Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper #

Mohd H. Abdul-Aziz, Jan-Willem C. Alffenaar, Matteo Bassetti, Hendrik Bracht, George Dimopoulos, Deborah Marriott, Michael N. Neely, Jose-Artur Paiva, Federico Pea, Fredrik Sjovall, Jean F. Timsit, Andrew A. Udy, Sebastian G. Wicha, Markus Zeitlinger, Jan J. De Waele, Jason A. Roberts on behalf of the Infection Section of European Society of Intensive Care Medicine (ESICM), Pharmacokinetic/Pharmacodynamic and Critically Ill Patient Study Groups of European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Group of International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT) and Infections in the ICU and Sepsis Working Group of International Society of Antimicrobial Chemotherapy (ISAC)

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Purpose: This Position Paper aims to review and discuss the available data on therapeutic drug monitoring (TDM) of antibacterials, antifungals and antivirals in critically ill adult patients in the intensive care unit (ICU). This Position Paper also provides a practical guide on how TDM can be applied in routine clinical practice to improve therapeutic outcomes in critically ill adult patients.

Methods: Literature review and analysis were performed by Panel Members nominated by the endorsing organisations, European Society of Intensive Care Medicine (ESICM), Pharmacokinetic/Pharmacodynamic and Critically Ill Patient Study Groups of European Society of Clinical Microbiology and Infectious Diseases (ESCMID), International Association for Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT) and International Society of Antimicrobial Chemotherapy (ISAC). Panel members made recommendations for whether TDM should be applied clinically for different antimicrobials/classes.

Results: TDM-guided dosing has been shown to be clinically beneficial for aminoglycosides, voriconazole and ribavirin. For most common antibiotics and antifungals in the ICU, a clear therapeutic range has been established, and for these agents, routine TDM in critically ill patients appears meritorious. For the antivirals, research is needed to identify therapeutic targets and determine whether antiviral TDM is indeed meritorious in this patient population. The Panel...
Introduction

Despite numerous therapeutic innovations, infection-related mortality in critically ill patients persists as a significant healthcare concern. Given the corresponding high burden of infection, it is unsurprising that the consumption of antimicrobial agents (antibacterials, antifungals and antivirals) in the intensive care unit (ICU) is ten times higher than in other wards [1]. It is essential to optimise the use of antimicrobial agents not only to maximise therapeutic success but also to prolong the clinical lifespan of these currently available drugs by limiting the emergence of resistance [2]. However, the process of optimising antimicrobial therapy (including both spectrum and therapeutic exposure) is a massive challenge in ICU patients, who often manifest extreme inter- and intra-individual pharmacokinetic (PK) variability [3]. It follows that conventional antimicrobial dosing may risk clinical failure in this patient population as most dose-finding studies only included non-ICU populations. Indeed, perhaps more than in any other patient population, non-optimised antimicrobial dosing may more commonly lead to low drug exposure and therapeutic failure and/or antimicrobial resistance [4], or high drug exposure, leading to an increased risk of toxicity.

With an expanding knowledge on the relationships between antimicrobial dosing, pharmacokinetic/pharmacodynamic (PK/PD) exposure and patient outcomes, there is now a strong rationale to individualise antimicrobial dosing in critically ill patients with the aid of therapeutic drug monitoring (TDM). Traditionally, TDM was only employed to minimise the likelihood of toxicity in drugs with narrow therapeutic indices (e.g. aminoglycosides and vancomycin) and in drugs with complex pharmacokinetics (e.g. voriconazole) and has been hitherto underused for other antimicrobials. However, the recent surge in multidrug-resistant pathogens causing infections, combined with a declining antimicrobial pipeline, is causing a need to revise this approach. TDM of antimicrobials, even for those with a wide therapeutic index, is becoming more common [5, 6], whilst TDM for the “traditional” drugs, such as aminoglycosides and glycopeptides, is continually being studied for further improvement.

Conclusion: Although TDM should be the standard of care for most antimicrobials in every ICU, important barriers need to be addressed before routine TDM can be widely employed worldwide.

Keywords: Antibacterials, Antifungals, Antivirals, Pharmacokinetics, Pharmacodynamics, Sepsis
critically ill adult patients were reviewed and included in the analysis.

Process overview
The Panel members held face-to-face meetings and teleconferences to formulate the structure and content of this Position Paper. Members were divided into groups consisting of a lead author and co-authors for each section. Each group was tasked to review the literature, evaluate the available data and summarise their findings in a draft document addressing whether TDM is indicated for a particular antimicrobial/antimicrobial class in critically ill patients. All members reviewed the full draft document, and discrepancies were discussed and resolved by consensus.

Panel consensus for use of TDM
A seven-point Likert scale (1 = strongly disagree, 2 = disagree, 3 = somewhat disagree, 4 = neutral, 5 = somewhat agree, 6 = agree and 7 = strongly agree) was used to score the recommendation of the Panel for performing TDM for each antimicrobial/antimicrobial class in critically ill patients. Consensus was achieved when the sum of 1 and 2 (negative consensus) or 6 and 7 (positive consensus) was ≥ 75%.

Pharmacokinetic and pharmacodynamic issues in critically ill patients
Pharmacokinetic changes
Critically ill patients are those patients whose conditions are life-threatening and require specialised care in the ICU. Such patients require intensive monitoring and treatment due to failure of vital organ functions (due to acute and/or chronic disease) or due to the sequelae of surgical or other intensive treatment associated with life-threatening conditions. Critical illness is characterised by marked homoeostatic changes, driven by both the underlying disease process and the interventions required. These features profoundly affect organ function, resulting in a pathophysiological state that is not encountered in an ambulatory setting. Moreover, the presence of chronic comorbidity can further exacerbate the pathophysiological changes commonly encountered during critical illness. All of these factors will significantly influence antimicrobial PK in the critically ill and can be broadly considered in terms of altered volume of distribution (Vd) and drug clearance (CL).

Altered volume of distribution
Endothelial dysfunction is common in critical illness and is characterised by expansion of the interstitial space through “capillary leakage”. This is closely linked to the severity of the underlying disease process and the degree of systemic inflammation. Sepsis and major burn injury are classic examples. This is then further exacerbated by intravenous (IV) fluid loading, a near-ubiquitous intervention in the ICU. For hydrophilic antimicrobials (e.g. acyclovir, aminoglycosides, beta-lactams, daptomycin, fluconazole and glycopeptides), this can result in a significantly expanded Vd [7]. Changes in protein binding associated with hypoalbuminaemia will also potentially influence antimicrobial PK [8]. Indeed, hypoalbuminaemia is commonly encountered (as a negative acute phase reactant), resulting in an increase in the Vd for highly protein-bound antimicrobials, such as ceftriaxone, daptomycin, ertapenem, flucloxacillin and teicoplanin [8]. In these scenarios, the free (or unbound) fraction is increased, resulting in both greater distribution and potentially CL. Finally, extremes of body size and composition (typically obesity) will also influence Vd, although the magnitude of any such change will depend on the physicochemical properties of the antimicrobial (e.g. molecular weight, lipid solubility and degree of ionisation) [9].

Altered drug clearance
Many commonly prescribed antimicrobials are principally cleared by renal elimination. In this context, critical illness can have a profound impact on renal function and therefore drug CL. Augmented renal clearance (ARC) is being increasingly noted in critically ill sub-populations (incidence of 14–80%) [10]. ARC is defined as an increased creatinine clearance > 130 mL/min/1.73 m² measured by 8–24-h urine collection and refers to the enhanced renal elimination of circulating solute (such as metabolic waste and drugs) [11]. The underlying mechanisms are uncertain, although increased solute delivery related to a hyperdynamic high cardiac output state, in combination with tubular and/or neuroendocrine changes, is likely implicated [10]. Identifying patients with ARC is challenging as these patients may have elevated renal function despite normal serum creatinine concentrations [12], and importantly, commonly used glomerular filtration rate mathematical estimates, such as the Cockcroft–Gault and Modified Diet in Renal Disease equations, are unlikely to be reliable as compared to urinary creatinine clearance data [13]. Younger patients with multiple trauma are at the highest risk [12], but ARC has also been described in other patient categories. Moreover, the presence of ARC has been associated with sub-optimal plasma antimicrobial concentrations [11], although the implications in terms of clinical outcomes remain unclear [14].

In contrast, many critically ill patients will develop acute kidney injury, requiring the use of renal replacement therapy (RRT). In the acute setting, continuous veno-venous techniques are most frequently used, with
variable fractions of filtration and/or dialysis. Factors such as molecular weight, protein binding, hydrophilicity, mode of RRT, filter porosity, surface area, blood flow rate and total effluent rate will all influence extracorporeal drug handling [15]. Given the heterogeneity in clinical practice and pathophysiology, antimicrobial dosing is generally empiric, resulting in substantial intra- and inter-patient variability in drug concentrations [16]. The intensity of RRT and any residual native renal function are likely to be the most important variables in determining renal drug CL in this setting [17].

Other extracorporeal circuits (such as extracorporeal membrane oxygenation) may also contribute to altered drug CL, depending on the degree of adsorption, and any co-existing renal dysfunction [18].

Pharmacodynamic changes

For antimicrobials, PD links PK exposure with its ability to kill or inhibit the growth of a pathogen. This relationship can be described by relating the PK exposure of an antimicrobial to the minimum inhibitory concentration (MIC) of the offending pathogen. Antimicrobials classically have different PK/PD indices [19], and these can be categorised as: (a) the ratio of maximum drug concentration (C_{max}) to MIC (C_{max}/MIC); (b) the duration of time (T) that the free drug concentration remains above the MIC during a dosing interval (fT>MIC); and (c) the ratio of the area under the concentration–time curve during a 24-hour period to MIC (AUC{0–24}/MIC) [20]. However, it is also important to note that individual MICs were rarely measured in most of the earlier studies and parameters such as MIC_{50} and MIC_{90} were used instead to describe the PK/PD relationships. For antivirals, in particular, measures other than the MIC have been used as the denominator of the PK/PD index such as the in vitro concentration required to obtain 50% of the maximum effect (EC_{50}). The denominator in these indices is an important consideration because when it increases, the corresponding PK exposure should also be increased to ensure that the optimal PK/PD index is still achieved. This is mostly relevant in the ICU as at least bacterial pathogens may demonstrate higher MICs, as much as 2–4 times higher, when compared to the general wards [21].

Importantly, a recent review by Mouton et al. highlights that the use of an individual MIC to guide antibacterial dosing may not be appropriate due to imprecise and highly variable (varying by 1–2 dilutions in both directions) measurements associated with MIC determination [22]. Therefore, an individual MIC measurement should only be regarded as an estimate and not a “true” value of a pathogen’s susceptibility. MIC may vary according to determination methods (e.g. broth microdilution vs. E-test®), and it is therefore important to aim for an appropriate MIC method-specific target, with broth microdilution (BMD) MIC being the preferred method, if they are available. Any potential dosing adjustments with the aid of TDM must consider MIC variation and should be interpreted in the context of assay variation, species identification and wild-type distributions. Measures of MIC distributions such as epidemiologic cut-off (ECOFF) values, which separate bacterial populations into those of a wild-type population and those with either a low- or high-level phenotypically detectable resistance, can be more useful to guide antibacterial dosing. Mouton et al. proposed several practical solutions in their review to optimise antibacterial dosing for patients, and one of the important recommendations included the use of ECOFF values as the PD target for dosing purposes when the measured MIC for the bacterial strain is within the wild-type distribution [22]. If the MIC is slightly above the ECOFF, a two-fold dilution of the MIC can be assumed for dosing purposes, whilst MIC-guided therapy should not be an option if the measured MIC is clearly far above the ECOFF and clinical resistance breakpoint.

Basic principles of therapeutic drug monitoring

An antimicrobial should fulfil certain criteria for TDM to be of potential benefit and some of these criteria include: (a) a significant intra- and/or inter-individual PK variability; (b) a defined exposure range associated with pharmacological responses (clinical responses and toxicities); (c) defined relevant sampling time points; and (d) accurate and timely bioanalytical assay methods for drug measurement.

Critically ill patients often demonstrate extreme variability in antimicrobial PK, which can be partly explained by patient covariates (e.g. body weight and renal function). Unexplained PK variability can be observed across patients (i.e. inter-individual variability) and also, within a patient (i.e. intra-individual PK variability). TDM-based dosing adjustment is clinically useful for an antimicrobial if the unexplained inter-individual PK variability exceeds the intra-individual variability. Otherwise, solely applying covariate-based dosing strategies would be sufficient, as is the case with Product Information and nomogram-based dosing.

PK sampling for antimicrobial TDM is traditionally performed at the end of each dosing interval to obtain a trough sample (minimum concentration in dosing interval, C_{min}). Whilst C_{min} provides some information on drug CL, determination of V_d requires an additional sample earlier in the dosing interval. For the estimation of derived PK parameters, such as the AUC, and PK/PD targets, such as the fT>MIC, an optimised PK sampling schedule is suggested for unbiased and precise parameter estimation. A limited sampling strategy (LSS), which uses
concentrations should be measured at physiologically relevant conditions [28] and reported, but due to practical limitations, most laboratories report only total concentrations. Further to this, exposure targets for some drugs have only been defined in terms of total exposure (e.g. vancomycin).

TDM-based dosing adjustments can be performed in several different ways. Whilst it is still popular to compare and evaluate a single drug concentration (e.g. $C_{\text{min}}$) against a therapeutic target range, and this method is the easiest, it is the least accurate method for dosing adjustment. Dosing nomograms, on the other hand, can integrate PK/PD data with measures of organ function (e.g. renal function described using creatinine clearance) and have demonstrated to be superior to conventional antimicrobial dosing [29, 30]. However, separating the sources of PK variability and incorporating >1 covariate for dosing adjustments (e.g. creatinine clearance and weight) are not possible with a single dosing nomogram. Additionally, the dose prediction from such nomograms would be inaccurate if the pre-defined PK sampling/dosing schedule is not strictly adhered to. The use of dosing software overcomes these limitations [2], and these methods have been shown to be superior over conventional antimicrobial dosing for vancomycin [31], particularly in the context of:

(a) the first dose can initially be individualised for patients by using Monte Carlo simulations;
(b) the sources of PK variability can be separated into intra- and inter-individual variability;
(c) PK sampling before reaching steady state is possible; and
(d) through Bayesian estimation, the entire antimicrobial PK profile can be estimated from a single PK sample. Bayesian estimation is most accurate when an optimal sampling time is chosen to provide the most information about the drug’s PK behaviour in the patient and a suitable population PK model matching the target population to serve as the Bayesian prior model [32]. After initial TDM, it is recommended to repeat TDM (within 1–2 days for most drugs) to confirm therapeutic exposures have been achieved and again thereafter if there are concerns of significant changes to PK (e.g. enteral absorption, renal function).

The following sections describe the specific TDM data relating to various antimicrobial classes. Tables 1, 2 and 3 describe optimal PK/PD indices and magnitudes associated with clinical efficacy and toxicity of antibacterials, antifungals and antivirals, respectively. TDM recommendations for each antimicrobial are summarised in Table 4. Table 5 highlights relevant studies/data that demonstrate clinical outcome benefits of antimicrobial TDM. The primary data that support each recommendation and the suggested empirical dosing of these antimicrobials in critically ill patients are included in Supplementary Tables. We highly recommend readers to use the information presented in the following sections in conjunction with the data presented in Tables 1, 2, 3, 4 and 5, as well as those presented in Supplementary Tables 1–5, for specific suggestions on how TDM can be performed for a particular antimicrobial/antimicrobial class in critically ill patients.
### Antibacterials

#### Aminoglycosides

**Pharmacokinetics**

Aminoglycosides are hydrophilic with a low $V_d$ and CL that is proportional to glomerular filtration rate. Significant $V_d$ and CL alterations have been widely described in critically ill patients.

**Pharmacodynamics**

Aminoglycosides demonstrate “concentration-dependent” bactericidal activity, which is optimal when the $C_{\text{max}}$ is $\geq 8–10 \times$ MIC [33–35]. Recent data, however, have suggested that the AUC$_{0–24}$/MIC ratio might be a better predictor of activity and is better suited to judge target attainment in extended-interval dosing of aminoglycosides. High $C_{\text{min}}$ and AUC exposures over days have been associated with ototoxicity.

**Dosing in critically ill patients**

High, single-dose, extended-interval dosing should be used in patients with Gram-negative infections. Recent data suggest that higher-than-standard aminoglycoside dosing regimen may be required for critically ill patients [36, 37].

**TDM in critically ill patients**

The Panel recommends that TDM be routinely performed when aminoglycosides are used in critically ill patients.

---

### Table 1 Pharmacokinetic/pharmacodynamic (PK/PD) indices and the magnitudes associated with antibacterial clinical efficacy and toxicity

| Antibacterial class | PK/PD index | Pre-clinical PK/PD target for efficacy | Clinical PK/PD target for efficacy | Clinical PK/PD threshold for toxicity |
|---------------------|-------------|---------------------------------------|-----------------------------------|--------------------------------------|
| Aminoglycosides     |             |                                       |                                   |                                      |
| Amikacin            | AUC$_{0–24}$/MIC | AUC$_{0–24}$/MIC: 80–100              | $C_{\text{min}}$/MIC $\geq 8–10$ | $C_{\text{max}} > 5$ mg/L$^a$       |
| Gentamicin/tobramycin | AUC$_{0–24}$/MIC | AUC$_{0–24}$/MIC: 80–100              | $C_{\text{min}}$/MIC $\geq 110$  | $C_{\text{max}} > 1$ mg/L$^a$       |
| Beta-lactams        |             |                                       |                                   |                                      |
| Carbapenems         | % $T_{\geq \text{MIC}}$ | 40% $T_{\geq \text{MIC}}$             | 50–100% $T_{\geq \text{MIC}}$     | $C_{\text{max}} > 44.5$ mg/L$^c$     |
| Cephalosporins      | % $T_{\geq \text{MIC}}$ | 60–70% $T_{\geq \text{MIC}}$          | 45–100% $T_{\geq \text{MIC}}$     | $C_{\text{max}} > 20$ mg/L$^c$       |
| Penicillins         | % $T_{\geq \text{MIC}}$ | 50% $T_{\geq \text{MIC}}$             | 50–100% $T_{\geq \text{MIC}}$     | $C_{\text{max}} > 361$ mg/L$^d$      |
| Co-trimoxazole      | Unclear     | Unclear                               | Unclear                           | Unclear                             |
| Daptomycin          | AUC$_{0–24}$/MIC | AUC$_{0–24}$/MIC $\geq 517$         | AUC$_{0–24}$/MIC $\geq 666$ mg/L | $C_{\text{max}} > 24$ mg/L$^e$       |
| Fluoroquinolones    | AUC$_{0–24}$/MIC | AUC$_{0–24}$/MIC $\geq 100$          | AUC$_{0–24}$/MIC $\geq 125–250$ | $C_{\text{min}}$/MIC $\geq 12$      |

Glycopeptides

| Antibacterial class | PK/PD index | Pre-clinical PK/PD target for efficacy | Clinical PK/PD target for efficacy | Clinical PK/PD threshold for toxicity |
|---------------------|-------------|---------------------------------------|-----------------------------------|--------------------------------------|
| Teicoplanin         | AUC$_{0–24}$/MIC | AUC$_{0–24}$/MIC $\geq 610$         | $C_{\text{min}} > 10$ mg/L       | Unclear                             |
| Vancomycin          | AUC$_{0–24}$/MIC | AUC$_{0–24}$/MIC $\geq 86–460$ | AUC$_{0–24}$/MIC $\geq 400$ $C_{\text{min}} > 10–20$ mg/L | AUC$_{0–24} > 700$ mg h/L$^f$       |
| Linezolid           | AUC$_{0–24}$/MIC | AUC$_{0–24}$/MIC $\geq 100$         | AUC$_{0–24}$/MIC $\geq 80–120$ $\geq 85% T_{\geq \text{MIC}}$ | AUC$_{0–24} > 300$ mg/L$^g$       |

Polymyxins

| Antibacterial class | PK/PD index | Pre-clinical PK/PD target for efficacy | Clinical PK/PD target for efficacy | Clinical PK/PD threshold for toxicity |
|---------------------|-------------|---------------------------------------|-----------------------------------|--------------------------------------|
| Colistin            | AUC$_{0–24}$/MIC | fAUC$_{0–24}$/MIC: 6.6–13.7$^h$ | No data                           | $C_{\text{max}} > 2.4$ mg/L$^i$     |
| Polymyxin B         | AUC$_{0–24}$/MIC | fAUC$_{0–24}$/MIC: 3.7–28.0 $^h$ | No data                           | AUC$_{0–24} > 100$ $^i$            |

---

**AUC$_{0–24}$/MIC** = the ratio of the area under the concentration–time curve during a 24-hour period to minimum inhibitory concentration; $C_{\text{min}}$/MIC = the ratio of maximum drug concentration to minimum inhibitory concentration; $C_{\text{max}}$/MIC = the free (unbound drug concentration) ratio of the area under the concentration–time curve during a 24-hour period to minimum inhibitory concentration; $fT_{\geq \text{MIC}}$ = the duration of time that the free drug concentration remains above the MIC during a dosing interval; PK/PD = pharmacokinetic/pharmacodynamic

$^a$ Nephrotoxicity or ototoxicity

$^b$ Data only available for meropenem and related to nephrotoxicity or neurotoxicity

$^c$ Data only available for cefepime and related to neurotoxicity

$^d$ Data mostly on piperacillin and related to nephrotoxicity and neurotoxicity

$^e$ Myopathy indicated by creatine phosphokinase elevation

$^f$ Related to nephrotoxicity

$^g$ Related to haematological toxicity

$^h$ Exposure against *Pseudomonas aeruginosa*

$^i$ Exposure against *Acinetobacter baumannii*
AUC-based monitoring with at least two time points collected combined with Bayesian dose adaptation best predicts aminoglycoside dosing requirements [38–40]. TDM-guided dosing with Bayesian dose adaptation has led to a shorter length of hospital stay and a reduced incidence of nephrotoxicity in patients receiving gentamicin for Gram-negative infections [39].

### Bioanalytical assay

Commercial immunoassays are available for amikacin, gentamicin and tobramycin TDM. For other aminoglycosides (e.g. kanamycin and plazomicin), modified immunoassays or chromatographic assays need to be established.

### Beta-lactam antibiotics

#### Pharmacokinetics

Beta-lactam antibacterials are generally hydrophilic, demonstrate low $V_d$ and are predominantly cleared via renal elimination. Most beta-lactams have a moderate (30–70%) to low (<30%) degrees of protein binding. Significant $V_d$ and CL alterations are common, and these PK

| Antifungal class | PK/PD index | Pre-clinical PK/PD target for efficacy | Clinical PK/PD target for efficacy | Clinical PK/PD threshold for toxicity |
|------------------|-------------|----------------------------------------|------------------------------------|--------------------------------------|
| Echinocandins    | $AUC_{0-24}/MIC$ | $fAUC_{0-24}/MIC$: 10–20 | $AUC_{0-24}/MIC > 3000^a$ | No data |
| Fluconazole      | $AUC_{0-24}/MIC$ | $AUC_{0-24}/MIC$: 25–44 | $AUC_{0-24}/MIC ≥ 55–100$ | Unclear |
| Flucytosine      | $fT_{MIC}$ | $≥ 20–45% fT_{MIC}$ | No data | $C_{ave} > 100$ mg/L$^b$ |
| Isavuconazole    | $AUC_{0-24}/MIC$ | $fAUC_{0-24}/MIC$: 25–50 | $fT_{MIC} ≥ 0.25–0.5$ mg/L (Prop) | No data |
| Itraconazole     | $AUC_{0-24}/MIC$ | $C_{max} > 6$ mg/L$^c$ | $C_{ave} ≥ 1$ mg/L (Tx) | No data |
| Posaconazole     | $AUC_{0-24}/MIC$ | $fAUC_{0-24}/MIC$: 25–50 | $C_{ave} > 0.5$ (Prop) | $C_{ave} ≥ 2$ mg/L |
| Voriconazole     | $AUC_{0-24}/MIC$ | $fAUC_{0-24}/MIC$: 25–50 | $C_{ave} > 1$ mg/L (Tx) | No data |

### Table 2 Pharmacokinetic/pharmacodynamic (PK/PD) indices and the magnitudes associated with antifungal clinical efficacy and toxicity

| Antifungal class | PK/PD index | Pre-clinical PK/PD target for efficacy | Clinical PK/PD target for efficacy | Clinical PK/PD threshold for toxicity |
|------------------|-------------|----------------------------------------|------------------------------------|--------------------------------------|
| Echinocandins    | $AUC_{0-24}/MIC$ | $fAUC_{0-24}/MIC$: 10–20 | $AUC_{0-24}/MIC > 3000^a$ | No data |
| Fluconazole      | $AUC_{0-24}/MIC$ | $AUC_{0-24}/MIC$: 25–44 | $AUC_{0-24}/MIC ≥ 55–100$ | Unclear |
| Flucytosine      | $fT_{MIC}$ | $≥ 20–45% fT_{MIC}$ | No data | $C_{ave} > 100$ mg/L$^b$ |
| Isavuconazole    | $AUC_{0-24}/MIC$ | $fAUC_{0-24}/MIC$: 25–50 | $fT_{MIC} ≥ 0.25–0.5$ mg/L (Prop) | No data |
| Itraconazole     | $AUC_{0-24}/MIC$ | $C_{max} > 6$ mg/L$^c$ | $C_{ave} ≥ 1$ mg/L (Tx) | No data |
| Posaconazole     | $AUC_{0-24}/MIC$ | $fAUC_{0-24}/MIC$: 25–50 | $C_{ave} > 0.5$ (Prop) | $C_{ave} ≥ 2$ mg/L |
| Voriconazole     | $AUC_{0-24}/MIC$ | $fAUC_{0-24}/MIC$: 25–50 | $C_{ave} > 1$ mg/L (Tx) | No data |

### Table 3 Pharmacokinetic/pharmacodynamic (PK/PD) indices and the magnitudes associated with antiviral clinical efficacy and toxicity

| Antivirals       | PK/PD index | Pre-clinical PK/PD target for efficacy $^a$ | Clinical PK/PD target for efficacy | Clinical PK/PD threshold for toxicity |
|------------------|-------------|----------------------------------------|------------------------------------|--------------------------------------|
| Aciclovir/valaciclovir | Unclear | Unclear | Unclear | Unclear |
| Foscarnet        | Unclear | Unclear | Unclear | Unclear |
| Ganciclovir/valganciclovir | Unclear | Unclear | AUC: 40–60 mg h/L (Prop) | Unclear |
| Oseltamivir/oseltamivir carboxylate | Unclear | Unclear | Unclear | Unclear |
| Ribavirin        | AUC | Unclear | AUC$_{0-12} > 1755$ mg h/L | $C_{max} > 2.3$ mg/L$^b$ |

### Footnotes

$^a$ Whilst in vitro concentrations at which viral replication is inhibited by 50% (i.e. EC$_{50}$ representing antiviral activity) have been widely determined, there are no/limited data which correlate these values with in vivo pharmacokinetic parameters (e.g. AUC) to describe magnitudes required for pre-clinical efficacy

$^b$ Mostly related to anaemia
### Table 4  Recommendations for therapeutic drug monitoring (TDM) for antibiotics, antifungals and antivirals in critically ill patients

| Antibacterials | TDM recommendation, suggested TDM sampling and targets in critically ill patients |
|---------------|--------------------------------------------------------------------------------|
| **Antibacterials** | **Recommendation and suggested sampling scheme/strategy** | **Target** |
| **Aminoglycosides** | TDM recommendation by Panel: “YES” |  |
| | AUC-based monitoring |  |
| | Two samples<sup>b</sup> |  |
| | One taken 30 min after the end of infusion and the other one taken between 6 and 22 h post-infusion |  |
| | AUC<sub>0–24</sub>/MIC monitoring |  |
| | One sample | AUC<sub>0–24</sub>/MIC ≥ 8–10 |  |
| | C<sub>min</sub> monitoring<sup>c</sup> |  |
| | One sample | C<sub>min</sub> |  |
| | 30 min or just before the next dosing |  |
| | C<sub>min</sub> | Amikacin < 2.5 mg/L |  |
| | Gentamicin/tobramycin < 0.5 mg/L |  |
| **Beta-lactams** | TDM recommendation by Panel: “YES” |  |
| | C<sub>min</sub> monitoring |  |
| | One sample | 100% fT>MIC |  |
| | 30 min or just before the next dosing |  |
| | Sampling should occur 24–48 h post-initiation of therapy |  |
| | C<sub>ss</sub> monitoring for continuous infusion |  |
| | One sample at any time point during the infusion | C<sub>ss</sub> > MIC |  |
| **Co-trimoxazole** | TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE” |  |
| **Daptomycin** | TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE” |  |
| | AUC/MIC-based monitoring |  |
| | Two samples<sup>b</sup> |  |
| | One taken between 1.5 and 3 h post-dosing and the other one taken within 1 h of the next infusion |  |
| | AUC/MIC > 666 |  |
| | C<sub>min</sub> monitoring |  |
| | One sample | C<sub>min</sub> |  |
| | Within 1 h of the next infusion | C<sub>min</sub> < 24 mg/L |  |
| | Sampling should occur 72 h post-initiation of therapy |  |
| **Fluoroquinolones** | TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE” |  |
| | AUC/MIC-based monitoring |  |
| | Two samples<sup>b</sup> |  |
| | One taken 2 h post-dosing and the other one taken 6 h post-dosing |  |
| | AUC<sub>0–24</sub>/MIC ≥ 80 |  |
| | C<sub>min</sub> monitoring |  |
| | One sample | C<sub>min</sub>/MIC ≥ 8–12 |  |
| **Glycopeptides** | TDM recommendation by Panel: “YES” |  |
| **Teicoplanin** | TDM recommendation by Panel: “YES” |  |
| | C<sub>min</sub> monitoring |  |
| | One sample | C<sub>min</sub> ≥ 15–30 mg/L |  |
| | 30 min or just before the next dosing |  |
| **Vancomycin** | TDM recommendation by Panel: “YES” |  |
| | AUC/MIC-based monitoring |  |
| | Two samples<sup>b</sup> |  |
| | One taken 1 h after the end of infusion and the other one taken within 1–2 h of the next infusion |  |
| | AUC<sub>0–24</sub>/MIC ≥ 400 |  |
| | C<sub>min</sub> monitoring for intermittent infusion |  |
| | One sample | C<sub>min</sub> > 10 mg/L |  |
| | 30 min or just before the next dosing | C<sub>min</sub> ≥ 15–20 mg/L (severe infections) |  |
| | C<sub>ss</sub> monitoring for continuous infusion |  |
| | One sample at any time point during the infusion | C<sub>ss</sub> > 20–25 mg/L |  |
| **Linezolid** | TDM recommendation by Panel: “YES” |  |
| | C<sub>min</sub> monitoring |  |
| | One sample | C<sub>min</sub> < 2–7 mg/L |  |
| | 30 min or just before the next dosing |  |
| | Sampling should occur 48 h post-initiation of therapy |  |
### Table 4 (continued)

| Antibacterials | TDM recommendation, suggested TDM sampling and targets in critically ill patients | Target |
|----------------|---------------------------------------------------------------------------------|--------|
| Polymyxins     |                                                                                 |        |
| Colistin       | TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”                | $C_{\text{min}}$: 2 mg/L |
|                | $C_{\text{min}}$ monitoring                                                     |        |
|                | One sample                                                                      |        |
|                | Just before the next infusion                                                   |        |
|                | Sampling should occur 48–72 h post-initiation of therapy                       |        |
| Polymyxin B    | TDM recommendation: “NEITHER RECOMMEND NOR DISCOURAGE”                         | $\text{AUC}_{0-24}$: 50–100 mg h/L |
|                | AUC-based monitoring                                                            |        |
|                | At least one sample                                                             |        |
|                | Sampling should occur 12–24 h post-initiation of therapy                       |        |

| Antifungals    | Suggested sampling scheme/strategy                                               | Target |
|----------------|---------------------------------------------------------------------------------|--------|
| Echinocandins  |                                                                                 |        |
| Fluconazole    | TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”                |        |
| Flucytosine    | TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”                |        |
|                | $C_{\text{max}}$ monitoring                                                     |        |
|                | One sample                                                                      |        |
|                | 2 h post-dose                                                                   |        |
|                | Sampling should occur 48 h post-initiation of therapy                           |        |
|                | $C_{\text{min}}$ monitoring                                                     |        |
|                | One sample                                                                      |        |
|                | 30 min or just before the next dosing                                           |        |
|                | Sampling should occur 72 h post-initiation of therapy                           |        |
| Isavuconazole  | TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”                |        |
| Itraconazole   | TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”                | $C_{\text{min}}$: 0.5–1 mg/L |
|                | $C_{\text{min}}$ monitoring                                                     |        |
|                | One sample                                                                      |        |
|                | 30 min or just before the next dosing                                           |        |
|                | Sampling should occur within 5–7 days post-initiation of therapy               |        |
| Posaconazole   | TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”                |        |
|                | $C_{\text{min}}$ monitoring                                                     |        |
|                | One sample                                                                      |        |
|                | 30 min or just before the next dosing                                           |        |
|                | Sampling should occur after 7 days of initiation of therapy                     |        |
|                | $C_{\text{min}}$: 0.5–0.7 mg/L (prophylaxis)                                    |        |
|                | $C_{\text{min}}$: 1 mg/L (treatment)                                           |        |
| Voriconazole   | TDM recommendation by Panel: “YES”                                              | $C_{\text{min}}$: 2–6 mg/L (prophylaxis or treatment) |
|                | $C_{\text{min}}$ monitoring                                                     |        |
|                | One sample                                                                      |        |
|                | 30 min or just before the next dosing                                           |        |
|                | Sampling should occur between 2 and 5 days of initiation of therapy             |        |

| Antivirals     | Suggested sampling scheme/strategy                                               | Target |
|----------------|---------------------------------------------------------------------------------|--------|
| Aciclovir/valaciclovir | TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”            |        |
| Foscarnet      | TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”                |        |
| Ganciclovir/valganciclovir | TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”            |        |
| Oseltamivir    | TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”                |        |
| Ribavirin      | TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”                |        |

$\text{AUC} = \text{area under the concentration–time curve}; \text{AUC}_{0-24}/\text{MIC} = \text{the ratio of the area under the concentration–time curve during a 24-hour period to minimum inhibitory concentration; CI} = \text{continuous infusion; } C_{\text{max}}/\text{MIC} = \text{the ratio of maximum drug concentration to minimum inhibitory concentration; } C_{\text{min}} = \text{trough drug concentration; } C_{\text{ss}} = \text{average steady-state drug concentration; } fT > \text{MIC} = \text{the duration of time that the free drug concentration remains above the MIC during a dosing interval; II} = \text{intermittent infusion}$

$^a$ Although consensus may not have been achieved for some of these antimicrobials/antimicrobial classes, suggested sampling strategies and targets for TDM are presented for those antimicrobials/antimicrobial classes where TDM data/experience have been reported.

$^b$ Only one sample is needed with Bayesian dose adaptation/adaptive feedback control.

$^c$ Only for treatment of more than 3 days.

$^d$ Concentrations preventing resistance development based on in vitro pharmacokinetic model.
alterations may lead to inadequate beta-lactam concentrations particularly in the earlier phase of critical illness. Hypoalbuminemia has been associated with an increase in the free fraction (non-protein bound) of highly protein-bound beta-lactams (e.g. ceftriaxone, ertapenem and semisynthetic penicillins such as flucloxacillin, oxacillin and temocillin) and low unbound concentrations towards the end of the dosing interval [8].

**Pharmacodynamics**

The PK/PD index associated with optimal beta-lactam activity is the % fT>MIC (40–70%). Critically ill patients data suggest that patients may benefit from longer (e.g. 100% fT>MIC) [41–43] and higher (e.g. 2–5 × MIC) [42–44] beta-lactam exposures than those previously described. Although the beta-lactams generally have a wide therapeutic index, high exposures have been associated with neurotoxicity. Although myelosuppression is well-known toxicity for the beta-lactams [45], no toxicity thresholds have been well established to date.

**Dosing in critically ill patients**

An initial loading dose (LD) followed by prolonged beta-lactam infusion (continuous or extended infusion) maximises PK/PD target attainment and is likely to improve clinical outcomes in critically ill patients [46].

**TDM in critically ill patients**

The Panel recommends that TDM be routinely performed when beta-lactam antibiotics are used in critically ill patients.

The collateral damage of more aggressive beta-lactam dosing to account for altered drug PK, i.e. excessive drug exposure, has been increasingly reported over the last 10 years, although it is probably still under-reported. TDM of beta-lactam antibiotics in critically ill patients is, therefore, becoming more common to optimise dosing whilst minimising the likelihood of toxicity [5, 47].

### Table 5 Comparative studies highlighting clinical benefits of performing therapeutic drug monitoring for gentamicin, voriconazole and ribavirin

| Study/country/population | Patients | Study design | Clinical outcomes | TDM | Non-TDM |
|--------------------------|---------|-------------|-------------------|-----|---------|
| Van Lent-Evers (1999)    | Total: 232 | Multi-centre, non-randomised, before-and-after trial | Dose changes (%)* | 48.6 | 80.4 |
| Netherlands              | TDM: 105 | TDM: Bayesian-guided dosing | Duration of therapy (days)* | 5.9 ± 2.9 | 8.0 ± 4.9 |
| Gentamicin               | Non-TDM: 127 | Non-TDM: standard or nomogram | Length of stay (days)* | 20.0 ± 13.7 | 26.3 ± 31.5 |
| Gram-negative sepsis     |          |            | Mortality (%)     | 9 (8.6%) | 18 (14.2) |
|                          |          |            | Nephrotoxicity (%)* | 3 (2.8) | 17 (13.4) |
|                          |          |            | Total costs (in DFL)* | 13,125 ± 9,267 | 16,862 ± 17,721 |
| Park (2012)              | Total: 110 | Single-centre, assessor-blinded, randomised controlled trial | Adverse events (%) | 23 (42) | 22 (42)* |
| South Korea              | TDM: 55  | TDM: concentration-controlledc | Drug discontinuation (%)* | 2 (4) | 9 (17)* |
| Voriconazole             | Non-TDM: 55 | Non-TDM: standard therapy | Treatment response (%)#d | 30 (81)* | 20 (59) |
| Invasive fungal infections|          |            | Sustained virological response (%) | 10 (62.5) | 6 (37.3) |
| Switzerland              | TDM: 16  | TDM: concentration-controlled | Mean haemoglobin (g/L)* | 99.6 | 106.3 |
| Ribavirin                | Non-TDM: 16 | Non-TDM: weight-based dosing | | | |

DFL = Dutch florin, i.e. the currency of Netherlands up to 2002; TDM = therapeutic drug monitoring

* An asterisk indicates a significant difference between TDM and non-TDM groups

† Only 53 patients were included

‡ Target trough concentration of 1.0–5.5 mg/L

§ Included either complete or partial response

¶ Only 37 patients were included

‖ Only 34 patients were included

§§ Reported in a research letter

¶¶ Cumulative ribavirin exposure above 224.3 mg/L was significantly associated with sustained virological response

†† Target concentration of 3.7 mg/L

Chronic hepatitis C
Bioanalytical assay
Several high-performance liquid chromatography with ultraviolet detection (HPLC–UV) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) assays have been applied to beta-lactam TDM.

Co-trimoxazole
Pharmacokinetics
Co-trimoxazole consists of a combination of sulfamethoxazole and trimethoprim in a 5:1 ratio. Both drugs are predominantly cleared by renal elimination and are moderately bound to plasma proteins. Although the impact of critical illness on its PK has been scarcely reported, significant PK variability has been observed with weight-based dosing of co-trimoxazole in older studies [49, 50].

Pharmacodynamics
C_max and fAUC_{0–24}/MIC ratios have been linked with optimal sulfamethoxazole/trimethoprim activity. Higher doses and exposures may likely increase the likelihood of adverse events such as hyperkalemia and metabolic acidosis.

Dosing in critically ill patients
There are insufficient clinical data to support altering co-trimoxazole dosing for maximal outcomes in critically ill patients. Weight-based dosing depending on the pathogen is appropriate.

TDM in critically ill patients
The Panel neither recommends, nor discourages routine sulfamethoxazole (as the representative drug in co-trimoxazole) TDM in critically ill patients.

Bioanalytical assay
No commercial assays are currently available, and a chromatographic assay is required to facilitate TDM.

Daptomycin
Pharmacokinetics
Daptomycin demonstrates a low V_d and is predominantly cleared via renal elimination. V_d and CL alterations are common, leading to variable and low drug exposure. It is a highly protein-bound drug (92–94%) and the free fraction increases in critically ill patients.

Pharmacodynamics
AUC_{0–24}/MIC ratios of ≥666 mg/L have been described for daptomycin efficacy in critically ill patients [51]. More recently, a C_{min} of ≥3.2 mg/L has been linked to poor clinical outcomes in hospitalised patients with various Gram-positive infections [52]. A C_{min} of ≥24.3 mg/L is associated with an increased likelihood of creatine phosphokinase (CPK) elevation by >30-fold [53].

Dosing in critically ill patients
Current data suggest that optimal AUC_{0–24}/MIC ratios can easily be achieved with a Product Information dose of 6 mg/kg but only for pathogens with an MIC of 0.1 mg/L. With increasing MICs, higher doses (10–12 mg/kg/day) are probably required to achieve these targets [51, 54, 55].

TDM in critically ill patients
The Panel neither recommends, nor discourages routine daptomycin TDM in critically ill patients.

As daptomycin presents highly variable and unpredictable PK, several centres have performed TDM and have reported their clinical experience [52, 56, 57]. Previous work has aimed for C_{min} < 24 mg/L at steady-state [52, 57]. AUC-based monitoring, via LSS, can also be applied to guide daptomycin dosing to achieve AUC_{0–24}/MIC ratios of ≥666 [58].

Bioanalytical assay
HPLC–UV and LC–MS/MS assays have been published for daptomycin TDM.

Fluoroquinolones
Pharmacokinetics
Fluoroquinolones are moderately lipophilic with V_d generally unaffected by critical illness, with the exception of levofloxacin. Most fluoroquinolones have a moderate to low degree of protein binding, and some are cleared, at least to some degree, by renal elimination.

Pharmacodynamics
Fluoroquinolones exhibit “concentration-dependent” bactericidal activity, and the AUC_{0–24}/MIC ratio best predicts clinical efficacy. Higher C_max/MIC ratios (>8–20) may also be required for optimal bactericidal activity [59, 60]. AUC_{0–24}/MIC ratios of 25–30 may suffice against the Gram-positive organisms, but higher values (≥125) are needed against the Gram-negative organisms [61, 62]. Several studies have also suggested that a ratio of >100–200 may suppress the emergence of resistance against Gram-negative organisms. Although increasing reports of fluoroquinolones-associated seizures have emerged [63–65], no toxicity thresholds have been established and causality is debated [66].

Dosing in critically ill patients
A quinolone dosing regimen that maximises the AUC_{0–24}/MIC (e.g. LD with higher maintenance doses) should be considered in critically ill patients.
TDM in critically ill patients

The Panel neither recommends, nor discourages routine fluoroquinolone TDM in critically ill patients.

Given the inter-individual PK variability reported in critically ill patients and the high propensity for emergence of resistance against quinolones, TDM may be useful, particularly where pathogens have MICs close to the susceptibility breakpoint.

Bioanalytical assay

HPLC and LC–MS/MS assays have been published for fluoroquinolones TDM.

Glycopeptides

Teicoplanin

Pharmacokinetics

Teicoplanin is hydrophilic, with a $V_d$ of 0.7–1.4 L/kg, and is predominantly cleared via renal elimination. It has a long elimination half-life ($t_{1/2}$) due to its high plasma protein binding ($\geq 90\%$). Variability of teicoplanin exposure is significant in critically ill patients [67–69].

Pharmacodynamics

A $C_{\text{min}}$ of $\geq 10$–20 mg/L has been associated with favourable clinical response in uncomplicated infection [70, 71], but higher concentrations ($\geq 20$–30 mg/L) are advocated for severe Staphylococcal infections including endocarditis and osteomyelitis. However, the clinical data supporting these higher concentrations are sparse. More recent data suggested that the AUC$_{0-24}$/MIC ratio ($\geq 750$) may better predict teicoplanin activity in serious methicillin-resistant S. aureus (MRSA) infections [72, 73]. Unpublished studies reported that a $C_{\text{min}}$ of $> 60$ mg/L increased the likelihood of nephrotoxicity.

Dosing in critically ill patients

Teicoplanin has a long $t_{1/2}$ (150 h) with the use of LD essential to reduce the time to reach therapeutic exposures.

TDM in critically ill patients

The Panel recommends that TDM be routinely performed when teicoplanin is used in critically ill patients.

Bioanalytical assay

HPLC–UV, LC–MS/MS and immunoassays have been published for teicoplanin TDM.

Vancomycin

Pharmacokinetics

Vancomycin is hydrophilic, demonstrates a low $V_d$ and is predominantly cleared via renal elimination. Critical illness alters the $V_d$ and CL of vancomycin leading to variable and low drug exposure.

Pharmacodynamics

AUC$_{0-24}$/MIC ratios of $\geq 400$ are recommended against Staphylococcus aureus infection, whereas higher exposures are advocated when treating critically ill patients with septic shock [74–76]. Prolonged ($\geq 7$ days) and high vancomycin exposures are associated with nephrotoxicity.

Dosing in critically ill patients

Safely attaining optimal AUC$_{0-24}$/MIC ratios when treating pathogens with MICs of $> 1$ mg/L is highly challenging with vancomycin [77]. LD of 25–30 mg/kg, followed by 15–20 mg/kg every 8–12 h should be considered in critically ill patients without renal impairment. Continuous vancomycin infusion has been associated with a lower nephrotoxicity risk [78, 79], but clinical superiority has yet to be demonstrated over intermittent dosing. For practical reasons and ease of TDM, however, continuous vancomycin infusion is sometimes preferred and has been increasingly used in some centres.

TDM in critically ill patients

The Panel recommends that TDM be routinely performed when vancomycin is used in critically ill patients.

Monitoring

$C_{\text{min}}$ (15–20 mg/L for intermittent infusion) or average steady-state concentration ($C_{\text{ss}}$, 20–25 mg/L for continuous infusion) for pathogens with MIC $\leq 1$ mg/L has been widely used as a surrogate for the AUC$_{0-24}$/MIC target. However, current data have demonstrated that $C_{\text{min}}$ is a poor surrogate for AUC$_{0-24}$ and may tend to underestimate the actual vancomycin exposure [31, 80–83]. AUC-based monitoring with Bayesian dose adaptation may likely be a better tool to guide vancomycin treatment in critically ill patients. Although the contemporary AUC$_{0-24}$/MIC target has always been approximated as $\geq 400$ for vancomycin, this index was derived from BMD MIC, and the E-test equivalence to this might only be 226 [84].

Bioanalytical assay

Immuoassays are commercially available for vancomycin TDM.

Linezolid

Pharmacokinetics

Linezolid is moderately lipophilic, demonstrates a $V_d$ that approximates the total volume of total body water, is predominantly cleared via non-renal elimination and demonstrates significant intra- and inter-patient PK variability leading to variable linezolid exposure.
**Pharmacodynamics**

Maximum efficacy is demonstrated at $T_{\text{ MIC }} > 85\%$ and $\text{AUC}_{0-24}/\text{MIC}$ ratio of $80–120$ [85]. Linezolid-induced thrombocytopenia has been reported at $C_{\text{min}}$ and $\text{AUC}_{0-24}$ of $> 7–10$ and $> 300–350$, respectively.

**Dosing in critically ill patients**

Critically ill patients may benefit from higher linezolid doses and/or altered dosing approaches (e.g. front-loaded dosing regimen and continuous infusion) although these approaches should be supported with TDM if available. Subgroups of patients who may likely require higher-than-standard linezolid doses include those who are obese, those with acute respiratory distress syndrome and ARC, as well as those who are infected with pathogens with MIC $\geq 2$ mg/L [54, 86].

**TDM in critically ill patients**

The Panel recommends that TDM be routinely performed when linezolid is used in critically ill patients.

Using an epidemiological MIC distribution, a $C_{\text{min}}$ target of $> 2$ mg/L is well correlated with an $\text{AUC}_{0-24}/\text{MIC}$ ratio of $\geq 80$ [87]. Therefore, maintaining linezolid $C_{\text{min}}$ between 2 and 7 mg/L is recommended for optimal drug exposure whilst minimising haematological toxicity [88]. Alternatively, TDM via LSS can be used [89].

**Bioanalytical assay**

HPLC–UV, LC–MS/MS and immunoassays have been published, but these assays are currently sparsely implemented for routine TDM.

**Colistin**

**Pharmacokinetics**

Colistin is administered parenterally as the prodrug colistin methanesulfonate (CMS). CMS and colistin demonstrate a low $V_d$ and have mixed elimination routes. The $V_d$ and CL of colistin may be altered in critically ill patients, potentially affecting colistin exposure. Colistin protein binding in critically ill patients was reported as 59–74% and was concentration dependent [90].

**Pharmacodynamics**

Colistin demonstrates “concentration-dependent” bactericidal activity, and both in vitro and in vivo data have suggested that the free $\text{AUC}_{0-24}/\text{MIC}$ ($\text{fAUC}_{0-24}/\text{MIC}$) ratio best predicts its activity. $\text{fAUC}_{0-24}/\text{MIC}$ ratios of 10.9–13.7 and 3.5–9.0 have been described for optimal killing against *Pseudomonas aeruginosa* and *Acinetobacter baumannii*, respectively [91]. Prolonged high exposures are associated with neuro- and nephrotoxicity [92–95]. A $C_{\text{min}}$ of $> 2.4$ mg/L increases the likelihood of colistin-induced nephrotoxicity [92, 96, 97].

**Dosing in critically ill patients**

A LD is recommended to compensate for the enlarged $V_d$ in critically ill patients with the CMS dosing regimen also adapted to renal function. The variability in conversion from prodrug to active compound, particularly in patients with ARC, makes dosing highly challenging in this patient group, and as such, leading studies on colistin dosing define a singular dose for all creatinine clearance values $> 90$ mL/min [98].

**TDM in critically ill patients**

The Panel neither recommends, nor discourages routine colistin TDM in critically ill patients.

The therapeutic index for colistin is exceptionally narrow—if TDM is performed, due to the ongoing conversion of CMS to colistin, it is recommended to collect $C_{\text{min}}$ samples when CMS concentrations and conversion are at the lowest (i.e. samples to be drawn just before the next dose or $C_{\text{min}}$ monitoring), and these samples should be processed immediately. It has been suggested that an average steady-state concentration ($C_{ss}$) of 2 mg/L predicts colistin efficacy whilst limiting the likelihood of nephrotoxicity [98, 99]. This target concentration should achieve an $\text{fAUC}_{0-24}/\text{MIC}$ ratio of $\sim 12$ for pathogens with an MIC of $\leq 2$ mg/L, which corresponds to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoint for susceptibility. As colistin concentrations are relatively constant with little fluctuations at steady state, this target concentration can also be applied for $C_{\text{min}}$ monitoring. However, this target concentration has not been correlated with clinical outcomes.

**Bioanalytical assay**

High-performance liquid chromatography with fluorescence detection (HPLC-FL) and LC–MS/MS assays have been published for colistin TDM.

**Polymyxin B**

**Pharmacokinetics**

Polymyxin B demonstrates a low $V_d$ and is predominantly cleared via non-renal elimination. Protein binding was high and hugely variable in critically ill patients and was reported as 58–98.4%. Although the PK of polymyxin B is relatively favourable when compared to colistin, current Product Information dosing recommendations may likely lead to sub-optimal drug exposure in critically ill patients.

**Pharmacodynamics**

Polymyxin B demonstrates “concentration-dependent” kill characteristics, and both in vitro and in vivo data
have suggested that the fAUC_{0–24}/MIC ratio best predicts its activity. fAUC_{0–24}/MIC ratios of 3.7–28.0 correlated best with *Klebsiella pneumoniae* killing [100], and these indices are in line with those reported for colistin against *P. aeruginosa* and *A. baumannii* (3.5–13.9) [91]. A steady-state AUC_{0–24} of 100 mg h/L has been proposed as the nephrotoxicity threshold [101].

**Dosing in critically ill patients**
Current data suggest that LD of 2.5 mg/kg followed by 1.5–2.5 mg/kg/day (in two divided doses) may be appropriate for pathogens with an MIC of ≤1 mg/L [102, 103]. Higher daily doses (up to 3 mg/kg/day), preceded by LD, should be considered for pathogens with an MIC of >1–2 mg/L. Although it has been generally accepted that IV polymyxin B is best dosed by total body weight, emerging data have since disputed this approach [104].

**TDM in critically ill patients**
The Panel neither recommends, nor discourages routine polymyxin B TDM in critically ill patients.

The therapeutic index for polymyxin B is exceptionally narrow—if performed, AUC-based TDM (50–100 mg h/L) with at least one sample collected (concentrations at 12–24 h post-initiation of therapy) combined with Bayesian dose adaptation has been suggested to optimise polymyxin B dosing in critically ill patients [101, 102].

**Bioanalytical assay**
LC–MS/MS assays have been published for polymyxin B TDM.

**Antifungals**

### Echinocandins

**Pharmacokinetics**
The echinocandin antifungals include anidulafungin, caspofungin and micafungin, which are only available for parenteral use. The echinocandins have high plasma protein binding (≥97–99%). Exposure in critically ill patients is generally lower and more variable compared to healthy volunteers, but the clinical implication of this is unclear due to the heterogeneous case mix and small sample sizes in these studies.

**Pharmacodynamics**
Echinocandin exposures relating to optimal clinical outcomes and toxicity occurrence have not been identified thus far. However, optimal mycological response for micafungin against *Candida* spp. has been observed in patients with AUC_{0–24}/MIC ratios of >3000 [105].

**Dosing in critically ill patients**
Although echinocandins are presumed to be clinically comparable with each other, subtle dosing differences exist, e.g. the need for a loading dose, metabolic route and drug–drug interactions. Higher body weight may require higher dosing [106–108]. Echinocandin exposure can be influenced in patients with severe hepatic impairment, particularly for caspofungin. Lower exposure, as well as higher exposure, has been observed in these patients [109–111].

**TDM in critically ill patients**
The Panel neither recommends, nor discourages routine echinocandin TDM in critically ill patients.

**Bioanalytical assay**
LC–MS/MS assays have been published but are sparsely implemented for routine TDM.

### Fluconazole

**Pharmacokinetics**
Fluconazole is available for parenteral and oral administration, is well absorbed from the gastrointestinal tract and displays linear PK. It is moderately lipophilic, demonstrates a V_d of around 1 L/kg and is predominantly cleared via renal elimination. Significant inter-individual PK variability has been observed in critically ill patients.

**Pharmacodynamics**
Maximal clinical efficacy in patients with candidemia has been described with AUC_{0–24}/MIC ratios of ≥55.2–100 [112, 113]. As the dose can be used as a surrogate for fluconazole AUC [114], the ratio of dose to MIC (dose/MIC) has also been used to describe clinical outcomes [112, 113, 115]. Higher dosing may likely lead to hepatotoxicity and seizures [116].

**Dosing in critically ill patients**
LD of 12 mg/kg IV followed by a maintenance dose (MD) of 6 or 12 mg/kg/day IV is advocated to achieve either the low (AUC_{0–24}/MIC ratio of 25) or high (AUC_{0–24}/MIC ratio of 100) PK/PD target, respectively, in critically ill patients with normal renal function [117].

**TDM in critically ill patients**
The Panel neither recommends, nor discourages routine fluconazole TDM in critically ill patients.

**Bioanalytical assay**
Several chromatographic assays have been published for fluconazole TDM.
Flucytosine  
**Pharmacokinetics**  
Flucytosine’s $V_d$ ranges from 0.6 to 0.9 L/kg and is predominantly cleared via renal elimination. Significant inter-patient PK variability has been observed, leading to variable flucytosine concentrations.

**Pharmacodynamics**  
A $C_{max}$ of $>100$ mg/L has been associated with hepatotoxicity and myelosuppression in several clinical studies [118–121]. Concentrations of $<25$ mg/L may selectively amplify resistant *C. albicans* mutants [122].

**Dosing in critically ill patients**  
There are insufficient clinical data to support altering flucytosine dosing for maximal outcomes in critically ill patients. Standard, weight-based dosing, adapted to renal function, is appropriate.

**TDM in critically ill patients**  
The Panel neither recommends, nor discourages routine flucytosine TDM in critically ill patients.

**Bioanalytical assay**  
Several chromatographic assays have been published for flucytosine TDM.

Isavuconazole  
**Pharmacokinetics**  
Isavuconazole is available in oral (capsule) and IV formulations, and switching between these formulations is acceptable. It has a large $V_d$, and its CL is highly dependent on hepatic metabolism. Plasma protein binding is high (>99%). Isavuconazole displays variable and nonlinear PK. There are few data available concerning the use of isavuconazole in critically ill patients, although continuous haemodiafiltration results in increased isavuconazole elimination [125].

**Pharmacodynamics**  
Higher isavuconazole $C_{min}$ has been associated with clinical outcome benefits in *Aspergillus* spp. [126], *Cryptococcus neoformans* [127, 128] and *Histoplasma capsulatum* infections [129]. During isavuconazole prophylaxis, breakthrough infections and mortality are more likely in neutropenic patients with a $C_{min}$ of $<0.25–0.5$ mg/L [130–132]. Oropharyngeal and oesophageal candidiasis patients demonstrated better clinical responses when isavuconazole concentrations are $>0.6–1$ mg/L [133, 134]. An average concentration of $\geq 17.1$ mg/L has been linked with isavuconazole toxicity [135, 136].

**Dosing in critically ill patients**  
LD of 200 mg IV 8 hourly for nine doses (or 72 h) followed by MD of 200 mg IV once daily is recommended to achieve target concentrations within the first few days of therapy.

**TDM in critically ill patients**  
The Panel neither recommends, nor discourages routine isavuconazole TDM in critically ill patients.

**Bioanalytical assay**  
HPLC–UV and LC/MS–MS assays have been published for isavuconazole monitoring.

Itraconazole  
**Pharmacokinetics**  
Itraconazole is available in oral (capsule/tablet and oral solution) and IV formulations. It has 30% higher bioavailability as an oral solution and is more preferred to capsule/tablet formulations. It is lipophilic, demonstrates a large $V_d$ and is predominantly cleared via hepatic metabolism. Plasma protein binding is high (>99%). Itraconazole displays variable and nonlinear PK. Apart from demonstrating nonlinear PK [137], its high variability in bioavailability and hepatic metabolism together with a less favourable safety profile when compared to other azoles traditionally support itraconazole TDM. A $C_{min}$ target between 0.5 and 1 mg/L is used to
guide both prophylaxis and treatment of invasive fungal infections.

**Bioanalytical assay**
Several LC–MS/MS assays have been published for itraconazole TDM.

**Posaconazole**

**Pharmacokinetics**
Posaconazole is available as an oral suspension, tablet and IV formulations. It is lipophilic, demonstrates a large $V_d$ and is predominantly cleared via hepatic glucuronidation. Plasma protein binding is high (> 98%). Extreme inter- and intra-individual PK variability and, consequently, sub-optimal exposures are typically seen with the oral suspension [138–142].

**Pharmacodynamics**
Higher $C_{\text{min}}$ (> 0.5–0.7 mg/L) has been associated with reduced breakthrough infections in patients receiving posaconazole prophylaxis [143–150]. Patients with invasive aspergillosis demonstrated improved clinical response with an average posaconazole concentration of > 1 mg/L [151, 152]. Exposure-related toxicity has not been described for posaconazole although the European Medicines Agency (EMA), and most clinical studies have suggested a putative $C_{\text{min}}$ threshold of > 3.75–4 mg/L [153], which has yet to be validated clinically.

**Dosing in critically ill patients**
LD of 300 mg IV every 12 hourly on day 1 followed by MD of 300 mg IV once daily is recommended for invasive fungal infections.

**TDM in critically ill patients**
The Panel neither recommends, nor discourages routine posaconazole TDM in critically ill patients. Although extensive PK variability has been previously described, the newer delayed-release oral tablets and IV formulations increase the likelihood therapeutic targets will be achieved [138, 154–156]. However, recent data still report highly variable PK in critically ill patients, even with IV posaconazole [157], and therefore TDM may still be useful in this population. Because of the long half-life of the drug (16–35 h) [158], a concentration obtained at a random time with respect to the previous dose, including a $C_{\text{min}}$ is approximately representative of the average daily concentration ($C_{\text{ave}}$) and is accepted as a surrogate for AUC. If TDM is performed, a steady-state $C_{\text{ave}}$ target of > 0.5–0.7 mg/L and > 1 mg/L can be used to guide posaconazole prophylaxis and treatment of invasive fungal infections, respectively, particularly when oral suspension is used.

**Bioanalytical assay**
Several chromatographic assays have been published for voriconazole TDM.

**Voriconazole**

**Pharmacokinetics**
Voriconazole is lipophilic, demonstrates a large $V_d$ and is predominantly cleared via hepatic metabolism. Plasma protein binding is 58%. Voriconazole displays nonlinear PK in adults and exhibits extensive inter-individual PK variability in all patient populations.

**Pharmacodynamics**
A $C_{\text{min}}$ of $\geq 1$ [159–165] or $\geq 2$ mg/L [166–168], as well as a $C_{\text{min}}$ to MIC ($C_{\text{min}}$/MIC) ratio of 2–5 [169], has been associated with improved clinical outcomes in the treatment of invasive fungal infections. Although no clear exposure–response relationship has been established for voriconazole prophylaxis, breakthrough fungal infections are reported to be more likely with a $C_{\text{min}}$ of $\leq 1.5–2$ mg/L [170, 171]. $C_{\text{min}}$ of $\geq 4.5–6$ mg/L has been linked with voriconazole-associated hepatotoxicity and neurotoxicity [161, 165, 167, 172–175].

**Dosing in critically ill patients**
LD of 6 mg/kg IV every 12 hourly for two doses followed by 3–4 mg/kg IV 12-hourly is recommended for invasive fungal infections.

**TDM in critically ill patients**
The Panel recommends that TDM be routinely performed when voriconazole is used in critically ill patients. TDM-guided voriconazole dosing in the treatment of invasive fungal infections has been shown to improve clinical response and reduce voriconazole discontinuation due to adverse events [163]. Limited data are available in critically ill patients, but sub-optimal exposures and negative clinical outcomes have been observed in these patients with standard voriconazole dosing [160]. Also, recent publications reported the significant role of the inflammatory response in the unpredictable PK of voriconazole with a 0.015 mg/L rise in the $C_{\text{min}}$ for every 1 mg/L increase in C-reactive protein (CRP) [176–178]. As inflammation is common in critically ill patients, this could have a significant impact on the incidence of voriconazole toxicities. A $C_{\text{min}}$ target between 2 and 6 mg/L is recommended to guide voriconazole dosing.

**Bioanalytical assay**
Several chromatographic assays have been published for voriconazole TDM.
Antivirals

Aciclovir/valaciclovir

Pharmacokinetics
Valaciclovir is the orally administered prodrug of aciclovir, which is moderately lipophilic, demonstrates a large $V_d$ and is predominantly cleared via renal elimination.

Pharmacodynamics
Limited data exist linking aciclovir exposures with clinical efficacy and toxicity. Although the efficacy of aciclovir/valaciclovir in the treatment of herpes simplex virus (HSV) infection has been associated with AUC and the time that the drug remains above the 50% inhibitory concentration (EC$_{50}$; $T >$ EC$_{50}$) [179–183], these indices require further investigations. Higher concentrations, particularly in patients with renal impairment, have been linked with the likelihood of gastrointestinal and neurological adverse events [184–187].

Dosing in critically ill patients
A standard dose of 10–15 mg/kg IV 8 hourly is recommended for severe viral infections in immunocompetent patients.

TDM in critically ill patients
The Panel neither recommends, nor discourages routine aciclovir TDM in critically ill patients.

Bioanalytical assay
Several HPLC–UV and LCMS-MS assays have been published for aciclovir TDM.

Foscarnet

Pharmacokinetics
Significant inter- and intra-individual PK variability has been reported, and it may be challenging to estimate foscarnet concentrations over time in an individual patient accurately.

Pharmacodynamics
No clear relationship has been established between ganciclovir exposures with clinical efficacy and toxicity. AUC$_{0-24}$ has been associated with ganciclovir antiviral activity with values of $\geq 40–60$ mg h/L advocated for CMV prophylaxis [197–201]. $C_{\text{min}}$ has also been used to predict ganciclovir activity, but the optimal cut-off value remains poorly defined [202–207]. No clearly defined toxicity thresholds have been described for ganciclovir, but higher $C_{\text{min}}$ and AUC$_{0-24}$ values are likely to increase the risk of haematological and neurological toxicity [199, 208].

Dosing in critically ill patients
In the treatment of CMV infections in immunocompromised patients, the usual dose of ganciclovir for induction therapy is 5 mg/kg IV every 12 hourly which is then followed by 5 mg/kg as a single daily infusion for maintenance therapy.

TDM in critically ill patients
The Panel neither recommends, nor discourages routine ganciclovir/valganciclovir TDM in critically ill patients.
Several centres have reported their experience with ganciclovir/valganciclovir TDM [208, 209], even though changes in immunological markers have been reported to predict clinical outcomes reliably [210, 211]. A $C_{\text{min}}$ of $> 2$ mg/L or AUC$_{0–24}$ of $> 40$ mg h/L can be applied if TDM is performed. A clinically applicable LSS to estimate ganciclovir/valganciclovir AUC$_{0–24}$ has been described [24] and combined with Bayesian dose adaptation; this approach demonstrated superior PK/PD outcomes and trends towards patient benefits when compared to standard dosing recommendations [208].

**Bioanalytical assay**
Several HPLC–UV and LC/MS–MS assays have been published for ganciclovir/valganciclovir TDM.

**Oseltamivir**

**Pharmacokinetics**
Oseltamivir is hydrophilic, demonstrates a large $V_d$ and is predominantly cleared via renal elimination. Its active metabolite, oseltamivir carboxylate (OC), displays minimal inter- and intra-individual PK.

**Pharmacodynamics**
No clear relationship has been established between oseltamivir and OC exposures with either clinical efficacy or toxicity. Although the efficacy of oseltamivir in animal models of influenza appears to be dose dependent, no formal exposure–response relationships have been established [212–214]. It has been suggested that the AUC$_{0–24}$ or AUC$_{0–24}/EC_{50}$ might be suitable indices to guide therapy, but further studies are warranted to validate the clinical relevance of these findings [215, 216]. Higher AUC$_{0–12}$ OC exposures have been associated with mild-to-moderate adverse events [217]. The PK of OC appears to be predictable, although this has been mostly determined in healthy volunteers where PK variability is known to be low [217, 218].

**Dosing in critically ill patients**
A dose of 75 mg PO once or twice daily is currently recommended for prophylaxis and treatment of influenza in critically ill patients.

**TDM in critically ill patients**
The Panel neither recommends, nor discourages routine oseltamivir TDM in critically ill patients.

Although there are limited clinical data to support oseltamivir TDM, French investigators have recently described the utility of paracetamol absorption test to predict OC absorption and likely plasma concentrations in critically ill patients [219].

**Bioanalytical assay**
Several HPLC–UV and LC/MS–MS assays have been published for oseltamivir TDM.

**Ribavirin**

**Pharmacokinetics**
Ribavirin demonstrates a large $V_d$ ($\geq 18$ L/kg) and is predominantly cleared via renal elimination. Wide inter-individual PK variability, including bioavailability, has been reported with this drug.

**Pharmacodynamics**
Inconsistent data have been reported on the relationship between ribavirin exposure and efficacy, as well as toxicity occurrence. Although higher $C_{\text{min}}$ [220–226] and AUC [225, 227, 228] values have been associated with eradication of hepatitis C virus (HCV) or sustained virological response in some studies, it is important to note that numerous studies have also shown no association between these parameters and sustained virological response. It has been suggested that the AUC$_{0–4}$ (1.76 mg h/L) and AUC$_{0–12}$ (3.01 mg h/L) after the first dose may be a better sustained virological response predictor when compared to $C_{\text{min}}$ or any single time point [228]. Although haemolytic anaemia has been linked with a $C_{\text{min}}$ of $> 2.3–3.5$ [224, 229, 230], some studies have found no significant correlation. Additionally, other studies indicated that other factors (e.g. pegIFN-alpha-2a levels) may have a greater impact on the outcome than ribavirin concentrations [231].

**TDM in critically ill patients**
The Panel neither recommends, nor discourages routine ribavirin TDM in critically ill patients.

Ribavirin TDM has been controversially discussed for at least a decade since hepatitis C is no longer treated as a pathogenic entity but rather according to different genotypes, and old combination partners are no longer state of the art. Furthermore, there is currently conflicting data regarding the relationship between ribavirin exposures with therapeutic or toxic effects. However, it is important to note that as opposed to weight-based dosing, TDM-guided ribavirin dosing has been shown to significantly improve sustained virological response in patients with chronic hepatitis C genotype 1 [227]. Although anaemia was more severe in the TDM group, it was well managed with erythropoietin beta. More recently, TDM has been suggested as a useful tool to guide ribavirin treatment in lung transplant recipients with paramyxovirus infection [232].
Bioanalytical assay
Several HPLC–UV and LC/MS–MS assays have been published for ribavirin TDM.

Main areas for future investigations
Optimal antimicrobial exposures and PK/PD targets in the treatment of sepsis and septic shock in ICU
Optimal intravenous antimicrobial therapy needs to be administered as soon as possible, preferably within the first hour of sepsis and septic shock recognition [233]. Empirical antimicrobial therapy should attempt to provide coverage against all likely pathogens (bacterial, fungal and/or viral) and effective exposures are needed in the interstitial fluid of tissues presumed to be the source of infection. As extreme pathophysiological changes are likely to affect antimicrobial exposures, factors associated with PK/PD alterations need to be determined and considered in critically ill patients with sepsis and septic shock. Optimal antimicrobial exposures and PK/PD targets for patient benefits need to be further elucidated before appropriate dosing regimens and strategies can be improved in this population. The role of biomarkers as a surrogate for an antimicrobial response should be investigated as an earlier therapeutic intervention can be made rather than relying on clinical signs and symptoms [234, 235]. More data on plasma and target-site tissue PK of antimicrobials, particularly in the first 24 h of therapy, are needed to evaluate the appropriateness of the current dosing regimen in this patient population.

Optimal antimicrobial exposures for reducing resistance development in ICU
Most of the Panel’s treatment goals have been focused on maximising clinical and microbiological outcomes and not including resistance suppression. However, for most antimicrobials, clinical data are urgently needed to define thresholds that can minimise resistance emergence and whether they are safe for patients.

Impact of TDM in personalised antimicrobial dosing in critically ill patients
Only a few studies have attempted to compare the clinical outcomes of TDM-guided antimicrobial dosing versus outcomes without this intervention [39, 163, 227]. Currently, most data were obtained from small-scale and uncontrolled studies, which are not of itself, sufficient to support a global practice shift towards routine antimicrobial TDM in ICU. Therefore, well-designed and controlled studies focusing on patient-centred outcomes should be performed in this population to evaluate the real benefits of incorporating TDM into daily ICU practice.

The tools and essentials for TDM
Routine antimicrobial TDM in critically ill patients is currently hampered by slow turnaround times, and even in expert centres, antimicrobial concentrations may only be available after 6–8 h of blood collection, potentially leading to delayed dosing improvements. Furthermore, in most ICUs, TDM is probably not available for all important antimicrobials and certainly, not for 24 h and 7 days a week [5, 6]. An easy-to-use chromatography-based method that enables rapid and reliable simultaneous determination of antimicrobial concentrations in plasma and tissues can be developed, and some are now being used routinely in clinical settings. Although concentration measurements are usually performed in blood matrices (e.g. plasma or serum), several alternative sampling strategies (e.g. dried blood spots and volumetric absorptive microsamples), which are minimally or non-invasive approaches, need to be further investigated and validated for routine TDM in critically ill patients. Importantly, these “patient-friendly” strategies may play an important role in the establishment of TDM centres in remote and resource-limited settings.

Conclusion
Although alternative dosing strategies can improve antimicrobial exposure in critically ill patients, the extreme PK variability in this patient population means that some may still receive sub-optimal antibiotic exposure leading to unpredictable clinical outcomes. TDM-guided dosing is the only safe and effective way to ensure that all critically ill patients achieve therapeutic antimicrobial exposures. TDM-guided dosing has been shown to be clinically beneficial for aminoglycosides, voriconazole and ribavirin. For most common antibiotics and antifungals in the ICU, a clear therapeutic range has been established and for these agents, routine TDM in critically ill patients may be useful. Specifically, we recommend routine TDM when one of these antibiotics or antifungals is used in critically ill patients: aminoglycosides, beta-lactam antibiotics, linezolid, teicoplanin, vancomycin and voriconazole. For the antivirals, urgent research is needed to identify therapeutic targets for patient benefits and to also ascertain whether antiviral TDM is indeed meritorious in this patient population. Although we believe that TDM should be the standard of care for most antimicrobials in every ICU, important barriers, such as the availability of bioanalytical experts and TDM equipments in an institution, need to be addressed before routine TDM can be widely employed worldwide.

Electronic supplementary material
The online version of this article (https://doi.org/10.1007/s00134-020-06050-1) contains supplementary material, which is available to authorized users.
Author details
1 University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia. 2 School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia. 3 Westmead Hospital, Westmead, NSW, Australia. 4 Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia. 5 Infectious Diseases Clinic, Department of Health Sciences, University of Genoa, Genoa and Hospital Policlinico San Martino – IRCCS, Genoa, Italy. 6 Department of Anaesthesiology, University Ulm, Ulm, Germany. 7 Department of Critical Care, University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece. 8 Department of Microbiology and Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia. 9 Department of Paediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. 10 Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, CA, USA. 11 Department of Medicine, Faculty of Medicine of Porto, Porto, Portugal. 12 Department of Emergency and Intensive Care Medicine, Centro Hospitalario Universitario de São João, Porto, Portugal. 13 Institute of Clinical Pharmacology, SM Miricomerica University Hospital, ASUFC, Udine, Italy. 14 Department of Perioperative Medicine, Skåne University Hospital, Malmö, Sweden. 15 Department of Intensive Care Medicine and Infectious Diseases, Bichat-Claude Bernard University Hospital, AP–HP, Paris, France. 16 Infection, Antimicrobials, Modelling, Evolution (IAME), Paris Diderot University, Paris, France. 17 Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia. 18 Department of Intensive Care and Hyperbaric Medicine, The Alfred, Melbourne, VIC, Australia. 19 Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany. 20 Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria. 21 Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium. 22 Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia. 23 Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia. 24 Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France.

Acknowledgements
We wish to acknowledge the individual societies for their endorsement of this Position Paper. We also wish to acknowledge the members of the public who provided public feedback that was addressed by the Panel as part of the ESCMID endorsement process.

Authors’ contributions
The idea and design of the Position Paper was conceptualised by Jan J. De Waele and Jason A. Roberts. Literature review and data analysis were performed by all authors. The first draft of the Position Paper was written by Mohd H. Abdul–Aziz, and all authors critically revised and commented on subsequent versions of the manuscript. All authors read and approved the final version of the Position Paper.

Compliance with ethical standards
Conflicts of interest
Mohd H. Abdul–Aziz, Jan-Willem C. Alffenaar, Matteo Bassetti, Hendrik Bracht, George Dimopoulos, Deborah Marriott, Michael Neely, Jose-Artur Paiva, Frederik Scovall, Sebastian G. Wicha and Markus Zeitlinger declare no conflict of interest. Federico Pea participated in speaker bureau for Angelini, Basilea Pharmaceutica, Gilead, Hikma, Merck Sharp & Dohme, Nordic Pharma, Pfizer and Sanofi Aventis and in advisory board for Angelini, Basilea Pharmaceutica, Correvio, Gilead, Merck Sharp & Dohme, Nordic Pharma, Novartis, Pfizer and Therma-Fisher. Jean F. Timst has contributed to Medical Advisory Boards for Gilead Sciences, Inc., Merck Sharp & Dohme, MedImmune, Paratek Pharmaceuticals, Pfizer Inc. and Venatorxa Pharmaceuticals, Inc. Jean F. Timst has received research grants and/or lecture fees from Biomerieux, Gilead Sciences, Inc., Merck Sharp & Dohme and Pfizer Inc. Andrew A. Udy has contributed to Medical Advisory Boards for Baxter Healthcare Pty Ltd, Merck Sharp & Dohme (Australia) Pty Ltd, in addition to previously receiving honorarium and travel support from Pfizer Australia Pty Ltd. Jason A. Roberts has received consultation fees for Accelerate Diagnostics, Inc., Bayer Healthcare, Cubist Pharmaceuticals, Grifols, Merck Sharp & Dohme and Pfizer Inc. Jan J. De Waele is supported by a grant from the Research Foundation Flanders (Senior Clinical Investigator Grant FWO, Ref. 1881020 N). Jason A. Roberts receives funding from the Australian National Health and Medical Research Council for a Centre of Research Excellence (APP1099452) and a Practitioner Fellowship (APP1117065).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 30 January 2020 Accepted: 10 April 2020 Published online: 7 May 2020

References
1. Dulhunty JM, Paterson D, Webb SA, Lipman J (2011) Antimicrobial utilisation in 37 Australian and New Zealand intensive care units. Anaesth Intensive Care 39:231–237
2. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, Hope WW, Farkas A, Neely MN, Schentag JJ, Drusano G, Frey OR, Theuretzbacher U, Kuti JL, International Society of Anti-Infective Pharmacology and the Pharmacokinetics and Pharmacodynamics Study Group of the European Society of Clinical Microbiology and Infectious Diseases (2014) Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 14:498–509
3. Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, Kaukonen KM, Koulenti D, Martin C, Montavridis P, Rello J, Rhodes A, Sarr T, Wallis SC, Lipman J, DAU Study (2014) DAU: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis 58:1072–1083
4. Sumi CD, Heffernan AJ, Lipman J, Roberts JA, Sime FB (2019) What antibiotic exposures are required to suppress the emergence of resistance for gram-negative bacteria? A systematic review. Clin Pharmacokinet 58:1407–1443
5. Tabah A, De Waele J, Lipman J, Zahar JR, Cotta MO, Barton G, Timst JF, Roberts JA (2015) The ADMIN-ICU survey: a survey on antimicrobial dosing and monitoring in ICUs. J Antimicrob Chemother 70:2671–2677
6. Wong G, Brinkman A, Benefiel RJ, Carlier M, De Waele JJ, El Helali N, Frey O, Harbarth S, Huttner A, McWhinney B, Misset B, Pea F, Preisenberg J, Roberts MS, Robertson TA, Roehrl A, Sime FB, Taccone FS, Ungereger JP, Lipman J, Roberts J. (2014) An international, multicentre survey of beta-lactam antibiotic therapeutic drug monitoring practice in intensive care units. J Antimicrob Chemother 69:1416–1423
7. Goncalves-Pereira J, Povoa P (2011) Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of beta-lactams. Crit Care 15:R206
8. Roberts JA, Pea F, Lipman J (2013) The clinical relevance of plasma protein binding changes. Clin Pharmacokinet 52:1–8
9. Alobaid AS, Hites M, Lipman J, Taccone FS, Roberts JA (2016) Effect of obesity on the pharmacokinetics of antimicrobials in critically ill patients: a structured review. Int J Antimicrob Agents 47:259–268
10. Mahmoud SH, Shen C (2017) Augmented renal clearance in critical illness: an important consideration in drug dosing. Pharmacometrics 9(3):36
11. Udy AA, Varghese JM, Altkroni M, Briscoe S, McWhinney BC, Ungereger JP, Lipman J, Roberts JA (2012) Subtherapeutic initial beta-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest 142:30–39
12. Udy AA, Baptista JP, Lim NL, Joynt GM, Jarrett P, Wockner L, Boots R, Weller J, Lipman J (2014) Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations. Crit Care Med 42:520–527
13. Baptista JP, Udy AA, Sousa E, Pimentel J, Wang L, Roberts JA, Lipman J (2011) A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance. Crit Care 15:R139
14. Udy AA, Dulhunty JM, Roberts JA, Davis J, Webb SA, Bellemo R, Gomersall C, Shirwashak C, Eastwood GM, Myburgh J, Paterson DL, Starr T, Paul SK, Lipman J, BLING-II Investigators, ANZICS Clinical Trials Group (2017) Association between augmented renal clearance and clinical outcomes in patients receiving beta-lactam antibiotic therapy
by continuous or intermittent infusion: a nested cohort study of the BLING-II randomised, placebo-controlled, clinical trial. Int J Antimicrob Agents 49:624–630

15. Choi G, Gomersall CD, Tian Q, Joynt GM, Freebairn R, Lipman J (2009) Principles of antibacterial dosing in continuous renal replacement therapy. Crit Care Med 37:2268–2282

16. Roberts DM, Roberts JA, Roberts MS, Liu X, Nair P, Cole L, Lipman J, Bellomo R, Investigators RRTS (2012) Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: a multicentre pharmacokinetic study. Crit Care Med 40:1523–1528

17. Roberts JA, Joynt G, Lee A, Choi G, Bellomo R, Kanji S, Mudaliar MY, Peake SL, Stephens D, Taccone FS, Uldemolins M, Valkonen MM, Agbeje J, Baptista JP, Bekos V, Bozin D, Brinkmann A, Buizen L, Castro P, Cole CL, Creteur J, De Waele J, Deans R, Eastwood GM, Escobar L, Gomersall C, Gresham R, Jamal JA, Kluge S, Konig C, Koulouras VF, Lassig-Smith M, Laterre PF, Lei Y, Leung P, Lefrant JY, Martin-Loeches I, Mat Ner MB, Ostermann M, Parker SL, Rello J, Roberts DM, Richards B, Rodriguez A, Roehr AC, Roger C, Seoane L, Sinnolairedy M, Sousa E, Soy D, Spring A, Starr T, Thomas J, Turnidge J, Wallis SC, Williams T, Wittebole X, Zikou XT, Paul S, Lipman J (2020) The effect of renal replacement therapy and antibiotic dose on antibiotic concentrations in critically ill patients: data from the multinational SMARTT Study. Clin Infect Dis

18. Cheng V, Abdul-Aziz MH, Roberts JA, Shekar K (2018) Optimising drug dosing in patients receiving extracorporeal membrane oxygenation. J Thorac Dis 10:5629–6141

19. Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–10

20. Mouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL (2005) Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update. J Antimicrob Chemother 55:601–607

21. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limango B, Fridkin S, National Healthcare Safety Network (2013) Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol 34:1–14

22. Mouton JW, Muller AE, Canton R, Giske CG, Kahlmeter G, Turnidge J (2018) MIC-based dose adjustment: facts and fables. J Antimicrob Chemother 73:564–568

23. Kim EJ, Oh J, Lee K, Yu KS, Chung JY, Hwang JH, Nam EY, Kim HS, Kim M, Park JS, Song KH, Kim ES, Song J, Kim HB (2019) Pharmacokinetic characteristics and limited sampling strategies for therapeutic drug monitoring of colistin in patients with multidrug-resistant gram-negative bacterial infections. Ther Drug Monit 41:102–106

24. Padullés Caldes A, Caldes A, Cerezo G, Torras J, Grinyó JM, Llorens M, Park JS, Song KH, Kim ES, Song J, Kim HB (2019) Pharmacokinetic characteristics and limited sampling strategies for therapeutic drug monitoring of colistin in patients with multidrug-resistant gram-negative bacterial infections. Ther Drug Monit 41:102–106

25. Lempers VJ, Alffenaar JW, Touw DJ, Burger DM, Uges DR, Bruggeman RJ (2014) Five year results of an international proficiency testing for meropenem and piperacillin therapeutic drug monitoring: impact of experimental variables on the protein binding of tigecycline in human plasma as determined by ultrafiltration. J Pharm Sci 107:739–744

26. Cristallini S, Hites M, Kabtouri H, Roberts JA, Beumier M, Cotton F, Lipman J, Jacobs F, Vincent JL, Creteur J, Taccone FS (2016) New regimen for continuous infusion of vancomycin in critically ill patients. Antimicrob Agents Chemother 60:4750–4756

27. Pea F, Viale F, Cojutti P, Furlanut M (2012) Dosing nomograms for attaining optimum concentrations of meropenem by continuous infusion in critically ill patients with severe gram-negative infections: a pharmacokinetics/pharmacodynamics-based approach. Antimicrob Agents Chemoter 56:6343–6348

28. Neely MN, Kato L, Youn G, Kraler L, Bayard D, van Guilder M, Schumitzky A, Yamada W, Jones B, Minejima E (2018) Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrob Agents Chemother 62:e02042-17

29. Broeker A, Nardecchia M, Klinker KP, Derendorf H, Day RO, Marriot DJ, Carlrand JE, Stocker SL, Wicha SG (2019) Towards precision dosing of vancomycin: a systematic evaluation of pharmacometric models for Bayesian forecasting. Clin Microbiol Infect 25:1286.e1281–1286.e1287

30. Ruiz J, Ramírez P, Company MJ, Gordon M, Villarreal E, Concha P, Aroca M, Frasquet J, Remedios-Marques M, Castellanos-Ortega A (2018) Impact of amikacin pharmacokinetic/pharmacodynamic index on treatment response in critically ill patients. J Glob Antimicrob Resist 12:90–95

31. Duszyńska W, Taccone FS, Hürkacz M, Kowalska-Krhochal M, Wielka-Hojenka A, Kubler A (2013) Therapeutic drug monitoring of amikacin in septic patients. Crit Care 17:R165

32. Moore RD, Lietsman PS, Smith CR (1987) Clinical response to amino-glycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 155:93–99

33. De Winter S, Wauters J, Meersseman W, Verhaegen J, Van Wijngaarden E, Peetermans W, Aanraa P, Verstel S, Spriet I (2018) Higher versus standard amikacin single dose in emergency department patients with severe sepsis and septic shock: a randomised controlled trial. Int J Antimicrob Agents 51:562–570

34. de Montmollin E, Boudaoud L, Gault N, Mouvillier B, Mariotte E, Chemam S, Massias L, Papy E, Tubach F, Wolff M, Sonnerville R (2014) Predictors of insufficient amikacin peak concentration in critically ill patients receiving a 25 mg/kg total body weight regimen. Intensive Care Med 40:998–1005

35. Delattre IK, Musuamba FT, Nyberg J, Taccone FS, Laterre PF, Verbeek RK, Jacobs F, Wallemacq PE (2010) Population pharmacokinetic modelling and optimal sampling strategy for Bayesian estimation of amikacin exposure in critically ill septic patients. Ther Drug Monit 32:749–756

36. van Lent-Ena KA, Malthot RA, Geus WP, van Hout BA, Vinks AA (1999) Impact of goal-oriented and model-based clinical pharmacokinetic dosing of aminoglycosides on clinical outcome: a cost-effectiveness analysis. Ther Drug Monit 21:63–73

37. Begg EJ, Barclay ML, Duffull SB (1995) A suggested approach to once-daily aminoglycoside dosing. Br J Clin Pharmacol 39:605–609

38. McInnion FS, Paladino JA, Schentag JI (2008) Evaluation of area under the inhibitory curve (AUC/C) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents 31:345–351

39. Li C, Du X, Kuti JL, Nicolau DP (2007) Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother 51:1725–1730

40. Tam VH, McInnion PS, Akins RL, Rybak MJ, Drusano GL (2002) Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother 50:425–428

41. Aitken SL, Althuser J, Guerrier DJ, Hirsch EB, Ostrosky-Zeichner LL, Ericson CD, Tam VH (2015) Cefepime free minimum concentration to minimum inhibitory concentration (CMIC/MIC) ratio predicts clinical failure in patients with Gram-negative bacterial pneumonia. Int J Antimicrob Agents 45:541–544

42. Vial T, Bailly H, Perault-Pochat MC, Default A, Roux MJ, Drusano GL (2018) Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother 73:91–915

43. Vial T, Bailly H, Perault-Pochat MC, Default A, Roux MJ, Drusano GL (2018) Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother 73:91–915
increased attainment of an AUC/MIC \( \geq 400 \) in patients with pre-
sumed MRSA infection? J Pharm Pract 30:329–335
83. Neely MN, Youn G, Jones B, Jelliffe RW, Drusano GL, Rodvold KA, Lodise
TP (2014) Are vancomycin trough concentrations adequate for optimal
dosing? Antimicrob Agents Chemother 58:309–316
84. Holmes NE, Turnidge JD, Munchhof WJ, Robinson JQ, Korman TM,
O'Sullivan MV, Anderson TL, Roberts SA, Warren SJ, Gao W, Howden BP,
Johnson PD (2013) Vancomycin AUC/MIC ratio and 30-day mortality in
patients with Staphylococcus aureus bacteremia. Antimicrob Agents
Chemother 57:1654–1663
85. Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ (2003)
Clinical pharmacodynamics of linezolid in seriously ill patients treated
in a compassionate use programme. Clin Pharmacokinet 42:1411–1423
86. Taubert M, Zoller M, Maier B, Frechen S, Scharf C, Holdt LM, Frey L,
Vogeser M, Fuhr U, Zander J (2016) Predictors of inadequate linezolid
concentrations after standard dosing in critically ill patients. Antimicrob
Agents Chemother 60:5254–5261
87. Pea F, Furlanet M, Cojutti P, Cristin F, Zamparini E, Franceschi L, Viale P
(2010) Therapeutic drug monitoring of linezolid: a retrospective mono-
centric analysis. Antimicrob Agents Chemother 54:4605–4610
88. Pea F, Viale P, Cojutti P, Del Pin B, Zamparini E, Furlanet M (2012) Thera-
petic drug monitoring may improve safety outcomes of long-term
treatment with linezolid in adult patients. J Antimicrob Chemother 67:2034–2043
89. Kamp J, Bolhuis MS, Tiberi S, Akkerman OW, Centis R, de Lange WC,
Kosterink JG, van der Werf TS, Migliorini GB, Alfenas JC (2017) Simple
strategy to assess linezolid exposure in patients with multi-drug-resist-
ant and extensively-drug-resistant tuberculosis. Int J Antimicrob Agents
49:688–694
90. Mohamed AF, Karaiskos I, Plachouras D, Karvanen M, Pontikis K, Jansson
CJ, Wang J, Nguyen VT, Turnidge JD, Li J, Nation RL (2015) New
pharmacokinetic/pharmacodynamic studies of systemically admin-
istered colistin against Pseudomonas aeruginosa and Acinetobacter baumannii in mouse thigh and lung infection models: smaller response in
lung infection. J Antimicrob Chemother 70:3291–3297
91. Cheah SE, Wang J, Nguyen VT, Turnidge JD, Li J, Nation RL (2015) New
pharmacokinetic/pharmacodynamic studies of systemically admin-
istered colistin against Klebsiella pneumoniae in mouse thigh and lung infection models: smaller response in
lung infection. J Antimicrob Chemother 70:3291–3297
92. Forrest A, Garonzik SM, Thamlikitkul V, Giarmarellou H, Pappadomichelakis E, Papadomichelakis E, Antoniadou A, Giamarellou H, Armaganidis
A, Cars O, Friberg LE (2012) Application of a loading dose of colistin
methanesulfonate in critically ill patients: population pharmacokinet-
ics, protein binding, and prediction of bacterial kill. Antimicrob Agents
Chemother 56:4241–4249
93. Phe K, Johnson ML, Palmer HR, Tam VH (2014) Validation of a model to
predict the risk of nephrotoxicity in patients receiving colistin. Antimi-
crob Agents Chemother 58:6946–6948
94. Pogue JM, Lee J, Marchaim D, Yee V, Zhao JJ, Chopra T, Lephart P, Kaye
KS (2011) Incidence of and risk factors for colistin-associated nephro-
toxicity in a large academic health system. Clin Infect Dis 53:879–884
95. Rattanaumpawan P, Ungprasert P, Thamlikitkul V (2011) Risk factors for
colistin-associated nephrotoxicity. J Infect Dis 187:182–190
96. Horcajada JP, Sorli L, Luque S, Benito N, Segura C, Campillo N, Montero
M, Esteve E, Mirelis B, Pomar V, Cuquet J, Marti C, Garro S, Grau S (2016)
Validation of a colistin plasma concentration breakpoint as a predictor
of nephrotoxicity in patients treated with colistin methanesulfonate. Int J
Antimicrob Agents 48:725–727
97. Sorli L, Luque S, Grau S, Berenguer N, Segura C, Montero MM, Alvarez-
Lerma F, Knobel H, Benito N, Horcajada JP (2013) Trough colistin plasma
level is an independent risk factor for nephrotoxicity: a prospective
observational cohort study. BMC Infect Dis 13:380
98. Nation RL, Garonzik SM, Li J, Thamlikitkul V, Giarmarellou-Bourbouls EJ, Forrest A, Paterson DL, Turnidge JD, Forest A, Silveira FP (2016) Updated US and
European dose recommendations for intravenous colistin: how do they
perform? Clin Infect Dis 62:552–558
99. Nation RL, Garonzik SM, Thamlikitkul V, Giarmarellou-Bourbouls EJ, Forrest A, Paterson DL, Li J, Silveira FP (2017) Dosing guidance for intra-
venous colistin in critically-ill patients. Clin Infect Dis 64:565–571
100. Landersdorfer CB, Wang J, Wirth V, Chen K, Kaye KS, Tsuji BT, Li J, Nation
RL (2018) Pharmacokinetics/pharmacodynamics of systematically
administered polymyxin B against Klebsiella pneumoniae in mouse thigh and lung infection models. J Antimicrob Chemother 73:462–468
101. Lakota EA, Landersdorfer CB, Nation RL, Li J, Kaye KS, Rao GG, Forrest A
(2018) Personalizing polymyxin B dosing using an adaptive feedback
control algorithm. Antimicrob Agents Chemother 62:e00483-18
102. Miglis C, Rhodes NJ, Avedissian SN, Kubin CJ, Yin MT, Nelson BC, Pai MP,
Scheetz MH (2018) Population pharmacokinetics of polymyxin B in
acutely ill adult patients. Antimicrob Agents Chemother 62:e01475-17
103. Sandri AM, Landersdorfer CB, Jacob J, Boniatti MM, Dalarosa MG, Falci
DR, Behle TF, Bordinhao RC, Wang J, Forrest A, Nation RL, Li J, Zavascki
AP (2013) Population pharmacokinetics of intravenous polymyxin B in critically ill patients: implications for selection of dosage regimens. Clin
Infect Dis 57:524–531
104. Kubin CJ, Nelson BC, Miglis C, Scheetz MH, Rhodes NJ, Avedissian SN,
Cremers S, Yin MT (2018) Population pharmacokinetics of intravenous polymyxin B from clinical samples. Antimicrob Agents Chemother
62:e01499-17
105. Andes D, Ambrose PG, Hammel JP, van Wart SA, Iyer V, Reynolds DK,
Buell DN, Kovanda LL, Bhatnami SM (2011) Use of pharmacokinetic-
pharmacodynamic analyses to optimize therapy with the systemic anti-
fungal micafungin for invasive candidiasis or candidemia. Antimicrob
Agents Chemother 55:2113–2121
106. Maseda E, Grau S, Luque S, Castillo-Mafla MP, Suarez-de-la-Rica A,
Montero-Feijo-o A, Salgado P, Gimenez MJ, Garcia-Bernedo CA, Gilsanz F,
Roberts JA (2018) Population pharmacokinetics/pharmacodynamics of micafungin against Candida species in obese, critically ill, and morbidly obese critically ill patients. Crit Care 22:94
107. van der Elst KC, Veringa A, Zijlstra JG, de Lange WC, Kosterink JG, van der Werf TS, Alfenaar JC (2017) Low caspofungin exposure in patients in intensive care units. Antimicrob Agents Chemother 61:e01582-16
108. Lempers VJ, van Rongen A, van Dongen EP, van Ramshorst B, Burger
DM, Aarnoutse RE, Knibbe CA, Bruggemann RJ (2016) Does weight
impact anidulafungin pharmacokinetics? Clin Pharmacokin 55:1289–1294
109. Martal LC, Bruggemann RJ, Schouten JA, van Leeuwen HJ, van Zanten
AR, de Lange DW, Muijlinkwijk E, Verweij PE, Burger DM, Aarnoutse
RE, Pickkers P, Dorlo TP (2016) Dose reduction of caspofungin in intensive care unit patients with Child Pugh B will result in suboptimal exposure. Clin Pharmacokin 55:723–733
110. Undre N, Pretorius B, Stevenson P (2015) Pharmacokinetics of micafungin in subjects with severe hepatic dysfunction. Eur J Drug Metab Pharmacokinet 40:285–293
111. Mistry GC, Migoya E, Deutsch PJ, Winchell G, Hesney M, Li S, Bi S, Dizier
S, Lasseter KC, Stone JA (2007) Single- and multiple-dose administra-
tion of caspofungin in patients with hepatic insufficiency: implications for safety and dosing recommendations. J Clin Pharmacol 47:951–961
112. Pai MP, Turpin RS, Carey KW (2007) Association of fluconazole area under the concentration-time curve/MIC and dose/MIC ratios with mortality in nonneutropenic patients with candidemia. Antimicrob Agents Chemother 51:35–39
113. Rodriguez-Tudela JL, Almirante B, Rodriguez-Pardo D, Laguna F, Donnelly JP, Mouton JW, Palhissa A, Cuenca-Estrella M (2007) Correlation of the MIC and dose/MIC ratio of fluconazole to the therapeutic response of patients with mural candidiasis and candidemia. Antimicrob Agents Chemother 51:3593–3594
114. Louie A, Drusano GL, Banerjee P, Liu QF, Liu W, Kaw P, Shayegani M,
Taber H, Miller MH (1998) Pharmacodynamics of fluconazole in a murine model of systemic candidiasis. Antimicrob Agents Chemother 52:160–165
154. Cornely OA, Duarte RF, Haider S, Chandrasekar P, Helfgott D, Jimenez JL, Candoni A, Raad I, Ladnerie M, Langston A, Kartsonis N, Varela ML, Connolly N, Waskin H (2016) Phase 3 pharmacokinetics and safety study of a posaconazole tablet formulation in patients at risk for invasive fungal disease. J Antimicrob Chemother 71:1747

155. Duarte RF, Lopez-Jimenez J, Cornely OA, Laverdiere M, Helfgott D, Haider S, Chandrasekar P, Langston A, Perfect J, M A, van Iersel ML, Connolly N, Kartsonis N, Waskin H (2014) Phase 1b study of new posaconazole tablet preparation for prevention of invasive fungal infections in high-risk patients with neutropenia. Antimicrob Agents Chemother 58:5758–5765

156. Maertens J, Cornely OA, Ullmann AJ, Heinz WJ, Krishna G, Patino H, Sime FB, Stuart J, Butler J, Starr T, Wallis SC, Pandey S, Lipman J, Roberts V, Deresinski S (2007) Reviews of antifungal agents: Azoles. J Antimicrob Chemother 58:5758–5767

157. Hoenigl M, Duettmann W, Raggam RB, Seeber K, Troppan K, Fruhwald MJ, Ray JE, Chen SC, Ng K, Pont LG, McLachlan AJ (2012) Multicenter study of voriconazole pharmacokinetics and therapeutic drug monitoring. Antimicrob Agents Chemother 56:4793–4799

158. Gomez-Lopez A, Cendejas-Bueno E, Cuesta I, Garcia Rodriguez J, Rodriguez J, Park WB, Kim NH, Kim KH, Lee SH, Nam WS, Yoon SH, Song KH, Choe J, Pascual A, Csajka C, Buclin T, Bolay S, Bille J, Calandra T, Marchetti O (2008) Voriconazole therapeutic drug monitoring in critically ill patients. Antimicrob Agents Chemother 62:e00242‑18

159. Nagappan V, Deresinski S (2007) Reviews of anti-infective agents: posaconazole. J Antimicrob Chemother 71:1747

160. Smith J, Safdar N, Knasinski V, Simmons W, Bhavnani SM, Ambrose PG, Connelly N, Kartsonis N, Waskin H, Langston A, Perfect J, Ma L, van Iersel ML, Varkey B, Kwon OJ, Chen JH (2014) Phase 1b study of new posaconazole tablet formulation in patients at risk for invasive fungal disease. J Antimicrob Chemother 71:1747

161. Veringa A, Ter Avest M, Span LF, van den Heuvel ER, Touw DJ, Zijlstra JG, Kosterink JG, van der Werf TS, Affenjar A (2017) Voriconazole metabolism is influenced by severe inflammation: a prospective study. J Antimicrob Agents Chemother 62:261–267

162. Encalada Ventura MA, van Wanooy MJ, Span LF, Rodgers MG, van den Heuvel ER, Uges DR, van der Werf TS, Kosterink JG, Affenjar AW (2016) Longitudinal analysis of the effect of inflammation on voriconazole trough concentrations. Antimicrob Agents Chemother 60:2727–2731

163. van Wanooy MJ, Span LF, Rodgers MG, van den Heuvel ER, Uges DR, van der Werf TS, Kosterink JG, Affenjar AW (2014) Inflammation is associated with voriconazole trough concentrations. Antimicrob Agents Chemother 58:7098–7101

164. Tod M, Lokiec F, Bidault R, De Bony F, Petitjean O, Aujard Y (1999) Pharmacokinetics of oral acyclovir in neonates and infants: a population analysis. Antimicrob Agents Chemother 45:150–157

165. Saiga P, Prainhdiih D, Chastang C (1999) A double-blind, randomized range-finding study. International Valaciclovir HSV Study Group. J Infect Dis 178:603–610

166. Reitano M, Tysing S, Lang W, Thoming C, Worm AM, Borell S, Chambers LO, Robinson JM, Corey L (1998) Valaciclovir for the suppression of recurrent genital herpes simplex virus infection: a large-scale dose range-finding study. International Valaciclovir HSV Study Group. J Infect Dis 178:603–610

167. Spruance SL, Tysing SK, DeGregorio B, Miller C, Beutner K (1996) A large-scale, placebo-controlled, dose-ranging trial of peroral valaciclovir for episodic treatment of recurrent herpes genitalis. Valaciclovir HSV Study Group. Arch Intern Med 156:1729–1735

168. Reitano M, Tysing S, Lang W, Thoming C, Worm AM, Borell S, Chambers LO, Robinson JM, Corey L (1998) Valaciclovir for the suppression of recurrent genital herpes simplex virus infection: a large-scale dose range-finding study. International Valaciclovir HSV Study Group. J Infect Dis 178:603–610

169. Spruance SL, Tysing SK, DeGregorio B, Miller C, Beutner K (1996) A large-scale, placebo-controlled, dose-ranging trial of peroral valaciclovir for episodic treatment of recurrent herpes genitalis. Valaciclovir HSV Study Group. Arch Intern Med 156:1729–1735

170. Weller S, Blum MR, Doucette M, Burnette T, Cederberg DM, de Miranda PG, Kim NJ, Jang IJ, Oh MD, Yu KS (2012) The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis 55:381–390

171. Miyakis S, van Hal SJ, Ray J, Marriott D (2010) Voriconazole concentrations and outcome of invasive fungal infections. Clin Microbiol Infect 16:927–933

172. Liu H, Liang Z, Wang X, He X, Wang Y, Liang J, Xie J, Xie Y, Sun Y, Zhang X, Liang H, Chen J (2010) Voriconazole concentrations and outcome of invasive fungal infections. Clin Microbiol Infect 16:927–933

173. Ueda K, Nannya Y, Kuman K, Hangaiishi A, Takahashi T, Imai Y, Kuronaka M (2009) Monitoring trough concentration of voriconazole is important to ensure successful antifungal therapy and to avoid hepatic damage in patients with hematological disorders. Int J Hematol 89:592–599

174. Smith J, Salford N, Krasinski S, Simmons W, Bhanvani SM, Ambrose PG, Andes D (2006) Voriconazole therapeutic drug monitoring. Antimicrob Agents Chemother 50:1570–1572

175. Troke PF, Hocken HP, Hope WW (2011) Observational study of the clinical efficacy of voriconazole and its relationship to plasma concentrations in patients. Antimicrob Agents Chemother 55:4782–4788

176. Mitsui D, Nguyen MH, Shields RK, Toyota Y, Kwas EJ, Silvera FP, Pilewski JM, Cislo MM, Bermudez C, Bhaneja KN, Ciancy CI (2012) Prospective, observational study of voriconazole therapeutic drug monitoring among lung transplant recipients receiving prophylaxis: factors impacting levels of and associations between serum troughs, efficacy, and toxicity. Antimicrob Agents Chemother 56:2371–2377

177. Trifilio S, Singhal S, Williams S, Frankfurt O, Gordon L, Evans A, Winter J, Tallman M, Pi J, Mehta J (2007) Breakthrough fungal infections after allogeneic hematopoietic stem cell transplantation in patients on prophylactic voriconazole. Bone Marrow Transplant 40:451–456

178. Suzuki Y, Tokimatsu J, Sato Y, Kawaiaki K, Sato Y, Goto T, Hashinaga K, Itoh H, Hiramatsu K, Kadota J (2013) Association of sustained high plasma trough concentration of voriconazole with the incidence of hepatotoxicity. Clin Chim Acta 424:119–122

179. Kim SH, Yim DS, Choi SM, Kwon JC, Han S, Lee DG, Park C, Kwon EY, Park SH, Choi JH, Yoo JH (2011) Voriconazole-related severe adverse events: clinical application of therapeutic drug monitoring in Korean patients. Int J Infect Dis 15:673–678

180. Matsumoto K, Ikawa K, Abematsu K, Fukunaga N, Nishida K, Fukumizu T, Shimodzono Y, Morikawa N, Takeda Y, Yamada K (2009) Correlation between voriconazole trough plasma concentration and hepatotoxicity in patients with different CYP2C9 genotypes. Int J Antimicrob Agents 33:91–94

181. Imhof A, Schaer DJ, Schanz U, Schwartz U (2006) Neurological adverse events to voriconazole: evidence for therapeutic drug monitoring. Swiss Med Wkly 136:739–742

182. Bradley J, Forero N, Pho H, Escobar B, Kasinath BS, Anzueto A (1997) Progressive somnolence leading to coma in a 68-year-old man. Chest 112:538–540

183. Weller S, Blum MR, Doucette M, Burnette T, Cederberg DM, de Miranda PG, Kim NJ, Jang IJ, Oh MD, Yu KS (2012) The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis 55:1080–1087

184. Chowdhury MA, Derar N, Hasan S, Hinch B, Ratnam S, Assaly R (2016) Voriconazole therapeutic drug monitoring in critically ill patients with invasive aspergillosis. J Infect Dis 214:141–147

185. Lim M, Menson E, Tong CY, Lin JP (2009) Use of therapeutic drug monitoring in the long-term valaciclovir therapy of relapsing herpes simplex virus encephalitis in children. J Antimicrob Chemother 64:1340–1341
190. Balfour HH Jr, Fletcher CV, Eric E, Henry WK, Acosta EP, Smith SA, Holm MA, Boivin G, Sheph DR, Drumpper CS, Eaton CA, Martin-Munley SS (1996) Effect of foscarnet on quantities of cytomegalovirus and human immunodeficiency virus in blood of persons with AIDS. Antimicrob Agents Chemother 40:2721–2726

191. Drusano GL, Awekea F, Gambertoglio J, Jacobson M, Polis M, Lane HC, Eaton C, Martin-Munley S (1996) Relationship between foscarnet exposure, baseline cytomegalovirus (CMV) blood culture and the time to progression of CMV retinitis in HIV-positive patients. AIDS 10:1113–1119

193. Fletcher CV, Gollier AC, Rhamé FS, Bennett D, Para MF, Beatty CC, Jones CE, Balfour HH Jr (1994) Foscarnet for suppression of human immunodeficiency virus replication. Antimicrob Agents Chemother 38:604–607

194. Jacobson MA, Polsky B, Causey D, Davis R, Tong W, O'Donnell JJ, Kuppermann BD, Heixinen MH, Feinberg J, Lizzak P et al (1994) Pharmacodynamic relationship of pharmacokinetic parameters of maintenance doses of foscarnet and clinical outcome of cytomegalovirus retinitis. Antimicrob Agents Chemother 38:1190–1193

196. Jacobson MA, Crowe S, Levy J, Aweeka F, Gambertoglio J, McManus PA, Perrottet N, Manuel O, Lamoth F, Venetz JP, Sahli R, Decosterd LA, Buclin T, Pascual M, Meylan P (2010) Variable viral clearance despite adequate ganciclovir plasma levels during valganciclovir treatment for cytomegalovirus disease in D+/-R+ transplant recipients. BMC Infect Dis 10:2

202. Fishman JA, Doran MT, Volpicelli SA, Cosimi AB, Flood JG, Rubin RH, Sommadossi JP, Bevan R, Ling T, Lee F, Mastre B, Chaplin MD, Llangland N, Farkkila M, Buhl MR, McSharry JJ, Weng Q, Brown A, Kulawy R, Drusano GL (2009) Prediction of oseltamivir pharmacokinetics in patients receiving oral prophylaxis following kidney transplantation and model-based predictions of optimal dosing regimens. Clin Pharmacokinet 57:1399–1405

205. Ganciclovir Solid Organ Transplant Study Group (2005) Pharmacodynamics of oral ganciclovir and valganciclovir in solid organ transplant recipients. Transplantation 79:1477–1483

209. Boivin G, Goyette N, Gilbert C, Covington E (2005) Analysis of cytomegalovirus DNA polymerase (UL54) mutations in solid organ transplant patients receiving valganciclovir or ganciclovir prophylaxis. J Med Virol 77:425–429

212. Rayner CR, Bulik CC, Komala MA, Reynolds DK, Tookey S, Hammell JP, Smith PF, Bhavnani SM, Van Wart SA, Ambrose PG, Forrest A (2013) Pharmacokinetic-pharmacodynamic determinants of oseltamivir efficacy using data from phase 2 inoculation studies. Antimicrob Agents Chemother 57:3478–3487

216. McSharry JJ, Weng Q, Brown A, Kulawy R, Drusano GL (2009) Prediction of the pharmacodynamically linked variable of oseltamivir carboxylate for influenza A virus using an in vitro hollow-fiber infection model system. Antimicrob Agents Chemother 53:2375–2381

218. Rayner CR, Chanu P, Giechartki C, Boak LM, Jonsson EN (2008) Population pharmacokinetics of oseltamivir when coadministered with probenecid. J Clin Pharmacol 48:935–947

220. Jakeman KJ, Merson J, Lacy SA, Lew W, Williams MA, Zhang L, Chen MS, Bischhoffner N, Kim CU (1998) Oral administration of a prodrug of the influenza virus neuraminidase inhibitor GS 4071 protects mice and ferrets against influenza infection. Antimicrob Agents Chemother 42:640–646

221. Miller DB, Coley PG, Roberts JA, Pea F (2018) Valganciclovir pharmacokinetics in patients with severe influenza: a pilot study. Intensive Care Med 45:1484–1486

225. Rayner CR, Bulik CC, Komala MA, Reynolds DK, Tookey S, Hammell JP, Smith PF, Bhavnani SM, Van Wart SA, Ambrose PG, Forrest A (2013) Pharmacokinetic-pharmacodynamic determinants of oseltamivir efficacy using data from phase 2 inoculation studies. Antimicrob Agents Chemother 57:3478–3487

226. McSharry JJ, Weng Q, Brown A, Kulawy R, Drusano GL (2009) Prediction of the pharmacodynamically linked variable of oseltamivir carboxylate for influenza A virus using an in vitro hollow-fiber infection model system. Antimicrob Agents Chemother 53:2375–2381

228. Wattanagoon Y, Stepnevskiia V, Linderdahl N, Pukrittyakamee S, Silachamroon U, Pyaphanee W, Singtoro T, Hanpathakpong W, Davies G, Tarning J, Pontgavompiyo W, Fukuda C, Singhavison P, Day NP, White NJ (2009) Pharmacokinetics of high-dose oseltamivir in healthy volunteers. Antimicrob Agents Chemother 53:945–952

230. Rayner CR, Chanu P, Giechartki C, Boak LM, Jonsson EN (2008) Population pharmacokinetics of oseltamivir when coadministered with probenecid. J Clin Pharmacol 48:935–947

235. May F, Peytavin G, Fourati S, Pressiat C, Carteaux G, Razzak K, Mekontso Dessap A, de Prost N (2019) Paracetamol absorption test to detect poor enteroic absorption of oseltamivir in intensive care unit patients with severe influenza: a pilot study. Intensive Care Med 45:1484–1486

240. Dominguez S, Ghosh J, Cassard B, Melissa G, Pozob-Martín I, Solas C, Lasauma AS, Bouvier-Alais M, Katlama C, Levy V, Peytavin G (2012) Erythrocyte and plasma ribavirin concentrations in the assessment of early and sustained virological responses to pegylated interferon-alpha 2a and ribavirin in patients infected with hepatitis C virus and HIV. Antimicrob Chemother 67:1449–1452

242. Pedersen C, Alsio A, Langeland N, Farkkila M, Buhl MR, Morch K, Westin J, Sangfelt P, Christensen PB, Nordby NC (2011) Ribavirin plasma concentration is a predictor of sustained virological response in patients treated for chronic hepatitis C virus genotype 2/3 infection. J Viral Hepat 18:245–251
222. Aguilar Marucco D, Gonzalez de Requena D, Bonora S, Tettoni C, Bonasio M, De Blasi T, D’Avolio A, Scandria M, Siccardi M, Baietto L, Trentini L, Sinicco A, Cariti G, Di Perri G (2008) The use of trough ribavirin concentration to predict sustained virological response and haematological toxicity in HIV/HCV-co-infected patients treated with ribavirin and pegylated interferon. J Antimicrob Chemother 61:919–924

223. Maynard M, Pradat P, Gagnieu MC, Souvignet C, Trepo C (2008) Prediction of sustained virological response by ribavirin plasma concentration at week 4 of therapy in hepatitis C virus genotype 1 patients. Antivir Ther 13:607–611

224. Arase Y, Ikeda K, Tsutubota A, Suzuki F, Suzuki Y, Saiuh S, Kobayashi M, Akuta N, Someya T, Hosaka T, Sezaki H, Kobayashi M, Kumada H (2005) Significance of serum ribavirin concentration in combination therapy of interferon and ribavirin for chronic hepatitis C. Intervirology 48:138–144

225. Tsutubota A, Hirose Y, Izumi N, Kumada H (2003) Pharmacokinetics of ribavirin in combined interferon-alpha 2b and ribavirin therapy for chronic hepatitis C virus infection. Br J Clin Pharmacol 55:360–367

226. Jen JF, Glue P, Gupta S, Zambas D, Hajian G (2000) Population pharmacokinetic and pharmacodynamic analysis of ribavirin in patients with chronic hepatitis C. Ther Drug Monit 22:555–565

227. Stickel F, Worni M, Pache I, Moradpour D, Helbling B, Borovicka J, Gerlach TJ (2013) Optimizing ribavirin exposure by therapeutic drug monitoring improves treatment response in patients with chronic hepatitis C genotype 1. Am J Gastroenterol 108:1176–1178

228. Loustaud-Ratti V, Alain S, Rousseau A, Hubert IF, Sauvage FL, Marquet P, Denis F, Lune F, Caless P, Lefebvre A, Fauchais A, Lizon E, Vidal E (2008) Ribavirin exposure after the first dose is predictive of sustained virological response in chronic hepatitis C. Hepatology 47:453–1461

229. Rendon AL, Nunez M, Romero M, Barreiro P, Martin-Carbonero L, Garcia-Samaniego J, Jimenez-Nacher L, Gonzalez-Lahoz J, Soriano V (2005) Early monitoring of ribavirin plasma concentrations may predict anemia and early virologic response in HIV/hepatitis C virus-coinfected patients. J Acquir Immune Defic Syndr 39:401–405

230. Maeda Y, Kiriyayashi Y, Moriya T, Maruhashi A, Omoda K, Funakoshi S, Murakami T, Takano M (2004) Dosage adjustment of ribavirin based on renal function in Japanese patients with chronic hepatitis C. Ther Drug Monit 26:9–15

231. Lopez-Cortes LF, Valera-Bastard B, Gutierrez-Valencia A, Ruiz-Valderas R, Jimenez L, Arizaoreta A, Terron A, Viciana P (2008) Role of pegylated interferon-alpha-2a and ribavirin concentrations in sustained viral response in HIV/HCV-coinfected patients. Clin Pharmacol Ther 84:573–580

232. Milliken E, de Zwart AES, Alffenaa JC, Marriott DJE, Riezebos-Brilman A, Scheitmann A, Evans AM, Gianville AR, Verschuuren EAM, Reuter SE (2019) Population pharmacokinetics of ribavirin in lung transplant and examination of current and alternative dosing regimens. J Antimicrob Chemother 74:691–698

233. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Knaud DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marin JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalese P, Nishioka O, Osborn TM, Perner A, Plunkett CM, Raineri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiensing WJ, Zimmerman JL, Dollinger RP (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock. 2016. Intensive Care Med 43:304–377

234. Kovanda LL, Kolamunnage-Dona R, Neely M, Maertens J, Lee M, Hope WW (2017) Pharmacodynamics of isavuconazole for invasive mold disease: role of galactomannan for real-time monitoring of therapeutic response. Clin Infect Dis 64:1557–1563

235. Huurneman LJ, Neely M, Veringa A, Docobo Perez F, Ramos-Martin V, Tissing WU, Alffenaa JW, Hope W (2016) Pharmacodynamics of voriconazole in children: further steps along the path to true individualized therapy. Antimicrob Agents Chemother 60:2336–2342