Attitudes, Knowledge and Factors Associated with Human Papillomavirus (HPV) Vaccine Uptake in Adolescent Girls and Young Women in Victoria, Australia

Iris L. Y. Tung1, Dorothy A. Machalek1,2, Suzanne M. Garland1,2,3*

1 Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, Australia, 2 Murdoch Childrens Research Institute, Parkville, Victoria, Australia, 3 Department of Obstetrics and Gynaecology, The University of Melbourne, Victoria, Australia

* suzanne.garland@thewomens.org.au

Abstract

Background

Human papillomavirus (HPV) vaccination targets high-risk HPV16/18 that cause 70% of all cancers of the cervix. In Australia there is a fully-funded, school-based National HPV Vaccination Program which has achieved vaccine initiation rate of 82% among age-eligible females. Improving HPV vaccination rates is important in the prevention of morbidity and mortality associated with HPV-related disease. This study aimed to identify factors and barriers associated with uptake of the HPV vaccine in the Australian Program.

Methods

Between 2011 and 2014, females aged 18–25 years, living in Victoria, Australia who were offered HPV vaccination between 2007 and 2009 as part of the National HPV Vaccination Program, living in Victoria, Australia were recruited into a young women’s study examining effectiveness of the Australian National HPV Vaccination Program. Overall, 668 participants completed the recruitment survey, which collected data of participants’ demographics and HPV knowledge. In 2015 these participants were invited to complete an additional supplementary survey on parental demographics and attitudes towards vaccinations.

Results

In 2015, 417 participants completed the supplementary survey (62% response rate). Overall, 19% of participants were unvaccinated. In multivariate analyses, HPV vaccination was significantly associated with their being born in Australia (p<0.001), having completed childhood vaccinations (p<0.001) and their parents being main decision-makers for participants’ HPV vaccination (p<0.001). The main reason reported for HPV non-vaccination was parental concern about vaccine safety (43%). Compared with HPV-vaccinated participants, those unvaccinated were significantly more likely to be opposed to all vaccines,
including HPV vaccines (p<0.001) and were less likely to consider vaccinating their own children with all vaccines (p = 0.033), including HPV vaccines (p<0.001). Overall, 61% of unvaccinated participants reported that a recommendation from GPs would increase HPV vaccine acceptance.

Conclusions
Attitudes towards general health, vaccinations in general, as well as HPV vaccines are important in HPV vaccine uptake. Long-term monitoring of the knowledge, attitude and beliefs towards HPV vaccination in the community is critical to ensure a continued high uptake of the vaccine and success of the program.

Introduction
Persistent infection with high-risk human papillomavirus (HPV) types HPV16 and HPV18 cause 70% of all cancers of the cervix worldwide, and a portion of cancers of the vagina, vulva, anus, penis and head and neck [1–4]. In 2007, the Australian Government introduced a fully-funded National HPV Vaccination Program using a three dose course of the quadrivalent HPV (4vHPV) vaccine (that protects against infection by HPV types 16, 18, 6 and 11). Between 2007 and 2009, all girls aged 12–18 years were offered vaccination through schools, with a catch-up through community provided for women up to the age of 26 years [5–7]. In 2013, the program was extended to include 12–13 year old boys. Vaccination of girls and boys aged 12–13 is ongoing in schools under the National Immunisation Program [8].

In 2013, data from the National HPV Vaccination Program Register (NHVPR) showed that 86% of Australian adolescent girls, aged 12 to 13 received at least one vaccine dose, with 77% receiving all three doses, whilst 64% of those aged 20 to 26 received at least one dose [9]. High vaccine coverage has also been achieved in some other programmes internationally. For example the United Kingdom (school-based delivery) [10] and Denmark (clinic based) report 91% and 89% of school-aged girls have received at least one dose of the vaccine, with 87% and 74% receiving all three doses, respectively [11, 12]. Contrastingly, in the US, where HPV vaccination delivery is through healthcare providers on a reimbursement system, substantially lower vaccination rates have been achieved. In 2013, 57% of school-aged females in the US had received at least one dose of the vaccine and 38% all three doses [13].

Published research exploring attitudes, knowledge and socio-demographic factors associated with uptake of the HPV vaccine in high-income countries are mostly US-based and yield inconsistent findings [14–18]. In Australia, prior surveys have identified a number of socio-demographic, lifestyle and behavioural factors associated with vaccine uptake in the catch up phase but all have focused on individual factors [19, 20]. Few studies have explored reasons for non-vaccination with respect to parental factors. Given that parental views and attitude are likely to shape those of the child [21] and parental consent for HPV vaccination is required for girls under the age of 18, understanding parental factors towards the HPV vaccine is crucial to maintain high vaccine uptake. This study aimed to investigate individual and parental factors associated with uptake of the HPV vaccine among young women in the 2007 to 2009 catch-up phase of the National HPV Vaccination Program.
Methods

Recruitment

Between September 2011 and December 2014 women aged 18–25 years, living in Victoria, Australia were recruited into the Vaccine Against Cervical Cancer Impact and Effectiveness (VACCINE) Study, through targeted advertisements placed on the social media website Facebook (Fig 1) as previously described [22]. Briefly, Facebook users who clicked on the VACCINE advertisement were taken to a study website, which provided details about the study and offered the opportunity to lodged an expression of interest in participating via a secure online form. Participants were then contacted by telephone by the study investigators and provided with an opportunity for questions and verbal consent. Those who provided verbal consent were sent an email with a link to the online participant information and consent form, which was hosted on the secure website SurveyMonkey.com. As part of the written consent, participants were asked to permit the researchers to verify their self-reported HPV vaccination details with the National HPV Vaccination Program Register (NHVPR). The NHVPR was established to monitor HPV vaccine uptake across Australia [23] and collects data on date of HPV vaccination, number of doses received and location of dose administration. Once informed consent was provided, a unique study number was issued, a further email was sent containing a link to the online questionnaire and a study pack containing materials for vaginal sample self-collection was mailed to the participant’s nominated address. This study was approved by The Royal Women’s Hospital Human Research and Ethics Committees (HREC number 11/15).

For the current study, VACCINE participants who agreed to be contacted for additional research and who were confirmed as being vaccinated or unvaccinated by the NHVPR were invited to complete a supplementary survey (n = 1154). Participants were categorised as being “vaccinated” if they had received three doses of the vaccine, as recorded in the NHVPR. Participants were categorized as being “unvaccinated” if they self-reported not receiving the vaccine and the NHVPR had no record of any HPV vaccine dose being delivered. Those with fewer than three doses were excluded from the supplementary survey. Participants who self-reported that they had received the HPV vaccine overseas and therefore did not have a NHVPR record were excluded from the study.

Measures

Responses to two web-based surveys, including the original 2011–2014 VACCINE study survey and a supplementary survey administered in this study were collected. The former collected information on participants’ demographics, sexual history, cervical screening history and HPV knowledge [24], while the latter collected information about participants’ health, childhood vaccination history, attitudes towards vaccination, reasons for non-vaccination and parental characteristics including parental country of birth. Attitudes were assessed using seven-point Likert scales.

Statistical analyses

Univariate and adjusted logistic regression analysis were performed with Odds Ratios (ORs) and 95% confidence intervals (CI) generated to identify factors associated with vaccination. Factors included age at program commencement, country of birth, completion of childhood vaccinations, maternal and paternal countries of birth. All variables that were associated with vaccination at \(p < 0.100 \) in univariate analysis were included in the initial multivariable model. A final multivariable model was obtained by performing backward elimination of statistically non-significant variables, each time assessing for confounding and co-linearity, until only...
Fig 1. Flowchart outlining study design and recruitment.

doi:10.1371/journal.pone.0161846.g001
statistically significant variables remained. Descriptive statistics were used to examine reasons for HPV non-vaccination in unvaccinated participants. Childhood socioeconomic status (lower or upper 50th centile classified as more or less disadvantaged) was derived from the Australian Bureau of Statistics Index of Relative Socioeconomic Disadvantage for each individual’s residential postcode. Childhood residential area (major city or) was based on the Accessibility/Remoteness Index of Australia (ARIA) classification[25, 26]. Chi-squared tests were performed to compare differences between HPV-vaccinated and unvaccinated cohorts. Data analyses were performed using STATA version 13 (Stata corporation, College Station, TX, US).

Results

Participant recruitment

Between 2011 and 2014, 1,154 women who were eligible to receive the free HPV vaccine during the 2007–2009 catch-up period were recruited into the VACCINE study. The women in this study aged 18–25 years in 2011 to 2014 would have been 11–21 years of age at the commencement of the program and therefore had access to the vaccine for free through either the school based or catch up program. Overall, 124 unvaccinated and 544 fully vaccinated participants who consented to be contacted for future studies were invited to the 2014 supplementary survey. Of these, 417 completed the survey (Fig 1). Responders and non-responders for the supplementary survey were not significantly different with respect to age at recruitment (p = 0.378), country of birth (p = 0.832), area of remoteness (p = 0.195), socioeconomic status (p = 0.677) and HPV vaccination status (p = 0.594).

Cohort characteristics

Overall, 337 (81%) participants were fully HPV-vaccinated and 80 (19%) were unvaccinated. Of the vaccinated participants, 68% received their first vaccine dose at school and 32% at a general practice (GP). The median (interquartile range) age at HPV vaccination for the first dose was 16 years (IQR: 15–18), with no significant difference in age between school- and GP-vaccinated participants (p = 0.262). Table 1 shows the distribution of the population characteristics of the 417 women included in this analysis. The median (interquartile range) age of participants at the supplementary survey was 24 (IQR: 22–25), with no differences by vaccination status. Overall, the majority of women (77%) were under 18 years of age at the commencement of the program. The vast majority were born in Australia (87%), with both parents being Australian born (63%), and 80% resided in metropolitan areas. Just over a quarter (28%) of participants reported that neither of their parents practice any religion.

Compared with unvaccinated women, those HPV-vaccinated were significantly more likely to be born in Australia (<0.001), be non-smokers (p = 0.014) and have private health insurance (p = 0.007). HPV-vaccinated and unvaccinated participants were not different with respect to age at first sex (p = 0.310) and lifetime number of sexual partners (p = 0.530). However, HPV-vaccinated participants were more likely to use contraception (p = 0.039) and have had a Pap smear within the last two years (p = 0.073); however, the latter did not reach significance (Table 1).

Factors associated with HPV vaccination

The results of univariate and multivariable analyses are presented in Table 2. In univariate analysis, being vaccinated was significantly associated with being born in Australia (p<0.001), having completed childhood vaccinations (p<0.001), having one or both parents being born in Australian (p<0.001) and one or both parents being main decision makers regarding
Table 1. Demographic, lifestyle and sexual behaviour characteristics among 417 participants who were offered HPV vaccination between 2007 and 2009 as part of the National HPV Vaccination Program, living in Victoria, by NHVPR confirmed vaccination status.

Characteristic	Total (N = 417)	Unvaccinated (n = 80)	Fully vaccinated (n = 337)	p-value
	n (%)	n (%)	n (%)	
Birth cohort 1				
1996–1994	46 (11.0)	8 (10.0)	38 (11.3)	0.318
1993–1992	95 (22.8)	21 (26.3)	74 (22.0)	
1991–1990	124 (29.7)	17 (21.3)	107 (31.8)	
1989–1988	108 (25.9)	26 (32.5)	82 (24.3)	
1987–1986	44 (10.7)	8 (10.0)	36 (10.7)	
Age at program commencement				
11–17 years old	320 (76.7)	59 (73.8)	261 (77.5)	0.482
18–21 years old	97 (23.3)	21 (26.3)	76 (22.6)	
Country of Birth				
Australia	361 (87.2)	53 (66.3)	308 (92.2)	<0.001
Other 4	53 (7.8)	27 (33.8)	26 (7.8)	
Childhood area of residency 2				
Major city	239 (66.0)	35 (88.6)	204 (66.6)	0.672
Regional or remote	123 (34.0)	16 (31.4)	107 (34.4)	
Childhood SES 3				
More disadvantaged	135 (37.3)	20 (39.2)	115 (37.0)	0.759
Less disadvantaged	227 (62.7)	31 (60.8)	196 (63.0)	
Parental country of birth				
Both Australian born	259 (63.0)	37 (48.1)	222 (66.5)	<0.001
One parent born overseas 5	80 (19.5)	12 (15.6)	68 (20.4)	
Both parents born overseas 5	72 (17.5)	28 (36.4)	44 (13.2)	
Parental religion				
Both non-religious	113 (27.6)	24 (31.6)	89 (26.7)	0.517
One parent religious	100 (24.5)	20 (26.3)	80 (24.0)	
Both parents religious	196 (47.9)	32 (42.1)	164 (49.3)	
Childhood vaccinations				<0.001
Incomplete	23 (5.5)	13 (16.3)	10 (3.0)	
Complete	394 (94.5)	67 (83.8)	327 (97.0)	
Main decision maker regarding receiving the HPV vaccine				<0.001
Self	181 (43.4)	54 (67.5)	127 (37.7)	
One or both parents	236 (56.6)	26 (32.5)	210 (62.3)	
Tobacco use				
Never smoked	336 (81.8)	57 (72.2)	279 (84.0)	0.014
Past or current smoker	75 (18.3)	22 (27.8)	53 (16.0)	
Private health insurance				0.007
No	174 (41.7)	44 (55.0)	130 (38.6)	
Yes	243 (58.3)	36 (45.0)	207 (61.4)	
Age at first sex				
11–17	185 (55.9)	30 (50.0)	155 (57.2)	0.310
18–24	146 (44.1)	30 (50.0)	116 (42.8)	
Lifetime number of sexual partners				0.530
0	81 (20.0)	17 (22.4)	64 (19.5)	
1–3	167 (41.2)	27 (35.5)	140 (42.6)	
4+	157 (38.8)	32 (42.1)	125 (38.0)	
Current contraceptive use				0.039
Yes	296 (89.2)	49 (81.7)	247 (90.8)	
No	36 (10.8)	11 (18.3)	25 (9.2)	
Date of last Pap smear				0.073
Within last two years	199 (89.6)	31 (81.6)	168 (81.3)	
More than two years ago	23 (10.4)	7 (18.4)	16 (18.7)	

1: Birth year corresponds to women between 11–21 years old as of the 1st of January 2007 who were offered HPV vaccination between 2007 and 2009 as part of the National HPV Vaccination Program; 2: based on the Accessibility/Remoteness Index of Australia (ARIA) classification; 3: based on the Australian Bureau of Statistics Index of Relative Socioeconomic Disadvantage for each individuals residential postcode; 4: Other countries of birth include New Zealand, China, Fiji, Finland, Germany, Hong Kong, India, Indonesia, Japan, Kenya, Malaysia, Singapore, Serbia, South Africa, Sri Lanka, Sweden, United Kingdom, US, Vietnam; 5: Overseas countries correspond to New Zealand, Bangladesh, Brunei, Canada, Chile, China, Egypt, Fiji, Finland, France, Germany, Hong Kong, India, Indonesia, Israel, Italy, Kenya, Latvia, Lebanon, Malaysia, Malta, Mauritius, Netherlands, Pakistan, Papua New Guinea, Philippines, Poland, Republic of Malawai, Sweden, Singapore, Spain, South Africa, Sri Lanka, Tanzania, United Kingdom, US, Vietnam, Zimbabwe. Abbreviations: SES: Socioeconomic status; Pap: Papanicolaou. Numbers do not always total 417 because of small amounts of missing data.

doi:10.1371/journal.pone.0161846.t001
receiving the HPV vaccine (p<0.001). Age, socioeconomic status and area of remoteness during childhood, and parental religion were not significantly associated with being vaccinated. In multivariable analysis, factors that remained significantly associated with HPV vaccination included being born in Australia (p<0.001), having completion of childhood vaccinations (p<0.001) and one or both parents being main decision maker regarding receiving the HPV vaccine (p<0.001). The results were the same when the analysis was limited to only women who were under 18 years of age at commencement of the National HPV Vaccination Program in 2007.

Table 2. Factors associated with receipt of the HPV vaccine between 2007 and 2009 as part of the National HPV Vaccination Program among 417 female participants living in Victoria, Australia, overall and stratified by age-group at commencement of the HPV vaccination program.

Factors	Overall cohort (N = 417)	< 18 years old at program commencement (n = 320)	18 years or older at program commencement (n = 97)
Age at program commencement			
11–17 years old	1.00	0.482	1.00
18–21 years old	0.82 (0.47–1.43)	0.97 (0.42–2.27)	
Country of birth			
Australia	1.00	1.00 <0.001	1.00
Other	0.17 (0.09–0.31)	0.21 (0.09–0.55)	0.18 (0.06–0.53)
Childhood SES\(^1\)			
More disadvantaged	1.00	0.759	
Less disadvantaged	1.10 (0.56–2.02)		
Childhood area of residency\(^3\)			
Major city	1.00	0.672	
Regional or remote	1.15 (0.61–2.17)		
Childhood vaccinations			
Incomplete	1.00	<0.001	1.00
Complete	6.34 (2.67–15.07)	6.99 (2.71–17.99)	10.81 (3.2–36.32)
Parental country of birth			
Both Australia born	1.00	1.00	1.00
One parent born overseas	0.94 (0.47–1.91)	0.874	1.19 (0.55–2.62)
Both parents born overseas	0.26 (0.15–0.47)	<0.001	0.82 (0.32–2.07)
Main decision maker regarding receiving the HPV vaccine			
Self	1.00	<0.001	1.00
One or both parents	3.43 (2.05–5.76)	3.10 (1.66–5.80)	2.72 (1.37–5.38)
Parental religion			
Both non-religious	1.00		
One parent religious	1.08 (0.55–2.10)	0.824	
Both parents religious	1.38 (0.77–2.49)	0.281	

\(^1\): Socioeconomic status (SES) based on the Accessibility/Remoteness Index of Australia (ARIA) classification;
\(^2\): based on the Australian Bureau of Statistics Index of Relative Socioeconomic Disadvantage for each individual’s residential postcode;
\(^3\): Adjusted for age at program commencement, childhood vaccinations, country of birth, parental country of birth, main decision maker regarding HPV vaccination and participant age;
\(^b\): Adjusted for all the same variables as in (a) except for age at program commencement.

doi:10.1371/journal.pone.0161846.t002
HPV knowledge, source of information and attitudes towards HPV vaccination

Participants were asked to complete an HPV knowledge test and report their most trusted sources of HPV information. Overall, 97% of participants knew HPV causes cervical cancer and 99% knew regular Pap smears were required after HPV vaccination (Table 3). Two thirds (68%) knew HPV causes genital warts. HPV-vaccinated participants were more likely to correctly identify that HPV vaccination reduces the risk of cervical cancer ($p < 0.001$), that regular Pap smears are required after HPV vaccination ($p = 0.015$), and that HPV vaccine protects against 70–80% of cervical cancers ($p = 0.027$). Overall, 83% of participants reported their GP to be the most trusted source of HPV information. In addition, compared with unvaccinated, vaccinated participants were significantly more likely to report GPs as their most trusted source of HPV information (85.5% versus 71.3%, $p = 0.003$).

Next, participants were asked to report their agreement with a number of statements about vaccination on a seven-point Likert scale. The results of this are presented in Table 4. Unvaccinated participants were significantly more likely to report neutral to opposing views towards vaccinations in general ($p = 0.001$) and towards HPV vaccination ($p < 0.001$), than vaccinated participants. In addition, unvaccinated participants were more likely to report neutral or opposing views when asked if they would vaccinate their children with the HPV vaccine now or in the future ($p = 0.033$). Attitudes around stigma of HPV vaccination and that it implied promiscuity due to HPV being sexually transmitted were not significantly different between the two groups (Table 4).

Reasons for non-vaccination

Unvaccinated participants were asked to report their reasons for why they believed they were not vaccinated. The most commonly reported reasons included parental concern about vaccine safety (42.5%), parental perception of their daughter being at low risk of HPV infection (22.5%) or having a needle phobia (21.3%). Fifteen percent (15.0%) of unvaccinated participants reported practical barriers to HPV vaccination, including being absent at school and forgetting to bring their signed consent forms on the day of vaccination. Only 5.0% reported parental belief that HPV vaccination promoted promiscuity as the reason for not being vaccinated (Fig 2A). When stratified by age at program commencement, parental concern about vaccine safety was reported by 57.6% of women who were <18 years of age, compared to only 4.7% of those who were 18 years and over ($p < 0.001$).

Unvaccinated participants were asked to report factors that would encourage them to get the HPV vaccine (Fig 2B). The most commonly reported factors to encourage HPV vaccination included that vaccination was free (77.5%), and receiving a recommendation by a doctor to get...
vaccinated (61.3%). Participants reported that they were more likely to accept HPV vaccination, if they believed their family and friends approved of their decision to become vaccinated (71.3%). Some participants believed the HPV vaccine to be still new, but might become more likely to accept the vaccine with time (33.8%).

Discussion

In this study of 417 young women living in Victoria Australia, we investigated attitudes, knowledge and factors associated with receipt of the HPV vaccine in the National HPV Vaccination Program. Compared with the vaccinated, unvaccinated women were more likely to be smokers and were less likely to use contraception. Unvaccinated women were also more likely to report neutral or negative attitudes towards the HPV vaccine and vaccinations in general. Sexual behaviour and HPV knowledge did not differ between the two groups. Independent factors associated with receipt of the vaccine in the school-based program included being Australia born and having completed childhood vaccinations. Among unvaccinated women, parental concerns about vaccine safety and perceived low risk of HPV infection for their daughters were predominant reasons for non-vaccination. The results of the study emphasize the need for long-term monitoring of the knowledge, attitude and beliefs towards HPV vaccination in the community to ensure high uptake of the vaccine and success of the program.

In Australia, those offered HPV vaccination through the school-based program are provided with information on the vaccine at the same time of receiving the consent form [27]. Despite this, nearly half (43%) of unvaccinated participants in this study reported parental concerns about vaccine safety as the main reason for not receiving the vaccine. Published
Australian research suggests that when presented with facts about the HPV vaccine, some parents remained hesitant towards HPV vaccination due to an underlying mistrust of the health care system and belief of vaccinations to cause disability [28]. In fact, unvaccinated women in our study were significantly more likely to report incomplete childhood vaccinations in general. These findings are consistent with published Australian and international data suggesting that HPV non-vaccination is partly driven by parental disapproval of vaccination in general [29, 30].

Studies on HPV vaccine acceptability have reported parents’ health behaviours, beliefs and knowledge about HPV are significant predictors of parental intent for vaccination [31, 32]. In a US study of linked electronic health records of girls (aged 9 to 17 years) the authors found that mothers’ attitudes about preventative measures such as the Pap test influenced their adolescent daughters update of the HPV vaccine [32]. In turn, individual attitudes and beliefs around health and vaccination are likely to be influenced by parental views and behaviours [33–35].

Unvaccinated participants in our study were more likely to be smokers, were less likely to use contraception and had incomplete attendance at cervical screening, although the latter did not reach significance. Unvaccinated participants were also more likely to report neutral or negative attitudes towards vaccinations (including the HPV vaccine), and report neutral or negative attitudes towards future intentions of vaccinating their own children, suggesting they themselves were hesitant towards vaccination.
Among unvaccinated women who reported neutral or negative attitudes towards vaccinations, the majority took a neutral position. Research into parental opinions on immunisation have identified a continuum of views on vaccine hesitancy ranging from unquestionable acceptor through hesitancy to refuser [36, 37]. Accurate understanding of an individual’s HPV perception is critically important and may help guide effective strategies to promote vaccine acceptance. This is important given the fact that those identified as having a lesser degree of hesitancy are more likely to accept full vaccination uptake [38].

Primary health care provider recommendation remains a key strategy to increase HPV vaccination rates and promote vaccine acceptance [39, 40]. In our study, GPs were the most trusted sources of HPV information, with 61% unvaccinated participants reporting that they would accept HPV vaccination if it were recommended by a GP. Health care providers (GPs or nurses within a practice) play an important role in providing information and services for women, and are well placed to encourage participation in cervical screening. While the HPV vaccine is no longer freely available outside of the target age-range, it is important that health care providers continue to use opportunistic visits by young women to engage in general discussion around HPV prevention, including vaccination. Providing young women with the opportunity to voice their concerns should form a central part of these discussions. Evidence based frameworks have been developed to assist health professionals when communicating with parents about vaccination [37]. Such frameworks should be expanded to include young adults, regardless of where they are along the decision-making trajectory.

In line with previous literature, this study showed that being born overseas was associated with lower HPV vaccine uptake [16]. This is in part driven by families who have arrived in Australia outside of the catch-up program window. However, published research has demonstrated that coverage of various vaccinations are lower in new migrants to Australia. This was attributed to a number of factors including language barriers, lack of specialised migrant health services, lack of awareness in migrants of their rights within the Australian health system, and cultural differences in attitudes towards preventative health care [41]. Australia is ethnically diverse and in 2011, 27% of Australians were first generation migrants [42]. It is therefore essential for public health prevention programs to target new migrants using culturally sensitive approaches, to ensure equitable delivery of vaccination to all population subgroups.

This study has several limitations. First, the retrospective nature of the study design means that it may be subjected to recall bias. Furthermore, the views of parents were reported by the participants rather than the parents themselves and may therefore be inaccurate or misconstrued. Second, reasons for non-vaccination are likely to be different in the catch-up program than in the school program. However in our study, the proportion of women who were aged 18 years and over at the time of the catch-up program was small (23%). Therefore, we had limited power to investigate factors associated with HPV vaccination in this group. Third, we did not demonstrate an association between geographic remoteness and uptake of the HPV vaccine. While this is consistent with published Australian data which shows a relatively equal uptake across urban and regional areas, lower vaccine completion rates have been reported among residents of remote areas [43]. It is likely that our study lacked power to demonstrate this association as only 19 women resided in outer regional Australia and none resided in remote Australia at the time of the catch-up program. Last, our sample was limited to Victorian women only. While recruitment via social media has been shown to yield a broadly representative sample when compared with age-equivalent census data [44], there are substantial geographical and population variations between states and territories [27, 45] therefore the results may not be generalizable to all Australian women. Furthermore, the results may not be generalizable to other countries due to differences in delivery models of HPV vaccination.
Conclusions

In summary, attitudes towards health, HPV infection and vaccinations may impact on the success of the HPV vaccination program. It is important for public health campaigns to continue to emphasise the efficacy and safety of the HPV vaccinations as a preventative health measure. Furthermore, long-term monitoring of the knowledge, attitude and beliefs towards HPV vaccination in the community is critical to ensure a continued high uptake of the vaccine and success of the program into the future.

Supporting Information

S1 File. Tung data.
(XLS)

Acknowledgments

We would like to acknowledge the Victorian Cancer Agency for their TS10_04 grant– 2011–2013, Monitoring the effectiveness of the Australian cervical cancer vaccine programme: translation to reduction in vaccine-related HPV infection and precancerous cervical lesions. We thank members of the VACCINE study group for project management and coordination, participants of the VACCINE study for their contribution to data of this study and Athena Costa for assisting with the manuscript submission. We thank the NHVPR staff who assisted with the study. The NHVPR is owned by the Australian Government Department of Health and operated by the Victorian Cytology Service.

Author Contributions

Conceptualization: ILYT DAM SMG.
Data curation: ILYT DAM SMG.
Formal analysis: ILYT DAM SMG.
Investigation: ILYT DAM SMG.
Methodology: ILYT DAM SMG.
Project administration: ILYT DAM SMG.
Resources: ILYT DAM SMG.
Supervision: ILYT DAM SMG.
Validation: ILYT DAM SMG.
Visualization: ILYT DAM SMG.
Writing – original draft: ILYT DAM SMG.
Writing – review & editing: ILYT DAM SMG.

References

1. Bzhalava D, Guan P, Franceschi S, Dillner J, Clifford G. A systematic review of the prevalence of mucosal and cutaneous human papillomavirus types. Virology. 2013; 445(1–2):224–31. doi: 10.1016/j.virol.2013.07.015 PMID: 23928291

2. Koutsky PL. Epidemiology of Genital Human Papillomavirus Infection. The American Journal of Medicine. 1997; 102(5, Supplement 1):3–8.
3. Lowy DR, Kimbauer R, Schiller JT. Genital human papillomavirus infection. Proceedings of the National Academy of Sciences of the United States of America. 1994; 91(7):2436–40. PMID: 8146136
4. zur Hausen H. Condylomata acuminata and human genital cancer. Cancer research. 1976; 36(2 pt 2):794. PMID: 1759424
5. Garland S, Steben M, Sings H, James M, Lu S, Rainkar R, et al. Natural history of genital warts: analysis of the placebo arm of 2 randomized phase III trials of a quadrivalent human papillomavirus (types 6, 11, 16, and 18) vaccine. Journal of Infectious Diseases. 2009; 199(6):805–14. doi: 10.1086/597071 PMID: 19199546
6. Garland SM, Hernandez-Avila M, Wheeler CM, Perez G, Harper DM, Liedolter S, et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. New England Journal of Medicine. 2007; 356(19):1928–43. PMID: 17494926
7. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. The New England journal of medicine. 2007; 356(19):1915–27. PMID: 17494925
8. Australian Government DoH. Human papillomavirus, Immunise Australia Program Australia: Australian Government; 2015 [updated 2015 April 20; cited 2016 May 27]; Available from: http://www.immunise.health.gov.au/internet/immunise/publishing.nsf/Content/immunise-hpv
9. National HPV Vaccination Program Register. HPV Vaccination Coverage by Dose 2013. Australia: National HPV Vaccination Program Register; [updated 2015 June; cited 2015 July 07]; Available from: http://www.hpvregister.org.au/research/coverage-data/HPV-Vaccination-Coverage-by-Dose-2013
10. Public Health England. Annual HPV Vaccine coverage 2013 to 2014: by PCT, local authority and area team. United Kingdom: Public Health England; [updated 2014 December 02; cited 2015 August 18]; Available from: https://www.gov.uk/government/statistics/annual-hpv-vaccine-coverage-2013-to-2014-by-pct-local-authority-and-area-team
11. Slättelid Schreiber SM, Juul KE, Dehlendorff C, Kjaer SK. Socioeconomic Predictors of Human Papillomavirus Vaccination Among Girls in the Danish Childhood Immunization Program. Journal of Adolescent Health. 2015; 56(4):402–7. doi: 10.1016/j.jadohealth.2014.12.008 PMID: 25659994
12. Statens Serum Institut. EPI-NEWS, HPV Vaccination—Coverage 2012. Copenhagen, Denmark: Statens Serum Institut; [updated 15 May 2013; cited 2015 August 18]; Available from: http://www.ssi.dk/English/News/EPI-NEWS/2013/No%2020%20-%202013.aspx
13. Centers for Disease Control and Prevention. Human Papillomavirus Vaccination Coverage Among Adolescents, 2007–2013, and Postlicensure Vaccine Safety Monitoring, 2006–2014. United States: Centers for Disease Control and Prevention; [updated 2014 July 25; cited 2015 February 15]; Available from: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6329a3.htm
14. Brewer NT, Fazekas KI. Predictors of HPV vaccine acceptability: A theory-informed, systematic review. Preventive Medicine. 2007; 45(2–3):107–14. PMID: 17628649
15. Fisher WA. Understanding Human Papillomavirus Vaccine Uptake. Vaccine. 2012; 30, Supplement 5 (0):F149–F56.
16. Jeudin P, Liveright E, Del Carmen MG, Perkins RB. Race, ethnicity, and income factors impacting human papillomavirus vaccination rates. Clinical therapeutics. 2014; 36(1):24–37. doi: 10.1016/j.clinthera.2013.11.001 PMID: 24417783
17. Rambout L, Tashkandi M, Hopkins L, Tricco AC. Self-reported barriers and facilitators to preventive human papillomavirus vaccination among adolescent girls and young women: a systematic review. Prev Med. 2014; 58:22–32. doi: 10.1016/j.ypmed.2013.10.009 PMID: 24176938
18. Walhart T. Parents, adolescents, children and the human papillomavirus vaccine: a review. International nursing review. 2012; 59(3):305–11. doi: 10.1111/j.1466-7657.2012.00991.x PMID: 22897180
19. Brotherton JML, Piers LS, Vaughan L. Estimating human papillomavirus vaccination coverage among young women in Victoria and reasons for non-vaccination. Sexual health. 2016; 13(2):190–2. doi: 10.1071/SH15131 PMID: 26615408
20. Canfell K, Egger S, Velentzis LS, Brown JD, O’Connell DL, Banks E, et al. Factors related to vaccine uptake by young adult women in the catch-up phase of the National HPV Vaccination Program in Australia: Results from an observational study. Vaccine. 2015; 33(20):2387–94. doi: 10.1016/j.vaccine.2015.01.024 PMID: 25843203
21. Roberts ME, Gerrard M, Reimer R, Gibbons FX. Mother-Daughter Communication and Human Papillomavirus Vaccine Uptake by College Students. Pediatrics. 2010; 125(5):982–989. Pediatrics. 2010;126(3):617-. doi: 10.1542/peds.2009-2888 PMID: 20385645
22. Gertig DM, Brotherton JM, Budd AC, Drennan K, Chappell G, Saville AM. Impact of a population-based HPV vaccination program on cervical abnormalities: a data linkage study. (1741–7015 (Electronic)).
23. Gertig DM, Brotherton JML, Saville M. Measuring human papillomavirus (HPV) vaccination coverage and the role of the National HPV Vaccination Program Register, Australia. Sexual health. 2011; 8 (2):171–8. doi: 10.1071/SH10001 PMID: 21592430

24. Osborne SL, Tabrizi SN, Brotherton JML, Cornall AM, Wark JD, Wrede CD, et al. Assessing genital human papillomavirus genoprevalence in young Australian women following the introduction of a national vaccination program. Vaccine. 2015; 33(1):201–8. doi: 10.1016/j.vaccine.2014.10.045 PMID: 25444787

25. Australian Bureau of Statistics. Census of Population and Housing: Socio-Economic Indexes for Areas (SEIFA), Australia, 2011. Australia: Australian Bureau of Statistics; 2013 [updated 2014 November 12; cited 2015 March 17]; Available from: http://www.abs.gov.au/ausstats/abs@.nsf/DetailsPage/2033.0.55.0012011

26. Australian Bureau of Statistics. Australian Statistical Geography Standard (ASGS): Correspondences, July 2011. Australia: Australian Bureau of Statistics; [updated 2013 February 14; cited 2015 March 13]; Available from: http://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/1270.0.55.006July%202011?OpenDocument

27. Cooper Robbins SC, Bernard D, McCaffery K, Brotherton J, Garland S, Skinner SR. "Is cancer contagious?": Australian adolescent girls and their parents: making the most of limited information about HPV and HPV vaccination. Vaccine. 2010; 28(19):3398–408. doi: 10.1016/j.vaccine.2010.02.078 PMID: 20199758

28. Leask J, Chapman S, Hawe P. Concerns about immunisation. Facts are not enough. Bmj. 2000; 321(7253):109.

29. Kessels SJM, Marshall HS, Watson M, Braunack-Mayer AJ, Reuzel R, Tooher RL. Factors associated with HPV vaccine uptake in teenage girls: A systematic review. Vaccine. 2012; 30(24):3546–56. doi: 10.1016/j.vaccine.2012.03.063 PMID: 22480328

30. Walhurst T. Parents, adolescents, children and the human papillomavirus vaccine: a review. International nursing review. 2012; 59(3):305–11. doi: 10.1111/j.1466-7657.2012.00891.x PMID: 22897180

31. Kahn JA, Rosenthal SJ, Hamann T, Bernstein DI. Attitudes about human papillomavirus vaccine in young women. International journal of STD & AIDS. 2003; 14(5):300–6.

32. Chao C, Slezak JM, Coleman KJ, Jacobsen SJ. Papanicolaou screening behavior in mothers and human papillomavirus vaccine uptake in adolescent girls. Am J Public Health. 2009; 99(6):1137–42. doi: 10.2105/AJPH.2008.147876 PMID: 19372507

33. Mechanic D. THE INFLUENCE OF MOTHERS ON THEIR CHILDREN'S HEALTH ATTITUDES AND BEHAVIOR. Pediatrics. 1964; 33:444–53. PMID: 14131612

34. Rosenthal SL, Rupp R, Zimet GD, Meza HM, Loza ML, Short MB, et al. Uptake of HPV Vaccine: Demographics, Sexual History and Values, Parenting Style, and Vaccine Attitudes. Journal of Adolescent Health. 2008; 43(3):239–45. doi: 10.1016/j.jadohealth.2008.06.009 PMID: 18710678

35. House SH. Transgenerational healing: Educating children in genesis of healthy children, with focus on nutrition, emotion, and epigenetic effects on brain development. Nutrition and Health. 2014; 22(1):9–45. PMID: 25005446

36. Benin AL, Wisler-Scher DJ, Colson E, Shapiro ED, Holmboe ES. Qualitative analysis of mothers' decision-making about vaccines for infants: the importance of trust. Pediatrics. 2006; 117(5):1532–41. PMID: 16651306

37. Leask J, Kinnersley P, Jackson C, Cheater F, Bedford H, Rowles G. Communicating with parents about vaccination: a framework for health professionals. BMC pediatric. 2012; 12:154. doi: 10.1186/ 1471-2431-12-154 PMID: 22998654

38. Forbes TA, McMinn A, Crawford N, Leask J, Danchin M. Vaccination uptake by vaccine-hesitant parents attending a specialist immunization clinic in Australia. Human vaccines & immunotherapeutics. 2015; 11(12):2895–903.

39. Balakrishnan VS. Physicians' recommendation affects HPV vaccination uptake. The Lancet Oncology. 2015; 16(16):e592.

40. Giles M, Garland S. A study of women's knowledge regarding human papillomavirus infection, cervical cancer and human papillomavirus vaccines. Australian and New Zealand Journal of Obstetrics and Gynaecology. 2006; 46(4):311–5. PMID: 16866792

41. Murray SB, Skull SA. Hurdles to health: immigrant and refugee health care in Australia. Australian Health Review. 2005; 29(1):25–9. PMID: 15683352

42. Australian Bureau of Statistics. Reflecting a Nation: Stories from the 2011 Census, 2012–2013 Australia: Australian Bureau of Statistics; 2012 [updated 2012 June 21; cited 2015 2015 July 07]; Available from: http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/2071.0main+features902012-2013
43. Barbaro B, Brotherton JM. Assessing HPV vaccine coverage in Australia by geography and socioeconomic status: are we protecting those most at risk? Aust N Z J Public Health. 2014; 38(5):419–23. doi: 10.1111/1753-6405.12218 PMID: 24962721

44. Fenner Y, Garland SM, Moore EE, Jayasinghe Y, Fletcher A, Tabrizi SN, et al. Web-based recruiting for health research using a social networking site: an exploratory study. Journal of medical Internet research. 2012; 14(1):e20. doi: 10.2196/jmir.1978 PMID: 22297093

45. Ward K, Quinn H, Bachelor M, Bryant V, Campbell-Lloyd S, Newbound A, et al. Adolescent school-based vaccination in Australia. Communicable diseases intelligence quarterly report. 2013; 37(2): E156–67. PMID: 24168090
