Topological Machine Learning for Mixed Numeric and Categorical Data

Chengyuan Wu*,† and Carol Anne Hargreaves*,‡

*Data Analytics Consulting Centre, Department of Statistics and Applied Probability
National University of Singapore, Singapore 117546, Singapore
†stawuc@nus.edu.sg
‡stacah@nus.edu.sg

Topological data analysis is a relatively new branch of machine learning that excels in studying high dimensional data, and is theoretically known to be robust against noise. Meanwhile, data objects with mixed numeric and categorical attributes are ubiquitous in real-world applications. However, topological methods are usually applied to point cloud data, and to the best of our knowledge there is no available framework for the classification of mixed data using topological methods. In this paper, we propose a novel topological machine learning method for mixed data classification. In the proposed method, we use theory from topological data analysis such as persistent homology, persistence diagrams and Wasserstein distance to study mixed data. The performance of the proposed method is demonstrated by experiments on a real-world heart disease dataset. Experimental results show that our topological method outperforms several state-of-the-art algorithms in the prediction of heart disease.

Keywords: Topological data analysis; machine learning; artificial intelligence; mixed data; heart disease.

1. Introduction

Topological data analysis (TDA) is a relatively new subject that is gaining popularity in many fields, such as network analysis,8,26 biomolecular chemistry,54,55 and drug design.7,53 Topological data analysis is often referred to as studying the “shape” of data, in order to deduce fundamental characteristics of the data. The primary tool used in TDA is persistent homology,17,56 though there are also other tools such as Mapper,38,45 discrete Morse theory,19,43,52 as well as other techniques from algebraic topology.23,33,50,51 It is generally acknowledged that topological data analysis is effective at analyzing high-dimensional noisy data.1,39 We also remark that topological methods have also recently gained prominence in physics, with the 2016 Nobel Prize in Physics being awarded for theoretical discoveries of topological phase transitions and topological phases of matter.22

In real-world applications, data sets often have both numeric and categorical attributes. The coexistence of numeric and categorical variables often makes machine learning methods designed for single-type data inapplicable to mixed-type data.27,29 Traditionally, TDA is usually applied to point cloud data or spatial data.20 The
strengths of TDA include the property of being coordinate-free (independent of the coordinate system chosen), as well as being translation-invariant and rotation-invariant. A drawback of these strengths is that it may be hard for TDA to effectively analyze data that is sensitive to choice of coordinates, translation, and/or rotation. Examples of such data include data with heterogeneous features, where each coordinate represents a fundamentally different feature (e.g., light, temperature, humidity).

To the best of our knowledge, there is currently no readily available framework for the classification of mixed numeric and categorical data using TDA. In view of the ubiquity of mixed-type data and the rising popularity of TDA, it is of interest to develop a topological machine learning method for mixed data.

In this paper, we propose a novel topological machine learning method for mixed data (TopMix). In our method, the categorical variables are first converted to binary variables via one-hot encoding. All predictor variables are subsequently standardized, and a basic symmetry breaking technique is applied to the data for TDA to better deal with heterogeneous features. Subsequently, each data point is converted into a point cloud via multiple projection maps. We then generate persistence diagrams from the point cloud data, and calculate the Wasserstein distance between the persistence diagrams. Lastly, we use the k-nearest neighbors algorithm (k-NN) for supervised machine learning (classification). The basic workflow of our paper is summarized in Figure 1.

For applications, we apply our method to heart disease prediction. Heart disease is the leading cause of death in the industrialized world. For instance, in 2002, 696,947 people in the United States died of heart disease, compared with 557,271 deaths from cancer. We use a dataset originating from the seminal paper by R. Detrano et al. In the dataset, there are 14 attributes including numeric and categorical variables. The goal is to predict whether a patient has heart disease (>50% luminal narrowing of any major epicardial vessel) or not. We show that topological methods are effective in predicting heart disease using mixed data. Our topological method outperforms several state-of-the-art algorithms on the classification of
heart disease.

The rest of the paper is organized as follows. We first review some related work in Section 1.1. This is followed by a brief introduction to the background information on TDA in Section 2. In Section 3, we present our topological machine learning method for mixed numeric and categorical data. In Section 4, we report the experimental results, which demonstrate the viability of the proposed method. Finally, we draw conclusions in Section 5.

1.1. Related Work

In the paper by X. Ni et al.,37 the authors propose a clustering method for mixed data based on a tree-structured graphical model. Their tree-structured model factorizes into a product of pairwise interactions. Furthermore, the authors leverage theory from TDA to adaptively merge trivial peaks of the density function into larger ones in order to achieve meaningful clusterings. Persistent homology theory is used to automatically determine the number of clusters in the data. An earlier seminal paper by Chazal et al.9 introduced the novel idea of using topological persistence to guide the merging of clusters. Their algorithm provides additional feedback in the form of a persistence diagram, which the authors prove to reflect the prominences of the modes of the density. The algorithm requires rough estimates of the density at the data points, and knowledge of approximate pairwise distances between them, and hence is applicable in any metric space. Their method can be theoretically proven to output the correct number of clusters under certain mild sampling conditions.

In recent years, topological techniques have been effectively combined with machine learning or statistical methods. In the paper by C. Hofer et al.,25 the authors introduced a technique that enables the input of topological signatures to deep neural networks for learning a task-optimal representation during training. An advantage of their method is that it learns the representation instead of mapping topological signatures to a pre-defined representation. P. Bubenik defined the persistence landscape,6 which is a novel topological summary for data. Since this summary lies in a vector space, it is possible to combine it with tools from statistics and machine learning. A number of standard statistical tests can be used for statistical inference using persistence landscapes, for example the two-sample Z-test and Hotelling’s T^2 test.

C. Wu and C. A. Hargreaves49 developed a framework for analyzing multivariate time series using TDA. The methodology includes converting the multivariate time series to point cloud data, calculating Wasserstein distances between the persistence diagrams, and using the k-NN algorithm for classification. For applications, the authors focus on room occupancy detection based on 5 time-dependent variables (temperature, humidity, light, CO_2 and humidity ratio).

In the paper by J. Ji et al.,29 the authors propose a new initialization method for mixed data clustering. Prior to their paper, most of the initialization approaches
are dedicated to partitional clustering algorithms which process either categorical or numerical data only. In the paper, the authors introduce a new definition of density to assess the cohesiveness of data objects with mixed numeric and categorical attributes.

A. Ahmad and L. Dey2 presented a clustering algorithm that works well for data with mixed numeric and categorical features. The authors propose a new cost function and distance measure based on co-occurrence of values. In their scheme, $\delta(p, q)$ which denotes the distance between a pair of distinct values p and q of an attribute, is computed as a function of their co-occurrence with other attribute values. The contribution of a categorical attribute is inherent in the distance measure itself and need not be user defined.

The paper by J. Nahar et al.36 investigates various computational intelligence techniques in the detection of heart disease. In the paper, the Cleveland dataset14 from the UCI Machine Learning Repository15 is used. In particular, the authors highlight the potential of a medical knowledge driven feature selection process for heart disease diagnosis. Experiments show that the medical knowledge based feature selection method has shown promise for use in heart disease diagnostics.

R. Das, I. Turkoglu and A. Sengur13 explored the effective diagnosis of heart disease through neural network ensembles. Ensemble based methods can enable an increase in performance by combining several individual neural networks to train on the same task. The authors utilize SAS base software 9.1.3 in their methodology, and achieved good results using three independent neural network models in the ensemble model.

2. Background

We give a brief overview of the key concepts in TDA and persistent homology, and refer the reader to the appropriate references for more details. A classical text for algebraic topology is the book by A. Hatcher.24 The survey article by H. Edelsbrunner and J. Harer,16 as well as the review paper by R. Ghrist,20 provide a superb introduction to persistent homology. In addition, the paper by A. Zomorodian and G. Carlsson56 gives a comprehensive overview of persistent homology from a mathematical and computational perspective.

2.1. Simplicial complexes

Simplicial complexes are one of the main objects of study in algebraic topology. A simplicial complex can be regarded as a set composed of vertices, edges, triangles, and higher dimensional simplices.

More formally, a simplicial complex K is a collection of sets such that $\sigma \in K$ and $\tau \subseteq \sigma$ implies $\tau \in K$. The sets $\sigma \in K$ are called the simplices of the simplicial complex K. We call the singleton sets $\{v\}$ the vertices of K. The dimension of a simplex $\sigma \in K$ is defined to be $\dim(\sigma) = |\sigma| - 1$, and we call a simplex of dimension
A type of simplicial complex frequently used in TDA is the Vietoris-Rips complex (or Rips complex for short).

Definition 1 (Rips complex). Let \(\{x_i\} \) be a set of points in the Euclidean space \(\mathbb{R}^n \). The Rips complex \(\mathcal{R}_\varepsilon \) is the simplicial complex whose \(k \)-simplices consist of each subset of \(k + 1 \) points \(\{x_j\}_{j=0}^k \) which are pairwise within distance \(\varepsilon \).

We also introduce the notion of a filtration of a simplicial complex \(K \), which is a nested sequence of complexes \(\emptyset = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_m = K \). We say that \(K \) is a filtered complex.

2.2. Homology

The \(k \)th chain group \(C_k \) of a simplicial complex \(K \) is defined to be the free abelian group with basis the set of oriented \(k \)-simplices. The boundary operator \(\partial_k : C_k \to C_{k-1} \) is defined on an oriented simplex \(\sigma = [v_0, v_1, \ldots, v_k] \) by

\[
\partial_k(\sigma) = \sum_{i=0}^{k} (-1)^i [v_0, \ldots, \hat{v}_i, \ldots, v_k],
\]

where \(\hat{v}_i \) denotes the deletion of the vertex \(v_i \).

Subsequently, the \(k \)th homology group is defined as the quotient \(H_k = Z_k/B_k \), where \(Z_k = \ker \partial_k \) and \(B_k = \text{Im} \partial_{k+1} \) are the cycle group and the boundary group respectively. The rank of the \(k \)th homology group \(\beta_k = \text{rank}(H_k) \) can be said to count the number of \(k \)-dimensional “holes” in \(K \), as illustrated in Figure 3.

2.3. Persistent homology

Given a filtered complex \(K \), we may define the corresponding boundary operators \(\partial_t \) and groups \(C_t, Z_t, B_t, H_t \) for the \(t \)th complex \(K_t \). The \(p \)-persistent \(k \)th homology group of \(K_t \) is defined as

\[
H_{kp}^t = Z_t^k/(B_t^{k+p} \cap Z_t^k).
\]
The filtered complex K is usually obtained by the construction of Rips complexes over a range of distances ϵ. Persistent homology detects those topological features which persist over a parameter range, revealing meaningful structures in the data.

3. Topological Machine Learning for Mixed Numeric and Categorical Data

In this section, we describe our approach of using topological machine learning methods to analyze mixed data. A basic summary of the workflow can be found in Figure 1.

3.1. Notation

We first introduce a standard notation for mixed data, following the paper by Z. Huang and M. K. Ng,28 as well as J. Ji et al.29 Let $X = \{X_1, X_2, \ldots, X_n\}$ denote a dataset of n data objects. Each object X_i has m attributes A_1, A_2, \ldots, A_m. We represent each X_i as a m-tuple $(x_{i,1}, x_{i,2}, \ldots, x_{i,m})$. Each attribute A_j is associated with a domain of values, denoted by $\text{Dom}(A_j)$, which is either numeric (real numbers) or categorical (finite, unordered set). A categorical domain is generally represented by $\text{Dom}(A_j) = \{a_{j,1}, a_{j,2}, \ldots, a_{j,s}\}$, where s is the number of possible categorical values for the categorical attribute A_j. Each data object X_i can be logically represented as a conjunction of attribute-value pairs:

$$[A_1 = x_{i,1}] \land [A_2 = x_{i,2}] \land \cdots \land [A_m = x_{i,m}].$$

3.2. Methodology

3.2.1. One-hot encoding

Firstly, we apply one-hot encoding to the mixed data, converting each categorical variable with s possible values to s binary variables. That is, each categorical attribute A_j with $\text{Dom}(A_j) = \{a_{j,1}, a_{j,2}, \ldots, a_{j,s}\}$ is replaced with s binary attributes B_1, B_2, \ldots, B_s, with $\text{Dom}(B_i) = \{0, 1\}$ for $1 \leq i \leq s$.
3.2.2. Standardization

We standardize all variables (including binary variables) to have zero mean and unit variance. This is to ensure that all variables are on the same scale, preventing a feature with larger scale from dominating other features. We remark that the standardization of binary variables is also done in the algorithms KNNImpute (for categorical data)46 and Lasso.47

3.2.3. Symmetry breaking

Symmetry breaking refers to adding a fixed constant vector to each data object, with the purpose of enabling TDA methods to better distinguish point clouds that may just differ by translation or rotation. Symmetry breaking was introduced in the context of studying multivariate time series using topological methods.49 Basically, symmetry breaking attempts to “disable” the translational / rotational invariance property of TDA for data that do not require it.

Definition 2 (Symmetry breaking). Let $X = (x_1, x_2, \ldots, x_m)$ be a data object represented as a m-tuple in \mathbb{R}^m. Let $v = (c_1, c_2, \ldots, c_m)$ be a fixed vector in \mathbb{R}^m. We define the new data object X' obtained by symmetry breaking (of X) to be $X' = X + v$.

An example of the fixed vector is $v = (5, 6, 7, \ldots, m + 4)$. We will be using this fixed vector in the paper. In Section 3.3, we will illustrate how symmetry breaking can be useful in analyzing data with heterogeneous features, as well as explain our heuristic choice of fixed vector v.

3.2.4. Projection maps

After applying symmetry breaking, the new data object

$$X' = (x_1 + c_1, x_2 + c_2, \ldots, x_m + c_m)$$

is a single point in \mathbb{R}^m. However, a single point has trivial homology and trivial persistent homology, hence we will need a point cloud (set of multiple data points in Euclidean space) in order for topological methods to work.

Definition 3. The ith projection map $p_i : \mathbb{R}^m \to \mathbb{R}^m$ is defined by

$$p_i(y_1, y_2, \ldots, y_i, \ldots, y_m) = (y_1, y_2, \ldots, 0, \ldots, y_m).$$

The projection map p_i changes the ith coordinate of a vector to 0. This is equivalent to projecting the vector onto the hyperplane $H = \{(x_1, x_2, \ldots, x_m) \in \mathbb{R}^m \mid x_i = 0\}$. The projection map defined above is idempotent, namely $p_i \circ p_i = p_i$.
3.2.5. Point clouds

We define the point cloud \(S(X') \) associated to the data object \(X' \in \mathbb{R}^m \) to be
\[
S(X') = \{X'\} \cup \{p_1(X'), p_2(X'), \ldots, p_m(X')\}.
\]

That is, \(S(X') \) consists of \(m+1 \) points, namely the point \(X' \) as well as the \(m \) projected points \(p_1(X'), p_2(X'), \ldots, p_m(X') \). We show an example for the case \(m=3 \) in Figure 4.

Fig. 4. For \(m=3 \), the point cloud \(S(X') \) consists of \(X' \), as well as the 3 projected points \(p_1(X'), p_2(X') \) and \(p_3(X') \). The 3 projected points are projections of \(X' \) onto the \(yz \)-, \(xz \)-, and \(xy \)-planes respectively.

The point cloud \(S(X') \) contains intrinsic information about the data object \(X' \) in the form of distances between the points in \(S(X') \). For instance, if \(X' = (y_1, y_2, \ldots, y_m) \), we can calculate the following Euclidean distances between \(X' \) and its projections:
\[
d(X', p_i(X')) = |y_i|, \tag{1}
\]
\[
d(p_i(X'), p_j(X')) = \sqrt{y_i^2 + y_j^2}. \tag{2}
\]

3.2.6. Persistence diagrams

A persistence diagram\(^{11}\) is a multiset of points in the space \(\Delta := \{(b, d) \in \mathbb{R}^2 \mid b, d \geq 0, b \leq d\} \). Each point \((b, d) \) represents a persistent generator (of a given dimension), where \(b \) denotes the birth of the generator and \(d \) its death. In brief, the persistence diagram is a visual representation of the persistent homology of a point cloud. The persistence diagram is independent of choice of generators and hence is unique.\(^{12}\) A notable result is the stability of persistence diagrams with respect to Hausdorff distance, bottleneck distance,\(^{11}\) as well as Wasserstein distance.\(^{12}\) Such stability results give TDA the benefit of being robust to noise.
3.2.7. k-NN (Wasserstein distance)

The Wasserstein distance is commonly used to compare between two persistence diagrams.

Definition 4. The p-th Wasserstein distance between two persistence diagrams D_1, D_2 (of the same dimension) is defined to be

$$W_p(D_1, D_2) = \left(\inf_{\varphi : D_1 \to D_2} \sum_{x \in D_1} \| x - \varphi(x) \|_\infty^p \right)^{1/p},$$

where the infimum is taken over all bijections φ between D_1 and D_2.

As p tends to infinity, the Wasserstein distance W_p approaches the bottleneck distance W_∞. The bottleneck distance captures the most perturbed topological feature (or the extreme behavior) of a point cloud, and can lead to noisier results than the Wasserstein distance. For this paper, we will use the Wasserstein distance with $p = 1$, also known as the 1-Wasserstein distance or "earth mover’s distance". The 1-Wasserstein distance is widely utilized in computer science, including a recent usage in generative adversarial networks.

Subsequently, to carry out classification (supervised machine learning), we use the k-nearest neighbors algorithm (k-NN) based on the Wasserstein distance. For each point cloud $S(X')$ (corresponding to a data object X') in the test set, we will determine its k-nearest neighbors $\{S(Y_1), S(Y_2), \ldots, S(Y_k)\}$ in the training set, with respect to the Wasserstein distance. Finally, we classify X based on the majority class of the elements in the set $\{Y_1, Y_2, \ldots, Y_k\}$.

3.3. Elaboration on symmetry breaking

In this section, we illustrate how symmetry breaking, together with projection maps, can be helpful in analyzing data with heterogeneous features.

Consider two data objects $X = (1, 2)$ and $Y(2, 1)$. Their associated point clouds are $S(X) = \{(1, 2), (0, 2), (1, 0)\}$ and $S(Y) = \{(2, 1), (0, 1), (2, 0)\}$. We note that the pairwise distances between points in $S(X)$ are exactly the same as the respective pairwise distances between points in $S(Y)$, namely 1, 2 and $\sqrt{5}$. This would mean that topological methods will not be able to distinguish between $S(X)$ and $S(Y)$. The basic principle is that topological methods does not distinguish between point clouds that are related by “symmetry” (e.g. differ by rotation, translation, reflection).

Now, consider $v = (5, 6)$ such that we have

$$X' = X + v = (6, 8)$$

and

$$Y' = Y + v = (7, 7).$$
Then, the associated point clouds become \(S(X') = \{(6, 8), (0, 8), (6, 0)\} \) and \(S(Y') = \{(7, 7), (0, 7), (7, 0)\} \). The pairwise distances between points in \(S(X') \) are 6, 8 and 10, while the pairwise distances between points in \(S(Y') \) are 7, 7 and \(7\sqrt{2} \). Due to the difference in distances, TDA will be able to tell apart the point clouds \(S(X') \) and \(S(Y') \), which is the desired outcome.

Next, we will explain our heuristic choice of fixed vector \(\mathbf{v} = (5, 6, 7, \ldots, m+4) \) as mentioned in Section 3.2.3. The main reason is to try to make the components \(y_i \) in the data object \(X' = (y_1, y_2, \ldots, y_m) \) all positive (or mostly positive). By observing Equations 1 and 2 in Section 3.2.5, we see that the distances \(|y_i| \) and \(\sqrt{y_i^2 + y_j^2} \) are not sensitive to signs (positive/negative) of the components \(y_i \). For instance, there would be difficulty in distinguishing between say, \(X' = (1, 2) \) and \(Y' = (-1, 2) \). Thus, we can see that our proposed method works better if components in the data objects are all positive (or mostly positive).

After the standardization step, each component \(x_i \) of the data object \(X = (x_1, x_2, \ldots, x_m) \) comes from a distribution with mean 0 and standard deviation 1. Hence, by adding the fixed vector \(\mathbf{v} = (5, 6, 7, \ldots, m + 4) \) (note that all components of \(\mathbf{v} \) are 5 and above) to \(X \), we have taken reasonable steps to try to make components of \(X' = X + \mathbf{v} \) mostly positive, since only components that are more than 5 standard deviations below the mean (in \(X \)) would remain negative in \(X' \). We remark that the above choice of fixed vector \(\mathbf{v} \) is not unique (there could be other choices of \(\mathbf{v} \) that work as well).

4. Experimental Results

To evaluate the effectiveness of our proposed method, we use a real-world mixed dataset on heart disease\(^1\) taken from the UCI Machine Learning Repository.\(^2\) We focus on the Cleveland dataset, which comprises of data from patients referred for coronary angiography at the Cleveland Clinic. The algorithms were mostly implemented in Python, with the exception of computing persistence diagrams and Wasserstein distances using the R package TDA.\(^3\) The codes in the paper are made publicly available on GitHub: https://github.com/wuchengyuan88/topology-mixed-data.

The 14 attributes of the heart disease dataset along with their data types and a brief description are presented in Table 1. For this dataset, heart disease is defined as greater than 50% luminal narrowing of any major epicardial vessel.

After one-hot encoding, there are a total of 25 predictive attributes. Hence, each patient is represented as a data object \(X \) in \(\mathbb{R}^m \), where \(m = 25 \). Each patient will then be represented by a point cloud \(S(X') \) consisting of \(25 + 1 = 26 \) points in \(\mathbb{R}^{25} \).

For the construction of persistence diagrams, we use the ripsDiag function in the R package TDA. We show examples of two persistence diagrams from different classes in Figure 5. Qualitatively, we can visually observe some differences, for instance the persistence diagram for the patient of class 1 (heart disease) contains a denser cluster of points in the region corresponding to low death times of ap-
Table 1. Attributes of the heart disease dataset (6 numeric and 7 categorical predictive attributes, and 1 categorical target attribute).

Attribute	Data type	Brief description
age	numeric	Age in years
sex	categorical	Gender of patient (1 = male; 0 = female)
cp	categorical	Chest pain type (1 = typical angina; 2 = atypical angina; 3 = non-anginal pain; 4 = asymptomatic)
trestbps	numeric	Resting blood pressure in mmHg
chol	numeric	Serum cholesterol in mg/dl
fbs	categorical	Fasting blood sugar > 120 mg/dl (1 = true; 0 = false)
restecg	categorical	Resting electrocardiographic results (0 = normal; 1 = having ST-T wave abnormality; 2 = left ventricular hypertrophy)
thalach	numeric	Maximum heart rate achieved
exang	categorical	Exercise induced angina (1 = yes; 0 = no)
oldpeak	numeric	ST depression induced by exercise relative to rest
slope	categorical	Slope of the peak exercise ST segment (1 = upsloping; 2 = flat; 3 = downsloping)
ca	numeric	Number of major vessels (0-3) colored by fluoroscopy
thal	categorical	Heart status (3 = normal; 6 = fixed defect; 7 = reversible defect)
num (target attribute)	categorical	Presence of heart disease (0 = healthy; 1 = heart disease)

Proximately 5 to 8. Quantitatively, the difference between persistence diagrams is measured by the Wasserstein distance, using the \texttt{wasserstein} function from the R package \texttt{TDA}. For this paper, distances between persistence diagrams are computed using 0 dimensional features, as we experimentally observe that 1 dimensional and higher features rarely appear in the persistence diagrams for our dataset.

We split our initial dataset (consisting of 297 patients in the Cleveland heart disease dataset) randomly into training, validation and test sets in a 60:20:20 ratio. A further summary of the split data sets can be found in Table 2.

Table 2. Description of split data sets.

Data set	Number of patients	Data class distribution (%)	
		0 (healthy)	1 (heart disease)
Training set	179	54.19	45.81
Validation set	50	52.54	47.46
Test set	50	54.24	45.76

To choose a suitable value for the parameter k in the k-NN algorithm, we experiment with various values of k on the validation set. The k nearest neighbors will be selected from the training set based on the Wasserstein distance. We show the accuracy, sensitivity (true positive rate) and specificity (true negative rate) for various values of k in Table 3. We select $k = 5$ as it corresponds to the highest
accuracy, as well as relatively high sensitivity and specificity (above 70%).

Table 3. Accuracy, sensitivity and specificity for different values of k on the validation set.

Value of k	1	2	3	4	5	6	7	8	9	10
Accuracy (%)	69.49	74.58	76.27	77.97	**81.36**	79.66	77.97	76.27	77.97	79.66
Sensitivity (%)	64.29	85.71	78.57	82.14	**75.00**	78.57	71.43	71.43	67.86	75.00
Specificity (%)	74.19	64.52	74.19	74.19	**87.10**	80.65	83.87	80.65	87.10	83.87

With the chosen value of $k = 5$, we show the results for the test set in Table 4. We achieve a high level of accuracy, sensitivity (recall of positive class) and specificity (recall of negative class) on the test set.

Table 4. Results for test set (using $k = 5$).

Accuracy (%)	Sensitivity (%)	Specificity (%)	Precision (%)	F_1 score (%)
89.83	88.89	90.62	90.62	88.89

Following best practices in machine learning, we also report the results for 10-fold cross-validation. The optimal value of k (for the k-NN algorithm) in the case.
of 10-fold cross-validation is found to be $k = 16$. We list the results in Table 5.

Accuracy (%)	Sensitivity (%)	Specificity (%)	Precision (%)	F_1 score (%)
82.52	79.51	85.54	82.89	82.10
			83.90	80.37

Table 5. Results for 10-fold cross-validation (using $k = 16$).

For reference, the accuracy of state-of-the-art algorithms reported in the literature typically ranges from around 60% to 90%.10,13,31,36,40,41 We compare our test set results with some previous results reported in literature. We remark that some of the accuracy results in the literature are based on 10-fold cross-validation on the total data, while other results are based on train-test splits. The 10-fold cross-validation methodology has the advantage of reduced bias as every data point gets to be tested exactly once and is used in training 9 times. However, some authors also argued that selecting the best training parameters on a validation set and reporting prediction on a test set (which is how we obtained our test accuracy) is more authentic than simply performing a 10-fold cross-validation on a training set.36

Table 6 gives the classification accuracies of our method and other previous approaches. Our Topological Machine Learning for Mixed Data method (TopMix) outperforms 25 other algorithms, including several state-of-the-art algorithms.

5. Conclusions

Data objects with mixed numeric and categorical attributes are common in real-world applications. However, many algorithms are not compatible with mixed data and can only work on single-type data, that is, either numeric or categorical data. On the other hand, TDA is a rapidly emerging machine learning method that has benefits of robustness to noise and effectiveness in high dimensions. However, traditionally TDA is applied to point cloud data, not mixed data.

In this paper, we proposed a novel topological machine learning method to classify mixed numeric and categorical data. In our method, we utilize theory from TDA such as persistent homology, persistence diagrams and Wasserstein distance in order to study mixed data. In doing so, we expand the repertoire of TDA to include mixed data.

We test our proposed method on a heart disease dataset from the UCI machine learning repository. The experimental results demonstrate that the proposed method is effective at predicting heart disease, and also outperforms several state-of-the-art algorithms.

In conclusion, our paper represents a first step towards using TDA to classify mixed numeric and categorical data and can be viewed as a proof of concept that
methods from TDA are effective in the domain of mixed data, as well as in heart
disease prediction.

References
1. H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepush-
tanova, E. Hanson, F. Motta and L. Ziegelmeier, Persistence images: a stable vector
representation of persistent homology, *Journal of Machine Learning Research* 18(8)
(2017) 1–35.
2. A. Ahmad and L. Dey, A k-mean clustering algorithm for mixed numeric and cate-
gorical data, *Data & Knowledge Engineering* 63(2) (2007) 503–527.
3. M. Arjovsky, S. Chintala and L. Bottou, Wasserstein generative adversarial networks,
in *International Conference on Machine Learning* (2017) pp. 214–223.
4. J. J. Berwald, J. M. Gottlieb and E. Munch, Computing Wasserstein distance for
persistence diagrams on a quantum computer, *arXiv preprint arXiv:1809.06433* (2018).
5. T. Bonis, M. Ovsjanikov, S. Oudot and F. Chazal, Persistence-based pooling for shape
pose recognition, in *International Workshop on Computational Topology in Image
Context* (2016) pp. 19–29.
6. P. Bubenik, Statistical topological data analysis using persistence landscapes, *The
Journal of Machine Learning Research* 16(1) (2015) 77–102.
7. Z. Cang and G.-W. Wei, Integration of element specific persistent homology and
machine learning for protein-ligand binding affinity prediction, *International journal
for numerical methods in biomedical engineering* 34(2) (2018) p. e2914.
8. C. Carstens and K. Horadam, Persistent homology of collaboration networks, *Math-
ematical problems in engineering* 2013 (2013).
9. F. Chazal, L. J. Guibas, S. Y. Oudot and P. Skraba, Persistence-based clustering in Riemannian manifolds, *Journal of the ACM (JACM) 60*(6) (2013) 1–38.

10. N. Cheung, Machine learning techniques for medical analysis, *School of Information Technology and Electrical Engineering* (2001).

11. D. Cohen-Steiner, H. Edelsbrunner and J. Harer, Stability of persistence diagrams, *Discrete & Computational Geometry* 37(1) (2007) 103–120.

12. D. Cohen-Steiner, H. Edelsbrunner, J. Harer and Y. Mileyko, Lipschitz functions have Lp-stable persistence, *Foundations of computational mathematics* 10(2) (2010) 127–139.

13. R. Das, I. Turkoglu and A. Sengur, Effective diagnosis of heart disease through neural networks ensembles, *Expert systems with applications* 36(4) (2009) 7675–7680.

14. R. Detrano, A. Janosi, W. Steinbrunn, M. Pfisterer, J.-J. Schmid, S. Sandhu, K. H. Guppy, S. Lee and V. Froelicher, International application of a new probability algorithm for the diagnosis of coronary artery disease, *The American journal of cardiology* 64(5) (1989) 304–310.

15. D. Dua and C. Graff, UCI machine learning repository (2017).

16. H. Edelsbrunner and J. Harer, Persistent homology—a survey, *Contemporary mathematics* 453 (2008) 257–282.

17. H. Edelsbrunner and D. Morozov, Persistent homology: theory and practice, tech. rep., Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US) (2012).

18. B. T. Fasy, J. Kim, F. Lecci and C. Maria, Introduction to the R package TDA, arXiv preprint arXiv:1411.1830 (2014).

19. R. Forman, A user’s guide to discrete Morse theory, *Sém. Lothar. Combin* 48 (2002) p. 35pp.

20. R. Ghrist, Barcodes: the persistent topology of data, *Bulletin of the American Mathematical Society* 45(1) (2008) 61–75.

21. M. Hajij, B. Wang, C. Scheidegger and P. Rosen, Visual detection of structural changes in time-varying graphs using persistent homology, in *2018 IEEE Pacific Visualization Symposium (PacificVis)* (2018) pp. 125–134.

22. F. D. M. Haldane, Nobel lecture: Topological quantum matter, *Reviews of Modern Physics* 89(4) (2017) p. 040502.

23. J. Hansen and R. Ghrist, Toward a spectral theory of cellular sheaves, *Journal of Applied and Computational Topology* 3(4) (2019) 315–358.

24. A. Hatcher, Algebraic topology. 2002, *Cambridge UP, Cambridge* 606 (9) (2002).

25. C. Hofer, R. Kwitt, M. Niethammer and A. Uhl, Deep learning with topological signatures, in *Advances in Neural Information Processing Systems* (2017) pp. 1634–1644.

26. D. Horak, S. Maletić and M. Rašković, Persistent homology of complex networks, *Journal of Statistical Mechanics: Theory and Experiment* 2009(03) (2009) p. P03034.

27. C.-C. Hsu, Y.-P. Huang and K.-W. Chang, Extended naive Bayes classifier for mixed data, *Expert Systems with Applications* 35(3) (2008) 1080–1083.

28. Z. Huang and M. K. Ng, A fuzzy k-modes algorithm for clustering categorical data, *IEEE transactions on Fuzzy Systems* 7(4) (1999) 446–452.

29. J. Ji, W. Pang, Y. Zheng, Z. Wang and Z. Ma, An initialization method for clustering mixed numeric and categorical data based on the density and distance, *International Journal of Pattern Recognition and Artificial Intelligence* 29(07) (2015) p. 1550024.

30. F. A. Khasawneh and E. Munch, Chatter detection in turning using persistent homology, *Mechanical Systems and Signal Processing* 70 (2016) 527–541.

31. C. B. C. Latha and S. C. Jeeva, Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques, *Informatics in Medicine Unlocked* 16
32. M. S. Lauer, E. H. Blackstone, J. B. Young and E. J. Topol, Cause of death in clinical research: time for a reassessment?, *Journal of the American College of Cardiology* **34**(3) (1999) 618–620.

33. D. Letscher, On persistent homotopy, knotted complexes and the Alexander module, in *Proceedings of the 3rd Innovations in Theoretical computer Science Conference* (2012) pp. 428–441.

34. P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson, M. Alagappan, J. Carlsson and G. Carlsson, Extracting insights from the shape of complex data using topology, *Scientific reports* **3** (2013) p. 1236.

35. Y. Mileyko, S. Mukherjee and J. Harer, Probability measures on the space of persistence diagrams, *Inverse Problems* **27**(12) (2011) p. 124007.

36. J. Nahar, T. Imam, K. S. Tickle and Y.-P. P. Chen, Computational intelligence for heart disease diagnosis: A medical knowledge driven approach, *Expert Systems with Applications* **40**(1) (2013) 96–104.

37. X. Ni, N. Quadrianto, Y. Wang and C. Chen, Composing tree graphical models with persistent homology features for clustering mixed-type data, in *Proceedings of the 34th International Conference on Machine Learning-Volume 70* (2017) pp. 2622–2631.

38. M. Nicolau, A. J. Levine and G. Carlsson, Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, *Proceedings of the National Academy of Sciences* **108**(17) (2011) 7265–7270.

39. M. Offroy and L. Duponchel, Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry, *Analytica chimica acta* **910** (2016) 1–11.

40. K. Polat, Ş. Şahan and S. Güneş, Automatic detection of heart disease using an artificial immune recognition system (AIRS) with fuzzy resource allocation mechanism and k-nn (nearest neighbour) based weighting preprocessing, *Expert Systems with Applications* **32**(2) (2007) 625–631.

41. S. Pouriyeh, S. Vahid, G. Sannino, G. De Pietro, H. Arabnia and J. Gutierrez, A comprehensive investigation and comparison of machine learning techniques in the domain of heart disease, in *2017 IEEE Symposium on Computers and Communications (ISCC)* (2017) pp. 204–207.

42. J. Rabin, J. Delon and Y. Gousseau, A statistical approach to the matching of local features, *SIAM Journal on Imaging Sciences* **2**(3) (2009) 931–958.

43. J. Reininghaus, D. Günther, I. Hotz, S. Prohaska and H.-C. Hege, TADD: A computational framework for data analysis using discrete Morse theory, in *International Congress on Mathematical Software* (2010) pp. 198–208.

44. Y. Rubner, C. Tomasi and L. J. Guibas, The earth mover’s distance as a metric for image retrieval, *International journal of computer vision* **40**(2) (2000) 99–121.

45. G. Singh, F. Mémoli and G. E. Carlsson, Topological methods for the analysis of high dimensional data sets and 3D object recognition., in *SPBG* (2007) pp. 91–100.

46. D. J. Stekhoven and P. Bühlmann, MissForestnon-parametric missing value imputation for mixed-type data, *Bioinformatics* **28**(1) (2012) 112–118.

47. R. Tibshirani, The lasso method for variable selection in the Cox model, *Statistics in medicine* **16**(4) (1997) 385–395.

48. R. Twombly, Cancer surpasses heart disease as leading cause of death for all but the very elderly, *Journal of the National Cancer Institute* **97**(5) (2005) 330–331.

49. C. Wu and C. A. Hargreaves, Topological machine learning for multivariate time series, *arXiv preprint arXiv:1911.12082* (2019).

50. C. Wu, S. Ren, J. Wu and K. Xia, Weighted fundamental group, *arXiv preprint*
51. C. Wu, S. Ren, J. Wu and K. Xia, Magnus representation of genome sequences, *Journal of theoretical biology* **480** (2019) 104–111.

52. C. Wu, S. Ren, J. Wu and K. Xia, Discrete Morse theory for weighted simplicial complexes, *Topology and its Applications* **270** (2020) p. 107038.

53. K. Wu, Z. Zhao, R. Wang and G.-W. Wei, TopP–S: Persistent homology-based multi-task deep neural networks for simultaneous predictions of partition coefficient and aqueous solubility, *Journal of computational chemistry* **39**(20) (2018) 1444–1454.

54. K. Xia, Z. Li and L. Mu, Multiscale persistent functions for biomolecular structure characterization, *Bulletin of Mathematical Biology* **80**(1) (2018) 1–31.

55. K. Xia, Z. Zhao and G.-W. Wei, Multiresolution persistent homology for excessively large biomolecular datasets, *The Journal of Chemical Physics* **143**(13) (2015) p. 10B603_1.

56. A. Zomorodian and G. Carlsson, Computing persistent homology, *Discrete & Computational Geometry* **33**(2) (2005) 249–274.