1. Introduction

Porous solids with high surface areas, thermal stability, and chemically robust nature have attracted great attention because of their applications in gas capture and storage,[1] water treatment,[2] and catalysis.[3] In addition to the commonly used porous materials in the industry such as zeolites, activated carbons, and molecular sieves, recent developments show that various classes of new porous solids have emerged, such as metal organic frameworks (MOFs),[4] covalent organic frameworks (COFs),[5] covalent organic polymers (COPs),[6] hypercross-linked polymers (HCPs),[6,7] microporous organic polymers (MOPs),[8] porous aromatic frameworks (PAFs),[9] porous polymer networks (PPNs),[10] and benzimidazole-linked polymers (BILPs).[11]

Scalability, cost, and feasibility of porous structures in gas capture are prerequisites for emerging materials to be promising in the industry. Herein, a simpler variant of Friedel–Crafts’ synthesis of highly porous covalent organic polymers (COPs) based on an unprecedented solvent-mediated crosslinking is presented. Alkyl chlorides behave as both solvents and linkers in the presence of AlCl₃. Studies on three classes of 18 different monomers using dichloromethane, chloroform, and 1,2-dichloroethane lead to producing 29 new COPs (124–152). Polymers are characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, elemental composition analysis, scanning electron microscope (SEM), thermogravimetric analysis (TGA), and porosity analyzer. The synthesized COPs exhibit structures from nonporous to highly porous morphologies with Brunauer–Emmett–Teller (BET) surface areas as high as 1685 m² g⁻¹. These COPs show high gas uptake toward CO₂ (up to 4.71 mmol g⁻¹ at 273 K, 1.1 bar), CH₄ (up to 1.31 mmol g⁻¹ at 273 K, 1.1 bar), and H₂ (up to 2.02 wt% at 77 K, 1.1 bar). The findings point to significant potential in producing sustainable porous materials through simple and scalable methodology developed here.

© 2021 The Authors. Advanced Energy and Sustainability Research published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

DOI: 10.1002/ aesr.202100064
synthetic methodologies for making highly porous networks with stable C–C-bonded frameworks. Since the early works by Davankov et al.[14] to make porous resins, the method was widely adapted to offer HCPs and MOPs. The applications vary from simple gas capture and storage[12d] to catalysis.[15]

In FC alkylation reactions, inexpensive Lewis acids such as aluminum chloride (AlCl\textsubscript{3}) and iron chloride (FeCl\textsubscript{3}) and chlorinated solvents such as 1,2-dichloroethane (DCE), dichloromethane (DCM), and chloroform (CHCl\textsubscript{3}) are commonly used. Although FeCl\textsubscript{3} works fine, using highly reactive AlCl\textsubscript{3} with chlorinated solvents must be controversial as there is a great chance of participation in the FC reaction.[16] Despite these reactivity concerns, several reports used AlCl\textsubscript{3} as a Lewis acid and chlorinated solvents as a solvent.[17] Previously, we showed that chlorinated solvents not only readily participate in FC reactions, but they can produce highly porous network polymers with aromatic monomers in the presence of AlCl\textsubscript{3}.[18] In principle, common chlorinated solvents serve as both linkers and solvent. Surprisingly, excess linkers produced network structures, an observation that can only be explained by the formation of highly reactive intermediates. Here, we extend the scope of this chemistry and studied three classes of 18 monomers under the solvent-mediated FC conditions. We then analyzed their gas adsorption properties in great detail. The porous networks show high uptake for carbon dioxide (CO\textsubscript{2}), hydrogen (H\textsubscript{2}), and methane (CH\textsubscript{4}) gases. The method developed here is one of the most affordable FC reactions so far and one of the simplest for the formation of highly porous polymers. Because the reaction takes place rapidly at ambient conditions and uses inexpensive precursors, they will ultimately become the most promising candidates for the gas capture and separation at industrial scales.

2. Results and Discussion

2.1. Synthesis

The alkyl-chlorinated solvents and highly reactive AlCl\textsubscript{3} have readily been used in a number of reports that feature FC reactions or Scholl-type aromatic couplings.[17] We suspected that the solvent may not stay inert and will react with aromatics. Hence, benzene and anhydrous AlCl\textsubscript{3} were reacted at room temperature in 1,2-dichloroethane (DCE), dichloromethane (DCM), and chloroform (CHCl\textsubscript{3}) solvents. The precipitates formed in all three solvents and they were insoluble in both water and organic solvents. Getting insoluble products was surprising, as chlorinated solvents were used in excess and the products were expected to be multisubstituted benzenes that are readily soluble in organic solvents. However, the reactions yielded high-molecular-weight network polymers rather than soluble molecules, an observation that can only be explained by the formation of highly reactive intermediates (Figure 1a). In situ-formed intermediates are more reactive than starting monomers and chlorinated solvents, hence self-polymerize to give high-molecular-weight polymers rather than multisubstituted aromatics (Figure S1, Supporting Information). This finding is contrary to some of the reports in the literature, particularly those that claim Scholl’s reaction (aromatic–aromatic self-coupling) in chlorinated solvents in the presence of AlCl\textsubscript{3} (Figure S2, Supporting Information).[17a–c,e–g]

![Figure 1](image-url)

Figure 1. a) Mechanism of network formation. b) Model reactions for the proof of solvent reactivity. c) Formation of three different linkers using DCM, CHCl\textsubscript{3}, and DCE.
To further confirm the reactivity of solvents or aromatic coupling, we conducted model reactions of DCM, CHCl₃, and DCE in excess benzene (solvent) and in the presence of anhydrous AlCl₃ (Figure 1b). Despite using excess aromatic benzene, no aromatic coupling (e.g., biphenyl, terphenyl) was observed, but FC products, diphenyl methane, triphenyl methane, and 1,2-diphenylethane, were formed (see Figure S5–S10, Supporting Information, for detailed information). In principle, here, alkyl-chlorinated solvents serve as both linkers and solvent. DCM and DCE act as bidentate linkers to give diphenylmethane- and 1,2-diphenylethane-based polymers, whereas chloroform acts as tridentate linker to give triphenylmethane-based polymer (Figure 1c).

Although FC reactions are established to run over [carbocation][MetalClₓ] as active species, Lewis acids such as FeCl₃ were recently reported to produce FeCl₃⁺ in a disproportionation mechanism. When studying this possibility, our trials with FeCl₃ in chlorinated solvents failed to produce any insoluble network polymers. At the same time, AlCl₃ with stoichiometric chlorinated reagents in nonchlorinated solvents were formed (see Figure S5, Supporting Information). Hence, network formations in this work.

2.2. Reactivity of Aromatic Monomers and Solvents

We, then, extended this discovery into a range of total 18 different aromatic hydrocarbons in DCM, CHCl₃, and DCE solvents, proving that a wide substrate scope is indeed possible (Table 1). Among three solvents, CHCl₃ formed insoluble polymers with 13 monomers, whereas DCE and DCM formed 9 and 7 polymers, respectively. This can be explained by, due to the electron-withdrawing chlorines, the higher reactivity of CHCl₃ and its benzal chloride (benzyl dichloride)-based intermediates. While DCM and benzal chloride intermediates are more reactive than DCE and (2-chloroethyl)benzene, the longer and flexible DCE can avoid steric hindrance and react with more monomers than DCM.

Among 18 different monomers, three classes of aromatic hydrocarbons, 1) benzene and its methyl-substituted derivatives, 2) heteroatom-containing aromatics, and 3) polycyclic aromatics, were tested (Table 1).

Benzene formed network structures with all three solvents. We believe that inefficient packing and six possible extension positions contribute to this variation. In contrast, methyl-substituted benzenes were not as successful. The mesitylene (1,3,5-trimethylbenzene), for example, did not give polymer with any of the solvents, and xylene (mixture of isomers) formed a network only with CHCl₃. Steric hindrance by methyl groups proves to be a detrimental factor in the formation of a crosslinked structure. For instance, toluene did not yield a polymer in DCM, but longer DCE, where steric hindrance could be avoided, produced an insoluble polymer.

Most heteroatom-containing aromatics are known to be less likely to favor an FC reaction over the aromatic ring. The heteroatom usually chelates with the Lewis acid and the electron-poor adduct deactivates the aromatic rings (Figure S3, Supporting Information). Therefore, pyridine, phenol, aniline, and triphenylphosphine did not give polymer with any of the solvents. Diphenyl ether, diphenyl amine, and triphenylamine formed polymers with highly reactive CHCl₃. It is interesting to note that triphenyl amine formed polymer, whereas triphenylphosphine did not. We think that is because of the planar (119.6°) geometry of triphenylamine, leading to a weaker interaction between nitrogen and AlCl₃, and the higher reactivity of CHCl₃ compared with other solvents. On the contrary, this is not true for the triphenylphosphine (TPP) because of its trigonal pyramidal (102.8°) layout, which causes unhindered, strong interaction with Lewis acids (Figure S3, Supporting Information). Hence, no network forms from TPP and halo-organics.

Polycyclic aromatics yielded network structures with all tested solvents. This is in accordance with most of the reported literature; whether it is crystalline MOFs and COFs, or amorphous porous polymers, polycyclic aromatics monomers have been widely used in the formation of porous structures.

2.3. Characterization

The COPs were characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, elemental composition analysis, scanning electron microscope (SEM), and thermogravimetric analysis (TGA). The characteristic FTIR bands of aromatic C–H bending at 600–900 cm⁻¹, aliphatic C–H bending at 1000–1200 cm⁻¹, aromatic C–C stretching at 1400–1600 cm⁻¹, aliphatic C–H stretching below 3000 cm⁻¹, and aromatic C–H stretching above

Core/linker	CHCl₃ [yield]⁴	CHCl₃ [yield]⁴	DCE [yield]⁴
Benzene	COP-124 (113%)	COP-131 (95%)	COP-150 (137%)
Toluene	No precipitate	COP-132 (23%)	COP-144 (37%)
Xylene (mixture)	No precipitate	COP-133 (18%)	No precipitate
Mesitylene	No precipitate	No precipitate	No precipitate
Phenol	No precipitate	No precipitate	No precipitate
Aniline	No precipitate	No precipitate	No Precipitate
Pyridine	No precipitate	No precipitate	No Precipitate
1,2-dichlorobenzene	No precipitate	COP-143 (57%)	No precipitate
Diphenyl ether	No precipitate	COP-139 (31%)	No precipitate
Diphenyl amine	No precipitate	COP-141 (23%)	COP-151 (63%)
Tritylamidine	No precipitate	COP-142 (58%)	No Precipitate
Triphenylphosphine	No precipitate	No precipitate	No Precipitate
Triphenylmethane	COP-125 (87%)	COP-136 (84%)	COP-147 (73%)
Tetraphenylmethane	COP-126 (83%)	COP-137 (81%)	COP-148 (67%)
Naphthalene	COP-127 (89%)	COP-134 (73%)	COP-145 (81%)
Biphenyl	COP-128 (93%)	COP-135 (71%)	COP-146 (88%)
Tetraphenyladamantane	COP-129 (71%)	COP-138 (63%)	COP-152 (55%)
1,3,5-Triphenylbenzene	COP-130 (92%)	COP-140 (87%)	COP-149 (103%)

⁴The yields of the polymers were calculated based on the starting aromatic monomers only, crosslinkers were not included.
3000 cm$^{-1}$ support the proposed structures (Figure 2). When the spectra of three different solvents were compared, DCE-linked polymers exhibited the strongest aliphatic C–H stretching vibrations, and DCM-linked polymers possess stronger aliphatic C–H stretching vibrations than CHCl$_3$-linked polymers, showing the characteristics of each linker. The elemental analysis (EA) of COPs was measured after repetitive Soxhlet washings and drying at 120$^\circ$C. Apart from high content of carbon and hydrogen, EA also revealed oxygen (Table 2). The oxygen was likely introduced through hydrolysis and oxidation of surface-tethered alkyl chlorides during postsynthetic steps (Figure S4, Supporting Information). The CHCl$_3$-linked COPs contain higher oxygen content (7–10 wt%) than DCM-linked COPs (2–3 wt%) and DCE-linked COPs (1–2 wt%), correlating with the reactivity of surface chlorides (benzal chloride, benzyl chloride, and (2-chloroethyl)benzene). Hydrolisis and oxidation products were also confirmed by characteristic broad O–H stretching bands at 3300–3500 cm$^{-1}$ and carbonyl C=O stretching at 1690 cm$^{-1}$ in CHCl$_3$-linked COPs. There is also a residual aluminum from the catalyst, which is found to be very low (confirmed by Inductively coupled plasma mass spectrometry (ICP-MS)). Solid-state 13C NMR spectra of three COPs (one representative from each solvent) are shown in Figure 2c. The spectrum shows mainly two types of carbons, aromatic and aliphatic carbons. The peak at around 140 ppm belongs to substituted aromatic carbons and the one at 127 ppm can be assigned to unsubstituted aromatic carbons. Peaks at 34, 36, and 55 ppm can be attributed to aliphatic carbons.

![Figure 2](https://www.advancedsciencenews.com/)

Figure 2. Characterization of representative COPs from each solvent. a) Reaction schemes for the formation of DCM-linked COP-130, CHCl$_3$-linked COP-140, and DCE-linked COP-150. b) FTIR spectra of COP-130, COP-140, and COP-150. c) Solid-state 13C NMR spectra of COP-130, COP-140, and COP-150. For the full list of spectra, see Supporting Information.

COPs	Aromatic monomer	Solvent	S_{BET} [m2 g$^{-1}$]	C [wt%]	H [wt%]	N [wt%]	O [wt%]	Al [wt%]
COP-128	Biphenyl	DCM	676	89.90	3.06	0	2.90	0.74
COP-129	Tetraphenyladamantane	DCM	533	86.19	6.41	0	2.12	0.74
COP-130	1,3,5-Triphenylbenzene	DCM	1685	85.09	4.61	0	3.02	0.72
COP-134	Naphthalene	CHCl$_3$	719	73.78	3.52	0	9.86	0.77
COP-135	Biphenyl	CHCl$_3$	711	76.90	4.12	0	7.46	0.83
COP-138	Tetraphenyladamantane	CHCl$_3$	409	82.51	6.54	0	3.22	0.77
COP-140	1,3,5-Triphenylbenzene	CHCl$_3$	1219	74.80	4.16	0	7.92	0.81
COP-142	Triphenylamine	CHCl$_3$	634	68.77	4.04	3.79	8.15	0.76
COP-150	Benzene	DCE	120	83.83	7.46	0	0.79	0.71
COP-152	Tetraphenyladamantane	DCE	524	84.86	6.84	0	1.81	0.72

Table 2. EA and BET surface areas of selected ten highly porous COPs.
of solvent linkers. Aliphatic carbon peaks are in close agreement with model compounds (diphenylmethane, triphenylmethane, 1,2-diphenylethane, see Figure S5–S10, Supporting Information, for NMR spectra). In CHCl₃-linked COPs, there are oxidized carbon peaks at 82 ppm (C=O) and 190 ppm (C=O), further supporting the hydrolyzed and oxidized surface species. The TGA of the solvent-linked COPs shows thermal stabilities up to the 400 °C, thanks to their stable C–C-bonded framework (Figure S16–S20, Supporting Information). In CHCl₃-linked COPs, due to their hydrophilic surface, there is a 4–10 wt% mass loss up to 120 °C, coming from the desorption of adsorbed water. SEM surface images reveal that COP grains vary from the spherical to flat structure, and the size of spheres varies among COPs (Figure S21–S27, Supporting Information).

2.4. Porosity Analysis

Porosity of COPs was analyzed from Ar adsorption and desorption isotherms at 87 K. The BET surface areas of these materials ranged from nonporous to as high as 1685 m² g⁻¹ (Table 2). Among 29 COPs, ten of them, mostly from polycyclic aromatic-based structures, exhibited highly porous (~100 m² g⁻¹) morphology and those isotherms are shown in Figure 3. Tetraphenyladamantane (TPA) consistently gave high porosities with all three solvents. We articulate on the fact that TPA has larger stabilities up to the 400 °C, thanks to their stable C–C-bonded framework (Figure S16–S20, Supporting Information). In CHCl₃-linked COPs, due to their hydrophilic surface, there is a 4–10 wt% mass loss up to 120 °C, coming from the desorption of adsorbed water. SEM surface images reveal that COP grains vary from the spherical to flat structure, and the size of spheres varies among COPs (Figure S21–S27, Supporting Information).

![Figure 3](image-url) a) Ar adsorption and desorption isotherms at 87 K, b) differential PSDs, and c) cumulative pores volumes of selected highly porous DCM- and DCE-linked COPs. d) Ar adsorption and desorption isotherms at 87 K, e) differential PSDs, and f) cumulative pore volumes of selected highly porous CHCl₃-linked COPs. For the isotherms of less porous (<100 m² g⁻¹) COPs, refer to the Supporting Information.
with two dentate linkers (DCM and DCE). In addition, tetraphenyladamantane-based COPs show rapid increase near saturation pressures because of their macroporosity (Figure 3 and Figure S29f, Supporting Information). We believe that macroporosity comes from the interparticle voids of small particles. As tetraphenyladantane has low solubility in chlorinated solvents, it led to smaller grains. This is also evident from SEM images (Figure S21 and S27, Supporting Information).

2.5. The CO2 Adsorption

Due to their high surface areas and low energy regeneration, solid porous adsorbents are being extensively investigated as potential CO2 sorbents. Herein, we studied CO2 adsorption properties of COPs at 273 and 298 K up to 1.1 bar and isotherms for porous COPs (>100 m² g⁻¹) are shown in Figure 4a–d. As expected, CO2 adsorption and desorption isotherms showed no hysteresis indicating physisorptive CO2 binding. At 1.1 bar and 273 K, 1,3,5-triphenylbenzene-based COP-130 (DCM) and COP-140 (CHCl₃) exhibited the highest CO2 uptake performances, with capacities of 4.71 and 4.35 mmol g⁻¹, respectively (Table 3). These COPs outperform other FC-based and hydrocarbon-based polymers (Table S2, Supporting Information) such as HCP-1 (2.16 mmol g⁻¹, 1970 m² g⁻¹) and PAF-1 (2.05 mmol g⁻¹, 5600 m² g⁻¹). These values are even competing with some oxygen/nitrogen-rich structures such as BILP-6 (4.79 mmol g⁻¹, 1261 m² g⁻¹). Here, unlike other polymerization methods, the reaction of excess solvent linkers leads to richer surface chemistry with dangling species. Unreacted halogens may contribute to CO2 uptake, although lesser than the remnant oxygens that are introduced by their hydrolysis. We believe that the oxygenated surfaces of COPs produced here are responsible for their superior CO2 uptake.

![Figure 4](https://www.advancedsciencenews.com/articles/2100064/graphics/4.png)

Figure 4. CO2 adsorption and desorption isotherms of selected five highly porous a) DCM- and DCE-linked COPs at 273 K, b) CHCl₃-linked COPs at 273 K, c) DCM- and DCE-linked COPs at 298 K, and d) CHCl₃-linked COPs at 298 K. For the isotherms of less-porous (<100 m² g⁻¹) COPs, refer to the Supporting Information. The isosteric heat of adsorption data of five selected highly porous e) DCM- and DCE-linked COPs and f) CHCl₃-linked COPs. The correlation of CO2 uptake capacities (273 K, 1.1 bar) with g) BET surface areas, h) Langmuir surface areas, and i) micropore (<2 nm) volumes, obtained from Ar adsorption isotherms.
performance. The effect of surface chemistry can be estimated from the heat of adsorption (Q_{st}) for CO$_2$ binding. Q_{st} was calculated from adsorption data at 273 and 298 K using Clausius–Clapeyron’s equation. At zero coverage, the Q_{st} values for porous COPs ranged from 27 to 37 kJ mol$^{-1}$ (Figure 4e,f). Indeed, as expected these numbers are higher than FC-based HCPs[12d] (20/kJ mol$^{-1}$) and aromatic PAFs[30] (15/kJ mol$^{-1}$), explaining the better CO$_2$ uptake performance of these COPs. When different solvent linkers were compared, CHCl$_3$-linked COPs (30–37 kJ mol$^{-1}$) showed higher Q_{st} values than DCM and DCE (27–34 kJ mol$^{-1}$). This is due to the higher oxygen content of CHCl$_3$-linked COPs, which result in stronger CO$_2$ binding.

Apart from surface chemistry, porosity of sorbents also plays an important role in dictating gas adsorption properties. Here, whether they are porous or nonporous, CO$_2$ adsorption performances of all 29 COPs were measured up to 1.1 bar at 273 K and the data are shown in Table 3. To understand the relation between adsorption capacities and porosity parameters, we plotted CO$_2$ uptake capacities at 1.1 bar and 273 K against BET surface areas (Figure 4g), Langmuir surface areas (Figure 4h), and micropore volumes (Figure 4i), and they revealed three important findings. First, all plots showed similar trends; no difference was observed among BET surface area, Langmuir surface area, and micropore volume plots. Second, highly porous COP-130 and COP-140, although having best uptake capacities, underperformed with respect to their porosities. This can be explained by their lower number (per surface area) and uneven distribution of surface functional groups on pore surfaces. This is because the higher surface area will result in lower number of oxygenated species per surface area. Third, although porous COPs exhibited relatively a linear trend with porosity parameters, surprisingly, some nonporous polymers showed higher CO$_2$ adsorption capacities, even competing with higher surface area structures. For instance, nonporous COP-148 (2.5 m2 g$^{-1}$) exhibited 1.71 mmol g$^{-1}$ CO$_2$ uptake at 1.1 bar and 273 K, surpassing porous COP-129 (1.06 mmol g$^{-1}$, 533 m2 g$^{-1}$), COP-138

Table 3. Detailed porosity and gas adsorption analysis of all the COPs studied.

COPs	Solvent	Monomer	SA(BET) 87 K Ar (m2 g$^{-1}$)	SA(Lang) 87 K Ar (<2 nm) (m2 g$^{-1}$)	V_{micro} (<2 nm) (cm3 g$^{-1}$)	SA(BET) 273 K CO$_2$ (m2 g$^{-1}$)	CO$_2$ uptake 273 K, 1.1 bar (mmol g$^{-1}$)	CH$_4$ uptake 273 K, 1.1 bar (mmol g$^{-1}$)	H$_2$ uptake 77 K, 1.1 bar (mmol g$^{-1}$)
COP-124	DCM	Benzene	42	68	0.0092	80	0.464	0.052	0.19
COP-125	DCM	Triphenylmethane	75	124	0.003	56	0.314	0.05	0.413
COP-126	DCM	Tetraphenylmethane	50	78	0.012	73	0.57	0.163	1.49
COP-127	DCM	Naphthalene	12	13	0	182	1.45	0.587	3.28
COP-128	DCM	Biphenyl	616	707	0.175	370	2.72	0.935	5.78
COP-129	DCM	Tetraphenyladamantane	533	614	0.152	147	1.06	0.408	4.2
COP-130	DCM	1,3,5-Triphenylbenzene	1685	1982	0.46	878	4.71	1.28	10
COP-131	CHCl$_3$	Benzene	2.1	3	0	173	1.28	0.398	1.75
COP-132	CHCl$_3$	Toluene	0.5	0.7	0	182	1.13	0.347	0.315
COP-133	CHCl$_3$	Xylene	0.03	0.03	0	132	0.909	0.152	0.003
COP-134	CHCl$_3$	Naphthalene	719	831	0.234	354	3.06	0.918	5.4
COP-135	CHCl$_3$	Biphenyl	711	823	0.225	409	3.19	1.11	6.1
COP-136	CHCl$_3$	Triphenylmethane	0.02	0.04	0	175	1.37	0.426	0.99
COP-137	CHCl$_3$	Tetraphenylmethane	0.5	0.7	0	4	0.42	0.084	0.08
COP-138	CHCl$_3$	Tetraphenyladamantane	409	473	0.116	269	1.54	0.524	3.12
COP-139	CHCl$_3$	Diphenylether	0.94	1.3	0	177	1.45	0.471	3.15
COP-140	CHCl$_3$	1,3,5-Triphenylbenzene	1219	1322	0.39	707	4.35	1.31	8.42
COP-141	CHCl$_3$	Diphenylamine	0.05	0.05	0	146	1.03	0.123	0.04
COP-142	CHCl$_3$	Triphenylamine	634	723	0.197	425	2.76	0.837	4.36
COP-143	CHCl$_3$	1,2-Dichlorobenzene	0.5	0.6	0	177	1.13	0.337	0.95
COP-144	DCE	Toluene	0.03	0.3	0	115	0.7	0.165	0.03
COP-145	DCE	Naphthalene	0.4	0.7	0	120	0.83	0.191	0.223
COP-146	DCE	Biphenyl	0.3	0.3	0	100	0.59	0.126	0.008
COP-147	DCE	Triphenylmethane	0.12	0.13	0	198	1.43	0.555	3.1
COP-148	DCE	Tetraphenylmethane	2.5	2.7	0	300	1.71	0.45	2.93
COP-149	DCE	1,3,5-Triphenylbenzene	5	6.5	0.0013	178	1.16	0.685	3.6
COP-150	DCE	Benzene	120	185	0.0375	230	1.67	0.561	3.72
COP-151	DCE	Diphenylamine	1.1	1.2	0	128	0.87	0.135	0.006
COP-152	DCE	Tetraphenyladamantane	524	609	0.142	268	1.84	0.722	4.44
(1.54 mmol g⁻¹, 409 m² g⁻¹), and COP-150 (1.67 mmol g⁻¹, 120 m² g⁻¹). We believe that these COPs possess ultra-microporous cavities inaccessible to larger Ar, but accessible to smaller CO2 through a quadrupole interaction with surface. To better evaluate the porosities of COPs, BET surface areas were also calculated from CO2 adsorption isotherms at 273 K and the results are shown in Table 3. While nonporous COPs exhibited higher BET surface areas from CO2 adsorption than Ar, highly porous COPs showed lower BET surface areas. For instance, less-porous COP-148 (2.5 m² g⁻¹) exhibited 300 m² g⁻¹ using CO2, but COP-130 (1685 m² g⁻¹) showed 878 m² g⁻¹ (using CO2), almost half of its surface area when Ar was used.

2.6. The CH4 and H2 Adsorption

Solid porous adsorbents are viable candidates for safely storing and transporting hydrogen (H₂) and methane (CH₄) gases. Therefore, to test our materials, we then switched the gas probe to H₂ and CH₄. The H₂ adsorption and desorption isotherms were measured at 77 K (Figure 5). The COPs exhibited high uptake capacities toward H₂ adsorption (Table 3). As in CO₂ adsorption at 1.1 bar, COP-130 and COP-140 showed highest capacities with values 2.02 and 1.70 wt%, respectively. These numbers are among the leading materials in H₂ adsorption (Table S3, Supporting Information). For example, COP-130 stores more H₂ than higher surface area materials such as COP-102 (3530 m² g⁻¹, 1.20 wt%) and PAF-1 (5600 m² g⁻¹, 1.50 wt%).

To investigate the relation of H₂ uptake and porosity, we plotted the H₂ adsorption capacities of COPs (at 1.1 bar) against their BET surface areas from Ar and CO₂ gases (Figure 5c,d). The plot against Ar surface areas showed similar trend as in Figure 4g (CO₂ plots), with nonporous COPs having higher H₂ uptake capacities than expected. In contrast, most of the H₂ uptake capacities showed fairly linear trend when plotted against CO₂ surface areas. Similar to CO₂, smaller H₂ can access ultra-microporous pores where Ar cannot adsorb. Therefore, it is not surprising to observe a linear trend between CO₂ and H₂ adsorption properties.

The CH₄ isotherms were measured at 273 K, up to 1.1 bar (Figure 6). Similarly, COPs exhibited good performance toward CH₄ adsorption, with uptake capacities as high as 1.31 mmol g⁻¹ (COP-140) at 77 K, 1.1 bar (Table 3). These values are comparable with important porous materials such as PAF-1 (5600 m² g⁻¹, 0.80 mmol g⁻¹) and BILP-6 (1261 m² g⁻¹, 1.68 mmol g⁻¹) (see Table S4, Supporting Information, for the comparison table). As we did in H₂ adsorption, CH₄ adsorption capacities at 1.1 bar were correlated with BET surface areas from Ar and CO₂ (Figure 6). The CH₄ uptake exhibited similar behavior as in H₂; nonporous COPs showed higher CH₄ capacities when plotted against Ar surface areas but exhibited linear trend against CO₂ surface areas. This is surprising, as CH₄ has a larger kinetic diameter (0.38 nm) than Ar (0.34 nm); hence, one should expect...
linear correlation between CH₄ capacities and BET surface areas from Ar. However, linear trend with CO₂ surface areas indicates that CH₄ can access ultra-micropores where only H₂ and CO₂ can fit. One possible explanation is that these COPs possess flexible frameworks with affinity toward CH₄ adsorption. Several studies reported CH₄-specific pore expansion of porous materials to allow higher uptake capacity. [18a,33] Previously, we showed that at high pressures, flexible COP-150 and COP-148 can expand and store high amount of CH₄ [18a]. These COPs feature methanophilic aromatic and aliphatic hydrocarbon framework with alkyl bridges to allow rotational freedom enabling structural expansion with external stimuli. Although the COPs studied here show exceptional promise toward CH₄ and H₂ uptake, they were only tested up to 1.1 bar. As CH₄ and H₂ are often stored at high pressures (up to 100 bar), high-pressure gas uptake analysis is needed for better assessment of materials performance.

3. Conclusion

In conclusion, we have discovered that chlorinated solvents can be used as linkers in the formation of porous network polymers with aromatic compounds in the presence of AlCl₃. Using the new method, a series of 29 different porous polymers were prepared by varying 18 different aromatic monomers in dichloromethane, chloroform, 1,2-dichloroethane. Dichloromethane and 1,2-dichloroethane act as bidentate linkers to produce diphenylmethane and 1,2-diphenylethane-based polymers, respectively, but chloroform acts as tridentate linker to yield triphenylmethane-based polymers. Produced COPs featured from nonporous to highly porous structures. Two of the best performing polymers are 1,3,5-triphenylbenzene-based COP-130 and COP-140 with BET surface areas of 1685 and 1219 m² g⁻¹, respectively. The highly porous COPs showed excellent gas uptake properties toward CO₂ (up to 4.71 mmol g⁻¹, 273 K, 1.1 bar), CH₄ (up to 1.31 mmol g⁻¹, 273 K, 1.1 bar), and H₂ (up to 2.02 wt%, 77 K, 1.1 bar). The H₂ and CH₄ adsorption capacities showed linear correlation with BET surface areas using CO₂, rather than Ar gas surface areas. This easy and cheap method makes these polymers potential candidates for gas separation and storage applications in industrial scale. Considering the scalable and inexpensive synthesis, COPs studied here show great promise for CO₂, H₂, and CH₄ uptake.

4. Experimental Methods

Materials: Dichloromethane (DCM, 99.5%), chloroform (CHCl₃, 99.5%), 1,2-dichloroethane (DCE, 99.0%), benzene (99.5%), toluene (99.7%), xylene (99.5%), 1,2-dichlorobenzene (99.0%), pyridine (99.0%), phenol (99.0%), aniline (99.0%), naphthalene (99.0%), anhydrous iron (III) chloride (98%), and methanol (99.0%) were purchased from Samchun Pure Chemicals, Korea. Diphenyl ether (99.0%), diphenylamine (a), (b), (c), (d)
(99.0%), triphenylamine (98%), triphenylphosphine (99.0%), and deuterated chloroform (99.96% deuterium and contains tetramethylsilane) were purchased from Sigma Aldrich, USA. Triphenylmethane, tetraphenylmethane (98%), and 1,3,5-triphenylbenzene (99%) were purchased from Alfa Aesar, Korea. Mesitylene (97%) and biphenyl (99%) were purchased from Acros Organics, Korea. 1-Bromoadamantane and 2-bromo-2-methylpropane were purchased from Tokyo Chemical Industry (TCI), Japan. Aluminum chloride (95%) and phosphorus pentoxide (P2O5) were purchased from Junsei Chemicals, Korea. Dichloromethane, chloroform, 1,2-dichloroethane, and 1,2-dichlorobenzene were distilled over P2O5 under nitrogen atmosphere (where they are referred to as dry solvent). All the solvents were used without purification when they were used for washing purposes or as Soxhlet extraction solvents. Physical properties and safety information of all the chemicals used in this study are shown in Table S1, Supporting Information.

Characterization: FTIR with attenuated total reflectance (FTIR-ATR) was done using Shimadzu IRTTracer, Gladi-ATR 10 model Fourier-transform infrared spectrometer. Solid-state CP/MAS 13C NMR spectra of COPs were measured by Bruker Avance III 400 WB NMR spectrometer. The elemental composition of polymers was measured using a combustion (C/H/N/S and O) analyzer and Al content was obtained from ICP-MS measurements after digesting polymers in solution. Prior to ICP-MS measurements, the polymers were digested in concentrated 60% HNO3 solution. About 5 mg of polymer sample was added to 1 mL of nitric acid and the mixture was heated to 80 °C at a rate of 10 °C min−1 under N2. Scanning electron microscope (SEM) images were taken by field-emission SEM, Magellan400, FEI Company, USA. Porosity analysis of the solvent-linked COPs were calculated from Ar adsorption isotherms by using a volumetric system (ASAP 2020, Micromeritics Inc., USA). The CH4 adsorption and desorption isotherms were measured up to 1.1 bar (P0) using a volumetric system (ASAP 2020, Micromeritics Inc., USA). The CH4 and H2 adsorption and desorption isotherms were measured up to 1.1 bar at 273 and 77 K, respectively, using a volumetric system (ASAP 2020, Micromeritics Inc., USA). The temperature during adsorption and desorption was kept constant using a circulator. Before the gas adsorption measurements, all samples were properly dried at 120 °C under vacuum for 12 h and degassed under vacuum at 150 °C for 6 h.

Synthesis: Tetraphenyladamantane was prepared by a reported procedure,[14] and all other chemicals were commercially available. Dichloromethane, chloroform, and 1,2-dichloroethane solvents were distilled over P2O5 under inert gas when they were referred to as dry. Other chemicals were used without further purification. Solvent-linked COPs were synthesized under inert conditions by mixing 1 g (or 1 mL) aromatic monomer with 2–4 molar equivalent (depending on the monomer) of AlCl3 in 20 mL of dry chlorinated solvent in the 30 mL glass vial (Caution: HCI might build up pressure in the vial). The reaction mixture was stirred for 48 h at room temperature under inert conditions. Throughout the synthesis, the color of the solution mixture slowly turned to red and then to black (Caution: AlCl3 and methanol reaction is highly exothermic). The obtained solid was filtered and washed with methanol and chloroform in Soxhlet extractor. The resulting solid was dried under vacuum at 120 °C. For the detailed procedures of each COP polymer, refer to the Supplementary Information.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements
This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIP) (nos. NRF-2017M3A7B4024140 and NRF-2017M3A7B40242235) and the startup funds by the King Abdullah University of Science and Technology (KAUST).

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
Research data are not shared.

Keywords
atom economy, carbon capture, combinatorial syntheses, microporous materials, scale-up

Received: March 3, 2021
Revised: April 25, 2021
Published online:

[1] a) S. Ma, H.-C. Zhou, Chem. Commun. 2010, 46, 44; b) H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 8875; c) P. M. Budd, K. J. Mayscale, C. E. Tattershall, B. S. Ghanem, K. J. Reynolds, N. M. Kieboom, D. Fritsch, J. Membr. Sci. 2005, 251, 263; d) W. Guo, S. M. Mahurin, R. R. Unocic, H. Luo, S. Dai, Nano Lett. 2020, 20, 7995.
[2] a) E. M. Dias, C. Petit, J. Mater. Chem. A 2015, 3, 22484; b) H. A. Patel, M. S. Yavuz, C. T. Yavuz, RSC Adv. 2014, 4, 24320; c) Z. Xu, Q. Zhang, H. H. P. Fang, Crit. Rev. Environ. Sci. Technol. 2003, 33, 363; d) Z. Dong, C. Zhang, H. Peng, J. Gong, H. Wang, Q. Zhao, J. Yuan, Mater. Horizons 2020, 7, 2683.
[3] a) I. Pulko, J. Wall, P. Krajnc, N. R. Cameron, Chem. Eur. J. 2010, 16, 2330; b) Y. Zhang, L. Zhao, P. K. Patra, J. Y. Ying, Adv. Synth. Catal. 2008, 350, 662; c) C. E. Chan-Thaw, A. Villa, P. Katekomol, D. Su, A. Thomas, L. Prati, Nano Lett. 2010, 10, 537; d) M. Garai, V. Rozycz, Z. Ullah, A. Jamal, C. T. Yavuz, APL Mater. 2019, 7, 111102; e) Z. Zhang, S. Yao, X. Hu, F. Okejiri, K. He, P. Liu, Z. Tian, V. P. Dravid, J. Fu, X. Zhu, S. Dai, Adv. Sci. 2021, 8, 2001493.
[4] a) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705; b) J. L. C. Rowsell, O. M. Yaghi, Microporous Mesoporous Mater. 2004, 73, 3; c) V. Rozycz, C. T. Yavuz, Chem. 2017, 3, 719.
[5] a) A. P. Côté, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166; b) F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klöck, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 4570; c) M. Martinez-Abadia, C. T. Stoppelli, K. Strutynski, B. Lerma-Berlanga, C. Martí-Gastaldo, A. Saeki, M. Melle-Franco, A. N. Khlobystov, A. Mateo-Alonso, J. Am. Chem. Soc. 2019, 141, 14403.
[6] a) D. Thirion, Y. Kwon, V. Rozycz, J. Byun, C. T. Yavuz, Chem. Mater. 2016, 28, 5592; b) D. Thirion, V. Rozycz, J. Byun, Y. Jung, M. Attilhan, C. T. Yavuz, Phys. Chem. Chem. Phys. 2016, 18, 14177.
[7] a) M. P. Tsyrupu, V. A. Davankov, React. Funct. Polym. 2002, 53, 193; b) M. Negre, M. Bartholin, A. Guyot, Angew. Makromol. Chem. 1979, 80, 19.
