Abstract

Nuclear receptors are necessary for uterine invasion of the trophoblast and therefore important for maintaining a viable pregnancy. The aim of this study was to investigate the expression pattern and frequency of LXR, PPARγ and RXRα under physiological circumstances and in spontaneous abortions in endometrial glands and decidual tissue cells. A total of 28 (14 physiologic pregnancies/14 spontaneous abortion) human pregnancies in first trimester were analyzed for expression of the nuclear receptors LXR, RXRα and PPARγ. Expression changes were evaluated by immunohistochemistry in decidual tissue and endometrial glands of the decidua. RXRα expression was up-regulated in the endometrial glands of spontaneous abortion (P<0.015). Similar up regulation of RXRα was found in decidual tissue (P<0.05). LXR and PPARγ expression was unchanged in spontaneous abortion. By Correlation analysis we found a trend to positive correlation of LXR and PPARγ (Spearman correlation coefficient r=0.56, P=0.07) in endometrial glands. In decidual tissue, we found significant negative correlation in the control group, for the combination of RXRα and PPARγ (Spearman correlation coefficient r=-0.913, P=0.03). Our data show that RXRα expression is increased in miscarriage in endometrial glands and correlation analysis showed that negative correlation between RXRα and PPARγ disappears in miscarriage. This shift is supposed responsible for the loss of regular function in trophoblast and embryonic tissue.

Introduction

Miscarriage is a common disorder in pregnancy, affecting 25-50% of all reproductive aged women.1 Immunologic, endocrine and metabolic mechanisms are involved in the success of human pregnancy and disturbances in any of these processes can lead to fetal loss. Established risk factors are chromosomal or endocrine disorders, anatomical malformations or thrombophilia, but in nearly 50% of affected patients, the cause of miscarriage remains unknown.1

Nuclear receptors are key player in maintaining pregnancy. The nuclear retinoïd X receptor (RXR), which is involved in cell proliferation, differentiation and organogenesis,2 is upregulated in extravillous trophoblast in recurrent miscarriages in humans.1 RXR plays a pivotal role in the receptor family, due to its ability to form heterodimers with other nuclear receptors. Heterodimer partners are e.g., peroxisome proliferator-activated receptor (PPAR), thyroid hormone receptor (TR), and liver X receptor (LXR).4-6 Especially the expression of the isoform PPARγ is linked to trophoblast invasion7-9 and downregulation of the isoform RXRα seems to protect against apoptosis in human trophoblasts.1 RXR is a physiological regulator of lipid and cholesterol metabolism and inflammation,10 of trophoblast invasion and maternal-fetal cholesterol transport.11,12 These nuclear receptors are crucially involved in maintaining a viable pregnancy, their role had been clarified especially in human trophoblastic tissue: Toth et al. showed that extravillous trophoblast (EVT) in placenta of miscarriages show a significantly higher expression of RXRα in comparison to EVT in placentas of elective termination of healthy pregnancies.11 Recent studies showed that LXR expression is decreased in miscarriage14 and PPARγ is increased in EVT of abortive tissue.15

The endometrial glands (GE) of the uterus and the EVT form the decidua. The GE is known to be crucial for blastocyst implantation and deciduisation in pregnancy in mice,16 it further provides a nutrient rich environment to support embryonic development until the placenta is functional in humans.17 Unfortunately, there is only limited knowledge about the role of nuclear receptors in miscarriage in endometrial glands and other parts of the decidua and therefore the aim of our study was to investigate the expression pattern of crucial nuclear receptors in different decidual parts, especially in the decidual glands, of regular and disturbed pregnancies.

Materials and Methods

Patient data

We analyzed tissue samples from spontaneous abortions (n=14) and legal termination of pregnancy (n=14) at gestational weeks 7 to 12 were analyzed (Table 1). Tissue samples were obtained by dilatation and evacuation without any prior pharmaceutical induction. In cases of spontaneous abortion, surgery was performed within the first 24 h after diagnosis. All women included in the study had a null medical and family history. History taking was systematic. The aim was to exclude, apart from common disorders, possible impact of clotting disorders and autoimmune diseases, already known as aggravating factors for increased risk for miscarriages. Karyotype analysis excluded chromosomal abnormalities in all cases used for the study. In addition, we ruled out via microbiology analysis possible intrauterine infection (Bacteria and Chlamydia trachomatis). All women had a regular first trimester vaginal swab.

All patients gave signed informed consent allowing analysis of all clinical and laboratory data mentioned in this paper. The Human Investigation Review Board of the Ludwig-Maximilians-University Munich approved the study (Number of approval: 337-06).

Double-immunofluorescence staining

We undertook double-immunofluorescence staining in order to localize the nuclear receptors LXR, RXRα and to identify LXR and RXRα expressing cells in the same placental site. Double-immunofluorescence staining was performed on placentas of physiologic pregnancies and spontaneous miscarriages, both...
groups from the first trimester. Slides were fixed with 5 % formalin in PBS, pH 7.4, for 5 min. Then the slides were blocked with ultra V blocking solution (Lab Vision™, Thermo Fisher Scientific Inc., Waltham, MA, USA) for 15 min. After that, incubation was performed with the primary antibodies anti-LXRα/β rabbit IgG, diluted 1:200 and anti-RXRα mouse IgG (AbD Serotec, Oxford, UK), diluted 1:50, and overnight at 4°C. The secondary antibodies, the Cy-3-labelled goat-anti-rabbit IgG (Dianova GmbH, Hamburg, Germany), diluted 1:500, and the Cy-2-labelled goat-anti-mouse IgG antibody, diluted 1:100, were applied on the slides. Finally, the slides were embedded in DAPI containing mounting buffer (Vector Laboratories, Burlingame, CA, USA). For identification of LXR/RXRα expressing cells, each section was additionally incubated with HLA-G mouse IgG1 (clone MEM-6/9) (AbD Serotec) which was diluted 1:50. For all slides, incubation took place for 1h. Sections were then incubated with the secondary antibodies. Afterwards, the slides were analyzed with a fluorescent Axioskop photomicroscope (Zeiss, Oberkochen, Germany). We took photos with a digital Axiocam camera system (Zeiss).

Immunohistochemistry

Placental tissue was fixed with 5% formalin in PBS, pH 7.4, for 24 h. Afterwards, the samples were embedded in paraffin wax. Next, the tissue slides were put in xylol for 20 min and then incubated in methanol/H2O2 for 20 min. Rehydration of the slides was performed using an alcohol gradient to distilled water. The slides were placed in a pressure cooker which contained sodium citrate (pH=6.0), afterwards we washed the slides in PBS. As blocking solution, slides were incubated with power block (BioGenex, Fremont, CA, USA) for 3 min which was diluted 1:10 in distilled water. The slides were incubated with each primary antibody. The primary antibodies were anti-LXR rabbit IgG polyclonal antibody, which detects both isoforms LXRα and LXRβ (Lifespan Biosciences, Seattle, USA), anti-human RXRα mouse monoclonal IgG2a antibody (1 mg/mL) (clone No. K8508; PPMX, Perseus Proteomics) and anti-PPARγ rabbit polyclonal antibody (Abcam, Cambridge, UK). Anti-LXR (1 mg/mL), diluted 1:200 in power block, which was previously diluted in 1:100 in PBS. Anti-RXRα (1 mg/mL), diluted 1:200 in PBS and anti-PPARγ (0.2 mg/mL), diluted 1:1000 in Dako diluting medium (Dako Scientific, Glostrup, Denmark). Incubation of the sections with the primary antibodies lasted

Table 1. Clinical characteristics of the study population.

Characteristic*	Normal pregnancy (n=14)	Spontaneous abortion (n=14)	P value*
Maternal age	33.0±6.7 (22-41)	31.5±8.8 (19-43)	0.25
Gestational age	9.0±2.0 (7-12)	9.84±1.4 (7-12)	0.95
Gravidity	3.1±2.0 (1-7)	2.2±2.6 (1-9)	0.61
Parity	1.2±1.2 (0-4)	1.2±2.6 (0-8)	0.36

*Mean, standard deviation, range; °Mann-Whitney-U test

Figure 1. A) Analysis of LXR and RXRα co-expression in decidua; LXR expression is shown in red, RXRα expression is visualized in green, synchronized expression of both nuclear receptors is shown (yellow, marked by arrows); in addition, to cells showing co-expression, we also found singular expression of LXR (red) and RXRα (green); some nuclei are negative for both receptors (blue); the identification of cell type positive for either LXR or RXRα in the decidua was achieved with HLA-G double staining; HLA-G is a marker exclusively expressed by extravillous trophoblast cells (EVT). B), HLA-G expression in green and LXR expression in red are shown; the border between decidual stroma cells and the EVT is shown as a discontinuous line; both decidual stroma cells and EVT express LXR. C) HLA-G expression in green and RXRα expression in red are shown; the border between decidual stroma cells and the EVT is shown as a discontinuous line; both decidual stroma cells and EVT express RXRα.
for 16 h at 4°C. The Vectastain Elite Rabbit/Mouse IgG ABC-Kit (Vector Laboratories) was used for visualization. The sections were stained with DAB and counter-stained with hemalum. At the end, sections were dehydrated and cover-slipped with Shandon Consul Mount Medium (Thermo Fisher Scientific). Examination of the slides was performed by two independent observers (RH and AV) using a Leitz Diaplan microscope (Leitz, Wetzlar, Germany). Per slide, ten fields were analyzed with the semiquantitative immunoreactive score (IRS). The IRS score examines the intensity and distribution of antigen expression: It is calculated by multiplying the percentage of positively stained cells (0, no staining, <10% of the cells; 2, 11-50%; 3, 51-80%, 4, >80%) with the cells staining intensity (0, none; 1, weak; 2, moderate; 3, strong).

As positive controls we used breast cancer tissue for PPARγ and RXRα detection and colon tissue for detection of LXR. Negative controls were conducted by replacement of anti-LXR antibody, anti-RXRα antibody or anti-PPARγ antibody and alternative incubation of the slides with mouse respectively rabbit IgG control antibodies (Dako).

Statistics

Data collection and processing as well as analysis of statistical data were performed with SPSS/PC software package, ver. 20 (SPSS GmbH, Munich, Germany). The Mann-Whitney-U test for evaluation of two independent groups. This test is a one-way analysis of variance and analyses two parameters that are independent from each other. Correlation analysis was performed with the non-parametric Spearman’s rank correlation coefficient, which analyses the statistical dependence between two monotonic, non-linear variables. Values with P<0.05 were considered statistically significant.

Results

Double-immuno-fluorescence staining

In this study, decidual tissue in placentas from miscarriages expressed LXR, stained in red and cells expressing RXRα stained in green. Cells expressing neither LXR nor RXRα stained in blue. Triple filter excitation showed expression of LXR and RXRα in the same decidual cells, indicated by yellow staining, identifying cells in the decidua expressing LXR and RXRα together. Therefore, co-expression of LXR and RXRα was demonstrated in decidua of spontaneous miscarriages (Figure 1A) HLA-G was used as antigen that is expressed exclusively in extravillous trophoblast cells. We showed that LXR (Figure 1B) and RXRα (Figure 1C) is expressed in EVT, as well as in decidual stromal cells. These cells are charac-
Characterized by a red dot in the nucleus and do not show any positive green staining as EVT do.

Evaluation of nuclear receptor staining in glandular epithelial tissue

We identified the expression of PPARγ, LXR and RXRα in nuclei/cytoplasm of cells in endometrial glands in regular pregnancy and miscarriage (Figure 2). RXR expression was significantly higher in the endometrial glands of spontaneous abortion (Figure 2A) compared to normal pregnancy (Figure 2B, IRS 3 versus 1, P<0.015). Expression of PPARγ was unchanged in spontaneous miscarriage (Figure 2D) compared to normal control glandular epithelial tissue (Figure 2E; PPAR IRS 1 versus 1, P=0.69). The expression of LXR was significantly not changed in spontaneous miscarriage (Figure 2G) compared to normal control glandular tissue (Figure 2H; LXR IRS 3 versus 2, P=0.56). A summary of the staining results in Box Plots is given in Figure 2 C,F,I for RXRα, PPARγ, LXR respectively.

Evaluation of nuclear receptor staining in decidual tissue

We identified the expression of PPARγ, LXR and RXRα in nuclei/cytoplasm of cells in decidual tissue of normal pregnancy and miscarriage (Figure 3). The number of RXR expressing cells was significantly higher in the decidual tissue of spontaneous abortion (Figure 3A) compared to normal pregnancy (Figure 3B, IRS 3 versus 2, P<0.05). Expression of PPARγ was unchanged in spontaneous miscarriage (Figure 3D) compared to normal control decidual tissue (Figure 3E; PPAR IRS 1 versus 1, P=0.85). The expression of LXR was not significantly changed in spontaneous miscarriage (Figure 3G) compared to normal control decidual tissue (Figure 3H; LXR IRS 2 versus 2, P=0.56). A summary of the staining results in Box Plots is given in Figure 3 C,F,I for RXRα, PPARγ, LXR respectively. A summary of all staining results is presented in Table 2.

Correlation analysis

To evaluate the co-expression of nuclear receptor in different parts of the decidua, we performed correlation analysis. In the endometrial glands of physiologic pregnancy, we found a trend to positive correlation for LXR and PPARγ (Spearman correlation coefficient r=0.56; P=0.07). In miscarriage, we did not detect any correlation of nuclear receptors identified in endometrial glands.

Figure 3. Immunohistochemical pictures of nuclear expression in decidual tissue: the number of RXRα expressing decidual stromal cells of spontaneous abortion (A) is significantly increased in comparison to the number of RXRα expressing cells in the decidua of control placentas (B). The expression of PPARγ (D,E) and LXR (G,H) remained unchanged in spontaneous miscarriage Box plots representing the semiquantitative analysis of expression of the different nuclear receptors (C, RXRα; F, PPARγ; I, LXR) in decidual tissue of spontaneous abortion and control placentas derived immunohistochemically. The boxes display the range between the 25th and 75th percentile and the black horizontal line indicates the median. The bars represent the 5th and 95th percentiles. Circles indicate values, which are more than 1.5 times the box length. The y-axis represents the IRS score.
We further evaluated the correlation of nuclear receptor changes comparing decidual cells in miscarriage and normal pregnancy. In decidual cells, we found significant negative correlation in the control group, for the combination of RXRα and PPARγ (Spearman correlation coefficient $r = -0.913$, $P = 0.03$). This correlation disappeared in spontaneous miscarriage.

Discussion

Irrespective of increasing knowledge for early pregnancy loss, a significant proportion of miscarriages still happen for unknown reasons. Changes in nuclear receptors of abortive EVT had been recently identified as underlying causes. In the present work we evaluated expression changes of nuclear receptors in endometrial glands of spontaneous abortion. We found a strong up-regulation of RXRα in endometrial glands of spontaneous miscarriage, similarly as it is already known in trophoblastic tissue of abortions. A likewise trend was identified for decidual tissue cells. Expression of PPARγ and LXR was unchanged in endometrial glands of miscarriage: Expression changes of these receptors are restricted to trophoblasts. Furthermore, we demonstrated interesting new insights in receptor expression correlation in different parts of the decidua; in endometrial glands of physiologic pregnancy, we found a trend to positive correlation for LXR and PPARγ.

Here we can speculate that LXR and PPARγ are upregulated simultaneously in regular GE. The loss of physiologically nuclear receptors is responsible for the deficit in regular function in trophoblast and embryonic tissue.

Table 2. Summary of staining results.

	PPARγ	Decidual	LXR	Decidual	RXRα	Decidual	Glandular	RXRα	Glandular
Mean	0.10	1.80	2.17	0.91	0.94	0.85	1.24	2.31	2.31
Mean (control)	0.85	2.07	1.11	0.94	0.94	1.44	2.31	2.31	2.31

| | Mean (miscarriage) | 1.27 | 1.80 | 0.91 | 1.43 | 2.07 | 3.71 | 1.16 | 0.92 |

To conclude, our data show that RXRα expression is increased in miscarriage in endometrial glands and correlation analysis showed that increased LXR and RXRα expression takes place in miscarriage, whereas LXR and PPARγ are upregulated simultaneously in regular GE. The loss of physiologically nuclear receptors correlation is supposable responsible for the deficit in regular function in trophoblast and embryonic tissue.

References

1. Regan L, Rai R. Epidemiology and the medical causes of miscarriage. Baillieres Best Pract Res Clin Obstet Gynaecol 2000;14:839-54.
2. Szanto A, Narkar V, Shen Q, Uray IP, Davies PJ, Nagy L. Retinoid X receptors: exploring their (patho)physiological functions. Cell Death Differ 2004;11:S126-43.
3. Pestka A, Toth B, Kuhn C, Hofmann S, Wiest I, Wypior G, et al. Retinoid X receptor alpha and retinoids are key regulators in apoptosis of trophoblasts of patients with recurrent miscarriages. J Mol Endocrinol 2011;47:145-56.
4. Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell 1995;83:841-50.
5. Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 1995;9:1033-45.
6. Zhang XK, Pfahl M. Hetero- and homodimers and orphan receptors. Cell 1995;83:841-50.
7. Zhang XK, Pfahl M. Hetero- and homodimers in thyroid hormone and vitamin A action. Receptor 1993;3:183-91.
8. Toth B, Hornung D, Scholz C, Djalali S, Friese K, Jeschke U. Peroxisome proliferator-activated receptors: new players in the field of reproduction. Am J Reprod Immunol 2007;58:289-310.
9. Tarrade A, Schoonjans K, Pavan L, Auwerx J, Rothet-Egly C, Evin-Brion D, et al. PPARgamma/RXRalpha heterodimers control human trophoblast invasion. J Clin Endocrinol Metab 2001;86:5017-24.
10. Hutter S, Knab J, Andergassen U, Jeschke...
U. The role of PPARs in placental immunology: a systematic review of the literature. PPAR Res 2013;2013:970276.

10. Jakobsson T, Treuter E, Gustafsson JA, Steffensen KR. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci 2012;33:394-404.

11. Beltowski J, Semczuk A. Liver X receptor (LXR) and the reproductive system—a potential novel target for therapeutic intervention. Pharmacol Rep 2010;62:15-27.

12. Plosch T, van Straten EM, Kuipers F. Cholesterol transport by the placenta: placental liver X receptor activity as a modulator of fetal cholesterol metabolism? Placenta 2007;28:604-10.

13. Toth B, Bastug M, Scholz C, Arch P, Schulze S, Kunze S, et al. Leptin and peroxisome proliferator-activated receptors: impact on normal and disturbed first trimester human pregnancy. Histol Histopathol 2008;23:1465-75.

14. Knabl J, Pestika A, Hutttenbrenner R, Plosch T, Ensenauer R, Welbergen L, et al. The liver x receptor in correlation with other nuclear receptors in spontaneous and recurrent abortions. PPAR Res 2013;2013:575604.

15. Toth B, Bastug M, Mylonas I, Scholz C, Makovitzky J, Kunze S, et al. Peroxisome proliferator-activated receptor-gamma in normal human pregnancy and miscarriage. Acta Histochem 2009;111:372-8.

16. Filant J, Spencer TE. Endometrial glands are essential for blastocyst implantation and decidualization in the mouse uterus. Biol Reprod. 2013;88:93.

17. Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E. Uterine glands provide histiotropic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002;87:2954-9.

18. Rai R, Regan L. Recurrent miscarriage. Lancet. 2006;368:601-11.

19. Filant J, Zhou H, Spencer TE. Progesterone inhibits uterine gland development in the neonatal mouse uterus. Biol Reprod. 2012;86:146, 1-9.

20. Weedon-Fekjaer MS, Duttaroy AK, Nebb HI. Liver X receptors mediate inhibition of hCG secretion in a human placental trophoblast cell line. Placenta 2005;26:721-8.

21. Castrillo A, Joseph SB, Marathe C, Mangelsdorf DJ, Tontonoz P. Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J Biol Chem 2003;278:10443-9.

22. Zhao C, Dahman-Wright K. Liver X receptor in cholesterol metabolism. J Endocrinol 2010;204:233-40.

23. Oosterveer MH, Greffhorst A, Groen AK, Kuipers F. The liver X receptor: control of cellular lipid homeostasis and beyond. Implications for drug design. Progr Lipid Res 2010;49:343-52.

24. Pavan L, Hermouet A, Tsatsaris V, Theron P, Sawamura T, Evain-Briot D, et al. Lipids from oxidized low-density lipoprotein modulate human trophoblast invasion: involvement of nuclear liver X receptors. Endocrinology 2004;145:4383-91.

25. Ma JJ, Han BC, Yang Y, Peng JP. Retinoic acid synthesis and metabolism are concurrent in the mouse uterus during peri-implantation. Cell Tissue Res 2012;350:525-37.

26. Wieser F, Waite L, Depoix C, Taylor RN. PPAR Action in Human Placental Development and Pregnancy and Its Complications. PPAR Res 2008;2008:527048.

27. Duttaroy AK. Transport of fatty acids across the human placenta: a review. Progr Lipid Res 2009;48:52-61.

28. Fournier T, Handschuh K, Tsatsaris V, Guibourdenche J, Evain-Briot D. Role of nuclear receptors and their ligands in human trophoblast invasion. J Reprod Immunol 2008;77:161-70.

29. Fournier T, Handschuh K, Tsatsaris V, Evain-Briot D. Involvement of PPARgamma in human trophoblast invasion. Placenta 2007;28:S76-S81.

30. Schaiff WT, Barak Y, Sadowsky Y. The pleiotropic function of PPAR gamma in the placenta. Mol Cell Endocrinol 2006;249:10-5.

31. Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 2006;46:451-80.