Rotational and Self-similar Solutions for the Compressible Euler Equations in R^3

MANWAI YUEN∗

Department of Mathematics and Information Technology,
The Hong Kong Institute of Education,
10 Lo Ling Road, Tai Po, New Territories, Hong Kong

Revised 24-Sept-2014

Abstract

In this paper, we present rotational and self-similar solutions for the compressible Euler equations in R^3 using the separation method. These solutions partly complement Yuen’s irrotational and elliptic solutions in R^3 [Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4524–4528] as well as rotational and radial solutions in R^2 [Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 2172–2180]. A newly deduced Emden dynamical system is obtained. Some blowup phenomena and global existences of the responding solutions can be determined. The 3D rotational solutions provide concrete reference examples for vortices in computational fluid dynamics.

MSC: 76U05, 35C05, 35C06, 35Q31, 35R35

Key Words: Compressible Euler Equations, Rotational Solutions, Self-similar Solutions, Symmetry Reduction, Vortices, 3-dimension, Navier-Stokes Equations

1 Introduction

In fluid dynamics, the N-dimensional isentropic compressible Euler equations are expressed as follows:

$$\begin{cases}
\rho_t + \nabla \cdot (\rho \vec{u}) = 0, \\
\rho [\vec{u}_t + (\vec{u} \cdot \nabla) \vec{u}] + K \nabla \rho^\gamma = 0,
\end{cases}$$

(1)

∗E-mail address: nevetsyuen@hotmail.com
where $\rho = \rho(t, \vec{x})$ denotes the density of the fluid, $\vec{u} = \vec{u}(t, \vec{x}) = (u_1, u_2, \cdots, u_N) \in R^N$ is the velocity, $\vec{x} = (x_1, x_2, \cdots, x_N) \in R^N$, that we use $x_1 = x$, $x_2 = y$ and $x_3 = z$ for $N \leq 3$ and $K > 0$, $\gamma \geq 1$ are constants.

Basically, these Euler equations are a set of equations that govern the inviscid flow of a fluid. The first and second equations of (1) represent, respectively, the conservation of mass and the momentum of the fluid.

The Euler equations have applications in many mathematical physics subjects, such as fluids, plasmas, condensed matter, astrophysics, oceanography and atmospheric dynamics. For real-life applications, they can be used in the study of turbulence, weather forecasting and the prediction of earthquakes and the explosion of supernovas.

The Euler equations are the basic model of shallow water flows [7]. In [9], they are used to model the super-fluids produced by Bose-Einstein condensates in the dilute gases of alkali metals, in which identical gases do not interact at very low temperatures. However, at the microscopic level, fluids or gases are formed by many tiny discrete molecules or particles that collide with one another. As the cost of directly calculating the particle-to-particle or molecule-to-molecule evolution of the fluids on a large scale is expensive, approximation methods are needed to considerably simplify the process. An example of an approximation method is given in [5], where the Euler equations are used to describe the behavior of fluids at the statistical limit of a large number of small ideal molecules or particles by ignoring the less influential effects, such as self-gravitational forces and the relativistic effect. The detailed derivation of the Euler equations can be found in [11] and [6].

The construction of analytical or exact solutions is an important area in mathematical physics and applied mathematics, as it can further classify nonlinear phenomena. For non-rotational flows, Makino first obtained the radial symmetry solutions for the Euler equations (1) in R^N in 1993 [12]. A number of special solutions for these equations [10] and [16] were subsequently obtained. Yuen later obtained a class of self-similar solutions with elliptical symmetry in 2012 [17]. For rotational flows, Zhang and Zheng constructed explicitly rotational solutions for the Euler equations with $\gamma = 2$ and $N = 2$ in 1997 [19]. In 2014, Yuen obtained a class of rotational solutions for the compressible Euler equations (1) for $\gamma > 1$ in 2D in [18]:

$$
\rho = \max \left(\left(-\frac{\lambda(\gamma-1)}{2K\alpha(t)} \right)^{1+\alpha}, 0 \right),
$$

$$
\begin{align*}
\dot{a}(t) - \frac{\xi^2}{\alpha(t)^2} &= a(t) - \frac{\alpha}{\alpha(t)} \dot{\alpha}(t), \quad a(0) = a_0 > 0, \quad \dot{a}(0) = a_1, \\
\dot{a}(t) &= \frac{\lambda}{\alpha(t)} + \frac{\alpha(t)}{\alpha(t)} \dot{\alpha}(t),
\end{align*}
$$

with a self-similar variable $\eta = \frac{x^2+y^2}{\alpha(t)}$ and arbitrary constants λ, $\alpha \geq 0$, $\xi \neq 0$, a_0 and a_1.

For the physical applications of the similar solutions for the compressible Euler equations, readers may refer to [13, 2, 3, 4, 8].
Based on the works in [17] and [18], we obtain novel rotational and self-similar solutions for the 3D compressible Euler equations (1).

Theorem 1 For the compressible Euler equations (1) in \mathbb{R}^3, there exists a family of rotational and self-similar solutions

$$
\begin{align*}
\rho &= \frac{f(s)}{a^2(t) b(t)}, \\
u_1 &= \frac{\dot{a}(t)}{a(t)} x - \frac{\xi}{a^2(t)} y, \\
u_2 &= \frac{\xi}{a^2(t)} x + \frac{\dot{a}(t)}{a(t)} y, \\
u_3 &= \frac{\dot{b}(t)}{b(t)} z,
\end{align*}
$$

with a variable $s = \frac{x^2 + y^2}{a^2(t)} + \frac{z^2}{b^2(t)}$ and

$$
f(s) = \begin{cases}
\alpha e^{-\frac{\lambda}{2K} s} & \text{for } \gamma = 1, \\
\max\left(\frac{-\lambda (\gamma - 1) s + \alpha}{2K \gamma}, 0\right) & \text{for } \gamma > 1,
\end{cases}
$$

and the corresponding Emden system

$$
\begin{align*}
\ddot{a}(t) - \frac{\xi^2}{a^2(t)} &= \frac{\lambda}{a^{\gamma - 1}(t) b^{\gamma - 1}(t)}, & a(0) &= a_0 > 0, & \dot{a}(0) &= a_1, \\
\ddot{b}(t) &= \frac{\lambda}{a^{\gamma - 2}(t) b^{\gamma - 1}(t)}, & b(0) &= b_0 > 0, & \dot{b}(0) &= b_1,
\end{align*}
$$

where $\xi \neq 0$, λ, $\alpha \geq 0$, a_0, a_1, b_0 and b_1 are arbitrary constants.

In particular, if any one following condition is further fulfilled,

1. with $\gamma = 1$;
2. with $\gamma > 1$,
2a. $\lambda \leq 0$ or
2b. $\lambda > 0$ and $\gamma < 2$,

solutions (3)–(5) are C^1.

Remark 2 Solutions (3)–(5) of the compressible Euler equations (1) in \mathbb{R}^3 are very efficient for testing the accuracy of many numerical solutions about vortices in computational fluid dynamics. In particular, the 3D rotational solutions provide concrete reference examples for modeling typhoons in oceans.

Remark 3 For the compressible Euler equations (1) in \mathbb{R}^3, the rotational solutions (3)–(5) correspond to Yuen’s irrotational and elliptic solutions in \mathbb{R}^3 [17] as well as rotational and radial solutions in \mathbb{R}^2 [18].

2 Rotational and Self-similar Solutions

To prove Theorem 1, we need the following novel lemma for the three-dimensional mass equation (1).
Lemma 4 For the equation of the conservation of mass $\nabla \cdot (\rho \vec{u}) = 0$, there exists a family of solutions,

$$\rho = \frac{f(s)}{a^2(t)b(t)},$$
$$u_1 = \frac{\dot{a}(t)}{a(t)}x - G(t)y,$$
$$u_2 = G(t)x + \frac{\dot{a}(t)}{a(t)}y,$$
$$u_3 = \frac{\dot{b}(t)}{b(t)}z,$$

with a self-similar variable $s = \frac{x^2 + y^2}{a^2(t)} + \frac{z^2}{b^2(t)}$ and arbitrary C^1 functions $f(s) \geq 0$, $G(t)$, $a(t) > 0$ and $b(t) > 0$.

Proof. By substituting the corresponding functions $f(s)$ for ρ and \vec{u} into the mass equation (6) in \mathbb{R}^3, we obtain

$$\rho_t + \nabla \cdot (\rho \vec{u}) = \rho_t + \nabla \rho \cdot \vec{u} + \rho \nabla \cdot \vec{u}$$

$$= \rho_t + \nabla \rho \cdot \vec{u} + \rho \nabla \cdot \vec{u}$$

$$= \frac{\partial}{\partial t} \left[\frac{f(s)}{a^2(t)b(t)} \right] + \frac{\partial}{\partial x} \left[\frac{f(s)}{a^2(t)b(t)} \right] \left(\frac{\dot{a}(t)}{a(t)}x - G(t)y \right)$$

$$+ \frac{\partial}{\partial y} \left[\frac{f(s)}{a^2(t)b(t)} \right] \left(G(t)x + \frac{\dot{a}(t)}{a(t)}y \right) + \frac{\partial}{\partial z} \left[\frac{f(s)}{a^2(t)b(t)} \right] \left(\frac{\dot{b}(t)}{b(t)}z \right) + \frac{f(s)}{a^2(t)b(t)} \left[\frac{2\dot{a}(t)}{a(t)} + \frac{\dot{b}(t)}{b(t)} \right]$$

$$= -2\frac{\dot{a}(t)}{a^2(t)}f(s) - \frac{\dot{b}(t)}{a^2(t)}f(s) + \frac{\dot{f}(s)}{a^2(t)b(t)} \left(\frac{2x^2 + y^2}{a^2(t)} \right) \left(-2\dot{a}(t) \right) + \frac{\dot{f}(s)}{a^2(t)b(t)} \left(\frac{2y}{a^2(t)} \right) \left(G(t)x + \frac{\dot{a}(t)}{a(t)}y \right)$$

$$+ \frac{\dot{f}(s)}{a^2(t)b(t)} \left(\frac{2z}{a^2(t)} \right) \left(\frac{\dot{b}(t)}{b(t)}z \right) + \frac{f(s)}{a^2(t)b(t)} \left[\frac{2\dot{a}(t)}{a(t)} + \frac{\dot{b}(t)}{b(t)} \right]$$

$$= \frac{\dot{f}(s)}{a^2(t)b(t)} \left(\frac{x^2 + y^2}{a^2(t)} \right) \left(-2\dot{a}(t) \right) + \frac{z^2}{b^2(t)} \left(-2\dot{b}(t) \right) + \frac{\dot{f}(s)}{a^2(t)b(t)} \left(\frac{2x}{a^2(t)} \right) \left(\frac{\dot{a}(t)}{a(t)}x - G(t)y \right)$$

$$+ \frac{\dot{f}(s)}{a^2(t)b(t)} \left(\frac{2y}{a^2(t)} \right) \left(G(t)x + \frac{\dot{a}(t)}{a(t)}y \right) + \frac{\dot{f}(s)}{a^2(t)b(t)} \left(\frac{2z}{b^2(t)} \right) \left(\frac{\dot{b}(t)}{b(t)}z \right)$$

$$= 0.$$

The proof is complete.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. By the above lemma, functions (8) and (9) can be applied to solve the mass equation (6) in \mathbb{R}^3 with arbitrary C^1 functions $f(s) \geq 0$, $a(t) > 0$ and $b(t) > 0$.
For the first momentum equation \((1)\), we have

\[
\rho (u_1 + u_1 u^1_x + u_2 u^1_y + u_3 u^1_z) + K \frac{\partial}{\partial x} \left[\frac{f(s)}{a^2(t)b(t)} \right] \gamma
\]

\[
= \rho \left\{ \left[\frac{\ddot{a}(t)}{a(t)} - \frac{\dot{a}(t)}{a(t)} \right] x - \frac{\dot{a}(t)}{a(t)} \dot{y} \right\} + \left[\frac{\ddot{a}(t)}{a(t)} x + \frac{\dot{a}(t)}{a(t)} \ddot{y} \right] \frac{\partial}{\partial y} \left[\frac{\ddot{a}(t)}{a(t)} x - \frac{\dot{a}(t)}{a(t)} \ddot{y} \right]
\]

\[
+ K \gamma \frac{f^{\gamma-1}(s)}{a^{2\gamma-1}(t)b^{\gamma-1}(t)} \frac{f(s)}{a^2(t)}
\]

\[
= \rho \left\{ \left[\frac{\ddot{a}(t)}{a(t)} - \frac{\dot{a}(t)}{a(t)} \right] x + 2 \frac{\dot{a}(t)}{a(t)} \dot{y} + \frac{\ddot{a}(t)}{a(t)} x - \frac{\dot{a}(t)}{a(t)} \ddot{y} \right\}
\]

\[
+ K \gamma \frac{f^{\gamma-1}(s)}{a^{2\gamma-1}(t)b^{\gamma-1}(t)} \frac{f(s)}{a^2(t)}
\]

\[
= \rho \left\{ \frac{\dot{a}(t)}{a(t)} \left[\ddot{a}(t) - \ddot{a}(t) \right] x + K \gamma \frac{f^{\gamma-2}(s)}{a^{2\gamma-2}(t)b^{\gamma-1}(t)} \frac{f(s)}{a^2(t)} \right\}
\]

\[
= \frac{\rho}{a^{2\gamma-1}(t)b^{\gamma-1}(t)} \left\{ \left[\left(\ddot{a}(t) + \frac{\dot{a}(t)}{a(t)} \right) a^{2\gamma-1}(t)b^{\gamma-1}(t) + 2K \gamma f^{\gamma-2}(s) \right] \frac{f(s)}{a^2(t)} \right\}
\]

\[
= \frac{\rho}{a^{2\gamma-1}(t)b^{\gamma-1}(t)} \left\{ \ddot{a}(t) + 2K \gamma f^{\gamma-2}(s) \gamma \right\}
\]

\[
= 0,
\]

where

\[
\begin{align*}
\ddot{a}(t) - \ddot{a}(t) &= \frac{\lambda}{a^{2\gamma-1}(t)b^{\gamma-1}(t)}, \\
\gamma(0) &= a_0 > 0, \quad \ddot{a}(0) = a_1,
\end{align*}
\]

and

\[
\begin{align*}
\lambda + 2K \gamma f^{\gamma-2}(s) f(s) &= 0, \\
f(0) &= \alpha \geq 0.
\end{align*}
\]

The exact solution of ordinary differential equation \((22)\) is

\[
f(s) = \begin{cases}
\alpha e^{-\frac{s}{\lambda}}, & \text{for } \gamma = 1, \\
\left(-\frac{\lambda(s-1)}{2K \gamma} s + \alpha \right)^{-\gamma}, & \text{for } \gamma > 1.
\end{cases}
\]

Therefore, to promise the non-negativeness of the \(C^1\) density function \(\rho\), we can re-take \(f(s)\) for \(\gamma > 1\) by a cut-off function

\[
f(s) = \max \left(\left(-\frac{\lambda(s-1)}{2K \gamma} s + \alpha \right)^{-\gamma}, 0 \right),
\]

choosing any one following additional condition,

(2a) \(\lambda \leq 0\) or

(2b) \(\lambda > 0\) and \(\gamma < 2\).
For the second momentum equation (12.2), we have

\[
\rho \left(u_{2t} + u_1 u_{2x} + u_2 u_3 + u_3 u_{2z} + K \frac{\partial}{\partial y} \left[\frac{f(s)}{a^2(t)b(t)} \right] \right) = \rho \left\{ \frac{\xi}{a^2(t)} x + \frac{\dot{a}(t)}{a(t)} y \right\} + \left[\frac{\xi}{a^2(t)} x + \frac{\dot{a}(t)}{a(t)} y \right]\ \left[\frac{\xi}{a^2(t)} x + \frac{\dot{a}(t)}{a(t)} y \right] \right\} \\
+ K \gamma \frac{f^\gamma-1(s)}{a^2(t)b(t)} \frac{2 y}{a^2(t)} \\
= \rho \left\{ \frac{\dot{a}(t)}{a(t)} x + \left(\frac{\xi^2}{a^2(t)} \right) y \right\} + K \gamma \frac{f^\gamma-2(s)}{a^2(t)b(t)} \frac{2 y}{a^2(t)} \\
= \frac{\rho}{a^2(t)b(t)} \frac{2 y}{a^2(t)} \left\{ \left(\frac{\dot{a}(t)}{a(t)} - \frac{\xi^2}{a(t)} \right) a^2(t)b(t) + 2K \gamma f^\gamma-2(s) \frac{2 y}{a^2(t)} \right\} \\
= 0.
\]

For the third momentum equation (12.3), we have

\[
\rho \left(u_{3t} + u_1 u_{3x} + u_2 u_3 + u_3 u_{3z} + K \frac{\partial}{\partial z} \left[\frac{f(s)}{a^2(t)b(t)} \right] \right) = \rho \left\{ \frac{\partial}{\partial t} \left[\frac{\dot{b}(t)}{b(t)} \right] + \frac{\dot{b}^2(t)}{b(t)} \right\} + K \gamma \frac{f^\gamma-1(s)}{a^2(t)b(t)} \frac{2 z}{b^2(t)} \\
= \rho \frac{\dot{b}(t)}{b(t)} z + K \gamma \frac{f^\gamma-1(s)}{a^2(t)b(t)} \frac{2 z}{b^2(t)} \\
= \rho \frac{\dot{b}(t)}{b(t)} z + K \gamma \frac{f^\gamma-2(s)}{a^2(t)b(t)} \frac{2 z}{b^2(t)} \\
= \rho \frac{\dot{b}(t)}{b(t)} z + K \gamma \frac{f^\gamma-2(s)}{a^2(t)b(t)} \frac{2 z}{b^2(t)} \\
= \frac{\rho z}{a^2(t)b(t)} \left[\dot{b}(t) a^2(t)b(t) + 2K \gamma f^\gamma-2(s) \right] \\
= \frac{\rho z}{a^2(t)b(t)} \left[\lambda + 2K \gamma f^\gamma-2(s) \right] \\
= 0,
\]

where

\[
\begin{align*}
\dot{b}(t) &= \frac{\lambda}{a^2(t)b(t)}, \\
\dot{b}(0) &= b_0 > 0, \quad \dot{b}(0) = b_1.
\end{align*}
\]

The local existence of solutions for the Emden system (5) can be obtained by the fixed point theorem.

In addition, we can generally consider the corresponding weak solutions of the Euler equations, which in the sense, the discontinuous points with measure zero can be ignored. We can have the
weak C^0 solutions \(3\)–\(5\).

We complete the proof. ■

The following corollary is a direct consequence of Theorem 1 by the standard comparison theorem and the classical energy method of second order ordinary differential equations (which readers may see Chapter 2 in [1] for details). We note that the similar analysis for the Emden system \(5\) has been shown by Lemma 7 in [14] and Lemma 3 in [15].

Corollary 5 For solutions \(3\)–\(5\) of the compressible Euler equations \(1\) in \mathbb{R}^3, we have

1. if $\lambda > 0$, the solutions are global;
2. if $\lambda = 0$ and
 \(\begin{align*}
 b_1 &\geq 0, \text{ the solutions are global};
 b_1 &< 0, \text{ the solutions blow up in a finite time } T;
 \end{align*}\)
3. if $\lambda < 0$ and
 \(\begin{align*}
 \gamma & = 1, \text{ the solutions blow up in a finite time } T;
 \gamma & > 1 \text{ and } b_1 \leq 0, \text{ the solutions blow up in a finite time } T.
 \end{align*}\)

Remark 6 Solutions \(3\)–\(5\) can also solve the following compressible Navier-Stokes equations in \mathbb{R}^3,

\[
\begin{aligned}
\rho_t + \nabla \cdot (\rho \vec{u}) &= 0, \\
\rho [\vec{u}_t + (\vec{u} \cdot \nabla) \vec{u}] + K \nabla \rho^\gamma &= \mu \Delta \vec{u},
\end{aligned}
\]

with a constant $\mu > 0$.

3 Conclusion and Discussion

In this paper, we present a class of rotational and self-similar solutions for the 3D compressible Euler equations using the separation method. These novel solutions \(3\)–\(5\) partly complement Yuen’s irrotational and elliptic solutions in 3D \[17\] as well as rotational and radial solutions in 2D \[18\]. A newly deduced Emden dynamical system

\[
\begin{aligned}
\ddot{a}(t) - \frac{\xi^2}{\kappa a(t)} = \frac{\lambda}{\kappa - 1} - \frac{1}{\kappa - 1} b(t), \quad a(0) = a_0 > 0, \quad \dot{a}(0) = a_1, \\
\ddot{b}(t) = \frac{\lambda}{\kappa - 1} - \frac{1}{\kappa - 1} b(t), \quad b(0) = b_0 > 0, \quad \dot{b}(0) = b_1,
\end{aligned}
\]

is obtained.

We observe that some qualitative behavior of solutions \(2\) in \mathbb{R}^2 is significantly different from solutions \(3\)–\(5\) in \mathbb{R}^3. In particular, by applying the classical energy method for the Emden equation \(2\)\(_4\), we can easily establish 2D time-periodic solutions \(2\) for $1 \leq \gamma < 2$ with $\lambda < 0$. (See Lemma 5 in \[15\].) However, it is trivial to see that it is not possible to have the 3D time-periodic solutions \(3\)–\(5\) as function $\ddot{b}(t) < 0$.

The complementary case with $\gamma > 1$, $\lambda < 0$ and $b_1 > 0$ for Corollary 5 is unknown, as it is not easy to be determined by the classical methods, the comparison theorem and the energy method. In future research, the following problems are highly recommended to be investigated.

1. Can we show the blowup or global existence for solutions for the Emden system (11) with $\gamma > 1$, $\lambda < 0$ and $b_1 > 0$?
2. Can we modify solutions (3)–(5) to show the existence of the corresponding C^1 solutions for $\lambda > 0$ and $\gamma \geq 2$?

4 Acknowledgement

The author thanks for the reviewers’ valuable comments for improving the quality of this paper. This work is partially supported by the Internal Research Grant RG21/2013-2014R from the Hong Kong Institute of Education.

References

[1] V.I. Arnol’d, Ordinary Differential Equations, Translated from the third Russian Edition by Roger Cooke, Springer-Verlag, 1992.

[2] Barenblatt G.I., On Self-similar Solutions of the Cauchy Problem for a Nonlinear Parabolic Equation of Unsteady Filtration of a Gas in a Porous Medium (Russian), Prikl Mat Meh 20, 1956, 761–763.

[3] Barenblatt G.I., Similarity, Self-similarity, and Intermediate Asymptotics, New York: Consultants Bureau, 1979.

[4] Barna I.F. and Mátayá S., Analytic Solutions for the One-dimensional Compressible Euler Equation with Heat Conduction and with Different Kind of Equations of State (English Summary), Miskolc Math. Notes 14 (2013), 785–799.

[5] Cercignani C., Illner R. and Pulvirenti M., The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences 106, Springer-Verlag, New York, 1994.

[6] Chen G.Q. and Wang D.H., The Cauchy Problem for the Euler Equations for Compressible Fluids, Handbook of Mathematical Fluid Dynamics 1, 421–543, North-Holland, Amsterdam, 2002.

[7] Constantin A., Breaking Water Waves, Encyclopedia of Mathematical Physics, 383–386, Elsevier, 2006.
[8] Csörgő T. and Nagy M.I., New Family of Exact and Rotating Solutions of Fireball Hydrodynamics, *Phys. Rev. C* **89** (2014), 044901, 8 pp.

[9] Einzel D., Superfluids, *Encyclopedia of Mathematical Physics*, 115–121, Elsevier, 2006.

[10] Li T.H. and Wang D.H., Blowup Phenomena of Solutions to the Euler Equations for Compressible Fluid Flow, *J. Differential Equations* **221** (2006), 91–101.

[11] Lions P.L., Mathematical Topics in Fluid Mechanics, *1, 2*, Oxford University Press, New York, 1996, 1998.

[12] Makino T., Exact Solutions for the Compressible Euler Equation, *Journal of Osaka Sangyo University Natural Sciences* **95** (1993), 21–35.

[13] Sedov L.I., On the Integration of the Equations of One-dimensional Motion of a Gas, *Dokl Akad Nauk SSSR* **40** (1953), 753–754.

[14] Yuen M.W., Analytical Blowup Solutions to the 2-dimensional Isothermal Euler-Poisson Equations of Gaseous Stars, *J. Math. Anal. Appl.* **341** (2008), 445–456.

[15] Yuen M.W., Analytically Periodic Solutions to the 3-dimensional Euler-Poisson Equations of Gaseous Stars with a Negative Constant, *Class. Quantum Grav.* **26** (2009), 235011, 8pp.

[16] Yuen M.W., Exact, Rotational, Infinite Energy, Blowup Solutions to the 3-dimensional Euler Equations, *Phys. Lett. A* **375** (2011), 3107–3113.

[17] Yuen M.W., Self-similar Solutions with Elliptic Symmetry for the Compressible Euler and Navier-Stokes Equations in \mathbb{R}^N, *Commun. Nonlinear Sci. Numer. Simul.* **17** (2012), 4524–4528.

[18] Yuen M.W., Vortical and Self-similar Flows of 2D Compressible Euler Equations, *Commun. Nonlinear Sci. Numer. Simul.* **19** (2014), 2172–2180.

[19] Zhang T. and Zheng Y.X., Exact Spiral Solutions of the Two-dimensional Euler Equations, *Discrete Contin. Dynam. Systems* **3** (1997), 117–133.