Research article

Ginsenosides attenuate bioenergetics and morphology of mitochondria in cultured PC12 cells under the insult of amyloid beta-peptide

Kenneth Kin Leung Kwan a,b, Huang Yun a,b, Tina Ting Xia Dong a,b, Karl Wah Keung Tsim a,b,*

a Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
b Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

1. Introduction

Alzheimer's disease (AD) is classified as deterioration of learning, language and memory functions, especially in the elderly. In addition, AD is an irreversible and progressive neuronal failure. Amyloid plaque and neurofibrillary tangle are the significant biomarkers being identified in AD brain tissues [1]. Beta-amyloid peptide (Aβ), the basic unit of amyloid plaque, has been considered one of the essential elements in progression of AD [2]. Therefore, Aβ has been considered as one of the essential causative events during AD pathogenesis [3]. Although the detailed mechanism of Aβ-induced neurotoxicity has not entirely understood, several lines of evidence suggest that mitochondrial dysfunction could be caused by Aβ neurotoxicity driving to excessive ROS formation, as well as reduction of cytochrome c oxidase activity, mitochondrial respiratory chain and ATP formation [4]. As a result, therapeutic intervention related to mitochondrial bioenergetics may assist in preventing the Aβ-induced neurotoxicity in AD patients. Recently, the pharmacological treatment of AD patients primarily consists of two types of medicine, i.e., acetylcholinesterase inhibitor and glutamate modulator [5]. Unfortunately, practical approaches in slowing down the progression of AD have
yet to be found. Searching for safer, better tolerated, less side-effect and effective medicine for AD treatment, therefore, remains an essential area of drug discovery.

The root of Panax ginseng is referring to Korean and Chinese ginseng, and which is a highly valued herbal medicine extensively utilized in Asian countries for different beneficial effects, including anti-inflammatory, anti-cancer, cardioprotective and reduction of peripheral vascular disease [6]. In the clinical practices, ginseng extracts attenuated ROS in patients suffering from cardiovascular diseases: these beneficial effects were suggested to be interceded by anti-oxidative and chelating functions of different ginsenosides [7]. The antioxidant property of ginsenoside depends on the function group on aglycone. For example, ginsenoside Rb1, Rb3, Rd, Re, Rg1, and Rh1 have been proposed as anti-oxidative compounds [8]. Currently, several studies have demonstrated significant efficacies of ginseng extract and its ginsenosides in AD treatment both in cell and animal models [9]. In clinical practices, AD patients receiving ginseng showed considerable improvement [10]. Besides, the treatment of ginsenoside showed remarkable protection of loss of memory in aged mouse model by reducing oxidative stress and modulating plasticity-related proteins and neurotrophic factors [11]. Ginsenoside Rb1, Rg1, Rg2, Rg3, as well as gintonin, showing strong effects against neuronal failure could be mediated by ROS-signaling [12]. Apart from antioxidant properties, the protection of ATP-generation capacity was believed to be one of the action mechanisms of ginsenoside under Aβ-induced neurotoxicity [13]. In mitochondrial bioenergetics, ATP production is referring to spare capacity, which has been closely related to cell proliferation, health and flexibility [14]. Moreover, the maximal OCR of mitochondria is affected by basal respiration. Although the abilities of ginseng to reduce ROS formation and to enhance ATP synthesis in neurons have been shown [15], the functions of ginsenoside in mitochondrial bioenergetics of a live cell remains mysterious due to the technical constraint.

To obtain comprehensive understanding of ginsenoside in mitochondrial bioenergetics of neuron under Aβ treatment, the key elements of oxidative phosphorylation were measured with an extracellular flux analyzer by monitoring energy metabolism of living cell. Besides, MMP and mitochondrial dynamics were examined by using laser confocal scanning microscopy. Thus, the preventive measures of ginsenoside to Aβ-treated cells could be investigated and compared.

2. Methods

2.1. Chemicals

The standard compounds of ginsenoside Rb1, Rd, Re as well as Rg1, were purchased from Shanghai Research and Development Center for Standardization of Traditional Chinese Medicine (Shanghai, China). All these compounds were over 99% purity. Cell culture reagents and Aβ25-35 were purchased from Thermo Fisher Scientific (Waltham, MA). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and nerve growth factor (NGF) were obtained from Sigma-Aldrich (St. Louis, MO). All other chemicals were analytical or standard grade.

2.2. Cell culture

Rat pheochromocytoma cells (PC-12 cells) were purchased from the American Type Culture Collection (Manassas, VA). PC-12 cells were cultured in high-glucose Dulbecco's modified Eagle's medium, supplemented with 6% horse serum, 6% fetal bovine serum and 100 units/ml concentration of penicillin and streptomycin in a water-saturated CO2 (7.5%) incubator at 37°C. The cells were grown up to 70-90% confluency for experimental purposes [16]. PC12 cell is an excellent neuronal model for AD in previous studies [17,18].

2.3. Cell viability assay

The cell survival ability was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenytetra-zolium bromide (MTT, Invitrogen) assay. In brief, PC12 cells were seeded at a concentration of 1×10⁴ cells per well. After 24 hours of drug exposure, cells in each well were incubated with 10μL MTT solution (5mg/mL in 1XPBS) at a final concentration of 0.5mg/mL for 3 hours at 37°C. After the medium was removed, dimethyl sulfoxide (DMSO) was used to dissolve the organic crystal inside the cells, and the absorbance was measured using a microplate reader at a wavelength at 570nm. The cell viability was determined as the percentage of absorbance value of vehicle control; while the value of control was 100%. Thus, the effect of different ginsenosides on the reduction of Aβ-induced neurotoxicity was measured. After cells were exposed to fresh medium for 3 hours, cells were treated with 0.1–10μM of ginsenoside for 24 hours before Aβ exposure. Fifty μM of Aβ25-35 (diluted in 1XPBS) was added to the culture medium and incubated for 24 hours. To assess cell survival ability, Aβ25-35-containing media was discarded, and each well was washed twice with 1X PBS. The cell viability was examined by MTT assay [19].

2.4. ROS formation assay

The detection of intracellular ROS content was conducted by using 2',7'-dichlorofluorescin diacetate (DCFH-DA, Sigma-Aldrich), a ROS-sensitive compound. Cultured PC12 cells (1×10⁴ cells/well) in a 96-well plate were exposed with standard compounds for 24 hours, and the cells were stained with 100μM DCFH-DA in 1XPBS for 1 hour at 37°C in a CO2 incubator. After washing with 1XPBS, the cells were then treated with 50μM Aβ for 24 hours at 37°C. Next, the amount of intracellular ROS under Aβ-induced oxidative stress was examined by photoluminescence spectroscopy with excitation wavelength at 485 nm and emission wavelength at 530 nm at 37°C [20].

2.5. Mitochondrial bioenergetic analysis

Mitochondrial bioenergetics of PC12 cell was detected by a Seahorse Bioscience XFp extracellular flux analyzer (Agilent, Santa Clara, CA), which determined the amount of oxygen change by oxidative phosphorylation in live cells. In the present studies, the seeding concentration of PC12 cells was set at 1×10⁴ cells per well. Mitochondrial complex inhibitors (Sigma-Aldrich) were pre-optimized at 1μM oligomycin (ATP synthase inhibitor), 1μM carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) (mitochondrial uncoupler), and 1μM rotenone/antimycin A (inhibitors of complex I and complex III) to elicit maximal effects on mitochondrial respiration. Background correction wells were used to calibrate the background noise. Cultured PC12 cells were cultured on the XFp cell culture mini-plates and exposed with ginsenoside for 24 hours. After the drug treatment, the fluorescent probe cartridges of the XFp analyzer were hydrated in an incubator at 37°C without CO2. Before fluorescent probe calibration, cells were exposed with 1μM Aβ25-35 for 24 hours and then equilibrated in 37°C incubator without CO2 in XF Base Medium (10 mM glucose, 1 mM pyruvate and 2 mM L-glutamine, pH 7.4 at 37°C) for another 1 hour. After calibrating the fluorescent probe cartridges, the plate was put into XFp extracellular flux analyzer for Mito Stress Test. OCRs were detected and normalized to the protein concentration/well and corrected for...
extra-mitochondrial oxygen change from the environment. Eventually, six key indicators of mitochondrial bioenergetic function were calculated from the bioenergetics profile, i.e., basal respiration, ATP production, proton leak, maximal respiration, spare capacity and non-mitochondrial respiration [21].

2.6. MMP analysis

PC12 cultured on an autoclaved coverslip in 6-well plates were incubated with tetraethylbenzimidazolylcarbocyanine iodide (JC-1) (10μg/mL) in fresh culture medium for 10min at 37°C and 5% CO2 before the analysis. After treated with JC-1, the cells were washed three times with 1X PBS and mounted the coverslips onto microscope slides. Images were taken using a Zeiss laser scanning confocal microscope. JC-1 monomer (green) was observed with a 505-550nm emission filter under 488nm laser illumination. JC-1 aggregates (red) were observed with a 585nm filter under 568nm laser illumination. The MMP was detected by laser scanning confocal microscopy using a 63 X lens (NA = 1.4) and analyzed by Zen software [22].

2.7. Mitochondrial dynamic analysis

Cultured PC12 cells were loaded with mitochondrial indicator by incubation with MitoTracker™ Red FM in the culture medium at 37°C for 30 min in a CO2 incubator after different drug treatments. Mitochondrial dynamics was observed using laser scanning confocal microscopy. The signal of MitoTracker™ was then analyzed by ImageJ program (National Institutes of Mental Health, Bethesda, MD) with Mito-Morphology software for mitochondrial circularity,
interconnectivity (area/perimeter), mitochondrion content and minor axis as previously described [23]. The mitochondrial interconnectivity and circularity were reflected as key indicators for mitochondrial morphological changes [24].

2.8. Statistical analysis

The mitochondrial bioenergetics was showed on Wave Desktop software 2.3.0. The data acquisition of the confocal image was conducted by Zen black edition software. All results were expressed as Mean ± Standard Error of the Mean (SEM). Statistically, significant tests were conducted with Dunnett’s test (one-way analysis of variance with multiple comparisons, SPSS, version 13). Statistically, the difference was defined as (*), where p < 0.05, (**) where p < 0.01 and (***) where p < 0.001.

3. Results

3.1. Ginsenoside protects Aβ-induced cell damage

PC12 cell is a commonly used neuronal cell line in testing the protective function of drugs. Besides, this cell line showed a robust and fast reaction to various stimuli during mitochondrial respiration. Aβ[25-35], a neurotoxicity inducer of synthetic peptide fragment from Aβ protein, induced cell damage of cultured PC12 cells in a dose-dependent manner: the result showed a saturated cell death starting at 50µM Aβ[25-35] (Fig. S1A). Here, 50µM Aβ[25-35] was used for subsequent experiments. This Aβ-induced cell death model was employed to reveal possible protective function of major ginsenosides from ginseng, i.e., Rb1, Rd, Re and Rg1 (Fig. 1A). In cultured PC12 cells, Aβ[25-35] was incubated with or without NGF, and then which was used to treat the cells for 24 hours. The treatment with
Aβ25-35 significantly decreased cell viability by ~40% at 50 μM Aβ25-35 (Fig. 1B). In comparison to the Aβ25-35 application, the co-treatment of NGF increased cell survival to over 80% of control. The treatment of Aβ25-35 with ginsenoside Rd, Re and Rg1 showed less toxic to the cultured cells, like NGF (Fig. 1B). The protective ability of ginsenoside against Aβ toxicity was in a dose-dependent manner: the highest modulation was conducted at 10μM of ginsenoside in most cases. Rg1 showed a better effect in relieving Aβ25-35-induced cell toxicity. In contrast, Rb1 was the weakest one in protecting cell toxicity. Oxidative stress is one of the reasons for neuro-damage, triggered by Aβ. In cultured PC12 cells, the application of Aβ25-35 induced ROS production, showing a maximal modulation significantly to 250% at 50μM, as compared to vehicle control (Fig. 1B). The application of NGF in culture showed a protective function against Aβ-induced cell death. By applying ginsenoside before Aβ25-35 exposure, the intracellular ROS was decreased, and which was in a dose-dependent manner (Fig. 1B). The administration of Rg1 showed the best protective effects having maximal protection of over 150%, as compared with that of control (Fig. 1B). Again, Rb1 was the weakest ginsenoside to alter the ROS formation.

3.2. Ginsenoside enhances mitochondrial bioenergetics

Various indicators of mitochondrial bioenergetics were measured by an extracellular flux analyzer and calculated accordingly (Fig. S1B). In cultured PC12 cells, the cell density for seeding and the concentration of FCCP were firstly identified to detect the cellular metabolic functions. The optimal concentration of PC12 cells was set at 10^5 cells/well, as to adjust basal OCR to an appropriate range (100 - 160 pmol/min) (Fig. 2A). The application of Aβ in cultured PC12 cells reduced the basal OCR in a dose-dependently manner, and the dosage of Aβ25-35 was optimized to 1 μM to detect a measurable OCR value (Fig. 2A). The applied FCCP was also revealed and optimized (Fig. 2C). The Aβ-treated PC12 cells showed different mitochondrial dysfunctions, resulting in significant

Fig. 3. Ginsenosides alter oxygen consumption of Aβ-treated PC12 cells. Cultured PC12 cells (10^5 cells/well) were pre-treated with ginsenosides at 10μM for 24 hours before exposure to Aβ25-35 (1μM) for another 24 hours. The OCR value was normalized with protein concentration/well. The basal respiration, proton leak, ATP formation, spare capacity, maximal respiration, and non-mitochondrial respiration were measured. Values are expressed as Mean ± SEM, n = 3, each with triplicate samples. *p < 0.05, **p < 0.01, ***p < 0.001.
478 J Ginseng Res 2021;45:473—481

3.3. Ginsenoside modulates MMP and mitochondrial dynamics

Mitochondrial damage can directly trigger intrinsic mechanism of apoptosis, reduction of MMP, disruption of electron transport chain (ETC), formation of oxidative stress, as well as changes of apoptotic proteins. The protective effect of ginsenoside under Aβ-induced mitochondrial dysfunction was firstly examined by examining MMP using JC-1 staining (Fig. 4). JC-1 probe can indicate the change of MMP. The monomer of JC-1 can penetrate into cytoplasm, and which thereafter is being aggregated in mitochondria forming red J-aggregate. The fluorescence transition of JC-1 from red to green indicates reduction of MMP and mitochondrial injury. The ratio of signal intensity of red J-aggregate and green monomer of JC-1 could be used to determine MMP. We found that the MMP was decreased significantly after Aβ treatment. (Fig. 4). The treatment with Aβ25-35 at 50µM significantly decreased MMP to ~25%, as compared to control. NGF served as a positive control and showed a protective function under Aβ-induced cell damage in maintaining or even in potentiating MMP (Fig. 4). As expected, Rg1 showed significant induction in MMP of the Aβ-treated group (Fig. 3). In addition, the Rg1-induced different parameters of mitochondrial bioenergetics were enhanced in dose-dependently manners (Fig. 2E). The robust efficacy of Rg1 in mitochondrial bioenergetics was similar to the scenario in cell survival assay.

To determine the relationship between mitochondrial dynamics and neurotoxicity induced by Aβ, the mitochondria in cultured PC12 cells were stained by MitoTracker red. The MitoTracker red signal monitors the change of mitochondrial morphology in cultured PC12 cells. The MitoTracker red-labeled mitochondria could be analyzed by a well-established ImageJ software for circularity, area/perimeter, mitochondrion content...
and minor axis. The area/perimeter, minor axis, and content of mitochondria were decreased; while the circularity of mitochondria was increased significantly under Aβ-treatment (Fig. 5). In contrast, an apparent decrease of area/perimeter of mitochondria was observed under applied Aβ25-35. NGF served as positive control and showed significant protective function under Aβ-induced cell damage in mitochondrial dynamics. By applying ginsenoside before Aβ25-35 application, the mitochondrial dynamics was mostly resorted back to background level (Fig. 5). Rg1 showed the best induction in mitochondrial content, interconnectivity and minor axis, as well as the best reduction in circularity, as compared to other ginsenosides. The maximal induction, triggered by ginsenoside Rg1, could increase to ~50% in interconnectivity, ~25% in mitochondrial content, ~75% in spare respiratory capacity and decrease to ~10% in circularity compared to Aβ-treatment (Fig. 5). Rb1 did not show such an effect at all.

4. Discussion

The ROS and Aβ mis-location have been well characterized as biomarkers of both AD and Aβ neurotoxicity. Here in cultured PC12 cells, the exposure of Aβ resulted in a dose-dependent change of ROS formation in parallel to published observation [25]. Amongst those ginsenosides in protecting Aβ-induced oxidative stress, Rg1 displayed the best protective effect in cultured PC12 cells, which was mainly mediated by inhibiting ROS formation. By pre-treating cells with Rg1, the Aβ-induced damage could be reduced. Moreover, Rg1 inhibited NF-κB signaling, and which diminished the apoptosis of PC12 cells under hydrogen peroxide (H2O2)-induced cell death,

![Image](image_url)

Fig. 5. Ginsenoside Rg1 improves the mitochondrial dynamics in Aβ-treated cells. Cultured PC12 cells were pretreated with 10 μM of different ginsenosides for 24 hours and treated with 50μM of Aβ25-35 for 24 hours. Then, the treated cells were incubated with 1μM MitoTracker Red in 1X PBS at 37°C for 1 hour. Micrographs were taken by the laser scanning confocal microscopy. One representative picture result was shown. Scale bar = 20μm. The quantification of mitochondria content, circularity, interconnectivity, and minor axis were calculated by the imageJ. Values were expressed as % of increase, as compared to untreated culture, in Mean ± SEM, where n = 4. *p < 0.05, **p < 0.01, ***p < 0.001.
as reported previously [26]. Besides, this protective function could be induced, at least partly, by Keap1-Nrf2-ARE signaling pathway [27]. Besides, Rg1 could protect the ROS-induced cell death via myosin-IIA actin-related reorganization of cytoskeletons in cultured PC12 cells and cortical neurons [28]. These lines of evidence are consistent with our current results.

Mitochondrion is a power factory in cell, which generates most of cellular ATP. The organelle produces ATP via the coupling of oxidative phosphorylation with respiration. There are several studies about the protective effect of ginsenosides in neurons by reducing the mitochondria-mediated cell death [29]. However, most of these researchers are focusing on ATP formation and intracellular ROS production [30]; while the influence of other indicators in mitochondrial bioenergetics is often negated. Among these parameters, spare capacity has been considered as a crucial parameter of bioenergetic profile in cells that are corresponding to the supply of substrate during increased demand for energy consumption. Here, ginsenoside Rd, Re and Rg1 showed enhancement of spare capacity and ATP formation under the insult of applied Aβ [31]. Amongst these ginsenosides, Rg1 displayed the best protective effects on the cultured L929 Aβ-induced mice mitochondrial toxicity. The mechanism of Rg1 in preventing the Aβ-induced mitochondrial dysfunction could be accounted for down-regulating caspase-3 and up-regulating cytochrome c oxidase. Cytochrome c oxidase is a crucial enzyme in the ETC. In the mechanism of oxidation phosphorylation, cytochrome c binds four hydrogen ion from the inner aqueous phase to make 2 water molecules with oxygen, and then which can translocate another 4 hydrogen ion across the membrane, as to increase MMP and to increase ATP formation [32]. This phenomenon is in line with our reported result here. In addition, Rg1 could enhance mitochondrial bioenergetics by up-regulating the expressions of PGC-1α, NRF-1, TFAM-1, mitochondrial complex III, and complex IV [9]; these modulations accounted the enhancement of basal respiration, spare capacity, maximal respiration and non-mitochondrial respiration in Aβ-induced stress.

Mitochondrial dynamics are kept balanced by fission and fusion that plays a vital role in mitochondrial function [33]. Indeed, mitochondrial dysfunction is an early and causal event in neurodegeneration. To meet high energy requirement, the mitochondrial dynamics related pathway is being triggered, and the balance of dynamics is therefore shifted. Increasing of circularity, reduction of mitochondrial length and connectivity are indicative markers of fragmentation (mitochondrial fission), as a means to protect mitochondrial health [34]. Here, a novel approach using cultured PC12 cells, stained by MitoTracker red, was used as to examine the change in mitochondrial morphology. With this approach, we found that in PC12 culture under Aβ exposure, the mitochondrial morphology was markedly affected. As expected, the interconnectivity, minor axis and content of mitochondria were increased; while the circularity was decreased after ginsenoside treatment in Aβ-treated cell model, i.e., possible increase of mitochondrial fragmentation. In previous findings, Rg1 could attenuate the injury of myocardial hypoxia/reoxygenation in cardiomyocytes (H9C2 cells) by modulating the balance of mitochondrial dynamics via mitofusin-2 protein (MFN2), a member of large GTPases family involving in mitochondrial fission and fusion [35]. The function of MFN2 is to control mitochondrial metabolism, and the loss of this function leads to reduction in protein synthesis of complexe I, II, III, V, and coenzyme Q [36]; the final outcome is inhibition of respiratory chain function. Besides, MFN1 and MFN2 could regulate the morphology of mitochondrial [37]. We hypothesize that Rg1 could reduce the mitochondrial dynamics via regulation of MFN. Thus, the mRNA and protein expressions of MFN1 and MFN2 should be analyzed in future.

Rg1 is a key saponin in ginseng extract and has been proposed to have excellent efficacy in neuroprotection. The first criterion for being a neuroprotective drug is the permeability of blood-brain barrier (BBB). After oral administration of G. biloba extract, the ginsenosides could be identified and measured by liquid chromatography-mass spectrometry in the brain tissues of rats [38,39]. In addition, the absorption of ginsenosides by the brain cells was reported to be improved by activating adenosine signaling in a rat model [39]. In aged mouse model, oral administration of Rg1 up-regulated the protein expression of brain-derived neurotrophic factor via activation of protein kinase A and cyclic adenosine monophosphate-response element-binding protein (CREB) phosphorylation in the brain, and thereafter the memory loss in aged mouse could be recovered [40]. In the β-sitosterol β-D-glucoside-induced Parkinson animal model, the oral administration of ginseng extract could reduce the protein expression of α-synuclein in the striatum, and which prevented the loss of dopaminergic neuron in substantia nigra [41]. Therefore, these lines of evidence strongly support the possible application of ginsenoside in treating degenerative brain disease. In addition, clinical trial on the use of medicine containing Rg1 has passed the safety evaluation [42].

In summary, this study demonstrated the pharmacological effects of ginsenosides in Aβ-induced PC12 cell line. Meanwhile, we found that the protecting mechanism of ginsenosides could be involved the reduction of ROS formation, enhancement of different parameters in mitochondrial bioenergetics, MMP and mitochondrial morphology under Aβ-induced cell model. As a result, Rg1 is the best pharmacological drug being identified here, and it could be further developed for clinical treatment of disease correlating with AD.

Conflicts of interest

All contributing authors declare no conflicts of interest.

Acknowledgment

This work is supported by GBA Institute of Collaborate Innovation (GICI-022); Special project of Foshan University of science and technology in 2019 (FSUST19-9R10); Shenzhen Science and Technology Innovation Committee (ZDSYS2017072814323217; JCYJ20170413173747440; JCYJ20180306174903174); Zhanjiang Municipal Bureau of Science and Technology (ZST205SC03); Guangzhou Science and Technology Committee Research Grant (GZST16SC02; GZST17SC02); Hong Kong RGC Theme-based Research Scheme (T13-605/18-W; Hong Kong Innovation Technology Fund (UIM/340, UIM/385, ITS/500/18FP; TUFYF19SC02; PD18SC01 and HMRF18SC06).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jgr.2020.09.005.

References

[1] Eikelenboom P, Rozenenull AJ, Hoozemans JJ, Veerhuis R, Van Gool WA. Neuroinflammation and Alzheimer disease: clinical and therapeutic implications. Alzheimer Dis Assoc Disord 2000;14(Supplement):S54–61.
[2] Lellianc A. The role of β-amyloid peptide in Alzheimer’s disease. Metab Brain Dis 1994;9(1):3–31.
[3] Brothers HM, Gocstyla ML, Robinson SR. The physiological roles of amyloid-β peptide hint at new ways to treat Alzheimer’s disease. Front Aging Neurosci 2018;10.
K.K.L. Kwan et al. / PC12 cells under the insult of amyloid beta-peptide

[4] Pagani L, Eckert A. Amyloid-beta interaction with mitochondria. Int J Alzheimers Dis 2011:1–12.
[5] Shekh-Bahari N, Sajadi SA, Pierce AL. Current role for biomarkers in clinical diagnosis of Alzheimer disease and frontotemporal dementia. Curr Treat Options Neurol 2017;19(12).
[6] Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018;42(3):264–9.
[7] Qi LW, Wang CZ, Yuan CS. Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 2011;72(8):589–99.
[8] Saw CL, Yang AYY, Cheng DC, Royanapalli SSS, Su ZY, Khor TQ, Cao S, Wang J, Jiang ZH, Kong AN. Pharmacodynamics of ginsenosides: antioxidant activities, activation of Nrf2, and potential synergistic effects of combinations. Chem Res Toxicol 2012;25(8):1574–80.
[9] Huang T, Fang F, Chen L, Zhu Y, Zhang J, Chen X, Shiu Yan SS. Ginsenoside Rg2 attenuates oligomeric Aβ1–42-induced mitochondrial dysfunction. Curr Alzheimer Res 2012;9(3):388–95.
[10] Kim J, Kim SH, Lee DS, Lee DJ, Kim SH, Chung S, Yang HO. Effects of fermented Shexiang Baoxin Pill, a Traditional Chinese herbal formula, rescues the mitochondrial reserve respiratory capacity and aging? J Aging Res 2012;2012:1–5.
[11] Kaur S, Wang F, Cui H. The role of mitochondria in reactive oxygen species generation and its implications for neurodegenerative diseases. Cells 2018;7(12):274.
[12] Tu X, Li Y, Mu X. Effect of quercetin on PC12 Alzheimer’s disease cell model induced by AP32.67 and its mechanism based on Sirtuin1/Nrf2/HDAC1 pathway. Biomed Res Int 2020;2020:1–10.
[13] Zhou B, Li Q, Qu X, Wu J, Xu L, Shao W. Long non-coding RNA AANR knockdown suppresses apoptosis and pro-inflammatory cytokines while enhancing neurite outgrowth via binding microRNA-125a in a cellular model of Alzheimer’s disease. Mol Med Rep 2020;2020:1–9.
[14] Wang J, Sun P, Tao Y, Liu J, Li Y, Cui L, Deng Y, Shu J, Gong G. Trilobatin protects against OGD/R-induced apoptosis via the mitochondrial-mediated signaling pathway. Acta Biochim Biophys Sin 2016;48:342–53.
[15] Kwan KKL, Huang Y, Leung KW, Dong TTX, Tsim KWK. Danggui Buxue Tang, A herbal decoction containing Astragali Radix and Angelicae Sinensis Radix, modulates mitochondrial energy in cultured cardiomyoblasts. Front Pharmacol 2019;10.
[16] Dagda RK, Cherra SJ, Kulich SM, Tandon SA, Park D, Chu CT. Loss of pim1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 2009;284(20):13843–55.
[17] Tong Y, Bai L, Gong R, Chuan JL, Duan XM, Zhu YX. Shikonin protects PC12 cells against β-amyloid peptide-induced cell injury through antioxidant and antiapoptotic activities. Sci Rep 2018;8(1).
[18] Tan BL, Norhaizan ME, Liew WPP, Sulaiman Rahman HS. Antioxidant and anti-inflammatory cytokines while increasing blood-brain barrier permeability via activating A1 adenosine receptor signaling pathway. Front Mol Neurosci 2018;11:267.
[19] Liu Q, Kou JP, Yu BY. Ginsenoside Rg1 protects against hydrogen peroxide-induced cell death in PC12 cells via inhibiting Nrf2 activation. Neurochem Int 2011;58(1):19–25.
[20] Liu J, Liu WJ, Zhang D, Cheng BB, Zhang YN, Yin ZF, Wang Y, Du J, Ling CJ. Ginsenoside Rg1 attenuates ultraviolet β-induced glucocorticoids resistance in keratinocytes via Nrf2/hdac2 signaling. Sci Rep 2016;6(1).
[21] Li J, Liu D, Wu JF, Zhang D, Jiang Z, Guo J, Sun Q, Wang Y, Xie J, Jia J, et al. Ginsenoside Rg3 prevents memory loss in aged samp8 mice by decreasing oxidative stress and mitochondrial dynamics imbalance via modulation of glutamate dehydrogenase and mitofusin 2. Mitochondrion 2016;26:7–18.
[22] Filardi R, Pendin D, Pizzo P. Mitofusin 2: from functions to cell death. Cell Dis 2018;9(3).
[23] Gao J, Liu W, Xu F, Liu Y, Lv C, Deng Y, Shi J, Gong G. Trilobatin protects against oxidative injury in neuronal PC12 cells through regulating mitochondrial ROS production and fusion and fission and fusion in human diseases. N Engl J Med 2013;369(23):2236–51.
[24] Manzak M, Kandimalla R, Wu JF, Wang Y, Su ZY, Khor TO, Gao S, Wang J, Jiang ZH, Kong ANT. Pharmacodynamics of ginsenosides: antioxidant activity and cell signaling pathways as novel therapeutic targets for treating cardio-vascular disease. Eur J Pharmacol 2015;763:104–14.
[25] Byun S, et al. Red ginseng improves exercise endurance by promoting mitochondrial biogenesis and myoblast differentiation. Molecules 2020;25(4):865.
[26] Heffttemann M, Heffington H, Sanderson TH, Sinnerl C, Samavati L, Mahapatra G, Varughese A, Lu GR, Liu J, Ramzan R, et al. Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome C oxidase and cytochrome C in ischemia/reperfusion injury and inflammation. Biochm Biophys Acta 2012;1817(4):598–609.
[27] Archer SL. Mitochondrial dynamics — mitochondrial fusion and fission in human diseases. N Engl J Med 2013;369(23):2236–51.
[28] Wang J, Liu Q, Xu YJ, Zhang YH, Lv YN, Tan Y, Jang N, Cao CS, Ma XN, Wang JR, et al. Ginsenoside Rg3 protects against oxidative stress-induced neuronal apoptosis through myosin IIA-actin related cytoskeletal reorganization. Int J Mol Sci 2016;17(11):3431–56.
[29] Liu M, Bai YJ, Yu ST, Zhao DW, Qiao JH, Liu Y, Zhao DO, Wang JW, Wang S. Ginsenoside Re Inhibits ROS/ASK-1 dependent mitochondrial apoptosis pathway and activation of Nrf2-antioxidant response in beta-amyloid-challenged SH-SY5Y Cells. Molecules 2019;24(15):2687.
[30] Xu M, Ma Q, Fan CL, Chen X, Zhang HM, Tang M. Ginsenosides Rb1, and Rg3 protect primary cultured astrocytes against oxygen-glucose deprivation/reoxygenation-induced injury via improving mitochondrial function. Int J Mol Sci 2019;20(23):6086.
[31] Shin Ej, Jo SG, Choi SB, Cho CW. Lim HC, Rim TG, Jang YJ, Jang M, Ryu S, et al. Red ginseng improves exercise endurance by promoting mitochondrial biogenesis and myoblast differentiation. Molecules 2020;25(4):865.