A maximum-entropy model for predicting chromatin contacts. Supplementary Material.

Pau Farré 1, Eldon Emberly 1, 2

1 Department of Physics, Simon Fraser University, Burnaby, BC V5A1S6, Canada

1 These authors contributed equally to this work.

2 Current Address: Department of Physics, Simon Fraser University, Burnaby, BC V5A1S6, Canada
* pfarrepe@sfu.ca

First-order maximum-entropy model

Here we present a first-order maximum-entropy model only constrained to reproduce one-spin statistics \(\langle \sigma_k \rangle \) of the experimental distributions of neighborhoods \(\vec{\sigma} \). Similarly to the second-order model presented in the main text, the first-order maximum-entropy distribution can be derived using the method of Lagrange multipliers [1–3] and has the following form:

\[
P(\vec{\sigma}|\cdot) = \frac{e^{\sum_k h_k \sigma_k}}{Z(\vec{\sigma}|\cdot)},
\]

(1)

where \(h_k \) are Lagrange multipliers that constitute the fitting parameters of the model. The partition function \(Z(\vec{\sigma}|\cdot) \) is obtained by summing the numerator over all possible \(\vec{\sigma} \) neighborhoods. (In the above, we use "\(|\cdot|\)" to summarize that we were fitting two different conditions, namely \(P(\vec{\sigma}|c,d) \) and \(P(\vec{\sigma}|d) \).

By noting that \(Z(\vec{\sigma}|\cdot) = \prod_k e^{h_k} + e^{-h_k} \), we can rewrite Eq. (1) as the product of terms that only depend on \(k \):

\[
P(\vec{\sigma}|\cdot) = \prod_k e^{h_k \sigma_k} \left[e^{h_k} + e^{-h_k} \right].
\]

(2)

The terms in the product are normalized to unity and thus find that \(P(\vec{\sigma}|\cdot) \) simply becomes the product of the independent probabilities for each \(\sigma_k \) in \(\vec{\sigma} \),

\[
P(\sigma_k|\cdot) = \frac{e^{h_k \sigma_k}}{e^{h_k} + e^{-h_k}}.
\]

(3)

The value of \(h_k \) that matches the \(\langle \sigma_k \rangle \) statistic can be found by solving

\[
\langle \sigma_k \rangle = \sum_{\sigma_k} \sigma_k P(\sigma_k|\cdot),
\]

(4)

which gives

\[
h_k = \frac{1}{2} \log \frac{1 + \langle \sigma_k \rangle}{1 - \langle \sigma_k \rangle}.
\]

(5)
S4 Fig. (A, B) shows that the distributions calculated from Eq. 3 successfully predicted the experimental statistics \(\langle \sigma_k \rangle \) on the test data. However, this first-order maximum entropy distributions failed to capture both the second- (S4 Fig. (C, D)) and third- (S4 Fig. (E, F)) order statistics that were not incorporated into the fit. In S4 Fig. (G and H) we also see that the predicted sequence neighborhood probabilities \(P(\vec{\sigma}|\cdot) \) from the model did not agree with their frequencies as seen in the data. We thus conclude that the first-order maximum-entropy distribution in Eq. 3 is not a good-enough description of the experimental distributions of \(\vec{\sigma} \) and further-order moment distributions need to be considered.

Inspection of model parameters

For each distance of contact \(d = |j - i| \) we obtained two sets of parameters for \(P(\vec{\sigma}|\cdot) \), one describing the probability of a given neighborhood \(\vec{\sigma} \) given contact between \(i \) and \(j \), \(P(\vec{\sigma}|c, d) = f(h^{c,d}_k, J^{c,d}_k) \), and another set describing the probability of a given neighborhood regardless of contact (which we term here as background), \(P(\vec{\sigma}|d) = f(h^{bg,d}_k, J^{bg,d}_k) \).

S5 Fig. A shows that the Shannon entropy \[S[P(\vec{\sigma}|\cdot)] = - \sum_{\vec{\sigma}} P(\vec{\sigma}|\cdot) \log_2 P(\vec{\sigma}|\cdot), \] of the distribution sequences regardless of contact was greater than the entropy of the distribution of contacts at short distances (\(d < 330 \) Kbp) and the opposite happened for longer distances. In particular, the plot displays the average number of neighborhood configurations encoded in the probability distributions, \(2^S \).

S5 Fig. B displays the Kullback-Leibler (K-L) divergence between neighborhoods given contacts and background neighborhoods at each distance \(d \),

\[D[P(\vec{\sigma}|c,d)||P(\vec{\sigma}|d)] = \sum_{\vec{\sigma}} P(\vec{\sigma}|c,d) \log_2 \frac{P(\vec{\sigma}|c,d)}{P(\vec{\sigma}|d)}, \]

that can be interpreted as a distance between the two probability neighborhood distributions, or the information gain when including information about contacts into the background distribution of neighbors, therefore going from \(P(\vec{\sigma}|d) \) to \(P(\vec{\sigma}|c,d) \). This quantity diminished with distance and saturated at its lowest value at a distance of \(\sim 300 \) Kbp.

We then explored the similarity between the distributions of contacting neighborhoods at different distances. Specifically, we subtracted the K-L divergence of the background from the K-L divergence of the contacting distributions (correcting for background sequence effects),

\[\Delta D[P(\vec{\sigma}|c,d_1)||P(\vec{\sigma}|c,d_2)] = \]

\[D[P(\vec{\sigma}|c,d_1)||P(\vec{\sigma}|c,d_2)] - D[P(\vec{\sigma}|d_1)||P(\vec{\sigma}|d_2)]. \]

S5 Fig. C we observe two regimes of similarity between the distributions at different distances, one for \(d_1, d_2 < 390 \) Kbp and another for \(d_1, d_2 \geq 390 \), where \(\Delta D[P(\vec{\sigma}|c,d_1)||P(\vec{\sigma}|c,d_2)] \) takes the lowest values (blue denotes low \(\Delta D \) whereas red corresponds to high \(\Delta D \)).

We further compared models at different distances by analyzing the similarity of the energetic coefficients of enrichment defined as \(\Delta h^d_k = h^{c,d}_k - h^{bg,d}_k \) and
\[\Delta J_{kl}^d = J_{kl}^{c,d} - J_{kl}^{bg,d} \] since these were the parameters involved in the distance-normalized contacts as it can be derived from Eqs. 1 and 2 in the main text:

\[
\frac{P(\sigma|c,d)}{P(\sigma|d)} = \frac{P(\sigma|c,d)}{P(\sigma|d)} = \frac{Z_{bg,d}}{Z_{c,d}} e^{-\sum_k \Delta h_k^d \sigma_k - \sum \sum_{l>k} \Delta J_{kl}^d \sigma_l \sigma_k}
\] (9)

For every distance of contact, the parameters \(\Delta h_k^d\) and \(\Delta J_{kl}^d\) were concatenated into a vector, and the set of vectors corresponding to all distances was then clustered into two groups with K-means \([5]\). The coefficient vectors naturally separated at the distance of 390 Kbp (S5 Fig.D). In S5 Fig.E and S5 Fig.F we show the average energetic coefficients of enrichment of the two K-means clusters, which differ both in \(\Delta h_k\) and \(\Delta J_{kl}\).

In addition, we applied Principal Component Analysis (PCA) \([6,7]\) to the same set of coefficient vectors as above, and the first principal component (PC1) clearly separated the same clusters previously found by K-means delimited at a distance of 390 Kbp (S5 Fig.G). PC1 shows positive scores for the shorter distances of contact (\(d < 390\)Kbp) and negative scores for the longer distances of contact (\(d \geq 390\) Kbp). Therefore, projecting the vectors of coefficients onto PC1, we found how the short-distance cluster differs from the long-distance cluster (S5 Fig.H), which corresponded to an increase of ferromagnetic interactions between the sites situated inside the loop.

Predicting sequence given structure

Given fitted maximum entropy distributions, \(P(\sigma|c,d)\) and \(P(\sigma|d)\), over a range of genomic distances \(d\), we now work out how to solve the inverse problem, namely finding the probability of a genomic site \(k\) being in a particular binary state \(\sigma_k\), given only structural data from a set of Hi-C counts \(\{n_{ij}\}\). We denote this probability by \(P(\sigma_k|\{n_{ij}\})\), where \(\{n_{ij}\}\) is the set of counts between all \((i,j)\) pairs of sites considered to be neighbors of \(k\) in our model.

As in the main text, Bayes’ theorem gives

\[
P(\sigma_k|\{n_{ij}\}) = \frac{P(\{n_{ij}\}|\sigma_k)P(\sigma_k)}{P(\{n_{ij}\})},
\] (10)

where \(P(\{n_{ij}\}|\sigma_k) = \prod_{ij} P(n_{ij}|\sigma_k, d)\). \(P(n_{ij}|\sigma_k, d)\) is the probability of observing exactly \(n_{ij}\) contact counts between a pair of sites a distance \(d = |j - i|\) apart given that the genomic site \(k\) in their sequence neighborhood is in a particular state, \(\sigma_k\). (Note that \(d\) is a redundant variable whenever \(i\) and \(j\) are specified, ie. \(P(n_{ij}|\sigma_k) = P(n_{ij}|\sigma_k, d)\). We nevertheless introduce it here for consistency with the rest of our notation). \(P(\sigma_k)\) is the prior on \(\sigma_k\) and is the probability for site \(k\) to be in one of the two states (here we take it to be a constant over the genome, with the same value as measured in the training set \(P(\sigma_k = 1) = 0.31\)). \(P(\{n_{ij}\})\) is simply a normalization constant and is found by summing the numerator over \(\sigma_k\). Rewriting Eq. (10), we have,

\[
P(\sigma_k|\{n_{ij}\}) = \frac{P(\sigma_k)}{P(\{n_{ij}\})} \prod_{ij} P(n_{ij}|\sigma_k, d).
\] (11)

Using \(k'\) to label the position that the genomic site \(k\) takes in the particular neighborhood of \((i,j), \sigma = \{\sigma_1, \cdots, \sigma_k', \cdots, \sigma_N\}\), and considering \(P(\sigma_k|d) = P(\sigma_k)\) we
then rewrite $P(n_{ij}\mid \sigma_k, d)$ as

$$P(n_{ij}\mid \sigma_k, d) = \frac{P(n_{ij}, \sigma_k \mid d)}{P(\sigma_k \mid d)} = \frac{P(n_{ij}, \sigma_k \mid d)}{P(\sigma_k)} = \sum_{\tilde{\sigma}} \frac{P(n_{ij}, \tilde{\sigma} \mid \sigma_k \mid d)}{P(\sigma_k)} = \sum_{\tilde{\sigma}} \frac{P(n_{ij} \mid \tilde{\sigma} \mid d, \sigma_k \mid d)}{P(\sigma_k)} \delta_{\sigma_k, \sigma_k'}$$

where the Kronecker delta $\delta_{\sigma_k, \sigma_k'}$ ensures that we sum all possible sequences of the neighborhood $\tilde{\sigma}$ that have genomic site k held fixed in a particular state σ_k.

Next, by combining Eqs. 11 and 12 we obtain

$$P(\sigma_k | \{n_{ij}\}) = \frac{P(\sigma_k)^{1-M}}{P(\{n_{ij}\})} \prod_{i,j} \sum_{\tilde{\sigma}} P(n_{ij} \mid \tilde{\sigma}, d) P(\tilde{\sigma} \mid d) \delta_{\sigma_k, \sigma_k'},$$

where M is the number of (i,j) pairs that have sequence neighborhoods that contain genomic site k. The distribution, $P(\tilde{\sigma} \mid d)$, is taken to be the fitted maximum entropy distribution at a distance d. We assume that the probability of observing n_{ij} Hi-C counts given a sequence state $\tilde{\sigma}$, $P(n_{ij} \mid \tilde{\sigma}, d)$, is as a Gaussian distribution $\mathcal{N}(\lambda(\sigma, c, d), \zeta^2(\sigma, d))$ with a mean number of counts, $\lambda(\sigma, c, d)$, proportional to the fitted probability of contact for the given sequence neighborhood $\tilde{\sigma}$,

$$\lambda(\sigma, c, d) = KP(\sigma, c, d) = \frac{P(\sigma, c, d) \lambda(c \mid d)}{P(\tilde{\sigma} \mid d)},$$

where K is a constant that depends on experimental details such as the number of cells used and the efficiency of contact detection, and $\lambda(c \mid d) = K P(c \mid d) = \langle n(d) \rangle$ is the experimental average of Hi-C counts at a distance d. With this and the two fitted maximum entropy distributions, we can calculate the mean number of counts for a given sequence neighborhood from Eq. 14. The variance $\zeta^2(\sigma, d)$ is sampled from the train set as a function of λ. Specifically, we calculated the rates λ_{ij} associated to all Hi-C counts n_{ij} from the train set. Then, for various values of λ we collected the Hi-C counts n_{ij} that our model had assigned a rate λ_{ij} between $0.9 \times \lambda$ and $1.1 \times \lambda$. Lastly, we calculated the variance of the rate-associated counts $\zeta^2(\sigma)$ and fitted a polynomial curve to it (we found $\zeta^2 \approx \lambda^2$).

Everything in Eq. 13 is now determined and so the probability of a particular sequence state (either $\sigma_k = 1$ or $\sigma_k = -1$) at every site k can be calculated if given a Hi-C contact map, $\{n_{ij}\}$.

References

1. Jaynes ET. Information theory and statistical mechanics. Physical review. 1957;106(4):620.

2. Jaynes ET. Information theory and statistical mechanics. II. Physical review. 1957;108(2):171.
3. Tkačik G, Marre O, Amodei D, Schneidman E, Bialek W, Berry II MJ. Searching for collective behavior in a large network of sensory neurons. PLoS Comput Biol. 2014;10(1):e1003408.

4. Shannon CE. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review. 2001;5(1):3–55.

5. Steinhaus H. Sur la division des corp materiels en parties. Bull Acad Polon Sci. 1956;1(804):801.

6. Pearson K. LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1901;2(11):559–572.

7. Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of educational psychology. 1933;24(6):417.