Distribution of amino acids in functional sites of proteins with high melting temperature

Amutha Selvaraj Maheshwari¹ ² & Govindaraju Archunan¹ *

¹Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli – 620 024, Tamil Nadu, India;
²Department of Biotechnology, Anna University – BIT campus, Tiruchirappalli – 620 024, Tamil Nadu, India; Govindaraju Archunan – Email: archunan@bdu.ac.in; Phone: +91-431-2407040; Fax: +91-431-2407045/ 2412750; *Corresponding author

Received September 27, 2012; Accepted October 26, 2012; Published November 23, 2012

Abstract:
The stability of proteins in its native state has an important implication on its function and evolution. The functional site analysis may lead to better understanding of how these amino acid distributions influence the melting temperature of proteins. It has been reported that increasing the fraction of hydrophobic contacts in a protein tends to raise melting temperature; increasing the fraction of repulsive charge contacts decrease the melting temperature and consistent with a destabilizing effect. The role of amino acid distribution as hydrophobic, charged and polar residues in proteins and mainly in its functional sites has been studied. Due to limited data availability, redundancy check and controlled environment parameters, the study was carried out with ten single chain-wild proteins having melting temperature above 80°C at pH 7. The analysis depicts that, the entire protein, hydrophobic contacts are observed between polar and non-polar residues are more frequent in single chain proteins and charged residues are more frequent in multi-chains proteins. In functional sites of these proteins, hydrophobic and charged residues are equally frequent in single chain proteins and charged residues are very high in multi-chains proteins. But, the polar residue distribution remains same for both single chain and multi-chain proteins and its functional sites.

Key words: Classified amino acids, Functional residues, Melting temperature, Single and Multi-chain, Thermo-stable proteins.

Background:
The melting temperature is an important characteristic feature of a sequence in the prediction of thermal stability of proteins. Increasing the fraction of hydrophobic contacts in a protein tends to raise melting temperature; increasing the fraction of repulsive charge contacts decrease the melting temperature and consistent with a destabilizing effect. It has been revealed that thermophilic and mesophilic proteins have both similar polar and non-polar contribution to the surface area and compactness. Salt bridges and main chain hydrogen bonds show an increase in the majority of thermophilic proteins than their mesophilic homologues. In thermophilic proteins, hydrophobic residues are significantly more frequent and polar residues are less frequent [1]. It has been described that thermophiles prefer to have contacts between residues with hydrogen-bond-forming capability. The contact density is not significantly correlated with protein melting temperature. More contacts are observed between polar and non-polar residues in thermophiles than mesophiles. Tyr has good contacts with several other residues, and Cys has considerably higher long-range contacts in thermophiles compared with mesophiles [2]. It has been reported that both thermophilic and mesophilic proteins have similar hydrophobicity, compactness, oligomeric states, polar non-polar contribution to surface areas, main-chain and side-chain hydrogen bonds. Salt bridges and side-chain hydrogen bonds increase in the majority of the thermophilic proteins. Arg and Tyr are more frequent, Cys, Ser are less frequent in thermophilic proteins. Thermophiles have a larger fraction of their residues in the α-helices and avoid Pro in its α-helices to a greater extent than the mesophiles. It may be the cause to withstand high temperature [3].

The stabilizing group consists of polar-charged residues and non-polar residues that possess high surrounding hydrophobicity. It has been described as the polar uncharged residues destabilize the molecule against temperature and Ser being the most destabilizing residue. A very high co-operativity exists among the stabilizing non-polar residues. In small
globular proteins, the melting temperature remains mainly a function of amino acid composition and in complex molecules it depends on other factors also [4]. The maximum melting points of proteins with respect to pH are reported that the correlation coefficient of hydrophobic index versus melting point was 0.622; average residue volumes versus melting points was 0.960; the average residue volume versus hydrophobic index was 0.697 [5]. In proteins, the strongest contributors to thermostability are increased in ion pairs on the surface and the very strong hydrophobic interior [6]. Identifying the protein regions that are most likely to be involved in function is useful to gain information about its potential role. The combination of experimental and in-silico approaches will help us to interpret the genetic information in functional terms and be the final goal of the so-called post-genomic era [7]. It has been analyzed that multiple peptide motifs are capable of different temperature dependent transitions [8]. In the present work, we have studied the distribution of amino acids in both thermophilic proteins and in its functional sites. In this amino acids distribution studies, the classification of amino acids as hydrophobic, charged and polar residues is followed. Then, the distribution of such classified amino acids and the melting temperature transition among proteins is analyzed.

Methodology:

Datasets

The database ProTherm [9] available at: http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html is used for our study. The melting temperature of wild proteins measured by different techniques such as DSC, CD, Adsorption, Fluorescence, and NMR, for both single chain and multi-chains proteins is mainly focused in this study. Certain conditions such as measurement, state, chain type, pH etc. is set to derive a proper dataset for the analysis. To avoid bias in prediction of result, the size of the derived dataset was reduced by redundancy check.

Amino acid composition (%)
The percentage of amino acids present in the protein sequences were collected using Protparam tool [10] available at http://web.expasy.org/protparam/. The percentages of collected amino acids were classified as hydrophobic, Hp (A, I, L, M, F, P, V), charged (R, D, E, K) and polar (N, C, Q, G, H, S, T, W, Y) residues.

Non-polar residues (hydrophobic)
Hydrophobic amino acids are found at the core of many proteins and they mainly composed of non-polar residues. A significant amount of non-polar residues are also found on the surface of proteins. These are not favorably interact with water but stabilized by numerous van der Waals interactions.

Charged residues
Charged amino acids are found on the surface of the protein as well as seldom buried in the interior of a folded protein. They can interact with water and other important biological molecules. The positively and negatively charged amino acids form salt bridges.

Figure 1a: The plot depicts the melting temperature of various proteins obtained by DSC technique at different pH; 1b): The plot depicts the melting temperature of various proteins obtained by CD technique at different pH; 1c): The plot depicts melting temperature of various proteins obtained by Absorption technique at different pH; 1d): The plot depicts melting temperature of various proteins obtained by Fluorescence technique at different pH; 1e): The plot depicts melting temperature of various proteins obtained by NMR technique at different pH.
Polar residues (hydrophilic)

Polar amino acids are found both at buried position as well as on the surface of proteins and possess hydrophilic groups which either form hydrogen bonds with other polar residues in the protein or with water. Polar amino acid side chains may form side chain-side chain or side chains-main chain hydrogen bonds. These interactions are often crucial for the stabilization of protein tertiary structure and are normally conserved.

Functional/ Active sites

The CASTp server [11, 18] available at http://stsb-fw.bioengr.uic.edu/castp/ is used. Using this server, the amino acids present in the active sites of single chains proteins were identified. The POOL program (Partial Order Optimal Likelihood) available at: http://www.pool.neu.edu:8080/wPOOL/, which is a machine learning method that identifies the functionally important residues in a given protein structure[12] is also used in this research.

Multiple sequence alignment

Analysis of multiple alignments was performed using the software MAFFT. It is a multiple alignment program for amino acid or nucleotide sequences [13, 14] available at http://mafft.cbrc.jp/alignment/software/. This program is used to understand the phylogenetic relationships among wild proteins particularly with single chain and Tm > 80°C at pH7. Jalview version-2 was used for editing and for obtaining phylogenetic tree [14].

Discussion:

As per previous report, in complex molecules the melting temperature depends on other factors also [4]. So, the dataset with defined conditions such as pH, state, number of chains etc. is generated. Due to these limitations, the study is carried out with limited data. The overview of available Tm measured by different techniques at different pH is given in (Figure 1a, 1b, 1c, 1d & 1e). These scatter plots depicting the size of Tm dataset measured by DSC and CD measurements is larger than the datasets derived through adsorption, florescence, NMR measurements. Since the reliability of result prediction attained by large dataset, the research is focused on Tm obtained through DSC. The distribution of single chain and multi-chains proteins with Tm > 80°C at different pH are shown in (Figure 2a, 2b). The study is to find out the type of amino acids significant for maintaining the temperature in thermophilic proteins. While considering the whole protein with Tm > 100°C at pH 7, hydrophobic residues are more frequent followed by polar residues in single chain proteins (4 data) and hydrophobic/charged residues are more frequent and polar residues are very less frequent in multi-chains proteins (4 data) which illustrated in (Figure 3a & 3b). As per the previous report the hydrophilic residues are significantly more frequent and polar residues which are less frequent in thermophilic proteins [1]. The dataset of 16 proteins with many single chains as well as few multi-chains having Tm > 40°C at pH 7 make it clear that almost 50% are shared by polar residues and the remaining 50% are shared by mostly hydrophobic residues which followed by charged residues (Figure 3a, 3b). This dataset is taken just for the comparison of different melting temperature transition.

While considering the whole protein with Tm > 80°C at pH 7, not much variations is observed in polar residue distribution for both single chain and multi-chain proteins. In single chain proteins (11 data), hydrophobic residues are more frequent and in multi-chains proteins (7 data), charged residues are more frequent (Figure 3.3 & 3.4). Figure 3.5a & 3.5b) illustrates the top ten residues which constitute the functional site of proteins having Tm > 80°C at pH 7. While considering the functional sites of these proteins, not much variation is observed in polar residue distribution for both single chain and multi-chain proteins. It seems polar residues remain same in protein as well as in functional sites for both single chain proteins. In single chain proteins (10 data), hydrophobic and charged residues are equally frequent and in multi-chains proteins (7 data), charged residues are high frequent (Figure 3.5a & 3.5b). As reported earlier more contacts have been observed between polar and non-polar (Hp) residues in thermophiles than in mesophiles [2]. The individual amino acid distribution of single and multi-chain proteins having Tm>100°C at different pH is shown in (Figure 4). In which, the composition of Hp (A, I, L) and charged (E, K) are high; charged (R, D), polar (G) and Hp (V) are of medium composition; polar (N, Q, H, P, S, T, W, Y) and Hp (M, F) are less in composition. Previous studies demonstrated that Arg and Tyr are more frequent and Cys, Ser are less frequent in thermophilic proteins [3].

Figure 2.a: The plot depicts the single chain proteins having melting temperature above 80°C at different pH [16].

Figure 2.b: The plot depicts the multi-chains proteins having melting temperature above 80°C at different pH [16].
Identifying the protein regions that are most likely to be involved in function may give the direction to melting temperature transition. So, the study is focused on the amino acid distribution in its functional sites. As reported by Pool server, either because of atoms with undefined parameters or because of high-potential regions in the protein, the functional site residues for our entire dataset could not be collected. And also, it is given as the top 8-10% of the residues in the rank order gives the best performance in this server. Hence, the top 10 residues were considered for work Table 1 & 2 (see supplementary material). The Accession number and PDB ID of proteins used in the multiple sequence alignment for the dataset generated using the conditions such as single chain, two state, pH7, Tm>80°C Table 3 (see supplementary material).
material). The phylogenetic tree shown in (Figure 5) depicted that 1BSQ, 1QG5 are similar proteins; 1ONC and 1J2V have another internal ancestor. This may lead to the better understanding of how these distributions of amino acids may affect the melting temperature of proteins.

The thermophilic proteins having same internal ancestor is same which may also responsible for high melting temperature. Instead of considering the entire protein, the conservation of functional site residues and its chemical nature might have same for both single chain and multi-chains proteins. But, the polar residue distribution is high in multi-chains proteins and charged residues are very frequent in single chain proteins having Tm>80°C at pH7.

Previous report described whether it is a single chain or multi-chain protein, the polar amino acids composition is often crucial for the thermal stabilization of proteins. The present study concludes that while considering the entire protein, hydrophobic residues are more frequent in single chain proteins and charged residues are more frequent in multi-chains proteins. While considering the functional sites of these proteins, hydrophobic and charged residues are equally frequent in single chain proteins and charged residues are very high in multi-chains proteins. But, the polar residue distribution remains same for both single chain and multi-chain proteins and its functional sites. From the phylogenetic tree of single chain, two state proteins having Tm>80°C at pH7, it is clear that the thermophilic proteins having similar amino acid length might have same internal ancestor. This may lead to the conservation of functional site residues and its chemical nature is same which may also responsible for high melting temperature. Instead of considering the entire protein, the functional site analysis leads to better understanding of how these distributions of amino acids may affect the melting temperature of proteins.

Acknowledgement:
We thank Bharathidasan University and Anna University – BIT campus, Tiruchirappalli for providing the facility to carry out our research work. We also thank Ms. A. Sheeba Princess, Assistant Professor, Department of English, Bishop Heber College, Tiruchirappalli for helping the language corrections. This work was partially supported by grants from University Grants commission and UGC – SAP, Government of India.

References:
[1] Sadeghi M et al. Biophys Chem. 2006 119: 256 [PMID: 16253416]
[2] Gromiha MM et al. Biophys Chem. 2003 91: 71 [PMID: 11403885]
[3] Kumar S et al. Protein Eng. 2000 13: 179 [PMID: 10775659]
[4] Ponnnuswamy PK et al. Int. J Biol Macromol. 1982: 4.
[5] Bull HB et al. Arch Biochem Biophys. 1973 158: 601 [PMID: 4792528]
[6] Taylor TJ et al. BMC Struct Biol. 2010 10: Suppl 1 [PMID: 20487512]
[7] Pazos F & Bang JW. Current Bioinformatics. 2006 1: 15
[8] Mackay JA & Chilkoti A. Int. J Hyperthermia. 2008 24: 483 [PMID: 18608690]
[9] Kumar MD et al. Nucleic Acids Res. 2006 34: 204
[10] Gasteiger E et al. The Proteomics Protocols Handbook. 2005: 571
[11] Dundas J et al. Nucleic Acid Res. 2006 34: 116
[12] Somarowthu S & Ondrechen MJ, Bioinformatics. 2012 28: 2078 [PMID: 22661648]
[13] Kabach K & Toh H, Bioinformatics. 2010 26: 1899 [PMID: 20427515]
[14] Waterhouse AM et al. Bioinformatics. 2009 25: 1189 [PMID: 19151095]
[15] Berman HD et al. Structure. 2012 20: 391 [PMID: 22404998]
[16] http://gibik26.bio.kyutech.ac.jp/jouhou/Protherm/prothe rm.html
[17] http://web.expasy.org/protparam/
[18] http://sts-fw.bioengr.uiuc.edu/ caedp/
[19] http://www.pool.neu.edu:8080 wPOOL/
[20] http://mafft.cbrc.jp/alignment/ software/

Acknowledgement:
We thank Bharathidasan University and Anna University – BIT campus, Tiruchirappalli for providing the facility to carry out our research work. We also thank Ms. A. Sheeba Princess, Assistant Professor, Department of English, Bishop Heber College, Tiruchirappalli for helping the language corrections. This work was partially supported by grants from University Grants commission and UGC – SAP, Government of India.

References:
[1] Sadeghi M et al. Biophys Chem. 2006 119: 256 [PMID: 16253416]
[2] Gromiha MM et al. Biophys Chem. 2003 91: 71 [PMID: 11403885]
[3] Kumar S et al. Protein Eng. 2000 13: 179 [PMID: 10775659]
[4] Ponnnuswamy PK et al. Int. J Biol Macromol. 1982: 4.
[5] Bull HB et al. Arch Biochem Biophys. 1973 158: 601 [PMID: 4792528]
[6] Taylor TJ et al. BMC Struct Biol. 2010 10: Suppl 1 [PMID: 20487512]
[7] Pazos F & Bang JW. Current Bioinformatics. 2006 1: 15
[8] Mackay JA & Chilkoti A. Int. J Hyperthermia. 2008 24: 483 [PMID: 18608690]
[9] Kumar MD et al. Nucleic Acids Res. 2006 34: 204
[10] Gasteiger E et al. The Proteomics Protocols Handbook. 2005: 571
[11] Dundas J et al. Nucleic Acid Res. 2006 34: 116
[12] Somarowthu S & Ondrechen MJ, Bioinformatics. 2012 28: 2078 [PMID: 22661648]
[13] Kabach K & Toh H, Bioinformatics. 2010 26: 1899 [PMID: 20427515]
[14] Waterhouse AM et al. Bioinformatics. 2009 25: 1189 [PMID: 19151095]
[15] Berman HD et al. Structure. 2012 20: 391 [PMID: 22404998]
[16] http://gibik26.bio.kyutech.ac.jp/jouhou/Protherm/prothe rm.html
[17] http://web.expasy.org/protparam/
[18] http://sts-fw.bioengr.uiuc.edu/ caedp/
[19] http://www.pool.neu.edu:8080 wPOOL/
[20] http://mafft.cbrc.jp/alignment/ software/
Table 1: Functional site residues of different single chain proteins having Tm>80°C [12, 19].

Rank	18SM	18PI	18SO	1J2V	1J2A	10NC	1IG5	1T5O	1TFE	1AIT	
1	HIS6	TRA23	TYRA2	42	GLU50	GLU52	HIS50	TYRA102	TYRA33	TYRA50	HIS50
2	ASP5	TRA10	HISA1	61	ASP48	GLU1	LYS9	LYS35	ARG42	TYRA25	ASP40
3	ARG5	ARG0	PHEA5	TRA75	CYSA30	HIS79	PHEA105	LYS2	GLU21	LEUA74	
4	ARG9	ASP5	VAL39	GLU62	LYS58	LYS33	LYS31	LYS103	LYS20	LYS149	TRA3
5	LYS54	LYS13	ASP50	ILE11	ASP25	TYRA7	GLU53	VALA4			
6	LYS16	ARG40	HIS35	PHEA6	TRA42	GLU5	ARG106	ASP39			
7	ILEA25	CYSA30	PHEA9	GLU33	PHEA7	TYRA7	GLU42				
8	ASPA23	ASN4	VALA4	GLU33	HIS73	TYRA7	PHEA6	GLU59	LYS21	ARG146	ASPA1
9	ARG42	LYS13	ASP54	LYS17	LEU17	ASP56	PHEA6	GLU59	LYS21	ARG146	ASPA1
10	GLU13	ILEA9	GLU44	ASP50	LEUA3	GLN7	GLU131	VALA22	HIS59		
11	ALA7	GLU17	LEUA22	GLU46	TRA8	LYS8	CYS121	ASP49	HIS65	TRA41	
12	LEUA6	TRA19	ASP96	GLY36	ASP96	LYS13	ASP56	GLU59	LYS21	ARG146	ASPA1
13	THR55	TRA12	CYS106	LYS66	GLU49	HIS29	LEUA22	LYS4	GLU117	GLU38	
14	GLU44	VAL34	GLU89	PHEA8	VAL9	LYS33	GLU134	ALA1	VALA186	GLY62	
15	ALA52	LEUA29	ILEA16	ASP10	THR38	THR12	ASP129	LYS10	LEU157	LYS34	
16	VALA24	PHEA13	VAL51	GLY34	LYS80	ASP8	ASP9	ASP34	ASP191	TRA2	
17	ASPA8	LYS15	TRA102	GLY66	ASP9	HIS29	LEUA22	LYS4	GLU117	GLU38	
18	GLU44	VAL34	GLU89	PHEA8	VAL9	LYS33	GLU134	ALA1	VALA186	GLY62	
19	GLU35	ILEA29	ILEA16	ASP10	THR38	THR12	ASP129	LYS10	LEU157	LYS34	
20	ASPA8	LYS15	TRA102	GLY66	ASP9	HIS29	LEUA22	LYS4	GLU117	GLU38	
21	GLU44	VAL34	GLU89	PHEA8	VAL9	LYS33	GLU134	ALA1	VALA186	GLY62	
22	ASPA8	LYS15	TRA102	GLY66	ASP9	HIS29	LEUA22	LYS4	GLU117	GLU38	
23	GLU44	VAL34	GLU89	PHEA8	VAL9	LYS33	GLU134	ALA1	VALA186	GLY62	

Table 2: Functional site residues of different proteins with multi-chains and Tm>80°C [14].

Rank	1AZP	1C90	1CVN	1HOK	1HUP	1IPW	1IVY			
1	GLU39	GLU54	LYS114	GLU9	GLY51	GLU102	GLY137			
2	ASP36	TRA102	GLY102	LYS9	ASP24	GLU117	GLU117			
3	ASP29	LYS114	GLU102	GLY9	ASP24	GLU117	GLU117			
4	ARG42	ARG12	LYS114	GLU9	ASP24	GLU117	GLU117			
5	LEUA41	LYS114	GLU102	GLY9	ASP24	GLU117	GLU117			
6	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			
7	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			
8	GLU44	VAL34	GLU89	PHEA8	VAL9	LYS33	GLU134	ALA1	VALA186	GLY62
9	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			
10	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			
11	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			
12	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			
13	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			
14	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			
15	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			
16	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			
17	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			
18	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			
19	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			
20	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			
21	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			
22	ASPA3	LEUA41	LYS114	GLU9	ASP24	GLU117	GLU117			

Table 3: Accession number and PDB id of proteins used in the multiple sequence alignment for the dataset (Conditions: Single chain, 2 state pH, Tm>80°C) [9, 15].

Protein	PDB	Sequence Description		
Cytochrome b5 type B	1B5M	ggi: 12643974	sp: P04166.2	CYSB5_BAT
Pancreatic trypsin inhibitor	1BPI	ggi: 115114	sp: P00742.2	BPT1_BOVIN
Beta-lactoglobulin	1BSO	ggi: 12260104	sp: P02753.3	LACB_BOVIN
Divalent-cation tolerance protein CutA	112V	ggi: 61224444	sp: P09870.1	CATA_PYRH0
Divalent-cation tolerance protein CutA	112Z	ggi: 61221074	sp: P09870.2	CATA_TETH08
Protein P-30	10NC	ggi: 464669	sp: P22069.2	RNPA_NPAP
Beta-lactoglobulin	1IG5	ggi: 12260104	sp: P02753.3	LACB_BOVIN
DNA-binding protein	1SG0	ggi: 45428876	sp: P09870.2	LACB_BOVIN
Elongation factor Ts	1TFE	ggi: 16194849	sp: P34985.1	EFTS_TEHT0
Alpha-amylase inhibitor HOE-467A	2A1T	ggi: 123982	sp: P09870.2	IAA_STRKE
Lecitin	2BSA	ggi: 12615140	sp: P09870.2	LECB_BOVIN