Stereotactic Lung Reirradiation for Local Relapse: A Case Series

Rémy Kinj
CHUV: Centre Hospitalier Universitaire Vaudois

Alessio Casutt
CHUV: Centre Hospitalier Universitaire Vaudois

Alexander Bennassi
CHUV: Centre Hospitalier Universitaire Vaudois

Hasna Bouchaab
CHUV: Centre Hospitalier Universitaire Vaudois

Véronique Vallet
CHUV: Centre Hospitalier Universitaire Vaudois

Alban Lovis
CHUV: Centre Hospitalier Universitaire Vaudois

Mahmut Ozsahin (Mahmut.Ozsahin@chuv.ch)
Centre Hospitalier Universitaire Vaudois (CHUV)
https://orcid.org/0000-0003-2947-5360

Short report

Keywords: lung reirradiation, SBRT reirradiation, stereotactic treatment, lung cancer

Posted Date: December 22nd, 2020

DOI: https://doi.org/10.21203/rs.3.rs-131839/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Local recurrence after lung SBRT for early stage NSCLC is rare but its treatment remains a challenge due to limited surgical options. We report a case series of 5 patients treated by stereotactic lung salvage reirradiation for local relapse after a previous lung SBRT.

Material and methods: Included patients presented an isolated primary lung relapse within at least the 25% isodose of the previous SBRT treatment. Typical reirradiation schedule was 60 Gy in 8 fractions at isodose 80% and was delivered by Cyberknife® using Synchrony® fiducial tracking system. Dose summations were performed to evaluate the safety of the reirradiation.

Results: We identified 5 patients presenting peripheral lesions. All reirradiated lesions were locally controlled after a median follow-up of 8.0 months (3.4-10.2), while PFS at 6 months was 60% (n = 3). We did not notice any Grade 3 or more acute or late adverse event.

Conclusion: We observed encouraging short-term outcome of lung SBRT reirradiation in patients presenting isolated local relapse of an early-stage NSCLC. Further studies are necessary to confirm the safety and efficiency of this salvage treatment approach.

Background

Stereotactic body radiotherapy (SBRT) is a well-established treatment option for patients presenting an early-stage non-small cell lung cancer (NSCLC). The main failure pattern after lung SBRT is represented by distant failure. Local recurrence in a previously irradiated lung volume is observed in 5 to 15% of cases and treatment remains a challenge due to co-morbidities limiting surgical options (1–3). Retreatment with conventional fractionated radiotherapy (CFRT) can be consider as a salvage option but remains poor outcomes (4, 5). Few studies explored salvage SBRT for reirradiation after a first course of lung SBRT, more experiences must be described to determine control and toxicity rates. We recently considered the opportunity to repeat lung SBRT. Here we report a case series of 5 patients treated by stereotactic lung salvage reirradiation for local relapse after a previous lung SBRT.

Material And Methods

From November 2019, during our clinical follow-up, we identified patients who presented localized lung relapses in a previously irradiated volume by SBRT. We included in this report patients presenting an isolated primary lung relapse within at least the 25% isodose of the previous SBRT treatment (6, 7). The decision to reirradiate was approved by the local multidisciplinary thoracic tumor board, and patients were not considered eligible for salvage surgery due to co-morbidities. All patients benefited from reirradiation after fiducial marker (FM) placement and was performed by Cyberknife® using Synchrony® fiducial tracking system (Accuray, Sunnyvale). Typical reirradiation schedule was 60 Gy in 8 fractions at isodose 80% corresponding to a Biological Effective Dose for α/β 10 Gy (BED10) of 105 Gy. We performed deformable registration on Raystation® (Raysearch, Stockholm) treatment planning system, then plans were summed in order to evaluate the safety of the reirradiation treatment.

Results

We identified 5 patients, 3 out of 5 relapses were histologically proven, and the remaining two were assessed by their clinical evolution followed by iterative morphological and metabolic imaging.

The median age of patients at relapse was 78.9 years (range, 62.6–88.8) and relapse was diagnosed with a median time lapse of 31.3 months (range, 15.4–91.6) after the first SBRT. Most of first lung cancers (4/5) were classified as cT1N0M0 (8th TNM classification).

The mean lung dose (MLD) of the reirradiation was 1.9 Gy (range, 1.0–2.0), the volume of lungs receiving 5 Gy (V5) was 7.5% (range, 4.9–9.5) and V20 1% (range, 0.8–3.9). All reirradiated lesions were peripherally located and the median Planning Target Volume (PTV) was 4.0 mL.

Three patients previously received Cyberknife® treatment with fiducial tracking, one patient had Tomotherapy® SBRT, and one had a VMAT SBRT treatment. Median dose at first course was 55 Gy (45–60) in 5 fractions (3–8).

Cumulative MLD was 5.1 Gy (range, 3.6–7.8) and cumulative V5 was 28.5 Gy (range, 16.0-48.5). Median maximal cumulated PTV dose was 90.8 Gy (range, 76.2-135.8) (Table 1).
Table 1
Patients and treatment characteristics

Patients’ Number	Age (years)	Performance Status	Time to relapse (Months)	First course regimen (Gy/number of fractions)	Second course regimen (Gy/number of fractions)	PTV Maximal physical dose summation (Gy)	Mean Lung Dose (Gy)	Cumulative mean lung dose (Gy)	Volume of Lung receiving 5 Gy (%)	Cumulative Volume of Lung receiving 5 Gy (%)
N-1	82.6	1	93.4	60/8	60/8	135.3	1.6	7.3	7.5	32.0
N-2	88.8	2	31.3	55/5	50/5	90.3	1.9	5.1	7.3	28.5
N-3	75.2	1	37.5	54/3	60/8	90.8	1.1	4.1	4.9	16.0
N-4	78.9	2	15.6	45/3	35/5	76.2	2.0	7.8	9.0	48.5
N-5	62.6	1	21.4	55/5	60/8	101.1	2.0	3.6	9.5	19.0

All reirradiated lesions were locally controlled after a median follow-up was 8.0 months (3, 4–10, 2). while PFS at 6 months was 60% (n = 3). One patient presented at 6 months a contralateral new lung lesion successively treated by SBRT. An other patient developed a single brain metastasis that was surged and irradiated. We did not notice any Grade 3 or more acute or late adverse event (Common Terminology Criteria for Adverse Events version 4) (8). Most frequent adverse event was acute Grade 1 asthenia in 2 patients.

Discussion
We report our early clinical outcome after lung SBRT reirradiation. It may represents a new salvage option for these non-operable patients with significant co-morbidities.

The singularity of our data is that we report a series of patients who underwent two sequences of lung high-dose SBRT closely located. Most of publications concerning SBRT reirradiation for local relapse usually report data after a single or two conventionally-fractionated course/s. These experiences revealed acceptable local control rate with relatively high rates of lung toxicity such as radiation induced pneumonitis (9–13).

Synchrony® tracking system uses a 3-D co-ordinate system that tracks the target during the respiratory cycle by means of previously inserted metallic FM. The tracking system permits the maximal reduction of margins conducing to a better sparing of healthy lung tissue. As reirradiation volume always correlates with toxicity outcome in the reirradiation setting, our accurate SBRT technique permits a better toxicity outcome. Kennedy et al. also used accurate SBRT technique in a comparable study population. Their experience represents the largest cohort with 21 included patients. They remained a low rate of Grade 2 lung toxicity (10% of pneumonitis) and no Grade 3 toxicity while local control was 81% at 2 years. Hear et al. reported a series of 10 patients that benefited of SBRT reirradiation with BED10 doses ≥ 100 Gy, this treatment was considered as a viable salvage option for inoperable locally recurrent NSCLC(14). Nishimura et al. also reported the cases of two elderly patients successfully treated by salvage lung SBRT reirradiation(15).

In our experience, we performed cumulative physical dose summation to evaluate the safety of the reirradiation. Cumulative dose had to respect the most restrictive constraints template for stereotactic radiotherapy (Fig. 1). As an example, if the first course was delivered in 5 fractions and the reirradiation was delivered in 8 fractions, the composite plan had to respect the constraints of a 5 fraction plan for organs at risk according to American Association of Physicists in Medicine doses constraints (16). Moreover, we collected data concerning MLD and V5 and tried to optimize their values, as higher values seem to be part of complications occurrence, and we did not observed any Grade 3 or more toxicity at last news (17, 18). We can notice that we did not treat central or ultra-central tumors directly invading bronchial tree (19). The main limitation of the report is the low number of patients, however our results seems to correspond to the previously published data.

Conclusion
In our preliminary experience, we observed short-term favorable outcome of lung SBRT reirradiation in patients presenting isolated local relapse of an early-stage NSCLC. Further studies are necessary in order to establish if this approach could be considered a safe and effective salvage treatment.

Abbreviations
CFRT: conventional fractionated radiation therapy
MLD: mean lung dose
NSCLC: non-small cell lung cancer
PTV: Planning Target Volume
SBRT: Stereotactic body radiotherapy
Declarations

Ethics approval and Consent to participate
Local ethical committee agreement is not required for case series including 5 patients or less.
Hospital general consent for research was obtained from the patients.

Consent for publication
Hospital general consent for publication was obtained from the patients.

Availability of supporting data
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Funding
no

Authors contribution
RK: Conceptualization, Formal analysis, Investigation, Writing - Original Draft, Writing - Review & Editing
AC: Investigation, Writing - Review & Editing
HB: Investigation, Writing - Review & Editing
AB: Investigation, Writing - Review & Editing
AL: Investigation, Writing - Review & Editing
MO: Investigation, Supervision, Writing – Original Draft, Writing - Review & Editing

Acknowledgements
No Acknowledgements

References
1. Bradley JD, El Naqa I, Drzymala RE, Trovo M, Jones G, Denning MD. Stereotactic Body Radiation Therapy for Early-Stage Non-Small-Cell Lung Cancer: The Pattern of Failure is Distant. Int J Radiat Oncol Biol Phys [Internet]. 2010 Jul 15 [cited 2020 Sep 21];77(4):1146–50. Available from: https://pubmed.ncbi.nlm.nih.gov/19800181/
2. Andratschke N, Zimmermann F, Boehm E, Schill S, Schoenknecht C, Thamm R, et al. Stereotactic radiotherapy of histologically proven inoperable stage I non-small cell lung cancer: Patterns of failure. Radiother Oncol [Internet]. 2011 Nov [cited 2020 Sep 21];101(2):245–9. Available from: https://pubmed.ncbi.nlm.nih.gov/21724287/
3. Stephans KL, Woody NM, Reddy CA, Varley M, Magnelli A, Zhuang T, et al. Tumor Control and Toxicity for Common Stereotactic Body Radiation Therapy Dose-Fractionation Regimens in Stage I Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys [Internet]. 2018 Feb 1 [cited 2020 Sep 21];100(2):462–9. Available from: https://pubmed.ncbi.nlm.nih.gov/29353658/
4. Wu KL, Jiang GL, Qian H, Wang LJ, Yang HJ, Fu XL, et al. Three-dimensional conformal radiotherapy for locoregionally recurrent lung carcinoma after external beam irradiation: A prospective phase I-II clinical trial. Int J Radiat Oncol Biol Phys. 2003 Dec 1;57(5):1345–50.
5. Tada T, Fukuda H, Matsui K, Hirashima T, Hosono M, Takada Y, et al. Non-small-cell lung cancer: Reirradiation for loco-regional relapse previously treated with radiation therapy. Int J Clin Oncol. 2005 Aug;10(4):247–50.
6. Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA - J Am Med Assoc. 2010 Mar 17;303(11):1070–6.

7. Kennedy WR, Gabani P, Nikitas J, Robinson CG, Bradley JD, Roach MC. Repeat stereotactic body radiation therapy (SBRT) for salvage of isolated local recurrence after definitive lung SBRT. Radiother Oncol. 2020 Jan 1;142:230–5.

8. Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V, et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol [Internet]. 2003 Jul [cited 2018 Jul 18];13(3):176–81. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1053429603000316

9. Kelly P, Balter PA, Rebueno N, Sharp HJ, Liao Z, Komaki R, et al. Stereotactic body radiation therapy for patients with lung cancer previously treated with thoracic radiation. Int J Radiat Oncol Biol Phys [Internet]. 2010 Dec 1 [cited 2020 Sep 22];78(5):1387–93. Available from: https://pubmed.ncbi.nlm.nih.gov/20381271/

10. Kruser TJ, McCabe BP, Mehta MP, Khuntia D, Campbell TC, Geye HM, et al. Reirradiation for locoregionally recurrent lung cancer: Outcomes in small cell and non-small cell lung carcinoma. Am J Clin Oncol Cancer Clin Trials [Internet]. 2014 Feb [cited 2020 Sep 22];37(1):70–6. Available from: https://pubmed.ncbi.nlm.nih.gov/23357968/

11. McAvoy S, Ciura K, Wei C, Rineer J, Liao Z, Chang JY, et al. Definitive reirradiation for locoregionally recurrent non-small cell lung cancer with proton beam therapy or intensity modulated radiation therapy: Predictors of high-grade toxicity and survival outcomes. Int J Radiat Oncol Biol Phys [Internet]. 2014 Nov 15 [cited 2020 Sep 22];90(4):819–27. Available from: https://pubmed.ncbi.nlm.nih.gov/25220718/

12. Chao HH, Berman AT, Simone CB, Ciunci C, Gabriel P, Lin H, et al. Multi-Institutional Prospective Study of Reirradiation with Proton Beam Radiotherapy for Locoregionally Recurrent Non-Small Cell Lung Cancer. In: Journal of Thoracic Oncology [Internet]. Elsevier Inc; 2017 [cited 2020 Sep 22]. p. 281–92. Available from: https://pubmed.ncbi.nlm.nih.gov/27826034/

13. Sumodhee S, Bondiau P-Y, Poudenx M, Cohen C, Naghavi AO, Padovani B, et al. Long term efficacy and toxicity after stereotactic ablative reirradiation in locally relapsed stage III non-small cell lung cancer. BMC Cancer [Internet]. 2019 Dec 3 [cited 2019 Jun 14];19(1):305. Available from: https://bmccancer.biomedcentral.com/articles/10.1186/s12885-019-5542-3

14. Hearn JWD, Videtic GMM, Djemil T, Stephans KL. Salvage stereotactic body radiation therapy (SBRT) for local failure after primary lung SBRT. Int J Radiat Oncol Biol Phys [Internet]. 2014 Oct 1 [cited 2019 May 27];90(2):402–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0360301614006993

15. Nishimura S, Takeda A, Sanuki N, Yoshida S, Shigematsu N. Dose-escalated stereotactic body radiotherapy (SBRT) as a salvage treatment for two cases with relapsed peripheral lung cancer after initial SBRT. J Thorac Oncol [Internet]. 2015 Aug 1 [cited 2020 Sep 22];10(8):e69–71. Available from: https://pubmed.ncbi.nlm.nih.gov/26200281/

16. Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, et al. Stereotactic body radiation therapy: The report of AAPM Task Group 101. Med Phys [Internet]. 2010;37(8):4078. Available from: http://link.aip.org/link/MPHYA6/v37/i8/p4078/s1&Agg=doi

17. Dupic G, Biau J, Molnar I, Chassin V, Dedieu V, Lapeyre M, et al. Significant Correlation Between Overall Survival and Mean Lung Dose in Lung Stereotactic Body Radiation Therapy (SBRT). Front Oncol [Internet]. 2020 Aug 11 [cited 2020 Sep 22];10. Available from: https://pubmed.ncbi.nlm.nih.gov/32850462/

18. Amini A, Yeh N, Gaspar LE, Kavanagh B, Karam SD. Stereotactic body radiation therapy (SBRT) for lung cancer patients previously treated with conventional radiotherapy: A review [Internet]. Vol. 9, Radiation Oncology. BioMed Central Ltd.; 2014 [cited 2020 Sep 22]. Available from: https://pubmed.ncbi.nlm.nih.gov/25239200/

19. Chaudhuri AA, Tang C, Binkley MS, Jin M, Wynnne JF, von Eyben R, et al. Stereotactic ablative radiotherapy (SABR) for treatment of central and ultra-central lung tumors. Lung Cancer. 2015 Jul 1;89(1):50–6.

Figures

Figure 1
Dosimetric presentation of patient N-2 Left: current relapse treatment of 50 Gy in 5 fractions Middle: previous SBRT irradiation dose of 55 Gy in 5 fractions registered using deformable registration on current CT Right: cumulative dosimetry of treatments with maximal point dose of 92.4 Gy