Short and long term gene expression variation and networking in human proximal tubule cells when exposed to cadmium

Scott H Garrett¹, Kaitlin Clarke², Donald A Sens¹, Youping Deng³, Seema Somji¹, Ke K Zhang¹,²*

From: The 2011 International Conference on Bioinformatics and Computational Biology (BIOCOMP'11) Las Vegas, NV, USA. 18-21 July 2011

Abstract

Cadmium (Cd²⁺) is a known nephrotoxin causing tubular necrosis during acute exposure and potentially contributing to renal failure in chronic long-term exposure. To investigate changes in global gene expression elicited by cadmium, an in-vitro exposure system was developed from cultures of human renal epithelial cells derived from cortical tissue obtained from nephrectomies. These cultures exhibit many of the qualities of proximal tubule cells. Using these cells, a study was performed to determine the cadmium-induced global gene expression changes after short-term (1 day, 9, 27, and 45 μM) and long-term cadmium exposure (13 days, 4.5, 9, and 27 μM). These studies revealed fundamental differences in the types of genes expressed during each of these time points. The obtained data was further analyzed using regression to identify cadmium toxicity responsive genes. Regression analysis showed 403 genes were induced and 522 genes were repressed by Cd²⁺ within 1 day, and 366 and 517 genes were induced and repressed, respectively, after 13 days. We developed a gene set enrichment analysis method to identify the cadmium induced pathways that are unique in comparison to traditional approaches. The perturbation of global gene expression by various Cd²⁺ concentrations and multiple time points enabled us to study the transcriptional dynamics and gene interaction using a mutual information-based network model. The most prominent network module consisted of INHBA, KIF20A, DNAJA4, AKAP12, ZFAND2A, AKR1B10, SCL7A11, and AKR1C1.

Introduction

Cadmium is a toxic heavy metal that is widely distributed due to industrial pollution such as mining, refining of metals, burning of fossil fuels, battery production and the use of tobacco. The health threats presented by cadmium have been increasingly recognized by government agencies, healthcare providers and the general public [1]. One of the primary target organs of cadmium toxicity is the human kidney where cadmium accumulates and induces a number of adverse events. The proximal tubule is the main site for cadmium accumulation and the site of cadmium induced toxicity. When the levels of cadmium exceed a tolerance level of the intracellular defense systems, such as metallothionein and glutathione, cells become susceptible to the toxic effect of this heavy metal. [2,3]. Under high dose acute exposure, cadmium is known to cause proximal tubule necrosis. On the other hand, a few cohort studies showed chronic low doses of cadmium can also induce proximal tubule toxicity [4,5]. Toxicokinetic models indicated that the half-life of cadmium in humans is between 15 and 20 years [6]. This suggests that low level exposure of cadmium may be harmful to human kidney via the long term accumulation of this metal in proximal tubule. In this study, we investigate the acute and chronic effects of cadmium on human proximal tubule (HPT) cells. The HPT cell culture system developed in our lab has been shown to have important properties that resemble human proximal tubule [7]. The ability of forming dome by confluent cell monolayers implies the HPT cells retain the vectorial transport activity. The cells are mortal and

* Correspondence: ke.zhang@med.und.edu
¹Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
Full list of author information is available at the end of the article

© 2013 Garrett et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
exposure to high concentration of cadmium induces a necrotic mechanism of cell death [8,9]. By exposing HPT cells to various doses of cadmium in either a short period of 1 day or a long period of 13 days, we expect different physiological responses to be elicited which represent the acute and chronic responses to cadmium toxicity. In order to investigate the underlying molecular mechanisms of cell toxicity and compensatory cellular defenses related to cadmium exposure, we profiled the global gene expression in HPT cells exposed to increasing concentrations of this metal during short-term (1 day) and long-term (13 days) exposure.

An initial analysis of the microarray data has previously reported a number of genes that were differentially expressed between cadmium treated and control samples [10]. In this manuscript, we investigated how genes respond to different doses of cadmium and how the gene network is formed in response to cadmium toxicity. The high cost of microarray chips prevents researchers from collecting microarray data with large sample sizes; thereby, limiting the power of statistical analysis. In this study, we only have one sample for each condition-time point; however, the overall experimental design enabled us to investigate the gene expression profiles correlated with cadmium concentration. Furthermore, we developed a gene set enrichment analysis (GSEA) method that can be applied to regression-based tests for individual genes, while traditional GSEA methods focus on two-sample comparison analysis, such as t test.

This study adopted a complicated design by perturbing HPT cells with a variety of doses of cadmium and under various time periods that resulted in variation and dynamics of global gene expression. Therefore, it provides a unique opportunity to investigate the dynamic change of gene expression levels and the network structure of gene interactions in a well-designed experimental environment. A mutual information-based network model [11] was used to investigate the gene networking in response to cadmium toxicity and a network module with a small set of activated genes with high interaction between each other was identified.

Materials and methods
Cell culture and total RNA collection
The HPT cell culture system and cadmium treatment has been described previously [7,10]. RNA was purified from triplicate cultures of HPT cells by the RNeasy Mini kit (Qiagen, Valencia, CA). The integrity and quality of RNA was ensured via the ribosomal bands using agarose gel electrophoresis.

Microarray analysis
Microarray experiment was performed by Genome Explorations Inc. (Memphis, TN) using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays, which cover over 47,000 human transcripts and variants representing approximately 39,000 of the best characterized human gene transcripts and expressed sequence tags (est) (Affymetrix, Santa Clara, CA). The scanned images were analyzed using programs resident in GeneChip Operating System v1.4 (GCOS; Affymetrix). The raw data was processed and normalized using MAS 5.0 statistical algorithm that gave detection call regarding signal present or absent for each probe. The correlation of gene expression with cadmium concentrations was assessed using linear regression. The gene signal pathways that were activated by cadmium were identified using gene set enrichment analysis (GSEA) [12]. The R package GSA that was based on standardized statistics was employed for gene set enrichment analysis [13]. The gene list for each pathway was obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) http://www.genome.jp/kegg. Cluster analysis was used to group the microarray samples using hierarchical clustering method. The distances between samples were calculated by Pearson dissimilarity and the agglomeration of clusters was performed by Ward linkage method.

Networks analysis
The relations between genes were defined by mutual information [11]. The resulting adjacent matrix was used for networks analysis. Network modules were identified by hierarchical clustering. The set of genes that have short distances between each other and large distance with other genes was defined as a network module. The most prominent network module was identified for further investigation. All data analyses were performed using R statistical programming language.

Results
Gene expression variation in response to acute (1 day) cadmium toxicity
The HPT cells were exposed to various levels of concentrations of Cd$^{2+}$ for a short term of 24 hours. The Cd$^{2+}$ concentrations were 0, 9, 27, and 45 μM. Our hypothesis is that Cd$^{2+}$ exposure will elicit an acute toxicity response to HPT cells within one day. As reported before, the HPT cells exhibited a stress response during 24 hour exposure to increasing concentrations of Cd$^{2+}$ and showed visible signs of toxicity at the high dose [10]. The goal of the current study is to discover the genes that are responsive to the short-term exposure of Cd$^{2+}$ using messenger RNA microarray data. For each Cd$^{2+}$ concentration, a sample of HPT cells was harvested, total RNA was purified and submitted for microarray analysis. The Affymetrixe U133 Plus 2.0 array was used for this analysis. When using MAS 5.0 for testing, we found 28,720 genes that were present in at least one sample. These genes were
used for subsequent analysis. In order to identify the genes whose expression levels were dependent on Cd$^{2+}$ concentrations, we conducted regression analysis for correlating gene expression with concentrations. This resulted in 4,036 genes that have significant P values (< 0.05). However, none of them had a false discovery rate below 0.05 due to the small size of only 4 samples. Figure 1a shows the P value distribution that was tilted to low values implying that many genes had positive responses to acute Cd$^{2+}$ toxicity. If only a few genes had positive responses, the P values would be evenly distributed. Using a P value cutoff of 0.01, we reported 403 genes that were positively correlated with cadmium concentration (Table 1), and 522 genes that were negatively correlated (Table 2). The positively correlated genes in the top list included heat shock genes like HSP40, HSP70 and HSPBAP1, and ion and anion transporters SLC7A11, SLC16A1, SLC20A2, SLC25A37 and SLC7A1. Both the highest positively and negatively correlated genes contained cell cycle arrest and cell death.

Figure 1 The distributions of P values in the regression analysis of gene expression versus cadmium concentration. (a) The histogram of P values for 1 day exposure of cadmium. (b) The histogram of P values for 13 days exposure of cadmium.
genes such as G0S2, GSPT1 and BAG5. These activated genes represented a stress response for the acute Cd2+ toxicity.

Our next aim was to identify the gene regulatory pathways that were activated in the HPT cells in response to the acute Cd2+ exposure. The gene pathway database compiled in Kyoto Encyclopedia of Genes and Genomes (KEGG) has been a valuable source for investigating pathways. The gene set enrichment analysis (GSEA) method was employed to identify activated KEGG pathways using the microarray data. The approach of GSEA is to test whether the ranks of P values of a set of genes are randomly distributed among all the P values [12]. Because most of GSEA methods employ two sample comparison method such as unpaired or paired t test [13], we set out to develop a statistical testing method for GSEA based on regression analysis for each individual gene. As described earlier, out of a total of 28,720 genes,

Table 1 Cd2+ induced genes in acute cadmium-exposed human proximal tubule cells (1 day, p value < 0.001)

| Probe | Symbol | Gene name | Pr(> |t|) |
|---------|----------|------------------------------------|-------|
| 225061_at | DNAJA4 | DnaJ (Hsp40) homolog, subfamily A, member 4 | 1.16E-05 |
| 207528_s_at | SLC7A11 | solute carrier family 7, (cationic amino acid transporter, y+ system) member 11 | 1.66E-05 |
| 209774_x_at | CXCL2 | chemokine (C-X-C motif) ligand 2 | 4.83E-05 |
| 202744_at | SLC20A2 | solute carrier family 20 (phosphate transporter), member 2 | 5.00E-05 |
| 213524_s_at | G0S2 | G0/G1 switch 2 | 7.15E-05 |
| 220533_at | NA | NA | 7.69E-05 |
| 208544_at | ADRA2B | adrenergic, alpha-2B-, receptor | 7.89E-05 |
| 239211_at | NA | NA | 8.93E-05 |
| 225339_at | SFAG9 | sperm associated antigen 9 | 0.000113 |
| 202235_at | SLC16A1 | solute carrier family 16, member 1 (monocarboxylic acid transporter 1) | 0.000129 |
| 209404_at | BAG2 | BCL2-associated athanogene 2 | 0.000134 |
| 214577_at | MAP1B | microtubule-associated protein 1B | 0.000147 |
| 215404_x_at | FGFR1 | fibroblast growth factor receptor 1 | 0.000153 |
| 229724_at | GABRB3 | gamma-aminobutyric acid (GABA) A receptor, beta 3 | 0.000183 |
| 215034_s_at | TM4SF1 | transmembrane 4 L six family member 1 | 0.000194 |
| 224809_x_at | TINF2 | TERF1 (TRF1)-interacting nuclear factor 2 | 0.000212 |
| 212223_at | IDS | iduronate 2-sulfatase | 0.000216 |
| 223144_x_at | AKIRIN2 | akirin 2 | 0.000226 |
| 225267_at | KPN4A | karyopherin alpha 4 (importin alpha 3) | 0.000228 |
| 204186_s_at | PPID | peptidylprolyl isomerase D | 0.000228 |
| 200895_s_at | FKBP4 | FK506 binding protein 4, 59 kDa | 0.000269 |
| 226541_at | FBXO30 | F-box protein 30 | 0.000307 |
| 204041_at | MAOB | monoamine oxidase B | 0.000372 |
| 1557915_s_at | GSTO1 | glutathione S-transferase omega 1 | 0.000435 |
| 202199_s_at | SRPK1 | SFRS protein kinase 1 | 0.000476 |
| 211696_x_at | HB8 | hemoglobin, beta | 0.000491 |
| 224888_at | SEL1 | selenoprotein 1 | 0.000593 |
| 227406_s_at | SNX25 | sorting nexin 25 | 0.000618 |
| 222703_s_at | YRDC | yrdC domain containing (E. coli) | 0.000654 |
| 229355_at | NA | NA | 0.000654 |
| 200065_s_at | ARF1 | ADP-ribosylation factor 1 | 0.000666 |
| 210260_s_at | TNFAIP8 | tumor necrosis factor, alpha-induced protein 8 | 0.000669 |
| 231629_x_at | KLK3 | kallikrein-related peptidase 3 | 0.000683 |
| 201829_at | NET1 | neuroepithelial cell transforming 1 | 0.000719 |
| 240633_at | DOK7 | docking protein 7 | 0.000724 |
| 225766_s_at | TNPO1 | transportin 1 | 0.00083 |
| 219334_s_at | OBFC2A | oligonucleotide/oligosaccharide-binding fold containing 2A | 0.000846 |
| 227622_at | PCF11 | PCF11, cleavage and polyadenylation factor subunit, homolog (S. cerevisiae) | 0.000872 |
| 217561_at | CALCA | calcitonin-related polypeptide alpha | 0.000891 |
| 214638_s_at | CCNT2 | cyclin T2 | 0.000898 |
| 218624_s_at | MGC2752 | hypothetical LOC65996 | 0.000989 |
4036 were found to have a significant P values (< 0.05) correlating to Cd$^{2+}$ concentrations. Suppose a KEGG pathway has n genes and x genes are significant using regression analysis. Our GSEA method consists of deriving a hypergeometric probability function shown below.

\[
p(x) = \frac{\binom{4036}{x} \binom{28720 - 4036}{n - x}}{\binom{22000}{n}}.
\]

| Probe | Symbol | Gene name | Pr(>|t|) |
|-------------|--------|---|-----------|
| 213067_at | MYH10 | myosin, heavy chain 10, non-muscle | 4.01E-05 |
| 225276_at | GSPT1 | G1 to S phase transition 1 | 8.75E-05 |
| 232349_x_at | DCAF6 | DDB1 and CUL4 associated factor 6 | 0.000115 |
| 1557986_s_at| SMCR8 | Smith-Magenis syndrome chromosome region, candidate 8 | 0.000121 |
| 223141_at | UCK1 | uridine-cytidine kinase 1 | 0.000123 |
| 209196_at | WDR46 | WD repeat domain 46 | 0.000125 |
| 227477_at | ZMYND19| zinc finger, MYND-type containing 19 | 0.000149 |
| 223396_at | TMEM60 | transmembrane protein 60 | 0.00018 |
| 227765_at | NA | NA | 0.000189 |
| 235812_at | TMEM188| transmembrane protein 188 | 0.000237 |
| 239464_at | NA | NA | 0.000239 |
| 202337_at | PMF1 | polyamine-modulated factor 1 | 0.000242 |
| 1570506_at | NA | NA | 0.000247 |
| 1555630_a_at| RAB34 | RAB34, member RAS oncogene family | 0.000249 |
| 225831_at | LUZP1 | leucine zipper protein 1 | 0.000254 |
| 204027_s_at | METTL1 | methyltransferase like 1 | 0.000295 |
| 212694_s_at | PCCB | propionyl Coenzyme A carboxylase, beta polypeptide | 0.000304 |
| 204104_at | SNAPC2 | small nuclear RNA activating complex, polypeptide 2, 45 kDa | 0.000369 |
| 216308_x_at | GRHPR | glyoxylate reductase/hydroxypropyruvate reductase | 0.000392 |
| 233233_at | NA | NA | 0.000438 |
| 200980_s_at | PDHA1 | pyruvate dehydrogenase (lipomamide) alpha 1 | 0.000468 |
| 218042_at | COP54 | COP9 constitutive photomorphogenic homolog subunit 4 (Arabidopsis) | 0.000476 |
| 210829_s_at | SSBP2 | single-stranded DNA binding protein 2 | 0.000504 |
| 203226_s_at | TSPAN3 | tetraspanin 31 | 0.000516 |
| 202266_at | TTRAP | TRAF and TNF receptor associated protein | 0.000541 |
| 221856_s_at | FAM63A | family with sequence similarity 63, member A | 0.00066 |
| 227224_at | RALGPS2| Ral GEF with PH domain and SH3 binding motif 2 | 0.000663 |
| 243009_at | FLJ27552| hypothetical LOC145788 | 0.000673 |
| 202883_s_at | PPP2R1B| protein phosphatase 2 (formerly 2A), regulatory subunit A, beta isoform | 0.000684 |
| 201801_s_at | SLC29A1| solute carrier family 29 (nucleoside transporters), member 1 | 0.000688 |
| 220974_x_at | SFXN3 | sideroflexin 3 | 0.000699 |
| 1555679_a_at| RTN4P1 | reticulin 4 interacting protein 1 | 0.000777 |
| 212872_s_at | MED20 | mediator complex subunit 20 | 0.00078 |
| 201888_s_at | IL13RA1| interleukin 13 receptor, alpha 1 | 0.000787 |
| 227567_at | NA | NA | 0.00079 |
| 229146_at | C7orf31| chromosome 7 open reading frame 31 | 0.000806 |
| 224779_s_at | FAM96A | family with sequence similarity 96, member A | 0.000843 |
| 213022_at | UTRN | utrophin | 0.000846 |
| 226710_at | C8orf82| chromosome 8 open reading frame 82 | 0.000846 |
| 213181_s_at | MOCS1 | molybdenum cofactor synthesis 1 | 0.000878 |
| 218268_at | TBC1D1S| TBC1 domain family, member 15 | 0.000883 |
| 211708_s_at | SCD | stearoyl-CoA desaturase (delta-9-desaturase) | 0.000916 |
| 202299_s_at | HBXIP | hepatitis B virus x interacting protein | 0.000948 |
| 213574_s_at | KPNB1 | karyopherin (importin) beta 1 | 0.00097 |
| 205052_at | AUH | AU RNA binding protein/venoyl-Coenzyme A hydratase | 0.00097 |

Table 2 Cd$^{2+}$ repressed genes in acute cadmium-exposed human proximal tubule cells (1 day, p value < 0.001)
Using this function, we can test whether \(x \) is significantly larger than what would be expected from a hypergeometric distribution. Statistically, if we observe \(r \) genes in the significant set, \(P(X > r) \) designates the P value for the significance of \(r \) genes. Thus, \(P \) value = \(P(X > r) = P(r+1) + P(r+2) + P(r+3) + \ldots + P(x) \). This gene set enrichment analysis found 3 significant pathways, NOD-like receptor signaling pathway, base excision repair, and steroid biosynthesis, with \(p \) values 0.0486, 0.0385, 0.0009, respectively. NOD-like receptors play an important role in regulation of inflammatory and apoptotic responses and are activated in response to stress

Gene expression variation in response to long term (13 day) cadmium toxicity

HPT cells were exposed to \(\text{Cd}^{2+} \) for a long period in order to determine the mechanism by which global gene expression is adapted to environmental challenge. HPT cells were exposed to various concentrations of \(\text{Cd}^{2+} \), 4.5, 9, and 27 \(\mu \text{M} \text{Cd}^{2+} \) for 13 days. Lower concentration of \(\text{Cd}^{2+} \) were used for the 13 day time course since 45 \(\mu \text{M} \text{Cd}^{2+} \) caused toxicity and a loss of cell viability. There was no loss of cell viability when the cells were treated with 4.5 and 9 \(\mu \text{M} \text{Cd}^{2+} \) over a 13 day period, while exposure to 27 \(\mu \text{M} \text{Cd}^{2+} \) caused an approximate 30% loss in cell viability [10]. The ability of the HPT cells to form domes was only affected by exposure to 27 \(\mu \text{M} \text{Cd}^{2+} \) for 13 days. The microarray data were processed and analyzed as described above for 1 day exposure. The distribution of \(P \) values for each individual gene is shown in Figure 1b. The distribution is significantly skewed to small \(P \) values, implying a large number of genes were altered by cadmium exposure.

From a total of 28,720 genes, 366 were positively correlated with the cadmium concentration, and 517 were negatively correlated at a \(P \) value cutoff of 0.01 (Table 3 and 4). Similar to that observed for 1 day exposure, long term cadmium exposure altered the expression of a number of cell cycle control and cell death genes, including GSPT1, G2E3 and BCL2. The expression of metal binding and transport genes, such as CAB39L, TMC5, SLC5A3 and SLC35F2, were affected as well. However, expression levels of stress response genes such as heat shock and DNA repair genes were not changed after 13 days exposure, instead, many tumor-related genes were activated. These included RAB42, DEK, RRAD, TPDS2L1 and a variety of mitogen related kinases. The GSEA analysis revealed 9 altered KEGG pathways including 3 cancer pathways, prostate cancer, melanoma and p53 signaling pathway (Table 5). None of the pathways overlapped with the ones identified after 24 hours exposure.

Gene regulatory network in response to cadmium exposure

In response to heavy metal toxicity, thousands of genes will be activated forming a complicated gene regulatory network interacting cooperatively. To decode the complete gene network for cadmium response is impossible for the small sample size used in this study and high complexity of network structure [15]. It is also computational forbidden to construct a network by including a large number of genes. Therefore, we modeled the gene network focusing on only the 901 identified genes as having high variability shown in the heat map. Mutual information for transcriptional levels was used to quantify the relations between genes. The resulting adjacent matrix was analyzed for the presence of an active network module that has high connectivity within the module and low connectivity with other components of the network. Figure 4 shows a network modules consisting of 8 genes. DNAJA4 encodes the
heat shock protein, SLC7A11 an anion amino acid trans-
porter, AKR1B10 and AKR1C1 are subunits for a reduc-
tase associated with cancer, ASPM and KIF20A are
involved in mitotic spindle functions, ZFAND2A is a zinc-
finger protein that is inducible by arsenite, and INHBA is
known to inhibit cell proliferation and to have tumor-sup-
pressor activity. The network modules provide hypotheses
for gene interactions which can be verified in subsequent
biological experiments.

Discussion

Microarray experiments have become a standard approach
to simultaneously quantify the transcriptional levels of
thousands genes under various conditions. However, due
to the high cost of chips, microarray experiments are often
carried out with a limited sample size, which requires a
careful experimental design. In this study, we chose two
time points, 1 day and 13 day, to account for toxicity
caused by short and long cadmium exposure. For each
time point, we had HPT cells exposed to 3 cadmium con-
centrations plus a control sample (non-treated). Thus,
even with only a single replicate at each concentration, we
were able to test the correlation between transcriptional
levels and cadmium concentrations. Our analysis suggests
that experimental design with various conditions over-
comes the difficulty of lack of replications.

Exposure of HPT cells to 1 day and 13 days of cad-
mium induces distinct sets of genes. At 1 day, HPT cells
appeared to have a stress response that activated a num-
ber of heat shock and DNA repair genes and pathways.

Table 3 Cd²⁺ induced genes in chronic cadmium-exposed human proximal tubule cells (13 days, p value < 0.001)

| Probe | Symbol | Gene name | Pr(>|t|) |
|-------------|------------|--|-----------|
| 225914_s_at | CAB39L | calcium binding protein 39-like | 1.69E-05 |
| 210327_s_at | TPDS2L1 | tumor protein DS2-like 1 | 2.73E-05 |
| 211499_s_at | MAPK11 | mitogen-activated protein kinase 11 | 3.07E-05 |
| 222587_s_at | GALNT7 | UDP-N-acetyl-alpha-D galactosamine:polypeptide N-acetylgalactosaminyltransferase 7 (GalNAc-T7) | 6.05E-05 |
| 233528_s_at | GATSL3 | GATS protein-like 3 | 8.85E-05 |
| 212335_at | GNS | glucosamine (N-acetyl)-6-sulfatase | 9.88E-05 |
| 217748_at | ADIPOR1 | adiponectin receptor 1 | 0.000112 |
| 222601_at | UBA6 | ubiquitin-like modifier activating enzyme 6 | 0.000155 |
| 219349_s_at| EXOC2 | exocyst complex component 2 | 0.000168 |
| 218319_at | PEL1 | pellino homolog 1 (Drosophila) | 0.000213 |
| 203553_s_at| MAP4K5 | mitogen-activated protein kinase kinase kinase kinase 5 | 0.000219 |
| 1560779_a_at| NA | NA | 0.000227 |
| 244056_at | SFTA2 | surfactant associated 2 | 0.000236 |
| 223797_at | PRO2852 | hypothetical protein PRO2852 | 0.000366 |
| 219580_s_at| TMC5 | transmembrane channel-like 5 | 0.000373 |
| 1553367_a_at| COX6B2 | cytochrome c oxidase subunit Vb polypeptide 2 (testis) | 0.000413 |
| 200618_at | LASP1 | LIM and SH3 protein 1 | 0.000414 |
| 209295_at | GCLM | glutamate-cysteine ligase, modifier subunit | 0.000502 |
| 209196_s_at| SYT11 | synaptotagmin XI | 0.000509 |
| 213107_at | TNK | TRAF2 and NCK interacting kinase | 0.000532 |
| 212341_at | YIPF6 | Yip1 domain family, member 6 | 0.000565 |
| 223799_at | KIAA1826 | KIAA1826 | 0.000598 |
| 228810_at | CCNYL1 | cyclin Y-like 1 | 0.000665 |
| 218472_at | PELO | pelota homolog (Drosophila) | 0.000669 |
| 227022_at | GNPDA2 | glucosamine-6-phosphate deaminase 2 | 0.000688 |
| 1552712_a_at| NNNAT2 | nicotinamide nucleotide adenyltransferase 2 | 0.000869 |
| 217144_at | UBB | ubiquitin B | 0.000999 |
| 1559534_at | LOC100132077| hypothetical protein LOC100132077 | 0.000707 |
| 1552946_at | ZNF114 | zinc finger protein 114 | 0.000794 |
| 226071_at | ADAMTS4 | ADAMTS-like 4 | 0.000822 |
| 204802_at | RRAD | Ras-related associated with diabetes | 0.000874 |
| 208166_x_at| ANXA2P2 | annexin A2 pseudogene 2 | 0.000887 |
| 217291_at | C1orf216 | chromosome 1 open reading frame 216 | 0.000882 |
| 215704_at | FLG | filaggrin | 0.000923 |
| 200638_s_at| YWHAZ | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide | 0.000945 |

Garrett et al. BMC Medical Genomics 2013, 6(Suppl 1):S2
http://www.biomedcentral.com/1755-8794/6/S1/S2
Page 7 of 12
Table 4 Cd\(^{2+}\) repressed genes in chronic cadmium-exposed human proximal tubule cells (13 days, p value < 0.001)

| Probe | Symbol | Gene name | Pr(>|t|) |
|----------------|--------|---|----------|
| 218025_s_at | PECI | peroxisomal D3,D2-enoyl-CoA isomerase | 3.66E-05 |
| 202781_s_at | INPP5K | inositol polyphosphate-S-phosphatase K | 6.81E-05 |
| 216053_x_at | FAM182A| family with sequence similarity 182, member A | 0.0001 |
| 228665_at | CYR1 | cysteine/tyrosine-rich 1 | 0.000109 |
| 228374_at | C1orf28| chromosome 10 open reading frame 28 | 0.000119 |
| 224913_s_at | TIMM50 | translocase of inner mitochondrial membrane 50 homolog (S. cerevisiae) | 0.000131 |
| 215438_x_at | GSPT1 | G1 to S phase transition 1 | 0.000132 |
| 218404_at | SNX10 | sorting nexin 10 | 0.000133 |
| 226016_at | CD47 | CD47 molecule | 0.000135 |
| 203574_at | NFIL3 | nuclear factor, interleukin 3 regulated | 0.000136 |
| 227190_at | TMEM37 | transmembrane protein 37 | 0.00017 |
| 201225_s_at | SRRM1 | serine/arginine repetitive matrix 1 | 0.000211 |
| 1552846_s_at | RAB42 | RAB42, member RAS oncogene family | 0.000217 |
| 228520_s_at | APLP2 | amyloid beta (A4) precursor-like protein 2 | 0.000219 |
| 227769_at | NA | NA | 0.000231 |
| 201855_s_at | ATM1 | ATM interactor | 0.000256 |
| 219379_x_at | ZNF358 | zinc finger protein 358 | 0.000275 |
| 32811_at | MYO1C | myosin IC | 0.000282 |
| 200707_at | PRKCSH | protein kinase C substrate 80K-H | 0.000296 |
| 229007_at | LOPC28788| FSHD region gene 1 pseudogene | 0.000301 |
| 2190214_at | GALNT14| UDP-N-acetyl-alpha-D-galactosamine.polypeptide Nacetylgalactosaminyltransferase 14 (GalNAc-T14) | 0.000304 |
| 201816_s_at | GBAS | glioblastoma amplified sequence | 0.000305 |
| 217817_at | ARPC4 | actin related protein 2/3 complex, subunit 4, 20 kDa | 0.000315 |
| 201185_s_at | HTRA1 | HtrA serine peptide 1 | 0.000316 |
| 205739_x_at | ZNF107 | zinc finger protein 107 | 0.000323 |
| 212418_at | ELF1 | E74-like factor 1 (ets domain transcription factor) | 0.000327 |
| 209431_x_at | PATZ1 | POZ (BTB) and AT hook containing zinc finger 1 | 0.000367 |
| 201549_x_at | KDM5B | lysine (K)-specific demethylase 5B | 0.000373 |
| 203858_s_at | COX10 | COX10 homolog, cytochrome c oxidase assembly protein, heme A: farnesyltransferase (yeast) | 0.000425 |
| 218483_at | C11orf60| chromosome 11 open reading frame 60 | 0.00044 |
| 201045_s_at | PTMS | parathyromosin | 0.000454 |
| 212493_s_at | SETD2 | SET domain containing 2 | 0.000459 |
| 204805_s_at | H1FX | H1 histone family, member X | 0.000471 |
| 226926_at | DMK0N | dermokine | 0.000474 |
| 211025_x_at | COX5B | cytochrome c oxidase subunit Vb | 0.000494 |
| 212904_at | LRRC47 | leucine rich repeat containing 47 | 0.000544 |
| 215543_s_at | LARGE | like-glycosyltransferase | 0.000546 |
| 228998_at | TNRC6B | trinucleotide repeat containing 66 | 0.000575 |
| 210200_at | FZD2 | frizzled homolog 2 (Drosophila) | 0.000632 |
| 225247_at | C11orf6 | chromosome 19 open reading frame 6 | 0.00065 |
| 21226_s_at | WAPAL | wings apart-like homolog (Drosophila) | 0.00066 |
| 244287_at | SFRS12 | splicing factor, arginine/serine-rich 12 | 0.000661 |
| 221829_s_at | TNPO1 | transportin 1 | 0.000662 |
| 1553313_x_at | SLC5A3 | solute carrier family 5 (sodium/myo-inositol cotransporter); member 3 | 0.000786 |
| 232412_at | FBXL20 | F-box and leucine-rich repeat protein 20 | 0.000788 |
| 217964_at | TTC19 | tetratricopeptide repeat domain 19 | 0.000788 |
| 223056_s_at | XPOS | exportin 5 | 0.000792 |
| 213470_s_at | HNRNPH1| heterogeneous nuclear ribonucleoprotein H1 (H) | 0.000816 |
| 214543_x_at | QKI | quaking homolog, HK domain RNA binding (mouse) | 0.00085 |
| 243829_at | BRAF | v-raf murine sarcoma viral oncogene homolog B1 | 0.000864 |
| 34260_at | TEO2 | TEL2, telomere maintenance 2, homolog (S. cerevisiae) | 0.000874 |
This was expected because stress responses that are characterized with induced expression of heat shock proteins are acute and transient that last for only a few hours to a few days [16-20]. This acute response to Cd²⁺ with the induction of heat shock proteins, such as HSP 27, 60, 70 and 90, have been repeatedly verified in our previous studies [21-24].

The 13 days exposure was used to model the chronic response of kidney to environment of cadmium exposure. The molecular changes in the HPT cells in response to long term cadmium exposure were manifested with activation of many oncogenes and cancer pathways. The association of cancer occurrence and cadmium exposure has been established by numerous cohort studies [25-27]. Although 13 days of exposure might not exactly represent the chronic effect of cadmium on the kidney living environment, our experiment suggests that the cell culture system serves as a valid model for studying the long term toxicity of cadmium on the kidney.

Although the two time periods of cadmium exposure appeared to induce two distinct toxicity responses, the acute and chronic responses, they shared some common features in gene expression. The heat map showed that the samples were not separated by time of exposure, instead, the samples tended to be grouped by doses across two time points. All the HPT samples that were treated with 27 μM Cd²⁺ for both 1 day and 13 days formed a cluster. When looking into the genes that were correlated with cadmium concentrations in both 1 day and 13 days, we found that the number of overlapping genes was significantly larger than what was expected from random selection. The set of overlapping genes included ion transporter proteins, kinases, and transcriptional factors. These genes should be further investigated to reveal their functions in toxicity responses.

For any biophysical process, thousands of genes interact to form a network to maintain their biological functions. There are commonly two statistical approaches to study gene interaction, gene set enrichment analysis (GSEA) and networks analysis. GSEA has been successfully applied to microarray data to identify the activated pathways. However, GSEA has been so far focused on comparing different treatment groups, mostly for two groups, treatment and control [12,13,28,29]. For this study, we developed a GSEA method that can be used for ranks of P values from any statistical tests. We have showed that our proposed GSEA statistic follows a hypergeometric distribution. Thus, the P value of the GSEA is available.

Gene networks analysis is computationally challenging. Networks are often highly complicated, consisting of a large number of genes that can be fairly dynamic in nature. Decoding such a gene network requires researchers to quantify the global gene expression under dynamic and variable conditions. The current study provides a unique opportunity in that microarray data was acquired at multiple time points and at various levels of Cd²⁺ exposure. We used mutual information to account for the relations between genes. Mutual information is able to measure gene dependency without assuming data distributions and linear relationship. However, the mutual information-based network models require huge amount of computation that is not feasible for modeling all the genes. For this reason, we focused on only a set of most

KEGG Pathway	P value
Lysine biosynthesis	0.00182016
Sulfur metabolism	0.001924676
Glutathione metabolism	0.001973874
Caffeine metabolism	0.004896048
Protein processing in endoplasmic reticulum	0.022267231
Prostate cancer	0.035237612
Melanoma	0.035516953
Valine, leucine and isoleucine degradation	0.038038497
p53 signaling pathway	0.041271084
Figure 2 The heat map of global gene expression for all 8 HPT cell samples. Each row represents a HPT cell sample, and each column represents a gene. Only the top 901 genes that have high variability across 8 samples are plotted in the heat map. A dendrogram of hierarchical clustering is shown on the left side of the map.

Figure 3 Venn diagram depicting the number of genes activated in each treatment group. Shown are cadmium correlated genes specific for acute (24 h) and chronic (13 days) exposure and genes common to both treatment groups. The number of cadmium correlated genes in each group is also broken down into the number of genes induced or repressed by cadmium.
variable genes across all samples. The network analysis revealed gene network modules consisting of a small group of genes that intensively interacted with each other. The network modules can be verified in molecular experiments and they serve as hypothesized models for functional relations of genes when cooperating for toxicology responses induced by cadmium.

Authors' contributions
SG, SS and DS designed and conducted the experiments. KC carried out regression analysis. YD contributed to network analysis. KZ contrived the analysis plan and developed analysis tools. KZ and SG contributed in writing the manuscript.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This study was in part supported by grants from the National Center for Research Resources (5P20RR016471-12) and the National Institute of General Medical Sciences (8 P20 GM103442-12) from the National Institutes of Health. The research was also supported by funds provided by the Department of Pathology and the School of Medicine and Health Sciences, University of North Dakota.

This article has been published as part of BMC Medical Genomics Volume 6 Supplement 1, 2013: Proceedings of the 2011 International Conference on Bioinformatics and Computational Biology (BIOCOMP '11). The full contents of the supplement are available online at http://www.biomedcentral.com/bmcmedgenomics/supplements/6/S1. Publication of this supplement has been supported by the International Society of Intelligent Biological Medicine.

Author details
1Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA. 2Bioinformatics Core, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA. 3Rush University Cancer Center, Chicago, IL 60612, USA.

Published: 23 January 2013

References
1. Satarug S, et al: Cadmium, environmental exposure, and health outcomes. Environmental health perspectives 2010, 118(2):182-90.
2. Prozialeck WC, Edwards JR: Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions. The Journal of pharmacology and experimental therapeutics 2012, 343(1):2-12.
3. Andrews GK: Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochemical pharmacology 2000, 59(1):95-104.
4. Akesson A, et al: Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environmental health perspectives 2005, 113(11):1627-31.
5. Jarup L, et al: Low level exposure to cadmium and early kidney damage: the OSCAR study. Occupational and environmental medicine 2000, 57(10):668-72.
6. Kjellstrom T: A mathematical model for the accumulation of cadmium in human kidney cortex. Nordisk hygiensk tidskrift 1971, 52(2):111-9.
7. Sens DA, et al: Tissue culture of human renal epithelial cells using a defined serum-free growth formulation. Experimental nephrology 1999, 7(5-6):344-52.
8. Somji S, et al: Expression of metallothionein isoform 3 (MT-3) determines the choice between apoptotic or necrotic cell death in Cd+2-exposed human proximal tubule cells. Toxicological sciences: an official journal of the Society of Toxicology 2004, 80(2):358-66.
9. Somji S, et al: The unique N-terminal sequence of metallothionein-3 is required to regulate the choice between apoptotic or necrotic cell death of human proximal tubule cells exposed to Cd+2. Toxicological sciences: an official journal of the Society of Toxicology 2006, 90(2):369-76.
10. Garrett SH, et al: Microarray analysis of gene expression patterns in human proximal tubule cells over a short and long time course of cadmium exposure. Journal of toxicology and environmental health Part A 2011, 74(1):24-42.
11. Meyer PE, Lafitte F, Bonnetmi G: Minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics 2008, 9:461.
12. Subramanian A, et al: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 2005, 102(43):15545-50.
13. Efron B, Tibshirani R: On testing the significance of sets of genes. The Annals of Applied Statistics 2007, 1(1):23.
14. Franchi L, et al: Nucleotide-binding oligomerization domain-like receptors: intracellular pattern recognition molecules for pathogen detection and host defense. Journal of immunology 2006, 177(6):3507-13.
15. Zhang K, et al: From genes to networks: in systematic points of view. BMC systems biology 2011, 5(Suppl 3):11.
16. Schlesinger MJ: How the cell copes with stress and the function of heat shock proteins. Pediatric research 1994, 36(1 Pt 1):1-6.
17. van de Water B, et al: Cellular stress responses and molecular mechanisms of nephrotoxicity. Toxicology letters 2006, 162(1):83-93.
18. Sun Y, MacRae TH: The small heat shock proteins and their role in human disease. The FEBS journal 2005, 272(11):2613-27.
19. Daugaard M, Rohde M, Jaattela M: The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS letters 2007, 581(19):3702-10.
20. Liu J, Qu W, Kadliska MB: Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicology and applied pharmacology 2009, 238(3):209-14.
21. Sonjji S, et al: Heat shock protein 27 expression in human proximal tubule cells exposed to lethal and sublethal concentrations of CdCl2. Environmental health perspectives 1999, 107(7):545-52.
22. Sonjji S, et al: Expression of the constitutive and inducible forms of heat shock protein 70 in human proximal tubule cells exposed to heat, sodium arsenite, and CdCl2. Environmental health perspectives 1999, 107(11):887-99.
23. Sonjji S, et al: Expression of heat shock protein 60 in human proximal tubule cells exposed to heat, sodium arsenite and CdCl2. Toxicology letters 2000, 115(2):127-36.
24. Sonjji S, et al: Expression of hsp 90 in the human kidney and in proximal tubule cells exposed to heat, sodium arsenite and cadmium chloride. Toxicology letters 2002, 133(23):241-54.
25. Verougstraete V, Liu J, Dean D, Hotz P: Cadmium, lung and prostate cancer: a systematic review of recent epidemiological data. Journal of toxicology and environmental health Part B, Critical reviews 2003, 6(3):227-55.
26. Armstrong BG, Kazantzis G: Prostatic cancer and chronic respiratory and renal disease in British cadmium workers: a case control study. British journal of industrial medicine 1983, 40(8):540-5.
27. Sarahan T, Esmeen NA: Lung cancer mortality in UK nickel-cadmium battery workers, 1947-2000. Occupational and environmental medicine 2004, 61(2):108-16.
28. Zhang K, et al: Gene set analysis for longitudinal gene expression data. BMC Bioinformatics 2011, 12:273.
29. Bathie AC, et al: Series of randomized complete block experiments with non-normal data. Computational Statistics and Data Analysis 2010, 54(7):1840-1857.