TRY plant trait database – enhanced coverage and open access

Abstract

Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.

Keywords

data coverage, data integration, data representativeness, functional diversity, plant traits, TRY plant trait database

Correspondence
Jens Kattge, Max Planck Institute for Biogeochemistry, Hans Knöll Str. 10, 07745 Jena, Germany. Email: jkattge@bgc-jena.mpg.de

Funding information
Max Planck Institute for Biogeochemistry; Max Planck Society; German Centre for Integrative Biodiversity Research (iDiv); Halle-Jena-Leipzig: International Programme of Biodiversity Science (DIVERSITAS); International Geosphere-Biosphere Programme (IGBP); Future Earth; French Foundation for Biodiversity Research (FRB); GIS 'Climat, Environnement et Société' France; UK Natural Environment Research Council (NERC); AXA Research Fund

A list of authors and their affiliations appears in the Appendix.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.© 2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd
1 | INTRODUCTION

Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants measurable at the individual plant level (Violle et al., 2007)—reflect the outcome of evolutionary and community assembly processes responding to abiotic and biotic environmental constraints (Valladares, Gianoli, & Gomez, 2007). Traits and trait syndromes (recurrent coordinated expressions of multiple traits) determine how plants perform and respond to environmental factors (Grime, 1974; Wright et al., 2017), affect other trophic levels (Lavorel et al., 2013; Loranger et al., 2012, 2013), and provide a link from species richness to functional diversity, which influences ecosystem properties and derived benefits and detriments to people (Aerts & Chapin, 2000; Díaz et al., 2004, 2007; Garnier & Navas, 2012; Grime, 2001, 2006; Lavorel et al., 2015; Lavorel & Garnier, 2002). In the context of the Global Earth Observation Biodiversity Observation Network (GEO BON) species traits are considered an Essential Biodiversity Variable to inform policy about biodiversity change (Kissling et al., 2018; Pereira et al., 2013). A focus on traits and trait syndromes, therefore, provides a crucial basis for quantitative and predictive ecology, ecologically informed landscape conservation and the global change science-policy interface (Díaz et al., 2016; McGill, Enquist, Weiher, & Westoby, 2006; Westoby & Wright, 2006). To fully realize this potential, plant trait data not only need to be available and accessible in appropriate quantity and quality but also representative for the scales of inference and research questions (König et al., 2019). Here we analyse where the TRY plant trait database stands with respect to coverage and representativeness after 12 years of operation. We further review the mechanisms and emergent dynamics helping to increase both.

1.1 | A global database of plant traits—A brief history

Before the foundation of TRY in 2007, several research groups had already developed major plant trait databases with remarkable success, e.g. the Ecological Flora of the British Islands (Fitter & Peat, 1994), the Seed Information Database (Royal Botanical Gardens KEW, 2008), BIOPOP (Poschlod, Kleyer, Jackel, Dannemann, & Tackenberg, 2003), GLOPNET (Wright et al., 2004), BioFlor (Klotz, Kühn, & Durka, 2002, 2017), LEDA (Kleyer et al., 2008), BROT (Paula et al., 2009), USDA PLANTSdata (Green, 2009) and BRIDGE (Baraloto, Timothy Paine, Patino, et al., 2010). However, these databases were either focused on particular regions (BioFlor, LEDA, BIOPOP, BROT, USDA Plants, Ecological Flora of the British Islands, BRIDGE) or specific traits (GLOPNET, SID). A ‘database of databases’ was in discussion for some time, but it had been impossible to secure long-term funding for such a project. Finally, at a joint workshop of the International Geosphere-Biosphere Program (IGBP) and DIVERSITAS, the TRY database (TRY—not an acronym, rather a statement of sentiment; https://www.try-db.org; Kattge et al., 2011) was proposed with the explicit assignment to improve the availability and accessibility of plant trait data for ecology and earth system sciences. The Max Planck Institute for Biogeochemistry (MPI-BGC) offered to host the database and the different groups joined forces for this community-driven program. Two factors were key to the success of TRY: the support and trust of leaders in the field of functional plant ecology submitting large databases and the long-term funding by the Max Planck Society, the MPI-BGC and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, which has enabled the continuous development of the TRY database.

At the time of the foundation of TRY, data sharing was not yet a common practice in ecology (Kattge et al., 2011; Reichman, Jones, & Schildhauer, 2011). This was an important obstacle for scientific progress. The first important step of the initiative was, therefore, to jointly develop a data sharing policy. This was based on permission of data set owners and a ‘give-and-take’ system: to keep the TRY database growing, the right to request data was coupled to data contribution. Exceptions were data requests for vegetation modelling projects, as modellers typically do not own plant trait data. At an open workshop in 2013, the members decided to offer the opportunity to make data publicly available and trait data contribution was no longer a requirement for data access. In 2014, this decision was implemented in the TRY Data Portal and was immediately followed by an ‘explosion’ of the number of data requests (Figure 1a): TRY
started to serve more than 1,000 requests per year, so that as of July 2019, about 700 million trait records accompanied by 3 billion ancillary data have been released for 7,000 requests, submitted by more than 5,000 registered users. Since 2019, the TRY database is open access under a Creative Commons Attribution license (CC BY 4.0, https://creativecommons.org/licenses/by/4.0): anyone can use and redistribute data received via TRY under the only condition of appropriate citation of the TRY database and the references of contributing data sets. Restriction of data access now is the exception and limited to 2(+2) years, after which the data sets become public.

Since 2014, the TRY Data Portal (https://www.try-db.org/TryWeb/dp.php) has become the central access point of the TRY database: the portal organizes data uploads, searches and requests, and enables interaction between data contributors, management and users. The portal provides an account for each data set custodian (the individual who directly contributed the data set), which provides precise bookkeeping about the use of his or her trait data via TRY. The TRY Data Portal also provides a link to the TRY File Archive (https://www.try-db.org/TryWeb/Data.php), which offers climate and soil data for TRY measurement sites, standardized

FIGURE 2 Cluster analysis of keywords from peer-reviewed publications using plant trait data via TRY. The size of the circles and letters indicates the frequency of the keywords, colours indicate the eight clusters around the central keywords (from largest to smallest cluster): biodiversity (red), climate change (dark green), plant traits (dark blue), functional diversity (light green), carbon cycle (violet), community (light blue), vegetation (orange) and environmental filtering (brown). The analysis is based on 190 publications with DOIs compiled by ISI Web of Science (https://clarivate.com/products/web-of-science). The analysis was performed with VOSviewer version 1.6.11 (https://www.vosviewer.com) using the default settings and only minor editing of selected terms. The clustering technique used by VOSviewer is discussed by Waltman, van Eck, and Noyons (2010). Due to limited space not all central keywords of small clusters are displayed. Material to display the results in detail using the VOSviewer software is provided in the Supporting Information.
categorical traits relevant to attribute species to plant functional types (PFTs), and provides the opportunity to publish plant trait data sets and receive a DOI.

Trait data via TRY contributed to at least 250 scientific applications and publications (Figure 1a), among these 202 peer-reviewed publications in 83 different scientific journals, covering a broad range of topics, from ‘Landscape and Urban planning’ to ‘Geoscientific Model Development’. Twenty publications were directly related to vegetation model development, while 230 were empirical studies. A cluster analysis of keywords from the peer-reviewed publications shows eight clusters around the central keywords biodiversity, climate change, plant traits, functional diversity, carbon cycle, community, vegetation and environmental filtering (Figure 2). Citations of publications using trait data via TRY have increased exponentially, leading to about 10,000 citations and an h-factor of 46 for the TRY database (Figure 1b).

During 12 years of development, versions 1–5 of the TRY database have been released with an increasing number of contributed data sets and trait records (Tables 1 and 2; Figure 1a). Currently, TRY is working on version 6. As of July 2019, the TRY database comprises 588 data sets from 765 data contributors (Table A1). The dynamics of the number of data sets in TRY indicates an increasing success of calls to the scientific community for data contribution in 2007, 2013 and 2019. When the manuscript was submitted, data contributions responding to the call in 2019 were not yet fully integrated into the TRY database. Therefore all analyses presented in this paper are based on versions 1–5 of the TRY database (Table 1). TRY version 5, released on 26 March 2019, contains 387 data sets providing 11.8 million trait records, accompanied by 35 million ancillary data, for 2,091 traits and 280,000 plant taxa, mostly at the species level (Table 2). Data coverage is still driven by a few large (often integrated) databases, but increasingly small data sets (mostly primary data) contribute to the overall coverage (Figure 3a). Plant trait data in TRY can be traced to >10,000 original references. This highlights the breadth of data integrated in the TRY database and its nature as database of databases, a ‘second generation of data pooling’ (M. Westoby, personal communication, August 24, 2009).

We now observe a tendency that new trait-based research is increasingly planned against the background of the TRY database. Coverage and availability of trait data in TRY stimulate trait-based research, which then often leads to the identification of unexpected data gaps. This motivates data mobilization and/or new measurements, which improve the availability of plant trait data for the research community, and—if contributed to TRY—help the database grow. Examples for such a ‘feed-forward data integration loop’ are provided in Box 1.

To support this process, in this article, we take stock of the data compiled in the TRY database and present emerging patterns of data coverage and representativeness with a focus on the identification of principal and systematic gaps. Finally, we discuss ways forward and the potential future role of the TRY initiative for the research community.

2 | MATERIALS AND METHODS

2.1 | Plant trait data in the TRY database

Plant traits can be classified as categorical (qualitative and ordinal) or quantitative (continuous) traits (Kattge et al., 2011). Some traits are rather stable within species (mostly categorical traits), and some of these can be systematically compiled from species checklists and floras (e.g. Weigelt, König, & Kreft, 2019).
However, most traits relevant to ecology and earth system sciences are characterized by intraspecific variability and trait–environment relationships (mostly quantitative traits). Both kinds of traits are compiled in the TRY database, but with a focus on continuous traits. These traits have to be measured on individual plants in their particular environmental context. Each such trait measurement has high information content as it captures the specific response of a given genome to the prevailing environmental conditions. The collection of these quantitative traits and their essential environmental covariates is important but often tedious and expensive: researchers need to travel to the objects of interest—often to remote places—or they need to develop experiments creating specific environmental conditions. While trait measurements themselves may be relatively simple, the selection of the adequate entity (e.g., a representative plant in a community, or a representative leaf on a tree) and obtaining the relevant ancillary data (taxonomic identification, soil and climate properties, disturbance history, etc.) may require sophisticated instruments and a high degree of expertise and experience. Besides, these data are most often individual measurements with a low level of automation. This not only limits the number of measurements but also causes a high risk of errors, which need to be corrected a posteriori, requiring substantial human work. The
integration of these data from different sources into a consistent data set requires a carefully designed workflow with sufficient data quality assurance (see Box 2: TRY data integration workflow).

These measurements of quantitative traits are single sampling events for particular individuals at certain locations and times, which preserve relevant information on intraspecific variation and provide the necessary detail to address questions at the level of populations or communities. Within individual field campaigns or experiments, researchers often aim to measure complete sets of these data: all traits of interest for all individuals or species in the analyses. However, across studies and data sets and at large scales, the coverage of these data shows major gaps, which provide major challenges concerning data completeness and representativeness (König et al., 2019).

3 | RESULTS

3.1 | Data coverage

Compared to TRY database version 1 and the state reported in Kattge et al. (2011), TRY version 5 has substantially grown with respect to the number of trait records, traits, species, entities, georeferenced measurement sites and ancillary data (Table 2).

3.2 | Trait records and entities

The numbers of trait records (individual trait measurements) and entities (individual plants or plant organs on which the measurements have been taken) increased by a factor of about 6 for trait
The number of traits has grown steadily from TRY version 1 to 5, apart from a steep step from TRY version 3 to 4 (Table 2). This step was caused by the contribution of the FRED database, which added about 700 new traits for roots. Data coverage across traits is characterized by long-tail distributions: a small number of traits is well covered by records and species, while the majority of traits has only very low coverage of records and species (Figure 3). However, the number of continuous traits with more than 1,000 records (which are subject to intense data quality assurance during integration) has increased from about 200 in TRY version 1 to 600 in TRY version 5 (Figure 3b). The number of traits with data for more than 100 species has increased from 300 to 700 (Figure 3c). In parallel, the number of records per trait and species (‘intraspécific retakes’) has increased from almost zero traits with on average more than 10 records per
trait–species combination in TRY version 1 to more than 500 in TRY version 5 (Figure 3f).

The traits with the best species coverage in TRY version 5 are mostly categorical (Table 3). The categorical traits used for the version 5 (Figure 3f).

Table 3: Traits with best species coverage. The 30 traits covering the highest number of species in the TRY database version 5 and the number of species represented for these traits in TRY version 1. Data type: cat = categorical; con = continuous. Sorted by the number of species in TRY 5.

Trait name	Data type	Number of species	TRY 1	TRY 5
Plant growth form	cat	31,327	263,357	
Plant woodiness	cat	14,628	79,298	
Leaf type	cat	7,934	62,904	
Leaf compoundness	cat	7,998	57,922	
Leaf photosynthesis pathway	cat	15,609	37,315	
Leaflet number per leaf	con	0	30,296	
Plant height vegetative	con	13,899	28,944	
Leaf phenology type	cat	14,622	28,514	
Species tolerance to frost	cat	2,180	28,122	
Seed dry mass	con	14,602	27,022	
Species occurrence range: native versus invasive	cat	11,313	25,067	
Plant lifespan	cat, con	7,617	24,712	
Dispersal syndrome	cat	7,528	21,717	
Plant nitrogen fixation capacity	cat	10,504	18,247	
Leaf area\(^a\)	con	8,873	16,663	
Leaf area per leaf dry mass (specific leaf area)\(^b\)	con	7,879	16,460	
Plant resprouting capacity	cat	3,320	15,997	
Seed germination rate (germination efficiency)	con	6,698	15,822	
Plant life form sensu Raunkiaer	cat	7,710	15,766	
Pollination syndrome	cat	4,064	15,631	
Leaf shape	cat	3,191	15,594	
Flower sex	cat	3,572	13,735	
Leaf distribution arrangement type	cat	3,998	13,130	
Leaf nitrogen content per leaf dry mass	con	6,291	12,238	
Stem specific density	con	9,813	11,001	
Flower colour	cat	4,747	10,507	
Seed storage behaviour	cat	10,161	10,161	
Fruit type	cat	3,644	9,573	
Leaf margin type	cat	0	9,179	
Wood growth ring distinction	cat	5,121	9,103	

\(^a\)In case of compound leaves: leaflet, undefined if petiole is included or excluded.

\(^b\)Undefined if petiole is included or excluded.

classification of PFTs—plant woodiness, plant growth form, leaf type (broadleaved vs. needle-leaved), leaf phenology type (deciduous vs. evergreen), leaf photosynthesis pathway (C3, C4, CAM)—are still among the best covered. However, the number of species characterized for each of these traits has substantially increased from TRY version 1 to 5, most significantly for plant growth form from 31,327 to 263,357 species, supported by the contribution from the GIFT database (Weigelt, König, & Kreft, 2019).

The quantitative traits with the highest species coverage are still the six traits which were already prominent in TRY version 1 and involved in the analysis of the global spectrum of plant form and function (Díaz et al., 2016): plant height, seed mass, leaf area, leaf area per dry mass, leaf nitrogen content per dry mass and stem specific density (SSD). However, in general, the coverage of continuous traits already present in TRY 1 has substantially improved. This facilitates a more robust characterization of frequency distributions (Figure 4). In most cases, the range of observed trait values did not change much from TRY version 1 to 5, but the shapes of frequency distributions became more regular and pronounced, especially for multimodal frequency distributions like plant height and leaf Δ13C. Noteworthy, the examples in Figure 4 lack several kinds of traits because they are missing relevant numbers of trait records, like roots (only one trait), flowers and dead plant material (litter), secondary metabolites or data related to trophic interactions.

The 30 traits that were most often requested (Table 4) are dominated by continuous traits related to the global spectrum of plant form and function (Díaz et al., 2016), the leaf economics spectrum (Wright et al., 2004) and rooting depth. Only seven categorical traits are among these 30 traits. This indicates a switch between well covered—categorical—traits (Table 3) and most frequently requested—continuous—traits (Table 4). The first five most documented traits are categorical whereas among the 10 most requested traits, only one is categorical. However, within continuous traits, there is, in general, a good match between traits characterized for most species and traits most often requested. To some extent this may be influenced by the amount of available data for the individual traits. However, a noteworthy exception is rooting depth, as 10% of requests ask for this trait, while it is ‘only’ covered for 3,886 species, mostly contributed via the Global Dataset of Maximum Rooting Depth (Fan, Miguez-Macho, Jobbágy, Jackson, & Otero-Casal, 2017). This mismatch indicates a demand for more data on the most relevant below-ground traits.

3.4 | Species

From TRY version 1 to 4, the number of species increased slowly, but almost doubled to version 5 due to the contribution of plant growth form data from the GIFT database, which added about 100,000 new species. As in the case of traits, the data coverage for species is characterized by long-tail distributions: few species are covered well by measurements and traits, while the majority...
FIGURE 4 Frequency distributions of observations for 15 ecologically relevant and well sampled continuous traits from different plant organs. Grey: TRY version 1; white: TRY version 5. (a) Plant height, (b) Seed mass, (c) SSD: stem dry mass per stem fresh volume (stem specific density), (d) Leaf area, (e) SLA: leaf area per leaf dry mass (specific leaf area), (f) Leaf N mass: leaf nitrogen content per leaf dry mass (leaf nitrogen concentration), (g) LDMC: leaf dry mass per leaf fresh mass (leaf dry matter content), (h) Leaf P mass: leaf phosphorus content per leaf dry mass, (i) Leaf C mass: leaf carbon content per leaf dry mass, (j) Leaf N area: leaf nitrogen content per leaf area, (k) Leaf P area: leaf phosphorus content per leaf area, (l) Leaf CN: leaf carbon content per leaf nitrogen content, (m) Leaf 13C: leaf 13C carbon isotope signature, leaf Δ13C, (n) Leaf 15N: leaf 15N nitrogen isotope signature, (o) SRL: root length per root dry mass (specific root length).
of species has only very low data coverage (Figure 3d-f). The species characterized by the most traits tend to be northern temperate trees or globally distributed pasture species (Table 5). Out of the top 30 species with the best trait coverage, 27 (90%) originate in Central or Northern Europe.

Table 5: Species with best trait coverage

Species	Plant growth form	TRY 1	TRY 5
Pinus sylvestris	Tree	264	569
Fagus sylvatica	Tree	237	517
Picea abies	Tree	252	475
Quercus robur	Tree	194	435
Acer saccharum	Tree	139	430
Betula pendula	Tree	265	429
Achillea millefolium	Herb	209	403
Acer pseudoplatanus	Tree	186	397
Trifolium pratense	Herb	181	395
Quercus rubra	Tree	190	388
Dactylis glomerata	Herb	193	387
Plantago lanceolata	Herb	156	386
Vaccinium vitis-idaea	Shrub	189	382
Trifolium repens	Herb	173	380
Fraxinus excelsior	Tree	196	378
Acer platanoides	Tree	186	378
Quercus petraea	Tree	194	368
Poa pratensis	Herb	195	366
Holcus lanatus	Herb	178	364
Tilia cordata	Tree	153	362
Calluna vulgaris	Shrub	190	360
Lotus corniculatus	Herb	153	360
Pseudotsuga menziesii	Tree	141	356
Medicago lupulina	Herb	145	351
Festuca rubra	Herb	175	347
Sorbus aucuparia	Tree	197	335
Phleum pratense	Herb	179	335
Quercus ilex	Tree	195	333
Betula papyrifera	Tree	126	332
Vaccinium uliginosum	Shrub	169	330

Table 4: Most often requested traits

Trait	Data type	Number of requests
Leaf area per leaf dry mass (specific leaf area or 1/LMA)	con	2,977 (41%)
Plant height vegetative	con	2,159 (29%)
Leaf nitrogen (N) content per leaf dry mass	con	1,938 (26%)
Leaf area	con	1,676 (23%)
Plant growth form	cat	1,625 (22%)
Seed dry mass	con	1,580 (22%)
Leaf nitrogen (N) content per leaf area	con	1,221 (17%)
Leaf phosphorus (P) content per leaf dry mass	con	1,170 (16%)
Plant lifespan (longevity)	con	1,168 (16%)
Leaf dry mass per leaf fresh mass (leaf dry matter content)	con	1,147 (16%)
Leaf phenology type	cat	1,047 (14%)
Leaf carbon (C) content per leaf dry mass	con	973 (13%)
Dispersal syndrome	cat	958 (13%)
Stem specific density	con	951 (13%)
Leaf photosynthesis rate per leaf area	con	896 (12%)
Leaf dry mass (single leaf)	con	896 (12%)
Leaf photosynthesis pathway	cat	874 (12%)
Leaf thickness	con	852 (12%)
Plant nitrogen (N) fixation capacity	con	833 (11%)
Leaf carbon/nitrogen (C/N) ratio	con	817 (11%)
Plant life form sensu Raunkiaer	cat	801 (11%)
Leaf lifespan (longevity)	con	790 (11%)
Root rooting depth	con	733 (10%)
Plant growth rate	con	727 (10%)
Leaf type	cat	727 (10%)
Leaf phosphorus (P) content per leaf area	con	719 (10%)
Plant functional type	cat	710 (10%)
Plant woodiness	cat	708 (10%)
Leaf photosynthesis rate per leaf dry mass	con	701 (10%)
Plant reproductive phenology timing	con	672 (9%)

*Undefined if petiole is included or excluded.
*In case of compound leaves: leaflet, undefined if petiole is included or excluded.

3.5 Entity × trait and species × trait matrices

The trait data in the TRY database can be represented by two two-dimensional matrices: the entity × trait matrix, with entities in rows and traits in columns; and the species × trait matrix, with species in rows and traits in columns. Both matrices are characterized as large but sparse: high numbers of entities, species and traits in TRY make the two matrices large, but many cells in the matrices are empty. From TRY version 1 to 5 the size of the matrices has grown by a factor of 15, but at the same time the number of trait records to fill
the cells increased only by a factor of about 5 and thus the matrices became even sparser: the fractional coverage decreased from 0.4% to 0.1% (entity × trait) and 1.4% to 0.4% (species × trait; Figure 5a). This sparsity together with the observed long-tail distributions has consequences, especially for multivariate analyses. Given that on average only two to three traits of the 2,091 traits in TRY version 5 are measured on an individual plant (entity), a multivariate analysis based on individuals is indeed practically impossible, as mentioned by Shan et al. (2012). Even after aggregation at the species level, the decline of the number of species with complete trait coverage when adding a new trait, for example for multivariate analysis, is surprisingly high (Figure 5b). Additionally, the final number of species represented in the analysis is determined by the trait with the lowest species coverage. Therefore multivariate analyses with more than about six traits are still very much limited by the number of species. The same applies when species have to be classified by several categorical traits, like for example in the context of PFTs.

3.6 Ancillary data

The numbers of ancillary data, geo-referenced trait records and trait records with measurement date increased by a factor of almost 10 from TRY version 1 to TRY version 5 (Table 2). The ratio of ancillary data to trait records, therefore, increased from TRY version 1 to 5 from 2:1 to 3:1 and the fraction of geo-referenced trait records from about 33% to 42% (Table 2). The number of geo-referenced trait records with information on measurement date that could be standardized to year, month and day increased from 290,000 in TRY version 1 (15% of all trait records) to 2.5 million records in TRY version 5 (20%). The increasing ratio of ancillary data to trait records indicates growing awareness for the relevance of environmental conditions during plant growth and trait measurements. In this context, geo-references (and date) are crucial, as they allow trait records to be related to information on climate, soil or biome type from external sources.

The geographic coverage of trait measurements has substantially improved from TRY version 1 (8,276 measurement sites representing 1,260 1° × 1° grid-cells) to TRY version 5 (20,953 sites representing

![Figure 5](image-url)
Europe still has the highest density of measurement sites, but TRY version 5 also provides good coverage for the United States and China. The number of measurement sites has substantially improved for several other regions as well, for example Central America, Russia, Asia and parts of central Africa. However, there are still obvious gaps in boreal regions (Canada, East Russia) and some parts of the tropics and subtropics, particularly in Africa (Figure 6).

3.7 Data completeness and representativeness

To progress from a description of data coverage towards an analysis of representativeness, we need a baseline for comparison. At the global scale, this information has been lacking. Reference data sets have become available only recently for plant growth form (Weigelt, König, & Kreft, 2019) and phylogeny (Smith & Brown, 2018) representing about 260,000 and 356,000 of the 400,000 extant species. Together with estimations for the global distribution of plant species richness (Kier et al., 2005), it seems now possible and timely to explicitly address representativeness of plant trait data in the TRY database along five key dimensions: (a) Are trait data in TRY well distributed among plant parts? (b) Are the species in TRY and for individual traits representative for global plant growth forms and functional types? (c) Are the species in TRY and for individual traits representative according to phylogeny? (d) Does the geographic distribution of species richness in TRY represent the estimated pattern of global species richness? (e) Is data coverage sufficient to represent intraspecific variation?

3.8 Distribution of trait records among plant parts

Trait records in the TRY database are very unequally distributed among different plant parts (Figure 7): leaves and the whole plant are well represented; shoot and reproductive organs are moderately represented; roots and dead material (morphological and chemical feature of litter and coarse woody debris, but also decomposition rates) are not well represented. Within reproductive organs, seeds are better represented than floral traits, mostly due to contributions from the Seed Information Database. The skewed distribution of
trait records to the different parts of the plants has only changed little from TRY version 1 to 5. However, the fraction of records for root traits has substantially increased (from 0.7% to 2.0%), due to the contribution of the FRED database.

3.9 Plant growth form and PFTs

The most basic approach to characterize functional groups of plant species and their impact on vegetation and ecosystem function is the plant growth form, with its simplest classification to herbs, shrubs and trees. We compare here the fraction of the different plant growth forms for trait measurements in TRY version 5 to a comprehensive baseline of plant growth form for >280,000 of the extant 400,000 species, which is currently developed in the context of the GIFT database project.

In GIFT, about 50% of species are currently assigned to herbs, 30% to trees and 20% to shrubs (Figure 8). This distribution is well reflected by the species in TRY (excluding data from the GIFT database). However, the six best covered continuous traits in TRY indicate that this distribution is very much trait dependent, with a bias towards trees versus herbs, while the fraction of shrubs is surprisingly constant and close to the fraction in the GIFT database (Figure 8). The overrepresentation of trees is most obvious for SSD, which is not surprising because SSD is a more general concept derived from wood density, a trait relevant for forestry, timber industry and estimates of forest vegetation biomass. However, the tendency of relatively more data for trees compared to other growth forms is also obvious for SLA, leaf nitrogen content per dry mass and leaf area, but opposite for root length per root dry mass (specific root length), which is frequently reported for herbs.

Apart from plant growth form, three additional categorical traits are relevant to determine PFTs commonly used in global vegetation models: leaf type (broadleaved vs. needle-leaved) and leaf phenology type (deciduous vs. evergreen) for tree species, and photosynthetic pathway (C3, C4, CAM) for herbaceous species. TRY provides leaf type and leaf phenology type, for about 10% of the estimated 130,000 tree species worldwide and photosynthetic pathway for about 6% of estimated 200,000 herb species.

3.10 Phylogeny

Smith and Brown (2018) published a series of broadly inclusive seed plant phylogenies. Here we chose the most comprehensive phylogeny (ALLMB), containing 356,305 taxa, as a baseline to visualize the coverage of TRY in a phylogenetic context. Taxa in ALLMB were cut to binomials and consolidated using the TNRS with TPL, GCC, ILDIS, TROPICOS and USDA as the taxonomic backbone (the same approach as for TRY). After consolidation, we could match the taxa in the phylogeny to 208,406 of the 279,875 taxa in TRY. Higher level taxonomy is based on Zanne et al. (2014).

Visually, the 208,000 species with data in TRY are well distributed across the 350,000 species represented in the phylogeny of seed plants (Figure 9). An ancestral state reconstruction (ASR) of species trait number confirms that the long-tail distribution previously seen at the species level also holds in a phylogenetic context: some clades are covered very well (bright colours), while most clades have lower data coverage (dark colours). The ASR additionally shows how deep in phylogeny data gaps are rooted. This indicates the potential for, and limits to, phylogenetically or taxonomically informed gap-filling (Schrodt et al., 2015). Examples of high-coverage clades are (parts of) the Pinales, Poales and Asterales. When looking at the six best-covered continuous traits individually, we find these too are well distributed across the phylogeny (Figure 9).

3.11 Geographic distribution of species richness

Jetz et al. (2016) reported a latitudinal gradient in disparities between plant species with regional measurements in TRY and estimated species richness, with the largest gap observed in the tropics, because these are especially rich in species. To address this in more detail, we...
here ask if the TRY database provides trait information for a relevant number of plant species in the different regions worldwide. To characterize regions in an ecologically meaningful way we adopt the ecoregions introduced by Olson et al. (2001), which are defined as relatively large units of land containing a distinct assemblage of natural communities and species, with boundaries that approximate the original extent of natural communities before major land-use change. The ecoregions are nested within biomes with biotic communities formed in response to a shared physical climate, most importantly temperature and rainfall. We compare the number of species, which have trait measurements in an ecoregion in TRY version 5 to species numbers per ecoregion estimated by Kier et al. (2005). This approach accounts to some extent for intraspecific trait variation, as it counts only species with at least one trait measurement in the given ecoregion.

The 839 ecoregions defined by Olson et al. (2001) are very different in size, from 6 km2 (San Felix–San Ambrosio Islands temperate forests) to 4,639,920 km2 (Sahara desert) with species numbers ranging from 0 (St. Peter and St. Paul rocks and the Maudlandia Antarctic desert) to 10,000 (Borneo lowland rain forests). The TRY database contains no trait measurements for 271 mostly small ecoregions and
up to 1,400 species for some ecoregions in Europe (Alps conifer and mixed forests) and tropical South America (Napo moist forests, Tapajos-Xingu moist forests). In general, high absolute numbers of species with trait measurements for ecoregions are found in Europe, East Asia, Oceania, Australia, tropical South America and the United States (Figure 10a). East Asia, Oceania and tropical South America are also the regions with the highest numbers of species per ecoregions estimated by Kier et al. (2005; Figure 10b).

FIGURE 10 Geographic representativeness: (a) the number of species with at least one trait measurement in an ecoregion in TRY version 5; (b) number of species per ecoregion estimated by Kier et al. (2005); (c) fraction of species represented in TRY version 5 versus number of species per ecoregion estimated by Kier et al. (2005)
The best relative coverage in TRY (Figure 10c) is provided for the Marielandia Antarctic tundra (two species estimated and in TRY) and for a large ecoregion in Central Russia (West Siberian taiga, 900 species estimated, 885 in TRY). The species in the Russian ecoregion are measured at several sites relatively well distributed across the ecoregion, but dominated by just one trait, ‘mycorrhiza infection intensity’ contributed by the mycorrhizal intensity database (Akhmetzhanova et al., 2012). Some other ecoregions are also well covered with data for more than 50% of estimated species (Southeast Australia temperate savanna, Qaidam Basin semi-desert, Córdoba forests and mountain grasslands). Apart from these individual ecoregions spread across the world, large parts of Europe are well covered, with trait data for about 30% of the species number estimated by Kier et al. (2005). Some ecoregions in East Asia, Australia, tropical South America, the Sahara, and the United States are also well covered, providing data for about 20% of estimated species richness. Very low relative coverage (<2%) is observed for major parts of Canada, Africa, western Asia (Iran, Iraq, Pakistan, Afghanistan) and major parts of India.

3.12 | Intraspecific variation

Understanding and predicting intraspecific variation for a relevant number of traits and species is still in its infancy. Given that TRY is collecting trait measurements on individual plants, the TRY data set might be suited to address these questions. A precondition for such analyses is a minimum number of measurements on different individual plants at different sites per trait and species. To assess this issue, we plotted the number of species for which TRY version 5 contains a minimum number of individual measurements (Figure 11a) and the number of species for which TRY version 5 contains measurements from a minimum number of individual sites (Figure 11b) for the 15 best-covered continuous traits. By increasing the minimum number of individuals or sites, the number of species available for analysis decreases sharply (more than exponentially), whereas the exact slope is trait specific. The characterization of intraspecific variation in Kattge et al. (2011) relied on at least 20 individuals per species. Based on this criterion, TRY 5 provides information for hundreds to thousands of species for 14 out of the 15 traits (Figure 11a). Assuming a more realistic limit of 100 individuals per species, SLA and LDMC are sufficiently covered for about 300 species, and four other traits for more than 100 species. Assuming a minimum number of 200 individuals per species, four traits still allow for an analysis of 100 species, and nine traits allow for the analysis of intraspecific variation of more than 10 species. However, the numbers are more humbling if the environmental context is taken into account (Figure 11b). If we assume that trait records from a minimum number of 50 sites per species are necessary to represent intraspecific variation, four traits are sufficiently covered for about 100 species. If 100 sites are necessary, no trait is covered by data for more than 10 species.

4 | DISCUSSION

Plant trait data provide a wealth of information directly relevant in several scientific contexts, from conservation, ecology and evolution to earth system sciences. To fully realize this potential, the TRY
initiative was initiated in 2007 as a ‘database of databases’ and leading groups in the field of functional plant ecology joined forces for this community-driven program. The TRY database now provides an unprecedented number of consolidated plant trait data, which have become easily accessible at the TRY Data Portal under an open access data policy.

The TRY database is well accepted by the scientific community and has facilitated progress in different aspects of research, for example in global vegetation modelling from static PFTs to a more continuous representation of biodiversity (e.g. Peaucelle, Bellassen, Ciais, Peñuelas, & Viovy, 2016; Sakschewski et al., 2015, 2016; Verheijen et al., 2013, 2015), extending macroecology and biodiversity by functional aspects (e.g. Björkman, Myers-Smith, Elendorf, Normand, Rüger, et al., 2018; Brueelheide et al., 2018; Craven et al., 2018; Newbold et al., 2015), linking soil characteristics to vegetation attributes (e.g. Boeddinghaus et al., 2019; de Vries et al., 2012; Delgado-Baquerizo et al., 2018) and providing data for global maps of plant traits (e.g. Butler et al., 2017; Moreno-Martínez et al., 2018).

The central keywords of the cluster analysis in Figure 2 (biodiversity, climate change, plant traits, functional diversity, carbon cycle, community, vegetation and environmental filtering) seem to reflect the expectation that improved knowledge of plant functional diversity, mediated by plant traits, contributes to a better understanding of vegetation feedbacks to climate change and drivers and consequences of plant biodiversity loss.

Data coverage of the TRY database is characterized by four attributes: (a) long-tail distributions, (b) sparse matrices, (c) increasing number of ancillary data per trait record and (d) increasing geographic coverage. So far the size of the two sparse matrices (entity × trait and species × trait) has increased faster than the number of trait records to fill the matrices. Therefore the sparseness of the matrices has increased from TRY version 1 to 5 (the fractional coverage declined). Rather than converging in a small number of traits, the scientific community continues to measure a large, diverse number of traits, following equally diverse motivations.

However, given the number of species has a natural limit and assuming the number of traits will continue to grow, but more slowly, once the most obvious ones have been covered, we expect that the sparseness of the entity × trait matrix will become stable: new data adding new rows for entities, but not many new columns for traits. In comparison, the sparseness of the species × trait matrix should decline in the future; new data will mostly contribute to filling the matrix and increasing the number of species with data per trait. This reduced sparseness of the species × traits matrix will systematically improve the applicability of trait data for macroecology and earth system modelling and will facilitate multivariate analyses for an increasing number of traits. In parallel, the number of records per species–trait combination is increasing: between TRY 1 and 5 it already doubled and will further increase in the future. This increasing number of records per species–trait combination will improve data coverage for analyses of intraspecific trait variation and trait–environment relationships accounting for intraspecific variation. It is noteworthy that the matrix will not only become more complete, but the traits will increasingly be able to inform each other. The ‘usual suspects’ (i.e. the best covered continuous traits) might not be masters of all traits, but they surely will be very useful as baseline traits and provide a background against which other—maybe more influential—traits can be analysed for coverage, representativeness, orthogonality, etc.

4.1 Data completeness and representativeness

Despite unprecedented and continuously growing data coverage, we observe a humbling lack of completeness and representativeness in many aspects. The best species coverage is achieved for categorical traits relevant to determine PFTs commonly used in global vegetation models. For the traits ‘woodiness’ and ‘plant growth form’, even full species coverage is within reach, due to the contribution of data from the GIFT database. For the first time, this provides a global baseline for these traits, which are relevant to understand basic patterns of variation for several other traits (Díaz et al., 2016). With this baseline, future analyses will be able to address representativeness in addition to coverage, which will substantially contribute to better understand the global pattern of plant traits relevant for biodiversity and ecosystem function (König et al., 2019).

Most traits directly relevant for ecology and vegetation modelling are characterized by intraspecific variation and trait–environmental relationships; for these traits, completeness at the global scale is impossible and representativeness is challenging. We find that in the current version of the TRY database, these traits are biased against roots, floral traits and dead organic material, like litter or coarse woody debris. Plant growth forms and phylogeny are generally well represented, but there are significant biases for individual traits. The global distribution of species richness is only marginally reflected by trait measurements. We observe a general bias towards temperate biomes. In contrast to Jetz et al. (2016), the tropics do not stand out as especially underrepresented in our analysis; apart from Europe, all continents contain major regions that are very sparsely represented in TRY.

So far we addressed representativeness in a geographic context only based on species richness, the number of species observed in an ecoregion. To address representativeness in an ecologically more meaningful context, species identity and species abundance should be taken into account. Both aspects are relevant to community attributes and ecosystem function. There is ample evidence in the literature of the high influence, at the level of community structure and ecosystem dynamics, of species that represent a large proportion of the total local biomass (consisting of large individuals and/or large total cover). Such species have a particularly large impact on the community weighted mean trait value (Garnier et al., 2004), and particularly large individual trees may overrule remaining trees’ attributes (Ali et al., 2019). Initial evidence indicates that abundant species are better covered in TRY than rare species. Brueelheide et al. (2019) show that the 25% most dominant or most frequent species
compiled in the sPlot vegetation-plot database are better represented by trait data in the TRY database than species observed on the plots overall. We also checked this for the 227 hyperdominant species of the Amazonia tree flora identified by ter Steege et al. (2013). After the consolidation of species names via TNRS, all 227 hyperdominant species are present in the TRY database, with on average 69 traits per species, which is far above average (see Figure 3e). We therefore conclude that the coverage of trait data in TRY is biased towards the more abundant species in the respective ecoregions—which is reasonable and welcome for many kinds of analyses.

We have reported that intraspecific variation in space is increasingly well covered, but variation in time is hard to estimate. Nevertheless, intraspecific variation in time is relevant for several traits to characterize the seasonal variation of plant and ecosystem function (Xu & Baldocchi, 2003; Xu & Griffin, 2006) and long-term trends to inform policy about biodiversity change (Kissling et al., 2018). About half of the geo-referenced trait records have information on the sampling date that could be standardized to year, month and day, but systematic replicates over time (‘time series’) are rare (but see e.g. the ‘Photosynthesis Traits Database’; Xu & Baldocchi, 2003). In principle, ‘non-time series’ data allow detection of trait changes over time (Craine et al., 2018), but these analyses are very challenging, as most traits demonstrate stronger variation in geographic space along climate and soil gradients than over time. In addition, the variations of traits on different time scales (diurnal, seasonal, inter-annual variation and long-term trends) are superimposed and hard to disentangle. Apart from this, there is a need to collect and report repeated trait measurements from the same location or population to monitor biodiversity change and inform policy, for example in the context of GEO BON (Kissling et al., 2018).

4.2 | Ways forward

Figure 1 shows the most obvious way to mobilize additional trait data: the TRY initiative should regularly send calls for data contributions to the wider scientific community, that is the network of more than 6,000 researchers contributing and using trait data via TRY. These calls should be combined with regular publications of respective reference papers. This can be combined with (a) a systematic collection of data sets from public data repositories, which is becoming more effective with the general move by many journals to require that authors make their data open access; and (b) systematic extraction of trait data from the ecological literature, floras and herbarium specimens, which is a promising task, especially for its potential to open a window into the past. In parallel, TRY should further support the ‘feed-forward data integration loop’ outlined above: using trait data via TRY, identifying gaps, mobilizing and/or measuring new data, contributing additional data to TRY. This has proven very effective for focused data mobilization. If relevant gaps are detected, TRY can also send specific calls to the community.

As TRY has been designed as a community cyber-infrastructure based on the idea of incentive-driven data sharing (Kattge, Díaz, & Wirth, 2014), the collaboration and data exchange with other plant trait databases will continue to be the key to achieve a comprehensive representation of plant traits. TRY is, therefore, collaborating with many more recent trait database initiatives, such as, for example, FRED, GIFT, BIEN and the Tundra Trait Team, and since the early days of TRY–GLOPNET, LEDA, SID, BiolFlor, BIOPOP, BROTx, the Ecological Flora of the British Isles, eHALOPH, USDA PLANTSdata, BRIDGE and many others. Importantly, these collaborations need to provide mutual benefit. Based on these collaborations, the TRY database may serve as a central node for plant traits in an overarching network of trait databases, currently emerging in the context of the Open Traits Network (Gallagher et al., in press). Finally, new techniques and approaches are gradually becoming available, which may substantially change how plant trait data are collected: remote sensing, citizen sciences, microbiological and molecular screening, etc.

4.3 | Towards a third generation of plant trait data integration and sharing

We expect that the combination of (a) systematic involvement of the TRY network towards extraction and mobilization of legacy and recent trait data from public repositories, ecological literature, floras and herbaria, (b) facilitation of the ‘feed-forward data integration loop’ and (c) intensified collaboration of all plant trait-related initiatives, including new approaches and techniques, will be effective towards an increasingly comprehensive representation of plant traits. After the development of integrated databases focused on specific regions or topics, and the development of a ‘database of databases’, such a joined effort might be leading towards a third generation of plant trait data integration and sharing.

5 | CONCLUSION

TRY has received institutional support since 2007 and is still growing considerably in quantity and quality. While TRY may be considered a success and potentially a role model for database initiatives, it is important to realize that this development needed time and patience. It took until 2011 for the first TRY publications to appear because the early years of TRY were mostly devoted to the development of the database, organizing the community process towards a joint data sharing policy and building trust. This process involved initially dozens and later hundreds of scientist when it came to agree on moving towards open access. These dynamics do not fit into 3 year funding cycles as typically offered by national funding agencies. A key lesson of TRY is that the development of a database that is trusted by the community and accepted for its service and quality also needs the trust of the funders, that is long-term support, at the scale of decades rather than years. It also needs journals that are willing to accept long author lists and extended references lists to adequately acknowledge the original contributions that are the building blocks of communal databases.
ACKNOWLEDGEMENTS

We would like to thank Stephen Long for the invitation to contribute to the special issue celebrating the 25th anniversary of Global Change Biology and the Executive Editor Rachel Shekar for her extraordinary support and patience handling this manuscript. We also thank the publisher for excellent support. We thank the two anonymous reviewers for valuable suggestions, which helped to substantially improve the manuscript. The TRY database is hosted, developed and maintained at the Max Planck Institute for Biogeochemistry (MPI-BGC) in Jena, Germany, in collaboration with the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. The TRY database receives additional funding by the Max Planck Society via the Max Planck Fellow Program for Christian Wirth. In addition, the TRY initiative has been supported by the International Programme of Biodiversity Science (DIVERSITAS), the International Geosphere-Biosphere Programme (IGBP), Future Earth, the French Foundation for Biodiversity Research (FRB), and GIS ‘Climat, Environnement et Société’ France. The TRY initiative is grateful for major support by Linda Maack and the IT Department at the MPI-BGC. We would like to thank all data contributors to TRY, who are not co-authors of this paper, that is Pierre Meerts, Jennifer Powers, Nina Koele, Henrik Balslev, John Briggs, Michael White and Robin Chazdon, V.O. thanks RSF (#19-14-00038). S.D. thanks CONICET, FONCyT and IAI. Finally, the TRY initiative is very grateful to all the numerous scientists not mentioned here measuring plant traits: without their work the TRY database would not exist.

CONFLICT OF INTEREST

All authors declare no conflict of interest.

AUTHOR CONTRIBUTION

Jens Kattge, Gerhard Bönisch, Sandra Diaz, Sandra Laveal, Iain Colin Prentice, Paul Leadley and Christian Wirth developed the concept and draft manuscript. Susanne Tautenhahn and Gisbert Werner contributed analyses and plots for Figures 9, 10 and 11. The other authors contributed plant trait data and/or supported data curation and analysis. All 729 authors contributed to writing.

ORCID

Jens Kattge https://orcid.org/0000-0002-1022-8469
Sandra Diaz https://orcid.org/0000-0003-0012-4612
Susanne Tautenhahn https://orcid.org/0000-0002-2753-3443
Gisbert D. A. Werner https://orcid.org/0000-0002-5426-2562
Tuomas Aakala https://orcid.org/0000-0003-0160-6410
Mehdi Abedi https://orcid.org/0000-0002-1499-0119
Alicia T. R. Acosta https://orcid.org/0000-0001-6572-3187
George C. Adamidis https://orcid.org/0000-0001-8704-6623
Masahiro Aiba https://orcid.org/0000-0002-5966-1562
Cécile H. Albert https://orcid.org/0000-0002-0991-1068
Julio M. Alcántara https://orcid.org/0000-0002-8003-7844
Carolina Alcázar C. https://orcid.org/0000-0002-9366-8098
Isabel Aleixo https://orcid.org/0000-0001-9220-8965
Hamada Ali https://orcid.org/0000-0002-7062-9344
Christian Ammer https://orcid.org/0000-0002-4235-0135
Carolyn Anderson https://orcid.org/0000-0003-4211-5765
Deborah Mattos Guimarães Apagau https://orcid.org/0000-0002-6303-6989
Tia-Lynn Ashman https://orcid.org/0000-0002-9884-5954
Gregory P. Asner https://orcid.org/0000-0001-7893-6421
Michael Aspinwall https://orcid.org/0000-0003-0199-2972
Owen Atkin https://orcid.org/0000-0003-1041-5202
Isabelle Aubin https://orcid.org/0000-0002-5953-1012
Lars Baasstrup-Spohr https://orcid.org/0000-0001-8382-984X
Khadijeh Bahalke https://orcid.org/0000-0003-1485-0316
Michael Bahn https://orcid.org/0000-0001-7482-9776
William J. Baker https://orcid.org/0000-0001-6727-1831
Jan P. Bakker https://orcid.org/0000-0001-7475-9096
Dennis Baldocchi https://orcid.org/0000-0003-3496-4919
Jennifer Baltzer https://orcid.org/0000-0001-7476-5928
Jos Barlow https://orcid.org/0000-0003-4992-2594
Diego R. Barneche https://orcid.org/0000-0002-4568-2362
Zdravko Baruch https://orcid.org/0000-0002-7264-4812
Denis Bastianelli https://orcid.org/0000-0002-6394-5920
John Battles https://orcid.org/0000-0001-7124-7893
William Baurerle https://orcid.org/0000-0003-3090-234X
Marijn Bauters https://orcid.org/0000-0003-0978-6639
Michael Beckmann https://orcid.org/0000-0002-5678-265X
Hans Beeckman https://orcid.org/0000-0001-8954-6277
Carl Beierkuhnlein https://orcid.org/0000-0002-6456-4628
Gavin Belfry https://orcid.org/0000-0003-3405-5950
Michael Bellau https://orcid.org/0000-0001-6707-546X
Mirela Beloiu https://orcid.org/0000-0002-3592-8170
Raquel Benavides https://orcid.org/0000-0003-2328-5371
Lahcen Benamar https://orcid.org/0000-0001-9301-5655
Mary Lee Berdugo-Lattke https://orcid.org/0000-0002-6662-6458
Erika Berenguer https://orcid.org/0000-0001-7357-8805
Rodrigo Bergamin https://orcid.org/0000-0002-2405-9797
Joana Bergmann https://orcid.org/0000-0002-2008-4198
Marcos Bergmann Carlucci https://orcid.org/0000-0002-5868-7090
Logan Berner https://orcid.org/0000-0001-8947-0479
Markus Bernhardt-Römermann https://orcid.org/0000-0002-2740-2304
Christof Bigler https://orcid.org/0000-0003-3757-6356
Anne D. Bjorkman https://orcid.org/0000-0003-2174-7800
Carolina Blanco https://orcid.org/0000-0002-8959-2633
Benjamin Blondel https://orcid.org/0000-0002-5061-2385
Dana Blumenthal https://orcid.org/0000-0001-7496-0766
Kelly T. Bocanegra-Gonzalez https://orcid.org/0000-0001-7177-5856
Pascal Boeckx https://orcid.org/0000-0003-3998-0010
Katrin Böhning-Gaese https://orcid.org/0000-0003-0477-5586
Laura Boisvert-Marsh https://orcid.org/0000-0002-0939-8196
William Bond https://orcid.org/0000-0002-3441-2084
Ben Bond-Lamberty https://orcid.org/0000-0001-9525-4633
Arnoud Boom https://orcid.org/0000-0003-1299-691X
Coline C. F. Boonman https://orcid.org/0000-0003-2417-1579
Kauane Bordin https://orcid.org/0000-0003-3871-6293
Elizabeth H. Boughton https://orcid.org/0000-0003-0932-280X
Vanessa Boukili https://orcid.org/0000-0002-5950-2123
REFERENCES

Aerts, R., & Chapin, F. S. (2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. *Advances in Ecological Research, 30*, 1–67. doi:10.1016/s0065-2504(08)60016-1

Akhmetzhanova, A. A., Soudzilovskaia, N. A., Onipchenko, V. G., Rüger, N., Beck, P. S. A., … Weiher, E. (2018). Plant functional trait in species-rich plant communities. *Functional Ecology*, 30(8), 2810–2824. https://doi.org/10.1111/gcb.14707

Ali, A., Lin, S. L., He, J. K., Kong, F. M., Yu, J. H., & Jiang, H. S. (2019). Big trees overrule remaining trees’ attributes and species richness as determinants of aboveground biomass in tropical forests. *Global Change Biology, 25*(8), 2810–2824. https://doi.org/10.1111/gcb.14707

Baraloto, C., Timothy Paine, C. E. T., Patino, S., Bonal, D., Herault, B., & Chave, J. (2010). Functional trait variation and sampling strategies in species-rich plant communities. *Functional Ecology, 24*(1), 208–216. https://doi.org/10.1111/j.1365-2435.2009.01600.x

Bjorkman, A. D., Myers-Smith, I. H., Eldemond, S. C., Normand, S., Rüger, N., Beck, P. S. A., … Weiher, E. (2018). Plant functional trait change across a warming tundra biome. *Nature, 562*(7725), 57–62. https://doi.org/10.1038/s41586-018-0563-7
DATASET REFERENCES

Abakumova, M., Zobel, K., Lepik, A., & Semchenko, M. (2016). Plasticity in plant functional traits is shaped by variability in neighbourhood species composition. New Phytologist, 211(2), 455–463. https://doi.org/10.1111/nph.13935

Abedi, M., Bartelheimer, M., & Poschlod, P. (2012). Aluminium toxic effects on seedling root survival affect plant composition along soil reaction gradients – A case study in dry sandy grasslands. Journal of Vegetation Science, 24(6), 1074–1085. https://doi.org/10.1111/jvs.12016

Adamidis, G. C., Kazakou, E., Fyllas, N. M., & Dimitrakopoulos, P. G. (2014). Species adaptive strategies and leaf economic relationships across serpentine and non-serpentine habitats on Lesbos, Eastern Mediterranean. PLoS ONE, 9(5), e96034. https://doi.org/10.1371/journal.pone.0096034

Adler, P. B., Milchunas, D. G., Lauenroth, W. K., Sala, O. E., & Burke, I. C. (2004). Functional traits of graminoids in semi-arid steppes: A test of grazing histories. New Phytologist, 161(3), 635–663. https://doi.org/10.1046/j.1469-8137.2004.01093.x

Adler, P. B., Salguero-Gomez, R., Compagnoni, A., Hsu, J. S., Ray-Mukherjee, J., Mbeau-Ache, C., & Franco, M. (2013). Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 740–745. https://doi.org/10.1073/pnas.1315179111

Adriaenssens, S. (2012). Dry deposition and canopy exchange for temperate tree species under high nitrogen deposition. (PhD), Ghent University, Ghent, Belgium.

Albert, C. H., de Bello, F., Boulangéot, I., Pellet, G., Lavorel, S., & Thuiller, W. (2011). On the importance of intraspecific variability for the quantification of functional diversity. Oikos, 121(1), 116–126. https://doi.org/10.1111/j.1600-0706.2011.19672.x

Albert, C. H., Thuiller, W., Yoccoz, N. G., Soudant, A., Boucher, F., Saccone, P., & Lavorel, S. (2010). Intraspecific functional variability: Extent, structure and sources of variation. Journal of Ecology, 98(3), 604–613. https://doi.org/10.1111/j.1365-2745.2010.01651.x

Aleixo, I., Norris, D., Hemerik, L., Barbosa, A., Prata, E., Costa, F., & Poorter, L. (2019). Amazonian rainforest tree mortality driven by climate and functional traits. Nature Climate Change, 9(5), 384–388. https://doi.org/10.1038/s41558-019-0458-0

Ali, H. E., Reineking, B., & Münkemüller, T. (2017). Effects of plant functional traits on soil stability: Intraspecific variability matters. Plant and Soil, 411(1–2), 359–375. https://doi.org/10.1007/s11104-016-3036-5

Almeida, D., Domingues, T. F., Ehleringer, J., Martellini, L. A., Cook, C., Flanagan, L., & Ometto, J. P. (2001). LBA-ECO-CD-02 Leaf Water Potential, Forest and Pasture Sites, Para, Brazil: 2000–2001. Retrieved from http://daac.orl.gov/cgi-bin/dsviewer.pl?ds_xml_id=1100

Apgaua, D. M. G., Ishida, F. Y., Tng, D. Y. P., Laidlaw, M. J., Santos, R. M., Runman, R., ... Laurence, S. G. W. (2015). Functional traits and water transport strategies in lowland tropical rainforest trees. PLoS ONE, 10(6), e0130799. https://doi.org/10.1371/journal.pone.0130799

Atkin, O. K., Bloomfield, K. J., Reich, P. B., Tjoelker, M. G., Asner, G. P., Bonal, D., ... Zaragoza-Castells, J. (2015). Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 206(2), 614–636. https://doi.org/10.1111/nph.13253

Aubin, I., Messier, C., Gachet, S., Lawrence, K., McKenney, D., Arsenault, A., ... Munson, A. D. (2012). TOPIC-traits of plants in Canada. Retrieved from http://cfs.cloud.nrcan.gc.ca/ctn/topic.php

Auger, S., & Shipley, B. (2012). Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science, 24(3), 419–428. https://doi.org/10.1111/j.1654-1103.2012.01473.x

Baastrup-Spohr, L., Sand-Jensen, K., Nicolajsen, S. V., & Bruun, H. H. (2015). From soaking wet to bone dry: Predicting plant community composition along a steep hydrological gradient. Journal of Vegetation Science, 26(4), 619–630. https://doi.org/10.1111/jvs.12280

Bahar, N. H. A., Ishida, F. Y., Weersinghe, L. K., Guerrieri, R., O’Sullivan, O. S., Bloomfield, K. J., ... Atkin, O. K. (2016). Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. New Phytologist, 214(3), 1002–1018. https://doi.org/10.1111/nph.14079

Bahn, M., Wohlfahrt, G., Haubner, E., Horak, I., Michael, W., Rottmar, K., ... Cernusca, A. (1999). Leaf photosynthesis, nitrogen contents and specific leaf area of 30 grassland species in differently managed mountain ecosystems in the Eastern Alps. In A. Cernusca, U. Tappeiner, & N. Bayfield (Eds.), Land-use changes in European mountain ecosystems. ECOMONT-Concept and Results (pp. 247–255). Berlin, Germany: Blackwell Wissenschaft.

Baraloto, C., Timothy Paine, C. E., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.-M., ... Chave, J. (2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13(11), 1338–1347. https://doi.org/10.1111/j.1461-0248.2010.01517.x

Baruch, Z., & Goldstein, G. (1999). Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia, 121(2), 183–192. https://doi.org/10.1007/s00445-0050920

Bauerle, W. L., Oren, R., Way, D. A., Qian, S. S., Stoy, P. C., Thornton, P. E., ... Reynolds, R. F. (2012). Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proceedings of the National Academy of Sciences of the United States of America, 109(22), 8612–8617. https://doi.org/10.1073/pnas.1119131109

Bauters, M., Amapoorter, E., Huygens, D., Kearsley, E., de Haulleville, T., Sellan, G., ... Verheyen, K. (2015). Functional identity explains carbon sequestration in a 77-year-old experimental tropical plantation. Ecosphere, 6(10), ar198. https://doi.org/10.1890/es15-00342.1

Bauters, M., Verbeeck, H., Demol, M., Bruneel, S., Taveirne, C., Van der Heyden, D., ... Boeckx, P. (2017). Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation. Biogeosciences, 14(23), 5313–5321. https://doi.org/10.5194/bg-14-5313-2017
area, are consistent indicators of elevated nutrient inputs. *Nature Ecology & Evolution*, 3(3), 400–406. https://doi.org/10.1038/s41559-018-0790-1

Flowers, T. J., Santos, J., Jahns, M., Warburton, B., & Reed, P. (2017). eHALOPH – Halophytes database (version 3.11) accessed 2017. Retrieved from http://www.sussex.ac.uk/affiliates/halophytes

Fonseca, C. R., Overton, J. M., Collins, B., & Westoby, M. (2000). Shifts in trait-combinations along rainfall and phosphorous gradients. *Journal of Ecology*, 88(4), 964–977. https://doi.org/10.1046/j.1365-2745.2000.00506.x

Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P., & Aerts, R. (2015). Explaining with similarisms with Grime’s C-S-R theory. *Journal of Ecology*, 93(1), 168–179. https://doi.org/10.1111/1365-2745.12288

Freschet, G. T., Violle, C., Bourget, M. Y., Scherer-Lorenzen, M., & Fort, F. (2012). Leaf traits data (SLA) for 56 woody species at the Smithsonian Conservation Biology Institute-ForestGEO Forest Dynamic Plot. *Front in Community Variation in Plant Biomass Allocation: A Balance between Organ Biomass and Morphology above vs below ground?* *Journal of Vegetation Science*, 26(3), 431–440. https://doi.org/10.1111/jvs.12259

Freschet, G. T., Swart, E. M., & Cornelissen, J. H. C. (2015). Integrated plant phenotypic responses to contrasting above- and below-ground resources: Key roles of specific leaf area and root mass fraction. *New Phytologist*, 206(4), 1247–1260. https://doi.org/10.1111/nph.13352

Garcia-Palacios, P., Maestre, F. T., Katge, J., & Wall, D. H. (2013). Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. *Ecology Letters*, 16(8), 1045–1053. https://doi.org/10.1111/ele.12137

Garnier, E., Lavorel, S., Anquetin, P., Castro, H., Cruz, P., Dolezal, J., ... Zarovali, M. P. (2007). Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. *Annals of Botany*, 99(5), 967–985. https://doi.org/10.1093/aob/mcl215

Giarrizzo, E., Burrascano, S., Chiti, T., de Bello, F., Lepš, J., Zavattiero, L., & Blasi, C. (2016). Re-visiting historical semi-natural grasslands in the Apennines to assess patterns of changes in species composition and functional traits. *Applied Vegetation Science*, 20(2), 247–258. https://doi.org/10.1111/avs.12288

Giroldo, A. (2016). Pequenas plantas, grandes estrategias: adaptacoes e sobrevivencia no Cerrado. PhD thesis, Universidade de Brasilia, Brasil.

Givnish, T. J., Montgomery, R. A., & Goldstein, G. (2004). Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: Light regimes, static light responses, and whole-plant compensation points. *American Journal of Botany*, 91(2), 228–246. https://doi.org/10.1173/ajb.91.2.228

Golovko, T., Dymova, O., Yatsko, Y., & Tabalenkova, G. (2011). Photosynthetic pigment apparatus in the northern plants. In M. Pessarakli (Ed.), *Handbook of plant and crop stress* (3rd ed., pp. 391–405). New York, NY: Marcel Dekker.

Gonzalez-Akre, E., McShea, W., Bourg, N., & Anderson-Teixeira, K. (2015). Leaf traits data (SLA) for 56 woody species at the Smithsonian Conservation Biology Institute-ForestGEO Forest Dynamic Plot. *Front Royal, Virginia USA. [Data set]. Version 1.0. Retrieved from http://www.try-db.org

Granda, E., Baumgarten, F., Gessler, A., Gil-Pelegrin, E., Peguero-Pina, J. S., Sancho-Knapik, D. E., ... Resco de Dios, V. (2020). Day-length regulates seasonal patterns of stomatal conductance in Quercus species. *Plant Cell & Environment*. https://doi.org/10.1111/pce.13665

Gutsch, M., Buchmann, N., Schmid, B., Schulze, E.-D., Lipowsky, A., & Roscher, C. (2011). Differential effects of plant diversity on functional trait variation of grass species. *Annals of Botany*, 107(1), 157–169. https://doi.org/10.1093/aob/mcq220

Guérin, G. R., Wen, H., & Lowe, A. J. (2012). Leaf morphology shift linked to climate change. *Biological Letters*, 8(3), 882–886. https://doi.org/10.1098/rsbl.2012.0458

Gutiérrez, A. G., & Huth, A. (2012). Successional stages of primary temperate rainforests of Chiloé Island, Chile. Perspectives in *Plant Ecology, Evolution and Systematics*, 14(4), 243–256. https://doi.org/10.1016/j.ppees.2012.01.004

Guy, A. L., Mischkolz, J. M., & Lamb, E. G. (2013). Limited effects of simulated acidic deposition on seedling survivorship and root morphology of endemic plant taxa of the Athabasca Sand Dunes in well-watered greenhouse trials. *Botany-Botanique*, 91(3), 176–181. https://doi.org/10.1139/cjb-2012-0162

Han, W. X., Chen, Y. H., Zhao, F. J., Tang, L. Y., Jiang, R. F., & Zhang, F. (2012). Floral, climatic and soil pH controls on leaf ash content in *Quercus* species. *Global Ecology and Biogeography*, 21(3), 376–382. https://doi.org/10.1111/j.1466-8238.2011.00677.x

Hayes, F. J., Buchanan, S. W., Coleman, B., Gordon, A. M., Reich, P. B., Thewhasan, N. V., ... Martin, A. R. (2018). Intraspecific variation in soy across the leaf economics spectrum. *Annals of Botany*, 123(1), 107–120. https://doi.org/10.1093/aob/mcy147

He, P., Wright, I. J., Zhu, S., Onoda, Y., Liu, H., Li, R., ... Ye, Q. (2019). Leaf mechanical strength and photosynthetic capacity vary independently
Joseph, G. S., Seymour, C. L., Cumming, G. S., Cumming, D. H. M., & Jager, M. M., Richardson, S. J., Bellingham, P. J., Clearwater, M. J., & Isaac, M. E., Martin, A. R., de Melo Virginio Filho, E., Rapidel, B., Roupsard, H., Hipp, A. L., Glasenhardt, M.-C., Bowles, M. L., Garner, M., Scharenbroch, Heberling, J. M., Cassidy, S. T., Fridley, J. D., & Kalisz, S. (2019). Carbon

Kapralov, M. V., Smith, J. A. C., & Filatov, D. A. (2012). Rubisco evolution in C4 eudicots: An analysis of Amaranthaceae Sensu Lato. PLoS ONE, 7(12), e52974. https://doi.org/10.1371/journal.pone.0052974

Kattenborn, T., Fassnacht, F. E., & Schmidtlein, S. (2018). Differentiating plant functional types using reflectance: Which traits make the difference? Remote Sensing in Ecology and Conservation, 5(1), 5–19. https://doi.org/10.1002/rse2.86

Kattenborn, T., & Schmidtlein, S. (2019). Radiative transfer modelling reveals why canopy reflectance follows function. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43011-1

Kattge, J., Knorr, W., Raddatz, T., & Wirth, C. (2009). Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biology, 15(4), 976–991. https://doi.org/10.1111/j.1365-2486.2008.01744.x

Kavelenova, L. M., Rozno, S. A., Kireyeva, Y. V., & Smirnov, Y. V. (2007). Kattge, J., Knorr, W., & Lamm, E. C. P., & Lamm, B. B. (2012). Fire-

Kempel, A., Chrbock, T., Fischer, M., Rohr, R. P., & van Kleren, M. (2013). Determinants of plant establishment success in a multispecies introduction experiment with native and alien species. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12727–12732. https://doi.org/10.1073/pnas.1300481110

Kerkhoff, A. J., Fagan, W. F., Elser, J. J., & Enquist, B. J. (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168(4), E103–E122. https://doi.org/10.1086/507879

Khalil, M. I., Gibson, D. J., Baer, S. G., & Willand, J. E. (2018). Functional diversity is more sensitive to biotic filters than phylogenetic diversity during community assembly. Ecosphere, 9(3), e20164.http://doi.org/10.1002/eces.2164

Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W., & Freschet, G. T. (2013). Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology, 27(5), 1254–1261. https://doi.org/10.1111/j.1365-2435.2011.01216

Kirkup, D., Malcolm, P., Christian, G., & Paton, A. (2005). Towards a digital African flora. Taxon, 54(2), 457–466. https://doi.org/10.2307/25065373

Kisel, Y., Moreno-Letelier, A. C., Bogarín, D., Powell, M. P., Chase, M. W., & Barralough, T. G. (2012). Testing the link between population genetic differentiation and clade diversification in Costa Rican orchids. Evolution, 66(10), 3035–3052. https://doi.org/10.1111/j.1558-5646.2012.01663.x

Kissling, W. D., Balslev, H., Baker, W. J., Dransfield, J., Göldel, B., Lim, J. Y., … Svenning, J.-C. (2019). Palmtraits 1.0, a species-level functional trait database of palms worldwide. Scientific Data, 6(1), 178. https://doi.org/10.1038/s41597-019-0189-0

Klein, T., Di Matteo, G., Rothenberg, E., Cohen, S., & Yakir, D. (2012). Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient. Tree Physiology, 32(1), 26–36. https://doi.org/10.1093/treephys/tps116

Klimošová, J., & de Bello, F. (2009). CLO-PLA: The database of clonal and bud bank traits of Central European flora. Journal of Vegetation Science, 20(3), 511–516. https://doi.org/10.1111/j.1654-1103.2009.01050.x

Knauer, J., Jaehle, S., Medlyn, B. E., Reichstein, M., Williams, C. A., Migliavacca, M., … Linderson, M. L. (2017). Towards physiologically meaningful

across 57 subtropical forest species with contrasting light requirements. New Phytologist, 223(2), 607–618. https://doi.org/10.1111/nph.15803

He, T., Fowler, W. M., & Causley, C. L. (2015). High nutrient-use efficiency during early seedling growth in diverse Grevillea species (Proteaceae). Scientific Reports, 5. https://doi.org/10.1038/srep17132

He, T., Lamont, B. B., & Downs, K. S. (2011). Banksia born to burn. Journal of Ecology, 99, 26–36. https://doi.org/10.1111/j.1365-2745.2010.01266.x

Herz, K., Dietz, S., Haider, S., Jandt, U., Scheel, D., & Bruelheide, H. (2017). Drivers of intraspecifictrait variation of grass and forb species in German meadows and pastures. Journal of Vegetation Science, 28(4), 705–716. https://doi.org/10.1111/jvs.12534

Hickler, T. (1999). Plant functional types and community characteristics along environmental gradients on Öland’s Great Alvar (Sweden). Master’s thesis, University of Lund, Sweden.

Hietz, P., Rosner, S., Hietz-Seifert, U., & Wright, S. J. (2016). Wood traits related to size and life history of trees in a Panamanian rainforest. New Phytologist, 213(1), 170–180. https://doi.org/10.1111/nph.14123

Hill, M. O., Preston, C. D., & Roy, D. B. (2004). PLANTATT – Attributes of British and Irish plants: Status, size, life history, geography and habitats. Huntingdon, UK: Centre for Ecology and Hydrology.

Hipp, A. L., Glasenhardt, M.-C., Bowles, M. L., Garner, M., Scharenbroch, B. C., Williams, E. W., … Larkin, D. J. (2018). Effects of phylogenetic diversity and phylogenetic identity in a restoration ecology experiment. In R. Scherson & D. Faith (Eds.), Phylogenetic diversity (pp. 189–210). Cham: Springer.

Hogan, J. A., Valverde-Barrantes, O. J., Ding, Q., Xu, H., & Baraloto, C. (2019). Intraspecific root and leaf trait variation with tropical forest successional status: Consequences for community-weighted patterns. Retrieved from http://dx.doi.org/10.1111/10.61640

Hou, E., Chen, C., McGroddy, M. E., & Wen, D. (2012). Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China. PLoS ONE, 7(12), e52071. https://doi.org/10.1371/journal.pone.0052071

Hough-Snee, N., Nackley, L. L., Kim, S.-H., & Ewing, K. (2015). Does plant performance under stress explain divergent life history strategies? The effects of flooding and nutrient stress on two wetland sedges. Aquatic Botany, 120, 151–159. https://doi.org/10.1016/j.aquabot.2014.03.001

Isaac, M. E., Martin, A. R., de Melo Virginio Filho, E., Rapidel, B., Roupasrd, O., & Van den Meersche, K. (2017). Intraspecific trait variation and coordination: Root and leaf economic spectra in coffee across environmental gradients. Frontiers in Plant Science, 8(1196), https://doi.org/10.1339/fpls.2017.01196

Jager, M. M., Richardson, S. J., Bellingham, P. J., Clearwater, M. J., & Laughlin, D. C. (2015). Soil fertility induces coordinated responses of multiple independent functional traits. Journal of Ecology, 103(2), 374–385. https://doi.org/10.1111/1365-2745.12366

Joseph, G. S., Seymour, C. L., Cumming, G. S., Cumming, D. H. M., & Mahliangu, Z. (2014). Termite mounds increase functional diversity of woody plants in African savannas. Ecosystems, 17(5), 808–819. https://doi.org/10.1007/s10021-014-9761-9
water-use efficiency estimates from eddy covariance data. Global Change Biology, 24(2), 694–710. https://doi.org/10.1111/gcb.13893
Koele, N., Dickie, I. A., Oleksyn, J., Richardson, S. J., & Reich, P. B. (2012). No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytologist, 196(3), 845–852. https://doi.org/10.1111/j.1469-8137.2012.04297.x
Koike, F. (2001). Plant traits as predictors of woody species dominance in climax forest communities. Journal of Vegetation Science, 12(3), 327–336. https://doi.org/10.2307/3236846
Komat, B., Pladevall, C., Domènech, M., & Fanlo, R. (2014). Functional diversity and grazing intensity in sub-alpine and alpine grasslands in Andorra. Applied Vegetation Science, 18(1), 75–85. https://doi.org/10.1111/avsc.12119
Kraft, N. J. B., Valencia, R., & Ackerly, D. D. (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322(5901), 580–582. https://doi.org/10.1126/science.1160662
Kumarathunge, D. P., Medlyn, B. E., Drake, J. E., Tjoelker, M. G., Aspinwall, M. J., Battaglia, M., ... Way, D. A. (2019). Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytologist, 222(2), 768–784. https://doi.org/10.1111/nph.15668
Kupper, J., Höfners, M. K., Trutschnig, W., Bathke, A. C., Eiben, J. A., Daehler, C. C., & Junker, R. R. (2017). Exotic flower visitors exploit large floral trait spaces resulting in asymmetric resource partitioning with native visitors. Functional Ecology, 31(12), 2244–2254. https://doi.org/10.1111/1365-2435.12932
Kurokawa, H., & Nakashizuka, T. (2008). Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology, 89(9), 2645–2656. https://doi.org/10.1890/07-1352.1
La Pierre, K. J., & Smith, M. D. (2014). Functional trait expression of grassland species shift with short- and long-term nutrient additions. Plant Ecology, 216(2), 307–318. https://doi.org/10.1007/s11258-014-0438-4
Laughlin, D. C., Fulé, P. Z., Huffman, D. W., Couse, J., & Laliberté, E. (2011). Climatic constraints on trait-based forest assembly. Journal of Ecology, 99(6), 1489–1499. https://doi.org/10.1111/j.1365-2745.2011.01885.x
Lavergne, S., & Molofsky, J. (2007). Increased genetic variation and evolutionary potential drive the success of an invasive grass. Ecology Letters, 10(7), 698–708. https://doi.org/10.1111/j.1461-0248.2007.01199.x
Lennon, J. J., Pulliam, H. R., Doak, D. F., Jones, E. O., Mills, J. R., … Gurevitch, J. (2001). The consequences of species interactions for biodiversity. Trends in Ecology and Evolution, 16(9), 447–453. https://doi.org/10.1016/S0169-5347(00)02237-4
Li, R., Zhu, S., Chen, H. Y. H., John, R., Zhou, G., Zhang, D., ... Ye, Q. (2015). Are functional traits a good predictor of global change impacts on tree species abundance dynamics in a subtropical forest? Ecology Letters, 18(11), 1181–1189. https://doi.org/10.1111/ele.12497
Li, X., Nie, Y., Song, X., Zhang, R., & Wang, G. (2011). Patterns of species diversity and functional diversity along a south-to-north-facing slope in a sub-alpine meadow. Community Ecology, 12(2), 179–187.
Li, Y., & Shipley, B. (2018). Community divergence and convergence along experimental gradients of stress and disturbance. Ecology, 99(4), 775–781. https://doi.org/10.1002/ecy.2162
Lieberrgesell, M., Reu, B., Stahl, U., Freiberg, M., Welk, E., Kattge, J., ... Wirth, C. (2016). Functional resilience against climate-driven extinctions – Comparing the functional diversity of European and North American tree floras. PLoS ONE, 12(2), e0148607. https://doi.org/10.1371/journal.pone.0148607
Lin, Y.-S., Medlyn, B. E., Duursma, R. A., Prentice, I. C., Wang, H., Baig, S., ... Wingate, L. (2015). Optimal stomatal behaviour around the world. Nature Climate Change, 5(5), 459–464. https://doi.org/10.1038/nclimate2550
Lipowsky, A., Roscher, C., Schumacher, J., Michalski, S., Gubsch, M., Buchmann, N., ... Schmid, B. (2015). Plasticity of functional traits of forb species in response to biodiversity. Perspectives in Plant Evolution, Ecology and Systematics, 16, 66–77. https://doi.org/10.1016/j.peps.2014.11.003
Lohbeck, M., Poorter, L., Paz, H., Pla, L., van Breugel, M., Martínez-Ramos, M., & Bongers, F. (2012). Functional diversity changes during tropical forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 14(2), 89–96. https://doi.org/10.1016/j.pep.2011.10.002
Louault, F., Pillar, V. D., Aufrère, J., Garner, E., & Sousana, J. F. (2005). Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. Journal of Vegetation Science, 16(2), 151. https://doi.org/10.1658/1100-9233(2005)016[0151:peps2.0.co;2
Lukeš, P., Stenberg, P., Rautiainen, M., Möttö, M., & Vanhatalo, K. M. (2013). Optical properties of leaves and needles for boreal tree species in Europe. Remote Sensing Letters, 4(7), 667–676. https://doi.org/10.1080/2150704x.2013.782112
Lusk, C. H. (2019). Leaf functional trait variation in a humid temperate forest, and relationships with juvenile tree light requirements. PeerJ, 7, e6855. https://doi.org/10.7717/peerj.6855
Lusk, C. H., Kaneko, T., Grierson, E., & Clearwater, M. (2013). Correlates of tree species sorting along a temperature gradient in New Zealand rain forests: Seedling functional traits, growth and shade tolerance. Journal of Ecology, 101(6), 1531–1541. https://doi.org/10.1111/j.1365-2745.2012.121521
Maire, V., Wright, I. J., Prentice, I. C., Batjes, N. H., Bhaskar, R., van Bodegom, P. M., ... Santiago, L. S. (2015). Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 24(6), 706–717. https://doi.org/10.1111/gabi.12296
Malhado, A. C. M., Malhi, Y., Whittaker, R. J., Ladle, R. J., terSteeg, H., Fabré, N. N., ... Wingate, L. (2017). Functional responses in species richness – Comparing the functional diversity of European and North American tree floras. PLoS ONE, 12(2), e0148607. https://doi.org/10.1371/journal.pone.0148607
Malhado, A. C. M., Malhi, Y., Whittaker, R. J., Ladle, R. J., terSteeg, H., Phillips, O. L., … Laithwaite, W. F. (2009). Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences, 6(8), 1563–1576. https://doi.org/10.5194/bg-6-1563-2009
Malhado, A. C. M., Whittaker, R. J., Malhi, Y., Ladle, R. J., terSteeg, H., Phillips, O. L., … Ramirez-Angulo, H. (2010). Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the
Amazon rain forest. Global Ecology and Biogeography, 19(6), 852–862. https://doi.org/10.1111/j.1466-8238.2010.00567.x

Manning, P., Newington, J. E., Robson, H. R., Saunders, M., Eggers, T., Bradford, M. A., ... Rees, M. (2006). Decoupling the direct and indirect effects of nitrogen deposition on ecosystem function. Ecology Letters, 9(9), 1015–1024. https://doi.org/10.1111/j.1461-0248.2006.00959.x

Manzoni, S., Vico, G., Porporato, A., & Katul, G. (2013). Biological constraints on water transport in the soil-plant-atmosphere system. Advances in Water Resources, 51, 292–304. https://doi.org/10.1016/j.advwatres.2012.03.016

Martin, A. R., Doraïsami, M., & Thomas, S. C. (2018). Global patterns in wood carbon concentration across the world’s trees and forests. Nature Geoscience, 11(12), 915–920. https://doi.org/10.1038/s41561-018-0246-x

Martin, A. R., Hayes, F. J., Borden, K. A., Buchanan, S. W., Gordon, A. M., Isaac, M. E., & Thevathasan, N. V. (2019). Integrating nitrogen fixing structures into above- and belowground functional trait spectra in soy (Glycine max). Plant and Soil, 440(1–2), 53–69. https://doi.org/10.1007/s11104-019-04058-1

Martin, A. R., Rapidel, B., Rouspard, O., Van den Meersche, K., de Melo Virginio Filho, E., Barrios, M., & Isaac, M. E. (2017). Intraspecific trait variation across multiple scales: The leaf economics spectrum in coffee. Functional Ecology, 31(3), 604–612. https://doi.org/10.1111/1365-2435.12790

Martínez-Garza, C., Bongers, F., & Poorter, L. (2013). Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? Forest Ecology and Management, 303, 35–45. https://doi.org/10.1016/j.foreco.2013.03.046

Messier, J., Violle, C., Enquist, B. J., Lechowicz, M. J., & McGill, B. J. (2018). Similarities and differences in intrapopulation trait correlations of co-occurring tree species: Consistent water use relationships amidst widely different correlation patterns. American Journal of Botany, 105(9), 1–14. https://doi.org/10.1002/ajb2.1146

McCarthy, J. K., Dwyer, J. M., & Mokany, K. (2019). A regional-scale assessment of using metabolic scaling theory to predict ecosystem properties. Proceedings of the Royal Society B: Biological Sciences, 286. https://doi.org/10.1098/rspb.2019.2221

McFadden, I. R., Bartlett, M. K., Wiegand, T., Turner, B. L., Sark, L., Valencia, R., & Kraft, N. J. B. (2019). Disentangling the functional trait correlates of spatial aggregation in tropical forest trees. Ecology, 100(3), e02591. https://doi.org/10.1002/ecy.2591

Medeiros, J. S., Burns, J. H., Nicholson, J., Rogers, L., & Valverde-Barrantes, A. (2018). Global patterns in wood carbon concentration across the world’s trees and forests. Nature Geoscience, 11(12), 915–920. https://doi.org/10.1038/s41561-018-0246-x

Messier, J., McGill, B. J., & Lechowicz, M. J. (2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13(7), 838–848. https://doi.org/10.1111/j.1461-0248.2010.01476.x

Messier, J., Violle, C., Enquist, B. J., Lechowicz, M. J., & McGill, B. J. (2018). Similarities and differences in intrapopulation trait correlations of co-occurring tree species: Consistent water use relationships amidst widely different correlation patterns. American Journal of Botany, 105(9), 1–14. https://doi.org/10.1002/ajb2.1146

Michaletz, S. T., & Johnson, E. A. (2006). A heat transfer model of crown scorch in forest fires. Canadian Journal of Forest Research, 36(11), 2839–2851. https://doi.org/10.1139/x06-158

Michelaíki, C., Fyllas, N. M., Galanidis, A., Aloupí, M., Evangelou, E., Arianoutsou, M., & Dimitriákopoulos, P. G. (2019). An integrated phenotypic trait-network in thermo-Mediterranean vegetation describing alternative, coexisting resource-use strategies. Science of the Total Environment, 672, 583–592. https://doi.org/10.1016/j.scitotenv.2019.04.030

Milla, R., & Reich, P. B. (2011). Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Annals of Botany, 107(3), 455–465. https://doi.org/10.1093/aob/mcq261

Miller, J. E. D., Ives, A. R., Harrison, S. P., & Damschen, E. I. (2017). Early- and late-flowering guilds respond differently to landscape spatial structure. Journal of Ecology, 106(3), 1033–1045. https://doi.org/10.1111/1365-2745.12849

Minden, V., Delay, A., Volkert, A. M., Leonhardt, S. D., & Pufal, G. (2017). Antibiotics impact plant traits, even at small concentrations. AoB PLANTS, 9(2). https://doi.org/10.1093/aobpla/plx010

Minden, V., & Gorschützer, J. (2016). Comparison of native and non-native Impatiens species across experimental light and nutrient gradients. Plant Ecology and Evolution, 149(1), 59–72. https://doi.org/10.5091/plecevo.2016.1118

Minden, V., & Kleyer, M. (2011). Testing the effect-response framework: Key response and effect traits determining above-ground biomass of saltmarshes. Journal of Vegetation Science, 22(3), 387–401. https://doi.org/10.1111/j.1654-1103.2011.01272.x

Minden, V., & Kleyer, M. (2014). Internal and external regulation of plant organ stoichiometry. Plant Biology, 16(5), 897–907. https://doi.org/10.1111/plb.12155

Minden, V., & Kleyer, M. (2015). Ecosystem multifunctionality of coastal marshes is determined by key plant traits. Journal of Vegetation Science, 26(4), 651–662. https://doi.org/10.1111/jvs.12276

Minden, V., & Olde Venterink, H. (2019). Plant traits and species interactions along gradients of P, N and K availabilities. Functional Ecology, 33(9), 1611–1626. https://doi.org/10.1111/1365-2435.13387

Minden, V., Schnetger, B., Pufal, G., & Leonhardt, S. D. (2018). Antibiotic-induced effects on scaling relationships and on plant element contents in herbs and grasses. Ecology and Evolution, 8(13), 6699–6713. https://doi.org/10.1002/ece3.4168

Moles, A. T., Ackerly, D. D., Webb, C. O., Tweddle, J. C., Dickie, J. B., Pitman, A. J., & Westoby, M. (2005). Factors that shape seed mass evolution. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10540–10544. https://doi.org/10.1073/pnas.0501473102

Moles, A. T., Barton, D. I., Warman, L., Swenson, N. G., Laffan, S. W., Zanne, A. E., ... Leishman, M. R. (2009). Global patterns in plant height. Journal of Ecology, 97, 923–932. https://doi.org/10.1111/j.1365-2454.2009.01526.x

Moravcová, L., Pyšek, P., Jarosíšek, V., Havlíčková, V., & Zákrašlivý, P. (2010). Reproductive characteristics of neophytes in the Czech Republic: Traits of invasive and non-invasive species. Preslia, 82, 365–390

Moretti, M., & Legg, C. (2009). Comparing plant and animal traits to assess community functional responses to disturbance. Ecography, 32(2), 299–309. https://doi.org/10.1111/j.1600-0587.2008.05524.x

Mori, A. S., Shiono, T., Haraguchi, T. F., Ota, A. T., Koide, D., Ohgue, T., ... Gustafsson, L. (2015). Functional redundancy of multiple forest taxa along an elevational gradient: Predicting the consequences of non-random species loss. Journal of Biogeography, 42(8), 1383–1396. https://doi.org/10.1111/jbi.12514
biomass allocation, but not specific leaf area. Austral Ecology, 44(2), 339–350. https://doi.org/10.1111/aec.12678

Wright, J. P. & Sutton-Grier, A. (2012). Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Functional Ecology, 26(6), 1390–1398. https://doi.org/10.1111/1365-2435.12001

Wright, S. J., Kitajima, K., Kraft, N., Reich, P., Wright, I., Bunker, D., ... Zanne, A. (2010). Functional traits and the growth-mortality tradeoff in tropical trees. Ecology, 100514035422098. https://doi.org/10.1890/09-2335

Yguel, B., Bailey, R., Tosh, D. N., Vialatte, A., Vasseur, C., Vitrac, X., ... Prinzing, A. (2011). Phytophagy on phylogenetically isolated trees: Why hosts should escape their relatives. Ecology Letters, 14(11), 1117–1124. https://doi.org/10.1111/j.1461-0248.2011.01680.x

Yu, Q., Elser, J. J., He, N., Wu, H., Chen, Q., Zhang, G., & Han, X. (2011). Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166(1), 1–10. https://doi.org/10.1007/s00442-010-1902-z

Zanne, A. E., Westoby, M., Falster, D. S., Ackerly, D. D., Loarie, S. R., Arnold, S. E. J., & Coomes, D. A. (2010). Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany, 97(2), 207–215. https://doi.org/10.3732/ajb.0900178

Zapata-Cuertas, M., Sierra, C. A., & Alleman, L. (2012). Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass. Forest Ecology and Management, 266(1–2), 173–179. https://doi.org/10.1016/j.foreco.2012.04.030

Zheng, J., & Martinez-Cabrala, H. I. (2013). Wood anatomical correlates with theoretical conductivity and wood density across China: Evolutionary evidence of the functional differentiation of axial and radial parenchyma. Annals of Botany, 112(5), 927–935. https://doi.org/10.1093/aob/mct153

Zheng, J., Zang, H., Yin, S., Sun, N., Zhu, P., Han, Y., ... Liu, C. (2018). Modeling height-diameter relationship for artificial monoculture Metasequoia glyptostroboides in sub-tropic coastal megacity Shanghai, China. Urban Forestry & Urban Greening, 34, 226–232. https://doi.org/10.1016/j.ufug.2018.06.006

Zheng, W. (1983). Silva Sinica: Volume 1–4. Beijing: China Forestry Publishing House.

Zieminska, K., Butler, D. W., Gleason, S. M., Wright, I. J., & Westoby, M. (2013). Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB PLANTS, 5. https://doi.org/10.1093/aobpla/plt046

Zieminska, K., Westoby, M., & Wright, I. J. (2015). Broad anatomical variation within a narrow wood density range—A study of twig wood across 69 Australian angiosperms. PLoS ONE, 10, e0124892. https://doi.org/10.1371/journal.pone.0124892

Zirbel, C. R., Bassett, T., Grman, E., & Brudvig, L. A. (2017). Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. Journal of Applied Ecology, 54(4), 1070–1079. https://doi.org/10.1111/1365-2664.12885

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Katteg J, Bönisch G, Diaz S, et al. TRY plant trait database – enhanced coverage and open access. Glob Change Biol. 2020;26:119–188. https://doi.org/10.1111/gcb.14904

APPENDIX

Jens Katteg1,2, Gerhard Bönisch1, Sandra Diaz3, Sandra Lavorel4, Iain Colin Prentice5, Paul Leadley6, Susanne Tautenhahn7, Gijsbert D. A. Werne8,9, Tuomas Aakaa3, Mehdi Abedi10, Alicia T. R. Acosta11, George C. Adamides12,13, Kairi Adamsson14, Masahiro Aiba15, Cécile H. Albert16, Julio M. Alcántara17, Carolina Alcázar18, Izabela Aleixo19, Hamada Ali20, Bernard Amiaud21, Christian Ammer22,23, Mariano Amoroso24,25, Madhur Anand26, Carolyn Anderson27,28, Niels Anten29, Joseph Antos30, Deborah Mattos Guimarães Apgaia31, Tia-Lynn Ashman32, Degi Harja Asmar33, Gregory P. Asner34, Michael Aspinwall35, Owen Atkin36, Isabelle Aubin37, Lars Bastrup-Spohr38, Khadijeh Bahalekh39, Michael Bahn40, Timothy Baker41, William J. Baker41, Jan P. Bakker42, Dennis Baldocchi43, Jennifer Baltzer44, Arindam Banerjee45, Anne Baranger46, Jos Barlow47, Diego R. Barneche48, Zdravko Baruch49, Denis Bastianelli50,51, John Battles52, William Bauerle53, Marijn Bauters54,55, Erik Bazzato56, Michael Beckmann57, Hans Beeckman58, Carl Beierkuhnlein59, Renee Bekker60, Gavin Belfry61,62, Michael Bellua63, Mirela Belou64, Raquel Benavides65, Lahcen Benomar66, Mary Lee Bendo-goLattle67,68, Erik Berenguer69, Rodrigo Bergamin70, Joana Bergmann71,72, Marcos Bergmann Carlucci73, Logan Berner74, Markus Bernhardt-Römermann75, Christof Bigler76, Anne D. Bjorkman77, Chris Blackman78, Carolina Blanco79, BenjaminBlonder80,62, Dana Blumenthal81,82, Markus Boedelt83, Marijn Boekhout84, David M. J. S. Bowman95, Sandra Bravo96, Marco Richard Brende97, Martin R. Broadley98, Kerri A. Brown99, Helge Bruelheide100,101, Federico Brumnic3,102,103, Hans Henrik Bruun98, David Bruy102,103, Serra W. Buchanan104, Solveig Franziska Bucher105, Nina Buchmann76, Robert Buitenwerf106,107, Daniel E. Bunker108, Jan Bürger109, Sabina Burrascano110, David F. R. P. Burslem111, Bradley J. Butterfield112, Chaeho Byun113, Marcia Marques114, Marina C. Scalon115, Marco Caccianiga116, Marc Cadotte117, Maxime Cailleret118,119, James Camac120, Jesús Julio Camarero121, Courtney Campany122, Giandiego Campbell123, Juan Antonio Campos124, Laura Cano-Arboleda125,68, Roberto Canullo126, Michele Carbognani127, Fabio Carvalho128, Fernando Casanoves129, Bastien Castagnery130, Jane A. Catford131, Jeannine Cavender-Bares132, Bruno E. L. Cerabolini133, Marco Cervellini134,135, Eduardo Chacón-Madrigal135, Kenneth Chapin136, F. Stuart Chapin137, Stefano Chelli138, Si-Chong Chen139, Anping Chen140, Paolo Cherubini141,142, Francesco Chianucci143, Brendan Chroat144, Kyong-Soon Chung145, Milan Chytry146, Daniela Ciccarelli147, Lluís Coll148,149, Courtney G. Collins150, Luigi Conti151,152, David Coomes153, Johannes H. C. Cornelissen154, William K. Cornel152, Piermario Corona154, Marie Coyea155, Joseph Craine156, Dylan Craven157, Joris P. G. M. Cromsigt158,159, Aníkó Csecserits160, Katarina Cufar161, Matthias Cuntz162, Ana
Roma Tre, Rome, Italy, 12Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, Mytilene, Greece, 13Institute of Ecology and Evolution, University of Bern, Bern, Switzerland, 14Tartu Observatory, University of Tartu, Tartumaa, Estonia, 15Graduate School of Life Sciences, Tohoku University, Sendai, Japan, 16Aix Marseille Univ, Univ Avignon, CNRS,IRD, IMBE, Marseille, France, 17Universidad de Jaén, Jaén, Spain, 18Instituto Alexander Von Humboldt, Bogota, Colombia, 19National Institute of Amazonian Research (INPA), Manaus, Brazil, 20Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt, 21Université de Lorraine, Lorraine, France, 22Forest Sciences, University of Göttingen, Göttingen, Germany, 23Centre for Biodiversity and Sustainable Land-use, University of Göttingen, Göttingen, Germany, 24Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural (IRNAD), Universidad Nacional de Río Negro, El Bolsón, Argentina, 25Conicet-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina, 26University of Guelph, Guelph, ON, Canada, 27Pacific Northwest National Laboratory, Richland, WA, USA, 28University of Massachusetts Amherst, Amherst, MA, USA, 29Centre for Crop Systems Analysis, Wageningen University, Wageningen, The Netherlands, 30University of Victoria, Victoria, BC, Canada, 31College of Science & Engineering, James Cook University, Smithfield, QLD, Australia, 32University of Pittsburgh, Pittsburgh, PA, USA, 33Centre for Forest Research, Institute for Integrative Systems Biology, Université Laval, Quebec, QC, Canada, 34Arizona State University, Tempe, AZ, USA, 35Department of Biology, University of North Florida, Jacksonville, FL, USA, 36ARC Centre for Excellence in Plant Energy Biology, Australian National University, Acton, ACT, Australia, 37Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, ON, Canada, 38Department of Biology, University of Copenhagen, Copenhagen, Denmark, 39Department of Ecology, University of Innsbruck, Innsbruck, Austria, 40School of Geography, University of Leeds, Leeds, UK, 41Royal Botanic Gardens Kew, Richmond, UK, 42Conservation Ecology, Groningen Institute for Evolutionary Life Sciences (GE/LIFE), University of Groningen, Groningen, The Netherlands, 43Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA, 44Biology Department, Wilfrid Laurier University, Waterloo, ON, Canada, 45Department of Forest Resources, University of Minnesota, St. Paul, MN, USA, 46AgroParisTech, Paris, France, 47Lancaster Environment Centre, Lancaster University, Lancaster, UK, 48College of Life and Environmental Sciences, University of Exeter, Penryn, UK, 49School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia, 50CIRAD, UMR SELMET, Montpellier, France, 51SELMET, CIRAD, INRA, Univ Montpellier, Montpellier SupAgro, France, 52University of California at Berkeley, Berkeley, CA, USA, 53Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA, 54Department of Green Chemistry and Technology, Ghent University, Gent, Belgium, 55Department of Environment, Ghent University, Gent, Belgium, 56Department of Life and Environmental Sciences, Botany Division, University of Cagliari, Cagliari, Italy, 57Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany, 58Royal Museum for Central Africa, Tervuren, Belgium, 59University of Bayreuth, Bayreuth, Germany, 60Groningen Institute of Archaeology (GIA), University of Groningen, Groningen, The Netherlands, 61Department of Biological Sciences, University of Tennessee, Knoxville, TN, USA, 62Rocky Mountain Biological Laboratory, Crested Butte, CO, USA, 63Département des Sciences, Université du Québec À Montréal, Montreal, QC, Canada, 64Department of Biogeography, University of Bayreuth, Bayreuth, Germany, 65Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain, 66Université Laval, Quebec, QC, Canada, 67Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogota, Colombia, 68Fundación Natura, Bogota, Colombia, 69Environmental Change Institute, University of Oxford, Oxford, UK, 70Laboratório de Estudos em Vegetação Campestre (LEVCam), Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 71Institut für Biologie, Freie Universität Berlin, Berlin, Germany, 72Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany, 73Laboratório de Ecologia Funcional de Comunidades (LABEF), Departamento de Botánica, Universidade Federal do Paraná, Curitiba, Brazil, 74School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA, 75Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany, 76ETH Zurich, Zurich, Switzerland, 77Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden, 78PIAF, INRA, Université Clermont-Auvergne, Clermont-Ferrand, France, 79Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 80School of Life Sciences, Arizona State University, Tempe, AZ, USA, 81USDA-ARS Rangeland Resources & Systems Research Unit, Fort Collins, CO, USA, 82Grupo de Investigación en Biodiversidad y Dinámica de Ecosistemas Tropicales - Universidad del Tolima, Ibagué, Colombia, 83Isotope Bioscience Laboratory - ISOFYS, Ghent University, Gent, Belgium, 84School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA, 85Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany, 86Department of Biological Sciences, Goethe Universität Frankfurt, Frankfurt am Main, Germany, 87Department of Biological Sciences, University of Cape Town, Cape Town, South Africa, 88SAEON Fynbos Node, Claremont, South Africa, 89Pacific Northwest National Laboratory, College Park, MD, USA, 90School of Geography, Geology and Environment, University of Leicester, Leicester, UK, 91Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands, 92Laboratório de Ecologia Vegetal (LEVEG), Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 93Archbold Biological Station’s Buck Island Ranch, FL, Lake Placid, USA, 94Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA, 95University of Tasmania, Hobart, Tas., Australia, 96Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero, Santiago del Estero, Argentina, 97Institute of Landscape and Plant Ecology, University of Hohenheim,
Stuttgart, Germany, 98School of Geography, University of Nottingham, Nottingham, UK, 99Department of Geography and Geology, Kingston University, Kingston upon Thames, UK, 100Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany, 101Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral (FICH-UNL), Santa Fe, Argentina. 102AMAP, CIRAD, CNRS, IRD, INRA, Université de Montpellier, Montpellier, France, 103AMAP, IRD, Herbier de Nouvelle-Calédonie, Nouméa, New Caledonia, 104University of Toronto Scarborough, Scarborough, ON, Canada, 105Friedrich-Schiller-Universität Jena, Jena, Germany, 106Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark, 107Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Bioscience, Aarhus University, Aarhus, Denmark, 108New Jersey Institute of Technology, Newark, NJ, USA, 109Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany, 110Sapienza University of Rome, Rome, Italy, 111School of Biological Sciences, University of Aberdeen, Aberdeen, UK, 112Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA, 113School of Civil and Environmental Engineering, Yale University, New Haven, CT, USA, 114College of Environmental Science and Forestry, SUNY, Syracuse, NY, USA, 115Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland, 116ETH Zürich, Zürich, Switzerland, 117Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland, 120Centre of Excellence for Biosafety Risk Analysis, The University of Melbourne, Melbourne, Vic., Australia, 121Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain, 122Colgate University, Hamilton, NY, USA, 123School of Biosciences and Veterinary Medicine, Plant Diversity and Ecosystems Management Unit, University of Camerino, Camerino, Italy, 124Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Bilbao, Spain, 125Departamento de Geociencias y Medio Ambiente, Universidad Nacional de Colombia, Medellín, Colombia, 126Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy, 127CATIE-Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica, 128Univ. Bordeaux, INRAE, BIOGECO, Cestas, France, 129Department of Geography, King’s College London, London, UK, 130Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA, 131Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy, 132BIGEA, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy, 133Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica, 134The University of Arizona, Tucson, AZ, USA, 135Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA, 136Royal Botanic Gardens, Kew, West Sussex, UK, 137Department of Biology, Colorado State University, Fort Collins, CO, USA, 138WSL Swiss Federal Research Institute, Birmensdorf, Switzerland, 139Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada, 140CREA – Research Centre for Forestry and Wood, Arezzo, Italy, 141Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia, 142Jungwon University, Goesan, Chungbuk, Korea, 143Department of Botany and Zoology, Masaryk University, Brno, Czech Republic, 144Department of Biology, University of Pisa, Pisa, Italy, 145Department of Agriculture and Forest Engineering (EAGROF), University of Lleida, Lleida, Spain, 146Joint Research Unit CTFC – AGROTECNIO, Solsona, Spain, 147University of California Riverside, Riverside, CA, USA, 148Faculty of Environmental Sciences, University of Life Sciences Prague, Praha-Suchdol, Czech Republic, 149Institute of Botany, Czech Academy of Sciences, Treboň, Czech Republic, 150Department of Plant Sciences, University of Cambridge, Cambridge, UK, 151Systems Ecology, Department of Ecological Science, Vrije Universiteit, Amsterdam, The Netherlands, 152School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia, 153Faculté de forêsterie, de géographie et de géomatique, Université Laval, Quebec, QC, Canada, 154Jonah Ventures, Boulder, CO, USA, 155Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile, 156Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden, 157Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa, 158MTA Centre for Ecological Research, Tihany, Hungary, 159Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia, 160Université de Lorraine, Agroparistech, INRAE, UMR Silva, Nancy, France, 161Santa Catarina State University, Lages, SC, Brazil, 162Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, USA, 163Eurac Research, Institute for Alpine Environment, Bozen-Bolzano, Italy, 164Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia, 165University of Science – Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam, 166Graduate School of Agriculture, Kyoto University, Kyoto, Japan, 167Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan, 168Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden, 169Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa, 170Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands, 171Department Computational Landscape Ecology, UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany, 172Department Computational Hydro systems, UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany, 173Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, Republic of Korea, 174Institute of Temperate Forest Sciences (ISFORT), Ripon, QC, Canada, 175UQO, Department of Natural Sciences, Ripon, QC, Canada, 176Centre de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile, 177KOUROU, French Guiana, France, 178Institut
Polish Academy of Sciences, Kornik, Poland, 256
Academy of Sciences, Guangzhou, China, 257
Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia, 257
South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China, 258
Carnegie Museum of Natural History, Pittsburgh, PA, USA, 259
Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia, 260
Herbarium Haussknacht, Friedrich-Schiller-Universität Jena, Jena, Germany, 261
Cirad, Université de Montpellier, Montpellier, France, 262
Institut National Polytechnique Félix Houphouët-Boigny, INP-HB, Yamoussoukro, Ivory Coast, 263
Department of Forest Sciences, Transilvania University of Brasov, Brasov, Romania, 264
BC - Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, Leioa, Spain, 265
Department of Physical Geography, Goethe University, Frankfurt am Main, Germany, 266
Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria, 267
The Field Museum, Chicago, IL, USA, 268
University Centre Myerscough, Preston, UK, 269
Department of Biological Sciences, Florida International University, Miami, FL, USA, 270
Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, 271
University of California, Santa Cruz, Santa Cruz, CA, USA, 272
Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium, 273
Division of Ecology, Evolution and Biodiversity Conservation, Heverlee, Belgium, 274
Four Peaks Environmental Science and Data Solutions, Wenatchee, WA, USA, 275
Department of Landscape and Biodiversity, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway, 276
Kochi University, Nankoku, Japan, 277
University of Illinois at Chicago, Chicago, IL, USA, 278
Department of Evolutionary Biology, Ecology and Environmental Sciences, Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Spain, 279
University of Toronto, Toronto, ON, Canada, 280
Ashiu Forest Research Station, Field Science Education and Research Center, Kyoto University, Kyoto, Japan, 281
Institute Botanic Garden, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia, 282
Tyumen State University, Tyumen, Russia, 283
Oak Ridge National Laboratory, Oak Ridge, TN, USA, 284
Barcelona School of Agricultural Engineering, Universitat Politècnica de Catalunya, Catalonia, Spain, 285
Earth System Science Department, Stanford University, Stanford, CA, USA, 286
Global Academy of Agriculture and Food Security, University of Edinburgh, Midlothian, Scotland, 287
Institute of Dendrology, Polish Academy of Sciences, Kornik, Poland, 288
Department of Game Management and Forest Protection, Faculty of Forestry, Poznan University of Life Sciences, Poznan, Poland, 289
Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany, 290
Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany, 291
BayCEER, Department of Disturbance Ecology, University of Bayreuth, Bayreuth, Germany, 292
Department of Biology, University of Copenhagen, Frederiksberg C, Denmark, 293
Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China, 294
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, PR China, 295
Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Denmark, 296
State University of Campinas/UNICAMP, Campinas, SP, Brazil, 297
Biological Sciences, University of Tasmania, Hobart, Australia, 298
Department of Zoology, School of Mathematical and Natural Science, University of Venda, Thohoyandou, South Africa, 299
Department of Biological Sciences, DST/NRF Centre of Excellence, Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa, 300
Cibodas Botanical Garden – Indonesian Institute of Sciences (LIPI), Jl. Kebun Raya Cibodas, Cipanas, Indonesia, 301
Centre of Excellence for Biosecurity Risk Analysis (CEBRA), School Of Biosciences, University of Melbourne, Parkville, Vic., Australia, 302
Evolutionary Ecology of Plants, Department Biology, Philipps-University Marburg, Marburg, Germany, 303
Department of Bioscience, University Salzburg, Salzburg, Austria, 304
PERSYST Department, CIARAD, Montpellier Cedex 5, France, 305
BC Ministry Forest, Lands, Natural Resource Operations and Rural Development, Dawson Creek, BC, Canada, 306
Humboldt State University, Arcata, CA, USA, 307
Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic, 308
Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic, 309
Institute of Geography and Geocology, Karlsruhe Institute of Technology, Karlsruhe, Germany, 310
Samara National Research University, Samara, Russia, 311
CAVElab - Computational and Applied Vegetation Ecology, Ghent University, Ghent, Belgium, 312
Institute of Plant Sciences, Bern, Switzerland, 313
Forestry and Forest Products Research Institute, Tsukuba, Japan, 314
Kenyon College, Gambier, OH, USA, 315
Department of Biology, University of Garmian, Kalar, Iraq, 316
School of Biological Sciences and Center for Ecology, Southern Illinois University Carbondale, Carbondale, IL, USA, 317
Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY, USA, 318
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands, 319
Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET, Bariloche, Argentina, 320
Departamento de Ecología, Universidad Nacional del Comahue, Bariloche, Argentina, 321
Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel, 322
Landscape Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany, 323
Faculty of Sciences, Charles University, Prague, Czech Republic, 324
Laboratório de Ecologia Vegetal (LEVEG), Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 325
Department of Geosciences and Natural Resources, Western Carolina University, Cullowhee, NC, USA, 326
Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany, 327
Health and Environmental Sciences, Xi’an Jiaotong Liverpool University, Suzhou, Jiangsu, China, 328
Hokkaido University, Sapporo, Japan, 329
Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan, 330
Technical University of Munich, 331

University of Extremadura, Plasencia, Spain, 504Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany, 505Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico, 506School of Environmental Sciences, University of Guelph, Guelph, ON, Canada, 507Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland, 508Research Unit Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland, 509Department of Research and Geoinformation, Swiss National Park, Chasté Planta-Wildenberg, Zernez, Switzerland, 510Centre for Ecology & Hydrology (CEH), Wallingford, Oxfordshire, UK, 511Natural Resources Canada, Canadian Forest Service, Québec, QC, Canada, 512Departamento de Dinamica y Gestion Forestal, INIA-CIFOR, Madrid, Spain, 513Sustainable Forest Management Research Institute, University of Valladolid-INIA, Madrid, Spain, 514Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland, 515Norwegian Institute for Nature Research, Trondheim, Norway, 516Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia, 517Oxford University, Oxford, UK, 518Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain, 519Centre for Functional Ecology, Departamento de Ciencias da Vida, Universidade de Coimbra, Coimbra, Portugal, 520Algoma University, Sault Ste. Marie, ON, Canada, 521Department of Geography, University of Zurich, Zürich, Switzerland, 522Senckenberg Biodiversität und Klima Forschungszentrum (SBK-F), Frankfurt, Germany, 523Palmengarten der Stadt Frankfurt am Main, Frankfurt, Germany, 524Entomology III, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany, 525Julius-von-Sachs-Institute for Biological Sciences, Chair of Ecophysiology and Vegetation Ecology, University of Wuerzburg, Wuerzburg, Germany, 526Herencia, Santa Cruz, Bolivia, 527Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK, 528South African National Biodiversity Institute, Pretoria, South Africa, 529Federal University of Pernambuco, Recife, PE, Brazil, 530Sharples Services, Edgecomb, ME, USA, 531Komarov Botanical Institute RAS, St. Petersburg, Russia, 532Research Institute for Humanity and Nature, Kyoto, Japan, 533Center for Southeast Asian Studies, Kyoto University, Kyoto, Japan, 534Université de Sherbrooke, Sherbrooke, QC, Canada, 535Department of Biology, University of Regina, Regina, SK, Canada, 536Technische Universität Ilmenau, Ilmenau, Germany, 537Centre for Applied Ecology “Professor Baeta Neves” (CEABN), School of Agriculture, University of Lisbon, Lisbon, Portugal, 538Department of Biology, Federal University of Lavras, Lavras, MG, Brazil, 539Department Land, Environment, Agriculture and Forestry, Universität degli Studi di Padova, Padua, Italy, 540Department of Landscape Architecture, Planning and Management, Swedish University of Agricultural Sciences, Alnarp, Sweden, 541Gothenburg Botanical Garden, Gothenburg, Sweden, 542Gothenburg Global Biodiversity Centre, Gothenburg, Sweden, 543Texas Tech University, Lubbock, TX, USA, 544Forest Sciences Centre, Faculty of Forestry and Conservation Science, University of British Columbia, Vancouver, BC, Canada, 545Florida Museum of Natural History, University of Florida, Gainesville, FL, USA, 546Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium, 547Archbold Biological Station, Venus, FL, USA, 548Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil, 549Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands, 550Departamento de Ecología, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil, 551Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA, 552Department of Geography, Planning and Recreation, Northern Arizona University, Flagstaff, AZ, USA, 553Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden, 554Forest Ecology and Forest Management Group, Wageningen University, The Netherlands, 555Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia, 556Stockholm University, Stockholm, Sweden, 557Instituto de Investigaciones en Biodiversidad y Medioambiente-CONICET, Universidad Nacional del Comahue, Bariloche, Argentina, 558Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava, Slovakia, 559Department of Ecology and General Biology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovakia, 560Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic, 561Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic, 562Department of Biology, University of Maryland, College Park, MD, USA, 563Departamento de Botánica, Universidade Federal de Pernambuco, Recife, PE, Brazil, 564Teshio Experimental Forest, Hokkaido University, Horonobe, Japan, 565Department of Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), La Cañada de San Urbano, Spain, 566CIRAD-UMR SELMET-PZZS, Dakar, Senegal, 567Department of Biology, Hacettepe University, Ankara, Turkey, 568Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands, 569Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth, South Africa, 570Natural Resources Canada, Canadian Wood Fibre Centre, Quebec, QC, Canada, 571Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA, 572Biovarysity International, Lima, Peru, 573Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK, 574Centre for Rainforest Studies, The School for Field Studies, Yungaburra, Qld, Australia, 575Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK, 576MTA-DE Lendület Functional and Restoration Ecology Research Group, Debrecen, Hungary, 577Department of Ecology, University of Debrecen, Debrecen, Hungary, 578Department of Soil and Plant Sciences, University of Delaware, Newark, DE, USA, 579INRA - Université Clermont-Auvergne, UMR PIAF, Clermont-Ferrand, France, 580MTA-TKI Biodiversity and Ecosystem Services Research Group, Debrecen, Hungary, 581Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, South Africa, 582Illinois Natural
History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA, 583Unit for Modelling of Climate and Biogeochemical Cycles, UR-SPHERES, University of Liège, Liège, Belgique, 584Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland, 585School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia, 586School of Biology, Department of Botany, Aristotle University of Thessaloniki, Greece, 587CIRAD, UMR EcoFoG (Agroparistech, CNRS, INRA, Université des Antilles, Université de la Guyane), Kourou, France, 588Osaka Natural History Center, Osaka, Japan, 589Ural State Forest Engineering University, Ekaterinburg, Russia, 590Botanical Garden of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia, 591University of New Hampshire, Durham, NH, USA, 592Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran, 593Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, 594College Environmental Studies, Yale University, New Haven, CT, USA, 595Department of Biological Sciences, National University of Singapore, Singapore, Singapore, 596Smithsonian Tropical Research Institute, Panama City, Panama, 597School of Geosciences, Edinburgh University, Edinburgh, UK, 598Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany, 599Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA, 600Department of Biology, University of Konstanz, Konstanz, Germany, 601Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China, 602Institute of Geography, University of Erlangen-Nuremberg, Erlangen, Germany, 603Department of Environmental Biology, Sapienza University of Rome, Rome, Italy, 604Laboratorio de invasiones Biológicas, Universidad de Concepcion, Concepcion, Chile, 605Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria, 606School of Biological Sciences and School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia, 607Department of Environment, Forest & Nature Lab, Ghent University, Gontrode-Melle, Belgium, 608Museu Paraense Emílio Goeldi, Belém, PA, Brazil, 609Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas (ESPE), Sangolquí, Ecuador, 610Department of Botany, Goa University, Goa, India, 611Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India, 612Carl von Ossietzky University of Oldenburg, Oldenburg, Germany, 613Zooology Department, Edward Grey Institute, Oxford University, Oxford, UK, 614Department of Zoology, Cambridge University, Cambridge Conservation Initiative, Cambridge, UK, 615Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China, 616Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China, 617Institute of Geography, Fujian Normal University, Fuzhou, China, 618Department of Landscape Architecture, University of Sheffield, Sheffield, UK, 619Department of Biology, Colgate University, Hamilton, NY, USA, 620Ecological Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 621Maritime and Science Technology Academy, Miami, FL, USA, 622Free University of Bozen-Bolzano, Bolzano, Italy, 623University of Winnipeg, Winnipeg, Manitoba, Canada, 624The James Hutton Institute, Dundee, UK, 625King Saud University, Riyadh, Saudi Arabia, 626University of California – Irvine, Irvine, CA, USA, 627Southwest Biological Science Center, U. S. Geological Survey, Moab, UT, USA, 628Department of Biology, Duke University, Durham, NC, USA, 629NSW Department of Primary Industries, Parramatta, NSW, Australia, 630Hiroshima University, Higashi-Hiroshima, Japan, 631Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan, 632SUNY-College of Environmental Science and Forestry, Syracuse, NY, USA, 633Centre d’Ecologie et des Sciences de la Conservation (CESCO), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne-Université, Paris, France, 634Laboratório de Ecologia Vegetal (LEVEG), Porto Alegre, RS, Brazil, 635Biological Sciences, George Washington University, Washington, DC, USA, 636National Taiwan University, Taipei, Taiwan, 637College of Life Sciences, Zhejiang University, Hangzhou, China, 638Forestry College, Beijing Forestry University, Beijing, China, 639Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), Yamoussoukro, Côte d’Ivoire, 640Institute for Biology and Environmental Sciences, University Oldenburg, Oldenburg, Germany
Table A1

Datasets contributed to the TRY plant trait database. Sorted by custodian surname. ID: Dataset ID in the TRY database, Name, Custodian, TRY version to which the dataset was submitted (in parentheses first submission), availability of the dataset (status 1.10.2019), reference.

ID	Dataset name	Custodian	Version	Availability	Reference
403	Iranian Plant Trait Dataset	Mehdi Abedi	5	Public	Unpublished
429	TraitDunes	Alicia T.R. Acosta	5	Restricted	Unpublished
553	Herbaceous leaf traits database from Mediterranean serpentine and non-serpentine soils	George Adamidis	6	Restricted	Adamidis, Kazakou, Fyllas, and Dimitrakopoulos (2014)
152	Functional Traits of Graminoids in Semi-Arid Steppes Database	Peter Adler	3	Public	Adler, Milchunas, Lauenroth, Sala, and Burke (2004)
285	Functional traits explaining variation in plant life history strategies	Peter Adler	4	Public	Adler et al. (2013)
582	Guisane2080	Cécile Albert	6	Restricted	Albert et al. (2010)
583	Ecophy	Cécile Albert	6	Restricted	Albert et al. (2011)
268	Seed Longevity of European Early Successional Species	Harald Albrecht	3	Public	Unpublished
535	Annual mortality rate of mature trees in central Amazon rainforest over 5 decades of monitoring	Izabela Aleixo	6	Restricted	Aleixo et al. (2019)
559	Haean_South_Korea_Traits	Hamada Ali	6	Public	Ali, Reineking, and Münkemüller (2017)
150	French Weeds Trait Database	Bernard Amlaud	3	Public	Unpublished
376	Biomass allocation in beech and spruce seedlings	Christian Ammer	4	Public	Schall, Lödige, Beck, and Ammer (2012)
100	Plant Traits in Pollution Gradients Database	Madhur Anand	2	Restricted	Unpublished
624	CPCRW Carbon Dynamics Along Permafrost Gradient: Specific Leaf Area of Alder and Spruce	Carolyn Anderson	6	Public	Unpublished
622	Daintree Rainforest Functional Traits Data	Deborah Apgaaua	6	Public	Apgaaua et al. (2015)
97	Plant Physiology Database	Owen Atkin	1	Public	Campbell et al. (2007)
286	Global Respiration Database	Owen Atkin	4	Public	Atkin et al. (2015)
405	JACARE A-Ci leaf trait database 2017	Owen Atkin	5	Restricted	Bahar et al. (2016)
629	Traits of Plants in Canada (TOPIC)	Isabelle Aubin	4 (6)	Restricted	Aubin et al. (2012)
666	European Mountain Meadows Plant Traits Database	Khadijeh Bahalkeh	6	Public	Unpublished
76	French Weeds Trait Database	Bernard Amlaud	3	Public	Unpublished
101	Photosynthesis Traits Database	Dennis Baldocchi	2	Public	Xu and Baldocchi (2003)
154	Leaf Photosynthesis and Nitrogen at Oak Ridge Dataset	Dennis Baldocchi	2	Public	Wilson, Baldocchi, and Hanson (2000)
269	The Bridge Database	Chris Baraloto	3	Public	Baraloto, Timothy Paine, Poorter, et al. (2010)
422	Hawaii native and non-indigenous species. Traits and environment	Zdravko Baruch	5	Public	Baruch and Goldstein (1999)
576	Bauerle Vcmax and Jmax data	William Bauerle	6	Restricted	Bauerle et al. (2012)
502	Yangambi arboretum	Marijn Bauters	6	Restricted	Bauters et al. (2015)
504	Djolu	Marijn Bauters	6	Restricted	Bauters et al. (2019)
505	Nyungwe_Rwanda	Marijn Bauters	6	Restricted	Bauters et al. (2017)
654	Plant height of Mediterranean herb layer communities, Sardinia, Italy	Erika Bazzato	6	Restricted	Unpublished
277	UV-B Radiation Sensitivity of Hieracium Pilosella	Michael Beckmann	3	Public	Beckmann, Hock, Bruelheide, and Erfmeier (2012)

(Continues)
ID	Dataset name	Custodian	Version	Availability	Reference
631	Pinus traits from Beloïu	Carl Beierkuhnlein	6	Restricted	Unpublished
379	Stomatal conductance photosynthesis, soil water content & survival along a water stress experiment	Michaël Belluau	4	Public	Belluau and Shipley (2017)
425	Linking hard and soft traits	Michaël Belluau	5	Public	Belluau and Shipley (2018)
373	Leaf vein density of Fagus sylvatica L. and Quercus faginea Lam.	Raquel Benavides	4	Public	Unpublished
515	A-Ci curves	Lahcen Benomar	6	Public	Benomar et al. (2018)
658	Functional Traits of Tropical Dry Forest Colombia Fundación Natura and Enel-Emgesa	Mary Berdugo	6	Restricted	Unpublished
225	Diameter at Breast Height and Life Form of Amazonian Flora	Erika Berenguer	3	Restricted	Unpublished
397	Fine root traits of 141 Central European grassland species	Joana Bergmann	5	Public	Bergmann, Ryo, Prati, Hempel, and Rillig (2017)
294	Siberian shrub allometry	Logan Berner	4	Public	Berner et al. (2015)
381	Leaf traits from Baltic Island species	Markus Bernhardt-Römermann	4	Restricted	Unpublished
411	Fall Velocity from Baltic Island species	Markus Bernhardt-Römermann	5	Restricted	Unpublished
450	BryForTrait—A life-history trait database of forest bryophytes	Markus Bernhardt-Römermann	5	Public	Bernhardt-Römermann, Poschlod, and Hentschel (2018)
178	PLANTATT—Attributes of British and Irish Plants	Biological Records Centre (BRC)	3	Public	Hill, Preston, and Roy (2004)
468	Tundra Trait Team Database	Anne Bjorkman	6	Public	Bjorkman et al. (2018)
102	Photosynthesis and Leaf Characteristics Database	Benjamin Blonder	2	Public	Unpublished
226	Leaf Structure, Venation and Economic Spectrum	Benjamin Blonder	3	Public	Blonder, Violle, Bentley, and Enquist (2010)
295	Leaf functional traits in the Hawaiian silversword alliance	Benjamin Blonder	4	Public	Blonder, Baldwin, Enquist, and Robichaux (2015)
359	Plant traits of Arabidopsis thaliana	Benjamin Blonder	4	Public	Blonder, Vasseur, et al. (2015)
360	Fossil Leaf Traits	Benjamin Blonder	4	Public	Blonder, Royer, Johnson, Miller, and Enquist (2014)
361	Angiosperm leaf venation networks	Benjamin Blonder	4	Public	Blonder and Enquist (2014)
362	Leaf economics spectrum and venation networks in Populus tremuloides	Benjamin Blonder	4	Public	Blonder, Violle, and Enquist (2013)
517	Mt Baldy whole plant traits	Benjamin Blonder	6	Public	Blonder et al. (2018)
296	Northern mixed-grass prairie species traits—Wyoming, USA	Dana Blumenthal	4	Public	Unpublished
242	Ellenberg Indicator Values	Gerhard Boenisch	3	Restricted	Ellenberg and Leuschner (2010)
47	South African Woody Plants Database (ZLTP)	William Bond	1	Public	Unpublished
156	Plant Traits of Canadian Forests	Benjamin Bond-Lamberty	3	Public	Bond-Lamberty, Wang, Gower, and Norman (2002)
157	Litter N Content of Canadian Forests	Benjamin Bond-Lamberty	3	Public	Bond-Lamberty, Gower, Wang, Cyr, and Veldhuis (2006)
420	Chinese savanna trees—aboveground trait data	Coline Boonman	5	Restricted	Unpublished
297	Traits of Polygonum viviparum L.	Florian Boucher	4	Public	Boucher, Thuiller, Arnoldi, Albert, and Lavergne (2013)

(Continues)
ID	Dataset name	Custodian	Version	Availability	Reference
636	La Selva FT Data	Vanessa Boukili	6	Public	Boukili and Chazdon (2017)
421	LECA—Traits of the European Alpine Flora	Louise Boulangeat	5	Public	Unpublished
3	Australian Fire Ecology Database	Ross Bradstock	1	Public	Unpublished
165	Leaf Traits From Madagascar	Helge Bruehlheide	5	Public	Herz et al. (2017)
641	Parana Tree Traits (2015)	Federico Brunnich	6	Public	Brunnich, Marchetti, and Pereira (2019)
298	Plant traits from Greby, Oeland, Sweden	Hans Henrik Bruun	4	Restricted	Bastrup-Spohr, Sand-Jensen, Nicolaisen, and Bruun (2015)
545	Dataset on reproductive traits of Scandinavian alpine plants	Hans Henrik Bruun	6	Public	Bruun (2019)
632	Atractocarpus from new Caledonia	David Bruy	6	Public	Bruy et al. (2018)
427	Coffea arabica var. Caturra—leaf traits	Serra Willow Buchanan	5	Public	Buchanan, Isaac, Van den Meersche, and Martin (2018)
416	Garmisch-Partenkirchen elevational gradients	Solveig Franziska Bucher	5	Restricted	Bucher et al. (2016)
7	Cedar Creek Plant Physiology Database	Daniel Bunker	1	Restricted	Unpublished
585	Arable weed trait data set	Jana Bürger	6	Restricted	Unpublished
158	Plant Traits from Circeo National Park, Italy	Sabina Burrascano	3	Public	Burrascano et al. (2015)
159	Traits of US Desert Woody Plant Species	Bradley Butterfield	3	Public	Butterfield and Briggs (2010)
160	SLA and LDMC for Canadian Wetland Species	Chaeho Byun	3	Restricted	Byun, de Blois, and Brisson (2012)
447	Herbaceous plants of Rouge National Urban Park	Marc Cadotte	5	Public	Sodhi, Livingstone, Carboni, and Cadotte (2019)
448	Cadotte 2017 Ecology Letters: herbaceous traits measured in the field	Marc Cadotte	5	Public	Cadotte (2017)
446	Ring-width dataset of dead and living trees	Maxime Cailleret	5	Restricted	Cailleret et al. (2017)
522	Ecophysiology of Selaginella and fern species in a Costa Rica wet tropical forest floor	Courtney Campany	6	Public	Campany, Martin, and Watkins (2018)
161	Leaf Traits in Central Apennines Beech Forests	Giandiego Campetella	3	Public	Campetella et al. (2011)
220	Leaf Traits in Italian Central Apennines Beech Forests	Giandiego Campetella	3	Public	Campetella et al. (2011)
406	Whole plant traits and leaf traits of four grassland species in Central Apennines (Italy)	Giandiego Campetella	5	Restricted	Wellstein et al. (2013)
600	Bay of Biscay dunes	Juan Antonio Campos	6	Restricted	Torca, Campos, and Herrera (2019)
503	Leaf and whole plant traits of Val Cervara old growth beech forest (Central Apennine, Italy)	Roberto Canullo	6	Restricted	Unpublished
649	Alpine tundra plants—Effects of climate warming on traits of species in mid-latitude snowbeds	Michele Carbognani	6	Public	Unpublished
595	UFPR Atlantic Forest Tree Traits	Marcos Carlucci	6	Restricted	Carvalho, Brown, Waller, and Boom (2019); Carvalho, Brown, Waller, Bunting, et al. (2019)
670	Fabio Carvalho lowland fen peatland	Fabio Carvalho	6	Restricted	Carvalho, Brown, Waller, and Boom (2019); Carvalho, Brown, Waller, Bunting, et al. (2019)
299	Traits related to riparian plant invasion in South East Australia	Jane Catford	4	Restricted	Catford, Morris, Vesk, Gippel, and Downes (2014)

(Continues)
ID	Dataset name	Custodian	Version	Availability	Reference
354	Cedar Creek prairie plants (leaf, seed, dispersule, height, plant, root)	Jane Catford	4 (5)	Restricted	Catford et al. (2019)
54	Floridian Leaf Traits Database	Jeannine Cavender-Bares	1	Public	Cavender-Bares, Keen, and Miles (2006)
227	Leaf Structure and Economics Spectrum	Bruno E. L. Cerabolini	3 (4)	Restricted	Pierce, Ceriani, De Andreis, Luzzaro, and Cerabolini (2007)
228	Flora d'Italia Functional Traits Hoard (FIFTH)	Bruno E. L. Cerabolini	3	Restricted	Cerabolini et al. (2010)
229	Hydrophytes Traits Database	Bruno E. L. Cerabolini	3 (4)	Restricted	Pierce, Brusa, Sartori, and Cerabolini (2012)
371	Olive Lawn Orchid Trait Database (OLO)	Bruno E. L. Cerabolini	4	Restricted	Pierce, Vagge, Brusa, and Cerabolini (2014)
372	Malga San Simone Trait Database (MSO)	Bruno E. L. Cerabolini	4	Restricted	Cerabolini, Pierce, Luzzaro, and Ossola (2009)
377	Functional Traits of Trees in Golfo Dulce, Costa Rica	Eduardo Chacon	4	Public	Chacón-Madrigal, Wanek, Hietz, and Dullinger (2018)
300	Leaf traits from the Loess Plateau region of northern Shaanxi in China	Yongfu Chai	4	Restricted	Unpublished
120	Tropical Respiration Database	Jeffrey Chambers	2	Public	Chambers et al. (2004)
73	Tundra Plant Traits Database	F Stuart Chapin III	1	Public	Unpublished
501	Leaf traits of beech forest understory species	Stefano Chelli	6	Restricted	Unpublished
611	Temperate tree species in New Jersey USA	Anping Chen	6	Public	Chen, Lichstein, Osnas, and Pacala (2014)
498	Fruit type, fruit dimension and flowering time	Si-Chong Chen	6	Public	Chen, Cornwell, Zhang, and Moles (2017)
499	Growth form data for 3581 Australian species	Si-Chong Chen	6	Public	Chen et al. (2017)
491	Leaf inclination angle	Francesco Chianucci	6	Public	Chianucci et al. (2018)
370	Trait Data from Niwot Ridge LTER (2016)	Adam Chmurzynski	4	Public	Unpublished
489	Pladias: Ellenberg-type indicator values for the Czech flora	Milan Chytrý	6	Public	Chytrý, Tichý, Dřevojan, Sádlo, and Zelený (2018)
349	Mediterranean psammophytes	Daniela Ciccarelli	4	Public	Ciccarelli (2015)
394	Great Basin sagebrush seedlings-greenhouse experiment	Courtney Collins	5	Public	Unpublished
1	Abisko and Sheffield Database	Johannes Cornelissen	1	Public	Cornelissen et al. (2004)
37	Sheffield Database	Johannes Cornelissen	1	Public	Cornelissen, Diez, and Hunt (1996)
72	Sheffield and Spain Woody Database	Johannes Cornelissen	1	Public	Castro-Díez, Puyravaud, Cornelissen, and Villar-Salvador (1998)
121	Fern Spore Mass Database	Johannes Cornelissen	2	Public	Unpublished
55	Jasper Ridge Californian Woody Plants Database	Will Cornwall	1	Public	Preston, Cornwell, and DeNoyer (2006)
89	ArtDeco Database	Will Cornwall	1(2)	Restricted	Cornwell et al. (2008)
430	A Global Dataset of Leaf Δ13C Data	Will Cornwall	5	Public	Cornwell et al. (2018)
280	Global Woodiness Database	William Cornwall	3	Public	Zanne et al. (2014)
ID	Dataset name	Custodian	Version	Availability	Reference
-----	---	----------------------	---------	--------------	---
10	Roots Of the World (ROW) Database	Joseph Craine	1	Public	Craine, Lee, Bond, Williams, and Johnson (2005)
130	Global 15N Database	Joseph Craine	1	Public	Craine et al. (2009)
163	Plant Traits for Grassland Species (Konza Prairie, Kansas, USA)	Joseph Craine	3	Public	Craine et al. (2011)
230	Panama Tree Traits	Dylan Craven	3	Public	Craven et al. (2007)
378	Traits of the Hungarian flora	Anikó Csecseritis	4	Public	Lhotsky, Csecserits, Kovács, and Botta-Dukát (2016)
293	Jasper Ridge leaf chemistry data	Kyla Dahlin	4	Public	Dahlin, Asner, and Field (2013)
164	Italian Alps Plant Traits Database	Matteo Dainese	3	Public	Dainese and Bragazza (2012)
346	Leaf traits of Dipterocarpus alatus Roxb. ex. G. Don	Anh Tuan Dang-Le	4	Public	Dang-Le, Edelin, and Le-Cong (2013)
500	Pladias: Life forms and heights of the Czech flora	Jiri Danihelka	6	Public	Kaplan et al. (2019)
388	Leaf traits (and a few seed weights) collected from plants in the Macquarie Marshes, Australia	Samantha Dawson	5	Restricted	Dawson et al. (2017)
224	LBA-ECO CD-02 C and N Isotopes in Leaves and Atmospheric CO₂, Amazonas, Brazil	Alessandro de Araujo	3	Public	de Araujo et al. (2012)
643	Lapalalag grass trait data 2019	Arend de Beer	6	Restricted	Unpublished
289	Cabo de Gata-Nijar Natural Park	Angel de Frutos	4	Restricted	de Frutos, Navarro, Pueyo, and Alados (2015)
167	Leaf N-Retention Database	Franciska de Vries	3	Public	de Vries and Bardgett (2016)
525	Arboretum Grossopessna 2014 leaf chemical and photosynthesis traits	Benjamin Dechant	6	Restricted	Dechant, Cuntz, Vohland, Schulz, and Doktor (2017)
644	Quercus petraea Photosynthesis Seasonal Climate Chambers Dataset	Nicolas Delpierre	6	Restricted	Verdier et al. (2014)
645	Barbeau Leaf Minerals, Quercus petraea, Carpinus betulus	Nicolas Delpierre	6	Restricted	Delpierre, Berveiller, Granda, and Dufrène (2015)
166	Traits of Hemiparastic Plants	Andreas Demey	3	Public	Demey et al. (2013)
368	Wood traits of trees and lianas from the Brazilian Atlantic Forest	Arildo Dias	4	Restricted	Unpublished
542	Smilax auriculata nonstructural carbohydrates under-ground	Milton Diaz	6	Restricted	Unpublished
86	Sheffield-Iran-Spain Database	Sandra Díaz	1	Public	Díaz et al. (2004)
189	Mycorrhiza Database	Ian Dickie	3	Public	Koele, Dickie, Oleksyn, Richardson, and Reich (2012)
231	TROBIT West Africa	Tomas Domingues	3	Restricted	Domingues et al. (2010)
232	LBA ECO CD02: Tapajos Leaf Water Potential	Tomas Domingues	3	Restricted	Almeida et al. (2001)
255	LBA ECO Tapajos: Leaf Characteristics and Photosynthesis	Tomas Domingues	3	Restricted	Domingues, Martinelli, and Ehleringer (2007)
614	Ausplot traits	Ning Dong	6	Public	Dong et al. (2017)
169	Traits for Submerged Species (Aquatic Macrophytes)	Matthew Dunkle	3	Public	Unpublished
301	Specific leaf area responses to environmental gradients through space and time	John Dwyer	4	Public	Dwyer, Hobbs, and Mayfield (2014)
467	Data on chlorophylls and carotenoids in plants and lichens at the European Northeast of Russia	Olga Dymova	6	Restricted	Golovko, Dymova, Yatsco, and Tabalenkova (2011)
ID	Dataset name	Custodian	Version	Availability	Reference
-----	--	------------------------	---------	--------------	---
462	RBG Kew Palm leaf traits	Thaise Emilio	6	Restricted	Unpublished
380	Plant growth form dataset for the New World	Kristine Engemann	4	Public	Engemann et al. (2016)
129	The Americas N&P database	Brian Enquist	2	Public	Kerkhoff, Fagan, Elser, and Enquist (2006)
488	IR_DowlatAbad	Mohammad Bagher Erfanian	6	Restricted	Unpublished
171	Seed Characteristics of Ericaceae	Jaime Fagundez	3	Public	Fagúndez and Izco (2008); Fagúndez, Juan, Fernández, Pastor, and Izco (2010)
431	BAAD: a biomass and allometry database for woody plants	Daniel Falster	4	Public	Falster et al. (2015)
432	Global Dataset of Maximum Rooting Depth	Ying Fan Reinfelder	5	Public	Fan et al. (2017)
53	Chinese Leaf Traits Database	Jingyun Fang	1	Restricted	Han, Fang, Guo, and Zhang (2005)
594	Traits Arum puctum Farris UNISS	Emmanuelle Farris	6	Public	Unpublished
477	Fazlioglu et al. 2018_raw data	Fatih Fazlioglu	6	Public	Fazlioglu, Wan, and Bonser (2018)
478	Fazlioglu 2011, MSc Thesis	Fatih Fazlioglu	6	Public	Fazlioglu (2011)
480	Fazlioglu 2008	Fatih Fazlioglu	6	Public	Fazlioglu (2008)
481	Fazlioglu et al. 2016	Fatih Fazlioglu	6	Public	Fazlioglu, Al-Namazi, and Bonser (2016)
482	Fazlioglu et al. 2017	Fatih Fazlioglu	6	Public	Fazlioglu, Wan, and Bonser (2016)
490	Fazlioglu et al. 2016-Data-synthesis	Fatih Fazlioglu	6	Public	Fazlioglu and Bonser (2016)
271	Plant Trait Database from Bajo Calima Region (Buena Ventura, Colombia)	Fernando Fernández-Méndez	3	Public	Bocanegra-González, Fernández-Méndez, and Galvis-Jiménez (2015)
513	Traits of urban trees of Ibague, Colombia	Fernando Fernández-Méndez	6	Public	Unpublished
668	Traits of urban species from Ibagué Colombia	Fernando Fernández-Méndez	6	Public	Núñez-Florez, Pérez-Gómez, and Fernández-Méndez (2019)
74	Costa Rica Rainforest Trees Database	Bryan Finegan	1	Public	Finegan et al. (2015), Chain-Guadarrama, Imbach, Vilchez-Mendoza, Vierling and Finegan (2017)
561	Nutrient Network leaf trait dataset	Jennifer Firm	6	Public	Firn et al. (2019)
172	Leaf Characteristics of *Pinus sylvestris* and *Picea abies*	Katrin Fleischer	3	Restricted	Unpublished
104	Categorical Plant Traits Database	Olivier Flores	2	Public	Unpublished
414	eHALOPH—Halophytes Database (2018)	Tim Flowers	3 (4.5)	Public	Flowers, Santos, Jahns, Warburton, and Reed (2017)
302	Traits from Semi-Arid Mediterranean Ecosystems	Daniel Flynn	4	Public	de Frutos et al. (2015)
366	Plant Traits from LTER Matsch (Mazia, Italy)	Veronika Fontana	4	Restricted	Unpublished
174	Ecological Flora of the British Isles	Henry Ford	3	Public	Fitter and Peat (1994)
272	Plant Coastal Dune Traits (France, Aquitaine)	Estelle Forey	3	Public	Unpublished
170	Plant Functional Traits of Arid Steppes in Eastern Morocco (ECWP-Morocco)	Cedric Frenette-Dussault	3	Public	Frenette-Dussault, Shipley, Léger, Meziane, and Hingrat (2011)

(Continues)
ID	Dataset name	Custodian	Version	Availability	Reference
105	Traits from Subarctic Plant Species Database	Gregoire Freschet	2	Public	Freschet, Cornelissen, van Logtestij, and Aerts (2010)
234	Leaf Traits Mount Hutt, New Zealand	Gregoire Freschet	3	Public	Kichenin, Wardle, Peltzer, Morse, and Freschet (2013)
507	Freschet et al. 2018	Gregoire Freschet	6	Public	Freschet et al. (2018)
510	Freschet et al. 2015—VU greenhouse	Gregoire Freschet	6	Public	Freschet, Swart, and Cornelissen (2015)
511	Freschet et al. 2015—Mount Hutt	Gregoire Freschet	6	Public	Freschet, Kichenin, and Wardle (2015)
661	Mediterranean Forests in Transition (MEDIT) dataset	Nikolaos Fyllas	6	Restricted	Fyllas et al. (2017)
175	BASECO: a floristic and ecological database of Mediterranean French flora	Sophie Gachet	3	Public	Gachet, Véla, and Tatoni (2005)
106	Climbing Plants Trait Database	Rachael Gallagher	2	Public	Gallagher, Leishman, and Moles (2011)
176	Climbing plants trait dataset	Rachael Gallagher	3	Public	Gallagher and Leishman (2012)
177	Litter Traits Dataset	Pablo Garcia-Palacios	3	Public	Garcia-Palacios, Maestre, Kattge, and Wall (2013)
45	The VISTA Plant Trait Database	Eric Garnier	1	Restricted	Garnier et al. (2007)
383	Species and trait shifts in Apennine grasslands	Eleonora Giarrizzo	4	Public	Giarrizzo et al. (2016)
644	Khalil Prairie Plant Traits	David Gibson	6	Public	Khalil, Gibson, Baer, and Willand (2018)
382	Species able to reproduce after fire in a Brazilian Savanna	Aelton B. Girolido	4	Restricted	Girolido (2016)
514	Macquarie xylem leaf site hydraulics	Sean Gleason	6	Public	Unpublished
304	Leaf traits from North West Italy	Giovanni Gligora	4	Restricted	Unpublished
348	Leaf traits data (SLA) for 56 woody species at the Smithsonian Conservation	Erika B. Gonzalez-Akre	4	Public	Gonzalez-Akre, McShea, Bourg, and Anderson-Teixeira (2015)
267	Functional Traits for Restoration Ecology in the Colombian Amazon	Andres Gonzalez-Melo	3	Restricted	Unpublished
529	Diurnal and nocturnal gas exchange Quercus spp.	Elena Granda	6	Restricted	Unpublished
530	Seasonal gas exchange photoperiod Quercus spp.	Elena Granda	6	Restricted	Granda et al. (2020)
92	PLANTSdata USDA	Walton Green	1	Public	Green (2009)
512	Chromosome numbers of the Flora of Germany	Thomas Gregor	6	Public	Paule et al. (2017)
275	Plant Traits From Spanish Mediterranean shrublands	Nicholas Gross	3	Public	Unpublished
460	TRY Categorical Traits Dataset (update 2018)	Angela Guenther	5	Public	Unpublished
179	Leaf Gross Morphometrics Within one Species in Relation to Latitude, Altitude and Time	Greg Guerin	3	Public	Guerin, Wen, and Lowe (2012)
123	Virtual Forests Trait Database	Alvaro G. Gutierrez	2	Public	Gutiérrez and Huth (2012)
609	SERC-PREMIS Leaf Trait Dataset	Lilie Haddock	6	Public	Unpublished
586	Cedrus atlantica traits	Alain Hambuckers	6	Restricted	Unpublished
180	Leaf Ash Content in China's Terrestrial Plants	Wenxuan Han	3	Public	Han et al. (2012)
181	Leaf Nitrogen and Phosphorus for China's Terrestrial Plants	Wenxuan Han	3	Public	Chen, Han, Tang, Tang, and Fang (2013)
236	Chinese Traits	Sandy Harrison	3	Public	Prentice et al. (2010)

(Continues)
ID	Dataset name	Custodian	Version	Availability	Reference
237	Harze Trait Intravars: SLA, LDMC and Plant Height for Calcareous Grassland Species in South Belgium	Mélanie Harzé	3	Public	Unpublished
183	Komati Leaf Trait Data	Wesley Hattingh	3	Restricted	Unpublished
541	Rede Amazônia Sustentável	Joseph Hawes	6	Public	Unpublished
184	Cold Tolerance, Seed Size and Height of North American Forest Tree Species	Bradford Hawkins	3	Public	Unpublished
367	Tree species functional traits from Dinghushan Biosphere Reserve, southern China	Pengcheng He	4	Public	Li et al. (2015)
669	Leaf Economics Traits of Woody Species in Dinghushan Biosphere Reserve, Southern China	Pengcheng He	6	Public	He et al. (2019)
238	Fire-Related Traits in Proteaceae and Pinaceae	Tianhua He	3	Public	He, Lamont, and Downs (2011); He, Pausas, Belcher, Schwilk, and Lamont (2012)
434	Seed mass and nutrient concentration in Grevillea and Hakea species	Tianhua He	5	Public	He, Fowler, and Causley (2015)
472	Traits data for plant species from Western Australia	Tianhua He	6	Public	Unpublished
628	Peel Forest New Zealand Sycamore dataset	Mason Heberling	6	Public	Heberling and Mason (2018)
634	Trillium Trail Forest Wildflower Carbon Gain Phenology	Mason Heberling	6	Public	Heberling, Cassidy, Fridley, and Kalisz (2019)
546	Bark, Leaf and Root traits of tropical trees from the semi-deciduous forests of TENE, West Africa	Bruno Herault	6	Restricted	Unpublished
115	Herbaceous Traits from the Öland Island Database	Thomas Hickler	2	Restricted	Hickler (1999)
384	Panama wood anatomy	Peter Hietz	4	Restricted	Hietz, Rosner, Hietz-Seifert, and Wright (2016)
48	Dispersal Traits Database	Steve Higgins	1	Restricted	Unpublished
305	Araucaria Forest Database	Pedro Higuchi	3	Public	Unpublished
567	LABDENDRO Brazilian Subtropical Forest Traits Database [Dataset IV]	Pedro Higuchi	6	Restricted	Unpublished
185	cDNA Content of Carex	Andrew Hipp	3	Public	Chung, Hipp, and Roalson (2012)
671	Morton Arboretum Experimental Prairie traitset 1, 2019	Andrew Hipp	6	Public	Hipp et al. (2018)
659	Sjöman-Hirons Leaf Turgor Loss with Osmotic Potential at Full Turgor	Andrew Hirons	6	Restricted	Sjöman, Hirons, and Bassuk (2015)
509	Leaf functional traits for tropical saplings from Jianfengling, Hainan Island, China	J. Aaron Hogan	6	Public	Hogan, Valverde-Barrantes, Ding, Xu, and Baraloto (2019)
306	Plant traits from Costa Rica	Karen Holl	4	Public	Unpublished
291	MARGINS—leaf traits database	Daniel Hornstein	4	Public	Unpublished
476	Leaf traits and litter properties in Dinghu mountain, Guangdong province, China	Enqing Hou	6	Public	Hou, Chen, McCroddy, and Wen (2012)
287	Biomass allocation of Carex obnupta and Carex stipata	Nate Hough-Snee	4	Public	Hough-Snee, Nackley, Kim, and Ewing (2015)
355	Knautia arvensis; Mid-Norway	Knut Hovstad	4	Restricted	Unpublished
580	Alpyr	Estela Ilia	6	Restricted	Unpublished
551	Coffee traits	Marney Isaac	6	Public	Isaac et al. (2017)
463	Leaf Chlorophyll and Carotenoids Database	Leonid Ivanov	6	Restricted	Unpublished

(Continues)
ID	Dataset name	Custodian	Version	Availability	Reference
339	FRED—Fine-Root Ecology Database	Colleen Iversen	4 (5)	Public	Iversen et al. (2017)
606	Colt Park Mesocosms	Benjamin Jackson	6	Public	De Long et al. (2019)
240	Nutrient Resorption Efficiency Database	Robert Jackson	3	Public	Vergutz, Manzoni, Porporato, Novais, and Jackson (2012)
186	Growth and Herbivory of Juvenile Trees	Hervé Jactel	3	Public	Unpublished
579	Effect of drought on pine needle traits	Hervé Jactel	6	Public	Unpublished
81	Global Leaf Element Composition Database	Steven Jansen	1	Public	Watanabe et al. (2007)
82	Global Wood Anatomy Database 2	Steven Jansen	1	Public	Unpublished
187	Xylem Functional Traits (XFT) Database: Nature Subset	Steven Jansen	3	Public	Choat et al. (2012)
241	Xylem Functional Traits (XFT) Database	Steven Jansen	3	Public	Choat et al. (2012)
389	Leaf element composition of ferns and lycophytes	Steven Jansen	5	Public	Schmitt et al. (2017)
673	Wagenführ Woodatlas	Steven Jansen	6	Public	Wagenführ (2007)
650	SLA data La Palma 2019 (MIREN project)	Anke Jentsch	6	Public	Unpublished
651	SLA data La Palma 2019 (SLA project)	Anke Jentsch	6	Public	Unpublished
523	SLA and height data of exotic plant species in highland forest of Java and Bali	Decky Indrawan Junaeidi	6	Restricted	Unpublished
524	AlpinePlants Austria	Robert R. Junker	6	Restricted	Unpublished
516	Pladias: Flowering time of the Czech flora	Zdenek Kaplan	6	Public	Kaplan et al. (2019)
449	KIT herbaceous functional gradient (median)	Teja Kattenborn	5	Restricted	Kattenborn, Fassnacht, and Schmidtlein (2018)
526	KIT herbaceous functional gradient (weekly measurements)	Teja Kattenborn	6	Restricted	Kattenborn and Schmidtlein (2019)
67	Leaf Physiology Database	Jens Kattge	1	Public	Kattge, Knorr, Raddatz, and Wirth (2009)
398	Yangambi (DR Congo) tropical forest tree traits	Elizabeth Kearsley	5	Restricted	Kearsley et al. (2016)
404	Leaf nutrients and SLA for old field shrubs and small trees from northeastern Connecticut, USA	Nicole Kinlock	5	Public	Unpublished
60	KEW African Plant Traits Database	Don Kirkup	1	Restricted	Kirkup, Malcolm, Christian, and Paton (2005)
188	Orchid Trait Dataset	Yael Kisel	3	Public	Kisel et al. (2012)
540	PalmTraits 1.0	W. Daniel Kissling	6	Public	Kissling et al. (2019)
336	Ecophysiological traits of Pinus halepensis Miller	Tamir Klein	4	Public	Klein, Di Matteo, Rotenberg, Cohen, and Yakir (2012)
25	The LEDA Traitbase	Michael Kleyer	1 (3)	Public	Kleyer et al. (2008)
243	CLO-PLA: a Database of Clonal Growth in Plants	Jitka Klimešová	3	Public	Klimešová and de Bello (2009)
273	Plant Trait Database in East and South-East Asia	Fumito Koike	3	Restricted	Koike (2001)
308	Plant traits from Andorra	Benjamin Komac	4	Restricted	Komac, Pladevall, Domenech, and Fanlo (2014)
552	Plants of the Experimental forest of the Botanical Garden Institute FEB RAS (Vladivostok, Russia)	Kirill Korznikov	6	Public	Unpublished
190	Yasuni Ecuador Leaves	Nathan Kraft	3	Public	Kraft, Valencia, and Ackerly (2008)
191	Baccara—Plant Traits of European Forests	Koen Kramer	2	Public	Unpublished
4	BioFior Database	Ingolf Kühn	1	Public	Klotz, Kühn, and Durka (2002, 2017)

(Continues)
TABLE A1 (Continued)

ID	Dataset name	Custodian	Version	Availability	Reference
469	ACi-TGlob V1.0: A Global dataset of photosynthetic CO₂ response curves of terrestrial plants	Dushan Kumarathunge	6	Public	Kumarathunge et al. (2019)
528	Hawaii Floral traits	Jonas Kuppler	6	Restricted	Kuppler et al. (2017)
52	Traits of Bornean Trees Database	Hiroko Kurokawa	1	Restricted	La Pierre and Nakashizuka (2008), unpublished
309	Plant traits of grassland species	Kim La Pierre	4	Public	Guy, Mischkolz, and Lamb (2013); Letts, Lamb, Mischkolz, and Romo (2015)
265	Saskatchewan Plant Trait Database	Eric Lamb	3	Public	Kuppler et al. (2017)
192	Meadow Plant Traits: Biomass Allocation, Rooting depth	Vojtech Lanta	3	Public	Unpublished
193	Plant Traits for Pinus and Juniperus Forests in Arizona	Daniel Laughlin	1 (3)	Public	Laughlin, Fulé, Huffman, Crouse, and Laliberté (2011)
536	NZ kettehole plant traits	Daniel Laughlin	6	Public	Purcell, Lee, Tanentzap, and Laughlin (2018)
538	NZ tree traits	Daniel Laughlin	6	Public	Jager, Richardson, Bellingham, Clearwater, and Laughlin (2015)
310	French Alps Trait Data	Sandra Lavorel	4	Public	Lavorel et al. (2010)
98	New South Wales Plant Traits Database	Michelle Leishman	1	Public	Unpublished
244	Global Wood Anatomy Database 1	Frederic Lens	1 (3,4)	Public	Lens, Endress, Baas, Jansen, and Smets (2008); Lens, Gasson, Smets, and Jansen (2003); Lens et al. (2011)
274	Crown Architecture Database	Felipe Lenti	3	Public	Unpublished
663	Plant three traits (SLA, LA, Height) of 14 plots in Eastern Tibetan subalpine meadow	Xine Li	6	Public	Li, Nie, Song, Zhang, and Wang (2011)
419	Sherbrooke Dataset	Yuanzhi Li	5	Public	Li and Shipley (2018)
642	USA-China Biodiversity (USA samples)	Jeremy Lichstein	6	Restricted	Unpublished
435	Functional Resilience of Temperate Forests Dataset	Mario Liebergesell	5	Public	Liebergesell et al. (2016)
436	Global Leaf Gas Exchange Database (I)	Yan-Shih Lin	5	Public	Lin et al. (2015)
646	AM fungi and plant growth	Daijun Liu	6	Public	Unpublished
647	Observation of Ginkgo tree morphological difference	Daijun Liu	6	Public	Unpublished
565	Seed Information Database, Royal Botanic Gardens, Kew	Udayangani Liu	1 (3,6)	Public	Royal Botanic Gardens Kew (2019)
34	The RAINFOR Plant Trait Database	Jon Lloyd	1	Restricted	Fyllas et al. (2009)
602	Chajul secondary forest species	Madelon Lohbeck	6	Restricted	Lobbeck et al. (2012)
657	Plant traits along primary succession	Alvaro Lopez-Garcia	6	Restricted	Unpublished
413	Extension of Zanne et al. Global wood density database	Gabriela Lopez-Gonzalez	5	Public	Unpublished
195	Leaf Herbivores, Fibres and Secondary Compounds For European Grassland Species	Jessy Loranger	3	Public	Loranger et al. (2012)
508	Pladias: leaf traits in the Czech flora	Zdeňka Lososová	6	Public	Findurová (2018)
80	French Massif Central Grassland Trait Database	Frédérique Louault	1	Public	Louault, Pillar, Aufrère, Garnier, and Soussana (2005)
311	Structural and biochemical leaf traits of boreal tree species in Finland	Petr Lukes	4	Public	Lukeš, Stenba, Rautiainen, Möttus, and Vanhatalo (2013)
ID	Dataset name	Custodian	Version	Availability	Reference
-----	--	-----------------	---------	--------------	---
312	Traits of temperate rainforest tree seedlings from New Zealand	Chris Lusk	4	Restricted	Lusk, Kaneko, Grierson, and Clearwater (2013)
667	Intraspecific variation leaf traits temperate rainforest	Chris Lusk	6	Public	Lusk (2019)
605	Terrestrial Mediterranean Orchids Functional Traits	Michele Lussu	6	Restricted	Unpublished
342	Photosynthesis Traits Worldwide	Vincent Maire	4	Public	Maire et al. (2015)
196	RAINFOR Leaf Shape, Driptip, Compoundness and Size Database	Ana Malhado	3	Public	Malhado et al. (2012); Malhado, Malhi, et al. (2009); Malhado, Whittaker, et al. (2009); Malhado et al. (2010)
108	The DIRECT Plant Trait Database	Peter Manning	2	Public	Fry, Power, and Manning (2013)
245	Ecotron Species Composition and Global Change Experiment	Peter Manning	3	Public	Manzoni et al. (2006)
197	Plant Hydraulic Traits	Stefano Manzoni	3	Public	Manzoni, Vico, Porporato, and Katul (2013)
607	Sardinia elevation gradient	Michela Marignani	6	Public	Campetella et al. (2019)
313	Wood carbon content database	Adam Martin	4	Public	Thomas and Martin (2012)
423	Leaf economic traits in wheat and maize	Adam Martin	5	Public	Martin, Hale, et al. (2018)
433	Wood carbon database	Adam Martin	5	Public	Martin, Doraisami, and Thomas (2018)
438	Crop Trait Database	Adam Martin	5	Public	Martin, Hale, et al. (2018)
548	Leaf economic traits in soy	Adam Martin	6	Public	Hayes et al. (2018)
549	Soy root traits	Adam Martin	6	Public	Martin et al. (2019)
550	Leaf economic traits in coffee	Adam Martin	6	Public	Martin et al. (2017)
344	Los Tuxtlas functional traits	Cristina	4	Public	Martínez-Garza, Bongers, and Poorter (2013)
527	CNP seed stoichiometry	Tereza Mašková	6	Restricted	Unpublished
109	Leaf Chemical Defense Database	Tara Joy Massad	2	Public	Unpublished
357	Functional traits of woody species in the Brazilian semi-arid region	Guilherme	4	Public	Unpublished
475	Woody plant traits from southeast Queensland, Australia	James McCarthy	6	Public	McCarthy, Dwyer, and Mokany (2019)
459	Yasuni Ecuador Leaf Drought Tolerance and Mechanical Toughness	Ian McFadden	5	Restricted	McFadden et al. (2019)
465	Yasuni Ecuador Leaf ITV	Ian McFadden	6	Public	Fortunel, McFadden, Valencia, and Kraft (2019)
281	Minimum Freezing Exposure Database	Daniel McGlinn	3	Public	Zanne et al. (2014)
408	Alaska Peatland Experiment PFT values	Mara McPartland	5	Public	Unpublished
390	Rhododendron leaf and root economics traits	Juliana Medeiros	5	Public	Medeiros, Burns, Nicholson, Rogers, and Valverde-Barrantes (2017)
12	EOCOCRAFT	Belinda Medlyn	1	Public	Medlyn et al. (1999)
437	Global Leaf Gas Exchange Database (II)	Belinda Medlyn	5	Public	Knauer et al. (2017)
314	Shoot dry mass of annual grassland species	Zia Mehrabi	3	Restricted	Unpublished
278	Photosynthetic Capacity Dataset	Patrick Meir	1	Public	Meir et al. (2002)
198	Global Leaf-Sapwood Area Ratios	Maurizio Mencuccini	3	Public	Unpublished
199	Whole Plant Hydraulic Conductance	Maurizio Mencuccini	3	Public	Mencuccini (2003)
ID	Dataset name	Custodian	Version	Availability	Reference
-----	--	-------------------	---------	--------------	---
113	Panama Leaf Traits Database	Julie Messier	2	Public	Messier, McGill, and Lechowicz (2010)
592	Mont Mégantic Individual Traits 2016–2017	Julie Messier	6	Public	Messier, Violle, Enquist, Lechowicz and McGill (2018)
315	Leaf traits for *Picea glauca* and *Pinus sylvestris* on University of Calgary (Canada) campus	Sean Michaletz	4	Public	Michaletz and Johnson (2006)
539	Thermo-Mediterranean species along Greece	Chrysanthi Michelaki	6	Restricted	Michelaki et al. (2019)
200	Altitudinal Vicariants Spain	Ruben Milla	3	Public	Milla and Reich (2011)
415	Ozark glade grassland plants	Jesse Miller	5	Public	Miller, Ives, Harrison, and Damschen (2017)
247	Traits of Halophytic Species in North-West-Germany	Vanessa Minden	3	Restricted	Minden and Kleyer (2011)
290	Traits of halophytic species	Vanessa Minden	4	Restricted	Minden and Kleyer (2015)
316	Element contents of plant organs of halophytic species, NW-Germany	Vanessa Minden	4	Restricted	Minden and Kleyer (2014)
456	Trait-responses of Impatiens species to light and nutrients	Vanessa Minden	5	Restricted	Minden and Gorschütter (2016)
457	Antibiotics-effects on plant traits	Vanessa Minden	5	Restricted	Minden, Deloy, Volkert, Leonhardt, and Pufal (2017)
458	Antibiotics-effects on plant traits	Vanessa Minden	5	Restricted	Minden, Schnetger, Pufal, and Leonhardt (2018)
518	Plant traits along NPK gradients	Vanessa Minden	6	Restricted	Minden and Olde Venterink (2019)
317	Traits of Hypochaeris radicata under shade and drought conditions	Rachel Mitchell	4	Public	Unpublished
28	Global Seed Mass, Plant Height Database	Angela Moles	1	Public	Moles et al. (2005); Moles et al. (2009)
201	Phalaris arundinacea Genotypes	Jane Molofsky	3	Restricted	Lavergne and Molofsky (2007)
266	Hawaiian Lobeliad	Rebecca Montgomery	3	Public	Givnish, Montgomery, and Goldstein (2004)
202	Traits from the Wildfire Project	Marco Moretti	3	Public	Moretti and Legg (2009)
307	Hokkaido leaf traits	Akira Mori	4	Restricted	Mori et al. (2015)
537	Hokkaido plant traits 2	Akira Mori	6	Restricted	Unpublished
555	Teshio grassland plant traits	Akira Mori	6	Restricted	Unpublished
556	Utanai forest tree traits	Akira Mori	6	Restricted	Unpublished
557	Kuujjuarapik-Whapmagoostui	Akira Mori	6	Restricted	Unpublished
655	Functional Flowering Plant Traits	Jane Morrison	6	Public	Unpublished
318	Leaf traits related to mesophyll conductance in wild relatives of tomato (*Solanum lycopersicon*)	Christopher Muir	3	Public	Muir, Hangarter, Moyle, and Davis (2013)
648	LEVEG-UFRGS	Sandra Müller	6	Restricted	Unpublished
353	Old fields of Eastern US (Siefert Data)	Luka Negoita	4	Public	Siefert, Fridley, and Ritchie (2014)
484	Larix occidentalis branch section, specific leaf area and dry mass	Andrew Nelson	6	Restricted	Williams and Nelson (2018)
409	Seed trait data from Neuschulz et al. 2016	Eike Lena Neuschulz	5	Restricted	Neuschulz et al. (2016)
560	Fruit Traits Ecuador	Eike Lena Neuschulz	6	Public	Quitián et al. (2018)
49	Tree Tolerance Database	Ülo Niinemets	1	Restricted	Niinemets and Valladares (2006)

(Continues)
ID	Dataset name	Custodian	Version	Availability	Reference
87	Global Leaf Robustness and Physiology Database	Ülo Niinemets	1	Restricted	Niinemets (2001)
426	Ti Tree Database	Rachael Nolan	5	Public	Nolan et al. (2017)
453	European North Russia	Alexander Novakovskiy	5	Public	Dalke, Novakovskiy, Maslova, and Dubrovskiy (2018)
656	Decomposition experiment with standard substrate. Functional traits (SLA, LDMC and SSD)	Ricardo Oliveira	6	Restricted	Oliveira, Marques, and Marques (2019)
203	Plant Traits from Romania	Kinga Öllerer	3	Public	Ciocârlan (2009), Sanda, Bitanicolae and Barabas (2003)
635	Olson PNAS 2018	Mark E. Olson	6	Restricted	Olson, Soriano, et al. (2018)
637	Rosell Olson Self Non self VD scaling	Mark E. Olson	6	Restricted	Rosell and Olson (2014)
638	Olson et al. AnnBot 2018 Corners Rules	Mark E. Olson	6	Restricted	Olson, Rosell, Zamora Muñoz, and Castorena (2018)
640	Olson et al. EcoLett Vessel diameter scaling	Mark E. Olson	6	Restricted	Olson et al. (2014)
124	Leaf Biomechanics Database	Yusuke Onoda	2	Restricted	Onoda et al. (2011)
410	Onoda 2017 leaf traits dataset	Yusuke Onoda	5	Public	Onoda et al. (2017)
319	Plant Traits from Fynbos Forests in the Cape Region	Renske Onstein	4	Public	Onstein, Carter, Xing, and Linder (2014)
88	The Netherlands Plant Traits Database	Jenny Ordoñez	1	Public	Ordoñez et al. (2010)
520	Pinnacle Reserve, ACT	Andrew O'Reilly-Nugent	6	Public	O'Reilly-Nugent et al. (2019)
604	Absorptive root morphological traits of boreal and hemi-boreal alder, birch and spruce forests	Ivika Ostonen	6	Public	Ostonen et al. (2013); Ostonen, Tedersoo, Suvi, and Löhmus (2009)
603	Plant traits of granite outcrops’ vegetation of Southwestern Australia	Gianluigi Ottaviani	6	Restricted	Ottaviani, Marctonio, and Mucina (2016)
365	Tree of sex: a database of sexual systems	Sarah Otto	4	Public	The Tree of Sex Consortium ()
116	The Netherlands Plant Height Database	Wim Ozinga	2	Restricted	Unpublished
204	Impatiens glandulifera Dataset	Anna Pahl	3	Public	Pahl, Kollmann, Mayer, and Haider (2013)
439	Functional Traits of Trees	C. E. Timothy Paine	5	Public	Paine et al. (2015)
464	Leaf traits of selected trees and Liana traits	Vivek Pandi	6	Public	Unpublished
623	Fagus sylvatica Paggeo Greece	Aristotelis C. Papageorgiou	6	Public	Unpublished
320	Grassland Plant Trait Database	Meelis Pärtel	3 (4)	Public	Takkis (2014)
27	BROT Plant Trait Database	Juli Pausas	1	Public	Paula et al. (2009)
440	PSOR—A global P50 and Resprouting Database	Juli Pausas	5	Public	Pausas et al. (2015)
441	BBB—A global Belowground Bud Bank database	Juli Pausas	5	Public	Pausas, Lamont, Paula, Appezzato-da-Gloria, and Fidelis (2018)
474	BROT 2.0	Juli Pausas	6	Public	Tavşanoğlu and Pausas (2018)
270	Plant Traits of Acidic Grasslands in Central Spain	Begoña Peco	3	Public	Peco, de Pablos, Traba, and Levassor (2005)
91	Catalanian Mediterranean Forest Trait Database	Josep Peñuelas	1	Restricted	Ogaya and Peñuelas (2003)
114	Hawaiian Leaf Traits Database	Josep Peñuelas	2	Restricted	Peñuelas et al. (2009)
131	Catalanian Mediterranean Shrubland Trait Database	Josep Peñuelas	1	Restricted	Unpublished
493	Weiqi-Sardans-Peñuelas China plants	Josep Peñuelas	6	Restricted	Unpublished
496	Garraf-Peñuelas	Josep Peñuelas	6	Restricted	Peñuelas et al. (2017)
497	Prades-Peñuelas	Josep Peñuelas	6	Restricted	Peñuelas et al. (2018)

(Continues)
ID	Dataset name	Custodian	Version	Availability	Reference
591	Mediterranean mixed forest	Antonio Jesus Perea	6	Restricted	Unpublished
75	ECOQUA South American Plant Traits Database	Valerio Pillar	1	Restricted	Müller, Overbeck, Pfadenhauer, and Pillar (2006)
387	LEVA-UFPE plant trait database	Bruno Pinho	5	Restricted	Unpublished
470	Neotropical woody plants functional trait database	Bruno Pinho	6	Restricted	Unpublished
533	Atlantic forest and Mexican forests	Bruno Pinho	6	Restricted	Pinho et al. (2017)
321	Leaf angles	Jan Pisek	3	Public	Pisek, Sonnentag, Richardson, and Möttus (2013)
417	Leaf angles	Jan Pisek	5	Public	Raabe et al. (2015)
168	Traits for Herbaceous Species from Andorra	Clara Pladavall	3	Restricted	Unpublished
95	The Tansley Review LMA Database	Hendrik Poorter	1	Restricted	Poorter, Niinemets, Poorter, Wright, and Villar (2009)
110	Categorical Plant Traits Database	Hendrik Poorter	2	Public	Unpublished
248	Photosynthesis Type Database	Hendrik Poorter	3	Public	Kapralov, Smith, and Filatov (2012)
684	Biomass Allocation Database	Hendrik Poorter	6	Public	Poorter et al. (2015)
33	Tropical Rainforest Traits Database	Lourens Poorter	1	Restricted	Poorter and Bongers (2006)
71	BIOPOP: Functional Traits for Nature Conservation	Peter Poschlod	1	Restricted	Poschlod et al. (2003)
151	Aluminium Tolerance Dataset	Peter Poschlod	3	Public	Abedi, Bartelheimer, and Poschlod (2012)
615	Yarramundi species trait data	Sally Power	6	Restricted	Unpublished
263	Costa Rican Tropical Dry Forest Trees	Jennifer Powers	3	Public	Powers and Tiffin (2010)
205	Leaf Allometry Dataset	Charles Price	3	Public	Price and Enquist (2007)
506	Functional traits of Cistus species leaf cohorts	Giacomo Puglielli	6	Public	Puglielli and Varone (2018)
578	Reproductive traits of neophytes in the Czech Republic	Petr Pyšek	6	Restricted	Moravcová, Pyšek, Jarošík, Havličková, and Zákravský (2010)
544	Mediterranean Roadcut Trait Data	Valerie Raavel	6	Public	Raavel, Violle, and Muñoz (2012)
626	Bolivian Bofedal TraitData	Valerie Raavel	6	Public	Raavel, Anthelme, Meneses, and Muñoz (2018)
59	Frost Hardiness Database	Anja Rammig	1	Restricted	Unpublished
639	Mt Baldy seed traits	Courtenay Ray	6	Restricted	Unpublished
206	Maxfield Meadow, Rocky Mountain Biological Laboratory—LMA	Quentin Read	3	Public	Unpublished
323	Rocky Mountain Biological Laboratory WSR/gradient plant traits	Quentin Read	4	Public	Unpublished
35	Reich-Oleksyn Global Leaf N, P Database	Peter Reich	1	Restricted	Reich, Oleksyn, and Wright (2009)
70	Cedar Creek Savanna SLA, C, N Database	Peter Reich	1	Restricted	Willis et al. (2010)
94	Global A, N, P, SLA Database	Peter Reich	1	Restricted	Reich et al. (2009)
96	Global Respiration Database	Peter Reich	1	Restricted	Reich et al. (2008)
494	Poblet Ecophysiology	Víctor Resco de Dios	6	Public	Nolan, Hedo, Arteaga, Sugai, and Resco de Dios (2018)
495	Live fuel moisture data at a pine forest	Víctor Resco de Dios	6	Public	Soler Martin et al. (2017)
571	New Zealand Bark Thickness	Sarah Richardson	6	Public	Richardson et al. (2015)
ID	Dataset name	Custodian	Version	Availability	Reference
------	---	-----------------	---------	--------------	---
572	New Zealand Nothofagus leaf and stem traits	Sarah Richardson	6	Public	Richardson et al. (2013)
573	New Zealand Alpine Granite Leaf Nutrient Concentrations	Sarah Richardson	6	Public	Richardson et al. (2012)
343	Sphagnum tissue CNP	Bjorn Robroek	4	Public	Unpublished
620	Leaf and flower pressure volume curve data	Adam Roddy	6	Public	Roddy, Jiang, Cao, Simonin, and Brodersen (2019)
442	Plant Trait Dataset for Tree-Like Growth Forms	Arthur Vinicius Rodrigues	5	Public	Rodrigues et al. (2018)
207	Herbaceous Plants Traits From Southern Germany	Christine Roemermann	3	Public	Unpublished
400	Leaf Mass Area, Leaf Carbon and Nitrogen Content from Barrow, Alaska	Alistair Rogers	5	Public	Rogers, Serbin, Ely, Sloan, and Wullschleger (2017)
401	Arctic Leaf Photosynthetic Parameters Vcmax and Jmax Estimated from CO₂ Response Curves	Alistair Rogers	5	Public	Rogers et al. (2017)
402	Arctic Photosynthetic parameter Vcmax Estimated Using the 1-Point Method	Alistair Rogers	5	Public	Rogers et al. (2017)
325	Rollinson DBH	Emily Rollinson	4	Public	Unpublished
326	Leaf nutrient concentrations	Victor Rol Rojero	3	Public	Rolo, López-Díaz, and Moreno (2012)
396	Rehabilitating Coastal dune forest	Victor Rol Rojero	5	Restricted	Rolo, Olivier, and van Aarde (2016)
590	Leaf Traits of Aquatic Plants	Dina Ronzhina	6	Public	Ronzhina and P'Yankov (2001)
589	Jena Experiment Traits	Christiane Roscher	6	Public	Gubsch et al. (2011); Lipowsky et al. (2015); Roscher, Schmid, Buchmann, Weigelt, and Schulze (2011)
391	Dataset for Rosell 2016 New Phytologist	Julieta Rosell	5	Restricted	Rosell (2016)
392	Dataset for Rosell et al. 2017 New Phytologist	Julieta Rosell	5	Restricted	Rosell et al. (2017)
613	Inner bark and wood NSC concentrations, density, height, phenology, bark photosynthesis, bark thickness	Julieta Rosell	6	Restricted	Unpublished
633	Bark Wood traits New Phytol 2014 and Oecologia 2015	Julieta Rosell	6	Restricted	Rosell, Gleason, Méndez-Alonzo, Chang, and Westoby (2013)
519	Swiss National Park, Engadine	Christian Rossi	6	Restricted	Rossi (2017)
208	Response of Tree Growth to Light and Size, Barro Colorado Island, Panama	Nadja Rüger	3	Public	Rüger, Berger, Hubbell, Vieilledent, and Condit (2011)
283	Response of Tree Mortality to Light, Size and Past Growth, Barro Colorado Island, Panama	Nadja Rüger	3	Public	Rüger, Huth, Hubbell, and Condit (2011)
284	Response of Tree Recruitment to Light, Barro Colorado Island, Panama	Nadja Rüger	3	Public	Rüger, Huth, Hubbell, and Condit (2009)
672	DISEQU-ALP	Sabine Rumpf	6	Public	Rumpf et al. (2018)
111	Leaf and Whole-Plant Traits Database	Lawren Sack	2	Restricted	Nakahashi, Frole, and Sack (2005)
675	Salguero-Gomez Cistus albidus 2019	Rob Salguero-Gomez	6	Public	Unpublished
249	California Coastal Grassland Database	Brody Sandel	3	Public	Sandel, Corbin, and Krupa (2011)
543	Functional traits related to flammability	Carolina Santacruz	6	Restricted	Unpublished
407	Leaf nutrient concentrations from Scalon et al. 2017	Marina Scalon	5	Public	Scalon et al. (2017)

(Continues)
ID	Dataset name	Custodian	Version	Availability	Reference
209	Leaf Area, Dry Mass and SLA Dataset	Brandon Schamp	3	Restricted	Unpublished
211	BIOTREE Trait Shade Experiment	Michael Scherer-Lorenzen	3	Public	Scherer-Lorenzen, Schulze, Don, Schumacher, and Weller (2007)
350	Trait Data for African Plants—A Photo Guide	Marco Schmidt	4	Public	Dressler, Schmidt, and Zizka (2014)
531	Paracou ITV	Sylvain Schmitt	6	Restricted	Unpublished
532	Uppangala Traits	Sylvain Schmitt	6	Restricted	Unpublished
395	Senckenberg leaf venation data of West African Plants	Julio Schneider	5	Restricted	Unpublished
584	Traits of Woody Plants in Hluhluwe-iMfolozi Park, South Africa	Simon D. Schowanek	6	Restricted	Unpublished
587	Raja Ampat tree dataset	Julian Schrader	6	Public	Unpublished
593	Branch anatomy	Bernhard Schuld	6	Public	Schuld, Leuschner, Brock, and Horna (2013)
250	FYNBASE—Database of Plant Traits From the South African Fynbos Biome	Frank Schurr	3	Restricted	Schurr et al. (2007)
251	The Xylem/Phloem Database	Fritz Schweingruber	3	Public	Schweingruber and Landolt (2005)
356	Aboveground morphological traits of grassland species	Marina Semchenko	4	Restricted	Abakumova, Zobel, Lepik, and Semchenko (2016)
351	Miombo tree species—SLA, leaf and seed size	Colleen Seymour	4	Public	Joseph, Seymour, Cumming, Cumming, and Mahlangu (2014)
352	Miombo tree species—Leaf nutrients	Colleen Seymour	4	Public	Seymour et al. (2014)
485	Catimbau National Park, Brazil	Julia Sfair	6	Restricted	Sfair, de Bello, de França, Baldauf, and Tabarelli (2018)
374	Traits of fertile (spore bearing) leaves of rainforest ferns from El Verde Field, Puerto Rico	Joanne Sharpe	4	Public	Unpublished
375	Traits of sterile (non-spore bearing) leaves of rainforest ferns from El Verde Field, Puerto Rico	Joanne Sharpe	4	Public	Unpublished
574	Traits of 48 native and alien Asteraceae in Germany (common-garden experiment)	Christine Sheppard	6	Restricted	Unpublished
212	Herbs Water Relations on Soil Moisture Gradients	Serge Sheremetev	3	Public	Sheremetiev and Chebotareva (2018)
412	The Global Leaf Traits Database	Serge Sheremetev	5	Public	Unpublished
471	Species Growth Forms (Angiosperms)—Update 9	Serge Sheremetev	6	Public	Sheremetiev and Chebotareva (2018)
483	A Geological Age of an Angiosperm Genera and Families	Serge Sheremetev	6	Public	Sheremetiev and Chebotareva (2018)
99	Tropical Traits from West Java Database	Satomi Shiodera	1	Public	Shiodera, Rahajoe, and Kohyama (2008)
50	Leaf and Whole Plant Traits Database	Bill Shipley	1	Public	Shipley (2002)
252	Leaf Structure and Chemistry	Bill Shipley	3	Public	Auger and Shipley (2012)
608	Traits of understory plants of western Canadian forest	Tanvir Ahmed Shovon	6	Restricted	Shovon et al. (2019)
616	Div Resource Pot Experiment	Alrun Siebenkäs	6	Restricted	Siebenkäs, Schumacher, and Roscher (2015)
133	New York Old Field Plant Traits Database	Andrew Siefert	2	Restricted	Siefert (2011)
327	Eastern US Old Field Plant Traits Database	Andrew Siefert	4	Public	Siefert et al. (2014)

(Continues)
ID	Dataset name	Custodian	Version	Availability	Reference
253	Allometric Coefficients of Aboveground Tree Biomass	Carlos Sierra	3	Public	Zapata-Cuertas, Sierra, and Alleman (2012)
393	LABDENDRO Brazilian Subtropical Forest Traits Database [Dataset II]	Ana Carolina Silva	5	Restricted	Souza et al. (2017)
568	LABDENDRO Brazilian Subtropical Forest Traits Database [Dataset III]	Ana Carolina Silva	6	Restricted	Soboleiski et al. (2017)
466	Leaf and stem traits of Eremanthus erythropappus	Mateus Silva	6	Public	Silva, Teodoro, Bragion, and van der Berg (2019)
534	Silva el al. 2019	Vasco Silva	6	Restricted	Silva, Catry, et al. (2019)
358	Leaf Respiration Acclimation in Panama	Martijn Slot	4	Public	Slot, Rey-Sánchez, Winter, and Kitajima (2014)
385	Photosynthesis Temperature Response Panama	Martijn Slot	5	Restricted	Slot and Winter (2017)
213	Day and Night Gas Exchange of Deciduous Tree Seedlings in Response to Experimental Warming and Precipitation	Nick Smith	3	Public	Smith, Pold, Goranson, and Dukes (2016)
424	LCE: Leaf carbon exchange dataset for tropical, temperate, and boreal species of North and Central America	Nick Smith	5	Public	Smith and Dukes (2017)
328	Root Traits of Grassland Species	Stuart William Smith	4	Public	Smith, Woodin, Pakeman, Johnson, and van der Wal (2014)
558	Sonnier and Boughton ABS	Gregory Sonnier	6	Public	Unpublished
454	Leaf traits from ECOSHRUB Dovrefjell Norway	Mia Vedel Sørensen	5	Public	Unpublished
77	FAPESP Brazil Rainforest Database	Enio Sosinski	1 (3)	Restricted	Unpublished
84	Caucasus Plant Traits Database	Nadejda Soudzilovskia	1	Restricted	Unpublished
162	Mycorrhizal Intensity Database Across the Former Soviet Union	Nadejda Soudzilovskia	3	Public	Akhmetzhanova et al. (2012)
329	Plant traits from alpine plants on Mt. Malaya Khatipara	Nadejda Soudzilovskia	3	Restricted	Soudzilovskia et al. (2013)
369	Traits and ecological strategies of 66 subtropical tree species in the Brazilian Atlantic Forest	Alexandre Souza	4	Public	Forgiarini, Souza, Longhi, and Oliveira (2014)
256	Niwot Alpine Plant Traits	Marko Spasojevic	3	Public	Spasojevic and Suding (2012)
418	Ozark Tree leaf traits	Marko Spasojevic	5	Public	Spasojevic, Turner, and Myers (2016)
674	Staples et al. Australian Reforestation Tree Database	Timothy Staples	6	Public	Staples, Dwyer, England, and Mayfield (2019)
547	Traits of Alpine species in GLORIA regions Hochschwab, Schrankogel, Majella and Lefk Ori	Klaus Steinbauer	6	Restricted	Unpublished
364	Plant species high elevation dataset	Christien Steyn	4	Public	Steyn, Greve, Robertson, Kalwij, and le Roux (2016)
577	Marion Island Fine Scale	Tanya Strydom	6	Restricted	Unpublished
610	Ash Free Dry Mass of Ceratophyllum submersum	Ivana Svitkova	6	Restricted	Unpublished
51	Tropical Plant Traits From Borneo Database	Emily Swaine	1	Public	Swaine (2007)
214	Maximum Height of Chinese Tree Species (from Silva Sinica)	Nathan Swenson	3	Public	Zheng (1983)
288	CTFS Luquillo Forest Dynamics Plot	Nathan Swenson	4	Public	Swenson, Anglada-Cordero, and Barone (2010)
ID	Dataset name	Custodian	Version	Availability	Reference
------	--	-------------------------	---------	--------------	--
581	Charidemi Database	Ruben Tarifa	6	Restricted	Unpublished
345	CIRAD Selmet Tree LNC Sahel	Simon Taugourdeau	4	Public	Unpublished
451	NodDB—A global database of plants with root-symbiotic nitrogen fixation	Leho Tedersoo	5	Public	Tedersoo et al. (2018)
662	Thom 2019	Dominik Thom	6	Public	Unpublished
473	Functional trait data Colombian dry Forest trees	Evert Thomas	6	Public	Thomas et al. (2017)
625	Tng et al. 2013 Traits	David Tng	6	Public	Tng et al. (2013)
575	Myricaria germanica	Sitzia Tommaso	6	Restricted	Sitzia, Michielon, Iacopino, and Kotze (2016)
665	Species patch metrics	Sitzia Tommaso	6	Public	Sitzia, Dainese, Krüsi, and McCollin (2017)
492	Xylem anatomical traits for different Cistus species	Jose M. Torres-Ruiz	6	Public	Torres-Ruiz et al. (2017)
215	Plant Functional Traits From the Province of Almeria (Spain)	Alexia Totte	3	Public	Unpublished
338	Leaf Traits and Seed Mass of Cover Crops	Hélène Tribouillois	4	Public	Tribouillois et al. (2015)
598	Soft traits of the Northern Swan Coastal Plain and Geraldton Sandplain kwongan vegetation, Western Australia	James Tsakalos	6	Restricted	Unpublished
685	Tree and Forest Biomass Distribution	Vladimir Usoltsev	6	Public	Usoltsev (2010)
216	Traits for Common Grasses and Herbs in Spain	Fernando Valladares	3	Public	Unpublished
56	Wetland Dunes Database	Peter van Bodegom	1	Restricted	van Bodegom, Sorrell, Oosthoek, Bakke, and Aerts (2008)
90	Ukraine Wetlands Plant Traits Database	Peter van Bodegom	1 (2)	Restricted	Unpublished
117	Categorical Plant Traits Database	Peter van Bodegom	2	Public	Unpublished
330	Traits of Ukraine native and invasive plant species	Peter van Bodegom	4	Restricted	Unpublished
617	Forbs and grasses in North East Belgium	Elisa Van Cleemput	6	Public	Van Cleemput, Roberts, Honnay, and Somers (2019)
332	Photosynthetic parameters, respiration and leaf traits of a Peruvian tropical montane cloud forest	Marjan van de Weg	4	Public	van de Weg, Meir, Grace, and Ramos (2011)
333	LMA, leaf tissue density and N&P content along the Amazon-Andes gradient in Peru	Marjan van de Weg	4	Public	van de Weg, Meir, Grace, and Atkin (2009)
618	Montane grassland Functional Traits	Stephni van der Merwe	6	Restricted	Unpublished
619	Sub Antarctic tundra_Functional Traits	Stephni van der Merwe	6	Restricted	Unpublished
331	Traits of savannah trees in the Hluhuluwe-iMfolozi Game reserve, South Africa	Fons van der Plas	4	Public	Van der Plas, Howison, Reinders, Fokkema, and Olff (2013)
599	Trait data Pibiri–Masha van der Sande	Masha van der Sande	6	Public	van der Sande et al. (2017)
562	1000 Seedweight	Mark van Kleunen	6	Public	Chrobock, Kempel, Fischer, and van Kleunen (2011)
563	Germination	Mark van Kleunen	6	Public	Chrobock et al. (2011)
564	Competition	Mark van Kleunen	6	Public	Kempel, Chrobock, Fischer, Rohr, and van Kleunen (2013)

(Continues)
ID	Dataset name	Custodian	Version	Availability	Reference
597	shade (for TRY)_mvk	Mark van Kleunen	6	Public	Feng and van Kleunen (2014)
461	Western Pamirs	Kim André, Vanselow	6	Public	Vanselow, Samimi, and Breckle (2016)
627	Functional traits of native and invasive species in tropical dry forest	Maribel Vasquez	6	Public	Vásquez-Valderrama (2016)
264	Functional Traits Of Bulgarian Grasslands	Kiril Vassilev	3	Restricted	Vassilev, Pedashenko, Nikolov, Apostolova, and Dengler (2011)
217	Canopy Traits for Temperate Tree Species Under High N-Deposition	Kris Verheyen	3	Public	Adriaenssens (2012)
653	Rasgos funcionales especies arboreas cuenca Amazonica	Jaime Villacis	6	Public	Unpublished
122	Plant Habit Database	Cyrille Violle	2	Public	Unpublished
588	Leaf trait records of rare and endangered plant species in the Pannonian flora	Anna Vojtko	6	Public	Unpublished
218	Plant Traits, Virginia, USA	Betsy von Holle	3	Public	Von Holle and Simberloff (2004)
334	A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area	Anthony Walker	4	Public	Walker et al. (2014)
443	The China Plant Trait Database	Han Wang	5	Public	Wang et al. (2018)
219	Seed Mass from Literature	Zhonglei Wang	3	Restricted	Unpublished
630	Watkins, Sjoman and Hitchmough CSR ordination of trees	Harry Watkins	6	Public	Unpublished
258	Global Wood Decomposition Database (version 1.1)	James Weedon	3	Public	Weedon et al. (2009)
347	Traits of 59 grassland species	Alexandra Weigelt	4	Public	Schroeder-Georgi et al. (2015)
455	Gift—Plant Growth Form Dataset	Patrick Weigelt	5	Restricted	Weigelt, König, and Kreft (2019)
66	Midwestern and Southern US Herbaceous Species Trait Database	Evan Weiher	1	Restricted	Unpublished
335	Plant traits from Wisconsin, USA	Evan Weiher	4	Restricted	Unpublished
444	Symbiotic N2-Fixation Database	Gijsbert Werner	5	Public	Werner, Cornwell, Sprent, Kattge, and Kiers (2014)
445	Mycorrhizal Association Database	Gijsbert Werner	5	Public	Werner et al. (2018)
79	BIOME-BGC Parameterization Database	Michael White	1	Public	White, Thornton, Running, and Nemani (2000)
259	Angiosperm Shoot Ionomes Dataset	Philip White	3	Public	White et al. (2012)
262	LBA-ECO CD-09 Soil and Vegetation Characteristics, Tapajos National Forest, Brazil	Mathew Williams	3	Public	Williams, Shimabokuro, and Rastetter (2012)
486	Brassica tournefortii	Daniel Winkler	6	Public	Winkler, Gremer, Chapin, Kao, and Huxman (2018)
487	Sasa kurilensis	Daniel Winkler	6	Public	Winkler, Amagai, Huxman, Kaneko, and Kudo (2016)
521	Heterotheca brandegei traits	Daniel Winkler	6	Restricted	Winkler, Lin, Delgadillo, Chapin, and Huxman (2019)
68	The Functional Ecology of Trees (FET) Database—Jena	Christian Wirth	1 (3)	Public	Wirth and Lichstein (2009)
20	GLOPNET—Global Plant Trait Network Database	Ian Wright	1	Public	Wright et al. (2004)
57	Categorical Plant Traits Database	Ian Wright	1	Public	Unpublished
63	Fonseca/Wright New South Wales Database	Ian Wright	1	Public	Fonseca, Overton, Collins, and Westoby (2000)

(Continues)
ID	Dataset name	Custodian	Version	Availability	Reference
64	Neotrop Plant Traits Database	Ian Wright	1	Public	Wright et al. (2006)
65	Overton/Wright New Zealand Database	Ian Wright	1	Public	Unpublished
279	Global Leaf Phenology Database	Ian Wright	3	Public	Zanne et al. (2014)
340	Global leaf size dataset	Ian Wright	4	Public	Wright et al. (2017)
601	Ian Wright NT savanna Traits	Ian Wright	6	Public	Wright et al. (2018)
221	Leaf Economic Traits Across Varying Environmental Conditions	Justin Wright	3	Public	Wright and Sutton-Grier (2012)
112	Panama Plant Traits Database	S. Joseph Wright	2	Public	Wright et al. (2010)
612	Ecophysiological parameters of tree and shrub leaves in forest-steppe plantings	Nikolai Yankov	6	Public	Kavelenova, Rozno, Kireyeva, and Smirnov (2007); Pomogaybin and Pomogaybin
125	Quercus Leaf C&N Database	Benjamin Yguel	2	Public	Yguel et al. (2011)
322	Shoot N/P stoichiometry of Inner Mongolia grassland species	Qiang Yu	3	Public	Yu et al. (2011)
61	Global Wood Density Database	Amy Zanne	1	Public	Chave et al. (2009)
62	Global Vessel Anatomy Database	Amy Zanne	1	Public	Zanne et al. (2010)
554	Leaf functional traits from Sino-US Dimension project (Chinese collaborators)	Yunpeng Zhao	6	Restricted	Unpublished
621	Metasequoia glyptostroboide from Shanghai China	Ji Zheng	6	Public	Zheng et al. (2018)
337	Tree Anatomy China	Jingming Zheng	4	Public	Zheng and Martinez-Cabrera (2013)
596	Wood anatomy and wood density—Australia	Kasia Ziemińska	6	Public	Zieminska, Butler, Gleason, Wright, and Westoby (2013); Zieminska, Westoby, and Wright (2015)
569	SW Michigan restored prairies	Chad Zirbel	6	Public	Zirbel, Bassett, Orman, and Brudvig (2017)
570	CLE_restored_prairie_greenhouse_traits	Chad Zirbel	6	Public	Unpublished
223	San Lorenzo Epiphyte Leaf Traits Database	Gerhard Zotz	3	Public	Petter et al. (2016)