Roman-Urdu News Headline Classification with IR Models using Machine Learning Algorithms

Syed Muhammad Hassan¹, Fayyaz Ali², Shaukat Wasi³, Samreen Javeed¹, Imtiaz Hussain¹ and Syeda Nazia Ashraf¹

¹Department of computer science, Sindh Madressatul Islam University, Karachi, Pakistan
M.hassan@smiu.edu.pk, samreen.javeed@smiu.edu.pk, lmtiaz@smiu.edu.pk, snazia@smiu.edu.pk
²Department of computer science, Sir Syed University of Engineering and Technology, Karachi, Pakistan; Fayyaz54@gmail.com
³Department of computer science, Mohammad Ali Jinnah University, Karachi, Pakistan; Shaukat.wasi@jinnah.edu

Abstract

Objectives: Roman-Urdu consider as a non-standard language used frequently on the Internet. To classify text from article tagging on Roman-Urdu is such difficult task because of many irregularities in spellings, for example, the word khubsurat (beautiful) in Roman-Urdu has multiple spellings. It can also be written as khoobsurat, khubsoorat, and khabosrat.

Methods/Statistical Analysis: In this study, we scrap Roman-Urdu language news headline from various online newspapers. Our corpus contains 12319 news headlines which contain seven categories i.e. Accident, Sports, Weather, Arrest, Conference, Operation and Violence. We also use different preprocessing approaches like Roman-Urdu Stop words and apply IR models i.e. TF-IDF and Count Vector for feature extraction before applying classifier algorithms.

Findings: We also compare results between different Machine Learning algorithm such as RF, LSVC, MNB, LR, RC, PAC, Perceptron, NC, SGDC and NC. Our model predicts best result to identify desire class on SGD classifier which gives 93.50% accuracy.

Application/ Improvements: It is recommended that SGD Classifiers should be used in roman-Urdu news headline text classification.

Keywords: Linear SVC, Multinomial Naïve Bays (MNB), Ridge Classifier (RC), Random Forest, Roman-Urdu, Supervised Machine Learning, Stochastic Gradient Descent (SGD), Text Classification, TF-Idf

1. Introduction

Large amount of data with its all variations on internet is available nowadays; most interestingly languages are no more barriers to identify information. Many people are interested to get their knowledge in the form of their native speaking or written languages. Roman-Urdu is one of the most popular and increasing demanding language nowadays with blend of English and Urdu¹. To analyze text with its category is most common and useful technique that cover all major field of Natural Language Processing for example sentiment analysis, opinion mining, reviews, tweets, blogs, spam detection and something whose sentiment is to be evaluated. Two major methods use for classification textual data are corpus-based³ in which pre-define dictionary uses that contains collection of words and lexicon-based finds the polarity of every word or phrase in a text document. Considering the popularity of Roman-Urdu, we make a model to classify news headline based on Roman-Urdu language on our own captured corpus. To analyze dataset, we use seven different categories as shown in Figure 1 named as Accident, Sports, Weather, Arrest, Conference, Operation and Violence news take as an input and passes into ten different machine learning algorithms to predict desire class. Furthermore, TF-IDF features vectors visualized through t-SNE plotting Graph as represent in Figure 2. Our method contains different primary

*Author for correspondence
processes: stop words removal, feature vector, which use
to predict class for sentences by applying the machine
learning algorithms. Most of researchers previously
work on Roman-Urdu in the context of sentiment
analysis and opinion mining with limited number of
Supervised Machine Learning Algorithms such as Naïve
Bays (NB), Logistic Regression with Stochastic Gradient
Descent (LRSGD) and Support Vector Machine (SVM).
We execute 10 Machine Learning Algorithms on seven
different categories.

This study has multiple sections, Section 2 describe
related work of different researchers on classifying text,
topic modeling, sentiment analysis and text mining.
Section 3 belong to methodology which describe the
whole procedure to collect data using web crawler,
preprocess data, feature extraction using TF-IDF and
vector model. Section 4 describes results that predict our
class on any given sentence and last Section 5 contain
conclusion.

Waikato Environment for Knowledge Analysis
(WEKA) tool to analyze different opinions written
in Roman-Urdu and English from a blog for text
classification. Balance data use for both classes,
negative and positive each contains 150 opinions
that are documented in text files which consider as
a training dataset. Three machine learning models is
use for training and testing, in which Naïve Bayesian
performance is far better than Decision Tree and
K-Nearest Neighbor (KNN) after analyzed accuracy,
precision, recall and F-measure. Ayesha et al. Online
remarks, feedback or any type of opinion from public
on specific domain is nowadays very common. To
analyze human cognitive behavior and to understand
user opinions in order to understand latest trend is
refer to as sentiment analysis. This study is to analyze
user hotel reviews by applying different classifiers
and feature selection and representation with the
conversion of English dataset into Roman-Urdu

Figure 1. Dataset size category-wise.

Figure 2. TF-IDF feature category-wise.

corpus. The proposed methodology is to analyze
customer feedback that assists organization to improve
their product, services, and marketing strategies.
Computational Linguistic or NLP are diversifying field
due to ambiguity in speech and language processing.
To analyze data Machine learning (supervised or
unsupervised) and statistical techniques are powerful
tools for various NLP tasks. The aim of this study is
to classify different categories using different machine
models.i.e.Hidden Markov Models (HMM), Conditional
Random Field (CRF), Maximum Entropy models
(MaxEnt), SVM and NB on ambiguity in speech and
language processing which identify best techniques to
apply on linguistic knowledge. Compare standard
text and lexical resources complexities during processing
text on resource poorer language Urdu and resource
rich languages for carrying various NLP tasks in any
languages of the globe. This study compares rule based
and statistical methods performance on developing
large annotated datasets using statistical learning
for Urdu Language Processing. As a result, statistical
methods perform better due to low amount of large
annotated datasets that require testing performance
on Urdu Language and Other Languages Processing.
Analyze Urdu language text by capturing data from
different blogs and annotated with the help of human
annotators. After annotated data it passes through well
know machine learning algorithm i.e. SVM, Decision
tree\(^2\) and KNN to find their performance in term of
accuracy, precision, recall and f-measure. In\(^3\) classifying
text with seven categories (Business, Entertainment,
Culture, Health, Sports, and Weird) on Urdu corpus
contains 21769 news documents. For predict classes
different machine learning algorithm apply on 93400
features extracted from dataset which gives 94%
precision and recall using classify class. Apply Deep
learning model called Long-Short Time Memory
(LSTM) on Roman-Urdu dataset to analyze sentiments
with the comparison of Machine Learning methods.
Result shows that deep neural networks-based model
is perform better on sequential data models without
applying preprocessing techniques as compared to
Machine leaning approaches. Also suggest that word
embedding with LSTM is successful approach to
perform Sentiment Analysis\(^2\). Discuss major issues
related to text such as handling large number of features,
unstructured text and textual content with solution
by applying appropriate semi-supervised machine
learning technique that automatically assigns a given
document to a set of pre-defined categories based
on its extracted features\(^3\). It provide comprehensive
study on information retrieval accessibility, selection
and management of large amounts of information on
web that can be classify according to their category
by applying supervised machine leaning algorithm
namely NB, SVM, KNN and Decision Tree (DT). After
different comparison the result shows each algorithm
performance is depend on the characteristics of the
datasets\(^3\). In\(^4\) works on news text classification based
on Latent Dirichlet Allocation (LDA) to reduce text
dimension which is too high and get features by
using topic model. Additionally, to solve multi-class
of text problems Softmax regression algorithm uses
a model’s classifier. Proposed model achieved good
classification results and effectively reduce the features
dimension. In\(^4\) due to large amount of unstructured
data on internet meaningful information extraction is
difficult to process by computers unless some effective
and efficient techniques and algorithms are applied to
reform data structure.

Proposed model is use for text mining (extracting
meaningful information from text) in biomedical and
health care domains with specific tasks and techniques
including text pre-processing, classification and
clustering. In\(^5\) proposed a model for text classification
based on Recurrent Neural Network (RNN) as the
acquisition function called Deep Active Learning
(DAL). It uses internal state to process sequences
of inputs due to this DAL no need preprocessing
features extraction. Traditional Machine learning
algorithm required less time to compute results after
feature extraction in contrast DAL require much
more time and need more labeled instances which
gives high stable precision by only using 45% of the
initial dataset. In\(^6\) due to easily available of any type
data Machine learning is capable to solve complex
problems and enable automation in diverse domains.
This study focus on the area of networking across
different network technologies to address different
problems for example traffic prediction, routing and
classification, congestion control, resource and fault
management, QoS and QoE management, and network
security using Machine learning. Focus on Roman-
Urdu data captured from different websites to analyze
sentiments (positive/negative) comments/opinion
from different people. Then compare SVM, LRSGD
and NB supervised machine learning algorithm in
which SVM produce 87.22% accuracy. Rashid, A. et al.
Discuss the techniques of opinion mining which define
as an intersection of computational linguistic and
information retrieval which present in document\(^14\).
Also cover long and short future area, challenges and
gap in opinion mining discipline including the study
on Supervised, Unsupervised machine learning as
compared with case based reasoning techniques to
perform computational treatment of sentiments. In\(^14\)
used movie review dataset by applying NB, Maximum
Entropy and SVM learning techniques with different
features i.e. POS, adjective, Unigram and Bigram to
analyze document level sentiment. Proposed model
gives best results which is 82.9% accuracy in case of SVM
with Unigrams including three-fold cross validation
method. In\(^14\) proposed a model that uses 3-fold cross
validation technique (involves partitioning of data
into 3 subsets) on English language movie review for
sentiment analysis. To train model it uses three major
machine learning algorithms i.e. SVM, KNN and NB
in which more than 80% accuracy achieved by NB and
SVM than KNN on 800-1000 reviews.

As summarized in Gap Analysis Table 1 contains
different researcher works that uses different supervised
learning techniques which depend on training data to
predict class. However common challenges faced by these techniques that algorithm performance and accuracy depend on how data is mature and preprocess specially resource poorer languages i.e. (Roman-Urdu) in which proper linguistic and morphological structure is missing. Such limitations increase the probability of ML techniques to train and predict model and evaluate through precision and recall more accurately. As a remedy, some approaches of deep learning like Long Short Term Memory (LSTM)

| Table 1. Summary of text classification techniques |
|---|---|---|---|---|
| Authors | Title | Dataset | Techniques | Limitation |
| In1 | Sentiment classification of Roman-Urdu opinions using Naive Bayesian, Decision Tree and KNN | The blog contains public comments on “Effect of Facebook Usage” from (http://hamariweb.com/blogs/) | Naive Bayesian outperformed Decision Tree and KNN | This work is only done on small dataset with two categories, 150 for each positive and negative. |
| In13 | A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. | Waikato Internet Traffic Storage (WITS), UCI Knowledge Discovery Cyber-risk & Trust (IMPACT) Archive | Machine Learning for QoS and QoE management. | Hurdles in automatic network operation and management |
| In4 | A survey on the state-of-the-art machine learning models in the context of NLP. | Wall Street Journal (WSJ) and Brown Corpus IRL Japanese Corpus of Holly Quran Etc. | HMM, CRF, maximum entropy (MaxEnt), SVM, Naive Bays and deep learning. | In future the research community of NLP can increase the contribution of ML techniques for South East Asian languages too. |
| In2 | Sentiment Analysis of Roman Urdu | Hamari web, youtube, drama on line, ytpak, facebook etc. 806 comments | Machine Learning Classifiers | -The longer sentences lose their structure during translation and some Urdu words cannot be converted by the tool to Roman script. - Small dataset with few categories |
| In9 | Automatic text classification in information retrieval: A survey | Pima Indian Diabetes (768), Soybean (684), Vote (436), Blogger (100) total instances. | Naive Bayes, SVM (SMO), KNN (IBK) and Decision Tree (J48). | Algorithm performance depends on the character-istics of the datasets which affect the IR performance. |
| In3 | Urdu language processing: a survey. | Becker–Riaz dataset The EMILIE dataset CLE dataset. | Part-of-speech (POS) · Named entity recognition (NER) · Sentence boundary detection (SBD) | Morphology is applied with different statistical techniques but not combine with any machine learning algorithm. |
| In7 | Deep Learning-Based Sentiment Analysis for Roman Urdu Text. | Roman Urdu Dataset | Machine Learning Algorithm (NB, Random Forest, SVM and LSTM (Long Short Term Memory) | Work very efficient on sequential data models. |
and Recurrent Neural Network (RNN) is use to precise results.

2. Proposed Methodology

In the methodology part, we start with the corpus collection which contains raw data that processes using preprocessing techniques for features selection to apply actual classification algorithms. The flow chart in Figure 3 summarizes the process which we followed for our technique.

![Figure 3. Summary of the process.](image)

3. Dataset Preparation

Supervised Machine Learning Algorithms need extensive amount of data to understand and predict. For this purpose, we collect data by using crawlers from different Roman-Urdu news agencies websites like, e.g., Jang News Roman-Urdu Page (https://jang.com.pk/roman). In total we collected 35000 sentences overall with so many other categories, but we selected top seven categories are as follows:

Accident, Sports, Weather, Arrest, Conference, Operation and Violence.

1: 'Operation',
2: 'Arrest',
3: 'Sports',
4: 'Violence',
5: 'Congres',
6: 'Weather']

Overall dataset is divided into two parts training and testing where training samples contain 80% and remaining 20% samples are testing.

3.1 Custom Stop-Words

Prepositions or those words which are not meaningful in nature is discarded in classification model for reducing processing in memory. Here, we create our custom define stop words list for Roman-Urdu which is useful to extract meaningful data for the classifiers few of them are mentioned below:

\[
\text{sw} = ["kia","ho","rahy","o'c","_","mai","gaya","ga","kis","mere","tum","nai"]
\]

3.2 Feature Extraction and Selection

Feature selection is an important part of building machine learning models. We will be using the chi square test of independence to identify the important features.

'Accident':
. Most correlated unigrams:
 . bus
 . hadsa
. Most correlated bigrams:
 . keqareeb
 . traffichadsa

'Arrest':
. Most correlated unigrams:
 . giriftar
 . giraftar
. Most correlated bigrams:
 . giriftarpunjab
 . girafarpunjab

'Congres':
. Most correlated unigrams:
 . sadarat
 . jilas
. Most correlated bigrams:
 . ictislamabad
 . kajilas

'Operation':
. Most correlated unigrams:
karwayi
operation
. Most correlated bigrams:
kikarwayi
search operation
'Sports':
. Most correlated unigrams:
cricket
pakistan
. Most correlated bigrams:
peshawarzalmi
world cup
'Violence':
 Most correlated unigrams:
 qatal
 firing
. Most correlated bigrams:
 ki firing
 par firing
'Weather':
 Most correlated unigrams:
garmi
barish
. Most correlated bigrams:
punjabke
barishpunjab

3.3 Term Frequency- Inverse Document Frequency
Specifically, for each term in our dataset, we will calculate a measure called Term Frequency, Inverse Document Frequency, abbreviated to tf-idf.

4. Results and Discussion
Figure 4 shows experiment results of various Machine Learning Algorithms such as K-Neighbors, Linear-SVC, Logistic Regression, Multinomial NB, Nearest Centroid, Passive Aggressive Classifier, Perceptron, Random Forest Classifier, Ridge Classifier, and SGD Classifier. The result shows accuracies from 82.20% to 93.06% except Random Forest model which gives only 34.08% as shown in Table 1. We observed SGD classifier gives better results 93.50% as compare to top 5 algorithms with different variations in all categories according to their applied techniques. Here SDG classifier has significant impact than others which give above 90% of measured matrix than other classifiers which identify few categories above the mark of 90%. According to given matrix it's not necessary that all model performed well, we explain few model matrices in which results can be easily understand. Our model is dividing dataset into training and testing which leads to analyses main sources of misclassification on the test set. Major source to identify error is confusion matrix based on predicted and actual labels discrepancies. Figure 5 Linear-SVC Confusion Matrix shows a correct prediction on diagonal side where correct label of accident category is 486, operation 544, arrest 399, sports 659, violence 1057, congress 413 and weather 297. However, Figure 6
Figure 6. GD Classifier Confusion Matrix.

Figure 7. Ridge Classifier Confusion Matrix.

Figure 8. Random Forest Confusion Matrix.

Figure 9. Multinomial NB Confusion Matrix.

Figure 10. Logistic regression confusion Matrix.
demonstrates the correct prediction of seven categories where accident category is 494, operation 552, arrest 389, sports 663, violence 1041, congress 408 and weather 292. Further Figure 7 describe actual and predicted matrix in which accident, operation, arrest, sports, violence, congress and weather (488, 545, 400, 660, 1067, 412 and 298). Similarly, Figure 8-10 Confusion Matrix shows true labels diagonal above mentioned category.

After training our model we test few data that give excellent results.

“DarjaHararat 44 Degree Tak Janay KaImkaan”
- Predicted as: ‘Weather’
“Aj England and Pakistan ki teams maibohatachamuaablahuha”
- Predicted as: ‘Sports’
“Karachi mai zardardhamaka”
- Predicted as: ‘Violence’
“Karachi mai traffic hadsa 3 log mar gaye”
- Predicted as: ‘Accident’
“AjjWazir-e-AzamIjlazkarain gain”
- Predicted as: ‘Congres’
“Na maloomafraudkitarafsai firing”
- Predicted as: ‘Violence’

5. Conclusion

This study introduced model for news headline text classification on Roman-Urdu Language by taking data from different websites using web scraper tool. In this work, the dataset is divided into two parts in which 80% is dedicated for training and remaining is used for testing. Our system implements Unigram and Bigram language models for identify long distance dependencies between sentences. Moreover, to analysis the feature from sentences TF-IDF and Count Vector information retrieval models have been used. We conducted comprehensive experiments on roman news classification where various machine learning techniques are used to train system. To analyze the results different evaluation matrices are used like Precision, Recall, F1-score, Confusion Matrix and Accuracy. It found that SGD classifier extract more features comparatively others. Accuracy of SGD classifiers 94% and others classifiers is less 93%. In future, we will extend more classes and use other dataset in Urdu and English and will be compared with all.

6. Future Work

In future, this work shall be extended in order to implement deep learning methods.

7. References

1. Bilal M. Sentiment classification of Roman-Urdu opinions using Naive Bayesian, Decision Tree and KNN classification techniques, Journal of King Saud University - Computer and Information Sciences. 2016; 28(3):330–44. https://doi.org/10.1016/j.jksuci.2015.11.003.
2. Ayesha R. Sentiment analysis for Roman Urdu, Mehran University Research Journal of Engineering and Technology. 2019; 38(2):463–70.
3. Daud A, Khan W, Che D. Urdu language processing: A survey, Artificial Intelligence Review. 2017; 47(3):279–311. https://doi.org/10.1007/s10462-016-9482-x.
4. A survey on the state-of-the-art machine learning models in the context of NLP. Date accessed: 10/2016. https://www.researchgate.net/publication/311436163_A_survey_on_ the_state-of-the-art_machine_learning_models_in_the_ context_of_NLP.
5. Sequence to Sequence Networks for Roman-Urdu to Urdu Transliteration. Date accessed: 08/12/2017. https://arxiv.org/abs/1712.02959.
6. Urdu Text Classification using Majority Voting. Date accessed: 2016. https://iesat.org/Publications/ViewPaper?Volume=7&Issue=8&Code=IJACSA&SerialNo=36, https://doi.org/10.14569/IJACSA.2016.070836.
7. Ghulam H. Deep learning-based sentiment analysis for Roman Urdu text, Procedia Computer Science. 2019; 147:131–35. https://doi.org/10.1016/j.procs.2019.01.202.
8. Dalal MK. Automatic text classification: A technical review, International Journal of Computer Applications. 2011; 28(2):37–40. https://doi.org/10.5120/3358-4633.
9. Automatic text classification in information retrieval: A survey. Date accessed: 03/2016. https://www.researchgate.net/publication/307436499_Automatic_Text_Classification_in_Information_retrieval_A_Survey.
10. News text classification model based on topic model. Date accessed: 26-06/2016. https://ieeexplore.ieee.org/document/7550929.
11. A brief survey of text mining: Classification, clustering and extraction techniques. Date accessed: 2016. https://arxiv.org/pdf/1707.02919.pdf.
12. Deep Active Learning for Text Classification. Date accessed: 2018. https://dl.acm.org/citation.cfm?id=3271578.
13. Boutaba R. A comprehensive survey on machine learning for networking: Evolution, applications and research oppor-
tunities, Journal of Internet Services and Applications. 2018; 9(16):1–16. https://doi.org/10.1186/s13174-018-0087-2.
14. Rashid A. A survey paper: Areas, techniques and challenges of opinion mining. International Journal Computer Science. 2013; 10(6):18–31.
15. Pang B, Lee L, Vaithyanathan S. Thumbs Up? Sentiment Classification using Machine Learning Techniques. Proceedings of ACM-ACL Conference on Empirical Methods in Natural Language Processing; 2002. p. 79–86. https://doi.org/10.3115/1118693.1118704.
16. Kalaivani P, Shunmuganathan D. Sentiment classification of movie reviews by supervised machine learning approaches, Indian Journal of Computer Science and Engineering. 2013; 4(4):285–92.