Hepatocellular carcinoma in Latin America: Diagnosis and treatment challenges

Federico Piñero, Jaime Poniachik, Ezequiel Ridruejo, Marcelo Silva

Federico Piñero, Ezequiel Ridruejo, Marcelo Silva, Liver Unit, Hospital Universitario Austral, Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires B1629HJ, Argentina

Jaime Poniachik, Department of Gastroenterology and Hepatology, Hospital Clínico Universidad de Chile, Santiago de Chile, Región Metropolitana Santiago 46010, Chile

Ezequiel Ridruejo, Hepatology Section, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno, Ciudad de Buenos Aires C1425ASG, Argentina

ORCID number: Federico Piñero (0000-0002-9528-2279); Jaime Poniachik (0000-0001-7958-3357); Ezequiel Ridruejo (0000-0002-3321-0683); Marcelo Silva (0000-0002-2287-7351).

Author contributions: Piñero F and Poniachik J contributed to concept and writing of the article; Ridruejo E and Silva M contributed to critical review and final approval of the article.

Conflict-of-interest statement: The authors of this manuscript have no conflicts of interest to declare.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Federico Piñero, MD, MSCE, Academic Research, Doctor, Hepatology and Liver Transplant Unit, Hospital Universitario Austral, Av. Presidente Perón 1500, Pilar, Buenos Aires B1629HJ, Argentina. pinerof@cas.austral.edu.ar Telephone: +54-230-4482000 Fax: +54-230-4482236

Received: July 5, 2018 Peer-review started: July 5, 2018 First decision: August 1, 2018 Revised: August 2, 2018 Accepted: August 24, 2018 Article in press: August 24, 2018 Published online: October 7, 2018

Abstract

Latin America, a region with a population greater than 600000000 individuals, is well known due to its wide geographic, socio-cultural and economic heterogeneity. Access to health care remains as the main barrier that challenges routine screening, early diagnosis and proper treatment of hepatocellular carcinoma (HCC). Therefore, identification of population at risk, implementation of surveillance programs and access to curative treatments has been poorly obtained in the region. Different retrospective cohort studies from the region have shown flaws in the implementation process of routine surveillance and early HCC diagnosis. Furthermore, adherence to clinical practice guidelines recommendations assessed in two studies from Brazil and Argentina demonstrated that there is also room for improvement in this field, similarly than the one observed in Europe and the United States. In summary, Latin America shares difficulties in HCC decision-making processes similar to those from developed countries. However, a transversal limitation in the region is the poor access to health care with the consequent limitation to standard treatments for overall population. Specifically, universal health care access to the different World Health Organization levels is crucial, including improvement in research, education and continuous...
medical training in order to expand knowledge and
generation of data promoting a continuous improvement
in the care of HCC patients.

Key words: Latin America; Liver cancer; Limitations; Challenge

© The Author(s) 2018. Published by Baishideng Publishing
Group Inc. All rights reserved.

Core tip: Which are the implications in regard to clinical
decision making processes related to hepatocellular
carcinoma (HCC) in daily practice in Latin America? Should we consider making these decisions taking into
account both, local experiences and their feasibility
together with the best available evidence in parallel
with patient preferences? These decision-making
processes must be individualized according to local
barriers to health care systems. Primary prevention
programs of liver diseases, surveillance for HCC and
intervention programs following the best evidence will
be possible only if we are aware of local barriers and
develop efficient strategies to overcome them.

Piñero F, Poniachik J, Ridruejo E, Silva M. Hepatocellular
carcinoma in Latin America: Diagnosis and treatment challenges. World J Gastroenterol 2018; 24(37): 4224-4229 Available from:
URL: http://www.wjgnet.com/1007-9327/full/v24/i37/4224.htm
DOI: http://dx.doi.org/10.3748/wjg.v24.i37.4224

INTRODUCTION

Latin American comprises a region of the Americas of
Latin origin, in which the most common speaking
languages are Spanish and Portuguese. The region
accounts for more than twenty million square kilometers
of surface area, with more than six hundred million
population. Due to its geographic extension, Latin
America has a great socio-cultural heterogeneity and an
important socio-economic difference among countries.
While there are high earners like Chile and Uruguay with
a gross domestic product (GDP) per capita over $20000,
others like Haiti and Honduras have GDPs per capita
lower than $ 5000[1]. At the same time, each country in
itself is highly unequal, presenting some of the highest
Globalization of Inequality (GINI) scores in the world.
Brazil, Chile, Ecuador and Colombia all present GINIs
above 0.45 for the year 2016; Argentina and Uruguay
having slightly better scores[1]. In comparison, Sweden,
Norway, Netherlands and Denmark all have GINI scores
less than 0.30[1].

It is in this socio-cultural and economic scenario,
where settles a large variety in access to health care
systems in the region. These systems are mainly made
up of a common payer and provider that is the state.
However, in several countries, there are other type of
health providers through social security and private
insurances and providers. Furthermore, expenditure on
access care in many Latin American countries comes
from out-of-pocket money among high to middle
income people. On the other hand, among low socio-
economic classes, expenditure comes purely and
exclusively from public services, which in most of the
cases provide with low to regular quality of medical care
services and shortage of appropriate medical supplies and
devices.

WHERE DO WE STAND IN
LATIN AMERICA REGARDING
HEPATOCELLULAR CARCINOMA?

Hepatocellular carcinoma (HCC) is the second leading
cause of cancer related death worldwide and the main
cause of cancer in patients with cirrhosis. Incidence of
HCC varies according to geographic location, depending
on the prevalence of viral hepatitis among the world.
The predominant reported causes of HCC in different
geographic areas around the world have been related
with chronic hepatitis C virus (HCV) or hepatitis B virus
(HBV) infection and alcoholic liver disease[2-5]. Hetero-
geogeneous data regarding epidemiology of HCC in Latin
America has been reported[6-12]. While HCV and alcoholic
liver disease are the most frequent etiologies of HCC in
the region, HBV is a leading cause in some countries,
mainly in Brazil. More recently, we have observed a
changing epidemiological trend of HCC towards an
increasing non-alcoholic fatty liver disease, becoming an
important public health burden in the region[6,7].

As previously proposed by the World Health
Organization the structural challenge in the region is the
uneven access to health care. To our knowledge there
is not even one country with an integrated program
assist on the prevention of chronic liver diseases
and early identification of the population at risk for
developing HCC. Consequently, the common challenge
for scientific societies is to induce regional policy
makers to develop interventions and strategies able to
identify the population at risk, implement surveillance
programs, and improve access to curative and palliative
treatments. Once we have assured access to adequate
care we should move into next step which is the correct
adherence to recommendations from clinical practice
guidelines[2-5].

A clinical case scenario as an example of where do we
fail in Latin America?

The following clinical case demonstrates the regional
shortcomings related to HCC diagnosis at late stages and
its therapeutic consequences. A 60-year-old male patient
with compensated cirrhosis and clinically significant portal
hypertension due to chronic HCV infection, who started
antiviral treatment with direct-acting antiviral agents,
began an erratic path of ultrasound (US) screening for
HCC. Surveillance was performed by non-liver expert
sonographers due to insurance’s related lack of access to academic sites. Initially a 24-mm nodule was visualized and he was recommended to stay on a follow-up visit with no further imaging evaluation. Twelve months later, another US was performed; this time the nodule grew to 38 mm. He performed an abdominal computed tomography (CT) scan with oral contrast only, and the finding of an “uncharacteristic” nodule led to a CT-guided biopsy. The pathologic report was “nodules of hepatocellular regeneration separated by broad fibrous septa, cirrhosis”. Result: No cancer. His physician suggested him to continue life normally and the patient happily went home.

A year later, a liver specialist suggested him to perform an abdominal CT scan with intravenous contrast. A heterogeneous 80-mm diameter lesion in the right hepatic lobe with “non-characteristic findings” was observed. Not satisfied, the patient looked for a second opinion. A second hepatologist performed a three-phase dynamic abdominal magnetic resonance imaging (MRI). Result: One lesion with arterial enhancement and wash out during portal and late phases: HCC of 83 mm, without vascular invasion. Serum alpha-fetoprotein value was 1200 ng/mL.

In the end, the patient consulted at least 4 medical doctors during a 2-year period, with extended and inadmissible delay in HCC diagnosis that at this point will probably exclude him from potentially curative treatments. Where did we fail?

Early diagnosis of HCC: Challenges and areas of improvement

This case, clearly illustrates some of the reasons for failure in routine surveillance and HCC diagnosis at early stages in Latin America, and as a consequence, failure in the appropriate staging and selection of therapies.

Screening failure entails three important points to be considered. First, absence of early identification of the population at risk, such as chronic HBV or HCV. Second, ineffective application of routine surveillance (semi-annual ultrasound performed by expert operators) and third, errors in interpretation of a positive or negative screening tests, misinterpreting its sensitivity and specificity.

Surveillance for HCC in Latin America demands a continuous improvement. Different retrospective cohort studies have shown flaws in the implementation process of routine surveillance, the consequent failure in the diagnosis in early stages and finally a notorious negative impact upon patient survival[8-12] (Table 1).

Overall, surveillance programs reported to be applied in less than 50% of the patients in Latin America. This number perhaps does not show the “real” regional situation, since most of this data came from academic rather than general hospitals. Consequently, screening failure for HCC in this region might be even greater, demanding strategies to improve its implementation such as application of US done by experts, correct interpretation of imaging tests and finally, adequacy of therapeutic decisions according to the best evidence-based-medicine. Consequently, early HCC diagnosis should be the aim of these strategies.

As exemplified in the clinical case, the misuse of diagnostic tools delays the correct diagnosis. HCC diagnosis implies an appropriate oncologic imaging paradigm, not requiring histological confirmation for diagnosis in most of the cases. However, discordance between images and histology may occur. This situation has been reported up to 10% in Argentina when comparing imaging reports and explanted liver data from liver transplanted patients[13,14]. In a multicenter Latin American cohort study, false positives cases were less than 3%[15]. Two different situations need to be further clarified when discussing imaging accuracy against histological confirmation of HCC. On one hand, when false positives are considered, it should be important to address if complete necrotic nodules were included as false positive cases resulting in a biased report. On the other hand, discrepancy between images

Table 1 Surveillance for hepatocellular carcinoma in Latin America

Study	Population	Design	Results
Fassio et al[8]	n = 240 HCC Brazil, Arg, Colombia, Chile, Uruguay, Venezuela	Prospective cohort (Surveillance retrospectively analyzed)	54% under surveillance; BCLC A 70% vs 39% not under surveillance; No survival analysis
Paranaguá-Vezozzo et al[9]	n = 884 Cirrhosis Child A-B Brazil, Sao Paulo	Retrospective cohort US ± AFP annual	HCC annual incidence 2.9%; 75% under annual surveillance; 80% within Milan, better survival
Piñero et al[10]	n = 643 Cirrhosis, waiting list for liver transplantation, Argentina	Retrospective cohort Surveillance Failure = incidental HCC in the explant	US accuracy: 83% and E 99%
Campos Appel-da-Silva et al[11]	n = 453 Child A-C Cirrhosis Brazil, Porto Alegre	Retrospective cohort US ± AFP every 6 mo	50.7% under surveillance; More BCLC 0-A vs no screening; Better survival within Milan criteria
Debes et al[12]	n = 1336 HCC Brazil, Argentina, Colombia, Peru, Uruguay, Ecuador	Retrospective cohort	47% under surveillance; Better survival vs symptomatic diagnosis (adjusted for lead-time bias)

BCLC: Barcelona Clinic Liver Cancer; HCC: Hepatocellular carcinoma; US: Ultrasound.
and explanted liver should be considered taking into account potential tumor progression, and locoregional response to treatments during the waiting list period.

Nevertheless this led to changes in diagnostic criteria for HCC in patients enrolled for liver transplantation in Argentina aimed to improve imaging diagnostic accuracy. Although the idea was novel, LIRADS criteria implementation led even to a greater uncertainty for those cases where HCC diagnosis is probable or possible (LIRADS 3 or 4). Moreover, imaging expert’s agreement on LIRADS in the daily practice has been not assessed at all. Thus, LIRADS system seemed to make the clinical decision making process even more complex in daily practice in that country16,17.

Challenges regarding staging and adherence to recommended treatment options from clinical practice guidelines

HCC staging considering the Barcelona Clinic Liver Cancer (BCLC) algorithm has been recommended in different clinical practice guidelines18-26, including that from the Latin American Association for the Study of the Liver (ALEH)18. However, strict adherence to these therapeutic recommendations is often not feasible in daily practice. This does not contradict the BCLC algorithm, since its explicitly recommends that the therapeutic choice must be individualized considering feasibility, access and preferences of the patients18. In addition, there are different guidelines and recommendations, including those from Asia (APASL)19, Japan and South Korea. Consequently, there is a wide range of treatment algorithms when considering HCC.

The BRIDGE study demonstrated the great heterogeneity in terms of the treatments performed worldwide at each stage and far from that recommended in the ideal situation19. Global and individual context makes therapeutic decisions in HCC heterogeneous in real life. Adherence to clinical practice guidelines recommendations varies between 40%-70% in different retrospective cohort studies20-26. Two Latin American studies evaluated adherence to BCLC and its impact on survival. In a study from Brazil, adherence to BCLC did not have a favorable impact on survival25. However, there was a selection bias when “non-adherence” was categorized in those patients within BCLC-D stage who were candidates for liver transplantation. Precisely, the BCLC clarifies in its footnote that these patients must be transplanted. In a dual cohort study in Argentina, adherence to BCLC was greater than 50%, being associated with better overall survival26 (Table 2).

Table 2 Adherence to clinical practice guidelines around the world and in Latin America

Study	Population	Design	Results
Leoni et al20	$n = 227$ HCV 58% Child A 54%	Retrospective cohort (2005-2010) One center	At HCC diagnosis: BCLC 0-A 55%; Adherence to BCLC 60%; Higher adherence among BCLC A 86%
Gashin et al20	$n = 137$ HCV 62%	Retrospective cohort (2009-2010) One center	Adherence to BCLC 62%; Better overall survival; Heterogeneous causes of non-adherence
Kim et al20	$n = 3515$ HBV 77% Child A 82%	Retrospective cohort (2005-2009) One center	At HCC diagnosis: BCLC A 59%; Adherence to BCLC 49%; Better survival for adherence, except BCLC-D (BCLC D who were transplanted were considered “non-adherence”)
Wallace et al20	$n = 292$ OH-HCV 65%	Retrospective cohort (2006-2014) One center	At HCC diagnosis: BCLC 0-A 64%; Adherence to BCLC 48% vs HKLC 56% (P.001); No better survival among BCLC adherence vs no-adherence but better survival among HKLC (TACE before transplant was considered “no-adherence”)
Guarino et al20	$n = 1008$ HCV Child A 73%	Retrospective cohort (2013-2015) Multicenter study	At HCC diagnosis: BCLC 0-A 59%; Adherence BCLC 71%, lower in BCLC B 36% and C 46%; No better survival (TACE before transplant was considered “no-adherence”)
Kikuchi et al20	$n = 364$ HBV 53% Child A 53%	Retrospective cohort (2010-2012) One center	At HCC diagnosis: BCLC A 36%; Adherence BCLC 52%; Lower adherence in BCLC C-D; No better survival, except in BCLC A (BCLC D who were transplanted were considered “non-adherence”)
Piñero et al20	$n = 708$ HCV 58% Child A 54%	Dual cohort (2009-2016) Multicenter study	At HCC diagnosis: BCLC 0-A 47%; Adherence BCLC 53% initial, 63% subsequently; Adherence to BCLC: better survival HR 0.67 (CI: 0.52-0.87)

BCLC: Barcelona Clinic Liver Cancer; HKLC: Hong Kong Liver Cancer algorithm; HCV: Hepatitis C virus; HBV: Hepatitis B virus; TACE: Transarterial chemoembolization.

PERSPECTIVE

Consequently, we shall make decisions considering local education, expertise and feasibility together with...
Hepatocellular carcinoma
"challenges en LATAM"

Screening failure: What can we improve?
- Earlier identification of the population at risk for HCC

Surveillance programs: US local and experts

Diagnostic failure
- Correct imaging method indication
- Correct and precise imaging evaluation
- Re-evaluation if unclear diagnosis

Failure in therapeutic decisions
- Correct treatment individualization
- Evidence-based-medicine approach
- Scientific rational: Adherence to clinical practice guidelines

Figure 1 Areas of improvement regarding hepatocellular carcinoma in Latin America. HCC: Hepatocellular carcinoma.

the best available evidence. Ultimately, this decision-making-process must be individualized[27].

Which are the areas for improvement in Latin America?
Specifically, universal health care access as per World Health Organization recommendation is crucial. This includes improvement in transmission of information and medical education from academic to primary health care centers, focusing on prevention of development of liver diseases, identification of population at risk for HCC, systematic implementation of routine surveillance programs, improvement in the diagnostic work-up process and finally, promoting overall access to all treatments strategies which have shown improvement in patient's survival (Figure 1). Finally, an important field to promote in the region is the development of research consortia such as the Latin American Liver Research Educational and Awareness Network, through which we can multiply medical education and generation of regional data necessary to develop efficient health interventions for improvement the care of patients with HCC[30].

REFERENCES
1. World Bank. International Comparison Program database. Available from: URL: https://data.worldbank.org
2. Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecasis MM, Roberts LR, Zhu AX, Murad MH, Marrero JA. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67: 358-380 [PMID: 28130846 DOI: 10.1002/hep.29086]
3. Méndez-Sánchez N, Ridruelo E, Alves de Mattos A, Chávez-Tapia NC, Zapata R, Paraná R, Mastai R, Strauss E, Guevara-Casillas LG, Daruich J, Gadano A, Parise ER, Uríbe M, Aguilar-Olivos NE, Dagher L, Ferraz-Neto BH, Valdez-Sánchez M, Sánchez-Avilé JF. Latin American Association for the Study of the Liver clinical practice guidelines: management of hepatocellular carcinoma. Ann Hepatol 2014;13 Suppl 1: S4–S40 [PMID 24998696]
4. European Association for the Study of the Liver. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol 2018; 69: 182-236 [PMID: 29628281 DOI: 10.1016/j.jhep.2018.03.019]
5. Ocháza M, Chung AL, Kokudo N, Kudo M, Lee JM, Jia J, Tateishi R, Han KH, Chiau YK, Shima S, Iafri W, Payawal DA, Okbi T, Ogasawara S, Chen PJ, Lesmana CRA, Lesmana LA, Gani RA, Obi S, Dokmeci AK, Sarin SK. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int 2017; 11: 317-370 [PMID: 28620797 DOI: 10.1007/s12072-017-9799-9]
6. Piñero F, Pages J, Marciano S, Fernández N, Silva J, Anders M, Zerega A, Ridruelo E, Ameigeiras B, D’Amico C, Gaite L, Bermúdez C, Cobos M, Rosales C, Romero G, McCormack L, Reggiardo V, Colombato L, Gadano A, Silva M. Fatty liver disease, an emerging etiology of hepatocellular carcinoma in Argentina. World J Hepatol 2018; 10: 41-50 [PMID: 29399277 DOI: 10.4245/wjh.v10.i1.41]
7. Piñero F, Costa P, Boteon YL, Duque SH, Marciano S, Anders M, Varón A, Zerega A, Ponichak J, Soza A, Padilla Machaca M, Menéndez J, Zapata R, Vilatoba M, Muñoz L, Maraschino M, Podestá LG, McCormack L, Gadano A, Boim ISF, García P, Silva M; Latin American Liver Research, Education, Awareness Network (LALREAN). A changing etiologic scenario in liver transplantation for hepatocellular carcinoma in a multicenter cohort study from Latin America. Clin Res Hepatol Gastroenterol 2018; Epub ahead of print [PMID: 29773419 DOI: 10.1016/j.clinre.2018.03.014]
8. Fassio E, Diaz S, Santu C, Reig ME, Martinez Artola Y, Alves de Mattos A, Miguez C, Galizia J, Zapata R, Ridruelo E, de Souza FC, Hernández N, Pinchuk L; Multicenter Group for Study of Hepatocarcinoma in Latin America; Asociación Latinoamericana para el Estudio del Hígado (ALEH). Etiology of hepatocellular carcinoma in Latin America: a prospective, multicenter, internacional study. Ann Hepatol 2010; 9: 63-69 [PMID: 20332549]
9. Paranaaguá-Vezozzo DC, Ono SK, Alvarado-Mora MV, Farias A, Cunha-Silva M, Franco JL, Alves VA, Sherman M, Carrilho FJ. Epidemiology of HCC in Brazil: incidence and risk factors in a ten-year cohort. Ann Hepatol 2014; 13: 386-393 [PMID: 24972609]
10. Piñero F, Marciano S, Anders M, Orozco F, Zerega A, Calvera CR, Baña MT, Gil O, Andriani O, de Santibañes E, McCormack L, Gadano A, Silva M. Screening for liver cancer during transplant waiting list: a multicenter study from South America. Eur J Gastroenterol Hepatol 2015; 27: 355-360 [PMID: 25563142 DOI: 10.1097/MEG.0000000000000272]
11. Appel-da-Silva MC, Mozzo SA, Dossin IA, Toyo CV, Branco F, de Mattos AA. Incidence of hepatocellular carcinoma in patients with cirrhosis in Brazil: A 10-year retrospective cohort study. World J Gastroenterol 2016; 22: 10219-10225 [PMID: 28028370 DOI: 10.3748/wjg.v22.i46.10219]
12. Debes JD, Chan AJ, Balderramo D, Kikuchi L, Gonzalez Balleraga E, Prieto JE, Tapias M, Idrovo V, Davalos MB, Cairo F, Barreyro CR, Bana MT, Gil O, Andriani O, de Santibañes E, McCormack L, Hernandez N, Avendaño K, Díaz Ferrer J, Yang JD, Carrera E, García JA, Mattos AZ, Hirsch BS, Gonçalves PT, Carrilho FJ, Roberts LR. Hepatocellular carcinoma in South America: Evaluation of risk factors, demographics and therapy. Liver Int 2018; 38: 136-143 [PMID: 28640517 DOI: 10.1111/liv.13502]
13. McCormack L, Gadano A, Lendoiro J, Inventarza O, Andriani O, Gil O, Toselli S, Bisignano M, de Santibañes E. Model for end-stage liver disease-based allocation system for liver transplantation in Argentina: does it work outside the United States? HPB (Oxford) 2010; 12: 456-464 [PMID: 20815854 DOI: 10.1111/j.1477-2574.2010.01999.x]
14. Cejas NG, Villamil FG, Lendore JC, Tagliavichi V, Lopez A, Krogh DH, Soratti CA, Bisigniano L. Improved waiting-list outcomes in Argentina after the adoption of a model for end-stage liver disease-based liver allocation policy. Liver Transpl 2013; 19: 711-720 [PMID: 23775946 DOI: 10.1002/lt.23665]
15. Piñero F, Tsi Baña M, de Ataide EC, Hoyos Duque S, Marciano S, Varón A, Anders M, Zerega A, Menéndez J, Zapata R, Muñoz L, Padilla Machuca M, Soza A, McCormack L, Ponichak J, Podestá LG, Gadano A, Boim IS, Duvoux C, Silva M; Latin American Liver
Liver transplantation for hepatocellular carcinoma: evaluation of the alpha-fetoprotein model in a multicenter cohort from Latin America. *Liver Int* 2016; 36: 1657-1667 [PMID: 27169841 DOI: 10.1111/liv.13159]

Ayuso C, Rimola J, Vilana R, Burrel M, Darnell A, García-Criado Á, Bianchi L, Belmonte E, Caparroz C, Barrufet M, Bruix J, Brú C. Diagnosis and staging of hepatocellular carcinoma (HCC): current guidelines. *Eur J Radiol* 2018; 101: 72-81 [PMID: 29571804 DOI: 10.1002/ ejrad.2018.01.025]

Mitchell DG, Bruix J, Sherman M, Sirlin CB. LI-RADS (Liver Imaging Reporting and Data System): summary, discussion, and consensus of the LI-RADS Management Working Group and future directions. *Hepatology* 2015; 61: 1056-1065 [PMID: 25041904 DOI: 10.1002/hep.27304]

Forner A, Reig M, Bruix J. Hepatocellular carcinoma. *Lancet* 2018; 391: 1301-1314 [PMID: 29307467 DOI: 10.1016/S0140-6736(18)30010-2]

Park JW, Chen M, Colombo M, Roberts LR, Schwartz M, Chen PJ, Kado M, Johnson P, Wagner S, Orsini LS, Sherman M. Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study. *Liver Int* 2015; 35: 2155-2166 [PMID: 25752327 DOI: 10.1111/liv.12818]

Leoni S, Piscaglia F, Serio I, Terzi E, Pettinari I, Croci L, Marinelli S, Benevento F, Golffieri R, Bolondi L. Adherence to AASLD guidelines for the treatment of hepatocellular carcinoma in clinical practice: experience of the Bologna Liver Oncology Group. *Dig Liver Dis* 2014; 46: 549-555 [PMID: 24630947 DOI: 10.1016/j.dld.2014.02.012]

Kim KM, Sinn DH, Jung SH, Gwak GY, Paik YH, Choi MS, Lee JH, Koh KC, Paik SW. The recommended treatment algorithms of the BCLC and HKLC staging systems: does following these always improve survival rates for HCC patients? *Liver Int* 2016; 36: 1490-1497 [PMID: 26936471 DOI: 10.1111/liv.13107]

Wallace MC, Huang Y, Preen DB, Garas G, Adams LA, MacQuillan G, Tibballs J, Ferguson J, Samuelson S, Jeffrey GP. HKLC Triages More Hepatocellular Carcinoma Patients to Curative Therapies Compared to BCLC and Is Associated with Better Survival. *Dig Dis Sci* 2017; 62: 2182-2192 [PMID: 28547649 DOI: 10.1007/s10620-017-4622-y]

Guarino M, Tortora R, de Stefano G, Coppola C, Morisco F, Salomone Megna A, Izzo F, Nardone G, Piai G, Adinolfi LE, D’Adamo G, Gaeta GB, Messina V, Francica G, De Girolamo V, Coppola N, Persico M, Di Costanzo GG; Progetto Epatocarcinoma Campania Group. Adherence to Barcelona Clinic Liver Cancer guidelines in field practice: Results of Progetto Epatocarcinoma Campania. *J Gastroenterol Hepatol* 2018; 33: 1123-1130 [PMID: 28994145 DOI: 10.1111/jgh.14013]

Kikuchi L, Chagas AL, Alencar RSSM, Tani C, Diniz MA, D’Albuquerque LAC, Carrilho FJ. Adherence to BCLC recommendations for the treatment of hepatocellular carcinoma: impact on survival according to stage. *Clinics (Sao Paulo)* 2017; 72: 454-460 [PMID: 28954003 DOI: 10.6061/clinics/2017(08)01]

Piñero F, Marciano S, Fernández N, Silva J, Zambelo Y, Cobos F, Zerega A, Riduque E, Miguez C, Amegirálas B, D’Amico C, Gaité L, Coronel M, Bermúdez C, Rosales C, Romero G, McCormack L, Reggiardo V, Colombato L, Gadano A, Rubinstein F, Silva M; Argentinean Association for the Study of Liver Diseases (A.A.E.E.H). Adherence to Barcelona Clinic Liver Cancer therapeutic algorithm for hepatocellular carcinoma in the daily practice: a multicenter cohort study from Argentina. *Eur J Gastroenterol Hepatol* 2018; 30: 376-383 [PMID: 29509606 DOI: 10.1097/MEG.0000000000001049]

Bruix J, Reig M, Sherman M. Evidence-Based Diagnosis, Staging, and Treatment of Patients With Hepatocellular Carcinoma. *Gastroenterology* 2016; 150: 835-853 [PMID: 26795574 DOI: 10.1053/j.gastro.2015.12.041]

Mendizabal M, Silva MO. Developing multicenter consortia in liver disease in Latin America: Challenges and opportunities. *Liver Transpl* 2017; 23: 1210-1215 [PMID: 28590520 DOI: 10.1002/lt.24793]
