Palaeoecology and palaeoenvironments of the Middle Jurassic to lowermost Cretaceous Agardhfjellet Formation (Bathonian–Ryazanian), Spitsbergen, Svalbard

Maayke J. Koevoets¹, Øyvind Hammer¹ & Crispin T.S. Little²

¹Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norway.
²School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom.

E-mail corresponding author (Maayke J. Koevoets): m.j.koevoets@nhm.uio.no

We describe the invertebrate assemblages in the Middle Jurassic to lowermost Cretaceous of the Agardhfjellet Formation present in the DH2 rock-core material of Central Spitsbergen (Svalbard). Previous studies of the Agardhfjellet Formation do not accurately reflect the distribution of invertebrates throughout the unit as they were limited to sampling discontinuous intervals at outcrop. The rock-core material shows the benthic bivalve fauna to reflect dysoxic, but not anoxic environments for the Oxfordian–Lower Kimmeridgian interval with sporadic monospecific assemblages of epifaunal bivalves, and more favourable conditions in the Volgian, with major increases in abundance and diversity of Hartwellia sp. assemblages. Overall, the new information from cores shows that abundance, diversity and stratigraphic continuity of the fossil record in the Upper Jurassic of Spitsbergen are considerably higher than indicated in outcrop studies. The inferred life positions and feeding habits of the benthic fauna refine our understanding of the depositional environments of the Agardhfjellet Formation. The pattern of occurrence of the bivalve genera is correlated with published studies of Arctic localities in East Greenland and northern Siberia and shows similarities in palaeoecology with the former but not the latter. Ammonite biostratigraphy is used as a tool to date bivalve assemblage overturning events to help identify similar changes in other sections.

Keywords: Black shale, core, biofacies, biodiversity, bivalves, ammonites

Received 30. September 2018 / Accepted 22. January 2019 / Published online 20. June 2019

Introduction

The Middle Jurassic to lowermost Cretaceous Agardhfjellet Formation of Spitsbergen is dominated by organic-rich shales and may be considered as a partial time equivalent of the Kimmeridge Clay Formation of Great Britain, the Draupne Formation of the Norwegian Sea, and the Hekkingen Formation of the Barents Sea, all of which are important petroleum source rocks. The Agardhfjellet Formation has been the focus of many previous palaeontological studies. These include papers on vertebrates (Ginsburg & Janvier, 1974; Hurum et al., 2012; Knutsen et al., 2012; Roberts et al., 2014, 2017; Delsett et al., 2015, 2017), palynology and microfossils (Bjørkø, 1980; Áhrus, 1988; Nagy et al., 1990, 2009; Nagy & Basov, 1998; Hjálmarsdóttir et al., 2012; Nakrem & Kiessling, 2012; Dalseg et al., 2016), ammonites (Kopik & Wierzbowski, 1988; Wierzbowski, 1989; Rogov, 2010, 2014; Wierzbowski et al., 2011), echinoderms (Rousseau & Nakrem, 2012) and hydrocarbon seep fauna (Holmer & Nakrem, 2012; Hryniewicz et al., 2014; Sandy et al., 2014). In contrast, the non-seep bivalve fauna of the Agardhfjellet Formation has been less well studied. Birkenmajer et al. (1982) collected bivalve specimens from Myklegardfjellet and Agardhfjellet, on the east coast of Spitsbergen, from the harder lithologies of the formation (e.g., sandstones, siltstones, siderite layers and carbonate concretions). These rock types are volumetrically subordinate to black shales in the Agardhfjellet Formation. In the field, the black shales have been subjected to repeated frost wedging, breaking them into small pieces; consequently,
invertebrate fossils are hard to find at outcrop in the majority of the formation.

In this study, we provide data on bivalve and ammonite faunas, as well as other invertebrate fossils, from the Agardhfjellet Formation in rock cores and from field studies in Central Spitsbergen between 2013 and 2016. The rock cores proved to be an excellent source of invertebrate fossils and revealed a far richer fauna than previously assumed. We use this invertebrate fauna, together with previous geochemical and sedimentological studies, to provide an integrated palaeoecological and palaeoenvironmental analysis of the Agardhfjellet Formation, and, using ammonites for correlation, compare this to other High Boreal sections in East Greenland and northern Siberia.

Geological Background

The Agardhfjellet Formation is 250 metres thick at the Janusfjellet section (Fig. 1) and consists of four members: the Oppdalen Member (Bathonian–Lower Oxfordian), the Lardyfjellet Member (Lower Kimmeridgian), the Oppdalssátå Member (Upper Kimmeridgian) and the Slottsmøya Member (Volgian–Ryazanian), with considerable lateral thickness variations between the members (Fig. 2). The succession consists mainly of dark, organic-rich shales (TOC between 2 and 12%; Koevoets et al. (2016)), interbedded with siltstones, sandstones and concretionary carbonates (Dypvik, 1984; Dypvik et al., 1991b; Koevoets et al., 2018). The sediments were deposited in a shallow-marine, dysoxic environment, where there was periodic oxygenation, according to Koevoets et al. (2018) and Collignon & Hammer (2012), based on major and trace element analysis. The only true anoxic interval in the Agardhfjellet Formation is situated in the Lardyfjellet Member, where shales are finely laminated and with little or no benthic invertebrate fauna or bioturbation.

The Oppdalen Member (Bathonian–Lower Oxfordian) shows a fining-upward trend, associated with transgression and the retrogradation of the coastline (Koevoets et al., 2018). The Lardyfjellet Member (Kimmeridgian), with organic-rich black shales at the base, coarsens upward into the base of the Oppdalssátå Member, ending with tabular sandstone bodies. These sandstone bodies belong to the distal part of a delta front (Koevoets et al., 2018) or sand bars (Dypvik et al., 1991b). The Oppdalssátå Member comprises three smaller coarsening-upward units, grading from shales at their bases to fine-grained sandstones (Upper Kimmeridgian–Volgian), capped with glauconitic, sideritic and carbonate-cemented beds containing wood fragments, belemnites, gastropods, bivalves and ammonites. Koevoets et al. (2018) assigned these coarsening-upward units to a prolonged regressional
Figure 2. Total abundance of macrofossils, complete and partial specimens, found in rock core DH2
Materials and methods

In November–December of 2007, the DH2 rock core was drilled as part of the UNIS CO2 LAB project, researching the feasibility of CO2 storage on Spitsbergen in the Triassic–Lower Jurassic sandstones (Otga et al., 2014; Sand et al., 2014). The complete 250 metre-thick, Middle Jurassic–Lowermost Cretaceous Agardhfjellet Formation sequence was fully recovered in the well. The well is located at Hotellneset, on the western shore of Adventfjorden, along the Longyearbyen airport road, Spitsbergen (Braathen et al., 2012) (Fig. 1). Drilling was performed with an ONRAM 1400 rig belonging to Store Norske Spitsbergen Kulkompani (SNSK), which allowed for continuous full-coring by a wireline system using telescope drilling (Braathen et al., 2012). The core is kept in wooden, metre-long boxes each containing up to 5 metres of core-material and stored in a dry, cool facility in Endalen, Spitsbergen.

Complete and fragmentary macrofossils were noted whenever they occurred on core breakage surfaces, the number of which was variable depending on lithology. Some lithologies formed continuous metres of core and were broken at up to ten levels per metre to increase fossil specimen recovery. The main fossil groups are ammonites, belemnites, bivalves, brachiopods, gastropods, onychites (cephalopod hooks) and teleost remains. The specimens of each group per metre of core-section were counted (Fig. 2). Other macrofossils, such as scaphopods and wood fragments, were also noted in the stratigraphic column (Fig. 2).

The fossils were identified to genus level, but species level identification proved difficult, because the majority of the fossils were preserved as moulds, mostly external. Those ammonite, brachiopod, bivalve and gastropod moulds that were identifiable were collected, and then prepared, where possible, with a fine pneumatic drill using a Zeiss Stereomicroscope SV8. The fossils were photographed using a Canon 550D camera after coating them in a thin layer of ammonium-chloride to increase contrast. The specimens were stored individually in cardboard boxes and given numbers for the Palaeontology department of the Museum of Natural History in Oslo (PMO). They were identified by comparison with other Boreal/Sub-boreal invertebrate fossils (Inlay, 1953; Gerasimov, 1955; Jeletzky, 1966; Zakharov, 1966, 1987; Mesezhnikov, 1972, 1984; Duff, 1978; Fürsich, 1982; Callomon & Birkeland, 1982; Kelly, 1984; Birkeland & Callomon, 1985; Kopik & Wierzbowski, 1988; Wierzbowski, 1989; Birkenmajer & Wierzbowski, 1991; Callomon, 1993; Zakharov & Rogov, 2008; Rogov & Zakharov, 2009; Rogov, 2010, 2014; Holmer & Nakrem, 2012; Hryniewicz et al., 2014, 2015; Koevoets et al., 2016).

Palaeoecological information on the identified invertebrate fauna, mainly bivalves, was obtained using the publications of Stanley (1970) and Cox et al. (1969), and earlier works on invertebrate fauna across the Boreal and Sub-boreal realms of the Upper Jurassic by Fürsich (1982, 1984), Birkenmajer et al. (1982), Kelly (1984), Kopik & Wierzbowski (1988), Wignall (1990) and Hryniewicz et al. (2014). Of particular interest in this study were the life positions (infaunal, semi-infaunal or epifaunal) and feeding habits (filter or deposit feeding). Figure 3 shows a compilation of palaeoecological data for each species of bivalve throughout the stratigraphy.

Selected pieces of core were imaged for cryptic bioturbation using a Nikon Metrology XT H 225 ST microfocus CT scanner at the Natural History Museum, University of Oslo, at 200 kV, 0.5 s exposure, 3000 rotations, 0.25 mm tin filter.

Palaeoecological and palaeoenvironmental reconstructions

Oppdal Member

The Oppdal Member (Bathonian–Lower Oxfordian) is the least fossiliferous interval of the Agardhfjellet Formation (Figs. 3 & 4). Consisting mainly of pyrite-rich, silty shales and muddy siltstones as part of a transgressive sequence ending in laminated black shale, it is believed to represent an outer-shelf deposit (Koevoets et al., 2018). Figure 3 shows low faunal abundances for the Oppdal Member. Nektic fossils, such as the ammonites Cadoceras sp. (Fig. 5G) and Keplarites (Seymourites) aff. svalbardensis and onychites, are more common throughout the member than benthic fossils. Onychites become even more abundant towards the top of the member. Bivalves and gastropods become somewhat more numerous in the Lower Oxfordian, but the bivalve fauna consists only of Grammatodon cf. pictum (Fig. 6H, I) (Milashichev, 1881; Gerasimov, 1955) and Mesosacella sp. (Fig. 7E) (Duff, 1978; Hryniewicz et al., 2014).

These semi-infaunal/shallow infaunal bivalves lived close to the sediment-water interface and are indicative of at least periodic oxygenation. The semi-infaunal, byssally
Figure 3. Identified bivalve occurrences in the DH2 core. Taxa grouped by feeding habits and life position.
attached *G. cf. pictum* (Stanley, 1970) specimens were found in siltstones to fine-grained sandstones. These siltstones and sandstones were deposited near the storm wave base, under periodically dysoxic conditions (Koevoets et al., 2018). *G. cf. pictum* was well adapted to moderately energetic conditions, feeding on suspended organic matter (Stanley, 1970). *Mesosaccella* sp. was encountered in the uppermost Oppdal Member, where dysoxic/anoxic silty mudstones/black shales dominate (Koevoets et al., 2018). This occurrence is expected, as *Mesosaccella* is associated with dysoxic conditions in other formations (Wignall, 1990; Kenig et al., 2004). Being infaunal deposit feeders, *Mesosaccella* specimens spent most of their lives buried. Hodges (2000) suggests that *Mesosaccella* could have had a short siphon for respiration and/or feeding from the sediment–water interface, and which could have been used as a snorkel during periodic deoxygenation events. If conditions become too challenging it is possible that individuals would have risen to the substrate surface to extend their siphons into oxygenated waters above.

Figure 4. CT-scan images of sections of core from Well DH2. (A) At level 674 m, Lardyfjellet Member. Unbioturbated laminated black shale. (B) At level 724 m, Oppdal Member. Abundant Trichichnus in fine-grained siltstone.

Figure 5. Hartwellia sp.: (A1) External mould of left valve, DH2 535.48 m, Slottsmøya Member, middle Volgian (PMO 228.777). (A2) Magnification of dentition of underlying valve (PMO 228.777). (B) External mould of left valve, DH2 584.06 m, Slottsmøya Member, lower Volgian (PMO 228.825). (C) External mould of opened articulated valves, DH2 583.21 m, Slottsmøya Member, lower Volgian (PMO 228.823). (D) External mould of valve fragment, DH5 496.20 m, Slottsmøya Member, middle Volgian (PMO 228.915). (E) External mould of left valve, DH2 601.45 m, Oppdal Member, lower Volgian (PMO 228.836). (F) External mould of opened articulated valves, DH2 552.60 m, Slottsmøya Member, middle Volgian (PMO 228.800). (G) Cadoceras sp. indet.; (H) External mould of outer whorl, lateral view, DH2 724.10 m, Oppdal Member, Upper Bathonian (PMO 228.887). A. moebites cf. subkitchini: (I) External mould of lateral view, keel visible, DH2 679.34 m, Lardyfjellet Member, Lower Kimmeridgian (PMO 228.872). Hoplocardioceras elegans: (J) External mould of outer whorl fragment, Criocerasaksla (glauconitic bed), Oppdalssåta Member, Upper Kimmeridgian (PMO 228.924). A. moebites sp. indet.: (L) External mould of lateral view, Janusfjellet (lowersmost siltstone), Oppdalssåta Member, Upper Kimmeridgian (PMO 228.921). A. moebites spathii: (K) External mould of lateral view, DH2 666.19 m, Lardyfjellet Member, Lower Kimmeridgian (PMO 228.855 A). A. moebites cf. pingueforme: (L) External mould of lateral view, DH2 666.75 m, Lardyfjellet Member, Lower Kimmeridgian (PMO 228.857 B).
Figure 6. Pseudoliminea sp.: (A) External mould of right valve fragment, DH2 480.72 m, Slottsmøya Member, Ryzanian (PMO 228.745). Oxytoma cf. octavia: (B) External mould of left valve fragment, DH2 510.72 m, Slottsmøya Member, upper Volgian (PMO 228.758). (C) External mould of left valve fragment, DH2 510.66 m, Slottsmøya Member, middle Volgian (PMO 228.757). Modiolus (Strimodiolus) sp.: (D1) External mould of valve fragment, DH2 518.38 m, Slottsmøya Member, middle Volgian (PMO 228.763). (D2) Magnification of valve ornamentation (PMO 228.763). (E1) External mould of left valve fragment, DH2 601.29 m, Oppdalssåta Member, lower Volgian (PMO 228.835). (E2) Magnification of valve ornamentation (PMO 228.835). (F) External mould of right valve fragment, DH2 535.10 m, Slottsmøya Member, middle Volgian (PMO 228.780). (G) External mould of left valve fragment, DH2 521.05 m, Slottsmøya Member, middle Volgian (PMO 228.769). Grammatodon cf. pictum: (H1) External mould of right valve, DH2 720.67 m, Oppdal Member, Upper Bathonian (PMO 228.886). (H2) Magnification of valve ornamentation (PMO 228.886). (I1) External mould of left valve? & underlying valve, DH2 708.02 m, Oppdal Member, Oxfordian (PMO 228.880). (I2) Magnification of dentition of underlying valve visible through the upper valve due to compaction (PMO 228.880). Grammatodon sp.: (J) External mould of opened articulated valves, DH2 554.44 m, Slottsmøya Member, middle Volgian (PMO 228.792). (K) External mould of opened articulated valves, DH5R 485.44 m, Slottsmøya Member, middle Volgian (PMO 228.913). Astarte cf. rouillieri: (L) External mould of valve fragment, DH2 610.43 m, Oppdalssåta Member, lower Volgian? (PMO 228.842). (M) External mould of right valve, DH2 604.38 m, Oppdalssåta Member, lower Volgian? (PMO 228.839). Astarte sp.: (N) External mould of right valve, DH2 654.67 m, Lardyfjellet Member, Lower to Upper Kimmeridgian (PMO 228.850). (O) External mould of right valve, DH2 654.11 m, Lardyfjellet Member, Lower to Upper Kimmeridgian (PMO 228.849).

Lardyfjellet Member

The coarsening-upward, regressive Lardyfjellet Member (Lower Kimmeridgian–Upper Kimmeridgian) consists of mostly laminated black shales and siltstones, which are moderately fossiliferous in the lower half, with increasing specimen abundance towards the upper part of the member. Koevoets et al. (2018) describe the environment as transitioning from outer shelf dysoxic/anoxic to the distal part of a delta front, implying an increase in oxygenation and energy levels. Fossils become particularly abundant at 675–655 metres in the member, as the ammonites Amoebites spp. (Fig. 5H, J & L) and Rasenia cymodoce (Koevoets et al., 2016) are encountered at several levels, with up to five specimens per metre core (Fig. 2). Bivalves are common, as are fish remains, and a few scaphopods occur. Curiously, the onychite abundance decreases in the same interval. This could be a result of preservational differences, as onychites are made of chitin, which was preserved better under oxygen-depleted conditions (Durska & Dembicz, 2015). The bivalve occurrences in the Lardyfjellet Member can be divided into two assemblages: Buchia cf. concentrica (Fig. 7F–H) dominated the middle part of the member, transitioning into an Astarte sp. dominated assemblage in the uppermost, more silt-dominated part of the section.

Species in the genus Buchia were opportunistic epifaunal, epi-bysate suspension-feeders, commonly found in shallow to deep-marine facies (Fürsich, 1984; Wignall, 1990). A proposed life position for B. keyserlingi was given by Zakharov (1981, fig. 78). The abundance of Buchia cf. concentrica is highest at 671–661 m. In this interval, the strata consist of black shales devoid of bioturbation, TOC around 10% (Koevoets et al., 2016), and V / (V + Ni) ratios indicative of dysoxic to anoxic conditions (Koevoets et al., 2018). These circumstances are in agreement with the epifaunal/epi-bysate lifestyle of Buchia and with the findings of Zell & Stinnesbeck (2015) that buchiids lived an epifaunal lifestyle, and were able to survive both high and low oxygen conditions. An opportunistic species such as B. cf. concentrica could take advantage of changing conditions in the Lardyfjellet Member as the coastline prograded, supplying the bottom water with more nutrients and increasing oxygenation. In the Buchia dominated bivalve assemblage, other species occurring in order of abundance were Astarte sp. (Fig. 6N, O) and Oxytoma sp. (Fig. 7N, O). The latter was an epibysate filter feeder, living on hard substrates such as shells (Stanley, 1970; Hryniewicz et al., 2014).

Most species of Astarte were shallow infaunal filter feeders (Stanley, 1970) tolerating moderately energetic environments. The sediments in which these specimens were found were deposited in a distal prodelta environment where energy levels were relatively low, but higher than in the underlying interval, TOC was very high and oxygenation of the bottom water was relatively low (Koevoets et al., 2018). The siltstones of the Lardyfjellet
Palaeoecology and palaeoenvironments of the Middle Jurassic to lowermost Cretaceous

NORWEGIAN JOURNAL OF GEOLOGY

Member hosting the Astarte assemblage were not only bioturbated by the shallow infaunal bivalves, but also contain Teichichnus, Palaeophycus and small Chondrites trace fossils. The Lardyfjellet Member Astarte assemblage also contains B. cf. concentrica and, sporadically, the infaunal deposit feeder Palaeonucula cf. isjordica (Fig. 7B–D), the latter possibly indicating reduced oxygenation conditions.

The transition from a low hydro-energetic environment (laminated shales) to a moderate hydro-energetic environment (siltstones) is accompanied by a change from assemblages dominated by epifaunal bivalves to infaunal bivalves. The overall increase in diversity of invertebrate fauna can be an indication of more favourable living conditions, such as an increase in nutrient supply in the water column.

Oppdalssåta Member

The Oppdalssåta Member (Upper Kimmeridgian–?Volgian) is characterised by thick tabular beds of fine-grained sandstones, containing cross-stratification and commonly capped with shell beds (Dypvik et al., 1991b; Mørk et al., 1999; Koevoets et al., 2018). It is a series of coarsening-upward sequences in a slowly retrograding system (Koevoets et al., 2018). The transgression resulted in finer-grained sediments in every coarsening-upward (CU) unit. Bivalves are less common in the sandstones and only one genus (Astarte) is found in these sediments. However, after flooding of the basin and the deposition of siltstones/shales in the upper part of the member, infaunal bivalve genera such as Hartwelia and Modiolus (Strimodiolus) are relatively common, and epifaunal genera, such as Oxytoma, appear repeatedly. In the Oppdalssåta Member, the nektic invertebrate fauna decreases drastically: ammonites all but disappear, and onychites are absent until the appearance of the low-energetic deposits in the final CU unit of the member. Teleost fish respond in a similar fashion. The only group profiting from the higher energetic conditions seems to be the gastropods. The gastropods preserved in this part of the section resemble procerithids, belonging to the superfamily Cerithioidea, which are often associated with higher energetic, oxygenated, bottom-water conditions (Allmon, 1988; Anderson et al., 2017). In this interval they have also been observed in the field in large numbers locally in fine-grained sandstone beds.

Hartwelia first occurs in the Upper Kimmeridgian and increases in abundance throughout the Oppdalssåta Member. Hartwelia sp. (Fig. 5A–F) was most likely a shallow infaunal suspension feeder, living close to the sediment–water interface, based on shell morphology (Stanley, 1970; Fürsich, 1982). Most specimens are entire and articulated, and some are in life position, indicating there was little to no transportation after death. Hartwelia sp. was found in the distal part of a retrograding prodelta system (Koevoets et al., 2018). The presence of the semi-infaunal Modiolus (Strimodiolus) sp. (Fig. 6D–G) and epifaunal Oxytoma sp. (Stanley, 1970; Fürsich, 1982) are also indicative of lower energetic environments. Astarte cf. rouillieri replaces Astarte sp. in this member and occurs in fine-grained sandstone beds, i.e., a coarser sediment than its Lardyfjellet Member counterpart, which occurs in siltstones. As infaunal filter feeders, many of the species within the genus Astarte were adaptable to moderately energetic environments (Stanley, 1970).

An alternation of a slightly higher energetic environment with low-energetic shales and siltstones (Fig. 3) coincides with the changes in abundances of the infaunal Hartwelia sp., and the presence or absence of Modiolus (Strimodiolus) sp. and Oxytoma sp. (semi-infaunal and epifaunal, respectively). The siltstones and shales bear the majority of the specimens and only few specimens, generally unidentifiable, occur in the sandstones. The interpretation of the coarsening-upward sequences as transitioning from outer shelf to transition zone/prodelta to lower middle shoreface/delta front can explain the alternating invertebrate abundances. Alternatively, the paucity of specimens in the sands could have taphonomic explanations, including a high sedimentation rate causing dilution of specimens.
The overall abundance of invertebrate fauna in the Agardhfjellet Formation is highest in the Slottsmøya Member. The semi-infaunal scaphopods become more common, and onychites, ammonites and fish remains occur regularly throughout the member. All of the identifiable ammonites were found in the middle to upper Volgian interval, including *Dorosplanites* cf. *maximus*, *Epivirgatites* cf. *sokolovi* (Fig. 8B–D), *Dorosplanites* sp. (Fig. 9J, K), *Praeclithaetites* ex gr. *exoticus* (Fig. 8F) and *Laugites* sp. (Fig. 8G). The bivalve assemblage is dominated by *Hartwellia* sp., which increases dramatically in abundance in the section. Also occurring in the Slottsmøya Member are the semi-infaunal taxa *Grammatodon* sp. (Fig. 6J, K) and *Modiolus* (*Stromodiolus*) sp., and in places the deposit-feeding *Palaeonucula* cf. *isfjordica* (Stanley, 1970; Fürsich, 1982). Another bivalve assemblage occurs from about 530 m to 520 m in the member comprising mainly of epifaunal taxa, such as *Buchia* sp. (Fig. 7–K), *Oxytoma* cf. *octavia* (Figs. 6B, C & 7L, M), and *Pseudolimea* sp. (Fig. 6A), and the deposit-feeding *Dacromya* sp. (Fig. 7A).

The *Hartwellia* assemblage is found in an alternating oxic–dysoxic, regressive, outer-shelf marine environment (Koevoets et al., 2018). *Modiolus* (*Stromodiolus*) sp. is believed to have been an endobystate, low-level (bottom 5 cm of the water column) suspension feeder (Stanley, 1970; Fürsich, 1982). Specimens belonging to these taxa were found in muddy siltstones typical for outer-shelf marine deposits (Koevoets et al., 2018). According to Collignon & Hammer (2012) the bottom waters of the Slottsmøya Member were periodically oxygenated, as a result of a sudden incoming of reworked sediments (siltstones to very fine sandstones) deposited as parts of turbidites or storm deposits. This conclusion is confirmed by element analysis of Koevoets et al. (2018) where V / (V + Ni) and U/Th ratios are used as oxygenation proxies.

There is a remarkable increase in onychites specimens and teleost remains in the uppermost part of the Slottsmøya Member, in the interval 493–500 m in DH2 (Fig. 2). This increase is followed by a sudden peak of abundance of lingulid brachiopods, and the onychite and teleost remains disappear. During this interval the numbers of bivalves and ammonites drop drastically, and the lithology changes from siltstone to laminated black shale. Just below this interval, infaunal bivalves become very rare and are replaced by epifaunal species such as *Buchia* sp., *Oxytoma* cf. *octavia*, *Pseudolimea* sp., and the infaunal deposit feeder *Dacromya* sp. All these changes point to a sudden deepening of the basin and increased input of organic matter, creating more anoxic bottom waters.

Buchia sp. was most likely an opportunistic epi-byssate filter feeder, like *B. cf. concentrica*, which fits with a sudden decrease in energy levels and the early onset of increased oxic conditions. *O. octavia* and *Pseudolimea* sp. were filter feeders (Stanley, 1970) that lived byssally attached to loose shells or hard substrates, such as authigenic carbonate crusts from the hydrocarbon seeps (Hammer et al., 2011) which occur at this level (Hryniewicz et al., 2014). *O. octavia* most likely lived in low-energy environments, based on their thin shells (Hryniewicz et al., 2014). The specimens in this study were collected from an interval that belongs to a transgressional sequence (Koevoets et al., 2018), just below a maximum flooding surface. The depositional environment of this interval is assigned to the outer-shelf marine realm (Koevoets et al., 2018), which fits the findings of Hryniewicz et al. (2014) on the low-energy environment habitat for *O. octavia*.

Dacromya sp. was an infaunal deposit-feeding bivalve. The high mud percentage of the siltstones containing *Dacromya* indicates a low-energy deposit. The presence of this burrowing bivalve indicates a periodic oxygenation of the seafloor and the top layers of the substrate. The TOC content of this interval is 2–5% (Koevoets et al., 2016), which fits the findings of Hryniewicz et al. (2014) on the low-energy environment habitat for *O. octavia*.

The siltstones overlying the black shales do not show a recovery of the invertebrate benthic fauna. Onychites and teleosts disappear and only a few bivalves are present (*Pseudolimea* sp. and *O. octavia*). A bed follows with large numbers of the brachiopod *Lingularia* sp. (Fig. 2).
Ma	Standard Boreal	Central Spitsbergen	Northern Asian Russia	East Greenland
141	Tolia tailli	Surites tiktinwinianus	Bajoria meszinhikowi	Pregarinoceras aff. albidum
142	Late Jurassic	Sunites analougs	Surites analougs	Sunites analougs
143	Early Jurassic	Hectococeras kochi	Hectococeras kochi	Hectococeras kochi
144	Early Cretaceous	Chetaites sibircus	Chetaites sibircus	Praetollia mayoic
145	Middle Jurassic	Craspetes taimyrensis	Chetaites chetae	Chetaites chetae
146	Late Jurassic	Craspetes okensis	Craspetes okensis	Subcraspetes sororby?
147	Late Cretaceous	Epilaugeites vogulicus	Epilaugeites vogulicus	Prachetaites exostaticus
148	Middle Jurassic	Laugites greenlandicus	Laugites greenlandicus	Laugites greenlandicus
149	Early Jurassic	Aulacostephanus autissiodorensis	Aulacostephanoides mutabilis	Aulacostephanus cf. kirghsensis
150	Late Jurassic	Aulacostephanus eudaxus	Aulacostephanus eudaxus	Aulacostephanus eudaxus
151	Early Jurassic	Aulacostephanoides mutabilis	Aulacostephanoides mutabilis	Aulacostephanoides mutabilis
152	Early Jurassic	Rasenia cymodoe	Rasenia cymodoe	Rasenia cymodoe
153	Early Jurassic	Pictonia baylei	Pictonia baylei	Pictonia baylei
154	Middle Jurassic	Perisiphinctes couteingae	Perisiphinctes couteingae	Perisiphinctes couteingae
155	Early Jurassic	Cardioceras tenuiserratum	Cardioceras tenuiserratum	Cardioceras tenuiserratum
156	Early Jurassic	Cardioceras densiplicatum	Cardioceras densiplicatum	Cardioceras densiplicatum
157	Middle Jurassic	Cardioceras cordatum	Cardioceras cordatum	Cardioceras cordatum
158	Early Jurassic	Cardioceras pereeaum	Cardioceras pereeaum	Cardioceras pereeaum
159	Early Jurassic	Cardioceras glorouis	Cardioceras glorouis	Cardioceras glorouis
160	Early Jurassic	C. (S.) obliteratum	Cardioceras (S.) obliteratum	Cardioceras (S.) obliteratum
161	Early Jurassic	C. (S.) densiplicatum	Cardioceras (S.) densiplicatum	Cardioceras (S.) densiplicatum
162	Early Jurassic	Cardioceras (Scarburgiceras) glorouis	Cardioceras (Scarburgiceras) glorouis	Cardioceras (Scarburgiceras) glorouis
163	Early Jurassic	Longaeviceras keyserlingi	Longaeviceras keyserlingi	Longaeviceras keyserlingi
164	Early Jurassic	C. wosnessensi, C. postelatmae	C. wosnessensi, C. postelatmae	C. wosnessensi, C. postelatmae
165	Early Jurassic	Cadoceras subeave	Cadoceras subeave	Cadoceras subeave
166	Early Jurassic	Cadoceras durius	Cadoceras durius	Cadoceras durius
167	Early Jurassic	Cadoceras tchiernysievi	Cadoceras tchiernysievi	Cadoceras tchiernysievi
168	Early Jurassic	C. elatma	C. elatma	C. elatma
Comparison with other Arctic Upper Jurassic localities

Ammonites

In order to correlate other sections to the Agardhfjellet Formation of Spitsbergen, a high-resolution biostratigraphy is necessary. Ammonites of the Mesozoic show provincialism and can be divided into two realms: the Tethyan Realm and the Boreal Realm (Krymholts & Mesezhnikov, 1988; Gradstein et al., 2012). This makes correlation with stratigraphy in the UK and Europe challenging, but not impossible, as demonstrated by Gradstein et al. (2012) and Rogov & Zakharov (2009).

In the Boreal Arctic, several studies have been done on the ammonite biostratigraphy of sections in Spitsbergen, northern Siberia and East Greenland (Callomon, 1959; Kopik & Wierzbowski, 1988; Århus et al., 1989; Surylk, 1991; Rogov & Zakharov, 2009; Rogov et al., 2011; Wierzbowski et al., 2011; Pauly et al., 2012; Alifirov et al., 2015; Rogov, 2016) (Table 1).

In Spitsbergen, the ammonite occurrences, preservation, and occurrence of condensed sections and possible hiatuses have limited the determination of ammonite zones in the Bathonian, Callovian and Oxfordian. The ammonites found in the Agardhfjellet Formation in the DH2 core correspond well with the previously indicated biostratigraphy. An unidentified cardioceratid occurs at 718 m in DH2, and at 724 m Cadoceras sp. was found. Kepplerites (S.) svalbardensis (DH5R, 663 m) in the Oppdalen Member belongs to the NW European Clydoniceras discus Zone (Koevoets et al., 2016), which corresponds with the Boreal standard Cadoceras calyx Zone (Table 1). Cardioceras sp. (DH2, 706 m) from the uppermost Oppdalen Member is believed to be part of the Cardioceras cordatum Zone (Koevoets et al., 2016), but without species identification it is difficult to pinpoint the age more precisely other than Oxfordian. The same applies to the cardioceratid at 701 m in DH2 in this study (Fig. 9C) which like Cardioceras sp. from the uppermost Oppdalen Member is assigned to the C. cordatum Zone.

In the upper half of the Lardyfjellet Member ammonites become very abundant. This interval (680–660 m in DH2) is ascribed to the Lower Kimmeridgian Rasenia cymodoce Zone of the Boreal Standard, where in Spitsbergen and Siberia Amoebites subkitchini is used as an index species (Table 1) (Wierzbowski, 1989; Rogov, 2014, 2016; Koevoets et al., 2016). A. subkitchini (Fig. 5H), A. pingueforme (Fig. 5L) and Rasenia cf. cymodoce (Fig. 9F, I) from this study all fall within the same interval. Koevoets et al. (2016) found Hoplocardioceras elegans in DH5R at 566 m, corresponding to 626 m in DH2, and concluded that it belonged to either the Upper Kimmeridgian Aulacostephanus eudoxus Zone or the Euprionoceras sokolovi Zone of the Boreal Realm (Table 1). Other specimens of H. elegans were encountered a couple of metres below in DH5R (Fig. 9A) and at Janusfjellet just above the glauconitic sandstone of the Oppdalssåta Member (Figs. 5I & 9B).

The ammonite zonation in the Slottsmøya Member based on the specimens from the DH2 and DH5R core is difficult, because no identifiable ammonites were found in the lower part of the member. The first identified ammonite in the DH2 core, Pavlovia cf. iatriensis at 543 m (Fig. 8A), indicates a middle Volgian age, as supported by finds of Dorsoplanites sp. at 543 m in DH2 and 488 m in DH5R (Fig. 9J, K). In the field, a sideritic bed, informally referred to as the Dorsoplanites bed, correlating to c. 536 m in DH2, is rich in fossils. From this bed, Dorsoplanites sp. (Fig. 9D) and Epivirgatites cf. sokolovi (Fig. 8B–D), of the middle Volgian, were recovered.

In the upper Volgian to Ryazanian interval of the Agardhfjellet Formation in DH2 ammonites are uncommon. Praechetaites ex gr. exoticus (Fig. 8F) at 511 m and Laugetites sp. (Fig. 8G) at 507 m in DH2 are found in the uppermost middle Volgian (Rogov, 2010).

Recently, Mikhail Rogov (pers. comm. and Rogov, 2018) has sampled the DH2 core in high resolution for ammonites. His age determinations are in general agreement with those of Koevoets et al. (2018) for the lower part of the core (Oppdalen, Lardyfjellet and Oppdalssåta members, of Bathonian to Upper Kimmeridgian age). However, in the Slottsmøya Member, he assigns the uppermost part (c. 525–480 m in DH2) to the middle and upper Volgian, rather than the upper Volgian to Ryazanian of Koevoets et al. (2018). This is seemingly in conflict with the work of Wierzbowski et al. (2011) who reported upper Volgian to upper Ryazanian ammonites from hydrocarbon seeps in the Janusfjellet–Knorringsfjellet area, all situated below the Myklegardfjellet Bed, which we have placed at 479 m in DH2 (Koevoets et al. 2018). Possible explanations for this discrepancy include strong diachronism, slump of seep carbonates as well as problems with the ammonite zonation. We have tentatively followed Rogov’s

Table 1. Ammonite zone correlation throughout the Arctic based on previous studies by Callomon (1959), Ershova (1983), Kopik & Wierzbowski (1988), Rogov & Zakharov (2009, 2011), Wierzbowski et al. (2011) and Rogov (2016) for Spitsbergen; Rogov & Zakharov (2009, 2011), Rogov (2016) and Alifirov et al. (2015) for northern Asian Russia and Callomon (1959), Callomon & Birkelund (1982), Birkelund & Callomon (1985), Århus et al. (1989), Surylk (1991), Rogov & Zakharov (2009), Pauly et al. (2012) and Rogov (2014, 2016) for East Greenland. The standard Boreal zonation is based on Gradstein et al. (2012) and Nikitenko et al. (2013) with some adjustment in the Bathonian according to Mita et al. (2014). Most of the Oxfordian zonation in Spitsbergen, based on Ershova (1983) and Rogov (2018), has so far not been recognised in outcrops in central Spitsbergen.
scheme here, awaiting further work on the age of the Myklegardfjellet Bed.

When comparing the individual ammonite finds in the Arctic sections, it is clear that correlation in the Kimmeridgian, Volgian and Ryazanian is considerably easier than in the Bathonian, Callowian and Oxfordian (Callomon, 1959, 1993; Frebold, 1961; Callomon & Birkelund, 1982; Birkelund & Callomon, 1985; Århus et al., 1989; Birkenmajer & Wierzbowski, 1991; Zakharov & Rogov, 2008; Rogov & Zakharov, 2009; Rogov, 2010). The lower and upper Volgian in the Agardhfjellet Formation contain fewer ammonite occurrences. However, the ammonites C. (T.) taimyrensis and Chetaites sp. are found in northern Siberia, Arctic Canada and East Greenland (Jeletzky, 1966; Callomon & Birkelund, 1982; Rogov & Zakharov, 2009; Rogov, 2010).

Bivalves

Buchiid bivalves have been used in the Boreal Upper Jurassic and Lower Cretaceous for biostratigraphical zonation, complementing the established ammonite zones to increase coverage (Table 2). Since in this study we were only able to identify one buchiid to species level, we were not able to compare the results for the entire formation. The presence of Buchia cf. concentrica in the Lardyfjellet Member corresponds with the finds of B. concentrica in East Greenland and Northern Siberia (Surlýk & Zakharov, 1982; Zakharov, 1987; Rogov & Zakharov, 2009; Shurygin et al., 2011),

The bivalve diversity in Spitsbergen is low compared with other Arctic areas, such as Milne Land, East Greenland (Fürsich, 1984) and northern Siberia (Zakharov, 1966). When comparing the bivalve assemblages and genera of other Arctic sections to this study, the succession in Milne Land stands out (Fürsich, 1982, 1984). The species richness found in Spitsbergen is significantly lower and the depositional environment of the Agardhfjellet Formation appears to be more distal to the coast than the section in Milne Land, but the trends and presence of genera through the stratigraphy seem to follow a similar sequence (Fürsich, 1982, 1984). As in the Agardhfjellet Formation, the Kap Leslie Formation has a base consisting of coarse-grained sandstone roughly following a fining-upward succession from the Bathonian to the Kimmeridgian (Fig. 10) (Fürsich, 1984; Birkelund & Callomon, 1985). The Kosmocerasdal Member (Upper Callowian–Upper Oxfordian) is dominated by semi-infauina/epifaunal bivalves (G. keyserlingii, A. sollea and C. broenlundii) (Fürsich, 1984), although specimen abundances are very low. This fauna is similar to that in the Oppdal Member. The overlying Aldinger Elv Member (Upper Oxfordian) and Bays Elv Member (Upper Oxfordian–Lower Kimmeridgian) consist of sandstones and specimen abundances in these units are even lower, but still dominated by semi-infauina/epifaunal assemblages (Fürsich, 1982; Birkelund et al., 1984). These sandstones are interpreted as shallow-water near-shore sandbars wedged in between fine-grained sediment bodies (Fürsich & Heinberg, 1983). Similar sandstone bodies are not present in Spitsbergen as the location was more distal and laminated black shales were deposited instead (Koevoets et al., 2018). The lack of distinguishable bivalves in the Agardhfjellet Formation prevents detailed comparison with the Milne Land section fauna for this time interval.
Ma	Central Spitsbergen	Northern Siberia	East Greenland
141	Late Ryazanian	Buchia tilmatschowi	Buchia volgensis
142	Early Cretaceous	Buchia jasiaki	
143		Buchia akensis	Buchia akensis
144	Late Jurassic	Buchia unschensis	Buchia unschensis
145	Early Cretaceous	Buchia obliqua	Buchia obliqua
146		Buchia taimynensis	Buchia ruseiensis
147	Late Jurassic	Buchia ruseiensis	Buchia mosquensis
148	Early	Buchia rugosa	Buchia mosquensis
149	Late Jurassic	Buchia mosquensis	
150	Early	Buchia mosquensis	
151	Late Jurassic	Buchia concentrica	Buchia concentrica
152	Early		
153	Late Jurassic	Buchia tenuistriata	Buchia tenuistriata
154	Early	Buchia ex gr. tenuistriata	
155	Late Jurassic	Buchia concentrica	Buchia concentrica
156	Early		
157	Late Jurassic	Praebuchia kirghisensis	Praebuchia kirghisensis
158	Early	Buchia concentrica	
159	Late Jurassic	Praebuchia orientalis	
160	Early	Grammatodon schleuseni	
161		Praebuchia orientalis	
162	Early	Buchia absent	
163	Late Jurassic		
164	Early	Buchia absent	
165	Late Jurassic	Praebuchia anabarenensis	
166	Early	Thracia scythica	
167	Late Jurassic		
168	Early		

Ryazanian Volgian Kimmeridgian Oxfordian Callovian Bathonian
In Milne Land, the Aldinger Elv and Bays Elv Member sandstones are followed by fining-up, outer-shelf siltstones of the epifaunal pectinid bivalve dominated Cardioceras/krøft Member (Lower Kimmeridgian) and laminited, black shales of the Gråkløft Member (Kimmeridgian–Lower Volgian). The bivalve fauna of this member was dominated by the *Prorokia* and *Buchia*, followed by *Astarte*, spanning the Kimmeridgian to earliest Volgian age (Birkelund et al., 1984). At this point in the East Greenland section anoxic conditions became widespread (Fürsich, 1984). Black shales containing epifaunal *Buchia* and infaunal *Astarte* bivalve faunas are very similar to those of the Lardyfjellet Member, which was also deposited in a dysoxic environment (Koevoets et al., 2018). The major difference in lithology in this interval is the incoming of sandstones of the Oppdalsåta Member in the Upper Kimmeridgian.

In the Volgian Krebsedal, Pernaryggen, Astartadal and Hennigryggen members of East Greenland, the abundance and diversity of bivalves increase drastically (Fürsich, 1982), similar to the trend seen in the Slottsmøya Member in Spitsbergen. As in Spitsbergen, the Milne Land Volgian age siltstones are dominated by infaunal and semi-infaunal bivalves, such as *Grammatodon*, *Pleuronyx*, *Astarte* and *Hartwellia* (Fürsich, 1982). The most commonly found bivalve in Spitsbergen in the Slottsmøya Member is *Hartwellia*, which is represented by four different species in Milne Land (Fürsich, 1982). Like the Svalbard Slottsmøya Member, the East Greenland Krebsedal, Pernaryggen and Astartadal members consist mainly of shallow shelf siltstones deposited beneath the fair-weather wave base (Fürsich, 1984). The depositional environment and the benthic faunal assemblages of the Volgian stage in East Greenland are interpreted in terms of a shallowing-upward sequence ending in deltaic and lagoonal settings at the end of the middle Volgian in the Hennigryggen Member (Fürsich, 1984). This shallowing-upward sequence also seems to be reflected in the lower to middle Volgian of the Slottsmøya Member but in a more distal setting (Koevoets et al., 2018).

To compare the Sverdrup Basin (Canadian Arctic) invertebrate fauna to other Arctic studies more data need to be collected in the future, as previous research mainly focuses on ammonite and *Buchia* zonation (Frebold, 1961; Jeletzky, 1966; Christie & McMillan, 1994).

The northern Siberian sections on the Nordvik Peninsula do not show the degree of similarity with Spitsbergen seen in the East Greenland faunas. The abundance and diversity of genera in northern Siberia are highest in the Oxfordian and Kimmeridgian (roughly 18 genera) and lowest in the Volgian (4 genera) (Zakharov et al., 2014). The bivalve assemblages were dominated by epifaunal and semi-infaunal genera throughout the Oxfordian to Volgian (Zakharov, 1966) and feeding habits became less diverse toward the end of the Volgian (Zakharov et al., 2014). Deposit feeders were particularly rare in the late Volgian, if present at all. The remaining filter-feeding bivalves were represented by a single genus (*Buchia*), which is believed to be a result of environmental circumstances, such as deepening of the sea causing low oxygen levels in both bottom waters and substrate (Zakharov et al., 2014). Considering the stratigraphic succession and the difference in bivalve assemblages compared to this study, it appears that the strata in the Nordvik sections were deposited in a marine basin that was isolated from the area in which the Agardhfjellet Formation was deposited, or with very different environmental conditions.

The changes in the less diverse bivalve assemblages in the Agardhfjellet Formation seem to mimic the changes in the more proximal settings of Milne Land, suggesting that these areas were connected oceanographically during the Middle Jurassic to lowermost Cretaceous time period. Assemblages and lithology show an overall transgression and starvation of the basins with widespread undisturbed, laminated, black shale deposits, followed by shallowing-up and more hospitable circumstances causing rapid benthic invertebrate colonisation across the basins (Parker, 1967; Birkelund et al., 1984; Koevoets et al., 2016).

Lingulid brachiopods

A noteworthy bed is found in the DH2 core at 481–484 m, in the uppermost part of the Slottsmøya Member, where there are abundant specimens of *Lingularia* sp. (Fig. 8)–1). This lingulate brachiopod genus is also found in hydrocarbon seeps of the member (Holmer & Nakrem, 2012). A similar bed is present in the lowermost part of the Hennigryggen Member of East Greenland (Fürsich, 1984). The lack of any other benthic invertebrates in these beds signals a significant environmental change. The extant species of *Lingula* prefer shallow-marine, intertidal, sandy habitats and as a result the fossil relatives were assumed to prefer the same type of environments (Paine, 1970). However, many studies show that fossil species most likely lived in more muddy environments (Paine, 1970; Pickerill et al., 1984; Zabini et al., 2010) and are thus not suitable as an environmental index fossil. Our specimens were found in shales and muddy siltstones, which represent shallow-marine sub-tidal sediments deposited in a regressive stage (Dypvik et al., 1991a, b; 1992; Mørk et al., 1999; Collignon & Hammer, 2012).

Table 2. Buchiid Zone correlation based on studies of Central Spitsbergen by Surløy & Zakharov (1982), Zakharov (1987) and Rogov & Zakharov (2009), of northern Siberia by Zakharov (1987), (Shurygin et al., 2011), and of East Greenland by Surløy & Zakharov (1982), Zakharov (1987) and Rogov & Zakharov (2009).
Figure 10. Stratigraphical logs of the Bathonian to Valanginian successions of Spitsbergen (DH2 core based on Koevoets et al., submitted), Milne Land, East Greenland (based on Fürsich, 1982, 1984), Sverdrup Basin, Arctic Canada (Embry, 1993) and the Nordvik Peninsula area (composite section), Northern Siberia (Nikitenko et al., 2013, 2015)
Conclusions

At outcrop, invertebrate fossils from the shales in the Middle Jurassic to lowermost Cretaceous Agardhfjellet Formation are largely limited to moulds and many are heavily fragmented by frost-wedging in the Arctic environment. In contrast, rock cores drilled as part of the CO₂ storage project show that invertebrates in this formation were more abundant and diverse than previously thought.

The ammonite stratigraphy provides a good correlation between this and other Arctic sections. The succession of bivalve assemblages and the accompanying preferred life position and feeding habits fit well with the oxygenation and depositional environments proposed by Koevoets et al. (2018) as a distal response to prograding and retrograding of the coastline.

The Oppdal Member, with a sparse invertebrate fauna, represents a transition to outer-shelf environments where nektic fauna dominates and benthic fauna consists of rare epifaunal/semi-infaunal bivalve occurrences. The fining-upward successions of the Lardyfjellet and lower Oppdalssåta members are interpreted as a forward-stepping coastline/delta as they shallow from outer-shelf nektic and epifaunal dominated benthic fauna, to the transitional zones where the benthic fauna is dominated by infaunal bivalves as bottom waters become more oxygenated, to relatively proximal sandstones of a distal delta front with extremely low bivalve abundances as a result of the higher energetic environment. The upper Oppdalssåta Member and Slottsmøya Member are interpreted as part of a backstepping coastline/delta sequence, ending in more distal deposits belonging to the transitional zone and eventually outer shelf before shallowing up again in the uppermost Slottsmøya Member. The increased abundance and diversity of the invertebrate fauna and bivalve assemblages dominated by the infaunal Hartwellia sp. for the majority of the Slottsmøya Member is indicative of shallow-shelf conditions.

The sequence of regression and transgression in the Agardhfjellet Formation is similar to the sequences observed in the more proximal East Greenland sections. With similar bivalve genera and assemblage overturns at the same ages, these localities appeared to be connected. In contrast, the northern Siberian Nordvik sections show different bivalve genera, overturning moments and sequence stratigraphy.

Acknowledgements: This study is part of the industry and research council of Norway (the Climit program) sponsored Longyearbyen CO₂ Lab project. In addition, it is part of the “Facies variations of Upper Jurassic source rock interval in the Barents Sea” project funded by ConocoPhillips and Lundin Norway, the ARCEx project (Research Centre for Arctic Petroleum Exploration) funded by the Industry and Research Council of Norway (grant number 228107) and the industry-sponsored JuLoCrA project led by the University in Stavanger and UNIS. Thanks to the reviewers, Franz T. Fursich and Victor Zakharov, for helpful comments on the manuscript. Special thanks to Mikhail Rogov for invaluable help with ammonite identifications.

References

Alifirov, A.S., Beisel, A.L. & Meledina, S.V. 2015: The Callovian and Late Jurassic ammonite-based chronostratigraphy of West Siberia: important findings, biostratigraphic review, and basin correlation West Siberia-South England. Swiss Journal of Palaeontology 135, 1–11.

Allmon, W.D. 1988: Ecology of Recent turritelline gastropods (Prosobranchia, Turritellidae): Current knowledge and paleontological implications. Palaios 3, 259–284. https://doi.org/10.2307/3514657.

Anderson, B.M., Hendy, A., Johnson, E.H. & Allmon, W.D. 2017: Paleoecology and paleoenvironmental implications of turritelline gastropod-dominated assemblages from the Gatan Formation (Upper Miocene) of Panama. Palaeoecography, Palaeoclimatology, Palaeoecology 470, 132–146. https://doi.org/10.1016/j.palaeo.2017.01.026.

Birkeland, T. & Callomon, J.H. 1985: The Kimmeridgian ammonite faunas of Milne Land, central East Greenland. Greenland Geological Undersøgelse 153, 1–56.

Birkeland, T., Callomon, J.H. & Fursich, F.T. 1984: The stratigraphy of the Upper Jurassic and Lower Cretaceous sediments of Milne Land, central East Greenland. Bulletin Grønlands Geologiske Undersøgelse 147, 1–56.

Birkenmajer, K. & Wierzbowski, A. 1991: New Kimmeridgian ammonite fauna from East Spitsbergen and its phylectic significance. Polar Research 9, 169–179. https://doi.org/10.3402/polar.v9i2.6789.

Birkenmajer, K., Pugaczewska, H. & Wierzbowski, A. 1982: The Janusfjellet Formation (Jurassic-Lower Cretaceous) at Myklekargdfjellet, east Spitsbergen. Palaeontologia Polonica 43, 37–46.

Bjørke, T. 1980: Mesozoic palynology of Svalbard V. Dinoflagellates from the Agardhfjellet Member (Middle and Upper Jurassic) in Spitsbergen. Norsk Polarinstitutt Skrifter 172, 145–167.

Breathen, A., Bahn, K., Christiansen, H.H., Dahl, T., Eiken, O., Elvebakk, H., Hansen, F., Hansen, T.H., Jochmann, M., Johansen, T.A., Johnsen, H., Larsen, L., Lie, T., Mertes, J., Mork, A., Mork, M.B., Nemec, W., Olaussen, S., Oye, V., Rod, K., Titlestad, G.O., Tveranger, J. & Vagle, K. 2012: The Longyearbyen CO₂ Lab of Svalbard, Norway-initial assessment of the geological conditions for CO₂ sequestration. Norwegian Journal of Geology 92, 353–376.

Callomon, J.H. 1959: The ammonite zones of the Middle Jurassic beds of East Greenland. Geological Magazine 96, 505–512. https://doi.org/10.1017/S0016756800067194.

Callomon, J.H. 1993: The ammonite succession in the Middle Jurassic of East Greenland. Bulletin of the Geological Society of Denmark 40, 83–113.

Callomon, J.H. & Birkeland, T. 1980: The Jurassic transgression and the mid-late Jurassic succession in Milne Land, central East Greenland. Geological Magazine 117, 211–226. https://doi.org/10.1017/S0016756800030442.
Callomon, J.H. & Birkelund, T. 1982: The ammonite zones of the Boreal Volcanic (Upper Jurassic) in East Greenland. Memoirs of the Canadian Society for Petroleum Geology 8, 349–369.

Christie, R.L. & McMillan, N.J. 1994: The geology of Melville Island, Arctic Canada. Bulletin of the Geological Survey of Canada 450, 161–193. https://doi.org/10.4095/194013.

Collignon, M. & Hammer, Ø. 2012: Petrography and sedimentology of the Slottsmøya Member at Janusfjellet, central Spitsbergen. Norwegian Journal of Geology 92, 89–101.

Cox, L.R., Newell, N.D., Boyd, D.W. & Moore, R.C. 1969: Treatise on Invertebrate Paleontology: Bivalvia. Mollusca 6. Part N. The University of Kansas and The Geological Society of America.

Dalseg, T.S., Nakrem, H.A. & Smelror, M. 2016: Organic-walled microfossils and palynodebris in cold seep carbonate deposits: The Upper Jurassic–Lower Cretaceous Agardhfjellet Formation on Svalbard (Arctic Norway). Norwegian Journal of Geology 96, 135–146. https://doi.org/10.17850/njg96-2-01.

Delsert, L.L., N收官, L.K., Roberts, A.J., Voevoets, M.J., Hammer, Ø., Druckenmiller, P.S. & Hurum, J.H. 2015: The Slottsmøya marine reptile Lagerstätte: depositional environments, taphonomy and diagenesis. Geological Society of London, Special Publications 434, 165–188. https://doi.org/10.1144/SP434.2.

Delsert, L.L., Roberts, A.J., Druckenmiller, P.S. & Hurum, J.H. 2017: A new ophiomorhusid (Ophiomorhusia) from Svalbard, Norway, and evolution of the ichthyopterygian pycnic girdle. PLoS one 12, e0169971. https://doi.org/10.1371/journal.pone.0169971.

Duff, K.L. 1978: Bivalvia from the English Lower Oxford Clay (Middle Jurassic). Monograph of the Palaeontographical Society, 137 pp.

Durska, E. & Dembicz, K. 2015: Mega-onychites from the Middle Jurassic–Lower Cretaceous of Svalbard (Arctic Norway). Norwegian Journal of Geology 96, 135–146. https://doi.org/10.17850/njg96-2-01.

Druckenmiller, P.S. & Hurum, J.H., Druckenmiller, P.S., Høyberget, M. & Novis, L.K. 2012: An Onychita bioherm from lowermost Cretaceous hydrocarbon seep bodies, Sassenfjorden area, central Spitsbergen, Svalbard. Norwegian Journal of Geology 92, 167–174.

Druckenmiller, P.S. & Hurum, J.H., Druckenmiller, P.S., Høyberget, M. & Novis, L.K. 2012: An Onychita bioherm from lowermost Cretaceous hydrocarbon seep bodies, Sassenfjorden area, central Spitsbergen, Svalbard. Norwegian Journal of Geology 92, 167–174.

Ehrhova, E.S. 1983: Explanatory notes for the biostratigraphical scheme of the Jurassic and Lower Cretaceous deposits of Spitsbergen archipelago. PGO Sevmorgeologia, Leningrad, 88 pp. (in Russian).

Embry, A.F. 1993: Transgressive–regressive (T–R) sequence analysis of the Jurassic succession of the Sverdrup Basin, Canadian Arctic Archipelago. Canadian Journal of Earth Sciences 30, 301–320. https://doi.org/10.1139/e93-024.

Ershova, E.S. 1983: Explanatory notes for the biostratigraphical scheme of the Jurassic and Lower Cretaceous deposits of Spitsbergen archipelago. PGO Sevmorgeologia, Leningrad, 88 pp. (in Russian).

Frebold, H. 1961: The Jurassic faunas of the Canadian Arctic, Middle and Upper Jurassic ammonites. Bulletin of the Geological Survey of Canada 74, 1–95. https://doi.org/10.4095/100592.

Fürsich, F.T. 1982: Upper Jurassic bivalves from Milne Land, East Greenland. Gronlands Geologiske Undersøgelse 144, 1–126.

Fürsich, F.T. 1984: Palaeoecology of boreal invertebrate faunas from the Upper Jurassic of Central East Greenland. Palaeoecography, Palaeoclimatology, Palaeoecology 48, 309–364. https://doi.org/10.1002/1098-0905-00.4.

Fürsich, F.T. & Heinberg, C. 1983: Sedimentology, biostatination, and palaeoecology of an Upper Jurassic offshore sand bar complex. Bulletin of the Geological Society of Denmark 32, 67–95.

Gerasimov, P.A. 1955: Index fossils of Mesozoic of the central regions of the European part of the USSR. Part I. Lamellibranchiata, Gastropoda, Scaphopoda and Brachiopoda from the Jurassic deposits. Gosgeoltekhnizdat, Moscow, 274 pp. (in Russian).

Ginsburg, L., E.F. & Gomos, J.G. 1974: Un nouveau gisement à Plésiosaures dans le Jurassique du Spitsbergen (Archipel du Svalbard). Årboek-ørnlands Geologiske Undersøgelse, 89–101.

Gradstein, F.M., Ogg, J.G., Schmitz, M. & Ogg, G. 2012: The geologic time scale 2012. Elsevier, 1176 pp.

Hammer, Ø., Nakrem, H.A., Little, C.T.S., Hryniewicz, K., Sandy, M.R., Hurum, J.H., Druckenmiller, P.S., Knutsen, E.M. & Heyberget, M. 2011: Hydrocarbon seeps from close to the Jurassic–Cretaceous boundary, Svalbard. Palaeoecography, Palaeoclimatology, Palaeoecology 305, 15–26. https://doi.org/10.1016/j.palaeo.2011.03.019.

Hjálmarsdottir, H.R., Nakrem, H.A. & Nagy, J. 2012: Foraminifera from late Jurassic – Early Cretaceous hydrocarbon seep carbonates, central Spitsbergen, Svalbard - Preliminary results. Norwegian Journal of Geology 92, 157–165.

Hodges, P. 2000: The Early Jurassic Bivalvia from the Hettangian and Lower Sinemurian of south-west Britain. Monograph of the Palaeontographical Society of London 154, 1–64.

Holmer, L.E. & Nakrem, H.A. 2012: The Lingulid brachiopod Lingularia from lowermost Cretaceous hydrocarbon seep bodies, Sassenfjorden area, central Spitsbergen, Svalbard. Norwegian Journal of Geology 92, 167–174.

Hryniewicz, K., Little, C.T.S. & Nakrem, H.A. 2014: Bivalves from the latest Jurassic–earliest Cretaceous hydrocarbon seep carbonates from central Spitsbergen, Svalbard. Zootaxa 3859, 1–66. https://doi.org/10.11646/zootaxa.3859.1.1.

Hryniewicz, K., Hagström, J., Hammer, Ø., Kaim, A., Little, C.T.S. & Nakrem, H.A. 2015: Late Jurassic–Early Cretaceous hydrocarbon seep boulders from Novaya Zemlya and their faunas. Palaeoecography, Palaeoclimatology, Palaeoecology 436, 231–244. https://doi.org/10.1016/j.palaeo.2015.06.036.

Hurum, J.H., Nakrem, H.A., Hammer, Ø., Knutsen, E.M., Druckenmiller, P.S., Hryniewicz, K. & Novis, L.K. 2012: An Arctic Lagerstätte - the Slottsmøya Member of the Agardhfjellet Formation (Upper Jurassic–Lower Cretaceous) of Spitsbergen. Norwegian Journal of Geology 92, 55–64.

Imlay, R.W. 1953: Callovian (Jurassic) ammonites. Bulletin of the Geological Survey of Canada 128, 1–51. https://doi.org/10.4095/101473.

Jeletzky, J.A. 1966: Upper Volcanic (latest Jurassic) ammonites and burchias of Arctic Canada. Bulletin of the Geological Survey of Canada 128, 1–51. https://doi.org/10.4095/100592.

Kędzierski, M., Uchman, A., Sawłowicz, Z. & Briguglio, A. 2015: Fossilized bioelectric wire—the trace fossil Trichichnus. Biogeosciences 12, 2301–2309. https://doi.org/10.5194/bg-12-2301-2015.

Kelly, S.R.A. 1984: Bivalvia of the Spilsby Sandstone and Sandringham Sands (Late Jurassic–Early Cretaceous) of eastern England. Monograph of the Palaeontographical Society of London 137, 1–94.

Kerig, F., Hudson, J.D., Damste, J.S.S. & Popp, B.N. 2004: Intermittent euxinia: reconciliation of a Jurassic black shale with its biofacies. Geology 32, 421–424. https://doi.org/10.1130/G20356.1.

Knutsen, E.M., Druckenmiller, P.S. & Hurum, J.H. 2012: Redescription and taxonomic clarification of “Tricelidaus” svalbardensis based on new material from the Agardhfjellet Formation (Middle Volgan). Norwegian Journal of Geology 92, 175–186.

Koevoets, M.J., Abay, T.B., Hammer, Ø. & Olaussen, S. 2016: High-resolution organic carbon–isotope stratigraphy of the Middle Jurassic–Lower Cretaceous Agardhfjellet Formation of central Spitsbergen, Svalbard. Palaeoecography, Palaeoclimatology, Palaeoecology 449, 266–274. https://doi.org/10.1016/j.palaeo.2016.02.029.
Koeroe, M.J., Hammer, Ø., Olausen, S., Senger, K. & Smelror, M. 2018: Integrating subsurface and outcrop data of the Middle Jurassic to Lower Cretaceous Agardhfjellet Formation in central Spitsbergen. Norwegian Journal of Geology 98, 1–34.

Kopik, J. & Wierzbowski, A. 1988: Ammonites and stratigraphy of the Bathanian and Callovian at Janusfjellet and Wimanfjellet, Sassenfjorden, Spitsbergen, Norway. Acta Palaeontologica Polonica 33, 145–168.

Krymholts, G.Y. & Mesezhnikov, M.S. 1988: The Jurassic ammonite zones of the Soviet Union. Geologicheskii Sbornik 101, 1–107 (in Russian).

Mitta, V., Kostyleva, V., Dzyuba, O., Glinskikh, L., Shurygin, B., Seltzer, M. & Zakharov, V. 1988: Ammonites and stratigraphy of the Bathonian and Callovian at Janusfjellet and Wimanfjellet, Sassenfjorden, Spitsbergen, Norway. Acta Palaeontologica Polonica 33, 119–131 (in Russian).

Mesezhnikov, M.S. 1984: Kimeridgian and Volgian Stages in the Northern Soviet Union. Nedra, Leningrad, 224 pp. (in Russian).

Mitashev, K.O. 1881: Geological investigations held during the summer of the year 1878 in the south-west part of the Kostroma Government. Extracts from materials for the Geology of Russia X, 131–198 (in Russian).

Mitta, V., Kostyleva, V., Dzyuba, O., Glinskikh, L., Shurygin, B., Seltzer, V., Ivanov, A. & Urman, O. 2014: Biostratigraphy and sedimentary settings of the Upper Bajocian – Lower Bathonian in the vicinity of Saratov (Central Russia). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 271, 95–121. https://doi.org/10.1127/0077-7749/2014/0380.

Mork, A., Dallmann, W.K., Dypvik, H., Johannessen, E.P., Larssen, P.S., Krukmacher, B.L. & Kostyleva, V. 1990: Agglutinated foraminiferal stratigraphy and palaeoecology of the Middle Jurassic to Lower Cretaceous deep-water carbonates of the Middle Ordovician Table Head deep-water carbonates of the Middle Ordovician Table Head, central Spitsbergen. Norsk Polarinstitutt Tromsø, Norway, 127–214 pp.

Nagy, J. & Basov, V.A. 1998: Revised foraminiferal taxa and biostratigraphy of Bathanian to Ryazanian deposits in Spitsbergen. Micropaleontology 44, 217–255. https://doi.org/10.2307/1486047.

Nagy, J., Lõfaldli, M., Bäckström, S.A. & Johansen, H. 1990: Agglutinated foraminiferal stratigraphy of Middle Jurassic to basal Cretaceous shales, Central Spitsbergen. In Hemleben, C., Kaminski, M.A., Koht, W. & Scott, D.B. (eds.): Paleoceanography and Taxonomy of Agglutinated Foraminifera, Kluwer Academic Publishing, Chichester, pp. 969–1015. https://doi.org/10.1007/978-94-011-3350-0_38.

Nagy, J., Reolid, M. & Rodriguez-Tovar, F.J. 2009: Foraminiferal morphgroups in dysoxic shelf deposits from the Jurassic of Spitsbergen. Polar Research 28, 214–221. https://doi.org/10.1111/j.1751-8369.2009.00112.x.

Nakrem, H.A. & Kiesling, W. 2012: Late Jurassic (Volgian) radiolarians of the Slottsmøya Member, Agardhfjellet Formation of central Spitsbergen. PLoS one 9, e103152. https://doi.org/10.1371/journal.pone.0103152.

Paine, R.T. 1970: The sediment occupied by recent lingulid brachiopods and some palaeoecological implications. Palaeogeoigraphy, Palaeoclimatology, Palaeoecology 7, 21–31. https://doi.org/10.1016/0031-0182(70)90023-4.

Parker, J.R. 1967: The Jurassic and Cretaceous sequence in Spitsbergen. Geological Magazine 104, 487–505. https://doi.org/10.1017/S00167568000049220.

Pauly, S., Mutterlose, J. & Alsén, P. 2012: Lower Cretaceous (upper Ryazanian–Hauterivian) chronostratigraphy of high latitudes (north-east Greenland). Cretaceous Research 34, 308–326. https://doi.org/10.1016/j.cretres.2011.11.011.

Pickerill, R.K., Harland, T.L. & Fillon, D. 1984: In situ lingulids from deep-water carbonates of the Middle Ordovician Table Head Group of Newfoundland and the Trenton Group of Quebec. Canadian Journal of Earth Sciences 21, 194–199. https://doi.org/10.1139/e84-021.

Roberts, A.J., Druckenmillner, P.S., Sarte, G.P. & Hurum, J.H. 1977: New data on ammonites and stratigraphy of the Jurassic stage in Spitsbergen. Stratigraphy and Geological Correlation 18, 505–531. https://doi.org/10.1134/S0869593810050047.

Robog, M.A. 2014: An infra-zonal ammonite biostratigraphy for the Kimeridgian of Spitsbergen. Norwegian Petroleum Directorate Bulletin 11, 153–165.

Robog, M.A. 2016: New zonal and infra-zonal scales for the Kimeridgian in Western Siberia based on cardioceratid ammonites. Stratigraphy and Geologic Correlation 24, 503–526. https://doi.org/10.1134/S0869593816050051.

Robog, M.A., Zakharov, V.A. 2009: Ammonite- and bivalve-based biostratigraphy and Panboreal correlation of the Volgian Stage. Science in China, Series D: Earth Sciences 52, 1890–1909. https://doi.org/10.1007/s11430-009-0182-0.

Rogov, M.A., Zakharov, V.A. & Ershova, V.B. 2011: Detailed stratigraphy of the Jurassic-Cretaceous boundary beds of the Lena River lower reached based on ammonites and Buchiids. Stratigraphy and Geologic Correlation 19, 641–662. https://doi.org/10.1134/S0869593811060050.

Rogov, M.A. 2018: High-resolution ammonite-based biostratigraphy of the Adventdalen Group (Middle Jurassic–Lower Cretaceous) of Spitsbergen. Geophysical Research Abstracts 20, EGU General Assembly 2018, EGU2018–17980.

Rogov, M.A. & Zakharov, V.A. 2009: Ammonite- and bivalve-based biostratigraphy and Panboreal correlation of the Volgian Stage. Science in China, Series D: Earth Sciences 52, 1890–1909. https://doi.org/10.1007/s11430-009-0182-0.

Robog, M.A., Zakharov, V.A. & Ershova, V.B. 2011: Detailed stratigraphy of the Jurassic–Cretaceous boundary beds of the Lena River lower reached based on ammonites and Buchiids. Stratigraphy and Geologic Correlation 19, 641–662. https://doi.org/10.1134/S0869593811060050.

Rousseau, J. & Nakrem, H.A. 2012: An Upper Jurassic Boreal echinoderm Lagerstätte from Janusfjellet, central Spitsbergen. Norwegian Journal of Geology 92, 133–161.

Sand, G., Braathen, A. & Olausen, S. 2014: Longeycarboin CO2 Lab – tales of research and education. Norwegian Journal of Geology 94, 77–82.

Sandy, M.R., Hryniewicz, K., Hammer, Ø., Nakrem, H.A. & Little, C.T.S. 2014: Brachiopods from Late Jurassic—Early Cretaceous hydrocarbon seep deposits, central Spitsbergen, Svalbard. Zootaxa 3884, 501–532. https://doi.org/10.11646/zootaxa.3884.6.1.

Shurygin, B.N., Nikitenko, B.L., Meledina, S.V., Dzyuba, O.S. & Knayzev, V.G. 2011: Comprehensive zonal subdivisions of Siberian Jurassic and their significance for Circum-Arctic correlations. Russian Geology and Geophysics 52, 825–844. https://doi.org/10.1134/j.rgg.2011.07.007.
Stanley, S.M. 1970: Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir 125, 1–296. https://doi.org/10.1130/MEM125-p1.

Surlyk, F. 1991: Sequence stratigraphy of the Jurassic-lowermost Cretaceous of East Greenland. American Association of Petroleum Geologists Bulletin 75, 1468–1488.

Surlyk, F. & Zakharov, V.A. 1982: Buchiid bivalves from the upper Jurassic and lower Cretaceous of East Greenland. Palaeontology 25, 727–753.

Wall, J.H. 1983: Jurassic and Cretaceous foraminiferal biostratigraphy in the eastern Sverdrup Basin, Canadian Arctic Archipelago. Bulletin of Canadian Petroleum Geology 31, 246–281.

Wierzbowski, A. 1989: Ammonites and stratigraphy of the Kimmeridgian at Wimanfjellet, Sassenfjorden, Spitsbergen. Acta Palaeontologica Polonica 34, 355–378.

Wierzbowski, A., Hryniewicz, K., Hammer, O., Nakrem, H.A. & Little, C.T.S. 2011: Ammonites from hydrocarbon seep carbonate bodies from the uppermost Jurassic - lowermost Cretaceous of Spitsbergen and their biostratigraphical importance. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 262, 267–288. https://doi.org/10.1127/0077-7749/2011/0198.

Wignall, P.B. 1990: Benthic palaeoecology of the late Jurassic Kimmeridge Clay of England. Special Papers in Palaeontology 43, 1–74.

Zabini, C., Bosetti, E.P. & Holz, M. 2010: Taphonomy and taphofacies analysis of lingulid brachiopods from Devonian sequences of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 292, 44–56. https://doi.org/10.1016/j.palaeo.2010.03.025.

Zakharov, V.A. 1966: Late Jurassic and Early Cretaceous bivalves of the North of Siberia and their paleoecology. Order Anisomyaria. Problems of the paleozoogeography of the Siberian Mesozoic. Transactions of the Institute of Geology and Geophysics: Siberian Branch of the Academy of Sciences USSR 113, 1–189 (in Russian).

Zakharov, V.A. 1981: Buchiids and biostratigraphy of the boreal Upper Jurassic and Neocomian. Transactions of the Academy of Sciences USSR, Siberian Branch, Institute for Geology and Geophysics 458, 270 pp. (in Russian).

Zakharov, V.A. 1987: The bivalve Buchia and the Jurassic-Cretaceous boundary in the Boreal province. Cretaceous Research 8, 141–153. https://doi.org/10.1016/0195-6671(87)90018-8.

Zakharov, V.A. & Rogov, M.A. 2008: The Upper Volgian Substage in northeast Siberia (Nordvik Peninsula) and its Panboreal correlation based on ammonites. Stratigraphy and Geological Correlation 16, 423–436. https://doi.org/10.1134/S0869593808040059.

Zakharov, V.A., Rogov, M.A., Dzyuba, O.S., Žák, K., Košt’ák, M., Pruner, P., Skupien, P., Chadima, M., Mazuch, M. & Nikitenko, B.L. 2014: Palaeoenvironments and palaecceanography changes across the Jurassic/Cretaceous boundary in the Arctic realm: case study of the Nordvik section (north Siberia, Russia). Polar Research 33, 19714. https://doi.org/10.3402/polar.v33.19714.

Zell, P. & Stinnesbeck, W. 2015: Kimmeridgian (Late Jurassic) cold-water idoceratids (Ammonoidea) from southern Coahuila, northeastern Mexico, associated with boreal bivalves and belemnites. Revista Mexicana de Ciencias Geológicas 32, 11–20.

Århus, N. 1988: Palynostratigraphy of some Bathonian–Hauterivian sections in the Arctics, with emphasis on the Janusfjellet Formation type section, Spitsbergen. Unpublished IKU report, 1–139.

Århus, N., Birkeland, T. & Smelror, M. 1989: Biostratigraphy of some Callovian and Oxfordian cores off Vega, Helgeland, Norway. Norwegian Journal of Geology 69, 39–56.