Essential Oils from Plants: A Review on Eco-Friendly Mosquito Repellents

Pathalam Ganesan1,2, Samuel Rajan2, Daniel Magesh3, Tharsiusraja Williamraja4, Michael Gabriel Paulraj5, Savarimuthu Ignacimuthu6*

1,2,3,4,5,6 Division of Vector Control, Entomology Research Institute, Loyola College, Chennai 600 034, India

contributed equally

*Corresponding author: eriloyola@hotmail.com, Tel.: +9144-28178348

Available online at: www.isroset.org

Received: 22 Jul/2019, Accepted: 23 Aug/2019, Online: 31 Aug/2019

Abstract- Essential oils from medicinal plants are widely used all over the world as insect repellents as they are highly safe and beneficial to environment with least ill-effects on animal and public health. Electronic databases including Science direct, PubMed, Scopus, Cochrane library and Scifinder were searched for papers on essential oils from plants with mosquito repellent efficacy. Ethnobotany, phytochemistry and repellent efficacy of plant essential oils were also discussed in this review. This review discusses in detail the mosquito-repellent plant essential oils which would be helpful in effective formulation of different essential oils for efficient control of mosquitoes, thus vector-borne diseases and for pharmacological studies, i.e., drug designing. This review would assist in finding studies on different mosquito-repellent plant essential oils at one stop, since it summarizes a large number of reports on essential oils.

Keywords: Essential oil, mosquito repellent, Aedes, Culex, Anopheles, vector control

I. INTRODUCTION

Mosquitoes are a group of insects which do not cause diseases but act as vectors i.e. transmit a number of pathogens from infected ones to another, causing infectious diseases in human and animal populations. In 1996, WHO declared mosquitoes as Public Enemy Number one [1]. Insect-borne diseases particularly from mosquitoes have a great impact on public health, labour output and economic loss mainly in temperate regions [2]. Totally 3500 mosquito species have been recorded all over the world. Among them, more than 100 species of mosquito are acting as vectors for many diseases [3, 4]. Mosquitoes transmit all the mosquito-borne diseases through biting their hosts. Mosquito bites cause allergic reactions including local skin irritation and systemic response, such as urticaria and angioedema. Because of environmental alteration and increasing globalization, the population of temperate regions which is easily infected with parasitic diseases has an increased risk of vulnerability to insect-borne illnesses [5,6]. Anopheles, Culex and Aedes species are the major vectors, which transmit most-prominent mosquito-borne diseases such as Japanese encephalitis, lymphatic filariasis, dengue, malaria, dengue haemorrhagic fever, yellow fever, Zika, West Nile fever, and chikungunya [7, 8].

The review article provides a detailed data on the efficient, plant based mosquito-repellent essential oils, their names, parts used, percentage of efficacy against different mosquito species at specific concentrations, components of plant essential oils, etc. The review article discusses at a greater length details related to essential oil as repellents, components of essential oil, methodology of repellent assays, synthetic repellents and their adverse effects, experimental procedure for field condition, molecular aspects and future prospects and directions.

Aedes- Aedes is the vector for dengue and is widely distributed in tropical and subtropical areas, where it causes serious havoc in the human population. In 1970, the number of dengue-infected cases slightly increased to a higher level. More than 30% of the world population was affected and more than 50% was estimated to be at a risk of dengue transmission [9]. Dengue fever is endemic to the Southeast Asia, India, Bangladesh and Pakistan [10]. In 2005, a serious outbreak of chikungunya virus infection occurred in southwest Indian Ocean coastal region, and as a result more than 1.5 million patients were infected by chikungunya virus in India [11].

Culex- Culex is one of the main dreadful pantropical insect urban vectors in tropical and subtropical regions, which is responsible for transmitting a nematode worm Wuchereria bancrofti that causes lymphatic filariasis [12]. Culex is the most abundant house mosquito in towns and cities of temperate areas that spreads lymphatic filariasis in millions
The adult *Culex* spp. are nocturnal mosquito, with highest activities after 1 h of darkness. They are mainly exophilic and regularly stay in indoors after feeding on blood. *Cx. tritaeniorhynchus* acts as a vector of filariasis [15,16]. It’s biting causes sensitive reactions including skin irritation and universal reactions, like urticarial and angioedema. Temperate zones are more susceptible to parasitic diseases, and the risk of contracting insect-borne illnesses has increased due to environmental alteration and increasing globalization [5,6]

Anopheles - *Anopheles* is the primary vector of malaria. Totally 400 species of *Anophele* have been identified, among which over 70 species are reported as actual vectors of human diseases. *Anopheles stephensi* is responsible for transmission of malaria in urban regions. Currently about 40% of the world population is endemic to malaria manifestation with about 300–500 million clinical cases of malaria and a death rate of 1.1–2.7 million. Malaria is still one of the most important communicable diseases in the world. Of the world population, 85.7% is exposed to the risk of malaria. 300 deaths were reported in malaria-attributable mortality as per reports [17,18,19,20]. No effective vaccine is available for malaria control, so the only efficient approach to control the incidence of this disease is to eradicate *Anopheles* mosquito vectors [21].

Life cycle of mosquitoes

The mosquito life cycle comprises two main stages: aquatic and terrestrial. Aquatic stage includes egg, larvae and pupae; terrestrial stage includes the adult. The entire life cycle, from an egg to an adult, takes approximately 8–10 days. Usually mosquitoes lay eggs in raft or single which may vary according to different mosquito species. Generally, a single female lays 200–300 eggs at a time. Mostly eggs are laid in the standing water, water with regular flood and dirty water. Most of the eggs hatch within 24–48 h into larvae that feed on microscopic organisms such as planktons and organic matter in the water. Young larvae undergo four instar stages, and at each of these stages they shed their skins and finally develop into pupae (http://www.mosquitoworld.net/about-mosquitoes/life-cycle/).

Mosquitos take 4–5 days to develop from larvae into pupae. Pupae are also called as tumbler which are comma shaped, enclosed in cocoons and they do not feed. In 2–4 days, the adult mosquitoes emerge out from pupae (http://www.mosquitoworld.net/about-mosquitoes/life-cycle/) which rest on the water and wait to get their bodies dry out. Males take two complete days to develop their reproductive organs, and then seek out a female for mating by the sound of her wing beats. Usually males live up to 3–5 days by feeding on fruit and plant nectar. After mating, females continue laying eggs after every blood meal. Normal female mosquito can live up to 2 months under the best climatic condition (https://www.cdc.gov/dengue/resources/factSheets/Mosquito LifecycleFINAL.pdf).

Mosquito control by using synthetic insecticides

Currently, mosquito-borne diseases are a major threat all over the world, and the synthetic insecticides are playing a major role in controlling mosquito populations. Mosquito control plays a major role in controlling the mosquito-borne diseases. Mosquito control mainly relies on the synthetic insecticides, such as pyrethroids, organophosphates, organochlorines and carbamates. Temephos is one of the most commonly used synthetic insecticide, which is used against the larval stages of mosquitoes [22]. For efficiency, large quantities of these synthetic insecticides are applied in the field, which results in ecological problem, such as damage to the beneficial organisms and resistance development in insects against these chemical insecticides [23,24,25,26,27,28]. Therefore, insecticides from plant sources are efficient alternatives to such synthetic insecticides. Azadirachtin, a limonoid which acts as an insect feeding deterrent, mosquito larvicide, repellent and growth regulator is one example [29,30,31,32,33].

Mosquito repellents - Repelling mosquitoes from their biting is one of the measures to control the transmission of the infectious diseases that are transmitted through the biting of infected mosquitoes. Repellents are substances which act locally or from a distance, in deterring an insect from flying to, landing on or biting human or animal skin [34,35]. As an approach to prevent mosquito bites for individual protection, the use of repellents is generally accepted as it plays an important role in preventing insect-borne diseases by reducing man–mosquito contact. Prevention of mosquito bites is possible through the application of repellents or physical barriers such as bed nets. Protection of humans and animals from biting of mosquitoes has been already accepted as part of an overall integrated insect-borne disease control.
Synthetic Repellents and Their Adverse Effects

Synthetic repellents are efficient in protecting people from blood-feeding insects such as ticks, mites and other arthropods thereby reducing transmission of arthropod-borne diseases. N,N-Diethyl-3-methylbenzamide (DEET) is one of the most well-known synthetic insect repellents and has been used as a repellent against mosquito for more than half a century [40,35,41]. Several studies have been documented on long-lasting protection of DEET against a wide variety of insect vectors. Currently, DEET is the most successful and accessible synthetic repellent in various commercial formulations such as solutions, lotions, gels, creams, aerosols, sticks and impregnated towelettes[42,43,44,45,46]. Furthermore, picaridin (2-(2-hydroxyethyl)-1-piperidinecarboxylic acid 1-methylpropyl ester) is shown to be effective at providing protection against biting mosquitoes [47,48]. Synthetic chemicals such as diethyl toluamide, dimethyl phtalate, chlorpyrifos, dichlorvos, pyrethrum and ethoxhexadiol are also used as repellents against mosquito biting [49,50]. The efficacy of protection by using synthetic repellents relies on the preparation of formulation, application pattern, species and feeding behavior of the insects [47].

DEET is commonly safe for topical use if applied as recommended; however, some studies report adverse effects or toxicity to man, unsafe for children since it possibly causes encephalopathy and affects immune systems, when used incorrectly or in the extended term [47, 34,35,51,46]. The environment and people’s health are vulnerable to DEET and its related compounds [52]. DEET is not readily degradable by hydrolysis at environmental pHs and thus a ubiquitous pollutant of aquatic ecosystems. DEET has adverse effects such as irritation in skin and mucous membranes, serious neurologic effects, and is toxic to central nervous system of different age groups, specifically unsafe for children [43,44,45,46]. Undesirable features of DEET are unpleasant odor, uncomfortable oily or sticky feeling, and danger to plastics and synthetic rubber [53,52,47,2]. To avoid these inconveniences, repellents derived from plant sources are promising — which are effective, safe to users and inexpensive — to replace DEET [54].

Essential oil as repellents

Repelling mosquitoes from biting by using natural materials is advantageous since they do not harm the human and other beneficial organisms. On the contrary, synthetic repellents are reported to be harmful, since they cause several side effects to humans and beneficial organisms. Essential oils from aromatic plants are reported as potential repellents against mosquito vectors. Generally essential oils are used in manufacturing fragrances, and as flavoring agents for foods and beverages. Plant volatiles act as multiple and novel target sites to reduce the insecticide resistance of mosquitoes and also act as fumigants, contact insecticides, repellents, and antifeedants. They can adversely affect the growth rate and reproduction behaviour of mosquitoes, and have a longer duration of repellence than the synthetic chemicals.

Volatile oils extracted from plants and their major components like monoterpenes and sesquiterpenes are alternative sources for controlling mosquitoes at their immature stages and giving protection from biting of adult mosquitoes. Plant volatile oils, commonly used as fragrances and flavoring agents for foods and beverages, were recommended as an alternative source constituting numerous bioactive phytochemicals that could be potentially used for insect control [55]. Essential oils from plants act on multiple and novel target sites to reduce the development of resistance in mosquitoes. Because these oils are eluted from natural source, they are quite safe and beneficial to environment with least impact on animal and public health. Essential oils are applied to humans in a similar way to other conservative insecticides and they tend to be selective and have a little or no harmful effects [56,57,30,58,59,60].

Collection of Essential oil from Plants

The plant parts are crushed to release the volatiles. The solid-phase micro-extraction is used to extract volatile oils from the plants. Both dried and fresh plant parts underwent steam distillation by using Clevenge apparatus and then get placed in an extraction column connected to a round-bottomed distillation flask containing distilled water with approximately five times as much water and 10 glass beads. The flask is heated to about 100°C and allowed to boil until distillation is completed. The liquid-formed oil is collected with the help of a separating funnel. The collected mixture (distilled water and oil) is allowed to settle for 1 day. Separate layers of water and essential oil are formed and the water (lower) layer is slowly drawn out and removed to get the essential oil. The isolated oil is dried over anhydrous sodium sulfate and then collected and kept in an amber-colored bottle at 4°C until it is tested for mosquito repellency. This process is repeated until at least 20 ml of oil has been recovered. For repellency estimation, each oil and DEET are prepared in two formulations: 25% (v/v) in absolute ethanol with and without 5% vanillin [61,62,63,64,65,66,67,68].

Repellent Assay Method

Repellent efficiency of essential oil and its formulation added with 5% vanillin is evaluated against different mosquito species by using the human bait method, a previously recommended method [69,70,71,72,73]. For repellent assays, mosquito colonies are reared under laboratory condition. The adult mosquito is maintained at 25±2°C and 80±10% relative humidity (RH) under a
photo-period of 14:10 h (light/dark) by using slightly modified procedures described by Limsuwan et al. (1987). Mostly 5- to 7-days-old females are starved out and used for experimental studies. DEET (25% solution in ethanol with and without vanillin) is used to compare the repellency of essential oil isolated from plants. For repellency, experiments are carried out in 10 m x 10 m x 3 m room at 27–35°C and 60–80% RH — day biting mosquito experiment in daytime; night-biting mosquito experiment in night time. *Aedes aegypti* is tested from 08:00 to 16:00 h, while *An. stephensi* and *Culex quinquefasciatus* are tested between 16:00 and 24:00 h [74].

Totally 200–300 non-blood-starved female mosquitoes are selected at random and placed in an experimental cage (30 cm x 30 cm x 30 cm) and left to acclimatize for 1 h. Human volunteers wear a plastic glove with a 3 cm x 10 cm window on the ventral part of the forearm, after cleaning with distilled water. Treated area of the skin is exposed to the mosquitoes. The essential oils are applied at 1.0, 2.5 and 5.0 mg/cm² separately in the exposed 30 cm² marked area of the forearm [75]. The right forearm of each volunteer is allowed to dry for 1 min at room temperature. For control, the left forearm is treated with an equivalent volume of 5% vanillin in ethanol solution. The left arm is put into the cage and kept for 3 min; at least two mosquitoes must land on the test area. The arm is shaken off before the mosquito imbibles any blood and withdrawn from the cage.

Consequently, the right arm is introduced into the cage for the same period and the number of mosquitoes landing on and attempting to feed is noted down. If no mosquito bite is evident during the 3-min exposure, the arm is withdrawn from the cage. The control and test arms are interchanged regularly. Arm exposure is continued at 15 min intervals. Tests for the determination of duration of protection are conducted according to the previously described methods [76,77,78]. Each sample is tested five times with different volunteers. One volunteer is used for one sample per day. Each person is assigned randomly and the volunteers are blinded to the repellent applied. No information is provided to the volunteers on the likely duration of action of each repellent [79,66,80,2]. Percentage and average protection time are calculated according to standard procedures described by Ansari and Razdan [81].

\[
\text{%Repellency} = \frac{Ta - Tb}{Ta} \times 100\%
\]

where Ta is the number of mosquitoes in the control group and Tb is the number of mosquitoes in the treated group.

Kunming Mice Used for Repellent Experiment

Kunming mice are placed in the container supinely with their abdomens cleaned and depilated. Hairless area of the mice is 2 cm x 2 cm and for 2 min the mouse is put into a mosquito cage 0 cm x 30 cm x 30 cm containing 200–300 non-fed females. It is observed whether the number of mosquitoes that bite the mouse is more than 20. Essential oils are tested at different concentrations 1–15%. Prepared oil is (5 μl/cm²) smeared on the exposed part of the mouse abdomen and allowed to dry. Mouse is put in the mosquito cage for 2 min and removed, and this is repeated at an interval of 1 h for 7 h. Finally the total number of blood-fed females is noted down. Triplicate is used for each sample. The percentage of repellency is calculated using the following formula [82].

\[
\text{Percentage of protection (100%)} = \frac{(\text{Control} - \text{Treated})}{\text{Control}} \times 100
\]

For control, ethanol is smeared on the abdomen and the number of bites are compared with that of treated mouse. The data are analyzed using repeated measures of analysis of variance (ANOVA) and completed by Statistical Analysis Systems (Version 8.2).

Experimental Procedure for Field Condition

For the next stage of field repellent experiment, the formulation is tested against mosquitoes. Different volunteers with one control for each concentration are used in the tests. In every experiment, 2 ml aliquots of repellent materials are applied evenly between the knee and ankle of all volunteer’s leg and tested. The experiment is conducted in triplicate on each subject during the study. For reference control, 5% vanillin in ethanol solution is applied in a similar manner. Volunteer’s untreated areas are protected from mosquito bites by wearing head-net, gloves, socks, jacket, and long trousers folded up to the knee. Avoid applying any other cosmetic materials. The volunteers are made to sit in a row, at least 20 m apart from each other. Test and control subjects sitting 5 m apart from each other are exposed with both legs for 120 min with an observation of mosquito bite for every 10-min period so that 12 biting collections are made on each volunteer. The mosquitoes are collected before imbibing any blood and stored in plastic cups, which are changed at every collecting site and stored in a moisture box until the processing of specimens. For every 10-min period the volunteers are moved to a new site. The collected mosquitoes are identified with stereomicroscope by using the taxonomic keys described by Tanaka [83] and Rattanarithkul and Panthusiri [84]. Percentage of repellency is calculated using exposure period and biting rate of the mosquitoes compared with the control. The volunteers’ positions are changed at night to avoid the bias from any variations in host-seeking ability of mosquitoes.

Repellency Test in Large Room

The repellency tests are conducted in a 6 m x 6 m x 3 m room. The room has fluorescent lamps, door and six glass-windows that are always closed during the tests. 10 min before, 200–300 non-blood-fed females are released into the room. Three different volunteers are used for both control
and tests. 3 ml of oil is applied on the area of the assessment — volunteer’s leg, from knee to ankle; one leg is used for test and the other serves as control, and the covering surface area is about 782–826 cm². After application, volunteers go inside the room and sit on the chairs in a triangle position with 1.5 m space from each other. For repellency evaluation, the landed mosquitoes are collected. In each repellent test of 6 h, volunteers are allowed every 10 min for every half-an-hour interval and mosquito bites are observed. The position of volunteers is changed to allow for any variation. At each break, all mosquitoes are collected and released back into the room to maintain their number. Different days and time are used to test different mosquito species. Every test is carried out for 6 h and the timing of the test depends on the target mosquitoes: 10:00–16:00 h for Ae. aegypti and 18:00–24:00 h for Anopheles and Culex [85].

II. ESSENTIAL OIL AS MOSQUITO REPELLENTS

Plant essential oils are reported to be lipophilic in nature and they interfere with metabolic, biochemical, physiological, morphological and behavioral functions of insects [202]. Essential oils showing repellent properties and containing toxic effects against mosquitoes act as fumigants, contact insecticides, repellents and antifeedants or they can adversely affect the growth rate and reproduction, and have longer duration of repellence than synthetic chemicals on behavior of insect pests [86,63,87,88,89,90,91,92,93,94,60,95,96,97,98,99].

Synergistic effect between different components of the volatile oils may result in a higher bioactivity and increased repellent response. Components in combination present good repellency compared with when it is a single compound. Therefore, the essential oil containing specific main compounds may be an indication of its prospective use but does not warrant on proof of activity. Composition of essential oil may vary significantly among different aromatic plant species and between the same varieties from different ecological areas [100,101].

Volatile oils extracted from Juniperus and Cupressus genera of the family Cupressaceae were reported for their repellent activities against mosquitoes Culex pipiens, Cx. quinquefasciatus, Ae. aegypti, and An. stephensi [102,103,104,86,105,106,107,108,109]. Some repellent formulations such as citronella, camphor, tar, pennyroyal and castor oils provided a long-lasting protection from insect bites [110,111]. Some of the essential oils from Australian plants Dacrydium franklinii Hook f., Backhousia myrtifolia Hook. & Harv., Melaleuca bracteate F. Mull., and Zieria smithii Jacks, presented repellent activity against mosquitoes and other insects. [112] Barnard found thyme (Thymus vulgaris L.) and clove (Syzygium aromaticum (L.) Merr. & L.M.Perry) oils applied at different concentrations (5%, 10%, 25%, 50%, 75%, and 100%) effectively repelled against two mosquito species — Ae. aegypti and Anopheles albimanus.

Penfold and Morrison [113] prepared a mixture of essential oils from Litsea elliptica Blume, Cinnaomum moliissimum Hook.f., Cymbopogon nardus (L.) Rendle and Pogostemon cablin (Blanco) Benth. and tested its repellent efficacy against Ae. aegypti. They prepared a cream containing 15% leaf oil of L. elliptica Blume, C. moliissimum Hook.f., and C. nardus (L.) Rendle in the ratio of 1:1:1 that repelled mosquito at 96.6% during the experiment. Peppermint oil from Mentha piperita L. presented a strong repellent activity against Anopheles annularis, Anopheles calificacies, and Cx. quinquefasciatus at 100%, 92.3% and 84.5%, respectively [114]. Volatile oils from turmeric (Curcuma longa L.), hairy basil (Ocimum basilicum L.) and citronella (Cymbopogon citratus (DC.) Stapf) acted as contemporary repellents against both day- and night-biting mosquitoes [85] At a maximum of 8 h, 100% repellency against mosquitoes was observed for the essential oils of litsea (Litsea cubeba (Lour.) Pers.), cajeput (Melaleuca leucadendra (L.) L.), niaouli (Melaleuca quinquenervia (Cav.) S.T.Blake), violet (Viola odorata L.) and catnip (Nepeta cataria L.) [86]. Sissoo oil from Dalbergia sissoo Roxb. (F. Leguminosae) showed 91.6% repellency against An. stephensi, Ae. aegypti and Cx. quinquefasciatus [114].

15 essential oils from plants were tested for their repellency against mosquitoes. Among them, thyme (T. vulgaris L.) and clove (Syzygium aromaticum (L.) Merr. & L.M.Perry) oil exhibited most strong repellency against tested mosquitoes and these were potent alternatives to DEET [102, 81,115]. The protection time was increased significantly by the addition of 10% vanillin with Zanthoxylum piperitum Benn. oil (P<0.05) [85,116,117]. More than 400 species of aromatic plant species in Lamiaceae family have traditionally been used in developing countries for their insecticidal and repellent properties against several insect species [118,119,120,121,122,123]. In western Kenya, growing of Hypitss saweolens (L.) Poit. plants, or placing of branches or whole plants in houses was one of the most effective methods to repel malaria vector Anopholes gambiae. This plant significantly repelled mosquitoes indoors at night [124,125,126].

Volatiles from Cupressus funebris Endl., Juniperus communis L. and Juniperus chinensis L. constantly repelled female Ae. aegypti mosquitoes from biting, at different concentrations [107,127]. Amer and Mehlhorn [105] isolated essential oils from Juniperus virginiana L. and J. communis L. and prepared a formulation in a 20% solution against Ae. aegypti, An. stephensi and Cx. quinquefasciatus, which provided 100% skin protection against Cx. quinquefasciatus but weaker repellency in Ae. Aegypti and An. stephensi. Moderate repellent activities were observed in essential oil of Tagetes minuta L. for tested mosquito [128].
Essential oil from Eucalyptus species was reported to be potential as mosquito repellents [124,129]. Essential oils
from Litsea elliptica Blume, C. mollissimum Hook.f., Cymbopogon nardus (L.) Rendle, and P. cablin (Blanco)
Benth. were tested as they presented repellency against mosquito species [130]. Tawastin [131] isolated essential oil
of 18 plants from 11 families and prepared a 10% solution in ethanol. The results showed that it repelled night-biting
mosquitoes An. dirus, Cx. quinquefasciatus and Ae. albopictus (repellency 4.5–8 h). 100% repellent activity was
reported from essential oil of Zingiber officinalis Roscoe against Cx. quinquefasciatus at 120 min [132]. Essential oil
of clove (Syzygium aromaticum (L.) Merr. & L.M.Perry), peppermint (M. piperita L.), citronella (C. citratus (DC.)
Stapf), turmeric (C. longa), hairy basil (O. basilicum L.), eucalyptus (Eucalyptus spp.), lavender (Lavandula
officinalis Chaix) and catmint (N. cataria L.) were found to be effective repellents against mosquitoes
[102,85,133,104,134]. Longer protection was observed from essential oil of Eucalyptus citriodora Hook. against Cx.
quincefasciatus than Ae. aegypti [105], Tawatsin et al. (2001) [85] reported that volatiles from Ocimum
americanum L. and Cymbopogon winterianus Jowitt ex. Bor. exhibited 2.6-fold longer protection against Cx.
quincefasciatus than Ae. aegypti [48,134].

Promising repellent activity was observed in the essential oils collected from Eucalyptus maculate Hook. Citriodon
[135] Cymbopogon spp. [81], Pelargonium citrosum [115], M. piperita L. [114], Ocimum spp. [74], Zanthoxylum
limonella (Dennst.) Alston [136], C. nivii Oliv. & Hiern, Plectranthus marrubioides Hochst. ex Bent., Tetradenia riparia (Hochst.) Codd, Tarochonanthus camporumatus L., Lippia javanica (Burm.f.) Spreng., Lippia
ukambensis Watke [90], Ocimum spp. [137,85], Cymbopogon spp. [138,81], Eucalyptus maculata var.
citriodora [135], Artemisia vulgaris L. [13], 9Lantana camara L. [140,141], M. piperita L. [114], Vitex
rotundifolia L.F. [142], Curcuma spp. [143], C. nivii Oliv. & Hiern, P. marrubioides Hochst. ex Bent., T. riparia
(Hochst.) Codd, T. camporumatus L., L. javanica (Burm.f.) Spreng. Tagetes spp. [144], Ocimum spp. [145], [90] against
vector mosquitoes.

O. americanum L., L. camara L. and L. ukambensis Watke were shown to emit sufficient quantities of volatiles to
provide significant repellency against An. gambiae under semi-field conditions [124,146]. Volatile oils extracted from
turmeric (C. longa L.), kaffir lime (Citrus hystrix DC), citronella grass (C. winterianus Jowitt ex Bor) and hairy
basil (O. americanum L.) showed strong repellency against three mosquito vectors Ae. aegypti, An. dirus and Cx.
quincefasciatus [74]. Essential oil of C. citratus (DC.) Stapf (72 min), Cymbopogon nardus (L.) Rendle (60 min),
Syzygium aromaticum (L.) Merr. & L.M.Perry (54 min), O. basilicum L. (30 min), Chromolaena odorata (L.) R.M.King
& H.Rob. (8.4 min), Camellia sinensis (L.) Kuntze and E. citriodora Hook. (3 min) exhibited repellency against Ae.
aegypti. Thymus serpyllum L. essential oil presented repellency against mosquito species: 56.7% efficacy to Ae.
aegypti, 33.3% to An. stephensi and 100% to Cx. quinquefasciatus within 8 h [105]. T. vulgaris L. had good repellent activity statistically equal to DEET against Aedes albopictus and Cx. pippens pallens only for the first 2 h and 1 h,
respectively [147,148].

Protection against mosquito bites has been reported from the plant genus Cymbopogon spp. [81], Pelargonium citrosum
[115], L. camara L. [140], Tagetes spp. [144] (Perich et al., 1995) and Ocimum spp. [145]. The essential oil of T. minuta
L. and Vitex negundo L. provided a repellency of 90% for 2 h and that of V. negundo L. provided 1–3 h protection
against tested mosquitoes [149,150] (Tyagi et al., 1994; Hebbalkar et al., 1992). Volatile oil obtained from hairy
basil Ocimum spp. exhibited repellency against Ae. aegypti for only 15 min but that of Ocimum gratissimum L., O.
basilicum L., Ocimum basilicum L. fa. Citratum and Ocimum tenuiflorum L. exhibited for 135, 75, 75 and 105
min, respectively [137]. Essential oils of Foeniculum vulgare Mill., Laurus nobilis L., C. citratus (DC.) Stapf and
Eucalyptus spp. gave protection against mosquito attacks for more than 50 min at a concentration of 3%. Oils of
Cymbopogon excavates (Hochst.) Stapf ex Burtt Davy, Cymbopogon martini, Z. limonella (Dennst.)
Alston, Syzygium aromaticum (L.) Merr. & L.M.Perry, Cymbopogon nardus (L.) Rendle and P. cablin (Blanco)
Benth. Provided better protection against Ae. aegypti, Cx. quinquefasciatus and An. dirus [151,152,43,153,136].
Repellent efficacy of essential oils from various plants has been summarized in Table 1 with reference to literature.

From, previous reports we conclude that essential oils are effectively repel the mosquitoes from biting. Certain reports
strongly exhibit and suggest that essential oil gave 100% repellency against mosquitoes. In future these essential oil
can be used to produce various effective products and formulations to control mosquito population therefore
controlling vector borne diseases.

III. COMPONENTS OF ESSENTIAL OIL

Composition of the essential oil is variable depending on strain, chemotype, and geographic origin
[154,155,156,157,]. Monoterpenes such as α-pinene, limonene, terpinolene, citronellol, citronellal, camphor and
thymol, which are common constituents in volatile oils, are
described in the literature as presenting mosquito repellent
activity [158,59,159,160,161]. β-Caryophyllene is the most
cited as a strong repellent from sesquiterpenes against Ae.
aegypti [59,104,162].
Volatile from Z. piperitum Benn. has limonene (37.99%), with minor amounts of sabine (13.3%) and β-myrcene (7.17%) — constituting almost 59% [62]. H. suaveolens (L.) Poit. oil constitutes sabine (21.9%), β-caryophyllene (16.1%), terpinolene (9.6%) and 4-terpineol (7.3%). Globally, 52 constituents were identified, accounting for 99.1% of the whole essential oil. Monoterpene hydrocarbons were the most represented volatiles (55.2%), followed by sesquiterpene hydrocarbons (24.1%) and oxygenated monoterpens (10.5%). In addition, smaller amounts of oxygenated sesquiterpenes (7.2%) and diterpenes (1.9%) were detected. Non-terpene derivatives were present in very small amounts (0.2%) [67]. Oil of Cupressus arizonica Greene leaf was characterized by α-pinene (17.1%), followed by trans-muurola-3,5-diene (15.5%), umbellulone (8.0%) and limonene (7.4%). Cupressus benthamii Endl. foliage oil includes umbellulone (15.9%), limonene (13.0%), δ-3-carene (9.5%), α-pinene (9.1%), abietatriene (26%) and trans-ance of α-pinene (54.1%). 8-3-Carene was the second major component (10.8%) while all the other constituents were presenting lower amounts (<5.5%). The leaf oil of Cupressus torulosa D. Don has wototarol (19.3%) and Cupressus macrocarpa Hartw. has sabine (21.8%). α-pinene (19.5%), terpinen-4-ol (18.9%) and γ-terpinene (7.9%). Cupressus sempervirens L. is characterized by the abundant presence of α-pinene (27.9%), δ-3-carene (21.4%) and cedrol (12%), as well as α-pinene (25.8%), sabine (22.3%) and terpinen-4-ol (9.3%). Aerial parts of Chamaecyparis Lawsoniana (A.Murray bis) Parl. were terpinen-4-ol (22.0%), sabine (21.0%), camphor (7.8%) and citronellol (7.3%). Tamarix articulate Vahl. was mainly characterized by α-pinene (26.4%) and bornyl acetate (25.3%) followed by camphor (9.5%) and limonene (8.7%) [65,163,164,165].

Juniperus phoenicea L. leaves contain a high amount of α-pinene (31.3%), followed by δ-3-carene (12.5%), β-phellandrene (13.0%) and α-terpinyl acetate (12.5%) as main constituents [166,167,168,170,171,109]. T. minuta L. and Tagetes patula Kunth essential oil is composed mainly of cis-anethole (75%) and estragole (24%). Mendoncia mollis Lindau essential oil has pulegone (51.2%), mentone (30.7%), and limonene (10.1%) [Gillijet et al., 2008]. Essential oil of Rosmarinus officinalis L. has camphor (34%), verbenone (25%) and (E)-caryophyllene (15%). Camphor in R. officinalis L. (33.6%) and in Baccharis spartioides (Hook. & Arn. ex DC.) J. Rémy in Gay (50.5%) may be responsible for repellent activity [172].

Limonene was the main component from the essential oil of Aloysia citrodora Palau, Minthostachys mollis (Benth.) Griseb. and B. spartioides (Hook. & Arn. ex DC.) J. Rémy in Gay. Other common constituents of essential oil are α-pinene, carvacrol, citronellol, citronellal, camphor and thymol [63,173,59,160,174]. Artemisia salsoloides Willd. contains mostly p-cymene (75.1%) and thymol (18.7) [147,175]. Carvone was the major component of the EO of Aloysia catamarcensis Moldenke (98.7%), Aphanamixis polysatypha (Wall.) R. Parker (12%), Lippia junelliana (Moldenke) Tronc. (2.2%), and Lippia integrifolia (Griseb.) Hieron. (3.1%) [90] (Omolo et al., 2004). Tagetes filifolia Lag. had (E)-anethole and methyl chavicol (estragole) as major compounds [66]. Eupatorium buniifolium und Baccharis salicifolia contained mostly α-pinene [173,140]. H. suaveolens (L.) Poit. volatile contained caryophyllene, bergamotene, terpinolene, humulene, sabine, limonene, β-caryophyllene, sabine, α-pinene, limonene, β-pinene, bergamotene, terpinolene, δ-αlemele and β-phellandrene. Rhododendron tomentosum had p-cymene, terpinyl acetate, sabine, α-pinene, bornyl acetate, β-pinene, β-phellandrene, camphene, Z-ocimene, 1-terpene, 2-carene, limonene, linalool, Eocimene, terpinolene and myrcene. Myrica gale L. contains α-pinene, myrcene, limonene, α-phellandrene and 1,8-cineole as the main compounds. Achillea millefolium L. has (-)-germacrene D, β-pinene, sabine, α-pinene, 1,8-cineole, camphor, β-caryophyllene, p-cymene and δ-elemene [59].

Hemizygia oil contains mosquito-repellent compounds, which are (a) the simple terpenes; 3-pinene (1.5%), myrcene (0.1%) and (+)-limonene (1.2%); (b) the oxygenated terpenoids: cineole (1.3%), linalool (0.6%) and terpinen-4-ol (3.3%); and (c) traces of camphor (<0.05%) [140,176]. Ocimum silloi Benth oil has the major constituents of which were estragole (55.3%), isoestragole (or trans-anethole) (34.2%) and cis-anethole (3.9%) [177]. Thymus leucospermus Hartvig oil has p-cymene (64.2%), α-γ-terpinene (7.9%), thymol (4.8%) and borneol (4.7%). Thymus teucroiodes subsp. Candidicus (Beauverd) Hartvig oil has p-cymene (25.5%), γ-terpinene (19.0%), thymol (18.8%), borneol (5.7%) and α-pinene (5.7%). Origanum vulgare L. has carvacrol, thymol, γ-terpinene and p-cymene, linalool, α-thujene, α-β-pinene or 1,8-cineole, and 1,8-cineole [178].

IV. FUTURE PROSPECTS

Essential oil from aromatic plants have repellent activity to protect humans from mosquito biting. These essential oils can be used to prepare effective formulations like cream, coil, oil evaporator and other products to repel the mosquitoes. Identification of the specific component present in the essential oil, which is responsible for the repellency, paves the way to prepare new effective formulations for mosquito control. An efficient mosquito repellent could be produced using multiple (synergistic) essential oils. It is the best alternative way to replace the synthetic repellents that cause adverse side effects.

V. FUTURE DIRECTIONS OF THE RESEARCH

In this review, we have mentioned the essential oils that are used as eco-friendly mosquito repellents, so this review
should be helpful for a larger-scale research. Furthermore, the repellent activity of these essential oils against other anthropophagous insects should also be studied to establish their possible wider application in controlling human–vector contact. Most of the mosquitoes are sensitive when exposed to the essential oil; however, some essential oils act as repellents only against specific mosquitoes. In future, studies would focus on enhancing the repellent efficacy of any essential oil to all the mosquitoes. It may be useful to finding a potential insect repellent. Furthermore, experiments on repellency of essential oil should also simultaneously evaluate its economic aspects and efficacy under different field conditions. This review would refocus the attention of the research community towards the development and application of known plants rather than screen more plants and isolate novel bioactive molecules that are repellents against mosquitoes. Future investigations should aim at testing essential oils and their mode of action, toxicity of the various biologically active essential oils to the target mechanisms involved and their possible effect on non-target organisms. Repellency approaches of essential oil should be multipronged such as in making of fumigants, sprays, paints, varnishes, incense, candles, etc. In domestic settings, fumigation and spraying in outdoor settings, topical repellents, clothes made of repellent fabrics and repellent wristbands are among other available products for individual protection. Thus, expanded use of essential oils in the eco-friendly insect pest management sector could be of both economic and ecological benefits.

VI. MOLECULAR ASPECTS
The repellent-exposed mosquitoes undergo changes in their life stages. Repellents act on specific targets and ultimately upregulate or downregulate specific gene. Using molecular techniques specific genes can be identified for the biting, flying, and other specific action in the life cycle of mosquitoes [179,180,181,182,183,184,185,186,187,188]. Genetic-based technologies are used to identify functional genomes in the insect. One of the most advanced genetic-based technologies is genome editing. Genome editing uses method such as relies on zinc finger nuclease (ZFN), clustered regulatory interspaced short palindromic repeats (CRISPR), CRISPR-associated protein 9 (Cas9) and transcription activator-like effector nucleases (TALEN). These technologies enable the alteration of specific target genes in mosquitoes. Elimination of specific gene responsible for the biting character of mosquito by using these technologies is one of the measures in the mosquito control program [189,190].

VII. CONCLUSIONS
Rich flora of aromatic plants of wild in nature will certainly be helpful in producing eco-friendly and efficient insecticides to control vector mosquitoes and thus the spread of dreadful diseases. Several studies report that the plant based essential oils exhibit promising repellent activity as against mosquito vectors. Essential oils have also been found to disrupt the host-seeking behavior or disorient the host-seeking mosquito. A mixture of such efficient plant based essential oils in an appropriate ratio would further promise the development of efficacious products towards minimizing the vector born diseases.

Conflict of interest statement
The authors declare that there are no conflicts of interest.

Author’s contribution
Pathalam Ganesan, Magesh Daniel, Samuel Rajan and Savarimuthu Ignacimuthu conceived and designed the study. Pathalam Ganesan and Samuel Rajan wrote the manuscript. Micheal Gabriel Paulraj and Savarimuthu Ignacimuthu supervised the study and assisted with writing the manuscript and approved the final edition of the manuscript.

Acknowledgements
The authors would like to thank Entomology Research Institute, Loyola College, Chennai, for financial support and facilities.

REFERENCE
[1]. WHO. Report of the WHO informal consultation on the evaluation and testing of insecticides, CTD/WHOPEST/IC/96.1. Control of Tropical Diseases, World Health Organization, Geneva, 1996
[2]. M.S. Fradin, J.F. Day. Comparative efficacy of insect repellants against mosquitoes bites. N. Engl. J. Med. 347, 13–18, 2002
[3]. E. Wegner. “A study of mosquito fauna (Diptera: Culicidae) and the phenology of the species recorded in Wilanow (Warsaw, Poland),” Europ. Mosquito Bullet. 27; 23–32, 2009
[4]. M. G Paurraj, A. D. Reegan, S. Ignacimuthu. “Toxicity of benzaldehyde and propionic acid against immature and adult stages of Aedes aegypti (Linn.) and Culex quinquefasciatus (Say) (Diptera: Culicidae).” J Entomol. 8 (6): 539–547, 2011
[5]. K. Karunanmoorthy, K. Ilango, K. Murugan. Laboratory evaluation of traditionally used plant-based insect repellants against the malaria vector Anopheles arabiensis Patton. Parasitol. Res. 106:1217–1223, 2010
[6]. Z. Peng, J. Yang, H. Wang, F.E. Simons. Production and characterization of monoclonal antibodies to two new mosquitoes Aedes aegypti salivary proteins. Insect. Biochem. MolBiol. 29: 909–914, 1999
[7]. A.A. Rahuman, A. Bagavan, C. Kamaraj, E. Saravananan, A.A Zahir, G. Elango. Efficacy of the larvicidal botanical extracts against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol. Res. 104: 1365–1372, 2009
[8]. R. Borah, M.C. Kalita, A. Kar, A.K. Tulukdar. Larvicidal efficacy of Todalia asiatica (Linn.) Lam against two mosquito vector Aedes aegypti and Culex quinquefasciatus. Afr. J. Biotechnol. 9: 2527–2530, 2010
[9]. S. Hales, N.D. Wet, J. Mairondal, A. Woodward. Potential effect of population and climate changes on global distribution of dengue fever; an empirical model. Lancet. 360: 830–834, 2002
[10]. D.S. Akram, S. Ahmed. Dengue fever. Infect. Dis. J. 14:124–125, 2005.
[11]. W. Taubitz, J.P. Cramer. A. Kapaun, M. Pfeffer, C. Drosten, G. Dobler, G.D. Burchard, T. Löscher. Chikungunya fever in travelers: clinical presentation and course. Clin. Infect. Dis. 45: 508, 2007
[12]. P. Holder. The mosquitoes of New Zealand and their animal disease significance. Surveillance. 26: 12–15, 1999

© 2019, IJSRBS All Rights Reserved
[13]. WHO. The Global Programme to Eliminate Lymphatic Filariasis (GPELF). http://www.who.int/lymphatic_filariasis/disease/en/. Accessed Mar 2008

[14]. NICD. Proceeding of the National Seminar on operation research on vector control in filariasis. New Delhi, 1990

[15]. N.B.S Sarkari, S.P. Barthwal, A.K. Gupta, M.M.S. Bagga, S.N. Mishra, V.K. Mishra. A clinical appraisal of two epidemics of Japanese encephalitis in eastern Uttar Pradesh. In: Proceedings of National conference on Japanese encephalitis, pp 34–40, 1984

[16]. V. Ravi, S. Vanajakshi, A. Gowda, A. Chandramukhi. A laboratory diagnosis of Japanese encephalitis using monoclonal antibodies and correlation of findings with the outcome. J. Med. Virol. 29: 221–223, 1989

[17]. A.V. Kondrachine. Malaria in WHO Southeast Asia region. Indian. J. Mal. Res. 29: 129–160, 1992

[18]. G. Wernsdorfer, W.H. Wernsdorfer. Malaria at the turn from the 2nd to the 3rd millennium. Wien. Klin. Wochenschr. 115 (3): 2–9, 2003

[19]. S.J. Rahman, S.K. Sharma, Rajagopal. Manual on entomological surveillance of vector borne diseases. NICD, New Delhi, 1989

[20]. V.P. Sharma, V. Dev. Evaluation of piromphal-methyl (50% EC) against the immature of Anopheles stephensi/Ln. culicifacies (malaria vectors) and Culex quinquefasciatus (vector of bancroftian filariasis). J. Vector. Borne. Dis. 41: 10–16, 2004

[21]. B.L. Wattal, G.C. Joshi, M. Das. Role of agricultural insecticides in precipitating vector resistance. J. Comm. Dis. 13: 71–73, 1981

[22]. M.A. Ansari, P.K. Mittal, R.K. Razdan, R.C. Dhiman, A. Kumar. Larvicidal activity of edible plant Azirun. Temephos resistance in field Aedes aegypti (L.) larvae to temephos in Surabaya, Indonesia. Southeast Asian J. Trop. Med. Public. Health. 43: 29–33, 2012

[23]. K.C. Mulyatno, A. Yamanaka, B.L. Wattal, G.C. Joshi, M. Das. Role of agricultural insecticides in precipitating vector resistance. J. Comm. Dis. 13: 71–73, 1981

[24]. R.K. Gupta, L.C. Rutledge. Role of repellents in vector control and disease prevention. Am. J. Trop. Med. Hyg. 50: 82–86, 1994

[25]. D.C. Chavasse, H.H. Yap. Chemical methods for the control of vectors and pests of public health importance. Geneva, Switzerland. WHO/CTD/WHOPES/97.2.129, 1997

[26]. N. Perumalsamy, N.J. Kim, Y.J. Ahn. Larvicidal activity of medicinal herbs against mosquito larvae. Acta. Phytochem. Rev. 8: 84–87, 2000

[27]. WHO. Informal consultation on malaria elimination: setting up the WHO agenda. In: Delacollette C, Rietveld A (eds). WHO/HTM/MAI/2006.1114, 2006

[28]. R.K. Gupta, L.C. Rutledge. Role of repellents in vector control and disease prevention. Am. J. Trop. Med. Hyg. 50: 82–86, 1994

[29]. M.A. Ansari, P.K. Mittal, R.K. Razdan, R.C. Dhiman, A. Kumar. Larvicidal activity of edible plant Azirun. Temephos resistance in field Aedes aegypti (L.) larvae to temephos in Surabaya, Indonesia. Southeast Asian J. Trop. Med. Public. Health. 43: 29–33, 2012

[30]. G. Briassoulis. Toxic encephalopathy associated with use of DEET insect repellents: a case analysis of its toxicity in children. Hum. Exp. Toxicol. 20: 8–14, 2001

[31]. G. Wernsdorfer, W.H. Wernsdorfer. Malaria at the turn from the 2nd to the 3rd millennium. Wien. Klin. Wochenschr. 115 (3): 2–9, 2003

[32]. S. Bayen. Occurrence, bioavailability and toxic effects of trace metals among toxicants in mangrove ecosystems: a review. Environ. Int. 48: 84–101, 2012

[33]. Y. Akhtar, Y.R. Yousing, M.B. Irani. Comparative bioactivity of selected extract from Meliaceae and some commercial botanical insecticides against two noctuid caterpillars, Trichoplusia ni and Pseudaleutia unipuncta. Phytochem. Rev. 7: 77–88, 2008

[34]. A. Blackwell, A.E. Stuart, B.A. Estambale. The repellent and antifeedant activity of Myrica Gale oil against Aedes aegypti mosquitoes and its enhancement by the addition of salicylic acid. J. R. Coll. Physicians. Edinb. 33: 209, 2003

[35]. M.S. Fradin. Measured and mosquito repellents: a clinician's guide. Ann. Intern. Med. 12 (11): 931–940, 1998

[36]. H.H. Yap, K. Jahangir, J. Zairi. Field efficacy of four insect repellent products against vector mosquitoes in a tropical environment. J. Am. Mosq. Control. Assoc. 16: 241–244, 2000

[37]. WHO. Informal consultation on malaria elimination: setting up the WHO agenda. In: Delacollette C, Rietveld A (eds). WHO/HTM/MAI/2006.1114, 2006

[38]. M.A. Ansari, P.K. Mittal, R.K. Razdan, R.C. Dhiman, A. Kumar. Larvicidal activity of edible plant Azirun. Temephos resistance in field Aedes aegypti (L.) larvae to temephos in Surabaya, Indonesia. Southeast Asian J. Trop. Med. Public. Health. 43: 29–33, 2012

[39]. G. Wernsdorfer, W.H. Wernsdorfer. Malaria at the turn from the 2nd to the 3rd millennium. Wien. Klin. Wochenschr. 115 (3): 2–9, 2003

[40]. S. Bayen. Occurrence, bioavailability and toxic effects of trace metals among toxicants in mangrove ecosystems: a review. Environ. Int. 48: 84–101, 2012

[41]. B.P. Chapagain, V. Saharan, Z. Wiesman. Larvicidal activity of saponins from Balanites aegyptiaca callus against Aedes aegypti mosquito. Bioresour. Technol. 99: 1165–1168, 2008

[42]. H. Perumalsamy, N.J. Kim, Y.J. Ahn. Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipiens pallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae). J. Med. Entomol. 46: 1420–1423, 2009

[43]. Y. Han, L. Li, W. Hao, M. Tang, S. Wan. Larvicidal activity of lansiumamide B from the seeds of Clauena lansium against Aedes albopictus (Diptera: Culicidae). Parasitol. Res. 112: 511–516, 2013

[44]. O.S. da Silva, F.C. da Silva, F.M.C. de Barros, J.L.R. da Silva, S.A. de Loretto Bordignon, V.L. Eifler-Lima, G.L. von Poser, J.S. Prophiro. Larvicidal and growth-inhibiting activities of extract and benzopyrans from Hypertia polyanthum (Guttiferae) against Aedes aegypti (Diptera: Culicidae). Ind. Crops. Prod. 45: 236–239, 2013
M.B. Isman. Botanical insecticides, deterrents, and repellents in modern agriculture and increasingly regulated world. Annu. Rev. Entomol. 51: 45–66, 2006

T.G.T. Jaenson, K. Palsson, K. Aakb. Evaluation of Extracts and Oils of Mosquito (Diptera: Culicidae) Repellent Plants from Sweden and Guinea-Bissau. Entomol. Soc. Am. 0022-2585/06/0113D0119504.00.0, 2006

K. Sukumur, M.J. Perich, L.R. Boobar. Botanical derivatives in mosquito control: a review. J. Am. Mosq. Contr. Assoc. 7: 210–237, 1991

P. Vasudevan, M. Tandon, N. Pathak, P. Nuemerich, F. Muller, A. Mele, H. Lentz. Fluid CO2 extraction and hydrodistillation of certain biocidal essential oils and their constituents. J. Sci. Ind. Res. 65: 662–672, 1997

W. Chochohote, U. Chaitong, K. Kamsuk, A. Jitpakdi, P. Tippawangkosol, B. Tuetun, D. Champakaew, B. Pitasawat. Repellent activity of selected essential oils against Aedes aegypti. Fitoterap. 78: 359–364, 2007

Y.G. Gillij, R.M. Gleiser, J.A. Zygadlo. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresources. 35: 2507–2515, 2008

J.O. Odalo, M.O. Omolua, H. Malebo, J. Angira, P.M. Njeru, I.O. Ndiege, A. Hassanali. Repellency of essential oils of some plants from the Kenyan coast against Anopheles gambiae. Acta. Trop. 95: 210–218, 2005

A. Giatropoulos, D. Pitarkili, F. Papaioanou, D.P. Papachristos, G. Kolopoulos, N. Emmanouel, O. Tzakou, A. Michaelakis. Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol. Res. 112: 1113–1123, 2013

R.M. Gleiser, M.A. Bonino, J.A. Zygadlo. Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti. Parasitol. Res. 108: 68–78, 2011

B. Coni, G. Benelli, G. Flamini, P.L. Cioni, R. Profeti, L. Ceccherini, M. Macchia, A. Canale. Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol. Res. 110: 2013–2021, 2012

K. Kamsuk, W. Chochohote, U. Chaitong, A. Jitpakdi, P. Tippawangkosol, B. Riayong, B. Pitasawat. Effectiveness of Zanthoxylum piperitum-derived essential oil as an alternative repellent under laboratory and field applications. Parasitol. Res. 100: 339–345, 2007

WHO. Report of the WHO informal Consultation on the evaluation and testing of insecticides. CTD/WHO PES/IC/96.1. WHO, Geneva. p 69, 1996

F.J. Gerber, D.R. Barnard, R.A. Ward. Manual for mosquito rearing and experimental techniques. Am. Mosq. Contr. Assoc. Bull. 5: 1–18, 1994

R.E. Coleman, L.L. Robert, L.W. Roberts, J.A. Glass, D.C. Seeley, A. Laughinghouse, P. Perkins, R.A. Wirtz. Laboratory evaluation of repellents against four anopheline mosquitoes (Diptera: Culicidae) and two phlebotomine sand flies (Diptera: Psychodidae). J. Med. Entomol. 30: 499–502, 1993

J.M. Govere, D.V. Durrheim. Techniques for evaluating repellents. In: Debboun M, Frances SP, Strickman D (eds) Insect repellents: Principles methods, and use. CRC Press, Boca Raton 2006

A. Giatropoulos, N. Emmanouel, G. Kolopoulos, A. Michaelakis. A study on distribution and seasonal abundance of Aedes albopictus (Diptera: Culicidae) population in Athens, Greece. J. Med. Entomol. 49: 262–269, 2012

A. Tawatsin, S.D. Wratten, R.R. Scott, U. Thavara, Y. Techadamrongsin, Repellency of Volatile Oils from Plants against Three Mosquito Vectors. Vector Ecol. 26 (1): 76-82, 2001

M. Debboun, D. Strickman, T.A. Klein, J.A. Glass, E. Wylie, A. Laughinghouse, R.A. Wirtz, R.K. Gupta. Laboratory evaluation of AI3-37220, AI3-35765, CIC-4, and DEET repellents against three species of mosquitoes. J. Am. Mosq. Control. Assoc. 15: 342–347, 1999

S.P. Frances, N. Eikarat, B. Sripongse, C. Eamsila. Response of Anopheles dirus and Aedes albopictus to repellents in the laboratory. J. Am. Mosq. Control. Assoc. 9: 474-476, 1993

S.P. Frances, R.D. Cooper, A.W. Sweeney. Laboratory and field evaluation of the repellents Deet, CIC-4, and AI3-37220 against Anopheles farauti (Diptera: Culicidae) in Australia. J. Med. Entomol. 35: 690–693, 1998

C.F. Curtis, N. Hill. Comparison of methods of repelling mosquitoes. Entomol. Exp. App. 49: 175–179, 1998

C.E. Schreck, T.P. Mc Govern. Repellents and other personal protection strategies against Aedes albopictus. J. Am. Mosq. Control. Assoc. 5: 247–252, 1989

K. Kamsuk, W. Chochohote, U. Chaitong, A. Jitpakdi, P. Tippawangkosol, D. Riayong, B. Pitasawat. Effectiveness of Zanthoxylum piperitum-derived essential oil as an alternative repellent under laboratory and field application. Parasitol. Res. 100: 339–345, 2006

M.A. Ansari, R.K. Razdan. Relative efficacy of various oils in repelling mosquitoes. Indian. J. Malarial. 32: 104–111, 1995

S.P. Frances, R.D. Cooper, S. Popa, N.W. Beebe. Field evaluation of repellents containing deet and AI3-37220 against Anopheles keloides in Papua New Guinea. J. Am. Mosq. Contr. Assoc. 17: 42–44, 2001

K. Tanaka, K. Misuzawa, E. Saugstad. Mosquitoes of Japan and Korea. Contrib. Am. Entomol. Inst. 16: 987, 1979

R. Rattanarithikul, P. Panthusiri. An illustrated key to the medically important mosquitoes of Thailand. US Army Medica; Companion, Southeast Asia Treaty Organization, Bangkok 1994

A. Tawatsin, D. Steve, R. Wratten, R. Scott, U. Thavara, Y. Techadamrongsin. Repellency of Volatile Oils from Plants against Three Mosquito Vectors. J. Vector Ecol. 26 (1): 76–82, 2001

A. Amer, H. Mehlhorn. Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol. Res. 99: 466–472, 2006

R.M. Gleiser, J.A. Zygadlo. Essential oils as potential bioactive compounds against mosquitoes. In: Imperato F (ed) Recent advances in phytochemistry. Research Signpost, Kerala 53–76, 2009

R. Maheswaran, and S. Ignacimuthu. A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitol. Res. 110 (5): 1801–1813, 2012

S.J. Moore, A. Lenglet, N. Hill. Field evaluation of three plant-based insect repellents against malaria vectors in Vaca Diez province, the Bolivian Amazon. J. Am. Mosq. Control. Assoc. 18: 107–110, 2002

M.O. Omolo, D. Okino, I.O. Ndiege, W. Lwande, A. Hassanali. Repellency of essential oils of some Kenyan plants against Anopheles gambiae. Phytochem. 65: 2797–2802, 2004

MB. Isman. Plant essential oils for pest and disease management. Crop Prot 19:603–608, 2000

D.P. Papachristos, D.C. Stamopoulos. Repellent, toxic and reproduction inhibitory effects of essential oil vapours on Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J Stored Prod Res 38:117–128, 2002

D.P. Papachristos, K.I. Karamanoli, D.C. Stamopoulos, U. Menkissoglu- Spireou. The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest. Manag. Sci. 60: 514–520, 2004

P. Kumar, S. Mishra, A. Malik, S. Satya. Repellent, larvicidal and pupicidal properties of essential oils and their formulations against the housefly, Musca domestica. Med. Vet. Entomol. 25: 302–310, 2011

A. Michaelakis, D. Papachristos, A. Kinbaris, G. Kolopoulos, A. Giatropoulos, M.G. Polisson, Citrus essential oils and four Eugenomietic pinnenes against Culex pipientis (Diptera: Culicidae). Parasitol. Res. 105: 769–773, 2009

M.F. Maia, S.J. Moore. Plant-based insect repellents: a review of their efficacy, development and testing. Malar. J. 10: S11, 2011
Repellency of essential oils to mosquitoes (Diptera: Culicidae). J. Am. Mosq. Control Assoc. 22: 292–295, 2006

10. A. Amer, H. Melihorn. Repellency effect of forty-one essential oils against Aedes aegypti and Culex pipiens pallasii. J. Am. Mosq. Control Assoc. 22: 292–295, 2006

11. H.S. Lee. Repellency of larvicidal activity of aromatic medicinal plant oils against Aedes aegypti and Culex pipiens pallasii. J. Am. Mosq. Control Assoc. 22: 292–295, 2006

12. J.F. Carroll, N. Tabanca, M. Kramer, N.M. Elejeld, D.E. Wedge, U.R. Bernier, M. Coy, J.J. Beenel, B. Demirci, K.H.C. Baser, J. Zhang, S. Zhang. Essential oils of Cupressus funebris and Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. J. Vector Ecol. 36: 258–268, 2011

13. M.M. Sedaghat, A.S. Dehkordi, M. Khanavi, M.R. Abai, F. Ilora. Repellency of essential oils against the cigarette beetle, Lasioderma serricorne (Coleoptera: Anobiidae). Appl. Entomol. Zool. 38: 467–473, 2003

14. T.R. Barnard. Repellency of essential oils to mosquitoes (Diptera: Culicidae). J. Med. Entomol. 36: 625–629, 1999

15. A.K. Prajapati V, K.K. Tripathi, A. Amer, H. Mehlhorn. Repellency effect of forty essential oils from the leaf oils of selected Malaysian plants. ARB Trop. Med. Hyg. 67: 191–195, 2002

16. K. Palsson, T.G.T. Jaenson. Plant products used as mosquito repellents in Guinea-Bissau, West Africa. Act. Trop. 72: 39–52, 1999

17. K. Palsson, T.G.T. Jaenson. Comparison of plant products and pyrethroid-treated bednets for protection against mosquitoes (Diptera: Culicidae) in Guinea-Bissau, West Africa. Med. Entomol. 36: 144–148, 1999

18. C.F. Curtis, J.D. Lines, J. Ijumba, A. Callaghan, N. Hill, M.A. Karimzad. The relative efficiency of repellents against mosquito vectors of disease. Med. Vet. Entomol. 1: 109–119, 1987

19. S.J. Moore, A.D. Lenglet, An overview of plants used as insect repellents. In: M. Willcox, G. Bodeker, P. Rasoanaivo. (Eds.), Traditional Medicinal Plants and Malaria. CRC Press, Boca Raton, pp. 343–363, 2004

20. J.K. Trigg, N. Hill. Laboratory evaluation of a Eucalyptus-based repellent against four biting arthropods. Phytother. Res. 10: 313–316, 1996

21. I. Jantan, Z.M. Zaki. Development of environment-friendly insect repellents from the leaf oils of selected Malaysian plants. ARBEC 1998.

22. A. Awatins, P. Asavadachanukorn, U. Thavara, P. Wongsinkongman, J. Bansidhi, T. Boonruad, et al. Repellency of essential oils extracted from plants in Thailand against four mosquito vectors (Diptera: Culicidae) and oviposition deterrent effects against Aedes aegypti (Diptera: Culicidae). Southeast Asian. J. Trop. Med. Public. Health. 37: 915-931, 2006

23. T. Pushpanathan, A. Jebanesan, M. Govindarajan. The essential oil of Zinger officinalis Linn (Zingiberaceae) as a mosquito larvicidal and repellent agent against the filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol. Res. 102: 1289–1291, 2008

24. U.R. Bernier, K.D. Furman, D.L. Kline, S.A. Allan, D.R. Barnard. Comparison of contact and spatial repellency of catnip oil and N,N-diethyl-3-methylbenzamide (DEET) against mosquitoes. J. Med. Entomol. 42: 306–311, 2005

25. C.E. Webb, R.C. Russell. Is the extract from the plant catmint (Nepeta cataria) repellent to mosquitoes in Australia? J. Am. Mosq. Control Assoc. 23: 351–354, 2007

26. D.A. Collins, J.N. Brady. Assessment of the efficacy of quenning as a mosquito repellent. Phytother. Res. 7: 17–20, 1993

27. N.G. Das, I. Barua, P.K. Talukdar, S.C. Das. Evaluation of botanicals as repellents against mosquitoes. J. Vector. Borne. Dis. 40: 49–53, 2003
[178]. A.F. Traboulsi, Samih, El-Haj, M. Tueni, K. Taoubi, N.A. Nader, A. Mrad. Repellency and toxicity of aromatic plant extracts against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest. Manag. Sci. 61: 597–604, 2005

[179]. F. Catteruccia, T. Nolan, T.G. Loukeris, C. Blass, C. Savakis, F.C. Kafatos, A. Crisanti. Stable germline transformation of The malaria mosquito Anopheles stephensi. Nature. 405: 959-962, 2000

[180]. C.J. Coates, N. Jaisinskiene, L. Miyashiro, A.A. James. Mariner transposition and transformation of yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. 95: 3748-3751, 1998

[181]. G.L. Grossman, C.S. Rafferty, J.R. Clayton, T.K., Stevens, O. Mukabuye. Benedict, M.Q. Germline transformation of the malaria vector, Anopheles gambiae, with the piggy Bac transposable element. Insect. Mol. Biol. 10: 597-604, 2001

[182]. N. Jaisinskiene, C.J. Coates, M.Q. Benedict, A.J. Cornell, C.S. Rafferty, A.A. James, F.H. Collins. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc. Natl. Acad. Sci. 95: 3743-3747, 1998

[183]. P. Gabrieli, A. Smidler, F. Catteruccia. Engineering the control of mosquito-borne infectious diseases. Genome. Biol. 15: 1-9, 2014

[184]. E. Knipling. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 48: 459-462, 1955

[185]. A. Aryan, MAE, Anderson, K.M. Myles ZN. Adelman. TALEN-based gene disruption in the dengue vector Aedes aegypti, with the Hermes element from the housefly. Proc. Natl. Acad. Sci. 95: 3743-3747, 1998

[186]. A.L. Smidler, O. Terenzi, J. Soichot, E.A. Levashina, E.Marois. Targeted mutagenesis in the malaria mosquito using TALE nucleases. PLoS One8:e60082, 2013

[187]. M. DeGennaro, C.S. McBride, L. Seeholzer, T. Nakagawa, E.J. Dennis, C. Goldman, N. Jaisinskiene, A.A. James, L.B. Voss. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature; 498:487–491, 2013

[188]. A.L. Smidler, O. Terenzi, J. Soichot, E.A. Levashina, E.Marois. Targeted mutagenesis in the malaria mosquito using TALE nucleases. PLoS One8:e60082, 2013

[189]. M. Bibikova, M. Tueni, K. Taoubi, N.A. Nader, A. Mrad. Repellency of Essential Oils of Some Kenyan Plants against the Malaria Mosquito Anopheles gambiae. J. Vector. Ecol. 82, 2000

[190]. A.O. Oyedele, L.O. Orafidiya, A. Lamikanra, J.I. Olaifa. Volatility of essential oils of some selected plants against Ae. aegypti (Diptera: Culicidae). Asian. Pacific. J. Trop. Biomed. 106: 597–600, 2016

[191]. M. Bibikova, K. Beumer, J.K. Trautman, D. Carroll. Enhancing gene targeting with designed zinc finger nucleases. Science. 300: 764-764, 2003

[192]. I. Jantant, Z.M. Zaki. Development of environment-friendly insect repellents from the leaf oils of selected malaysian plants. ARBEC, 1999

[193]. M.A. Oshaghi, R. Ghalandari, H. Vatandoost, M. Shayeghi, M. Kamali-nejad, H. Tourabi-Khaledi, M. Abollhassani, M. Hashemzadeh. Repellent Effect of Extracts and Essential Oils of Citrus limon (Rutaceae) and Melissa officinalis (Labiatae) Against Main Malaria Vector, Anopheles stephensi (Diptera: Culicidae) Iranian. J. Puhl. Health. 32 (4): 47-52, 2003

[194]. S.K. Magaruni, C.E. Webb, S.M. Mansfield, R.C. Russell. Are commercially available essential oils from australian native plants repellent to mosquitoes. J. Am. Mosq. Control. Assoc. 25 (3): 292–300, 2009

[195]. M.O. Omolo, D. Okino, I.O. Ndige, W. Lwande, A. Hassanali. Repellency of essential oils of some Kenyan plants against Anopheles gambiae. Phytochem. 65: 2797–2802, 2004

[196]. J.P.D. Paula, M.R.G. Carneiro, F.J.R. Paunggarten. Chemical composition, toxicity and mosquito repellency of Ocimum selloi oil. J. Ethnopharmacol. 88: 253–260, 2003

[197]. S. Phasomkusolsil, M. Soonwera. Insect repellent activity of medicinal plant oils against aedes aegypti (linn.) Anopheles minimus (theobald) and culex quinquefasciatus say based on protection time and biting rate. Southeast. Asian. J. Trop. Med. Public. Health. 41 (4): 831-840, 2010

[198]. S. Rajkumar, A. Jebanesan, Repellent activity of selected plant essential oils against the malarial fever mosquito Anopheles stephensi. Pest. Biochem. Physiol. 96: 71–75, 2007

[199]. A. Tawatsin, B. S. Mutalib, S. Phasomkusolsil, M. Soonwera. Insect repellent activity of selected plant essential oils against the malarial fever mosquito Anopheles stephensi. Pest. Biochem. Physiol. 96: 71–75, 2007

[200]. A. Oyedele, L.O. Orafidiya, A. Lamikanra, J.I. Olaifa. Volatility of Essential Oils of Some Kenyan Plants against the Malaria Mosquito Anopheles gambiae. J. Vector. Ecol. 82, 2000

[201]. M. Govindarajan. Larvicidal and repellent properties of some essential oils against Culex tritaeniorynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian. Pacific. J. Trop. Med. 106-111, 2011

[202]. T. Pushpanathan, A. Jebanesan, M. L. Govindarajan. Larvicidal, ovicidal and repellent activities of Cymbopogon citratus Stapf (Gramineae) essential oil against the filarial mosquito Culex quinquefasciatus Say (Diptera : Culicidae). Trop. Biomed. 23 (2): 208-212, 2006

[203]. H. Nishimura. Aroma constituents in plants and their repellent activities against mosquitoes. Aroma. Res. 2: 257-267, 2001

Table 1 Repellent efficacy of essential oils from various plants with reference to literature

Plant species (Family)	Oil/Parts used/plant material	Test mosquitoes	Concentration used	Repellency Time duration	Control	Reference	
Citrus limon (L) Osbeck (Rutaceae)	Lemon oil/Fruit	An. stephensi	1%	71.16	DEET	[192]	
Melissa officinalis L. (Labiatae)	Melissa oil/leaf	An. stephensi	1%	60	DEET	[192]	
Cymbopogon citratus (DC.) Stapf (Poaceae)	Eucalyptus oil	Ae. albopictus	15%	3	DEET	[174]	
Eucalyptus globulus Labill. (Myrtaceae)	Eucalyptus oil	Ae. albopictus	15%	5	DEET	[174]	
Litsea elliptica Blume (Lauraceae)	leaf	Ae. aegypti	0.0379 mg cm2	100%	Dimethyl phthalate	[191]	
Cinnamomum mollissimum Hook.f. (Lauraceae)	leaf	Ae. aegypti	0.0379 mg cm2	100%	Dimethyl phthalate	[191]	
Cymbopogon nardus (L) Rendle (Poaceae)	leaf	Ae. aegypti	0.0047 mg cm2	72.2%	Dimethyl phthalate	[191]	
Pogostemon cablin (Blanco) Bentham. (Lamiaceae)	leaf	Ae. aegypti	0.0047 mg cm2	71.4%	Dimethyl phthalate	[191]	
Cymbopogon winterianus Jowitt ex Bor (Poaceae)	Citronella	Ae. aegypti	20%	120min	75.7%	DEET and Bayrepel	[86]

© 2019, IJSRBS All Rights Reserved 80
Aniba rosaeodora Ducke (Lauraceae) Rosewood 20% Ae. aegypti 80min 89. DEET and Bayrepel [86]
An. stephensi 390min 4.8
Cx. quinquefasciatus 480min 85.7

Lavandula angustifolia Mill. (Lamiaceae) Lavender 20% Ae. aegypti 180min 24.5 DEET and Bayrepel [86]
An. stephensi 480min 80.9
Cx. quinquefasciatus 480min 85.7

Cinnamomum camphora (L.) J.Presl (Lauraceae) Camphor 20% Ae. aegypti 150min 32.4 DEET and Bayrepel [86]
An. stephensi 480min 42.8
Cx. quinquefasciatus 480min 57.1

Nepeta cataria L. (Lamiaceae) Catnip 20% Ae. aegypti 480min 83.8 DEET and Bayrepel [86]
An. stephensi 480min 100
Cx. quinquefasciatus 480min 100

Pelargonium graveolens L’Hér. (Geraniaceae) Geranium 20% Ae. aegypti 150min 24.5 DEET and Bayrepel [86]
An. stephensi 330min 80.9
Cx. quinquefasciatus 480min 85.7

Eucalyptus globulus Labill. (Myrtaceae) Eucalyptus 20% Ae. aegypti 60min 56.7 DEET and Bayrepel [86]
An. stephensi 330min 28.6
Cx. quinquefasciatus 480min 100

Jasminum grandiflorum L. (Oleaceae) Jasmine 20% Ae. aegypti 270min 13.5 DEET and Bayrepel [86]
An. stephensi 480min 100
Cx. quinquefasciatus 480min 100

Eucalyptus dives Schauer (Myrtaceae) Broad-leaved eucalyptus 20% Ae. aegypti 210min 18.9 DEET and Bayrepel [86]
An. stephensi 480min 38.1
Cx. quinquefasciatus 480min 100

Cymbopogon citratus (DC.) Stapf (Poaceae) Lemongrass 20% Ae. aegypti 180min 56.7 DEET and Bayrepel [86]
An. stephensi 480min 28.6
Cx. quinquefasciatus 480min 100

Eucalyptus citriodora Hook. (Myrtaceae) Lemon-scented eucalyptus 20% Ae. aegypti 150min 59.4 DEET and Bayrepel [86]
An. stephensi 480min 52.4
Cx. quinquefasciatus 480min 100

Picea excelsa (Lam.) Link (Pinaceae) Fichtennadel 20% Ae. aegypti 120min 21.6 DEET and Bayrepel [86]
An. stephensi 180min 19
Cx. quinquefasciatus 480min 85.7

Amyris balsamifera L. (Rutaceae) Amyris 20% Ae. aegypti 240min 29.7 DEET and Bayrepel [86]
An. stephensi 480min 100
Cx. quinquefasciatus 480min 100

Citrus limon (L.) Osbeck (Rutaceae) Lemon 20% Ae. aegypti 90min 67.6 DEET and Bayrepel [86]
An. stephensi 420min 9.5
Cx. quinquefasciatus 480min 100

Eucalyptus radiata A.Cunn. ex DC. (Myrtaceae) Narrow-leaved eucalyptus 20% Ae. aegypti 150min 64.9 DEET and Bayrepel [86]
An. stephensi 480min 42.8
Cx. quinquefasciatus 480min 100

Glycine soja (Fabaceae) Carotin oil 20% Ae. aegypti 180min 16.2 DEET and Bayrepel [86]
An. stephensi 480min 9.5
Cx. quinquefasciatus 480min 100

Juniperus virginiana L. (Cupressaceae) Cedarwood 20% Ae. aegypti 180min 37.8 DEET and Bayrepel [86]
An. stephensi 480min 38.1
Cx. quinquefasciatus 480min 100
Plant Name	Moth	Ae. aegypti	An. stephensi	Cx. quinquefasciatus	Time to 20%	Time to 50%	Time to 100%	Insecticides
Boswellia carteri (Burseraceae)		20%			120min	360min	480min	DEET and Bayrepel
Anethum graveolens L. (Apiaceae)	Dill	20%			90min	210min	480min	DEET and Bayrepel
Myrtus communis L. (Myrtaceae)	Myrtle	20%			150min	390min	480min	DEET and Bayrepel
Anthemis nobilis L. (Asteraceae)	Chamomile	20%			240min	480min	480min	DEET and Bayrepel
Cinnamomum zeylanicum (Lauraceae)		20%			330min	480min	480min	DEET and Bayrepel
Juniperus communis L. (Cupressaceae)	Juniper	20%			210min	480min	480min	DEET and Bayrepel
Salvia sclarea L. (Lamiaceae)	Sage	20%			120min	300min	480min	DEET and Bayrepel
Mentha piperita L. (Lamiaceae)	Peppermint	20%			120min	390min	480min	DEET and Bayrepel
Ocimum basilicum L. (Lamiaceae)	Basil	20%			120min	300min	480min	DEET and Bayrepel
Melaleuca leucadendra (L.) L. (Lamiaceae)	Cajeput	20%			360min	480min	480min	DEET and Bayrepel
Glycine max (L.) Merr. (Myrtaceae)	Soya bean	20%			180min	480min	480min	DEET and Bayrepel
Rosmarinus officinalis L. (Lamiaceae)	Rosemary	20%			330min	480min	480min	DEET and Bayrepel
Melaleuca quinquenervia (Cav.) S.T.Blake	Niaouli	20%			480min	480min	480min	DEET and Bayrepel
Olea europaea L. (Oleaceae)	Olive	20%			210min	480min	480min	DEET and Bayrepel
Piper nigrum L. (Piperaceae)	Black pepper	20%			90min	180min	480min	DEET and Bayrepel
Lippia citriodora (Palau) Kunth (Verbenaceae)	Verbena	20%			150min	330min	480min	DEET and Bayrepel
Tagetes minuta L. (Asteraceae)	Tagetes	20%			60min	480min	480min	DEET and Bayrepel
Viola odorata L.	Violet	20%			360min	480min	480min	DEET and Bayrepel
Plant Name	Genus and Family	Species	Dilution	Concentration (μg/c)	Duration (min)	Adult Mortality (%)	Insect repellents	
----------------------------	-----------------	---------	----------	---------------------	---------------	---------------------	-------------------	
Sandalwood	Santalum album L. (Santalaceae)	Ae. aegypti	20%	0.0378	16 to 20min	96.1	Bayrepel, DEET and Bayrepel	
Helichrysum italicum	Helichrysum italicum (Asteraceae)	Ae. aegypti	20%	0.0075	1h	96.1	Bayrepel, DEET and Bayrepel	
Galbanum	Ferula galbaniflua (Apiaceae)	Ae. aegypti	20%	0.1 ml	10h.3min	96.1	Negative control	
Chamomile	Chamaemelum nobile (L.) All. (Asteraceae)	Ae. aegypti	20%	0.1 ml	11h	96.1	Negative control	
Wood scrapings	Dalbergia sissoo DC. (Leguminosae)	An. culicifacies	1 ml	8h	89.7	Negative control		
Zanthoxylum piperitum	Zanthoxylum piperitum (Rutaceae)	An. stephensi	480min	100	96.1	Negative control		
Anethum graveolens	Anethum graveolens (Apiaceae)	Ae. aegypti	0.1 ml	1h	96.1	Negative control		
Koemperia galanga L.	Koemperia galanga L. (Zingiberaceae)	Ae. aegypti	0.1 ml	0.5h	96.1	Negative control		
Hyptis suaveolens	Hyptis suaveolens (L.) Poit. (Lamiaceae)	A. albopticus	0.0378µg/c	16 to 155min	96.1	Negative control		
Acantholippia seriphoides	Acantholippia seriphoides (A.Gray)	Ae. aegypti	90%	0.048 ul/cm²	90min	96.1	Negative control	
Achyrocline satureoides	Achyrocline satureoides (Lam.) DC. (Asteraceae)	Ae. aegypti	90%	3h.33min	90min	96.1	Negative control	
Aloysia citriodora	Aloysia citriodora Palau (Verbenaceae)	Ae. aegypti	90%	50min	96.1	Negative control		
Anemia tomentosa	Anemia tomentosa (Savigny) Sw. (Anemiac)	Ae. aegypti	90%	60min	96.1	Negative control		
Baccharis spartiioides	Baccharis spartiioides (Hook. & Arn. ex DC.) J.Reyn in Gay (Asteraceae)	Ae. aegypti	90%	90min	96.1	Negative control		
Chenopodium ambrosioides	Chenopodium ambrosioides (Amaranthaceae)	Ae. aegypti	90%	60min	96.1	Negative control		
Eucalyptus saligna Sm.	Eucalyptus saligna Sm. (Myrtaceae)	Ae. aegypti	90%	90min	96.1	Negative control		
Hystis mutabilis	Hystis mutabilis (Rich.) Briq. (Lamiaceae)	Ae. aegypti	90%	20min	96.1	Negative control		
Minthostachys mollis	Minthostachys mollis (Benth.) Griseb. (Lamiaceae)	Ae. aegypti	90%	90min	96.1	Negative control		
Rosmarinus officinalis L.	Rosmarinus officinalis L. (Lamiaceae)	Ae. aegypti	90%	90min	96.1	Negative control		
Tagetes minuta L.	Tagetes minuta L. (Asteraceae)	Ae. aegypti	90%	90min	96.1	Negative control		
Tagetes pusilla Kunth	Tagetes pusilla Kunth (Asteraceae)	Ae. aegypti	90%	6h.7min	96.1	Negative control		
Acantholippia salsooides	Acantholippia salsooides Griseb. (Verbenaceae)	Ae. aegypti	0.48 ul per cm²	significant	96.1	Negative control		
Aloysia catamarcensis	Aloysia catamarcensis Moldenke (Verbenaceae)	Ae. aegypti	0.48 ul per cm²	significant	96.1	Negative control		
Aloysia polystachya	Aloysia polystachya (Griseb.) Moldenke (Verbenaceae)	Ae. aegypti	0.48 ul per cm²	significant	96.1	Negative control		
Lippia integrifolia	Lippia integrifolia (Griseb.) Hieron. (Verbenaceae)	Ae. aegypti	0.96µl/cm²	100	96.1	Negative control		
Lippia junelliana	Lippia junelliana (Moldenke) Tronc.	Ae. aegypti	0.0075	76.88	96.1	Negative control		

© 2019, IJSRBS All Rights Reserved
Plant Name	Insect Species	Activity	Initials	Concentration	Duration	Control
Santalum spicatum (Santalaceae)	Ae. aegypti	0.48 ul per cm²	Ae. aegypti	87.65	DEET and DMP	[66]
Eucalyptus polybractea F.Muell. ex R.T.Baker (Myrtaceae)	Ae. aegypti	10 ml	Ae. aegypti	82.1	Negative control	[59]
Eucalyptus radiata A.Cunn. ex DC. (Myrtaceae)	Ae. aegypti	10 ml	Ae. aegypti	83.5	Negative control	[59]
Eucalyptus staigeriana F.Muell. ex F.M.Bailey (Myrtaceae)	Ae. aegypti	1ml/ 349.3 cm²	Ae. aegypti	1ml/ 100min	Negative control	[68]
Melaleuca ericifolia Sm. (Myrtaceae)	Ae. aegypti	1ml/ 349.3 cm²	Ae. aegypti	100ml	Negative control	[68]
Melaleuca quinquenervia (Cav.) S.T.Blake (Myrtaceae)	Ae. aegypti	1ml/ 349.3 cm²	Ae. aegypti	100ml	Negative control	[68]

© 2019, IJSRBS All Rights Reserved

84
Plant Name	Aerial Parts	Repellent Agent	Repellent Value	Duration	Control Type				
Croton pseudopachellus Pax (Euphorbiaceae)	Whole aerial parts	An. gambiae	0.5 ml	More repellent than the control under the experimental conditions	Negative control [64]				
Mkilua fragrans Verde. (Annonaceae)	Whole aerial parts	An. gambiae	0.5 ml	More repellent than the control under the experimental conditions	Negative control [64]				
Endostemum tereticaulis (Lamiaceae)	Whole aerial parts	An. gambiae	0.5 ml	More repellent than the control under the experimental conditions	Negative control [64]				
Ocimum forskolei Benth. (Lamiaceae)	Whole aerial parts	An. gambiae	0.5 ml	More repellent than the control under the experimental conditions	Negative control [64]				
Ocimum fischeri Gürke (Lamiaceae)	Whole aerial parts	An. gambiae	0.5 ml	More repellent than the control under the experimental conditions	Negative control [64]				
Plectranthus longipes Baker (Labiatae)	Whole aerial parts	An. gambiae	0.5 ml	More repellent than the control under the experimental conditions	Negative control [64]				
Conyza newii Oliv. & Hiern (Compositae)		An. gambiae	10-1 mg cm²	100	Negative control [194]				
Plectranthus marrubioides Hochst. ex Benth. (Labiatae)		An. gambiae	10-1 mg cm²	100	Negative control [194]				
Lippia javanica (Burm.f.) Spreng. (Verbenaceae)		An. gambiae	10-1 mg cm²	90.3	Negative control [194]				
Lippia ukambensis Vatke (Verbenaceae)		An. gambiae	10-1 mg cm²	83.9	Negative control [194]				
Tetradenia riparia (Hochst.) Codd (Labiatae)		An. gambiae	10-1 mg cm²	79.6	Negative control [194]				
Tarchonanthus camphoratus L. (Compositae)		An. gambiae	10-1 mg cm²	98.5	Negative control [194]				
Ocimum selloi Benth. (Lamiaceae)	Leaf	An. braziliensis	10%	0-3h	75-100 DEET	Negative control [195]			
Cymbopogon nardus (L.) Rendle (Poaceae)	Citronella grass	Ae. aegypti, An. minimus and Cx. quinquefasciatus	115min 130min 140min		Negative control [196]				
Citrus sinensis (L.) Osbeck (Rutaceae)	Orange oil	Ae. aegypti, An. minimus and Cx. quinquefasciatus	30min 50min 60min		Negative control [196]				
Eucalyptus citriodora Hook.	Eucalyptus	Ae. aegypti,	30min		Negative [196]				
Plant Family	Species	Part Used	Ae. aegypti	An. dirus	Cx. quinquefasciatus	Concentration (mg/cm²)	Time (min)	Control	Reference
-------------	---------	-----------	-------------	-----------	----------------------	-----------------------	-----------	---------	-----------
Syzygium aromaticum (L.) Merr. & L.M.Perry	Clove	An. minimus and Cx. quinquefasciatus	80min	60min	Negative control	0.21	60	[196]	
Cananga odorata (Lam.) Hook.f. & Thomson	Ylangylang flowers	Ae. aegypti, An. minimus and Cx. quinquefasciatus	80min	60min	Negative control	0.21	60	[197]	
Citrus sinensis (L.) Osbeck	Orange fruits	Ae. aegypti, An. minimus and Cx. quinquefasciatus	80min	60min	Negative control	0.21	60	[197]	
Cymbopogon citratus (DC.) Stapf	Lemon grass leaves and stems	Ae. aegypti, An. dirus and Cx. quinquefasciatus	60min	40min	Negative control	0.21	60	[197]	
Eucalyptus citriodora Hook.	Eucalyptus leaves	Ae. aegypti, An. dirus and Cx. quinquefasciatus	60min	40min	Negative control	0.21	60	[197]	
Ocimum basilicum L. (Lamiaceae)	Sweet basil leaves	Ae. aegypti, An. dirus and Cx. quinquefasciatus	60min	40min	Negative control	0.21	60	[197]	
Syzygium aromaticum (L.) Merr. & L.M.Perry	Clove flowers	Ae. aegypti, An. dirus and Cx. quinquefasciatus	60min	40min	Negative control	0.21	60	[197]	
Cinnamomum zeylanicum (Lauraceae)	Bark	Ae. aegypti, An. stephensi and Cx. quinquefasciatus	60min	40min	Negative control	53.9	60	[103]	
Cuminum cyminum L. (Apiaceae)	Seed	Ae. aegypti, An. stephensi and Cx. quinquefasciatus	60min	40min	Negative control	49.1	60	[103]	
Curcuma longa L. (Zingiberaceae)	Rhizome	Ae. aegypti, An. stephensi and Cx. quinquefasciatus	60min	40min	Negative control	110.5	60	[103]	
Ocimum basilicum L. (Lamiaceae)	Leaf	Ae. aegypti, An. stephensi and Cx. quinquefasciatus	60min	40min	Negative control	53.9	60	[103]	
Rosmarinus officinalis L. (Lamiaceae)	Shoot	Ae. aegypti, An. stephensi and Cx. quinquefasciatus	60min	40min	Negative control	53.9	60	[103]	
Pimpinella anisum L. (Apiaceae)	Seed	Ae. aegypti, An. stephensi and Cx. quinquefasciatus	60min	40min	Negative control	53.9	60	[103]	
Zingiber officinale Roscoe (Zingiberaceae)	Rhizome	Ae. aegypti, An. stephensi and Cx. quinquefasciatus	60min	40min	Negative control	53.9	60	[103]	
Plant Species	Part Used	Insect Species	Method	Concentration	Efficacy	Control			
-------------------------------------	----------------	-------------------	-------------	---------------	----------	-----------			
Cymbopogon citratus (DC.) Stapf	Lemongrass	*Culex quinquefasciatus*	5.0 mg/cm²	5h	74.03	Negative control			
Zingiber officinale Roscoe (Zingiberaceae)	Rhizome	*Culex quinquefasciatus*	4.0 mg/cm²	120min	100	Negative control			
Centella asiatica (L.) Urb. (Apiales)	Leaf	*Aedes aegypti*	0.1 ml	6h	100	Negative control			
Ipomoea cairica (L.) Sweet (Convolvulaceae)	Leaf	*Anopheles stephensi*	6%	332min	Negative control				
Momordica charantia L. (Cucurbitaceae)	Leaf	*Anopheles stephensi*	6%	323min	Negative control				
Psidium guajava L. (Myrtaceae)	Leaf	*Anopheles stephensi*	6%	119min	Negative control				
Tridax procumbens (L.) L. (Asteraceae)	Leaf	*Anopheles stephensi*	6%	317min	Negative control				
Curcuma longa L. (Zingiberaceae)	Rhizomes	*Aedes aegypti*	0.1 ml	3h	DEET	[74]			
Citrus hystrix DC. (Rutaceae)	Leaf	*Aedes aegypti*	0.1 ml	3h	DEET	[74]			
Cymbopogon winterianus Jowitt ex Bor (Poaceae)	Leaf	*Aedes aegypti*	0.1 ml	3h	DEET	[74]			
Ocimum americanum L. (Lamiaceae)	Leaf	*Aedes aegypti*	0.1 ml	3h	DEET	[74]			
Cymbopogon nardus (L.) Rendle (Poaceae)	Leaf	*Aedes aegypti*	0.1 ml	3h	DEET	[74]			
Zanthoxylum limonella (Dennst.) Alston (Rutaceae)	Seed and fruit	*Aedes aegypti*	0.1 ml	3h	DEET	[74]			
Syzygium aromaticum (L.) Merr. & L.M.Perry (Myrtaceae)	Leaf	*Aedes aegypti*	0.1 ml	3h	DEET	[74]			
Thymus vulgaris L. (Lamiaceae)	Thyme oil	*Aegypti*	468.5 mg/cm²	6h	14	Negative control			
Nepeta cataria L. (Lamiaceae)	Catnip oil	*Aegypti*	468.5 mg/cm²	6h	70	Negative control			
Amyris balsamifera L. (Rutaceae)	Amyris oil	*Aegypti*	468.5 mg/cm²	6h	34	Negative control			
Eucalyptus citriodora Hook. (Myrtaceae)	Lemon oil	*Eucalyptus citriodora*	468.5 mg/cm²	1h	3	Negative control			
Cymbopogon citratus (DC.) Stapf (Poaceae)	Leaf	*Culex tritaeniorynchus* An. subpictus	5.0 mg/cm²	180 min	79.4	Negative control			
Cinnamonum zeylanicum (Lauraceae)	Bark	*Culex tritaeniorynchus* An. subpictus	5.0 mg/cm²	180 min	64.7	Negative control			
Rosmarinus officinalis L. (Lauraceae)	Shoot	*Culex tritaeniorynchus* An. subpictus	5.0 mg/cm²	180 min	71.2	Negative control			
(Lauraceae)	Zingiber officinale Roscoe	Rhizome	An. subpictus	5.0 mg/cm²	180 min	68.2	Negative control	[200]	
---	---	---	---	---	---	---	---	---	
(Zingiberaceae)	Zingiber officinale Roscoe	Rhizomes	Cx. tritaeniorhynchus	An. subpictus	4.0 mg/cm²	120 min	100%	Negative control	[132]
(Zingiberaceae)	Andropogon citratus DC. Stapf	Rhizomes	Cx. quinquefasciatus	An. subpictus	6.0 mg/cm²	180 min	88.3	Negative control	[200]
(Poaceae)	Citrus sinensis (L.) Osbeck	Leaf	Cx. pipiens	3%	32 min	Negative control	[178]		
(Rutaceae)	Eucalyptus spp.	Leaf	Cx. p.	3%	39 min	Negative control	[178]		
(Myrtaceae)	Foeniculum vulgare Mill. (Umbelliferae)	Flowers	Cx. p.	3%	29 min	Negative control	[178]		
(Myrtaceae)	Andropogon citratus DC. Stapf	Leaf	Cx. p.	3%	29 min	Negative control	[178]		
(Lauraceae)	Pinus pinea L.	Leaf	Cx. p.	3%	28 min	Negative control	[178]		
(Pinaceae)	Eucalyptus globulus Labill.	Leaf	Cx. p.	0.05%	17.8 min	70	Negative control	[147]	
(Myrtaceae)	Lavandula officinalis Chaix	Leaf	Cx. p.	0.05%	33.2 min	65	Negative control	[147]	
(Lamiaceae)	Rosmarinus officinalis L.	Leaf	Cx. p.	0.05%	31 min	77	Negative control	[147]	
(Lamiaceae)	Thymus vulgaris L. (Lamiaceae)	Leaf	Cx. p.	0.05%	65.4 min	91	Negative control	[147]	
(Lamiaceae)	Hemicizia welwitschii	Leaf	Cx. p.	15%	4h	100%	Negative control	[199]	
(Lamiaceae)	Cupressus benthamii Endl.	Aerial parts	Cx. p.	0.08 mg/cm²	100%	DEET/negative control	[65]		
(Cupressaceae)	Cupressus macrocarpa Hartw.	Aerial parts	Cx. p.	0.08 mg/cm²	100%	DEET/negative control	[65]		
(Cypress)	Chamaecyparis lawsoniana (A.Murray bis) Parl.	Aerial parts	Cx. p.	0.08 mg/cm²	100%	DEET/negative control	[65]		
(Cypress)	Thymus leucospermus Hartvig	Aerial parts	Cx. p.	1mg/cm²	78.1%	DEET and icaridin	[97]		
(Lamiaceae)	Thymus teucrioides subsp. candidicus (Beauverd) Hartvig	Aerial parts	Cx. p.	1mg/cm²	72.9%	DEET and icaridin	[97]		