Adaptive Exploration in Linear Contextual Bandits

Botao Hao
Joint work with Tor Lattimore (Deepmind) and Csaba Szepesvari (Deepmind)
Exploration in Contextual Bandit
Exploration in Contextual Bandit

- "Simple" reinforcement learning model.
Exploration in Contextual Bandit

- “Simple” reinforcement learning model.
 - Provide **better principles** to design exploration strategies in RL.
Exploration in Contextual Bandit

- “Simple” reinforcement learning model.
 - Provide **better principles** to design exploration strategies in RL.
 - Synthetic check for sophisticated methods in RL.
Exploration in Contextual Bandit

- “Simple” reinforcement learning model.
 - Provide **better principles** to design exploration strategies in RL.
 - Synthetic check for sophisticated methods in RL.

- Popular model for recommender systems and online advertising.
Motivation

- **Optimism principle** (UCB or Thompson sampling) can be arbitrarily bad!
 - Why? Do not exploit the context structure properly.
 - Do not optimize the trade-off between information and regret.

 Regret: difference between rewards collected by the optimal policy and proposed policy
Motivation

- **Optimism principle** (UCB or Thompson sampling) can be arbitrarily bad!
 - Why? Do not exploit the context structure properly.
 - Do not optimize the trade-off between information and regret.

 Regret: difference between rewards collected by the optimal policy and proposed policy

- Some foundational questions have not been answered yet.
 - How hard is the problem? Dependence of regret on problem structures?
 - Lower bound...
Motivation

- **Optimism principle** (UCB or Thompson sampling) can be arbitrarily bad!
 - Why? Do not exploit the context structure properly.
 - Do not optimize the trade-off between information and regret.

 Regret: difference between rewards collected by the optimal policy and proposed policy

- Some foundational questions have not been answered yet.
 - How hard is the problem? Dependence of regret on problem structures?
 - Lower bound...

Can we design better algorithms for contextual bandits?
Linear Contextual Bandit

- Environment randomly generates a context
- Receives K feature vectors
- Agent chooses action k and receives a reward

Linear Structure

Feature k, θ* + Noise
Foundational Limit: Sharp Lower Bound
Foundational Limit: Sharp Lower Bound

Theorem (informal):
\[
\liminf_{n \to \infty} \frac{\text{Regret}}{\log n} \geq C
\]

where C is optimal value of the following optimization problem,

\[
\min_{\alpha} \sum_{\alpha} \alpha_x \Delta_x \\
\text{subject to } \sqrt{2\|x\|_{G_\alpha^{-1}}} \leq \Delta_x
\]

- Δ_x: sub-optimal gap
- $G_\alpha = \sum \alpha_x x x^T$
Foundational Limit: Sharp Lower Bound

Theorem (informal):

\[\liminf_{n \to \infty} \frac{\text{Regret}}{\log n} \geq C \]

where \(C \) is optimal value of the following optimization problem,

\[
\min_{\alpha} \sum \alpha_x \Delta_x \quad \text{cumulative regret}
\]

subject to \(\sqrt{2\|x\|_{G_\alpha^{-1}}} \leq \Delta_x \quad \text{length of confidence interval} \)

- \(\Delta_x \): sub-optimal gap
- \(G_\alpha = \sum \alpha_x xx^T \)
Foundational Limit: Sharp Lower Bound

Theorem (informal):

$$\liminf_{n \to \infty} \frac{\text{Regret}}{\log n} \geq C$$

where C is optimal value of the following optimization problem,

$$\min_{\alpha} \sum_{x} \alpha_x \Delta_x$$

subject to $\sqrt{2\|x\|_{G_\alpha^{-1}}} \leq \Delta_x$

- Δ_x: sub-optimal gap
- $G_\alpha = \sum \alpha_x xx^T$
Remark

- Asymptotical constant C is sharp.
- The allocation rule depends on the problem structure (action set/true parameter).
- When the action set enjoys some good shapes, C could be zero (sub-logarithm regret/bounded regret).
- The lower bound does not depend on the context distribution.
Foundational Limit: Sharp Lower Bound

Theorem (informal):
\[
\liminf_{n \to \infty} \frac{\text{Regret}}{\log n} \geq C
\]

where C is optimal value of the following optimization problem,

\[
\min_{\alpha} \sum_{x} \alpha_x \Delta_x \quad \text{cumulative regret}
\]

subject to \(\sqrt{2\|x\| G_\alpha^{-1}} \leq \Delta_x \quad \text{length of confidence interval} \)

- \(\Delta_x \): sub-optimal gap
- \(G_\alpha = \sum \alpha_x xx^T \)
Algorithm

ideal

true parameter

$\alpha_{x_1}^*, \alpha_{x_2}^*, \ldots, \alpha_{x_K}^*$
Algorithm
Algorithm

Convex Optimization Problem

\[
\min_{\alpha} \sum \alpha_x \Delta_x \\
\text{subject to } \|x\|_{G_{\alpha}^{-1}} \leq \frac{\Delta_x}{\sqrt{2}}
\]

• Δ_x: sub-optimal gap
• $G_{\alpha} = \sum \alpha_x x x^T$

- Solve the optimization problem with $\hat{\Delta}_x$, denote the solution as $\hat{\alpha}_x$
- Check if $N_x(t) \geq \hat{\alpha}_x \log t$ for all sub-optimal arms

 ($N_x(t)$: number of pulls for arm x)

- if yes, do exploitation/greedy action
- if not, do exploration

Pull arm: $\arg \min_x \frac{N_x(t)}{\hat{\alpha}_x}$

- Update $\hat{\Delta}_x$
Algorithm

Convex Optimization Problem

\[
\min \sum_{\alpha} \alpha_x \Delta_x \\
\text{subject to } \|x\|_{G^{-1}} \leq \frac{\Delta_x}{\sqrt{2}}
\]

- \(\Delta_x\): sub-optimal gap
- \(G_\alpha = \sum \alpha_x x x^T\)

Matching Upper Bound!

- Solve the optimization problem with \(\hat{\Delta}_x\), denote the solution as \(\hat{\alpha}_x\)
- Check if \(N_x(t) \geq \hat{\alpha}_x \log t\) for all sub-optimal arms

\((N_x(t): \text{number of pulls for arm } x)\)

- if yes, do **exploitation/greedy action**
- if not, do **exploration**

Pull arm : \(\text{arg min}_x \frac{N_x(t)}{\hat{\alpha}_x}\)

- Update \(\hat{\Delta}_x\)
Remark

- If the distribution of contexts is well behaved, our algorithm acts mostly greedily and enjoy sub-logarithmic regret. *(adaptive to the good case)*

- Asymptotically, the optimal constant is independent of the context distribution. Designing algorithms that optimize for the asymptotic regret may make huge sacrifices in finite-time!
Experiments

\[d = 2 \text{ and } k = 3 \text{ and } A = \{ \text{apple, orange, watermelon} \} \]

\[\theta^* = (1, 0) \]

\[x_1 = (1, 0), x_2 = (0, 1), x_3 = (1 - u, \gamma u) \]
Experiments

\[\theta^* = (1, 0) \]

\[x_1 = (1, 0), x_2 = (0, 1), x_3 = (1 - u, \gamma u) \]
Limitations and Related Work

Current limitations

- Unclear if the algorithm is minimax optimal
- Need to solve an optimization problem each round

Published Work:

- The End of Optimism? An Asymptotic Analysis of Finite-Armed Linear Bandits (Lattimore and Szepesvari, AISTAT 2016)
- Minimal Exploration in Structured Stochastic Bandits (Combes et al., NIPS 2017)
- Exploration in Structured Reinforcement Learning (Ok et al., NIPS 2018)
thank you!