Supplementary information for

Mapping the optoelectronic property space of small aromatic molecules

Liam Wilbraham,¹ Denisa Smalji,¹ Isabelle Heath- Apostolopoulos,¹ Martijn A. Zwijnenburg¹,*

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK

* E-mail: m.zwijnenburg@ucl.ac.uk
Supplementary figures

Supplementary Fig. 1 All the molecular skeletons included in the study.
Supplementary Fig. 2 Correlation between $-\text{IP}$ (left), $-\text{EA}$ (centre) and optical gap values (right) as calculated with (IPEA/sTDA-)xTB and (TD-)B3LYP/DZP for the molecular skeletons. In every panel the black line is the line of best fit used to calibrate the (IPEA/sTDA-)xTB to the (TD-)B3LYP data while the red dashed line is the $x = y$ line.

Supplementary Fig. 3 Comparison of the Δ_0 values calculated for the molecular skeletons using sTDA-xTB and $\omega B97x$/aug-cc-pVTZ.
Supplementary Fig. 4 2D histogram of the property space spanned by -IP and -EA for molecules functionalised with one or two NH₂ groups.

Supplementary Fig. 5 2D histogram of the property space spanned by -IP and the optical gap for molecules functionalised with one or two NH₂ groups.
Supplementary Fig. 6 2D histogram of the property space spanned by -IP and -EA for molecules functionalised with one or two N(CH$_3$)$_2$ groups.

Supplementary Fig. 7 2D histogram of the property space spanned by -IP and the optical gap for molecules functionalised with one or two N(CH$_3$)$_2$ groups.
Supplementary Fig. 8 2D histogram of the property space spanned by -IP and -EA for molecules functionalised with one or two OH groups.

Supplementary Fig. 9 2D histogram of the property space spanned by -IP and the optical gap for molecules functionalised with one or two OH groups.
Supplementary Fig. 10 2D histogram of the property space spanned by -IP and -EA for molecules functionalised with one or two OCH₃ groups.

Supplementary Fig. 11 2D histogram of the property space spanned by -IP and the optical gap for molecules functionalised with one or two OCH₃ groups.
Supplementary Fig. 12 2D histogram of the property space spanned by $-\text{IP}$ and $-\text{EA}$ for molecules functionalised with one or two SH groups.

Supplementary Fig. 13 2D histogram of the property space spanned by $-\text{IP}$ and the optical gap for molecules functionalised with one or two SH groups.
Supplementary Fig. 14 2D histogram of the property space spanned by -IP and -EA for molecules functionalised with one or two \(\text{SCH}_3 \) groups.

Supplementary Fig. 15 2D histogram of the property space spanned by -IP and the optical gap for molecules functionalised with one or two \(\text{SCH}_3 \) groups.
Supplementary Fig. 16 2D histogram of the property space spanned by -IP and -EA for molecules functionalised with one or two NO$_2$ groups.

Supplementary Fig. 17 2D histogram of the property space spanned by -IP and the optical gap for molecules functionalised with one or two NO$_2$ groups.
Supplementary Fig. 18 2D histogram of the property space spanned by -IP and -EA for molecules functionalised with one or two CN groups.

Supplementary Fig. 19 2D histogram of the property space spanned by -IP and the optical gap for molecules functionalised with one or two CN groups.
Supplementary Fig. 20 2D histogram of the property space spanned by -IP and -EA for molecules functionalised with one or two SO$_3$H groups.

Supplementary Fig. 21 2D histogram of the property space spanned by -IP and the optical gap for molecules functionalised with one or two SO$_3$H groups.
Supplementary Fig. 22 2D histogram of the property space spanned by -IP and -EA for molecules functionalised with one or two CF₃ groups.

Supplementary Fig. 23 2D histogram of the property space spanned by -IP and the optical gap for molecules functionalised with one or two CF₃ groups.
Supplementary Fig. 24 2D histogram of the property space spanned by -IP and -EA for molecules functionalised with one or two COOH groups.

Supplementary Fig. 25 2D histogram of the property space spanned by -IP and the optical gap for molecules functionalised with one or two COOH groups.
Supplementary Fig. 26 2D histogram of the property space spanned by $-\text{IP}$ and $-\text{EA}$ for molecules functionalised with one or two fluorine atoms.

Supplementary Fig. 27 2D histogram of the property space spanned by $-\text{IP}$ and the optical gap for molecules functionalised with one or two fluorine atoms.
Supplementary Fig. 28 2D histogram of the property space spanned by -IP and -EA for molecules containing \([nH]([-cH]):[cH]\).

Supplementary Fig. 29 2D histogram of the property space spanned by -IP and the optical gap for molecules containing \([nH]([-cH]):[cH]\).
Supplementary Fig. 30 2D histogram of the property space spanned by -IP and -EA for molecules containing $[nH]/[cH]/[c]$.

Supplementary Fig. 31 2D histogram of the property space spanned by -IP and the optical gap for molecules containing $[nH]/[cH]/[c]$.
Supplementary Fig. 32 2D histogram of the property space spanned by -IP and -EA for molecules containing [nH][c]:[c].

Supplementary Fig. 33 2D histogram of the property space spanned by -IP and the optical gap for molecules containing [nH][[:c]]:[c].
Supplementary Fig. 34 2D histogram of the property space spanned by \(-\text{IP} \) and \(-\text{EA} \) for molecules containing [o][::cH][::cH].

Supplementary Fig. 35 2D histogram of the property space spanned by \(-\text{IP} \) and the optical gap for molecules containing [o][::cH][::cH].
Supplementary Fig. 36 2D histogram of the property space spanned by $-\text{IP}$ and $-\text{EA}$ for molecules containing [o](::[cH]):[c].

Supplementary Fig. 37 2D histogram of the property space spanned by $-\text{IP}$ and the optical gap for molecules containing [o](::[cH]):[c].
Supplementary Fig. 38 2D histogram of the property space spanned by -IP and -EA for molecules containing \([\text{o}]:[\text{c}]):[\text{c}].

Supplementary Fig. 39 2D histogram of the property space spanned by -IP and the optical gap for molecules containing \([\text{o}]:[\text{c}]):[\text{c}].
Supplementary Fig. 40 2D histogram of the property space spanned by -IP and -EA for molecules containing [s][:cH]:[cH].

Supplementary Fig. 41 2D histogram of the property space spanned by -IP and the optical gap for molecules containing [s][:cH]:[cH].
Supplementary Fig. 42 2D histogram of the property space spanned by -IP and -EA for molecules containing \([s][:cH]:[c]\).

Supplementary Fig. 43 2D histogram of the property space spanned by -IP and the optical gap for molecules containing \([s][:cH]:[c]\).
Supplementary Fig. 44 2D histogram of the property space spanned by -IP and -EA for molecules containing $[s]([c]):[c]$.

Supplementary Fig. 45 2D histogram of the property space spanned by -IP and the optical gap for molecules containing $[s]([c]):[c]$.
Supplementary Fig. 46 2D histogram of the property space spanned by -IP and -EA for molecules containing $[S]-[\text{CH}]-[\text{CH}]= [\text{O}]= [\text{O}]$.

Supplementary Fig. 47 2D histogram of the property space spanned by -IP and the optical gap for molecules containing $[S]-[\text{CH}]-[\text{CH}]= [\text{O}]= [\text{O}]$.
Supplementary Fig. 48 2D histogram of the property space spanned by -IP and -EA for molecules containing $[\text{S}[\text{CH}][\text{C}](=\text{O})]=\text{O}$.

Supplementary Fig. 49 2D histogram of the property space spanned by -IP and the optical gap for molecules containing $[\text{S}[\text{CH}][\text{C}](=\text{O})]=\text{O}$.
Supplementary Fig. 50 2D histogram of the property space spanned by -IP and -EA for molecules containing \([S]([C])([-C])([=O])=[O]\).

Supplementary Fig. 51 2D histogram of the property space spanned by -IP and the optical gap for molecules containing \([S]([-C])([-C])([=O])=[O]\).
Supplementary Fig. 52 2D histogram of the property space spanned by -IP and -EA for molecules containing \([\text{C}]-[\text{CH}]-[\text{CH}]=\text{[O]}\) or \([\text{C}]-[\text{cH}]-[\text{cH}]=\text{[O]}\).

Supplementary Fig. 53 2D histogram of the property space spanned by -IP and the optical gap for molecules containing \([\text{C}][-\text{CH}]-[\text{CH}]=\text{[O]}\) or \([\text{C}][-\text{cH}]-[\text{cH}]=\text{[O]}\).
Supplementary Fig. 54 2D histogram of the property space spanned by -IP and -EA for molecules containing [C](-[CH])(-[C])=0 or [C](-[CH])(-[c])=0.

Supplementary Fig. 55 2D histogram of the property space spanned by -IP and the optical gap for molecules containing [C](-[CH])(-[C])=0 or [C](-[CH])(-[c])=0.
Supplementary Fig. 56 2D histogram of the property space spanned by -IP and -EA for molecules containing [C]-[C]-[C]=O or [C]-[c]-[c]=O.

Supplementary Fig. 57 2D histogram of the property space spanned by -IP and the optical gap for molecules containing [C]-[C]-[C]=O or [C]-[c]-[c]=O.
Supplementary Fig. 58 2D histogram of the property space spanned by -IP and -EA for molecules containing \([n]([\text{cH}]):[\text{cH}].\)

Supplementary Fig. 59 2D histogram of the property space spanned by -IP and the optical gap for molecules containing \([n]([\text{cH}]):[\text{cH}].\)
Supplementary Fig. 60 2D histogram of the property space spanned by -IP and -EA for molecules containing \([n]:[\text{cH}]:[\text{c}]\).

Supplementary Fig. 61 2D histogram of the property space spanned by -IP and the optical gap for molecules containing \([n]::[\text{cH}]:[\text{c}]\).
Supplementary Fig. 62 2D histogram of the property space spanned by -IP and -EA for molecules containing \([n][c]:[c]\).

Supplementary Fig. 63 2D histogram of the property space spanned by -IP and the optical gap for molecules containing \([n][c]:[c]\).
Supplementary Fig. 64 2D histogram of the property space spanned by -IP and -EA for molecules containing [n]:[n]:[cH].

Supplementary Fig. 65 2D histogram of the property space spanned by -IP and the optical gap for molecules containing [n]:[n]:[cH].
Supplementary Fig. 66 2D histogram of the property space spanned by -IP and -EA for molecules containing [n]([n]):[c].

Supplementary Fig. 67 2D histogram of the property space spanned by -IP and the optical gap for molecules containing [n][[n]]=[c].
Supplementary Fig. 68 2D histogram of the property space spanned by -IP and -EA for molecules containing [cH][:[n]]:[n].

Supplementary Fig. 69 2D histogram of the property space spanned by -IP and the optical gap for molecules containing [cH][:[n]]:[n].
Supplementary Fig. 70 2D histogram of the property space spanned by -IP and -EA for molecules containing [s]([n]):[n].

Supplementary Fig. 71 2D histogram of the property space spanned by -IP and the optical gap for molecules containing [s]([n]):[n].
Supplementary Fig. 72 2D histogram of the property space spanned by -IP and -EA for molecules containing [o][[:n]):[n].

Supplementary Fig. 73 2D histogram of the property space spanned by -IP and the optical gap for molecules containing [o][[:n]):[n].
Supplementary Fig. 74 2D histogram of the property space spanned by -IP and -EA for molecules containing [n]:([n]):[s].

Supplementary Fig. 75 2D histogram of the property space spanned by -IP and the optical gap for molecules containing [n]:([n]):[s].
Supplementary Fig. 76 2D histogram of the property space spanned by -IP and -EA for molecules containing [n]:[n]:[o].

Supplementary Fig. 77 2D histogram of the property space spanned by -IP and the optical gap for molecules containing [n]:[n]:[o].
Supplementary Fig. 78 2D histogram of the property space spanned by -IP and -EA for molecules containing \([n]:[cH]):[s].

Supplementary Fig. 79 2D histogram of the property space spanned by -IP and the optical gap for molecules containing \([n]:[cH]):[s].
Supplementary Fig. 80 2D histogram of the property space spanned by -IP and -EA for molecules containing [n]:[cH]:[o].

Supplementary Fig. 81 2D histogram of the property space spanned by -IP and the optical gap for molecules containing [n]:[cH]:[o].
Supplementary Fig. 82 2D histogram of the property space spanned by -IP and -EA for molecules containing [cH](::s)::[n].

Supplementary Fig. 83 2D histogram of the property space spanned by -IP and the optical gap for molecules containing [cH](::s)::[n].
Supplementary Fig. 84 2D histogram of the property space spanned by -IP and -EA for molecules containing ([n](:[c])(:[c])-[CH3]).

Supplementary Fig. 85 2D histogram of the property space spanned by -IP and the optical gap for molecules containing ([n]:[c]:[c]-[CH3]).
Supplementary tables

Supplementary Table 1 Parameters of the linear model used to convert xTB values to the DFT scale, the corresponding coefficient of determination (r^2) and the mean average error (MAE).

	slope	intercept	r^2	MAE
-IP	1.076	0.151	0.888	0.20
-EA	0.821	0.616	0.957	0.12
optical gap	0.925	0.110	0.862	0.21

Supplementary Table 2 Prevalent skeletons identified through the topographical analysis and their corresponding -IP/-EA regions.

Most Prevalent Skeleton SMILES	-IP min	-IP max	-EA min	-EA max
c1nnc2nmc12	-inf	-3.5	-inf	-3.5
c1nnc2onnc12	-inf	-3.5	-3.5	-2.5
c1nnco1	-inf	-3.5	-2.5	-1.5
c1nc2eccc3onencc(n1)c2c34	-3.5	-2.5	-inf	-3.5
c1ene2onnc2r1	-3.5	-2.5	-3.5	-2.5
c1cnc1	-3.5	-2.5	-2.5	-1.5
Cn1c(0)c2ccc3eccc5c(0)nc(0)c6ccc(c7ccc(c1=O)c2c37)c4c56	-2.5	-1.5	-inf	-3.5
c1nnc2cc3mc3c12	-2.5	-1.5	-3.5	-2.5
c1c2e(c1)c1cc1ec1-2	-2.5	-1.5	-2.5	-1.5
c1nnc1[12]	-2.5	-1.5	-1.5	-0.5
c1c2e(c3mc3mc13)N5c5c5N2	-1.5	-0.5	-inf	-3.5
c1c2e2cc3ecccc9c3c2c1	-1.5	-0.5	-3.5	-2.5
c1c2e2cc3ecccc9c3c2c1	-1.5	-0.5	-2.5	-1.5
c1c2c1c3c3c3c2c1	-1.5	-0.5	-1.5	-0.5
c1c2[nH]1	-0.5	inf	-2.5	-1.5
c1c2[13][nH][j]3c2[1][nH]1	-0.5	inf	-1.5	-0.5

Supplementary methods

SMILES fragment notation

In the main text we present these fragments as SMILES strings written in a condensed form, e.g. [CH][nH][CH], but with explicit hydrogen atoms, where the central atom of the fragment occurs in the middle of the string. The explicit hydrogen atoms are important as [CH][nH]c and c[nH]c, fragments where one or both carbon atoms besides the pyrrolic nitrogen have a substituent, are classed based on the radius 1 Morgan Extended-connectivity fingerprints as different fragments than [CH][nH][CH], as well as each other. Atoms that form part of an aromatic ring are shown in lowercase and aliphatic carbons in uppercase. However, the Morgan fingerprinting algorithm with radius 1 classifies the cC(=O)c fragment of anthraquinone and the CC(=O)C fragment of a benzoquinone molecule were both carbons adjacent to the central carbonyl group have been functionalised as the same fragment.

In the supporting figures we use in the captions of Figs. S28-S85 the long form of the SMILES with the central atom of the fragment on the right, e.g. [nH][j:[nH]}[[nH], where additionally single (-) and aromatic (:) bonds are explicitly shown.