Supporting information

BAY-069, A Novel (Trifluoromethyl)pyrimidinedione-based BCAT1/2 Inhibitor And Chemical Probe

Judith Günther,*† Roman C. Hillig,†# Katja Zimmermann,† Stefan Kaulfuss,†# Clara Lemos,†# Duy Nguyen,†# Hartmut Rehwinkel,† Matthew Habgood,§ǁ Christian Lechner,†# Roland Neuhaus,†# Ursula Ganzer,†# Mark Drewes,Ξ Jijie Chai,† and Léa Bouché*†,╙

1Research & Development, Pharmaceuticals, Bayer Pharma AG, Müllerstrasse 178, 13353 Berlin, Germany
2Research & Development, Pharmaceuticals, Bayer Pharma AG, Apather Weg 18a, 42113 Wuppertal, Germany
3Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
4Research & Development BCS, Bayer Pharma AG, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany
5 School of Life Sciences, Tsinghua University, 100084 Beijing, China
For correspondence: lea.bouche@roche.com, judith.guenther@bayer.com

Content

1. BCAT1 Protein Production, Crystallization, and Co-Complex Structure Determination ... S 3
 Crystallographic Data Collection and Refinement Statistics ... S 4
 Structural Biology: Supplementary Results .. S 6
 Structural Biology: Supplementary Figures ... S 7

2. Computational Studies .. S 10

3. Chemistry ... S 12
 Synthesis of intermediates 44 and 45 ... S 12
 Supplementary Scheme S1: Synthetic route for the negative control BAY-771 (43) S 12
 Analytics of chemical probe (36a) and negative control (43) ... S 14
 Preparation of the starting materials .. S 21
 Supplementary Scheme S2: Synthetic route for (62) ... S 26
 Supplementary Scheme S3: Synthetic route for (64) ... S 28
 General Procedure 1: Formation of the carbamate .. S 29
 General Procedure 2: Formation of the pyrimidine diones ... S 32
 Supplementary Scheme S4: Synthetic scheme for the synthesis of compounds 1-8 S 36

4. Biology ... S 38

5. Pharmacokinetics ... S 42

6. References ... S 44
1. BCAT1 Protein Production, Crystallization, and Co-Complex Structure Determination

An expression construct comprising human full length BCAT1 (Uniprot entry P5467) with an N-terminal hexa-His tag and a HRV3C cleavage site was transformed into BL21(DE3) cells (BL) for protein expression. Cells were lysed using a microfluidizer and the supernatant was purified via Nickel-NTA affinity chromatography. The tag was cleaved using HRV3C Protease (Novagen #71493-3) and the protein further purified via ion exchange (Source Q) and size exclusion chromatography (Superdex200). The final buffer was 10 mM Tris-HCl pH 8.0, 100 mM NaCl, 3 mM DTT. The protein was concentrated to 17 mg/mL, flash-frozen in liquid nitrogen and stored at -80 °C.

For crystallization, BCAT1 was thawed and supplemented with 3 mM fresh DTT (from a 100 mM stock in water), 10 mM phenylpropionic acid (3PP (Sigma-Aldrich), 500 mM stock in DMSO) and 1.5 mM co-factor PLP (100 mM stock in DMSO) and incubated over night at 20 °C. Crystals were grown by vapor diffusion using the hanging drop method. Drops made from 1 µL of protein were mixed with 1 µL of reservoir buffer (16-20% PEG 3350 (w/v), 225 mM MgCl₂) incubated for 5 min, streak seeded (with crystals obtained previously under identical conditions) and stored at 20 °C. Thick rod-shaped crystals (Figure S1 A) grew within 1 to 4 days.

Inhibitor co-complexes were generated by soaking. Inhibitor solutions were prepared as 100 mM stock solution in DMSO or as 10 mM stock solution in reservoir buffer. For the DMSO approach, the 100 mM stock was diluted 1:5 with reservoir solution to form a 20 mM stock solution, which was then added in 0.5 µL-steps to a drop with crystals (10 mM final ligand concentration). For the reservoir buffer approach, a 10 mM inhibitor solution in reservoir buffer (20% PEG3350 (w/v), 225 mM MgCl₂) was prepared and crystals were transferred directly from their original drop into this ligand solution. Crystals were soaked for 1-4 days, briefly immersed in cryo buffer (reservoir buffer supplemented with 10 mM inhibitor and 20% glycerol) and flash-frozen in liquid nitrogen.

Data sets were collected at 100 K either at beamline 14.1 at the Helmholtz-Zentrum Berlin (wavelength λ=0.9184 Å) using a PILATUS detector or at beamline P11 at PETRA III at the Deutches Elektronen-Synchrotron (wavelength 1.000 Å) (see Table S1). The crystals diffracted to a resolution of 1.6 – 2.6 Å. Data were processed using the programs XDS¹ and XDSAPP.² They belonged either to space group P2₁2₁2₁ with one BCAT1 dimer in the asymmetric unit or to space group P2₁2₁2₁ with two BCAT1 dimers in the asymmetric unit (see Table S1). The structures were solved using molecular replacement (program PHASER³ from the CCP4 program suite⁴ and PDB entry 2ABJ as a search model, refined using REFMAC5⁵ and rebuilt using the program COOT.⁶ For inhibitor parameterization, 3D models were generated using Discovery Studio (Dassault Systèmes BIOVIA) and parameter files were generated using software PRODRG.⁷ The final data collection and refinement statistics are summarized in Table S1.
Crystallographic Data Collection and Refinement Statistics

Supplementary Table S1. BCAT1 Crystallographic Data Collection and Refinement Statistics (Values in Brackets Refer to the Highest Resolution Shell)

Compound	3PP	1	2	10	12	21 (variant 5'-F)
PDB ID	7NTR	7NWB	7NWB	7NWE	7NWM	7NXN
Data Collection & processing						
Beamline	ESRF ID29	BESSY BL14.1	BESSY BL14.1	BESSY BL14.1	PETRA P11	PETRA P11
Wavelength	0.8726	0.9184	0.9184	0.9184	1.0332	1.0332
Space group	P212121	P21	P21	P212121	P212121	P212121
Unit cell parameters, a (Å), b (Å), c (Å), β (°)	66.8	103.8	110.4	90.0	66.5	66.3
	82.0	110.4	107.0	103.2	66.7	106.2
	103.8	110.4	107.7	107.8	109.3	109.3
	110.2	107.8	103.4	90.0	109.3	109.3
	90.0	103.2	90.0	90.0	109.3	109.3
Resolution limit [Å]	75.5-2.2	47.38-2.64	45.24-2.38	47.78-2.54	47.84-2.15	47.76-1.70
(2.34 – 2.21)	47.38-2.64	45.24-2.38	47.78-2.54	47.84-2.15	47.76-1.70	47.76-1.70
No. of unique reflections	39094	50175	70341	24853	40857	85902
Multiplicity	5.1 (5.1)	2.7 (2.5)	3.4 (3.5)	7.2 (7.2)	4.5 (4.6)	6.6 (6.5)
Completeness [%]	99.3 (96.1)	90.9 (90.5)	98.5	99.2 (95.2)	99.0 (99.5)	99.7 (99.2)
I/σ(I)	9.9 (1.9)	9.6 (1.9)	6.5 (1.7)	9.6 (1.3)	13.0 (1.5)	20.6 (1.6)
CC1/2	0.996 (0.719)	0.993 (0.733)	0.983 (0.639)	0.997 (0.598)	0.999 (0.722)	1.000 (0.709)
Rmeas [%]	14.4 (91.0)	12.1 (69.5)	21.9 (91.1)	17.7 (149.0)	8.1 (120.2)	6.3 (128.6)
Wilson B factor [Å²]	39.0	44.4	33.4	57.6	51.7	34.0
Refinement						
Resolution limit [Å]	42.5-2.2	47.4-2.6	45.24-2.38	47.78-2.54	47.84-2.15	41.55-1.70
Rwork/Rfree [%]	16.99/24.11	18.56/22.75	22.06/26.26	21.06/24.54	21.82/27.30	18.96/22.37
No. of unique reflections	36147	48075	70342	23610	38813	83801
RMSD bond length [Å]	0.014	0.005	0.004	0.003	0.007	0.007
RMSD bond angles [°]	1.683	1.361	1.243	1.237	1.376	1.381
Average B factor [Å²]	34.7	42.6	35.9	55.5	51.4	33.5
Supplementary Table S1 (Continued). (Values in Brackets Refer to the Highest Resolution Shell)

Compound	24 (variant 5'-F)	35	38	36/BAY-069	Compound A
PDB ID	7NXO	7NY2	7NY9	7NYA	7NWA

Data Collection & processing

	PETRA P11	PETRA P11	PETRA P11	BESSY BL14.1	BESSY BL14.1
Beamline	PETRA P11	PETRA P11	PETRA P11	BESSY BL14.1	BESSY BL14.1
Wavelength	1.0332	1.0332	1.0332	0.9184	0.9184
Space group	P2;2;2;1	P2;2;2;1	P2;2;2;1	P2;2;2;1	P2;2;2;1
Unit cell parameters, a (Å), b (Å), c (Å), β (°)	66.9	66.8	66.4	66.6	67.0
	102.9	103.8	103.0	103.3	106.3
	110.0	110.2	109.4	108.1	109.0
	90.0	90.0	90.0	90.0	90.0
Resolution limit [Å]	46.61-1.71	47.42-2.31	48.32-1.60	47.90-1.85	48.49-1.59
	(1.81-1.71)	(2.45-2.31)	(1.70-1.60)	(1.96-1.85)	(1.68-1.59)
No. of unique reflections	82785	32595	99549	64223	103620
Multiplicity	6.6 (6.5)	5.9 (4.5)	6.6 (6.3)	6.7 (6.7)	4.3 (3.2)
Completeness [%]	99.5 (97.9)	98.0 (89.8)	99.8 (99.6)	99.8 (99.4)	98.3 (92.3)
I/σ(I)	15.8 (1.5)	19.6 (4.1)	17.3 (1.7)	10.8 (1.4)	15.9 (2.1)
CC1/2	0.999 (0.738)	0.999 (0.910)	0.999 (0.726)	0.998 (0.633)	0.999 (0.751)
Rmeas [%]	7.6 (116.8)	7.5 (37.3)	7.5 (106.0)	15.1 (146.0)	5.7 (57.2)
Wilson B factor [Å²]	33.5	39.2	28.0	31.1	28.3

Refinement

	46.61-1.71	47.42-2.31	48.32-1.60	47.90-1.85	48.49-1.59
	(1.81-1.71)	(2.45-2.31)	(1.70-1.60)	(1.96-1.85)	(1.68-1.59)
Rwork/Rfree [%]	18.97/21.02	20.64/27.22	17.42/20.52	18.27/22.13	16.80/19.89
No. of unique reflections	80683	32595	97447	62095	98439
RMSD bond length [Å]	0.006	0.010	0.005	0.007	0.009
RMSD bond angles [°]	1.347	1.730	1.257	1.360	1.543
Average B factor [Å²]	30.6	32.3	23.6	28.1	23.7
Structural Biology: Supplementary Results

We determined the co-crystal structure of BCAT1 in complex with Compound A from a BCAT2 inhibitor series from GSK\(^8\) (Figure 1). The structure confirms the binding mode which was published for a very closely related inhibitor bound to BCAT2 (described as compound 66 by Bertrand et al.,\(^8\) PDB accession code 5BWX). A superimposition of the BCAT1 cocrystal structures with BAY-069 and Compound A (Figure S5) shows that the two inhibitors both insert a hydrophobic group into the substrate binding pocket near the PLP co-factor. Otherwise, however, they occupy different parts of the BCAT1 active site. While the naphthalene bicycle of BAY-069 occupies a deep groove between Phe\(^{49}\) and Tyr\(^{193}\), this groove is closed by an induced fit in the X-ray with compound A. Compound A instead kinks off and places its central scaffold between Thr\(^{260}\) and Tyr\(^{193}\) while it inserts its outer dichloro-fluoro-phenyl ring in a pocket between Gln\(^{244}\) and the Cys\(^{335}\)-Cys\(^{338}\) disulfide bond. This subpocket is, in turn, closed in the co-complex structure with BAY-069.
Supplementary Figure S1. (A) Crystals of BCAT1 grown in the presence of substrate mimic 3-phenyl propionic acid (3PP). The largest crystal is approx. 60 x 60 x 400 µm³. (B) Overall fold of the BCAT1 dimer exemplified by the cocrystal structure with 3PP (PDB accession code 7NTR). Protein in ribbon representation, bound co-factor PLP in stick representation with carbon atoms depicted in magenta, 3PP with carbon atoms in yellow. The two symmetric active sites are mostly formed by residues from one chain, with the other chain contributing only one loop. (C) Zoom into the binding site of 3PP, in front of the co-factor PLP (magenta carbon atoms) which is covalently attached to the side chain of Lys$_{222}$.
Supplementary Figure S2. Co-crystal structures of BCAT1, (A) in complex with compound 12 (PDB accession code 7NWM, carbon atoms of inhibitor in cyan), (B) in complex with 10 (carbon atoms of the inhibitor in orange, PDB accession code 7NWE). Shown are the active sites in the A chains. Together with 35 (Figure 5), the three closely related compounds feature very similar binding modes, with the pyrimidinedione core forming H bonds with the side chain of Tyr193 and Gln244 as well as the backbone oxygen of Val175.
Supplementary Figure S3. Superimposition of the BCAT1 in complex with 36/BAY-069 (PDB accession code 7NYA, protein carbon atoms in gray, inhibitor carbon atoms in green) with the BCAT1:compound A complex (PDB accession code 7NWA, protein carbon atoms in blue, inhibitor carbon atoms in lilac). Depicted is the active site in the A chains in two different orientations (A) and (B). The two inhibitors trigger two different induced fits, with the movement of Tyr^{193} enabling either BAY-069 to bind into a groove between Tyr^{193} and Phe^{49}, or compound A to insert its difluoro-chloro-phenyl moiety into a sub pocket between Tyr^{193} and Gln^{244}.
2. Computational Studies

All quantum mechanical simulation were carried out using the General Atomic and Molecular Electronic Structure System (GAMESS-US).

All molecular sketching, 3D structure building, manipulation, and visualisation in preparation of the FMO calculations was carried out using the Molecular Operating Environment (MOE).10

The calculation of interaction energies between each ligand and the protein target was carried out as described in;11 the process can be summarised as follows. The protein is represented by the set of residues having close contacts with the ligand, as defined by MOE’s ‘near ligand’ option. Non-hydrogen geometries are taken directly from available crystal structures; hydrogen atoms are added in using MOE. A quantum mechanical simulation is carried out of each residue in this set, and of the ligand, in isolation. These simulations produce energies and atomic charges (derived via the CHelpG scheme12). A second set of quantum mechanical simulations is performed, of each pairwise system formed by the ligand and one of the residues set. The pairwise system in each of these simulations is embedded in the set of charges derived from all the neglected residues. For example, in a system consisting of a ligand molecule plus five close-contacted protein residues, five quantum mechanical calculations would be carried out: the ligand plus residue one, embedded in the atomic charges calculated for residues 2-5; then the ligand plus residue two, embedded in the atomic charges calculated for residues 1 and 3-5; and so on. The individual energies calculated for the isolated ligand and residues are then subtracted from the energies calculated for the pairwise system, to give an interaction energy for each pair. These are summed to give an overall interaction energy for the ligand with the protein. All quantum mechanical simulations for FMO were carried out at MP2 level of theory with a 6-31G* basis set.

Using this method, the binding energy of 34 was calculated to be 0.9 kcal mol-1 stronger than that of 12 (ΔE = -0.9 kcal mol-1).

For purposes of torsion angle scanning, an initial geometry was obtained by sketching and 3D building in MOE. QM simulations were then carried out at the HF level of theory using a 3-21G* basis set. The initial molecule was subjected to unconstrained quantum mechanical local energy minimisation / geometry optimisation in GAMESS-US. The indicated dihedral angle θ was then altered in steps of 10° up to a full rotation of 360°. At each step, constrained energy minimisation was carried out, with the dihedral θ fixed at the chosen value and the rest of the molecular geometry subject to minimisation. The energy barrier to rotation was calculated as the maximum molecular energy calculated for any step in this dihedral scan, minus the minimum molecular energy.
Supplementary Figure S4. Example biphenyl molecule with scanned dihedral angle indicated.

Supplementary Figure S5. Calculated rotational energy barriers of selected (trifluoromethyl)pyrimidinediones.

All docking studies were performed using Glide13, 14 as part of Schrodinger’s maestro suite15 version 2016-3 to 2017-3. Protein structures were prepared using the protein preparation wizard with default parameters, with ligand protonation states being manually adapted as required. The preparation of 3D ligand structures for docking employed an inhouse Pipeline Pilot16 script that utilizes Corina17 for 3D structure generation and SimPlus ADMET predictor18 for assignment of protonation states. The Cavbase search19 for pockets showing a similar 3D-arrangement of recognition properties to the active site of hBCAT1 was carried out using the database Relibase+ version 3.3.0 augmented by inhouse X-ray structures. The query pocket was defined as a 4Å envelope around the cocrystallized ligand 35 in the X-ray structure [PDB code 7NY2], all pseudocentres (donor/acceptor/pi/aromatic/aliphatic) were included. The query was run across all available X-ray data using default parameters. Other BCAT structures were removed from the top of the hit list and subsequent hits were visually inspected upon superimposition with the query pocket. No relevant similarities were detected that could point to off-target activities of the (trifluoromethyl)-pyrimidinedione series.
Supplementary Figure S6
Query setup for the Cavbase query using X-ray structure of BCAT1 in complex with compound 35. Within an envelope of 4Å radius around the cocrystallized ligand all pseudocentres (donor/acceptor/pi/aromatic/aliphatic) were picked.

3. Chemistry
Synthesis of intermediates 44 and 45

Supplementary Scheme S1: Synthetic route for the negative control BAY-771 (43)

Ethyl (3-Bromonaphthalen-1-yl)carbamate (44)
To an ice-cooled solution of commercially available 3-bromonaphthalen-1-amine (CAS: 90766-34-0; 1.00 g, 4.50 mmol) in pyridine (6.8 mL), ethyl chloroformate (520 µL, 5.40 mmol) was added dropwise at 0 °C. After complete addition, the corresponding suspension was stirred at rt for 2 h. Upon reaction completion, 1 M HCl (20 mL) was added, and the resulting precipitate was collected by filtration, washed with water, and dried under reduced pressure to give 44 as a gray solid (1.10 g, crude material, 90% purity). 1H NMR (400 MHz, [D$_6$]DMSO): $\delta = 1.28$ (t, 3H), 4.19 (d, 2H), 7.54–7.59 (m, 2H), 7.85, 7.92, 7.99, 8.14 (4 m, 1H each), 9.77 (bs, 1H) ppm. LC-MS (Method 3): 1R = 1.28 min; MS (ESI+): m/z = 294 [M + H]$^+$.

3-(3-Bromonaphthalen-1-yl)-6-(trifluoromethyl)pyridine-2,4(1H,3H)-dione (45)

To a suspension of sodium hydride (60% in mineral oil; 102 mg, 2.55 mmol) in DMF (4.4 mL) was added a solution of ethyl 3-amino-4,4,4-trifluorobut-2-enoate (350 µL, 2.4 mmol) in DMF (0.3 mL) at 0 °C and the yellow mixture was stirred for 2 h at rt. Then, a solution of ethyl (3-bromonaphthalen-1-yl)carbamate (44; 500 mg, 1.70 mmol) in DMF (10 mL) was slowly added. The resulting orange mixture was heated at 90 °C for 18 h under nitrogen atmosphere. Upon completion of the reaction, the mixture was cooled to 0 °C and then diluted with water and ethyl acetate. The layers were separated, and the water phase was extracted three times with ethyl acetate. The combined organic layers were dried over anhydrous sodium sulfate, filtered, and the solvent was removed under reduced pressure. The residue was purified by HT-HPLC (acid) giving 45 in two fractions (230 mg, 85% purity, contains ethyl 3-amino-4,4,4-trifluorobut-2-enoate, 34% yield) as an ochre solid. 1H NMR (400 MHz, [D$_6$]DMSO): $\delta = 6.45$ (s, 1H), 7.55–7.65, 7.80–7.83 (2 m, 2H each), 8.03 (d, 1H), 8.36 (m, 1H), 12.68 (bs, 1H) ppm. LC-MS (Method 3): 1R = 1.06 min; MS (ESI+): m/z = 384 [M + H]$^+$.

S 13
Analytics of chemical probe (36a) and negative control (43)

Supplementary Figure S7: UPLC-MS for racemate 36
Supplementary Figure S8: determination of enantiomeric ratio for 36
Supplementary Figure S9: determination of enantiomeric excess for separated atropisomer 36a

Supplementary Figure S10: determination of enantiomeric excess for separated atropisomer 36b
Supplementary Figure S11: UPLC-MS for chemical probe (36a)
Supplementary Figure S12: 1H-NMR of chemical probe (36a)

Supplementary Figure S13: 19F-NMR of chemical probe (36a)
Supplementary Figure S14: UPLC-MS for negative control (43)
Supplementary Figure S15: 1H-NMR of negative control (43)

Supplementary Figure S16: 19F-NMR of negative control (43)
Preparation of the starting materials

Ethyl 4-chloro-4,4-difluoro-3-oxobutanoate (46)

To a solution of ethyl acetate (2.2 g, 25.2 mmol) in tetrahydrofuran (50 mL) was added lithium diisopropylamide (9.5 mL, 2 mol/L in THF) at -78 °C and the resulting mixture was stirred at this temperature for 30 min. Then ethyl 2-chloro-2,2-difluoroacetate (2.0 g, 12.6 mmol) was added to the above mixture at -78 °C and the resulting solution was stirred at RT for overnight under nitrogen atmosphere. Upon completion of the reaction, aq. ammonium chloride solution was added at 0 °C and the resulting mixture was extracted with ethyl acetate. The combined organic layer was dried over anhydrous sodium sulfate and the solvent was removed in vacuo to give the title compound (3.0 g, 59% yield, 50% purity) as light red oil. LCMS (ESIneg): m/z = 199 [M-H].

Ethyl 3-amino-4-chloro-4,4-difluorobut-2-enoate (47)

To a solution of aforementioned ethyl 4-chloro-4,4-difluoro-3-oxobutanoate (46, 3.0 g, 7.5 mmol, 50% purity) in methanol (50 mL) was added ammonium acetate (2.3 g, 29.9 mmol). The resulting mixture was stirred at RT for overnight. Upon completion of the reaction, the solvent was removed in vacuo and the residue was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 10: 1) to give the title compound (800 mg, 48% yield) as light-yellow oil. LCMS (ESIpos): m/z =200 [M+H]+.

Ethyl 3-amino-4,4-difluoro-4-phenylbut-2-enoate (48)

To a solution of diisopropylamine (4.0 mL, 29.41 mmol) in THF (95 mL) was added n-butyllithium (2.5 M in hexane) (11.7 mL, 29.41 mmol) at -40 °C, and the mixture was allowed to stir at -10 °C for 30 minutes. Again, the mixture was cooled to -50 °C; then ethyl acetate (2.3 mL, 39.2 mmol) was added at -50 °C and the resulting mixture was stirred at this temperature for 30 min. Then a solution of commercially available 2,2-difluoro-2-phenylacetonitrile (CAS: 2002-72-4, 3.0 g, 19.6 mmol) in THF (5 mL) was added to the above mixture at -78 °C and the resulting solution was stirred for the same temperature for 2 h. After completion of starting material, the reaction was stopped by adding aq. saturated aqueous ammonium chloride solution at 0 °C, and the mixture was extracted with ethyl acetate. The combined organic layer was dried over anhydrous sodium sulfate, filtered and the solvent was removed in vacuo. The residue was purified with silica gel column chromatography (petroleum ether: ethyl acetate = 8:1) to give the title compound (3.16 g, 65%) as a yellow
oil. ¹H NMR (300 MHz, [D]₆ DMSO): δ = 1.18 (t, 3H), 4.05 (q, 2 H), 4.70 (s, 1H), 7.50-7.57 (m, 5H), 7.61-7.63 (m, 2H) ppm; LCMS (ESIpos): m/z = 242 [M+H]^+.

4-Amino-5-fluoro-2-(2-methylphenoxy)benzonitrile (49)

To a slurry of sodium hydride (60% in mineral oil, 1.50 g, 36.9 mmol) in 1-methyl-2-pyrrolidinone (100 mL) were added o-cresol (5.30 g, 49.3 mmol) and commercially available 4-amino-2,5-difluorobenzonitrile (CAS: 112279-61-5, 4.00 g, 24.6 mmol) at 0 °C. The resulting mixture was stirred at 100 °C for overnight under nitrogen atmosphere. After cooling to RT, aq. ammonium chloride solution was added at 0 °C and the organic solvent was removed in vacuo. The residue was diluted with water and the resulting mixture was extracted with ethyl acetate. The combined organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 4:1) to give the title compound (3.0 g, 45% yield) as a yellow solid. LCMS (ESIpos): m/z = 243 [M+H]^+.

4-Amino-5-fluorobenzonitrile (50)

This intermediate can be synthesized in analogy to the previously described procedure (example 49) from commercially available 4-amino-2,5-difluorobenzonitrile (CAS: 112279-61-5) and 2-chlorophenol (CAS: 95-57-8).

4-Amino-5-methoxy-2-(2-methylphenoxy)benzonitrile (51)

To a stirred solution of 4-amino-2-bromo-5-methoxybenzonitrile (CAS: 2384436-37-5, 25.0 g, 0.058 mol) in DMF (250 mL) was added o-cresol (31.6 g, 0.292 mol), caesium carbonate (95.3 g, 0.292 mol) and copper powder (18.6 g, 0.292 mol). The reaction mixture was heated under reflux for 16 h. After completion of the reaction, the reaction mixture was cooled to room temperature, and filtered over a Celite® pad. The filtrate was added to ice water (1 L) and was extracted with ethyl acetate (2x500 mL). The combined organic layers
were evaporated completely. The crude reaction product was purified by RP column chromatography using C18 column using 70% ACN in water as an eluent to give the title compound (9.2 g, 62%) as yellow oil. ¹H-NMR (300 MHz, [D]₆ DMSO): δ = 7.35 (d, 1H), 7.28-7.10 (m, 2H), 7.07 (s, 1H), 6.96 (d, 1H), 6.00 (s, 1H), 5.92 (br s, 2H), 3.78 (s, 3H), 2.19 (s, 3H) ppm.

4-Amino-5-bromo-2-(2-methyloxy)benzonitrile (52)

To a solution of 4-amino-2-(2-methyloxy)benzonitrile (55, 5.0 g, 19.6 mmol, 88% purity) in AcOH (100 mL) was added N-bromosuccinimide (3.50 g, 19.6 mmol) and the resulting mixture was stirred at room temperature for overnight. Upon completion of the reaction, the solvent was removed in vacuo and the residue was re-dissolved with water. The resulting mixture was extracted with ethyl acetate and the combined organic layer was dried over anhydrous sodium sulfate. The solvent was removed in vacuo and the residue was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 3: 1) to give 5.5 g (80% yield) of the product as light-yellow oil.

4-Amino-5-hydroxy-2-(o-tolyl oxy)benzonitrile (53)

To a solution of 4-amino-5-bromo-2-(2-methyloxy)benzonitrile (52, 1.70 g, 4.80 mmol) in 1,4-dioxane (50 mL) were added bis(pinacolato)diboron (2.4 g, 9.50 mmol), potassium acetate (1.40 g, 14.3 mmol) and Pd(dppe)Cl₂ (349 mg, 0.5 mmol). The resulting mixture was stirred at 90 °C overnight under nitrogen atmosphere. After cooling to RT, hydrogen peroxide (486 mg, 14.3 mmol, 30% aq. solution) was added and the resulting mixture was stirred at RT for another 1 h. Upon completion of the reaction, the solvent was removed in vacuo and the residue was diluted with water. The resulting mixture was extracted with ethyl acetate and the combined organic layer was dried over anhydrous sodium sulfate. The solvent was removed in vacuo and the residue was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 2: 1) to give the title compound (800 mg, 63%) as brown oil. LCMS (ESIpos): m/z = 241 [M+H]+.

4-Amino-5-proxy-2-(o-tolyl oxy)benzonitrile (54)
To a solution of aforementioned 4-amino-5-hydroxy-2-(o-tolyloxy)benzonitrile (53, 400 mg, 1.5 mmol, in 10 mL DMF) were added cesium carbonate (976 mg, 3.0 mmol) and 1-iodopropane (382 mg, 2.2 mmol). The resulting mixture was stirred at RT for 2 h. Upon completion of the reaction, the solvent was removed in vacuo and the residue was diluted with water. The resulting mixture was extracted with ethyl acetate and the combined organic layer was dried over anhydrous sodium sulfate. The solvent was removed in vacuo and the residue was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 2:1) to give the title compound (310 mg, 78%) as a light-yellow solid. LCMS (ESIpos): m/z = 283 [M+H]^+.

4-Amino-2-(2-methylphenoxy)benzonitrile (55)

To a solution of commercially available 4-amino-2-bromobenzonitrile (CAS: 53312-82-6, 15 g, 73.8 mmol), in 1-methyl-2-pyrrolidinone (120 mL) were added o-cresol (15.9 g, 147.7 mmol), cesium carbonate (72.2 g, 221.5 mmol), copper(I) iodide (3.7 g, 36.9 mmol), and commercially available 2,2,6,6-tetramethylheptane-3,5-dione (CAS: 1118-71-4, 13.6 g, 73.8 mmol). The resulting mixture was stirred at 120 °C overnight under nitrogen atmosphere. After cooled to RT, the solvent was removed in vacuo and the residue was diluted with water. The resulting mixture was extracted with ethyl acetate and the combined organic layer was dried over anhydrous sodium sulfate. The solvent was removed in vacuo and the residue was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 3:1) to give the title compound (14.0 g, 76%) as a yellow solid. LCMS (ESIpos): m/z = 225 [M+H]^+.

4-Amino-5-chloro-2-(2-methylphenoxy)benzonitrile (56)

To a solution of aforementioned 4-amino-2-(2-methylphenoxy)benzonitrile (55, 3.0 g, 12.0 mmol) in acetic acid (100 mL) was added N-chlorosuccinimide (1.6 g, 12.0 mmol), and the resulting mixture was stirred at
RT overnight. Upon completion of the reaction, the solvent was removed in vacuo and the residue was redissolved with water. The resulting mixture was extracted with ethyl acetate and the combined organic layer was dried over anhydrous sodium sulfate. The solvent was removed in vacuo and the residue was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 8:1) to give 2.1 g (57% yield) of the title compound as a yellow solid. LCMS (ESIpos): m/z = 259 [M+H]+.

4-Amino-5-iodo-2-(2-methylphenoxy)benzonitrile (57)

![Chemical structure of 4-Amino-5-iodo-2-(2-methylphenoxy)benzonitrile](attachment:image.png)

To a solution of aforementioned 4-amino-2-(2-methylphenoxy)benzonitrile (55, 1.0 g, 4.0 mmol), in acetic acid (50 mL) was added N-iodosuccinimide (903 mg, 4.0 mmol), and the resulting mixture was stirred at RT overnight. Upon completion of the reaction, water was added, and the resulting mixture was extracted with ethyl acetate. The combined organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 5:1) to give the title compound (900 mg, 64%) as a yellow solid. LCMS (ESIpos): m/z = 351 [M+H]+.

Compound 62 was synthesized in a 5 steps synthetic route starting from commercially available 4-nitronaphthalen-1-amine (CAS: 776-34-1):

![Synthetic route](attachment:image.png)
Supplementary Scheme S2: Synthetic route for (62)

2-Bromo-4-nitronaphthalen-1-amine (58)

To a stirred solution of commercially available 4-nitronaphthalen-1-amine (CAS: 776-34-1, 250 g, 1.33 mol) in acetonitrile (4 L) were added ammonium acetate (10.2 g, 0.132 mol) and N-bromosuccinimide (260 g, 1.46 mol, portion wise) at 10 °C. The resulting mixture was allowed to stir at RT for 1.5 h. A solid precipitated during the reaction, which was filtered, washed with water, and dried over vacuum giving the title compound (300 g, 86% yield) as a pale-yellow solid. LCMS (ESIpos): m/z = 267 [M+H]+.

2-(2-Methylphenoxy)-4-nitronaphthalen-1-amine (59)

To a solution of aforementioned 2-bromo-4-nitronaphthalen-1-amine (58, 21.0 g, 74.7 mmol) in 1-methyl-2-pyrrolidinone (150 mL) were added o-cresol (80.8 g, 746 mmol), copper(i) chloride (7.40 g, 74.7 mmol), cesium carbonate (48.6 g, 149.3 mmol) and 2,2,6,6-tetramethylheptane-3,5-dione (27.4 g, 149 mmol). The resulting mixture was stirred at 120 °C overnight under nitrogen atmosphere. After cooling to RT, the solvent was removed in vacuo and the residue was diluted with water. The resulting mixture was extracted with ethyl acetate and the combined organic layer was dried over anhydrous sodium sulfate. The solvent was removed in vacuo and the residue was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 2:1) to give 5.5 g (90% purity, 23% yield) of the title compound as a brown solid. LCMS (ESIpos): m/z = 295 [M+H]+.

1-Bromo-2-(2-methylphenoxy)-4-nitronaphthalene (60)

To a solution of aforementioned 2-(2-methylphenoxy)-4-nitronaphthalen-1-amine (59, 5.50 g, 16.8 mmol) in acetonitrile (80 mL) were added copper(II) bromide (4.9 g, 21.9 mmol) and tert-butyl nitrite (2.3 g, 21.9 mmol). The resulting mixture was stirred at 70 °C for 2 h under nitrogen atmosphere. After cooled to RT, the solvent was removed in vacuo and the residue was purified by silica gel column chromatography (petroleum ether:...
ethyl acetate = 10:1) to give the title compound (3.0 g, 45% yield) as a brown solid. \(^1\)H-NMR (400 MHz, [D]_6 DMSO): δ [ppm] = 2.28 (s, 3H), 6.92 (d, 1H), 7.18 (t, 1H), 7.25 (t, 1H), 7.41 (d, 1H), 7.81-7.85 (m, 2H), 7.91 (t, 1H), 8.35 (d, 1H), 8.41 (d, 1H).

2-(2-Methylphenoxy)-4-nitronaphthalene-1-carbonitrile (61)

To a solution of aforementioned 1-bromo-2-(2-methylphenoxy)-4-nitronaphthalene (60, 3.0 g, 7.5 mmol) in DMF (20 mL) were added zinc cyanide (2.7 g, 22.6 mmol), 1,2-bis(dimethylamino)ethane (876 mg, 7.5 mmol), Pd(dba)_2 (690 mg, 0.8 mmol) and Xantphos (873 mg, 1.5 mmol). The resulting mixture was irradiated with microwaves for 10 min at 180 °C. After cooling to RT, water was added and the resulting mixture was extracted with ethyl acetate. The combined organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 10:1) to give the title compound (720 mg, 25% yield) as a brown solid.

4-Amino-2-(2-methylphenoxy)naphthalene-1-carbonitrile (62)

To a solution of aforementioned 2-(2-methylphenoxy)-4-nitronaphthalene-1-carbonitrile (61, 720 mg, 80% purity, 1.9 mmol) in acetic acid (40 mL) was added iron powder (1.6 g, 28.4 mmol) and the resulting mixture was stirred at RT for 2 h. Upon completion of the reaction, water was added, and the resulting mixture was extracted with ethyl acetate. The combined organic layer was washed with water, brine, dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 2:1) to give the title compound (550 mg, 80% purity, 84%) as a yellow solid. LCMS (ESIpos): m/z = 275 [M+H]^+.
Compound 64 was synthesized in a two-step synthetic route starting from 4-amino-5-methoxy-2-(2-methylphenoxy)benzonitrile (51):

Supplementary Scheme S3: Synthetic route for (64)

1-(4-Cyano-2-methoxy-5-(o-tolyloxy)phenyl)urea (63)

To a stirred solution of 4-amino-5-methoxy-2-(2-methylphenoxy)benzonitrile (51, 10 g, 0.040 mol) in acetic acid (700 mL) and water (30 mL) was added sodium cyanate (6.40 g, 0.098 mol). The reaction mixture was stirred at room temperature for 16 h. The reaction was monitored by thin layer chromatography. After completion of the reaction, the solid formed during reaction was filtered off, washed with petrol ether (200 mL) and dried under vacuum to give the title compound (10 g, 86% yield) as off-white solid. 1H NMR (300 MHz, [D]$_6$ DMSO): δ = 8.45 (s, 1H), 7.88 (s, 1H), 7.40 (s, 1H), 7.33 (br d, 1H), 7.25-7.17 (m, 1H), 7.15-7.07 (m, 1H), 6.85 (d, 1H), 6.47 (br s, H), 3.90 (s, 3H), 2.21 (s, 3H) ppm.

5-Methoxy-2-(o-tolyloxy)-4-(2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)benzonitrile (64)

To stirred ethanol (200 mL) at 0 °C was added metallic sodium (6.20 g, 0.269 mol) and the mixture was stirred at 0 °C until the sodium metal was dissolved completely. Then was added the aforementioned 1-(4-cyano-2-methoxy-5-(o-tolyloxy)phenyl)urea (63, 10 g, 0.033 mol) and diethyl malonate (27.0 g, 0.168 mol). The reaction mixture was stirred for 16 h at reflux temperature. After completion of the reaction, the solvent...
was evaporated under vacuum, and the thus obtained solid was acidified with 20% aq. HCl (up to 6.5-7 pH). The solid was filtered off and washed with water (50 mL) and dried under vacuum to give the title compound (6.8 g) as an off-white solid.

\[\text{H NMR (300 MHz, [D\textsubscript{6}]DMSO): } \delta = 11.56 \text{ (br s, 1 H), 7.72 (s, 1H), 7.36 (br d, 1H), 7.32-7.23 (m, H), 7.23-7.14 (m, 1H), 7.01 (d, 1H), 6.81 (s, 1H), 3.80 (s, 3H), 3.36 (s, H), 2.16 (s, 3H).} \]

All carbamates were synthesized following to the general procedure GP1 as in the example 65 below.

General Procedure 1: Formation of the carbamate

To an ice-cooled solution of the aniline (1.0 eq.) in pyridine (1.5 mL/mmol), was added dropwise the commercially available either ethyl chloroformiate (CAS: 541-41-3, 1.2 eq.) or methyl carbonochloridoate (CAS: 79-22-1). After complete addition, the corresponding suspension was stirred at 0 °C for 2 h, or until the reaction was complete. Upon reaction completion, the reaction mixture was diluted with an aq. solution of 1 M HCl (10 mL/mmol). The resulting precipitate (carbamate) was collected by filtration and washed with water and dried under vacuum overnight and used without any further purification step in the next reaction step.

Ethyl [5-(2-chlorophenoxy)-4-cyano-2-fluorophenyl]carbamate (65)

To an ice-cooled solution of 4-amino-2-(2-chlorophenoxy)-5-fluorobenzonitrile (50) (200 mg, 0.761 mmol) in pyridine (1.2 mL), ethyl chloroformate (93 µL, 0.975 mmol) was added dropwise to the yellow solution. After complete addition, the corresponding suspension was stirred at 0 °C for 4 h. UPLCMS control indicated remaining starting material so that additional ethyl chloroformiate (0.5 eq.) was added dropwise. Upon reaction completion (further 16 h), the reaction mixture was diluted with an aq. solution of 1 M HCl (15 mL). The resulting precipitate was collected by filtration and washed with water and dried under vacuum overnight and used without any further purification in the next reaction step to give the title compound (233 mg, 85% pure, 73% yield) as a light orange solid; \(\text{H NMR (400 MHz, [D\textsubscript{6}]DMSO): } \delta = 1.17 \text{ (t, } J = 7.1 \text{ Hz, 3H), 4.08 (q, } J = 7.1 \text{ Hz, 2H), 7.29-7.40, 7.45-7.50 (2 m, 3H, 1H), 7.56 (d, } J = 7.6 \text{ Hz, 1H), 7.94 (d, } J = 7.9 \text{ Hz, 1H), 10.02 (bs, 1 H) ppm; LCMS (ESIpos): } m/z = 319 [M+H]^{+}. \)

Supplementary Table S2. Analytics of carbamates 66-69

name	structure	analytics
Ethyl (4-cyano-3-fluorophenyl)carbamate (66)	![Structure](image)	\(\text{H NMR (400 MHz, [D\textsubscript{6}]DMSO): } \delta = 1.25 \text{ (t, } J = 7.1 \text{ Hz, 3H), 4.17 (d, } J = 7.1 \text{ Hz, 2H), 7.36 (dd, } J = 8.6, 2.0 \text{ Hz, 1H), 7.62 (dd, } J = 12.6, 1.9 \text{ Hz, 1H), 7.81 (dd, } J = \)
Ethyl (4-cyano-5-fluoro-2-methylphenyl)carbamate (67)

δ (ppm)	J (Hz)	Assignment
1.27	7.1	3H
2.22	3H	3H
4.18	7.1	2H
7.69	7.6	1H
7.79	12.4	1H

1H NMR (400 MHz, [D₆]DMSO): δ = 1.27 (t, J = 7.1 Hz, 3H), 2.22 (s, 3H), 4.18 (q, J = 7.1 Hz, 2H), 7.69 (d, J = 7.6 Hz, 1H), 7.79 (d, J = 12.4 Hz, 1H), and 9.34 (bs, NH) ppm; LCMS (ESIpos): m/z: [M+H]⁺ = 222.

Ethyl (4-cyano-5-fluoro-2-methoxyphenyl)carbamate (68)

δ (ppm)	J (Hz)	Assignment
1.25	7.1	3H
4.17	7.1	2H
7.50	6.1	1H
7.95	7.3	1H

1H NMR (400 MHz, [D₆]DMSO): δ = 1.25 (t, J = 7.1 Hz, 3H), 4.17 (q, J = 7.1 Hz, 2H), 7.50 (d, J = 6.1 Hz, 1H), 7.95 (d, J = 7.3 Hz, 1H), 9.14 (s, 1H) ppm; LCMS (ESIpos): m/z: [M+H]⁺ = 239.

Ethyl (5-bromo-4-cyano-2-methoxyphenyl)carbamate (69)

δ (ppm)	J (Hz)	Assignment
1.24	7.1	3H
3.85	3H	3H
4.16	7.1	2H
7.58	8.25	1H each
9.11		bs, NH

1H NMR (400 MHz, [D₆]DMSO): δ = 1.24 (t, J = 7.1 Hz, 3H), 3.85 (s, 3H), 4.16 (q, J = 7.1 Hz, 2H), 7.58, 8.25 (2 s, 1H each), and 9.11 (bs, NH) ppm; LCMS (ESIpos): m/z: [M+H]⁺ = 298.

Methyl [2-bromo-4-cyano-5-(2-methylphenoxy)phenyl]carbamate (70)

To a solution of 4-amino-5-bromo-2-((o-tolyl)oxy)benzonitrile (48, 5.5 g, 16.3 mmol, 90% purity) in pyridine (80 mL) was added methyl carbonochloridate (7.7 g, 81.6 mmol) and the resulting mixture was stirred at room temperature for 4 hours. Upon completion of the reaction, the solvent was removed in vacuo and the residue was dissolved with water. The resulting mixture was extracted with ethyl acetate and the combined organic
layer was dried over anhydrous sodium sulfate. The solvent was removed in vacuo and the residue was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 3:1) to give 2.1 g (28% yield) of the product as a light-yellow solid. LCMS (ESI neg): m/z = 359 [M-H].

Supplementary Table S3. Analytics of carbamates 71-78

name	structure	analytics
Methyl 4-cyano-2-proxy-5-(o-tolyl)oxyphenylcarbamate (71)	![Structure](image1.png)	LCMS (ESI pos): m/z = 341 [M+H]+.
Methyl [2-chloro-4-cyano-5-(2-methylphenoxy)phenyl]carbamate (72)	![Structure](image2.png)	LCMS (ESI pos): m/z = 317 [M+H]+.
Methyl 4-cyano-2-iodo-5-(o-tolyl)oxyphenylcarbamate (73)	![Structure](image3.png)	LCMS (ESI pos): m/z = 407 [M-H].
Ethyl (5-bromo-2-methoxyphenyl)carbamate (74)	![Structure](image4.png)	¹H NMR (400 MHz, [D]₆ DMSO): δ = 1.23 (t, J = 7.1 Hz, 3H), 4.11 (q, J = 7.0 Hz, 2H), 6.91 (d, J = 8.9 Hz, 1H), 7.21 (dd, J = 8.7, 2.4 Hz, 1H), 7.88 (d, J = 2.2 Hz, 1H), 8.58 (s, 1H) ppm; LCMS (ESI pos): m/z = 273 [M+H]+.
Ethyl (5-bromo-2-fluorophenyl)carbamate (75)	![Structure](image5.png)	¹H NMR (400 MHz, [D]₆ DMSO): δ = 1.24 (t, J = 7.1 Hz, 3H), 4.14 (d, J = 7.1 Hz, 2H), 7.21, 7.27 (2 m, 1H each), 7.92 (dd, J = 1...
Chemical Structure	Chemical Information	
--------------------	---------------------	
![Chemical Structure](image.png)	7.1, 2.0 Hz, 1H), 9.55 (bs, NH) ppm; LCMS (ESIpos): m/z = 262 [M+H]^+.	
![Chemical Structure](image.png)	\(^1 \text{H NMR (400 MHz, [D]_6 DMSO): } \delta = 1.23 \text{ (t, J = 7.1 Hz, 3H)}, 2.29 \text{ (s, 3H), 4.12 \text{ (q, J = 7.1 Hz, 2H), 7.30 \text{ (d, J = 7.3 Hz, 1H), 7.87 \text{ (bd, J = 7.7 Hz, 1H), 7.58 \text{ (m, 1H), 9.42 (bs, NH) ppm; LCMS (ESIneg): m/z = 274 [M-H].}}) } \).	
![Chemical Structure](image.png)	\(^1 \text{H NMR (400 MHz, [D]_6 DMSO): } \delta = 1.22 \text{ (t, J = 7.0 Hz, 3H), 2.17, 3.80 \text{ (2s, 3H each), 4.08 \text{ (q, J = 7.0 Hz, 2H), 6.96 \text{ (s, 1H), 7.47, 8.80 \text{ (2 bs, 1H each), LCMS (ESIpos): m/z = 288 [M+H]^+.}}) } \).	
![Chemical Structure](image.png)	LCMS (ESIpos): m/z = 333 [M+H]^+.	

General Procedure 2: Formation of the pyrimidine diones

To a cooled suspension of commercially available NaH (CAS: 7440-23-5, 60% in mineral oil, 1.5 eq.) in DMF (2.6 mL/ mmol), the acrylate ester (1.1 eq) was added dropwise. The reaction mixture was stirred at RT for around 40 min (until no formation of gas was observed anymore). Then the carbamate (1.0 eq., dissolved in a sufficient amount of DMF) was added and the reaction solution was heated to 90 °C for 18 h- 20 h, or until the reaction was complete. Upon reaction completion, the mixture was poured into water, and the resulting precipitate was filtered off, and the aq. solution was acidified until pH = 3 with an aq. solution 2 M HCl (3.5 mL/mmol). The solution was then diluted with DCM. The organic phase was extracted twice. The combined organic layers were washed with brine and dried with sodium sulfate. After filtration, the solvent was removed under vacuum. The resulted residue was purified using preparative HPLC (basic) giving the desired cyclized product.
Reaction was divided in three vials: to a cooled suspension of NaH (60% in mineral oil, 745 mg, 18.6 mmol) in DMF (32.4 mL), ethyl-3-amino-4,4,4-trifluorobut-2-enoate (2.6 mL, 17 mmol, dissolved in 0.3 mL DMF) was added dropwise. The reaction mixture was stirred at RT for around 40 min (until no formation of gas was observed anymore). Then the ethyl carbamate (60, 2.72 g, 12.4 mmol, dissolved in 0.3 mL DMF) was added and the reaction solution was heated to 90 °C for 19 h. Upon reaction completion, the mixture (containing the reunited three vials) was poured into water (220 mL), and the resulting precipitate was filtered off, and the aq. solution was acidified until pH = 3 with an aq. solution 2 M HCl (18 mL). The solution was then diluted with DCM. The organic phase was extracted twice. The combined organic layers were washed with brine and dried with sodium sulfate. After filtration, the solvent was removed under vacuum. The resulted residue was purified using HPLC-HT (basic) giving the desired title product in two fractions (1.27 g with 80% purity; 27.3 mg with 95% purity; 30%) as both colorless solids. Analytics of the 95%pure fraction: \(^1\)H NMR (400 MHz, [D]$_6$ DMSO): \(\delta = 6.42\) (s, 1H), 7.46 (dd, \(J = 8.2, 1.7\) Hz, 1H), 7.68 (dd, \(J = 10.1, 1.5\) Hz, 1H), 8.09 (t, \(J = 7.4\) Hz, 1H), 12.71 (bs, NH) ppm; LCMS (ESIpos): \(m/z = 300\) [M+H]$^+$.

Supplementary Table S4. Analytics of pyrimidine diones 80-91

name	structure	analytics
4-[2,6-Dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl]-2-fluoro-5-methylbenzonitrile (80)	![Structure](image1)	\(^1\)H NMR (400 MHz, [D]$_6$ DMSO): \(\delta = 2.09\) (s, 3H), 6.45 (s, 1H), 7.66 (d, \(J = 9.9\) Hz, 1H), 8.0 (d, \(J = 7.1\) Hz, 1H), 12.78 (bs, NH) ppm; LCMS (ESIpos): \(m/z = 313\) [M+H]$^+$.

Using acrylester 47:

| 4-[4-(Chloro(difluoro)methyl)-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl]^-2-fluoro-5-methoxybenzonitrile (81) | ![Structure](image2) | \(^1\)H NMR (400 MHz, [D]$_6$ DMSO): \(\delta = 3.81\) (s, 3H), 6.23 (bs, 1H), 7.71 (d, \(J = 9.1\) Hz, 1H), 7.79 (d, \(J = 5.6\) Hz, 1H), 12.76 (bs, NH) ppm; LCMS (ESIpos): \(m/z = 346\) [M+H]$^+$. |
Chemical Structure	Spectroscopy Data	
3-(5-Bromo-2-chlorophenyl)-6-(trifluoromethyl)pyrimidine-2,4(1H,3H)-dione (82)	**^1H NMR** (400 MHz, [D₆]DMSO): \(\delta = 6.40 \) (s, 1H), 7.07 (t, \(J = 0.13 \) Hz, 1H), 7.62 (d, \(J = 8.9 \) Hz, 1H), 7.71 (dd, \(J = 8.6, 2.3 \) Hz, 1H), 7.83 (m, 1H), 12.81 (bs, NH) ppm; *possible ammonium salt; LCMS (ESIpos): m/z = 369 [M+H]^+.	
4-[4-(Difluoromethyl)-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl]-2-fluoro-5-methoxybenzonitrile (83)	**^1H NMR** (400 MHz, [D₆]DMSO): \(\delta = 3.80 \) (s, 3H), 6.09 (s, 1H), 6.83 (t, \(J = 6.8 \) Hz, 1H), 7.70 (d, \(J = 9.1 \) Hz, 1H), 7.77 (d, \(J = 5.6 \) Hz, 1H), 12.24 (bs, NH) ppm; LCMS (ESIneg): m/z = 310 [M-H]^-.	
2-Bromo-4-[2,6-dioxo-4-(pentafluoroethyl)-3,6-dihydropyrimidin-1(2H)-yl]-5-methoxybenzonitrile (84)	**^1H NMR** (400 MHz, [D₆]DMSO): \(\delta = 3.82 \) (s, 3H), 6.30 (bs, 1H), 7.07 (t, \(J = 51 \) Hz, 1H)^*, 7.83 (s, 1H), 7.91 (bs, 1H), 12.74 (bs, NH) ppm; *possibly ammonium salt; LCMS (ESIpos): m/z = 442 [M+H]^+.	
2-Bromo-4-{4-[difluoro(phenyl)methyl]-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl}-5-methoxybenzonitrile (85)	**^1H NMR** (400 MHz, [D₆]DMSO): \(\delta = 3.79 \) (s, 3H), 6.11 (bs, 1H), 7.57-7.63 (m, 3H), 7.11 (d, \(J = 9.4 \) Hz, 1H), 7.75 (m, 3H), 12.25 (bs, NH) ppm; LCMS (ESIneg): m/z = 447 [M-H]^-.	
3-(5-Bromo-2-fluorophenyl)-6-(trifluoromethyl)pyrimidine-2,4(1H,3H)-dione (86)	**^1H NMR** (400 MHz, [D₆]DMSO): \(\delta = 6.42 \) (s, 1H), 7.42 (t, \(J = 9.3 \) Hz, 1H), 7.72 (m, 1H), 7.79 (dd, \(J = 6.6, 2.5 \) Hz, 1H), 12.8 (bs, NH) ppm; LCMS (ESIpos): m/z = 352 [M+H]^+.	
Compound	1H NMR (400 MHz, [D₆]DMSO)	LCMS (ESIpos)
--	-----------------------------	---------------
3-(5-Bromo-2-methoxyphenyl)-6-(trifluoromethyl)pyrimidine-2,4(1H,3H)-dione (87)	δ = 3.74 (s, 3H), 6.36 (s, 1H), 7.15 (d, J = 8.9 Hz, 1H), 7.55 (d, J = 2.6 Hz, 1H), 7.61 (dd, J = 2.6, 8.9 Hz, 1H), 12.64 (bs, NH) ppm; m/z = 367 [M+H]^+.	m/z = 367 [M+H]^+.
3-(5-Bromo-2-fluoro-4-methylphenyl)-6-(trifluoromethyl)pyrimidine-2,4(1H,3H)-dione (88)	δ = 2.39 (s, 3H), 6.24 (bs, 1H), 7.46 (d, J = 10.9 Hz, 1H), 7.69 (d, J = 7.1 Hz, 1H), 12.76 (bs, NH) ppm; m/z = 368 [M+H]^+.	m/z = 368 [M+H]^+.
3-(5-Bromo-4-chloro-2-methoxyphenyl)-6-(trifluoromethyl)pyrimidine-2,4(1H,3H)-dione (89)	δ = 1.22 (t, J = 7.0 Hz, 3H), 4.12 (q, J = 7.0 Hz, 2H), 7.28, 8.04 (2s, 1H each), 8.74 (bs, NH) ppm; m/z = 307 [M+H]^+.	m/z = 307 [M+H]^+.
3-(5-Bromo-4-methoxy-2-methylphenyl)-6-(trifluoromethyl)pyrimidine-2,4(1H,3H)-dione (90)	δ = 2.02, 3.88 (2s, 3H each), 6.36, 7.10, 7.52 (3s, 1H each), 12.56 (bs, NH) ppm; m/z: [M-H]^− = 378.	m/z: [M-H]^− = 378.
2-Bromo-4-[2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl]-5-methoxybenzonitrile (91)	δ = 3.83 (s, 3H), 6.42 (s, 1H), 7.85 (s, 1H), 7.93 (s, 1H), 12.71 – 12.88 (br.s, 1H); m/z = 389.9 [M+H]^+.	m/z = 389.9 [M+H]^+.
Supplementary Scheme S4: Synthetic scheme for the synthesis of compounds 1-8

2-Amino-N-methylpyridine-4-carboxamide (92)

To a solution of 2-aminoisonicotinic acid (4.00 g, 28.4 mmol), in DMF (100 mL) were added methanamine hydrochloride (2.30 g, 34.1 mmol), N-ethyl-N-isopropylpropan-2-amine (7.30 g, 56.7 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (6.50 g, 34.1 mmol) and 1-hydroxybenzotriazole (5.20 g, 34.1 mmol). The resulting mixture was stirred at room temperature for overnight. Upon completion of the reaction, the solid was removed by filtration and the filtrate was purified by C\textsubscript{18} reversed phase column chromatography [Column: 180 g, Mobile phase A: water; Mobile phase B: acetonitrile; Gradient: 0% B to 12% B in 20 min] to give 3.0 g (64% yield) of the title compound as a white solid. LCMS (ESIpos): m/z = 152 [M+H]+.

N-Methyl-2-(pyridin-2-yl)-3-[[(2,4,4-trimethylpentan-2-yl)amino]imidazo[1,2-a]pyridine-7-carboxamide (93)

To a solution of 2-amino-N-methylisonicotinamide (3.0 g, 18.3 mmol) in methanol (100 mL) were added picolinaldehyde (1.90 g, 18.3 mmol), indium(III) trifluoromethanesulfonate (1.00 g, 1.80 mmol), and 2-isocyano-2,4,4-trimethylpentane (2.50 g, 18.3 mmol). The resulting mixture was stirred at 80 °C for 30 min under nitrogen atmosphere. After cooling to room temperature, the solvent was removed in vacuo and the residue was diluted with water. The resulting mixture was extracted with ethyl acetate and the combined organic layer was dried over anhydrous sodium sulfate. The solvent was removed in vacuo to give 6.00 g (84% yield) of the title compound as an orange solid. 1H-NMR (400 MHz, [D]\textsubscript{6} DMSO): δ = 1.01 (s, 6H), 1.10 (s, 9H), 1.68 (s, 2H), 2.82 (d, 3H), 5.55 (s, 1H), 7.28-7.36 (m, 2H), 7.91 (t, 1H), 8.01 (s, 1H), 8.11 (d, 1H), 8.42 (d, 1H), 8.62 (d, 2H) ppm; LCMS (ESIpos): m/z = 360 [M+H]+.
To a solution of N-methyl-2-(pyridin-2-yl)-3-(2,4,4-trimethylpentan-2-ylamino)imidazo[1,2-a]pyridine-7-carboxamide (3.00 g, 7.9 mmol), in dichloromethane (100 mL) was added trifluoroacetic acid (10 mL), and the resulting mixture was stirred at room temperature for overnight. Upon completion of the reaction, the solvent was removed in vacuo and the residue was diluted with n-hexane. The precipitated solid was collected by filtration and the filter cake was dried in vacuo to give 1.80 g (85% yield) of the title compound as an orange solid.

1H-NMR (400 MHz, [D]6 DMSO): δ = 2.85 (d, 3H), 7.37-7.40 (m, 1H), 7.63 (d, 1H), 8.01-8.06 (m, 2H), 8.11 (s, 1H), 8.63 (d, 1H), 8.70 (d, 1H), 8.89 (d, 1H), 11.32 (br, 2H) ppm; LCMS (ESIpos): m/z = 268 [M+H]+.

To a solution of 3-amino-N-methyl-2-(pyridin-2-yl)imidazo[1,2-a]pyridine-7-carboxamide (1.0 g, 3.6 mmol) in pyridine (30 mL) was added methyl carbonochloridate (330 mg, 3.6 mmol), and the resulting mixture was stirred at room temperature for overnight. Upon completion of the reaction, water was added and the resulting mixture was extracted with ethyl acetate. The combined organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by silica gel column chromatography (dichloromethane: methanol = 10: 1) to give 350 mg (30% yield) of the title compound as a light-yellow solid.

LCMS (ESIpos): m/z = 326 [M+H]+.
4. Biology

Supplementary Figure S17. BCAT1 biochemical activity of compound 36a (BAY-069) in the presence of bovine serum albumin (BSA) or human serum albumin (HSA).

Supplementary Table S5. Antiproliferative activity of 36a (BAY-069) and A in a panel of cancer cell lines.

Cancer cell viability was determined by CellTiter-Glo® after treatment with the indicated compounds.

Compound	MDA-MB-231 IC_{50}	U-87 MG IC_{50}	SEM IC_{50}	CAL-51 IC_{50}	HCC-33 IC_{50}	NCI-H2110 IC_{50}
BAY-069	>50 µM	>50 µM	>50 µM	47.7 µM	>50 µM	>50 µM
A	>50 µM	>50 µM	>50 µM	>50 µM	>50 µM	>50 µM

Supplementary Figure S18. BCAT1 and BCAT2 protein expression in a panel of cancer cell lines, determined by Western Blot.
Supplementary Figure S19: Correlation between biochemical BCAT1 and cellular activity (BCAA in U-87 MG): Outliers (red) show low Caco permeability (Papp A-B), green reflects good and yellow medium Caco permeability.
Supplementary Table S6. Summary of experimental results obtained for 36a (BAY-069) in the Eurofins LeadProfilingScreen panel.21

Cat #	Assay Name	Batch*	Spec.	Rep.	Conc.	% Inh.	IC50*	Ki	pN	R
107000	Aldose Reductase	433410	rat	2	10 µM	-1				
107710	ATPase, Na+/K+; Heart, Pig	433438	pig	2	10 µM	-13				
112020	Carbonic Anhydrase II	433411	hum	2	10 µM	1				
104010	Cholinesterase, Acetyl, ACES	433409	hum	2	10 µM	8				
116020	Cyclooxygenase COX-1	433651	hum	2	10 µM	-10				
118010	Cyclooxygenase COX-2	433652	hum	2	10 µM	7				
124010	HMG-CoA Reductase	433419	hum	2	10 µM	0				
132000	Leukotriene LTc4 Synthase	433418	gp	2	10 µM	29				
199017	Lipooxygenase 15-LO	433427	hum	2	10 µM	15				
140010	Monoamine Oxidase MAO-A	433440	hum	2	10 µM	8				
140120	Monoamine Oxidase MAO-B	433441	hum	2	10 µM	8				
142000	Nitric Oxide Synthase, Neuronal (nNOS)	433420	rat	2	10 µM	-4				
199010	Nitric Oxide Synthetase, Inducible (iNOS)	433425	mouse	2	10 µM	14				
107300	Peptidase, Angiotensin Converting Enzyme	433437	rabbit	2	10 µM	1				
152000	Phosphodiesterase PDE3	433452	hum	2	10 µM	-8				
154420	Phosphodiesterase PDE4D2	433454	hum	2	10 µM	2				
156000	Phosphodiesterase PDE5	433453	hum	2	10 µM	-19				
194020	Thromboxane Synthase	433426	hum	2	10 µM	45				
200510	Adenosine A1	433503	hum	2	10 µM	27				
200610	Adenosine A2A	433505	hum	2	10 µM	-6				
200720	Adenosine A2	433689	hum	2	10 µM	-2				
203100	Adrenergic A1A	433443	rat	2	10 µM	5				
203630	Adrenergic A1A	433428	hum	2	10 µM	2				
203710	Adrenergic A2B	433429	hum	2	10 µM	-2				
203810	Adrenergic A2C	433430	hum	2	10 µM	6				
204010	Adrenergic B1	433456	hum	2	10 µM	3				
204110	Adrenergic B2	433457	hum	2	10 µM	-11				
204200	Adrenergic B3	433459	hum	2	10 µM	15				
206000	Androgen (Testosterone)	433476	hum	2	10 µM	9				
210030	Angiotensin AT1	433527	hum	2	10 µM	7				
210120	Angiotensin AT2	433528	hum	2	10 µM	6				
212520	Bradykinin B1	433509	hum	2	10 µM	-8				
212620	Bradykinin B2	433464	hum	2	10 µM	1				
217030	Cannabinoid CB1	433671	hum	2	10 µM	16				
Cat #	Assay Name	Batch*	Spec.	Rep.	Conc.	% Inh.	IC50*	Kᵢ	nh	R
---------	--	--------	-------	------	---------	--------	-------	----	----	----
217100	Cannabinoid CB₂	433530	hum	2	10 µM	-5				
219500	Dopamine D₁	433525	hum	2	10 µM	7				
219600	Dopamine D₂	433523	hum	2	10 µM	-5				
219700	Dopamine D₃β	433524	hum	2	10 µM	-5				
219800	Dopamine D₃	433525	hum	2	10 µM	14				
224010	Endothelin ETₐ	433548	hum	2	10 µM	-2				
224110	Endothelin ETᵦ	433549	hum	2	10 µM	-9				
226010	Estrogen ERα	433601	hum	2	10 µM	6				
226810	GABAₐ, Chloride Channel, TBOB	433540	rat	2	10 µM	15				
226600	GABAₐ, Flunitrazepam, Central	433465	rat	2	10 µM	4				
228510	GABAᵦ, Non-Selective	433506	rat	2	10 µM	-15				
232030	Glucocorticoid	433479	hum	2	10 µM	13				
232600	Glutamate, AMPA	433538	rat	2	10 µM	11				
232710	Glutamate, Kainate	433539	rat	2	10 µM	-4				
232810	Glutamate, NMDA, Agonism	433532	rat	2	10 µM	11				
232910	Glutamate, NMDA, Glycine	433536	rat	2	10 µM	-2				
239300	Growth Hormone Secretagogue (GHS, Ghrelin)	433558	hum	2	10 µM	1				
239610	Histamine H₁	433467	hum	2	10 µM	-2				
239710	Histamine H₂	433541	hum	2	10 µM	-2				
239820	Histamine H₃	433654	hum	2	10 µM	3				
243000	Insulin	433555	rat	2	10 µM	15				
252200	Motilin	433504	hum	2	10 µM	4				
252610	Muscarinic M₁	433435	hum	2	10 µM	8				
252710	Muscarinic M₂	433435	hum	2	10 µM	4				
252810	Muscarinic M₃	433436	hum	2	10 µM	-7				
252910	Muscarinic M₄	433442	hum	2	10 µM	-5				
258730	Nicotinic Acetylcholine α3β4	433470	hum	2	10 µM	-8				
260130	Opiate δ (OP1, DOP)	433461	hum	2	10 µM	-3				
260210	Opiate κ (OP2, KOP)	433462	hum	2	10 µM	-7				
260410	Opiate µ (OP3, MOP)	433463	hum	2	10 µM	0				
299005	Progesterone PR-B	433474	hum	2	10 µM	-4				
299036	Purinergic P2X	433451	rat	2	10 µM	11				
268810	Purinergic P2Y	433697	rat	2	10 µM	-4				
271110	Serotonin (5-Hydroxytryptamine) 5-HT₁α	433545	hum	2	10 µM	9				
271650	Serotonin (5-Hydroxytryptamine) 5-HT₂α	433484	hum	2	10 µM	1				
271700	Serotonin (5-Hydroxytryptamine) 5-HT₂β	433519	hum	2	10 µM	1				
271800	Serotonin (5-Hydroxytryptamine) 5-HT₃C	433544	hum	2	10 µM	3				
202020	Transporter, Adenosine	433553	hum	2	10 µM	28				
220320	Transporter, Dopamine (DAT)	433478	hum	2	10 µM	33				
226400	Transporter, GABA	433531	rat	2	10 µM	46				
204410	Transporter, Norepinephrine (NET)	433477	hum	2	10 µM	22				
274030	Transporter, Serotonin (5-Hydroxytryptamine)(SERT)	433471	hum	2	10 µM	3				
287530	Vasopressin V₁α	433516	hum	2	10 µM	7				
5. Pharmacokinetics

BAY Number	BAY-069	BAY-069	BAY-069
Dose	25 mg/kg	50 mg/kg	100 mg/kg
AUC_{0-tLast}	16 h·mg/L	53 h·mg/L	270 h·mg/L
AUC_{0-tLast,norm}	0.63 h·kg/L	1.1 h·kg/L	2.7 h·kg/L
AUC_{0-tLast,u}	0.022 h·mg/L	0.074 h·mg/L	0.38 h·mg/L
C_{max,u}	17 nM	46 nM	130 nM
IC_{50 Assay}	U87MG	U87MG	U87MG
IC_{50}	410 nM	410 nM	410 nM
IC_{50,u}	410 nM	410 nM	410 nM
C_{max,u} / IC_{50,u}	0.043	0.11	0.31

Supplementary Table S7. High dose exposure study BAY-069 in mouse

Supplementary Figure S20: Total plasma levels of BAY-069 after po and iv administration to Wistar rat
Supplementary Figure S21: Unbound plasma levels of BAY-069 vs. IC50,u after p.o. dosing of 25 & 50 & 100 mg/kg to NMRI nu/nu mice
6. References

1. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallographica Section D 2010, 66, 133-144.
2. Sparta, K. M.; Krug, M.; Heinemann, U.; Mueller, U.; Weiss, M. S. XDSAPP2.0. Journal of Applied Crystallography 2016, 49, 1085-1092.
3. McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J. Phaser crystallographic software. Journal of Applied Crystallography 2007, 40, 658-674.
4. Winn, M. D.; Ballard, C. C.; Cowtan, K. D.; Dodson, E. J.; Emsley, P.; Evans, P. R.; Keegan, R. M.; Krissinel, E. B.; Leslie, A. G.; McCoy, A.; McNicholas, S. J.; Murshudov, G. N.; Pannu, N. S.; Potterton, E. A.; Powell, H. R.; Read, R. J.; Vagin, A.; Wilson, K. S. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 2011, 67, 235-242.
5. Murshudov, G. N.; Skubak, P.; Lebedev, A. A.; Pannu, N. S.; Steiner, R. A.; Nicholls, R. A.; Winn, M. D.; Long, F.; Vagin, A. A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D 2011, 67, 355-367.
6. Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010, 66, 486-501.
7. Schüttelkopf, A. W.; van Aalten, D. M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 2004, 60, 1355-1363.
8. Bertrand, S. M.; Ancellin, N.; Beaufils, B.; Bingham, R. P.; Borthwick, J. A.; Boullay, A. B.; Boursier, E.; Carter, P. S.; Chung, C. W.; Churcher, I.; Dodic, N.; Fouquet, M. H.; Fournier, C.; Francis, P. L.; Guummer, L. A.; Berry, K.; Hobbs, A.; Hobbs, C. I.; Homes, P.; Jamieson, C.; Nicodeme, E.; Pickett, S. D.; Reid, I. H.; Simpson, G. L.; Sloan, L. A.; Smith, S. E.; Somers, D. O.; Spitzfaden, C.; Suckling, C. J.; Valko, K.; Washio, Y.; Young, R. J. The Discovery of in Vivo Active Mitochondrial Branched-Chain Aminotransferase (BCATm) Inhibitors by Hybridizing Fragment and HTS Hits. J Med Chem 2015, 58, 7140-7163.
9. Barca, G. M. J.; Bertoni, C.; Carrington, L.; Datta, D.; De Silva, N.; Deustua, J. E.; Fedorov, D. G.; Gour, J. R.; Gunina, A. O.; Guidez, E.; Harville, T.; Irle, S.; Ivanic, J.; Kowalski, K.; Leang, S. S.; Li, H.; Li, W.; Lutz, J. J.; Magoulas, I.; Mato, J.; Mironov, V.; Nakata, H.; Pham, B. Q.; Piecuch, P.; Poole, D.; Pruitt, S. R.; Rendell, A. P.; Roskop, L. B.; Ruedenberg, K.; Sassathuchanana, T.; Schmidt, M. W.; Shen, J.; Slipchenko, L.; Sosonkina, M.; Sundriyal, V.; Tiwari, A.; Galvez Vallejo, J. L.; Westheimer, B.; Wloch, M.; Xu, P.; Zahariev, F.; Gordon, M. S. Recent developments in the general atomic and molecular electronic structure system. J Chem Phys 2020, 152, 154102.
10. Molecular Operating Environment, 2016.08; Chemical Computing Group Inc.
11. Fedorov, D. G. The fragment molecular orbital method: theoretical development, implementation in GAMESS, and applications. WIREs Comput Mol Sci 2017, 7.
12. Breneman, C. M. W., Kenneth B. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comp Chem 1990, 11.
13. Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004, 47, 1739-1749.
14. Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Pollard, W. T.; Banks, J. L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 2004, 47, 1750-1759.
15. maestro, Schrödinger, LLC.: New York, NY.
16. BIOVIA Pipeline Pilot, Dassault Systèmes: San Diego.
17. Gasteiger, J.; Rudolph, C.; Sadowski, J. Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Computer Methodology 1990, 3, 537-547.
18. **ADMET Predictor, 7.1; Simulations Plus, Inc: Lancaster, CA, 2017.**
19. Schmitt, S.; Kuhn, D.; Klebe, G. A new method to detect related function among proteins independent of sequence and fold homology. *J Mol Biol* **2002**, 323, 387-406.
20. Bouche, L. A.; Kaulfuss, S.; Zimmermann, K.; Rehwinkel, H.; Neuhaus, R.; Hillig, R.; Nguyen, D.; Günther, J.; Faria Alvares De Lemos, C. A. Pyrimidinedione derivatives. WO-2021063821-A1, 2021.
21. Eurofins Panlabs Discovery Services, Taiwan, 2019.