Effect of Slaughtering Age in Different Commercial Chicken Genotypes Reared According to the Organic System: 2. Fatty Acid and Oxidative Status of Meat

Alessandro Dal Bosco, Simona Mattioli, Silvia Ruggeri, Cecilia Mugnai & Cesare Castellini

To cite this article: Alessandro Dal Bosco, Simona Mattioli, Silvia Ruggeri, Cecilia Mugnai & Cesare Castellini (2014) Effect of Slaughtering Age in Different Commercial Chicken Genotypes Reared According to the Organic System: 2. Fatty Acid and Oxidative Status of Meat, Italian Journal of Animal Science, 13:2, 3311, DOI: 10.4081/ijas.2014.3311

To link to this article: http://dx.doi.org/10.4081/ijas.2014.3311

© A. Dal Bosco et al.

Published online: 17 Feb 2016.

Submit your article to this journal

Article views: 68

View related articles

View Crossmark data
Effect of slaughtering age in different commercial chicken genotypes reared according to the organic system: 2. Fatty acid and oxidative status of meat

Alessandro Dal Bosco,1 Simona Mattioli,1 Silvia Ruggeri,1 Cecilia Mugnai,2 Cesare Castellini1

1Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Italy
2Dipartimento di Scienze degli Alimenti, Università di Teramo, Mosciano Sant’Angelo, Italy

Abstract

The fatty acid profile and the oxidative status of meat of three different commercial chicken genotypes organically reared and slaughtered at two different ages (70 and 81 days) were compared. The genotypes used were Naked Neck (CN1 strain), Kabir (KR4 strain) and Ross 308 (R). All animals were raised in the facilities of a big Italian company, in field conditions. Genotype and slaughtering age affected the main fatty acids and the antioxidant profile of meat. Concerning the content of total saturated fatty acids (SFA), the highest value was observed in R chicks. The CN1 birds showed the lowest SFA values, whereas the KR4 showed intermediate values. Polyunsaturated fatty acids (PUFA) showed a different trend at the two slaughter ages. At 71 days medium-growing chickens had lower values, while at 81 days CN1 birds reached the highest value. The CN1 chickens exhibited lower concentrations of linolenic acid, but higher long chain PUFA derivatives. However, the meat of these chickens showed a lower lipid stability despite a higher antioxidant content probably due to the kinetic behaviour and the resulting high oxidative metabolism. This finding is of importance since health concerns over fatty acid profile are among the main factors contributing to the decline of meat intake. Regarding the slaughtering age, the results of this trial demonstrate that at older age chickens show a better fatty acid profile under a nutritional point of view even if the oxidative status worsens.

Materials and methods

Animals, housing and feeding

The trial was conducted in the facilities of an European supplier of organic broilers in Central Italy. The used genotypes were Naked Neck (strain CN1), Kabir (strain KR4) and Ross 308 (R); all the birds were furnished by a commercial hatchery (Avicola Berlanda, Carmignano di Brenta, Italy). Kabir and CN1 were of both sexes, while R were only males. The trial was carried out from April to June 2012 in the facilities of the company in production units of 3000 birds which were also vaccinated against Marek, Newcastle diseases and coccidiosis (Paracox®-8). At 21 days of age all the birds were put in 9 covered shelters (0.10 m²/bird) with straw litter and access to a grass paddock (4 m²/bird); feeders and drinkers were available both outdoor and indoor (three replications). Chickens were fed ad libitum the same starter (1-21 days) and finisher (22 days to slaughter) diets, containing 100% certified organic ingredients (Table 1). Fatty acids, tocopherol and carotenoid profile of the diets are presented in Table 2. Chemical analyses of diet were done according to AOAC methods (1995).

Blood sampling

Before slaughtering, blood samples were taken from the brachial vein in ten chickens per group and collected in heparinised vacutainers and centrifuged at 1500 g for 10 min at +4°C, to measure the in vivo oxidative status. After collection, blood samples were immediately sent to the laboratory of the Department of Agricultural, Food and Environmental Sciences, University of Perugia, Italy where they were centrifuged and frozen at -80°C until analysis.

Introduction

The organic system requires the use of strains appropriate to free range mainly because of foraging behaviour and immune response. This notwithstanding, commercial poultry farms often use fast-growing genotypes not suitable for the organic system for economic reasons [high body weight (BW), carcass and breast yield].

Previous studies (Dal Bosco et al., 2012; Fanatico et al., 2005) underlined that fast-growing chicks are not appropriate for extensive rearing conditions, as they exhibit muscular-skeletal problems, very low motor activity and foraging behaviour (Castellini et al., 2002a, 2002b; Dal Bosco et al., 2010; Sirri et al., 2010). On the contrary, slow-growing strains generally have a remarkable consumption of fresh forage which implies a reliable intake of antioxidant compounds (tocopherols, tocotrienols and carotenoids; Kerry et al., 2000) and α-linoleic acid (C18:3n-3, ALA) which is partly converted to long-chain derivatives [C20:5n-3, eicosapentaenoic acid (EPA) and C22:6n-3, docosahexaenoic acid (DHA)]. Indeed, fatty acids of the meat derive from dietary uptake, and/or bioconversion; specifically, the bioconversion of long-chain polyunsaturated fatty acids (LCPUFA) of the n-3 series includes endoplasmic D6-desaturation, chain elongation and D3-desaturation of ALA to EPA, which is subsequently converted to docosapentaenoic acid (C22:5n-3, DPA). The final metabolite, DHA, is synthesised by chain elongation, D3-desaturation and peroxisomal b-oxidation of DPA (Poureslami et al., 2010).

In a previous study (Dal Bosco et al., 2014a), welfare, carcass traits and meat quality of three commercial genotypes reared under organic system and slaughtered at two different ages were investigated. In the present trial we analyse the fatty acid profile and oxidative status of meat from chickens reared in field condition according to the organic system.

Materials and methods

Animals, housing and feeding

The trial was conducted in the facilities of an European supplier of organic broilers in Central Italy. The used genotypes were Naked Neck (strain CN1), Kabir (strain KR4) and Ross 308 (R); all the birds were furnished by a commercial hatchery (Avicola Berlanda, Carmignano di Brenta, Italy). Kabir and CN1 were of both sexes, while R were only females due to the too high BW reachable by males.
Carcass dissection and sampling
At 70 and 81 days of age, 20 chickens per genotype were slaughtered in the processing plant of the farm, 12 h after feed withdrawal. Chickens were stunned by electrocution (110 V; 350 Hz) before killing. After killing, carcasses were plucked, eviscerated (non-edible viscera: intestines, proventriculus, gall bladder, spleen, oesophagus and full crop) and stored for 24 h at +4°C. Head, neck, legs, edible viscera (heart, liver, gizzard), and fat (perivisceral, perineal and abdominal) were removed in order to obtain the ready-to-cook carcass (Romboli et al., 1996). From the carcass, the *Pectoralis major* muscles were excised for successive analysis.

Analytical determinations
Feed and meat fatty acids were quantified as methyl esters (FAME) with a Mega 2 Carlo Erba Gas Chromatograph, model HRGC (Carlo Erba Agents, Milan, Italy), using a D-B wax capillary column (0.25 mm Ø, 30 m long). Fatty acid methyl ester peaks were identified by comparing the retention time with the commercial available FAME standards. The fatty acid compositions were calculated using the peak areas and expressed on percentage basis. The average amount of each fatty acid was used to calculate the sum of the saturated (SFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids.

Peroxidability index (PI) was calculated according to the equation proposed by Arakawa and Sagai (1986):

\[
\text{PI}=\left(\% \text{ monoenoic } 0.025\right)+\left(\% \text{ dienoic } 1\right)+\left(\% \text{ trienoic } 2\right)+\left(\% \text{ tetraenoic } 4\right)+\left(\% \text{ pentaenoic } 6\right)+\left(\% \text{ hexaenoic } 8\right)
\]

The amount of each fatty acid was used to calculate the indexes of atherogeneity (AI) and thrombogenicity (TI), as proposed by Ulbricht and Southgate (1991), and the hypocholesterolaemic/hypercholesterolaemic ratio (HH), as suggested by Santos-Silva et al. (2002):

\[
\text{AI}=(C12:0+4 C14:0+C16:0)/[(\text{MUFA}+\Sigma(n-6)+\Sigma(n-3))],
\]

\[
\text{TI}=(C14:0+C16:0+C18:0)/\left[(0.5 \text{ MUFA}+0.5(n-6)+3(n-3)+3(n-6))\right],
\]

\[
\text{HH}=[(C18:0+9+C18:2n-6+C20:4n-6+C18:3n-3+C20:5n-3+C22:5n-3+C22:6n-3)/(C14:0+C16:0)].
\]

The extent of plasma and muscle lipid oxidation was evaluated by a spectrophotometer set at 532 nm (UV-2550; Shimadzu, Kyoto, Japan) which measured the absorbance of thio-barbituric acid-reactive substances (TBARS), and a 1,1,3,3-tetraethoxypropane calibration curve in sodium acetate buffer (pH=3.5; Dal Bosco et al., 2009). Oxidation products were quantified as malondialdehyde index (mg MDA/g muscle). Tocopherol content and retinol of plasma and meat were quantified by high-performance liquid chromatography (HPLC) (Hewawitharana et al., 2004). Briefly, 5 mL of distilled water and 4 mL of ethanol were added to 2 g of sample and then vortexing for 10 sec. After mixing, 4 mL of hexane containing butylated hydroxytoluene (200 mg/L) were added and the mixture was carefully shaken and centrifuged. An aliquot of supernatant (3 mL) was dried under a stream of nitrogen and then redisolved in 300 µL of acetonitrile. 50 µL were injected into the HPLC (PU-1580, equipped with an autosampler system AS 950-10; Jasco Int. Co., Tokyo, Japan) on a Ultrashere ODS column (250.46 mm internal diameter, 5 µm particles size; CPS Analitica, Milan, Italy). Tocopherols (α-tocopherol and its isomers β+γ and δ) were identified using a FD detector (FP-1525, excitation and emission wavelength of 285 nm and 328 nm, respectively; Jasco) and quantified using external calibration curves prepared with increasing amounts of pure tocopherols in ethanol.

Statistical analyses
A linear model (StataCorp, 2005; GLM procedure) was used to evaluate the interactive effect of genetic strain and slaughtering age. Differences were assessed by ANOVA test with a Bonferroni multiple t-test. Differences with at least a P<0.05 value were considered statistically significant.

Results and discussion
The fatty acid and antioxidant profile of the finisher diet is shown in Table 2. Polyunsaturated fatty acids represented the main class of fatty acids and linoleic acid (LA) was the main n-6 PUFA (47.7%). Oleic acid was the main MUFA (24.9%) and palmitic acid the principal SFA (12.9%). Although α-tocopherol was added in the diet as additive (30 mg/kg), γ-tocopherol was the main tocopherol isofrom because it is the isomer mostly represented in corn (Rocheford et al., 2002) and soybean (Seguin et al., 2009). The same applies to lutein and zeaxanthin, the main carotenoids in finisher diets, mostly due to corn meal. The fatty acid profile of breast meat is

Table 1. Antioxidant and fatty acid profile of the finisher diet.

Ingredient	Amount, mg/100 g
Lutein	1.03
Zeaxanthin	0.40
α-tocopherol	6.11
δ-tocopherol	2.54
γ-tocopherol	10.25
α-tocotrienol	2.03
γ-tocotrienol	4.10

Table 2. Antioxidant and fatty acid profile of the finisher diet.

Ingredient	Amount, mg/100 g
α-tocopherol	47.7
γ-tocopherol	8.8
Total	56.5

DM, dry matter; CP, crude protein; EE, ether extract; CF, crude fibre; NDF, neutral detergent fibre; ADL, acid detergent fibre; ADL, acid detergent liquid; ME, metabolisable energy *From conventional crops. †Amounts per kg vitamin A, 11,000 U; vitamin D3, 2000 U; vitamin B6, 2.5 mg; vitamin B12, 0.01 mg; α-tocopheryl acetate, 50 mg; biotin, 0.06 mg; vitamin K, 2.5 mg; niacin, 15 mg; folic acid, 0.30 mg; pantothenic acid, 10 mg; choline chloride, 500 mg; Mn, 60 mg; Fe, 50 mg; Zn, 15 mg; I, 0.5 mg; Co, 0.5 mg. ‡Estimated following Carré and Rozo (1990).
shown in Table 3. Both genotypes and slaugh-
tering age affected the main fatty acids of
meat. The higher content of SFA was observed
in the R chicks, mainly due to the higher
amounts of C16:0 and C18:0. The CN1 birds
showed the lower SFA values, whereas KR4
was intermediate.

Monounsaturated fatty acid concentration,
mainly represented by C18:1n-9, showed the
highest levels in CN1 chickens. The low MUFA
level, which in chickens depends both on the
endogenous synthesis and the gut absorp-
tion from the diet, was significantly lower in R
birds and at 81 days of age.

Polyunsaturated fatty acids showed a diffe-
rent trend at the two slaughter ages consid-
ered: at 70 days of age medium-growing chick-
en (CN1 and KR4) showed the lowest values,
while at 81 days the highest ones. The total n-
3 fatty acid and, above all, the LCP derivatives
were higher in the medium-growing than in fast-growing strain (R). The lower n-3 amount
of these latter birds could be due to different
factors: the scarce/null intake of grass and the
lower Δ9-desaturase activity in line with slow-
growing lines (Dal Bosco et al., 2012). Indeed,
it is widely known that the rate-limiting step in
the enzymatic LCP biosynthesis is thought to
be Δ9-desaturase (Yamazaki et al., 1992). On
the other hand, medium-growing lines proba-
bly eat much more grass than fast-growing
ones (Castellini et al., 2002b) and the competi-
tion for LCP synthesis is more advantageous
for n-3 series since grass major PUFA is ALA.
Indeed, ALA and LA elongation and desatura-
tion require the same desaturation pathways
(Lands, 1992) and higher ALA intake could con-
tribute to the different n-3 profile of me-
dium-growing chickens.

Moreover, the CN1 meat exhibited lower
concentrations of ALA, but higher LCP deriva-
tives. As observed in a previous study (Dal
Bosco et al., 2012), there is no direct correla-
tion between grass intake and ALA level in the
meat. Naked Neck chickens probably ingested
more ALA but simultaneously had a higher
conversion of ALA into LCP as confirmed by the
higher level of EPA, DPA and DHA in the meat.
Also, Ponte et al. (2008) showed that forage
consumption in broiler chickens does not con-
tribute to improve ALA levels in breast meat,
while desaturation and elongation of this pre-
cursor contribute to improve LCP derivatives
and n-6/n-3 ratio.

Older birds showed higher LCP and total
PUFA levels (Table 4). These results are in line
with Poureslami et al. (2010) whose study of
the effect of age on fatty acid metabolism
revealed that chickens slaughtered at 42 days
of age had higher values for PUFA intake,
PUFA apparent digestibility and ALA and LCP
derivatives accumulation when compared with
the 7-14 d age period, lied to lower values for b-
oxidation. Authors justified this trend with the
fact that young birds had a higher metabolism
rate compared to the older ones.

Naked Neck chickens showed the best va-
ues of total PUFA/total SFA and n-6/n-3 ratio at
both considered ages; even peroxidability,
atherogenicity and thrombogenicity indexes,
as well as hypocholesterolaemia/hyperchole-
sterolaemia fatty acid ratio showed a similar
trend among genotypes but without a clear
trend with the slaughtering ages.

The tocopherols, tocotrienols, carotenoids
and the oxidative status of plasma are presen-
ted in Table 5. α-tocopherol was the most rep-
resented vitamin E isoform in blood and it is
considered as the most active antioxidant. The
other two isoforms play a role in reduction of
inflammation (Singh et al., 2005). α- and γ-
tocotrienol were the only tocotrienols detected
in plasma. Tocotrienols, apart for their antiox-
idant property, are well known for their hypo-

Table 3. Fatty acid profile of Pectoralis major muscle at different ages.

SFA	70 days	81 days	Pooled SE				
	CN1	KR4	R	CN1	KR4	R	
C14:0	0.87a	1.56b	1.64a	0.84a	1.69b	1.31ab	0.41
C16:0	29.2	30.1	30.7	28.9	30.0	31.2	3.35
C18:0	9.18a	10.1b	11.0b	10.5a	11.1b	12.3b	2.89
Others	3.32a	2.06a	1.99a	2.65b	2.19b	2.41b	0.48
Total	42.5a	43.8a	45.3a	42.9a	45.0a	47.3a	2.59
MUFA							
C14:1-6	0.12b	0.04a	0.01b	0.13a	0.05a	0.03a	0.06
C16:1-17	3.35a	3.18b	1.41a	2.71a	2.85b	1.32a	0.13
C18:1-9	24.3c	23.5c	22.6c	22.5c	21.9b	21.7a	1.87
Others	0.22a	0.22a	0.17a	0.23a	0.15a	0.15a	0.07
Total	27.9a	26.8a	24.1a	25.5a	24.9a	23.2a	2.06
Polyenoic n-6							
C18:2	20.8b	20.5a	20.7a	22.3a	21.3b	21.2ab	1.95
C20:2	0.84a	0.34a	0.38a	1.35a	1.55b	0.39a	0.18
C20:3	0.26a	0.24a	0.16a	0.23a	0.31a	0.27a	0.11
C20:4	4.06b	5.07b	7.42b	3.05b	3.23b	5.12b	1.51
Total	25.9a	26.1a	28.5a	26.9a	26.3a	26.9a	1.29
Polynenoic n-3							
C18:3	0.62a	0.93a	0.58a	0.75a	0.99a	1.21c	0.21
C20:5	0.18a	0.12b	0.09a	0.59a	0.26c	0.13ab	0.08
C22:5	0.94a	0.64a	0.28a	1.05a	0.92c	0.31b	0.07
C22:6	0.95a	0.67a	0.60a	1.29a	0.85c	0.48a	0.12
Total	2.72a	2.41b	1.57a	3.76c	3.00b	2.16b	0.36
Total PUFA	28.6	28.5	30.1	30.6	29.3	29.1	2.68

CN1, Naked Neck; KR4, Kahir; R, Ross 308; SE, standard error; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids. Different letters in the same row denote significant differences (P<0.05). Values are expressed as percentage of total fatty acids.
cholesterolemic, anti-cancer and neuroprotective effects that are often not exhibited by tocopherols (Qureshi et al., 1996). Despite the high level of non-\(\alpha \)-tocopherol isomers in diets (about 75% data not shown), in plasma the \(\alpha \)-tocopherol represents about 87% of all vitamin E isofrom. It should be underlined that oral supplementation of \(\alpha \)-tocopherol reduces all the other isofroms because only \(\alpha \)-tocopherol is selectively bound to a transfer protein (Oram et al., 2001). The presence of such a protein that preferentially selects \(\alpha \)-tocopherol seems to explain why all other vitamin E isofroms have a lower biological activity than \(\alpha \)-tocopherol. Moreover, tocotrienols belong to a group of phenolic compounds with a lower tissue retention and half-life in respect to \(\alpha \)-tocopherol (Qureshi et al., 1996). The plasma of more active chickens (CN1 followed by KR4) had a higher amount of malondialdehyde (Castellini et al., 2006) despite the higher antioxidant content. This fact could be due to the higher oxidative metabolism and free-radical production of this strain which is not fully counterbalanced by the response of organism (Alessio et al., 2000). More kinetic chicks, despite the higher anti-

oxidant intake (Dal Bosco et al., 2010, 2014b), require further antioxidant protection to protect the high LCP level of the body. The antioxidant profile and the oxidative status of \(Pectoralis major \) are presented in Table 6. The meat followed the same trend of blood plasma: more active chickens had a considerable amount of malondialdehyde (Castellini et al., 2002b; 2006) despite the higher antioxidant content. In agreement with Hewavitharana et al. (2004), \(\alpha \)-tocopherol was the principal iso-

mer of chicken meat, followed by \(\gamma \)-tocopherol, \(\alpha \)-tocotrienol, \(\alpha \)- and \(\gamma \)-tocotrienol. \(\beta \)-tocotrienol was coeluted with \(\gamma \)-tocotrienol, while \(\delta \)-tocotrienol was present only in trace. Ponte et al. (2008) did not find any difference in the oxidative profile of broiler meat when chickens were supplemented with dehydrated forage: the use of fast-growing chickens at very early age (28 days) could explain the difference obtained.

Table 4. Fatty acid indexes of \(Pectoralis major \) muscle at different ages.

	70 days	81 days	Pooled SE				
	CN1	KR4	R	CN1	KR4	R	
P/S	0.67^b	0.65^a	0.66^b	0.71^b	0.65^a	0.62^c	0.08
n-6/n-3	9.54^b	10.85^c	18.19^c	7.16^a	8.79^c	12.48^c	0.26
Peroxidability index	53.50^b	54.28^a	59.15^b	55.43^a	51.90^b	51.67^c	3.05
Atherogenicity index	0.58^b	0.66^a	0.69^b	0.57^b	0.68^a	0.70^b	0.12
HH	1.44^b	1.11^a	1.39^b	1.07^b	1.23^a	1.42^b	0.23

CN1, Naked Neck; KR4, Kabir; R, Ross 308; SE, standard error. *Different letters in the same row denote significant differences (P<0.05). Values are expressed as percentage of total fatty acids.

Table 5. Oxidative status of plasma at different ages.

	70 days	81 days	Pooled SE				
	CN1	KR4	R	CN1	KR4	R	
TBAR	24.5^c	20.3^a	21.9^c	20.4^d	17.8^a	18.7^a	2.04
\(\alpha \)-tocopherol	10.1^b	6.81^a	6.74^b	10.8^b	10.6^b	9.48^b	5.80
\(\delta \)-tocopherol	0.29^b	0.30^a	0.30^b	0.35^b	0.37^b	0.32^b	0.06
\(\gamma \)-tocopherol	0.78^b	0.62^a	0.53^b	0.44^b	0.50^b	0.44^b	0.32
\(\alpha \)-tocotrienol	0.25^a	0.18^a	0.15^a	0.30^a	0.28^a	0.27^a	0.10
\(\gamma \)-tocotrienol	0.10^a	0.11^a	0.09^a	0.12^a	0.12^a	0.10^a	0.02
Lutein+zeaxanthin	31.2^c	28.3^a	29.4^c	41.0^c	36.4^c	34.8^c	3.41

CN1, Naked Neck; KR4, Kabir; R, Ross 308; SE, standard error. *Different letters in the same row denote significant differences (P<0.05). Values are expressed as nmol/mL.

Table 6. Oxidative status of \(Pectoralis major \) muscle at different ages.

	70 days	81 days	Pooled SE				
	CN1	KR4	R	CN1	KR4	R	
TBAR, mg/g	0.16^a	0.15^a	0.11^a	0.25^c	0.16^a	0.13^a	0.04
\(\alpha \)-tocopherol, ng/g	469.2^d	418.5^c	435.2^c	589.9^b	526.8^c	525.4^c	45.8
\(\delta \)-tocopherol, ng/g	22.9^b	12.9^b	16.8^b	34.1^a	15.4^b	15.7^b	2.69
\(\gamma \)-tocopherol, ng/g	31.8^a	25.7^a	31.0^a	38.4^b	56.8^a	61.7^a	5.02
\(\alpha \)-tocotrienol, ng/g	23.7^c	16.5^a	18.9^c	34.8^c	32.4^b	31.3^b	2.50
\(\gamma \)-tocotrienol, ng/g	14.4^c	11.5^c	10.0^c	14.7^c	12.6^c	12.5^c	1.25
Lutein+zeaxanthin, ng/g	31.2^c	28.3^c	29.4^c	31.0^c	34.6^c	34.9^c	3.41

CN1, Naked Neck; KR4, Kabir; R, Ross 308; SE, standard error. *Different letters in the same row denote significant differences (P<0.05).
More consideration to antioxidant stability of organic meat should be devoted by improving the pasture allowance or by adding antioxidants to the diets.

Conclusions

In conclusion, the results of this study indicate that both genotypes and age affect the fatty acid content of chicken breast. In organic farming, chicken genotype plays a fundamental role in meat nutritional value (fatty acid, antioxidant, oxidative stability) owing to its peculiar foraging behaviour, metabolism and kinetic activity. This finding assumes considerable importance as health concerns over fat intake are among the main factors contributing to the decline of meat intake. Regarding the slaughtering age, the results of this trial demonstrate that older chickens show a better fatty acid profile from a nutritional point of view even if the oxidative status gets worse. These results open new research perspectives on management and nutrition techniques in order to maintain a good oxidative status and ultimately provide an optimal fatty acid profile to the consumer.

References

Alessio, H.M.A., Fulkerson, B.K., Ambrose, J., Rice, R.E., Wiley, R.L., 2000. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med. Sci. Sport Exer. 32:1576-1581.

AOAC, 1995. Official methods of analysis. 15th ed., Association of Official Analytical Chemists, Washington, DC, USA.

Arakawa, K., Sagai, M., 1986. Species differences in lipid peroxide levels in lung tissue and investigation of their determining factors. Lipoïdes 21:769-775.

Carrè, B., Rozo, E., 1990. La prédiction de la valeur énergétique des matières premières destinées à l’aviiculture. Prod. Anim. 3:163-169.

Castellini, C., Dal Bosco, A., Mugnai, C., 2002a. Effect of conventional versus organic method of production on the broiler carcass and meat quality. Meat Sci. 60:219-224.

Castellini, C., Dal Bosco, A., Mugnai, C., Bernardini, M., 2002b. Performance and behaviour of chickens with different growing rate reared according to the organic system. Ital. J. Anim. Sci. 1:291-300.

Dal Bosco, A., Mugnai, C., Pedrazzoli, M., 2006. Comparison of two chicken genotypes organically reared: oxidative stability and other qualitative traits. Ital. J. Anim. Sci. 5:29-36.

Dal Bosco, A., Mugnai, C., Guarino Amato, M., Castellini, C., 2014a. Effect of slaughtering age in different commercial chicken genotypes reared according to the organic system: 1. Welfare and carcass and meat characteristics. Ital. J. Anim. Sci. (In press).

Dal Bosco, A., Mugnai, C., Mourvaki, E., Cardinali, R., Moscati, L., Paci, G., Castellini, C., 2009. Effect of genotype and rearing system on the native immunity and oxidative status of growing rabbits. Ital. J. Anim. Sci. 8(Suppl.2):781-783.

Dal Bosco, A., Mugnai, C., Rosati, A., Paoletti, A., Caporalii, S., Castellini, C., 2014b. Effect of range enrichment on performance, behaviour and forage intake of free-range chickens. J. Appl. Poultry Res. (In press).

Dal Bosco, A., Mugnai, C., Ruggeri, S., Mattioli, S., Castellini, C., 2012. Fatty acid composition of meat and estimated indices of lipid metabolism in different poultry genotypes reared under organic system. Poultry Sci. 91:2039-2045.

Dal Bosco, A., Mugnai, C., Sirri, F., Zamparini, C., Castellini, C., 2010. Assessment of a GPS to evaluate activity of organic chickens at pasture. J. Appl. Poultry Res. 19:213-218.

Fanatico, A.C., Cavitt, L.C., Pillai, P.B., Emmert, J.L., Owens, C.M., 2005. Evaluation of slower-growing broiler genotypes grown with and without outdoor access: meat quality. Poultry Sci. 84:1785-1790.

Hewawitharana, A.K., Lanari, M.G., Becu, C., 2004. Simultaneous determination of vitamin E homologs in chicken meat by liquid chromatography with fluorescence detection. J. Chromatogr. A 1025:313-317.

Kerry, J.P., Buckley, D.J., Morrissey, P.A., 2000. Improvement of oxidative stability of beef and lamb with vitamin E. In: E.A. Decker, C. Faustman and C. Lopez-Bote (ed.) Antioxidants in muscle foods. Wiley-Interscience, New York, NY, USA, pp 229-262.

Lands, W.E.M., 1992. Biochemistry and physiology of n-3 fatty acids. FASEB J. 6:2530-2536.

Oram, J.F., Vaughan, A.M., Stocker, R., 2001. ATP-binding cassette transporter A1 mediates cellular secretion of alpha-tocopherol. J. Biol. Chem. 276:898-902.

Ponte, P.P., Prates, J.A.M., Crespo, J.P., Crespo, D.G., Mourao, J.L., Alves, S.P., Bessa, R.J.B., Chaveiro-Soares, M.A., Ferreira, L.M.A., Fontes, C.M.G.A., 2008. Improving the lipid nutritive value of poultry meat through the incorporation of a dehydrated leguminous-based forage in the diet for broiler chicks. Poultry Sci. 87:1587-1594.

Poureslami, G.M., Turchini, K., Raes, G., Huyghebaert, G., De Smet, S., 2010. Effects of diet, age and gender on the polymunsaturated fatty acid composition of broiler anatomical compartments. Brit. Poultry Sci. 51:81-91.

Qureshi, A.A., Pearce, B.C., Nor, R.M., Gapor, A., Peterson, D.M., Elson, C.E., 1996. Dietary a-tocopherol attenuates the impact of g-tocotrienol on hepatic 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in chickens. J. Nutr. 126:389-394.

Rocheford, T.R., Wong, J.C., Egesel, C.O., Lambert, R.J., 2002. Enhancement of vitamin E levels in corn. J. Am. Coll. Nutr. 21(Suppl.3):191-198.

Rombo, I., Cavachlini, L., Gualtieri, M., Franchini, A., Nizza, A., Quarantelli, A., 1996. Metodologie relative alla macellazione del pollame, alla valutazione e dissezione delle carcase e delle carni avicole. Zootec. Nutr. Anim. 22:177-180.

Santos-Silva, J., Bessa, R.J.B., Santos-Silva, F., 2002. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livest. Prod. Sci. 77:187-192.

Seguin, P., Turcotte, P., Tremblay, G., Pageau, D., Liu, W., 2009. Tocopherols concentration and stability in early maturing soybean genotypes. Agron. J. 101:1153-1159.

Singh, U., Devaraj, S., Jialal, I., 2005. Vitamin E, oxidative stress and inflammation. Annu. Rev. Nutr. 25:151-174.

Sirri, F., Castellini, C., Roncarati, A., Franchini, A., Meluzzi, A., 2010. Effect of feeding and genotype on the lipid profile of organic chicken meat. Eur. J. Lipid Sci. Tech. 112:994-1002.

StataCorp, 2005. Stata statistical software, version 9.0. StataCorp Publ., College Station, TX, USA.

Ulbricht, T.L., Southgate, D.A.T., 1991. Coronary heart disease: seven dietary factors. Lancet 338:985-989.

Yamazaki, K., Fujikawa, M., Hamazaki, T., Yano, S., Shono, T., 1992. Comparison of the conversion rates of alpha-linolenic acid (18:3(N-3)) and stearidonic acid (18:4(N-3)) to longer polyunsaturated fatty acids in rats. Biochim. Biophys. Acta 1123:18-26.

Dal Bosco et al.