A peer-reviewed version of this preprint was published in PeerJ on 8 November 2016.

View the peer-reviewed version (peerj.com/articles/2687), which is the preferred citable publication unless you specifically need to cite this preprint.

Butterfield CN, Li Z, Andeer PF, Spaulding S, Thomas BC, Singh A, Hettich RL, Suttle KB, Probst AJ, Tringe SG, Northen T, Pan C, Banfield JF. 2016. Proteogenomic analyses indicate bacterial methylophory and archaeal heterotrophy are prevalent below the grass root zone. PeerJ 4:e2687 https://doi.org/10.7717/peerj.2687
Proteogenomic analyses indicate bacterial methylo-trophy and archaeal heterotrophy are prevalent below the grass root zone

Cristina N Butterfield 1, Zhou Li 2, Peter F Andeer 3, Susan Spaulding 1, Brian C Thomas 1, Andrea Singh 1, Robert L Hettich 2, Kenwyn B Suttle 4, Alexander J Probst 1, Susannah G Tringe 5, Trent Northen 3, Chongle Pan 2, Jillian F Banfield Corresponding Author: Jillian F Banfield
Email address: jbanfield@berkeley.edu

Annually, half of all plant-derived carbon is added to soil where it is microbially respired to CO₂. However, understanding of the microbiology of this process is limited because most culture-independent methods cannot link metabolic processes to the organisms present, and this link to causative agents is necessary to predict the results of perturbations on the system. We collected soil samples at two sub-root depths (10 – 20 cm and 30 – 40 cm) before and after a rainfall-driven nutrient perturbation event in a Northern California grassland that experiences a Mediterranean climate. From ten samples, we reconstructed 198 metagenome-assembled genomes that represent all major phylotypes. We also quantified 6,835 proteins and 175 metabolites and showed that after the rain event the concentrations of many sugars and amino acids approach zero at the base of the soil profile. Unexpectedly, the genomes of novel members of the Gemmatimonadetes and Candidate Phylum Rokubacteria phyla encode pathways for methylo-trophy. We infer that these abundant organisms contribute substantially to carbon turnover in the soil, given that methylo-trophy proteins were among the most abundant proteins in the proteome. Previously undescribed Bathyarchaeota and Thermoplasmatales archaea are abundant in deeper soil horizons and are inferred to contribute appreciably to aromatic amino acid degradation. Many of the other bacteria appear to breakdown other components of plant biomass, as evidenced by the prevalence of various sugar and amino acid transporters and corresponding hydrolyzing machinery in the proteome. Overall, our work provides organism-resolved insight into the spatial distribution of bacteria and archaea whose activities combine to degrade plant-derived organics, limiting the transport of methanol, amino acids and sugars into underlying weathered rock. The new insights into the soil...
carbon cycle during an intense period of carbon turnover, including biogeochemical roles to previously little known soil microbes, were made possible via the combination of metagenomics, proteomics, and metabolomics.
Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone

Cristina N. Butterfielda, Zhou Lib, Peter Andeerc, Susan Spauldinga, Brian C. Thomasa, Andrea Singha, Robert Hettichb, K. Blake Suttled, Alexander J. Probsta, Susannah G. Tringee, Trent Northenc, Chongle Panb, Jillian F. Banfielda,c,*

Department of Earth and Planetary Science, University of California Berkeley, Berkeley, Californiaa; Oak Ridge National Laboratory, Oak Ridge, Tennesseeb; Lawrence Berkeley National Laboratory, Berkeley, California, USAc; Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, Californiad; DOE Joint Genome Institute, Walnut Creek, Californiae
Abstract. Annually, half of all plant-derived carbon is added to soil where it is microbially
respired to CO$_2$. However, understanding of the microbiology of this process is limited because
most culture-independent methods cannot link metabolic processes to the organisms present, and
this link to causative agents is necessary to predict the results of perturbations on the system. We
collected soil samples at two sub-root depths (10 – 20 cm and 30 – 40 cm) before and after a
rainfall-driven nutrient perturbation event in a Northern California grassland that experiences a
Mediterranean climate. From ten samples, we reconstructed 198 metagenome-assembled
genomes that represent all major phylotypes. We also quantified 6,835 proteins and 175
metabolites and showed that after the rain event the concentrations of many sugars and amino
acids approach zero at the base of the soil profile. Unexpectedly, the genomes of novel members
of the Gemmatimonadetes and Candidate Phylum Rokubacteria phyla encode pathways for
methylotrophy. We infer that these abundant organisms contribute substantially to carbon
turnover in the soil, given that methylotrophy proteins were among the most abundant proteins in
the proteome. Previously undescribed Bathyarchaeota and Thermoplasmatales archaean are
abundant in deeper soil horizons and are inferred to contribute appreciably to aromatic amino
acid degradation. Many of the other bacteria appear to breakdown other components of plant
biomass, as evidenced by the prevalence of various sugar and amino acid transporters and
corresponding hydrolyzing machinery in the proteome. Overall, our work provides organism-
resolved insight into the spatial distribution of bacteria and archaea whose activities combine to
degradate plant-derived organics, limiting the transport of methanol, amino acids and sugars into
underlying weathered rock. The new insights into the soil carbon cycle during an intense period
of carbon turnover, including biogeochemical roles to previously little known soil microbes,
were made possible via the combination of metagenomics, proteomics, and metabolomics.
Introduction. The terrestrial carbon reservoir is primarily distributed among grasslands (~34%), forests (~39%), and cultivated farms (~17%) (White et al. 2000). While in forests the majority of fixed carbon is stored vegetation, most fixed carbon in grasslands is stored in soil. Thus, grassland soils are one of the most important reservoirs of terrestrial carbon on the planet. This observation has motivated many studies of processes that impact the fate of carbon compounds in grassland soil systems (Blazewicz et al. 2014; Kandeler et al. 2006; Mau et al. 2015; Reinsch et al. 2014; Schimel & Schaeffer 2012; Verastegui et al. 2014). Over a variety of time scales, organic detritus is either respired back to CO$_2$ or degraded into smaller molecules that are transported in solution to underlying zones (Placella et al. 2012). In Mediterranean climate soils, this process emits an amount of CO$_2$ equal to the annual output from other ecosystems immediately following the first Fall rain, when nutrients from senesced plants are driven downward. Carbon exported from the shallow soils provides nutrients for microorganisms in lower soil horizons and the deeper subsurface.

Understanding which microorganisms are present and the pathways by which they process carbon compounds is key to understanding the form and redistribution of soil organic matter. Soil ecologists and microbiologists have employed, and continue to employ, isolation, phospholipid-derived fatty acid (PLFA) analysis, fingerprinting with denaturing gradient gel electrophoresis (DGGE) (Muyzer et al. 1993) and terminal fragment length polymorphism (T-RFLP) (Osborn et al. 2000) analyses, and 16S rRNA amplification and sequencing (Banning et al. 2011; He et al. 2006; Henckel et al. 1999) to identify soil microbes. Bacteria reported in soils are typically affiliated with the Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria, Verrucomicrobia, Gemmatimonadetes, and Bacteroidetes phyla (Evans & Wallenstein 2012;
Fierer et al. 2012b; Kuramae et al. 2012). Given the evolutionary/adaptation pressures in different soil types (McKissock et al. 2002), nutrient availability (Adair et al. 2013; Goldfarb et al. 2011; Veresoglou et al. 2012), temperature and moisture (Aanderud et al. 2013; Peltoniemi et al. 2015), pH (Lauber et al. 2009), variety of vegetation (Herzberger et al. 2014; Piper et al. 2015; Prober et al. 2015), and microenvironments within the soil, it is expected that there will be substantial genetic diversity within many of these reported phyla, giving rise to clusters of closely related organisms, as well as organisms from additional phyla that have thus-far eluded detection in soils.

Prior studies of microbial functions (i.e., ammonia oxidation, methylotrophy) in soil have used targeted approaches such as gene amplification (qPCR, pyrosequencing) (Hofmann et al. 2016; Pester et al. 2012; Stacheter et al. 2013), culturing of isolates and enrichments (Beck et al. 2014). More recently, metagenomic methods have been applied to soil samples with the objective of providing a cultivation- and primer-independent view of microbial community composition and functional capacities (Delmont et al. 2015; Hultman et al. 2015; Luo et al. 2014; White et al. 2016). Genomes provide metabolic insight (including for organisms that have not been cultivated) and enable identification of pathways involved in biogeochemical processes, but they have rarely been reconstructed from soil (Delmont et al. 2015; Hultman et al. 2015; Pell et al. 2012). These recent studies have shown that resolution of the community is possible and that much of the community’s metabolic potential centers around respiration, complex carbohydrate degradation and central metabolism.

Here we conducted a multi-omic investigation of the microbiology and microbial activity in the shallow sub-root and deeper regions of grassland soil that experiences a Mediterranean climate. Samples were collected during the major annual period of carbon turnover around the
time of the first Fall rain event. The well-studied meadow (Cruz-Martínez et al. 2009; Suttle et al. 2007) is located in the Angelo Coastal Reserve in Northern California (part of the Eel River Critical Zone Observatory). These grassland soils provide an ideal system for studying processes in the sub-root zone because roots are confined to a well-defined horizon. Prior work in this meadow documented that carbon is fixed by ~50 plant species (Suttle et al. 2007) during the wet spring season. The carbon compounds accumulate in the upper soil horizon after plants die late in summer (Aerts et al. 1992; Berendse 1994; Wedin & Tilman 1990). Thus, portions of these carbon compounds that accumulate in the upper 10 cm of the soil include both leaf litter and dead root material will percolate down as dissolved metabolites through the 40 - 50 cm deep soils, which are developed on weathered vermiculite-dominated argillite and sandstone.

Our sampling scheme was designed to probe microbial diversity and active carbon turnover in soil using a combined metagenomic, proteomic and metabolomic approach. An important motivation for recovery of genomes from the metagenomes is that protein sequences can be predicted in organism context and used in mass spectrometry studies to identify proteins that are highly abundant in microbial cells (Brooks et al. 2015; Mosier et al. 2015). This information, in combination with metabolite concentrations measured through the soil profile, enables identification of the organisms, pathways and spatial distribution of carbon turnover processes at the time of sample collection. We uncovered roles for bacteria and archaea from phylum lineages lacking isolated representatives and identify methylotrophy and archaeal heterotrophy as major carbon cycling processes in the sub-root zone. The study demonstrates that genome-resolved multi-omic approaches can be effectively used to interrogate microbi ally-mediated processes in one of the Earth’s complex ecosystems.
Materials & Methods. Sampling and DNA extraction. We collected samples from the Angelo Coast Range Reserve (with permission under APP # 27790) meadow (39°44'21.4"N 123°37'51.0"W) on four days: before the rain, four and six days after one inch of rain fell, and two days after three inches of rain fell in September, 2013. At two plots 10 m apart in the Northern end of the meadow, a soil pit for each sampling day was dug to 50 cm and depth was marked every 10 cm. Approximately 1 kg of soil was removed from each of two depths (10-20 cm and 30-40 cm) using sterilized stainless steel hand trowels. Each sample was homogenized briefly in a sterile bowl and divided into several sterile Whirl-Pak bags. One sample bag was placed on wet ice for transport to the lab for pH and moisture analyses. The remaining samples were immediately flash frozen in a mixture of dry ice and ethanol and then placed on dry ice for transport to the lab for long-term storage at -80 °C. For pH analysis, 2 g of fresh, field-wet soil were suspended in 10 mL 0.01 M CaCl$_2$ and shaken for one hour at 100 rpm. The suspension was then centrifuged for 5 min at 6,000 rpm at 4°C, and the resulting supernatant was filtered through a #1 Whatman filter and analyzed with a pH probe. Gravimetric soil moisture was determined by weighing subsamples of sieved soil (2 mm sieve) before and after drying at 60 °C for at least 48 hours. Soil particle size distribution was determined by measuring the relative density of the soil suspended in 5% sodium hexametaphosphate solution with a hydrometer over the course of settling (40 seconds to 2 hours). To measure extractable organic carbon content, 5 g soil samples were suspended in 25 mL of 0.5 M potassium sulfate and shaken for two hours at 150 rpm. The suspension was then filtered through a #1 Whatman filter and quantified on an OI Analytical 1010, Total Organic Carbon Analyzer. Soil characteristics are summarized in Fig. S1. For each depth, DNA was extracted using MoBio Laboratories PowerMax Soil DNA Isolation kits from 10 g of soil from ten of a the much larger set of samples used for other analyses: 1) pre-
rain in plot 1 from 10 – 20 cm, 2) pre-rain in plot 1 from 30 – 40 cm, 3) four days after the first rain in plot 1 from 10 – 20 cm, 4) four days after the first rain in plot 1 from 30 – 40 cm, 5) six days after the first rain in plot 1 from 10 – 20 cm, 6) six days after the first rain in plot 1 from 30 – 40 cm, 7) six days after the first rain in plot 2 from 10 – 20 cm, 8) two days after the second rain in plot 1 from 10 – 20 cm, 9) two days after the second rain in plot 1 from 30 – 40 cm, and 10) two days after the second rain in plot 2 from 10 – 20 cm. We optimized the protocol for our samples, to maximize DNA yield while minimizing shearing: each sample was only vortexed for 1 minute, followed by a 30 minute heat step at 65 °C, inverting every 10 minutes. Each sample was also extracted twice, and combined at the spin filter step. We performed two elution steps of 5 mL each, and precipitated the DNA using sodium acetate and glycogen, resuspending in 100 uL of 10 mM Tris buffer. This resulted in unsheared large fragment size DNA, with average yields of 2351 ng/g soil (10-20 cm depth) and 1277 ng/g soil (30-40 cm depth). Fragment size was checked on 0.5% agarose gels using a 23kb genomic DNA ladder and DNA concentration was measured using a Qubit Fluorometric Quantitation device, dsDNA Broad Range Assay Kit.

DNA sequencing and reconstruction of genomes. DNA sequencing was conducted at the Joint Genome Institute, USA. 250 bp paired Illumina reads were processed with BBMap (https://sourceforge.net/projects/bbmap/). BBMap was run twice (1) to trim adapters bbduk.sh was used with parameters k=23, mink=11, hdist=1, tbo, tpe, ktrim=r, ftm=5 and (2) to remove phiX and Illumina trace contaminants bbduk.sh was used with parameters k=31, hdist=1. Illumina adapter reference sequences, the phiX genome and Illumina traces were provided by JGI.

Reads were further trimmed with Sickle (https://github.com/najoshi/sickle) using default settings. Paired end read datasets from each sample were assembled independently from one
another using idba_ud under default settings, including the –pre_correction option (Peng et al.
2012). For scaffolds greater than 1000 bp, open reading frames were predicted with Prodigal
(Hyatt et al. 2010) and functional annotations were determined through similarity searches
against the UniProt, UniRef90 (Suzek et al. 2007) and KEGG (Kanehisa et al. 2012; Ogata et al.
1999) databases. tRNAs were predicted for each scaffold using tRNAscan-SE
(http://lowelab.ucsc.edu/tRNAscan-SE/). To identify 16S rRNA gene sequences, we searched all
assembled scaffolds against the manually curated structural alignment of the 16S rRNA provided
with SSU-Align (Nawrocki et al. 2009). Coverage values for each scaffold were calculated by
read mapping using Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml) using
default settings. The scaffolds, all associated annotations, and coverage information were then
processed and uploaded into ggKbase:

http://ggkbase.berkeley.edu/angelo_ncbi_2016/organisms. The sequencing reads have been
deposited as “Meadow soil samples from Angelo, CA genome sequencing and assembly”:
SRA302421 – 2015-10-05T12:25:59.383. Genomes are currently being processed for submission
to NCBI under accession PRJNA297196.

We established a phylogenetic profile for each scaffold by comparing the genes to a
database of reference genomes. Assignment of scaffolds > 8 kb to genome bins was
accomplished using emergent self-organizing maps (ESOM) (Fig. S5). The matrix used in the
ESOM was built from a combination of series coverage patterns across samples for each scaffold
(ten columns) and tetranucleotide frequency of each scaffold (256 columns). Bins were fine
tuned to remove scaffolds classified as wrongly binned based on phylogenetic information or
other anomalies using the visualization tools provided by ggKbase. Genome bins were named
based on placement in phylogenetically informative gene trees and the overall taxonomic profile
of each bin. Bin completeness was evaluated based on the recovery of content of a set of 51 single copy genes for bacteria and 38 single copy genes for archaea using a tool developed in (Probst et al. 2016). The phylogenetic signal, in combination with aberrant coverage and/or GC content, was used to identify bin contaminants. Draft quality genomes, defined as genome bins from metagenomes, contain at least 70% of the requisite single copy genes within minimal duplication (a firm cutoff for duplicate genes was not used because some arise due to genes split by scaffolding gaps or contig ends).

Time series analysis. The relative coverage for every scaffold encoding a ribosomal protein S3 gene, thus representing a single strain was determined to indicate the relative abundance of each organism in each sample. Coverage values were normalized to account for differences in sample data size. Values for each species from the same phylum were summed to generate the stacked bar chart presented in Fig. 1.

Proteomics methods. For each soil sample, total proteins were extracted from 10 g of soil using NoviPure® Soil Protein Extraction Kit (MoBio). The crude protein extracts were concentrated to ~1 ml using Amicon® Ultra-4 Centrifugal Filter Units (30 KDa molecular weight cut-off, Millipore). Trichloroacetic acid was then added to precipitate proteins overnight at 4 °C. Proteins were pelleted by centrifugation at 4 °C, washed with ice-cold acetone three times, and re-solubilized in guanidine (6 M) and dithiothreitol (10 mM). Bicinchoninic acid assays were conducted to estimate the protein concentration before adding dithiothreitol. 50 μg of proteins from each soil sample was further processed with the filter-aided sample preparation (Wisniewski et al. 2009). Proteins were first trypsin digested overnight in an enzyme:substrate ratio of 1:100 (weight:weight) at room temperature with gentle shaking, followed by a secondary digestion for 4 h. All digested peptide samples were stored at −80 °C.
LC-MS/MS proteomic measurements were carried out with 11-step online multidimensional protein identification technology (MudPIT) (Washburn et al. 2001) on an LTQ Orbitrap Elite mass spectrometer (Thermo Scientific), as described previously (Li et al. 2014). In each MudPIT run, 25 μg of peptides were loaded offline into a 150-μm-I.D. two-dimensional back column (Polymicro Technologies) packed with 3 cm of C18 reverse phase (RP) resin (Luna, Phenomenex) and 3 cm of strong cation exchange (SCX) resin (Luna, Phenomenex). The back column loaded with peptides was de-salted offline with 100% Solvent A (95% H2O, 5% CH3CN and 0.1% formic acid) and washed with a 1-h gradient from 100% Solvent A to 100% Solvent B (30% H2O, 70% CH3CN and 0.1% formic acid) to move peptides from RP resin to SCX resin. Then, the back column was connected to a 100-μm-I.D. front column (New Objective) packed in-house with 15 cm of C18 RP resin and placed in-line with a U3000 quaternary HPLC pump (Dionex). Each MudPIT run was configured with 11 SCX fractionations using 5%, 7%, 10%, 12%, 15%, 17%, 20%, 25%, 35%, 50% and 100% of Solvent D (500 mM ammonium acetate dissolved in Solvent A). Each SCX fraction was separated by a 110-min RP gradient from 100% Solvent A to 50% Solvent B. The LC eluent was directly nanosprayed (Proxeon) into an LTQ Orbitrap Elite mass spectrometer (Thermo Scientific). Both MS scans and HCD MS/MS scans were acquired in Orbitrap with the resolution of 30,000 and 15,000, respectively. The top 10 most abundant precursor ions were selected for MS/MS analysis by HCD after each MS scan. Peptides of each soil sample were measured in technical duplicates. A protein sequence database was constructed from 3,408,250 full-length predicted proteins (combined file size of 863.56 Gb) by metagenomics from four samples; 1) pre-rain plot 10 – 20 cm, 2 days after second rain 2) plot 1 10 – 20 cm, 3) plot 1 30 – 40 cm, and 4) plot 2 10 – 20 cm, and their reverse sequences as decoys for estimation of false discovery rate.
Database searching was performed with Sipros 3.0 (Hyatt & Pan 2012; Wang et al. 2013) on the Titan supercomputer at Oak Ridge Leadership Computing Facility. The following parameters were used: dynamic oxidation of methionine, static alkylation of cysteine by iodoacetamide, 0.03 Da mass tolerance for precursor ions and 0.01 Da for fragment ions, up to three missed cleavages, and full enzyme specificity required. The FDR was strictly controlled at the peptide level (1%). One unique peptide was required for each identified protein/protein group. Indistinguishable proteins were combined into protein groups based on the parsimony rule (Nesvizhskii & Aebersold 2005). The numbers of identified protein/protein group per sample ranges is provided in Table S3b. Proteins were linked to draft genomes so the functions could be assigned to individual organisms. Spectral counts of proteins were normalized across the samples for label-free quantification as described previously (Pan & Banfield 2014; Wang et al. 2013). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaíno et al. 2016) partner repository with the dataset identifier PXD004965.

Metabolomics methods. Metabolites were extracted from sieved (2 mm) soil samples using an aqueous extraction protocol (modified from Swenson et al., 2015 (Swenson et al. 2015)). Briefly, sieved soils (4 g) were incubated (200 rpm, 1 hr, 4 °C) in triplicate with MilliQ water (16 ml) amended with 1.6 μg/ml of ABMBA (2-Amino-3-Bromo-5-methylbenzoic acid) and 2 μg/ml of UL-13C-Glucose included as internal extraction standards. Samples were centrifuged (3,220 x g, 15 min, 4 °C) and the supernatant was carefully decanted. Soils were then back extracted twice with MilliQ water (4 ml, 2 ml) as above but with abbreviated incubation times (15 min and 30 s). Following centrifugation, supernatants were pooled, frozen (-80 °C) and lyophilized. Metabolites were then re-suspended in 100% methanol (250 ml, to limit salt solubility) with internal
243 standards (5 μg/ml – Table S5) and filtered (Millipore, 0.22 mm PVDF microcentrifuge filters).
244 Samples were analyzed in random order on an Agilent 6550 iFunnel Q-TOF LC/MS system with
245 a SeQuant ZIC-pHILIC zwitterionic exchange column (150 x 2.1 mm, 5 mm, Merck Millipore)
246 using a neutral pH (5 mM NH₄OAc)/acetonitrile gradient (10% to 55% aqueous phase over 25
247 min at 0.25 ml/min) in both positive and negative ionization mode. Metabolites and putative
248 metabolites were identified manually through several methods including: comparison to the
249 Northen Lab standards library (> 290 compounds), MS/MS analyses, and formula generation
250 (Agilent MassHunter) (Table S5). Peak detection and areas were determined using the Northen
251 Lab’s Metabolite Atlas software (metatlas.nersc.gov) (Table S6). Internal standards (including
252 extraction standards) were used for quality control analyses and to detect and control for
253 retention time shifts and other analytical variability in any of the sample analyses. Significant
254 changes were determined for metabolites between sampling times at each depth and between
255 depths in each sample using ANOVA with post-hoc Tukey HSD pairwise analyses (Table S7).
256 16S rRNA and rpS3 phylogenetic analyses. For the 16S ribosomal RNA (rRNA) tree and
257 ribosomal protein S3 (rpS3), alignments were generated from all 16S rRNA and rpS3 genes
258 available the metagenomes. Sequences are provided in the supplemental materials. All 16S
259 rRNA genes longer than 660 bp were aligned using the SINA alignment algorithm through the
260 SILVA web interface (Pruesse et al. 2012; Pruesse et al. 2007). All rpS3 amino acid sequences
261 longer than 180 aa long were aligned using MUSCLE (Edgar 2004a; Edgar 2004b). The full
262 alignments were stripped of columns containing 95% or more gaps. A maximum-likelihood
263 phylogeny was inferred using RAxML (Stamatakis 2014) run using the GTRCAT model of
264 evolution for the 16S rRNA and PROTGAMMLG for the rpS3. The RAxML inference included
265 calculation of 300 bootstrap iterations for the 16S rRNA tree and 100 for the rpS3 tree (MRE-
Ordination analyses of microbial community structure. Ribosomal protein S3 genes were retrieved using HMMs build from the dataset published in (Hug et al. 2015) and used to search against predicted protein sequences in all samples. Only sequences that spanned at least 60% of the alignment were included and clustered at 99 % similarity (equivalent to species level (Sharon et al. 2015) using Usearch (clusterfast, (Edgar 2010)). Abundances of each cluster in each sample were determined from scaffold coverage (see above) and normalized to percent abundances in each sample. Principle coordinate analysis (PCoA) based on Bray-Curtis distance measure was computed using the R programming environment (R-core team, 2015) in conjunction with the vegan package (Dixon 2003).

Methanol dehydrogenase tree. The amino acid sequences of the PQQ-dependent methanol dehydrogenase proteins detected in the proteomics data were aligned to reference sequences with MUSCLE and this alignment was used to build a tree with RAxML with the PROTGAMMAWAG model and 100 bootstrap iterations.

Physical and chemical characterization of the soil. Samples of soil and the weathered bedrock (mudstone and sandstone) were collected for mineralogical and other analyses using electron microprobe, X-ray diffraction and scanning electron microscopic methods. Minerals identified included vermiculite (the predominant mineral in the soil), plagioclase and alkali feldspars, minor apatite and a mixture of Fe, Mn-oxyhydroxides.

Results. Between 14 and 25 Gb of DNA sequence data were obtained per soil sample for the ten soil samples, two of which were time and depth replicates. The 250 bp reads were assembled as detailed in the Methods section, resulting in 2,982,775 contigs > 1000 bp in length (42,770
contigs > 10,000 bp, the longest was 538,000 bp). In total, these contigs encode 8,773,880 genes (Table S1). For each sample, the reads were then mapped back to the assembled contigs of the sample to generate coverage statistics.

We compared the microbial community structure across the sample series using coverage of scaffolds assembled from the sequence datasets. Out of the 1420 microorganisms detected based on marker gene (rpS3) sequences, 652 occurred in 2 to 18 times (average: 4.2 ± 2.86) over the ten samples and had relative abundances of between 0.06 and 3.2 % of the community (Fig. 1). The same information was used in an ordination analysis and showed that samples from the same depth were more similar to each other than to those from the other depth with the exception of the first post-rain 10 – 20 cm sample (Fig. 1). The results indicate substantial overlap in the organisms present, especially among samples from the same soil depth. The same organisms were also observed in soil samples collected at the same depth and time from sites separated by ~10 m. In fact, many of these organisms are highly abundant, ranking in the top ten most abundant organisms and amounting for > 1 % relative abundance in each sample (Fig. 1). The availability of sequence information for multiple independently assembled samples with substantial overlap in community membership enabled the addition of series abundance parameterization to nucleotide frequency-based genome binning. We generated 198 bins, 46 of which were classified as metagenome-assembled draft genomes. Most sequence fragments that could not be assigned to specific genomes were grouped at the phylum-level and assigned to “megabins” (Table S2a). However, most of the relatively high coverage scaffolds in each sample were binned into draft genomes.

A notable feature of the soil microbial community compositions, evident based on phylogenetic analysis of single copy genes, is the high representation of organisms in the sub-
root zone soils from phyla that are relatively poorly represented in the NCBI database. For example, we obtained draft genomes for two Gemmatimonadetes, two Verrucomicrobia, eight Acidobacteria, one Armatimonadetes, three Chloroflexi, and three Nitrospirae. Importantly, we also reconstructed seven draft genomes from the Rokubacteria, a bacterial Candidate Phylum first reported from aquifer sediment in 2015 (Hug et al. 2016). In addition, we reconstructed draft genomes for one Betaproteobacterium, two Deltaproteobacteria an Actinomycetales and one novel Actinobacteria. The reconstructed genomes, which represent all major phyla detected in the soil samples, substantially expand the coverage of phylogenetic diversity in the NCBI database (Table S2b). In addition, we generated four draft genomes from the “Miscellaneous Crenarchaeota Group” (MCG), two from the “Soil Crenarchaeota Group” (SCG) and three from the “South African Gold Mine Miscellaneous Group” (SAGMCG). The SCG and SAGMCG are likely within the Thaumarchaeotes whereas the MCG are novel Bathyarchaeota (Figs. S2a,b). We also sampled Euryarchaeotes from the Thermoplasmatales lineage, but the genome bins were not well resolved.

Phylogenetic trees constructed using marker genes for both bacteria and the archaea from samples collected from different depths and times display structures similar to the seed puff of a dandelion, with many closely related strains at the termini of most branches (Fig. 2 and Fig. S2). In prior studies, strains were grouped at higher taxonomic levels, up to the phylum level (Delmont et al. 2015; Hultman et al. 2015). The Gemmatimonadetes phylum branch of the ribosomal protein S3 phylogenetic tree (Fig. 2) exhibits fine scale diversity that is comparable to the observed level of diversity detected in every phylum. Many organisms of the same type (separated by zero branch length in Fig. 2) occurred in samples collected at different times and from both depths.
Before the rain, the most abundant organisms in the shallow depth interval (10 - 20 cm) are Gemmatimonadetes and Actinobacteria species. Gemmatimonadetes species are also abundant after the rain event. Thermoplasmatales are highly abundant in samples collected after the rain event (Fig. 1).

In general, the microbial community composition of 30 - 40 cm depth samples differed from that of the 10 - 20 cm depth samples and samples collected before and after the rain event were less different than those collected from the shallower soil. Notably, the community sampled from deeper soil prior to the rain event was dominated by a Rokubacterium and several Thermoplasmatales (Euryarchaeota) were abundant. In fact, around 20% of the microorganisms sampled in the deeper soil interval were archaea, an interesting finding because archaea are generally believed to be relatively rare compared to bacteria in soil (Fierer et al. 2012a). In samples collected after the rain, three Thermoplasmatales archaea are highly abundant and rank in the top 10 most abundant organisms in the deeper soil (Fig. 1).

We obtained proteomic information to provide insight into the active pathways that mediated carbon and nitrogen compound transformations. Between 2,881 and 4,716 proteins/protein groups were identified per soil sample (Table S3a). Overall, we identified 6835 proteins and 6378 protein groups in the soil microbiome, based on 28,782 distinct peptide identifications. It is important to note that we could link most identified proteins to the specific microorganisms from which they derived because a significant fraction of our sequence data was genome-resolved.

Significantly, the most abundant protein in the proteome was not involved in plant sugar breakdown. Rather, it was pyrrolo-quinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH). This protein is encoded in the genome of a Gemmatimonadetes bacterium. PQQ
dependent MDH (PQQ MDH) is the second step of methanotrophy, and follows the oxidation of methane to methanol by methane monooxygenase. However, methane monooxygenase was not present in any of the genomes, including those harboring the methanol dehydrogenase. Thus, we infer that this enzyme is involved in methylotrophy, the consumption of methanol. Lesser abundant PQQ MDH proteins from Rokubacteria were also detected in the proteomics analysis.

MDH proteins have typically well-conserved sequences. The MDH proteins represented in the proteome were aligned with sequences from the literature (Taubert et al. 2015) and a tree was built, resulting in the clustering of the proteins by phylum. The Rokubacteria XoxF sequences formed a distinct branch in the MDH protein tree (XoxF and MxaF families) and the Gemmatimonadetes sequences formed a new clade with the XoxF sequences from various Proteobacteria (Taubert et al. 2015) (Fig. 3). The Gemmatimonadetes PQQ-MDH proteins were generally more abundant than those from Rokubacteria (as shown in the heat map on the right side of Fig. 3). The MDH proteins all contain the catalytic and cofactor binding residues required for activity (Anthony & Williams 2003), including those for PQQ, as well as the aspartate residues thought to select for the lanthanides such as Ce\(^{3+}\) and La\(^{3+}\) (Keltjens et al. 2014; Pol et al. 2014). The selection for lanthanides over Ca\(^{2+}\) is an interesting bioinorganic trait because while lanthanides are abundant in the Earth’s crust, they are highly insoluble and thus considered biologically unavailable and in turn not well studied (Skovran & Gomez 2015). Despite this, La\(^{3+}\) is required for the activity of the XoxF type MDH perhaps because it a more efficient Lewis acid in the polarization of PQQ than Ca\(^{2+}\) (Bogart et al. 2015; Pol et al. 2014).

Following oxidation of methanol by PQQ MDH, the toxic formaldehyde product must be moved from the periplasm to the cytosol for transformation and incorporation into 3C compounds. The reaction can occur via one of three pathways: the glutathione,
tetrahydromethanopterin (THMPT), or tetrahydrofolate (THF)-linked formaldehyde oxidation pathways (Chistoserdova 2011). The Gemmatimonadetes genomes have the entire THMPT formaldehyde oxidation pathway and the tetrahydrofolate to serine pathway for these reactions. Furthermore, they encode the PQQ biosynthesis machinery. The THMPT biosynthesis machinery is encoded immediately upstream of the PQQ MDH gene (Fig. S3) (Scott & Rasche 2002). The results strongly support the capacity for methylotrophy in these soil-associated Gemmatimonadetes and functioning of this pathway (Fig. 4 and Fig. S4).

Although the Rokubacteria have PQQ MDH, the genomes do not encode any of the three pathways for formaldehyde transformation. It has been suggested that the XoxF type of MDH is able to convert methanol directly to formate, bypassing the formaldehyde oxidation mechanism (Pol et al. 2014). Formate then may be broken down using formate dehydrogenase to yield energy or be assimilated by one of several pathways. The Rokubacteria also may be carrying out beta-oxidation of fatty acids, as these proteins for this pathway are abundant in the proteome. We identified many proteins likely responsible for decomposing matter from the meadow’s early summer senescing annual grasses (Bromus hordeaceus, Bromus diandrus, and Bromus tectorum) and annual lupine (Lupinus bicolor) (for a full species list, see Table S4). Highly represented were carbohydrate-active enzymes such as glycoside hydrolases, polysaccharide lyases, and many sugar and amino acid transport proteins (Table S3a). Notably, additional enzymes of the Thermoplasmatales and Bathyarchaeota archaea for protein degradation, such as metal-dependent hydrolase and carboxymethylenebutenolidase, are highly represented in the proteome. The findings parallel results for marine Thermoplasmatales (Lloyd et al. 2013) and establish a specific role for novel soil Archaea in protein degradation.
We investigated the distribution of metabolites in triplicate extracted soil water samples using a robust Liquid Chromatography-based Mass Spectroscopy (LC-MS) metabolomics workflow based on a previous study on samples from the meadow soils (Swenson et al. 2015). 125 unique compounds were detected and quantified. These include sugars (one to six sugar residues per chain), sugar alcohols, amino acids, nucleotides/nucleosides, quaternary amines, osmolytes and several suspected sugar metabolites and derivatives (Fig. 5). Notably, most concentrations fall to zero at the base of the soil zone, an observation that suggests efficient scavenging of these compounds by microbial soil communities and not the sorption to mineral surfaces (Fischer et al. 2010).

Breakdown of plant-derived organics can release nitrogen-bearing molecules that can be further degraded by microbes in the deeper soil. The metabolomic data suggest that rainfall transfers these compounds to the soil below the root zone. In fact, dramatic increases in amino acid and nucleotide concentrations were detected at 10 – 20 cm right after the second rain event (Fig. 5); abundances approach zero in the deep soil. The Thermoplasmatales and Bathyarchaeota archaea, which were highly represented in the 30 - 40 cm depth soil especially after rain events, have proteins for uptake and aerobic breakdown of peptides. Abundances of these proteins, which include dipeptide, oligopeptide, hydrophobic peptide, polar peptide transporters are high in samples collected after the first rainfall (Table S3a).

Interestingly, ammonia-producing formamidase is the most abundant protein identified for several archaea. Ammonia liberated by archaeal peptide degradation likely supports growth of SAGMCG and SCG Thaumarchaeota, which both have ammonia monooxygenases genes. A copper-containing nitrite reductase (NirK), along with cytochromes, sulfurtransferases and Fe-S proteins, were abundant in the proteome but NO reductases were not identified by proteomics.
(although they are encoded in the genomes). Overall the results suggest roles for Thaumarchaeota in both nitrification and denitrification.

Breakdown of plant-derived organics can release sulfur compounds. For example, glucosinolates are sulfur-bearing organics that are produced by Brassicales, a widely distributed group of plants in the mustard family that were identified in this study’s meadow. Degradation products of glucosinolates include sulfur-containing thiocyanate and isothionates. The Rokubacteria have genes of the Sox sulfur oxidation pathway, as do the first-described Rokubacteria described from groundwater (Hug et al. 2016), and some Sox proteins were identified in the proteome. Thus, these novel bacteria are inferred to play an important role in sulfur biogeochemistry in the sub-root zone soil during the rainfall-induced period of organic matter turnover.

Choline sulfate is an interesting sulfur-containing osmolyte identified in the metabolome. This compound is produced by many organisms, including plants and fungi, and is degraded to produce betaine via sulfatase enzymes. Betaine was also identified by metabolomics. Notably, sulfatases were observed in the proteomes of Actinobacteria, Chloroflexi, Alphaproteobacteria and Betaproteobacteria. Sulfate released from choline sulfate degradation may play an important role in soil bacterial sulfur metabolism (Markham et al. 1993). Choline sulfate and betaine both contain three methyl groups per molecule that are released upon the degradation to glycine and could contribute to the growth of the methylotrophic bacteria.

Discussion. Our study design aimed to deeply analyze soil microbial community composition and to detect genes and proteins from many organisms, including those at relatively low abundance. This generated a soil metagenomic dataset of unprecedented size (> 200 Gb) and
complexity (> 1400 species). Given the massive data sizes involved in this research, we limited analysis to ten samples so we do not attempt to describe overall shifts in the patterns of microbial distribution during this time period. However, the spectrum of conditions provided access to a wider variety of genomes than would be provided if analyses target a single sampling location or time point. Also, we extracted DNA from large (~200 g) homogenized samples; this likely reduced the impact of spatial microheterogeneity and probably explains why overlap in community composition could be detected.

Only recently has genome reconstruction from soil (seven from permafrost by Hultman et al. (Hultman et al. 2015), seventeen from enrichments by Delmont et al. (Delmont et al. 2015), and 129 from prairie soil by White et al. (White et al. 2016)) been achieved. In our study, no single organism represented > 3% of the community. The extensive strain and within population variation likely explains the high level of fragmentation of genomes for some organisms (Table S1 and S2). Even with these challenges, we reconstructed genomes from all the major lineages represented in the microbial communities. We attribute this result to the assembly of reads into large scaffolds, many of which could be binned because overlap in community composition over the sample series enabled binning using abundance pattern information. Scaffold assembly provided high quality ribosomal protein S3 sequences that were used to distinguish organisms at the species level, a phylogenetic resolution exceeding that which could be obtained by rRNA sequencing methods (Sharon et al. 2015). These data provided the foundation for multi-omic analyses that yielded functional insights.

Most prior research on carbon cycling in soil has focused on microbial degradation of complex soil organic macromolecules, likely derived in part from plant biomass. Our metabolomics analysis suggest that the organic and nitrogenous substrates needed to sustain
microbial life disappear from the soils relatively rapidly as few metabolites accumulate to measurable amounts in the deeper soil profile. Nitrogenous compounds, mostly free amino acids, were identified in soil after the second rain in the 10 – 20 cm zone yet were practically undetectable in the 30 – 40 cm zone. It is clear that the substrate availability between one 10 cm zone to the next is very different to that in the upper soil horizon, and will support different microbes. For example, the Verrucomicrobia and Actinobacteria are only abundant in the 10 – 20 cm depth interval and much rarer in the 30 – 40 cm depth interval. We also found abundant, diverse proteins involved amino acid and carbohydrate degradation and import in every partial to near-complete draft genome. Because we employed an untargeted proteomics, we could identify many thousands of proteins using a peptide database composed of full-length genes predicted from the samples’ metagenomes.

Yet, interestingly the most abundant protein in the proteomics data was the PQQ-dependent methanol dehydrogenase from Gemmatimonadetes and Rokubacteria. In addition to complex carbohydrates, plant biomass and root exudates also provide an abundant source of methanol (Sutton & Sposito 2005). Previously, only members of Proteobacteria, NC10, and Verrucomicrobia have been shown to be methylotrophs (Chistoserdova 2011; Op den Camp et al. 2009). Methylotrophy was tentatively linked to Gemmatimonadetes only once before, when 13C methanol containing compounds were fed to a lake sediment sample and labeled Gemmatimonadetes 16S rRNA was identified (Nercessian et al. 2005). Methylotrophy has been described in aerobic lake sediments (Costello & Lidstrom 1999), the phyllosphere (Corpe & Rheem 1989; Delmotte et al. 2009), marine (Radajewski et al. 2002; Stacheter et al. 2013), and soil (Eyice et al. 2015; Kolb 2009; Radajewski et al. 2002; Stacheter et al. 2013) environments. These studies found that methanol-oxidizing enzymes of Proteobacteria have micro- and
nanomolar affinity for methanol, the highest activity occurring in the root-associated soil, and that methylotrophic communities thrive under the full range of plant diversity and soil pH (Radajewski et al. 2002; Stacheter et al. 2013). Further, methylotrophic methanogenesis can occur under aerobic conditions (Hofmann et al. 2016; Karl et al. 2008; Metcalf et al. 2012). However, in our study, no methyl-coenzyme M reductase complex (*mcrA*) gene was predicted in any dataset. Thus, methylotrophy is neither occurring in nor linked to co-occurring methanogens.

Notably, we observe a significant fraction of the microbial community (87 distinct organisms via rpS3 genes) belong to the as yet uncultured yet widespread phylum Bathyarchaeota (formerly known as the Miscellaneous Crenarchaeotal Group) (Gagen et al. 2013; Kubo et al. 2012). Bathyarchaeota have been identified by 16S rRNA studies of sulfate-methane transition zones and hypothesized as being involved in dissimilatory anaerobic methane oxidation coupled to organic carbon assimilation (Biddle et al. 2006). In a recent report, Bathyarchaeota were identified in metagenomic analyses of coal-bed methane well water. The genomes encoded a complete methanogenic pathway including an ancient *mcrA* (Evans et al. 2015). The four draft (71-91%) Bathyarchaeota genomes do not contain the genes required for methanotrophy or methanogenesis but encode oligopeptide import and amino acid degradation pathways, which were also abundant in the proteomics analysis. The large transporter diversity suggests substantial substrate flexibility in Bathyarchaeota (and also in Thermoplasmatales archaea). Thus, along with other community members including Thermoplasmatales, Bathyarchaeota likely contribute to degradation of nitrogen-containing compounds in the deeper soil. The findings underline the importance of genomic resolution, because metabolic roles of the soil Bathyarchaeota predicted based on phylogenetic information and previously published genomes would have been incorrect.
Conclusion. This genome-resolved multi-omic study revealed many populations of little known bacteria and archaea in sub-root zone soil microbial communities. Our proteogenomic analysis yielded strong evidence for methanol oxidation in novel members of the Gemmatimonadetes and Rokubacteria phyla. These capacities have not been previously linked to organisms of these phyla, although Gemmatimonadetes are common members of soil microbial communities. Rokubacteria, on the other hand, have not previously been reported from soil, so the findings of this study contribute new information regarding microbial community composition as well as function. Removal of methanol and other small organic molecules from solutions draining from upper soil horizons by these bacteria limits their availability for metabolism by organisms at greater distance from leaf-litter associated carbon sources. Although methanogenesis is not prominent in the studied grassland, such activities in other soils could restrict the supply of methanol to methylotrophic methanogens in deeper subsurface regions. We found that different microbes and metabolites are abundant in samples collected just 10 cm apart. Likely, the organisms are stratified by substrate availability, a pattern that results in part from the activities of organisms in the overlying soil regions.

Acknowledgments. We would like to thank the rest of the members (and former members) of the Banfield lab for their help with and the development of various tools and reference libraries, and Dr. David Burstein for help with collecting soil samples. The sequencing was conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, and Lawrence Berkeley National Laboratory.
References

Aanderud ZT, Jones SE, Schoolmaster DR, Fierer N, and Lennon JT. 2013. Sensitivity of soil respiration and microbial communities to altered snowfall. *Soil Biology and Biochemistry* 57:217-227. 10.1016/j.soilbio.2012.07.022

Adair KL, Wratten S, and Lear G. 2013. Soil phosphorus depletion and shifts in plant communities change bacterial community structure in a long-term grassland management trial. *Environmental Microbiology Reports* 5:404-413. 10.1111/1758-2229.12049

Aerts R, Bakker C, and De Caluwe H. 1992. Root turnover as determinant of the cycling of C, N, and P in a dry heathland ecosystem. *Biogeochemistry* 15:175-190. 10.1007/BF00002935

Anthony C, and Williams P. 2003. The structure and mechanism of methanol dehydrogenase. *Biochimica et Biophysica Acta - Proteins and Proteomics* 1647:18-23. 10.1016/S1570-9639(03)00042-6

Banning NC, Gleson DB, Grigg AH, Grant CD, Andersen GL, Brodie EL, and Murphy DV. 2011. Soil microbial community successional patterns during forest ecosystem restoration. *Applied and Environmental Microbiology* 77:6158-6164. 10.1128/AEM.00764-11

Beck DAC, McTaggart TL, Setboonsarung U, Vorobev A, Kalyuzhnaya MG, Ivanova N, Goodwin L, Woyke T, Lidstrom ME, and Chistoserdova L. 2014. The expanded diversity of Methylophilaceae from lake Washington through cultivation and genomic sequencing of novel ecotypes. *PLoS ONE* 9. 10.1371/journal.pone.0102458

Berendse F. 1994. Litter decomposability - A neglected component of plant fitness. *Journal of Ecology* 82:187-190.

Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Anderson R, Fredricks HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, and Hinrichs K-U. 2006. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. *Proceedings of the National Academy of Sciences of the United States of America* 103:3846-3851. 10.1073/pnas.0600035103

Blazewicz SJ, Schwartz E, and Firestone MK. 2014. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. *Ecology* 95:1162-1172. 10.1890/13-1031.1

Bogart JA, Lewis AJ, and Schelter EJ. 2015. DFT study of the active site of the XoxF-type natural, cerium-dependent methanol dehydrogenase enzyme. *Chemistry* 21:1743-1748. 10.1002/chem.201405159

Brooks B, Mueller RS, Young JC, Morowitz MJ, Hettich RL, and Banfield JF. 2015. Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant. *Frontiers in Microbiology* 6. 10.3389/fmicb.2015.00654

Chistoserdova L. 2011. Modularity of methylotrophy, revisited. *Environmental Microbiology* 13:2603-2622. 10.1111/j.1462-2920.2011.02464.x

Corpe WA, and Rheem S. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. *FEMS Microbiology Letters* 62:243-249. 10.1016/0378-1097(89)90248-6

Costello AM, and Lidstrom ME. 1999. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. *Applied and Environmental Microbiology* 65:5066-5074.
Cruz-Martínez K, Suttle KB, Brodie EL, Power ME, Andersen GL, and Banfield JF. 2009. Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. *ISME Journal* 3:738-744. 10.1038/ismej.2009.16

Delmont TO, Eren AM, Maccario L, Prestat E, Esen OC, Pelletier E, Le Paslier D, Simonet P, and Vogel TM. 2015. Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics. *Front Microbiol* 6:358. 10.3389/fmicb.2015.00358

Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlaphach R, Von Mering C, and Vorholt JA. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. *Proceedings of the National Academy of Sciences of the United States of America* 106:16428-16433. 10.1073/pnas.0905240106

Dixon P. 2003. VEGAN, a package of R functions for community ecology. *Journal of Vegetation Science* 14:927-930.

Edgar R. 2004a. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* 5:1-19. 10.1186/1471-2105-5-113

Edgar RC. 2004b. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* 32:1792-1797. 10.1093/nar/gkh340

Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* 26:2460-2461. 10.1093/bioinformatics/btq461

Elias JE, and Gygi SP. 2007. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. *Nat Methods* 4:207-214. 10.1038/nmeth1019

Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, and Tyson GW. 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. *Science* 350:434-438. 10.1126/science.aac7745

Evans SE, and Wallenstein MD. 2012. Soil microbial community response to drying and rewetting stress: Does historical precipitation regime matter? *Biogeochemistry* 109:101-116. 10.1007/s10533-011-9638-3

Eyice O, Namura M, Chen Y, Mead A, Samavedam S, and Schaefer H. 2015. SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment. *ISME J* 9:2336-2348. 10.1038/ismej.2015.37

Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, and Caporaso JG. 2012a. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. *Proc Natl Acad Sci U S A* 109:21390-21395. 10.1073/pnas.1215210110

Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, and Caporaso JG. 2012b. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. *Proceedings of the National Academy of Sciences of the United States of America* 109:21390-21395. 10.1073/pnas.1215210110

Fischer H, Ingwersen J, and Kuzyakov Y. 2010. Microbial uptake of low-molecular-weight organic substances out-competes sorption in soil. *European Journal of Soil Science* 61:504-513. 10.1111/j.1365-2389.2010.01244.x

Gagen EJ, Huber H, Meador T, Hinrichs KU, and Thomm M. 2013. Novel cultivation-based approach to understanding the Miscellaneous Crenarchaeotic Group (MCG) archaea from sedimentary ecosystems. *Applied and Environmental Microbiology* 79:6400-6406. 10.1128/AEM.02153-13
Goldfarb KC, Karaoz U, Hanson CA, Santee CA, Bradford MA, Treseder KK, Wallenstein MD, and Brodie EL. 2011. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Frontiers in Microbiology 2. 10.3389/fmicb.2011.00094

He J, Xu Z, and Hughes J. 2006. Molecular bacterial diversity of a forest soil under residue management regimes in subtropical Australia. FEMS Microbiology Ecology 55:38-47. 10.1111/j.1574-6941.2005.00006.x

Henckel T, Friedrich M, and Conrad R. 1999. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monoxygenase, and methanol dehydrogenase. Applied and Environmental Microbiology 65:1980-1990.

Herzberger AJ, Duncan DS, and Jackson RD. 2014. Bouncing back: Plant-associated soil microbes respond rapidly to prairie establishment. PLoS ONE 9. 10.1371/journal.pone.0115775

Hofmann K, Pauli H, Praeg N, Wagner AO, and Illmer P. 2016. Methane-cycling microorganisms in soils of a high-alpine altitudinal gradient. FEMS Microbiol Ecol. 10.1093/femsec/fiw009

Hug LA, Thomas BC, Brown CT, Frischkorn KR, Williams KH, Tringe SG, and Banfield JF. 2015. Aquifer environment selects for microbial species cohorts in sediment and groundwater. ISME Journal 9:1846-1856. 10.1038/ismej.2015.2

Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL, Wilkins MJ, Williams KH, Singh A, and Banfield JF. 2016. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol 18:159-173. 10.1111/1462-2920.12930

Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz SJ, Harden J, Turetsky MR, McGuire AD, Shah MB, VerBerkmoes NC, Lee LH, Mavrommatis K, and Jansson JK. 2015. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521:208-212. 10.1038/nature14238

Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, and Hauser LJ. 2010. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11. 10.1186/1471-2105-11-119

Hyatt D, and Pan C. 2012. Exhaustive database searching for amino acid mutations in proteomes. Bioinformatics 28:1895-1901. 10.1093/bioinformatics/bts274

Kandeler E, Mosier AR, Morgan JA, Milchunas DG, King JY, Rudolph S, and Tscherko D. 2006. Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biology and Biochemistry 38:2448-2460. 10.1016/j.soilbio.2006.02.021

Kanehisa M, Goto S, Yamanishi Y, Mawashi T, Tanabe M, Morishita Y, and Kato S. 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109-D114. 10.1093/nar/gkr988

Kanehisa M, Goto S, Yamanishi Y, Mawashi T, Tanabe M, Morishita Y, and Kato S. 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109-D114. 10.1093/nar/gkr988

Karl DM, Beversdorf L, Bjorkman KM, Church MJ, Martinez A, and Delong EF. 2008. Aerobic production of methane in the sea. Nature Geosci 1:473-478.

Keltjens JT, Pol A, Reimann J, and Van Den Camp HJM. 2014. PQP-dependent methanol dehydrogenases: Rare-earth elements make a difference. Applied Microbiology and Biotechnology 98:6163-6183. 10.1007/s00253-014-5766-8
Kolb S. 2009. Aerobic methanol-oxidizing Bacteria in soil. *FEMS Microbiology Letters* 300:1-10. 10.1111/j.1574-6968.2009.01681.x

Kubo K, Lloyd KG, J FB, Amann R, Teske A, and Knittel K. 2012. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. *ISME J* 6:1949-1965. 10.1038/ismej.2012.37

Kurokame EE, Yergeau E, Wong LC, Pijl AS, Van Veen JA, and Kowalchuk GA. 2012. Soil characteristics more strongly influence soil bacterial communities than land-use type. *FEMS Microbiology Ecology* 79:12-24. 10.1111/j.1574-6941.2011.01192.x

Lauber CL, Hamady M, Knight R, and Fierer N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. *Applied and Environmental Microbiology* 75:5111-5120. 10.1128/AEM.00335-09

Li Z, Wang Y, Yao Q, Justice NB, Ahn TH, Xu D, Hettich RL, Banfield JF, and Pan C. 2014. Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community. *Nature* 496:215-218. 10.1038/nature12033

Luo C, Rodriguez-R LM, Johnston ER, Wu L, Cheng L, Xue K, Tu Q, Deng Y, He Z, Shi JZ, Yuan MM, Sherry RA, Li D, Luo Y, Schuur EAG, Chain P, Tiedje JM, Zhou J, and Konstantinidis KT. 2014. Soil microbial community responses to a decade of warming as revealed by comparative metagenomics. *Applied and Environmental Microbiology* 80:1777-1786. 10.1128/AEM.03712-13

Markham P, Robson GD, Bainbridge BW, and Trinci AP. 1993. Choline: its role in the growth of filamentous fungi and the regulation of mycelial morphology. *FEMS Microbiol Rev* 10:287-300.

Mau RL, Liu CM, Aziz M, Schwartz E, Dijkstra P, Marks JC, Price LB, Keim P, and Hungate BA. 2015. Linking soil bacterial biodiversity and soil carbon stability. *ISME J* 9:1477-1480. 10.1038/ismej.2014.205

McKissock I, Gilkes RJ, and Walker EL. 2002. The reduction of water repellency by added clay is influenced by clay and soil properties. *Applied Clay Science* 20:225-241. 10.1016/S0169-1317(01)00074-6

Metcalf WW, Griffin BM, Cicchillo RM, Gao J, Janga SC, Cooke HA, Ciricello BT, Evans BS, Martens-Habbena W, Stahl DA, and van der Donk WA. 2012. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. *Science* 337:1104-1107. 10.1126/science.1219875

Mosier AC, Li Z, Thomas BC, Hettich RL, Pan C, and Banfield JF. 2015. Elevated temperature alters proteomic responses of individual organisms within a biofilm community. *ISME Journal* 9:180-194. 10.1038/ismej.2014.113

Muyzer G, De Waal EC, and Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. *Applied and Environmental Microbiology* 59:695-700.

Nawrocki EP, Kolbe DL, and Eddy SR. 2009. Infernal 1.0: Inference of RNA alignments. *Bioinformatics* 25:1335-1337. 10.1093/bioinformatics/btp157
Nercessian O, Noyes E, Kalyuzhnaya MG, Lidstrom ME, and Chistoserdova L. 2005. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. *Applied and Environmental Microbiology* 71:6885-6899. 10.1128/AEM.71.11.6885-6899.2005

Nesvizhskii AI, and Aebersold R. 2005. Interpretation of shotgun proteomic data: the protein inference problem. *Mol Cell Proteomics* 4:1419-1440. 10.1074/mcp.R500012-MCP200

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, and Kanehisa M. 1999. KEGG: Kyoto encyclopedia of genes and genomes. *Nucleic Acids Res* 27:29-34. 10.1093/nar/27.1.29

Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland NK, Pol A, and Dunfield PF. 2009. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. *Environmental Microbiology Reports* 1:293-306. 10.1111/j.1758-2229.2009.00022.x

Osborn AM, Moore ERB, and Timmis KN. 2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. *Environmental Microbiology* 2:39-50. 10.1046/j.1462-2920.2000.00081.x

Pan C, and Banfield JF. 2014. Quantitative metaproteomics: functional insights into microbial communities. *Methods Mol Biol* 1096:231-240. 10.1007/978-1-62703-712-9_18

Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM, and Brown CT. 2012. Scaling metagenome sequence assembly with probabilistic de Bruijn graphs. *Proceedings of the National Academy of Sciences of the United States of America* 109:13272-13277. 10.1073/pnas.1121464109

Peltoniemi K, Laiho R, Juottonen H, Kiikkilä O, Mäkiranta P, Minkkinen K, Pennanen T, Penttilä T, Sarjala T, Tuittila E-S, Tuomivirta T, and Fritze H. 2015. Microbial ecology in a future climate: effects of temperature and moisture on microbial communities of two boreal fens. *FEMS Microbiology Ecology* 91. 10.1093/femsec/fiv062

Peng Y, Leung HCM, Yiu SM, and Chin FYL. 2012. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. *Bioinformatics* 28:1420-1428. 10.1093/bioinformatics/bts174

Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, and Wagner M. 2012. AmoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. *Environmental Microbiology* 14:525-539. 10.1111/j.1462-2920.2011.02666.x

Piper CL, Siciliano SD, Winsley T, and Lamb EG. 2015. Smooth brome invasion increases rare soil bacterial species prevalence, bacterial species richness and evenness. *Journal of Ecology* 103:386-396. 10.1111/1365-2745.12356

Placella SA, Brodie EL, and Firestone MK. 2012. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. *Proceedings of the National Academy of Sciences of the United States of America* 109:10931-10936. 10.1073/pnas.1204306109

Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J, Jetten MSM, and Op den Camp HJM. 2014. Rare earth metals are essential for methanotrophic life in volcanic mudpots. *Environmental Microbiology* 16:255-264. 10.1111/1462-2920.12249

Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD, Cleland EE, Decrappeo NM, Delorenze E, Hagnenah N, Hautier Y, Hofmockel KS, Kirkman KP, Knops JMH, La Pierre KJ, Mac dougall AS, McCulley RL, Mitchell CE, Risch AC, Schuetz M, Stevens CJ, Williams RJ, and Fierer N. 2015. Plant...
diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. *Ecology Letters* 18:85-95. 10.1111/ele.12381

Probst AJ, Castelle CJ, Singh A, Brown CT, Anantharaman K, Sharon I, Hug LA, Burstein D, Emerson JB, Thomas BC, and Banfield JF. 2016. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO$_{2}$ concentrations. *Environmental Microbiology*. 10.1111/1462-2920.13362

Pruesse E, Peplies J, and Glöckner FO. 2012. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. *Bioinformatics* 28:1823-1829.

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, and Glöckner FO. 2007. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. *Nucleic Acids Res* 35:7188-7196.

Radajewski S, Webster G, Reay DS, Morris SA, Ineson P, Nedwell DB, Prosser JI, and Murrell JC. 2002. Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. *Microbiology* 148:2331-2342.

Reinsch S, Michelsen A, Sárossy Z, Egsgaard H, Schmidt IK, Jakobsen I, and Ambus P. 2014. Short-term utilization of carbon by the soil microbial community under future climatic conditions in a temperate heathland. *Soil Biology and Biochemistry* 68:9-19.

Schimel JP, and Schaeffer SM. 2012. Microbial control over carbon cycling in soil. *Frontiers in Microbiology* 3. 10.3389/fmicb.2012.00348

Scott JW, and Rasche ME. 2002. Purification, Overproduction, and Partial Characterization of β-RFAP Synthase, a Key Enzyme in the Methanopterin Biosynthesis Pathway. *Journal of Bacteriology* 184:4442-4448. 10.1128/jb.184.16.4442-4448.2002

Sharon I, Kertesz M, Hug LA, Pushkarev D, Blauwkamp TA, Castelle CJ, Amirebrahimi M, Thomas BC, Burstein D, Tringe SG, Williams KH, and Banfield JF. 2015. Accurate, multi-kb reads resolve complex populations and detect rare microorganisms. *Genome Research* 25:534-543. 10.1101/gr.183012.114

Skovran E, and Gomez NCM. 2015. Just add lanthanides. *Science* 348:862-863.

Sutton R, and Sposito G. 2005. Molecular structure in soil humic substances: The new view. *Environmental Science and Technology* 39:9009-9015. 10.1021/es050778q

Suzek BE, Huang H, Mcgarvey P, Mazumder R, and Wu CH. 2007. UniRef: Comprehensive and non-redundant UniProt reference clusters. *Bioinformatics* 23:1282-1288.

10.1111/ele.12381

10.1109/bioinformatics/bts252

10.1111/1462-2920.13362

10.1093/bioinformatics/btm0864

10.1016/j.soilbio.2013.09.014

10.1101/gr.183012.114

10.1126/science.aaa9091

10.1038/ismej.2012.167

10.1093/bioinformatics/btu033

10.1021/es050778q

10.1109/bioinformatics/btm0864

10.1038/ismej.2012.167

10.1109/bioinformatics/btm0864
811 Swenson TL, Jenkins S, Bowen BP, and Northen TR. 2015. Untargeted soil metabolomics methods for analysis of extractable organic matter. *Soil Biology and Biochemistry* 80:189-198. 10.1016/j.soilbio.2014.10.007
812 Taubert M, Grob C, Howat AM, Burns OJ, Dixon JL, Chen Y, and Murrell JC. 2015. XoxF encoding an alternative methanol dehydrogenase is widespread in coastal marine environments. *Environ Microbiol* 17:3937-3948. 10.1111/1462-2920.12896
813 Verastegui Y, Cheng J, Engel K, Kolczynski D, Mortimer S, Lavigne J, Montalibet J, Romantsov T, Hall M, McConkey BJ, Rose DR, Tomashek JJ, Scott BR, Charles TC, and Neufeld JD. 2014. Multisubstrate Isotope Labeling and Metagenomic Analysis of Active Soil Bacterial Communities. *mBio* 5. 10.1128/mBio.01157-14
814 Veresoglou SD, Thornton B, Menexes G, Mamolos AP, and Veresoglou DS. 2012. Soil Fertilization Leads to a Decline in Between-Samples Variability of Microbial Community δ13C Profiles in a Grassland Fertilization Experiment. *PLoS ONE* 7.
815 Wang Y, Ahn TH, Li Z, and Pan C. 2013. Sipros/ProRata: a versatile informatics system for quantitative community proteomics. *Bioinformatics* 29:2064-2065.
816 Washburn MP, Wolters D, and Yates JR, 3rd. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. *Nat Biotechnol* 19:242-247.
817 Wedin DA, and Tilman D. 1990. Species effects on nitrogen cycling: a test with perennial grasses. *Oecologia* 84:433-441. 10.1007/BF00328157
818 White R, Murray A, and Rohwedder M. 2000. *Pilot analysis of global ecosystems: grassland ecosystems*. Washington, D.C.: World Resources Institute.
819 White RA, Bottos EM, Roy Chowdhury T, Zucker JD, Brislaw CJ, Nicora CD, Fansler SJ, Glaesemann KR, Glass K, and Jansson JK. 2016. Moleculo Long-Read Sequencing Facilitates Assembly and Genomic Binning from Complex Soil Metagenomes. *mSystems* 1. 10.1128/mSystems.00045-16
820 Wisniewski JR, Zougman A, Nagaraj N, and Mann M. 2009. Universal sample preparation method for proteome analysis. *Nat Meth* 6:359-362. 10.1038/nmeth.1322
Figure 1 (on next page)

Prokaryotic diversity and abundance over sampling time and depth.

Ribosomal protein S3-encoding scaffold relative abundances for each sample are plotted in panel A, and organized as follows: pre-rain (1, 5), four days after the first rainfall (2, 6), six days after the first rainfall (3, 7, 9) and two days after the second rainfall (4, 8, 10) at 10 - 20 cm (1 – 4, 9, 10) and 30 - 40 cm deep (5 – 8). Persistent and abundant species (>1 % abundant in multiple samples) are colored by phylum and shaded by species. The beta diversity PCoA plot (B) compares the ten sample communities (blue denotes 10 – 20 cm and red denotes 30 – 40 cm samples). A diagram depicting the sampled ecosystem (C) shows the shallow roots of the annual forbs and grasses mostly remain in the top 10 cm and the rocks increase in size in the deeper soil.
Figure 2 (on next page)

Gemmatimonadetes phylogenetic ribosomal protein S3 tree.

Subsection of the experiment’s ribosomal protein S3 phylogenetic tree shows typical diversity within the phyla: dozens of novel, closely related organisms of the Gemmatimonadetes bacterial phylum inhabit the two soil zones (10 – 20 cm, blue and 30 – 40 cm, red) before (squares) and after the rain events (4 days after: circles, 6 days after: triangles, and 2 days after the second rain: asterisks). Identical ribosomal protein S3 sequence branches representing members of the same species were collapsed and the time and depth symbols of these members are presented horizontally.
To all other bacteria
Figure 3 (on next page)

PQQ-dependent methanol dehydrogenase (XoxF and MxaF) protein clades and abundances in the soil zones.

PQQ-dependent methanol dehydrogenase (XoxF and MxaF) protein tree containing experimental sequences and those from literature (left) and abundances of normalized spectral counts from the proteomics results (right) in the soil zones.
Putative active methylotrophy pathways in Rokubacteria, Proteobacteria, and Gemmatimonadetes.

The colored arrows indicate genetic evidence of proteins that catalyze the reactions that transform methanol into CO$_2$ or cell material and colored dots indicate representation in the proteome. Gemmatimonadetes (purple) and Proteobacteria can oxidize formaldehyde via the tetrahydromethanopterin and glutathione-linked pathways, respectively, while Rokubacteria (blue) cannot. Formate is incorporated by the tetrahydrofolate-linked pathway then converted to serine by glycine hydroxymethyltransferase. Serine and glyoxylate are used by serine-glyoxylate transaminase to produce glycine and hydroxypyruvate, which is then converted to D-glycerate. D-glycerate can be phosphorylated by two different kinases, glycerate 2-kinase in Rokubacteria and glycerate kinase in Gemmatimonadetes. Both phosphoglycerates are converted by different enzymes to phosphoenolpyruvate (phosphoglycerate hydratase or phosphoglycerate dehydrogenase) and then to oxaloacetate by phosphoenolpyruvate carboxylase. Gemmatimonadetes and Proteobacteria (green) contain but Rokubacteria lack the canonical malate-intermediated serine formaldehyde assimilation pathway but do encode citric acid/glyoxylate cycle genes that could assimilate carbon (citrate synthase) and regenerate glyoxylate (isocitrate lyase).
Figure 5 (on next page)

Comparison of detected sugars and common nitrogenous compounds in Angelo soils at 10 – 20 cm and 30 – 40 cm.

A) lists sugars and B) lists nitrogen-containing compounds and the heat map indicates relative mean sample concentrations. Columns are ordered left to right by date. Row colors (left sides of plot) are based on chosen metabolite groupings. A clear decrease in metabolite abundances is observed with increasing soil depth.
