Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

Meta-analysis on outcome-worsening comorbidities of COVID-19 and related potential drug-drug interactions

Charles Awortwea,b, Ingolf Cascorbia,* \\
a Institute for Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany \\
b Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa

\textbf{A R T I C L E I N F O}

Keywords:
COVID-19 \\
SARS-CoV-2 \\
Comorbidity \\
Drug-drug interaction \\
Side-effect

\textbf{A B S T R A C T}

Drug-drug interactions (DDI) potentially occurring between medications used in the course of COVID-19 infection and medications prescribed for the management of underlying comorbidities may cause adverse drug reactions (ADRs) contributing to worsening of the clinical outcome in affected patients. First, we conducted a meta-analysis to determine comorbidities observed in the course of COVID-19 disease associated with an increased risk of worsened clinical outcome from 24 published studies. In addition, the potential risk of DDI between medications used in the course of COVID-19 treatment in these studies and those for the management of observed comorbidities was evaluated for possible worsening of the clinical outcome. Our meta-analysis revealed an implication cardiometabolic syndrome (e.g. cardiovascular disease, cerebrovascular disease, hypertension, and diabetes), chronic kidney disease and chronic obstructive pulmonary disease as main co-morbidities associated with worsen the clinical outcomes including mortality (risk difference RD 0.12, 95 %-CI 0.05–0.19, $p = 0.001$), admission to ICU (RD 0.10, 95 %-CI 0.04–0.16, $p = 0.001$) and severe infection (RD 0.05, 95 %-CI 0.01–0.09, $p = 0.01$) in COVID-19 patients. Potential DDI on pharmacokinetic level were identified between the antiviral agents atazanavir and lopinavir/ritonavir and some drugs, used in the treatment of cardiovascular diseases such as antiarrhythmics and anti-coagulants possibly affecting the clinical outcome including cardiac injury or arrest because of QTc-time prolongation or bleeding. Concluding, DDI occurring in the course of anti-Covid-19 treatment and co-morbidities could lead to ADRs, increasing the risk of hospitalization, prolonged time to recovery or death on extreme cases. COVID-19 patients with cardiometabolic diseases, chronic kidney disease and chronic obstructive pulmonary disease should be subjected to particular carefully clinical monitoring of adverse events with a possibility of dose adjustment when necessary.

1. Introduction

The recent outbreak of the novel coronavirus officially known as Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) has progressed into global pandemic. Up to September 6, 2020 the World Health Organization (WHO) recorded 26,763,217 confirmed cases and 876,616 deaths in 216 countries worldwide \cite{WHO}. An estimated 20–51 \% of affected patients are reported to have at least one comorbidity \cite{WHO, Dehghan}. These affected patients with underlying comorbidities may have a greater risk of poor clinical outcome including severity, mortality, and admission to ICU \cite{WHO, Dehghan, Miller}. Again, it is expected that given the percentage of individuals with comorbidities affected by the COVID-19, the use of polypharmacy for treatment of existing chronic disease conditions might be a routine.

Since the inception of SARS-CoV-2 outbreak in the Chinese city of Wuhan in late 2019, several antiviral drugs and other medications currently utilized in clinics with known safety profile are repurposed in COVID-19 patients to reduce worsening of the symptoms \cite{Petersen, Kucharski}. On May 1, 2020, the US Food and Drug Administration (FDA) issued an emergency use authorization for the investigational antiviral drug remdesivir for the treatment of hospitalized adults and children with severe COVID-19 based on clinical trial data. Nonetheless, some of these drugs are known to cause severe drug-drug interactions (DDI) such as hydroxychloroquine and azathioprine leading to increased risk of QTc-time prolongations \cite{Petersen}. With respect to co-morbidities in COVID-19 patients there is an additional potential risk of DDI between antiviral agents and multiple medications prescribed to treat their chronic disease conditions. It was shown that in northern Italy COVID-19 patients...
experienced significant elevated plasma concentrations of direct oral anti-coagulants while on medications used in the course of COVID-19 [10]. Unfortunately, with the exception of hydroxychloroquine and QTc-time prolongation due to co-administration of other drugs, the issue of potential harmful DDI in COVID-19 comorbid patients seems to be of minor attention with a limited number of published studies currently available [11–15]. Also, of a public health concern is the use of self-medication being potentially harmful or without evidence of clinical benefit taking place particularly in low- and middle-income countries with restricted access to quality healthcare and where drug dispensing is less controlled in the communities [16,17]. We hypothesized that in addition to comorbidities, DDI may further worsen the clinical outcome of COVID-19 in these patients.

Herein, we first conducted a meta-analysis on COVID-19 clinical studies which characterized the epidemiological or clinical features of affected patients with comorbidities independent of pharmacological interventions. Secondly, the potential risk of DDI between drugs used in the course of COVID-19 and other medications prescribed for treatment of comorbidities were identified leading to potentially ADRs increasing the risk of poorer clinical outcome (e.g. hospitalization, prolonged time to recovery and death on extreme cases).

2. Methods

2.1. Search strategy and study criteria

Electronic databases of PubMed, Medline, Scopus and google scholar were searched for articles published before June 17, 2020 in English-language reporting on COVID-19. A combination of search terminologies (“COVID-19”, “coronavirus”, “nCOV”, SARS-CoV-2”) AND (“clinical characteristics”) AND (“epidemiological features”) AND (“chronic diseases”) AND (“comorbidities”) were used for the search. Additional studies were obtained by examining the references of selected articles. Selection criteria for the analysis focused exclusively on clinical studies characterizing the clinical or epidemiological features of COVID-19 patients. Only studies with confirmed SARS-CoV-2-RNA detection in respiratory specimen including nasopharyngeal swabs, bronchoalveolar lavage fluid, sputum, or bronchial aspiration as well as in plasma were included in the meta-analysis. Clinical signs of the infection such as fever, cough, myalgia, malaise, rhinorrhea, arthralgia, chest pain and dyspnea were also taken into consideration. Other clinical complications such as acute kidney and cardiac injuries were considered. We excluded studies conducted in children, pre-clinical models, case reports, letters, editorial commentaries, reviews, and meta-analysis.

2.2. Statistical analysis

The risk difference method was used to estimate weights of individual study outcome using the Mantel-Haenszel method with random-effect model in the R statistical software (version 3.4.2). The statistical heterogeneity between study outcomes were visualized using the forest plot and the inter-study heterogeneity estimated by calculating the I^2, H^2 and H^2 statistics, and by computing Cochran’s Q test statistics [18,19]. An I^2 values lower than 25 % was considered as low heterogeneity, values of 26–50 % indicated moderate heterogeneity and values greater than 50 % to indicate a high heterogeneity. A Cochran’s Q test statistics with p-value of < 0.05 was an indication of statistical significance.
heterogeneity. The trim and fill method was used to determine hypo-
thesetical missing studies as evidence of publication bias when necessary
(Supplementary Fig. 1).

2.3. Potential drug-drug interactions

The data on drugs used in the course of COVID-19 and the primary
indication were collected from www.ashp.org/COVID-19 as well as
metabolizing enzymes involved in their biotransformation from www.dr
ugbank.ca. The potential of drugs used in the course of COVID-19
infection reported in the included studies to interact with other drugs
used for the treatment or management of comorbidities which could precipitate ADRs
likely to further worsen clinical outcome of COVID-19 based on our
administration; and (iv) drugs should not be co-administered. We sub-
that may require close monitoring, alteration of drug dosage or timing of
unlikely to be required; (iii) potential clinically significant interaction
no clinically significant interaction expected; (ii) potential interaction
of such DDI were risk ranked into five categories based on the quality of
study with AUCs, metabolism study with probe substrates, observational PK in
infected patients, (3) moderate - cross-over, parallel steady state PK
study with AUCs and (4) high - data based on randomized, controlled
interaction trial with clinical or validated surrogate endpoints.

The grading on quality of evidence of DDI was conducted for each
medication prescribed for the treatment or management of comorbid-
ities against individual COVID-19 therapies. Subsequently, the z-score
was calculated and used to construct heatmaps in www. software.
broadinstitute.org/morpheus.

3. Results

3.1. Study characteristics

A literature search was conducted to extract eligible studies for the
meta-analysis. Of 467 records screened for eligibility, 24 prospective
and retrospective case studies with a total of 5,586 COVID-19 affected
patients were included in the meta-analysis (Fig. 1). Data on the un-
derlying comorbidities was drawn from the reported clinical charac-
terization of the affected patients. Comorbidities reported include
cardiovascular diseases, cerebrovascular disease, chronic kidney disease (CKD) and chronic liver disease.

Table 1

Clinical characteristics of COVID-19 patients included in 24 eligible studies.

Author (year)	Origin	Design	Age (years)	Number of Patients	All	CVD	CRV	CKD	CLD	Diabetes	Hypertension	Malignancy	COPD
Cao et al., 2019 [47]	China	NA	54	102	5 (5%)	6 (6%)	4 (4%)	2 (2%)	11 (11%)	28 (28%)	4 (4%)	10 (10%)	
Chen et al., 2020 [48]	China	RD	62	274	23 (8%)	NA	NA	NA	47 (17%)	93 (34%)	7 (3%)	18 (7%)	
Deng et al., 2020 [49]	China	RD	NA	225	NA								
Feng et al., 2020 [50]	China	RD	53	476	38 (8%)	17 (4%)	NA	NA	49 (10%)	113 (24%)	12 (3%)	22 (5%)	
Guan et al., 2020 [51]	China	PD	47	1099	27 (3%)	15 (1%)	8 (1%)	NA	81 (7%)	165 (15%)	10 (1%)	12 (1%)	
Huang et al., 2020 [52]	China	PD	49	41	6 (15%)	NA	NA	1 (2%)	8 (20%)	6 (15%)	1 (2%)	1 (2%)	
Huang et al., 2020 [53]	China	RD	44	202	NA	NA	NA	NA	19 (9%)	29 (14%)	NA	NA	
Isidori et al., 2020	Israel	RD	52	162	NA	2 (1%)	NA	30 (19%)	49 (30%)	NA	2 (1%)		
Javanian et al., 2020	Iran	RD	60	100	20 (20%)	NA	12 (12%)	NA	37 (37%)	32 (32%)	4 (4%)	12 (12%)	
Liu et al., 2020 [54]	China	RD	49	40	NA	NA	NA	6 (15%)	6 (15%)	NA	NA		
Shi et al., 2020 [55]	China	RD	63	671	60 (9%)	22 (3%)	28 (4%)	NA	99 (15%)	199 (30%)	23 (3%)	23 (3%)	
Sun et al., 2020 [56]	China	RD	44	55	NA	NA	NA	NA	5 (9%)	8 (15%)	NA	NA	
Wan et al., 2020 [57]	China	RD	47	135	7 (5%)	NA	NA	2 (2%)	12 (9%)	13 (10%)	4 (3%)	NA	
Wang et al., 2020 [58]	China	RD	56	138	20 (15%)	7 (5%)	4 (3%)	4 (3%)	14 (10%)	43 (31%)	7 (10%)	4 (3%)	
Wang et al 2020 [59]	China	RD	51	107	13 (12%)	6 (6%)	3 (3%)	6 (6%)	11 (10%)	26 (24%)	NA	3 (3%)	
Wu et al., 2020 [60]	China	RD	43	280	57 (20%)	NA	3 (1%)	7 (3%)	NA	NA	5 (2%)	NA	
Xie et al., 2020 [61]	China	RD	60	79	7 (9%)	NA	NA	NA	8 (10%)	14 (18%)	NA	NA	
Xu et al., 2020 [62]	China	RD	41	62	NA	1 (2%)	1 (2%)	7 (11%)	1 (2%)	5 (8%)	NA	1 (2%)	
Xu et al., 2020 [63]	China	RD	46	703	35 (5%)	NA	10 (1%)	29 (4%)	64 (9%)	118 (17%)	9 (1%)	13 (2%)	
Yang et al., 2020 [64]	China	RD	59.7	52	5 (10%)	7 (14%)	7 (14%)	NA	9 (17%)	NA	2 (4%)	4 (8%)	
Zhang et al., 2020 [65]	China	RD	57	140	7 (5%)	NA	NA	NA	17 (12%)	42 (30%)	NA	2 (1%)	
Zheng et al., 2020 [66]	China	RD	45	161	4 (3%)	4 (3%)	NA	4 (3%)	7 (4%)	22 (14%)	NA	6 (4%)	
Zhao et al., 2020 [67]	China	RD	46	91	NA	1 (1%)	NA	3 (3%)	NA	3 (3%)	1 (1%)		
Zhou et al., 2020	China	RD	57	191	15 (8%)	NA	2 (1%)	NA	36 (19%)	58 (30%)	2 (1%)	6 (3%)	

Median or average age (years). Abbreviations: cardiovascular disease (CVD), cerebrovascular disease (CRV), chronic kidney disease (CKD) and chronic liver disease (CLD), retrospective design (RD), prospective design (PD), not specified (NS), not available (NA).
insufficient to strengthen the outcome (Fig. 2). Similarly, the analysis on admitted to ICU, affected patients with cerebrovascular disease showed a high risk (RD 0.16, 95 % CI 0.03–0.28, p = 0.01) but the data was insufficient to strengthen the outcome (Fig. 2). Similarly, the analysis on severe vs. mild COVID-19 infection indicated that hypertension, diabetes, and COPD were associated with increased risk of death among COVID-19 patients. Other risk factors in severe COVID-19 patients were cardiovascular disease, cerebrovascular disease, hypertension, diabetes, chronic kidney disease and malignancies were associated with significant increase in risk of death among COVID-19 patients. Other diseases including COPD and chronic liver disease had no impact on the risk of death among infected patients, for details see Fig. 2. Cardiovascular disease was a borderline risk factor in severe COVID-19 patients. The meta-analyses on individual patients as reported by individual studies. In general, we observed poorer clinical outcome for COVID-19 patients with co-morbidities in ascending order of severe vs. mild (risk difference (RD) 0.05, 95 % CI 0.01–0.09, p = 0.01), ICU vs. non-ICU (RD 0.10, 95 % CI 0.04–0.16, p = 0.001), and non-survivors vs. survivors (RD 0.12, 95 % CI 0.06–0.18, p = 0.001) (Fig. 2). The analysis on non-survivors vs. survivors group showed hypertension, cardiovascular disease, diabetes, cerebrovascular disease, chronic kidney disease and malignancies were associated with significant increase in risk of death among COVID-19 patients. Other diseases including COPD and chronic liver disease had no impact on the risk of death among infected patients, for details see Fig. 2. For cases admitted to ICU, affected patients with cerebrovascular disease showed a high risk (RD 0.16, 95 % CI 0.03–0.28, p = 0.01) but the data was insufficient to strengthen the outcome (Fig. 2). Similarly, the analysis on severe vs. mild COVID-19 infection indicated that hypertension, diabetes, and COPD were associated with increased severity of infection in patients as depicted in Fig. 2. Cardiovascular disease was a borderline risk factor in severe COVID-19 patients. The meta-analyses on individual studies included in respective groups are shown in supplementary Figs. 2–4.

In subgroup analyses, low statistical heterogeneity was found in patients (those with severe vs. mild) with diabetes (I² 56.2, Q 22.82), hypertension (I² 66.6, Q 27.0), and cardiovascular disease (I² 90.4, Q 62.74) as shown in Table 2.

3.2. Meta-analysis

Based on the 24 identified eligible studies, a meta-analysis was conducted to determine comorbidities which may be associated with an increased risk of clinical outcome in COVID-19 affected patients. For the meta-analysis, we separated the comorbidities based on non-survivors vs. survivors, ICU vs. non-ICU and severity vs. mild cases depending on the clinical presentations of signs and symptoms of the COVID-19 patients as reported by individual studies. In general, we observed poorer clinical outcome for COVID-19 patients with co-morbidities in ascending order of severe vs. mild (risk difference (RD) 0.05, 95 % CI 0.01–0.09, p = 0.01), ICU vs. non-ICU (RD 0.10, 95 % CI 0.04–0.16, p = 0.001), and non-survivors vs. survivors (RD 0.12, 95 % CI 0.06–0.18, p = 0.001) (Fig. 2). The analysis on non-survivors vs. survivors group showed hypertension, cardiovascular disease, diabetes, cerebrovascular disease, chronic kidney disease and malignancies were associated with significant increase in risk of death among COVID-19 patients. Other diseases including COPD and chronic liver disease had no impact on the risk of death among infected patients, for details see Fig. 2. For cases admitted to ICU, affected patients with cerebrovascular disease showed a high risk (RD 0.16, 95 % CI 0.03–0.28, p = 0.01) but the data was insufficient to strengthen the outcome (Fig. 2). Similarly, the analysis on severe vs. mild COVID-19 infection indicated that hypertension, diabetes, and COPD were associated with increased severity of infection in patients as depicted in Fig. 2. Cardiovascular disease was a borderline risk factor in severe COVID-19 patients. The meta-analyses on individual studies included in respective groups are shown in supplementary Figs. 2–4.

In subgroup analyses, low statistical heterogeneity was found in those (non-survivors vs. survivors) with chronic kidney disease (I² 26.0, Q 5.39) and diabetes (I² 21.0, Q 10.5), and high heterogeneity in patients with COPD (I² 52.0, Q 8.37) and cardiovascular disease (I² 70.0, Q 26.4). Patients (those in ICU vs. non-ICU) with diabetes (I² 64.8 %, Q 6.56) and hypertension (I² 83.1, Q 5.92) showed high heterogeneity. In addition, high heterogeneity was indicated in patients (those with severe vs mild) with diabetes (I² 56.2, Q 22.82), hypertension (I² 66.6, Q 27.0), and cardiovascular disease (I² 90.4, Q 62.74) as shown in Table 2.

3.3. Potential drug-drug interactions

From the meta-analysis, comorbidities associated with increased risk of worsen clinical outcome in COVID-19 patients were cardiovascular disease, cerebrovascular disease, hypertension, diabetes, chronic kidney disease and chronic obstructive pulmonary disease. Further, several drugs have been used in different countries in the course of COVID-19 infection as reported in various studies included in the meta-analysis. Hence, we further used the www.covid19-druginteractions.org database to estimate the potential interaction risk of antiarrhythmics, anti-hypertensives, anticoagulants, antidiabetics, lipid lowering medications (statins), and bronchodilators with drugs used in the course of COVID-19 patients. A list of 41 drugs used in the course of COVID-19, their primary indication as well as main metabolizing enzymes are documented in Table 3. The use of hydroxychloroquine and lopinavir/ritonavir in COVID-19 was suspended or stopped in the WHO SOLIDARITY trial. According to the International Steering Committee interim trial report, hydroxychloroquine and lopinavir/ritonavir produced little or no decline in the mortality of hospitalized COVID-19 patients when compared to standard of care (www.who.int/news-room/detail /04-07-2020-who-discontinues-hydroxychloroquine-and-lopinavir-ri tonavir-treatment-arms-for-covid-19). However, these drugs are still used for the COVID-19 infection at some hospitals in other countries. Hence, both drugs were included in our DDI analysis.

According to the analysis, co-administration of some drugs used for the treatment or management of comorbidities together with atazanavir and lopinavir/ritonavir (used as therapies for COVID-19) could increase the risk of adverse outcome of COVID-19 patients by evidence of potential pharmacokinetic interactions. E.g. an increase in plasma exposure of antiarrhythmics (e.g. amiodarone, bepridil, disopyramide,
CYP3A4, CYP2C8 and hepatic transporter OATP1B1 thereby increasing protease inhibitor atazanavir was also shown before to inhibit decrease plasma concentrations of the anti-coagulant dabigatran by atazanavir (Fig. 3). Additionally, atazanavir and lopinavir/ritonavir may in potential inhibition mainly of CYP3A4 by atazanavir or lopinavir/ritonavir could interact with antithrombotics and anticoagulants (e.g. sildenafil), few anti-hypertensives (e.g. aliskiren and lercanidipine), angina pectoris (e.g. ranolazine, lercanidipine, amiodarone disopyramide and QT interval by ibutilide, flecainide and quinidine), drugs prescribed for pulmonary hypertension (e.g. bosentan and sildenafil), angina pectoris (e.g. ranolazine), heart failure (e.g. eplerenone, ivabradine), erectile dysfunction (e.g. sildenafil), few anti-hypertensives (e.g. aliskiren and lercanidipine), antithrombotics and anticoagulants (e.g. ticagrelor and rivaroxaban), and statins (e.g. lovastatin and simvastatin) was detected due to a potential inhibition mainly of CYP3A4 by atazanavir or lopinavir/ritonavir (Fig. 3). Additionally, atazanavir and lopinavir/ritonavir may increase plasma concentrations of the anti-coagulant dabigatran by inhibiting the efflux drug transporter P-glycoprotein (P-gp). The HIV-protease inhibitor atazanavir was also shown before to inhibit CYP3A4, CYP2C8 and hepatic transporter OATP1B1 thereby increasing systemic exposure of antidiabetic drug repaglinide. The protease inhibitors lopinavir/ritonavir may also increase plasma exposure of the bronchodilator salmeterol via CYP3A4 inhibition. Azithromycin, chloroquine, or hydroxychloroquine used in the frame of COVID-19 treatment are prone to cause QTc-time prolongation in the presence of antiarrhythmics as a single agent or combined due to pharmacodynamic interactions. The summary of drugs used in the course of COVID-19 identified to cause clinically relevant interactions with other medications for the related co-morbidities are presented in Table 4.

We further estimated the potential interaction of combination therapies (e.g. azithromycin/nitazoxanide, hydroxychloroquine/azithromycin, and INF-β-1a/lopinavir-ritonavir/ribavirin) for COVID-19 because some of the included studies reported coadministration of these medications. In general, lack of evidence of clinically significant DDI was found. Potential interaction between other COVID-19 drugs (e.g. remdesivir, darunavir/cockiat, favipiravir, nitazoxanide, ribavirin, tocilizumab, sarilumab, IFN-β-1a, oseltamivir and anakinra) and co-medications prescribed for the treatment of existing comorbidities identified based on the meta-analysis were found to be of a low certainty.

4. Discussion

Comorbidities associated with poor clinical outcome of COVID-19 in affected patients are widely reported in other studies [20–22]. The results of our meta-analysis confirmed hypertension, cardiovascular disease, and diabetes being strongly associated with increased mortality and severe courses of COVID-19. Patients with cerebrovascular disease were more likely to be admitted to ICU or even die. Interestingly, in the set of studies included into the meta-analysis, chronic kidney disease and malignancies were associated with increasing the risk of mortality whilst COPD increases the severity of COVID-19 in affected patients. In general, patients with these underlying comorbidities have greater risk of upper respiratory tract infections and pneumonia because of dysfunctional innate and adaptive immune system [20,22].

Current treatment of COVID-19 primarily depends on supportive care, antiviral and immunomodulatory drugs. Given the distribution of population living with the comorbidities (hypertension, cardio-cerebrovascular, diabetes, chronic kidney disease), predominantly middle aged and elderly, polypharmacy and DDI might be apparent. Unfortunately, the potential risk of DDI is largely unknown since most studies on COVID-19 do not provide details on interaction between drugs used in the course of COVID-19 and co-medications used for the management of other comorbidities in these patients. The studies included in the meta-analysis indicated several medications used in the course of COVID-19 in infected patients with other underlying comorbidities. Hence, we evaluated the potential interaction of drugs for the treatment of these comorbidities with drugs for COVID-19 reported in studies included in the meta-analysis. Based on our findings, of a greater safety concern was prolonged cardiac repolarization and QT interval by pharmacokinetic interaction of atazanavir and lopinavir/ritonavir with some drugs, used in the treatment of cardiovascular diseases such as ivabradine in heart failure, ranolazine in symptomatic treatment of angina pectoris, the antiarrhythmics amiodarone disopyramide and quinidine or the formerly used calcium channel blocker bepridil (a drug with putative anti-viral properties) via inhibition of CYP3A4 which may further increase the risk of torsade de pointes (TdP) [23–25]. Consequences of such interaction may increase risk of hospitalization, prolonged time to recovery and finally sudden cardiac death in extreme cases. Other risk factors of QTc-time prolongation and TdP include hypokalemia and chronic heart failure. Furthermore, atazanavir and lopinavir/ritonavir could interact with antithrombotics and anticoagulants (e.g. ticagrelor, dabigatran and rivaroxaban) through CYP3A4 and P-glycoprotein to induce bleeding complication [10]. Interestingly, a recent retrospective study found the use of statins in hospitalized

Table 2

Condition	Point estimate [95% CI]	P value	Heterogeneity
Non-survivors vs survivors			
Cardiovascular disease	0.18 [0.1; 0.26]	<0.0001	70.0 26.41 0.010
Cerebrovascular disease	0.11 [0.04; 0.18]	0.001	0.13
Chronic kidney disease	0.11 [0.04; 0.17]	0.001	26.0 53.9
Chronic liver disease	0.01 [-0.07; 0.10]	0.72	0.23
COPD	0.05 [-0.01; 0.11]	0.10	52.0 8.37
Diabetes	0.14 [0.08; 0.19]	0.11	
Hypertension	0.29 [0.23; 0.34]	<0.00001	21.0 10.15
Malignancy	0.04 [0.01; 0.06]	0.008	1.91

ICU vs non-ICU

Condition	Point estimate [95% CI]	P value	Heterogeneity
Cardiovascular disease	0.14 [0.01; 0.27]	0.004	0.01
Chronic kidney disease	0.04 [-0.02; 0.17]	0.38	
COPD	0.07 [-0.02; 0.17]	0.12	
Diabetes	0.01 [-0.33; 0.34]	0.98	84.8 6.56
Hypertension	0.20 [-0.16; 0.56]	0.28	83.1 5.92
Malignancy	0.05 [-0.06; 0.16]	0.36	

Severe vs mild

Condition	Point estimate [95% CI]	P value	Heterogeneity
Cardiovascular disease	0.10 [0.00; 0.20]	0.05	90.4 62.74
Chronic kidney disease	0.01 [-0.01; 0.03]	0.32	
Chronic liver disease	0.01 [-0.01; 0.03]	0.24	
Chronic liver disease	0.03 [-0.02; 0.08]	0.19	0.04
COPD	0.03 [0.00; 0.06]	0.003	0.03
Diabetes	0.08 [-0.02; 0.14]	0.002	56.2 22.82
Hypertension	0.10 [0.08; 0.20]	0.007	66.6 26.97
Malignancy	0.01 [0.00; 0.03]	0.13	2.61

CDP = chronic obstructive pulmonary disease.
COVID-19 patients should be associated with a lower risk of all-cause mortality and a favorable recovery profile compared to the non-statin group [26]. However, with regards to DDI, statins (e.g. lovastatin and simvastatin) may induce myopathy as a consequence of an elevated plasma concentration because of CYP3A4 inhibition by atazanavir. Such combination should be avoided due to the risk of prolonged cardiac repolarization and QT interval prolongation, palpitations, and tachycardia [28,30]. Hence, the use of less DDI-proned statins should be preferred. In Asthma, plasma concentration of salmeterol could increase due to inhibition of CYP3A4 by lopinavir/ritonavir. Such combination may result in salmeterol related side-effects including QTc-time prolongation, palpitations, and tachycardia [28,30]. Adverse events detected in these patients while co-treatment with drugs used in the course of COVID-19 e.g. azithromycin, chloroquine, and hydroxychloroquine and anti-hypertensives are not based on pharmacokinetic interactions but on known risks of TdP by prolonged cardiac polarization and QT interval of such combinations [28,30]. Nonetheless, hydroxychloroquine and chloroquine are also known to be metabolized by CYP3A4 and CYP2D6. Therefore, the use of CYP3A4 inhibitors should be avoided. Other drug-induced liver injury (DILI) and drug-induced interstitial nephritis are also potential. The use of more DDI-proned statins should be avoided. In this context, the use of less DDI-proned statins should be preferred. In Asthma, plasma concentration of salmeterol could increase due to inhibition of CYP3A4 by lopinavir/ritonavir. Such combination may result in salmeterol related side-effects including QTc-time prolongation, palpitations, and tachycardia [28,30]. Adverse events detected in these patients while co-treatment with drugs used in the course of COVID-19 e.g. azithromycin, chloroquine, and hydroxychloroquine and anti-hypertensives are not based on pharmacokinetic interactions but on known risks of TdP by prolonged cardiac polarization and QT interval of such combinations [28,30]. Nonetheless, hydroxychloroquine and chloroquine are also known to be metabolized by CYP3A4 and CYP2D6. Therefore, the use of CYP3A4 inhibitors should be avoided. Other drug-induced liver injury (DILI) and drug-induced interstitial nephritis are also potential.
inhibitors of cytochrome P450 2D6 (CYP2D6) hence contributing to an increased risk of TdP of the older antiarrhythmics flecainide and mexiletine [32–35]. Here, adjusting the recommended dose of hydroxychloroquine from 800 mg on day 1, followed by 400 mg daily for 4–7 days to a lower dose may be necessary to avoid potential adverse events (https://www.fda.gov/media/136537/download).

We additionally considered the potential interaction of combination therapies for COVID-19 azithromycin/nitazoxanide, hydroxychloroquine/azithromycin, tocilizumab/remdesivir, and triple combination (IFN-β-1a, lopinavir/ritonavir and ribavirin) used to tackle the pandemic. Studies have shown synergistic effects of these combinations therapies on inhibition of SARS-CoV-2 replication [36–39]. Generally, DDI of such combinations are uncertain due to lack of evidence. The azithromycin/hydroxychloroquine combination related TdP may occur as side effect of single or both drugs [31–33,37]. The antimalaria agent hydroxychloroquine is an inhibitor of P-glycoprotein [40]. However, pharmacokinetic interaction of azithromycin with hydroxychloroquine is an inhibitor of P-glycoprotein [40]. However, as side effect of single or both drugs [31].

Prediction of DDI however could be hampered, since COVID-19 patients may experience phenotypic shifts due to genotypic factors and genetic polymorphism in drug metabolizing enzymes and transporters might worsen the side effects of drugs used for COVID-19 or in combination with other medications in individuals with defective genes.

On the other side, drugs used in the main regimens of hypertension, heart failure or diabetes did not show evidence of DDIs. In particular inhibitors of the renin angiotensin aldosterone system (RAAS) seem to be safe and concerns that the treatment with ACE-inhibitors could increase the risk of SARS-CoV-2 infections through elevation of the ACE-2 expression were not confirmed so far [45,46].

In conclusion, comorbidities including cardio-cerebrovascular diseases, hypertension, diabetes, and chronic kidney disease were associated with increased severity and mortality of COVID-19 in affected patients. DDI may be evident in these patients due to the use of polypharmacy as found in studies included in this meta-analysis. We have shown potential DDI particularly between antiretroviral drugs (atazanavir and lopinavir/ritonavir), and other drugs for treating comorbidity leading to TdP which might contribute to poorer clinical outcome (e.g. increased risk of hospitalization, prolonged time to recovery and death on extreme cases) in COVID-19 patients. This study cannot confirm whether the consequences of the DDI described change the expected course of COVID-19 since there are no clinical data available. To avoid adverse DDI, dose adjustment of drugs used in the course of COVID-19 prone to DDI or using an alternative drug for the management of related co-morbidity may be warranted to prevent risk of worsening clinical outcome. The findings of our study add to the knowledge on the potential risk of DDI in comorbid COVID-19 patients which is still an evolving area. It is worth noting that, this article is not intended to prevent the use of any medication but to outline the potential risk of specific DDIs which may further worsen the clinical outcome of COVID-19 patients with these comorbidities. Taken together, the choice of administration of medication in COVID-19 patients with comorbidities remains sole prerogative of the prescriber. However, we recommend that attention should be paid to symptoms that could indicate drug side effects in particular cardiac arrhythmia via DDI in these special population.

Funding

This work was supported by the Alexander von Humboldt Foundation.

Declaration of Competing Interest

The authors report no declarations of interest.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.phrs.2020.105250.
Table 4
Potential DDI between drugs used in the course of COVID-19 and medications for comorbidities.

Co-administered Drugs (CAD)	CAD bioavailability (%)	CAD Protein Binding (%)	Drug used the course of COVID-19	Mechanism of interaction	Example of interaction effect on AUC of CAD	Consequences of interaction	Recommendations
Aripiprazole	50	92 - 94	Lopinavir/ritonavir	CYP3A4	Ketoconazole increases AUC of aripiprazole by 2-fold	Increased plasma concentration and bleeding	Avoid coadministration.
Amiodarone	35 - 65	96	Lopinavir/ritonavir	CYP3A4 inhibition	Indinavir increased amiodarone plasma concentration by 44% via CYP3A4 inhibition	Increased amiodarone effects e.g. QTc-time prolongation, bradycardia, hypotension	Use with caution, monitor ECG, and adjust amiodarone.
Bepiridil	60	99	Atazanavir, lopinavir/ritonavir	–	–	Increased bepridil level effects. E.g. QTc-time prolongation, hypotension	Do not co-administer.
Bosentan	50	98	Atazanavir	–	Expected decreased atazanavir levels	Potential loss of antiviral activity	Do not co-administer bosentan with un-boosted atazanavir.
Dabigatran	3 - 7	35	Atazanavir	P-gp inhibition	Dabigatran AUC increased by 110 – 127% via inhibition of intestinal P-gp by cobicistat	Increased risk of bleeding because of elevated dabigatran level	No dose adjustment if CrCl > 50 mL/min. avoid co-usage if CrCl < 50 mL/min.
Eplerenone	69	50	Lopinavir/ritonavir	CYP3A4 inhibition	Ketoconazole as CYP3A4 inhibitor increases eplerenone AUC by 44 %	Increased plasma concentration, risk of hyperkalemia	Avoid co-administration.
Lercanidipine	10	>98	Atazanavir, lopinavir/ritonavir	CYP3A4 inhibition	Glipizide AUC increased by 3.2-fold	Increased plasma concentration	Monitor and adjust lercanidipine levels.
Mexiletine	90	50 - 60	Atazanavir	CYP2D6 inhibition	–	Increased plasma concentration e.g. cardiac arrhythmias	Do not co-administer.
Quinidine	76 - 88	80 - 88	Atazanavir	CYP3A4 inhibition	–	Enhanced quinidine effects e.g. cardiac arrhythmias	Use with caution. Monitor for toxicity.
Ranolazine	73	62	Lopinavir/ritonavir	CYP3A4 inhibition	–	QTC-time prolongation, cardiac arrhythmias	Do not co-administer.
Repaglinide	56	>98	Atazanavir	CYP3A4 inhibition	Glipizide AUC increased by 49%	Increased risk of hypoglycemia	Monitor repaglinide clinical effect and lower the dose if necessary.
Salmeterol	–	96	Lopinavir/ritonavir	CYP3A4 inhibition	–	Potential increased salmeterol effects. E.g. QT prolongation, palpitations, sinus tachycardia	Do not co-administer.
Sildenafil	40	96	Lopinavir/ritonavir	CYP3A4 inhibition	Clarithromycin increases sildenafil AUC by 128% and 110 %	Increased sildenafil effects. E.g. hypotension, priapism, visual changes	Start sildenafil at 25 mg QOD; adjust dose, not recommended to exceed 25 mg in a 48 h period.
Simvastatin	60	95	–	CYP3A4 inhibition	Simvastatin acid exposure increased by 3-fold when co-administered with ritonavir/saquinavir	Increased plasma concentration effects (e.g. myopathy, rhabdomyolysis)	Do not co-administer.
Lovastatin	5	>95	Lopinavir/ritonavir	CYP3A4 inhibition	–	Increased plasma concentration, risk of hyperkalemia	Do not co-administer.

1 Bioavailability and protein binding information collected from Drugbank and product information.

2 Recommendations obtained from http://hivinsite.ucsf.edu/interactions.

References

[1] World Health Organization, Coronavirus Disease (COVID-19) Situation Reports, 2020. www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.

[2] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, B. Cao, Clinical features of 99 cases of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 (2020) 497–506, https://doi.org/10.1016/S0140-6736(20)30183-5.

[3] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei, J. Xia, T. Yu, X. Zhang, L. Zhang, Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, Lancet 395 (2020) 507–513, https://doi.org/10.1016/S0140-6736(20)30211-7.

[4] X. Yang, Y. Yu, J. Xu, H. Shu, J. Xia, H. Liu, Y. Wu, L. Zhang, Z. Yu, M. Fang, T. Yu, Y. Wang, S. Pan, X. Zou, S. Yuan, Y. Shang, Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study, Lancet Respir. Med. 8 (2020) 475–481, https://doi.org/10.1016/S2213-2600(20)30079-5.

[5] K. Liu, Y.-Y. Fang, Y. Deng, W. Liu, M.-F. Wang, J.-P. Ma, W. Xiao, Y.-N. Wang, M.-H. Zhong, C.-H. Li, G.-C. Li, H.-G. Liu, Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province, Chin. Med. J. (Engl). 133 (2020) 981–986, https://doi.org/10.1097/CM9.0000000000000744.

[6] D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang, Z. Cheng, Y. Xiong, Y. Zhao, Y. Li, X. Wang, Z. Peng, Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China, JAMA – J. Am. Med. Assoc. 223 (2020) 1061–1069, https://doi.org/10.1001/jama.2020.1585.

[7] Assessment of Evidence for COVID-19-related Treatments, American Society of Health-Systems Pharmacists, 2020 https://www.ashp.org/-/media/assets/pharmacy-practice/resource-centers/Coronavirus/docs/ASHP-COVID-19-Evidence-Table.pdf.

[8] U. Arshad, H. Pertinez, H. Box, L. Tatham, R.K.R. Rajoli, P. Curley, M. Neary, J. Sharp, N.J. Liptrott, A. Valentinj, C. David, S.P. Rannard, P.M. O'Neill, G. Aljayyoussi, S.H. Pennington, S.A. Ward, A. Hill, D.J. Back, S.H. Khoo, P.G. Bray,
G.A. Biagini, A. Owen, Prioritization of anti-SARS-Cov-2 drug repurposing opportunities based on plasma and target site concentrations derived from their established human pharmacokinetics, Clin. Pharmacol. Ther. (2020), https://doi.org/10.1002/cpt.1909.

[9] S. Bun, P. Tagahi, J. Courjon, F. Squara, D. Scarlatti, G. Theodore, D. Baudouy, B. Sarthe, M. Labbousi, J. Della Monica, D. Doyen, C. Marquette, J. Levrani, W. Essafi, S. Bun, E. Fernandez, QT prolongation with antiviral agents: a systematic review, Eur. Heart. J. (2020), https://doi.org/10.1093/eurheartj/ehaa406.

[10] S. Testa, P. Prandoni, O. Paolotti, R. Morandini, M. Tala, C. Dellanoce, M. Giorgi-C. Awortwe and I. Cascorbi, V. Esnault, S. Bun, E. Ferrari, QT interval prolongation under hydroxychloroquine/ hydroxychloroquine and metformin? A signal detection study, Drug Saf. (2020), https://doi.org/10.1007/s40264-020-00955-y.

[11] J.D. Alpern, E. Gertner, Off-label therapies for COVID-19

[12] J.-L. Montastruc, P.-L. Toutain, A new drug interaction between hydroxychloroquine and metformin? A signal detection study, Drug Saf. (2020), https://doi.org/10.1007/s40264-020-00955-y.

[13] J. Zhao, Q. Ning, Clinical characteristics of 113 deceased patients with coronavirus disease 2019 in Wuhan, China 2, Institute of Radiation Medicine, China Academy of Medical Sc, 2019.

[14] M. Barritomo, B. Borch, A. Botta, A. Bagala, G. Lugli, M. Milli, A. Cavallo, B. Xhaferri, R. Cutruzzola, A. Vaglio, S. Bresci, A. Larti, A. Bartoloni, C. Cirami, Threatening drug-drug interaction in a kidney transplant patient with Coronavirus Disease 2019 (COVID-19), Transplant. Infect. Dis. (2020), https://doi.org/10.1111/tid.13286.

[15] S. Testa, P. Prandoni, O. Paolotti, R. Morandini, M. Tala, C. Dellanoce, M. Giorgi-C. Awortwe and I. Cascorbi, V. Esnault, S. Bun, E. Ferrari, QT interval prolongation under hydroxychloroquine/ hydroxychloroquine and metformin? A signal detection study, Drug Saf. (2020), https://doi.org/10.1007/s40264-020-00955-y.

[16] J. Andreani, M. Le Bideau, I. Duflot, P. Jardot, R. Meslier, J. Leproute, M. Both, N. Wurtz, J.-M. Rolain, P. Colson, B. Doudier, A new drug-drug interaction in a kidney transplant patient with Coronavirus Disease 2019 (COVID-19), Transplant. Infect. Dis. (2020), https://doi.org/10.1111/tid.13286.
