Smart Technology for Mapping Obesity; Tracking Obesity for overuse of Smart Tehnology as a Risk factor

Carolyn D. Rodgers*
Governors State University, Senior Lecturer Department of Addiction Studies and Behavioral Health College of Health and Human Services (CHHHS) G, Building, Rm 136 University Park, IL, USA

Introduction

Obesity is an ongoing health concern that continues to be monitored as a precursor for negative health outcomes. Although the use of smart technology has been accepted as an essential tool for improving health, there has been an increase in smart devices developed for obesity prevention and weight reduction. These smart devices such as smart phones, computers, tablets, heart monitors, chest pins, and more are used for lifestyle modifications that attempt to improve health outcomes without the interference of human interaction.

Smart Technology and Human Abilities

The use of smart devices are often created for convenience to eliminate the amount of man-hours required to collect, record, and analyze data for evaluation purposes. However, human error are factors than can hinder progress and positive health outcomes. Simultaneously, these same devices are often created to be objective, obscure, and effective in monitoring human behavior [1,2]. Similarly, smart devices also have the ability to record more elaborate inputs, where human observation is not as invasive. Contrariwise, using smart devices can inflict a privacy issue in data collection for human subjects. More importantly, smart devices are rigid and does not recognize external factors that a human can. Likewise, smart technology has a limit that a can impede or stop data collection altogether if not operated properly. Nevertheless, smart technology is having a huge impact on the way healthcare is implemented, measured and reported, especially for preventable diseases and disorders such as obesity.

Obesity Prevention and Monitoring

In terms of obesity prevention and weight reduction, there are several factors that must be present in order to reach a positive outcome. Firstly, motivation to make a change which is the thrusting force to begin any process [3], and the will power to make a commitment [4]. Secondly, setting realistic goals to make the necessary changes for obesity prevention or weightloss and lifestyle monitoring [1,2] are essential for obtaining successful results. Alternatively, several studies have shown success using smart technology for obesity prevention highlighting factors previous mentioned. For example, Glynn, et al. [2] used smart phones with accelerator applications to provide outcome data regarding step count measurements as primary care to increase physical activity for individuals over 16 years of age with smartphones.

Another research team, Smith, Morgan, Plotnikoff, Dally, Salmon, Okely [4] also used smart phones for obesity prevention in adolescent boys and to include and encourage physical activity. Furthermore, an exploratory study conducted by Sun, Burke, Baranowski, Fernstrom JD, Zhang H, et al. (2015) An exploratory study on a chest-worn computer for evaluation of diet, physical activity and lifestyle. J Healthc Eng 6: 1-22.

References

1. Sun M, Burke LE, Baranowski T, Fernstrom JD, Zhang H, et al. (2015) An exploratory study on a chest-worn computer for evaluation of diet, physical activity and lifestyle. J Healthc Eng 6: 1-22.
2. Glynn LG, Hayes PS, Casey M, Glynn F, Alvarez-Iglesias A, et al. (2013) SMART MOVE - a smartphone-based intervention to promote physical activity in primary care: study protocol for a randomized controlled trial. Trials14: 157.
3. Slyn MA, Wang J, Acharya SD, Yang K, Chasens ER, et al. (2013) Health-related quality of life among participants in the SMART weight loss trial. Appl Nurs Res 25: 276-279.
4. Smith JJ, Morgan PJ, Plotnikoff RC, Dally KA, Salmon J, et al. (2015) Smartphone obesity prevention trial for adolescent boys in low-income communities: the ATLAS RCT. Pediatrics 134: e723-731.
5. Bornhorst C, Wijnhoven T, Kunesova MA, Yngye M, Rito AI, et al. (2015) WHO childhood obesity surveillance initiative: associations between sleep duration, screen time and food consumptions frequencies. BMC Public Health 15: 422.
6. Borghese MM, Tremblay MS, Katmarzyk PT, Tudor-Locke C, Schuna JM Jr, et al. (2015) Mediating role of television time, diet patterns, physical activity and sleep duration in the association between television in the bedroom and adiposity in 10-year-old children. Int J Behav Nutr Phys Act 12: 60.
7. Olortun RO, Ouarda TB, Moturu S, Madan A, Pentland AS, et al. (2013) Change in BMI accurately predicted by social exposure to acquaintances. PLoS One : e79238.

*Corresponding author: Carolyn D. Rodgers, Governors State University, Senior Lecturer Department of Addiction Studies and Behavioral Health College of Health and Human Services (CHHHS) G, Building, Rm 136 University Park, IL, USA. Tel: 708-235-7394; E-mail: cestes@govst.edu

Received September 19, 2015; Accepted September 21, 2015; Published September 25, 2015

Citation: Rodgers CD (2015) Smart Technology for Mapping Obesity; Tracking Obesity for overuse of Smart Technology as a Risk factor. J Health Med Inform 6: e138. doi: 10.4172/2157-7420.1000e138

Copyright: © 2015 Rodgers CD. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.