Medical Microbiology

Brazilian borreliosis with special emphasis on humans and horses

Roberta Carvalho Basilea,*, Natalino Hajime Yoshinarib, Elenice Mantovanib, Virgínia Nazário Bonoldib, Delphim da Graça Macorisa, Antonio de Queiroz-Netoa

a Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, SP, Brazil
b Universidade de São Paulo, Departamento de reumatologia, São Paulo, SP, Brazil

\textbf{Article Info}

Article history:
Received 5 November 2015
Accepted 20 May 2016
Available online 4 October 2016
Associate Editor: Miliane Moreira Soares de Souza

Keywords:
\textit{Borrelia burgdorferi}
Zoonosis
Ticks
Equine
Baggio-Yoshinari Syndrome

\textbf{Abstract}

Borreliosis caused by \textit{Borrelia burgdorferi} sensu lato is a cosmopolitan zoonosis studied worldwide; it is called Lyme disease in many countries of the Northern Hemisphere and Lyme-like or Baggio-Yoshinari Syndrome in Brazil. However, despite the increasing number of suspect cases, this disease is still neglected in Brazil by the medical and veterinary communities. Brazilian Lyme-like borreliosis likely involves capybara as reservoirs and \textit{Amblyomma} and \textit{Rhipicephalus} ticks as vectors. Thus, domestic animals can serve as key carriers in pathogen dissemination. This zoonosis has been little studied in horses in Brazil. The first survey was performed in the state of Rio de Janeiro, and this Brazilian Borreliosis exhibits many differences from the disease widely described in the Northern Hemisphere. The etiological agent shows different morphological and genetic characteristics, the disease has a higher recurrence rate after treatment with antibiotics, and the pathogen stimulates intense symptoms such as a broader immune response in humans. Additionally, the Brazilian zoonosis is not transmitted by the \textit{Ixodes ricinus} complex. With respect to clinical manifestations, Baggio-Yoshinari Syndrome has been reported to cause neurological, cardiac, ophthalmic, muscle, and joint alterations in humans. These symptoms can possibly occur in horses. Here, we present a current panel of studies involving the disease in humans and equines, particularly in Brazil.

\textcopyright 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Lyme disease (LD) or Lyme borreliosis (LB) is the most common tick-borne disease in temperate regions of the Northern Hemisphere and is caused by the spirochete \textit{Borrelia burgdorferi} sensu lato.1 LD is a multistage disease that can affect multiple organs but in humans manifests predominantly in the skin, joints, and nervous system.2

* Corresponding author.
E-mail: basile.roberta@gmail.com (R.C. Basile).
http://dx.doi.org/10.1016/j.bjm.2016.09.005
1517-8382/© 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

\textbf{History}

In 1976, children in a geographical region of the United States, specifically near the town of Lyme, Connecticut, were affected by a mysterious syndrome1 that was initially diagnosed as
juvenile rheumatoid arthritis. In 1981, the entomologist and physician Willy Burgdorfer, along with Alan Barbour and Jorge Benach, found a spirochete in the midgut of ticks of the genus Ixodes in an area of New York, a known endemic focus of LD. The researchers cultured samples from ticks in a culture medium developed for growing the relapsing fever spirochete (B. hermsii) and found a new species of Borrelia, subsequently named B. burgdorferi. Later, the same bacterium was isolated and cultivated from the blood of patients with LD.

The diseases termed Lyme borrelioses are known to be caused by a large number of species related to B. burgdorferi, which are called B. burgdorferi sensu lato. Of the 34 existing Borrelia spp., 20 are referred to as Borrelia burgdorferi sensu lato and cause LD, which is transmitted by ticks of the genus Ixodes. Of these 20 species, only nine have been isolated from humans in the Northern Hemisphere (B. afzelii, B. bavariensis, B. bissetti, B. burgdorferi stricto sensu, B. garinii, B. kurtzenbachii, B. lusitaniae, B. spielmani, and B. valaisiana).

The first isolation of B. burgdorferi sensu lato in the Southern Hemisphere was performed by Barbieri et al. in Uruguay from I. pararicinus ticks. Thereafter, the bacterium was also identified in Argentina and Chile, where it was named B. chilensis. All three isolations revealed the bacterium in ticks of the I. ricinus complex using amplification of the 16S ribosomal gene, 5S-23S intergenic spacer, and flagellin gene (fla) for species identification.

B. burgdorferi sensu lato is a highly invasive gram-negative spirochete. Its pathogenicity depends on its mobility, cytotoxicity, antigenic variability, lymphocyte stimulation, and resistance to complement activation in the absence of specific antibodies.

Transmission

The pathogen is mainly transmitted by ticks of the I. ricinus complex. However, there are reports of B. burgdorferi s.l. transmission by Amblyomma americanum in Florida and Georgia in the United States. It has also been identified in Dermacentor nitens in the state of Paraná, Brazil.

The bacteria can infect the tick when it feeds on an infected reservoir host. After molting to the nymph stage, the ticks are able to transmit the pathogen to the animal from which it obtains its next blood meal. As transstadial transmission is not always successful, transmission of the bacteria is ensured by an enzootic cycle in which the tick feeds on various vertebrate hosts.

The spirochetes are deposited into the bite wound along with the tick saliva. For infection to succeed, the tick must feed for at least 24 h adlhered to the host, a period after which there is reduced expression of Outer Surface Proteins A and B (Ospa and Ospb) and increased expression of Outer Surface Protein C (OspC). OspAs and OspBs are lipoproteins essential for the survival of Borrelia spp. in the tick midgut. OspC is crucial for establishing infection in the invertebrate host because the protein allows the bacteria to migrate from the tick midgut to the salivary glands, where they will be carried with the saliva to the vertebrate host. OspC also has an important role in the vertebrate host because it induces immunosuppression, thereby favoring infection. Tilly and co-workers found that bacteria lacking OspC do not establish infection in mice by either bacterial inoculation via injection or by tick bite.

Immune response

In the vertebrate host, Borrelia spp. are recognized by several mechanisms of the immune response, including the complement system and diverse innate immune cells. Despite being classified as gram negative, B. burgdorferi does not produce lipopolysaccharide (LPS) but does express OspC in vertebrates. Recognition of Borrelia spp. by dendritic cells leads to maturation of these cells and triggers transcription of a large set of genes, such as those expressing chemokines, apoptosis inhibitors, matrix metalloproteases, and a large subset of cytokines, including proinflammatory mediators, neutrophils attractants, immunomodulatory cytokines.

Following antigen presentation by dendritic cells, Th1 and Th2 lymphocyte helper T cells initiate the adaptive response, promoting the release of interferon IFN-γ and interleukin IL-4, which are directly related to the severity of acute symptoms. Subsequently, the cytokines released by Th1 cells induce B-lymphocyte proliferation of and, consequently, immunoglobulin production.

Although the immune system attempts to prevent Borrelia infection, the spirochete has its own mechanisms to avoid host defenses. Components of the tick’s saliva (such as Salp15) are known to be able to suppress the dendritic cell response, increasing the pathogenic virulence of Borrelia. The spirochetes can also inactivate the host complement system by binding to host complement regulatory proteins, thereby inactivating the C3b mechanism. Another mechanism employed by Borrelia to escape the immune response is antigenic variation. The variable major protein-like sequence gene locus (vlsE) on plasmid 28-1 undergoes extensive variation, which is stimulated by tick feeding.

The disease in humans (LD of the Northern Hemisphere versus Brazilian Baggio-Yoshinari Syndrome)

Acute LD is typically manifested by an expanding erythematous skin lesion. Late manifestations may include arthritis, acrodermatitis chronica atrophicans, lymphocytoma, myocarditis, conjunctivitis, uveitis, and neurological signs.

The existence of borreliosis in humans in Brazil was first suggested by Dr. Yoshinari and co-workers; however, the first case in the country was not diagnosed until 1992. The increasing number of cases identified in Brazil show differences from the disease that occurs in the Northern Hemisphere. In Brazil, the occurrence of Ixodes ticks (I. auritius and I. loricatus) is associated with parasitism of some birds and Didelphis albiventris, which are not considered the preferential vectors for horses and humans. Clinically, despite the occurrence of signs such as erythema migrans and the usual systemic complications, the Brazilian disease progresses with recurrences, especially if antibiotic treatment is initiated later than three months after infection. Brazilian patients
have been reported to have a high frequency of antibodies against different autologous cell components. Therefore, Brazilian Borreliosis (BB) was initially called Lyme-like disease, Lyme-like borreliosis or Baggio-Yoshinari syndrome (BYS) to distinguish it from the classical disease.27

In addition, studies conducted in the Laboratory of Rheumatology of the Clinical Hospital of the School of Medicine, University of São Paulo (LIM-17 Hospital das Clínicas – Faculdade de Medicina, Universidade de São Paulo – FMUSP) showed the occurrence of microorganisms with morphological structures similar to Mycoplasma spp., Chlamydia spp., and non-flagellated spirochetes in the peripheral blood of patients with BYS who were seropositive for B. burgdorferi sensu lato. However, those patients exhibited negative serology for Mycoplasma spp. and Chlamydia spp., suggesting a morphological difference between B. burgdorferi sensu lato and the Brazilian microorganism identified as the possible causative agent of BYS.28 Because motile and spiral spirochetes were never isolated or cultured in Brazil, researchers from LIM-17 assumed that the etiological agent in Brazil was present in cystic form.

Due to these reasons, BB is defined as an emerging tick-borne disease, different from LD, caused by B. burgdorferi sensu lato with atypical morphologies and transmitted by ticks not belonging to Ixodes. It is possible that Borrelia bacterial passage through ticks from Amblyomma, Rhipicephalus, and Dermacentor genera can result in spirochete morphologic and genetic modifications in both vertebrate and invertebrate hosts, thus originating a new disease similar to LD.26

BYS differs from LD because the disease has higher morbidity due to the presence of symptom recurrence, severe reactive manifestations such as autoimmunity, and the need for prolonged treatment. Laboratory diagnosis of BYS is difficult because serological tests (ELISA, enzyme immunosorbet assay, or western blotting) for B. burgdorferi show low sensitivity and specificity27-32; this is because these tests utilize antigens from B. burgdorferi stricto sensu from the Northern Hemisphere to evaluate immunoglobulins of Brazilian B. burgdorferi sensu lato.

BYS can cause some symptoms similar to those observed in LD, including erythema migrans in approximately 50% of patients, arthritis in 35%, neurological symptoms in 35%, and cardiac disease in nearly 5%. The disease is often unrecognized, especially at secondary or tertiary stages when patients do not remember what occurred months or years before the current disease. Certainly, many cases of unrecognized chronic neurological or articular disease are in fact cases of BYS not identified and treated at early stages.28

The first studies in Brazil to report the occurrence of B. burgdorferi sensu lato were published in 2010, when dermatologists used immunohistochemistry to identify the spirochete in skin biopsies of the erythema migrans from four patients.23 In a subsequent study employing immunohistochemistry and focus floating microscopy, Talhari and co-workers34 also identified the bacterium in skin lesions from 22 patients. Despite conducting nested-PCR (polymerase chain reaction) using a set of four primers (external primers, 1 – AAG AAC CAA ATA CTC GAT CTG TAA TTG and 2 – TTG CAG AAT TTGATAAAGTTG G, and internal primers, 3 – TCT GTA ATT GCA GAA ACA CCT and 4 – GAG TAT GCT ATT GAT GAA TTA TTG), none of the 22 samples was positive. Therefore, standardizing a PCR technique for identification of the Borrelia bacteria occurring in Brazil remains a challenge.

Mantovani and co-workers35 demonstrated the presence of spirochetes of genus Borrelia in the blood of human patients with BB by performing βgE gene amplification (470 FW 5′-CGCCTATTCTAACTTGGCAACCAAT-3′ and 470 Rev 5′-TTAGTTGTTCTTAGTTAGTTAGGTTG-3′) as well as in genus Rhipicephalus ticks. Similarly, Gonçalves et al. identified B. burgdorferi s.l. strain B31 in D. nitens ticks collected on a horse in Paraná State (nested-PCR targeting the 5S (rfl) 23S (rfl) intergenic spacer region, 99.9% BLAST similarity with B. burgdorferi s.s.). Additionally, the same research group identified B. burgdorferi sensu lato in the blood of humans from a rural area in Paraná State (nested-PCR targeting the 5S (rfi) 23S (rfl) intergenic spacer region, 100% BLAST similarity with B. burgdorferi s.s.).36 However, phylogenetic analysis was not performed in either study, leaving many uncertainties about the classification of the Brazilian pathogen(s).

Recent studies show the possibility of ticks of the genera Amblyomma and Rhipicephalus being directly related to dissemination of the disease. Rezende and co-workers37 reported that embryonic cells of R. microplus and A. sculptum (previously cajennense according to the new taxonomic status38) could serve as substrate for the growth of B. burgdorferi sensu stricto strain G39/40. B. burgdorferi sensu lato was identified in A. americanum ticks collected from LD patients diagnosed by ELISA and PCR in Florida, USA.12

Borreliosis in horses

B. burgdorferi sensu lato is capable of infecting wild and domestic animals. Additionally, domestic animals, such as dogs, cattle, and horses, can be carriers of this pathogen. Unlike the unapparent disease observed in wild animals, this etiological agent is capable of causing systemic symptoms in domestic animals.39-42

Based on indirect ELISA and Western blotting, it was observed that horses exposed to ticks have a higher frequency of seropositivity for B. burgdorferi sensu lato than horses subjected to strict tick control.43 In addition, viable Borrelia bacteria have been found in the urine of healthy horses in an endemic region of the United States,44 warning of the possibility agent transmission by contact routes in addition to tick bites. Chang and co-workers validated an equine LD model by exposing ponies to ticks harboring B. burgdorferi for seven days. They then evaluated the antibody response and treatment efficacy at 120 days after infection and found that the antibody levels of the treated animals returned to negative levels in 10 months.45,46

In Brazil, it was detected an average ELISA seropositivity of 9.8% in horses in the state of Rio de Janeiro, and in the municipality of Seropédica, the frequency was 42.8%.43 Madureira and co-workers47 observed a frequency of 28.4% of anti-Borrelia homologous ELISA antibodies in horses in the municipalities of Três Rios and Vassouras, Rio de Janeiro State, whereas the frequency was 26.7% in the municipality of Belém, Pará State.48 Guedes Junior and co-workers49 identified 54.9% of cattle as being seropositive in the state of Paraná. In
dogs, the rate of seropositivity was 48.25% in Rio de Janeiro city. The occurrence of LD in wild animal veterinarians and found 6.4% seropositivity for B. burgdorferi s.l. in São Paulo city. Borreliosis in horses remains underdiagnosed and poorly understood by veterinarians. According to a survey conducted in Germany of 118 veterinarians, only 56% believe that Lyme borreliosis can affect horses. When asked about the number of animals diagnosed in Germany, 45% answered that no animals are being diagnosed. Regarding control of the parasite, 46.5% stated that owners rarely perform ectoparasite control measures. A relatively large percentage of the veterinarians (30.5%) said that they would confirm the diagnosis only by serology and would not perform serological monitoring over time. They also indicated that they would treat positive animals with antibiotics and anti-inflammatory medication (54%) and stated that 71% of the horse owners are unaware of the disease.

Studies indicate that LB in horses has clinical signs similar to the disease in humans, including fever and lethargy, arthritis, polynervitis, lameness, muscle stiffness, abortion, meningitis, cranial neuritis, radiculoneuritis, and encephalitis. Some researchers have used PCR, which has the highest sensitivity and specificity. However, because the specificity of IFA and ELISA tests is still questionable, a positive result must be confirmed by a second diagnostic method. Western blotting is typically used to detect antibodies against Borrelia-specific antigens; alternatively, some researchers have used PCR.

Chandrashekar and co-workers evaluated the feasibility of using a commercial enzyme immunosassay kit developed for dogs (SNAP® 4Dx) for the detection of anti-C6 peptide antibodies in 160 horses infected by B. burgdorferi and previously tested by western blotting (QualiCode™ IgG/IgM Western Blot Kits, Immunetics Inc., Boston, MA). The kit showed 100% specificity and 95% sensitivity compared to the gold standard serological test, and the authors indicated that the test is a rapid and safe test for the diagnosis of borreliosis in horses in the field.

A subsequent study found that serological tests using an anti-C6 commercial kit (SNAP® 4Dx) could identify most of the horses infected; however, it also produced false positive and false negative results. In addition, serological tests for detecting anti-C6 peptide antibodies and OspC and OspF, which are associated with clinical signs, were found to consistently support the diagnosis of borreliosis in horses.

Diagnosis

The gold standard for laboratory diagnosis of LB is serological tests (ELISA confirmed by Western blotting). However, an increasing number of studies demonstrate the potential of molecular and culture tests as a tool for diagnosis. The final diagnosis in humans is often based on symptoms, exposure to ticks and serological tests. For many other species of bacteria, the gold standard for identification is culture. However, Borrelia species can only grow under specialized culture conditions, such as Barbour-Stoenner-Kelly (BSK) medium with incubation at 30°C to 35°C for as many as 12 weeks under microaerophilic conditions. If a PCR method is chosen, results obtained from skin biopsies from patients with classic erythema migrans are more sensitive than are samples of blood collected from the same patients.

The laboratory methods used for diagnosis of LB are the following: culture in Kelly medium of clinical samples from skin, cerebrospinal fluid, synovial fluid, and blood; molecular detection using tissue specimens (targeting p66, 16S rRNA, flagellar gene fla, 23S rRNA, and osPA genes and the 5S rRNA-23S rRNA intergenic spacer using nested or real-time quantitative PCR); and antibody detection such as enzyme immunoassays (ELISA), indirect immunofluorescent antibody assays (IFAs), Western blotting, and peptide-based immunoassays.

Equine therapeutics

Treatment with oxytetracycline (6.6 mg/kg, IV, every 12 h) for three weeks was more effective than the use of doxycycline (10 mg/kg, VO, every 12 h) or ceftiofur (2.2 mg/kg, IM, every 12 h). Oxytetracycline was the only antibiotic that led to negative results both according to culture and tissue PCR (lymph nodes, skin, muscle fascia, synovial membranes, pericardium, and meninges) at the end of treatment. Oxytetracycline can be administered (5.0 mg/kg, IV, every 24 h) for four weeks, with high efficacy against B. burgdorferi in experimentally infected ponies. Divers and co-workers found that tetracycline is effective for treating LB in naturally infected horses (6.6 mg/kg, IV, every 24 h).

Final remarks

LD is a condition of extreme importance because it is a zoonosis that causes physical and psychological sequelae in affected individuals. It remains poorly investigated in Brazil, especially in the field of veterinary medicine. Therefore, studies.
describing the unique aspects of the disease in Brazil and the etiological agents found are needed.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgement

The authors acknowledge the financial support of FAPESP (Process 2013/05871-0 and 2013/03732-0).

References

1. Steere AC, Malawista SE, Snydman DR, et al. Lyme arthritis: and epidemic eolergic arthritis in children and adults in three connecticut communities. *Arthritis Rheum.* 1977;20(1):7–17.
2. Koedel U, Fingerie V, Pfister HW. Lyme neuroborreliosis—epidemiology, diagnosis and management. *Nat Rev Neurol.* 2015;11, [advance online publication].
3. Mast WE, Burrows WM. Erythema chronicum migrans and Lyme arthritis. *J Am Med Assoc.* 1976;236(21):2392.
4. Burgdorfer W, Barbour AG, Benach JL, Grunwald E, Davis JP. Lyme disease—a tick-borne spirochetosis. *Science.* 1982;18:1317–1319.
5. Samuels DD, Radolf JD. *Borrelia*: Molecular Biology. *Host Interaction and Pathogenesis.* Caister Academic Press; 2010, ISBN 978-1-904455-58-5:547.
6. Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH Jr. Updates on *Borrelia burgdorferi* sensu lato complex with respect to public health. *Ticks Tick Borne Dis.* 2011;2(3):123–128.
7. Nava S, Beati L, Labruna MB, Caceres GA, Mangold AJ, Ghuillemone AA. Reassessment of the taxonomic status of *Amblyomma cajennense* (Fabricius, 1787) with the description of three new species, *Amblyomma tonelliae* n. sp., *Amblyomma interandinum* n. sp. and *Amblyomma patinoi* n. sp., and reinstatement of *Amblyomma mixtum* Koch, 1844, and *Amblyomma sculptum* Berlese, 1888 (*Ixodiidae*: *Ixodidae*). *Ticks Tick Borne Dis.* 2014;5(3):252–276.
8. Ivanova LB, Tomova A, Gonzales-Axuña D, et al. *Borrelia chilensis*: a new member of the *Borrelia burgdorferi* sensu lato complex that extends the range of this genospecies in the Southern Hemisphere. *Environ Microbiol.* 2014;16(4):1069–1080.
9. Huang W, Ojami C, Fallon JT, et al. Genome sequence of *Borrelia chilensis* VA1: a South American member of the *Lyme borreliosis* group. *Genome Announc.* 2015;3(1):1–2.
10. Waisluk A, Żalewska-Szajda B, Waszkiewicz N, et al. Lyme disease: etiology, pathogenesis, clinical courses, diagnostics and treatment. *Prog Health Sci.* 2011;1(2):179–186.
11. Radoff JD, Caimano MJ, Stevenson B, Hu LT. Of ticks, mice and men: understanding the dual host lifestyle of Lyme disease spirochaetes. *Nat Rev Microbiol.* 2012;10:87–99.
12. Clark KL, Leydet B, Hartman S. Lyme borreliosis in human patients in Florida and Georgia: USA. *Int J Med Sci.* 2013;10(10):915–931.
13. Gonçalves DD, Carreira T, Nunes M, et al. First record of *Borrelia burgdorferi* B31 strain Dermacenter nitens ticks in the northern region of Para (Brazil). *Braz J Microbiol.* 2013;44(3):883–887.
14. Kurtenbach K, Hanicová K, Tsaio JI, Margos G, Fish D, Ogden NH. Fundamental process in the evolutionary ecology of Lyme borreliosis. *Nat Rev Microbiol.* 2006;4:660–669.
15. Kenedy MR, Lenhart TR, Akins DR. The role of *Borrelia burgdorferi* outer surface proteins. *Immunol Med Microbiol.* 2012;66:1–19.
16. Tilly K, Krum JG, Bestor A, et al. *Borrelia burgdorferi* OspC protein required exclusively in a crucial early stage of mammalian infection. *Infect Immun.* 2006;4(6):3554–3564.
17. Mason LMK, Veerman CC, Geitenbeek TBH, Hovius JWR. Ménége à trois: *Borrelia*, dendritic cells and tick saliva interactions. *Trends Parasitol.* 2014;30(2):95–103.
18. Berende A, Oosting M, Kuhlberg BJ, Netea MG, Joosten LAB. Activation of innate host defense mechanisms by *Borrelia*. *Eur Cytokine Netw.* 2010;21(1):7–18.
19. Stanek G, Wormser GP, Gray J, Streile F. Lyme borreliosis. *Lancet.* 2012;379:461–473.
20. Yoshihara NH, Steere AC, Cossermelli W. Revisión de la borreliosis del Lyme. *Rev Assoc Med Bras.* 1989;25:34–38.
21. Yoshihara NH, Barros PJL, Bonaldi VLN. Perfil de borreliose de Lyme no Brasil. *Rev Hosp Clin Fac Med São Paulo.* 1997;52:111–117.
22. Yoshihara NH, Barros PJL, Gaudittano G, Fonseca AH. Reporto de 57 casos de Lyme-like disease in Brazil. *Arthritis Rheum.* 1999;43:1888.
23. Yoshihara NH, Bonaldi VLN, Barros-Battesti DM, Schumacher TT. Doença de Lyme-símile no Brasil. *Rev Bras Reumatol.* 1999;39:57–58.
24. Costa IP, Bonaldi VLN, Yoshihara NH. Perfil clínico e laboratorial da Doença de Lyme-símile no estado do Mato Grosso do Sul: análise de 16 pacientes. *Rev Bras Reumatol.* 2001;41:142–150.
25. Arzuza M, Barros-Battesti DM. Parasitism of Ixodes (multidentatis) auritus unammum (Acari: Ixodidae) on birds from the city of Curitiba, State of Parana, Southern Brazil. *Mem Inst Oswaldo Cruz.* 1999;94(5):597–603.
26. Miziara SR, Paiva F, Anreottti R, et al. Ocorrência de Ixodes loricatus Unamnm, 1899 (Acari: Ixodidae) parasitando Dilephus aliviumens (Lud, 1841), (Didemorphia: Didelpidae) em Campo Grande, MS. *Rev Bras Parasitol Vet.* 2008;17(3):158–160.
27. Mantovani E, Costa IP, Gaudittano G, Bonaldi VL, Higuchi ML, Yoshihara NH. Description of Lyme-like disease in Brazil. It is a new tick borne disease or Lyme disease variation. *Braz J Med Biol Res.* 2007;40:443–456.
28. Yoshihara NH, Mantovani E, Bonaldi VLN, Maragoni RG, Gaudittano G. Doença de Lyme-símile brasileira ou síndrome Baggio-Yoshihara: zoonose exótica e emergente transmitida por carrapatos. *Rev Assoc Méd Bras.* 2010;56(3):363–369.
29. Guouveia EA, Alves MF, Mantovani E, Oyafuso LK, Bonaldi VN, Yoshihara NH. Profile of patients with Baggio-Yoshihara syndrome admitted at Instituto de Infectologia Emilio Ribas. *Rev Inst Med Trop São Paulo.* 2010;52(6):297–303.
30. Santos M, Haddad V Jr, Ribeiro-Rodrigues R, Talhari S. *Borrelia* de Lyme. *Anu Bras Dermatol.* 2010;85(6):930–938.
31. Fonseca AH, Salles RS, Salles SAN, Madureira RC, Yoshihara NH. *Borrelia* de Lyme simile: uma doença emergente e relevante para a dermatologia no Brasil. *Anu Bras Dermatol.* 2005;80(2):171–178.
32. Shinjo SK, Gaudittano G, Marchiori PE, et al. Manifestação neurológica na síndrome de Baggio-Yoshihara (Síndrome brasileira semelhante à doença de Lyme). *Rev Bras Reumatol.* 2009;49(5):492–505.
33. Santos M, Ribeiro-Rodrigues R, Talhari C, Ferreira LCL, Zelger B, Talhari S. Presence of *Borrelia burgdorferi* sensu lato in patients with morphea from the Amazonic region in Brazil. *Trop Med Rounds.* 2010;50:1373–1378.
34. Talhari S, Santos MNS, Talhari C, et al. Borrelia burgdorferi sensu lato in Brazil: occurrence confirmed by immunohistochemistry and focus floating microscopy. Acta Trop. 2010;115:200–204.

35. Mantovani E, Maragoni RG, Gauditano G, Bonolli VLN, Yoshinari NH. Amplification of the f57E gene provides evidence for the existence of a Brazilian borreliosis. Rev Inst Med Trop. 2012;54(3):153–157.

36. Gonçalves DD, Moura RA, Nunes M, et al. Borrelia burgdorferi sensu lato in humans in a rural area of Paraná State: Brazil. Braz J Microbiol. 2015;46(2):571–575.

37. Rezende J, Rangel CF, Cunha NC, Fonseca AH. Primary embryonic cells of Rhipicephalus microplus and Amblyomma sculptum ticks as a substrate for the development of Borrelia burgdorferi (strain G39/40). Braz J Biol. 2012;72(3):577–582.

38. Nava S, Barbieri AM, Maya L, et al. Borrelia infection in Ixodes paranicus ticks (Acari: Ixodidae) from northwestern Argentina. Acta Trop. 2014;139:1–4.

39. Fonseca AH, Ishikawa MM, Soares C. Lyme borreliosis serology in cattle in Brazil. Rev Univ Rural Rio de Janeiro. 1996;18:85–89.

40. Magnarelli LA, Anderson JF. Class-specific and polyvalent enzyme-linked immunosorbent assays for detection of antibodies to Borrelia burgdorferi in equids. J Am Vet Med Assoc. 1999;195:1365–1368.

41. Magnarelli LA, Anderson JF, Schreier AB, Ficke CM. Clinical and serologic studies of canine borreliosis. J Am Vet Med Assoc. 1987;191:1089–1094.

42. Skarda J. Lyme borreliosis, the present diagnostic criteria. Folia Vet. 2005;49:83–94.

43. Salles RS, Fonseca AH, Scafello A, Madureira RC, Yoshinari NH. Sorologia para Borrelia burgdorferi lato sensu em equinos no estado do Rio de Janeiro. Hora Vet. 2002;22:46–49.

44. Manion TB, Khan MI, Dinger J, Bushmich SL. Viable Borrelia burgdorferi in the urine of two clinically normal horses. J Vet Diagn Invest. 1998;10:196–199.

45. Chang YF, Nosovol V, Mcondonough SP, et al. Experimental infection of ponies with Borrelia burgdorferi by exposure to Ixodid ticks. Vet Pathol. 2000;37:68–76.

46. Chang YF, Ku YW, Chang CF, et al. Antibiotic treatment of experimentally Borrelia burgdorferi-infected ponies. Vet Microbiol. 2005;107:285–294.

47. Madureira RC, Correa FN, Cunha NC, Guedes Junior DS, Fonseca AH. Ocorrência de anticorpos homólogos anti-Borrelia burgdorferi em equinos em propriedades dos municípios de Três Rios e Vassouras, estado do Rio de Janeiro. Rev Bras Cienc Vet. 2007;14(1):43–46.

48. Galo KB, Fonseca AH, Madureira RC, Barbosa Neto J. Frequência de anticorpos homólogos anti-Borrelia burgdorferi em equinos na mesorregião metropolitana de Belém: Estado do Pará. Pesqui Vet Bras. 2009;29(3):229–232.

49. Guedes Junior DS, Araujo FR, Silva FJM, Rangel CF, Barbosa Neto JD, Fonseca AH. Frequency of antibodies to Babesia bigemina, Anaplasma marginale, Trypanosoma vivax and Borrelia burgdorferi in cattle from the northeastern region of the state of Pará, Brazil. Rev Bras Parasitol Vet. 2008;17(2):105–109.

50. Alves LA, Madureira RC, Silva RA, Correa FN, Botelho RRCM. Frequência de anticorpos contra Borrelia burgdorferi em cães na região metropolitana do Rio de Janeiro. Pesqui Vet Bras. 2004;24(4):203–206.

51. Corrada DA, Carvalho VM, Coutinho SD. Anticorpos para Borrelia burgdorferi em indivíduos que trabalham com animais silvestres. Arq Bras Med Vet Zootec. 2006;58(5):966–968.

52. Gall Y, Pfister K. Survey on the subject of Lyme borreliosis. Int J Med Microbiol. 2006;296(suppl 1):274–279.

53. Butler CM, Howers DJ, Jorgean F, Van Der Kolk JH. Borrelia burgdorferi infections with special references to horses. A review. Vet Q. 2005;27(4):146–156.

54. Magnarelli LA, Anderson JF, Shaw E, Post JE, Palka FC. Borreliosis in equids in northeastern United States. Am J Vet Res. 1988;49:359–362.

55. Hahn CN, Mayhew IG, Whitwell KE, et al. A possible case of Lyme borreliosis in a horse in the UK. Equine Vet J. 1996;28:84–88.

56. Passamonti F, Veronesi FV, Cappelli K, et al. Polyarthritis in a horse due to Borrelia burgdorferi sensu lato infection – case study. Ann Agric Environ Med. 2015;22(5):247–250.

57. Divers TJ, Chang YF, Mcondonough PL. Equine Lyme disease: a review of experimental disease production, treatment efficacy and vaccine protection. In: 49th Annual Convention of the American Association of Equine Practitioners. 2003. http://www.ivis.org/proceedings/aape/2003/divers2/ivis.pdf.

58. Burgess EC, Mattison M. Eencephalitis associated with Borrelia burgdorferi infection in a horse. J Am Vet Med Assoc. 1987;191:1457–1458.

59. James FM, Engles J, Beech J. Meningitis: cranial neuritis and radiculoneuritis associated with Borrelia burgdorferi infection in a horse. J Am Vet Med Assoc. 2010;237(10):1180–1185.

60. Imai DM, Barr BC, Daft B, et al. Lyme neuroborreliosis in a horse. Vet Pathol. 2011;48(6):1151–1157.

61. Priest HL, Irby NL, Schlafer DH, et al. Diagnosis of Borrelia-associated uveitis in two horses. Vet Ophthalmol. 2012;15(6):398–405.

62. Alby K, Capraro G. Alternatives to serologic testing for diagnosis of Lyme disease. Clin Lab Med. 2015;35(4):815–825.

63. Liveris D, Schwartz I, McKenna D, et al. Comparison of five diagnostic modalities for direct detection of Borrelia burgdorferi in patients with early Lyme disease. Diagn Microbiol Infect Dis. 2012;73:243–245.

64. Aguero-Rosenfeld ME, Wang G, Schwartz J, Wormser GP. Diagnosis of Lyme borreliosis. Clin Microbiol Rev. 2005;18(3):484–509.

65. Divers TJ, Grice AL, Mohamed HO, Glaser AL, Wagner B. Changes in Borrelia burgdorferi ELISA antibody over time in both antibiotic treated and untreated horses. Acta Vet Hung. 2012;60(4):421–429.

66. Divers TJ, Chang YF, Jacobson RH, Mcondonough SP. Lyme disease in horses. Compend Contin Educ Pract Vet. 2001;23:375–380.

67. Salles RS [Thesis] Borreloise de Lyme em equinos no estado do Rio de Janeiro. Seropérdica, RJ: Universidade Federal Rural do Rio de Janeiro; 2001, 104 f.

68. Magnarelli LA, Fikrig E. Detection of antibodies to Borrelia burgdorferi in naturally infected horses in the USA by enzyme-linked immunosorbent assay using whole-cell and recombinant antigens. Res Vet Sci. 2005;79:99–103.

69. Trevejo RT, Krause Pj, Sidkand VK, et al. Evaluation of two-test serodiagnostic method for early Lyme disease in clinical practice. J Infect Dis. 1999;179:931–938.

70. Chandrashekar R, Dniluk D, Moffit S, Lorentzen L, Williams J. Serologic diagnosis of equine borreliosis: evaluation of an in-clinic enzyme-linked immunosorbent assay (SNAP 4dx). Intern J Appl Vet Med. 2008;6(3):145–150.

71. Wagner B, Goodman LB, Rollins A, Freer HS. Antibodies to OspC, OspF and C6 antigens as indicators for infection with Borrelia burgdorferi in horses. Equine Vet J. 2013;45:533–537.