Inconsistencies among secondary sources of chukar partridge (Alectoris chukar) introductions to the United States

Michael P Moulton, Wendell P Cropper, Jr, Andrew J Broz

An important source of information concerning the fates of intentionally introduced exotic bird species has been collections of historical data that sometimes include species released, numbers released, locations of release, and establishment success. These data have been used to assess potential predictors of establishment success such as propagule pressure, site-level factors, and species characteristics. In order to better understand the limitations of such historical compilations, we compared data for the Chukar (Alectoris chukar) introductions to the USA from two often used secondary compilations with a more comprehensive source (Christensen (1970) .. We found that the major compilations of Long (1981) and Lever (1987) are inconsistent and likely to be incomplete, and inaccurate, in terms of the taxa introduced, the numbers introduced, and the fates of these introductions. Propagule pressure analyses have often assumed that every bird in every release must be summed to represent the propagule pressure necessary for establishment. We found, however, that large numbers of birds were released into states and counties with already established populations. Additionally, in numerous states very large numbers of Chukars were unsuccessfully released. We conclude that site-level factors were more important influences of establishment success than propagule pressure was.
Inconsistencies Among Secondary Sources of Chukar Partridge (*Alectoris chukar*)

Introductions to the United States.

by

1Michael P. Moulton, 2Wendell P. Cropper, Jr., and 1Andrew J. Broz

1Department of Wildlife Ecology and Conservation; University of Florida; PO Box 110430; Gainesville, FL 32611-0430; <moultonm@ufl.edu>

2School of Forest Resources and Conservation; University of Florida; PO Box 110410; Gainesville, FL 32611-0410; <wcropper@ufl.edu>
Abstract

An important source of information concerning the fates of intentionally introduced exotic bird species has been collections of historical data that sometimes include species released, numbers released, locations of release, and establishment success. These data have been used to assess potential predictors of establishment success such as propagule pressure, site-level factors, and species characteristics. In order to better understand the limitations of such historical compilations, we compared data for the Chukar (*Alectoris chukar*) introductions to the USA from two often used secondary compilations with a more comprehensive source (Christensen (1970). . We found that the major compilations of Long (1981) and Lever (1987) are inconsistent and likely to be incomplete, and inaccurate, in terms of the taxa introduced, the numbers introduced, and the fates of these introductions. Propagule pressure analyses have often assumed that every bird in every release must be summed to represent the propagule pressure necessary for establishment. We found, however, that large numbers of birds were released into states and counties with already established populations. Additionally, in numerous states very large numbers of Chukars were unsuccessfully released. We conclude that site-level factors were more important influences of establishment success than propagule pressure was.

Introduction
In attempting to identify the processes that deter or promote establishment of introduced bird populations, several empirical studies have concluded that propagule pressure, meaning the total number of individuals of a species released in some place, is the principal determining factor (e.g. Newsome and Noble 1986; Veltman et al. 1996; Duncan 1997; Green 1997; Cassey et al. 2004; Lockwood et al. 2005; Sol et al. 2012). Although this conclusion has been repeatedly criticized (Moulton et al. 2010, 2011, 2012a,b, 2013; Moulton and Cropper 2014a,b, 2015), and recent studies have emphasized the importance of species-level characteristics over propagule pressure (e.g. Sol et al. 2012; Cassey et al. 2014), some have persisted in touting its primary importance (e.g. Blackburn et al. 2015a, b).

At the same time, site-level factors have largely been ignored by proponents of propagule pressure, despite numerous studies that have shown their importance in bird introductions (e.g. Gullion 1965; Diamond and Veitch 1981; Griffith et al. 1989; Moulton and Pimm 1983, 1987; Lockwood et al. 1993; Lockwood and Moulton 1994; Smallwood 1994; Case 1996; Gamarra et al. 2005; Moulton and Cropper 2014b; Allen et al. 2015). A principal basis for the propagule pressure hypothesis, as applied to birds, has been compilations of historical records such as those by Thomson (1922), Phillips (1928) Long (1981) Lever (1987, 2005). In relying on such secondary sources, studies that claim to support propagule pressure make two assumptions: first that the chronicle of introductions presented in these sources is complete and accurate; and second that the principal, if not sole, motivation behind the introductions was the establishment of self-sustaining populations. A corollary to this second assumption is that introductions would end once it was perceived that the species was established. We show that for Chukar
(Alectoris chukar) introductions to the USA these assumptions are unmet, and we provide evidence that introduction outcomes in Chukars are likely to be mostly influenced by factors other than numbers released.

Our initial motivation for conducting this study came from the observation that the compilations of Long (1981) and Lever (1987) often were quite different from that of Christensen (1970), although both cited Christensen (1970) in their treatments of the Chukar. Long (1981) referred to the species as Alectoris graeca but makes it clear that the subspecies involved in the USA were in fact Chukars (Asian origin) and not Rock Partridges (European origin). Lever (1987) noted that 'Greek Chukars' released in California were likely Rock Partridges. Christensen (1970) discussed the difference in nomenclature referring to North American introductions as Alectoris chukar, following the work of Watson (1962a,b). Lever (1987) also noted that the species was Alectoris chukar, and suggested that the so-called 'Greek Chukars' presented to the state of California were actually Rock Partridges (Alectoris graeca).

Historical compilations of bird introductions have often (see above) been used to assess some factors believed to be associated with successful introductions. It is, at least implicitly, assumed that the historical records are either accurate, or that the errors do not significantly bias these analyses. It is difficult to know how complete multi-decade old records actually are, but it is possible to assess the consistency of the major compilations and of the published analyses that have relied on these sources.

Methods and Materials

To illustrate the hazards in depending on secondary sources, we analyzed historical records of introductions of the Chukar to the United States as reported in two major
secondary sources: Long (1981) and Lever (1987). We then compare the compilations in these two references to the records reported by Christensen (1970) and then we show how they compare to the records used in a recent study (Sol et al. 2012). Christensen (1970) based his compilation on two separate surveys using questionnaires sent to state wildlife agencies once in the early 1950s and again in the late 1960s. As such we assume it is the more accurate reflection of the true record of Chukar introductions in the USA.

The Chukar has a vast range throughout Asia (Watson 1962a), and was once considered a subspecies of the Rock Partridge (Alectoris graeca), which occurs in Europe. Watson (1962a,b) showed that subtle but consistent morphological differences exist between adjacent populations of A. graeca and A. chukar in extreme Eastern Europe. We follow the 4th edition of the Howard and Moore Checklist of Birds of the World (Dickinson and Remsen 2013), which also treats the two as distinct species.

We compiled lists of introduction records per state as reported by Long (1981) and Lever (1987). We then compared these lists to Christensen (1970, 1996). We compared the number of individuals released in the states for which all three references reported a total number of individuals released. We transformed the total numbers by calculating their common logarithms and then compared these values using a generalized linear mixed model with state (location) of the introduction as a random factor and the three references as a fixed effect. We used the SAS Glimmix procedure (SAS 2009) for our analyses.

We then compare Christensen's (1970) list to the records used in the recent study of introductions by Sol et al. (2012) and show their degree of reliance on the work of Long (1981) and Lever (1987), but not on the seemingly more complete work of Christensen (1970).
Results

Bump (1951) claimed that Chukars had likely been released in every one of the 48 states in the US (Alaska and Hawaii did not become states until 1959) but none of the historical references (Long 1981; Lever 1987; Christensen 1970) listed releases for all 48 states. Christensen (1970, 1996) reported Chukar releases to 40 of the conterminous 48 states (he also noted introductions to Hawaii and Alaska) and listed the total number of individuals released in 35 states (Figure 1). For five other states (Florida, Louisiana, Michigan, Mississippi, and Rhode Island) respondents reported to Christensen (1970) only that a "few" individuals had been released (Table 1). Long (1981) reported introductions of Chukars to just 22 states, but only listed propagule information for 16 states. Lever (1987) listed releases of Chukars to 30 states, but only reported propagule information for 18 states.

Although Long (1981) and Lever (1987) both cited Christensen (1970), neither followed his compilation very closely. The reasons that Long (1981) and Lever (1987) excluded data for so many of the states listed by Christensen (1970) are unknown. Moreover, regarding the 15 states for which all three references listed propagule information, Long (1981) reported the same number listed by Christensen (1970), for only one state (Missouri) and Lever (1987) did not report the same number as Christensen (1970) for any state.

Long (1981) and Lever (1987), both reported numbers for New York, although Christensen (1970) did not. Likely this is due at least in part to Christensen's (1970) report being based on wildlife agency surveys and apparently does not include any private
releases. Lever (1987) also reported numbers for Nebraska and Utah, as did Christensen (1970), but not Long (1981).

In our mixed linear model the logarithms of the numbers of individuals released across the three references and 15 states, with state of introduction as a random effect and reference as a fixed effect, differed significantly in a Type III test (df. 2, 20; F = 4.94; p = 0.014). Clearly, most of the variation in numbers released was due to the higher numbers Christensen (1970) reported.

Thus, for unknown reasons, Long (1981) and Lever (1987) included only about half the states, and significantly fewer individuals than Christensen (1970). We emphasize that none of these references was compiled for the purpose of testing the propagule pressure hypothesis. Nevertheless, we must conclude that results of any studies involving the Chukar that relied heavily on either Long (1981) or Lever (1987) would likely be based on incomplete and inaccurate information and therefore are suspect.

Studies that presumably include Chukar releases to the USA (e.g. Cassey et al. 2004) do not always make their data available. One exception to this is the recent study (Sol et al. 2012), which involved a global analysis aimed at disentangling the effects of species-level characters on introduction success in birds. Sol et al. (2012) claim to have updated the database used by Cassey et al. (2004).

We were able to match 38 of 40 records of Chukars reported by Sol et al. (2012), using their propagule sizes and ID numbers, to reports by Long (1981) or Lever (1987) for 16 (or 17) states in the USA (Table 2). Sol et al. (2012) did not specify individual states in their records, but we surmise that they included multiple releases to Arizona (2), California
(8), and Utah (14), and single releases (sums) for 13 (or 14 -- see New York discussion below) others.

Sol et al. (2012) listed an unsuccessful record of a propagule size of 175 (Sol et al. ID # - 61), but neither Long (1981) nor Lever (1987) listed a propagule of this size. It is possible that this represents a conflation of the record Long (1981) and Lever (1987) listed for Delaware County, New York where 25-150 individuals were released yearly between 1936 and 1939. As shown in Table 2, this record in Sol et al. (2012) falls exactly between values and ID numbers we matched to Lever (1987) for Missouri (1900 - Sol et al. ID # 60) and Pennsylvania (2021 - Sol et al. ID # 62). If this record is actually for New York it would represent the fourteenth state as noted above.

Sol et al. (2012) also listed two unsuccessful releases of 17 individuals each. One of these possibly refers to 17 individuals released in Alaska (Lever 1987) but the other is uncertain. Lever (1987) listed releases to 17 counties in Nebraska of 27842, and it is possible that Sol et al. (2012) in the course of updating the data inadvertently included this as a separate release.

We summed multiple releases for Arizona, California and Utah listed by Sol et al. (2012) to make their records comparable to the work of Christensen (1970) Long (1981) and Lever (1987). In a separate mixed model again with state of introduction a random effect and log number of individuals released, we observed a highly significant difference in log number after controlling the random effect of state in the Type III test of fixed effects (\(F_{3,45} = 5.88; p > F = 0.002 \)).

We further compared subsets of the sources using two orthogonal contrasts. First, we compared the numbers that Christensen (1970) reported per state to those reported by
the combination of Long (1981), Lever (1987), and Sol et al. (2012). In this contrast we observed a significant difference (t = 16.60; p > t = 0.0002; df = 45). Next we compared the combination of Long (1981) and Lever (1987) versus Sol et al. (2012), and here the contrast was not significant (t = 1.01; p > t = -0.32; df = 45).

Discussion

The first assumption of the propagule pressure hypothesis mentioned above was that the historical record was complete and accurate. Whereas there might be more complete and accurate records that are not generally well known, secondary sources such as Long (1981) and Lever (1987) are seemingly incomplete and likely inaccurate. Studies such as Sol et al. (2012) and presumably Cassey et al. (2004) apparently relied heavily on the reports in Lever (1987) and Long (1981) but as we have shown here neither author completely or accurately reflected the introduction data presented by Christensen (1970). Thus, for Chukar introductions to the USA we have shown that the record as presented by Long (1981) and Lever (1987) appears to be incomplete and inaccurate.

The second assumption is that all the individuals that were introduced were necessary for establishment. Chukars currently have self-sustaining populations in ten western states (see Table 1). In four of these states (California, Idaho, Nevada, and Washington) Chukars were considered established in 1954 (Christensen 1954); in the other six states (Arizona, Colorado, Montana, Oregon, Utah, and Wyoming) the status was considered uncertain, doubtful (Arizona) or hopeful (Utah, Oregon). However, additional individuals were released in all ten states between 1954 and 1970 (Christensen 1970), strongly suggesting that establishment of wild Chukar populations was not the only goal. -

+If propagule pressure was assessed as an essential factor by the professionals introducing
these birds, we might expect the six states where the status was uncertain to release larger numbers after 1954 than the four states where the Chukar was considered established. As indicated in Table 1, Christensen (1954) considered Chukars to be established in four states (California, Idaho, Nevada, and Washington). However, by 1970 additional individuals were released in all four states (California - 10,446; Idaho - 17,129; Nevada - 7256; Washington - 43879). Thus, even in those states where the population of Chukars was considered established, releases continued. In fact, introductions continued for years after Christensen’s (1970) report. Thus, Banks (1981) further reported that in the state of Washington where the Chukar was considered established by 1954, more than 51,000 Chukars were released between 1970 and 1978.

As noted by Duncan et al. (2003) three levels of factors could influence introduction outcome in birds: species-level; event-level; and site-level. As we focus here solely on *Alectoris chukar*, we can ignore the possibility that species-level differences could explain differences in introduction outcomes. Could other event-level characteristics be responsible? Possible event-level factors, other than propagule pressure, include characteristics of the releases themselves. Some studies (e.g. Veltman et al. 1996; Sol et al. 2012), include releases of diverse sets of species that likely were made under differing circumstances, and with different goals. For example, the conditions involved in releases of species introduced for biological control likely differed from those of species released for aesthetic reasons. Such diverse releases likely were made by groups or individuals with different goals. We note that the Chukars were introduced chiefly, if not exclusively, to provide recreational hunting opportunities. The numbers of individuals released in the different states, reported by Christensen (1970) came from questionnaires sent to state
game and fish departments throughout the USA. The Chukar releases Christensen (1970) reported were presumably all made by state sponsored professional wildlife scientists and so it is unlikely that differences in introduction outcomes across the states could simply reflect differences in the levels of competence among personnel in the different states.

Despite the seeming homogeneity in Chukar introduction practices, in several states very large numbers of Chukars were unsuccessfully released. For example, 85,000 individuals were released into Minnesota, more than 43,000 into Wisconsin, and more than 28,000 in Nebraska, only to fail.

The results here strongly imply that factors other than sheer numbers, and characteristics of the release events determined the outcome of Chukar introductions. Thus, the logical explanation is that site-level factors such as climate (e.g. Tomlinson 1960) or habitat characteristics (Gullion 1965) were of greater importance than sheer numbers in determining the outcome of Chukar introductions. Indeed, the only states with successful Chukar populations are states that straddle or are west of the continental divide. These states share certain environmental characteristics: all are more arid and mountainous than states where Chukars failed (Johnsgard 1988, Christensen 1996).
References

Allen CR, Angeler DG, Moulton MP, Holling CS (2015) The importance of scaling for detecting community patterns: success and failure in assemblages of introduced species. Diversity 7: 229-241, doi:10.3390/d70x000x

Banks RC (1981) Summary of foreign game bird liberations, 1969-1978. USDI, Fish and Wildlife Service, Special Scientific Report--Wildlife No. 239

Blackburn TM, Lockwood JL, Cassey P (2015a) The influence of numbers of invasion success. Molecular Ecology 24: 1942-1953, DOI: 10.1111/mec.13075

Blackburn TM, Dyer E, Su S, Cassey P (2015b) Long after the event, or four things we (should) know about bird invasions. J. Ornithology, DOI 10.1007/s10336-015-1155-z, published online 18 February 2015

Bump G (1951) Game introductions--when, where, and how. Trans N. Am. Wild. Conf. 16: 316-325

Case T (1996) Global patterns in the establishment and distribution of exotic birds. Biol Conserv 78: 69-96

Cassey P, Blackburn TM, Sol D, Duncan RP, Lockwood JL (2004) Global patterns of introduction effort and the establishment success of birds. Proc R Soc London B (Suppl) 271: s405-s408

Cassey P, Prowse TAA, Blackburn TM (2014) A population model for predicting the successful establishment of introduced bird species. Oecologia 175: 417-428

Christensen GC (1954) The chukar partridge in Nevada. Nevada Fish and Game Commission Biol. Bull No 1. 77pp
Christensen GC (1970) The Chukar Partridge: Its introduction, life history, and management. Nevada Dept of Fish and Game Biol Bull No 4. 82 pp

Christensen G C (1996) Chukar (Alectoris chukar). In: Poole A, Gill F (Eds) The Birds of North America, No 258. The Academy of Natural Sciences, Philadelphia, PA and the American Ornithologists' Union, Washington DC

Diamond JM, Veitch CR (1981) Extinctions and Introductions in the New Zealand Avifauna: Cause and Effect? Science 30 (211): 499 - 501

Dickinson EC, Remsen JV Jr (Eds) (2013) The Howard and Moore complete checklist of the birds of the world. 4th edition Vol. 1 Aves Press, Eastbourne U.K.

Duncan RP (1997) The role of competition and introductions effort in the success of passeriform birds introduced to New Zealand. Amer Nat 149: 903-915

Duncan RP, Blackburn TM, Sol D (2003) The ecology of bird introductions. Annu Rev Ecol Evol and Syst 34: 71-98

Gamarra JGP, Montoya JM, Alonso D, Sole RV (2005) Competition and introduction regime shape exotic bird communities in Hawaii. Biol Inv 7: 297-307

Green RE (1997) The influence of numbers released on the outcome of attempts to introduce exotic bird species to New Zealand. J Anim Ecol 66: 25-35

Griffith B, Scott JM, Carpenter JW, Reed C (1989) Translocation as a species conservation tool: status and strategy. Science 245: 477-480

Gullion GW (1965) A critique concerning foreign game bird introductions. Wilson Bulletin 77: 409-414

Imhof TA (1958) Recent additions to the avifauna of Alabama. Auk 75: 354-357
Imhof TA (1976) Alabama birds, 2ed. Dept of Conservation, Game and Fish Division, University of Alabama Press, Alabama

Johnsgard PA (1988) The quails, partridges, and francolins of the world. Oxford University Press, Oxford

Leopold A (1931) Report on a game survey of the north central states. Sporting arms and ammunition manufacturers institute, Madison, WI

Lever C (1987) Naturalized birds of the world. Longman Sci and Tech, Burnt Hill, Harlow, Essex

Lever C (2005) Naturalised birds of the world. T & AD Poyser, London

Lockwood JL, Moulton MP, Anderson. SK (1993) Morphological assortment and the assembly of communities of introduced passeriforms on oceanic islands: Tahiti versus Oahu. Amer Natur 141: 398-408

Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution 20: 223-228.

Lockwood JL, Moulton MP (1994) Ecomorphological pattern in Bermuda birds: the influence of competition and implications for nature preserves. Evolutionary Ecology 8: 53-60

Long JL (1981) Introduced birds of the world. David and Charles, London.

Moulton MP, Pimm SL (1983) The introduced Hawaiian avifauna: biogeographic evidence for competition. Amer Nat 121: 669-690

Moulton MP, Pimm SL (1987) Morphological assortment in introduced Hawaiian passerines. Evol Ecol 1: 113-124.
Moulton MP, Cropper WP Jr, Avery ML, Moulton LE (2010) The earliest House Sparrow introductions of North America. Biological Invasions 12:2955-2958

Moulton MP, Cropper WP Jr, Avery ML (2011) A reassessment of the role of propagule pressure in influencing the fates of passerine introductions to New Zealand. Biodiversity and Conservation 20: 607-623

Moulton MP, Cropper WP Jr, Moulton LE, Avery ML, Peacock D (2012a) A reassessment of historical records of avian introductions to Australia: no case for propagule pressure. Biodiver and Conser 21: 155-174

Moulton MP, Cropper WP Jr, Avery ML (2012b) Historical records of passerine introductions to New Zealand fail to support the propagule pressure hypothesis. Biodiversity and Conservation 21: 297-307.

Moulton MP, Cropper WP Jr, Avery ML (2013) Is propagule size the critical factor in predicting introduction outcomes in Passeriform birds? Biol Inv 15: 1449-1458.

Moulton MP, Cropper WP Jr (2014a) Establishment success in introduced passeriforms of New Zealand: evidence for a Franklin Delano Roosevelt effect. Biol Inv 16: 233-237

Moulton MP, Cropper WP Jr (2014b) A comparison of success rates of introduced passeriform birds in New Zealand, Australia and the United States. PeerJ 2:e509 http://dx.doi.org/10.7717/peerj.509

Moulton MP, Cropper WP Jr (2015) A comment on the role of propagule pressure in the establishment success of introduced birds. Oecologia 177:317-319

Newsome AE, Noble IR (1986) Ecological and physiological characters of invading species. In: Groves RH, Burdon JJ (Eds) Ecology of Biological Invasions. Cambridge University Press, Cambridge, pp 1-20
Phillips JC (1928) Wild birds introduced or transplanted in North America. US Dept Ag Tech Bull 61. US Government Printing Office, Washington, DC

SAS (2009) SAS/STAT (R) 9.2 User’s Guide, Second Edition. SAS Institute Inc., Cary, North Carolina

Smallwood KS (1994) Site invasibility by exotic birds and mammals. Biological Conservation 69: 251-259.

Sol D, Maspons J, Vall-llosera M, Bartomeus I, García-Peña GE, Piñol J, Freckleton RP (2012) Unraveling the Life History of Successful Invaders. Science 37: 580-

Thomson GM (1922) The naturalization of plants and animals in New Zealand. Cambridge University Press, Cambridge.

Veltman CJ, Nee S, Crawley MJ (1996) Correlates of introduction success in exotic New Zealand birds. Amer Nat 147: 542-557.

Watson GE (1962a) Sympatry in Palearctic Alectoris partridges. Evolution 16: 11-19

Watson GE (1962b) Three sibling species of Alectoris partridge. Ibis 104: 353-367
Table 1. Chukar releases according to Christensen (Ch 1954, Ch 1970); Lever (1987) and Long (1981). A question mark indicates that the state was mentioned by the source but no propagule information was available. Chukars are considered established in the ten states in italics: Chukars were considered established in 1954 in the 4 italicized states marked with an asterisk.

State	Ch 1954	Ch 1970	Lever 1987	Long 1981	Sol et al. 2012	FGIP
Alabama	720	720	?	?	.	.
Arizona	9866	11737	1133	1133	1133	534
California*	44554	55000	75173	39186	14287	11837
Colorado	10433	24080	8000	9000	9000	.
Connecticut	100s	1500
Florida	few	few	?	.	.	.
Georgia	.	.	?	.	.	.
Idaho	8581	25710	28000	28000	25000	.
Illinois	9000	9000	?	.	.	.
Indiana	.	7500
Iowa	1847	1847
Kansas	7879	7879	?	?	.	.
Kentucky	1500	5480	?	.	.	.
Louisiana	few	few
Maryland	.	.	?	.	.	.
State						
------------------	-----	-----	-----	-----	-----	
Massachusetts	few	500	?	.	.	
Michigan	few	few	?	?	.	
Minnesota	85000	85000	84414	84414	84414	
Mississippi	few	few	.	.	.	
Missouri	1838	1838	1900	1838	1900	
Montana	3629	7854	5365	5365	5365	
Nebraska	14750	28142	27842	?	27842	26748
Nevada*	6399	13655	5339	6739	5000	
New Hampshire	130	130	.	.	.	
New Mexico	4943	31000	16621	7700	.	16471
New York		<600	<600	175B		
North Carolina	449	449	.	.	.	
North Dakota	2300	5600	?	.	.	
Ohio	20	20	.	.	.	
Oklahoma	1000s	1000s	.	.	.	
Oregon	19898	113675	76000	76000	76000	
Pennsylvania	2377	2377	2021	2021	2021	
Rhode Island	.	few	.	.	.	
South Carolina	few	200+	.	.	.	
South Dakota	1459	1831	1368	1368	1368	75
Tennessee	5824	5824	?	?	.	
Texas	.	703	?	.	.	
States	Records	Individuals				
----------	---------	-------------				
Utah	8666	185911	458	?	515	73360
Virginia	100	100	.	.	.	
Washington*	7041	50920	64996	5841	5841	591552
West Virginia	4420	4429	.	.	.	
Wisconsin	43013	43013	17550	17550	17550	.
Wyoming	14000	60000	17455	53455	17455	.
States	37	40	30	22	172	7
Records	37	40	69	50	65	154
Individuals	320636	793424	451794	446788	294866	188180

1 These could have been Rock Partridges. Imhof (1976) listed "Chukars" in one part of his book and "Rock Partridges" in another, and as Alectoris graeca in both places. Moreover he listed the origin of the birds as "southeastern Europe", and did not include the species in a previous publication on birds new to Alabama (Imhof 1958).

2 Includes by assumption (see text) one unidentified report as being from the state of New York, possibly one for Nebraska (Table 2) and excludes a release attributable to Alaska.

2 Of these releases, 51,247 occurred between 1970 and 1978 (Banks 1981).
Table 2. Presumed sources for Sol et al. (2012) records. ID refers to the ID number in Sol et al. (2012); Fate = 1 successful, 0 = unsuccessful; Prop = propagule size as listed by Sol et al. (2012). Lever and Long refer to the presence of the record in those two references (Long 1981; Lever 1987): .5 = fewer listed by the reference; 1 = identical number listed; 2 = additional releases to the state were listed by the reference. The Fates are those Sol et al. (2012) reported (S = Successful; F = Failed).

ID	Fate	Prop	State	Lever	Long	Fate					
81	1	333	AZ	1	1	S					
3204	1	800	AZ	1	1	S					
53	1	4600	CA	1	1	S					
3197	1	423	CA	.	1	S					
3198	1	444	CA	.	1	S					
3199	1	440	CA	.	1	S					
3200	1	440	CA	.	1	S					
3201	1	440	CA	.	1	S					
3202	1	7000	CA	1	1	S					
3203	1	500	CA	.	1	S					
3205	1	9000	CO	1	.5	S					
82	1	25000	ID	1	1	S					
59	0	84414	MN	1	1	F					
60	0	1900	MO	1	.5	F					
			State	Code	Area	Type	Year	M	1	2	S
----	----	----	-------	------	------	------	------	---	---	---	---
771	1	5365	MT	1	1	S					
1897	0	27842	NE	1	?	F					
84	1	5000	NV	2	2	S					
61	0	175	NY?	2	2	F					
475	1	76000	OR	1	1	S					
62	0	2021	PA	1	1	F					
1898	1	1368	SD	1	1	S					
88	0	50	UT	1	.	F					
85	0	13	UT	1	.	F					
86	0	23	UT	1	.	F					
87	0	50	UT	1	.	F					
90	0	41*	UT?	2	.	F					
91	0	28	UT	1	.	F					
92	0	15	UT	1	.	F					
93	0	15	UT	1	.	F					
94	0	38	UT	1	.	F					
95	0	100	UT	1	.	F					
96	0	8	UT	1	.	F					
98	0	8	UT	1	.	F					
97	0	50	UT	1	.	F					
99	0	76	UT	1	.	F					
1587	1	5841	WA	2	.	S					
* ID 90 of Sol et al. (2012) might be a typographical error, as Lever (1987) listed a release of 46 to Utah.
Table 3. Chukar release summary by various sources: Ch70 = Christensen (1970); Le87 = Lever (1987); Lo81 = (Long 1981); Sol = Sol et al. (2012).

State	Ch70	Le87	Lo81	Sol
Nevada	13655	5339	6739	5000
California	55000	75173	39186	14287
Colorado	24080	8000	9000	9000
Wyoming	60000	17455	53455	17455
Idaho	25710	28000	28000	25000
Washington	50920	64996	5841	5841
Arizona	11737	1133	1133	1133
South Dakota	1831	1368	1368	1368
Missouri	1838	1900	1838	1900
Pennsylvania	2377	2021	2021	2021
Montana	7854	5365	5365	5365
Wisconsin	43013	17550	17550	17550
Oregon	113675	76000	76000	76000
Minnesota	85000	84414	84414	84414
New Mexico	31000	16621	7700	.
Utah	185911	458	.	515
Nebraska	28142	27842	.	27842
New York	.	<600	<600	175?
Figure 1. Number of states reporting total numbers of Chukars released: Christensen (1970); Lever (1987); Long (1981).
Figure 1

Figure 1

Number of states reporting total numbers of Chukars released: Christensen (1970); Lever (1987); Long (1981).
Table 1

Chukar releases according to Christensen (Ch 1954, Ch 1970); Lever (1987) and Long (1981). A question mark indicates that the state was mentioned by the source but no propagule information was available. Chukars are considered established in the ten states in italics: Chukars were considered established in 1954 in the 4 italicized states marked with an asterisk.
Table 1. Chukar releases according to Christensen (Ch 1954, Ch 1970); Lever (1987) and Long (1981). A question mark indicates that the state was mentioned by the source but no propagule information was available. Chukars are considered established in the ten states in italics: Chukars were considered established in 1954 in the 4 italicized states marked with an asterisk.

State	Ch 1954	Ch 1970	Lever 1987	Long 1981	Sol et al. 2012	FGIP
Alabama	720	720	?	?	.	.
Arizona	9866	11737	1133	1133	1133	534
California	44554	55000	75173	39186	14287	11837
Colorado	10433	24080	8000	9000	9000	.
Connecticut	100s	1500
Florida	few	few	?	.	.	.
Georgia	.	.	?	.	.	.
Idaho	8581	25710	28000	28000	25000	.
Illinois	9000	9000	?	.	.	.
Indiana	.	7500
Iowa	1847	1847
Kansas	7879	7879	?	?	.	.
Kentucky	1500	5480	?	.	.	.
Louisiana	few	few
Maryland	.	.	?	.	.	.
State	few	500	?			
------------------	-----	-----	-----	---	---	---
Massachusetts	few	500	?			
Michigan	few	few	?	?		
Minnesota	85000	85000	84414	84414	84414	.
Mississippi	few	few				
Missouri	1838	1838	1900	1838	1900	.
Montana	3629	7854	5365	5365	5365	.
Nebraska	14750	28142	27842	?	27842	26748
Nevada*	6399	13655	5339	6739	5000	.
New Hampshire	130	130				
New Mexico	4943	31000	16621	7700	.	16471
New York		<600	<600	175B		
North Carolina	449	449				
North Dakota	2300	5600	?			
Ohio	20	20				
Oklahoma	1000s	1000s				
Oregon	19898	113675	76000	76000	76000	.
Pennsylvania	2377	2377	2021	2021	2021	.
Rhode Island		few				
South Carolina	few	200+				
South Dakota	1459	1831	1368	1368	1368	75
Tennessee	5824	5824	?	?		
Texas		703	?			
States	Records	Individuals				
--------	----------	-------------				
Utah	8666	185911				
Virginia	100	100				
Washington*	7041	50920				
West Virginia	4420	4429				
Wisconsin	43013	43013				
Wyoming	14000	60000				
States	37	40				
Records	37	40				
Individuals	320636	793424				

1 These could have been Rock Partridges. Imhof (1976) listed "Chukars" in one part of his book and "Rock Partridges" in another, and as *Alectoris graeca* in both places. Moreover he listed the origin of the birds as "southeastern Europe", and did not include the species in a previous publication on birds new to Alabama (Imhof 1958).

2 Includes by assumption (see text) one unidentified report as being from the state of New York, possibly one for Nebraska (Table 2) and excludes a release attributable to Alaska.

2 Of these releases, 51,247 occurred between 1970 and 1978 (Banks 1981).
Table 2

| Presumed sources for Sol et al. (2012) records. ID refers to the ID number in Sol et al. (2012); Fate = 1 successful, 0 = unsuccessful; Prop = propagule size as listed by Sol et al. (2012). Lever and Long refer to the presence of the record in those two references (Long 1981; Lever 1987): .5 = fewer listed by the reference; 1 = identical number listed; 2 = additional releases to the state were listed by the reference. The Fates are those Sol et al. (2012) reported (S = Successful; F = Failed). |
Table 2. Presumed sources for Sol et al. (2012) records. ID refers to the ID number in Sol et al. (2012); Fate = 1 successful, 0 = unsuccessful; Prop = propagule size as listed by Sol et al. (2012). Lever and Long refer to the presence of the record in those two references (Long 1981; Lever 1987): .5 = fewer listed by the reference; 1 = identical number listed; 2 = additional releases to the state were listed by the reference. The Fates are those Sol et al. (2012) reported (S= Successful; F = Failed).

ID	Fate	Prop	State	Lever	Long	Fate
81	1	333	AZ	1	1	S
3204	1	800	AZ	1	1	S
53	1	4600	CA	1	1	S
3197	1	423	CA	.	1	S
3198	1	444	CA	.	1	S
3199	1	440	CA	.	1	S
3200	1	440	CA	.	1	S
3201	1	440	CA	.	1	S
3202	1	7000	CA	1	1	S
3203	1	500	CA	.	1	S
3205	1	9000	CO	1	.5	S
82	1	25000	ID	1	1	S
59	0	84414	MN	1	1	F
60	0	1900	MO	1	.5	F
Year	State	Population	Freq	M	S	
------	-------	------------	------	---	---	
1897	NE	27842	1	1	?	F
84	NV	5000	2	2	S	
61	NY?	175	2	2	F	
475	OR	76000	1	1	S	
62	PA	2021	1	1	F	
1898	SD	1368	1	1	S	
88	UT	50	1		F	
85	UT	13	1		F	
86	UT	23	1		F	
87	UT	50	1		F	
90	UT?	41*	2		F	
91	UT	28	1		F	
92	UT	15	1		F	
93	UT	15	1		F	
94	UT	38	1		F	
95	UT	100	1		F	
96	UT	8	1		F	
98	UT	8	1		F	
97	UT	50	1		F	
99	UT	76	1		F	
1587	WA	5841	2		S	
* ID 90 of Sol et al. (2012) might be a typographical error, as Lever (1987) listed a release of 46 to Utah.
Table 3

Source	Reference
Ch70	Christensen (1970)
Le87	Lever (1987)
Lo81	Long (1981)
Sol	Sol et al. (2012)
Table 3. Chukar release summary by various sources: Ch70 = Christensen (1970); Le87 = Lever (1987); Lo81 = (Long 1981); Sol = Sol et al. (2012).

State	Ch70	Le87	Lo81	Sol
Nevada	13655	5339	6739	5000
California	55000	75173	39186	14287
Colorado	24080	8000	9000	9000
Wyoming	60000	17455	53455	17455
Idaho	25710	28000	28000	25000
Washington	50920	64996	5841	5841
Arizona	11737	1133	1133	1133
South Dakota	1831	1368	1368	1368
Missouri	1838	1900	1838	1900
Pennsylvania	2377	2021	2021	2021
Montana	7854	5365	5365	5365
Wisconsin	43013	17550	17550	17550
Oregon	113675	76000	76000	76000
Minnesota	85000	84414	84414	84414
New Mexico	31000	16621	7700	.
Utah	185911	458	.	515
Nebraska	28142	27842	.	27842
New York	.	<600	<600	175?
