PARTITIONS INTO POLYNOMIALS WITH NUMBER OF PARTS IN AN ARITHMETIC PROGRESSION

NIAN HONG ZHOU

Abstract

Let $k,a \in \mathbb{N}$ and let $f(x) \in \mathbb{Q}[x]$ be a polynomial with degree $\deg(f) \geq 1$ such that all elements of the sequence $\{f(n)\}_{n \in \mathbb{N}}$ lies on \mathbb{N} and $\gcd(\{f(n)\}_{n \in \mathbb{N}}) = 1$. Let $p_f(n)$ and $p_f(a,k;n)$ denotes the number of partitions of integer n whose parts taken from the sequence $\{f(n)\}_{n \in \mathbb{N}}$ and the number of parts of those partitions are congruent to a modulo k, respectively. We prove that there exist a constant $\delta_f \in \mathbb{R}$, depending only on f such that

$$p_f(a,k;n) = \frac{p_f(n)}{k} \left[1 + O \left(n \exp \left(-\delta f k^2 n \log n \right) \right) \right],$$

holds uniformly for all $a,k,n \in \mathbb{N}$ with $k^{2+2\deg(f)} \ll n$, as n tends to infinity.

1 Introduction and statement of results

1.1 Background

We begin with some standard definitions from the theory of partitions [1]. An partition is a finite non-increasing sequence $\pi_1, \pi_2, \ldots, \pi_m$ such that each π_j is a positive integer. The π_j are called the parts of the partition and the partition $(\pi_1, \pi_2, \ldots, \pi_m)$ will be denoted by π. For a partition π, let $\#(\pi)$ be the number of parts of π and $\sigma(\pi)$ be the sum of the parts of π with the convention $\#(\emptyset) = \sigma(\emptyset) = 0$ for the empty partition \emptyset. We say π is a partition of n if $\sigma(\pi) = n$.

Let $\mathbb{N} = \{1,2,\ldots\}$ be the set of all positive integers. In this paper, if not specially specified, we shall always assume that $f(x) \in \mathbb{Q}[x]$ is a polynomial with degree $\deg(f) \geq 1$ such that all elements of the sequence $\{f(n)\}_{n \in \mathbb{N}}$ lies in \mathbb{N}, and the greatest common divisor of $\{f(n)\}_{n \in \mathbb{N}}$ equals 1, that is $\gcd(\{f(n)\}_{n \in \mathbb{N}}) = 1$. Denoting by \mathcal{P}_f the set all partitions π such that all parts of π belongs to the sequence $\{f(n)\}_{n \in \mathbb{N}}$. Let $p_f(n)$ denote the number of partitions of n whose parts taken from the sequence $\{f(n)\}_{n \in \mathbb{N}}$, i.e.,

$$p_f(n) = \#\{\pi \in \mathcal{P}_f : \sigma(\pi) = n\},$$

then by Andrews [1, Theorem 1.1],

$$G_f(z) := \sum_{n \geq 0} p_f(n)q^n = \prod_{m \in \mathbb{N}} \frac{1}{1 - q^{\sigma(m)}},$$

Here and throughout this section, $q = e^{-z}, z \in \mathbb{C}$ with $\Re(z) > 0$. Let $p_f(m,n)$ denote the number of partitions of n whose parts lies on the sequence $\{f(n)\}_{n \in \mathbb{N}}$ and with exactly m parts, i.e.,

$$p_f(m,n) = \#\{\pi \in \mathcal{P}_f : \#(\pi) = m, \sigma(\pi) = n\}.$$
Also, by Andrews \[1, \text{p. 16}\] we have

\[
\sum_{m,n \geq 0} p_f(m, n) \zeta^m q^n = \prod_{n \in \mathbb{N}} \frac{1}{1 - \zeta q^n},
\]

where \(\zeta \in \mathbb{C}\) and \(|\zeta| < 1/|q|\). Further more, we denote by \(p_f(a, k; n)\) the number of partitions of \(n\) whose parts taken from the sequence \(\{f(n)\}_{n \in \mathbb{N}}\), with the number of parts of those partitions are congruent to \(a\) modulo \(k\), that is to say,

\[
p_f(a, k; n) = \# \left\{ \pi \in \mathcal{P}_f : \frac{o(\pi)}{\#(\pi)} \equiv a \pmod{k} \right\} = \sum_{m \geq 0 \pmod{k}} p_f(m, n).
\]

Determining the values of \(p_f(n)\) has a long history and can be traced back to the work of Euler. The most famous example is when \(f(n) = n\), which is corresponding to the unrestricted integer partitions. In this cases \(p_f(n)\) usually denoted by \(p(n)\). Hardy and Ramanujan \[2\] proved

\[
p(n) \sim \frac{1}{4 \sqrt{3n}} e^{\sqrt{2\pi n}},
\]
as integer \(n \to +\infty\). Let \(f_r(n) = n^r\) with \(r \in \mathbb{N}\), we then obtain the \(r\)-th power partition function \(p_r(n) := p_f(n)\). In \[2, \text{p. 111}\], Hardy and Ramanujan also conjectured that

\[
p_r(n) \sim \frac{c_r n^{r/2} \zeta^{1/2}}{\sqrt{(2\pi)^{1+r}(1+1/r)}} e^{(r+1)c_r n^{1/r}},
\]
as integer \(n \to +\infty\), where \(r \in \mathbb{N}\) and \(c_r = [r^{-2}\zeta(1+1/r)\Gamma(1/r)]^{1/(r+1)}\) with

\[
\zeta(s) = \sum_{n \geq 1} n^{-s},
\]
for \(s \in \mathbb{C}, \Re(s) > 1\), and

\[
\Gamma(s) = \int_{\mathbb{R}_+} t^{s-1} e^{-t} \, dt,
\]
for \(s \in \mathbb{C}, \Re(s) > 0\), are the Riemann zeta function and gamma function, respectively. \[1.2\] has been proved by Wright \[3, \text{Theorem 2}\]. In fact, more precise asymptotics was given in \[2\] for \(p(n)\) and \[3\] for \(p_r(n)\) with any integer \(r \geq 2\).

Such type problems has attracted wide attention of many authors. For the cases of \(\deg(f) = 1\), Rademacher \[4\], Lehner \[5\], Livingood \[6\], Petersson \[7, 8\], Iseki \[9, 10\] and many others, has obtained exact convergent series for certain unrestrict or restrict partition functions \(p_f(n)\). For the cases of \(\deg(f) \geq 2\), some new asymptotic expansions for \(p_f(n)\) have recently established in Vaughan \[11\] and Gafni \[12\] by using Hardy–Littlewood circle method, and in Tenenbaum, Wu and Li \[13\] by using saddle-point method. Berndt, Malik and Zaharescu \[14\] have derived an asymptotic formula for \(p_f(n)\) with \(f(n) = (an - b)^r, a, b \in \mathbb{N}, 1 \leq b < a\) and \(\gcd(a, b) = 1\), that is the restricted partitions in which each part is a \(r\)-th power in an arithmetic progression. Dunn and Robles \[15\] have derived an asymptotic formula for \(p_f(n)\) when \(f\) satisfies certain mild conditions. We note that both \[14\] and \[15\] use the Hardy–Littlewood circle method.
1.2 Main results

In this paper, we determine the asymptotics of \(p_f(a, k; n) \) as \(n \) tends to infinity. The main result of this paper is stated as the following.

Theorem 1.1. For all \(a, k, n \in \mathbb{N} \) with \(k^{2 + 2 \deg(f)} \ll n \), there exist a constant \(\delta_f \in \mathbb{R}_+ \) depending only on \(f \) such that

\[
p_f(a, k; n) = \frac{p_f(n)}{k} \left[1 + O \left(n \exp \left(-\delta_f k^{-2} n^{\frac{1}{1 + \deg(f)}} \right) \right) \right],
\]

as \(n \to \infty \).

The above result immediately gives the following corollary.

Corollary 1.2. For all \(a, k, n \in \mathbb{N} \) such that \(k = o \left(n^{1 \over 2 + 2 \deg(f)} (\log n)^{-1 \over 2} \right) \),

\[
p_f(a, k; n) \sim k^{-1} p_f(n),
\]

as \(n \to \infty \).

We note that the case of \(f(x) = x^2, k = 2 \) of above Corollary 1.2 was conjectured by Bringmann and Mahlburg [16] in their unpublished notes, which was proved by Ciolan [17] in recently, by using a more complicated method.

Notations. The symbols \(\mathbb{Z}, \mathbb{N}, \mathbb{R} \) and \(\mathbb{R}_+ \) denote the integers, the positive integers, the real numbers and the positive real numbers, respectively. \(e(z) := e^{2\pi i z} \) and \(||x|| := \min_{y \in \mathbb{Z}} |y - x| \). If not specially specified, all the implied constants of this paper in \(O \) and \(\ll \) depends only on \(f \).

Acknowledgements. This research was supported by the National Science Foundation of China (Grant No. 11971173).

2 The proof of the main results of this paper

To prove our main theorem, we need the leading asymptotics of \(p_f(n) \). For the \(f \) satisfies the mild hypotheses of [15], the asymptotics for \(p_f(n) \) follows from [15, Theorem 1.1]. However, our hypotheses on \(f \) is more mild than [15]. Thus we shall use a theorem of Richmond [18, Theorem 1.1] to prove

Proposition 2.1. There exist constants \(c_1(f), c_2(f) \in \mathbb{R}_+ \) depending only on \(f \) such that

\[
p_f(n) \sim c_2(f) n^{-1/2 \deg(f)} G_f(x) e^{nx},
\]

as \(n \to +\infty \), with \(x \in \mathbb{R}_+ \) given by

\[
n = \sum_{\ell \in \mathbb{N}} \frac{f(\ell)}{e^f(\ell)x - 1} \sim c_1(f)x^{-1/\deg(f)}.
\]

We next prove the following mean square estimation for the difference between \(p_f(a, k; n) \) and \(k^{-1} p_f(n) \).
Proposition 2.2. For all \(a, k \in \mathbb{N}\), there exist a constant \(\delta'_f \in \mathbb{R}_+\) depending only on \(f\) such that

\[
\sum_{n \geq 0} \left| p_f(a; k; n) - k^{-1} p_f(n) \right|^2 e^{-2an} \ll G_f(x)^2 \exp\left(-2\delta'_f k^{-2} x^{-1/\deg(f)}\right),
\]

as \(x \to 0^+\).

Then, Theorem 1.1 follow from Proposition 2.1 and Proposition 2.2, immediately. In fact, by setting \(x = (c_1(f)/n)\deg(f)/(1+\deg(f))\) given by (2.1), using Proposition 2.1 and Proposition 2.2 for all positive integers \(k\) such that \(k^2 \ll n^{1/(1+\deg(f))}\) implies that

\[
p_f(a; k; n) - \frac{p_f(n)}{k} \ll e^{\max} \left(\sum_{j \geq 0} \left| p_f(a; k; j) - \frac{p_f(j)}{k} \right|^2 e^{-2jx} \right)^{1/2}
\]

\[
\ll e^{\max} G_f(x) \exp(-\delta'_f k^{-2} x^{-1/\deg(f)})
\]

\[
\ll \frac{p_f(n)}{k} \left(kn^{1/2(\deg(f))} \exp(-\delta'_f k^{-2} x^{-1/\deg(f)}) \right)
\]

\[
\ll \frac{p_f(n)}{k} n \exp(-\delta_f k^{-2} n^{-1/\deg(f)}),
\]

holds for some constant \(\delta_f \in \mathbb{R}_+\) depending only on \(f\), as integer \(n \to +\infty\).

3 The proof of Proposition 2.1

In this section we prove Proposition 2.1. We begin with the following definition which arise from Bateman and Erdös [19], and Richmond [18].

Definition 1. Let \(A = \{a_j\}_{j \in \mathbb{N}}\) be an infinite sequence of positive integers. If we remove an arbitrary subset of \(d (d \in \mathbb{N} \cup \{0\})\) elements from the sequence \(A\), the remaining elements have greatest common divisor unity, then we call \(A\) has property \(P_d\). If \(A\) has property \(P_d\) for all nonnegative integer \(d\), then we call \(A\) is a P-sequence.

We then prove

Lemma 3.1. Sequence \(\{f(n)\}_{n \in \mathbb{N}}\) is a P-sequence.

Proof. By the condition on \(f\), we can write \(f(x) = M^{-1} f_0(x)\) with \(M \in \mathbb{N}\), \(f_0(x) \in \mathbb{Z}[x]\) and \(\gcd(\{f_0(n)\}_{n \in \mathbb{N}}) = M\). Then, it is sufficiently to prove that for any \(d (d \in \mathbb{N})\) elements subset \(S_d\) of \(\mathbb{N}\), we have \(\gcd(\{f_0(n)\}_{n \in \mathbb{N}\setminus S_d}) = M\). In fact, since for each \(j \in \{1, 2, \ldots, M\}\) and \(\ell \in \mathbb{N} \cup \{0\}\),

\[
f_0(M\ell + j) \equiv f_0(j) \pmod{M},
\]

we have

\[
\gcd(\{f_0(M\ell + j)\}_{j=1}^M) = \gcd(\{f_0(n)\}_{n \in \mathbb{N}}) = M.
\]

If we take \(\ell = \max\{n : n \in S_d\}\), then

\[
\{f_0(M\ell + j)\}_{j=1}^M \subset \{f_0(M\ell + j)\}_{n \in \mathbb{N}\setminus S_d}.
\]

Hence

\[
M = \gcd(\{f_0(n)\}_{n \in \mathbb{N}}) \leq \gcd(\{f_0(n)\}_{n \in \mathbb{N}\setminus S_d}) \leq \gcd(\{f_0(M\ell + j)\}_{j=1}^M) = M,
\]

which completes the proof of the lemma. \(\square\)
Lemma 3.2. Denoting by \(f(n) = \sum_{j=0}^{\infty} a_j n^j \) with \(a_j \in \mathbb{R}_+ \) and \(\deg(f) = r \in \mathbb{N} \). We have
\[
\sum_{n \in \mathbb{N}, f(n) \leq u} 1 = (u/a_r)^{1/r} + O(u^{1/(2r)}),
\]
as \(u \to +\infty \).

Proof. We have
\[
\sum_{n \in \mathbb{N}, f(n) \leq u} 1 = \sum_{1 \leq n \leq u^{1/(2r)}, f(n) \leq u} 1 + \sum_{n > u^{1/(2r)}, f(n) \leq u} 1
= O(u^{1/(2r)}) + \sum_{n > u^{1/(2r)}} \frac{1}{a_r n^{1/r}}
= O(u^{1/(2r)}) + (u/a_r)^{1/r} \left(1 + O(u^{-1/(2r)})\right) = (u/a_r)^{1/r} + O(u^{1/(2r)}),
\]
which completes the proof.

Lemma 3.3. For each \(j \in \mathbb{Z}_{\geq 0} \), we have
\[
\frac{d^j}{dx^j} \log G_f(x) = e^x \frac{d^j}{dx^j} \log \frac{\zeta(1 + 1/j) \Gamma(1 + 1/j)}{(a_r x)^{1/r}} + O\left(\frac{1}{x^{1+1/(2r)}} \right),
\]
as \(x \to 0^+ \).

Proof. Using Lemma 3.2, and integration by parts for a Riemann–Stieltjes integral we obtain that
\[
\frac{d^j}{dx^j} \log G_f(x) = - \frac{d^j}{dx^j} \sum_{n \in \mathbb{N}} \log(1 - e^{-f(n)x})
= - \int_1^\infty \frac{d^j}{dx^j} \log(1 - e^{-tx}) d \left(\sum_{n \in \mathbb{N}, f(n) \leq t} 1 \right)
= - \int_1^\infty \frac{d^j}{dx^j} \log(1 - e^{-tx}) d \left(\frac{1}{a_r} t^{1/r} + O(t^{1/(2r)}) \right)
= - \frac{1}{a_r^{1/r}} \int_1^\infty \frac{d^j}{dx^j} \log(1 - e^{-ux}) du
+ O_f \left(\left| \log x \right| + \frac{1}{x^j} + \int_1^\infty t^{1/(2r)} \left| \frac{d}{dt} \frac{d^j}{dx^j} \log(1 - e^{-tx}) \right| dt \right)
= - \frac{1}{a_r^{1/r}} \int_0^\infty \frac{d^j}{dx^j} \log(1 - e^{-ux}) du + O \left(x^{j-1/(2r)} \right).
\]

On the other hand,
\[
- \int_0^\infty \log(1 - e^{-ux}) du = \sum_{\ell \geq 1} \int_0^\infty \frac{e^{-\ellux}}{\ell} du
= \sum_{\ell \geq 1} \frac{1}{\ell^{1+1/j} x^{1/r}} \int_0^\infty e^{-ux} du
= \frac{\zeta(1 + 1/j) \Gamma(1 + 1/j)}{x^{1/r}}.
\]
Therefore for each \(j \in \mathbb{Z}_{\geq 0} \),
\[
\frac{d^j}{dx^j} \log G_f(x) = \frac{d^j}{dx^j} \left[(1 + 1/r)\Gamma(1 + 1/r) \right] + \mathcal{O}\left(\frac{1}{x^{1+1/(2r)}} \right),
\]
as \(x \to 0^+ \), which completes the proof of the lemma. \(\square \)

We now prove Proposition \ref{prop:asymptotics}. First of all, it is clear that there exist an integer \(N_f \in \mathbb{N} \) such that \(f(n) \) is strictly monotonically increasing for all \(n \geq N_f \) and \(f(N_f) \geq \max_{1 \leq r < N_f} f(n) \). Hence we can rearrange the sequence \(\{f(n)\}_{n \in \mathbb{N}} \) as \(\{f(n_j)\}_{n \in \mathbb{N}} \) in which \(\{f(n_j)\}_{n \in \mathbb{N}} \) is to be monotonically increasing and \(f(n_j) = f(j) \) for all \(j \geq N_f \). In view of the conditions of \cite[Theorem 1.1]{18}, we denote by \(F(u) \) the number of elements of \(\{f(n_j)\}_{n \in \mathbb{N}} \) which are \(\leq u \). Then as \(u \to \infty \),
\[
F(2u) = \sum_{j \geq 1, f(n_j) \leq 2u} 1 = \sum_{j \geq 1, f(n_j) \leq 2u} 1 \leq \sum_{j \geq 1, f(n_j) \leq u} 1 = \sum_{j \geq 1, f(n_j) \leq u} 1 = F(u),
\]
by using Lemma \ref{lem:recursive}, that is \(\{f(n_j)\}_{n \in \mathbb{N}} \) has property (I) and property (II) described in \cite[p. 390]{18}. From Lemma \ref{lem:log-log} we see that \(\{f(n_j)\}_{n \in \mathbb{N}} \) is a \(P \)-sequence. Further, it is clear that
\[
\limsup_{j \to +\infty} \frac{\log \log f(n_j)}{\log n_j} = \limsup_{j \to +\infty} \frac{\log \log f(j)}{\log j} = 0.
\]
Using \cite[Theorem 1.1]{18}, then the above conditions implies
\[
p_j(n) \sim \frac{G_f(x)}{\sqrt{2\pi A_2(n)}} e^{nx},
\]
as integer \(n \to +\infty \). Here \(x \in \mathbb{R}_+ \) such that
\[
n = \sum_{t \in \mathbb{N}} \frac{f(t)}{e^{(t)x} - 1} \quad \text{and} \quad A_2(n) = \sum_{t \in \mathbb{N}} \frac{f(t)^2 e^{(t)x}}{(e^{(t)x} - 1)^2}.
\]
Then by using Lemma \ref{lem:asymptotics}, we find that
\[
n = -\frac{d}{dx} \log G_f(x) = \frac{\zeta(1 + 1/r)\Gamma(1 + 1/r)}{r a_r^{1/r} x^{1+1/r}} + \mathcal{O}\left(\frac{1}{x^{1+1/(2r)}} \right)
\]
and
\[
A_2(n) = \frac{d^2}{dx^2} \log G_f(x) = \frac{\zeta(1 + 1/r)\Gamma(1 + 1/r)}{r(1 + 1/r)a_r^{1/r} x^{2+1/r}} + \mathcal{O}\left(\frac{1}{x^{2+1/(2r)}} \right),
\]
which completes the proof.

4 The proof of Proposition \ref{prop:asymptotics}

In this section we prove Proposition \ref{prop:asymptotics}. We shall always denote by \(r = \deg(f) \in \mathbb{N} \). We first prove the following Lemma \ref{lem:lemma1} and Lemma \ref{lem:lemma2}.

Lemma 4.1. For all integers \(k, j \in \mathbb{N} \) with \(1 \leq j < k \) and \(y \in \mathbb{R} \),
\[
\int_0^L \sin^2 \left(\pi \left(\frac{j}{k} - f(u)y \right) \right) du \gg \frac{L}{k^2},
\]
as \(L \to +\infty \).
Proof. We just prove the cases of \(y \geq 0 \), and the cases of \(y \leq 0 \) is similar. For each positive \(L \) being sufficiently large, we estimate that

\[
\int_{0}^{\epsilon} \sin^{2} \left(\pi \left(\frac{1}{k} - f(u)y \right) \right) du \geq \int_{0 \leq \|u\| \leq 1/(3k)} \sin^{2} \left(\pi \frac{\|u\|}{3k} \right) du \\
\geq \frac{1}{k^{2}} \int_{0 \leq \|u\| \leq 1/(3k)} du.
\]

Clearly, \(0 \leq |f(u)| \leq f(X) \) holds for all \(u \in [0, X] \) when \(X \) being sufficiently large. Thus for \(y \geq 0 \) such that \(0 \leq yf(L/12) \leq 1/(2k) \),

\[
\int_{0 \leq \|u\| \leq 1/(3k)} du \geq \int_{0 \leq \|u\| \leq 1/(3k)} du = \frac{L}{12}.
\]

For \(y \geq 0 \) such that \(yf(L/12) \geq 1/(2k) \), it is not difficult to find that

\[
\int_{0 \leq \|u\| \leq 1/(3k)} du \geq \int_{L/6 \leq \|u\| \leq 1/(3k)} du \\
\geq \sum_{\ell \in \mathbb{N}, \ell \equiv (\mod k)} \int_{|f(u)y - \ell| \leq \frac{1}{k}} \frac{1}{yf(u)} d\left(yf(u) + \frac{\ell}{k}\right),
\]

holds for all positive sufficiently large \(L \). Notice that \(yf'(u) \sim \frac{y}{u}f(u) \) if \(u \to \infty \), then we have

\[
\int_{0 \leq \|u\| \leq 1/(3k)} du \gg \sum_{\ell \in \mathbb{N}, \ell \equiv (\mod k)} \int_{|f(u)y - \ell| \leq \frac{1}{k}} \left(\frac{1}{1/L(\ell/k)k} \right) d\left(yf(u) - \frac{\ell}{k}\right) \\
= L \sum_{\ell \in \mathbb{N}, \ell \equiv (\mod k)} \frac{k}{Lk} \gg L \sum_{\ell \in \mathbb{N}, \ell \equiv (\mod k)} \frac{1}{Lk}.
\]

Since \(A := kyf(L/3) = 4'(1 + O(1/L))kyf(L/12) \geq 2'(1 + O(1/L)) \), thus it is not difficult to prove that

\[
\sum_{\ell \in \mathbb{N}, \ell \equiv (\mod k)} \frac{1}{Lk} \gg 1,
\]

holds uniformly for all \(A \geq 1 \), as \(L \to +\infty \). Therefore,

\[
\int_{0 \leq \|u\| \leq 1/(3k)} du \gg L.
\]

holds for all \(y \geq 0 \) such that \(yf(L/12) \geq 1/(2k) \). This completes the proof. \(\square \)

Lemma 4.2. For each integer \(h \geq 2 \) and each integer \(d \in \mathbb{Z} \) with \(\gcd(h,d) = 1 \), we have

\[
\left| \frac{1}{h} \sum_{|j| \leq h} e^{\left(f(j) \frac{d}{h} \right)} \right|^{2} \leq 1 - \frac{4}{h^{2}} \sin^{2} \left(\frac{\pi}{h} \right),
\]
Proof. We compute that
\[
\left| \frac{1}{h} \sum_{1 \leq j \leq h} e \left(f(j) \frac{d}{h} \right) \right|^2 = \frac{1}{h^2} \left(1 + 2 \sum_{1 \leq j \leq h} \cos \left(2\pi f(j) \frac{d}{h} \right) + \frac{1}{h^2} \left| \sum_{1 \leq j \leq h} e \left(f(j) - f(h) \right) \frac{d}{h} \right|^2 \right)
\]
\[
\leq \frac{1}{h^2} \left(1 + 2 \sum_{1 \leq j \leq h} \cos \left(2\pi f(j) - f(h) \right) \frac{d}{h} \right) + (h - 1)^2 \leq \frac{1}{h^2} \left(h^2 - 4 \sum_{1 \leq j \leq h} \sin^2 \left(\frac{\pi f(j) - f(h)}{h} \right) \right).
\]
On the other hand, since gcd \(\left(f(j) \right) \in \mathbb{N} \) = 1, it is clear that there exist an integer \(j_0 \in [1, h) \) such that \(f(j_0) - f(h) \equiv 0 \mod h \). Therefore,
\[
\left| \frac{1}{h} \sum_{1 \leq j \leq h} e \left(f(j) \frac{d}{h} \right) \right|^2 \leq 1 - \frac{4}{h^2} \sin^2 \left(\frac{\pi f(j_0) - f(h)}{h} \right) \leq 1 - \frac{4}{h^2} \sin^2 \left(\frac{\pi}{h} \right),
\]
by note that gcd(h, d) = 1. This completes the proof. \(\square \)

By the well known Weyl’s inequality, we prove

Lemma 4.3. Let \(y \in \mathbb{R}, h, d \in \mathbb{Z} \) with \(h \geq 1 \) and gcd(h, d) = 1 such that
\[
\left| y - \frac{d}{h} \right| < \frac{1}{h^2}.
\]
We have there exist a constant \(C_f \in \mathbb{N} \) depending only on \(f \) such that if \(h > C_f \) then
\[
\left| \sum_{1 \leq n \leq L} e(f(n)y) \right| \leq L^{1-2^{-\varepsilon r} + 1} + Lh^{-2^{-r}}.
\]

Proof. Denoting by \(f(n) = (b/a)n^r + a_{r-1}n^{r-1} + \ldots \) with \(a, b \in \mathbb{N} \) and gcd(a, b) = 1. By Weyl’s inequality (see [20, Lemma 20.3]), since \(f(an + j) = ba^{r-1}n^r + (ra^{r-2}j + a_{r-1}a^{r-1})n^{r-1} + \ldots \) and \(|y - d/h| \leq 1/h^2 \), we have
\[
\sum_{1 \leq n \leq L} e(f(n)y) = \sum_{1 \leq j \leq a} \sum_{\substack{1 \leq n \leq L \\text{mod} \ n + j \leq L}} e(f(an + j)y)
\[
\ll \varepsilon \sum_{1 \leq j \leq a} \left((L - j)/a \right)^{1+\varepsilon} \left(h^{-1} + (L - j)/a \right)^{-1} + h(L - j)/a \right)^{2^{-r}}
\]
that is,
\[
\sum_{1 \leq n \leq L} e(f(n)y) \ll \varepsilon \left(L^{1+\varepsilon}h^{-1} + L^{-1} + hL^{-r} \right)^{2^{-r}} \ll L^{1-2^{-\varepsilon r} + 1/2}, \quad (4.1)
\]
holds for all integer $h \in (L^{1/2}, L^{-1}]$. Also, by [20, Corollary 20.4]),
\[\sum_{1 \leq j \leq h} e \left(f(j) \frac{d}{h} \right) \ll h^{1-2^{1-r}} \ll h^{-2^{1-r}}, \tag{4.2} \]
holds for all positive integers h. On the other hand, by [20, Equation 20.32] we have
\[\sum_{1 \leq n \leq L} e (f(n)y) = \frac{1}{h} \sum_{1 \leq j \leq h} e \left(f(j) \frac{d}{h} \right) \int_{0}^{L} e \left(f(u) \left(y - \frac{d}{h} \right) \right) du + O(h). \tag{4.3} \]
Combining (4.2) we obtain
\[\sum_{1 \leq n \leq L} e (f(n)y) \ll h^{-2^{r-1}} L + h \ll h^{-2^{r-1}} L, \]
holds for all positive integers $h \leq L^{1/2}$. Thus by above and (4.1) we have there exist a constant $C_f \in \mathbb{N}$ depending only on f such that if $h > C_f$ then
\[\sum_{1 \leq n \leq L} e (f(n)y) \leq h^{-2^{r-1}} L + L^{1-2^{r-1}}. \]
This completes the proof of the lemma. \hfill \Box

From above Lemma 4.1–Lemma 4.3 we have

Lemma 4.4. Let $k, j, L \in \mathbb{N}$ with $1 \leq j < k$. We have
\[\text{Re} \sum_{1 \leq n \leq L} \left[1 - e \left(\frac{i}{k} - f(n)y \right) \right] \gg k^{-2} L, \]
holds uniformly for all real number y and integers k, j, as $k^{-2} L \to +\infty$.

Proof. By the well known Dirichlet’s approximation theorem, for any real number y and positive integer L being sufficiently large, there exist integers d and h with $0 < h \leq L^{-1}$ and $\gcd(h, d) = 1$ such that
\[\left| y - \frac{d}{h} \right| < \frac{1}{h L^{r-1}}. \tag{4.4} \]
We prove the lemma by considering the following two cases.

For any real number y satisfy the approximation (4.4) with $(h, d) = (1, 0)$, that is $|y| \leq L^{1-r}$, we have
\[\text{Re} \sum_{1 \leq n \leq L} \left[1 - e \left(\frac{i}{k} - f(n)y \right) \right] = L - \Re \left(\frac{i}{k} \sum_{1 \leq n \leq L} e (f(n)y) \right) \]
\[= L - \Re \left(\int_{0}^{L} e \left(f(u)y \right) du + O(1) \right) \]
\[= 2 \int_{0}^{L} \sin^2 \left(\pi \left(\frac{i}{k} - f(u)y \right) \right) du + O(1) \]
\[\gg k^{-2} L, \tag{4.5} \]
holds for all k, L such that $k^{-2}L \to \infty$, by using (4.3) and Lemma 4.1.

For any real number y satisfy the approximation (4.4) with $h \geq 2$, using (4.3) and Lemma 4.2 we have

$$\left| \sum_{1 \leq n \leq L} e^k (f(n)) \right| \leq \left| \frac{1}{h} \sum_{1 \leq j \leq h} e^{f(j) \frac{a_j}{K}} \right| L + O(h) \leq L \left(1 - \frac{c_1}{h^2} \right) + O(h).$$

(4.6)

holds for some absolute constant $c_1 > 0$. Moreover, there exist a constant $C_f \in \mathbb{N}$ depending only on f such that if $h > C_f$ then

$$\left| \sum_{1 \leq n \leq L} e^k (f(n)) \right| \leq L^{1-2\gamma-1} + L h^{-2\gamma}.$$

(4.7)

The use of (4.6) and (4.7) yields there exist a constant $c_f \in (0, 1)$ depending only on f such that

$$\left| \sum_{1 \leq n \leq L} e^k (f(n)) \right| \leq (1 - c_f)L,$$

holds for all positive sufficiently large L. Thus we obtain that,

$$\Re \left[\sum_{1 \leq n \leq L} 1 - e^{f(n)} \right] \geq L - \left| \sum_{1 \leq n \leq L} e(f(n)) \right| \geq c_f L \gg L.$$

(4.8)

Combining (4.5) and (4.8), the proof follows. \hfill \Box

We now give the proof of Proposition 2.2. By the orthogonality of roots of unity, it is easy to find that

$$\sum_{n \geq 0} p_j(a, k; n)q^n = \frac{1}{k} \sum_{0 \leq j \leq k} e^{(-a)j/k} \prod_{n \geq 1} \frac{1}{1 - e^{(j/k)q^n}}.$$

This means

$$\sum_{n \geq 0} \left(p_j(a, k; n) - \frac{p_j(n)}{k} \right)q^n = \frac{1}{k} \sum_{1 \leq j \leq k} e^{(-a)j/k} \prod_{n \geq 1} \frac{1}{1 - e^{(j/k)q^n}}.$$

Thus for all $x > 0$,

$$E_{j, k, a}(x) := \sum_{n \geq 0} |p_j(a, k; n) - k^{-1}p_j(n)| e^{-2nx}$$

$$= \int_{-1/2}^{1/2} \left| \sum_{n \geq 0} (p_j(a, k; n) - k^{-1}p_j(n)) e^{-ny} \right|^2 dy$$

$$= \int_{-1/2}^{1/2} \left| \frac{1}{k} \sum_{1 \leq j \leq k} e^{(-a)j/k} \prod_{n \geq 1} \frac{1}{1 - e^{(-f(n))x}} e^{(j/k - f(n)y)} \right|^2 dy$$

$$\leq \prod_{n \geq 1} \frac{1}{(1 - e^{f(n)x})^2} \max_{1 \leq j \leq k} \int_{-1/2}^{1/2} \left| \prod_{n \geq 1} \frac{1 - e^{(-f(n)x)}}{1 - e^{(-f(n)x)} e^{(j/k - f(n)y)}} \right|^2 dy$$

$$= G_j(x)^2 \frac{\max_{1 \leq j \leq k} \int_{-1/2}^{1/2} \exp \left(-F_{j, k, a}(x, y) \right) dy}.$$
where
\[
F_{f,k,j}(x, y) = -\log \left| \prod_{n \geq 1} \frac{1 - e^{-f(n)\ell}}{1 - e^{-f(n)x}(j/k - f(n)y)} \right|^2 \\
= 2 \sum_{n,f \geq 1} \frac{e^{-f(n)\ell}}{\ell} \Re \left[1 - e\left(\ell \left(\frac{j}{k} - f(n)y \right) \right) \right].
\]

(4.9)

We note that,
\[
F_{f,k,j}(x, y) \geq 2 \sum_{n \geq 1} e^{-f(n)x} \Re \left[1 - e\left(\frac{j}{k} - f(n)y \right) \right] \\
\geq \frac{2}{e^{f(x-1/r)}} \Re \sum_{1 \leq n \leq e^{r}} \left[1 - e\left(\frac{j}{k} - f(n)y \right) \right] \\
\gg \Re \sum_{1 \leq n \leq e^{r}} \left[1 - e\left(\frac{j}{k} - f(n)y \right) \right].
\]

Further, by use of Lemma 4.4 and (4.9) implies that there exist a constant \(\delta_f' \in \mathbb{R} \) depending only on \(f \) such that
\[
\min_{1/2 \leq y \leq 1/2} F_{f,k,j}(x, y) \geq \begin{cases}
0 & \text{if } k^{-2}x^{-1/r} = \mathcal{O}(1), \\
2\delta_f'k^{-2}x^{-1/r} & \text{if } k^{-2}x^{-1/r} \to +\infty.
\end{cases}
\]

Therefore,
\[
E_{f,k,a}(x) \ll G_f(x)^2 \exp \left(-\min_{1 \leq j < k} F_{f,k,j}(x, y) \right) \ll G_f(x)^2 \exp \left(-2\delta_f'k^{-2}x^{-1/r} \right),
\]
as \(x \to 0^+ \). This completes the proof of Proposition 2.2.

References

[1] George E. Andrews. The theory of partitions. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. Encyclopedia of Mathematics and its Applications, Vol. 2.

[2] G. H. Hardy and S. Ramanujan. Asymptotic Formulae in Combinatory Analysis. Proc. London Math. Soc. (2), 17:75–115, 1918.

[3] E. Maitland Wright. Asymptotic partition formulae. III. Partitions into \(k \)-th powers. Acta Math., 63(1):143–191, 1934.

[4] Hans Rademacher. On the Partition Function \(p(n) \). Proc. London Math. Soc. (2), 43(4):241–254, 1937.

[5] Joseph Lehner. A partition function connected with the modulus five. Duke Math. J., 8:631–655, 1941.
On asymptotics of partitions into polynomials

[6] John Livingood. A partition function with the prime modulus $P > 3$. *Amer. J. Math.*, 67:194–208, 1945.

[7] Hans Petersson. Über Modulfunktionen und Partitionenprobleme. *Abh. Deutsch. Akad. Wiss. Berlin. Kl. Math. Allg. Nat.*, 1954(2):59, 1954.

[8] Hans Petersson. Über die arithmetischen Eigenschaften eines Systems multiplikativer Modulfunktionen von Primzahlstufe. *Acta Math.*, 95:57–110, 1956.

[9] Shō Iseki. Partitions in certain arithmetic progressions. *Amer. J. Math.*, 83:243–264, 1961.

[10] Shō Iseki. A partition function with some congruence condition. *Amer. J. Math.*, 81:939–961, 1959.

[11] Robert C. Vaughan. Squares: additive questions and partitions. *Int. J. Number Theory*, 11(5):1367–1409, 2015.

[12] Ayla Gafni. Power partitions. *J. Number Theory*, 163:19–42, 2016.

[13] Gérard Tenenbaum, Jie Wu, and Ya-Li Li. Power partitions and saddle-point method. *J. Number Theory*, 204:435–445, 2019.

[14] Bruce C. Berndt, Amita Malik, and Alexandru Zaharescu. Partitions into kth powers of terms in an arithmetic progression. *Math. Z.*, 290(3-4):1277–1307, 2018.

[15] Alexander Dunn and Nicolas Robles. Polynomial partition asymptotics. *J. Math. Anal. Appl.*, 459(1):359–384, 2018.

[16] K. Bringmann and Mahlburg K. Transformation laws and asymptotics for nonmodular products. *unpublished preprint*.

[17] Alexandru Ciolan. Asymptotics and inequalities for partitions into squares. to appear in *Int. J. Number Theory*.

[18] L. B. Richmond. Asymptotic relations for partitions. *J. Number Theory*, 7(4):389–405, 1975.

[19] P. T. Bateman and P. Erdős. Monotonicity of partition functions. *Mathematika*, 3:1–14, 1956.

[20] Henryk Iwaniec and Emmanuel Kowalski. *Analytic number theory*, volume 53 of *American Mathematical Society Colloquium Publications*. American Mathematical Society, Providence, RI, 2004.

School of Mathematical Sciences, East China Normal University
500 Dongchuan Road, Shanghai 200241, PR China
nianhongzhou@outlook.com

12