Characterization of the pathoimmunology of necrotizing enterocolitis reveals novel therapeutic opportunities

Steven X. Cho et al.^

Necrotizing enterocolitis (NEC) is a severe, currently untreatable intestinal disease that predominantly affects preterm infants and is driven by poorly characterized inflammatory pathways. Here, human and murine NEC intestines exhibit an unexpected predominance of type 3/TH17 polarization. In murine NEC, pro-inflammatory type 3 NKp46^−RORγ^+Tbet^+ innate lymphoid cells (ILC3) are 5-fold increased, whereas ILC1 and protective NKp46^+RORγ^+ILC3 are obliterated. Both species exhibit dysregulation of intestinal TLR repertoires, with TLR4 and TLR8 increased, but TLR5-7 and TLR9-12 reduced. Transgenic IL-37 effectively protects mice from intestinal injury and mortality, whilst exogenous IL-37 is only modestly efficacious. Mechanistically, IL-37 favorably modulates immune homeostasis, TLR repertoires and microbial diversity. Moreover, IL-37 and its receptor IL-1R8 are reduced in human NEC epithelia, and IL-37 is lower in blood monocytes from infants with NEC and/or lower birth-weight. Our results on NEC pathomechanisms thus implicate type 3 cytokines, TLRs and IL-37 as potential targets for novel NEC therapies.

^
A list of authors and their affiliations appears at the end of the paper.
 Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease that primarily affects infants born prematurely and with a very or extremely low birth weight (VLBW < 1500 g; ELBW < 1000 g). Up to 11% of VLBW preterm infants are affected by NEC annually in the US. NEC currently is the most common cause of death between postnatal days 15 and 60 in infants born before 28 weeks of gestation. The disease entails substantial morbidity and mortality, ranging from 20–30% in confirmed cases to 65% when surgery is required. Current treatment options for NEC are limited to bowel rest, antibiotics, and supportive therapy such as blood pressure management. Gut perforation occurs in ~20–50% of NEC infants, necessitating surgery. Thus, the prognosis for NEC infants is grim and those who survive commonly have to deal with long-term neurodevelopmental and growth complications, rendering new therapeutic strategies for NEC an urgent unmet need.

NEC pathogenesis is multifactorial, with four main risk factors: prematurity, formula feeding, abnormal microbial colonization, and hypoxic/ischemic states. However, the relative contribution of each of these risk factors is unclear, and despite decades of research, the pathogenesis of NEC remains largely elusive. Nevertheless, existing literature points to intestinal dysbiosis in NEC that results from an imbalance between pro-inflammatory mediators such as Toll-like receptor (TLR)4, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF) and IL-18 on the one hand, and protective anti-inflammatory mediators such as TLR9, IL-1 receptor antagonist (IL-1Ra), IL-10 and transforming growth factor (TGF)β on the other. This imbalance leads to a vicious cycle in which excessive pro-inflammatory signaling and intestinal injury reinforce one another and perpetuate disease activity.

Although many of the immune players with a role in the vicious cycle of NEC are known, the sequence of events and the importance of individual mediators and cells in NEC pathogenesis remain poorly understood. Little is known about the adaptive immune system in NEC and even less about specific immune cell subsets in the preterm gut. Innate lymphoid cells (ILC), which closely resemble the T helper (T_h) lymphocyte subsets T_h1, T_h2, and T_h17 in terms of cytokine production, have become increasingly implicated in inflammatory bowel diseases. However, only very few studies have linked ILC dysregulation and neonatal intestinal pathology. Furthermore, there is a striking paucity of omics-type approaches in NEC research. The excessively inflammatory intestinal environment that characterizes NEC has prompted the evaluation of broad-spectrum anti-inflammatory mediators such as IL-10 and TGF-β as therapeutics. IL-37 is a powerful anti-inflammatory cytokine that is inducible by a multitude of pro-inflammatory stimuli such as IL-1β, IL-18, TNF, IFNγ, or activation of TLR1/2, 4, and 9. Moreover, IL-37 has a wide range of actions, including suppression of various pro-inflammatory cytokines such as IL-1, IL-6, and TNF, and attenuation of adaptive immunity. As a mouse homolog for IL-37 has yet to be discovered, in vivo studies use mice transgenic for human IL-37 (IL-37tg) to investigate the effects of IL-37. We have previously shown that lipopolysaccharide (LPS)-induced inflammatory responses are markedly attenuated in IL-37tg mice, and that IL-37 is protective in murine colitis. Taking into account additional data collected by us and others on IL-37, this member of the IL-1 cytokine family has emerged as a promising therapeutic option for the treatment of inflammatory diseases of the gut and other organs.

Here we explore several pathomechanistic aspects of NEC in a mouse model that uses clinically relevant triggers of the disease. As summarized in Fig. 1, we show that NEC profoundly disrupts the intestinal homeostasis of innate immunity (e.g., changes in IL-6, TLRs, CXCL-1, TGF-β, IL-36 agonist-antagonist ratios), adaptive immunity, and ILC (e.g., dominance of type 3 over type 1, type 2 and regulatory polarization) as well as microbial diversity. These mouse data are supported by studies of resection specimens and peripheral blood from human preterm infants with NEC and appropriate controls. Besides providing cross-species validation for most of the murine findings, the human data reveal an NEC-associated epithelial deficiency in IL-37 and its receptor IL-1R8, and a lower IL-37 abundance in monocytes, particularly at 2 weeks of age when NEC most commonly occurs. Accordingly, bolstering IL-37 protects mice from NEC-induced intestinal injury and mortality, and restores several (e.g., innate cytokines, IL-4, IL-17F, microbial diversity), but not all (e.g., not ILC imbalance) disruptions caused by NEC. Together, our data advance knowledge on the pathoimmunology of NEC and highlight translational opportunities that could be exploited to bring relief to young patients suffering from this devastating disease.

Results

IL-37 ameliorates tissue injury and symptoms in murine NEC.

In order to assess whether IL-37 protects against NEC, we employed an established mouse strain that transgenically expresses human IL-37b (IL-37tg). Newborn IL-37tg and C57BL/6J WT mice were separated from dams after birth and subjected to formula feeding, asphyxia, and cold stress to induce NEC. Approximately half of each set of littermates remained with their dams and served as dam-fed controls. Just 10% of IL-37tg mouse pups died by the experimental endpoint at 72 h, whereas mortality was sixfold higher in WT pups (63%; i.e., mortality was 84% lower in IL-37tg pups, Fig. 2a). Mice that died from NEC exhibited reduced weight gain (Fig. 2b). Luminal gas trapping may be indicative of ileus, and gas within the intestinal wall is termed pneumatosis intestinalis, two pathologies observed in human NEC (Fig. 2c). Macroscopic assessment of the small intestine of the mouse pups revealed numerous gas bubbles in the intestinal lumen and within the intestinal wall in WT NEC mice, whereas IL-37tg NEC mice were largely protected from ileus and pneumatosis (Fig. 2d). Using a 0–3 scale (no to severe pathology, see “Methods”), three pathologies of human NEC exhibited lower scores in IL-37tg NEC mice than in controls: hematochezia by 88%, ileus by 79%, and 47% reductions in duodenum and ileum did not reach significance (Fig. 2 and Supplementary Fig. 2).

Employing a more translational approach, we next assessed the protection afforded by recombinant IL-37 (reclIL-37) in this model. Although unsurprisingly at lower efficacy than transgenic expression, reclIL-37 ameliorated NEC-associated injury in the jejunum by 38% (Fig. 2i). Other, non-significant observations included a reduction in duodenal disease severity (28%, Fig. 2i) and hematochezia (59%, Supplementary Fig. 2b), and there was no difference between reclIL-37 and vehicle in terms of severity score in the ileum (Fig. 2i), ileus (Supplementary Fig. 2b) and survival (Supplementary Fig. 2c). We estimate that overall, reclIL-37’s efficacy to protect from NEC was approximately half that of the transgene, based on averaging effect sizes in all categories (Fig. 2 and Supplementary Fig. 2).
Thus, transgenic expression of IL-37 conferred protection against NEC-induced tissue injury and associated pathologies. While not as strong, treatment with recIL-37 conferred modest protection. Of note, our murine NEC model mimicked the human disease in several aspects of clinical presentation as well as macro- and histopathology.

Molecular characterization of murine NEC and IL-37 effects. To explore the immunopathology of NEC, we subjected intestinal tissue lysates to multiplex real-time PCR and multiplex ELISA. In WT pups, NEC was associated with increased expression of pro-inflammatory genes in the jejunum and ileum compared to WT dam-fed mice (Fig. 1, box Mediators of inflammation), with up to sixfold increases in \(\text{Il6} \) (Fig. 3a), \(\text{Il1b} \) (Supplementary Fig. 3a), and C-X-C motif chemokine ligand 1 (Cxc1l; Fig. 3b). Similarly, of the three isoforms of the pro-inflammatory IL-1 family member IL-36, \(\text{Il36a} \) and \(\text{b} \) (Supplementary Fig. 3b, c) were detectable only in the ileum of the NEC groups. IL-37 prevented the development of the inflammatory milieu we observed in WT NEC pups: Expression of the pro-inflammatory genes \(\text{Il6} \), \(\text{Il1b} \), Cxc1l, and \(\text{Il36g} \), but not \(\text{Il36b} \),

Fig. 1 Overview of innate and adaptive immunity in NEC and of the protective effects of IL-37. Colored arrows within boxes and next to ILC designations and IL-37⁺ monocyte within blood vessel: Color indicates consequences of NEC-induced changes as protective (green), harmful (red), or unknown (gray); direction denotes increase (upwards), decrease (downwards), and no change (flat line). The green arrow on monocyte crossing endothelial barrier signifies the release of IL-37 into the subepithelial tissue. Colored rings around cytokines indicate prevention of increase or decrease, or restoration to baseline by IL-37 (i.e., favorable modulation by IL-37); no border, not affected by IL-37 or not assessed in this regard. The dashed circular line encloses changes and effects pertaining to adaptive immunity. Interactions depicted by black and gray connectors make no claim to be comprehensive; interactions relevant to the data reported in this paper are prioritized. Categorization into protective, harmful, and unknown is based on current knowledge of prototypical function; see ref. 12 and references in the text.
was similar to the dam-fed baseline in IL-37tg NEC mice (Fig. 3a-c, Supplementary Fig. 3a). As gene regulation was overall largely similar in jejunum and ileum, we proceeded to measure only ileal protein by multiplex ELISA. The NEC-associated twofold increase in IL-18 protein abundance in WT mice was prevented in IL-37tg NEC mice ($p = 0.051$; Fig. 3d). Similarly, the NEC-associated increase in TNF and IL-6 protein (Supplementary Fig. 3d, e) was significant in WT pups, but not in IL-37tg pups.

Next, we assessed the regulation of anti-inflammatory mediators by NEC and IL-37 in the intestine (Fig. 1, box Anti-inflammatory mediators). No change was observed across experimental groups for IL-10 (Fig. 3e), whereas Il1rn (protein
Fig. 2 IL-37tg mice are protected from NEC. a–h Newborn IL-37tg and WT mouse pups were randomized into dam-fed or NEC groups. Dam-fed pups remained with the dam; NEC pups received 3-hourly formula feeds and cold stress and asphyxia twice daily. Data are from three independent experiments with \(n = 8 \) mice for WT NEC and 10 for IL-37tg NEC. a Percent survival and b percent weight change of IL-37tg vs WT NEC mice subjected to NEC; log-rank test \(P \)-value: \(^{\circ} P < 0.05 \). Black squares denote death endpoints. The starting weights of WT and IL-37tg pups were similar. c X-ray of a human infant with NEC. Red arrows indicate pneumatisos intestinalis; also note dilated bowel loops indicative of ileus. d Representative photographs of small intestines from mice of each experimental group immediately following excision at the time of death or experimental endpoint. Black arrows denote luminal air bubbles, red arrows pneumatisos intestinalis (gas trapped in the intestinal wall), scale bars are 1 cm, side panels are \(\times 5 \) magnifications. e–g \(n = 8 \) pups for both WT NEC and IL-37tg NEC. Student’s t-test or Mann-Whitney U test \(P \)-values: \(^{\circ} P < 0.05 \) for IL-37tg vs WT. e, f, i, h Graphs show measurements in individual pups as dots, bars indicate means (e, f, i) or medians (h). e Clinical scoring of NEC-associated parameters (0–3 scale, no to severe pathology, see “Methods” section). f Histological scoring of intestinal regions in NEC mice (0–3 scale; see “Methods” section, Supplementary Fig. 1 and panel g). g Representative photomicrographs of intestinal sections from each of the four groups, e.g., showing a healthy mucosa in WT dam-fed mice (score 0), mild vacuolation in an NEC induction made little difference to KLRG1 surface expression in IL-37tg NEC mice compared to WT dam-fed mice. This reduction in TGFB-\(\beta _1 \) was prevented in IL-37tg NEC mice (Fig. 3g).

These findings demonstrate that IL-37 counteracts NEC-induced inflammation in the murine small intestine in vivo. This protection was not via the anti-inflammatory cytokines IL-10 and IL-1Ra; however, IL-37 restored intestinal TGFB-\(\beta _1 \) to steady state.

Changes in TLR abundance in murine NEC. Situated at the interface between host and microbiome at epithelial surfaces, TLRs are critical mediators of intestinal immune homeostasis\(^{27}\), and therefore a logical target for exploration in this study (Fig. 3h–o, Supplementary Fig. 3h–k and top two boxes in Fig. 1). Consistent with its known pathogenic role in NEC\(^{28,29}\), we observed an NEC-associated up to 1.7-fold increase in \(\text{TLR}4 \), which was significant in the jejunum, and prevented by the IL-37 transgene (Fig. 3h). Our comprehensive study of mRNA regulation of TLRs furthermore revealed NEC-associated decreases in jejunal and ileal expression of \(\text{TLR}1 \) (up to \(-58\% \)), \(\text{TLR}3 \) (\(-42\%\); Supplementary Fig. 3h, j), \(\text{TLR}5 \) (\(-74\%\)), \(\text{TLR}6 \) (\(-93\%\)), \(\text{TLR}9 \) (\(-70\%\)), \(\text{TLR}11 \) (\(-94\%\)), and \(\text{TLR}12 \) (\(-92\%\); Fig. 3i, j, l–n) in both WT and IL-37tg NEC pups compared to their respective dam-fed controls. Whereas the difference in \(\text{TLR}4 \) (Fig. 3h) and a decrease in jejunal \(\text{TLR}2 \) (\(-53\%\), Supplementary Fig. 3i) were the only significant changes conferred by IL-37 when we compared the two NEC groups, we unexpectedly found that the presence of IL-37 altered TLR expression in the intestines of control mice: There was an up to 3.4-fold increase in \(\text{TLR}5,7,9 \), and \(\text{TLR}11-13 \) mRNA abundance (Fig. 3i–o, significant for \(\text{TLR}5,7,9, \) and \(\text{TLR}13 \) in IL-37tg compared to WT dam-fed mice. No significant change was observed for \(\text{TLR}8 \) (Supplementary Fig. 3k).

These data suggest that modulation of the intestinal baseline TLR repertoire may be one of the mechanisms IL-37 employs to confer its beneficial effects in NEC, highlighting the importance of this repertoire in intestinal health in the newborn. IL-37 also ameliorated the NEC-induced increase in TLR4.

NEC-induced disruption of intestinal ILC homeostasis. The evidence for a notable relevance of ILC in intestinal disease is increasing\(^{16,17}\), but knowledge on ILC in NEC and in development during early life is scarce. Hence, we next investigated the developmental and NEC-associated changes to ILC populations in the murine small intestine (gating strategies in Supplementary Fig. 4a, group Innate lymphoid cells in Fig. 1). NKp46\(^\text{+} \)ROR\(\gamma \text{t} \) ILC3, which have protective functions\(^{48}\), were almost completely ablated in NEC mice compared to adult and dam-fed mice (Fig. 4a, b); moreover, this ILC3 subset was up to 78\% reduced in 3 day-old dam-fed pups compared to \(8-10 \) week-old adult mice (Fig. 4b). Although ILC1 were also up to 85\% lower in the NEC groups (Fig. 4a, c), the pro-inflammatory NKp46\(^\text{+} \)ROR\(\gamma \text{t} \)Tbet\(^{+} \) ILC3\(^{53}\) population was fivefold higher in NEC mice compared to dam-fed and adult controls (Fig. 4d, e). There was no difference in the abundance of pro-inflammatory ILC3 between adults and dam-fed controls (Fig. 4e), and only minor differences in NKp46\(^\text{+} \)ROR\(\gamma \text{t} \)Tbet\(^{+} \) ILC3 (Supplementary Fig. 4b).

As expected\(^{32}\), the majority of adult intestinal GATA3\(^{+} \) ILC2 exhibited the maturational marker KLRL1 whilst neonatal GATA3\(^{+} \) ILC2 were nearly devoid of KLRL1 (Fig. 4f–h). However, whether or not the 3 day-old pups were subjected to NEC induction made little difference to KLRL1 surface expression (Fig. 4h). In fact, NEC was not associated with any significant changes in ILC2 compared to dam-fed control pups of the same age; however, GATA3 positivity was up to 1.7-fold higher in IL-37tg adult and dam-fed ILC2 compared to their WT counterparts (Fig. 4g, h). This increase in GATA3 in control mice was the only change afforded by IL-37 on ILC populations (Fig. 4a–h).

In summary, NEC was accompanied by a marked increase in pro-inflammatory NKp46\(^\text{+} \)ROR\(\gamma \text{t} \)Tbet\(^{+} \) ILC3, and NEC intestines contained fewer ILC1 and presumably protective NKp46\(^\text{+} \)ROR\(\gamma \text{t} \) ILC3. We also found notable differences between 3 day-old and adult mice in NKp46\(^\text{+} \)ROR\(\gamma \text{t} \) ILC3 and ILC2, but not ILC1 and NKp46\(^\text{+} \)ROR\(\gamma \text{t} \)Tbet\(^{+} \) ILC3.

IL-37 prevents dysregulation of adaptive immunity in NEC. We next investigated the regulation of adaptive immunity in NEC and its modulation by IL-37 (Fig. 1, encircled group Adaptive immunity). Consistent with the increase in the presumably pathogenic NKp46\(^\text{+} \)ROR\(\gamma \text{t} \)Tbet\(^{+} \) ILC3 population, NEC was associated with an increase in the protein abundance of Tbet\(^{17/18} \) type 3 cytokines, including IL-17F (fourfold, Fig. 5a) and IL-21 (19-fold though not statistically significant, Supplementary
IL-22 was non-significantly higher (twofold, Supplementary Fig. 5b) and the Il17a and Il22 genes were only detectable in jejunum and ileum of WT NEC pups (Supplementary Fig. 5c, d). However, there was little change in IL-17A and IL-23 protein abundance (Supplementary Fig. 5e, f), and the TH17/type 3 chemokine CCL20 was decreased in NEC (−44%, Supplementary Fig. 5g). The augmentation of the type 3 cytokines IL-17F and IL-21 in the NEC intestines was not observed in the presence of IL-37 (Fig. 5a and Supplementary Fig. 5a). Analysis of T cell numbers and polarization revealed that NEC was associated with an up to 68% decrease in intestinal CD4−T cells (which are mostly CD8+ T cells; Fig. 5b, c); CD4+T cells were also up to 91% decreased (Supplementary Fig. 5h, i). Importantly, among CD4−T cells, the fraction that was TH17/
Fig. 3 Pro- and anti-inflammatory mediators and TLRs in murine NEC and their modulation by IL-37. Intestinal tissue lysates from NEC or dam-fed pups collected at experimental endpoint or time of death were measured for gene expression (a–c, f–h, open bars) and protein abundance (d, e, g, filled bars) by multiplex real-time PCR and multiplex ELISA, respectively. Functionally, a–d are pro-inflammatory, e–g anti-inflammatory mediators, and h–o are TLRs. Data are from three independent experiments. Dots indicate data from individual mice and bars depict means. One-way ANOVA or ANOVA on ranks P-values: *P < 0.05; **P < 0.01; ***P < 0.001 for IL-37tg or WT NEC compared to dam-fed controls (see “Methods” section). &P < 0.05; &&P < 0.01 for IL-37tg NEC compared to WT NEC. &P < 0.05; &&&P < 0.001 for IL-37tg dam-fed compared to WT dam-fed. a–c, f, h–o Real-time PCR results for the indicated genes were normalized to Hprt1 and depicted as fold-change relative to the lowest expressed gene (see “Methods” section). n = 3 for WT dam-fed, 4 for IL-37tg dam-fed, 8 for both WT and IL-37tg NEC. d, e, g ideal cytokine abundance of the indicated protein is normalized to total protein (see “Methods” section). n = 3 for both WT and IL-37tg dam-fed, 4 for both WT and IL-37tg NEC.

Type 3-polarized was sixfold increased (78% vs 13%; P < 0.001) in NEC compared to controls (Fig. 5c), and, albeit not significantly, the same was the case in CD4+ T cells (1.5-fold in WT NEC and threefold in IL-37tg NEC, Supplementary Fig. 5i). The type 2 cytokine balance was also disrupted in WT NEC mice, with decreased abundance of IL-4 (~60%) and IL-13 (~74%; Fig. 5d, e). Likewise, the expression of Gata3 (Fig. 5f) and protein abundance of CCL11 (Supplementary Fig. 5j) were reduced by 75% and 44%, respectively. Jejunal and ileal Il4 and Il13 gene expression were virtually undetectable in WT NEC mice (Supplementary Fig. 5k, l), and TSLP (thymic stromal lympho-poietin) was undetected except in one dam-fed mouse. Interestingly, mRNA and protein abundance of the epithelial type 2 cytokine IL-33 were up to 40-fold increased in NEC pups compared to their dam-fed littermates (Fig. 5g, h). IL-37 normalized the NEC-associated dysregulation of IL-4, IL-13, and IL-33 (Fig. 5d, e, g, h), restoring each to steady state, but did not affect CCL11 and Gata3 (Supplementary Fig. 5j and Fig. 5f).

Investigation of markers of type 1 immunity yielded a mixed picture. Whereas we observed moderate increases in Cxcl11 (Supplementary Fig. 5m, jejunum only) and IFNy (Fig. 5i) in WT NEC mice compared to dam-fed controls, IL-12p70 protein was unchanged (Supplementary Fig. 5n). In contrast, we found the transcription factor Tbet (gene name Tbx21, Fig. 5j), the chemokine Cxcl10, and the chemokine receptor Cxcr3 (Fig. 5k, l) reduced by up to 77%. Regulation of type 1 mediators by IL-37 was also not uniform. IFNy abundance (Fig. 5i) trended lower in IL-37tg than in WT pups at steady state and in NEC, whereas there was no effect on Tbx21, Cxcl11, and IL-12 (Fig. 5j and Supplementary Fig. 5m, n). However, IL-37 reduced Cxcl10 even further in NEC (Fig. 5k), but increased Cxcr3 at steady state in the jejunum (Fig. 5i).

The transcription factor that predominates in regulatory T cells (Treg), Foxp3, was reduced by up to 77% in both WT and IL-37tg NEC mice compared to their respective dam-fed controls (Fig. 5m).

Overall, these findings indicate that a type 3 response in combination with a deficiency in type 2 cytokines and in Tregs may contribute to murine NEC. IL-37 largely restored the cytokine imbalance but did not affect the intestinal abundance of Foxp3.

Characterization of the pathoimmunology of human NEC. As pathoimmunological phenotypes in mice not rarely diverge from those in humans (and NEC being notorious for such divergence13), a critical next step was to validate our mouse findings in samples from human infants with NEC. We investigated two separate cohorts and sample types: (1) surgical tissue resection specimens from human preterm infants with stage III, i.e., advanced NEC for which surgery is usually required35, at the time of surgery (exemplary specimen with macroscopically healthy, affected and necrotic intestinal regions indicated by arrows in Fig. 6a, upper panel) as well as at the time of reanastomosis (e.g., Fig. 6a, lower panel), and from appropriate controls (overview of clinical data in Supplementary Table 1). (2) Longitudinal blood samples from infants with NEC stages I–III and pertinent controls.

Gene expression analysis on the intestinal samples from cohort 1 revealed that consistent with our murine NEC data (Fig. 3 and Supplementary Fig. 3), expression of pro-inflammatory genes in afflicted and necrotic human NEC sections was increased compared to each of the three types of controls (Fig. 6). These controls were (a), intestinal tissue from the same infant obtained at the same time as the afflicted and necrotic regions termed ‘Healthy’; (b) from the same infant after recovery from NEC termed “Recovered”; and (c) from non-infected intestines termed “Control” (see “Methods” section for details on control infants). The increased genes included IL1B (up to 116-fold, Supplementary Fig. 5a), IL6 (28-fold, Fig. 6b), TNF (42-fold, Supplementary Fig. 5b), IL8 (289-fold, Supplementary Fig. 5c), and IL1A (43-fold, Supplementary Fig. 5d; changes in Supplementary figure did not reach statistical significance due to intra-group variability). We also observed a trend towards increased expression of the IL-36 isoforms IL36A (mostly undetectable in each of the healthy groups, Supplementary Fig. 5e) and IL36B (mostly undetectable in Control and Recovered, but higher in Healthy, Supplementary Fig. 5f) and IL36G (up to 2.5-fold, Supplementary Fig. 5g) in “Afflicted” and “Necrotic” NEC sections compared to controls. These findings also resembled those in murine NEC (Fig. 3 and Supplementary Fig. 3). Although IL36 gene expression was relatively low, the ratios between the pro-inflammatory IL-36 agonists and IL-36RA were substantially higher in the NEC groups (up to 102-fold for IL36B:IL36RN and up to 50-fold for IL36G:IL36RN). In addition, we found expression of the inflammasome component NLRP3 up to ninefold increased (Fig. 6c). In the majority of cases, there was no or little difference in the expression of pro-inflammatory genes between non-inflammatory Controls, the macroscopically Healthy regions during acute NEC, and intestines of infants who had Recovered from NEC (Fig. 6b and Supplementary Fig. 6).

Regarding anti-inflammatory/regulatory mediators, there was little difference in TGFβ1 expression between the groups (Supplementary Fig. 6i), but IL10 was increased more than fourfold in afflicted and necrotic NEC sections (Supplementary Fig. 6j). In contrast, IDO1 was reduced by 90% (Fig. 6d). See above for IL36RN and below for the IL-37 pathway.

TLR expression in human NEC was mostly bipolar, with only TLR1 and TLR3 showing little change (Supplementary Fig. 7a, b). Whilst TLR7, TLR9, TLR10 (Fig. 6e–g), TLR2, TLR5, and TLR6 (Supplementary Fig. 7c–e) were markedly decreased by up to 86% in each of the regions of the acute NEC specimens, TLR4 (twofold, Fig. 6h) and TLR8 (sixfold, Fig. 6i) were increased particularly in the necrotic NEC sections compared to the Control and Recovered groups.

Type 1 mediators declined more consistently in humans than murine NEC: IFNG, CXCL10, CXCL11, and CXCR3 (Fig. 6j–m), as well as TBX21 (Supplementary Fig. 7d), were up to 93%
reduced in acute NEC specimens compared to non-inflammatory Controls. In terms of type 2 cytokines, the pathoimmunology of human and mouse NEC was largely congruent, although due to intra-group variability, most differences did not reach statistical significance. This was the case for the NEC-associated reductions in IL5 and IL13 (Supplementary Fig. 7g, h), whereas the 68% decrease in GATA3 was significant (Fig. 6n). Intriguingly, even the NEC-associated increase in IL33 we observed in murine NEC was present as a twofold increase in human disease (Supplementary Fig. 7i).

Regarding type 3 and Treg mediators, we observed an NEC-associated twofold increase in the gene encoding a receptor subunit of IL-17A and F, IL17RA (Fig. 6o), whereas IL22, which is generally considered protective in the intestine, was up to 93% lower (Fig. 6p). NEC did not affect the expression of IL17A and RORC (Supplementary Fig. 7j, k), but in contrast to our murine
findings, FOXP3, IL17F and IL21 trended lower in each of the intestinal regions of infants with acute NEC (Supplementary Fig. 7l–n).

One of our most intriguing observations was that the IL-37 pathway is compromised in NEC. By immunohistochemistry (Fig. 7a–e), IL-1R8 (previously called SIGIRR or TIR8) was readily detectable in epithelial cells in the villi and crypts of non-NEC Controls and infants Recovered from NEC (Fig. 7a, far left and far right, Fig. 7b), whereas intact villi in NEC tissue exhibited a reduced IL-1R8 abundance (Fig. 7a, 2nd from left, Fig. 7b). IL-1R8 was almost completely absent in regions where the integrity of the villi was compromised (Fig. 7a, 3rd from left).

Quantitatively, IL-1R8 fell by 43% in the NEC-afflicted regions and by 31% in the non-afflicted/healthy regions (Fig. 7b). Of note,
Fig. 5 Markers of adaptive immunity in NEC. Intestinal tissue lysates were assayed for gene expression (open bars) by multiplex real-time PCR and protein abundance (filled bars) by multiplex ELISA or flow cytometry assessing mediators of adaptive immune type 3 (a–c), type 2 (d–h), type 1 (i–l) and regulatory (m) polarization. a, d–m One-way ANOVA or ANOVA on ranks P-values: *P < 0.05; **P < 0.01, and ***P < 0.001 for IL-37tg NEC compared to WT NEC. b, c Flow cytometric analysis for T cells on the same cells as in Fig. 4 was performed. As in Fig. 4, data are from n = 2–3 independent experiments; n = 4 mice for WT adult, 5 for IL-37tg adult, 4 for WT dam-fed, and 3 each for IL-37tg dam-fed, WT, and IL-37tg NEC. b Representative gating plot for CD4+ TCRβ+ RORγt+ cells, which originate from the live CD45+ lymphocyte gate; arrow indicates the source of the solid color fill in the graph. c Measurements of individual mice (dots) and means (open bars) of CD4+ TCRβ+ cell percentages under live CD45+ lymphocytes are shown. One-way ANOVA P-values: *P < 0.05 for IL-37tg NEC compared to IL-37tg adult mice. §P < 0.05 for IL-37tg NEC compared to dam-fed (see “Methods” section). Solid color fill represents the mean percentage within each bar that is RORγt+, i.e., the RORγt+ fraction among CD4+ TCRβ+ cells. Statistics for solid bars by one-way ANOVA (not shown in the figure): P < 0.001 for each of the groups of pups compared to adults. f, g, j–m Real-time PCR results were normalized to Hprt1 and the indicated genes are graphed as fold-change relative to the lowest expressed gene (see “Methods” section). Dots indicate data from individual mice, bars indicate means. n = 3 mice for WT dam-fed, 4 for IL-37tg dam-fed, 4 for both WT and IL-37tg NEC.

Discussion

Despite decades of research, NEC remains a major challenge in the neonatal intensive care unit because of its insidious onset and rapid progression and the absence of an effective therapy, which renders neonatologists powerless to treat what still is for many infants a deadly disease and for survivors a severely disabling condition. As the main obstacle to developing new treatments has been our poor pathomechanistic understanding, we set out to parse the destructive inflammation underpinning NEC. Several discoveries emerge from our work: (i) the wide-spectrum anti-inflammatory cytokine IL-37 and its receptor IL-1R8 are deficient in human NEC, and augmenting IL-37 ameliorates the disease in mice. (ii) Beyond the promise these findings hold for future use of IL-37 to treat or prevent NEC, our exploration of the beneficial effects of IL-37 yields mechanistic insights, including (iii) an unexpected IL-37-mediated modulation of baseline TLR expression, and (iv) partial restoration by IL-37 of the imbalance in type 3 vs type 1 and 2 adaptive immunity as well as in innate pro- and anti-inflammatory mediators. (v) Type 3 immunity unexpectedly dominates over types 1, 2 and Treg in NEC, as reflected in an imbalance of ILC, T cells and mediators such as IL-17 and its receptor, IL-22 and GATA3; (vi) both human and murine NEC exhibit complex TLR dysregulation with pronounced decreases in TLRs 5–7 and 9–12 and increases in TLRs 4 and 8; and (vii) the disease is associated with abnormalities in the IL-36 pathway. These findings constitute a substantial advance on the path to understanding and future conquest of NEC.

Innate immunity matures faster than adaptive immunity during gestation, and pregnancy skews the fetal adaptive immune system towards type 2 polarization. Our finding that type 3 mediators may contribute to NEC is thus unexpected. One report linked intestinal IL-17A (IL-17F was not measured) and IL-17A...
Fig. 6 Innate and adaptive immunity in human NEC. Intestinal tissue sections were collected from infants with acute surgical NEC (n = 6 healthy/afflicted, n = 4 necrotic), from the same infants upon recovery from NEC (at reanastomosis of the stoma, n = 2), and from infants who underwent intestinal surgery for non-inflammatory diseases other than NEC (n = 5). For further clinical information, see Supplementary Table 1. The resection specimens were assessed for gene expression by multiplex real-time PCR. **a** Upper panel, acute NEC specimens were macroscopically divided into healthy (green arrow), afflicted (orange arrow) and necrotic (red arrow) sections; one exemplary resection specimen is shown. Lower panel, exemplary specimen at time of reanastomosis. Categories of mediators shown are: innate immunity (b–i); type 1 (j–m); type 2 (n); and type 3 (o, p) adaptive immunity. **b**–**p** Real-time PCR results were normalized to ACTB and graphed as fold-change relative to the lowest expressed gene. Measurements of individual infants are depicted as dots, bars are medians. One-way ANOVA on ranks P-values: *P < 0.05; **P < 0.01, and ***P < 0.001 for healthy, afflicted or necrotic acute NEC compared to non-NEC controls. #P < 0.05 and ##P < 0.01 for healthy NEC vs afflicted or necrotic NEC (see “Methods” section).
to murine and human NEC; in that study, blockade of IL-17RC, a receptor subunit for IL-17A/F, abrogated murine NEC injury. A pathogenic role for T_{h}17 signaling in NEC would be consistent with increases in IL-17A, IL-17F, and T_{h}17 cells in ulcerative colitis (UC) and Crohn’s disease (CD)—and the signaling pathways affected in CD and NEC are not dissimilar. The NEC-associated increase in IL-17F we observed corroborates human genetic evidence that an SNP in IL17F—consistent with increases in IL-17A, IL-17F, and TH17 cells in UC and Crohn’s disease (CD)—and the signaling pathways affected in CD and NEC are not dissimilar. The NEC-associated intestinal decrease in IL-17FI associated with NEC is decreases in type 2 mediators and increased type 3 cytokine production. This finding was unexpected given the fetal and neonatal bias towards type 2 polarization in mice and humans, and stands in contrast with a report on increased ileal IL-4, IL-5, and IL-13 in NEC rats, which may be due to differences in study design. Pathoimmunologically, such weakening of type 2 pathways places NEC closer to CD and remote from UC, where type 2 immunity is usually considered pathogenic. Accordingly, our data agree with reports of IL-13 being protective in chronic models of murine colitis and increased IL4 in pioglitazone-mediated protection against NEC. The NEC-associated intestinal deficiency in type 2 mediators may in part be due to the age-dependent lack of KLRG1^{+} ILC2 in neonatal mice we found, as KLRG1 was identified as a marker of type 2 cytokine-producing intestinal ILC3. The combination of the dominance of type 3 mediators and weakening of types 1, 2, and Treg in NEC points to a profound imbalance within the adaptive immune system. One function of type 2 cytokines is to hold type 3 responses in check; examples studied in neonatal models include IL-4 and IL-13. The NEC-associated reduction in parameters of type 1 immunity, including IL1C1 in mice and IFNy and type 1 chemokines in human infants to our knowledge has not been shown before. Our data on reduced FoxP3 expression in NEC are in accord with lower Treg abundance reported by others.
Turning to innate immunity and inflammation, our results align well with previous literature in showing the intestinal inflammation of NEC to be characterized by augmented IL-6 and TNF, as well as reduced TGF-β and TLR9, as we reviewed in ref. 12. Beyond this, we reveal a novel link between NEC and IL-36 cytokines, including NEC-associated rises in agonist:antagonist ratios for IL-36β and IL-36γ. These findings agree with reports on increased IL-36α and γ in UC and CD in humans55–57, but knowledge on IL-36 function in the intestine is sparse overall. There are conflicting data on IL-36R signaling in intestinal inflammation, e.g., in acute DSS-colitis56,58 and chronic DSS/TNBS-colitis59. However, mice deficient in IL-36γ are protected...
Fig. 8 IL-37 abundance in blood cells from human NEC infants. Peripheral blood was obtained from the second cohort of premature infants (gestational age 24–29 weeks, n = 21); note that some time points are not available for some preterm infants; for exact n at each time point see dots in panels and Source Data file) at the indicated time points, from healthy term infants at birth (n = 17) and at 4–16 weeks of age (n = 10), as well as from healthy adult volunteers (n = 5). The percentage of IL-37tg leukocytes among viable CD45+ cells was determined by flow cytometry. CB cord blood, Term healthy term infants, PN postnatal, d1 day 1, wk/tk/2 week 1/2, 36wk 36 weeks of corrected gestational age. a. b. IL-37+ percentages are graphed for each individual infant (circles) with medians indicated by gray lines. Student’s t-test P-values: *P < 0.05 for indicated preterm time point vs term CB. #P < 0.05 and ##P < 0.01 for indicated preterm time point vs term PN. $P < 0.05 for indicated preterm time point vs adults. b. Correlation of birthweight centile with IL-37+ percentage at the indicated time points. Pearson correlation P-values: *P < 0.05. **P < 0.01. c–h Analysis of monocyte subtypes and their IL-37+ percentages at the week 2 time point (c, d, f, g) or longitudinally (e, h). Mann-Whitney U test P-values: *P < 0.05 for NEC vs non-NEC. c–e Quantification of monocyte subtypes under viable CD45+ cells, and f–h of IL-37+ percentages under the indicated viable CD45+ monocyte subtypes; c, f Exemplary plots of gating strategies, with percentages indicated by gray lines within or next to boxed fields. d, g Quantification of individual infants shown by dots, bars denote medians; e, h Median values across the indicated time points are shown by solid lines, dotted lines are interquartile ranges (IQRs).

from TGFβ cell-driven intestinal inflammation, and IL-36y inhibited Treg development60, suggesting a disease-augmenting role for IL-36 in the gut.

The repertoire of the ten human (termed TLR1-10) and 12 murine (TLR1-9, TLR11-13) TLRs on intestinal epithelial (IEC) and immune cells is of critical importance in determining whether signals from commensal bacteria result in tolerance or lead to perturbed homeostasis, inflammation, and tissue injury61. Past NEC research focused mostly on TLR428,29 and TLR962, for which disease-aggravating and -ameliorating roles are reported, respectively. We confirm a NEC-associated increase in TLR4 and decrease in TLR9 in human and mouse. Consistent with TLR5-deficient mice developing spontaneous colitis65, we demonstrate that the potentially protective TLR548 is decreased in rodent and human NEC. For TLRs 1–3, we did not observe the previously reported augmented expression in NEC68; instead, we found inconsistent regulation. Moreover, we observed a decline in the relatively understudied TLRs 11 and 12, neither of which has been investigated in NEC to our knowledge. TLR10 is reduced in human NEC, possibly supporting emerging evidence for its anti-inflammatory function64. Thus, our work consolidates the reported regulation of TLRs 4 and 9 in NEC, adds to the previously scant knowledge on TLRs 5 and 6, and sheds first light on TLRs 8 and 10–13.

IL-37 is a powerful, broadly-acting anti-inflammatory member of the IL-1 cytokine family, whose function21, cell-surface receptor IL-18Rα:IL-1R8 and signaling pathways26,65, we have described. Because its protective properties cover intestinal diseases33,66-68, we investigated IL-37 in NEC. Besides establishing IL-37 as a potential therapeutic approach in NEC, this aspect of our data provides pivotal mechanistic insights by demonstrating which pathways are involved in IL-37’s rescue from the disease and which are not.

Consistent with the known functions of IL-3721,22,65,69-72, IL-37tg pups were nearly completely protected from NEC-driven increases in IL-1β, IL-6, TNF, and IL-17F, and from the reduction in TGF-β1. Contrary to expectations, IL-37 had little effect on type 1 mediators such as IL-12 and IL-23, the distribution of ILC subsets, or on IL-10 in NEC. Another intriguing finding was that baseline TLR repertoires differed markedly between IL-37tg and WT pups, with increased abundance particularly in the protective TLRs 565 and 965, and also in TLRs 6, 7, and 11–13. The fact that IL-37tg pups were protected from loss of intestinal microbial diversity, a prominent feature of NEC10,73, indicates that dominance of TLRs 5–7, 9, and 11–13 may offer a potential therapeutic approach in NEC, this aspect of our data was investigated IL-37 in NEC. Besides establishing IL-37 as a negative regulator of IL-1R- and TLR-dependent inflammation65,75. Indeed, IL-1R8-deficiency leads to TLR4 hyper-responsiveness and more severe intestinal inflammation and tissue injury in NEC models76. The localization of IL-1R8 to IEC of neonatal mice76 is consistent with our findings in human preterm neonates. The high abundance of IL-1R8 in IEC at steady state suggests that these cells are the primary targets for extra- and luminal IL-37 in the human neonatal intestine. IL-37 itself was detectable in IEC and in interstitial cells at steady state; in NEC, however, epithelial IL-37 declined, whereas lamina propria IL-37 increased. While as expected21,77, infiltrating leukocytes were the main source of this increase, these data in their entirety suggest that the contribution of epithelial IL-37 and IL-1R8 is most critical to maintaining immune homeostasis and rendering the environment tolerogenic to signals from the commensal microflora.

Our observation that the protective capacity of postnatal injection of IL-37—which in our 3 day-model cannot instantaneously augment its own receptor or alter the intestinal TLR repertoire—is less pronounced than that of the transgene supports the hypothesis that modulation of TLR repertoire and microbiome plays an important part in the protective properties of the IL-37 pathway. However, it may be possible to improve the efficacy of recIL-37 by optimizing dosage and timing in future mouse experiments.

In human preterm infants, NEC most commonly occurs around d14 of life or later78—which aligns remarkably well with a fall in classical and intermediate monocytes, the main sources of IL-37 among blood cells77, in our second cohort. While such falls in monocyte counts have been associated with NEC onset before9,80, we moreover observed that only the prototypically anti-inflammatory monocyte subtypes81 are affected. Intriguingly, the NEC-associated depletion of these monocytes was further compounded by a decrease in IL-37 in the remaining monocytes, resulting in a profoundly depleted pool of circulating IL-37. It has been proposed that the severe inflammation of NEC leads to an exodus of monocytes into the intestine, which is consistent with macrophage-rich infiltrates in tissue specimens82. As monocytes carry 80–90% of blood-borne IL-3777, the increase in lamina propria IL-37 we observed may be due to the infiltration of IL-37+ monocytes, as part of the body’s attempts to curtail runaway inflammation. From the translational perspective, we conclude that IL-37-based therapies should commence early, possibly even in a preventative fashion, particularly when risk factors such as IUGR are present. To optimize the benefits of the mucosal microenvironment, oral administration should be considered.

Taken together, our observations strongly suggest a deficiency in IL-37 and IL-1R8 contributes to NEC pathogenesis. As NEC advances, cytokine and receptor disappear from the epithelium, and IL-37+ percentages fall among systemic monocyte subsets,
thus likely accelerating the vicious cycle of excessive inflammation and intestinal injury. Transgenic IL-37 protected mouse pups by restoring homeostasis in selected pathways of innate and adaptive immunity and in the microbiome. As a next translational step towards IL-37-based therapies, dosage, timing, and route of administration should be examined.

As a substantial part of the value of our novel findings hinges on the fidelity of the mouse NEC model, it is important to highlight the high degree of conformity between clinical pathologies, the pattern of tissue injury, and molecular data obtained in murine and human neonates. Despite the relatively small number of human participants, many (though not all) major pathways and mediators exhibited congruent regulation, suggesting that our findings in the mouse are largely translatable to the human.

In conclusion, our work represents a compendious addition to current knowledge of the pathomechanisms that drive NEC. Our focus on the largely uncharted aspect of adaptive immunity reveals a predominance of type 3 polarization over types 1 and 2, including a role for Th17 T cells and a pro-inflammatory ILC3 subset. IL-37 afforded powerful protection from NEC, at least in part by restoring a balanced type 3/2 polarity, and by modulating TLR expression, microbial homeostasis, and the IL-36 pathway. Our study thus points to promising therapeutic strategies among these cascades and mediators, such as blocking IL-17F, IL-36, and TLR4, or augmenting TLR5 and 9. Although the impact of TLRs 6–8 and 10–13 in NEC remains to be proven, our data suggest they are implicated in this disease. Perhaps the finding with the greatest translational promise is that boosting the IL-37 pathway, which we discovered to be deficient in human NEC, confers almost complete protection in the mouse. However, more work is required to optimize the efficacy of exogenously administered IL-37. We speculate therefore that IL-37 in particular, but other strategies identified here as well, could provide our tiniest patients with a much-needed therapy to shield them from the ever-loomng specter of NEC.

Methods
Animal model. All animal work was approved by Monash Medical Centre Ethics Committee A (MMCA; approval numbers MMCA/2012/62 and MMCA/2017/30) and was conducted in accordance with the principles of the Declaration of Helsinki. C57BL/6 wild-type (WT) mice were originally purchased from Jackson Laboratories (USA; stock number 000664) and the colony was maintained by the Monash Animal Research Platform. IL-37 transgenic (IL-37tg) mice were homozygous offspring from the original colonies. IL-37tg and WT animals for experimental and control groups were bred in the same room under enhanced animal-research-advisory-committee-guidelines) either at the 72 h experimental time point or at the 1.57 g. There was no significant difference in starting weight between WT and IL-37tg pups. At the beginning of each feeding time point, all pups were weighed using a mg-calibrated weighing scale.

Assessment of weight change. The starting weight of pups ranged between 1.19 and 1.57 g. There was no significant difference in starting weight between WT and IL-37tg pups. At the beginning of each feeding time point, all pups were weighed using a mg-calibrated weighing scale.

Assessment of hematochezia and diarrhea. The stool passed by the pups was assessed visually for hematochezia (based on stool blood quantity) or diarrhea (by stool consistency) on a scale of 0 (normal) to 3 (severe pathology).

Assessment of ileus. At the time of death or experimental endpoint at 72 h, the abdomen was opened, the small intestine was excised and assessed for ileus on a scale of 0 (normal) to 3 (severe pathology) by abundance/distribution of luminal bubbles inside the small intestine.

Histological scoring and IHC. Murine sections from the duodenum, jejunum, and ileum (0.5 cm each) were fixed overnight in 4% paraformaldehyde and then embedded in paraffin. Subsequently, 4 µm sections were H&E-stained and scanned on an Aperio Scanscope (Leica Biosystems, Germany) for histological evaluation of intestinal architecture in Aperio ImageScope v12.4.0.5043 (Leica Biosystems). The histological injury was assessed by an experienced pathologist and scored by two evaluators under the pathologist’s guidance. Scores (Supplementary Fig. 1) ranged from 0 (normal) to 3 (mucosal disintegration) and are based on a previously published murine NEC damage scoring system. Pathologists and evaluators were blinded to the strain and treatment groups.

For IHC in human tissue, 4 µm sections were cut, deparaffinized, and stained on a DAKO Autostainer Plus (Agilent Technologies, USA). In brief, antigens were retrieved in 1x DAKO Target Retrieval Solution at 98 °C for 30 min. Endogenous peroxidase was inhibited using DAKO Real Peroxidase Blocking Solution for 10 min followed by 10 min blocking using DAKO Protein Block. Slides were then incubated with mouse anti-human IL-1R8 (A-A, Santa Cruz Biotechnology, USA; cat# sc-271864) or anti-human IL-37 (3D12, ebioscience, USA, cat# 14-7379-82) overnight at 4 °C. Slides were then washed with PBS and incubated with 1:50 diluted anti-rabbit IgG isotype control (ThermoFisher Scientific) followed by 1:400 diluted Anti-DK1 Antibody Diluent for 1 h at RT. Secondary antibody incubation with DAKO EnVision+HRP Polymer Anti-mouse was performed at RT for 30 min and developed using DAKO Liquid DAB + Substrate Chromogen for 10 min. Sections were counterstained with DAKO automation Haematoxylin Staining Reagent for 10 min and coverslipped before scanning on an Aperio Scanscope (Leica Biosystems). IHC scoring was based on intensity and distribution of positive DAB staining from a score of 0 (absent) to 3 (high intensity, widely distributed) and was evaluated by two blinded assessors.

16S rDNA sequencing. Total DNA was isolated from all samples using the PowerFecal DNA Isolation Kit (Qiagen, Germany) following the manufacturer’s instructions. After DNA concentration measurement on a NanoDrop (ThermoFisher Scientific), 10 ng of the DNA was used as input for PCR amplification of the V4 region of the 16S rDNA. The F515/R806 primer pair (Supplementary Table 3) was optimized using FastQC. All regions belonging to sequenced adapters, primers or barcodes, were removed according to the used QIIME (Quantitative Insights Into Microbial Ecology) 1.91, 150 cycles. The PCR products were puriﬁed by size-selection on 2% SizeSelect E-Gels (ThermoFisher Scientific) and sequenced on an Illumina MiSeq apparatus (Illumina) using 300 cycles.

Analysis of 16S rDNA sequences. The resulting fastq ﬁle was quality checked using FastQC. All regions belonging to sequenced adapters, primers or barcodes, as well as regions with phred score less than 20, were trimmed using Trimmomatic version 0.36b with the following parameters: 2 mismatches allowed in seed sequence, simple clip threshold of 10, and a minimum read length after trimming of 40 nucleotides. QIIME (Quantitative Insights Into Microbial Ecology), version 1.9.1, was deployed to, first, demultiplex the trimmed reads according to the used barcode primer. This resulted in the summarized data presented in Supplementary Table 4. QIIME scripts were further used for closed reference OTU (operational taxonomic units) picking with default parameters and the greengenes database gg_13_8_otus/rep_set97/otus.fasta as taxonomy reference to investigate all present bacterial taxonomies in each of the samples. All taxonomies were summarized, bar plots generated, and the alpha diversities (Shannon index) calculated. Furthermore, alpha diversities were compared to identify statistical differences between groups of different treatments using default parameters, the greatest possible depth of
Real-time PCR sample processing and RNA data analysis. Murine sections from jejunum (0.5 cm each) were flushed with ice-cold PBS, snap-frozen in RNAlater (ThermoFisher Scientific), and stored at −80 °C. Human tissues were directly snap-frozen and stored at −80 °C. For subsequent processing, intestinal tissue was homogenized in RNA lysis buffer (Bioline, Australia) using an Ultra-Turrax homogenizer (IKA, Malaysia). The homogenate was centrifuged for 1 min at 11,000 × g and the supernatant was used for RNA isolation. RNA was isolated using the RNeasy Mini Kit (Qiagen, Germany) in accordance with the manufacturer’s instructions. Real-time PCR was performed in duplicates using TaqMan probes (Applied Biosystems, USA; assay identifiers are listed in Supplementary Table 5 for mouse and Supplementary Table 6 for human studies) on the Fluidigm Biomark HD system (Fluidigm Corporation, USA), according to the manufacturer’s instructions. PCR failed in 4 human control samples and was excluded from RNA data analysis. Gene expression values were normalized to the most stably expressed gene C1orf105 as per the manufacturer’s instructions. Real-time PCR was performed in duplicates using the ΔΔCT method in Microsoft Excel (Microsoft, USA). The single sample with the highest target gene Ct value was set as 1, i.e., baseline, termed “lowest expressed gene” (murine tissue, Idio1; human tissue, TNF) in the pertinent figures, and used as a constant value in the fold-change formula. Fold changes of 0 indicates the gene was not detectable. In addition to showing differences in relative mRNA abundance within the same gene between treatment groups, this method of display allows the graphs to provide information on differences in relative mRNA abundance between genes. However, it should be noted that due to limitations of the ΔΔCT method, fold changes should only be used as a rough guide, and more detailed analysis such as fold-change calculation is discouraged.

Multiplex ELISA. Segments from the ileum (0.5 cm each) were flushed with ice-cold PBS, snap-frozen in liquid nitrogen, and stored at −80 °C. Ileal tissue was homogenized in lysis buffer using an Ultra-Turrax homogenizer (IKA). The homogenate was centrifuged for 10 min at 11,000 × g and the supernatant was assessed for total protein concentration using the BCA assay (Thermoscientific, USA). Sample protein concentrations were standardized to 200 μg/ml and cytokine abundance measured by multiplex ELISA using the QuantiBody Array (RayBiotech, USA) as per manufacturer’s instructions. QuantiBody Array slides were scanned using the Genepix 4000B microarray scanner (Molecular Devices, USA). Normalization of cytokine data to total protein concentration was performed with the following formula: raw cytokine data (in pg/ml)/total protein concentration in the lysate (in mg/ml) in Microsoft Excel (Microsoft). All cytokine changes were normalized across our samples, hypoxanthine phosphoribosyltransferase 1 (Hprt) measured by multiplex ELISA using the Quantibody Array (RayBiotech, Germany). This study and its protocols were carried out in accordance with the Declaration of Helsinki, Good Clinical Practice guidelines, and guidelines by the National Health and Medical Research Council of Australia (NHMRC). Ethical approvals were obtained from the Human Research Ethics Committee (HREC) at Monash Health, Clayton, Australia (reference 08100B), and the Royal Women’s Hospital, Parkville, Australia (reference 15/18). Written informed consent was obtained from the families of all participants. Preterm infants were recruited from two tertiary birthing centers with co-located neonatal intensive care units (NICU) within Victoria, Australia. These centers were Monash Newborn/ Monash Medical Centre, Clayton, and the Royal Women’s Hospital, Parkville. Informed consent was obtained from the parents of each child. Infants were not approached and excluded if they had any major congenital abnormalities or if imminent demise shortly after birth was likely. The cord blood of term infants was collected from infants born between 37 and 40 weeks of gestation and 1 and 41+0 weeks of gestation were recruited from Monash Medical Centre following parental consent. Postnatal peripheral blood samples of term infants were collected at Monash Children’s Hospital, Clayton, Victoria, from infants born between 37+6 and 41+0 weeks that were between 4 and 16 weeks old when undergoing surgery for conditions that are not associated with systemic inflammation (e.g., surgery for hernia repair). To qualify as a healthy term control, infants had to have no health concerns at birth and no maternal or perinatal medical history that could affect their health, including but not limited to intrauterine growth restriction, pre-eclampsia, chorioamnionitis or other maternal infections, gestational diabetes, pre-existing asthma or thyroid disease. The same exclusion criteria applied to the postnatal group. Peripheral blood was collected from healthy adults aged between 20 and 50 years at Hospital of Medical Research, Clayton, who were not on any long-term medications or any anti-inflammatory medication a week prior to sampling.

Mouse flow cytometry. Lamina propria cells were isolated from the small intestines of 3d old neonatal and male adult (8-12 weeks old) mice using the Lamina Propria Dissociation Kit (Millenyi Biotec). In brief, excised small intestines were cut open longitudinally and washed in ice-cold Balanced Salt Solution (HBSS) to remove stool. After washing, intestines were cut into <0.5 cm pieces and placed in HBSS for further cleaning by brief vortexing before proceeding with the manufacturer’s instructions. Single-cell suspensions of lamina propria cells were pelleted by centrifugation and stained with Galaxy Aqua Fixable Viability Dye (BRAHMS, Germany) for 15 min at 4 °C. Cells were then washed in ice-cold PBS (BD Biosciences, USA) and 1:25) and RORγt-PE-Cy7 (eBioscience, cat# 14-0161-82). Cells were then surface stained with CD4-BV786 (BD Biosciences, USA) and 1:400 of B220-PE-Cy7 (eBioscience, cat# 25-0456-82), CD11b-PE-Cy7 (eBioscience, cat# 25-0112-82), CD3e-PE-Cy7 (eBioscience, cat# 25-0114-82), and 1:200 of B220-PerCP-Cy5.5 (eBioscience, cat# 15-0561-80, 1:500, and 1:400 of B220-PE-Cy7 (eBioscience, cat# 25-0452-82), CD11b-PE-Cy7 (eBioscience, cat# 25-0112-82), CD11c-PE-Cy7 (eBioscience, cat# 25-0114-82), CD3e-PE-Cy7 (eBioscience, cat# 25-0031-82), Gr-1-PE-Cy7 (eBioscience, cat# 25-9531-82), and TER-119-PE-Cy7 (eBioscience, cat# 25-9521-82) in ice-cold FACS buffer for 20 min. Cells were then fixed using the Fixation/Permeabilization Concentrate and Diluent (eBioscience) for 30 min at RT. Intracellular staining with GATA3-BV421 (Biolegend, cat# 653814, 1:25), T-bet-PE-CF594 (BD, cat# 562467, 1:25) and RORγt-PE (BD, cat# 12-6988-82, 1:200) was performed in permeabilization buffer (eBioscience) for 30 min at RT. At least 300,000 events were acquired per sample for analysis using the BD LSRII (BD Biosciences) flow cytometer (BD Biosciences). As depicted in Supplementary Fig. 4, live CD45.2+ cells were either analyzed for CD4−TCRβ+ or CD4−TCRβ− T cells or further gated for ILC analysis by excluding lineage-positive cells (selecting for CD4−TCRβ−) and a lineage-negative dump channel with CD11b, CD1c, TER-119, B220, CD3e and Gr-1 (collectively referred to as lineage−/−/−/−/−/−/−). From this, live CD45+ cell types were classified in the depicted order (Supplementary Fig. 8b), neutrophils, CD66b+; T cells, CD66b+CD3−; B cells, CD66b+CD3+CD19−; NK cells, CD66b+CD3−CD19−CD56+; and monocytes subgroups, CD66−CD3−CD19−CD56+ , classical CD14+CD16− , intermediate CD14+ CD16+ , and non-classical CD14−CD16+. Analysis was performed using FlowJo V10 software (Treestar).
Statistics. Groups were tested for normality and equal variance (P to reject 0.05) using Sigma Plot 14 (Systat Inc., USA). Thereafter, a two-tailed Student’s t-test or Mann-Whitney rank-sum test was performed as appropriate, or for multi-group analysis, a one-way ANOVA or one-way ANOVA on ranks was applied to test for significant differences. Where ANOVA revealed significance, post hoc Student-Newman-Keuls or Dunn’s comparisons were performed (the threshold for significance P < 0.05). For comparisons between survival curves, a Mantel-Cox log-rank test was performed as appropriate (the threshold for significance P < 0.05) using GraphPad Prism 8 (GraphPad Software, USA). A two-tailed Student’s t-test or Mann-Whitney rank-sum test was performed as appropriate between dam-fed controls or between adult mice. Where no significant difference was observed (the threshold for significance P < 0.05), datasets were merged for further statistical tests. r^2 values for correlation analyses were calculated by Pearson correlation in Tableau (Tableau Software, USA).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The microbiome sequence data have been deposited in the Sequence Read Archive (SRA) at National Center for Biotechnology Information (NCBI) under the accession code SRP133559. All other data are available from the corresponding author upon reasonable request. RecIl-37 is commercially available. The Y85A recIl-37 variant can be made available under standard material transfer agreement-conditions by contacting the authors C.A.N.-P. or M.F.N. Source data are provided with this paper.

Received: 22 August 2018; Accepted: 14 October 2020; Published online: 13 November 2020.

References
1. Stoll, B. J. et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 126, 443–456 (2010).
2. Patel, R. M. et al. Causes and timing of death in extremely premature infants at birth weight categories. J. Pediatr. Surg. 53, 1072–1075 (2009).
3. Fitzgibbons, S. C. et al. Mortality of necrotizing enterocolitis expressed by birth weight categories. J. Pediatr. Surg. 44, 1072–1075 (2009).
4. Blakely, M. L. et al. Postoperative outcomes of extremely low birth-weight infants with necrotizing enterocolitis or isolated intestinal perforation: a prospective cohort study by the NICHD Neonatal Research Network. Ann. Surg. 241, 984–989 (2005).
5. Hall, N. J., Eaton, S. & Pierro, A. Royal Australasian of Surgeons Guest Lecture. Necrotizing enterocolitis: prevention, treatment, and outcome. J. Pediatr. Surg. 48, 2359–2367 (2013).
6. Pike, K. et al. Outcomes at 7 years for babies who developed neonatal necrotizing enterocolitis: the ORACLE Children Study. Arch. Dis. Child Fetal Neuatal Ed. 97, F318–F322 (2012).
7. Schluzke, S. M., Deshpande, G. C. & Patole, S. K. Neurodevelopmental outcomes of very low-birth-weight infants with necrotizing enterocolitis: a systematic review of observational studies. Arch. Pediatr. Adolesc. Med. 161, 582–590 (2007).
8. Luig, M., Lui, K. & NSW & ACT NICUS Group Epidermolysis of necrotizing enterocolitis–Part II: Risks and susceptibility of premature infants during the surfactant era: a regional study. J. Paediatr. Child Health 41, 174–179 (2005).
9. Quigley, M. & McGuire, W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst. Rev. 4, CD002971 (2014).
10. Wang, Y. et al. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME J. 3, 944–954 (2009).
11. Lambert, D. K. et al. Necrotizing enterocolitis in term neonates: data from a multispecialty health-care system. J. Perinatol. 27, 437–443 (2007).
12. Cho, S. X., Berger, P. J., Nold-Petry, C. A. & Nold, M. F. The immunological landscape of necrotizing enterocolitis. Expert Rev. Mol. Med. 18, e12 (2016).
13. Spits, H. et al. Invasive lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).
14. Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14, 221–229 (2013).
73. Patel, R. M. & Underwood, M. A. Probiotics and necrotizing enterocolitis. *Am. J. Physiol. Gastrointest. Liver Physiol.* 297, G442–G450 (2009).
70. Ye, L. et al. Changes in intestinal Toll-like receptors and cytokines precede histological injury in a rat model of necrotizing enterocolitis. *Am. J. Physiol. Gastrointest. Liver Physiol.* 297, 3177–3187 (2009).
76. Fawley, J. et al. Single immunoglobulin interleukin-1 related receptor (SIGIRR) regulates vulnerability to TLR4 mediated necrotizing enterocolitis in a mouse model. *Pediatr. Res.* 83, 164–174 (2017).
77. Rudloff, I. et al. Monocytes and dendritic cells are the primary sources of interleukin 37 in human immune cells. *J. Leukoc. Biol.* 101, 901–911 (2017).
78. González-Olvera, R., Cullen, J. W., C. M. H. A., Chavkin, C., A. F., P. I. & Warner, B. B. The age of necrotizing enterocolitis onset: an application of Sartwell’s incubation period model. *J. Perinatol.* 31, 519–523 (2011).
79. Remon, J. et al. Acute drop in blood monocyte count differentiates NEC from other causes of feeding intolerance. *J. Perinatol.* 34, 549–554 (2014).
74. Imaeda, H. et al. Epithelial expression of interleukin-37b in inflammatory bowel disease. *Am. J. Transpl.* 17, 1777–1786 (2017).
75. Gonzalez-Rivera, R., Culverhouse, R. C., Hamvas, A., Tarr, P. I. & Warner, B. B. Monocyte counts in predicting severity of necrotizing enterocolitis. *J. Perinatol.* 40, 922–927 (2020).
80. Wong, K. L. et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. *Blood* 118, e16–e31 (2011).
81. Mehan-Kumar, K. et al. Gut mucosal injury in neonates is marked by macrophage infiltration in contrast to pleomorphic infiltrates in adult: evidence from an animal model. *Am. J. Physiol. Gastrointest. Liver Physiol.* 303, G93–G102 (2012).
82. Halpern, M. D. et al. Decreased development of necrotizing enterocolitis in IL-18-deficient mice. *Am. J. Physiol. Gastrointest. Liver Physiol.* 294, G20–G26 (2008).
83. Hoshiba, J. Method for hand feeding mouse pups with nursing bottles. *Contemp. Top. Lab. Anim. Sci.* 43, 50–53 (2004).
84. Yajima, M., Hoshiba, T., Terahara, M. & Yajima, T. Reduced thymic size and numbers of splenic CD4+ and CD8+ cells in artificially reared mouse pups. *Biosci. Biotechnol. Biochem.* 71, 2420–2427 (2007).
85. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. *ISME J.* 6, 1621–1624 (2012).
86. Andrews, S. FastQC: a quality control tool for high throughput sequence data. [ONLINE]. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).
87. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. *Bioinformatics* 30, 2114–2120 (2014).
88. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. *Bioinformatics* 30, 2114–2120 (2014).
89. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. *Nat. Methods* 7, 335–336 (2010).
90. Spurgeon, S. L., Jones, R. C. & Ramakrishnan, R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. *PLOS ONE* 3, e1662 (2008).
91. Petry, C., Fritz, G., Pleischfer, J. & Huwiler, A. Inhibition of Rho modulates cytokine-induced prostaglandin E2 formation in renal mesangial cells. *Biochim. Biophys. Acta* 1636, 108–118 (2004).

Acknowledgements

We thank Nilesh Shariatian, Jingyuan Shi, and Avisi Masarati for excellent technical assistance. A special thanks to Masako Yajima for invaluable advice regarding feeding nipple usage. This work was supported by the National Health and Medical Research Council Investigator Grant Leadership 1 [Grant 1173584] to C.A.N.-P., [Grant 1138926] to C.A.N.-P., M.F.N. and C.T., [Grant 1043845] and [Grant 1140820] to M.F.N. and C.T., the ANZ Trustees Medical Research & Technology in Victoria Program [CT 20661] to C.A.N.-P., the Marian & E.H. Flack Trust [08/12] to C.A.N.-P. and M.F.N., the Fielding Foundation Innovation Award 2015 to M.F.N., a Future Leader Fellowship from the National Heart Foundation of Australia [CF14/3517] to C.A.N.-P., Fielding Foundation Fellowship 2019 to C.A.N.-P. by Monash University's Larkins Fellowship and the Hudson Institute's Star Recruitment Fellowship to M.F.N. and Fielding Foundation Fellowship 2017 to M.F.N., a Future Leader Fellowship Postgraduate Research Scholarship to S.X.C. and J.C.W., Australian Government Research Training Program Scholarships to J.C.L. and C.B.B., by the German Research Foundation (DFG) through the TRR 124 FungiNet [project number 210879364, Project 823] to H.S., as well as the Operational Infrastructure Support Program of the Victorian Government. We also thank Sabine Schuster, Dominik Marks, Nadine Fiedler, and Christian Schantz for the supply of materials. The work on the second cohort of preterm infants was supported by a generous grant by CSi Ltd. We acknowledge the use of the facilities and technical assistance of Monash Histology Platform, Department of Anatomy and Developmental Biology, Monash University and FlowCore of Monash University.

Author contributions

Study concept: S.X.C., W.C., C.A.N.-P., and M.F.N.; contributed critical reagents and resources: A.M.E., J.C.W., C.A.N.-P., and M.F.N.; recruitment: M.E., and J.C.W.; data acquisition: S.X.C., I.R., J.C.L., D.N., C.B.B., M.A.P., M.S., C.A.M., O.F.K., K.K., A.M., K.T., C.T., and S.G.; analysis and interpretation: S.X.C., S.T., C.A.M., and S.G.; manuscript: all authors; funding: C.A.N.-P. and M.F.N.

Competing interests

Monash University, Hudson Institute (A.M.E., J.C.W., C.A.N.-P., and M.F.N.) and F. Hoffmann-La Roche (F.S., A.B., G.T. and L.L.) hold two patent families on IL-37, namely PCT/AU2016/050495 (Monash and Hudson only) and EP19218657.5 (Monash, Hudson, and Roche). No other conflicts of interest exist for these authors. All other authors declare that no conflict of interest exists.
Steven X. Cho1,2,3, Ina Rudloff1,2, Jason C. Lao1,2, Merrin A. Pang1,2, Rimma Goldberg1,2,4,5, Christine B. Bui1,2, Catriona A. McLean6,7, Magdalena Stock8, Tilman E. Klassert8, Hortense Slevo8, Niamh E. Mangan9,10, Wei Cheng11,12, Doris Fischer13,14, Stefan Gfroerer15,16, Manjeet K. Sandhu1,2,5, Devi Ngo1,2, Alexander Bujotzek17, Laurent Larivi8re17, Felix Schumacher17, Georg Tiefenthaler17, Friederike Beke18,19, Clare Collins19,20, C. Omar F. Kamlin21,22,23, Kai König24, Atul Malhotra21,22,25, Kenneth Tan21,22,25, Christine Theda21,22,23, Alex Veldman2,14,26, Andrew M. Ellisdon27, James C. Whisstock27,28, Philip J. Berger1,2, Claudia A. Nold-Petry1,2,29 & Marcel F. Nold1,2,25,29

1Department of Paediatrics, Monash University, Melbourne, VIC, Australia. 2Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia. 3Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan. 4Department of Medicine, Monash University, Melbourne, VIC, Australia. 5Department of Gastroenterology, Monash Health, Melbourne, VIC, Australia. 6Department of Anatomical Pathology, Alfred Hospital, Melbourne, VIC, Australia. 7Central Clinical School, Monash University, Melbourne, VIC, Australia. 8ZIK Septomics, Jena University Hospital, Jena, Germany. 9Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia. 10Centre for Inimate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia. 11Department of Surgery, Beijing United Family Hospital, Beijing, China. 12Capital Institute of Pediatrics, Beijing, China. 13Department of Pediatrics, Goethe University Hospital, Frankfurt, Germany. 14Department of Pediatrics, St. Vincenz Hospital, Limburg, Germany. 15Department of Pediatric Surgery, Goethe University Hospital, Frankfurt, Germany. 16Helios Clinic Berlin-Buch, Berlin, Germany. 17Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany. 18Mater Research Institute, University of Queensland, Brisbane, QLD, Australia. 19Neonatal Services, Mercy Hospital for Women, Melbourne, VIC, Australia. 20Joan Kirner Women’s & Children’s, Sunshine Hospital, Melbourne, VIC, Australia. 21Department of Newborn Research, Royal Women’s Hospital, Melbourne, VIC, Australia. 22University of Melbourne, Melbourne, VIC, Australia. 23Murdoch Children’s Research Institute, Melbourne, VIC, Australia. 24Medicum Weselin, Department of Paediatrics, Lucerne, Switzerland. 25Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia. 26Department of Pediatrics, Liebig University Hospital, Giessen, Germany. 27Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia. 28Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia. 29These authors jointly supervised this work: Claudia A. Nold-Petry, Marcel F. Nold. Email: marcel.nold@monash.edu