Comparing eating behaviours, and symptoms of depression and anxiety between Spain and Greece during the COVID-19 outbreak: Cross-sectional analysis of two different confinement strategies

Christopher Papandreou1,2,3 | Victoria Arija2,4 | Eleni Aretouli5,6 | Mònica Bulló1,2,3

1Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University Rovira i Virgili (URV), Reus, Spain
2Institute of Health Pere Virgili (IISPV), Reus, Spain
3CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
4Faculty of Medicine and Health Science, Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira i Virgili, (URV), Reus, Spain
5Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
6School of the Social Sciences, University of Ioannina, Ioannina, Greece
7Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
8Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK

Abstract

Objective: We compared eating behaviours, and depressive and anxiety symptoms in two countries with different confinement strictness strategies and different levels of COVID-19 pandemic.

Method: A web-based cross-sectional survey was administered during and shortly after the COVID-19 related lockdown in Spain and Greece. Multivariable linear regression analyses were performed to identify country differences associated with eating behaviour, and symptoms of depression and anxiety.

Results: This study included 1,002 responders in Spain and 839 in Greece. The mean ± SD of restraint, emotional and external eating was 2.5 ± 0.79, 2.1 ± 0.81 and 2.6 ± 0.65 in Spain, whereas 2.7 ± 0.85, 2.3 ± 0.99 and 2.9 ± 0.74 in Greece. Spanish participants had lower average scores of restraint and external eating compared to Greek participants (p < .001), but no difference was seen for emotional eating. In Spain, 13.6%, and 12.3% of the survey respondents reported moderate to severe depressive and anxiety symptoms, respectively, whereas in Greece the respective values were 18.8 and 13.2%. After adjusting for several risk factors, a higher prevalence of anxiety symptoms was observed in Spain compared to Greek participants (p < .001), but no difference was seen for depressive symptoms.

Conclusions: This study demonstrated high scores of inappropriate eating behaviours and a high frequency of depressive and anxiety symptoms in two Mediterranean countries during the COVID-19 outbreak. Our findings revealed that compared to Greek participants, Spanish participants, that faced more severe COVID-19 pandemic and stricter lockdown measures, were associated with lower restraint and external eating and increased anxiety symptoms, but not with depressive symptoms or emotional eating.

Keywords: anxiety, COVID-19, depression, eating behaviour
1 | INTRODUCTION

We currently experience a coronavirus disease 2019 (COVID-19) pandemic (World Health Organization, 2020), which poses risk of psychological distress, social isolation and loneliness due to fear, uncertainty, social distancing and strict lockdown. Under such stressful conditions, disturbances in eating behaviour are common (Casper, 1998). The COVID-19 related quarantine was associated with overeating and consuming food of a poorer quality according to a recent international online survey (BDA, 2020). In the same survey, participants changed their eating behaviours towards an unhealthy food consumption pattern (Ammar et al., 2020). In a more recent study, almost half of surveyed adult Poles reported eating and snacking more during quarantine (Sidor & Rzymski, 2020). A study conducted among Italian adults revealed that almost half of them modified their dietary habits, and 42% of them attributed this increase to higher anxiety levels (Scarmozzino & Visioli, 2020).

Unbalanced eating behaviours commonly co-occur with emotional disorders such as depression or anxiety (Aoun et al., 2019). Moreover, the fear and the stress associated with pandemics can contribute to the development of mental health problems (Tracy, Norris, & Galea, 2011). Furthermore, social isolation and loneliness can increase the risk of depressive and anxiety symptoms (Santini et al., 2020). This pandemic has also economic impact, which may lead to higher rates of unemployment and economic losses, which, in turn, are associated with increased risk of depression and anxiety (Wanberg, 2012). During the first wave of the COVID-19 pandemic, different countries experienced different severity of the pandemic and different levels of restrictions measures were used. For example, in China, Italy and Spain there was a strict confinement and high pandemic severity for at least 2 months. Recent cross-sectional studies using web-based surveys, collected data from these countries and demonstrated a high frequency of depressive and anxiety symptoms (Casagrande, Favieri, Tambelli, & Forte, 2020; González-Sanguino et al., 2020; Huang & Zhao, 2020; Munoz-Navarro, Cano-Vindel, Schmitz, Cabello, & Fernandez-Berrocal, 2020; Odriozola-González, Planchuelo-Gómez, Irurtia, & de Luís-Garcia, 2020). However, no previous study has compared eating behaviours and mental health problems between countries with different levels of lockdown measures and degrees of COVID-19 pandemic severity. Therefore, we evaluated eating behaviors, and symptoms of depression and anxiety in Spain, that has experienced greater severity of this pandemic and stricter lockdown measures, compared to another Mediterranean country (Greece) with a lighter lockdown and less severe pandemic.

2 | METHODS

2.1 | Study design and sample

A cross-sectional online survey was conducted among adult individuals living in Spain and Greece. This survey was launched during the last week of April (April 23rd) in Spain and first week of May (May 3rd) in Greece, approximately 1.5–2 months after the initiation of the social confinement measures in each country and remained open until the 18th and 20th May, respectively. A brief paragraph at the beginning of this survey informed the participants about the objectives of the study. The survey took approximately 20 min to complete and included questions assessing demographic and anthropometric characteristics, dietary habits, eating behaviours, smoking habits, sleep, physical activity and psychological health status. It was administered through different online platforms and mainstream social-media. In addition, participants of a population-based cohort study in Greece, the Epirus Health Study (https://ehs.med.uoi.gr/), were also invited to complete the online survey. To guarantee anonymity, questions about personal data were avoided. Eligible participants were women and men aged at least 18 years and living in Spain and Greece during the first wave of the COVID-19 pandemic. Ethics approval was obtained from the Ethics Board of the Institutions involved, namely the Ethics Committee at the University of Ioannina.

2.2 | Outcomes

The Dutch eating behaviour questionnaire (DBEQ) (Van Strien, Frijters, Bergers, & Defaures, 1986) was included in this survey to assess eating behaviours. The DEBQ is a 33-item questionnaire composed by three scales (factors): ‘restrained eating’, ‘emotional eating’ and ‘external eating’. Restrained eating behaviour characterizes the tendency to restrict dietary intake to control body-weight. Emotional eating behaviour is a response that shows a tendency towards overeating in response to negative feelings. External eating behaviour is the tendency to overeat in response to external stimuli such as the sight and smell of food. All items are rated on a five-point Likert scale ranging from 1 (never) to 5 (very often) with higher scores indicating greater endorsement of the eating behaviour. Validated questionnaires were also included in the online survey to assess depression [Patient Health Questionnaire-9 (PHQ-9)] (Kroenke, Spitzer, & Williams, 2001) and anxiety [General Anxiety Disorder-7 (GAD-7)] (Spitzer, Kroenke, Williams, & Löwe, 2006) symptoms. The PHQ includes 9 items on a 4-point Likert
2.3 | Other measures

Information about anthropometric measures (body weight and height) before confinement was collected and the body mass index (BMI) was calculated as weight divided by height squared (kg/m²). Questions about body weight during COVID-19 pandemic and the perceived weight change were included. Information about demographics, work and smoking status, sleep duration and physical activity was collected. We calculated a physical activity score multiplying minutes per day with days per week of any physical activity. To assess the degree of adherence to Mediterranean diet (MedDiet), a 14-item validated questionnaire was used (Schröder et al., 2011). The survey also asked participants about whether they consumed more pastries and more alcohol during COVID-19 pandemic, whether they felt hungrier and had increased the amount of food and whether they had changed the meal plan or followed the same hours/number of meals. Furthermore, the participants were asked whether they increased the number of binge eating between meals, craving/desire for food, amount of snacks between meals and finally about their general health status.

2.4 | Statistical analyses

Descriptive analyses for anthropometric and lifestyle characteristics are presented as means ± standard deviation (SD) for continuous variables, and percentages (%) for categorical variables. The Student's *t*-test and Chi-square test were used to assess differences in these characteristics according to each country. Linear regression models were fitted to examine the associations of DEBQ factors (restraint, emotional and external eating), PHQ-9 score and GAD-7 score with continuous anthropometric and lifestyle factors as explanatory variables adjusting for age and sex. To account for multiple testing, we adjusted P values of these associations with the use of the Benjamini-Hochberg false discovery rate (FDR) procedure (Benjamini & Hochberg, 1995). Differences in the three DEBQ factors, PHQ-9 score and GAD-7 score between the two countries were assessed using linear regression models in which the Greek sample was used as reference. Multivariate-adjusted models were performed, including those anthropometric and lifestyle factors that were consistently and significantly associated with each outcome trait in both countries. Statistical analyses were performed using Stata 14.1 (Stata Corp.).

3 | RESULTS

3.1 | Characteristics of the study participants

The characteristics of the 1841 participants (1,002 in Spain and 839 in Greece) in the present online survey are shown in Table 1. The majority of responders lived in North (85.4%) followed by Central (9.5%), and South (4.8%) of Spain during the survey. Similarly, most of the Greek responders lived in North (58.2%) and Central (20.0%) Greece. The mean ± SD of restraint, emotional and external eating was 2.5 ± 0.79, 2.1 ± 0.81 and 2.6 ± 0.65 in Spain, whereas 2.7 ± 0.85, 2.3 ± 0.99 and 2.9 ± 0.74 in Greece. The respective values for PHQ-9 and GAD-7 scores were 5.0 ± 4.8 and 4.6 ± 4.4 in Spain, and 5.6 ± 5.3 and 4.4 ± 4.9 in Greece. In Spain, 13.6 and 12.3% of the survey respondents exhibited moderate to severe depressive and anxiety symptoms, respectively, while in Greece the respective values were 18.8 and 13.2%. Compared with Spain, participants living in Greece, during the confinement, were more likely to have higher DEBQ derived factors, a higher frequency of depressive symptoms, a higher BMI and have reported an increase in their weight during confinement, while they were younger, less physically active and adhered less to the MedDiet (Table 1). Participants living in Greece were also more likely to be current smokers and to have increased cigarette consumption during the pandemic. They were also more likely to perceive a weight gain during pandemic, to consume more pastries, to feel hungrier, to have increased the amount of food they consumed and amount of snacks they consumed between meals, and to have an increased craving/desire for salty foods. Furthermore, participants in Greece perceived that their health got worse during pandemic. On the contrary, participants living in Spain reported a worse meal planning during pandemic while they followed same hours/number of meals.
	Spain (n = 1,002)	Greece (n = 839)	p value
Restraint eating behaviour	2.5 ± 0.79	2.7 ± 0.85	<0.001
Emotional eating behaviour	2.1 ± 0.81	2.3 ± 0.99	<0.001
External eating behaviour	2.6 ± 0.65	2.9 ± 0.74	<0.001
Depression (PHQ-9)	5.0 ± 4.8	5.6 ± 5.3	0.012
Anxiety (GAD-7)	4.6 ± 4.4	4.4 ± 4.9	0.448
Moderate to severe depression symptoms (%)	13.6	18.8	0.002
Moderate to severe anxiety symptoms (%)	12.3	13.2	0.540
Sex (% women)	70.3	66.7	0.096
Age (years)	46.1 ± 13.3	42.4 ± 11.7	<0.001
BMI before lockdown (kg/m²)	24.8 ± 4.2	25.6 ± 5.0	<0.001
Smoking (%)	69.8	64.7	<0.001
No	12.0	9.3	
Former	18.2	26.0	
Sleep duration (hr) (%)			0.145
6–9	83.7	80.2	
>9	2.9	3.5	
<6	13.4	16.3	
Physical activity during	5.8 ± 4.8	2.7 ± 2.7	<0.001
MedDiet score during	9.1 ± 1.9	7.5 ± 2.1	<0.001
Weight change during (kg)	0.5 ± 2.3	0.8 ± 3.2	0.020
Perception of weight increase during (%)			<0.001
Yes	38.4	39.8	
Work during (%)	13.1	15.9	0.001
No before	21.3	27.4	
No during	65.6	56.7	
Yes			
Smoking increased during (%)			<0.001
No	51.6	14.1	
Do not smoke	38.6	73.4	
Less than 5 cigarettes per day	6.9	5.7	
Between 5–10 cigarettes per day	2.3	4.3	
More than 10 cigarettes per day	0.5	2.5	
Consume more pastries during (%)			<0.001
No	69.4	62.2	
Less than 3 pieces per week	19.7	12.6	
More than 3 pieces per week	10.9	25.2	
Consume more alcohol during (%)			0.227
No	81.2	78.9	
Lee than 4 drinks per week	13.3	13.7	
More than 4 drink per week	5.5	7.4	
Meal plan has changed during (%)			<0.001
I plan better	11.6	21.1	
I plan the same	52.3	45.2	
I plan worse	36.1	33.7	
Follow same hours/number of meals during (%)			<0.001
Yes	59.8	51.7	
Do you feel hungrier during (%)			0.023
Less	16.6	18.4	

(Continues)
After correction for multiple testing, out of 21 factors, 12 and 11 factors (i.e., anthropometry, dietary habits, physical activity) were associated with cognitive restrain of eating in Spain and Greece, respectively (Table 2). Further analyses revealed that 17 and 14 factors (i.e., anthropometry, dietary habits, alcohol consumption and PHQ/GAD) were associated with emotional and external eating in Spain, whereas 19 and 16 factors (anthropometric, dietary habits, alcohol consumption and PHQ/GAD) were associated with emotional and external eating in Greece (Table 3). Out of the 22 anthropometric/lifestyle factors initially examined, 21 and 20 factors including anthropometry, dietary habits, emotional/external eating, smoking status and sleep duration were associated with the PHQ-9 score in the Spanish and Greek survey, respectively (Tables 2 and 3). Regarding anxiety symptoms, 18 and 20 factors related to anthropometry, dietary habits, emotional/external eating and sleep duration were associated with the GAD-7 score in Spain and Greece, respectively (Tables 2 and 3).

3.3 Association of living in Spain versus Greece with eating behaviours and depressive/anxiety symptoms

The multiple linear regression analysis coefficients (Beta) and 95% confidence intervals (CIs) are presented in Table 4. After adjusting for the factors that were consistently associated with each DBEQ factor, inverse associations were found between living in Spain vs. Greece and restraint eating [Beta = −.33, (95% CI, −0.41 to −0.024, p < .001)] as well as external eating [Beta = −.13, (95% CI, −0.19 to −0.06, p < .001)]. A positive association between anxiety symptoms and living in Spain was observed [Beta = .76, (95% CI, 0.30–1.21, p = .001)]. No significant associations by country were observed for emotional eating or depressive symptoms.

4 DISCUSSION

Using an online survey during the COVID-19 pandemic, we observed that compared to Greek participants, responders living in Spain reported lower average scores of restraint and external eating and a higher score of...
anxiety symptoms. To the best of our knowledge, the present study is the first to compare eating behaviours and mental health problems in two countries with different confinement strictness strategies and different levels of COVID-19 pandemic.

Comparison of the present online survey with recent pre-COVID-19 studies including community samples from (Bailly, Maitre, Amanda, Hervé, & Alaphilippe, 2012; Dakanalis et al., 2013; Nagl, Hilbert, de Zwaan, Braehler, & Kersting, 2016; Wang, Ha, Zauszniewski, & Ross, 2018) showed that our survey responders reported higher mean scores of restraint (range of mean value in pre-COVID-19 studies: 1.8–2.2), emotional (range of mean value in pre-COVID-19 studies: 1.1–2.0) and external eating (range of mean value in pre-COVID-19 studies: 1.8–2.6), supporting the notion that eating behaviours may be affected during the COVID-19 lockdown. Furthermore, in our study, the Spanish population reported lower restraint and external eating behaviours than the Greek. The Spanish population may have had less concern about body weight and less access to food cues due to their lower BMI and stricter confinement measures. On the other hand, the Greek population reported a higher BMI and a greater weight gain in addition to an increased number of binge eating between meals and craving for food during the COVID-19 outbreak. Restrained eating has been previously linked to a greater weight gain (Klesges, Isbell, & Klesges, 1992), and paradoxically, some restrained eaters also display a propensity toward overeating (Lowe, 1993) and binge eating (Tuschl, 1990). External eating is also associated with

Table 2: Associations of anthropometric/lifestyle factors with cognitive restraint, emotional and external eating and depression/anxiety symptoms in Spain (n = 1,002)

	Restraint	Emotional	External	PHQ-9	GAD-7
MedDiet score during	0.03 (0.01)*	−0.009 (0.01)	−0.01 (0.01)	−0.19 (0.01)*	−0.07 (0.07)
BMI before lockdown (kg/m²)	0.04 (0.006)*	0.05 (0.006)*	0.02 (0.004)*	0.10 (0.03)*	0.09 (0.03)*
Weight change during	0.005 (0.01)	0.08 (0.01)*	0.05 (0.008)*	0.32 (0.06)*	0.16 (0.06)*
Restraining behaviour	NA	NA	NA	0.89 (0.18)*	1.08 (0.17)*
Emotional eating behaviour	NA	NA	NA	2.08 (0.17)*	1.59 (0.16)*
External eating behaviour	NA	NA	NA	1.71 (0.23)*	1.22 (0.21)*
Work during	0.05 (0.03)	0.03 (0.03)	0.04 (0.02)	−0.46 (0.18)*	−0.51 (0.16)*
Smoking	−0.05 (0.03)	−0.03 (0.03)	−0.01 (0.02)	0.40 (0.18)*	0.28 (0.17)
Sleep duration <6 hr	0.10 (0.03)*	0.09 (0.03)*	0.03 (0.03)	1.56 (0.20)*	1.60 (0.19)*
Physical activity during	−0.01 (0.005)*	0.02 (0.005)	0.06 (0.004)	0.03 (0.03)	−0.002 (0.03)
Perception of weight increase during	0.09 (0.03)*	0.26 (0.02)*	0.15 (0.02)*	1.04 (0.15)*	0.70 (0.14)*
Consume more pastries during	−0.01 (0.03)	0.28 (0.03)*	0.18 (0.03)*	1.23 (0.21)*	0.75 (0.20)*
Consume more alcohol during	−0.04 (0.04)	0.17 (0.04)*	0.15 (0.03)	1.46 (0.26)*	1.20 (0.24)*
Meal plan has changed during	0.01 (0.04)	−0.11 (0.04)*	−0.01 (0.03)	−0.56 (0.22)*	−0.24 (0.21)
Follow same hours/number of meals during	0.03 (0.02)	0.10 (0.02)*	0.07 (0.02)	1.03 (0.15)*	0.59 (0.14)*
Do you feel hungrier during	0.09 (0.03)*	0.29 (0.02)*	0.16 (0.02)	1.40 (0.16)*	0.94 (0.15)*
Has food increased during	0.08 (0.04)*	0.22 (0.03)*	0.17 (0.03)	1.26 (0.21)*	0.73 (0.19)*
Increased the number of binge eating between meals during	0.03 (0.03)	0.37 (0.04)*	0.25 (0.02)	1.09 (0.19)*	0.78 (0.18)*
Increased craving/desire for food during	0.07 (0.02)*	0.22 (0.02)*	0.14 (0.01)*	1.06 (0.11)*	0.67 (0.10)*
Smoking increased during	0.01 (0.03)	0.07 (0.03)*	0.007 (0.02)	0.90 (0.19)*	0.67 (0.17)*
Increased amount of snacks between meals during	0.05 (0.01)*	0.21 (0.01)*	0.12 (0.01)*	0.87 (0.08)*	0.63 (0.08)*
How is health compared to before	0.05 (0.02)*	0.10 (0.02)*	0.08 (0.01)	1.31 (0.10)*	1.06 (0.10)*
PHQ-9	0.02 (0.005)*	0.06 (0.005)*	0.03 (0.004)*	NA	NA
GAD-7	0.03 (0.006)*	0.05 (0.005)*	0.02 (0.004)*	NA	NA

Note: Values presented as beta estimates (standard error of the mean) and each regression was adjusted for age and sex. Abbreviations: BMI, body mass index; GAD-7, general anxiety disorder-7; MedDiet, mediterranean diet; PHQ-9, patient health questionnaire-9. *Significant after false discovery rate (Benjamini–Hochberg) correction.
weight gain and overeating (Burton, Smit, & Lightowler, 2007) and it has been suggested to be due to a lack of control over food (Vainik, Neseliler, Konstabel, Felkowski, & Dagher, 2015) or a general tendency to eat in response to external and other cues.

Emerging studies conducted in China, Italy and Spain with severe COVID-19 pandemic and very strict confinement measures have shown a high frequency of depressive or anxiety symptoms among adults (Casagrande et al., 2020; González-Sanguino et al., 2020; Huang & Zhao, 2020; Munoz-Navarro et al., 2020; Odriozola-González et al., 2020). A recent online cross-sectional study using the Center for Epidemiology Scale for Depression and GAD-7 collected data from 7,236 Chinese adults and demonstrated a high depressive (20.1%) and anxiety (35.1%) symptomatology (Huang & Zhao, 2020). A more recent web-based cross-sectional survey examined the psychological impact of the COVID-19 outbreak on anxiety (GAD-7) among 2,291 Italian adults (Casagrande et al., 2020). The results revealed that one out of three responders reported a high frequency of generalized anxiety symptoms. In three very recent online cross-sectional studies conducted in Spain, the reported frequency of depressive and anxiety symptoms ranged from 18.7 to 34.2% and from 20.8 to 21.6%, respectively (González-Sanguino et al., 2020; Munoz-Navarro et al., 2020; Odriozola-González et al., 2020). High levels of depression and anxiety have also been reported during other epidemic emergencies (James, Wardle, Steel, & Adams, 2019; Lee, Chi, Chung, & Chou, 2006). In our

TABLE 3	Associations of anthropometric/lifestyle factors with cognitive restraint, emotional and external eating and depression/anxiety symptoms in Greece (n = 839)				
	Restraint	Emotional	External	PHQ-9	GAD-7
MedDiet score during	0.05 (0.01)*	−0.10 (0.01)*	−0.09 (0.01)*	−0.37 (0.08)*	−0.33 (0.08)*
BMI before lockdown (kg/m²)	0.003 (0.006)	0.06 (0.007)*	0.03 (0.005)*	0.13 (0.03)*	0.09 (0.03)*
Weight change during	−0.02 (0.009)*	0.09 (0.009)*	0.05 (0.007)*	0.34 (0.05)*	0.17 (0.05)*
Restraint eating behaviour	NA	NA	NA	−0.26 (0.21)	−0.09 (0.19)
Emotional eating behaviour	NA	NA	NA	1.62 (0.17)*	1.20 (0.16)*
External eating behaviour	NA	NA	NA	1.18 (0.23)*	0.94 (0.22)*
Work during	0.04 (0.03)	0.04 (0.04)	0.06 (0.03)	−0.58 (0.20)*	−0.53 (0.19)*
Smoking	−0.08 (0.03)*	−0.07 (0.04)	−0.01 (0.03)	0.82 (0.20)*	0.77 (0.19)*
Sleep duration <6 hr	−0.05 (0.04)	0.10 (0.05)*	0.0001 (0.03)	2.40 (0.22)*	1.70 (0.21)*
Physical activity during	0.07 (0.01)*	−0.04 (0.01)*	−0.04 (0.009)*	−0.27 (0.06)*	−0.23 (0.06)*
Perception of weight increase during	−0.07 (0.03)*	0.27 (0.03)*	0.12 (0.02)*	1.18 (0.18)*	0.35 (0.17)*
Consume more pastries during	−0.08 (0.03)*	0.34 (0.04)*	0.21 (0.03)*	1.55 (0.20)*	0.95 (0.19)*
Consume more alcohol during	0.11 (0.05)*	0.23 (0.06)*	0.22 (0.04)*	0.25 (0.30)	0.52 (0.28)*
Meal plan has changed during	0.19 (0.04)*	−0.10 (0.04)*	0.02 (0.03)	−1.97 (0.23)*	−0.14 (0.22)*
Follow same hours/number of meals during	0.09 (0.02)*	0.24 (0.03)*	0.18 (0.02)*	0.46 (0.14)*	0.33 (0.13)*
Do you feel hungrier during	0.06 (0.03)	0.43 (0.03)*	0.27 (0.02)*	1.47 (0.19)*	0.88 (0.18)*
Has food increase during	0.12 (0.04)*	0.41 (0.04)*	0.25 (0.03)*	1.45 (0.22)*	0.98 (0.20)*
Increased the number of binge eating between meals during	−0.02 (0.04)	0.51 (0.04)*	0.31 (0.03)*	1.34 (0.24)*	0.67 (0.23)*
Increased craving/desire for food during	0.06 (0.02)*	0.28 (0.02)*	0.21 (0.02)*	0.88 (0.13)*	0.66 (0.12)*
Smoking increased during	−0.03 (0.04)	0.10 (0.04)*	0.06 (0.03)	1.22 (0.22)*	1.14 (0.21)*
Increased amount of snacks between meals during	−0.01 (0.02)	0.21 (0.02)*	0.09 (0.01)*	0.82 (0.01)*	0.36 (0.09)*
How is health compared to before	0.01 (0.02)	0.12 (0.02)*	0.07 (0.02)*	1.47 (0.13)*	1.30 (0.12)*
PHQ-9	−0.007 (0.005)	0.06 (0.006)*	0.02 (0.004)*	NA	NA
GAD-7	−0.003 (0.006)	0.05 (0.007)*	0.02 (0.005)*	NA	NA

Note: Values presented as beta estimates (standard error of the mean) and each regression was adjusted for age and sex. Abbreviations: BMI, body mass index; GAD-7, general anxiety disorder-7; MedDiet, Mediterranean diet; PHQ-9, patient health questionnaire-9. *Significant after false discovery rate (Benjamini–Hochberg) correction.
The levels of these mental health conditions were also high with 13.6% and 18.8% of participants presenting moderate to severe depressive symptoms in Spain and Greece, respectively, and a 12.3% (Spain) and 13.2% (Greece) presenting moderate and severe anxiety symptoms. According to the National Health Survey conducted by the Ministry of Health in Spain approximately 6.7% of the general population showed anxiety and depression (Ministerio de Sanidad Consumo y Bienestar, 2017). In Greece, data from a nationally representative sample of 4,894 individuals showed that 4.1% of the study population had anxiety and 2.9% depression (Skapinakis et al., 2013). Pre-COVID-19 studies using community-based samples and the same assessment tools used in our study, revealed frequency rates of moderate to severe depression symptoms ranging from 4.2 to 6.0% in Spain (Montorio-Cerrato, Nuevo-Benítez, Losada-Baltar, & Márquez-González, 2001; Navarro-Mateu et al., 2015). The frequency rates observed in our study during the COVID-19 outbreak are much higher than these previous reports. These differences could be partially explained by differences in the study populations, being less representative in our study. It was recently proposed that the epidemic diffusion of COVID-19 contributes to increased depressive and anxiety symptoms, not only as an immediate medical consequence of the infection but through the impact of confinement measures (Brooks et al., 2020). Interestingly, the population living in Spain showed a higher score of anxiety symptoms compared to Greece after controlling for several confounders. High anxiety during the pandemic is worrying because a recent study found that COVID-19 related anxiety was strongly associated with disability, distress and passive suicidal ideation (Lee, 2020). On the other hand, we did not observe any significant association of living in Spain versus Greece with depression symptoms.

| Table 4 Association of living in Spain compared to Greece with cognitive restraint, emotional and external eating and depression/anxiety symptoms |
|------------------|----------------------|------------------|------------------------|------|
| | Beta | Standard error | 95% lower CI | 95% upper CI | p value |
| Restraint | −.33 | 0.04 | −0.41 | −0.24 | <.001 |
| Emotional | −.01 | 0.04 | −0.09 | 0.07 | .779 |
| External | −.13 | 0.03 | −0.19 | −0.06 | <.001 |
| PHQ-9 | .21 | 0.25 | −0.27 | 0.70 | .392 |
| GAD-7 | .76 | 0.23 | 0.30 | 1.21 | .001 |

Note: Regression for Restraint was adjusted for age, sex, MedDiet score, physical activity, belief in weight increase during, has food increased during, increased craving/desire for food during. Regression for Emotional was adjusted for age, sex, BMI before, weight change, sleep duration, perception of weight increase during, consume more pastries during, consume more alcohol during, meal plan has changed during, follow same hours/number of meals, do you feel hungrier during, has food increased during, increased the number of binge eating between meals during, increased craving/desire for food during, increased amount of snacks between meals during, how is health compared to before, PHQ-9 score and GAD-7 score. Regression for External was adjusted for age, sex, BMI before, weight change, perception of weight increase during, consume more pastries during, consume more alcohol during, follow same hours/number of meals, do you feel hungrier during, has food increased during, increased the number of binge eating between meals during, increased craving/desire for food during, increased amount of snacks between meals during, how is health compared to before, PHQ-9 score and GAD-7 score. Regression for PHQ-9 was adjusted for age, sex, MedDiet score, BMI before, weight change, emotional, external, smoking, work, sleep duration, perception of weight increase during, consume more pastries during, meal plan has changed during, follow same hours/number of meals, do you feel hungrier during, has food increased during, increased the number of binge eating between meals during, increased craving/desire for food during, smoking increased during, increased amount of snacks between meals during, how is health compared to before. Regression for GAD-7 was adjusted for age, sex, BMI before, weight change, emotional, external, smoking, work, sleep duration, belief in weight increase during, consume more pastries during, follow same hours/number of meals, do you feel hungrier during, has food increased during, increased the number of binge eating between meals during, increased craving/desire for food during, smoking increased during, increased amount of snacks between meals during, how is health compared to before.
Interestingly, we observed associations of increased scores of restraint, emotional and external eating with PHQ-9 and GAD-7 scores which is in agreement with previous reports (Aoun et al., 2019).

Our study has limitations that need to be acknowledged. Firstly, the adoption of the online survey limits the sample representativeness, although it currently represents the best solution for data collection during virus outbreaks (Geldsetzer, 2020). This aspect should be considered in the interpretation of the results. Secondly, due to the cross-sectional design, causation cannot be inferred, and therefore both directions of associations are plausible. Thirdly, the lack of pre-COVID-19 data on the participants precludes inference that the potential relationship of the high scores of disturbed eating behaviours and the high frequency of the mental health problems during the COVID-19 pandemic are a true result of the pandemic or the associated lockdown. Finally, although we adjusted for several potential confounders, residual confounding cannot be ruled out.

In summary, this study revealed high scores of inappropriate eating behaviours and a high frequency of depression and anxiety symptoms in two Mediterranean countries with different confinement strictness strategies and different degrees of COVID-19 pandemic severity. Our findings also suggest that living in Spain compared to Greece during this pandemic is associated with lower restraint and external eating behaviours, but increased anxiety symptoms. These results could inform the development of new preventive strategies aimed to reduce the levels of disturbed eating behaviours and mental health problems during the COVID-19 pandemic. Further prospective studies are needed to confirm our findings in different populations with different degrees of COVID-19 pandemic severity.

ACKNOWLEDGEMENT

Christopher Papandreou is recipient of the Instituto de Salud Carlos III Miguel Servet fellowship (grant CP 19/00189).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Christopher Papandreou https://orcid.org/0000-0002-6803-507X

REFERENCES

Ammar, A., Brach, M., Trabelsi, K., Chtourou, H., Boukhris, O., Masmoudi, L., ... ECLB-COVID19 Consortium. (2020). Effects of COVID-19 home confinement on eating behaviour and physical activity: Results of the ECLB-COVID19 international online survey. *Nutrients*, 12, 1583. https://doi.org/10.3390/nu12061583

Aoun, C., Nassar, L., Soumi, S., El Osta, N., Papazian, T., & Rabbaa Khabbaz, L. (2019). The cognitive, behavioral, and emotional aspects of eating habits and association with impulsivity, chronotype, anxiety, and depression: A cross-sectional study. *Frontiers in Behavioral Neuroscience*, 13, 204. https://doi.org/10.3389/fnbeh.2019.00204

Arias-de la Torre, J., Vilagut, G., Martin, V., Molina, A. J., & Alonso, J. (2018). Prevalence of major depressive disorder and association with personal and socio-economic factors. Results for Spain of the European health interview survey 2014-2015. *Journal of Affective Disorders*, 239, 203–207. https://doi.org/10.1016/j.jad.2018.06.051

Bailly, N., Maitre, I., Amanda, M., Hervé, C., & Alphilippe, D. (2012). The Dutch eating behaviour questionnaire (DEBQ). Assessment of eating behaviour in an aging French population. *Appetite*, 59(3), 853–858. https://doi.org/10.1016/j.appet.2012.08.029

BDA. 2020. *Eating well during Coronavirus/COVID-19*. Available from https://www.bda.uk.com/resource/eating-well-during-coronavirus-covid-19.html.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society, 57*, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Brooks, S. K., Webster, R. K., Smith, L. E., Woodland, L., Wessely, S., Greenberg, N., & Rubin, G. J. (2020). The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. *Lancet*, 395(10227), 912–920. https://doi.org/10.1016/S0140-6736(20)30460-8

Burton, P., Smit, H. J., & Lightowler, H. J. (2007). The influence of restrained and external eating patterns on overeating. *Appetite*, 49(1), 191–197. https://doi.org/10.1016/j.appet.2007.01.007

Calvó-Perxas, L., Garre-Olmo, J., & Vilalta-Franch, J. (2015). Prevalence and sociodemographic correlates of depressive and bipolar disorders in Catalonia (Spain) using DSM-5 criteria. *Journal of Affective Disorders*, 184, 97–103. https://doi.org/10.1016/j.jad.2015.05.048

Casagrande, M., Favieri, F., Tambelli, R., & Forte, G. (2020). The enemy who sealed the world: Effects quarantine due to the COVID-19 on sleep quality, anxiety, and psychological distress in the Italian population. *Sleep Medicine*, 2020. [Epub ahead of print]. https://doi.org/10.1016/j.sleep.2020.05.011

Casper, R. C. (1998). Depression and eating disorders. *Depression and Anxiety*, 8(1), 96–104.

Dakanalis, A., Zanetti, M. A., Clerici, M., Madeddu, F., Riva, G., & Caccialanza, R. (2013). Italian version of the Dutch eating behavior questionnaire. Psychometric proprieties and measurement invariance across sex, BMI-status and age. *Appetite*, 71, 187–195.

Geldsetzer, P. (2020). Use of rapid online surveys to assess people’s perceptions during infectious disease outbreaks: A cross-
several studies have shown that dieting can negatively affect eating behavior. for example, munoz-navarro et al. (1993) found that dieting significantly increased eating behavior in a sample of adults. similar results were reported by gonzález-sanguino et al. (2020), who found that dieting was associated with a higher prevalence of eating disorders.

Furthermore, several factors related to dieting have been implicated in the development of eating disorders. for instance, james et al. (2019) found that post-ebola survivors who engaged in dieting were more likely to report symptoms of depression and anxiety.

In conclusion, dieting appears to be a risk factor for the development of eating disorders. interventions that address the psychological and behavioral aspects of dieting may be effective in reducing the risk of developing eating disorders.
Wanberg, C. R. (2012). The individual experience of unemployment. Annual Review of Psychology, 63, 369–396. https://doi.org/10.1146/annurev-psych-120710-100500

Wang, Y. F., Ha, S., Zauszniewski, J. A., & Ross, R. (2018). Psychometric properties of the Chinese version of the Dutch eating behavior questionnaire in a sample of Taiwanese parents. Obesity Research & Clinical Practice, 12(1), 129–132. https://doi.org/10.1016/j.orcp.2017.11.005

World Health Organization. (2020). WHO Director-General’s opening remarks at the media briefing on COVID-19. Retrieved from https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020.

How to cite this article: Papandreou C, Arija V, Aretouli E, Tsilidis KK, Bulló M. Comparing eating behaviours, and symptoms of depression and anxiety between Spain and Greece during the COVID-19 outbreak: Cross-sectional analysis of two different confinement strategies. Eur Eat Disorders Rev. 2020;28:836–846. https://doi.org/10.1002/erv.2772