Antimicrobial Resistance and the Successful Eradication of Helicobacter pylori-Induced Gastroduodenal Ulcers in Vietnamese Children

Ha Van Thieu1,2*, Nguyen Minh Duc3,4*, Bui Thi Dung Nghi1, Ngo Van Bach1, Ha Huy Khoi1, Vo Ngoc Thuy Tien1, Mai Tan Lien Bang2, Tang Le Chau Ngoc2

ABSTRACT

Background: Helicobacter pylori infections induce chronic gastric mucosal inflammation and peptic ulcer disease, and eradication is recommended. Objective: To investigate antibiotic resistance and H. pylori eradication rates in children with gastroduodenal ulcers in Vietnam. Methods: We performed gastroduodenal endoscopies, H. pylori cultures, and antimicrobial susceptibility testing (clarithromycin, amoxicillin, metronidazole, tetracycline, and levofloxacin) in children with gastroduodenal ulcers at Children’s Hospital 2 from November 1, 2019, to June 30, 2020. Results: A total of 76 participants were studied, with an average age of 9.3 ± 2.8 years (range: 4–15 years), including 52.6% males and 47.4% females. The antibiotic resistance rates were clarithromycin, 92.1%; amoxicillin, 50%; levofloxacin, 31.6%; metronidazole, 14.5%; and tetracycline, 0%. The successful eradication rate was 44.7%. Bismuth increased the eradication rate by 3.69-fold that without bismuth (p = 0.030). The eradication rate of levofloxacin was high (100%, p = 0.038) compared with other antibiotics. The effectiveness of high-dose amoxicillin in cases with >50% H. pylori amoxicillin resistance was only 32.6% (p = 0.015). Conclusion: Increased antibiotic resistance among H. pylori resulted in decreased eradication efficacy, which was 44.7% in this study. Drug combinations, such as levofloxacin and bismuth, can increase the H. pylori eradication efficacy in children.

Keywords: Children, resistance, eradication rate, Helicobacter pylori.

1. BACKGROUND

The discovery of Helicobacter pylori bacteria in the human stomach in 1982 by two Australian scientists, Marshall and Warren, earned them the Nobel Prize for Medicine (1). Typically, H. pylori infections are acquired during childhood, persist throughout life, and can induce chronic gastric mucosal inflammation, associated with the development of gastric cancer. The World Health Organization (WHO) determined that H. pylori eradication represented an essential strategy for preventing stomach cancer (2).

Various treatments, including the use of proton pump inhibitors (PPIs), antibiotics, bismuth, and probiotics, have been proposed to eradicate H. pylori. However, the therapeutic efficacies of these regimens have been very low, with lower than expected results reported in a previous study (<80%), especially among children (3).

The successful eradication of H. pylori depends on many factors, including bacterial contamination, bacterial virulence, the CYP2C19 phenotype, antibiotic resistance, and patient compliance. The increasing antibiotic resistance of H. pylori is thought to be a leading cause of treatment failure (4). Among Asian adults, the antibiotic resistance rates of H. pylori against metronidazole, clarithromycin, levofloxacin, amoxicillin, and tetracycline were reported to be 46.57%, 27.45%, 25.28%, 23.61%, and 7.38%, respectively (5). Among children, many global studies have also reported the increased incidence of primary antibiotic-resistant H. pylori strains (6).
2. OBJECTIVE
In this study, we aimed to investigate the H. pylori antibiotic resistance rate among pediatric patients in Vietnam, to evaluate the eradication rates in response to tailored regimens that were designed according to the results of antibiotic susceptibility tests, and to examine the factors that influence eradication efficacy.

3. MATERIAL AND METHODS
Study subjects: All children diagnosed with a peptic ulcer at Children’s Hospital 2 from November 1, 2019, to June 30, 2020, who had positive H. pylori cultures, antibiotic susceptibility testing results, and no prior history of eradication treatment.

Inclusion criteria: The following inclusion criteria were applied: patients indicated and received gastroduodenoscopy; endoscopic and histopathological findings suggested inflammatory lesions or peptic ulcers, according to the Sydney 1996 classification; bacteria were cultured and antibiotic susceptibility testing was performed; and patients complied with antibiotic regimens for 14 days and PPI regimens for eight weeks.

Exclusion criteria: The following exclusion criteria were applied: patients did not comply with the treatment, and no test was performed to assess the outcomes after treatment (stool antigens).

H. pylori diagnosis: The criteria for positive H. pylori infection diagnosis was based on the 2016 guidelines established by the European Society for Paediatric Gastroenterology and Nutrition/North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN/NASPGHAN) (7), and included either (1) an H. pylori-positive culture or (2) H. pylori-positive histopathology, combined with at least one other positive biopsy-based test, such as a rapid urease test (RUT) or polymerase chain reaction (PCR).

Criteria for successful eradication: Successful eradication was defined as a negative antigen/stool test following regimen therapy. Stool tests were performed at least four weeks following antibiotic discontinuation and two weeks after PPI discontinuation.

Eradication regimen for H. pylori: Regimens and dosages were determined according to the 2016 ESPGHAN/NASPGHAN guidelines (7).

Data processing and statistical analysis: All data analysis was performed using Excel 2010 and SPSS 20.0 software. Descriptive statistics are expressed as the mean ± standard deviation or as frequency and percentage (%). We used the Chi-square test to analyze the associations among independent qualitative variables. We used Fisher’s exact test if the expected value was lower than 5. Logistic regression was used to examine the odds ratio and 95% confidence intervals. A p-value < 0.05 was considered significant.

Ethical issues: This study was approved by the Medical Ethics Committee of Children’s Hospital 2.

4. RESULTS
Characteristics of the study population and antibiotic resistance rate
This study enrolled 76 eligible cases. The mean age of participants was 9.3 ± 2.8 years, ranging from 4 to 15 years. The percentages of females and males were 47.4% and 52.6%, respectively.

Among the tested H. pylori cultures, clarithromycin resistance was observed at the highest rate, at 92.1%, followed by amoxicillin at 50%. The rate of H. pylori resistance to the combination of clarithromycin and amoxicillin was 44.7% (Table 1).

Characteristics of treatment and eradication results
The successful eradication rate among all included patients was 44.7% (Table 2).

Factors associated with eradication results
The inclusion of levofloxacin, high-dose amoxicillin, and bismuth in treatment regimens was significantly associated with improved H. pylori eradication efficacy (p < 0.05) (Table 3).

Using multivariate logistic regression, the eradication success rate for regimens that included bismuth was
For metronidazole, the overall global resistance rate was reported at 47.22%. The resistance rates, in ascending order, for North America, Europe, Asia, South America, and Africa were 30.5%, 31.19%, 46.57%, 52.85%, and 75.02%.

For levofloxacin, in Asia, the respective figures in Japan, South Korea, Iran, and Malaysia were reported at 57%, 24.55%, 5.3%, and 2.6%.

Among the five popular antibiotics used to treat *H. pylori*, tetracycline had the lowest resistance rate, with a global resistance rate of 11.7%; however, tetracycline resistance also varied widely across countries and regions.

Our study examining 76 children resulted in a successful *H. pylori* eradication rate of 44.7% (95% confidence interval: 34.1%–55.9%). This rate is lower than that reported by other recent studies. From 2013 to 2017, Silva *et al.* reported an eradication rate of 97.8% at a northern Portuguese pediatric center (10), and Dehghani’s study in Iran reported an eradication rate of 82.5% (11). However, our result was similar to other studies performed in Asia, such as Zhang *et al.*’s study in China, which reported an eradication rate of 64.5% (12). Our study results included 4 cases that achieved 100% eradication using levofloxacin, and we identified a significant difference in the eradication rate associated with levofloxacin (p = 0.038) compared with other antibiotic treatments. However, levofloxacin is expensive compared with other treatments and is not commonly prescribed for children. Thus, additional research remains necessary to examine the efficacy of this antibiotic for the eradication of *H. pylori* in children.

The first-line regimen recommended by the 2016 ESPGHAN/NASPGHAN guidelines (7) is amoxicillin, regardless of whether resistance is detected. In our study, the successful eradication efficacy among children who were treated with high-dose amoxicillin when *H. pylori* cultures revealed resistance to both clarithromycin and metronidazole was 32.6%, which was significantly lower than the efficacy of standard-dose amoxicillin (60.6%, p = 0.015). This result indicated that high-dose amoxicillin was not effective for the treatment of multiantibiotic-resistant *H. pylori*, likely due to the high resistance against amoxicillin (>50%) in Vietnam. Additional studies using larger sample sizes remain necessary to explore the most effective treatment method when bacteria are already amoxicillin-resistant, as a different antibiotic conversion regimen may be more suitable for these patients.

The eradication rate in response to the bismuth-based regimen in our study was 68.4%, which was significantly higher than the rate for regimens without this active ingredient (36.8%, p = 0.016). In 2015, according to a report by the European Pediatric Treatment Registry, bismuth-containing regimens had a success rate of 77% compared with 64% for bismuth-free regimens, which represented a significant increase in efficacy (p = 0.02) (13). According to another retrospective study per-
formed in Korea from 2004 to 2012, which compared the eradication efficacy between a 7-day bismuth-containing quadruple regimen (OAMB: omeprazole, amoxicillin, metronidazole, and bismuth) and a 14-day triple therapy regimen (OCA: omeprazole, clarithromycin, and amoxicillin), the eradication success rates were 83.9% and 67.7%, respectively, which represented a significant difference ($p = 0.041$) (14).

Some authors have concluded that bismuth-based regimens increased the $H.\ pylori$ eradication efficacy. Therefore, the ESPGHAN/NASPGHAN 2016 guidelines recommended that bismuth should be included in first-line regimens when $H.\ pylori$ is determined to be resistant to clarithromycin or metronidazole (13). Although tetracycline had a resistance rate of 0%, it was rarely prescribed for children older than eight years, which was a limitation of this study. However, all 4 cases prescribed levofloxacin resulted in successful eradication. The eradication efficacy of $H.\ pylori$ in pediatric patients requires additional studies using larger samples and multiple centers, especially with regards to the efficacy of tetracycline and levofloxacin.

6. CONCLUSION

The rate of antibiotic resistance among $H.\ pylori$ has been increasing at an alarming level. The clarithromycin and amoxicillin resistance rates for $H.\ pylori$ were very high in this study, at 92.1% and 50.0%, respectively. The successful eradication rate for $H.\ pylori$ in this study was 44.7%. Factors associated with increased $H.\ pylori$ eradication efficacy included the use of bismuth-based regimens and high-dose levofloxacin or amoxicillin regimens. Multivariate regression analysis showed that the eradication rate for the bismuth-containing regimens was 3.69-fold higher than that for regimens without bismuth.

REFERENCES

1. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984; 1(8390): 1311-1315.
2. International Agency for Research on Cancer. Helicobacter pylori eradication as a strategy for preventing gastric cancer. Helicobacter pylori Working Group. 2014; 8.
3. Bontems P, Kalach N, Oderda G, et al. Sequential therapy versus tailored triple therapies for Helicobacter pylori infection in children. J Pediatr Gastroenterol Nutr. 2011; 53(6): 646-650.
4. Graham DY, Fischbach L. Helicobacter pylori treatment in the era of increasing antibiotic resistance. Gut. 2010; 59(8): 1143-1153.
5. Ghotaslou R, Leylabadlo HE, Asl YM. Prevalence of antibiotic resistance in Helicobacter pylori: A recent literature review. World J Methodol. 2015; 5(3): 164-174.
6. Seo JH, Jun JS, Yeom JS, et al. Changing pattern of antibiotic resistance of Helicobacter pylori in children during 20 years in Jinju, South Korea. Pediatr Int. 2013; 55(3): 332-336.
7. Jones NL, Koletzko S, Goodman K, et al. Joint ESPGHAN/NASPGHAN Guidelines for the Management of Helicobacter pylori in Children and Adolescents (Update 2016). J Pediatr Gastroenterol Nutr. 2017; 64(6): 991-1003.
8. Esmaeili-Dooki MR, Shiridl H, Hajiahmadi M. Eradication of Helicobacter pylori in Children by Triple Therapy Regimens of Amoxicillin, Omeprazole, and Clarithromycin or Azithromycin. Iran J Pediatr. 2015; 25(6): 2360.
9. Galal YS, Gholbrial CM, Labib JR, Abou-Zekri MR. Helicobacter pylori among symptomatic Egyptian children: prevalence, risk factors, and effect on growth. Journal of the Egyptian Public Health Association. 2019; 94(17): 1-8.
10. Silva GM, Silva HM, Nascimento J. Helicobacter pylori antimicrobial resistance in a pediatric population. Helicobacter. 2018; 23(5): e12528.
11. Dehghani SM, Nazari A, Javaherizadeh H. Effect of sequential therapy on treatment of Helicobacter pylori infection in children. Rev Gastroenterol Peru. 2018; 38(2): 128-130.
12. Zhang SH, Zhu X, Li BM, Li H. The effect of virulence genotypes of Helicobacter pylori on eradication therapy in children. Saudi J Gastroenterol. 2018; 24(4): 249-254.
13. Kalach N, Bontems P, Cadranel S. Advances in the treatment of Helicobacter pylori infection in children. Ann Gastroenterol. 2015; 28(1): 10-18.
14. Hong J, Yang HR. Efficacy of Proton Pump Inhibitor-based Triple Therapy and Bismuth-based Quadruple Therapy for Helicobacter pylori Eradication in Korean Children. Pediatr Gastroenterol Hepatol Nutr. 2012; 15(4): 237-242.