Supplementary Information for

Endogenous membrane stress induces T6SS activity in *Pseudomonas aeruginosa*

Anne-Sophie Stolle, Bradley Thomas Meader, Jonida Toska, John J. Mekalanos*

* Correspondence should be addressed to:
John Joseph Mekalanos: John_mekalanos@hms.harvard.edu

This PDF file includes:
- Supplementary methods
- Figures S1 to S10
- Tables S1 to S13
- Legend for Dataset S1
- Legend for Movie S1 to S10

Other supplementary materials for this manuscript include the following:
- Dataset S1
- Movie S1 to S10
Supplementary methods

Strain construction

dcas9 from S. pyogenes (sequence from 44249, Addgene) was codon optimized for P. aeruginosa and ordered as a gblock from Integrated DNA technologies. The gblock was inserted into XmaI and EcoRI linearized pSW196 using Gibson assembly (1). Subsequently, pSW196 containing dcas9 was integrated into the attB site and the vector backbone was excised using pFLP (2). To generate a smaller vector for the guide RNA vector, lacI was deleted from pPSV37. For this, an in-frame deletion of lacI was performed using a splice overlap extension (SOE) approach with the primers oAS022-oAS025. The promoter and sg-RNA sequence (sequence from 44251, Addgene) was amplified using oAS034 and oAS035 and inserted into a DraIII and HindIII linearized ppSV37 ΔlacI using Gibson assembly. New sgRNAs were designed as previously described (3). Briefly, an inverse PCR using a forward primer containing the targeting sequence and overlap with the vector backbone and oAS058 was performed, gel purified, Gibson assembled, dialyzed and electroporated into DH5α. Sanger sequence confirmed guides were then electroporated into the according PAO1 attB::dcas9 and selected using 30 µg/mL gentamicin. Mutations in the PAM site used for knockdown of bamA were mutated using an SOE approach. In frame mutation of the PAM site were generated with the primers oAS384, oAS385, oAS413 and oAS414 and Gibson assembled into EcoRI and HindIII linearized pEXG2 vector and transformed into DH5α. Sanger sequencing confirmed plasmids were transformed into SM10λ.pir and conjugated into the according PAO1 attB::dcas9 strain. Allelic exchange was achieved by homologous recombination and subsequent sucrose selection. PAM mutation was confirmed with the primers oAS388-oAS396. To generate in frame deletions of tagT, vipA and fusion of clpV-GFP, SM10λ.pir strains with the according pEXG2 vector were conjugated into the according PAO1 background and sucrose selected (4). Correct clones were confirmed using Sanger sequencing. Primers used in this study are listed in Table S2.
Bacterial competition assays

P. aeruginosa and *V. cholerae* overnight cultures were diluted to an OD$_{600}$ of 0.05 in appropriate antibiotics. *P. aeruginosa* cultures were complemented with 0.1 % arabinose. Bacteria were grown to an OD$_{600}$ ranging from 0.7 to 0.85. Harvested bacteria were resuspended to an OD$_{600}$ of 10 in LB, 0.2 % arabinose. *V. cholerae* and *P. aeruginosa* were then mixed in ratios of either 1:1, 1:10, as specified and 5 μL of the mixed cultures were spotted onto an LB agar, 0.2 % arabinose plate and incubated at 37 °C for either one or two hours, respectively. The spot of the plate was then cut out, resuspended into 1 mL LB and serially diluted. The sample was then plated on LB agar plates containing either 5 μg/mL irgasan (to select for *P. aeruginosa*) or 100 μg/mL streptomycin (to select for *V. cholerae*). Plates were incubated at 37 °C overnight and colonies were counted. The log10 (CFU) values were calculated in Microsoft Excel v16.27 and graphs were generated in GraphPad Prism v7.0b.

qRT-PCRs

RNA was extracted from cultures grown to mid log. Harvested bacteria from 1 ml culture were resuspended in 1 ml Trizol (Invitrogen) and incubated at RT for 5 min. 200 μl of chloroform was added, vortexed and incubated for 5 min at RT. After a 10 min centrifugation step at 8000 x g at 4 °C, the aqueous solution was added to 400 μl ethanol and transferred to Purelink RNA Mini columns (Invitrogen). RNA was washed, dried and eluted following manufacturer’s instructions. RNA was DNAse treated following manufacturer’s instructions. (Invitrogen, TURBO DNA-free Kit,). The concentration of the RNA was measured using a Thermo Scientific NanoDrop 1000. qRT-PCR was performed using the KAPA SYBR FAST One-Step Universal kit (KAPA Biosystems) on the Eppendorf Mastercycle RealPlex 2 system, following manufacturer’s instructions. Primers for gene amplification are listed in Table S2. The mean of the three technical replicates was analyzed in Microsoft Excel v16.27, normalizing to the housekeeping gene *rpsL*. Relative gene expression was calculated after Livak (5). Three independent experiments were performed. Graphs were generated using GraphPad Prism v7.0b.
Hcp secretion assays

Overnight cultures were diluted to an OD$_{600}$ of 0.1 in 20 mL LB complemented with the according antibiotics and 0, 0.05, 0.1 or 0.2 % arabinose in stationary Erlenmeyer flasks to avoid shear stress. Samples were grown for approximately 5 hours and 3 mL of the cultures were harvested, washed in 1 mL LB with their respective arabinose concentrations and antibiotics and resuspended in 1 mL LB with their respective arabinose concentrations. Cultures were then incubated without shaking for 15 min at 37°C. Samples were centrifuged for 5 min at 8000 rcf and 500 µL supernatants were collected. The pellet was resuspended to an OD$_{600}$ of 10 in Lämmli buffer. Ice-cold trichloroacetic acid was added to the supernatant to a concentration of 10 % and kept at -20 °C overnight. Precipitates were centrifuged for 20 min at 20000 x g at 4 °C. The supernatant was discarded and the pellet was washed with 500 µL ice-cold acetone. Samples were centrifuged for 20 min at 12700 rpm at 4 °C. The pellet was dried at 50 °C and then resuspended matching the OD$_{600}$ of 10 in Lämmli buffer and boiled for 15 min at 95 °C. SDS-PAGE was performed using Invitrogen’s BoltTM 10% Bis-Tris Plus 12-well gels in an Invitrogen Mini Gel Tank with 1X MES Running Buffer. 7 µL protein sample were loaded onto the gels and separated for 10 min at 100 V and then 35 min at 170 V for a total of 45 min. Gels were then rinsed and transferred onto a blot using Invitrogen iBlot2 NC Mini Stacks and an Invitrogen iBlot2 Gel Transfer Device. Blots were blocked for 1 h at RT using a 1:1 PBS:Li-Cor Odyssey Blocking Buffer solution and subsequently incubated in primary antibody solution of 1:10,000 anti-PA0085 (Hcp) rabbit antibodies (custom made from Genscript) and 1:10,000 anti-RNAP mouse antibody (Thermo Fisher Scientific, #MA1-25425) in 1:1 PBS:Li-Cor Odyssey Blocking Buffer overnight, rocking at 4 °C. After rinsing three times for 5 min blots were incubated with secondary antibody solution of 1:20,000 Li-Cor IRDye 800CW Goat anti-Rabbit antibody, 1:20,000 Li-Cor IRDye 680RD Goat anti-Mouse antibody in 1:1 PBS:Li-Cor Odyssey Blocking Buffer for 1 h. Blots were visualized using a Li-Cor Odyssey CLx set to detect light in the 700 nm and 800 nm channels. Images were generated and quantified using Li-Cor’s ImageStudio v4.0.21.
Knockdown of essential genes leads to growth defects. Guides against different essential genes were designed. Bacteria were grown in the presence of inducer and growth was compared to sg-CTRL. OD$_{600}$ measurements were taken every 30 min. Graphs display mean ± SD of three independent experiments.
Knockdown of essential genes (except for secY (C)) results in uptake of PI. Strains were grown in the presence of 0.2 % arabinose and grown for the indicated time. 20 µl of each sample was added to 1 ml DPBS containing PI (1 µg/ml) and incubated for 15 min. Incorporation of PI was measured using flow cytometry. Graphs display mean ± SD of three independent experiments.
Volcano plots were generated to demonstrate transcriptional changes between sg-bamA (A), sg-lptD (B) and sg-ftsH (C) to sg-CTRL. Dashed lines indicate significance intervals of genes that are upregulated (log2 ≥ 2, -log10 (p-value) ≥ 2) or downregulated (log2 ≤ -2, -log10 (p-value) ≥ 2). Green dots indicate the target gene of the CRISPRi knockdown. Red dots indicate genes of the H1-T6SS cluster. The genes with the highest log2 fold changes and -log10 (p-value) where labeled with the gene name. D) PCA plots of sg-bamA, sg-lptD, sg-ftsH and sg-CTRL RNAseq datasets.
Fig. S4: Transcriptional profiling of essential gene knockdowns

Heat map of H2-T6SS (A) and H3-T6SS (B) cluster transcript level measured by RNA-seq of sg-bamA, sg-lptD or sg-ftsH knockdown and sg-CTRL as a control knockdown (each group n=3).

Fig. S5: CRISPRi sg-tolB, sg-bamA and sg-lptD knockdowns result in increased T6SS gene expression

Knockdown of tolB, bamA and lptD results in increase in T6SS gene expression. Expression of indicated genes were analyzed in qRT-PCRs after 3h (A) and 5h (B). Log2 fold change to PAO1 CRISPRi sg-CTRL (induced) is displayed. Graphs display mean ± SD of three independent experiments.
Fig. S6: Mutation in PAM region for bamA CRISPRi knockdown restores bamA expression and results in normal growth.

A) Expression of dcas9 and bamA were analyzed in qRT-PCRs in a combination of different background strains (wt vipA or ΔvipA, wt clpV or clpV-gfp, wt PAM or mutated PAM). Log2 fold change to PAO1 CRISPRi sg-CTRL (induced) is displayed. Graphs display mean ± SD of three independent experiments. B) Strains with mutated PAM site in PAO1 CRISPRi background were analyzed in their growth behavior with sg-CTRL or sg-bamA guide. Bacteria were grown in the presence of inducer. OD$_{600}$ measurements were taken every 30 min. Graphs display mean ± SD of three independent experiments.
Fig. S7: Knockdown of bamA causes dynamic T6SS activation

Time-lapse imaging of ClpV-GFP in *P. aeruginosa* strains expressing sg-bamA (A) or sg-CTRL (B) grown in the presence of 0.1 % arabinose. Images were taken every 10 s. Scale bar: 10 µm. Arrows indicate dynamic firing.
Fig. S8: Knockdown of lptD and tolB causes dynamic T6SS activation

Time-lapse imaging of ClpV-GFP in *P. aeruginosa* strains expressing sg-lptD (A) or sg-tolB (B) grown in the presence of 0.1 % arabinose. Images were taken every 10 s. Scale bar: 10 µm. Arrow heads indicate dynamic firing.
Fig S9: Competition between V. cholerae and P. aeruginosa

Time-lapse imaging of T6SS- V. cholerae 2740-80 ClpV-mCherry (1:10 ratio) in mixture with P. aeruginosa ClpV-GFP
A) sg-CTRL, and B) ΔvipA sg-bamA. Scale bar: 10 µm.
Fig. S10: Knockdown of essential genes does not lead to increased *V. cholerae* killing

A) *P. aeruginosa* with knockdowns in different essential genes was challenged with T6SS+ *V. cholerae* for 1 h in a 1:1 ratio, serial diluted and plated on 100 µg/ml Streptomycin plates to recover *V. cholerae* (left) or 5µg/ml Irgasan plates to recover *P. aeruginosa* (right). B) *P. aeruginosa* with knockdowns in different essential genes was challenged with T6SS- *V. cholerae* for 2 h in a 10:1 ratio, serial diluted and plated on 100 µg/ml Streptomycin plates to recover *V. cholerae* (left) or 5µg/ml Irgasan plates to recover *P. aeruginosa* (right).

Supplementary Tables
Table S1: List of strains

Strain number	Description	Reference
AS151	PAO1 attB: dcas9	This study
AS218	PAO1 attB: dcas9 sq-fsH	This study
AS303	PAO1 attB: dcas9 sq-tolB	This study
AS305	PAO1 attB: dcas9 sq-bamA	This study
AS323	PAO1 attB: dcas9 sq-lpD	This study
AS329	PAO1 attB: dcas9 sq-secY	This study
AS330	PAO1 attB: dcas9 sq-loIC	This study
AS338	PAO1 attB: dcas9 sq-CTRL	This study
	PAO1 clpV-gfp, ΔvipA	(6)
AS598	PAO1 attB: dcas9, clpV-gfp, ΔvipA, sq-bamA	This study
AS608	PAO1 attB: dcas9, clpV-gfp, ΔvipA sq-CTRL	This study
	PAO1 clpV-gfp	(7)
AS631	PAO1 attB: dcas9, clpV-gfp, sq-bamA	This study
AS632	PAO1 attB: dcas9, clpV-gfp, sq-secY	This study
AS613	PAO1 attB: dcas9, clpV-gfp, sq-tolB	This study
AS634	PAO1 attB: dcas9, clpV-gfp, sq-loIC	This study
AS635	PAO1 attB: dcas9, clpV-gfp, sq-lpD	This study
AS637	PAO1 attB: dcas9, clpV-gfp, sq-fsH	This study
AS619	PAO1 attB: dcas9, clpV-gfp, sq-CTRL	This study
AS663	PAO1 attB: dcas9, mut PAM, sg-CTRL	This study
AS664	PAO1 attB: dcas9, mut PAM, sq-bamA	This study
AS665	PAO1 attB: dcas9, clpV-gfp, mut PAM, sg-CTRL	This study
AS666	PAO1 attB: dcas9, clpV-gfp, mut PAM, sq-bamA	This study
	274080 clpV-mCherry	(8)
	274080 ΔvipA, clpV-mCherry	(8)
	PAO1 ΔtagT1	(9)
AS668	PAO1 attB: dcas9, clpV-gfp, ΔtagT1, sg-CTRL	This study
AS669	PAO1 attB: dcas9, clpV-gfp, ΔtagT1, sq-bamA	This study

Table S2: List of primers

Oligo number	Sequence	Information		
oAS009	CGAGTTGTTTAAGGCAGCGGTCTTGA	att-F Mini CTX sequencing Primer		
oAS10	AGTTCGGCCTTAGGAAACAACTCG	att-R Mini CTX sequencing Primer		
oAS22	CCTCGGTGCTCGGCAGAGAC	fw ppSV37 Δ lacl fragment 1		
oAS23	TCCTCTAGTGACCTCGAG	rev ppSV37 Δ lacl fragment 2		
oAS24	CTCACATATTACCGTTGCGCATTCCACCCCTGAATTGACT	fw ppSV37 Δ lacl fragment 2		
oAS25	AGTCATCTCAGGTGTGAATTGCCGCAAGCAATTAATGGAG	rev ppSV37 Δ lacl fragment 1		
oAS034	agggtgaaacgcaaaaaagcaccacctcAGATTCTAAGATCTTGGACACGCTAGCT	fw sg-RNA pPSV37 Δ lacl		
oAS035	ccgtttagggccggaggggttgtgctaaGGGGCCAAACCTGAAAAG	rev sg-RNA pPSV37 Δ lacl		
oAS058	ACTAGTTATATACCTAGGACTGAGCTGACGTTGAATGACATTTAGT	Reverse primer design new sg-RNA		
oAS073	gcctagaaacttagggcagaagcagctatagaaaaggtgactgctccagcattctctctttgcagagtctag	rev dcas9 into pPSW196		
oAS088	Accctaggctatttgggtcgctcctagcactgagagatatacat	fw dcas9 into pPSW196		
oAS109	TGA AGG TCA CAA CCT GCA AGA GCA	fw qRT-PCR rpsL		
oAS110	AAC GAC CCT GCT TAC GGT CCT TGA	rev qRT-PCR rpsL		
oAS111	CAGTCTCCTCTTGAAGAGATGAC	fw qRT-PCR dcas9		
oAS112	CTTCCTCGGACGGGACATATTAC	rev qRT-PCR dcas9		
oAS117	GTCCCTAGGAATACCTAGTCTCGGGGCGAGAAATTGTTCATCAGATTGAGCTAGATAATAATAGAGCG	fw guide ftsH		
oAS125	GGCTCACAAGGCTGCATCATT	fw qRT-PCR ftsH		
oAS126	GACAGGCTAGCGATCTTC	rev qRT-PCR rtsH		
oAS143	GTCCAGGTATATAACTAGTGGCAAGCGGATCGAACTACAGTTGGACTGGAATA	fw sg-loI		
oAS145	GTCCAGGTATATAACTAGTGGCAAGCGGATCGAACTACAGTTGGACTGGAATA	sg-g	ftsH	
oAS163	GTCCAGGTATATAACTAGTGGCAAGCGGATCGAACTACAGTTGGACTGGAATA	sg-g		
oAS165	GTCCAGGTATATAACTAGTGGCAAGCGGATCGAACTACAGTTGGACTGGAATA	sg-mreB		
oAS169	GTCCAGGTATATAACTAGTGGCAAGCGGATCGAACTACAGTTGGACTGGAATA	sg-secY		
oAS170	GTCCAGGTATATAACTAGTGGCAAGCGGATCGAACTACAGTTGGACTGGAATA	sg-loI		
oAS179	GTCCAGGTATATAACTAGTGGCAAGCGGATCGAACTACAGTTGGACTGGAATA	sg-CTRL		
oAS196	AGACGGTACGCCTATGAAGA	fw qRT-PCR bamA (PA3648)		
oAS197	GATCAGGATGTTACCACCGAAG	rev qRT-PCR bamA (PA3648)		
oAS384	cccgtggaatattatgagttacgTCCCGATCCCATCGCCTC	fw bamA PAM mutation P to G fragment 1		
oAS387	gccggaagctaatgtaaagcaCGGTACTACGTACAAATCAGAA	rev bamA PAM mutation P to G fragment 2		
oAS388	GGAACGGGGGTCAACCTGCAGC	bamA sequencing primer		
oAS389	CTGGATGGCTGCGGAAGGCC	bamA sequencing primer		
oAS390	GGCTCTGCTGCTATCTGCTT	bamA sequencing primer		
oAS391	CGCCACCTGCAAGCGTGCCG	bamA sequencing primer		
oAS392	CTACACCTTCCGCAACGTCAA	bamA sequencing primer		
oAS393	CTCGACGTCGACGTCGCCAGC	bamA sequencing primer		
oAS394	GATCCGAAGCTTCGGTGCT	bamA sequencing primer		
oAS395	AGCCGCATGATGGCTGCGT	bamA sequencing primer		
oAS396	CGAGCAGCGCGCATCTGGT	bamA sequencing primer		
oAS413	CCATGAAACGCTTTCTCTGAAAGCGCTGCTGTCGCCTGAT	fw bamA PAM mutation P to G fragment 2		
oAS414	ATCAGCCGCTGACAGCGCTTCTGGAGCGGCGTTTGTACATG	rev bamA PAM mutation P to G fragment 1		
oJT_702	AGGTGCGTTGCGGTAACAGAAG	fw qRT-PCR for PA0083 (vipA)		
oJT_703	AGGTGCGTTGCGGTAACAGAAG	rev qRT-PCR for PA0083 (vipA)		
oJT_706	TTCGCCTTCGAGGAAGAAC	fw qRT-PCR for PA0084 (vipB)		
oJT_707	GAAGGAGCGTTGATGGGA	rev qRT-PCR for PA0084 (vipB)		
oJT_710	GACTCACCGCAAGGAATTC	fw qRT-PCR for PA0085 (hcrp)		
oJT_711	ATGTAAGGCTGTAACGGAAGG	rev qRT-PCR for PA0085 (hcrp)		
oJT_726	CTGGTGGATGGAATTGAAGAAG	fw qRT-PCR for PA0090 (clpV)		
oJT_727	GGGTGTCTGGAAGCGATCGA	rev qRT-PCR for PA0090 (clpV)		
Illumina Sequencing Stats	sg-ftsH	sg-bamA	sg-lptD	sg-CTRL
---------------------------	---------	---------	---------	---------
Total reads passed quality filter	r1: 7368897	r1: 5170586	r1: 3118001	r1: 3853529
sg-ftsH	r2: 3392153	r2: 512720	r2: 3396558	r2: 4014763
sg-bamA	r3: 3548829	r3: 3095422	r3: 6076093	r3: 8174960
sg-lptD	r1: 6917838	r1: 3920845	r1: 179482	r1: 3546723
sg-CTRL	r2: 372413	r2: 3380738	r2: 1317970	r2: 1751635
NC_002516	r3: 3216681	r3: 2959442	r3: 5870799	r3: 1381814
Reds mapped to PAO1 NC_002516	r1: 6917838	r1: 3920845	r1: 179482	r1: 3546723
Percentage of total reads mapped to PAO1 NC_002516	r2: 372413	r2: 3380738	r2: 1317970	r2: 1751635
Reads not mapped to PAO1 NC_002516	r3: 3216681	r3: 2959442	r3: 5870799	r3: 1381814
Table S4: Expression levels and differential expression of CRISPRi targets

Locus tag	sg-bamA TPM	log2 ratio	p-value	sg-lpdA TPM	log2 ratio	p-value	sg-ftsh TPM	log2 ratio	p-value	sg-CTRL TPM
bamA PA3648	17.6	-3.56	9.28E-50	843.70	-0.23	3.04E-01	525.87	-1.13	4.75E-05	1110.8
lpdA PA0595	567.07	-0.84	7.45E-04	96.37	-3.36	2.57E-38	421.10	-1.60	2.23E-08	1230.5
ftsh PA4751	437.93	-0.02	9.23E-01	510.17	0.07	7.62E-01	68.00	-3.17	1.51E-19	534.87

Table S5: Expression levels and differential expression of H1-T6SS

Locus tag	sg-bamA TPM	log2 ratio	p-value	sg-lpdA TPM	log2 ratio	p-value	sg-ftsh TPM	log2 ratio	p-value	sg-CTRL TPM
PA0070	8829.67	1.33	3.90E-07	9567.33	1.28	6.99E-07	1004.50	-2.11	7.21E-13	4123.33
PA0071	1398.87	1.41	3.21E-09	1195.10	1.04	9.56E-06	668.37	0.01	9.84E-01	636.47
PA0072	78.9	1.78	3.86E-04	56.47	1.08	1.67E-02	14.07	-0.79	1.89E-01	26.6
PA0073	45.87	0.81	2.04E-01	36.27	0.36	4.95E-01	25.00	-0.67	3.30E-01	30.2
PA0074	165.23	1.19	2.39E-06	133.17	0.74	2.94E-03	33.50	-1.55	1.33E-06	86.93
PA0075	134.00	1.02	1.27E-02	168.13	1.12	2.48E-03	20.30	-1.81	5.14E-04	78.80
PA0076	90.83	0.63	1.90E-01	81.70	0.35	4.15E-01	15.07	-2.10	1.90E-04	70.07
PA0077	112.10	0.95	5.79E-04	88.73	0.49	7.63E-02	31.23	-1.31	5.83E-05	70.23
PA0078	241.77	0.57	3.38E-02	236.07	0.40	1.41E-01	47.93	-1.99	6.21E-10	198.53
PA0079	102.80	1.25	2.23E-03	77.17	0.69	5.60E-02	32.57	-0.86	5.14E-02	50.60
PA0080	77.03	1.04	8.45E-02	53.03	0.32	5.73E-01	26.07	-1.01	1.36E-01	44.00
PA0081	130.97	-0.01	9.76E-01	190.50	0.39	1.37E-01	156.97	-0.10	7.35E-01	159.97
PA0082	320.17	1.23	5.29E-05	359.33	1.23	3.24E-05	164.50	-0.04	9.12E-01	164.97
PA0083	1304.10	2.00	4.30E-15	1051.23	1.52	1.82E-09	110.33	-1.70	2.30E-06	393.77
PA0084	868.80	1.86	1.18E-17	755.93	1.51	3.86E-11	121.80	-1.35	5.36E-07	285.47
PA0085	1306.80	2.17	5.92E-16	815.60	1.34	6.42E-07	155.60	-1.04	4.90E-03	344.37
PA0086	153.90	1.78	1.14E-05	112.43	1.14	3.69E-03	58.10	0.13	7.72E-01	53.23
PA0087	220.57	1.86	2.99E-05	169.13	1.24	3.56E-03	50.03	-0.58	2.79E-01	72.77
PA0088	140.67	1.34	6.78E-05	165.80	1.39	7.12E-06	29.07	-1.21	2.58E-03	65.57
PA0089	310.00	1.71	5.67E-08	232.67	1.13	4.55E-04	32.73	-1.70	5.48E-05	112.40
PA0090	314.53	1.84	7.36E-16	235.63	1.27	3.81E-08	50.67	-1.21	4.49E-05	105.77
Table S6: Expression levels and differential expression of H2-T6SS

TPM values and Differential Log2 Ratio (compared to sg-CTRL) of H2.

Locus tag	sg-bamA TPM	log2 ratio	p-value	sg-lptD TPM	log2 ratio	p-value	sg-ftsH TPM	log2 ratio	p-value	sg-CTRL TPM
PA1656	238.90	0.44	1.46E-01	324.10	0.71	8.85E-03	117.63	-0.86	9.17E-03	210.27
PA1657	910.77	1.08	1.26E-03	889.90	0.88	7.02E-03	200.03	-1.43	1.92E-04	494.23
PA1658	430.73	1.46	9.20E-08	416.40	1.24	4.15E-06	109.40	-0.88	5.74E-03	183.27
PA1659	214.17	1.06	3.50E-02	275.47	1.18	3.86E-03	55.53	-0.85	1.36E-01	115.13
PA1660	45.13	-0.08	8.46E-01	39.00	-0.36	3.59E-01	18.77	-1.42	2.46E-03	57.03
PA1661	52.70	0.32	5.10E-01	43.00	-0.04	9.34E-01	34.70	-0.84	1.13E-01	51.20
PA1662	96.10	0.64	1.17E-01	100.40	0.54	1.49E-01	25.50	-1.43	1.73E-03	71.27
PA1663	36.37	0.39	4.22E-01	47.30	0.59	1.35E-01	8.40	-1.67	2.27E-03	32.80
PA1664	75.80	0.88	3.26E-01	218.33	1.74	1.99E-03	30.17	-0.41	6.17E-01	42.17
PA1665	137.53	0.75	4.91E-02	176.07	0.91	1.01E-02	38.70	-1.46	7.72E-04	95.50
PA1666	155.37	0.50	2.95E-01	176.20	0.49	2.53E-01	26.87	-1.95	2.21E-04	126.80
PA1667	56.20	0.38	3.88E-01	79.07	0.69	5.47E-02	20.53	-1.26	5.90E-03	51.93
PA1668	44.43	-0.05	9.29E-01	73.30	0.45	3.05E-01	17.93	-1.74	2.20E-03	54.13
PA1669	89.27	0.34	3.14E-01	119.57	0.60	5.35E-02	31.87	-1.48	3.29E-05	83.20
PA1670	1.60	-2.41	1.16E-02	11.73	-0.53	3.66E-01	4.93	-1.39	6.69E-02	23.80
PA1671	17.40	0.31	6.77E-01	13.33	-0.13	8.20E-01	30.77	0.43	4.97E-01	16.93
PA1511	36.13	0.32	4.31E-01	47.50	0.55	1.06E-01	54.07	0.54	1.24E-01	35.37
PA1512	25.30	0.43	6.01E-01	18.77	-0.03	9.58E-01	40.17	0.72	2.78E-01	21.00
Table S7: Expression levels and differential expression of H3-T6SS

TPM values and Differential Log2 Ratio (compared to sg-CTRL) of H3.

Locus tag	TPM	log2 ratio	p-value	TPM	log2 ratio	p-value	TPM	log2 ratio	p-value	TPM
PA2359	67.67	1.92	1.75E-04	21.00	0.19	7.20E-01	21.67	0.02	9.71E-01	20.07
PA2360	11.90	0.78	3.52E-01	4.97	-0.23	7.04E-01	8.17	-0.19	8.05E-01	7.47
PA2361	2.47	-1.52	2.80E-02	4.43	-0.79	1.12E-01	4.63	-1.17	3.54E-02	9.77
PA2362	0.00	-0.59	4.76E-01	1.23	-0.20	6.13E-01	0.00	-0.38	5.35E-01	2.40
PA2363	4.30	-0.43	6.29E-01	4.63	-0.33	5.82E-01	5.80	-0.32	6.73E-01	7.80
PA2364	20.63	0.46	6.21E-01	14.93	0.05	9.39E-01	17.93	0.10	8.99E-01	15.67
PA2365	12.10	0.58	5.65E-01	2.37	-0.44	4.02E-01	7.83	0.12	8.83E-01	7.23
PA2366	11.27	-0.01	9.85E-01	11.73	-0.09	8.69E-01	13.10	-0.21	7.45E-01	13.90
PA2367	8.63	-0.79	3.93E-01	1.87	-1.28	3.31E-02	16.30	-0.55	4.81E-01	21.63
PA2368	3.33	0.42	6.08E-01	0.00	NA	NA	4.10	0.08	8.82E-01	0.00
PA2369	2.73	-0.33	7.37E-01	1.10	-0.64	2.59E-01	4.53	-0.40	6.19E-01	4.63
PA2370	2.23	-0.44	6.71E-01	2.87	-0.22	7.01E-01	1.47	-0.73	3.71E-01	5.17
PA2371	9.67	0.15	8.12E-01	7.80	-0.23	6.68E-01	12.63	0.06	9.18E-01	10.77

Table S8: Upregulated pathways in sg-bamA knockdown vs sg-CTRL

Significantly upregulated pathways (p-value ≤ 0.001)

Category	Description	Full set	In subset	Expected in subset	Observed - expected	p-value
1901760	beta-L-Ara4N-lipid A biosynthetic process (PMID:17928292 [ISS])	7	7	1	6	6.61E-06
8300	isoprenoid catabolic process (PMID:15345388 [IMPI])	6	6	1	5	3.65E-05
8152	metabolic process (PMID:24451626 [ISM] InterPro:PF00884)	305	81	56	25	1.02E-04
6552	leucine catabolic process (PMID:16820476 [IMPI])	7	6	1	5	2.16E-04
55114	oxidation-reduction process (PMID:24451626 [ISM] InterPro:PIRSF004750)	442	107	81	26	4.36E-04
32885	regulation of polysaccharide biosynthetic process (PMID:14982774 [IMPI])	6	5	1	4	1.02E-03
43436	oxoacid metabolic process (PMID:3416875 [ISS])	4	4	1	3	1.11E-03
45226	extracellular polysaccharide biosynthetic process (PMID:22176658 [IMPI])	20	10	4	6	1.22E-03
42128	nitrate assimilation (PMID:24451626 [ISM] InterPro:G3DSA:3.90.420.10)	9	6	2	4	1.85E-03
44550	secondary metabolite biosynthetic process (PMID:11728716 [ISS])	7	5	1	4	3.05E-03
44010	single-species biofilm formation (PMID:19778968 [IMPI])	41	15	7	8	4.09E-03
33103	protein secretion by the type VI secretion system (PMID:18524912 [IAGC])	8	5	1	4	6.91E-03
8272	sulfate transport (PMID:24451626 [ISM] InterPro:TIGR00969)	8	5	1	4	6.91E-03
Table S9: Downregulated pathways in sg-bamA knockdown vs sg-CTRL

Category	Description	Full set	In subset	Expected in subset	Observed - expected	p-value
30254	protein secretion by the type III secretion system (PMID:24451626 [ISM] InterPro:TIGR01026)	29	13	4	9	9.44E-05
15886	heme transport (PMID:10658665 [IMP])	7	5	1	4	1.12E-03
43683	type IV pilus biogenesis (PMID:8899718 [IMP])	13	6	2	4	6.85E-03
15074	DNA integration (PMID:24451626 [ISM] InterPro:PS50994)	10	5	1	4	9.12E-03

Table S10: Upregulated pathways in sg-ftsH knockdown vs sg-CTRL

Category	Description	Full set	In subset	Expected in subset	Observed - expected	p-value
6355	regulation of transcription, DNA-dependent (PMID:0 [IDA])	382	308	205	103	0
8033	tRNA processing (PMID:24451626 [ISM] InterPro:PIRSF004976)	16	15	9	6	7E-04
162	tryptophan biosynthetic process (PMID:0 [ISS])	14	13	8	5	2.18E-03
9073	aromatic amino acid family biosynthetic process (PMID:24451626 [ISM] InterPro:TIGR01358)	9	9	5	4	3.71E-03

Table S11: Downregulated pathways in sg-ftsH knockdown vs sg-CTRL

Category	Description	Full set	In subset	Expected in subset	Observed - expected	p-value
6935	chemotaxis (PMID:24451626 [ISM] InterPro:PR00260)	42	9	3	6	6.61E-04
6810	transport (PMID:24451626 [ISM] InterPro:TIGR01726)	321	32	19	13	2.18E-03
9697	salicylic acid biosynthetic process (PMID:7500944 [IDA])	2	2	0	2	3.59E-03

Table S12: Upregulated pathways in sg-lptD knockdown vs sg-CTRL

Category	Description	Full set	In subset	Expected in subset	Observed - expected	p-value
8300	isoprenoid catabolic process (PMID:15345388 [IMP])	6	6	1	5	6.01E-05
1901760	beta-L-Ara4N-lipid A biosynthetic process (PMID:17928292 [ISS])	7	6	1	5	3.5E-04
8152	metabolic process (PMID:24451626 [ISM] InterPro:PF00884)	305	82	61	21	1.05E-03
32885	regulation of polysaccharide biosynthetic process (PMID:14982774 [IMP])	6	5	1	4	1.53E-03
43436	oxoacid metabolic process (PMID:3416875 [ISS])	4	4	1	3	1.54E-03
44550	secondary metabolite biosynthetic process (PMID:11728716 [ISS])	7	5	1	4	4.47E-03
6552	leucine catabolic process (PMID:16820476 [IMP])	7	5	1	4	4.47E-03
Table S13: Downregulated pathways in sg-lptD knockdown vs sg-CTRL

Significantly downregulated pathways (p-value ≤ 0.001)

Category	Description	Full set	In subset	Expected in subset	Observed - expected	p-value
55085	transmembrane transport (PMID:24451626 [ISM] InterPro:PS00218)	177	34	15	19	4.92E-06
6810	transport (PMID:24451626 [ISM] InterPro:TIGR01726)	321	46	28	18	2.98E-04
15891	siderophore transport (PMID:24451626 [ISM] InterPro:TIGR01783)	20	7	2	5	1.02E-03
15846	polyamine transport (PMID:24451626 [ISM] InterPro:TIGR01187)	13	5	1	4	3.5E-03
1901053	sarcosine catabolic process (PMID:24097953 [IDA])	5	3	0	3	5.76E-03
19439	aromatic compound catabolic process (PMID:24451626 [ISM] InterPro:PF00848)	21	6	2	4	7.37E-03
6855	drug transmembrane transport (PMID:24451626 [ISM] InterPro:TIGR00797)	2	2	0	2	7.6E-03
42930	enterobactin transport (PMID:15899402 [IMP])	2	2	0	2	7.6E-03
Legend for Datasets

Dataset S1: Differentially expressed genes
Differential log2 Ratios of CRISPRi sg-bamA, sg-ftsH and sg-lptD vs sg-CTRL.

Legend for Movies

Movie S1: T6-dynamics of control (sg-CTRL)
Time-lapse imaging of T6SS dynamics in control (sg-CTRL). Images were taken every 10 s. T6SS dynamics were visualized by imaging ClpV-GFP (green). Merged video of phase contrast and GFP channel is depicted. Scale bar: 10 µm.

Movie S2: T6-dynamics of bamA knockdown (sg-bamA)
Time-lapse imaging of T6SS dynamics in a bamA knockdown. Images were taken every 10 s. T6SS dynamics were visualized by imaging ClpV-GFP (green). Merged video of phase contrast and GFP channel is depicted. Scale bar: 10 µm.

Movie S3: T6-dynamics of lptD knockdown (sg-lptD)
Time-lapse imaging of T6SS dynamics in a lptD knockdown. Images were taken every 10 s. T6SS dynamics were visualized by imaging ClpV-GFP (green). Merged video of phase contrast and GFP channel is depicted. Scale bar: 10 µm.

Movie S4: T6-dynamics of tolB knockdown (sg-tolB)
Time-lapse imaging of T6SS dynamics in a tolB knockdown. Images were taken every 10 s. T6SS dynamics were visualized by imaging ClpV-GFP (green). Merged video of phase contrast and GFP channel is depicted. Scale bar: 10 µm.

Movie S5: P. aeruginosa T6+ sg-bamA vs V. cholerae T6-
Time-lapse imaging of T6SS + P. aeruginosa bamA knockdown (sg-bamA) in mixture with T6SS- V. cholerae (10:1 ratio). Red: V. cholerae, green: P. aeruginosa. Scale bar: 10 µm.

Movie S6: P. aeruginosa T6+ sg-bamA vs V. cholerae T6- (crop)
Time-lapse imaging of T6SS + P. aeruginosa bamA knockdown (sg-bamA) in mixture with T6SS- V. cholerae (10:1 ratio). Red: V. cholerae, green: P. aeruginosa. Scale bar: 10 µm. Cropped version of Movie S5.
Movie S7: P. aeruginosa T6+ sg-CTRL vs V. cholerae T6-
Time-lapse imaging of T6SS + P. aeruginosa sg-CTRL (control) in mixture with T6SS- V. cholerae (10:1 ratio). Red: V. cholerae, green: P. aeruginosa. Scale bar: 10 µm.

Movie S8: P. aeruginosa T6+ sg-CTRL vs V. cholerae T6- (crop)
Time-lapse imaging of T6SS + P. aeruginosa sg-CTRL (control) in mixture with T6SS- V. cholerae (10:1 ratio). Red: V. cholerae, green: P. aeruginosa. Scale bar: 10 µm. Cropped version of Movie S7.

Movie S9: P. aeruginosa T6- sg-bamA vs V. cholerae T6-
Time-lapse imaging of T6SS - P. aeruginosa bamA knockdown in mixture with T6SS- V. cholerae (10:1 ratio). Red: V. cholerae, green: P. aeruginosa. Scale bar: 10 µm.

Movie S10: P. aeruginosa T6- sg-bamA vs V. cholerae T6- (crop)
Time-lapse imaging of T6SS - P. aeruginosa bamA knockdown (sg-bamA) in mixture with T6SS- V. cholerae (10:1 ratio). Red: V. cholerae, green: P. aeruginosa. Scale bar: 10 µm. Cropped version of Movie S9.
Supplementary Bibliography

1. D. G. Gibson, et al., Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat Methods* **6**, 343–345 (2009).

2. T. Jittawuttipoka, et al., Mini-Tn7 vectors as genetic tools for gene cloning at a single copy number in an industrially important and phytopathogenic bacteria, *Xanthomonas* spp. *FEMS Microbiol Lett* **298**, 111–117 (2009).

3. F. Caro, N. M. Place, J. J. Mekalanos, Analysis of lipoprotein transport depletion in *Vibrio cholerae* using CRISPRi. *PNAS*, 201906158 (2019).

4. L. R. Hmelo, et al., Precision-engineering the *Pseudomonas aeruginosa* genome with two-step allelic exchange. *Nat Protoc* **10**, 1820–1841 (2015).

5. K. J. Livak, T. D. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. *Methods* **25**, 402–408 (2001).

6. M. Basler, M. Pilhofer, G. P. Henderson, G. J. Jensen, J. J. Mekalanos, Type VI secretion requires a dynamic contractile phage tail-like structure. *Nature* **483**, 182–186 (2012).

7. J. D. Mougous, et al., A Virulence Locus of *Pseudomonas aeruginosa* Encodes a Protein Secretion Apparatus. *Science* **312**, 1526–1530 (2006).

8. M. Basler, J. J. Mekalanos, Type 6 secretion dynamics within and between bacterial cells. *Science* **337**, 815 (2012).

9. J. D. Mougous, C. A. Gifford, T. L. Ramsdell, J. J. Mekalanos, Threonine phosphorylation post-translationally regulates protein secretion in *Pseudomonas aeruginosa*. *Nature Cell Biology* **9**, 797–803 (2007).