Psychosocial stress and liver disease status

Cristin Constantin Vere, Costin Teodor Streba, Letitia Maria Streba, Alin Gabriel Ionescu, Felix Sima

Cristin Constantin Vere, Alin Gabriel Ionescu, Felix Sima, 1st Department of Internal Medicine, Emergency County Hospital of Craiova, Craiova 200322, Dolj, Romania
Costin Teodor Streba, University of Medicine and Pharmacy of Craiova, Craiova 200349, Dolj, Romania
Letitia Maria Streba, 3rd Department of Internal Medicine, “Filantropia” University Hospital of Craiova, Craiova 200136, Dolj, Romania

Author contributions: Vere CC and Streba CT equally contributed to this work; Vere CC initiated the literature review; Vere CC and Streba CT conducted the literature review; Streba LM provided important guidance throughout the preparation of this manuscript; Ionescu AG and Sima F reviewed the text.

Correspondence to: Costin Teodor Streba, University of Medicine and Pharmacy of Craiova, St. 1 Decembrie 1918, Bl. N11, Ap. 2, Craiova 200066, Dolj, Romania. costinstreba@gmail.com
Telephone: +40-722-389-906 Fax: +40-251-534523
Received: March 25, 2009 Revised: May 23, 2009
Accepted: May 30, 2009
Published online: June 28, 2009

Abstract

“Psychosocial stress” is an increasingly common concept in the challenging and highly-demanding modern society of today. Organic response to stress implicates two major components of the stress system, namely the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Stress is anamnestically reported by patients during the course of disease, usually accompanied by a decline in their overall health status. As the mechanisms involving glucocorticoids and catecholamines have been deciphered, and their actions on immune cell function deeper understood, it has become clear that stress has an impact on hepatic inflammatory response. An increasing number of articles have approached the link between psychosocial stress and the negative evolution of hepatic diseases. This article reviews a number of studies on both human populations and animal models performed in recent years, all linking stress, mainly of psychosocial nature, and the evolution of three important liver-related pathological entities: viral hepatitis, cirrhosis and hepatocellular carcinoma.

© 2009 The WJG Press and Baishideng. All rights reserved.

Key words: Stress; Chronic viral hepatitis; Cirrhosis; Carcinoma; Hepatocellular; Liver pathology

Peer reviewer: Frank J Burczynski, Professor, Faculty of Pharmacy, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada

INTRODUCTION

Over time, stress has received a number of definitions in the scientific literature, more or less accurate or complete. One of the most commonly accepted psychological definitions has been that stress occurs when demands from the environment challenge an individual’s adaptive capacity, or ability to cope[1]. Several life-changing or threatening events are considered to be “stressors”; factors that are either acute or chronic based on the duration of their interaction. Both have been associated with severe immune system dysfunctions, whether or not the individual is affected by an acute or chronic disease[2].

Once an individual is subjected to such a stressor, specific pathways within the brain lead to the activation of the hypothalamic-pituitary-adrenal (HPA) axis as well as the central sympathetic outflow. This constitutes the stress response, releasing key peripheral mediators-glucocorticoids and catecholamines[3].

For a long time, it was suggested that stress influenced hepatic blood flow by inducing vasospasm and centrilobular hypoxia, leading to liver damage[4]. In more recent years, as the understanding of stress mediators has improved, the effect that stress has on the onset and development of liver damage during acute and chronic liver diseases has gained a new dimension[5].

This article reviews an important part of current literature on the effects of stress on the status of three major interrelated hepatic conditions: viral hepatitis, cirrhosis and hepatocellular carcinoma. We tried to cover the physiological aspects of the stress system and its relationship with several cellular pathways, the immune system effectors and the level of cellular alteration at the hepatic level.

THE HPA AXIS AND CENTRAL SYMPATHETIC NERVOUS SYSTEM

Physiology and interactions with immune-mediated inflammation

The HPA axis and the systemic sympathetic and adrenomedullary system are the key components of
the stress system. Their main function is to maintain basal and stress-related homeostasis. They respond to several signaling molecules, such as cytokines produced by immune-mediated inflammatory reactions, tumor necrosis factor (TNF)-α, interleukin-1 (IL-1), and interleukin-6 (IL-6). Corticotrophin-releasing hormone (CRH) and noradrenergic neurons of the central stress system innervate and stimulate each other. By using specific receptors, CRH stimulates norepinephrine secretion, while in turn norepinephrine stimulates CRH secretion primarily through α1-noradrenergic receptors. An ultrashort negative-feedback loop also exists for both CRH and norepinephrine, down-regulating their production. The serotonergic and cholinergic systems stimulate CRH, arginine vasopressin (AVP), and noradrenergic neurons whilst being inhibited by the opioid-peptide and γ-aminobutyric acid-henzodiazepine systems existing in the brain. Hypothalamic CRH neurons are inhibited by centrally secreted substance P while AVP neurons remain unaffected. Substance P also stimulates the central noradrenergic system.

CRH-induced secretion of proopiomelanocortin-derived and several other opioid peptides concurs with stress system activation, which enhances overall analgesia. CRH also stimulates corticotrophin secretion through the corticotrophs of the anterior pituitary. Adrenal medulla hormones, especially corticotrophin, are principal regulating factors of glucocorticoid secretion.

All key hormones secreted by HPA components play different roles in the modulation of the immune response and the development of the inflammatory reaction.

Some leukocyte functions are influenced by glucocorticoids, as they suppress cytokine immune activation by inhibiting the production of cytokines and other inflammation mediators, as well as causing resistance to cytokines. The functionality of Type 1 helper T lymphocytes is suppressed whilst eosinophil apoptosis is stimulated. Adhesion molecule expression is inhibited along with their specific receptors, while the acute phase reaction is being potentiated. The pituitary hormones, corticotrophin and β-endorphin, have immunopotentiating and proinflammatory properties. Additionally, β-endorphin produced at inflammatory sites is a potent local analgesic.

The hypothalamus exerts a regulatory effect over the HPA axis through CRH and AVP secretion. Their proinflammatory effects have been studied both in vitro and in vivo. CRH concentrations remain high at inflammatory sites, while remaining undetectable in plasma samples obtained concurrently. Rapid catabolism, uptake or binding are thought to be primary mechanisms which prevent CRH from remaining active in the system. In addition to the HPA axis, the central sympathetic nervous system is directly connected with the modulation of the stress response. Stimulation of the locus coeruleus-norepinephrine system activates the central nerve pathways, thus influencing peripheral sympathetic outflow. This triggers catecholamine release from autonomic nerve endings and from the adrenal medulla. Catecholamines can influence the hepatic inflammatory response by altering hemodynamics. Recently, catecholamine receptors were discovered on immunocompetent cells, thus it is believed that catecholamines can directly influence the immune response.

STRESS AND CHRONIC VIRAL HEPATITIS

In recent years, a number of studies have established an increasingly clear link between psychosocial or psychophysiological stress, personality types and the development of viral hepatitis. Both human clinical trials and animal model studies were devised in order to prove the interaction between the two.

A clinical trial, performed by Nagano et al., indicated a positive correlation between psychosocial stress and the severity of chronic hepatitis C. Type 1 personality subjects, due to the nature of their personality traits (low sense of control, object dependence of loss, unfulfilled need for acceptance and altruism) are highly likely to be affected by chronic psychosocial stress. Type 1 personality and psychosocial stress were positively linked to the severity of chronic hepatitis C. Stress was measured using a Stress Inventory questionnaire and a personality evaluation was devised using items from the Grossarth-Maticek theory (according to this theory, type-1 personality subjects are positively associated with malignant neoplasms and chronic diseases). Patients were divided into three groups depending on the severity of chronic hepatitis C, measured by liver function laboratory parameters (ALAT values, platelet count, albumin and total bilirubin levels). Ultimately, two distinct groups resulted by unifying the 2nd and 3rd initial groups, as their values were similarly elevated. Platelet count and serum albumin levels were positively correlated with hepatitis C severity, both of them being strongly correlated with elevated stress scores. ASAT values strongly correlated with both levels of stress and the presence of type 1 personality traits.

Kunkel et al. investigated the connections between depression scores, psychosocial stressors, social support, and biological markers of dysfunction of a group of 50 Korean immigrants with chronic viral hepatitis B. Several indicators of liver function, including hepatic transaminases, albumin levels, and prothrombin times were measured during routine clinic follow-up visits and were correlated with scores obtained from the short form Beck Depression Inventory (BDI-sf). Higher BDI-sf scores were significantly associated with elevated transaminases (P < 0.001). Both PT and decreased albumin levels were not significantly correlated with increased BDI-sf scores.

Both studies excluded patients with decompensated cirrhosis, malignant disease, coronary heart disease, stroke, co-infection or interferon treatment.

Clinical studies suggest that chronic psychosocial...
stress affects antibody response after hepatitis B vaccination. A higher score in stress inventory questionnaires given to the test subjects was positively correlated with a weaker immune response, when administering the same antigen dose.

Psychosocial stress has intricate relationships with inflammatory and fibrosing changes of the liver during the course of hepatitis. Kaji et al. reported that serum levels of transaminases increased due to stress in the galactosamine-injured liver of rats. Several animal models have suggested that inflammation-related HPA-activated pathways are influenced by stress.

Psychophysical stress simulated by inescapable foot-shock induced elevations of glucocorticoids (GCs), exacerbating α-galactosyleramide-triggered apoptosis through proliferation of liver natural killer T (NKT) cells and up-regulating the expression of Fas antigen on hepatocytes. GC directly elevates Fas antigen expression, probably through intracapsular signal cascades. Several other studies established that in vivo administration of dexamethasone, an exogenous GC, enhanced the number of liver α-galactosylceramide-activated Vγ14 natural killer T cells in mice. As NKT cells play an important immunological role in liver homeostasis, as well as in hepatocyte apoptosis through their Fas-ligand coated surface, it is clear that GC elevations during stress negatively influence the pathological state of the liver.

Tamada et al. found in mice the increased production of IL-4-hepatic NK1.1 T cells after exogenous administration of dexamethasone, thus demonstrating that these cells are resistant to glucocorticoid-induced apoptosis. Their study suggested that the process may play a role in determining the hepatic Th1/Th2 balance in times of stress or during GC therapy.

GCs downregulate expression of endothelial cell adhesion molecules, thus producing inhibitory effects on neutrophil recruitment in liver. Increased circulating endogenous GC levels hence decrease hepatic neutrophil chemotaxis, as well as lymphocyte recruitment.

GCs inhibit IL-6 and TNF-α at transcriptional and translational levels. Endogenous corticosterone, at normal or stress levels, induces IL-6 and TNF-α in an in situ liver perfusion, which lead to the conclusion that GCs have additional non-suppressive effects.

STRESS AND LIVER CIRRHOSIS

Psychosocial stress per se may exaggerate inflammatory and fibrosing change in the cirrhotic liver. Nagano et al. included in their clinical test a subset of patients affected by cirrhosis. They found the same positive correlation between psychosocial stress and liver injury, as ALAT values strongly correlated with high stress scores in the cirrhosis cohort. Tanaka et al. conducted a long-term follow-up study determining risk factors for malignant transformation of cirrhotic lesions in Japanese patients. His study also demonstrated a possible link between the presence of stress and precipitating indicators for cirrhosis.

Several animal studies were conducted, outlining important cellular mechanisms that link stress response of the sympathetic nervous system, as well as alterations of the HPA axis responsiveness, with liver inflammation in cirrhosis.

Electric foot shock stress exacerbated liver injury in rats treated with carbon tetrachloride. Alterations of the HPA axis responsiveness, as well as elevated plasma cytokine levels, accompany experimental chronic liver disease in mice. Elevated TNF-α and IL-6 levels, coupled with liver injury, decrease hypothalamic mRNA and protein expression of CRH. When mice are exposed to psychological stress, HPA axis functions abnormally, suffering defective activation and significant attenuation in the resultant release of GCs, compared to control groups.

NKT cell activity was linked with fibrosing and inflammatory damage in cirrhosis. Epinephrine and norepinephrine, via several subtypes of adrenoceptor (AdR), cause expansion of liver NKT cells, production of IL-6 from hepatocytes and TNF-α from Kupffer cells, as well as impairment of hepatic blood flow (HBF). GCs inhibit the production of IL-10, IL-6, TNF-α, PGE2 leukotrienes and nitric oxide from Kupffer cells. Two mechanisms are involved, a direct one (affecting the stability of mRNA and gene transcription) and an indirect one, by inhibiting the production of the nuclear factor (NF)-κB and the activator protein (AP)-1.

Tjandra et al. suggested that psychosocial stress itself can influence the course of hepatic inflammation, by directly altering IL-6 and TNF-α production.

Also, Kitamura et al. studied how immobilization stress can induce increased IL-6 mRNA expression in the liver, as well as an elevation of the plasma IL-6 level. He made a clear distinction between IL-6 produced within hepatocytes and that produced in non-parenchymal cells, using immunohistochemical techniques.

This distinction was further demonstrated by an in vitro experiment, using primary cultured rat hepatocytes. This study also explored the effect sympathetic nervous system mediators such as epinephrine and norepinephrine have on TNF-α and IL-6 produced by Kupffer cells and hepatocytes. An increase in norepinephrine is mediated through α1-, α2- and β1-adrenergic receptors, leading to an increased production of pro-inflammatory cytokines.

Nakajima et al. discovered that patients with liver cirrhosis and decreased NKT cell activity were at a higher risk of developing hepatocellular carcinoma than those with normal natural killer cell activity.

INFLUENCE OF STRESS ON HEPATOCellular Carcinoma (HCC) PROGNOSIS

The effects psychosocial stress has on immune suppression in patients with malignant metaplasia are well
established. However, its effects on hepatocarcinoma are yet to be determined. It has been hypothesized that several psychosocial factors, including stress, may account in part for rapid hepatocarcinoma development. Biobehavioral models were suggested in order to demonstrate this interaction. Cancers with a strong immune-mediation component, such as HBV-related HCC are believed to be the most appropriate

Several studies proved the correlation between stress and progression of various types of cancer in humans. In these studies, positive correlations were found between stress and the grade of dysplasia, overall survival and cancer recurrence.

By using this knowledge, psychological intervention was used as a tool to improve immune functioning and to reduce progression. Similar studies were conducted by Spiegel et al who observed extended survival in patients affected by cancer after group therapy and other forms of stress-relieving techniques.

Carcinoma is associated with high concentrations of TNF-α. Stress, as outlined in several studies, directly influences TNF-α, IL-1, and IL-6 expression, in turn influencing the activity of NKT cells. As a result, stress and depression can influence tumor progression at a cellular level.

Several animal models demonstrated relationships between stress, immune reactivity and tumor growth, by influencing IL-2 production, plasma L3T4 antigen and elevating GCs.

Liu et al demonstrated in a recent study that survival time of mice affected by HCC is greatly reduced when subjected to social isolation stress. He compared the titer of antibody to sheep red blood cell (SRBC), as well as IL-2 levels, and survival time between two groups. Individuals exposed to isolation stress positively correlated with a lower survival time as well as with negatively altered serum values of both SRBC antibodies and IL-2.

Psychosocial stress was also linked to increased DNA damage, alterations in DNA repair and inhibition of apoptosis. Sivonova et al studied how academic stress during student examinations positively affects oxidative stress and induces direct DNA damage. Single strand breaks of DNA as well as sensitivity to lipid oxidation and the antioxidant status were studied on examination day, as well as at a random time between examinations. They found that in stressful conditions oxidative damage to DNA as well as sensitivity to lipid oxidation were significantly increased (P < 0.05), while plasma antioxidant activity was severely decreased (P < 0.05), in comparison to the control group of non-stressed individuals.

Glaser et al proved the association between rotational stress and low concentrations of O6-methyltransferase, an enzyme linked to DNA repair induced in response to carcinogen damage. Their animal study was conducted on forty-four rats to whom dimethylnitrosamine was administered. The group was divided into two, half being randomly assigned to a rotational stress condition.

In a study regarding psychological stress, Tomei et al found that cellular death decreased during examination compared with a control group, after phorbol ester (tumor promoter through activation of protein kinase C) inhibition of radiation-induced apoptosis. This goes on to demonstrate that stress, having a negative impact on apoptosis, serves as a tumoral proliferation promoter.

CONCLUSION

As seen above, stress has been identified in recent years as an important factor in the progression and outcome of several important liver pathologies. It influences the immune system and several intra- and inter-cellular mechanisms. Comprehensive models that try to integrate these complex mechanisms are being developed.

From a clinical perspective, a better understanding of how stress alters hepatic inflammation would provide additional tools for the management of important liver diseases. It would influence the quality of life of patients by shortening hospitalization times and ensuring a correct therapeutic approach.

For a better understanding of the relationship between stress and liver pathology, we suggest that further studies on both human and animal models be conducted. Comprehensive clinical trials could be devised, which would test positive correlations between elevated stress scores and a number of both serological and imaging parameters assessing disease in hepatic patients. Animal studies should investigate immunohistochemical and genetic alterations at cellular level in the liver of stress-challenged hepatic-impaired rodents.

REFERENCES

1. Cohen S, Kessler RC, Gordon LU. Strategies for measuring stress in studies of psychiatric and physical disorders. In: Cohen S, Kessler RC, Gordon LU, editors. Measuring stress: A guide for health and social scientists. New York: Oxford University Press, 1995; 3-26
2. Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull 2004; 130: 601-630
3. Swain MG. I. Stress and hepatic inflammation. Am J Physiol Gastrointest Liver Physiol 2000; 279: G1135-G1138
4. Hirose S, Hirayama C, Ikemi Y. The influence of emotional stress on the liver blood flow. Kyushu J Med Sci 1961; 12: 319-323
5. Kaplan MH, Wheeler WF. Stress and diseases of the upper gut. I. Stress and liver disease. Mt Sinai J Med 1983; 50: 225-227
6. Chida Y, Sudo N, Kubo C. Does stress exacerbate liver diseases? J Gastroenterol Hepatol 2006; 21: 202-208
7. Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992; 267: 1244-1252
8. Chrousos GP. Regulation and dysregulation of the hypothalamic-pituitary-adrenal axis. The corticotropin-releasing hormone perspective. Endocrinol Metab Clin North Am 1992; 21: 833-858
9. Sawchenko PE, Imaki T, Potter E, Kovacs K, Imaki J, Vale
Stress, coping, and hepatitis B antibody status. *Psychosom Med* 2002; 64: 287-295

46 Marsland AL, Cohen S, Rabin BS, Manuck SB. Trait positive affect and antibody response to hepatitis B vaccination. *Brain Behav Immun* 2006; 20: 261-267

47 Fukudo S, Suzuki J, Tanaka Y, Iwahashi S, Nomura T. Impact of stress on alcoholic liver injury; a histopathological study. *J Psychosom Res* 1989; 33: 515-521

48 Kaji I, Sekiya C, Namikl M. Psychosomatic study of the patients with liver disorders: including an experimental study. *J Clin Psychosom Res* 1981; 21: 302-312

49 Chida Y, Sudo N, Sonoda J, Sogawa H, Kubo C. Electric foot shock stress-induced exacerbation of alpha-galactosylceramide-activated Valpha 14 natural killer T cells mediate protection against murine malaria. *Proc Natl Acad Sci USA* 2000; 97: 8461-8466

50 Nakajima T, Kuida G, Koezuka Y, Chisari FV. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. *J Exp Med* 2000; 192: 921-930

51 Gonzalez-Anguloa G, de Oliveira C, Tomaska M, Hong S, Bruna-Romero O, Nakayama T, Taniguchi M, Bendelac A, Van Kaer L, Koezuka Y, Tsuji M. alpha-galactosylceramide-activated Valpha 14 natural killer T cells mediate protection against murine malaria. *Proc Natl Acad Sci USA* 2000; 97: 8461-8466

52 Nuki S, Rosa D, Valiante NM, Saletti G, Caratuzzo M, Drellabella P, Barnaba V, Aigrignani S. Dynamics of intraperitoneal lymphocytes in chronic hepatitis C: enrichment for Valpha24+ T cells and rapid elimination of effecter cells by apoptosis. *Eur J Immunol* 1999; 29: 1799-1808

53 Ishigami M, Nishimura H, Naiki Y, Yoshioka K, Kawano T, Tanaka Y, Taniguchi M, Kakumui S, Yoshikai Y. The roles of intraperitoneal Valpha14+ NK1.1+ T cells for liver injury induced by Salmonella infection in mice. *Hepatology* 1999; 29: 1799-1808

54 Kawano T, Cui J, Koezuka Y, Taura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M. CD1d-restricted and TCR-mediated activation of Valpha14 NK cells by glycosylceramides. *Science* 1997; 278: 1626-1629

55 Osman Y, Kawamura T, Naito T, Takeda K, Van Kaer L, Okumura K, Abe T. Activation of hepatic NK T cells and subsequent liver injury following administration of alpha-galactosylceramide. *Eur J Immunol* 2000; 30: 1919-1928

56 Nakagawa R, Nagafune I, Tazunoki Y, Ebara H, Tomura H, Iijima R, Motoki K, Kamishohara M, Seki S. Mechanisms of the antimitotic effect in the liver and of the hepatocyte injury induced by alpha-galactosylceramide in mice. *J Immunol* 2001; 166: 6578-6584

57 Tamaoki H, Tamaoki M, Abe K, Li T, Nomoto K. IL-4-producing NK1.1+ T cells are resistant to glucocorticoid-induced apoptosis: implications for the Th1/Th2 balance. *J Immunol* 1998; 161: 1239-1247

58 Tjandra K, Kubes P, Rioux K, Swain MG. Endogenous glucocorticoids inhibit neutrophil recruitment to inflammatory sites in cholestatic rats. *Am J Physiol* 1996; 270: G821-G825

59 Liao J, Keiser JA, Scales WE, Kunkel SL, Kluger MJ. Role of corticosterone in TNF and IL-6 production in isolated perfused rat liver. *Am J Physiol* 1995; 268: R699-R706

60 Beutler B, Korchin N, Millsark IW, Luedke C, Cerami A. Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. *Science* 1986; 232: 977-980

61 Tanaka K, Sakai H, Hashizume M, Hirohata T. A long-term follow-up study on risk factors for hepatocellular carcinoma among Japanese patients with liver cirrhosis. *Jpn J Cancer Res* 1998; 89: 1241-1250

62 Iwai M, Saheki S, Ohta Y, Shimazu T. Foot-shock stress accelerates carbon tetrachloride-induced liver injury in rats: implication of the sympathetic nervous system. *Biomed Res (Tokyo)* 1986; 7: 145-154

63 Swain MG, Appleyard C, Wallace J, Wong H, Le T. Endogenous glucocorticoids released during acute toxic liver injury enhance hepatic IL-10 synthesis and release. *Am J Physiol* 1999; 276: G199-G205

64 Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense: function and regulation by innate cytokines. *Ann Rev Immunol* 1999; 17: 189-220

65 Aldighetti L, Pulitano C, Arru M, Finazzi R, Catena M, Soldini L, Comotti L, Ferla G. Impact of preoperative steroids administration on ischemia-reperfusion injury and systemic responses in liver surgery: a prospective randomized study. *Liver Transplant* 2006; 12: 941-949

66 Elenkov IJ, Papanicolaou DA, Wilder RL, Chrousos GP. Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications. *Proc Assoc Am Physicians* 1996; 108: 374-381

67 Tjandra K, Sharkey KA, Swain MG. Progressive development of a Th1-type hepatic cytokine profile in rats with experimental cholangitis. *Hepatology* 2000; 31: 280-289

68 Kitamura H, Konno A, Morimatsi M, Jung BD, Kimura K, Saito M. Immobilization stress increases hepatic IL-6 expression in mice. *Biochem Biophys Res Commun* 1997; 238: 707-711

69 Jung BD, Kimura K, Kitamura H, Makondo K, Okita K, Kawasaki M, Saito M. Norepinephrine stimulates interleukin-6 mRNA expression in primary cultured rat hepatocytes. *J Biochem* 2000; 127: 205-209

70 Kajiyama Y, Ui M. Switching from alpha 1- to beta-subtypes in adrenergic response during primary culture of adult-rat hepatocytes as affected by the cell-to-cell interaction through plasma membranes. *Biochem J* 1994; 303 (Pt 1): 313-321

71 Hasko G, Szabo C. Regulation of cytokine and chemokine production by transmitters and co-transmitters of the autonomic nervous system. *Biochem Pharmacol* 1998; 56: 1079-1087

72 Jacob LS. Sympathominetic agents. In: Jacob LS, editor. Pharmacology, 4th ed. Maryland: Williams & Wilkins, 1996: 22-30

73 Nakajima T, Mizushima N, Kanai K. Relationship between natural killer activity and development of hepatocellular carcinoma in patients with cirrhosis of the liver. *Ipn J Clin Oncol* 1987; 17: 327-332

74 Steel J, Carney M, Carr BI, Baum A. The role of psychosocial factors in the progression of hepatocellular carcinoma. *Med Hypotheses* 2004; 62: 86-94

75 Andersen BL, Kiecolt-Glaser JK, Glaser R. A biobehavioral model of cancer stress and disease course. *Am Psychol* 1994; 49: 389-404

76 Steplewski Z, Vogel WH, Elhay H, Poropatich C, Smith JM. Effects of restraint stress on inoculated tumor growth and immune response in rats. *Cancer Res* 1985; 45: 5128-5133

77 Bagenal FS, Eaton DF, Harris E, Chilvers CE, McIlwain TJ. Survival of patients with breast cancer attending Bristol Cancer Help Centre. *Lancet* 1990; 336: 608-610

78 Spiegel D, Kato PM. Psychosocial influences on cancer incidence and progression. *Haref Rev Psychiatry* 1996; 4: 10-26

79 Kiecolt-Glaser JK, Norman Cousins Memorial Lecture 1998. Stress, personal relationships, and immune function: health implications. *Brain Behav Immun* 1999; 13: 61-72

80 Ramirez AJ, Craig TK, Watson JP, Fentiman IS, North WR, Rubens RD. Stress and relapse of breast cancer. *BMJ* 1989; 298: 291-293

81 Fawzy FI, Cousins N, Fawzy NW, Kemeny ME, Elashoff R, Morton D. A structured psychiatric intervention for cancer patients. I. Changes over time in methods of coping and affective disturbance. *Arch Gen Psychiatry* 1990; 47: 720-725

82 Fawzy FI, Fawzy NW, Hyun CS, Elashoff R, Guthrie D, Fahey JL, Morton DL. Malignant melanoma. Effects of an early structured psychiatric intervention, coping, and...
affective state on recurrence and survival 6 years later. Arch Gen Psychiatry 1993; 50: 681-689
83 Liu H, Wang Z. Effects of social isolation stress on immune response and survival time of mouse with liver cancer. World J Gastroenterol 2005; 11: 5902-5904
84 Sivonova M, Zitnanova I, Hlincikova L, Skodacek I, Trebaticka J, Durackova Z. Oxidative stress in university students during examinations. Stress 2004; 7: 183-188
85 Glaser R, Thorn BE, Tarr KL, Kiecolt-Glaser JK, D’Ambrosio SM. Effects of stress on methyltransferase synthesis: an important DNA repair enzyme. Health Psychol 1985; 4: 403-412
86 Kiecolt-Glaser JK, Stephens RE, Lipetz PD, Speicher CE, Glaser R. Distress and DNA repair in human lymphocytes. J Behav Med 1985; 8: 311-320
87 Cohen L, Marshall GD Jr, Cheng L, Agarwal SK, Wei Q. DNA repair capacity in healthy medical students during and after exam stress. J Behav Med 2000; 23: 531-544
88 Forlenza MJ, Baum A. Psychosocial influences on cancer progression: alternative cellular and molecular mechanisms. Curr Opin Psychiatry 2000; 13: 639-645
89 Tomei LD, Kiecolt-Glaser JK, Kennedy S, Glaser R. Psychological stress and phorbol ester inhibition of radiation-induced apoptosis in human peripheral blood leukocytes. Psychiatry Res 1990; 33: 59-71
90 Blumberg PM. Protein kinase C as the receptor for the phorbol ester tumor promoters: sixth Rhoads memorial award lecture. Cancer Res 1988; 48: 1-8

S- Editor Tian L L- Editor Logan S E- Editor Ma WH