Phthisis bulbi and retinal capillary haemangioma associated with papilloedema due to recurrent bilateral cerebellar haemangioblastomas – A case of Von Hippel Lindau syndrome

Muthukrishnan Vallinayagam1*, Srikanth K2, Tintu Susan Joy3, Koushik Shivakumar4

1Associate Professor, 2Professor, 3Senior Resident, 4Junior Resident, Dept. of Ophthalmology, Mahatma Gandhi Medical College and Research Institute, Puducherry, India

*Corresponding Author:
Email: muthu2308@yahoo.co.in

Abstract
Von Hippel Lindau (VHL) syndrome is an autosomal dominant condition caused by mutation of VHL gene. It is characterized by vascular tumors of eye, central nervous system, visceral cysts and tumors. Here we report a case of VHL in a young male patient who presented with phthisis bulbi in the right eye and retinal capillary haemangioma in the left eye. Systemic features of raised intracranial pressure was present along with bilateral abduction deficit and florid disc edema in the left eye. There was a polypoidal reddish mass in the inferotemporal quadrant, with a dilated draining vein, indicating retinal capillary hemangioma. The phthisical right eye was speculated to result from untreated retinal capillary hemangioma, culminating in exudative retinal detachment. Urinary Vanillyl Mandelic Acid suggested pheochromocytoma. Imaging modalities revealed multiple cerebellar hemangioblastomas, pheochromocytoma and pancreatic cysts. Screening of family members revealed no evidence of systemic manifestations, suggesting the possibility of sporadic mutation. Retinal capillary hemangioma is the commonest and earliest manifestation of VHL. The ocular complications include intraretinal exudation and exudative retinal detachment, secondary angiomatosis, epiretinal membrane, vitreous hemorrhage, retinal neovascularization, tractional retinal detachment and macular ectopia. Our case report emphasizes that retinal examination in patients with suspected VHL is not only a screening tool for the presence of capillary hemangioma but also for regular monitoring and prevention of vision threatening complications.

Keywords: Von Hippel Lindau, Retinal capillary hemangioma, Cerebellar hemangioblastomas, Pheochromocytoma.

Introduction
Von Hippel Lindau syndrome (VHL) is a dominantly inherited phacomatosis with an incidence of 1 in 36,000 to 1 in 53,000.1 It is caused by mutation of VHL gene (tumor suppressor gene) in chromosome 3p25-p26.2 It is characterized by multiple tumors of the central nervous system, retina, kidney, pancreas, adrenals, and inner ear.1 Retinal capillary hemangioma is the earliest and most frequent manifestation of VHL with a mean age of presentation at 25 years of age. Retinal capillary hemangiomas are usually found in peripheral, midperipheral or juxtapapillary retina.1,2 It is an uncommon benign tumor which may remain asymptomatic or may progressively enlarge and cause sight threatening complications. VHL is a lethal disease with renal cell carcinoma and central nervous system hemangioblastomas being the leading causes of death in the majority of cases.3 Early diagnosis, follow up and prompt treatment of retinal capillary hemangioma is imperative for preventing vision threatening complications like exudative retinal detachment.

Case Report
A 27 year old male patient presented with severe headache and transient blurring of vision in the left eye. The headache was associated with episodes of nausea, vomiting, palpitation and sweating. There was history of gradual and painless loss of vision in the right eye seven years back. The patient denied history of ocular trauma. The past history was discerned by a neurosurgical procedure eight years back, for a brain tumor. There was no history of similar ailments in the family members.

Systemic examination revealed hypertensive spikes on regular 24 hour monitoring. There was no obvious organomegaly. The visual acuity was recorded as absent perception of light in right eye and 6/9 in the left eye. There was limitation of abduction in both eyes. (Fig. 1 & 2) Complicated cataract with posterior synechiae was noted in the right eye with no evidence of active anterior uveitis. The cataractous lens obscured visualization of fundus. The anterior segment evaluation of the left eye was within normal limits.

Fundus examination of left eye showed florid disc edema. (Fig. 3) There was a polypoidal reddish mass in the inferotemporal quadrant, with a dilated draining vein, adjacent to the equator, suggestive of retinal capillary hemangioma. (Fig. 4) Ultrasoundography (B scan) in the right eye revealed features suggestive of old exudative retinal detachment. FFA was deferred due to deranged renal parameters. CECT abdomen revealed a well defined solid lesion in right adrenal gland with vivid contrast enhancement suggesting pheochromocytoma. (Fig. 5) Multiple pancreatic cysts were visualized. (Fig. 6) MRI brain showed multiple enhancing lesions in bilateral cerebellar hemispheres suggestive of multiple hemangioblastomas. (Fig. 7) There was a cyst with mural nodule in posterior cranial fossa causing tonsillar herniation, obstructive hydrocephalus and mass effect over brain stem. (Fig. 8) Urinary Vanillyl Mandelic Acid suggested the presence of pheochromocytoma. A screening of family members was performed due to the dominant inheritance of the tumor and none were found to be affected.

DOI: 10.18231/2581-5016.2018.0046
In view of specific conglomerate association of retinal capillary hemangioma, cerebellar tumor, suprarenal mass and pancreatic cyst, a diagnosis of Von Hippel Lindau syndrome was made. Patient underwent neurosurgical intervention for excision of the cerebellar tumor. Since the retinal capillary hemangioma was a small lesion away from the posterior pole, patient was advised three monthly follow up visits.

Fig. 1: Restriction of abduction in (LE)

Fig. 2: Restriction of abduction in (RE)

Fig. 3: (LE) Disc edema

Fig. 4: (LE) Retinal capillary hemangioma in inferotemporal quadrant

Fig. 5: CECT abdomen showing right adrenal mass

Fig. 6: CECT abdomen showing pancreatic cyst
angioma with retinal detachment. Treatment is
unilateral involvement.4 56.2\% of
patients had multiple retinal lesions at the time of
presentation.4 In another study, 67.8\% of patients with VHL
had retinal angiomas and the median age was 31 years.6 Retinal angiomatosis are most commonly found in the
superotemporal quadrant (38.6\%), followed by
inferotemporal quadrant (27.3\%).6 A solitary lesion was
present in the inferotemporal quadrant of a 27 year old
patient in this case.

The natural course of development of retinal capillary
hemangioma can be categorized into several stages. Stage 1
retinal capillary hemangioma is a small peripheral pink spot
without any feeder vessels or vascular channels. Stage 2
tumor is a small slightly elevated nodule with only a
prominent draining vein. Stage 3 tumor has a classical
appearance with prominent feeder vessels. Stage 4
demonstrates partial exudative retinal detachment and in
stage 5, a total exudative retinal detachment.7 Literature
review shows that 55\% of VHL patients with retinal
hemangioblastomas were asymptomatic at the time of
presentation.2 Retinal capillary hemangioma may remain
stable, regress or progressively enlarge leading to exudative
retinal detachment, uveitis, glaucoma and phthisis in the
later stages.3 This case portays an asymptomatic RCH
categorized as stage 2.

The ocular complications in VHL can result from
intraretinal exudation and exudative retinal detachment,
secondary angiomatosis, epiretinal membrane, vitreous
hemorrhage, retinal neovascularization, tractional retinal
detachment and macular ectopia.6,8 A case study reported
permanent visual loss in 26.2\% and the maximum risk of
visual loss to occur prior to 20 years of age.5 This scenario
closely resembles to that described in this patient.

The goal of treatment in retinal capillary hemangioma
is to preserve vision and to salvage the eye.8 Stage 1 and
stage 2 tumors require vigilant observation. Treatment is
indicated for stage 3 and beyond. Complications like
tractional or exudative retinal detachment may occur
following treatment.7 In a study on ocular angiomatosis in
VHL, exudative retinal detachment was observed in 15.5\%
patients.8 Small peripheral retinal tumors can be treated with
laser whereas larger tumors may require cryotherapy. The
other modalities like brachytherapy or external beam
radiotherapy can be used when standard therapy fails to
cause regression. Surgical resection is considered only for
large stage retinal hemangiomas.8

Screening of family members is vital as the syndrome
has a strong genetic basis. Prognosis of patients with VHL
has improved in recent years due to modern imaging
techniques which aid in early diagnosis. With increasing
survival rates in VHL, the prevalence of blinding ocular
disease has also escalated proportionately.1 Exudative
retinal detachment can be prevented by early diagnosis and
prompt treatment. Retinal examination in VHL is mandatory
for screening and monitoring of early lesions.
Conclusion

Ocular examination plays an important role in early diagnosis and screening of patients with VHL which reduces the morbidity and mortality associated with the disease. Our case report emphasizes that retinal examination in suspected VHL patients is not only a screening tool for capillary hemangioma but also for regular monitoring of retinal lesions for vision threatening complications. A vigilant follow up is imperative.

Conflict of Interest: Nil.

References

1. Dollfus H, Massin P, Taupin P, Nemeth C, Amara S, Giraud S, Béroud C, Dureau P, Gaudric A, Landais P, Richard S. Retinal hemangioblastoma in von Hippel-Lindau disease: a clinical and molecular study. Invest Ophthalmol Vis Sci. 2002;43(9):3067-3074.

2. Niemelä M, Lemeta S, Sainio M, Rauma S, Pukkala E, Kere J, Böhling T, Laatikainen L, Jääskeläinen J, Summanen P. Hemangioblastomas of the retina: impact of von Hippel–Lindau disease. Invest Ophthalmol Vis Sci. 2000;41(7):1909-1915.

3. Neumann HP, Finger PT. Von Hippel-Lindau Syndrome. Retina Today. 2010

4. Chew EY. Ocular manifestations of von Hippel–Lindau disease: clinical and genetic investigations. Trans Am Ophthalmol Soc. 2005;103:495.

5. Mihmanli I, Albayram MS, Kantarci F, Adaletli I, Islak C, Altug A. Persistent Hyperplastic Primary Vitreous and von Hippel-Lindau Disease. J Ultrasound Med. 2002;21(5):565-568.

6. Webster AR, Maher ER, Moore AT. Clinical characteristics of ocular angiomatosis in von Hippel-Lindau disease and correlation with germline mutation. Arch Ophthalmol. 1999;117(3):371-378.

7. Wittebol-Post D, Hes FJ, Lips CJ. The eye in von Hippel-Lindau disease. Long-term follow-up of screening and treatment: recommendations. J Internal Med. 1998;243(6):555-561.

8. Kase S, Ishida S. Retinal Capillary Hemangioma in Von Hippel Lindau disease: current concept, diagnosis and management. J Transl Med Epidemiol. 2010;2(1):1010.

How to cite this article: Vallinayagam M, Srikanth K, Joy T, S, Shivakumar K. Phthisis bulbi and retinal capillary haemangioma associated with papilloedema due to recurrent bilateral cerebellar haemangioblastomas – A case of Von Hippel Lindau syndrome. Int J Ocul Oncol Oculoplasty. 2018;4(4):174-177.