PHYTOCHEMICAL EVALUATION OF TILIACORA RACEMOSA COLEBR. USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY

YOGESHWARI C*, KUMUDHA P
Department of Botany, Vellalar College for Women (Autonomous), Thindal, Erode – 638012, Tamil Nadu, India.
Email: Yobotnet@gmail.com

Received: 24 April 2017, Revised and Accepted: 21 November 2017

ABSTRACT

Objective: The objective of this study is to characterize the phytoconstituents of Tiliacora racemosa Colebr. using gas chromatography mass spectrometry (GC-MS).

Methods: Preliminary phytochemical and physicochemical analysis was carried out using standard procedures. GC-MS analysis of methanolic extract was carried out using Thermo GC-Trace Ultra version: 5.0, Thermo MS DSQ with a DB 35MS capillary standard non-polar column and gas chromatograph interfaced to a mass selective detector (MS DSQ II) with Xcalibur software.

Results: Preliminary phytochemical screening revealed the presence of alkaloids, flavonoids, phenols, tannins, triterpenoids, steroids, proteins and amino acids, carbohydrates, saponins and coumarin. Quinones, anthraquinones, glycosides and fixed oil were absent. GC-MS analysis revealed the presence of 28 compounds of which quinic acid (retention times [RT]: 15.65) and inositol, 1-deoxy-(CAS) (RT: 19.24) was observed as abundant compounds.

Conclusion: The presence of various bioactive compounds confirms the medicinal importance and it’s application for curing various diseases by traditional practitioners. However, isolation and characterization of potential bioactive compounds would lead to drug formulation.

Keywords: Tiliacora racemosa, Gas chromatography-mass spectrometry, Phytochemicals.

INTRODUCTION

In India, from ancient time, different parts of medicinal plants have been used to cure specific ailments. Today, there is a widespread interest in drugs derived from plants. The shortcomings of the drugs available today propel the discovery of new pharmacotherapeutic agents in medicinal plants [1]. Herbal medicines are safer than synthetic medicines because the phytochemicals in the plant extract target the biochemical pathway [2]. The medicinal actions of plants unique to a particular plant species or groups are consistent with the concept that the combination of secondary products in a particular plant is taxonomically distinct [3]. In recent years, secondary plant metabolites (phytochemicals), previously with unknown pharmacological activities, have been extensively investigated as a source of medicinal agents [4].

Tiliacora racemosa is a climbing shrub belonging to the Family Menispermaceae. This plant is utilized in many Ayurvedic preparations [5]. Paste of leaves and roots are applied externally for cuts and wounds [6], and decoction of root and leaf paste is applied for strangury [7]. Leaves have anti-dandruff properties and kill the lice and nits [8]. The decoction of the leaf along with the paste of long peppers is given for strangury [9]. Taking into consideration of it’s medicinal importance, the present study was aimed at identifying the phytoconstituents of methanolic extract of T. racemosa using gas chromatography-mass spectrometry (GC-MS).

METHODS

Chemicals
The chemicals used in this study were all purchased from Avantor Performance Materials India Ltd, Thane, Maharashtra, India.

Collection and authentication of plant materials
Fresh plants of T. racemosa were collected from Guruvareddiyur section, Chennampatti range, Western Ghats, Tamil Nadu, India. The collected plant was identified with the help of Flora [11] and authenticated by the Botanical Survey of India (Southern circle), Coimbatore. The voucher number of the specimen is BSI/SRC/S/23/2016/Tech./1521.

Preparation of plant extract
The collected fresh leaves were washed thoroughly with running tap water, shade dried at room temperature and ground into powder using a blender. Powdered plant material was successively extracted with petroleum ether, chloroform, methanol and water as solvents (50 g/250 ml) using Soxhlet apparatus for 6–10 h. Powdered plant material was air-dried before each extraction. The extract obtained using each solvent was evaporated to remove excess solvent and then refrigerated at 4°C for further use.

Physicochemical analysis
Physicochemical characteristics of powdered sample such as moisture content, total ash, acid insoluble ash, sulfated ash and water soluble ash were determined by following standard procedures [12,13].

Preliminary phytochemical screening
Preliminary qualitative phytochemical screening of different successive solvent extracts was carried out according to standard procedures [12–14] to identify the secondary metabolites and other phytochemicals.

GC-MS analysis
GC-MS analysis of a methanolic extract of leaves of T. racemosa was carried out at the South India Textile Research Association (SITRA) to analyze the composition of different volatile compounds. The analysis
was performed on a Thermo GC-Trace Ultra version: 5.0, Thermo MS DSQ with a DB 35 MS capillary standard non-polar column (30 m×0.25 mm, 0.25 µm), and gas chromatograph interfaced to a mass selective detector (MS DSQ II) with Xcalibur software. 1 µl of sample was injected in the splitless mode and the injector temperature was 250°C. Helium was used as a carrier gas with a flow rate of 1 ml/min. The oven temperature was programmed initially at 70°C and then was increased to 260°C at the rate of 6°C/min. The total runtime was 37.52 min. Electron ionization mass spectra were measured at 70eV over mass range (m/z) of 50–650 atomic mass units (amu).

Identification of bioactive components

The bioactive components were identified by comparing the mass spectrum of unknown compounds with the data available in the NIST and WILEY library sources. Biological activities of identified compounds were retrieved by the literature review and from Dr. Duke’s Phytochemical and Ethnobotanical database.

RESULTS

The extractive yield was found to be 4.34%, 2.19%, 7.19%, and 1.78% for the solvents namely, petroleum ether, chloroform, methanol and water respectively. The results of the physiochemical evaluation of *T. racemosa* are presented in Table 1. Preliminary phytochemical screening revealed the presence of alkaloids, flavonoids, phenols, tannins, triterpenoids, steroids, proteins and amino acids, carbohydrates, saponins and coumarin in different solvent extracts. Quinones, anthraquinones, glycosides and fixed oil were absent in all extracts (Table 2).

GC-MS analysis revealed the presence of 28 compounds (Table 3) which include different fatty acids and heterocyclic compounds. The most abundant compound observed was quinic acid (retention time: [RT]: 15.65) and inositol, 1-deoxy- (CAS) (RT: 19.24) with peak area percentage 27.12 and 19.88 respectively, and totally representing 47% of the total peak area. This was followed by erthyritol, α-D-Glucopyranoside, α-D-fructofuranosyl, 1-Nitro-1-deoxy-D-glycero-1-mannoheptitol, DL-Arabino and other compounds. The compound with the lowest peak area percentage was quercetin 7,3,4′-trimethoxyl and 9,12-Octadecadienoyl chloride with peak area percentage of 0.65 and 0.66 respectively. The compound 9,12,15-Octadecatrienoic acid and inositol, 1-deoxy- (CAS) occurred at two retention time each with the highest peak area percentage of 2.21 and 19.88 at retention time 25.72 and 19.24 respectively.

Table 1: Physicochemical values of leaf powder of Tiliacora racemosa

Physicochemical properties	Values (%)
Moisture content	3.75
Total ash	7.086
Acid insoluble ash	38.7
Sulfated ash	4.67
Water-soluble ash	67.9

Table 2: Qualitative phytochemical analysis of leaf powder of Tiliacora racemosa

Phytoconstituents	Inference	Petroleum ether	Chloroform	Methanol	Water
Alkaloids	+	+	+	+	+
Flavonoids	+	+	+	+	+
Phenols	+	+	+	+	+
Tannins	+	–	+	–	–
Triterpenoids	–	+	–	–	–
Steroids	–	+	+	–	–
Carbohydrates	–	–	+	–	–
Glycosides	–	–	–	–	–
Proteins and Amino acids	–	–	–	–	+
Quinones	–	–	–	–	–
Anthraquinones	–	–	–	–	–
Saponins	–	–	–	–	–
Fixed oil	–	–	–	–	–
Coumarin	–	–	–	–	+

(+) : Present, (−) : Absent

DISCUSSION

The extraction yield calculated for petroleum ether, chloroform, methanol and water extracts of *T. racemosa* showed that methanol extract registered a higher percentage of yield. It is explained that the polarity level and species nature are playing a major role in extracting the secondary metabolites [15]. Qualitative phytochemical screening is a preliminary analysis done before the detailed phytochemical and pharmacological investigation. These phytochemicals possess a wide range of medicinal properties.

Alkaloids possess antibacterial and antidiabetic properties [16,17]. Flavonoids are known to possess anticancer, antiviral, anti-inflammatory and antioxidant properties [18,19]. Phenolic compounds are well known to possess biological activities such as antioxidant, anti diabetic, hepatoprotective, anti-inflammatory, antimicrobial and antitumor [20,21]. Glycosides also have immense therapeutic efficacy as they are found in almost every medicinal plant and steroids are responsible for cholesterol-reducing properties and regulating the immune response [22]. Triterpenoids have diverse biological activities that include immunostimulation, antimicrobial, anti-inflammatory, anti-cancer and antiviral properties [23,24].

GC is one of the most widely used techniques and has become one of the most important tools for the separation of volatile compounds. GC-MS analysis of *T. racemosa* revealed the presence of 28 compounds with many biological properties which may contribute to the medicinal properties of the plant. For instance, 9,12,15-Octadecatrienoic acid (Z,Z,Z) (Linolenic acid, RT 25.72) possesses anti-inflammatory, anticancer, nematicide, hepatoprotective, antihistaminic, antiinflammatory, 5-alpha reductase inhibitors. Vitamin E is known to possess anti-aging, analgesic, antidiabetic, anti-inflammatory, antioxidant, antifibrinolytic and 5-alpha reductase inhibitors. N-Hexadecanoic acid (palmitic acid, RT 22.42) can be an antioxidant, 5-alpha reductase inhibitor and antiarthritic properties [25]. 9,12-Octadecadienoyl chloride (RT: 19.24) with peak area percentage of 0.66 responsible for cholesterol-reducing properties and regulating the immune response [22]. Triterpenoids have diverse biological activities that include immunostimulation, antimicrobial, anti-inflammatory, anti-cancer and antiviral properties [23,24].
In the present study, mostly all compounds are fatty acids, esters, and carbohydrates. Similar kind of results has also been observed by Gupta and Kumudha et al. [28], showed the presence of various bioactive compounds [29]. Similar results have been obtained in the present study, but this is probably the first report indicating a higher percentage of quinic acid in methanolic extract of leaves of T. racemosa which is known to possess choleretic [26], antioxidant [30] and anticancer [31] properties. The results of the GC-MS profile can be used as pharmacognotistical tool for the identification of the plant [3].

CONCLUSION

The presence of various bioactive compounds confirms the medicinal importance and its application for curing various diseases by traditional practitioners. However, isolation and characterization of potential bioactive compounds would lead to drug formulation.

ACKNOWLEDGMENT

The authors would like to thank SITRA, Coimbatore, Tamil Nadu, for providing necessary laboratory facilities to perform this work.

AUTHORS CONTRIBUTIONS

Yogeshwari C collected the ethnomedicinal plant and carried out experimental work such as extract preparation and phytochemical analysis. Kumudha P is the principal investigator who supervised the work and corrected the manuscript for publication. Both authors read and approved the final manuscript.
CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

1. Nair R, Chanda S. Activity of some medicinal plants against certain pathogenic bacterial strains. Indian J Pharmacol 2006;38:142-4.
2. Manzra UT, Dodipo OA, Khan IZ. Analysis of bioactive components of *Phyllanthus amarus* leaves. Int J Res Plant Sci 2012;3:208-15.
3. Janakiraman N, Johnson M, Sathish SS. GC-MS analysis of bioactive constituents of *Peristrophe bicalyculata* (Retz.: *Acanthaceae*). Asian Pac J Trop Biomed 2012;2 Suppl 1:546-9.
4. Parekh J, Chanda SV. *In vitro* antiamoebial activity and phytochemical analysis of some Indian medicinal plants. Turk J Biol 2007;31:53-8.
5. Kritikar KR, Basu BD. Indian Medicinal Plants. 15 ed. Delhi: Neeraj Publishing House; 2014.
6. Haridas R, Thomas B. Ethnomedicinal knowledge of tribe-kattunayakan in nilambur forests of Malappuram district, Kerala, India. Int J Phyther 2015;5:76-85.
7. Madhu V, Ravindra Naik DS. Ethnomedicinal uses of leaf preparations in Adilabad district, Andhra Pradesh, India. Ethnobot Leaflets 2009;13:1337-47.
8. Savithramma N, Yugandhar P, Suhruutha D. Traditional medicinal plants used by local people of Kailasakona-a sacred grove of Chittoor district, Andhra Pradesh, India. Int J Pharm Pharm Sci 2015;7:407-11.
9. Girish KE, Pradeep KG, Sivadasan KK. Plants used in traditional herbal shampoos (Thaali) of Kerala, India: A documentation. Asia Pacific J Res 2014;4:56-63.
10. Pal DC, Jain SK. Tribal Medicine. 1 ed. Calcutta: Naya Prokash; 1998.
11. Gamble JS. *Flora of the Presidency of Madras*. 1 ed. Delhi: Neeraj Publishing House; 2014.
12. Evans WC. *Trease and Evans Pharmacognosy*. 15th ed. New Delhi: Elsevier; 2007.
13. Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. 15th ed. Pune: Niral prakashan; 2014.
14. Harborne JB. *Phytochemical Methods - A Guide to Modern techniques of Plant analysis*. 3rd ed. New Delhi: Springer (India) Private Limited; 2013.
15. Senguttuvan J, Paulsamy S, Karthika K. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, *hypochoeris radicata* L. *In vitro* antioxidant activities. Asian Pac J Trop Biomed 2014;4:S359-67.
16. Santhi K, Sengottivel R. Qualitative and quantitative phytochemical analysis of *Moringa concanensis* Nimmo. Int J Curr Microbiol Appl Sci 2016;5:633-40.
17. Shah MD, Yong YS, Iqbal M. Phytochemical investigation and free radical scavenging activities of essential oil, methanol extract and methanol fractions of *Nephrolepis biserrata*. Int J Pharm Pharm Sci 2014;6:269-77.
18. Benavente-garcia O, Castillo J, Marin FR, Ortuno A, Del Rio JA. Uses and properties of *citrus* flavonoids. *J Agric Food Chem* 1997;45:4505-15.
19. Azalework HG, Jafri A, Malik T. Phytochemical investigation, GC-MS profile and antimicrobial activity of a medicinal plant *Ruta graveolens* L. from ethiopia. Int J Pharm Pharm Sci 2017;9:29-34.
20. Al-owaisi M, Al-hadiwi N, Khan SA. GC-MS analysis, determination of total phenolics, flavonoid content and free radical scavenging activities of various crude extracts of *Moringa peregrina* (Forsk.) Fiori leaves. Asian Pac J Trop Biomed 2014;4:964-70.
21. Sulaiman S, Ibrahim D, Kassim J, Shih-Hong L. Antimicrobial and antioxidant activities of condensed tannin from *Rhizophora apiculata* barks. J Chem Pharm Res 2011;3:436-44.
22. Yadav M, Chatterji S, Gupta SK, Watal G. Preliminary phytochemical screening of six medicinal plants used in traditional medicine. Int J Pharm Pharm Sci 2014;6:539-42.
23. Shah BA, Qazi GN, fiance SC. Boswellic acids : A group of medicinally important compounds. Nat Prod Rep 2009;26:72-89.
24. Saradha M, Paulsamy S. GC-MS analysis for bioactive compounds from methanolic leaf and stem bark extracts of *Hildegardia populifolia* (Roeh.) Schott and Enndl. Int J Pharm Pharm Sci Res 2013;23:328-32.
25. Sermakkani M, Thangapandian V. *GC-MS analysis of Cassia italicca* leaf methanol extract. Asian Pharm Clin Res 2012;5:90-4.
26. Available from: https://www.data.nal.usda.gov/dataset/dr-dukes-phytochemical-and-ethnobotanical-databases_2719.
27. Parveen S, Shahzad A, Upadhyay A, Yadav V. Gas chromatography-mass spectrometry analysis of methanolic leaf extract of *Cassia angustifolia* Vahl. Asian J Pharm Clin Res 2016;9 Supp 3:111-6.
28. Gupta D, Kumar M. *Evaluation of in vivo antimicrobial potential and GC-MS analysis of Camellia sinensis and Terminalia arjuna*. Biotechnol Rep 2016;13:19-25.
29. Chaveerach A, Lertsittathanakorn P, Tanee T, Puangjit N, Patarapadungkit N, Sudmoon R. Chemical constituents, antioxidant property, cytotoxicity and genotoxicity of *Tilia cordata triandra*. Int J Pharmacogn Phytochem Res 2016;8:722-9.
30. Pero RW, Lund H, Leanderson T. Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide. Phytother Res 2009;23:335-46.
31. Inbathamizh L, Padmini E. Quinic acid as a potent drug candidate for prostate cancer - A comparative pharmacokinetic approach. Asian J Pharm Clin Res 2013;6:106-12.