Estimation of the annual effective doses from direct ingestion of ^{226}Ra and ^{228}Ra in the Disi groundwater for different age groups

Mohammed B H Al-Bedri

Department of Medical Instrumentation Techniques Engineering, Dijlah University College, Baghdad, Iraq

Corresponding Author e-mail: mohd.albedri@gmail.com

Abstract. The total annual effective doses (TAED) from ingestion of naturally occurring radionuclides (NOR) in Disi groundwater for infants, children, and adults have been calculated. The ranges of the estimated annual effective dose reported in this study from direct ingestion of radium (^{226}Ra and ^{228}Ra) were found to be from 0.085±0.021 to 0.532±0.205 mSv y$^{-1}$, with a mean value of 0.322 ± 0.095 mSv y$^{-1}$ for infants, from 0.144±0.011 to 0.828±0.203 mSv y$^{-1}$, with a mean value of 0.519 ± 0.102 mSv y$^{-1}$ for children and from 0.087±0.024 to 0.383±0.130 mSv y$^{-1}$, with a mean value of 0.252 ± 0.067 mSv y$^{-1}$ for adults. The present results of this study were compared with the minimum recommended limits (MRL) reported by the World Health Organization (WHO, 2008) and the International Commission on Radiological Protection (ICRP, 2000), and the previously published data in different countries. The mean annual effective dose from direct consumption of Disi groundwater for infants and adults found to be about three times higher than the MRL of 0.1 mSv/y suggested by WHO, 2008. The average TAED for children found to be five times higher than that recommended limits by WHO, 2008.

Keywords: Total annual effective dose; Direct ingestion of ^{226}Ra and ^{228}Ra in the groundwater; Disi groundwater; Age groups; Radiological quality of the drinking water;

1. Introduction

Natural background radiation originates from cosmic rays, terrestrial radiation, and internal radiation in the body (WHO, 2008 [1]; ICRP, 2000 [2]; WHO, 2000 [3]; UNSCEAR, 2000 [4] and IAEA, 2002 [5]). Naturally occurring radionuclides (NOR) are found in soil, phosphate (Al-Bedri et al., 2014 [6], Santawamaire et al., 2014 [7]), rocks (El-Gamal et al., 2019 [8]), food (Lauria, et al., 2012 [9]) and air (Haque and Ferdous 2017 [10]). Usually, drinking water and groundwater contains different types of NORs such as uranium and thorium series and their decay products (WHO, 2000 [3]; UNSCEAR, 2000 [4]; IAEA, 2002 [5]; Lauria, et al., 2012 [9]; Haque and Ferdous 2017 [10], Al-Bedri et al., 2020 [11] and Pintilie–Nicolov et al., 2021 [12]).

^{226}Ra isotope in uranium-series (^{238}U) decay to produce radon-222 gas (^{222}Rn) with a short half-life of 3.82 day and emitting alpha particles with 4.87 MeV energy, while ^{226}Ra in thorium series (^{232}Th) decay to produce a radon-220 gas (^{220}Rn) with a short half-life of 56 second and emitting alpha particles with 5.789 MeV energy (WHO, 2008 [1]; UNSCEAR, 2000 [4]; IAEA, 2002 [5]). Generally, both ^{222}Rn and ^{220}Rn are dissolved in groundwater [3] and may expose the internal organs and soft tissues in the body (Reisz et al., 2016 [13]) from the ingestion of
contaminated groundwater with NOR. Some of the radon gas (220Rn and 222Rn) escape from the groundwater to the environmental air causing an increase in a dose to the lung and other organs in the body from the inhalation of contaminated air with radon gas.

The radiological quality of the drinking water is useful especially for the environmental studies for the health of the general public caused by internal radiation hazard from the NOR in groundwater WHO, 2008 [1]; ICRP, 2000 [2], and IAEA, 2002 [5]). The internal radiation hazard due to the alpha particles emitted from radium and radon isotopes may damage the deoxyribonucleic acid (DNA) and the living cells in the body, may lead to loss of cell functions, prevent or loss of cell division, or may produce late effects of radiation appear as cancer (WHO, 2008 [1]; UNSCEAR, 2000 [4]; IAEA, 2002 [5] and Reisz et al., 2016 [13]).

The activity of 226Ra and 228Ra were measured by Al-Bedri et al., 2020 [11] in nine different groundwater wells in Jordan, and were analyzed using hyper-pure germanium (HPGe) detector spectrometry system. The previous data of the activity of 226Ra and 228Ra [11] were found to agree with the MRL [1, 14].

The present work aims to calculate the TAED for different groups from the analysis of the combined ingestion of 226Ra and 228Ra activity in groundwater based on the data reported in table 1 by Al-Bedri, et al., 2020 paper [11].

In the present study, the ranges and mean values of the AED from direct ingestion of combined 226Ra and 228Ra activity in groundwater for different age groups have been calculated. Comparisons have been made between the present results and the MRL by WHO, 2008 [1], ICRP, 2000 [2] and European Union (EU), 1998 [14]). The estimated TAED of this study for different age groups were compared with previously published data from different countries such as (Brazil, 2004 [15]; China, 2019 [16]; Egypt, 2019 [17]; Finland, 2007 [18]; India, 2016 [19]; Jordan, 2009 [20, 21]; Nigeria, 2017 [22]; Palestine, 2012 [23]; Romania, 2021 [12], 2019 [24]; Saudi Arabia, 2016 [25]; Spain, 2004 [26]; Sweden, 2002 [27]; Thailand, 2018 [28]; UK, 1993 [29]; USA, 2006 [30] and Yemen, 2015 [31]).

2. Calculation of annual effective dose (AED)

WHO, 2008 [1] has estimated that the consumption of drinking water is an average of 2 liters per day for adults, giving an annual consumption of 730 liters per year. The AED from the consumption of drinking water for an adult is 0.1 mSv per year recommended by WHO, 2008 [1] and IAEA, 2002 [5]. The following formula reported by WHO, 2008 [1] have been used to calculate the AED from the ingestion of 226Ra and 228Ra in water samples as follows:

$$AED = D_f \times W_i \times A_c$$

Where $AED = TAED$ (mSv/y) to the public from the ingestion of NOR in the drinking water $D_f =$ effective dose conversion factor due to ingestion of NOR in drinking water (mSv/Bq) see Table 1 $W_i =$ annual water rate consumption of 730 L/y for adults (≥ 17 years), 330 L/y for children (1 to 10 y) and 150 L/y for infants (< 1 y), according to the WHO, 2000 [3], and UNSCEAR, 2000 [4] $A_c =$ the activity of NOR in drinking water samples (Bq/L).

The ingested dose conversion factors (D_f) for different age groups provided by ICRP, 1996 [32] from consumption of radium in drinking water are shown in table 1.

Table 1. The dose conversion factors (D_f) of 226Ra and 228Ra for different age groups reported by (ICRP, 1996 [32]).

Age Groups	226Ra (mSv/Bq)	228Ra (mSv/Bq)
Adults (≥ 17 y)	2.8×10^{-4}	6.9×10^{-4}
Children (1-10 y)	8×10^{-4}	3.9×10^{-3}
Infants (< 1 y)	9.6×10^{-4}	5.7×10^{-3}
Usually, drinking water contains different types of radionuclides; therefore, the doses arising from each type of radionuclides must be added to each other to get the TAED.

ICRP, 2000 [2] recommended that the acceptable AED for the radioactive materials in drinking water is approximately 1 mSv per year, while the AED from the consumption of drinking water for an adult is 0.1 mSv per year recommended by WHO, 2008 [1] and IAEA, 2002 [5]. Below the MRL of 0.1 mSv per year as reported by WHO, 2008 [1] for the drinking water, the water is considered to be acceptable and safe for human consumption and it is not necessary to take any action to reduce the level of NOR in the drinking water (WHO-2008 [1]).

3. Results and discussion

The activity of 226Ra and 228Ra reported in table 1 of Al-Bedri et al., 2020 [11] paper were used in the present study for further analysis to calculate the AED for different age groups (see table 2).

Table 2. The activity of radium in the groundwater based on data in table 1 of Al-Bedri et al., 2020, compared with the reference limits.

Disi well number	Activity of radium ± SD (Bq/L)	226Ra ± SD	228Ra ± SD
DW 28	0.606±0.090	0.429±0.093	
DW 29	0.510±0.006	0.401±0.104	
DW 31	0.557±0.041	0.474±0.010	
DW 35	0.302±0.085	0.300±0.017	
DW 40	0.370±0.102	0.240±0.047	
DW 41	0.580±0.064	0.525±0.138	
DW 42	0.723±0.207	0.440±0.153	
DW 43	0.442±0.078	0.307±0.020	
DW 46	0.540±0.024	0.188±0.099	
Range ± SD	0.302±0.085	0.474±0.010 to 0.525 ± 0.138	
Mean ± SD	0.723 ± 0.207	0.287 ± 0.091	

SD = Standard Deviation

WHO 2008 [1], recommended that the reference AED level of 0.1 mSv per year is equal to 10% of the AED limit for public recommended by ICRP, 2000 [2] and IAEA, 1996 [32]. Table 3 shows the calculated TAED for infants (< 1 y), children (1–10 y), and adults (≥ 17 y) from direct consumption of activity of 226Ra and 228Ra in groundwater in Jordan [11].

Table 3. The calculated AED for different age groups compared with the international reference limits (WHO 2008 [1] and ICRP 2000 [2]).

Disi well number	Annual effective dose ± SD (mSv/y)		
	Infants	Children	Adults
DW 28	0.453±0.195	0.712±0.143	
DW 29	0.415±0.152	0.650±0.106	0.306±0.056
DW 31	0.119±0.062	0.205±0.056	0.138±0.084
DW 35	0.085±0.052	0.144±0.011	0.087±0.024
DW 40	0.258±0.081	0.406±0.145	0.196±0.054
DW 41	0.532±0.205	0.828±0.203	0.383±0.130
In this study, the ranges of calculated TAED from directly consumption groundwater found to be from 0.085±0.021 to 0.532±0.205 mSv/y, with a mean value of 0.322±0.095 mSv/y for infants, from 0.144±0.011 to 0.828±0.203 mSv/y, with a mean value of 0.519±0.102 mSv/y for children, and from 0.087±0.024 to 0.383±0.130 mSv/y, with a mean value of 0.252±0.067 mSv/y for adults. The TAED from direct consumption of 226Ra and 228Ra in groundwater for infants, children, and adults were below the MRL of 1 mSv/y as reported by ICRP, 2000 [2]. The TAED for infants and adults was about three times higher than that reported by WHO 2008 of 0.1 mSv/y, while for children from the consumption of 330 L/y Disi water was found to be five times higher than that suggested by WHO, 2008 [1]. The results of TAED in table 3 show that mean AED received by children to be higher than the TAED received by infants and adults; these are in agreement with the results obtained by El-Gamal et al., 2019 [11] (Palestine); Ademola et al., 2017 [22] (Nigeria) [16] and Saleh et al., 2015 [31] (Yemen).

In this study, the higher TAED values for different age groups from direct ingestion of groundwater may be caused by high concentrations of radium [7, 27] in the groundwater of Jordan.

Table 4 shows the comparison between the present values of the calculated TAED for different age groups from direct consumption of 226Ra and 228Ra in the groundwater with previously published results in different countries. This results of the ranges and mean values of the TAED received by adults from the consumption of 226Ra and 228Ra in the groundwater were found to be below the published data in some countries such as Brazil [15]; Finland [17]; India [19]; Jordan [20, 21]; Nigeria [28]; Palestine [29]; Saudi Arabia [25]; Spain [26]; Sweden [27]; UK [29]; Yemen [31], except the published results in China [16] Egypt [17]; Romania [24]; Thailand [28] and USA [30]. Most of the published results from other countries in table 4 were calculated as the TAED from natural mineral water, surface water, bottled water, and groundwater for adults only.

Table 4. The estimated AED in mSv per year from the ingestion of 226Ra and 228Ra activity in the Disi water of present study for different age groups compared with previously published data from other countries.

Country	Water Type	Age Group	Min ± SD	Max ± SD	Mean AED (mSv/y)
Brazil, 2004	Groundwater	Adults	–	–	0.80
China, 2019	Groundwater	Adults	0.002	0.055	–
		Children	0.005	0.11	–
		Infants	0.008	0.188	–
Egypt, 2019	Surface and	Adults	0.0139	0.127	0.058
	Groundwater	Children	0.0143	0.1466	0.068
		Infants	0.0082	0.0837	0.0386
Finland, 2007	Groundwater	Adults	0.020	–	0.41
India, 2016	Drinking water	Adults	0.360	7.91	3.92
A previous study in Jordan by Ismail et al., 2009 [20] and Vengosh et al., 2009 [21] show that the AED from ingestion of bottled water and Disi groundwater, respectively were nineteen times higher than the MRL (WHO, 2008). In the present study, the estimations of the TAED for adults were found to be seven times lower than the results published by Ismail et al., 2009 [20] and Vengosh et al., 2009 [21].

From the present investigations, groundwater from Disi wells must be blended in Dabouk and Abu Alanda reservoirs with natural water resources with a ratio of 5:1 of natural resources water to Disi groundwater to bring the drinking water to be acceptable and safe for human consumption (WHO, 2008).

4. Conclusion

The mean AED from the direct ingestion of 226Ra and 228Ra in groundwater for children were found higher than that for infants and adults; this is in agreement with the previously published results from other countries.

The TAED from direct consumption of 226Ra and 228Ra in groundwater for different age groups were below the MRL of 1 mSv/y as reported by ICRP, 2000. The TAED from direct consumption of radium in groundwater for infants and adults were found to be about three times higher than that reported by WHO 2008 of 0.1 mSv per year, while for children from the consumption of groundwater was found to be five times higher than that suggested by WHO, 2008.

From the present study, groundwater from Disi wells must be blended in Dabouk and Abu Alanda reservoirs with natural water resources with a ratio of 5:1 of natural resources water to

Country	Source	Age Group	Adults	Children	Infants
Jordan, 2009 [20]	Bottled water	Adults	1.70	1.9	–
Jordan, 2009 [21]	Disi groundwater	Adults	1.019	1.891	–
Jordan, Present Study	Disi groundwater	Adults	0.087±0.02	0.383±0.01	0.252±0.067
		Children	0.144±0.01	0.828±0.20	0.519±0.102
		Infants	0.085±0.02	0.532±0.20	0.322±0.095
Nigeria, 2017 [22]	Groundwater	Adults	0.042	1.471	–
		Children	0.071	2.521	–
		Infants	0.036	1.261	–
Palestine, 2012 [23]	Natural water resources	Adults	–	–	0.625
Romania, 2021 [12] and 2019 [24]	Drinking and Mineral water	Adults	0.01545	0.04738	0.0345
Saudi Arabia, 2016 [25]	Well water	Adults	0.355	3.627	1.333
		Treated water	0.157	1.123	0.485
	Bottled water	0.102	0.602	0.421	
Spain, 2004 [26]	Groundwater	Adults	–	–	2.4
Sweden, 2002 [27]	Well water	Adults	0.05	20.4	–
Thailand, 2018 [28]	Groundwater	Adults	0.106	0.188	–
UK, 1993 [29]	Well water	Adults	0.02	0.40	–
USA, 2006 [30]	Groundwater	Infants	–	0.134	–
Yemen, 2015 [31]	Groundwater	Adults	0.185	0.65	0.4
		Children	0.31	1.06	0.62
		Infants	0.17	0.57	0.34

SD = Standard Deviation

The mean AED from the direct ingestion of 226Ra and 228Ra in groundwater for children were found higher than that for infants and adults; this is in agreement with the previously published results from other countries.

The TAED from direct consumption of 226Ra and 228Ra in groundwater for different age groups were below the MRL of 1 mSv/y as reported by ICRP, 2000. The TAED from direct consumption of radium in groundwater for infants and adults were found to be about three times higher than that reported by WHO 2008 of 0.1 mSv per year, while for children from the consumption of groundwater was found to be five times higher than that suggested by WHO, 2008.

From the present study, groundwater from Disi wells must be blended in Dabouk and Abu Alanda reservoirs with natural water resources with a ratio of 5:1 of natural resources water to
Disi groundwater to bring the groundwater to be safe for drinking and acceptable for human consumption (WHO, 2008).

References
[1] World Health Organization (WHO), 2008 Guidelines for drinking-water quality, Vol. 1, Recommendations, 3rd Ed., Geneva, pp. 197–209, ISBN 978 92 4 1547611
[2] International Commission on Radiological Protection (ICRP), 2000 “Protection of the public in situations of prolonged radiation exposure,” ICRP Publication 82, Pergamon Press, Oxford, United Kingdom
[3] World Health Organization (WHO) 2000 Guidelines for drinking-water quality 4th Ed., Geneva, ISBN 978 92 4 1548151 Guidelines for drinking-water quality: Incorporating the first addendum ISBN 978-92-4-154995-0
[4] United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR) 2000 Sources and Effects of Ionizing Radiation, Report to the General Assembly, with Scientific Annexes vol 1, United Nations, New York; ISBN 90-441-1195-7.
[5] International Atomic Energy Agency (IAEA). 2002 Optimization of Radiation Protection in the Control of Occupational Exposure, Safety Reports Series No. 21, IAEA, Vienna for protecting people and the environment
[6] Al-Bedri M B H, Arar A A, and Hameed W O 2014 Determination of natural radioactivity levels in surface soils of old phosphate mine at Russia of Jordan. Inter. J. Phys. Res. 22 (3–4), 30–37.
[7] Santawamaitre T, Malain D, Al-Sulaiti H A, Bradley D A, Matthews M and Regan P H 2014 Determination of 238U, 232Th and 40K activity concentrations in riverbank soil along the Chao Phraya river basin in Thailand. J. Environ. Radioact. 138, 80–86
[8] El-Gamal, H and El-Haddad, H, 2019 Estimation of natural radionuclides and rare earth elements concentration of the rocks of Abu Khuruq Ring Complex, Egypt. Symmetry 11(8), 1041, https://doi.org/10.3390/sym11081041
[9] Lauria, D C, Rochedo, E R R, Godoy, M L D P, Santos, E E and Hacon, S S, 2012 Naturally occurring radionuclides in food and drinking water from a thorium-rich area Radiat. Environ. Biophys. 51, 367–374. doi: 10.1007/s00411-012-0428-7
[10] Haque, M, Ferdous, M J 2017 Natural radionuclides present in air and water near nuclear research reactor Savar, Bangladesh. Inter. J. Sci & Eng. Res. 8 (5), 978. http://www.ijser.org
[11] Al-Bedri M B H, Younis T A J, Abdulghani I J and Hameed W O 2020 Determination of naturally occurring radionuclides in Disi aquifer water of Jordan. The First International Conference of Pure and Engineering Sciences (ICPES2020). IOP Conf. Seri: Mater. Sci. Eng. 871 012066 IOP Publishing DOI:10.1088/1757-899X/871/1/012066
[12] Pintilie-Nicolov V, Georgescu P L, Iticescu C, Moraru D I and Pintilie A G, 2021 The assessment of the annual effective dose due to ingestion of radionuclides from drinking water consumption: calculation methods. J. Radioanal. Nucl. Chem. 327, 49–58 https://doi.org/10.1007/s10967-020-07438-5
[13] Reisz, J A, Bansal N, Qian J, Zhao W, and Furdui C M., 2014 Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection., Antioxid Redox Signal. 21(2): 260–292. DOI: 10.1089/ars.2013.5489
[14] European Union (EU) 1998 Drinking Water Standards Council Directive 98/83/EC on the quality of water intended for human consumption. Official J. European. Com. L 330 32–54. DOI: www.qw06.com/s/Dir.+98%2F83+CE
[15] Almeida R M R, Lauria D C, Ferreira, A C and Sracek, O 2004 Groundwater radon, radium and uranium concentrations in Regiaonodos Lagos, Rio de Janeiro State, Brazil. J.Environ. Radioact. 73 323 – 334. DOI: 10.1016/j.jenvrad.2003.10.006
[16] Tan W, Li Y, Tan K, Xie Y, Han S, Wang P., 2019 Distribution of radon and risk assessment of its radiation dose in groundwater drinking for village people nearby the W-polymetallic metallicogenetic district at Dongpo in southern Hunan province,
[17] Al-Gamal H, Seifnasr A, and Salahedin G, 2019. Determination of natural Radionuclides for water resources on the West Bank of the Nile River, Assiut Governorate, Egypt. Water 11(2), 311; https://doi.org/10.1039/w11020311

[18] Vesterbacka P 2007 Natural radioactivity in drinking water in Finland Boreal Environ. Res. 12 11-16

[19] Kandari T. Aswal S, Prasad M, Bourai A A and Ramola R C 2016 Estimation of annual effective dose from radon concentration along Main Boundary Thrust (MBT) in Garhwal Himalaya Tushar Kandari*, Sunita Aswal. J. Radiat. Res. Appl. Sci. 9 228 – 9233, journal homepage: http://www.elsevier.comlocate/jrras

[20] Ismail, A M, Kullab M K, and Saq’an S A 2009 Natural radionuclides in bottle drinking water in Jordan and their committed effective doses. J. J. Phys., 2(1) 47-57

[21] Vengosh A, Hirschfeld D, Vinson D, Dwyer G, Raanan H, Rimawi O, Al - Zoubi A, Akkawi E, Marie A, Haquin G, Zaarur S, and Ganor J 2009 High naturally occurring radioactivity in fossil groundwater from the Middle East. Environ. Sci. Technol. 43 1769–1775 DOI: 10.1021/es802969r. DOI: http://pubs.acs.org. on March 12, 2009

[22] Lopez R, Garcia M, Pardo R, Deban L, and Nalda J 2004 Natural radiation doses to the population in a granitic region in Spain. Rad. Prot. Dos. 111(1) 83-88

[23] Althoyaib S S and El-Taher, A 2016 Natural radioactivity levels of radon, radium and the associated health effects in drinking water Consumed in Qassim Area, Saudi Arabia. J. Environ. Radioact. 18 163–173

[24] Villalba L, Montero-Cabrera ME, Manjón-Collado G, Colmenero-Sujo L, Rentería-Villalobos M, Cano-Jiménez A, Rodríguez-Pineda A, Dávila-Rangel I, Quirino -of Torres L, Herrera-Peraza E F, 2006 Natural radioactivity in groundwater and estimates of committed effective dose due to water ingestion in the state of Chihuahua (Mexico). Rad. Prot. Dosim. 121(2):148-157. DOI: 10.1093/rpd/nci382 PMID: 17142821

[25] Saleh E E, El-Mageed A I A, El-Gamal H and Hussien M T 2015 Assessment of radiation hazards a result of natural radioactivity in water from Abyan delta, Yemen. J. Radioanal. Nucl. Chem. 304. DOI 10.1007/s10967-015-3932-9

[26] International Commission on Radiological Protection (ICRP) 1996 Age-Dependent Doses to Members of the Public from Intake of Radionuclides; Part5, Compilation of Ingestion and Inhalation Dose Coefficients, Annals of the ICRP, 26(1), P 39, ICRP Publication 72; Pergamon Press: Oxford, UK