A model theoretic Rieffel’s theorem of quantum 2-torus

MASANORI ITAI *AND BORIS ZILBER †

9th August 2017

Abstract

We defined a notion of quantum 2-torus T_θ in [1] and studied its model theoretic property. In this note we associate quantum 2-tori T_θ with the structure over $C_{\theta} = (\mathbb{C}, +, \cdot, y = x^\theta)$, where $\theta \in \mathbb{R} \setminus \mathbb{Q}$, and introduce the notion of geometric isomorphisms between such quantum 2-tori.

We show that this notion is closely connected with the fundamental notion of Morita equivalence of non-commutative geometry. Namely, we prove that the quantum 2-tori T_{θ_1} and T_{θ_2} are Morita equivalent if and only if $\theta_2 = \frac{a\theta_1 + b}{c\theta_1 + d}$ for some $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{Z})$ with $|ad - bc| = 1$. This is our version of Rieffel’s Theorem [3] which characterises Morita equivalence of quantum tori in the same terms.

The result in essence confirms that the representation T_θ in terms of model-theoretic geometry [1] is adequate to its original definition in terms of non-commutative geometry.

1 Introduction

We introduce the notion of geometric transformation from a quantum 2-torus into another which fixes the underlying field structure and gives a one-to-one correspondence between the canonical bases of the
modules constituting the quantum 2-tori. When there is a geometric transformation, say \(L \), from \(T_1 \) to \(T_2 \). In this case we say that the quantum 2-tori \(T_1 \) and \(T_2 \) are \textit{geometrically isomorphic}.

Our main result establishes a direct correspondence between the notion of geometric isomorphism of tori and the well-known notion of \textit{Morita equivalence} of quantum 2-tori given in terms of their “coordinate” algebras.

Recall that two algebras \(A \) and \(B \) are said to be Morita equivalent if the categories \(A\text{-mod} \) and \(B\text{-mod} \) of modules are equivalent.

For quantum tori this notion was studied by M.Rieffel and in the particular case of 2-tori we have the following

\textbf{Theorem 1 (Rieffel [3])} Let \(A_{\theta_1} \) and \(A_{\theta_2} \) be (the coordinate algebras of) quantum 2-tori Tori. Then \(A_{\theta_1} \) and \(A_{\theta_2} \) are Morita equivalent if and only if there exist integers \(a, b, c, d \) such that \(ad - bc = \pm 1 \) and

\[\theta_2 = \frac{a \theta_1 + b}{c \theta_1 + d}. \]

We also say in this case that the quantum 2-tori \(T_{\theta_1} \) and \(T_{\theta_2} \) are Morita equivalent.

In section 4 we prove Theorem 12 stating that: \(T_{\theta_1} \) and \(T_{\theta_2} \) are Morita equivalent if and only if \(T_{\theta_1} \) and \(T_{\theta_2} \) are geometrically isomorphic.

Of course, in light of Rieffel’s theorem it is enough to prove that the geometric isomorphism of \(T_{\theta_1} \) and \(T_{\theta_2} \) amounts to the condition

\[\theta_2 = \frac{a \theta_1 + b}{c \theta_1 + d} \]

for some \(\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \text{GL}_2(\mathbb{Z}) \) with \(|ad - bc| = 1\).

In section 2 we review quickly the construction of quantum 2-tori defined in [1]. In section 3, we introduce the notion of \textit{Morita transformation} and \textit{Morita equivalence} and prove basic properties. In section 4, we characterise the property of functions giving rise to Morita transformations and prove Theorem 12.

Acknowledgement: The first author is grateful to Mathematical Institute of Oxford University for the hospitality during the stay this research was proceeded.
2 Quick review of the construction of a quantum 2-torus

Let $\theta \in \mathbb{R} \setminus \mathbb{Q}$ and put $q = \exp(2\pi i \theta)$. Let $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. Consider a \mathbb{C}^*-algebra \mathcal{A}_q generated by operators U, U^{-1}, V, V^{-1} satisfying

$$VU = q_1 UV, \quad UU^{-1} = U^{-1}U = VV^{-1} = V^{-1}V = I.$$

Let $\Gamma_\theta = q^\mathbb{Z} = \{q^n : n \in \mathbb{Z}\}$ be a cyclic multiplicative subgroup of \mathbb{C}^*. From now on in this note we work in an uncountable \mathbb{C}-module \mathcal{M} such that $\dim \mathcal{M} \geq |\mathbb{C}|$.

2.1 Γ-sets, Γ-bundles, line-bundles

For each pair $(u, v) \in \mathbb{C}^* \times \mathbb{C}^*$, we will construct two \mathcal{A}_q-modules $M_{(u,v)}$ and $M_{(v,u)}$ so that both $M_{(u,v)}$ and $M_{(v,u)}$ are sub-modules of \mathcal{M}.

The module $M_{(u,v)}$ is generated by linearly independent elements labelled $\{u(\gamma u, v) : \gamma \in \Gamma_\theta\}$ satisfying

$$U : u(\gamma u, v) \mapsto \gamma u(\gamma u, v),$$
$$V : u(\gamma u, v) \mapsto vu(q^{-1}\gamma u, v).$$ \hfill (1)

Next let $\phi : \mathbb{C}^*/\Gamma_\theta \to \mathbb{C}^*$ such that $\phi(x\Gamma_\theta) \in x\Gamma_\theta$ for each $x\Gamma_\theta \in \mathbb{C}^*/\Gamma_\theta$. Put $\Phi = \text{ran}(\phi)$. We call ϕ a choice function and Φ the system of representatives.

Set for $\langle u, v \rangle \in \Phi^2$

$$\Gamma \cdot u(u,v) := \{\gamma u(u,v) : \gamma \in \Gamma_\theta\},$$
$$U_{(u,v)} := \bigcup_{\gamma \in \Gamma_\theta} \Gamma \cdot u(u,v) = \{\gamma_1 \cdot u(\gamma_2 u, v) : \gamma_1, \gamma_2 \in \Gamma_\theta\}. \hfill (2)$$

And set

$$U_\phi := \bigcup_{(u,v) \in \Phi^2} U_{(u,v)} = \{\gamma_1 \cdot u(\gamma_2 u, v) : \langle u, v \rangle \in \Phi^2, \gamma_1, \gamma_2 \in \Gamma_\theta\},$$
$$F^*U_{\phi_1} := \{x \cdot u(\gamma u, v) : \langle u, v \rangle \in \Phi^2, x \in F^*, \gamma \in \Gamma_\theta\}. \hfill (3)$$

We call $\Gamma \cdot u(u,v)$ a Γ-set over the pair (u,v), U_ϕ a Γ-bundle over $\mathbb{C}^* \times \mathbb{C}^*/\Gamma_\theta$, and \mathbb{C}^*U_ϕ a line-bundle over \mathbb{C}^*. Notice that U_ϕ can also be seen as a bundle inside $\bigcup_{(u,v)} M_{(u,v)}$. Notice also that the line bundle \mathbb{C}^*U_ϕ is closed under the action of the operators U and V satisfying the relations (1).
We define the module $M_{[v,u]}$ generated by linearly independent elements labelled \(\{ v(\gamma v, u) \in M : \gamma \in \Gamma \} \) satisfying
\[
U : v(\gamma v, u) \mapsto uv(q\gamma v, u), \\
V : v(\gamma v, u) \mapsto \gamma v(v(\gamma v, u)),
\]
and also
\[
U^{-1} : u(\gamma u, v) \mapsto \gamma^{-1}u^{-1}u(\gamma u, v), \\
V^{-1} : u(\gamma u, v) \mapsto v^{-1}u(q\gamma u, v).
\]

Similarly a Γ-set $\Gamma \cdot v(u, v)$ over the pair (v, u), a Γ-bundle V_ϕ over $\mathbb{C}^*/\Gamma \times \mathbb{C}^*$, and \mathbb{C}^*V_ϕ a line-bundle over \mathbb{C}^* are defined.

To define the line bundles \mathbb{C}^*U_ϕ and \mathbb{C}^*V_ϕ, we do not need any particular properties of the element $q = \exp(2\pi i\theta)$ or the choice function ϕ. Therefore we have:

Proposition 2 (Proposition 2 [1]) Let F, F' be fields and $q \in F$, $q' \in F'$ such that there is an field isomorphism i from F to F' sending q to q'. Then i can be extended to an isomorphism from the Γ-bundle U_ϕ to the Γ'-bundle $U_{\phi'}$ and also from the line-bundle F^*U_ϕ to the line-bundle $(F'^*)'U_{\phi'}$. The same is true for the line-bundles F^*V_ϕ and $(F'^*)'V_{\phi'}$.

In particular the isomorphism type of Γ-bundles and line-bundles does not depend on the choice function.

Proof: Let i be an isomorphism from F to F' sending q to q'. Set $i(x \cdot u(\gamma u, v)) = i(x) \cdot u(i(\gamma u), i(v))$. Then this defines an isomorphism from F^*U_ϕ to $(F'^*)'U_{\phi'}$. $lacksquare$

2.2 Pairing function

Recall next the notion of pairing function $\langle \cdot | \cdot \rangle$ which plays the rôle of an inner product of two Γ-bundles U_ϕ and V_ϕ:
\[
\langle \cdot | \cdot \rangle : \left(V_\phi \times U_\phi \right) \cup \left(U_\phi \times V_\phi \right) \to \Gamma.
\]

having the following properties:

1. $\langle u(v, u)\rangle = 1$,
2. for each $r, s \in \mathbb{Z}$, $\langle U^r V^s u(v, u) | U^r V^s v(v, u) \rangle = 1$,

3. for $\gamma_1, \gamma_2, \gamma_3, \gamma_4 \in \Gamma$:
\[\langle \gamma_1 u(\gamma_2 u, v) \mid \gamma_3 v(\gamma_4 v, u) \rangle = \langle \gamma_3 v(\gamma_4 v, u) \mid \gamma_1 u(\gamma_2 u, v) \rangle,\]

4. $\langle \gamma_1 u(\gamma_2 u, v) \mid \gamma_3 v(\gamma_4 v, u) \rangle = \gamma_1^{-1}\gamma_3(u(\gamma_2 u, v) \mid v(\gamma_4 v, u))$, and

5. for $v' \notin \Gamma \cdot v$ or $u' \notin \Gamma \cdot u$, $\langle q^s v(v', u) \mid q^r u(u', v) \rangle$ is not defined.

Proposition 3 (Proposition 3 [1]) The pairing function (6) defined above satisfies the following: for any $m, k, r, s \in \mathbb{N}$ we have
\[\langle q^s v(q^m v, u) \mid q^r u(q^k u, v) \rangle = q^{r-s-km},\] (7)

and
\[\langle q^r u(q^k u, v) \mid q^s v(q^m v, u) \rangle = q^{k+m-s-r} = \langle q^s v(q^m v, u) \mid q^r u(q^k u, v) \rangle^{-1}.\] (8)

We call the three sorted structure $\langle U_\phi, V_\phi, \langle \cdot \mid \cdot \rangle \rangle$ a quantum 2-torus and denoted by T_θ.

From Proposition 2 we know that the structure of the line-bundles does not depend on the choice function. The next proposition tells us that the structure of the quantum 2-torus $T_\theta^2(\mathbb{C})$ depends only on \mathbb{C}, q and not on the choice function.

Proposition 4 (cf. Proposition 4.4, [5]) Given $q \in \mathbb{F}^*$ not a root of unity, any two structures of the form $T_\theta^2(\mathbb{F})$ are isomorphic over \mathbb{F}. In other words, the isomorphism type of $T_\theta^2(\mathbb{F})$ does not depend on the system of representatives Φ.

3 Geometrically isomorphic quantum 2-tori

From now on we work in the structure $\mathbb{C}^\theta = (\mathbb{C}, +, \cdot, 1, x^\theta)$ (raising to real power θ in the complex numbers).

We define
\[x^\theta = \exp(\theta \cdot (\ln x + 2\pi i \mathbb{Z})) = \{\exp(\theta \cdot (\ln x + 2\pi i k)) : k \in \mathbb{Z}\},\]
as a multi-valued function and by $y = x^\theta$ we mean the relation $\exists z (x = \exp(z) \land y = \exp(z\theta))$.

Notation 5 $C_\theta(x, y)$ denotes the binary relation $y = x^\theta$ as defined above.

Let $\theta_1, \theta_2 \in \mathbb{R} \setminus \mathbb{Q}$. Set $q_1 = \exp(2\pi i \theta_1)$ and $q_2 = \exp(2\pi i \theta_2)$. Put $\Gamma_{q_1} = \langle q_1 \rangle$ and $\Gamma_{q_2} = \langle q_2 \rangle$.

Let Φ_1 be the system of representatives for a choice function $\phi_1 : \mathbb{C}^*/\Gamma_{q_1} \to \mathbb{C}^*$. Let T_{q_2} be quantum 2-tori constructed as explained in the previous section.

Suppose $(u, v) \in (\Phi_1)^2$. We identify the modules $M_{|u,v\rangle}$ constitutes the quantum 2-torus T_{q_1} with its canonical basis denoted by $E_{|u,v\rangle}$.

We see the Γ_{q_1}-bundle U_{ϕ_1} as a bundle inside $\bigcup_{(u,v) \in (\Phi_1)^2} M_{|u,v\rangle}$. Thus knowing the set of bases of U_{ϕ_1} that is the set $\bigcup_{(u,v) \in (\Phi_1)^2} E_{|u,v\rangle}$, we can determine the quantum 2-torus T_{q_1} which we denote T_{θ_1}.

Let Φ_2 be the system of representatives for a choice function $\phi_2 : \mathbb{C}^*/\Gamma_{q_2} \to \mathbb{C}^*$. Let T_{q_2} be quantum 2-tori constructed as explained in the previous section.

We define a similar set $E_{|u',v'\rangle}$ which is a canonical basis for $M_{|u',v'\rangle}$ where $(u', v') \in (\Phi_2)^2$ and the set $\bigcup_{(u',v') \in (\Phi_2)^2} E_{|u',v'\rangle}$ determines the quantum 2-torus T_{q_2} which we denote T_{θ_2}.

We now introduce the notion called Morita equivalence between quantum 2-tori.

Definition 6 Let $a, b \in \mathbb{C}^*$.

(1) We say that C_θ sends the coset $a \cdot \Gamma_{q_1}$ of Γ_{q_1} to the coset $b \cdot \Gamma_{q_2}$ of Γ_{q_2} if

$$\forall x' \in a \cdot \Gamma_{q_1} \forall y' \in \mathbb{C}^* \left(y' \in b \cdot \Gamma_{q_2} \iff C_\theta(x', y') \right).$$

(2) We say that C_θ gives rise to a one-to-one correspondence from the cosets of Γ_{q_1} to the cosets of Γ_{q_2}.

Definition 7 (Geometric isomorphism) We say that the quantum 2-torus T_{θ_1} is geometrically isomorphic to T_{θ_2}, written $T_{\theta_1} \simeq_{\theta} T_{\theta_2}$, if

(1) C_θ sends the cosets of Γ_{q_1} to the cosets of Γ_{q_2}, and
(2) there is a one-to-one correspondence L_θ from $\bigcup_{(u,v)} E_{[u,v]}$ to $\bigcup_{(u',v')}$ such that for each $(u,v) \in (\Phi_1)^2$ and $(u',v') \in (\Phi_2)^2$ satisfying $C_\theta(u,u')$ and $C_\theta(v,v')$ we have

$$L_\theta(q_1^n u(q_1^n u, v)) = q_2^n u(q_2^n u', v').$$

We call L_θ a geometric transformation from $\bigcup_{(u,v)} E_{[u,v]}$ to $\bigcup_{(u',v')}$ and we simply write as

$$L_\theta : E_{[u,v]} \mapsto E_{[u',v']}.$$

For a geometric transformation L_θ, we have the following diagrams, for each $(u,v) \in (\Phi_1)^2$ and $(u',v') \in (\Phi_2)^2$:

$$u((q_1^n u, v) \xrightarrow{L_\theta} u((q_2^n u', v'))$$

$$\downarrow U \quad \bigcirc \quad \downarrow U$$

$$(q_1^n u u((q_1^n u, v) \xrightarrow{L_\theta} (q_2^n u u((q_2^n u', v'))$$

and

$$u((q_1^n u, v) \xrightarrow{L_\theta} u((q_2^n u', v'))$$

$$\downarrow V \quad \bigcirc \quad \downarrow V$$

$$v u((q_1^n u, v) \xrightarrow{L_\theta} v' u((q_2^n u', v'))$$

Conversely, the existence of such diagrams is sufficient for L_θ to be a geometric transformation.

Remark. Note that for corresponding $(u,v) \in (\Phi_1)^2$ and $(u',v') \in (\Phi_2)^2$ such diagram to exist it is enough to have isomorphism between the groups Γ_{q_1} and Γ_{q_2}. This is clearly the case when q_1 and q_2 are of infinite order.

In order to show that a geometric transformation gives rise to a geometric isomorphism between quantum 2-tori, we need to show that it preserves the values of pairing functions $\langle \cdot \mid \cdot \rangle_{\theta_1}$ in T_{θ_1} and and the pairing function $\langle \cdot \mid \cdot \rangle_{\theta_2}$ in T_{θ_2}.

Lemma 8 A geometric transformation preserves the values of pairing functions $\langle \cdot \mid \cdot \rangle_{\theta_1}$ and $\langle \cdot \mid \cdot \rangle_{\theta_2}$. More precisely we have:

$$L_\theta (\langle \cdot \mid \cdot \rangle_{\theta_1}) = \langle L_\theta(\cdot) \mid L_\theta(\cdot) \rangle_{\theta_2}.$$
Proof: We show that the five properties of pairing function are preserved by geometric transformation.

1.
\[L_\theta (\langle u(u, v) | v(u, v) \rangle_{\theta_1}) = \langle L_\theta(u(u, v)) | L_\theta(v(v, u)) \rangle_{\theta_2} \]
\[\parallel L_\theta(1) \parallel \parallel \langle u(u', v') | v(v', u') \rangle_{\theta_2} \parallel \]
\[L_\theta(1) \]

2. It suffices to note that we have for each \(r, s \in \mathbb{Z} \),
\[L_\theta(U^r V^s u(u, v)) = U^r V^s (L_\theta(u(u, v))) = U^r V^s (u(u', v')) \]
and the same equation for \(v(v, u) \).

3., 4., 5., are proved by similar computations.

Knowing the modules \(M_{u,v} \) for each \((u, v) \in (\Phi_1)^2 \) and the modules \(M_{u',v'} \) for each \((u', v') \in (\Phi_2)^2 \) we can determine the structure of quantum 2-tori \(T_{\theta_1} \) and \(T_{\theta_2} \). Thus we have

Lemma 9 A geometric transformation from \(\bigcup_{(u,v) \in (\Phi_1)^2} E_{[u,v]} \) to \(\bigcup_{(u',v') \in (\Phi_2)^2} E_{[u',v']} \) induces a geometric isomorphism between \(T_{\theta_1} \) and \(T_{\theta_2} \).

4 Relations giving rise to geometric transformations

Proposition 10 For each \(\left(\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array} \right) \in \text{GL}_2(\mathbb{Z}) \), the binary relation
\[C_\Theta(x, y), \quad \Theta = \frac{m_{11} \theta + m_{12}}{m_{21} \theta + m_{22}} \]
corresponding to
\[y = x^{m_{11} \theta + m_{12}} \]
is positive quantifier-free definable in the structure \(C_\theta \).

Proof: Observe the following immediate equivalences:
- \(y = x^{m\theta} \equiv C_\theta(x^m, y) \)
- \(y = x^{m\theta+n} \equiv C_\theta(x^m, yx^{-n}) \)
\[y = x^1 \equiv C_\theta(y, x) \]
\[y = x^{m_\theta + n} \equiv x = y^{m_\theta + n} \equiv C_\theta(y^m, xy^{-n}) \]

It follows
\[y = x^{m_{11}\theta + m_{12}} = y^{m_{21}\theta + m_{22}} = x^{m_{11}\theta + m_{12}} \]
\[\equiv (y^{m_{21}x^{-m_{11}}})^\theta = x^{m_{12}y^{-m_{22}}} \]
\[\equiv C_\theta(y^{m_{21}x^{-m_{11}}}, x^{m_{12}y^{-m_{22}}}) \]

\[\square \]

Lemma 11 Suppose that \(C_\theta \) sends the cosets of \(\Gamma_{q_1} \) to the cosets of \(\Gamma_{q_2} \). Then there is a geometric transformation from \(T_{\theta_1} \) to \(T_{\theta_2} \), hence we have \(T_{\theta_1} \simeq \theta T_{\theta_2} \).

Proof: Once we know the correspondence between the cosets of \(\Gamma_{q_1} \) and the cosets of \(\Gamma_{q_2} \), by the remark above we can define a geometric transformation \(L_\theta \) from \(T_{\theta_1} \) to \(T_{\theta_2} \), and we have \(T_{\theta_1} \simeq \theta T_{\theta_2} \) \(\square \)

4.1 Main theorem

We now show the main theorem.

Theorem 12 Let \(\theta_1, \theta_2 \in \mathbb{R} \setminus \mathbb{Q} \). Then \(T_{\theta_1} \simeq \theta T_{\theta_2} \) if and only if \(\theta_2 = \frac{a\theta_1 + b}{c\theta_1 + d} \) for some \(\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \text{GL}_2(\mathbb{Z}) \) with \(|ad - bc| = 1 \).

Proof: By Lemma 11 \(T_{\theta_1} \simeq \theta T_{\theta_2} \) if and only if \(C_\theta \) sends cosets of \(\Gamma_{q_1} \) to \(\Gamma_{q_2} \). In particular, \(C_\theta \) induces a group isomorphism \(\Gamma_{q_1} = \langle q_1 \rangle \) to \(\Gamma_{q_2} = \langle q_2 \rangle \):

\[\exp(2\pi i(\mathbb{Z}\theta_1 + \mathbb{Z})) \xrightarrow{\theta} \exp(2\pi i((\mathbb{Z}\theta_1 + \mathbb{Z})\theta)) = \exp(2\pi i(\mathbb{Z}\theta_2 + \mathbb{Z})). \]

The isomorphism is completely determined by the images of \(q_1 = \exp(2\pi i\theta_1) \) and \(1 \) both in \(\Gamma_{q_1} \). Thus it suffices to know the images of \(\theta_1 \) and \(1 \) by this isomorphism i.e., multiplication by \(\theta \). Hence we have

\[
\begin{aligned}
\theta_1 & \xrightarrow{\theta} \theta_1\theta = a\theta_2 + b, \\
1 & \xrightarrow{\theta} \theta = c\theta_2 + d
\end{aligned}
\]

where \(a, b, c, d \in \mathbb{Z} \) and \(|ad - bc| = 1 \).
It follows that
\[\theta = \frac{a\theta_2 + b}{\theta_1} = c\theta_2 + d. \] (9)

Solving for \(\theta_2\) we get
\[\theta_2 = \frac{d\theta_1 - b}{-c\theta_1 + a}. \] (10)

Since \(|ad - bc| = 1\) we have
\[\begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \in \text{GL}_2(\mathbb{Z}). \]

And this completes the proof.

References

[1] Masanori Itai and Boris Zilber, Notes on a model theory of quantum 2-torus \(T^2_q\) for generic \(q\), arXiv:1503.06045v1 [mathLO]

[2] Matilde Marcoli, Noncommutative geometry and arithmetic, Invited talk, 2010 ICM Hyderabad

[3] M. A. Rieffel and A. Schwarz, Morita equivalence of multidimensional noncommutative tori, Internat. J. Math. 10, 2 (1999) 289-299

[4] Boris Zilber, The theory of exponential sums, arxiv.org/abs/1501.03297

[5] Boris Zilber, Perfect infinities and finite approximation In: Infinity and Truth. IMS Lecture Notes Series, V.25, 2014