Supporting Information for “A dynamical model of equatorial magnetosonic waves in the inner magnetosphere: A machine learning approach”

R. J. Boynton,1 S. N. Walker,1 H. Aryan,1,2 Y. Hobara,3 M. A. Balikhin1

Additional Supporting Information (Files uploaded separately)

1. Captions for Movie MS1 (ms01.mp4).

Introduction

1Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom.

2University of California Los Angeles, Atmospheric and Oceanic Sciences, Math Sciences Building, Los Angeles, CA 90095-1565, United States.

4Department of Computer and Network Engineering, The University of Electro-Communications, Tokyo, Japan.
Movie MS1.

Movie showing the Model estimated Equatorial Magnetosonic waves from 00:00 UT 1 October 2016 to 00:00 UT 1 November 2016 with solar wind and geomagnetic index inputs; velocity, density, pressure, IMF factor, SYM-H index and AE index.