Three novel species of *Distoseptispora* (Distoseptisporaceae) isolated from bamboo in Jiangxi Province, China

Zhi-Jun Zhai1,2, Jun-Qing Yan1,2, Wei-Wu Li1, Yang Gao1,2, Hai-Jing Hu1,2, Jian-Ping Zhou1,2, Hai-Yan Song1,3, Dian-Ming Hu1,2

1 Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China 2 Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China 3 Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P. R. China, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China

Corresponding author: Dian-Ming Hu (hudianming1@163.com)

Abstract

Decaying bamboo in freshwater is a unique eco-environment for fungi. Three new *Distoseptispora* (Distoseptisporaceae) species, *D. meilingensis*, *D. yongxiuensis* and *D. yunjushanensis* from submerged decaying bamboo culms in Jiangxi Province, China, were discovered, based on phylogenetic analyses and morphological characters. The combined data of ITS-LSU-SSU-*Tef1* sequences were used to infer the phylogenetic relationship between *D. meilingensis*, *D. yongxiuensis*, *D. yunjushanensis* and related species. Both molecular analyses and morphological data supported *D. meilingensis*, *D. yongxiuensis* and *D. yunjushanensis* as three independent taxa.

Keywords

Hyphomycetes, phylogenetic analysis, Sordariomycetes, taxonomy, three new taxa
Introduction

Distoseptispora was established by Su et al. (2016) as the single genus in *Distoseptisporaceae*. This genus morphologically resembles *Ellisembia* and *Sporidesmium* (Subramanian 1992; Shenoy et al. 2006; Yang et al. 2018), while they are not in sister clades in molecular phylogenetic trees (Su et al. 2016; Luo et al. 2019; Hyde et al. 2020, 2021). Multigene analysis showed that *Distoseptispora* formed a stable and well-supported clade within *Distoseptisporales* as a sister clade to *Aquapteridospora* (Luo et al. 2019; Hyde et al. 2020, 2021). *Aquapteridospora* has been raised as a new family *Aquapteridosporaceae* for the divergence time (110 million years ago (mya)) falling within the family-level range (50–130 mya) (Hyde et al. 2021). *Aquapteridospora* and *Distoseptispora* are similar in having macronematous, mononematous, unbranched conidiophores, mono- or polyblastic, holoblastic, conidiogenous cells and acrogenous, solitary conidia. *Distoseptispora* can easily be distinguished from *Aquapteridospora* by its short conidiophores and obclavate or cylindrical, rostrate, euseptate or distoseptate conidia. Additionally, *Distoseptispora* has terminal conidiogenous cells which lack circular scars (Hyde et al. 2021).

Distoseptispora was regarded as saprobic lignicolous fungal genus, which has the ability to decompose lignocelluloses in wood (Wong et al. 1998; Hyde et al. 2016). In recent years, the number of new taxa in *Distoseptispora* is steadily increasing and currently comprises 35 species, which have been discovered mostly in freshwater and some in terrestrial habitats (Su et al. 2016; Dong et al. 2021; Hyde et al. 2021; Li et al. 2021). Except for the two species, *D. adscendens* and *D. leonensis*, which were found from Hungary and Malaysia, respectively (Shoemaker and White 1985; Mckenzie 1995), 19 of the 33 species has been discovered in Thailand, while the remaining 14 species were introduced from China (Table 2). In China, *Distoseptispora* species are almost exclusively reported in Yunnan Province (Su et al. 2016; Luo et al. 2018; Hyde et al. 2019; Phookamsak et al. 2019; Li et al. 2021). Only three species, *D. martinii*, *D. bambusae* and *D. suoluoensis*, have been discovered from Guizhou Province (Xia et al. 2017; Yang et al. 2018; Sun et al. 2020). In this study, we introduce three new species of *Distoseptispora*, including *D. meilingensis*, *D. yongxiuensis* and *D. yunjushanensis* from Jiangxi Province in subtropical China. We describe the novel species, based on morphological illustrations and phylogenetic analyses. A synopsis of the morphological characters of *Distoseptispora* species is also provided.

Materials and methods

Samples collection, morphological observation and isolation

Dead bamboo samples from different freshwater habitats in Jiangxi Province, China, were taken to the lab for detection of fungi using a Nikon SMZ-1270 microscope (Nikon Corporation, Japan). Micro-morphological characteristics were observed and
captured using a Nikon ECLIPSE Ni-U compound microscope (Nikon Corporation, Japan), equipped with a Nikon DS-Fi3 camera. All measurements were calculated using PhotoRuler Ver. 1.1 software (The Genus Inocybe, Hyogo, Japan) and figures were processed using Adobe Photoshop CS6 Extended version 10.0 software (Adobe Systems, USA). Pure cultures of the fungi were obtained by the single spore isolation method (Chomnunti et al. 2014). The germinating conidia were transferred to potato dextrose agar (PDA) and incubated at 25 °C for two weeks. The fungal cultures were deposited in the Jiangxi Agricultural University Culture Collection (JAUCC) and the holotypic specimens with MycoBank numbers (842065, 842066, 842067) were deposited in the Herbarium of Fungi, Jiangxi Agricultural University (HFJAU).

DNA extraction, PCR amplification and sequencing

Fungal genomes were extracted from fresh mycelium using a modified cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle 1987). Four deoxyribonucleic acid (DNA) barcodes (ITS, LSU, SSU and Tef-1α) were chosen for polymerase chain reaction (PCR) using the primer pairs ITS1/ITS4 (White et al. 1990), LR0R/LR7 (Hopple and Vilgalys 1999), NS1/NS4 (White et al. 1990) and EF983F/EF2218R (Örstadius et al. 2015), respectively. Amplification reactions were carried out in a volume of 25 μl, containing 12.5 μl 2 × Taq PCR MasterMix (Qingke, Changsha, China), 1 μl each forward and reverse primer (0.2 μM), 1 μl template DNA (circa 50–100 ng) and 9.5 μl ddH2O. Amplifications were conducted under the following conditions: 3 min at 98 °C, 35 cycles of 10 s at 98 °C, 10 s of annealing at 55 °C and extension at 72 °C for 10 s, with a final 2-min extension at 72 °C. Sequencing reactions were conducted with the corresponding forward and reverse primers commercially by QingKe Biotechnology Co. (Changsha, China). All sequences were edited with Sequencher v.4.14 (GeneCodes Corporation, USA) and have been deposited in the NCBI GenBank database (Table 1).

Data analyses

Reference sequences of 35 *Distoseptispora* species and three *Aquapteridospora* species, based on recent publications (Luo et al. 2019; Hyde et al. 2020; Monkai et al. 2020; Dong et al. 2021, Li et al. 2021) were downloaded from GenBank. Detailed information on fungal strains used in this paper are provided in Table 1.

All obtained sequences were aligned using the online service of MAFFT (Madeira et al. 2019) and refined manually in MEGA v.7.0 (Kumar et al. 2016). Maximum Likelihood (ML) analysis was conducted with RAxML 8.0 using a GTR-GAMMA model of evolution (Stamatakis 2014). Non-parametric bootstrap analysis was implemented using 1,000 replicates to estimate ML bootstrap (BS) values. Bayesian Inference (BI) analysis was carried out with MrBayes v.3.2 under partitioned models (Ronquist et al. 2012). The best-fit models of nucleotide substitutions were selected according to the Akaike Information Criterion (AIC) implemented in jModelTest2.1.1.
Taxa	Voucher	LSU	ITS	SSU	Tef-1α
Aquapteridospora aquatica	MFLUCC 17-2371	NG_075413	NR_172447	—	—
Aquapteridospora fusiformis	MFLU 18-1601	MK849798	MK828652	—	MN194056
Aquapteridospora lignicola	MFLU 15-1172	KU221018	—	—	—
Distoseptispora adicendens	HKUCC 10820	DQ408561	—	—	—
Distoseptispora appendiculata	MFLUCC 18-0259	MN163023	MN163009	—	MN174866
Distoseptispora aquatica	GZCC 19-0452	MZ227216	MW33908	MW314689	—
Distoseptispora aquatica	MFLUCC 16-0904	MK849794	MK828649	MK828315	—
Distoseptispora aquatica	MFLUCC 18-0646	MK849793	MK828648	—	—
Distoseptispora aquatica	MFLUCC 16-1357	MK849796	MK828650	MK828317	—
Distoseptispora aquatica	S-965	MK849792	MK828647	MK828314	MN194051
Distoseptispora bambusae	MFLUCC 20-0691	NG_074430	NR_170068	NG_070348	—
Distoseptispora bambusae	MFLU 20-0261	MT232718	MT232713	MT232716	MT232880
Distoseptispora bambusae	MFLU 17-1653	MT232717	MT232712	—	—
Distoseptispora caricoscidem	MFLUCC 16-0970	MG979761	MG979754	—	MG988419
Distoseptispora cangshanensis	MFLUCC 16-0970	MG979763	MG979756	—	MG988421
Distoseptispora caricis	CPC 36498	MN567632	NR_166325	—	—
Distoseptispora caricoscidem	MFLUCC 17-2145	MT214617	MT310661	MT226728	—
Distoseptispora caricoscidem	KUN-HKAS 112708	MW879523	MW723056	MW774580	—
Distoseptispora delongensis	KUMCC 18-0090	MK079662	MK085061	—	MK087659
Distoseptispora euseptata	MFLUCC 20-0154	MW081544	MW081539	—	—
Distoseptispora euseptata	DLUCC 52024	MW081545	MW081540	—	MW084994
Distoseptispora fasciiculata	KUMCC 19-0081	NG_075417	NR_172452	—	MW396656
Distoseptispora fluminicola	DLUCC 0391	MG979762	MG979755	—	MG988420
Distoseptispora fluminicola	DLUCC 0999	MG979763	MG979756	—	MG988421
Distoseptispora guttulata	MFLU 17-0852	MF077554	MF077532	MF083567	—
Distoseptispora hydei	MFLUCC 20-0481	MT742830	MT734661	—	—
Distoseptispora leonensis	HKUCC 10822	DQ040866	—	—	—
Distoseptispora lignicola	MFLUCC 18-0198	MK849797	MK828651	MK828318	—
Distoseptispora longipora	HFJAU 0705	MH555357	MH555349	—	—
Distoseptispora martini	JAUCC 318651	KX035566	KX033577	—	—
Distoseptispora meilingensis	JAUCC 4727	OK562396	OK562390	OK562402	OK562408
Distoseptispora meilingensis	JAUCC 4728	OK562397	OK562391	OK562403	OK562409
Distoseptispora multisepata	MFLUCC 15-0609	KX710140	KX710145	NG_065693	MF135659
Distoseptispora multisepata	MFLU 17-0856	MF077555	MF077544	MF077533	—
Distoseptispora neoruta	MFLUCC 18-0376	MN163017	MN163008	—	—
Distoseptispora obclavata	MFLUCC 18-0329	MN163010	MN163012	—	—
Distoseptispora opysporiformis	DLUCC 0867	MG979765	MG979757	—	MG988423
Distoseptispora palmarum	MFLUCC 18-1446	MK079663	MK085062	MK079661	MK087660
Distoseptispora palmarum	MFLU 18-0588	NG_067856	NR_165897	—	MK087660
Distoseptispora phangngaensis	MFLUCC 17-0855	MF077556	MF077545	MF077534	MF135653
Distoseptispora phanggaenasea	MFLUCC 16-0857	—	NR_166230	—	—
Distoseptispora rayongensis	MFLUCC 18-0415	NG_073624	NR_171938	NG_073504	—
Distoseptispora rayongensis	MFLU 18-1045	MH457137	MH457172	MH457169	—
Distoseptispora rostrata	MFLUCC 16-0969	MG979766	MG979758	—	MG988424
Distoseptispora rostrata	DLUCC 0885	MG979767	MG979759	—	MG988425
Distoseptispora rostrata	MFLU 18-0479	NG_065413	NR_157552	—	—
Distoseptispora saprophytica	MFLUCC 18-1238	NG_075419	NR_172454	—	MW396651
Distoseptispora songhala	MFLUCC 18-1234	MW287755	MW286482	—	MW396642
Distoseptispora submena	MFLUCC 16-0946	MG979768	MG979760	—	MG988426
Distoseptispora suoluoensis	MFLUCC 17-0224	NG_068552	NR_168764	NG_070114	MF135654
Distoseptispora suoluoensis	MFLU 17-0854	MF077558	MF077547	MF077536	—
Distoseptispora tectonae	MFLUCC 15-0981	MW287763	MW286489	—	MW396641
Distoseptispora tectonae	MFLU 12-0291	KX751713	KX751711	—	KX751710
Three novel species of *Distoseptispora* from bamboo

Taxa	Voucher	LSU	ITS	SSU	Tef-1α
Distoseptispora tectonae	S-2023	MW081543	MW081538	—	—
Distoseptispora tectonae	GZ 25	MH555358	MH555361	—	—
Distoseptispora tectonigena	MFLUCC 12-0292	KK751714	NR_154018	—	—
Distoseptispora thailandica	MFLUCC 16-0270	MH260292	MH275060	MH260334	MH412767
Distoseptispora thyanoalaenae	KUN-HKAS 112710	MW879524	MW723057	—	—
Distoseptispora thyanoalaenae	KUN-HKAS 102247	MK064091	MK045851	—	MK086031
Distoseptispora xishuangbannaensis	KUMCC 17-0290	MH260293	MH275061	MH260335	MH412768
Distoseptispora yongxiuensis	JAUCC 4725	OK562394	OK562388	OK562400	OK562406
Distoseptispora yongxiuensis	JAUCC 4726	OK562395	OK562389	OK562401	OK562407
Distoseptispora yunjushanensis	JAUCC 4723	OK562398	OK562392	OK562404	OK562410
Distoseptispora yunjushanensis	JAUCC 4724	OK562399	OK562393	OK562405	OK562411
Distoseptispora yunnansis	MFLUCC 20–0153	MW081546	MW081541	—	MW084995

"—", sequence is unavailable.

(Darriba et al. 2012) on XSEDE in the CIPRES web portal (Miller et al. 2010). The models for ITS, LSU, SSU and *Tet-1α* datasets used for phylogenetic analysis are GTR+I+G model (-lnL = 4965.1122), GTR+I+G model (-lnL = 2716.7536), TIM2+G (-lnL = 4344.2295) and TrN+I+G (-lnL = 4479.4914), respectively. The datasets were run for 10,000,000 generations, with four chains and trees sampled every 1,000 generations. The first 10% trees were discarded as burn-in. We used three *Aquapteridospora* species as outgroups. The Bayesian consensus tree with posterior probabilities (PP) was visualised with FigTree v.1.4.4 (Rambaut 2018) and was edited in Adobe Illustrator CS6. Our aligned matrices and trees can be obtained from TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S29465).

Results

Molecular phylogenetic results

According to the results of BLAST analysis and sequence alignment, the ITS sequence of *D. meilingensis* has 11 different loci from those of *D. yongxiuensis*, the ITS sequence of which shares 99% similarity (five different loci) with that of *D. suoluoensis*. The ITS sequence of *D. yunjushanensis* is 97% similar (22 different loci) to that of *D. obclavata*. The aligned matrix for the combined analysis, ITS + LSU + SSU + *Tef-1α*, had 4015 bp, including ITS 596 bp, LSU 799 bp, SSU 1715 bp and *Tef-1α* 905 bp. The topologies of trees generated by ML and BI analyses are highly similar. The Bayesian tree with BS and PP is shown in Fig. 1. All species of *Distoseptispora* form a monophyletic group (BS/PP = 100/1.00). *D. yongxiuensis* groups together with *D. suoluoensis* (BS/PP = 60/0.99). These two species and collections of *D. meilingensis* form a strong-supported clade (BS/PP = 99/1.00), which is strongly linked with sequences of *D. bambusae* (BS/PP = 100/1.00). Collections of *D. yunjushanensis* form a moderate-support clade (BS/PP = 81/1.00) with the lineage consisting of *D. obclavata* and *D. rayongensis*.
Taxonomy

Distoseptispora meilingensis Z. J. Zhai & D. M. Hu, sp. nov.
MycoBank No: 842067
Fig. 2

Etymology. Referring to the collecting site of the Meiling Mountain in Jiangxi Province, China.

Holotype. HFJAU 10009.
Three novel species of *Distoseptispora* from bamboo

Figure 2. *Distoseptispora meilingensis* (HFJAU10009, holotype) **a,** **b** colonies on bamboo culms **c–e** conidiophores with conidia **f** conidiogenous cells **g,** **n** conidiogenous cells with conidia **h–m** conidia **o** germinating conidium **p** culture on PDA from above and reverse. Scale bars: 100 μm (**a,** **b**), 20 μm (**c–e,** **o**), 5 μm (**f–n**).
Description. Saprobic on culms of bamboo. Sexual morph: Undetermined. Asexual morph: Hyphomycetous. Colonies effuse, brown to dark brown, hairy. Mycelium mostly immersed, composed of pale to dark brown, septate, branched, smooth, hyaline to subhyaline hyphae. Conidiophores 69–192 × 4–7 μm ($\bar{x} = 120.6 \times 5.5$ μm, n = 25), macronematous, mononematous, erect, cylindrical, straight or slightly flexuous, 5–12-septate, yellowish-brown or brown, robust at the base. Conidiogenous cells holoblastic, mono- to polyblastic, integrated, terminal, cylindrical, yellowish-brown or brown. Conidia 32–64.5 × (7–)9–12.5 μm ($\bar{x} = 43.7 \times 9.8$ μm, n = 30), acrogenous, solitary, straight or slightly curved, obclavate, 5–7-distoseptate, thick-walled, rounded at the apex, truncate at the base, tapering towards apex, bud scars disjunctors at base, mostly brown when mature.

Cultural characteristics. Conidia germinating on PDA within 24 h and germ tubes produced from both ends. Colonies on PDA reaching 17–23 mm diam. at two weeks at 25 °C, in natural light, circular, with dense, light olivaceous mycelium on the surface with entire margin; reverse brown to dark brown.

Material examine. China, Jiangxi Province, Nanchang City, Meiling Mountain, alt. 305 m, near 28.79°N, 115.72°E, on decaying bamboo culms submerged in a freshwater stream, 16 Aug 2021, Z. J. Zhai, SLT-3 (HFJAU10009, holotype), ex-type living culture, JAUCC 4727 = JAUCC 4728.

Notes. Distoseptispora meilingensis clusters with the clade including D. suoluoensis and D. yongxiuensis with high support in the phylogenetic tree (Fig. 1). Distoseptispora meilingensis is distinct from D. suoluoensis (Yang et al. 2018) and D. yongxiuensis by its conidial colour (mostly brown, yellowish-brown to dark olivaceous and yellowish-brown or brown, respectively). Furthermore, D. meilingensis has shorter conidia (32–64.5 μm vs. (65–)80–125(–145) μm) than those of D. suoluoensis (Yang et al. 2018) and slightly shorter conidiophores (69–192 μm vs. 112–253 μm) than those of D. yongxiuensis. Distoseptispora meilingensis resembles D. bambusae in similar habitats and polyblastic conidiogenous cells (Sun et al. 2020). However, D. meilingensis can be distinguished from D. bambusae in its longer conidiophores (69–192 μm vs. 40–96 μm), slightly wider (up to 12.5 μm vs. up to 9.5 μm) and brighter (light brown vs. brown) conidia (Sun et al. 2020). A comparison of morphological features of Distoseptispora species is provided in Table 2.

Distoseptispora yongxiuensis Z. J. Zhai & D. M. Hu, sp. nov.
MycoBank No: 842066
Fig. 3

Etymology. With reference to Yongxiu, from where the holotype was collected.

Holotype. HFJAU10007

Description. Saprobic on decaying bamboo culms. Sexual morph: Undetermined. Asexual morph: Hyphomycetous. Colonies effuse, brown, hairy, glistening, often inconspicuous. Mycelium partly superficial, partly immersed in the substra-
Table 2. Synopsis of morphological characteristics, habitats, hosts and district compared across Distoseptispora species.

Species	Conidiophores (μm)	Conidia (μm)	Conidia septation	Conidia characteristics	Habitat	Host	District	References
Distoseptispora meilingensis	69–192 × 4–7	32–64.5 × 7–39.125	5–7-distoseptate	Oblclavate, mostly bright brown when mature	Freshwater	Dead bamboo culms	China, Jiangxi	This study
D. yongxiuensis	112–253 × 4–9	46–74(–86) × 10–13(–16)	6–9-euseptate	Oblclavate or obspathulate, olivaceous to yellowish-brown or brown, guttulate	Freshwater	Dead bamboo culms	China, Jiangxi	This study
D. yunjushanensis	100–175 × 5.5–10	39–67.5(–77) × (7–)9.5–13.5(–16.5)	7–13-distoseptate	Oblpyriform or obclavate, olivaceous when young, dark brown when mature	Freshwater	Dead bamboo culms	China, Jiangxi	This study
D. ascendens	28–46 × 8–10	(80–)350–500 × 15–18	80-distoseptate	Cylindrical, hemispherical apex, hyaline	Terrestrial	Decaying wood of Fagus sylvatica	Hungary	Shoemaker and White (1985), Réblová (1999)
D. appendiculata	62–86 × 4.5–5.5	67–89 × 10–16	13–17-distoseptate	Oblpyriform or obclavate, olivaceous or dark brown, with gelatinous sheath around tip	Freshwater	Unidentified submerged wood	Thailand, Khwaeng Phra	Luo et al. (2019)
D. aquatica	29–41 × 7–9	110–157 × 13.5–16.5	15–28-distoseptate	Oblclavate, dark brown with bluish-green to malachite green tinge	Freshwater	Unidentified submerged wood	China, Yunnan	Su et al. (2016)
D. bambusae	40–96 × 4–5.5	45–74 × 5.5–9.5	5–10-distoseptate	Oblclavate, olivaceous or brown	Terrestrial	Dead bamboo culms	China and Thailand	Sun et al. (2020), Monkai et al. (2020)
D. canthophorinae	44–68 × 4–8	58–166(–287) × 10–14	Multi-distoseptate	Oblclavate or lanceolate, rostrate, olivaceous or brown	Freshwater	Unidentified submerged wood	China, Yunnan	Luo et al. (2018)
D. caricis	35–90 × 6–7	(55–)65–85(–100) × 15–16(–17)	5–10-distoseptate	Oblclavate, brown, septa with central pore, basal cell pale brown, with truncate hilum	Terrestrial	Leaves of Carex sp.	Thailand, Chiang Mai	Crous et al. (2019)
D. clematidis	22–40 × 4–10	120–210 × 12–20	28–35-distoseptate	Oblong, obclavate, cylindrical or rostrate, brown with green tinge, bud scar or disjunctors present at the site of attachment	Terrestrial	Dried branches of Clematis sikkimensis	Thailand, Chiang Rai	Phukhamsakda et al. (2020)
D. dehongensis	45–80 × 4–5	17–30 × 7.5–10	3–5-distoseptate	Oblpyriform to obclavate, broad cylindrical or irregular, olivaceous	Freshwater	Unidentified submerged wood	China, Yunnan	Hyde et al. (2019)
D. euseptata	19–28 × 4–5	37–54 × 8–9	4–7-euseptate	Oblpyriform to obclavate, often constricted at septa, olivaceous	Freshwater	Unidentified submerged wood	China, Yunnan	Li et al. (2021)
Species	Conidiophores (μm)	Conidia (μm)	Conidia septation	Conidia characteristics	Habitat	Host	District	References
----------------------	--------------------	--------------	-------------------	--	---------------	-----------------------------	-------------------------------	-----------------------------------
D. fasciculata	12–16 × 5–6	46–200 × 10–16,5	10–40-distoseptate	Subcylindrical to obclavate, olivaceous when young, dark brown when mature	Freshwater	Unidentified submerged wood	Thailand, Nakhon Si Thammarat	Dong et al. (2021)
D. fluminicola	21–33 × 5.5–6.5	125–250 × 13–15	17–34-distoseptate	Oblong, obclavate, cylindrical or rostrate, brown with green tinge	Freshwater	Unidentified submerged wood	China, Yunnan	Su et al. (2016)
D. guttulata	55–90(–145) × 3.5–5.5	75–130(–165) × 7–11	11–14(–20)-euseptate	Oblclavate or lanceolate, rostrate, mid to dark brown or olivaceous	Freshwater	Unidentified submerged wood	Thailand, Prachuap Khiri Khan	Yang et al. (2018)
D. hydei	87–145 × 3–7	32–58 × 10–15	7–9-distoseptate	Obpyriform to fusiform, olivaceous to brown, with a hyaline, globose, gelatinous sheath around tip	Terrestrial	Dead bamboo culms	Thailand, Phitsanulok	Monkai et al. (2020)
D. leonensis	Up to 175 × 6–7	(38–)50–75(–85) × 11–15	7–12-distoseptate	Oblclavate, rostrate, brown	Terrestrial	Dead culms of *Freycinetia sp.*	Malaysia	McKenzie (1995)
D. lignicola	84–124 × 4–5	60–108 × 7–9	5–9-euseptate	Oblclavate, curved, brown	Freshwater	Unidentified submerged wood	Thailand, Sai-Khu Waterfall	Luo et al. (2019)
D. longispora	17–37 × 6–10	189–297 × 16–23	31–56-distoseptate	Oblclavate, elongated, brown to yellowish-brown	Freshwater	Unidentified submerged wood	China, Yunnan	Song et al. (2020)
D. martinii	50–110 × 3.5–4.5	15–20 × 11–16	Transversal septa	Transversal ellipsoid, oblate or subglobose, mutiform, pale brown to brown	Terrestrial	Unidentified dead branches	China, Guizhou	Xia et al. (2017)
D. multiisepata	29–47 × 4–6	147–185 × 12–14	Multi-distoseptate	Oblclavate, rostrate, dark olivaceous green	Freshwater	Unidentified submerged wood	Thailand, Prachuap Khiri Khan	Hyde et al. (2016)
D. neorostata	93–117 × 5.5–6.5	109–147 × 13–15	Multi-distoseptate	Oblclavate, rostrate, dark olivaceous to mid or dark brown	Freshwater	Unidentified submerged wood	Thailand, Khwaeng Phra Khanong Nuea	Luo et al. (2019)
D. obclavata	117.5–162.5 × 5–7	46–66 × 9–11	9–11-distoseptate	Oblclavate, olivaceous to pale or dark brown, gutulate	Freshwater	Unidentified submerged wood	Thailand, Khwaeng Phra Khanong Nuea	Luo et al. (2019)
D. obpyriformis	97–119 × 5–7	53–71 × 12–16	9–11-distoseptate	Obpyriform, olivaceous to pale or dark brown, gutulate	Freshwater	Unidentified submerged wood	China, Yunnan	Luo et al. (2018)
D. palmatum	90–165 × 4–7	35–180 × 7–11	7–27-distoseptate	Oblong, obclavate, greenish-black to brown	Terrestrial	Rachis of *Cocos nucifera*	Thailand, Trat	Hyde et al. (2019)
D. phanggaensis	18–30(–40) × 4.3–6.5	165–350 × 14–19	Multi-distoseptate	Elongate, obclavate, rostrate, dark olivaceous to mid or dark brown	Freshwater	Unidentified submerged wood	Thailand, Phang Nga	Yang et al. (2018)
Species	Conidiophores (μm)	Conidia (μm)	Conidia septation	Conidia characteristics	Habitat	Host	District	References
------------------------	--------------------	--------------	-------------------	---	----------------	--------------------------------------	----------------	-------------------------------
D. rayongensis	75–125 × 3.5–5.5	(36–)360–1061–120) × 9–14.5	9–13-euseptate, rarely 14–15-septate	Oblclavate or obspathulate, rostrate, pale brown or pale olivaceous, with percurrent proliferation	Freshwater	Unidentified submerged wood	Thailand, Rayong	Hyde et al. (2020)
D. rostrata	82–126 × 5–7	115–155 × 9–11	(15–)18–23-distoseptate	Oblclavate or lanceolate, rostrate, olivaceous to pale brown	Freshwater	Unidentified submerged wood	China, Yunnan	Luo et al. (2018)
D. saprophytica	50–140 × 3.2–4.2	14.5–30 × 4.5–7.5	2–6-distoseptate	Subcylindrical to obclavate, olivaceous to brown	Freshwater	Unidentified submerged wood	Thailand, Songkla	Dong et al. (2021)
D. songklaensis	70–90 × 4–5.5	44–125 × 9–14.5	9–16-distoseptate	Oblclavate, constricted at septa, olivaceous to brown	Freshwater	Unidentified submerged wood	Thailand, Songkla	Dong et al. (2021)
D. submera	55–73 × 7–9	95–123 × 15–19	17–23(–28)-distoseptate	Oblclavate, brown to dark brown or olivaceous	Freshwater	Unidentified submerged wood	China, Yunnan	Luo et al. (2018)
D. suoluoensis	80–250 × 4.5–5.8	(65–)80–125(–145) × 8–13	8–10-euseptate	Narrowly oblclavate or obspathulate, yellowish-brown or dark olivaceous, verrucose, with percurrent proliferation	Freshwater	Unidentified submerged wood	China, Guizhou	Yang et al. (2018)
D. tectonae	19.5–95 × 4.5–9	45–270 × 11–16	10–40-distoseptate	Oblclavate, brown to dark brown or olivaceous	Terrestrial/Freshwater	Dead twig of Tectona grandis (Lamiaceae)	Thailand, Phra–uap Khiri Khan	Hyde et al. (2016)
D. tectonigena	Up to 110 × 5–11	(83–)148–225(360–) × (10–)11–12(–13)	20–46-distoseptate	Flexuous, cylindrical-obclavate, elongated, verruculose, dark reddish-brown	Terrestrial	Dead twig of Tectona grandis (Lamiaceae)	Thailand, Chiang Rai	Hyde et al. (2016)
D. thailandica	15–26 × 3–6	130–230 × 13.5–17	35–52-distoseptate	Oblong, oblclavate, cylindrical or rostrate, reddish-brown to brown	Terrestrial	Dead leaves of Pandanus sp.	Thailand, Prach–uap Khiri Khan	Tibpromma et al. (2018)
D. thysonolaeae	30–80 × 3.5–5.5	21.5–80 × 6.5–12.8	8–14-distoseptate	Elongated oblclavate, light to dark brown, flat apex, with conspicuous spore attachment loci	Terrestrial	Dead culms of Thysanolaena maxima	China, Yunnan	Phookamsak et al. (2019)
D. xibhuanglan–naensis	12–17 × 2–5	160–305 × 8–15	Up to 40-distoseptate	Cylindrical-obclavate, green-brown to brown, tapering towards apex	Terrestrial	Dead leaf sheaths of Pandanus utilis	China, Yunnan	Tibpromma et al. (2018)
D. yunnanensis	131–175 × 6–7	58–108 × 8–10	6–10-euseptate	Oblclavate, rostrate, mid-olivaceous to brown	Freshwater	Unidentified submerged wood	China, Yunnan	Li et al. (2021)
Figure 3. Distoseptispora yongxiuensis HFJAU 10007, holotype) a Colonies on bamboo culm b, d conidiophores with conidia c conidiogenous cell bearing conidium e conidiogenous cells with young conidia f-k conidia l germinating conidium m culture on PDA from above and reverse. Scale bars: 100 μm (a), 20 μm (b–e, l), 5 μm (f–k).
Three novel species of *Distoseptispora* from bamboo

112–253 × 4–9 μm (x = 198 × 6.9 μm, n = 15), macronematous, mononematous, solitary or aggregated at the base, cylindrical, straight or slightly flexuous, 8–13-septate, olivaceous to dark brown, sharply curving near the base, paler at the apical part, rounded at the apex. **Conidiogenous cells** integrated, terminal, monoblastic, rarely polyblastic, cylindrical, olivaceous to dark brown. **Conidia** 46–74(–86) × 10–13(–16) μm (x = 65.6 × 12.6 μm, n = 30), acrogenous, solitary, obclavate or obspathulate, straight or flexuous, rostrate, 6–9-euseptate, olivaceous to yellowish-brown or brown, becoming paler or hyaline towards the apex, guttulate, 2.5–4 μm wide at the base and 2.5–5 μm wide at the apex, with a darkened scar at the base.

Cultural characteristics. Conidia germinating on PDA within 24 h and germ tubes produced from both ends. Colonies on PDA reaching 24–32 mm diam. at two weeks at 25 °C, in natural light, circular, with dense, light olivaceous mycelium on the surface with entire margin; reverse dark brown to black.

Material examined. China, Jiangxi Province, Jiujiang City, Yongxiu County, alt. 680.5 m, 29.09°N, 115.62°E, on decaying bamboo culms submerged in a freshwater stream, 28 Apr 2020, Z. J. Zhai and W. W. Li, YJS-70 (HFJAU 10007, holotype), ex-type living culture, JAUC 4725 = JAUC 4726.

Notes. In the multi-gene phylogenetic tree (Fig. 1), *D. yongxiuensis* clusters with *D. suoluoensis*. Nonetheless, *D. yongxiuensis* can be distinguished from *D. suoluoensis* by its shorter conidia (46–74(–86) μm vs. (65–)80–125(–145) μm) and polyblastic conidiogenous cells (Yang et al. 2018). Additionally, *D. suoluoensis* has the percurrent proliferation of conidia, while it was not observed in *D. yongxiuensis*. *Distoseptispora yongxiuensis* is similar with *D. bambusae* (Sun et al. 2020), *D. palmarum* (Hyde et al. 2019) and *D. meilingensis* for the polyblastic conidiogenous cells, but *D. yongxiuensis* has wider conidia than those of *D. bambusae* (10–13(–16) μm vs. 5.5–9.5 μm) (Sun et al. 2020), shorter conidia than those of *D. palmarum* (46–74(–86) μm vs. 35–180 μm) (Hyde et al. 2019) and paler (yellowish-brown or brown vs. bright brown) conidia than those of *D. meilingensis*.

Distoseptispora yunjushanensis Z. J. Zhai & D. M. Hu, sp. nov.
MycoBank No: 842065
Fig. 4

Etymology. The epithet refers to the collecting site from the Yunjushan Mountain in China.

Holotype. HFJAU10005

Description. Saprobic on decaying bamboo culms submerged in freshwater habitats. **Sexual morph:** Undetermined. **Asexual morph:** Hyphomycetous. **Colonies** effuse, olivaceous or dark brown, hairy, velvety. **Mycelium** mostly immersed, consisting of branched, septate, smooth, subhyaline to pale brown hyphae. **Conidiophores** 100–175 μm × 5.5–10 μm (x = 129×7.1 μm, n = 30), single or in groups of 2 or 3, macronematous, mononematous, erect, straight or slightly flexuous, 4–7-septate,
Figure 4. Distoseptispora yunjushanensis (HFJAU 10005, holotype) a, b colonies on bamboo culms c–f conidiophores with conidia g–i young conidia j–l mature conidia m conidium with proliferation n germinating conidium o, p culture on PDA from above and reverse. Scale bars: 100 μm (a, b), 20 μm (c–f, m, n), 5 μm (g–l).
Three novel species of Distoseptispora from bamboo

Three novel species of Distoseptispora from bamboo: unbranched, olivaceous to dark brown, smooth, cylindrical, rounded at the apex. **Conidiogenous cells** monoblastic, integrated, terminal, determinate, pale to dark brown, cylindrical. **Conidia** 39‒67.5(-77) μm × (7–)9.5–13.5(-16.5) μm (x = 52 × 12 μm, n = 30), acrogenous, solitary, obpyriform or obclavate, thick-walled, tapering towards the rounded apex, slightly curved, truncate at the base, 7–13-distoseptate, guttulate, smooth-walled, olivaceous, dark brown when mature, sometimes with the percurrent proliferation which forms another conidium from the conidial apex.

Cultural characteristics. Conidia germinating on PDA within 24 h and germ tubes produced from both ends. Colonies on PDA reaching 12–18 mm diam. at 14 days at 25 °C, in natural light, with fluffy, dense, thin olivaceous mycelium in the centre, becoming sparse and paler at the entire margin; reverse dark brown, pale brown at the smooth margin.

Material examined. China, Jiangxi Province, Jiujiang City, Yongxiu County, Yunjushan Mountain, alt. 672.5 m, 29.23°N, 115.59°E, on decaying bamboo culms submerged in a freshwater stream, 28 Apr 2020, Z. J. Zhai and W. W. Li, YJS-42 (HFJAU 10005, **holotype**), ex-type living culture, JAUCC 4723 = JAUCC 4724.

Notes. In the phylogenetic analysis, *D. yunjushanensis* clusters with *D. obclavata* and *D. rayongensis* with moderate support (BS/PP = 81/1.00). However, *D. yunjushanensis* is easily distinguished from *D. obclavata* by its comparatively wider (5.5–10 μm vs. 5–7 μm) conidiophores and conidia ((7–)9.5–13.5(–16.5) μm vs. 9–11 μm) (Luo et al. 2019). Moreover, the percurrent proliferation of conidia was not observed in *D. obclavata* (Luo et al. 2019). **Distoseptispora yunjushanensis** has shorter conidia (39‒67.5(-77) μm vs. (36–)60–106(–120) μm) and wider conidiophores (5.5–10 μm vs. 3.5–5.5 μm) than those of *D. rayongensis* (Hyde et al. 2020). The morphology of *D. yunjushanensis* is similar to *D. guttulata* and *D. songklaensis* in having the obclavate conidia, but differs in having wider (5.5–10 μm vs. 3.5–5.5 μm and 4–5.5 μm) conidiophores, shorter (39‒67.5(-77) μm vs. 75–130(–165) μm and 44–125 μm) and proliferating conidia (Yang et al. 2018; Dong et al. 2021). Additionally, *D. yunjushanensis* can be distinguished from *D. guttulata* by its distoseptate conidia (Yang et al. 2018).

Discussion

Previous reports of Distoseptispora were mainly concentrated in tropical areas, such as Thailand (Chiang Rai, Phitsanulok, Phang Nga; Luo et al. 2019) and southwest Yunnan, China (Su et al. 2016; Luo et al. 2018). Nonetheless, several new taxa were found sporadically in subtropical China, for example, *Distoseptispora martinii* (Xia et al. 2017), *D. suoluensis* (Yang et al. 2018) and *D. bambusae* (Sun et al. 2020) in Guizhou Province and *D. euseptata* and *D. yunnansis* in northwest Yunnan (Li et al. 2021). The ongoing discovery of this taxa from other geographic regions in subtropical China will deepen our understanding of the species in this genus. In this study, we introduced another three new species of Distoseptispora from Jiangxi Province of subtropical China. It is interesting to note that all these species in subtropical China, except *D. yunjushanensis* and
D. martinii, formed a well-supported monophyletic clade in the phylogenetic tree and this clade was at the basal position (Fig. 1). Distoseptispora yunjushanensis and D. martinii were otherwise phylogenetically placed within other clades (Fig. 1) and, therefore, we suppose that other lineages might also comprise more Distoseptispora species distributed in subtropical China. Further discovery of Distoseptispora species in more extensive areas in subtropical and other regions of China are needed to be addressed if the phylogenetic position of species reflects their geographical and ecological distribution.

Distoseptisporaceae is a holomorphic group of Sordariomycetes that are saprobic on decaying wood and plant debris in terrestrial and freshwater habitats (Su et al. 2016). The genus Distoseptispora seems not to have specific habitat preferences, as most species were reported from submerged wood in freshwater habitats, while some were introduced from terrestrial habitats (Table 2). So far, only five species of Distoseptispora have been found on bamboo, two of them (Distoseptispora bambusae and D. hydei, Table 2) from terrestrial habitats, the other three (this study) from freshwater. There may be more species in this genus existing on bamboo waiting to be discovered and further studies are needed to clarify if a specific species in Distoseptispora is specific to its host.

Acknowledgements

We are grateful to Deng-Mei Fan and Yi Yang (Agricultural college, Jiangxi Agricultural University) for the valuable advice in the context of this study. This study was supported by the National Natural Science Foundation of China (NSFC 32070023 and NSFC 32060014), the Natural Science Foundation of Jiangxi Province (20151BAB214002) and Science and Technology Plan Project of Jiangxi Province (GJJ160417).

References

Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Peršoh D, Dhami MK, Alias AS, Xu J, Liu X, Stadler M, Hyde KD (2014) The sooty moulds. Fungal Diversity 66(1): 1–36. https://doi.org/10.1007/s13225-014-0278-5

Crous PW, Wingfield MJ, Lombard L, Roets F, Swart WJ, Alvarado P, Carnegie AJ, Moreno G, Luangs-Ard J, Thangavel R, Alexandrova AV, Baseia IG, Bellanger JM, Bessette AE, Bessette AR, Delapeña-Lastra S, García D, Gené J, Pham THG, Heykoop M, Malyshева E, Malyshева V, Martín MP, Morozova OV, Noisripoom W, Overton BE, Rea AE, Sewall BJ, Smith ME, Smyth CW, Tasanathai K, Visagie CM, Adamčík S, Alves A, Andrade JP, Aninat MJ, Araújo RVB, Bordallo JJ, Boufleur T, Baroncelli R, Barreto RW, Bolin J, Cabero J, Cabo M, Caffet G, Caffot MLH, Cai L, Carlavilla JR, Chávez R, Decastro RRL, Delgat L, Deschuyteneer D, Dios MM, Dominguez LS, Evans HC, Eyssartier G, Ferreira BW, Figueiredo CN, Liu F, Fournier J, Galli-Terasawa LV, Gil-Durán C, Gienke C, Gonçalves MFM, Gryta H, Guarro J, Himaman W, Hywel-Jones N, Iturrieta-González I, Ivanushkina NE, Jargeat I, Khalid AN, Khan J, Kiran M, Kiss L, Kochkina GA, Kolárík M, Kubátová A, Lodge DJ, Loizides M, Luque D, Manjón JL, Marbach PAS, Massolajr NS,
Three novel species of *Distoseptispora* from bamboo

Mata M, Miller AN, Mongkolsamrit S, Moreau PA, Morte A, Mujic A, Navarro-Ródenas A, Németh MZ, Nóbrega TF, Nováková A, Olariaga I, Ozerskaya SM, Palma MA, Petters-Vandresen DAL, Piontelli E, Popov ES, Rodríguez A, Requejo Ó, Rodrigues ACM, Rong IH, Roux J, Seifert KA, Silva BDB, Sklenář F, Smith JA, Sousa JO, Souza HG, Desouza JT, Švec K, Tanchaud P, Tanney JB, Terasawa F, Thanakitpipattana D, Torres-García D, Vaca I, Vasghefi N, van Iperen AL, Vasilenko OV, Verbeken A, Yilmaz N, Zamora JC, Zapata M, Jurjević Ž, Groenewald JZ (2019) Fungal Planet description sheets: 951–1041. Persoonia 43(1): 223–425. https://doi.org/10.3767/persoonia.2019.43.06

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9(8): e772. https://doi.org/10.1038/nmeth.2109

Dong W, Hyde KD, Jeewon R, Doilom M, Yu XD, Wang GN, Hu DM, Nalumpang S, Zhang H (2021) Towards a natural classification of annulatascaceae-like taxa II: Introducing five new genera and eighteen new species from freshwater. Mycosphere : Journal of Fungal Biology 12(1): 1–88. https://doi.org/10.5943/mycosphere/12/1/1

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.

Hopple JJJ, Vilgalys R (1999) Phylogenetic relationships in the mushroom genus *Coprinus* and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: Divergent domains, outgroups, and monophyly. Molecular Phylogenetics and Evolution 13(1): 1–19. https://doi.org/10.1006/mpev.1999.0634

Hyde KD, Hongsanan S, Jeewon R, Bhat DJ, McKenzie EHC, Jones EBG, Phookamsak R, Ariyawansa HA, Boonmee S, Zhao Q, Abdel-Aziz FA, Abdel-Wahab MA, Banmai S, Chomnunti P, Cui BK, Daranagama DA, Das K, Dayarthne MC, deSilva NI, Dissanayake AJ, Doilom M, Ekanayaka AH, Gibertoni TB, Góes-Neto A, Huang SK, Jayasiri SC, Jayawardena RS, Konta S, Lee HB, Li WJ, Lin CG, Liu JK, Lu YZ, Luo ZL, Manawasinghe IS, Manimohan P, Mapook A, Niskanen T, Norphanphouc C, Papizadeh M, Perera RH, Phukhamsakda C, Richter C, Santiago ALCM, Drechsler-Santos ER, Senanayake IC, Tanaka K, Tennakoon TMDS, Thambugala KM, Tian Q, Tinhpromma S, Thongbai B, Vizzini A, Wanasinghe DN, Wijayawardene NN, Wú HX, Yang J, Zeng XY, Zhang H, Zhang JF, Bulgakov TS, Camporesi E, Bahkali AH, Amoozegar MA, Araujo-Neta LS, Ammirati JF, Baghela A, Bhatt RP, Bojantchev D, Buyck B, Silva GA, Lima CLF, Oliveira RJV, Souza CAF, Dai YC, Dima B, Duong TT, Ercole E, Mafalda-Freire F, Ghosh A, Hashimoto A, Kamolhan S, Kang JC, Karunarathna SC, Kirk PM, Kytövuori I, Lantieri A, Liimatainen K, Liu ZY, Liu ZX, Lücking R, Medardi G, Mortimer PE, Nguyen TTT, Promptuitta I, Raj KNA, Reck MA, Lumyong S, Shahzadeh-Fazeli SA, Stadler M, Soudi MR, Su HY, Takahashi T, Tanghirsunun N, Uniyal P, Wang Y, Wen TC, Xu JC, Zhang ZK, Zhao YC, Zhou JL, Zhu L (2016) Fungal diversity notes 367–490: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80: 1–270. https://doi.org/10.1007/s13225-016-0373-x

Hyde KD, Tennakoon DS, Jeewon R, Bhat DJ, Maharachchikumbura SS, Rossi W, Leonardi M, Lee HB, Mun HY, Houbraken J, Nguyen TT, Jeon SJ, Frisvad JC, Wanasinghe DN, Lücking R, Apte B, Cáceres ME, Karunarathna SC, Hongsanan S, Phookamsak R, Silva NI, Thambugala KM, Jayawardena RS, Senanayake IC, Boonmee S, Chen J, Luo ZL, Phukhamsakda C, Pereira OL, Abreu VP, Rosado AWG, Bart B, Randrianjohany E,
Three novel species of *Distoseptispora* from bamboo

Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research 47(W1): W636–W641. https://doi.org/10.1093/nar/gkz268

Mckenzie EHC (1995) Dematiaceous Hyphomycetes on Pandanaceae. V. *Sporidesmium* sensu lato. Mycotaxon 56: 9–29.

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), Institute of Electrical and Electronics Engineers, New Orleans, Louisiana, 1–8. https://doi.org/10.1109/GCE.2010.5676129

Monkai J, Boonmee S, Ren GC, Wei DP, Phookamsak R, Mortimer PE (2020) *Distoseptispora hydei* sp. nov. (Distoseptisporaceae), a novel lignicolous fungus on decaying bamboo in Thailand. Phytotaxa 459(2): 93–107. https://doi.org/10.11646/phytotaxa.459.2.1

Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Gareth Jones E, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphous C, Senwanna C, Wei DP, Pem D, Ackah FK, Wäng GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li JF, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He MQ, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadhanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkalčec Z, Zhang ZF, Luo Z, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promptputtha I, Cai L, Chomnunti P, Zhao RL, Lumyong S, Boonmee S, Wen TC, Mortimer PE, Xu JC (2019) Fungal diversity notes 929–1035: Taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity 95(1): 1–273. https://doi.org/10.1007/s13225-019-00421-w

Phukhamsakda C, Mckenzie EHC, Phillips AJL, Jones EBG, Bhat DJ, Marc S, Bhunjun CS, Wanasinghe DN, Thongbai B, Camporesi E, Ertz D, Jayawardena RS, Perera RH, Ekanayake AH, Tibpromma S, Doilom M, Xu J, Hyde KD (2020) Microfungi associated with * Clematis* (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Diversity 102(1): 1–203. https://doi.org/10.1007/s13225-020-00448-4

Rambaut A (2018) FigTree v1.4.4: Tree figure drawing tool. https://github.com/rambaut/figtree/releases

Réblová M (1999) Studies in *Chaetosphaeria* sensu lato III. *Umbrinosphaeria* gen. nov. and *Miyoshiella* with *Sporidesmium* anamorphs. Mycotaxon 71: 13–43.

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
Shenoy BD, Jeewon R, Wu WPP, Bhat DJ, Hyde KD (2006) Ribosomal and RP2 DNA sequence analyses suggest that *Sporidesmium* and morphologically similar genera are polyphyletic. Mycological Research 110(8): 916–928. https://doi.org/10.1016/j.mycres.2006.06.004

Shoemaker RA, White GP (1985) *Lasiosphaeria caesariata* with *Sporidesmium hormiscioides* and *L. triseptata* with *S. adscendens*. Sydowia 38: 278–283.

Song HY, Sheikha AF, Zhai ZJ, Zhou JP, Chen MH, Huo GH, Huang XG, Hu DM (2020) *Distoseptispora longispora* sp. nov. from freshwater habitats in China. Mycotaxon 135(3): 513–523. https://doi.org/10.5248/135.513

Stamatakis A (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England) 30(9): 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Su HY, Hyde KD, Maharachchikumbura SSN, Ariyawansa HA, Luo ZL, Promputtha I, Tian Q, Lin CG, Shang QJ, Zhao YC, Chai HM, Liu XY, Bakhali AH, Bhat JD, McKeenzie EHC, Zhou DQ (2016) The families Distoseptisporaceae fam. nov., Kirschsteiniotheliaceae, Sporormiaceae and Torulaceae, with new species from freshwater in Yunnan Province, China. Fungal Diversity 80(1): 375–409. https://doi.org/10.1007/s13225-016-0362-0

Subramanian CV (1992) A reassessment of *Sporidesmium* (hyphomycetes) and some related taxa. Proceedings of the Indian National Science Academy B58: 179–190.

Sun YR, Goonasekara ID, Thambugala KM, Jayawardena RS, Wang Y, Hyde KD (2020) *Distoseptispora bambusae* sp. nov. (Distoseptisporaceae) on bamboo from China and Thailand. Biodiversity Data Journal 8: e53678. https://doi.org/10.3897/BDJ.8.e53678

Tibpromma S, Hyde KD, McKenzie EHC, Bhat DJ, Phillips AJL, Wanasinghe DN, Samarakoon MC, Jayawardena RS, Dissanayake AJ, Tennakoon DS, Doilom M, Phookamsak R, Tang AMC, Xu JC, Mortimer PE, Promputtha I, Maharachchikumbura SSN, Khan S, Karunarathna SC (2018) Fungal diversity notes 840–928: Micro-fungi associated with Pandanaeaceae. Fungal Diversity 93(1): 1–160. https://doi.org/10.1007/s13225-018-0408-6

White TJ, Bruns TD, Lee SB, Taylor JW, Innis MA, Gelfand DH, Sninsky JJ (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: a guide to methods and applications. Academic, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wong KMK, Goh TK, Hodgkiss IJ, Hyde KD, Ranghoo VM, Tsui CKM, Ho WH, Wong SW, Yuen TK (1998) Role of fungi in freshwater ecosystems. Biodiversity and Conservation 7(9): 1187–1206. https://doi.org/10.1023/A:1008883716975

Xia JW, Ma YR, Li Z, Zhang XG (2017) Acrodictys-like wood decay fungi from southern China, with two new families Acrodictyaceae and Junewangiaceae. Scientific Reports 7(1): e7888. https://doi.org/10.1038/s41598-017-08318-x

Yang J, Maharachchikumbura SSN, Liu JK, Hyde KD, Jones EBG, Al-Sadi AM, Liu ZY (2018) *Pseudostanjehughesia aquitropica* gen. et sp. nov. and *Sporidesmium* sensu lato species from freshwater habitats. Mycological Progress 17(5): 591–616. https://doi.org/10.1007/s11557-017-1339-4