Reduced semen quality in patients with testicular cancer seminoma is associated with alterations in the expression of sperm proteins

Tânia R Dias¹,²,³, Ashok Agarwal¹, Peter N Pushparaj⁴, Gulfam Ahmad⁵, Rakesh Sharma¹

Testicular cancer seminoma is one of the most common types of cancer among men of reproductive age. Patients with this condition usually present reduced semen quality, even before initiating cancer therapy. However, the underlying mechanisms by which testicular cancer seminoma affects male fertility are largely unknown. The aim of this study was to investigate alterations in the sperm proteome of men with seminoma undergoing sperm banking before starting cancer therapy, in comparison to healthy proven fertile men (control group). A routine semen analysis was conducted before cryopreservation of the samples (n = 15 per group). Men with seminoma showed a decrease in sperm motility (P = 0.019), total motile count (P = 0.001), concentration (P = 0.003), and total sperm count (P = 0.001). Quantitative proteomic analysis identified 393 differentially expressed proteins between the study groups. Ten proteins involved in spermatogenesis, sperm function, binding of sperm to the oocyte, and fertilization were selected for validation by western blot. We confirmed the underexpression of heat shock-related 70 kDa protein 2 (P = 0.041), ubiquinol-cytochrome C reductase core protein 2 (P = 0.026), and testis-specific sodium/potassium-transporting ATPase subunit alpha-4 (P = 0.016), as well as the overexpression of angiotensin I converting enzyme (P = 0.005) in the seminoma group. The altered expression levels of these proteins are associated with spermatogenesis dysfunction, reduced sperm kinematics and motility, failure in capacitation and fertilization. The findings of this study may explain the decrease in the fertilizing ability of men with seminoma before starting cancer therapy.

Keywords: male fertility; proteomics; seminoma; sperm proteins; sperm quality; testicular cancer

INTRODUCTION

Germ cell tumors (GCTs) represent the most common type of testicular cancer, accounting for about 90%–95% of all cases. The principal types of GCTs are nonseminomas and seminomas; the latter usually grows and spreads more slowly. In the last decades, there is a growing trend in the proportion of seminomas.¹ The survival rate of men with seminoma is very high (over 95%); thus, it is generally not seen as a threat to public health. However, its impact on male fertility represents a major concern for reproductive medicine as it frequently affects men in reproductive age (20–44 years).²

Men with seminoma present impaired fertilizing ability, even before diagnosis.³ Testicular cancer seminoma affects the hypothalamic-pituitary-gonadal (HPG) axis and consequently disturbs spermatogenesis.⁴ These deleterious effects are dependent on the stage and type of seminoma, resulting in poor semen quality or even azoospermia.³ The treatment for this type of cancer, usually performed by surgery, chemotherapy, or radiotherapy, further affects semen quality³ and hormonal function,⁴ thus highly impairing male fertility. In fact, after cancer therapy, patients may become temporarily or permanently infertile.³ For that reason, it is strongly recommended that men diagnosed with seminoma undergo sperm banking to increase the probability to father a child in the future.⁴ The chances to establish a pregnancy by natural conception are 30% lower after the cancer therapy and the recovery of fertilizing ability usually takes several years.⁵ Therefore, in many surviving patients with seminoma, assisted reproductive technology (ART) with cryopreserved samples is the only option for having children.⁶ Still, sperm banking is not possible for many patients due to the high cost or lack of facilities, urgency to initiate the treatment, impaired spermatogenesis, and/or poor semen quality at the time of specimen collection.⁷

Proteomics studies have been recently used as a valuable tool to explore how certain health conditions affect male reproductive potential, especially by evaluating spermatozoa and seminal plasma proteome.⁸,⁹ Although spermatozoa are transcriptionally and translationally silent after being produced in the testis, the acquisition of sperm function occurs during maturation in the epididymis and transit through the female reproductive tract.¹⁰ Therefore, the sperm proteome is highly susceptible to alterations according to the health status of

¹American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; ²Department of Health Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã 6201-001, Portugal; ³Department of Microscopy and Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal; ⁴Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, Jeddah 21589, Saudi Arabia; ⁵Division of Pathology, School of Medical Sciences, Sydney University, Lidcombe NSW 2141, Australia.

Correspondence: Dr. A Agarwal (agarwaa@ccf.org)
Received: 12 August 2018; Accepted: 04 January 2019
the individual, and this impacts the quality of sperm parameters. The deleterious effects of seminoma treatment represent a challenge to understand the mechanisms behind the impairment of male fertility caused by the disease. In this study, we used semen samples from men with testicular cancer seminoma that were cryopreserved before starting cancer therapy, to investigate alterations in the sperm proteome in comparison with healthy proven fertile men.

PARTICIPANTS AND METHODS

Semen analysis and cryopreservation

This study was conducted after approval by the Institutional Review Board (IRB) of Cleveland Clinic, Cleveland, OH, USA. Semen samples were obtained from healthy volunteers with proven fertility (control, \(n = 15 \)) and patients with seminoma (\(n = 15 \)). All the participants signed informed written consent to allow the use of their samples in this study. The inclusion criteria were as follows: (1) control group, healthy fertile men who had fathered a child in the last 2 years; (2) seminoma group, patients diagnosed with seminoma and undergoing sperm banking before starting cancer therapy. Following 2–3 days of abstinence, semen samples were collected at the Andrology Center, Cleveland Clinic. Samples were liquefied for 20–30 min in an incubator (Panasonic, Newark, NJ, USA) at 37°C, and a routine semen analysis was conducted according to the World Health Organization (WHO) 2010 guidelines.\(^{15} \) Semen volume, sperm motility, and sperm concentration were recorded. Total sperm count and total motile count were also calculated and the results were expressed as mean ± standard error of the mean (s.e.m.). Whole ejaculate samples were immediately cryopreserved in TEST-yolk buffer (TYB; Irvine Scientific, Santa Ana, CA, USA) in a ratio of 1:1 as previously described\(^{16} \) and finally labeled and stored in liquid nitrogen at −196°C.

Protein extraction and estimation

Samples were thawed on ice and centrifuged at 4000g for 10 min (Eppendorf, Hauppauge, NY, USA). To remove the freezing medium (TYB) as much as possible, the sperm pellet was washed four times in phosphate-buffered saline (PBS; Sigma-Aldrich, St. Louis, MO, USA) and centrifuged at 4000g for 10 min at 4°C. Total sperm protein was extracted overnight at 4°C with radioimmunoprecipitation assay (RIPA) buffer (Sigma-Aldrich). Subsequently, samples were centrifuged at 10000g for 30 min at 4°C, to recover the protein fraction (supernatant). Pierce BCA Protein Assay kit (Thermo Fisher Scientific, Waltham, MA, USA) was used to estimate the protein concentration, according to the manufacturer's instructions.

Quantitative proteomic analysis

Three samples from the control or seminoma group were randomly selected for the proteomic analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Samples were pooled (\(n = 3 \)) using the same amount of protein from each sample. Each pool was then evaluated as an individual sample in the proteomic analysis. The system used was a Finnigan LTQ-Orbitrap Elite hybrid mass spectrometer (Thermo Fisher Scientific) using the previously described conditions and software.\(^{17} \) Scaffold (version 4.0.6.1, Proteome Software Inc., Portland, OR, USA) was used for the identification of differentially expressed proteins (DEPs) between the control and seminoma groups. The spectral counts were used to determine the abundance of each protein (very low, low, medium, or high). The identified DEPs were categorized as underexpressed, overexpressed, or unique to one of the groups, based on the normalized spectral abundance factor (NSAF) ratio according to previously reported criteria.\(^{17} \)

Bioinformatic analysis

Bioinformatic analysis of DEPs identified by LC-MS/MS was carried out using the Ingenuity Pathway Analysis software (IPA; Qiagen, Hilden, Germany). IPA was used to evaluate the canonical pathways, top diseases and bio-functions, and upstream regulators related to the identified DEPs. Proteins were selected for validation by western blot considering the following criteria: (1) proteins involved in reproductive system development and function; (2) proteins involved in the top canonical pathways; (3) proteins with a higher difference of abundance between the experimental groups; and (4) proteins with a well-described function in the literature. Only proteins that met all the above-mentioned criteria were subjected to western blot.

Western blot

Western blot was performed using individual samples from the control and seminoma groups (\(n = 6 \) per group). A total of 25 µg protein per sample was mixed with 4 × Laemmli sample buffer (Bio-Rad, Hercules, CA, USA) in a ratio of 1:3 and made up to 25 µl with PBS. Samples were boiled at 95°C for 10 min and immediately loaded into a 4%–15% (w/v) polyacrylamide gel (Bio-Rad). Electrophoresis was performed with constant voltage (90 V) for 2 h. Precision Plus Protein™ Dual Xtra Standard (Thermo Fisher Scientific) was used as the molecular weight marker. The resolved proteins were transferred (20 V for 30 min) to methanol-activated polyvinylidene difluoride (PVDF) membranes (GE Healthcare, Marlborough, MA, USA) and blocked for 90 min at room temperature, with a 5% (w/v) nonfat milk (Bio-Rad) solution prepared in tris-buffered saline with tween-20 (TBST; Sigma-Aldrich). Membranes were incubated overnight (4°C) with specific primary antibodies followed by the respective secondary antibodies at room temperature, for 90 min (Supplementary Table 1). Membranes were incubated with enhanced chemiluminescence (ECL) reagent (GE Healthcare) for 5 min, and the chemiluminescence signals were read in the ChemiDoc™ MP Imaging System (Bio-Rad). Densities from each band were quantified with Image Lab™ Software (version 6.0.1, Bio-Rad) and divided by the corresponding total protein lane density. Total protein density was obtained by incubation of the membranes with total colloidal gold protein stain (BioRad). The results were expressed as fold variation relative to the control group.

Statistical analyses

After testing normal distribution by the Kolmogorov–Smirnov test, semen parameters and western blot results were analyzed by Mann–Whitney U test for independent samples, using the MedCalc Software (version 17.8; MedCalc Software, Ostend, Belgium). All data are presented as mean ± s.e.m., and differences with \(P < 0.05 \) were considered statistically significant.

RESULTS

Semen quality in patients with testicular cancer seminoma

The average volume of the ejaculates was very similar between the control and seminoma groups (Table 1). However, there was a decrease in sperm parameters of fertile men (control) and patients with testicular cancer seminoma

Table 1: Semen parameters of fertile men (control) and patients with testicular cancer seminoma

Parameter	Control	Seminoma	\(P \)
Semen volume (ml)	3.53±0.35	3.33±0.42	0.541
Sperm motility (%)	67±3	54±5	0.019
Sperm concentration (10⁶ ml⁻¹)	95.49±7.79	46.72±12.19	0.003
Total sperm count (10⁶)	316.92±45.41	136.11±41.55	0.001
Total motile count (10⁶)	211.88±30.09	75.63±22.44	0.001

Results are presented as mean±s.e.m. (\(n=15 \) per group). Statistical significance was considered for \(P < 0.05 \). s.e.m.: standard error of the mean.
motility ($P = 0.019$), sperm concentration ($P = 0.003$), total sperm count ($P = 0.001$), and total motile count ($P = 0.001$) in patients with seminoma relative to control (Table 1). Nevertheless, all the samples were considered normozoospermic according to the WHO 2010 criteria.\(^\text{15}\)

Differentially expressed proteins

Proteomic analysis identified 1149 proteins in the control group and 911 in the seminoma group. After comparative analysis between the experimental groups, a total of 1192 proteins were quantified and 393 were found to be differentially expressed (Supplementary Table 2). More than half (52.7%) of the DEPs were underexpressed, while 20.1% were overexpressed in spermatozoa of patients with seminoma. Furthermore, 4.1% of the DEPs were unique to the seminoma group and 23.1% unique to the control group (Figure 1).

Selection of proteins for validation

According to the IPA analysis, among the top diseases and biofunctions related to “physiological system development and function,” the category with the highest P value was “reproductive system development and function.” Within this category, we selected seven proteins involved in specific reproductive processes (Table 2): angiotensin-converting enzyme (ACE), acrosin precursor (ACR), T-complex protein 1 subunit gamma (CCT3), sperm surface protein Sp17 (SPA17), sodium/potassium-transporting ATPase subunit alpha-4 (ATP1A4), heat shock-related 70 kDa protein 2 (HSPA2), and proteasome activator complex subunit 4 (PSME4). Some of these proteins were also involved in the top canonical pathways identified in this dataset. While HSPA2 participates in the “protein ubiquitination pathway” and “unfolded protein response,” ACE is related to “phagosome maturation.” Other top five canonical pathways included “mitochondrial dysfunction” and “oxidative phosphorylation.” Among the proteins involved in those pathways were NADH-ubiquinone oxidoreductase 75 kDa subunit (NDUFS1), cytochrome b-c1 complex subunit 2 (UQCRC2), and ATP synthase subunit alpha (ATP5A), which are subunits of the mitochondrial complexes I, III, and V, respectively. These three proteins were also selected for analysis by western blot. The abundance and expression pattern of the ten selected proteins obtained by the proteomic analysis is presented in Table 3.

Prediction of the upstream regulators

The IPA analysis predicted the activation or inhibition of several proteins, which could be responsible for the altered expression in the sperm proteome of men with seminoma. The rapamycin-insensitive companion of mammalian target of rapamycin (RICTOR) was predicted to be activated, thus leading to the underexpression of NDUFS1, UQCRC2, ATP5A1, and PSME4. Moreover, it was predicted that the underexpression of ATP5A1 and ATP1A4 may involve the activation of the amyloid-beta A4 protein (APP). On the other hand, the inhibition of the heat shock factor protein 2 (HSF2) was predicted to regulate the underexpression of CCT3, as well as six other chaperonins of the T-complex protein-1 (TCP-1) family (CCT2, CCT4, CCT5, CCT6A, CCT7, and CCT8).

Western blot analysis

All proteins selected for western blot analysis were identified. There was an increase in the protein expression of ACE ($P = 0.005$) and ACR ($P = 0.009$) in the seminoma group (2.61 ± 0.38 and 2.02 ± 0.26-fold variation to control, respectively) in comparison with the

Table 2: Specific functions of the differentially expressed proteins related to reproductive system development and function identified by the bioinformatic analysis when comparing the sperm proteome of patients with testicular cancer seminoma with fertile men

Process	Protein	P
Binding of sperm	ACE, ACR, CCT3, SPA17	<0.0001
Fertilization	ACE, ACR, ATP1A4, SPA17	<0.0001
Cell movement of sperm	ATP1A4	<0.0001
Spermatogenesis	ACE, ATP1A4, HSPA2, PSME4, SPA17	0.0036
Function of sperm	ATP1A4	0.0028
Acrosome reaction	ACR	0.0037
Fertility	ACE, ACR, PSME4	0.0067
Morphology of male germ cells	ACR, PSME4	0.0089
Morphology of sperm	ACR	0.0120
Hyperactivation of sperm	ATP1A4	0.0133

ACE: angiotensin-converting enzyme; ACR: acrosin precursor; ATP1A4: sodium/potassium-transporting ATPase subunit alpha-4; CCT3: T-complex protein 1 subunit gamma; HSPA2: heat shock-related 70 kDa protein 2; PSME4: proteasome activator complex subunit 4; SPA17: sperm surface protein Sp17

Table 3: Proteomic data of the differentially expressed proteins identified in the spermatozoa samples of fertile men (control) and men with testicular cancer seminoma before cancer therapy, which were selected for validation by western blot

Protein	Abundance	NSAF ratio	Expression profile	P
ACE	High	1.62	Overexpressed in seminoma	0.0131
ACR	Medium	0.34	Underexpressed in seminoma	0.001
ATP1A4	Medium	0.07	Underexpressed in seminoma	0.0001
ATP5A1	High	0.18	Underexpressed in seminoma	<0.0001
CCT3	High	0.09	Underexpressed in seminoma	<0.0001
HSPA2	High	0.53	Underexpressed in seminoma	<0.0001
NDUFS1	Medium	0.42	Underexpressed in seminoma	0.0307
PSME4	Medium	0.13	Underexpressed in seminoma	0.0006
SPA17	Medium	0.02	Underexpressed in seminoma	0.0001
UQCRC2	High	0.23	Underexpressed in seminoma	0.0001

ACE: angiotensin-converting enzyme; ACR: acrosin; ATP1A4: sodium/potassium-transporting ATPase subunit alpha-4; ATP5A1: ATP synthase subunit alpha, CCT3: T-complex protein 1 subunit gamma; HSPA2: heat shock-related 70 kDa protein 2; NDUFS1: NADH-ubiquinone oxidoreductase 75 kDa subunit; NSAF: normalized spectral abundance factor; PSME4: proteasome activator complex subunit 4; SPA17: sperm surface protein Sp17; UQCRC2: cytochrome b-c1 complex subunit 2
control (1.00 ± 0.25 and 1.00 ± 0.19, respectively) (Figure 2). On the other hand, there was a decrease in the protein levels of ATP1A4 (P = 0.016) and HSPA2 (P = 0.041) in men with seminoma (0.53 ± 0.03 and 0.32 ± 0.11-fold variation to control, respectively) when compared with the control group (1.00 ± 0.25 and 1.00 ± 0.22, respectively) (Figure 2). The protein levels of CCT3, SPA17, and PSME4 were similar between the study groups. There was also a decrease (P = 0.026) in the protein expression levels of UQCRC2 (0.54 ± 0.14-fold variation to control) in the seminoma group relative to the control (1.00 ± 0.14) (Figure 3). No differences were found in the protein levels of NDUFS1 or ATP5A1 between the experimental groups.

DISCUSSION

The present study is the first attempt to identify alterations in spermatozoa proteome of patients with seminoma before initiating cancer therapy, using fertile donors as control group. Our goal was to evaluate the expression levels of proteins involved in reproductive function from spermatogenesis to sperm function and fertilization. This may provide new insights on the underlying mechanisms responsible for the reduced sperm quality in men with seminoma.

Spermatogenesis consists of a complex process of spermatozoa production that involves several steps of germ cell differentiation. The bioinformatic analysis identified an underexpression of PSME4 in spermatozoa of patients with seminoma. PSME4 plays a role in the morphology of male germ cells; it is particularly important for histone replacement during chromatin remodeling and DNA double-strand break repair. It has been reported that mice lacking this protein present impaired spermatogenesis and reduced fertility. Thus, the downregulation of this protein may contribute to reduced fertility in men with seminoma. Although we were not able to confirm the underexpression of PSME4 by western blot in our dataset, we observed the underexpression of the molecular chaperone HSPA2 by both proteomics and western blot analysis. Molecular chaperones are essential for normal sperm production and functional transformation. HSPA2 acts as a protein quality control system as it ensures the correct folding/refolding of proteins and activates the degradation of misfolded proteins. It has been described that HSPA2 participates in the stability of the microtubules during the meiotic process of germ cell differentiation. In fact, animal studies show that knockout mice for Hspa2 exhibit an enormous number of apoptotic germ cells, resulting in infertility. Men with abnormal spermatogenesis frequently present a reduced hspa2 mRNA expression. Thus, the downregulation of HSPA2 protein in men with seminoma may contribute to the decreased production of normal spermatozoa during spermatogenesis, which is in accordance with the observed reduction in sperm concentration and total sperm count in seminoma group.

The protein ATP1A4 was identified as downregulated in seminoma group by the proteomic analysis, and this result was confirmed by the western blot technique. IPA analysis revealed that ATP1A4 participates in several reproductive processes, including spermatogenesis, function of sperm, cell movement of sperm, hyperactivation, and fertilization. ATP1A4 is the catalytic subunit of the Na+/K+ ATPase membrane protein, which controls the exchange of sodium and potassium ions across the plasma membrane in an ATP-dependent reaction. The regulation of ions in spermatozoa is essential for the acquisition of motility and fertilizing ability. ATP1A4 plays a key role in maintaining human sperm motility. It has been shown that male mice lacking this subunit are completely sterile and their spermatozoa present not only reduced motility but also impaired hyperactivation and inability to fertilize in vitro. These studies highlight the importance of ATP1A4 for male fertility, and the underexpression of this protein in spermatozoa of men with seminoma may explain the decrease in sperm motility and total motile count relative to proven fertile men (control group). The downregulation of ATP1A4 was related to the activation of APP. In fact, this protein has been identified in human spermatozoa and suggested to play an important role in sperm function, especially in signaling events involved in sperm motility.

Another important process crucial for sperm function is mitochondrial function. It is required for energy production necessary for spermatogenesis, sperm movement and production of reactive oxygen species (ROS) in physiological amounts to trigger capacitation and regulate hyperactivation and acrosome reaction. Mitochondrial function relies on the expression of the mitochondrial complexes I–IV for oxidative phosphorylation (OXPHOS) and complex V for ATP production. Our proteomic data showed a downregulation of NDUFS1, UQCRC2, and ATP5A1 in the seminoma group, which are subunits of complex I, III, and V, respectively. The downregulation of these three proteins was predicted to be induced by the activation of RICTOR, which plays a key role in spermatogenesis and sperm maturation signaling.

Figure 2: Graphical representation of the expression levels of proteins involved in reproductive functions (ACE, ACR, ATP1A4, CCT3, HSPA2, PSME4, and SPA17) in spermatozoa samples obtained from fertile men (control) and men with testicular cancer seminoma. Results are presented as fold variation to control and expressed as mean ± standard error of the mean (n = 15 per group). Statistical significance is indicated as: “*P < 0.05,” “**P < 0.01,” seminoma versus control. Representative blots for each protein are also presented. ACE: angiotensin-converting enzyme; ACR: acrosin precursor; ATP1A4: sodium/potassium-transporting ATPase subunit alpha; CCT3: t-complex protein 1 subunit gamma; HSPA2: heat shock-related 70 kDa protein 2; PSME4: proteasome activator complex subunit 4; SPA17: sperm surface protein Sp17.

Figure 3: Graphical representation of the protein expression levels of mitochondrial complex subunits NDUFS1, UQCRC2, and ATP5A1 in spermatozoa samples obtained from fertile men (control) and men with testicular cancer seminoma. Results are presented as fold variation to control and expressed as mean ± standard error of the mean (n = 15 per group). Statistical significance is indicated as: “*P < 0.05,” seminoma versus control. Representative blots for each protein are also presented. NDUFS1: NADH-ubiquinone oxidoreductase 75 kDa subunit; UQCRC2: cytochrome b-c1 complex subunit 2; ATP5A: ATP synthase subunit alpha.
pathways. The mitochondrial subunits are essential for the proper assembly of the complexes; thus, alterations in their protein expression in spermatozoa are indicative of mitochondrial dysfunction, as reported by the IPA canonical pathways. Although the western blot analysis demonstrated a tendency of reduced expression of the three mitochondrial subunits, only the UQCRCC2 was decreased in patients with seminoma. Downregulation of UQCRCC2 was associated with reduced sperm kinematics, ATP production, and capacitation, which ultimately compromises sperm binding and fertilization. In fact, an underexpression of UQCRCC2 was observed in infertile men with varicocele.

The acquisition of sperm fertilizing ability involves a timed triggering of events in the female reproductive system, culminating in sperm–oocyte binding. SPA17 and CCT3 are two sperm proteins involved in this function, which were identified as downregulated in the seminoma group by the proteomic analysis. SPA17 is a mannose-binding protein that binds to zona pellucida carbohydrates during fertilization. It also plays an important role in germ cell differentiation during spermatogenesis, as its expression increases from early to late stages. CCT3 is one of the subunits of the TCP-1 complex. Although we selected to evaluate the expression levels of this subunit, six other subunits of this complex (CCT2, CCT4, CCT5, CCT6A, CCT7, and CCT8) were also downregulated in men with seminoma. These subunits mediate capacitation-dependent binding of spermatozoa to the zona pellucida. Thus, the downregulation of this system may compromise sperm fertilization. The downregulation of TCP-1 complex subunits was predicted to be due to HS2 inhibition. In fact, disruption of hsf2 in mice affected testicular size and spermatogenic defects. When active, HS2 is likely to induce the upregulation of HSPA2. Thus, the predicted inhibition of HS2 in men with seminoma is in accordance with the downregulation of HSPA2. Although the underexpression of SPA17 and CCT3 was not confirmed by the western blot, the downregulation of HSPA2 in men with seminoma may contribute to the loss of sperm function. In fact, this protein is known to regulate the formation of zona pellucida-binding sites in spermatozoa during spermatogenesis. In addition, it regulates fertilization by mediating the function of sperm surface receptors, such as sperm adhesion molecule 1 (SPAM1) and arylsulfatase A (ARSA), during sperm-egg recognition. Previous proteomic studies have shown low expression levels of HSPA2 in men with asthenozoospermia and primary or secondary infertility. Another study also reported a downregulation of HSPA2, ATP1A4, and SPA17 in infertile varicocele patients. Our results suggest that the altered expression levels of these proteins in men with seminoma may contribute to the impairment of male fertility.

The proteomic analysis also identified ACE as overexpressed in the seminoma group, and this result was confirmed by western blot. This protein is a zinc metalloendopeptidase responsible for the conversion of angiotensin I to angiotensin II. The role of ACE in male reproductive function is not completely understood. Studies with ACE-deficient mice reported that these animals produce a normal number of spermatozoa and present normal motility and morphology. However, the spermatozoa were unable to bind and fertilize the egg. A negative correlation between sperm-bound ACE activity and sperm motility has also been observed. The testis-specific isoform of this protein (tACE) is believed to be released from functional spermatozoa during capacitation and acrosome reaction to increase the fertilizing ability. In fact, a lower tACE activity was detected in spermatozoa from normozoospermic men relative to those with oligoasthenozoospermia. Thus, the overexpression of this protein in spermatozoa from men with seminoma may be responsible for the decrease in sperm motility observed in this group, and possibly explains why some men with seminoma are not able to have children even before the treatment.

Finally, the protein ACR, in its precursor form (proacrosin), was identified as underexpressed in the seminoma group by the proteomic analysis. This protein is activated and converted to its active form during acrosome reaction, playing a role in sperm–oocyte binding. In contrast, using western blot, we found a high overexpression of this protein in men with seminoma. Although we cannot clearly infer about the molecular mechanisms, any of the scenarios (underexpression/overexpression) could lead to a defective acrosome reaction and impaired fertilization. The difference on these results may be due to the sensitivity of each technique and to the sample size. Further studies to assess acrosin activity in men with seminoma are needed to clarify the impact of this condition in acrosome reaction.

Overall, our study points toward important alterations in sperm proteins with a key role in male fertility in men with seminoma. As of today, no specific sperm markers have been identified for the clinical diagnosis and monitoring of testicular cancer seminoma development. The expression levels of HSPA2, ATP1A4, UQCRCC2, and ACE can be helpful sperm biomarkers when evaluating the fertility status of a man, which may allow the early diagnosis of seminomas in a noninvasive approach. Although there is still a lot to explore in the pathophysiology of male subfertility/infertility in men with seminoma, our results represent a step forward in understanding the molecular mechanisms behind the reduced sperm quality in these patients. Future advances in mass spectrometry and bioinformatics will improve our understanding on human sperm function in healthy and disease conditions.

AUTHOR CONTRIBUTIONS

AA and RS were responsible for the conception and design of the study. TRD was responsible for the acquisition and interpretation of data, as well as writing the first draft. GA helped in samples processing and PNP performed the bioinformatic analysis. All authors read and approved the final manuscript.

COMPETING INTERESTS

All authors declared no competing interests.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Belinda Willard (Director, Proteomics Core Laboratory, Lerner Research Institute, Cleveland Clinic) for her support in the proteomic analysis and Dr. Ralf Henkel and Dr. Saradha Baskaran for their help in reviewing the manuscript. Financial support for this study was provided by the American Center for Reproductive Medicine, Cleveland Clinic, OH, USA. Tania R Dias was supported by the Portuguese Foundation for Science and Technology (FCT, SFRH/BD/109284/2015) and Fulbright Program (F09585639). Sponsors were not involved in the experiments or writing/submitting the paper.

Supplementary Information is linked to the online version of the paper on the Asian Journal of Andrology website.

REFERENCES

1. Ruf CG, Isbarn H, Wagner W, Fisch M, Matthees C, et al. Changes in epidemiologic features of testicular germ cell cancer: age at diagnosis and relative frequency of seminomas are constantly and significantly increasing. Urol Oncol 2014; 32: 33.e1–6.

2. Nonne A, Howlader N, Krapcho M, Miller D, Brest A, et al: SEER Cancer Statistics Review. Bethesda: National Cancer Institute; 1975-2015. Available from: https://www.seer.cancer.gov/csr/1975_2015/. (Last accessed on 2019 Jan 7).

3. Bahadur G, Ozturk O, Muneer A, Wafa R, Ashraf A, et al. Semen quality before and after gonadotoxic treatment. Hum Reprod 2005; 20: 774–81.

4. Morris DW, Venner PM, Sij O, Baron G, Bhardwaj D, et al. Mechanisms of endocrine dysfunction in patients with testicular cancer. J Natl Cancer Inst 1990; 82: 412–8.
Asian Journal of Andrology

22 Dix DJ, Allen JW, Collins BW, Mori C, Nakamura N, Liu M, Shi X, Bi Y, Qi L, Guo X, Sanchez G, Nguyen AN, Timmerberg B, Tash JS, Blanco G. The Na,K-ATPase

Mol Hum Reprod 2014; 20: 463–75.

Ali et al.

2002; 73: 295–7.

et al.

et al.
Supplementary Table 1: List of the primary and secondary antibodies used in this study

Antibody	Source	KDa	Dilution	Vendor	Catalog Number
ACE	Rabbit	200	1:1000	Abcam	ab85955
ACR	Rabbit	46	1:1000	Abcam	ab203289
ATP1A4	Rabbit	100	1:10000	Abcam	ab76020
ATP5A	Mouse	54	1:1000	Abcam	ab110411
CCT3	Rabbit	61	1:2000	Abcam	ab225878
HSPA2	Mouse	70	1:500	Abcam	ab89130
NDUF51	Rabbit	79	1:10000	Abcam	ab157221
PSME4	Rabbit	211	1:500	Abcam	ab181203
SPA17	Rabbit	17	1:1000	Abcam	ab172626
UQRC2	Mouse	48	1:1000	Abcam	ab110411
Mouse	Rabbit	-	1:10000	Abcam	ab6728
Rabbit*	Goat	-	1:10000	Abcam	ab97051

*Secondary antibody. ACE: angiotensin-converting enzyme; ACR: acrosin precursor; CCT3: T-complex protein 1 subunit gamma; SPA17: sperm surface protein Sp17; ATP1A4: sodium/potassium-transporting ATPase subunit alpha-4; HSPA2: heat shock-related 70 kDa protein 2; PSME4: proteasome activator complex subunit 4; NDUF51: NADH-ubiquinone oxidoreductase 75 kDa subunit; UQRC2: cytochrome b-c1 complex subunit 2; ATP5A: ATP synthase subunit alpha

Supplementary Table 2: List of the differentially expressed proteins identified by the bioinformatic analysis when comparing the sperm proteome of fertile men (control) and patients with testicular cancer seminoma

Protein	Accession	Average SC	Abundance	NSAF ratio	t-test	Expression		
1. Transmembrane and coiled-coil domain-containing protein 2	56847610	23.3	0	M	ni	0.00	Unique to Control	
2. Isocitrate dehydrogenase (NAD) subunit alpha, mitochondrial precursor	5031777	48.0	0	M	ni	0.00	Unique to Control	
3. Succinyl-CoA ligase (ADP-forming) subunit beta, mitochondrial precursor	11321583	25.7	0	M	ni	0.00	Unique to Control	
4. Short-chain specific acyl-CoA dehydrogenase, mitochondrial precursor	4557233	50.0	0	M	ni	0.00	Unique to Control	
5. Probable serine carboxypeptidase CPVL isoform X1	530384848	27.0	0	M	ni	0.00	Unique to Control	
6. ATP synthase subunit O, mitochondrial precursor	4502303	33.7	0	M	ni	0.00	Unique to Control	
7. Doublecortin domain-containing protein 2C	566006166	21.7	0	M	ni	0.00	Unique to Control	
8. Bifunctional glutamate/proline-tRNA ligase	62241042	21.0	0	M	ni	0.00	Unique to Control	
9. Exportin-7	154448982	27.3	0	M	ni	0.00	Unique to Control	
10. Uncharacterized protein KIAA1683 isoform X1	530415216	23.3	0	M	ni	0.00	Unique to Control	
11. Leucine-rich repeat-containing protein 37A3 isoform X14	578840218	12.3	0	L	ni	0.00	Unique to Control	
12. Heme oxygenase 2 isoform a	555943918	11.3	0	L	ni	0.00	Unique to Control	
13. Actin-related protein T3	221139714	17.7	0	L	ni	0.00	Unique to Control	
14. Ubiquitin carboxy-terminal hydrolase 7 isoform 1	150378533	18.3	0	L	ni	0.00	Unique to Control	
15. Tetratricopeptide repeat protein 25	13899233	12.7	0	L	ni	0.00	Unique to Control	
16. Actin-like protein 7A	5729720	16.7	0	L	ni	0.00	Unique to Control	
17. Dynne intermediate chain 2, axonemal isoform X4	530412670	15.7	0	L	ni	0.00	Unique to Control	
18. Four and a half LIM domains protein 1 isoform 5	228480205	18.7	0	L	ni	0.00	Unique to Control	
19. Putative lipoyltransferase 2, mitochondrial precursor	221554520	9.0	0	L	ni	0.00	Unique to Control	
Protein	Accession	Average SC	Abundance	NSAF ratio	t-test	Expression		
---	-----------	------------	-----------	------------	--------	---------------------		
20 Tubulin polymerization-promoting protein family member 2	226491350	16.3	0	L	0.00	0.00012 Unique to Control		
21 Isocitrate dehydrogenase (NAD) subunit beta, mitochondrial isomorf a precursor	2817821	19.3	0	L	0.00	0.00019 Unique to Control		
22 Protein DPCD	39930355	18.3	0	L	0.00	0.00028 Unique to Control		
23 Long-chain-fatty-acid-CoA ligase 3	42794754	9.7	0	L	0.00	0.00031 Unique to Control		
24 Sodium/potassium-transporting ATPase subunit alpha-3 isofrm 1	22748667	17.3	0	L	0.00	0.00047 Unique to Control		
25 26S proteasome non-ATPase regulatory subunit 4	5292161	9.0	0	L	0.00	0.00047 Unique to Control		
26 ATP synthase subunit g, mitochondrial	51479156	9.0	0	L	0.00	0.00049 Unique to Control		
27 Acyl-CoA dehydrogenase family member 9, mitochondrial	21361497	18.0	0	L	0.00	0.00061 Unique to Control		
28 Transcription factor A, mitochondrial isofrm 1 precursor	4507401	15.0	0	L	0.00	0.00065 Unique to Control		
29 Elongation factor Tu, mitochondrial precursor	34147630	10.7	0	L	0.00	0.00066 Unique to Control		
30 Eukaryotic translation elongation factor 1 epsilon-1 isofrm 2	208879470	8.0	0	L	0.00	0.00068 Unique to Control		
31 Voltage-dependent calcium channel subunit alpha-2/delta-2 isofrm X1	530373385	8.0	0	L	0.00	0.00075 Unique to Control		
32 Armadillo repeat-containing protein 12 isofrm X1	530381603	12.0	0	L	0.00	0.00079 Unique to Control		
33 Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial isofrm 3	70906444	13.0	0	L	0.00	0.00081 Unique to Control		
34 Probable inactive serine protease 37 isofrm 1 precursor	28539164	9.0	0	L	0.00	0.00087 Unique to Control		
35 26S proteasome non-ATPase regulatory subunit 14	5031981	9.0	0	L	0.00	0.00088 Unique to Control		
36 Mitochondria-eating protein isofrm X4	530376736	16.7	0	L	0.00	0.00097 Unique to Control		
37 Mitochondrial fission 1 protein	151108473	8.7	0	L	0.00	0.00110 Unique to Control		
38 Alpha-soluble NSF attachment protein	47933379	8.0	0	L	0.00	0.00137 Unique to Control		
39 Maleylacetoacetate isomerase isofrm 1	22202624	9.0	0	L	0.00	0.00179 Unique to Control		
40 40S ribosomal protein S15	4506687	10.0	0	L	0.00	0.00184 Unique to Control		
41 Aladin isofrm 2	291045307	8.3	0	L	0.00	0.00186 Unique to Control		
42 Ubiquitin carboxyl-terminal hydrolase isoyme L1	21361091	14.3	0	L	0.00	0.00195 Unique to Control		
43 Stomatin-like protein 2, mitochondrial isofrm a	7305503	12.3	0	L	0.00	0.00200 Unique to Control		
44 Protein FAM209B isofrm X2	578835992	8.0	0	L	0.00	0.00205 Unique to Control		
45 Putative protein FAM71E2	223972704	12.3	0	L	0.00	0.00229 Unique to Control		
46 Acyl-protein thioesterase 1 isofrm 1	5453722	11.7	0	L	0.00	0.00240 Unique to Control		
47 Histone H1t	20544168	8.0	0	L	0.00	0.00244 Unique to Control		
48 Armadillo repeat-containing protein 4 isofrm X3	578818430	18.7	0	L	0.00	0.00324 Unique to Control		
49 Dnaj homolog subfamily B member 1 isofrm X1	578833210	13.3	0	L	0.00	0.00375 Unique to Control		
50 Calcium-binding mitochondrial carrier protein Aralar2 isofrm 1	237649019	14.0	0	L	0.00	0.00450 Unique to Control		
Protein Accession	Average SC	Abundance Control	Abundance Seminoma	NSAF ratio Seminoma/Control	t-test P	Expression		
-------------------	------------	-------------------	-------------------	----------------------------	----------	------------		
51 ACSBG2 isoform a	574584557	17.7	0	L ni	0.00	0.00479	Unique to Control	
52 Methionine-tRNA ligase, cytoplasmic	14043022	10.0	0	L ni	0.00	0.00512	Unique to Control	
53 60S acidic ribosomal protein P0	4506667	13.3	0	L ni	0.00	0.00722	Unique to Control	
54 Cytoplasmic dynein 1 heavy chain 1	33350932	11.3	0	L ni	0.00	0.00728	Unique to Control	
55 ADP-ribosylation factor 6	4502211	9.0	0	L ni	0.00	0.00763	Unique to Control	
56 Glycine-tRNA ligase precursor	116805340	15.0	0	L ni	0.00	0.00770	Unique to Control	
57 BAG family molecular chaperone regulator 5 isoform b	6631077	9.3	0	L ni	0.00	0.00818	Unique to Control	
58 60S ribosomal protein L7a	4506661	5.3	0	VL ni	0.00	0.00000	Unique to Control	
59 Isobutyl-CoA dehydrogenase, mitochondrial	7656849	7.0	0	VL ni	0.00	0.00000	Unique to Control	
60 cAMP-dependent protein kinase catalytic subunit gamma	15619015	7.0	0	VL ni	0.00	0.00000	Unique to Control	
61 Vitamin K epoxide reductase complex subunit 1-like protein 1 isoform 1	46309463	3.7	0	VL ni	0.00	0.00000	Unique to Control	
62 Translocation protein SEC63 homolog	6005872	2.0	0	VL ni	0.00	0.00001	Unique to Control	
63 UDP-N-acetylhexosamine pyrophosphorylase	156627575	3.0	0	VL ni	0.00	0.00001	Unique to Control	
64 Guanine nucleotide-binding protein subunit beta-2-like 1	5174447	2.0	0	VL ni	0.00	0.00003	Unique to Control	
65 Dynein intermediate chain 1, axonemal isoform 2	526479830	7.0	0	VL ni	0.00	0.00003	Unique to Control	
66 Fibronectin type III domain-containing protein 8	8922138	2.0	0	VL ni	0.00	0.00009	Unique to Control	
67 40S ribosomal protein S26-like	530438702	3.0	0	VL ni	0.00	0.00009	Unique to Control	
68 Mitochondrial import receptor subunit TOM22 homolog	9910382	6.0	0	VL ni	0.00	0.00009	Unique to Control	
69 Cation channel sperm-associated protein subunit beta precursor	51339295	2.0	0	VL ni	0.00	0.00009	Unique to Control	
70 Maestro heat-like repeat-containing protein family member 7	223278410	3.3	0	VL ni	0.00	0.00010	Unique to Control	
71 ADP-ribosylation factor-like protein 2 isoform 1	148612885	2.7	0	VL ni	0.00	0.00015	Unique to Control	
72 protein NDRG1 isoform 1	207028748	4.0	0	VL ni	0.00	0.00016	Unique to Control	
73 Speriolin isoform 1	197276668	6.3	0	VL ni	0.00	0.00017	Unique to Control	
74 Radial spoke head protein 6 homolog A	13540559	3.3	0	VL ni	0.00	0.00018	Unique to Control	
75 DCN1-like protein 1	36030883	4.7	0	VL ni	0.00	0.00025	Unique to Control	
76 dnaJ homolog subfamily C member 3 precursor	5453980	3.7	0	VL ni	0.00	0.00025	Unique to Control	
77 Sialic acid synthase	12056473	3.0	0	VL ni	0.00	0.00028	Unique to Control	
78 Glutamine-tRNA ligase isoform b	441478305	3.7	0	VL ni	0.00	0.00028	Unique to Control	
79 Mimitin, mitochondrial	29789409	4.3	0	VL ni	0.00	0.00031	Unique to Control	
80 60S ribosomal protein L22 proprotein	4506613	5.0	0	VL ni	0.00	0.00032	Unique to Control	
81 EF-hand calcium-binding domain-containing protein 14	7662160	6.7	0	VL ni	0.00	0.00033	Unique to Control	
Protein	Accession	Average SC	Abundance	NSAF ratio	t-test	Expression		
--	-----------	------------	-----------	------------	--------	------------		
Iron-sulfur cluster assembly enzyme ISCU, mitochondrial isoform X1	530400013	4.7	0	VL ni	0.00	Unique to Control		
Growth hormone-inducible transmembrane protein	118200356	4.7	0	VL ni	0.00	Unique to Control		
S-phase kinase-associated protein 1 isoform b	25777713	4.0	0	VL ni	0.00	Unique to Control		
Calcium-binding mitochondrial carrier protein Aralar1	21361103	3.3	0	VL ni	0.00	Unique to Control		
Diphosphomevalonate decarboxylase	4505289	2.3	0	VL ni	0.00	Unique to Control		
V-type proton ATPase subunit E 2 isoform X1	530368260	4.0	0	VL ni	0.00	Unique to Control		
Nucleosome assembly protein 1-like 1	21327708	4.3	0	VL ni	0.00	Unique to Control		
26S proteasome regulatory subunit 4	24430151	6.0	0	VL ni	0.00	Unique to Control		
Mitochondrial ornithine transporter 1	7657585	5.3	0	VL ni	0.00	Unique to Control		
60S ribosomal protein L5	14591909	3.7	0	VL ni	0.00	Unique to Control		
Dynein heavy chain 17, axonemal	256542310	88.0	1.0	H VL	0.01	UE in Seminoma		
L-amino-acid oxidase isoform 2 precursor	384381475	76.0	0.3	M VL	0.01	UE in Seminoma		
Sperm-associated antigen 6 isoform X1	530392552	58.0	0.3	M VL	0.01	UE in Seminoma		
Nuclear pore complex protein Nup93 isoform X1	530424559	37.7	0.3	M VL	0.01	UE in Seminoma		
Valine-RNA ligase	5454158	87.7	1.7	H VL	0.01	UE in Seminoma		
Sperm surface protein Sp17	8394343	31.3	0.3	M VL	0.02	UE in Seminoma		
Exportin-2 isoform 1	29029559	16.7	0.3	L VL	0.02	UE in Seminoma		
26S proteasome non-ATPase regulatory subunit 13 isoform 1	157502193	19.7	0.3	L VL	0.02	UE in Seminoma		
Cathepsin F precursor	6042196	21.0	0.3	M VL	0.03	UE in Seminoma		
26S proteasome non-ATPase regulatory subunit 7	25777615	13.7	0.3	L VL	0.03	UE in Seminoma		
Uncharacterized protein C7orf61	51972226	14.3	0.3	L VL	0.03	UE in Seminoma		
Vacuolar protein sorting-associated protein 13A isoform C	66346672	19.7	0.3	L VL	0.03	UE in Seminoma		
Mitochondrial pyruvate carrier 1-like protein	306922396	18.0	0.3	L VL	0.03	UE in Seminoma		
Plasma membrane calcium-transporting ATPase 4 isoform 4b	48255957	52.3	2.7	M VL	0.03	UE in Seminoma		
Presequence protease, mitochondrial isoform 2 precursor	41352061	50.3	1.0	M VL	0.03	UE in Seminoma		
Exportin-1 isoform X1	530368070	8.3	0.3	L VL	0.03	UE in Seminoma		
Ras-related protein Rab-11B	190358517	15.7	0.3	L VL	0.03	UE in Seminoma		
Phosphatidylethanolamine-binding protein 4 precursor	116812622	15.0	0.3	L VL	0.04	UE in Seminoma		
Protein FAM71A	282721094	12.3	0.3	L VL	0.04	UE in Seminoma		
Puromycin-sensitive aminopeptidase	158937236	45.0	1.3	M VL	0.04	UE in Seminoma		
Epimerase family protein SDR39U1 isoform 1	116812630	13.3	0.3	L VL	0.04	UE in Seminoma		
Protein Description	Accession	Average SC Control	Abundance Control	NSAF ratio	t-test P	Expression		
---------------------	-----------	---------------------	-----------------	------------	---------	------------		
V-type proton ATPase catalytic subunit A	19913424	15.7	0.3	L	VL	0.04	0.00313	UE in Seminoma
Cullin-associated NEDD8-dissociated protein 1	21361794	143.3	7.0	H	VL	0.05	0.00000	UE in Seminoma
Low molecular weight phosphorylase protein phosphatase isoform c	4757714	8.7	0.3	L	VL	0.05	0.00005	UE in Seminoma
Dynamin heavy chain B, axonemal isoform X1	578811443	132.3	6.3	H	VL	0.05	0.00003	UE in Seminoma
Heat shock protein 75, mitochondrial isoform 1 precursor	15572983	8.3	0.3	L	VL	0.05	0.00081	UE in Seminoma
Cullin-3 isoform 3	380714665	58.3	2.3	M	VL	0.05	0.00012	UE in Seminoma
Lysozyme alpha-glucosidase isoform X1	530411863	5.0	0.3	VL	VL	0.05	0.00074	UE in Seminoma
Isoleucine-tRNA ligase, mitochondrial precursor	46852147	40.7	1.7	M	VL	0.05	0.00001	UE in Seminoma
Protein FAM71B	222418633	46.7	1.3	M	VL	0.05	0.00050	UE in Seminoma
Actin-related protein T2	29893808	45.7	1.7	M	VL	0.06	0.00004	UE in Seminoma
Thioredoxin domain-containing protein 3	148839372	18.3	1.0	L	VL	0.06	0.00016	UE in Seminoma
Carnitine O-palmitoyltransferase 1, muscle isoform a	4758050	11.3	1.0	L	VL	0.06	0.00107	UE in Seminoma
Phosphoglycolate phosphatase	108796653	15.3	0.3	L	VL	0.06	0.00014	UE in Seminoma
Ecto-ADP-ribose transferase 3 isoform X8	530377706	38.3	1.7	M	VL	0.06	0.00004	UE in Seminoma
EF-hand calcium-binding domain-containing protein 1 isoform a	13375787	11.3	0.3	L	VL	0.07	0.00341	UE in Seminoma
Izumo sperm-egg fusion protein 2 isoform X1	578833932	9.0	0.3	L	VL	0.07	0.00273	UE in Seminoma
Sodium/potassium-transporting ATPase subunit alpha-4 isoform 1	153946397	59.7	5.3	M	VL	0.07	0.00006	UE in Seminoma
Enolase-2, mitochondrial isoform 2	260274832	25.3	1.0	M	VL	0.07	0.00081	UE in Seminoma
Casein kinase II subunit beta isoform 1	23503295	9.3	0.3	L	VL	0.07	0.00181	UE in Seminoma
Sodium/potassium-transporting ATPase subunit alpha-4 isoform 1	153946397	59.7	5.3	M	VL	0.07	0.00006	UE in Seminoma
Casein kinase II subunit beta isoform 1	23503295	9.3	0.3	L	VL	0.07	0.00181	UE in Seminoma
Small membrane A-kinase anchor protein	110349742	9.3	0.3	L	VL	0.07	0.00193	UE in Seminoma
60S ribosomal protein L12	4506597	14.3	0.7	L	VL	0.07	0.00044	UE in Seminoma
Leucine-rich repeat-containing protein 37A3 precursor	75677612	20.3	1.3	M	VL	0.07	0.00021	UE in Seminoma
NADH dehydrogenase (ubiquinone) iron-sulfur protein B, mitochondrial isoform X1	530396818	8.0	0.3	L	VL	0.07	0.00305	UE in Seminoma
Heat shock 70 protein 4L	31541941	93.3	2.3	H	VL	0.08	0.00012	UE in Seminoma
Sperm equatorial segment protein 1 precursor	21717832	100.7	5.0	H	VL	0.08	0.00000	UE in Seminoma
Pyruvate dehydrogenase E1 component subunit beta, mitochondrial isoform 1 precursor	156564403	67.3	3.3	M	VL	0.08	0.00002	UE in Seminoma
Choline transporter-like protein 5 isoform B	194239633	8.0	1.3	L	VL	0.08	0.00340	UE in Seminoma
6-Phosphofructokinase type C isoform 1	11321601	131.3	10.7	H	L	0.09	0.00000	UE in Seminoma
26S proteasome non-ATPase regulatory subunit 12 isoform 1	4506221	10.7	0.7	L	VL	0.09	0.00427	UE in Seminoma
rUVB-like 2	5730023	137.3	7.7	H	VL	0.09	0.00007	UE in Seminoma
T-complex protein 1 subunit gamma isoform a	63162572	128.7	7.7	H	VL	0.09	0.00000	UE in Seminoma
Supplementary Table 2: Contd...

Protein	Accession	Average SC	Abundance	NSAF ratio	t-test	Expression	
ATP synthase subunit beta, mitochondrial precursor	32189394	354.3	21.7	H	M	0.09	
Phosphatidylglycerophosphatase and protein-tyrosine phosphatase 1 isoform 1	148224884	11.7	0.7	L	VL	0.09	
26S proteasome non-ATPase regulatory subunit 3	25777612	35.3	3.0	M	VL	0.09	
Importin-5 isoform X2	530423350	24.7	1.7	M	VL	0.10	
Mitochondrial dicarboxylate carrier isoform 2	20149598	56.0	3.7	M	VL	0.10	
TMEM189-UBE2V1 fusion protein	40806190	8.3	0.7	L	VL	0.10	
Dynein heavy chain 7, axonemal	151301127	18.0	1.0	L	VL	0.11	
Lysozyme-like protein 1	73390143	9.7	0.7	L	VL	0.11	
Importin subunit alpha-1	4504897	54.7	3.3	M	VL	0.11	
Nuclear pore complex protein Nup155 isoform 1	24430149	86.0	8.3	H	L	0.12	
Mitochondrial 2-oxoglutarate/malate carrier protein isoform 1	21361114	39.0	2.7	M	VL	0.12	
Hyaluronidase PH-20 isoform 2	23510418	35.3	2.3	M	VL	0.12	
40S ribosomal protein S16	4506691	10.7	0.7	L	VL	0.12	
26S proteasome non-ATPase regulatory subunit 11	28872725	13.0	1.0	L	VL	0.12	
26S proteasome non-ATPase regulatory subunit 6 isoform 2	7661914	18.7	1.7	L	VL	0.13	
T-complex protein 1 subunit zeta-2 isoform X1	578830267	36.7	3.3	M	VL	0.13	
Bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase (cyclizing) isoform X1	530396576	29.0	3.0	M	VL	0.13	
Ropporin-1B	59891409	92.7	7.3	H	VL	0.13	
Dynactin subunit 2 isoform 3	387527974	15.7	1.7	L	VL	0.13	
ras-related protein Rab-14	19923483	19.0	1.3	L	VL	0.13	
Proteasome activator complex subunit 4	163644283	52.7	5.7	M	VL	0.13	
T-complex protein 1 subunit alpha isoform a	57863257	132.3	13.0	H	L	0.13	
Pyruvate dehydrogenase E1 component subunit alpha, testis-specific form, mitochondrial precursor	4885543	50.0	3.7	M	VL	0.13	
Dynactin light chain roadblock-type 2	18702323	8.7	0.7	L	VL	0.13	
Nuclear transport factor 2	5031985	9.7	0.7	L	VL	0.13	
Metalloeductase STEAP4 isoform 1	100815815	13.3	1.7	L	VL	0.13	
Prenylated Rab acceptor protein 1	222144309	8.3	1.0	L	VL	0.13	
Heat shock protein 105 isoform 1	42544159	8.7	0.7	L	VL	0.14	
ATP synthase subunit gamma, mitochondrial isoform L (liver) precursor	50345988	48.7	3.3	M	VL	0.14	
3-Hydroxyisobutyryl-CoA hydrolase, mitochondrial isoform 1 precursor	37594471	11.7	1.0	L	VL	0.14	
Transmembrane protein 89 precursor	56847630	12.7	1.0	L	VL	0.14	
Protein	Accession	Average SC Control	Abundance Seminoma Control	Abundance Seminoma	NSAF ratio Seminoma/Control	t-test P	Expression
---	-----------	--------------------	-----------------------------	-------------------	-----------------------------	---------	------------
T-complex protein 1 subunit beta isoform 1	5453603	120.7	12.0	H	L	0.14	0.00005
T-complex protein 1 subunit zeta isoform a	4502643	71.7	7.3	M	VL	0.15	0.00013
Inactive serine protease 54 precursor	122937420	19.0	1.7	L	VL	0.15	0.00060
Nucleoporin p54 isoform 1	26051237	21.7	2.3	M	VL	0.16	0.01278
T-complex protein 1 subunit theta isoform 1	48762932	77.7	8.3	M	L	0.16	0.00032
Sperm protein associated with the nucleus on the X chromosome B/F	190570192	22.0	2.7	M	VL	0.16	0.00428
Histone H2A-Bbd type 2/3	63029935	21.7	2.0	M	VL	0.16	0.00688
Transcription elongation factor B polypeptide 2 isoform a	6005890	11.0	1.3	L	VL	0.16	0.00017
Protein MENT isoform X1	579801150	97.7	11.0	H	L	0.17	0.00005
ATP synthase subunit d, mitochondrial isoform a	5453559	33.0	3.0	M	VL	0.17	0.00091
Ropporin-1A isoform X1	530374814	55.7	5.7	M	VL	0.17	0.00001
ATP synthase F (0) complex subunit B1, mitochondrial precursor	21361565	35.3	3.7	M	VL	0.17	0.00076
NADH dehydrogenase (ubiquinone) flavoprotein 1, mitochondrial isoform 1 precursor	20149568	14.0	1.7	L	VL	0.17	0.00400
Apolipoprotein 0 isoform X1	578837961	40.3	4.3	M	VL	0.17	0.00011
26S proteasome non-ATPase regulatory subunit 1 isoform 1	25777600	49.0	8.3	M	L	0.17	0.00016
Elongation factor 1-delta isoform 1	304555881	32.3	3.7	M	VL	0.18	0.00006
26S proteasome non-ATPase regulatory subunit 8	156631005	25.7	2.3	M	VL	0.18	0.00001
ATP synthase subunit alpha, mitochondrial isoform a precursor	50345984	265.3	33.0	H	M	0.18	0.00001
Heat shock 70 protein 1-like isoform X1	530381921	207.0	24.3	H	M	0.19	0.00038
Nitriilase homolog 1 isoform 3	297632348	18.7	2.0	L	VL	0.19	0.00095
T-complex protein 1 subunit eta isoform a	5453607	129.7	16.0	H	L	0.19	0.00010
Calcium-binding tyrosine phosphorylation-regulated protein isoform a	24797108	63.3	9.0	M	L	0.20	0.00012
Tricarboxylate transport protein, mitochondrial isoform b	374717343	15.3	1.7	L	VL	0.20	0.00049
T-complex protein 1 subunit epsilon	24307939	78.7	11.3	M	L	0.20	0.00001
Tissue alpha-L-fucosidase precursor	119360348	19.0	1.7	L	VL	0.20	0.00008
GTP-binding nuclear protein Ran	5453555	22.0	2.7	M	VL	0.20	0.00007
Dipeptidyl peptidase 2 isoform X1	530426726	17.7	1.7	L	VL	0.20	0.00216
3(2'),5'-Bisphosphate nucleotidase 1 isoform X3	530365931	19.3	2.3	L	VL	0.20	0.00871
Lysine-tRNA ligase isoform 1	194272210	30.0	3.0	M	VL	0.20	0.00462
Mitochondrial thiamine pyrophosphate carrier isoform X1	530412630	16.3	2.0	L	VL	0.21	0.00139
Vesicle-fusing ATPase isoform X1	578831007	16.7	2.3	L	VL	0.21	0.00045

Contd...
Protein	Accession	Average SC Control	Abundance Control	Abundance Seminoma	NSAF ratio Seminoma/Control	t-test P	Expression	
206 FUN14 domain-containing protein 2	24371248	60.3	8.0	M	L	0.22	0.00023	UE in Seminoma
207 Mitochondrial pyruvate carrier 2	219521872	25.7	5.0	M	VL	0.22	0.00370	UE in Seminoma
208 Dynein light chain 1, axonemal isoform 1	164607156	14.3	2.0	L	VL	0.23	0.00000	UE in Seminoma
209 Cytochrome b-c1 complex subunit 2, mitochondrial precursor	50592988	111.0	14.0	H	L	0.23	0.00006	UE in Seminoma
210 ADP/ATP translocase 4	13775208	140.3	25.3	H	M	0.23	0.00180	UE in Seminoma
211 26S protease regulatory subunit 7 isoform 1	4506209	9.7	1.7	L	VL	0.23	0.00149	UE in Seminoma
212 Uncharacterized protein C9orf9	33285006	45.0	6.7	M	VL	0.23	0.00005	UE in Seminoma
213 ADP/ATP translocase 2	156071459	35.7	8.3	M	L	0.24	0.00081	UE in Seminoma
214 Synaptojanin-2-binding protein	157388993	28.3	5.0	M	VL	0.24	0.00057	UE in Seminoma
215 Heat shock 70 protein 1A/1B	167466173	54.7	8.0	M	L	0.24	0.00086	UE in Seminoma
216 26S protease regulatory subunit 6B isoform 1	5729991	16.0	2.3	L	VL	0.24	0.00222	UE in Seminoma
217 Mannose-6-phosphate isomerase isoform 1	4505235	9.0	1.3	L	VL	0.25	0.00220	UE in Seminoma
218 Nuclear pore membrane glycoprotein 210 precursor	27477134	23.3	3.3	M	VL	0.25	0.00026	UE in Seminoma
219 Arylsulfatase A isoform a precursor	313569791	28.0	3.3	M	VL	0.25	0.00335	UE in Seminoma
220 Leucine-rich repeat-containing protein 37A isoform X5	530413292	165.7	27.7	H	M	0.26	0.00002	UE in Seminoma
221 Solute carrier family 2, facilitated glucose transporter member 5 isoform X2	578799621	31.0	7.7	M	VL	0.26	0.00472	UE in Seminoma
222 Protein-glutamine gamma-glutamyltransferase 4	156627577	232.3	44.0	H	M	0.26	0.00006	UE in Seminoma
223 Protein FAM162A	49355721	9.0	1.3	L	VL	0.26	0.00288	UE in Seminoma
224 26S protease regulatory subunit 6A	21361144	22.3	4.0	M	VL	0.27	0.00780	UE in Seminoma
225 Myosin regulatory light chain 12B	15809016	11.7	2.3	L	VL	0.27	0.00058	UE in Seminoma
226 Hexokinase-1 isoform X2	530393498	345.3	64.0	H	M	0.27	0.00001	UE in Seminoma
227 NADH dehydrogenase (ubiquinone) iron-sulfur protein 7, mitochondrial	187281616	9.7	2.0	L	VL	0.27	0.00101	UE in Seminoma
228 Cytochrome b-c1 complex subunit Rieske, mitochondrial	163644321	27.0	4.7	M	VL	0.27	0.00004	UE in Seminoma
229 Leucine-rich repeat-containing protein 37B isoform X5	53829385	176.3	40.3	H	M	0.27	0.00007	UE in Seminoma
230 ES1 protein homolog, mitochondrial-like isoform X1	578797780	35.0	5.7	M	VL	0.27	0.00001	UE in Seminoma
231 Lysosomal Pro-X carboxypeptidase isoform 1 preproprotein	4826940	13.3	1.7	L	VL	0.27	0.00077	UE in Seminoma
232 Transmembrane protein 190 precursor	21040263	33.3	5.7	M	VL	0.28	0.00004	UE in Seminoma
233 ATP-glucose-1-phosphate uridylyltransferase isoform a	48255966	20.3	5.0	M	VL	0.28	0.00603	UE in Seminoma
234 26S protease regulatory subunit 10B	195539395	21.3	4.3	M	VL	0.29	0.00659	UE in Seminoma
235 Dynactin subunit 1 isoform 4	205277396	21.7	3.7	M	VL	0.29	0.00497	UE in Seminoma
236 26S protease regulatory subunit 8 isoform 1	24497435	17.0	3.7	L	VL	0.29	0.00479	UE in Seminoma
Protein	Accession	Average SC Abundance	NSAF ratio	t-test	Expression			
--	-----------------	-----------------------	------------	--------	------------			
Ethanolamine-phosphate cytidylyltransferase isoform 6	532524977	16.0 3.0 L VL	0.29	0.00018	UE in Seminoma			
60 heat shock protein, mitochondrial isoform X1	530370277	125.7 16.3 H L	0.30	0.00029	UE in Seminoma			
Beta-galactosidase-1-like protein isoform X1	530370954	35.3 4.7 M VL	0.30	0.00099	UE in Seminoma			
Adenylate kinase isoenzyme 1 isoform X1	530390694	45.3 7.7 M VL	0.30	0.00114	UE in Seminoma			
Dynein light chain Tctex-type 1	5730085	10.0 1.7 L VL	0.30	0.00600	UE in Seminoma			
Chitinase domain-containing protein 1 isoform X2	530395670	17.3 3.3 L VL	0.31	0.00482	UE in Seminoma			
A-kinase anchor protein 4 isoform 1	21493037	156.3 28.0 H M	0.31	0.00000	UE in Seminoma			
Hypoxia up-regulated protein 1 isoform X2	530397761	177.0 37.0 H M	0.31	0.00002	UE in Seminoma			
Diablo homolog, mitochondrial isoform 1 precursor	9845297	27.3 6.7 M VL	0.32	0.00223	UE in Seminoma			
Zona pellucida-binding protein 2 isoform 2 precursor	40556389	45.7 9.0 M L	0.32	0.00009	UE in Seminoma			
Ubiquitin-like modifier-activating enzyme 1 isoform X1	530421539	75.0 11.3 M L	0.32	0.00035	UE in Seminoma			
40S ribosomal protein S15a	14165469	12.7 2.3 L VL	0.33	0.00231	UE in Seminoma			
Prohibitin isoform 1	527498279	22.7 4.7 M VL	0.33	0.00192	UE in Seminoma			
Long-chain-fatty-acid-CoA ligase 6 isoform e	327412327	39.0 6.0 M VL	0.33	0.00042	UE in Seminoma			
Importin subunit beta-1 isoform 1	19923142	54.7 11.7 M L	0.34	0.00045	UE in Seminoma			
Long-chain-fatty-acid-CoA ligase 1 isoform X3	530377352	170.7 45.7 H M	0.34	0.00024	UE in Seminoma			
AP-1 complex subunit beta-1 isoform b	260436860	12.0 2.3 L VL	0.34	0.00257	UE in Seminoma			
Acrosin precursor	148613878	255.7 65.3 H M	0.34	0.00011	UE in Seminoma			
Glutathione S-transferase omega-2 isoform 2	300360567	10.3 2.0 L VL	0.34	0.00400	UE in Seminoma			
Carboxypeptidase D isoform 1 precursor	22202611	36.3 7.0 M VL	0.34	0.02105	UE in Seminoma			
Phosphate carrier protein, mitochondrial isoform b precursor	4505775	38.3 14.0 M L	0.35	0.00176	UE in Seminoma			
Heat shock 70 protein 4	38327039	44.7 7.7 M VL	0.35	0.00303	UE in Seminoma			
Fatty acid-binding protein, epidermal	4557581	30.7 6.0 M VL	0.35	0.00328	UE in Seminoma			
Ras-related protein Rab-2A isoform a	4506365	156.7 37.3 H M	0.36	0.00002	UE in Seminoma			
3-hydroxyacyl-CoA dehydrogenase type-2 isoform 1	4758504	43.0 9.3 M L	0.36	0.00138	UE in Seminoma			
T-complex protein 1 subunit delta isoform a	38455427	108.3 25.7 H M	0.36	0.00075	UE in Seminoma			
cAMP-dependent protein kinase type II-alpha regulatory subunit isoform X1	530372834	109.7 29.0 H M	0.36	0.00000	UE in Seminoma			
Glutamine synthetase isoform X1	578800828	23.3 5.3 M VL	0.36	0.01626	UE in Seminoma			
Calmodulin isoform X1	578826144	75.0 20.7 M M	0.37	0.00004	UE in Seminoma			
Elongation factor 1-beta	4503477	10.0 2.3 L VL	0.37	0.00022	UE in Seminoma			
ruvB-like 1	4506753	99.7 20.3 H M	0.37	0.00684	UE in Seminoma			

Contd...
Protein	Accession	Average SC Control	Abundance Control	NSA F ratio	t-test	Expression		
268 Elongation factor 1-alpha 1	4503471	155.0	51.3	H	M	0.38	0.00001	UE in Seminoma
269 hsc70-interacting protein isoform 1	19923193	30.3	7.3	M	VL	0.38	0.01230	UE in Seminoma
270 Transmembrane protein 126A isoform 1	14150017	22.0	6.0	M	VL	0.38	0.00020	UE in Seminoma
271 26S proteasome non-ATPase regulatory subunit 2 isoform 1	25777602	56.0	9.0	M	L	0.39	0.00049	UE in Seminoma
272 Arachidonate 15-lipoxygenase B isoform d	85067501	23.7	4.3	M	VL	0.40	0.00236	UE in Seminoma
273 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9, mitochondrial precursor	6681764	9.7	2.3	L	VL	0.40	0.00078	UE in Seminoma
274 electron transfer flavoprotein subunit beta isoform 1	4503609	22.0	5.0	M	VL	0.41	0.00000	UE in Seminoma
275 Tubulin alpha-3CD chain	156564363	242.3	60.7	H	M	0.41	0.00001	UE in Seminoma
276 Fumarylacetoacetate hydrolase domain-containing protein 2B	40786394	31.0	7.7	M	VL	0.41	0.00018	UE in Seminoma
277 Peroxiredoxin-5, mitochondrial isoform a precursor	6912238	78.0	20.7	M	M	0.41	0.00039	UE in Seminoma
278 NADH-ubiquinone oxidoreductase 75 subunit, mitochondrial isoform 4	316983156	21.0	4.0	M	VL	0.42	0.03074	UE in Seminoma
279 Probable C-mannosyltransferase DPY19L2 isoform X1	578823598	101.0	26.0	H	M	0.42	0.00052	UE in Seminoma
280 L-lactate dehydrogenase A-like 6B	15082234	145.0	42.7	H	M	0.42	0.00021	UE in Seminoma
281 Acrosin-binding protein precursor	17999524	288.3	74.7	H	M	0.43	0.00003	UE in Seminoma
282 Tubulin beta-4B chain	5174735	287.3	81.3	H	L	0.43	0.00004	UE in Seminoma
283 Electron transfer flavoprotein subunit alpha, mitochondrial isoform a	4503607	46.0	12.0	M	L	0.44	0.00065	UE in Seminoma
284 Serpin B6 isoform d	425876768	79.0	33.3	M	M	0.46	0.00013	UE in Seminoma
285 Lysozyme-like protein 4 isoform X2	578805633	29.3	8.0	M	L	0.46	0.00114	UE in Seminoma
286 cAMP-dependent protein kinase type I-alpha regulatory subunit isoform a	4503607	46.0	12.0	M	L	0.47	0.00245	UE in Seminoma
287 Vesicle-associated membrane protein-associated protein A isoform 2	94721252	38.7	12.0	M	L	0.47	0.00220	UE in Seminoma
288 Acrosomal protein SP-10 isoform a precursor	4501879	64.3	20.0	M	M	0.48	0.00064	UE in Seminoma
289 Carnitine O-acetyltransferase isoform 2	383209673	41.0	11.7	M	L	0.48	0.00294	UE in Seminoma
290 Endoplasmin precursor	4507677	543.7	146.0	H	H	0.49	0.00066	UE in Seminoma
291 Izumo sperm-egg fusion protein 4 isoform 1 precursor	89903025	119.3	39.0	H	M	0.53	0.00058	UE in Seminoma
292 Heat shock-related 70 protein 2	13676857	442.0	126.0	H	H	0.53	0.00000	UE in Seminoma
293 Elongation factor 2	4503483	84.3	30.0	H	M	0.56	0.00021	UE in Seminoma
294 Clathrin heavy chain 1 isoform X2	530411491	122.7	51.3	H	M	0.58	0.00014	UE in Seminoma
295 Sperm acrosome membrane-associated protein 1 precursor	13569934	176.0	83.7	H	H	0.60	0.00073	UE in Seminoma
296 Zona pellucida-binding protein 1 isoform 1 precursor	229577313	278.7	110.3	H	H	0.61	0.00002	UE in Seminoma
297 Phosphoglycerate kinase 2	3154397	204.3	79.0	H	M	0.65	0.00034	UE in Seminoma
298 2,4-Dienoyl-CoA reductase, mitochondrial precursor	4503301	180.7	70.0	H	M	0.65	0.00211	UE in Seminoma

Contd...
Protein Accession	Protein Name	Average SC Abundance	NSAF ratio	t-test P-value	Expression
299 530107092	Aminopeptidase N isoform X1	218.0 186.3	H H 1.54	0.00040	OE in Seminoma
300 4757900	Calreticulin precursor	125.0 106.7	H H 1.55	0.00511	OE in Seminoma
301 18765694	Dipeptidyl peptidase 4	138.0 122.0	H H 1.61	0.00164	OE in Seminoma
302 530402335	Plastin-2 isoform X2	116.7 100.0	H H 1.62	0.00036	OE in Seminoma
303 4503273	Angiotensin-converting enzyme isoform 1 precursor	141.3 124.7	H H 1.62	0.01310	OE in Seminoma
304 6005942	Transitional endoplasmic reticulum ATPase	145.0 97.0	H H 1.75	0.00238	OE in Seminoma
305 116256327	Nepriysin	85.3 59.3	H H 2.01	0.00052	OE in Seminoma
306 24308201	Adipocyte plasma membrane-associated protein	54.0 66.7	M M 2.01	0.00011	OE in Seminoma
307 62388777	Carboxypeptidase Z isoform 1 precursor	29.3 28.0	M M 2.06	0.00040	OE in Seminoma
308 4502107	Annexin A5	41.0 48.0	M M 2.08	0.00049	OE in Seminoma
309 50845386	Annexin A2 isoform 2	46.7 57.7	M M 2.09	0.00126	OE in Seminoma
310 112380628	Lysozyme-associated membrane glycoprotein 1 precursor	18.0 20.0	L M 2.14	0.00275	OE in Seminoma
311 194018472	Plasma serine protease inhibitor preproprotein	40.7 45.7	M M 2.15	0.00208	OE in Seminoma
312 530403978	Dehydrogenase/reductase SDR family member 7 isoform X1	22.3 35.7	M M 2.46	0.00033	OE in Seminoma
313 25121982	Cysteine-rich secretory protein 1 isoform 1 precursor	24.0 35.7	M M 2.53	0.00587	OE in Seminoma
314 4502105	Annexin A4	22.3 31.3	M M 2.56	0.01438	OE in Seminoma
315 66933005	Calnexin precursor	34.3 51.3	M M 2.56	0.00094	OE in Seminoma
316 578815184	Clusterin isoform X1	116.7 175.3	H H 2.71	0.00034	OE in Seminoma
317 4505757	Gastricsin isoform 1 preproprotein	18.0 29.7	L M 2.76	0.00296	OE in Seminoma
318 4507509	Metalloproteinase inhibitor 1 precursor	9.3 14.7	L L 2.80	0.00553	OE in Seminoma
319 54607120	Lactotransferrin isoform 1 precursor	702.3 996.7	H H 2.87	0.00000	OE in Seminoma
320 4506773	Protein S100-A9	23.7 45.0	M M 3.35	0.00011	OE in Seminoma
321 7657116	Glyceraldehyde-3-phosphate dehydrogenase, testis-specific	48.7 106.7	M H 3.41	0.00000	OE in Seminoma
322 20070125	Protein disulfide-isomerase precursor	85.0 185.0	H H 3.53	0.00012	OE in Seminoma
323 4504301	Histone H4	13.7 27.7	L M 3.56	0.00040	OE in Seminoma
324 578814724	Malatase-glucoamylase, intestinal isoform X1	16.7 33.0	L M 3.58	0.00342	OE in Seminoma
325 12025678	Alpha-actinin-4	44.0 48.7	M M 3.62	0.00001	OE in Seminoma
326 4557894	Lysozyme C precursor	7.7 16.3	VL L 3.76	0.00087	OE in Seminoma
327 50659080	Alpha-1-antichymotrypsin precursor	18.7 33.7	L M 3.82	0.00044	OE in Seminoma
328 21614544	Protein S100-A8	15.0 33.3	L M 3.98	0.00483	OE in Seminoma
329 32483377	Thioredoxin-dependent peroxide reductase, mitochondrial isoform b	3.3 8.3	VL L 4.38	0.00328	OE in Seminoma
Supplementary Table 2: Contd...

Protein	Accession	Average SC Abundance	NSAF ratio	t-test	Expression				
Control	Seminoma	Control	Seminoma						
330	Semenogelin-2 precursor	4506885	261.3	682.7	H	H	4.41	0.00044	OE in Seminoma
331	Prosaposin isoform a preproprotein	11386147	20.0	48.0	M	M	4.73	0.00704	OE in Seminoma
332	Olfactomedin-4 precursor	32313593	15.3	35.7	L	M	4.90	0.00039	OE in Seminoma
333	Lactadherin isoform a preproprotein	167830475	8.3	25.0	L	M	4.91	0.00144	OE in Seminoma
334	Mucin-5B precursor	301172750	22.0	65.0	M	M	4.97	0.00001	OE in Seminoma
335	Prolactin-inducible protein precursor	4505821	238.3	849.0	H	H	4.99	0.00045	OE in Seminoma
336	Alpha-1-antitrypsin precursor	189163528	13.7	34.7	L	M	5.01	0.00000	OE in Seminoma
337	Histone H3.3	4885385	5.7	18.7	VL	L	5.70	0.00001	OE in Seminoma
338	Annexin A11 isoform X1	530393508	4.0	16.0	VL	L	6.08	0.00010	OE in Seminoma
339	Ectonucleotide pyrophosphatase/phosphodiesterase family member 3	111160296	7.0	24.3	VL	M	6.24	0.00214	OE in Seminoma
340	Cathepsin D preproprotein	4503143	3.3	11.7	VL	L	6.46	0.00352	OE in Seminoma
341	BPI fold-containing family B member 1 precursor	40807482	4.7	15.3	VL	L	6.64	0.00033	OE in Seminoma
342	Fibronectin isoform 1 preproprotein	47132557	112.7	505.0	H	H	7.15	0.00001	OE in Seminoma
343	Nucleobindin-2 isoform X1	578820554	13.0	51.3	L	M	7.44	0.00026	OE in Seminoma
344	Semenogelin-1 preproprotein	4506883	94.0	422.3	H	H	7.78	0.00187	OE in Seminoma
345	Cytoskeleton-associated protein 4	19920317	1.3	8.0	VL	L	8.24	0.00084	OE in Seminoma
346	Ribonuclease pancreatic precursor	38201684	0.7	4.7	VL	VL	8.79	0.00074	OE in Seminoma
347	Transketolase isoform 1	205277463	3.7	15.3	VL	L	8.84	0.00097	OE in Seminoma
348	Neutrophil defensin 1 precursor	124248516	8.7	36.0	L	M	9.32	0.00010	OE in Seminoma
349	Neutrophil gelatinase-associated lipocalin precursor	38455402	9.3	58.7	L	M	9.97	0.00000	OE in Seminoma
350	Myeloperoxidase precursor	4557759	69.3	368.7	M	H	10.30	0.00000	OE in Seminoma
351	Myeloblastin precursor	71361688	6.0	34.0	VL	M	10.33	0.00005	OE in Seminoma
352	Catalase	4557014	1.7	8.3	VL	L	10.41	0.00009	OE in Seminoma
353	Azurcidin preproprotein	11342670	15.7	95.0	L	H	11.52	0.00000	OE in Seminoma
354	Carcinoembryonic antigen-related cell adhesion molecule 1 isoform 1 precursor	19923195	2.0	14.0	VL	L	12.42	0.00321	OE in Seminoma
355	Erythrocyte band 7 integral membrane protein isoform a	38016911	9.3	58.7	L	M	13.46	0.00055	OE in Seminoma
356	Apolipoprotein B-100 precursor	105990532	1.7	12.0	VL	L	13.65	0.00031	OE in Seminoma
357	Cysteine-rich secretory protein 3 isoform 1 precursor	300244560	0.7	5.3	VL	VL	14.12	0.00098	OE in Seminoma
358	Mucin-6 isoform X1	578840955	3.7	29.3	VL	M	14.30	0.00214	OE in Seminoma
359	ERO1-like protein alpha precursor	7657069	0.7	8.7	VL	L	15.45	0.00087	OE in Seminoma
360	Annexin A3	4826643	4.0	45.7	VL	M	17.62	0.00001	OE in Seminoma
Protein	Accession	Average SC	Abundance	NSAF ratio	t-test	Expression			
--	-------------	------------	-----------	------------	---------	---------------------------			
361 Neutrophil elastase preproprotein	4503549	2.3	23.0	VL M	17.84	0.00006 OE in Seminoma			
362 Phospholipase B-like 1 precursor	110227598	1.7	22.7	VL M	22.14	0.00036 OE in Seminoma			
363 Laminin subunit alpha-5 precursor	21264602	4.3	39.0	VL M	22.30	0.00613 OE in Seminoma			
364 Moesin isoform X1	530421753	0.3	4.0	VL VL	25.18	0.00003 OE in Seminoma			
365 Eosinophil cationic protein precursor	45243507	1.0	20.3	VL M	27.03	0.00057 OE in Seminoma			
366 Carcinomembryonic antigen-related cell adhesion molecule 6 precursor	40255013	2.0	24.3	VL M	27.08	0.00170 OE in Seminoma			
367 Syntenin-1 isoform X1	530388518	0.3	5.7	VL VL	30.17	0.00085 OE in Seminoma			
368 CD63 antigen isoform A	383872447	1.0	14.7	VL L	31.84	0.00518 OE in Seminoma			
369 Collagen alpha-1 (XVIII) chain isoform 1 precursor	110611235	1.0	27.0	VL M	33.62	0.00154 OE in Seminoma			
370 Laminin subunit gamma-1 precursor	145309326	1.0	22.0	VL M	40.70	0.00062 OE in Seminoma			
371 Integrin alpha-M isoform 1 precursor	224831239	5.3	176.0	VL H	50.91	0.00002 OE in Seminoma			
372 Laminin subunit beta-2 isoform X1	530372442	1.3	45.0	VL M	61.08	0.00000 OE in Seminoma			
373 Alpha-1-acid glycoprotein 1 precursor	167857790	0.7	20.7	VL M	64.68	0.00005 OE in Seminoma			
374 Integrin beta-2 precursor	188595677	2.3	124.0	VL H	71.24	0.00000 OE in Seminoma			
375 Carcinoembryonic antigen-related cell adhesion molecule 8 precursor	21314600	0.3	18.0	VL L	103.73	0.00001 OE in Seminoma			
376 Cytochrome b-245 heavy chain	6996021	0.3	15.0	VL L	112.04	0.00002 OE in Seminoma			
377 Bactericidal permeability-increasing protein precursor	157276999	0.3	49.0	VL M	300.57	0.00002 OE in Seminoma			
378 Matrix metalloproteinase-9 preproprotein	74272287	0.0	90.0	ni H	Seminoma only 0.00000 Unique to Seminoma				
379 Leukocyte elastase inhibitor	13489087	0.0	23.0	ni M	Seminoma only 0.00006 Unique to Seminoma				
380 Arachidonate 5-lipoxygenase isoform 2	371877525	0.0	12.7	ni L	Seminoma only 0.00000 Unique to Seminoma				
381 Prostate and testis expressed protein 4 precursor	221554530	0.0	8.0	ni L	Seminoma only 0.00002 Unique to Seminoma				
382 Chitinase-3-like protein 1 precursor	144226251	0.0	10.3	ni L	Seminoma only 0.00003 Unique to Seminoma				
383 ADP-ribosyl cyclase 2 precursor	168229159	0.0	13.7	ni L	Seminoma only 0.00009 Unique to Seminoma				
384 Peptidoglycan recognition protein 1 precursor	4827036	0.0	10.7	ni L	Seminoma only 0.00059 Unique to Seminoma				
385 Neutrophil collagenase preproprotein	4505221	0.0	16.3	ni L	Seminoma only 0.00120 Unique to Seminoma				
386 Haptoglobin isoform 2 preproprotein	186910296	0.0	11.3	ni L	Seminoma only 0.00207 Unique to Seminoma				
387 Resistin precursor	301129180	0.0	6.0	ni VL	Seminoma only 0.00001 Unique to Seminoma				
388 Matriilin-2 isoform a precursor	62548860	0.0	3.0	ni VL	Seminoma only 0.00002 Unique to Seminoma				
389 Immunoglobulin alpha Fc receptor isoform a precursor	4503673	0.0	3.7	ni VL	Seminoma only 0.00018 Unique to Seminoma				
390 Vascular non-inflammatory molecule 2 isoform X1	578813045	0.0	6.0	ni VL	Seminoma only 0.00025 Unique to Seminoma				
391 Integrin beta-2 isoform X1	578836536	0.0	6.3	ni VL	Seminoma only 0.00029 Unique to Seminoma				

Contd...
Supplementary Table 2: Contd...

Protein	Accession	Average SC	Abundance	NSAF ratio	t-test	Expression	
		Control	Seminoma	Control	Seminoma/C		
		Control	Seminoma				
392 Flotillin-2 isoform X1	530410971	0.0	6.3	ni	VL	0.00055	Unique to
							Seminoma
393 Cathepsin G preproprotein	4503149	0.0	3.3	ni	VL	0.00065	Unique to
							Seminoma

H: high; L: low; M: medium; ni: not identified; NSAF: normalized spectral abundance factor; OE: overexpressed; SC: spectral counts; UE: underexpressed; VL: very low