Efficiency and Green House Emission Response of Different Vehicles Operating on Various Driving Cycles

Deepali Puri1,1 and Leena G1,2

1EEE department, Manav Rachna Institute of Research and Studies, Faridabad, India
2deenalipuri17@gmail.com, leenag.fet@mriu.edu.in

Abstract. In today's scenario, energy security and global warming are considered as vital parameters of concern. The use of large number of conventional vehicles on roads has caused serious environmental pollution and they consume considerable amount of energy resources. Thus solution lies in switching to cleaner and greener energy alternatives, such as electrical energy. In this paper, conventional, electric and hybrid electric vehicles are compared on the basis of efficiency and greenhouse gas emissions. For efficient comparison, three different cycles, namely, Manhattan, Urban Dynamometer Driving Schedule and Arterial, are chosen. The simulation and computer modelling is implemented using the Advanced vehicle simulator (ADVISOR) platform. When Electric vehicle is tested on three different types of driving cycles, it exhibits highest efficiency and no tail pipe emission as compared to other vehicles. Thus the use of Pure electric vehicle eliminates both the problem of depleting energy resources and environmental pollution.

Keywords—Electric vehicles, Conventional vehicles, Hybrid vehicles, ADVISOR, Driving cycle.

1. INTRODUCTION

Vehicle, the most important necessity of human life, is used to transport people or cargo. Automobile plays an incredible role in economic and social growth of any country. Conventional vehicles uses major portion of renewable energy resources like petroleum, diesel, gas etc., to drive their wheels but these resources are limited in nature. Moreover, it causes considerable pollution in the form of CO\textsubscript{2}, NO\textsubscript{x}, particles matter [1]. Resorting to electric energy is the best option to reduce CO\textsubscript{2}, NO\textsubscript{x}, Hydro Carbon(HC) emission, which is the prime culprit in global warming[2]. Over the past few decades, there is significant development in automobile industry [3]. Only Electric and Low emission hybrid vehicles can meet the outlined criterion of developing ultra-low emission automobiles as mentioned in the national regulations, which ensure a systematic and sustained development of low emission land vehicles. By 2035, almost 85% of all the vehicles introduced in the market will be electrical vehicles [4,5]. On broad terms, electrical vehicles are classified as Pure Electric vehicles (PEV) and Hybrid electric vehicles(HEV). The pure electric vehicle utilizes only one source of energy, electrical energy while hybrid electric vehicle uses the combination of two different power sources i.e, internal combustion engine and batteries. In this paper, a broad comparison between conventional, hybrid and pure electric vehicles are done on the basis of overall efficiency and CO\textsubscript{2}, NO\textsubscript{x}, HC emission. The simulation and computer modelling is implemented by using Advanced vehicle simulator (ADVISOR) tool from the DOE’s national Renewable energy laboratory [6]. The performance of pure electric, conventional IC engine and hybrid electric vehicles are compared in terms of efficiency and vehicle emission[7,8]. These performance parameters are evaluated on different driving cycles [9,10]. This paper is organized as: Section II explains the vehicle dynamics and driving cycle; Section III introduces ADVISOR, a simulating tool. Simulation is illustrated in Section IV followed by conclusions and result in Section V.

2. VEHICLE DYNAMICS AND DRIVING CYCLE

2.1 Vehicle Dynamics

Electric vehicle is the type of vehicle that utilizes only electrical energy to propel its wheels or uses battery to store energy. The most commonly used, conventional vehicle uses only internal combustion for its working while hybrid electric vehicle utilizes both internal combustion engine and battery to drive its wheel. The basic difference between conventional and electric vehicle lies in its power train system. The combustion engine in traditional vehicles is fuelled by fossil fuel whereas electric energy is the main source in electric vehicle and it mainly includes battery system, control system and motor system.
Figure 1. Vehicle dynamics diagram

The vehicle modelling is based on the vehicle dynamic diagram as shown in figure 1 and is derived from the basic equation of Newton’s Second Law, \(F = ma \).

This equation can be modified with some explicit forces acting on vehicles

\[
F = mg_C_{rr} + \frac{1}{2} \rho C_D AV^2 + ma + mgsin\theta
\]

(1)

Where, \(F \) = force required at the wheels of the vehicle, Newton
\(C_{rr} \) = coefficient of rolling resistance between tyres of vehicle and the surface of road.
\(m \) = mass of the vehicle, kg.
\(\rho \) = density of the ambient air, kg/m\(^3\)
\(C_D \) = coefficient of drag of the vehicle
\(A \) = area of cross section of the vehicle, m\(^2\)
\(v \) = velocity of the vehicle, m/s
\(a \) = acceleration of the vehicle, m/s\(^2\)
\(g \) = acceleration of gravity, m/s\(^2\)
\(\theta \) = angle of inclination between vehicle and road, degrees

The first term specifies the essential force required for overcoming the rolling resistance of the vehicle. This force remains constant in spite of increase or decrease of the vehicle speed. The second term denotes the drag force that the vehicle has to conquer at a certain speed. The drag force is proportional to the square of speed of the driving vehicle. Third term specifies the inertial mass of the vehicle. It has no effect under the constant-speed conditions and is non-zero only when the vehicle is decelerated/accelerated and the last term specifies the force required to propel the vehicle on a nonzero grade. Now the required torque, \(T \) (N-m) and angular velocity, \(\omega \) (radians per second) is calculated by using equations

\[
T = Fr
\]

(2)

\[
\omega = \frac{v}{r}
\]

(3)

Where \(v \) = linear velocity in m/s and \(r \) is the radius of wheel. The input angular velocity, \(W_{in} \) is calculated using the overall reduction ratio, \(R_x \) of the transmission. Compensating for the transmission efficiency, \(\eta_x \) as a function of torque-input speed, the input torque, \(T_{in} \) can be expressed as

\[
W_{in} = W_{out}R_x
\]

(4)

\[
T_{in} = \frac{\omega_{out}W_{out}}{R_x}
\]

(5)

The input power, \(P_{in} \) required from the vehicle voltage bus is calculated by using efficiency of inverter or motor at desired torque and speed

\[
P_{in} = \frac{\omega_{out}W_{out}}{\eta_m(\omega_{out}W_{out})}
\]

(6)

where \(\eta_m \) is efficiency of the motor and \(\eta_{in} \) is efficiency of the inverter. This power input is supplied either by batteries or auxiliary power units depending upon the type of vehicle used.

2.2 Driving cycle

The driving cycles are basically data point of speed (Km/hrs) versus time (seconds) that represent the particular driving sample. It is used to find out the performance of vehicle in terms of rate acceleration/deceleration, fuel consumption, emission, etc. A typical driving cycle curve is used for representing the progression of vehicle operating conditions; acceleration, steady state (const. speed) and deceleration for a given region, city or a country. To test the vehicle performance and to check
whether a design is appropriate for desired application or not, driving cycles are used. This results in reduction of expense on road test and save the fatigue and time of test engineers.

3. ADVANCED VEHICLE SIMULATOR (ADVISOR)

The modelling and simulation of vehicles are done in ADVISOR. It operates in MATLAB/Simulink environment as MATLAB is known for its modelling flexibility, visualization and optimization toolbox. In MATLAB files, vehicle data is provided and models are developed in Simulink. ADVISOR works in backward facing model, which requires no driver behaviour. It simply answers the question like how each component in vehicle configuration must perform in order to meet the desired trace and the force required to move the vehicle are directly calculated from the speed trace and then it is translated into torque. The driving pattern is set as input and force required to accelerate the vehicle is calculated and this force is converted into torque which is passed through the drive train until a tractive force is calculated. This calculation approach is carried backward, element by element, until the amount of energy or fuel required to meet the desired trace is calculated.

4. SIMULATION

In this paper, three different driving cycles were chosen for comparison, namely Manhattan, Urban Dynamometer Driving Schedule (UDDS) and Arterial. The speed-time characteristics of above mentioned driving cycles are as shown in figure 2. The Manhattan driving cycle is a low speed and frequent stops cycle. The UDDS driving cycle represents the city driving condition for light duty cycle testing whereas the arterial driving cycle computes fuel economy of the heavy duty vehicle.

![Speed time characteristics of Manhattan, UDDS, Arterial driving cycles](image)

Figure. 2.Speed time characteristics of Manhattan, UDDS, Arterial driving cycles

The Electrical, hybrid and conventional vehicle are simulated in ADVISOR platform. Table 1 represents various parameters associated with vehicles and its specifications

PARAMETER	SPECIFICATIONS
Frontal Area	2.174 m²
Mass of vehicle	1368 kg
Aerodynamic drag coefficient 0.327
Overall gear ratio 6
Coefficient of rolling resistance 0.008
Type of motor Permanent magnet DC motor
Maximum torque 248 Nm
Battery type NiMH
Pack voltage 380 V
Capacity of battery 104Ah
Initial SOC 1
ICE power 50kw

The data flow in electric, conventional and hybrid vehicles are represented in the form of block diagrams shown in figure 3. The input to each block diagram is from drive cycle. The drive cycle block contain all the data of drive train components and it sends the desired speed trace to the next block i.e vehicle block. In each component model data is defined by the text files in the database. For example motor/control block contains all motor related data. The vehicle block has no drive train performance restrictions. It directly uses the desired trace for finding the average speed and force required over the time step. Now this information is passed to wheel/axle block which convert this linear speed and force into angular speed and torque using vehicle parameters. Depending upon the efficiency of the motor at any particular torque and angular speed, the input power required from the vehicle’s voltage bus is computed. This required power is supplied either by the batteries or by combination of both auxiliary power unit and batteries. Once this calculation work has been done, software ADVISOR updates fuel used state of charge (SOC) of battery, emission etc., and then moves to the next step.

Figure 3. Block diagram of the hybrid electric vehicle using ADVISOR

The vehicle emissions computed using ADVISOR for the three different types of vehicles are tabulated in Table 2. Three categories of vehicle emissions i.e Carbon Monoxide, Oxides of nitrogen (NOx) and hydrocarbons are studied and shown in tabular form. The graphical representation of these emissions for hybrid, electric and conventional vehicles are shown in figure 4.

Greenhouse gas emissions(grams/mile)	Conventional Vehicle	Electric Vehicle	Hybrid Electric vehicle
Oxides of Nitrogen (NOx)	1.89	0	1.606
Hydrocarbons (HC)	7.4	0	6.57
Carbon Monoxide (CO)	1.29	0	0.909
Total emissions(grams/mile)	10.58	0	9.085
Figure 4: Emission graph for hybrid, electric, and conventional vehicles

Table 3: Calculation of overall efficiency for different driving cycles

Type of Vehicle	Fuel Converter	Clutch	Torque Coupling	Energy Storage	Motor Controller	Gear Box	Final Drive	Wheel/Axle	Auxiliary Load	Aero	Rolling	Efficiency = Aero + rolling / fuel in-storage
Conventional Vehicle												0.027
In	128	1549		1308	1225	1225	1132	0				
out	190	1308		1225	1225	1132	0					
Loss	109	241		83	0	93	762	66	289			
Efficiency	0.15	0.84		0.94	1	0.92	0					
Electric Vehicle												0.145
In	111	1574	175	209	105	1755	1645	153	0			
out	157	1392	175	1739	373	1645	1645	0				
Loss	954	182	0	39	682	110	108	762	66			
Efficiency	0.14	0.88	1	0.88	0.35	0.94	1	0.93	0			0.036
Hybrid Vehicle												
Three different kinds of vehicles, conventional, hybrid and electric vehicles are run on different driving cycles namely, Manhattan, urban dynamometer driving schedule and arterial. Step by step, energy in, energy out, losses and efficiency of each component is calculated and tabulated as shown in

Driving cycle-ARTERIAL	Conventional Vehicle	Electric Vehicle	Hybrid Vehicle			
In	6493	1391	1367	127	1271	204
out	1537	1367	1271	127	1180	0
Loss	4956	24	96	0	91	204
Efficiency	0.24	0.98	0.93	1	0.93	0
-			**0.09**			

In	299	1867	1541	142	2	1422	204	
out	204	6	1541	1422	142	2	1323	0
Loss	120	326	119	0	99	204		
Efficiency	0.8	0.83	0.92	1	0.93	0		
-			**0.34**					

In	6104	1224	17	27	360	841	1727	161	5	1615	204	
out	1224	1208	17	27	102	2	519	1615	161	5	1507	0
Loss	4880	16	0	74	322	112	0	108	204			
Efficiency	0.2	0.98	1	0.83	0.62	0.93	1	0.93	0			
-			**0.1**									

Driving cycle-UDSS	Conventional Vehicle	Electric Vehicle	Hybrid Vehicle				
In	22570	4219	4118	382	2	3822	958
out	4822	4118	3822	382	2	3534	0
Loss	17748	101	296	0	288	958	
Efficiency	0.2	0.98	0.93	1	0.92	0	
-			**0.093**				

In	440	5947	4643	427	6	4276	958
out	678	1	4643	427	6	3964	0
Loss	279	1304	368	0	311	958	
Efficiency	0.85	0.78	0.92	1	0.93	0	
-			**0.34**				

In	22212	4888	52	03	580	1610	5203	486	2	4862	958	
out	4888	4799	52	03	243	9	604	4862	486	2	4521	0
Loss	17323	90	0	96	1006	341	0	341	958			
Efficiency	0.22	0.98	1	0.87	0.38	0.93	1	0.93	0			
-			**0.103**									
table 3. At the end, overall efficiency of all the types of vehicles considered in this paper is calculated for the different driving cycles.

5. RESULT AND CONCLUSION

The simulation results reveals that when electric, hybrid and conventional vehicles are compared for different driving cycles namely, manhattan, UDDS and arterial, the efficiency of electric vehicle for each of the above driving cycle is more as compared to other types of vehicles. The average efficiency of conventional vehicles is 0.070, hybrid vehicle is 0.079 whereas for electric vehicle it is much higher that is 0.275. When these vehicles are compared on basis of greenhouse emission it is found that the conventional vehicle emits 10.58 grams/mile, hybrid vehicle emits 9.085 grams/mile and electric vehicle emits zero grams/mile. So, economic and social status of any country can be raised by switching over to greener and cleaner solution i.e Electric vehicle.

6. References

[1] Bolaji B and Adejuyigbe S 2006. Vehicle emissions and their effects on natural environment – a review. J Ghana Inst Eng. 4(1), 35–41
[2] Hawkins T, Gausen, M and Strømman, A, 2012. Environmental impacts of hybrid and electric vehicles—a review. Int J Life Cycle Ass. 17(8), 997–1014 –14
[3] Jain R 2018. The progress of electric vehicle. Int Res J Eng Technol. 5(10), 1613-19
[4] Global Electric Vehicle (EV) Outlook 2018 IEA Technical report, May 2018, Paris https://www.iea.org/reports/global-ev-outlook-2018
[5] Rajashekara K 2003. Present Status and Future Trends in Electric Vehicle Propulsion. IEEE. 1(1), 3-10
[6] Markel, T Brooker, A Hendricks, T Johnson, V Kelly, K Kramer, B O’Keefe and N M 2002 ADVISOR: a systems analysis tool for advanced vehicle modeling. J. Power Sources. 110(2), 255-66.
[7] Sam A Grossman D and ParkJ 2010. A study on optimization of hybrid drive train using advanced vehicle simulator. J. Power Sources. 195(19) 6954-63
[8] Hassan, A Mushtaq Z and Rehman, A 2015 Performance Analysis of Drive Train Configurations using ADVISOR. Int. J. Innov. Res. Adv. Eng. 2(2) 306-12
[9] Chew K Koay C Yong, Y 2014 ADVISOR simulation of Electric Vehicle Performance on Various Driving Cycles. Int. J. Innov. Sci. Eng. Technol. 1(8) 70-76.
[10] Shah V Pritesh P Sagar Pand Maheshwari R 2011 Measurement of Real Time Drive Cycle for Indian Roads and Estimation of Component sizing for HEV using LABVIEW. In J of Elect Comp Eng 5(10) 1121-21
[11] DieselNet.n.d. Emission Test Cycles.[online] Dieselnet.com. http://www.dieselnet.com/standards/cycles/
[12] Barlow T Latham S McCrae I and Boulter P 2009 A reference book of driving cycles for use in the measurement of road vehicle emissions, London: TRL, ISSN: 0968-4093
[13] Yong J Ramachandaramurthy K and Mithulananthan N 2015 A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects Renew. Sustain. Energy Rev 49, 365–385