Drying of Complex Suspensions

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Xu, Lei, Alexis Bergès, Peter J. Lu, André R. Studart, Andrew B. Schofield, Hidekazu Oki, Simon Davies, and David A. Weitz. 2010. “Drying of Complex Suspensions.” Physical Review Letters104 (12): 128303. https://doi.org/10.1103/PhysRevLett.104.128303.
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:41511309
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Drying of complex suspensions

Lei Xu,1,2,4 Alexis Bergès,3 Peter J. Lu,2 André R. Studart,4
Andrew B. Schofield,5 Hidekazu Oki,6 Simon Davies,7 and David A. Weitz2

1Department of Physics, The Chinese University of Hong Kong, Hong Kong
2Department of Physics and SEAS, Harvard University, Cambridge, MA 02138, USA
3Département de physique, École Normale Supérieure, Paris, France
4Complex Materials, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
5The School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, UK
6Shinagawa-ku, Tokyo, Japan
7AkzoNobel Corporate, R320 Wilton Centre, Redcar TS104RF, UK

We investigate the 3D structure and drying dynamics of complex mixtures of emulsion droplets and colloidal particles, using confocal microscopy. Air invades and rapidly collapses large emulsion droplets, forcing their contents into the surrounding porous particle pack at a rate proportional to the square of the droplet radius. By contrast, small droplets do not collapse, but remain intact and are merely deformed. A simple model coupling the Laplace pressure to Darcy’s law correctly estimates both the threshold radius separating these two behaviors, and the rate of large-droplet evacuation. Finally, we use these systems to make novel hierarchical structures.

PACS numbers: 47.57.-x, 47.56.+r, 47.55.N-
Keywords: drying, colloids, emulsion, Laplace pressure, Darcy’s Law

The drying of suspensions of colloidal particles gives rise to a plethora of fascinating phenomena, from the “coffee-ring” effect1 to episodic crack propagation2 and the fractal patterns arising from invasion percolation3,4,5. Drying of colloidal suspensions is also important technologically: paints and other coatings depend on colloidal particles for many of their key properties, many ceramics go through a stage of particle drying, and cosmetics often exploit the unique properties of colloidal-scale particles, particularly for such beneficial properties as screening the harmful effects of the sun. However, for many of these technological applications, the colloidal particles are but one of many different components, and drying of the colloids is accompanied by many other phase changes. While these mixtures can become highly complex, a simpler, yet still rich system that embodies many of the complex phenomena of these technological suspensions is a mixture of immiscible fluids with a colloidal suspension; a simple example is a mixture of an emulsion and colloidal particles. The behavior of the emulsion embodies many of the archetypal phenomena of such systems, while still remaining sufficiently tractable to enable it to be fully understood. However, emulsions themselves typically scatter light significantly, and when mixed with a colloidal suspension, this scattering is only enhanced. As a result, it is very difficult to image this mixture, precluding optical studies of its behavior, and knowledge of the actual behavior is woefully missing.

In this Letter, we explore the drying of mixtures of aqueous emulsion droplets and spherical colloidal particles with confocal microscopy, which allows us to resolve the full 3D structure of these mixtures and their temporal dynamics. We find that the particles first jam into a solidified pack, throughout which emulsion drops are dispersed; a front of air then passes through the entire system. When this drying front reaches large emulsion droplets, the droplets unexpectedly collapse and their internal contents are forced into the pore space between the surrounding colloids, driven by an imbalance of pressures at the droplets’ interfaces with air and with the solvent. By contrast, small droplets are deformed by the drying front, yet remain intact without bursting. By coupling the Laplace pressure with Darcy’s law for flow through a porous medium, we predict the duration of large droplet invasion, and show that the threshold size between bursting and deformation is comparable to the size of the colloidal particles. We use this technique to create novel hierarchical materials.

We suspend sterically-stabilized colloidal spheres of poly(methylmethacrylate) (PMMA) with radius $r_p = 1\ \mu m$ in decylhydroxynaphthalene (DHN). Separately, we create an emulsion of an aqueous phase, comprising equal volumes of water and glycerol, and PGPR-90 surfactant, required for droplet stability, in the nonpolar DHN; our homogenizer creates polydisperse droplets ranging from microns to tens of microns. We combine particle suspension and emulsion to create our particle-droplet mixtures. These particular components ensure that the refractive indices of the particles, droplets and background solvent are all sufficiently matched that we can image the entire bulk of the 3D structure with confocal fluorescence microscopy, with single-particle resolution. To distinguish particles from droplets, we use different dyes: particles are dyed with nitrobenzoxadiazole (NBD) and appear green; droplets are dyed with rhodamine-B and appear red. We deposit the particle-droplet mixture on a clean glass coverslip, and image with an inverted confocal microscope (Leica SP5). The droplets are coated immediately by colloids, reminiscent of a pickering emulsion. As in the case of particle-only systems, evaporation proceeds in two stages. First, particles and droplets are driven toward the edge of the drying sample, where they jam, analogous to the coffee-ring effect in particle-only systems. Then, a drying air front invades the jammed system and displaces the DHN, which ultimately evaporates completely; we do not observe cracks.

1. Andrew R. Studart, Peter J. Lu, Nature 426, 823 (2003).
2. Lei Xu, Andrew R. Studart, Nature 440, 680 (2006).
3. Andrew R. Studart, Simon Davies, Science 274, 174 (1996).
4. Andrew R. Studart, Eric Abramson, Science 274, 171 (1996).
5. Andrew R. Studart, Science 284, 1567 (1999).
6. Andrew R. Studart, Andrew B. Schofield, Science 287, 167 (2000).
7. Andrew R. Studart, Science 292, 183 (2001).
8. Andrew R. Studart, Science 301, 1112 (2003).
9. Andrew R. Studart, Science 292, 193 (2001).
10. Andrew R. Studart, Science 301, 1112 (2003).
FIG. 1. Structure and drying of droplet-particle mixtures. (a) Reconstruction of a typical sample from confocal microscope images, with dimensions $91 \times 91 \times 30 \, \mu m^3$. Polydisperse red spheres are emulsion droplets; monodisperse green spheres are PMMA particles, shown at half size for clarity. (b)-(d) Two-dimensional confocal microscope images in x-y plane, within the bulk of the sample, showing the invasion of the drying front. (b) Onset of air invasion. (c) As the drying front moves through, emulsion droplets turn black first, followed by (d) air invading the particle regions. (e)-(g) Bright-field images showing droplet invasion, where air appears black and the solvent is transparent. Air (e) approaches, (f) contacts, and (g) rapidly evacuates the droplet.

during drying, as expected for particles of this size.[3] We use confocal microscopy to observe the particle-droplet mixture after jamming, as the drying front passes through, which allows us to determine the exact size and position of each emulsion droplet and colloidal particle[8]. A 3D reconstruction of a typical jammed mixture before drying is shown in Fig. 1(a), with droplets and particles shown in red and green, respectively. Collecting this full 3D data takes several seconds, far too slow to observe the rapid dynamics that occur during air invasion; instead, to capture these dynamics, we fix the focal plane in the bulk of the sample and collect high-speed 2D images every 70 ms. By imaging the same regions in 3D first, then rapidly in 2D as the air invades, we can observe the drying process with good spatial and temporal resolution.

In the jammed configurations before air invasion, the emulsion droplets are distributed throughout the colloidal particles, as shown in Fig. 1(a). As the sample dries, more and more particle regions turn black; the invading air displaces the solvent around the particles, destroying the refractive index match, as illustrated in Figs. 1(b)-(d). The droplets also turn black as drying proceeds, but whether they are replaced by air or solvent cannot be resolved with fluorescence, where both appear black. We therefore observe droplet invasion with bright-field transmission microscopy, where the solvent remains transparent but air appears black. We observe that droplets are replaced by material that appears black in bright-field, which therefore must be air, as shown in Figs. 1(e)-(g). For a more detailed understanding of droplet behavior, we observe large isolated emulsion droplets, with radii R_d greater than a few microns, during drying. Because it is energetically unfavorable to displace the pre-existing organic solvent, which wets the PMMA particles, with the aqueous droplet fluid that does not, we should expect that the aqueous fluid remains in the droplet and slowly evaporates upon contact with air, with very little fluid motion. Contrary to this expectation, however, we instead observe significant fluid motion: air rapidly forces the contents of the droplet into the pore space between the surrounding particles, leaving an empty, spherical void, as shown in Figs. 2(a)-(c). This flow can not occur spontaneously; instead, a strong driving force must exist.

To understand this driving force, we analyze the distribution

FIG. 2. (a)-(c) Confocal microscope images of the air invasion of a large droplet viewed at a fixed x-y plane, where air forces the contents of the droplet into the surrounding colloids. Before air invasion, tiny projections of the droplet extend into the surrounding pores, visible in (a). (d) Schematic in the x-z plane showing the pressure distribution before air (white) touches the droplet. Enlargement of the (e) air-solvent and (f) droplet-solvent interfaces. (g) Schematic of the pressure distribution during evacuation. Inside the droplet, the region next to air-droplet interface has a high pressure P_2; the region next to solvent-droplet interface has a low pressure P_1. The difference between these pressures drives the flow of droplet contents into the surrounding particles.
of pressures inside and around an isolated droplet. The total pressure near an interface is determined by a combination of the external pressure and the interface’s Laplace pressure. The magnitude of the Laplace pressure is usually estimated as the ratio of the interfacial tension to interface’s curvature radius; its sign positive for convex interfaces, negative for concave. Before air invasion, the droplet is surrounded by particles and solvent, as shown in Fig. 2(d). The air protrudes into the solvent, making a concave profile with a negative Laplace pressure, as shown in Fig. 2(e) [2]. We estimate P_{solv}, the pressure of the solvent, as the difference between atmospheric pressure P_{atm}, and the Laplace pressure of the air-solvent interface, as shown in Fig. 2(e): $P_{\text{solv}} \equiv P_{\text{atm}} - \sigma_{\text{air|solv}}/a$, where $\sigma_{\text{air|solv}}$ is the interfacial tension of the air-solvent interface, and a is the typical size of the pores between colloidal particles. The tiny pore size produces large negative Laplace pressures, and hence a low P_{solv}. As a result, the droplet is surrounded by a low-pressure environment.

At the interface between droplet and solvent, the aqueous droplet protrudes into the non-polar solvent around the colloids, as shown in Fig. 2(f); the Laplace pressure here is therefore positive. We estimate the pressure inside the droplet as $P_1 \equiv P_{\text{solv}} + \sigma_{\text{drop|solv}}/a$, where $\sigma_{\text{drop|solv}}$ is the interfacial tension of the droplet-solvent interface.

As soon as air touches the droplet, however, the pressure distribution changes dramatically. In particular, part of the droplet is now in contact with the much-higher atmospheric air pressure, as illustrated in Fig. 2(g). Near the air-droplet interface, the pressure inside the drop is estimated as $P_2 \equiv P_{\text{atm}} - \sigma_{\text{air|drop}}/R_d$, where we have estimated the radius of air-droplet interface by the droplet size R_d. The pressure near the droplet-solvent interface remains P_1, as illustrated in Fig. 2(g). If $P_2 > P_1$, then the pressure difference will force droplet fluid into the surrounding pore space between colloidal particles. We estimate this pressure difference:

$$\Delta P = P_2 - P_1 \equiv \frac{\sigma_{\text{air|solv}}}{a} - \frac{\sigma_{\text{air|drop}}}{R_d} - \frac{\sigma_{\text{drop|solv}}}{a} \qquad (1)$$

where any change in solvent pressure across the droplet is negligible. Interestingly, the ΔP depends not on atmospheric pressure, but rather on the competition between the Laplace pressures at the various interfaces. We measure the corresponding surface tensions with the pendant drop method: $\sigma_{\text{air|solv}} = 26 \pm 2 \text{ mN/m}$, $\sigma_{\text{air|drop}} = 51 \pm 3 \text{ mN/m}$, and $\sigma_{\text{drop|solv}} = 3.8 \pm 0.3 \text{ mN/m}$.

Because of the presence of surfactant at the interface, the droplet-solvent surface tension $\sigma_{\text{drop|solv}}$ is so much lower than the other two that its contribution to the overall pressure difference is negligible. The radii that we measure for the large droplets, $R_d \approx 10 - 50 \mu \text{m}$, is orders of magnitude larger than the size of the interparticle pore space, $a \approx 0.36 \phi = 0.36 \mu \text{m}$ for random close packed particles [11]. Consequently, the contribution from a pressure drop across the air-droplet interface is also small, and the flow is essentially driven by the low pressure in the solvent evacuating the large drops, as shown in Figs. 2(a)-(c). Since the solvent strongly wets the particles, the menisci of the air evaporating the solvent from the pores creates a low pressure in the solvent. It is this, reflected in the first term in Eqn. [1] which establishes the large pressure difference that drives the flow. We estimate $\Delta P \approx 0.6 \text{ atm}$ for these large drops.

The high time resolution afforded by the rapid collection of 2D image sequences in the confocal microscope allows us to measure t_{ev}, the evacuation time for air to invade the large droplets and force their contents into the surrounding particles; t_{ev} varies for droplets of different sizes. We measure the size of each droplet from the initial 3D confocal data, then quantify t_{ev} using fast 2D images of droplet evacuation. Collected from deep in the bulk of the sample, our images are large enough to contain a number of droplets to obtain good statistics, yet are small enough relative to the sample size to achieve a uniform sampling environment. We find that the variation of t_{ev} with R_d is consistent with a power-law, albeit over less than a decade. The exponent is approximately 2, as shown by the comparison of the solid line with the data points on the log-log plot in Fig. 3(a).

We estimate this relationship theoretically with a simple model based on Darcy’s Law for fluid flow in a porous medium [12] to determine a characteristic evacuation velocity, $v_{\text{ev}} = \kappa \nabla P/\mu$, where κ is the permeability of the porous medium, and μ is the dynamic viscosity of the fluid. We estimate ∇P, the pressure gradient that drives the aqueous fluid into the porous medium, as the characteristic pressure difference divided by the droplet diameter, $\nabla P = \Delta P/2R_d$. We
then estimate $t_{ev} \approx 2R_d/\nu_{ev}$, yielding:

$$t_{ev} = \frac{4\mu}{\kappa\Delta P}R_d^2 \tag{2}$$

The model predicts that t_{ev} data follow an R_d^2 dependence; indeed, the experimental data closely conform to this particular power-law scaling, as shown on the log-log plot in Fig. 3(a). Moreover, we can further test the model by estimating the prefactor $4\mu/(\kappa\Delta P)$ in Eqn. 2. We estimate κ using Kozeny-Carman equation for flow through a porous medium\cite{13}, $\kappa \approx r_p^2(1-\phi)^3/(45\phi^2)$, where the pore size is determined by the particle volume fraction ϕ. From the 3D particle positions in the bulk, we measure $\phi = 0.63 \pm 0.03$, consistent with random close-packing; however, around the large droplets, the particles are hexagonally close-packed\cite{10}, and the next layer tightly packs the interstices, as illustrated in Figs. 3(b)-(d). We think these well-ordered particles predominantly determine the pore size through which the droplets evacuate. We therefore estimate the permeability using the higher $\phi = 0.74$. We measure $\mu = 8.9 \pm 0.1$ mPa-s for the H$_2$O/glycerol mixture, yielding our rough estimate of $4\mu/(\kappa\Delta P) \approx 0.8 \times 10^3$ s/m2; this value is of the same order as the value of $t_{ev}/R_d^2 = 1.2 	imes 10^3$ s/m2 from the fit to the experimental data in Fig. 3(a), and provides support that our model correctly captures the proper physics.

Our model explains the air invasion of large droplets, whose contents are forced into the surrounding pore space. It also implies a completely different behavior for sufficiently small droplets: as R_d decreases, ΔP must also decrease, as can be seen from Eqn. 1. Eventually, for sufficiently small drop size, ΔP will become zero and will no longer drive any flow; the high Laplace pressure of these small droplets makes them so stiff that they can not be invaded by air. Indeed, when we observe small droplets prepared by ultrasonic homogenization, we find that the small droplets are not invaded by air but instead are simply deformed and pushed into pore space between the surrounding particles, as shown in Figs. 4(a)-(b).

We estimate the threshold radius R_{th}, beneath which droplets will not be invaded by air by using the previous values for the parameters in eqn. 1 and solving for $\Delta P = 0$; our model predicts that $R_{th} = 2.30\alpha = 0.83r_p$. To test this prediction, we measure R_{th} for droplets mixed with particles of several different radii, varying r_p by more than half an order of magnitude. We find the dependence $R_{th} = (0.88 \pm 0.16) \times r_p + (0.1 \pm 0.1)$, in excellent agreement with the prediction of our model, as shown in Fig. 4c.

We observe two qualitatively different behaviors: droplets that evacuate and collapse, creating large voids; and droplets that remain intact during drying, yielding void-free particle packs. We use this dichotomy to produce hierarchical materials with several different controllable length scales, by varying droplet and particle sizes. One such structure, using droplets with $R_d \approx 20 \mu$m and particles with $r_p = 1 \mu$m, is shown in Figs. 4(d)-(f). The resulting hierarchical porous material has voids of two length scales: 20 μm, from droplets, and 0.5 μm, from the pore space between particles. Hierarchical materials may be useful in making low-density porous materials or to mimic hierarchical natural structures\cite{15, 16}; our evacuation results demonstrate drying as a general low-energy method to drive desired materials into a porous medium.

We gratefully acknowledge support from the NSF (DMR-0602684), Harvard MRSEC (DMR-0213805), RGC Direct Allocation (2060395), NASA (NNX08AE09G), Pixar and ICI.

\begin{thebibliography}{16}
\bibitem{1} R. D. Deegan \textit{et al}, \textit{Nature} \textbf{389}, 827 (1997).
\bibitem{2} E. R. Dufresne \textit{et al}, \textit{Phys. Rev. Lett.} \textbf{91}, 224501 (2003).
\bibitem{3} L. Xu \textit{et al}, \textit{Phys. Rev. Lett.} \textbf{101}, 094502 (2008).
\bibitem{4} D. Wilkinson and J. F. Willemesen, \textit{J. Phys. A} \textbf{16}, 3365 (1983).
\bibitem{5} J. H. Page \textit{et al}, \textit{Phys. Rev. Lett.} \textbf{71}, 1216 (1993).
\bibitem{6} T. M. Shaw, \textit{Phys. Rev. Lett.} \textbf{59}, 1671 (1987).
\bibitem{7} M. Cieplak \textit{et al}, \textit{Phys. Rev. Lett.} \textbf{60}, 2042 (1988).
\bibitem{8} P. J. Lu \textit{et al}, \textit{Nature} \textbf{453}, 499 (2008).
\bibitem{9} O. D. Velev \textit{et al}, \textit{Langmuir} \textbf{12}, 2374 (1996).
\bibitem{10} A. D. Dinsmore \textit{et al}, \textit{Science} \textbf{298}, 1006 (2002).
\bibitem{11} H. J. Frost, Off. Nav. Res., Cont. N00014-77-C-0002 NR-039-136, Tech. Rep. 6 (1978).
\bibitem{12} G. K. Batchelor, \textit{Introduction to Fluid Dynamics} (Cambridge UP, 2000) p. 234.
\bibitem{13} P. C. Carman, \textit{Flow of Gases through Porous Media} (Butterworth, London, 1956).
\bibitem{14} J. Aizenberg \textit{et al}, \textit{Science} \textbf{309}, 275 (2005).
\bibitem{15} S. Weiner \textit{et al}, \textit{Ann. Rev. Mater. Sci.} \textbf{28}, 271 (1998).
\bibitem{16} I. Akartuna \textit{et al}, \textit{Adv. Mater.}, \textbf{20}, 4714 (2008).
\end{thebibliography}