PAIRWISE ACCELERATED FAILURE TIME MODELS FOR INFECTIOUS DISEASE TRANSMISSION WITH EXTERNAL SOURCES OF INFECTION

BY YUSHUF SHARKER AND EBEN KENAH

Parametric survival analysis can be used to handle dependent happenings in infectious disease transmission data by estimating failure time distributions in ordered pairs of individuals rather than individuals. The failure time in the ordered pair ij is the time from the onset of infectiousness in i to infectious contact from i to j, where an infectious contact is sufficient to infect j if he or she is susceptible. This failure time is called the contact interval, and its distribution can be used to calculate transmission probabilities and show how infectiousness changes over time in infected individuals. Many important questions in infectious disease epidemiology involve the effects of covariates (e.g., age or vaccination status) on the risk of transmission. Here, we generalize earlier pairwise methods in two ways: First, we introduce a pairwise accelerated failure time model in which the rate parameter of the contact interval distribution can depend on infectiousness covariates for i, susceptibility covariates for j, or pairwise covariates. Second, we show how internal infections (caused by individuals under observation) and external infections (caused environmental or community sources not under observation) can be handled simultaneously. In a series of simulations, we show that these methods produce valid point and interval estimates of coefficients and that the ability to account for external infections is critical to consistent estimation. Finally, we use these methods to analyze household surveillance data from Los Angeles County during the 2009 influenza A(H1N1) pandemic.

1. Introduction. Many of the most important questions in infectious disease epidemiology involve the effects of covariates on the risk of transmission. For transmission from an infectious individual i to a susceptible individual j, there are three possible types of covariates: Covariates for i could affect his or her infectiousness, covariates for j could affect his or her susceptibility, and pairwise covariates (e.g., membership in the same household) could affect the risk of transmission independently of the infectiousness of i or susceptibility of j. Estimation of these effects can inform the design of public health responses to emerging infections and be used to evaluate vaccine efficacy (Halloran, Struchiner and Longini, 1997; Halloran, Longini and Struchiner, 2010).

The analysis of infectious disease transmission data is inherently complicated by the dependencies among infection outcomes in different individuals (Halloran and Struchiner, 1991). By extending concepts and methods from survival analy-
sis, these dependencies can be handled by analyzing failure times in ordered pairs of individuals rather than individuals (Kenah, Lipsitch and Robins, 2008; Kenah, 2011). In the ordered pair ij, the contact interval is the time from the onset of infectiousness in i to infectious contact from i to j, where an infectious contact is defined to be a contact sufficient to infect j if he or she is susceptible. The survival function of the contact interval distribution can be used to calculate the probability of transmission from i to j, and its hazard function shows how the infectiousness of i changes over time.

The contact interval from i to j is right-censored if any of the following occur prior to infectious contact: i recovers from infectiousness, j is infected from a source other than i, or observation of the pair ij ends. When who-infests-who is observed, standard parametric and nonparametric methods from survival analysis can be used to estimate the contact interval distribution. When who-infests-who is not observed, parametric likelihoods can be integrated over all possible transmission trees (Kenah, 2011) or nonparametric estimates from all possible transmission trees can be averaged using an expectation-maximization (EM) algorithm (Kenah, 2013). These methods assume that the contact interval distribution is the same in all infectious-susceptible pairs at risk of transmission.

To allow estimation of covariate effects on the hazard of transmission, Kenah (2015) developed a semiparametric regression model in which the hazard of infectious contact from i to j was

$$h_{ij}(\tau) = e^{\beta^T X_{ij}} h_0(\tau)$$

where β is a coefficient vector, $h_0(\tau)$ is an unspecified baseline hazard for the contact interval, and X_{ij} is a vector that can include susceptibility covariates for i, infectiousness covariates for j, and pairwise covariates. This allows point and interval estimation of hazard ratios associated with covariates, but it still assumes that all transmission occurred between individuals under observation. The inability to account for external sources of infection is a limitation that must be addressed before pairwise survival analysis can become a practical tool for infectious disease epidemiology.

In this paper, we develop a pairwise accelerated failure time (AFT) model that allows the rate parameter of the contact interval distribution to depend on covariates and accounts for the risk of infection from external sources. In a simulation study, we show that the model produces consistent point and interval estimates. We then apply it to household surveillance data collected by the Los Angeles County Department of Public Health during the 2009 influenza A(H1N1) pandemic. The pairwise AFT model provides a template for the extension of the pairwise semiparametric model, and it will provide a useful alternative when the proportional hazards assumption does not hold.
1.1. Stochastic S(E)IR models. At any time, each individual $i \in \{1, \ldots, n\}$ is in one of four states: susceptible (S), exposed (E), infectious (I), or removed (R). Person i moves from S to E at his or her infection time t_i, with $t_i = \infty$ if i is never infected. After infection, i has a latent period of length ε_i during which he or she is infected but not infectious. At time $t_i + \varepsilon_i$, i moves from E to I, beginning an infectious period of length ι_i. At time $t_i + \varepsilon_i + \iota_i$, i moves from I to R, where he or she can no longer infect others or be infected. The latent period ε_i is a nonnegative random variable, the infectious period ι_i is a strictly positive random variable, and both have finite mean and variance. The time elapsed since the onset of infectiousness in i at time $t_i + \varepsilon_i$ is the infectious age of i. An SIR model is a special case of the SEIR model that has latent period $\varepsilon_i = 0$ for each i.

After becoming infectious at time $t_i + \varepsilon_i$, person i makes infectious contact with $j \neq i$ at time $t_{ij} = t_i + \varepsilon_i + \tau_{ij}^*$. The infectious contact interval τ_{ij}^* is a strictly positive random variable with $\tau_{ij}^* = \infty$ if infectious contact never occurs. Because infectious contact can only occur while i is infectious, either $\tau_{ij}^* \in (0, \iota_i]$ or $\tau_{ij}^* = \infty$. Because we define infectious contact to be sufficient to infect a susceptible person, $t_j \leq t_{ij}$ for all i and j.

An internal infection occurs when an individual is infected by another individual in the observed population. For each ordered pair ij, let $C_{ij} = 1$ if infectious contact from i to j is possible and $C_{ij} = 0$ otherwise. For example, the C_{ij} could be the entries in the adjacency matrix for a contact network (though we allow $C_{ij} \neq C_{ji}$).

We assume the infectious contact interval τ_{ij}^* is generated as follows: A contact interval τ_{ij} is drawn from a distribution with hazard function $h_{ij}(\tau)$. If $\tau_{ij} \leq \iota_i$ and $C_{ij} = 1$, then $\tau_{ij}^* = \tau_{ij}$. Otherwise, $\tau_{ij}^* = \infty$. The contact interval distribution can be used to calculate transmission probabilities (via the survival function) and to calculate infectiousness as a function of infectious age (via the hazard function).

An external infection occurs when an individual is infected from a source outside the observed population. Let C_{0j} indicate whether individual j is at risk of external infectious contact. Let the external infectious contact time t_{0j}^* denote the first time that an individual j receives infectious contact from outside the observed population, with $t_{0j}^* = \infty$ if this never occurs. We assume that the external infectious contact time is generated as follows: A external contact time t_{0j} is drawn from a distribution with hazard function $h_{0j}(t)$. If $C_{0j} = 1$, then $t_{0j}^* = t_{0j}$. Otherwise, $t_{0j}^* = \infty$. The external contact time distribution can be used to calculate the probability of infection from external sources (via the survival function) and to calculate the risk of external infection as a function of time (via the hazard function).

1.2. Exposure and infectious sets. For each internal infection j, let v_j denote the index of his or her infector. Let $v_j = 0$ if j is an external infection and $v_j = \infty$ if j is not infected. When v_j is observed for all infected j, we say that who-infected-
whom (WIW) is observed. Otherwise, we say that WIW is not observed—even if \(v_j \) is observed for a subset of infected \(j \).

For each individual \(j \), his or her exposure set is

\[
\mathcal{W}_j = \{ i < \infty : (t_i + \varepsilon_i < t_j \text{ or } i = 0) \text{ and } C_{ij} = 1 \},
\]

which is the set of all sources of infection to whom \(j \) was exposed while susceptible. If \(j \) is infected by an unknown infector, his or her infectious set is

\[
\mathcal{V}_j = \{ i < \infty : (t_i + \varepsilon_i < t_j \leq t_i + \varepsilon_i + \tau_{ij} \text{ or } i = 0) \text{ and } C_{ij} = 1 \},
\]

which is the set of possible sources that caused his or her infection. If the infector of \(j \) is known, then \(\mathcal{V}_j = \{ v_j \} \). If \(j \) is not infected, \(\mathcal{V}_j = \emptyset \) (the empty set).

1.3. Infectious disease data. We assume that our epidemiologic data contain the times of all \(S \to E \) (infection), \(E \to I \) (infectiousness onset), and \(I \to R \) (removal) transitions in the observed population between time \(0 \) and time \(T \). The time \(T \) must be a stopping time with respect to the observed data. For all ordered pairs \(ij \) in which \(i \) is infected or \(i = 0 \), we observe \(C_{ij} \).

We assume that the contact interval \(\tau_{ij} \) can be observed only if \(j \) is infected by \(i \) at time \(t_{ij} = t_i + \varepsilon_i + \tau_{ij} \). This can happen only if \(C_{ij} = 1 \) and the pair \(ij \) is at risk of transmission at time \(t_{ij} \):

1. Infectious contact can occur only while \(i \) is infectious, so the end of infectiousness in \(i \) can right-censor \(\tau_{ij} \). Let \(I_i(t) = \mathbb{I}_{t - t_i - \varepsilon_i \in [0, t]} \) indicate whether \(i \) remains infectious at time \(t \).
2. Infectious contact from \(i \) infects \(j \) only if \(j \) is susceptible, so infection in \(j \) can right-censor \(\tau_{ij} \). Let \(S_j(t) = \mathbb{I}_{t \leq t_j} \) indicate whether \(j \) remains susceptible at time \(t \).
3. The end of observation can right-censor \(\tau_{ij} \). Let \(O(t) = \mathbb{I}_{t \leq T} \) indicate whether observation is ongoing at time \(t \).

Since \(I_i(t) \), \(S_j(t) \), and \(Y(t) \) are left-continuous,

\[
Y_{ij}(t) = C_{ij}I_i(t)S_j(t)O(t)
\]

is a left-continuous process that indicates the risk of an observed infectious contact from \(i \) to \(j \) at time \(t \). The assumptions made in the stochastic S(E)IR model above ensure that censoring of \(\tau_{ij} \) is independent.

Similarly, the external contact time \(t_{0j} \) can be observed only if \(j \) is infected from an external source at that time. Let \(I_0(t) = 1 \) for all \(t \). Then \(Y_{0j}(t) \) as defined in equation (4) is a left-continuous process indicating whether external infection of \(j \) can be observed at time \(t \). The assumptions made in the stochastic S(E)IR model above ensure that censoring of \(t_{0j} \) is independent.
2. Methods. In our models, any parametric failure time distribution could be used. For simplicity, we focus on the following three, which have simple closed-form survival and hazard functions. These distributions each have a rate parameter $\lambda > 0$ and (where needed) a shape parameter $\gamma > 0$:

- The exponential(λ) distribution has the survival function
 \[S(t, \lambda) = \exp(-\lambda t). \] (5)
 It has a constant hazard $h(t, \lambda) = \lambda$.

- The Weibull(λ, γ) distribution has the survival function
 \[S(t, \lambda, \gamma) = \exp[-(\lambda t)^\gamma]. \] (6)
 When $\gamma < 1$, its hazard function $h(t, \lambda, \gamma)$ monotonically decreases in t. When $\gamma > 1$, the hazard monotonically increases in t. The exponential distribution is a special case of the Weibull distribution with $\gamma = 1$.

- The log-logistic(λ, γ) distribution has the survival function
 \[S(t, \lambda, \gamma) = [1 + (\lambda t)^\gamma]^{-1}. \] (7)
 When $\gamma < 1$, the hazard $h(t, \lambda, \gamma)$ is monotonically decreasing in t. When $\gamma \geq 1$, the hazard increases to a maximum and then decreases in t.

The internal and external transmission models can use the same failure time distribution or different distributions. Let the parameters of the internal failure time distribution be $(\lambda_{\text{int}}, \gamma_{\text{int}})$ and the parameters of the external distribution be $(\lambda_{\text{ext}}, \gamma_{\text{ext}})$.

2.1. Internal and external rate parameters. When $i \neq 0$, the rate parameter of the contact interval distribution in the pair ij is

\[\lambda_{ij} = e^{\beta_{\text{int}}^T X_{ij}} \lambda_0 \] (8)

where β_{int} is an unknown coefficient vector, λ_0 is a baseline rate parameter, and X_{ij} is a covariate vector that can include infectiousness covariates for i, susceptibility covariates for j, and pairwise covariates. The baseline rate parameter λ_0 is the rate parameter for a pair in which all covariates equal zero, and $\ln \lambda_0$ is an intercept term. This is equivalent to an AFT model where $\exp(-\beta_{\text{int}}^T X_{ij})$ is the acceleration factor (Kalbfleisch and Prentice, 2002). In infectious disease epidemiology, rate ratios are more commonly used than acceleration factors.

The rate parameter for the external contact time for individual j is

\[\lambda_{0j} = e^{\beta_{\text{ext}}^T X_{0j}} \mu_0 \] (9)
where \(\beta_{\text{ext}} \) is an unknown coefficient vector, and \(\mu_0 \) is the baseline external rate parameter, and \(X_{0j} \) is a covariate vector that can include susceptibility covariates for \(j \) and environmental or community covariates. The baseline rate parameter \(\mu_0 \) is the rate of external infection in an individual with all covariates set to zero, and \(\ln \mu_0 \) is an intercept term.

There may be overlap between the internal coefficient vector \(\beta_{\text{int}} \) and the external coefficient vector \(\beta_{\text{ext}} \). For example, vaccine status could affect the rate parameters for both models. To handle this, we parameterize the combined model as

\[
\lambda_{ij} = e^{\beta^T X_{ij}} \lambda_0^{1-I_i=0} \mu_0^{1-I_j=0}
\]

where the coefficient vector \(\beta \) includes coefficients unique to the internal model, coefficients unique to the external model, and shared coefficients. The components of \(X_{ij} \) used only in the internal model are set to zero when \(i = 0 \), and the components of \(X_{ij} \) used only in the external model are set to zero when \(i \neq 0 \). The distinction between internal and external rows in the data set is maintained using an external pair indicator \(\zeta \), which equals one when \(i = 0 \) and zero otherwise. If a covariate in \(X_{ij} \) is shared by the internal and external transmission models, it can be allowed to have different coefficients in the two models by including an interaction term with \(\zeta \). We call these external interaction terms.

2.2. Time scales for internal and external pairs. The internal and external transmission models generally work on different time scales. In a pair \(ij \) with \(i \neq 0 \), the pair is at risk of transmission when \(i \) is infectious and \(j \) is susceptible. The time origin is the onset of infectiousness in \(i \), which can differ from pair to pair. A pair \(0j \) is at risk of transmission when \(j \) is susceptible. Typically, a common time origin will be specified for all external pairs in a single population under observation.

2.3. Maximum likelihood estimation. The likelihood and its score process can be derived in a manner similar to that of Kenah (2011). Let \(\theta \) be a coefficient vector containing the log rate ratios \(\beta \), the baseline rate parameters \(\lambda_0 \) and \(\mu_0 \), and the shape parameters \(\gamma_{\text{int}} \) and \(\gamma_{\text{ext}} \) as needed. Let \(h_{ij}(t, \theta) \) be the hazard function and \(S_{ij}(t, \theta) \) be the survival function defined by the chosen failure time distribution with rate parameter \(\lambda_{ij} \) from equation (10). Let \(\theta_0 \) denote the true value of \(\theta \).

Who-infects-who observed. Let \(N_{ij}(t) = I_{t \geq t_{ij}} \) count the first infectious contact from \(i \) to \(j \). Assume \(j \) is susceptible at time \(t = 0 \), so \(N_{ij}(0) = 0 \). Then \(M_{ij}(t, \theta_0) \) is a mean-zero martingale, where

\[
M_{ij}(t, \theta) = N_{ij}(t) - \int_0^t h_{ij}(u - t_i - \varepsilon_i, \theta) C_{ij} I_i(u) \, du
\]
for $i \neq 0$ and

$$M_{0j}(t, \theta) = N_{0j}(t) - \int_0^t h(u, \theta) C_{ij} I_i(u) \, du. \leqno(12)$$

We observe infectious contacts from i to j only while j is still susceptible and ij is under observation, which gives us the observed counting process

$$N_{ij}(t) = \int_0^t Y_{ij}(u) \, dN_{ij}(u). \leqno(13)$$

Similarly, let

$$M_{ij}(t, \theta) = \int_0^t Y_{ij}(u) \, dM_{ij}(u, \theta). \leqno(14)$$

Then $M_{ij}(t, \theta_0)$ is a mean-zero martingale because it is the integral of a predictable process with respect to $M_{ij}(u, \theta_0)$.

When we observe infectious contacts from i to j between time 0 and time T, we get the log likelihood

$$\ell^*_ij(\theta) = \int_0^T \ln h(u - t_i - \varepsilon_i, \theta) \, dN_{ij}(u) - \int_0^T h(u - t_i - \varepsilon_i, \theta) Y_{ij}(u) \, du. \leqno(15)$$

when $i \neq 0$ and

$$\ell^*_0j(\theta) = \int_0^T \ln h(u, \theta) \, dN_{0j}(u) - \int_0^T h(u, \theta) Y_{0j}(u) \, du. \leqno(16)$$

These are standard survival likelihoods: The first term is a log hazard if i infects j and zero otherwise, and the second term is the negative cumulative hazard of infectious contact. The score process is

$$U^*_ij(t, \theta) = \int_0^t \left(\frac{\partial}{\partial \theta} \ln h(u - t_i - \varepsilon_i, \theta) \right) \, dM_{ij}(u, \theta), \leqno(17)$$

when $i \neq 0$ and

$$U^*_0j(t, \theta) = \int_0^t \left(\frac{\partial}{\partial \theta} \ln h(u, \theta) \right) \, dM_{ij}(u, \theta). \leqno(18)$$

Both score processes are mean-zero martingales when $\theta = \theta_0$.

Now fix j. If we observe all pairs ij from time 0 until time T, the log likelihood is

$$\ell^*_j(\theta) = \sum_{i \neq j} \ell^*_ij(\theta). \leqno(19)$$
with score process

\begin{equation}
U^*_j(t, \theta) = \sum_{i \neq j} U^*_{ij}(t, \theta).
\end{equation}

The score process $U^*_j(t, \theta_0)$ is a mean-zero martingale because it is a sum of independent mean-zero martingales.

When we observe who-infected-whom, the log likelihood is

$$\ell^*(\theta) = \sum_{j=1}^n \ell^*_j(\theta)$$

and its score process is $U^*(t, \theta) = \sum_{j=1}^n U^*_j(t, \theta)$. Because it is a sum of independent mean-zero martingales, $U^*(t, \theta_0)$ is a mean-zero martingale. Differentiating $\ell^*(\theta)$, evaluating at θ_0, and taking expectations yields

\begin{equation}
E\left[-\frac{\partial^2}{\partial \theta^2} \ell^*(\theta_0) \right] = E\left[\langle U^*(\theta_0) \rangle(T) \right],
\end{equation}

where $\langle U(\theta_0) \rangle(\tau)$ is the predictable variation process of $U(\tau, \theta_0)$.

Who-infests-whom not observed. Now suppose we do not observe who infected person j if he or she is infected. Then we see cannot see each $N_{ij}(t)$. Instead, we see $N\cdot j(t) = \sum_{i \neq j} N_{ij}(t)$. The total hazard of infectious contact with j at time t is

\begin{equation}
h\cdot j(t, \theta) = h(t, \theta)C_{0j} + \sum_{i:0 \neq i \neq j} h(t - t_i - \epsilon_i, \theta)C_{ij}I_i(t),
\end{equation}

so the process

\begin{equation}
M\cdot j(t, \theta) = N\cdot j(t) - \int_0^t h\cdot j(u, \theta)S_j(u)O(u) \, du = \sum_{i \neq j} M_{ij}(t, \theta).
\end{equation}

is a mean-zero martingale when $\theta = \theta_0$. When j is observed from time 0 to time T, the log likelihood is

\begin{equation}
\ell_j(\theta) = \int_0^T \ln h\cdot j(u, \theta) \, dN\cdot j(u) - \int_0^T h\cdot j(u, \theta)S_j(u) \, du
\end{equation}

and its score process is

\begin{equation}
U\cdot j(t, \theta) = \int_0^t \left[\frac{\partial}{\partial \theta} \ln h\cdot j(u, \theta) \right] \, dM\cdot j(u, \theta),
\end{equation}

which is a mean-zero martingale when $\theta = \theta_0$.

The complete-data log likelihood when we do not observe who-infected-whom is $\ell(\theta) = \sum_{j=1}^n \ell_j(\theta)$ with score process $U(t, \theta) = \sum_{j=1}^n U\cdot j(t, \theta)$. Because it is
a sum of independent mean-zero martingales, $U(t, \theta_0)$ is a mean-zero martingale. Differentiating $\ell(\theta)$, evaluating at θ_0, and taking expectations yields

$$E\left[-\frac{\partial^2}{\partial \theta^2} \ell(\theta_0)\right] = E\left[\langle U(\theta_0) \rangle(T)\right],$$

where $\langle U(\theta) \rangle(\tau)$ is the predictable variation process of $U(\tau, \theta)$.

2.4. **Pairwise asymptotics.** The arguments above establish the consistency and asymptotic normality of the maximum likelihood estimator $\hat{\theta}$ as the number of observed infections $m \to \infty$ (Kenah, 2011) as long as the rate of increase in the number of susceptibles at risk of infection is at least as fast as the rate of increase in the number of pairs at risk of transmission (Kenah, 2015). In practice, maximum likelihood estimation should work as long as we observe a sufficient number of infections in individuals who were susceptible at the beginning of observation.

3. **Simulations.** The proposed pairwise AFT regression model was tested through 10,000 network-based simulations for each of five different baseline internal contact interval distributions: exponential(1), Weibull(0.5, 1), Weibull(1.5, 1), log-logistic(0.5, 1), and log-logistic(1.5, 1). In all simulations, the external infectious contact time distribution was exponential(1). The infectious period was fixed to one (i.e., $\tau_i = 1$ for each i).

In each simulation, we generated an undirected network representing 300 households of size 6. Each household was a complete graph of size 6, and the households were not connected to each other. Once a household member was infected, other members of the household could be infected by transmission within the household or by an external source. Each epidemic was followed until 500 infections occurred, which guaranteed that at least 200 infections occurred in individuals who were not index cases (i.e., the first case detected in a household).

Each individual i was assigned an independent Bernoulli(0.5) covariate X_i. The rate parameter for the contact interval distribution in the pair ij was

$$\lambda_{ij} = \exp\left(\beta_{\text{inf}}X_i + \beta_{\text{sus}}X_j + (1 - \mathbb{I}_{i=0}) \ln \lambda_0 + \mathbb{I}_{i=0} \ln \mu_0\right),$$

where we set $X_0 = 0$. For each simulation, the true values of β_{inf} and β_{sus} were independent samples from a uniform($-1, 1$) distribution.

In each simulation, we analyzed data sets under four different epidemiologic study designs. Under each study design, data were analyzed both with and without knowledge of who-infected-whom. Analysis of within-household transmission is the same for all four study designs, but they differ in their inclusion of individuals (i.e., pairs 0j) at risk of external infectious contact. The study designs are:
Complete cohort: Follow-up for all 1,800 individuals starts at time zero, which is the time origin for external infectious contact times.

Contact tracing (CT) with delayed entry: Follow-up of each individual begins at the infection time of the index case in his or her household. Time at risk of external infectious contact prior the start of follow-up is left-truncated, and individuals in households with no infections are excluded from the study.

CT without delayed entry: Follow-up of all members of households where at least one infection occurs starts retroactively at time zero (i.e., their time at risk of external infectious contact is not left-truncated). Individuals in households with no infections are excluded from the study.

Ignoring external infection: All pairs $0j$ are excluded from the study. This is equivalent to assuming that, in each household, all infections after the primary case are caused by within-household transmission.

We expect the first two study designs (the “valid” study designs) to yield valid parameter estimates and the last two (the “flawed” study designs) to yield biased parameter estimates. For all eight analyses of each simulation, we obtained maximum likelihood point estimates of β_{inf}, β_{sus}, $\ln \lambda_0$, $\ln \gamma_{\text{int}}$, and $\ln \mu_0$. For all parameters, we calculated 95% Wald and likelihood ratio (LR) confidence intervals.

Simulations were implemented using a Python module `transtat_models` (available at github.com/ekenah/transtat_models). Pairwise AFT models were fit to simulated data using the R package `transtat` (available at github.com/ekenah/transtat). The `transtat` package allows models to be specified using standard R model syntax and provides Wald and likelihood ratio confidence intervals for coefficient estimates. All regression models used an exponential distribution for external rows and the correct parametric family (exponential, Weibull, or log-logistic) for rows representing within-household pairs.

Simulations were implemented in Python version 3.5.1 (www.python.org) using NumPy version 1.11 (www.numpy.org) and NetworkX version 1.11 (networkx.github.io). The models were run using `transtat_models` version 0.1.1, and statistical analysis was conducted in R version 3.3 (www.r-project.org) using `transtat` version 0.2.6. All of these software packages are free and open-source. Simulation code in Python code and R code for the analysis of each simulation is available in the Supplementary Material.

4. Los Angeles County influenza data. We use influenza A (H1N1) household surveillance data collected by the Los Angeles County Department of Public Health (LACDPH) in April and May, 2009 to give a practical example of pairwise AFT modeling of infectious disease transmission data. The data was collected using the following protocol (Sugimoto et al., 2011):

1. Between April 14 and May 18, nasopharyngeal swabs and aspirates were
taken from individuals who reported to the LACDPH or other local health care providers with acute febrile respiratory illness (AFRI), defined as a fever \(\geq 37.8^\circ C \) plus at least one of cough, sore throat, or rhinorrhea (runny nose). These specimens were tested for influenza using reverse transcriptase polymerase chain reaction (RT-PCR).

2. Patients whose specimens tested positive for pandemic influenza A(H1N1) or for influenza A of undetermined subtype were invited to participate in a phone interview. These interviews used a standard questionnaire developed by the LACDPH to collect information about his or her household contacts, including sex, age, and antiviral prophylaxis use. For index cases under 18 years of age, an adult proxy was interviewed.

3. The initial interview and, when necessary, a follow-up interview were used to obtain the symptom onset dates of AFRI episodes in the household up to 14 days after the symptom onset date of the index case. All interviews were completed between April 30 and June 1.

For simplicity, we assume all AFRI episodes among household members were caused by influenza A(H1N1). All index cases are assumed to be external infections, and all other household members are assumed to be susceptible to infection from both within-household transmission and external sources. The study design is contact tracing with delayed entry.

The primary analysis assumed an incubation period of 2 days, a latent period of 0 days, and an infectious period of 6 days. These natural history assumptions are adapted from Yang et al. (2009) and identical to those in Kenah (2013) and Kenah (2015). Households were identified upon clinical presentation of an index case, so household members were considered to be at risk of infection from the infection time of the index case (which depends on the assumed incubation period) until 14 days after the infection time of the index case. In a sensitivity analysis, we varied assumptions about the latent and infectious periods.

The covariates used in our analysis were sex \((\text{male} = 1 \text{ for males and } \text{male} = 0 \text{ for females})\), age category \((\text{adult} = 1 \text{ for ages } \geq 18 \text{ years and } \text{adult} = 0 \text{ otherwise})\), and antiviral prophylaxis. Antiviral prophylaxis was assumed to be initiated on the day following the symptom onset of the index case in each household, so it was handled as a time-dependent covariate. Each pair had covariate values for the infectious individual \((\text{male}_{\text{inf}}, \text{adult}_{\text{inf}}, \text{proph}_{\text{inf}})\) and for the susceptible individual \((\text{male}_{\text{sus}}, \text{adult}_{\text{sus}}, \text{proph}_{\text{sus}})\). In external pairs, all infectiousness covariates were set to zero. We considered exponential, Weibull, and log-logistic distributions for the internal and external contact time distributions. All models were fit using the Broyden, Fletch, Goldfarb, and Shanno method \((\text{BFGS in the } \text{R function } \text{optim})\) with starting parameter values taken from an initial fit using exponential distributions for contact intervals and external con-
tact times.

As for the simulations, statistical analysis was conducted in R version 3.3 (www.r-project.org) using transtat version 0.2.6. The household dataset and analysis code are available in the Supplementary Material.

5. Results.

5.1. Household simulations. Table 1 shows the mean squared error (MSE) for point estimates, and Table 2 shows the coverage probabilities for Wald and likelihood ratio (LR) 95% confidence intervals. , , Figure 3 shows boxplots of the estimated $\ln \lambda_0$, and Figure 4 shows boxplots of the estimated $\ln \mu_0$. In all cases, results are shown for all study designs with and without observation of who-infected-whom (WIW).

Study design	β_{inf}	β_{sus}	$\ln \lambda_0$	$\ln \mu_0$	$\ln \gamma_{\text{int}}$
Who-infected-whom observed					
Complete cohort	0.04	0.01	0.04	0.01	0.01
Contact tracing with delayed entry	0.04	0.03	0.04	0.02	0.01
Contact tracing without delayed entry	0.03	0.01	0.08	0.32	0.01
Ignoring external infection	0.04	0.05	0.05	-	0.01
Who-infected-whom not observed					
Complete cohort	0.06	0.02	0.07	0.01	0.03
Contact tracing with delayed entry	0.10	0.08	0.15	1.02	0.05
Contact tracing without delayed entry	0.24	0.02	0.62	0.59	0.19
Ignoring external infection	0.13	0.12	0.20	-	0.14

TABLE 1

Mean squared error (MSE) for point estimates in simulations

Log rate ratios. Figure 1 shows scatterplots of the true and estimated β_{inf}, and Figure 2 shows scatterplots of the true and estimated β_{sus}. When WIW is observed, β_{inf} and β_{sus} are estimated with no apparent bias under all four study designs. All four designs have similarly low MSE, and both Wald and LR 95% confidence interval coverage probabilities are nominal. When WIW is not observed, both invalid study designs produce questionable point and interval estimates. CT without delayed entry shows high MSE for β_{inf} and slightly low coverage probabilities for both β_{inf} and β_{sus}. Ignoring external infection produces slightly high MSE for β_{sus} and very low coverage probabilities for both β_{sus} and β_{inf}. Point and interval estimates for the valid study designs behave well whether or not WIW is not observed.

Intercepts. When WIW is observed, all four study designs show little bias in estimates of the internal model intercept $\ln \lambda_0$. Both flawed study designs have slightly higher MSEs than the valid study designs. Confidence interval coverage probabilities are low for CT without delayed entry but acceptable for all other study designs.
When WIW is not observed, there is a clear negative bias under CT without delayed entry and a positive bias under ignoring external infection. The flawed study designs have substantially higher MSEs than the valid study designs, and their confidence interval coverage probabilities are very low. The valid study designs have Wald coverage probabilities that are slightly too low, but their LR coverage probabilities are nominal.

When WIW is observed, estimates of the external model intercept $\ln \mu_0$ under CT without delayed entry have a large positive bias and high MSE. Estimates under the valid study designs are unbiased and have low MSE. When WIW is not observed, estimates under the complete cohort design are unbiased and have low MSE. Estimates under CT with delayed entry are unbiased but have high MSE due to large variance. Estimates under CT without delayed entry have a large positive bias but a much lower variance, so they end up with a lower MSE than estimates under CT without delayed entry. Whether or not WIW is observed, Wald and LR coverage probabilities are extremely low under CT without delayed entry but nominal under the valid study designs.

Shape parameter. The internal log shape parameter, $\ln \gamma_{\text{int}}$, was estimated in all simulations with Weibull or log-logistic contact interval distributions. When WIW is observed, all four study designs show low MSE. Confidence interval coverage probabilities are nominal under the valid study designs and slightly low under the
flawed study designs. When WIW is not observed, the valid study designs still show low MSE and acceptable (though slightly lower) coverage probabilities. The flawed study designs show much larger MSE and coverage probabilities that are too low—especially when external infection is ignored.

Summary. When WIW was observed, estimation of β_{inf}, β_{sus}, and $\ln \gamma_{\text{int}}$ was surprisingly robust. Estimation of $\ln \lambda_0$ was acceptable under all study designs except ignoring external infection, which overestimates $\ln \lambda_0$ because all infections are attributed to transmission within the household. Estimation of $\ln \mu_0$ was acceptable only under the valid study designs.

When WIW was not observed, estimation of all parameters became much more sensitive to epidemiologic study design. In most cases, the flawed study designs produced biased point estimates and interval estimates with poor coverage probabilities. The valid designs produced unbiased point estimates and confidence intervals with adequate coverage probabilities. The LR confidence intervals performed slightly better than the Wald confidence intervals.

The Appendix, which is available as in the Supplementary Material, shows these tables and figures separately for each baseline contact interval distribution, and it also includes boxplots of $\ln \gamma_{\text{int}}$ estimates for Weibull and log-logistic contact interval distributions. The same general pattern was seen in each subset of simulations, but bias in $\ln \lambda_0$ and $\ln \gamma_{\text{int}}$ estimates under flawed study designs showed some interesting interactions. In simulations with Weibull(1.5, 1) or log-logistic(1.5, 1) contact intervals, $\ln \lambda_0$ estimates were biased upward in both flawed study designs, but $\ln \gamma_{\text{int}}$ estimates were biased upward under CT without delayed entry and downward under ignoring external infection. In simulations with log-logistic(0.5, 1) contact intervals, estimates of $\ln \lambda_0$ and $\ln \gamma_{\text{int}}$ were biased downward under CT without delayed entry even when WIW was observed.

5.2. Los Angeles County influenza data.

The household data collected by the Los Angeles County Department of Public Health included 299 individuals in 58 households. There were 99 probable influenza infections, of which 62 were index cases—four households had co-primary cases with symptom onsets on the same day. There were three people missing data on sex, four people missing data on age, and 56 people missing data on antiviral prophylaxis. The 62 individuals with missing data came from 17 households with 36 infections, of which 19 were index cases. Because we assume all household members can infect or be infected by other household members, we excluded the entire household if any of its members was missing data. In the complete-cases data set, we have 41 households with 63 infections, of which 43 were index cases.

Using the complete-cases data set, we fit a model with all six covariates using all nine possible combinations of internal and external contact time distributions.
The top panel of Table 3 shows the resulting Akaike Information Criterion (AIC) values. The three minimum AIC values occur for exponential internal contact intervals. Among these three, the lowest AIC occurs for log-logistic external contact times. Using exponential interval contact intervals and log-logistic external contact times, we built a model using backwards selection to achieve the minimum AIC. This removed all covariates except for three: age category for infectiousness (adult_inf), age category for infectiousness (adult_sus), and prophylaxis use by susceptibles (proph_sus). The AIC of this model was 203.59.

Internal contact intervals	Exponential	Weibull	Log-logistic
Exponential	207.74	208.01	207.66
Weibull	209.25	209.87	209.58
Log-logistic	209.22	209.82	209.52

Table 3

AIC values for regression models using sex, age category, and antiviral prophylaxis for both susceptibility and infectiousness.

We then checked for external interaction terms (interactions between the susceptibility covariates and the external row indicator). External interaction terms allow a covariate to have different coefficients in the internal and external transmission models. An external interaction term with adult_sus had a p-value of 0.89 and increased the AIC to 205.57. An external interaction term with proph_sus had a p-value of 0.87 but reduced the AIC to 202.37. A likelihood ratio test comparing this model to a model with no main effect or interaction for proph_sus yielded a p-value of 0.041. Though there is some indication that the coefficient on proph_sus might differ in the internal and external transmission models, we did not keep the interaction term in the model. Our final model is summarized at the top of Table 4.

The predicted infectiousness rate ratio for adults compared to children is 3.88 (0.70, 90.32), and the predicted susceptibility rate ratio for adults compared to children is 0.62 (0.23, 1.20). The model suggests that adults are more infectious and less susceptible than children, but the small number of transmission events observed makes these results inconclusive. The predicted rate ratio for susceptibility associated with antiviral prophylaxis is 0.34 (0.10, 0.76), so the model strongly suggests that antiviral prophylaxis in susceptibles reduces their risk of infection. We found no clear evidence of differences in infectiousness or susceptibility by sex, and we found no clear evidence of an effect of antiviral prophylaxis on infectiousness.

Table 5 shows the predicted household secondary attack rate (SAR) by the age of the infectious individual, the age of the susceptible individual, and antiviral prophylaxis in the susceptible individual. The higher infectiousness and lower suscept-
TABLE 4
Summary of final regression model with LR confidence intervals and p-values. Coefficients for covariates are log rate ratios, and γ_{ext} is the log-logistic shape parameter.

Coefficient Estimate	95% CI	p-value	
Accounting for external infection			
$\ln \lambda_0$	-4.90	(-23.55, -3.38)	< 0.0001
adult_inf	1.36	(-0.36, 4.50)	0.131
adult_sus	-0.48	(-1.46, 0.18)	0.139
proph_sus	-1.06	(-2.26, -0.28)	0.012
$\ln \mu_0$	-4.10	(-6.04, -3.59)	0.021
$\ln \gamma_{\text{ext}}$	0.80	(-0.76, 1.50)	0.191
Ignoring external infection			
$\ln \lambda_0$	-4.10	(-5.46, -3.04)	< 0.0001
adult_inf	0.76	(-0.45, 2.10)	0.218
adult_sus	-0.77	(-1.87, 0.37)	0.178
proph_sus	-0.83	(-2.14, 0.30)	0.155

TABLE 5
Predicted household secondary attack rates with Wald 95% confidence intervals.

Transmission to	Transmission from	Market	Adult
Child untreated	4.4% (0.5%, 34.6%)	15.9% (6.4%, 36.4%)	
Child on prophylaxis	1.5% (0.2%, 13.7%)	5.8% (2.0%, 15.9%)	
Adult untreated	2.7% (0.3%, 20.1%)	10.2% (4.3%, 22.8%)	
Adult on prophylaxis	0.9% (0.1%, 7.9%)	3.6% (1.2%, 10.5%)	

predictability of adults is readily apparent, as is the protective effect of antiviral prophylaxis. Because the predicted household SAR depends on multiple parameters in the regression model, we used Wald confidence intervals for simplicity.

To see how accounting for external sources of infection affected our analysis, we re-fit our final model using only data on infectious-susceptible pairs within households. This model is summarized at the bottom of Table 4. The two models give similar results, but accounting for external infection gave us greater statistical power to estimate the effects of age and antiviral prophylaxis. Using Weibull or log-logistic internal contact interval distributions did not restore the statistical power lost by ignoring external sources of infection (not shown).

In a sensitivity analysis, we varied assumptions about the latent and infectious periods. The results are summarized in Table 6. The infectiousness rate ratio for age category and its p-value are highly sensitive to the assumed latent and infectious periods. The susceptibility rate ratio for age category and its p-value are more stable but still sensitive to these assumptions. The susceptibility rate ratio for antiviral prophylaxis and its p-value are remarkably stable. The rate ratio varies from 0.35 to 0.41, and its p-value varies from 0.011 to 0.026. The loss of statistical power
in a study to help estimate the risk of infection from external sources. This design is valid and the statistical model is correctly specified. When external sources of infection are ignored and WIW is not observed, $\ln \mu_0$ is underestimated whether or not WIW is observed because we include all infections of index cases but only a subset of the person-time at risk that gave rise to these cases. Specifically, we include the person-time of the index cases and their household members while excluding the person-time of individuals in households that have no infections. The overestimation of $\ln \mu_0$ leads to underestimation of $\ln \lambda_0$ (or overestimation of both $\ln \lambda_0$ and $\ln \gamma_{\text{int}}$).

The high variance of $\ln \mu_0$ estimates under CT with delayed entry is caused by the relatively small number of infections from external sources that occur in households that already have an index case. If observation of the household starts upon identification of an index case, the infection of the index case cannot be included as an infection event. It might be useful to recruit households without index cases to get better estimates of the risk of infection from external sources. One possibility would be to use a test-negative design to recruit households (or other contact groups), similar to that used to recruit individuals in observational studies of vaccine effectiveness (Foppa et al., 2013; Jackson and Nelson, 2013). Households of possible index cases who test negative for the infection of interest could be retained in a study to help estimate the risk of infection from external sources. This design

Latent period = 1 day	Accounting for external infection	Ignoring external infection				
	Coefficient Estimate	95% CI	p-value	Estimate	95% CI	p-value
adult_inf	0.08 (−1.24, 1.37)	0.894	0.06 (−0.99, 1.09)	0.909		
adult_sus	−0.63 (−1.52, 0.07)	0.074	−0.58 (−1.61, 0.52)	0.286		
proph_sus	−1.05 (−2.26, −0.23)	0.013	−0.95 (−2.24, 0.13)	0.087		

Infectious period = 5 days
adult_inf
adult_sus
proph_sus

Infectious period = 7 days
adult_inf
adult_sus
proph_sus

Table 6
Log rate ratios in sensitivity analysis with LR confidence intervals and p-values.
guarantees that these “control” households would have been included if they had a true index case, reducing the chance of selection bias or confounding by health-seeking behavior.

When WIW is observed, estimation of β_{inf} and susceptibility β_{sus} was surprisingly robust under flawed epidemiologic study designs. Though the corresponding estimates of $\ln \lambda_0$ and $\ln \mu_0$ were not accurate, these are nuisance parameters in some contexts. Thus, information about WIW could be very useful for understanding the effects of covariates on transmission. Pathogen phylogenies have been shown to reduce the variance of transmission parameter estimates by providing partial information about WIW (Kenah et al., 2016), but our simulation results suggest that they could also help reduce bias. If phylogenetics can determine which infections originate from outside a household, it might be possible to avoid modeling the risk of infection from outside the household: Infections from external sources would become censoring events for the internal transmission model.

Our analysis of the LACDPH influenza A(H1N1) data strongly suggests that antiviral prophylaxis reduced susceptibility to infection in household contacts. We found inconclusive evidence of higher infectiousness and lower susceptibility to influenza among adults. These results are consistent with results of Kenah (2015), which analyzed the same data using a semiparametric regression model that could not account for external sources of infection. Our classification of age was very crude, so it is possible that a more sophisticated model would find more conclusive evidence of age effects on susceptibility and infectiousness. These results were obtained with only 20 infection events in 41 households, and the ability to account for external sources of infection was critical to this efficiency.

The simulations and data analysis also pointed to several limitations of pairwise survival analysis and of the pairwise AFT model:

- Pairwise survival analysis will require greater sophistication in handling missing data than we demonstrated here. In our analysis, we removed entire households when any member was missing a covariate. We also assumed a fixed incubation, latent and infectious periods to avoid treating these times as missing. Bayesian methods with data imputation (O’Neill and Roberts, 1999) would be a more principled and efficient way to handle missing data.
- With no scientific basis for choosing parametric families, we simply compared models with different combinations of contact interval and external infectious contact time distributions using the AIC. An extension of the semiparametric model of Kenah (2015) would not require the choice of parametric families for these distributions.
- The pairwise AFT model showed some numerical instability. It was important to identify a good starting point for maximization of the likelihood, either with stochastic annealing (as in the simulations) or with a fit using a
simple model (as in the data analysis). We dealt successfully with this prob-
lem ad hoc, but it needs further investigation.

Fortunately, there is a clear path forward to addressing each of these limitations.

The pairwise AFT model can be viewed as an extension of the longitudinal
chain-binomial model (Rampey et al., 1992; Becker and Britton, 1999) to continuous
time that comes with several advantages: It allows flexibility in the infectious-
ness profile without a large number of nuisance parameters, and it can be specified,
fit, and interpreted in a manner similar to regression models already used in epi-
demiology. We hope its availability in an R package will make it accessible to
practicing infectious disease epidemiologists.

Unlike almost all individual-level analyses traditionally used in infectious dis-
ease epidemiology, both the pairwise AFT model and the longitudinal chain bino-
mial model condition on exposure to infection. When exposure to infection is sys-
tematically different in individuals with different covariate values, traditional esti-
mates of covariate effects on susceptibility can be biased. In particular, individual-
level estimates of treatment effects for infectious diseases can be biased even in ran-
domized trials (Halloran and Struchiner, 1991; Halloran, Longini and Struchiner,
2010; Eck, Morozova and Crawford, 2018; Morozova, Cohen and Crawford, 2018).

The pairwise AFT model allows the simultaneous estimation of rate ratios for
susceptibility and infectiousness while accounting for the risk of external infection.
It has the potential to become a powerful new tool to understand infectious disease
transmission, and we hope it helps improve the design and analysis of vaccine
trials, outbreak investigations, and other studies of infectious diseases.

Acknowledgments. The authors would like to thank Forrest Crawford (Yale School
of Public Health) and Jonathan Sugimoto (Fred Hutchinson Cancer Research Cen-
ter) for their comments, and we are grateful to the Los Angeles County Depart-
ment of Public Health (LACDPH) for allowing the use of their data. EK was
supported by National Institute of General Medical Sciences (NIGMS) grant U54
GM111274. EK and YS were supported by National Institute of Allergy and Infec-
tious Diseases Grant (NIAID) grants R01 AI116770 and R03 AI124017. YS was
supported by National Institutes of Health (NIH) grant DP2HD09179. The content
is solely the responsibility of the authors and does not represent the official views
of LACDPH, NIGMS, NIAID, or the NIH.

References.
Becker, N. G. and Britton, T. (1999). Statistical studies of infectious disease incidence. Journal
of the Royal Statistical Society, Series B 61 287–307.
Eck, D. J., Morozova, O. and Crawford, F. W. (2018). Randomization for the direct
effect of an infectious disease intervention in a clustered study population. arXiv preprint
arXiv:1808.05593.
FOPPA, I. M., HABER, M., FERDINANDS, J. M. and SHAY, D. K. (2013). The case test-negative design for studies of the effectiveness of influenza vaccine. *Vaccine* 31 3104–3109.

HALLORAN, M. E., LONGINI, I. M. Jr. and STRUCHINER, C. (2010). *Design and Analysis of Vaccine Studies. Statistics for Biology and Health*. Springer-Verlag, New York.

HALLORAN, M. E. and STRUCHINER, C. (1991). Study designs for dependent happenings. *Epidemiology* 2 331–338.

HALLORAN, M. E., STRUCHINER, C. and LONGINI, I. M. Jr (1997). Study designs for evaluating different efficacy and effectiveness aspects of vaccines. *American Journal of Epidemiology* 146 789–803.

JACKSON, M. L. and NELSON, J. C. (2013). The test-negative design for estimating influenza vaccine effectiveness. *Vaccine* 31 2165–2168.

KALBFLEISCH, J. D. and PRENTICE, R. L. (2002). *The Statistical Analysis of Failure Time Data*, second ed. *Wiley Series in Probability and Statistics*. John Wiley & Sons, Hoboken, NJ.

KENAH, E. (2011). Contact intervals, survival analysis of epidemic data, and estimation of R0. *Biostatistics* 12 548–566.

KENAH, E. (2013). Non-parametric survival analysis of infectious disease data. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 75 277–303.

KENAH, E. (2015). Semiparametric Relative-Risk Regression for Infectious Disease Transmission Data. *Journal of the American Statistical Association* 110 313-325.

KENAH, E., LIPSTICH, M. and ROBINS, J. M. (2008). Generation interval contraction and epidemic data analysis. *Mathematical biosciences* 213 71–79.

KENAH, E., BRITTON, T., HALLORAN, M. E. and LONGINI, I. M. Jr. (2016). Molecular infectious disease epidemiology: Survival analysis and algorithms linking phylogenies to transmission trees. *PLoS Computational Biology* 12 e1004869.

MOROZOVA, O., COHEN, T. and CRAWFORD, F. W. (2018). Risk ratios for contagious outcomes. *Journal of The Royal Society Interface* 15 20170696.

O’NEILL, P. D. and ROBERTS, G. O. (1999). Bayesian inference for partially observed stochastic epidemics. *Journal of the Royal Statistical Society, Series A* 162 121–129.

RAMPEY, A. H. Jr, LONGINI, I. M. Jr, HABER, M. and MONTO, A. S. (1992). A discrete-time model for the statistical analysis of infectious disease incidence data. *Biometrics* 48 117–128.

SUGIMOTO, J. D., YANG, Y., HALLORAN, M. E., DEAN, B., OIULFSTAD, B., BAGWELL, D. A., MASCOLLA, L., BANCROFT, E. and LONGINI, I. M. Jr. (2011). Accounting for unobserved immunity and asymptomatic infection in the early household transmission of the pandemic influenza A(H1N1). Unpublished.

YANG, Y., SUGIMOTO, J., HALLORAN, M. E., BASTA, N. E., CHAO, D. L., MATRAIT, L., POTTER, G., KENAH, E. and LONGINI, I. M. Jr (2009). The transmissibility and control of pandemic influenza A(H1N1) virus. *Science* 326 729–733.
FIG 1. Scatterplot of infectiousness coefficient (β_{inf}) estimates from all simulations. The true values were independent random samples from a uniform(-1, 1) distribution.
FIG 2. Scatterplot of susceptibility coefficient (β_{sus}) estimates from all simulations. The true values were independent random samples from a uniform(-1, 1) distribution.
Figure 3. Boxplot of log baseline internal rate parameter ($\ln \lambda_0$) estimates from all simulations. The true parameter value was zero. The edges of the boxes correspond to the first and third quartiles. The whiskers extend to the highest and lowest data points within 1.5 IQR (interquartile range) of the nearest quartile.
Fig 4. Boxplot of log baseline external rate parameter (ln μ_0) estimates from all simulations. The true parameter value was zero. The edges of the boxes correspond to the first and third quartiles. The whiskers extend to the highest and lowest data points within 1.5 IQR (interquartile range) of the nearest quartile.