MEGAMASER DISKS REVEAL A BROAD DISTRIBUTION OF BLACK HOLE MASS IN SPIRAL GALAXIES

J. E. Greene1, A. Seeth2, M. Kim3,4, R. Läsker5, A. Goulding1, F. Gao4,6,7, J. A. Braatz8, C. Henkel9,10, J. Condon8, K. Y. Lo8, and W. Zhao11,12
1 Department of Astrophysics, Princeton University, Princeton, NJ, USA
2 University of Utah, Salt Lake City, UT 84112, USA
3 Korea Astronomy and Space Science Institute, Daejeon 305-348, Korea
4 University of Science and Technology, Daejeon 350-350, Korea
5 Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, 21500 Kaarina, Finland
6 Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Science, Shanghai 200030, China
7 Graduate School of the Chinese Academy of Science, Beijing 100039, China
8 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
9 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
10 Astronomy Department, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
11 Shanghai Observatory, 80 Nandan Road, Shanghai 200030, China
12 Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Nanjing 210008, China

Received 2016 April 19; revised 2016 June 5; accepted 2016 June 9; published 2016 July 29

ABSTRACT

We use new precision measurements of black hole (BH) masses from water megamaser disks to investigate scaling relations between macroscopic galaxy properties and supermassive BH mass. The megamaser-derived BH masses span 10^6–$10^9 M_\odot$, while all the galaxy properties that we examine (including total stellar mass, central mass density, and central velocity dispersion) lie within a narrower range. Thus, no galaxy property correlates tightly with M_{BH} in L^* spiral galaxies as traced by megamaser disks. Of them all, stellar velocity dispersion provides the tightest relation, but at fixed σ_* the mean megamaser M_{BH} are offset by -0.6 ± 0.1 dex relative to early-type galaxies. Spiral galaxies with non-maser dynamical BH masses do not appear to show this offset. At low mass, we do not yet know the full distribution of BH mass at fixed galaxy property; the non-maser dynamical measurements may miss the low-mass end of the BH distribution due to an inability to resolve their spheres of influence and/or megamasers may preferentially occur in lower-mass BHs.

Key words: galaxies: Seyfert – quasars: supermassive black holes

Supporting material: machine-readable table

1. INTRODUCTION

For more than a decade, we have studied the relationship between the stellar velocity dispersion σ_* of a galaxy bulge and the central supermassive black hole (BH) mass M_{BH} (e.g., Tremaine et al. 2002). As more dynamical M_{BH} are measured, particularly at the highest M_{BH} (e.g., McConnell & Ma 2013) and in spiral galaxies (Greene et al. 2010), it has become clear that the relationship between M_{BH} and σ_* has more scatter and more structure than was originally thought (Kormendy & Ho 2013). BH mass does not correlate strongly with total galaxy mass (e.g., Reines & Volonteri 2015), nor does it appear to correlate with circular velocity (and thus by inference dark matter halo mass; Sun et al. 2013). It is possible that M_{BH} is built up along with the bulge mass. However, in late-type galaxies where there is clear evidence for ongoing bulge growth, M_{BH} appear to be systematically lower than expected based on BH-bulge relations in early-type galaxies (e.g., Läsker et al. 2016). Here, we use megamaser disks that reside well within the BH sphere of influence to probe the distribution of M_{BH} in spiral galaxies.

We assume an H_0 of 70 km s$^{-1}$ Mpc$^{-1}$ (Dunkley et al. 2009), consistent with all of the H_0 measurements from megamaser disk galaxies measured to date (e.g., Kuo et al. 2015).

2. MEGAMASER DISK GALAXIES, SAMPLE, AND OBSERVATIONS

Stellar and non-maser gas dynamical methods yield the majority of dynamical M_{BH}, but they are limiting both in their spatial resolution and in their ability to cleanly measure M_{BH} in all galaxy types. Due to the need to resolve the gravitational sphere of influence, these methods currently cannot reach $M_{BH} < 10^7 M_\odot$ at the distance of Virgo. Dust, ongoing star formation, and non-axisymmetric potentials such as bars also complicate efforts to find M_{BH} in late-type galaxies. Megamaser disks circumvent these problems and provide the most accurate and precise extragalactic M_{BH} measurements.

Circumnuclear H$_2$O megamasers often trace Keplerian rotation around the supermassive BH at radii of \sim0.2–1 pc (e.g., Miyoshi et al. 1995). Sensitive surveys, enabled primarily by the Green Bank Telescope (GBT), and micro-arcsecond accurate mapping of the disks with the Very Long Baseline Array, the Very Large Array, the GBT, and/or the 100 m Effelsberg telescope, have yielded more than 150 megamaser galaxies, of which at least 34 harbor megamaser disks (e.g., Pesce et al. 2015). The host galaxies are $\sim L^*$ spirals with Hubble types S0-Sbc, while the derived M_{BH} have values ranging from 10^6 to $10^8 M_\odot$ (e.g., Greene et al. 2010; Kuo et al. 2011). Here we add σ_* measurements for seven galaxies, whose M_{BH} are presented in Gao et al. (2016a, 2016b) and W. Zhao et al. (2016, in preparation) (Table 1).

2.1. Comparison Galaxy Sample

We consider only galaxies with dynamical M_{BH} measurements. We start with the recent compilation from Saglia et al. (2016, 98 galaxies), of which 14 are megamaser disks (including a new megamaser disk mass for IC2560; J. Wagner et al. 2016, in preparation). We add non-maser dynamical
masses for NGC 4395 (den Brok et al. 2015), and the interesting outliers NGC 1271 (Walsh et al. 2015), NGC 1277 (Walsh et al. 2016), and NGC 1600 (Thomas et al. 2016) for a total of 102 literature sources and a final sample of 109 galaxies, including our 7 new maser disks (Table 1). There are a total of 21 megamaser disk galaxies and 16 late-type (non-S0) non-maser spiral galaxies. When we discuss stellar masses (M_*), we refer to the 67 galaxies that have imaging from the Sloan Digital Sky Survey (SDSS; York et al. 2000).

2.2. Spectroscopic Observations

The M_* presented here are measured from three data sets. Two galaxies (NGC1320, NGC5495) were observed with the B&C spectrograph on the Dupont telescope at the Las Campanas Observatory using a 2″ slit (Greene et al. 2010). These spectra have an instrumental resolution of $\sigma_i \approx 120$ km s$^{-1}$ and a wavelength range of 3400–6000 Å. NGC 1320 is only marginally spectroscopically resolved, while NGC 5495 is well-resolved, but we are able to recover reliable dispersions at or slightly below the instrumental resolution (Greene et al. 2010). We extracted spectra within a 2″ aperture to perform our measurements. The reductions are described in detail in Greene et al. (2010). Standard flat-field, bias, wavelength calibration, flux, and telluric correction were performed within IRAF. Each galaxy was observed for 1.3 hr, yielding signal-to-noise ratios of \sim100 pixel$^{-1}$ (see example fits to similar objects in Greene et al. 2010).

Two galaxies (Mrk1029, ESO558–G009) have σ_* measurements from the cross-dispersed near-infrared spectrograph Triplespec (Wilson et al. 2004) on the 3.5 m telescope at Apache Point. Triplespec has a wavelength range of 0.9–2.4 μm with a spectral resolution of $\sigma_s \approx 37$ km s$^{-1}$, far higher than the internal σ_* of the galaxies. We observed with the 1″ slit oriented along the major axis of each galaxy; again we extracted data within a 2″ aperture. We nodded off the galaxy by 1′–3′ to measure the sky, and at least once an hour we observed an A0V star (10 < H < 6 mag) at a similar airmass to serve as a spectrophotometric standard and to facilitate telluric correction. Integration times ranged from 0.5 to 1.5 hr, yielding signal-to-noise ratios of \sim50 pixel$^{-1}$ (Figure 1).

We performed standard data reduction procedures using custom software written for Triplespec based on the Spextool package (Vacca et al. 2003; Cushing et al. 2004), which performed flat-fielding, wavelength calibration, bias, dark, and atmospheric air-glow subtraction. Non-linearity corrections were applied, and the spectra are traced and optimally extracted (Horne 1986). The spectra were combined using a robust error
using direct pixel measurements, we calculate stellar masses.

is typically measured within a circular aperture; the best-fit pPXF model in red, and
residuals in thin black at the bottom. Masked regions corresponding to emission lines are indicated with vertical dashed lines. Unmasked spikes are the result of imperfect sky subtraction.

Fits to the observations of ESO558–009 and Mrk1029 from Trplespec (Section 2.2). The data are shown in black (in units of erg cm\(^{-2}\) s\(^{-1}\) cm\(^{-1}\) Å\(^{-1}\) arbitrarily scaled), the best-fit pPXF model in red, and residuals in thin black at the bottom. Masked regions corresponding to emission lines are indicated with vertical dashed lines. Unmasked spikes are the result of imperfect sky subtraction.

3. ANALYSIS

3.1. Stellar Velocity Dispersions

We measure \(\sigma_v\) using direct pixel fitting implemented by the publicly available pPXF code (Cappellari & Emsellem 2004). We measure only the first two moments of the line-of-sight velocity distribution (\(V\) and \(\sigma_v\)). To account for differences in flux calibration and reddening, we also include a fourth-order multiplicative polynomial.

For the two optical spectrographs, we use spectral templates from Valdes et al. (2004), which have a higher spectral resolution than the galaxy observations (\(\sigma_v \approx 24\) km s\(^{-1}\)). The code solves for the optimal set of template weights over the spectral range of 4000–5400 Å. We experiment with three other narrower spectral windows, and find agreement within \(\sim 20\%\) for \(\sigma_v\) between the different regions.

Our near-infrared spectral template stars are taken from Wallace & Hinkle (1996) and have a spectral resolution of \(\sim 33\) km s\(^{-1}\) in the \(K\)-band. The NIR spectra cover \(YJHK\). We derive the most stable \(\sigma_v\) measurements from the CO bandheads in the \(K\)-band (2.2–2.35 \(\mu\)m). The \(H\)-band data proved hard to fit due to spectral differences between the galaxies and our template stars.

3.2. Uncertainties in \(\sigma_v\)

The errors on \(\sigma_v\) are measured via bootstrapping; the best-fit models are combined with Gaussian-random noise of the proper amplitude to simulate the data and these are refit to generate a distribution in \(V\) and \(\sigma_v\) (Table 1). We also compare our observations with the \(\sigma_v\) measurements published by the Hobby Eberly Telescope Massive Galaxy Survey (HETMGS; van den Bosch et al. 2015). Taking the eight megamaser galaxies in common between HETMGS and the \(\sigma_v\) published in Greene et al. (2010) or presented here, we find

\[\left(\frac{\sigma_{\text{HETMGS}} - \sigma_{\text{this work}}}{\sigma_{\text{HETMGS}}}\right) = -0.03 \pm 0.13.\]

We set 13% as a floor on the measured uncertainty.

Aperture corrections are a significant source of systematic uncertainty. In ellipticals, \(\sigma_v\) is typically measured within a fixed fraction of \(R_e\), which is challenging to measure in spiral bulges. Furthermore, \(\sigma_v\) profiles are more complex and \(V/\sigma\) is typically higher in spiral bulges, even when the large-scale disk is excluded, as here (e.g., Falcón-Barroso et al. 2006; Greene et al. 2014). We do not correct \(\sigma_v\) for rotation, but we estimate the magnitude of such a correction as follows. Typical spirals have \(V/\sigma_v \approx 0.3\) within 1″–2″ (Falcón-Barroso et al. 2006). Removing the rotation in quadrature moves the spirals toward the \(M_{\text{BH}}-\sigma_v\) relation of ellipticals (e.g., Bennert et al. 2015). On the other hand, elliptical galaxies also typically rotate (e.g., Emsellem et al. 2007) so there is no strong scientific justification to remove this component of dynamical support only in the spiral galaxies.

3.3. Stellar Masses

In addition to \(\sigma_v\), we calculate stellar masses (\(M_\star\)) for the 67 galaxies that lie within the SDSS footprint using linear relationships between color and \(M/L\) from Bell et al. (2003). To estimate an allowed range of \(M_\star\), for each galaxy we calculate 12 possible stellar masses using the 4 SDSS Petrosian filters. We average these estimates and take the standard deviation to estimate an error—this error is larger in systems with a wide mix of stellar populations and/or dust, where blue and red colors provide quite different \(M/L\) estimates.

We calculate \(M_\star\) for the entire galaxy and within \(r < 1\) kpc (\(M_\star\) \(1\) kpc). The mass within a fixed physical aperture is a crude but non-parametric estimate of the central stellar density, and might correlate better with \(M_{\text{BH}}\) than the total \(M_\star\). It is also a simple measurement relative to \(M_{\text{bulge}}\), \(\sigma_v\), or even \(M_\star\). We measure \(M_\star\) kpc from the SDSS data using the luminosity within a central circular aperture. We exclude galaxies where the aperture is <2″, which are limited by the SDSS seeing.

3.4. Mass Uncertainties

Photometric stellar masses contain many uncertainties, including aperture effects, projection effects, and the contribution of nebular emission from an active nucleus (for the megamaser disk galaxies). We mitigate the latter effect by taking an average over multiple filters. We find only small differences when we test elliptical apertures for a subset of the galaxies (<0.2 mag), and removing edge-on galaxies does not change the result. We also explore whether our results are...
Figure 2. (a) Relationship between M_{BH} and M_\ast. We show elliptical (red circles), S0 (green triangles), spiral (blue squares), and megamaser disk (blue circles) galaxies. Double circles indicate our new measurements. We show fits to the full sample (gray dotted-dashed), the early-types (red solid) and the Reines & Volonteri (2015) fit (blue dashed). (b) The relationship between M_{BH} and mass enclosed within 1 kpc. Symbols are as at left. In gray we show the galaxy mass “corrected” for core scouring (e.g., Rusti et al. 2013). Galaxies with radii $<2''$ are excluded.

4. EXPLORING BH–GALAXY CORRELATIONS

In Figure 2(a), we show the relationship between M_{BH} and M_\ast. We fit all relations in this paper using the Bayesian line-fitting code of Kelly (2007), taking into account uncertainties in both M_{BH} and the galaxy properties. We fit a log-linear model with log (M_{BH}/M_\odot) $= \alpha + \beta \log (X/X_0) + \epsilon$, with X being M_\ast, $M_\text{1 kpc}$, or σ_b and X_0 near the center of the distribution (Table 2).

We find ~1 dex scatter in the relation between M_\ast and M_{BH}. At a stellar mass of $\sim 10^{11} M_\odot$, M_{BH} spans a range from 10^6 to $10^9 M_\odot$, and spiral galaxies tend to have lower M_{BH} than elliptical galaxies at similar M_\ast. We have long known that BHs correlate better with galaxy bulges than with M_\ast, disk mass (e.g., Gebhardt et al. 2003), or asymptotic circular velocity (e.g., Sun et al. 2013).

Original interpretations of the BH-bulge scaling relations posited that energy released during active phases of BH growth acted on galaxy-wide gas reservoirs, thus impacting the future growth of the galaxy (e.g., Springel et al. 2005). The BHs in the megamaser disk galaxies are too large to be primordial seeds (e.g., Volonteri 2010), so they have certainly undergone some accretion episodes, but the lack of correlation with M_\ast strongly suggests that BH growth does not remove gas from galactic disks (i.e., does not act beyond bulge scales). After removing the disk component, we still see considerable scatter between M_{BH} and bulge properties in late-type spiral galaxies, even when we attempt to isolate the “classical” bulge component from the nuclear disks, rings, and bars that characterize “pseudobulges” (Läsker et al. 2016; Saglia et al. 2016).
4.1. A Local Relationship with Central Density

Recent work has found that central mass density (stellar mass within 1 kpc, \(M_{1\text{kpc}} \)) is a strong indicator of the star formation history of a galaxy (e.g., Barro et al. 2015), with high central stellar density and galaxy quenching going hand in hand. Exactly what terminates star formation in dense galaxies remains unknown, but one possibility is feedback from supermassive BHs, which may grow along with dense cores. The formation history of a galaxy (e.g., Rusli et al. 2013) tends to artificially decrease the central mass density. We “correct” the most massive galaxies for core scouring in Figure 2(b) by adding the \(M_{\text{BH}} \) to the central mass, but our fits do not change.

4.2. BH Mass and Stellar Velocity Dispersion

Turning to the \(M_{\text{BH}}-\sigma_* \) relation, our linear fit to the full sample of galaxies confirms the steep slope found in recent works (\(\beta = 5.3 \pm 0.3 \)) and the high intrinsic scatter (\(\epsilon = 0.5 \pm 0.1 \)). In Greene et al. (2010), we found that the BH masses in the megamaser disk galaxies are lower than expected at a fixed \(\sigma_* \). Here we double the megamaser disk sample and strongly confirm our previous result (Figure 3). We calculate the average offset \(\Delta M_{\text{BH}} \) between \(M_{\text{BH}} \) and that is predicted by the \(M_{\text{BH}}-\sigma_* \) relation for early-type galaxies. The offset is calculated as the weighted mean of the difference between the measured \(M_{\text{BH}} \) and that calculated from the best-fit relation, with the weights including both \(y \) and \(x \) uncertainties combined in quadrature (Läsker et al. 2016). We find an offset of \(-0.39 \pm 0.12 \) for late-type galaxies and an offset of \(-0.45 \pm 0.12 \) for pseudobulges.

We now have marginally sufficient statistics to compare the distributions of maser and non-maser spirals. There are 21 megamaser disk galaxies (2 S0, 19 spiral) and 16 late-type (non-S0) spiral galaxies with \(M_{\text{BH}} \) measurements from non-maser dynamics. The maser and non-maser samples have indistinguishable distributions in \(\sigma_* \) according to an Anderson–Darling test (e.g., Babu & Feigelson 2006), with \(p = 0.65 \) of being drawn from the same distribution. Likewise, the distributions of bulge type are quite similar, with \(\sim 85\% \) of the \(\sigma_* \) gas dynamical and \(\sim 85\% \) of the megamaser disk galaxies hosted by pseudobulges (Table 1).

Calculating the net offset from our best-fit \(M_{\text{BH}}-\sigma_* \) relation for early-type galaxies, we find \(\Delta M_{\text{BH}} = -0.56 \pm 0.14 \) dex for the 21 megamaser disks, while we find no mean offset \(\Delta M_{\text{BH}} = -0.16 \pm 0.15 \) dex for the non-maser spirals (Figure 4). The maser and non-maser spirals are significantly different in \((M_{\text{BH}}/\sigma_*)^5 \); the Anderson–Darling test returns a probability \(P = 0.02 \) that they are drawn from the same distribution (Figure 4), even if we focus on just the 19 non-S0 maser disk galaxies or the maser and non-maser pseudobulge

10 Taking the identifications from Saglia et al. (2016) for the literature sources and taking all of our new galaxies to harbor some secularly evolving component based on our new HST imaging; F. Fjanka et al. (2016, in preparation).
samples ($P = 0.01$). Finally, we examine the two samples non-parametrically in two-dimensions using the Cramer Von-Mises test, and find that the two samples are different at 90% significance.

With such small numbers we see only a suggestive difference between the maser and non-maser samples. On the other hand, we see a similar trend in the M_{BH}–M_{gal} relations (Läsker et al. 2016). Thus, we briefly consider the possible ramifications should this difference prove real. There are three possibilities. First, the masers could trace the true M_{BH} distribution, while the non-maser M_{BH} distribution is biased due to the inability to resolve the sphere of influence of $<10^7 M_\odot$ BHs. Existing upper limits do not constrain this possibility, as they are at higher BH mass (Gültekin et al. 2011). In this scenario, spiral (or low mass) galaxies do have a broad range of M_{BH}, as may be expected in merger-driven scenarios (e.g., Jahnke & Macciò 2011) or if M_{BH} never gets large enough to exert feedback on the galaxy (e.g., Zubovas & King 2012).

Second, the non-maser distribution could be the real one, with masers preferentially occurring in lower-M_{BH} systems due to a correlation between M_{BH} and disk size (Neufeld et al. 1994; van den Bosch et al. 2016). The third possibility, which we view as highly unlikely, is that we may be preferentially catching the maser galaxies as they grow toward the M_{BH}–σ_{*} relation. Given that BH growth episodes are likely quite short compared to the growth times of bulges (many Gyr), we do not favor this third scenario (Greene et al. 2010). We urgently need more observations of both spiral and elliptical galaxies at low mass, using multiple methods, to determine the full distribution of M_{BH} at low galaxy mass.

5. SUMMARY

We present new stellar velocity dispersion measurements for seven megamaser disk galaxies, and revisit galaxy–BH scaling relations that incorporate these new measurements. In addition to σ_{*}, we investigate total stellar mass M_{s}, and a non-parametric measure of central stellar mass density within 1 kpc, M_{1}, kpc$^{-1}$. We have also recently examined bulge mass (Läsker et al. 2016), and halo mass (Sun et al. 2013).

The M_{BH} in megamaser disk galaxies span a large range for any fixed galaxy property, while the maser and non-maser dynamical measurements have different distributions of M_{BH} at a fixed galaxy property. To determine the real distribution of M_{BH} in this low-mass regime we must push the sphere of influence limit downward for non-maser M_{BH}. We hope that with ALMA (e.g., Barth et al. 2016) and thirty-meter-class optical/NIR telescopes (e.g., Do et al. 2014), we will fill in low-mass galaxies with non-maser dynamical measurements to address the full distribution of M_{BH} in low-mass galaxies.

We thank the referee for a constructive report that significantly improved this manuscript. J.E.G. thanks A. Barth, K. Gültekin, S. Tremaine, and R. van den Bosch for useful discussions. J.E.G. acknowledges funding from NSF grant AST-1310405. A.C.S. acknowledges support from NSF grant AST-1350389. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

REFERENCES

Babu, G. J., & Feigelson, E. D. 2006, in ASP Conf. Ser. 351, Astronomical Data Analysis Software and Systems XV, ed. C. Gabriel et al. (San Francisco, CA: ASP), 127
Barro, G., Faber, S. M., Koo, D. C., et al. 2015, ApJ, submitted (arXiv:1509.00469)
Barth, A. J., Boizelle, B. D., Darling, J., et al. 2016, ApJL, 822, L28
Bell, E. F., McIntosh, D. H., Katz, N., & Weinberg, M. D. 2003, ApJS, 149, 289
Bennett, V. N., Treu, T., Auger, M. W., et al. 2015, ApJ, 809, 20
Bezanson, R., van Dokkum, P. G., Tal, T., et al. 2009, ApJ, 697, 1290
Cappellari, M., & Emsellem, E. 2004, PASP, 116, 138
Cushing, M. C., Vacca, W. D., & Rayner, J. T. 2004, PASP, 116, 362
Debuhr, J., Quataert, E., Ma, C.-P., & Hopkins, P. 2010, MNRAS, 406, L55
den Brok, M., Seth, A. C., Barth, A. J., et al. 2015, ApJ, 809, 101
Do, T., Wright, S. A., Barth, A. J., et al. 2014, AJ, 147, 93
Dunkley, J., Spergel, D. N., Komatsu, E., et al. 2009, ApJ, 701, 1804
Emsellem, E., Cappellari, M., Krajnović, D., et al. 2007, MNRAS, 379, 401
Falcón-Barroso, J., Bacon, R., Bureau, M., et al. 2006, MNRAS, 369, 529
Gao, F., Braatz, J. A., Reid, M. J., et al. 2016a, ApJ, 817, 128
Gao, F., Braatz, J. A., Reid, M. J., et al. 2016b, ApJ, submitted
Gebran, K., Richstone, D., Tremaine, S., et al. 2003, ApJ, 583, 92
Greene, J. E., Peng, C. Y., Kim, M., et al. 2010, ApJ, 721, 26
Greene, J. E., Seth, A., Lyubenova, M., et al. 2014, ApJ, 788, 145
Gültekin, K., Tremaine, S., Loeb, A., & Richstone, D. O. 2011, ApJ, 738, 17
Horne, K. 1986, PASP, 98, 609
Jahnke, K., & Macciò, A. V. 2011, ApJ, 734, 92
Kelly, B. C. 2007, ApJ, 665, 1489
Kormendy, J., & Ho, L. C. 2013, ARA&A, 51, 511
Koo, C. Y., Braatz, J. A., Condon, J. J., et al. 2011, ApJ, 727, 20
Koo, C. Y., Braatz, J. A., Lo, K. Y., et al. 2015, ApJ, 800, 26
Läsker, R., Greene, J. E., Seth, A., et al. 2016, ApJ, 825, 3
McConnell, N. J., & Ma, C.-P. 2013, ApJ, 764, 184
Miralda-Escudé, J., & Kollmeier, J. A. 2005, ApJ, 619, 30
Miyoshi, M., Moran, J., Herrnstein, J., et al. 1995, Natur, 373, 127
Neufeld, D. A., Maloney, P. R., & Conger, S. 1994, ApJL, 436, L127
Pesce, D. W., Braatz, J. A., Condon, J. J., et al. 2015, ApJ, 810, 65
Reines, A. E., & Volonteri, M. 2015, ApJ, 813, 82
Roediger, J. C., & Courteau, S. 2015, MNRAS, 452, 3209
Rusli, S. P., Erwin, P., Saglia, R. P., et al. 2013, AJ, 146, 160
Saglia, R. P., Optitsch, M., Erwin, P., et al. 2016, ApJ, 818, 47
Springel, V., Di Matteo, T., & Hernquist, L. 2005, ApJL, 620, L79
Sun, A.-L., Greene, J. E., Impellizzeri, C. M. V., et al. 2013, ApJ, 778, 47
Thomas, J., Ma, C.-P., McConnell, N. J., et al. 2016, Natur, 532, 340
Tremaine, S., Gebhardt, K., Bender, R., et al. 2002, ApJ, 574, 740
Vacca, W. D., Cushing, M. C., & Rayner, J. T. 2003, PASP, 115, 389
Valdes, F., Gupta, R., Rose, J. A., Singh, H. P., & Bell, D. J. 2004, ApJS, 152, 251
van den Bosch, R. C. E., Gebhardt, K., Gültekin, K., Yi, D., & Walsh, J. L. 2015, ApJ, 818, 10
van den Bosch, R. C. E., Greene, J. E., Braatz, J. A., Constantin, A., & Koo, C.-Y. 2016, ApJ, 819, 11
Volonteri, M. 2010, A&ARv, 18, 279
Waller, L., & Hinkle, K. 1996, ApJS, 107, 312
Walsh, J. L., van den Bosch, R. C. E., Gebhardt, K., et al. 2015, ApJ, 808, 183
Walsh, J. L., van den Bosch, R. C. E., Gebhardt, K., et al. 2016, ApJ, 817, 2
Wilson, J. C., Henderson, C. P., Herter, T. L., et al. 2004, Proc. SPIE, 5492, 1295
York, D. G., Adelman, J., Anderson, J. E., Jr., et al. 2000, AJ, 120, 1579
Zubovas, K., & King, A. R. 2012, MNRAS, 426, 2751
ERRATUM: “MEGAMASER DISKS REVEAL A BROAD DISTRIBUTION OF BLACK HOLE MASS IN SPIRAL GALAXIES” (2016, ApJL, 826, L32)

J. E. Greene1, A. Seth2, M. Kim3, R. Läsker1, A. Goulding1, F. Gao5, J. A. Braatz6, C. Henkel7, J. Condon6, K. Y. Lo6, and W. Zhao6,8,9

1 Department of Astrophysics, Princeton University, Princeton, NJ, USA
2 University of Utah, Salt Lake City, UT 84112, USA
3 Korea Astronomy and Space Science Institute, Daejeon 305-348, Korea; University of Science and Technology, Daejeon 305-350, Korea
4 Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Vaaisaite 20, 21500 Kaarina, Finland
5 Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Science, Shanghai 200030, China
6 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
7 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany; Astronomy Department, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
8 Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Science, Shanghai 200030, China
9 Graduate School of the Chinese Academy of Sciences, Beijing 100039, China

Received 2016 September 22; published 2016 November 28

Supporting material: machine-readable table

1. ERRORS IN THE “METHOD” FLAG IN TABLE 1

We identified errors in the “method” flag for a few galaxies in Table 1 of the published article. Those errors are corrected here. The only material error to the content of our paper is NGC 5494 (the Sombrero galaxy), which we erroneously identified as a maser galaxy. None of the conclusions change when we correctly flag NGC 5494 as a stellar dynamical black hole mass.

Table 1

Galaxy	Type	M_{BH}	$σ′$	M_{tot}	M_{kpc}	Meth
M102	3p	6.28 ± 0.13	2.12 ± 0.05	10.57 ± 0.05	10.08 ± 0.06	maser
NGC1320	3p	6.74 ± 0.16	2.15 ± 0.05	maser
J0437+2456	3p	6.65 ± 0.03	2.04 ± 0.05	10.57 ± 0.22	10.04 ± 0.04	maser
ESO508−G009	3p	7.22 ± 0.03	2.23 ± 0.05	maser
UGC6093	3p	7.41 ± 0.02	2.19 ± 0.05	11.21 ± 0.05	10.19 ± 0.08	maser
NGC5495	3p	7.00 ± 0.05	2.22 ± 0.05	maser
NGC5765B	3p	7.64 ± 0.05	2.21 ± 0.05	maser
IC2560	3	6.64 ± 0.06	2.15 ± 0.03	maser
NGC1068	3p	6.92 ± 0.25	2.18 ± 0.02	10.42 ± 0.58	10.63 ± 0.06	maser
NGC1194	2	7.85 ± 0.05	2.17 ± 0.07	10.81 ± 0.08	10.19 ± 0.09	maser
NGC2273	3p	6.93 ± 0.04	2.10 ± 0.03	maser
UGC3789	3p	6.99 ± 0.09	2.03 ± 0.05	maser
NGC2960	2p	7.03 ± 0.05	2.22 ± 0.04	10.98 ± 0.03	10.40 ± 0.03	maser
NGC3070	3p	6.40 ± 0.05	2.16 ± 0.02	10.38 ± 0.05	9.85 ± 0.09	maser
NGC3339	3	7.20 ± 0.33	2.17 ± 0.03	maser
NGC4258	3	7.58 ± 0.03	2.06 ± 0.04	10.52 ± 0.04	10.00 ± 0.05	maser
Circinus	3p	6.06 ± 0.10	1.90 ± 0.02	maser
NGC4388	3p	6.86 ± 0.04	2.00 ± 0.04	10.43 ± 0.05	9.73 ± 0.06	maser
NGC6264	3p	7.49 ± 0.05	2.20 ± 0.04	11.01 ± 0.09	9.92 ± 0.08	maser
NGC6323	3p	7.00 ± 0.05	2.20 ± 0.07	11.03 ± 0.09	9.97 ± 0.05	maser
MW	3p	6.63 ± 0.05	2.02 ± 0.08	star
NGC0221	1	6.39 ± 0.19	1.89 ± 0.02	star
NGC0224	3	8.15 ± 0.16	2.23 ± 0.02	star

Note. Col. (1): Galaxy. We show the maser galaxies presented in this work (first seven), followed by literature maser galaxies, and then the remaining literature (Section 2.1). Logarithmic errors have been symmetrized. This shortened table is just a guide to form and content. Col. (2): Distance (Mpc). Col. (3): Morphological group (1 = elliptical, 2 = S0, 3 = spiral). Galaxies assumed to harbor pseudobulges (based on Saglia et al. 2016 and assuming that all of our new megamasers harbor a pseudobulge component) are marked with a “p”. Col. (4): Log black hole mass (M_{BH}). Col. (5): Log stellar velocity dispersion, derived from this paper for the first seven objects, newly presented here. The rest of the measurements are taken from Saglia et al. (2016), aside from NGC 4395, NGC 1271, and NGC 1277; see Section 2.1. Col. (6): Log total stellar mass (M_{*}). Col. (7): Log stellar mass (M_{*}) contained within 1 kpc. Col. (8): Method used to measure the black hole mass. The M_{BH} measurement for the four galaxies marked with asterisks (*) should be treated with caution, since we cannot find a reference presenting the BH measurements. (This table is available in its entirety in machine-readable form.)
Table 1 has been fixed to reflect correct “method” flags for all galaxies. The number of maser galaxies drops from 21 to 20 (note that NGC 4945 is not included in the Saglia et al. compilation) and the number of non-maser, non-S0 spiral galaxies is 17. Figures 3 and 4 from the published article were also marginally impacted and are reproduced here.

Figure 3. Relationship between σ_* and M_{BH}. We fit the entire sample (gray dashed line) and the early-type galaxies alone (red solid). Note the systematic offset to lower M_{BH} at a fixed σ_* for the megamaser disk galaxies. We show elliptical (red circles), S0 (green triangles), spiral (blue squares), and megamaser disk (blue circles); double circles indicate our new measurements.

Figure 4. Distribution of M_{BH} at fixed σ_*. Megamaser galaxies (open) are offset to lower M_{BH} than the full spiral sample (blue filled) or the early-type galaxies (red filled).
In addition, in moving the Sombrero galaxy out of the maser sample, the distributions in σ_* between the maser and non-maser samples change slightly, as do the difference in distribution of $(M_{\text{BH}}/\sigma_*)^5$, as outlined below.

We reproduce PP2 and PP3 from Section 4.2, with revised numbers.

We now have marginally sufficient statistics to compare the distributions of maser and non-maser spirals. There are 20 megamaser disk galaxies (2 S0, 18 spiral) and 17 late-type (non-S0) spiral galaxies with M_{BH} measurements from non-maser dynamics. The maser and non-maser samples have indistinguishable distributions in σ_* according to an Anderson-Darling test with $P = 0.6$ of being drawn from the same distribution. Likewise, the distributions of bulge type are quite similar, with $\sim 75\%$ of the non-maser and $\sim 85\%$ of the megamaser disk galaxies hosted by pseudobulges (Table 1).

Calculating the net offset from our best-fit M_{BH}–σ_* relation for elliptical galaxies, we find $\Delta M_{\text{BH}} = -0.60 \pm 0.14$ dex for the 20 megamaser disks, while we find no mean offset $\Delta M_{\text{BH}} = -0.15 \pm 0.15$ dex for the 17 non-maser spirals (Figure 4). The maser and non-maser spirals are significantly different in $(M_{\text{BH}}/\sigma_*)^5$; the Anderson-Darling test returns a probability $P = 0.007$ that they are drawn from the same distribution (Figure 4), even if we focus on just the 18 non-S0 maser disk galaxies or the maser and non-maser pseudobulge samples ($P = 0.02$). Finally, we examine the two samples non-parametrically in two dimensions using the Cramer Von-Mises test, and find that the maser and non-maser samples are different at 97% significance.