Accelerating Amyloid-β Fibrillization Reduces Oligomer Levels and Functional Deficits in Alzheimer Disease Mouse Models*§

Irene H. Cheng§, Kimberly Scearce-Levie§, Justin Legleiter§, Jorge J. Palop§, Hilary Gerstein§, Nga Bien-Ly§, Jukka Puoliväli§, Sylvain Lesné§, Karen H. Ashe§, Paul J. Muchowski§, and Lennart Mucke§

From the §Gladstone Institute of Neurological Disease, San Francisco, California 94158, the Departments of §§Neurology and Biochemistry and Biophysics, University of California, San Francisco, California 94143, and the ¶Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota 55455

Many proteins suspected of causing neurodegenerative diseases exist in diverse assembly states. For most, it is unclear whether shifts from one state to another would be helpful or harmful. We used mutagenesis to change the assembly state of Alzheimer disease (AD)-associated amyloid-β peptides. In vitro, the “Arctic” mutation (AβE22G) accelerated Aβ fibrillation but decreased the abundance of nonfibrillar Aβ assemblies, compared with wild-type Aβ. In human amyloid precursor protein (hAPP) transgenic mice carrying mutations adjacent to Aβ that increase Aβ production, addition of the Arctic mutation markedly enhanced the formation of neuritic amyloid plaques but reduced the relative abundance of a specific nonfibrillar Aβ assembly (Aβ*56). Mice overexpressing Arctic mutant or wild-type Aβ had similar behavioral and neuronal deficits when they were matched for Aβ*56 levels but had vastly different plaque loads. Thus, Aβ*56 is a likelier determinant of functional deficits in hAPP mice than fibrillar Aβ deposits. Therapeutic interventions that reduce Aβ fibrils at the cost of augmenting nonfibrillar Aβ assemblies could be harmful.

Alzheimer disease (AD) and many other neurodegenerative disorders are associated with the accumulation of abnormal protein assemblies in the central nervous system (CNS). Much evidence suggests that this association reflects a causal relationship in which the abnormal proteins actually trigger the neuronal dysfunction and degeneration that characterize these conditions (1–3). The prevalence of AD and other neurodegenerative proteinopathies is increasing rapidly around the world, most likely because of their age dependence, the increasing longevity of many populations, and the lack of effective strategies for treatment and prevention (4–6). This alarming trend underlines the need to better understand the relationship between the accumulation of abnormal proteins in the CNS and the decline of neurological function.

This relationship has been difficult to analyze in depth because proteins associated with neurodegenerative disorders can exist in diverse assembly states, and distinct assemblies can differ markedly in pathogenic potential. For example, the amyloid-β (Aβ) peptide, which seems to play a causal role in AD, can exist as monomers, low molecular weight oligomers (such as dimers and trimers), larger globular oligomers (such as Aβ*56, Aβ-derived diffusible ligands, amylospheroids, and globulomers), amyloid pores, protofibrils, fibrils, and amyloid plaques that contain densely packed Aβ fibrils and a large number of other molecules and cellular elements (7–15). Which of these structures contributes most critically to neurological decline in AD is a matter of active study and debate that has important implications for therapeutic interventions. Studies of transgenic mice with neuronal expression of human amyloid precursor proteins (hAPP), from which Aβ is released by proteolytic cleavage, suggest that nonfibrillar Aβ assemblies are more critical than amyloid plaques in the pathogenesis of AD-related neuronal dysfunction and memory deficits (15–20). However, there also is evidence for a pathogenic role of plaques and plaque-associated neuritic dystrophy (21–24).

Shifting Aβ from one assembly state to another may have profound effects on the pathogenesis of AD. Such shifts can result from genetic alterations and pharmacological interventions that change the amino acid composition of Aβ. For example, increasing the abundance of Aβ1–42 relative to shorter Aβ species promotes aggregation of Aβ monomers and plaque formation (25), whereas increasing the relative abundance of Aβ1–40 appears to counteract these processes (18, 26, 27). Mutations within the Aβ sequence that cause AD or related conditions also have marked effects on the assembly of Aβ (28).

The current study focuses on a familial AD-linked point mutation within Aβ (E22G, “Arctic mutation”) that accelerates the aggregation of Aβ into protofibrils and fibrils in vitro (29–33). We investigated by atomic force microscopy (AFM) how...
the Arctic mutation affects the balance between fibrillar and nonfibrillar Aβ assemblies in cell-free conditions and compared its effect on the relative abundance of neuritic amyloid plaques and nonfibrillar Aβ assemblies in brain tissues of hAPP mice. Lastly, we examined whether behavioral deficits and depletions of synaptic activity-related proteins in these mice relate more closely to plaques or nonfibrillar Aβ assemblies.

EXPERIMENTAL PROCEDURES

Ex Situ AFM—Wild-type (wt) and Arctic mutant synthetic Aβ1–42 (Biopeptide, San Diego, CA) were dissolved in 100% 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP; Sigma) to 0.5 mg/ml and dried under vacuum. The HFIP-treated peptides were resuspended to 5 mg/ml in anhydrous dimethyl sulfoxide and incubated for 1 h at 37 °C. This stock solution was diluted in phosphate-buffered saline to a final concentration of 100 μg/ml and agitated at 1000 rpm at 37 °C. An aliquot from each sample was taken at various time intervals for immediate deposition.

In Situ AFM—Activity in the open field was tested with the automated Flex-Field/Open Field Photobeam Activity System (San Diego Instruments, San Diego, CA). The system consisted of two identical clear plastic chambers (41 cm × 41 cm × 38 cm), a PAS control box, a PC interface board, and a microcomputer for recording and analysis of data. Two sensor frames, each consisting of a 16 × 16 photobeam array at 1.5 cm and 6 cm above the bottom of the cage, were used to detect movements in the horizontal and vertical planes. The test was initiated by placing the mouse in the center of the arena. Horizontal beam breaks (ambulatory moves) in the arena were counted over 15 min. The arena was cleaned and dried after each test.

Y-Maze—The Y-maze was constructed of black plastic walls (10 cm high). It consisted of three compartments (10 cm × 10 cm) connected with 4 cm × 5 cm passages. The mouse was placed in one of the compartments and allowed to move freely for 6 min. An arm entry was manually recorded when all four paws entered the compartment. After each test, the maze was thoroughly cleaned.

Elevated Plus Maze—The elevated plus-shaped maze consisted of two open arms and two closed arms equipped with rows of infrared photobeams (Hamilton-Kinder, Poway, CA). Mice were habituated to dim lighting in the testing room for 30 min and then were placed individually at the center of the apparatus and allowed to explore for 10 min. The time spent and distance traveled in each of the arms were recorded by infrared beam breaks. After each mouse was tested, the apparatus was thoroughly cleaned.

Morris Water Maze—The water maze consisted of a pool (122 cm in diameter) containing opaque water (18 °C) and a platform (14 cm in diameter) submerged 1.5 cm under the water. For cued training sessions (days 1–3), the platform was marked with a visible beacon, and the mice were trained to locate the platform over six sessions (two per day, 4 h apart) each with two trials. The platform location was changed for each session. Hidden platform training (days 4–8) consisted of 10 sessions (two per day, 4 h apart), each with three trials. The platform location remained constant in the hidden platform sessions, and the entry points were changed semirandomly between trials. The maximum trial time was 60 s. Mice that failed to find the platform were led to it and placed on it for 15 s.
Aβ Assembly and Neuronal Deficits in hAPP Mice

A day after the last hidden platform training session, a probe trial was conducted by removing the platform and allowing mice to search in the pool for 1 min. Time to reach the platform, time in target quadrant, platform crossings, path length, and swim speed were recorded with an EthoVision video tracking system (Noldus, Netherlands).

Immunoblotting and Immunohistochemistry—Mice were sacrificed 2 days after behavioral testing, and their brains were cut in half sagittally. One half was fixed for 48 h in 4% paraformaldehyde for immunohistochemical analysis, and the other was frozen in dry ice for biochemical analysis. To measure total Aβ1-42 and Aβ1-42, snap-frozen forebrains were homogenized in 5 M guanidine buffer, and human Aβ peptides were quantitated by ELISA as described (18). Protein fractionation and Aβ*56 detection in hAPP mice were performed as described (15). Briefly, total proteins (100 µg) from the radioimmune precipitation assay buffer (RIPA) soluble fraction were separated on 10.5–20% Tricine gels or 4–12% Bis-Tris gels and transferred to nitrocellulose membrane (0.2 µm pore size, Bio-Rad). Biotinylated 6E10 antibody (1:1000, Signet, Dedham, MA) and Extravidin (1:5000, Sigma) were used for Western blotting. Immunohistochemistry was performed as described (20) on floating 30-µm sliding microtome sections with anti-Aβ (5D6, 1:500, Elan Pharmaceuticals, South San Francisco, CA), anti-APP (8E5, 1:1000, Elan Pharmaceuticals), anti-Fos (Ab-5, 1:10,000, Calbiochem) or anti-calbindin (1:15,000; Swant, Bellinzona, Switzerland) antibodies. Diaminobenzidine was used as the chromagen. Images were acquired with a digital camera (Axiocam, Carl Zeiss). Densitometric quantification of calbindin immunoreactivity was performed with Bioquant (20). For double-labeling of amyloid plaques and dystrophic neurites, floating sections were stained with monoclonal anti-hAPP antibody (8E5, 1:1000, Elan Pharmaceuticals), mounted on glass slides, and stained with 0.015% thioflavin-S. Images were collected with a confocal microscope (Bio-Rad).

Statistical Analysis—Statistical analyses were performed with SPSS11 (SPSS, Chicago, IL) or Statview (SAS Institute, Cary, NC). Quantitative data are reported as mean ± S.E. Pairs of means were compared by unpaired two-tailed t test and multiple means by ANOVA and Tukey-Kramer posthoc test. Learning curves in the water maze were analyzed by repeated-measures ANOVA. Differences in survival curves were assessed by Kaplan-Meier analysis. Correlations were examined by simple regression analysis.

RESULTS

The Arctic Mutation Markedly Increases the Ratio of Fibrillar to Nonfibrillar Aβ in Vitro—Whereas it is well established that Aβ-Arctic aggregates more quickly than Aβ-Wt (29, 32), the specific aggregates formed and their ratios have, to our knowledge, not yet been analyzed by AFM. This technique provides quantitative three-dimensional morphological information unavailable with other approaches, such as analytical ultracentrifugation or dye-binding experiments. We first used in situ AFM to monitor the early events of synthetic Aβ1–42 assembly in real time under cell-free conditions as described (45).

At a solution concentration of 62.5 µM, Aβ-Wt assembled predominantly into globular oligomers, which first appeared

![Figure 1. The Arctic mutation increases fibril formation and decreases the nonfibrillar/fibrillar Aβ1–42 ratio in vitro](image-url)

A. Numbers of small nonfibrillar Aβ assemblies (C) and ratios of nonfibrillar to fibrillar Aβ assemblies (D) at each time were determined from 15 images (9–25 mm² each) from three independent experiments. Ratios were calculated from the percent surface area occupied by nonfibrillar versus fibrillar Aβ assemblies as defined under “Experimental Procedures.” **p < 0.05; ***p < 0.01; ****p < 0.001 versus Aβ-Wt.”
often high curvature (Fig. S1, A and B in Supplemental Data), consistent with earlier findings (45). In contrast, Aβ-Arctic protofibrils were 4.5–5.5 nm in height, had a more rigid morphology, were often highly branched, and formed highly ordered arrays along the crystallographic lattice of the mica surface (Fig. S1, C and D in Supplemental Data). Aβ-Arctic protofibrils did not grow from an obvious oligomeric precursor on the mica surface, although we cannot exclude the possibility that these structures may have formed transiently in solution before deposition.

To quantify the levels of various structural assemblies of Aβ that accumulate over longer periods of time, Aβ samples at lower concentration (20.8 μM) were allowed to aggregate in test tubes at 37 °C before ex situ analysis by AFM (35). The majority of Aβ-Wt assemblies that appeared within 48 h of incubation were globular oligomers (1–2.5 nm in height) and short rod-shaped protofibrils (3–5 nm in height), whereas elongated fibrils and larger aggregates that were taller than 6 nm in height appeared only after 72 h (Fig. 1B, upper panel and Fig. S2, A and B in Supplemental Data). Under the same conditions, Aβ-Arctic remained in small nonfibrillar states at 1 h but had already assembled into fibrils and larger aggregates by 24 h (Fig. 1B, lower panel and Fig. S2, C and D in Supplemental Data). These results differ from the original report of the Arctic mutation (29), which concluded that it does not affect the Aβ fibrillation rate. Differences in experimental conditions that may explain this discrepancy include the use of Aβ1–42 instead of Aβ1–40 and of AFM instead of size exclusion chromatography in the current study. Our AFM findings are consistent with other studies demonstrating that the Arctic mutation accelerates fibril formation (30–33, 46). Notably, after 24 h of incubation, samples containing Aβ-Arctic had significantly fewer nonfibrillar assemblies (Fig. 1C) and lower ratios of nonfibrillar to fibrillar assemblies than samples containing Aβ-Wt (Fig. 1, C and D).

Effects of the Arctic Mutation on Plaque Load and Aβ1-42 Levels in Vivo—To examine the effect of the Arctic mutation on Aβ assembly in vivo, we studied three lines of hAPP transgenic mice that produce human Aβ-Wt (line J20) or Aβ-Arctic (lines ARC6 and ARC48) (Fig. 2A). The Swedish and Indiana familial AD mutations within hAPP sequences flanking Aβ (Fig. 2A) were introduced into all three lines to maximize production of the pathogenic Aβ1–42 species. Because J20 mice carry only these mutations, their transgene-derived Aβ has the sequence of wild-type human Aβ. Because both ARC lines in addition carry the Arctic mutation, which resides in the middle of Aβ, they produce Arctic-mutant human Aβ.

The levels of hAPP in the forebrain were lower in ARC6 mice and higher in ARC48 mice than in J20 mice (Fig. 2B). At 3–4 months of age, levels of guanidine-soluble Aβ1-42 and Aβ1–42 in the forebrain were comparable in J20 and ARC6 mice and much higher in ARC48 mice (Fig. 2C). The Aβ1–42/Aβ1-x ratios were similar in all three lines (Fig. 2D).

An analysis of plaque formation in the hippocampus confirmed and extended our previous observations (34). At 3–4 months, hippocampal Aβ deposition was undetectable or minimal in J20 mice, moderate in ARC6 mice, and prominent in ARC48 mice (Fig. 3, A and C). Only
Aβ Assembly and Neuronal Deficits in hAPP Mice

FIGURE 4. Levels of Aβ*56 and other hAPP products at 3–4 months of age.

A–E, Western blot analysis was used to detect APP metabolites and Aβ assemblies in membrane-enriched fractions of forebrain lysates. A, representative Western blot probed with the anti-Aβ3-8 antibody 6E10. Identified bands are labeled on the left of the blot; arrowheads indicate nonspecific signals. B–E, densitometry was used to quantify Western blot signals for Aβ*56 (B), β-CTF (C), Aβ*56/APP (D), and Aβ*56/β-CTF ratios (E). Mean levels in J20 mice were defined as 1.0. n = 16–18/group. ***, p < 0.001 versus J20.

ARC48 mice showed reactive astrogliosis (Fig. 3E). At 10–12 months, thioflavin-S-positive mature plaques with dystrophic neurites were present in all three lines (Fig. 3B) but were much more abundant in the ARC lines than in line J20 (Fig. 3D).

Recent studies have identified a specific nonfibrillar Aβ assembly (Aβ*56) in brains of hAPP mice from another line (Tg2576) that was closely linked to memory deficits in these mice and caused memory deficits when infused into the brains of NTG rats (15). Western blot analysis detected a band consistent with Aβ*56 in the membrane-enriched fraction of forebrain lysates from 3–4-month-old hAPP mice (Fig. 4A). This fraction also contained full-length hAPP and various APP metabolites, including putative C-terminal APP fragments (β-CTF) (Fig. 4A). In contrast to their vastly different plaque loads (Fig. 3, A and C), J20 and ARC48 mice had roughly comparable Aβ*56 levels with a trend toward lower levels in ARC48 mice (Fig. 4B). Aβ*56 levels were much lower in the ARC6 line (Fig. 4B). In contrast, full-length hAPP (Fig. 2B) and β-CTF levels were significantly higher in ARC48 mice than in J20 mice and much lower in ARC6 mice (Fig. 4, A and C), consistent with previous findings (34). Compared with the J20 line, both ARC lines showed similar decreases in the ratio of Aβ*56 to hAPP (Fig. 4D) and the ratio of Aβ*56 to β-CTF (Fig. 4E).

Because the morphology of nonfibrillar Aβ assembled in vivo has never been examined, we used ex situ AFM to image Aβ*56 purified directly from brain tissue of hAPP mice (Fig. 5A). Most Aβ*56 particles detected by AFM had a globular ellipsoidal shape (Fig. 5B). Size characterization analysis revealed these aggregates to be ~1 nm in height (Fig. 5C) and 125–175 nm³ in volume (Fig. 5D), after partial correction for the finite shape and size of the AFM tip. This size is similar to that of the small globular oligomers of synthetic Aβ we identified at early stages in our in vitro aggregation experiments (Fig. S2A in Supplemental Data).

FIGURE 5. Ex situ AFM height image and size distribution of wildtype Aβ*56.

A, Western blot analysis (6E10 antibody) of wild-type Aβ*56 purified from RIPA-soluble forebrain lysates of Tg2576 mice by immunooaffinity chromatography and size exclusion chromatography as described (15). B, representative 1-nm² AFM image of Aβ*56 demonstrating ellipsoidal shapes. C and D, analysis of 3243 particles in 26 images (5 × 5 μm). The mode of the height was ~1 nm (C), and the volume was 125–175 nm³ (D).

Functional Deficits Relate More Closely to Aβ*56 Than to Plaques—To determine if the increased plaque burden and neuritic dystrophy in ARC mice were associated with more severe behavioral deficits, we compared 3–4-month-old hAPP mice and NTG controls in a Morris water maze. Consistent with previous findings in J20 mice (20) and other hAPP lines overexpressing Aβ-Wt (37), J20 mice required more time than NTG mice to learn to escape to a cued platform that was moved to a different location between sessions, although their performance ultimately reached control levels (Fig. 6A). In contrast, ARC6 mice with greater hippocampal plaque loads and even the plaque-laden ARC48 mice had no difficulty learning this task (Fig. 6A).

In the spatial component of the water maze test, mice must use extramaze cues to navigate to a platform hidden in a constant location. J20 mice never learned this task as well as NTG controls (Fig. 6B), consistent with previous observations (20). ARC6 mice performed as well as NTG controls, but the higher...
Figure 6. Association between learning/memory deficits and Aβ*56 levels. A–C, Transgenic (TG) and nontransgenic (NTG) mice from the indicated lines were tested in the Morris water maze at 3–4 months of age. Mice were first trained to locate a cued platform (A) and then a hidden platform (B). Escape latency (sec) and path length (not shown) were used as measures of learning. The first data point in B(0) indicates performance on the first of three trials in session 1. Subsequent points represent average performance in each session. C, mice were tested in a probe trial 16–18 h after the last hidden platform trial. During this test, the platform was removed, and the search patterns of the mice were monitored. n = 9–13/group. *, p < 0.05; **, p < 0.01; ***, p < 0.001 versus NTG. D and E, relationship between probe trial performance in the water maze and levels of Aβ*56 (D) and plaque load (E) at 3–4 months of age. Levels of Aβ*56 in individual mice were normalized to the average levels in transgenic mice from the respective line. n = 12–18/group.

Expresser ARC48 mice were impaired (Fig. 6B). No significant differences were identified in the learning curves in the cued or spatial component of the test between the NTG mice from these three lines (Fig. 6, A and B).

A day after the last training session, mice were tested in a probe trial during which search patterns were monitored in the absence of a platform. J20 and ARC48 mice showed less preference for the original target location than NTG controls, whereas ARC6 mice had normal spatial memory retention (Fig. 6C). In both J20 and ARC48 mice, probe trial deficits correlated with Aβ*56 levels (Fig. 6D), but not with plaque loads (Fig. 6E) or with hAPP and β-CTF levels (Fig. S3 in Supplemental Data).

Water-maze deficits in J20 mice also correlate well with the depletion of calcium- and synaptic activity-related proteins in granule cells of the dentate gyrus (20, 38, 44). The calcium-binding protein calbindin-D28K and the immediate-early gene product Fos are among the most robust and sensitive of these biomarkers. Compared with NTG controls, calbindin (Fig. 7A) and Fos (Fig. 7B) levels in the dentate gyrus were significantly reduced in J20 and ARC48 mice, but not in ARC6 mice.

Other Behavioral Alterations and Premature Death—Several lines of hAPP mice expressing high levels of human Aβ-Wt have increased locomotor activity (37), and similar abnormalities have been observed in rats after disruption of input from the entorhinal cortex to the dentate gyrus (41). To look for this behavioral abnormality in our hAPP lines, we used the open field test and the Y maze. In both tests, J20 mice were significantly more active than NTG controls, whereas ARC6 mice were not (Fig. 8, A and B). ARC48 mice showed a trend toward hyperactivity. J20 mice (38, 39) and other hAPP models (37) also show an abnormal phenotype in the elevated plus maze, which is widely used to assess emotionality (40). In this test, ARC6 mice again behaved normally, whereas J20 mice and ARC48 mice traveled longer distances on the open arms of the maze than NTG controls (Fig. 8C). Performance in the open field and plus maze did not correlate with Aβ*56 or β-CTF levels (Fig. S4 in Supplemental Data).

Last, hAPP mice expressing high levels of human Aβ-Wt have an increased incidence of premature death, the cause of which remains unknown (42, 43). Significant premature mortality was evident in lines J20 and ARC48, but not in ARC6 (Fig. 8D).

Discussion

These results demonstrate a striking dissociation between plaque formation and functional deficits. ARC6 mice had more plaques than J20 mice but essentially no behavioral deficits. To our knowledge, ARC6 is the first hAPP line to show prominent neuritic plaques but normal learning and memory in the Morris water maze. Furthermore, ARC48 mice had markedly greater plaque loads than J20 mice but comparable or less severe functional deficits (Table S1 in Supplemental Data).

We think that these findings can be explained by differences in Aβ*56 levels and by the kinetic model presented in Fig. 9. Levels of pathogenic oligomers, such as Aβ*56, likely depend on many factors, including hAPP levels, production and degradation of Aβ, and sequestration of Aβ monomers or oligomers into mature fibrils. Although hAPP/Aβ levels in ARC6 mice were not high enough to result in the formation of Aβ*56 or in functional deficits, they were high enough for plaque formation to occur, presumably because of the high fibrillogenic propensity imparted by the Arctic mutation. The effective fibrillation of...
Aβ-Arctic may also explain why Aβ*56/APP ratios were lower in ARC48 than J20 mice. Nevertheless, hAPP/Aβ levels in ARC48 mice were high enough to result in robust levels of Aβ*56 and neuronal dysfunction. In mice overexpressing Aβ-Wt or Aβ-Arctic, behavioral and neuronal deficits were closely related to Aβ*56 levels, but not to plaque loads, consistent with other evidence suggesting that AD-related functional deficits are more likely caused by nonfibrillar Aβ assemblies than by amyloid plaques (1, 15, 16, 19, 47, 48).

Although APP and CTFs are biologically active and can have cytotoxic properties (56–61), their levels did not correlate with the severity of behavioral deficits in our mouse models, making them less likely culprits than nonfibrillar Aβ assemblies, such as Aβ*56. Interestingly, Aβ*56 levels correlated with water-maze deficits but not with activity measurements in the open field and plus maze, suggesting that Aβ*56 may affect learning and memory more than other behavioral domains. In addition, Aβ*56 levels may be higher in brain regions responsible for learning and memory than in brain regions that govern activity in the open field and plus maze. Because available methods are not yet sensitive enough to detect Aβ*56 in very small tissue samples, technological advances will likely be required to assess these possibilities experimentally.

By AFM analysis, Aβ*56 isolated from hAPP mouse brains was ~1 nm in height and 125–175 nm³ in volume and was similar in size to early-stage synthetic oligomers detected in our AFM analysis but smaller than most synthetic Aβ oligomers and protofibrils reported by others (8, 62, 63). Assuming that the calculated volume of an Aβ monomer folded into a two-stranded β-sheet is ~10 nm³ (64) and that Aβ*56 is a dodecamer, as suggested by its apparent molecular weight (15), a perfectly packed Aβ*56 should have a volume of ~120 nm³. Because the finite size of the AFM tip convolutes the lateral dimensions of each particle, resulting in exaggerated volume measurements, we applied geometric methods to partially compensate for this convolution in our quantitative analysis. Because this correction protocol underestimates lateral tip contributions (36), it is not surprising that the Aβ*56 volumes we measured were slightly larger than the theoretical values. Although our results do not exclude the possibility that larger oligomers and protofibrils are also pathogenic, they suggest that small globular oligomers assembled in vitro more closely resemble Aβ oligomers that can cause memory deficits in vivo.

Because many factors can influence Aβ aggregation, our in vitro experiments were performed as close to physiological conditions as possible in regards to temperature, ionic strength, and pH. Because surface chemistry can influence Aβ aggregation during in situ AFM imaging (45), all quantitative results were obtained by ex situ AFM on Aβ aggregated in solution in the absence of mica. We used mica for in situ experiments because Aβ-Wt aggregates that form on mica closely resemble those formed under “free solution” conditions (45). Interestingly, protofibrillar structures formed on mica during in situ AFM differed markedly between Aβ-Wt and Aβ-Arctic. As noted in previous studies (45), Aβ aggregation observed by in
situ AFM is highly dependent on the surface chemistry of the substrate. When exposed to aqueous solutions, the surface of mica bears a negative charge, similar to the surface of cell membranes containing anionic phospholipids. The E22G mutation reduces the net charge of Aβ/H9252-Arctic compared with Aβ/H9252-Wt, which may result in differential interactions of these peptides with anionic surfaces both in vitro and in vivo.

A number of comments are in order about the relation of our models to human carriers of the Arctic mutation. First and foremost, our ARC48 line demonstrates that Aβ/H9252-Arctic can result in the formation of Aβ*/56 as well as in the development of cognitive deficits, which is perfectly consistent with the fact that the Arctic mutation causes familial AD in humans. However, human carriers are typically heterozygotes, expressing both Aβ/Wt and Aβ-Arctic. In vitro, nonfibrillar Aβ assemblies persist longer and fibril formation occurs later in mixtures of Aβ-Arctic and Aβ-Wt than in samples containing only Aβ-Arctic (30). Although our ARC lines express wild-type murine APP and Aβ, the only human Aβ produced at high levels in their brains is Aβ-Arctic. In addition, people with the Arctic mutation do not have the Swedish and Indiana mutations, which were incorporated in our ARC lines to increase Aβ1–42 production to levels that are readily detectable and likely to yield pathological alterations within a short time. Because Aβ1–42 is more fibrillogenic than Aβ1–40 (25, 65), the high Aβ1–42/Aβ1-x ratios in our ARC lines may have synergized with the fibrillogenic effects of the Arctic mutation. Furthermore, wild-type Aβ1–40 can prevent aggregation and deposition of Aβ1–42 (18, 26, 27). Thus, the presence of Aβ-Wt, in combination with potentially lower Aβ1–42/Aβ1–40 ratios, in the brains of human carriers may promote the accumulation of nonfibrillar Aβ assemblies and worsen neurological deficits relative to our ARC models.

Because the pathogenicity of Aβ is linked so tightly to its assembly state, it is difficult, if not impossible, to determine if the Arctic mutation affects the pathogenicity of Aβ independently of its effects on Aβ assembly. How one interprets our results in this regard depends on the relative pathogenic impact of oligomers versus plaques. If plaques were the main cause of functional deficits, the comparable levels of Aβ*/56 and of behavioral and neuronal deficits in lines J20 and ARC48 suggest that Aβ*/56 containing Aβ-Arctic or Aβ-Wt are equally pathogenic. Because J20 mice develop functional deficits before plaque formation, we favor the latter conclusion.

In some in vitro studies (31, 46, 66), but not others (62, 68), Aβ-Arctic appeared to be more toxic than Aβ-Wt. We find it difficult to relate these findings to our results in transgenic
nonfibrillar Aβ assemblies differ from in vivo-generated Aβ assemblies in biological activity even in tissue culture models (69). What is more, the formation of Aβ56 in brain tissues is age-dependent, and this Aβ assembly does not appear to occur even in primary cortical cultures (15).

We detected Aβ56 in both the membrane-enriched fraction (Fig. 4A) and the extracellular-enriched fraction of forebrain lysates (data not shown). Furthermore, memory deficits in the water maze correlated more strongly with Aβ56 in the membrane-enriched fraction than in the extracellular-enriched fraction (data not shown). Whether Aβ56 in the membrane-enriched fraction reflects interactions of this oligomer with the outside or inside of the surface membrane or with membranes of intracellular compartments remains to be determined. While low molecular weight Aβ oligomers have been detected in lysates of APP-expressing CHO cells (7PA2) and primary neurons, Aβ56 was undetectable in both systems (15), suggesting that this oligomer forms extracellularly.

Although our study was not designed to assess diagnostic procedures or therapeutic interventions, it highlights the disassociation between plaques and neurological deficits, as well as the impact of altering Aβ fibrillization in vivo. Both aspects have potentially important clinical implications. There is justifiable excitement in the field about plaque detection with radiopharmaceutical probes in the brains of live patients, an approach that is being included as an outcome measure in an increasing number of clinical trials (70, 71). Notably, diverse factors can alter the aggregation or deposition of Aβ after it is produced (39, 72–76), which could make the relationship between Aβ production and plaque load more complex and less predictable than is desirable from a clinical trials perspective. In addition, the results of the current study suggest that the relationship between Aβ levels and cognitive decline may depend on the balance between fibrillar and nonfibrillar Aβ assemblies, which could be influenced by endogenous factors as well as drug treatments.

Our study also raises some concerns about therapeutic efforts to block or reverse the formation of Aβ fibrils. The risk/benefit ratio of this approach might critically depend on the extent to which it also diminishes the pool of pathogenic Aβ oligomers. Within the obvious constraints of mouse-to-human extrapolations, our data caution against any strategies that decrease Aβ fibrils at the cost of augmenting pathogenic Aβ oligomers. They also raise the possibility that promoting fibril formation in ways that bypass oligomer formation or rapidly sequester oligomers into more inert fibrils might be of therapeutic benefit. Additional studies are needed to further test these hypotheses.

Acknowledgments—We thank J. Weissman for providing access to his AFM; G.-Q. Yu, F. Yan, X. Wang, D. Kim and H. Solanoy for technical assistance; J. Carroll, C. Goodfellow, and T. Roberts for preparation of graphics; G. Howard and S. Ordway for editorial review; and D. McPherson and L. Manuntag for administrative assistance.

REFERENCES
1. Walsh, D. M., and Selkoe, D. J. (2004) Neuron 44, 181–193
2. Tanzi, R., and Bertram, L. (2005) Cell 120, 545–555
3. Skovronsky, D. M., Lee, V. M.-Y., and Trojanowski, J. Q. (2006) Annu. Rev. Pathol. Mech. Dis. 1, 151–170
4. Hebert, L., Scherr, P., Bienias, J., Bennett, D., and Evans, D. (2003) Arch. Neurol. 60, 1119–1122
5. Ferri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., Hall, K., Hasegawa, K., Hendrie, H., Huang, Y., Jorm, A., Mathers, C., Menezes, P. R., Rimmer, E., and Scazufca, M. (2005) Lancet 366, 2112–2117
6. Lleó, A., Greenberg, S. M., and Growdon, J. H. (2006) Annu. Rev. Med. 57, 513–533
7. Roher, A. E., Chaney, M. O., Kuo, Y.-M., Webster, S. D., Stine, W. B., Haverkamp, L. J., Woods, A. S., Cotter, R. J., Tuohy, J. M., Krafft, G. A., Bonnell, B. S., and Emmerling, M. R. (1996) J. Biol. Chem. 271, 20631–20635
Aβ Assembly and Neuronal Deficits in hAPP Mice

71. Buckner, R. L., Snyder, A. Z., Shannon, B. J., LaRossa, G., Sachs, R., Fotenos, A. F., Sheline, Y. I., Klunk, W. E., Mathis, C. A., Morris, J. C., and Mintun, M. A. (2005) J. Neurosci. 25, 7709–7717
72. Mucke, L., Yu, G.-Q., McConlogue, L., Rockenstein, E. M., Abraham, C. R., and Masliah, E. (2000) Am. J. Pathol. 157, 2003–2010
73. Wyss-Coray, T., Lin, C., Yan, F., Yu, G.-Q., Rohde, M., McConlogue, L., Masliah, E., and Mucke, L. (2001) Nat. Med. 7, 612–618
74. Cherny, R. A., Atwood, C. S., Xilinas, M. E., Gray, D. N., Jones, W. D., McLean, C. A., Barnham, K. J., Volitakis, I., Fraser, F. W., Kim, Y. S., Huang, X. D., Goldstein, L. E., Moir, D. R., Lim, J. T., Beyreuther, K., Zheng, H., Tanzi, R. E., Masters, C. L., and Bush, A. I. (2001) Neuron 30, 665–676
75. Fagan, A. M., Watson, M., Parsadanian, M., Bales, K. R., Paul, S. M., and Holtzman, D. M. (2002) Neurobiol. Dis. 9, 305–318
76. DeMattos, R. B., Cirrito, J. R., Parsadanian, M., May, P. C., O’Dell, M. A., Taylor, J. W., Harmony, J. A. K., Aronow, B. J., Bales, K. R., Paul, S. M., and Holtzman, D. M. (2004) Neuron 41, 193–202