Title
GABA uptake is inhibited by thyroid hormones: Implications for depression

Permalink
https://escholarship.org/uc/item/09q740fq

Journal
Psychoneuroendocrinology, 12(1)

ISSN
0306-4530

Authors
Mason, George A
Walker, Cheryl H
Prange, Arthur J
et al.

Publication Date
1987

DOI
10.1016/0306-4530(87)90022-9

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
GABA UPTAKE IS INHIBITED BY THYROID HORMONES: IMPLICATIONS FOR DEPRESSION

GEORGE A. MASON,*† CHERYL H. WALKER,* ARTHUR J. PRANGE, JR‡ and STEPHEN C. BONDY§

*Biological Sciences Research Center, University of North Carolina, Chapel Hill, NC 27514, U.S.A.; †Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC 27514, U.S.A.; and §Department of Community and Environmental Medicine, Irvine, CA 92717, U.S.A.

(Received 12 August 1985; in final form 13 January 1986)

SUMMARY

Studies of the effects of thyroid hormones on the uptake of neurotransmitters by homogenates of rat cerebral cortex have revealed a significant competitive inhibition of neuronal uptake of "H]GABA by thyroid hormones (T₃ > T₂ > rT₂). The IC₅₀ for inhibition of GABA uptake by T₃ was estimated at 4 µM and that of T₂ at 11 µM. GABA uptake in homogenates of cerebral cortex from hypothyroid rats was significantly enhanced over that of controls; however, uptake in tissues from hyperthyroid rats was not significantly diminished.

INTRODUCTION

The influence of hormones on behavior has long been recognized. Perhaps most notable are the effects of thyroid condition on affective state. Hypothyroidism is commonly associated with a depressed mood and a deficit in recent memory; these are usually alleviated if euthyroidism is reinstated (Whybrow et al., 1969). Our clinical group as well as others have given the thyroid hormone L-3,3',5-triiodothyronine (T₃) with a tricyclic antidepressant (TCA) to patients suffering from depression and have noted an enhanced clinical response (Wilson et al., 1970; Earle, 1970; Coppen et al., 1972; Wheatly, 1972; Hatotani et al., 1974; Ogura et al., 1974; Goodwin et al., 1982). We now have directed laboratory studies toward the elucidation of this phenomenon.

It has been shown that thyroxine (T₄) is taken up into the synaptosomal fraction of brain neurons and there converted to its more potent metabolite, T₃ (Dratman & Crutchfield, 1978). T₃ directly stimulates transport processes in neurons and nerve endings (Iqbal et al., 1984). These findings support the concept of a functional role of thyroid hormones at the synapse. Efforts toward investigation of the synaptic effects of thyroid hormones have been focused on the noradrenergic system, which seems a likely site for a thyroidal–TCA interaction. However, we have now broadened our investigation to include the effects of thyroid hormones on the synaptic components of other neurotransmitter systems, including the gamma-aminobutyric acid (GABA) system.

Our interest in the GABA system derives from three observations: low levels of GABA in cerebrospinal fluid in depression (Gold et al., 1980; Gerner & Hare, 1981), success of GABA mimetics in treating this disorder (Lloyd et al., 1983), and the effects of chronic

†Address for correspondence: George A. Mason, Ph.D., 203 Biological Sciences Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27514, U.S.A.
treatment with TCA on ^{3}HGABA binding to receptors in brain tissue of rats (Lloyd & Pilc, 1984). We report herein a specific inhibition of GABA uptake by thyroid hormones, and increased GABA uptake in hypothyroidism.

METHODS

Adult male Sprague–Dawley rats (Charles River Breeding Laboratories, Wilmington, MA) weighing 125 – 200 g upon arrival were used in this study. In some animals hypothyroidism was produced by surgical thyroidectomy (performed by the vendor), and hyperthyroidism was produced in sham-operated rats by once daily intraperitoneal injection of 500 µg/kg T$_{3}$ for 7 days. Thyroidectomized and control rats were injected on the same schedule with the T$_{3}$ vehicles 10.9% NaCl; methanol; NH$_{3}$OH; 396:3:1 (v/v). Rats were housed two to a cage and given free access to water and laboratory chow. Animal quarters were kept at a temp of 22 – 25°C, and the light:dark cycle was 12:12 hr.

Animals were decapitated after various treatments, and brains were immediately removed and kept on ice while the frontal cortex was dissected out and weighed. Cortical tissue was homogenized in 19 vol of 0.32 M sucrose, and the resulting homogenate was further diluted with 0.32 M sucrose, to a 1% (w/v) tissue concentration, so that uptake of each neurotransmitter was proportional to tissue content. Trunk blood was collected into glass tubes at the time of killing and allowed to clot at 4°C. Serum concentrations of T$_{3}$ were determined by commercial radioimmunoassay (Becton-Dickinson Co., Orangeburg, NY).

The standard incubation medium for the *in vitro* uptake assay consisted of Krebs–Ringer buffer containing 150 mM NaCl, 5 mM KCl, 1.5 mM CaCl$_{2}$, 1.4 mM MgSO$_{4}$, 1.2 mM ascorbic acid, 25 mM glucose, 0.1 mM aminoxyacetic acid (an inhibitor of GABA transaminase), and 0.1 mM pargyline (an inhibitor of monoamine oxidase) in 40 mM Tris – HCl, at pH 7.4 (Kuhar, 1973). The uptake assay was initiated by adding 0.1 ml tritiated neurotransmitter (New England Nuclear, Boston, MA) dissolved in medium buffer to a tube containing 0.8 ml medium and 0.1 ml dilute tissue homogenate. The final concentration of each compound was 10^{-8}M: ^{3}HDopamine (^{3}HDA), 31.6 Ci/mmol; ^{3}HGABA, 34.9 Ci/mmol; serotonin (^{3}H5HT), 27.3 Ci/mmol; choline (^{3}HCh), 180 Ci/mmol; and d-aspartate (^{3}HAsp), 14 Ci/mmol. Thyroid hormones were dissolved in 3:1 (v/v) methanol: NH$_{3}$OH and diluted to the appropriate concentration with medium buffer before addition to the incubation mixture. Other substances, including L-diaminobutyric acid (DABA), beta-alanine and desmethylimipramine (DMI), were initially dissolved in medium buffer alone.

Incubation was at 37°C with continuous shaking for 5 min. Identical mixtures were incubated at 0°C for 5 min to control for non-energy dependent neurotransmitter binding. Triplicate samples were used for both 37 and 0°C assays. A short incubation and the addition of enzyme inhibitors to the medium was used to minimize any metabolic conversion of the tritiated compounds.

The incubation was terminated by replacing the samples on ice followed by immediate vacuum filtration through a Millipore manifold fitted with Gelman Type A/E fiber filters (pore size 0.3 µm). The filters were washed three times with 5 ml of ice cold 40 mM Tris, pH 7.4 to remove any non-transported isotope, transferred to scintillation vials with 5 ml
Aquasol (New England Nuclear), and counted in a Beckman LS 7000 liquid scintillation counter.

Data were analyzed using Dunnett’s test for multiple comparisons (Dunnett, 1964), after ANOVA. Significance was defined by p values of 0.05 or less.

RESULTS

The effects of thyroid hormones on the uptake of neurotransmitters by homogenates from cerebral cortex of euthyroid rats are summarized in Table I. The thyroid hormone vehicle had no effect on the uptake of any neurotransmitter tested. The uptake of $[^3H]$GABA was significantly inhibited by T_3 at concentrations of 10^{-5} and $10^{-4}M$. There was no significant effect of $10^{-3}M$ T_3 on the uptake of $[^3H]$DA, $[^3H]$ASP, or $[^3H]$CH, but there was a small, statistically significant effect on $[^3H]$-5-HT uptake.

The effect of T_1 on $[^3H]$GABA uptake was weaker than that of T_3 at all concentrations of thyroid hormones tested. T_1 had a smaller inhibiting effect on $[^3H]$5-HT uptake than did T_3. Like T_3, T_1 did not significantly affect the uptake of other neurotransmitters.

Further experiments were performed to characterize the inhibitory effects of T_3 and T_4 on GABA uptake. We found that $70 \pm 2\%$ of the uptake of $[^3H]$GABA in the homogenates could be blocked by $10^{-4}M$ DABA, an inhibitor of neuronal GABA uptake (Schon & Kelly, 1974), but the same concentration of beta-alanine (an inhibitor of GABA uptake by glial cells) (Schon & Kelly, 1974) inhibited only $9 \pm 1\%$ of $[^3H]$GABA uptake. This indicated that the uptake measured was characteristic of the neuronal and not the glial uptake system. From measurements of $[^3H]$GABA uptake in the presence of different concentrations of these hormones, the IC_{50} for T_3 was estimated at $4 \mu M$ and that of T_4 at $11 \mu M$ (Fig. 1). Both T_3 and T_4 were more effective than DABA as inhibitors of GABA uptake; DABA has an IC_{50} of about $50 \mu M$ (Schon & Kelly, 1974). Analysis of Lineweaver–Burk plots of $[^3H]$GABA uptake at six different concentrations (from 5×10^{-5} to $5 \times 10^{-4}M$) in the presence of 0 $10^{-4}M$, or $5 \times 10^{-4}M$ T_3, and 0, $5 \times 10^{-4}M$, or $3 \times 10^{-4}M$ T_4 indicated that both T_3 and T_4 act as competitive inhibitors of GABA uptake (Fig. 2). Reverse T_3, (L-3,3′,5′-triiodothyronine), a metabolically inactive thyroid hormone, did not inhibit the uptake of $[^3H]$GABA at concentrations of 10^{-4} or $10^{-3}M$.

We also measured in homogenates the effects of the TCA DMI ($5 \times 10^{-4}M$) on the uptake of the five transmitters named above and the uptake of $[^125I]$T$_4$ ($10^{-4}M$) or $[^125I]$T$_3$ ($10^{-4}M$), using the techniques already described. This experiment was performed mainly to establish the validity of our assay system. DMI, as expected, inhibited 35% of the uptake of $[^125I]$DA and 65% of the uptake of $[^125I]$5-HT but did not inhibit the uptake of $[^125I]$GABA, $[^125I]$ASP, or $[^125I]$CH. It inhibited about 25% of the uptake of T_4, which is concordant with an earlier report by Dratman & Crutchfield (1979), but it did not inhibit the uptake of T_3.

We next compared the uptake of $[^3H]$GABA in homogenates from cerebral cortices of groups of hyperthyroid and hypothyroid animals (Table II). Two groups of animals were found to be hyperthyroid as judged by inhibition of weight gain and elevated serum levels of T_3 at the time of killing, the animals which received sham-operations and T_3, and the animals that received thyroidectomy and T_3. In neither group was the uptake of $[^3H]$GABA by homogenates significantly different from that in controls. One group of
Table I. The effects of T₃ and T₄ on the in vitro uptake of γ-aminobutyric acid (GABA), dopamine (DA), choline (CH), serotonin (5-HT), and aspartate (ASP) in homogenates of rat cerebral cortex. Each value represents the mean of at least six determinations.

Inhibitor (concentration)	[³H]GABA (%)	[³H]DA (%)	[³H]CH (%)	[³H]5HT (%)	[³H]ASP (%)
T₃ (10⁻³M)	*31.7 ± 0.9	98.9 ± 4.2	104.4 ± 6.5	*80.6 ± 2.7	108.4 ± 3.1
(10⁻⁴M)	*77.5 ± 3.0	94.2 ± 3.4	97.5 ± 3.4	*89.3 ± 1.9	108.9 ± 3.4
T₄ (10⁻³M)	*63.9 ± 4.4	99.7 ± 5.0	104.1 ± 3.0	*82.6 ± 1.4	100.9 ± 3.5
(10⁻⁴M)	*83.9 ± 3.9	93.6 ± 3.9	91.4 ± 5.4	93.5 ± 3.2	103.0 ± 3.2

*p < 0.05 compared to controls.

animals was found to be hypothyroid as judged by inhibition of weight gain and undetectable serum levels of T₃. The uptake of [³H]GABA in homogenates derived from these animals was significantly enhanced.

DISCUSSION

We have described for the first time a specific inhibition by T₃ and T₄ of the high affinity neuronal uptake of [³H]GABA in homogenates of rat cerebral cortex. However, at this time, the physiological significance of this affect is unknown. Although the whole brain concentrations of T₃ and T₄ are in the low nanomolar range (Dratman et al., 1983), and therefore nearly three orders of magnitude below the IC₅₀s determined for T₃ and T₄, it is not inconceivable that at the synaptic membrane they may be high enough to elicit effects such as those which we have described. Interestingly, the in vitro inhibition of [³H]GABA by T₃ or T₄ is physiologically concordant with the observed increase in [³H]GABA uptake in cortical homogenates of hypothyroid rats; however, there is nothing...
GABA uptake is inhibited by thyroid hormones

A. B. 20 90 15 70 10 250 120 > 120 > 120 • T4 (5 x 10^-6 M)

T3 (5 x 10^-6 M)

10 30 50 70 90 1050 90 130 1/S (x10^-7)

1/5 (x10^-4)

Fig. 2. Lineweaver-Burk plots of [3H]GABA uptake in fresh homogenates of cerebral cortex measured at five different concentrations of [3H]GABA (from 5 x 10^-4 to 5 x 10^-6 M) in the presence of 0, 10^-4 M, or 5 x 10^-4 M T3 (A), or 0, 5 x 10^-4 M, or 3 x 10^-4 M T4 (B). Both T3 and T4 act as competitive inhibitors of GABA uptake.

Table II. Uptake of [3H]GABA in fresh homogenates from cerebral cortices of thyroidectomized or sham-operated rats injected once daily with 500 µg/kg T3, or vehicle, for seven days. Operations were performed four weeks prior to killing.

Treatment	N	Body weights (g)	Serum T3 levels (ng/dl)	Uptake of [3H]GABA (% control ± SEM)
Sham operation (Control)	6	241 ± 3.2	53 ± 4	100.0 ± 3
Thyroidectomy	6	162 ± 6.2*	< 5 *	119.0 ± 5*
Sham operation + 500 µg/kg T3,	6	190 ± 7.3*	225 ± 22*	94.0 ± 3
Thyroidectomy + 500 µg/kg T3,	6	141 ± 6.4*	740 ± 39*	99.0 ± 5

*p < 0.05 compared to control.

suggesting a common mechanism of action. The inhibition of [3H]GABA uptake by added T3 or T4 is almost certainly a direct effect on GABA transport mediated at the level of the neuronal membrane, whereas the increased levels of [3H]GABA uptake found in tissues from hypothyroid rats presumably result from the lack of interaction of thyroid hormones at nuclear receptors (Sterling, 1979).
Behaviorally and physiologically, T1 and T2 produce general excitatory effects, some of which are mediated through activation of adrenergic systems (Dratman, 1974), whereas GABA generally produces inhibition of target neurons (Roberts, 1984). The order of metabolic potency of the thyroid hormones (T1 > T2 > rT3) is the same as their order of potency in inhibiting the uptake of GABA. Our findings that T1 and T2 inhibit GABA uptake might represent a mechanism whereby thyroid-induced excitation would be limited: increased levels of T1 in brain synapses might inhibit GABA uptake and thereby facilitate GABAergic neurotransmission. Therefore, thyroid state may affect various behaviors through its effect on GABA systems and other neurotransmitter systems that interact with GABA systems, such as the DA system (Garbutt & van Kammen, 1983). Reports that hyperthyroidism potentiates, and hypothyroidism reduces, the cataleptic effects of the DA antagonist haloperidol in rats (Atterwill, 1981; Crocker & Overstreet, 1984), and that hyperthyroidism decreases the stereotypic behavior of the DA agonist apomorphine in mice (Strombon et al., 1977), are consistent with an inhibitory role of thyroid hormones mediated through an inhibitory GABA system.

Regarding the effects of thyroid state on depression, much work has been done on aromatic amine neurotransmitter systems, especially in the areas of neurotransmitter synthesis and turnover and changes in pre- and post-synaptic receptor populations (Strombon et al., 1977; Prange et al., 1970; Engstrom et al., 1974; Sugrue, 1981; Perumal et al., 1984; Gross et al., 1980, 1981; it now appears possible that, in addition, thyroid hormones may modify depression by inhibiting GABA reuptake inactivation and prolonging its action in the synapse.

We wish to express our appreciation to Mr Ossie Hatley for technical assistance and Ms Debbie Lowery for preparation of the manuscript. This investigation was supported by NIMH grants MH-33127 and MH-32316.

REFERENCES

Atterwill C K (1981) Effects of acute and chronic tri-iodothyronine (T1) administration to rats on central 5-HT and dopamine-mediated behavioral responses and related brain biochemistry. *Neuropharmacology* 20: 131 – 144.

Coppen A, Whybrow P C, Noguera R, Maggs R, Prange A J, Jr (1972) The comparative antidepressant value of L-tryptophan and imipramine with and without attempted potentiation by liothyronine. *Arch Gen Psychiatry* 26: 234 – 241.

Crocker A D, Overstreet D H (1984) Modification of the behavioral effects of haloperidol and of dopamine receptor regulation by altered thyroid status. *Psychopharmacology* 82: 102 – 106.

Dratman M B (1974) On the mechanism of action of thyroxin, an amino acid analog of tyrosine. *J. Theor Biol* 46: 225 – 270.

Dratman MB, Crutchfield FL (1978) Synaptosomal 111-triiodothyronine following intravenous 1231-thyroxine. *Am J Physiol* 235: 638 – 647.

Dratman M B, Crutchfield F L (1979) In: Usdin E, Kopin I J, Barchas J (Eds), *Catecholamines Basic & Clinical Frontiers, Vol. II*. Pergamon Press, New York, pp 1155 – 1157.

Dratman M B, Crutchfield F I, Gordon J T, Jennings A S (1983) Iodothyronine homoeostasis in rat brain during hypo- and hyperthyroidism. *Am J Physiol* 245: E10.15-E10.19.

Dunnett C W (1964) New tables for multiple comparisons with a control. *Biometrics* 20: 482 – 491.

Earle B V (1970) Thyroid hormone and tricyclic antidepressants in resistant depressions. *Am J Psychiatry* 126: 1667 – 1669.

Engstrom G, Svensson T H, Waldeck B (1974) Thyroxine and brain catecholamines: increased transmitter synthesis and increased receptor sensitivity. *Brain Res* 77: 471 – 483.

Garbutt J C, Van Kammen D P (1983) The interaction between GABA and dopamine: implications for schizophrenia. *Schizophrenia Bull* 9: 336 – 353.
GABA UPTAKE IS INHIBITED BY THYROID HORMONES

Gerner R, Hare T (1981) CSF GABA in normal subjects and patients with depression, schizophrenia, mania and anorexia nervosa. Am J Psychiatry 138: 1098 – 1101.

Gold B I, Bowers M B Jr, Roth R H, Sweeney P (1980) GABA levels in CSF of patients with psychiatric disorders. Am J Psychiatry 137: 362 – 364.

Goodwin F K, Prange A J Jr, Post R M, Muscettola G, Lipton M A (1982) Potentiation of antidepressant effects by L-triiodothyronine in tricyclic nonresponders. Am J Psychiatry 139: 34 – 38.

Gross G, Brodde O E, Schumann H J (1980) Decreased number of β-adrenoceptors in cerebral cortex of hypothyroid rats. Eur J Pharmacol 61: 191 – 194.

Gross G, Brodde O E, Schumann H J (1981) Regulation of alpha-1-receptors in the cerebral cortex of the rat by thyroid hormones. Naunyn-Schmiedebergs Arch Pharmacol 316: 45 – 50.

Hatotani N, Tsujimura R, Nishikubo M, Yamaguchi T, Endo M, Endo J (1974) Endocrinological studies of depressive states, with special reference to hypothalamo-pituitary function. First World Congress of Biological Psychiatry, Buenos Aires, Argentina, Abst 101.

Iqbal Z, Koenig H, Trout J J (1984) Triiodothyronine (T₃) stimulates calcium influx and membrane transport processes in nerve cells and terminals of hypothyroid mouse cortex. Fed Proc 43: 735.

Kuhar M J (1973) Neurotransmitter uptake: a tool in identifying neurotransmitter-specific pathways. Life Sci 13: 1623 – 1634.

Lloyd K G, Morsetti P L, Depoortere H, Fournier V, Zivkovic B, Scatton B, Broekkamp C, Worms P, Bartholini G (1983) The potential use of GABA agonists in psychiatric disorders: evidence from studies with progabide in animal models and clinical trials. Pharmacol Biochem Behav 18: 957 – 966.

Lloyd K G, Pile A (1984) Chronic antidepressants and GABA synapses. Neuropharmacology 23 (7B): 841 – 842.

Ogura C, Okuma T, Uchida Y, Imai S, Yagi H, Sunami Y (1974) Combined thyroid (triiodothyronine)-tricyclic antidepressant treatment in depressive states. Folia Psychiatr Neurol Jpn 28: 179 – 186.

Perumal A S, Halbreich U, Barkai A I (1984) Modification of β-adrenergic receptor binding in rat brain following thyroxine administration. Neurosci Lett 48: 217 – 221.

Prange A J Jr, Meek J L, Lipton M A (1970) Catecholamines: diminished rate of synthesis in rat brain and heart after thyroid pretreatment. Life Sci 9: 901 – 907.

Roberts E (1984) The inhibited nervous system: roles of gabaergic neurons. Neuropharmacology 23: 863 – 864.

Schon F, Kelly J S (1974) The characterization of [³H]GABA uptake into the satellite glial cells of rat sensory ganglion. Brain Res 66: 289 – 300.

Sterling K N (1979) Thyroid hormone action at the cell level. New Engl J Med 300: 117 – 123, 173 – 177.

Strombom U, Svensson T H, Jackson R M, Engstrom G J (1977) Hyperthyroidism: specifically increased response to central NA-(α)-receptor stimulation and generally increased monoamine turnover in brain. J Neural Transm 41: 73 – 92.

Sugrue M F (1981) Current concepts on the mechanisms of action of antidepressant drugs. Pharmacol Ther 13: 219 – 247.

Wheatly D (1972) Potentiation of amitriptyline by thyroid hormone. Arch Gen Psychiatry 26: 229 – 233.

Whybrow P C, Prange A J Jr, Treadway C R (1969) Mental changes accompanying thyroid gland dysfunction. Arch Gen Psychiatry 20: 48 – 63.

Wilson I C, Prange A J Jr, McClane T K, Rabon A M, Lipton M A (1970) Thyroid hormone enhancement of imipramine in nonretarded depressions. New Engl J Med 282: 1063 – 1067.