Nanoparticle-Based Strategies to Combat COVID-19

Riddhiman Medhi, Pannaree Srinoi, Nhat Ngo, Hung-Vu Tran, and T. Randall Lee*

ABSTRACT: Coronavirus disease 2019 (COVID-19) is the worst pandemic disease of the current millennium. This disease is caused by the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first exhibited human-to-human transmission in December 2019 and has infected millions of people within months across 213 different countries. Its ability to be transmitted by asymptomatic carriers has put a massive strain on the currently available testing resources. Currently, there are no clinically proven therapeutic methods that clearly inhibit the effects of this virus, and COVID-19 vaccines are still in the development phase. Strategies need to be explored to expand testing capacities, to develop effective therapeutics, and to develop safe vaccines that provide lasting immunity. Nanoparticles (NPs) have been widely used in many medical applications, such as biosensing, drug delivery, imaging, and antimicrobial treatment. SARS-CoV-2 is an enveloped virus with particle-like characteristics and a diameter of 60–140 nm. Synthetic NPs can closely mimic the virus and interact strongly with its proteins due to their morphological similarities. Hence, NP-based strategies for tackling this virus have immense potential. NPs have been previously found to be effective tools against many viruses, especially against those from the Coronaviridae family. This Review outlines the role of NPs in diagnostics, therapeutics, and vaccination for the other two epidemic coronaviruses, the 2003 severe acute respiratory syndrome (SARS) virus and the 2012 Middle East respiratory syndrome (MERS) virus. We also highlight nanomaterial-based approaches to address other coronaviruses, such as human coronaviruses (HCoVs); feline coronavirus (FCoV); avian coronavirus infectious bronchitis virus (IBV); coronavirus models, such as porcine epidemic diarrhea virus (PEDV), porcine reproductive and respiratory syndrome virus (PRRSV), and transmissible gastroenteritis virus (TGEV); and other viruses that share similarities with SARS-CoV-2. This Review combines the salient principles from previous antiviral studies with recent research conducted on SARS-CoV-2 to outline NP-based strategies that can be used to combat COVID-19 and similar pandemics in the future.

KEYWORDS: COVID-19, SARS-CoV-2, coronavirus, nanoparticles, diagnostics, drugs, vaccines, antiviral therapy

1. INTRODUCTION

A novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused an outbreak of the pulmonary disease called coronavirus disease 2019 (COVID-19), starting in December 2019 in the city of Wuhan in China.1-3 The primary symptoms of COVID-19 include fever, severe respiratory illness, pneumonia, and dyspnea.4-5 Since the initial outbreak, efficient human-to-human transmission has led to exponential growth of the virus, infecting millions of people.1,4 The World Health Organization (WHO) declared a Public Health Emergency of International Concern (PHEIC) on 30 January 2020 and declared the outbreak a pandemic on 11 March 2020.5,6 At the time of publication, SARS-CoV-2 has infected tens of millions of people across the globe, leading to more than 800,000 deaths worldwide.

The fight against a viral pandemic needs multi-pronged scientific approaches. The first requirement is the diagnostic detection of the virus. The development of fast and effective testing methods enables contact tracing and isolation of infected people, slowing the spread of the virus. Particularly with SARS-CoV-2, which spreads quickly through asymptomatic carriers,5 large-scale testing is required to obtain a complete picture of viral spread. The testing methods must be accurate, suitable for mass production, inexpensive, and easy to deploy and use. Second, there is a need for therapeutic interventions that can effectively cure or reduce the effects of the virus. Therapeutics in the form of drugs and treatment interventions that can effectively cure or reduce the effects of the virus. Therapeutics in the form of drugs and treatment strategies are essential to reduce the morbidity and mortality caused by the virus. Third, vaccines must be developed to help create antibodies, leading to eventual herd immunity. Vaccination has been able to eradicate various epidemic diseases, including smallpox, polio, and tuberculosis, in many countries.6 However, the development of vaccines against most viral diseases has proven to be challenging. Researchers are yet to develop a vaccine for human immunodeficiency virus
HIV), which has caused over 40 million deaths to date. Similarly, respiratory viral diseases (e.g., influenza) infect 3–5 million people and cause 290 000–650 000 deaths annually. The 2003 SARS outbreak, which infected ∼8300 people with a mortality rate of ∼10%, eventually subsided in the summer, but there were no vaccines found at that time. In 2012, the Middle East respiratory syndrome (MERS) virus affected at least 27 countries with a very high mortality rate of 35%. Since then, much progress has been made in the field of vaccination against coronaviruses, the principles of which apply to SARS-CoV-2 as well. SARS-CoV-2 exhibits ∼80 and 50% similarity with the genomes of SARS-CoV and MERS-CoV, respectively. All coronaviruses are zoonotic viruses, and similar to the 2003 SARS-CoV, SARS-CoV-2 also has a zoonotic origin, having emerged from bats. SARS-CoV-2 has approximately 96% similarity to the bat coronavirus BatCoV RaTG13.

SARS-CoV-2, a positive-sense single-stranded ribonucleic acid ((+)ssRNA) virus from the Coronaviridae family, is covered by an envelope with protein spikes. As illustrated in Figure 1a, the four structural proteins of SARS-CoV-2 are spike surface glycoprotein (S), small envelope protein (E), matrix protein (M), and nucleocapsid protein (N). Official electron microscopy images released by the U.S. National Institute of Allergy and Infectious Diseases (NIAID), shown in Figures 1b–e, show the morphology and structure of SARS-CoV-2. SARS-CoV-2 particles have a diameter ranging from 60 to 140 nm. Due to the particulate nature, morphology, and size domain of SARS-CoV-2, nanoparticle (NP)-based strategies present a powerful approach for tackling this virus. Recently, NPs have been widely used in many medical applications, such as biosensing, drug delivery, imaging, and antimicrobial treatment. Various NPs have been shown to be effective tools for the detection and inhibition of and vaccination against coronaviruses. This Review describes how we can build on the NP-based strategies used against viruses from the Coronaviridae family to develop tests, therapeutics, and vaccines to fight SARS-CoV-2.

2. NANOPARTICLES FOR DIAGNOSTICS

Most viral RNA detection methods are based on the reverse transcription polymerase chain reaction (RT-PCR) due to its simplicity, high sensitivity, and high specificity based on the exponential increase in RNA produced during the operation. Although RT-PCR methods are widely known as the standard methods for coronavirus detection, there are some limitations that need to be addressed, including low extraction efficiency, the use of time-consuming processes, and false positives caused by contamination. Regarding the improvement of virus detection efficiency, due to their high surface area and ultrasmall size, NPs have been applied not only in RT-PCR methods but also other virus detection methods, such as an enzyme-linked immunosorbent assay (ELISA) and reverse transcription loop-mediated isothermal amplification (RT-LAMP). Various kinds of NPs have been studied in the context of virus detection, including metal NPs, carbon nanotubes, silica NPs, quantum dots (QDs), and polymeric NPs. Among them, metal NPs, metal nanoislands (NIs), magnetic NPs (MNP), and QDs have been applied to coronavirus detection.
NPs	conjugate	size (nm)	principles	detection techniques	virus	target molecules	detection limit [time]	key takeaways for COVID-19
AuNPs	citrate ion	13	LSPR	colorimetric sensor	SARS	viral RNA	4.3 nM [2 min]	aggregation of AuNPs by formation of dsDNA
	citrate ion	19	LSPR	colorimetric sensor	MERS	viral RNA	1 pmol/μL [10 min]	preventing aggregation of AuNPs by thiol–dsDNA
	streptavidin	-	LSPR and RT-LAMP	colorimetric sensor on strip	MERS	viral RNA	1 × 10^4 copies/μL [35 min]	doubly labeled viral RNA amplicons binding to both AuNPs and antibody-coated detection strip
ASOs	-	50	electronic	electrochemical immuno sensor	SARS-CoV-2	N gene	0.18 ng/μL [10 min]	aggregation of AuNPs induced by viral N-gene
					HCoV, MERS	virus	0.4 pg/mL, 1.0 pg/mL [20 min]	viral antigen immobilized to AuNP surface on electrodes
AuNIs	-	40	PPT and PCR	gel electrophoresis	MERS	viral cDNA	0.1 ng/μL [-]	ultrafast PCR for rapid cDNA amplification
	-		LSPR and PPT	LSPR sensor	SARS-CoV-2	viral RNA	0.22 pM [-]	high selectivity to target virus, using cDNA receptors
AgNPs	citrate ion	19	LSPR	colorimetric sensor	MERS, MTB, HPV	viral cDNA	1.53 nM, 1.27 nM, 1.03 nM [-]	cDNAs preventing aggregation of AgNPs induced by acpcPNA
SMNPs	silica and oligonucleotide sequences	-	magnetic and PCR	fluorescent sensor	SARS	viral cDNA	2.0 × 10^3 copies [6 h]	capturing and enriching viral target cDNA based on probe-functionalized MNPs
MNPs	PC	10	magnetic and RT-PCR	-	SARS-CoV-2	viral RNA	10 copies [30 min]	capturing and enriching viral target RNA based on probe-functionalized MNPs
QD-605	RNA aptamer	6−7 (QDs), 50 (AuNPs)	optical	fluorescent sensor	SARS	N protein	0.1 pg/mL [1 h]	high sensitivity of immobilized target viral N protein
CdTe QDs and AuNPs	viral antibodies	2−3 (QDs), 50 (MPNPs)	optical, and LSPR and magnetic	optical sensor	IBV	virus	79 EID/50 μL [-]	combination of plasmon–exciton interaction with magnetic separation

Abbreviations: LSPR: localized surface plasmon resonance, dsDNA: double-stranded DNA, ASOs: antisense oligonucleotides, cDNA: complementary DNA, acpcPNA: pyrrolidinyl peptide nucleic acid, SMNPs: silica-coated superparamagnetic nanoparticles, PPT: plasmonic photothermal, PC: poly(amino ester) with carboxyl groups, MPNPs: magnetoplasmonic nanoparticles.
functionalized probes showed the ability to stabilize AuNPs. The approach, the formation of long dsDNA molecules from aggregate, is important for the use of these NPs in diagnostic detection of viruses due to their unique optical properties, stability, and biocompatible properties. Due to the LSPR effect, the aggregation of AuNPs causes a redshift in the LSPR peak position, resulting in an obvious change in the solution color from red to blue, which can be observed with the naked eye. This phenomenon is caused by the plasmonic coupling among the neighboring NPs when the colloidal NPs aggregate.

The applications of AuNPs in virus detection have been reported. AuNPs are also the most common metal NPs that have been used for coronavirus diagnostics. The use of AuNPs in colorimetric detection of SARS-CoV has been reported. In this study, the difference in the electrostatic properties of single- and double-stranded DNA (ssDNA and dsDNA) was the foundation of the method. Specifically, ssDNA or ssRNA could interact with citrate ions on the surface of AuNPs and stabilize the particles even when salt was added into the solution, while the presence of dsDNA caused aggregation of AuNPs under positive electrolyte conditions. AuNPs can be further functionalized with biomolecules to modify their surface properties. For example, colloidal AuNPs conjugated with streptavidin were used for an RT-LAMP combined with a vertical flow visualization strip (RT-LAMP-VF) assay for MERS-CoV nucleic acid detection. In this study, viral RNA was amplified by RT-LAMP, followed by a labeling process to form biotin/fluorescein isothiocyanate (FITC)-labeled amplicons. These amplicons can bind to streptavidin-functionalized AuNPs to generate a complex via biotin–streptavidin interactions. This complex showed color formation when captured by an anti-FITC antibody coated on the detection strip. The formation of the complex on the strip was visible to the naked eye within 35 min. The detection limit of this technique is equivalent to 10 copies/μL of MERS-CoV RNA. Moreover, the method showed high specificity for MERS-CoV without cross-reactivity with various other CoVs, such as HCoV-HKU1, HCoV-HKU4, SARS-CoV, HCoV-229E, and HCoV-OC43. Recently, designed thiol-modified antisense oligonucleotides (ASOs) were functionalized on AuNPs for colorimetric detection of the N gene (nucleocapsid phosphoprotein) of SARS-CoV-2. Specifically, in the presence of the N gene of SARS-CoV-2, the thiol-modified ASO-capped AuNPs agglomerated, which caused a change in the color of the ASO-capped AuNP colloidal solution.

Figure 2. Colorimetric detection of RNAs based on a disulfide-induced self-assembly process. (a) Procedures for preventing salt-induced aggregation of AuNPs by disulfide-induced self-assembly of long thiol-modified dsDNAs in the presence of targets. (b) Salt-induced aggregation of AuNPs in the absence of targets. Adapted with permission from reference 28. Copyright 2019 American Chemical Society.
Moreover, ribonuclease H (RNaseH) was added to the solution to cause visually detectable precipitation of agglomerated ASO-capped AuNPs. This method yielded the result within 10 min after the RNA isolation process. Additionally, the detection limit of this method was 0.18 ng/μL.

In addition to plasmon-based virus detection, AuNPs have been applied to electrochemical detection of coronaviruses. Laylah and Eissa reported the use of AuNPs to modify carbon array electrodes in electrochemical biosensors for both MERS-CoV and HCoV detection. In this method, a viral antigen (recombinant spike protein S1 of MERS-CoV or Oc43 N of HCoV) is immobilized to the surface of AuNPs on the working electrodes. When a fixed amount of the corresponding viral antibody is added to the sample, the antibody binds to the immobilized antigen, decreasing the square wave voltammetry (SWV) reduction peak current. In the presence of virus, the change in current is different due to competition between the virus and immobilized antigen for binding to the antibody. Hence, the virus is detected based on the measured change in current in competitive immunoassays. The deposition of gold improves the electron transfer rate and increases the surface area of the electrode, resulting in high sensitivity of virus detection. Specifically, this detection method was able to detect both MERS-CoV and HCoV with detection limits of 1.0 and 0.4 pg/mL, respectively. The detection process yielded results within 20 min. The method can be used for artificial nasal samples as well as to detect MERS-CoV and HCoV simultaneously.

Recently, Lee et al. developed a method for the detection of MERS-CoV based on nanoplasmonic on-chip PCR. In this study, nanoplasmonic pillar arrays (NPAs) constructed from gold NPs (AuNPs) deposited on the top and side walls of glass nanopillar arrays were used to enhance the light absorption efficiency of the detection chip. Hence, ultrafast PCR thermal cycling was achieved via enhanced plasmonic photothermal heating generated via excitation of surface electrons of AuNPs by a white light-emitting diode (LED). When the LED was off, efficient heat diffusion through the NPAs allowed expeditious cooling of the PCR mixture. Consequently, this method required only 3 min and 30 s for rapid amplification of complementary DNA (cDNA) of MERS-CoV at a concentration of 0.1 ng/μL. However, the method could yield results very rapidly due to the use of gel electrophoresis for visualization of the amplicons of target viral cDNAs after the PCR. Interestingly, a faster detection technique was utilized by Wang and co-workers in a recently reported dual-function AuNI based on the reaction with thiol–cDNA ligands, (b) the hybridization of two complementary strands, and (c) the hybridization of two partially matched sequences. Adapted with permission from reference 46.

Figure 3. Schematic illustrations of (a) cDNA-receptor-functionalized AuNI based on the reaction with thiol–cDNA ligands, (b) the hybridization of two complementary strands, and (c) the hybridization of two partially matched sequences. Adapted with permission from reference 46. Copyright 2020 American Chemical Society.

high sensitivity toward SARS-CoV-2 sequences at a concentration of 0.22 pM.

Although AuNPs are the most common metal NPs used in virus detection, several studies have suggested the use of other metal NPs. Silver NPs (AgNPs) have been used in paper-based analytical devices (PADs) for MERS-CoV detection. The device can also be applied in the diagnosis of other bacteria and viruses, such as Mycobacterium tuberculosis (MTB) and human papillomavirus (HPV). In this study, the authors used pyrrolidinyl peptide nucleic acid (acpcPNA)-induced aggregation of AgNPs to design a colorimetric assay. Specifically, the cationic acpcPNA probes can bind to negative citrate ions on the surface of AgNPs, inducing NP aggregation together with a change in color. On the other hand, in the presence of viral target cDNAs, acpcPNAs preferred to interact with the target cDNAs to form dsDNAs and stay separate from AgNPs in the solution, leading to no significant color change. The paper-based device exhibited high sensitivity, with detection limits of 1.53, 1.27, and 1.03 nM for MERS-CoV, MTB, and HPV, respectively.

2.2. Magnetic Nanoparticles. Magnetic NPs (MNPs) play an important role in the separation of viral RNA from solution before the diagnosis process. The most common MNPs that have drawn attention in the biological application field are iron oxide NPs due to their high magnetic efficiency and simple synthesis approaches. Regarding coronavirus detection, Gong et al. used silica-coated superparamagnetic NPs (SMNPs) in PCR-based assays to improve the selectivity of the target cDNA of SARS-CoV in the separation process. Specifically, silica-coated SMNPs were conjugated with oligonucleotide probes for capturing viral target cDNAs to produce magnetic-conjugated dsDNA complexes. The magnetic-conjugated dsDNA was separated from other components by using simple magnetic separation before dehybridization to form enriched cDNAs. The viral enriched cDNA was amplified through PCR followed by isolation via another magnetic separation step. The amplified viral target cDNA was detected by a sandwich hybridization assay with silica-coated fluorescent NP (SFNP)-based signaling probes. The technique can detect the target cDNA with a detection limit of 2.0 × 10^3 copies within 6 h.

Recently, MNPs have been applied to SARS-CoV-2 detection. Several studies have reported the use of iron oxide
coated with silica for RNA extraction from patient samples. Furthermore, other functional groups have been reported to have strong affinity for viral RNAs. Zhou, Yu, and co-workers reported a viral RNA extraction method using poly(amino ester) with carboxyl group (PC)-coated MNPs (pcMNPs). SARS-CoV-2 RNA was captured and enriched by pcMNPs to produce pcMNP−RNA complexes. Due to the magnetic property of pcMNPs, the pcMNP−RNA complexes were easily extracted from the solution by applying an external magnetic force. Interestingly, the pcMNP−RNA complexes can be immediately used in the following RT-PCR process for viral RNA amplification without the use of an elution step. The pcMNP-based extraction method exhibited high purity and high productivity within 30 min. In addition, the pcMNPs showed good binding with viral RNA, resulting in 10-copy sensitivity using the RT-PCR-based detection technique.

2.3. Quantum Dots. Due to their unique optical and electrical properties, QDs have been applied in the detection of several viruses. For coronavirus detection, a QD-conjugated RNA aptamer specific to the SARS-CoV N protein has been reported to have high sensitivity in recognizing immobilized viral protein on designed chips. The authors used commercially available QD-605 with an emission maximum at 605 nm to obtain an outstanding detection limit for the SARS-CoV N protein at 0.1 pg/mL by detecting the fluorescent emission intensity measured by confocal laser scanning microscopy.

The nanohybrid structures of QDs and other NPs have also been reported for coronavirus detection. Because of their extraordinary plasmonic properties, star-shaped chiral plasmonic AuNPs were combined with CdTe QDs to construct a chiral optical biosensor. Two influenza virus antibodies named anti-HA and anti-NA were immobilized on the surfaces of the star-shaped gold NPs and CdTe QDs, respectively. When a recombinant protein of influenza A (H5N1) was present in the same solution containing both anti-HA-conjugated AuNPs and anti-NA-conjugated QDs, AuNP−QD nanohybrids were formed through antigen−antibody interactions (immunolinking) of the recombinant protein with the two antibodies immobilized on the surfaces of the NPs and QDs. The plasmon−exciton interaction in the newly created AuNP−QD nanohybrids significantly enhanced the chiral optical response of the solution. Consequently, the viral recombinant protein was detected based on the measured circular dichroism response of the solution. In this technique, star-shaped AuNPs were chosen due to their broad plasmonic peak at 590 nm that maximizes the optical coupling and overlaps with the QD excitonic wavelength. The method showed sensitivity at 1 pg/mL for H5N1 detection and was able to detect several other viruses in blood samples, such as avian influenza A (H4N6) virus, fowl adenovirus, and coronavirus. In 2018, a similar approach was used by the same research group to develop a magnetoplasmonic−fluorescent biosensor based on zirconium QDs (ZrQDs) and Fe3O4@Au core−shell magnetoplasmonic NPs (MPNPs). As shown in Figure 4, two types of particles were functionalized with viral antibodies. The viral antibody-functionalized NPs stayed apart from each other in the solution. After the target virus was added to the system, the conjugated ZrQDs and MPNPs formed magnetoplasmonic−fluorescent nanohybrid structures via immunolinking. Hence, the detection of the target virus was based on the photoluminescence (PL) properties of the ZrQD−Fe3O4@Au MPNP nanohybrids after simple magnetic separation. The nanohybrid structures also showed a change in photoluminescence emission intensity with a change in virus concentration in the system. The method can selectively detect the presence of infectious bronchitis virus (IBV) at a concentration of 79.15 EID/50 μL in blood medium.
Viral infections start with the binding of viral particles to receptors on the host cells, followed by the entry of the virus into the cells. In the case of SARS-CoV-2, the spike S glycoprotein is responsible for cell binding and entry.82,83 As illustrated in Figure 5a, the S protein of SARS-CoV-2 can be divided into two subunits: the S1 subunit is responsible for attachment, while the S2 subunit mediates membrane fusion and entry into the cell.82,84 The S1 subunit consists of an N-terminal domain (NTD) and a C-domain; the S2 subunit consists of a potential fusion peptide (pFP), heptad repeats N and C (HR-N, HR-C), and a transmembrane domain (TM). The S1 protein has been shown to bind specifically to the human angiotensin-converting enzyme 2 (ACE2) receptor on the surface of human cells.13,82 Membrane fusion of the attached virus mostly occurs via endocytosis.13,83 Therefore, blocking the mechanism by which the virus binds to the ACE2 receptor or blocking viral endocytosis is a potent strategy for drug development and treatment. One of the drugs being widely considered for this purpose is chloroquine. Chloroquine has been shown to inhibit endocytosis of NPs in general; since SARS-CoV-2 is morphologically similar to NPs, chloroquine can block the endocytosis of SARS-CoV-2 virus particles as well, as illustrated in Figure 5b.85 The proposed mechanism involves chloroquine-induced suppression of PICALM, which prevents endocytosis-mediated uptake of NPs, including SARS-CoV-2. Although chloroquine blocks NP endocytosis into the cell, the efficacy of chloroquine depends on its delivery and cellular uptake, which can be greatly aided by encapsulating the molecule inside polymeric NPs. The most commonly used NPs for encapsulating chloroquine are poly(lactic acid) (PLA) polymeric NPs.86

In addition to facilitating drug delivery, NPs can also directly interfere with receptor binding and cell entry of viruses. Ting et al. demonstrated that ~1.6 nm cationic carbon dots (CDs) synthesized from curcumin (CCM-CDs) can block viral entry of porcine epidemic diarrhea virus (PEDV), a coronavirus model.76 The inhibition efficiency was over 50% at 125 μg/mL, blocking viral entry at an early stage (see Figure 6a). The blocking is most likely caused by electrostatic interactions between the cationic CDs and the negatively charged PEDV, which neutralizes the effective charge on the virus particles, leading to virus aggregation, as seen from the zeta potential data in Figure 6b. The CDs also suppressed the accumulation of reactive oxygen species (ROS), reducing cell apoptosis. Curcumin can also act as a reducing and capping agent in the synthesis of curcumin-modified AgNPs (cAgNPs), which have also been shown to inhibit cell entry of respiratory viruses.60 For this purpose, smaller cAgNPs with large surface areas are seen to be more effective than larger NPs. Interestingly, smaller cAgNPs are also less cytotoxic than larger NPs.60

3.1. Nanoparticles That Block Cell Attachment and Viral Entry. Viral infections start with the binding of viral particles to receptors on the host cells, followed by the entry of the virus into the cells. In the case of SARS-CoV-2, the spike S glycoprotein is responsible for cell binding and entry.82,83 As illustrated in Figure 5a, the S protein of SARS-CoV-2 can be divided into two subunits: the S1 subunit is responsible for attachment, while the S2 subunit mediates membrane fusion and entry into the cell.82,84 The S1 subunit consists of an N-terminal domain (NTD) and a C-domain; the S2 subunit consists of a potential fusion peptide (pFP), heptad repeats N and C (HR-N, HR-C), and a transmembrane domain (TM). The S1 protein has been shown to bind specifically to the human angiotensin-converting enzyme 2 (ACE2) receptor on the surface of human cells.13,82 Membrane fusion of the attached virus mostly occurs via endocytosis.13,83 Therefore, blocking the mechanism by which the virus binds to the ACE2 receptor or blocking viral endocytosis is a potent strategy for drug development and treatment. One of the drugs being widely considered for this purpose is chloroquine. Chloroquine has been shown to inhibit endocytosis of NPs in general; since SARS-CoV-2 is morphologically similar to NPs, chloroquine can block the endocytosis of SARS-CoV-2 virus particles as well, as illustrated in Figure 5b.85 The proposed mechanism involves chloroquine-induced suppression of PICALM, which prevents endocytosis-mediated uptake of NPs, including SARS-CoV-2. Although chloroquine blocks NP endocytosis into the cell, the efficacy of chloroquine depends on its delivery and cellular uptake, which can be greatly aided by encapsulating the molecule inside polymeric NPs. The most commonly used NPs for encapsulating chloroquine are poly(lactic acid) (PLA) polymeric NPs.86

In addition to facilitating drug delivery, NPs can also directly interfere with receptor binding and cell entry of viruses. Ting et al. demonstrated that ~1.6 nm cationic carbon dots (CDs) synthesized from curcumin (CCM-CDs) can block viral entry of porcine epidemic diarrhea virus (PEDV), a coronavirus model.76 The inhibition efficiency was over 50% at 125 μg/mL, blocking viral entry at an early stage (see Figure 6a). The blocking is most likely caused by electrostatic interactions between the cationic CDs and the negatively charged PEDV, which neutralizes the effective charge on the virus particles, leading to virus aggregation, as seen from the zeta potential data in Figure 6b. The CDs also suppressed the accumulation of reactive oxygen species (ROS), reducing cell apoptosis. Curcumin can also act as a reducing and capping agent in the synthesis of curcumin-modified AgNPs (cAgNPs), which have also been shown to inhibit cell entry of respiratory viruses.60 For this purpose, smaller cAgNPs with large surface areas are seen to be more effective than larger NPs. Interestingly, smaller cAgNPs are also less cytotoxic than larger NPs.60

For this purpose, smaller cAgNPs with large surface areas are seen to be more effective than larger NPs. Interestingly, smaller cAgNPs are also less cytotoxic than larger NPs.60 The driving force behind this process is the same as that for “protein corona” formation; high surface areas of small AgNPs lead to direct interactions with the viral envelope proteins and greater inhibition.60 Graphene QDs have also been found to be effective in interfering with cell binding of HIV,61 while AgNPs coupled with graphene oxide (GO) sheets have been shown to be effective in blocking cell entry of feline coronavirus (FCoV) and enveloped viruses.61 Moreover, various surface-functionalyzed AgNPs and AuNPs have also been shown to be effective in blocking cell entry of HIV and herpes simplex virus (HSV).67 The advantage of AuNPs is that they are less cytotoxic than AgNPs.88–90

In addition to virus aggregation, AuNPs can also directly interfere with the cell entry mechanism, as demonstrated by Huang et al.59 Similar to the SARS-CoV-2 S2 subunit shown in Figure 5a, the S2 protein of MERS-CoV contains heptad repeat 1 (HR1), heptad repeat 2 (HR2), and a fusion protein (FP). As illustrated in Figure 7a, after the FP inserts into the cell membrane, HR1 and HR2 bind to form a six-helix bundle (6-HB). The 6-HB pulls together the MERS-CoV envelope and host cell membrane, promoting fusion. Huang et al. identified a peptide, named pregnancy-induced hypertension (PIH), which could mimic the conformation of HR2. Thus, this peptide can interact with HR1 to block the formation of 6-HB, inhibiting the cell fusion process. When PIH was immobilized on the surface of gold nanorods (PIH–AuNRs), a 10-fold higher inhibitory activity was observed that could completely block cell fusion at the optimized concentration (see Figure 7c,d). The PIH–AuNRs also demonstrated excellent biocompatibility (see Figure 7b).

In addition to AuNPs, other NPs have also been shown to be effective at blocking viral entry while maintaining low toxicity. Among synthetic NPs, porous silicon NPs (SiNPs) are especially favored due to their extreme biocompatibility. SiNPs are biodegradable, since they gradually dissolve in water to form nontoxic silicic acid.66 Osiminka et al. showed that SiNPs were able to act as scavengers of free virus particles and prevented them from infecting host cells. Binding of SiNPs with virosomes is universal for different enveloped viruses, making them potential agents against SARS-CoV-2 as well.66 Mesoporous-SiO2 (mSiO2) NPs, when functionalized with various moieties, exhibit the ability to attach themselves to enveloped viruses via hydrophobic/hydrophilic interactions. Strong bonds between the functionalized mSiO2 NPs and the virus disturb the virus’s attachment to host cell receptors and reduce viral entry into the cells.72 Other types of biocompatible NPs known for inhibiting cellular entry of viruses include selenium NPs (SeNPs). Selenium is biocompatible, being present in several selenoproteins that are crucial for biological processes, and exhibits antiviral effects at high concentrations.91 The antiviral activity of SeNPs can be further amplified when these NPs are combined with the antiviral drug Arbidol (ARB), effectively blocking cell entry of influenza virus and reducing cell apoptosis. Cationic chitosan, a nontoxic polysaccharide, has also shown the ability to interact with the ACE2 receptor binding and cell entry mechanisms of porcine epidemic diarrhea virus (PEDV), a coronavirus model.76 The inhibition efficiency was over 50% at 125 μg/mL, blocking viral entry at an early stage (see Figure 6a). The blocking is most likely caused by electrostatic interactions between the cationic CDs and the negatively charged PEDV, which neutralizes the effective charge on the virus particles, leading to virus aggregation, as seen from the zeta potential data in Figure 6b. The CDs also suppressed the accumulation of reactive oxygen species (ROS), reducing cell apoptosis. Curcumin can also act as a reducing and capping agent in the synthesis of curcumin-modified AgNPs (cAgNPs), which have also been shown to inhibit cell entry of respiratory viruses.60
Table 2. Nanoparticles for Therapeutics

NPs	conjugate	size (nm)	cytotoxicity (dose, time)	virus	approach	level of study	key takeaways for COVID-19	ref.
AuNPs	sialic acid	14	99% cell viability	IAV	infection inhibition	in vitro	40% infection reduction	55
AuNPs	MES	4 ± 1	-	IAVs	infection inhibition	in vitro	80% infection reduction	56
AuNPs	MES/MUS-OT	2.5 ± 0.7	noncytotoxic	RSV, VSV, HPV, dengue	viricidal therapy	in vivo/ex vivo	permanent damage of up to 87% virus, no lung damage	57
AuNPs	Porous	154 ± 37	95% cell viability (0.2 mg/mL, 24 h)	H1N1, H3N2, H9N2	infection inhibition	in vitro	96.8% survival rate of infected cell	58
AuNPs	PH peptide + PEG	54:18	no cytotoxicity	MERS	block viral entry	in vivo	PIH~AuNRs are 10-fold better than PIH; inhibit 90% cell fusion, AuNRs improve biostability	59
AgNPs	curcumin	20	cell viability >95% (0.24 nM, 72 h)	RSV	block viral entry	in vitro	cAgNPs directly interfere with virus, curcumin reduces AgNP toxicity	60
AgNPs	graphene oxide	<10	cell viability >90% (1.5625 mg/mL, 24 h)	FCoV	block viral entry	in vitro	graphene oxide becomes effective against enveloped viruses on coupling with AgNPs	61
AgNPs	oseltamivir	3	-	H1N1	infection & apoptosis inhibition	in vitro	90% infected cell viability	63
SiNPs	zanamivir	5 – 50	no cytotoxicity	HIV, RSV	block viral entry	in vitro	effective against enveloped viruses, biodegradable	66
SeNPs	amantadine	82	-	H1N1	infection inhibition	in vitro	73% infected cell viability	67
SeNPs	oseltamivir	100	-	H1N1	infection & apoptosis inhibition	in vitro/ in vivo	81% infected cell viability, lungs protected	69
SiO2 NPs	PEG	18	>90% cell viability (0.2 mg/mL, 24 h)	H1N1	infection inhibition	in vitro	93% infected cell viability	70
SiO2 NPs	GPTMS, APTES, TMPES	354	65% cell viability (0.1 mg/mL, 48 h)	HIV, VSV	infection inhibition	in vitro	50% infection reduction	72
SiO2 NPs	biguanide, polymeric aziridine	150	>80% cell viability (0.2 mg/mL, 5 h)	HSV	viral inactivation	in vitro	50-fold antiviral improvement effect on antiviral conjugates	73
AgS	glutathione	4.1 ± 1.5	>90% cell viability (46 μg/mL, 48 h)	PEDV-CoV	replication inhibition/ immunity activation	in vitro	viral titer reduced 1000 times	74
CDs	R-B(OH)₃₂NH₂	9.2 ± 0.3	noncytotoxic at 100 μg/mL, 24 h	HCoV-229E	block viral entry and viral replication	in vitro	inhibition of cell entry with CDs enhanced by boronic acid	75
CDs	-	1.5	>90% cell viability (125 μg/mL, 48 h)	PEDV- coronavirus model	replication inhibition/ immunity activation	in vitro	80% viral reduction	76
cellulose nanocrystals	tyrosine sulfate	113	>80% cell viability (8.3 mg/mL, 24 h)	PRRSV-CoV model	viral inactivation	in vitro	10-fold viral reduction	77
PLA NPs	chloroquine	<300	Cell viability ≥70% (30 μg/mL, 48 h)	HSV-1	block viral entry	in vitro	slow and targeted release of chloroquine with PLA NPs, which also reduces chloroquine toxicity, PLA is biodegradable	80
3.2. Nanoparticles That Block Viral Replication and Proliferation. For viral infection, therapeutics that inhibit the proliferation speed or infectivity of viruses are of paramount importance. These treatments will keep the virus level in the body low enough for the immune system to respond effectively and in a timely manner as the first line of defense as well as to limit the virus’s capability to resist treatment via genetic mutation. Due to multiple outbreaks, respiratory diseases caused by members of the coronavirus family have received much research attention over the past decade for the development of effective therapies. Various NPs have been investigated as antiviral agents for inhibition of viral proliferation.

The infectivity of the transmissible gastroenteritis virus (TGEV), a member of the coronavirus family, is significantly diminished in the presence of AgNPs and silver nanowires (AgNWs) at concentrations below the toxic level. Silver nanostructures have also been demonstrated to decrease cell apoptosis induced by viral infection. Data have suggested that Ag nanomaterials regulate p38-MAPK-p53 mitochondrial signaling cascades by inhibiting TGEV-induced expression of the P1-p38 protein. This regulation reduces cell apoptosis induced by TGEV infection.

PEDV is a commonly studied model virus of the coronavirus family due to its high similarity to other human-infecting coronaviruses and the economic impact caused by PEDV infection. Han and co-workers reported the suppression of PEDV infection by 3 orders of magnitude via treatment with glutathione-capped Ag2S nanoclusters (Ag2S NCs). The study also pointed out that the mechanisms of inhibition of viral proliferation are based on the suppression of RNA synthesis, as shown in Figure 8. The authors further found that Ag2S NCs activated the generation of interferon (IFN)-stimulating genes (ISGs) and cytokine expression, which further inhibited viral infection.

In addition to members of the coronavirus group, there are various viruses with structures similar to that of SARS-CoV-2 with positive-sense ssRNA genetic material, an envelope of phospholipids, and proteins. Many of these viruses have even been used as models for coronavirus research in recent years, and the efficacy of nanoparticles on these viruses could be relevant to therapy development for SARS-CoV-2. As one of the most heavily studied viruses due to multiple global pandemics in the last 100 years, influenza A viruses with their frequent genetic mutation and increasing resistance to drugs have been the target for various NP-based therapeutic research efforts. A potentially effective therapeutic target of many influenza viruses is hemagglutinin (HA), a highly conserved surface protein possessing six disulfide bonds. Haam and co-workers used porous gold NPs (PoGNPs) to target the HA protein on various influenza viruses based on strong gold−thiol interactions. The results demonstrated significant inhibition of viral infectivity in cells treated with PoGNPs, and the cell viability increased to 96.8%, compared to 33.9% of nontreated cells. The viral inhibition efficacy was confirmed on the H1N1, H3N2, and H9N2 viruses to demonstrate the universal effectiveness of the approach. The biocompatibility of PoGNPs was also evaluated by the WST-1 assay, showing 95% cell viability. Alghrair et al. reported that AgNPs and AuNPs functionalized with FluPep, a peptide that can effectively inhibit influenza A viruses (IAVs), showed greater antiviral
activity than free FluPep. Haag and co-workers used electron microscopy imaging to visually show that AuNPs functionalized with sialic-acid-terminated glycerol dendrons specifically targeted the viral HA protein to effectively inhibit viral proliferation. Moreover, various NPs, such as oseltamivir-functionalized AgNPs, AgNP/chitosan composites, zanamivir-functionalized AgNPs, zanamivir-functionalized SeNPs (through the p38 and JNK signaling pathways), amantadine-functionalized SeNPs (through the ROS-mediated AKT signaling pathways), ribavirin-functionalized SeNPs (via the caspase-3 apoptotic pathway), oseltamivir-functionalized SeNPs, PEGylated-ZnO NPs, and anionic AuNPs, have also been fabricated and investigated for inhibitory effects on and biocompatibility with H1N1, a current seasonal virus that caused two deadly global pandemics in 1918 and 2009.

In addition to influenza viruses, porcine reproductive and respiratory syndrome virus (PRRSV), a model virus often used for coronavirus research, has also been reported to be highly suppressed after exposure to AgNP-modified GO (GO−AgNPs) with 59.2% inhibitory efficiency. GO−AgNP nanocomposite treatment also enhanced the production of IFN-α and ISGs, which can directly inhibit viral proliferation. In another study, Tong et al. reported the synthesis of glycyrrhizic-acid-based CDs (Gly-CDs) and their high inhibitory activity of up to 5 orders of viral titers through multisite inhibition of PRRSV. The multisite viral inhibitory mechanisms of Gly-CDs include inhibition of viral invasion and replication, stimulation of IFN production in cells, and inhibition of viral-infection-induced ROS production, providing a promising alternative for coronavirus infection therapy as
well as PRRSV infection therapy. This work also showed the remarkable ability of Gly-CDs to suppress PEDV and pseudorabies virus (PRV), suggesting a broad antiviral capability compared to previous work. These results on model viruses might serve as guides for research and development on SARS-CoV-2.

The infection caused by Zika virus, a virus with a similar structure to coronaviruses and the cause of a widespread epidemic in South and North America in 2015, was suppressed by benzoxamine-monomer-derived CDs (BZM-CDs). The data from a plaque uniform assay and transmission electron microscopy (TEM) showed that BZM-CDs could reduce viral infectivity via direct interaction with the viruses. The inhibitory ability of BZM-CDs was also demonstrated on Japanese encephalitis and dengue viruses, two other life-threatening viruses that also exhibit structural similarity to coronaviruses, as well as on nonenveloped viruses (e.g., adeno-associated virus (AAV), porcine parvovirus (PPV)), suggesting that the broad-spectrum potential of the NPs should be further investigated for SARS-CoV-2.

Alphaviruses, a genus of RNA viruses with a structure similar to that of coronaviruses, were strongly inhibited in Vero (B) cells by cellulose nanocrystals (CNCs) modified with tyrosine sulfate mimetic ligands, while no observable cytotoxicity in human cells was detected. The incorporation of tyrosine sulfate mimetic ligands on CNCs led to increased viral inhibition compared to incorporation of the control CNCs. This discovery suggests potential applications of CNCs for the treatment of HIV and HPV. In addition, studies of NP-based antiviral treatment of viruses similar to SARS-CoV-2 were also reported for AgNPs with Chikungunya virus (CHIKV) and respiratory virus (RSV), cAgNPs with RSV, and SiNPs with RSV.

In the coronavirus family, the outer envelope with the surface proteins is vitally important to the infection and proliferation of the virus. Various studies have reported the remarkable efficacy of NP-based inhibition of HIV by targeting the viral outer envelope using AgNPs, AuNPs, porous SiNPs, and silica NPs. Human-related enveloped viruses such as vesicular stomatitis virus (VSV), tacaribe virus, PRV, and HSV have also been shown to be significantly inhibited by silica NPs, AgNPs, CDs, and modified...
AgNPs$^{105−107}$ respectively. These NP-based antiviral therapies targeting the outer envelopes of enveloped viruses are very relevant to further studies on SARS-CoV-2.

3.3. Nanoparticles for Viral Inactivation and Viricidal Treatment. Instead of inhibiting the cell–virus interaction, genetic material replication, or release of newly formed virions, another strategy to halt viral infection is inactivation or destruction of the virus itself. In an elegant study led by Stellacci, AuNPs coated with 3-mercaptopropanesulfonate (MES) showed viral infection inhibition at a concentration corresponding to the EC$_{90}$ but the viral infectivity was fully recovered upon dilution. This process is called reversible viral inhibition and is similar to the effect of heparin, a common and highly conserved target of viral attachment ligands, allowing effective virus–NP binding. This strong binding force (~190 pN) led to irreversible deformation of the virus, as shown in Figure 9.

The MUS ligand has a long and flexible hydrophobic backbone terminated with sulfonic acid mimicking the heparin sulfate proteoglycan (HSPG), a common and highly conserved target of viral attachment ligands, allowing effective virus–NP binding. This strong binding force (~190 pN) led to irreversible deformation of the virus, as shown in Figure 9.

The strong viral–MUS:OT–AuNP binding was further confirmed by electron microscopy imaging and molecular dynamics simulation. Moreover, an in vivo test in mice and an ex vivo test in human cervico vaginal histocultures also demonstrated the viral inactivation activity of the MUS:OT–AuNPs, with no cytotoxicity observed. This strategy is intrinsically broad spectrum, allowing viricidal treatment of...
multiple viruses. The viruses used in the study were very similar to coronaviruses, suggesting the potential applicability of the method for SARS-CoV-2.

In another study, Kong et al. showed that decoy virus receptor-functionalized nanodiscs, self-assembled discoidal phospholipid bilayers wrapped in amphiphatic membrane scaffold proteins, can inactivate the H1N1 virus by selectively targeting the virion’s surface proteins to cause irreversible physical damage to the envelope.81 The antiviral activity of the viral decoy molecule sialic acid was amplified after grafting onto the nanodiscs due to the enabling of multivalent interactions with viral target proteins. The data also showed that the presence of the functionalized nanodiscs led the virus to self-disrupt its envelope with its own fusion machinery. The strength of this method is the use of biocompatible NPs and viral decoy molecules, making it a compelling method for in vivo studies. Gao and co-workers recently showed the catalytic inactivation of iron oxide (Fe3O4) NPs targeting the viral envelopes on 12 different subtypes (H1–H12) of IAVs.108 The ferromagnetic Fe3O4 NPs with an average diameter of 200 nm were named iron oxide nanomolecules (IONzymes) due to their unique enzyme-like property, catalyzing peroxidase and catalase reactions. Consequently, IONzymes could strongly induce lipid peroxidation in the viral envelope and destroy the integrity of viral surface proteins, including HA, neuraminidase, and matrix protein I, leading to inactivation of the viruses. Additionally, the authors loaded the IONzymes on facemasks and observed good protection against multiple strains of IAVs, including H1N1, H5N1, and H7N9. The biocompatibility and simple synthesis of the IONzyme nanomaterial make it attractive for effective and safe early stage antiviral therapeutics. Thus, the IONzyme nanomaterials present a potentially powerful approach against SARS-CoV-2.

In addition to the works highlighted above, other studies also reported promising inactivation and viricidal effects of different NPs on many viruses that share structural similarities with SARS-CoV-2. Among those reports are the inhibition of dengue virus by photosensitizer-carrying upconversion NPs, which can convert low-energy photons to high-energy photons;109 inhibition of the measles virus by AuNPs synthesized by using Allium sativa (garlic extract) as a reducing agent;110 inhibition of hepatitis C virus by AuNP-based nanozymes;111 inhibition of HSV by poly(hexamethylene biguanide) (PHMBG) or aziridine-terminated polyethyleneimine-functionalized superparamagnetic iron oxide@silica core–shell NPs;3 inhibition of IAVs by AgNP-decorated silica particles;112 inhibition of H1N1 virus by didodecyldimethylammonium bromide-coated silica NPs;113 HIV by AgNPs;114 peptide triazole Env inhibitor-conjugated AuNPs;103 and T-cell-mimicking NPs based on poly(DL-lactide-coglycolide) NP cores.115

3.4. Nanoparticles Combining Multiple Approaches for Treatment. In addition to NPs that employ one of the three methods mentioned above to treat viral infection, various works have also shown NPs that can attack viruses via a combination of approaches. Nanoparticles that can inhibit the viruses via multiple mechanisms offer more effective opportunities for reducing viral infection through synergetic effects. Recently, Szunerits and co-workers modified carbon QDs (CQDs) of different sizes in the range of 4.5−8 nm with various functional groups, including NH2, COO−, N3, triazole, R−(OH)2, and PEG, for human coronavirus (HCoV) therapy.75 Biocompatible QCDs functionalized with triazole, boronic acid, and amino groups showed significant inhibition of HCoV infection in a concentration-correlated manner. Mechanistic studies by the authors suggested that the particles not only interfere with the replication of HCoV but also inhibit the interaction of the surface S protein with the host cell and therefore interrupt the cell fusion of HCoV as shown in Figure 10. Rather than interacting with viral proteins, these CDs interfere with the cellular mechanism for S protein attachment and viral uptake. This work demonstrated highly promising antiviral agents based on biocompatible NPs, which should be further investigated for their activity against SARS-CoV-2, which is also an HCoV with the S protein as the main cell-infecting site.

PPRSV, a model virus for coronavirus studies, has been shown to be directly inactivated and entry-blocked by glutathione-stabilized fluorescent gold nanoclusters (AuNCs).116 Immunofluorescence assay, Western blot assay, plaque assay, and RT-qPCR assay data indicated that viral proliferation and protein expression were inhibited by AuNCs. The functionalized AuNCs in this study showed low biocompatibility and therefore may not be suitable for in vivo application. However, the coupling of AuNCs with other suitable biocompatible virus-targeting agents could lead to effective virus inactivation.
Table 3. Nanoparticles as Immunogenic Agents for Vaccines

NPs	conjugate/ adjuvant	size (nm)	virus	level of study	approach and result	key takeaways for COVID-19	ref
AuNPs	SARS-CoV S protein	40, 100	SARS	in vivo; BALB/c mice	induce strong IgG response	viral proteins form corona around AuNPs	121
VLPs with AuNPs	avian IBV S protein	AuNPs: 100; VLPs: 139	IBV	in vivo; BALB/c mice	VLPs with AuNPs induce strong antigen-specific cellular immunity, IgG, IgA responses and reduced symptoms	VLPs with AuNPs retain 200–250 spike proteins for 7 days; virus-like zeta potential, lymphatic antigen delivery 6-fold better with AuNPs	122
VLPs from MERS-CoV S protein (full)	alum, Matrix M1	~2-5	MERS	in vivo; BALB/c mice	VLPs with Matrix M1 adjuvant induce high anti-S protein responses	completely blocks MERS-CoV replication in lungs	123
VLPs using canine parvovirus	SARS-CoV envelope protein	Ads/MERS, alum, VLPs: 35; with alum: 80	MERS	in vivo; BALB/c mice	CD8+ T cell response; TNF-α, IL-2, GM-CSF, and IFN-α responses; higher with Ads/MERS	balanced Th1/Th2 activation generates a longer-lasting antibody response	11
heat shock protein cage NPs	SARS-CoV N protein	210 ± 60	SARS	in vivo; BALB/c mice	intranasal, intramural, dendritic cell targeting. strong CD4+ response, high levels of IgG, IgG1, IgG2a, IgG2b, IgA IFN-γ	conformation-specific and repetitive display of epitopes fully protect mice, even in absence of any adjuvant	124
PLGA	STING, MERS-CoV S protein	~148	MERS	in vivo; C57BL/6 mice	STING encapsulated in PLGA induce strong RBD-specific CD4+ T cell response, balanced Th1/Th2 response. IgG2a, IFN-α, IL6 generation	polymer NPs for antigen + adjuvant delivery and cellular release, preferentially target lymphatic system	127
CDs	PEDV	14	PEDV	in vitro; Vero & PK-15 cells	induce IFNs and proinflammatory cytokines	CDs can trigger innate immune responses	76

Abbreviations: GM-CSF: granulocyte–macrophage colony-stimulating factor, HA: hemagglutinin, iBALT: inducible bronchus-associated lymphoid tissue, PLGA: poly(lactic-co-glycolic acid), STING: stimulator of interferon genes.
4. NANOPARTICLES AS IMMUNOGENIC AGENTS FOR VACCINES

The most effective way to fight a viral epidemic is through vaccination. The goal of vaccination is to initiate a strong immune response that leads to the development of lasting and protective immunity against the targeted pathogen. The components of the immune system can be broadly classified into two categories: innate (nonspecific) and adaptive (specific) immune systems. The innate immune system comprises natural killer (NK) cells, DCs, macrophages, monocytes, and innate lymphoid cells. NK cells eliminate infected cells; macrophages secrete cytokines and chemokines. The adaptive immune system comprises antibodies (IgM), which are the presenting cells (APCs), T cells, and T-helper (Th) cells. Antibodies are immunoglobulins (Igs: IgA, IgD, IgE, IgG, and IgM), which are the first line of defense, secreted by B cells residing in lymph nodes, after recognition of an antigen, while T-helper (Th) cells assist Ig class switching. IgG and IgA are the two major types of antibodies secreted for direct neutralization of pathogens. The most important T cells are CD4+ and CD8+ T cells, which are the central coordinators of immune responses. CD4+ T cells recognize antigen peptides presented on APCs, while activated CD8+ T cells induce the death of infected cells.Activated CD4+ T cells, called Th1 cells, also produce IFN-γ, which drives the presentation pathway, facilitating recognition, generation of antiviral antibodies by B cells, and killing and disposal of infected cells with the help of NK cells and macrophages. Th cells and macrophages also produce interleukins (ILs) and tumor necrosis factor-α (TNF-α), two important classes of cytokines for antiviral immune responses. The self-assemble of MERS-CoV protein NPs can be further assisted by a ferritin template to ensure the display of target antigens on the surface of the VLPs. 129 Incorporating S protein epitopes on the surface of the VLPs mimics whole viruses and are much more stable than soluble antigens. Several VLP vaccines have been licensed for clinical use against various pathogens, such as hepatitis B virus (HBV), HPV, Norwalk virus, HSV, and malaria. Early VLP designs possessed limited immunogenicity due to the absence of S epitopes on the surface of the VLPs. 129

Coleman et al. recently developed MERS-CoV spike (S) protein NPs that can protect mice from MERS-CoV infection. 128 The spike (S) protein, primarily responsible for receptor binding and cell entry, also induces neutralizing antibodies, making the S protein an ideal target for the anti-MERS vaccine. This vaccine also stops MERS-CoV replication in the lungs. In a related study, the same research group used full-length MERS-CoV and SARS-CoV S proteins to generate ~25 nm diameter VLPs consisting of multiple S protein molecules. 9 Inoculation with these VLPs leads to the generation of neutralizing antibodies in mice. In both of these studies, neutralizing antibody levels were significantly boosted when the VLPs were used with alum and Matrix M1 adjuvants (15-fold with alum and 68-fold with Matrix M1), as seen in Figure 11a. 9,123 Alum is an aluminum salt that acts as a mild irritant, stimulating inflammasome responses, while Matrix M1 is a saponin-based adjuvant manufactured by Novavax, AB. 9 Novavax is currently developing COVID-19 vaccines using VLPs with full-length glycoproteins adjuvanted with Matrix M1. 118,123,130 Jung et al. also used MERS-CoV spike protein NPs with alum to induce specific IgG antibodies in mice. 41 The spike protein NPs had a diameter of 35 nm, which increased to 80 nm when the NPs were formulated with alum. When used in conjunction with a recombinant adenovirus serotype 5 encoding the MERS-CoV spike gene (Ad5/MERS), Th1/Th2 activation was balanced, generating a longer-lasting antibody response. Figure 11b shows the effectivity of this VLP in MERS-infected mice. The self-assemble of MERS-CoV protein NPs can be further assisted by a ferritin template to ensure the display of target antigens on the surface. 131 Since the spike S protein of coronaviruses is the most important antigenic determinant for inducing neutralizing antibodies, repetitive display of these S protein epitopes on the surface of the VLPs stimulates a stronger immune response. Pimental et al. observed that even using a smaller segment of the S protein may be sufficient if the epitopes are concentrated on the surface. 124 Using template-based synthesis with coiled-coil proteins, the C-terminal heptad repeat region (HRC), and a small segment of the S protein, they generated VLPs (see Figure 11c) that were able to stimulate anti-SARS antibodies even in the absence of an adjuvant, attributed largely to its nanometer size, repetitive display of the epitope, and good mimicry of the epitope’s natural configuration. Similar results were also observed by Sharma et al. when they incorporated multiple copies of the HA protein on the surface of the VLPs; HA is a surface-exposed glycoprotein and is the most highly immunogenic target for IAV. Immunization of IAV-infected mice with HA-conjugated surface VLPs provided full protection from morbidity and mortality without the need for additional adjuvants. 9 Thus, we observed that VLPs based on the spike S protein of MERS-CoV and SARS-CoV were effective in stimulating a strong antibody response. The antibody response is enhanced in the presence of adjuvants or by concentrating multiple repeating units of the S protein on the surface of the VLPs.
Figure 11. (a) Neutralization titers of coronavirus-spike-vaccinated mice. Serum from mice vaccinated with the indicated mix of spike protein and adjuvant was analyzed for neutralization capability and geometric mean titer (GMT), as graphed for all groups (10 mice per group). Stars denote statistically significant differences (p < 0.05). Reproduced with permission from ref 9. Copyright 2014 Elsevier. (b) Titers of neutralizing serum antibody against MERS-CoV in immunized mice. The mean reduction ± standard deviation values are shown. Reproduced with permission from ref 11. Copyright 2018 Elsevier. (c) Synthetic scheme and computer models for the formation of coiled-coil template-based complete peptide nanoparticles using the HRC region of the S epitope. The inset shows the various segments of the SARS-CoV S protein. Reproduced with permission from ref 124. Copyright 2009 Wiley.
example, compared to the S gene in SARS-CoV-2, which is divergent (>25%) when compared to all other previously described SARS-related coronaviruses, the other three structural proteins are more highly conserved than the spike protein and are necessary for general coronavirus function.12

Additionally, similar to SARS-CoV and MERS-CoV, SARS-CoV-2 also primarily attacks the respiratory system, causing acute respiratory distress and pulmonary damage.10,12,141,142 For this reason, Raghuvanshi et al. specifically administered the N protein-loaded chitosan NP vaccine intranasally, targeting the mucosal pathway, mimicking the route of an actual viral infection,143 which induces both humoral and cellular immune responses. Naked DNA is ineffective in crossing mucosal barriers and is rapidly degraded by nucleases, while chitosan NPs transiently open the tight junctions to allow increased transport across the nasal mucosa. As a result, significant N protein-specific IgG, IgG1, IgG2a, and IgG2b antibodies, as well as IFN-γ and Th1 cytokine responses, were stimulated. Compared to systemic vaccination, mucosal vaccination is often more effective against mucosal pathogens due to the ability of these pathogens to induce secretory nasal antibodies.93,126 Wiley et al. designed a safe broad-spectrum vaccine against multiple coronaviruses using a protein cage NP (PCN) that targets mucosal cells.126 The PCN does not contain any antigen-specific proteins but is derived from a small heat shock protein (hHsp 16.5) instead, which causes the formation of inducible bronchus-associated lymphoid tissue (iBALT). The iBALT strategy provides an alternative approach for broad-spectrum viral protection in the lungs. The PCN-induced iBALT structures contain B cells, CD4+ T cells, DCs, and CD8+ T cells. CD4+ and CD8+ T cells accumulated rapidly in the lungs of PCN-treated mice. These iBALT responses protected the mice from lethal doses of various respiratory viruses (H1N1, SARS, RSV). Protection against SARS-CoV was already apparent within 3 days after infection, implying that innate mechanisms are also modulated by this PCN treatment (see Figure 12b). Despite the strong antiviral response, no histological damage was observed in the alveolar architecture of the lungs, and eosinophilic influx into the lungs was reduced. Thus, this PCN vaccination targeting iBALT microstructures can nonspecifically enhance immune protection against a diversity of respiratory viruses and in the absence of pulmonary inflammation, thus effectively protecting the host (see Figure 12c).

For cell-specific targeted vaccination strategies, NPs with dimensions of ~100 nm have been generally found to be good for cellular uptake by DCs via phagocytosis, since they resemble the natural targets for DCs, such as viruses or bacteria.118 Several studies have found that the submicron size is optimal for mucosal cell uptake and that NPs less than 200 nm in size are more readily transported by draining lymph nodes.144 NPs with sizes of 20–200 nm have long circulation times and become enriched in lymph nodes, leading to enhanced lymphatic transport, allowing direct access to lymphoid-node-resistant DCs.178 This feature enhances antigen uptake and presentation to B cells, enhancing the humoral response, or to T cells, allowing immunomodulation.178 Cationic NPs have been widely used to deliver small interfering RNA (siRNA) to the lungs for the treatment of various respiratory diseases over the years via intranasal and intratracheal routes.143 To combat a rapidly spreading virus such as SARS-CoV-2, mRNA (mRNA)-based vaccines are promising candidates, since they can be scaled rapidly. Cationic lipid NPs encapsulating mRNA are being widely explored for the development of COVID-19 vaccines.144 Lipid NPs (LNPs) can deliver mRNA to the cytoplasm, where the mRNA can undergo direct translation to the target protein; this process can then trigger APCs and activation of B cells and T cells.144 A vaccine developed by Moderna in collaboration with NIAID, containing mRNA encapsulated inside lipid NPs, is currently in phase-2 human clinical trials.130,145 Moderna’s previous MERS and SARS vaccines developed using a similar design had demonstrated 90% reduction in viral load.145 In addition, vaccines by BioNTech/Pfizer/Fosun Pharma (LNP–mRNA) are also in phase-1/2 trials, while Translate Bio/Sanoﬁ Pasteur (LNP–mRNA), CanSino Biologics/Precision Nano-Systems (LNP–mRNA), Daiichi-Sankyo (LNP–mRNA), BioPharma (mRNA VLPs), and RNA Cure Biopharma (LNP-encapsulated mRNA VLPs) are also developing lipid NP-encapsulated mRNA vaccines, currently in preclinical trials.130

Another type of NP used to deliver genetic materials to the lungs via nasal instillation is calcium phosphate (CaP).146 Since CaP is a naturally occurring substance in mammalian hard tissues, it is a safe and biocompatible biomedical carrier. Additionally, acting as a mucosal adjuvant, CaP can initiate an immune response stronger than that induced by aluminum salts and for longer durations.129 CaP is often encapsulated with polymers such as poly(lactic-coglycolic acid) (PLGA) and polyethyleneimine (PEI), to increase cellular uptake.146 PEI is known for facilitating targeted delivery and stimulating immune responses in alveolar cells and macrophages, along with other polymeric derivatives of PLGA, such as poly(DL-
When combined with the MERS-CoV spike protein, the NPs also observed by Jung et al., as described previously.11 The lasting responses due to a balanced Th1/Th2 response were higher antibody titers and longer-lasting responses; however, these responses were accompanied by allergic inflammation and eosinophilic infiltration. Chen et al. utilized AuNPs to formulate synthetic VLPs (sVLPs) by incubating 100 nm AuNPs in a solution containing the spike protein of avian coronavirus infectious bronchitis virus (IBV), as shown in Figure 14.122 Following removal of free protein, antigen-loaded AuNPs were recovered that resembled natural viral proteins, as seen in Figure 14. Protein corona formation increased the NP size to 139 nm, which remained stable over a 7 day period, with each particle retaining approximately 200–250 spike proteins. Compared to inoculation with free proteins, vaccination with these synthetic VLPs showed enhanced lymphatic antigen delivery (6-fold), stronger antibody titers, increased T cell response, and reduced symptoms (see Figure 14). Thus, there are multiple advantages to using AuNPs as next-generation vaccine delivery agents. (1) Inorganic NPs such as AuNPs have high surface energy, leading to spontaneous protein corona formation.121 As a result, a smaller amount of antigen is required than VLPs to make antigen-exposing NPs of sizes comparable to those of coronaviruses, generating CD4+ T cell and B cell responses.147 Easy functionalization of AuNPs allows the loading of various other nucleic acids as well. (2) With the NP acting as an adjuvant itself, additional adjuvants are not necessary.121,147 (3) AuNPs used as antigen carriers also stimulate phagocytic activity of lymphoid cells, stimulate APCs, and induce the release of inflammatory mediators.147 Localization of AuNPs to

Figure 13. Characterization of adjuvant-loaded viromimetic nanoparticles. (a) Schematic showing the preparation of the viromimetic nanoparticle vaccine. Hollow PLGA nanoparticles with encapsulated adjuvant and surface maleimide linkers were prepared using a double-emulsion technique. Recombinant viral antigens were then conjugated to the surface of nanoparticles via a thiol–maleimide linkage. (b) Cryo-electron microscopy of cdGMP-loaded hollow nanoparticles. (c) Size distribution of nanoparticles determined by dynamic light scattering (DLS). (d) In vitro release profiles of cdGMP from PLGA hollow nanoparticles at pH 5 and 7. Reproduced with permission from ref 127. Copyright 2019 WILEY-VCH Verlag GmbH & Co., KGaA, Weinheim.

lactide-coglycolide) (PLG) and polylactide (PLA).129,146 Due to their biocompatibility and excellent safety profile, PLGA and PLA have already been approved by the FDA to be used in various drug delivery systems for humans.80,140 Using a thin (sub-20 nm) shell of PLGA with a large aqueous core, Lin et al. made a hollow NP to entrap a soluble stimulator of IFN genes (STING) adjuvant (see Figure 13).127 Due to the acid-sensitive PLGA hydrolysis, the NPs readily release the adjuvant upon cellular uptake, as seen in Figure 13. Localized at the endoplasmic reticulum, STING is a potent inducer of proinflammatory cytokines such as IFN-β, TNF-α, and IL-6. When combined with the MERS-CoV spike protein, the STING-PLGA NP size increases to ∼148 nm, which leads to a virus-like distribution of the NPs, synchronizing lymph node delivery of surface-coated antigens and interiorly loaded adjuvant. Further conjugation with the state-of-the-art influenza adjuvant MF59 (Addavax) induced significantly higher levels of antigen-specific antibodies due to balanced Th1 and Th2 responses. Higher antibody titers and longer-lasting responses due to a balanced Th1/Th2 response were also observed by Jung et al., as described previously.11 The polymer-based NPs with STING and MF59 adjuvants were superior in their ability to mount humoral responses compared to free STING agonists or MF59 alone. This study strongly demonstrated the advantages of hollow polymeric NPs as vaccine delivery vehicles due to their biocompatibility, size consistency, colloidal stability, tunable adjuvant loading, pH-responsive release, and antigen functionalizability.

4.3. Quantum Dots and Gold Nanoparticles. QDs, with sizes much smaller than the aforementioned NPs, have also been utilized for designing vaccines against coronaviruses. Positively charged carbon QDs with dimensions of ∼1.6 nm, made from curcumin, were studied as vaccines against PEDV, a model coronavirus.29 Although these CDs primarily blocked viral cell entry, they also induced the production of ISGs that suppress viral replication and budding. Ag2S nanocrystals (NCs), another type of QD, were also found to positively regulate ISGs and the expression of proinflammatory cytokines.14 However, among inorganic NPs, the most commonly employed NPs in vaccine design are AuNPs. Sekimukai et al. discovered that AuNPs can act as both an antigen carrier for the SARS-CoV spike S protein and an adjuvant.121 AuNPs bind to the S protein via electrostatic interactions, forming a protein corona around the AuNPs. Mice immunized with these NPs showed Th1 and Th2 responses; however, these responses were accompanied by allergic inflammation and eosinophilic infiltration. Chen et al. utilized AuNPs to formulate synthetic VLPs (sVLPs) by incubating 100 nm AuNPs in a solution containing the spike protein of avian coronavirus infectious bronchitis virus (IBV), as shown in Figure 14. Following removal of free protein, antigen-loaded AuNPs were recovered that resembled natural viral proteins, as seen in Figure 14. Protein corona formation increased the NP size to 139 nm, which remained stable over a 7 day period, with each particle retaining approximately 200–250 spike proteins. Compared to inoculation with free proteins, vaccination with these synthetic VLPs showed enhanced lymphatic antigen delivery (6-fold), stronger antibody titers, increased T cell response, and reduced symptoms (see Figure 14). Thus, there are multiple advantages to using AuNPs as next-generation vaccine delivery agents. (1) Inorganic NPs such as AuNPs have high surface energy, leading to spontaneous protein corona formation. As a result, a smaller amount of antigen is required than VLPs to make antigen-exposing NPs of sizes comparable to those of coronaviruses, generating CD4+ T cell and B cell responses. Easy functionalization of AuNPs allows the loading of various other nucleic acids as well. (2) With the NP acting as an adjuvant itself, additional adjuvants are not necessary. (3) AuNPs used as antigen carriers also stimulate phagocytic activity of lymphoid cells, stimulate APCs, and induce the release of inflammatory mediators. Localization of AuNPs to
lymphatic tissues and cells is notable, as it mimics what occurs during a natural infection. AuNPs primarily enter cells via phagocytosis, stimulating macrophages, DCs, and lymphocytes. Phagocytosis of NPs is determined by their size and shape. AuNPs with dimensions of 40–100 nm are ideal for phagocytosis, while shape dependence follows the order ellipsoid > spheres > rods > cubes, although in some cases, rods are internalized better than spheres. However, larger spherical virus-like AuNPs generate the strongest antibody responses. AuNPs have good stability and low cytotoxicity.

5. SUMMARY AND PERSPECTIVES

5.1. Nanoparticles for Diagnostics. NPs have been applied to various kinds of virus detection methods. Metal NPs and QDs with unique optical properties have the advantages of enhanced sensitivity for optical biosensing. Meanwhile, MNPs are mainly applied to the virus extraction process due to their magnetic properties. Additionally, the nanohybrid structures combine the advantages of each type of NP to improve the efficiency of virus detection. Recently, NP-based virus detection has been reported as a promising technique to detect the recently discovered SARS-CoV-2, the virus that causes COVID-19. With further research and development, NPs will undoubtedly play an important role in improving not only coronavirus detection efficiency but also other biological pathogen diagnoses.

5.2. Nanoparticles for Therapeutics. Overall, the studies covered in this section show that various NPs can be used to design drugs aimed at disrupting the attachment of SARS-CoV-2 to the ACE2 receptor and blocking the cell entry process while themselves remaining largely nontoxic toward the host cells. Effective antiviral therapies, especially in the early stage of infection, are vitally important to halt viral proliferation long enough for the immune system to respond to the virus and limit cellular damage inflicted by viral invasion as well as to minimize genetic mutations caused by the high replication frequency of the virus, which might lead to therapeutic resistance. NPs with various structures, compositions, and conjugations have been fabricated and evaluated in
multiple conditions as highly effective enhancements or alternatives to many existing antiviral therapeutics associated with increasing drug resistance. The antiviral performance, stability, and biocompatibility of these NPs have been rigorously investigated on different human-infecting viruses ranging from members of the coronavirus family to other viruses with close structural similarity to SARS-CoV-2 itself. Using novel antiviral approaches with flexible combinations, many NPs have also been demonstrated to be effective against a broad spectrum of viruses with minimal cytotoxicity, suggesting that these NPs are good research candidates for NP-based antiviral therapies to fight the COVID-19 pandemic.

5.3. Nanoparticles as Immunogenic Agents for Vaccines. Overall, the studies covered in this section offer valuable insight needed for the development of vaccines for COVID-19. The following four conclusions can be drawn: (1) Self-assembled VLPs, template-based and supported VLPs, and synthetic VLPs can all be systematically formulated in sizes and shapes that mimic those of original coronaviruses. These features help induce strong immune responses while avoiding exposure to the virulent genetic components of the virus itself. (2) Repetitive decoration of antigens on the surface of NP vaccines can enhance immune responses, even when using smaller subsets of the proteins; this effect can be further enhanced by matching the natural configuration of the epitopes. Vaccine development has typically exploited coronavirus S protein epitopes, but N protein epitopes can also be utilized to design broad-spectrum vaccines. (3) NPs offer the opportunity to combine antigen delivery abilities with adjuvant properties. (4) Vaccines targeted specifically toward mucosal cells, DCs, and lymph nodes generate stronger localized immune responses against respiratory viruses such as SARS-CoV-2. Nanosized particles (40–200 nm) are especially suitable for targeted delivery to mucosal and alveolar structures, mimicking natural infection routes and inducing direct immune responses in the worst affected tissues.

Thus, NPs are expected to play a major role in the fight against COVID-19. The optical and magnetic properties of various NPs can be utilized for building diagnostic test kits. The stark morphological and physicochemical similarities of SARS-CoV-2 with synthetic NPs also make NPs a powerful tool for intervention. NPs can be systematically functionalized with various proteins, polymers, and functional groups to perform specific inhibitory functions while also acting as excellent delivery vehicles. NPs offer possibilities for fast and safe vaccine development using subunit proteins instead of whole viruses. Additionally, NPs can also be utilized to make broad-spectrum respiratory drugs and vaccines that can protect us from seasonal viruses and prepare us for future pandemics as well.

■ AUTHOR INFORMATION

Corresponding Author

T. Randall Lee — Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States; orcid.org/0000-0001-9584-8861; Email: trlee@uh.edu

Authors

Riddhiman Medhi — Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States; orcid.org/0000-0002-2368-2468

Pannaree Sirnoi — Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States; orcid.org/0000-0003-4400-468X

Nhat Ngo — Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States; orcid.org/0000-0001-5710-1601

Hung-Vu Tran — Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States; orcid.org/0000-0001-8536-2737

Complete contact information is available at: https://pubs.acs.org/10.1021/acsanm.0c01978

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank the Air Force Office of Scientific Research (AFOSR FA9550-18-1-0094), the Robert A. Welch Foundation (E-1320), the Texas Center for Superconductivity, and the University of Houston Advanced Manufacturing Institute for generously supporting this research.

■ REFERENCES

(1) Chan, J. F.-W.; Yuan, S.; Kok, K.-H.; To, K. K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C. C.-Y.; Poon, R. W.-S.; Tsai, H.-W.; Lo, S. K.-F.; Chan, K.-H.; Poon, V. K.-M.; Chan, W.-M.; Ip, J. D.; Cai, J.-P.; Cheng, V. C.-C.; Chen, H.; Hui, C. K.-M.; Yuen, K.-Y. A Familial Cluster of Pneumonia Associated with the 2019 Novel Coronavirus Indicating Person-to-Person Transmission: A Study of a Family Cluster. Lancet 2020, 395, $54–523.$

(2) Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, R. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506.

(3) Wrapp, D.; Wang, N.; Corbett, K. S.; Goldsmith, J. A.; Hsieh, C.-L.; Abiona, O.; Graham, B. S.; McEllan, J. S. Cryo-EM Structure of the 2019-Ncov Spike in the Prefusion Conformation. Science 2020, 367, 1260–1263.

(4) Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal Structure of SARS-CoV-2 Main Protease Provides a Basis for Design of Improved α-Ketoamide Inhibitors. Science 2020, 368, 409–412.

(5) Gandhi, M.; Yokoe, D. S.; Havlir, D. V. Asymptomatic Transmission, the Achilles’ Heel of Current Strategies to Control Covid-19. N. Engl. J. Med. 2020, 382, 2158–2160.

(6) Rinaldi, A. Free, at Last! The Progress of New Disease Eradication Campaigns for Guinea Worm Disease and Polio, and the Prospect of Tackling Other Diseases. EMBO Rep. 2009, 10, 215–221.

(7) Sued, O.; Figueroa, M. I.; Cahn, P. Clinical Challenges in HIV/AIDS: Hints for Advancing Prevention and Patient Management Strategies. Adv. Drug Delivery Rev. 2016, 103, 5–19.

(8) Sharma, J.; Shepardson, K.; Johns, L. L.; Wellham, J.; Avera, J.; Schwarz, B.; Rynda-Apple, A.; Douglas, T. A Self-Adjuvanted, Modular, Antigenic VLP for Rapid Response to Influenza Virus Variability. ACS Appl. Mater. Interfaces 2020, 12, 18211–18224.

(9) Coleman, C. M.; Liu, Y. V.; Mu, H.; Taylor, J. K.; Massare, M.; Flyer, D. C.; Glenn, G. M.; Smith, G. E.; Frieman, M. B. Purified Coronavirus Spike Protein Nanoparticles Induce Coronavirus Neutralizing Antibodies in Mice. Vaccine 2014, 32, 3169–3174.
(10) Schindewolf, C.; Menachery, V. D. Middle East Respiratory Syndrome Vaccine Candidates: Cautionous Optimism. Viruses 2019, 11, 74.

(11) Jung, S.-Y.; Kang, K. W.; Lee, E.-Y.; Seo, D.-W.; Kim, H.-L.; Kim, H.; Kwon, T.; Park, H.-L.; Kim, H.; Lee, S.-M.; Nam, J.-H. Heterologous Prime−Boost Vaccination with Adenoviral Vector and Protein Nanoparticles Induces Both Th1 and Th2 Responses against Middle East Respiratory Syndrome Coronavirus. Vaccine 2018, 36, 3468–3476.

(12) Ugurdu, B.; Kadihresan, P.; Kozlowski, H. N.; Malekjahani, A.; Osborne, M.; Li, V. Y. C.; Chen, H.; Mubareka, S.; Gubbay, J. B.; Chan, W. C. W. Diagnosing Covid-19: The Disease and Tools for Detection. ACS Nano 2020, 14, 3822–3835.

(13) Yang, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural Basis for the Recognition of SARS-CoV-2 by Full-Length Human ACE2. Science 2020, 367, 1444–1448.

(14) Chan, W. C. W. Nano Research for Covid-19. ACS Nano 2020, 14, 3719–3720.

(15) Farka, Z.; Juřík, T.; Kovář, D.; Trnková, L.; Skládal, P. Nanoparticle-Based Immunoenzymatic Biosensors and Assays: Recent Advances and Challenges. Chem. Rev. 2017, 117, 9937–10042.

(16) Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; Rodriguez-Torres, M. d. P.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S.; Habtemariam, S.; Shín, H.-S. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018, 16, 71.

(17) Han, X.; Xu, K.; Taratula, O.; Farsad, K. Applications of Nanoparticles in Biomedical Imaging. Nanoscale 2019, 11, 799–819.

(18) Canaparò, R.; Foglietta, F.; Giuntini, F.; Della Pepa, C.; Dosio, F.; Serpe, L. Recent Developments in Antibacterial Therapy: Focus on Stimuli-Responsive Drug-Delivery Systems and Therapeutic Nanoparticles. Molecules 2019, 24, 1991.

(19) Chen, L.; Liang, J. An Overview of Functional Nanoparticles as Novel Emerging Antiviral Therapeutic Agents. Mater. Sci. Eng., C 2020, 112, 110924.

(20) Park, J.-E.; Kim, K.; Jung, Y.; Kim, J.-H.; Nam, J.-M. Metal Nanoparticles for Virus Detection. ChemNanoMat 2016, 2, 927–936.

(21) Corman, V. M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D. K.; Bleicker, T.; Bruinink, S.; Schmidt, J.; Schmidt, M. L.; Mulders, D. G.; Haagmans, B. L.; van der Veer, B.; van den Brink, S.; Wijsman, L.; Goderski, G.; Romette, J.-L.; Ellis, J.; Zambon, M.; Melaku, S. K.; Sentsui, H.; Saijo, M. Characterization of Novel MERS-CoV Using Gold Nanoparticles. ACS Sens. 2019, 4, 1306–1312.

(22) Huang, P.; Wang, H.; Cao, Z.; Jin, H.; Chi, H.; Zhao, J.; Yu, B.; Yan, F.; Hu, X.; Wu, F.; Jiao, C.; Hou, P.; Xu, S.; Zhao, Y.; Feng, N.; Wang, J.; Sun, W.; Wang, T.; Gao, Y.; Yang, S.; Xia, J. X. A Rapid and Specific Assay for the Detection of MERS-CoV. Front. Microbiol. 2018, 9, 1101.

(23) Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M. B.; Pan, D. Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmmonic Nanoparticles. ACS Nano 2020, 14, 7617–7627.

(24) Layqah, L. A.; Eissa, S. An Electrochemical Immunosensor for the Corona Virus Associated with the Middle East Respiratory Syndrome Using an Array of Gold Nanoparticle-Modified Carbon Electrodes. Microchim. Acta 2019, 186, 224.

(25) Lee, Y.; Kang, B.-H.; Kang, M.; Chung, D. R.; Yi, G.-S.; Lee, L. P.; Jeong, K.-H. Nanoplasmonic on-Chip PCR for Rapid Precision Molecular Diagnostics. ACS Appl. Mater. Interfaces 2020, 12, 12533–12540.

(26) Teengam, P.; Siangproh, W.; Tuantranont, A.; Vilaivat, T.; Chailapakul, O.; Henry, C. S. Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides. Anal. Chem. 2017, 89, 5428–5433.

(27) Gong, P.; He, X.; Wang, K.; Tan, W.; Xie, W.; Wu, P.; Li, H. Combination of Functionalized Nanoparticles and Polymerase Chain Reaction-Based Method for SARS-CoV Gene Detection. J. Nanosci. Nanotechnol. 2008, 8, 293–300.

(28) Zhoa, Z.; Cui, H.; Song, W.; Ru, X.; Zhou, W.; Yu, X. A Simple Magnetic Nanoparticles-Based Viral RNA Extraction Method for Efficient Detection of SARS-CoV-2. BioRxiv 2020.

(29) Roh, C.; Jo, S. K. Quantitative and Sensitive Detection of SARS Coronavirus Nucleocapsid Protein Using Quantum Dots-Conjugated RNA Aptamer on Chip. J. Chem. Technol. Biotechnol. 2011, 86, 1475–1479.

(30) Ahmed, S. R.; Nagy, É.; Neethirajan, S. Self-Assembled Star-Shaped Chiroplasmic Gold Nanoparticles for an Ultraselective Chiro-Immunosensor for Viruses. RSC Adv. 2017, 7, 40849–40857.

(31) Ahmed, S. R.; Kang, S. W.; Oh, S.; Lee, J.; Neethirajan, S. Chiral Zirconium Quantum Dots: A New Class of Nanocrystals for Optical Detection of Coronavirus. Heliyon 2018, 4, e007666.

(32) Fong, K. E.; Yung, L. L. Y. Localized Surface Plasmon Resonance: A Unique Property of Plasmmonic Nanoparticles for Nucleic Acid Detection. Nanoscale 2013, 5, 12043–12071.

(33) Unser, S.; Bruras, I.; He, J.; Sagle, L. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors 2015, 15, 15684–15716.

(34) Srinoi, P.; Chen, Y.-T.; Vittur, V.; Marquez, M. D.; Lee, T. R. Bimetallic Nanoparticles: Enhanced Magnetic and Optical Properties for Emerging Biological Applications. Appl. Sci. 2018, 8, 1106.

(35) Draz, M. S.; Shafee, H. Applications of Gold Nanoparticles in Virus Detection. Theranostics 2018, 8, 1985–2017.

(36) Dykman, L. A.; Kliebskog, N. G. Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects. Acta Naturae 2011, 3, 34–58.

(37) Khan, M. S.; Vishakante, G. D.; Siddaramaiah, H. Gold Nanoparticles: A Paradigm Shift in Biomedical Applications. Adv. Colloid Interface Sci. 2013, 199–200, 44–58.

(38) Ghosh, S. K.; Pal, T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications. Chem. Rev. 2007, 107, 4797–4862.

(39) Qi, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G. A.; Wang, J. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano 2020, 14, 5268–5277.

(40) Ma, C.; Li, C.; Wang, F.; Ma, N.; Li, X.; Li, Z.; Deng, Y.; Wang, Z.; Xi, Z.; Tang, Y.; He, N. Magnetic Nanoparticles-Based Extraction
and Verification of Nucleic Acids from Different Sources. J. Biomed. Nanotechnol. 2013, 9, 703−709.
(48) Borilid, L.; Azevedo, A. M.; Roque, A. C.; Aires-Barros, M. R. Magnetic Separations in Biotechnology. J. Biotechnol. 2011, 153, 1374−1385.
(49) Chen, Y. T.; Kolhatkar, A. G.; Zenasni, O.; Xu, S.; Lee, T. R. Biosensing Using Magnetic Particle Detection Techniques. Sensors 2017, 17, 2300.
(50) Rocha-Santos, T. A. P. Sensors and Biosensors Based on Magnetic Nanoparticles. TrAC, Trends Anal. Chem. 2014, 62, 28−36.
(51) Lee, A. H. F.; Gessert, S. F.; Chen, Y.; Sergeev, N. V.; Haghiri, B. Preparation of Iron Oxide Silica Particles for Zika Viral RNA Extraction. Helipan 2018, 4, e00572.
(52) Wang; J.; Ali, Z.; Si, J.; Wang, N.; He, N.; Li, Z. Simultaneous Extraction of DNA and RNA from Hepatocellular Carcinoma (Hep G2) Based on Silica-Coated Magnetic Nanoparticles. J. Nanosci. Nanotechnol. 2017, 17, 802−806.
(53) Zhang, H.; Xu, T.; Li, C.-W.; Yang, M. A Microfluidic Device with Microbead Array for Sensitive Virus Detection and Genotyping Using Quantum Dots as Fluorescence Labels. Biosens. Bioelectron. 2010, 25, 2402−2407.
(54) Wang, T.; Zheng, Z.; Zhang, X.-E.; Wang, H. Quantum Dot-Fluorescence In Situ Hybridisation for Exometria Virus Detection Based on Biotin−Streptavidin Interactions. Talanta 2016, 158, 179−184.
(55) Papp, I.; Sieben, C.; Ludwig, K.; Roskamp, M.; Böttcher, C.; Schleit, S.; Herrmann, A.; Haag, R. Inhibition of Influenza Virus Infection by Multivalent Sialic-Acid-Functionized Gold Nanoparticles. Small 2010, 6, 2900−2906.
(56) Sametbrand, M.; Shukla, S.; Meningher, T.; Hirsh, S.; Mendelson, E.; Sarid, R.; Gedanken, A.; Mandelboim, O. Multifocal-Stain Inhibition of Influenza Virus by Anionic Gold Nanoparticles. MedChemComm 2011, 2, 421−423.
(57) Cagno, V.; Andreozzi, P.; D’Alicarnasso, M.; Calvo Silva, P.; Muller, M.; Galloux, M.; Le Goffic, R.; Jones, S. T.; Vallino, M.; Luo, Y.; Wu, H.; Zhang, Y.; Jiang, R.; Chen, Y.-N.; Hsueh, Y.-H.; Hsieh, C.-T.; Tzou, D.-Y.; Chang, L.; Chen, T.; Zhu, B. Inhibitory Activity of Selenium Nanoparticles Functionalized with Oselativm on H1N1 Influenza Virus. J. Nanomed. 2017, 12, 5733−5743.
(58) Ghaffar, H.; Tavakoli, A.; Moradi, A.; Tabarraei, A.; Bokharaei-Salim, F.; Zahmatkeshen, M.; Foroughi, M.; Javanmard, M.; Kiani, S. J.; Eghmenei, M.; Nasir-Jahangiri, B.; Monavari, S. H.; Ataei-Pirkooh, A. Inhibition of H1N1 Influenza Virus Infection by Zinc Oxide Nanoparticles: Another Emerging Application of Nanomedicine. J. Biomed. Sci. 2019, 26, 70.
(59) De Souza e Silva, J. M.; Chancuk, T. D. M.; Santos, M. I.; Kobarg, J.; Baigelman, M. C.; Cardoso, M. B. Viral Inhibition Mechanism Mediated by Surface-Modified Silica Nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 16564−16572.
(60) Bremberg, L.; Bremberg, D. J.; Hatton, T. A.; Bandin, L.; Concheiro, A.; Alvarez-Lorenzo, C. Antiviral Properties of Polymeric Aziridine- and Biguanide-Modified Core−Shell Magnetic Nanoparticles. Langmuir 2012, 28, 4548−4558.
(61) Du, T.; Liang, J.; Dong, N.; Lu, J.; Fu, Y.; Fang, L.; Xiao, S.; Han, H. Glutathione-Capped Ag,S Nanoclusters Inhibit Coronavirus Proliferation through Blockage of Viral RNA Synthesis and Budding. ACS Appl. Mater. Interfaces 2018, 10, 4369−4378.
(62) Leczechin, A.; Séron, K.; Barras, A.; Giovaneli, E.; Belouard, S.; Chen, Y.-T.; Metzler-Nolte, N.; Boukherroub, R.; Dubuisson, J.-P.; Szunerits, S. Functional Carbon Quantum Dots as Medical Countermeasures to Human Coronavirus. ACS Appl. Mater. Interfaces 2019, 11, 42964−42974.
(63) Ting, D.; Dong, N.; Fang, L.; Lu, J.; Bi, J.; Xiao, S.; Han, H. Multisite Inhibitors for Enteric Coronavirus: Antiviral Cationic Carbon Dots Based on Curcumin. ACS Appl. Mater. Interfaces 2018, 10, 5431−5439.
(64) Chen, Y.-N.; Hseuh, Y.-H.; Hsieh, C.-T.; Tsou, D.-Y.; Chang, P.-L. Antiviral Activity of Graphene−Silver Nanocomposites against Non-Enveloped and Enveloped Viruses. Int. J. Environ. Res. Public Health 2016, 13, 430.
(65) Li, X.; Wang, P.; Bai, R.; Cong, Y.; Suo, S.; Ren, X.; Chen, C. Inhibitory Effect of Silver Nanomaterials on Transmissible Virus-Induced Host Cell Infections. Biomaterials 2014, 35, 4195−4203.
(66) Li, Y.; Lin, Z.; Zhao, M.; Xu, T.; Wang, C.; Hua, L.; Wang, H.; Xia, H.; Zhu, B. Silver Nanoparticle Based Codelivery of Oselativm to Inhibit the Activity of the H1N1 Influenza Virus through ROS-Mediated Signaling Pathways. ACS Appl. Mater. Interfaces 2016, 8, 24385−24393.
(67) Lin, Z.; Li, Y.; Guo, M.; Xu, T.; Wang, C.; Zhao, M.; Wang, H.; Chen, T.; Zhu, B. The Inhibition of H1N1 Influenza Virus-Induced Apoptosis by Silver Nanoparticles Functionalized with Zanamivir. ACS Appl. Mater. Interfaces 2016, 8, 7425−7430.
Effective Vaccination against Middle East Respiratory Syndrome

Sting Agonist-Loaded Hollow Polymeric Nanoparticles for Safe and Specific Humoral and Cellular Immune Response in Mice.

Vaccine Displaying MERS-CoV Receptor-Binding Domain Induces Elicited by a Protein Cage Nanoparticle Enhances Protection in Mice against Diverse Respiratory Viruses.

Harmsen, A. Inducible Bronchus-Associated Lymphoid Tissue Neutralize HIV Infectivity.

Mater. Anesthesiol. Clin. 2007, 19, 943–957.

COVID-19 Candidate Vaccines, 2020. https://www.who.int/COVID-19

Opportunities and Challenges.

Mahalingam, S.; Ruby, J. C. Cytokines and Immunity to Viral Tumor Necrosis Factor (TNF) Is Mediated Via P55 and P75 TNF Receptors. J. Exp. Med. 1997, 186, 1591–1596.

Seikimukai, H.; Iwata-Yoshikawa, N.; Fukushima, S.; Tani, H.; Katoaka, M.; Suzuki, T.; Hasegawa, H.; Niikura, K.; Arai, K.; Nagata, N. Gold Nanoparticle-Adjuvanted S Protein Induces a Strong Antigen-Specific IgG Response against Severe Acute Respiratory Syndrome-Related Coronavirus Infection, but Fails to Induce Protective Antibodies and Limit Eosinophilic Infiltration in Lungs. Microbiol. Immunol. 2020, 64, 33–51.

Chen, H.-W.; Huang, C.-Y.; Lin, S.-Y.; Fang, Z.-S.; Hu, C.-H.; Lin, J.-C.; Chen, Y.-I.; Yao, B.-Y.; Hu, C. -M. Synthetic Virus-Like Particles Prepared Via Protein Corona Formation Enable Effective Vaccination in an Avian Model of Coronavirus Infection. Biomaterials 2016, 106, 111–118.

Coleman, C. M.; Venkataraman, T.; Liu, Y. V.; Glenn, G. M.; Smith, G. E.; Flyer, D. C.; Frieman, M. B. MERS-CoV Spike Nanoparticles Protect Mice from MERS-CoV Infection. Vaccine 2017, 35, 1586–1589.

Pimentel, T. A. P. F.; Yan, Z.; Jeffers, S. A.; Holmes, K. V.; Hodges, R. S.; Burkhard, P. Peptide Nanoparticles as Novel Immunogens: Design and Analysis of a Prototypic Severe Acute Respiratory Syndrome Vaccine. Chem. Biol. Drug Des. 2009, 73, 53–61.

Wang, C.; Zheng, X.; Gai, W.; Gong, W.; Wang, H.; Jin, H.; Feng, N.; Zhao, Y.; Zhang, W.; Li, N.; Zhao, G.; Li, J.; Yan, J.; Gao, Y.; Hu, G.; Yang, S.; Xia, X. Novel Chimeric Virus-Like Particles Vaccine Displaying MERS-CoV Receptor-Binding Domain Induce Specific Humoral and Cellular Immune Response in Mice. Antiviral Res. 2017, 140, 55–61.

Wiley, J. A.; Richert, L. E.; Swain, S. D.; Harmsen, A.; Barnard, D. L.; Randall, T. D.; Jutila, M. D.; Douglas, T.; Broomeill, C.; Young, M.; Harmsen, A. Inducible Bronchus-Associated Lymphoid Tissue Elicited by a Protein Cage Nanoparticle Enhances Protection in Mice against Diverse Respiratory Viruses. PLoS One 2009, 4, e7142.

Lin, L. C.-W.; Huang, C.-Y.; Yao, B.-Y.; Lin, J.-C.; Agrawal, A.; Alzaisi, A.; Peng, B.-H.; Liu, Y.-H.; Huang, P.-H.; Jiang, R.-H.; Chang, Y.-C.; Tseng, C.-T.; Chen, H.-W.; Hu, C. -M. J. Viromimetic Sting Agonist-Loaded Hollow Polymeric Nanoparticles for Safe and Effective Vaccination against Middle East Respiratory Syndrome Coronavirus. Adv. Funct. Mater. 2019, 29, 1807616.

Plummer, E. M.; Manchester, M. Viral Nanoparticles and Virus-Like Particles: Platforms for Contemporary Vaccine Design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011, 3, 174–196.

Peek, L. J.; Middaugh, C. R.; Berkland, C. Nanotechnology in Vaccine Delivery. Adv. Drug Delivery Rev. 2008, 60, 915–928.

World Health Organization (WHO). Draft Landscape of COVID-19 Candidate Vaccines, 2020. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed Jul 10, 2020).