Molecular Basis of Enhanced Activity in Factor VIIa-Trypsin Variants Conveys Insights into Tissue Factor-mediated Allosteric Regulation of Factor VIIa Activity - DTU Orbit (04/11/2018)

Molecular Basis of Enhanced Activity in Factor VIIa-Trypsin Variants Conveys Insights into Tissue Factor-mediated Allosteric Regulation of Factor VIIa Activity

The complex of coagulation factor VIIa (FVIIa), a trypsin-like serine protease, and membrane-bound tissue factor (TF) initiates blood coagulation upon vascular injury. Binding of TF to FVIIa promotes allosteric conformational changes in the FVIIa protease domain and improves its catalytic properties. Extensive studies have revealed two putative pathways for this allosteric communication. Here we provide further details of this allosteric communication by investigating FVIIa loop swap variants containing the 170 loop of trypsin that display TF-independent enhanced activity. Using x-ray crystallography, we show that the introduced 170 loop from trypsin directly interacts with the FVIIa active site, stabilizing segment 215-217 and activation loop 3, leading to enhanced activity. Molecular dynamics simulations and novel fluorescence quenching studies support that segment 215-217 conformation is pivotal to the enhanced activity of the FVIIa variants. We speculate that the allosteric regulation of FVIIa activity by TF binding follows a similar path in conjunction with protease domain N terminus insertion, suggesting a more complete molecular basis of TF-mediated allosteric enhancement of FVIIa activity.

General information
State: Published
Organisations: Department of Chemistry, Novo Nordisk A/S
Contributors: Sorensen, A. B., Madsen, J. J., Svensson, L. A., Pedersen, A. A., Østergaard, H., Overgaard, M. T., Olsen, O. H., Gandhi, P. S.
Number of pages: 13
Pages: 4671-4683
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Biological Chemistry
Volume: 291
Issue number: 9
ISSN (Print): 0021-9258
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.04 SJR 2.672 SNIP 1.085
Web of Science (2017): Impact factor 4.01
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.17 SJR 2.825 SNIP 1.123
Web of Science (2016): Impact factor 4.125
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.4 SJR 3.126 SNIP 1.182
Web of Science (2015): Impact factor 4.258
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.5 SJR 3.258 SNIP 1.216
Web of Science (2014): Impact factor 4.573
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.87 SJR 3.402 SNIP 1.227
Web of Science (2013): Impact factor 4.6
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.97 SJR 3.396 SNIP 1.243
Web of Science (2012): Impact factor 4.651
