Reliable terminal sliding mode control for uncertain high-order MIMO systems with actuator faults

Jiaye Fu and Yugang Niu

Cogent Engineering (2015), 2: 1065586
Reliable terminal sliding mode control for uncertain high-order MIMO systems with actuator faults

Jiaye Fu* and Yugang Niu

Abstract: This paper considers the problem of terminal sliding mode control (TSMC) for uncertain MIMO systems in which the actuator faults may happen in any channel of actuators. By means of state transformation and exponent-logarithmic sliding surface method, a reliable TSMC is proposed such that both the finite-time stability of sliding mode dynamics and the reachability of sliding surface are ensured, despite actuator faults and parameter uncertainties. Finally, simulation results are provided to illustrate the effectiveness of the proposed controller.

1. Introduction

Sliding mode control (SMC) is a useful and effective scheme to deal with parameter uncertainties and external disturbances for both linear and nonlinear systems (Seshagiri & Khalil, 2002; Vicente & Gerd, 2001; Xu, Lee, & Pan, 2003). In general, the conventional sliding surface is the linear function of system states. Although the parameters in linear sliding surface can be adjusted to get faster convergence rate, the system states cannot usually reach the equilibrium points in finite time. To overcome this drawback, the terminal sliding mode control (TSMC) (Yu, Yu, & Man, 2000) was proposed and studied by many researchers, e.g. (Lin, 2006; Liu & Li, 2009; Tao, Taur, & Chan, 2004; Yu & Man, 2002; Zou, Kumar, Hou, & Liu, 2011) and the references therein.
Compared with the linear hyperplane-based SMC, TSMC provides some superior properties, such as fast, finite-time convergence, and high static tracking precision. For example, for second-order systems, a fast terminal sliding mode (FTSM) was proposed in Yu and Man (2002), which achieved better dynamic property by employing the FTSM concept in both reaching phase and sliding phase. In He, Liu, Liu, and Liu (2008), an exponential TSMC scheme was introduced into the learning algorithm to improve approximation ability for an unstable nonlinear system. Feng, Han, and Wang (2007) further considered the problem of high-order MIMO systems and proposed a hierarchical TSMC method. However, the TSMC method in Feng et al. (2007) only ensured that partial system states could be driven to zero in finite time and the rest converged to zero asymptotically. Wang, Yang, and Zhang (2007) then considered a new TSMC scheme which could drive all system states to equilibrium points in finite time, but its convergence performance was not so better compared to the one in second-order systems. Li, Ma, Zheng, and Geng (2014) presented a fast nonsingular integral TSMC which could avoid the singularity problem without any constraint, and provided faster responses by tuning the parameters. More recently, Hu, Jiang, Chen, and Liu (2014) developed an exponent-logarithmic terminal sliding surface for a special of SISO strict-feedback nonlinear systems, which could attain higher convergence performances. However, it is worthy of noting that the aforementioned works were made under the assumption that the actuator/sensor worked normally, i.e. there didn't exist the faults of actuator/sensor.

As is well known, in safety-critical systems, a minor fault of a single component can result in severe performance deterioration or may even produce catastrophic effects. An effective way to maintain an acceptable stability/performance against undesired actuator/sensor failures is to utilize fault-tolerant control (FTC) strategies for the controlled systems (Bateman, Noura, & Ouladsine, 2011; Hu, 2010; Huo, Li, & Tong, 2012; Liu, Cao, & Shi, 2013). In the past decades, many reliable control methodologies have been applied, e.g. the coprime factorization approach (Vidyasagar & Viswanadham, 1985), the Hamilton–Jacobi based approach (Yang, Wang, & Soh, 2000), the linear matrix inequality based approach (Liao, Wang, & Yang, 2002), and so on. Moreover, the reliable SMC approach has been proposed (Chen, Niu, Zou, & Jia, 2013; Liang, Liaw, & Lee, 2000; Niu & Wang, 2009). Among them, Liang et al. (2000) first addressed the FTC design based on SMC, which did not require the solution of any Hamilton–Jacobi equation and could retain the advantages of conventional SMC designs Niu and Wang (2009) solved the problem of SMC with partial actuator degradation through adopting a model of actuator faults such that both normal operation and partial actuator degradation were covered. The results in Niu and Wang (2009) were further extended to the Markovian jumping systems in Chen et al. (2013). More recently, some interesting researches on FTC based on TSMC were made. For example, Xu and Liu (2014) studied the TSMC design based on the T–S fuzzy system models and presented both of the active and passive FTC schemes. Qu, Gao, Huang, Mei, and Zhai (2014) proposed a finite-time FTC scheme for the faulty UAV attitude control systems by utilizing a fault detection strategy, which ensured that the dynamic systems converge to a stable state in a finite-time in the case of actuator failure. However, to the author’s best knowledge, the TSMC for high-order MIMO systems with actuator actuators has been not well addressed and remains still open. Moreover, the characteristic of TSMC structure also makes those existing works not to be simply extended to the present case.

Motivated by the above discussion, this paper considers the problem of TSMC for a class of uncertain high-order MIMO systems subject to actuator faults. Firstly, the model of actuator faults is presented, in which only the bounds of actuator faults are known. It should be pointed out that in the design of TSMC for uncertain high-order MIMO systems with actuator faults, one has to consider the realization of finite-time convergence for whole system states and the characteristic of actuator faults, which result in the aforementioned work that cannot be directly utilized in this paper. Hence, a state transformation is utilized and a high-order exponent-logarithmic sliding surface is designed, which can achieve the finite-time stability of sliding mode dynamics with shorter convergent time. And then, a reliable sliding mode controller is designed such that the system states can be driven onto the specified sliding surface in finite time. It is shown that the effect of actuator faults can be coped with by the present reliable TSMC method.
Notations: Throughout this work, $\| \cdot \|$ denotes the Euclidean norm of a vector or the spectral of a matrix. $\lambda_{\text{max}}(\cdot)$ denotes the maximum eigenvalue of a matrix. I represents an identity matrix of appropriate dimensions. $\ln(\cdot)$ is a logarithmic function (base e), $\text{diag}(\cdot)$ is a diagonal matrix, $\text{sgn}(\cdot)$ is a sign function. Matrices, if not explicitly stated otherwise, are assumed to have compatible dimensions.

2. Problem statement

Consider a class of uncertain high-order MIMO systems

$$\dot{X}(t) = [A + \Delta A(t)]X(t) + BU(t) + F(t)$$

where $X(t) \in \mathbb{R}^n$ are the system states, $U(t) \in \mathbb{R}^m$ are the control inputs, A and B are the known constant matrixes. Without loss of generality, it is assumed that the pair (A, B) is controllable and the matrix B has full column rank. $\Delta A(t)$ and $F(t)$ represent the unknown parameter uncertainties and external disturbances, respectively, satisfying:

$$\Delta A(t) = BN_1(t),\quad \|N_1(t)\| \leq l_1$$

$$F(t) = BN_2(t),\quad \|N_2(t)\| \leq l_2$$

where l_1 and l_2 are known constants.

As discussed in the introduction, the actuator fault is usually inevitable in actual application. Hence, in this work, it is assumed that the actuator faults may happen and the control signal received by the system is $U_f(t)$ satisfying:

$$U_f(t) = E(t)U(t)$$

where $E(t) = \text{diag}[e_1(t), e_2(t), \ldots, e_m(t)]$ with faults factor $e_i(t)$ ($i = 1, 2, \ldots, m$) satisfying:

$$0 < \underline{e}_i \leq e_i(t) \leq \bar{e}_i,\quad \underline{e}_i \leq 1, \bar{e}_i \geq 1, \quad i = 1, 2, \ldots, m$$

In this work, it is assumed that both the lower and upper bounds of $e_i(t)$ are known.

Define

$$e_{0i} = \frac{1}{2}(\underline{e}_i + \bar{e}_i),\quad r_i = \frac{\bar{e}_i - \underline{e}_i}{\bar{e}_i - \underline{e}_i},\quad \delta_i(t) = \frac{e_i(t) - e_{0i}}{e_{0i}}$$

and $E_0 = \text{diag}[e_{01}, e_{02}, \ldots, e_{0m}]$, $R = \text{diag}[r_1, r_2, \ldots, r_m]$, $\delta(t) = \text{diag}[\delta_1(t), \delta_2(t), \ldots, \delta_m(t)]$. It is easily shown that $\|\delta_i(t)\| \leq r_i < 1$ ($i = 1, 2, \ldots, m$).

Then, the actuator faults model (4) can be written as:

$$U_f(t) = E_0I + \delta(t)U(t),\quad \|\delta(t)\| \leq \|R\| < 1$$

Remark 1 It can be seen that the actuator faults model in (4)-(5) covers the normal operation case (as $\underline{e}_i = \bar{e}_i = 1$) and partial faults case (as $0 < \underline{e}_i < \bar{e}_i$), and each actuator may be a failure independently.

In the sequel, a lemma is given, which is useful for the development of the main results.

Lemma 1 (Yu, Yu, Shirinzadeh, & Man, 2005) Assume that a continuous, positive-definite function $V(t)$ satisfies the following differential inequality:
\[V(t) \leq -\varphi V'(t) \quad \forall t > 0 \]

where \(\varphi > 0 \), \(0 < \gamma < 1 \) are constants. Then it can be found that \(V(t) \) which starts from \(V(0) \) can reach \(V = 0 \) in finite time. Moreover, the reaching time \(t_r \) is given by:

\[t_r = \frac{V^{1-\gamma}(0)}{\varphi(1-\gamma)} \]

3. High-order exponent-logarithmic TSM design

3.1. State transformation

Firstly, a state transformation is made for the system model (1). Due to \(\text{rank}(B) = m \), there exists an invertible matrix \(T \) satisfying \(TB = \begin{bmatrix} 0 & B_2 \end{bmatrix}^T \), where \(B_2 \in \mathbb{R}^{m \times m} \) is full rank. Moreover, we have

\[T(A + \Delta A(t))T^{-1} = TAT^{-1} + TBN_1T^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} + \begin{bmatrix} 0 \\ B_2N_1(t)T^{-1} \end{bmatrix} \]

\[TF(t) = TBN_2(t) = \begin{bmatrix} 0 \\ B_2N_2(t) \end{bmatrix} \]

where \(A_{11} \in \mathbb{R}^{(p-m)(p-m)}, A_{12} \in \mathbb{R}^{(p-m)m}, A_{21} \in \mathbb{R}^{m(p-m)}, A_{22} \in \mathbb{R}^{m \times m}, B_2 \in \mathbb{R}^{m \times m} \).

By means of the following state transformation:

\[Z(t) = TX(t) \]

the system (1) can be transformed to the following form:

\[\begin{cases} \dot{Z}_1(t) = A_{11}Z_1(t) + A_{12}Z_2(t) \\ \dot{Z}_2(t) = A_{21}Z_1(t) + A_{22}Z_2(t) + B_2U(t) + B_2N_1(t)T\dot{Z}_1(t) + B_2N_2(t)T\dot{Z}_2(t) + B_2\dot{N}_2(t) \end{cases} \]

where \(Z_1(t) = [z_1, \ldots, z_{m-1}]^T \in \mathbb{R}^{m-1}, Z_2(t) = [z_{m+1}, \ldots, z_m]^T \in \mathbb{R}^n, T^{-1} = \begin{bmatrix} \tilde{T}_1 & \tilde{T}_1 \end{bmatrix}, \tilde{T}_1 \in \mathbb{R}^{(n-m) \times m}, \tilde{T}_1 \in \mathbb{R}^{m \times (n-m)} \).

Note that \(Z(t) = TX(t) \), when \(Z(t) \rightarrow 0, X(t) \rightarrow 0 \). So the studied problem is equally transformed to the design of TSM surface and robust controller for system (12).

3.2. An exponent-logarithmic TSM

It is well known that the TSM has some superior properties, e.g. higher precision, faster convergence, etc. Hence, in this work, a new high-order exponent-logarithmic TSM is proposed as follows:

\[S(t) = C_1Z_1(t) + C_2Z_2(t) + C_3G(t) + C_4H(t) = 0 \]

where the vector functions \(G(t) \) and \(H(t) \) are given as:

\[G(t) = \begin{bmatrix} (2e^{q_{i}t} - 1)\ln(2 - e^{-q_{i}t})\text{sgn}(z_i), \ldots, (2e^{q_{n-m}t} - 1)\ln(2 - e^{-q_{n-m}t})\text{sgn}(z_{n-m}) \end{bmatrix}^T \]

\[H(t) = \begin{bmatrix} (2e^{p_{i}t} - 1)\ln(p_{i}/(2 - e^{-p_{i}t})\text{sgn}(z_i), \ldots, (2e^{p_{n-m}t} - 1)\ln(p_{n-m}/(2 - e^{-p_{n-m}t})\text{sgn}(z_{n-m}) \end{bmatrix}^T \]

where \(p_i, q_i \) (\(i = 1, \ldots, n-m \)) are positive odd integers satisfying \(q_i < p_i < 2q_i \).

In (13), the matrices \(C_1 \in \mathbb{R}^{m \times m}, C_2 \in \mathbb{R}^{m \times m}, C_3 \in \mathbb{R}^{m \times (n-m)} \) and \(C_4 \in \mathbb{R}^{m \times (n-m)} \) are chosen by the following expressions:
\[
\begin{align*}
A_{11} - A_{12} C_2^{-1} C_1 &= 0 \
A_{12} C_2^{-1} C_3 &= \text{diag}(\alpha_1, \ldots, \alpha_{n-m}) \
A_{12} C_2^{-1} C_4 &= \text{diag}(\beta_1, \ldots, \beta_{n-m})
\end{align*}
\] (15)

where \(\alpha_i > 0, \beta_i > 0, (i = 1, \ldots, n - m)\). The invertible matrix \(C_i\) is usually chosen as an identity matrix for convenience. And then, the matrices \(C_1, C_2\) and \(C_4\) can be obtained as follows:

\[
\begin{align*}
C_1 &= C_2 A_{12}^T A_{11}^{-1} \\
C_3 &= C_2 A_{12}^T \text{diag}(\alpha_1, \ldots, \alpha_{n-m}) \\
C_4 &= C_2 A_{12}^T \text{diag}(\beta_1, \ldots, \beta_{n-m})
\end{align*}
\] (16)

where \(A_{12}^+\) is the right inverse matrix of \(A_{12}\) given as follows:

\[
A_{12}^+ = A_{12}^T (A_{12} A_{12}^T)^{-1}
\] (17)

Apparently, the matrix \(A_{12}\) should be full row rank for attaining (17).

According to the SMC theory, when the system states reach the sliding surface \(S = 0\) and move along it, the sliding mode dynamics in \(S = 0\) is a \(n-m\) order system. For \(S = 0\), we obtain from (12a):

\[
Z_2 = -C_2^{-1}(C_1 Z_1 + C_3 G + C_4 H)
\] (18)

which substituted into system (12b) yields the reduced-order system as follows:

\[
\dot{Z}_1 = (A_{11} - A_{12} C_2^{-1} C_1) Z_1 - A_{12} C_2^{-1} C_3 G - A_{12} C_2^{-1} C_4 H
\] (19)

In the following, we shall analyze the finite-time stability of sliding mode dynamics (19).

Theorem 1 Consider the uncertain high-order MIMO system (12). The exponent-logarithmic TSM is designed as (13) with the parameters satisfying (14 and 15). Then the sliding mode dynamics (19) on \(S = 0\) is finite-time stable. That is, the state \(Z_1\) of sliding mode dynamics will converge to the equilibrium points in finite time. Moreover, the states \(Z_2\) will also converge to equilibrium points in finite time.

Proof By means of the condition (15), it follows from (19) that

\[
\dot{Z}_1 = \begin{bmatrix}
-\alpha_1 (2e^{\|z_1\|} - 1) \ln(2 - e^{-\|z_1\|}) \text{sgn}(z_1) - \beta_1 (2e^{\|z_1\|} - 1) \ln^{\alpha_1 / \beta_1} (2 - e^{-\|z_1\|}) \text{sgn}(z_1) \\
\vdots \\
-\alpha_{n-m} (2e^{\|z_{n-m}\|} - 1) \ln(2 - e^{-\|z_{n-m}\|}) \text{sgn}(z_{n-m}) \\
-\beta_{n-m} (2e^{\|z_{n-m}\|} - 1) \ln^{\alpha_{n-m} / \beta_{n-m}} (2 - e^{-\|z_{n-m}\|}) \text{sgn}(z_{n-m})
\end{bmatrix}
\] (20)

which shows that all elements of \(Z_1\) is independent. Thus, we can analyze every state variables \(z_i (i = 1, 2, \ldots, n - m)\), respectively. To this end, choose the candidate Lyapunov function \(V_i\) as follows

\[
V_i = \frac{1}{2} z_i^2
\] (21)

we have

\[
\dot{V}_i = z_i \dot{z}_i = -\alpha_i (2e^{\|z_i\|} - 1) \ln(2 - e^{-\|z_i\|}) |z_i| - \beta_i (2e^{\|z_i\|} - 1) \ln^{\alpha_i / \beta_i} (2 - e^{-\|z_i\|}) |z_i| \leq 0
\]

which means that the state \(z_i\) is stable.
In the following, we shall analyze the finite-time convergence performance of state z_i. Firstly, it follows from the ith term in (20) that

$$-\beta_i = f(z_i)^{-q_i/p} \frac{df(z_i)}{dt} + \alpha_i f(z_i)^{1-q_i/p}$$ \hspace{1cm} (22)$$

where $f(z_i) = \ln(2 - e^{-\xi(z_i)} \text{sgn}(z_i))$. Define $y = f(z_i)^{1-q_i/p}$. We have:

$$\frac{dy}{dt} = (1 - q_i/p) f(z_i)^{-q_i/p} \frac{df(z_i)}{dt}$$

And then, from (22) to (23), we can get:

$$-\beta_i \frac{p_i - q_i}{p_i} = \frac{dy}{dt} + \alpha_i \frac{p_i - q_i}{p_i} y$$ \hspace{1cm} (24)$$

By solving first-order linear differential equation (24), one obtains:

$$y = -\frac{\beta_i}{\alpha_i} + \frac{\beta_i}{\alpha_i} e^{-\frac{\beta_i}{\alpha_i} t} + y(t_s) e^{-\frac{\beta_i}{\alpha_i} t}$$ \hspace{1cm} (25)$$

where t_s denotes the instant when the system states arrive at the sliding surface $S(t)=0$ from any initial state. Define t_s as the instant when the state z_i converges to equilibrium point 0. Due to $f(z_i, t_s) = 0$ and $y(t_s) = 0$, we have from (25):

$$t_s = \frac{p_i}{\alpha_i(p_i - q_i)} \ln \left(\frac{y(t_s)}{y(t_s)} \right)$$ \hspace{1cm} (26)$$

From the above analysis, the state Z_i is finite-time stable. That is, the state Z_1 of sliding mode dynamics will converge to the equilibrium points within a finite time $t_s = \max_{1 \leq i \leq m} (t_s_i)$.

Furthermore, it is seen from (14) and (18) that the state vector Z_i is fully determined by Z_i. Hence, when the states Z_i reach equilibrium points in finite-time, the states Z_i will also converge to equilibrium points in finite time.

3.3. Reliable TSMC design

In the sequel, we shall design a reliable sliding mode controller $U(t)$ to guarantee that the system states from any initial states $Z(0) \neq 0$ are driven onto the sliding mode surface $S = 0$ in finite time.

In this work, the reliable SMC law is designed as:

$$U(t) = \begin{cases} U_i + U_m, & S \neq 0 \\ 0, & S = 0 \end{cases}$$

with

$$U_i = -(C_2 B_2 E_0)^{-1} \begin{bmatrix} (C_4 A_{11} + C_2 A_{21} + C_2 \tilde{G} A_{12} + C_4 \tilde{H} A_{12}) Z_1 \\ + (C_4 A_{12} + C_2 A_{22} + C_2 \tilde{G} A_{11} + C_4 \tilde{H} A_{11}) Z_2 \end{bmatrix}$$

$$U_m = -\frac{(C_2 B_2 E_0)^T S}{(1 - \lambda_{\text{max}}(R))^2} \begin{bmatrix} \|I_1 \| F_0 \| \|T_1 \| T_1 \| Z_1 \| & + I_1 \| F_0 \| \|T_2 \| \| Z_2 \| \\ + \lambda_{\text{max}}(R) \| U_i \| + I_2 \| E_0 \| + \eta \end{bmatrix}$$

where $\lambda_{\text{max}}(R)$ is the maximum eigenvalue of R.

$$\eta = \frac{(C_2 B_2 E_0)^T S}{(1 - \lambda_{\text{max}}(R))^2} \begin{bmatrix} \|I_1 \| F_0 \| \|T_1 \| T_1 \| Z_1 \| & + I_1 \| F_0 \| \|T_2 \| \| Z_2 \| \\ + \lambda_{\text{max}}(R) \| U_i \| + I_2 \| E_0 \| + \eta \end{bmatrix}$$

$$\lambda_{\text{max}}(R) = \max_{1 \leq i \leq m} \lambda_{\text{max}}(R_i)$$

and $\lambda_{\text{max}}(R_i)$ is the maximum eigenvalue of R_i.

$$S = \begin{bmatrix} S_1 & 0 \\ 0 & S_2 \end{bmatrix}$$

with $S_i = \sum_{j=1}^{m} \lambda_{\text{max}}(R_j) S_j$.

$$U_i = -(C_2 B_2 E_0)^{-1} \begin{bmatrix} (C_4 A_{11} + C_2 A_{21} + C_2 \tilde{G} A_{12} + C_4 \tilde{H} A_{12}) Z_1 \\ + (C_4 A_{12} + C_2 A_{22} + C_2 \tilde{G} A_{11} + C_4 \tilde{H} A_{11}) Z_2 \end{bmatrix}$$

$$U_m = -\frac{(C_2 B_2 E_0)^T S}{(1 - \lambda_{\text{max}}(R))^2} \begin{bmatrix} \|I_1 \| F_0 \| \|T_1 \| T_1 \| Z_1 \| & + I_1 \| F_0 \| \|T_2 \| \| Z_2 \| \\ + \lambda_{\text{max}}(R) \| U_i \| + I_2 \| E_0 \| + \eta \end{bmatrix}$$

where $\lambda_{\text{max}}(R)$ is the maximum eigenvalue of R.

$$\eta = \frac{(C_2 B_2 E_0)^T S}{(1 - \lambda_{\text{max}}(R))^2} \begin{bmatrix} \|I_1 \| F_0 \| \|T_1 \| T_1 \| Z_1 \| & + I_1 \| F_0 \| \|T_2 \| \| Z_2 \| \\ + \lambda_{\text{max}}(R) \| U_i \| + I_2 \| E_0 \| + \eta \end{bmatrix}$$

and $\lambda_{\text{max}}(R_i)$ is the maximum eigenvalue of R_i.

$$S = \begin{bmatrix} S_1 & 0 \\ 0 & S_2 \end{bmatrix}$$

with $S_i = \sum_{j=1}^{m} \lambda_{\text{max}}(R_j) S_j$.

$$U_i = -(C_2 B_2 E_0)^{-1} \begin{bmatrix} (C_4 A_{11} + C_2 A_{21} + C_2 \tilde{G} A_{12} + C_4 \tilde{H} A_{12}) Z_1 \\ + (C_4 A_{12} + C_2 A_{22} + C_2 \tilde{G} A_{11} + C_4 \tilde{H} A_{11}) Z_2 \end{bmatrix}$$

$$U_m = -\frac{(C_2 B_2 E_0)^T S}{(1 - \lambda_{\text{max}}(R))^2} \begin{bmatrix} \|I_1 \| F_0 \| \|T_1 \| T_1 \| Z_1 \| & + I_1 \| F_0 \| \|T_2 \| \| Z_2 \| \\ + \lambda_{\text{max}}(R) \| U_i \| + I_2 \| E_0 \| + \eta \end{bmatrix}$$
where $\eta > 0$ is a positive constant, $\tilde{G} = \text{diag}(\tilde{g}_1, \ldots, \tilde{g}_{n-m})$ and $\tilde{H} = \text{diag}(\tilde{h}_1, \ldots, \tilde{h}_{n-m})$ with

$$
\begin{align*}
\tilde{g}_i &= \left[2e^{l_i|l|} \ln(2 - e^{-|l|}) + 1\right] \text{sgn}(Z_i), i = 1, \ldots, n - m \\
\tilde{h}_i &= \left[2e^{l_i|l|} \ln(2 - e^{-|l|}) + \frac{q_i}{p_i} \ln(2 - e^{-|l|})\right] \text{sgn}(Z_i), i = 1, \ldots, n - m
\end{align*}
$$
(29)

Remark 2 The TSMC law (28)–(29) includes the matrix E_0 and the scalar $\lambda_{\max}(R)$, which depend on e_i and $e_{\tilde{r}}$, reflecting the effect of the faulty actuator. Hence, the present TSMC method can effectively deal with the effect of actuator faults.

Theorem 2 Consider the uncertain high-order MIMO system described by (12) with actuator faults as in (7). The reliable SMC law (28)–(29) can ensure that the system states are driven onto the sliding surface $S = 0$ in finite time.

Proof Consider the following Lyapunov function candidate V_i:

$$
V_i = \frac{1}{2} S_i^T S_i
$$
(30)

Taking the time derivative of V_i yields:

$$
\dot{V}_i = S_i^T \dot{S}_i = S_i^T (C_i Z_1 + C_i Z_2 + C_i \tilde{G} Z_1 + C_i \tilde{H} Z_1)
$$
(31)

By substituting the control law (28 and 29) into (31), one has:

$$
\begin{align*}
\dot{V}_i &= S_i^T C_i B_2 E_0 U_m + E_0 \delta U_i + N_i \dot{T}_1 Z_1 + N_i \dot{T}_2 Z_2 + N_j \\
&= S_i^T C_i B_2 E_0 U_m + S_i^T C_i B_2 E_0 \delta U_m \\
&+ S_i^T C_i B_2 E_0 [N_i \dot{T}_1 Z_1 + E_0^{-1} N_i \dot{T}_2 Z_2 + E_0^{-1} N_j] \\
&\leq S_i^T C_i B_2 E_0 U_m + S_i^T C_i B_2 E_0 \delta U_m \\
&+ \|S_i^T C_i B_2 E_0\| \|\delta U\| U_i + l_1 \|E_0^{-1}\| T_1 \|Z_1\| + l_1 \|E_0^{-1}\| T_2 \|Z_2\| + l_2 \|E_0^{-1}\| Z_2
\end{align*}
$$
(32)

By means of U_m in (28), we further get:

$$
\begin{align*}
\dot{V}_i &\leq -\|S_i^T C_i B_2 E_0\| \frac{1}{1 - \lambda_{\max}(R)} \\
&\times [l_1 \|E_0^{-1}\| T_1 \|Z_1\| + l_1 \|E_0^{-1}\| T_2 \|Z_2\| + \|\lambda_{\max}(R)\| U_i + l_2 \|E_0^{-1}\| + \eta] \\
&+ \|S_i^T C_i B_2 E_0\| \|C_i B_2 E_0\|^T S \\
&\times [l_1 \|E_0^{-1}\| T_1 \|Z_1\| + l_1 \|E_0^{-1}\| T_2 \|Z_2\| + \|\lambda_{\max}(R)\| U_i + l_2 \|E_0^{-1}\| + \eta] \\
&+ \|S_i^T C_i B_2 E_0\| \|\lambda_{\max}(R)\| U_i + l_1 \|E_0^{-1}\| T_1 \|Z_1\| + l_1 \|E_0^{-1}\| T_2 \|Z_2\| + l_2 \|E_0^{-1}\|
\end{align*}
$$
(33)

Note
\[
\begin{align*}
\|S^T C_2 B_2 E_0 \delta(C_2 B_2 E_0)^T S\| & \leq \|\lambda_{\max}(\delta)\| \|S^T C_2 B_2 E_0 (C_2 B_2 E_0)^T S\| \\
& \leq \lambda_{\max}(R) \|S^T C_2 B_2 E_0 (C_2 B_2 E_0)^T S\|
\end{align*}
\] (34)

So, we have

\[
V_2 \leq -\|S^T C_2 B_2 E_0\| \frac{1}{1 - \lambda_{\max}(R)} \\
\times [l_1 \|E_0^{-1}\| \|T_2\| \|Z_1\| + l_1 \|E_0^{-1}\| \|T_2\| \|Z_2\| + \|\lambda_{\max}(R)\| \|U_1\| + l_2 \|E_0^{-1}\| + \eta] \\
+ \lambda_{\max}(R) \|S^T C_2 B_2 E_0\| \frac{1}{1 - \lambda_{\max}(R)} \\
\times [l_1 \|E_0^{-1}\| \|T_1\| \|Z_1\| + l_1 \|E_0^{-1}\| \|T_1\| \|Z_2\| + \|\lambda_{\max}(R)\| \|U_1\| + l_2 \|E_0^{-1}\| + \eta] \\
+ \|S^T C_2 B_2 E_0\| [\|\lambda_{\max}(R)\| \|U_1\| + l_1 \|E_0^{-1}\| \|T_1\| \|Z_1\| + l_1 \|E_0^{-1}\| \|T_1\| \|Z_2\| + l_2 \|E_0^{-1}\|) \\
= -\|S^T C_2 B_2 E_0\| [l_1 \|E_0^{-1}\| \|T_1\| \|Z_1\| + l_1 \|E_0^{-1}\| \|T_1\| \|Z_2\| + \|\lambda_{\max}(R)\| \|U_1\| + l_2 \|E_0^{-1}\| + \eta] \\
+ \|S^T C_2 B_2 E_0\| [\|\lambda_{\max}(R)\| \|U_1\| + l_1 \|E_0^{-1}\| \|T_1\| \|Z_1\| + l_1 \|E_0^{-1}\| \|T_1\| \|Z_2\| + l_2 \|E_0^{-1}\|) \\
= -\eta \|S^T C_2 B_2 E_0\|
\] (35)

Furthermore, the expression (35) can be written as:

\[
V_2 \leq -\eta \|S^T C_2 B_2 E_0\| \leq -\eta \|C_2 B_2 E_0\| \|S\| = -\eta \|C_2 B_2 E_0\| (2V)^{1/2} = -\varphi V^{\gamma}
\] (36)

with \(\varphi = 2^{1/4} \eta \|C_2 B_2 E_0\| > 0, \gamma = 1/2 < 1\).

Thus, according to Lemma 1, it follows from (36) that the system (12) will reach the sliding mode \(S = 0\) within a finite time \(t_s\) given by:

\[
t_s = \frac{\sqrt{V_{\gamma}}}{\varphi(1 - \gamma)}
\] (37)

Remark 3 It is easily obtained from Theorem 1 and Theorem 2 that the system state \(Z_i(t)\) and \(Z_r(t)\) reach the equilibrium points in finite time \(t = t_2 + t\) from any initial states. That implies that the system states \(X(t)\) will converge to the equilibrium points within finite time.

Remark 4 It can be seen from (13 to 15) and (27 to 29) that the proposed SMC method in this work involves some exponent and logarithmic computations. Besides, the state transformation (10) and the right inverse matrix (17) are required. Apparently, these computations don’t require any complex computing techniques and are simpler compared with some existing methods, e.g. linear matrix inequality.

Remark 5 It should be pointed out that the transformation matrix \(T\) needs to ensure that the block matrix \(A_{z1}\) is full row rank, which may bring some difficulty for the choice of matrix \(T\).

Remark 6 It should be pointed out that although both this work and Wang (2014) are concerned with the uncertain MIMO-controlled systems, the former focuses on the problem of system states’
finite-time convergence with actuator faults, and the latter considered the adaptive tracking control problem under the assumption that the actuators work normally. This also results in the method in Wang (2014) that cannot be utilized to deal with the problem in the present work.

4. Simulation example
Consider the high-order MIMO system (1) with parameters as

\[A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 5 & -5 & -4 & 1 \\ -1 & 1 & 0 & 0 \\ -4 & 0 & 0 & -5 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 \\ 4 & 0 \\ 0 & 0 \\ 0 & 3 \end{bmatrix}, \quad F = \begin{bmatrix} 0 \\ 4.8 \sin t \\ 0 \\ 3.6 \cos t \end{bmatrix}, \]

\[\Delta A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0.8 \sin t & 1.6 \cos t & 4 \sin 2t & 1.6 \cos \frac{t}{2} \\ 0 & 0 & 0 & 0 \\ 1.2 \sin t & 1.8 \cos 2t & 0.6 \sin t & 0.6 \cos \frac{t}{2} \end{bmatrix}, \]

And the boundaries of uncertainties and disturbances are given as \(l_1 = \sqrt{1.96} \) and \(l_2 = \sqrt{2.88} \). It is assumed that the actuator fault parameters \(\tilde{e}_1 = 0.8, \tilde{e}_1 = 1.2, \tilde{e}_2 = 0.6, \tilde{e}_2 = 1.4 \).

Define the state transformation as:

\[Z = TX = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} X \]

we have

\[A_{11} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad A_{12} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad A_{21} = \begin{bmatrix} -4 & 0 \\ 0 & -4 \end{bmatrix}, \quad A_{22} = \begin{bmatrix} -5 & 0 \\ 0 & -5 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix} \]

\[\tilde{T}_1 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \tilde{T}_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad N_1 = \begin{bmatrix} 0.2 \sin t & 0.4 \cos t & \sin 2t & 0.4 \cos \frac{t}{2} \\ 0.4 \sin t & 0.6 \cos 2t & \sin t & 0.2 \cos \frac{t}{2} \end{bmatrix} \]

Figure 1. The trajectories of system states \(z_1, z_2, z_3, z_4 \).
According to Theorem 1, the terminal sliding mode parameters are designed as follows:

\[
C_1 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad C_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad C_3 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad C_4 = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix}, \quad p_i = 11, q_i = q_i = 9.
\]

In order to illustrate the performance of the proposed reliable SMC in this work, it is assumed that the actuator faults happen from 0.3 s with fault factors \(e_1(t) = 0.9 \) and \(e_2(t) = 0.8 \).

Simulation results are shown in Figures 1–3. It can be seen from Figure 1 that from 0 to 3 s (as actuator in fault free case), system states converge to the equilibrium points within finite time; after 3 s (as actuator in fault case), system states have a large-range change firstly, and then converge to the equilibrium points in finite time under the designed robust control.

5. Conclusion
In this work, the problem of TSMC for uncertain high-order MIMO systems subject to actuator faults has been considered. By means of exponent-logarithmic TSM technique, a reliable SMC law has been designed to attain the finite-time convergence of the closed-loop system, despite actuator faults. However, it should be pointed out that the underlying systems in this work only involve actuator faults. In practical applications, especially, in the network-based environment, there may exist time delay, packet dropouts, and quantization, which need to be further considered in future research, and some novel techniques may be required as in (Dong, Wang, Ding, & Gao, 2014, 2015; Dong, Wang, & Gao, 2013; Ding, Wang, Shen, & Dong, 2015).

Funding
This work was supported by NNSF from China [grant number 61273073].

Author details
Jiaye Fu
E-mail: 940324037@qq.com
References

Batemani, F., Noura, H., & Ouladsine, M. (2011). Fault diagnosis and fault-tolerant control strategy for the aeroonsde UAV. *IEEE Transactions on Aerospace and Electronic Systems*, 47, 2119–2137. doi:10.1109/TAES.2011.5937287

Chen, B., Niu, Y., Zou, Y., & Jia, T. (2013). Reliable sliding-mode control for markovian jumpinng systems subject to partial actuator degradation. *Circuits Systems and Signal Processing*, 32, 601–614. doi:10.1007/s00121-012-9486-0

Ding, D., Wang, Z., Chen, B., & Dong, H. (2015). Envelope-constrained H∞ filtering with fading measurements and randomly occurring non-linearities: The finite horizon case. *Automatica*, 55, 37–45. doi:10.1016/j.automatica.2015.02.024

Dong, H., Wang, Z., Ding, S., & Gao, H. (2016). Finite-horizon estimation of randomly occurring faults for a class of nonlinear time-varying systems. *Automatica*, 52, 355–362. doi:10.1016/j.automatica.2014.10.026

Dong, H., Wang, Z., Ding, S., & Gao, H. (2015). Finite-horizon reliable control with randomly occurring uncertainties and nonlinearities subject to output quantization. *Automatica*, 50, 3182–3189. doi:10.1016/j.automatica.2014.11.020

Dong, H., Wang, Z., & Gao, H. (2013). Distributed H∞ filtering for a class of Markovian jump nonlinear time-delay systems over lossy sensor networks. *IEEE Transactions on Industrial Electronics*, 60, 4665–4672. doi:10.1109/TIE.2012.2213553

Feng, Y., Han, X., & Wang, Y. (2007). Second order terminal sliding mode control of uncertain multivariable systems. *International Journal of Control*, 80, 856–862. doi:10.1080/00207170600918546

He, M., Liu, Y., Liu, L., Liu, G., & Liu, H. (2008). A novel fuzzy neural network approximator with exponential fast terminal sliding mode. *World Congress on Intelligent Control and Automation*, 4736–4740. doi:10.1109/WCICA.2008.4593689

Hu, Q. (2010). Robust adaptive sliding-mode fault-tolerant control with gain performance for flexible spacecraft using redundant reaction wheels. *IET Control Theory & Applications*, 4, 1055–1070. doi:10.1049/iet-cta.2009.0140

Hu, Z., Jiang, B., Chen, Y., & Liu X. (2014, August 9–11). An exponential-logarithmic terminal sliding mode control. In The 25th Chinese Process Control Conference. Dalian.

Huo, B., Li, Y., & Tong, S. (2012). Fuzzy adaptive fault-tolerant output feedback control of multi-input and multi-output non-linear systems instict-feedback form. *IET Control Theory & Applications*, 6, 2704–2715. doi:10.1049/iet-cta.2012.0435

Li, P., Ma, J., Zheng, Z., & Geng, L. (2014). Fast nonsingular integral terminal sliding mode control for nonlinear dynamical systems. *Decision and Control*, 4739–4746. doi:10.1109/CDC.2014.7040128

Liang, Y. W., Liaw, D. C., & Lee, T. C. (2000). Reliable control of nonlinear systems. *IEEE Transactions on Automatic Control*, 45, 706–710. doi:10.1109/9.847106

Liu, F., Wang, J. L., & Yang, G. H. (2002). Reliable robust flight tracking control: An LMI approach. *IEEE Transactions on Control Systems Technology*, 10, 76–89. doi:10.1109/87.974340

Lin, C. (2006). Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks. *IEEE Transactions on Fuzzy Systems*, 14, 849–859. doi:10.1109/TFUZZ.2006.879982

Liu, H., & Li, J. (2009). Terminal sliding mode control for spacecraft formation flying. *IEEE Transactions on Aerospace and Electronic Systems*, 45, 835–846. doi:10.1109/TAES.2009.5259168

Liu, M., Cao, X., & Shi, P. (2013). Fault estimation and tolerant control for fuzzy stochastic systems. *IEEE Transactions on Fuzzy Systems*, 21, 221–229. doi:10.1109/TFUZZ.2012.2209432

Niu, Y., & Wang, X. (2009). Sliding mode control design for uncertain delay systems with partial actuator degradation. *International Journal of Systems Science*, 40, 603–610. doi:10.1080/00207720802436265

Qu, Q., Gao, S., Huang, D., Mei, J., & Zhai, B. (2014). Fault-tolerant control for UAV with finite-time convergence. *Chinese Control and Decision Conference*, 2857–2862. doi:10.1109/CCDC.2014.6852660

Seshagiri, S., & Khalil, H. K. (2002). On introducing integral action in sliding mode control. *Decision and Control, 2*, 1473–1478. doi:10.1109/CDC.2002.1184727

Tao, C., Taur, J. S., & Chan, M. L. (2004). Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties. *IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)*, 34, 255–262. doi:10.1109/TSMCB.2003.811127

Vicente, P. V., & Gerd, H. (2001). Chattering free sliding mode control for a class of nonlinear mechanical systems. *International Journal of Robust and Nonlinear Control*, 11, 1161–1178. doi:10.1002/rnc.598

Vidyasagar, M., & Viswanadham, N. (1985). Reliable stabilization using a multi-controller configuration. *Automatica*, 21, 599–602. doi:10.1016/0005-1098(85)90064-2

Wang, C. (2014). Adaptive tracking control of uncertain MIMO switched nonlinear systems. *International Journal of Innovative Computing Information and Control, 10*, 1149–1159. Retrieved from http://www.ijicic.org/ijicic-13-06007.pdf

Wang, C., Yang, C., & Zhang, K. (2007). Terminal sliding mode control for singular systems with unmatched uncertainties. *IEEE International Conference on Control and Automation*, 2929–2933. doi:10.1109/CCA.2007.4736898

Xu, J., Lee, T., & Pan, Y. (2003). On the sliding mode control for DC servo mechanisms in the presence of unmodeled dynamics. *Mechatronics*, 13, 755–770. doi:10.1016/S0957-4158(02)00062-4

Xu, S. S., & Liu, Y. (2014). Study of Takagi-Sugeno fuzzy-based terminal-sliding mode fault-tolerant control. *IET Control Theory & Applications*, 8, 667–674. doi:10.1049/iet-cta.2013.0535

Yang, G., Wang, J., & Soh, Y. C. (2000). Reliable guaranteed cost control for uncertain nonlinear systems. *IEEE Transactions on Automatic Control*, 45, 2188–2192. doi:10.1109/9.887682

Yu, X., & Man, Z. (2002). Fast terminal sliding-mode control design for nonlinear dynamical systems. *IEEE Transactions on Circuits and Systems, 49*, 261–264. doi:10.1109/91.983876
Yu, S., Yu, X., & Man, Z. (2000). Robust global terminal sliding mode control of SISO nonlinear uncertain systems. Conference on Decision and Control, 3, 2198–2203. doi:10.1109/CDC.2000.914122

Yu, S., Yu, X., Shirinzadeh, B., & Man, Z. (2005). Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 41, 1957–1964. doi:10.1109/ICIF.2003.177408

Zou, A. M., Kumar, K. D., Hou, Z. G., & Liu, X. (2011). Finite-time attitude tracking control for spacecraft using terminal sliding mode and neural network. IEEE Transactions on Systems, Man, and Cybernetics, 41, 950–963. doi:10.1109/TSMCB.2010.2101592