $[\chi(\vec{q}, \omega)]_{11}$ channel. These features are clearly shown in Fig. 4 which exhibits the increase of the plasmon frequency as well as the increase of the spectral weight at frequency below the plasmon excitation with increasing V_{Um}. As the Umklapp scattering is strong enough so that the collective excitations at $i = 2, 3$ channels are pushed into the particle continuum, a broad spectrum emerges. The effects due to Umklapp processes described above can be further checked by studying the case with small Fermi surface around the Γ point. In this case, the Umklapp scattering should be strongly suppressed due to the energy conservation, which is verified in the lower figure of Fig. 4.

The physics discussed above is very general. If we include more terms in Eq. 20 the size of the $\chi(\vec{q}, \omega)$ matrix increases, producing more and more spectral weights at frequency lower than the plasmon frequency. Therefore we conclude that with the inclusion of Umklapp scattering, significant amounts of spectral weights are transferred from the plasmon excitation to the lower energy even for a single band system. This is fundamentally different from the case without Umklapp scattering in which the plasmon mode is the only excitation at long wavelength and holds all the spectral weights.
IV. RPA THEORY FOR DENSITY-DENSITY CORRELATION FUNCTION IN SUPERCONDUCTING STATE

To describe the superconducting state and its related collective excitations, we introduce the pairing interaction in this general form:

$$H_{SC} = -V_p \sum_{k, k'} g_k g_{k'} c_{-\mathbf{k}, \uparrow}^\dagger c_{-\mathbf{k}', \downarrow}^\dagger c_{-\mathbf{k}', \uparrow} c_{-\mathbf{k}, \downarrow}$$ \hspace{1cm} (21)$$

where g_k describes the gap symmetry which equals to 1 for s-wave and $\frac{k^2}{2m}$ for d-wave superconductors. Employing the mean-field theory on H_{SC}, we obtain the superconducting groundstate and Bogoliubov quasiparticles (α, β) read

$$c_{-\mathbf{k}, \uparrow} = \cos \phi_k \alpha_{\mathbf{k}} + \sin \phi_k \beta_{\mathbf{k}}^\ast$$

$$c_{-\mathbf{k}', \downarrow}^\dagger = -\sin \phi_k \alpha_{\mathbf{k}} + \cos \phi_k \beta_{\mathbf{k}}^\ast,$$ \hspace{1cm} (22)

where $\phi_k = \frac{\text{sgn}(\mathbf{u} \cdot \mathbf{k})}{2} \cos^{-1} \left[\frac{E_S(k)}{E_S(k)} \right]$, $E_{SC}(\mathbf{k}) = \sqrt{(E_S(\mathbf{k}))^2 + (\Delta(\mathbf{k}))^2}$, and $\Delta(\mathbf{k}) = \Delta_0 g_k$. Δ_0 is obtained by solving the gap equation of

$$\frac{1}{V_p} = \sum_{k} \frac{g_k^2}{2E_{SC}(\mathbf{k})}.$$ \hspace{1cm} (23)

Due to the nature of the Cooper pairs, the density-density correlation function is coupled to the pairing-pairing correlation function. The pairing channel can be divided into phase $\Phi(\mathbf{q})$ and the amplitude $M(\mathbf{q})$ modes as

$$\Phi(\mathbf{q}) = \sum_{k} g_k \left[c_{-\mathbf{k}-\mathbf{q}, \uparrow} c_{-\mathbf{k}, \downarrow}^\dagger - c_{-\mathbf{k}, \uparrow}^\dagger c_{-\mathbf{k}-\mathbf{q}, \downarrow} \right]$$

$$M(\mathbf{q}) = \sum_{k} g_k \left[c_{-\mathbf{k}-\mathbf{q}, \uparrow} c_{-\mathbf{k}, \downarrow}^\dagger + c_{-\mathbf{k}, \uparrow}^\dagger c_{-\mathbf{k}-\mathbf{q}, \downarrow} \right].$$ \hspace{1cm} (24)$$

Together with $\rho_{1,2,3}(\mathbf{q})$ derived in the last section, now the susceptibility in superconducting state is a five by five matrix. We define

$$A_{1,2,3}(\mathbf{q}) = \rho_{1,2,3}(\mathbf{q}), A_4(\mathbf{q}) = \Phi(\mathbf{q}), A_5(\mathbf{q}) = M(\mathbf{q}),$$ \hspace{1cm} (25)

and the bare susceptibility with one-loop correction in the superconducting state is

$$\chi_{SC}(\mathbf{q}, \omega) = \chi_{SC}(\mathbf{q}, \omega) = -\frac{1}{\Omega} \sum_{k, \sigma} \left(\frac{F_1 F_j}{\hbar \omega + i \delta - E_{SC}(k - q) - E_{SC}(k)} \right)$$

$$- \frac{G_1 G_j}{\hbar \omega + i \delta + E_{SC}(k - q) + E_{SC}(k)}$$

where

$$F_1 = G_1 = f_1 \sin(\phi_{\mathbf{k}} + \phi_{\mathbf{k}-\mathbf{q}}).$$

![FIG. 4. Imχ(\mathbf{q}, \omega) with μ = 0.2, U = 0.1, α = 0.1, V_{Um} = 1.0, and \mathbf{q} = (0.05, 0) in normal state and d-wave superconducting state with Δ_0 = 0.001. The units and notation are the same as the ones used in Fig. 5. The superconducting state suppresses the Umklapp scattering, resulting in the decrease of spectral weight below the plasmon excitation as well as the plasmon frequency.](image)

and $f_{1,2,3}$ can be found in Eq. (15). The susceptibility at RPA level in the superconducting state leads to

$$\left(\chi_{SC}'(\mathbf{q}, \omega) \right)^{-1} = \left(\chi_{SC}(\mathbf{q}, \omega) \right)^{-1} + \hat{U}'_q$$ \hspace{1cm} (27)$$

with the interaction kernel of

$$\hat{U}'_q = \left(\begin{array}{cccc} v_q & v_{q+\mathbf{K}} & v_{q-\mathbf{K}} & 0 \\ v_{q-\mathbf{K}} & v_q & v_{q-2\mathbf{K}} & 0 \\ v_{q+2\mathbf{K}} & v_{q-2\mathbf{K}} & v_q & 0 \\ 0 & 0 & 0 & -\frac{V_p}{2} \end{array} \right).$$ \hspace{1cm} (28)$$

It can be easily checked that if we turn off all the Umklapp processes by hand, only channels of A_1, A_4, A_5 are coupled to each others. In this case, we find that the plasmon excitation is still the only collective excitation in $\left(\chi_{SC}(\mathbf{q}, \omega) \right)_{11}$ and its frequency is the same as the frequency in the normal state. This is consistent with Anderson’s theory18,19 as well as the sum rule analysis done by Turkalov and Legget20. As the Umklapp scatterings are turned on, as shown in Fig. 4 we find that the effects of the Umklapp scatterings is much weaker in superconducting state than in the normal state.

To see how the superconductivity suppresses Umklapp processes, we analyze the crucial matrix elements.
FIG. 5: The loss function reconstructed from the original data of Ref. [16] (top) and recent measurement by Levallois et al. [24] (bottom) on the optimally doped Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10}$ with $T_c = 110$ K. The pronounced peak around 9000 cm$^{-1}$ is the plasmon excitation.

V. COMPARISON WITH EXPERIMENTS

As discussed in Ref. [20], the electron energy loss spectroscopy (EELS) [25-29] should be the most ideal probe for the density-density correlation function. The cross section of EELS $\sigma(q, \omega)$ is typically interpreted as $\sigma(q, \omega) \propto \frac{1}{q^2} \text{Im} \chi(q, \omega)$, where $\chi(q, \omega)$ is the true density-density correlation function at (q, ω) which is $\left[\tilde{\chi}(q, \omega) \right]_{11}$ in the present paper. A systematic study of $\sigma(q, \omega)$ for various dopings at different temperatures could be used to confirm the prediction made above.

Relevant information can also be extracted from the existing data of optical conductivity. It is well-accepted that the ab-plane dielectric function can also be related to $\sigma(q, \omega)$ via

$$\sigma(q, \omega) \propto \frac{1}{q^2} \text{Im} \left[-\frac{1}{\epsilon_{ab}(q, \omega)} \right].$$

From Eq. [15] we can easily see that $f_1(-k + q, -q) = f_1(k, q)$ while $f_2(-k + q, -q) = f_3(k, q)$ and $f_3(-k + q, -q) = -f_2(k, q)$. The crucial difference in the parity in the normal channel ($i = 1$) and the 'Umklapp' channels ($i = 2, 3$) becomes important at small q. In this limit, $f_2 \approx f_3$ so that in Eq. [20] $F_{2,3} \approx f_2 \sin(\phi_k - \phi_{k-q}) \approx 0$. This indicates that the components involving $A_{2,3}$ channels are largely suppressed, and effectively only $A_{1,4,5}$ channels dominate over the density-density correlation functions, resembling the case without Umklapp scattering. Therefore the effects from the Umklapp processes are largely suppressed by the superconductivity, and this conclusion is general for any gap symmetry. Physically, this suppression of Umklapp scattering is due to the interplay between the electron pairing and the odd parity of the matrix elements associated Umklapp processes, which can be seen directly from the above analysis on the $f_i(k, q)$.

The above analysis also shows that the superconductivity is particularly resistive to the Umklapp scatterings compared to other competing orders. Magnetic, charge-density wave, or nematic orders usually only induce the coupling between k and $k + Q$, where Q is the ordering wave vector, and consequently a large suppression due to the odd parity in $f_{2,3}(k, q)$ does not occur.

In summary, we predict a general feature for superconductivity emerging from a system with strong Umklapp scattering. The mid-infrared spectrum in the density-density correlation function decreases as the system has a phase transition from normal to superconducting states, regardless the gap symmetry. Meanwhile, the plasmon excitation has lower frequency and larger spectral weight in the superconducting state than in the normal state, consistent nicely with the existing data of optical conductivity. These consequences due to the suppression of Umklapp processes are unique in superconducting state due to the interplay between the electron pairing and the odd parity of the Umklapp processes, which usually does not occur in other known competing orders.

of $\chi_{SC}^{\alpha\beta}(q, \omega)$ in Eq. [26]. Due to the pairing between electrons with $(\vec{k} \uparrow)$ and $(-\vec{k} \downarrow)$ in the superconducting state, we need to rewrite the density operators in terms of Bogoliubov quasiparticles defined in Eq. [22]. Consequently, the density operators should be evaluated as follows

$$\hat{\rho}(\vec{q}) = \sum_{\vec{k}, \sigma} f_i(\vec{k}, \vec{q}) c_{\vec{k}, \sigma}^\dagger c_{\vec{k} - \vec{q}, \sigma}$$

$$\approx \sum_{\vec{k}} \left[f_1(\vec{k}, \vec{q}) c_{\vec{k}, \sigma}^\dagger c_{\vec{k} - \vec{q}, \sigma} + f_i(-\vec{k} + \vec{q}, -\vec{q}) c_{\vec{k} - \vec{q}, \sigma}^\dagger c_{\vec{k}, \sigma} \right].$$

From Eq. [15] we can easily see that $f_1(-k + q, -q) = f_1(k, q)$ while $f_2(-k + q, -q) = -f_3(k, q)$ and $f_3(-k + q, -q) = -f_2(k, q)$. The crucial difference in the parity in the normal channel ($i = 1$) and the 'Umklapp' channels ($i = 2, 3$) becomes important at small q. In this limit, $f_2 \approx f_3$ so that in Eq. [20] $F_{2,3} \approx f_2 \sin(\phi_k - \phi_{k-q}) \approx 0$. This indicates that the components involving $A_{2,3}$ channels are largely suppressed, and effectively only $A_{1,4,5}$ channels dominate over the density-density correlation functions, resembling the case without Umklapp scattering. Therefore the effects from the Umklapp processes are largely suppressed by the superconductivity, and this conclusion is general for any gap symmetry. Physically, this suppression of Umklapp scattering is due to the interplay between the electron pairing and the odd parity of the matrix elements associated Umklapp processes, which can be seen directly from the above analysis on the $f_i(k, q)$.
The quantity \(\text{Im} \left[- \frac{1}{r_{ab}(q,\omega)} \right] \), known as the loss function, is plotted in Fig. 6 using the original data of Ref. \([16]\) as well as recent measurement by Levallois et al.\([18]\) on the optimally doped \(\text{Bi}_2\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_{10}\). The reconstructed loss function revealed two important features. First, pronounced peaks around 9000 \(\text{cm}^{-1} \) (\(\sim 1.1 \text{ eV} \)) could clearly be seen in the loss function. Second, the difference in the loss function between superconducting and normal states is plotted in Fig. 6. It exhibits an increase in the spectral weight of the pronounced peaks and a decrease of the spectral weight in a wide range of the lower frequency as the system has a phase transition into the superconducting state. If the pronounced peaks around 1.1 eV is interpreted as the plasmon excitation, this observed change of spectral weight in the loss function is nicely consistent with the present theory. Early EELS data on cuprates\([21]\) obtained the plasmon energy to be \(\sim 1 \text{ eV} \). These results provide a strong support for the present theory.

VII. ACKNOWLEDGEMENT

We are grateful to valuable discussions with P. Abbamonte, A. Chubukov, W. Hanke, J. Levallois, A. J. Leggett, D. Pouliot, P. W. Phillips, S. Raghu, D. J. Scalapino, and D. van der Marel. We are particularly grateful to J. Levallois and D. van der Marel for sharing the original data of Ref. \([16]\) as well as the unpublished data on the optimally doped \(\text{Bi}_2\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_{10}\). W.-C. Lee thanks for the hospitality of KITP at UCSB while this manuscript was being finalized. This work is supported by a start up fund from Binghamton University and in part by the NSF under Grant No. NSF PHY11-25915 for the KITP program of ‘Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond’.

* Electronic address: wlee@binghamton.edu

1. N. P. Armitage, P. Fournier, and R. L. Greene, Rev. Mod. Phys. \textbf{82}, 2421 (2010).
2. E. Dagotto, Rev. Mod. Phys. \textbf{66}, 763 (1994).
3. P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. \textbf{78}, 17 (2006).
4. D. J. Scalapino, Rev. Mod. Phys. \textbf{84}, 1383 (2012).
5. G. R. Stewart, Rev. Mod. Phys. \textbf{83}, 1589 (2011).
6. A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. \textbf{75}, 473 (2003).
7. D. Lu, I. M. Vishik, M. Yi, Y. Chen, R. G. Moore, and Z.-X. Shen, Annual Review of Condensed Matter Physics \textbf{3}, 129 (2012).
8. M. Fujita, H. Hiraka, M. Matsuda, M. Matsuura,
J. M. Tranquada, S. Wakimoto, G. Xu, and K. Yamada, Journal of the Physical Society of Japan 81, 011007 (2012).

9 H. Z. Arham, C. R. Hunt, W. K. Park, J. Gillett, S. D. Das, S. E. Sebastian, Z. J. Xu, J. S. Wen, Z. W. Lin, Q. Li, et al., Phys. Rev. B 85, 214515 (2012).

10 W.-C. Lee, W. K. Park, H. Z. Arham, L. H. Greene, and P. Phillips, Proc. Natl. Acad. Sci. 112, 651 (2015).

11 H. Z. Arham and L. H. Greene, Current Opinion in Solid State and Materials Science 17, 81 (2013), ISSN 1359-0286, fe-based Superconductors.

12 A. R. Schmidt, K. Fujita, E.-A. Kim, M. J. Lawler, H. Eisaki, S. Uchida, D.-H. Lee, and J. C. Davis, New Journal of Physics 13, 065014 (2011).

13 H. J. A. Molegraaf, C. Presura, D. van der Marel, P. H. Kes, and M. Li, Science 295, 2239 (2002).

14 A. V. Boris, N. N. Kovaleva, O. V. Dolgov, T. Holden, C. T. Lin, B. Keimer, and C. Bernhard, Science 304, 708 (2004).

15 A. B. Kuzmenko, H. J. A. Molegraaf, F. Carbone, and D. van der Marel, Phys. Rev. B 72, 144503 (2005).

16 F. Carbone, A. B. Kuzmenko, H. J. A. Molegraaf, E. van Heumen, E. Giannini, and D. van der Marel, Phys. Rev. B 74, 024502 (2006).

17 A. Charnukha, P. Popovich, Y. Matiks, D. L. Sun, C. T. Lin, A. N. Yaresko, B. Keimer, and A. V. Boris, Nat. Commun. 2 (2011).

18 P. W. Anderson, Phys. Rev. 110, 827 (1958).

19 P. W. Anderson, Phys. Rev. 112, 1900 (1958).

20 M. Turlakov and A. J. Leggett, Phys. Rev. B 67, 094517 (2003).

21 A. J. Leggett, Proc. Natl. Acad. Sci. 96, 8365 (1999).

22 W. Hanke and L. J. Sham, Phys. Rev. Lett. 33, 582 (1974).

23 W. Hanke and L. J. Sham, Phys. Rev. B 12, 4501 (1975).

24 J. Levallois, D. van der Marel, and et. al. (2015), unpublished.

25 N. Nücker, H. Romberg, S. Nakai, B. Scheerer, J. Fink, Y. F. Yan, and Z. X. Zhao, Phys. Rev. B 39, 12379 (1989).

26 F. Roth, C. Hess, B. Büchner, U. Ammerahl, A. Revcolevschi, and M. Knupfer, Phys. Rev. B 82, 245110 (2010).

27 R. Schuster, S. Pyon, M. Knupfer, M. Azuma, M. Takano, H. Takagi, and B. Büchner, Phys. Rev. B 86, 245112 (2012).

28 A. Kogar, S. Vig, Y. Gan, and P. Abbamonte, Journal of Physics B: Atomic, Molecular and Optical Physics 47, 124034 (2014).

29 F. Roth, A. Knig, J. Fink, B. Bchner, and M. Knupfer, Journal of Electron Spectroscopy and Related Phenomena 195, 85 (2014).

30 D. Pouliot, A. J. Leggett, and D. van der Marel (2015), private communication.