Introduction

The placenta is the organ that links mother and fetus during pregnancy. It plays a crucial role in fetal growth and development by enabling the exchange of nutrients and oxygen from the mother to the fetus and removing fetal waste products.[1] The placenta is an endocrine organ, a site of synthesis and selective transport of hormones and neurotransmitters. In addition, the placenta forms a barrier to toxins and infective organisms.[2,3] In recent years, findings based on placental lesions have contributed to a better understanding of how the placenta functions. Less than optimal placental performance may result in morbidity or even mortality of both mother and fetus. Indeed, there are indications that placental lesions are the main cause of fetal death.[4] It is also becoming increasingly clear that impaired placental functioning can have major implications for the live-born infant. Awareness among pediatricians, however, of the benefit of placental findings for neonatal care, is limited. Usually, the results of placental examinations are only reported back to the obstetrician instead of also passing it on to the pediatrician. In our opinion, this is a missed opportunity. Information on placental lesions can often be helpful towards explaining an abnormal neonatal outcome and might have consequences for treatment.

This article provides a systematic review of the relation between placental lesions and neonatal mortality, morbidity, and neurological development. We summarized the literature published in English from January 1995 to October 2013. We refined our search results by selecting the appropriate articles from the ones found during the initial searches. The first selection was based on the title, the second on the abstract, and the third on the full article. The quality of the selected articles was determined by using the Newcastle-Ottawa Quality Assessment Scale.

Study appraisal and synthesis methods: We systematically searched the Pubmed database for literature on the relation between placental lesions and fetal and neonatal mortality, neonatal morbidity and neurological outcome. We conducted three separate searches starting with a search for placental pathology and fetal and neonatal mortality, followed by placental pathology and neonatal morbidity, and finally placental pathology and neurological development. We limited our search to full-text articles published in English from January 1995 to October 2013. We refined our search results by selecting the appropriate articles from the ones found during the initial searches. The quality of the selected articles was determined by using the Newcastle-Ottawa Quality Assessment Scale.

Conclusions: The placenta plays a key role in fetal and neonatal mortality, morbidity, and outcome. Pediatricians should make an effort to obtain the results of placental examinations.
and morbidity. Should this prove to be the case, this information is important for the pediatrician who should, therefore, be aware of and take into consideration the placental findings of their patients.

Methods

Literature search

This systematic review was conducted following the PRISMA guidelines for systematic reviews. A registered systematic review protocol is not available. Two independent researchers (AMR and AFB) searched the PubMed database for literature on the relation between placental lesions and perinatal mortality, neonatal morbidity, and neurological development. We limited our search to full-text articles published in English from January 1st 1995 to October 31st 2013. We conducted three separate searches starting with a search for placental lesions and fetal and neonatal mortality, followed by placental lesions and neonatal morbidity, and finally placental lesions and neurological development.

For the search on placental lesions and fetal and neonatal mortality, we used the terms ("placental pathology" AND "fetal death") OR ("placental pathology" AND "stillbirth") OR ("placental" AND "cause" AND "stillbirth") OR ("placental pathology" AND "mortality") .

For the search on placental lesions and neonatal morbidity, we used the terms ("placental pathology" AND "morbidity") OR ("placental pathology" AND "neonatal outcome") OR ("placental lesions" AND "morbidity") OR ("placental lesions" AND "neonatal outcome") OR ("placenta" AND "neonatal implications") OR ("placental" AND "lesions" AND "risk factor").

For the search on placental lesions and neurological development, we used the terms ("placental pathology" AND "neurological") OR ("placental pathology" AND "neurologic") OR ("placental pathology" AND "cerebral palsy") OR ("placental" AND "neurodevelopmental outcome") OR ("placental pathology" AND "follow up").

Subsequently, we refined our search results by selecting the appropriate articles from the ones found during the initial searches in three stages. The first selection was based on the title, the second on the abstract, and the third on the full-text article. Review articles on the subject of placental lesions and outcome were indicated as background articles. We did not use these articles in the tables, but we did use them in the text of our article. We were mainly interested in single births, therefore articles focusing primary on multiple births were excluded. In addition to the database search, we screened the reference lists of the selected articles, and the publications of important research groups in the field.

Quality assessment

We assessed the quality of all the selected studies by means of the Newcastle-Ottawa Quality Assessment Scale for cohort and case-control studies. This assessment scale consists of three parts. For cohort studies these parts include selection, comparability, and outcome, for case-control studies selection, comparability, and exposure. The selection part consists of 4 items, with a maximum of 1 point per item. The comparability part has 1 item, with a maximum of 2 points for this item. Both the outcome and exposure parts consist of 3 items, with a maximum of 1 point per item. This provides a score, ranging from 0–9 points, with 9 points for the highest quality.

Results

Our first search for placental lesions and perinatal mortality resulted in 135 articles. The second search for placental lesions and neonatal morbidity resulted in 55 articles. Our third search for placental lesions and neurological outcome produced 67 articles. After removing duplicates, we had a total of 221 articles. We excluded 117 articles based on their titles. Reasons for exclusion were studies with patient populations from developing countries or studies focusing on multiple births. Abstracts or full-text articles were assessed of the remaining 104 articles. Sixty-three articles were additionally excluded for the following reasons: no placental pathology performed, no neonatal outcome, and the studies being out of scope. By analyzing the reference lists of the remaining 41 articles, and screening publications from important research groups in the field, we additionally included 14 articles. Finally, 55 studies were included in our systematic review (Figure 1), i.e. 18 studies on perinatal death [4–21], 19 on neonatal morbidity [22–40], and 18 on neurological outcome.[41–58] Characteristics and the quality assessment scores of these 55 articles are presented in Tables 1–3.

Placental pathology

Examination of the placenta can reveal a wide range of pathologies. For good reproducibility it is necessary that placental lesions are well defined. Committees of the perinatal section of the Society for Pediatric Pathology have proposed definitions for maternal vascular underperfusion, fetal vascular obstructive lesions (fetal thrombotic vasculopathy), and the amniotic infection syndrome.[59–61] Definitions and descriptions of additional pathologies can be found in various textbooks on the pathology of the placenta.[62–67]

Since we acknowledge the fact that most pediatricians are unfamiliar with placental lesions and because a wide variety of terminology is used in the literature, we classified placental lesions according to the underlying pathology as previously proposed together with their pathological descriptions in Table 4.[35,42,59–61,68–71] Placental lesions and perinatal mortality

Perinatal mortality is defined as death during the perinatal period. In the 10th Edition of the World Health Organization's International Classification of Diseases, the perinatal period is defined as death from 22 completed weeks of gestation up to 7 days after birth.[72] Fetal deaths form the largest group of perinatal mortality. In high-income countries one in every 200 infants that reaches 22 weeks' gestation or more, is stillborn.[73] Recently, the important role of the placenta in fetal deaths has become increasingly clear and several studies suggested that placental pathology is one of the main causes of fetal death (Table 5). This underscores the importance of examining the placenta, a fact sorely underestimated by obstetricians and general pathologists.[16]

In 30% of the cases the cause of stillbirth is unknown.[73] In the remainder, i.e. the proportion of cases with known cause, most stillbirths are caused by placental lesions (12–63%, Table 5), followed by infections and umbilical cord abnormalities. [73] For lower gestational ages (GAs) (20 to 24 weeks), an unknown cause of death is most prominent, followed by placental lesions. At higher GAs, the relative importance of unknown causes decreases and placental causes increase.[73]

Placental pathology consistent with maternal vascular underperfusion is the main contributor to fetal death, ranging from 34 to 38 percent.[4,8,14] This is most prominent during the preterm
period, in pregnancies complicated by hypertensive disorders, with a strong decline thereafter. During the term period, fetal death is mainly caused by developmental pathology of placenta parenchyma.\[4\] We can conclude that a pathological examination of the placenta is essential for clarifying causes of stillbirths.\[5,13,14,19\]

The older classification systems for perinatal mortality did not address placental pathology, or specific placental lesions, as a separate group. Only in the more recent classification systems is placental pathology included as a cause of fetal death. In all recent stillbirth studies placental pathology is designated as one of the main causes of fetal death.\[74,75\] The introduction of classification systems with placental pathology included as a separate group might be one of the reasons why recent studies identify placental pathology as one of the main causes of fetal death. Most of the placental lesions found in stillbirths, however, are also seen regularly after live, preterm or term, births.\[76\] The question arises whether placental lesions are also related to neonatal and neurological morbidity.

To summarize, in recent years the role of the placenta in fetal deaths has become increasingly clear. Placental pathology is one of the main causes of fetal death, with placental pathology consistent with maternal vascular underperfusion as the main contributor.

Placental lesions and neonatal morbidity

It has been suggested that placental lesions are also associated with neonatal morbidity, but the association is less clear than for fetal mortality. Placental lesions are suggested to be associated with illness severity shortly after birth, and with a wide range of neonatal problems (Table 6).

Illness severity shortly after birth can be determined by the presence of asphyxia, Apgar scores during the first minutes after birth, and by several clinical variables during the first 24 hours after birth. Perinatal asphyxia is described to be associated with placental lesions affecting fetal vascular supply. These lesions were umbilical cord complications (disrupted velamentous vessels, cord tear, hypercoiled cord, cord hematoma), chorioamnionitis with fetal vasculitis, and fetal thrombotic vasculopathy.\[31,35\] Low Apgar scores at 1 and 5 minutes are associated with ascending intrauterine infection and maternal vascular underperfusion.\[22,26\] Higher illness severity during the first 24 hours after birth, determined by the Score of Neonatal Acute Physiology Perinatal Extension (SNAPPE), is associated with placental pathological findings of fetal thrombotic vasculopathy and elevated nucleated red blood cells (a sign of hypoxia).\[38\]
Table 1. Description of selected studies perinatal mortality.

Reference	Country	Study design	Study population	Study period	Sample size	Blinding examiner	Definition placental lesions	Corrected for confounders	Quality assessment Selection	Quality assessment Comparability	Quality assessment Outcome/ exposure	Quality assessment Total
Incerpi et al. (1998) [5]	USA	Cohort Retrospective	Stillbirths >20 wk GA, >500 g BW	1990–1994	745	NS	N	N	2	0	3	5
Ogunyemi et al. (1998) [6]	USA	Case-control Retrospective	Stillbirths >25 wk GA. Case: stillbirth	1985–1995	115 cases, 193 N controls	Y	Y	Y	3	2	2	7
Galan-Roosen et al. (2002)	The Netherlands	Descriptive Prospective	Stillbirths + neonatal death, >500 g BW	1983–1992	151 stillbirths, N 88 neonatal death	N	N	N	4	0	2	6
Horn et al. (2004) [8]	Germany	Cohort Retrospective	Stillbirth >22 wk GA, >500 g BW	NS	310	N	N	N	3	0	3	6
Locatelli et al. (2005) [9]	Italy	Cohort Retrospective	Live born / neonatal death <750 g BW	1998–2002	59	Y	N	Y	3	2	2	7
Burke et al. (2007) [10]	Australia	Observational Retrospective	Intrapartum death, all GA	NS	20	N	N	N	4	0	3	7
Zanconato et al. (2007) [11]	Italy	Cohort Retrospective	Stillbirth >22 wk GA, >500 g BW	2000–2006	59	N	N	N	4	0	2	6
Vergani et al. (2008) [12]	Italy	Cohort Retrospective	Stillbirth >22 wk GA, >500 g BW	1995–2007	154	N	N	N	4	0	3	7
Heazell et al. (2009) [13]	UK	Cohort Retrospective	Stillbirths	2006–2007	71	N	N	N	3	0	3	6
Kidron et al. (2009) [14]	Israel	Cohort Retrospective	Stillbirth 23–40 wk GA, Singletons	1994–2005	120	N	Y	N	4	0	3	7
Korteweg et al. (2009) [4]	The Netherlands	Cohort Prospective Multi-center	Antepartum death >20 wk GA	2002–2006	750	N	Y	N	4	0	3	7
Bonetti et al. (2011) [15]	Italy	Cohort Retrospective	Stillbirth >22 wk GA, >500 g BW	2000–2004	132	N	N	N	3	0	3	6
Tellefsen et al. (2011) [16]	Norway	Cohort Retrospective	Perinatal death >22 wk GA –7d post partum	2004–2008	104	N	N	N	4	0	3	7
VanderWielen et al. (2011) [17]	USA	Cohort Prospective Multi-center	Perinatal death + terminated pregnancies	NS	20 wk 330, ≤20 wk 73, 24 h pp 13	N	N	N	4	0	3	7
Table 1. Placental Pathology and Neonatal Outcome

Country	Study design	Study population	Study period	Sample size	Corrected for confounders	Blinding placental examiner	Quality assessment	Quality assessment Outcome/exposure	Quality assessment Comparability	Quality assessment Total	Study population
USA	Cohort	Stillbirth ≥20 wk GA	2006–2008	512	Y	N	8				
	Prospective	Stillbirth ≥20 wk GA	2006–2008	1025	N	N	3				
	Multi-center	Stillbirth ≥20 wk GA	2002–2008	1925	N	N	3				
		Stillbirth ≥18–19 wk GA	if GA was uncertain		N	N	1				
Korteweg et al.	Cohort	Stillbirth ≥22 wk GA	1990–2003	377 cases	Y	N	2				
	Prospective	Stillbirth ≥22 wk GA	1990–2003	377 cases	Y	N	2				
	Multi-center	Stillbirth ≥500 g BW	1998–2009	1089	N	N	3				
		Stillbirth ≥22 wk GA	1998–2009	1089	N	N	3				
		Stillbirth ≥500 g BW	1998–2009	1089	N	N	3				
		Stillbirth ≥500 g BW	1998–2009	1089	N	N	3				
		Stillbirth ≥22 wk GA	1998–2009	1089	N	N	3				
		Stillbirth ≥22 wk GA	1998–2009	1089	N	N	3				
		Stillbirth ≥22 wk GA	1998–2009	1089	N	N	3				
		Stillbirth ≥22 wk GA	1998–2009	1089	N	N	3				
		Stillbirth ≥22 wk GA	1998–2009	1089	N	N	3				
		Stillbirth ≥22 wk GA	1998–2009	1089	N	N	3				
		Stillbirth ≥22 wk GA	1998–2009	1089	N	N	3				
		Stillbirth ≥22 wk GA	1998–2009	1089	N	N	3				
		Stillbirth ≥22 wk GA	1998–2009	1089	N	N	3				
		Stillbirth ≥22 wk GA	1998–2009	1089	N	N	3				
		Stillbirth ≥22 wk GA	1998–2009	1089	N	N	3				

Reference

- The stillbirth collaborative research group (2011)[18]
- Korteweg et al. (2012)[19]
- Helgadottir et al. (2013)[20]
- Bring et al. (2013)[21]

Abbreviations: wk - weeks; GA - gestational age; BW - birth weight; NS - not stated; pp - post partum

- "outcome" for cohort studies, "exposure" for case-control studies.
- doi:10.1371/journal.pone.0089419.t001

Lung development and neonatal respiratory problems, such as neonatal respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD), are associated with placental inflammation. There are indications that the incidence of RDS is reduced in infants exposed to chorioamnionitis (ORs 0.1–0.6, 95% CI: 0.02–0.8).[23,29,37,77] This beneficial effect may be explained in several ways. It can be explained by advanced lung maturation in terms of an early elevation of interleukin-1 beta (IL-1β) in lung lavage fluid in the presence of chorioamnionitis, which stimulates the release of corticotrophin-releasing factor and corticosteroids. [78,79] These hormones enhance the production of cortisol which results in accelerated lung maturation and, therefore, a decrease in the incidence of RDS.[80] Lung maturation is also explained with animal models of fetal inflammation. Chorioamnionitis in the fetal lung induces elevated IL-1, which in turn increases the amounts of surfactant proteins in parallel with increases in surfactant lipids in bronchoalveolar lavages. The lung mesenchymal tissue decreases, which increases the epithelial surface area and airspace volume of the lung. This results in a more mature lung structure that contains more surfactant, has increased compliance, and supports better gas exchange.[77,81,82]

Besides potentially a beneficial effect on lung function immediately after birth, an ascending intrauterine infection can also have a detrimental effect on the preterm lung, particularly in the long-term.[77] Chorioamnionitis can promote BPD, with ORs ranging from 2.0–7.4 (95% CI: 1.2–31.2).[23,26,37,40,77,83] BPD results from multiple antenatal and postnatal factors (hits) contributing to disease progression.[84] Despite a healthier initial condition [less RDS], the pulmonary status worsens during the postnatal period.[83] This is explained by an increased susceptibility of the lung to postnatal injurious events (second hits).[83–86]

Even so, the relation between respiratory problems and chorioamnionitis is difficult to assess, since it is confounded by a variety of prenatal factors.[85]

Necrotizing enterocolitis (NEC) is a challenging problem in the neonatal care of, mainly, preterm infants. The etiology of NEC is still poorly understood, but it is believed to be multifactorial.[37] Several studies found an association between NEC and placental lesions, in particular fetal vascular obstructive lesions (fetal thrombotic vasculopathy, congested villi, coagulation-related lesions) with ORs ranging from 2.6 to 9.10 (95% CI: 1.13–15.08).[26,32,33] The presence of ischemia has been proposed as an explanation for the etiology of NEC. Placental vasculopathy, which causes uteroplacental insufficiency, may cause fetal circulatory adaptive changes to hypoxia, which may result in bowel ischemia predisposing to NEC.[26]

Retinopathy of prematurity (ROP) is also associated with placental lesions, in particular with inflammatory lesions with ORs ranging from 1.8 to 3.1 (95% CI: 1.02–9.5).[26,36,37,77,88] ROP affects preterm infants and is caused by disorganized growth of retinal blood vessels which may result in scarring and retinal detachment. The etiology of ROP is likely to be a multihit phenomenon. At least part of the multihit is an inflammation-related pathogenesis, which is thought to be mediated by cytokines and growth factors present in the newborn’s systemic circulation.[39] The severity of ROP also correlates positively with ascending intrauterine infection.[88]

Fetal cardiac abnormalities are also thought to be associated with placental lesions. A six-fold increase in fetal cardiac abnormalities is reported in the presence of fetal thrombotic vasculopathy.[34] The most common cardiac abnormalities found in its presence are ventricular and atrial septal defects, cardiomegaly, and coarctation of the aorta. It is hypothesized that the relation may be explained by a causal link between the two
Reference	Country	Study design	Study population	Study period	Sample size	Blinding placental examiner	Definitions placental lesions	Corrected for GA	Quality assessment	Outcome/ exposure	Quality assessment Co-C	Quality assessment Total	
Beebe et al. (1996) [22]	USA	Cohort	Retrospective	High risk population, all GA	1989–1992	1252	Y	Y	Y	3	2	2	7
Watterberg et al. (1996) [23]	USA	Case-control	Prospective	Intubated infants <2000 gram. Case: RDS	1987–1989	38 cases, 15 controls	Y	Y	N	3	0	3	6
Baergen et al. (2001) [24]	USA	Case-control	Retrospective	All GA. Case: ELUC	1977–1995	926 cases, 200 controls	Y	Y	N	3	2	3	8
Redline et al. (2002) [25]	USA	Cohort	Retrospective	VLBW infants <32 wk GA	1995–1997	371	Y	reference previous article	Y	3	2	3	8
Ogunyemi et al. (2003) [26]	USA	Cohort	Retrospective	Preterm infants 24-32 wk GA	1992–2000	774	NS	Y	Y	4	2	3	9
Ariel et al. (2004) [27]	Israel	Cohort	Prospective	Infants from pregnancies with preeclampsia, placental abruption or RUGR	1996–2004	64	Y	Y	N	3	0	3	6
Holcroft et al. (2004) [28]	USA	Cohort	Retrospective	Preterm infants admitted NICU <34 wk GA	1999–2002	259	NS	Y	Y	4	2	3	9
Richardson et al. (2006) [29]	Canada	Cohort	Retrospective	Preterm infants 25-34 wk GA	1995–2003	660	NS	Y	Y	3	2	3	8
Mehta et al. (2006) [30]	USA	Cohort	Retrospective	Preterm infants admitted NICU ≤34 wk GA	1999–2001	165	Y	N	Y	3	1	2	6
de Laat et al. (2006) [31]	The Netherlands	Case-control	Prospective	All GA. Cases: overcoiling / undercoiling UC	2002–2003	885	Y	Y	Y	3	1	3	7
Beaudet et al. (2007) [32]	Canada	Cohort	Retrospective	NICU population placental pathology report available	1996–1997	1296	Y	NS	Y	3	2	3	8
Dix et al. (2010) [33]	Switzerland	Case-control	Retrospective	Infants with NEC, all GA. Case: NEC	1994–2005	77 cases, 769 controls	NS	Y	Subanalyses GA	2	0	3	5
Saleemuddin et al. (2010) [34]	USA	Case-control	Retrospective	Infants with FTV, all GA. Case: FTV	1990–2007	113 cases, 216 controls	Y	Y	Y	3	2	3	8
Wintermark et al. (2010) [35]	Canada	Cohort	Prospective	Infants with HIE undergoing induced hypothermia ≥36 wk GA	1996–1997	23	Y	Y	N	4	0	3	7
Reference	Country	Study design	Study population	Study period	Sample size	Blinding placental examiner	Definitions placental lesions	Corrected for GA	Quality assessment Selection 4pt	Quality assessment Comparability 2pt	Quality assessment Outcome/exposure a 3pt	Quality assessment Total 9pt	
-----------------	---------	--------------	------------------	--------------	-------------	-----------------------------	-------------------------------	----------------	---------------------------------	-----------------------------------	--------------------------------------	------------------	
Moscuzza et al. (2011) [36]	Italy	Cohort study Retrospective Single-center	NICU population placental pathology report available	2007	122	NS N N N 2 0	3 5						
Sato et al. (2011) [37]	Japan	Cohort Retrospective Single-center	NICU population <30 wk GA	2000–2008	302	NS Y Y Y 3 1	3 7						
Roescher et al. (2011) [38]	The Netherlands	Cohort Retrospective Single-center	NICU population <32 wk GA	2006	40	Y N N N 4 0	3 7						
Chen et al. (2011) [39]	USA	Cohort Prospective Multi-center	ELGAN 23-27 wk GA	2002–2004	1064	Y Y Y Y 4 2	3 9						
Perrone et al. (2012) [40]	Italy	Cohort Prospective Single-center	Preterm infants <32 wk GA	2008–2001	105	NS Y N N 4 0	2 6						

a: 'outcome' for cohort studies, 'exposure' for case-control studies.
b: Bell stage II and more.

Abbreviations: GA - gestational age; RDS - respiratory distress syndrome; ELUC - excessively long umbilical cord; VLBW - very low birth weight; NS - not stated; IUGR - intrauterine growth restriction; NICU - Neonatal Intensive Care Unit; UC - umbilical cord; NEC - necrotizing enterocolitis; FTV - fetal thrombotic vasculopathy; HIE - hypoxic ischemic encephalopathy; ELGAN - extremely low gestational age newborns.
doi:10.1371/journal.pone.0089419.t002
Reference	Country	Study design	Study population	Study period	Sample size	Blinding placental examiner	Definitions placental lesions for GA	Corrected for GA	Quality assessment Selection 4pt	Quality assessment Comparability 2pt	Quality assessment Outcome/exposure 3pt	Quality assessment Total 9pt
Redline et al. (1998) [41]	USA	Case-control Retrospective Single-center	NICU population <1500 g BW. Cases: NI at 20 m	1983–1991	60 cases, 59 controls	Y	Y	N	2	0	3	5
Redline et al. (2000) [42]	USA	Case-control Retrospective Single-center	Term infants. Cases: NI. Controls: meconium	1990–1997	40 cases, 176 controls	N	Y	Y	1	2	3	6
Viscardi et al. (2001) [43]	USA	Case-control Retrospective Single-center	NICU population all GA. Cases IUGR	1991–1996	94 cases, 145 controls	Y	Y	Y	2	2	3	7
Adams-Chapman et al. (2002) [44]	USA	Case-control Retrospective Single-center	NICU population <37 wk GA. Cases: MFI	1990–1998	21 cases, 42 controls	N	N	Y	3	2	2	7
McDonald et al. (2004) [45]	Ireland	Case-control Retrospective Single-center	Term infants. Cases: NE	1987–1998	93 cases, 387 controls	N	S	NS	2	2	2	7
Redline (2005) [46]	USA	Case-control Retrospective Single-center	Term infants. Cases: NI	1995–2000	125 cases, 250 controls	Y	N	Y	3	2	2	7
Polam et al. (2005) [47]	USA	Case-control Retrospective Single-center	NICU population 22–29 wk GA. Cases: AIUI	1997–2000	102 cases, 75 controls	Y	Y	Y	3	2	2	7
Redline et al. (2007) [48]	USA	Cohort Retrospective Single-center	NICU population ELBW infants <1 kg BW	1992–1995	129	Y	Y	Y	3	2	3	8
Reiman et al. (2008) [49]	Finland	Cohort Retrospective Single-center	Preterm infants <32 wk GA or <1500 g BW	2002–2006	121	Y	Y	Y	3	1	3	7
Suppiej et al. (2008) [50]	Italy	Cohort Retrospective Single-center	NICU population <32 wk GA	1998–2001	104	N	S	N	2	0	1	3
Chau et al. (2009) [51]	Canada	Cohort Prospective Single-center	Preterm infants 24–32 wk GA	2006–2008	92	NS	N	N	3	2	3	8
Leviton et al. (2010) [52]	USA	Cohort Prospective Multicenter	ELGAN <28 wk GA	2002–2004	1246	N	N	Y	4	1	3	8
Elbers et al. (2010) [53]	Canada	Cohort Retrospective Multicenter	Term + late preterm ≥34 wk GA. All neonatal stroke	1992–2006	12	NS	Y	Y	2	0	3	5
Rovira et al. (2011) [54]	Spain	Cohort Retrospective Single-center	Preterm infants <32 wk GA, <1500 g BW	2002–2004	177	NS	Y	Y	4	2	3	9
Reference	Country	Study design	Study population	Study period	Sample size	Blinding placental examiner	Definitions placental lesions for GA	Corrected for GA	Quality assessment Selection 4pt	Quality assessment Comparability 2pt	Quality assessment Outcome/exposure 3pt	Quality assessment Total 9pt
-------------------	-------------	-----------------------	------------------	--------------	-------------	-------------------------------	-------------------------------------	----------------	----------------------------------	--	--	-------------------
Chang et al. (2011) [55]	Canada	Cohort Retrospective Single-center	IUFD 27–41 wk GA	2001–2007	37	Y	Y	Y	3	1	3	7
Blair et al. (2011) [56]	Australia	Case-control Prospective Multi-center	Late preterm + term ≥ 35 wk GA. Cases: CP	1980–1995	445 cases, 497 controls	N	Y	N	4	0	1	5
Van Vliet et al. (2012) [57]	The Netherlands	Cohort Retrospective Single-center	Preterm infants ≥ 32 wk GA. AIUI+MVU	NS	72	Y	Y	Y	4	2	2	8
Hayes et al. (2012) [58]	Ireland	Case-control Retrospective / prospective Single-center	Term infants ≥ 36 wk GA. Cases: NE	2001–2008	141 cases, 309 controls	Y	N	Y	2	2	3	7

*a: ‘outcome’ for cohort studies, ‘exposure’ for case-control studies.
b: Subgroup of placentas of both cases and controls were blinded re-reviewed.

Abbreviations: NICU - Neonatal Intensive Care Unit; BW - birth weight; NL - neurologic impairment; GA - gestational age; IUGR - intrauterine growth restriction; MFI - maternal floor infarction; NE - neonatal encephalopathy; AIUI - ascending intrauterine infection; ELBW - extremely low birth weight; ELGAN - extremely low gestational age newborns; IUFD - intrauterine fetal death; CP - cerebral palsy; MVU - maternal vascular underperfusion.
doi:10.1371/journal.pone.0089419.t003
lesions.[34] The presence of one lesion may lead to the establishment of the other, through abnormal blood flow which serves as the common denominator. Another theory is that a common genetic variation underlies both placental fetal thrombotic vasculopathy and abnormal development of the heart.[34]

This theory is supported by studies in mice which have shown that common genetic variation underlies both placental fetal thrombotic vasculopathy and abnormal development of the heart.[34] In addition, ascending intrauterine infection and fetal thrombotic vasculopathy as the most important placental finding with respect to neonatal morbidity.[22,26,34] This may pave the way for early interventions serving to prevent morbidity. Before such interventions can be defined, however, detailed knowledge of the pathophysiological mechanisms that lead to neonatal morbidity is required.

Placental lesions and neurological morbidity

Many prospective and retrospective studies have been conducted on placental lesions and neurological morbidity (Table 7). Some of the studies focused on early brain development, while others focused on neurological and functional outcome as determined by follow-up testing. However, it is difficult to conduct correlative studies between placenta lesions and neurologic or psychiatric

Table 4. Overview of placental pathology relevant for understanding perinatal morbidity and mortality.

Diagnosis	Pathology and explanation	Outcome
Maternal vascular underperfusion (MVU)	Inadequate spiral artery remodeling or spiral artery pathology (decidual vasculopathy). Commonly seen in pregnancies complicated with pre-eclampsia. Expressed by parenchymal pathology such as placental hypoplasia, increased syncytiot knots, villous agglutination, increased perivillous fibrin, distal vilous hypoplasia, abnormal vilous maturity, infarction, retrolental hematoma.[59]	Fetal death [4,8,14], CP [48,56]
Umbilical cord complications	Obstruction or disruption of the umbilical cord blood flow (e.g. umbilical cord prolapse, entanglement, knots, disrupted velamentous vessels, hyper/hypo-coiling). Can lead to fetal placental vascular stasis resulting in FTV.[35]	Fetal death [21,31], fetal anomalies [24], asphyxia [31,35], low Apgar score at 1–5 minutes [24,31], RDS [24]
Fetal thrombotic vasculopathy (FTV)	Thrombosis, recent or remote, in the umbilical cord, chorionic plate or stem villus vessels and/or secondary degenerative pathology in the fetal vasculature distal to by thrombosis obliterated vessels (e.g. avascular chorionic vili). Expressed by hemorrhagic endovasculopathy, intimal fibrin cushions, fibromuscular hypertrophy, villous stromal-vascular karyorhexis.[60]	Stillbirth [34], asphyxia [35], † illness severity first 24h (38), NEC [32,33], fetal cardiac abnormalities [34], ventriculomegaly [52], PVL [43], NI [41,42], CP [46]
Distal vilous immaturity/vilous maturation defect	Maturation defect of the third trimester placenta characterized by enlarged chorionic vili with increased numbers of capillaries, macrophages, and fluid and decreased formation of vasculosyncytial membranes. As a result the diffusion distance between intervillous space and fetal capillaries is increased.[68]	Fetal death [4], asphyxia in diabetic pregnancy [68]
Villitis of unknown etiology (VUE)	Chronic lymphohistiocytic inflammation of the stem- and chorionic villi, with or without obliteratorive vasculopathy of stem villus vessels.[69]	Neonatal infection [22], NI [42,46], NE [45,58]
Ascending intrauterine infection (AIUI)	Acute chorioamnionitis and choriitis (maternal response). The degree of severity can be staged and graded.[61]	Intrapartum death [10], Low Apgar score at 1–5 minute [22,26,35], neonatal infection [22,26,30,36], ↓ RDS [23,29,37], BPD [23,26,37,40], ↓ NEC [32], ROP [26,36,37,39], IVH [26,32,36,37,47], ventriculomegaly [52], CP [52], NE [45,58]
Chronic deciduitis	Chronic lymphohistiocytic inflammation of placental villi.[70]	Intrapartum death [10], Low Apgar score at 1–5 minute [22,26,35], neonatal infection [22,26,30,36], ↓ RDS [29,37], BPD [23,26,40], NEC [32], ROP[26,36,39], IVH [26,30,32,36,47], brain lesions [49], NI [42,46,54], NE [45,58], disability in development at 2y [54]
Fetal hypoxia	Elevated nucleated red blood cells (NRBCs). Only rare NRBCs are normal after the first trimester. [42]	† illness severity first 24h [38], NI [42]
Chorangiosis	Diffuse increase in the number of villous capillaries	

Abbreviations: CP - cerebral palsy; RDS - respiratory distress syndrome; NEC - necrotizing enterocolitis; PVL - periventricular leukomalacia; NI - neurological impairment; NE - neonatal encephalopathy; BPD - bronchopulmonary dysplasia; ROP - retinopathy of prematurity; IVH - intraventricular hemorrhage.

doi:10.1371/journal.pone.0089419.t004
Placenta	Placental lesion	Ref.	Outcome measure: Perinatal death	Association found proportion*/OR (95% CI)	No association found/ non placental	Remarks
Placenta	Not specified	[11]	Stillbirth	Proportion 0.42 (0.31–0.53)	53% placenta negative	Placenta new insight
Placenta		[14]	Stillbirth	Proportion 0.33 (0.25–0.41)	Direct cause death	
Placenta				Proportion 0.47 (0.38–0.56)	Major contributor	
Placenta		[13]	Unexplained stillbirth	OR 0.17 (0.04–0.70)	After placental assessment stillbirth less likely to be unexplained	
Placenta		[16]	Explanation perinatal death	Proportion 0.73 (0.64–0.81)	12% placenta no connection	Could explain death
Placenta				Proportion 0.51 (0.41–0.66)	death	Cause explained by placental examination alone
Placenta		[12]	Stillbirth	Proportion 0.12–0.40 (0.08–0.48)	Different classification systems	
Placenta		[4]	Stillbirth	Proportion 0.65 (0.61–0.69)	Placental lesions main cause fetal death	
Placenta		[15]	Stillbirth	Proportion 0.22 (0.15–0.30)	51% no placental cause	Secondary main condition
Placenta		[17]	Stillbirth	Proportion 0.42 (0.37–0.47)	19.9% fetal, 13% maternal, 31.9% no cause	Proportion placental/cord causes stillbirth
Placenta		[18]	Stillbirth	Proportion 0.24 (0.20–0.28)	29.3% obstetric condition, 13.7% fetal abnormalities, 12.9% infection, 10.4% umbilical cord abnormalities	Placental second common cause stillbirth. Placenta main cause (26.1%) in antepartum deaths.
Placenta		[19]	Test determine cause death	Proportion 0.96 (0.94–0.97)	72.6% autopsy, 29.0% genetic analysis	Placental examination most valuable test for determination of cause stillbirth
Placenta		[9]	placental pathology in survivors and neonates who died	Proportion 0.61–0.69	No differences in placental pathology between survivors and neonates who died.	
Placenta		[6]	Stillbirths	OR: 2.43 (1.12–5.26)	Positive placental pathology in 66% of stillbirths versus 44% in controls.	
Placenta		[8]	Stillbirth	Proportion 0.62 (0.56–0.67)	Leading cause intrauterine death	
Placenta		[5]	Evaluation Stillbirth	Proportion 0.30 (0.26–0.34)	Most important aspects stillbirth evaluation: placenta and autopsy	
Placenta		[20]	Stillbirth	Proportion 0.50 (0.45–0.55)	19.4% unknown	Main cause of death. Placenta 18% associated condition death
Placenta	Acute/subacute pathology	[7]	Stillbirth + neonatal death	Proportion 0.32 (0.27–0.38)	23% congenital malformation, 16% infection, 8% prematurity, 7% unclassifiable	Most probable cause stillbirth
Placenta	Chronic/ progressive pathology	[7]	Stillbirth + neonatal death	Proportion 0.21 (0.16–0.27)	Third most probable cause stillbirth	
AIUI	Ascending intrauterine infection	[10]	Intrapartum death	Proportion 0.35 (0.18–0.57)	50% other (UC entanglement)	Proportion AIUI in intrapartum death
AIUI		[15]	Stillbirth	Proportion 0.23 (0.16–0.31)	Major relevant condition associated with death. Chorioamnionitis diagnosed by bacterial cultures	
MVU	Maternal vascular underperfusion	[14]	Stillbirth	Proportion 0.35 (0.27–0.44)	Direct/major contributor fetal death	
MVU		[4]	Stillbirth	Proportion 0.34 (0.30–0.38)	Most important placental lesions in fetal death	
MVU		[8]	Stillbirth	Proportion 0.38 (0.31–0.45)	Main contributor placental lesions to death	
outcomes in the child.[90] Neurological outcomes are not evident immediately after birth, but only long after most placentas have been discarded. Placentas, especially those of term infants, are not routinely sent to the pathologist for examination.[55,90] Unless immediately after birth, but only long after most placentas have outcomes in the child.[90] Neurological outcomes are not evident within the brain that have been implicated in the pathogenesis of cystic PVL and CP. Therefore, if low gestational age resulting from maternal infection in itself plays a direct role in the pathogenesis of CP, then adjusting for its effect will falsely diminish the observed association between chorioamnionitis and CP.[91]

Neonatal encephalopathy has mainly an antepartum, rather than an intrapartum, etiology. An important antepartum factor is placental pathology.[45,58] Placental lesions consistent with fetal thrombotic vasculopathy (OR 4.63, 95% CI: 2.01–10.68) and AIUI with a fetal response (funisitis) (OR 22.54 95% CI: 11.07–45.91) are both associated with neonatal encephalopathy.[45,58] Another less strongly associated placental lesion is accelerated villous maturation (disturbed uteroplacental flow) with an OR of 3.35 (95% CI: 1.48–7.63). Elbers et al. studied placental pathology in relation to neonatal stroke.[33] They systematically described their findings in twelve cases of neonatal stroke, ten of which had placental lesions. They found the following types of lesions: thromboinflammatory process in six cases, sudden catastrophic event in five cases, decreased placental reserve in three cases, and stressful intrauterine environment in two cases. They suggested that multiple risk factors are involved in neonatal stroke, and that placental pathology may be a contributing factor.[53]

Another less strongly associated placental lesion is accelerated villous maturation (disturbed uteroplacental flow) with an OR of 3.35 (95% CI: 1.48–7.63).

Neonatal encephalopathy has mainly an antepartum, rather than an intrapartum, etiology. An important antepartum factor is placental pathology.[45,58] Placental lesions consistent with fetal thrombotic vasculopathy (OR 4.63, 95% CI: 2.01–10.68) and AIUI with a fetal response (funisitis) (OR 22.54 95% CI: 11.07–45.91) are both associated with neonatal encephalopathy.[45,58] Another less strongly associated placental lesion is accelerated villous maturation (disturbed uteroplacental flow) with an OR of 3.35 (95% CI: 1.48–7.63). Elbers et al. studied placental pathology in relation to neonatal stroke.[33] They systematically described their findings in twelve cases of neonatal stroke, ten of which had placental lesions. They found the following types of lesions: thromboinflammatory process in six cases, sudden catastrophic event in five cases, decreased placental reserve in three cases, and stressful intrauterine environment in two cases. They suggested that multiple risk factors are involved in neonatal stroke, and that placental pathology may be a contributing factor.[53]

Another less strongly associated placental lesion is accelerated villous maturation (disturbed uteroplacental flow) with an OR of 3.35 (95% CI: 1.48–7.63). Elbers et al. studied placental pathology in relation to neonatal stroke.[33] They systematically described their findings in twelve cases of neonatal stroke, ten of which had placental lesions. They found the following types of lesions: thromboinflammatory process in six cases, sudden catastrophic event in five cases, decreased placental reserve in three cases, and stressful intrauterine environment in two cases. They suggested that multiple risk factors are involved in neonatal stroke, and that placental pathology may be a contributing factor.[53]

Another less strongly associated placental lesion is accelerated villous maturation (disturbed uteroplacental flow) with an OR of 3.35 (95% CI: 1.48–7.63). Elbers et al. studied placental pathology in relation to neonatal stroke.[33] They systematically described their findings in twelve cases of neonatal stroke, ten of which had placental lesions. They found the following types of lesions: thromboinflammatory process in six cases, sudden catastrophic event in five cases, decreased placental reserve in three cases, and stressful intrauterine environment in two cases. They suggested that multiple risk factors are involved in neonatal stroke, and that placental pathology may be a contributing factor.[53]

Another less strongly associated placental lesion is accelerated villous maturation (disturbed uteroplacental flow) with an OR of 3.35 (95% CI: 1.48–7.63). Elbers et al. studied placental pathology in relation to neonatal stroke.[33] They systematically described their findings in twelve cases of neonatal stroke, ten of which had placental lesions. They found the following types of lesions: thromboinflammatory process in six cases, sudden catastrophic event in five cases, decreased placental reserve in three cases, and stressful intrauterine environment in two cases. They suggested that multiple risk factors are involved in neonatal stroke, and that placental pathology may be a contributing factor.[53]

Another less strongly associated placental lesion is accelerated villous maturation (disturbed uteroplacental flow) with an OR of 3.35 (95% CI: 1.48–7.63). Elbers et al. studied placental pathology in relation to neonatal stroke.[33] They systematically described their findings in twelve cases of neonatal stroke, ten of which had placental lesions. They found the following types of lesions: thromboinflammatory process in six cases, sudden catastrophic event in five cases, decreased placental reserve in three cases, and stressful intrauterine environment in two cases. They suggested that multiple risk factors are involved in neonatal stroke, and that placental pathology may be a contributing factor.[53]

Another less strongly associated placental lesion is accelerated villous maturation (disturbed uteroplacental flow) with an OR of 3.35 (95% CI: 1.48–7.63). Elbers et al. studied placental pathology in relation to neonatal stroke.[33] They systematically described their findings in twelve cases of neonatal stroke, ten of which had placental lesions. They found the following types of lesions: thromboinflammatory process in six cases, sudden catastrophic event in five cases, decreased placental reserve in three cases, and stressful intrauterine environment in two cases. They suggested that multiple risk factors are involved in neonatal stroke, and that placental pathology may be a contributing factor.[53]

Another less strongly associated placental lesion is accelerated villous maturation (disturbed uteroplacental flow) with an OR of 3.35 (95% CI: 1.48–7.63). Elbers et al. studied placental pathology in relation to neonatal stroke.[33] They systematically described their findings in twelve cases of neonatal stroke, ten of which had placental lesions. They found the following types of lesions: thromboinflammatory process in six cases, sudden catastrophic event in five cases, decreased placental reserve in three cases, and stressful intrauterine environment in two cases. They suggested that multiple risk factors are involved in neonatal stroke, and that placental pathology may be a contributing factor.[53]

Another less strongly associated placental lesion is accelerated villous maturation (disturbed uteroplacental flow) with an OR of 3.35 (95% CI: 1.48–7.63). Elbers et al. studied placental pathology in relation to neonatal stroke.[33] They systematically described their findings in twelve cases of neonatal stroke, ten of which had placental lesions. They found the following types of lesions: thromboinflammatory process in six cases, sudden catastrophic event in five cases, decreased placental reserve in three cases, and stressful intrauterine environment in two cases. They suggested that multiple risk factors are involved in neonatal stroke, and that placental pathology may be a contributing factor.[53]

Another less strongly associated placental lesion is accelerated villous maturation (disturbed uteroplacental flow) with an OR of 3.35 (95% CI: 1.48–7.63). Elbers et al. studied placental pathology in relation to neonatal stroke.[33] They systematically described their findings in twelve cases of neonatal stroke, ten of which had placental lesions. They found the following types of lesions: thromboinflammatory process in six cases, sudden catastrophic event in five cases, decreased placental reserve in three cases, and stressful intrauterine environment in two cases. They suggested that multiple risk factors are involved in neonatal stroke, and that placental pathology may be a contributing factor.[53]

Another less strongly associated placental lesion is accelerated villous maturation (disturbed uteroplacental flow) with an OR of 3.35 (95% CI: 1.48–7.63). Elbers et al. studied placental pathology in relation to neonatal stroke.[33] They systematically described their findings in twelve cases of neonatal stroke, ten of which had placental lesions. They found the following types of lesions: thromboinflammatory process in six cases, sudden catastrophic event in five cases, decreased placental reserve in three cases, and stressful intrauterine environment in two cases. They suggested that multiple risk factors are involved in neonatal stroke, and that placental pathology may be a contributing factor.[53]

Table 5. Cont.

Placenta	Placental lesion	Ref.	Outcome measure: Perinatal death	Association found proportion/*OR (95% CI)	No association found/ non placental	Remarks
UC	Umbilical cord lesions	[15]	Stillbirth	Proportion 0.05 (0.02–0.10)		Proportion UC pathology in stillbirth
UC	Umbilical cord complication	[21]	Stillbirth	Proportion 0.08 (0.06–0.10)		Significant more in term stillbirth (9.75) compared to preterm stillbirth (6.4%)
UC	Undercoiling umbilical cord	[31]	Fetal death	OR 3.35 (1.48–7.63)		
UC	Overcoiling umbilical cord	[31]	Fetal death	Not significant. OR 2.43 (0.68–8.66)		
UC	Excessive long UC	[24]	Fetal/neonatal death	Not significant. OR 2.75 (0.65–36.14)		

*proportion placental lesions in perinatal death.

Abbreviations: AIUI - ascending intrauterine infection; MVU - maternal vascular underperfusion; UC - umbilical cord.

doi:10.1371/journal.pone.0089419.t005
Table 6. Results of selected studies on neonatal morbidity.

Placental lesion specified	Ref.	Outcome measure	Associations found OR (95% CI)	Association found other	No association found	Remarks
Maternal + fetal response	[22,26,35]	Low Apgar score	Proportion AIUI: 0.35 95%CI (0.19–0.53) [35]	Apgar 1–5 minutes, asphyxia.		
AIUI (not specified)	[38]	Illness severity first 24h	No relation			
AIUI	[22,26,30,32,36]	Neonatal infection	Effect size r = 0.31 [36]	No relation [32]	EOS + LOS + nosocomial infection	
AIUI	[23,26,32]	RDS	OR 0.11 (0.02–0.63)	No relation [26,32]		
AIUI	[23,26,32,40]	BPD	OR 2.0–7.4 (1.20–31.16)	No relation [32]		
AIUI	[25]	BPD	OR 0.7 (0.4–0.9)	Unadjusted GA ns		
AIUI	[26,30,32,36,40]	PDA	Effect size r = 0.25 [36]	No relation [32,30]		
AIUI	[26,36,39,40]	ROP	Effect size r = 0.52 [36]	No relation [40]	In combination with micro-organisms [39]	
AIUI	[26,32,40]	NEC	OR 3.80 (1.67–8.67)	No relation [26,40]		
AIUI	[28]	Fetal metabolic acidosis	No relation			
AIUI	[22]	Liver disorders	No relation			
AIUI	[22]	Anomalies*	No relation			
Maternal response	[28]	Fetal metabolic acidosis	No relation			
AIUI	[29,37]	RDS	Proportion RDS: 0.44 95% CI (0.35–0.53) [29]	Significant less than control group		
AIUI	[29,37]	BPD	Proportion: 0.22 95% CI (0.10–0.42)	Proportion AIUI		
AIUI	[29,37]	IVH	Proportion: 0.47 95% CI (0.40–0.55)	Significant less than control group		
AIUI	[29,37]	PDA	Proportion: 0.47 95% CI (0.40–0.55)	Significant less than control group		
AIUI	[29,30]	IVH	No relation [29]	Adjusted for GA not significant [29]		
AIUI	[37]	ROP	No relation	Stage AIUI		
AIUI	[37]	NEC	No relation	Stage AIUI		
Fetal response	[29]	RDS	Proportion: 0.47 95% CI (0.40–0.55)	Significant less than control group		
MVU	[26,32]	Neonatal infection				
MVU	[26,32,40]	NEC	OR 4 (1.7–9.2)	No relation [32,40]		
MVU	[25,26,32,40]	BPD				
MVU	[26,32]	RDS				
MVU	[26,32,40]	PDA				
MVU	[26,40]	ROP				
MVU	[22]	Liver disorders	OR 2.2 (1.2–4.2)	Only with abruption		
MVU	[22]	Low Apgar score 1 min	Apgar <7 (1+5 min)			
MVU	[26,32]	Illness severity first 24h	No relation			
MVU	[26,32,40]	NEC	No relation [32,40]			
MVU	[25,26,32,40]	BPD	No relation			
MVU	[26,32]	RDS	No relation			
MVU	[26,32,40]	PDA	No relation			
MVU	[26,40]	ROP	No relation			
MVU	[22]	Liver disorders				
MVU	[22]	Low Apgar score 1 min	No relation			
Placental lesion specified	Ref.	Outcome measure	Associations found OR (95% CI)	Association found other	No association found	Remarks
---------------------------	------	-----------------	-------------------------------	-------------------------	---------------------	---------
MVU	[22]	Neonatal infection	No relation			
MVU	[22]	Anomalies*	No relation			
FTV	[34]	NRFHT	OR 3.01 (1.54–5.78)			
FTV	[34]	Fetal cardiac abnormalities	OR 8.02 (3.02–21.26)			
FTV	[34]	CNS abnormalities	No relation			
FTV	[35]	Asphyxia	Proportion: 0.26 95% CI (0.13–0.46)	Proportion FTV		
FTV	[38]	Illness severity first 24h	Median scores illness severity significantly ↑	Higher illness severity		
FTV	[32,33]	NEC	OR 4.34–9.10 (1.80–15.08)			
FTV	[27]	Fetal thrombophilia	No relation			
FTV	[32]	Nosocomial infection	No relation			
FTV	[32]	RDS	No relation			
FTV	[32]	BPD	No relation			
FTV	[32]	PDA	No relation			
FTV	[32]	IVH	No relation			
VUE	[22]	Low Apgar score 1 min	No relation			
VUE	[38]	Illness severity first 24h	No relation			
VUE	[22]	Neonatal infection	OR 2.3 (1.1–5.1)			
VUE	[22]	Liver disorders	No relation			
VUE	[22]	Anomalies*	No relation			
Deciduitis	[38]	Illness severity first 24h	No relation			
Deciduitis	[32]	Nosocomial infection	No relation			
Deciduitis	[32]	RDS	No relation			
Deciduitis	[25,30,32]	BPD	No relation			
Deciduitis	[32]	NEC	No relation			
Deciduitis	[30,32]	PDA	No relation			
Deciduitis	[30,32]	IVH	No relation			
Deciduitis	[30]	ROP	No relation			
UC	[35]	Asphyxia	Proportion UC: 0.39 95% CI (0.22–0.59)	Less in control group		
UC	[24]	Apgar 1 min	Effect size r = –0.09	Lower Apgar scores		
UC	[24]	Apgar 5 min	Effect size r = –0.07	Lower Apgar scores		
UC	[24]	NRFHS	OR 4.91 (1.71–15.91)			
UC	[24]	Fetal anomalies	OR 13.10 (1.95–256.26)			
UC	[24]	Respiratory distress	OR 2.86 (1.09–8.17)			
UC	[31]	Low Apgar 5 min	OR 3.14 (1.47–6.70)			
UC	[31]	Asphyxia	OR 4.16 (1.30–13.36)			
Marker	[38]	Illness severity	Median scores illness severity significantly ↑	Higher illness severity		
Marker	[36]	LOS	No relation			
Marker	[36]	PDA	No relation			
process that harmed the vasculature of the placenta causing infarction, the same process may also have directly harmed either the fetal cerebral vasculature or the brain.[56]

Results on the association between placental pathology and long-term neurological outcome, including developmental tests and functional outcome, are also inconsistent between studies. In preterm infants it is thought that neurological impairment is
Placental lesion	Placental lesion specified	Ref.	Outcome measure	Associations found OR (95% CI)	Association found other	No association found	Remarks	
AIUI Maternal + fetal response	[26,32,36,40,47]	IVH	OR 1.7–3.5 (1.2–23)	\(r^2 = 0.71 \) [36]	No relation [40]	No association found	Stage/grade AlUI also not associated with WMI	
AIUI Not specified	[51]	WMI		No relation		Stage/grade AlUI also not associated with WMI		
AIUI	[43]	Ultrasound abnormalities		No relation		IVH, PVL, infarction		
AIUI	[55]	Neuronal karyorrhexis or white matter gliosis	No data (\(p<0.05 \))	Neuropathology in stillbirths				
AIUI	[47]	Neurodevelopment		No relation		Age: 12–24m BSID-II		
AIUI	[50]	Speech abnormalities	OR: 5.1 (1.35–19.4)	18months				
AIUI	[59]	Hearing loss	OR 11.6 (1.3–105.9)	18months				
AIUI	[59]	Motor development	No relation	18months				
AIUI Maternal response	[29,54]	IVH	OR 2.4 (1.0–5.6)	No relation [29]	Adjusted for GA not significant [54]			
AIUI	[52]	Venticulomegaly	OR 1.4–1.5 (1.01–2.4)	No relation				
AIUI	[48,52,54]	CP	OR 2.3–3.4 (1.1–7.4)	No relation [48,54]				
AIUI	[58]	Neonatal encephalopathy	OR 2.02 (1.16–3.74)	RRR 3.3 (1.1–10.4) [58]	Adjusted for confounders not significant [45]			
AIUI	[49]	Brain lesions		No relation	IVH, cPVL, ventriculomegaly			
AIUI	[41]	Neurologic impairment		No relation	VLBWI			
AIUI	[54]	Motor abnormalities	OR 3.68 (0.95–14.28)	24 m Bayley-II or Brunet-Lezine scale				
AIUI	[54]	Any grade disability		No relation	24months			
AIUI	[54]	Speech abnormalities		No relation	24months			
AIUI	[54]	Hearing loss		No relation	24months			
AIUI	[48]	Neurocognitive function		No relation	ELBWI follow-up 8y			
AIUI Fetal response	[29,30,54]	IVH	OR 2.0–2.3 (1.0–5.5)	No relation [29]	Adjusted for GA not significant [54]			
AIUI	[51]	WMI		No relation				
AIUI	[52]	Ventriculomegaly		No relation	OR 1.4 (0.9–2.2) [52]			
AIUI	[48,52,54]	CP	OR 4.32 (0.91–20.44)	No relation [48,52]	OR 1.7 (0.8–3.7) [52]			
AIUI	[41,42,46]	Neurologic impairment	OR 2.9–13.2 (1.2–144)	No relation [41]				
AIUI	[43,58]	Neonatal encephalopathy	OR 22.54 (11.07–45.91)	RRR 20.7–34.6 (1.8–232.9) [58]				
AIUI	[49]	Brain lesions	OR 2.46 (1.13–5.41)	Adjusted for GA not significant	IVH, cPVL, ventriculomegaly			
AIUI	[54]	Moderate to severe disability	OR 4.08 (1.16–14.44)	24months				
AIUI	[54]	Speech abnormalities	OR 2.89 (1.19–7.04)	24months				
AIUI	[54]	Hearing loss		No relation	24months			
AIUI	[48]	Neurocognitive function		No relation	ELBWI follow-up 8y			
Placental lesion	Placental lesion specified	Ref.	Outcome measure	Associations found OR (95% CI)	Association found other	No association found	Remarks	
-----------------	---------------------------	------	----------------	-------------------------------	-------------------------	----------------------	---------	
MVU	Maternal vascular underperfusion	[26,32,40]	IVH			No relation		
MVU	[52]	Venticulomegaly	OR 0.5 (0.3–0.96)					
MVU	[45]	Neonatal encephalopathy	OR 3.86 (1.36–10.92)					
MVU	[53]	Neonatal stroke	Proportion 0.25 (0.09–0.53)	3 placentas of 12 infants with neonatal stroke				
MVU	[41]	Neurologic impairment	OR 3.7–9.2 (1.0–51)	Only chorionic plate thrombi	[41]			
MVU	[48,52]	Neurodevelopment 7/8y	OR 4.1–7.4 (1.3–17.9)	Adjusted for GA not significant	[42]	With oblative fetal vasculopathy		
MVU	[45,58]	Neurodevelopment	OR 2.11 (1.16–3.83)	RRR 17.7 (5.0–60.8) [58]	Adjusted for confounders not significant			
FTV	[32]	Venticulomegaly	OR 2.1 (1.2–3.9)					
FTV	[48,52]	CP	OR 7.4–10.1 (1.6–46.3)	No relation	OR 1.5 (0.3–6.6)	[52]		
FTV	[41,42,46]	Neurologic impairment	OR 3.7–9.2 (1.0–51)	Only chorionic plate thrombi	[41]			
FTV	[42,46]	Neurologic impairment	OR 4.1–7.4 (1.3–17.9)	Adjusted for GA not significant	[42]	With oblative fetal vasculopathy		
FTV	[45,58]	Neonatal encephalopathy	OR 2.11 (1.16–3.83)	RRR 17.7 (5.0–60.8) [58]	Adjusted for confounders not significant			
VUE	[43]	Ultrasound abnormalities	OR 5.41 (1.42–20.54)	IVH, PVL, infarction				
VUE	[44]	CP	OR 14 (2–163)	Age:22–29months				
Deciduitis	[32]	Ventriculomegaly	OR 2.1 (1.2–3.9)					
Deciduitis	[48,52]	CP	OR 7.4–10.1 (1.6–46.3)	No relation	OR 1.5 (0.3–6.6)	[52]		
MFI	Maternal floor infarction	[43,44]	Ultrasound abnormalities	No relation	IVH, PVL, infarction			
MFI	[44]	WMI	OR 3.7 (1.1–12.7)					
MFI	[44]	Neurodevelopment	OR 14 (2–163)	Age:22–29months				
Marker	Elevated NRBCs	[36]	Venticulomegaly	OR 2.1 (1.2–3.9)				
Marker	[55]	Neurologic impairment	OR 5.7 (1.5–21.0)					
Marker	Stressful intrauterine environment	[33]	Neonatal stroke	Proportion 0.17 (0.05–0.45)	1 case ↑ NRBCs and 1 case chorangiosis			
Other	Villus edema	[48]	Neurocognitive function	OR 4.7 (1.1–19.2)	ELBW follow-up	By		
Other	[41]	Neurologic impairment	OR 5.7 (1.5–21.0)					
Placental lesion specified	Outcome measure	Associations found OR (95% CI)	Association found other	No association found	Remarks			
---------------------------	-----------------	-------------------------------	-------------------------	---------------------	---------			
Other	Neonatal encephalopathy	OR 4.63 (2.01–10.68)	No data (p<0.05)	Neuropathology in stillbirths				
Other	Neuronal karyorrhexis							
Other	IVH	OR 2.57–2.19 (1.01–6.58)						
Other	IVH	No relation						
Other	Meconium staining							
Other	IVH	No relation						
Other	Meconium-associated vascular necrosis	Neurologic impairment	OR 4.8–8.2 (2.0–29.0)	Adjusted for GA not significant [42]				
Other	Meconium phagocytosis	Neonatal encephalopathy	RRR 7.2–9.8 (2.3–42.4)					
Other	Chorioamnioniotic hemosiderosis	Neurologic impairment	OR 74.8 (6.3–894)					
Other	Sudden catastrophic event	Neonatal stroke	Proportion 0.42 (0.19–0.68)	Retropelacental hematoma and umbilical cord occlusion				
Other	Thrombo-inflammatory process	Neonatal stroke	Proportion 0.5 (0.25–0.75)	Acute chorioamnionitis, chronic villitis, chorionic vessel thrombi, avascular villi				

* = effect size.

Abbreviations: IVH - intraventricular hemorrhage; WMI - white matter injury; PVL - periventricular leukomalacia; BSID - Bayley scales of infant development; GA - gestational age; CP - cerebral palsy; cPVL - cystic periventricular leukomalacia; ELBW - extremely low birth weight infant; VLBW - very low birth weight infant; MDI - mental development index; PDI - psychomotor development index; WISC - Wechsler Intelligence Scale for Children; MABC - movement assessment battery for children; CBCL - Children Behavior Checklist.

Abbreviations placental lesions: AIUI - ascending intrauterine infection; MVU - maternal vascular underperfusion; FTV - fetal thrombotic vasculopathy; VUE - villitis of unknown etiology; MFI - maternal floor infarction; NRBCs - nucleated red blood cells.

doi:10.1371/journal.pone.0089419.t007
Discussion/Conclusion

The placenta plays a key role in fetal and neonatal mortality, morbidity, and outcome. Placental lesions are one of the main contributors to fetal death. In these cases placental lesions consistent with maternal vascular underperfusion are most important. Although less clear-cut, several neonatal problems are also associated with placental lesions. Regarding neonatal morbidity and neurological outcome, placental lesions with ascending intrauterine infection (with a fetal component) and fetal thrombotic vasculopathy, constitute the greatest problem.

To our surprise we noticed a difference in the description of placental lesions between studies on perinatal death and studies on neonatal outcome. The majority of studies on placental pathology and stillbirth only focus on the presence or absence of placental lesions in general, but they do not examine the relation between specific placental lesions and stillbirth. Studies concerning placental lesions and neonatal or neurological outcome do specify the lesions, finding several relations between specific placental lesions and outcome. Characterizing placental lesions in more detail in stillbirth studies may provide additional information concerning the cause of death.

Most studies report on associations between placental lesions and outcomes but this does not necessarily reflect a causal relation. There is still need to clarify pathophysiological mechanisms. One of these proposed mechanisms include gene-environment interactions. Placental lesions might already have their onset early in pregnancy, due to changes in placental genes, leading to epigenetic alterations. Causes for these placental epigenetic changes may include a non optimal intrauterine environment, due to a maternal disease or adverse insults to the intrauterine environment.

This may in turn cause placental dysfunction and hence adverse neonatal outcome. We thus have to take into account that multiple interactions from maternal, placental, and fetal health play a role in the etiology of perinatal death and neonatal morbidity. Future research must consider statistical tools to better address interactions among these multiple variables, such as a mixed-effect regression analyses for example.

There are several limitations to our systematic review. Firstly, there is a potential risk of publication bias. Studies finding negative results regarding placental lesions and outcome might not be published. This may lead to an overestimation of associations between placental lesions and outcomes. Secondly, we included studies from the past 18 years. Earlier studies might have had different results. Finally, most studies included in this review were conducted in high-risk populations. Studies in a low- or moderate-risk group may reveal different results.

A final point we would like to address is an urgent need for increasing awareness among pediatricians for placental lesions and neonatal outcome. The obstetrician sends the placenta to the pathologist for histological examination. The results of the examination are reported back to the obstetrician. In most cases the pediatrician is unaware of the results of the placental examination. In the light of the accumulating evidence, however, that placental pathology is associated with perinatal mortality, neonatal morbidity, and neurological outcome, pediatricians should make an effort to obtain the results of placental examinations. Placental pathology, ascending intrauterine infection, and fetal thrombotic vasculopathy in particular, may help to identify the group of neonates at risk of adverse neonatal outcome. Monitoring these infants more closely could be helpful. Knowledge of the pathophysiological mechanisms leading to neonatal mortality and morbidity may lead the way to finding early intervention strategies to improve infants’ morbidity and outcome.

Supporting Information

Checklist S1 PRISMA flowchart of identified articles published between January 1995 and October 2013.

(DOC)
Acknowledgments

We thank Dr. Tiita Brantsma - van Vuilen for correcting and editing the English manuscript.

Author Contributions

Wrote the paper: AMR. Designed the structure of the manuscript: AMR. AT JJHME AFB. Literature search: AMR. AFB. Drafted the initial manuscript: AMR. Drafted the ‘placental pathology’ section: AT. Reviewed and revised initial manuscript: AT JJHME AFB. Approved the final manuscript as submitted: AMR. AT JJHME AFB.

References

1. Larsen W (2001) Human embryology. Philadelphia: Churchill livingstone.
2. Bonini A, Levitt P (2011) Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience 197: 1–7.
3. Robbins JR, Bakardjieff MI (2012) Pathogens and the placental fortress. Curr Opin Microbiol 15: 36–43.
4. Korteweg EJ, Erwich JJ, Holm JP, Ravisse JM, van der Meer J, et al. (2009) Placental pathology as the main causes of fetal death. Obstet Gynecol 114: 809–817.
5. Incerti MH, Miller DA, Samadi R, Selltze RH, Goodwin TM (1998) Stillbirth evaluation: What tests are needed? Am J Obstet Gynecol 178: 1121–1125.
6. Ogutuyinka D, Jackson U, Bayshe S, Risk A (1993) Clinical and pathological correlates of stillbirths in a single institution. Acta Obstet Gynecol Scand 72: 722–728.
7. de Galan-Roosen AE, Knijpers JC, van der Straaten PJ, Merkus JM (2002) Epidemiology of placental lesions in preterm infants. J Matern Fetal Neonatal Med 13: 102–109.
8. Holcroft CJ, Askin FB, Patra A, Allen MC, Blakemore KJ, et al. (2004) Are histopathologic chorioamnionitis and funisitis associated with metabolic acidosis in the preterm fetus? Am J Obstet Gynecol 191: 2010–2015.
9. Richardson BS, Waki M, daSilva O, Walton J (2006) Perinatal histologic chorioamnionitis: Impact on cord gas and pH values and neonatal outcome. Am J Obstet Gynecol 195: 1357–1363.
10. Mehra R, Nairjandawally S, Shen-Schwarz S, Petrova A (2006) Neonatal morbidity and placental pathology. Indian J Pediatr 73: 25–28.
11. de Laat MW, Franx A, Bos ML, Visser GH, Nijkels PG (2006) Umbilical cord coiling index in normal and complicated pregnancies. Obstet Gynecol 107: 1049–1055.
12. Beaudet L, Kaurer S, Lau J, Magee F, Lee SK, et al. (2007) Placental pathology and clinical outcomes in a cohort of infants admitted to a neonatal intensive care unit. J Obstet Gynecol Can 29: 315–323.
13. De L, Roth-Kleiner M, O (2010) Placental vascular obstructive lesions: Risk factor for developing necrotizing enterocolitis. Pathol Res Int 2010: 839917.
14. Stillbirth Collaborative Research Network Writing Group (2011) Causes of intrauterine death during 310 consecutive autopsies. Eur J Obstet Gynecol Reprod Biol 157: 134–138.
15. Locatelli A, Roncaglia N, Andreotti C, Doria V, Doni D, et al. (2005) Factors affecting survival in infants weighing 750 g or less. Eur J Obstet Gynecol Reprod Biol 117: 52–55.
16. Burke CJ, Tammengberg AE (2007) Intrapartum stillbirths in hospital unrelated to perinatal vascular insufficiency. Pediatr Dev Pathol 10: 35–40.
17. Zanconato G, Piazzola E, Caloi E, Iacono C, Ruffo R, et al. (2007) Clinical-pathophysiologic evaluation of 59 cases of fetal death. Arch Gynecol Obstet 276: 619–625.
18. Ogunyemi D, Jackson U, Buyske S, Risk A (1998) Clinical and pathologic features: Associations with gestational age and neonatal outcome. Obstet Gynecol Scand.
19. Tellefsen CH, Vogt C (2011) How important is placental examination in cases of premature death among stillbirths. JAMA 306: 2459–2468.
20. Suppiej A, Franzoi M, Vedovato S, Marucco A, Chiarelli S, et al. (2009) Perinatal lesions associated with neurologic impairment and cerebral palsy in infants weighing less than 1 kg. Arch Pediatr 152: 642–7, 647.e1–2.
21. Bonetti LR, Ferrari P, Trani M, Andreotti C, Doria V, Doni D, et al. (2011) The role of fetal growth restriction with placental lesions in the causes of fetal death: A case-control study. Pediatr Dev Pathol 14: 99–104.
22. Bring HS, Vaarli IA, Kubliaks M, Pispapieniakki N, Petserson K (2013) Classification of stillbirths and risk factors by cause of death—a case-control study. J Obstet Gynaecol 30: 700–704.
23. Watterberg KL, Demers LM, Scott SM, Murphy S (1996) Chorioamnionitis and placental pathology in excessively long umbilical cords: Retrospective study. Obstet Gynecol 87: 771–778.
24. Baergen RN, Malicki D, Behling C, Benirschke K (2001) Morbidity, mortality, and placental pathology in asphyxiated newborns meeting the criteria for therapeutic hypothermia. Am J Obstet Gynecol 200: 579.e1–579.e9.
25. Holcroft CJ, Askin FB, Patra A, Allen MC, Blakemore KJ, et al. (2004) Are histopathologic chorioamnionitis and funisitis associated with metabolic acidosis in the preterm fetus? Am J Obstet Gynecol 191: 2010–2015.
26. Stillbirth Collaborative Research Network Writing Group (2011) Causes of intrauterine death during 310 consecutive autopsies. Eur J Obstet Gynecol Reprod Biol 157: 134–138.
27. de Galan-Roosen AE, Knijpers JC, van der Straaten PJ, Merkus JM (2002) Epidemiology of placental lesions in preterm infants. J Matern Fetal Neonatal Med 13: 102–109.
28. Holcroft CJ, Askin FB, Patra A, Allen MC, Blakemore KJ, et al. (2004) Are histopathologic chorioamnionitis and funisitis associated with metabolic acidosis in the preterm fetus? Am J Obstet Gynecol 191: 2010–2015.
placenta predict white matter damage and later cerebral palsy. the ELGAN study. Pediatr Res 67: 95–101.

53. Elbers J, Viero S, MacGregor D, DeVeber G, Moore AM (2011) Placental pathology in neonatal stroke. Pediatrics 127: e722–e729.

54. Krador S, Alarcón A, Iriondo M, Ibanez M, Poo P, et al. (2011) Impact of histological chorioamnionitis, funisitis and clinical chorioamnionitis on neurodevelopmental outcome of preterm infants. Early Hum Dev 87: 253–257.

55. Chang KT, Keating S, Costa S, Machin G, Kingdom J, et al. (2011) Third trimester stillbirths: Correlate neuropathology and placental pathology. Pediatr Dev Pathol 14: 345–352.

56. Blair E, de Groot J, Nelson KB (2011) Placental infarction identified by macroscopic examination and risk of cerebral palsy in infants at 35 weeks of gestational age and over. Am J Obstet Gynecol 205: e1–e126.

57. van Vliet EO, de Kieviet JF, van der Voorn JP, Been JV, Oosterlaan J, et al. (2012) Placental pathology and long-term neurodevelopment of very preterm infants. Am J Obstet Gynecol 206: 409.e1–409.e7.

58. Hayes BC, Cossey S, Donachy J, Doherty E, Grehan A, et al. (2013) The placenta in infants >36 weeks gestation with neonatal encephalopathy: A case control study. Arch Dis Child Fetal Neonatal Ed 98: F233–239.

59. Redline RW, Boyd T, Campbell V, Hyde S, Kaplan C, et al. (2004) Maternal vascular underperfusion: Nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol 7: 237–249.

60. Redline RW, Ariel I, Baergen RN, Desa DJ, Kraus FT, et al. (2004) Fetal vascular obstructive lesions: Nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol 7: 443–452.

61. Redline RW, Faye-Petersen O, Heller D, Qureshi F, Savell V, et al. (2003) Amniotic infection syndrome: Nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol 6: 435–448.

62. Benirschke K, Kaufmann P, Baergen R (2006) Pathology of the human placenta. New York: Springer.

63. Lewis S, Perrin E (1999) Pathology of the placenta. New York: Churchill Livingstone.

64. Baergen RN (2002) Manual of pathology of the human placenta. New York: Springer.

65. Faye-Petersen O, Heller D, Joshi V (2006) Handbook of placental pathology. New York: Springer.

66. Benirschke K, Kaufmann P, Baergen R, Desa DJ, Kraus FT, et al. (2004) Fetal vascular obstructive lesions: Nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol 7: 443–452.

67. Fox H, Sebire N (2007) Pathology of the placenta. Philadelphia: Saunders.

68. Evers IM, Nikkels PG, Sikkema JM, Visser GH (2003) Placental pathology in women with type 1 diabetes and in a control group with normal and large-for-gestational-age infants. Placenta 24: 819–825.

69. Redline RW (2004) Clinical and pathological umbilical cord abnormalities in fetal thrombotic vasculopathy. Hum Pathol 35: 1494–1498.

70. Korteweg FJ, Gerdin SJ, Timmer A, Hohn JP, Revise JM, et al. (2006) The placental cause of intra-uterine fetal death depends on the perinatal mortality classification system used. Placenta 29: 71–80.

71. Pathak S, Lees CC, Hackett G, Jesop F, Sebire NJ (2011) Frequency and clinical significance of placental histological lesions in an unselected population at or near term. Virchows Arch 459: 563–572.

72. World Health Organisation (WHO). International classification of diseases, 10th ed. 1992. Geneva.

73. Flenady V, Middleton P, Smith GC, Duke W, Erwich JJ, et al. (2011) Stillbirths: The way forward in high-income countries. Lancet 377: 1703–1717.

74. Korteweg FJ, Gerdin SJ, Timmer A, Erwich JJ, Bergman KA, et al. (2006) The tulp classification of perinatal mortality: Introduction and multidisciplinary inter-rater agreement. BJOG 113: 393–401.

75. Kramer BW, Kallapur S, Newnham J, Jobe AH (2009) Prenatal inflammation and lung development. Semin Fetal Neonatal Med 14: 2–7.

76. Saks R, Ravier C, Yamamoto G, Flotsky P, Vale W (1987) Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 238: 522–524.

77. Bernton EW, Beach JE, Holaday JW, Smallridge RC, Fein HG (1987) Release of multiple hormones by a direct action of interleukin-1 on pituitary cells. Science 238: 519–521.

78. Gross I (1990) Regulation of fetal lung maturation. Am J Physiol 259: L337–L344.

79. Ney JC, Lappalainen U, Hallman M (1997) Intraamniotic interleukin-1 accelerates surfactant protein synthesis in fetal rabbits and improves lung stability after premature birth. J Clin Invest 99: 2992–2999.

80. Willet KE, Jobe AH, Irgemani M, Newnham J, Brennan S, et al. (2000) Antenatal endotoxin and glucocorticoid effects on lung morphology in preterm lambs. Pediatr Res 48: 782–788.

81. Been JV, Zimmermann LJ (2009) Histological chorioamnionitis and respiratory outcome in preterm infants. Arch Dis Child Fetal Neonatal Ed 94: F218–225.

82. Jobe AH (2005) Antenatal associations with lung maturation and infection. J Perinatol 25 Suppl 2: S31–35.

83. Speer CP (2011) Neonatal respiratory distress syndrome: An inflammatory disease? Neonatology 99: 316–319.

84. Bersani I, Thomas W, Speer CP (2012) Chorioamnionitis - the good or the evil for neonatal outcome? J Matern Fetal Neonatal Med 25 Suppl 1: 12–16

85. Lin PW, Stoll BJ (2006) Necrotizing enterocolitis. Lancet 368: 1271–1283.

86. Dammann O, Brinkhaus MJ, Bartels DB, Dordelmann M, Dressler F, et al. (2009) Immaturity, perinatal inflammation, and retinopathy of prematurity: A multi-hit hypothesis. Early Hum Dev 85: 325–329.

87. Cross JC (2001) Genes regulating embryonic and fetal survival. Theriogenology 55: 193–207.

88. Dammann O, Brinkhaus MJ, Bartels DB, Dordelmann M, Dressler F, et al. (2009) Immaturity, perinatal inflammation, and retinopathy of prematurity: A multi-hit hypothesis. Early Hum Dev 85: 325–329.

89. Cross JC (2001) Genes regulating embryonic and fetal survival. Theriogenology 55: 193–207.

90. Dammann O, Brinkhaus MJ, Bartels DB, Dordelmann M, Dressler F, et al. (2009) Immaturity, perinatal inflammation, and retinopathy of prematurity: A multi-hit hypothesis. Early Hum Dev 85: 325–329.

91. Wu YW, Colford JM Jr (2000) Chorioamnionitis as a risk factor for cerebral palsy: A meta-analysis. JAMA 284: 1417–1424.

92. Redline RW (2004) Clinical and pathological umbilical cord abnormalities in fetal thrombotic vasculopathy. Hum Pathol 35: 1494–1498.

93. Lee SA, Ding C (2012) The dysfunctional placenta epigenome: Causes and consequences. Epigenomics 4: 561–569.

94. Lee SA, Ding C (2012) The dysfunctional placenta epigenome: Causes and consequences. Epigenomics 4: 561–569.