A new species of *Ophryotrocha* (Annelida: Dorvilleidae) associated with the coral *Lophelia pertusa* (Anthozoa: Caryophylliidae)

Vinicius da Rocha Miranda¹,²; Andrielle Raposo Rodrigues¹,³ & Ana Claudia dos Santos Brasil¹,⁴

¹ Universidade Federal Rural do Rio de Janeiro (UFRRJ), Instituto de Ciências Biológicas e da Saúde (ICBS), Departamento de Biologia Animal, Laboratório de Polychaeta. Seropédica, RJ, Brasil.
² ORCID: http://orcid.org/0000-0002-4591-184X. E-mail: vinicius.ghostsy@gmail.com (corresponding author)
³ ORCID: http://orcid.org/0000-0001-9152-355X. E-mail: andriraposo@gmail.com
⁴ ORCID: http://orcid.org/0000-0002-0611-9948. E-mail: acbrasil@gmail.com

Abstract. *Ophryotrocha* is the most speciose genus within Dorvilleidae, with species occurring in a great variety of environments around the globe. In Brazil, records of *Ophryotrocha* are scarce and no specific identification is provided for any of the records. Herein we describe a new species of Dorvilleidae, *Ophryotrocha zitae* sp. nov. Adult and larval specimens were found in the axis of a fragment of the cold-water coral *Lophelia pertusa*, sampled off São Paulo’s coast, at a depth of 245 m. Both forms are described and illustrated. This new species resembles *O. puerilis*, *O. adherens* and *O. eutrophila*, but can be distinguished based on differences in its mandible and on chaetae shape and arrangement.

Key-Words. Epibiont; Cold-water Coral; Deep-sea; Eunicida, Associated fauna.

INTRODUCTION

The Family Dorvilleidae is comprised of 38 valid genera, many of which are monospecific (Read, 2016) and others, despite more specious, present evident morphological homogeny (Rouse & Pleijel, 2001). Among them, *Ophryotrocha* is the genus with the largest number of valid species – 72 living species and 2 fossil records (Read, 2016). The species of this genus occur from shallow to deep waters, being most abundant in environments rich in organic matter, as well as in sunken bones and in reducing environments (Paavo et al., 2000; Dahlgren et al., 2001; Rouse & Pleijel, 2001; Paxton & Morineaux, 2009; Wiklund et al., 2012; Taboada et al., 2013; Salvo et al., 2014). Many species are used as models for embryological, behavioral, evolutionary and bioassay studies due to their easy maintenance in the laboratory (Åkesson, 1970; Brown & Ahsanullah, 1971; Pfannenstiel, 1977; Hoofman & Vink, 1980; Sella, 1985, 1991; Sella et al., 1997; Paavo et al., 2000; Sella & Lorenzi, 2000; Paxton, 2004; Prevedelli et al., 2006; Schleicherova et al., 2010).

External morphology is quite similar among species of the genus, being distinguished by the size of appendices such as antennae, palps and parapodial cirri; the presence of transverse ciliary bands on each segment; and the presence of rosette glands on the posterior region of the body (Ockelmann & Åkesson, 1990; Heggoy et al., 2007; Paxton & Åkesson, 2011). These species also bear a complex buccal apparatus comprising a pair of mandibles and maxillae, the latter being either “P-type” or “K-type”, and the presence of one or two types of maxillae will vary according to each species (Paxton, 2004).

The reproductive modes occurring in *Ophryotrocha* have been thoroughly described for some of the species by Åkesson (1975) and Sella (2006). The group presents both hermaphroditic and gonochoric species; in both cases reproduction occurs in pairs and eggs are released in a cocoon, which can be guarded by one of the parents. Hatching time and larval size varies interspecifically and, after hatching, larvae start actively foraging around the cocoon (Paavo et al., 2000; Sella, 2006). Newly-released larvae resemble adults, differing from them by the presence of a third pygidial stylus. When the pygidial stylus is no longer visible, individuals can be considered young immature (Paavo et al., 2000).

Records of the genus in the South Atlantic are scarce, with a few records on the Argentinian coast and Falkland Islands (OBIS, 2019; Orensanz, 1973). For the Brazilian coast, to date, there is only one previous report of the genus *Ophryotrocha* – a non-identified specimen occurring on north-
east region, found in shallow waters and associated with brown algae of the genus *Dictyota* (Cunha et al., 2013). Herein, we describe *Ophryotrocha zitae* sp. nov., which was sampled in association with the cold-water coral *Lophelia pertusa* (Linnaeus, 1758) off the north coast of São Paulo.

MATERIAL AND METHODS

The material analyzed in this work was obtained from colonies of *Lophelia pertusa* sampled in Santos Basin (24°21′27″S; 44°13′20″W), 136 km off the north coast of São Paulo, Brazil. Random samples of coral were acquired from this area by the research and development center of the Brazilian energy company Petrobras (CENPES). Polychaetes were manually removed from a fragment of *L. pertusa*, fixed in formalin and stored in 70% EtOH.

Parapodia were mounted on permanent slides using Gray & Wess (PVA) (Humason, 1979) and Hoyer’s mounting media (Krantz, 1978). To observe jaws and mandibles, four adult specimens were clarified in a solution of 10% KOH, before being mounted on a permanent slide using Hoyer’s mounting media. Description of these latter structures followed Paxton (2004). Specimens submitted to scanning electron microscopy (SEM) were dehydrated following the procedures described by Fitzhugh & Rouse (1999). Briefly, specimens were initially dehydrated through a graded ethanol (EtOH) series, then the EtOH was replaced by Hexamethyldisilazane (HMDS) through a graded series, and finally the HMDS was evaporated off. After this procedure, the specimens were covered with gold-palladium and examined in a JEOL JSM-6390LV at the Museu Nacional da Universidade Federal do Rio de Janeiro. The measurements were made on fixed specimens; the length encompasses the anterior-most portion of the prostomium to the posterior-most portion of the pygidial segment (excluding cirrostyles); width was measured on a median segment, including parapodial lobe.

All drawings were made with the aid of a camera lucida and photographs were taken using an adapted Sony Cybershot W350. All specimens are deposited in the *Polychaeta* collection located at the Museu Nacional of the Universidade Federal do Rio de Janeiro (MN-UFRJ).

SYSTEMATICS

Family DORVILLEIDAE Chamberlin, 1919
Genus *Ophryotrocha* Clapérède & Metschnikow, 1869
Ophryotrocha zitae sp. nov.
(Figs. 1-2)

Type material: Holotype: MNRJP2601: 1 specimen (adult); 24°21′27″S; 44°13′20″W; 245 m, 27 July 2010; on *Lophelia pertusa*. Paratypes: MNRJP2602: 10 specimens (adult); 24°21′27″S; 44°13′20″W; 245 m, 27 July 2010; on *Lophelia pertusa*. MNRJP2603: 4 specimens (3 juveniles and 1 larva); 24°21′27″S; 44°13′20″W; 245 m, 27 July 2010; on *Lophelia pertusa*.

Non-type material: MNRJP2604: 59 specimens; 24°21′27″S; 44°13′20″W; 245 m, 27 July 2010; on *Lophelia pertusa*.

Diagnosis: K-maxillae comprising a heavily-sclerotized main fang and seven partially fused plates; P-maxillae consisting of seven rounded plates, two of them fused and five only partially fused. Uniramous parapodia with a bundle of capillary chaetae occurring only on the supra-acicular region. Sub-acicular region possessing a bundle of heterogomph falcigers with slightly serrated blades and single capillary chaeta. Rosette glands from segment eleven on.

DESCRIPTION

Measurements: Holotype: 3.5 mm long, 0.8 mm wide; Paratypes: mean size: 1.8 mm long, 0.5 mm wide (largest specimen 4.20 mm long, 0.9 mm wide; smallest specimen 0.65 mm long, 0.22 mm wide).

Body short (holotype with 24 segments), stout, dorally convex, ventral region flattened, with longitudinal groove. Both ends are terminally rounded (Figs. 1A-B). Bundles of cilia present throughout body. On the prostomium these form a frontal bundle with tufts between the antennae and the eyes (Figs. 1A-C), while complete rings of cilia occur on each peristomial segment and on the pygidium, whereas remaining segments possess a dorsal and a ventral bundle of cilia separated by the parapodia (Figs. 1A-B, for dorsal bundle). Fixed specimens with an opaque pale white color (Fig. 1B).

Prostomium wider than longer (Figs. 1A-C). Anterior border with up to 10 tactile cilia. Cirriform antennae inserted dorsolaterally, with a tuft of stereocilia on the apex (Fig. 1C). Palps digitiform, stout, inserted laterally on the prostomium (Fig. 1C). A pair of eyes is located posteriorly, near the edge of the first peristomial segment, eyes exhibiting a silver coloration under oblique illumination (Fig. 1B). Nuchal organs consisting of a pair of ciliate tufts located just after and between the eyes. Peristomial segments achaetous, with a translocud region on the dorsum from which it is possible to observe the buccal apparatus (mandible and maxillae) (Figs. 1A-C). Mouth large, aperture half the size of segment width, located anteriorly on the first segment.

The K-maxillae are fully developed, composed of two black to dark brown forceps with single tips, united at the posterior end (Figs. 1D, 2A). The light brown carri-er-like structure is connected to the forceps by narrow ligaments – with basal lateral sheets – that arise from the posterior half of the forceps and connect to the first of the articulated denticles (Figs. 1D, 2A). This carrier-like structure is composed of seven spoon-like denticles, which become larger from the first to the last; the cutting edges of the first to third denticles are coarsely serrated, with the teeth alternating in size (the larger ones about...
twice the size of the smaller ones), while the cutting edges of the fourth to seventh denticles are finely serrated with all teeth of similar size (Fig. 2A).

Mandibles are elongated sclerotized shafts, dark brown in color at the center and becoming translucent towards the edges, located ventrally to the maxillae (Figs. 1D, 2B). Anterior edges of mandibles representing the cutting plates with about 20 very small and worn teeth; apophysis emerging postero-ventrally to the cutting plate, three times the width of same at the largest region and becoming narrow posteriorly; shafts longer than wide with posterior apex ending on a bend towards the middle of the body; light brown internal lateral projections present subdistally.

Chaetigerous segments without lobes protruding towards parapodia. Rosette glands occurring from the eleventh segment – in which they occur only on the right side – to the end of the body, where they are so small that they are difficult to observe without staining (Fig. 1A). Body tapering posteriorly. Pygidium bearing a pair of ventral cirri, pygidial stylus absent. Anus terminal and located dorsal to the cirri (Figs. 1A-B).

Parapodia uniramous, with triangular (on anterior segments) to rounded (on posterior segments) pre-chaetal lobes longer than post-chaetal ones, with both dorsal and ventral smooth cirri present (Fig. 2C); retractile lobes on the posterior side of parapodia and almost imperceptible in the specimens, supported by a single smooth
Figure 2. *Ophryotrocha zitae* sp. nov.: (A) K-type maxilla; (B) Adult mandible; (C) Parapodia from a middle segment; (D) Blade from upper compound chaeta from the first chaetiger; (E) Blade from lower compound chaeta from the first chaetiger; (F) Blade from upper compound chaeta from a middle chaetiger; (G) Blade from lower compound chaeta from a middle chaetiger; (H) P-type maxilla; (I) Larva paratype (MNRJP2603), dorsal view; (J) Mandible from larva. Scale bars: A = 250 μm; B = 175 μm; C = 500 μm; D-H = 200 μm; I = 600 μm; J = 120 μm.
Table 1. Comparison of species of *Ophryotrocha* with forceps containing only single tips. The symbol “?” is applied when information about the character is not available.

Taxon	Maximum size (length/width, in mm)	Eyes	Number of plates in K-maxillae	Cutting plate of mandibles	Palps	Rosette glands	Supra-acicular chaetae	Sub-acicular chaetae	Reference
O. adherens Paavo, Bailey-Brock & Åkesson, 2000	4/??	Present	Seven	Wider than the shafts	Present; ciliated	?	3-5, finely serrated simple chaetae	4-8 heterogomph falcigers; one simple chaeta	Paavo et al. (2000)
O. clava Taboada et al., 2013	4.6/0.4	Present	Seven	Wider than the shafts	Absent	?	4-6 serrated simple chaetae, distally curved	4-6 subacicular heterogomph falcigers	Taboada et al. (2013)
O. eutrophila Wiklund, Glover & Dahlgren, 2009	8/??	Absent	Seven	As wide as shafts	Present; smooth	?	3 simple chaetae	4 heterogomph falcigers; 1 simple chaeta	Wiklund et al. (2009)
O. fabriae Paxton & Moineaux, 2009	1.9/0.2	Not observed	Seven	Wider than shafts; 18-20 teeth at the cutting edge	Present; smooth	?	2-5 simple chaetae	3-5 heterogomph falcigers; 1 simple chaeta	Paxton & Moineaux (2009)
O. geryonicola (Esmark, 1874)	140/5	Absent	Six	Wider than shafts	Present; with stereocilia	?	4-8 simple chaetae	5-8 heterogomph falcigers; 0-3 simple, hooked chaeta	Gaston & Benner (1983)
O. gracile Huth, 1933	7/??	Present	Eight	?	Present	?	?	?	Pleijel & Eide (1996)
O. hartmanni Huth, 1933	7/??	Absent	Eight	?	Absent	?	?	?	Pleijel & Eide (1996)
O. mamilcostola Hilbig & Blake, 1991	1.8/0.4	Absent	Four	Wider than shafts; 18 teeth	Absent	?	2-4 straight and simple cultriform chaetae; 2 simple geniculate cultriform chaetae	2-5 heterogomph falcigers, with smooth blades; 1 simple chaeta	Hilbig & Blake (1991)
O. magnidentata Wiklund et al., 2012	2.32/–	Not observed	Seven	Wider than shafts	Present; b-articulated	?	Up to 3 simple serrated bifid chaetae	5 heterogomph falcigers with serrated blades	Wiklund et al. (2012)
O. mammillata Ravara et al., 2015	2.9/7	Absent	Six	As wide as shafts	Present; b-articulated	12 pairs present, beginning at the 24th segment	Up to 5 simple flattened and serrated chaetae	Up to 6 heterogomph falcigers, with serrated blades; 1 serrated, knob-like tip, simple chaeta	Ravara et al. (2015)
O. mediterranea Martin, Abello & Cartes, 1991	135/7	Absent	Seven	As wide as shafts	Present; smooth	?	4-8 simple serrated and hooked chaetae	3-10 heterogomph falcigers, with serrated blades; 1-4 simple chaeta, 1 with falcate tip	Martin et al. (1991)
O. puerii Claparède & Mecznikow, 1869	13/0.7	Present	Seven	Wider than shafts; 17-20 teeth	Present, with stereocilia	18 pairs, on posterior segments	3-4 simple chaetae	4-6 heterogomph falcigers, with serrated blades; 1 simple serrated chaeta	Paxton & Åkesson, (2007)
O. urbi Jimi, Taru & Ibara, 2019	7/1.5	Present	Seven	Wider than the shafts	Present	?	8-10, finely serrated, spatulated simple chaetae	5-6 heterogomph falcigers; simple chaetae absent.	Jimi et al., 2019
O. atae sp. nov.	4.2/0.9	Present	Seven	Narrower than the shafts	Present; smooth	14 pairs, beginning at the 11th segment	3-4 simple supra-acicular chaetae	3-4 heterogomph falcigers; 1 simple chaeta	This paper
O. wubalingi Miura, 1997	9.2/0.9	?	Seven	Wider than shafts	Present; b-articulated	?	More than 10 simple serrated chaetae	More than 10 heterogomph falcigers, with serrated blades	Miura (1997)

Note: since *O. lukowensis* Staniawski, 1974 is known only by its fossil record and a large amount of data is not available, it has not been included in this comparison.
chaeta. Three groups of chaetae emerge from the parapodia: a bundle of three to four simple chaetae supra-acicular; and another bundle of three to four heterogomph falcigers emerging right below the acicula (Fig. 2C); below the bundle of compound chaetae there is a single simple chaetae, similar to those of the supra-acicular bundle. The shafts of compound chaetae smooth (Fig. 1E); other teeth; anterior half coarsely serrated; posteriorly, the teeth all the same size on the fourth plate). Remaining segments apodous, with two to three capillary chaetae emerging directly from the body wall; ciliary tufts completely encircling the segments (Fig. 2I). Pygidium bearing a pair of terminal pygidial cirrus and a dorsal pygidial stylus – the stylus having an annulation medially and double the size of the cirri – both located anteriorly to the terminal anus and both bearing a tuft of stereocilia at the apex (Fig. 2I).

Etymology: The species name is a tribute to the grandmother of the author A.C.S. Brasil, Maria Teresa dos Santos (known as Dona Zita): a strong woman, who exhibited the same devoted care to her descendants as seen for many species of this genus.

Habitat: The specimens were found in a depth of 245 m, in association with the cold water coral *Lophelia pertusa*.

Type locality: Southwest Atlantic, Santos Basin, off the state of São Paulo, Brazil.

Remarks: The 75 currently-assigned species to the genus *Ophryotrocha* can be divided into three groups according to the morphology of the maxillae in adults: one encompassing the species in which adults bear *P*-maxillae, another in which the adults present *K*-maxillae with both fangs of the forceps as single tips, and a last group that also bear *K*-maxillae but with at least one of the fangs being bidentate. Based on this categorization, *O. zitae* sp. nov., falls into the group in which both fangs are unidentate. The 20 species of the second group of *Ophryotrocha* that have unidentate forceps are partially compared in Table 1, and those that most resemble *O. zitae* sp. nov., are: *O. adherens* Paavo, Bailey-Brock & Åkesson, 2000, *O. eutrophila* Wiklund et al., 2009, and *O. puerilis* Clapéréde & Metschnikow, 1869.

The morphology and ornamentation of the palps are distinguishing characters among *O. zitae* and the other three species. In *O. zitae* the palps are digitate and smooth, while *O. adherens* and *O. puerilis* have ovate palps with a tuft of cilia at the apex, and *O. eutrophila* have digitate palps.

Nuchal organs appear in different numbers among *O. zitae*, *O. adherens* and *O. puerilis*. The former has only a pair of nuchal organs located posteriorly on prostomium, while the other two species possess two pairs of nuchal organs.

The third pygidial stylus is a character described as present only on juveniles of *Ophryotrocha*, while adults lacks this structure (Paavo et al., 2000). However *O. adherens*, *O. puerilis* and *O. eutrophila* are all described as possessing a third stylus, while all mature specimens of *O. zitae* sp. nov. observed do not possess it. The occurrence of such structure in mature specimens and among the other species of *Ophryotrocha* needs to be verified,
in order to confirm the statement of Paavo et al. (2000). Herein we assume that the presence of the third pigidal stylus in mature specimens is a distinguishing character among species of the genus. In addition to the characters compared in Table 1, *O. adherens* differs from *O. zitae* sp. nov., by having an acicula that may emerge from within the flesh, and by the bifurcation at the tip of the supra-acicular chaetae. In *O. adherens* some of the compound chaetae may occur in the ventral setal lobe (which does not occur in *O. zitae* sp. nov.). In relation to *O. puerilis*, we can point out the presence of tactile cilia at the anterior border of the prostomium of this species, while cilia at this region is absent in *O. zitae* sp. nov. Also, the absence of a tuft of cilia on the apex of the dorsal and ventral parapodial cirri in *O. zitae* sp. nov., in comparison with the presence of such ciliation in *O. puerilis*. The number of prostomial ciliary bands differ between both species: *O. zitae* sp. nov., has only a single band of cilia, while *O. puerilis* has two bands of cilia.

In relation to *O. eutrophila* the absence of eyes is a distinguishing character, while *O. zitae* sp. nov., possesses eyes. Parapodial cirrus and retractile lobe contrast between both species, in *O. eutrophila* the cirri (dorsal and ventral) are smaller, while the retractile lobe is longer, in comparison with the same structures in *O. zitae* sp. nov. Morphology of the teeth in the P-type maxilla also differ between both species: the teeth in the cutting border of the D1 and D2 of *O. eutrophila* are longer than those in *O. zitae* sp. nov., also the D3 to D7 plates in *O. eutrophila* are longer and wider than in *O. zitae* sp. nov.

Species of *Ophryotrocha* have been described worldwide, but there are only three records of the genus from the South Atlantic: a non-identified species from northeastern Brazil (Cunha et al., 2013), and *O. claparedei* Studer, 1878 and *O. notialis* (Ehlers, 1908) both from Argentina (Orensanz, 1973, 1990), none of them resembling *O. zitae* sp. nov. While both Argentinian species have P-type maxillae only, the species described herein changes the P-type maxilla for a K-type along its development. Orensanz (pers. comm.) also identified some specimens of *O. puerilis* from an aquarium at Mar del Plata (Northern Argentina), but according to him the specimens present some differences from the original description provided by Claperède & Metschnikow (1869), so until these specimens are re-examined we prefer to avoid comparisons.

ACKNOWLEDGEMENTS

We are grateful to Marcia Reynier from Labtox for sending to us the specimens described in this manuscript. Also, to Cenpes/Petrobras for helping Brazilian scientists to discover and describe the diversity of the continental margin. We also are grateful to all reviewers that made comments that improved the quality of the manuscript. The first author also would like to thank Coordenadoria de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) for his scholarship.

REFERENCES

Åkesson, B. 1970. *Ophryotrocha labronica* as test animal for the study of marine pollution. *Helgoländer Wissenschaftliche Meeresuntersuchungen*, 20: 293-303.

Åkesson, B. 1975. Reproduction in the genus *Ophryotrocha* (Polychaeta, Dorvilleidae). *Pubblicazioni della Stazione Zoologica di Napoli*, 39(Suppl. 1): 377-398.

Brown, B. & Ahsanullah, M. 1971. Effect of heavy metals on mortality and growth. *Marine Pollution Bulletin*, 2: 182-187.

Chamberlin, R.V. 1919. The Annelida *Polychaeta* (Albatross Expeditions). *Memoirs of the Museum of Comparative Zoology at Harvard College*, 48: 1-514.

Claperède, É. & Metschnikow, E. 1869. Beiträge zur Kenntnis der Entwicklungsgeschichte der Chaetopoden. *Zeitschrift für Wissenschaftliche Zoologie*, 19: 163-205.

Cunha, T.J.; Güth, A.Z.; Bromberg, S. & Sumida, P.Y.G. 2013. Macrofauna associated with the brown algae *Dictyota* spp. (Phaeophyceae, Dictyotaceae) in the Sebastião Gomes Reef and Abrolhos Archipelago, Bahia, Brazil. *Continental Shelf Research*, 70: 140-149.

Dahlgren, T.G.; Åkesson, B.; Schander, C.; Halanych, K.M. & Sundberg, P. 2001. Molecular phylogeny of the model annelid *Ophryotrocha*. *Biological Bulletin*, 201(2): 193-203.

Fitzhugh, K. & Rouse, G.W. 1999. A remarkable new genus and species of fan worm (*Polychaeta: Sabellidae: Sabellinae*) associated with marine gastropods. *Invertebrate Biology*, 118(4): 357-390.

Gaston, G.R. & Benner, D.A. 1981. On Dorvilleidae and Iphitimidae (Annelida: Polychaeta) with a redescription of *Eteonopsis geryoniaca* and a new host record. *Proceedings of the Biological Society of Washington*, 94: 76-87.

Heggy, K.K.; Schander, C. & Åkesson, B. 2007. The phylogeny of the annelid genus *Ophryotrocha* (Dorvilleidae). *Marine Biology Research*, 3: 412-420.

Hilbig, B. & James, A. 1991. Dorvilleidae (Annelida: *Polychaeta*) from the U.S. Atlantic slope and rise. Description of two new genera and 14 new species, with generic revision of *Ophryotrocha*. *Zoologica Scripta*, 20(2): 147-183.

Hoofman, R.N. & Vink, G.J. 1980. The determination of toxic effects of pollutants with the marine polychaete worm *Ophryotrocha diadema*. *Ecotoxicology and environmental safety*, 4: 252-262.

Humason, G.L. 1979. *Animal tissue techniques*. 4. ed. San Francisco, Freeman and Company.

Jimé, N.; Taru, M. & Imura, S. 2019. Life in the city: a new scavenger species of *Ophryotrocha* (*Sabellidae: Sabellinae*) associated with marine gastropods. *Invertebrate Biology*, 118(4): 357-390.

Krantz, G. 1978. *A manual of acarology: Field Guide and Catalogues*. Corvallis, Oregon State University Book Stores. 509p.

Linnaeus, C. 1758. *Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis*. 10. ed. Holmiae, Laurentii Salviius.

Martin, D.; Abelló, P. & Cartes, J. 1991. A new species of *Ophryotrocha* (Polychaeta: Dorvilleidae) commensal in *Gonya longipes* (Crustacea: Brachyura) from the Western Mediterranean Sea. *Journal of Natural History*, 25: 279-292.

Miura, T. 1997. Two new species of the genus *Ophryotrocha* (*Polychaeta, Iphitimidae*) from Kagoshima Bay. *Bulletin of Marine Science*, 60: 300-305.

Ocean Biogeographic Information System (OBIS). 2019. *Ocean Biogeographic Information System: Ophryotrocha Claparede & Mecznikow*, 1869. Available at: https://obis.org/taxon/129266. Access in: 30/12/2019.

Ockelmann, K.W. & Åkesson, B. 1990. *Ophryotrocha socialis* n. sp., a link between two groups of simultaneous hermaphrodites within the genus (*Polychaeta, Dorvilleidae*). *Ophelia*, 31: 145-162.
Orensanz, J.M. 1973. Los anelidos poliquetos de la provincia biogeográfica Argentina. III. Dorvilleidae. Physis, Sec A, 32(85): 325-342.

Orensanz, J.M. 1990. The Eunicemorph polychaete annelids from Antarctic and Subantarctic seas. Antarctic Research Series, 52: 1-183.

Paavo, B.; Bailey-Brock, J.H. & Åkesson, B. 2000. Morphology and life history of Ophryotrocha adherens sp. nov. (Polychaeta, Dorvilleidae). Sarsia, 85: 251-264.

Paxton, H. 2004. Jaw growth and replacement in Ophryotrocha labronica (Polychaeta, Dorvilleidae). Zoomorphology, 123: 147-154.

Paxton, H. & Åkesson, B. 2007. Redescription of Ophryotrocha puerilis and O. labronica (Annelida, Dorvilleidae). Marine Biology Research, 3: 3-19.

Paxton, H. & Åkesson, B. 2011. The Ophryotrocha diadema group (Annelida: Dorvilleidae), with the description of two new species. Zootaxa, 3092: 43-59.

Paxton, H. & Morineaux, M. 2009. Three species of Dorvilleidae (annelida: Polychaeta) associated with Atlantic deep-sea reducing habitats, with the description of Ophryotrocha fabriae, new species. Proceedings of the Biological Society of Washington, 122: 14-25.

Pfannenstiel, H.D. 1977. Experimental analysis of the “Paarkultureffekt” in the protandric polychaete, Ophryotrocha puerilis Clap. M. Journal of Experimental Marine Biology and Ecology, 28: 31-40.

Pleijel, F. & Eide, R. 1996. The phylogeny of Ophryotrocha (Dorvilleidae: Eunicida: Polychaeta). Journal of Natural History, 30: 647-659.

Prevedelli, D.; N’Siala, G.M. & Simonini, R. 2006. Gonochorism vs. hermaphroditism: Relationship between life history and fitness in three species of Ophryotrocha (Polychaeta: Dorvilleidae) with different forms of sexuality. Journal of Animal Ecology, 75: 203-212.

Ravara, A.; Marçal, A.R.;Wiklund, H. & Hilário, A. 2015. First account on the diversity of Ophryotrocha (Annelida, Dorvilleidae) from a mammal-fall in the deep-Atlantic Ocean with the description of three new species. Systematics and Biodiversity, 2000: 1-16.

Read, G. 2016. Dorvilleidae Chamberlin, 1919. G. Read and K. Fauchald. World Polychaeta Database [1]. Available at: http://www.marinespecies.org/polychaeta/aphia.php?p=taxdetails&id=971 on 2015-06-02. Access in: 30/12/2019.

Rouse, G.W. & Pleijel, F. 2001. Polychaetes. Oxford, Oxford University Press.

Salvo, F.; Wiklund, H.; Dufour, S.C.; Hamoutene, D.; Pohle, G. & Worsaae, K. 2014. A new annelid species from whalebones in Greenland and aquaculture sites in Newfoundland: Ophryotrocha cyclops, sp. nov. (Eunicida: Dorvilleidae). Zootaxa, 3887: 555-568.

Schliecherova, D.; Lorenzi, M.C.; Sella, G. & Michiels, N.K. 2010. Gender expression and group size: a test in a hermaphroditic and a gonochoric congeneric species of Ophryotrocha (Polychaeta). The Journal of Experimental Biology, 213: 1586-1590.

Sella, G. 1985. Reciprocal egg trading and brood care in a hermaphroditic polychaete worm. Animal Behaviour, 33: 938-944.

Sella, G. 1991. Evolution of Biparental Care in the hermaphroditic Polychaete Worm Ophryotrocha. Evolution, 45: 63-68.

Sella, G. 2006. Sexual strategies and mating systems. In: Rouse, G. & Pleijel F. (Eds). Reproductive biology and phylogeny of Annelida. Enfield, Science Publishers. p. 77-92.

Sella, G. & Lorenzi, M. 2000. Partner fidelity and egg reciprocation in the simultaneously hermaphroditic polychaete worm Ophryotrocha diadema. Behavioral Ecology, 11, 260-264.

Sella, G.; Premoli, M.C. & Turri, F. 1997. Egg trading in the simultaneously hermaphroditic polychaete worm Ophryotrocha gracilis (Huth). Behavior and Ecoloy, 8: 83-86.

Taboada, S.; Wiklund, H.; Glover, A.G.; Dahlgren, T.G.; Cristobo, J. & Avila, C. 2013. Two new Antarctic Ophryotrocha (Annelida: Dorvilleidae) described from shallow-water whale bones. Polar Biology, 36: 1031-1045.

Wiklund, H.; Altamira, I.V.; Glover, A.G.; Smith, C.R.; Baco, A.R. & Dahlgren, T.G. 2012. Systematics and biodiversity of Ophryotrocha (Annelida, Dorvilleidae) with descriptions of six new species from deep-sea whale-fall and wood-fall habitats in the north-east Pacific. Systematics and Biodiversity, 10: 243-259.

Wiklund, H.; Glover, A.G. & Dahlgren, T.G. 2009. Three new species of Ophryotrocha (Annelida: Dorvilleidae) from a whale fall in the Northeast Atlantic. Zootaxa, 2228: 43-56.