Aim: Obesity and metabolic syndrome (MetS) frequently coexist and are both important risk factors for cardiovascular disease. However, the pathophysiological role of obesity without MetS, also referred to as metabolically healthy obesity (MHO), remains unclear. In this study, we aim to clarify the effect of MHO on the development of carotid plaque using a community-based cohort.

Methods: We examined 1,241 subjects who underwent health checkups at our institute. Obesity was defined as body mass index of ≥ 25.0 kg/m2. Subjects were divided into three groups: non-obese, MHO, and metabolically unhealthy obesity (MUO).

Results: The prevalence of carotid plaque, defined as intima-media thickness (IMT) ≥ 1.1 mm, was higher in subjects with MUO and MHO than in non-obese subjects. Multivariable analysis demonstrated that MHO (odds ratio 1.6, $p=0.012$) and MUO (odds ratio 1.9, $p=0.003$) as well as age of ≥ 65 years, male sex, hypertension, and diabetes mellitus were independently associated with carotid plaque formation. A similar trend was observed in each subgroup according to age and sex.

Conclusions: MHO increased the prevalence of carotid plaque when compared with non-obese subjects, suggesting the potential significance of MHO in the development of subsequent cardiovascular diseases.

Key words: Metabolically healthy obesity, Metabolic syndrome, Carotid plaque, Carotid intima-media thickness, Atherosclerosis
Methods

Study Population
We examined 1,243 subjects who underwent medical checkups at the University of Tokyo Hospital between August 2014 and May 2018. All subjects were at least 18 years old, and those who agreed to participate in this study were eligible. We excluded two subjects who lacked IMT data and included 1,241 subjects in this study. (Patient flowchart is shown in Fig. 1.)

Ethics
This study was approved by the Ethical Committee of the University of Tokyo (No. 2017-2424). This study was conducted in accordance with the Declaration of Helsinki.

Definition
Obesity was defined as body mass index of ≥ 25.0 kg/m², according to the diagnostic criteria in Asian people and the guidelines of Japan Society for the Study of Obesity (JASSO: http://www.jasso.or.jp/contents/magazine/journal.html). Abdominal obesity, defined as waist circumference at umbilical level ≥ 85 cm in men and ≥ 90 cm in women, was obligatory for diagnosis of MetS. In addition, any two of the following three anomalies should be observed for diagnosis of MetS: [1] high blood pressure, systolic blood pressure ≥ 130 mmHg, diastolic blood pressure ≥ 85 mmHg, or use of antihypertensive medications; [2] hyperglycemia, fasting plasma glucose level ≥ 110 mg/dL, or use of insulin or oral antidiabetic medications; and [3] dyslipidemia, triglyceride level ≥ 150 mg/dL, HDL-C < 40 mg/dL, or use of lipid-lowering medications. MHO was defined as obese subjects without MetS, whereas metabolically unhealthy obesity (MUO) was defined as obese subjects with MetS. Hypertension was defined by blood pressure ≥ 140/90 mmHg or use of antihypertensive medications. Diabetes mellitus was defined by fasting glucose level ≥ 126 mg/dL or use of insulin or oral antidiabetic medications. Hypercholesterolemia was defined by total cholesterol level > 240 mg/dL or use of lipid-lowering medications.

Measurement of Intima-Media Thickness (IMT) and Definition of Carotid Plaque
Images were obtained by multiple experts in carotid imaging using a Apio 300 TUS-A300 or Xario SSA-660A ultrasound system (Toshiba Medical Systems, Otawara, Tochigi, Japan) equipped with a 7.5-MHz linear probe. Common carotid ultrasound examination was performed with the subjects in a supine position. Their necks were hyperextended and their heads were turned contralateral to the test side. The left common carotid arteries were visualized from a fixed lateral transducer angle. Bilateral measurement of the strain was performed from the images of the short axis of the common carotid artery at 1 cm infe-
Prevalence of Carotid Plaque Formation

Fig. 2 shows the comparison of the prevalence of carotid plaque formation in the three groups. The prevalence increased in subjects with MHO subjects (41%) as compared with non-obese subjects (34%) and further increased in subjects with MUO (57%).

Determinants of Carotid Plaque Formation

Univariate logistic regression analysis showed that subjects with MHO [odds ratio (OR), 1.3; \(p = 0.078 \)] as well as those with MUO (OR 2.6, \(p < 0.001 \)) were associated with carotid plaque formation as compared with non-obese subjects (Table 2). Multivariable logistic regression analysis demonstrated that age, male gender, hypertension, diabetes mellitus, subjects with MHO (OR: 1.6, \(p = 0.012 \)), and subjects with MUO (OR 1.9, \(p = 0.003 \)) were independently associated with carotid plaque formation. There was no statistical difference in the risk of carotid plaque formation between subjects with MHO and MUO (Table 2).

Subgroup Analyses

The prevalence of carotid plaque formation was higher in subjects with MHO and MUO as compared with non-obese subjects having age < 65 years old or age ≥ 65 years old as well as in male non-obese subjects. A similar trend was also seen in the female subgroup (Fig. 3).

Discussion

The present study examines the general population who underwent health checkups at our institute, with a focus on the influence of MHO on IMT and carotid plaque formation. Three major findings were observed. First, obesity was observed in 31% of the general population, and 56% of the subjects with obesity were categorized as MHO. Second, the prevalence of carotid plaque formation was higher in subjects with MHO and MUO as compared with non-obese subjects. Third, the prevalence of carotid plaque was higher in subjects with MHO and MUO as compared with non-obese subjects, irrespective of age and sex.

Obesity is a worldwide pandemic public health problem, and its prevalence is also increasing in Japan due to the westernized and industrialized lifestyle. An excess of visceral adipose fat in subjects with obesity is known to be an important source of various molecules such as inflammatory cytokines inducing metabolic disorders. Therefore, obesity and MetS frequently coexist and accelerate the develop-
Table 1. Baseline clinical characteristics

Variable	Total	Non-obese (n = 857)	Metabolically healthy obesity (n = 214)	Metabolically unhealthy obesity (n = 170)	P-value
Demographics					
Age	62.6 ± 11.7	63.1 ± 11.7	61.0 ± 11.7	62.5 ± 11.7	0.067
Age ≥ 65 years old	598 (48.2%)	434 (50.6%)	83 (38.8%)	81 (47.6%)	0.008
Gender, Male	699 (56.3%)	421 (49.1%)	140 (65.4%)	138 (81.2%)	<0.001
Body mass index (kg/m²)	23.5 ± 3.6	21.7 ± 2.1	26.8 ± 1.8	28.6 ± 3.5	<0.001
Comorbidities					
Hypertension	449 (36.2%)	250 (29.2%)	63 (29.4%)	136 (80.0%)	<0.001
Diabetes mellitus	132 (10.6%)	70 (8.2%)	10 (4.7%)	52 (30.6%)	<0.001
Hypercholesterolemia	461 (37.1%)	322 (37.6%)	60 (28.0%)	79 (46.5%)	0.001
Coronary artery disease	32 (2.6%)	20 (2.3%)	3 (1.4%)	9 (5.3%)	0.041
Smoking	469 (37.8%)	299 (34.9%)	96 (44.9%)	74 (43.5%)	0.007
Metabolic syndrome	225 (18.1%)	55 (6.4%)	0 (0%)	170 (100%)	<0.001
Biochemistry					
Glucose (mg/dl)	100.0 ± 20.0	97.2 ± 16.7	98.4 ± 16.2	116.4 ± 29.7	<0.001
HbA1c (%)	5.9 ± 0.6	5.8 ± 0.5	5.8 ± 0.6	6.4 ± 0.9	<0.001
T-cholesterol (mg/dl)	205.1 ± 34.3	207.2 ± 34.2	207.3 ± 31.7	191.6 ± 35.1	<0.001
LDL-C (mg/dl)	124.1 ± 30.5	123.7 ± 30.5	131.9 ± 30.9	116.3 ± 29.6	<0.001
HDL-C (mg/dl)	65.4 ± 18.5	69.7 ± 18.7	58.7 ± 13.5	51.8 ± 13.4	<0.001
Triglyceride (mg/dl)	110.9 ± 80.0	99.1 ± 76.0	116.8 ± 67.9	163.1 ± 92.0	<0.001
Metabolic risk components					
Waist circumference	478 (38.5%)	150 (17.5%)	158 (73.8%)	170 (100%)	<0.001
High blood pressure	574 (46.3%)	333 (38.9%)	89 (41.6%)	152 (89.4%)	<0.001
Hyperglycemia	222 (17.9%)	111 (13.0%)	15 (7.0%)	96 (56.5%)	<0.001
Dyslipidemia	477 (38.4%)	279 (32.6%)	59 (27.6%)	139 (81.8%)	<0.001
Number of metabolic risks components					
0	423 (34.1%)	355 (41.4%)	68 (31.8%)	0 (0%)	<0.001
1	452 (36.4%)	321 (37.5%)	131 (61.2%)	0 (0%)	
2	277 (22.3%)	141 (16.5%)	13 (6.1%)	123 (72.4%)	
3	89 (7.2%)	40 (4.7%)	2 (0.9%)	47 (27.6%)	

Data are expressed as mean ± standard deviation, or percentage (number).

LDL-C, low density lipoprotein cholesterol; HDL-C, high density lipoprotein cholesterol.

Fig. 2. Prevalence of carotid plaque

The prevalence of carotid plaque formation was higher in subjects with obesity (both metabolically healthy and metabolically unhealthy) than in non-obese subjects.
Table 2. Determinants of carotid plaque

Variables	Univariate Analysis	Multivariable Analysis		
	P-value	OR (95% CI)	P-value	OR (95% CI)
Age	<0.001	1.084 (1.070 - 1.097)	<0.001	1.088 (1.073 - 1.103)
Gender, Male	<0.001	1.981 (1.563 - 2.511)	<0.001	2.325 (1.718 - 3.147)
Hypertension	<0.001	2.649 (2.085 - 3.367)	0.001	1.640 (1.236 - 2.178)
Diabetes mellitus	<0.001	3.074 (2.115 - 4.468)	0.047	1.540 (1.005 - 2.361)
Hypercholesterolemia	0.002	1.453 (1.148 - 1.839)	0.397	1.124 (0.857 - 1.475)
Coronary artery disease	0.088	1.845 (0.913 - 3.731)	0.841	0.922 (0.415 - 2.047)
Smoking	0.742	1.040 (0.822 - 1.317)	0.495	0.902 (0.671 - 1.213)
Stage				
Non-obese	Reference		Reference	
MHO	0.078	1.319 (0.970 - 1.793)	0.012	1.564 (1.102 - 2.222)
MUO	<0.001	2.558 (1.830 - 3.575)	0.003	1.857 (1.226 - 2.811)

OR, odds ratio; CI, confidence interval, MHO, Metabolically healthy obesity, MUO, Metabolically unhealthy obesity

Fig. 3. Prevalence of carotid plaque in subjects with age < 65 years (A), ≥ 65 years (B), male sex (C), and female sex (D)

The prevalence of carotid plaque formation was significantly higher in subjects with obesity (both metabolically healthy and metabolically unhealthy) than in non-obese subjects in subgroups of age < 65 years (A), age ≥ 65 years (B), and male sex (C). A similar trend was observed in the female subgroup (D)
ment of subsequent CVD. However, recent studies have identified a phenotype, i.e., so-called MHO, which has a low burden of metabolic disorders29, 30). This phenotype attracts clinical interests, particularly regarding its impact on subclinical CVD.

IMT is an established marker for subclinical CVD in the general population and is a good predictor of subsequent CVD. According to preceding studies, obesity and MetS are associated with increased IMT and carotid plaque formation31-34). However, the relationship between MHO phenotype and the prevalence of carotid plaque has remained unknown. Therefore, we investigated whether the MHO phenotype is associated with increased carotid plaque formation in the general population.

Approximately one-third of our subjects were obese. This percentage is similar to that in preceding studies involving a general population35-37). Among subjects with obesity, more than half of the subjects were categorized as having MHO; therefore, MHO is not a rare condition in the general population. IMT was significantly different between non-obese, MHO, and MUO groups (Supplementary Fig. 1). Similar to IMT, the prevalence of carotid plaque formation was also higher in subjects with obesity. Multivariable analysis presented that MHO and MUO were independently associated with higher prevalence of carotid plaque, suggesting that obesity induced subclinical CVD regardless of the presence of MetS and that obesity itself should be the prevention target for future CVD events.

In contrast, the importance of metabolic disorders in subjects with obesity based on the results of this study cannot be denied. We defined MHO as obese subjects without MetS. Therefore, 68% of subjects with MHO had at least one component that met the criteria of MetS. Given that each component included in the definition of MetS, such as high blood pressure, hyperglycemia, and dyslipidemia, can induce atherosclerosis, metabolic disorders of subjects categorized as having MHO might weaken the potential difference in IMT between subjects with MHO and MUO. In fact, subjects with MUO tended to have a higher prevalence of carotid plaque formation. Although the difference did not reach a statistically significant value, this may be attributed to the limited sample size. Further studies with larger sample size are warranted to clarify this point.

Subgroup analysis showed the effect of MHO in each subgroup according to age and sex. In particular, presence of MHO increased the prevalence of carotid plaque formation as compared with non-obese subjects, even in subgroups with younger age or female sex, who are supposed to be at low risk of CVD. Therefore, the risk of MHO in the general population with relatively low CVD risk should not be underestimated.

The present study has several limitations. First, the presented data are from a single-center experience; therefore, the present findings may not be simply generalized. The statistical power might not be sufficient for any statistically nonsignificant data to be conclusive because of the limited sample size. Although multivariable regression analysis was performed, unmeasured confounders may have influenced the results. Second, MHO is a novel concept and its definition has not yet established. In this study, we defined MHO as obesity without MetS. However, there are various definitions of MHO given in preceding studies38-40). Although detailed analysis is not available due to the limited sample size, the effect of obesity on the percentage of carotid plaque formation can differ according to the number subjects with metabolic disorders. Therefore, further study is required to establish the optimal definition of MHO. Third, among non-obese subjects, MetS was observed in 55 subjects (6.4%). Because of the small sample size, the significance of this subset could not be analyzed. Fourth, the effect of medication was not assessed in detail, particularly the type of lipid-lowering medications used. Fifth, detailed information regarding alcohol drinking status, which can influence the results, is not available. Finally, we did not perform multivariable analysis for IMT. Therefore, we cannot conclude that IMT was independently higher in subjects with MHO and MUO than in non-obese subjects.

Conclusion

The prevalence of carotid plaque is higher in both subjects with MHO and MUO as compared with non-obese subjects in the general population. Regardless of the presence of MetS, we need to consider obesity as a high-risk factor for subsequent CVD.

Acknowledgments

We would like to thank all staff of the Center for Epidemiology and Preventive Medicine at our institute.

Funding Source

This study was self-funded.
Conflict of Interest

I.K. received lecture honoraria from Actelion Pharmaceuticals Japan, Astellas, Amgen Astellas Biopharma, AstraZeneca, MSD, Shionogi & Co, Takeda Pharmaceutical Company, Mitsubishi Tanabe Pharma Corporation, TOA EIY0, Boehringer Ingelheim, Bayer Yakuhin and Pfizer Japan, clinical research funding from IQVIA, Meiji, Daiichi Sankyo Company and Ono Pharmaceutical Company, and scholarship grants from Astellas, Edwards Life Science, Otsuka Pharmaceutical, Kowa Pharmaceutical, Daiichi Sankyo Company, Takeda Pharmaceutical Company, Mitsubishi Tanabe Pharma Corporation, Teijin Pharma, Bayer Yakuhin, NIPRO and Terumo Corporation. H.K. received the research funding and scholarship funds from Medtronic Japan CO., LTD, Abbott Medical Japan CO., LTD, Boston Scientific Japan CO., LTD and Fukuda Denshi, Central Tokyo CO., LTD. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

References

1) Stevens J, Cai J, Pamuk ER, Williamson DF, Thun MJ, Wood JL. The effect of age on the association between body-mass index and mortality. N Engl J Med, 1998; 338: 1-7
2) de Gonzalez AB, Hartge P, Cerhan JR, Flint AJ, Hannan L, MaClnnes RJ, Moore SC, Tobias GS, Anton-Culver H, Freeman LB, Beeson WL, Clipp SL, English DR, Folsom AR, Freedman DM, Giles G, Hakansson N, Henderson KD, Hoffman-Bolton J, Hoppin JA, Koenig KL, Lee IM, Linet MS, Park Y, Pocobelli G, Schatzkin A, Sesso HD, Weinerpass E, Willecox BJ, Wolk A, Zelaniu-Jacquettet A, Willert WC, Thun MJ. Body-Mass Index and Mortality among 1.46 Million White Adults. New Engl J Med, 2010; 363: 2211-2219
3) Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA, 2013; 309: 71-82
4) Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler-Thromb Vasc Biol, 2006; 26: 968-976
5) Huang Z, Willett WC, Manson JE, Rosner B, Stampfer MJ, Speizer FE, Colditz GA. Body weight, weight change, and risk for hypertension in women. Ann Intern Med, 1998; 128: 81-88
6) Nguyen NT, Magno CP, Lane KT, Hinojosa MW, Lane JS. Association of hypertension, diabetes, dyslipidemia, and metabolic syndrome with obesity: findings from the National Health and Nutrition Examination Survey, 1999 to 2004. J Am Coll Surg, 2008; 207: 928-934
7) Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care, 1994; 17: 961-969
8) Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med, 1995; 122: 481-486
9) Sullivan PW, Morrato EH, Ghushchyan V, Wyatt HR, Hill JO. Obesity, inactivity, and the prevalence of diabetes and diabetes-related cardiovascular comorbidities in the U.S., 2000-2002. Diabetes Care, 2005; 28: 1599-1603
10) Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, Lang CC, Rumboldt Z, Olen CN, Lisheng L, Tanomsup S, Wangai P, Jr., Razak F, Sharma AM, Anand SS, Investigators IS. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet, 2005; 366: 1640-1649
11) Global Burden of Metabolic Risk Factors for Chronic Diseases C, Lu Y, Hajifathalian K, Ezzati M, Woodward M, Rimm EB, Danaei G. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet, 2014; 383: 970-983
12) McGill HC, Jr., McManus CA, Henderson EF, Zieske AWM, Malcolm GT, Tracy RE, Strong JP, Pathobiological Determinants of Atherosclerosis in Youthe Research G. Obesity accelerates the progression of coronary atheroosclerosis in young men. Circulation, 2002; 105: 2712-2718
13) Mitchell AB, Cole JW, Mcardle PF, Cheng YC, Ryan KA, Sparks MJ, Mitchell BD, Kittner SJ. Obesity increases risk of ischemic stroke in young adults. Stroke, 2015; 46: 1690-1692
14) Huang Y, Xu M, Xie L, Wang T, Huang X, Lv X, Chen Y, Ding L, Lin L, Wang W, Bi Y, Sun Y, Zhang Y, Ning G. Obesity and peripheral arterial disease: A Mendelian Randomization analysis. Atherosclerosis, 2016; 247: 218-224
15) Mongraw-Chaffin M, Foster MC, Anderson CAM, Burke GL, Haq N, Kalyani RR, Ouyang P, Sibley CT, Tracy R, Woodward M, Vaidya D. Metabolically Healthy Obesity, Transition to Metabolic Syndrome, and Cardiovascular Risk. J Am Coll Cardiol, 2018; 71: 1857-1865
16) Itoh H, Kaneko H, Kiriyama H, Yoshida Y, Nakanishi K, Mizuno Y, Daimon M, Morita H, Yatomi Y, Komuro I. Relation between the Updated Blood Pressure Classification according to the American College of Cardiology/ American Heart Association Guidelines and Carotid Intima-Media Thickness. Am J Cardiol, 2019; 124: 396-401
17) Kanazawa M, Yoshiike N, Osaka T, Numba Y, Zimmet P, Smith SC, Jr., International Diabetes Federation Task Force on E, Prevention, Hational Heart L, Blood I, American Heart A, World Heart F, International Atherosclerosis S, International Association for the Study of O. Harmanizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force
on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 2009; 120: 1640-1645

20) Iino H, Okano T, Daimon M, Sasaki K, Chigira M, Nakao T, Mizuno Y, Yamazaki T, Kurano M, Yatomi Y, Sumi Y, Sasano T, Miyata T. Usefulness of Carotid Arterial Strain Values for Evaluating the Arteriosclerosis. J Atheroscler Thromb, 2018

21) Handa N, Matsumoto M, Maeda H, Hougaku H, Ogawa S, Fukunaga R, Yoneda S, Kimura K, Kamada T. Ultrasound Evaluation of Early Carotid Atherosclerosis. Stroke, 1990; 21: 1567-1572

22) Salonen R, Salonen JT. Progression of carotid atherosclerosis and its determinants: a population-based ultrasonography study. Atherosclerosis, 1990; 81: 33-40

23) Kanters SD, Algra A, van Leeuwen MS, Banga JD. Reproducibility of in vivo carotid intima-media thickness measurements: a review. Stroke, 1997; 28: 665-671

24) Gonzalez J, Wood JC, Dorey FJ, Wren TA, Gilsanz V. Reproducibility of carotid intima-media thickness measurements in young adults. Radiology, 2008; 247: 465-471

25) Kim GH, Youn HJ. Is Carotid Artery Ultrasound Still Useful Method for Evaluation of Atherosclerosis? Korean Circ J, 2017; 47: 1-8

26) Peeters A, Barendregt JJ, Willekens F, Mackenbach JP, Al Mamun A, Bottenue L, Nedcom tNE, Demography Compression of Morbidity Research G. Obesity in adulthood and its consequences for life expectancy: a life-table analysis. Ann Intern Med, 2003; 138: 24-32

27) Meldrum DR, Morris MA, Gambone JC. Obesity pandemic: causes, consequences, and solutions—but do we have the will? Fertil Steril, 2017; 107: 833-839

28) Nishi N. Monitoring Obesity Trends in Health Japan 21. J Nutr Sci Vitaminol (Tokyo), 2015; 61 Suppl: S17-S19

29) Karelis AD. Metabolically healthy but obese individuals. Lancet, 2008; 372: 1281-1283

30) Primeau V, Coderre L, Karelis AD, Brochu M, Lavoie ME, Messier V, Sladek R, Rabasa-Lhoret R. Characterizing the profile of obese patients who are metabolically healthy. Int J Obes (Lond), 2011; 35: 971-981

31) Lo J, Dolan SE, Kanter JR, Hemphill LC, Connelly JM, Lees RS, Grinspoon SK. Effects of obesity, body composition, and adiponectin on carotid intima-media thickness in healthy women. J Clin Endocrinol Metab, 2006; 91: 1677-1682

32) Burke GL, Bertoni AG, Shea S, Tracy R, Watson KE, Bumenthal RS, Chung H, Carnethon MR. The impact of obesity on cardiovascular disease risk factors and subclinical vascular disease: the Multi-Ethnic Study of Atherosclerosis. Arch Intern Med, 2008; 168: 928-935

33) Scuteri A, Najjar SS, Muller DC, Andres R, Hougaku H, Metter EJ, Lakatta EG. Metabolic syndrome amplifies the age-associated increases in vascular thickness and stiffness. J Am Coll Cardiol, 2004; 43: 1388-1395

34) McNeill AM, Rosamond WD, Girman CJ, Heiss G, Golden SH, Duncan BB, East HE, Ballantyne C. Prevalence of coronary heart disease and carotid arterial thickening in patients with the metabolic syndrome (The ARIC Study). Am J Cardiol, 2004; 94: 1249-1254

35) Kokubo Y, Watanabe M, Higashiyama A, Nakao YM, Kobayashi T, Watanabe T, Okamura T, Okayama A, Miyamoto Y. Interaction of Blood Pressure and Body Mass Index With Risk of Incident Atrial Fibrillation in a Japanese Urban Cohort: The Suita Study. Am J Hypertens, 2015; 28: 1355-1361

36) Kubo M, Hata J, Doi Y, Tanizaki Y, Iida M, Kiyohara Y. Secular trends in the incidence of and risk factors for ischemic stroke and its subtypes in Japanese population. Circulation, 2008; 118: 2672-2678

37) Shibata Y, Ojima T, Nakamura M, Kuwabara K, Miyagawa N, Saito Y, Nakamura Y, Nakagawa H, Fujiyoshi A, Okamura T, Ueshima H, Okayama A, Miura K. Associations of Overweight, Obesity, and Underweight With High Serum Total Cholesterol Level Over 30 Years Among the Japanese Elderly: NIPPON DATA 80, 90, and 2010. J Epidemiol, 2019; 29: 133-138

38) Hashimoto Y, Tanaka M, Okada H, Senmaru T, Hamaeguchi M, Asano M, Yamazaki M, Oda Y, Hasegawa G, Toda H, Nakamura N, Fukui M. Metabolically Healthy Obesity and Risk of Incident CKD. Clin J Am Soc Nephrol, 2015; 10: 578-583

39) Uehara S, Sato KK, Shibata M, Oue K, Kambe H, Morimoto M, Hayashi T. The Association between Metabolically Healthy Obese Phenotype and the Risk of Proteinuria: The Kansai Health Care Study. Diabetes, 2017; 66: A556-A556

40) Caleyachetty R, Thomas GN, Touliis KA, Mohammed N, Gokhale KM, Balachandran K, Nirantharakumar K. Metabolically Healthy Obese and Incident Cardiovascular Disease Events Among 3.5 Million Men and Women. J Am Coll Cardiol, 2017; 70: 1429-1437
Supplementary Fig. 1. Intima-media thickness