Synthesis, and molecular modeling of bis(3-(piperazine-1-yl)propyl) tungstate (BPPT) nanoparticles, and its first catalytic application for one-pot synthesis of 4H-chromene derivatives

Khalil Eskandaria, Yaghoub Pourshojaeia,b,*, Fatemeh Haghania, Mahnaz Shabania, Ali Asadipoura

a Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

b Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

ARTICLE INFO

Keywords:
Organic chemistry
Bis(3-(piperazine-1-yl)propyl)tungstate
Molecular modeling
Recyclable catalyst
4H-chromens
Green protocol

ABSTRACT

A novel, nano-sized, bis(3-(piperazine-1-yl)propyl)tungstate (BPPT) is introduced as an efficient and reusable organometallic catalyst which is considered as a heterogeneous Bronsted-Lowry base and applied successfully for one-pot synthesis of methyl 2-amino-4-aryl substituted 4H-chromene derivatives with good to excellent yields. BPPT has been prepared via a two-step route from natrium tungstate salt. At first, the oxygens of Na\textsubscript{2}WO\textsubscript{4} react with 1-bromo-3-chloropropane via nucleophilic substitution to produce bis(3-chloro propyl)tungstate. Then nucleophilic substitution of piperazine with chlorines produced bis(3-(piperazine-1-yl)propyl) tungstate. Bis(3-(piperazine-1-yl)propyl) tungstate, which was called BPPT, characterized by fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), transmission electron microscopy (TEM) and scanning electron microscope (SEM). The catalyst is heterogeneous, green and recyclable. It is a thermally stable and its handling is easy. Its catalytic activity is very high and leads to the production of 4H-pyran derivatives with good to excellent yields in short reaction times. Furthermore, molecular modeling studies and ADMETox prediction revealed that not only it can inhibit acetylcholinesterase enzyme and act as an anti-Alzheimer agent but also has no variation from Lipinski’s rule of five and can be a good candidate as anti-Alzheimer agents. These above-mentioned facts can be countered as advantages of the current protocol.

1. Introduction

During last decades, many efforts have been made to the synthesis and development of supported heterogeneous catalysts that are often organometallic (Eskandari et al., 2014; Karami et al., 2013d; Zhai et al., 2018). Although sometimes it has been observed that homogenous catalysts have been used for the synthesis of a wide range of organic and biologically active compounds (Antonangelo et al., 2017; Fogeron et al., 2018), but they are minimally recyclable, difficulty to handle and storage, hazardous for environment, and also most of them are expensive, therefore, are not desirable for industrial applications (Fukutake et al., 2018). As a result, one of the important approaches for overcoming to the above-countered problems is the preparation and application of heterogeneus supported catalysts (Eskandari et al., 2018a; Ye et al., 2019). Heterogeneous supported catalysts generally have numerous benefits such as good catalytic performance, recyclability, environment safety, high stability, being cheap, and simple handling (Li et al., 2018b). So synthesis and characterization of heterogeneous supported catalysts and their applications in the synthesis of organic and heterocyclic compounds have recently been attracted the interest of chemists and industrialism (Alzeer and MacKenzie, 2018). Aliphatic amines such as piperidine or piperaziner due to the presence of delocalized electrons on nitrogen are known as organic base, which are used as conventional active catalyst for the synthesis of organic compounds (Habibi et al., 2012; Karami et al., 2012), but they have some disadvantages such as what mentioned above for homogeneous catalysts along with they are mostly soluble in organic solvents and their separation from homogeneous reaction mixtures require neutralization by acidic conditions, which lead to worthless ammonium salt (Rahmani-Nezhad et al., 2015; Saidi et al., 2009). Harmful effects of acidic work-ups can be removed by immobilization of...
aliphatic amines for example piperazine onto solid supports to obtain heterogeneous catalysts (Gupta et al., 2015). To profit from this technology, to date, various clean materials such as graphene (oxide) sheets (Eskandari and Karami, 2016; Khalili and Dehghani, 2016), silica or mesoporous silica (Pourshojaei et al., 2018b; Uruş et al., 2018), Fe3O4 nanoparticles (Maleki et al., 2014), and dendrimer (Pullur Anil Kumar, 2010), have been used as support for preparation of new heterogeneous base catalysts to overcome the problems related to the homogeneous base catalysts.

Tungsten is an important element in chemistry and compounds containing tungsten have wide range of applications not only in chemical laboratories but also in various fields of industries such as catalysts (Kocięcka et al., 2018), optical fibers (Liu et al., 2018b), and sensors (Waghmare et al., 2018), and electrochromic applications (Li et al., 2018a). Meanwhile, tungstate supported catalysts for the synthesis of organic compounds have also been recently applied successfully (Farahi et al., 2017; Karami et al., 2013a, 2013b).

Chromene and its derivatives are very important O-containing heterocyclic compounds in medicinal chemistry. They have shown so many biological activities including reducing the risk of cardiovascular diseases (Aune et al., 2018), anti-allergic (Chen et al., 2018), anti-microbial (Chen et al., 2018), analgesic (Chenera et al., 2018), anti-parkinsonian (Banoth et al., 2018), anti-allergic (Chen et al., 2018), anti-microbial (Chen et al., 2018), anti-inflammatory (Davidson et al., 2018), and anti-diabetic (Davidson et al., 2018) and anti-inflammatory (Davidson et al., 2018). Also, some of them have recognized as non-nucleoside reverse transcriptase inhibitor (Chenera et al., 1993), and act in the role of an enzyme that can catalyze chemical reactions (Engleder and Pichler, 2018). Taking a brief look at Fig. 1 which shows some significant biological active compounds containing chromene framework, can more disclosed the highly importance of this family of heterocyclic compounds (Aune et al., 2018; Chenera et al., 1993; Davidson et al., 2018; Engleder and Pichler, 2018; Lee et al., 2018).

In regard to the importance of chromene and its derivatives (Maleki, 2016a, 2016b; Maleki and Sheikh, 2015a, 2015b) and also the significant role of supported heterogeneous catalysts in chemical syntheses and industries (Alinezhad et al., 2019; Brückner et al., 2009; Chafran et al., 2019; Maleki et al., 2015), herein we wish to report a nano-sized novel heterogeneous supported Brønsted base as an efficient catalyst which was successfully applied to synthesis of new 4H-chromene derivatives. We called this newly prepared nanocatalyst bis(3-(piperazine-1-yl)propyl) tungstate (BPPT) that was prepared in an alternative two-step route from sodium tungstate (1), 1-bromo-3-chloro-propane (2), and piperazine (4) (Scheme 1).

In continuous of our research on the synthesis of biological active compounds (Eskandari et al., 2018b; Mehrabi et al., 2017), heterogeneous catalysts (Eskandari and Karami, 2018; Pourshojaei et al., 2018a), and a wide range of organic and heterocyclic compounds (Asadipour et al., 2018, 2017), in this work we wish to report preparation and characterization of BPPT, for the first time, and its performance as a nano-sized heterogeneous catalyst in a one-pot three-component combinatorial reaction via a green procedure. It found that BPPT as a heterogeneous Brønsted base can successfully catalyze Knoevenagel condensation, Michael addition and intramolecular cyclization reaction between methyl cyanoacetate (5), a wide range of aryl aldehydes 6, and dimedone (7) to afford 4-aryl substituted 4H-chromene derivatives 8 in good to excellent yields (Scheme 2).

2. Results and discussion

With reference to green chemistry aspects, it is very important that chemical reactions have been run under green conditions. Hence the use of eco-friendly catalysts and solvents are inevitable. Also, industrially and economic point of view it is very important that applied catalysts in chemical reactions to be highly efficient and recyclable. Accordingly, so many attempts have been taken place so far by chemists to the preparation of green, highly efficient and recyclable catalysts and their applications in organic syntheses (Eskandari et al., 2014; Karami et al., 2013d; Zhai et al., 2018). Based on above, herein we wish to report a novel, highly efficient and eco-friendly nano-catalyst and its first application in the synthesis of 4H-chromene derivatives as highly efficient, and recyclable basic catalyst. By a brief looking at Scheme 1, it is leveled

![Scheme 1](image1.png)

Fig. 1. Selected significant biologically active compounds containing a chromene framework.
that newly prepared catalyst which was called BPPT was synthesized in an alternative two-step route from sodium tungstate 1, 1-bromo-3-chloropropane 2 and piperazine 4. As can be seen from Scheme 1, in the first step, bis(3-chloropropyl)tungstate 3 is formed from the reaction between sodium tungstate 1 and 1-bromo-3-chloropropane 2, then in the second step, 1-bromo-3-chloropropane 2 is treated with piperazine 4 to afford bis(3-(piperazine-1-yl)propyl) tungstate nanoparticles (BPPT NPs). It is noteworthy to consider that the reaction procedure is clean and easy. BPPT NPs was characterized by FT-IR spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic
absorption.

2.1. Characterization and application of catalyst

Fig. 2 shows mixing FT-IR spectra of the anhydrous sodium tungstate 1, 1-bromo-3-chloropropane 2, piperazine 4, and BPPT NPs. By a brief looking at the spectrum of BPPT NPs and its comparison with the spectra of starting materials, it is obviously revealed that both 1-bromo-3-chloropropane and piperazine have joined to tungstate core. For instance, the spectrum of BPPT NPs shows significant peaks of tungstate group (appeared at 3462 and 836 cm\(^{-1}\)), important peaks of the propyl group appeared at 2927 cm\(^{-1}\) (CH stretch) and 1448 cm\(^{-1}\) (CH bend), and distinguished peaks of piperazine appeared at 3173 cm\(^{-1}\) and 2706 cm\(^{-1}\). Also, the investigation of the catalyst by atomic absorption spectroscopy showed the existence of tungsten in catalyst structure that is in agreement with appeared peaks of tungstate group in FT-IR spectroscopy.

The scanning electron microscope (SEM) image of as-prepared BPPT NPs shows the bis(3-(piperazine-1-yl)propyl) tungstate nanoparticles have a diameter of around 30 nm (Fig. 3). Furthermore, the transmission electron microscopy (TEM) image of BPPT NPs was taken to more investigate of BPPT NPs morphology (Fig. 4). The TEM image of BPPT NPs clearly disclosed the BPPT NPs have a diameter size of about 30 nm.

Also, to support the stability of BPPT NPs at high temperatures, thermogravimetric (TGA) analysis was carried out (Fig. 5). From the obtained TGA curve, it was revealed that weight percent remains constant till 100 °C. Therefore, it is concluded that the BPPT NPs is stable in temperatures below 100 °C.

After characterization of the catalyst, with respect to the importance of using novel green and recyclable heterogeneous catalyst in chemical synthesis, herein, we decided to use and investigate the effectiveness of BPPT NPs in the synthesis of 4H-chromene derivatives. In continues of our research studies on the synthesis and application of nanocatalysts in organic syntheses (Eskandari and Karami, 2018; Karami et al., 2013c; Pourshojaei et al., 2018b), we found that BPPT NPs can act as a potent, green and recyclable catalyst in an alternative two-step reactions that is Knoevenagel condensation and Michael reaction between methyl cyanoacetate (5), aryl aldehydes 6 and dimedone (7) to afford chromene derivatives 8 in good to excellent yields (Scheme 2).

In this protocol, it was found that BPPT NPs has significant advantages including being eco-friendly, recyclability, high thermal stability, and also high efficiency.

Before start reaction runs, it was necessary to find optimum conditions for reaction progress. For this purpose, compound 8d was selected as a model. Loading model reaction in various solvents including dichloromethane, chloroform, toluene, water, DMF, acetonitrile, THF, methanol, and ethanol disclosed that reaction progress was faster in ethanol than others and caused to obtain the product with the highest yield. Next, the effect of temperature on reaction progress was assessed, and it was found that 70 °C is the best temperature to achieve the product with the highest yield. In the next step, other same catalysts were applied to the model reaction and compared with BPPT NPs. From obtained results which are summarized in Table 1, it is understood that BPPT NPs is the most effective catalyst in the synthesis of the target compound.

In the next step, the effect of catalyst amount on the model reaction was examined that obtained results are summarized in Table 2. By a closer looking at Table 2, it is found that the use of the catalyst in this reaction is inevitable and the best amount of required catalyst which leads to obtaining target product with the highest yield is 5 mol%.

After achieving optimal conditions, in order to examine the generality of the protocol, the reaction was loaded with methyl cyanoacetate (5), a wide range of aryl aldehydes 6 and dimedone (7) in the presence of 5 mol % BPPT NPs as basic catalyst and the results were summarized in Table 3 (Guo et al., 2013; Li et al., 2006; Patra and Mahapatra, 2010; Rong et al., 2006; Wang et al., 2003).

For confirmation of obtained products 8, their chemical structures were characterized by FT-IR, \(^1\)H NMR, \(^{13}\)C NMR spectroscopies, and also elemental analyses (Figs. S1–S30, supplementary materials). For example, the \(^1\)H NMR spectrum of 8d (Fig. S10) indicates an identifiable singlet at 7.56 ppm related to NH\(_2\) group, multiple peaks around 7.46 are correlated with four protons of the aromatic ring, two doublet appeared in 7.07 and 6.86 ppm are corresponded for four protons of the other 1,4-substituted phenyl ring. Three singlets appeared at 5.03, 4.49, and 3.52 ppm are related to four diastereotopic protons of cyclohexenone fragment. Also, the six protons related to two methyls groups (2 × CH\(_3\)) are appeared at 1.05 and 0.90 ppm as two singlets. \(^{13}\)C NMR spectrum of 8d (Fig. S11) also shows 21 distinct resonances in agreement with the proposed structure. Furthermore, FT-IR spectrum of 8d (Fig. S12) clearly disclosed the bonds correlated to NH\(_2\) and carbonyl groups at 3431,
2.2. Recyclability study of BPPT NPs

Despite being effective and requiring a small amount of catalyst, the capability of catalyst to reuse is the other advantage of BPPT NPs. In this content, we wish to examine the recyclability of catalyst on model reaction. For this purpose model reaction was loaded using 5 mol% of fresh, once, twice, three-, four- and five-time used BPPT NPs. For reusing catalyst in another cycle, it should be separated from the reaction mixture by filtering and washing with THF, drying at 80 °C for 1 h, and then can reuse in further cycles. The results showed that BPPT NPs is able to reuse in further cycles (up to five times) besides its first use without a remarkable miss of activity (Fig. 7).

In an additional investigation, the FT-IR spectra of the catalyst before and after use as an appropriate comprehensive study for recycled catalyst were compared (Fig. 8). The FT-IR spectrum of the catalyst after use (Fig. 8b) showed no significant changes than the spectrum of the catalyst before use (Fig. 8a). This reveals that the catalyst is durable, and remains constant during the reaction. Therefore, it can reuse in further runs without significant loss in its activity and is capable to catalyze the reaction after each run successfully.

2.3. Investigation of reaction mechanism

A proposed mechanism for the BPPT NPs catalyzed the synthesis of 4H-chromene derivatives has shown in Scheme 3. As can be seen from the mechanism, 4H-chromene 8 is obtained through a multi-step route including Knoevenagel condensation, Michael addition reaction and intramolecular cyclization from reaction between methyl cyanoacetate 5, aryl aldehyde 6 and dimedone 7 in the presence of catalytic amount of BPPT NPs. By a closer look at Scheme 3, it is revealed that in all steps BPPT NPs act as activator and accelerate reaction progress via its Brønsted base virtue. In first step, BPPT NPs activate methyl cyanoacetate 5 for nucleophilic attack to aldehyde 6 and leads to formation of int. 9. Next, dehydration of int. 9 in the presence of BPPT NPs gives Knoevenagel intermediate 10. On the other hand, BPPT NPs activate dimedone 7 to nucleophilic attack to Knoevenagel intermediate 10 (Michael addition reaction). By this reaction, int. 11 is formed. Subsequent intramolecular cyclization of int. 11 in the presence of BPPT NPs gives int. 12. In the final step, product 8 is obtained by imine-enamine tautomerization of int. 12.

2.4. Molecular docking studies

The containing of alkylamine side chain in BPPT chemical structure and considering the structures of drugs that inhibit acetylcholinesterase enzyme such as donepezil, and rivastigmine (used for the treatment of Alzheimer, Parkinson, and Autism), and also other potent acetylcholinesterase inhibitors that have contained piperidine or piperazine side chains in their structures (Liu et al., 2018a; Mohamed et al., 2018), we decided to study molecular docking for BPPT, and compare the results

Table 1
Effect of different catalysts on a model reaction. a

Entry	Catalyst	Time	Yield (%)
1	FeCl3.6H2O	90	68
2	Y(NO3).6H2O	80	75
3	CuSO4.5H2O	80	65
4	p-TSA	80	70
5	Na2HPO4	60	81
6	K2CO3	60	82
7	Na2WO4.2H2O	60	84
8	Piperidine	60	80
9	BPPT NPs	40	95

Entry	Catalyst (mol%)	Time (min)	Yield (%)
1	—	90	Trace
2	1	60	50
3	2	60	88
4	3	40	90
5	4	40	93
6	5	40	95
7	6	40	95
8	7	40	93

Entry	Catalyst (mol%)	Time (min)	Yield (%)
1	—	90	Trace
2	1	60	50
3	2	60	88
4	3	40	90
5	4	40	93
6	5	40	95
7	6	40	95
8	7	40	93

3315, 1688 and 1666 cm⁻¹ respectively compatible with proposed structures.

Table 2
Optimization of catalyst amount for the model reaction. a

Entry	Catalyst (mol%)	Time (min)	Yield (%)
1	—	90	Trace
2	1	60	50
3	2	60	88
4	3	40	90
5	4	40	93
6	5	40	95
7	6	40	95
8	7	40	93

a Reaction conditions: catalyst (5 mol%), methyl cyanoacetate (1.25 mmol), 4-((4-chlorobenzyl)oxy)benzaldehyde (1 mmol), dimedone (1 mmol), EtOH (8 mL), 70 °C.

b Refers to isolated yields.

Fig. 5. The TGA analysis of BPPT NPs.

Fig. 6. The DSC analysis of BPPT NPs.

Fig. 7. The catalytic activity of BPPT NPs in the model reaction.

Fig. 8. The FT-IR spectra of the catalyst before and after use.
The investigation of molecular interaction of BPPT with AChE revealed that there are five significant interactions that are two π-cation interactions between NH$_2$ groups with TRP86 and TRP286, two H-bond interactions between oxygen with TYR124, and GLU202 with NH$_2$ group, and finally a salt-bridge interaction between NH$_2$ group with GLU202 (Fig. 10).

In addition, docking results indicated Glide XP G-score (a parameter related to better fillers and imply less steric hindrance and signifies that the ligand can fill the poses of the protein very well) of BPPT (-10.323) is close to donepezil (-16.144) (Table 4).

Therefore, docking studies represented that BPPT has a great affinity with donepezil structure to bind and block the sites of the AChE enzyme.

2.5. ADMETox prediction

In another supplement survey, to investigate the biological properties of BPPT and the prediction that can it be a good candidate as AChE inhibitor?, In silico ADMETox prediction study was performed, compared with donepezil, and the results were summarized in Table 4. ADMETox prediction revealed that BPPT has no variation from Lipinski's rule of five as of donepezil. It can permeate into the blood-brain barrier (BBB) as good as donepezil. Both BPPT and donepezil are capable of binding well to human serum albumin, but their quantitative human oral absorptions are not identical. As predicted results showed, quantitative human oral absorptions of BPPT is not as good as donepezil. As well as, predicted IC$_{50}$ for the blockage of HERG K+ channels in heart for both BPPT and donepezil was not in acceptable range, therefore they could be the HERG K+ channels blockers. On the other hand, HERG K+ channels blockings of donepezil has previously been proved and considered as one of the known side-effects of the Donepezil. It can induce “torsades de point”, which is characterized as marked QT prolongation in electrocardiogram, and may result in cardiac syncpe (Kitt et al., 2015). This side-effect is known to be related to the inhibition of HERG protein in cardiomyocytes (Kitt et al., 2015). This fact can further confirm the accuracy of our prediction tool. Overall, ADMETox prediction depicted that BPPT can be a good candidate for AChE inhibitors and can be a lead compound for further discoveries of anti-Alzheimer drugs.

3. Experimental

All used chemicals were supplied from Merck or Sigma-Aldrich as mercantile chemical companies. An Electrothermal-9100 apparatus was applied to record melting points and all of them are uncorrected. Elemental analyses of compounds were carried out by a Heraeus CHN-O-Rapid analyzer. An FT-IR Magna 550 spectrophotometer (Nicolet) using KBr as a carrier was applied to record FT-IR spectra. All FT-NMRs were taken by an FT-NMR Bruker 300 MHz spectrometer. The progress of the reactions was monitored by thin-layer chromatography (Silica TLC F254 plates, eluent: ethyl acetate/n-hexane v/v = 1:1). Scanning electron microscopy (SEM) evaluations of the nano-catalyst were performed on a JEOL JEM 3010 instrument operating at an accelerating voltage of 300 kV. Transmission electron microscopy (TEM) investigations of the nano-catalyst were performed on a JEOL JEM 3100 instrument operating at an accelerating voltage of 300 kV. Thermogravimetric (TG) measurements were carried out using a thermal gravimetric analyzer (BAHR, STA 503) from room temperature to 1100 °C in air at a heating rate of 10 °C min$^{-1}$. Acetylcholinesterase (AChE) structure was extracted from the Protein Data Bank (PDB) database which was co-crystallized with Donepezil as an antagonist. The protein structure was prepared in pH 7.4 ± 1 using the Maestro interface of Schrodinger Suite. Het groups and waters with less than 3 hydrogen bonds to non-waters were removed and hydrogen bonds were reassigned using PROPKA. A final minimization of the structure to an RMSD of less than 0.3 Å was performed to remove atom clashes and reduce steric hindrance. The binding site of Donepezil with AChE was used as a pattern to create grid-files for computational molecular docking.

The structure of BPPT was drawn in Chemdraw software and optimized using Ligprep with Optimized Potential for Liquid Simulations 3 (OPLS3) force-field and the 3D-optimized form was generated in pH = 7.4 ± 1. Computational molecular docking was performed using Glide module with extra precision (XP) method (Friesner et al., 2006) for both BPPT and Donepezil as a reference compound. Ligand sampling was set to flexible (including ring conformations and nitrogen inversions and Epik state penalties were incorporated to docking scores. A post docking minimization was applied by employing strain correction terms. Maestro

Table 3

Compound	Ar	Time (min)	Yield (%)	M.P. (°C)
8a	4-(2-morpholineoxy)-C6H4	60	87	174-175
8b	4-(4-morpholino)-C6H4	60	85	188-189
8c	4-(4-piperidin-1-yl)-C6H4	60	80	170-173
8d	4-(4-chlorobenzyloxy)-C6H4	40	95	158-160
8e	3-(4-chlorobenzyloxy)-C6H4	45	92	159-161
8f	4-(4-bromobenzyloxy)-C6H4	40	95	158-161
8g	3-(4-bromobenzyloxy)-C6H4	50	93	164-167
8h	4-F-C6H4	40	90	143-145
8i	3-Br-C6H4	45	88	174-176
8j	2-Br-C6H4	45	91	197-200
8k	C6H5	40/10	86/92	145-147
8l	4-Cl-C6H4	40/20	91/91	167-169
8m	2-Cl-C6H4	40/60	91/70	196-199
8n	3-Cl-C6H4	40/60	87/86	178-179
8p	4-NO$_2$-C6H4	30/18	94/92	181-183
8q	2-NO$_2$-C6H4	30/60	95/87	187-189
8r	4-CH$_2$-C6H4	40/10	91/90	178-181

* Reaction conditions: methyl cyanoacetate (1.25 mmol), aryl aldehyde (1 mmol), dimerdone (1 mmol), nanocatalyst (5 mol%), EtOH (8 mL), 70 °C.
* The chemical structures of drug are listed in Fig. 6.
* Refers to isolated yields.
* Novel compounds.
interface was used as the molecular visualization of all figures.

Absorption, Distribution, Metabolism, Excretion, and Toxicity of the BPPT, was assessed using QikProp. Blood-Brain Barrier (BBB) permeability, percent of human oral absorption, prediction of binding to human serum albumin and IC\textsubscript{50} for the blockage of HERG K+ channels in heart, and also ligand-protein stability score for BPPT were compared with donepezil as a reference drug.

3.1. Preparation of BPPT NPs

Sodium tungstate dihydrate (7 g) was firstly dried by a vacuum oven under 120 \degree C for 6 h. Next, anhydrous sodium tungstate 1 (20 mmol, 5.88 g) was gradually added to a stirred 250 mL round bottom flask containing 1-bromo-3-chloropropane 2 (40 mmol, 6.28 g) in 50 mL n-hexane at room temperature during 15 min. After 48 h, the reaction mixture was filtrate to separate bis(3-chloropropyl)tungstate 3. Obtained solid material 3 was washed with distilled water to remove side product, sodium bromide salt. 15 mL distilled water in five times (3 mL in each time) was used until filtrate become free of bromide ion. To identification of bromide ion silver

![Fig. 6. The chemical structures of synthesized compounds.](image)

![Fig. 7. Recyclability studies of BPPT NPs on model reaction.](image)
nitrate solution (0.05 M) was applied. Solid material 3 was dried in vacuum oven at 100°C for 5 h. In the next step, to a 250 mL round bottom flask containing 60 mL toluene equipped with reflux condenser, connected to a water bowl by a hoses interface, solid 3 (16 mmol, 6.4 g) was added, then piperazine 4 (32 mmol, 2.8 g) was gradually added to the flask during 15 min. When the addition of piperazine was completed, it was allowed to the reaction mixture to stir for 0.5 h in room temperature and then 48 h under reflux conditions. Afterward, the reaction mixture was filtrated to obtain BPPT. Finally, after drying catalyst at 100°C for 5 h, 28 g BPPT was obtained and was characterized by FT-IR spectroscopy, TEM, and SEM microscopes and also TGA measurement.

3.2. General procedure to the synthesis of methyl 2-amino-7,7-dimethyl-5-oxo-4-aryl substituted-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate

To a stirred round bottom flask containing ethanol (12 mL) along with catalytically amounts of BPPT (0.50 g, 5 mol%), appropriate aryl aldehyde (2.0 mmol), and methyl cyanoacetate (2.5 mmol, 0.25 g) was added. After stirring reaction mixture for 1 h at room temperature, dimedone (2.0 mmol, 0.280 g) was added, and it was allowed to the mixture's temperature to rise at 70°C. The reaction progress was monitored by TLC (ethyl acetate/n-hexane v/v = 1:1). After passing the appropriate time, indicated in Table 2, the boiling ethanol (50 mL) was added to the reaction mixture till crude products completely dissolved, then the mixture was filtered to separate catalyst. The catalyst was washed with boiling ethanol, dried at 100°C for 2 h and reused in another cycle. The filtrate was evaporated to obtain the crude product. The crystalline pure product was obtained from the crystallization of crude product in boiling ethanol. The chemical structures of novel crystalline pure products were confirmed by FT-IR, 1H NMR, 13C NMR spectroscopies, elemental analyses (C, H, N) and for known compounds via comparison of their melting points with the reported ones.

3.3. Spectroscopic data of novel synthetised products

Methyl 2-amino-7,7-dimethyl-4-(4-(2-morpholinoethoxy)phenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate (8a): Snow white powder, m.p: 174–175°C; FT-IR (KBr) (υmax, cm⁻¹): 3387, 3284, 3060, •
2958, 2865, 2801, 1693, 1693, 1669, 1534, 1509, 1365, 1295, 1251, 1201, 1146, 1037, 846, 541. 1H NMR (DMSO-d6, 300 MHz) δ (ppm): 7.55 (2H, s, NH2), 7.04 (2H, d, J = 9 Hz, CHAr), 6.78 (2H, d, J = 9 Hz, CHAr), 4.47 (1H, s, CH), 4.02 (2H, t, J = 6 Hz, OCH2), 3.59 (4H, t, J = 6 Hz, CH2OCH2), 3.52 (3H, s, OCH3), 2.69 (2H, t, J = 6 Hz, NCH2), 2.52 (4H, t, J = 6 Hz, CH2NCH2), 2.27 (1H, d, J = 15 Hz, CH), 1.05 (3H, s, CH3), 0.90 (3H, s, CH3). 13C NMR (DMSO-d6, 75 MHz) δ (ppm): 196.3, 168.8, 162.3, 159.7, 157.0, 138.9, 128.8, 116.3, 114.2, 78.3, 66.5, 58.3, 54.0, 50.9, 50.4, 23.6, 29.1, 26.9. Anal. calcd for C25H32N2O6: C, 65.77; H, 7.07; N, 6.14; Found: C, 65.81; H, 7.12; N, 6.09%.

Methyl 2-amino-7,7-dimethyl-4-(4-morpholinophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate (8b): Light yellow crystals, m.p: 188–189°C; FT-IR (KBr) (υmax, cm−1): 3390, 3280, 3058, 2957, 2870, 2822, 1690, 1652, 1609, 1529, 1439, 1364, 1287, 1156, 1120, 1104, 921. 1H NMR (DMSO-d6, 300 MHz) δ (ppm): 7.52 (2H, s, NH2), 6.99 (2H, d, J = 9Hz, CHAr), 6.79 (2H, d, J = 9 Hz, CHAr), 4.44 (1H, s, CH), 3.71 (4H, brs, CH2OCH2), 3.36 (3H, s, OCH3), 3.04 (4H, brs, CH2NCH2), 2.52 (2H, m, CH2), 2.27 (1H, d, J = 15 Hz, CH), 2.07 (1H, d, J = 15 Hz, CH), 1.05 (3H, s, CH3), 0.91 (3H, s, CH3). 13C NMR (DMSO-d6, 75 MHz) δ (ppm): 196.3, 168.9, 162.3, 159.7, 149.5, 137.6, 128.4, 116.4, 115.1, 78.5, 66.6, 50.9, 50.5, 49.0, 32.5, 32.3, 29.1, 27.0. Anal. calcd for C23H28N2O5: C, 66.97; H, 6.84; N, 6.79; Found: C, 67.05; H, 6.79; N, 6.83%.

Methyl 2-amino-7,7-dimethyl-5-oxo-4-(4-(piperidin-1-yl)phenyl)-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate (8c): Golden rod crystals, m.p: 170–173°C; FT-IR (KBr) (υmax, cm−1): 3412, 3301, 3085, 2933, 2853, 2792, 1695, 1656, 1612, 1513, 1437, 1367, 1288, 1204, 1164, 1036, 840, 497. 1H NMR (DMSO-d6, 300 MHz) δ (ppm): 7.52 (2H, s, NH2), 6.98 (2H, d, J = 9 Hz, CHAr), 6.77 (2H, d, J = 9 Hz, CHAr), 4.44 (1H, s, CH), 3.53 (3H, s, OCH3), 3.04 (4H, t, J = 6 Hz, CH2NCH2), 2.54 (1H, d, J = 18 Hz, CH), 2.54 (1H, d, J = 18 Hz, CH), 2.27 (1H, d, J = 15 Hz, CH), 2.08 (1H, d, J = 15 Hz, CH), 1.59 (4H, m, 2×CH2), 1.51 (2H, m, CH2), 1.05 (3H, s, CH3), 0.92 (3H, s, CH3). 13C NMR (DMSO-d6, 75 MHz) δ (ppm): 196.3, 168.9, 162.2, 159.7, 150.3, 136.9, 128.3, 116.5, 115.8, 78.5, 50.9, 50.5, 50.1, 32.4, 32.3, 29.1, 26.9, 25.9, 24.3. Anal. calcd for C24H30N2O4: C, 66.97; H, 6.84; N, 6.79; Found: C, 67.05; H, 6.79; N, 6.83%.

Methyl 2-amino-7,7-dimethyl-5-oxo-4-(4-(chlorobenzyl)oxyphenyl)-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate (8d): White crystals, m.p: 158–160°C; FT-IR (KBr) (υmax, cm−1): 3431, 3315, 3060, 2953.

Scheme 3. Proposed mechanism for the BPPT NPs-catalyzed synthesis of 4H-chromene derivatives.

Fig. 9. (a) Molecular interactions of BPPT and Donepezil (reference drug) with AChE enzyme. (b) The great structural matching of BPPT with donepezil to interact with AChE enzyme.

K. Eskandari et al. Heliyon 5 (2019) e02426
Fig. 10. The most significant interactions between BPPT and AChE enzyme.

Table 4
In silico prediction of pharmacokinetic/pharmacodynamic characteristics of BPPT to inhibition of AChE versus Donepezil.

Compound	Rule of Five	QlogBB^a	QLogK_{pas}^b	Human Oral Absorption^c	QlogHERG^d	XP G-score^e
Donepezil	0	0.063	0.597	100%	-5.528	-16.144
BPPT	0	-0.526	-0.741	37.9%	-7.405	-10.323

^a Predicted blood-brain barrier coefficient (Recommended Range: 3 - 12).

^b Prediction of binding to human serum albumin (Recommended. Range: -1.5 - 1.5).

^c Predicted quantitative human oral absorption on 0-100% scale; >80% is high and <25% is poor.

^d Predicted IC₅₀ for the blockage of HERG K₊ channels in the heart (concern below -5).

^e A parameter corresponding ligand-protein stability that more negatives values imply that the poses of the target protein (binding sites) are filled by the ligand very good.

^f Reference drug.
143–145 °C; FT-IR (KBr) (υmax, cm⁻¹): 3464, 3309, 3040, 2967, 2935, 1694, 1657, 1526, 1365, 1295, 1224, 1198, 1163, 1036, 849, 769, 645, 542. 1H NMR (DMSO-d6, 300 MHz) (ppm): 7.37 (2H, s, NH2), 6.91 (2H, d, J = 9 Hz, CH2a), 6.79 (2H, t, J = 9 Hz, CH2b), 4.28 (1H, s, CH), 3.27 (3H, s, OCH3), 2.31 (1H, d, J = 18 Hz, CH), 2.22 (1H, d, J = 18 Hz, CH2), 2.03 (1H, d, J = 15 Hz, CH), 1.83 (1H, t, J = 15 Hz, CH2), 0.80 (3H, s, CH3), 0.65 (3H, s, CH3). 13C NMR (DMSO-d6, 75 MHz) (ppm): 196.2, 168.7, 162.5, 159.7, 142.7, 129.7 (d, J = 18 Hz, CHAr), 4.86 (1H, s, CH), 3.47 (3H, s, OCH3), 2.59 (1H, d, J = 18 Hz, CH), 2.22 (1H, d, J = 18 Hz, CH2), 2.02 (1H, d, J = 15 Hz, CH), 1.83 (1H, t, J = 15 Hz, CH2), 1.05 (3H, s, CH3). 15N (ppm): 7.66 (2H, s, NH2), 7.33 (1H, d, J = 15 Hz, CH), 2.10 (1H, d, J = 15 Hz, CH), 0.50 (3H, s, CH3), 0.90 (3H, s, CH3).

Methyl 2-amino-4-(3-bromophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylic acid (8B): White crystals, m.p: 174–176 °C; FT-IR (KBr) (υmax, cm⁻¹): 3399, 3298, 3043, 2967, 2875, 1696, 1656, 1535, 1437, 1365, 1286, 1200, 1163, 1072, 1034, 771, 695, 514. 1H NMR (DMSO-d6, 300 MHz) (ppm): 7.66 (2H, s, NH2), 7.33–7.30 (1H, m, CHAr), 7.28 (1H, s, CH3), 7.21 (1H, t, J = 9 Hz, CHAr), 7.17–7.14 (1H, m, CHAr), 4.51 (1H, s, CH), 3.53 (3H, s, OCH3), 2.57 (1H, d, J = 15 Hz, CH), 2.50 (1H, d, J = 15 Hz, CH), 2.30 (1H, d, J = 15 Hz, CH), 2.30 (1H, d, J = 15 Hz, CH), 1.05 (3H, s, CH3), 0.90 (3H, s, CH3). 13C NMR (DMSO-d6, 75 MHz) (ppm): 196.3, 168.5, 163.0, 159.7, 149.5, 130.7, 130.6, 129.2, 128.9, 120.2, 114.8, 77.8, 51.0, 50.3, 33.0, 32.3, 29.0, 26.9. Anal. calcd for C31H26FNO4: C, 66.08; H, 5.84; N, 4.06; Found: C, 66.13; H, 5.78; N, 4.10%.

4. Conclusions

In conclusion, we found BPPT NPs as an efficient, and eco-friendly heterogeneous recyclable organometallic Brønsted base which can catalyze successfully multi-step reaction including Knoevenagel condensation, Michael addition reaction and intramolecular cyclization between methyl cycanoacetate, aryl aldehydes, and dimedone to yield 4H-chromene derivatives in good to excellent yields. Therefore, BPPT NPs can be applied as a catalyst in reactions in which needs basic catalyst or media. Hence, it can attract many interests and encourage especially to Prof. Bahador Karami, Prof. Abbas Paridakhy, Prof. Alireza Foroumadi, and Dr. Hojat Samareh-Feki who sporadically offered their experience and knowledge.

Declarations

Author contribution statement

Khalil Eskandari: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Yaghoub Pourshojaei: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Fatemeh Haghani, Mahnaz Shabani: Performed the experiments.

Ali Asadipour: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data.

Funding statement

This work was supported by the Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences.

Competing interest statement

The authors declare no conflict of interest.

Additional information

Supplementary content related to this article has been published online at https://doi.org/10.1016/j.heliyon.2019.e02426.

Acknowledgements

The authors are thankful to all their colleagues for their assistance and encouragement especially to Prof. Bahador Karami, Prof. Abbas Paridakhy, Prof. Alireza Foroumadi, and Dr. Hojat Samareh-Feki who sporadically offered their experience and knowledge.

References

Alizadeh, H., Tarahomi, M., Maleki, B., Amirz, A., 2019. So2 h-functionalized nano-MGO-D-NH2: synthesis, characterization and application for one-pot synthesis of pyrrolo[2,3-d] pyrimidine and tetrahydrobenzo[b]pyran derivatives in aqueous media. Appl. Organomet. Chem. 33 e4661.

Alzeer, M.I.M., MacKenzie, K.J.D., 2018. Synthesis and catalytic properties of new sustainable aluminosilicate heterogeneous catalysts derived from fly ash. ACS Sustain. Chem. Eng. 6, 5273–5282.

Antonangelo, A.R., Westrup, K.C.M., Burt, L.A., Bezzu, C.G., Malevich, T., Machado, G.S., Nunes, F.S., McKeown, N.B., Nakagaki, S., 2017. Synthesis, crystallographic characterization and homogeneous catalytic activity of novel unsymmetric pyrrolo[2,3-d]pyrimidine derivatives. Res. Chem. Intermed. 44, 1295–1304.

Banoth, S., Boda, S., Peruga, S., Balabradra, S., Manga, V., 2018. Design, synthesis, biological evaluation and in silico molecular docking studies of novel benzochromeno[2,3-d]dihalopyrimidine derivatives. Res. Chem. Intermed. 44, 1833–1846.

Brückner, A., Bentrup, U., Zanthoff, H., Maschmeyer, D., 2009. The role of different Ni sites in supported nickel catalysts for butene dimerization under industry-like conditions. J. Catal. 266, 120–128.

Chaffron, L.S., Paiva, M.F., Fracca, J.O.G., Sales, M.L.A., Dias, S.C.L., Dias, J.A., 2019. Preparation of PLA blends by polycondensation of D,L-lactic acid using supported 12-tungstophosphoric acid as a heterogeneous catalyst. Helicon 5, 9660–9667.

Chen, H., Huang, M., Li, X., Liu, L., Chen, B., Wang, J., Lin, Y., 2018. Phochrodines A-D, first naturally occurring new chromenes provided from mangrove entophytic fungus Phomopsis sp. 33. Fiteroterapia 124, 103–107.

Chenera, B., West, M.L., Finkelstein, J.A., Dreyer, G.B., 1993. Total synthesis of (-)-Calanolide A, a non-nucleoside inhibitor of HIV-1 reverse transcriptase. J. Org. Chem. 58, 5005–5006.

Davidson, M.A., Mattison, D.R., Azoulay, L., Krewski, D., 2018. Thiazolidinedione drugs and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies. Am. J. Clin. Nutr.

Engleder, M., Pichler, H., 2018. On the current role of hydratases in biocatalysis. Appl. Organomet. Chem. 33 e4661.

Engleder, M., Pichler, H., 2018. On the current role of hydratases in biocatalysis. Appl. Organomet. Chem. 33 e4661.
Karimi, B., Eskandari, K., Khodabakhshi, S., 2012. A one-pot, three-component approach to the synthesis of bi(aryl)pyrazoline methylene derivatives bearing aryl groups by the use of arylglyoxals in the presence of ZnO nanorods as a highly efficient, recyclable, and green catalyst. Can. J. Chem. 96, 377–384.

Karimi, B., Eskandari, K., Bakhshisheh, S., 2014. Novel silica sodium carbonate (SCS)–tributyl phosphine oxide (TBP) catalysed preparation of multi-fused heterocyclic compounds: the synthesis of fused pyran-2-ones. Catal. Commun. 14, 124–130.

Karimi, B., Eskandari, K., Pourshojaei, Y., Asadipour, A., 2018a. An eco-compatible, three-component synthesis of acyl-substituted bi(aryl)pyrazolylmethanes by employing recyclable silica sodium carbonate as an efficient and environmentally benign catalyst in aqueous medium. Monatsh. Chem. 149, 1075–1081.

Karimi, B., Eskandari, K., Pourshojaei, Y., Lorigooni, Z., Soltanipour-Joneghi, Elham Moradi, M.T., Asadipour, A., 2018b. Synthesis and biological evaluation of 4-hydroxychromonyl arylmethyl 6-hydroxy pyrimidine-2, 4-dione derivatives. J. Kerman Univ. Med. Sci. 25, 213–227.

Farahi, M., Karami, B., Jokar, A., Eskandari, K., 2017. An environmentally benign synthesis of pyrimidine-fused coumarin and trizole motifs via a catalytic domino reaction. Org. Prep. Proced. Int. 49, 514–524.

Fogerov, T., Todorova, T.K., Porcher, J.P., Gomez-Mingot, M., Chamaroe, L.M., Meltot-Draznieks, C., Li, Y., Fontecave, M., 2018a. A bioinspired nickel(3i-diethilene) complex as a homogeneous catalyst for carbon dioxide electroreduction. ACS Catal. 8, 2020–2038.

Friesner, R.A., Murphy, R.B., Repasky, M.P., Fye, L.L., Greenwood, J.R., Halgren, T.A., 2004. A protocol for generating docking grids. J. Med. Chem. 49, 6177–6196.

Fukutake, T., Wada, K., Liu, G.C., Hosokawa, S., Feng, Q., 2018. Site-selective proteolysis of tau protein with the addition of N-acetylglucosamine as a cleavage signal. J. Proteins. Prot. Eng. 12, 95–101.

Gupta, N., Roy, T., Ghosh, D., Abdi, S.H.R., Kureshy, R.I., Khan, N.U.H., Bajaj, H.C., 2015. Palladium(0) and palladium(II) complexes as efficient, recyclable, and green catalysts for the synthesis of pyrazole-fused aromatics. RSC Adv. 5, 17843–17850.

Habibi, A., Eskandari, K., Aliabadi, A., 2012. Synthesis and dynamic NMR study of new stable ylides derived from the reaction of triphenylphosphine, dialkyl aluminum chloride and aromatic ketones. RSC Adv. 2, 7532–7536.

Lee, J., Lee, D.G., Rodriguez, J.P., Park, J.Y., Cho, E.J., Jacinto, S.D., Lee, S., 2018. Solution-processed interfacial PEDOT:PSS films for highly efficient transparent conducting electrodes. ACS Appl. Mater. Interfaces 10, 10520–10529.

Rong, L., Li, X., Wang, H., Shi, D., Tu, S., Zhuang, Q., 2006. Efficient synthesis of dihydropyrano[2,3-c]pyrazoles. Catal. Commun. 54, 124–128.

Pullur Anil Kumar, H.P.H., 2010. Synthesis and dispersion of dendrimer-encapsulated Pt nanoparticles on γ-A203 for the reduction of NO x by methane. Catal. Lett. 136, 177–184.

Rahmani-Nezhad, S., Hossainzadeh, M., Asadipour, A., 2015a. One-pot synthesis of 2-Amino-4H-benzo chromene derivatives under solvent-free conditions. Appl. Organomet. Chem.

Maleki, B., Sheikh, S., 2015a. One-pot synthesis of 2-Amino-4H-benzo/chromene derivatives promoted by potassium fluoride. Org. Prep. Proced. Int. 47, 368–378.

Maleki, B., Sheikh, S., 2015b. Nano polypropyleneimine dendrimer (DAB-PPI-G3): as a novel nano basic-polymer catalyst for one-pot synthesis of 2-amino-2-chromene derivatives. RSC Adv. 5, 42999–43005.

Maleki, B., Pourshojaei, Y., Mortadi, A., Sharifzaehed, M., Khosravani, L., Sabourian, R., Rahmani-Nezhad, S., Mohammad-Mahmoudi, M., Mahdavi, A., Asadipour, A., Rahimi, H.R., Moghimi, S., Foroumadi, A., 2017. Design, synthesis, molecular modeling and anticholinesterase activity of benzylidine-benzofuran-3-ones containing cyclic amine side chain. Future Med. Chem. 9, 659–671.

Mohamed, L.W., Abu-el-Mostafa, S.M., Mohammed, W.A., Galal, M.A., 2018. Synthesis and biological evaluation of new oxopyrrolidine derivatives as inhibitors of acetyl cholinesterase and β amyloid protein as anti – Alzheimer’s agents. Bioorg. Chem. 76, 210–217.

Patra, A., Mahapatra, T., 2010. Synthesis of tetracydrobenzo [b]pyridine derivatives catalyzed by Aliquat 336 in water under microwave irradiation. J. Chem. Res. 34, 689–693.

Pourshojaei, Yaghoub, Jadidi, M.H., Eskandari, K., Foroumadi, A., Asadipour, A., 2018a. An eco-friendly synthesis of 4-aryl-substituted pyrano-fuzed coumarins as potential pharmacological active heterocycles using molybdenum oxide nanoparticles as an effective and recyclable catalyst. Res. Chem. Intermed. 44, 4415–4421.

Pourshojaei, Y., Nikzad, M., Eskandari, K., Darjani, M.-H., Hassanhassani, F., Faghfam Mirzaei, E., Asadipour, A., 2018b. Ultrasound-assisted and efficient knoevenagel condensation reaction catalyzed by silica sodium carbonate nanoparticles. Crot. Chem. Acta 91, 19–28.

Pullur Anil Kumar, H.P.H., 2010. Synthesis and dispersion of dendrimer-encapsulated Pt nanoparticles on γ-A203 for the reduction of NO x by methane. Catal. Lett. 136, 177–184.

Rahmani-Nezhad, S., Hossainzadeh, M., Asadipour, A., 2015a. One-pot synthesis of 2-Amino-4H-benzo/chromene derivatives under solvent-free conditions. Appl. Organomet. Chem.

Maleki, B., Sheikh, S., 2015a. One-pot synthesis of 2-Amino-4H-benzo/chromene derivatives promoted by potassium fluoride. Org. Prep. Proced. Int. 47, 368–378.

Maleki, B., Sheikh, S., 2015b. Nano polypropyleneimine dendrimer (DAB-PPI-G3): as a novel nano basic-polymer catalyst for one-pot synthesis of 2-amino-2-chromene derivatives. RSC Adv. 5, 42999–43005.

Maleki, B., Pourshojaei, Y., Mortadi, A., Sharifzaehed, M., Khosravani, L., Sabourian, R., Rahmani-Nezhad, S., Mohammad-Mahmoudi, M., Mahdavi, A., Asadipour, A., Rahimi, H.R., Moghimi, S., Foroumadi, A., 2017. Design, synthesis, molecular modeling and anticholinesterase activity of benzylidine-benzofuran-3-ones containing cyclic amine side chain. Future Med. Chem. 9, 659–671.

Mohamed, L.W., Abu-el-Mostafa, S.M., Mohammed, W.A., Galal, M.A., 2018. Synthesis and biological evaluation of new oxopyrrolidine derivatives as inhibitors of acetyl cholinesterase and β amyloid protein as anti – Alzheimer’s agents. Bioorg. Chem. 76, 210–217.

Patra, A., Mahapatra, T., 2010. Synthesis of tetracydrobenzo [b]pyridine derivatives catalyzed by Aliquat 336 in water under microwave irradiation. J. Chem. Res. 34, 689–693.