BLOCH-WIGNER THEOREM OVER RINGS WITH MANY UNITS II

BEHROOZ MIRZAI AND FATEMEH YEGANEH

Abstract. In this article we study the Bloch-Wigner theorem over a domain with many units. Our version of Bloch-Wigner theorem is very close to Suslin’s version of the theorem over infinite fields.

Introduction

For a commutative ring R with 1, there are two types of algebraic K-groups: Milnor K-groups and Quillen K-groups, denoted by $K^n_M(R)$ and $K^n(R)$ respectively. For any $n \geq 1$, there is a canonical homomorphism $\iota_n : K^n_M(R) \to K^n(R)$.

When R is a field or a ring with many units, it is known that ι_1 and ι_2 are isomorphisms [7], [17], [11], [4]. For $n > 2$, ι_n is not an isomorphism most of the times. In fact the kernel of ι_n is annihilated by multiplication by $(n-1)!$ [11], [4] and the cokernel of ι_n can be very large [13]. The group

$$K_n(R)_{\text{ind}} := \text{coker}(K^n_M(R) \to K^n(R))$$

is called the indecomposable part of $K_n(R)$.

The Bloch-Wigner theorem studies the indecomposable part of $K_3(C)$ and asserts the existence of the exact sequence

$$0 \to \mathbb{Q}/\mathbb{Z} \to K_3(C)_{\text{ind}} \to \mathfrak{p}(C) \to \bigwedge^2_{\mathbb{Z}} C^* \to K_2(C) \to 0,$$

where $\mathfrak{p}(C)$ is the pre-Bloch group of C [1], [3].

In a remarkable paper [16], Suslin has generalized this result to all infinite fields. In fact he proved that for any infinite field F the sequence

$$0 \to \text{Tor}^\mathbb{Z}_1(\mu(F), \mu(F)) \to K_3(F)_{\text{ind}} \to \mathfrak{p}(F) \to \big(F^* \otimes_{\mathbb{Z}} F^*\big)_w \to K_2(F) \to 0$$

is exact, where $\text{Tor}^\mathbb{Z}_1(\mu(F), \mu(F))$ is the unique non-trivial extension of $\text{Tor}^\mathbb{Z}_1(\mu(F), \mu(F))$ by $\mu_2(F)$.

It was known for very long time that $K_3(C)_{\text{ind}} \simeq H_3(SL_2(C), \mathbb{Z})$. One can show that for an infinite field F, there is a canonical homomorphism

$$H_0(F^*, H_3(SL_2(F), \mathbb{Z})) \to K_3(F)_{\text{ind}}.$$

Suslin has asked that is this map is bijective [13, Question 4.4]? Recently Hutchinson and Tao have shown that it is in fact surjective [5, Lemma 5.1].

These facts and Suslin’s question raise the question that is there a version of the Bloch-Wigner exact sequence that involves a homology group very close to $H_0(F^*, H_3(SL_2(F), \mathbb{Z}))$, replacing $K_3(F)_{\text{ind}}$!
In [9], the first author studied this question. In the meantime he tried to give a general form of Bloch-Wigner exact sequence, valid over rings with many units. (We should mention that Theorem 5.1 in [9] is not correct. A correct formulation of that theorem, which is very close to Proposition 4.2 below, will appear in an erratum to [9].)

In the present article, we give a version of the Bloch-Wigner theorem over any ring with many units (Proposition 4.2). This recovers and also improves the main results of [9]. Our proof here is different than the one given in [9]. When R is a domain with many units, e.g. an infinite field, we make our formulation of the Bloch-Wigner exact sequence more precise (Theorem 4.4). In fact we prove that there exists the exact sequence

$$0 \to \text{Tor}^\mathbb{Z}_1(\mu(R), \mu(R)) \to \tilde{H}_3(\text{SL}_2(R)) \to p(R) \to (R^* \otimes \mathbb{Z} R^*)_a \to K_2(R) \to 0,$$

where $\tilde{H}_3(\text{SL}_2(R))$ is the following quotient of the group $H_3(\text{GL}_2(R), \mathbb{Z})$,

$$\tilde{H}_3(\text{SL}_2(R)) := H_3(\text{GL}_2(R), \mathbb{Z})/\text{im}(H_3(\text{GL}_1(R), \mathbb{Z}) + R^* \cup H_2(\text{GL}_1(R), \mathbb{Z})).$$

This exact sequence and Suslin’s Bloch-Wigner exact sequence suggest that $K_3(F)^{\text{ind}}$ and $\tilde{H}_3(\text{SL}_2(F))$ should be isomorphism. But there is no natural homomorphism from one of these groups to the other one! But there is a natural maps from $H_0(F^*, H_3(\text{SL}_2(F), \mathbb{Z}))$ to both of them. These relation will be studied somewhere else.

Notation. In this paper by $H_i(G)$ we mean the homology of group G with integral coefficients, namely $H_i(G, \mathbb{Z})$. By GL_n (resp. SL_n) we mean the general (resp. special) linear group $\text{GL}_n(R)$ (resp. $\text{SL}_n(R)$), where R is a commutative ring with 1. If $A \to A'$ is a homomorphism of abelian groups, by A'/A we mean $\text{coker}(A \to A')$ and we take other liberties of this kind. For a group A, by $A_{\mathbb{Z}[1/2]}$ we mean $A \otimes_{\mathbb{Z}} \mathbb{Z}[1/2]$.

1. **Suslin’s block-Wigner exact sequence**

Let R be a commutative ring with 1. Define the pre-Bloch group $p(R)$ of R as the quotient of the free abelian group $Q(R)$ generated by symbols $[a], a, 1 - a \in R^*$, by the subgroup generated by elements of the form

$$[a] - [b] + \left[\frac{b}{a} \right] - \left[\frac{1 - a^{-1}}{1 - b^{-1}} \right] + \left[\frac{1 - a}{1 - b} \right],$$

where $a, 1 - a, b, 1 - b, a - b \in R^*$. Define

$$\lambda' : Q(R) \to R^* \otimes R^*, \quad [a] \mapsto a \otimes (1 - a).$$

By a direct computation, we have

$$\lambda'([a] - [b] + \left[\frac{b}{a} \right] - \left[\frac{1 - a^{-1}}{1 - b^{-1}} \right] + \left[\frac{1 - a}{1 - b} \right]) = a \otimes \left(\frac{1 - a}{1 - b} \right) + \left(\frac{1 - a}{1 - b} \right) \otimes a.$$
Let \((R^* \otimes R^*)_p := R^* \otimes R^*/(a \otimes b + b \otimes a : a, b \in R^*)\). We denote the elements of \(p(R)\) and \((R^* \otimes R^*)_p\) represented by \([a]\) and \(a \otimes b\) again by \([a]\) and \(a \otimes b\), respectively. Thus we have a well-defined map
\[
\lambda : p(R) \to (R^* \otimes R^*)_p, \quad [a] \mapsto a \otimes (1 - a).
\]
The kernel of \(\lambda\) is called the **Bloch group** of \(R\) and is denoted by \(B(R)\).

We say that a commutative ring \(R\) is a **ring with many units** if for any \(n \geq 2\) and for any finite number of surjective linear forms \(f_i : R^n \to R\), there exists a \(v \in R^n\) such that, for all \(i\), \(f_i(v) \in R^*\). Important examples of rings with many units are semilocal rings with infinite residue fields.

If \(R\) is a ring with many units, then we obtain the exact sequence
\[
0 \to B(R) \to p(R) \to (R^* \otimes R^*)_p \to K_2^M(R) \to 0.
\]

We refer the reader to [4, Section 3.2] for the definition of Milnor’s \(K\)-groups \(K_n^M(R)\) of a ring \(R\). When \(R\) is a ring with many units, then
\[
K_2^M(R) \simeq R^* \otimes R^*/\langle a \otimes (1 - a) : a, 1 - a \in R^* \rangle
\]
\[
\simeq (R^* \otimes R^*)_p/\langle a \otimes (1 - a) : a, 1 - a \in R^* \rangle
\]

[8, Proposition 3.2.3], [4, Section 3.2].

The following remarkable theorem is due to Suslin [16, Theorem 5.2].

Theorem 1.1 (Suslin). If \(F\) is an infinite field, then we have the following exact sequence
\[
0 \to \text{Tor}_1^Z(\mu(F), \mu(F)) \to K_3(F)^{\text{ind}} \to B(F) \to 0,
\]
where \(\text{Tor}_1^Z(\mu(F), \mu(F))\) is the unique nontrivial extension of the group \(\text{Tor}_1^Z(\mu(F), \mu(F))\) by \(\mathbb{Z}/2\) if \(\text{char}(F) \neq 2\) and is equal to \(\text{Tor}_1^Z(\mu(F), \mu(F))\) if \(\text{char}(F) = 2\).

The group \(\text{Tor}_1^Z(\mu(F), \mu(F))\) is studied in some details in the next section.

When \(F\) is algebraically closed, one can show that \(K_3(F)^{\text{ind}} \simeq H_3(\text{SL}_2(F))\) [13, Theorem 4.1], [8, Proposition 5.4] and
\[
\text{Tor}_1^Z(\mu(F), \mu(F)) \simeq \text{Tor}_1^Z(\mu(F), \mu(F))
\]
(see the next section). Thus we have the following corollary of Suslin’s theorem.

Corollary 1.2 (Bloch-Wigner exact sequence). Let \(F\) be an algebraically closed field. Then we have the exact sequence
\[
0 \to \text{Tor}_1^Z(\mu(F), \mu(F)) \to H_3(\text{SL}_2(F)) \to B(F) \to 0.
\]

Remark 1.3. (i) Recently Hutchinson has shown that Theorem 1.1 is also valid for finite fields [6, Corollary 7.5].

(ii) When \(F = \mathbb{C}\), Corollary 1.2 was proved by Bloch [1, Lecture 6] and Wigner, independently and in somewhat different form. A proof of this corollary in case of \(\text{char}(F) = 0\) can be found in [3, App. A].
(iii) In case of positive characteristic, using techniques similar to the case of zero characteristic, one can show that the sequence
\[
\text{Tor}^Z_1(\mu(F), \mu(F)) \to H_3(\text{SL}_2(F)) \to B(F) \to 0
\]
is exact (see for example Proposition 4.2 below). The proof of the injectivity of \(\text{Tor}^Z_1(\mu(F), \mu(F)) \to H_3(\text{SL}_2(F))\) seems to be difficult, and as far as I know there are only two proofs available, both due to Suslin. One proof follows from the Suslin’s results on the \(K\)-theory of algebraically closed fields [14], [15], and the other proof uses the theory of Chern classes [16, Lemma 5.7].

2. Finite cyclic groups as extensions

In this section we will study the group \(\text{Tor}^Z_1(\mu(F), \mu(F))\) that appears in Theorem 1.1.

Let us first to calculate the groups \(H^2(\mathbb{Z}/n, \mathbb{Z}/2)\) and \(H^2(\mathbb{Z}/2, \mathbb{Z}/n)\). Using the Künneth formula [18, Exercise 6.1.5], Example 6.2.3 of [18] and [18, 3.3.2], we have

\[
H^2(\mathbb{Z}/2, \mathbb{Z}/n) \simeq \text{Ext}_\mathbb{Z}^1(\mathbb{Z}/2, \mathbb{Z}/n) \simeq \begin{cases} 0 & \text{if } 2 \nmid n \\ \mathbb{Z}/2 & \text{if } 2 \mid n \end{cases},
\]

\[
H^2(\mathbb{Z}/n, \mathbb{Z}/2) \simeq \text{Ext}_\mathbb{Z}^1(\mathbb{Z}/n, \mathbb{Z}/2) \simeq \begin{cases} 0 & \text{if } 2 \nmid n \\ \mathbb{Z}/2 & \text{if } 2 \mid n \end{cases}.
\]

For a group \(G\) and a \(G\)-module \(A\), the cohomology group \(H^2(G, A)\) classifies all the equivalence classes of group extensions of \(G\) by \(A\) (as an abelian group) [18, Theorem 6.6.3]. If \(2\mid n\), we have the following two non-split exact sequences,

\[
0 \to \mathbb{Z}/n \xrightarrow{r \to z^r} \mathbb{Z}/2n \xrightarrow{\bar{a} \to \bar{a}} \mathbb{Z}/2 \to 0,
\]

\[
0 \to \mathbb{Z}/2 \xrightarrow{1 \to z} \mathbb{Z}/2n \xrightarrow{\bar{a} \to \bar{a}} \mathbb{Z}/n \to 0.
\]

Therefore the first exact sequence is the only nontrivial extension of \(\mathbb{Z}/2\) by \(\mathbb{Z}/n\) and the second one is the only nontrivial extension of \(\mathbb{Z}/n\) by \(\mathbb{Z}/2\).

Let \(R\) be a domain. Let \(F\) be the quotient field of \(R\) and \(\bar{F}\) the algebraic closure of \(F\). Let \(\mu_{2\infty}(R) \subseteq \mu(R)\) be the following set

\[
\mu_{2\infty}(R) := \{ a \in R : \text{there exists an } m \in \mathbb{N}, \text{ s.t. } a^{2^m} = 1 \}.
\]

Here we are interested in the calculation of the cohomology groups

\[
H^2(\mathbb{Z}/2, \text{Tor}^Z_1(\mu(R), \mu(R))), \quad H^2(\text{Tor}^Z_1(\mu(R), \mu(R)), \mathbb{Z}/2).
\]

Applying the Künneth formula together with the facts that \(\text{Tor}^Z_1(\mu(R), \mu(R))\) is a direct limit of a family of finite cyclic groups and the homology functor commutes with direct limits, with directed set of indices [2, Chap. V.5, Exercise 3], we get the isomorphisms

\[
H^2(\mathbb{Z}/2, \text{Tor}^Z_1(\mu(R), \mu(R))) \simeq \text{Ext}_\mathbb{Z}^1(\mathbb{Z}/2, \text{Tor}^Z_1(\mu(R), \mu(R))),
\]
On the other hand, since \(\mu \)

\[
\text{Tor}_1^R(\mu(R), \mu(R)) \approx \text{Ext}_1^Z(\mu(R), \mu(R)) / 2
\]

It is easy to see that

\[
\text{Ext}_2^Z(\mathbb{Z}/2, \text{Tor}_1^R(\mu(R), \mu(R))) \approx \text{Tor}_1^R(\mu(R), \mu(R)) / 2
\]

\[
\approx \begin{cases}
0 & \text{if } \mu_2(F) \subseteq \mu_2(\mathbb{R}) \\
\mathbb{Z}/2 & \text{if } \mu_2(\mathbb{R}) \text{ is finite, } \text{char}(\mathbb{R}) \neq 2.
\end{cases}
\]

On the other hand, since \(\mu(R) \) can be written as union \(\bigcup_{i=1}^{\infty} \mu_n(R) \), where \(2|n_1|n_2| \cdots \), we have the following exact sequence \([18, 3.5.10]\)

\[
0 \to \text{lim}^1 \text{Ext}_Z^0(\mu_n(R), \mathbb{Z}/2) \to \text{Ext}_Z^1(\mu(R), \mathbb{Z}/2) \to \text{lim}^1 \text{Ext}_Z^1(\mu_n(R), \mathbb{Z}/2) \to 0.
\]

Since \(\mu_n(R) \) is finite and cyclic,

\[
\text{lim}^1 \text{Ext}_Z^0(\mu_n(R), \mathbb{Z}/2) \approx \text{lim}^1 \text{Hom}_Z(\mu_n(R), \mathbb{Z}/2) \approx \text{lim}^1 \mathbb{Z}/2 = 0,
\]

\([18, \text{Exercise } 3.5.2]\) and

\[
\text{lim} \text{Ext}_Z^1(\mu_n(R), \mathbb{Z}/2) \approx \begin{cases}
0 & \text{if } \text{char}(\mathbb{R}) = 2 \\
\mathbb{Z}/2 & \text{if } \text{char}(\mathbb{R}) \neq 2.
\end{cases}
\]

Thus

\[
\text{Ext}_Z^1(\mu(R), \mathbb{Z}/2) \approx \begin{cases}
0 & \text{if } \text{char}(\mathbb{R}) = 2 \\
\mathbb{Z}/2 & \text{if } \text{char}(\mathbb{R}) \neq 2.
\end{cases}
\]

Now by \([12, \text{Theorem } 10.86]\) we have

\[
\text{Ext}_Z^1(\text{Tor}_1^R(\mu(R), \mu(R)), \mathbb{Z}/2) \approx \text{Ext}_Z^1(\mu(R), \text{Ext}_Z^1(\mu(R), \mathbb{Z}/2))
\]

\[
\approx \begin{cases}
0 & \text{if } \text{char}(\mathbb{R}) = 2 \\
\mathbb{Z}/2 & \text{if } \text{char}(\mathbb{R}) \neq 2.
\end{cases}
\]

Therefore if \(\mu_2(\mathbb{R}) \) is finite, then

\[
H^2(\mathbb{Z}/2, \text{Tor}_1^R(\mu(R), \mu(R))) \approx H^2(\text{Tor}_1^R(\mu(R), \mu(R)), \mathbb{Z}/2)
\]

\[
\approx \begin{cases}
0 & \text{if } \text{char}(\mathbb{R}) = 2 \\
\mathbb{Z}/2 & \text{if } \text{char}(\mathbb{R}) \neq 2.
\end{cases}
\]

From this it follows that when \(\text{char}(\mathbb{R}) \neq 2 \) and \(\mu_2(\mathbb{R}) \) is finite, we have a unique nontrivial extension of \(\mathbb{Z}/2 \) by \(\text{Tor}_1^R(\mu(R), \mu(R)) \) and a unique nontrivial extension of \(\text{Tor}_1^R(\mu(R), \mu(R)) \) by \(\mathbb{Z}/2 \). If we denote these extensions by \(\text{Tor}_1^R(\mu(R), \mu(R)) \) and \(\text{Tor}_1^R(\mu(R), \mu(R)) \) respectively, then we have the non-split exact sequences

\[
0 \to \text{Tor}_1^R(\mu(R), \mu(R)) \to \text{Tor}_1^R(\mu(R), \mu(R)) \to \mathbb{Z}/2 \to 0,
\]

\[
0 \to \mathbb{Z}/2 \to \text{Tor}_1^R(\mu(R), \mu(R)) \to \text{Tor}_1^R(\mu(R), \mu(R)) \to 0.
\]

The calculation done at the beginning of this section, implies that the groups \(\text{Tor}_1^R(\mu(R), \mu(R)) \) and \(\text{Tor}_1^R(\mu(R), \mu(R)) \) must be isomorphic. Hence if we have one of the above exact sequences, we will get the other one too.
Proposition 2.1. Let R be a commutative domain with $\text{char}(R) \neq 2$. Let F be the quotient field of R and \bar{F} be the algebraic closure of F.

(i) There exists a unique nontrivial extension of $\text{Tor}_2^\mathbb{Z}(\mu(R), \mu(R))$ by $\mathbb{Z}/2$. We denote this group by $\text{Tor}_2^\mathbb{Z}(\mu(R), \mu(R))^\sim$.

(ii) If $\mu_2(\infty)(R)$ is finite, then there is a unique nontrivial extension of $\mathbb{Z}/2$ by $\text{Tor}_2^\mathbb{Z}(\mu(R), \mu(R))$, which is isomorphic to $\text{Tor}_2^\mathbb{Z}(\mu(R), \mu(R))^\sim$.

Remark 2.2. If $\text{char}(R) = 2$, then $\mu_2(\infty)(R)$ is trivial. In this case, we set $\text{Tor}_2^\mathbb{Z}(\mu(R), \mu(R))^\sim := \text{Tor}_1^\mathbb{Z}(\mu(R), \mu(R))$.

3. Third Homology of Monomial Matrices of Rank Two

Let R be a commutative ring. Let GM_2 denote the group of monomial matrices in GL_2. Let $T_2 := R^* \times R^* \subseteq \text{GM}_2$ and consider the extension

$$1 \longrightarrow T_2 \longrightarrow \text{GM}_2 \longrightarrow \Sigma_2 \longrightarrow 1,$$

where $\Sigma_2 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$. We often think of Σ_2 as the symmetric group of order two $\{1, \sigma\}$. Note that $\text{GM}_2 = T_2 \rtimes \Sigma_2$. The action of Σ_2 on T_2 is as follow:

$$1(a, b) = (a, b), \quad \sigma(a, b) = (b, a).$$

From this extension we obtain the first quadrant spectral sequence

$$E^2_{p,q} = H_p(\Sigma_2, H_q(T_2)) \Rightarrow H_{p+q}(\text{GM}_2).$$

Since the homology of finite cyclic groups is known [18, Theorem 6.2.2], one easily sees that

$$E^2_{p,0} = \begin{cases} \mathbb{Z} & \text{if } p = 0 \\ \mathbb{Z}/2 & \text{if } p \text{ is odd} \\ 0 & \text{if } p \text{ is even} \end{cases}, \quad E^2_{p,1} = H_p(\Sigma_2, T_2) \simeq \begin{cases} R^* & \text{if } p = 0 \\ 0 & \text{if } p \neq 0 \end{cases}.$$

From these, we obtain the isomorphism $E^\infty_{1,2} \simeq E^2_{1,2}$. The spectral sequence gives us a filtration

$$0 = F_{-1}H_3(\text{GM}_2) \subseteq F_0H_3(\text{GM}_2) \subseteq \ldots \subseteq F_3H_3(\text{GM}_2) = H_3(\text{GM}_2),$$
such that $E_{3,3}^\infty \simeq F_1 H_3(\text{GM}_2)/F_{i-1} H_3(\text{GM}_2)$, $0 \leq i \leq 3$. Thus we have

\[
E_{0,3}^\infty \simeq F_0 H_3(\text{GM}_2) = \text{im}(H_3(T_2)),
E_{1,2}^\infty \simeq E_{1,2}^2 \simeq F_1 H_3(\text{GM}_2)/F_0 H_3(\text{GM}_2),
E_{2,1}^\infty \simeq F_2 H_3(\text{GM}_2)/F_1 H_3(\text{GM}_2) = 0,
E_{3,0}^\infty \simeq F_3 H_3(\text{GM}_2)/F_2 H_3(\text{GM}_2) = H_3(\text{GM})/F_2 H_3(\text{GM}_2).
\]

From the natural inclusion $\Sigma_2 \subseteq \text{GM}_2$, one easily sees that the composition $H_3(\Sigma_2) \to H_3(\text{GM}_2) \to H_3(\Sigma_2)$ coincides with the identity map. Thus $E_{3,0}^\infty \simeq H_3(\Sigma_2)$. Now the above relations imply the following isomorphisms

\[
H_3(\text{GM}_2) \simeq F_2 H_3(\text{GM}_2) \oplus H_3(\Sigma_2), \quad E_{1,2}^2 \simeq F_2 H_3(\text{GM}_2)/H_3(T_2).
\]

Set $M := H_3(R^*) \oplus H_3(R^*) \oplus R \otimes H_2(R^*) \oplus H_2(R^*) \otimes R^* \subseteq H_3(T_2)$.

By applying the Snake lemma to the commutative diagram

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & M & \longrightarrow & H_3(T_2) & \longrightarrow & \text{Tor}_1^Z(\mu(R), \mu(R)) & \longrightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & F_2 H_3(\text{GM}_2) & \longrightarrow & F_2 H_3(\text{GM}_2) & \longrightarrow & 0 & \longrightarrow & 0
\end{array}
\]

we obtain the exact sequence

\[
\text{Tor}_1^Z(\mu(R), \mu(R)) \longrightarrow T_R \longrightarrow E_{1,2}^2 \longrightarrow 0,
\]

where $T_R = F_2 H_3(\text{GM}_2)/M$. Note that $E_{1,2}^2$ is a 2-torsion group and we have [2, Chap. III.1, Example 2]

\[
E_{1,2}^2 = H_1(\Sigma_2, H_2(T_2)) = H_2(T_2)^\sigma/(1 + \sigma)H_2(T_2) = (R^* \otimes R^*)^\sigma/(1 + \sigma)(R^* \otimes R^*) = H_1(\Sigma_2, R^* \otimes R^*),
\]

where the action of Σ_2 on $R^* \otimes R^*$ is as follow:

\[
1(a \otimes b) = a \otimes b, \quad \sigma(a \otimes b) = -b \otimes a.
\]

Lemma 3.1. Let A be an abelian group and Σ_2 acts on $A \otimes A$ as above. Then $H_1(\Sigma_2, A \otimes A) \simeq H_1(\Sigma_2, A_2^\infty \otimes A_2^\infty)$, where $A_2^\infty := \{a \in A : \text{there exists } m \in \mathbb{N} \text{ s.t. } 2^m a = 0\}$. If A is 2-divisible, then $H_1(\Sigma_2, A \otimes A) = 0$.

Proof. Let $\{A_i : i \in I\}$ be a family of finitely generated subgroups of A such that I is a directed set and $A \simeq \lim_{\to_I} A_i$. Then one can easily see that $A \otimes A \simeq \lim_{\to_I} A_i \otimes A_i$. So to prove the lemma we may assume that A is
finitely generated. Let $A \simeq A_{2\infty} \oplus A_{\text{odd}} \oplus \mathbb{Z}^n$, where A_{odd} is the subgroup of A consisting of elements of odd order. Then we have

$$H_1(\Sigma_2, A \otimes A) \simeq H_1(\Sigma_2, A_{2\infty} \otimes A_{2\infty})$$

$$\oplus H_1(\Sigma_2, A_{\text{odd}} \otimes A_{\text{odd}})$$

$$\oplus H_1(\Sigma_2, \mathbb{Z}^n \otimes \mathbb{Z}^n)$$

$$\oplus H_1(\Sigma_2, A_{2\infty} \otimes A_{\text{odd}} \oplus A_{\text{odd}} \otimes A_{2\infty})$$

$$\oplus H_1(\Sigma_2, A_{2\infty} \otimes \mathbb{Z}^n \oplus \mathbb{Z}^n \otimes A_{2\infty})$$

$$\oplus H_1(\Sigma_2, A_{\text{odd}} \otimes \mathbb{Z}^n \oplus \mathbb{Z}^n \otimes A_{\text{odd}}).$$

The action of Σ_2 on $A_{2\infty} \otimes A_{\text{odd}} \oplus A_{\text{odd}} \otimes A_{2\infty}$, $A_{2\infty} \otimes \mathbb{Z}^n \oplus \mathbb{Z}^n \otimes A_{2\infty}$ and $A_{2\infty} \otimes \mathbb{Z}^n \oplus \mathbb{Z}^n \otimes A_{2\infty}$ is as follow

$$\sigma(x \otimes a, b \otimes y) = -(y \otimes b, a \otimes x).$$

Since $A_{\text{odd}} \otimes A_{\text{odd}}$ has no element of even order, $H_1(\Sigma_2, A_{\text{odd}} \otimes A_{\text{odd}}) = 0$. By an easy direct commutation one can see that the homology groups $H_1(\Sigma_2, A_{2\infty} \otimes A_{\text{odd}} \oplus A_{\text{odd}} \otimes A_{2\infty})$, $H_1(\Sigma_2, A_{2\infty} \otimes A_{\text{odd}} \otimes \mathbb{Z}^n \oplus \mathbb{Z}^n \otimes A_{2\infty})$ and $H_1(\Sigma_2, A_{\text{odd}} \otimes \mathbb{Z}^n \otimes \mathbb{Z}^n \otimes A_{\text{odd}})$ are trivial. Also one can show that

$$(\mathbb{Z}^n \otimes \mathbb{Z}^n)^{\sigma} = (1 + \sigma)(\mathbb{Z}^n \otimes \mathbb{Z}^n) = \langle e_i \otimes e_j - e_j \otimes e_i : 1 \leq i < j \leq n \rangle,$$

where $\{e_1, \ldots, e_n\}$ is the standard basis of \mathbb{Z}^n. Hence $H_1(\Sigma_2, \mathbb{Z}^n \otimes \mathbb{Z}^n) = 0$. This completes the proof of the first part of the lemma. When A is 2-divisible, $A_{2\infty}$ is 2-divisible too. Therefore $A_{2\infty} \otimes A_{2\infty}$ is trivial. Now the claim follows from the first part of the lemma.

By the previous lemma we have the isomorphism

$$E_{1,2}^2 = H_1(\Sigma_2, H_2(T_2)) \simeq H_1(\Sigma_2, \mu_{2\infty}(R) \otimes \mu_{2\infty}(R)).$$

Combining this with the above exact sequence, we obtain the exact sequence

$$\text{(3.1)} \quad \text{Tor}_1^G(\mu(R), \mu(R)) \longrightarrow T_R \longrightarrow H_1(\Sigma_2, \mu_{2\infty}(R) \otimes \mu_{2\infty}(R)) \longrightarrow 0.$$

For later use, we need to give an explicit description of the map

$$H_2(T_2)^{\sigma} \longrightarrow E_{1,2}^2 \longrightarrow F_2H_3(GM_2)/H_3(T_2) \subseteq H_3(GM_2)/H_3(T_2).$$

To do this we need to introduce certain notations.

For an arbitrary group G, let $B_*(G) \rightarrow \mathbb{Z}$ denote the bar resolution of G. So $B_n(G)$, $n \geq 0$, is the free left G-module with basis consisting of elements of the form $[g_1] \cdots [g_n]$, $g_i \in G$, where $[g_1] \cdots [g_i] = 0$ if $g_i = 1$ for some i. The differential $\partial^G_n : B_n(G) \rightarrow B_{n-1}(G)$ is defined as follow

$$\partial^G_n([g_1] \cdots [g_n]) = g_1[g_2] \cdots [g_n] + \sum_{i=1}^{n-1} (-1)^i [g_1] \cdots [\widehat{g_i}] [g_i g_{i+1}] [\widehat{g_{i+1}}] \cdots [g_n]$$

$$+ (-1)^n [g_1] \cdots [g_{n-1}].$$

Note that $B_0(G) = \mathbb{Z}G[\cdot]$ and $\varepsilon : \sum n_g[\cdot] \mapsto \sum n_g$. We turn the $B_n(G)$ into a right G-module in usual way. For any left G-module M, the homology
Consider the commutative diagram
\[H \]
\[\text{group } H_i(G, M) \text{ coincides with the homology of the complex } B_\bullet(G) \otimes_G M. \]
In particular
\[H_n(G) = H_n(B_\bullet(G) \otimes_G \mathbb{Z}) = H_n(B_\bullet(G)_G). \]

For simplicity we denote the element of \(B_n(G)_G \) represented by \([g_1] \cdots [g_n]\) again by \([g_1] \cdots [g_n]\). Any element \(g \in G \), determines an automorphism of the complex \(B_\bullet(G) \otimes_G M \) given by
\[[g_1] \cdots [g_n] \otimes m \mapsto [gg_1g^{-1}] \cdots [gg_ng^{-1}] \otimes gm. \]
This automorphism is homotopic to the identity, with the corresponding homotopy given by the formula
\[\rho_g : B_n(G) \otimes_G M \to B_{n+1}(G) \otimes_G M, \]
\[[g_1] \cdots [g_n] \mapsto \sum_{j=0}^{n} (-1)^j [g_1] \cdots [g_j] g^{-1} [gg_{j+1}g^{-1}] \cdots [gg_ng^{-1}] \otimes m. \]

Lemma 3.2. Let \(u \in H_2(T_2) \) and \(h \in B_2(T_2)_\Sigma_2 \) a representing cycle for \(u \). Let \(\tau \) be the automorphism of transposition of terms and let \(\tau(h) = h = \delta_3 T_2(b), b \in B_3(T_2)_\Sigma_2 \). Then the image of \(u \) under the map
\[H_2(T_2) \to H_3(GM_2)/H_3(T_2) \]
coincides with the homology class of the cycle \(b - \rho_s(h) \), where \(s := \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \) and
\[\rho_s([g_1|g_2]) := [s|sg_1s^{-1}|sg_2s^{-1}] - [g_1|s|sg_2s^{-1}] + [g_1|g_2|s]. \]

Proof. Let \(B_\bullet(GM_2) \to \mathbb{Z} \) and \(B_\bullet(\Sigma_2) \to \mathbb{Z} \) be the bar resolutions of \(GM_2 \) and \(\Sigma_2 \) respectively. We know that
\[B_\bullet(GM_2)_\Sigma_2 \simeq (B_\bullet(GM_2)_T_2)_{\Sigma_2} \simeq \mathbb{Z} \oplus \Sigma_2 B_\bullet(GM_2)_T_2. \]
The spectral sequence \(E_{p,q}^2 \) is one of the two corresponding spectral sequences of the double complex \(B_\bullet(\Sigma_2) \otimes_{\Sigma_2} B_\bullet(GM_2)_T_2 \), with \(E_1 \)-terms of the form
\[E_{p,q}^1 = H_q(B_p(\Sigma_2) \otimes_{\Sigma_2} B_\bullet(GM_2)_T_2). \]
[2, Chap. VII, Sections 5, 6]. Let \(h = [g_1|g_2] - [g_2|g_1] \in B_2(T_2) \). Then
\[\tau(h) = [sg_1s^{-1}|sg_2s^{-1}] - [sg_2s^{-1}|sg_1s^{-1}]. \]

Consider the commutative diagram
\[\begin{array}{c}
\mathbb{Z} \otimes_{\Sigma_2} B_3(GM_2)_T_2 \leftarrow B_0(\Sigma_2) \otimes_{\Sigma_2} B_3(GM_2)_T_2 \leftarrow B_1(\Sigma_2) \otimes_{\Sigma_2} B_3(GM_2)_T_2 \\
\downarrow \quad \downarrow \quad \downarrow \\
\mathbb{Z} \otimes_{\Sigma_2} B_2(GM_2)_T_2 \leftarrow B_0(\Sigma_2) \otimes_{\Sigma_2} B_2(GM_2)_T_2 \leftarrow B_1(\Sigma_2) \otimes_{\Sigma_2} B_2(GM_2)_T_2.
\end{array} \]
Now the necessary computations are collected in the following diagram
\[
\begin{array}{c}
\begin{array}{c}
b - \rho_s(h) \\
\downarrow
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\rightarrow s[] \otimes b - [] \otimes \rho_s(h)
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\rightarrow s[] \otimes h - [] \otimes h
\end{array}
\end{array}
\begin{array}{c}
\rightarrow [s] \otimes h.
\end{array}
\end{array}
\]

Let \(R \) be a domain and \(\xi \in R \) a primitive \(n \)-th root of unity. Therefore \(\mu_n(R) = \langle \xi \rangle \). Let \(\langle \xi, n, \xi \rangle \in \text{Tor}_1^Z(\mu_n(R), \mu_n(R)) \) be the image of \(\xi \) under the following composition
\[
\mu_n(R) \longrightarrow \text{Tor}_1^Z(\mu_n(R), \mu_n(R)) \hookrightarrow \text{Tor}_1^Z(\mu_n(R), \mu_n(R)).
\]

We have the following lemma.

Lemma 3.3. Let \(R \) be a domain. Then we have the canonical decomposition
\[
H_3(T_2) = \bigoplus_{i+j=3} H_i(R^*) \otimes H_j(R^*) \oplus \text{Tor}_1^Z(\mu_n(R), \mu_n(R)),
\]
where a splitting map \(\text{Tor}_1^Z(\mu_n(R), \mu_n(R)) \longrightarrow H_3(T_2) \) is defined by the formula
\[
\langle \xi, n, \xi \rangle \mapsto \chi(\xi),
\]
\[
\chi(\xi) := \sum_{i=1}^n \left([(\xi, 1)](1, \xi)[(1, \xi^i)] - [(1, \xi)](\xi, 1)[(1, \xi^i)] + [(1, \xi)](1, \xi^i)[(\xi, 1)] \right.
\]
\[
+ [(\xi, 1)](\xi^i, 1)[(1, \xi)] - [(\xi, 1)](1, \xi)[(\xi^i, 1)] + [(1, \xi)](\xi, 1)[(\xi^i, 1)] \right).
\]

Proof. For a proof, see Section 4 of [8]. \(\square\)

4. Bloch-wigner exact sequence

The following theorem is due to Suslin [16, Theorem 2.1].

Theorem 4.1. Let \(R \) be a commutative ring with many units. Then
\[
B(R) \simeq H_3(\text{GL}_2)/H_3(\text{GM}_2).
\]

Proof. Suslin has proved this theorem for infinite fields [16, Theorem 2.1]. But his arguments without any change also works for any ring with many units. For example Lemmas 2.1 and 2.2 in [16] and their proofs are still true (see for example [9, Section 1]). For a proof of Lemma 2.4 in [16], see the proof of Lemma 4.1 in [9]. The rest of Suslin’s argument goes through without any change. \(\square\)

From Theorem 4.1 we obtain the exact sequence
\[
H_3(\text{GM}_2) \longrightarrow H_3(\text{GL}_2) \longrightarrow B(R) \longrightarrow 0.
\]
Proposition 4.2. Let R be a commutative ring with many units and set $\tilde{H}_3(\text{SL}_2(R)) := H_3(\text{GL}_2)/(H_3(\text{GL}_1) + R^* \cup H_3(\text{GL}_1))$.

(i) Then we have the following exact sequences
\[
T_R \longrightarrow \tilde{H}_3(\text{SL}_2(R)) \longrightarrow B(R) \longrightarrow 0,
\]
\[
\text{Tor}_1^R(\mu(R), \mu(R)) \longrightarrow T_R \longrightarrow H_1(\Sigma_2, \mu_2^\infty(R) \otimes \mu_2^\infty(R)) \longrightarrow 0,
\]
(ii) We have the exact sequence
\[
\text{Tor}_1^R(\mu(R), \mu(R)) \otimes_{\mathbb{Z}[1/2]} \longrightarrow H_3(\text{SL}_2(R), \mathbb{Z}[1/2]) \longrightarrow B(R) \otimes_{\mathbb{Z}[1/2]} \longrightarrow 0.
\]
(iii) If $R^* = R^{*2}$, then we have the exact sequence
\[
\text{Tor}_1(\mu(R), \mu(R)) \longrightarrow H_3(\text{SL}_2(R)) \longrightarrow B(R) \longrightarrow 0.
\]

Proof. Let $B_2 := \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, d \in R^*, b \in R \right\}$. A theorem of Suslin claims that the inclusion $T_2 \subseteq B_2$ induces the isomorphism $H_n(T_2) \simeq H_n(B_2)$, $n \geq 0$, [4, Theorem 2.2.2]. The matrix $s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is similar to the matrix $\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \in B_2$, and hence
\[
\text{im}(H_3(\Sigma_2)) \subseteq \text{im}(H_3(B_2)) = \text{im}(H_3(T_2)) \subseteq H_3(\text{GL}_2).
\]
Thus Suslin’s exact sequence (4.1) together with $H_3(\text{GM}_2) \simeq F_2 H_3(\text{GM}_2) \oplus H_3(\Sigma_2)$, implies the exact sequence
\[
F_2 H_3(\text{GM}_2) \longrightarrow H_3(\text{GL}_2) \longrightarrow B(R) \longrightarrow 0.
\]
Now from the commutative diagram
\[
\begin{array}{ccc}
M & \longrightarrow & M \\
\downarrow & & \downarrow \\
F_2 H_3(\text{GM}_2) & \longrightarrow & H_3(\text{GL}_2) \longrightarrow B(R) \longrightarrow 0,
\end{array}
\]
we obtain the exact sequence
\[
T_R \longrightarrow H_3(\text{GL}_2)/M \longrightarrow B(R) \longrightarrow 0.
\]
This together with exact sequence (3.1) proves (i). The parts (ii) and (iii) follow from (i), Lemma 3.1 and the fact that we have the isomorphism
\[
\tilde{H}_3(\text{SL}_2(R)) \otimes_{\mathbb{Z}[1/2]} \simeq H_3(\text{SL}_2(R), \mathbb{Z}[1/2]) \otimes
\]
for any ring with many units and the isomorphism
\[
\tilde{H}_3(\text{SL}_2(R)) \simeq H_3(\text{SL}_2(R))
\]
if moreover $R^* = R^{*2}$ [9, Corollary 5.4].
Remark 4.3. (i) Proposition 4.2 recovers and also improves one of the main result of [9]. We should menion that Theorem 5.1 in [9] is not correct. The correct formulation of that theorem, which is almost the above proposition, is stated in an erratum to [9].

(ii) If R is a noncommutative ring with many units [8, Section 2], [4, Section 1], then with minor modification the groups $p(R)$, $B(R)$, $K_2^M(R)$ can be defined in a similar way [9, Remark 5.2]. Now most of the above arguments also works in this noncommutative setting and thus we obtain the exact sequences

\[\begin{align*}
T_R & \to \tilde{H}_3(\text{SL}_2(R)) \to B(R) \to 0, \\
\text{Tor}_1^Z(K_1(R), K_1(R)) & \to T_R \to H_1(\Sigma_2, K_1(R) \otimes K_1(R)) \to 0.
\end{align*} \]

This corrects and also improves Remark 5.2 in [9].

Theorem 4.4. Let R be a domain with many units. Then we have the exact sequence

\[0 \to \text{Tor}_1^Z(\mu(R), \mu(R)) \to \tilde{H}_3(\text{SL}_2(R)) \to B(R) \to 0, \]

where $\text{Tor}_1^Z(\mu(R), \mu(R))$ is the unique nontrivial extension of the group $\text{Tor}_1^Z(\mu(R), \mu(R))$ by $\mathbb{Z}/2$ if $\text{char}(R) \neq 2$ and is equal to $\text{Tor}_1^Z(\mu(R), \mu(R))$ if $\text{char}(R) = 2$.

Proof. By Proposition 4.2, we have the following exact sequences

\[T_R \to \tilde{H}_3(\text{SL}_2(R)) \to B(R) \to 0, \]

\[\text{Tor}_1^Z(\mu(R), \mu(R)) \to T_R \to H_1(\Sigma_2, \mu_2(\mu(R)) \otimes \mu_2(\mu(R))) \to 0. \]

Let F be the quotient field of R and \bar{F} be the algebraic closure of F. Then

\[H_1(\Sigma_2, \mu_2(\mu(R)) \otimes \mu_2(\mu(R))) \simeq \frac{(\mu_2(\mu(R)) \otimes \mu_2(\mu(R)))^\sigma}{(1 + \sigma)(\mu_2(\mu(R)) \otimes \mu_2(\mu(R)))} \]

\[\simeq (\mu_2(\mu(R)) \otimes \mu_2(\mu(R)))^\sigma \]

\[= 2(\mu_2(\mu(R)) \otimes \mu_2(\mu(R))) \]

\[\simeq \begin{cases}
0 & \text{if } \mu_2(\mu(R)) = \mu_2(\bar{F}) \subseteq R \\
\mathbb{Z}/2 & \text{if } \mu_2(\mu(R)) \text{ is finite and } \text{char}(R) \neq 2.
\end{cases} \]

Using the isomorphism $\tilde{H}_3(\text{SL}_2(\bar{F})) \simeq H_3(\text{SL}_2(\bar{F}))$ [9, Corollary 5.4] and the Bloch-Wigner exact sequence, Corollary 1.2, from the above exact sequences we get the isomorphism $\text{Tor}_1^Z(\mu(\bar{F}), \mu(\bar{F})) \simeq T_{\bar{F}}$. From the commutative diagram

\[\begin{array}{ccc}
\text{Tor}_1^Z(\mu(R), \mu(R)) & \longrightarrow & T_R \\
\downarrow & & \downarrow \\
\text{Tor}_1^Z(\mu(\bar{F}), \mu(\bar{F})) & \longrightarrow & T_{\bar{F}}.
\end{array} \]

and the injectivity of $\text{Tor}_1^Z(\mu(R), \mu(R)) \to \text{Tor}_1^Z(\mu(\bar{F}), \mu(\bar{F}))$, the injectivity of $\text{Tor}_1^Z(\mu(R), \mu(R)) \to T_R$ follows.
If char(R) = 2, then $\mu_{2\infty}(R) = \mu_{2\infty}(F) = \{1\}$, and so $H_1(\Sigma_2, \mu_{2\infty}(R) \otimes \mu_{2\infty}(R)) = 0$. Hence the map $\text{Tor}_1^R(\mu(R), \mu(R)) \rightarrow T_R$ is surjective as well and thus

$$\text{Tor}_1^R(\mu(R), \mu(R)) \simeq T_R.$$

Now assume char(R) $\neq 2$ and $\mu_{2\infty}(R)$ is finite. Then we have the exact sequence

$$(4.2) \quad 0 \rightarrow \text{Tor}_1^R(\mu(R), \mu(R)) \rightarrow T_R \rightarrow \mathbb{Z}/2 \rightarrow 0.$$

We show that this exact sequence does not split. This exact sequence is, in fact, the exact sequence

$$0 \rightarrow H_3(T_2)/M \rightarrow F_2H_3(GM_2)/M \rightarrow F_2H_3(GM_2)/H_3(T_2) \rightarrow 0.$$

Let $\mu_{2\infty}(R) = \langle \xi \rangle$, $n = 2m = 2^r$. Under the inclusion

$$\{0, (-1) \otimes \xi\} = 2(\mu_{2\infty}(R) \otimes \mu_{2\infty}(R)) \hookrightarrow H_2(T_2),$$

the image of $(-1) \otimes \xi$ in $H_2(T_2)$ is represented by the cycle

$$h := \left[\left(-1, 1\right)\left(1, \xi\right) - \left(1, \xi\right)\left(-1, 1\right)\right] \in B_2(T_2).$$

Now

$$\tau(h) - h = \left[\left(1, -1\right)\left(1, \xi\right) - \left(1, 1\right)\left(1, -1\right) - \left(-1, 1\right)\left(1, \xi\right) + \left(1, \xi\right)\left(-1, 1\right)\right],$$

$$\sigma(h) = \left[\left(1, 1\right)\left(1, -1\right) - \left(1, -1\right)\left(1, -1\right) - \left(1, 1\right)\left(-1, -1\right) - \left(1, 1\right)\left(-1, 1\right)\right].$$

If $b := \chi_1(\xi) + \chi_3(\xi)$, where

$$\chi_1(\xi) := \sum_{i=1}^{m-1} \left[\left(1, \xi\right)\left(1, \xi^i\right) - \left(1, \xi\right)\left(1, \xi^i\right) + \left(1, \xi\right)\left(1, \xi^i\right)\left(1, \xi\right)\right]$$

$$\chi_3(\xi) := \left[\left(1, 1\right)\left(1, -1\right) - \left(1, -1\right)\left(1, -1\right) - \left(1, 1\right)\left(1, -1\right)\right],$$

then, $\partial_3^{T_2}(b) = \tau(h) - h$. Now by Lemma 3.2, the cycle $b - \rho_s(h)$ represents the image of $(-1) \otimes \xi$ in $F_2H_3(GM_2)/H_3(T_2) \subseteq H_3(GM_2)/H_3(T_2)$. Now let

$$\omega(\xi) := b - \rho_s(h)$$

represents the element of $F_2H_3(GM_2)/M$ generated by the cycle $b - \rho_s(h)$. To show that our exact sequence does not split, it is sufficient to show that $2\omega(\xi)$ is equal to the image of $\langle \xi, n, \xi \rangle \in \text{Tor}_1^R(\mu(R), \mu(R))$ under the inclusion $\text{Tor}_1^R(\mu(R), \mu(R)) \simeq H_3(T_2)/M \hookrightarrow F_2H_3(GM_2)/M$. By Lemma 3.3, the image of $\langle \xi, n, \xi \rangle$ is equal to $\chi(\xi)$. Therefore we should show
that \(\overline{2\omega(\xi)} = \chi(\xi) \). If

\[
\chi_4(\xi) := \left[(-1, 1) | (-1, 1) | (1, \xi) - (-1, 1) | (1, \xi) | (1, 1) \right] \\
+ \left[(1, \xi) | (-1, 1) | (1, 1) \right],
\]

\[
\eta(\xi) := [s | (1, -1) | (1, 1) | (1, \xi) - s | (1, -1) | (1, \xi) | (1, 1) \\
+ [(-1, 1) | s | (\xi, 1) | (1, 1) - (-1, 1) | s | (\xi, 1) | (1, 1) \\
+ [(-1, 1) | (\xi, 1) | (1, 1) s - [(1, \xi) s | (1, 1) | (1, 1) \\
+ [s | (\xi, 1) | (1, 1) | (1, 1) - (-1, 1) | s | (\xi, 1) | (1, 1) \\
+ [(1, \xi) | (1, 1) s | (\xi, 1) - [(-1, 1) | (1, 1) | (1, \xi) | (1, 1) s,
\]

then by a direct computation we have

\[
\partial_4(\eta(\xi)) = -2\rho_s(h) + \chi_3(\xi) - \chi_4(\xi) \in B_3(GM_2)_{GM_2},
\]

and thus

\[
2\omega(\xi) = 2b - 2\rho_s(h) = 2\chi_1(\xi) + \chi_3(\xi) + \chi_4(\xi) + \partial_4(\eta(\xi)).
\]

We have \(\chi(\xi) = \chi_1(\xi) + \chi_5(\xi) + \chi_6(\xi) + \chi_2(\xi) \), where

\[
\chi_2(\xi) := \sum_{i=1}^{m-1} \left([(\xi, 1) | (1, \xi) | (1, -\xi^i) - [(1, \xi) | (\xi, 1) | (1, -\xi^i)] + [(1, \xi) | (1, -\xi^i)] | (\xi, 1) | (1, -\xi^i) \right),
\]

\[
\chi_5(\xi) := [(\xi, 1) | (1, \xi) | (1, -1)] - [(1, \xi) | (\xi, 1) | (1, -1)] + [(\xi, 1) | (1, -1)] | (\xi, 1),
\]

\[
\chi_6(\xi) := [(\xi, 1) | (1, -1)] | (1, \xi) - [(\xi, 1) | (1, \xi) | (1, -1)] + [(1, \xi) | (\xi, 1) | (1, -1)],
\]

Now if

\[
v(\xi) := \sum_{i=0}^{m-1} \left([(\xi, 1) | (1, \xi) | (1, \xi^i) | (1, -1)] - [(1, \xi) | (\xi, 1) | (1, \xi^i) | (1, -1)] \\
- [(1, \xi) | (1, \xi^i) | (1, -1)] | (\xi, 1) + [(1, \xi) | (1, \xi^i) | (\xi, 1) | (1, -1)] \\
+ [(1, \xi) | (\xi, 1) | (\xi^i, 1) | (1, -1)] - [(\xi, 1) | (1, \xi) | (\xi^i, 1) | (1, -1)] \\
- [(\xi, 1) | (\xi^i, 1) | (1, \xi) + [(\xi, 1) | (\xi^i, 1) | (1, \xi) | (1, -1)] \right),
\]

then \(\partial_4(v(\xi)) = \chi_1(\xi) - \chi_2(\xi) + \chi_3(\xi) - \chi_5(\xi) - \chi_6(\xi) + \chi_4(\xi) \). Therefore

\[
2\omega(\xi) = 2\chi_1(\xi) + \chi_3(\xi) + \chi_4(\xi) + \partial_4(\eta(\xi))
\]

\[
= \chi_1(\xi) + \chi_2(\xi) + \chi_5(\xi) + \chi_6(\xi) + \partial_4(\eta(\xi)) + v(\xi)
\]

\[
= \chi(\xi) + \partial_4(\eta(\xi) + v(\xi)).
\]

This shows that \(2\omega(\xi) = \chi(\xi) \) and therefore the exact sequence (4.2) does not split.

Thus Proposition 2.1 implies the existence of the non-split exact sequence

\[
0 \longrightarrow \mathbb{Z}/2 \longrightarrow T_R \longrightarrow \text{Tor}_1^\mathbb{Z}(\mu(R), \mu(R)) \longrightarrow 0.
\]
Therefore T_R is the unique nontrivial extension of $\text{Tor}_1^\mathbb{Z}(\mu(R), \mu(R))$ by $\mathbb{Z}/2$. Now from the commutative diagram
\[
\begin{array}{ccccccccc}
0 & \longrightarrow & \mathbb{Z}/2 & \longrightarrow & T_R & \longrightarrow & \text{Tor}_1^\mathbb{Z}(\mu(R), \mu(R)) & \longrightarrow & 0 \\
& & \downarrow \text{inc} & & \downarrow & & \downarrow \text{inc} & & \\
0 & \longrightarrow & \mathbb{Z}/2 & \longrightarrow & T_F & \longrightarrow & \text{Tor}_1^\mathbb{Z}(\mu(\bar{F}), \mu(\bar{F})) & \longrightarrow & 0,
\end{array}
\]
we see that $T_R \longrightarrow T_F$ is injective.

From this result and the Bloch-Wigner exact sequence, Corollary 1.2, we obtain the injectivity of the map $T_R \longrightarrow \tilde{H}_3(\text{SL}_2(R))$. Therefore we have the exact sequence
\[
0 \longrightarrow T_R \longrightarrow \tilde{H}_3(\text{SL}_2(R)) \longrightarrow B(R) \longrightarrow 0,
\]
where T_R is the unique nontrivial extension of $\text{Tor}_1^\mathbb{Z}(\mu(R), \mu(R))$ by $\mathbb{Z}/2$. This completes the proof of the theorem. □

Remark 4.5. For an infinite field F, by Theorems 1.1 and 4.4 we have two exact sequences which look very similar
\[
0 \longrightarrow \text{Tor}_1^\mathbb{Z}(\mu(F), \mu(F)) \longrightarrow K_3(F) \longrightarrow B(F) \longrightarrow 0,
\]
\[
0 \longrightarrow \text{Tor}_1^\mathbb{Z}(\mu(F), \mu(F)) \longrightarrow \tilde{H}_3(\text{SL}_2(F)) \longrightarrow B(F) \longrightarrow 0.
\]
This suggest that $K_3(F)$ and $\tilde{H}_3(\text{SL}_2(F))$ should be isomorphism. But there is no direct map from one of these groups to the other one! But there is a natural maps from $H_3(\text{SL}_2(F))_{\bar{F}^*}$ to both of them. These relation will be studied in another paper.

Acknowledgments. Part of this work has done during the first author’s visit to ICTP on August 2011. He would like to thank them for their support and hospitality.

References

[1] Bloch, S. J. Higher Regulators, Algebraic K-Theory and Zeta Functions of Elliptic Curves. CRM Monograph Series. 11. Providence, RI: American Mathematical Society (AMS), 2000.

[2] Brown, K. S. Cohomology of Groups. Graduate Texts in Mathematics, 87. Springer-Verlag, New York, 1994.

[3] Dupont, J.-L., Sah, C. Scissors congruences. II. J. Pure Appl. Algebra 25 (1982), no. 2, 159–195.

[4] Guin, D. Homologie du groupe linéaire et K-théorie de Milnor des anneaux. J. Algebra 123 (1989), no. 1, 27–59.

[5] Hutchinson, K., Tao, L. The third homology of the special linear group of a field. J. Pure Appl. Algebra 213 (2009), no. 9, 1665–1680.

[6] Hutchinson, K. A Bloch-Wigner complex for SL_2. Preprint. Available at http://arxiv.org/abs/1107.0264.

[7] Milnor, J. Introduction to Algebraic K-Theory. Annals of Mathematics Studies, No. 72. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971.

[8] Mirzaii, B. Third homology of general linear groups. J. Algebra 320 (2008), no. 5, 1851–1877.
[9] Mirzaii, B. Bloch-Wigner theorem over rings with many units. Math. Z. 268 (2011), 329–346. 2, 10, 11, 12
[10] Mirzaii, B. A note on third Homology of GL_2. Comm. Algebra, 39 (2011), no. 5, 1595–1604.
[11] Nesterenko Yu. P., Suslin A. A. Homology of the general linear group over a local ring and Milnor’s K-theory. Math. USSR-Izv. 34 (1990), no. 1, 121–145. 1
[12] Rotman, J. J. An Introduction to Homological Algebra. Universitext, Second Edition, Springer, 2009. 5
[13] Sah, C. Homology of classical Lie groups made discrete. III. J. Pure Appl. Algebra 56 (1989), no. 3, 269–312. 1, 3
[14] Suslin, A. A. On the K-theory of algebraically closed fields. Invent. Math. 73 (1983), no. 2, 241–245. 4
[15] Suslin, A. A. On the K-theory of local fields. J. Pure Appl. Algebra 34 (1984), no. 2-3, 301–318. 4
[16] Suslin, A. A. K_3 of a field and the Bloch group. Proc. Steklov Inst. Math. 183 (1991), no. 4, 217–239. 1, 3, 4, 10
[17] Van der Kallen, W. The K_2 of rings with many units. Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 473–515. 1
[18] Weibel, C. A. An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, (1994). 4, 5, 6

Department of Mathematics,
Institute for Advanced Studies in Basic Sciences,
P. O. Box. 45195-1159, Zanjan, Iran.
email: bmirzai@insbs.ac.ir
email: f.mokari61@gmail.com