Monte Carlo Event Generators

Mike Seymour
University of Manchester / CERN
Structure of LHC Events

1. Hard process
2. Parton shower
3. Hadronization
4. Underlying event
5. Unstable particle decays
Parton Showers: Introduction

QED: accelerated charges radiate.
QCD identical: accelerated colours radiate.

gluons also charged.

→ cascade of partons.

= parton shower.

1. e^+e^- annihilation to jets.
2. Universality of collinear emission.
3. Sudakov form factors.
4. Universality of soft emission.
5. Angular ordering.
6. Initial-state radiation.
7. Hard scattering.
8. Heavy quarks.
9. Dipole cascades.
Structure of LHC Events

1. Hard process
2. Parton shower
3. Hadronization
4. Underlying event
5. Unstable particle decays
Hadronization: Introduction

Partons are not physical particles: they cannot freely propagate. Hadrons are.

Need a model of partons’ confinement into hadrons: hadronization.

1. Phenomenological models.
2. Confinement.
3. The string model.
4. Preconfinement.
5. The cluster model.
6. Secondary decays.
7. Underlying event models.
Phenomenological Models

Experimentally, $e^+ e^- \rightarrow$ two jets:

Flat rapidity plateau and limited p_t, $\rho(p_t^2) \sim e^{-p_t^2/2p_0^2}$
Estimate of Hadronization Effects

Using this model, can estimate hadronization correction to perturbative quantities.

Jet energy and momentum:

\[
E = \int_0^Y dy \ d^2p_t \ \rho(p_t^2) \ p_t \ \cosh y = \lambda \sinh Y
\]

\[
P = \int_0^Y dy \ d^2p_t \ \rho(p_t^2) \ p_t \ \sinh y = \lambda(\cosh Y - 1) \sim E - \lambda,
\]

with \(\lambda = \int d^2p_t \ \rho(p_t^2) \ p_t \), mean transverse momentum. Estimate from Fermi motion \(\lambda \sim 1/R_{had} \sim m_{had} \).

Jet acquires non-perturbative mass: \(M^2 = E^2 - P^2 \sim 2\lambda E \)

Large: \(\sim 10 \) GeV for 100 GeV jets.
Independent Fragmentation Model ("Feynman—Field")

Direct implementation of the above.

Longitudinal momentum distribution = arbitrary fragmentation function: parameterization of data.
Transverse momentum distribution = Gaussian.

Recursively apply $q \rightarrow q' + \text{had}$.
Hook up remaining soft q and \bar{q}.

Strongly frame dependent.
No obvious relation with perturbative emission.
Not infrared safe.
Not a model of confinement.
Confinement

Asymptotic freedom: $Q\bar{Q}$ becomes increasingly QED-like at short distances.

QED:

but at long distances, gluon self-interaction makes field lines attract each other:

QCD:

\rightarrow linear potential \rightarrow confinement
Interquark potential

Can measure from quarkonia spectra:

or from lattice QCD:

$V(R) = V_0 + K R - e/R + 1/R^2$

→ String tension

$\kappa \approx 1 \text{ GeV/fm}$.
String Model of Mesons

Light quarks connected by string.
L=0 mesons only have ‘yo-yo’ modes:

\[m^2 = 2\kappa^2 \text{ area} \]
The Lund String Model

Start by ignoring gluon radiation:

\[e^+ e^- \text{ annihilation} = \text{pointlike source of } q\bar{q} \text{ pairs} \]

Intense chromomagnetic field within string \(\rightarrow q\bar{q} \) pairs created by tunnelling. Analogy with QED:

\[
\frac{d(\text{Probability})}{dx\; dt} \propto \exp\left(-\pi m_q^2 / \kappa\right)
\]

Expanding string breaks into mesons long before yo-yo point.
Lund Symmetric Fragmentation Function

String picture \rightarrow constraints on fragmentation function:
- Lorentz invariance
- Acausality
- Left—right symmetry

\[f(z) \propto z^{\alpha - \beta - 1}(1 - z)^{\alpha \beta} \]

α, β adjustable parameters for quarks α and β.

Fermi motion \rightarrow Gaussian transverse momentum.

Tunnelling probability becomes

\[\exp \left[-b \left(m_q^2 + p_t^2 \right) \right] \]

a, b and m_q^2 = main tuneable parameters of model
Baryon Production

Baryon pictured as three quarks attached to a common centre:

At large separation, can consider two quarks tightly bound: diquark

→ diquark treated like antiquark.

Two quarks can tunnel nearby in phase space: baryon—antibaryon pair
Extra adjustable parameter for each diquark!
Three-jet Events

So far: string model = motivated, constrained independent fragmentation!

New feature: universal

Gluon = kink on string \rightarrow the string effect

Infrared safe matching with parton shower: gluons with $k_{\perp} < \text{inverse string width irrelevant.}$
String Summary

- String model strongly physically motivated.
- Very successful fit to data.
- Universal: fitted to $e^+ e^-$, little freedom elsewhere.

- How does motivation translate to prediction?
 ~ one free parameter per hadron/effect!

- Blankets too much perturbative information?

- Can we get by with a simpler model?
Preconfinement

Planar approximation: gluon = colour—anticolour pair.

Follow colour structure of parton shower: colour-singlet pairs end up close in phase space

Mass spectrum of colour-singlet pairs asymptotically independent of energy, production mechanism, …

Peaked at low mass $\sim Q_0$.
Cluster mass distribution

- Independent of shower scale Q
 - depends on Q_0 and Λ
The Naïve Cluster Model

Project colour singlets onto continuum of high-mass mesonic resonances (=clusters). Decay to lighter well-known resonances and stable hadrons.

Assume spin information washed out:
decay = pure phase space.

→ heavier hadrons suppressed
→ baryon & strangeness suppression ‘for free’ (i.e. untuneable).

Hadron-level properties fully determined by cluster mass spectrum, i.e. by perturbative parameters.

ρ_0 crucial parameter of model.
The Cluster Model

Although cluster mass spectrum peaked at small m, broad tail at high m.

“Small fraction of clusters too heavy for isotropic two-body decay to be a good approximation”.

Longitudinal cluster fission:

Rather string-like.
Fission threshold becomes crucial parameter.
~15% of primary clusters get split but ~50% of hadrons come from them.
The Cluster Model

“Leading hadrons are too soft”

→ ‘perturbative’ quarks remember their direction somewhat

$$P(\theta^2) \sim \exp\left(-\frac{\theta^2}{2\theta_0^2}\right)$$

Rather string-like.

Extra adjustable parameter.
“Hadrons are produced by hadronization: you must get the non-perturbative dynamics right”

Improving data has meant successively refining perturbative phase of evolution…

“Get the perturbative phase right and any old hadronization model will be good enough”

Improving data has meant successively making non-perturbative phase more string-like…

???
Universality of Hadronization Parameters

- Is guaranteed by preconfinement: do not need to retune at each energy

→ Only tune what’s new in hadron—hadron collisions
Structure of LHC Events

1. Hard process
2. Parton shower
3. Hadronization
4. Underlying event
5. Unstable particle decays
Secondary Decays and Decay Tables

• Often forgotten ingredient of event generators:
 – String and cluster decay to some stable hadrons but mainly unstable resonances
 – These decay further “according to PDG data tables”
 • Matrix elements for n-body decays
 – But…
 • Not all resonances in a given multiplet have been measured
 • Measured branching fractions rarely add up to 100% exactly
 • Measured branching fractions rarely respect isospin exactly
 – So need to make a lot of choices
 – Has a significant effect on hadron yields, transverse momentum release, hadronization corrections to event shapes, …
 – Should consider the decay table choice part of the tuned set
Secondary particle decays

- Previous generations typically used external packages, e.g. TAUOLA, PHOTOS, EVTGEN
- Sherpa & Herwig contain at least as complete a description in all areas…
- without interfacing issues (c.f. τ spin)
Mass spectrum of $\pi\pi$ in $\tau \to \pi\pi\nu_\tau$ for various models and example of mass distribution in $\tau \to 5\pi\nu_\tau$ comparing Herwig and TAUOLA.
Leptonic hadron decays: $J/\psi \rightarrow \ell \bar{\ell}$

- Total photon energy radiated in the $J/\psi(1S)$ rest frame
- Radiation pattern in dipole rest frame

- Total radiated energy in the J/ψ rest frame
- Angular spectrum in the rest frame of the dipole

- Soft only (dotted)
- Collinear approximated ME (dashed)
- Exact ME (solid)
Comparison of Herwig and EvtGen implementations of the fit of Phys. Rev. D63 (2001) 092001 (CLEO).
Inclusive observables for B^+ decay

Electron multiplicity

Electron energy spectrum

The SHERPA framework

SHERPA as Production generator

SHERPA as Decay generator

Conclusions + Outlook
