Reionization in sterile neutrino cosmologies

Sownak Bose,1★ Carlos S. Frenk,1 Jun Hou,1 Cedric G. Lacey1 and Mark R. Lovell2,3

1Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE, UK
2GRAPPA Institute, Universiteit van Amsterdam, Science Park 904, NL-1098 XH Amsterdam, the Netherlands
3Instituut-Lorentz for Theoretical Physics, Niels Bohrweg 2, NL-2333 CA Leiden, the Netherlands

Accepted 2016 September 8. Received 2016 September 7; in original form 2016 May 17

ABSTRACT
We investigate the process of reionization in a model in which the dark matter is a warm elementary particle such as a sterile neutrino. We focus on models that are consistent with the dark matter decay interpretation of the recently detected line at 3.5 keV in the X-ray spectra of galaxies and clusters. In warm dark matter models, the primordial spectrum of density perturbations has a cut-off on the scale of dwarf galaxies. Structure formation therefore begins later than in the standard cold dark matter (CDM) model and very few objects form below the cut-off mass scale. To calculate the number of ionizing photons, we use the Durham semi-analytic model of galaxy formation, GALFORM. We find that even the most extreme 7 keV sterile neutrino we consider is able to reionize the Universe early enough to be compatible with the bounds on the epoch of reionization from Planck. This, perhaps surprising, result arises from the rapid build-up of high redshift galaxies in the sterile neutrino models which is also reflected in a faster evolution of their far-UV luminosity function between 10 > z > 7 than in CDM. The dominant sources of ionizing photons are systematically more massive in the sterile neutrino models than in CDM. As a consistency check on the models, we calculate the present-day luminosity function of satellites of Milky Way-like galaxies. When the satellites recently discovered in the Dark Energy Survey are taken into account, strong constraints are placed on viable sterile neutrino models.

Key words: galaxies: evolution – galaxies: high-redshift – dark matter.

1 INTRODUCTION
Dark matter, the non-baryonic component that makes up the majority of the mass of the Universe, is the foundation of today’s cosmological paradigm. The standard model, ΛCDM, assumes that the dark matter is a cold, collisionless particle and that the energy density of the Universe today is dominated by dark energy in the form of a cosmological constant. This model has predictive power and accounts for basic measurements of the evolution of large-scale structure in our Universe, from the temperature anisotropies in the cosmic microwave background radiation at early times (Planck Collaboration XIII 2016), to the statistics of the galaxy clustering pattern today (e.g. Cole et al. 2005; Eisenstein et al. 2005; Zehavi et al. 2011). Its main shortcoming at present is that the cold particles have not yet been conclusively detected (but see Hooper & Goodenough 2011).

Cold particles are not the only well-motivated candidates for the dark matter. An example of a different kind of particle is the sterile neutrino (Dodelson & Widrow 1994; Abazajian, Fuller & Patel 2001a; Abazajian, Fuller & Tucker 2001b; Dolgov & Hansen 2002), which appears in a simple extension of the standard model. Its interaction with active neutrinos could source neutrino flavour oscillations. In order simultaneously to account for the dark matter and flavour oscillations, at least three right-handed sterile neutrinos are needed (Asaka & Shaposhnikov 2005; Asaka, Shaposhnikov & Laine 2007; Canetti, Drewes & Shaposhnikov 2013). In this ‘Neutrino Minimal Standard Model’ (or νMSM), two of the sterile neutrinos interact more strongly with the third, which behaves as dark matter (Boyarsky, Ruchayskiy & Shaposhnikov 2009b). With the appropriate choice of parameters in the Lagrangian, it is possible to obtain the correct dark matter density in sterile neutrinos.

Interest in νMSM has been boosted recently by the detection of an X-ray line at 3.5 keV in the stacked spectrum of galaxy clusters (Bulbul et al. 2014), M31 and the Perseus cluster (Boyarsky et al. 2014). According to these authors, the excess at 3.5 keV cannot be explained by any known metal lines and could, in fact, be the result of the decay of sterile neutrinos with a rest mass of 7 keV. This interpretation of the line has subsequently been challenged by several

★ E-mail: sownak.bose@durham.ac.uk

© 2016 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
Authors (see for example, Malyshev, Neronov & Eckert 2014; Anderson, Churazov & Bregman 2015; Jeltema & Profumo 2015; Riemer-Sorensen 2016). Most recently, Jeltema & Profumo (2016) failed to detect any excess at 3.5 keV in a deep XMM–Newton observation of the dwarf spheroidal galaxy Draco, attributing the original line detection to an excitation of K VIII. Crucially, however, the Jeltema & Profumo (2016) analysis made use of only a subset of the data; with the complete data set and an alternative model for the backgrounds, Ruchayskiy et al. (2016) detected positive residuals at 3.5 keV at 2.3σ significance, with a flux consistent with those obtained from the original stacked galaxy cluster and M31 observations. Future X-ray observatories may establish the true identity of this line.

From the point of view of cosmology, the defining property of keV mass sterile neutrinos is that they behave as warm dark matter (WDM). In contrast to cold dark matter (CDM), warm particles are kinematically energetic at early times and thus free stream out of small-scale primordial perturbations, inducing a cut-off in the power spectrum of density fluctuations. On large scales unaffected by the free streaming cut-off, structure formation is very similar in CDM and sterile neutrino cosmologies (and in WDM in general), but on scales comparable to or smaller than the cut-off, structure formation proceeds in a fundamentally different way in the two cases. No haloes form below a certain mass scale determined by the cut-off and the formation of small haloes above the cut-off is delayed (see Colín, Avila-Reese & Valenzuela 2000; Avila-Reese et al. 2001; Bode, Ostriker & Turok 2001; Viel et al. 2005; Lovell et al. 2012; Schneider et al. 2012; Bose et al. 2016a,b).

For a 7 keV sterile neutrino, the cut-off mass is \(\sim 10^9 M_\odot \). Thus, potentially observable differences from CDM would emerge on subgalactic scales and at high redshifts when the delayed onset of structure formation might become apparent. The Local Group and the early Universe are thus good hunting grounds for tell-tale signs that might distinguish warm from CDM. There is now a wealth of observational data for small galaxies in the Local Group (e.g. Koposov et al. 2008; McConnachie 2012), as well as measurements of the abundance of galaxies at high redshifts (e.g. McClure et al. 2013; Bouwens et al. 2015) and estimates of the redshift of reionization (Planck Collaboration XIII 2016). One might hope that these data could constrain the parameters of WDM models (e.g. Abazajian 2014; Calura, Menci & Gallazzi 2014; Schultz et al. 2014; Dayal et al. 2015a; Dayal, Mesinger & Pacucci 2015b; Governato et al. 2015; Maio & Viel 2015; Bozek et al. 2016; Lovell et al. 2016).

In this work, we address these questions using the Durham semi-analytic model of galaxy formation, GALFORM (Cole et al. 2000; Lacey et al. 2016), applied both to CDM and sterile neutrino dark matter. The model follows the formation of galaxies in detail using a Monte Carlo technique for calculating halo merger trees and well-tested models for the baryon physics that result in the formation of visible galaxies. GALFORM predicts the properties of the galaxy population at all times. This approach has the advantage that it can easily generate large statistical samples of galaxies at high resolution for a variety of dark matter models which would be prohibitive in terms of computational time with the current generation of hydrodynamic simulations.

This paper is structured as follows. In Section 2, we introduce the concept of sterile neutrinos and the models considered in this paper. In Section 3, we describe the astrophysical motivation behind this work, as well as the semi-analytic model, GALFORM, used in our analysis. Our results are presented in Section 4 and our main conclusions summarized in Section 5.

2 The Sterile Neutrino Model

Sterile neutrinos\(^1\) are relativistic when they decouple and therefore have non-negligible velocities which smear out density perturbations on small scales. Hence, sterile neutrinos behave as WDM. In the original model introduced by Dodelson & Widrow (1994), sterile neutrinos are created by non-resonant mixing with active neutrinos in the standard model. The scale of the free streaming is determined solely by the rest mass of the sterile neutrino – the lighter the particle, the larger the free streaming length, and the larger the scales at which differences relative to CDM appear.

Shi & Fuller (1999) proposed an alternative production mechanism in which the abundance of sterile neutrinos is boosted by a primordial lepton asymmetry. The value of this quantity, which measures the excess of leptons over antileptons, affects the scale of free streaming in addition to the rest mass of the sterile neutrino. Asaka & Shaposhnikov (2005) proposed a model for the generation of the lepton asymmetry by introducing three right-handed sterile neutrinos in what is known as the ‘νMSM’ (see also Boyarsky et al. 2009b). In this model, a keV mass sterile neutrino (labelled \(\nu_1 \)) is partnered with two GeV mass sterile neutrinos (\(\nu_2 \) and \(\nu_3 \)). It is \(\nu_1 \) that behaves as the dark matter, with its keV mass (\(M_\nu \)) leading to early free streaming. The decay of \(\nu_2 \) and \(\nu_3 \) prior to the production of \(\nu_1 \) generates significant lepton asymmetry; this boosts the production of \(\nu_1 \) via resonant mixing. Here, we formally quantify the lepton asymmetry, or \(L_\theta \), as

\[
L_\theta \equiv 10^6 \left(\frac{n_{\nu_e} - n_{\bar{\nu}_e}}{s} \right),
\]

where \(n_{\nu_e} \) is the number density of electron neutrinos, \(n_{\bar{\nu}_e} \) the number density of electron antineutrinos and \(s \) is the entropy density of the Universe (Laine & Shaposhnikov 2008).

A third parameter in the νMSM is the mixing angle, \(\theta_1 \). The requirement that the model should achieve the correct dark matter abundance for a given sterile neutrino rest mass uniquely fixes the value of \(\theta_1 \) for a particular choice of \(L_\theta \). The X-ray flux, \(F \), associated with the decay of \(\nu_1 \) is then proportional to \(\sin^2 (2\theta_1) M_\nu \). We refer the reader to Venumadhav et al. (2016) and Lovell et al. (2016) for a more comprehensive discussion of the sterile neutrino model.

In this paper, we are particularly interested in sterile neutrinos that could decay to produce two 3.5 keV photons. We therefore fix the mass \(M_\nu = 7 \) keV. At this mass, the ‘warmest’ and ‘coldest’ sterile neutrino models that achieve the correct dark matter density correspond to \(L_\theta = 700 \) and \(L_\theta = 8 \), respectively. By this we mean that the \(L_\theta = 700 \) model exhibits deviations from CDM at larger mass scales than the \(L_\theta = 8 \) model, which produces similar structure to CDM down to the scale of dwarf galaxies.

For the \(L_\theta = 700 \) case, however, the corresponding mixing angle (which we remind the reader is now fixed) does not lead to the X-ray decay flux required to account for the observations of Bulbul et al. (2014) and Boyarsky et al. (2014). For this reason, we additionally consider the case \(L_\theta = 12 \), which corresponds to the warmest 7 keV sterile neutrino model that has the correct dark matter abundance and produces the correct flux at 3.5 keV. This information is summarized in Table 1. Here, we also quote a characteristic wavenumber.

\(^1\) These particles are ‘sterile’ in the sense that they do not interact via the weak force, as is the case for active neutrinos in the standard model.
these three models (L_6 and changes with L_k of the sterile neutrino, the scale of the cut-off (as measured by, say, 6) for a given L_k with the most extreme case being the L_6 value plotted for comparison. The power spectra for the sterile neutrino are shown with the colours indicated in the legend. For the same sterile neutrino mass, different L_6 values lead to deviations from CDM on different scales, with the most extreme case being the $L_6 = 700$ model. Bottom panel: the ratio of each power spectrum to that of CDM.

$k_{1/4}$, which measures the scale at which the linear power spectrum for a given L_6 has 1/4 of the power of the CDM linear power spectrum. This parameter characterizes the ‘warmth’ of the model. The most extreme case ($L_6 = 700$) has $k_{1/4} = 16.05\, h\,\text{Mpc}^{-1}$, whereas the model closest to CDM ($L_6 = 8$) has $k_{1/4} = 44.14\, h\,\text{Mpc}^{-1}$.

Fig. 1 shows the linear power spectrum (in arbitrary units) of the three models ($L_6 = (8, 12, 700)$), with the CDM power spectrum also plotted for comparison. The power spectra for the sterile neutrino models were computed by first calculating the momentum distribution functions for these models using the methods outlined by Laine & Shaposhnikov (2008) and Ghiglieri & Laine (2015), and using these to solve the Boltzmann equation with a modified version of the CAMB code (Lewis, Challinor & Lasenby 2000; Boyarsky et al. 2009a,c; Lovell et al. 2016). The cosmological parameters assumed are those derived from Planck Collaboration XIII (2016): $\Omega_m = 0.307, \Omega_b = 0.693, \Omega_\nu = 0.0483, h = 0.678, \sigma_8 = 0.823$ and $n_s = 0.961$. The most striking feature is how, for the same 7 keV sterile neutrino, the scale of the cut-off (as measured by, say, $k_{1/4}$) changes with L_6. The cut-off in the $L_6 = 8$ power spectrum occurs at a similar scale to that introduced by a 3.3 keV thermal relic, which, at 95 per cent confidence, is the lower limit on the WDM particle mass set by constraints from the Lyman α forest (Viel et al. 2013, although see Baur et al. 2016 for a revised lower limit). The $L_6 = 12$ case is therefore in tension with the lower limits from the Lyman α forest, but it should be noted that the derived lower limits are sensitive to assumptions made for the thermal history of the IGM (Garzilli, Boyarsky & Ruchayskiy 2015).

Fig. 2 shows the $z = 0$ halo mass functions for CDM and 7.5 keV sterile neutrino models with leptogenesis parameter, $L_6 = (8, 12, 700)$, as predicted by the ellipsoidal collapse model of Sheth & Tormen (1999), calculated using equations (2) and (3). The different cut-off scales for the sterile neutrino power spectra in Fig. 1 are reflected in the different mass scales at which the corresponding halo mass functions are suppressed below the CDM mass function.

$$\frac{\text{d}n}{\text{d} \log M_{\text{halo}}} = \frac{\bar{\rho}}{M_{\text{halo}}} f (\nu) \left| \frac{\text{d} \log \sigma^{-1}}{\text{d} \log M_{\text{halo}}} \right|,$$ (2)
where \(\bar{\rho} \) is the mean matter density of the Universe, \(v = \delta_v / \sigma(M_{\text{halo}}) \), \(\delta_v = 1.686 \) is the density threshold required for collapse and \(\sigma(M_{\text{halo}}) \) is the variance of the density field, smoothed at a scale, \(M_{\text{halo}} \) (see Section 3.3). In the ellipsoidal collapse model the multiplicity function, \(f(v) \), takes the form

\[f(v) = A \frac{(2q)^{2/3}}{\pi} \left[1 + (qv)^{-p} \right] e^{-qv/2}, \]

where \(A = 0.3222, q = 0.707 \) and \(p = 0.3 \). Fig. 2 shows how the mass functions in the sterile neutrino models peel off from CDM at different mass scales directly related to \(k_{1/4} \). The halo masses corresponding to these wavenumbers can be estimated by

\[M_{1/4} = \frac{4}{\pi} \frac{\bar{\rho}}{k_{\text{hm}}} \left(\pi \frac{\rho}{k_{\text{hm}}} \right)^3, \]

giving \(M_{1/4} = (1.1 \times 10^8, 7.8 \times 10^8, 2.3 \times 10^9) h^{-1} M_\odot \) for \(L_6 = (8, 12, 700) \), respectively. Clearly, the largest suppression in halo abundance relative to CDM occurs for the \(L_6 = 700 \) case, and the least for the \(L_6 = 8 \) case, consistent with our discussion of the significance of the characteristic scale \(k_{1/4} \). For example, at \(z = 0 \), there are half as many \(\sim 10^8 h^{-1} M_\odot \) in \(L_6 = 8 \) as in CDM. By comparison, there are \(\sim 150 \) times fewer haloes at the same mass scale for \(L_6 = 700 \) relative to CDM. The \(L_6 = 12 \) model lies in between these two cases, producing \(\sim 20 \) times fewer haloes of \(10^8 h^{-1} M_\odot \).

3 GALAXY FORMATION

We begin by discussing the astrophysical quantities and observables that we will use to constrain sterile neutrino models. We then briefly introduce the semi-analytic model of galaxy formation, GALFORM, that we will use to constrain sterile neutrino models. We then briefly introduce a more complicated model in which the strength of SNb evolves in redshift, as suggested by the SNb model of (Lagos, Lacey & Baugh 2013, see Section 3.2 below).

Since in WDM the number of small haloes is naturally suppressed, for a model to be viable, SNb must be weak enough so that there are enough ionizing photons at high redshift, as well as a sufficient number of satellite galaxies to account for observations.

3.2 SNb in GALFORM

The Durham semi-analytic model of galaxy formation, GALFORM, was introduced by Cole et al. (2000) and has been upgraded regularly as our understanding of the physical processes involved in galaxy formation improves and better observational constraints are obtained. For example, Baugh et al. (2005) introduced a top-heavy IMF in bursts, Bower et al. (2006) introduced AGN feedback and Lagos et al. (2011) introduced a star formation law that depends on the molecular gas content of the ISM. The most recent version of the model Lacey et al. (2016) includes all of these revisions.

The observational data normally used to constrain and test semi-analytic models includes galaxies with stellar mass, \(M_* \gtrsim 10^9 M_\odot \). When attempting to extend the Lacey et al. (2016) model to lower mass galaxies, Hou16 found that the original prescription for SNb had to be modified as discussed in Section 3.1. In the original prescription, the mass loading factor, \(\beta \), defined as the ratio of the mass ejection rate to the star formation rate, is assumed to be a power law in the circular velocity, \(V_{\text{circ}} \), of the galaxy. To match the observed satellite luminosity function and produce an acceptable metallicity– luminosity relation for Milky Way satellites, Hou16 required a mass loading factor given by a broken power law with a redshift dependence:

\[\beta = \begin{cases} (V_{\text{circ}}/V_{\text{SN}})^{-\gamma_{\text{SN}}} & V_{\text{circ}} \geq V_{\text{thresh}} \\ (V_{\text{circ}}/V_{\text{SN}})^{-\gamma_{\text{SN}}} & V_{\text{circ}} < V_{\text{thresh}} \end{cases} \]

where \(V_{\text{SN}} \) is chosen such that the two power laws in equation (5) join at \(V_{\text{circ}} = V_{\text{thresh}} \), \(\gamma_{\text{SN}} = 3.2 \), \(V_{\text{thresh}} = 50 \text{ kms}^{-1} \) and

\[V_{\text{SN}} = \begin{cases} 180 & z > 8 \\ -35z + 460 & 4 \leq z \leq 8 \\ 320 & z < 4 \end{cases} \]

This redshift dependence is chosen to capture the overall behaviour of Lagos et al. (2013) SNb model. In the Hou16 model, the feedback strength is assumed to be the same as in Lacey et al. (2016) at \(z < 4 \), but is weaker at higher redshifts and in galaxies with \(V_{\text{circ}} < V_{\text{thresh}} = 50 \text{ kms}^{-1} \). We will refer to this feedback scheme as the ‘EvoFb’ (evolving feedback) model.

The values of \(\gamma_{\text{SN}} \) and \(V_{\text{thresh}} \) in this model were calibrated for CDM and need to be recalibrated for the sterile neutrino models that we are considering. We find that the values \(\gamma_{\text{SN}} = 2.6 \) for \(L_6 = 700 \), \(\gamma_{\text{SN}} = 2.8 \) for \(L_6 = (8, 12) \) and \(V_{\text{thresh}} = 30 \text{ kms}^{-1} \) for all three values of \(L_6 \) provide the best fit to the local b1 and K-band luminosity functions, the primary observables used to calibrate GALFORM.

3.3 Halo merger trees with sterile neutrinos

We generate merger trees using the extension of the Cole et al. (2000) Monte Carlo technique [based on the extended Press–Schechter (EPS) theory] described in Parkinson, Cole & Helly (2008). In models in which the linear power spectrum, \(P(k) \), has a cut-off, as in our sterile neutrino models, a small correction is required to the EPS formalism: to obtain the variance of the density...
field, $\sigma(M_{\text{sub}})$, $P(k)$ needs to be convolved with a sharp k-space filter rather than with the real-space top-hat filter used for CDM (Benson et al. 2013). This choice results in good agreement with the conditional halo mass function obtained in N-body simulations (see for example, fig. 6 in Lovell et al. 2016).

Using our Monte Carlo technique rather than N-body simulations to generate merger trees has the advantage that different sterile neutrino models can be studied at minimum computational expense while avoiding the complication of spurious fragmentation in filaments that occurs in N-body simulations with a resolved cut-off in $P(k)$ (e.g. Wang & White 2007; Lovell et al. 2014).

4 RESULTS

In this section, we present the main results of our models, consisting of predictions for field and satellite luminosity functions and the redshift of reionization. We also investigate the sources that produce the ionizing photons at high redshift.

4.1 Field luminosity functions

As discussed in Section 3.2, the parameters of the SNfb model in GALFORM were calibrated so as to obtain a good match to the present-day field galaxy luminosity functions. The b_J and K-band luminosity function in CDM and the $L_6 = (8, 12, 700)$ 7 keV sterile neutrino models are shown in Fig. 3. In both cases, we have made use of the EvoFb feedback scheme of Section 3.2. We also consider an extreme model for $L_6 = 700$, in which SNfb is turned off completely (‘NoFb’), thus maximizing the amount of gas that is converted into stars.

In Fig. 3, we see that with the EvoFb scheme the observed luminosity functions are well reproduced in CDM and all our sterile neutrino models. This should come as no surprise since the EvoFb model parameters were tuned to match these particular data. As mentioned in Section 2, the $L_6 = 700$ model, while inconsistent with the 3.5 keV line (see Table 1), is interesting because it has the most extreme power spectrum cut-off for a 7 keV sterile neutrino that produces the correct dark matter abundance. The maximum star formation efficiency in any model is obtained by turning off SNfb altogether. If in this limiting scenario the $L_6 = 700$ model produces too few faint galaxies to match the field luminosity function, this extreme model would be strongly ruled out. As Fig. 3 shows, the resultant luminosity function (shown in green) in fact overproduces faint galaxies.

4.2 Redshift of reionization

Since the onset of halo formation occurs later in sterile neutrino models compared to CDM (e.g. Bose et al. 2016b), star formation in dwarf galaxies is delayed (e.g. Colín et al. 2015; Governato et al. 2015). Since, in addition, there are no haloes below a cut-off mass, it is unclear that enough sources of ionizing photons will have formed to ionize hydrogen early enough to be consistent with the Planck limits on the redshift of reionization (Planck Collaboration XIII 2016).

To answer this question, we use GALFORM to calculate the ratio of the comoving number density of ionizing photons produced, n_{γ}, to that of hydrogen nuclei, n_H as

\[
\mathcal{R}(z) = \frac{n_{\gamma}}{n_H} = \frac{\int_0^\infty n^\prime(z) \, dz}{n_H},
\]

where $n^\prime(z)$ is the comoving number density of Lyman continuum photons produced per unit redshift. The Universe is deemed to be fully ionized at redshift z_{reion} when the ratio in equation (7) reaches the value:

\[
\mathcal{R}(z)_{\text{full}} = \frac{1 + N_{\text{rec}}}{f_{\text{esc}}} = 6.25.
\]

Here, N_{rec} is the number of recombinations per hydrogen atom and f_{esc} is the fraction of ionizing photons that are able to escape a galaxy into the IGM. Raiević, Theuns & Lacey (2011) advocate a value of $N_{\text{rec}} = 1$ based on the hydrodynamical simulations of Iliev et al. (2006) and Trac & Cen (2007). Finlator et al. (2012) suggest that photoheating would smooth the diffuse IGM and reduce the clumping factor by a factor of 3 compared with the value derived by Iliev et al. (2006). In this work, we will adopt a value $N_{\text{rec}} = 0.25$ (as in Hou16), but we have checked that our conclusions are insensitive to the exact value of this parameter. Furthermore, we assume $f_{\text{esc}} = 0.2$, which is consistent with the value used by Raiević et al. (2011). Sharma et al. (2016) present observational and theoretical evidence in support of this choice of f_{esc} (see also Khaire et al. 2016).
Reionization in sterile neutrino cosmologies

The microwave background data measure the optical depth to the time when the Universe (re)combined. This is usually converted into an equivalent ‘redshift of reionization’ assuming a model of non-instantaneous reionization. The value quoted in Planck Collaboration XIII (2016) corresponds to $z_{\text{half\, reion}}$, the redshift at which the Universe is half ionized. With our assumptions this corresponds to $R(z)_{\text{half\, reion}} = 3.125$.

(9)

Reionization suppresses galaxy formation in low-mass haloes through an effect known as photoionization feedback. In galform, this is modelled using the approximation described in Benson et al. (2003): for haloes with virial velocity $V_{\text{vir}} < V_{\text{crit}}$, no gas cooling takes place for $z < z_{\text{crit}}$. As in Hou16, we adopt $z_{\text{crit}} = z_{\text{full\, reion}}$ and $V_{\text{crit}} = 30\,\text{km\,s}^{-1}$ (Okamoto, Gao & Theuns 2008).

In the standard Lacey et al. (2016) prescription, SNIb is modelled as a power law in the circular velocity of the galaxy without any dependence on redshift. Hou16 found that this model predicts $z_{\text{half\, reion}} = 6.1$ for CDM, in conflict with the bounds by Planck Collaboration XIII (2016): $z_{\text{half\, reion}} = 8.8^{+1.7}_{-1.4}$. We expect that sterile neutrino models, in which the formation of galaxies is both suppressed and delayed, would be in even greater conflict with the Planck observations. For this reason, in what follows we only consider the predictions of the EvoFb model of Hou16 (Section 3.2) which, at least for CDM, predicts an acceptable value for $z_{\text{half\, reion}}$.

Fig. 4 shows the evolution of $R(z)$ with redshift for CDM and sterile neutrino models with $L_6 = (8, 12, 700)$ according to galform with EvoFb feedback. In each panel, the intersection of the colour dashed lines marks $z_{\text{half\, reion}}$, the redshift at which the Universe is half ionized. The dashed grey line and shaded grey region demarcate the observational constraints as obtained from the Planck satellite, $z_{\text{half\, reion}} = 8.8^{+1.7}_{-1.4}$ (at 68 per cent confidence).

In the bottom left of each panel, we give $z_{\text{half\, reion}}$ and $z_{\text{full\, reion}}$ predicted for each model.

All three 7 keV sterile neutrino models have values of $z_{\text{half\, reion}}$ that are broadly consistent with the Planck data. The $L_6 = (8, 12, 700)$ models fall just outside the lower 68 per cent confidence lower limit and the $L_6 = 8$ model just inside. This is a non-trivial result.

MNRAS 463, 3848–3859 (2016)
S. Bose et al.

Figure 5. Properties of the sources that produce ionizing photons as a function of redshift for CDM and 7 keV sterile neutrino models with \(L_6 = (8, 12, 700) \). The properties shown are stellar mass, \(M_\ast \) (top row), halo mass \(M_{\text{halo}} \) (middle row) and circular velocity (\(V_{\text{circ}} \)). The median (solid lines), 5th and 95th percentiles (error bars) are determined by weighting the contribution of each galaxy to the total ionizing emissivity at that redshift. The black vertical dashed line in each case marks the redshift at which the universe is half ionized.

Figure 5. Properties of the sources that produce ionizing photons as a function of redshift for CDM and 7 keV sterile neutrino models with \(L_6 = (8, 12, 700) \). The properties shown are stellar mass, \(M_\ast \) (top row), halo mass \(M_{\text{halo}} \) (middle row) and circular velocity (\(V_{\text{circ}} \)). The median (solid lines), 5th and 95th percentiles (error bars) are determined by weighting the contribution of each galaxy to the total ionizing emissivity at that redshift. The black vertical dashed line in each case marks the redshift at which the universe is half ionized.

4.3 The galaxies responsible for reionization

We have seen that in spite of the delayed onset of galaxy formation, even the most extreme 7 keV sterile neutrino model is able to ionize the Universe early enough to be consistent with the constraints from \textit{Planck}. To explore why this is so, we show in Fig. 5 several properties of the sources that contribute the bulk of the ionizing photons at each redshift. Each column in the figure corresponds to a different dark matter model, while each row corresponds to a different property of the ionizing sources: total stellar mass (\(M_\ast \), first row), halo mass (\(M_{\text{halo}} \), second row) and galaxy circular velocity (\(V_{\text{circ}} \), third row). The black vertical dashed lines mark redshifts \(z_{\text{full}} \) which is given in the top row in each case.

In CDM, the median stellar mass (i.e. the mass below which galaxies produce 50 per cent of the ionizing emissivity) at \(z = z_{\text{full}} \) is \(\sim 10^8 \, M_\odot \), whereas in the three sterile neutrino models the median mass is close to \(\sim 10^9 \, M_\odot \). The larger scatter in \(M_\ast \) and \(M_{\text{halo}} \) for CDM is due to the wide range of mass of the galaxies that contribute to the ionizing photon budget. For example, at \(z = 10 \), galaxies with mass in the range \(10^4 \, M_\odot < M_\ast < 10^9 \, M_\odot \) contribute 90 per cent of the photons, whereas in the \(L_6 = (12, 700) \) models, 90 per cent of the photons are produced by galaxies with mass in the range \(10^6 \, M_\odot < M_\ast < 10^9 \, M_\odot \) since very few galaxies with \(M_\ast < 10^6 \, M_\odot \) form in these models. The result is that the primary sources of ionizing photons at high redshift in sterile neutrino are on average more massive than in CDM.

The build-up of the galaxy population in our models is illustrated in Fig. 6 which shows the rest frame far-UV (1500 Å) luminosity functions at \(z = z_{\text{full}} \) for all dark matter models.

We note that our results in this section contradict those by Rudakovskiy & Iakubovskyi (2016), who find that in the 7 keV \(L_6 = 10 \) model the Universe is reionized earlier than in CDM. This is ascribed to the lack of ‘mini’-haloes in the sterile neutrino cosmology, which reduces the average number of recombinations per hydrogen atom. In our analysis this amounts to a reduction in the value of \(N_{\text{rec}} \) in equation (8). However, we have checked that even reducing the value of \(N_{\text{rec}} \) by a factor of 10 does not affect our results significantly.

2 We note that our results in this section contradict those by Rudakovskiy & Iakubovskyi (2016), who find that in the 7 keV \(L_6 = 10 \) model the Universe is reionized earlier than in CDM. This is ascribed to the lack of ‘mini’-haloes in the sterile neutrino cosmology, which reduces the average number of recombinations per hydrogen atom. In our analysis this amounts to a reduction in the value of \(N_{\text{rec}} \) in equation (8). However, we have checked that even reducing the value of \(N_{\text{rec}} \) by a factor of 10 does not affect our results significantly.
Reionization in sterile neutrino cosmologies

Figure 6. Evolution of the rest frame far-UV galaxy luminosity functions from $z = 7$–10 in our models. The predictions of GALFORM for CDM and the $L_{\alpha} = (8, 12, 700)$ 7 keV sterile neutrino models are shown with solid colour lines as indicated in the legend. The symbols with error bars are observational measurements (Bouwens et al. 2011a,b; 2015; Oesch et al. 2012, 2014; McLure et al. 2013; Schenker et al. 2013; Bowler et al. 2014; Finkelstein et al. 2015).

compared to the observations. For these galaxies, however, the data include many upper limits. Furthermore, these rare luminous galaxies are not the dominant sources of ionizing photons (cf. Fig. 5), so we do not expect the underprediction from the Hou16 model to impact our conclusions significantly for the redshift of reionization in this paper. For $L_{\alpha} = (12, 700)$, the models also underpredict the abundance of galaxies fainter than $M_{AB}(1500\AA) \sim -20$ galaxies at $z = 9$ and 10. Reducing the strength of SNfb at $z > 8$ slightly can bring these models into agreement with the data without spoiling the agreement at $z = 0$.

An interesting feature of Fig. 6 is that while the $L_{\alpha} = (8, 12, 700)$ sterile neutrino models produce fewer galaxies fainter than $M_{AB}(1500\AA) \sim -20$ at $z = 10$, all three models catch up with CDM by $z = 7$, roughly the time by which 50 per cent hydrogen reionization has occurred. The build-up of the high redshift galaxies therefore proceeds more rapidly in the sterile neutrino cosmologies than in CDM. This is consistent with the behaviour of the rate of ionizing photon production seen in Section 4.2, where the slope of $\log (n_\gamma/n_H)$ was shown to be steeper for sterile neutrino models compared to CDM.

The reason for the differing rates of galaxy formation at high redshift in the different models can be understood as follows. Due to the lack of progenitors below the cut-off mass scale, WDM haloes build up via roughly equal-mass mergers of intermediate mass haloes. Near the free streaming scale, the growth rate of haloes is therefore more rapid in WDM than in CDM (see e.g. Ludlow et al. 2016). This is why soon after the formation of the first galaxies the rate of galaxy formation in sterile neutrino models ‘catches up’ with the corresponding rate in CDM. This rapid early evolution, reflected for example in the UV luminosity function, is a generic prediction of WDM, independently of the details of the galaxy formation model.

4.4 Satellites of the milky way

The Milky Way satellite luminosity function has been used to set limits on the WDM particle mass: if the power spectrum cut-off occurs on too large a scale, too few haloes form to account for the observed number of satellites (Macciò & Fontanot 2010; Polisensky & Ricotti 2011; Lovell et al. 2012; Nierenberg et al. 2013; Kennedy et al. 2014). These studies considered non-resonantly produced thermal relics (but see Schneider 2016). Lovell et al. (2016) considered sterile neutrino models, similar to ours, with different particle masses and values of L_{α} and an earlier version of GALFORM (Gonzalez-Perez et al. 2014). There are degeneracies between the shape of the WDM power spectrum and some of the parameters of the galaxy formation model, particularly, of course, the strength of SNfb (see Kennedy et al. 2014 for a discussion). These degeneracies are mitigated in our case by considering a variety of observational constraints involving a range of halo masses and redshifts.
We have allowed the strength of SNfb to vary with redshift, by assuming that SNfb is weaker at high redshift. In Section 4.2, we found that this modification to the feedback scheme in GALFORM allows CDM and the $L_6 = (8, 12, 700)$ sterile neutrino models to reionize the Universe early enough to be consistent with the Planck limits on the redshift of reionization. It is not clear, however, what the effect of reducing the strength of feedback will be on observables at lower redshifts. In particular, we expect the predicted luminosity function of satellites in the Milky Way to be particularly sensitive to this modification.

To predict the satellite luminosity functions around galaxies similar to the Milky Way we generate 100 Monte Carlo merger trees in five equally spaced bins of final halo masses in the range $5 \times 10^{11} \leq M_{\text{host halo}} \leq 2 \times 10^{12} \, M_\odot$. The cumulative V-band satellite luminosity functions at $z = 0$ are shown in Fig. 7 for our various dark matter models with the EvoFb feedback scheme. Before we attempt to compare these predictions with observations, we note that the two different observational data sets plotted in the figure disagree with one another at the bright end of the luminosity function ($M_V \lesssim -8$), which is the regime of the 11 ‘classical’ satellites. There are two reasons for this difference: first, McConnachie (2012), whose measurements are included in the bright end of the ‘Combined data’ sample includes Canis Major ($M_V = -14.4$), whereas this galaxy is excluded by Tollerud et al. (2008). Secondly, Tollerud et al. (2008) adopt $M_V = -9.8$ for Sculptor, compared to McConnachie’s value of $M_V = -11.1$. At the faint end the differences in the satellite luminosity function arise from differing assumptions for the radial distributions of the satellites. In particular, Koposov et al. (2008) assume that the satellite distribution follows the NFW profile (Navarro, Frenk & White 1996, 1997) of the host halo, whereas Tollerud et al. (2008) assume the subhalo radial distribution measured in the Via Lactea simulations (Diemand et al. 2007). The radial distribution of subhaloes is similar in CDM and WDM (Bose et al. 2016a).

Fig. 7 shows that all of our models, including the most extreme $L_6 = 700$ case, are consistent with the data down to $M_V \sim -5$. For CDM the EvoFb model slightly overpredicts the number of the faintest satellites ($M_V > -8$), but here the data could be incomplete. However, since the number of satellites scales with the host halo mass (Wang et al. 2012; Cautun et al. 2014), our sterile
neutrino models would be increasingly in conflict with the observed luminosity functions for $M^\text{host}_{\text{min}} \leq 10^{12} M_\odot$. For example, if $M^\text{host}_{\text{min}} \leq 7 \times 10^{11} M_\odot$, both the $L_6 = 700$ and $L_6 = 12$ EvoFb models would be ruled out because they fail to form enough faint satellites with $M_\text{V} > -10$ even after accounting for the large scatter. Only CDM and our $L_6 = 8$ sterile neutrino models would remain consistent with the Koposov et al. (2008) and McConnachie (2012) ('Combined data') observations in this case.

The Dark Energy Survey (DES) recently reported the discovery of new ultrafaint dwarf galaxies (Bechtol et al. 2015; Drlica-Wagner et al. 2015; Koposov et al. 2015; Jethwa et al. 2016). We can consider their contribution to the observed luminosity function following the analysis by Jethwa et al. (2016), who find that 12 of the 14 satellites have >50 per cent probability of having been brought in as satellites of the LMC itself (at 95 per cent confidence). Extrapolating from the detected population Jethwa et al. (2016) conclude that the Milky Way should have ~ 180 satellites within 300kpc and 70^{+30}_{-20} Magellanic satellites in the magnitude range $-7 < M_\text{V} < -1$ (at 68 per cent confidence).

The extrapolated contribution of the DES satellites (a total of 250 satellites) is represented by the black diamond in Fig. 7. CDM is consistent with this number particularly for the larger assumed values of the mass of the Milky Way halo. On the other hand, the ‘coldest’ 7 keV sterile neutrino, namely $L_6 = 8$, is only marginally consistent with the extrapolation, while the $L_6 = 12$ and $L_6 = 700$ models are in significant disagreement with the extrapolated number count. The predicted number of faint dwarfs produced by any of these models is, of course, sensitive to the details of the SNfB but in the following section we consider a limiting case.

4.5 Model independent constraints on dark matter

As mentioned in Section 4.4 our analysis suffers from a degeneracy between the shape of the initial power spectrum and the strength of SNfB. A model independent constraint, however, can be derived by assuming that there is no SNfB at all. In this case, every subhalo in which gas can cool hosts a satellite, thus maximizing the size of the population. In Fig. 8, we show the predicted Milky Way satellite luminosity function in the case of zero feedback (‘NoFb’). The total number of satellites is determined entirely by reionization, i.e. by the amount of gas cooling in haloes prior to the onset of reionization.

In Fig. 8, we have assumed $\tau_{\text{full}}^{\text{region}} = 7.02$, as predicted by the EvoFb scheme for the $L_6 = 8$ model. This produces, on average, ~ 100 satellites with $M_\text{V} \leq -1$. A fully self-consistent treatment of reionization for the NoFb model would result in $\tau_{\text{full}}^{\text{region}} > 7.02$, in which case the number of satellites produced would be even less than 100. The maximum number of satellite galaxies produced in Fig. 8 is converged with respect to the halo mass resolution. The figure shows that the extreme NoFb model is only marginally consistent with the extrapolated DES data for the $L_6 = 8$ case. We recall that this value of the lepton asymmetry corresponds to the ‘coldest’ possible 7 keV sterile neutrino; ruling this out would rule out the entire family of 7 keV sterile neutrinos as the dark matter particles.

The exact location of the extrapolated DES data point in the cumulative luminosity function is subject to a number of caveats, such as the DES selection function, detection efficiency and assumptions about isotropy. However, it is clear that the discovery of even more ultrafaint dwarf galaxies could potentially set very strong constraints on the nature of the dark matter.

5 CONCLUSIONS

We have carried out a detailed investigation of the process of reionization in models in which the dark matter particles are assumed to be sterile neutrinos. The free streaming of these particles leads to a sharp cut-off in the primordial matter power spectrum at the scale of dwarf galaxies (Section 2, Fig. 1). On scales much larger than the cut-off, structure formation proceeds almost identically to CDM. Near and below the cut-off, sterile neutrinos behave like WDM: the abundance of haloes (and therefore of the galaxies they host) is suppressed and their formation times are delayed relative to CDM. The sterile neutrino models we consider are motivated by observations of an X-ray excess at 3.5 keV in the stacked spectrum of galaxy clusters (Bulbul et al. 2014) and in the spectra of M31 and the Perseus cluster (Boyarsky et al. 2014). This excess could be explained by the decay of a sterile neutrino with a rest mass of 7 keV.

In addition to their rest mass, sterile neutrinos are characterized by two additional parameters: the lepton asymmetry, L_6, and the mixing angle. Keeping the mass of the sterile neutrino fixed at 7 keV, we consider three values of L_6: 8, 12, 700. Based on their cut-off scales, the $L_6 = 8$ and $L_6 = 12$ models, respectively, correspond to the ‘coldest’ and ‘warmest’ 7 keV sterile neutrinos that are also consistent with the Bulbul et al. (2014) and Boyarsky et al. (2014) observations. The most extreme model we consider, $L_6 = 700$, also decays at 3.5 keV but the mixing angle is unable to produce a decay flux compatible with the 3.5 keV X-ray observations (see Table 1 for a summary).

To calculate the number of ionizing photons produced in CDM and in the sterile neutrino models, we make use of the Durham semi-analytic model of galaxy formation, GALFORM using the SNfB prescription of Hou16. In this model, the parameters controlling the strength and evolution of SNfB are calibrated for CDM by the epoch of reionization as measured by Planck, and tested against data for the luminosity function and stellar mass–metallicity relation of Milky Way satellites (Section 3.2). We adopt similar values of the model parameters for our sterile neutrino models. Our main conclusions are as follows.

(i) Although reionization occurs slightly later in the sterile neutrino models than in CDM, the epoch of reionization in all cases is consistent with the bounds from Planck (Section 4.2, Fig. 4). For
the $L_6 = (12, 700)$ models, the redshifts at which the Universe is 50 per cent ionized are just below the 68 per cent confidence interval from *Planck*. Reionization in the $L_6 = 8$ model occurs well within the *Planck* limits.

(ii) The galaxies that account for the bulk of the ionizing photon budget are more massive in sterile neutrino models than in CDM (Section 4.3, Fig. 5). By the time reionization is complete, 50 per cent of the photoionizing budget is produced by $M_* \lesssim 10^7 M_\odot$ galaxies in CDM; the median stellar mass is $M_* \sim 10^9 M_\odot$ for the sterile neutrino models.

(iii) From the evolution of the far-UV luminosity function, we infer that the galaxy population at high redshift ($z > 7$) builds up more rapidly in the sterile neutrino models than in CDM (Section 4.3, Fig. 6). This is particularly pronounced in the case of the most extreme model, $L_6 = 700$, which produces far fewer galaxies than CDM at $z = 10$ but ‘catches up’ with the CDM UV luminosity function by $z = 7$. This is directly related to the more rapid mass accretion of haloes near the free streaming scale in WDM than in CDM. The qualitative difference in the growth of high redshift galaxies between CDM and WDM models does not depend on the details of the galaxy formation model.

(iv) CDM, as well as the three sterile neutrino models we have considered, are in good agreement with the present-day luminosity function of the ‘classical’ and SDSS Milky Way satellite galaxies (Section 4.4, Fig. 7). For larger values of the mass of the Milky Way halo ($M_{\text{host}} > 1 \times 10^{12} M_\odot$), even the $L_6 = 700$ model is consistent with the observations of Koposov et al. (2008) and McGaugh and Schombert (2012). On the other hand, if $M_{\text{host}} \leq 7 \times 10^{11} M_\odot$, both the $L_6 = 700$ and $L_6 = 12$ models can be ruled out.

(v) Extrapolating to the whole sky the abundance of ultrafaint Milky Way dwarf satellite galaxies recently detected by DES extends that satellite luminosity function to very faint magnitudes. With this extrapolation, the shear number of satellites places strong constraints on the sterile neutrino models which produce only a limited number of substructures. CDM is consistent with this extrapolation, but the ‘coldest’ 7 keV sterile neutrino (the $L_6 = 8$ model) is only marginally in agreement even when feedback is turned off completely, a limiting model in which the satellite population is maximized. Ruling out the $L_6 = 8$ model, the coolest of the 7 keV sterile neutrino family, would rule out this entire class as candidates for the dark matter. However, extrapolating the DES counts to infer the total number of satellites is still subject to a number of assumptions and uncertainties.

The largest observable differences between CDM and sterile neutrino models occur at the scale of ultrafaint dwarfs and galaxies at high redshift. However, only limited data are currently available in these regimes. The gravitational lensing techniques pioneered by Coopmans (2005) and Veggetti & Coopmans (2009) may be used to constrain the subhalo mass function directly, potentially distinguishing WDM from CDM (Li et al. 2016). By increasing the sample of strong lensing systems, upcoming telescopes such as the Square Kilometre Array and the Large Synoptic Survey Telescope could play a major role in constraining the nature of the dark matter.

ACKNOWLEDGEMENTS

We would like to thank Mikko Laine, Alexey Boyarsky and Oleg Ruchayskiy for providing us with the codes for generating the sterile neutrino power spectra. SB is supported by STFC through grant ST/K501979/1. This work was supported in part by ERC Advanced Investigator grant COSMIWAY [grant number GA267291] and the Science and Technology Facilities Council [grant number ST/F001166/1, ST/I00162X/1]. This work used the DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by BIS National E-infrastructure capital grant ST/K00042X/1, STFC capital grant ST/H008519/1, and STFC DiRAC Operations grant ST/K003267/1 and Durham University. DiRAC is part of the National E-Infrastructure. This research was carried out with the support of the HPC Infrastructure for Grand Challenges of Science and Engineering Project, co-financed by the European Regional Development Fund under the Innovative Economy Operational Programme. The data analysed in this paper can be made available upon request to the author.

REFERENCES

Abazajian K. N., 2014, Phys. Rev. Lett., 112, 161303

Abazajian K., Fuller G. M., Patel M., 2001a, Phys. Rev. D, 64, 023501

Abazajian K., Fuller G. M., Tucker W. H., 2001b, ApJ, 562, 593

Anderson M. E., Churazov E., Bregman J. N., 2015, MNRAS, 452, 3903

Asaka T., Shaposhnikov M., 2005, Phys. Lett. B, 620, 17

Asaka T., Shaposhnikov M., Laine, M., 2007, J. High Energy Phys., 1, 91

Avila-Reese V., Colín P., Valenzuela O., D’Onghia E., Firmani C., 2001, ApJ, 559, 516

Baugh C. M., Lacey C. G., Granato G. L., Silva L., Bressan A., Benson A. J., Cole S., 2005, MNRAS, 356, 1191

Baur J., Palanque-Delabrouille N., Yéche C., Magneville C., Viel M., 2016, J. Cosmol. Astropart. Phys., 8, 012

Bechtol K. et al., 2015, ApJ, 807, 50

Benson A. J., Boyarsky C. S., Baugh C. V., Cole S., Cady G. C., 2003, MNRAS, 343, 679

Benson A. J. et al., 2013, MNRAS, 428, 1774

Bode P., Ostriker J. P., Turok N., 2001, ApJ, 556, 93

Bose S., Hellwing W. A., Frenk C. S., Jenkins A., Lovell M. R., Helly J. C., Li B., Gao L., 2016a, preprint (arXiv:1604.07409)

Bose S., Hellwing W. A., Frenk C. S., Jenkins A., Lovell M. R., Helly J. C., Li B., 2016b, MNRAS, 455, 318

Bouwens R. J. et al., 2011a, Nature, 469, 504

Bouwens R. J. et al., 2011b, ApJ, 737, 90

Bouwens R. J. et al., 2015, ApJ, 803, 34

Bower R. G., Benson A. J., Malbon R., Helly J. C., Frenk C. S., Baugh C. M., Cole S., Lacey C. G., 2006, MNRAS, 370, 645

Bowler R. A. A. et al., 2014, MNRAS, 440, 2810

Boyarsky A., Lesgourgues J., Ruchayskiy O., Viel M., 2009a, J. Cosmol. Astropart. Phys., 5, 012

Boyarsky A., Ruchayskiy O., Shaposhnikov M., 2009b, Annu. Rev. Nucl. Part. Sci., 59, 191

Boyarsky A., Lesgourgues J., Ruchayskiy O., Viel M., 2009c, Phys. Rev. Lett., 102, 201304

Boyarsky A., Ruchayskiy O., Jakubovskyi D., Franje J., 2014, Phys. Rev. Lett., 113, 251301

Bozek B., Boylan-Kolchin M., Horiuchi S., Garrison-Kimmel S., Abazajian K., Bullock J. S., 2016, MNRAS, 459, 1489

Bulbul E., Markovich M., Foster A., Smith R. K., Loewenstein M., Randall S. W., 2014, ApJ, 789, 13

Calura F., Menci N., Gallazzi A., 2014, MNRAS, 440, 2066

Canetti L., Drebes M., Shaposhnikov M., 2013, Phys. Rev. Lett., 110, 061801

Caution M., Frenk C. S., van de Weygaert R., Hellwing W. A., Jones B. J. T., 2014, MNRAS, 445, 2049

Cole S., Aragon-Salamanca A., Frenk C. S., Navarro J. F., Zepf S. E., 1994, MNRAS, 271, 781

Cole S., Lacey C. G., Baugh C. S., Frenk C. S., 2000, MNRAS, 319, 168

Cole S. et al., 2005, MNRAS, 362, 505

Colín P., Avila-Reese V., Valenzuela O., 2000, ApJ, 542, 622
Reionization in sterile neutrino cosmologies

Colín P., Avila-Reese V., González-Samaniego A., Velázquez H., 2015, ApJ, 803, 28
Dayal P., Choudhury T. R., Bromm V., Pacucci F., 2015a, MNRAS, preprint (arXiv:1501.02823)
Dayal P., Mesinger A., Pacucci F., 2015b, ApJ, 806, 67
Diemand J., Kuhlen M., Madau P., 2007, ApJ, 657, 262
Dodelson S., Sidlow L. M., 1994, Phys. Rev. Lett., 72, 17
Dolgov A., Hansen S. H., 2002, ApJ, 588, 426
Driver S. P. et al., 2012, MNRAS, 427, 3244
Drla-Wagner A. et al., 2015, ApJ, 813, 109
Efstathiou G., 1992, MNRAS, 256, 43P
Eisenstein D. J. et al., 2005, ApJ, 633, 560
Finkelstein S. et al., 2015, ApJ, 810, 71
Finlator K., Oh S. P., Özel F., Davé R., 2012, MNRAS, 427, 2464
Gazzelli A., Boyarsky A., Ruchayskiy O., 2015, preprint (arXiv:1510.07006)
Ghiglieri J., Laine M., 2015, J. High Energy Phys., 11, 171
Gonzalez-Perez V., Lacey C. G., Baugh C. M., Lagos C. D. P., Helly J., Campbell D. J. R., Mitchell P. D., 2014, MNRAS, 439, 264
Governo A. R. et al., 2015, MNRAS, 448, 792
Hooper D., Goodenough L., 2011, Phys. Lett. B, 697, 412
Hou J., Frenk C. S., Lacey C. G., Bose S., 2016, MNRAS, 463, 1224 (Hou16)
Jethwa P., Erkal D., Belokurov V., 2016, MNRAS, 461, 2212
Jeltema T. E., Proumo S., 2015, MNRAS, 450, 2143
Jeltema T. E., Proumo S., 2016, MNRAS, 458, 3592
Jenkins A., Frenk C. S., White S. D. M., Colberg J. M., Cole S., Evrard A. E., Couchman H. M. P., Yoshida N., 2001, MNRAS, 321, 372
Jethwa P., Erkal D., Belokurov V., 2016, MNRAS, 461, 2212
Kauffmann G., White S. D. M., Guiderdoni B., Jenkins A., Gao L., Theuns T., 2014, MNRAS, 442, 2487
Khaire V., Srianand R., Choudhury T. R., Gaikwad P., 2016, MNRAS, 457, 4051
Koopmans L. V. E., 2005, MNRAS, 363, 1136
Koposov S. et al., 2008, ApJ, 686, 279
Koposov S. E., Belokurov V., Torrealba G., Evans N. W., 2015, ApJ, 805, 130
Lacey C. G. et al., 2016, MNRAS, 462, 3854
Lagos C. D. P., Lacey C. G., Baugh C. M., Bower R. G., Benson A. J., 2011, MNRAS, 416, 4566
Lagos C. D. P., Lacey C. G., Baugh C. M., 2013, MNRAS, 436, 1787
Laine M., Shaposhnikov M., 2008, J. Cosmol. Astropart. Phys., 6, 31
Larson R. B., 1974, MNRAS, 169, 229
Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473
Li R., Frenk C. S., Cole S., Gao L., Bose S., Hellwing W. A., 2016, MNRAS, 460, 363
Lovell M. R. et al., 2012, MNRAS, 420, 2318
Lovell M. R., Frenk C. S., Eke V. R., Jenkins A., Gao L., Theuns T., 2014, MNRAS, 439, 300
Lovell M. R. et al., 2016, MNRAS, 461, 60
Ludlow A. D., Bose S., Angulo R. E., Wang L., Hellwing W. A., Navarro J. F., Cole S., Frenk C. S., 2016, MNRAS, 460, 1214
Macciò A. V., Fontanot F., 2010, MNRAS, 404, L16
McConnachie A. W., 2012, AJ, 144, 4
McLure R. J. et al., 2013, MNRAS, 432, 2696
Madau P., Haardt F., 2015, ApJ, 813, L8
Maio U., Viel M., 2015, MNRAS, 446, 2760
Malyshev D., Neronov A., Eckert D., 2014, Phys. Rev. D, 90, 103506
Mitra S., Choudhury T. R., Ferrara A., 2015, MNRAS, 454, L76
Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493
Nierenberg A. M., Treu T., Menci N., Lu Y., Wang W., 2013, ApJ, 772, 146
Norberg P. et al., 2002, MNRAS, 336, 907
Oesch P. A. et al., 2012, ApJ, 759, 135
Oesch P. A. et al., 2014, ApJ, 786, 108
Okamoto T., Gao L., Theuns T., 2008, MNRAS, 390, 920
Parkinson H., Cole S., Helly J., 2008, MNRAS, 383, 557
Planck Collaboration XIII, 2016, A&A, 594, A13
Polisensky E., Ricotti M., 2011, Phys. Rev. D, 83, 043506
Raitėvičius M., Theuns T., Lacey C., 2011, MNRAS, 410, 775
Riess A. G., 2016, Nat, 536, 684
Schultz C., Oiòrbe J., Abazajian K. N., Bullock J. S., 2014, MNRAS, 442, 1597
Sharma M., Theuns T., Frenk C., Bower R., Crain R., Schaller M., Schaye J., 2016, MNRAS, 458, 194
Sheth R. K., Tormen G., 1999, MNRAS, 308, 119
Shi X., Fuller G. M., 1999, Phys. Rev. Lett., 82, 2832
Tinker J., Kravtsov A. V., Klypin A., Abazajian K., Warren M., Yepes G., Gottlöber S., Holz D. E., 2008, ApJ, 688, 709
Tollerud E. J., Bullock J. S., Strigari L. E., Willman B., 2008, ApJ, 688, 277
Trac H., Cen R., 2007, ApJ, 671, 1
Vegetti S., Koopmans L. V. E., 2009, MNRAS, 400, 1583
Venumadhav T., Cyr-Racine F.-Y., Abazajian K. N., Hirata C. M., 2016, Phys. Rev. D, 94, 043515
Viel M., Lesgourgues J., Haehnelt M. G., Matarrese S., Riotto A., 2005, Phys. Rev. D, 71, 063534
Viel M., Becker G. D., Bolton J. S., Haehnelt M. G., 2013, Phys. Rev. D, 88, 043502
Wang J., White S. D. M., 2007, MNRAS, 380, 93
Wang J., Frenk C. S., Navarro J. F., Gao L., Sawala T., 2012, MNRAS, 424, 2715
White S. D. M., Frenk C. S., 1991, ApJ, 379, 52
Zehavi I. et al., 2011, ApJ, 736, 59

This paper has been typeset from a TeX/LaTeX file prepared by the author.