Efeitos do jejum noturno sobre a força muscular em pacientes internados

Effects of overnight fasting on handgrip strength in inpatients

Wesley Santana Correa-Arruda¹, Iara dos Anjos Vaez², José Eduardo Aguilar-Nascimento¹, Diana Borges Dock-Nascimento³

¹ Programa de Pós-Graduação, Faculdade de Ciências Médicas, Universidade Federal de Mato Grosso, Cuiabá, MT, Brasil.

DOI: 10.31744/einstein_journal/2019AO4418

RESUMO

Objetivo: Investigar os efeitos do jejum noturno na força muscular de pacientes adultos internados.

Métodos: Estudo clínico prospectivo realizado com 221 pacientes adultos. Os desfechos observados foram a força de preensão palmar avaliada pela dinamometria em jejum, após o desjejum, após o almoço, e acumulada (média da força de preensão palmar após desjejum e almoço). Foi considerada a média das três medidas da força de preensão palmar para representar cada momento. O ponto de corte para a média da força de preensão palmar em jejum categorizada no percentil 50 (35.5kg para homens, e 27.7kg para mulheres) foi usado para as comparações. Investigaram-se idade, sexo, peso atual e habitual (kg), perda de peso (kg), diagnóstico de câncer, estado nutricional, frequência de idosos, sintomas do trato digestório, tipo de dieta oral e quantidade ingerida no jantar no dia anterior à mensuração da força de preensão palmar (ingestão zero, até 50%, <100 e 100%).

Resultados: A força de preensão palmar após o jejum noturno foi menor que a força após o desjejum (31.1±8.7kg versus 31.6±8.8kg; p=0.01) e quando foi considerada a força acumulada (31.7±8.8kg; p<0.001). A força de preensão palmar em jejum foi maior para os pacientes que ingeriram 100% (33.2±9.1kg versus 30.4±8.4kg; p=0.03) e >50% do jantar (32.1±8.4kg versus 28.6±8.8kg; p=0.006). A análise multivariada mostrou que ingerir menos da metade do jantar, desnutrição grave e ser idoso foram fatores independentes para redução da força de preensão palmar em jejum. Conclusão: A função muscular ficou comprometida após jejum noturno em pacientes adultos internados para tratamento clínico, especialmente nos casos de baixa ingestão alimentar, desnutridos e idosos.

Descritores: Força muscular; Jejum; Dieta; Estado nutricional; Desnutrição

ABSTRACT

Objective: To investigate the effects of overnight fasting on handgrip strength of adult inpatients.

Methods: A prospective clinical study enrolling 221 adult patients. The endpoints were handgrip strength obtained by dynamometry in three time points (morning after an overnight fasting, after breakfast and after lunch) and the cumulative handgrip strength (mean of handgrip strength after breakfast and lunch) in the same day. The mean of three handgrip strength measures was considered to represent each time point. A cut-off for the mean overnight fasting handgrip strength at the 50th percentile (35.5kg for males and 27.7kg for females) was used for comparisons. We registered the age, sex, current and usual weight (kg), weight loss (kg), diagnosis of cancer, nutritional status, elderly frequency, digestive tract symptoms, type of oral diet, and the amount of dinner ingested the night before handgrip strength (zero intake, until 50%, <100 and 100%).

Results: Handgrip strength evaluated after an overnight fasting (31.2±8.7kg) was lesser when compared with handgrip strength after breakfast (31.6±8.8kg; p=0.01), and with cumulative handgrip strength (31.7±8.8kg; p<0.001). Handgrip strength was greater in patients who ingested 100% (33.2±9.1kg versus 30.4±8.4kg; p=0.03) and above 50% of dinner (32.1±8.4kg versus 28.6±8.8kg; p=0.006). Multivariate analysis showed that ingesting below 50% of dinner...
dinner, severe malnutrition, and elderly were independent factors for handgrip strength reduction after overnight fasting. **Conclusion:** The muscular function was impaired after an overnight fasting of adult patients hospitalized for medical treatment, especially for those with low ingestion, malnourished and elderly.

Keywords: Muscle strength; Fasting; Diet; Nutritional status; Malnutrition

II **INTRODUÇÃO**

Durante as últimas décadas, vários estudos mostraram taxas alarmantes da desnutrição hospitalar no Brasil e no mundo. A desnutrição relacionada à doenças não se reduziu ao longo dos anos, e cerca de 20 a 50% dos pacientes internam desnutridos ou desnutrem ao longo da permanência hospitalar.(1-3) Apesar das técnicas avançadas dos cuidados com os pacientes, a desnutrição ainda é pouco diagnosticada e tratada nas unidades hospitalares, o que leva ao aumento das complicações, das taxas de reinternações e da mortalidade.(4,5) Neste contexto, muitos fatores podem colaborar para o agravamento da desnutrição, como a baixa ingestão da dieta ofertada e o jejum para exames e procedimentos.

A dieta hospitalar é importante por garantir o aporte nutricional e preservar ou recuperar o estado nutricional. Porém, nem toda a dieta ofertada é ingerida. Estudos apontam que aproximadamente 30% a 50% da dieta oferecida é descartada.(6,7) Estudo polonês mostrou que o risco de óbito em 30 dias foi 6,1 vezes maior para os pacientes com redução da ingestão na última semana; para aqueles que informaram ingestão zero, o risco foi 7,6 vezes maior.(7)

Outro fator que contribui para a desnutrição hospitalar é o jejum para cirurgias, exames e procedimentos.(8,9) Estudos questionam a prescrição tradicional desse jejum prolongado,(10,11) que leva a aumento do estresse metabólico, resistência à insulina, desconforto, agravos nutricionais, complicações e óbito.(12,13) Franklin et al., mostraram que, de 22,6% dos pacientes que ficaram em jejum prolongado ou receberam apenas dieta líquida por 3 dias, em apenas 58,6% dos casos o jejum estava adequado.(14) Estudo identificou que os pacientes permaneceram em jejum para endoscopia por 14 horas e, no pós-operatório, por 58 horas. Estas práticas reforçam que o tempo real de jejum é sempre maior que o prescrito e recomendado.(15)

Sorita et al., encontraram que 46,6% dos pacientes tinham pelo menos uma prescrição de jejum, com média 12,8 horas.(16) Isto resultou na perda de duas (17,5%) refeições dia. A prescrição frequente de jejum é baseada no fato de deixar o paciente em jejum por precaução (“just in case”) para possível procedimento.

Assim, para reduzir e tratar a desnutrição hospitalar, é importante identificar os fatores agravantes do estado nutricional do paciente e reconhecer precoce-mente essa condição.(17,18) Entre os métodos de avaliação do estado nutricional, a força muscular obtida pela dinamometria é rápida, simples, não invasiva, de baixo custo e modifica em curto período de tempo.(19)

A dinamometria obtida pela força de preensão palmar (FFP) é um bom indicador de complicações, tempo de internação e mortalidade.(20) Essa técnica permite avaliar, em dias ou horas, as alterações funcionais, nutricionais e a eficácia da terapia nutricional prescrita.(21)

II **OBJETIVO**

Investigar os efeitos do jejum noturno na força muscular de pacientes adultos internados para tratamento clínico.

II **MÉTODOS**

Estudo clínico prospectivo, realizado com 221 pacientes internados na clínica médica do Hospital Universitário Júlio Müller (HUJM) em Cuiabá (MT), no período de maio de 2015 a junho de 2017, aprovado pelo Comitê de Ética e Pesquisa do HUJM, parecer número 920.942, CAAE: 34901014.7.0000.5541.

Foram incluídos pacientes em tratamento clínico. Todos assinaram o Termo de Consentimento Livre e Esclarecido (TCLE). Os dados foram coletados pelo pesquisador em até 48 horas após a internação.

Foram excluídos pacientes com edema, sintomas dolorosos ou qualquer doença que impedisse a aferição da FPP na mão ou no membro superior dominante, e que tivessem ingerido alimento ou água antes da avaliação.

A variável principal foi a FPP (kg) mensurada após o jejum noturno (FFP em jejum), após a ingestão do desjejum (FFP no desjejum) e do almoço (FFP do almoço). Foi calculada a FPP média obtida após a ingestão do desjejum e almoço (FFP acumulada). A FPP média em jejum foi categorizada no percentil 50 em 35,5kg para o sexo masculino e em 27,7kg para o feminino.

A FPP foi determinada por um dinamômetro hidráulico (Saehan Corporation, Masan, Coreia®). Com o paciente sentado, pés apoiados ao chão, braço dominante aduzido paralelo ao tronco, cotovelo flexionado a 90°, antebraco e punho em posição neutra, foi solicitado ao paciente exercer a maior força de uma única vez. Foram realizadas três aferições, com intervalo de 1 minuto entre elas. Foram anotadas as três medidas, tendo sido calculado o valor médio.
Foram também investigados: idade, sexo, peso atual (kg), peso habitual, perda de peso (kg), diagnóstico de câncer, estado nutricional pela avaliação subjetiva global (ASG), frequência de idosos (idade maior igual a 60 anos), sintomas do trato digestório (constipação intestinal, diarreia, náuseas, dispnéia abdominal e sangramento intestinal relatado nos últimos 3 dias), tipo de dieta oral prescrita (semilíquida/pastosa ou branda/normal) e quantidade aproximada ingerida do jantar da noite anterior à mensuração da FPP. Categorizou-se esta quantidade em ingestão zero (não ingeriu nada), ingestão de até metade da dieta (categorizada para análise estatística como >0 a ≤50%), ingestão de mais da metade, porém não tudo (categorizada para análise estatística como >50 e ≤100%) e 100% do ofertado. Tal variável foi coletada diretamente com o paciente, por perguntas realizadas na manhã do dia da mensuração. Foi comparada a interferência desta quantidade ingerida no jantar na FPP realizada em jejum (primeira mensuração).

Os pacientes nutridos foram classificados como ASG-A; aqueles em risco de desnutrição ou moderadamente desnutridos como ASG-B; e os desnutridos graves em ASG-C. Foram considerados desnutridos os gravemente desnutridos, moderadamente desnutridos ou em risco de desnutrição.

Análises estatísticas

Foi utilizado o teste do χ^2 ou teste de Fisher para variáveis categóricas. As variáveis homogêneas e com distribuição normal foram analisadas pelo teste t de Student. O teste t pareado foi utilizado para comparar a FPP em jejum, após a ingestão do desjejum e do almoço, e a acumulada. A análise multivariada foi realizada pela regressão logística binária, utilizando variáveis com significância ($p<0,20$) pelo teste do χ^2 com a FPP categorizada no percentil 50 para masculino (35,33kg) e feminino (27,7kg). Para evitar colinearidade, as variáveis perda de peso e desnutrido foram retiradas para análise multivariada. Os resultados foram expressos em média e desvio padrão (DP). Estabeleceu-se significância de 5% ($p<0,05$). Utilizou-se o pacote Statistical Package for Social Sciences (SPSS), versão 20.0.

RESULTADOS

Foram excluídos 160 pacientes que não assinaram o TCLE ou ingeriram alimento ou água antes da coleta. Foram estudados 221 pacientes com 56±16 anos, 93 (42,1%) idosos e 128 (57,9%) adultos não idosos; 119 (53,8%) eram do sexo mascuino. Entre os pacientes investigados, 28 (12,7%) internaram para tratamento oncológico e 193 (87,3%) para clínico. O peso corporal médio de todos os pacientes avaliados foi de 65,4±14,9kg e o habitual 71,1±15,1kg.

Observou-se que 38 (17,2%) pacientes eram eutrôficos (ASG-A), 69 (31,2%) apresentaram risco de desnutrição ou desnutrição moderada (ASG-B) e 114 (51,6%) encontravam-se desnutridos graves (ASG-C).

A FPP em jejum foi 31,1±8,7kg, após a ingestão do desjejum de 31,6±8,8kg e do almoço de 31,4±8,5kg, e a acumulada foi 31,7±8,8kg (Figura 1). Não ingeriram nada do jantar 24 (10,9%) pacientes; 33 (14,9%) ingeriram até 50%; 104 (47,0%) ingeriram >50%; e 60 (27,2%) ingeriram 100% do que foi oferecido (Figura 2).

A FPP mensurada em jejum foi menor que a FPP após a ingestão do desjejum (31,6±8,8kg versus 31,1±8,7kg; $p=0,01$). Houve diferença da FPP em jejum em relação à FPP acumulada (31,1±8,7kg versus 31,7±8,8kg; $p<0,001$). Não houve diferença entre a FPP em jejum e a obtida após a ingestão do almoço ($p=0,16$) (Figura 3). Houve aumento da FPP em jejum para os pacientes que ingeriram 100% (33,2±9,1kg versus 30,4±8,4kg; $p=0,03$) e >50% do jantar (32,1±8,4kg versus 28,6±8,8kg; $p=0,006$). Não houve alteração da FPP em jejum para os pacientes com ingestão de até 50% ($p=0,52$) e ingestão zero ($p=0,24$) (Figura 4).
Os pacientes que ingeriram até 50% do jantar (p=0,007), os desnutridos graves (p=0,009), os desnutridos (p=0,01), aqueles com perda ponderal (p=0,03) e os idosos (p=0,03) apresentaram risco aumentado para redução da FPP em jejum (Tabela 1). A análise multivariada mostrou que ingerir <50% do jantar, ser desnutrido grave e ter idade ≥60 anos foram fatores independentes para redução da FPP em jejum (Tabela 2).

Tabela 2. Fatores de risco independentes determinados por análise multivariada para a redução da força de preensão palmar em jejum

Fatores de risco	Odds ratio	IC95%	Valor de p
Ingestão do jantar até 50%	2,17	1,16-4,06	0,018
Desnutrido grave	1,96	1,06-3,26	0,028
Idoso (idade ≥60 anos)	1,98	1,12-3,50	0,019
Tipo de dieta via oral	1,15	0,62-2,13	0,655
Sintomas digestório	1,12	0,55-2,29	0,739

IC95%: intervalo de confiança de 95%.

DISCUSSÃO

Os resultados mostraram que o jejum noturno reduziu a FPP, e esta força muscular aumentou após a ingestão de alimentos. Estudo mostrou que a FPP após o jejum noturno pré-operatório foi menor quando comparada à de pacientes que ingeriram líquidos 2 horas antes da operação.(21) A literatura mostra que o jejum é prejudicial e que a oferta de alimentos, mesmo na forma líquida, pode melhorar a FPP.(23,24)

Nosso estudo mostrou que o jejum noturno por si só já leva à redução da força dos pacientes. Sabe-se que, no período noturno, comparado ao diurno, o gasto energético é menor. Durante a noite de sono, estamos em jejum e em metabolismo basal, enquanto de dia o metabolismo é maior, ou seja, o jejum diurno é mais prejudicial, pois aumenta o gasto das reservas.(25)

Assim, o jejum para cirurgias, exames e procedimentos, rotineiramente prescrito, aumenta o estresse metabólico. Este jejum é mais prejudicial, pois o paciente está acordado, em estresse e com fome. Assim, é fisiológico afirmar que tal jejum resulta em maior prejuízo na capacidade muscular, quando comparado ao noturno. Se o modelo de jejum noturno já reduz a força, esta força pode se reduzir ainda mais na situação rotineira de jejum praticada nos hospitais.

Por outro lado, a oferta inadequada de alimentos também é frequente nas unidades de internação. Em muitas situações, o jejum é prescrito erroneamente, e os pacientes não recebem, por longos períodos, nenhum tipo de nutriente. Os pacientes poderiam receber dieta oral com baixo resíduo.(25)

No presente estudo, a quantidade ingerida reduzida do jantar interferiu negativamente na FPP quando comparada à força dos pacientes com maior ingestão. Uma pesquisa realizada com 3.122 pacientes mostrou que 23% ingeriram menos de 25% da dieta. Esses pacientes eram
Conclusão

A função muscular determinada pela força de preensão palmar está comprometida após jejum noturno em pacientes adultos internados para tratamento clínico, especialmente para aqueles com baixa ingestão alimentar, desnutridos e idosos.

Informação dos Autores

Correa-Arruda WS: http://orcid.org/0000-0002-2163-2678
Vaz IA: http://orcid.org/0000-0003-0014-4592
Aguilar-Nascimento JE: http://orcid.org/0000-0002-3583-6612
Dock-Nascimento DB: http://orcid.org/0000-0003-0205-6766

Referências

1. Thibault R, Chikhi M, Clerc A, Darmon P, Chopard P, Genton L, et al. Assessment of food intake in hospitalised patients: a 10-year comparative study of a prospective hospital survey. Clin Nutr. 2011;30(3):289-96.
2. Waitzberg DL, Caiffa WT, Correa MI. Hospital malnutrition: the Brazilian national survey (IBRANUTRI): a study of 4000 patients. Nutrition. 2001;17(7-8):573-80.
3. Correa MI, Pernan MI, Waitzberg DL. Hospital malnutrition in Latin America: A systematic review. Clin Nutr. 2017;36(4):958-67. Review.
4. Schindler K, Pichard C, Sulz I, Volkert D, Streicher M, Singer P, et al. NutritionDay: 10 years of growth. Clin Nutr. 2017;36(5):1207-14. Review.
5. Waitzberg DL, De Aguilar-Nascimento JE, Dias MC, Pinho N, Moura R, Correa MI. Hospital and homecare malnutrition and nutritional therapy in Brazil. Strategies for alleviating it: a position paper. Nutr Hosp. 2017;34(4):969-75.
6. Ostrowska J, Jeznach-Steinhagen A. Fight against malnutrition (FAM): selected results of 2006-2012 nutrition day survey in Poland. Roczn Panstw Zakl Hig. 2016;67(3):291-300.
7. Schindler K, Kosak S, Schütz T, Volkert D, Hürlimann B, Ballmer P, et al. [NutritionDay- an annual cross-sectional audit of nutrition in healthcare. Ther Umsch. 2014;71(3):127-33. Review. German.
8. Geeganage C, Beavan J, Ellender S, Bath PM. Interventions for dysphagia and nutritional support in acute and subacute stroke. Cochrane Database Syst Rev. 2012;10:CD000323. Review.
9. Tenner S, Baillie J, DeWitt J, Vege SS; American College of Gastroenterology. American College of Gastroenterology guideline: management of acute pancreatitis. Am J Gastroenterol. 2013;108(9):1400-15; 1416. Erratum in: Am J Gastroenterol. 2014;109(2):302.
10. Sinan T, Leven H, Sheik M. Is fasting a necessary preparation for abdominal ultrasound? BMC Med Imaging. 2003;3(1):1.
11. Hamid T, Aleem O, Lau Y, Singh R, McDonald J, Macdonald JE, et al. Pre-procedural fasting for coronary interventions: is it time to change practice? Heart. 2014;100(8):658-61.
12. Kyriakos G, Calleja-Fernández A, Ávila-Turcios D, Cano-Rodriguez I, Ballesteros Pormar MD, Vidal-Casaniego A. Prolonged fasting with fluid therapy is related to poorer outcomes in medical patients. Nutr Hosp. 2013;28(5):1710-6.
13. Kim S, Cheoi KS, Lee HJ, Shin CN, Chung HS, Lee H, et al. Safety and patient satisfaction of early diet after endoscopic submucosal dissection for gastric epithelial neoplasia: a prospective, randomized study. Surg Endosc. 2014;28(4):1321-9.
14. Franklin GA, McClave SA, Hurt RT, Lowen CC, Stout AE, Stogner LL, et al. Physician-delivered malnutrition: why do patients receive nothing by mouth or a clear liquid diet in a university hospital setting? JPEN J Parenter Enteral Nutr. 2011;35(3):337-42.
15. Lamb S, Close A, Bonnin C, Ferrie S. ‘Nil by mouth’: are we starving our patients? E Pern Eur J Clin Nutr Metab. 2010;5(2):e90-2.
16. Sonita A, Thongphrayoon C, Ahmed A, Bates RE, Ray J, Eckem E, et al. Frequency and appropriateness of fasting orders in the hospital. Mayo Clin Proc. 2015;90(12):1225-32.
17. Correia MI, Hegazi RA, Higashiguchi T, Michel JP, Reddy BR, Tappenden KA, et al. ‘Nil by mouth’ are we starving our patients? E Spen Eur E J Clin Nutr Metab. 2010;5(2):e90-2.
18. Allard JP, Keller H, Jeejeebhy KN, Laporte M, Duerksen DR, Grimallich L, et al. Malnutrition at Hospital admission-contributors and effect on length of stay: a prospective cohort study from the canadian malnutrition task force. JPEN J Parenter Enteral Nutr. 2016;40(4):487-97.
19. Arora NS, Rochester DF. Effect of body weight and muscularity on human diaphragm muscle mass, thickness, and area. J Appl Physiol. 1982;52(1):64-70.
20. Humphreys J, de la Maza P, Hirsch S, Barrera G, Gattas V, Bunout D. Muscle strength as a predictor of loss of functional status in hospitalized patients. Nutrition. 2002;18(7-8):616-20.
21. Gall MG, Castro-Barcellos MM, Caporossi C, Aguilar-Nascimento JE. Enhanced muscle strength with carbohydrate supplement two hours before open cholecystectomy: a randomized, double-blind study. Rev Col Bras Cir. 2016;43(1):54-9.
22. Detsky AS, McLaughlin JR Jr, Baker JP, Johnston N, Whittaker S, Mendelson RA, et al. What is subjective global assessment of nutritional status? JPEN J Parenter Enteral Nutr. 1987;11(1):8-13.
23. Noblett SE, Watson DS, Huong H, Davison B, Hainsworth PJ, Horgan AF. Pre-operative oral carbohydrate loading in colorectal surgery: a randomized controlled trial. Colorectal Dis. 2006;8(7):563-9.

24. Zani FV, Aguilar-Nascimento JE, Nascimento DB, Silva AM, Caporossi FS, Caporossi C. Benefits of maltodextrin intake 2 hours before cholecystectomy by laparotomy in respiratory function and functional capacity: a prospective randomized clinical trial. Einstein (São Paulo). 2015;13(2):249-54.

25. Nygren J. The metabolic effects of fasting and surgery. Best Pract Res Clin Anaesthesiol. 2006;20(3):429-38.

26. Agarwal E, Ferguson M, Banks M, Batterham M, Bauer J, Capra S, et al. Malnutrition and poor food intake are associated with prolonged hospital stay, frequent readmissions, and greater in-hospital mortality: results from the Nutrition Care Day Survey 2010. Clin Nutr. 2013;32(5):737-45.

27. Alam MM, Sujauddin M, Iqbal GM, Huda SM. Report: healthcare waste characterization in Chittagong Medical College Hospital, Bangladesh. Waste Manag Res. 2008;26(3):291-6.

28. Kondrup J. Can food intake in hospitals be improved? Clin Nutr. 2001; 20(1):153-60.

29. Dickinson A, Welch C, Ager L. No longer hungry in hospital: improving the hospital mealtime experience for older people through action research. J Clin Nurs. 2008;17(11):1492-502.

30. Schindler K, Pernecka E, Laviano A, Howard P, Schütz T, Bauer P, Greco I, Jonkers C, Konrads J, Ljungqvist O, Mouhieddine M, Pichard C, Singer P, Schneider S, Schuh C, Hiesmayr M; NutritionDay Audit Team. How nutritional risk is assessed and managed in European hospitals: a survey of 21,007 patients findings from the 2007-2008 cross-sectional nutritionDay survey. Clin Nutr. 2010;29(5):552-9.