Association Between Osteoprotegerin G1181C and T245G Polymorphisms and Diabetic Charcot Neuroarthropathy

A case-control study

DARIO PITOCCO, MD1
GIOVANNI ZELANO, MD2
GIUSEPPINA GIOFFRÈ, MD3
ENRICO DI STASIO, MD4
FRANCESCO ZACCARDI, MD5
FRANCESCA MARTINI, MD5
TITTANIA MUSELLA, MD3
GIUSEPPE SCAVONE, MD5
MARCO GALLI, MD6
SALVATORE CAPUTO, MD1
LORENA MANCINI, MD3
GIUSEPPE SCAVONE, MD5
GIOVANNI GHIRLANDA, MD1

OBJECTIVE — Charcot neuroarthropathy is a disabling complication of diabetes. Although its pathogenesis remains unknown, we suppose that genetics may play a relevant role.

RESEARCH DESIGN AND METHODS — We performed a case-control study with 59 subjects with diabetic Charcot neuroarthropathy (Ch group), 41 with diabetic neuropathy without Charcot neuroarthropathy (ND group), and 103 healthy control subjects (H group) to evaluate the impact of two single nucleotide polymorphisms (SNPs) of the osteoprotegerin gene (G1181C and T245G) on the risk of Charcot neuroarthropathy.

RESULTS — Regarding the SNPs of G1181C, we found a significant linkage between the G allele and Charcot neuroarthropathy (Ch vs. ND, odds ratio [OR] 2.32 [95% CI 1.3–4.1], P = 0.006; Ch vs. H, 2.10 [1.3–3.3], P = 0.002; and ND vs. H, 0.80 [0.7–1.9], P = 0.452); similarly, we found a linkage with the G allele of T245G (Ch vs. ND, 6.25 [2.2–19.7], P < 0.001; Ch vs. H, 3.56 [1.9–6.7], P = 0.001; and ND vs. H, 0.54 [0.6–5.7], P = 0.304), supporting a protective role for the allele C and T, respectively. For this reason we investigated the frequency of the protective double homozygosis CC + TT (7% in Ch) that was significantly lower in Ch compared with H (0.18 [0.06–0.5], P = 0.002) and with ND (0.17 [0.05–0.58], P = 0.006), whereas there was no difference between H and ND (1.05 [0.43–2.0], P = 0.468). In a multivariate logistic backward regression model, only weight and the lack of CC and TT genotypes were independently associated with the presence of Charcot neuroarthropathy.

CONCLUSIONS — This is the first study that shows an association between genetic regulation of bone remodeling and Charcot neuroarthropathy.

Diabetes Care 32:1694–1697, 2009

Charcot neuroarthropathy is a chronic and progressive disease of bone and joints, defined by painful or relatively painless bone and joint destruction, in limbs that have lost sensory innervation; it is characterized by pathological fractures, joint dislocation, and deformity (1). With the decline in numbers of cases of tertiary syphilis, the primary etiology today is diabetes. The incidence is ~0.1–5% in diabetic patients with peripheral neuropathy, but it is likely that many cases are undiagnosed (2). The majority of patients with Charcot neuroarthropathy are from 50 to 60 years old, and most will have had diabetes for at least 10 years (3,4).

The pathogenesis of Charcot neuroarthropathy is still unknown, but it is undoubtedly multifactorial (1,5); probably this is one of the reasons that there is no pharmacological treatment available to stop the progress of the disease. The difference between the higher prevalence of diabetic neuropathy and the lower prevalence of Charcot neuroarthropathy (neuropathy seems to be necessary but not sufficient for its presence) and the different clinical features of the two conditions support the hypothesis of the probable involvement of other factors in its pathogenesis.

A common feature of Charcot neuroarthropathy is bone reabsorption, and the association between diabetes and osteoporosis could contribute to the presence of Charcot neuroarthropathy (6–8). Indeed, the study of bone turnover markers in acute Charcot neuroarthropathy shows that there is an increase in osteoclast activity compared with osteoblast activity (9); this can lead to osteopenia, which could predispose to fracture, even as a consequence of minimal trauma.

New insights into the regulation of osteostalagogenes have resulted from the discovery of three members of the tumor necrosis factor (TNF) and TNF receptor superfamily; one of these receptors, osteoprotegerin (OPG), is an important regulator of bone remodeling (10). OPG gene single nucleotide polymorphisms (SNPs) have been associated with osteoporosis (11,12) and are considered early predictors of cardiovascular disease (13). Two of the most studied polymorphisms are G1181C (located in exon I) and T245G (located in the promoter region); the latter is in complete linkage with A163G and G209A polymorphisms (14). Because of their regulatory function in bone remodeling and for their involvement in the pathogenesis of osteoporosis, we focused our investigation on these two...
Neuropathy Disability Score (15). All diabetic subjects had a definite diagnosis of peripheral neuropathy with a biothesiometer, according to Young et al. The vibration perception threshold was performed with a DIABETES CARE, VOLUME 32, NUMBER 9, SEPTEMBER 2009

RESULTS — Table 1 shows the clinical and laboratory characteristics of the Ch, H, and ND groups. Comparison of OPG genotypes showed significant differences in the frequencies of alleles between Ch versus ND and Ch versus H, whereas ND and H were not different (Table 2). We found a positive association with the G allele of G1181C in Ch compared with ND (OR 2.32 [95% CI 1.3–4.1], \(P = 0.006\) and 2.10 [1.3–3.3], \(P = 0.002\), respectively), whereas H and ND were overapped (0.90 [0.7–1.9], \(P = 0.452\); regarding T245G, we showed a strong positive association with the G allele in Ch compared with ND (0.25 [2.2–19.7], \(P < 0.001\) and 3.56 [1.9–6.7], \(P = 0.001\), respectively), whereas there were no differences between H and ND (0.54 [0.6–5.7], \(P = 0.304\). Because the frequencies of C (G1181C) and T (T245G) alleles were lower in Ch, we analyzed the distribution of the protective double homozygosis CC + TT, which was significantly lower in Ch (frequency 7%) compared with that in H (0.18 [0.06–0.5], \(P = 0.002\) and ND (0.17 [0.05–0.58], \(P = 0.006\), whereas there was no difference between H and ND (1.05 [0.43–2.0], \(P = 0.468\). Thus, the risk to have Charcot neuroarthropathy in diabetic and neuropathic subjects with CC/TT homozygosis is approximately six-fold lower (1/OR CC + TT). In a multivariate logistic backward regression model built using Charcot disease as a dependent variable and SNPs and clinical/laboratory values as independent variables (Table 1), only weight and the lack of CC and TT genotypes were independently associated with the presence of Charcot neuroarthropathy (1.07 [1.03–1.12], \(P = 0.001\); 0.17 [0.04–0.71], \(P = 0.013\); and 0.06 [0.01–0.36], \(P = 0.002\), respectively). For example, in our population, subjects without TT polymorph-
phisms have a 16-fold higher risk of Charcot neuroarthropathy (1/OR TT [0.06]), indicating the protective role played by the alleles C and T, respectively.

Conduction velocity and amplitude, Neuropathy Disability Score, and Autonomic Neuropathy Score were similar between Ch and ND (Table 1); moreover, no significant difference was found in a comparison of these four variables in relation to OPG SNPs (data not shown).

Genetic distribution of both SNPs were in Hardy-Weinberg equilibrium. There was a weak linkage disequilibrium between the two SNPs ($D' = 0.330$) analyzed.

CONCLUSIONS — The difference between the high prevalence of diabetic neuropathy compared with the low prevalence of Charcot neuroarthropathy is a disease in which genetics plays an essential role.

Table 1—Clinical and laboratory characteristics of Charcot, neuropathic + diabetic, and healthy subjects

	Ch group	ND group	H group	P^*
A1C (%)	8.2 ± 2.41	8.0 ± 1.82	5.1 ± 0.41,2	<0.001
Disease duration (years)	20 ± 11	21 ± 10		
Weight (kg)	97 ± 161,2	84 ± 171,3	74 ± 423	<0.001
Waist circumference (cm)	115 ± 141,2	106 ± 121,3	97 ± 523	<0.001
Age (years)	59 ± 91	64 ± 103	62 ± 6	0.013
Sex (male/female)	39/19	26/13	63/40	NS
Total cholesterol (mg/dl)	178 ± 47	182 ± 38	182 ± 38	NS
LDL cholesterol (mg/dl)	105 ± 35	103 ± 35	103 ± 35	NS
HDL cholesterol (mg/dl)	43 ± 0	45 ± 12	45 ± 12	NS
Triglycerides (mg/dl)	161 ± 981	144 ± 671	144 ± 671,2	<0.001
Conduction velocity (m/s)	32.2 ± 4.5	33.2 ± 4.2		NS
Conduction amplitude (µV)	1.2 ± 0.4	1.3 ± 0.4		NS
NDS: 6-7-8-9-10T	10-13-17-13-6	7-8-12-11-3		NS
ANS: 3-4-5-6-7-8T	8-16-14-14-5-2	6-12-10-9-3-1		NS

Data are means ± SD. *Significance of difference for the correspondent row. If the P value is significant (<0.05), apex numbers locate the difference between corresponding row subgroups. TData regarding Neuropathy Disability Score (NDS) (16) and Autonomic Neuropathy Score (ANS) (17) are expressed as frequencies of patients belonging to each score (e.g., Charcot: NDS 7, 3 patients; ND: ANS 4, 12 patients).

Table 2—Frequencies of G1181C and T245G genotypes

	ND group	Ch group	H group
G1181C			
CC	15 (36.5)	6 (10.1)	34 (33)
GC	19 (46.3)	34 (57.6)	50 (48.5)
GG	7 (17.2)	19 (32.3)	19 (18.5)
T245G			
GG	0 (0)	7 (11.9)	2 (1.9)
GT	4 (9.75)	16 (27.1)	14 (13.6)
TT	37 (90.25)	36 (61)	87 (84.5)

Data are absolute number (%). The differences between the groups (Ch vs. ND, $P < 0.001$; ND vs. H, NS; and Ch vs. H, $P < 0.001$) were analyzed with the X^2 test.

References

1. Edmonds ME. Progress in care of the diabetic foot. Lancet 1999;354:270–272
2. Sanders LJ, Frykberg RG. Diabetic neuropathic osteoarthropathy: Charcot foot. In The High Risk Foot in Diabetes Mellitus. Levin ME, O’Neal LW, Bowker JH, Eds. New York, Churchill Livingstone, 1991, p. 297–338
3. Sinha S, Munichoodappa G, Kozak GP. Neuroarthropathy (Charcot joints) in diabetes mellitus: clinical study of 101 cases. Medicine (Baltimore) 1972; 52:191–210
4. Rajbhandari SM, Jenkins RC, Davies C,
Tesfaye S. Charcot neuroarthropathy in diabetes mellitus. Diabetologia 2002;45:1085–1096.

5. Frykberg RG, Kozak GP. The diabetic Charcot foot. In Management of Diabetic Foot Problems. 2nd ed. Kozak GP, Campbell DR, Frykberg RG, Haberwshaw GM, Eds. Philadelphia, WB Saunders, 1995, p. 88–97.

6. Childs M, Armstrong DG, Edelson GW. Is Charcot arthropathy a late sequela of osteoporosis in patients with diabetes mellitus? J Foot Ankle Surg 1998;37:437–439.

7. Saller A, Maggi S, Romanato G, Tonin P, Crepaldi G. Diabetes and osteoporosis. Aging Clin Exp Res 2008;20:280–289.

8. Rakel A, Sheehy O, Rahme E, LeLorier J. Osteoporosis among patients with type 1 and type 2 diabetes. Diabetes Metab 2008;34:193–205.

9. Piaggi A, Rizzo L, Golia F, Costi D, Bacetti F, Ciaccio S, De Gregorio S, Viguali E, Trippi D, Zampa V, Marocco C, Del Prato S. Biochemical and ultrasound tests for early diagnosis of active neuro-osteoarthropathy (NOA) of the diabetic foot. Diabetes Res Clin Pract 2002;58:1–9.

10. Khosla S. Minireview: The OPG/RANKL/RANK system. Endocrinology 2001;142:5050–5055.

11. Arko B, Prezelj J, Kornel R, Kocijanjec A, Hudler P, Mark J. Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab 2002;87:4080–4084.

12. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saeundsdottir J, Center JR, Nguyen TV, Bagger Y, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K. Multiple genetic loci for bone mineral density and fractures. N Engl J Med 2008;358:2355–65.

13. Collin-Osdoby P. Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ Res 2004;95:1046–1057.

14. Kim JG, Kim JH, Kim KY, Ku SY, Jee BC, Suh CS, Kim SH, Choi YM. Association between osteoprotegerin (OPG), receptor activator of nuclear factor-κB (RANK), and RANK ligand (RANKL) gene polymorphisms and circulating OPG, soluble RANKL levels, and bone mineral density in Korean postmenopausal women. Menopause 2007;14:913–918.

15. MJ Young, Breddy JL, Veves A, Boulton AJM. The prediction of diabetic neuropathy foot using vibration perception threshold: a prospective study. Diabetes Care 1994;17:557–560.

16. Young MJ, Boulton AJM, Macleod AF, Williand DRR, Sonksen PK. A multicentre study of the prevalence of diabetic peripheral neuropathy in the UK hospital clinic population. Diabetologia 1993;36:150–154.

17. Ewing DJ, Clarke BF. Diagnosis and management of diabetic autonomic neuropathy. Br Med J 1982;285:916–918.

18. Cavanagh PR, Young MJ, Adams JE, Vickery KL, Boulton AJM. Radiographic abnormalities in the feet of patients with diabetic neuropathy. Diabetes Care 1994;17:201–209.

19. Tomas MB, Patel M, Marvin SE, Palestro CJ. The diabetic foot. Br J Radiol 2000;73:443–450.

20. Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 2005;21:2128–2129.

21. Tracey KJ. The inflammatory reflex. Nature 2002;420:853–859.

22. Mabilleau G, Petrova NL, Edmonds ME, Sabokbar A. Increased osteoclastic activity in acute Charcot’s osteoarthropathy: the role of receptor activator of nuclear factor-κB ligand. Diabetologia 2008;51:1035–1040.

23. Stuck RM, Sohn MW, Budiman-Mak E, Lee TA, Weiss KB. Charcot arthropathy risk elevation in the obese diabetic population. Am J Med 2008;121:1008–1014.

24. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology 2007;132:2169–2180.