Internal optical loss and light-current characteristic in injection lasers

Zinaida N Sokolova1, Nikita A Pikhtin1, Sergey O Slipchenko1 and Levon V Asryan2

1 Ioffe Institute, St. Petersburg, 194021, Russia
2 Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

asryan@vt.edu

Abstract. Possibility of tailoring the light-current characteristic (LCC) shape in quantum dot (QD) lasers by varying uniformity of QDs is discussed. Making the QD ensemble less uniform results in roll-over in the LCC. The second branch in the LCC appears with making the QD ensemble even less uniform.

1. Introduction

Internal optical loss that is inherent in semiconductor lasers combines different processes of unwanted photon loss as opposed to mirror loss – on purpose output of photons through the cavity mirrors. While the mirror loss presents the useful optical output from semiconductor lasers, the internal loss is undesired as it consumes the photons emitted during the laser action.

In this paper, the effect of uniformity of quantum dots (QDs) on the light-current characteristic (LCC) in QD lasers is discussed in the presence of internal optical loss. While diode lasers have been extensively studied both experimentally and theoretically before (see, e.g., a review article [1]), a new interesting feature has been however predicted in [2]-[4]: in the presence of internal optical loss that depends on the charge carrier density, roll-over of the LCC can occur. The more so, the second branch can appear in the LCC in addition to the first ‘conventional’ branch. Here we discuss the possibility of tailoring the LCC shape in QD lasers in the presence of internal optical loss by varying uniformity of QDs.

2. Theoretical model

Our theoretical analysis is based on rate equations that describe the dynamics of charge carries and photons in the laser. In the simplest case, we use a set of three equations – two for carriers [free carriers in the optical confinement layer (OCL) and confined carriers in QDs] and one for photons.

The equations for carriers are

\[
\frac{b \partial n_{\text{OCL}}}{\partial t} = \frac{j}{e} + N_S f_n \frac{1}{\tau_{\text{esc}}} - v_{\text{capt,0}}(1 - f_n) n_{\text{OCL}} - bB_{3D} n_{\text{OCL}}^2,
\]

\[N_S \frac{\partial f_n}{\partial t} = v_{\text{capt,0}}(1 - f_n) n_{\text{OCL}} - N_S f_n \frac{1}{\tau_{\text{esc}}} - N_S f_n^2 \frac{1}{\tau_{\text{QD}}} - c_b g_{\text{max}} (2f_n - 1)n_{\text{ph}},\]
Table 1. Physical quantities entering in eqs. (1)-(3).

Notation	Meaning
\(n_{\text{OCL}} \)	Free carrier density in the OCL
\(f_n \)	Occupancy of the energy level in a QD by a charge carrier
\(n_{\text{ph}} \)	Density of emitted photons (per unit area of the laser heterointerface)
\(j \)	Injection current density
\(e \)	Electron charge
\(N_S \)	Surface density of QDs
\(\tau_{\text{esc}} \)	Thermal escape time of charge carriers from an individual QD to the OCL
\(v_{\text{capt},0} \)	Velocity of carrier capture into an unoccupied (at \(f_n = 0 \)) QD ensemble (in cm/s)
\(b \)	Thickness of the OCL
\(B_{\text{3D}} \)	Spontaneous radiative recombination constant for the bulk (OCL) region (in cm\(^3\)/s)
\(\tau_{\text{QD}} \)	Spontaneous radiative lifetime in a QD
\(c_g \)	Group velocity of light
\(g_{\text{max}} \)	Maximum modal gain (cm\(^{-1}\))
\(\beta \)	Mirror loss coefficient (in cm\(^{-1}\))
\(\alpha_{\text{int}} \)	Internal optical loss coefficient (in cm\(^{-1}\))

The equation for photons is

\[
\frac{\partial n_{\text{ph}}}{\partial t} = c_g g_{\text{max}} (2 f_n - 1)n_{\text{ph}} - c_g (\beta + \alpha_{\text{int}})n_{\text{ph}}. \tag{3}
\]

The parameters entering in eqs. (1)-(3) are described in table 1.

The internal optical loss coefficient in (3) is presented as

\[
\alpha_{\text{int}} = \alpha_0 + \sigma_{\text{int}} n_{\text{OCL}}, \tag{4}
\]

where \(\alpha_0 \) is its constant component and \(\sigma_{\text{int}} \) is its the cross-section.

Solving the set of eqs. (1)-(3) at the steady-state, we then find the emitted optical power as follows:

\[
P = h \omega c_g \beta S n_{\text{ph}}, \tag{5}
\]

where \(h \omega \) is the emitted photon energy and \(S \) is the cross-section area of the laser heterointerface.

Calculations show that in the presence of internal optical loss that depends on the charge carrier density in the OCL [eq. (4)], roll-over of the LCC can occur at high pump currents and the second branch can appear in the LCC in addition to the conventional branch.

The second branch appears in the LCC if the following condition satisfies:

\[
\frac{\sigma_{\text{int}} v_{\text{capt},0}}{2 b B_{\text{3D}} g_{\text{max}}} > 1. \tag{6}
\]

Varying each of the parameters entering in (6) can result in single-to-double branch transformation of the LCC. In [4], the cross-section of internal optical loss \(\sigma_{\text{int}} \) was varied in QD lasers; in [5], the thickness of the OCL \(b \) was varied in quantum well (QW) lasers; in [6], the capture velocity \(v_{\text{capt},0} \) was varied in QW lasers; and in [7], the temperature was varied in QW lasers (the spontaneous radiative
recombination constant B_{3D} entering in (6) is a function of temperature – see [8, 9]). In all these cases, the transformation of the LCC shape from single-to-double branch was shown to occur.

Here, we discuss the transformation of the LCC shape in QD lasers as the QD uniformity is changed.

![Graphs showing LCC of QD lasers for different values of RMS QD-size fluctuations.](image)

Figure 1. LCC of the QD laser for different values of the RMS of relative QD-size fluctuations δ. The corresponding values of the modal gain g_{max} are also presented. InGaAsP-based structure emitting near 1.55 μm is considered [11, 13]. The internal loss cross-section $\sigma_{\text{int}} = 2 \times 10^{-18}$ cm2, and the constant component of the internal loss $\alpha_0 = 2$ cm$^{-1}$.

3. Effect of uniformity of QDs on the LCC shape

Self-assembled QDs are never identical in laser structures – they are primarily different in their sizes. The QD-size dispersion causes fluctuations in the quantized energy levels and leads to broadening in the optical transition energy (inhomogeneous line broadening [8]). Due to nonuniformity of QDs the maximum gain of the laser decreases [8], threshold current increases [8] and becomes more sensitive to temperature (the characteristic temperature decreases) [10], multimode generation threshold decreases [11], internal differential efficiency and output power both decrease [12].

Denoting δ the root mean square (RMS) of relative QD-size fluctuations, the maximum modal gain of a QD laser can be presented as follows [8]:

$$g_{\text{max}} \propto \frac{1}{\delta}.$$ \hspace{1cm} (7)

As seen from (7), g_{max} decreases with increasing δ. Hence it follows from (6) and (7) that the condition for appearing the second branch in the LCC should become satisfied with increasing RMS of QD-size fluctuations, i.e., making the QD ensemble less uniform.

As shown in figure 1(a), at small fluctuations in QD sizes [the case of high modal gain – see (7)], the output power increases with the pump current over the entire range of interest.

At larger fluctuations in QD sizes, the slope efficiency changes from positive to negative with increasing pump current [figure 1(b)]; the output power goes continuously to zero, which marks the stop of lasing. In what follows, such a shape of the LCC is referred to as a ‘conventional’ roll-over to distinguish from the case of strongly nonuniform QDs.

With further increasing RMS of relative QD-size fluctuations up to a certain value, the LCC retains a conventional roll-over shape. Above that value of the RMS, the LCC transforms qualitatively [figure 1(c)]. The stop of lasing with increasing injection current occurs now at a nonvanishing output power: at the maximum operating current, the conventional branch of the LCC (solid portion of the curve) is detached from the X-axis. This upper branch of the LCC is now continued by the second, lower, branch (dashed portion of the curve); in general, with reducing the pump current the output power can follow either the upper (conventional) or lower branch. Experimental observation of the
quenching of lasing at a nonvanishing output power in diode lasers can suggest the presence of carrier-density-dependent internal loss and, in the case of QD lasers, large QD-size dispersion.

4. Conclusions
Possibility of tailoring the LCC shape in QD lasers by varying uniformity of QDs has been discussed. Making the QD ensemble less uniform has been shown to result in roll-over in the LCC. The second branch in the LCC has been shown to appear with making the QD ensemble even less uniform.

Acknowledgments
Z.N.S., N.A.P., and S.O.S. thank the federal program of the Ioffe Institute, and L.V.A. thanks the U.S. Army Research Office (Grant No. W911NF-17-1-0432) for support of this work.

References
[1] Alferov Zh I 2001 Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology Rev. Mod. Phys. 73 767-82
[2] Asryan L V and Luryi S 2003 Two lasing thresholds in semiconductor lasers with a quantum-confined active region Appl. Phys. Lett. 83 5368-70
[3] Asryan L V and Luryi S 2004 Effect of internal optical loss on threshold characteristics of semiconductor lasers with a quantum-confined active region IEEE J. Quantum Electron. 40 833-43
[4] Asryan L V 2006 Maximum power of quantum dot laser versus internal loss Appl. Phys. Lett. 88 073107
[5] Sokolova Z N, Pikhtin N A and Asryan L V 2018 Two-valued characteristics in semiconductor quantum well lasers J. Lightw. Technol. 36 2295-300
[6] Sokolova Z N, Pikhtin N A and Asryan L V 2019 Evolution of light-current characteristic shape in high-power semiconductor quantum well lasers Electron. Lett. 55 550-2
[7] Sokolova Z N, Pikhtin N A, Slipchenko S O and Asryan L V 2020 Temperature-induced single-to-double branch transformation of operating characteristics in semiconductor lasers with a low-dimensional active region Proc. SPIE 11301 113010D
[8] Asryan L V and Suris R A 1996 Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser Semicond. Sci. Technol. 11 554-67
[9] Asryan L V 2005 Spontaneous radiative recombination and nonradiative Auger recombination in quantum-confined heterostructures Quantum Electron. 35 1117-20
[10] Asryan L V and Suris R A 1997 Characteristic temperature of quantum dot laser Electron. Lett. 33 1871-2
[11] Asryan L V and Suris R A 1999 Spatial hole burning and multimode generation threshold in quantum-dot lasers Appl. Phys. Lett. 74 1215-7
[12] Asryan L V, Luryi S and Suris R A 2002 Intrinsic nonlinearity of the light-current characteristic of semiconductor lasers with a quantum-confined active region Appl. Phys. Lett. 81 2154-6
[13] Jiang L and Asryan L V 2006 Excited-state-mediated capture of carriers into the ground state and the saturation of optical power in quantum-dot lasers IEEE Photon. Technol. Lett. 18 2611-3