Original Article

Impact of initial blood flow on outcomes of vascular access in hemodialysis patients

Soo Jeong Choi 1,*, Moo Yong Park 1, Jin Kuk Kim 1, Seung Duk Hwang 1, Kyun Her 2, Yongsoon Won 2

1 Department of Internal Medicine, Soonchunhyang University of Medicine, Bucheon Hospital, Bucheon, Korea
2 Department of Thoracic and Cardiovascular Surgery, Soonchunhyang University of Medicine, Bucheon Hospital, Bucheon, Korea

Article history:
Received 13 December 2011
Received in revised form 24 February 2012
Accepted 1 June 2012
Available online 26 June 2012

Keywords:
Arteriovenous fistula
Hemodialysis

A B S T R A C T

Background: Direct access flow measurements are considered the most useful surveillance method for significant stenosis, and ultrasound dilution has become the most popular and validated technique. The goal of this study was to evaluate access flow (Qa) at the time of first cannulation and its relationship to the survival of vascular access in Korean hemodialysis patients.

Methods: We conducted a prospective observational study from May 2004 to June 2011. We enrolled 60 patients (36 men) who underwent the first access operation between January 2004 and December 2005 and were followed-up for surveillance.

Results: Maturation failure occurred in nine patients (15%). Mean time to first use was 1.8 ± 1.2 months after surgery. The patients were followed-up for a mean of 50.5 ± 25.9 months. There were 25 deaths and six kidney transplants in patients with a functioning access. The total percutaneous transluminal angioplasty incidence was 50 in 27 patients (0.14/access-year). The initial Qa was 757.5 ± 476.4 mL/minute. First cannulation time was not significantly correlated with initial Qa (r = 0.234, P = 0.075). A total of 22 of the 60 patients (36.7%) had an initial Qa < 500 mL/minute. Maturation failure, initial Qa < 500 mL/minute, and the use of antiplatelet agents were risk factors for poor primary patency. Diabetic status and use of a graft were risk factors for low cumulative patency.

Conclusion: An initial Qa < 500 mL/minute is a risk factor for poor primary patency, while an initial Qa < 500 mL/minute is not a risk factor for low cumulative patency or mortality.

© 2012. The Korean Society of Nephrology. Published by Elsevier. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Vascular access dysfunction in hemodialysis is associated with a significant increase in morbidity and cost. Access with a blood flow of 600–1000 mL/minute is necessary to allow sufficient removal of uremic toxins from a patient within a reasonable time [1]. Routine surveillance to detect stenosis is recommended to allow preemptive intervention before thrombotic occlusion. Because the physiologic effect of stenosis is

*Corresponding author. Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Jung-dong, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-767, Korea.
E-mail address: crystal@schmc.ac.kr (SJ Choi).

2211-9132/$ - see front matter © 2012. The Korean Society of Nephrology. Published by Elsevier. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
http://dx.doi.org/10.1016/j.krcp.2012.06.008
decreased access blood flow (Qa), direct access flow measurements are considered the most useful surveillance method to detect stenosis, and ultrasound dilution has become the most popular and validated technique [2]. However, the outcomes and surveillance methods of hemodialysis access in Korean patients remain undefined. Our goal in this study was to evaluate Qa at the time of first cannulation and its relationship to outcomes of vascular access in Korean hemodialysis patients.

Methods

We conducted a prospective, observational study in a hospital hemodialysis center from May 2004 to June 2011. This study was approved by the Institutional Review Board of our Hospital (SCHBC-IRB-09-65). Patient criteria for enrollment in the study were as follows: (1) the first operation for arteriovenous fistula (AVF) or arteriovenous graft (AVG) was performed at our hospital between January 2004 and December 2005; (2) cannulation was started and hemodialysis was maintained for at least 1 month; (3) Qa was measured monthly; and (4) follow-up for access surveillance occurred at our hospital, even for patients transferred to and receiving hemodialysis elsewhere. The type of AVF or AVG was determined based on the preferences of two surgeons.

Cannulation of the AVF/AVG was attempted after a clinical assessment suggested that the access was sufficiently well developed to support hemodialysis after a minimum maturation period of 30 days. Qa was measured monthly using a Transonic hemodialysis monitor (Transonic Systems, Inc., Ithaca, NY, USA). All measurements were performed at a fixed dialyzer blood flow of 200–250 mL/minute within the first hour after the start of hemodialysis. Ultrafiltration was turned off during the actual blood flow measurement. Patients in whom the AVF Qa decreased to <500 mL/minute or dropped by more than 25%, or those in whom the AVG Qa decreased to <600 mL/minute or dropped by more than 25%, were sent for fistulography.

We defined first cannulation time as the time from the access surgery to first cannulation. We considered the inability to use an AVF/AVG beyond 30 days after surgery to be a maturation failure. When maturation failure of an AVF/AVG was suspected, the patient was referred to the surgeons who made the access. Because surgeons rather than intervention radiologists performed the percutaneous transluminal angioplasty (PTA) in contrast to the practice in most other hospitals, the surgeons decided whether PTA or a revision operation was more appropriate. PTA was performed using standard techniques. An access stenosis was considered hemodynamically relevant when it averaged >50% of the luminal diameter. A balloon catheter was inflated in the stenotic lesion, and patency was visualized thereafter by additional fistulography. Residual stenosis of <30% of the luminal diameter was considered procedural success. The initial Qa was measured between the first and third cannulation of AVF/AVG. If maturation failure of an AVF/AVG was suspected, then the initial Qa was measured after intervention. Primary patency was defined as the time elapsed from access surgery to the time of any intervention. Cumulative (secondary) patency was defined as the time from access surgery to complete failure of the fistula or graft.

Data are presented as means ± standard deviation, with 95% confidence intervals (CIs) where appropriate. The Chi-square and Fisher’s exact tests were used to compare dichotomous variables. Normally distributed continuous variables were compared using Student’s t-test. Variables influencing access patency and patient survival were evaluated by Cox regression analysis. Values of P < 0.05 were considered to indicate statistical significance. All statistical analyses were performed using SPSS version 14.0 (SPSS, Inc., Chicago, IL, USA).

Results

Patient characteristics

Table 1 lists the characteristics of the 60 participants enrolled in this study. The mean patient age was 54.9 ± 15.6 years, and 78% of the patients had hypertension. The numbers of male and female patients were 36 and 24, respectively. The most common cause of end-stage renal disease was diabetes mellitus (DM, 45%). The access characteristics are shown in Table 2. Proportions of native and left access were higher than those of graft and right access. Radiocephalic AVF was the most common access type.

Maturation failure

Mean time to first use of the AVF/AVG was 1.8 ± 1.2 (range, 1–6) months after access surgery. Maturation failure occurred in nine patients (15%), four of who had received AVG. Three patients underwent revision operations. Another six AVF/AVG patients demonstrated stenosis upon fistulography but had functional access after PTA at 1.8 ± 0.7 months. The initial mean Qa of this group was 700 ± 230 mL/minute. Three of the six patients lost access patency again at 3, 24, or 27 months after the initial surgery. Two of these three patients underwent an additional procedure.

Table 1. Clinical characteristics of the study patients (n = 60)

Clinical characteristic	Number (%)
Age (y)	54.9 ± 15.6
Sex, M:F (no.)	36:24
Height (cm)	163.3 ± 8.7
Weight (kg)	58.4 ± 11.9
Cause of end-stage renal disease	27 (45.0)
Diabetes mellitus	14 (23.3)
Glomerulonephritis	1 (1.7)
Unknown	15 (25.0)
Others	3 (5.0)
Diabetes mellitus	30 (50)
Hypertension	47 (78.3)
Anticoagulation agents	39 (65.0)

Table 2. The characteristics of arteriovenous fistulae

Characteristic	Number (%)
Access type	
Native	48 (81.4)
Graft	12 (18.6)
Access position	
Left	55 (91.7)
Right	5 (8.3)
Access vessel	
Radiocephalic	47 (80.0)
Brachiocephalic	1 (1.7)
Upper graft	1 (1.7)
Forearm graft	11 (16.6)
Follow-up

Patients were followed-up for a mean of 50.5 ± 25.9 months (range, 1–89 months), for a total of 3,029 patient-months. There were 25 deaths and six kidney transplants in patients with a functioning access. The total PTA incidence was 50 in 27 patients (1.65 per 100 patient-months or 0.14/access-year). The primary patency rates of AVF at 12, 24, and 36 months were 80.0%, 57.3%, and 42.8%, respectively. The primary patency rates for AVG at 12, 24, and 36 months were 46.9%, 37.5%, and 18.8%, respectively. There was no statistically significant difference in primary patency rates between AVF and AVG (P = 0.184). The cumulative patency rate of AVF at 12 and 24 months were 89.9% and 86.6%, respectively, whereas those of AVG at 12 and 24 months were 55.6% and 27.4%, respectively. The cumulative patency rate of AVF was superior to those of AVG (P = 0.000). Patient survival rates at 12, 24, and 36 months were 83%, 68.8%, and 62.5%, respectively.

Initial Qa

The initial Qa was 757.5 ± 476.4 (range, 120–2930) mL/minute at 1.8 ± 1.2 (range, 1–6) months. Known variables, including patient age, sex, DM, hypertension, antiplatelet agents, and access type, did not influence the initial Qa. First cannulation time was not significantly correlated with initial Qa (r = 0.234, P = 0.075). Twenty-two of 60 patients (36.7%) had an initial Qa < 500 mL/minute.

Prognostic factors for access patency and patient survival

Univariate and multivariate Cox regression models revealed predictors for access patency and survival. Patients treated with antiplatelet agents had five times higher risk than other patients for losing access patency. Maturation failure and an initial Qa < 500 mL/minute were risk factors for poor primary patency (Table 3, Fig. 1). Diabetic status and use of a graft were risk factors for low cumulative patency (Table 4). An initial Qa < 500 mL/minute was not a risk factor for low cumulative patency (Table 4, Fig. 2) or mortality (Table 5, Fig. 3).

Discussion

The National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative (K/DOQI) guidelines recommend routine surveillance for hemodynamically significant stenosis in AVGs and AVFs because prophylactic stenosis correction improves access patency rates [1]. However, this approach has been criticized as being premature, given the several unresolved issues surrounding the predictive accuracy of the monitoring tools. The full risks, benefits, and costs of surveillance programs remain unclear, as does the optimal timing of corrective intervention; there are few methodologically adequate studies that have addressed these issues [2]. Most studies to diagnose stenosis and predict thrombosis in AVF have been biased by small sample sizes and the reporting of cumulative data for AVFs and AVGs, and these studies have proposed a wide variety of diagnostic criteria [3–6]. We introduced Qa measurements and initiated surveillance using Transonic hemodialysis monitoring in 2004 [7]. Only a few authors have reported access outcomes, including patency rates and maturation failure rates, in Korean patients, and these have been determined using a variety of methods [8–12]. Therefore, we evaluated initial flow, surveillance, and survival of hemodialysis access in Korean patients.

In our study, the mean time to first cannulation was 1.8 ± 1.2 (range, 1–6) months. However, 25 of the 60 patients (41.7%) were not assessed at this first time point (data not shown). Contrary to our expectations, the initial Qa did not differ based on patient age, sex, DM, hypertension, anti-platelet agents, or use of a graft. Only the first cannulation time influenced the initial Qa, despite not significantly (r = 0.234,

![Figure 1. Primary access patency in patients with an initial Qa > 500 mL/minute and those with an initial Qa < 500 mL/minute (N=60).](image-url)

Table 3. Predictors of primary access patency by univariate and multivariate cox analysis

Parameter	Univariate analysis				Multivariate analysis				
	Relative risk	95% CI	P	Relative risk	95% CI	P	Relative risk	95% CI	P
Age (y)	1.007	0.987–1.028	0.498	1.007	0.984–1.030	0.559			
Male sex	0.790	0.393–1.591	0.510	1.150	0.482–2.744	0.752			
DM	0.893	0.446–1.789	0.749	0.715	0.309–1.653	0.433			
HTN	1.284	0.554–2.973	0.560	0.536	0.194–1.483	0.230			
AntiPLT	1.914	0.857–4.272	0.113	5.677	1.841–17.502	0.003			
Maturation failure	5.641	2.555–12.454	0.000	14.662	4.505–47.719	0.000			
Graft	1.719	0.765–3.859	0.189	2.041	0.703–5.924	0.189			
First cannulation time	0.938	0.708–1.242	0.655	1.012	0.743–1.376	0.942			
Initial Qa < 500 mL/min	2.042	1.013–4.119	0.046	2.784	1.091–7.100	0.032			

AntiPLT, antiplatelet agent; CI, confidence interval; DM, diabetes mellitus; HTN, hypertension; Qa, access flow.
In addition, the results shown in Table 5 and Fig. 3 indicate that an initial Qa was associated with new vascular access events [14]. Although the Qa was not influenced by patient age, systolic blood pressure, overweight status, or diabetic status, in contrast to previous Korean reports. Many previous studies have reported more vascular complications in women [18–20]. In addition, the presence of DM and hypertension did not influence primary patency. Tonelli and colleagues [13] and Miller and coauthors [21] found no effect of gender. Dixon and others [18] suggested that only the type of access and the surgeon were the risk factors, and that age, sex, race, DM, and hypertension did not influence primary access patency.

Table 4. Predictors of secondary access patency by univariate and multivariate Cox analysis

Parameter	Univariate analysis	Multivariate analysis				
	Relative risk	95% CI	P	Relative risk	95% CI	P
Age (y)	1.012	0.980–1.044	0.483	1.024	0.985–1.065	0.251
Male sex	0.255	0.088–0.779	0.012	2.219	0.554–8.885	0.210
DM	3.287	1.048–10.309	0.041	13.734	2.265–83.273	0.004
HTN	0.663	0.187–2.355	0.525	1.152	0.245–5.413	0.858
AntiPLT	1.134	0.387–3.323	0.819	2.0273	0.480–8.564	0.336
Maturation failure	2.896	0.918–9.139	0.070	1.643	0.217–12.474	0.631
Graft	5.442	1.852–15.995	0.002	5.584	1.186–26.288	0.030
PTA	1.233	0.923–1.648	0.156	1.405	0.491–5.628	0.223
First cannulation time	0.868	0.574–1.313	0.502	0.730	0.434–1.228	0.236
Initial Qa < 500 mL/min	1.565	0.579–4.231	0.377	1.152	0.245–5.413	0.858

AntiPLT, anti-platelet agent; DM, diabetes mellitus; HTN, hypertension; PTA, percutaneous transluminal angioplasty; Qa, access flow.

Figure 2. Secondary access patency in patients with an initial Qa > 500 mL/minute and those with an initial Qa < 500 mL/minute (N = 60).

P = 0.075). Although the Qa was < 500 mL/minute in 36.7% of 60 patients, there was no difference in the AVF/AVG ratio among patients with a Qa < 500 mL/minute or among those with a Qa ≥ 500 mL/minute. These results are largely consistent with the report of Tonelli and colleagues [13]. These authors showed that Qa was not influenced by patient age, vessel diameter may explain the poorer outcomes of fistulae in women [18–20]. In addition, the presence of DM and hypertension did not influence primary patency. Tonelli and colleagues [13] and Miller and coauthors [21] found no effect of gender. Dixon and others [18] suggested that only the type of access and the surgeon were the risk factors, and that age, sex, race, DM, and hypertension did not influence primary access patency.

The maturation failure rate of AVFs was less than that of AVGs (10.4 vs. 33.3%, respectively), but the difference was not significant (P = 0.069). The AVF maturation failure rate in our study differed from the previously reported primary failure rates of 20%–50% [15]. The AVF/AVG ratio in our study is consistent with that reported by Jung and colleagues [11]. They reported a primary failure rate of 13.2%, which was similar between 142 patients with AVF and 40 patients with AVG. The total number of PTA s with AVF was approximately twofold the number of PTA s with AVF (1.3 ± 2.0 vs. 0.7 ± 1.0, P = 0.127). Therefore, graft use is a risk factor that affects cumulative patency (Table 4). These results are consistent with the recent report of Lee and colleagues [17].
Table 5. Predictors of decreased patient survival by univariate and multivariate cox analysis

Parameter	Univariate analysis	Multivariate analysis				
	Relative risk	95% CI	P	Relative risk	95% CI	P
Age (y)	1.033	1.004–1.033	0.027	1.031	0.996–1.066	0.083
Male sex	1.650	0.671–4.057	0.275	1.507	0.552–4.110	0.424
DM	1.983	0.831–4.730	0.123	2.316	0.869–6.173	0.093
HTN	0.906	0.333–2.462	0.847	0.613	0.205–1.830	0.380
AntiPLT	1.411	0.552–3.608	0.522	0.918	0.311–2.706	0.876
Maturation failure	1.281	0.433–3.787	0.957	2.723	0.707–10.491	0.145
Graft	0.786	0.265–2.327	0.663	1.192	0.309–4.590	0.799
PTA	0.975	0.727–1.339	0.932	0.763	0.501–1.163	0.209
First cannulation time	0.862	0.582–1.276	0.458	0.930	0.585–1.477	0.758
Initial Qa < 500 ml/min	1.479	0.639–3.425	0.361	2.827	0.972–8.223	0.056

AntiPLT, antiplatelet agent; DM, diabetes mellitus; HTN, hypertension; PTA, percutaneous transluminal angioplasty; Qa, access flow.

Conflict of interest

None declared.

References

[1] Vascular Access Work Group: Clinical practice guidelines for vascular access. *Am J Kidney Dis* 48(Suppl1):S248Z–S273, 2006

[2] Paulson WD: Blood flow surveillance of hemodialysis grafts and the dysfunction hypothesis. *Semin Dial* 14:173–180, 2001

[3] Neyra NR, Ikizler TA, May RE, Himmelstfarb J, Schulman G, Shyr Y, Hakim RM: Change in access blood flow over time predicts vascular access thrombosis. *Kidney Int* 54:1714–1719, 1998

[4] Tonelli M, Jindal K, Hirsch D, Taylor S, Kane C, Henbrey S: Screening for subclinical stenosis in native vessel arteriovenous fistulae. *J Am Soc Nephrol* 12:1729–1733, 2001

[5] Depner TA, Kritsvitski NM: Clinical measurement of blood flow in hemodialysis access fistulae and grafts by ultrasound dilution. *ASAIJO* 41:M745–M749, 1995

[6] Lindsay RM, Blake PG, Malek P, Posen G, Martin B, Bradfield E: Hemodialysis access blood flow rates can be measured by a differential conductivity technique and are predictive of access clotting. *Am J Kidney Dis* 30:475–482, 1997

[7] Lee KH, Park JY, Choi SJ, Kim JK, Hwang SD, JoH-JH: Clinical utility of access blood flow measurement by ultrasound dilution in hemodialysis patients. *Korean J Nephrol* 24:265–273, 2005

[8] Ha SJ, Lee YJ, Cho BH, Jung KH, Moon JY, Lee SH, Lee TW, Ihm CG: Glucose pump technique is as good as ultrasound dilution technique for vascular access surveillance in hemodialysis patients. *Korean J Nephrol* 26:448–454, 2007

[9] Jung HW, Kim YO, Song WJ, Kim YS, Yoon SA, Kim BS, Song HC, Kim SY, Choi EJ, Chang YS, Bang BK: Static venous pressure measurement by access alert in detecting vascular access stenosis. *Korean J Nephrol* 25:61–68, 2006

[10] Lee JH, Park SI, Yoon SY, Lee SC, Yang SJ, Ahn HJ, Kim YS, Park K: Early detection of hemodialysis arteriovenous fistula dysfunction with intra-access static and total pressure measurement. *Korean J Nephrol* 26:70–78, 2007

[11] Jung HW, Lim YH, Lee YJ, Kang NR, Lee JE, Huh W, Oh HY, Kim YG, Kim DJ: The patency rate of hemodialysis vascular access and the analysis of patency-related factors: comparison of native arteriovenous fistula with arteriovenous graft, single center study. *Korean J Nephrol* 27:70–77, 2008

[12] Song CM, Ahn JB, Kim IS, Kim WS, Shin YC, Yoo HK, Kim BY: Clinical analysis of arteriovenous fistula in chronic renal failure patients. *Korean J Thorac Cardiovasc Surg* 39:692–698, 2006

[13] Tonelli M, Hirsch DJ, Chan CT, Marryatt J, Mossop P, Wile C, Jindal K: Factors associated with access blood flow in native vessel arteriovenous fistulae. *Nephrol Dial Transplant* 19:2559–2563, 2004

Figure 3. Survival in patients with an initial Qa > 500 mL/minute and those with an initial Qa < 500 mL/minute.

Tonelli and others [22] monitored access flow in a total of 303 patients with native AVF and previous angioplasty: of 69 patients (23%) with stenosis, 53 underwent angioplasty, and 19 patients had recurrent positive evaluations and underwent repeated fistulography. In our study, 27 patients (38.0%) underwent angioplasty and 12 (44.4%) of those patients underwent repeated angioplasty. However, these studies are not directly comparable, because Tonelli and colleagues [23] used Canadian guidelines, which, in patients with AVFs, calls for angiography when fistula flow decreases to < 500 mL/minute or drops > 20% from baseline and in patients with AVGs, calls for angiography when blood flow decreases to < 650 mL/minute or there is a drop of > 20% from baseline. We used a modified version of the K/DOQI and Canadian guidelines.

Our study has several limitations, including the small number of patients overall (selection bias) and the lack of randomization. It also did not perform preoperative mapping of vessels. Because there is no standardized description for access and PTA results in Korea, these outcomes may not definitively reflect patency rates and access survival. Nevertheless, this prospective study provided data on hemodialysis access in Korean patients.

In conclusion, an initial Qa < 500 mL/minute is a risk factor for poor primary patency, while an initial Qa < 500 mL/minute is not a risk factor for low cumulative patency or mortality.
[14] Kim HS, Park JW, Chang JH, Yang J, Lee HH, Chung W, Park YH, Kim S: Early vascular access blood flow as a predictor of long-term vascular in incident hemodialysis patients. *J Korean Med Sci* 25:728–733, 2010

[15] Maya ID, Allon M: Vascular access: core curriculum 2008. *Am J Kidney Dis* 51:702–708, 2008

[17] Lee T, Barker J, Allon M: Comparison of survival of upper arm arteriovenous fistulas and grafts after failed forearm fistula. *J Am Soc Nephrol* 18:1936–1941, 2007

[18] Dixon BS, Novak L, Fangman J: Hemodialysis vascular access survival: upper-arm native arteriovenous fistula. *Am J Kidney Dis* 39:92–101, 2002

[19] Reilly DT, Wood RF, Bell PR: Prospective study of dialysis fistulas: problem patients and their treatment. *Br J Surg* 69:549–553, 1982

[20] Wong V, Ward R, Taylor J, Selvakumar S, How TV, Bakran A: Factors associated with early failure of arteriovenous fistulae for haemodialysis access. *Eur J Vasc Endovasc Surg* 12:207–213, 1996

[21] Miller CD, Robbin ML, Allon M: Gender differences in outcomes of arteriovenous fistulas in hemodialysis patients. *Kidney Int* 63:346–352, 2003

[22] Tonelli M, Hirsch D, Clark TW, Wile C, Mossop P, Marryatt J, Jindal K: Access flow monitoring of patients with native vessel arteriovenous fistulae and previous angioplasty. *J Am Soc Nephrol* 13:2969–2973, 2002

[23] Jindal K, Chan CT, Deziel C, Hirsch D, Soroka SD, Tonelli M, Culleton BF: Canadian Society of Nephrology Committee for Clinical Practice Guidelines: Hemodialysis clinical practice guidelines for the Canadian Society of Nephrology. *J Am Soc Nephrol* 17:S1–S27, 2006