Cooperation between C/EBPα TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation

Thomas Åskov Pedersen,1,3 Elisabeth Kowenz-Leutz,2,3 Achim Leutz,2,4 and Claus Nerlov1,4

1Laboratory of Gene Therapy Research, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
2Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany

Chromatin remodeling is an important step in promoter activation during cellular lineage commitment and differentiation. We show that the ability of the C/EBPα transcription factor to direct adipocyte differentiation of uncommitted fibroblast precursors and to activate SWI/SNF-dependent myeloid-specific genes depends on a domain, C/EBPα transactivation element III (TE-III), that binds the SWI/SNF chromatin remodeling complex. TE-III collaborates with C/EBPα TBP/TFIIB interaction motifs during induction of adipogenesis and adipocyte-specific gene expression. These results indicate that C/EBPα acts as a lineage-instructive transcription factor through SWI/SNF-dependent modification of the chromatin structure of lineage-specific genes, followed by direct promoter activation via recruitment of the basal transcription-initiation complex, and provide a mechanism by which C/EBPα can mediate differentiation along multiple cellular lineages.

[Key Words: Adipocyte; C/EBP; chromatin; differentiation; SWI/SNF; transcription]

Received June 11, 2001; revised version accepted September 28, 2001.
The functions embedded in the essential TE-I and TE-III with the SWI/SNF chromatin remodeling complex (Fig. 1C).

Judged by their similar expression levels determined by differential ability to induce adipocyte differentiation, as well as activation of chromatin-embedded myeloid- and adipocyte-specific genes, including PPARγ. This region of C/EBPα interacts with the SWI/SNF chromatin remodeling complex, and collaborates with TBP/TFIIB-interacting motifs in C/EBPα during adipogenesis, indicating that integration of chromatin remodeling and recruitment of basal transcription factors forms the basis for the lineage instructive capacity of C/EBPα.

Results

The C/EBPα TE-III is required for adipose conversion of NIH3T3 fibroblasts

C/EBPα is able to mediate the transition of uncommitted mesenchymal precursor cells to mature adipocytes [Freytag et al. 1994]. In the case of NIH3T3 fibroblasts, induced adipogenesis occurs without up-regulation of the endogenous C/EBPα gene [Wu et al. 1995; Yeh et al. 1995], making this system well-suited for structure-function analysis of C/EBPα. We infected subconfluent NIH3T3 cultures with pBabePuro-based virus expressing wild-type C/EBPα, as well as C/EBPα lacking each of the three identified C/EBPα transactivation elements [TE-I through III; Nerlov and Ziff 1994] or amino acids 200–256, containing the putative GSK3 (T222,T226,S230; Ross et al. 1999) and PKC (S248) phosphorylation sites in C/EBPα [Fig. 1A]. These experiments showed that TE-I and TE-III were required for the induction of expression of the lipoprotein lipase (LPL), PPARγ, and aP2 mRNAs [Fig. 1B], all coding for proteins characteristically expressed in adipocytes. Deletion of TE-II or the GSK3 and PKC phosphorylation sites [aa 200–256] did not significantly affect C/EBPα-mediated induction of adipocyte gene expression [Fig. 1B], which occurred with kinetics comparable to cells transduced with wild-type C/EBPα [data not shown]. For all mutants, gene expression correlated with morphological adipocyte differentiation and triglyceride accumulation induced by the C/EBPα alleles [Porse et al. 2001]. Stability of the various mutant C/EBPα proteins did not appear to play a role in their differential ability to induce adipocyte differentiation, as judged by their similar expression levels determined by Western blotting [Fig. 1C].

The C/EBPα TE-III is required for interaction with the SWI/SNF chromatin remodeling complex

The functions embedded in the essential TE-I and TE-III regions were further examined. We have found TE-I to be necessary for the ability of C/EBPα to repress E2F mediated transcription, and that this is required for adipocyte differentiation [Porse et al. 2001]. The function of TE-III was suggested by the observation that this region has little homology in other C/EBPs, including C/EBPβ. The distinct properties of C/EBPα and C/EBPβ were addressed recently by in vivo gene replacement by Chen et al. [2000], who substituted the mouse C/EBPα coding sequence with that of C/EBPβ (generating mice with the C/EBPα^{−/−} genotype), and observed that differentiation of white adipose tissue was severely impaired. The
C/EBPβ coding sequence used to replace C/EBPα lacked the murine equivalent of the C/EBPβ CR1 SWI/SNF interaction domain (Kowenz-Leutz and Leutz 1999). This suggested that the lack of proper adipocyte differentiation in the C/EBPαβ/β mice was caused by a defect in SWI/SNF recruitment. We therefore tested the ability of C/EBPα to interact with SWI/SNF components, and whether TE-III was necessary and sufficient for this interaction. For this purpose, full-length C/EBPα (p42), C/EBPα p30 (a C/EBPα form initiated from the in-frame methionine at position 118), and a deletion mutant lacking the entire transactivation domain, including TE-III, [D1–215; Fig. 2A] were C-terminally FLAG-tagged and cotransfected with HA-tagged hBrm into the Brahma-negative C33A cell line. The ability of these C/EBPα derivatives to interact with hBrm was then analyzed by immunoprecipitation with the M2 anti-FLAG monoclonal antibody, followed by Western blot analysis of the immunoprecipitate with the PBR–205C monoclonal anti-HA antibody [Fig. 2B]. In this assay the C/EBPα p42 and p30 proteins, but not C/EBPα D1-215, were found to associate with hBrm, consistent with TE-III being a

Figure 2. Interaction between TE-III and the SWI/SNF complex. (A) Structure of the C/EBPα derivatives used for coimmunoprecipitation assays. The transactivation elements (TE−) I through III, and the basic region-leucine zipper DNA binding domain [BR-LZ] are indicated. CR1 is the conserved region 1 from C/EBPβ (Kowenz-Leutz et al. 1994). All C/EBPα derivatives were C-terminally FLAG tagged for coimmunoprecipitation analysis. [B,C] 5 × 10^6 C33A cells were calcium phosphate-transfected with 5µg of the indicated CMV-driven C/EBPα-FLAG and HA-hBrm expression vectors. Lysates were prepared and immunoprecipitated [IP] with M2 anti-FLAG antibody (FLAG) or with nonimmune serum (non-immune). Precipitated proteins were detected by Western blotting with PRB-205C antiHA monoclonal antibody [HA–hBrm], M2 anti-FLAG monoclonal antibody [C/EBPα-FLAG] and anti-BAF155 polyclonal antibody [BAF155]. Western blot analysis of the lysates used for immunoprecipitation is shown [lysate] to verify the expression of the various input proteins.
C/EBPα SWI/SNF interaction domain. Indeed, deletion of TE-III was sufficient to eliminate the C/EBPα–hBrm coprecipitation [Fig. 2C]. Furthermore, after deletion of TE-III, hBrm coprecipitation could be restored by fusing the heterologous CR1 SWI/SNF recruiting domain from C/EBPβ to the C/EBPα N terminus [Fig. 2A and C, lane 7]. The BAF155 core SWI/SNF subunit also coprecipitated with C/EBPα (Fig. 2C). These results show that TE-III is both necessary and sufficient for C/EBPα to interact with the core SWI/SNF complex in a cellular setting, and that the structurally unrelated CR1 domain from C/EBPβ can functionally replace TE-III in this respect. Furthermore, these results show that the N-terminal part [amino acids 1–117] of the C/EBPα transactivation domain unique to C/EBPα p42 is not required for SWI/SNF interaction by C/EBPα.

The ability of C/EBPα TE-III to function as a SWI/SNF-recruiting domain on chromosomal loci was tested by analyzing the C/EBPα-mediated induction of the mim-1 and #126 myeloid-specific transcripts [Ness et al. 1993]. Both of these genomic loci are activated by C/EBPα in a SWI/SNF-dependent manner in nonmyeloid cell types, and in the case of mim-1 in collaboration with Myb [Kowenz-Leutz and Leutz 1999]. QT6 cells were transfected with wild-type C/EBPα and selected derivatives, both in the presence and the absence of c-Myb expression, and the expression of mim-1 and #126 was analyzed by Northern blotting [Fig. 3A]. C/EBPα efficiently activated both #126 and mim-1 transcription, the latter in collaboration with c-Myb. This activation was strongly diminished by deletion of TE-III. However, TE-III deletion could be functionally compensated by N-terminal addition of the C/EBPβ CR1 domain. Similar results were obtained in HD3 erythroblasts; here Myb is already present, and strong TE-III-dependent activation of mim-1 transcription was observed [Fig. 3B]. Again TE-III could be functionally replaced by CR1. The activation of the #325 locus, which is activated by C/EBPβ in a SWI/SNF independent manner [Kowenz-Leutz and Leutz 1999], is shown as a control for the presence of C/EBPα transactivation in all cases. Together these data show that C/EBPα TE-III mediates activation of SWI/SNF-dependent chromosomal loci, indicating that it indeed has SWI/SNF recruiting activity, and that this is a required function during C/EBPα-mediated activation of myeloid-specific transcription.

SWI/SNF recruitment is essential for C/EBPα-mediated adipogenesis

To assess whether SWI/SNF recruitment was the essential function of TE-III during adipocyte differentiation, we transduced NIH3T3 cells with retrovirus encoding C/EBPα, the TE-III deletion mutant, or the CR1 add-back protein. As can be seen from Figure 4A, this analysis showed that although deletion of TE-III strongly reduced morphological adipocyte differentiation, the CR1 domain could efficiently rescue the ability of C/EBPα to induce morphological adipocyte differentiation [Fig. 4A]. Analysis of adipocyte-specific gene expression showed that the ability of C/EBPα to activate endogenous adipocyte-specific genes [with kinetics comparable to wild-type C/EBPα data not shown], including that of PPARγ, was abolished by progressive deletion of TE-III, and restored by the CR1 add-back [Fig. 4B]. The level of rescue was estimated by quantification of triglyceride accumulation and aP2 mRNA [Fig. 4C], and found to be 50% and 70%, respectively. The <100% rescue efficiency may be caused by the presence of both SWI/SNF recruiting and direct transactivation functions within TE-III, only the former being supplied by CR1 [see Discussion].

To further investigate the correlation between SWI/SNF recruitment and activation of adipocyte gene expression by C/EBPα, we introduced point mutations into residues of CR1 conserved in vertebrate C/EBPβ molecules [Fig. 5A]. CR1 was chosen for this analysis rather than TE-III, because the latter, in addition to its SWI/SNF recruiting activity, harbors activating functions and negative regulatory elements [Friedman and McKnight 1990, Nerlov and Ziff 1994] that could potentially confound the analysis. These CR1 mutations were introduced into the C/EBPα D126-200+CR1 background and analyzed for their effect on SWI/SNF interaction in co-immunoprecipitation assays [as in Fig. 2]. The mutations were found to inhibit [mutLL, mutFR] or abolish [mutWD] the interaction of the C/EBPα D126-200+CR1 molecule and the SWI/SNF complex, as determined by coimmunoprecipitation of HA–hBrm [Fig. 5B, panel a], even though the mutant proteins were expressed and immunoprecipitated at the same level as the wild-type CR1
The deficiencies of these mutant molecules in direct SWI/SNF interaction were paralleled by their decreased ability to activate the SWI/SNF-dependent mim-1 locus after cotransfection into HD3 erythroblasts (Fig. 5C), as well as aP2 gene expression (Fig. 5D) and morphological differentiation (data not shown). fusion (Fig. 5B, panels b and d). The deficiencies of these mutant molecules in direct SWI/SNF interaction were paralleled by their decreased ability to activate the SWI/SNF-dependent mim-1 locus after cotransfection into HD3 erythroblasts (Fig. 5C), as well as aP2 gene expression (Fig. 5D) and morphological differentiation (data not shown).

Figure 4. Rescue of adipogenesis by the C/EBPα CR1 domain. NIH3T3 cells were infected with pBABE-Puro control virus (vector) or virus encoding the indicated C/EBPα derivatives and allowed to differentiate for 2 wk. Adipocyte morphology was analyzed by Oil Red O staining (A), and expression of the LPL, PPARγ, and aP2 adipocyte mRNAs and C/EBPα protein determined (B) as in Figure 1B. (C) Level of adipocyte differentiation determined by quantitative Oil Red O staining (red columns; error bars indicate standard deviations; n = 3) and measurement of aP2 mRNA accumulation (after normalization to GAPDH) for the indicated C/EBPα alleles. The background value obtained from cells transduced with empty vector have been subtracted.

Figure 5. Mutation analysis of CR1. (A) Amino acid sequence of mouse CR1, indicating the positions of residues mutated to alanines in the mutLL, mutWD, and mutFR CR1 variants, respectively. (B) Coimmunoprecipitation analysis of C/EBPα D126-200+CR1 and its mutant derivatives was performed as in Figure 2B. The HA-hBrm coprecipitated with the C/EBPα–FLAG-derivatives is shown in panel a, the precipitated C/EBPα–FLAG in panel b. The levels of the same proteins in the input lysate for the coimmunoprecipitation are shown in panels c and d, respectively. (C) The ability of C/EBPα D126-200+CR1 and its mutant derivatives to induce mim-1 expression in HD3 erythroblasts was analyzed as in Figure 3B. (D) The induction of aP2 mRNA in retrovirally transduced NIH3T3 cells determined as in Figure 1B.
shown) in NIH3T3 cells on retroviral transduction. A strong correlation therefore exists between SWI/SNF recruitment, the ability to activate of SWI/SNF-dependent loci, and the adipogenic potential of CR1.

SWI/SNF and TBP/TFIIB binding motifs of C/EBPα cooperate during adipocyte differentiation

The C/EBPα transactivation domain contains amino acid motifs, conserved between the activating C/EBP isoforms, which interact with the basal transcriptional machinery, both in vitro and in a cellular context (Nerlov and Ziff 1995). These motifs reside in the N-terminal part of the C/EBPα transactivation domain, which is not required for SWI/SNF interaction. Therefore, we introduced into NIH3T3 cells a version of C/EBPα in which residues critical for its interaction with the basal transcription factors TBP and TFIIB have been mutated (C/EBPα Y67A, FL77, 78AA, or YFL mutant; Nerlov and Ziff 1995), and analyzed the effect on adipogenesis and adipocyte-specific gene expression. NIH3T3 cells transduced with C/EBPα YFL differentiated poorly, both by morphological criteria (Fig. 6A) and as measured by their expression of LPL, PPARγ, and aP2 mRNAs (Fig. 6B). Quantification of Oil Red O staining and aP2 mRNA expression indicated a 80%–90% loss of adipogenic potential in the YFL mutant (Fig. 6C), despite expression of the mutant protein to a similar extent as wild-type C/EBPα (Fig. 6D). These results show that the C/EBPα TBP/TFIIB interaction motifs are required for C/EBPα-mediated activation of the chromosomal loci encoding the adipocyte-specific markers LPL, PPARγ, and aP2.

Discussion

SWI/SNF action in differentiation and lineage-specific gene expression

The results presented here show that C/EBPα interacts with the SWI/SNF complex via its TE-III, and that TE-III is required for C/EBPα-mediated activation of SWI/SNF-dependent myeloid genes, as well as for C/EBPα-mediated adipogenesis. The structurally unrelated C/EBPβ CR1 SWI/SNF recruiting domain could replace TE-III, and mutation of residues within CR1 that compromised its SWI/SNF recruiting capacity reduced or abolished its ability to compensate for deletion of TE-III. Together, these results strongly support that SWI/SNF recruitment is the critical function of TE-III, which is complemented by CR1. In addition to the SWI/SNF recruiting function identified here, TE-III has been shown previously to participate in direct promoter activation (Friedman and McKnight 1990; Nerlov and Ziff 1994), and is not the case for CR1 (Kowenz-Leutz and Leutz 1999). This is likely to account for <100% rescue of adipocyte gene expression that we observe. Previous reports have shown that SWI/SNF is involved in the transcription of the erythroid lineage-specific β-globin locus and in activation of chromosomal myeloid-specific loci (Armstrong et al. 1998; Kowenz-Leutz and Leutz 1999; Lee et al. 1999). More recently, de la Serna et al. (2001) have shown that dominant-negative hBrm and Brg1 molecules block the induction of myogenesis and muscle-specific gene expression by MyoD in NIH3T3 cells. The present results show that SWI/SNF recruitment by a lineage-specific transcription factor directly mediates lineage commitment and differentiation in a mammalian species, and in addition provide a molecular mechanism by which
C/EBPα can mediate the differentiation of distinct cell types.

Generating specificity of C/EBPα function

The C/EBPα transcription factor has the capability to execute various differentiation programs. In hematopoiesis, both eosinophil and neutrophil lineage commitment can be induced by C/EBPα [Nerlov et al. 1998; Radomska et al. 1998], and adipogenesis can be initiated by C/EBPα in uncommitted mesenchymal precursor cells [Freytag et al. 1994] or, in collaboration with PPARγ, in myocytes [Hu et al. 1995]. These observations suggest that C/EBPα provides a fundamental function generally required for the activation of specific differentiation programs, and that the collaborating factors [PPARγ, GATA-1, Myb, PU.1] serve to direct this function to appropriate gene loci. The requirement for the SWI/SNF interacting TE-III domain of C/EBPα in both adipose conversion of NIH3T3 cells and in activation of SWI/SNF-dependent myeloid-specific gene expression (in the case of mim-1, in collaboration with c-Myb) provides evidence that the capacity to recruit SWI/SNF chromatin remodeling complexes is such a function. This is further supported by the previous demonstration that providing a “selector” molecule such as c-Myb (which by itself does not recruit SWI/SNF) with an SWI/SNF recruiting domain rendered it functionally independent of C/EBP activity for myeloid-specific gene activation [Kowenz-Leutz and Leutz 1999]. Together, these observations lead us to propose that SWI/SNF recruitment is an integral part of C/EBPα-dependent [and C/EBPβ-dependent] differentiation processes. As mentioned above, the inability of a C/EBPβ molecule lacking the CR1 SWI/SNF binding domain to replace C/EBPα in adipogenesis, without affecting liver gene expression [Chen et al. 2000], provides in vivo evidence that SWI/SNF recruitment is indeed relevant for adipogenesis.

Collaboration between chromatin remodeling and direct promoter activation

Whereas the p42-specific part of the C/EBPα transactivation domain is dispensable for the interaction between C/EBPα and the SWI/SNF complex, it still harbors functions required for adipocyte [this paper] and eosinophil differentiation [Nerlov et al. 1998]. Mutation of two TBP and TFIIB interaction motifs [Nerlov and Ziff 1995] that reside in this part of C/EBPα almost completely blocks induction of adipocyte-specific genes, demonstrating that abolishing the capacity of C/EBPα to interact with the basal transcription apparatus blocks C/EBPα-mediated adipogenesis. In vitro analysis of β-globin promoter activation by EKLF has shown that SWI/SNF mediated promoter chromatin remodeling was necessary, but not sufficient, for promoter activity [Armstrong et al. 1998], and Imbalzano et al. [1994] have shown that SWI/SNF-mediated chromatin remodeling facilitates binding of TBP to a nucleosomal template. All these results are consistent with a model in which C/EBPα induces SWI/SNF-mediated chromatin remodeling, facilitating subsequent recruitment of the basal transcriptional machinery, and indicate that such mechanisms operate generally during cellular lineage commitment and differentiation.

Materials and methods

DNA constructs

Rat C/EBPα deletion mutants [Nerlov and Ziff 1994] and transactivation domain point mutant [C/EBPα Y, FL; Nerlov and Ziff 1995] have been described previously. All C/EBPα derivatives were cloned into pBabePuro [Morgenstern and Land 1990] for retroviral infection as BamHI–EcoRI fragments. C/EBPαD126-200-CR1 and mutant derivatives were amplified by PCR from pBabePuro rasD126-200 using a 5′ primer encoding the first 21 amino acids of full-length mouse C/EBPα (CR1, Kowenz-Leutz et al. 1994) or primers encoding mutant versions of CR1. The PCR fragment was cloned into pBabePuro using BamHI and EcoRI. All C/EBPα derivatives produced by PCR were confirmed by DNA sequencing. The pCRNCM and pCRNCM–Myb expression vector has been described previously [Lim et al. 1992]. C-terminal FLAG tagging of C/EBPα was performed using an oligonucleotide adapter, and FLAG fusion proteins were expressed from pcDNA3 [Invitrogen].

Retroviral infection and adipocyte differentiation

NIH3T3 cells [provided by Dr. Karsten Kristiansen, University of Southern Denmark, Denmark] and Phoenix-E ecotropic retroviral packaging cells [from Dr. G. Nolan, Stanford University, San Francisco, California] were grown in Dulbecco’s modified Eagles medium (DMEM) containing 10% FBS. Retroviral stocks were obtained by transiently transfecting Phoenix-E cells with pBabePuro-based proviral constructs using calcium phosphate co-precipitation. Forty-eight hours after transfection culture supernatants were harvested and filtered through 0.45 μm sterile filters [Millipore]. The resulting viral stocks were used to infect subconfluent layers [30%–50% confluence] of NIH3T3 cells overnight in the presence of 100 μg/mL polybrene (Sigma). After infection, cells were cultured in DMEM plus 10% FBS [without any addition of adipogenic effectors] for 2 wk in puromycin-containing medium [1 μg/mL, Sigma] to allow differentiation to occur. Parallel cultures were used for preparation of total cellular protein or RNA preparation, or fixed and stained with Oil Red O [Ramirez-Zacarias et al. 1992].

Endogenous gene activation assay

HD3 erythroblasts and quail QT6 fibroblasts (Beug et al. 1979) were grown in DMEM supplemented with 8% fetal calf serum, 2% heat-inactivated chicken serum, and antibiotics. To monitor endogenous gene activation in HD3 or QT6 cells, 2 × 10³ or 8 × 10⁶ cells, respectively, were transfected with C/EBPα and Myb expression vectors using DEAE-dextran [Kowenz-Leutz et al. 1994], and RNA harvested 16–24 h posttransfection.

RNA isolation and Northern blotting

Total cellular RNA was prepared according to Chromzynski and Sacchi [1987]. Poly[A] RNA was isolated using magnetic oligo(dT) beads according to the manufacturer’s instructions [Dy-
nal). RNA (25 µg of total RNA from NIH3T3 cells; poly(A) RNA from 2 x 10⁶ HD3 cells or 8 x 10⁶ QT6 cells) was run on a 1.2% agarose gel (in 20 mM MOPS at pH 7.0, 50 mM Na-acetate, 1 mM EDTA, and 1.5% formaldehyde) for 500 Vh. RNA was capillary blotted overnight onto BiodyneB membranes (Life Technologies) or Hybond N+ membranes (Amersham). Blots were prehybridized (30 min at 65°C) and hybridized (overnight at 65°C) in Quick-Hyb hybridization solution (Stratagene). Stringent washes were at 65°C in 0.2x SSC 0.1% SDS (60°C for QT6 and HD3 blots). The Northern blots were analyzed using a Fuji BAS2500 phosphorimager and ImageGauge software, or exposed to Kodak XAR X-ray film. cDNA probes were human LPL cDNA [Wion et al. 1987], mouse PPARY, and aP2 cDNAs (obtained from Dr. Karsten Kristiansen, University of Southern Denmark, Denmark), mouse GAPDH [Hanauer and Mandel 1984] and chicken mim-1, #126, and GAPDH (Nakano and Graf 1992). Probes were labeled with [α-32P]dCTP (Amersham-Pharma-
cia) using random priming (RadPrime; GIBCO BRL) according to the instructions supplied by the manufacturer.

Western blotting

Virally infected NIH3T3 cells were lysed in SDS sample buffer, incubated at 95°C for 5 min, centrifuged to remove insoluble components, and the lysates separated on three distinct phenotypes of differentiation. **Cell** 18: 375–390.

Burk, O., Mink, S., Ringwald, M., and Klemm, K.H. 1993. Synergistic activation of the chicken mim-1 gene by v-myb and C/EBP transcriptional factors. **EMBO J.** 12: 2027–2038.

Chen, S.S., Chen, J.F., Johnson, P.F., Muppala, V., and Lee, Y.H. 2000. C/EBPβ, when expressed from the C/ebpa gene locus, can functionally replace C/EBPβ in liver but not in adipose tissue. **Mol. Cell. Biol.** 20: 7292–7299.

Cheneval, D., Christy, R.J., Geimann, D., and Lane, M.D. 1991. Cell-free transcription directed by the 422 adipose P2 gene promoter: Activation by the CCAAT/enhancer binding protein. **Proc. Natl. Acad. Sci.** 88: 8465–8469.

Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. **Anal. Biochem.** 162: 156–159.

Christy, R.J., Yang, V.W., Ntambi, J.M., Geimann, D.E., Land-
schulz, W.H., Friedman, A.D., Nakabeppu, Y., Kelly, T.J., and Lane, M.D. 1989. Differentiation-induced gene expression in mouse adipocytes: CCAAT/enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes. **Genes & Dev.** 3: 1323–1335.

De La Serna, I.L., Carlson, K.A., and Imbalzano, A.N. 2001. Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. **Nat. Genet.** 27: 187–190.

Freytag, S.O., Facelli, D.L., and Gilbert, J.D. 1994. Ectopic expression of the CCAAT/enhancer-binding protein α promotes the adipogenic program in a variety of mouse fibro-
blastic cells. **Genes & Dev.** 8: 1654–1663.

Friedman, A.D. and McKnight, S.L. 1990. Identification of two polypeptide segments of CCAAT/enhancer-binding protein required for transcriptional activation of the serum albumin gene. **Genes & Dev.** 4: 1416–1426.

Hanauer, A. and Mandel, J.L. 1984. The glyceraldehyde 3 phos-
phate dehydrogenase gene family: Structure of a human cDNA and of an X chromosome-linked pseudogene; amazing complexity of the gene family in mouse. **EMBO J.** 3: 2627–2633.

Hu, E., Tontonoz, P., and Spiegelman, B.M. 1995. Transdifferentiation of myoblasts by the adipogenic transcription factors PPARY and C/EBPα. **Proc. Natl. Acad. Sci.** 92: 9856–
9860.

Imbalzano, A.N., Kwon, H., Green, M.B., and Kingston, R.E. 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. **Nature** 370: 481–485.

Kowenz-Leutz, E. and Leutz, A. 1999. C/EBPβ isoforms recruit the SWI/SNF complex to activate myeloid genes. **Mol. Cell** 4: 735–743.

Kowenz-Leutz, E., Twamley, G., Anseicau, S., and Leutz, A. 1994. Novel mechanism of C/EBPα [NF-M] transcriptional control: Activation through derepression. **Genes & Dev.** 8: 2781–2791.

Lee, C.H., Murphy, M.R., Lee, J.S., and Chung, J.H. 1999. Targeting a SWI/SNF-related chromatin remodeling complex to the β-globin promoter in erythroid cells. **Proc. Natl. Acad. Sci.** 96: 12311–12315.

Lim, F., Kraut, N., Frampton, J., and Graf, T. 1992. DNA bind-

C/EBPs recruits SWI/SNF in adipocytes
ing by c-Ets-1, but not v-Ets, is repressed by an intramolecular mechanism. EMBO J. 11: 643–652.

Lowell, B.B. 1999. PPARγ: An essential regulator of adipogenesis and modulator of fat cell function. Cell 99: 239–242.

Morgenstern, J.P. and Land, H. 1990. Advanced mammalian gene transfer: High titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18: 3587–3596.

Muller, C. and Leutz, A. 2001. Chromatin remodeling in development and differentiation. Curr. Opin. Genet. Dev. 11: 167–174.

Nakano, T. and Graf, T. 1992. Identification of genes differentially expressed in two types of v-myb-transformed avian myelomonocytic cells. Oncogene 7: 527–534.

Nerlov, C. and Ziff, E.B. 1994. Three levels of functional interaction determine the activity of CCAAT/enhancer binding protein-α on the serum albumin promoter. Genes & Dev. 8: 350–362.

———. 1995. CCAAT/enhancer binding protein-α amino acid motifs with dual TBP and TFIIB binding ability co-operate to activate transcription in both yeast and mammalian cells. EMBO J. 14: 4318–4328.

Nerlov, C., McNagny, K.M., Doderlein, G., Kowenz-Leutz, E., and Graf, T. 1998. Distinct C/EBP functions are required for eosinophil lineage commitment and maturation. Genes & Dev. 12: 2413–2423.

Ness, S.A., Kowenz-Leutz, E., Casini, T., Graf, T., and Leutz, A. 1993. Myb and NF-M: Combinatorial activators of myeloid genes in heterologous cell types. Genes & Dev. 7: 749–759.

Perkins, A.C., Sharpe, A.H., and Orkin, S.H. 1995. Lethal β-thalassemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375: 318–322.

Porse, B., Åskov, T., Xu, X., Lindberg, B., Wewer, U., Friis-Hansen, L., and Nerlov, C. 2001. E2F repression by C/EBPα is required for adipogenesis and granulopoiesis in vivo. Cell 107: 247–258.

Querfurth, E., Schuster, M., Kulessa, H., Crispino, J.D., Doderlein, G., Orkin, S.H., Graf, T., and Nerlov, C. 2000. Antagonism between C/EBPβ and FOG in eosinophil lineage commitment of multipotent hematopoietic progenitors. Genes & Dev. 14: 2515–2525.

Radomska, H.S., Huettner, C.S., Zhang, P., Cheng, T., Scadden, D.T., and Tenen, D.G. 1998. CCAAT/enhancer binding protein α is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol. Cell. Biol. 18: 4301–4314.

Ramirez-Zacarias, J.L., Castro-Munozledo, F., and Kuri-Harcuch, W. 1992. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 97: 493–497.

Rosen, E.D., Sarraf, P., Troy, A.E., Bradwin, G., Moore, K., Miller, D.S., Spiegelman, B.M., and Mortensen, R.M. 1999. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4: 611–617.

Ross, S.E., Erickson, R.L., Hemati, N., and MacDougald, O.A. 1999. Glycogen synthase kinase 3 is an insulin-regulated C/EBPβ kinase. Mol. Cell Biol. 19: 8433–8441.

Wang, N.D., Finegold, M.J., Bradley, A., Ou, C.N., Abdelsayed, S.V., Wilde, M.D., Taylor, L.R., Wilson, D.R., and Darlington, G.J. 1995. Impaired energy homeostasis in C/EBPα knockout mice. Science 269: 1108–1112.

Wion, K.L., Kirchgessner, T.G., Lusis, A.J., Schotz, M.C., and Lawn, R.M. 1987. Human lipoprotein lipase complementary DNA sequence. Science 235: 1638–1641.

Wu, Z., Xie, Y., Bucher, N.L., and Farmer, S.R. 1995. Conditional ectopic expression of C/EBPβ in NIH-3T3 cells induces PPARγ and stimulates adipogenesis. Genes & Dev. 9: 2350–2363.
Cooperation between C/EBPα TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation

Thomas Åskov Pedersen, Elisabeth Kowenz-Leutz, Achim Leutz, et al.

Genes Dev. 2001, 15:2308-2320

Access the most recent version at doi:10.1101/gad.209901