Uses of Randomness in Computation

Richard P. Brent†
Computer Sciences Laboratory
Australian National University
Canberra, ACT 0200, Australia

Report TR-CS-94-06
21 June 1994

Abstract

Random number generators are widely used in practical algorithms. Examples include simulation, number theory (primality testing and integer factorization), fault tolerance, routing, cryptography, optimization by simulated annealing, and perfect hashing.

Complexity theory usually considers the worst-case behaviour of deterministic algorithms, but it can also consider average-case behaviour if it is assumed that the input data is drawn randomly from a given distribution. Rabin popularised the idea of “probabilistic” algorithms, where randomness is incorporated into the algorithm instead of being assumed in the input data. Yao showed that there is a close connection between the complexity of probabilistic algorithms and the average-case complexity of deterministic algorithms.

We give examples of the uses of randomness in computation, discuss the contributions of Rabin, Yao and others, and mention some open questions.

1991 Mathematics Subject Classification. Primary 68-01, 68Q25; Secondary 05C80, 11A51, 11K45, 34F05, 65C10, 68Q05, 68Q10, 68Q15

Key words and phrases. Galileo, integer factorisation, Las Vegas algorithm, Library of Congress on Mars, minimal perfect hashing, Monte Carlo algorithm, perfect hashing, perfect party problem, permutation routing, primality testing, probabilistic algorithm, Ramsey number, random algorithm, randomisation, randomness, RP.

1 Checking out Galileo

The Galileo spacecraft is somewhere near Jupiter, but its main radio antenna is not working, so communication with it is very slow. Suppose we want to check that a critical program in Galileo’s memory is correct, and has not been corrupted by a passing cosmic ray. How can we do this without transmitting the whole program to or from Galileo?

Here is one way. The program we want to check (say \(N_1\)) and the correct program on Earth (say \(N_2\)) can be regarded as multiple-precision integers. Choose a random prime number \(p\) in the interval \((10^9, 2 \times 10^9)\). Transmit \(p\) to Galileo and ask it to compute

\[ r_1 \leftarrow N_1 \mod p \]

and send it back to Earth. Only a few bits (no more than 64 for \(p\) and \(r_1\)) need be transmitted between Earth and Galileo, so we can afford to use good error correction/detection.

On Earth we compute \(r_2 \leftarrow N_2 \mod p\), and check if \(r_1 = r_2\). There are two possibilities:
• $r_1 \neq r_2$. We conclude that $N_1 \neq N_2$. Galileo's program has been corrupted! If there are only a small number of errors, they can be localised by binary search using $O(\log \log N_1)$ small messages.

• $r_1 = r_2$. We conclude that Galileo's program is **probably** correct. More precisely, if Galileo's program is *not* correct there is only a probability of less than $10^{-9}$ that $r_1 = r_2$, i.e. that we have a “false positive”. If this probability is too large for the quality-assurance team to accept, just repeat the process (say) ten times with different random primes $p_1, p_2, \ldots, p_{10}$. If $N_1 \neq N_2$, there is a probability of less than

\[10^{-90}\]

that we get $r_1 = r_2$ ten times in a row. This should be good enough.

The problem and its solution were communicated to me by Michael Rabin, who called it the “Library of Congress on Mars” problem.

*The Structure*

Our procedure has the following form. We ask a question with a yes/no answer. The precise question depends on a random number. If the answer is “no”, we can assume that it is correct. If the answer is “yes”, there is a small probability of error, but we can reduce this probability to a negligible level by repeating the procedure a few times with *independent* random numbers.

We call such a procedure a *probabilistic* algorithm; other common names are *randomised* algorithm and *Monte Carlo* algorithm.

*Disclaimer*

It would be much better to build error correcting hardware into Galileo, and not depend on checking from Earth.

### 2 Testing Primality

Here is another example\(^1\) with the same structure. We want an algorithm to determine if a given odd positive integer $n$ is prime. Write $n$ as $2^k q + 1$, where $q$ is odd and $k > 0$.

*Algorithm P*

1. Choose a random integer $x$ in $(1, n)$.
2. Compute $y = x^q \mod n$. This can be done with $O(\log q)$ operations mod $n$, using the binary representation of $q$.
3. If $y = 1$ then return “yes”.
4. For $j = 1, 2, \ldots, k$ do
   - if $y = n - 1$ then return “yes”
   - else if $y = 1$ then return “no”
   - else $y \leftarrow y^2 \mod n$.
5. Return “no”.

\(^1\)Due to M. O. Rabin [49], with improvements by G. L. Miller. See Knuth [28].
Fermat’s Little Theorem

To understand the mathematical basis for Algorithm P, recall Fermat’s little Theorem: if \( n \) is prime and \( 0 < x < n \), then
\[
x^{n-1} = 1 \mod n.
\]
Thus, if \( x^{n-1} \neq 1 \mod n \), we can definitely say that \( n \) is composite.

Unfortunately, the converse of Fermat’s little theorem is false: if \( x^{n-1} = 1 \mod n \) we can not be sure that \( n \) is prime. There are examples (called Carmichael numbers) of composite \( n \) for which \( x^{n-1} \) is always \( 1 \mod n \) when \( \gcd(x, n) = 1 \). The smallest example is
\[
561 = 3 \cdot 11 \cdot 17
\]
Another example is\(^2\)
\[
n = 1729 = 7 \cdot 13 \cdot 19
\]

An Extension

A slight extension of Fermat’s little Theorem is useful, because its converse is usually true. If \( n = 2^k q + 1 \) is an odd prime, then either \( x^q = 1 \mod n \), or the sequence
\[
\left( x^{2^j q} \mod n \right)_{j=0,1,...,k}
\]
ends with 1, and the value just preceding the first appearance of 1 must be \( n - 1 \).

Proof: If \( y^2 = 1 \mod n \) then \( n | (y - 1)(y + 1) \). Since \( n \) is prime, \( n | (y - 1) \) or \( n | (y + 1) \). Thus \( y = \pm 1 \mod n \).

The extension gives a necessary (but not sufficient) condition for primality of \( n \). Algorithm P just checks if this condition is satisfied for a random choice of \( x \), and returns “yes” if it is.

Reliability of Algorithm P

Algorithm P can not give false negatives (unless we make an arithmetic mistake), but it can give false positives (i.e. “yes” when \( n \) is composite). However, the probability of a false positive is less than \( 1/4 \). (Usually much less – see Knuth [28], ex. 4.5.4.22.) Thus, if we repeat the algorithm 10 times there is less than 1 in \( 10^6 \) chance of a false positive, and if we repeat 100 times the results should satisfy anyone but a pure mathematician.

Algorithm P works fine even if the input is a Carmichael number.

Use of Randomness

Note that in both our examples randomness was introduced into the algorithm. We did not make any assumption about the distribution of inputs.

Summary of Algorithm P

Given any \( \varepsilon > 0 \), we can check primality of a number \( n \) in
\[
O((\log n)^3 \log(1/\varepsilon))
\]
bit-operations\(^3\), provided we are willing to accept a probability of error of at most \( \varepsilon \).

By way of comparison, the best known deterministic algorithm takes
\[
O((\log n)^{c \log \log \log n})
\]
bit-operations, and is much more complicated. If we assume the Generalised Riemann Hypothesis, the exponent can be reduced to 5. (But who believes in GRH with as much certainty as Algorithm P gives us?)

---

\(^2\)Hardy’s taxi number [23], 1729 = 12\(^3\) + 1\(^3\) = 10\(^3\) + 9\(^3\).

\(^3\)We can factor \( n \) deterministically in \( O(\log n) \) arithmetic operations [56], but this result is useless because the operations are on numbers as large as \( 2^n \). Thus, it is more realistic to consider bit-operations.
3 Error-Free Algorithms

The probabilistic algorithms considered so far (Monte Carlo algorithms) can give the wrong answer with a small probability. There is another class of probabilistic algorithms (Las Vegas algorithms) for which the answer is always correct; only the runtime is random\(^4\). An interesting example is H. W. Lenstra’s elliptic curve method (ECM) \([36]\) for integer factorisation. To avoid trivial cases, suppose we want to find a prime factor \(p > 3\) of an odd composite integer \(N\).

To motivate ECM, consider an earlier algorithm, Pollard’s “\(p - 1\)” method. This works if \(p - 1\) is “smooth”, i.e. has only small prime factors. \(p - 1\) is important because it is the order of the multiplicative group \(G\) of the field \(F_p\). The problem is that \(G\) is fixed.

**Lenstra’s Idea**

Lenstra had the idea of using a group \(G(a, b)\) which depends on parameters \((a, b)\). By randomly selecting \(a\) and \(b\), we get a large set of different groups, and some of these should have smooth order.

The group \(G(a, b)\) is the group of points on the **elliptic curve**

\[
y^2 = x^3 + ax + b \mod p,
\]

and by a famous theorem\(^5\) the order of \(G(a, b)\) is an integer in the interval

\[
(p - 1 - 2\sqrt{p}, p - 1 + 2\sqrt{p})
\]

The distribution in this interval is not uniform, but it is “close enough” to uniform for our purposes.

**Runtime of ECM**

Under plausible assumptions ECM has expected run time

\[
T = O \left( \exp \left( \sqrt{c \log p \log \log p} (\log N)^2 \right) \right),
\]

where \(c \simeq 2\).

Note that \(T\) depends mainly on the size of \(p\), the factor found, and not very strongly on \(N\). In practice the run time is close to an exponentially distributed random variable with mean and variance about \(T\).

**ECM Example**

ECM is the best known algorithm for finding moderately large factors of very large numbers.

Consider the 617-decimal digit Fermat number \(F_{11} = 2^{2^{11}} + 1\). Its factorisation is:

\[
F_{11} = 319489 \cdot 974849 \cdot 167988556341760475137 \cdot 3560841906445833920513 \cdot p_{564},
\]

where \(p_{564}\) is a 564-decimal digit prime.

In 1989 I found the 21-digit and 22-digit prime factors using ECM. The factorisation required about 360 million multiplications mod \(N\), which took less than 2 hours on a Fujitsu VP 100 vector processor.

---

\(^4\)In practical cases the expected runtime is finite. It is possible that the algorithm does not terminate, but with probability zero.

\(^5\)The “Riemann hypothesis for finite fields”. \(G(a, b)\) is known as the “Mordell-Weil” group. The result on its order follows from a theorem of Hasse (1934), later generalised by A. Weil and Deligne (see [34]).
4 Minimal Perfect Hashing

Hashing is a common technique used to map words into a small set of integers (which may then be used as indices to address a table). Thus, the computation $r_1 \leftarrow N_1 \mod p$ used in our “Galileo” example can be considered as a hash function.

Formally, consider a set

$$W = \{w_0, w_1, \ldots, w_{m-1}\}$$

of $m$ words $w_j$, each of which is a finite string of symbols over a finite alphabet $\Sigma$. A hash function is a function

$$h : W \rightarrow I,$$

where $I = \{0, 1, \ldots, k-1\}$ and $k$ is a fixed integer (the table size).

Collisions

A collision occurs if two words $w_1$ and $w_2$ map to the same address, i.e. if $h(w_1) = h(w_2)$. There are various techniques for handling collisions [29]. However, these complicate the algorithms and introduce inefficiencies. In applications where $W$ is fixed (e.g. the reserved words in a compiler), it is worth trying to avoid collisions.

Perfection

If there are no collisions, the hash function is called perfect.

Minimal Perfectness

For a perfect hash function, we must have $k \geq m$. If $k = m$ the hash function is minimal.

Problem

Given a set $W$, how can we compute a minimal perfect hash function?

The CHM Algorithm

Czech, Havas and Majewski (CHM) [14] give a probabilistic algorithm which runs in expected time $O(m)$ (ignoring the effect of finite word-length). Their algorithm uses some properties of random graphs.

Take $n = 3m$, and let

$$V = \{1, 2, \ldots, n\}.$$

CHM take two independent pseudo-random functions$^6$

$$f_1 : W \rightarrow V, \ f_2 : W \rightarrow V,$$

and let

$$E = \{(f_1(w), f_2(w)) \mid w \in W\}.$$

We can think of $G = (V, E)$ as a random graph with $n$ vertices $V$ and (at most) $m$ edges $E$.

Acyclicity

If $G$ has less than $m$ edges or $G$ has cycles, CHM reject the choice of $f_1, f_2$ and try again. Eventually they get a graph $G$ with $m$ edges and no cycles. Because $n = 3m$, the expected number of trials is a constant (about $\sqrt{3}$, or more generally $\sqrt{\frac{n}{n-2m}}$, for large $m$ and $n > 2m$).

$^6$How can this be done? This is a theoretical weak point of the algorithm, but in practice the solution given in [14] is satisfactory.
The Perfect Hash Function

Once an acceptable $G$ has been found, it is easy to compute (and store in a table) a function

$$g : V \to 0, 1, \ldots, m - 1$$

such that

$$h(w) = g(f_1(w)) + g(f_2(w)) \mod m$$

is the desired minimal perfect hash function. We can even get

$$h(w_j) = j$$

for $j = 0, 1, \ldots, m - 1$. All this requires is a depth-first search of $G$.

Implementation

CHM report that on a Sun SPARCstation 2 they can generate a minimal perfect hash function for a set of $m = 2^{19}$ words in 33 seconds. Earlier algorithms required time which (at least in the worst case) was an exponentially increasing function of $m$, so could only handle very small $m$.

5 Permutation Routing

A network $G$ is a connected, undirected graph with $N$ vertices $0, 1, \ldots, N - 1$.

The permutation routing problem on $G$ is: given a permutation $\pi$ of the vertices, and a message (called a packet) on each vertex, route packet $j$ from vertex $j$ to vertex $\pi(j)$. It is assumed that at most one packet can traverse each edge in unit time, and that we want to minimise the time for the routing.

In practice we only want to consider oblivious algorithms, where the route taken by packet $j$ depends only on $(j, \pi(j))$.

For simplicity, assume that the $G$ is a $d$-dimensional hypercube, so $N = 2^d$. Similar results apply to other networks.

Example: Leading Bit Routing

A simple algorithm for routing packets on a hypercube chooses which edge to send a packet along by comparing the current address and the destination address and finding the highest order bit position in which these addresses differ.

For example, consider the bit-reversal permutation $01001001 \rightarrow 10010010$. Each “↓” corresponds to traversal of an edge in the hypercube.
**Borodin and Hopcroft’s bound**

The following result [8] says that there are no “uniformly good” deterministic algorithms for oblivious permutation routing:

**Theorem:** For any deterministic, oblivious permutation routing algorithm, there is a permutation \( \pi \) for which the routing takes \( \Omega(\sqrt{N/d^3}) \) steps.

**Example:** For the leading-bit routing algorithm, take \( \pi \) to be the bit-reversal permutation, i.e.

\[
\pi(b_0b_1\ldots b_{d-1}) = b_{d-1}\ldots b_1b_0.
\]

Suppose \( d \) is even. Then at least \( 2^{d/2} \) packets are routed through vertex 0. To prove this, consider the routing of

\[
xx\ldots xx00\ldots 00,
\]

where there are at least \( d/2 \) trailing zeros.

**Valiant and Brebner’s algorithm**

We can do much better with a probabilistic algorithm. Valiant suggested:

1. Choose a random mapping \( \sigma \) (not necessarily a permutation).
2. Route message \( j \) from vertex \( j \) to vertex \( \sigma(j) \) using the leading bit algorithm (for \( 0 \leq j < N \)).
3. Route message \( j \) from vertex \( \sigma(j) \) to vertex \( \pi(j) \).

This seems crazy\(^7\), but it works! Valiant and Brebner [60] prove:

**Theorem:** With probability greater than \( 1 - 1/N \), every packet reaches its destination in at most \( 14d \) steps.

**Corollary:** The expected number of steps to route all packets is less than \( 15d \).

### 6 Pseudo-deterministic Algorithms

Some probabilistic algorithms use many independent random numbers, and because of the “law of large numbers” their performance is very predictable. One example is the multiple-polynomial quadratic sieve (MPQS) algorithm for integer factorisation.

Suppose we want to factor a large composite number \( N \) (not a perfect power). The key idea of MPQS is to generate a sufficiently large number of congruences of the form

\[
y^2 = p_1^{\alpha_1} \cdots p_k^{\alpha_k} \mod N,
\]

where \( p_1, \ldots, p_k \) are small primes in a precomputed “factor base”, and \( y \) is close to \( \sqrt{N} \). Many \( y \) are tried, and the “successful” ones are found efficiently by a sieving process.

Making some plausible assumptions, the expected run time of MPQS is

\[
T = O(\exp(\sqrt{c\log N \log \log N})),
\]

where \( c \approx 1 \). In practice, this estimate is good and the variance is small.

\(^7\)I do not know of any manufacturer who has been persuaded to implement it. Probably it would be hard to sell.
MPQS Example

MPQS is currently the best general-purpose algorithm for factoring moderately large numbers \( N \) whose factors are in the range \( N^{1/3} \) to \( N^{1/2} \). For example, A. K. Lenstra and M. S. Manasse recently found

\[
3^{329} + 1 = 2^2 \cdot 547 \cdot 16921 \cdot 256057 \cdot 36913801 \cdot 177140839 \cdot 24677078822840014266652779036768062918372697435241 
\]

where the penultimate factor \( p_{50} \) is a 50-digit prime

\[
24677078822840014266652779036768062918372697435241, 
\]

and the largest factor \( p_{67} \) is a 67-digit prime.

The computation used a network of workstations for “sieving”, then a super-computer for the solution of a very large linear system.

A “random” 129-digit number (RSA129) has just been factored in a similar way to win a $100 prize offered by Rivest, Shamir and Adleman in 1977.

7 Complexity Theory of Probabilistic Algorithms

Do probabilistic algorithms have an advantage over deterministic algorithms? If we allow a small probability of error, the answer is yes, as we saw for the Galileo example. If no error is allowed, the answer is (probably) no.

A. C. Yao considered probabilistic algorithms (modelled as decision trees) for testing properties \( P \) of undirected graphs (given by their adjacency matrices) on \( n \) vertices. He also considered deterministic algorithms which assume a given distribution of inputs (i.e. a distribution over the set of graphs with \( n \) vertices).

Definitions

Yao defines

randomized complexity \( F_R(P) \) as an

\[
\text{infimum} \text{ (over all possible algorithms) of a} \]

\[
\text{maximum} \text{ (over all graphs with } n \text{ vertices) of the}
\]

\[
\text{expected runtime}.
\]

and

distributional complexity \( F_D(P) \) as a

\[
\text{supremum} \text{ (over input distributions) of a}
\]

\[
\text{minimum (over all possible deterministic algorithms) of the}
\]

\[
\text{average runtime}.
\]

Informally, \( F_R(P) \) is how long the best probabilistic algorithm takes for testing \( P \); and \( F_D(P) \) is the average runtime we can always guarantee with a good deterministic algorithm, provided the distribution of inputs is known.

Yao’s Result

Yao (1977) claims that \( F_D(P) = F_R(P) \) follows from the minimax theorem of John von Neumann (1928). The minimax theorem is familiar from the theory of two-person zero-sum games.
So What?

Yao’s result should not discourage the use of probabilistic algorithms – we have already given several examples where they out-perform known deterministic algorithms, and there are many similar examples.

Yao’s computational model is very restrictive. Because $n$ is fixed, table lookup is permitted, and the maximum complexity of any problem is $O(n^2)$.

Adleman and Gill’s result

Less restrictive models have been considered by Adleman and Gill. Without going into details of the definitions, they prove:

Theorem: If a Boolean function has a randomised, polynomial-sized circuit family, then it has a deterministic, polynomial-sized circuit family.

There are two problems with this result:

- The deterministic circuit may be larger (by a factor of about $n$, the number of variables) than the original circuit.
- The transformation is not “uniform” – it can not be computed in polynomial time by a Turing machine. The proof of the theorem is by a counting argument applied to a matrix with $2^n$ rows, so it is not constructive in a practical sense.

8 The Class \(RP\)

We can formalise the notion of a probabilistic algorithm and define a class \(RP\) of languages \(L\) such that \(x \in L\) is accepted by a probabilistic algorithm in polynomial time with probability \(p \geq 1/2\) say, but \(x \notin L\) is never accepted. Clearly

\[ P \subseteq RP \subseteq NP, \]

where \(P\) and \(NP\) are the well-known classes of problems which are accepted in polynomial time by deterministic and nondeterministic (respectively) algorithms.

It is plausible that

\[ P \subset RP \subset NP, \]

but this would imply that \(P \neq NP\), so it is a difficult question.

9 Perfect Parties

B. McKay (ANU) and S. Radziszowski are interested in the size of the largest “perfect party”. Because people at parties tend to cluster in groups of five, we consider a party to be imperfect if there are five people who are mutual acquaintances, or five who are mutual strangers. A perfect party is one which is not imperfect.

McKay et al have performed a probabilistic computation which shows that, with high probability, the largest perfect party has 42 people.

Ramsey Numbers

\(R(s, t)\) is the smallest \(n\) such that each graph on \(n\) or more vertices has a clique of size \(s\) or an independent set of size \(t\).

\(^8\)Any fixed value in \((0, 1)\) can be used in the definition.
Examples: \( R(3, 3) = 6, R(4, 4) = 18, R(4, 5) = 25, \) and \( 43 \leq R(5, 5) \leq 49. \) See [38, 39].

Perfect party organisers would like to know \( R(5, 5) - 1. \)

The Computation

A \((5,5,n)\)-graph is a graph with \( n \) vertices, no clique of size 5, and no independent set of size 5. There are 328 known \((5,5,42)\)-graphs, not counting complements as different. McKay et al. generated 5812 \((5,5,42)\)-graphs using simulated annealing, starting at random graphs. All 5812 turned out to be known.

If there were any more \((5,5,42)\)-graphs, and if the simulated annealing process is about equally likely to find any \((5,5,42)\)-graph\(^9\), then another such graph would have been found with probability greater than

\[ 0.99999998 \]

Thus, there is convincing evidence that all \((5,5,42)\)-graphs are known. None of these graphs can be extended to \((5,5,43)\)-graphs. Thus, it is very unlikely that such a graph exists, and it is very likely that \( R(5, 5) - 1 = 42 \)

A Rigorous Proof?

A rigorous proof that \( R(5, 5) - 1 = 42 \) would take thousands of years of computer time\(^{10}\), so the probabilistic argument is the best that is feasible at present, unless we can get time on a computer as fast as Deep Thought [1].

10 Omissions

We did not have time to mention applications of randomness to serial or parallel algorithms for:

- sorting and selection,
- computer security,
- cryptography,
- computational geometry,
- load-balancing,
- collision avoidance,
- online algorithms,
- optimisation,
- numerical integration,
- graphics and virtual reality,
- avoiding degeneracy,
- approximation algorithms for NP-hard problems,

\(^9\)There is no obvious way to prove this, so the probability estimate is not rigorous.

\(^{10}\)Based on the fact that it took seven years of Sparcstation time to show that \( R(4, 5) = 25. \)
and many other problems. References to most of these applications are given in the bibliography below (see for example [42, 53]).

Another Omission

We did not discuss algorithms for generating pseudo-random numbers – that would require another talk\textsuperscript{11}.

11 Conclusion

- Probabilistic algorithms are useful.
- They are often simpler and use less space than deterministic algorithms.
- They can also be faster, if we are willing to live with a minute probability of error.

Some Open Problems

- Give good lower bounds for the complexity of probabilistic algorithms (with and without error) for interesting problems.
- Show how to generate independent random samples from interesting structures (e.g. finite groups defined by relations, various classes of graphs, \ldots) to provide a foundation for probabilistic algorithms on these structures.
- Consider the effect of using pseudo-random numbers instead of genuinely random numbers.
- Extend Yao’s results to a more realistic model of computation.
- Give a uniform variant of the Adleman-Gill theorem.
- Show that $P \neq RP$ (hard).

Acknowledgements

Thanks to Michael Rabin for interesting me in the topic, to George Havas for information on minimal perfect hashing, to Brendan McKay for permission to mention his unpublished work on $R(5,5)$, to Prabhakar Raghavan for postscript versions of his notes [53] and book [42], to John Slaney for motivating the definition of a perfect party, and to Antonios Symvonis for inviting me to speak at Theory Day (UNSW, April 1994) and thus motivating me to prepare this material.

The following bibliography is intended to help the reader follow up the topics outlined above. Much more extensive bibliographies can be found in [22, 42, 53].

References

[1] D. Adams, The Hitch Hiker’s Guide to the Galaxy, Pan Books, London, 1979, Chapter 25.

[2] L. M. Adleman, “Two theorems on random polynomial time”, Proc. 19th Annual Symposium on Foundations of Computer Science, IEEE, New York, 1978, 75–83.

[3] L. M. Adleman, “On distinguishing prime numbers from composite numbers (extended abstract)”, Proc. IEEE Symp. Found. Comp. Sci. 21 (1980), 387–406.

\textsuperscript{11} “Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.” (John von Neumann, 1951).
[4] L. M. Adleman and M. A. Huang, “Recognizing primes in random polynomial time”, *Proc. Nineteenth Annual ACM Symposium on the Theory of Computing*, ACM, New York, 1987, 462–469.

[5] S. L. Anderson, “Random number generators on vector supercomputers and other advanced architectures”, *SIAM Review* 32 (1990), 221-251.

[6] P. van Emde Boas, “Machine models, computational complexity and number theory”, in [37], 7–42.

[7] B. Bollobás, *Random Graphs*, Academic Press, New York, 1985.

[8] A. Borodin and J. E. Hopcroft, “Routing, merging, and sorting on parallel models of computation”, *J. Computer and System Sciences* 30 (1985), 130–145.

[9] R. P. Brent, “Factorisation of the eleventh Fermat number (preliminary report)”, *AMS Abstracts* 10 (1989), 89T–11–73.

[10] R. P. Brent, “Parallel algorithms for integer factorisation”, in *Number Theory and Cryptography* (edited by J. H. Loxton), Cambridge University Press, 1990. Preliminary version available by anonymous ftp from dcssoft.anu.edu.au:/pub/Brent/rpb115.∗

[11] R. P. Brent, “Vector and parallel algorithms for integer factorisation”, *Proc. Third Australian Supercomputer Conference*, Melbourne, 1990. Preliminary version available by ftp from dcssoft.anu.edu.au:/pub/Brent/rpb122.∗

[12] G. Buffon, “Essai d’arithmétique morale”, *Supplément à l’Histoire Naturelle* 4, 1777.

[13] T. R. Caron and R. D. Silverman, “Parallel implementation of the quadratic sieve”, *J. Supercomputing* 1 (1988), 273–290.

[14] Z. J. Czech, G. Havas and B. S. Majewski, “An optimal algorithm for generating minimal perfect hash functions”, *Information Processing Letters* 43 (1992), 257–264.

[15] P. Erdős and J. Spencer, *The Probabilistic Method in Combinatorics*, Academic Press, New York, 1974.

[16] P. Erdős and A. Renyi, “On random graphs, I”, *Publicationes Mathematicae* 6 (1959), 290–297.

[17] R. W. Floyd and R. L. Rivest, “Expected time bounds for selection”, *Comm. ACM* 18 (1975), 165–172.

[18] R. Freivalds, “Fast probabilistic algorithms”, in *Mathematical Foundations of Computer Science* (Lecture Notes in Computer Science, 74), Springer-Verlag, Berlin, 1979.

[19] J. Gill, “Computational complexity of probabilistic Turing machines”, *SIAM J. Computing* 6 (1977), 675–695.

[20] S. Goldwasser and J. Kilian, “Almost all primes can be quickly certified”, *Proc. 18th Annual ACM Symposium on Theory of Computing*, 1986, 316–329.

[21] R. L. Graham, B. L. Rothschild and J. H. Spencer, *Ramsey Theory*, John Wiley, New York, 1980.

[22] R. Gupta, S. A. Smolka and S. Bhaskar, “On randomization in sequential and distributed algorithms”, *ACM Computing Surveys* 26 (1994), 7–86.
[23] G. H. Hardy, *Ramanujan*, Cambridge University Press, London, 1940, page 12.

[24] R. M. Karp, “The probabilistic analysis of some combinatorial search algorithms”, in [59], 1–19.

[25] R. M. Karp, “An introduction to randomized algorithms”, *Discrete Applied Mathematics* 34 (1991), 165–201.

[26] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms”, *IBM J. Research and Development* 31 (1987), 249–260.

[27] R. M. Karp and V. Ramachandran, “Parallel algorithms for shared memory machines”, in [31], 869–941.

[28] D. E. Knuth, *The Art of Computer Programming*, Vol. 2, 2nd edition, Addison-Wesley, Menlo Park, 1981, §4.5.4.

[29] D. E. Knuth, *The Art of Computer Programming*, Vol. 3, Addison-Wesley, Menlo Park, 1973.

[30] K. de Leeuw, E. F. Moore, C. E. Shannon and N. Shapiro, “Computability by probabilistic machines”, in *Automata Studies* (C. E. Shannon and J. McCarthy, eds.), Princeton Univ. Press, Princeton, NJ, 1955, 183–212.

[31] J. van Leeuwen, editor, *Handbook of Theoretical Computer Science*, Elsevier, Amsterdam, 1990.

[32] A. K. Lenstra and H. W. Lenstra (editors), *The Development of the Number Field Sieve*, Lecture Notes in Mathematics 1554, Springer-Verlag, Berlin, 1993.

[33] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse and J. M. Pollard “The factorization of the ninth Fermat number”, *Mathematics of Computation* 61 (1993), 319–349.

[34] A. K. Lenstra and H. W. Lenstra, Jr., “Algorithms in number theory”, in [31], 675–715.

[35] H. W. Lenstra, Jr., “Primality testing”, in [37], 55–77.

[36] H. W. Lenstra, Jr., “Factoring integers with elliptic curves”, *Annals of Math.* (2) 126 (1987), 649–673.

[37] H. W. Lenstra, Jr. and R. Tijdeman (editors), *Computational Methods in Number Theory*, I Math. Centre Tracts 154, Amsterdam, 1982.

[38] B. D. McKay and S. P. Radziszowski, “A new upper bound for the Ramsey number $R(5, 5)$”, *Australasian J. Combinatorics* 5 (1991), 13–20.

[39] B. D. McKay and S. P. Radziszowski, “Linear programming in some Ramsey problems”, *J. Combinatorial Theory, Ser. B*, to appear.

[40] G. L. Miller, “Riemann’s hypothesis and tests for primality”, *J. Comp. System Sci.* 13 (1976), 300–317.

[41] L. Monier, “Evaluation and comparison of two efficient probabilistic primality testing algorithms”, *Theoret. Comput. Sci.* 12 (1980), 97–108.

[42] R. Motwani and P. Raghavan, *Randomized Algorithms*, Cambridge University Press, 1995, to appear.
[43] K. Mulmuley, *Computational Geometry: An Introduction Through Randomized Algorithms*, Prentice-Hall, New York, 1993.

[44] J. von Neumann, “Zur Theorie der Gesellschaftsspiele”, *Math. Annalen* 100 (1928), 295–320. Reprinted in *John von Neumann Collected Works* (A. H. Taub, editor), Pergamon Press, New York, 1963, Vol. 6, 1–26.

[45] J. von Neumann and O. Morgenstern, *Theory of Games and Economic Behavior*, Princeton Univ. Press, Princeton, NJ, 1953.

[46] C. Pomerance, J. W. Smith and R. Tuler, “A pipeline architecture for factoring large integers with the quadratic sieve algorithm”, *SIAM J. on Computing* 17 (1988), 387–403.

[47] V. Pratt, “Every prime has a succinct certificate”, *SIAM J. Computing* 4 (1975), 214–220.

[48] M. O. Rabin, “Probabilistic automata”, *Information and Control* 6 (1963), 230–245.

[49] M. O. Rabin, “Probabilistic algorithms”, in [59], 21–39.

[50] M. O. Rabin, “Complexity of computations (1976 Turing Award Lecture)”, *Comm. ACM* 20 (1977), 625–633. *Corrigendum ibid* 21 (1978), 231.

[51] M. O. Rabin, “Probabilistic algorithms for testing primality”, *J. Number Theory* 12 (1980), 128–138.

[52] M. O. Rabin and Shallit, “Randomized algorithms in number theory”, *Comm. Pure Appl. Math.* 39 (1986).

[53] P. Raghavan, *Lecture Notes on Randomized Algorithms*, Yale University, January 1990.

[54] R. L. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems”, *Comm. ACM* 21 (1978), 120–126.

[55] J. Seberry and J. Pieprzyk, *Cryptography: An Introduction to Computer Security*, Prentice Hall, Sydney, 1989.

[56] A. Shamir, “Factoring numbers in $O(\log n)$ arithmetic steps”, *Information Processing Letters* 8 (1979), 28–31.

[57] R. D. Silverman, “The multiple polynomial quadratic sieve”, *Mathematics of Computation* 48 (1987), 329–339.

[58] R. Solovay and V. Strassen, “Fast Monte Carlo test for primality”, *SIAM J. on Computing* 6 (1977), 84–85; *erratum* 7 (1978), 118.

[59] J. F. Traub (editor), *Algorithms and Complexity*, Academic Press, New York, 1976.

[60] L. G. Valiant and G. J. Brebner, “Universal schemes for parallel communication”, *Proc. 13th Annual ACM Symposium on the Theory of Computing*, ACM, New York, 1981, 263–277.

[61] A. C. Yao, “Probabilistic computations: towards a unified measure of complexity”, *Proc. 18th Annual Symposium on Foundations of Computer Science*, IEEE, New York, 1977, 222–227.

[62] G. Yuval, “Finding nearest neighbours”, *Information Processing Letters* 5 (1976), 63–65.