THREE-PHASE FREAK WAVES

A. O. SMIRNOV, S. G. MATVEENKO, S. K. SEMENOV, AND E. G. SEMENOVA

Abstract. Three-phase finite-gap solutions of the focusing non-linear Schrödinger, Kadomtsev-Petviashvili and Hirota equations are constructed. These solutions have a behavior of almost-periodic “freak waves”.

Introduction

This study was motivated by the intention to demonstrate the behavior of three-phase extreme waves. In the last time it was realized that the simplest and most universal model for such waves is the focusing nonlinear Schrödinger equation (NLS)

\[ip_t + p_{xx} + 2|p|^2p = 0, \quad i^2 = -1, \]

Equation (1) is used when describing distribution on the surface of the ocean weakly nonlinear quasi-monochromatic wave packets with a relatively steep fronts since 1968 [49]. An application of this equation to the problems of nonlinear optics was known earlier [7]. Since the equation (1) is a model of first approximation, it will appear in simulations of many weakly nonlinear phenomena. Fields of application of this equation are from plasma physics [32] to financial markets [48].

One of equation (1) property is a modulation instability, leading to the appearance of so-called “freak waves” (in hydrodynamics known as “rogue waves”) [2]. These waves are localized in space and time amplitude’s peaks. In the last 20 years, first in hydrodynamics, and then in nonlinear optics, these waves have been the object of numerous theoretical and experimental studies [2]. Such attention to the problem of “freak waves” is due, in particular, losses from destruction “rogue waves” oil platforms, tankers, container ships and other large vessels.

There are many more precise and more complex models, which give a more fine description of “freak waves” [2]. These models can be divided into two classes. For some models, like to equation (1) can be applied analytical methods. Other models are non-integrable and can be solved by numerical methods only. Analytical methods include:

- inverse scattering transform method;
- finite-gap integration method;
- Bäcklund transform method;
- Darboux transform method;
- Hirota method.

In the present work we use a finite-gap integration method. This method was created in the works of Dubrovin, Novikov, Marchenko, Lax, McKean, van Moerbeke, Matveev, Its, Krichever [11, 15, 24, 25, 30, 33, 35, 37, 39] (see also review article [36]). It should be mentioned that another

2010 Mathematics Subject Classification. 35Q55, 37C55.
Key words and phrases. nonlinear Schrödinger equation; Hirota equation; freak waves; theta function; reduction; covering; spectral curve.
method of constructing finite-gap solutions of integrable nonlinear equations exists \[27, 28, 38, 40\]. Let us remark that first method is based on Baker-Akhiezer function but second method is based on some Fays identities \[16\]. In our paper we use first method and Its’ and Kotlyarov’s classic formulas \[23, 26\] (see also \[6\]).

Our aim here is to show a behavior of three-phase algebro-geometric solutions of NLS, KP-I and Hirota equations. The first section of this paper contains the basic notations and classic formulas for algebro-geometric solutions of considered integrable non-linear equations. The second section of the paper is devoted to the periodicity of three-phase solutions of NLS, KP-I and Hirota equations. In the third section we consider an example of three-phase algebro-geometric solution of KP-I and Hirota equations for different values of parameters.

1. **Finite-gap multi-phase solutions of the NLS equation**

The nonlinear differential equations that are integrated by methods of the algebraic geometry, can be obtained as a compatibility condition of system of the ordinary linear differential equations with spectral parameter \[6, 19, 20\]. In particular, let us consider the following equations \[19, 22, 42\]

\[
\begin{align*}
Y_x &= iY, \\
Y_z &= 2iY, \\
Y_t &= 2iY,
\end{align*}
\]

where

\[
\begin{align*}
\mathcal{U} &= -\lambda \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} + \begin{pmatrix} 0 & i\psi \\ -i\phi & 0 \end{pmatrix}, \\
\mathcal{V} &= 2\lambda\mathcal{U} + \mathcal{V}_0, \\
\mathcal{W} &= 4\lambda^2\mathcal{U} + 2\lambda\mathcal{V}_0 + \mathcal{W}_1,
\end{align*}
\]

\(\lambda\) is a spectral parameter. Using these equations and additional relations

\[
(Y_x)_z = (Y_z)_x, \quad (Y_x)_t = (Y_t)_x
\]

one can easy obtain so-called equations of zero curvature

\[
\begin{align*}
\mathcal{U}_z - \mathcal{V}_x + \mathcal{V}\mathcal{U} - \mathcal{U}\mathcal{V} &= 0, \\
\mathcal{U}_t - \mathcal{W}_x + \mathcal{W}\mathcal{U} - \mathcal{U}\mathcal{W} &= 0,
\end{align*}
\]

which should be valid for all values of spectral parameter \(\lambda\). Respectively, it follows from eqs. \(3\) that matrices \(\mathcal{V}_0, \mathcal{W}_0, \mathcal{W}_1\) have to look like

\[
\begin{align*}
\mathcal{V}_0 &= \begin{pmatrix} -i\phi & -\psi_x \\ -\phi_x & i\psi \end{pmatrix}, \\
\mathcal{W}_1 &= \begin{pmatrix} \psi_x\phi - \psi\phi_x & 2i\psi^2\phi - i\psi_x \\ -2i\psi\phi_x + i\phi_{xx} & \psi\phi_x - \psi_x\phi \end{pmatrix},
\end{align*}
\]

Also that, accordingly, \(\mathcal{W} = 2\lambda\mathcal{V} + \mathcal{W}_1\). Conditions \(3\) lead also to additional system of equations (parities). First system is the coupled nonlinear Schrödinger equation

\[
\begin{align*}
\begin{cases}
 i\psi_x + \psi_{xx} - 2\psi^2\phi = 0, \\
 i\phi_x - \phi_{xx} + 2\psi^2\phi = 0,
\end{cases}
\end{align*}
\]

and the second system is the coupled modified Korteweg-de Vries equation

\[
\begin{align*}
\begin{cases}
 \psi_t + \psi_{xxx} - 6\psi\psi_x = 0, \\
 \phi_t + \phi_{xxx} - 6\psi\phi_x = 0.
\end{cases}
\end{align*}
\]
These two systems of the nonlinear differential equations are closely connected with two other ones. Namely, by differentiating eqs. (5) on \(x\) and substituting them in (6), one obtains the coupled modified two-dimensional nonlinear Schrödinger equation in a cone coordinates \[31\]

\[
\begin{align*}
\psi_t + \psi_{xx} + 2i(\psi\phi_x - \phi\psi_x) = 0, \\
\phi_t - \phi_{xx} + 2i(\phi\psi_x - \psi\phi_x) = 0,
\end{align*}
\]

Also the functions \(\psi(x,t,-\alpha t)\) and \(\phi(x,t,-\alpha t)\) are solutions of the coupled integrable Hirota equation (\(\alpha \in \mathbb{R}\)) \[8\]

\[
\begin{align*}
\psi_t + \psi_{xx} - 2|\psi|^2\psi - i\alpha(\psi_{xxx} - 6|\psi|^2\psi_x) = 0, \\
\phi_t - \phi_{xx} + 2\psi^2\phi - i\alpha(\phi_{xxx} - 6\psi\phi\phi_x) = 0,
\end{align*}
\]

if \(\psi(x,z,t)\) and \(\phi(x,z,t)\) are solutions of (5) and (6).

Systems of the nonlinear differential equations (5), (6) are the first two integrable systems from the AKNS hierarchy \[19\]. One of features of finite-gap multi-phase solutions of the integrable nonlinear equations is that fact that in some sense they are the solutions of all hierarchy. Particulary, our solutions can be used for constructing solutions of generalized nonlinear Schrödinger equation \[47\]. Substitutions \(\phi = \pm \psi\) into eq. (5) give us a standard form of the nonlinear Schrödinger equation. Particularly, for \(\phi = -\psi\) equations (5) transform to (1) \[13, 22, 26\] and equations (8) transform to the integrable Hirota equation \[4, 8, 21, 34\] \[9\]

\[
\begin{align*}
\psi_t + \psi_{xx} + 2|\psi|^2\psi - i\alpha(\psi_{xxx} - 6|\psi|^2\psi_x) = 0.
\end{align*}
\]

It is also easy to check that for any \(\psi\) and \(\phi\), that satisfy both (5) and (6) simultaneously, the function \(u(x,z,t) = -2\psi\phi\) is a solution of the Kadomtsev-Petviashvili-I equation (KP-I) \[10\]

\[
3u_{zzx} = (4u_t + u_{xxx} + 6|\psi|^2\psi_x)_x.
\]

In the case \(\phi = \pm \overline{\psi}\) this solution is a real function.

Finite-gap solutions of systems (5), (6) are parameterized by the hyperelliptic curve \(\Gamma = \{(\chi, \lambda)\}\) of the genus \(g\) \[19, 42\]:

\[
\chi^2 = \prod_{j=1}^{2g+2} (\lambda - \lambda_j),
\]

The branch points \((\lambda = \lambda_j, j = 1, \ldots, 2g+2)\) of this curve are the endpoints of the spectral arcs of continuous spectrum of Dirac operator (2a). Infinitely far point of the spectrum corresponds two different points \(\mathcal{P}_\pm\) on the curve \(\Gamma\). In the case \(\phi = -\overline{\psi}\) the curve \(\Gamma\) has the form

\[
\Gamma : \chi^2 = \prod_{j=1}^{g+1} (\lambda - \lambda_j)(\lambda - \overline{\lambda}_j) = \lambda^{2g+2} + \sum_{j=1}^{2g+2} \lambda_j \overline{\lambda}_j^{2g+2-j}, \quad \exists \chi_j = 0, \quad \exists (\lambda_j) \neq 0.
\]

Following a standard procedure of constructing a finite-gap solutions \[6, 13, 42\], let us to choose on \(\Gamma\) a canonical basis of cycles \(\gamma^j = (a_1, \ldots, a_g, b_1, \ldots, b_g)\) with matrix of intersection indices

\[
C_0 = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}.
\]

From the condition \(\phi = -\overline{\psi}\) it following that this basis of cycles satisfies the transformation relations \[6, 13\]

\[
\tilde{\gamma}_1 a = -a, \quad \tilde{\gamma}_1 b = b + K a.
\]
where τ_1 is anti-holomorphic involution, $\tau_1: (\chi, \lambda) \to (\overline{\chi}, \overline{\lambda})$.

Let us also consider normalized holomorphic differentials dU_j:

$$\oint_{a_k} dU_j = \delta_{kj}, \quad k, j = 1, \ldots, g,$$

and a matrix of periods B of the curve Γ:

$$B_{kj} = \oint_{b_k} dU_j, \quad k, j = 1, \ldots, g.$$

It is well known (see, for example [5, 13]) that the matrix B is a symmetric matrix with positively defined imaginary part.

Let us introduce in consideration g-dimensional Riemann theta function with characteristics $\eta, \zeta \in \mathbb{R}^g$ [5, 13, 16]:

$$\Theta[\eta'; \zeta'; (p)|B] = \sum_{m \in \mathbb{Z}^g} \exp\{\pi i (m + \eta)' B (m + \eta) + 2\pi i (m + \eta)' (p + \zeta)\},$$

where B is a matrix of periods, $p \in \mathbb{C}^g$ and summation passes over an integer g-dimensional lattice.

Let us also define normalized Abelian integrals on the Γ: of the second kind, $\Omega_j(P)$, $j = 1, 2, 3$ and the third kind, $\omega_0(P)$, with the following asymptotic at infinitely far points \mathcal{P}_{∞}^\pm:

$$\oint_{a_k} d\Omega_1 = \oint_{a_k} d\Omega_2 = \oint_{a_k} d\Omega_3 = \oint_{a_k} d\omega_0 = 0, \quad k = 1, \ldots, g,$$

$$\Omega_1(P) = \mp i \left(\lambda - K_1 + O(\lambda^{-1})\right), \quad P \to \mathcal{P}_{\infty}^\pm,$$

$$\Omega_2(P) = \mp i \left(2\lambda^2 - K_2 + O(\lambda^{-1})\right), \quad P \to \mathcal{P}_{\infty}^\pm,$$

$$\Omega_3(P) = \mp i \left(4\lambda^3 - K_3 + O(\lambda^{-1})\right), \quad P \to \mathcal{P}_{\infty}^\pm,$$

$$\omega_0(P) = \mp (\ln \lambda - \ln K_0 + O(\lambda^{-1})) \times \mathcal{P} \to \mathcal{P}_{\infty}^\pm.$$

Let us denote by $2\pi i U, 2\pi i V, 2\pi i W$ the vectors of b-periods of Abelian integrals of the second kind $\Omega_1(P), \Omega_2(P), \Omega_3(P)$, respectively.

Theorem 1 ([5, 12]). Function

$$Y(P, x, z, t) = \begin{pmatrix} y_1(P, x, z, t) & y_1(\tau_0 P, x, z, t) \\ y_2(P, x, z, t) & y_2(\tau_0 P, x, z, t) \end{pmatrix},$$

where τ_0 is hyperelliptic involution, $\tau_0: (\chi, \lambda) \to (-\chi, \lambda)$,

$$y_1(P, x, z, t) = \frac{\Theta(U(P) + Ux + Vz + Wt - X)\Theta(Z)}{\Theta(U(P) - X)\Theta(Ux + Vz + Wt + Z)} \times \exp\{\Omega_1(P)x + \Omega_2(P)z + \Omega_3(P)t + i\Phi(x, z, t)\},$$

$$y_2(P, x, z, t) = \rho \frac{\Theta(U(P) + Ux + Vz + Wt + \Delta - X)\Theta(Z - \Delta)}{\Theta(U(P) - X)\Theta(Ux + Vz + Wt + Z)} \times \exp\{\Omega_1(P)x + \Omega_2(P)z + \Omega_3(P)t - i\Phi(x, z, t) + \omega_0(P)\},$$
is the eigenfunction of the Dirac operator \((2a)\) with functions

\[
\psi(x, z, t) = \frac{2K_0 \Theta(Z)\Theta(Ux + Vz + Wt + Z - \Delta)}{\Theta(Z - \Delta)\Theta(Ux + Vz + Wt + Z)} \exp\{2i\Phi(x, z, t)\},
\]

(17)

\[
\phi(x, z, t) = 2\rho K_0 \frac{\Theta(Z - \Delta)\Theta(Ux + Vz + Wt + Z + \Delta)}{\Theta(Z)\Theta(Ux + Vz + Wt + Z)} \exp\{-2i\Phi(x, z, t)\},
\]

for any \(z, t\) and \(\rho \neq 0\). The functions (17) satisfy the equations (5) and (6). Here \(\Delta\) is vector of holomorphic Abelian integrals, calculated along a path, connecting \(\mathcal{P}_\infty^-\) and \(\mathcal{P}_\infty^+\), without crossing any of basic’s cycles,

\[
\Delta = \mathcal{U}(\mathcal{P}_\infty^+) - \mathcal{U}(\mathcal{P}_\infty^-), \quad \Phi(x, z, t) = K_1x + K_2z + K_3t,
\]

\[
\mathbf{X} = \mathcal{K} + \sum_{j=1}^g \mathcal{U}(\mathcal{P}_j), \quad \mathbf{Z} = \mathcal{U}(\mathcal{P}_\infty^+) - \mathbf{X},
\]

\(\mathcal{K}\) is a vector of Riemann constants \([5][13][16][25]\), \(\mathcal{P}_j, j = 1, \ldots, g\) is a non-special divisor. If the spectral curve \(\Gamma\) satisfies the condition \([11]\) then the following equalities hold

\[
|\psi|^2 = -4K_0^2 \frac{\Theta(Ux + Vz + Wt + Z - \Delta)\Theta(Ux + Vz + Wt + Z + \Delta)}{\Theta^2(Ux + Vz + Wt + Z)},
\]

\[
\Im \mathbf{U} = \Im \mathbf{V} = \Im \mathbf{W} = \Im \mathbf{Z} = 0, \quad K_0^2 < 0.
\]

It is easy to see that corresponding solution of KP-I equation (10) has the form

\[
u(x, z, t) = -8K_0 \frac{\Theta(Ux + Vz + Wt + Z - \Delta)\Theta(Ux + Vz + Wt + Z + \Delta)}{\Theta^2(Ux + Vz + Wt + Z)},
\]

and that the square of amplitude of solution of Hirota equation (9) equals

\[
|\psi_H|^2(x, t) = -4K_0^2 \frac{\Theta(Ux + (V - \alpha W)t + Z - \Delta)\Theta(Ux + (V - \alpha W)t + Z + \Delta)}{\Theta^2(Ux + (V - \alpha W)t + Z)}.
\]

2. Features of three-phase solutions

In a case \(g = 3\) basis of normalized holomorphic differentials is defined by the formula \([6][13]\):

\[
d\mathcal{U}_k = (c_{k1}\lambda^2 + c_{k2}\lambda + c_{k3}) \frac{d\lambda}{\lambda},
\]

where

\[
\mathbf{C} = (\mathbf{A}^t)^{-1}, \quad A_{jm} = \oint_{\mathcal{A}_j} \lambda^{3-m} \frac{d\lambda}{\lambda}.
\]

It follows from equation (\(\ell\) is an arbitrary path on \(\Gamma\))

\[
\int_{\mathcal{A}_\ell} d\omega = \int_{\ell} \tau^* d\omega,
\]

that

\[
\mathcal{A}_{jm} = \oint_{\mathcal{A}_j} \lambda^{3-m} d\lambda = \oint_{\mathcal{A}_j} \tau^1 (\lambda^{3-m} \frac{d\lambda}{\lambda}) = \oint_{\mathcal{A}_j} \lambda^{3-m} d\lambda,
\]

\[
\mathcal{A}_{jm} = \oint_{\mathcal{A}_j} \lambda^{3-m} \frac{d\lambda}{\lambda} = - \oint_{\mathcal{A}_j} \lambda^{3-m} \frac{d\lambda}{\lambda} = -A_{jm}.
\]
Therefore $\mathcal{A} = -A$ and $\mathcal{C} = -C$. Dealing similarly with integrals on b-cycles, we obtain
\begin{equation}
\mathcal{B} = -B - K \quad \text{or} \quad \Re B = -\frac{1}{2} K.
\end{equation}

It follows from bilinear relations of Riemann (see, for example, [5, 6, 13]) that coordinates of vectors U, V, W can be written as
\begin{align*}
U_m &= -i \left(\frac{dU_m}{d\xi_-} \bigg|_{\xi_- = 0} - \frac{dU_m}{d\xi_+} \bigg|_{\xi_+ = 0} \right), \\
V_m &= -2i \left(\frac{d^2U_m}{d\xi_-^2} \bigg|_{\xi_- = 0} - \frac{d^2U_m}{d\xi_+^2} \bigg|_{\xi_+ = 0} \right), \\
W_m &= -2i \left(\frac{d^3U_m}{d\xi_-^3} \bigg|_{\xi_- = 0} - \frac{d^3U_m}{d\xi_+^3} \bigg|_{\xi_+ = 0} \right),
\end{align*}
where $\xi_{\pm} = 1/\lambda$ are local parameters in the neighborhood of infinitely far points $P_{\pm\infty}$. Calculating derivatives, we obtain relations
\begin{align*}
U_m &= -2i\chi c_m, \quad V_m = 2i\chi_1 c_m - 4ic_m, \\
W_m &= i(4\chi_2 - 3\chi_1^2) c_m + 4i\chi_1 c_m - 8ic_m,
\end{align*}
or
\begin{equation}
(U, V, W) = iC \begin{pmatrix}
-2 & 2\chi_1 & 4\chi_2 - 3\chi_1^2 \\
0 & -4 & 4\chi_1 \\
0 & 0 & -8
\end{pmatrix}.
\end{equation}

It follows from (23) that the vectors U, V, W are real and linearly independent. Therefore U, V, W are basis vectors in \mathbb{R}^3. Hence any vector from \mathbb{R}^3 can be presented in the form of the linear combinations of these vectors. In particular, for the vectors of the periods of the three-dimensional theta-functions $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$, $e_3 = (0, 0, 1)$ we can write the following relations
\begin{equation*}
e_k = \lambda_k U + \mathcal{Z}_k V + \mathcal{T}_k W.
\end{equation*}
Therefore three-phase solutions [19] of equation KP-I [10] is a periodic function in a three-dimensional space
\begin{equation*}
u(x + \lambda_k, z + \mathcal{Z}_k, t + \mathcal{T}_k) = u(x, z, t).
\end{equation*}
If a three-phase solution of [10] has a form of freak waves then maxima of its amplitude are in nodes of a three-dimensional lattice with edges $(\lambda_k, \mathcal{Z}_k, \mathcal{T}_k)$. These edges can be found by an inversion of the matrix (U, V, W):
\begin{equation*}
\begin{pmatrix}
\lambda_1 & \lambda_2 & \lambda_3 \\
\mathcal{Z}_1 & \mathcal{Z}_2 & \mathcal{Z}_3 \\
\mathcal{T}_1 & \mathcal{T}_2 & \mathcal{T}_3
\end{pmatrix} = (U, V, W)^{-1} = i \begin{pmatrix}
1/2 & \chi_1/4 & \chi_2/4 - \chi_1^2/16 \\
0 & 1/4 & \chi_1/8 \\
0 & 0 & 1/8
\end{pmatrix} A^t.
\end{equation*}
Therefore for three-phases solutions of equation KP-I [10] it is possible to describe their behaviour as following: after a time interval $\Delta t = \mathcal{T}_k$ a surface of solution $u(x, z)$ reproduces itself with a shift on plane XOZ on a vector $(\lambda_k, \mathcal{Z}_k)$.

As the three-phase solution of the equations [1] depends on two coordinates, x and z, and the third coordinate t is considered as parameter, the value of amplitude of this solution depends on the distance between the nodes of the given three-dimensional lattice and a plane $t = t_0$. Hence,
in the difference of a case of the two-phase solution [43,45,46], where change of initial phase Z led to trivial shift of the solution on plane XOZ, the amplitude of the three-phase solution (17) of equations (1) depends on a choice of initial phase $W_{t_0} + Z$ a little bit more complicated.

3. AN EXAMPLE OF THREE-PHASE SOLUTION

Let us consider a spectral curve $\Gamma_3 = \{\chi, \lambda\}$ of genus $g = 3$:

\begin{equation}
\Gamma_3 : \chi^2 = ((\lambda - \lambda_0)^4 - 2a^2(\lambda - \lambda_0)^2 \cos 2\varphi + a^4)((\lambda - \lambda_0)^4 - 2b^2(\lambda - \lambda_0)^2 \cos 2\varphi + b^4),
\end{equation}

where $0 < a < b$, $\pi/4 < \varphi < \pi/2$.

Let us choose the basis of cycles on Γ_3 as it is shown on fig. 1.

![Figure 1. Canonical basis of cycles on Γ_3](image)

It is easy to check that the anti-holomorphic involution τ_1 transforms the canonical basis of cycles accordingly to relations (12) with the matrix

\[
K = \begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{pmatrix}.
\]

Also there are three holomorphic involutions on Γ_3:

\[
\tau_0 : (\chi, \lambda) \rightarrow (-\chi, \lambda),
\]
\[
\tau_2 : (\chi, \lambda) \rightarrow (\chi, 2\lambda_0 - \lambda),
\]
\[
\tau_3; (\chi, \lambda) \rightarrow (a^2b^2(\lambda - \lambda_0)^{-4}\chi, \lambda_0 + ab(\lambda - \lambda_0)^{-1}).
\]

As a corollary the curve Γ_3 covers two following curves:

(1) $\Gamma_1 = \Gamma_3/\tau_2$ of genus $g = 1$

\[
\Gamma_1 : \chi_+^2 = (t^2 - 2a^2t \cos 2\varphi + a^4)(t^2 - 2b^2t \cos 2\varphi + b^4),
\]

(2) $\Gamma_2 = \Gamma_3/(\tau_0\tau_2)$ of genus $g = 2$

\[
\Gamma_2 : \chi_-^2 = t(t^2 - 2a^2t \cos 2\varphi + a^4)(t^2 - 2b^2t \cos 2\varphi + b^4),
\]
where \(t = (\lambda - \lambda_0)^2, \chi_+ = \chi, \chi_- = (\lambda - \lambda_0)\chi, \) and
\[
\frac{dt}{\chi^+} = 2(\lambda - \lambda_0)d\lambda, \quad \frac{d\tau}{\chi} = 2(\lambda - \lambda_0)^2d\lambda, \quad \frac{d\tau}{\chi^-} = 2d\lambda.
\]
The curves \(\Gamma_1 \) and \(\Gamma_2 \) are shown on fig. 2 and 3 where \(t_1 = b^2e^{2i\varphi}, t_2 = a^2e^{2i\varphi}. \)

Figure 2. The curve \(\Gamma_1 \)

The coverings generate the following transformations of cycles:
\[
\begin{pmatrix}
a_1 \\
a_2 \\
a_3
\end{pmatrix}
\rightarrow
S
\begin{pmatrix}
a_1^2 \\
a_1^2 \\
a_2^2
\end{pmatrix}
+ P
\begin{pmatrix}
b_1^2 \\
b_2 \\
b_3
\end{pmatrix},
\begin{pmatrix}
a_1 \\
a_2 \\
a_3
\end{pmatrix}
\rightarrow
Q
\begin{pmatrix}
a_1^2 \\
a_1^2 \\
a_2^2
\end{pmatrix}
+ R
\begin{pmatrix}
b_1^2 \\
b_2 \\
b_3
\end{pmatrix},
\]
where
\[
S = \begin{pmatrix}
-1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & -1
\end{pmatrix},
\quad P = \begin{pmatrix}
0 & -2 & 0 \\
0 & 0 & 2 \\
1 & 1 & 1
\end{pmatrix},
\quad Q = \begin{pmatrix}
-1 & 1 & 0 \\
0 & 0 & -1 \\
1 & 1 & -1
\end{pmatrix},
\quad R = \begin{pmatrix}
0 & 0 & 0 \\
1 & 1 & 1 \\
1 & 1 & -1
\end{pmatrix}.
\]

Let us remind that these matrices should satisfy to relations
\(S^tQ = Q^tS, \quad R^tP = P^tR, \quad S^tR - Q^tP = nI, \)
where \(I \) is identity matrix, \(n = 2 \) is number of covering sheets.

Due to involution \(\tau_3, \) the curve \(\Gamma_2 \) covers two elliptic curves \(\Gamma_\pm \) (fig. 4 and 5):
\[
\Gamma_\pm: \quad \nu_\pm = (s \pm 2ab)(s^2 - 2(a^2 + b^2)s \cos 2\varphi + a^4 + b^4 + 2a^2b^2 \cos 4\varphi),
\]
where
\[
s = t + \frac{a^2b^2}{t}, \quad \nu_\pm = \frac{t \pm ab}{t^2 - \chi^-}, \quad \frac{ds}{\nu_\pm} = \frac{(t \mp ab)dt}{\chi^-}.
\]

The coverings of \(\Gamma_2 \) on \(\Gamma_\pm \) generate the following mappings of cycles
\[
\begin{pmatrix}
a_1^2 \\
a_2^2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 \\
-1 & 1
\end{pmatrix}
\begin{pmatrix}
a_+ \\
a_-
\end{pmatrix},
\begin{pmatrix}
b_1^2 \\
b_2^2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 \\
-1 & 1
\end{pmatrix}
\begin{pmatrix}
b_+ \\
b_-
\end{pmatrix},
\]
As a result we have
\[
\begin{pmatrix}
a_1 \\ a_2 \\ a_3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
-1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
a^+_1 \\ a^+_2 \\ a^+_3
\end{pmatrix}
+ \begin{pmatrix}
0 & -2 & -2 \\ 0 & 2 & -2 \\ 0 & -2 & 2
\end{pmatrix}
\begin{pmatrix}
b_1 \\ b_2 \\ b_3
\end{pmatrix},
\]
\[
\begin{pmatrix}
b_1 \\ b_2 \\ b_3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
-1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
a^+_1 \\ a^+_2 \\ a^+_3
\end{pmatrix}
+ \begin{pmatrix}
0 & 0 & 0 \\ 1 & 0 & 2 \\ 1 & 2 & 0
\end{pmatrix}
\begin{pmatrix}
b_1 \\ b_2 \\ b_3
\end{pmatrix}.
\]

From (25), (26) and from the relations
\[
\frac{d\lambda}{\chi} = \frac{1}{4ab \nu_-} ds - \frac{1}{4ab \nu_+} ds,
\]
\[
\frac{\lambda d\lambda}{\chi} = \frac{1}{2} \frac{dt}{\chi_+} + \frac{\lambda_0}{4ab \nu_-} ds - \frac{\lambda_0}{4ab \nu_+} ds,
\]
\[
\frac{\lambda^2 d\lambda}{\chi} = \frac{\lambda_0}{\chi_+} dt + \frac{\lambda_0^2 + ab}{4ab \nu_-} ds - \frac{\lambda_0^2 - ab}{4ab \nu_+} ds,
\]
it follows that the matrices \(C\) and \(B\) equal
\[
C = \begin{pmatrix}
\mathcal{C}_1 + \mathcal{C}_3 & -2\lambda_0 (\mathcal{C}_1 + \mathcal{C}_3) & (\lambda_0^2 - ab) \mathcal{C}_1 + (\lambda_0^2 + ab) \mathcal{C}_3 \\
\mathcal{C}_1 & \mathcal{C}_2 - 2\lambda_0 \mathcal{C}_1 & (\lambda_0^2 - ab) \mathcal{C}_1 - \lambda_0 \mathcal{C}_2 \\
\mathcal{C}_3 & \mathcal{C}_2 - 2\lambda_0 \mathcal{C}_3 & (\lambda_0^2 + ab) \mathcal{C}_3 - \lambda_0 \mathcal{C}_2
\end{pmatrix},
\]
\[
B = \begin{pmatrix}
ib_1 + ib_3 & ib_1 - 1/2 & ib_3 - 1/2 \\
ib_1 - 1/2 & ib_1 + ib_2 & ib_2 - 1/2 \\
ib_3 - 1/2 & ib_2 - 1/2 & ib(\mathcal{B}_2 + \mathcal{B}_3)
\end{pmatrix}.
\]
where
\[
\begin{align*}
c_1 &= \frac{1}{2(\alpha_1 - 2\beta_1)}, \quad c_2 = \frac{1}{2\alpha_2}, \quad c_3 = \frac{1}{2(\alpha_3 - 2\beta_3)}, \\
i_b &= \frac{\alpha_1}{2(\alpha_1 - 2\beta_1)}, \quad i_b^2 = \frac{\beta_2}{2\alpha_2}, \quad i_b^3 = \frac{\alpha_3}{2(\alpha_3 - 2\beta_3)}, \\
\alpha_1 &= \frac{1}{2} \int_{a_+} ds, \quad \alpha_2 = \frac{1}{2} \int_{a_1} dt, \quad \alpha_3 = \frac{1}{2} \int_{a_+} ds, \\
\beta_1 &= \frac{1}{2} \int_{b_+} ds, \quad \beta_2 = \frac{1}{2} \int_{b_1} dt, \quad \beta_3 = \frac{1}{2} \int_{b_+} ds.
\end{align*}
\]

From the structure of B-matrix and from matrix version of Appel’s theorem \[41\] it follows that the Riemann theta function of curve Γ_3 equals:
\[
(27) \quad \Theta(p|B) = f(\bar{p}_1, \bar{p}_2, \bar{p}_3) =
\begin{align*}
\vartheta_3(\bar{p}_1 | h_1)\vartheta_3(\bar{p}_2 | h_2)\vartheta_3(\bar{p}_3 | h_3) + \vartheta_4(\bar{p}_1 | h_1)\vartheta_4(\bar{p}_2 | h_2)\vartheta_4(\bar{p}_3 | h_3) + \\
+ \vartheta_1(\bar{p}_1 | h_1)\vartheta_2(\bar{p}_2 | h_2)\vartheta_1(\bar{p}_3 | h_3) + \vartheta_1(\bar{p}_1 | h_1)\vartheta_4(\bar{p}_2 | h_2)\vartheta_2(\bar{p}_3 | h_3),
\end{align*}
\]
where $\bar{p}_j = p_j + p_{j+1} - p_{j+2}, p_{j+3} = p_j, h_j = \exp(-4b_j)$.

The functions $\vartheta_j(p|h)$ are Jacobi elliptic theta functions \[1\]:
\[
\begin{align*}
\vartheta_1(p|h) &= 2 \sum_{m=1}^{\infty} (-1)^{m-1} h^{(m-1/2)^2} \sin[(2m - 1)\pi p], \\
\vartheta_2(p|h) &= 2 \sum_{m=1}^{\infty} h^{(m-1/2)^2} \cos[(2m - 1)\pi p], \\
\vartheta_3(p|h) &= 1 + 2 \sum_{m=1}^{\infty} h^{m^2} \cos(2m\pi p), \\
\vartheta_4(p|h) &= 1 + 2 \sum_{m=1}^{\infty} (-1)^{m} h^{m^2} \cos(2m\pi p).
\end{align*}
\]

Using the reduced form of theta-function \[27\] and values for vectors of periods, one obtains the following formula for the square of absolute value of the three-phase solution \[18\] of the focusing NLS equation \[1\]
\[
(28) \quad |\psi|^2 = -4K_0^2 f(k_1 x + \kappa_1 t + \delta_1, k_2 z + \delta_2, k_3 x + \kappa_3 t + \delta_3) \times \\
\times f(k_1 x + \kappa_1 t - \delta_1, k_2 z - \delta_2, k_3 x + \kappa_3 t - \delta_3) \times \{f(k_1 x + \kappa_1 t, k_2 z, k_3 x + \kappa_3 t)\}^{-2},
\]
where the function $f(\bar{p}_1, \bar{p}_2, \bar{p}_3)$ is defined by equation \[27\], and
\[
\begin{align*}
k_1 &= -4i\xi_1, \quad k_2 = -8i\xi_2, \quad k_3 = -4i\xi_3, \\
\kappa_1 &= 4k_1(3\lambda_0^2 - ab + (a^2 + b^2) \cos(2\varphi)), \\
\kappa_3 &= 4k_3(3\lambda_0^2 + ab + (a^2 + b^2) \cos(2\varphi)).
\end{align*}
\]

It follows from \[27\], \[28\] that for $\lambda_0 = 0$ the amplitude of the constructed solution of NLS equation \[1\] is a periodic function in z, and for $\lambda_0 = 0, \varphi = \frac{1}{2} \arccos \left(\frac{\pm ab}{a^2 + b^2} \right)$ it is a periodic function in z and in t.
Let us recall that the three-phase solution \(u(x, z, t) \) of the KP-I equation (10) and the square of amplitude \(|\psi_H(x, t)|^2 \) of three-phase solution of Hirota equation (9) can be constructed from (28) by relations \(u(x, z, t) = 2 |\psi(x, z, t)|^2 \) and \(|\psi_H(x, t)|^2 = |\psi(x, t, -\alpha t)|^2 \).

The three-phase solution of KP-I equation for \(ab = 1, \sqrt{b/a} = 1.3, \varphi = 0.3\pi \) at the different moment of time \(t \) and for \(\lambda_0 = 0 \) is presented on the fig. 6-9. The same solution for \(\lambda_0 = k_2/(4k_1) \) one can see on the fig. 10-13. It is easy to see all three phase of solution on figures 6-13. Two phase are shortwave and third phase is a long-wave envelope. One can see also on fig. 6-9 that the solution for \(\lambda_0 = 0 \) is periodic in \(z \), and that the long-wave envelope move to the right side.

Figure 6. Three-phase solution of KP-I equation for \(\lambda_0 = 0, t = 0 \)

Figure 7. Three-phase solution of KP-I equation for \(\lambda_0 = 0, t = 0.1 \)

Figure 8. Three-phase solution of KP-I equation for \(\lambda_0 = 0, t = 0.2 \)

Figure 9. Three-phase solution of KP-I equation for \(\lambda_0 = 0, t = 0.3 \)
The three-phase solution of Hirota equation for $ab = 1$, $\sqrt{b/a} = 1.3$, $\varphi = 0.3\pi$, $\alpha = 0.1$ and for different values of λ_0 is presented on fig. 14-17. It is easy to see all three phase of solution only on fig. 15.

Concluding remarks

Let us remark that the considered solution can not be used for a degeneration to quasi-rational one because odd number of phases. I.e. very popular solutions can not be obtained as a limit of three-phase solution. Analyzing a family of quasi-rational solutions from [9][10][17][18] we make the following conjecture.
(1) Quasi-rational rank n solution of NLS equation can be obtained as a limit of $2n$-phase elliptic solution.

(2) Spectral curve of corresponding elliptic solution should be a 2-sheet unramified covering over spectral curve of n-phase elliptic solution of KdV equation.

The rank 1 quasi-rational solution (Peregrine soliton) was obtained as limit of two-phase elliptic one in [44], and for obtaining rank 2 quasi-rational solution we should use a spectral curve of genus $g = 4$.

Authors acknowledge Prof. V.B. Matveev for his support and discussion over this paper and quasi-rational solutions of NLS equation. This work performed within the framework of the state
order of the Ministry of education of Russia, and partially supported by RFBR, research project 14-01-00589.a.

REFERENCES

[1] N. I. Akhiezer, *Elements of the theory of elliptic functions*, American Mathematical Society, Providence, RI, 1990. Translated from the second Russian edition by H. H. McFaden.

[2] N. Akhmediev and E. Pelinovsky (eds.), *Discussion & debate: Rogue waves - towards a unifying concept?*, Eur. Phys. J. Special Topics, vol. 185, Springer, 2010.

[3] N. N. Akhmediev and A. Ankiewicz, *Solitons, nonlinear pulses and beams*, CHAPMAN & HALL, 1997.

[4] A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, *Rogue waves and rational solutions of the Hirota equation*, Phys. Rev. E 81 (2010).

[5] H. F. Baker, *Abel’s theorem and the allied theory including the theory of theta functions*, Cambridge, 1897.

[6] E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev, *Algebrao-geometrical approach to nonlinear evolution equations*, Springer Ser. Nonlinear Dynamics, Springer, 1994.

[7] R. Y. Chiao, E. Garmire, and C. H. Townes, *Self-trapping of optical beams*, Phys. Rev. Lett. 13 (1964), no. 15, 479–482.

[8] C. Q. Dai and J. F. Zhang, *New solitons for the Hirota equation and generalized higher-order Schrödinger equation with variable coefficients*, J. Phys. A 39 (2006), 723–737.

[9] Ph. Dubard, *Multirogue solutions to the focusing nls equation*, Ph.D. Thesis, 2010.

[10] B. A. Dubrovin, *Inverse problem for periodic finite-zoned potentials in the theory of scattering*, Funct. Anal. Appl. 9 (1975), no. 1, 61–62.

[11] B. A. Dubrovin, *Periodic problems for the Korteweg-de Vries equation in the class of finite band potentials*, Funct. Anal. Appl. 9 (1975), no. 3, 215–223.

[12] F. Gesztesy and H. Holden, *Soliton equation and their algebro-geometric solutions: Vol. 1, (1+1)-dimensional continuous models*, Cambridge Stud. in Adv. Math., vol. 79, Cambridge University Press, 2003.

[13] F. Gesztesy, H. Holden, J. Michor, and G. Teschl, *Soliton equation and their algebro-geometric solutions: Vol. 2, (1+1)-dimensional discrete models*, Cambridge Stud. in Adv. Math., vol. 114, Cambridge University Press, 2008.

[14] B. Guo, L. Ling, and Q. P. Liu, *Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions*, Phys. Rev. E 85 (2012).

[15] A. R. Its, *“isomonodromy” solutions of equations of zero curvature*, Mathematics of the USSR-Izvestiya 26 (1986), no. 3, 497–529.

[16] A. R. Its and V. P. Kotlyarov, *On a class of solutions of the nonlinear Schrödinger equation*, Dokl. Akad. Nauk Ukrain. SSR, Ser. A 11 (1976), 965–968, (Russian).

[17] A. R. Its and V. B. Matveev, *Hil’s operator with finitely many gaps*, Funct. Anal. Appl. 9 (1975), no. 1, 65–66.

[18] A. R. Its, *Inversion of hyperelliptic integrals and integration of non-linear differential equations*, Vestn. Leningr. Univ. (Mat. Mekh. Astron.) 7 (1976), no. 2, 39–46, (Russian).

[19] C. Kalla and C. Klein, *New construction of algebro-geometric solutions to the Camassa-Holm equation and their numerical evaluation*, Proc. R. Soc. A 468 (2012), no. 2141, 1371–1390.
[28] On the numerical evaluation of algebro-geometric solutions to integrable equations, Nonlinearity 25 (2012), no. 3, 569–596.
[29] A. Krazer, Lehrbuch der thetafunktionen, Teubner, Leipzig, 1903.
[30] I. M. Krichever, Methods of algebraic geometry in the theory of non-linear equations, Russ. Math. Surv. 32 (1977), no. 6, 185–213.
[31] A. Kundu, A. Mukherjee, and T. Naskar, Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents, Preprint, arXiv:1204.0916, 2012, 5p.
[32] E. A. Kuznetsov, Solutions in a parametrically unstable plasma, Sov. Phys., Dokl. 22 (1977), 507–508.
[33] P. D. Lax, Periodic solutions of the K-dV equations, Lect. in Appl. Math. 15 (1974), 85–96.
[34] Ch. Zh. Li and J. S. He, Darboux transformation and positions of the inhomogeneous Hirota and the Maxwell-Bloch equation, Preprint, arXiv:1210.2501, 2012, 5p.
[35] V. A. Marchenko, The periodic Korteweg-de Vries problem, Math. USSR Sb. 24 (1974), no. 3, 319–344.
[36] V. B. Matveev, 30 years of finite-gap integration theory, Phil. Trans. R. Soc. A 366 (2008), 837–875.
[37] H. P. McKean and P. van Moerbeke, The spectrum of Hill’s equation, Invent. Math. 30 (1975), 217–274.
[38] D. Mumford, Tata lectures on theta II, Progress in Math., vol. 43, Birkhäuser Boston Inc., Boston, MA, 1984.
[39] S. P. Novikov, The periodic problem for the Korteweg-de Vries equation. i, Funct. Anal. Appl. 8 (1974), no. 3, 236–246.
[40] E. Previato, Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation, Duke Math. J. 52 (1985), no. 2, 281–545.
[41] A. O. Smirnov, A matrix analogue of the Appell theorem and reduction of multidimensional Riemann theta-functions, Math. USSR Sb. 61 (1988), no. 2, 379–388.
[42] Elliptic solutions of the nonlinear Schrödinger equation and the modified Korteweg-de Vries equation, Russ. Acad. Sci. Sb. Math. 82 (1995), no. 2, 461–470.
[43] Solution of a nonlinear Schrödinger equation in the form of two-phase freak waves, Theor. Math. Phys. 173 (2012), no. 1, 1403–1416.
[44] The elliptic breather for the nonlinear Schrödinger equation, J. Math. Sci. 192 (2013), no. 1, 117–125.
[45] Periodic two-phase “rogue waves”, Math. Notes 94 (2013), no. 6, 897–907.
[46] A. O. Smirnov, E. G. Semenova, V. Zinger, and N. Zinger, On a periodic solution of the focusing nonlinear Schrödinger equation, Preprint, arXiv:1407.7974, 2014, 24p.
[47] L. H. Wang, K. Porsezian, and J. S. He, Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation, Preprint, arXiv:1304.8085, 2013, 21p.
[48] Z. Yan, Financial rogue waves appearing in the coupled nonlinear volatility and option pricing model, Preprint, arXiv:1101.3107, 2011.
[49] V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 9 (1968), no. 2, 190–194.