A short proof of some recent results related to Cesàro function spaces

Sergey V. Astashkin* and Lech Maligranda

Abstract

We give a short proof of the recent results that, for every $1 \leq p < \infty$, the Cesàro function space $Ces_p(I)$ is not a dual space, has the weak Banach-Saks property and does not have the Radon-Nikodym property.

The main purpose of this paper is to give a short proof of the following recent results related to the Cesàro function spaces: for every $1 \leq p < \infty$ the space $Ces_p = Ces_p(I)$ has the weak Banach-Saks property [2, Theorem 8], does not have the Radon-Nikodym property and it is not a dual space [10, Corollaries 5.1 and 5.5].

The Cesàro function spaces $Ces_p = Ces_p(I)$ ($1 \leq p < \infty$), where $I = [0, 1]$ or $I = [0, \infty)$, are the classes of all Lebesgue measurable real functions f on I such that

$$\|f\|_{C(p)} = \left[\int_I \left(\frac{1}{x} \int_0^x |f(t)| \, dt \right)^p \, dx \right]^{1/p} < \infty.$$

A Banach space X is said to have the weak Banach-Saks property if every weakly null sequence in X, say (x_n), contains a subsequence (x_{n_k}) whose first arithmetical means converge strongly to zero, that is, $\lim_{m \to \infty} \frac{1}{m} \left\| \sum_{k=1}^m x_{n_k} \right\|_X = 0$.

It is known that uniformly convex spaces, c_0, l^1 and L^1 have the weak Banach-Saks property, whereas $C[0, 1]$ and l^∞ do not have. We should mention that the result on L^1 space, proved by Szlenk [16] in 1965, was a very important break-through in studying of the weak Banach-Saks property.

In 1982, Rakov [15, Theorem 1] proved that a Banach space with non-trivial type (or equivalently B-convex) has the weak Banach-Saks property (cf. also Tokarev [17, Theorem 1]). Recently Dodds-Semenov-Sukochev [8] investigated the weak Banach-Saks property of rearrangement invariant spaces and Astashkin-Sukochev [3] have got a complete description of Marcinkiewicz spaces with the latter property.

The spaces $Ces_p[0, 1]$ for $1 \leq p < \infty$ are neither B-convex (they have trivial type) nor rearrangement invariant. Nevertheless, by studying the dual space $Ces_p[0, 1]^*$, Astashkin-Maligranda [2, Theorem 8] proved that these spaces have the weak Banach-Saks property. Here, we present another simpler proof of this result which does not use any knowledge of the structure of the latter dual space.

*Research partially supported by RFBR grant no. 12-01-00198-a.

2000 Mathematics Subject Classification: 46E30, 46B20, 46B42

Key words and phrases: Cesàro function spaces, weak Banach-Saks property, Bochner function spaces, subspaces, dual Banach space, Radon-Nikodym property
Theorem 1. For every $1 \leq p < \infty$ the Cesàro function space $Ces_p(I)$ has the weak Banach-Saks property.

The proof will be based on the following simple observation. Recall that the space with mixed norm $L^p(I)[L^1[0, 1]]$ consists of all classes of Lebesgue measurable functions on $I \times [0, 1]$ $x(s, t)$ such that for a.e. $s \in I$ the function $x(s, \cdot) \in L^1[0, 1]$ and the function $\|x(s, \cdot)\|_{L^1[0, 1]} \in L^p(I)$ with the norm $\|x\|_{L^p(I)[L^1[0, 1]]} = \|\|x(s, \cdot)\|_{L^1[0, 1]}\|_{L^p(I)}$ (see, for example, [11, § 11.1, p. 400]).

Lemma 2. For every $1 \leq p < \infty$ the space $Ces_p(I)$ is isometric to a closed subspace of the mixed norm space $L^p(I)[L^1[0, 1]]$.

Proof. In fact, the mapping $f(t) \mapsto Sf(x, t) = f(xt)$ is such an isometry from $Ces_p(I)$ into $L^p(I)[L^1[0, 1]]$ since

$$\|f\|_{C(p)} = \left\|\frac{1}{x} \int_0^x |f(t)| \, dt\right\|_{L^p(I)} = \left\|\int_0^1 |f(tx)| \, dt\right\|_{L^p(I)} = \|Sf(x, \cdot)\|_{L^1[0, 1]}\|_{L^p(I)}.$$

Proof of Theorem 1. Firstly, we note that the Bochner vector-valued Banach space $L^p(I, L^1[0, 1])$ coincides with the mixed norm space $L^p(I)[L^1[0, 1]]$ (see [9, Theorem 1.1], [5, Theorem 2.2]; cf. also [13, pp. 282-283]). Moreover, by the Szlenk theorem [10], the space $L^1(I)[L^1[0, 1]] = L^1(I \times [0, 1])$ has the weak Banach-Saks property. Therefore, applying the Cembranos theorem [6, Theorem C] (see also [12, pp. 295-302]), we see that the same is true also for the space $L^p(I)[L^1[0, 1]]$. Since, due to Lemma 2, the Cesàro function space $Ces_p(I)$ is isometric to a closed subspace of $L^p(I)[L^1[0, 1]]$ and any closed subspace inherits the weak Banach-Saks property, then $Ces_p(I)$ has this property as well. The proof is complete.

The following results were proved in [10] (see Corollaries 5.1 and 5.5) by using an isometric representation of the dual space of $Ces_p(I)$, $1 \leq p < \infty$. Here, we show that they are rather simple consequences of well-known classical theorems.

Theorem 3. Let $1 \leq p < \infty$. Then

(a) $Ces_p(I)$ is not a dual space;

(b) $Ces_p(I)$ does not have the Radon-Nikodym property.

Firstly, we prove the following auxiliary statement.

Lemma 4. For every $1 \leq p < \infty$ there is a norm $\| \cdot \|_{C(p)}$ equivalent to the usual norm in $Ces_p(I)$ such that the space $(Ces_p(I), \| \cdot \|_{C(p)})$ contains a closed subspace isometric to the space $L^1[0, 1]$.

Proof. For arbitrary $f \in Ces_p := Ces_p[0, 1]$ we set

$$\|f\|_{C(p)} := \| f \cdot \chi_{[0,1/4]} \|_{C(p)} + \| f \cdot \chi_{(1/4,3/4]} \|_{L^1[0, 1]}.$$
Since

\[\| f \cdot \chi_{(1/4,3/4)} \|_{C(p)}^p = \int_{1/4}^{3/4} \left(\frac{1}{x} \int_{1/4}^{x} |f(s)| \, ds \right)^p \, dx + \int_{3/4}^{1} \left(\frac{1}{x} \int_{1/4}^{3/4} |f(s)| \, ds \right)^p \, dx \]

\[\leq \left(\frac{1}{2} 4^{p} + \frac{1}{4} \left(\frac{4}{3} \right)^p \right) \left(\int_{1/4}^{3/4} |f(s)| \, ds \right)^p \leq 4^p \| f \cdot \chi_{(1/4,3/4)} \|_{L^1}^p, \]

we have

\[\| f \|_{C(p)} \leq 4 \| f \|_{C(p)}^* \quad (f \in Ces_p). \]

Conversely,

\[\| f \cdot \chi_{(1/4,3/4)} \|_{C(p)}^p \geq \int_{3/4}^{1} \left(\frac{1}{x} \int_{1/4}^{3/4} |f(s)| \, ds \right)^p \, dx \geq \frac{1}{4} \| f \cdot \chi_{(1/4,3/4)} \|_{L^1}^p, \]

whence for every \(f \in Ces_p \)

\[\| f \|_{C(p)} \leq \| f \|_{C(p)} + \| f \cdot \chi_{(1/4,3/4)} \|_{L^1} \leq 5 \| f \|_{C(p)}. \]

Therefore, the norms \(\| \cdot \|_{C(p)} \) and \(\| \cdot \|_{C(p)}^* \) are equivalent on \(Ces_p := Ces_p[0, 1] \). Since the mapping

\[f(t) \mapsto \mathcal{H}f(t) := \begin{cases} 2f(2t - 1/2) & \text{if } 1/4 < t < 3/4, \\ 0 & \text{if } 0 \leq t \leq 1/4 \text{ or } 3/4 \leq t \leq 1 \end{cases} \]

is a linear isometry from \(L^1[0,1] \) onto the subspace of \((Ces_p[0,1], \| \cdot \|_{C(p)}^*) \) consisting of all functions with support from the interval \((1/4,3/4)\), we obtain the result in the case \(I = [0,1] \). If \(I = [0, \infty) \) the proof follows in the same way.

Proof of Theorem Assume that \((a) \) is not valid and \(Ces_p \) is a dual space. Since this property is invariant with respect isomorphisms, we see that \((Ces_p(I), \| \cdot \|_{C(p)}^*) \), where \(\| \cdot \|_{C(p)}^* \) is the norm from Lemma \(\[4 \] \) is also a dual space. Then, since it is separable, by the classical Bessaga-Pelczyński result \(\[4 \] \), the space \((Ces_p(I), \| \cdot \|_{C(p)}^*) \) has the Krein-Milman property (i.e., every closed bounded set in this space is the closed convex hull of its extreme points). Since \((Ces_p(I), \| \cdot \|_{C(p)}^*) \) contains a closed subspace isometric to the space \(L^1[0,1] \), the latter contradicts to the fact that the closed unit ball in \(L^1[0,1] \) has no extreme points. Therefore, \((a) \) is proved.

It is well-known that every Banach space which has the Radon-Nikodým property possesses also the Krein-Milman property \(\[7 \] \) (see also \(\[10 \] \) p. 118, \(\[14 \] \) p. 229 and the references given there). Thus, we obtain \((b) \), and the proof is complete.

References

[1] F. Albiac and N. J. Kalton, *Topics in Banach Space Theory*, Graduate Texts in Mathematics 233, Springer, New York 2006.
[2] S. V. Astashkin and L. Maligranda, *Structure of Cesàro function spaces*, Indag. Math. (N.S.) **20** (2009), no. 3, 329–379.

[3] S. V. Astashkin and F. A. Sukochev, *Banach-Saks property in Marcinkiewicz spaces*, J. Math. Anal. Appl. **336** (2007), no. 2, 1231–1258.

[4] C. Bessaga and A. Pełczyński, *On extreme points in separable conjugate spaces*, Israel J. Math. **4** (1966), 262–264.

[5] A. V. Bukhvalov, *Spaces with mixed norm*, Vestnik Leningrad. Univ. no. 19 Mat. Meh. Astronom. Vyp. 4 (1973), 5–12; English transl. in Vestn. Leningr. Univ., Math. **6** (1979), 303–311.

[6] P. Cembranos, *The weak Banach-Saks property on* $L^p(\mu, E)$, Math. Proc. Cambridge Philos. Soc. **115** (1994), no. 2, 283–290.

[7] J. Diestel, *Geometry of Banach Spaces*, Springer-Verlag, Berlin-Heidelberg-New York 1975.

[8] P. G. Dodds, E. M. Semenov and F. A. Sukochev, *The Banach-Saks property in rearrangement invariant spaces*, Studia Math. **162** (2004), no. 3, 263–294.

[9] H. W. Ellis, *A note on Banach function spaces*, Proc. Amer. Math. Soc. **9** (1958), 75–81.

[10] A. Kamińska and D. Kubiak, *On the dual of Cesàro function spaces*, Nonlinear Anal. **75** (2012), no. 5, 2760–2773.

[11] L. V. Kantorovich and G. P. Akilov, *Functional Analysis*, Nauka, Moscow 1977; English transl. Pergamon Press, Oxford-Elmsford, New York 1982.

[12] P.-K. Lin, *Köthe-Bochner Function Spaces*, Birkhäuser Boston 2004.

[13] L. Maligranda, *Calderón-Lozanovskii construction for mixed norm spaces*, Acta Math. Hungar. **103** (2004), no. 4, 279–302.

[14] A. Pietsch, *History of Banach Spaces and Linear Operators*, Birkhäuser, Boston 2007.

[15] S. A. Rakov, *The Banach-Saks exponent of some Banach spaces of sequences*, Mat. Zametki **32**(1982), no. 5, 613–625; English transl. in Math. Notes **32**(1982), no. 5, 791–797.

[16] W. Szlenk, *Sur les suites faiblement convergentes dans l’espace L*, Studia Math. **25** (1965), 337–341.

[17] E. V. Tokarev, *The Banach-Saks property in Banach lattices*, Sibirsk. Mat. Zh. **24** (1983), no. 1, 187–189 (Russian).

Department of Mathematics and Mechanics, Samara State University
Acad. Pavlova 1, 443011 Samara, Russia E-mail address: astash@samsu.ru

Department of Engineering Sciences and Mathematics, Luleå University of Technology
SE-971 87 Luleå, Sweden E-mail address: lech.maligranda@ltu.se