Review Article

Advanced Hodgkin Lymphoma: a New Era of Therapy

Eldad J. Dann

1 Department of Hematology and Bone Marrow Transplantation, 2 Blood Bank and Transfusion Service, Rambam Health Care Campus; 3 Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology

Correspondence to: Eldad J. Dann, MD. Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, Haifa 31096, Israel. Tel: +972-4-854-2541, Fax: +972-4-854-2343. Email: e_dann@rambam.health.gov.il

Competing interests: The author has declared that no competing interests exist.

Published: September 5, 2014
Received: March 11, 2014
Accepted: September 4, 2014
Citation: Mediterr J Hematol Infect Dis 2014, 6(1): e2014063, DOI: 10.4084/MJHID.2014.063
This article is available from: http://www.mjhid.org/article/view/2014.063
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Therapy of advanced Hodgkin lymphoma (HL) is a rapidly changing field due to a lot of currently emerging data. Treatment approaches are presently based on either the Kairos principle of giving aggressive therapy upfront and considering de-escalation of therapy if the interim PET/CT is negative or the Chronos principle of starting with ABVD followed by escalation of therapy for patients with positive interim PET/CT. The International Prognostic Score (IPS) is still valid for decision-making regarding the type of initial therapy, since patients with a high score do have an inferior progression free survival (PFS) with ABVD compared to those with a low score. Escalated BEACOPP administered upfront improves PFS; however, increase in the overall survival (OS) has not been confirmed yet, and this therapy is accompanied by elevated toxicity and fertility impairment. Completion of ongoing and currently initiated trials could elucidate multiple issues related to the management of HL patients.

Introduction. The treatment of advanced-stage Hodgkin lymphoma with the MOPP regimen (mechloroethamine, vincristine, procarbazine and prednisone) pioneered the use of chemotherapeutic protocols for therapy of malignancies. When the high rate of secondary leukemias was established, MOPP was replaced with the ABVD (adriamycin, bleomycin, vinblastine and dacarbazine) protocol developed by Bonadonna et al, which has been the standard of care since early 1970s. During the last 15 years a debate is ongoing as to whether a more intensive protocol such as escalated BEACOPP introduced by the German Hodgkin Study Group should be employed and for whom. 2 The 10-year freedom from treatment failure and OS in the arm receiving 8 cycles of escalated BEACOPP were 82% and 87%, respectively. 3 The IPS was re-evaluated by several study groups 4,5 and proved to be an efficient tool in identifying the group of patients who had a reduced PFS if treated with ABVD. Recently, a 23-gene array was reported to be superior to the IPS and was suggested to become a potential predicting factor. 6 Since patients with high IPS have an increased failure rate, the gene array could become a tool for upfront decision-making regarding treatment strategy in patients who may do well with a standard-
dose therapy and in those who would require intensified therapy upfront.

Some phase II studies showed that therapy could be tailored based on interim imaging and IPS, thus saving escalated BEACOPP only to a limited subgroup of patients and preserving fertility in 88% of female patients. In the last decade, interim PET/CT performed following 2 cycles of therapy demonstrated a high negative predictive value which enables using less intensive and therefore less toxic regimens in patients with a negative interim scan. On the other hand, patients with a positive interim PET/CT following 2 cycles of ABVD are in a high risk of treatment failure, which necessitates further therapy escalation.11

The current ongoing studies are designed to minimize therapy for patients with low risk of disease progression in order to reduce toxicity and late side effects, such as secondary tumors, cardiac toxicity and loss of fertility. Present trials try to resolve the dispute between the Chronos principle of starting a standard low toxic regimen like ABVD and augmenting therapy only for patients with adverse predictive factors and the Kairos principle claiming that high efficiency highly toxic therapy should be started to all patients and only individuals with good prediction should have their therapy reduced.

This is a major issue, since the median age of patients with HL is 34 years and they have a life expectancy of another 50 years. Hence, joint international efforts are required to determine the optimal therapeutic strategies and spare these patients from late treatment-related adverse effects.

Results of Therapy Using Current Protocols. Recently published randomized trials have demonstrated 5-year PFS of 74%-76% and OS of 88%-90% for patients with stage IIB, III and IV disease or IA, IIA bulky mediastinal mass treated with the ABVD regimen. Radiotherapy was administered to 41%-62% of these patients. (Table 1). A sub-analysis of the data according to the IPS demonstrated PFS of 77% and OS of 91% for patients with IPS 0-2 and PFS of 67% and OS of 84% for patients with IPS 3-7. The superiority of escalated BEACOPP in providing a higher PFS was demonstrated in several randomized control studies, although a statistically significant OS benefit was not achieved. The difference between the GHSG and the four other studies could be related to the total cohort size of 935 patients in the four studies and 2182 patients in GHSG HD15 trial (Table 1). Of interest,

Study	Disease stage	Pts No	Protocol	Radiation therapy	PFS %	OS %
National Cancer Research Institute (NCRI), UK ISRCTN 64141244	Ib,IIb,III,IV or bulky IA,IIA	520	ABVD Stanford V	53% 73%	76 5Y 74	90 5Y 92
Intergroupo Italiano Linfoi	Ilb,III,IV	355	ABVD Stanford V	62% 66%	78 5Y 54	88 5Y 77
Eastern Cooperative Oncology Group (ECOG) E2496	Ib,IIb,III,IV or bulky IA,IIA	854	ABVD Stanford V	41%	IPS 0-2 77	IPS 3-7 71
Intergroupo Italiano Linfoi	II,III,IV	331	ABVD BEACOPP esc x8	66% 67%	73 85	84 (NS) 89
German Hodgkin Study Group HD15	II,III,IV	2182	BEACOPP esc x 8 BEACOPP esc x 6 BEACOPP-14	11%	84 89 * 85	92 95 94
German Hodgkin Study Group HD12	III,IV	1670	BEACOPP esc x8 BEACOPP (esc x4 + base x4) Randomized 16% v 74%	86.4 5Y 84.8 5Y	92 5Y 90.3 5Y	
Gruppo Italiano Per Lo Studio Dei Linfoi HD 2000	IIb,III,IV	103 102	ABVD BEACOPP (esc x4 + base x2)	46% 45%	68 5-Y * 81	84 (NS) 92
European Organisation for Research and Treatment of Cancer (EORTC) 20012	IIb,III,IV (IPS 0-3)	249	ABVDx8 BEACOPP (esc x4 + base x4) No RT	73 4-y * 83 4-y	87 4-y (NS) 90 4-y	
Lymphoma Study Association (LYSA) H34	III,IV (IPS 0-2)	150	ABVDx8 BEACOPP (esc x4 + base x4) No RT	75 5-y* 93	92 (NS) 99	

* - Statistical significant.

Mediterr J Hematol Infect Dis 2014; 6: Open Journal System
Use of Interim PET/CT for Tailoring Therapy in Advanced Hodgkin Lymphoma. Gallamini et al. demonstrated the capability of interim PET/CT to define the low-risk population that has a negative interim PET and carries a risk of relapse of 10% only, and the high-risk group that has a positive interim study and carries a risk of disease progression of 60-80% if treated with ABVD. Results of a retrospective international multicenter study demonstrated that negative predictive value of the interim PET-2 was around 95%, and PFS of patients with a positive interim PET was 28%. At same time, it was demonstrated that BEACOPP therapy could be tailored based on IPS and interim scintigraphy (from 1998-2001 with Gallium scan and from 2001-2005 with PET) providing both high PFS and OS, with reduction in toxicity and preservation of fertility in more than 85% of women. Several studies are currently ongoing using interim PET/CT for tailoring therapy. Of patients treated with 2 cycles of ABVD upfront, 80-85% have a negative interim PET/CT, and 15-20% have a positive scan defined as an uptake higher than in the liver. Escalation of therapy could salvage 60%-76% of these patients. A further follow-up is needed to evaluate if a high PFS is maintained in patients with negative interim PET/CT and whether radiation therapy could be omitted in patients treated with ABVD who had a bulky disease at diagnosis and a negative interim or end-of-therapy PET/CT.

Ongoing Studies of Advanced Hodgkin lymphoma Therapy. Several large trials are ongoing or recently finished and waiting for a longer follow-up prior to publication (Table 2). These studies usually use interim PET/CT for tailoring therapy of individual patients. The RATHL (response adapted therapy in advanced Hodgkin lymphoma) study, initiated in the UK, has become a collaborative European trial. It recruited 1214 patients, 84% of whom had negative interim PET/CT and were further randomized to receive either 4 more cycles of ABVD or AVD (adriamycin, vinblastine, dacarbazine). Only 2.4% of these patients received radiation therapy. The 2-year PFS in the group with negative interim PET/CT was 86%. In the group of patients with positive interim PET (16% of patients) whose therapy was changed to escalated BEACOPP for 4 more cycles or BEACOPP-14, 76% had a negative PET/CT-3 that was performed 8-9 weeks after therapy intensification (escalated BEACOPP x3). At a 1-year follow-up, 22% of these patients had disease progression or died.

The Italian GITIL 0607 study registered 730 patients. Treatment of patients with IPS 0-7 included two cycles of ABVD followed by interim PET/CT. Patients with negative PET (82%) had a total of 6 cycles of ABVD followed by PET/CT. If the result of this imaging was negative, the patient was further randomized to either consolidative radiation therapy to the bulky mediastinal mass or no radiation. Patients with positive interim PET/CT (18%) were randomized to escalated BEACOPPx4 followed by standard BEACOPPx4 with or without rituximab. The 2-year PFS for all patients, those with interim positive and those with positive interim PET, was 85% and 72%, respectively. The PFS for the whole group was 84% and OS – 98%.

The Israeli H2 study recruited 180 patients with advanced HL. Patients with IPS 0-2 started therapy with two cycles of ABVD and those with IPS 3-7 received two cycles of escalated BEACOPP. An interim PET was performed following 2 cycles of treatment. If PET was negative, patients had four additional cycles of ABVD. If interim PET was positive, four cycles of escalated BEACOPP were administered. Eighty five percent of interim PET/CT scans were interpreted as negative and 15% as positive. Interim PET/CT was negative in 88% of patients with IPS 0-2 and 80% of patients with IPS 3-7. Chemotherapy was de-escalated in 89% of patients with IPS 3-7 and at 3 years only 13% of the whole group progressed. At a median follow-up of 26 months the 3-year PFS was 85%.

The issue of early salvage therapy for patients with advanced HL who had a positive interim PET/CT following two cycles of ABVD was assessed by the
Study and Risk Group	Treatment
FIL, HD0801 n=520²⁶	2×ABVD followed by PET: if PET is negative, 4 x ABVD, randomize ± RT to bulky site if PET is positive, 4 x IGEV PET/CT If − AUTO BMT (BEAM) If+ PAM-AUTO+ alloBMT or auto-BEA M
Stage IIb-IV (IPS 0–7)	2×EB followed by PET2,regardless of results EBx2 PET−4 If neg EB x2 IF+ salvage
LYSA AHL 2011 n=810²⁸	2 x EB followed by PET: if PET is negative, 4 x ABVD if PET is positive 4 x EB
IIB, III, IV Standard arm	2 x EB followed by PET: if PET is negative, 4 x ABVD if PET is positive 4 x EB
Experimental arm	2 x EB followed by PET: if PET is negative, 4 x ABVD if PET is positive 4 x EB
Israeli H2 protocol n=182²⁴	2×ABVD followed by PET: if PET is negative, 4 x ABVD, no RT; if PET is positive, 4 x EB + INRT to the PET positive site
Stage IIb-IV (IPS 0–2) Standard risk	2×EB followed by PET: if PET is negative, 4 x EB; if PET is positive, randomize to 6 x EB RT to residual nodes ≥ 2.5 cm
Stage IIb-IV (IPS ≥3) High risk	2×ABVD followed by PET: if PET is negative, 4 x ABVD; if PET is positive 4 x EB + INRT to the PET positive site
American Intergroup Study (S0161)²²	2×ABVD followed by PET: if PET is negative, 4 x ABVD, no RT; if PET is positive and HIV is negative, 6 x EB, no RT; if PET is positive and HIV is positive, 6 x SB, no RT
German Hodgkin Study Group (HD18) n=1500²⁷	2×EB followed by PET: 6 x EB regardless of PET results
IIB bulky,III, IV (IPS 0–7) Standard arm	2×EB followed by PET: if PET is negative, 2 x EB; if PET is positive, randomize to 6 x EB RT to residual nodes ≥ 2.5 cm
Experimental arm	2×EB followed by PET: if PET is negative, 2 x EB; if PET is positive, randomize to 6 x EB RT to residual nodes ≥ 2.5 cm
GITIL, HD0607 for patients with IIA Bulky n=730²³	2 x ABVD followed by PET: if PET is positive, randomize to: Arm A (4 x EB, repeat PET, if negative – 4 x SB) Arm B (4 x R-EB, repeat PET, if negative 4 x R-SB) If PET is positive post 6 chemotherapy cycles, then high-dose chemo + auto BMT x 2 or auto BMT followed by allo BMT
stage IIB-IVB	2 x ABVD followed by PET: if PET is positive, randomize to: Arm A (4 x EB, repeat PET, if negative – 4 x SB) Arm B (4 x R-EB, repeat PET, if negative 4 x R-SB) If PET is positive post 6 chemotherapy cycles, then high-dose chemo + auto BMT x 2 or auto BMT followed by allo BMT
Interim positive PET/CT arm	2 x ABVD followed by PET: if PET is negative, 4 x ABVD, then another PET: if negative, randomize to RT or no RT arm If second PET is positive, perform biopsy; if positive, 4 x salvage and auto BMT
Interim negative PET/CT arm	2 x ABVD followed by PET: if PET is negative, 4 x ABVD, then another PET: if negative, randomize to RT or no RT arm If second PET is positive, perform biopsy; if positive, 4 x salvage and auto BMT
United Kingdom NCRI Lymphoma Study Group n=1214 patients³¹	2×EB followed by PET: 3 x EB regardless of PET results Patients with CR/PR on CT scan are treated with 3 x EB 36Gy RT to PET positive residual mass at the end of therapy
stage IIb-IV and IIA with bulk or≥3 sites Intermediate negative PET/CT arm	Baseline PET: 2×ABVD, then interim PET: if negative, randomize to 4×ABVD; or 4 x AVD
Interim positive PET/CT arm	Baseline PET: 2×ABVD, then interim PET: if positive, 4× BEACOPP-14, reassess with PET/CT; if negative, 2 more BEACOPP -14 if PET/CT is positive, salvage therapy or RT
European Organization for Research on the Treatment of Cancer (EORTC) (H11) n=570²⁹	1 x EB followed by PET/CT: 3 x EB regardless of PET results Patients with CR/PR on CT scan are treated with 2 x EB 36Gy RT to PET positive residual mass at the end of therapy
Standard arm	1 x EB followed by PET/CT: 3 x EB regardless of PET results Patients with CR/PR on CT scan are treated with 2 x EB 36Gy RT to PET positive residual mass at the end of therapy
Experimental arm	1 x EB followed by PET/CT: 3 x EB followed by PET/CT: if PET is negative, 3 x EB. Patients with CR/PR on CT scan receive 3 x EB if PET is negative, 3 x ABVD. Patients with CR/PR on CT scan 3 x ABVD 36Gy RT to PET positive residual masses at the end of therapy
Millennium global study C25003 n=1040³⁰	(AVD+Brentuximab Vedotin)x2 PET/CT -(Deauville 1-4) ABVDx4 + (Deauville 5) off study
Standard arm	(AVD+Brentuximab Vedotin)x2 PET/CT -(Deauville 1-4) ABVDx4 + (Deauville 5) off study
Experimental arm	(AVD+Brentuximab Vedotin)x2 PET/CT -(Deauville 1-4) ABVDx4 + (Deauville 5) off study

EB – escalated BEACOPP, SB – standard BEACOPP, R – Rituximab, IPS – International Prognostic Score, CR – complete remission, PR – partial remission, RT – radiation therapy, auto BMT – autologous bone marrow transplant, allo BMT – allogeneic bone marrow transplant, AVD – Adriamycin, vinblastine, dacarbazine. Reproduced with permission from: Dann EJ. Curr Oncol Rep. 2012 Oct;14(5):403-10.

Mediterr J Hematol Infect Dis 2014; 6: Open Journal System
Italian Lymphoma Study Group in the HD0801 study that enrolled 520 patients. Patients with negative interim PET/CT received a total of 6 cycles of ABVD and were further randomized to radiation therapy to bulky mediastinal masses or to no radiation therapy. Patients with positive interim PET/C were treated with salvage protocol including four cycles of IGEV (ifosfamide, gemcitabine, etoposide, vinorelbine and prednisolone). After salvage therapy a further assessment was performed. Patients with negative PET (58% of individuals) underwent autologous stem cell transplant with the BEAM (carmustine, etoposide, cytarabine, and melphalan) protocol. Following four cycles of IGEV, patients with positive PET/CT (42%) underwent tandem autologous transplantation or autologous followed by allogeneic transplantation if a matched related donor was available. The majority of patients with positive interim PET could be salvaged with an early shift to high-dose chemotherapy and stem cell rescue. The reported 2-year PFS and OS based on PET/CT results following 2 cycles of ABVD was 75.7% and 98.6% for patients with negative interim study and 64.1% and 86.3%, respectively for those with positive interim scan. Eighty nine percent of patients treated with this salvage protocol had a 2-year relapse free survival.23,26

Several ongoing studies use 2 cycles of escalated BEACOPP for patients with IPS 0-7 followed by interim PET/CT. In the HD18 trial by the German Hodgkin Study Group, patients with negative interim PET/CT are randomized to additional 2 or 6 cycles of escalated BEACOPP, while patients with positive interim PET/CT are treated with 6 extra cycles of escalated BEACOPP. In this study, radiation therapy is applied only to patients who had residual positive uptake sites at the end of treatment.27

The French LYSAL AHL2011 study randomizes patients with IPS 0-7 to the standard arm where 6 cycles of escalated BEACOPP are used regardless of interim PET/CT performed after 2 cycles, and to the experimental arm where patients with negative interim PET post 2 cycles of escalated BEACOPP have their therapy de-escalated to 4 cycles of ABVD, while patients with a positive interim scan receive additional 4 cycles of escalated BEACOPP (a total of 6 cycles).28

The trials discussed above are only part of ongoing studies using interim PET as a predictive value for further therapy of individual patients. Recently initiated EORTC H11 is checking the predictive accuracy of early interim PET performed following a single cycle of escalated BEACOPP. All patients in observational arm are treated with 6 cycles of therapy, which remains unchanged irrespective of interim PET results, while in the experimental arm therapy is de-escalated to ABVD if interim PET is negative. This interesting study could potentially elucidate some challenging issues associated with early use of interim PET following escalated BEACOPP and reduction of therapy, which is expected to maintain fertility in young female patients.29,30 Further studies have been lately initiated using the anti-CD30 antibody-drug conjugate as part of first-line chemotherapy including both ABVD type protocols and escalated BEACOPP. These regimens have been modified to exclude bleomycin and oncovin due to their major lung and neurotoxicity.

Discussion. The treatment of Hodgkin lymphoma is a rapidly evolving area. Many ongoing studies are designed to establish the role of upfront intensive therapy, which presents the Kairos principle, employing escalated BEACOPP, followed by de-escalation of therapy in patients with negative interim PET/CT. Other studies use the Chronos principle of starting with ABVD and further therapy escalation only for patients with positive interim PET/CT, (Deauville score 4,5) which clearly indicates their high risk for disease progression. The latter trials apply various escalation regimens ranging from escalated BEACOPP to a salvage protocol including 4 cycles of IGEV followed by stem cell collection and autologous transplantation. While all these studies are expected to provide PFS and OS rates after 4-5 years of follow-up, long-term outcomes (up to 15 years) including late side effects and problems like fertility, fatigue, secondary malignancy, ischemic and valvular heart disease, are not less important. These issues are crucial for HL patients, given their young age at diagnosis and a life expectancy of 50 years ahead of them, if appropriately treated.

Conclusion. Patients with advanced HL and IPS 0-2 can be initially treated with ABVD; however, these patients should undergo interim PET/CT following 2 cycles of therapy. Patients with negative interim PET/CT can safely continue with additional 4 cycles of ABVD. If an interim scan is positive, the data from retrospective studies suggest a low PFS of 12-27% only; however, escalation of therapy led to remission in 65% of patients. To date, only preliminary data from currently ongoing GITIL HD0607 study are available; nevertheless, it has already been demonstrated that patients with positive PET-2 achieved a 2-year FFS of 67% after escalation of their therapy. Moreover, preliminary data from prospective studies like RATHL show that patients in whom therapy was escalated based on a positive interim PET-2 achieved a complete response at the end of chemotherapy in 76% of cases. The information available suggests that therapy intensification is beneficial; however, a stronger conclusion will be drawn when the results of these 2
studies are published. Patients with advanced disease and IPS ≥3 are in a higher risk of treatment failure if therapy is initiated with ABVD than those in whom therapy with a more intensive regimen (escalated BEACOPP) is started. This cohort should also undergo interim PET/CT after 2 cycles of therapy. Patients with positive interim PET/CT are in a high risk group and need to continue with the intensified therapy. Patients with negative interim PET/CT could do as well with reduction of therapy to a standard regimen (ABVD) if they initiated with escalated BEACOPP or proceed with ABVD if this was their original therapy. However, reduction of therapy from escalated BEACOPP to ABVD in this subgroup of patients is yet experimental awaiting confirmation by the ongoing studies.

Radiation therapy can be omitted for patients that were treated with 6 cycles of escalated BEACOPP and have a residual mass at the end of therapy which is PET/CT negative. This conclusion is based on the results of the HD15 study and is the current approach applied in the ongoing HD18, both by the German Hodgkin Study Group. In the RATHL study, less than 5% of patients with negative interim PET received radiation therapy. The 12-month PFS was promising, but the final verdict will be available when the results of the study are published.

The effect of adding brentuximab vedotin to the chemotherapy regimen for patients with positive interim PET/CT will need assessment by an international collaborative study.

Acknowledgement. I would like to thank Sonia Kamenetsky for her devoted secretarial support.

References:

1. Santoro A, Bonadonna G, Valagussa P, Zucali R, Viviani S, Villani F, Pagnoni AM, Bonfante V, Musumeci R, Crippa F, et al.: Long-term results of combined chemotherapy-radiotherapy approach in Hodgkin's disease: Superiority of abvd plus radiotherapy versus mopp plus radiotherapy. J Clin Oncol 1987:5:27-37. PMid:2433409

2. Diehl V, Franklin J, Pfrehuensdoh M, Lathan B, Paulus U, Hasenclever D, Tesch H, Herrmann R, Dorken B, Muller-Hermelink HK, Duhmeke E, Loeffler M: Standard and increased-dose beacopp chemotherapy compared with copp-abvd for advanced Hodgkin's disease. N Engl J Med 2003;348:2386-2395. http://dx.doi.org/10.1056/NEJMoa022014 PMid:12082024

3. Engert A, Diehl V, Franklin J, Lohr A, Dorken B, Ludwig WD, Koch P, Hanel M, Pfrehnusdoh M, Wilhelm M, Trumpner L, Aulitzky WE, Bentz M, Rummel M, Sezer O, Muller-Hermelink HK, Hasenclever D, Loffler M: Escalated-dose beacopp in the treatment of patients with advanced-stage Hodgkin's lymphoma: 10 years of follow-up of the ghb h9 study. J Clin Oncol 2009;27:4548-4554. http://dx.doi.org/10.1200/JCO.2008.19.8820 PMid:19704068

4. Hasenclever D, Diehl V: A prognostic score for advanced Hodgkin's disease. International prognostic factors project in advanced Hodgkin's disease. N Engl J Med 1996;335:1506-1514. http://dx.doi.org/10.1056/NEJM199811193393210 PMid:9819449

5. Mocci AA, Donaldson J, Chhabahbhi M, Hoskins PJ, Klass RJ, Savage KJ, Shenkier TN, Slack GW, Skinidier B, Gascoyne RD, Connors JM, Selin LH: International prognostic score in advanced-stage Hodgkin's lymphoma: Altered utility in the modern era. J Clin Oncol 2012;30:3383-3388. http://dx.doi.org/10.1200/JCO.2011.41.0910 PMid:22869878

6. Diefenbach CS, Li H, Hong F, Gordon LI, Fisher RI, Bartlett NL, Crump M, Gascoyne RD, Wagner H, Stiff PJ, Cheson BD, Stewart D, Kahl BS, Friedberg JW, Blum KA, Habermann TM, Tusciano JM, Hoppe RT, Hornning SJ, Advani RH: Protective evaluation of the utility of the international prognostic score (ips) for patients with advanced hodgkin lymphoma (hl) treated with contemporary therapy: Results from us intergroup trial e2496. Haematologica 2013:98:43

7. Scott DW, Chan FC, Hong F, Rogic S, Tan KL, Meissner B, Benenariah S, Boyle M, Kridel R, Teleniua A, Woolcock BW, Farinha P, Fisher RI, Rimsza LM, Bartlett NL, Cheson BD, Shepherd LE, Advani RH, Connors JM, Kahl BS, Gordon LI, Hornning SJ, Stendil C, Gascoyne RD: Gene expression-based model using formalin-fixed paraffin-embedded biopsies predicts overall survival in advanced-stage classical Hodgkin lymphoma. J Clin Oncol 2013;31:692-700. http://dx.doi.org/10.1200/JCO.2012.43.4589 PMid:23182984 PMCID:PMC3574267

8. Dann EJ, Bar-Shalom R, Tamir A, Epelbaum R, Avivi I, Ben-Shachar M, Guintini D, Rowe JM: A functional dynamic scoring model to elucidate the significance of post-induction interim fluorine-18-fluorodeoxyglucose positron emission tomography findings in patients with Hodgkin's lymphoma. Haematologica 2010;95:119-120. http://dx.doi.org/10.3324/haematol.2009.016105 PMid:20410186 PMCID:PMC2895046

9. Dann EJ, Bar-Shalom R, Tamir A, Haim N, Ben-Shachar M, Avivi I, Zuckerman T, Kirschbaum M, Goor O, Libster D, Rowe JM, Epelbaum R: Risk-adapted beacopp regimen can reduce the cumulative dose of chemotherapy for standard and high-risk Hodgkin lymphoma with no impairment of outcome. Blood 2007;109:905-909. http://dx.doi.org/10.1182/blood-2006-04-019901 PMid:17018856

10. Avgidor A, Bulvsk L, Levi I, Dann EJ, Shemtov N, Perez-Avraham G, Shamonri A, Nagler A, Ben-Bassat I, Pollack A: Two cycles of escalated beacopp followed by four cycles of abvd utilizing early-interim pet/ct scan is an effective regimen for advanced high-risk Hodgkin's lymphoma. Ann Oncol 2010;21:126-132. http://dx.doi.org/10.1093/annonc/mdp271 PMid:19686615

11. Gallamini A, Hutchings M, Rigacci L, Specchi L, Merli A, Hansen M, Patti C, Lott A, Di Raimondo F, D’Amore F, Riggi A, Vitolo U, Stelitiano S, Cancellra S, Trentin L, Lunaini S, Iannitto E, Viviani S, Piri R, Levis A: Early interim 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: A report from a joint italian-danish study. J Clin Oncol 2007;25:3746-3752. http://dx.doi.org/10.1200/JCO.2007.11.6525 PMid:17646666

12. Viviani S, Zinzi PL, Ramholdi E, Brusamolino E, Levis A, Bonifante V, Vitolo U, Pulonsi A, Liberrati AM, Specchia G, Valagussa P, Rossi A, Zaja F, Pogliama EM, Pregno P, Gotti M, Gallamini A, Rota Scabarini D, Bonadonna G, Gianni AM: Abvd versus beacopp for Hodgkin’s lymphoma when high-dose salvage is planned. N Engl J Med 2011;365:203-212. http://dx.doi.org/10.1056/NEJMoa1100340 PMid:21774708

13. Carde PP, Karrasch M, Fortped C, Bruce P, Khale HS, Cailo D, Gaillard I, Bologna S, Ferme C, Lugtenburg P, Morschhauser F, Aurer I, Cofeffer B, Cantin G, Septel MD, Wolf M, Glimelius B, Surend A, Mounier N: Abvd (8 cycles) versus beacopp (4 escalated cycles => 4 baseline) in stage iii-iv high-risk Hodgkin lymphoma (hl): First results of eortc 20012 intergroup randomized phase iii clinical trial. J Clin Oncol 2012:30:8002A.

14. Federico M, Lunaini S, Iannitto E, Polimen G, Marcheselli L, Montanini A, La Sala A, Merli F, Stelitiano C, Pozzi S, Scalone R, Di Renzo N, Musto P, Baldini L, Cervetti G, Angrili F, Mazza P,
Brugatelli M, Gobbi PG: Abvd compared with beacopp compared with cec for the initial treatment of patients with advanced hodgkin's lymphoma: Results from the hld2000 groupo italiano per lo studio di linfomi trial. J Clin Oncol 2009;27:805-811. http://dx.doi.org/10.1200/JCO.2008.17.0910 PMid:19124807

15. Moumier N, Brice P, Bologna S, Brieire J, Gaillard I, Voilat L, Gabarre J, Casasnovas O, Jaubert J, Colin P, Deviads A, Coffier B, Aoudjhaane A, Auduhuy B, Andre M, Carde P: Standard abvd vs. Escalated beacopp in stage iii – iv low risk hodgkin lymphoma (ips 0-2): The lymphoma study association (lysa) h34 trial. Hematol Oncol 2013;31:138.

16. Kobe C, Dietlein M, Franklin J, Pluetschow A, Eich HT, Fuchs M, Gossmann A, Pfrister B, Diehl V, Angert A, Markova J, Belohlavek O, Schicha H, Amthauser H, Bremer W, de Wit M, Knapp WH, Bockisch A, Franzui C, Lorenz R, Schrekenberger M, Bares R, Sciuik J, Gruenwald F, Haberkorn U, Sabri O, Marienhagen J, Kirsch CM, Scheidhuauer K, Tiling R: Fdg-pet for assessment of residual tissue after completion of chemotherapy in hodgkin lymphoma - report on the second interim analysis of the pet investigation in the trial h1d5 of the gshg. Haematologica 2007;92:31.

17. Eichenauer DA, Thelen I, Haverkamp H, Franklin J, Behringer K, Halbsguth T, Klimm B, Diehl V, Sasse S, Rothe A, Fuchs M, Boll B, von Trescow B, Borchmann P, Angert A: Therapy-related acute myeloid leukemia and myelodysplastic syndromes in patients with hodgkin lymphoma: A report from the german hodgkin study group. Blood 2014 http://dx.doi.org/10.1182/blood-2013-07-512652 PMid:24478403

18. Gallamini A, Barrington SF, Biggi A, Chauvie S, Kostakoglu L, Gregorian M, Meignan M, Michaefel GN, Loft A, Zaucha JM, Seymour JF, Hofman MS, Rigacci L, Pulsoni A, Coleman M, Dann EJ, Trentin L, Casasnovas O, Rusconi C, Brice P, Bolis S, Viviani S, Salvi F, Lunarni S, Hutchings M: The predictive role of interim positron emission tomography for hodgkin lymphoma treatment outcome is confirmed using the interpretation criteria of the deaville five-point scale. Haematologica 2014;99:1107-1113. http://dx.doi.org/10.3324/haematol.2013.103218 PMid:24658820 PMCID:PMC4040916

19. Dann EJ, Blumenfeld Z, Bar-Shalom R, Avivi I, Ben-Shachar M, Goor O, Libster D, Gattini D, Rowe JM, Epelbaum R: A 10-year experience with treatment of high and standard risk hodgkin disease: Six cycles of tailored beacopp, with interim scintigraphy, are effective and female fertility is preserved. Am J Hematol 2011 PMid:21956220

20. Gallamini A, Patti C, Viviani S, Rossi A, Fiore F, Di Raimondo F, Candonetti M, Stelitano C, Feldman T, Gavizarov P, Sorasio R, Mule A, Leonardi M, Rambaldi A, Biggi A, Barrington S, Fallanca F, Ferri的内容被裁剪。
Final analysis of the hd12 trial of the german hodgkin study group. J Clin Oncol 2011;29:4234-4242. http://dx.doi.org/10.1200/JCO.2010.33.9549 PMid:21990399

36. Phase 3 frontline therapy trial in patients with advanced classical hodgkin lymphoma. Available at http://clinicaltrials.gov/ct2/show/nct01712490?term=c25003&rank=1