QUANTUM UNIQUE ERGODICITY FOR $SL_2(\mathbb{Z}) \backslash \mathbb{H}$

K. Soundararajan

1. Introduction

An interesting problem in number theory and quantum chaos is to understand the distribution of Maass cusp forms of large Laplace eigenvalue for the modular surface $X = SL_2(\mathbb{Z}) \backslash \mathbb{H}$. Let ϕ denote a Maass form of eigenvalue λ, normalized so that its Petersson norm $\int_X |\phi(z)|^2 \frac{dx\,dy}{y^2}$ equals 1. Zelditch [14] has shown that as $\lambda \to \infty$, for a typical Maass form ϕ the associated probability measure $\mu_\phi := |\phi(z)|^2 \frac{dx\,dy}{y^2}$ tends to the uniform distribution measure $\frac{3}{\pi} \frac{dx\,dy}{y^2}$. This result is known as “Quantum Ergodicity.” The widely studied Quantum Unique Ergodicity conjecture of Rudnick and Sarnak [10] asserts that as $\lambda \to \infty$, for every Maass form ϕ the measure μ_ϕ approaches the uniform distribution measure. In studying this conjecture, it is also natural to restrict to Maass forms that are eigenvalues of all the Hecke operators; it is expected that the spectrum of the Laplacian on X is simple so that this condition would automatically hold, but this is far from being proved. Using methods from ergodic theory, Lindenstrauss [6] has made great progress towards the QUE conjecture for such Hecke-Maass forms. Namely, he has shown that the only possible weak-\ast limits of the measures μ_ϕ are of the form $c \frac{3}{\pi} \frac{dx\,dy}{y^2}$ where c is some constant in $[0, 1]$. In other words, Lindenstrauss establishes QUE for X except for the possibility that for some infinite subsequence of Hecke-Maass forms ϕ some of the L^2 mass of ϕ could “escape” into the cusp of X. In this paper we eliminate the possibility of escape of mass, and together with Lindenstrauss’s work this completes the proof of QUE for X.

The results of Zelditch and Lindenstrauss are in fact stronger than we have indicated above. Given a Maass form ϕ on X, Zelditch defines the “micro-local” lift $\tilde{\phi}$ of ϕ to $Y = SL_2(\mathbb{Z}) \backslash SL_2(\mathbb{R})$. This micro-local lift defines a measure on $SL_2(\mathbb{Z}) \backslash SL_2(\mathbb{R})$ with two important properties: First, as the eigenvalue tends to infinity, the projection of the measure from Y to the surface X approximates the measure μ_ϕ given above. Second, as the eigenvalue tends to infinity any weak-\ast limit of these measures on Y is invariant under the geodesic flow on Y. Zelditch’s result then asserts that for a full density subsequence of eigenfunctions, the associated micro-local lifts get equidistributed on Y. Lindenstrauss’s result is that any weak-\ast limit of the lifts arising from Hecke-Maass forms is a constant c (between 0 and 1) times the normalized volume measure on Y. We remark that the analog of quantum unique ergodicity with Eisenstein series in place of cusp forms has been treated by Luo and Sarnak [8] in the modular surface version, and by Jakobson [5] for

The author is partially supported by the National Science Foundation (DMS 0500711).
the corresponding micro-local lifts. For more complete accounts of the quantum unique ergodicity problem the reader may consult [7], [9], [11], [13] and references therein; a comprehensive introduction to the theory of Maass forms is provided in [4].

Theorem 1. Let ϕ be a Hecke-Maass cusp form for the full modular group $SL_2(\mathbb{Z})$, normalized to have Petersson norm 1. Let $\tilde{\phi}$ denote the micro-local lift of ϕ to $Y = SL_2(\mathbb{Z}) \backslash SL_2(\mathbb{R})$, and let $\tilde{\mu}_\phi$ denote the corresponding measure on Y. The normalized volume measure on Y is the unique weak-$*$ limit of the measures $\tilde{\mu}_\phi$. In particular, for any compact subset C of a fundamental domain for $SL_2(\mathbb{Z}) \backslash \mathbb{H}$ we have, as $\lambda \to \infty$,

$$\int_C |\phi(x + iy)|^2 \frac{dx \ dy}{y^2} = \int_C \frac{3 \ dx \ dy}{\pi \ y^2} + o(1).$$

Theorem 1 is a consequence of the following result which estimates how much of the mass of ϕ can be present high in the cusp.

Proposition 2. Let ϕ denote a Hecke-Maass cusp form for $SL_2(\mathbb{Z})$ with eigenvalue λ, and normalized to have Petersson norm 1. For $T \geq 1$, we have

$$\int_{|x| \leq \frac{1}{2}, \ y \geq T} |\phi(x + iy)|^2 \frac{dx \ dy}{y^2} \ll \frac{\log(eT)}{\sqrt{T}}.$$

We remark that by entirely different methods Holowinsky and Soundararajan ([2], [3], [12]) have settled the holomorphic analog of QUE for X; it is not clear how to adapt Lindenstrauss’s methods to that setting. Their methods have the advantage of yielding explicit estimates for the rate of convergence to uniform distribution; it is not clear how to obtain such a rate of convergence in Theorem 1. However the works of Holowinsky and Soundararajan use in an essential way Deligne’s bounds for the Hecke eigenvalues of holomorphic modular forms; the analog of these bounds for Maass forms remains an important open problem.

While we have restricted ourselves to the full modular group, our argument would apply also to all congruence subgroups. Thus QUE for Maass forms, and its holomorphic analog, are now known for non-compact arithmetic quotients of \mathbb{H}. In the case of compact arithmetic quotients, Lindenstrauss’s work establishes QUE for Maass forms; the analog for holomorphic forms remains open.

Our proofs of Theorem 1 and Proposition 2 exploit the particular multiplicative structure of the Hecke-operators. We say that a function f is *Hecke-multiplicative* if it satisfies the Hecke relation

$$f(m)f(n) = \sum_{d|(m,n)} f(mn/d^2),$$

and $f(1) = 1$. The key to establishing Proposition 2 is the following result on Hecke-multiplicative functions.
Theorem 3. Let f be a Hecke-multiplicative function. Then for all $1 \leq y \leq x$ we have

$$\sum_{n \leq x/y} |f(n)|^2 \leq 10^8 \left(\frac{1 + \log y}{\sqrt{y}} \right) \sum_{n \leq x} |f(n)|^2.$$

It is noteworthy that Theorem 3 makes no assumptions on the size of the function f. Hecke-multiplicative functions satisfy $f(p^2) = f(p^2 - 1)$, so that at least one of $|f(p)|$ or $|f(p^2)|$ must be bounded away from zero; this observation plays a crucial role in our proof. We also remark that apart from the log y factor, Theorem 3 is best possible: Consider the Hecke-multiplicative function f defined by $f(p) = 0$ for all primes p. The Hecke relation then mandates that $f(p^{2k+1}) = 0$ and $f(p^{2k}) = (-1)^k$. Therefore, in this example, $\sum_{n \leq x} |f(n)|^2 = \sqrt{x} + O(1)$ and $\sum_{n \leq x/y} |f(n)|^2 = \sqrt{x/y} + O(1)$.

The argument of Theorem 3 can be generalized in several ways. For example one could obtain an analogous result with $|f(n)|$ in place of $|f(n)|^2$. Moreover one could consider multiplicative functions f arising from Euler products of degree d. By this we mean that for each prime p there exist complex numbers α_j ($j = 1, \ldots, d$) with $|\alpha_1 \cdots \alpha_d| = 1$ and $\sum_{k=0}^{\infty} f(p^k)x^k = \prod_{j=1}^{d} (1 - \alpha_j x)^{-1}$; the case $d = 2$ corresponds to our Hecke-multiplicative functions above. For these functions, one of $|f(p)|$, \ldots, $|f(p^d)|$ must be bounded away from zero, and exploiting this we may establish an analog of Theorem 3.

Acknowledgments. I am grateful to Peter Sarnak for encouragement and some helpful suggestions, and to Roman Holowinsky for a careful reading.

2. Deducing Theorem 1 and Proposition 2 from Theorem 3

Proof of Proposition 2. Let ϕ be a Maass form of eigenvalue $\frac{1}{4} + r^2$ for the full modular group, normalized to have Petersson norm 1. We suppose that ϕ is an eigenfunction of all the Hecke operators, and let $\lambda(n)$ denote the n-th Hecke eigenvalue. Recall that ϕ has a Fourier expansion of the form

$$\phi(z) = C\sqrt{y} \sum_{n=1}^{\infty} \lambda(n) K_{ir}(2\pi ny) \cos(2\pi nx),$$

or

$$\phi(z) = C\sqrt{y} \sum_{n=1}^{\infty} \lambda(n) K_{ir}(2\pi ny) \sin(2\pi nx),$$

where C is a constant (normalizing the L^2 norm), K denotes the usual K-Bessel function, and we have cos or sin depending on whether the form is even or odd.

Using Parseval we find that

$$\int_{|x| \leq \frac{1}{2T}} \int_{y \geq T} |\phi(x + iy)|^2 \frac{dx \, dy}{y^2} = \frac{C^2}{2} \int_{T}^{\infty} \sum_{n=1}^{\infty} |\lambda(n)|^2 |K_{ir}(2\pi ny)|^2 \frac{dy}{y}.$$

By a change of variables we may write this as

$$\frac{C^2}{2} \sum_{n=1}^{\infty} |\lambda(n)|^2 \int_{nT}^{\infty} |K_{ir}(2\pi t)|^2 \frac{dt}{t} = \frac{C^2}{2} \int_{1}^{\infty} |K_{ir}(2\pi t)|^2 \sum_{n \leq t/T} |\lambda(n)|^2 \frac{dt}{t}.$$
Appealing to Theorem 3 this is
\[\ll \frac{\log e T \cdot C^2}{\sqrt{T}} \cdot 2 \int_1^\infty |K_{ir}(2\pi t)|^2 \sum_{n \leq t} |\lambda(n)|^2 \frac{dt}{t} \]
\[= \frac{\log e T}{\sqrt{T}} \int_{|x| \leq \frac{1}{y} \geq 1} |\phi(x + iy)|^2 \frac{dx \, dy}{y^2} \ll \frac{\log e T}{\sqrt{T}}, \]
since the region \(|x| \leq \frac{1}{2}, y \geq 1\) is contained inside a fundamental domain for \(SL_2(\mathbb{Z})\backslash \mathbb{H}\). This proves Proposition 2.

Proof of Theorem 1. As remarked in the introduction, Lindenstrauss has shown that any weak-\(\ast\) limit of the micro-local lifts of Hecke-Maass forms is a constant \(c\) (in \([0, 1]\)) times the normalized volume measure on \(Y\). Projecting these measures down to the modular surface, we see that any weak-\(\ast\) limit of the measures \(\mu_\phi\) associated to Hecke-Maass forms is of the shape \(c \frac{3}{\pi} \frac{dx \, dy}{y^2}\). Theorem 1 claims that in fact \(c = 1\), and there is no escape of mass. If on the contrary \(c < 1\) for some weak-\(\ast\) limit, then we have a sequence of Hecke-Maass forms \(\phi_j\) with eigenvalues \(\lambda_j\) tending to infinity such that for any fixed \(T \geq 1\) and as \(j \to \infty\)

\[\int_{y \leq T} \int_{|z| \leq 1} |\phi_j(z)|^2 \frac{dx \, dy}{y^2} = (c + o(1)) \frac{3}{\pi} \int_{y \leq T} \frac{dx \, dy}{y^2} = (c + o(1)) \left(1 - \frac{3}{\pi T}\right) ; \]

here \(\mathcal{F} = \{z = x + iy : |z| \geq 1, -1/2 \leq x \leq 1/2, y > 0\}\) denotes the usual fundamental domain for \(SL_2(\mathbb{Z})\backslash \mathbb{H}\). It follows that as \(j \to \infty\)

\[\int_{y \geq T} \int_{|x| \leq \frac{1}{2}} |\phi_j(z)|^2 \frac{dx \, dy}{y^2} = 1 - c + \frac{3}{\pi T} c + o(1), \]

but if \(c < 1\) this contradicts Proposition 2 for suitably large \(T\).

3. Preliminaries for the proof of Theorem 3

Throughout the proof of Theorem 3 we shall work with a single value of \(x\). Accordingly, we define for \(1 \leq y \leq x\)

\[\mathcal{F}(y) = \mathcal{F}(y; x) = \frac{\sum_{n \leq x/y} |f(n)|^2}{\sum_{n \leq x} |f(n)|^2}, \]

and our goal is to show that \(\mathcal{F}(y) \leq 10^8 \log(ey)/\sqrt{y}\). Note that \(\mathcal{F}(y) \leq 1\) for all \(y \geq 1\), and that \(\mathcal{F}\) is a decreasing function of \(y\). Thus in proving Theorem 3 we may assume that \(y \geq 10^{16}\). We adopt throughout the convention that \(f(t) = 0\) when \(t\) is not a natural number, and that \(\mathcal{F}(y) = 0\) if \(y > x\).
Lemma 3.1. For any prime \(p \leq x \) we have

\[
|f(p)| \leq \frac{2}{F(p)\frac{1}{2}},
\]

and, for \(p \leq \sqrt{x} \)

\[
|f(p)| \leq \frac{2}{F(p^2)\frac{1}{4}}.
\]

Proof. Consider

\[
(3.1) \quad |f(p)|^2 \sum_{n \leq x/p} |f(n)|^2 = |f(p)|^2 F(p) \sum_{n \leq x} |f(n)|^2.
\]

Now \(|f(p)f(n)| \leq |f(pm)| + |f(n/p)| \) so that \(|f(p)f(n)|^2 \leq 2(|f(np)|^2 + |f(n/p)|^2) \). Hence the LHS of (3.1) is

\[
\leq 2 \sum_{n \leq x/p} (|f(np)|^2 + |f(n/p)|^2) \leq 4 \sum_{n \leq x} |f(n)|^2,
\]

and the first bound follows.

To see the second bound consider

\[
(3.2) \quad |f(p^2)|^2 \sum_{n \leq x/p^2} |f(n)|^2 = |f(p^2)|^2 F(p^2) \sum_{n \leq x} |f(n)|^2.
\]

The Hecke relations give \(|f(p^2)f(n)| \leq |f(p^2n)| + |f(n)| + |f(n/p^2)| \) so that \(|f(p^2)f(n)|^2 \leq 3(|f(p^2n)|^2 + |f(n)|^2 + |f(n/p^2)|^2) \). Hence the LHS of (3.2) is \(\leq 9 \sum_{n \leq x} |f(n)|^2 \). It follows that

\[
|f(p^2)| \leq \frac{3}{F(p^2)\frac{1}{2}},
\]

and as \(|f(p)|^2 \leq |f(p^2)| + 1 \) the result follows.

Proposition 3.2. Let \(d \) be a square-free number. Then

\[
\sum_{\substack{n \leq x/y \atop d|n}} |f(n)|^2 \leq \tau(d) \prod_{p|d} (1 + |f(p)|^2) F(yd) \sum_{n \leq x} |f(n)|^2,
\]

where \(\tau(d) \) denotes the number of divisors of \(d \). Moreover

\[
\sum_{\substack{n \leq x/y \atop d^3|n}} |f(n)|^2 \leq \tau_3(d) \prod_{p|d} (2 + |f(p^2)|^2) F(yd^2) \sum_{n \leq x} |f(n)|^2,
\]

where \(\tau_3 \) denotes the 3-divisor function (being the number of ways of writing \(d \) as \(abc \)).
Proof. The Hecke relations give that $f(p)f(m) = f(pm) + f(m/p)$, and so $|f(pm)| \leq |f(p)f(m)| + |f(m/p)|$. By induction we find that

$$|f(md)| \leq \sum_{ab=d} |f(a)||f(m/b)|,$$

so that

$$|f(md)|^2 \leq \tau(d) \sum_{ab=d} |f(a)|^2 |f(m/b)|^2.$$

Summing over all $m \leq x/(yd)$ we obtain that

$$\sum_{n \leq x/y, d|n} |f(n)|^2 \leq \tau(d) \sum_{ab=d} |f(a)|^2 \sum_{m \leq x/(yd)} |f(m/b)|^2$$

$$\leq \tau(d) \sum_{ab=d} |f(a)|^2 F(yd) \sum_{n \leq x} |f(n)|^2.$$

The first statement follows.

To prove the second assertion, note that the Hecke relations give that $f(m)f(p^2)$ equals $f(mp^2)$ if $p \nmid m$, $f(mp^2) + f(m)$ if $p|m$, and $f(mp^2) + f(m) + f(m/p^2)$ if $p^2|m$. In all cases we find that $|f(mp^2)| \leq |f(p^2)f(m)| + |f(m)| + |f(m/p^2)|$. By induction we may see that

$$|f(md^2)| \leq \sum_{abc=d} |f(a^2)||f(m/c^2)|.$$

Therefore

$$|f(md^2)|^2 \leq \tau_3(d) \sum_{abc=d} |f(a^2)|^2 |f(m/c^2)|^2.$$

Summing over all $m \leq x/(yd^2)$ we obtain that

$$\sum_{n=md^2 \leq x/y} |f(n)|^2 \leq \tau_3(d) \sum_{abc=d} |f(a^2)|^2 \sum_{m \leq x/(yd^2)} |f(m/c^2)|^2$$

$$\leq \tau_3(d) F(yd^2) \left(\sum_{n \leq x} |f(n)|^2 \right) \sum_{a|d} |f(a^2)|^2 \tau(d/a),$$

and the second statement follows.

Let $P = P(y)$ denote the set of primes in $[\sqrt{y}/2, \sqrt{y}]$. The prime number theorem gives for large y that $|P(y)| \sim \sqrt{y}/\log y$. In fact, using only a classical result of Chebyshev we find that for $y \geq 10^{16}$ we have $|P(y)| \geq \sqrt{y}/(2 \log y)$ (see, for example, Dusart’s thesis [1] which gives more precise estimates). The second bound of Lemma 3.1 gives that $|f(p)| \leq 2/F(y)^{1/2}$. Therefore, we select

$$J = \left[\frac{1}{4 \log 2} \log(1/F(y)) \right] + 3,$$

and partition P into sets P_0, \ldots, P_J where P_0 contains those primes in P with $|f(p)| \leq 1/2$, and for $1 \leq j \leq J$ the set P_j contains those primes in P with $2^{j-2} < |f(p)| \leq 2^{j-1}$.

Let $k \geq 1$ be a natural number. Define $N_0(k)$ to be the set of integers divisible by at most k distinct squares of primes in P_0. For $1 \leq j \leq J$ we define $N_j(k)$ to be the set of integers divisible by at most k distinct primes in P_j.
Proposition 3.3. Keep the notations above. For \(2 \leq k \leq |\mathcal{P}_0|/4\) we have
\[
\sum_{\frac{n}{x/y} \in \mathcal{N}_0(k)} |f(n)|^2 \leq \frac{4k}{|\mathcal{P}_0|} \sum_{n \leq x} |f(n)|^2.
\]
Further, if \(1 \leq j \leq J\) and \(1 \leq k \leq |\mathcal{P}_j|/4 - 1\) we have
\[
\sum_{\frac{n}{x/y} \in \mathcal{N}_j(k)} |f(n)|^2 \leq \frac{2^{12}k^2}{2^{4j}|\mathcal{P}_j|^2} \sum_{n \leq x} |f(n)|^2.
\]

Proof. Note that if \(p \in \mathcal{P}_0\) then \(|f(p)| \leq 1/2\), and so \(|f(p^2)| = |f(p)^2 - 1| \geq 3/4\). Therefore
\[
\sum_{\frac{n}{x/y} \in \mathcal{N}_0(k)} |f(n)|^2 \left(\sum_{p \in \mathcal{P}_0 \atop p^2 \mid n} |f(p^2)|^2 \right) \geq \frac{9}{16}(|\mathcal{P}_0| - k) \sum_{\frac{n}{x/y} \in \mathcal{N}_0(k)} |f(n)|^2
\]
\[
\geq \frac{27}{64} |\mathcal{P}_0| \sum_{\frac{n}{x/y} \in \mathcal{N}_0(k)} |f(n)|^2.
\]

If \(p \in \mathcal{P}_0\) and \(p^2 \nmid n\) then we claim that \(|f(n)f(p^2)| \leq |f(p^2)n|\). If \(p \nmid n\) then equality holds in this claim. If \(p\) exactly divides \(n\) then the claim amounts to \(|f(p^3)| \geq |f(p)f(p^2)|\), and to see this note that \(f(p^3) = f(p)f(p^2) - 2\) and \(f(p^2) = f(p^2) - 1\), and the estimate \(|f(p^2) - 2| \geq |f(p^2) - 1|\) holds since \(|f(p)| \leq 1/2\). Therefore the LHS of (3.3) is
\[
\leq \sum_{m \leq x} |f(m)|^2 \left(\sum_{\frac{m}{x/y} \in \mathcal{N}_0(k) \atop p \in \mathcal{P}_0, \ p^2 \mid n} \left\lfloor \frac{1}{2} \right\rfloor \right) \leq (k + 1) \sum_{m \leq x} |f(m)|^2,
\]
since the sum over \(n\) and \(p\) above is zero unless \(m\) is divisible by at most \(k + 1\) squares of primes in \(\mathcal{P}_0\) and in this case the number of choices for \(p\) in that sum is at most \(k + 1\). Since \(k \geq 2\) the stated bound follows.

The second assertion is similar. If \(p \in \mathcal{P}_j\) then \(|f(p)| \geq 2^{j-2}\). Therefore
\[
\sum_{\frac{n}{x/y} \in \mathcal{N}_j(k)} |f(n)|^2 \left(\sum_{p_1, p_2 \in \mathcal{P}_j \atop p_1 < p_2 \atop p_i \mid n} |f(p_1p^2)|^2 \right) \geq 2^{4(j-2)} \left(|\mathcal{P}_j| - k \right) \sum_{\frac{n}{x/y} \in \mathcal{N}_j(k)} |f(n)|^2
\]
\[
\geq 2^{4j-8} \frac{9|\mathcal{P}_j|^2}{32} \sum_{\frac{n}{x/y} \in \mathcal{N}_j(k)} |f(n)|^2.
\]

But the LHS sums terms of the form \(|f(m)|^2\) where \(m = np_1p_2 \leq x\) and \(m\) is divisible by at most \(k + 2\) distinct primes in \(\mathcal{P}_j\); moreover each such term appears at most \(\binom{k+2}{2}\) times on the LHS. Therefore the LHS above is
\[
\leq \binom{k+2}{2} \sum_{n \leq x} |f(n)|^2 \leq 3k^2 \sum_{n \leq x} |f(n)|^2,
\]
and the Proposition follows in this case.
4. Proof of Theorem 3

Consider the set of values y with $F(y) \geq 10^8 \log(ey)/\sqrt{y}$. Pick a “maximal” element from this set; precisely, a value y belonging to the exceptional set, but such that no value larger than $y + 1$ is in this set. We shall use the work in §3 with this maximal value of y in mind, and employ the notation introduced there. The argument splits into two cases: since $|\mathcal{P}| \geq \sqrt{y}/(2 \log y)$ we must have either $|\mathcal{P}_0| \geq \sqrt{y}/(4 \log y)$, or that $|\mathcal{P}_j| \geq \sqrt{y}/(4J \log y)$ for some $1 \leq j \leq J$.

Case 1: $|\mathcal{P}_0| \geq \sqrt{y}/(4 \log y)$.

Take $K = [\lfloor |\mathcal{P}_0| F(y)/8 \rfloor]$, so that $10^4 \leq K \leq |\mathcal{P}_0|/4$. Proposition 3.3 gives that

$$\sum_{\substack{n \leq x/y \\ n \in \mathcal{N}_0(K)}} |f(n)|^2 \leq \frac{1}{2} F(y) \sum_{n \leq x} |f(n)|^2,$$

so that

$$(4.1) \sum_{\substack{n \leq x/y \\ n \notin \mathcal{N}_0(K)}} |f(n)|^2 \geq \frac{1}{2} F(y) \sum_{n \leq x} |f(n)|^2.$$

If $n \notin \mathcal{N}_0(K)$ then n must be divisible by at least $K + 1$ squares of primes in \mathcal{P}_0. There are $\binom{|\mathcal{P}_0|}{K+1}$ integers that are products of exactly $K + 1$ primes from \mathcal{P}_0. Each of these integers exceeds $(\sqrt{y}/2)^{K+1}$, and a number $n \notin \mathcal{N}_0(K)$ must be divisible by the square of one of these integers. Thus, using the second bound in Proposition 3.2 we find that the LHS of (4.1) is

$$(4.2) \quad \sum_{\substack{n \leq x/y \\ n \notin \mathcal{N}_0(K)}} |f(n)|^2 \leq \binom{|\mathcal{P}_0|}{K+1} \cdot 3^{K+1} \cdot 3^{K+1} F(y(y/4)^{K+1}) \sum_{n \leq x} |f(n)|^2.$$

Since

$$\binom{|\mathcal{P}_0|}{K+1} \leq \frac{|\mathcal{P}_0|^{K+1}}{(K+1)!} < \left(\frac{e |\mathcal{P}_0|}{K+1} \right)^{K+1} < \left(\frac{24}{F(y)} \right)^{K+1},$$

and, by the maximality of y,

$$F(y(y/4)^{K+1}) \leq 10^8 \cdot 2^{K+1} \frac{1 + (K+2) \log y}{y(K+2)/2} < 10^8 \cdot 2^{K+1} \cdot (10^{-8} F(y))^{K+2},$$

we deduce that the quantity in (4.2) is

$$\leq \left(\frac{432}{10^8} \right)^{K+1} F(y) \sum_{n \leq x} |f(n)|^2 < \frac{1}{2} F(y) \sum_{n \leq x} |f(n)|^2,$$

which contradicts (4.1). This completes our argument for the first case.
Case 2: $|\mathcal{P}_j| \geq \sqrt[2j]{(4J \log y)}$ for some $1 \leq j \leq J$.

Here we take $K = [2^{2j-9}|\mathcal{P}_j|\mathcal{F}(y)^{\frac{1}{2}}]$. Using that $J \leq 3 + (\log(1/\mathcal{F}(y)))/(4 \log 2) \leq (\log y)/4$, and $y \geq 10^{16}$ we may check that $K \geq 10$. Moreover, for any prime p in \mathcal{P}_j we have $2^{2j-4} \leq |f(p)|^2 \leq 4/\mathcal{F}(y)^{\frac{1}{2}}$ by Lemma 3.1, and so $K \leq |\mathcal{P}_j|/8$. Thus the second part of Proposition 3.3 applies, and it shows that

$$\sum_{n \leq x/y \atop n \in \mathcal{N}_j(K)} |f(n)|^2 \leq \frac{1}{2} \mathcal{F}(y) \sum_{n \leq x} |f(n)|^2.$$

Therefore

(4.3) $$\sum_{n \leq x/y \atop n \notin \mathcal{N}_j(K)} |f(n)|^2 \geq \frac{1}{2} \mathcal{F}(y) \sum_{n \leq x} |f(n)|^2.$$

If $n \notin \mathcal{N}_j(K)$ then n must be divisible by one of the $(|\mathcal{P}_j|/K+1)$ integers composed of exactly $K+1$ primes in \mathcal{P}_j. Each of those numbers exceeds $(\sqrt[2j]{y}/2)^{K+1}$. Appealing to the first part of Proposition 3.2 we find that the LHS of (4.3) is

(4.4) $$\left(\frac{|\mathcal{P}_j|}{K+1}\right)2^{2j(K+1)} \mathcal{F}(y(\sqrt[2j]{y}/2)^{K+1}) \sum_{n \leq x} |f(n)|^2.$$

Since

$$\left(\frac{|\mathcal{P}_j|}{K+1}\right) \leq \frac{|\mathcal{P}_j|^{K+1}}{(K+1)!} \leq \left(\frac{e|\mathcal{P}_j|}{K+1}\right)^{K+1} \leq \left(\frac{2^{11}}{2^{2j} \mathcal{F}(y)^{\frac{1}{2}}}\right)^{K+1},$$

and, by the maximality of y,

$$\mathcal{F}(y(\sqrt[2j]{y}/2)^{K+1}) \leq 10^8 \cdot 2^{-\frac{K+3}{2}} \frac{1 + \frac{K+3}{2} \log y}{y^{K+3}} < 10^8 \cdot 2^{-\frac{K+1}{2}} (10^{-8} \mathcal{F}(y))^{\frac{K+3}{2}},$$

we deduce that the quantity in (4.4) is

$$\leq \left(\frac{2^{23}}{10^8}\right)^{K+1} \mathcal{F}(y) \sum_{n \leq x} |f(n)|^2 < \frac{1}{2} \mathcal{F}(y) \sum_{n \leq x} |f(n)|^2,$$

which contradicts (4.3). This completes our argument in the second case, and hence also the proof of Theorem 3.

References

[1] P. Dusart, *Autour de la fonction qui compte le nombre de nombres premiers*, Ph. D. thesis, e-print available at http://www.unilim.fr/laco/theses/1998/T1998_01.pdf (1998).

[2] R. Holowinsky, *Sieving for mass equidistribution*, preprint (18 pages), available at http://arxiv.org/abs/0809.1640v2.
[3] R. Holowinsky and K. Soundararajan, *Mass equidistribution of Hecke eigenforms*, preprint, available at http://arxiv.org/abs/0809.1636.

[4] H. Iwaniec, *Spectral methods of automorphic forms*, vol. 53, AMS Graduate Studies in Math., 2002.

[5] D. Jakobson, *Quantum unique ergodicity for Eisenstein series on $PSL_2(\mathbb{Z})\backslash PSL_2(\mathbb{R})$*, Ann. Inst. Fourier **44** (1994), 1477–1504.

[6] E. Lindenstrauss, *Invariant measures and arithmetic quantum unique ergodicity*, Ann. of Math. **163** (2006), 165–219.

[7] E. Lindenstrauss, *Adelic dynamics and arithmetic quantum unique ergodicity*, Curr. Developments in Math. **2004**, 111-139.

[8] W. Luo and P. Sarnak, *Quantum ergodicity of eigenfunctions on $PSL_2(\mathbb{Z})\backslash \mathbb{H}^2$*, Inst. Hautes Études Sci. Publ. Math. **81** (1995), 207–237.

[9] J. Marklof, *Arithmetic quantum chaos*, Encyclopedia of Math. Phys. (Eds: J.-P. Francoise, G.L. Naber and Tsou S.T.), vol. 1, Elsevier, 2006, pp. 212–220.

[10] Z. Rudnick and P. Sarnak, *The behaviour of eigenstates of arithmetic hyperbolic manifolds*, Comm. Math. Phys. **161** (1994), 195–213.

[11] P. Sarnak, *Arithmetic quantum chaos*, Israel Math. Conf. Proc., Bar-Ilan Univ., Ramat Gan, **8** (1995), 183–236.

[12] K. Soundararajan, *Weak subconvexity for central values of L-functions*, preprint, available at http://arxiv.org/abs/0809.1635.

[13] T. Watson, *Rankin triple products and quantum chaos*, Ph. D. Thesis, Princeton University (eprint available at: http://www.math.princeton.edu/~tcwatson/watson_thesis_final.pdf) (2001).

[14] S. Zelditch, *Selberg trace formulae and equidistribution theorems*, Memoirs of the AMS **96** (1992).