A 31.5-to-40.5 GHz injection-locked CMOS frequency tripler with injection-current enhancement technique

Yupeng Fu1,2,3, Lianming Li1,2,3a, Dongming Wang1,2,3b, Xuan Wang1,2,3, and Xu Wu1,2,3

Abstract This letter presents an injection-locked 36 GHz frequency tripler (ILFT) for 5G applications. With the high order transformer based LC tank, over the target operating frequency range its phase response is flat at around 0 degree, and the injection-current is enhanced with a 3rd harmonic LC tail filter, thereby achieving a wide locking range. Fabricated in a 65 nm CMOS process, the ILFT consumes about 7.2 mW from a 0.6 V supply, and its core area without the output buffer and input matching network is only 0.25 × 0.4 mm². With 0 dBm input injection power, the proposed ILFT achieves a locking range from 31.5 to 40.5 GHz (25%).

Keywords: injection-locked frequency tripler, low power, injection current enhancement, transformer based LC tank

1. Introduction

According to [1, 2], the millimeter-wave (mm-Wave) band for 5G wireless network is planned to be 24.75–27.5 GHz, 27.5–28.35 GHz, 37–38.6 GHz, 38.6–40 GHz, and 37–42.5 GHz band worldwide. For these mmWave bands, the MIMO and phased-array transceiver systems are required. To simplify the LO distribution and to achieve low phase noise performance with low power consumption, the LO can be generated with low frequency PLL and frequency multiplier topologies [2, 3, 4, 5].

In general, the frequency multiplier can be realized with the harmonic amplifier [6, 7, 8] and injection locked frequency multiplier (ILFM) structures [9, 10, 11, 12, 13]. With the harmonic amplifier structure, the frequency multiplier can achieves relatively large bandwidth, but it consumes a high power consumption due to the low harmonic power efficiency. To address these issues and to achieve a wide locking range, an ILFM is proposed by combining with a transformer based high order LC tank and injection-current enhancement techniques.

As shown in Fig. 1, the ILFM working principle can be simply described with a half-circuit model [9, 10]. With the cross-couple pair current i_{OSC}, the loss of the LC tank can be compensated, ensuring self-oscillation start-up at the target operating frequency f_0. With an injection harmonic current i_{INJ}, the total current i_{TOTAL} into the LC tank is the vector sum of i_{OSC} and i_{INJ}, leading to a phase shift ϕ. In principle, the maximum tolerable phase shift ϕ_{max} can be expressed as,

$$\phi_{max} = \arctan \frac{i_{INJ}}{i_{OSC}} \left(1 - \frac{\phi_{INJ}}{\phi_{OSC}}\right)^{-0.5}$$ \hspace{1cm} (1)

Accordingly, the frequency locking range can be enhanced either by flattening the phase response of the LC tank [9, 14] or increasing the injection current [2, 9, 15]. For the traditional ILFM LC tank, as its Q-factor is high, its locking range is very narrow, thereby requiring a complex calibration circuit to ensure a reliable operation. To solve this problem, based on the transformer element, the multi-order passive LC tank is widely used for ILFM and injection-locked frequency divider (ILFD) [16, 17].

Fig. 1. The working principle of the ILFM.

In this letter, by combining the high order passive transformer based LC tank and injection current enhancement techniques, a wide locking range, low power 36 GHz ILFT is presented. This letter is organized as follows. In Section 2, the circuit design and analysis of the proposed ILFT are undertaken. Section 3 presents the implementation and measurement results of the chip. Finally, a conclusion is drawn in Section 4.

2. Circuit design and analysis

Fig. 2 presents the proposed ILFT structure, which consists of the injection stage, the transformer based high order LC tank, the cross-coupled pair and the output buffer for test purposes. As indicated, in the transformer based LC tank, three inductors are coupled with each other, and each inductor and capacitor form a resonator, achieving a 6th-order LC tank [9, 18]. Note that, K_{ad}, K_{as} and K_{id} are the coupling coefficients of L_a, L_d, L_a and L_d, L_s, and L_d, respectively. For the input injection stage, a 3rd harmonic LC tail filter is connected at its transistor source terminal.
As to be shown shortly, to illustrate the working mechanism of the proposed ILFT, the small signal model of the transformer based LC tank will be analyzed, deriving its input impedance. Moreover, with simulations the injection-current enhancement will be proved.

For calculation convenience, Fig. 3 shows the small signal model of the transformer based LC tank. With the small signal test current signal I_{in}, the input impedance of this LC tank can be derived as,

$$
Z_{ind} = \frac{1}{sC_d} \left(sL_d + R_d \right) \left(\frac{s^2 M^2_{ad}}{Z_{RLC}} + Z_{RLC} \right) + \frac{s^2 M^2_{ad}}{Z_{RLC}} Z_{RLC} Z_{RLCa} \left(s^2 \frac{M^2_{as}}{Z_{RLCd}} + Z_{RLCd} \right) / sC_a
$$

with

$$
M_{ad} = k_{sd} \sqrt{L_d L_s}, M_{ad} = k_{sd} \sqrt{L_d L_s},
$$

and

$$
\begin{align*}
Z_{RLC} &= sL_d + R_d + 1/sC_d \\
Z_{RLCa} &= sL_s + R_s + 1/sC_s \\
Z_{RLCd} &= sL_a + R_a + 1/sC_a
\end{align*}
$$

Note that, with calculations and simulations, it is found that each element parameter will affect Z_{ind} poles if these three inductors are closely coupled with each other, thereby making the design very difficult. In the above derivation, Z_{ind} expression is simplified by setting k_{sd} to be 0, and this expression is also 6th-order, achieving almost the same phase response as the case with non-zero k_{sd}. Moreover, without loss of the calculation accuracy, here for calculation convenience, the capacitor series parasitic resistance is ignored as its Q-factor is very high at the target operating frequency range. For the inductor, due to its limited Q-factor, the series resistances of L_d, L_s and L_a, i.e., R_d, R_s and R_a, are taken into account.

For a wide locking range, as shown in Fig. 4, the inductor and capacitor value of the LC tank is optimized to achieve about 0 degree flatten phase response in the target locking range (about 30 to 40 GHz). Here for performance optimization, the magnitude response of Z_{ind} and Z_{ina} at terminal V_d and V_a is also plotted. Accordingly, the ILFM start-up condition can be ensured by sizing the negative g_m of the cross-couple pair to be larger than $1/|Z_{ind}|$ [19, 20]. As indicated, in the range of 30 to 40 GHz, the impedance varies from 75 to 100 Ω, thus satisfying the start-up condition. In addition, the V_a terminal impedance, Z_{ina} is also flat, which helps to realize a flatten frequency response of the injection current and the output power.

As mentioned before, the ILFM locking range can be also improved by increasing the injection current. For this purpose, Fig. 5 presents the detailed structure of the proposed input injection stage, in which the load Z_{tank} represents the loading effect of the above discussed transformer based LC tank. Here, to increase the input power of the injection transistors, the transformer based balun is connected in between the input pads and the transistors, realizing the purpose of impedance matching. To generate a large harmonic current, the injection transistors work in the class-B mode [9, 21, 22, 23], and the neutralization capacitor C_N is specially added to enhance its gain performance [24, 25]. To improve the ILFT working efficiency, a 3rd harmonic LC tail filter is connected at the injection transistor source terminal [19, 26, 27, 28, 29, 30].
Fig. 6 shows the performance comparison of the 3rd harmonic injection current with and without the tail filter. As indicated, with the tail filter, the injection current can be improved to be about 2 times larger. Moreover, it is indicated that, with the tail filter the injection transistor loading impedance on the LC tank can be improved over the target working frequency range, thus increasing the ILFT working efficiency and locking range further.

3. Implementation and measurement results

Fig. 7 presents the micrograph of the proposed ILFT. Fabricated in a 65 nm CMOS process, the whole chip area is about 0.5 × 0.8 mm², and the core area of the ILFT without output buffer and input matching network is only 0.25 × 0.4 mm². The cross-couple pair and injection transistors consume 7.2 mW for from a 0.6 V power supply, while the output buffer consumes 6 mW for test purposes.

With the Rhode & Schwarz phase noise analyzer equipment, the ILFT is measured. With 0 dBm injection power, the output spectrum of 31.5 and 40.5 GHz is shown in Fig. 8, indicating a 31.5–40.5 GHz (25%) locking range.

Fig. 9(a) presents the power comparison of the output harmonics, i.e. the fundamental injection frequency, 2nd harmonic and 3rd harmonic output power. As indicated, due to above design efforts the 3rd harmonic output power is about −10 dBm, which is flat from 31.5 to 40.5 GHz. Moreover, the ratio of the 3rd harmonic and the fundamental injection power is about −30 dBc, and the 2nd harmonic output power is slightly larger at locking range edges. Fig. 9(b) plots the measured input sensitivity curve. As indicated, the ILFT achieves the highest sensitivity at 12 GHz injection frequency, which agrees well with the frequency response of the transformer based LC tank. At the locking range edges, the locking sensitivity decreases and a larger injection power is required. Note that, in the measurement the injection power includes the cable loss and input network insertion loss.

![Simulation of the 3rd harmonic injection current.](image)

![Chip micrograph](image)

![Output spectrum at 40.5 and 31.5 GHz.](image)

![Output harmonics power comparison, measured input sensitivity.](image)
output signal in-band phase noise is about 20 log10(3) = 9.5 dB higher than that of the input injection signal. Here, due to the low input power, the out-of-band noise floor is slightly higher.

Table I presents the performance comparison with the state-of-the-art ILFT. By combining with the transformer based high order LC tank and tail current enhancement techniques, this work achieves low power consumption, a large locking range and low in-band phase noise.

Table 1. Performance summary of state-of-the-art ILFT

	This work	JSSC [9]	TCSI [11]	JSSC [12]	JSSC [13]
Phase					
Locking range	31.5–40.5	34–48.2	22.4–24.8	25–28	27.4–30.8
Bandwidth (%)	25	34.5	12.7	11.4	11.7
Pnoise0 (dBc/Hz@100kHz)	-103	-86	-104.5	-106.4	-90
Pnoise1 (dBc/Hz@1MHz)	-120	-111	-120	-105.3	-113
Power (mW)	7.2	16.8	10.4	-	20.8
ILFT only					
Chip area (mm²)	0.1	0.12	0.125	-	0.064
Process (nm)	65	65	65	28	65

*Normalized to 40.5 GHz.
**Core area

4. Conclusion

An ILFT is presented for 5G applications with injection-current enhancement and the high-order transformer based LC tank techniques. Fabricated in a 65 nm CMOS process, the proposed ILFT achieves a 31.5-to-40.5 GHz (25%) locking range, and it consumes 7.2 mW from a 0.6 V supply.

Acknowledgments

This work was supported by National Key R&D Program of China (No. 2018YFE0205900 and No. 2016YFC0800400), National Science and Technology Major Project (No. 2018ZX03001008), National Nature Science Foundation of China (No. 61306030, 61674037), and Natural Science Foundation of Jiangsu Province of China (No. BK20180368), Mobile Communications Research Laboratory, Southeast University (No. 2018B02), and National High-Tech Project (863 Project) of China under Grant (No. 2011AA010201 and No. 2011AA010202).

References

[1] L. Li, et al.: “mmWave communications for 5G: Implementation challenges and advances,” Sci. China Inf. Sci. 61 (2018) 021301 (DOI: 10.1007/s11432-017-9262-8).
[2] J. Zhang, et al.: “An injection-current-boosting locking-range enhancement technique for ultra-wideband mm-wave injection-locked frequency tripilers,” IEEE Trans. Microw. Theory Techn. 67 (2019) 3174 (DOI: 10.1109/TMTT.2019.2907254).
[3] A. Musa, et al.: “A low phase noise quadrature injection locked frequency synthesizer for MM-wave applications,” IEEE J. Solid-State Circuits 46 (2011) 2635 (DOI: 10.1109/JSSC.2011.2166336).
[4] Z. Zong, et al.: “A 60 GHz frequency generator based on a 20 GHz oscillator and an implicit multiplier,” IEEE J. Solid-State Circuits 51 (2016) 1261 (DOI: 10.1109/JSSC.2016.2529997).
[5] W. Wu, et al.: “A 28-nm 75-fsrms analog fractional-N sampling PLL with a highly linear DTC incorporating background DTC gain calibration and reference clock duty cycle correction,” IEEE J. Solid-State Circuits 54 (2019) 1254 (DOI: 10.1109/JSSC.2019.2899726).
[6] N. Mazor, et al.: “X-band to W-band frequency multiplier in 65 nm CMOS process,” IEEE Microw. Compon. Lett. 22 (2012) 424 (DOI: 10.1109/LMWC.2012.2207708).
[7] J.-D. Park: “Design of switching-mode CMOS frequency multipliers in sub-Terahertz regime,” IEEE Electron. Express 11 (2014) 20140806 (DOI: 10.1587/exlex.11.20140806).
[8] X. Xin, et al.: “Voltage-mode ultra-low power four quadrant multiplier using subthreshold PMOS,” IEEE Electron. Express 14 (2017) 20170063 (DOI: 10.1587/exlex.14.20170063).
[9] A. Li, et al.: “A 21–48 GHz subharmonic injection-locked fractional-N frequency synthesizer for multiband point-to-point backhaul communications,” IEEE J. Solid-State Circuits 49 (2014) 1785 (DOI: 10.1109/JSSC.2014.2329952).
[10] S. Lee, et al.: “Injection-locked fractional frequency multiplier with automatic reference pulse-selection technique,” IEEE Electron. Express 9 (2012) 1624 (DOI: 10.1587/exlex.9.1624).
[11] D. Shin and K. Koh: “24-GHz injection-locked frequency tripiler with third-harmonic quadrature phase generator,” IEEE Trans. Circuits Syst. I, Reg. Papers 66 (2019) 2898 (DOI: 10.1109/TCSI.2019.2912422).
[12] H.-T. Kim, et al.: “A 28-GHz CMOS direct conversion transceiver with packaged 2 × 4 antenna array for 5G cellular system,” IEEE J. Solid-State Circuits 53 (2018) 1245 (DOI: 10.1109/JSSC.2018.2817606).
D. Shin, et al.: “An injection frequency-locked loop—Autonomous injection frequency tracking loop with phase noise self-calibration for power-efficient mm-wave signal sources,” IEEE J. Solid-State Circuits 53 (2018) 825 (DOI: 10.1109/JSSC.2017.2782762).

W.-C. Lai, et al.: “The three resonances injection-locked frequency multiplier,” 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC) (2017) 1 (DOI: 10.1109/EDSSC.2017.8126399).

Y.-H. Chang and Y.-C. Chiang: “A novel injection-locked frequency tripler for V-band applications,” 2019 14th European Microwave Integrated Circuits Conference (EuMIC) (2019) 290 (DOI: 10.23919/EuMIC.2019.8909429).

J. Zhang, et al.: “Analysis and design of ultra-wideband mm-wave frequency locked frequency dividers using transformer-based high-order resonators,” IEEE J. Solid-State Circuits 53 (2018) 2177 (DOI: 10.1109/JSSC.2018.2822710).

W.-C. Lai, et al.: “Divide-by-4 Injection-Locked Frequency Divider (ILFD) using stacked 2:1 ILFDs,” 2019 12th Global Symposium on Millimeter Waves (GSMM) (2019) 96 (DOI: 10.1109/GSMM.2019.8797660).

S. Rong, et al.: “A 0.05- to 10-GHz, 19- to 22-GHz, and 38- to 44-GHz frequency synthesizer for software-defined radios in 0.13-um CMOS process,” IEEE Trans. Circuits Syst., II, Exp. Briefs 63 (2016) 109 (DOI: 10.1109/TCSII.2015.2482467).

E. Hegazi, et al.: “A filtering technique to lower oscillator phase noise,” 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No. 01CH37177) (2001) 363 (DOI: 10.1109/ISSCC.2001.912675).

J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” Proc. of the IEEE 2000 Custom Integrated Circuits Conference (2000) 569 (DOI: 10.1109/CICC.2000.852732).

R. Miyahara, et al.: “Design of class-E oscillator with second harmonic injection,” IEEE Trans. Circuits Syst. I, Reg. Papers 59 (2012) 2456 (DOI: 10.1109/TCSI.2012.2188936).

F.-H. Huang and Y.-M. Hsin: “A V-band frequency tripler with output power enhancement in 90-nm CMOS,” 2012 4th International High Speed Intelligent Communication Forum (2012) 1 (DOI: 10.1109/HISC.2012.6212957).

M. Abbasi, et al.: “An E-band(71–76, 81–86 GHz) balanced frequency tripler for high-speed communications,” 2009 Asia Pacific Microwave Conference (2009) 1184 (DOI: 10.1109/APMC.2009.5384416).

Y. Chai, et al.: “Design of a 60-GHz receiver front-end with broadband matching techniques in 65-nm CMOS,” IEICE Electron. Express 15 (2018) 20180935 (DOI: 10.1587/elex.15.20180935).

L. Chen, et al.: “A 1 V 18 dBm 60GHz power amplifier with 24 dB gain in 65nm LP CMOS,” 2012 Asia Pacific Microwave Conference Proc. (2012) 13 (DOI: 10.1109/APMC.2012.6421482).

W. Deng, et al.: “A sub-harmonic injection-locked quadrature frequency synthesizer with frequency calibration scheme for millimeter-wave TDD transceivers,” IEEE J. Solid-State Circuits 48 (2013) 1710 (DOI: 10.1109/JSSC.2013.2253396).

S. Shin, et al.: “A 22.8-to-32.4 GHz injection-locked frequency tripler with source degeneration,” 2018 International SoC Design Conference (ISOC) (2018) 107 (DOI: 10.1109/ISOC.2018.8649927).

L. Iotti, et al.: “A 57–74-GHz tail-switching injection-locked frequency tripler in 28-nm CMOS,” IEEE Solid-State Circuits Lett. 2 (2019) 115 (DOI: 10.1109/LSSC.2019.2933558).

S. Shin, et al.: “Wide locking-range frequency multiplier by 1.5 employing quadrature injection-locked frequency tripler with embedded notch filtering,” IEEE Trans. Microw. Theory Techn. 67 (2019) 4791 (DOI: 10.1109/TMTT.2019.2937480).

Y. Fu, et al.: “28-GHz CMOS VCO with capacitive splitting and transformer feedback techniques for 5G communication,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27 (2019) 2088 (DOI: 10.1109/TVLSI.2019.2914481).