ON THE LIMIT OF KÄHLER MANIFOLDS WITH RICCI CURVATURE LOWER BOUND

GANG LIU

ABSTRACT. Let $X$ be the Gromov-Hausdorff limit of a sequence of pointed complete Kähler manifolds $(M^n_i, p_i)$ with $\text{Ric}(M_i) \geq -(n-1)$ and noncollapsed volume. We prove that, there exists a Lie group isomorphic to $\mathbb{R}$, acting isometrically, on the tangent cone at each point of $X$. Moreover, the action is locally free on the cross section. This generalizes the metric cone theorem of Cheeger-Colding to the Kähler case. We also discuss some applications to complete Kähler manifolds with nonnegative bisectional curvature.

1. Introduction

In [3], Cheeger and Colding proved the important metric cone theorem:

**Theorem 1. [Cheeger-Colding]** Let $(X, p_\infty)$ be the Gromov-Hausdorff limit of a sequence of pointed complete Kähler manifolds $(M^n_i, p_i)$ with $\text{Ric}(M_i) \geq -(n-1)$ and noncollapsed volume. Consider a point $q \in X$ and a tangent cone $(X_q, q)$. Then there exists a compact metric length space $\Sigma$ so that $(X_q, q)$ is isometric to the warped product $\Sigma \times_r \mathbb{R}^+$. This theorem implies for complete manifolds, with nonnegative Ricci curvature and maximal volume growth, all tangent cones at infinity are metric cones, compare [1][10]. Also, the ideas behind the proof resolve many important problems: e.g., splitting theorem for Gromov-Hausdorff limit $X$, where $M^n_i \to X$, $\text{Ric}(M_i) \geq -\epsilon_i$ and $\epsilon_i \to 0$; Gromov’s conjecture that manifolds of almost nonnegative Ricci curvature has almost nilpotent fundamental groups, see [13]. See also [4][5][6] for further developments.

Theorem1 says $X_q$, as a metric space, has a symmetry from the radial direction. Thus we can reduce the geometry to the cross section. In this paper, we are interested in generalizing theorem1 to Kähler manifolds. We wonder whether there are extra symmetries for $X_q$. Observe that if $X_q$ is smooth (Kähler) apart from the vertex, the cross section is a Sasakian manifold [19]. Thus, it has an additional symmetry induced by the reeb vector field.

There have been numerous works on the Gromov-Haudorff limit of Kähler-Einstein manifolds and Kähler manifolds with bounded Ricci curvature and noncollapsed volume, e.g., [20][21][10][15][7][23][12][22][8]. It should be noted that this list is far from complete. In this paper, we only assume the Ricci curvature lower bound and noncollapsed volume. In this case, it was proved in [21] that the any tangent cone splits off even dimensional Euclidean factor. The main result in this paper is the following:

**Theorem 2.** Let $(X, p_\infty)$ be the Gromov-Hausdorff limit of a sequence of pointed complete Kähler manifolds $(M^n_i, p_i)$ with $\text{Ric}(M_i) \geq -(n-1)$ and noncollapsed volume. Consider a point $q \in X$ and a tangent cone $(X_q, q) = \Sigma \times_r \mathbb{R}^+$. Then there exists a Lie group $\sigma$, isomorphic to $\mathbb{R}$, acting isometrically and locally freely on $\Sigma$. Obviously, we can extend the isometry $\sigma$, to $(X_q, q)$ which preserves the vertex $q$.

The author was partially supported by NSF grant DMS 1406593.
Theorem. By taking the closure of $\sigma_t$ in the isometry group of $(X, q)$, we have an effective torus group acting isometrically on $(X, q)$.

Remark. So far it is not clear whether the orbits of $\sigma_t$ are geodesics on the cross section. This is true for Sasaki manifolds.

Corollary 1. Let $(X, p_\infty)$ be a tangent cone at infinity of a complete Kähler manifold $(M^n, p)$, with $\text{Ric} \geq 0$ and noncollapsed volume. Then there is an effective torus isometry group acting on $(X, p_\infty)$ which commutes with the expansion map induced by $\nabla r^2$, where $r(x) = d(x, p_\infty)$.

In [10], Cheeger and Tian considered Kähler Ricci flat metric with Euclidean volume growth and quadratic curvature decay. In that case, the tangent cone at infinity is Kähler apart from the vertex. They looked at the flow generated by $\frac{\partial}{\partial t}$ and $J(\frac{\partial}{\partial t}) = \frac{\partial}{\partial t}$ on the tangent cone. Here $r$ is the distance to the vertex. This is a $\mathbb{C}^*$ action, where $\mathbb{C}^*$ is the universal cover of $\mathbb{C}^* = \mathbb{C}\setminus\{0\}$. Corollary 1 says we still have this action, provided the Kähler manifold has nonnegative Ricci curvature and maximal volume growth.

Next we discuss applications to complete Kähler manifolds with nonnegative bisection curvature, maximal volume growth. Let $\mathcal{O}_d(M)$ be the ring of holomorphic functions with polynomial growth on $M$. In [17], it was proved that these functions are all homogenous at infinity. In this paper, we study the behavior of these functions under the action of $\sigma_t$. As a corollary, the dimension of the orders of $\mathcal{O}_d(M)$ over $\mathbb{Q}$, is no greater than, the dimension of the isometry group of $\Sigma$. In particular, if the dimension of isometry group is 1 on the cross section, then the orders of holomorphic functions with polynomial growth are rationally related.

We expect more applications of theorem 2 which provide more connections between complex geometry and Gromov-Hausdorff convergence. Also, it seems to be interesting to study the torus action on the cross section in more details.

Acknowledgment
The author thanks Professor Gang Tian for his encouragement and interest on this work during the visit to UC Berkeley on March 31, 2014. The author also thanks Professors John Lott, Xiaochun Rong and Jiaping Wang for valuable discussions.

2. Preliminary results

In this section, we collect some basic definitions and results required in the proof. Let $(M^n_i, y_i, \rho_i)$ be a sequence of pointed complete Riemannian manifolds, where $y_i \in M^n_i$ and $\rho_i$ is the metric on $M^n_i$. By Gromov’s compactness theorem, if $(M^n_i, y_i, \rho_i)$ have a uniform lower bound of the Ricci curvature, then a subsequence converges to some $(M_\infty, y_\infty, \rho_\infty)$ in the Gromov-Hausdorff topology. See [14] for the definition and basic properties of Gromov-Hausdorff convergence.

Definition. Let $K_i \subset M^n_i \to K_\infty \subset M_\infty$ in the Gromov-Hausdorff topology. Assume $(f_i)_{i=1}^\infty$ are functions on $M^n_i$, $f_\infty$ is a function on $M_\infty$. $\Phi_i$ are $\epsilon_i$-Gromov-Hausdorff approximations, $\lim_{i \to \infty} \epsilon_i = 0$. If $f_i \circ \Phi_i$ converges to $f_\infty$ uniformly, we say $f_i \to f_\infty$ uniformly over $K_i \to K_\infty$.

In many applications, $f_i$ are equicontinuous. The Arzela-Ascoli theorem applies to the case when the spaces are different. When $(M^n_i, y_i, \rho_i) \to (M_\infty, y_\infty, \rho_\infty)$ in the Gromov-Hausdorff topology, any bounded, equicontinuous sequence of functions $f_i$ has a subsequence converging uniformly to some $f_\infty$ on $M_\infty$.
Let the complete pointed metric space $(M^n_m, y)$ be the Gromov-Hausdorff limit of a sequence of connected pointed Riemannian manifolds, $((M^n_i, p_i))$, with $\text{Ric}(M_i) \geq 0$. Here $M^n_m$ has Haudorff dimension $m$ with $m \leq n$. A tangent cone at $y \in M^n_m$ is a complete pointed Gromov-Hausdorff limit $((M_{x_i}, d_{x_i}, y_{x_i}))$ of $((M_i, r_i^{-1} d, y))$, where $d, d_{x_i}$ are the metrics of $M_{x_i}, (M_{x_i}, y_{x_i})$ respectively, $\{r_i\}$ is a positive sequence converging to 0.

**Definition.** A point $y \in M_{x_i}$ is called regular, if there exists some $k$ so that every tangent cone at $y$ is isometric to $\mathbb{R}^k$. A point is called singular, if it is not regular.

**Theorem 3** (Theorem 2.1, [3]). Regular points are dense on $M_{x_i}$.

Let $M^n$ be a complete Riemannian manifold with nonnegative curvature, $p \in M$. The tangent cone at infinity is the Gromov-Hausdorff limit of $(M_i, p_i, g_i) = (M, p, r_i^{-2} g)$, for $r_i \to \infty$. We say $M$ is of maximal volume growth (Euclidean volume growth), if $\lim_{r \to \infty} \frac{\text{vol}(B(p, r))}{r^n} > 0$. A sequence of pointed manifolds $(M_i, p_i)$ with $\text{Ric}(M_i) \geq -(n-1)$ has noncollapsed volume, if there exists $v > 0$ so that $\text{vol}(B(p_i, 1)) > v$ for all $i$.

### 3. Proof of the main theorem

**Proof.** Throughout the proof, we will denote by $\Phi(u_1, \ldots, u_k \ldots)$ any nonnegative functions depending on $u_1, \ldots, u_k$ and some additional parameters such that when these parameters are fixed,

$$\lim_{u_1, \ldots, u_k \to 0} \Phi(u_1, \ldots, u_k \ldots) = 0.$$

According to theorem [1] $(X_q, q)$ is a metric cone. Say $(X_q, q) = (\Sigma \times \mathbb{R}^+, q)$. We may assume $(N^n_i, q_i)$ pointed converges in the Gromov-Hausdorff sense to $(X_q, q)$, where $(N^n_i, q_i)$ are Kähler, with $\text{Ric}(N_i) \geq -\frac{1}{t}$ and noncollapsed volume. Consider the geodesic annulus $A_i = B(q_i, 10) \setminus B(q_i, \frac{1}{2})$. By results in [3] (explicitly, Corollary 4.42, Lemma 4.45, Proposition 4.50, Proposition 4.82), there exist smooth functions $\rho_i$ on $N_i$ so that

1. $\int_{A_i} |\nabla \rho_i - \frac{1}{2} r_i^2 |^2 + |\nabla^2 \rho_i - g |^2 < \Phi(\frac{1}{t})$;

2. $|\nabla \rho_i| \leq C(n), |\rho_i - \frac{1}{2}| < \Phi(\frac{1}{t})$

in $A_i$. Define

3. $X_i = J \nabla \rho_i$

and let $\sigma_{t,i}$ be the diffeomorphism generated by $X_i$. Clearly, $\sigma_{t,i}$ preserves the level set of $\rho_i$. Let $x \in B(q_i, 7) \setminus B(q_i, 4)$. Define functions

4. $F(x, t) = \int_{B(x, \frac{1}{2})} \int_{B(x, \frac{1}{2})} |d(y, z) - d(\sigma_{t,i}(y), \sigma_{t,i}(z))|^2 d\sigma^*_{t,i} \text{vol}(y) d\sigma^*_{t,i} \text{vol}(z),$

5. $G(x, t) = \int_{B(x, \frac{1}{2})} \int_{B(x, \frac{1}{2})} |d(y, z) - d(\sigma_{t,i}(y), \sigma_{t,i}(z))|^2 d\text{vol}(y) d\text{vol}(z).$

Here $\sigma^*_{t,i} \text{vol}$ is the pull back volume form; $|t| \leq \frac{1}{10 C(n)}$, where $C(n)$ appears in [2].

**Claim 1.** For $|t| \leq \frac{1}{10 C(n)}$ and $y, z \in B(x, \frac{1}{2}), \sigma_{t,i}(y) \in B(x, \frac{2}{5})$. In particular, if $l$ is a shortest geodesic connecting $\sigma_{t,i}(y)$ and $\sigma_{t,i}(z)$, then $l \subset B(x, 2) \subset A_i$. 

Proof. We have $\frac{dX(\sigma_{tA}(y))}{dt} \leq C(t)$. By a direct integration, we obtain the first conclusion. The second one follows from the triangle inequality.

Claim 2. Given $t, y, z$ as in the last claim, let $l$ be the shortest geodesic connecting $\sigma_{tA}(y)$ and $\sigma_{tA}(z)$. Suppose $\sigma_{tA}(y)$ is not on the cut locus of $\sigma_{tA}(z)$, then $\frac{d(\text{dist}(\sigma_{tA}(y), \sigma_{tA}(z)))}{dt} = \int (\nabla e X, e) ds$, where $e$ is the unit tangent vector of $l$.

Proof. This is an easy consequence of the first variation of arc length.

From the definition of Lie derivative, we have

$$\frac{d\sigma^*_{tA} \text{vol}(y)}{dt} = \text{div}_{\sigma_{tA}(y)}(\sigma^*_{tA} \text{vol}(y)) = \sum_k (\nabla_{\sigma_{tA}(y)} e_k) \sigma^*_{tA} \text{vol}(y),$$

where $e_k$ is an orthonormal frame at $\sigma_{tA}(y)$.

Claim 3. Define a symmetric tensor $T_{jl}$ as $\langle \nabla_{\sigma_{tA}(y)} e_j, e_l \rangle$. Then $\int_0^t |T_{jl}| \leq t \text{Phi}(1/t)$.

Proof. As $J$ is parallel, the proof follows from $(1), (3)$ and the Cauchy-Schwarz inequality.

Claim 4. Let $\Omega$ be any measurable subset of $B(x, \frac{1}{2})$, then $|\sigma^*_{tA} \text{vol}(\Omega) - \text{vol}(\Omega)| \leq \Phi(\frac{1}{t})$ for $|t| \leq \frac{1}{10C(n)}$.

Proof. By claim $\sigma_{tA}(B(x, \frac{1}{2})) \subset A_t$.

$$|\sigma^*_{tA} \text{vol}(\Omega) - \text{vol}(\Omega)| = \int_0^t \frac{d\sigma^*_{tA} \text{vol}(\Omega)}{ds} ds \leq \int_0^t \frac{|d\sigma^*_{tA} \text{vol}(\Omega)|}{ds} ds$$

$$\leq \int_0^t \int_\Omega |\text{div}_{\sigma_{tA}(y)}(\sigma^*_{tA} \text{vol}(y))| ds dy \int_0^t \int_\Omega |\text{div}_{\sigma_{tA}(y)}(\sigma^*_{tA} \text{vol}(y))| ds dy \leq t \text{Phi}(\frac{1}{t}).$$

Recall the segment inequality of Cheeger-Colding [3]:

Proposition 1. Let $Y^n$ be a Riemannian manifold with nonnegative Ricci curvature. Let $A_1, A_2 \subset Y^n$ be open set such that any minimal geodesic joining $A_1, A_2$ is contained in an open set $W$. Let $D = \sup_{y_1 \in A_1, y_2 \in A_2} d(y_1, y_2)$ and $e$ be a nonnegative function defined on $W$.

Then $\int_{A_1 \times A_2} e(\gamma_{y_1, y_2}) ds \leq C(n, D)(\text{vol}(A_1) + \text{vol}(A_2)) \int_W e$. Here $\gamma_{y_1, y_2}$ is a minimal geodesic connecting $y_1, y_2$; $C(n, D)$ is a positive constant depending only on $n, D$.

Now we define a function

$$u(y, z, t) = |d(y, z) - d(\sigma_{tA}(y), \sigma_{tA}(z))|.$$

Theorem 4. Let $G(x, t) \leq \Phi(\frac{1}{t})$ for $|t| \leq \frac{1}{10C(n)}$. 

Proof. By triangle inequality, \(u(y, z, t) \leq 3\).

\[
\left| \frac{d F(x, t)}{dt} \right| \leq 6 \int_{B(x, \epsilon)} \int_{B(x, \frac{1}{2})} \int_{\mathbb{R}^1} |(\nabla_x X_i, e)| ds \, d\sigma^*_i \, vol(y) d\sigma^*_i \, vol(z) \\
+ 9 \int_{B(x, \epsilon)} \int_{B(x, \frac{1}{2})} |\text{div}X_i(\sigma^*_i, y)| d\sigma^*_i \, vol(y) d\sigma^*_i \, vol(z) \\
+ 9 \int_{B(x, \epsilon)} \int_{B(x, \frac{1}{2})} |\text{div}X_i(\sigma^*_i, z)| d\sigma^*_i \, vol(y) d\sigma^*_i \, vol(z) \\
\leq C_1(n) vol(A_i) \int_{A_i} |T_i| + 2C_2(n) vol(A_i) \int_{A_i} |\text{div}X_i| \\
\leq \Phi(\frac{1}{t}).
\]

In the inequality above, we applied claim [1] claim [2] and claim [3] and proposition 1. As \(F(x, 0) = 0\), we obtain that

\[
F(x, t) \leq \Phi(\frac{1}{t}).
\]

Given \(\epsilon > 0\), let

\[
E = \{(y, z) \in B(x, \frac{1}{2}) \times B(x, \frac{1}{2}) | u^2(y, z, t) \geq \sqrt{\epsilon}\}.
\]

According to (4) and (9), when \(\Phi(\frac{1}{t}) \leq \epsilon\),

\[
(\sigma^*_i \, vol \times \sigma^*_i \, vol)(E) \leq \sqrt{\epsilon}.
\]

By using the same argument as in claim [4] we find

\[
|(\sigma^*_i \, vol \times \sigma^*_i \, vol)(E) - (vol \times vol)(E)| \leq \Phi(\frac{1}{t}).
\]

Therefore,

\[
G(x, t) = \int_{E} u^2(y, z, t) + \int_{B(x, \epsilon) \setminus B(x, \frac{1}{2}) \setminus E} u^2(y, z, t) \\
\leq 9(\Phi(\frac{1}{t}) + \sqrt{\epsilon}) + vol(B(x, \frac{1}{2}))^2 \sqrt{\epsilon}.
\]

This completes the proof of theorem [4]. \(\square\)

We fixed \(\epsilon, \delta > 0\). For fixed \(t\), and any point \(y \in B(x, \frac{1}{2})\), define \(K_y = \{z \in B(x, \frac{1}{2}) | u(y, z) \leq \epsilon\}\). Also define \(K_\delta = \{y \in B(x, \frac{1}{2}) | vol(K_y) \geq vol(B(x, \frac{1}{2})) - \delta\}\). According to theorem [4]

\[
vol(K_\delta) \geq vol(B(x, \frac{1}{2})) - \Phi(\frac{1}{t}).
\]

Thus we can find an \(\epsilon\)-net \(x_1, \ldots, x_N\) where \(N = N(\epsilon)\) such that \(x_j \in K_\delta; B(x, \frac{1}{2}) \subset \bigcup B(x_j, \epsilon)\). Define \(K = \cap \_K_{x_j}\). Take \(\delta\) be sufficiently small and \(i\) be sufficiently large. By (11) and the volume comparison, we may assume \(vol(K)\) is so close to \(vol(B(x, \frac{1}{2}))\) that \(K\) is \(\epsilon\)-dense in \(B(x, \frac{1}{2})\).

Claim 5. For any \(y, z \in K\), \(u(y, z) \leq 4\epsilon\).
Thus denser and denser in (12) it might not be possible to prove that $u_i$ assumption, of the endpoints of each subinterval. Note that the generating proof.

$\sigma_i$ is well defined. $t$ must be an isometry on $u_i$. By corollary 2, that $\sigma_i$ preserves $\rho_i$, we obtain that $r^{-1}[5, 6]$ is invariant under $\sigma_i$. Next we extend the map $\sigma_t$ for all $t \in \mathbb{R}$. Namely, if $|t| > \frac{1}{100n}$, we can write $t = \sum_j t_j$ where $|t_j| \leq \frac{1}{100n}$ for each $j$. Define $\sigma_t = \sigma_{t_1} \circ \cdots \circ \sigma_{t_j}$. By corollary 2, $\sigma_t$ is well defined.

Claim 7. In $r^{-1}[5, 6]$, $\sigma_t$ commutes with the scale map $\lambda_s : (u, r) \rightarrow (u, e^s r)$, here $u$ is in the cross section $\Sigma$, $s \in \mathbb{R}$. Moreover, $\sigma_t$ is an isometry on the cross section of the metric cone.

Proof. Obviously $\sigma_t$ is an local isometry in $r^{-1}[5, 6]$. By the relation between the distance function on $\Sigma$ and $X_q$, we obtain that $\sigma_t$ is a local isometry on the cross section $\Sigma$ for fixed $r$. A simple argument implies that the distance function on $\Sigma$ is nonincreasing under the map $\sigma_t$. As $\sigma_t$ is a homeomorphism on $\Sigma$ (it has an inverse $\sigma_{-t}$), $\sigma_t$ must be an isometry on $\Sigma$ for each $r$. Next we prove that $\sigma_t$ commutes with the scale map. It suffices to prove it for small $t$ and $s$. For $u \in \Sigma$, let $\sigma_t(u, r) = (u_t, e^s r)$. We only need to prove that $u_t$ is independent of $r$. As $t$ and $s$ are small, $d((u, r), (u, e^s r))$ is small. Hence, by the local isometry of $\sigma_t$,
\[ |e^t - 1| r = d((u, r), (u, e^t r)) = d((u_t, r), (u_t, e^t r)) \geq |e^t - 1| r. \]
By the distance formula for the warped product metric, \( u_t = u_t e^t r. \) This proves the commutativity.

\[ \Box \]

By claim 7 and the distance formula for warped product metric, we easily extend \( \sigma_t \) as an isometry on \( X_q \) which commutes with the scale map.

Next we prove that \( \sigma_t \) is locally free on \( X_q \setminus q \). As \( \sigma_t \) is isomorphic to \( \mathbb{R} \), it suffices to prove that \( \sigma_t \) has no common fixed point except the vertex \( q \). We argue by contradiction. Without loss of generality, assume \( \sigma_t(x) = x \) for all \( t \in \mathbb{R} \), where \( 5 < r(x) < 6 \). Consider a tangent cone at \( x \), say \( \mathbb{R}^k \times W \). Here \( W \) is a metric cone without Euclidean factor. Let us assume the vertex of \( \mathbb{R}^k \times W \) is \((0^k, w^*)\). As \( X_q \) is a metric cone, \( k \geq 1 \). In fact, by theorem 9.1 in [7], \( k \) must be even.

Let \( \epsilon > 0, \delta > 0 \) be very small fixed constants and \( N \) be a very large constant so that \( N\epsilon \) is still very small. We may assume

\[ d_{GH}(B(x, N\epsilon), B_{\mathbb{R}^k \times W}(0^k, w^*), (N\epsilon)) \leq \frac{\delta \epsilon}{20}. \]

Recall \((N, q) \to (X_q, q)\). Take \( x_i \in N_i \) with \( x_i \to x \). Then, for all large \( i \),

\[ d_{GH}(B(x_i, N\epsilon), B_{\mathbb{R}^k \times W}(0^k, w^*), (N\epsilon)) \leq \frac{\delta \epsilon}{10}. \]

Note that \( 5 \leq r_i(x_i) := d(x_i, q_i) \leq 6 \).

Let \( F_i \) be the scale map \( B(x_i, N\epsilon, g_i) \to B(y_i, N, \frac{1}{r_i} g_i) \). For notational convenience, we simplify \( B(y_i, N, \frac{1}{r_i} g_i) \) as \( B(y_i, N) \). Then

\[ \text{(13)} \quad d_{GH}(B(y_i, N), B_{\mathbb{R}^k \times W}(0^k, w^*), N) \leq \delta. \]

Recall \( X_i = J\nabla \rho_i \). Define

\[ Y_i = \frac{\epsilon}{r_i(x_i)} (F_i)_* X_i \]
in \( B(y_i, 10) \). By (2),

\[ \text{(14)} \quad |Y_i| \leq C(n). \]

Note \( \epsilon \) is independent of \( i \). Then by (1) and the volume comparison,

\[ \text{(15)} \quad \int_{B(x_i, 10\epsilon)} |\nabla \rho_i - \frac{1}{2} r_i^2| + |\nabla^2 \rho_i - g_i| \leq \Phi(\frac{1}{\epsilon} |\rho_i|). \]

Thus

\[ \text{(16)} \quad \int_{B(x_i, 10\epsilon)} |X_i - r_i(x_i)| \leq 20\epsilon; \int_{B(x_i, 10\epsilon)} |\nabla X_i|^2 \leq 4n. \]

One moment thinking gives

\[ \text{(17)} \quad \int_{B(y_i, 10)} |Y_i| - 1 | \leq 20\epsilon; \int_{B(y_i, 10)} |\nabla Y_i|^2 \leq 4n \epsilon^2. \]

We need two lemmas in [7]:

**Lemma 1.** [Lemma 9.5] Let \( V \) be an open subset of a complete manifold \( M \). Let \( \lambda > 0 \) be the smallest nonzero eigenvalue of Laplacian on \( V \) with Dirichlet boundary conditions. Let \( h : V \to \mathbb{R} \) be Lipschitz and let \( v \) be a vector field on \( V \) such that

\[ \text{(17)} \quad \sup_v |h| \leq c; \int_V |\nabla h - v|^2 \leq \delta^2; \int_V |\text{div} v| \leq \delta. \]
Then if $b$ denotes the harmonic function such that $b|_{\partial \Omega} = h|_{\partial \Omega}$.

\[(18) \quad \int_{\Omega} |\nabla h - \nabla b|^2 \leq (4c + \delta)\delta; \int_{\Omega} (h - b)^2 \leq (4c + \delta)\delta \lambda^{-1}.
\]

**Lemma 2.** [Lemma 9.14] Let $M^n$ be a Riemannian manifold with $\text{Ric}_{M^n} \geq -(n - 1)c^2$, $m \in M$. Let $v$ be a vector field on $M$ so that

\[(19) \quad \sup_{B(m,1)} |v| \leq c; \int_{B(m,1)} |\nabla v|^2 \leq \delta^2; (1 - \delta)\frac{\text{vol}(B(m,1))}{\text{vol}(B(m,2))} \leq \frac{\text{vol}(B(m,2))}{\text{vol}(B(m,1))}.
\]

Here $m$ is a point in the complete simply connected space form $M^n$ with constant curvature $-c^2$. Then there exists $h : B(m,1) \rightarrow \mathbb{R}$ so that

\[(20) \quad \sup_{B(m,1)} |h| \leq c(n, c); \int_{B(m,1)} |\nabla h - v|^2 \leq \Phi(\epsilon, \delta|n, c).
\]

We apply lemma 2 to $B(y_i, 10)$ and the vector field $Y_i$. That is, take $m = y_i$ and $v = Y_i$. Note the radii are different, but this does not affect the proof of lemma. (13) and the volume convergence theorem of Colding [2] imply the last condition in (19); (14) and (16) imply the first two conditions of (19). Then we apply lemma 1 take $V = B(y_i, 10)$, $v = Y_i$ while $h$ is given by lemma 2. Note that in this case, $\lambda$ has a positive lower bound which depends only on $n$.

(20) implies that $|h|$ is bounded by $c(n)$. By the construction of $b$ in lemma 1 $|b|$ is also bounded by $c(n)$. Then Cheng-Yau gradient estimate [11] implies

\[(21) \quad |\nabla b| \leq c_1(n)
\]

in $B(y_i, 5)$. (17) and (18) imply

\[(22) \quad \int_{B(y_i,10)} |Y_i - \nabla b|^2 \leq \Phi(\epsilon, \delta, \frac{1}{l}).
\]

Note that the right hand side is not going to 0 as $i \rightarrow \infty$, since $\epsilon, \delta$ are fixed. Then (22) and (16) imply

\[(23) \quad \int_{B(y_i,10)} |(\nabla b, Y_i) - 1| \leq \Phi(\epsilon, \delta, \frac{1}{l}).
\]

Let $\overline{\sigma}_{i,l}$ be the flow generated by $Y_i$ in $B(y_i, 5)$ for $|t| \leq \frac{1}{10c(n)}$. Let $1 > \tau > 0$ be a small number to be determined later. Define

\[U_i = \{z \in B(y_i, \tau)|\overline{\sigma}_{i,l}(z) \in B(y_i, 2\tau)\}.
\]

Recall $y_i$ is the image of $x_i$ and $x_i \rightarrow x$. According to claim 8 and the assumption that $\sigma_{i}(x) = x$,

\[(24) \quad \text{vol}(U_i) \geq \text{vol}(B(y_i, \tau)) - \Phi(\frac{1}{l})|\tau|.
\]

Define

\[h(i, t) = \int_{z \in B(y_i, \tau)} |b(z) + t - b(\overline{\sigma}_{i,l}(z))|^2 d\overline{\sigma}_{i,l}(\text{vol}(z)),
\]

for $|t| \leq \frac{1}{10c(n)}$. One the one hand,

\[(25) \quad \frac{\text{d}h}{\text{d}t} \leq C \int_{z \in B(y_i, \tau)} |(\nabla b, Y_i)_{\overline{\sigma}_{i,l}(z)} - 1| d\overline{\sigma}_{i,l}(\text{vol}(z)) + C \int_{z \in B(y_i, \tau)} \frac{d\overline{\sigma}_{i,l}(\text{vol}(z))}{\text{d}t} \leq \Phi(\epsilon, \frac{1}{l}, \delta).
\]
In (25), we have used (24) and similar arguments as in claim 4. Note $h(i,0) = 0$. This proves
\begin{equation}
|h(i, \frac{1}{10C(n)})| < \Phi(\epsilon, \frac{1}{i}, \delta).
\end{equation}

On the other hand, if $\tau \leq \frac{1}{400c_1(n)C(n)}$, (21) implies that $|b(z_1) - b(z_2)| \leq \frac{1}{100C(n)}$ for $z_1, z_2 \in B(y, 2\tau)$. Therefore
\begin{equation}
\begin{aligned}
h(i, \frac{1}{10C(n)}) &\geq \int_{U_i} |b(z)| + \frac{1}{10C(n)} - b(\sigma, \frac{1}{\min n})(z)|^2 d\sigma \frac{1}{\min n}(vol(z)) \\
&\geq \frac{1}{100C(n)} \int_{U_i} d\sigma \frac{1}{\min n}(vol(z)) \\
&\geq \frac{1}{20C(n)} (vol(B(y, \tau)) - \Phi(\frac{1}{i}, \epsilon, \tau)).
\end{aligned}
\end{equation}

Here, we have used (24) and similar arguments as in claim 4. Take
\[\tau = \min(1, \frac{1}{400c_1(n)C(n)})\]
As $\epsilon, \delta$ are approaching 0, (27) contradicts (26).

The proof of theorem 2 is complete.

\[\square\]

4. Applications to complete Kähler manifolds with nonnegative bisectional curvature

In this section we study the limit of analytic functions on Gromov-Hausdorff limit of Kähler manifolds. First recall some definitions and results in [17].

On a Kahler manifold $M$, a holomorphic function $f \in O_\delta(M)$ if $|f(x)| \leq c(r(x) + 1)^d$. Here $r(x)$ is the distance to a fixed point; $c$ is independent of $r$.

**Definition.** Let $M$ be a complete Kähler manifold and $f \in O(M)$. The order at infinity is defined by $\lim_{r \to \infty} \frac{\log M_f(r)}{\log r}$, where $r$ is the distance to a fixed point $p$ on $M$, $M_f(r)$ is the maximal modulus of $f$ on $B(p, r)$.

**Remark.** Note that Colding and Minicozzi made a similar definition for harmonic functions over a metric cone (Definition 1.32, [9]).

**Proposition 2** (Corollary 3, [17]). Let $M$ be a complete Kähler manifold with nonnegative holomorphic sectional curvature. If $f \in O_{\delta + \epsilon}(M)$ for any $\epsilon > 0$. Then $f \in O_\delta(M)$.

Let $(M, g)$ be a complete Kähler manifold with nonnegative bisectional curvature. Assume $f$ is a nonconstant holomorphic function of polynomial growth on $M$. Let $d < \infty$ is the order of $f$ at infinity (note $d$ might not be an integer). According to the proposition above, $f \in O_\delta(M)$.

We further assume $M$ is of maximal volume growth (this holds when the universal cover does not split as a product, see theorem 2 in [18]). Fix a point $p \in M$. Consider a tangent cone at infinity $(M_\infty, g_\infty, p_\infty)$ which is the Gromov-Hausdorff limit of $(M, r_i^2 g, p)(r_i \to \infty)$. Define a rescale function
\begin{equation}
f_i(x) = \frac{f(x)}{M_f(r_i)}
\end{equation}
Then $\sup |f_i(x)| = 1$ for $x \in B(p, r_i)$. 
Proposition 3 (Corollary 1, [17]). Let $M$ be a complete Kähler manifold with nonnegative holomorphic sectional curvature. If $f \in \mathcal{O}_d(M)$, then \( \frac{M_f(r)}{r^d} \) is nonincreasing.

By this proposition,

\[
|f_j(x)| \leq (2k)^d
\]

on \( B(p, 2kr) \) for \( k > 1 \). By Cheng-Yau’s gradient estimate [11],

\[
|\nabla f_j(x)| \leq a(n)k^{d-1}
\]

on \( B(p, kr) \). Thus there exists a subsequence of \( f_j \) converging to \( f_{\infty} \) uniformly on each compact set on \( M_{\infty} \). By theorem 1, \( M_{\infty} \) is a metric cone, say \( M_{\infty} = \Sigma \times_{\epsilon^2} \mathbb{R}^+ \) with vertex \( p_{\infty} \). We write points on \( M_{\infty} \) as \( (u, r) \) where \( u \in \Sigma, r \geq 0 \). Theorem 8 in [17] (more precisely, claim 1 in [17]) states that \( f_{\infty} \) is a homogeneous function of degree \( d \), that is,

\[
f_{\infty}(u, e^r) = e^{dr} f_{\infty}(u, r).
\]

According to theorem 2, there exist isometries \( \sigma_t \) on \( M_{\infty} \). The next result states the behavior of \( f_{\infty} \) under \( \sigma_t \).

Theorem 5. Let \( M^n, M^n_{\infty}, M_{\infty} \) be stated as above. Then \( f_{\infty}(\sigma_t(x)) = e^{-dt} f_{\infty}(x) \) for any \( x \in M_{\infty} \) and \( t \in \mathbb{R} \).

Proof. We may assume \( x \neq p_{\infty} \), otherwise the conclusion is obvious, as \( f(p_{\infty}) = 0 \). It suffices to prove that for any sequence \( t_j \to 0 \), there exists a subsequence so that

\[
\lim_{j \to \infty} \frac{f_{\infty}(\sigma_{t_j}(x)) - f_{\infty}(x)}{t_j} = \sqrt{-1} df_{\infty}(x).
\]

As regular points are dense on \( M_{\infty} \) and \( \sigma_t \) preserves regular points (isometry), we can also assume \( x \) is a regular point. For simplicity, we further assume \( r(x) = 1 \) (the general case follows from a rescaling). Define

\[
(N'_j, g'_j, x'_j) = (M_{\infty}, t_{j-2} g_{\infty}, x).
\]

Then \( (N'_j, g'_j, x'_j) \) converges to \( \mathbb{R}^{2n} \) in the Gromov-Hausdorff sense. Recall \( (M_i, g_i, p_i) \) pointed converges to \( (M_{\infty}, g_{\infty}, p_{\infty}) \). Take a function \( \mathbb{N} \to \mathbb{N}: i = i(j) \) which is increasing sufficiently fast. Consider points \( x''_i \in M_i \) converging to \( x \in M_{\infty} \), define

\[
(N_j, g_j, x_j) = (M_{i(j)}, t_{j-2} g_{i(j)}, x''_{i(j)}).
\]

We may assume

\[
d_{GH}(B_{N_j}(x_j, 2^j), B_{N'_j}(x'_j, 2^j)) \leq \frac{1}{2^j}.
\]

Thus \( (N_j, g_j, x_j) \) pointed converges to \( (\mathbb{R}^{2n}, 0) \). Note \( f_j := f_{i(j)} \) are holomorphic functions on \( N_j \).

According to [3], for any \( R > 0 \), there exist harmonic functions \( b_1, ..., b_{2n} \) on \( B(x_j, 3R) \) such that

\[
\int_{B(x_j, 2R)} \sum_{k=1}^{2n} |\nabla(\nabla b_k)|^2 + \sum_{k,l} |\nabla b_k, \nabla b_l| - \delta_{kl} \leq \Phi(\frac{1}{i} |R, n|);
\]

\[
|\nabla b_k| \leq C_j(n)
\]
on $B(x_j, 2R)$. According to equation (9.25) and the first paragraph of page 912 in [7], we may also assume

$$
(38) \quad \int_{B(x_j, R)} |J\nabla b_{2s-1} - \nabla b_{2s}|^2 \leq \Phi(\frac{1}{l}|n, R)
$$

for $1 \leq s \leq n$. By taking $R \to \infty$ and a diagonal subsequence argument, we can define a linear complex structure on the limit space $\mathbb{R}^{2n}$:

$$
(39) \quad J\nabla b_{2s-1} = \nabla b_{2s}, J\nabla b_{2s} = -\nabla b_{2s-1}
$$

for $1 \leq s \leq n$. In this way, we identify $\mathbb{R}^{2n}$ with $\mathbb{C}^n$. On $N_j$, define

$$
(40) \quad h_j(y) = \frac{f_j(y) - f_j(x_j)}{t_j}.
$$

By the local bound of $f_j$ and the gradient estimate (29), $h_j$ are local Lipchitz functions on $N_j$:

$$
(41) \quad |\nabla h_j| \leq c(n), h_j(x_j) = 0
$$
in $B(x_j, \frac{1}{10R})$. Arzela-Ascoli theorem implies that a subsequence of $h_j$ converges uniformly in each compact set to a Lipchitz function $h$ on $\mathbb{C}^n$.

**Claim 8.** $h$ is complex linear on $\mathbb{C}^n$ with $h(0) = 0$.

**Proof.** By (40) and that $(N_j, g_j, x_j)$ pointed converges to $(\mathbb{R}^{2n}, 0) = (\mathbb{C}^n, 0)$, $h(0) = 0$. As $h$ is Lipchitz, it suffices to prove $h$ is holomorphic on $\mathbb{C}^n$. The proof of this fact is contained in lemma 4 in [10]. However, for completeness, we present the proof here.

Let $h = u + \sqrt{-1}v$, where $u$ and $v$ are real harmonic functions on $\mathbb{C}^n$. By (39), we just need to verify the Cauchy-Riemann equation for $h$ along $\nabla b_1$ and $\nabla b_2$. Given any point $z \in \mathbb{C}^n$, consider a smooth function $\lambda = \lambda(b_1, \ldots, b_{2n})$ supported in $B(z, 1)$. Take $R = |z| + 3$. Recall $h_j \to h$ uniformly on each compact set. Write $h_j = u_j + \sqrt{-1}v_j$, where $u_j$ and $v_j$ are real pluriharmonic functions on $N_j$. Moreover,

$$
(42) \quad |u_j|, |v_j|, |\nabla u_j|, |\nabla v_j| \leq C(R, n)
$$
in $B(x_j, R)$. By Cauchy-Riemann equation, $\langle \nabla u_j, \nabla b_1 \rangle = \langle \nabla v_j, J\nabla b_1 \rangle$. Note that for sufficiently large $j$, $\lambda(b_1, \ldots, b_{2n})$ is supported in $B(x_j, R) \subset N_j$ (here for $z \in B(x_j, R)$, $\lambda(b_1, \ldots, b_{2n})$ is defined by $\lambda(b_1(z), \ldots, b_{2n}(z))$). (38) and (42) imply

$$
(43) \quad \int_{B(x_j, R)} \lambda(b_1, \ldots, b_{2n}) \langle \nabla v_j, \nabla b_1 \rangle - \int_{B(x_j, R)} \lambda(b_1, \ldots, b_{2n}) \langle \nabla v_j, \nabla b_2 \rangle \leq \Phi(\frac{1}{l}|n)
$$

Here $R$ and $\lambda$ are already fixed. As $b_i$ are harmonic, (56), (57) and (42) imply

$$
(44) \quad \int_{B(x_j, R)} \lambda(b_1, \ldots, b_{2n}) \langle \nabla u_j, \nabla b_1 \rangle = \int_{B(x_j, R)} u_j \langle \nabla (\lambda(b_1, \ldots, b_{2n})), \nabla b_1 \rangle
$$

$$
= -\int_{B(x_j, R)} u_j \sum_{k=1}^{2n} \frac{\partial \lambda}{\partial b_k} \langle \nabla b_k, \nabla b_1 \rangle
$$

$$
\rightarrow \int_{B(0, R)} u_j \frac{\partial \lambda}{\partial b_1}
$$

$$
= \int_{B(0, R)} \lambda(\nabla u, \nabla b_1).
$$
Similarly

\[ \int_{B(x, R)} \lambda(b_1, ..., b_{2n})(\nabla v_j, \nabla b_2) \to \int_{B(0, R)} \lambda(\nabla v, \nabla b_2). \]

By (43) and (45) and that \( \lambda \) is supported in \( B(z, 1) \), we find

\[ \int_{B(z, 1)} \lambda(\nabla v, \nabla b_1) = \int_{B(z, 1)} \lambda(\nabla v, \nabla b_2). \]

Similarly

\[ \int_{B(z, 1)} \lambda(\nabla v, \nabla b_1) = \int_{B(z, 1)} -\lambda(\nabla u, \nabla b_2). \]

Since \( \lambda \) is arbitrary,

\[ \langle \nabla u, \nabla b_1 \rangle = \langle \nabla v, \nabla b_2 \rangle, \langle \nabla v, \nabla b_1 \rangle = -\langle \nabla u, \nabla b_2 \rangle \]

at \( z \).

Recall the function \( \rho_i \) appeared in (1). To continue the proof, we consider the flow \( \lambda_i(t) \) on \( M_i \) generated by \( \nabla \rho_i \). For simplicity, we only consider the flow in \( B_i = B(p_i, 2) \setminus B(p_i, \frac{1}{2}) \) and \(|t| \leq \frac{1}{100n^2}\).

Claim 9. Let \( \Omega \) be any measurable subset of \( B_i \), then \( |\lambda_i(t)^*vol(\Omega) - e^{2n}\rho_i vol(\Omega)| < \Phi \left( \frac{1}{t} \right) \) for \(|t| \leq \frac{1}{100n^2}\).

Proof. By (1) and similar arguments as in lemma 4 we see \( \frac{d}{dt}(\lambda_i(t)^*vol(\Omega)) = 2n\lambda_i(t)^*vol(\Omega) < \Phi \left( \frac{1}{t} \right) \). Then the proof follows from integral estimate.

Lemma 3. For \( y \in B_i \) and \(|t| \leq \frac{1}{100n^2}\), \( \lim_{i \to \infty} (r_i (\lambda_i(t, y)) - e^t r_i(y)) = 0 \) in the measure sense. Here \( r_i(y) = d(p_i, y) \).

Proof. Define

\[ H_i(t) = \int_{B_i} |\rho_i(\lambda_i(t, y)) - e^{2n}\rho_i(y)|^2 \, dy. \]

By (2), \( \rho_i - \frac{1}{r_i^2} \to 0 \) as \( i \to \infty \). It suffices to prove that

\[ \lim_{i \to \infty} H_i(t) = 0. \]

As \( \rho_i(\lambda_i(t, y)) \) is bounded for \(|t| \leq \frac{1}{100n^2} \) and \( y \in B_i \), there exists a constant \( C \) so that

\[ \left| \frac{d}{dt} H_i \right| \leq C \int_{B_i} |\nabla \rho_i(\lambda_i(t, y))|^2 - 2e^{2n}\rho_i(y) \, dy \]

\[ \leq C2H_i^2(\rho_i)^2 + C \int_{B_i} |\nabla \rho_i(\lambda_i(t, y))|^2 - 2\rho_i(\lambda_i(t, y)) \, dy. \]

With (1) and (4), one easily can show that

\[ \int_{B_i} |\nabla \rho_i(\lambda_i(t, y))|^2 - 2\rho_i(\lambda_i(t, y)) \, d\lambda_i(t)^*vol < \Phi \left( \frac{1}{t} \right). \]

Then by claim 9 and similar arguments between (9) and (10),

\[ \int_{B_i} |\nabla \rho_i(\lambda_i(t, y))|^2 - 2\rho_i(\lambda_i(t, y)) \, dy < \Phi \left( \frac{1}{t} \right). \]

Note this is the last term of (46). ODE arguments give the proof. \( \square \)
Then we can prove JV

\[ \lim_{t \to \infty} (d(l(t), y) - |e^t - 1| r(t)) = 0 \] in the measure sense.

**Proof.** We use similar arguments as in lemma 2.1, step 2 in [16].

\[
\int_{B_1} \int_0^t \|\nabla \rho_t(A(s, y))\| ds dy = \int_{B_1} \int_0^t \|\nabla \rho_t(A(s, y))\| ds dy
\]

\[ \leq 4 \int_{B_1} \int_0^t \|\nabla \rho_t(A(s, y))\|^2 - 2 e^{2t} \rho_t(y) dy ds \]

\[ \leq \Phi(\frac{1}{t}). \]

In the equation, we used that \( e^t \sqrt{2\rho_t(y)} = e^{t'} r_t(y) > 1 \) and (46). Note that the length of the curve \( A_t(s, y) \) for \( s \in [0, t] \) if \( t \leq 0 \) is \( \int_0^t |\nabla \rho_t(A(s, y))| ds \). Thus the proof of the claim easily follows by integration. \( \square \)

**Proposition 4.** As \( i \to \infty \), \( A_i(t) \) converges to \( A(t) \) in the measure sense. Here \( A(t)(u, r) = (u, e^t r) \), the gradient flow of \( r \) on \( M_\infty \).

**Proof.** In view of the distance formula on \( M_\infty \), the proposition is a consequence of lemma 3 and claim 10. \( \square \)

Let \( F_j \) be the rescale map from \( (M_{i(j)}, g_{i(j)}, x'_{i(j)}) \) to \( (N_j, g_j, x_j) \). On \( N_j \), define vector fields

\[ V_j = t_j(F_j) \nabla \rho_{i(j)}, W_j = t_j(F_j) J \nabla \rho_{i(j)}. \]

Given any \( R > 0 \), if \( i(j) \) is increasing sufficiently fast, by similar arguments as in (15), we find

\[
\int_{B(x_j, R)} |\nabla \rho_{i(j)} - \nabla \frac{1}{2} r_{i(j)}^2 |^2 + |\nabla^2 \rho_{i(j)} - g_{i(j)}|^2 < \Phi(\frac{1}{j} R).
\]

Recall \( r(x) = 1 \), hence on \( M_{i(j)}, (x'_{i(j)}) \to 1 \). Thus similar as (16),

\[
\int_{B(x_j, R)} |V_j - 1| + |\nabla V_j|^2 + |W_j - 1| + |\nabla W_j|^2 \leq \Phi(\frac{1}{j} R, n).
\]

Note \( JV_j = W_j \) on \( N_j \). By similar arguments as in (22) and (38), we obtain functions \( b_k(k = 1, 2n) \) on \( B(x_j, 2R) \) satisfying (38) and

\[
\int_{B(x_j, R)} |V_j - \nabla b_k|^2 + |W_j - \nabla b_k|^2 + \sum_{k=1}^{2n} |\nabla^2 b_k|^2 + \sum_{1 \leq k, l \leq 2n} |\nabla b_k, \nabla b_l| - \delta |< \Phi(\frac{1}{j} R).
\]

As \( R \to \infty \), these functions \( b_k \) converge in a subsequence to standard real coordinates on \( \mathbb{C}^n \) which is identified with a tangent cone at \( x \). Below we shall use these coordinates. Let \( \overline{f}_j(t) \) and \( \overline{x}_j(t) \) be the flows on \( N_j \) generated by \( W_j \) and \( V_j \).

**Lemma 4.** In the measure sense, \( \lim_{j \to \infty} (b_k(\overline{f}_j(t)(p)) - b_k(p) - i \delta_{k2}) = 0 \) for \( p \in B(x_j, 10) \); similarly, \( \lim_{j \to \infty} (b_k(\overline{x}_j(t)(p)) - b_k(p) - i \delta_{k1}) = 0 \).

**Proof.** As before, define \( h(k, t) = \int_{B(x_j, 20)} |b_k(z) + \delta_{k2} t - b_k(\overline{f}_j(t)(z))|^2 d(\overline{f}_j(t))^*(\text{vol}(z)) \). Then we can prove \( |\frac{dh}{dt}| \to 0 \) as in (25). The proof is done by simple integration. \( \square \)
By (33), (34) and (35), let \( q_j \) be a pre-image of \( \sigma_i(x) \) in \( N_j \), given by the Gromov-Haudorff approximation. In view of claim 6 and lemma \( \sigma_i \), we find
\[
q_j \to (0, 1, 0, \ldots, 0) \in \mathbb{C}^n.
\]
Note there is no issue to apply the measured convergence above.

Obviously \( t_j \) is fixed for each \( j \). Letting \( i = i(f) \) increase sufficiently fast, by (34) and (40), we find
\[
|h_j(q_j) - f_\infty(\sigma_i(x)) - f_\infty(x)| \to 0.
\]

Similarly, let \( q_j' \) be the pre-image of \( \lambda_i(x) \) in \( N_j \). Then proposition \( \lambda_i \) and lemma \( \lambda_i \) imply
\[
q_j' \to (1, 0, 0, \ldots, 0) \in \mathbb{C}^n.
\]

Also, similar to (52),
\[
|h_j(q_j') - f_\infty(\lambda_i(x)) - f_\infty(x)| \to 0.
\]

By claim 8 (51), (53) and that \( h_j \to h \) uniformly on each compact set,
\[
\lim_{j \to \infty} h_j(q_j) = h(0, 1, 1, 0, \ldots, 0) = \sqrt{-1} h(1, 0, 0, \ldots, 0) = \sqrt{-1} \lim_{j \to \infty} h_j(q_j').
\]

According to (31),
\[
\lim_{j \to \infty} f_\infty(\lambda_i(x)) - f_\infty(x) = df_\infty(x).
\]

Putting (52), (54), (55) and (56) together, we proved (32). This completes the proof of theorem 5.

**Corollary 3.** Let \( M^u \) be a complete Kähler manifold with nonnegative bisectional curvature and maximal volume growth. Let \( X = \Sigma \times \mathbb{R}^\ast \) be a tangent cone at infinity. Let \( E = \{ q \mid q \text{ is the order at infinity for some } f \in O_d(M), d \geq 0 \} \) and \( v = \dim_{\mathbb{C}}(E \otimes_{\mathbb{Z}} \mathbb{Q}) \). Let \( T^u \) (dimension \( u \)) be the torus given by the closure of the image of \( \sigma_i \) in the isometry group of \( \Sigma \). Then \( u \geq v \). In particular, if \( u = 1 \), then orders of holomorphic functions with polynomial growth are not necessarily unique.

**Remark.** This corollary is sharp: In the standard \( \mathbb{C}^n \) case, \( u = v = 1 \) (Hopf fibration). Consider the case \( \mathbb{C} \times N \), where \( N \) is conformal to \( \mathbb{C} \), with rotationally symmetric metric of nonnegative curvature. We can also adjust the metric so that \( \pi \) is the order of some \( f \in O_d(N) \) at infinity. In this case \( u = 2 = v \).

**Proof.** Let \( f^i(1 \leq i \leq m) \) be holomorphic functions of polynomial growth on \( M \) (here \( m \in \mathbb{N} \) is arbitrary), with orders \( d_i \) at infinity. We assume the limit of these functions on \( X \) are \( f_\infty^i \). According to (31), \( f_\infty^i \) is homogeneous of degree \( d_i \). Note the limit functions are not necessarily unique. This does not affect our argument.

Pick \( p \in X \) so that \( f_\infty^i(p) \neq 0 \) for any \( i \). For \( t \in T^u \), define functions \( g_i(t) = f_\infty^i(t(p)) \).

Write \( T^u = (e^{2\pi \sqrt{-1} x_1}, \ldots, e^{2\pi \sqrt{-1} x_u}) \) for \( (x_1, \ldots, x_u) \in \mathbb{R}^u \). We identify the tangent space of \( T^u \) at \( e \) (the identity element) with the tangent space of \( \mathbb{R}^u \) at the origin. Let \( l \) be the geodesic on \( T^u \) given by the image of \( \sigma_i \). Let \( Y \) be the tangent of \( l \) at \( e \). Write \( Y = \sum_{j=1}^u a_j e_j \), where \( e_i = (0, 0, 0, 0, 1, 0, 0, \ldots, 0) \in T_{e} T^u, a_i \in \mathbb{R} \). By theorem 5 and that \( l \) is dense in \( T^u \), we find
\[
g_i(x_1, \ldots, x_u) = g_i(e) \exp(\sqrt{-1} \sum_{j=1}^u b_j x_j).
\]
Here $b_{ij} = 2\pi k_{ij}$ for $k_{ij} \in \mathbb{Z}$. Restricting $g_i$ on $l$, we find
\[ d_i = 2\pi \sum_{j=1}^{u} k_{ij} a_j. \]
This completes the proof of the corollary.

\[ \square \]

**Corollary 4.** Given the notations and assumptions as in corollary 3 let $w$ be the dimension of the isometry group of $\Sigma$. Then $w \geq v$.

**References**

[1] S. Bando, A. Kasue, H. Nakajima, *On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth*, Invent. Math. 97 (1989), 313-349.

[2] T. Colding, *Ricci curvature and volume convergence*, Ann. of Math. (2) 145 (1997), No 3, 477-501.

[3] J. Cheeger and T. Colding, *Lower bounds on Ricci curvature and the almost rigidity of warped products*, Ann. of Math. (2) 144 (1996), no. 1, 189-237.

[4] J. Cheeger and T. Colding, *On the structure of spaces with Ricci curvature bounded below. I*, J. Differential Geom. 46 (1997), no. 3, 406-480.

[5] J. Cheeger and T. Colding, *On the structure of spaces with Ricci curvature bounded below. II*, J. Differential Geom. 54 (2000), no. 1, 13-35.

[6] J. Cheeger and T. Colding, *On the structure of spaces with Ricci curvature bounded below. III*, J. Differential Geom. 54 (2000), no. 1, 37-74.

[7] J. Cheeger, T. Colding and G. Tian, *On the singularities of spaces with bounded Ricci curvature*, Geom. Funct. Anal. 12(2002), 873-914.

[8] X. X. Chen and S. K. Donaldson, *Integral bounds on curvature and Gromov-Hausdorff limits*, J. Topology. 7(2014), 543-556.

[9] T. Colding and W. Minicozzi, *Harmonic functions with polynomial growth*, J. Differential Geom. 45(1997), 1-77.

[10] J. Cheeger and G. Tian, *On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay*, Invent. Math. 118 (1994), 493-571.

[11] S. Y. Cheng and S. T. Yau, *Differential equations on Riemannian manifolds and their geometric applications*, Comm. Pure Appl. Math. 28 (1975), 333-354.

[12] S. K. Donaldson and S. Sun, *Gromov-Hausdorff limit of Kähler manifolds and algebraic geometry*, arxiv: 1206.2609.

[13] K. Fukaya and T. Yamaguchi, *The fundamental groups of almost nonnegatively curved manifolds*, Ann. of Math. 136 (1992), 253-333.

[14] M. Gromov, J. Lafontaine and P. Pansu, *Metric structures for riemannian and non-riemannian spaces*, Progress in Mathematics, 152, Birkhäuser Boston, Inc., Boston, MA, xx+585 pp, 1999.

[15] M. Gross, V. Tosatti, Y. Zhang, *Gromov-Hausdorff collapsing of Calabi-Yau manifolds*, arxiv: 1304.1820.

[16] V. Kapovitch and B. Wilking, *Structure of fundamental groups of manifolds with Ricci curvature bounded below*, arxiv: 1105.5955.

[17] G. Liu, *Three circle theorems on Kähler manifolds and applications*, arxiv: 1308.0710.

[18] G. Liu, *On the volume growth of Kähler manifolds with nonnegative bisectional curvature*, arxiv: 1403.3834.

[19] D. Martelli, J. Sparks, S. T. Yau, *Sasaki Einstein Manifolds and Volume Minimisation*, Comm. Math. Phys. 280 (2008), no. 3, 611-673.

[20] G. Tian, *On Calabi’s conjecture for complex surfaces with positive first Chern class*, Invent. Math. 101 (1990), no. 1, 101-172.

[21] G. Tian, *Compactness theorems for kähler Einstein manifolds of dimension 3 and up*, J. Differential Geom. 35(1992), 535-558.

[22] G. Tian, *Partial C0-estimate for Kähler-Einstein metrics*, Commun. Math. Stat. 1 (2013), no. 2, 105-113.

[23] V. Tosatti, *Adiabatic limits of Ricci-flat Kähler metrics*, J. Differential Geom. 84 (2010), no.2, 427-453.

Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720

E-mail address: gangliu@math.berkeley.edu