Chiral Dynamics and Dubna-Mainz-Taipei Dynamical Model for Pion-Photoproduction Reaction

SHIN NAN YANG

Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei, 10617, Taiwan
snyang@phys.ntu.edu.tw

We demonstrate that the Dubna-Mainz-Taipei (DMT) meson-exchange dynamical model, which starts from an effective chiral Lagrangian, for pion photoproduction provides an excellent and economic framework to describe both the \(\pi^0 \) threshold production and the \(\Delta \) deformation, two features dictated by chiral dynamics.

Keywords: Chiral symmetry; threshold \(\pi^0 \) production; baryon deformation.

PACS numbers: 11.30.Rd, 13.60.Le, 14.20.-c, 14.20.Gk

An important feature of the low-energy QCD is the chiral symmetry. Chiral symmetry is expected to show up in the parity doubling of all hadronic states (Winer-Weyl mode), e.g., the proton with \(J^P = 1/2^+ \) would have a \(1/2^- \) partner. This is not observed experimentally. Instead the symmetry is broken spontaneously (Nambu-Goldstone mode) which leads to the appearance of massless pseudoscalar mesons. The opposite parity partner of the proton is a proton plus a "massless pion".

Spontaneous chiral symmetry breaking (SCSB) has led to the development of chiral perturbation theory (ChPT), a low-energy effective field theory of QCD. It utilizes the concept of SCSB and replaces the quark and gluon fields by a set of fields describing the degrees of freedom of the observed hadrons. There is generally good agreement between the ChPT predictions and experiments\(^1\), including the \(\pi^0 \) photoproduction near threshold where very precise measurements have been performed and the ChPT calculation to one loop \(O(p^4) \) has been carried out in the heavy-baryon formulation\(^2\).

The fact that opposite parity partner of the proton is a proton plus a pion leads to the consequence that the \(\pi N \) interaction in momentum space takes the form\(^1\)

\[
V_{\pi N} = g_{\pi N} \vec{\sigma} \cdot \vec{q},
\]

where \(\vec{\sigma} \) and \(\vec{q} \) are the nucleon spin and pion momentum, respectively. This strong \(p \)-wave \(\pi N \) interaction gives rise to the \(\Delta \) resonance and its deformation\(^3\) which has been observed in pion photoproduction.

In this contribution, I will present a meson-exchange dynamical model for pion photoproduction we recently developed in a collaboration between groups at Dubna, Mainz, and Taipei (DMT)\(^4\) which can describe well the pion-photoproduction data from threshold to the first resonance region, including the \(\pi^0 \) threshold production.
Authors' Names

and Δ deformation. The DMT dynamical model also starts from an effective chiral Lagrangian. The effective Lagrangian is then used to construct a potential for use in the scattering equation. The solutions of the scattering equation will include rescattering effects to all orders and thereby unitarity is ensured.

In a dynamical model for pion photoproduction, the t-matrix is given as

$$t_{\gamma\pi}(E) = v_{\gamma\pi} + v_{\gamma\pi}g_0(E) t_{\pi N}(E),$$

where $v_{\gamma\pi}$ is the $\gamma\pi$ transition potential, g_0 and $t_{\pi N}$ are the πN free propagator and t matrix, respectively, and E is the total energy in the c.m. frame. Physical multipole amplitude in channel α then reads as

$$t_{\gamma\pi}(\alpha; E + i\varepsilon) = e^{i\delta_{\alpha}} \cos \delta_{\alpha} |v_{\gamma\pi}(\alpha)| + P \int_0^\infty dq q^2 R_{\pi N}^{(\alpha)}(q E, q'; E) v_{\gamma\pi}(\alpha, q, k_E) (E - E_{\pi N}(q')) \] (1)

where $\delta_{\alpha}, R_{\pi N}^{(\alpha)}, E_{\pi N}(q)$ and P denote the πN phase shift, reaction matrix in channel α, total CM energy of momentum q, and principal value integral, respectively; $k_E = |k|$ is the photon momentum and q_E the pion on-shell momentum. The amplitudes $t_{\pi N}$ are obtained in a meson-exchange πN model constructed in the Bethe-Salpeter formalism and solved within Cooper-Jennings reduction scheme. At low energies where resonances play little role, only background part, $v_{\pi N}^B$ and $v_{\gamma\pi}^B$, which are derived from an effective Lagrangian containing Born terms and ρ and ω exchanges in the t channel, contribute.

For π^0 photoproduction from proton, we calculate the multipole E_{0+} near threshold by solving the following coupled channels equation within a basis with physical pion and nucleon masses. It leads to the following expression in $\pi^0 p$ channel:

$$t_{\gamma\pi^0}(E) = v_{\gamma\pi^0}(E) + v_{\gamma\pi^0}(E) g_{\pi^0 p}(E) t_{\pi^0 p\to\pi^0 p}(E) + v_{\gamma\pi^0}(E) g_{\pi^0 n}(E) t_{\pi^0 n\to\pi^0 p}(E).$$

(2)

The πN t-matrices are obtained by solving the coupled channels equation for πN scattering using the meson-exchange model. In Fig. 1, the prediction of DMT model for $Re E_{0+}$ obtained without and with isospin symmetry assumption, are shown in dashed and solid curves, respectively, and compared with heavy-baryon ChPT results (dash-dotted curve). Agreement of DMT prediction with the data...
and ChPT results are excellent.

The polarized linear photon asymmetry Σ has been found to be very sensitive to small p-wave multipoles\[\text{[7]}\] DMT model (solid curve) is not able to reproduce the data at 159.5 MeV, of Ref.\[\text{[8]}\] as shown in Fig. 2, while ChPT calculation of $O(p^4)$ with six low-energy constants (dashed curve) is seen to be able to describe the experiment reasonably well. However, preliminary analysis of a new measurement at Mainz\[\text{[9]}\] seems to agree with DMT’s prediction.

We now turn to the issue of the $\Delta(1232)$ deformation. In a symmetric SU(6) quark model, Δ is in S state and spherical. The photo-excitation of the Δ could then proceed only via $M1$ transition. The existence of a D state in the Δ has the consequence that the Δ is deformed and the photon can excite a nucleon through electric $E2$ quadrupole transition. In pion photoproduction, $E2$ excitation would give rise to nonvanishing $E^{(3/2)}_1$ multipoles amplitude. Recent experiments give $R_{EM} = E^{(3/2)}_1/M^{(3/2)}_1 = -(2.5 \pm 0.5)\%$ a clear indication of Δ deformation.

In the (3,3) channel where Δ excitation plays an important role, the transition potential $v_{\gamma\pi}$ consists of two terms

$$v_{\gamma\pi}(E) = v_{\gamma\pi}^B + v_{\gamma\pi}^D(E),$$

where second term of Eq. \text{[3]} corresponds to the contribution of bare Δ, namely, $\gamma N \rightarrow \Delta \rightarrow \pi N$. We may then write

$$t_{\gamma\pi} = t_{\gamma\pi}^B + t_{\gamma\pi}^\Delta,$$

where $t_{\gamma\pi}^B(E) = v_{\gamma\pi}^B + v_{\gamma\pi}^D g_0(E) t_{\pi N}(E)$ and $t_{\gamma\pi}^\Delta(E) = v_{\gamma\pi}^\Delta + v_{\gamma\pi}^D g_0(E) t_{\pi N}(E)$.

By combining the contributions of $t_{\gamma\pi}^B$ and $t_{\gamma\pi}^\Delta$ and using the bare $\gamma N \Delta$ coupling constants G_{M1} and G_{E2} for $M1$ and $E2$ transitions as free parameters, results of
our best fit to the resonant multipoles $M^{(3/2)}_{1+}$ and $E^{(3/2)}_{1+}$ obtained in the analyses of Mainz\cite{11} and VPI group\cite{12} are shown in Fig. 3 by solid curves. The dashed curves denote the contribution from $t^B_{\gamma\pi}$ only. The dotted curves represented the K-matrix approximation to $t^B_{\gamma\pi}$, namely, without the principal value integral term of Eq. (1) included.

For $M^{(3/2)}_{1+}$, one sees a large effect of the pion off-shell rescattering (difference between dotted and dashed curves), which results from the principal value integral part of Eq. (1). The total pion rescattering (dashed curves) contributes for half of the $M^{(3/2)}_{1+}$ as seen in Fig. 3 while the remaining half originates from the bare $\gamma N\Delta$ excitation. Furthermore, one sees that almost all of the $E2$ strength is generated by the πN rescattering.

At the resonance position $t^B_{\gamma\pi}$ vanishes within K-matrix approximation and only principal value integral term survives. The latter corresponds to the contribution where Δ is excited by the pion produced via $v^B_{\gamma\pi}$. Consequently the addition of this contribution to $t^\Delta_{\gamma\pi}$ can be considered as a dressing of the $\gamma N\Delta$ vertex. For $E^{(3/2)}_{1+}$, the dominance of background and pion rescattering contributions leads to a very small bare value for electric transition. We hence conclude that bare Δ is almost spherical and the deformation observed experimentally arises mostly from the long-range effect of the pion cloud, a manifestation of chiral dynamics.

In summary, we have demonstrated that the DMT meson-exchange dynamical model for pion photoproduction, which starts from an chiral effective Lagrangian, provides an excellent and economical framework in describing threshold π^0 production and Δ deformation, two key consequences of chiral dynamics.

Acknowledgments

Results presented here are obtained in collaborations with G. Y. Chen, D. Drechsel, S. S. Kamalov, and L. Tiator. This work is supported in part by the National Science Council of ROC under grant NSC 98-2112-M002-006.

References

1. A. M. Bernstein, in \textit{Chiral Dynamics}, eds. M. W. Ahmed \textit{et al.} (World Scientific, Singapore, 2007), p. 3 and references contained therein.
2. V. Bernard \textit{et al.}, \textit{Z. Phys. C} \textbf{70} 483 (1996); \textit{Nucl. Phys. A} \textbf{607}, 379 (1996); and references contained therein.
3. A. M. Bernstein and S. Stave, \textit{Few Body Syst} \textbf{41}, 83 (2007).
4. S. S. Kamalov and S. N. Yang, \textit{Phys. Rev. Lett.} \textbf{83}, 4494 (1999); S. S. Kamalov \textit{et al.}, \textit{Phys. Rev. C} \textbf{64}, 032201(R) (2001).
5. S. N. Yang, \textit{J. Phys. G} \textbf{11}, L205 (1985).
6. C. T. Hung, S. N. Yang, and T.-S. H. Lee, \textit{Phys. Rev. C} \textbf{64}, 034309 (2001).
7. S. S. Kamalov \textit{et al.}, \textit{Phys. Lett. B} \textbf{522}, 27 (2001).
8. A. Schmidt \textit{et al.}, \textit{Phys. Rev. Lett.} \textbf{87}, 232501 (2001).
9. Mainz Exp. A2/6-03, D. Hornidge spokesman.
10. V. Pascalutsa, M. Vanderhaeghen, and S. N. Yang, \textit{Phys. Rept.} \textbf{437}, 125 (2007).
11. O. Hanstein, D. Drechsel, and L. Tiator, *Nucl. Phys. A* **632**, 561 (1998).
12. R. A. Arndt, I. I. Strakovsky and R. L. Workman, *Phys. Rev. C* **53**, 430 (1996).