Parameterized Approximation Algorithms for some Location Problems in Graphs

Arne Leitert and Feodor F. Dragan

Department of Computer Science,
Kent State University, Kent, Ohio, USA
aleitert@cs.kent.edu, dragan@cs.kent.edu

Abstract. We develop efficient parameterized, with additive error, approximation algorithms for the (Connected) r-Domination problem and the (Connected) p-Center problem for unweighted and undirected graphs. Given a graph G, we show how to construct a (connected) $(r + O(\mu))$-dominating set D with $|D| \leq |D^*|$ efficiently. Here, D^* is a minimum (connected) r-dominating set of G and μ is our graph parameter, which is the tree-breadth or the cluster diameter in a layering partition of G. Additionally, we show that a $+O(\mu)$-approximation for the (Connected) p-Center problem on G can be computed in polynomial time. Our interest in these parameters stems from the fact that in many real-world networks, including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others, and in many structured classes of graphs these parameters are small constants.

1 Introduction

The (Connected) r-Domination problem and the (Connected) p-Center problem, along with the p-Median problem, are among basic facility location problems with many applications in data clustering, network design, operations research – to name a few. Let $G = (V,E)$ be an unweighted and undirected graph. Given a radius $r(v) \in \mathbb{N}$ for each vertex v of G, indicating within what radius a vertex v wants to be served, the r-Domination problem asks to find a set $D \subseteq V$ of minimum cardinality such that $d_G(v,D) \leq r(v)$ for every $v \in V$. The Connected r-Domination problem asks to find an r-dominating set D of minimum cardinality with an additional requirement that D needs to induce a connected subgraph of G. When $r(v) = 1$ for every $v \in V$, one gets the classical (Connected) Domination problem. Note that the Connected r-Domination problem is a natural generalization of the Steiner Tree problem (where each vertex t in the target set has $r(t) = 0$ and each other vertex s has $r(s) = \text{diam}(G)$). The connectedness of D is important also in network design and analysis applications (e.g. in finding a small backbone of a network). It is easy to see also that finding minimum connected dominating sets is equivalent to finding spanning trees with the maximum possible number of leaves.

The (closely related) p-Center problem asks to find in G a set $C \subseteq V$ of at most p vertices such that the value $\max_{v \in V} d_G(v,C)$ is minimized. If, additionally,
C is required to induce a connected subgraph of G, then one gets the Connected p-Center problem.

The domination problem is one of the most well-studied NP-hard problems in algorithmic graph theory. To cope with the intractability of this problem it has been studied both in terms of approximability (relaxing the optimality) and fixed-parameter tractability (relaxing the runtime). From the approximability perspective, a logarithmic approximation factor can be found by using a simple greedy algorithm, and finding a sublogarithmic approximation factor is NP-hard [19]. The problem is in fact Log-APX-complete [14]. The Domination problem is notorious also in the theory of fixed-parameter tractability (see, e.g., [11,18] for an introduction to parameterized complexity). It was the first problem to be shown W[2]-complete [11], and it is hence unlikely to be FPT, i.e., unlikely to have an algorithm with runtime $f(k) n^c$ for f a computable function, k the size of an optimal solution, c a constant, and n the number of vertices of the input graph. Similar results are known also for the connected domination problem [17].

The p-Center problem is known to be NP-hard on graphs. However, for it, a simple and efficient factor 2 approximation algorithm exists [16]. Furthermore, it is a best possible approximation algorithm in the sense that an approximation with factor less than 2 is proven to be NP-hard (see [16] for more details). The NP-hardness of the Connected p-Center problem is shown in [20].

Recently, in [7], a new type of approximability result (call it a parameterized approximability result) was obtained: there exists a polynomial time algorithm which finds in an arbitrary graph G having a minimum r-dominating set D a set D' such that $|D'| \leq |D|$ and each vertex $v \in V$ is within distance at most $r(v) + 2\delta$ from D', where δ is the hyperbolicity parameter of G (see [7] for details). We call such a D' a $(r + 2\delta)$-dominating set of G. Later, in [13], this idea was extended to the p-Center problem: there is a quasi-linear time algorithm for the p-Center problem with an additive error less than or equal to six times the input graph’s hyperbolicity (i.e., it finds a set C' with at most p vertices such that $\max_{v \in V} d_G(v, C') \leq \min_{C \subseteq V, |C| \leq p} \max_{v \in V} d_G(v, C) + 6\delta$). We call such a C' a $+6\delta$-approximation for the p-Center problem.

In this paper, we continue the line of research started in [7] and [13]. Unfortunately, the results of [7,13] are hardly extendable to connected versions of the r-Domination and p-Center problems. It remains an open question whether similar approximability results parameterized by the graph’s hyperbolicity can be obtained for the Connected r-Domination and Connected p-Center problems. Instead, we consider two other graph parameters: the tree-breadth ρ and the cluster diameter Δ in a layering partition (formal definitions will be given in the next sections). Both parameters (like the hyperbolicity) capture the metric tree-likeness of a graph (see, e.g., [2] and papers cited therein). As demonstrated in [2], in many real-world networks, including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others, as well as in many structured classes of graphs the parameters δ, ρ, and Δ are small constants.
We show here that, for a given n-vertex, m-edge graph G, having a minimum r-dominating set D and a minimum connected r-dominating set C:

- an $(r + \Delta)$-dominating set D' with $|D'| \leq |D|$ can be computed in linear time;
- a connected $(r + 2\Delta)$-dominating set C' with $|C'| \leq |C|$ can be computed in $O(m \alpha(n) \log \Delta)$ time (where $\alpha(n)$ is the inverse Ackermann function);
- a $+\Delta$-approximation for the p-Center problem can be computed in linear time;
- a $+2\Delta$-approximation for the connected p-Center problem can be computed in $O(m \alpha(n) \log \min(\Delta, p))$ time.

Furthermore, given a tree-decomposition with breadth ρ for G:

- an $(r + \rho)$-dominating set D' with $|D'| \leq |D|$ can be computed in $O(nm)$ time;
- a connected $(r + 5\rho)$-dominating set C' with $|C'| \leq |C|$ can be computed in $O(nm)$ time;
- a $+\rho$-approximation for the p-Center problem can be computed in $O(nm \log n)$ time;
- a $+5\rho$-approximation for the Connected p-Center problem can be computed in $O(nm \log n)$ time.

To compare these results with the results of [7,13], notice that, for any graph G, its hyperbolicity δ is at most Δ [2] and at most two times its tree-breadth ρ [6], and the inequalities are sharp.

Note that, for split graphs (graphs in which the vertices can be partitioned into a clique and an independent set), all three parameters are at most 1. Additionally, as shown in [8], there is (under reasonable assumptions) no polynomial-time algorithm to compute a sublogarithmic-factor approximation for the (Connected) Domination problem in split graphs. Hence, there is no such algorithm even for constant δ, ρ, and Δ.

One can extend this result to show that there is no polynomial-time algorithm A which computes, for any constant c, a $+c \log n$-approximation for split graphs. Hence, there is no polynomial-time $+c \Delta \log n$-approximation algorithm in general. Consider a given split graph $G = (C \cup I, E)$ with n vertices where C induces a clique and I induces an independent set. Create a graph $H = (C_H \cup I_H, E_H)$ by, first, making n copies of G. Let $C_H = C_1 \cup C_2 \cup \ldots \cup C_n$ and $I_H = I_1 \cup I_2 \cup \ldots \cup I_n$. Second, make the vertices in C_H pairwise adjacent. Then, C_H induces a clique and I_H induces an independent set. If there is such an algorithm A, then A produces a (connected) dominating set D_A for H which has at most $2c \log n$ more vertices that a minimum (connected) dominating set D. Thus, by pigeonhole principle, H contains a clique C_i for which $|C_i \cap D_A| = |C_i \cap D|$. Therefore, such an algorithm A would allow to solve the (Connected) Domination problem for split graphs in polynomial time.
2 Preliminaries

All graphs occurring in this paper are connected, finite, unweighted, undirected, without loops, and without multiple edges. For a graph $G = (V, E)$, we use $n = |V|$ and $m = |E|$ to denote the cardinality of the vertex set and the edge set of G, respectively.

The length of a path from a vertex v to a vertex u is the number of edges in the path. The distance $d_G(u, v)$ in a graph G of two vertices u and v is the length of a shortest path connecting u and v. The distance between a vertex v and a set $S \subseteq V$ is defined as $d_G(v, S) = \min_{u \in S} d_G(u, v)$. For a vertex v of G and some positive integer r, the set $N^r_G[v] = \{ u \mid d_G(u, v) \leq r \}$ is called the r-neighbourhood of v. The eccentricity $\text{ecc}_G(v)$ of a vertex v is $\max_{u \in V} d_G(u, v)$. For a set $S \subseteq V$, its eccentricity is $\text{ecc}_G(S) = \max_{u \in V} d_G(u, S)$.

For some function $r : V \to \mathbb{N}$, a vertex u is r-dominated by a vertex v (by a set $S \subseteq V$), if $d_G(u, v) \leq r(u)$ ($d_G(u, S) \leq r(u)$, respectively). A vertex set D is called an r-dominating set of G if each vertex $u \in V$ is r dominated by D. Additionally, for some non-negative integer ϕ, we say a vertex is $(r+\phi)$-dominated by a vertex v (by a set $S \subseteq V$), if $d_G(u, v) \leq r(u) + \phi$ ($d_G(u, S) \leq r(u) + \phi$, respectively). An $(r+\phi)$-dominating set is defined accordingly. For a given graph G and function r, the (Connected) r-Domination problem asks for the smallest (connected) vertex set D such that D is an r-dominating set of G.

The degree of a vertex v is the number of vertices adjacent to it. For a vertex set S, let $G[S]$ denote the subgraph of G induced by S. A vertex set S is a separator for two vertices u and v in G if each path from u to v contains a vertex $s \in S$; in this case we say S separates u from v.

A tree-decomposition of a graph $G = (V, E)$ is a tree T with the vertex set \mathcal{B} where each vertex of T, called bag, is a subset of V such that: (i) $V = \bigcup_{B \in \mathcal{B}} B$, (ii) for each edge $uv \in E$, there is a bag $B \in \mathcal{B}$ with $u, v \in B$, and (iii) for each vertex $v \in V$, the bags containing v induce a subtree of T. A tree-decomposition T of G has breadth ρ if, for each bag B of T, there is a vertex v in G with $B \subseteq N^\rho_G[v]$. The tree-breadth of a graph G is ρ, written as $\text{tb}(G) = \rho$, if ρ is the minimal breadth of all tree-decomposition for G. A tree-decomposition T of G has length λ if, for each bag B of T and any two vertices $u, v \in B$, $d_G(u, v) \leq \lambda$. The tree-length of a graph G is λ, written as $\text{tl}(G) = \lambda$, if λ is the minimal length of all tree-decomposition for G.

For a rooted tree T, let $A(T)$ denote the number of leaves of T. For the case when T contains only one node, let $A(T) := 0$. With α, we denote the inverse Ackermann function (see, e.g., [9]). It is well known that α grows extremely slowly. For $x = 10^{80}$ (estimated number of atoms in the universe), $\alpha(x) \leq 4$.

3 Using a Layering Partition

The concept of a layering partition was introduced in [15]. The idea is the following. First, partition the vertices of a given graph $G = (V, E)$ in distance layers $L_i = \{ v \mid d_G(s, v) = i \}$ for a given vertex s. Second, partition each layer L_i
into clusters in such a way that two vertices u and v are in the same cluster if and only if they are connected by a path only using vertices in the same or upper layers. That is, u and v are in the same cluster if and only if, for some i, \{u, v\} ⊆ L_i and there is a path P from u to v in G such that, for all $j < i$, $P \cap L_j = \emptyset$. Note that each cluster C is a set of vertices of G, i.e., $C \subseteq V$, and all clusters are pairwise disjoint. The created clusters form a rooted tree T with the cluster \{s\} as the root where each cluster is a node of T and two clusters C and C' are adjacent in T if and only if G contains an edge uv with $u \in C$ and $v \in C'$. Figure 1 gives an example for such a partition. A layering partition of a graph can be computed in linear time [5].

For the remainder of this section, assume that we are given a graph $G = (V, E)$ and a layering partition T of G for an arbitrary start vertex. We denote the largest diameter of all clusters of T as Δ, i.e., $\Delta := \max \{d_G(x, y) \mid x, y \text{ are in a cluster } C \text{ of } T\}$. For two vertices u and v of G contained in the clusters C_u and C_v of T, respectively, we define $d_T(u, v) := d_T(C_u, C_v)$.

Lemma 1. For all vertices u and v of G, $d_T(u, v) \leq d_G(u, v) \leq d_T(u, v) + \Delta$.

Proof. Clearly, by construction of a layering partition, $d_T(u, v) \leq d_G(u, v)$ for all vertices u and v of G.

Next, let C_u and C_v be the clusters containing u and v, respectively. Note that T is a rooted tree. Let C' be the lowest common ancestor of C_u and C_v. Therefore, $d_T(u, v) = d_T(u, C') + d_T(C', v)$. By construction of a layering partition, C' contains a vertex u' and vertex v' such that $d_G(u, u') = d_T(u, u')$ and $d_G(v, v') = d_T(v, v')$. Since the diameter of each cluster is at most Δ, $d_G(u, v) \leq d_T(u, u') + \Delta + d_T(v, v') = d_T(u, v) + \Delta$. \qed
Theorem 1 below shows that we can use the layering partition \mathcal{T} to compute an $(r+\Delta)$-dominating set for G in linear time which is not larger than a minimum r-dominating set for G. This is done by finding a minimum r-dominating set of \mathcal{T} where, for each cluster C of \mathcal{T}, $r(C)$ is defined as $\min_{v \in C} r(v)$.

Theorem 1. Let D be a minimum r-dominating set for a given graph G. An $(r+\Delta)$-dominating set D' for G with $|D'| \leq |D|$ can be computed in linear time.

Proof. First, create a layering partition \mathcal{T} of G and, for each cluster C of \mathcal{T}, set $r(C) := \min_{v \in C} r(v)$. Second, find a minimum r-dominating set S for \mathcal{T}, i.e., a set S of clusters such that, for each cluster C of \mathcal{T}, $d_T(C,S) \leq r(C)$. Third, create a set D' by picking an arbitrary vertex of G from each cluster in S. All three steps can be performed in linear time, including the computation of S (see [2]).

Next, we show that D' is an $(r+\Delta)$-dominating set for G. By construction of S, each cluster C of \mathcal{T} has distance at most $r(C)$ to S in \mathcal{T}. Thus, for each vertex u of G, S contains a cluster C_S with $d_T(u,C_S) \leq r(u)$. Additionally, by Lemma 1, $d_G(u,v) \leq r(u) + \Delta$ for any vertex $v \in C_S$. Therefore, for any vertex u, $d_G(u,D') \leq r(u) + \Delta$, i.e., D' is an $(r+\Delta)$-dominating set for G.

It remains to show that $|D'| \leq |D|$. Let D be the set of clusters of \mathcal{T} that contain a vertex of D. Because D is an r-dominating set for G, it follows from Lemma 1 that D is an r-dominating set for \mathcal{T}. Clearly, since clusters are pairwise disjoint, $|D| \leq |D|$. By minimality of S, $|S| \leq |D|$ and, by construction of D', $|D'| = |S|$. Therefore, $|D'| \leq |D|$. \qed

We now show how to construct a connected $(r+2\Delta)$-dominating set for G using \mathcal{T} in such a way that the set created is not larger than a minimum connected r-dominating set for G. For the remainder of this section, let D_r be a minimum connected r-dominating set of G and let, for each cluster C of \mathcal{T}, $r(C)$ be defined as above. Additionally, we say that a subtree T' of some tree T is an r-dominating subtree of T if the nodes (clusters in case of a layering partition) of T' form a connected r-dominating set for T.

The first step of our approach is to construct a minimum r-dominating subtree T_r of \mathcal{T}. Such a subtree T_r can be computed in linear time [12], Lemma 2 below shows that T_r gives a lower bound for the cardinality of D_r.

Lemma 2. If T_r contains more than one cluster, each connected r-dominating set of G intersects all clusters of T_r. Therefore, $|T_r| \leq |D_r|$.

Proof. Let D be an arbitrary connected r-dominating set of G. Assume that T_r has a cluster C such that $C \cap D = \emptyset$. Because D is connected, the subtree of \mathcal{T} induced by the clusters intersecting D is connected, too. Thus, if D intersects all leaves of T_r, then it intersects all clusters of T_r. Hence, we can assume, without loss of generality, that C is a leaf of T_r. Because T_r has at least two clusters and by minimality of T_r, \mathcal{T} contains a cluster C' such that $d_T(C',C) = d_T(C',T_r) = r(C')$. Note that each path in G from a vertex in C' to a vertex in D intersects C. Therefore, by Lemma 1 there is a vertex $u \in C'$ with $r(u) = d_T(u,C) < d_T(u,D) \leq d_G(u,D)$. That contradicts with D being an r-dominating set.
Because any \(r \)-dominating set of \(G \) intersects each cluster of \(T_r \) and because these clusters are pairwise disjoint, it follows that \(|T_r| \leq |D_r| \).

As we show later in Corollary 1, each connected vertex set \(S \subseteq V \) that intersects each cluster of \(T_r \) gives an \((r + \Delta)\)-dominating set for \(G \). It follows from Lemma 2 that, if such a set \(S \) has minimum cardinality, \(|S| \leq |D_r| \). However, finding a minimum cardinality connected set intersecting each cluster of a layering partition (or of a subtree of it) is as hard as finding a minimum Steiner tree.

The main idea of our approach is to construct a minimum \((r + \delta)\)-dominating subtree \(T_\delta \) of \(T \) for some integer \(\delta \). We then compute a small enough connected set \(S_\delta \) that intersects all cluster of \(T_\delta \). By trying different values of \(\delta \), we eventually construct a connected set \(S_\delta \) such that \(|S_\delta| \leq |T_r| \) and, thus, \(|S_\delta| \leq |D_r| \). Additionally, we show that \(S_\delta \) is a connected \((r + 2\Delta)\)-dominating set of \(G \).

For some non-negative integer \(\delta \), let \(T_\delta \) be a minimum \((r + \delta)\)-dominating subtree of \(T \). Clearly, \(T_0 = T_r \). The following two lemmas set an upper bound for the maximum distance of a vertex of \(G \) to a vertex in a cluster of \(T_\delta \) and for the size of \(T_\delta \) compared to the size of \(T_r \).

Lemma 3. For each vertex \(v \) of \(G \), \(d_T(v, T_\delta) \leq r(v) + \delta \).

Proof. Let \(C_v \) be the cluster of \(T \) containing \(v \) and let \(C \) be the cluster of \(T_\delta \) closest to \(C_v \) in \(T \). By construction of \(T_\delta \), \(d_T(v, C) = d_T(C_v, C) \leq r(C_v) + \delta \leq r(v) + \delta \). \(\square \)

Because the diameter of each cluster is at most \(\Delta \), Lemma 1 and Lemma 3 imply the following.

Corollary 1. If a vertex set intersects all clusters of \(T_\delta \), it is an \((r + (\delta + \Delta))\)-dominating set of \(G \).

Lemma 4. \(|T_\delta| \leq |T_r| - \delta \cdot A(T_\delta) \).

Proof. First, consider the case when \(T_\delta \) contains only one cluster, i.e., \(|T_\delta| = 1 \). Then, \(A(T_\delta) = 1 \) and, thus, the statement clearly holds. Next, let \(T_\delta \) contain more than one cluster, let \(C_u \) be an arbitrary leaf of \(T_\delta \), and let \(C_v \) be a cluster of \(T_r \) with maximum distance to \(C_u \) such that \(C_u \) is the only cluster on the shortest path from \(C_u \) to \(C_v \) in \(T_r \), i.e., \(C_v \) is not in \(T_\delta \). Due to the minimality of \(T_\delta \), \(d_{T_r}(C_u, C_v) = \delta \). Thus, the shortest path from \(C_u \) to \(C_v \) in \(T_r \) contains \(\delta \) clusters (including \(C_v \)) which are not in \(T_\delta \). Therefore, \(|T_\delta| \leq |T_r| - \delta \cdot A(T_\delta) \). \(\square \)

Now that we have constructed and analysed \(T_\delta \), we show how to construct \(S_\delta \). First, we construct a set of shortest paths such that each cluster of \(T_\delta \) is intersected by exactly one path. Second, we connect these paths with each other to from a connected set using an approach which is similar to Kruskal’s algorithm for minimum spanning trees.

Let \(L = \{C_1, C_2, \ldots, C_\lambda\} \) be the leaf clusters of \(T_\delta \) (excluding the root) with either \(\lambda = A(T_\delta) - 1 \) if the root of \(T_\delta \) is a leaf, or with \(\lambda = A(T_\delta) \) otherwise. We construct a set \(P = \{P_1, P_2, \ldots, P_\lambda\} \) of paths as follows. Initially, \(P \) is empty.
For each cluster \(C_i \in \mathcal{L} \), in turn, find the ancestor \(C'_i \) of \(C_i \) which is closest to the root of \(T_\delta \) and does not intersect any path in \(\mathcal{P} \) yet. If we assume that the indices of the clusters in \(\mathcal{L} \) represent the order in which they are processed, then \(C'_1 \) is the root of \(T_\delta \). Then, select an arbitrary vertex \(v \) in \(C_i \) and find a shortest path \(P_i \) in \(G \) from \(v \) to \(C'_i \). Add \(P_i \) to \(\mathcal{P} \) and continue with the next cluster in \(\mathcal{L} \).

Figure 2 gives an example.

![Figure 2](image)

Fig. 2. Example for the set \(\mathcal{P} \) for a subtree of a layering partition. Paths are shown in red. Each path \(P_i \), with \(1 \leq i \leq 5 \), starts in the leaf \(C_i \) and ends in the cluster \(C'_i \). For \(i = 2 \) and \(i = 5 \), \(P_i \) contains only one vertex.

Lemma 5. For each cluster \(C \) of \(T_\delta \), there is exactly one path \(P_i \in \mathcal{P} \) intersecting \(C \). Additionally, \(C \) and \(P_i \) share exactly one vertex, i.e., \(|C \cap P_i| = 1 \).

Proof. Observe that, by construction of a layering partition, each vertex in a cluster \(C \) is adjacent to some vertex in the parent cluster of \(C \). Therefore, a shortest path \(P \) in \(G \) from \(C \) to any of its ancestors \(C' \) only intersects clusters on the path from \(C \) to \(C' \) in \(T \) and each cluster shares only one vertex with \(P \).

It remains to show that each cluster intersects exactly one path. Without loss of generality, assume that the indices of clusters in \(\mathcal{L} \) and paths in \(\mathcal{P} \) represent the order in which they are processed and created, i.e., assume that the algorithms first creates \(P_1 \) which starts in \(C_1 \), then \(P_2 \) which starts in \(C_2 \), and so on. Additionally, let \(\mathcal{L}_i = \{C_1, C_2, \ldots, C_i\} \) and \(\mathcal{P}_i = \{P_1, P_2, \ldots, P_i\} \).

To proof that each cluster intersects exactly one path, we show by induction over \(i \) that, if a cluster \(C_i \) of \(T_\delta \) satisfies the statement, then all ancestors of \(C_i \) satisfy it too. Thus, if \(C_\lambda \) satisfies the statement, each cluster satisfies it.

First, consider \(i = 1 \). Clearly, since \(P_1 \) is the first path, \(P_1 \) connects the leaf \(C_1 \) with the root of \(T_\delta \) and no cluster intersects more than one path at this point. Therefore, the statement is true for \(C_1 \) and each of its ancestors.

Next, assume that \(i > 1 \) and that the statement is true for each cluster in \(\mathcal{L}_{i-1} \) and their respective ancestors. Then, the algorithm creates \(P_i \) which connects the leaf \(C_i \) with the cluster \(C'_i \). Assume that there is a cluster \(C \) on the path from \(C_i \) to \(C'_i \) in \(T \) such that \(C \) intersects a path \(P_j \) with \(j < i \). Clearly, \(C'_i \) is an ancestor of \(C \). Thus, by induction hypothesis, \(C'_i \) is also intersected by some
path \(P \neq P_i \). This contradicts with the way \(C'_i \) is selected by the algorithm. Therefore, each cluster on the path from \(C'_i \) to \(C'_j \) in \(\mathcal{T} \) only intersects \(P_i \) and \(P_j \), does not intersect any other clusters.

Because \(i > 1 \), \(C'_i \) has a parent cluster \(C'' \) in \(T_{\delta} \) that is intersected by a path \(P_j \) with \(j < i \). By induction hypothesis, each ancestor of \(C'' \) is intersected by a path in \(P_{i-1} \). Therefore, each ancestor of \(C_i \) is intersected by exactly one path in \(P_i \). \(\square \)

Next, we use the paths in \(P \) to create the set \(S_\delta \). As first step, let \(S_\delta := \bigcup_{P \in P} P_i \). Later, we add more vertices into \(S_\delta \) to ensure it is a connected set.

Now, create a partition \(\mathcal{V} = \{ V_1, V_2, \ldots, V_\lambda \} \) of \(V \) such that, for each \(i \), \(P_i \subseteq V_i \). \(V_i \) is connected, and \(d_G(v, P_i) = \min_{P \in P} d_G(v, P) \) for each vertex \(v \in V_i \). That is, \(V_i \) contains the vertices of \(G \) which are not more distant to \(P_i \) in \(G \) than to any other path in \(P \). Additionally, for each vertex \(v \in V \), set \(P(v) := P_i \) if and only if \(v \in V_i \) (i.e., \(P(v) \) is the path in \(P \) which is closest to \(v \)) and set \(d(v) := d_G(v, P(v)) \). Such a partition as well as \(P(v) \) and \(d(v) \) can be computed by performing a BFS on \(G \) starting at all paths \(P_i \in P \) simultaneously. Later, the BFS also allows us to easily determine the shortest path from \(v \) to \(P(v) \) for each vertex \(v \).

To manage the subsets of \(\mathcal{V} \), we use a Union-Find data structure such that, for two vertices \(u \) and \(v \), \(\text{Find}(u) = \text{Find}(v) \) if and only if \(u \) and \(v \) are in the same set of \(\mathcal{V} \). A Union-Find data structure additionally allows us to easily join two set \(\mathcal{V} \) into one by performing a single Union operation. Note that, whenever we join two sets of \(\mathcal{V} \) into one, \(P(v) \) and \(d(v) \) remain unchanged for each vertex \(v \).

Next, create an edge set \(E' = \{ uv \mid \text{Find}(u) \neq \text{Find}(v) \} \), i.e., the set of edges \(uv \) such that \(u \) and \(v \) are in different sets of \(\mathcal{V} \). Sort \(E' \) in such a way that an edge \(uv \) precedes an edge \(xy \) only if \(d(u) + d(v) \leq d(x) + d(y) \).

The last step to create \(S_\delta \) is similar to Kruskal’s minimum spanning tree algorithm. Iterate over the edges in \(E' \) in increasing order. If, for an edge \(uv \), \(\text{Find}(u) \neq \text{Find}(v) \), i.e., if \(u \) and \(v \) are in different sets of \(\mathcal{V} \), then join these sets into one by performing \(\text{Union}(u, v) \), add the vertices on the shortest path from \(u \) to \(P(u) \) to \(S_\delta \), and add the vertices on the shortest path from \(v \) to \(P(v) \) to \(S_\delta \). Repeat this, until \(\mathcal{V} \) contains only one set, i.e., until \(\mathcal{V} = \{V\} \).

Algorithm 1 below summarises the steps to create a set \(S_\delta \) for a given subtree of a layering partition subtree \(T_\delta \).

Lemma 6. For a given graph \(G \) and a given subtree \(T_\delta \) of some layering partition of \(G \), Algorithm 1 constructs, in \(\mathcal{O}(m \alpha(n)) \) time, a connected set \(S_\delta \) with \(|S_\delta| \leq |T_\delta| + \Delta \cdot \Lambda(T_\delta) \) which intersects each cluster of \(T_\delta \).

Proof (Correctness). First, we show that \(S_\delta \) is connected at the end of the algorithm. To do so, we show by induction that, at any time, \(S_\delta \cap V' \) is a connected set for each set \(V' \subseteq V \). Clearly, when \(V \) is created, for each set \(V_i \subseteq V \), \(S_\delta \cap V_i = P_i \). Now, assume that the algorithm joins the set \(V_u \) and \(V_v \) in \(V \) into one set based on the edge \(uv \) with \(u \in V_u \) and \(v \in V_v \). Let \(S_u = S_\delta \cap V_u \) and \(S_v = S_\delta \cap V_v \). Note that \(P(u) \subseteq S_u \) and \(P(v) \subseteq S_v \). The algorithm now adds all
vertices to S_δ which are on a path from $P(u)$ to $P(v)$. Therefore, $S_\delta \cap (V_u \cup V_v)$ is a connected set. Because $\mathcal{V} = \{V\}$ at the end of the algorithm, S_δ is connected eventually. Additionally, since $P_i \subseteq S_\delta$ for each $P_i \in \mathcal{P}$, it follows that S_δ intersects each cluster of T_δ.

Next, we show that the cardinality of S_δ is at most $|T_\delta| + \Delta \cdot A(T_\delta)$. When first created, the set S_δ contains all vertices of all paths in \mathcal{P}. Therefore, by Lemma 3, $|S_\delta| = \sum_{P_i \in \mathcal{P}} |P_i| = |T_\delta|$. Then, each time two sets of \mathcal{V} are joined into one set based on an edge uv, S_δ is extended by the vertices on the shortest paths from u to $P(u)$ and from v to $P(v)$. Therefore, the size of S_δ increases by $d(u) + d(v)$, i.e., $|S_\delta| := |S_\delta| + d(u) + d(v)$. Let X denote the set of all edges used to join two sets of \mathcal{V} into one at some point during the algorithm. Note that
\(|X| = |\mathcal{P}| - 1 \leq A(T_{S})\). Therefore, at the end of the algorithm,

\[
|S_{S}| = \sum_{P_{i} \in \mathcal{P}} |P_{i}| + \sum_{uv \in X} (d(u) + d(v)) \leq |T_{S}| + A(T_{S}) \cdot \max_{uv \in X} (d(u) + d(v)).
\]

Claim. For each edge \(uv \in X\), \(d(u) + d(v) \leq \Delta\).

Proof (Claim). To represent the relations between paths in \(\mathcal{P}\) and vertex sets in \(\mathcal{V}\), we define a function \(f : \mathcal{P} \rightarrow \mathcal{V}\) such that \(f(P_{i}) = V_{j}\) if and only if \(P_{i} \subseteq V_{j}\).

Directly after constructing \(\mathcal{V}\), \(f\) is a bijection with \(f(P_{i}) = V_{i}\). At the end of the algorithm, after all sets of \(\mathcal{V}\) are joined into one, \(f(P_{i}) = V\) for all \(P_{i} \in \mathcal{P}\).

Recall the construction of \(\mathcal{P}\) and assume that the indices of the paths in \(\mathcal{P}\) represent the order in which they are created. Assume that \(i > 1\). By construction, the path \(P_{i} \in \mathcal{P}\) connects the leaf \(C_{i}\) with the cluster \(C'_{i}\) in \(T_{S}\). Because \(i > 1\), \(C'_{i}\) has a parent cluster in \(T_{S}\) that is intersected by a path \(P_{j} \in \mathcal{P}\) with \(j < i\).

We define \(P_{j}\) as the parent of \(P_{i}\). By Lemma \(3\) this parent \(P_{j}\) is unique for each \(P_{i} \in \mathcal{P}\) with \(i > 1\). Based on this relation between paths in \(\mathcal{P}\), we can construct a rooted tree \(T\) with the node set \(\{x_{i} \mid P_{i} \in \mathcal{P}\}\) such that each node \(x_{i}\) represents the path \(P_{i}\) and \(x_{j}\) is the parent of \(x_{i}\) if and only if \(P_{j}\) is the parent of \(P_{i}\).

Because each node of \(T\) represents a path in \(\mathcal{P}\), \(f\) defines a colouring for the nodes of \(T\) such that \(x_{i}\) and \(x_{j}\) have different colours if and only if \(f(P_{i}) \neq f(P_{j})\). As long as \(|\mathcal{V}| > 1\), \(T\) contains two adjacent nodes with different colours. Let \(x_{i}\) and \(x_{j}\) be these nodes with \(j < i\) and let \(P_{i}\) and \(P_{j}\) be the corresponding paths in \(\mathcal{P}\). Note that \(x_{j}\) is the parent of \(x_{i}\) in \(T\) and, hence, \(P_{j}\) is the parent of \(P_{i}\). Therefore, \(P_{i}\) ends in a cluster \(C'_{j}\) which has a parent cluster \(C\) that intersects \(P_{j}\).

By properties of layering partitions, it follows that \(d_G(P_{i}, P_{j}) \leq \Delta + 1\).

Recall that, by construction, \(d(v) = \min_{P_{i} \in \mathcal{P}} d_G(v, P_{i})\) for each vertex \(v\). Thus, for each edge \(uv\) on a shortest path from \(P_{i}\) to \(P_{j}\) in \(G\) (with \(u\) being closer to \(P_{i}\) than to \(P_{j}\)), \(d(u) + d(v) \leq d_G(u, P_{i}) + d_G(v, P_{j}) \leq \Delta\). Therefore, because \(f(P_{i}) \neq f(P_{j})\), there is an edge \(uv\) on a shortest path from \(P_{i}\) to \(P_{j}\) such that \(f(P(u)) \neq f(P(v))\) and \(d(u) + d(v) \leq \Delta\). \(\diamondsuit\)

From the claim above, it follows that, as long as \(\mathcal{V}\) contains multiple sets, there is an edge \(uv \in E'\) such that \(d(u) + d(v) \leq \Delta\) and \(\text{Find}(u) \neq \text{Find}(v)\).

Therefore, \(\max_{uv \in X} (d(u) + d(v)) \leq \Delta\) and \(|S_{S}| \leq |T_{S}| + (A(T_{S}) - 1) \cdot \Delta\). \(\square\)

Proof (Complexity). First, the algorithm computes \(\mathcal{P}\) (line \(2\) to line \(8\)). If the parent of each vertex from the original BFS that was used to construct \(T\) is still known, \(\mathcal{P}\) can be constructed in \(O(n)\) total time. After picking a vertex \(v\) in \(C_{i}\), simply follow the parent pointers until a vertex in \(C'_{i}\) is reached. Computing \(\mathcal{V}\) as well as \(P(v)\) and \(d(v)\) for each vertex \(v\) of \(G\) (line \(10\)) can be done with single BFS and, thus, requires at most \(O(n + m)\) time.

Recall that, for a Union-Find data structure storing \(n\) elements, each operation requires at most \(O(\alpha(n))\) amortised time. Therefore, initialising such a data structure to store all vertices (line \(11\)) and computing \(E'\) (line \(12\)) requires at most \(O(m \alpha(n))\) time. Note that, for each vertex \(v\), \(d(v) \leq |V|\). Thus, sorting \(E'\) (line \(13\)) can be done in linear time using counting sort. When iterating over \(E'\)
(line 14 to line 19), for each edge $uv \in E'$, the Find-operation is called twice and the Union-operation is called at most once. Thus, the total runtime for all these operations is at most $O(m \alpha(n))$.

Let $P_u = \{u, \ldots, x, y, \ldots, p\}$ be the shortest path in G from a vertex u to $P(u)$. Assume that y has been added to S_δ in a previous iteration. Thus, $\{y, \ldots, p\} \subseteq S_\delta$ and, when adding P_u to S_δ, the algorithm only needs to add $\{u, \ldots, x\}$. Therefore, by using a simple binary search to determine if a vertex is contained in S_δ, constructing S_δ (line 1 to line 17) and line 18 requires at most $O(|T|)$ time.

In total, Algorithm 1 runs in $O(m \alpha(n))$ time. \hfill \Box

Because, for each integer $\delta \geq 0$, $|S_\delta| \leq |T_\delta| + \Delta \cdot A(T_\delta)$ (Lemma 6) and $|T_\delta| \leq |T_r| - \delta \cdot A(T_\delta)$ (Lemma 4), we have the following.

Corollary 2. For each $\delta \geq \Delta$, $|S_\delta| \leq |T_r|$ and, thus, $|S_\delta| \leq |D_r|$.

To the best of our knowledge, there is no algorithm known that computes Δ in less than $O(nm)$ time. Additionally, under reasonable assumptions, computing the diameter or radius of a general graph requires $\Omega(n^2)$ time [1]. We conjecture that the runtime for computing Δ for a given graph has a similar lower bound.

To avoid the runtime required for computing Δ, we use the following approach shown in Algorithm 2 below. First, compute a layering partition T and the subtree T_r. Second, for a certain value of δ, compute T_δ and perform Algorithm 1 on it. If the resulting set S_δ is larger than T_r (i.e., $|S_\delta| > |T_r|$), increase δ; otherwise, if $|S_\delta| \leq |T_r|$, decrease δ. Repeat the second step with the new value of δ.

One strategy to select values for δ is a classical binary search over the number of vertices of G. In this case, Algorithm 1 is called up-to $O(\log n)$ times. Empirical analysis [2], however, have shown that Δ is usually very small. Therefore, we use a so-called one-sided binary search.

Consider a sorted sequence $\langle x_1, x_2, \ldots, x_n \rangle$ in which we search for a value x_p. We say the value x_i is at position i. For a one-sided binary search, instead of starting in the middle at position $n/2$, we start at position 1. We then processes position 2, then position 4, then position 8, and so on until we reach position $j = 2^k$ and, next, position $k = 2^k + 1$ with $x_j < x_p \leq x_k$. Then, we perform a classical binary search on the sequence $\langle x_{j+1}, \ldots, x_k \rangle$. Note that, because $x_j < x_p \leq x_k$, $2^k < p \leq 2^{k+1}$ and, hence, $j < p \leq k < 2p$. Therefore, a one-sided binary search requires at most $O(\log p)$ iterations to find x_p.

Because of Corollary 2 using a one-sided binary search allows us to find a value $\delta \leq \Delta$ for which $|S_\delta| \leq |T_r|$ by calling Algorithm 1 at most $O(\log \Delta)$ times. Algorithm 2 below implements this approach.

Theorem 2. For a given graph G, Algorithm 2 computes a connected $(r + 2\Delta)$-dominating set D with $|D| \leq |D_r|$ in $O(m \alpha(n) \log \Delta)$ time.

Proof. Clearly, the set D is connected because $D = S_\delta$ for some δ and, by Lemma 4 the set S_δ is connected. By Corollary 2 for each $\delta \geq \Delta$, $|S_\delta| \leq |T_r|$.
Algorithm 2: Computes a connected \((r + 2\Delta)\)-dominating set for a given graph \(G\).

\begin{algorithm}
\textbf{Input}: A graph \(G = (V, E)\) and a function \(r: V \rightarrow \mathbb{N}\).
\textbf{Output}: A connected \((r + 2\Delta)\)-dominating set \(D\) for \(G\) with \(|D| \leq |D_r|\).
1. Create a layering partition \(T\) of \(G\).
2. For each cluster \(C\) of \(T\), set \(r(C) := \min_{v \in C} r(v)\).
3. Compute a minimum \(r\)-dominating subtree \(T_r\) for \(T\) (see [12]).
4. \textbf{One-Sided Binary Search} over \(\delta\), starting with \(\delta = 0\):
 5. Create a minimum \(\delta\)-dominating subtree \(T_\delta\) of \(T_r\) (i.e., \(T_\delta\) is a minimum \((r + \delta)\)-dominating subtree for \(T\)).
 6. Run Algorithm 1 on \(T_\delta\) and let the set \(S_\delta\) be the corresponding output.
 7. if \(|S_\delta| \leq |T_r|\) then
 8. Decrease \(\delta\).
 else
 9. Increase \(\delta\).
11. Output \(S_\delta\) with the smallest \(\delta\) for which \(|S_\delta| \leq |T_r|\).
\end{algorithm}

Thus, for each \(\delta \geq \Delta\), the binary search decreases \(\delta\) and, eventually, finds some \(\delta\) such that \(\delta \leq \Delta\) and \(|S_\delta| \leq |T_r|\). Therefore, the algorithm finds a set \(D\) with \(|D| \leq |D_r|\). Note that, because \(D = S_\delta\) for some \(\delta \leq \Delta\) and because \(S_\delta\) intersects each cluster of \(T_\delta\) (Lemma 6), it follows from Lemma 3 that, for each vertex \(v\) of \(G\), \(d_T(v, D) \leq r(v) + \Delta\) and, by Lemma 1, \(d_G(v, D) \leq r(v) + 2\Delta\). Thus, \(D\) is an \((r + 2\Delta)\)-dominating set for \(G\).

Creating a layering partition for a given graph and computing a minimum connected \(r\)-dominating set of a tree can be done in linear time [12]. The one-sided binary search over \(\delta\) has at most \(O(\log \Delta)\) iterations. Each iteration of the binary search requires at most linear time to compute \(T_\delta\), \(O(m \alpha(n))\) time to compute \(S_\delta\) (Lemma 6), and constant time to decide whether to increase or decrease \(\delta\). Therefore, Algorithm 2 runs in \(O(m \alpha(n) \log \Delta)\) total time. \(\square\)

4 Using a Tree-Decomposition

Theorem 4 and Theorem 2 respectively show how to compute an \((r + \Delta)\)-dominating set in linear time and a connected \((r + 2\Delta)\)-dominating set in \(O(m \alpha(n) \log \Delta)\) time. It is known that the maximum diameter \(\Delta\) of clusters of any layering partition of a graph approximates the tree-breadth and tree-length of this graph. Indeed, for a graph \(G\) with \(tl(G) = \lambda\), \(\Delta \leq 3\lambda\) [10].

Corollary 3. Let \(D\) be a minimum \(r\)-dominating set for a given graph \(G\) with \(tl(G) = \lambda\). An \((r + 3\lambda)\)-dominating set \(D'\) for \(G\) with \(|D'| \leq |D|\) can be computed in linear time.

Corollary 4. Let \(D\) be a minimum connected \(r\)-dominating set for a given graph \(G\) with \(tl(G) = \lambda\). A connected \((r+6\lambda)\)-dominating set \(D'\) for \(G\) with \(|D'| \leq |D|\) can be computed in \(O(m \alpha(n) \log \lambda)\) time.
In this section, we consider the case when we are given a tree-decomposition with breadth \(\rho \) and length \(\lambda \). We present algorithms to compute an \((r + \rho)\)-dominating set as well as a connected \((r + \min(3\lambda, 5\rho))\)-dominating set in \(\mathcal{O}(nm)\) time.

For the remainder of this section, assume that we are given a graph \(G = (V, E) \) and a tree-decomposition \(T \) of \(G \) with breadth \(\rho \) and length \(\lambda \). We assume that \(\rho \) and \(\lambda \) are known and that, for each bag \(B \) of \(T \), we know a vertex \(v(B) \) with \(B \subseteq N_G[v(B)] \). Let \(T \) be minimal, i.e., \(B \not\subseteq B' \) for any two bags \(B \) and \(B' \). Thus, the number of bags is not exceeding the number vertices of \(G \). Additionally, let each vertex of \(G \) store a list of bags containing it and let each bag of \(T \) store a list of vertices it contains. One can see this as a bipartite graph where one subset of vertices are the vertices of \(G \) and the other subset are the bags of \(T \). Therefore, the total input size is in \(\mathcal{O}(n + m + M)\) where \(M \leq n^2 \) is the sum of the cardinality of all bags of \(T \).

4.1 Preprocessing

Before approaching the (Connected) \(r \)-Domination problem, we compute a subtree \(T' \) of \(T \) such that, for each vertex \(v \) of \(G \), \(T' \) contains a bag \(B \) with \(d_G(v, B) \leq r(v) \). We call such a (not necessarily minimal) subtree an \(r \)-covering subtree of \(T \).

Let \(T_r \) be a minimum \(r \)-covering subtree of \(T \). We do not know how to compute \(T_r \) directly. However, if we are given a bag \(B \) of \(T \), we can compute the smallest \(r \)-covering subtree \(T_B \) which contains \(B \). Then, we can identify a bag \(B' \) in \(T_B \) for which we know it is a bag of \(T_r \). Thus, we can compute \(T_r \) by computing the smallest \(r \)-covering subtree which contains \(B' \).

The idea for computing \(T_B \) is to determine, for each vertex \(v \) of \(G \), the bag \(B_v \) of \(T \) for which \(d_G(v, B_v) \leq r(v) \) and which is closest to \(B \). Then, let \(T_B \) be the smallest tree that contains all these bags \(B_v \). Algorithm 3 below implements this approach.

Additionally to computing the tree \(T_B \), we make it a rooted tree with \(B \) as the root, give each vertex \(v \) a pointer \(\beta(v) \) to a bag of \(T_B \), and give each bag \(B' \) a counter \(\sigma(B') \). The pointer \(\beta(v) \) identifies the bag \(B_v \) which is closest to \(B \) in \(T_B \) and intersects the \(r \)-neighbourhood of \(v \). The counter \(\sigma(B') \) states the number of vertices \(v \) with \(\beta(v) = B' \). Even though setting \(\beta \) and \(\sigma \) as well as rooting the tree are not necessary for computing \(T_B \), we use it when computing an \((r + \rho)\)-dominating set later.

Lemma 7. For a given tree-decomposition \(T \) and a given bag \(B \) of \(T \), Algorithm 3 computes an \(r \)-covering subtree \(T_B \) in \(\mathcal{O}(nm)\) time such that \(T_B \) contains \(B \) and has a minimal number of bags.

Proof (Correctness). Note that, by construction of the set \(B \) (line 5 to line 7), \(B \) contains a bag \(B_u \) for each vertex \(u \) of \(G \) such that \(d_G(u, B_u) \leq r(u) \). Thus, each subtree of \(T \) which contains all bags of \(B \) is an \(r \)-covering subtree. To show the correctness of the algorithm, it remains to show that the smallest \(r \)-covering
Algorithm 3: Computes the smallest r-covering subtree T_B of a given tree-decomposition T that contains a given bag B of T.

1. Make T a rooted tree with the bag B as the root.
2. Create a set B of bags and initialise it with $B := \{B\}$.
3. For each bag B' of T, set $\sigma(B') := 0$ and determine $d_T(B', B)$.
4. For each vertex u, determine the bag $B(u)$ which contains u and has minimal distance to B.
5. foreach $u \in V$ do
 6. Determine a vertex v such that $d_G(u, v) \leq r(u)$ and $d_T(B(v), B)$ is minimal and let $B_u := B(v)$.
 7. Add B_u to B, set $\beta(u) := B_u$, and increase $\sigma(B_u)$ by 1.
8. Output the smallest subtree T_B of T that contains all bags in B.

subtree of T which contains B has to contain each bag from the set B. Then, the subtree T_B constructed in line 8 is the desired subtree.

By properties of tree-decompositions, the set of bags which intersect the r-neighbourhood of some vertex u induces a subtree T_u of T. That is, T_u contains exactly the bags B' with $d_G(u, B') \leq r(u)$. Note that T is a rooted tree with B as the root. Clearly, the bag $B_u \in B$ (determined in line 6) is the root of T_u since it is the bag closest to B. Hence, each bag B' with $d_G(u, B') \leq r(u)$ is a descendant of B_u. Therefore, if a subtree of T contains B and does not contain B_u, then it also cannot contain any descendant of B_u and, thus, contains no bag intersecting the r-neighbourhood of u.

Proof (Complexity). Recall that T has at most n bags and that the sum of the cardinality of all bags of T is $M \leq n^2$. Thus, line 3 and line 4 require at most $O(M)$ time. Using a BFS, it takes at most $O(m)$ time, for a given vertex u, to determine a vertex v such that $d_G(u, v) \leq r(u)$ and $d_T(B(v), B)$ is minimal (line 6). Therefore, the loop starting in line 5 and, thus, Algorithm 3 run in at most $O(nm)$ total time.

Lemma 8 and Lemma 9 below show that each leaf $B' \neq B$ of T_B is a bag of a minimum r-covering subtree T_r of T. Note that both lemmas only apply if T_B has at least two bags. If T_B contains only one bag, it is clearly a minimum r-covering subtree.

Lemma 8. For each leaf $B' \neq B$ of T_B, there is a vertex v in G such that B' is the only bag of T_B with $d_G(v, B') \leq r(v)$.

Proof. Assume that Lemma 8 is false. Then, there is a leaf B' such that, for each vertex v with $d_G(v, B') \leq r(v)$, T_B contains a bag $B'' \neq B'$ with $d_G(v, B'') \leq r(v)$. Thus, for each vertex v, the r-neighbourhood of v is intersected by a bag of the tree-decomposition $T_B - B'$. This contradicts with the minimality of T_B.

Lemma 9. For each leaf $B' \neq B$ of T_B, there is a minimum r-covering subtree T_r of T which contains B'.
Proof. Assume that T_r is a minimum r-covering subtree which does not contain B'. Because of Lemma 8, there is a vertex v of G such that B' is the only bag of T_B which intersects the r-neighbourhood of v. Therefore, T_r contains only bags which are descendants of B'. Partition the vertices of G into the sets V^\uparrow and V^\downarrow such that V^\downarrow contains the vertices of G which are contained in B' or in a descendant of B'. Because T_r is an r-covering subtree and because T_r only contains descendants of B', it follows from properties of tree-decompositions that, for each vertex $v \in V^\uparrow$, there is a path of length at most $r(v)$ from v to a bag of T_r passing through B' and, thus, $d_G(v, B') \leq r(v)$. Similarly, since T_B is an r-covering subtree, it follows that, for each vertex $v \in V^\downarrow$, $d_G(v, B') \leq r(v)$. Therefore, for each vertex v of G, $d_G(v, B') \leq r(v)$ and, thus, B' induces an r-covering subtree T_r of \mathcal{T} with $|T_r| = 1$.

Algorithm 4 below uses Lemma 9 to compute a minimum r-covering subtree T_r of \mathcal{T}.

\begin{algorithm}
\caption{Computes a minimum r-covering subtree T_r of a given tree-decomposition \mathcal{T}.}
1 Pick an arbitrary bag B of \mathcal{T}.
2 Determine the subtree T_B of \mathcal{T} using Algorithm 3.
3 if $|T_B| = 1$ then
4 Output $T_r := T_B$.
5 else
6 Select an arbitrary leaf $B' \neq B$ of T_B.
7 Determine the subtree $T_{B'}$ of \mathcal{T} using Algorithm 3.
8 Output $T_r := T_{B'}$.
\end{algorithm}

Lemma 10. Algorithm 4 computes a minimum r-covering subtree T_r of \mathcal{T} in $O(nm)$ time.

Proof. Algorithm 4 first picks an arbitrary bag B and then uses Algorithm 3 to compute the smallest r-covering subtree T_B of \mathcal{T} which contains B. By Lemma 9 for each leaf B' of T_B, there is a minimum r-covering subtree T_r which contains B'. Thus, performing Algorithm 3 again with B' as input creates such a subtree T_r.

Clearly, with exception of calling Algorithm 3, all steps of Algorithm 4 require only constant time. Because Algorithm 3 requires at most $O(nm)$ time (see Lemma 7) and is called at most two times, Algorithm 4 runs in at most $O(nm)$ total time.

Algorithm 4 computes T_r by, first, computing T_B for some bag B and, second, computing $T_{B'} = T_r$ for some leaf B' of T_B. Note that, because both trees are computed using Algorithm 3, Lemma 8 applies to T_B and $T_{B'}$. Therefore, we can slightly generalise Lemma 8 as follows.
Corollary 5. For each leaf B of T_r, there is a vertex v in G such that B is the only bag of T_r with $d_G(v, B) \leq r(v)$.

4.2 r-Domination

In this subsection, we use the minimum r-covering subtree T_r to determine an $(r + \rho)$-dominating set S in $O(nm)$ time using the following approach. First, compute T_r. Second, pick a leaf B of T_r. If there is a vertex v such that v is not dominated and B is the only bag intersecting the r-neighbourhood of v, then add the center of B into S, flag all vertices u with $d_G(u, B) \leq r(u)$ as dominated, and remove B from T_r. Repeat the second step until T_r contains no more bags and each vertex is flagged as dominated. Algorithm 5 below implements this approach. Note that, instead of removing bags from T_r, we use a reversed BFS-order of the bags to ensure the algorithm processes bags in the correct order.

Algorithm 5: Computes an $(r + \rho)$-dominating set S for a given graph G with a given tree-decomposition T with breadth ρ.

1. Compute a minimum r-covering subtree T_r of T using Algorithm 4.
2. Give each vertex v a binary flag indicating if v is dominated. Initially, no vertex is dominated.
3. Create an empty vertex set S_0.
4. Let $\langle B_1, B_2, \ldots, B_k \rangle$ be the reverse of a BFS-order of T_r starting at its root.
5. for $i = 1$ to k
6. if $\sigma(B_i) > 0$ then
7. Determine all vertices u such that u has not been flagged as dominated and that $d_G(u, B_i) \leq r(u)$. Add all these vertices into a new set X_i.
8. Let $S_i = S_{i-1} \cup \{c(B_i)\}$.
9. For each vertex $u \in X_i$, flag u as dominated, and decrease $\sigma(\beta(u))$ by 1.
10. else
11. Let $S_i = S_{i-1}$.
12. Output $S := S_k$.

Theorem 3. Let D be a minimum r-dominating set for a given graph G. Given a tree-decomposition with breadth ρ for G, Algorithm 5 computes an $(r + \rho)$-dominating set S with $|S| \leq |D|$ in $O(nm)$ time.

Proof (Correctness). First, we show that S is an $(r + \rho)$-dominating set for G. Note that a vertex v is flagged as dominated only if S_i contains a vertex $c(B_j)$ with $d_G(v, B_j) \leq r(v)$ (see line 7 to line 9). Thus, v is flagged as dominated only if $d_G(v, S_i) \leq d_G(v, c(B_j)) \leq r(v) + \rho$. Additionally, by construction of T_r (see Algorithm 3), for each vertex v, T_r contains a bag B with $\beta(v) = B$, $\sigma(B)$ states the number of vertices v with $\beta(v) = B$, and $\sigma(B)$ is decreased by 1 only if such
a vertex \(v \) is flagged as dominated (see line 9). Therefore, if \(G \) contains a vertex \(v \) with \(d_G(v, S_i) > r(v) + \rho \), then \(v \) is not flagged as dominated and \(T_i \) contains a bag \(B_i \) with \(\beta(v) = B_i \) and \(\sigma(B_i) > 0 \). Thus, when \(B_i \) is processed by the algorithm, \(c(B_i) \) will be added to \(S_i \) and, hence, \(d_G(v, S_i) \leq r(v) + \rho \).

Let \(V_i^S = \{ u \mid d_G(u, B_j) \leq r(u), c(B_j) \in S_i \} \) be the set of vertices which are flagged as dominated after the algorithm processed \(B_i \), i.e., each vertex \(v \) in \(V_i^S \) is \((r + \rho)\)-dominated by \(S_i \). Similarly, for some set \(D_i \subseteq D \), let \(V_i^D = \{ u \mid d_G(u, D_i) \leq r(u) \} \) be the set of vertices dominated by \(D_i \). To show that \(|S| \leq |D|\), we show by induction over \(i \) that, for each \(i \), (i) there is a set \(D_i \subseteq D \) such that \(V_i^D \subseteq V_i^S \), (ii) \(|S_i| = |D_i|\), and (iii) if, for some vertex \(v \), \(\beta(v) = B_j \) with \(j \leq i \), then \(v \in V_i^S \).

For the base case, let \(S_0 = D_0 = \emptyset \). Then, \(V_0^S = V_0^D = \emptyset \) and all three statements are satisfied. For the inductive step, first, consider the case when \(\sigma(B_i) = 0 \). Because \(\sigma(B_i) = 0 \), each vertex \(v \) in \(V_i^S \) is in the \(r \)-neighbourhood of \(u \). Thus, \(d_G(v, u) \leq r(v) \), i.e., \(d_u \) is the vertex in \(V_i^S \) with minimal distance to \(u \). Note that, because \(v \notin V_i^S \) and \(V_i^D \subseteq V_i^S \), \(d_u \notin D_i \). Therefore, by setting \(D_i = D_{i-1} \cup \{d_u\} \), \(|S_i| = |S_{i-1}| + 1 = |D_{i-1}| + 1 = |D_i| \) and statement (ii) is satisfied. Recall that \(\beta(u) \) points to the bag closest to the root of \(T_i \) which intersects the \(r \)-neighbourhood of \(u \). Thus, because \(\beta(u) = B_i \), each bag \(B \neq B_i \) with \(d_G(u, B) \leq r(u) \) is a descendant of \(B_i \). Therefore, \(d_u \) is in \(B_i \) or a descendant of \(B_i \). Let \(v \) be an arbitrary vertex of \(G \) such that \(v \notin V_i^S \) and \(d_G(v, d_u) \leq r(v) \), i.e., \(v \) is dominated by \(d_u \) but not by \(S_i \). Due to statement (iii) of the induction hypothesis, \(\beta(v) = B_j \) with \(j \geq i \), i.e., \(B_j \) cannot be a descendant of \(B_i \). Partition the vertices of \(G \) into the sets \(V_i^+ \) and \(V_i^- \) such that \(V_i^+ \) contains the vertices which are contained in \(B_i \) or in a descendant of \(B_i \). If \(v \in V_i^+ \), then there is a path of length at most \(r(v) \) from \(v \) to \(B_j \) passing through \(B_i \). If \(v \in V_i^- \), then, because \(d_u \notin V_i^- \), there is a path of length at most \(r(v) \) from \(v \) to \(d_u \) passing through \(B_i \). Therefore, \(d_G(v, B_i) \leq r(v) \). That is, each vertex \(r \)-dominated by \(d_u \), is \((r + \rho)\)-dominated by some \(c(B_j) \in S_i \). Therefore, because \(S_i = S_{i-1} \cup \{c(B_i)\} \) and \(D_i = D_{i-1} \cup \{d_u\} \), \(v \in V_i^S \cap V_i^D \) and, thus, statement (i) is satisfied.

Proof (Complexity). Computing \(T_r \) (line 1) takes at most \(O(nm) \) time (see Lemma 10). Because \(T_r \) has at most \(n \) bags, computing a BFS-order of \(T_r \) (line 4) takes at most \(O(n) \) time. For some bag \(B_i \), determining all vertices \(u \) with \(d_G(u, B_i) \leq r(u) \), flagging \(u \) as dominated, and decreasing \(\sigma(\beta(u)) \) (line 7 to line 9) can be done in \(O(m) \) time by performing a BFS starting at all vertices of \(B_i \) simultaneously. Therefore, because \(T_r \) has at most \(n \) bags, Algorithm 5 requires at most \(O(nm) \) total time.

18
4.3 Connected r-Domination

In this subsection, we show how to compute a connected \((r + 5\rho)\)-dominating set and a connected \((r + 3\lambda)\)-dominating set for \(G\). For both results, we use almost the same algorithm. To identify and emphasise the differences, we use the label \((\bigtriangledown)\) for parts which are only relevant to determine a connected \((r + 5\rho)\)-dominating set and use the label \((\bigtriangleup)\) for parts which are only relevant to determine a connected \((r + 3\lambda)\)-dominating set.

For the remainder of this subsection, let \(D_r\) be a minimum connected \(r\)-dominating set of \(G\). For \((\bigtriangleup)\) \(\phi = 3\rho\) or \((\bigtriangledown)\) \(\phi = 2\lambda\), let \(T_\phi\) be a minimum \((r + \phi)\)-covering subtree of \(T\) as computed by Algorithm 4.\(^2\)

The idea of our algorithm is to, first, compute \(T_\phi\) and, second, compute a small enough connected set \(C_\phi\) such that \(C_\phi\) intersects each bag of \(T_\phi\). Lemma 11\(^3\) below shows that such a set \(C_\phi\) is an \((r + (\phi + \lambda))\)-dominating set.

Lemma 11. Let \(C_\phi\) be a connected set that contains at least one vertex of each leaf of \(T_\phi\). Then, \(C_\phi\) is an \((r + (\phi + \lambda))\)-dominating set.

Proof. Clearly, since \(C_\phi\) is connected and contains a vertex of each leaf of \(T_\phi\), \(C_\phi\) contains a vertex of every bag of \(T_\phi\). By construction of \(T_\phi\), for each vertex \(v\) of \(G\), \(T_\phi\) contains a bag \(B\) such that \(d_G(v, B) \leq r(v) + \phi\). Therefore, \(d_G(v, C_\phi) \leq r(v) + \phi + \lambda\), i.e., \(C_\phi\) is an \((r + (\phi + \lambda))\)-dominating set. \(\square\)

To compute a connected set \(C_\phi\) which intersects all leaves of \(T_\phi\), we first consider the case when \(T_\phi\) contains only one bag \(B\). In this case, we can construct \(C_\phi\) by simply picking an arbitrary vertex \(v \in B\) and setting \(C_\phi = \{v\}\). Similarly, if \(T_\phi\) contains exactly two bags \(B\) and \(B'\), pick a vertex \(v \in B \cap B'\) and set \(C_\phi = \{v\}\). In both cases, due to Lemma 11\(^3\), \(C_\phi\) is clearly an \((r + (\phi + \lambda))\)-dominating set with \(|C_\phi| \leq |D_r|\).

Now, consider the case when \(T_\phi\) contains at least three bags. Additionally, assume that \(T_\phi\) is a rooted tree such that its root \(R\) is a leaf.

Notation. Based on its degree in \(T_\phi\), we refer to each bag \(B\) of \(T_\phi\) either as leaf, as path bag if \(B\) has degree 2, or as branching bag if \(B\) has a degree larger than 2. Additionally, we call a maximal connected set of path bags a path segment of \(T_\phi\).

Let \(L\) denote the set of leaves, \(P\) denote the set of path segments, and \(B\) denote the set of branching bags of \(T_\phi\). Clearly, for any given tree \(T\), the sets \(L\), \(P\), and \(B\) are pairwise disjoint and can be computed in linear time.

Let \(B\) and \(B'\) be two adjacent bags of \(T_\phi\) such that \(B\) is the parent of \(B'\). We call \(S = B \cap B'\) the up-separator of \(B'\), denoted as \(S^+(B')\), and a down-separator of \(B\), denoted as \(S^-(B)\), i.e., \(S = S^+(B') = S^-(B)\). Note that a branching bag has multiple down-separators and that (with exception of \(R\)) each bag has exactly one up-separator. For each branching bag \(B\), let \(S^+(B)\) be the set of down-separators of \(B\). Accordingly, for a path segment \(P \in P\), \(S^+(P)\) is the up-separator of the bag in \(P\) closest to the root and \(S^-(P)\) is the down separator of the bag in \(P\) furthest from the root. Let \(\nu\) be a function that assigns a vertex of \(G\) to a given separator. Initially, \(\nu(S)\) is undefined for each separator \(S\).
Algorithm. Now, we show how to compute \(C_\phi \). We, first, split \(T_\phi \) into the sets \(\mathbb{L} \), \(\mathbb{P} \), and \(\mathbb{B} \). Second, for each \(P \in \mathbb{P} \), we create a small connected set \(C_P \), and, third, for each \(B \in \mathbb{B} \), we create a small connected set \(C_B \). If this is done properly, the union \(C_\phi \) of all these sets forms a connect set which intersects each bag of \(T_\phi \).

Note that, due to properties of tree-decompositions, it can be the case that there are two bags \(B \) and \(B' \) which have a common vertex \(v \), even if \(B \) and \(B' \) are non-adjacent in \(T_\phi \). In such a case, either \(v \in S^i(B) \cap S^i(B') \) if \(B \) is an ancestor of \(B' \), or \(v \in S^i(B) \cap S^i(B') \) if neither is ancestor of the other. To avoid problems caused by this phenomena and to avoid counting vertices multiple times, we consider any vertex in an up-separator as part of the bag above. That is, whenever we process some segment or bag \(X \in \mathbb{L} \cup \mathbb{P} \cup \mathbb{B} \), even though we add a vertex \(v \in S^i(X) \) to \(C_\phi \), \(v \) is not contained in \(C_X \).

Processing Path Segments. First, after splitting \(T_\phi \), we create a set \(C_P \) for each path segment \(P \in \mathbb{P} \) as follows. We determine \(S^i(P) \) and \(S^i(P) \) and then find a shortest path \(Q_P \) from \(S^i(P) \) to \(S^i(P) \). Note that \(Q_P \) contains exactly one vertex from each separator. Let \(x \in S^i(P) \) and \(y \in S^i(P) \) be these vertices. Then, we set \(\nu(S^i(P)) = x \) and \(\nu(S^i(P)) = y \). Last, we add the vertices of \(Q_P \) into \(C_\phi \) and define \(C_P \) as \(Q_P \setminus S^i(P) \). Let \(C_\mathbb{P} \) be the union of all sets \(C_P \), i.e., \(C_\mathbb{P} = \bigcup_{P \in \mathbb{P}} C_P \).

Lemma 12. \(|C_\phi| \leq |D_r| - \phi \cdot A(T_\phi)|.\)

Proof. Recall that \(T_\phi \) is a minimum \((r + \phi)\)-covering subtree of \(T \). Thus, by Corollary [5] for each leaf \(B \in \mathbb{L} \) of \(T_\phi \), there is a vertex \(v \) in \(G \) such that \(B \) is the only bag of \(T_\phi \) with \(d_G(v, B) \leq r(v) + \phi \). Because \(D_r \) is a connected \(r \)-dominating set, \(D_r \) intersects the \(r \)-neighbourhood of each of these vertices \(v \). Thus, by properties of tree-decompositions, \(D_r \) intersects each bag of \(T_\phi \). Additionally, for each such \(v \), \(D_r \) contains a path \(D_v \) with \(|D_v| \geq \phi \) such that \(D_v \) intersects the \(r \)-neighbourhood of \(v \), intersects the corresponding leaf \(B \) of \(T_\phi \), and does not intersect \(S^i(B) \) \((S^i(B)) \) if \(B = R \). Let \(D_\mathbb{L} \) be the union of all such sets \(D_v \). Therefore, \(|D_\mathbb{L}| \geq \phi \cdot A(T_\phi)|.

Because \(D_r \) intersects each bag of \(T_\phi \), \(D_r \) also intersects the up- and down-separators of each path segment. For a path segment \(P \in \mathbb{P} \), let \(x \) and \(y \) be two vertices of \(D_r \) such that \(x \in S^i(P) \), \(y \in S^i(P) \), and for which the distance in \(G[D_r] \) is minimal. Let \(D_P \) be the set of vertices on the shortest path in \(G[D_r] \) from \(x \) to \(y \) without \(x \), i.e., \(x \notin D_P \). Note that, by construction, for each \(P \in \mathbb{P} \), \(D_P \) contains exactly one vertex in \(S^i(P) \) and no vertex in \(S^i(P) \). Thus, for all \(P, P' \in \mathbb{P} \), \(D_P \cap D_P = \emptyset \). Let \(D_\mathbb{P} \) be the union of all such sets \(D_P \), i.e., \(D_\mathbb{P} = \bigcup_{P \in \mathbb{P}} D_P \). By construction, \(|D_\mathbb{P}| = \sum_{P \in \mathbb{P}} |D_P| \) and \(D_L \cap D_P = \emptyset \). Therefore, \(|D_r| \geq |D_\mathbb{P}| + |D_L| \) and, hence,

\[
\sum_{P \in \mathbb{P}} |D_P| \leq |D_r| - |D_L| \leq |D_r| - \phi \cdot A(T_\phi).
\]

Recall that, for each \(P \in \mathbb{P} \), the sets \(C_P \) and \(D_P \) are constructed based on a path from \(S^i(P) \) to \(S^i(P) \). Since \(C_P \) is based on a shortest path in \(G \), it follows
that \(|C_P| = d_G(S^i(P), S^i(P)) \leq |D_P| \). Therefore,

\[
|C_P| \leq \sum_{P \in P} |C_P| \leq \sum_{P \in P} |D_P| \leq |D_r| - \phi \cdot A(T_\phi).
\]

\[\square\]

Processing Branching Bags. After processing path segments, we process the branching bags of \(T_\phi \). Similar to path segments, we have to ensure that all separators are connected. Branching bags, however, have multiple down-separators. To connect all separators of some bag \(B \), we pick a vertex \(s \) in each separator \(S \in S^\downarrow(B) \cup \{S^\uparrow(B)\} \). If \(\nu(S) \) is defined, we set \(s = \nu(S) \). Otherwise, we pick an arbitrary \(s \in S \) and set \(\nu(S) = s \). Let \(S^\downarrow(B) = \{S_1, S_2, \ldots\} \), \(s_i = \nu(S_i) \), and \(t = \nu(S^\uparrow(B)) \). We then connect these vertices as follows. (See Figure 3 for an illustration.)

\(\Diamond\) Connect each vertex \(s_i \) via a shortest path \(Q_i \) (of length at most \(\rho \)) with the center \(c(B) \) of \(B \). Additionally, connect \(c(B) \) via a shortest path \(Q_t \) (of length at most \(\rho \)) with \(t \). Add all vertices from the paths \(Q_i \) and from the path \(Q_t \) into \(C_\phi \) and let \(C_B \) be the union of these paths without \(t \).

\(\heartsuit\) Connect each vertex \(s_i \) via a shortest path \(Q_i \) (of length at most \(\lambda \)) with \(t \). Add all vertices from the paths \(Q_i \) into \(C_\phi \) and let \(C_B \) be the union of these paths without \(t \).

Let \(C_B \) be the union of all created sets \(C_B \), i.e., \(C_B = \bigcup_{B \in \mathcal{B}} C_B \).

Fig. 3. Construction of the set \(C_B \) for a branching bag \(B \).

Before analysing the cardinality of \(C_B \) in Lemma 14 below, we need an auxiliary lemma.

Lemma 13. For a tree \(T \) which is rooted in one of its leaves, let \(b \) denote the number of branching nodes, \(c \) denote the total number of children of branching nodes, and \(l \) denote the number of leaves. Then, \(c + b \leq 3l - 1 \) and \(c \leq 2l - 1 \).

Proof. Assume that we construct \(T \) by starting with only the root and then step by step adding leaves to it. Let \(T_i \) be the subtree of \(T \) with \(i \) nodes during
this construction. We define \(b_i, c_i, \text{ and } l_i\) accordingly. Now, assume by induction over \(i\) that Lemma 13 is true for \(T_i\). Let \(v\) be the leaf we add to construct \(T_{i+1}\) and let \(u\) be its neighbour.

First, consider the case when \(u\) is a leaf of \(T_i\). Then, \(u\) becomes a path node of \(T_{i+1}\). Therefore, \(b_{i+1} = b_i, c_{i+1} = c_i, \text{ and } l_{i+1} = l_i\). Next, assume that \(u\) is path node of \(T_i\). Then, \(u\) is a branch node of \(T_{i+1}\). Thus, \(b_{i+1} = b_i + 1, \ c_{i+1} = c_i + 2, \text{ and } l_{i+1} = l_i + 1\). Therefore, \(c_{i+1} + b_{i+1} = c_i + b_i + 3 \leq 3(l_i + 1) - 1 = 3l_{i+1} - 1\) and \(c_{i+1} = c_i + 2 \leq 2(l_i + 1) - 1 = 2l_{i+1} - 1\). It remains to check the case when \(u\) is a branch node of \(T_i\). Then, \(b_{i+1} = b_i, c_{i+1} = c_i + 1, \text{ and } l_{i+1} = l_i + 1\). Thus, \(c_{i+1} + b_{i+1} = c_i + b_i + 1 \leq 3l_i - 1 + 1 \leq 3l_{i+1} - 1\) and \(c_{i+1} = c_i + 1 \leq 2l_i - 1 + 1 \leq 2l_{i+1} - 1\). Therefore, in all three cases, Lemma 13 is true for \(T_{i+1}\). \(\square\)

Lemma 14. \(|C_B| \leq \phi \cdot A(T_\phi)|.\)

Proof. For some branching bag \(B \in \mathcal{B}\), the set \(C_B\) contains \((\bigtriangledown)\) a path of length at most \(\rho\) for each \(S_i \in S^i(B)\) and a path of length at most \(\lambda\) to \(S^i(B)\), or \((\bigdiamond)\) a path of length at most \(\lambda\) for each \(S_i \in S^i(B)\). Thus, \((\bigtriangledown)\) \(|C_B| \leq \rho \cdot |S^i(B)| + \rho \cdot |\mathcal{B}| \leq 3\rho \cdot A(T_\phi) - 1\)

\[(\bigdiamond) \quad \leq \lambda \cdot \sum_{B \in \mathcal{B}} |S^i(B)| \leq 2\lambda \cdot A(T_\phi) - 1\]

\(|C_\phi| \leq |D_r|\).

Properties of \(C_\phi\). We now analyse the created set \(C_\phi\) and show that \(C_\phi\) is a connected \((r + \phi)\)-dominating set for \(G\).

Lemma 15. \(C_\phi\) contains a vertex in each bag of \(T_\phi\).

Proof. Clearly, by construction, \(C_\phi\) contains a vertex in each path bag and in each branching bag. Now, consider a leaf \(L\) of \(T_\phi\). \(L\) is adjacent to a path segment or branching bag \(X \in \mathcal{P} \cap \mathcal{B}\). Whenever such an \(X\) is processed, the algorithm ensures that all separators of \(X\) contain a vertex of \(C_\phi\). Since one of these separators is also the separator of \(L\), it follows that each leaf \(L\) and, thus, each bag of \(T_\phi\) contains a vertex of \(C_\phi\). \(\square\)

Lemma 16. \(|C_\phi| \leq |D_r|\).

Proof. Note that, for each vertex \(u\) we add to \(C_\phi\), we also add \(u\) to a unique set \(C_X\) for some \(X \in \mathcal{P} \cap \mathcal{B}\). The exception is the vertex \(v\) in \(S^i(R)\) which is added to no such set \(C_X\). It follows from our construction of the sets \(C_X\) that there

22
is only one such vertex \(v \) and that \(v = \nu(S^i(R)) \). Thus, \(|C_\phi| = |C_P| + |C_B| + 1\). Now, it follows from Lemma 12 and Lemma 14 that

\[|C_\phi| \leq |D_r| - \phi \cdot A(T_\phi) + \phi \cdot A(T_\phi) - 1 + 1 \leq |D_r|. \]

\[\square \]

Lemma 17. \(C_\phi \) is connected.

Proof. First, note that, by maximality, two path segments of \(T_\phi \) cannot share a common separator. Also, note that, when processing a branching bag \(B \), the algorithm first checks if, for any separator \(S \) of \(B \), \(\nu(S) \) is already defined; if this is the case, it will not be overwitten. Therefore, for each separator \(S \) in \(T_\phi \), \(\nu(S) \) is defined and never overwritten.

Next, consider a path segment or branching bag \(X \in P \cup B \) and let \(S \) and \(S' \) be two separators of \(X \). Whenever such an \(X \) is processed, our approach ensures that \(C_\phi \) connects \(\nu(S) \) with \(\nu(S') \) and, additionally, each vertex \(v \in C_\phi \) is connected via \(C_\phi \) with \(\nu(S) \) for some separator \(S \) of \(X \).

Thus, for any two separators \(S \) and \(S' \) in \(T_\phi \), \(C_\phi \) connects \(\nu(S) \) with \(\nu(S') \) and, additionally, each vertex \(v \in C_\phi \) is connected via \(C_\phi \) with \(\nu(S) \) for some separator \(S \) of \(X \). Therefore, \(C_\phi \) is connected. \[\square \]

From Lemma 15, Lemma 16, Lemma 17, and from applying Lemma 11 it follows:

Corollary 6. \(C_\phi \) is a connected \((r + (\phi + \lambda))\)-dominating set for \(G \) with \(|C_\phi| \leq |D_r|\).

Implementation. Algorithm 6 below implements our approach described above. This also includes the case when \(T_\phi \) contains at most two bags.

Theorem 4. Algorithm 6 computes a connected \((r + (\phi + \lambda))\)-dominating set \(C_\phi \) with \(|C_\phi| \leq |D_r|\) in \(O(nm) \) time.

Proof. Since Algorithm 6 constructs a set \(C_\phi \) as described above, its correctness follows from Corollary 6. It remains to show that the algorithm runs in \(O(nm) \) time.

Computing \(T_\phi \) (line 2) can be done in \(O(nm) \) time (see Lemma 10). Picking a vertex \(u \) in the case when \(T_\phi \) contains at most two bags (line 3 to line 6) can be easily done in \(O(n) \) time. Recall that \(T_\phi \) has at most \(n \) bags. Thus, splitting \(T_\phi \) in the sets \(L, P, \) and \(B \) can be done in \(O(n) \) time.

Determining all up-separators in \(T_\phi \) can be done in \(O(M) \) time as follows. Process all bags of \(T_\phi \) in an order such that a bag is processed before its descendants, e.g., use a preorder or BFS-order. Whenever a bag \(B \) is processed, determine a set \(S \subseteq B \) of flagged vertices, store \(S \) as up-separator of \(B \), and, afterwards, flag all vertices in \(B \). Clearly, \(S \) is empty for the root. Because a bag \(B \) is processed before its descendants, all flagged vertices in \(B \) also belong to its parent. Thus, by properties of tree-decompositions, these vertices are exactly the vertices in \(S'(B) \). Clearly, processing a single bag \(B \) takes at most \(O(|B|) \)
Algorithm 6: Computes (♡) a connected \((r + 5\rho)\)-dominating set or (♢) a connected \((r + 3\lambda)\)-dominating set for a given graph \(G\) with a given tree-decomposition \(T\) with breadth \(\rho\) and length \(\lambda\).

1. (♡) Set \(\phi := 3\rho\).
2. (♢) Set \(\phi := 2\lambda\).
3. Compute a minimum \((r + \phi)\)-covering subtree \(T_{\phi}\) of \(T\) using Algorithm 4.
 4. if \(T_{\phi}\) contains only one bag \(B\) then
 5. Pick an arbitrary vertex \(u \in B\), output \(C_{\phi} := \{u\}\), and stop.
 6. if \(T_{\phi}\) contains exactly two bags \(B\) and \(B'\) then
 7. Pick an arbitrary vertex \(u \in B \cap B'\), output \(C_{\phi} := \{u\}\), and stop.
 8. Pick a leaf of \(T_{\phi}\) and make it the root of \(T_{\phi}\).
9. Create an empty set \(C_{\phi}\).
10. foreach \(P \in \mathcal{P}\) do
11. Find a shortest path \(Q_P\) from \(S^i(P)\) to \(S^i(P)\) and add its vertices into \(C_{\phi}\).
12. Let \(x \in S^i(P)\) be the start vertex and \(y \in S^i(P)\) be the end vertex of \(Q_P\).
13. Set \(\nu(S^i(P)) := x\) and \(\nu(S^i(P)) := y\).
14. foreach \(B \in \mathcal{B}\) do
15. if \(\nu(S^i(B))\) is defined, let \(u := \nu(S^i(B))\). Otherwise, let \(u\) be an arbitrary vertex in \(S^i(B)\) and set \(\nu(S^i(B)) := u\).
16. (♡) Let \(v := c(B)\) be the center of \(B\).
17. (♢) Let \(v := u\).
18. Find a shortest path from \(u\) to \(v\) and add its vertices into \(C_{\phi}\).
19. foreach \(S_i \in S^i(B)\) do
20. if \(\nu(S_i)\) is defined, let \(w_i := \nu(S_i)\). Otherwise, let \(w_i\) be an arbitrary vertex in \(S_i\) and set \(\nu(S_i) := w_i\).
21. Find a shortest path from \(w_i\) to \(v\) and add the vertices of this path into \(C_{\phi}\).
22. Output \(C_{\phi}\).

Thus, processing all bags takes at most \(O(M)\) time. Note that it is not necessary to determine the down-separators of a (branching) bag. They can easily be accessed via the children of a bag.

Processing a single path segment (line 11 and line 12) can be easily done in \(O(m)\) time. Processing a branching bag \(B\) (line 13 to line 19) can be implemented to run in \(O(m)\) time by, first, determining \(\nu(S)\) for each separator \(S\) of \(B\) and, second, running a BFS starting at \(v\) (defined in line 15) to connect \(v\) with each vertex \(\nu(S)\). Because \(T_{\phi}\) has at most \(n\) bags, it takes at most \(O(nm)\) time to process all path segments and branching bags of \(T_{\phi}\).

Therefore, Algorithm 6 runs in \(O(nm)\) total time. \(\square\)
5 Implications for the p-Center Problem

The (Connected) p-Center problem asks, given a graph G and some integer p, for a (connected) vertex set S with $|S| \leq p$ such that S has minimum eccentricity, i.e., there is no (connected) set S' with $\text{ecc}_G(S') < \text{ecc}_G(S)$. It is known (see, e.g., [3]) that the p-Center problem and r-Domination problem are closely related. Indeed, one can solve each of these problems by solving the other problem a logarithmic number of times. Lemma 18 below generalises this observation. Informally, it states that we are able to find a $+\phi$-approximation for the p-Center problem if we can find a good $(r + \phi)$-dominating set.

Lemma 18. For a given graph G, let D_r be an optimal (connected) r-dominating set and C_p be an optimal (connected) p-center. If, for some non-negative integer ϕ, there is an algorithm to compute a (connected) $(r + \phi)$-dominating set D with $|D| \leq |D_r|$ in $O(T(G))$ time, then there is an algorithm to compute a (connected) p-center C with $\text{ecc}_G(C) \leq \text{ecc}_G(C_p) + \phi$ in $O(T(G) \log n)$ time.

Proof. Let A be an algorithm which computes a (connected) $(r + \phi)$ dominating set $D = A(G, r)$ for G with $|D| \leq |D_r|$ in $O(T(G))$ time. Then we can compute a (connected) p-center for G as follows. Make a binary search over the integers $i \in [0, n]$. In each iteration, set $r_i(u) = i$ for each vertex u of G and compute the set $D_i = A(G, r_i)$. Then, increase i if $|D_i| > p$ and decrease i otherwise. Note that, by construction, $\text{ecc}_G(D_i) \leq i + \phi$. Let D be the resulting set, i.e., out of all computed sets D_i, D is the set with minimal i for which $|D_i| \leq p$. It is easy to see that finding D requires at most $O(T(G) \log n)$ time.

Clearly, C_p is a (connected) r-dominating set for G when setting $r(u) = \text{ecc}_G(C_p)$ for each vertex u of G. Thus, for each $i \geq \text{ecc}_G(C_p)$, $|D_i| \leq |C_p| \leq p$ and, hence, the binary search decreases i for next iteration. Therefore, there is an $i \leq \text{ecc}_G(C_p)$ such that $D = D_i$. Hence, $|D| \leq |C_p|$ and $\text{ecc}_G(D) \leq \text{ecc}_G(C_p) + \phi$. \hfill \square

From Lemma 18, the results in Table 1 and Table 2 follow immediately.

Approach	Approx.	Time
Layering Partition	+Δ	$O(m \log n)$
Tree-Decomposition	+ρ	$O(nm \log n)$

In what follows, we show that, when using a layering partition, we can achieve the results from Table 1 and Table 2 without the logarithmic overhead.

Theorem 5. For a given graph G, a $+\Delta$-approximation for the p-Center problem can be computed in linear time.
Table 2. Implications of our results for the Connected p-Center problem.

Approach	Approx.	Time
Layering Partition	$+2\Delta$	$O(m\alpha(n) \log \Delta \log n)$
Tree-Decomposition	$\min(5p, 3\lambda)$	$O(nm \log n)$

Proof. First, create a layering partition T of G. Second, find an optimal p-center S for T. Third, create a set S by picking an arbitrary vertex of G from each cluster in T. All three steps can be performed in linear time, including the computation of S (see [13]).

Let C be an optimal p-center for G. Note that, by Lemma [1] C also induces a p-center for T. Therefore, because S induces an optimal p-center for T, Lemma [1] implies that, for each vertex u of G,

$$d_G(u, C) \leq d_G(u, S) \leq d_T(u, S) + \Delta \leq d_T(u, C) + \Delta \leq d_G(u, C) + \Delta.$$

Theorem 6. For a given graph G, a $+2\Delta$-approximation for the connected p-Center problem can be computed in $O(m\alpha(n) \log \min(\Delta, p))$ time.

Proof. Recall Algorithm [2] for computing a connected $(r+2\Delta)$-dominating set. We create Algorithm [2] by slightly modifying Algorithm [2] as follows. In line [3] instead of computing an r-dominating subtree T_r of T, compute an optimal connected p-center T_p of T (see [20]). Accordingly, in line [3] compute a δ-dominating subtree of T_p, check in line [7] if $|S_\delta| \leq |T_p|$ (i.e., if $|S_\delta| \leq p$), and output in line [11] the set S_δ with the smallest δ for which $|S_\delta| \leq p$.

Let S be the set computed by Algorithm [2]. As shown in the proof of Theorem [2] it follows from Lemma [6] and Corollary [2] that S is connected, $|S| \leq p$, and $S = S_\delta$ for some $\delta \leq \Delta$.

Now, let C be an optimal connected p-center for G. Clearly, by definition of C and by Lemma [1], $\text{ecc}_G(C) \leq \text{ecc}_G(S_\delta) \leq \text{ecc}_T(T_\delta) + \Delta$. Because T_δ is a δ-dominating subtree of T_p, $\text{ecc}_T(T_\delta) \leq \text{ecc}_T(T_p) + \delta$. Let T_C be the subtree of T induced by C, i.e., the subtree of T induced by the clusters which contain vertices of C. Then, because T_p is an optimal connected p-center for T and, clearly, $|T_C| \leq p$, $\text{ecc}_T(T_p) \leq \text{ecc}_T(T_C)$. Therefore, since $\delta \leq \Delta$, $\text{ecc}_G(C) \leq \text{ecc}_G(S_\delta) \leq \text{ecc}_T(T_\delta) + 2\Delta$ and, by Lemma [1], $\text{ecc}_G(C) \leq \text{ecc}_G(S_\delta) \leq \text{ecc}_G(C) + 2\Delta$.

As shown in the proof of Theorem [2] the one-sided binary search of Algorithm [2] has at most $O(|\log \Delta|)$ iterations. Because $|T_p| \leq p$, T_p contains a cluster with eccentricity at most $\lfloor p/2 \rfloor$ in T_p. Therefore, for any $\delta \geq \lfloor p/2 \rfloor$, $|T_\delta| = |S_\delta| = 1$ and, thus, the algorithm decreases δ. Hence, the one-sided binary search of Algorithm [2] has at most $O(|\log p|)$ iterations. Therefore, the algorithm runs in at most $O(m\alpha(n) \log \min(\Delta, p))$ total time. \qed

References

1. Abboud, A., Williams, V.V., Wang, J., Approximation and fixed parameter sub-quadratic algorithms for radius and diameter in sparse graphs, *Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 377–391, 2016.

2. Abu-Ata, M., Dragan, F.F., Metric tree-like structures in real-life networks: an empirical study. *Networks* 67 (1), 49–68, 2016.

3. Brandstädt, A., Chepoi, V., and Dragan, F.F., The Algorithmic Use of Hypertree Structure and Maximum Neighbourhood Orderings. *Discrete Applied Mathematics* 82 (1–3), 43–77, 1998.

4. Brandstädt, A., Chepoi, V., and Dragan, F.F., Distance approximating trees for chordal and dually chordal graphs. *Journal of Algorithms* 30, 166–184, 1999.

5. Chepoi, V., Dragan, F.F., A note on distance approximating trees in graphs. *European Journal of Combinatorics* 21, 761–766, 2000.

6. Chepoi, V.D., Dragan, F.F., Estellon, B., Habib, M., Vaxes, Y., Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs, *Proceedings of the 24th Annual ACM Symposium on Computational Geometry (SoCG 2008)*, 59–68, 2008.

7. Chepoi, V., Estellon, B., Packing and Covering δ-Hyperbolic Spaces by Balls, *Lecture Notes in Computer Science* 4627, 59–73, 2007.

8. Chlebík, M., Chlebíková, J., Approximation hardness of dominating set problems in bounded degree graphs. *Information and Computation* 206, 1264–1275, 2008.

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., *Introduction to Algorithms (3. ed.)*, MIT Press, 2009.

10. Dourisboure, Y., Dragan, F.F., Gavoille, C., and Yan, C., Spanners for bounded tree-length graphs, *Theoretical Computer Science* 383 (1), 34–44, 2007.

11. Downey, R.G., Fellows, M.R., *Parameterized Complexity*, Springer, 1999.

12. Dragan, F.F., HT-graphs: centers, connected r-domination and Steiner trees, *Computer Science Journal of Moldova* 1 (2), 64–83, 1993.

13. Edwards, K., Kennedy, K., Saniee, I., Fast Approximation Algorithms for p-centers in Large δ-hyperbolic Graphs, *WAW 2016, Lecture Notes in Computer Science* 10088, 60–73, 2016.

14. Escoffier, B., Paschos, V.Th., Completeness in approximation classes beyond APX. *Theoretical Computer Science* 359 (1–3), 369–377, 2006.

15. Frederickson, G.N.: Parametric Search and Locating Supply Centers in Trees. *WADS 1991, Lecture Notes in Computer Science* 519, 299–319, 1991.

16. Gonzalez, T., Clustering to minimize the maximum intercluster distance, *Theoretical Computer Science*, 38, 293–306, 1985.

17. Guha, S., Khuller, S., Approximation algorithms for connected dominating sets, *Algorithmica* 20 (4), 374–387, 1998.

18. Niedermeier, R., *Invitation to fixed-parameter algorithms*, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, 2006.

19. Raz, R., Safra, S., A sub-constant error-probability low-degree test, and sub-constant error-probability PCP characterization of NP, *Proc. 29th Annual ACM Symposium on Theory of Computing*, 475–484, 1997.

20. Yen, W.C.-K., Chen, C.-T.: The p-center problem with connectivity constraint. *Applied Mathematical Sciences* 1 (27), 1311–1324, 2007.