Microscopic theory of the proximity effect in superconductor-graphene nanostructures

P. Burset, A. Levy Yeyati and A. Martín-Rodero
Departamento de Física Teórica de la Materia Condensada C-V, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

We present a theoretical analysis of the proximity effect at a graphene-superconductor interface. We use a tight-binding model for the electronic states in this system which allows to describe the interface at the microscopic level. Two different interface models are proposed: one in which the superconductor induces a finite pairing in the graphene regions underneath, thus maintaining the honeycomb structure at the interface and one that assumes that the graphene layer is directly coupled to a bulk superconducting electrode. We show that properties like the Andreev reflection probability and its channel decomposition depend critically on the model used to describe the interface. We also study the proximity effect on the local density of states on the graphene. For finite layers we analyze the induced minigap and how it is reduced when the length of the layer increases. Results for the local density of states profiles for finite and semi-infinite layers are presented.

PACS numbers: 73.23.-b, 74.45.+c, 74.78.Na, 73.20.-r

INTRODUCTION

The possibility to isolate and perform direct transport measurements on few or even single graphite layers has triggered a large activity in the condensed matter community. The case of a single layer of carbon atoms, known as graphene, is of particular interest because of its unique electronic structure which, under certain conditions corresponds to massless Dirac fermions confined in two dimensions.

On the other hand, the coupling to a superconductor provides an interesting way to test the electronic properties of graphene. In a recent work by Beenakker it was shown that for an ideal interface between a superconductor and graphene an unusual type of Andreev reflection, in which the hole is specularly reflected, appears. Several other effects involving graphene and superconductors like Josephson transport, re-entrance effect, and quasiparticle transport mediated by multiple Andreev processes have been theoretically analyzed.

In addition to its effect on the transport properties, the coupling to a superconductor also should produce a change in the electronic spectral properties and the induction of pairing correlations due to the proximity effect. The recent experimental achievement of good contact between superconducting electrodes and graphene layers open the possibility to explore the proximity effect on these systems with great detail. Furthermore, experiments were the proximity effect on graphene could be explored even with atomic scale resolution using STM are underway. At present only results for the total density of states in superconductor-graphene-superconductor structures have been presented.

The present work is aimed to study in detail the interface between the superconductor and the graphene sheet. To this end we shall describe the electronic structure of graphene at the level of the tight-binding approximation. This description allows to analyze the superconductor-graphene interface more microscopically as compared to a description where the continuous limit leading to an effective Dirac-Bogoliubov-De Gennes equation is taken from the start. In the continuous description it is usually assumed that the presence of the interface do not couple different valleys of the graphene band structure, which could not be the case in an actual experimental situation. Moreover, when the study is focused on finite size graphene sheets, a strong dependence on the geometry of the edges appears. Thus, different symmetry directions will have distinct behavior. For zigzag edges zero-energy surface states appear which could hide the effects of the coupling to a superconductor.

In this work we will concentrate on interfaces defined along an armchair edge. We propose two different models for this interface: the first one assumes that graphene is coupled directly to a bulk superconducting electrode which does not maintain the honeycomb structure of the graphene sheet; the second model studies the possibility that one superconducting electrode on top of the graphene sheet induces a finite pairing amplitude and shifts the Fermi level of the graphene sheet far away from the Dirac point. As we discuss below, the two models lead to different behavior of the Andreev reflection probability as a function of energy, wave vector and doping level. We further analyze several aspects of the spectral properties of the graphene layer within the two models both for the finite and the semi-infinite case.

The rest of the paper is organized as follows: in Sec. II we introduce the tight-binding model for a graphene layer and we show the analytic expressions for the Green functions for a semi-infinite and a finite layer. In Sec. III the two different models for the interface with a superconductor are defined and a general expression for the self-energy, which provides the basis for the calculations of the following sections, is obtained. In Sec. IV we study the model dependence of the Andreev reflection processes. We also study, in Sec. V, the influence of the
different interface models on the local density of states of a finite graphene layer coupled to a superconductor, analyzing in particular the minigap which is induced in the case of metallic layers. Results for the spatially resolved density of states for a semi-infinite graphene layer are presented in Sec. VI. The paper is closed with some concluding remarks.

DESCRIPTION OF ISOLATED GRAPHENE LAYERS

For the description of the electronic states in a defect free graphene layer we shall adopt the tight-binding approximation, i.e. we use a model Hamiltonian of the type $\hat{H} = t_g \sum_{<ij>,\sigma} \hat{c}_i^{\dagger} \hat{c}_j + \epsilon \sum_{i\sigma} \hat{c}_i^{\dagger} \hat{c}_i$, where t_g denotes the hopping element between nearest neighbors carbon atoms on the hexagonal lattice and ϵ is a uniform site energy level which allows to vary the level of doping ($\epsilon = 0$ corresponds to the undoped case). The dispersion relation for the translational invariant case is given by $E(k, q) = \epsilon \pm t_g [1 + 2e^{iqa} \cos (ka/\sqrt{3})]$, where k and q denote the wavevector in the x and y direction respectively and a is the lattice parameter defined as shown in Fig. 1 (as can be seen $a = 3a_0/2$, where a_0 is the interatomic distance). For the undoped case the Fermi surface collapses into two nonequivalent points at the Brillouin zone corresponding to $(k, q) = (\pm 2\pi/\sqrt{3}a, 0)$. The dispersion relation close to these points can be linearized with a slope $t_g a$ which fixes the Fermi velocity, v_F.

Green functions for a semi-infinite armchair graphene layer

An essential ingredient for describing the interface between a graphene layer and other material is a good description of the electronic Green functions at the edges of the layer. We concentrate here in the derivation of the edge Green function for a semi-infinite graphene layer with armchair orientation. We assume that there is translational symmetry in the direction parallel to the edge (y). The semi-infinite system can be decomposed into lines of sites in the y direction which are coupled by hopping elements with the neighboring lines on the x direction. The unit cell on each line includes two sites corresponding to each hexagonal sublattice that are denoted by A and B (see Fig. 1). These sites are coupled by a hopping element t_g within the unit cell. Thus, the cell Hamiltonian is given by

$$\hat{h} = \begin{pmatrix} \epsilon & t_g \\ t_g & \epsilon \end{pmatrix}.$$

The hopping elements between neighboring lines couple also sites of type A with sites of type B but should include a phase factor $e^{i\eta qa}$ due to the displacement of the cells in the y direction. The hopping matrix in the A-B space (both in the forward and in the backward direction) can be written as $\hat{t}(q) = t_g \hat{U}(q)$, where

$$\hat{U}(q) = \begin{pmatrix} 0 & e^{i\eta a} \\ e^{-i\eta a} & 0 \end{pmatrix}.$$

The self-similarity of the semi-infinite system with one additional line of sites leads to the following implicit equation for the edge Green function

$$\hat{g}(q, \omega) = \left[\omega \hat{1} - \hat{h} - t_g^2 \hat{U}(q) \hat{g}(q, \omega) \hat{U}(q)\right]^{-1}.$$

Hereafter we implicitly assume that ω stands for $\omega \pm i\eta$ and that the limit $\eta \to 0$ is taken to obtain the retarded or the advanced component respectively. We can now define $\hat{g} = \hat{U} \hat{g}$ which satisfies the simpler equation

$$\hat{g} = \left[\hat{X}(q, \omega) - t_g^2 \hat{g}\right]^{-1},$$

where $\hat{X}(q, \omega) = (\omega \hat{1} - \hat{h}) \hat{U}(q)$.

To obtain an explicit expression for \hat{g} it is useful to perform a basis rotation in order to diagonalize the matrix \hat{X}. The general form of this rotation is $\hat{R} = \hat{R}_1 \hat{R}_2$ where $\hat{R}_1 = e^{i\eta a/2} \hat{1} + \hat{\sigma}_z$, $\hat{\sigma}_z$ being the z-Pauli matrix acting on the sublattice space and

$$\hat{R}_2 = \frac{1}{\sqrt{-2 \sin \alpha}} \begin{pmatrix} e^{i\alpha/2} & e^{-i\alpha/2} \\ ie^{-i\alpha/2} & ie^{i\alpha/2} \end{pmatrix},$$

where $\cos \alpha = t_g \sin qa / (\omega - \epsilon)$. The eigenvalues of \hat{X} are $x_{1,2} = -t_g \cos qa \pm \sqrt{(\omega - \epsilon)^2 - t_g^2 \sin^2 qa}$. We thus get

![FIG. 1: The honeycomb structure of a graphene sheet is formed combining two triangular sublattices, denoted A (dots) and B (open dots). The unit cell on each horizontal line includes one atom from each sublattice. The axis selection used in this work is indicated.](image)
\[\hat{g}(q, \omega) = \begin{pmatrix} g & f \\ f & g \end{pmatrix} = \frac{1}{t_g} \hat{U} \hat{R}_1 \hat{R}_2 \begin{pmatrix} e^{i\phi_1} & 0 \\ 0 & e^{-i\phi_2} \end{pmatrix} \hat{R}_2^{-1} \hat{R}_1^{-1},\]

where \(\cos \phi_{1,2} = x_{1,2}/(2t_g)\). The eigenvalues \(e^{i\phi_1}\) and \(e^{-i\phi_2}\) have been chosen so that the resulting Green functions have the proper behavior when the frequency goes to infinity.

Finite graphene layer

Starting from the results of the previous section one can obtain the Green functions of a finite graphene layer by introducing a perturbation consisting in breaking the bond between the \(N\)-th line and its neighbors on the \(N+1\) line. From Dyson’s equation we obtain the following set of coupled equations

\[
\hat{g}^F_{n,n} = \hat{g}_{n,n} - \hat{g}_{n,N+1} \hat{g}^F_{N,n} \\
\hat{g}^F_{N,n} = \hat{g}_{N,n} - \hat{g}_{N,N+1} \hat{g}^F_{N,N,n},
\]

where the superindex \(F\) stands for the finite system and the subindexes \(i,j\) indicate the lines within the layer. On the other hand the elements \(\hat{g}_{N,N+1}\) can be expressed as \(\hat{g}_{N,N+1} = \hat{g}^F_{N,N} \hat{g}_{N+1,N+1}\). We now use that \(\hat{g}_1 = \hat{g}\) and \(\hat{g}_{n,N} = \hat{g}_{n,n} = (\hat{g}^N)^{-n} \hat{g}_{n,n}\), where \(\hat{g}\) corresponds to the surface Green function for the semi-infinite system derived in the previous section. Also we have \(\hat{g}_{N+1,N+1} = (\hat{g} - \hat{g}^N)^{-1}\) and \(\hat{g}_{n,n} = (\hat{I} - (\hat{g}^2)^n)(\hat{I} - (\hat{g})^2)^{-1}\) \(\hat{g}\), which allows to obtain

\[
\hat{g}^F_{n,n} = (\hat{I} - (\hat{g}^2)^{-1})(\hat{I} - (\hat{g}^2)^{2(N+1)})^{-1} \left(\hat{I} - (\hat{g})^2 \hat{g}_n
ight) \\
\hat{g}^F_{N,n} = (\hat{I} - (\hat{g}^2)^{2(N+1)})^{-1} \left(\hat{I} - (\hat{g}^2)^n \hat{g}_n\right) (\hat{g}^N)^{-n} \hat{g}.
\]

Making use of the rotation matrix defined in the previous section these quantities can be written in the following rather simple form

\[
\hat{g}^F_{n,n} = \frac{1}{t_g} \hat{R} \begin{pmatrix} \sin n\phi_1 & \sin (N-n+1)\phi_1 \\ \sin (N-n+1)\phi_1 & \sin n\phi_1 \end{pmatrix} \hat{R}^{-1} \hat{U} \\
\hat{g}^F_{N,n} = \frac{1}{t_g} \hat{R} \begin{pmatrix} \sin n\phi_2 & \sin (N-n+1)\phi_2 \\ \sin (N-n+1)\phi_2 & \sin n\phi_2 \end{pmatrix} \hat{R}^{-1} \hat{U}.
\]

One can have the expression for the borders of the layer setting \(n = 1\) or \(n = N\). Then, the eigenvalues of the Green functions become \(\sin N\phi_i/\sin (N+1)\phi_i\) and \(\sin \phi_i/\sin (N+1)\phi_i\), with \(i = 1,2\), for the \(\hat{g}^F_{1,1} = \hat{g}^F_{N,N}\) and \(\hat{g}^F_{1,N} = \hat{g}^F_{N,1}\) cases, respectively. These expressions are equivalent to those for a finite tight-binding chain \[12\].

The poles of these Green functions determine the spectral properties of the layer. These poles are fixed by the condition \(\sin (N+1)\phi_i = 0\), which is satisfied by \(\phi_{1,2} = m\pi/(N+1)\), where \(m\) is an integer. One can associate this condition with the quantization of the transverse momentum which is used in the continuous model for describing armchair nanoribbons \[12\]. At the charge neutrality condition the existence of zero energy states requires \(\phi_{1,2} = \pm 2\pi/3\), which can only be satisfied for \(N = 3p + 2\) (in a more compact notation for \(N \mod 3 = 2\)). Therefore the layers can be classified into metallic, for the \(N \mod 3 = 2\) case, and insulating for the other cases (\(N \mod 3 = 0,1\)). In the insulating cases the gap in the spectrum is \(2E_g\), where \(E_g \simeq \pi \hbar v_F/3L\), \(L = Na/\sqrt{3}\) being the length of the layer. It should be noted that electron states in the metallic case are doubly degenerate, while the degeneracy is removed in the insulating cases \[12\].
MODELING THE GRAPHENE-SUPERCONDUCTOR INTERFACE

One of the aims of the present work is to analyze different ways to describe the interface between a graphene layer and a superconductor. In the recent literature it has been assumed that a superconducting electrode deposited on top of graphene induces a finite pairing amplitude and introduces a finite level of doping which shifts the Fermi level of the graphene layer far away from the Dirac point [3, 4]. This heavily doped superconducting graphene (HDSC) model provides a simple boundary condition for the effective Dirac-Bogoliubov-De Gennes equations describing the interface.

One can alternatively imagine that the graphene layer is coupled directly to a bulk superconducting electrode by means of a sharp interface which breaks the coherence between the two graphene sublattices. We shall refer to this case as the bulk-BCS model. We wish to analyze the differences between the two models.

The presence of superconducting correlations requires to introduce the Nambu space describing electron and hole propagation within the graphene layer. All Green functions acquire a 2 × 2 structure in Nambu space. For the uncoupled graphene we have

\[\hat{\tilde{g}} = \begin{pmatrix} \hat{g}_e & 0 \\ 0 & \hat{g}_h \end{pmatrix}, \]

where \(\hat{g}_e \) corresponds to the propagators obtained in the previous section and \(\hat{g}_h \) is obtained from \(\hat{g}_e \) by changing \(\epsilon \to -\epsilon \) and \(t_g \to -t_g \) (notice that we use the hat symbol to denote the sublattice space while the check symbol indicates the Nambu space).

The effect of the coupling with the superconducting electrode can be introduced by means of a self-energy \(\hat{\Sigma} \) which renormalizes the uncoupled Green functions. Thus, the local Green function on the graphene edge at the interface is determined by \(\hat{\tilde{g}}^{-1} - \hat{\tilde{g}}^{-1} \).

In the case of the bulk-BCS model the self-energy is momentum independent and does not have a structure in the sublattice space; i.e.

\[\hat{\tilde{\Sigma}} = \pi \rho_s t^2_\epsilon \hat{t}_z \hat{g}_{BCS} \hat{t}_z \otimes \hat{I}, \]

where \(\hat{t}_z \) is the z Pauli matrix in Nambu space and \(t^2_\epsilon \) is the mean square hopping element between the graphene layer and the superconducting electrode. This quantity controls the value of the parameter \(\beta = t^2_\epsilon \pi \rho_s/t_g \) which characterizes the quality of the the interface, \(\rho_s \) being the density of states. On the other hand, \(\hat{g}_{BCS} = g_s \hat{I} + f_s \hat{t}_x \) stands for the dimensionless BCS Green function, i.e. \(g_s = -\omega/\sqrt{\Delta^2 - \omega^2} \) and \(f_s = \Delta/\sqrt{\Delta^2 - \omega^2} \).

We would like now to derive the expression of the self-energy within the HDSC model. We first notice that in the heavily doped limit one has \(|\epsilon| >> |\omega|, t_g \sin qa \) for the relevant range of frequencies and \(q \) values. Thus in \(R_0 \) one has \(\alpha \to \pi/2 \). In the new basis the system is equivalent to a tight-binding chain with site energies \(\epsilon \pm t_g \) and local pairing fixed by \(\Delta \). Although the exact Green functions for this system is rather complicated, for low energies it can be approximated by

\[\hat{R}_0^{-1} \hat{\tilde{g}} \hat{R}_0 \simeq \left(\begin{array}{cc} \pi \rho_+ & 0 \\ 0 & \pi \rho_- \end{array} \right) \otimes \hat{g}_{BCS} + \frac{1}{2 t^2_\epsilon} \left(\begin{array}{cc} \epsilon + t_g & 0 \\ 0 & \epsilon - t_g \end{array} \right) \otimes \hat{t}_z, \]

where \(\pi \rho_\pm = \sqrt{1 - \left(\frac{\epsilon + t_g}{2 t^2_\epsilon}\right)^2}/t_g \). By further taking the approximation \(|\epsilon| << t_g \) and transforming back into the site representation we obtain the following self-energy

\[\hat{\Sigma}/t_g \simeq \frac{\sqrt{3}}{2} \hat{t}_z \hat{g}_{BCS} \hat{t}_z \otimes \hat{I} - \frac{1}{2} \hat{t}_z \otimes \hat{\sigma}_x. \]

Notice that, in contrast to the first model, the self-energy in the HDSC model does exhibit a structure in the sublattice space. However, it satisfies the condition \(\det \hat{\Sigma}/t_g = 1 \). This structure turns out to be of importance in connection to Andreev reflection as discussed in the next section. In the following we will use a general form of the model self-energies, which can be expressed as \(\hat{\Sigma} = \beta \hat{t}_z \hat{g}_{BCS} \hat{t}_z \otimes \hat{I} - \gamma \hat{t}_z \otimes \hat{\sigma}_x \). Thus, appropriate values for \(\beta \) and \(\gamma \) will correspond to the different models (i.e. \(\gamma = 0 \) with arbitrary \(\beta \) for the bulk-BCS model, while \(\beta = \sqrt{3/2} \) and \(\gamma = 1/2 \) in units of \(t_g \), for the HDSC model).

ANDREEV REFLECTION AT A GRAPHENE-SUPERCONDUCTOR INTERFACE

The Andreev reflection is the basic mechanism for the conversion of a quasiparticle current into a supercurrent at the interface between a normal metal and a superconductor. In the case of a graphene-superconductor interface like the one we have described in the previous section there are two channels for the incident electrons with a face like the one we have described in the previous section diagonalize the \(\hat{\overline{g}} \) matrix. The reflected hole can be in \(X \) corresponding to the states which diagonalize the \(\hat{X} \) matrix. The reflected hole can be in either of these two channels. Our microscopic theory can thus describe a more general situation than the idealized model for the interface used in [3] which assumes only one channel for the reflected hole for a given wavevector.

The Andreev reflection amplitudes can be expressed in terms of Green functions. Generalizing previous works [10, 17] we can derive the expression

\[\hat{\tau}_A(q, \omega) = 2 i A^{1/2}_x \left\{ \frac{1}{\hat{\Sigma}} \left[\hat{I} - \hat{g} \hat{\Sigma} \right]^{-1} \right\}_{eh} A^{1/2}_h, \]

\[\hat{\tau}_A(q, \omega) = 2 i A^{1/2}_x \left\{ \frac{1}{\hat{\Sigma}} \left[\hat{I} - \hat{g} \hat{\Sigma} \right]^{-1} \right\}_{eh} A^{1/2}_h, \]

(9)
where $\hat{A}_{e,h}(q, \omega) = (\hat{g}_{e,h}(q, \omega) - \hat{g}_{e,h}^\dagger(q, \omega))/2i$. Using the general form of the model self-energies discussed in the previous section allows us to reduce the expression of \hat{r}_A to

$$\hat{r}_A = 2iA_1^{1/2}f_s \left[i - \beta g_s (\hat{g}_e + \hat{g}_h) - \gamma (\hat{g}_h \hat{\sigma}_x - \hat{\sigma}_x \hat{g}_e) \right] \frac{1}{(\beta^2 + \gamma^2)\hat{g}_e,\hat{g}_h} - (\beta^2 + \gamma^2) \hat{g}_h \hat{g}_e \right]^{-1} A_1^{1/2}. \quad (10)$$

This expression becomes particularly simple when $\epsilon = 0$ because $g^e = g^h$, $f^e = -f^h$ and $f^e = -f^h$. So \hat{r}_A is an scalar quantity given by

$$\hat{r}_A = \frac{4\beta f_s (\text{Im} g^2 - |f - f^\dagger|^2)}{1 - \text{Tr} \left[\left(\beta g_s \hat{I} \mp \gamma \hat{\sigma}_x \right) \hat{g}_{e,h} \right] - (\beta^2 + \gamma^2) \det \hat{g}_{e,h}} \hat{I}, \quad (11)$$

where $\text{Tr} \left[\left(\beta g_s \hat{I} \mp \gamma \hat{\sigma}_x \right) \hat{g}_{e,h} \right] = [2\beta g_s g - \gamma (f + f^\dagger)]$ and $\det \hat{g}_{e,h} = (g^2 - f f^\dagger)$.

In general doping conditions (i.e. when $\epsilon \neq 0$) \hat{r}_A is not a scalar within the bulk-BCS model. The eigenvalues of $\hat{r}_A^\dagger \hat{r}_A$ give the Andreev reflection probability decomposed into two eigenchannels for each wavevector q. The evolution of these eigenvalues for fixed ω and increasing ϵ as a function of q is shown in the left panel of Fig. 2. Their maximum value is reached for $\beta = 1$ and it never exceeds ~ 0.76 at normal incidence. Within the HDSC model, however, \hat{r}_A remains scalar for arbitrary doping and it always reaches the unitary limit at $q = 0$ (see right panel of Fig. 2).

It is also interesting to analyze the physical character of the Andreev reflection in the two models. The information on how the eigenchannels of the uncoupled structure are connected by an Andreev process is contained in the matrix $\hat{R}_e \hat{r}_A \hat{R}_h^{-1}$. As \hat{r}_A is a scalar within the HDSC model, the channel mixing is determined by $\hat{R}_e \hat{R}_h^{-1}$. This is also the case for the bulk-BCS model at zero doping. In this case we have $\alpha_h = \pi - \alpha_e$ and thus electrons injected in one channel emerge as holes in the opposite one. The momentum in the y direction is conserved in this process and therefore this type of reflection corresponds to what has been described in Ref. 3 as peculiar Andreev reflection. On the other hand for $\epsilon \neq 0$ and $\omega \rightarrow 0$ we have $\alpha_h = \alpha_e$ which corresponds to the usual (retro) reflection where holes are reflected on the same channel as the incident electron. For intermediate doping situations both type of reflection would be present although with a dominance of peculiar (retro) reflection for $\omega > \epsilon$ ($\omega < \epsilon$).

To complete the analysis of the present section we have computed the conductance per unit length due to Andreev processes, given by

$$G_{AR} = \frac{2e^2}{h} \frac{1}{2\pi} \int dq \text{Tr} \left[\hat{r}(q, eV) \hat{r}(q, eV) \right]. \quad (12)$$

The results for G_{AR} within the two models are shown in Fig. 3. As suggested in Ref. 3 we normalize the result by the conductance per unit length of a ballistic graphene sheet, which in the low energy limit is given by $g_0(V) = \frac{4e^2}{\pi}(eV + \epsilon)/(\pi \hbar v_F)$. As can be observed, at the charge neutrality point the HCSD model yields a maximum of ratio $G_{AR}/g_0 = 2$ at zero voltage, which drops to ~ 1.33 for $\epsilon > 0$, in agreement with the results of Ref. 3. This ratio is of the order of ~ 1.63 in the bulk-BCS model with $\beta = 1$ regardless of the doping level. The qualitative behavior of the conductance with ϵ is similar in both models and agree with the results of Ref. 3.
PROXIMITY EFFECT ON A FINITE GRAPHENE LAYER

Using the previous results one can analyze the effect of the coupling with the superconductor on the spectral properties of a graphene layer of finite size. Again, we will focus on the differences between the bulk-BCS and the HDSC models for the interface. From the Dyson’s equation it is straightforward to obtain the Green functions. From them one can thus analyze the spectrum corresponding to a series of subbands which disperse quadratically as a function of \(q \) in the graphene subspace.

The quantities \(\hat{D}_e \) and \(\hat{D}_h \) have the following general form, expressed in the graphene subspace:

\[
\hat{D}_e = \hat{I} - \beta g_s (\hat{g}_e^F + \hat{g}_h^F) - \gamma (\hat{g}_e^F \hat{\sigma}_x - \hat{\sigma}_x \hat{g}_e^F)
\]

\[
\hat{D}_h = \hat{I} - \beta g_s (\hat{g}_e^F + \hat{g}_h^F) - \gamma (\hat{g}_h^F \hat{\sigma}_x - \hat{\sigma}_x \hat{g}_h^F)
\]

As in the previous section, in the limit where \(\epsilon = 0 \) these two denominators become equal and simplify to an scalar, \(D \), because \(\beta g_s (\hat{g}_e^F + \hat{g}_h^F) + \gamma (\hat{g}_e^F \hat{\sigma}_x - \hat{\sigma}_x \hat{g}_e^F) = \text{Tr} \left[(\beta g_s \hat{I} + \gamma \hat{\sigma}_x) \hat{g}_e^F \right] \). Then

\[
\text{Tr} \left[(\beta g_s \hat{I} + \gamma \hat{\sigma}_x) \hat{g}_e^F \right] = \frac{1}{t_g \sin \alpha} \left\{ \begin{array}{c}
\sin (N \phi_1) \sin (N+1) \phi_2 \beta g_s - \sin (N+1) \phi_1 \] \\
\sin (N \phi_2) \sin (N+1) \phi_1 \beta g_s + \sin (N \phi_2) \sin (N+1) \phi_1 \\
\sin (N \phi_1) \sin (N+1) \phi_2 \beta g_s + \sin (N \phi_1) \sin (N+1) \phi_1 \\
\sin (N+1) \phi_2 \sin \alpha \end{array} \right\}.
\]

The zeroes of \(D \) determine the poles of the coupled system Green functions. From them one can thus analyze the distortion of the spectrum due to the superconducting proximity effect. For the charge neutrality case, this zeroes can be obtained from the expression

\[
\frac{-\beta g_s}{\sqrt{\omega^2 - t_g^2 \sin^2 q \alpha \sqrt{\Delta^2 - \omega^2}}} = \sin [(N+1) \phi_1] \sin [N \phi_2] \left[\begin{array}{c}
\sin (N+1) \phi_2 + (\beta^2 + \gamma^2) \sin (N \phi_1) \sin (N \phi_2) \\
\sin (N \phi_1) \sin [(N+1) \phi_2] - \sin (N \phi_2) \sin [(N+1) \phi_1] \\
\sin (N \phi_2) \sin [(N+1) \phi_1] + (\beta^2 + \gamma^2) \sin (N \phi_1) \sin (N \phi_2) \\
\sin (N \phi_1) \sin [(N+1) \phi_2] - \sin (N \phi_2) \sin [(N+1) \phi_1] \end{array} \right]
\]

where \(\hat{\Sigma} \) stands for the general form of the self-energy introduced in Sec. III. We can further reduce this expression to

\[
\hat{\Sigma} = \hat{g}_n,n + \hat{g}_{n,N} \hat{\Sigma} \left(\hat{I} - \hat{g}_{n,N} \hat{\Sigma} \right)^{-1} \hat{g}_{n,n}, (13)
\]

\[
\hat{G}_{n,n} = \hat{g}_{n,n} + \hat{g}_{n,N} \hat{\Sigma} \left(\hat{I} - \hat{g}_{n,N} \hat{\Sigma} \right)^{-1} \hat{g}_{n,n}, (14)
\]

\[
\hat{G}_{n,n} = \hat{g}_{n,n} + \hat{g}_{n,N} \hat{\Sigma} \left(\hat{I} - \hat{g}_{n,N} \hat{\Sigma} \right)^{-1} \hat{g}_{n,n}, (15)
\]

The spectrum corresponds to a series of subbands which disperse quadratically as a function of \(q \) in the
As can be observed, in the metallic case the minigap with \(q \) remains approximately constant for \(\beta \) ligible in this case. The right panel shows the behavior indicates that the proximity effect is almost neg-
ligible in this case. In the case of the bulk-BCS model for arbitrary \(\beta \) three different behaviors are found depending on the \(N \) mod 3 value. On the contrary, a universal behavior of \(E_g^* \) is found within the HDSC model regardless of the \(N \) value (see text).

The dependence \(E_g^* \) as a function of \(N \) and the interface parameters \(\beta \) and \(\gamma \) can be obtained from Eq. (10) with \(q = 0 \). For large \(N \) this level decreases as \(1/N \) with a prefactor which depends on \(N \) mod 3 and the interface parameters. Fig. 4 describes the behavior of \(E_g^* \) both in the bulk-BCS and in the HDSC models. The left panel shows the lowest energy state within the bulk-BCS model for \(N \) mod 3 = 0. The three cases \(N \) mod 3 = 0, 1, 2 are shown. As can be observed, in the metallic case the minigap evolves from zero at \(\beta = 0 \) to a maximum value at \(\beta = 1 \). On the other hand, the two insulating cases exhibit different behavior. While the starting value at \(\beta = 0 \) is fixed by \(E_g \) in both cases, in the case \(N \) mod 3 = 0 it decreases until it reaches the same value as the one of the \(N \) mod 3 = 2 case for \(\beta = 1 \). On the other hand \(E_g^* \) remains approximately constant for \(N \) mod 3 = 1. This behavior indicates that the proximity effect is almost neg-
ligible in this case. The right panel shows the behavior of the lowest energy state as a function of \(N \) both in the bulk-BCS model with \(\beta = 1 \) and in the HDSC. The results are universal (i.e. independent of the ratio \(\Delta/t_g \)) when plotted as a function of \(L/\xi \), where \(\xi = h v_F/\pi \Delta \) is the superconducting coherence length. It is interesting to note that while in the bulk-BCS model two limiting \(1/L \) curves, corresponding to \(N \) mod 3 = 0, 2 and \(N \) mod 3 = 1, appear, in the HDSC model \(E_g^* \) lay on the same \(1/L \) curve regardless of \(N \) (dashed line in Fig. 4).

FIG. 4: Evolution of the lowest energy level \(E_g^* \) of a finite graphene layer coupled to a superconductor as a function of \(\beta \) within the bulk-BCS model for \(L = 40 \xi \) (left panel) and with the length of the layer \(L \) within both the bulk-BCS (at \(\beta = 1 \)) and the HDSC models (right panel). In the case of the bulk-BCS model for arbitrary \(\beta \) three different behaviors are found depending on the \(N \) mod 3 value. On the contrary, a universal behavior of \(E_g^* \) is found within the HDSC model regardless of the \(N \) value (see text).

FIG. 5: Spatial variation of the LDOS on a finite layer (\(L = 9 \xi \)) in the HDSC model. The plots on the top panels correspond to the lines inside the layer with \(n \) mod 3 = 1, 2 and those on lower ones correspond to \(n \) mod 3 = 0. The uncoupled layer has a metallic behavior (\(N \) mod 3 = 2). The LDOS for this case at the edges of the layer (top left panel) and at the center of the layer (lower left panel) is plotted with dashed lines. When coupled to the superconductor, the LDOS is modified by the appearance of a minigap (denoted as \(m_0 \) in the pictures) and with the breaking of the uncoupled bands into a pair of subbands (\(m_1 \) and \(m_2 \) in the pictures). The evolution of the LDOS along the layer is shown in the right panels. The results are normalized to the LDOS of a bulk graphene layer with zero doping at \(\omega = \Delta \), denoted by \(\rho_0 \).

Local density of states

We define the electronic local density of states (LDOS) on a line \(n \) within the graphene layer as

\[
\rho_n(\omega) = \frac{a}{(2\pi)^2} \int_{-\pi}^\pi dq \text{TrIm} \left[\tilde{G}_{n,n}(q,\omega) \right],
\]

which has been normalized to one electron per site and spin. The LDOS thus defined is measured in units of \(a/h v_F \). However, to study the proximity effect it is more convenient to normalize the LDOS with the density of a bulk graphene layer with zero doping at \(\omega = \Delta \), \(\rho_0 \), which for \(\Delta \ll h v_F/a \) is given by \(\Delta/2\pi(a/h v_F)^2 \). The
results thus obtained do not depend on the choice of the ratio Δ/t_0 used in our tight-binding calculations.

The LDOS on a metallic layer ($N \mod 3 = 2$) is shown in Fig. 6. The results for the coupled case within the HDCS model are compared with the results for the uncoupled case. It is typically found that the number of singularities in the LDOS (associated with the number of subbands) in a given energy interval is doubled as compared to the uncoupled case. This effect is due to the breaking of the double degeneracy of the bands due to the coupling with the superconductor. The LDOS also exhibits an oscillatory behavior with the position on the layer. This behavior reflects the properties of the electronic wave functions and, as in the case of isolated nanoribbons [12], is distinct for lines with $n \mod 3 = 1, 2$ and lines with $n \mod 3 = 0$. We thus illustrate these cases separately on the top and on the lower panels of Fig. 6.

The right panels of Fig. 6 show the evolution along the layer of the LDOS close to the singularities. We illustrate this evolution at three different energies corresponding to the lowest first singularities, indicated by $m = 0, 1$ and 2 in Fig. 5. For reference we also show the spatial variation of the LDOS close to the first singularity for the uncoupled case. In this case the LDOS reaches a maximum value at the edges of the layer and a minimum in the middle for lines $n \mod 3 = 1, 2$, while the opposite behavior is found for $n \mod 3 = 0$. In the coupled case one can still identify the singularities with the oscillation pattern in the LDOS but it does no longer reach an extreme value at the edge of the layer in contact with the superconductor.

As final remark we note that in the case of insulating nanoribbons the coupling to the superconductor just induces a shift singularities in the spectrum but do not change their number. This is due to the nondegenerate character of the bands of the uncoupled layer.

PROXIMITY EFFECT ON A SEMI-INFINITE GRAPHENE LAYER

The results of the previous section can be extended to analyze the spectral properties of a semi-infinite graphene layer coupled to a superconductor. The local Green function on a line n is given by

$$\hat{g}_{n,n} = \left[\hat{G}_{n,n}^{-1} - t^2 g\right]^{-1},$$

where $\hat{g}_{n,n}$ is the Green function for a finite graphene layer and $\hat{G}_{n,n}$ is the Green function for the edge of the semi-infinite layer.

Fig. 6 illustrates the spatial variation of the LDOS on a semi-infinite graphene layer and the effect of varying the doping level within the bulk-BCS model. For reference we show the LDOS for the uncoupled case on the upper panels. As can be observed, the uncoupled LDOS exhibits long wavelength oscillations on the $\sim \hbar v_F/|\omega|$ scale on top of the characteristic V shape behavior. These oscillations are a surface effect which decreases in amplitude inside the layer as shown in Fig. 7 where the LDOS profile at $\omega = 2\Delta$ is plotted on a larger scale. A similar effect has been shown to occur in the case of nanoribbons with zigzag edges.

The superconducting proximity effect is manifested by the appearance of sharp peaks in the LDOS for energies $|\omega| \sim \Delta$ (lower panels on Fig. 6). These peaks distort the V shape density of states, an effect which decays within a few times the coherence length inside the layer. The small oscillations on the $\hbar v_F/|\omega|$ scale are reduced as compared to the uncoupled case but are still observable within the bulk-BCS model (indicated by the full line in Fig. 7).

The overall behavior of the LDOS within the HDSC model is very similar, although in this last case the $\hbar v_F/|\omega|$ oscillations are further suppressed (dashed line in Fig. 7).

The right panels in Fig. 6 illustrate the effect on the LDOS of a displacement from the charge neutrality condition by applying a gate potential (finite ϵ). It is observed that the V shape is essentially rigidly displaced while the peaks induced by the proximity effect remain fixed at $|\omega| \sim \Delta$. On the other hand, the wavelength of the oscillation pattern is in this case set by $\hbar v_F/|\omega - \epsilon|$.
The induced minigap is the layer. This effect can be associated with the pseudo-minigap whose size decreases inversely with the length of the graphene sheet as a function of the parallel momentum q. Only for the case of zero doping both eigenchannels are equivalent. Within this model one can study the effect of varying the normal transparency of the interface (through parameter β). The Andreev reflection probability at normal incidence never reaches unity within this model but has a maximum value of ~ 0.76. In the second model it is assumed that the superconducting electrode induces a finite order parameter on the graphene regions underneath. This model thus maintains the graphene sublattice structure and, as we have shown, the Andreev reflection amplitude $\hat{r}_A(q,\omega)$ is a scalar quantity for arbitrary doping and always reaches the unitary limit for normal incidence.

We have also studied the effect of the coupling to the superconductor on the spectral properties of finite and semi-infinite graphene layers. For finite layers we have obtained a simple expression for the energy spectrum of the coupled system which can be easily evaluated numerically. We have shown that a metallic ribbon develops a minigap whose size decreases inversely with the length of the layer. This effect can be associated with the pseudo-diffusive behavior of graphene. The induced minigap is slightly smaller in the bulk-BCS model with $\beta = 1$ than in the HDSC model.

For the semi-infinite case the proximity effect manifests in the appearance of peaks in the density of states for frequencies $|\omega| \sim \Delta$. These peaks decay rapidly inside the graphene sheet for distances a few times the superconducting coherence length ξ. On the other hand, the LDOS keeps its characteristic V shape for zero doping for frequencies $|\omega| < \Delta$. We expect that these findings can be useful to analyze future STM experiments on graphene sheets with superconducting electrodes.

ACKNOWLEDGMENTS

This work has been financed by the Spanish CYCIT (contract FIS2005-06255). Discussions with J.C. Cuevas, L. Brey and H. Le Sueur are acknowledged.

REFERENCES

[1] K. Novoselov et al., Science 306, 666 (2004).
[2] G. W. Semenoff, Phys. Rev. Lett. 53, 1449 (1984); D. P. DiVincenzo, E. J. Mele, Phys. Rev. B 29, 1685 (1984); T. Ando, T. Nakanishi, R. Saito, J. Phys. Soc. Japan 67, 2857 (1998); V. P. Gusynin, S. G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005).
[3] C. W. J. Beenakker, Phys. Rev. Lett. 97, 067007 (2006).
[4] M. Titov, C. W. J. Beenakker, Phys. Rev. B 74, 041401 (2006).
[5] Ali G. Moghaddam, M. Zareyan, Phys. Rev. B 74, 241403 (2006).
[6] A. Ossipov, M. Titov, C. W. J. Beenakker, Phys. Rev. B 75, 241401 (2007).
[7] J. C. Cuevas, A. Levy Yeyati, Phys. Rev. B 74, 180501 (2006).
[8] H. B. Heersche et al., Nature (London) 446, 56 (2007); H. B. Heersche et al., Solid State Comm. 143, 72 (2007); A. Shailos et al., Europhysics Letters 79, 57008 (2007); F. Miao et al., Science 317, 1530 (2007).
[9] H. Le Sueur (private communication).
[10] M. Titov, A. Ossipov and C.W.J. Beenakker, Phys. Rev. B 75, 045417 (2007).
[11] H. Schomerus, Phys. Rev. B 76, 045433 (2007); Y. M. Blanter, I. Martin, Phys. Rev. B 76, 155433 (2007).
[12] L. Brey and H.A. Fertig, Phys. Rev. B 73, 235411 (2006).
[13] A. R. Akhmerov, C. W. J. Beenakker, Phys. Rev. B 75, 045426 (2007).
[14] E. Prada, P. San-Jose, B. Wunsch, F. Guinea, Phys. Rev. B 75, 113407 (2007).
[15] E. Vecino, A. Martín-Rodero, A. Levy Yeyati, Phys. Rev. B 64, 184502 (2001).
[16] J. C. Cuevas, A. Martín-Rodero, A. Levy Yeyati, Phys. Rev. B 54, 7306 (1996).
[17] J. C. Cuevas, A. Martín-Rodero, A. Levy Yeyati, Phys. Rev. Lett. 80, 1066 (1998).
[18] G.E. Blonder, M. Tinkham and T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982).
[19] G. Tkachov, Phys. Rev. B 76, 235409 (2007).