A new characterization of provably recursive functions of first-order arithmetic is described. Its main feature is using only basic terms, i.e., terms consisting of 0, the successor S and variables in the quantifier rules, namely, universal elimination and existential introduction.

1 Introduction

This paper presents a new characterization of provably recursive functions of first-order arithmetic. We consider functions defined by sets of equations. The equations can be arbitrary, not necessarily defining primitive recursive, or even total, functions. The main result states that a function is provably recursive iff its totality is provable (using natural deduction) from the defining set of equations, with one restriction: only terms consisting of 0, the successor S and variables can be used in the inference rules dealing with quantifiers, namely universal elimination and existential introduction. We call such terms basic.

Provably recursive functions is a classic topic in proof theory [1]. Let $T(e,\vec{x},y)$ be an arithmetic formula expressing that a deterministic Turing machine with a code e terminates on inputs \vec{x} producing a computation trace with code y. A function f is a provably recursive function of an arithmetic theory T if

$$T \vdash \forall \vec{x} \exists y T(e,\vec{x},y)$$

for the code e of some Turing machine that computes f. In other words, f is provably recursive if the termination of its algorithm is provable in T.

The class of provably recursive functions of T can serve as a measure of T’s strength. For example, almost all usual functions on natural numbers are provably recursive in Peano Arithmetic (PA). In contrast, when induction is limited to Σ_1-formulas, the set of provably recursive functions coincides with the set of primitive recursive functions [1]. Studying provably recursive functions is also useful because a function that is computable but not provably recursive in T gives rise to a true formula (1) that is independent of T.

In [3], Leivant proposed a characterization of provably recursive function of PA using a formalism for reasoning about inductively generated data called intrinsic theories. The intrinsic theory of natural numbers has a unary data-predicate N, which is supposed to mean that its argument is a natural number. Unlike PA, intrinsic theories don’t use functional symbols other than the constructors (0 and S in the case of natural numbers). Thus, provably recursive functions can be characterized using only constructors and the data-predicate. Our result goes in the same direction by additionally replacing the data-predicate with restrictions on quantifier rules.

A deduction system with such restrictions can be considered as a way of reasoning about non-denoting terms. A set of equations P can define non-total functions over natural numbers, and a deduction system with regular quantifier rules has quantified variables ranging over all, not necessarily denoting, terms. For example, a formula $\forall x \exists y f(x) = y$ is trivially provable in a regular system regardless of the
The structure of the paper is the following. In the next section, relevant definitions are given. Sect. 3 shows that provably recursive functions of PA are provably total when quantifier rules are restricted to basic terms, and Sect. 4 proves the converse.

2 Definitions

Let \(P \) be a set of first-order equations. Let \(\mathcal{L} \) be the language of \(P \) plus a constant 0 and a unary functional symbol \(S \) (if they are not already used in \(P \)). The theory \(A[P] \) is a first-order theory with equality in the language \(\mathcal{L} \). The axioms of \(A[P] \) are the universal closures of the equations in \(P \), denoted by \(\forall P \), the separation axioms \(\forall x S(x) \neq 0 \) and \(\forall x, y S(x) = S(y) \rightarrow x = y \), and induction

\[
A[0] \rightarrow \forall x (A[x] \rightarrow A[S(x)]) \rightarrow \forall x A[x]
\]

for all formulas \(A \) in \(\mathcal{L} \). The inference rules are the usual rules of classical natural deduction (see, e.g., [4]) plus the rules of equality:

\[
\begin{align*}
A[t] & \quad t = s \\
A[s] & \quad t = t
\end{align*}
\]

for all formulas \(A \) and terms \(t, s \) in \(\mathcal{L} \) (\(A[s] \) is obtained from \(A[t] \) by replacing some occurrences of \(t \) by \(s \)). The natural deduction rules dealing with quantifiers are shown in Fig. 1. It is easy to see that the rules of equality make it a congruence.

For example, let AM be the usual axioms for addition and multiplication and let PR be the set of standard defining equations for all primitive recursive functions. Then \(A[AM] \) is Peano Arithmetic and \(A[PR] \) is Peano Arithmetic with all primitive recursive functional symbols.

A program is a pair \((P, f) \) consisting of a set of equations \(P \) and a functional symbol \(f \) occurring in \(P \). (When \(f \) is clear from the context or is irrelevant, we will write \(P \) instead of \((P, f) \).)
We use programs to define functions using an analog of Herbrand-Gödel computability (see [2, 3]). Given a program P, we write $P \vdash E$ if E is an equation derivable from P in equational logic. The rules of equational logic are the following:

1. $P \vdash E$ for every $E \in P$;
2. $P \vdash t = t$ for every term t;
3. if $P \vdash E[x]$, then $P \vdash E[t]$ for every term t and a variable x;
4. if $P \vdash s[t] = r[t]$ and $P \vdash t = t'$, then $P \vdash s[t'] = r[t']$.

The relation computed by (P, f) is \{$(\bar{n}, m) \mid P \vdash f(\bar{n}) = m$\} (as usual, \bar{n} is a numeral for a number n, consisting of n occurrences of S applied to 0). This relation does not have to be a function. Let us call P coherent if $P \not\vdash \bar{m} = \bar{n}$ for two distinct numerals \bar{m} and \bar{n}. It is easy to see that the relation computed by a coherent program is a partial function.

However, even for a coherent program P the theory $A[P]$ can be inconsistent because of the separation axioms. This is the case, for example, for $P = \{f(g(0)) = S(g(0)), f(x) = g(0)\}$. Call a program P strongly coherent if $A[P]$ is consistent. It is clear that if a program is strongly coherent, then it is coherent.

Later it will be important that a program containing a functional symbol f corresponding to a primitive recursive function f also contains all defining equations for f. Programs that satisfy this property are called full.

A term is called basic if it consists of 0, S and variables only. A term is called primitive recursive if it is in the language of PR. We write $T \vdash \Gamma \Rightarrow A$ (respectively, $T \not\vdash \Gamma \Rightarrow A$) if there is a classical natural deduction derivation of A from open assumptions Γ in T where the eigenterms of the rules of universal elimination and existential introduction (i.e., terms t in the rules $(\forall E)$ and $(\exists I)$ in Fig. 1) are basic (respectively, primitive recursive). If Γ is empty, we write $T \vdash A$ or $T \not\vdash A$.

A function f is called provable with basic terms if f is computed by a strongly coherent full program (P, f) and $A[P] \vdash \forall \bar{x} \exists y f(\bar{x}) = y$, and similarly for a function provable with primitive recursive terms.

3 Provable recursive functions are provable with basic terms

In this section, we prove one direction of the main result.

Lemma 1.

1. $A[PR] \vdash \forall \bar{x} \exists y f(\bar{x}) = y$ for every functional symbol f from PR.
2. $A[PR] \vdash \forall \bar{x} \exists y t[\bar{x}] = y$ for every primitive recursive term $t[\bar{x}]$.
3. If $A[PR] \vdash A$, then $A[PR] \vdash A$ for every formula A.

Proof. 1. By induction on the definition of the primitive recursive function f corresponding to the functional symbol f. If it is one of the base functions, i.e., zero, addition of one or a projection, then the claim is obvious. Suppose that f is defined by composition, e.g., $f(x) = h(g(x))$. By induction hypothesis, we know that

$$A[PR] \vdash \forall x \exists y g(x) = y$$

and

$$A[PR] \vdash \forall y \exists z h(y) = z$$

(2)

Given x, we can use y such that $g(x) = y$ to perform universal elimination on (2) and then use equality rules to derive $\exists z h(g(x)) = z$ and $\exists z f(x) = z$.

Suppose \(f(\bar{x}, y) \) is defined by primitive recurrence on \(y \). Then it is easy to prove \(\forall y \exists z f(\bar{x}, y) = z \) by induction on \(y \).

2. By induction on \(t \), using point 1 in the induction step.

3. By induction on the derivation, using point 2 for \((\forall E)\) and \((\exists I)\). \[\square\]

Theorem 2. All provably recursive functions of \(A[PR] \) are provable with basic terms.

Proof. Suppose that \(f(\bar{x}) \) is provably recursive, i.e., \(A[PR] \vdash \forall \bar{x} \exists y T(e, \bar{x}, y) \) for some Turing machine with code \(e \) that computes \(f \). It is well-known that \(T \) is a primitive recursive relation, so we can assume that \(T(e, \bar{x}, y) \) has the form \(g(\bar{x}, y) = 0 \) where \(g \) is the functional symbol for some primitive recursive function \(g \). Let \(h(y) \) be the primitive recursive function that extracts the final result from a computation trace with code \(y \). Since the machine computing \(f \) is deterministic, for each \(\bar{x} \) we have \(g(\bar{x}, y) = 0 \) for exactly one \(y \).

By Lemma 1.3, \(A[PR] \vdash \forall \bar{x} \exists y g(\bar{x}, y) = 0 \). Also, by Lemma 1.1, \(A[PR] \vdash \forall y \exists z h(y) = z \). Let \(P \) be the minimal full program containing equalities from \(PR \) for all primitive recursive functional symbols used in these derivations, plus the following equalities.

\[
f(\bar{x}) = h(k(g(\bar{x}, y), \bar{x}, y)) \\
k(0, \bar{x}, y) = y
\]

The following is an outline of a derivation of \(\forall \bar{x} \exists z f(\bar{x}) = z \) in \(A[P] \). Given some \(\bar{x} \), let \(y \) be such that \(g(\bar{x}, y) = 0 \) and let \(z \) be such that \(h(y) = z \). Then \(k(g(\bar{x}, y), \bar{x}, y) = y \), so \(f(\bar{x}) = h(y) = z \).

It is left to show that \(P \) is strongly coherent and computes \(f \). If \(f \) is interpreted by \(f \) and \(k \) is interpreted by the total function

\[
k(z, \bar{x}, u) = \begin{cases} u & \text{if } z = 0, \\ y & \text{such that } g(\bar{x}, y) = 0 \quad \text{otherwise} \end{cases}
\]

then \(\mathbb{N} \models P \); therefore, \(A[P] \) is consistent. Further, for every \(\bar{m}, n \), if \(f(\bar{m}) = n \) then \(P \vdash f(\bar{m}) = n \). On the other hand, if \(f(\bar{m}) \neq n \), then \(P \nvdash f(\bar{m}) = n \) because \(f \) is total and \(P \) is strongly coherent. \[\square\]

4 Functions that are provable with basic terms are provably recursive

To remind, under the assumption \(A[P] \nvdash \forall \bar{x} \exists y f(\bar{x}) = y \) we have to prove that \(f \) is provably recursive according to the definition of Sect. 1, not that \(A[P] \vdash \forall \bar{x} \exists y f(\bar{x}) = y \), which is trivial. We will prove this statement indirectly, using intrinsic theories [3].

The intrinsic theory of natural numbers, \(IT(\mathbb{N}) \), is a first-order theory with equality whose vocabulary has functional symbols \(0 \), \(S \) and a unary predicate symbol \(\mathbb{N} \). The additional inference rules are:

\[
\begin{align*}
N(0) & \quad N(t) & \quad A[0] & \quad \forall x (A[x] \rightarrow A[Sx]) \\
N(Sr) & \quad A[t]
\end{align*}
\]

The variant of intrinsic theory that we are using, called discrete intrinsic theory and denoted by \(\overline{IT}(\mathbb{N}) \) in [3], also includes the separation axioms. Note that \(\overline{IT}(\mathbb{N}) \) uses regular first-order quantifier rules.

A function \(f \) is called provable in \(\overline{IT}(\mathbb{N}) \) if it is computed by a strongly coherent program \((P, f)\) and \(\overline{IT}(\mathbb{N}), \forall P \vdash \forall \bar{x} (N(\bar{x}) \rightarrow N(f(\bar{x}))) \).

The following theorem is proved in [3].

Theorem 3. A function is provably recursive in \(A[PR] \) iff it is provable in \(\overline{IT}(\mathbb{N}) \).
Thus, it is enough to show that functions provable with basic terms are provable in $\mathcal{IT}(\mathbb{N})$. In fact, we can show that functions provable with primitive recursive terms are provable in $\mathcal{IT}(\mathbb{N})$.

Let us introduce some notation. If A is a formula, then A^N denotes A with all quantifiers relativized to \mathbb{N}, i.e., having all subformulas of the form $\forall x B$ replaced by $\forall x (N(x) \rightarrow B)$ and all subformulas of the form $\exists x B$ replaced by $\exists x (N(x) \land B)$. If Γ is a set of formulas, then $\Gamma^N = \{ A^N \mid A \in \Gamma \}$. If $\bar{x} = x_1, \ldots, x_n$, then $N(\bar{x})$ denotes $N(x_1) \land \ldots \land N(x_n)$.

Lemma 4. Let P be a full program and let $t[\bar{x}]$ be a primitive recursive term in the language of P. Then $\mathcal{IT}(\mathbb{N}), \forall P \vdash N(\bar{x}) \Rightarrow N(t[\bar{x}])$.

Proof. The proof is similar to Lemma 1. For example, to show that a function $f(\bar{x}, y)$ defined by primitive recurrence on y is provable, one needs to use induction on the formula $N(y) \land N(f(\bar{x}, y))$. The fullness of P is necessary to ensure that the induction hypothesis is true of all subterms of t. \square

Lemma 5. Suppose that P is a full program and $\Gamma \cup \{ A \}$ is a set of formulas whose free variables are among \bar{x}. If $A[P] \models \Gamma \Rightarrow A$ and all primitive recursive functional symbols in the derivation occur in P, then $\mathcal{IT}(\mathbb{N}), \forall P \vdash N(\bar{x}), \Gamma^N \Rightarrow A^N$.

Proof. The proof is by induction on the derivation. If A is an axiom of $\mathcal{A}[P]$ other than induction, then $\mathcal{IT}(\mathbb{N}), \forall P \vdash A$ and $A \vdash A^N$. The only other cases that need attention are those dealing with quantifiers and induction.

If $A[t]$ is derived from $\forall y A[y]$, then by induction hypothesis, $\forall y (N(y) \to A^N[y])$ is derivable. Since t is a primitive recursive term in the language of P, $N(t)$ is derivable by Lemma 4, so $A^N[t]$ is derivable as well. The case of ($\exists I$) is similar. The cases of ($\forall I$) and ($\exists E$) are also straightforward.

The relativized version of the induction axiom is

$$B^N[0] \to \forall y (N(y) \to B^N[y] \to B^N[Sy]) \to \forall y (N(y) \to B^N[y])$$

It is proved by induction in $\mathcal{IT}(\mathbb{N})$ for the formula $N(y) \land B^N[y]$. \square

Theorem 6. All functions provable with primitive recursive terms are provably recursive.

Proof. Let f be computed by a strongly coherent full program (P, f) and let $A[P] \models \forall \bar{x} \exists y f(\bar{x}) = y$. Then by Lemma 5, $\mathcal{IT}(\mathbb{N}), \forall P \vdash \forall \bar{x} (N(\bar{x}) \to \exists y N(y) \land f(\bar{x}) = y)$. This implies that $\mathcal{IT}(\mathbb{N}), \forall P \vdash \forall \bar{x} (N(\bar{x}) \to N(f(\bar{x})))$, so by Theorem 3, f is provably recursive. \square

Acknowledgments

I am grateful to Daniel Leivant, Lev Beklemishev and Tatiana Yavorskaya for constructive discussion.

References

[1] Samuel R. Buss (1998): *First-Order Proof Theory of Arithmetic*. In: *Handbook of Proof Theory*, chapter II, Studies in Logic and the Foundations of Mathematics 137, Elsevier, pp. 79–147.

[2] Stephen Kleene (1952): *Introduction to Metamathematics*. Wolters-Noordhof, Groningen.

[3] Daniel Leivant (2002): *Intrinsic reasoning about functional programs I: first order theories*. Annals of Pure and Applied Logic 114(1–3), pp. 117–153, doi:10.1016/S0168-0072(01)00078-1.

[4] Anne Sjerp Troelstra & Helmut Schwichtenberg (2000): *Basic proof theory (2nd edition)*. Cambridge University Press, New York, NY, USA.