Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation

Sheng Zhou1*, Yanying Wei1*, Libo Li1*, Yifan Duan1, Qianqian Hou1, Lili Zhang1, Liang-Xin Ding1, Jian Xue1, Haihui Wang1†, Jürgen Caro2

Metal-organic framework (MOF) membranes show great promise for propene/propane separation, yet a sharp molecular sieving has not been achieved due to their inherent linker mobility. Here, zeolitic imidazolate framework ZIF-8-type membranes with suppressed linker mobility are prepared by a fast current–driven synthesis (FCDS) strategy within 20 min, showing sharpened molecular sieving for propene/propane separation with a separation factor above 300. During membrane synthesis, the direct current promotes the metal ions and ligands to assemble into inborn-distorted and stiffer frameworks with ZIF-8_Cm (a newly discovered polymorph of ZIF-8) accounting for 60 to 70% of the membrane composition. Molecular dynamics simulations further verify that ZIF-8_Cm is superior to ZIF-8_I 43m (the common cubic phase) for propene/propane separation. FCDS holds great potential to produce high-quality, ultrathin MOF membranes on a large scale.

INTRODUCTION
High-purity olefins are demanded for the production of bulk chemicals, such as polyethylene and polypropylene (PP). However, olefin purification from olefin/paraffin mixtures is one of the most energy-intensive processes in the industry, and innovative separations are needed (1). Separation of short-chain olefin/paraffin mixtures is currently dominated by cryogenic distillation, which consumes over 120 TBTu (Tera British thermal units) per year (2, 3). Commonly, a two-column–based system with more than 200 trays is required to extract high-purity propene [at least 99.5 weight % for polymer-grade specifications; (4)] for PP production. The columns usually range from 70 to 90 m in height and 2 to 6 m in diameter, working with a high reflux ratio of about 15 to 25 and a tray efficiency of 70 to 80%, which makes this process extremely energy expensive (5).

An urgent demand for energy-saving propene/propane (C3H6/C3H8) separation has, thus, spurred researchers to explore various alternatives, and the highly selective permeation based on the molecular sieving membranes seems to be a promising solution (6, 7). Metal-organic frameworks (MOFs) represent a tunable class of porous materials with window aperture size at the molecular scale (8, 9), which are prospective membrane materials (10, 11). One of the star individuals, zeolitic imidazolate framework ZIF-8, whose effective apertures (~4.0 to 4.2 Å) (12) fall between the critical diameters of C3H6 (~4.0 Å) and C3H8 (~4.2 Å) (13), is considered as an ideal candidate for C3H6/C3H8 separation by molecular sieving. However, the commonly prepared thin-layer ZIF-8 membranes do not perform very well, with moderate separation factors below or around 100 (14), limiting their application. This situation results mainly from two reasons: (i) the difficulties in controlling polycrystalline membrane microstructures, e.g., the grain boundary, which spoil the selectivity due to the nonselective intracrystalline diffusion (15); and (ii) the inherent lattice flexibility (features in soft materials whose linkers are rotatable), which permits larger molecules to permeate through intracrystalline diffusion and decreases the selectivity (16).

Often, the grain boundary of a supported thin-layer MOF membrane could be optimized by carefully manipulating and improving the preparation techniques. However, a further enhancement in selectivity is mainly limited by the intrinsic flexible structure of MOFs. Therefore, suppressing linker mobility is an important route to improve ZIF-8’s molecular sieving capability (9). A very recent study showed a structural transformation of ZIF-8 into polymorphs with more rigid lattices by applying an external electric field (17). The newly formed monoclinic Cm and trigonal R3m polymorphs exhibited stiffened networks with hindered linker movements, thus improving molecular sieving of different gas mixtures (17). However, about 1 hour after electrical switching off, the rigid ZIF-8_Cm phase disappeared, and the membranes relaxed back into the starting configuration. Recently, He et al. (18) used an electric field to support the nuclei to deposit onto the support, and then secondary growth was applied to get continuous ZIF-8 membranes, which did not obtain a rigid ZIF-8 polymorph.

Herein, we describe a fast 20-min non-autoclave preparation of ZIF-8 membranes with inborn-suppressed linker mobility by a fast current–driven synthesis (FCDS), where the ZIF-8 membrane is grown by a low direct current (0.7 mA/cm2). The current-driven synthesized ZIF-8 membrane consists of a mixture of three polymorphs with a majority of the polymorph ZIF-8_Cm and exhibits highly efficient C3H6/C3H8 separation performance with a separation factor above 300. Molecular dynamics (MD) simulations show that it is the polymorph ZIF-8_Cm with a stiffened lattice that causes the highly selective propene sieving. As shown in Fig. 1A, an electrochemical cell is designed for ZIF-8 membrane growth with a double function of the external direct current. (i) It promotes the deprotonation of the linker 2-methylimidazole (2-MIM) to the imidazole anion, thus boosting the in situ crystallization of ZIF-8 on the substrate. Simultaneously, Zn2+ cations are attracted. This leads to a fast membrane growth at room temperature, and just several minutes are enough for the entire continuous membrane layer to form, showing great scalability potential (Fig. 1, C to H). (ii) The external direct current forms a local in situ electric field (Fig. 1B) and causes inborn lattice distortion of the ZIF-8 lattice, as described in a recent report (17), during the assembly of the ZIF-8
framework. Therefore, membrane layers of distorted ZIF-8 polymorphs with rigid frameworks and long lifetime can be prepared, which are promising to sharpen molecular sieving capability (Fig. 1I).

RESULTS
The stepwise evolution of ZIF-8 layer formation on the anodic aluminum oxide (AAO; Fig. 1F) is recorded by scanning electron microscopy (SEM) images (Fig. 2 and fig. S1). With a small constant current density of 0.7 mA/cm², an initial precursor appears on the surface after ~5 min (fig. S1). The ultrathin precursor is translucent, and the AAO pore structure beneath is visible. However, the precursor does not fully cover the substrate. No crystallinity or specific chemical bonds are detected in this starting period, according to x-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy (fig. S1, K to M).

After an initial nucleation period, the typical crystallization process of MOF formation begins (19, 20). An entire ZIF-8 layer with a thickness of 105 nm is observed after ~8.5 min (fig. S1). The ultrathin precursor is translucent, and the AAO pore structure beneath is visible. However, the precursor does not fully cover the substrate. No crystallinity or specific chemical bonds are detected in this starting period, according to x-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy (fig. S1, K to M). After an initial nucleation period, the typical crystallization process of MOF formation begins (19, 20). An entire ZIF-8 layer with a thickness of 105 nm is observed after ~8.5 min (Fig. 2A). Once an entire layer is formed, the programmed constant current could not be maintained, and the current signal would drop down at the moment. Because ZIF-8 is nonconductive, the already-formed ZIF-8 membrane serves as an insulating layer to hinder further growth. Therefore, the drop in current is a signal that a complete membrane layer has been formed already (fig. S1). Nevertheless, the current—and thus the growth of the layer—does not stop completely (increasing thickness with time; Fig. 2), despite the growth rate slowing down (fig. S1N). Most probably, in the early stage of layer formation, the precursors could still penetrate through intrinsic defects, such as vacancies and dangling linkers (21), to keep contact with the conductive support surface, and self-annealing proceeds. But with longer FCDS time, membrane growth slows and finally stops, even though residual nutrients remain in the mother solution (both ligands and metal ions can be detected; fig. S2). The ZIF-8 layer grown for 20 min displays a thickness of approximately 200 nm (Fig. 2, D and H), which is much thinner than most other reported ZIF-8 membranes. Moreover, an elegant thin-film interference phenomenon is also observed (fig. S3A), agreeing well with the thickness shown in Fig. 2D (22). The deposited ZIF-8 film attains well to the supports, and it did not flake off even under an ultrasonic water bath treatment for 60 min. As shown in fig. S3 and movie S1, the thin-film interference still exists after ultrasonic treatment, and no visible cracking appears. The appearance of the membranes remained unchanged after strenuous shaking and even falling from a height of 1 m. This high durability of the membranes allowed us to handle and measure them easily.

The growth mechanism of FCDS is investigated by electrochemical methods. In principle, the deprotonation of the ligands is a vital step for the assembly of MOF crystals. Dincă and co-workers (23) proposed that during cathodic deposition, the existence of NO₃⁻ or other pro-bases in the solution is necessary to generate a base for the in situ deprotonation of the ligands. However, all previous cathodic deposition reports focused on carboxylate-based MOFs, and no azolate-based MOFs (such as ZIF-8) have been grown at the cathode before (24).

In our case, the matter is different, because Zn(CH₃COO)₂ instead of
Gas separation through a series of five ZIF-8 membranes with different FCDS times was measured by the Wicke-Kallenbach technique (fig. S5). Longer FCDS time results in higher \(C_3H_6/C_3H_8\) separation (see fig. S6). These three polymorphs of ZIF-8 are also observed when ZIF-8 is exposed to an external electric field (17). For the membrane grown for 20 min, more than 70% of the ZIF-8 crystals belong to the stiffer Cm phase, while the flexible I\(_{4}3\)m phase only accounts for less than 5% (Fig. 4A). The superior selectivity, \(S_{propene/propane}\) of ZIF-8\(_{\text{Cm}}\) to ZIF-8\(_{\text{I}_{4}3\text{m}}\) is confirmed by MD simulations based on both a single monolayer and a 200-nm-thick membrane of ZIF-8 (fig. S7, Fig. 4B, and tables S4 and S5). The mean root square deviation (RMSD) of the ZIF-8\(_{\text{Cm}}\) membrane in the MD simulations is about half of that of the ZIF-8\(_{\text{I}_{4}3\text{m}}\) membrane (fig. S7A), which indicates that the linker movements in ZIF-8\(_{\text{Cm}}\) are suppressed, agreeing with the recent report (17). Because of the suppressed linker movement of ZIF-8\(_{\text{Cm}}\), the passage rate of propene through the membrane decreases to about 31% of that through ZIF-8\(_{\text{I}_{4}3\text{m}}\), while a more drastic decrease to 8.7% of the original value is observed for propane. The decrease of passage rate is consistent with the moderate permeances of the membranes. However, this asynchronism of rate changes leads to a considerably enhanced \(C_3H_6/C_3H_8\) selectivity of ZIF-8\(_{\text{Cm}}\) (~530), which is much higher than that of ZIF-8\(_{\text{I}_{4}3\text{m}}\) (~150). The ZIF-8 membranes synthesized in our work consist of ~70% ZIF-8\(_{\text{Cm}}\); thus, the ideal selectivity could be roughly estimated to be ~370 (530 \(\times\) 70%) according to the MD simulation results, which is slightly higher than the experimental value of 305.

The benefits of suppressed linker mobility in ZIF-8\(_{\text{Cm}}\)–dominated membranes are reflected by the separation performance of membranes grown for different times (Fig. 3A), such as 8.5, 12.5, 16.5, 25, and 30 min. In all these current-driven synthesized membranes, the ZIF-8\(_{\text{Cm}}\) phase dominates with a share of 60 to 70% (fig. S6). For extended FCDS time (from 8.5 to 30 min), the separation factor increases steadily from 128 to above 300, while the permeance slightly decreases. All separation factors are superior to literature data, which proves that ZIF-8\(_{\text{Cm}}\)–dominated membranes are better candidates for propene purification. For a better comparison, we also prepared ZIF-8 membranes by traditional solvothermal growth, which were dominated by the ZIF-8\(_{\text{I}_{4}3\text{m}}\) phase (fig. S6G). However, the propene/propane separation factor is only around 7 (fig. S5G), similar to the recent report (17).

Moreover, the increase of the separation factor with increasing FCDS time is attributed to the current-driven mending of intrinsic defects and grain boundary structure. The evidence can be found from laser scanning confocal microscopy (LSCM) images of membranes prepared for different FCDS times (Fig. 4). Extending the preparation time from 5 to 7 min, fewer and fewer probe molecules (CdTe quantum dots) could be detected in the permeate surface of membranes, showing abatement of intercrystalline defects with time. After 8.5 min of FCDS, no intercrystalline defects could be detected (fig. S8), which demonstrates that the membrane quality is self-reinforced during membrane evolution. Simultaneously, extended growth results in a higher framework density at the grain boundary region with larger mass transfer resistance.
Fig. 3. Membrane separation performance. (A) Binary C₃H₆/C₃H₈ separation performance of the ZIF-8 membranes as a function of growth time at room temperature. (B) Comparison of the C₃H₆/C₃H₈ separation performance of FCDS ZIF-8 membranes with literature data. Information on the data points is given in table S3. (C) Binary C₃H₆/C₃H₈ separation performances of the ZIF-8 membrane (grown for 20 min) as a function of temperature. The rectangular orange area shows the separation performance after cooling to 25°C from 150°C. (D) Long-term stability of the ZIF-8 membrane (grown for 20 min) for C₃H₆/C₃H₈ separation at room temperature and 1 bar.

Fig. 4. XRD Rietveld refinement and MD simulations results. (A) Rietveld refinement of the XRD results of FCDS ZIF-8 membranes grown for 20 min. [Rwp (weighted profile R factor), 3.30%; Rexp (expected profile R factor), 1.74%; GoF (goodness of fit), 1.90]. The results show that the main phase in the as-synthesized membranes is ZIF-8-Cm, so the membrane separation performance is mainly determined by ZIF-8-Cm. a.u., arbitrary unit. (B) MD simulations of a propene/propane molecule passing through a ZIF-8-I₄3m or ZIF-8-Cm membrane with a thickness (along the z axis) of 200 nm, respectively. The passage rate (the inverse of passage time, averaged from five independent MD simulations in table S5) of both propene and propane through the ZIF-8-Cm membrane is slower than that through the ZIF-8-I₄3m membrane. This decrement is less significant for propene, leading to a considerably enhanced selectivity of propene over propane (increased from ~150 to ~530).
as previously reported in both zeolite (26) and MOF membranes (27, 28).
Thus, the permeances of both C₃H₆ and C₃H₈ decrease with time, even though the thickness does not considerably increase. Moreover, the permeance of C₃H₆ decreases slightly with increasing feed pressure (1.0 to 1.4 atm; fig. S5E), which is in accordance with the literature (15). The selectivity shows negligible changes, indicating lack of defects and suppressed flexibility. The C₃H₆ permeance decreases with increasing temperature (measured from 25°C to 150°C), while the C₃H₈ permeance slightly increases, leading to a decreased separation factor (Fig. 3C). This trend is analogous to common ZIF-8 membranes for C₃H₆/C₃H₈ separation, as the gas permeation through membranes is an activated process composed of molecular adsorption and diffusion (29).
Considering the difference of the apparent activation energy of the gas permeation between C₃H₆ and C₃H₈ (fig. S5F), this trend is quite reasonable. Rietveld refinement of XRD results shows that the ZIF-8_Cm phase still accounts for ~70% of membrane composition after heating at 150°C for 24 hours, and the separation performance can totally turn back after cooling to room temperature (fig. S6F and Fig. 3C). This means that a higher temperature does not cause relaxation, and the ZIF-8_Cm polymorph is temperature stable, at least up to 150°C. In addition, the ZIF-8 membrane also exhibits good stability over a 170-hour long-term C₃H₆/C₃H₈ separation experiment (Fig. 3D), indicating the high quality of the membrane and the long lifetime of ZIF-8_Cm. It should be noted that, different from the previous work (17), the ZIF-8_Cm polymorph obtained by inborn distortion in this work will not turn to ZIF-8_I₄₁₃m, because it is the parent form and any further change of the original configuration needs extra energy.

Besides (i) perfect defect-free growth and (ii) growing the polymorph with rigid lattice and molecular sieve property, FCDS holds great promise for a scale up. In contrast to the conventional solvothermal growth, which requires autoclaves because of relatively high temperature, high pressure, and long reaction time, the straightforward one-step and mild FCDS strategy exhibits an ultrafast route for membrane preparation at ambient conditions (fig. S9), which is beneficial for reducing the cost and energy consumption with improved productivity and safety. Moreover, the generality of the FCDS for ZIF-8 membranes on different conducting substrates has also been verified, proven for stainless steel nets, nickel foam, and porous stainless steel discs with ZIF-8_Cm polymorph still dominating the membrane composition (fig. S10), which makes the FCDS strategy more industrially applicable and flexible.

In summary, a ZIF-8 layer with inborn-suppressed linker mobility has been synthesized successfully by an electrochemical method named “fast current driven synthesis” (FCDS), leading to sharpened molecular sieving capability for C₃H₆/C₃H₈ separation. The XRD Rietveld refinement results reveal that approximately 60 to 70% of the current-driven synthesized ZIF-8 belongs to the ZIF-8_Cm polymorph, whose framework structure is stiffer than that of the common ZIF-8_I₄₁₃m phase. The benefits of the suppressed linker mobility in ZIF-8_Cm for C₃H₆/C₃H₈ separation are proven by both mixed-gas permeation experiments and MD simulations, where ZIF-8_Cm–dominated membranes exhibit a highly enhanced C₃H₆/C₃H₈ separation factor above 300. Moreover, stepwise evolution of membranes with FCDS time demonstrates the self-reinforced process during membrane growth using the FCDS route. This strategy is not only facile, mild, and straightforward but also a general tool for the large-scale production of high-quality MOF membranes for gas separation.

DISCUSSION
Here, we prepared FCDS membranes on planar conducting supports such as metal-coated AAO, stainless steel nets, Ni foam, and porous stainless steel discs. For industrial applications, the permeance, in particular, must be improved. Increasing the effective membrane area per volume will be one route to increase the yield of the target product, and fabricating hollow fiber membranes may be an effective approach. FCDS can be applied to conductive hollow fiber supports, as shown in fig. S10J. The ZIF-8 layer could be controlled to grow either on the inner surface or on the outer surface by simply tuning the location of the conductive surface. Of course, it will be a challenging task to develop a cheap conductive hollow fiber from conducting polymers or ceramics. Conductive TiO₂ or mixed matrices of ceramic powder and metal powder could also be used.

MATERIALS AND METHODS
Materials
Zinc acetate dehydrate (>99.99%, Aladdin), 2-MIM (>99%, Aladdin), methanol (Guangzhou Donghong Chemical Reagent Co. Ltd.), tetrabutylammonium hexafluorophosphate [(NBu₄)PF₆; >99.99%, Aladdin], zinc monosodium salt (Sino Chemical Co. Ltd.), and porous AAO (diameter, 18 mm; pore diameter, 70 nm; Pu-Yuan Nanotechnology Limited Company) were used in this study. Asymmetric ceramic support discs (α-Al₂O₃ support with 70-nm grains in the top layer) with a diameter of 18 mm were purchased from IKTS (Fraunhofer Institute for Ceramic Technologies and Systems) Hermsdorf. An HDV-7C potentiostat from Fujian Changli Electronic Co. Ltd was used.

Methods
Preparation of the 2-MIM solution
First, 0.41 g of 2-MIM was dissolved in 50 ml of methanol and then treated by ultrasonication to dissolve all the chemicals. The electrical conductivity of this solution was measured by a conductivity meter at room temperature.
Preparation of the (NBu₄)PF₆ solution with the same electrical conductivity as the 2-MIM solution
First, 50 ml of methanol was poured into a flask containing the probe of the conductivity meter. Then, (NBu₄)PF₆ powder was added into the solution with gentle shaking until the electrical conductivity reached that of the 2-MIM solution.
Preparation of mother solution for synthesis of ZIF-8 membranes
A solid mixture of zinc salts (0.55 g of zinc acetate) and 0.41 g of 2-MIM was dissolved in 50 ml of methanol and then treated by ultrasonication to dissolve all the chemicals. The molar ratio of 2-MIM/Zn²⁺ in this system was 2:1. The mixed solution was treated by ultrasonication to dissolve all the chemicals.
Preparation of ultrathin ZIF-8 membranes by FCDS
An AAO disc with a Pt coating was immersed into the mother solution prepared as stated above. A current density of ~0.7 mA cm⁻² was conducted for a certain period at room temperature to generate the ultrathin ZIF-8 membranes before the membranes were taken out and dried at room temperature.
Preparation of ultrathin ZIF-8 layers by FCDS on stainless steel nets, Ni foam, and porous stainless steel discs
The substrates (stainless steel nets, Ni foam, or porous stainless steel discs) were first cleaned with diluted HCl solution and ethanol and then were immersed the mother solution prepared as stated above. A current density of ~0.7 mA cm⁻² was conducted for a certain period at room temperature to generate the ultrathin ZIF-8 membranes before the membranes were taken out and dried at room temperature.
was applied for 20 min at room temperature with a density of −0.7 mA cm⁻² to generate ultrathin ZIF-8 layers before they were taken out and dried at room temperature.

Preparation of ZIF-8 membranes by solvothermal growth

The growth method reported in (17) was adopted. First, the support of Al₂O₃ was soaked for 1 hour in a solution containing 0.982 g of ZnCl₂, 2.142 g of Zn(NO₃)₂·6H₂O, and 26.6 ml of MeOH. Afterward, the support was transferred into a PTFE (polytetrafluoroethylene) holder and set vertically in a PTFE-lined autoclave containing 0.509 g of sodium formate, 5.19 g of 2-MIM, and 40 ml of MeOH. The reaction mixture was heated to 120°C and held at that temperature for 8 hours.

Characterization

XRD patterns were recorded at room temperature under ambient conditions with a Bruker D8 Advance diffractometer with Cu Kα radiation at 40 kV and 40 mA. To get enough intensity for Rietveld refinement, the samples were scanned at 75 s per step, where normal scanning was at 15 s per step. Calculations on the XRD patterns were performed with TOPAS 4.1 using equipment-specific correction parameters. An xz profile function was used to fit the peak shapes. FTIR patterns were recorded with a Bruker VERTEX 70 spectrometer. Ultraviolet-visible spectroscopy was characterized using a SHIMADZU UV-2450. The morphologies and cross sections of the membranes were observed by SEM using a HITACHI SU8200. The electrical conductivity was measured at room temperature with a conductivity meter produced by CH Instruments Inc. (CHI 760E). The LSCM images and LSV were characterized using an electrochemical workstation produced by INESA Scientific Instrument Co. Ltd. (DDS-307A). CV activity was measured at room temperature with a conductivity meter produced by CH Instruments Inc. (CHI 760E). The LSCM images were characterized by Leica TCS SP8.

LSCM measurements on ZIF-8 membranes for different growth times were conducted to detect the intercrystalline defects according to the literature (15, 30). The membranes were mounted on homemade permeance cells. The membrane side was contacted to pure methanol, while the support side was saturated with the methanol solution containing CdTe quantum dots (~2.8 nm; supplied by homemade permeance cells. The membrane side was contacted to pure methanol, while the support side was saturated with the methanol solution containing CdTe quantum dots (~2.8 nm; supplied by Nanjing beri Instrument Equipment Co. Ltd.) for a period of 60 hours. Then, the solutions in both sides were poured out, and the membranes were removed, washed with copious amount of fresh methanol, dried by blowing N₂ gas, and kept at room temperature for 12 hours before the characterization.

Gas permeation test

For a single-gas permeation measurement, the prepared MOF membrane was fixed in a module sealed with O-rings. A volumetric flow rate of 25 ml min⁻¹ gas was applied to the feed side of the membrane, and the permeate gas was removed from the permeate side by the sweep gas. Pressures at both the feed side and the permeate side were maintained at 1 bar. N₂ was used as the sweep gas. A calibrated gas chromatograph was used to measure the concentration of each gas on the permeate side. The separation factor, αᵢ,ⱼ, of the gas pairs is defined as the quotient of the molar ratios of the components (i, j) in the permeate side, divided by the quotient of the molar ratios of the components (i, j) in the feed side

\[αᵢ,ⱼ = \frac{Xᵢ,perm/Xⱼ,perm}{Xᵢ,feed/Xⱼ,feed} \]

MD simulation method

First, the simulation system consisted of a single monolayer ZIF-8 nanosheet and a gas molecule. ZIF-8 was modeled by force field parameters developed by Economou and co-workers (13, 31), while gas molecules were modeled by the united atom Trappe force field (32, 33). The crystal structures of ZIF-8 were taken from the recent publication (17). The periodic boundary condition (PBC) was applied to the xy direction of the system (the membrane plane), and the wall condition was applied to the z direction (vertical to the membrane plane). In the beginning, a gas molecule was put near the ZIF-8 nanosheet. The system was subjected to a 500-step steepest-descent energy minimization, and then an NVT (constant particle number, volume, and temperature) simulation was performed (leapfrog algorithm with a time step of 1 fs). The ZIF-8 nanosheet was flexible during the NVT simulation. The Nose-Hoover thermostat (34) was used to maintain a constant simulation temperature of 298.2 K. The short-range interactions were evaluated using a neighbor list of 10 Å that was updated every 10 steps, and the Lennard-Jones interactions were switched off smoothly between 8 and 9 Å. A long-range analytical dispersion correction was applied to the energy to account for the truncation of these interactions (35). The electrostatic interactions were evaluated using the reaction field method (36). In a normal NVT simulation where no pulling force was applied to the gas molecule, it could not pass the membrane even though the simulation time was extended to 500 ns. This is quite expected, since the size of gas molecules (propane, ~0.42 nm; propene, ~0.40 nm) was considerably larger than the window size of ZIF-8 (0.34 nm, with the flexibility of ZIF-8 taken into account). Thus, we applied a constant force of 50 kJ/(mol nm) to the gas molecule during the following NVT simulations, where the gas molecule passed through the membrane during a time course ranging from 0.1 to 50 ns, which depends on the specific gas molecule and the ZIF-8 phase. As for each specific gas molecule (propane or propene) + ZIF-8 phase (143m or Cm) membrane system, the simulation was repeated five times, and the average time it took the gas molecule to pass through the membrane was reported (table S4). The permeability was defined calculated from the relation between the permeance of components i and j.

\[Sᵢ,ⱼ = \frac{Pᵢ}{Pⱼ} \]
as the reciprocal of the time course, and the selectivity was defined as the ratio of permeability between propane and propene.

\[S_{\text{propene/propane}} = \frac{P_{\text{propene}}}{P_{\text{propene}}} \]

To better mimic the experiments, the other set of simulations were also performed, where a propane/propene molecule moved in bulk ZIF-8 membrane (143m or Cm phase) (PBWC was applied to all xyz directions). A constant force of 100 kJ/(mol nm) was exerted to the gas molecule, and the time course it took to move 200 nm along the membrane thickness direction (z) was recorded (table S5).

The bulk modulus of the single monolayer and 200-nm-thick membrane was calculated from the fluctuation of the membrane volume

\[K_{\text{bulk}} = k_B TV/\sigma_V^2 \]

where \(K_{\text{bulk}} \) is the bulk modulus, \(V \) is the volume of the membrane, \(k_B \) is Boltzmann’s constant, \(T \) is the temperature, and \(\sigma_V^2 \) is the variance of the volume.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/4/10/eaaui393/DC1

Fig. S1. SEM images and XRD and FTIR results and change of membrane thickness with time.

Fig. S2. Detection of the remaining metal ions and ligands in the spent growth solution.

Fig. S3. Illustration of thin film interference and the excellent durability of ZIF-8 membranes.

Fig. S4. Electrochemical characterization of growth mechanism.

Fig. S5. Gas permeation setup and properties.

Fig. S6. Detailed results of MD simulations of gas passing through 200-nm-thick membranes.

Table S5. Detailed results of MD simulations of gas passing through 200-nm-thick membranes.

REFERENCES AND NOTES

1. D. S. Sholl, R. P. Lively, Seven chemical separations: To change the world: Purifying mixtures without using heat would lower global energy use, emissions and pollution—And open up new routes to resources. *Nature* 532, 435–438 (2016).

2. S. Robinson, R. Jubin, B. Choate, Materials for Separation Technology: Energy and Emission Reduction Opportunities. *Washington DC: US Dept. of Energy.* (2005).

3. J. E. Bachman, Z. P. Smith, T. Li, T. Xu, J. R. Long, Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. *Nat. Mater.* 15, 845–849 (2016).

4. A. Cadiou, K. Addi, P. Bhatt, Y. Belmahkout, M. Eddaudoudi, A metal-organic framework–based splitter for separating propylene from propane. *Science* 353, 137–140 (2016).

5. F. A. Da Silva, A. E. Rodrigues, Propylene/propane separation by vacuum swing adsorption using 13X zeolite. *AIChE J.* 47, 341–357 (2001).

6. K. Varoon, X. Zhang, B. Elyassi, D. D. Brewer, M. Gettel, S. Kumar, J. A. Lee, S. Maheshwari, A. Mittal, C.-Y. Sung, M. Cococcioni, L. F. Francis, A. V. McCromick, K. A. Mhoyan, M. Tsapatsis, Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. *Science* 334, 72–75 (2011).

7. M. Y. Jeon, D. Kim, P. Kumar, S. A. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H. S. Lee, K. Naraismharao, S. N. Basahel, S. Al-Thabaiti, W. Xu, H. J. Cho, E. O. Fetisov, R. Thiyagarajan, R. F. Dejaco, W. Fan, K. A. Mhoyan, J. I. Siepmann, M. Tsapatsis, Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. *Nature* 543, 690–694 (2017).

8. H. Furukawa, K. E. O’Keeffe, M. O’Keeffe, M. Y. Argibay, The chemistry and applications of metal-organic frameworks. *Science* 328, 1204444 (2010).

9. C. Zhang, W. J. Koros, Zeolitic imidazolate framework-enabled membranes: Challenges and opportunities. *J. Phys. Chem. Lett.* 6, 3841–3849 (2015).

10. J. Gascon, F. Kapejin, Metal-organic-framework membranes—High potential, bright future? *Angew. Chem. Int. Ed.* 49, 1530–1532 (2010).

11. T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapejin, F. X. Llabrés I Xamena, J. Gascon, Metal–organic framework nanosheets in polymer composite materials for gas separation. *Nat. Mater.* 14, 48–55 (2015).

12. C. Zhang, R. P. Lively, K. Zhang, J. R. Johnson, O. Karvan, W. J. Koros, Unexpected molecular sieving properties of zeolitic imidazolate framework-8. *J. Phys. Chem. C* 119, 27028–27037 (2015).

13. M. J. Lee, H. T. Kwon, H.-K. Jeong, High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange. *Angew. Chem. Int. Ed.* 57, 156–161 (2018).

14. L. Sheng, C. Wang, F. Yang, L. Xiang, X. Huang, J. Yu, L. Zhang, Y. Pan, Y. Li, Enhanced C3H6/C3H8 separation performance on MOF membranes through blocking defects and hindering framework flexibility by silicone rubber coating. *Chem. Commun.* 53, 7760–7763 (2017).

15. L. Diestel, H. Bux, D. Wachsmuth, J. Caro, Pervaporation studies of n-hexane, benzene, mesitylene and their mixtures on zeolitic imidazolate framework-8 membranes. *Microporous Mesoporous Mater.* 164, 288–293 (2012).

16. A. Knebel, B. Geppert, K. Volgmann, D. Kolokolov, A. Stepanov, J. Twiefel, P. Heitjans, D. Volkmer, J. Caro, Defibrillation of soft porous metal-organic frameworks with electric fields. *Science* 358, 347–351 (2017).

17. G. He, M. Dalkchhouné, J. Zhao, S. Huang, K. V. Agraoul, Electrophoretic nuclei assembly for crystallization of high-performance membranes on unmodified supports. *Adv. Funct. Mater.* 28, 1707427 (2018).

18. B. Seoane, J. M. Zaragoza, C. Teller, J. Coronas, Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20). *CrystEngComm* 14, 3103–3107 (2012).

19. E. Hauke, N. A. Khan, J. H. Park, S. H. Jhung, Synthesis of a metal–organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: A kinetic study. *Chemistry* 16, 1046–1052 (2010).

20. C. Zhang, C. Han, D. S. Sholl, J. R. Schmidt, Computational characterization of defects in metal–organic frameworks: Spontaneous and water-induced point defects in ZIF-8. *J. Phys. Chem. Lett.* 7, 459–464 (2016).

21. E. Baranakova, X. Tan, L. F. Villalobos, E. Litwiller, K.-V. Peinemann, A metal chelating porous polymeric support: The missing link for a defect-free metal–organic framework composite membrane. *Angew. Chem. Int. Ed.* 56, 2965–2968 (2017).

22. M. Li, M. Dinca, Reductive electrolysytion of crystalline metal-organic frameworks. *J. Am. Chem. Soc.* 133, 12926–12929 (2011).

23. W.-J. Li, M. Tu, R. Cao, R. A. Fischer, Metal–organic framework thin films: Electrochemical fabrication techniques and corresponding applications & perspectives. *J. Mater. Chem. A* 4, 12356–12369 (2016).

24. F. SciFinder, Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 © (1994–2012 ACD/Labs).

25. D. A. Newcombe, D. S. Sholl, Molecular dynamics simulations of mass transfer resistance in grain boundaries of twinned zeolite membranes. *J. Phys. Chem. B* 120, 22681–22689 (2006).

26. Y. Liu, Y. Peng, N. Wang, Y. Li, J. H. Pan, W. Yang, J. Caro, Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors. *ChemSusChem* 8, 3582–3586 (2015).

27. O. Sheikah, S. Swaidan, Y. Belmahkout, M. du Plessis, T. Jacobs, L. J. Barbour, I. Pinnau, M. Eddoudou, The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: Pure and mixed gas transport study. *Chem. Commun.* 50, 2089–2092 (2014).

28. W. J. W. Bakker, L. J. P. Van Den Broeke, F. Kapejin, A. J. Moulijn, Temperature dependence of one-component permeation through a silicate-1 membrane. *AIChE J.* 43, 2203–2214 (1997).
30. T. C. T. Pham, T. H. Nguyen, K. B. Yoon, Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation. Angew. Chem. Int. Ed. 52, 8693–8698 (2013).

31. P. Krolikas, M. Castier, I. G. Economou, Computational study of ZIF-8 and ZIF-67 performance for separation of gas mixtures. J. Phys. Chem. C 121, 17999–18011 (2017).

32. M. G. Martin, J. I. Siepmann, Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B 102, 2569–2577 (1998).

33. C. D. Wick, M. G. Martin, J. I. Siepmann, Transferable potentials for phase equilibria. 4. United-atom description of linear and branched alkenes and alkylbenzenes. J. Phys. Chem. B 104, 8008–8016 (2000).

34. S. E. Feller, Y. Zhang, R. W. Pastor, B. R. Brooks, Constant pressure molecular dynamics simulation: The Langevin piston method. J. Chem. Phys. 103, 4613–4621 (1995).

35. L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang, J. Xue, L.-X. Ding, S. Wang, J. Caro, Y. Gogotsi, MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9, 155 (2018).

36. I. G. Tironi, R. Sperb, P. E. Smith, W. F. van Gunsteren, A generalized reaction field method for molecular dynamics simulations. J. Chem. Phys. 102, 5451–5459 (1995).

37. N. Har, M. Yoshimune, H. Negishi, K. Haraya, S. Har, T. Yamaguchi, Diffusive separation of propylene/propane with ZIF-8 membranes. J. Membr. Sci. 450, 215–223 (2014).

38. Q. Liu, N. Wang, J. Caro, A. Huang, Bio-inspired polydopamine: A versatile and powerful platform for covalent synthesis of molecular sieve membranes. J. Am. Chem. Soc. 135, 17679–17682 (2013).

39. F. Hillman, J. M. Zimmerman, S.-M. Paek, M. R. A. Hamid, W. T. Lim, H.-K. Jeong, Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers. J. Mater. Chem. A 5, 6090–6099 (2017).

40. D. Liu, X. Ma, H. Xi, Y. S. Lin, Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes. J. Membr. Sci. 451, 85–93 (2014).

41. Y. Pan, T. Li, G. Lestari, Z. Lai, Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. J. Membr. Sci. 390–391, 93–98 (2012).

42. J. Yu, Y. Pan, C. Wang, Z. Lai, ZIF-8 membranes with improved reproducibility fabricated from sputter-coated ZnO/alumina supports. Chem. Eng. Sci. 141, 119–124 (2016).

43. J. A. Brown, N. A. Brunelli, K. Eum, F. Rashidi, J. R. Johnson, W. J. Koros, C. W. Jones, S. Nair, Preparation and the suppression of plasticization in propane/propylene environments. J. Membr. Sci. 147, 131–139 (1998).

44. S. Bai, S. Sridhar, A. A. Khan, Metal-ion mediated separation of propylene from propane using PPO membranes. J. Membr. Sci. 147, 131–139 (1998).

45. S. Sridhar, A. Khan, Simulation studies for the separation of propylene and propane by ethylcellulose membrane. J. Membr. Sci. 159, 209–219 (1999).

46. H. T. Kwon, H.-K. Jeong, Olefin/propane separation with carbonaceous membrane derived from poly (aryl ether ketone)/2,6-bis (4-azidobenzylidene)-4-methyl-cyclohexanone interpenetrating network. Carbon 47, 1857–1866 (2009).

47. E. Shamsaei, X. Lin, L. Wan, Y. Tong, H. Wang, A one-dimensional material as a nano-scaffold and a pseudo-seed for facilitated growth of ultrathin, mechanically reinforced molecular sieving membranes. Chem. Commun. 52, 13764–13767 (2016).

48. E. Shamsaei, X. Lin, Z.-X. Lou, Z. Abbasi, Y. Hu, J. Z. Liu, H. Wang, Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate. ACS Appl. Mater. Interfaces 8, 6236–6244 (2016).

49. J. J. Krol, M. Boertriger, G. H. Koops, Polymide hollow fiber gas separation membranes: Preparation and the suppression of plasticization in propane/propane environments. J. Membr. Sci. 184, 275–286 (2001).

50. S. Bai, S. Sridhar, A. A. Khan, Metal-ion mediated separation of propylene from propane using PPO membranes. J. Membr. Sci. 147, 131–139 (1998).
Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation
Sheng Zhou, Yanying Wei, Libo Li, Yifan Duan, Qianqian Hou, Lili Zhang, Liang-Xin Ding, Jian Xue, Haihui Wang and Jürgen Caro

Sci Adv 4 (10), eaau1393.
DOI: 10.1126/sciadv.aau1393