On the growth of powers of operators with spectrum contained in Cantor sets

AGRAFEUIL Cyril

Abstract

For \(\xi \in (0, \frac{1}{2}) \), we denote by \(E_\xi \) the perfect symmetric set associated to \(\xi \), that is

\[
E_\xi = \left\{ \exp \left(2i\pi (1 - \xi) \sum_{n=1}^{+\infty} \epsilon_n \xi^{n-1} \right) : \epsilon_n = 0 \text{ or } 1 \ (n \geq 1) \right\}.
\]

Let \(s \) be a nonnegative real number, and \(T \) be an invertible bounded operator on a Banach space with spectrum included in \(E_\xi \). We show that if

\[
\|T^n\| = O(n^s), \ n \to +\infty
\]

and

\[
\|T^{-n}\| = O(e^{n^\beta}), \ n \to +\infty \text{ for some } \beta < \frac{\log \frac{1}{\xi} - \log 2}{2\log \frac{1}{\xi} - \log 2},
\]

then for every \(\varepsilon > 0 \), \(T \) satisfies the stronger property

\[
\|T^{-n}\| = O(n^{s+\frac{1}{2}+\varepsilon}), \ n \to +\infty.
\]

This result is a particular case of a more general result concerning operators with spectrum satisfying some geometrical conditions.

1 Introduction

We denote by \(\mathbb{T} \) the unit circle and by \(\mathbb{D} \) the open unit disk. We shall say that a closed subset \(E \) of \(\mathbb{T} \) is a \(K \)-set if there exists a positive constant \(c \) such that for any arc \(L \) of \(\mathbb{T} \),

\[
\sup_{z \in L} d(z, E) \geq c|L|,
\]

where \(|L| \) denotes the length of the arc \(L \) and \(d(z, E) \) the distance between \(z \) and \(E \). Let \(E \) be a \(K \)-set. We set

\[
\delta(E) = \sup \left\{ \delta \geq 0 : \int_{0}^{2\pi} \frac{1}{d(e^{it}, E)^\delta} dt < +\infty \right\}.
\]

We have \(\delta(E) \geq \frac{\log \frac{1}{1-c}}{\log \frac{1}{1-c}} \) (see [2] section 5, proof of lemma 2 and corollary). E. M. Dyn’kin showed in [2] that condition \((K) \) characterizes the interpolating sets for \(\Lambda_s^+(\mathbb{T}) \), \(s > 0 \) (see
section 2 for the definition of $\Lambda^+_s(T)$. Let s be a nonnegative real number, and let T be an invertible operator on a Banach space. We show (theorem 2.3) that if the spectrum of T is included in E and if T satisfies

$$
\|T^n\| = O(n^s), \ n \to +\infty
$$

and

$$
\|T^{-n}\| = O(e^{n\beta}), \ n \to +\infty
$$

for some $\beta < \frac{\delta(E)}{1 + \delta(E)}$,

then for every $\varepsilon > 0$, T also satisfies the stronger property

$$
\|T^{-n}\| = O(n^{s+\frac{1}{2}+\varepsilon}), \ n \to +\infty.
$$

(1)

For $\xi \in \left(0, \frac{1}{2}\right)$, we denote by E_ξ the perfect symmetric set associated to ξ, that is

$$
E_\xi = \left\{ \exp \left(2i\pi(1 - \xi) \sum_{n=1}^{+\infty} \epsilon_n \xi^{n-1} \right) : \epsilon_n = 0 \text{ or } 1 \ (n \geq 1) \right\}.
$$

We set $b(\xi) = \frac{\log \frac{1}{\xi} - \log 2}{2\log \frac{1}{\xi} - \log 2}$. We obtain (as a consequence of theorem 2.3) that if the spectrum of T is included in E_ξ, $\|T^n\| = O(n^s), \ n \to +\infty$ and $\|T^{-n}\| = O(e^{n\beta}), \ n \to +\infty$ for some $\beta < b(\xi)$, then T satisfies (1). Notice that J. Esterle showed in [5] that if T is a contraction on a Banach space (respectively on a Hilbert space) with spectrum included in $E_{\frac{1}{q}}$ (respectively included in E_ξ) such that $\|T^{-n}\| = O(e^{n\beta}), \ n \to +\infty$ for some $\beta < b(\frac{1}{q})$ (respectively $\beta < b(\xi)$), then $\sup_{n \geq 0} \|T^{-n}\| < +\infty$ (respectively T is an isometry). Here q is an integer greater than or equal to 3.

2 Growth of powers of operators

Let p be a non-negative integer. We denote by $C^p(T)$ the space of p times continuously differentiable functions on T. We set

$$
A^p(\mathbb{D}) = \left\{ f \in C^p(T) : \hat{f}(n) = 0 \ (n < 0) \right\},
$$

$C^\infty(T) = \bigcap_{p \geq 0} C^p(T)$ and $A^\infty(\mathbb{D}) = \bigcap_{p \geq 0} A^p(\mathbb{D})$.

Let s be a nonnegative real number, we denote by $[s]$ the nonnegative integer such that $[s] \leq s < [s] + 1$. We define the Banach algebra

$$
\Lambda_s(T) = \left\{ f \in C^s(T) : \sup_{z, z' \in T} \left| \frac{f([s])(z) - f([s])(z')}{z - z'[s]^{-s}} \right| < +\infty \right\};
$$

2
equipped with the norm \(\|f\|_{\Lambda_s} = \|f\|_{C^s(\mathbb{T})} + \sup_{z,z' \in \mathbb{T}} \frac{|f^{(s)}(z) - f^{(s)}(z')|}{|z - z'|^{s-s}} \). We also define the subalgebra

\[
\lambda_s(\mathbb{T}) = \left\{ f \in C^s(\mathbb{T}) : |f^{(s)}(z) - f^{(s)}(z')| = o(|z - z'|^{s-s}), |z - z'| \to 0 \right\},
\]

which we equip with the same norm. We also set

\[
\Lambda_s^+ (\mathbb{T}) = \left\{ f \in \lambda_s(\mathbb{T}) : \hat{f}(n) = 0 \quad (n < 0) \right\}
\]

and \(\lambda_s^+ (\mathbb{T}) = \left\{ f \in \lambda_s(\mathbb{T}) : \hat{f}(n) = 0 \quad (n < 0) \right\} \).

We remark that if \(s \) is an integer, \(\lambda_s(\mathbb{T}) = C^s(\mathbb{T}) \) and so \(\Lambda_s^+ (\mathbb{T}) = \lambda_s^+ (\mathbb{T}) = A^s(\mathbb{D}) \). We define

\[
N_s(E) = \{ f \in \lambda_s(\mathbb{T}) : f|_E = \ldots = f|_E^{(s)} = 0 \},
\]

and set \(N_s^+(E) = N_s(E) \cap \Lambda_s^+ (\mathbb{T}) \).

Lemma 2.1. Let \(s \) be a nonnegative real number. Then for all \(\varepsilon > 0 \), we have the following continuous embedding

\[
A_{s + \frac{1}{2} + \varepsilon} (\mathbb{T}) \hookrightarrow A_s (\mathbb{T}).
\]

Proof. For \(s = 0 \), this is a result of Bernstein (see [9], p.13). The general case is obtained by the same arguments. Let \(\varepsilon > 0 \), and set \(\tilde{s} = s + \frac{1}{2} + \varepsilon \). Let \(f \in \Lambda_{\tilde{s}} (\mathbb{T}) \). For \(h > 0 \), define

\[
P(h) = \int_0^{2\pi} |f^{(\tilde{s})}(e^{i(t-h)}) - f^{(\tilde{s})}(e^{i(t+h)})|^2 dt.
\]

It follows from Parseval equality that

\[
P(h) = 8\pi \sum_{n = -\infty}^{+\infty} |f^{(\tilde{s})}(n)|^2 \sin^2 (nh). \quad (2)
\]

Let \(j_0 \) be the smallest integer such that \(\tilde{s} < 2^{j_0} \) and let \(j \geq j_0 \). It follows from the relation

\[
\hat{f}^{(\tilde{s})}(n) = \left(\prod_{k=1}^{\tilde{s}} (n+k) \right) \hat{f}(n + \tilde{s}) \quad (n \in \mathbb{Z})
\]

and from [2] that there exists a constant \(C_1 > 0 \) independent of \(f \) such that

\[
P(h) \geq \frac{4}{C_1} \sum_{|n| = 2^j} |\hat{f}(n + \tilde{s})|^2 (1 + |n|)^{2\tilde{s}} \sin^2 (nh). \quad (3)
\]

Using the Cauchy-Schwartz inequality, we have

\[
\sum_{|n| = 2^j} |\hat{f}(n + \tilde{s})|(1 + |n|)^{\tilde{s}} \leq \left(\sum_{|n| = 2^j} |\hat{f}(n + \tilde{s})|^2 (1 + |n|)^{2\tilde{s}} \right)^{\frac{1}{2}} \left(\sum_{n = 2^j} (1 + |n|)^{2s-2\tilde{s}} \right)^{\frac{1}{2}} \quad (4)
\]
Set \(h = \frac{\pi}{3.2^j} \). For all integers \(n \) such that \(2^j \leq |n| \leq 2^{j+1} - 1 \), we have \(\frac{\pi}{3} \leq |nh| \leq \frac{2\pi}{3} \), and so \(\sin^2(nh) \geq \frac{1}{4} \). So, we deduce from (3) that

\[
\left(\sum_{|n| = 2^j}^{2^{j+1} - 1} |\hat{f}(n + [\tilde{s}])|^2 (1 + |n|)^{2[\tilde{s}] - 1} \right)^{\frac{1}{2}} \leq C_1 P \left(\frac{\pi}{3.2^j} \right)^{\frac{1}{2}}.
\]

Then, as \(f \in \Lambda \tilde{s}(\mathbb{T}) \), we have

\[
P \left(\frac{\pi}{3.2^j} \right)^{\frac{1}{2}} \leq (2\pi)^{\frac{1}{2}} \|f\|_{\Lambda \tilde{s}} \left(\frac{2\pi}{3.2^j} \right)^{\tilde{s} - [\tilde{s}]}.
\]

so that

\[
\left(\sum_{|n| = 2^j}^{2^{j+1} - 1} (1 + |n|)^{2[\tilde{s}] - 1} \right)^{\frac{1}{2}} \leq C_2 2^j \left(s - [\tilde{s}] + \frac{1}{2} \right).
\]

Furthermore, there exists a constant \(C_2 > 0 \) such that

\[
\left(\sum_{|n| = 2^j}^{2^{j+1} - 1} (1 + |n|)^{2[\tilde{s}] - 1} \right)^{\frac{1}{2}} \leq C_2 2^j \left(s - [\tilde{s}] + \frac{1}{2} \right).
\]\n
Finally we deduce from (4) and the inequalities (5) and (6) that there exists a constant \(C_3 > 0 \) independent of \(f \) such that for all \(j \geq j_0 \),

\[
\sum_{|n| = 2^j}^{2^{j+1} - 1} |\hat{f}(n + [\tilde{s}])|(1 + |n|)^s \leq 2^{j(s - [\tilde{s}] + \frac{1}{2})} C_3 \|f\|_{\Lambda \tilde{s}} = 2^{-\varepsilon j} C_3 \|f\|_{\Lambda \tilde{s}}.
\]

Summing over \(j \geq j_0 \) these inequalities, we get

\[
\sum_{|n| \geq 2^{j_0}} |\hat{f}(n + [\tilde{s}])|(1 + |n|)^s \leq \frac{C_3}{1 - 2^{-\varepsilon}} \|f\|_{\Lambda \tilde{s}},
\]

On the other hand, we have \(|\hat{f}(n)| \leq \|f\|_{\Lambda \tilde{s}} \) for every \(n \in \mathbb{Z} \). So, since \(j_0 \) is independent of \(f \), there exists a constant \(K > 0 \) (independent of \(f \)) such that

\[
\|f\|_{\tilde{s}} \leq K \|f\|_{\Lambda \tilde{s}}.
\]

Before giving the main theorem of the paper, we need the following lemma.
Lemma 2.2. Let E be a closed subset of \mathbb{T}. We assume that there exists $\delta > 0$ for which
\[\int_0^{2\pi} \frac{1}{d(e^{it}, E)^{\delta}} dt < +\infty. \]
Let $\beta < \frac{\delta}{1+\delta}$ and let T be an invertible operator on a Banach space with spectrum included in E that satisfies
\[\|T^n\| = O(n^s), \quad n \to +\infty \quad (\text{for some nonnegative real } s) \]
and
\[\|T^{-n}\| = O(e^{n\beta}), \quad n \to +\infty, \]
Then there exists an outer function $f \in \mathcal{A}^\infty(\mathbb{D})$ which vanishes exactly on E and such that
\[f(T) := \sum_{n=0}^{+\infty} \hat{f}(n) T^n = 0. \]

Proof. Let ω be the weight defined by
\[\omega(n) = \|T^n\| (n \in \mathbb{Z}). \]
Let Φ be the continuous morphism from $A_{\omega}(\mathbb{T})$ to $L(X)$ defined by
\[\Phi(f) = f(T) = \sum_{n=-\infty}^{+\infty} \hat{f}(n) T^n \quad (f \in A_{\omega}(\mathbb{T})). \]
Since the algebra $A_{\omega}(\mathbb{T})$ is regular, we have \{ $z \in \mathbb{T}: f(z) = 0$ \ (f \in Ker Φ) \} \subset E (see [7], theorem 2.5), and so $J_{\omega}(E) \subset \text{Ker } \Phi$. Then the result follows from lemmas 7.1 and 7.2 of [5].

Theorem 2.3. Let E be a K-set, and let s be a nonnegative real number. Then, any invertible operator T on a Banach space with spectrum included in E that satisfies
\[\|T^n\| = O(n^s), \quad n \to +\infty \]
and
\[\|T^{-n}\| = O(e^{n\beta}), \quad n \to +\infty \text{ for some } \beta < \frac{\delta(E)}{1+\delta(E)}, \]
also satisfies the stronger property
\[\|T^{-n}\| = O(n^{s+\frac{1}{2}+\varepsilon}), \quad n \to +\infty, \]
for all $\varepsilon > 0$.

Proof. Let $\varepsilon > 0$ and set $\tilde{s} = s + \frac{1}{2} + \varepsilon$. Without loss of generality, we may assume that \tilde{s} is not an integer. Let t a real number, which is not an integer, and satisfies $s + \frac{1}{2} < t < \tilde{s}$ and $[t] = [\tilde{s}]$. According to lemma 2.1, we can define a continuous morphism Φ from $\lambda_t^+(\mathbb{T})$ to $L(X)$ by
\[\Phi(f) = f(T) = \sum_{n=0}^{+\infty} \hat{f}(n) T^n \quad (f \in \lambda_t^+(\mathbb{T})). \]
Let $I = \text{Ker } \Phi$, I is a closed ideal of $\lambda_t^+(\mathbb{T})$. We denote by S_I its inner factor, that is the greatest common divisor of all inner factors of the non-zero functions in I (see [8] p.85), and
we set, for $0 \leq k \leq |t|$, $h^k(I) = \{z \in \mathbb{T} : f(z) = \ldots = f^{(k)}(z) = 0 \text{ } (f \in I)\}$.

F. A. Shamoyan showed in [12] that

$$ I = \left\{ f \in \Lambda^+(\mathbb{T}) : S(I)|S(f) \text{ and } f^{(k)} = 0 \text{ on } h^k(I) \text{ for all } 0 \leq k \leq |t| \right\}, $$

where $S(f)$ denotes the inner factor of f and $S(I)|S(f)$ means that $S(f)/S(I)$ is a bounded holomorphic function in \mathbb{D}. Since $\beta < \frac{\delta(E)}{1+\delta}$, there exists $0 < \delta < \delta(E)$ such that

$$ \beta < \frac{\delta}{1+\delta}. $$

We have, by definition of $\delta(E)$,

$$ \int_0^{2\pi} \frac{1}{d(e^{it}, E)} dt < +\infty. $$

So we deduce from lemma [22] that there exists an outer function $f \in A^\infty(\mathbb{D})$ which vanishes exactly on E and such that $f \in I$. Therefore, we have $S(I) = 1$ and $h^0(I) \subset E$, so that $N^+_s(E) \cap \lambda_s(\mathbb{T}) \subset I$.

Now, as $\Lambda^+_s(\mathbb{T}) \subset \lambda^+_s(\mathbb{T})$, we can define a continuous morphism Ψ from $\Lambda^+_s(\mathbb{T})$ to $\mathcal{L}(X)$ by $\Psi = \Phi|_{\Lambda^+_s(\mathbb{T})}$. Using what precedes, we have

$$ N^+_s(E) \subset \text{Ker } \Psi. $$

So there exists a continuous morphism $\tilde{\Psi}$ from $\Lambda^+_s(\mathbb{T})/N^+_s(E)$ into $\mathcal{L}(X)$ such that $\Psi = \tilde{\Psi} \circ \pi^+_s$, where π^+_s is the canonical surjection from $\Lambda^+_s(\mathbb{T})$ to $\Lambda^+_s(\mathbb{T})/N^+_s(E)$. Since E is a K-set, by a theorem of E. M. Dyn’kin [2], it is an interpolating set for $\Lambda^+_s(\mathbb{T})$, so that the canonical imbedding i from $\Lambda^+_s(\mathbb{T})/N^+_s(E)$ into $\Lambda^+_s(\mathbb{T})/N^+_s(E)$ is onto. We have, for $n \geq 0$,

$$ T^{-n} = \tilde{\Psi} \circ i^{-1} \circ \pi^+_s(\alpha^{-n}), $$

where π^+_s denote the canonical surjection from $\Lambda^+_s(\mathbb{T})$ to $\Lambda^+_s(\mathbb{T})/N^+_s(E)$ and where $\alpha : z \to z$ is the identity map. So we have, for $n \geq 0$,

$$ \|T^{-n}\| \leq \|\tilde{\Psi} \circ i^{-1} \|\pi^+_s(\alpha^{-n})\|_{\Lambda^+_s} \leq \|\tilde{\Psi} \circ i^{-1}\| (1+n)^{\bar{s}}, $$

which completes the proof. \(\square\)

We give two immediate corollaries of this theorem.

Corollary 2.4. Let $\xi \in (0, \frac{1}{2}]$ and let s be a nonnegative real number. Then, any invertible operator T on a Banach space with spectrum included in E_ξ that satisfies

$$ \|T^n\| = O(n^s), \text{ } n \to +\infty $$

and

$$ \|T^{-n}\| = O(e^{n^{\beta}}), \text{ } n \to +\infty \text{ for some } \beta < b(\xi), $$

also satisfies the stronger property

$$ \|T^{-n}\| = O(n^{s+\frac{1}{2}+\varepsilon}), \text{ } n \to +\infty, $$

for all $\varepsilon > 0$.

6
Proof. It is well known that E_ξ is a K-set (see proposition 2.5 of \[5\]). Moreover, E_ξ satisfies
$$\int_0^{2\pi} \frac{1}{d(e^{it}, E)^\delta} dt < +\infty$$
if and only if $\delta < 1 + \frac{\log 2}{\log \xi}$. Indeed, the condition $\int_0^{2\pi} \frac{1}{d(e^{it}, E)^\delta} dt < +\infty$ is equivalent to
$$\sum_{n=1}^{+\infty} \sum_{i=1}^{2^{n-1}-1} |L_{n,i}|^{1-\delta},$$
where $L_{n,i}$ are the arcs contiguous to E_ξ, and $|L_{n,i}|$ are their length, which is equal to $2\pi \xi^{n-1}(1-2\xi)$ (see \[10\] for further details). Then it is easily seen that the last series converges if and only if $\delta < 1 + \frac{\log 2}{\log \xi}$, so $\delta(E_\xi) = 1 + \frac{\log 2}{\log \xi}$.

Now, the result follows immediately from theorem 2.3.

Then we obtain an other immediate result, which generalizes theorem 4.1 of \[3\]. Indeed, the condition "\[\|T^{-n}\| = O(e^{n\beta}), n \to +\infty\]" which appears in the following corollary is weaker than the condition used by the authors of \[3\].

Corollary 2.5. Let E be a K-set, and let s be a nonnegative real number. Then, there exists a constant $\beta > 0$ independent of s such that any invertible operator T on a Banach space with spectrum included in E that satisfies
$$\|T^n\| = O(n^s), n \to +\infty$$
and
$$\|T^{-n}\| = O(e^{n\beta}), n \to +\infty,$$
also satisfies the stronger property
$$\|T^{-n}\| = O(n^{s+\frac{1}{2}+\varepsilon}), n \to +\infty,$$
for all $\varepsilon > 0$.

Proof. As E is a K-set, we deduce from \[2\] (section 5, corollary) that $\delta(E) > 0$. Then the result follows immediately from theorem 2.3 with any $\beta < \frac{\delta(E)}{1+\delta(E)}$. \qed

Remark 2.6:
1) Some results concerning operators with countable spectrum are obtained in \[13\] and in \[1\]. Let E be a closed subset of \mathbb{T} and let s, t be two nonnegative reals. We denote by $P(s, t, E)$ the following property: every invertible operator T on a Banach space such that $\mathrm{Sp} T \subset E$ and satisfies the conditions:
$$\|T^n\| = O(n^s), n \to +\infty$$
$$\|T^{-n}\| = O(e^{\varepsilon\sqrt{n}}), n \to +\infty,$$
for all $\varepsilon > 0$, also satisfies the stronger property
$$\|T^{-n}\| = O(n^{t}+\varepsilon), n \to +\infty.$$

M. Zarrabi showed in \[13\] (théorème 3.1 and remarque 2.a) that a closed subset E of \mathbb{T} satisfies $P(0, 0, E)$ if and only if E is countable. Notice that E is called a Carleson set if
$$\int_0^{2\pi} \log^+ \frac{1}{d(e^{it}, E)} dt < +\infty.$$ If E is a countable closed subset of \mathbb{T}, we show in \[11\] that the
following conditions are equivalent:

(i) there exist two positive constants C_1, C_2 such that for every arc $I \subset \mathbb{T}$,

$$\frac{1}{|I|} \int_I \log^+ \frac{1}{d(e^{it}, E)} \, dt \leq C_1 \log \frac{1}{|I|} + C_2.$$

(ii) E is a Carleson set and for all $s \geq 0$, there exists t such that $P(s, t, E)$ is satisfied.

For contractions with spectrum satisfying the Carleson condition, we can see [11].

2) When $\xi = \frac{1}{q}$, the constant $b(\frac{1}{q})$ in corollary 2.4 is the best possible in view of [6], where the authors built a contraction T such that $\lim_{n \to +\infty} \log \|T^{-n}\| = +\infty$, $Sp T \subset E_{\frac{4}{q}}$ and $\log \|T^{-n}\| = O(n^{b(\frac{1}{q})})$. According to theorem 6.4 of [11], T doesn’t satisfy $\|T^{-n}\| = O(n^s)$ for any real $s \geq 0$.

References

[1] C. Agrafeuil, Idéaux fermés de certaines algèbres de Beurling et application aux opérateurs à spectre dénombrable, preprint.

[2] E. M. Dynkin, Free interpolation set for Hölder classes, Mat. Sbornik, 109 (1979), 107-128.

[3] O. El-Fallah et K. Kellay, Sous-espaces biinvariants pour certains shifts pondérés, Ann. Inst. Fourier 48 (1998), no. 5, 1543-1558.

[4] J. Esterle, Uniqueness, strong form of uniqueness and negative powers of contractions, Banach Center Publ. 30 (1994), 1-19.

[5] J. Esterle, Distributions on Kronecker sets, strong forms of uniqueness, and closed ideals of A^+, J. reine angew. Math. 450 (1994), 43-82.

[6] J. Esterle, M. Rajoelina and M. Zarrabi, On contractions with spectrum contained in Cantor set, Math. Proc. Camb. Phil. Soc. 117 (1995), 339-343.

[7] J. Esterle, E. Strouse and F. Zouakia, Theorems of Katznelson-Tzafriri type for contractions, J. Func. Anal. (2) 94 (1990), 273-287.

[8] K. Hoffman "Banach spaces of analytic functions", Prentic-Hall, Englewood Cliffs, 1962.

[9] J. P. Kahane, "Séries de Fourier absolument convergentes", Erg. Math. 336, Springer Verlag, Berlin-Heidelberg-New York, 1973.

[10] J. P. Kahane, R. Salem, "Ensembles parfaits et séries trigonométriques", Paris, Hermann, 1963.

[11] K. Kellay, Contractions et hyperdistributions à spectre de Carleson, J. London Math. Soc. (2) 58 (1998), 185-196.
[12] F. A. Shamoyan Closed ideals in algebras of functions analytic in the disc and smooth up to its boundary, Mat. Sbornik 79 (1994), 425-445.

[13] M. Zarrabī, Contractions à spectre dénombrable et propriété d’unicité des fermés dénombrables du cercle unité, Ann. Inst. Fourier 43 (1993), 251-263.

2000 Mathematics Subject Classification: 46J15, 46J20, 47A30.
Key-words: operators, Beurling algebra, spectral synthesis, perfect symmetric set.

AGRAFEUIL Cyril
Cyril.Agrafeuil@math.u-bordeaux.fr
Laboratoire Bordelais d’Analyse et Géométrie (LaBAG), CNRS-UMR 5467 Université Bordeaux I
351, cours de la libération
33405 Talence cedex, FRANCE.