Generalized inference for the common mean of several lognormal populations

J. Behboodian* and A. A. Jafari**
*Department of Mathematics, Shiraz Islamic Azad University
Shiraz, IRAN
email: Behboodian@stat.susc.ac.ir
**Department of Statistics, Shiraz University, Shiraz, IRAN

Abstract

A hypothesis testing and an interval estimation are studied for the common mean of several lognormal populations. Two methods are given based on the concept of generalized p-value and generalized confidence interval. These new methods are exact and can be used without restriction on sample sizes, number of populations, or difference hypotheses. A simulation study for coverage probability, size and power shown that the new methods are better than the existing methods. A numerical example is given with some real medical data.

Keywords: Lognormal population, Common mean, Generalized variable, Generalized p-value, Generalized confidence interval.

1 Introduction

The statistical analysis that combines the results of several independent is known as meta-analysis and it is used in clinical trails and behavioral sciences.

Consider we have k independent normal populations with means $a\mu + b\sigma_i^2$ and variances σ_i^2. Also we have a random samples of sizes n_i, $i = 1, ..., k$ from each one. We denote these samples by $Y_{ij} \sim N(a\mu + b\sigma_i^2, \sigma_i^2)$, $i = 1, ..., k$, $j = 1, ..., n_i$, where $a \neq 0$, and b are constant. The problem of interest is to combine the summary statistics of samples for statistical inference about the parameter μ. The statistical analysis that combines the results of several independent used in clinical trails and behavioral sciences.
If \(a = 1 \) and \(b = 0 \) then, \(Y_{ij} \sim N(\mu, \sigma^2_i) \) and this problem is known as the common mean for several normal populations. There are some inference for this problem in statistical literature. For example see; Krishnamoorthy and Lu (2003), Lin and Lee (2005). If \(a = 1 \) and \(b = -0.5 \), then \(Y_{ij} \sim N(\mu - 0.5\sigma^2_i, \sigma^2_i) \) and this is equivalent to problem of common mean of several lognormal populations. Our interest in this paper is inference about this problem.

For the common lognormal mean, a few authors proposed approximate methods: Ahmed et al (2001) proposed an estimator and approximate confidence interval for the common lognormal mean; Baklizi and Ebrahem (2005) studied several types of large samples and bootstrap intervals; Gupta and Li (2005) developed procedures for estimating the common mean and investigated the performance of the resulting confidence interval for two lognormal populations.

In this paper, we first propose estimation of \(\mu \) when the variances, \(\sigma^2_i \) are known. Then two methods are given that are applicable for both hypothesis testing and interval estimation for \(\mu \), based on the concepts of generalized \(p \)-value and generalized confidence interval. These methods are based on extending the method of Krishnamoorthy and Lu (2003) and the method of Lin and Lee (2005), which are used for the problem of common mean of several normal populations. Our methods also are applicable for the common mean of several lognormal for the interval mean of \(k \) lognormal populations. This chapter also is devoted to a short review regarding the existing method for inference of the common lognormal mean and application of our two methods for this problem. Finally, we give a numerical example for the common lognormal mean and by Monte Carlo simulation, we compare the coverage probabilities, size and power of these methods for the common mean of two lognormal populations.

Theorem 1.1. Let \(Y_{ij} \sim N(a\mu + b\sigma^2_i, \sigma^2_i) \), \(i = 1, \ldots, k, \, j = 1, \ldots, n_i \), where \(a \neq 0 \), \(b \) are constants and \(\sigma^2_i \)'s are known. The estimator

\[
\hat{\mu} = \frac{\sum_{i=1}^{k} \frac{n_i Y_i}{\sigma^2_i} - nb}{a \sum_{i=1}^{k} \frac{n_i}{\sigma^2_i}} \tag{1.1}
\]

is UMVUE and MLE for \(\mu \) and \(\hat{\mu} \sim N(\mu, 1/(a^2 \sum_{i=1}^{k} \frac{n_i}{\sigma^2_i})) \).

Proof. The probability density function for \(Y_{ij} \) is

\[
f_{Y_{ij}}(y_{ij}) = (2\pi\sigma^2_i)^{-\frac{1}{2}} e^{-\frac{1}{2} \frac{n^2 \mu^2}{\sigma^2_i} \times e^{-\frac{1}{2} \frac{1}{\sigma^2_i} (y_{ij} - b\sigma^2_i)^2} \times e^{\frac{a\mu}{\sigma^2_i} (y_{ij} - b\sigma^2_i)}.}
\]
Since the distribution of Y_{ij} is from exponential family, in the form $A(\mu)B(y)e^{C(\mu)D(y)}$, then

$$T = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \frac{1}{\sigma_i^2} (Y_{ij} - b\sigma_i^2) = \sum_{i=1}^{k} n_i \bar{Y}_i - nb$$

is UMVUE for $E(T) = a\mu \sum_{i=1}^{k} n_i / \sigma_i^2$ and $\hat{\mu} = T / \sum_{i=1}^{k} n_i / \sigma_i^2$ is UMVUE for μ (see Casella and Berger, 1990, page 263). It is easy to prove the rest of the theorem.

Remark 1.1. If $b = 0$ then $\hat{\mu}$ is the best linear unbiased estimator for μ.

Remark 1.2. If $Y_{ij} = \ln(X_{ij}) \sim N(\mu - 0.5\sigma_i^2, \sigma_i^2)$, i.e. X_{ij} is a lognormal variable, then $T = \exp(\hat{\mu} - 1/ \sum_{i=1}^{k} 2n_i / \sigma_i^2)$ is UMVUE for $E(X_{ij}) = e^\mu$, but the MLE of e^μ is $e^{\hat{\mu}}$.

Remark 1.3. If σ_i^2 are unknown, then we cannot find a closed form for MLE’s of μ; we have to use a numerical approximation.

2 Generalized inferences for μ

Suppose $Y_{ij} \sim N(a\mu + b\sigma_i^2, \sigma_i^2)$, $i = 1, \ldots, k$, $j = 1, \ldots, n_i$, where $a \neq 0$, b are constants. For the ith population, let

$$\bar{Y}_i = \frac{1}{n_i} \sum_{i=1}^{n_i} Y_{ij}, \quad S_i^2 = \frac{1}{n_i - 1} \sum_{i=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2,$$

be the sample mean and sample variance.

In this section, by using the idea of generalized p-value and by extending (i) the method of Krishnamoorthy and Lu (2003) and (ii) the method of Lin and Lee (2005), for the problem of common mean of normal populations, we give two generalized pivot variables for interval estimation and hypothesis testing for μ and we obtain two generalized p-values for testing hypothesis

$$H_0 : \mu \leq \mu_0 \quad \text{vs} \quad H_1 : \mu < \mu_0. \quad (2.1)$$

2.1 A weighted linear combination

It is clear that $\bar{Y}_i \sim N(a\mu + b\sigma_i^2, \sigma_i^2/n_i)$, $i = 1, \ldots, k$. Therefore, the generalized pivot variable for estimating μ based on the ith sample is

$$T_i^w = \frac{1}{a} (\bar{y}_i - b(n_i - 1)s_i^2/U_i) - Z_i \sqrt{\frac{(n_i - 1)s_i^2}{n_iU_i}} \quad (2.2)$$

$$= \frac{1}{a} (\bar{y}_i - b\frac{s_i^2}{S_i^2}\sigma_i^2 - Z_i \sqrt{\frac{s_i^2}{n_iS_i^2}\sigma_i^2}),$$
where
\[Z_i = \frac{\bar{Y}_i - (a \mu + b \sigma_i^2)}{\sqrt{\sigma_i^2/n_i}} \sim N(0, 1), \quad U_i = \frac{(n_i - 1)S_i^2}{\sigma_i^2} \sim \chi^2_{(n_i-1)}, \]
and \((\bar{y}_i, s_i^2)\) is the observed value of \((\bar{Y}_i, S_i^2)\).

The generalized pivot variable for estimating \(\sigma_i^2\) based on the \(i\)th sample is given by
\[R_i = \frac{(n_i - 1)S_i^2}{V_i} = \frac{s_i^2}{\sigma_i^2}, \quad i = 1, \ldots, k, \]
(2.3)
where \(V_i = (n_i - 1)S_i^2/\sigma_i^2\) are independent \(\chi^2_{(n_i-1)}\) random variables (Weerahandi, 1995).

The generalized variable that we want to propose is a weighted average of the generalized pivot variables \(T^*_i\) in (2.2). The weights are inversely proportional to the generalized pivot variables \(R_i\) in (2.3) for the variances, and they are directly proportional to the sample sizes. (see Krishnamoorthy and Lu, 2003).

Let \(\bar{Y} = (\bar{Y}_1, \ldots, \bar{Y}_k)\) and \(V = (V_1, \ldots, V_k)\), with the observed values \(\bar{y}\) and \(v\), respectively. Then, the generalized variable can be expressed as
\[T(\bar{Y}, V; \bar{y}, v) = \frac{k \sum_{i=1}^{k} \frac{n_i V_i}{(n_i - 1)s_i^2} \left[\bar{y}_i - b \frac{(n_i - 1)s_i^2}{U_i} - Z_i \sqrt{\frac{(n_i - 1)s_i^2}{n_i U_i}} \right]}{\alpha \sum_{j=1}^{k} \frac{n_j V_j}{(n_j - 1)s_j^2}} - \mu \]
(2.4)
where the weights are
\[W_i = \frac{n_i V_i}{\sum_{j=1}^{k} \frac{n_j V_j}{(n_j - 1)s_j^2}}, \quad i = 1, \ldots, k. \]

The distribution of \(T(\bar{Y}, V; \bar{y}, v)\) is an increasing function with respect to \(\mu\). Therefore, the generalized p-value for (2.2) is given by
\[p = P(T(\bar{Y}, V; \bar{y}, v) \leq T(\bar{y}, v; \bar{y}, v) | \mu = \mu_0) \]
(2.5)
\[= P(\sum_{i=1}^{k} W_i T^*_i \leq \mu_0). \]

This generalized p-value can be well approximated by a Monte Carlo simulation using the following algorithm:

Algorithm 2.1. For a given \((n_1, \ldots, n_k)\), \(\bar{Y} = (\bar{y}_1, \ldots, \bar{y}_k)\) and \((s_1^2, \ldots, s_k^2)\):
For $j = 1, m$

Generate $U_l \sim \chi^2_{(n_l-1)}$, $l = 1, \ldots, k$

Generate $V_l \sim \chi^2_{(n_l-1)}$, $l = 1, \ldots, k$

Generate $Z_l \sim N(0, 1)$, $l = 1, \ldots, k$

Compute W_1, \ldots, W_k

Compute $T_j = \sum_{l=1}^{k} W_l T^*_l$

(end j loop)

Let $\gamma_j = 1$ if $T_j \leq \mu_0$, else $k_j = 0$. Then $\frac{1}{m} \sum_{j=1}^{m} \gamma_j$ is a Monte Carlo estimate of the generalized p-value for (2.5).

Remark 2.1. $T^* = \sum_{i=1}^{k} W_i T^*_i$ is a generalized pivot variable for μ and we can use that to obtain a generalized confidence interval for μ.

Remark 2.2. If $a = 1$ and $b = 0$, then

$$T(\bar{Y}, V; \bar{y}, v) = \frac{\sum_{i=1}^{k} \frac{n_i V_i}{(n_i-1)s_i^2} \left[\bar{y}_i - Z_i \sqrt{\frac{(n_i-1)s_i^2}{n_i U_i}} \right]}{\sum_{j=1}^{k} \frac{n_j V_j}{(n_j-1)s_j^2}} - \mu$$

(2.6)

and this generalized variable is introduced by Krishnamoorthy and Lu (2003) for inference on the common mean of several normal populations.

2.2 A generalized variable based on UMVUE

From theorem 1, we have

$$Z = |a| \sqrt{\sum_{i=1}^{k} \frac{n_i}{\sigma^2_i} (\bar{\mu} - \mu)} \sim N(0, 1).$$

We know that $R_i = \frac{(n_i - 1)s_i^2}{U_i}$ is a generalized pivot variable for σ^2_i, $i = 1, \ldots, k$, where $U_i \sim \chi^2_{(n_i-1)}$.

Let $\bar{Y} = (\bar{Y}_1, \ldots, \bar{Y}_k)$ and $U = (U_1, \ldots, U_k)$, with the observed values \bar{y} and u, respectively.
We define a generalized variable for μ based on the UMVUE for μ in (1.1) by

$$T(\bar{Y}, U; \bar{y}, u) = \frac{k}{a} \sum_{i=1}^{k} \frac{n_i \bar{y}_i}{(n_i - 1)s_i^2} U_i - nb - \frac{Z}{a} \sqrt{\sum_{j=1}^{k} \frac{n_j}{(n_j - 1)s_j^2} U_j} - \mu \quad (2.7)$$

The distribution of $T(\bar{Y}, U; \bar{y}, u)$ is an increasing function with respect to μ, and therefore the generalized p-value for testing (2.1) is

$$p = P(T(\bar{Y}, U; \bar{y}, u) \leq T(\bar{y}, u; \bar{y}, u) \mid \mu = \mu_o) = P(T^* \leq \mu_o) \quad (2.8)$$

where

$$T^* = \frac{k}{a} \sum_{i=1}^{k} \frac{n_i \bar{y}_i S_i^2}{\sigma_i^2 s_i^2} - nb - \frac{Z}{a} \sqrt{\sum_{j=1}^{k} \frac{n_j S_j^2}{\sigma_j^2 s_j^2} U_j} \quad (2.9)$$

and Φ is distribution function of the standard normal variable and expectation is taken with respect to chi-square random variables with $n_i - 1, i = 1, \ldots, k$, degrees of freedom.

This generalized p-value can be well approximated by a Monte Carlo simulation like the algorithm [2,1].

Remark 2.3. T^* in (2.10) is a generalized pivot variable for μ and we can use that to obtain a generalized confidence interval for μ.

Remark 2.4. If $a = 1$ and $b = 0$, then

$$T(\bar{Y}, U; \bar{y}, u) = \frac{k}{a} \sum_{i=1}^{k} \frac{n_i \bar{y}_i}{(n_i - 1)s_i^2} U_i - \frac{Z}{a} \sqrt{\sum_{j=1}^{k} \frac{n_j}{(n_j - 1)s_j^2} U_j} - \mu,$$

which is a generalized variable, introduced by Lin and Lee (2005), for the common mean of several normal populations.
Remark 2.5. For testing the hypothesis of the form

\[H_0 : \mu = \mu_o \quad \text{vs} \quad H_1 : \mu \neq \mu_o, \]

the p-value is

\[p = 2 \min \{P\{T^* < \mu_o\}, P\{T^* > \mu_o\}\}, \] (2.10)

and \(H_o \) can be rejected when \(p < \alpha \).

3 Methods for Common lognormal mean

Consider independent \(X_{ij} \) with lognormal distribution, for \(i = 1, \ldots, k \), \(j = 1, \ldots, n_i \), and assume that \(\theta_1 = \ldots = \theta_k = \varphi > 0 \), where \(\theta_i = E(X_{ij}) = \exp(\mu_i + \sigma_i^2) \), i.e., the \(k \) lognormal populations have common mean \(\varphi \). Therefore, we have \(Y_{ij} = \ln(X_{ij}) \sim N(\mu - 0.5\sigma_i^2, \sigma_i^2) \), where \(\mu = \ln \varphi \), and to find a confidence interval for \(\varphi \), it is enough to have a confidence interval for \(\mu \), and a hypothesis test for \(\varphi \) is equivalent to a hypothesis test for \(\mu \). For example the hypothesis test

\[H_0 : \varphi \leq \varphi_o \quad \text{vs} \quad H_1 : \varphi > \varphi_o, \]

is equivalent to

\[H_0 : \mu \leq \ln \varphi_o \quad \text{vs} \quad H_1 : \mu > \ln \varphi_o. \]

It is useful to review the existing methods for the problem of common lognormal mean.

3.1 Ahmed method

Let \(X_{ij} \sim LN(\theta, \tau_i^2) \), \(i = 1, \ldots, m \), \(j = 1, \ldots, n_i \). Then a combined sample estimate of \(E(X_{ij}) = \theta \) is given by

\[\tilde{\theta} = \frac{\sum_m n_i \tilde{\theta}_i}{\sum_m n_i / v_i}, \]

where \(\tilde{\sigma}_i^2(1 + 0.5\tilde{\sigma}_i^2) \exp(2\tilde{\mu}_i + \tilde{\sigma}_i^2) \), \(\tilde{\theta}_i = \exp(\tilde{\mu}_i + 0.5\tilde{\sigma}_i^2) \), \(\tilde{\mu}_i = \bar{Y}_i \) and \(\tilde{\sigma}_i^2 = \frac{n_i - 1}{n_i} S_i^2 \).

The estimator \(\tilde{\theta} \) is asymptotically normal with mean \(\theta \) and asymptotic variance \((\sum_{i=1}^m n_i / v_i)^{-1} \), which can be estimated by \((\sum_{i=1}^m n_i / v_i)^{-1} \). Therefore, a 100(1 - \(\alpha \))% confidence interval for \(\theta \) is

\[\tilde{\theta} \pm Z_{\alpha/2} (\sum_{i=1}^m n_i / v_i)^{-1/2}. \] (3.1)
3.2 Baklizi and Ebrahim method

The acceptance set for all \(\theta \) is

\[
\sum_{i=1}^{m} \frac{n_i(\hat{\theta}_i - \theta)^2}{v_i} \leq \chi^2_{\alpha,m}. \tag{3.2}
\]

This is a quadratic function in \(\theta \) whose two roots can be found directly. Since the coefficient of \(\theta^2 \) in this expression is positive, it follows that the set of all values of \(\theta \) between the two roots is the desired confidence interval.

3.3 Gupta and Li method

Let \(\theta = (\mu, \sigma_1, \sigma_2) \) be a vector of parameters, where \(\mu = \ln \eta = \mu_i + 0.5\sigma_1^2, \ i = 1, 2 \) and \(\eta \) is the common mean. The joint log-likelihood function based on the log-transformed data of two independent log-normal populations is given by

\[
\ln l(\theta) = \frac{-(n_1 + n_2)}{2} \ln 2\pi - n_1 \ln \sigma_1 - n_2 \ln \sigma_2 - 0.5(t_1 + t_2) + \frac{\mu}{\sigma_1^2}t_1 - \frac{1}{2\sigma_1^2}t_3 - \frac{(\mu - \sigma_1^2/2)n_1}{2\sigma_1^2} + \frac{\mu}{\sigma_2^2}t_2 - \frac{1}{2\sigma_2^2}t_4 - \frac{(\mu - \sigma_2^2/2)n_2}{2\sigma_2^2},
\]

where

\[
(t_1,t_2,t_3,t_4) = (\sum_j \ln x_{1j},\sum_j \ln x_{2j},\sum_j (\ln x_{1j})^2,\sum_j (\ln x_{2j})^2).
\]

Let \(\hat{\mu} \) be MLE for \(\mu \). The asymptotic variance of \(\hat{\mu} \) is

\[
\text{Var}(\hat{\mu}) = \frac{2n_1}{\sigma_1^4} + \frac{n_1(2n_2)}{\sigma_2^4} + \frac{n_2(2n_1)}{\sigma_1^4} + \frac{n_2(\sigma_1^4 + \sigma_2^4)}{\sigma_1^4 + \sigma_2^4},
\]

where \(\hat{\sigma}_1 \) and \(\hat{\sigma}_2 \) are MLEs for \(\sigma_1 \) and \(\sigma_2 \). A 100(1 - \(\alpha \))% confidence interval for \(\eta = e^\mu \) is

\[
\exp(\hat{\mu} \pm Z_{\alpha/2} \times SD(\hat{\mu})). \tag{3.3}
\]

3.4 Generalized inferences

In fact, the problem of common lognormal mean is a special case of our model when \(a = 1 \) and \(b = -\frac{1}{2} \). Thus, the generalized variable in (2.4) becomes

\[
T(\bar{Y}, V; \bar{y}, v) = \frac{\sum_{i=1}^{k} \frac{n_i V_i}{(n_i - 1)s_i^2} \left[\bar{y}_i + \frac{(n_i - 1)s_i^2}{2U_i} - Z_i \sqrt{\frac{(n_i - 1)s_i^2}{n_iU_i}} \right]}{\sum_{j=1}^{k} \frac{n_j V_j}{(n_j - 1)s_j^2}} - \mu,
\]
and the generalized variable in (2.7) becomes

\[T(\bar{Y}, U; \bar{y}, u) = \frac{k}{n_i} \sum_{i=1}^{k} \frac{n_i \bar{y}_i}{(n_i - 1)s^2_i} U_i + \frac{n}{2} \frac{Z}{\sqrt{\sum_{j=1}^{k} \frac{n_j}{(n_j - 1)s^2_j} U_j}} - \mu \]

4 Numerical Studies

In this section, we give a numerical example and compare our methods with other methods for the problem of common lognormal mean.

4.1 An example

The data come from the Regenstrief Medical Record System (RMRS) (MCDonald et al, 1988; Zhou et al, 1997) on effects of race on medical charges of patients with type I diabetes who had received inpatient or outpatient care at least two occasions during the period from 1 January 1993, through 30 June 1994. The data set consists of 119 African American patients and 106 white patients. The mean medical charges and their corresponding variance for the African American and white groups are given in Table 1.

Data	Patients group	Sample mean $	Sample variance 2
Original	African American	$18,850	26.897
	White	$18,584	30.694
Log-transform	African American	9.06695	1.824
	White	8.69306	2.629

The studies show that (i) lognormal model adequately describes the both data sets. (ii) the variances of the two sets are not equal. (iii) the means of the two sets are equal (see Gupta and Li, 2005). Therefore, the average medical costs for African American patients and white patients are the same. We want to test that this average medical costs is 20,000$, i.e. the hypothesis test

\[H_0 : \varphi = 20000 \quad vs \quad H_1 : \varphi \neq 20000, \quad (4.1) \]

The p-values for this test, with different methods are given in Table 2 and the confidence intervals are given in Table 3 Therefore, we cannot reject H_o.

Table 2: \(p \)-values for hypothesis test of the common lognormal mean \(\varphi \)

Methods	\(p \)-values
Likelihood Ratio Test	0.5245
Ahmed	0.5582
Gupta and Li	0.5343
First Generalized \(p \)-value	0.4348
Second Generalized \(p \)-value	0.4732

Table 3: Interval estimation for the common lognormal mean \(\varphi \)

Methods	Intervals	Width
Ahmed	(15831.21, 27720.26)	11889.14
Gupta and Li	(16596.91, 28658.17)	12061.19
Baklizi and Ebrahem	(14372.59, 29178.79)	14806.20
First Generalized confidence	(17286.30, 30701.92)	13415.62
Second Generalized confidence	(17090.54, 29998.23)	12907.69

4.2 Simulation study

A simulation study is performed for inference about the common lognormal mean, \(\varphi \). The purpose of the simulation is to compare the size, power and coverage probability of each of the introduced methods with the others existing for two lognormal populations. For this purpose, several data sets from two normal distributions, with means \(\mu - 0.5\sigma_i^2 \) and variances \(\sigma_i^2 \), \(i = 1, 2 \), where \(\mu = \ln \varphi \), were created. For each condition 10000 simulations are used.

The sizes are given in table 4 and the powers in tables 5 and 6, and the coverage probability in tables 7, 8 and 9. These methods are

1. Likelihood ratio test
2. Ahmed method
3. Gupta and Li method
4. Baklizi and Ebrahem method
5. First Generalized variable in (2.3)
6. Second Generalized variable in (2.7)

The tables show that

- The simulated sizes of the two new methods are satisfactory since they are close to the significance level, 0.05.
- The power of the first generalized method is better than other methods when the sample
Table 4: Simulated sizes of the tests for $H_0: \varphi = 1$ vs $H_1: \varphi \neq 1$ at 5% significance level when $\mu = 0$ and $\sigma_1^2 = 1$.

σ_2^2	n_1	n_2	(1)	(2)	(3)	(5)	(6)
0.1	5	10	0.071	0.233	0.099	0.035	0.055
	25	25	0.075	0.116	0.086	0.059	0.071
	30	35	0.051	0.081	0.059	0.046	0.055
	50	50	0.046	0.067	0.052	0.043	0.045
0.5	5	10	0.065	0.274	0.106	0.042	0.051
	25	25	0.083	0.147	0.096	0.054	0.069
	30	35	0.056	0.122	0.069	0.054	0.051
	50	50	0.048	0.095	0.059	0.041	0.045
1	5	10	0.082	0.331	0.141	0.036	0.054
	25	25	0.075	0.178	0.092	0.051	0.066
	30	35	0.054	0.148	0.062	0.046	0.046
	50	50	0.055	0.113	0.061	0.044	0.045
2.5	5	10	0.092	0.397	0.179	0.034	0.063
	25	25	0.061	0.208	0.085	0.047	0.059
	30	35	0.068	0.177	0.078	0.051	0.064
	50	50	0.048	0.124	0.057	0.047	0.049

- The coverage probabilities of our generalized methods are close to the significance level and they are better than the coverage probabilities of existing methods.

sizes are large.
Table 5: Simulated powers of the tests for $H_0 : \varphi = 1$ vs $H_1 : \varphi \neq 1$ at 5% significance level when $\mu = 0.2$ and $\sigma_1^2 = 1$.

σ_2^2	n_1	n_2	(1)	(2)	(3)	(5)	(6)
0.1	5	10	0.528	0.396	0.539	0.447	0.435
	25	25	0.909	0.831	0.907	0.891	0.882
	30	35	0.964	0.933	0.961	0.956	0.952
	50	50	0.995	0.989	0.955	0.995	0.995
0.5	5	10	0.171	0.158	0.156	0.156	0.148
	25	25	0.381	0.157	0.327	0.385	0.365
	30	35	0.464	0.215	0.403	0.458	0.439
	50	50	0.631	0.395	0.585	0.633	0.608
1	5	10	0.124	0.190	0.128	0.107	0.109
	25	25	0.225	0.063	0.199	0.225	0.239
	30	35	0.280	0.087	0.229	0.280	0.267
	50	50	0.423	0.188	0.376	0.428	0.417
2.5	5	10	0.108	0.219	0.124	0.068	0.076
	25	25	0.199	0.073	0.155	0.193	0.189
	30	35	0.215	0.048	0.148	0.219	0.201
	50	50	0.306	0.101	0.247	0.302	0.283
Table 6: Simulated powers of the tests for $H_0 : \varphi = 1$ vs $H_1 : \varphi \neq 1$ at 5% significance level when $\mu = 1$ and $\sigma_1^2 = 1$.

σ_2^2	n_1	n_2	(1)	(2)	(3)	(5)	(6)
0.1	5	10	1.000	1.000	1.000	1.000	1.000
0.1	25	25	1.000	1.000	1.000	1.000	1.000
0.1	30	35	1.000	1.000	1.000	1.000	1.000
0.1	50	50	1.000	1.000	1.000	1.000	1.000
0.5	5	10	0.999	0.861	0.999	0.981	0.983
0.5	25	25	1.000	1.000	1.000	1.000	1.000
0.5	30	35	1.000	1.000	1.000	1.000	1.000
0.5	50	50	1.000	1.000	1.000	1.000	1.000
1	5	10	0.958	0.559	0.946	0.922	0.927
1	25	25	1.000	1.000	1.000	1.000	1.000
1	30	35	1.000	1.000	1.000	1.000	1.000
1	50	50	1.000	1.000	1.000	1.000	1.000
2.5	5	10	0.749	0.186	0.702	0.691	0.686
2.5	25	25	1.000	0.924	1.000	0.998	0.998
2.5	30	35	1.000	0.971	1.000	1.000	1.000
2.5	50	50	1.000	0.997	1.000	1.000	1.000
Table 7: Simulated coverage probabilities at 5% significance level when $\mu = 0$ and $\sigma^2_1 = 1$.

σ^2_2	n_1	n_2	(2)	(3)	(4)	(5)	(6)
0.1	5	10	0.774	0.901	0.743	0.963	0.944
	25	25	0.884	0.914	0.874	0.939	0.929
	30	35	0.919	0.941	0.897	0.952	0.945
	50	50	0.933	0.952	0.914	0.956	0.955
0.5	5	10	0.726	0.894	0.735	0.957	0.947
	25	25	0.853	0.904	0.865	0.945	0.954
	30	35	0.878	0.931	0.884	0.946	0.939
	50	50	0.905	0.942	0.907	0.959	0.955
1	5	10	0.669	0.859	0.703	0.964	0.943
	25	25	0.822	0.908	0.856	0.949	0.935
	30	35	0.852	0.938	0.874	0.953	0.954
	50	50	0.887	0.942	0.903	0.955	0.954
2.5	5	10	0.603	0.821	0.642	0.962	0.937
	25	25	0.792	0.915	0.813	0.953	0.943
	30	35	0.823	0.922	0.842	0.947	0.938
	50	50	0.876	0.943	0.882	0.952	0.949

Table 8: Simulated coverage probabilities at 5% significance level when $\mu = 0.2$ and $\sigma^2_1 = 1$.

σ^2_2	n_1	n_2	(2)	(3)	(4)	(5)	(6)
0.1	5	10	0.778	0.901	0.748	0.963	0.944
	25	25	0.884	0.914	0.877	0.939	0.929
	30	35	0.924	0.941	0.904	0.947	0.945
	50	50	0.933	0.951	0.914	0.959	0.955
0.5	5	10	0.686	0.872	0.724	0.969	0.936
	25	25	0.853	0.904	0.865	0.945	0.929
	30	35	0.878	0.931	0.884	0.946	0.949
	50	50	0.905	0.941	0.907	0.959	0.954
1	5	10	0.661	0.852	0.692	0.965	0.935
	25	25	0.840	0.931	0.855	0.952	0.946
	30	35	0.857	0.928	0.882	0.959	0.948
	50	50	0.888	0.938	0.915	0.944	0.941
2.5	5	10	0.644	0.851	0.892	0.963	0.937
	25	25	0.814	0.924	0.841	0.942	0.938
	30	35	0.831	0.935	0.855	0.946	0.946
	50	50	0.873	0.936	0.887	0.943	0.941
Table 9: Simulated coverage probabilities at 5% significance level when $\mu = 1$ and $\sigma^2 = 1$.

σ^2	n_1	n_2	(2)	(3)	(4)	(5)	(6)
0.1	5	10	0.771	0.901	0.743	0.963	0.944
	25	25	0.884	0.914	0.877	0.939	0.929
	30	35	0.924	0.941	0.904	0.947	0.949
	50	50	0.929	0.942	0.912	0.945	0.947
0.5	5	10	0.699	0.868	0.728	0.958	0.936
	25	25	0.853	0.904	0.865	0.945	0.929
	30	35	0.884	0.931	0.897	0.951	0.943
	50	50	0.896	0.938	0.908	0.946	0.944
1	5	10	0.667	0.839	0.724	0.958	0.937
	25	25	0.827	0.917	0.855	0.948	0.939
	30	35	0.870	0.932	0.889	0.962	0.951
	50	50	0.884	0.937	0.894	0.949	0.951
2.5	5	10	0.614	0.841	0.658	0.961	0.932
	25	25	0.722	0.915	0.813	0.953	0.941
	30	35	0.821	0.930	0.854	0.956	0.951
	50	50	0.876	0.943	0.882	0.952	0.949

References

[1] Ahmed, S. E., Tomkins, R. J. and Volodin, A.I. (2001). Test of homogeneity of parallel samples from lognormal populations with unequal variances, *Journal of Statistical Research*, 35, no 2, 25-33.

[2] Baklizi, A and Ebrahem, M. (2005), Interval estimation of common lognormal mean of several populations, *Journal of Probability and Statistical Science*, 3(1), 1-16.

[3] Casella, G. and Berger, R. L. (1990), *Statistical Inference*, Duxbury Press: California.

[4] Crow, E. L. and Shimizu, K. (1988). *Lognormal distribution*, Marcel Dekker: New York.

[5] Gill, P. S. (2004). Small sample inference for the comparison of means of lognormal distribution, *Biometrics*, 60, 237-24.

[6] Gupta, R. C. and Li, X. (2005). Statistical inferences on the common mean of two lognormal distributions and some applications in reliability, appeared in *Computational Statistics and Data Analysis*.
[7] Krishnamoorthy, K. and Mathew, T. (2003). Inferences on the means of lognormal distributions using generalized p-values and generalized confidence interval, *Journal of Statistical Planning and Inference*, 115, 103-121.

[8] Krishnamoorthy, K. and Yong Lu. (2003). Inferences on the common mean of several normal populations based on the generalized variable method, *Biometrics*, 59, 237-247.

[9] Lin, S. H. and Lee, J. C. (2005), Generalized inferences on the common mean of several normal populations, *Journal of Statistical Planning and Inference*, 134, 568-582.

[10] McDonald, C. J., Blemis, L., Tierny, W. M. and Martin, D. K. (1988), The regenstrief medical records, *MD Comput.*, 5, 34-47.

[11] Olsson, U. (2005), Confidence interval for the mean of a Log-Normal distribution, *Journal of Statistics Education*, 13 (1), .

[12] Tsui, K. W. and Weerahandi, S. (1989). Generalized p-values in significance testing of hypothesis in the presence of nuisance parameters, *J. Am. Statist. Assoc.*, 84, 602-607.

[13] Weerahandi, S. (1993). Generalized confidence intervals, *J. Am. Statist. Assoc.*, 88, 899-905.

[14] Weerahandi, S. (1995). *Exact statistical methods for data analysis*, Springer, NewYork.

[15] Weerahandi, S. and Berger, V. W. (1999). Exact inference for growth curves with inter-class correlation structure, *Biometrics*, 55, 921-924.

[16] Zhou, X. H. and Tu. W. (1999). Comparison of several independent population means when their samples contain lognormal and possibly zero observations, *Biometrics*, 55, 645-651.