Assessment of Virally Vectored Autoimmunity as a Biocontrol Strategy for Cane Toads

Jackie A. Pallister1*, Damien C.T. Halliday2*, Anthony J. Robinson2, Daryl Venables2, Rhonda D. Voysey1, Donna G. Boyle1, Thayalini Shanmuganathan2, Christopher M. Hardy2, Nicole A. Siddon2, Alex D. Hyatt1

1 Australian Animal Health Laboratories, CSIRO Livestock Industries, Geelong, Victoria, Australia, 2 Virology and Developmental Biology Group, CSIRO Entomology, Black Mountain Laboratories, Canberra, Australia

Abstract

Background: The cane toad, *Bufo* (Chaunus) marinus, is one of the most notorious vertebrate pests introduced into Australia over the last 200 years and, so far, efforts to identify a naturally occurring *B. marinus*-specific pathogen for use as a biological control agent have been unsuccessful. We explored an alternative approach that entailed genetically modifying a pathogen with broad host specificity so that it no longer caused disease, but carried a gene to disrupt the cane toad life cycle in a species specific manner.

Methodology/Principal Findings: The adult beta globin gene was selected as the model gene for proof of concept of autoimmunity as a biocontrol method for cane toads. A previous report showed injection of bullfrog tadpoles with adult beta globin resulted in an alteration in the form of beta globin expressed in metamorphs as well as reduced survival. In *B. marinus* we established for the first time that the switch from tadpole to adult globin exists. The effect of injecting *B. marinus* tadpoles with purified recombinant adult globin protein was then assessed using behavioural (swim speed in tadpoles and jump length in metamorphs), developmental (time to metamorphosis, weight and length at various developmental stages, protein profile of adult globin) and genetic (adult globin mRNA levels) measures. However, we were unable to detect any differences between treated and control animals. Further, globin delivery using Bohle iridovirus, an Australian ranavirus isolate belonging to the Iridovirus family, did not reduce the survival of metamorphs or alter the form of beta globin expressed in metamorphs.

Conclusions/Significance: While we were able to show for the first time that the switch from tadpole to adult globin does occur in *B. marinus*, we were not able to induce autoimmunity and disrupt metamorphosis. The short development time of *B. marinus* tadpoles may preclude this approach.

Introduction

The spread of the cane toad, *Bufo* (Chaunus) marinus, into the Australian environment following the initial introduction at Gordonvale near Cairns, Queensland in 1935 has been spectacularly successful. Cane toads are now present throughout most of tropical northern Australia and their range is continuing to expand into world heritage areas. Predicted warming due to climate change could extend the range of the cane toad south into what are currently temperate regions [1]. The cane toad is a highly toxic and hardy introduced species and presents wide ranging ecological and social impacts within the Australian landscape. Native species such as quolls, goannas and native frogs are particularly susceptible to the cane toad toxin and many populations have been severely impacted by the arrival of cane toads [2,3,4].

Attempts to halt the spread cane toads have so far been unsuccessful mainly due to the extensive, remote and inaccessible areas inhabited by the toads. An infectious biological agent appears to be the only viable option for controlling cane toads at such continental scales but as yet no known naturally occurring microbes have been confirmed as *Bufo* specific. An alternative option is to explore whether an infectious agent can be genetically modified to carry a gene that will specifically disrupt the cane toad life cycle, requiring selection of cane toad specific target genes as well as an infectious agent for delivery.

The concept of using genetically modified infectious agents to deliver antigens to wildlife is not new. Recombinant vaccinia virus expressing rabies glycoprotein delivered in baits to wild foxes has proved to be a highly effective strategy to combat rabies [5]. Since then other vaccines developed against diseases of wildlife include a
rabies virus based vector used to immunise wildlife against SARS [6]. Extension of this concept has seen recombinant viruses developed to control a host’s biological processes. An example is recombinant viruses expressing zona pellucida antigen that successfully deliver immunocontraception to pest animal species in laboratory trials [7,8].

Bohle Iridovirus (BIV) is a ranavirus in the family Iridoviridae. BIV was originally isolated from the Bohle River region in northern Queensland [9] and is the only documented isolation of a virus from amphibians in Australia. It is capable of infecting cane toad tadpoles [10] and is therefore a candidate for testing the viral delivery of genes in this species. Furthermore, in recent studies we have shown that BIV can carry and express foreign genes in vitro [11].

Selection of target genes for delivery to cane toads has focused on metamorphosis since it is a critical phase in the amphibian life cycle. Metamorphosis is characterised by rapid and extensive morphological changes [12,13], accompanied by strong shifts in the expression of genes and proteins at the molecular level [14,15]. Cane toad genes that are expressed in metamorphs but not in tadpoles therefore represent ideal targets to block and thus manipulate aspects of development. One documented example of the transition from a larval to an adult form in amphibians is haemoglobin [16] and we have used microarray analysis to establish that adult haemoglobin is significantly upregulated during cane toad metamorphosis [17]. Injecting tadpoles with adult globin interfered with expression of this protein in Rana catesbeiana, and induced changes in gene expression profiles of metamorphs [18]. Thus we hypothesise that it may be possible to alter metamorphosis by immunologically sensitising larval stages (tadpoles) to proteins expressed only in later post-metamorphic stages. Adult globin is not a cane toad specific gene; we used it here to determine whether autoimmunity might affect the protein profile of metamorphs. If successful, the concept would be extended to cane toad specific genes that were upregulated at metamorphosis.

This study outlines an investigation into the feasibility of an immunologically based biocontrol for cane toads. We demonstrate the presence of a clear larval to adult switch in haemoglobin mRNA and protein levels and hypothesise that this switch may be affected by early exposure, by either injection or viral delivery, to adult B. marinus haemoglobin. Our results indicate that the altered adult globin protein profile seen in Rana catesbeiana metamorphs after exposure of tadpoles to adult globin does not occur in B. marinus. The short larval stage in B. marinus compared with R. catesbeiana may preclude this approach to cane toad biocontrol.

Materials and Methods

Animals and husbandry

All animals used in these studies were sourced from a colony of B. marinus maintained at CSIRO according to the methods described in Hamilton et al. [19]. Briefly, when tadpoles were required, adults were injected subcutaneously with a 0.25 mg/mL solution of leuprolelin acetate to induce ovulation and stimulate ampexus. Eggs were hatched and tadpoles maintained in aged water without chlorine at a temperature of 23–27°C.

Ethics statement

Authority for the use of animals was provided by CSIRO animal ethics committees in accordance with the Australian National Health and Medical Research Council’s code of practice [20]. These permits were (i) CSIRO Sustainable Ecosystems Animal Ethics Committee, Approval No. 08-05, exposure of pre- and post-metamorphic cane toads to proteins, DNA and RNA and produced RNA/cDNA and (ii) CSIRO Australian Animal Health Laboratory Animal Ethics Committee, Approval number 1132, biological control of cane toads.

Production and purification of recombinant globin and antiserum

B. marinus adult and tadpole globins (GenBank Accession numbers EL342145 and EU877979, respectively) were amplified using the following full length primer sets: adult globin sense 5’-ATGGTCCATTGAGACATCAG-3’, and antisense 5’-TTAGGTTAACCCTTGCAAGAAG-3’, or tadpole globin sense 5’-ATGGTTCAATTGAGCCTGGAAGA-3’, and antisense 5’-TTAAGAAAATAGCCATGCGCTCAGG-3’ (444 bp). The fragments were cloned into the bacterial expression vector pDEST17 and expressed as His6-tagged proteins in E. coli BL21-AI cells (Invitrogen). Cultures were grown overnight (37°C) in LB supplemented with antibiotics, then diluted 100-fold and grown to an OD of 0.6 (600 nm). L-arabinose (Sigma) was added (0.2% final conc.) to induce protein production and incubation continued for 3–5 h. Bacteria were harvested by centrifugation, rinsed and resuspended in Tris-buffered saline (TBS: 50 mM Tris, 500 mM NaCl; pH 7.5), disrupted by freeze/thaw cycles and centrifuged at 10,000× g for 30 min. The pellet was solubilised in TBS containing 8 M Urea for 30 min and then centrifuged at 20,000× g for 30 min to remove insoluble materials. His6-tagged proteins were purified in the denatured state using Ni2+NTA agarose (Qiagen), washed via imidazole-containing steps (TBS+20, 30 or 40 mM imidazol) and eluted in TBS+500 mM imidazol. Size-based secondary purification was then achieved by continuous-elution electrophoresis (Model 491 Prep Cell, Bio-Rad). Globin proteins were dialysed against amphibian Ringers solution [4.89 g NaCl, 0.298 g KCl, 0.265 g CaCl2.2H2O, 0.197 g MgSO4.7H2O, 1.495 g NaHCO3, 0.127 g NaH2PO4.H2O and 1.982 g glucose per litre dH2O] overnight at 4°C and concentrations determined using the Bio-Rad Protein Assay. Proteins were separated by polyacrylamide gel electrophoresis (SDS-PAGE) (15% gels) using the Bio-Rad Protein II System and visualised with Coomassie brilliant blue. Purified recombinant globin proteins were used as immunogens for the generation of rabbit antisera. Briefly, two rabbits per immunogen were injected 10 days apart with vaccine containing 50 μg of either adult (rAdglob) or tadpole (rTadglob) recombinant globin. Two weeks later a third dose was administered if a boost to the antibody response was required. Each dose was prepared in CSIRO triple adjuvant (60% v/v Montanide; 40%, v/v rHB [combined with Quil A, 3 mg/mL, and DEAE-dextran, 30 mg/mL]), in water.

Developmental studies

The time course of adult and tadpole globin production in normal animals was determined. Animals were sampled at stages 27, 28, 34, 36, 40, 41, 42, 43, 46 (metamorph) and 1 month post metamorph, ≥3 animals per stage. Developmental stages of B. marinus were determined according to the method of Limbaugh and Volpe [21]. Levels of mRNA and protein were measured individually except for tadpoles at stages 27 and 28 where >10 animals were pooled due to the small size of tadpoles in the early stages of B. marinus development.

Preparation of immunogen and inoculation trials

rAdglob in Ringer’s solution was emulsified in Freund’s complete adjuvant (FCA; Sigma) by Luer-locked double syringe mixing. Tadpoles were first anaesthetised by bathing for 2 min in...
0.22% MS-222 (tricaine methanesulphonate, Argent Chemical Laboratories, Washington USA) and a 0.5 μg dose of rAdglob was delivered in 5 μL per stage 26 tadpole, intraperitoneally with a 30.5 gauge needle. Five animals were sampled and pooled at stages 26, 36, 40, 42, and 46. An additional 6 animals were sampled and assayed individually at stage 46.

Recombinant virus construction

Recombinant BIV (rBIV) expressing the neomycin resistance gene and adult globin (rBIV/neor/Adglob), and the control virus without adult globin (rBIV/neor) were constructed according to Pallister et al. [11].

Infection and sampling

To assess the effect of viral delivery of adult globin to *B. marinus* tadpoles, seven groups of tadpoles were infected at day 6 (stage 20) post hatching. Group A, uninfected cell culture supernatant; Groups B, C and D - 10^5, 10^6 and 10^7 TCID₅₀/mL of the negative control virus, rBIV/neor respectively; Groups E, F and G - 10^5, 10^6 and 10^7 TCID₅₀/mL of the test virus, rBIV/neor/Adglob respectively. Each group of 116 tadpoles was infected for approximately 6 h in 2 L of water containing the appropriate concentration of virus, rinsed in clean water for 5 min then divided into 4 tubs each containing 29 tadpoles. These tubs were randomly dispersed around 3 different rooms to allow for statistical variation due to the position of the tub.

Sampling was carried out at 5 different stages, 20, 28, 33, 42 and 1-2 weeks post tail resorption, according to the schedule in Table 1. Tadpoles were sampled at each of the 5 stages for the detection of virus by real time PCR, and at all stages except stage 42, just after the onset of adult globin production; post TR, 1–2 weeks post tail resorption.

Table 1. Sampling schedule for tadpoles infected with recombinant BIV.

Stage at sampling	Sampled for				
	20	28	33	42	Post TR
Virus detection					
Virus adult globin					
Native globin	-				

n = 5. Stage 20, infection; Stage 28, 6 days post infection; stage 33, just prior to the onset of adult globin production; stage 42, just after the onset of adult globin production; post TR, 1–2 weeks post tail resorption.

doi:10.1371/journal.pone.0014576.t001

Real time PCR to detect mRNA

Total RNA (5 μg) was extracted from tadpoles and tadpoles infected with Trizol reagent (Invitrogen) according to the manufacturer’s instructions and reverse transcribed using the cDNA First Strand Synthesis Kit (Invitrogen). Real time PCR was used to detect larval and adult globin mRNA at selected stages of development. Oligonucleotide sets were larval globin; sense 5'- GCTGAGAGA-GAAAGCGCCG-3', and antisense 5'- ATGGCGGGTGCATTG-GAC -3' (151 bp), or adult globin; sense 5' - CAGATCCAC-GAGCTGAAGAG -3', and antisense 5' - ATGGCGCATC-AAGCGCCA -3' (151 bp). Results were standardised with canae toad actin (GenBank Accession no. EL595572) by amplifying a 117 bp fragment using sense 5'- ATGACAGTATATATGGTTT-GAG -3' and antisense 5' - ATGCCAGAGTCTGATCA -3' primers. Reactions consisted of Quantitect SYBR Green RT-PCR Master Mix (Qiagen), 0.5 μM oligonucleotides and 200 ng of first strand cDNA template, and run on a RotorGene 2000 (Corbett). The thermal profile was as follows: 50°C for 2 min, 95°C for 2 min, 40 cycles of 95°C for 30 sec; 58°C for 30 sec; and 72°C for 30 sec. PCR target products were used as reaction standards at concentrations ranging from 1×10^9 to 1×10^1 molecules per μL. Analysis of real time PCR reactions and melting point dissociation curve reactions were performed using the programme Rotorgene version 6.0 (Corbett).

Real time PCR to detect BIV DNA

For DNA extraction the animal was thawed, weighed and Prepmag Ultra (Applied Biosystems) was added directly to the tube at the following rates: ≤0.20 g, 450–500 μL 0.21–0.30 g, 500–750 μL; >0.31 g, 900 μL. This was followed by approximately 100 μL sterile 1.0 mm zirconia silicone beads (BioSpec Products). The tadpole was homogenised in a mini-beadbeater (BioSpec Products) for 30 sec, microfuged at 13,000×g for 30 sec then homogenised in a mini-beadbeater for a further 30 sec. To extract DNA the sample was heated to 100°C for 20 min, left to stand for 4 min at room temperature (RT), microfuged at 13,000×g for 6 min and the DNA (350–650 μL) transferred to a clean tube.

Each reaction in the TaqMan assay contained 12.5 μL of Platinum Quantitative PCR SuperMix-UDG (Invitrogen), 90 nM sense (5'- CTGATCGTGTTGCCCAGTCAA -3'), 90 nM anti-sense (5'- TCCCATGAGCGCTTCA -3') primers, 25 nM MGB TaqMan probe (5'- GAGATCAC-3'), 5 μL of a 1/10 dilution of template DNA in dH₂O, 0.05 μL of Rox dye, and water to a final volume of 25 μL. The reaction was run on the ABI 7500 Fast Real-Time PCR machine with a thermal profile as follows: 2 min at 50°C, 10 min at 95°C, 45 cycles of 15 sec at 95°C then 1 min at 60°C. Results were automatically plotted by the Sequence Detection System Software version 1.3.1 (Applied Biosystems).

Western blot analysis

Proteins for western blot were extracted either from Trizol samples according to the manufacturer’s instructions, or from virally infected tadpoles homogenised in 10 mM Tris with 100 μL sterile 1.0 nm zirconia silicone beads (BioSpec Products). The tadpole was homogenised in a mini-beadbeater (BioSpec Products) for 30 sec, centrifuged at 13,000×g for 30 sec then homogenised in a mini-beadbeater for a further 30 sec. SDS was added to a final concentration of 5% and the homogenate heated to 100°C for 1 min. After 30 min at RT to allow SDS to penetrate the sample, the homogenate was centrifuged, the supernatant decanted, heated to 100°C for 1 min and stored at −80°C until used. To extract globin from RBCs, blood was processed as previously described (see Infection and sampling) and the protein content of each sample was determined.
by measuring absorbance at 280 nm using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies). Total protein and viral or native adult globin (200 ng/well) were analysed by polyacrylamide gel electrophoresis in the presence of SDS (SDS PAGE) on 12% Bis/Tris precast gradient gels (Invitrogen) and proteins were visualised by staining with silver nitrate, according to the procedure of Heuveshoven and Demirci [22]. Proteins were transferred to Hybond N (Amersham) and the transferred membrane blocked overnight at 4°C in blocking solution containing 1/1000 diluted serum from rabbits inoculated with the Baf virus (Sigma). After 3 washes the membrane was incubated for 1 h at RT in horse-radish peroxidase conjugated sheep anti-rabbit IgG (Millipore, MA, USA) diluted 1/1000. The membrane was washed and adult globin detected using enhanced chemiluminescence (ECL) according to the manufacturer’s instructions (Amersham UK).

ELISA to detect antibody to injected globin

Samples were collected from stage 46 metamorphs anaesthetised by bathing for 2 min in 0.22% MS-222 followed by decapsulation. Samples were collected by aspiration and pelleting of RBCs prior to the collection of sera-like fluids. Adult blood samples were collected as per Zupanovic et al. [23]. Microtitre plates (Beckton-Dickson) were coated with 50 μL/well of rAdglob (10 μg/mL) and positive control ovulalbumin (4 μg/mL; Sigma) in Ringer’s solution overnight at 4°C and washed (x3) in TBS with Tween-20 (0.05%; TBST). The plates were blocked for 2 h with 5% skim milk powder (Bio-Rad) at TBST at 37°C. Metamorph sera (treated and control) and adult toad α-ovulalbumin control sera were serially diluted in 1% skim milk/TBS and applied to plates (50 μL/well). After incubation for 1 h at 37°C the plates were washed with TBST three times. Rabbit antisera against toad IgG (1:1000; Zupanovic et al. [23]) was added in 1% skimmed milk/TBS, incubated for 1 h at 37°C and washed (x3) in TBST. Next, goat α-rabbit IgG (1:2000; KPL) was added to each well, incubated for 1 h at 37°C and again washed (x3) in TBST. HRP-conjugated streptavidin (50 μL; KPL) was incubated for 30 min at RT, washed three times and developed with peroxidase substrate solution (50 μL of TMB; KPL) and the absorbance measured (405 nm).

Results

Larval and adult haemoglobin expression during normal cane toad metamorphosis

The time course for the appearance of adult globin mRNA and the disappearance of tadpole globin mRNA during normal cane toad metamorphosis was first assessed by real time PCR (Fig. 1a).

Tadpole globin mRNA was detected at all early stages until the level declined rapidly at the metamorphic climax (Stages 42–46) and was undetectable one month after metamorphosis. Conversely, adult globin mRNA was first detectable at stage 40 and at all following stages until the experiment was terminated.

Analysis of total protein extracts at selected stages by Western blot showed that larval haemoglobin was expressed in stage 40 tadpoles but not in stage 46 tadpoles (Fig. 1b). Adult globin protein was first detected in stage 36 tadpoles (faint signal) and continued to increase in abundance after metamorphosis. The positive control used for the experiments was recombinant adult globin that migrates as a larger protein than the native globin on PAGE gels due to the addition of a 6XHis-tag and plasmid linker sequence. The detection system was specific; anti-larval globin antibody detected larval globin, but not recombinant and native adult haemoglobins, and vice versa for the anti-adult globin antibody. Thus we confirmed that the globin switch seen at the mRNA level was also seen at the protein level.

Effects of rAdglob injections on developing cane toad tadpoles

rAdglob within inoculated tadpoles was clearly detected by rabbit antibody to adult globin as an 18 kDa band for several days after injection (Fig. 2). rAdglob levels appeared reduced by half every 2–3 days, until 14 days post injection where no protein was detected.

Gross morphology during metamorphosis determined by wet weight and length was similar for treated (rAdglob) and control groups (no injection, or Freund’s adjuvant only) (Fig. 3a). Treatment with adult haemoglobin did not significantly delay metamorphosis. There was no significant difference in tadpole fitness between treatment and control groups just before metamorphic climax measured by swimming performance (burst swim speed). A p-value of 0.086 was determined in Microsoft Excel using the student t-test, 2-tailed distribution, 2-samples of unequal variance. Likewise there was no significant difference between treatments in the fitness of metamorphs as measured by maximum jump length (Fig. 3b). A p-value of 0.996 was determined using the same student t-test as for the swim speed.

Metamorphs from each of stages 36, 40, 42 and 46 were pooled and analysed for differences in adult globin mRNA between treated and untreated groups. The results indicated no significant differences in adult globin mRNA levels between treated and untreated groups at any of these 4 stages (Fig. 4a). A p-value of 0.914 was determined using the same student t-test as for the swim speed and jump length. As pooling animals from each stage could have masked effects in individual animals, 6 animals were taken from the treated and untreated groups at stage 46 and analysed individually. Again, no significant difference in globin mRNA levels was observed between individuals from treated and control groups. A p-value of 0.095 was determined using the student t-test outlined previously. As seen for the mRNA studies, we detected no change in the protein profiles of adult globin immunised metamorphs (n = 10) compared to control (n = 9) animals by Western blot (Fig. 4b). Similar results were recorded in preliminary trials conducted using native globin purified from the blood of adult toads rather than recombinant globin. These inoculations had no effect at the morphological or mRNA and protein levels (data not shown). We were unable to detect reactive antibodies (IgY) against recombinant globin protein in any of the animals by ELISA. However, we were also unable to detect antibody to a normally highly immunogenic test antigen (ovulalbumin) in metamorphs, although reactive antibodies generated by immunising one adult with ovulalbumin were readily detectable (Fig. 5).
Viral delivery

The effect of recombinant virus infection on mRNA expression levels in tadpoles was assessed using real time PCR. Treated and control animal groups were sampled at stages 20, 28, 33, 42 and 1–2 weeks post tail resorption (Table 2). At stage 20, after infection and rinsing, no virus was detected in any animals indicating that there was no background level of BIV detectable by real time PCR and that any virus detected at later stages was the result of virus replication. BIV was detected in all of the infected groups, with more infected animals detected as the inoculum increased. The control

Figure 1. Tadpole to adult globin switch detected in normal cane toad development. a: mRNA data expressed as number of copies of adult or tadpole globin mRNA detected by real time PCR across various tadpole and metamorphic stages. Mean copy numbers were normalised using a toad actin housekeeping gene. Animals were staged according to Limbaugh and Volpe, 1957. Toadlet (*) development was approximately one month post-metamorphosis. b: Detection of globin proteins as determined by western blot analysis using specific antibodies to tadpole and adult globins. Coomassie staining indicates the loading level for each lane. Recombinant proteins for adult and tadpole globin (rAdglob and rTadglob, respectively), as well as native adult globin (Adult) were included as positive controls.
doi:10.1371/journal.pone.0014576.g001

Viral delivery

The effect of recombinant virus infection on mRNA expression levels in tadpoles was assessed using real time PCR. Treated and control animal groups were sampled at stages 20, 28, 33, 42 and 1–2 weeks post tail resorption (Table 2). At stage 20, after infection and rinsing, no virus was detected in any animals indicating that there was no background level of BIV detectable by real time PCR and that any virus detected at later stages was the result of virus replication. BIV was detected in all of the infected groups, with more infected animals detected as the inoculum increased. The control

Figure 2. Time course detection of rHb within tadpoles after injection. Western blot using rabbit antibody to adult globin to detect persistence of rHb emulsion. n = 3 animals pooled per time point. Actin indicates loading per protein sample (mAb mouse anti-actin used at 1:5000).
doi:10.1371/journal.pone.0014576.g002
Virus (rBIV/neor) was only detected at stage 28, 6 days post infection (pi), while the test virus (rBIV/neor/Adglob) was detected at stages 28, 33 and 42 (day 6 pi to approximately day 26–30 pi).

No effect of infection with rBIV/neor'/Adglob on adult globin protein profiles in metamorphs

Analysis of adult globin profiles was carried out on RBCs from tadpoles taken at stage 42 and metamorphs at 1–2 weeks post tail resorption, by which time the switch has been made from tadpole to adult globin production. Blood from tadpoles given all three doses of the test virus (rBIV/neor'/Adglob that does express adult globin) and the control virus (rBIV/neor that does not express adult globin) were analysed by polyacrylamide gel electrophoresis (PAGE) and silver staining (Fig. 6a). The protein profiles of blood from animals infected with the rBIV/neor' control (n = 51) and rBIV/neor'/Adglob (n = 89) viruses were all similar. A western blot using rabbit anti toad adult globin confirmed that the main 14 kDa band detected by silver stain was adult globin (Fig. 6b). We were thus unable to detect any change in the adult globin profile in RBCs taken from the animals that had been exposed to adult globin as tadpoles.

Discussion

In this report we outline the steps we have undertaken to determine whether interference with cane toad tadpole develop-
ment can be achieved using an immunological approach. Our proof of concept approach was largely influenced by previous observations that in bullfrog tadpoles immunised with purified adult globin, the adult globin protein profile was altered in surviving metamorphs [18]. Here we extended the concept to test whether a similar effect could be induced in *B. marinus* by injecting tadpoles with purified native and recombinant globin as well as viral delivery of this antigen.

We first established that the larval to adult globin switch reported in other amphibian species also occurred in *B. marinus*. It is well documented that a tadpole form of globin in anurans is replaced by adult globin during the course of metamorphosis [18,26,27] and here we demonstrate the existence of this switch for the first time in a *Bufo* species. We have previously demonstrated strong upregulation of adult globin genes during cane toad metamorphosis and that this was more pronounced than for any of the other genes induced at metamorphosis [17]. We have also previously shown that the recombinant BIV can be genetically modified to express adult globin in vitro [11] and confirmed here that this virus (rBIV/neo'/Adglob) is capable of infecting cane toad tadpoles. We therefore used rBIV/neo'/Adglob to assess the effect of viral delivery of an adult specific gene or protein to tadpoles on subsequent metamorphosis, and compared this to the effects of immunisation with purified protein and adjuvants.

A number of parameters were used to assess the effect of adult globin delivery to tadpoles. These included behavioural (average burst speed in tadpoles and maximum jump length in metamorphs), developmental (time to metamorphosis, weight and length at various developmental stages, protein profile of adult globin by PAGE) and genetic (mRNA levels for adult globin) measures. However, we were unable to detect any differences between treated and control animals following immunisation with purified globin or exposure to recombinant virus. This contrasts markedly with the effects of globin immunisation in *R. catesbeiana* reported previously by Maniatis et al. [18], who speculated that some form of immune response was instrumental in the altered adult globin profile observed in injected tadpoles.

Possible explanations for the differences observed between these studies is that tadpoles of *B. marinus* are inherently less immunocompetent than those of *R. catesbeiana* and/or they had...
less time than *R. catesbeiana* to mount an effective immune response to the globin antigen. Firstly, the cane toad has a very short larval stage of approximately 50–60 days, depending on tadpole density and temperature [28] whereas the larval stage in the bullfrog lasts at least 120 days and up to 2 years depending on environmental conditions [29]. The long larval stage in the bullfrog enabled an initial immunisation using FCA, followed by a boost 1 month later [18]. By contrast, cane toad tadpoles in our study were only large enough to be first injected at stage 26 (approximately day 9), barely 3 weeks before the onset of adult globin synthesis at stages 36–40 (day 30–43) and so a similar boost was not given. Nevertheless we considered that there should be sufficient time for a primary immune response to develop before adult globin appeared, provided cane toad tadpoles recognise the adult globin as a foreign protein. Secondly, due to the large difference between the cane toad and bullfrog developmental time frames, and as age at inoculation was not specified, the bullfrog tadpoles may have been inoculated later in development and been more immunocompetent than in our study. In support of this, studies in *Xenopus* have demonstrated that immune responses improve with age. The affinity of specific IgY antibodies against dinitrophenol (DNP) in *Xenopus* larvae is reported to be less than in adults, and in turn much lower than the affinity of mammalian anti-DNP IgG antibodies [30,31]. The range of antibodies produced to DNP were also less heterogeneous in larval than in adult *Xenopus* [32].

Cell mediated immunity may also be impaired in tadpoles. In mammals the antiviral response relies on cytotoxic T lymphocytes and these are Major Histocompatibility Complex Class I (MHC class I) restricted. Larval *Xenopus* reportedly lack MHC classical class I expression [33] suggesting the antiviral response in larvae may be compromised. Studies of the adaptive immune response in *Xenopus* adults and larvae to frog virus 3 (FV-3), the type virus of the ranavirus genus, indicate this may be so. While adult *Xenopus* cleared an initial infection and showed an accelerated response to a second injection, tadpoles were much more susceptible, suffering a high mortality rate and a reduced ability to clear the infection compared with infected adults [34]. In spite of lacking MHC class I, tadpoles do have CD8 T cells [35] and so the role played by the lack of MHC class I in the poor antiviral response is unknown. While most of these studies have been carried out in *Xenopus*, limited studies indicate bullfrogs are capable of mounting a detectable antibody response to an antigen, but apparently not to influenza virus despite repeated inoculations and a substantial and anamnestic response to bacteriophage T7 [36]. Our own studies indicate that *B. marinus* tadpoles did not mount a detectable antibody response to a widely used and well characterised immunogen, ovalbumin, to which adult *B. marinus* did respond.

![Figure 5. IgG antibody response to globin antigen not detected in metamorphs by ELISA.](image)

Group	Stage 20	Stage 28	Stage 33	Stage 42	Post TR
A: uninfected s/nate	0/5	0/5	0/5	0/5	0/5
B: rBIVneo\(^{10^2}\) dose	0/5	1/5	0/5	0/5	0/3
C: rBIVneo\(^{10^3}\) dose	0/5	0/5	0/5	0/5	0/3
D: rBIVneo\(^{10^4}\) dose	0/5	5/5	ND	ND	ND
E: rBIV/neo\(^{adglob}10^2\) dose	0/5	0/5	1/5	1/5	0/5
F: rBIV/neo\(^{adglob}10^3\) dose	0/5	2/5	2/5	4/5	0/3
G: rBIV/neo\(^{adglob}10^4\) dose	0/5	4/5	ND	ND	ND

Number of animals out of 5 sampled from each group that returned a positive result in TaqMan real time PCR for the presence of viral DNA. ND: not taken as tadpole numbers were reduced at the highest virus dose and preference was to maximise the number of animals for analysis of globin at 1–2 weeks post tail resorption (TR). Ct values of >35, corresponding to <10 copies of the BIV genome were considered indeterminate and recorded as a negative result.

doi:10.1371/journal.pone.0014576.t002
that the immune response to an antigen can be enhanced by viral delivery.

However, all indications are that targeting autoimmune responses in larval amphibians may not be a useful strategy as the capacity of tadpoles to respond to immunological stimuli may be too weak to affect the chain of events at metamorphosis.

In conclusion, we have shown that the globin switch occurs in *B. marinus* and, while we have not been able to perturb this switch immunologically, it remains a viable target for other approaches such as RNA interference. Given the short larval phase in the *B. marinus* life cycle, antigens produced later than globin may be more effective immunogens and we are currently investigating this.
We thank C. Heirh and K. Smith for their care and maintenance of the cane toad colony, S. Tarmo (CSIRO Sustainable Ecosystems) and Susanne Wilson (CSIRO AAHL) for generating polyclonal antibody to Bufo haemoglobins, and Dr T. Strive for advice and editorial assistance.

Acknowledgements

We thank C. Heirh and K. Smith for their care and maintenance of the cane toad colony, S. Tarmo (CSIRO Sustainable Ecosystems) and Susanne Wilson (CSIRO AAHL) for generating polyclonal antibody to Bufo haemoglobins, and Dr T. Strive for advice and editorial assistance.

References

1. Sutherst RW, Floyd RB, Maywald GF. (1996) The potential geographical distribution of the cane toad, *Bufo marinus* L. in Australia. 1996. Conserv Biol 10: 294–299.
2. Braithwaite RW, Griffiths AD. (1994) Demographic variation and range contraction in the Northern Quoll, *Dasyurus hallucatus* (Marsupialia: Dasyuridae), Wildl 21: 203–217.
3. Crossland M, Allford RA. (1998) Evaluation of the toxicity of eggs, hatchlings and tadpoles of the introduced toad *Bufo marinus* (Anura:Batrachidae) to native Australian aquatic predators. Aust Journal of Ecol 23: 129–137.
4. Doody JS, Green B, Sims R, Rhind D, West P, et al. (2006) Indirect impacts of invasive cane toads (*Bufo marinus*) on nest predation in pig-nosed turtles (*Carettochelys insculpta*). Wildl Res 33: 349–354.
5. Stock F, Wandecker A, Bischke P, Sapt C, Haflinger U, et al. (1982) Oral immunization of foxes against rabies laboratory and field studies. Comp Immunol, Microbiol and Infect Dis 5: 163–171.
6. Faber M, Lamirande EW, Roberts A, Rice AR, Koprowski H, et al. (2005) A single immunization with a rhabdovirus-based vector expressing severe acute respiratory syndrome coronavirus (SARS-CoV) S protein results in the production of high levels of SARS-CoV-neutralizing antibodies. *J Gen Virol* 86: 1435–1440.
7. Jackson RJ, Maguire DJ, Hindi LA, Ramsir IA. (1998) Infertility in mice induced by a recombinant ectromelia virus expressing mouse zona pellucida glycoprotein 3. *J Reprod Immunol* 38: 152–159.
8. Hardy CM, Hindi LA, Kerr P, Lloyd MJ, Redwood AJ, et al. (2006) Biological control of vertebrate pests using virally vectored immunocontraception. *J Reprod Immunol* 71: 102–111.
9. Speare R, Smith JR. (1992) An iodovirus-like agent isolated from the ornate burrowing frog *Lamprohynus ornatus* in northern Australia. *Dis Aquat Org* 14: 51–57.
10. Halliday DT, Kennedy GC, Hamilton NR, Tarmo S, Alderman J, et al. (2008) Genes induced during the early developmental stages of the Cane Toad, *Bufo marinus* (Daudin) Second edition. Amsterdam: North-Holland Publishing Co. 260 p.
11. Pallister J, Goldie S, Coupur B, Shiell B, Michalski WP, et al. (2007) Boole Ixirodavirus as a Vector for Heterologous Gene Expression. *J Virol Methods* 146: 419–423.
12. Niewkoop PD, Faber J. (1967) Normal table of *Xenopus laevis* (Daudin) Second edition. Amsterdam: North-Holland Publishing Co. 260 p.
13. Schreiber AM, Cai L, Brown DD. (2005) Remodelling of the intestine during the metamorphosis of *Xenopus laevis*. *Proc Nat Acad Sci* USA 102: 3720–5.
14. Brown DD, Wang Z, Furlow JD, Kanamori A, Schwartzman R, et al. (1998) The thyroid hormone-induced tail resorption program during *Xenopus laevis* metamorphosis. *Proc Nat Acad Sci* USA 95: 1924–1929.
15. Das B, Cai L, Carter MG, Piao YL, Du Pasquier L, et al. (2006) Gene expression changes at metamorphosis induced by thyroid hormone in *Xenopus laevis* tadpoles. *Dev Biol* 291: 54–55.
16. Dorn AR, Brooks RH. (1982) Erythrocyte differentiation during the metamorphic hemoglobin switch of Rana catesbeiana. *Proc Nat Acad Sci* 79: 5592–5596.
17. Halliday DT, Kennedy GC, Hamilton NR, Tarmo S, Alderman J, et al. (2008) Genes induced during the early developmental stages of the Cane Toad, *Bufo (Chalinocephalus) marinus*. *Gene Exp Patterns* 8: 41–52.
18. Maniatis GM, Ingram VM. (1971) Erythropoiesis during amphibian metamorphosis. *II. Immunological studies. J Cell Biol* 51: 21–27.
19. Halliday DT, Kennedy GC, Hamilton NR, Tarmo S, Alderman J, et al. (2008) Development and characterization of a model system to study amphibian immune responses to diverse antigens. *Ann New York Acad Sci* 126: 647–661.
20. Du Pasquier L, Schwager J, Flajnik MF. (1989) The immune system of *Amphibia*. *Ann Rev Immunol* 7: 253–275.
21. Cooper EL, Häldemann WH. (1965) The immune response of larval bullfrogs (*Rana catesbeiana*) to diverse antigens. *Ann New York Acad Sci* 126: 647–661.
22. Arif A, Gullapalli G, Scheller K, Dutta-Gupta A. (2007) Significance of the 19-KDa hemolymph protein HP19 for the development of the rice moth *Cnaphalocrocis medinalis*: morphological and biochemical effects caused by antibody application. *Arch Insect Biochem Physiol* 66: 32–44.
23. Kerr PJ, Jackson RJ, Robinson AJ, Swann J, Silvers L, et al. (1999) Infertility in female rabbits (*Oryctolagus cuniculus*) albinomized with the rabbit zona pellucida protein ZPB either as a purified recombinant protein or expressed by recombinant Myxoma virus. *Biol Reprod* 61: 606–613.

Author Contributions

Conceived and designed the experiments: JAP DCH AJR CMH NAS ADH. Performed the experiments: JAP DCH DV DGB TS. Analyzed the data: JAP DCH AJR DV DGB TS ADH. Wrote the paper: JAP DCH CMH ADH.