The 2006 → 2008 European Clinical, Molecular and Pathobiological (2008 ECMP) Classification and the 2007 WHO Revised Criteria for Myeloproliferative Neoplasms

Jan J Michiels1,2, Zwi Berneman1, Wilfried Schroyens1, Konnie Hebeda2, King H Lam3, Francisca Valster4, Vincent Potter5, Katrien Schelfout5 and Hendrik De Raee6

1Department of Hematology, University Hospital Antwerp, Belgium
2Departments of Pathology, Erasmus University Medical Center Rotterdam, The Netherlands
3Departments of Hematology, Erasmus University Medical Center Rotterdam, The Netherlands
4Departments of Pathology, University Medical Center Sint Radboud, Nijmegen Rotterdam, The Netherlands
5Departments of Pathology, OLV Aalst, Belgium
6Departments of Pathology, University Hospital Brussels, Belgium and European Working Group on Myeloproliferative Neoplasms (EWG.MPN), Belgium

Keywords: Myeloproliferative neoplasm; Essential thrombocytocemia; Polycythemia vera; Myelofibrosis; JAK2V617F mutation; MPL515 mutation; Bone marrow pathology; World Health Organization

Introduction

In the 19th century Chronic Myeloid Leukemia (CML) and Polycythemia Vera (PV) have been described as primary distinct disease entities [1-3]. In 1951 Dameshek lumped dissimilar diseases of polycythemia vera, erythroleukemia, idiopathic and agnogenic myeloid metaplasia, megakaryocytic leukemia and proposed an unifying theory that all these variable manifestations represent one myeloproliferative activity of bone marrow cells due to one hypothetical stimulus (Figure 1) [3]. Lumping erythroleukemia with PV, and putting together Chronic granulocytic or Myeloid Leukemia (CML) with PV appeared to be without scientific foundation (Figure 1). In 1960 Nowell and Hungerford described the presence of a minute chromosome in leukemic cells called Philadelphia (Ph) chromosome after the city of discovery as a diagnostic clue CML [4]. Using banding techniques Janet Rowley (1973) discovered that the Ph chromosome originated from a translocation between the chromosomes 9 and 22, t(9;22)(q34;q11) [5]. Three Dutch investigators discovered that a hybrid gene is generated by the translocation consisting of the BCR gene on chromosome 22 and the ABL oncogene originating from chromosome 9 [6-8], which results in a BCR/ABL fusion gene with high tyrosine kinase activity and CML-transformation capacity [9,10]. Ninety-five percent of all CML patients are Ph+, 90% are Ph+/BCR/ABL+, 5% are Ph-/BCR/ABL, and 5% are Ph+/BCR/ABL, the latter group usually diagnosed as atypical CML, juvenile CML, chronic neutrophilic leukemia or chronic myelomonocytic leukemia [11].

The PVSG used in 1975 the Ph1-chromosome to separate the Ph− negative ET, PV and AMM from the Ph1-positive ET and Chronic Myeloid Leukemia (CML) with various degrees of thrombocytemia and myelofibrosis [12,13]. According to strict morphological, biochemical, cytogenetic and molecular criteria including the Ph1 chromosome and bcr/abl fusion gene and protein, CML is a malignant disease with an obligate transition into acute leukemia, whereas Essential Thrombocythemia (ET), Polycythemia Vera (PV) and Agnogenic Myelodipathy (AMM) or Primary Megakaryocytic Granulocytic Myeloproliferation (PMGM) is the third MPN entity of elusive etiology. Myelofibrosis (MF) is not a primary MPN disease entity because Reticulin Fibrosis (RF) and Reticulin/Collagen Fibrosis (RCF) are a secondary response of polyclonal fibroblasts to cytokines released from the clonal granulocytic and megakaryocytic proliferative cells.

The PVSG used in 1975 the Ph1-chromosome to separate the Ph− negative ET, PV and AMM from the Ph1-positive ET and Chronic Myeloid Leukemia (CML) with various degrees of thrombocytemia and myelofibrosis [12,13]. According to strict morphological, biochemical, cytogenetic and molecular criteria including the Ph1 chromosome and bcr/abl fusion gene and protein, CML is a malignant disease with an obligate transition into acute leukemia, whereas Essential Thrombocythemia (ET), Polycythemia Vera (PV) and Agnogenic Myelodipathy (AMM) or Primary Megakaryocytic Granulocytic Myeloproliferation (PMGM) form the Ph-chromosome and BRC/ABL negative chronic Myeloproliferative Disorder (MPD) featured by a benign proliferation of the three hematopoietic cell lines [14].

Regarding etiology of PV, Dameshek proposed two highly speculative possibilities: first, the presence of excessive bone marrow stimulation by an unknown factor or factors, and second, a lack or a diminution in the normal inhibitory factor or factors [15]. The discovery of the JAK2V617F mutation in 2005 by Vainchenker confirmed...
thrombocythemia associated with Ph+ and Factor (GCSF), resulting in trilinear MPN (ET, PV and MF [16,17]. Thrombopoietin (TPO), Erythropoietin (EPO) and Granulocyte Colony Stimulating Factor (GCSF), resulting in trilinear MPNs ET, PV and AMM [16,17]. The sequential stages of heterozygous and homozygous JAK2V617 mutation (Figures 1 and 2) render the TPO and EPO receptors constitutively activated by the JH2 pseudokinase part on the JH1 kinase part of JAK2, leading to the hypothesis of Dameshek that PV indeed appeared to be a trilinear myeloproliferative disorder (MPD) [15] due to one hypothetical cause appeared to be caused by the acquired somatic JAK2V617F mutation discovered by Vainchenker and his team in 2005 [16]. The unifying concept of Dameshek in 1951 on the chronic MPDs essential thrombocythemia (ET), polycythemia vera (PV), agnogenic myeloid metaplasia (AMM) and chronic myeloid leukemia (CML) has been separated by the PVSG into Ph-positive CML and Ph-negative ET, PV and AMM. The 2008 ECMP classification separated the JAK2 wild type MPN into MPL mutated ET/MF as the second and JAK2 wild type hypercellular ET associated with primary granulocytic megakaryocytic myeloproliferation (PMGM) as the third distinct MPN disease.

Figure 1: The 1950 concept of Dameshek on polycythemia vera (PV) as a trilinear myeloproliferative disorder (MPD) [15] due to one hypothetical cause associated with PV and CIMF and overlook the very early prefibrotic stages of MPD by definition [19-23]. In the present manuscript we could integrate the PVSG and the 2001 and 2007 WHO criteria into the 2008 ECMP classification (Tables 1-3) by including bone marrow pathology and the use of specific laboratory features and molecular markers for diagnostic differentiation of each of the latent (masked), early and overt MPDs or MPNs.

Hannover Bone Marrow Classification of the MPDs ET, PV and PMGM

With the improvement of bone marrow biopsy and tissue processing in the 1980s and 1990s, Georgii and Thiele defined the pathological features of ET, PV and CIMF or AMM on bone marrow histopathological morphology [18-24]. Georgii et al replaced the terms AMM and CIMF by chronic or primary megakaryocytic granulocytic myeloproliferation (CMGM or PMGM). The Hannover Bone Marrow classification have defined ET by persistent increase of platelets in excess of 400 x10^9/l without the Ph chromosome with monolinear proliferation of mature enlarged megakaryocytes in the bone marrow with normal cellularity, normal erythropoiesis and normal granulopoiesis [22-24]. The Hannover Bone Marrow classification have defined PV as a trilineage proliferation of megakaryopoiesis, erythropoiesis and granulopoiesis in which the erythropoiesis was most prominent together with variable degrees of increased platelets, erythrocytes and granulocytes in the peripheral blood in the absence of the Ph chromosome [22-24]. The diagnosis of prefibrotic CMGM/PMGM [18-20] has been labelled as chronic idiopathic myelofibrosis (CIMF) in the 2001 WHO classifications [26]. The diagnosis of CMGM/PMGM according to the 1996 Hannover

BCR/ABL positive ET and CML versus BCR/ABL-negative ET, PV and PMGM

The morphological distinction between Ph+ and BCR/ABL+ ET and thrombocythemia associated with Ph+ and BCR/ABL+ CML versus the Ph-negative thrombocythemia in various MPDs is primarily based upon conspicuous differences in the form and size of megakaryocytes in bone marrow smears and sections of bone marrow biopsy [14]. This difference in bone marrow smears observed by Michiels et al in 1987 is reproducible in bone marrow biopsies by pathologists to distinguish between small mononucleated megakaryocytes in Ph- diseases versus clustered large megakaryocytes with hyperlobulated nuclei in Ph- negative MPDs [14,18-26]. Georgii et al defined in 1990 [22] the Hannover Bone Marrow classification of the MPDs, which had the great advantage to pick up the early stages of prefibrotic MPD ET, PV and PMGM, which are overlooked by the PVSG criteria. Thiele introduced in 2001 bone marrow features on top of PVSG criteria and defined the World Health Organization (2001 WHO MPD) classification [25,26]. The PVSG [12,13], the 2001 WHO [26] and the 2007 WHO [27] criteria are rather crude to adequately classify the MPDs as ET,
Clinical and molecular criteria	Bone marrow pathology (P) criteria (WHO)
JAK2V617F ET | Normocellular ET
1. Platelet count of >350 × 10^9/L and the presence of large platelets in a blood smear | Predominant proliferation of enlarged mature megakaryocytes with hyperlobulated nuclei and mature cytoplasm, lacking conspicuous morphological abnormalities.
2. Presence of JAK2V617F mutation | No increase, proliferation or immaturity of granulopoiesis or erythropoiesis.
3. Normal haemoglobino (Hb) and hematocrit (Ht) | Reticuline fibrosis (RF) 0 or 1

JAK2V617F prodromal PV | ET with bone marrow features of PV
1. Platelet count of ≤350 × 10^9/L and normal h/t male <0.51, female <0.48, normal erythrocyte <5.8 × 10^12/L males, <6 × 10^12/L females is mandatory. | Increased cellularity with due to increased erythropoiesis or trilineage myeloproliferation (i.e. pancytopeny). Proliferation and clustering of small to giant (pleomorphic) megakaryocytes.
2. Presence of JAK2V617F mutation | Absence bone marrow features consistent with congenital polycythemia and secondary erythropoiesis.
3. Low serum EPO level and/or increased LAP score | RF 0 or 1
4. Spontaneous EEC. |

JAK2V617F hypercellular ET | ET/MGM
1. Platelet count of ≤350 × 10^9/L, | Hypercellular ET due to chronic megakaryocytic and granulocytic myeloproliferation (EMGM) and normal or reduced erythroid precursors.
2. No signs of leuko-erythroblastic | Loose to dense clustering of more pleomorphic megakaryocytes with hyperplorid or clumsy nuclei (not or some cloud-like).
3. Slight or moderate splenomegaly on ultrasound |
4. Presence of JAK2V617F mutation |
5. No preceding or allied CML, PV, RARS-T or MDS. |

ET/MGM clinical staging:

Early stage: No anemia with hb and h/t in the normal low normal range: hb>13 g/dl; early clinical stage
Intermediate: Hb <13 to >12 g/dL, LDH N or ↑, no leukoerythroblastosis
Advanced: Hb <10 g/dL, LDH↑↑, CD34↑, leukoerythroblastic, tear drop

Table 1: The 2008 WHO Clinical Molecular and Pathobiological (WHO-CMP) criteria for the diagnosis of JAK2V617F mutated essential thrombocythemia (ET).

Clinical criteria JAK2 mutated PV

A1 | Erythrocye count above 6 × 10^12/L, hemoglobin >18.5 g/dL male and >16.5 g/dL females, Raised red cell mass (RCM) optional normal male 36 ml/kg, female >32 ml/kg (PVSG, WHO)
A2 | Persistent increase of platelet count grade I 400-1500, grade II >1500 × 10^9/L
A3 | Splenoegeny on ultrasound or CT (>12 cm) or splenomegaly on palpation
A4 | Granulocytes >10 × 10^9/L or leukocytes >12 × 10^9/L and raised LAP score >100 in the absence of fever and no increase of ESR
A5 | Absence of any cause of primary or secondary erythropoiesis
A6 | Low plasma or serum EPO level

Clinical criteria MPL515 mutated ET

A1 | Persistent increase of platelet count grade I 1400-1500, grade II >1500 × 10^9/L
A2 | Normal spleen or only minor splenomegaly on echogram
A3 | Normal LAP score, normal ESR and increased MPV
A4 | Absence of Philadelphia chromosome (Table 3)
A5 | Absence of Philadelphia chromosome

Clinical staging according to no, mild or severe anemia

A1 | No preceding or allied other subtype of MPN, PV, MDS or CML
A2 | Staging of myelofibrosis: MF in PV and PMGM

Table 2: The 2008 European Clinical and Pathological (2008 ECMP) criteria for the diagnosis of JAK2 mutated polycythemia vera (PV), MPL515 mutated ET [3-5] and JAK2/MPL wild type hypercellular ET associated with primary megakaryocytic granulocytic myeloproliferation (PMGM).

[22-30] and the 2008 ECMP classification respectively are based on three specific bone marrow histology criteria: 1) the presence of large dysmorphic megakaryocytes with immature cytoplasm and immature cloud-like nuclei not seen in ET and PV, 2) increased granulopoiesis but never disturbed in maturation and 3) no features of PV with relatively decreased erythropoiesis.

PVSG, 2007 WHO and 2008 ECMP criteria for the diagnoses of ET, PV and PMGM

The PVSG failed to use BMB and introduced 3 major and 4 minor clinical criteria as inclusion criteria the diagnosis of PV in the PVSG-01 study of which increased RCM was mandatory [12,13]. Increased
RCM in PV patients corresponded to hematocrit values between 0.48 and 0.76 in all, platelet count above 400 x 10^9/L in two-third and palpable spleen in two-third of about 400 PV patients in the PVSG-01 study [13]. The PVSG and WHO classifications excluded ECP defined Idiopathic Erythrocythemia (IE) by definition [31,32]. IE is featured by increased hemoglobin, haematocrit, erythrocytes and increased red cell mass but normal leukocytes, thrombocytes and spleen size on palpation [31,32]. Minor B criteria did appear in untreated IE patients during follow up and was associated with a high incidence of major or lethal cerebrovascular thrombotic disease 31. This category of IE or the earliest erythrocythemic stage of PV comprises about 10 to 20% of the PV cases at time of presentation [31,32]. In the 1970s tools available to separate the Idiopathic Erythrocytoses into myeloproliferative PV (IE) versus primary or secondary erythrocytosis by including pretreatment bone marrow biopsy [33-35] and EEC 36,37 were observed by the PVSG. Clinicians and pathologists should be aware that pretreatment bone marrow biopsy specimens in 191 PV patients of the PVSG-01 study [34,35] with increased RCM showed a normal bone marrow cellularity with no increase of clustered large megakaryocytes (idiopathic erythrocytosis) in about 7.5%, slight to moderate increased bone marrow cellularity (60 to 80%) and increase of clustered large megakaryocytes in two-thirds (consistent with early erythrocythemic, thrombocytocemic stage PV), and pronounced trilineage hypercellularity (80 to 100%) of the bone marrow in one-third (consistent with classic PV with trilinear "panmyelosis" as described by the PVSG exactly as defined at the bone marrow level by Georgii et al [22-24], Michiels & Thiele [36-40] and by Thiele et al [41].

Between 2000 and 2007 it turned out that various degrees of characteristic PV bone marrow histology features (irrespective of RCM measurements) are seen in the four different stages of newly diagnosed patients with the JAK2 mutated MPN (Tables 1, 2 and 4) [44-47]. First, early thrombocytocytic PV mimicking ET with a hematocrit in the upper limit of normal (< 0.50) but increased platelet count (> 400 x 10^9/L) without or with slight splenomegaly (stage 0 PV); Second, "idiopathic erythrocytosis" with increased RCM, high hematocrit, low serum EPO, but normal platelet count and spleen size (stage 1 PV, Table 4); Third, classic PV with increased RCM, high hematocrit and one or more B criteria (overt stage 2 and 3 PV, Table 4); Fourth, unclassifiable or masked MF with splenomegaly, normal hemoglobin and hematocrit, normal or slightly elevated platelet count (apparent PV=IPV, Table 4). Thiele et al confirmed that characteristic PV bone marrow histopathological features are seen in classic PV and in latent PV or early thrombocytocytic PV mimicking ET [42].

The 2007 WHO revision of the PVSG and 2001 WHO classifications decided to lower the platelet counts from 600 to around 450x10^9/L for the diagnosis of ET [27]. The 2007 WHO changed the

USA Subjective	UK Subjective	Grading of myelofibrosis (MF)	Descriptive: silver impregnation, Masson stain	MF
RF 1	RF 1+	Scattered linear fine fibers (cross-overs) and rare course reticulin fibers	Impregnated Masson stain	MF 0 Prefibrotic
No Masson stain	RF 2+	Loose network of reticulin with intersections around megakaryocytes and in perivascular areas: silver impregnation no collagenisation: Masson stain	Reticulin (RF) density	MF 1 Early reticulin fibrosis: RF
No Masson stain	RF 3+	Diffuse and dense increase in reticulin with extensive intersections, occasionally only focal bundles of collagen and/or focal osteosclerosis	Fibrotic	MF 2 Fibrotic
RF 4	Dry tap	Diffuse and dense increased in reticulin with extensive interactions with coarse bundles of collagen, often associated with significant osteosclerosis	Sclerotic	MF 3 Sclerotic

Reticulin fiber (RF) density should be assessed in cellular hematopoietic areas.

Table 3: Grading of reticulin fibrosis (RF) according to Ellis [34], and European grading of myelofibrosis (MF) according Thiele et al. [75] in bone marrow biopsies of patients with a chronic myeloproliferative neoplasms (MPN).

Acquired JAK2V617F mutation as the driver cause of trilinear MPN: Dameshek-Vainchenker’s disease 1950-2005 [15,16]

The one cause hypothesis of trilinear PV proposed by Dameshek in 1950 [15] has been confirmed by Vainchenker in 2005 by the discovery of the JAK2V617F mutation as the driver cause of ET, PV, masked PV and MF (Figures 1 and 2) [16,17]. Detection of JAK2V617F has become the first intention diagnostic test to differentiate between PV and myeloproliferative Idiopathic Erythrocythemia (IE) from

J Hematol Thromb Dis
ISSN: 2329-8790 JHTD, an open access journal
Volume 3 • Issue 1 • 1000190
TPOR/MPL is expressed at high levels in megakaryocytic cells and duration of JAK2V617F directly contribute to the phenotypic hypothesis (Figure 3) [48,49]. According to the “dosage” hypothesis the frequency of the JAK2V617F mutation of 95% (92-97%) is described in Chain Reaction (PCR) analysis in PVSG-defined MPD patients, a high platelets and granulocytes (Table 5). Applying allele-specific Polymerase bone marrow cells, erythroblasts, in cells of spontaneous EEC, blood patients are homozygous for the JAK2V617F mutation [50,51].

Only 3 to 4% of ET, 24 to 27% of PV and 6 to 18% of MF of response of TPOR and EPOR to various levels of JAK2V617F activity receptors (EPOR) on hematopoietic progenitor cells and on differences different densities of TPO receptors (TPOR or MPL)) and EPO diversity of trilinear MPNs (Table 5). This hypothesis is based on marrow.

cytokines, thereby resulting in growth advantage of the mutated aver factor (G-CSF) [48-50]. The JAK2V617F mutation renders the receptors (EPO), Thrombopoietin (TPO), and granulocyte colony stimulating nucleus by several hematopoietic cytokines including Erythropoietin essential role in cytokine-induced signalling from receptors to the investigators (reviewed by Michiels et al 2006) [45]. JAK2 plays an appreciated as an evolutionary event, and rapidly confirmed by several discovery of the JAK2 V617F mutation by James et al [16] was immediately erythrocytosis with a sensitity of 95% and specificity of 100%. The Table 4.

JAK2V617F in FBFU-e (exon 12) + (+++) + (+++) + (+++) High risk PVeryl PV IFN Resist JAK2 inhibitor IFN Resist JAK2 inhibitor ++ ++ ++ + Post-PMF PV Spent phase PV Post-PMF MF Spent phase PV Post-PMF MF

Risk stratification → Therapeutic implications Ann2014 Low risk Low risk Low risk Intermediate risk PV High risk PVearly MF Wait/See IFN JAK2 JAK2 inhibitor Bone marrow transplant

Erythrocytosis with a sensitivity of 95% and specificity of 100%. The discovery of the JAK2 V617F mutation by James et al [16] was immediately appreciated as an evolutionary event, and rapidly confirmed by several investigators (reviewed by Michiels et al 2006) [45]. JAK2 plays an essential role in cytokine-induced signalling from receptors to the nucleus by several hematopoietic cytokines including Erythropoietin (EPO), Thrombopoietin (TPO), and granulocyte colony stimulating factor (G-CSF) [48-50]. The JAK2V617F mutation renders the receptors on mutated hematopoietic progenitor cells hypersensitive to these cytokines, thereby resulting in growth advantage of the mutated aver the non-mutated trillion hematopoietic cells present in the bone marrow. The JAK2V617F mutation is detectable in CD34+ hematopoietic bone marrow cells, erythroblasts, in cells of spontaneous EEC, blood platelets and granulocytes (Table 5). Applying allele-specific Polymerase Chain Reaction (PCR) analysis in PVSY-defined MPD patients, a high frequency of the JAK2V617F mutation of 95% (92-97%) is described in PV, and a lower frequency of 53% (49-57%) in ET and 52% (44-55%) in MF [50,51]. Only 3 to 4% of ET, 24 to 27% of PV and 6 to 18% of MF patients are homozygous for the JAK2V617F mutation [50,51].

Based on animal studies and different mutation states of JAK2V617F in MPN patients, two hypotheses have been proposed to explain why three different phenotypes of MPN are caused by the same JAK2V617Fmutation: the "dosage" hypothesis and the "additional events" hypothesis (Figure 3) [48,49]. According to the "dosage" hypothesis the level and duration of JAK2V617F directly contribute to the phenotypic diversity of trilinear MPNs (Table 5). This hypothesis is based on different densities of TPO receptors (TPOR or MPL)) and EPO receptors (EPO) on hematopoietic progenitor cells and on differences of response of TPOR and EPOR to various levels of JAK2V617F activity [48,49]. TPOR/MPL is expressed at high levels in megakaryocytic cells where it controls physiological TPO levels. It is possible that activation of a few TPO receptor by low levels of JAK2V617F (heterozygous) is sufficient to send a signal to megakaryocytic cells [51]. A slight increase in numbers of mutated large (giant) megakaryocytes and platelets (about 50 to 100 x109/l mutated platelets) might be sufficient to produce platelet-mediated microvascular circulation disturbances (Table 5). Conversely, EPOR is expressed at low levels on hematopoietic progenitor cells and therefore high levels of JAK2V617F may be required to activate EPOR and generate a PV-like phenotype [48-52]. Sustained high levels of JAK2V617F during long-term follow-up subsequently may lead to a high level activation of activation of EPOR and GCSF receptor (GCFSR) leading to extramedullary hematopoiesis (splenomegaly) and cytokine mediated secondary myelofibrosis (Figure 3 and Table 5). The percentage of JAK2V617F positivity and progression from heterozygous to homozygous is strongly correlated with the ability to form spontaneous EEC formation and with progressive post-PV myelofibrosis. Scott et al. showed that BFE-e colonies are homozygous in ET patients and did not contain a subpopulation of JAK2V617F homozygous cells (Figure 4) [52]. The BFE-e colonies are already homozygous for the JAK2V617F mutation in PV patients with a heterozygous pattern of JAK2V617F in their peripheral blood granulocytes (Figure 4) [52]. French investigators studied a large group of JAK2V617F positive PV (N=159, 36% homozygous) and ET (N=147, 4% homozygous), and genotyped BFE-E colonies in 20 PV and 6 ET patients [53]. They showed that JAK2V617F positive ET patients usually harbour homozygous BFE-E clones, some PV patients have a purely homozygous profile, and most PV patients have a mixture of heterozygous and homozygous BFE-E clones [53]. Mutated erythroid progenitors are more sensitive to EPO than normal progenitors, and most homozygous progenitors are EPO independent. In this cohort of 306 JAK2V617F positive MPD patients, PV was associated with significantly lower platelet counts and higher hematocrit and granulocyte values than ET patient. The highest platelet count was associated with low JAK2V617F levels in PV, whereas high JAK2V617F levels correlated with high hemoglobin and high granulocyte...
counts in ET [53]. Tefferi et al detected JAK2 V617F in 75% of ET (n=60) and in 97% of PV patients (n=62), whereas allelic ratios exceeding 50% JAK2 V617F indicating homozygosity were found in 70% of PV at diagnosis but never in ET [54]. Transition from heterozygosity to homozygosity for the JAK2 V617F mutation represents a very important step in the progression from early to classic PV and subsequent post-PV and post-ET myelofibrosis (Table 5). JAK2 V617F heterozygous and homozygous PV patients have increased haemoglobin, hematocrit and erythrocyte counts (> 6×10^12/L) at time of diagnosis, experience increased incidence of pruritus, and a higher rate of fibrotic transformation as compared to ET. Sex appears to be a powerful genetic background modifier in JAK2 V617F-positive MPDs as ET is more common in females and PV in males.

Mechanisms other than mitotic recombination such as duplication of the mutated allele is observed in a proportion of PV and MF patients displaying a gain of 9p, mostly due to trisomy 9 [55,56]. Campbell et al reported that the JAK2 V617F mutation was associated with trisomy 9 with all 10 MPN patients investigated and was found in 28 of 29 MPN patients (PV, ET or MF) with a 20q deletion [57]. Scott et al identified JAK2 exon 12 mutations in 10 erythrocytosis patients with increased red cell mass but no JAK2 V617F, of which according to PVSG criteria 6 could be diagnosed as PV and 4 as idiopathic erythrocytosis [58]. Pre-treatment bone marrow biopsies in 5 JAK2 exon 12 mutated PV patients showed a characteristic pattern of erythroid hyperplasia without morphological abnormalities of the megakaryocyte or granulocyte lineages [58]. Therefore, an overlap between “dosage” and “additional molecular events” hypotheses is very likely in patients with trilinear PV (Figure 3).

Acquired MPL515 gain of function mutations as the driver cause of normocellular ET:

The JAK2 kinase activity in MPNs is dependent on the amount of heterozygous and homozygous JAK2 V617F mutant protein, but also influenced by the various steps upstream or downstream the signalling pathways including MPL, JAK2, STAT-3 (Figure 2). This has been demonstrated in animal models overexpressing c-MPL [59]. MPL transgenic mice manifested with typical features of ET with a fourfold increase of platelet count, increased colony formation of megakaryocytes, and increase of clustered enlarged megakaryocytes in the bone marrow. The ET animals appeared healthy, had a very slight decrease of hematocrit (0.39 versus 0.42 in controls) despite an increase of bone marrow EEC, and survived normally with no evidence of myelofibrosis in the bone marrow [52]. The acquired MPL W515L and MPL W515K gain of function mutations have been discovered as the underlying etiology in ET patients (Figure 3) [60,61]. Screening of 1182 PVSG-defined MPD patients (318 ET, 242 PV, and 290 IMF) and 64 controls for MPL 515 mutations resulted in the detection of MPL mutations either MPL W515L (n=17) or MPL W515K (n=5) in 20 MPN patients (MF in 4%, ET in 4%, and post-ET myelosis in 1), but not in the 242 PV patients and controls [60]. Six cases carried both MPL W515L and JAK2 V617F alleles indicating that these alleles have functional complementation in MF (Figure 3). MPL W515L mutated ET and MF represent a distinct entity of JAK2 wild type MPN without features of JAK2 V617F mutated PV. These observations are in line with the “additional events” hypothesis, indicating that alternative or additional molecular abnormalities, like JAK2 V617F mutation alone, combinations of JAK2 V617F and MPL mutations or other combinations of still unknown mutations contribute to distinct phenotypes of MPN.

Vannucchi et al studied 30 ET patients carrying the MPL515 mutation (18 MPL W515L and 12 MPL W515K), 9 males and 21 females, age 22-84 (mean 56) years [62]. The clinical presentation at diagnosis and follow-up was remarkable with a high incidence of major arterial event, 23%, venous thrombosis, 10%, microvesSEL disturbances, 60%, and major hemorrhage, 7%. The only abnormal laboratory finding was increased platelet counts, 956 + 331×10^9/L together with hemoglobin values in the lower range of normal (13.4 + 1.3 g/dL), normal white blood cells (8.8 + 3.1×10^9/L), slight increase of LDH (459 + 182 U/L) and splenomegaly in only 5 (17%). Mutation allele burden was greater than 50% in half of MPL W515L patients compared to 17% of MPL W515L mutated ET patients. MPL 515L and JAK2 V617F mutations coexisted in 3 with MPL W515L, and in 5 with MPL W515K allele mutations. As compared to the findings in ET with features of PV in blood (low serum EPO) and hypercellular bone marrow due to increased erythropoiesis (Figure 5) the general features of bone marrow reports cellularity in MPL W515L/K patients revealed significantly reduced erythropoiesis and decreased, which associated with increased number of clustered small and large to giant megakaryocytes and no significant increase in reticulin fibrosis in a normocellular bone marrow (Figure 6) without features of PV or PMGM [63-65]. In 2008 we discovered that JAK2/MPL wild type hypercellular ET associated with a PMGM bone marrow appeared to be the third distinct MPN entity (Figures 7 and 8).

2008 ECMP criteria for the diagnosis and classification of MPNs

The 2008 ECMP criteria separate JAK2 V617F mutated ET patients into three phenotypes of prefibrotic MPNs at the bone marrow level: normocellular ET, early PV mimicking ET=prodromal PV (Figure 6) and ET with MMG (MF-0) bone marrow (EMGM) without features of leuko-erythroblastosis in the peripheral blood (Table 1). These ECMP defined JAK2 V617F mutated ET phenotypes do not differ significantly with regard to peripheral blood features, thrombocytopenia related clinical presentation or laboratory findings and are to be treated equally based on clinical risk stratification for thrombotic and bleeding complications, irrespective of bone marrow features [51,63,64]. Pretreatment bone marrow biopsy will allow clinicians and pathologists to diagnose the early stages of thrombocythemia in various MPNs irrespective of JAK2 V617F (Figure 5) or MPL 515L mutation status (Figure 6). The 2008 ECMP criteria classify JAK2 mutated ET (Table 1) as: normocellular ET (Table 2); early PV mimicking ET (Table 1); prefibrotic ET associated with MEGM (EMGM) with RF-0 or RF-1 and without features of leukoerythrocytosis and extramedullary hematopoiesis (Table 1); and post-ET MEGM with MF-1, 2 and 3 and features of leucoerythroblastosis (Table 1). The 2008 ECMP criteria distinguish thrombocythemia in various MPNs from thrombocythemia associated with Ph1-chronosom and bcr/abl positive chronic myeloid leukemia (CML) [65] or Myelodysplastic Syndromes (MDS) including the so-called 5q-syndrome, which clearly differs from refractory anemia with ringed sideroblasts and significant thrombocytosis (RARS-T) [66-69]. Among 9 RARS-T patients, 6 showed the presence of JAK2 V617F mutation [68,69]. As compared to JAK2 wild type ET, JAK2 V617F positive ET is characterized by higher values for hemoglobin, hematocrit, neutrophil counts, LAP score, by lower values for serum EPO levels, serum ferritin and MCV, and by increased cellularity of the bone marrow in biopsy material [65,66], indicating early thrombocytopenic PV mimicking ET (“forme fruste” PV, stage 1 PV, Figure 5, Tables 2 and 4). JAK2 wild type ET patients represent a distinct category who had significantly higher platelet counts, normal serum EPO levels, a typical bone marrow picture of ET, no features of early PV, and are at lower risk for the development of thrombotic complications [70,71].
Grading of myelofibrosis in myeloproliferative disorders 1980-2008

2007 and 2008 WHO defined Primary Myelofibrosis (PMF) itself is not a disease because reticulin and collagen fibrosis are produced by polyclonal fibroblasts in response to cytokines released from the clonal granulocytic and megakaryocytic proliferative cells in both PV and MF (Table 3) [34,74]. Transformation to myelofibrosis is rare in ET and does occur in about one third of PV and in the majority of patients with ET associated with PMGM (MF-0) during long-term follow-up [22-24]. The grading of Reticulin Fibrosis (RF) was developed grading of myelofibrosis in bone marrow biopsies by pathologist (Table 3) [75]. A scoring system based on morphometric analysis (point intersection with an ocular grid) and quality of fibers (reticulin and collagen fibers) and the bone marrow fiber density (fine or coarse reticulin and some or course bundles of collagen) has been proposed by European consensus for grading of MF (Table 3) [34,75]. According to defined standardized semiquantitative grading of reticulin and collagen fibrosis in the bone marrow, MF can reliably be graded at the pathological bone marrow level as 0 in prefibrotic, as 1 in early fibrotic, as 2 in classical fibrotic and as 3 in classical sclerotic MF (Table 3) [34,75].

Figure 4: Genotype of individual BFU-E in ET and PV patients with granulocytes heterozygous for the JAK2V617F mutation: JAK2 allele load <50% according to Scott et al. [52]. Reproduced by the Courtesy of Dr Green, Cambridge.

Figure 5: JAK2V617F positive ET in a case of portal vein thrombosis and platelets 453 x10^11/L. Large platelets in peripheral blood smear B as compared to control A left panels. Bone marrow smear large megakaryocytes with multilobated nuclei B as compared to control A middle panels. Bone marrow biopsy hypercellular due to increased erythropoiesis and clustered large pleomorphic megakaryocytes (promordial PV). Bone marrow features of homozygous JAK2V617F acute onset PV (right).

The detection of JAK2V617F in granulocytes with sensitive PCR techniques plays a key-role as a first intention diagnostic test for erythrocytosis, because it simplifies the diagnostic work-up of PV [72,73]. In the context of erythrocytosis (hematocrit >0.51 in males and >0.48 in females) the presence of the JAK2V617F mutation has a sensitivity of 95% and positive predictive value of 100% for the diagnosis of PV, and excludes congenital and secondary erythrocytosis. EEC and low serum EPO significantly contribute but are not sensitive enough to diagnose the broad spectrum of PV phenotypes [51]. Bone marrow histology assessment is a gold standard for the diagnosis of masked, overt and advanced JAK2V617F mutated and exon 12 mutated PV.
JAK2 allele burden related to MPN disease progression in ET, PV and MF 2005-2008

Spivak and his co-workers assessed the burden of JAK2V617F mutation and PVSG-defined MPD in 84 ET, 92 PV, and 19 fibrotic MF patients [76]. The JAK2V617F mutation was detected in 92% of PV, in 45% of ET, and in 42% of fibrotic MF patients. The median burden of JAK2V617F alleles was significantly lower ET (47%) than in PV (67%) in PV patients (p=<0.001) when stratified for disease duration, a JAK2V617F burden of 100% (homozygosity) was present in only 15% of PV less than three years from diagnosis compared to 40% of PV three to 10 years and 40% of PV between 10 and 26 years since diagnosis, but none in ET patients during very long-term follow-up (Figure 9) [76]. Passamonti et al studied the burden of JAK2V617F in WHO-defined MPD ET, PV, prefibrotic MF (p-MF), fibrotic MF (f-MF) and 16 post-PV myelofibrosis (Figure 10), [50]. The JAK2V617F mutation was detected in 92% of 25 PV, in 53% of 19 ET, in 58% of 12 MF-0 (ET associated with MGM) in 56% of 18 fibrotic MF, and in 100% of 16 post-PV myelofibrosis patients [50]. Interestingly, ET and p-MF patients had significantly lower percentage of mutated alleles than patients with PV (p=0.01), whereas patients with f-MF had much higher values than p-MF or ET (p=0.0008) (Figures 10). Circulating CD34 positive circulating cells were normal all patients with PV (N=25), ET (N=19) and p-CIMF (N=12) and 6 out of 18 f-MF patients had normal (<10x10^6/L) circulating CD34 cells. Conversely, 12 out of 18 f-MF and all post-PV MF [16] had increased CD34 circulating cells (Figure 10). These data indicate that ET and p-MF are not different at the molecular (JAK2V617F) and biological (CD34 cells) level. Post-PV myelofibrosis had the highest percentages of mutant alleles approaching 100% homozygosity (Figure 8). PV and MF patients with a high mutation burden (granulocytes mutant alleles in excess of 50%) have leukocytosis, splenomegaly, increased LDH levels, increased circulating CD34-positive cells, a worse event free survival and a compromised overall survival as compared with those with lower mutation burden (granulocyte mutant alleles of 1-50%) mainly seen in ET and early stage PV [50].

As compared to the 2007 → 2008 WHO classification [27,77], the use of the 2008 ECMP and the updated WHO-CMP [77-80] criteria clearly show that JAK2 wild type ET and MF lack specific PV laboratory and pathological features at diagnosis and during follow-up. This has been demonstrated for MPL515 mutated (ET/MF) (Figure 6) and for JAK2/MPL wild type hypercellular ET in PMGM (Figures 7 and 8). The flexible use of the 2008 ECMP → 2015 WHO-ECMP criteria should serve as pathognomonic diagnostic clues to each of the prefibrotic MPNs to distinguish early and overt PV MPN disease from primary or secondary erythrocytosis, and can be applied to document the natural history of myeloproliferative and fibrotic disease in JAK2V617F, MPLS15 and JAK2 wild type ET and MF patients. The 2008 ECMP were the critical responses on the shortcomings of the 2007 WHO criteria and were conceptualised before the publication of the final 2008 WHO classification [36,37]. The 2008 ECMP and the updated 2014/2015 WHO-CMP detect and distinguish five distinct clonal MPNs caused by the JAK2V617F, exon 12 JAK2, MPLS15 and CALR driver mutation leaving a small group of triple negative group of MPN [78-80].

Figure 6: JAK2 wild type, MPLS15 mutated ET with enlarged and giant mature megakaryocytes with loose clusters of hyperlobulated, “stag-horn” hyperlobulated nuclei. Case 1, upper panel Case 2 lower panel, Bone marrow slides were kindly provided in 2008 by Dr. Vannucchi, Italy [62].

Figure 7: Hypercellular ET entity presenting with JAK2 wild type prefibrotic (right panel) primary megakaryocytic and granulocytic myeloproliferation (PMGM, left and middle), which is characterized by a hypercellular bone marrow due to dual myeloproliferation of granulopoiesis and dense clustered enlarged immature dysmorphic megakaryocytes (left and middle panels) with bulky (bulbous) hyperchromatic nuclei (arrows) (personal observation), which are never seen in JAK2 wild type PT and also not in the prefibrotic JAK2V617F mutated ET, prominial PV, EMGM and trilinear PV entities.

Figure 8: Clinical MF, JAK2 wild type ET; platelets 1430x10^9/L, anemia hemoglobin 11.3 g/dL, splenomegaly and high LDH 2730 JAK2 wild type hypercellular (65-70%) bone marrow associated with early fibrotic PMGM, reticulin fibrosis grade. (Dr De Raeve)
Figure 9: Neutrophil JAK2V617F allele percentages (%) related to disease in 36 PVSG-defined ET and 77 PV patients (upper left) [76]. Median neutrophil JAK2V617F allele% were significantly higher in PV than those for ET, regardless of disease duration. Within PV the differences in neutrophil JAK2V617F allele% as a function of disease duration were not statistically significant. This may be indicative for good risk PV and poor risk PV with neutrophil JAK2V617F allele burden between 30 to 80% and between 80 and 100% respectively. Neutrophil genomic DNA and platelet cDNA from the same blood samples in 13 ET and 23 PV patients (upper right). First, median neutrophil JAK2V617F allele% in PV were greater than in ET (P=<0.001). Second, median platelet JAK2V617F allele% in ET were lower than in PV (P=<0.002). Third, median neutrophil JAK2V617F allele% in ET were lower than platelet JAK2V617F allele% in ET (P=<0.001). Reproduced with the courtesy of Dr Jerry Spivak, Baltimore, USA.

Figure 10: Granulocytic JAK2V617F mutation burden (%) in 23 PV, 10 ET, 7 prefibrotic CMMF (p-CMMF) 10 fibrotic CMMF (f-CMMF) and 16 post-PV MF patients (lower left) [50]. First, patients with PV had higher JAK2V617F% than ET (P=<0.01). Second, patients with p-CMMF had much lower JAK2V617F% than f-CMMF. Third, patients with post-PV myelofibrosis (MF) had the highest JAK2V617F allele%.

References
1. Heuck G (1879) Zwei Faule von Leukemia mit eighteen million. Blut resp Knochenmark-befund. Virch Archiv 78: 475.
2. Vaquez MH (1892) Sur une forme speciale de cyanose sa™ accompagnant da™ hyperglobulie excessive et persistante. Compte Rendues des seances de la Societé de Biologie 44: 384-386.
3. Dameshek W (1951) Some speculations on the myeloproliferative syndromes. Blood 6: 372-375.
4. Nowell PC, Hungerford DA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132: 1497.
5. Rowley J (1973) A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence Giemsa staining. Nature 243: 290-291.
6. de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeier A, et al. (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukemia. Nature 300: 765-767.
7. Bartram CR, de Klein A, Hagemeier A (1983) Translocation of the human c-abl oncogene occurs in variant Ph-positive but not Ph-negative chronic myeloid leukemia. Nature 306: 277-280.
8. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, et al. (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36: 93-99.
9. Lugo TG, Pendergast AM, Muller AJ, Witte ON (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247: 1079-1082.
10. Kelliher MA, McLaughlin J, Witte ON, Rosenberg N (1990) Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci U S A 87: 6649-6653.
11. Shepherd PC, Ganesan TS, Galton DA (1987) Haematological classification of the chronic myeloid leukaemias. Baillieres Clin Haematol 1: 887-906.
12. Laszlo J (1975) Myeloproliferative disorders (MPD): myelofibrosis, myelosclerosis, extramedullary hematopoesis, undifferentiated MPD, and hemorrhagic thrombocythemia. Semin Hematol 12: 409-432.
13. Berlin NI (1975) Diagnosis and classification of the polycythemias. Semin Hematol 12: 339-351.
14. Michiels JJ, Prins ME, Hagermeijer A, Brederoo P, van der Meulen J, et al. (1987) Philadelphia chromosome-positive thrombocythemia and megakaryoblast leukemia. Am J Clin Pathol 88: 645-652.
15. DAMESHEK W (1950) Physiopathology and course of polycythemia vera as related to therapy. J Am Med Assoc 142: 790-797.
16. James C, Ugo V, Le Couedic PF, Staerk J, Delhommeau F, et al. (2005) A unique clonal JAK2 mutation leading to constitutive signalling causing polycythemia vera. Nature 434: 1144-1148.
17. James C, Ugo V, Casadevall N, Constantinescu SN, Vainchenker W (2005) A JAK2 mutation in myeloproliferative disorders: pathogenesis and therapeutic and scientific prospects. Trends Mol Med 11: 544-554.
18. Thiele J, Zankovich R, Schneider G, Kremer B, Fischer R, et al. (1988) Primary (essential) thrombocythemia versus polycythemia rubra vera. A histomorphometric analysis of bone marrow features in trephine biopsies. Analyl Quat Cytol Histol 10: 375-382.
19. Thiele J, Schneider G, Hoppenr B, Wienen S, Zankovich R, et al. (1988) Histomorphometry of bone marrow biopsies in chronic myeloproliferative disorders with associated thrombocytosis features of significance for the diagnosis of primary (essential) thrombocythemia. Virch Arch A Path Anat 413: 407-417.
20. Thiele J, Zankovich R, Steinberg T, Kremer B, Fischer R, et al. (1989) Primary (essential) thrombocythemia versus hyperplastic stages of agnogenic myeloid metaplasia with thrombocytosis: a critical evaluation of clinical and histomorphological data. Acta Haematol 81: 192-202.
21. Thiele J, Zankovich R, Steinberg T, Fischer R, Diehl V (1989) Agnogenic myeloid metaplasia (AMM)™ correlation of bone marrow lesions with laboratory data: a longitudinal clinicopathological study on 114 patients. Hematol Oncol 7: 327-343.
22. Georgii A, Vykoupil KF, Buhr T, Choritz H, Döhler U, et al. (1990) Chronic myeloproliferative disorders in bone marrow biopsies. Pathol Pract Rec 186: 3-27.
23. Georgii A, Buhr T, Buesche G, Kreft A, Choritz H (1996) Classification and staging of Ph-negative myeloproliferative disorders by histopathology from bone marrow biopsies. Leuk Lymphoma 22 Suppl 1: 15-29.
24. Georgii A, Buesche G, Kreft A (1998) The histopathology of chronic myeloproliferative diseases. Baillieres Clin Haematol 11: 721-749.
25. Thiele J, Kvasnicka HM, Werdien C, Zankovich R, Diehl F R (1996) Idiopathic primary osteomyelofibrosis. A clinico-pathological study on 208 patients wit special emphasis on evolution of disease features, differentiation from essential thrombocythemia and variables of prognostic impact. Leukemia and Lymphoma 22: 303-317.
26. (2001) WHO classification of the chronic myeloproliferative diseases (CMPD) polycythemia vera, chronic idiopathic myelofibrosis, essential thrombocythemia and CMPD unclassifiable. In: Jaffe S, Harris NL, Stein H et al, editors. WHO Classification of Tumours. Tumours of Haematopoiesis and Lymphoid Tissues. Lyon. IARC 2001 pp 31-42.
27. Tefferi A, Thiele J, Orazi A, Kvasnicka HM (2007) Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Blood 110: 1092-1097.

28. Michiels JJ (1997) Diagnostic criteria of the myeloproliferative disorders (MPD): essential thrombocythemia, polycythemia vera, and chronic myelocytic granulocytic metaplasia. Neth J Med 51: 57-64.

29. Michiels JJ, Kutti J, Stark P, Bazzan M, Gugliotta L, et al. (1999) Diagnosis, pathogenesis and treatment of the myeloproliferative disorders essential thrombocythemia, polycythemia vera and essential myelocytic granulocytic myeloproliferation and myelofibrosis. Neth J Med 54: 46-62.

30. Michiels JJ, Barbui T, Finazzi G, Fuchtmann SM, Kutti J, et al. (2000) Diagnosis and treatment of polycythemia vera and possible future study designs of the PVSG. Leuk Lymphoma 36: 239-253.

31. Pearson TC, Wetherley-Mein G (1979) The course and complications of idiopathic erythrocytosis. Clin Lab Haematol 1: 189-196.

32. Najean Y, Triebel F, Dresch C (1981) Pure erythrocytosis: reappraisal of a bone marrow feature. Hemost 32: 174-207.

33. Kurnick JE, Ward HP, Block MH (1972) Bone marrow sections in the differential diagnosis of polycythemia. Arch Pathol 94: 499-499.

34. Ellis JT, Peterson P (1979) The bone marrow in polycythemia vera. Pathol Ann 14 Pt 1: 383-403.

35. Thomas JL, James C, Pisani DF, Casadevall N, Vainchenker W (2006) New WHO classification of the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and the role in leukemoid transformation. Blood 118: 3546-3555.

36. Thiele J, Kvasnicka HM (2005) Bone marrow features of diagnostic importance. Thromb Hemost 93: 213-219.

37. Thiele J, Kvasnicka HM, Diehl V (2005) Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol 113: 213-219.

38. Thiele J, Kvasnicka HM, Diehl V (2005) Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol 113: 213-219.

39. Thiele J, Kvasnicka HM (2006) Clinical pathologic criteria for the diagnosis of chronic myeloproliferative disorders. Semin Thromb Hemost 32: 174-207.

40. Michiels JJ, Berneman Z, Van Bockstaele D, Van Den Planken M, De Raeye H, et al. (2007) The 2006 → 2008 European Clinical, Molecular and Pathobiological (ECMP) criteria for the diagnosis of myeloproliferative disorders. Turk J Hematol Proceeding 24: 37-53.

41. Thiele J, Kvasnicka HM, Diehl V (2005) Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol 113: 213-219.

42. Thiele J, Kvasnicka HM, Diehl V (2005) Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol 113: 213-219.

43. Thiele J, Kvasnicka HM, Diehl V (2005) Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol 113: 213-219.

44. Thiele J, Kvasnicka HM, Diehl V (2005) Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol 113: 213-219.

45. Thiele J, Kvasnicka HM, Diehl V (2005) Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol 113: 213-219.

46. Thiele J, Kvasnicka HM, Diehl V (2005) Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol 113: 213-219.

47. Thiele J, Kvasnicka HM, Diehl V (2005) Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol 113: 213-219.

48. Thiele J, Kvasnicka HM, Diehl V (2005) Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol 113: 213-219.

49. Thiele J, Kvasnicka HM, Diehl V (2005) Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol 113: 213-219.

50. Thiele J, Kvasnicka HM, Diehl V (2005) Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol 113: 213-219.
70. Campbell PJ, Scott LM, Buck G, Wheatley K, East CL, et al. (2005) Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet 366: 1945-1953.

71. Campbell PJ, Green AR (2006) The myeloproliferative disorders. N Engl J Med 355: 2452-2466.

72. James C, Delhommeau F, Marzac C, Teyssandier I, Coulédic JP, et al. (2006) Detection of JAK2 V617F as a first intention diagnostic test for erythrocytosis. Leukemia 20: 350-353.

73. Tefferi A, Pardanani A (2006) Mutation screening for JAK2V617F: when to order the test and how to interpret the results. Leuk Res 30: 739-744.

74. Le Bousse-Kerdilès MC1, Martyré MC (1999) Dual implication of fibrogenic cytokines in the pathogenesis of fibrosis and myeloproliferation in myeloid metaplasia with myelofibrosis. Ann Hematol 78: 437-444.

75. Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, et al. (2005) European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica 90: 1125-1132.

76. Moliterno AR, Williams DM, Rogers O, Spivak JL (2006) Molecular mimicry in the chronic myeloproliferative disorders: reciprocity between quantitative JAK2 V617F and Mpl expression. Blood 108: 3913-3915.

77. (2008) WHO criteria for polycythemia vera, primary myelofibrosis and essential thrombocythemia. Thiele et al. In: Swerdlow SH, Campo E, Harris NL et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon France IARC Press 40-50.

78. Michiels JJ, Berneman Z, Schroyens W, De Raeve H. PVSG (2013) WHO vs European Clinical, Molecular and Pathological (ECMP) criteria for prefibrotic myeloproliferative neoplasms. World J Hematol 2: 71-88.

79. Michiels JJ, Ten Kate F, Lam KH, Schroyens W, Berneman Z, De raeve H (2014) The European clinical, molecular and pathological (ECMP) criteria and the 2007/2008 revisions of the World Health Organization for the diagnosis, classification and staging of the prefibrotic myeloproliferative neoplasms carrying the JAK2V617F mutation. Turk J Hematol 31: 136-142.

80. Michiels JJ, Berneman Z, Schroyens W, De Raeve H (2015) Changing concepts of diagnostic criteria of myeloproliferative disorders and the molecular etiology and classification of myeloproliferative neoplasms: from Dameshek 1950 to Vainchenker 2005 and beyond. Acta Haematol 133: 36-51.