Solid-state nuclear magnetic resonance (NMR) methods and hardware offer expanding opportunities for analysis of materials, interfaces, and surfaces. Here, we demonstrate the application of a very high magnetic field strength of 28.2 T and fast magic-angle-spinning rates (MAS, >40 kHz) to surface species relevant to catalysis. Specifically, we present as case studies the 1D and 2D solid-state NMR spectra of important catalyst and support materials, ranging from a well-defined silica-supported organometallic catalyst to dehydroxylated γ-alumina and zeolite solid acids. The high field and fast-MAS measurement conditions substantially improve spectral resolution and narrow NMR signals, which is particularly beneficial for solid-state 1D and 2D NMR analysis of 1H and quadrupolar nuclei such as 27Al at surfaces.

KEYWORDS: solid-state NMR spectroscopy, high-field, surface sites, catalysts

Solid-state nuclear magnetic resonance (NMR) is a powerful tool for materials characterization, with applications spanning biomolecules, polymers, battery materials, semiconductors, and catalysts. It can provide precise element-specific information on the local structure, interactions, and dynamics of NMR active nuclei. However, it is limited by its intrinsically low sensitivity due to low nuclear spin polarization and by signal broadening due largely to strong internuclear and/or quadrupolar interactions and inhomogeneous distributions of chemical species that yield corresponding distributions of chemical shifts.

Measurements at increasingly high magnetic field strengths improve both signal sensitivity and spectral resolution. The ongoing development of NMR instrumentation including stable high magnetic fields >20 T and fast-spinning NMR probeheads capable of MAS rates up to 150 kHz has enabled new opportunities for understanding biomolecules and determining their 3D structures in the solid-state including challenging cases such as metalloproteins and membrane proteins in native environments. However, the application of these capabilities to functional inorganic materials and their surfaces, including catalysts, has been so far more limited. In fact, very high magnetic fields and fast MAS rates would be especially powerful to characterize such materials, in particular for the analysis of surface sites that are associated with highly unsymmetrical inhomogeneous environments with broad and complex spectroscopic signatures that are challenging to measure and interpret under typical conditions. NMR analysis of quadrupolar nuclei, for example, greatly benefits from very high magnetic fields, as demonstrated by recent studies of 27Al, 17O, 67Zn, and 95Mo nuclei in materials like aluminosilicate zeolites, alumina, and metal organic frameworks at magnetic fields up to 36 T and MAS rates up to 30 kHz. Despite the inhomogeneously broadened lineshapes, NMR of such materials can also benefit from very fast MAS rates (>40 kHz), though applications have been limited to selected cases such as organic–inorganic hybrid materials and resolving paramagnetic shifts in inorganic oxides.

With commercial NMR spectrometers now operating at 28.2 T (1200 MHz for 1H), we became interested in exploiting these high stable magnetic fields combined with fast-spinning solid-state NMR probes for analysis of inorganic oxides, particularly focusing on the structures and dynamics of surface species relevant to catalysis. Here, we highlight several representative case studies showing the dramatic improvements in resolution that can be obtained for inorganic systems.

Received: September 15, 2022
Revised: October 15, 2022
Accepted: October 18, 2022
Published: October 25, 2022
particularly for proton NMR and quadrupolar nuclei, yields highly resolved 1D and 2D MAS NMR spectra that contain key information on surface structures, validating the approach.

We focus first on assessing the resolution obtained in 1H MAS NMR spectra of heterogeneous materials, which can be significantly broadened due to inhomogeneous effects like chemical shift dispersion.1 Nevertheless, the resolution benefits of fast MAS and 28.2 T acquisition conditions are still remarkable. This is illustrated by the 1D 1H MAS NMR spectra of a well-defined silica-supported organometallic species,29,30 the W alkylidene (ArN)$_2$W(Me$_2$Pyr)$_2$(CHCMe$_2$Ph) (Ar = 3,5-dimethyl-phenyl; Me$_2$Pyr = 1,4-dimethylpyrrolide) grafted on partially dehydroxylated silica (SI Figure S2.1). Signals from different methyl, pyrrolidine, aromatic, and alkylidene 1H species are broad and unresolved under conventional measurement conditions (Figure 1, red).

Resolution improves considerably at 28.2 T and 65 kHz MAS (Figure 1, blue, black; SI Section S2). Notably, the 1H NMR signal of the alkylidene proton is well-separated from the aromatic resonances. A shoulder at 10.5 ppm is also partially resolved and assigned based on literature reports to the anti alkylidene rotamer,31 typically present in lower amounts compared to the syn rotamer, which shows a more intense signal at 9.4 ppm. The resolution of different alkylidene species by 1H NMR in the solid state is noteworthy, as the alkylidene moiety is responsible for their olefin metathesis catalytic activity and is typically impossible to observe by 13C MAS NMR without isotopic enrichment.32,33 Such highly resolved 1H MAS NMR spectra could support and improve NMR-based tools for three-dimensional structural determination of surface species.34,35

As a second case study, we observe substantially improved resolution in the solid-state 1H MAS NMR spectra of needle-shaped γ-alumina as a function of magnetic field and MAS rate. Recently, we reported the synthesis and solid-state NMR characterization of needle-shaped γ-alumina crystallites with a larger proportion of edge and surface sites.36 The 1H MAS NMR spectra of the γ-alumina needles resolve surprisingly narrow 1H signals from different OH sites, with resolution improving with both higher field and faster MAS (Figure 2a,b). At 28.2 T and 50 kHz MAS, five 1H NMR signals are clearly resolved at −0.1, 1.1, 1.7, 2.2, and 2.5 ppm, as well as a shoulder at 3.5 ppm. Based on recent experimental and computational analyses,36,37 the signal at −0.1 ppm is assigned to μ_1 Al−OH moieties, those in the 1.1−2.5 ppm region to bridging μ_2 Al−OH−Al moieties, and the shoulder at 3.5 ppm to H-bond donors. To our knowledge, such complex and well-resolved 1H NMR signals have not previously been observed in 1H MAS NMR spectra of γ-alumina. These results open the possibility of identifying signals from Al−OH species at specific edge and facet sites, linking their local structures and corresponding reactivities. Toward this goal, analyses of the present results show that distinct μ_2 Al−OH species participate...
to different extents in a network of interacting and dipole−

dipole coupled surface OH groups. Only the signals at 1.1 and

1.7 ppm narrow substantially with increasing MAS rate (Figure

2a,b, Figure S3.1). The different MAS-dependencies of the

1H signals suggest the influence of substantial

1H dipole−dipole

couplings for specific surface

1H species and appear related to

their very different measured nuclear spin relaxation time

behavior (Table S3.1). The mutual interactions of these

specific sites are corroborated by 2D

1H{1H} nuclear

Overhauser effect spectra (NOESY, Figure S3.2), which

show that the bridging μ2−OH species associated with the

1H signals at 1.1 and 1.7 ppm are highly dynamic/fluctu -

ational and are in very close mutual spatial proximity compared to

those with 1H signals at 2.2 and 2.5 ppm. These

physicochemical insights can provide valuable constraints on

models of the γ-alumina surface, the structure of which is still a

matter of considerable investigation.

The second-order quadrupolar contribution to the NMR

lineshapes of quadrupolar nuclei like 27Al depends inversely on

magnetic field strength,36 yielding narrower lines at higher

fields. For the needle-shaped γ-alumina crystallites, this effect

substantially narrows the 27Al signals from 4- and 6-coordinate

Al sites in the bulk of the material (Figure 2c) and reveals a

weak 27Al signal at 35 ppm from 5-coordinate Al surface sites,

comprising ca. 2% of the total Al (Figure S3.3). Along with

the narrowing of 1H resonances with increasing MAS rate, this

yields remarkable improvement in both

27Al and

1H

dimensions of 2D

1H{27Al} arbitrary indirect dwell (AID)-

dipolar heteronuclear multiple quantum coherence (D-

HMQC) correlation spectra (Figure 2d) compared to spectra

acquired at 16.4 T and 20 kHz. The fast MAS conditions also

allow shorter rotor-synchronized dipolar recoupling periods

(12 rotor periods for recoupling equates to 0.24 ms at 50 kHz

MAS compared to 0.6 ms at 20 kHz MAS). As a result,

shorter-range and stronger 1H−27Al interactions may be

accessed. The 1H signal at ca. −0.1 ppm was previously

observed to correlate with 27Al signals having quadrupolar couple-

ing constant (C_{Q}) values of 8−13.5 MHz in similar 2D

D-HMQC spectra acquired at 16.4 T.36 However, this value is

lower than expected for tetrahedrally coordinated 27Al sites on
the surface of highly dehydroxylated γ-alumina based on first-principles calculations.\(^{39}\) It has been suggested that such \(^1\)H–\(^{27}\)Al double-resonance experiments might enhance relatively narrow signals from subsurface \(^{27}\)Al sites, rather than broader signals from surface species.\(^{39}\) Correspondingly, unambiguous insights into the nature of γ-alumina surfaces have been elusive. Lineshape analyses of 1D slices of the 2D \(^1\)H–\(^{27}\)Al D-HMQC spectrum indicate the presence of correlated \(^{27}\)Al signals with \(C_Q\) values of at least 15.5 MHz (Figure S3.4, Table S3.2), within the 15–20 MHz range calculated for tetrahedrally coordinated surface \(^{27}\)Al sites. The combination of very high magnetic fields and fast spinning thus appears a promising route to detect surface species.

The extensibility of the high field and fast MAS conditions to diverse material systems is illustrated by analysis of a prototypical aluminosilicate catalyst, dehydrated microporous mordenite zeolite. Elucidating the local structures of aluminum heteroatoms in zeolites is of great importance in understanding their reactivities, though the nature and distributions of framework and extra-framework Al sites have long been elusive.\(^{40}\) This is particularly true after dehydroxylation of the framework, which leads to significant broadening of \(^{27}\)Al NMR signals. Recently, our group provided evidence that the Lewis acid sites in mordenite zeolite are pseudo-tricoordinate framework Al interacting with a coordinated siloxane bridge.\(^{41}\) The 1D \(^{27}\)Al NMR spectrum of dehydrated mordenite is substantially narrowed at 28.2 T compared to 16.4 T (Figure 3a), and two different signals are resolved that can be associated by analysis of the 2D \(^{27}\)Al\(^{1}\)H D-HMQC spectra with Brønsted and Lewis acid sites (Figure 3b) as previously discussed.\(^{41}\) The 2D \(^{27}\)Al triple-quantum MAS (TQMAS) spectrum\(^{42}\) of the zeolite (Figure 3c) separates the two signals further and enables their spectroscopic parameters to be estimated, yielding \(C_Q\) values consistent with those previously reported.\(^{41}\)

Interested in the \(^{27}\)Al spectroscopic signature of a true tricoordinate aluminum species with oxygen atoms in the first coordination sphere, we measured the tris(aryloxide) Al\((\text{OAr})_3\) (\(\text{Ar}^*\) = 2,6-di-tert-butyl-4-methyl-phenyl)\(^{35}\) as a model compound (Figure 3d). The compound exhibits a \(^{27}\)Al isotropic shift of 44 ppm and a quadrupolar coupling constant of 29.6 MHz, in very good agreement with values predicted from first-principles calculations (Table S4.1). The \(^{27}\)Al chemical shift of this compound is significantly shielded compared to what is expected for tricoordinate Al in aluminosilicates (\(\delta_{iso} = 87\) ppm and \(C_Q = 35\) MHz)\(^{46}\) due to the differences of aryloxide vs (surface) siloxide ligands and associated \(\sigma/\pi\) effects,\(^{45}\) but shows similar quadrupolar coupling constants as expected from their similar trigonal planar geometry.\(^{44}\) At lower magnetic field strengths or without adequate MAS rates, static wide-line excitation and detection methods are necessary to extract the \(^{27}\)Al parameters of such Al sites,\(^{46}\) which would limit spectral resolution. Though such tricoordinate Al species have been proposed to exist under some conditions in aluminosilicate zeolites,\(^{47}\) their spectroscopic signatures have never been observed before and would be basically impossible to resolve at lower magnetic fields due to overlap of signals from other Al sites (Figure S4.1). Comparison of the \(^{27}\)Al spectra of mordenite zeolite and Al\((\text{OAr})_3\) shows no evidence for large-C\(_Q\) species consistent with tricoordinate Al, corroborating our recent conclusion that the Lewis acid sites in mordenite zeolite under these conditions are predominantly pseudo-tricoordinate Al sites having a labile siloxane moiety coordinated.\(^{41}\)

Overall, the adoption of high field (28.2 T) and fast MAS (>50 kHz) provides a substantial advantage for measurement of highly resolved solid-state NMR spectra of surfaces and materials. Though demonstrated only for select cases here, the methods will be extensible to diverse other inorganic, organometallic, and organic–inorganic hybrid materials. We anticipate that the advent and broader adoption of very high field NMR spectrometers and fast-spinning probe-heads including probes capable of MAS rates >100 kHz will additionally spur the development of new solid-state NMR pulse sequences, instrumentation, and methods to optimize sensitivity and resolution. In particular, these measurement conditions provide exceptional promise for high-resolution spectra of quadrupolar nuclei.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacsau.2c00510.

Experimental section, computational details, further characterization, additional solid-state NMR results and analyses (PDF)

AUTHOR INFORMATION

Corresponding Authors

Christophe Copéret — Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland; orcid.org/0000-0001-9660-3890; Email: ccoperet@ethz.ch

Alexander B. Barnes — Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland; orcid.org/0000-0003-3748-8508; Email: alexander.barnes@phys.chem.ethz.ch

Authors

Zachariah J. Berkson — Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland; orcid.org/0000-0002-2157-4172

Snædis Bjorgvinssdóttir — Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland

Alexander Yakimov — Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland; orcid.org/0000-0002-8624-1002

Domenico Giofrè — Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland; orcid.org/0000-0003-2208-4148

Maciej D. Korzynski — Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland; Present Address: Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road Mississauga, Ontario L5L 1C6; orcid.org/0000-0002-6577-1821

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/jacsau.2c00510

Author Contributions

CRediT: Zachariah J. Berkson conceptualization, formal analysis, investigation, methodology, writing-original draft, writing-review & editing; Snædis Bjorgvinssdóttir conceptual-
ization, formal analysis, investigation, methodology, writing-review & editing; Alexander V. Yakimov formal analysis, methodology, writing-review & editing; Domenico Gioffrè formal analysis, investigation, writing-review & editing; Maciej D. Korzyński investigation, writing-review & editing; Christophe Copéret conceptualization, formal analysis, investigation, project administration, resources, supervision, writing-review & editing; D. Korzyn methodology, writing-review & editing; JACS Au

This work was supported by the NCCR Catalysis, a National Centre of Competence in Research funded by the Swiss National Science Foundation (SNSF fund number: 180544). Z.J.B. and A.Y. both thank ETH Career Seed Awards. D.G. gratefully acknowledges the Swiss National Science Foundation (SNSF fund number: 200020B_192050). Z.J.B., A.Y., and D.G. gratefully acknowledge ETH+ Project SynMatLab for the financial support.

ACKNOWLEDGMENTS

The authors declare no competing financial interest.

REFERENCES

1. Renault, M.; Cukkemane, A.; Baldus, M. Solid-State NMR Spectroscopy on Complex Biomolecules. Angew. Chemie - Int. Ed. 2010, 49 (45), 8346–8357.

2. Schmidt-Rohr, K.; Spiess, H. W. Multidimensional Solid-State (NMR) and Polymers: Academic Press, 1994.

3. Grey, C. P.; Dupre, N. NMR Studies of Cathode Materials for Lithium-Ion Rechargeable Batteries. Rev. Chem. 2004, 104 (10), 4493–4512.

4. Seifrid, M.; Reddy, G. N. M.; Chmelka, B. F.; Bazan, G. C. Insight into the Structures and Dynamics of Organic Semiconductors through Solid-State NMR Spectroscopy. Nat. Rev. Mater. 2020, 5 (12), 910–930.

5. Xu, J.; Wang, Q.; Deng, F. Metal Active Sites and Their Catalytic Functions in Zeolites; Insights from Solid-State NMR Spectroscopy. Acc. Chem. Res. 2019, 52 (8), 2179–2189.

6. Chmelka, B. F. Materializing Opportunities for NMR of Solids. J. Magn. Reson. 2019, 306, 91–97.

7. Andreas, L. B.; Jaudzems, K.; Stanek, J.; Lalli, D.; Bertarello, A.; Le Marchand, T.; Cala-De Paepe, D.; Kotelovica, S.; Akopjana, I.; Knott, B.; et al. Structure of Fully Protonated Proteins by Proton-Detected Magic-Angle Spinning NMR. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (33), 9187–9192.

8. Callon, M.; Malár, A. A.; Pfister, S.; Rimal, V.; Weber, M. E.; Wiegand, T.; Zehnder, J.; Chávez, M.; Cadalbert, R.; Deb, R.; et al. Biomolecular Solid-State NMR Spectroscopy at 1200 MHz: The Gain in Resolution. J. Biomol. NMR 2021, 75 (6–7), 255–272.

9. Le Marchand, T.; Schubeis, T.; Bonaccorsi, M.; Paluc, P.; Lalli, D.; Pell, A. J.; Andreas, L. B.; Jaudzems, K.; Stanek, J.; Pintacuda, G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem. Rev. 2022, 122 (10), 9943–10018.

10. Wasmer, C.; Lange, A.; Van Melckebeke, H.; Siemer, A. B.; Rieß, R.; Meier, B. H. Amyloid Fibrils of the HET-s(218–289) Peptide Form a β Solenoid with a Triangular Hydrophobic Core. Science 2008, 319 (5869), 1523–1526.

11. Bertarello, A.; Benda, L.; Sanders, K. J.; Pell, A. J.; Knight, M. J.; Pelmenschikov, V.; Gonnelli, L.; Felli, I. C.; Kaupp, M.; Emsley, L.; et al. Picrometer Resolution Structure of the Coordination Sphere in the Metal-Binding Site in a Metalloprotein by NMR. J. Am. Chem. Soc. 2020, 142 (39), 16757–16765.

12. Lalli, D.; Idso, M. N.; Andreas, L. B.; Hussain, S.; Baxter, N.; Han, S.; Chmelka, B. F.; Pintacuda, G. Proton-Based Structural Analysis of a Heptahelical Transmembrane Protein in Lipid Bilayers. J. Am. Chem. Soc. 2017, 139 (37), 13006–13012.

13. Gordon, C. P.; Latsch, L.; Copéret, C. Nuclear Magnetic Resonance: A Spectroscopic Probe to Understand the Electronic Structure and Reactivity of Molecules and Materials. J. Phys. Chem. Lett. 2021, 12 (8), 2072–2085.

14. Kubicki, D. J.; Stranks, S. D.; Grey, C. P.; Emsley, L. NMR Spectroscopy Probes Microstructure, Dynamics and Doping of Metal Halide Perovskites. Nat. Rev. Chem. 2021, 5 (9), 624–645.

15. Gan, Z.; Gor’Kov, P.; Cross, T. A.; Samoson, A.; Massiot, D. Seeking Higher Resolution and Sensitivity for NMR of Quadrupolar Nuclei at Ultrahigh Magnetic Fields. J. Am. Chem. Soc. 2002, 124 (20), 5634–5635.

16. Ashbrook, S. E.; Duer, M. J. Structural Information from Quadrupolar Nuclei in Solid State NMR. Concepts Magn. Reson. Part A 2006, 28A (3), 183–248.

17. Keeler, E. G.; Michaelis, V. K.; Colvin, M. T.; Hung, I.; Gor’Kov, P. L.; Cross, T. A.; Gan, Z.; Griffin, R. G. 170 MAS NMR Correlation Spectroscopy at High Magnetic Fields. J. Am. Chem. Soc. 2017, 139 (49), 17953–17963.

18. Reif, B.; Ashbrook, S. E.; Emsley, L.; Hung, M. Solid-State NMR Spectroscopy. Nat. Rev. Methods Primers 2021, 1 (1), 2.

19. Chen, K.; Horstmeier, S.; Nguyen, V. T.; Wang, B.; Crossley, S. P.; Pham, T.; Gan, Z.; Hung, I.; White, J. L. Structure and Catalytic Characterization of a Second Framework Al(IV) Site in Zeolite Catalysts Revealed by NMR at 35.2 T. J. Am. Chem. Soc. 2020, 142 (16), 7514–7523.

20. Chen, K.; Gan, Z.; Horstmeier, S.; White, J. L. Distribution of Aluminum Species in Zeolite Catalysts: 27Al NMR of Framework, Partially-Coordinated Framework, and Non-Framework Mooteties. J. Am. Chem. Soc. 2021, 143 (17), 6669–6680.

21. Zhao, Z.; Xiao, D.; Chen, K.; Wang, R.; Liang, L.; Liu, Z.; Hung, I.; Gan, Z.; Hou, G. Nature of Five-Coordinated Al in γ-Al 2 O 3 Revealed by Ultra-High-Field Solid-State NMR. ACS Cent. Sci. 2022, 8 (6), 795–803.

22. Wang, Q.; Li, W.; Hung, I.; Mentink-Vigier, F.; Wang, X.; Qi, G.; Wang, X.; Gan, Z.; Xu, J.; Deng, F. Mapping the Oxygen Structure of γ-Al2O3 by High-Field Solid-State NMR Spectroscopy. Nat. Commun. 2020, 11, 3620.

23. Martins, V.; Xu, J.; Wang, X.; Chen, K.; Hung, I.; Gan, Z.; Gervais, C.; Bonhomme, C.; Jiang, S.; Zheng, A.; et al. Higher Magnetic Fields, Finer MOF Structural Information: 17O Solid-State NMR at 35.2 T. J. Am. Chem. Soc. 2020, 142 (35), 14877–14889.

24. Madsen, R. S. K.; Qiao, A.; Sen, J.; Hung, I.; Chen, K.; Gan, Z.; Sen, S.; Yue, Y. Ultra-high-Field 67Zn NMR Reveals Short-Range Disorder in Zeolitic Imidazolate Framework Glasses. Science. 2020, 367 (6485), 1473–1476.

25. Gao, W.; Qi, G.; Wang, Q.; Wang, W.; Li, S.; Hung, I.; Gan, Z.; Xu, J.; Deng, F. Dual Active Sites on Molybdenum/ZSM-5 Catalyst for Methane Dehydroaromatization: Insights from Solid-State NMR Spectroscopy. Angew. Chemie - Int. Ed. 2021, 60 (19), 10709–10715.

26. Lesage, A. Recent Advances in Solid-State NMR Spectroscopy of Spin I = 1/2 Nuclei. Phys. Chem. Chem. Phys. 2009, 11 (32), 6876–6885.

27. George, N. C.; Pell, A. J.; Danette, G.; Page, K.; Llobet, A.; Balasubramanian, M.; Pintacuda, G.; Chmelka, B. F.; Seshadri, R. Local Environments of Dilute Activator Ions in the Solid-State Lighting Phosphor Y3-XCeαAl5O12. Chem. Mater. 2013, 25 (20), 3979–3995.

28. Pell, A. J.; Pintacuda, G.; Grey, C. P. Paramagnetic NMR in Solution and the Solid State. Prog. Magn. Reson. Spectrosc. 2019, 111, 1–271.

29. Blanc, F.; Berthoud, R.; Copéret, C.; Lesage, A.; Emsley, L.; Singh, R.; Kreickmann, T.; Schrock, R. R. Direct Observation of Reaction Intermediates for a Well Defined Heterogeneous Alkene Metathesis Catalyst. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (34), 12123–12127.

30. Mogeel, V.; Santiago, C. B.; Zhizhko, P. A.; Bess, E. N.; Varga, J.; Frater, G.; Sigman, M. S.; Copéret, C. Quantitatively Analyzing Metathesis Catalyst Activity and Structural Features in Silica-
Supported Tungsten Imido-Alkylidene Complexes. J. Am. Chem. Soc. 2015, 137 (20), 6699–6704.
(31) Schrock, R. R.; Crowe, W. E.; Bazan, G. C.; DiMare, M.; O'Regan, M. B.; Schofield, M. H. Monoadducts of Imido Alkylidene Complexes, Syn and Anti Rotamers, and Alkylidene Ligand Rotation. Organometallics 1991, 10 (6), 1832–1843.
(32) Gordon, C. P.; Raynaud, C.; Andersen, R. A.; Copéret, C.; Eisenstein, O. Carbon-13 NMR Chemical Shift: A Descriptor for Electronic Structure and Reactivity of Organometallic Compounds. Acc. Chem. Res. 2019, 52 (8), 2278–2289.
(33) Copéret, C.; Berkson, Z. J.; Chan, K. W.; de Jesus Silva, J.; Gordon, C. P.; Pucino, M.; Zhizhko, P. A. Olefin Metathesis: What Have We Learned about Homogeneous and Heterogeneous Catalysts from Surface Organometallic Chemistry? Chem. Sci. 2021, 12 (9), 3092–3115.
(34) Berruyer, P.; Lelli, M.; Conley, M. P.; Silverio, D. L.; Widdifield, C. M.; Siddiqi, G.; Gajan, D.; Lesage, A.; Copéret, C.; Emsley, L. Three-Dimensional Structure Determination of Surface Sites. J. Am. Chem. Soc. 2017, 139 (2), 849–855.
(35) Cunningham, J.; Perras, F. A. INTERFACES. A Program for Determining the 3D Structures of Surfaces Sites Using NMR Data. J. Magn. Reson. Open 2022, 12–13 (August), 100066.
(36) Völker, L. A.; Meyet, J.; Berkson, Z. J.; Rochlitz, L.; Van Bokhoven, J. A.; Copéret, C. Revisiting Edge Sites of γ-Al2O3 Using Needle-Shaped Nanocrystals and Recoupling-Time-Encoded (27Al)-1H D-HMQC NMR Spectroscopy. J. Phys. Chem. C 2022, 126 (14), 6351–6360.
(37) Batista, A. T. F.; Wisser, D.; Pigeon, T.; Gajan, D.; Diehl, F.; Rivallan, M.; Catita, L.; Gay, A. S.; Lesage, A.; Chizallet, C.; et al. Beyond γ-Al2O3 Crystallite Surfaces: The Hidden Features of Edges Revealed by Solid-State 1H NMR and DFT Calculations. J. Catal. 2019, 378, 140–143.
(38) Venkatash, A.; Perras, F. A.; Rossini, A. J. Proton-Detected Solid-State NMR Spectroscopy of Spin-1/2 Nuclei with Large Chemical Shift Anisotropy. J. Magn. Reson. 2021, 327, 106983.
(39) Wischert, R.; Florian, P.; Copéret, C.; Massiot, D.; Sautet, P. Visibility of Al Surface Sites of γ-Alumina: A Combined Computational and Experimental Point of View. J. Phys. Chem. C 2014, 118 (28), 15292–15299.
(40) Berkson, Z. J.; Hsieh, M.; Smeets, S.; Gajan, D.; Lund, A.; Lesage, A.; Xie, D.; Zones, S. I.; McCusker, L. B.; Baerlocher, C.; et al. Preferential Siting of Aluminum Heteroatoms in the Zeolite Catalyst Al-SSZ-70. Angew. Chemie Int. Ed. 2019, 58 (19), 6255–6259.
(41) Yakimov, A. V.; Ravi, M.; Verel, R.; Sushkevich, V. L.; van Bokhoven, J. A.; Copéret, C. Structure and Framework Association of Lewis Acid Sites in MOR Zeolite. J. Am. Chem. Soc. 2022, 144 (23), 10377–10385.
(42) Frydman, L.; Grant, D. M.; Harris, R. K. Fundamentals of Multiple-Quantum Magic-Angle Spinning NMR on Half-Integer Quadrupolar Nuclei. Encycl. Nucl. Magn. Reson. 2002, 9, 262–274.
(43) Healy, M. D.; Barron, A. R. Synthesis and Structure of Al(OAr3)2 (Ar3 = 2,6-iBu2–4-MeC6H2): The First Three-Coordinate Homoleptic Aluminum Aryloxide. Angew. Chem., Int. Ed. Engl. 1992, 31 (7), 921–922.
(44) Lam, E.; Comas-Vives, A.; Copéret, C. Role of Coordination Number, Geometry, and Local Disorder on 27Al NMR Chemical Shifts and Quadrupolar Coupling Constants: Case Study with Aluminosilicates. J. Phys. Chem. C 2017, 121 (36), 19946–19957.
(45) Berkson, Z. J.; Lätisch, L.; Hillenbrand, J.; Fürstner, A.; Copéret, C. Classifying and Understanding the Reactivities of Mo-Based Alkyn Metathesis Catalysts from 95 Mo NMR Chemical Shift Descriptors. J. Am. Chem. Soc. 2022, 144 (33), 15020–15025.
(46) Tang, J. A.; Masuda, J. D.; Boyle, T. J.; Schurko, R. W. Ultra-Wideline 27Al NMR Investigation of Three- and Five-Coordinate Aluminum Environments. ChemPhysChem 2006, 7 (1), 117–130.
(47) Yi, X.; Liu, K.; Chen, W.; Li, J.; Xu, S.; Li, C.; Xiao, Y.; Liu, H.; Guo, X.; Liu, S.-B.; Zheng, A. On the Origin and Structure Characteristics of Tri-Coordinated Extratframework Aluminum Species in Dealuminated Zeolites. J. Am. Chem. Soc. 2018, 140 (34), 10764–10774.
(48) Le Caër, G.; Bureau, B.; Massiot, D. An Extension of the Czjzek Model for the Distributions of Electric Field Gradients in Disordered Solids and an Application to NMR Spectra of 71Ga in Chalcogenide Glasses. J. Phys.: Condens. Matter 2010, 22 (6), No. 065402.