New proof of Weyl’s theorem

A.G. Ramm
Mathematics Department, Kansas State University,
Manhattan, KS 66506-2602, USA
ramm@math.ksu.edu
http://www.math.ksu.edu/~ramm

Abstract

Let \(lu = -u'' + q(x)u \), where \(q(x) \) is a real-valued \(L^2_{\text{loc}}(0, \infty) \) function. H. Weyl has proved in 1910 that for any \(z, \text{Im}z \neq 0 \), the equation \((l - z)w = 0, \ x > 0 \), has a solution \(w \in L^2(0, \infty) \).

We prove this classical result using a new argument.

1 Introduction

Let \(lu = -u'' + q(x)u \), where \(q(x) \in L^2_{\text{loc}} \) is a real-valued function. Fix an arbitrary complex number \(z, \text{Im}z > 0 \), and consider the equation

\[
lw - zw = 0, \quad x > 0
\]

(1.1)

H. Weyl proved \([3] \) that equation (1.1) has a solution \(w \in L^2(0, \infty) \), which is called a Weyl’s solution. He gave the limit point-limit circle classification of the operator \(l \): if equation (1.1) has only one solution \(w \in L^2(0, \infty) \), then it is a limit point case, otherwise it is a limit circle case.

Weyl’s theory is presented in several books, e.g. in \([4], [3] \). This theory is based on some limiting procedure \(b \to \infty \) for the solutions to (1.1) on a finite interval \((0, b) \). In \([3] \) a nice different proof is given for continuous \(q(x) \).

The aim of our paper is to give a new method for a proof of Weyl’s result.

Theorem 1.1. Equation (1.1) has a solution \(w \in L^2(0, \infty) \).

*key words: limit circle, limit point, Weyl’s solution.
†Math subject classification: 34B25, 34B20
Let us outline the new approach and the steps of the proof.

Since \(q(x) \) is a real-valued function, symmetric operator \(l_0 \) defined on a linear dense subset \(C_0^\infty(0, \infty) \) of \(H = L^2(0, \infty) \) by the expression \(lu = -u'' + q(x)u \) has a selfadjoint extension, which we denote by \(l \). Therefore the resolvent \((l - z)^{-1}\) is a bounded linear operator on the Hilbert space

\[
H = L^2(0, \infty), \quad \|(l - z)^{-1}\| \leq |\text{Im}z|^{-1}.
\]

This operator is an integral operator with the kernel \(G(x, y; z) \), which is a distribution satisfying the equation

\[
(l - z)G(x, y; z) = \delta(x - y), \quad G(x, y; z) = G(y, x; z).
\]

We will prove that

\[
\int_0^\infty |G(x, y; z)|^2 dy \leq c(x; z) \quad \forall x \in (0, \infty), \quad \text{Im}z > 0,
\]

where \(c(x; z) = \text{const} > 0 \).

The kernel \(G(x, y; z) \), which is the Green function of the operator \(l \), can be represented as

\[
G(x, y; z) = \varphi(y; z)w(x; z), \quad x > y,
\]

where \(w \) and \(\varphi \) are linearly independent solution to (1.1), so that \(w(x; z) \neq 0 \). From (1.3) it follows that

\[
w(x; z) \in L^2(0, \infty).
\]

A detailed proof is given in section 2.

One may try to prove the existence of a Weyl’s solution as follows: take an \(h \in L^1_{\text{loc}}(0, \infty) \), \(h = 0 \) for \(x > R \), \(h \neq 0 \), and let \(W := W(x, z) := (l - z)^{-1}h, \, \text{Im}z > 0 \). Then \(W \) solves (1.1) for \(x > R \) and \(W \in L^2(0, \infty) \) since \(l \) is a selfadjoint operator in \(H \). However, one has to prove then that \(W \) does not vanish identically for \(x > R \), and this will be the case not for an arbitrary \(h \) with the above properties. In our paper the role of \(h \) is played by the delta-function, and since \(\varphi(y; z) \) and \(w \) in (1.4) are linearly independent solutions of (1.1), one concludes that \(w \) does not vanish identically.

2 Proofs

Lemma 2.1. If \(q(x) \in L^1_{\text{loc}}(0, \infty) \) and \(q(x) \) is real-valued, then symmetric operator

\[
l_0u := -u'' + q(x)u, \quad D(l_0) = \{ u : u \in C_0^\infty(0, \infty), \quad l_0u \in H := L^2(0, \infty) \}
\]

is defined on a linear dense in \(H \) subset, and admits a selfadjoint extension \(l \).
Proof. This result is known: the density of the domain of definition of the symmetric operator l_0 mentioned in Lemma 1 and the existence of a selfadjoint extension are proved in [2]. The defect indices of l_0 are (1,1) or (2,2), so that by von Neumann extension theory l_0 has selfadjoint extensions (see [2]). Actually we assume in the Appendix that $q \in L^2_{\text{loc}}(0, \infty)$, in which case the conclusion of Lemma 2.1 is obvious: $C^\infty_0(0, \infty)$ is the linear dense subset in H on which l_0 is defined. ◻

Let l be a selfadjoint extension of l_0, $(l - z)^{-1}$ be its resolvent, $Imz > 0$, and $G(x, y; z)$ be the resolvent’s kernel (in the sense of distribution theory) of $(l - z)^{-1}$, $G(x, y; z) = G(y, x; z)$.

Lemma 2.2. For any fixed $x \in [0, \infty)$ one has

$$\left(\int_0^\infty |G(x, y; z)|^2 \, dy \right)^{\frac{1}{2}} \leq c, \quad c = c(x; z) = \text{const} > 0. \quad (2.1)$$

Proof. Let $h \in C^\infty_0(0, \infty)$ and $u := (l - z)^{-1} h$, so

$$u(x; z) = \int_0^\infty G(x, y; z) h(y) \, dy, \quad (l - z)u = h. \quad (2.2)$$

Let us prove that:

$$|u(x; z)| \leq c(x; z) \|h\|, \quad (2.3)$$

where $x \in [0, \infty)$ is an arbitrary fixed point, $c(x) = \text{const} > 0$, $\|h\| := \|h\|_{L^2(0, \infty)}$.

If (2.3) is proved, then

$$|(G(x, y; z), h)| \leq c(x; z) \|h\|. \quad (2.4)$$

From (2.4) the desired conclusion (2.1) follows immediately by the Riesz theorem about linear functionals in H.

To complete the proof, one has to prove estimate (2.3).

This estimate follows from the inequality:

$$\|u\|_{C(D_1)} \leq c \left(\|u'' + q(x)u - zu\|_{L^2(D_2)} + \|u\|_{L^2(D_2)} \right) \leq c \left(1 + \frac{1}{|Imz|} \right) \|h\|, \quad (2.5)$$

where $c = c(D_1, D_2) = \text{const} > 0$, $D_1 \subset D_2$, $D_2 \subset [0, \infty)$, D_1 is a strictly inner open subinterval of D_2.

Indeed, since l is selfadjoint, (2.2) implies:

$$\|u\| \leq \frac{\|h\|}{|Imz|}. \quad (2.6)$$
Moreover
\[-u'' + qu - zu = h, \quad (2.7)\]
so, using (2.6), one gets:
\[
\|u\|_{L^2(D_2)} + \|u'' + qu - zu\|_{L^2(D_2)} \leq \frac{\|h\|}{|Im z|} + \|h\| \leq \left(1 + \frac{1}{|Im z|}\right) \|h\|, \quad (2.8)
\]
From (2.5), (2.6) and (2.8) one gets (2.3).

Let us finish the proof by proving (2.5).

In fact, inequality (2.5) is a particular case of the well-known elliptic estimates (see e.g. [1, pp. 239-241]), but an elementary proof of (2.5) is given below in the Appendix.

Lemma 2 is proved.

\[\square\]

Proof of Theorem 1.1

Equation (1.2) implies that
\[G(x, y; z) = \varphi(x; z)w(y; z), \quad y \geq x,\]
where \(w(y; z)\) solves (1.1), and the function \(\varphi(x; z)\) is also a solution to (1.1). Inequality (2.1) implies \(w \in L^2(0, \infty)\) if \(Im z > 0\).

Theorem 1.1 is proved. \[\square\]

To make this paper self-contained we give an elementary proof of inequality (2.5) in the Appendix. This proof allows one to avoid reference to the elliptic inequalities [4], the proof of which in [4] is long and complicated (in [4] the multidimensional elliptic equations of general form are studied, which is the reason for the complicated argument in [4]).

Appendix: An elementary proof of inequality (2.5).

Since \(u(x) \in C^1_{loc}(0, \infty)\) it is sufficient to prove (2.5) assuming that \(D_1 = (a, b)\) and \(b - a\) is arbitrarily small. Let \(\eta(x) \in C^\infty_0(a, b)\) be a cut-off function, \(0 \leq \eta \leq 1, \eta(x) = 1\) in \((a + \delta, b - \delta), 0 < \delta < \frac{b-a}{4}\), \(\eta(x) = 0\) in a neighborhoods of points \(a\) and \(b\).

Let \(v = \eta u\). Then (2.2) implies:
\[lv = \eta h - 2\eta' u' - \eta'' u, \quad v(a) = v'(a) = 0.\]
Thus
\[v'' = qv - zu - \eta h + \eta'' u + 2\eta' u', \quad (A.1)\]
and
\[
|v(x)| = \left|\int_a^x (x - s)v''(s)ds\right| \leq c_1 \int_a^b [qv] + |z||v| ds + c_2, \\
\int_a^b |h| ds + c_2 \int_a^b |u| ds + c_2 \int_a^b |u'| ds.
\]
(A.2)
Here
\[c_1 = b - a, \quad c_2 = \max_{a \leq x \leq b} [\eta(x)] + 2|\eta'|. \]

If \(b - a \) is sufficiently small, then
\[c_1 \int_a^b (|q| + |z|) \, dx \max_{a \leq x \leq b} |v(x)| < \gamma \max_{a \leq x \leq b} |v(x)|, \quad 0 < \gamma < 1. \]

Therefore (A.1) implies
\[\max_{a \leq x \leq b} |v(x)| \leq c_3 \left[\|h\|_{L^2(a,b)} + \|u\|_{L^2(a,b)} = \|u'\|_{L^2(a,b)} \right], \quad (A.3) \]
where \(c_3 = c_3(a, b; z) \). From (A.3) and (2.6) it follows that inequality (2.5) holds, provided that:
\[\|u'\|_{L^2(a,b)} \leq \varepsilon \|h\| + \delta \|u\|_{L^\infty}. \quad (A.4) \]

The last estimate is proved as follows. Multiply (2.2) by \(\bar{\eta}u \) (the bar stands for complex conjugate and \(\eta \) is a cut-off function, \(\eta \in C_0^\infty(a, b) \)) and integrate over \((a, b)\) to get
\[
\int_a^b |u'|^2 \eta \, dx = \int_a^b u' \bar{\eta} u' \, dx + \int_a^b \eta h \bar{u} \, dx + z \int_a^b \eta |u|^2 \, dx - \int_a^b q |u|^2 \eta \, dx := I_1 + I_2 + I_3 + I_4.
\]

One has, using the inequality \(|uv| \leq \varepsilon |u|^2 + \frac{|v|^2}{4\varepsilon}, \varepsilon > 0 \),
\[
|I_1| \leq c \left(\varepsilon \|u'\|^2 + \frac{1}{4\varepsilon} \|u\|^2 \right), \quad c = \max |\eta'|,
\]
\[
|I_2| + |I_3| \leq c \left(\|h\| \|u\|_{L^\infty} \|u\| \right) \leq c_1 \|h\|^2,
\]
where (2.6) was used,
\[
|I_4| \leq \|qu\| \|u\| \leq \|q\|_{L^2} \|u\|_{L^\infty} \|u\|.
\]

Thus, if \(a < a_1 < b_1 < b \), where \(\eta = 1 \) on \([a_1, b_1]\), one gets
\[
\int_{a_1}^{b_1} |u'|^2 \, dx \leq C \left(\|h\|^2 + \|u\|_{L^\infty} \|h\| \right) \leq \delta \|u\|_{L^\infty}^2 + C \|h\|^2, \quad (A.5)
\]
where \(C = C(\varepsilon, z, a, b, \delta) = \text{const} > 0, \ 0 < \delta \) can be chosen arbitrarily small. Inequality (A.5) implies (A.4).

Inequality (2.5) is proved. \(\square \)
References

[1] Gilbarg, D., Trudinger, N., Elliptic partial differential equations of second order, Springer, New York, 1983

[2] Naimark, M., Linear differential operators, Ungar, New York, 1968.

[3] Reed, M., Simon, B., Methods of modern mathematical physics, vol.2, Acad. Press, New York, 1978.

[4] Titchmarsh E., Eigenfunction expansions associated with second-order differential equations, Oxford, Clarendon Press, 1946.

[5] Weyl, H., Uber gewöhnliche Differentialgleichungen mit Singularitäten and die zugehörigen Entwicklungen willkürliche Funktionen, Math. Ann., 68, (1910), 220-269.