Research paper

Erythropoietin-producing hepatocellular A7 triggering ovulation indicates a potential beneficial role for polycystic ovary syndrome

Shang Li a,b, Junyu Zhai a,b, Jiasheng Liu a,b, Fangfang Di a,b, Yun Sun a,b, Weiping Li a,b, Zi-Jiang Chen a,b,c, Yanzhi Du a,b,c

a Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
c National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan 250021, China

A R T I C L E I N F O

Article history:
Received 10 June 2018
Received in revised form 25 September 2018
Accepted 25 September 2018
Available online 3 October 2018

Keywords:
PCOS
Ovulation
Female fertility
EPHA7

A B S T R A C T

Background: The ovulatory dysfunction mechanisms underlying polycystic ovary syndrome (PCOS) are not completely understood. And the roles of EPHA7 and EPHA7-regulated pathway factors in the pathogenesis of anovulation remain to be elucidated.

Methods: We used human granulosa cells (hGCs) of PCOS and non-PCOS patients to measure EPHA7 and other target gene expressions. We performed in vitro experiments in KGN cells to verify the molecular mechanisms. Additionally, we conducted in vivo loss- and gain-of-function studies using EPHA7 shRNA lentivirus and recombinant EPHA7-Fc protein injection to identify the ovulation effects of EPHA7.

Findings: EPHA7 functions as a critically positive upstream factor for the expression of ERK1/2-mediated C/EBP-α, p38MAPK, and epidermal growth factor receptor (EGFR)/RAS/extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling cascades [5,7]. The ERK1/2 cascade plays vital roles in the development of premature follicles, including the cAMP/protein kinase A [6] pathway, p38MAPKs (MAPK14), and other signaling pathways.

Conclusion: Our findings demonstrate a new role of EPHA7 in PCOS, suggesting that EPHA7 is an effective target for the development of innovative medicines to induce ovulation.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Polycystic ovary syndrome (PCOS) is a complex endocrine condition characterized by oligo/anovulation, high androgen levels, and polycystic ovaries. It affects at least 10% of females and has become the most common syndrome affecting not only reproduction but also metabolism [1]. High androgen levels and insulin resistance result in metabolic and hormonal dysfunctions in PCOS patients [2]. However, anovulation and menstrual cycle abnormalities are usually the frequent symptoms troubling women of reproductive age. The hyper response of follicles to gonadotropins is thought to induce premature follicles to produce a transient high concentration of circulating estradiol [3]. Subsequently, higher estradiol suppresses the release of follicle-stimulating hormone (FSH) through negative feedback, leading to abnormal follicle maturation which contributes to the observed disrupted ovulation [3]. Irregular menstrual cycles and anovulation can cause infertility. A Finnish study shows that PCOS leads to difficulty in conception [4]. Therefore, anovulation affects many women of reproductive age with PCOS and remains a common problem.

Ovulation is triggered by a luteinizing hormone (LH) surge; it results in the release of a mature fertilizable oocyte and formation of corpus luteum (CL) [5]. The LH surge triggers the maturation of follicles and ovulation by activating multiple signaling pathways in granulosa cells (GCs), including the cAMP/protein kinase A [6] pathway, p38MAPKs (MAPK14), and epidermal growth factor receptor (EGFR)/RAS/extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling cascades [5,7]. The ERK1/2 cascade plays vital roles in...
Research in context

Evidence before this study

Polycystic ovary syndrome (PCOS) is a complex endocrine condition characterized by oligo/anovulation, high androgen levels, and polycystic ovaries. The ovulatory dysfunction mechanisms underlying PCOS are not completely understood. Ovulation is a complicated process that is influenced by multiple factors. One of the essential transcriptional regulators that impact the ovulation process is CCAAT/enhancer-binding protein β (C/EBPβ) [5,8], progesterone receptor (PGR) [14], and liver receptor homolog-1 (LRH1) [15,16], among others. C/EBPβ, a member of the basic leucine zipper proteins, regulates ovulation and is important for reproduction [5,8]. The translation of C/EBPβ mRNA gives rise to three isoforms: LAP1, LAP2, and LIP [17]. LAP1 and LAP2 are mostly transcriptional activators, whereas LIP acts as a repressor. In preovulatory follicles, expression of C/EBPβ is increased by LH and activated in an ERK1/2-dependent manner [8]. Female Cebpb−/− mice are subfertile, and C/ebpaj−/− double-mutant are sterile with follicles failing to ovulate and ovaries lacking CL [5]. Moreover, C/EBPβ contributes to the differentiation and maturation of GCs as well as to progesterone production through steroidalogenic factor 1 (SF1) [18]. Therefore, C/EBPβ plays essential roles in ovulation, steroidogenesis, and female reproduction.

C/EBPβ is a transcription factor contributing to the regulation of numerous target genes involved in the formation and maintenance of corpora lutea, steroidogenesis, and vascularization of ruptured follicles [5]. ChIP-seq data have hinted that erythropoietin-producing hepatocellular (EPH) A7 (EPHA7) may be closely related to C/EBPβ in PCOS. The EPH receptor tyrosine kinases (RTKs) and their ephrin (EFN) ligands are crucial for cell signaling pathways linked to various biological outcomes. EPH signaling plays a role in multiple physiological functions involving nervous system development, angiogenesis, insulin secretion, immunity, etc. In addition, EPH signaling influences the activities of integrins and intercellular adhesion molecules that lead to control of cell morphology, adhesion, migration and invasion. Ovulation involves COC expansion and follicular rupture; while the follicular rupture and the formation of CL involve cell adhesion and angiogenesis. Some members of the EPH-ENF family (EPHA2/A4/A7 and EFNA4/B1/B2) have been found to be strongly expressed in human luteinizing GCs. EFNA5 is considered as the ligand of EPHA7, and it is noteworthy that Efnas−/− female mice produce smaller litters and release fewer oocytes than controls. Hence, EPHA7 is probably related to ovulation. To our knowledge, no study has provided evidence that demonstrates a role for EPHA7 in female fertility and PCOS. The correlation between EPHA7 and ovulation remains unclear and needs to be investigated.

Added value of this study

Our study firstly demonstrates the role of erythropoietin-producing hepatocellular (EPH) A7 (EPHA7) in the pathogenesis of anovulation in polycystic ovary syndrome (PCOS). EPHA7 functions as a critically positive upstream factor for the expression of ERK1/2-mediated C/EBPβ. This protein, in turn, induced transcription and translation of KLF4 and then facilitated the expression of ADAMTS1. Low expression of EPHA7 and EPHA7-regulated pathway factors in human granulosa cells is considered to contribute to PCOS. We performed in vitro experiments in KGN cells to verify the activities of integrins and intercellular adhesion molecules that lead to control of cell morphology, adhesion, migration and invasion. Ovulation involves COC expansion and follicular rupture; while the follicular rupture and the formation of CL involve cell adhesion and angiogenesis. Some members of the EPH-ENF family (EPHA2/A4/A7 and EFNA4/B1/B2) have been found to be strongly expressed in human luteinizing GCs [29,30]. Interestingly, human chorionic gonadotropin (hCG) is not a major determinant of EPH/ENF regulation in human granulosa cells (hGCs) [30]. Whereas FSH can increase the expression of EFNA5 and multiple EPH receptors in GCs of mice and rats, affecting their morphology and adhesion capabilities [31]. It is noteworthy that Efnas−/− female mice produce smaller litters and release fewer oocytes than controls [32]. Hence, the EPH-ENF family is probably related to ovulation and female fertility. To our knowledge, no study has provided evidence that demonstrates a role for EPHA7 in female reproduction and PCOS. The correlation between EPHA7 and ovulation if any remains unclear and needs to be investigated.

Anovulation affects many PCOS patients, and EPHA7 and other factors may be associated with this abnormality. This study was designed to assess the role of EPHA7 in ovulation in PCOS cases, and to find underlying molecular mechanisms. At the same time, based on our findings we tried to characterize a new feasible approach with EPHA7 for the treatment of anovulation in PCOS.

2. Materials and methods

2.1. Human subjects and granulosa cell samples

Participants were women recruited from patients undergoing in vitro fertilization-embryo transfer (IVF-ET) in the Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine. Appropriate informed consents were obtained from all
patients in this study. Forty PCOS patients fulfilled all three of the Rotterdam criteria [1], and 32 non-PCOS patients were selected due to tubal factor infertility with regular menstrual cycles and normal ovarian morphologies. All subjects, 20–35 years old, were of Han ethnicity and did not undergo hormonal therapy for at least 3 months before the study; all patients underwent a gonadotropin-releasing hormone (GnRH) antagonist protocol with hCG trigger. The clinical information of patients is presented in Table 1. On the retrieval day, hGCs were recovered from the follicular fluid samples aspirated transvaginally from individual follicles under ultrasound guidance during the follicle puncture for IVF procedures. The GC isolation method was followed similar to that described previously using Ficoll-Paque™ PLUS (GE-Healthcare Bio-Science, Uppsala, Sweden) and hyaluronidase (Sigma) [33]. The Institutional Review Board of the Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, reviewed and approved all procedures.

2.4. Injection of shRNA lentivirus

The EPHA7 shRNA target sequence (5′-CCGGTGAAGAAGATGAGA GCTGAAGCTGATTCGTTACATTTTCTTATTTTG-3′) and the control shRNA target sequence (5′-CCGGTTCCTGACCTGTCACGCTT CAAAGAGATGCTACGTTGGAGAATTTTTG-3′) were designed at the GeneChem Company (GeneChem, Shanghai, China). The shRNA lentiviral preparation protocol was modified slightly from the published method [35]. Briefly, since the lentiviral vector system included pGCL-GFP, pHelper 1.0, and pHelper 2.0, all three extracted plasmids were transfected into 293 T cells to harvest the active virosomes. The virus titers used was 1 × 10^6 (TU/ml). We cut a small wound on the back of each rat (7-week-old, 200 g), separated the ovaries and then directly injected 10 μl shRNA lentivirus into one ovary. The microsyringe needle was carefully held in place for several minutes after the injection. Finally, we sutured the muscle and skin layers. Since the lentiviral vector system included GFP, we fixed rat ovaries with 4% paraformaldehyde and then embedded in paraffin. Then the ovarian sections were directly visualized using a fluorescence microscope to determine the distribution and efficiency of lentiviral transfection. For one part of our study, 12 rats were induced to superovulate with 40 IU PMSG (Sansheng) 1 week after the surgical procedure, and then with 40 IU hCG (Sansheng) 48 h after the PMSG to investigate the role of EPHA7 in the ovariolytic process of rats. For the other part of the study, 10 rats were directly sacrificed 3 weeks after the surgical procedure, to explore the long-term impact of EPHA7 shRNA lentivirus on rat ovaries.

2.5. Establishment of the PCOS rat model and EPHA7 injection

Four-week-old, female SD rats were injected daily (s.c.) with dehydroyepiandrosterone (DHEA) (60 mg/kg BW) (Langchem, Shanghai, China) for 20 consecutive days in the DHEA group (n = 6) and in the DHEA + EPHA7 (n = 6) groups. Instead, of DHEA, PBS was used in the control (n = 6) and control + EPHA7 (n = 6) groups according to a report [36]. Estrous cycles were detected during the last eight consecutive days of the rat model building, and the body weights were measured once a week. The successful PCOS rat models were confirmed according to published criteria [37]. Recombinant EPHA7-Fc Chimera Protein (0.03 mg/kg BW) (R&D) was injected through the caudal veins at 4 p.m. at 7 weeks of age, once the PCOS rat model was considered successfully set up. All rats were sacrificed 16 h later and samples were collected.

2.6. Glucose tolerance test (GTT)

After DHEA treatment for 20 days, female rats of control and DHEA groups were left to fast for 16 h (5 p.m. to 9 a.m.). Then α-glucose (2 g/kg BW) was intraperitoneally injected into each rat. The blood glucose level was measured before, and 30, 60, 90, and 120 min, after the α-glucose injection with an Accu-Chek glucose monitor (Roche, Basel, Switzerland).

2.7. Serum levels of hormones and EPHA7

The concentrations of LH, FSH, progesterone and EPHA7 in rat sera were detected using ELISA Kits for Rat Luteinizing Hormone (LH) (Mybiosource, San Diego, USA), Rat Follicle-stimulating Hormone (FSH) (Biomatik, Canada), Rat Progesterone (P4) (TSZ, San Francisco, USA) and Rat EPH receptor A7 (EPHA7) (Mybiosource). For the

Table 1	Demographic features and clinical outcomes of recruited participants with or without PCOS.						
Age (years)	Basal E2 (pg/mL)	Basal LH (mIU/mL)	Basal FSH (mIU/mL)	No. of oocytes retrieved	LH/FSH	Basal T (nmol/L)	Basal PRL (μg/L)
Non-PCOS (n = 32)	43.50 ± 12.27	4.78 ± 2.83	6.87 ± 3.22	17.82 ± 11.77	0.75 ± 1.30	0.99 ± 0.63	17.82 ± 11.77
POCOS (n = 40)	61.54 ± 15.73	8.14 ± 6.26	5.69 ± 2.02	16.76 ± 12.40	1.52 ± 1.26	1.81 ± 0.92	16.76 ± 12.40

All data are presented as mean ± SD. *p < 0.05 vs. Non-PCOS. BMI: body mass index; FSH: follicle-stimulating hormone; LH: luteinizing hormone; E2: estrogen; T: testosterone; PRL: prolactin; AMH: anti mullerian hormone.
detection of the LH level we had to perform a 10-fold dilution of the rats' sera. All the procedures were carried out according to standard manufacturers' protocols.

2.8. Safety of EPHA7 injection into rats

Recombinant EPHA7-Fc Chimera Protein was injected into 7-week-old SD rats at a dose of 0.03 mg/kg BW through the caudal vein, while PBS was used for controls. Each group had five rats; set up two groups treated with EPHA7 and one group was the control. After 48 h, we recorded the rats' appearances, hair, activity levels, respiratory depths and rates, fecal matters, feeding habits, and local reactions at the injection sites on the tails. Then we collected the ovaries, hearts, livers, spleens, lungs and kidneys of five rats injected with EPHA7 to detect any pathological changes on tissue sections stained with hematoxylin and eosin (H&E). After 14 days, we sacrificed another two groups, repeating this experiment. Meanwhile, we performed the blood routine examinations and measured blood biochemical indexes of the remaining 10 rats.

2.9. Histology and immunohistochemistry

Rat tissues were fixed with 4% paraformaldehyde, and then embedded in paraffin. Five μm-thick tissue sections were deparaffinized and rehydrated through a graded ethanol series. Then the sections were stained in hematoxylin and differentiated by hydrochloric acid. Finally, the sections were incubated in eosin before covering the slides or visualization using a microscope (Zeiss). Total numbers of small antral follicles (oocyte surrounded by greater than five layers of granulosa cells and/or one or two small areas of follicular fluid), large antral follicles (containing a single large antrum) and corpora lutea (CL) were classified and quantified as previously reported [37,38]. To avoid repetitive counting, each follicle was only counted in the section where the oocyte's nucleus was visible. The thickness of granulosa cell and theca cell layers was respectively measured using Image J software (version 1.48; NIH) (n = 6 per group, serial sections of each ovary were used for measurement). For immunohistochemistry, we blocked the ovarian sections with rabbit serum and then incubated them with EPHA7 antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) (1:100) overnight at 4 °C in a dark chamber, followed by incubation with secondary antibody. The color reaction was visualized by exposure to diaminobenzidine (DAB).

2.10. Cell culture

KGN cells (a human granular carcinoma cell line) were kindly provided by the Center for Reproductive Medicine, Shandong Provincial Hospital. They were cultured in Phenol Red-free DMEM/F-12 medium (Gibco, Grand Island, NY) containing 10% fetal bovine serum (FBS) (Gibco) and incubated at 37 °C in a humidified atmosphere, with 5% CO2. KGN cells were routinely subcultured every 2 or 3 days.

2.11. Transfection of small interfering (si) RNA with liposome

Transfections of siRNA were performed using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instructions. KGN cells (2 × 10^5) were plated onto six-well plates and cultured in Opti-MEM (Gibco) containing 10% FBS. KGN cells were further incubated for 48 h before detecting the efficiency of knockdown and the abundance of target genes. The specific sequences of target genes were as follows:

- **EPHA7** siRNA, 5′-CGACUCUGCCGGAACUUUGUJTT-3′;
- **C/EBPβ** siRNA, 5′-CCACCUCCUGCGGAACUUUGUJTT-3′;
- **KL4** siRNA, 5′-CCGAGAGGTTCAAGCATCT-3′; non-specific scrambled siRNA, 5′-UUUCUGCAAGUGUCAGJTT-3′.

2.12. Transfection of plasmids with electroporation

KGN cells (6 × 10^5) were mixed with 10 μg pCMV3-C-Flag-EPHA7, pCMV3-C-Flag-KL4 (Transheep, Shanghai, China) or LAP-overexpression plasmid (gift from the Institute of Health Sciences, Shanghai Institutes for Biological Sciences), respectively, in Opti-MEM (Gibco). We added the mixture into 2-mm gap cuvettes. The cell suspensions were electroporated at 170 V for 5 ms using a NEPA21 electroporator (Nepa Gene). After diluting with DMEM/F-12 containing 10% FBS, KGN cells were transferred into a six-well plate and were prepared for the treatment after further incubation for 72 h before detecting the efficiency of overexpression and abundance of target genes.

2.13. Real-time polymerase chain reaction

Total RNA was extracted from cells and rat ovaries specimens by using a total RNA kit (FOREGENE, Chengdu, China). RNA concentration and quality were determined by measuring optical density at 260 nm (OD260) and OD260/OD280 ratio with a NanoDrop ND-2000. mRNA from total cellular RNA was reverse-transcribed to cDNA using PrimeScript RT Master Mix Perfect Real-time kit (TaKaRa, Dalian, China). Real-time polymerase chain reaction, also known as quantita-

2.14. Western blotting

Total cellular proteins were extracted from cells and rat ovaries specimens using ice-cold radioimmunoprecipitation assay (RIPA) lysis buffer (Cowbiotech, Beijing, China) containing a protease inhibitor cocktail (Roche), and a phosphatase inhibitor (Roche). The abundance of target genes was determined using a Pierce BCA Protein Assay Kit (Thermo Scientific, Massachusetts, USA). Thirty μg of protein from each sample were electrophoresed in 10% SDS–polyacrylamide gels and transferred to nitrocellulose membranes (Millipore, Billerica, MA). After blocking with 5% nonfat milk, the membranes were incubated...
with EPHA7 antibody (1:500; SAB, Maryland, USA), T-ERK1/2 antibody (1:500; Cell Signaling Technology, Massachusetts, USA), P-ERK1/2 antibody (1:500; Cell Signaling Technology), C/EBPβ antibody (1:200; Santa Cruz Biotechnology), KLF4 antibody (1:500; Abcam, Cambridge, UK), KLF4 antibody (1:1000; Cell Signaling Technology), ADAMTS1 antibody (1:1000; Abcam), CYP11A1 antibody (1:1000; Cell Signaling Technology) or STAR antibody (1:1000; Cell Signaling Technology), overnight at 4°C. After incubation with the appropriate diluted peroxidase-conjugated secondary (SAB), the enhanced chemiluminescence detection system (Millipore, Billerica, MA) was used to detect the bands with peroxidase activity. The bands were visualized using a G-Box iCheml Chemiluminescence image capture system (Syngene, Haryana, India). The ratio of band intensity of a target protein to that of the intensity of β-ACTIN (Proteintech, Wuhan, China) or GAPDH (Proteintech) was obtained as each target protein level.

2.15. Chromatin immunoprecipitation (ChIP) assay

The binding of C/EBPβ to the KLF4 promoter after treatment with or without EPHA7 was measured with ChIP assay referring to previous protocol [39]. The lysed KGN cells were sonicated and pre-cleared with Protein A Agarose/Salmon Sperm DNA (Millipore). Then the sheared chromatin DNA was immunoprecipitated with C/EBPβ antibody (Santa Cruz Biotechnology) or negative control IgC, followed by washing with Magna ChIP Protein A Agarose Magnetic Beads (Millipore). After reverse cross-linking, RNA contamination and protein digestion, sheared DNA was extracted using a DNA extraction kit for next quantitative analysis. The primer sequences of KLF4 used for qRT-PCR were 5′-GACGGCCTTCCCAAGT-3′ (forward) and 5′-TCCCCCTGGTTGGTTGAGT-3′ (reverse), which amplified a region between −879 bp and −665 bp spanning the putative C/EBPβ binding site. The ratio of DNA precipitated by C/EBPβ antibody over input control indicated the amount of bound transcription factor.

2.16. Statistical analysis

Results are presented as mean ± SEM or SD. Each experiment was repeated 3 to 5 times. The data were initially subjected to Kolmogorov-Smirnov tests to assess deviation from Gaussian distribution. For normally distributed data, we used paired Student’s t-test or one-way analysis of variance (ANOVA) followed by the Newman–Keuls multiple comparison test. For data not normally distributed, we applied Kruskal-Wallis test followed by Dunn’s multiple comparison test. For all tests, a two-tailed P value <.05 was considered as statistically significant. Statistical significance is shown as *P < .05, **P < .01, or ***P < .001.

3. Results

3.1. Decreased mRNA expression of EPHA7 and target genes in granulosa cells of PCOS patients

We examined the relative mRNA expression profiles of EPHA7, C/EBPβ, KLF4, and ADAMTS1 using hGCs collected from PCOS (n = 40) and non-PCOS (n = 32) patients who underwent IVF-ET. As shown in Fig. 1, decreased mRNA abundances of EPHA7, C/EBPβ, KLF4, and ADAMTS1 were clearly demonstrated in hGCs of PCOS patients compared with those of non-PCOS patients. These results suggested that low expression levels of EPHA7, C/EBPβ, KLF4, and ADAMTS1 in hGCs are related to the lack of ovulation in PCOS patients and in the development of PCOS itself.

3.2. Effect and mechanisms of EPAH7 on ovulation-related molecules in KGN cells

The mechanisms by which EPAH7 contributes to ovulation abnormalities remain unclear. Based on our findings of hGCs in PCOS patients, we decided to use human granulosa-like KGN cells for experiments to probe possible specific molecular mechanisms of EPAH7 in ovulation.

After treatment with KLF4 siRNA, we examined the mRNA and protein abundances of ADAMTS1, a human ovulatory marker [40,41], and observed that ADAMTS1 expression tended to decrease (Fig. 2A). On the contrary, overexpression of KLF4 using vector transfection led to increased mRNA and protein expressions of ADAMTS1 (Fig. 2B). Hence, KLF4 positively regulated ADAMTS1 expression in KGN cells.

We found a C/EBPβ putative binding site on the KLF4 promoter. After transfection of C/EBPβ siRNA into KGN cells, we found that the mRNA and protein abundances of KLF4 and ADAMTS1 had decreased (Fig. 2C). In addition, C/EBPβ overexpression led to increased expression of KLF4 and ADAMTS1 mRNA and protein abundances (Fig. 2D). Therefore, our evidence showed that C/EBPβ induces the expression of KLF4 and ADAMTS1 in KGN cells.

Next, we found that knockdown of EPHA7 in KGN cells resulted in reduced levels of phosphorylated ERK1/2 and decreased expressions of C/EBPβ, KLF4, and ADAMTS1 at both mRNA and protein levels (Fig. 2E). Concurrently, treatment of cells with the ERK1/2 inhibitor PD98059 (Sigma Chemical, St. Louis, MO) for 24 h hindered the expression of downstream factors after overexpressing EPHA7 (Fig. 2F).

Furthermore, using ChIP assays, we found that overexpression of EPHA7 actually increases the binding of C/EBPβ to the KLF4 promoter region containing the C/EBPβ binding site (Fig. 2G). All these data indicated that EPHA7 is a critical upstream factor of ERK1/2-mediated C/EBPβ, which stimulated the transcription and translation of KLF4 and the downstream ADAMTS1 responses in KGN cells. Taken together, EPAH7 stimulates KLF4 expression via C/EBPβ, thus inducing ADAMTS1 expression in KGN cells. EPAH7 and its downstream factors should be considered as essential factors in ovulation.

3.3. Ovulatory dysfunction in rats due to EPHA7 gene silencing by shRNA lentivirus injection

Given our findings of hGCs in PCOS and non-PCOS patients along with the in vitro data in KGN cells, we reckoned that declined expression of EPHA7 might contribute to anovulation. We injected either EPAH7 shRNA or control shRNA lentivirus preparations into the ovaries of SD rats to verify the role of EPHA7 in ovulatory disorders. GFP expression of ovarian slices was observed under fluorescence microscopy after injection to determine the distribution and efficiency of lentiviral transfection (Fig. 51). Each group included six rats. One week after the injection, we induced superovulation and then sacrificed all rats. Immunohistochemical results show that EPAH7 is strongly expressed in GCs, theca cells and the CL of the ovary (Fig. 3A). We found no ovarian weight differences between two groups of rats (Fig. 3B). As expected, EPAH7 shRNA-injected ovaries displayed remarkably reduced numbers of oocytes retrieved per ovary (9.0 ± 1.581 oocytes) than the control shRNA-injected ovaries (17.0 ± 1.291 oocytes) (Fig. 3C and D). Moreover, the mRNA and protein abundances of EPHA7, C/EBPβ, KLF4 and ADAMTS1 were significantly decreased after the treatment with EPAH7 shRNA lentivirus, which points to EPAH7 and its downstream factors as being players in the ovulatory process of rats (Fig. 3E).

3.4. Effect of treatment duration of EPAH7 shRNA lentivirus on rat ovaries

The EPAH7 shRNA lentivirus injections had given rise to reduced ovulatory ability 1 week later; hence, we wondered whether the long-term effects of EPAH7 shRNA would include pronounced phenotypic changes in SD rats in vivo that are similar to those observed in PCOS cases (regarding estrus cycle, hormones, and ovarian morphology). We formed two groups of four rats each. This time we sacrificed the rats 3 weeks after the lentivirus injections. We observed irregular estrus cycles during the last 8 days in the EPAH7 shRNA lentivirus injection rats (Fig. 4A), but found no body or ovarian weights differences between the two groups (Fig. 4B). Also, the serum FSH levels presented a decreasing
tendency, the LH levels remained unchanged, and the LH/FSH ratio exhibited an increasing trend in the rats injected with EPHA7 shRNA lentivirus compared to those treated with control shRNA lentivirus (Fig. 4C). Of note, we found fewer corpora lutea and more antral follicles in rats treated with EPHA7 shRNA lentivirus than in control rats (Fig. 4D). Thus, we concluded that the 3-week effects of EPHA7 shRNA lentivirus are able to bring about an irregular estrus cycle and lead to polycystic ovaries in rats.

3.5. A triggering role of EPHA7 in ovulation induction of rats

We used a PMSG-induced superovulation model of immature SD rats for in vivo experiments to verify the vital role of EPHA7 in ovulation taking place of hCG. Recombinant EPHA7-Fc protein (or an equivalent volume of PBS) was injected through the caudal vein at a dose of 0.03 mg/kg of body weight. We formed four groups of five rats each. Three rats in the PBS treatment group and three in the EPHA7 treatment group ovulated; we counted the numbers of oocytes retrieved per ovary (13.67 ± 1.202 and 21.67 ± 1.453, respectively), and found that a larger amount of COCs were stimulated and ovulated in the EPHA7 group. All rats in the hCG and hCG + EPHA7 groups ovulated, and the numbers of oocytes retrieved were 27.60 ± 1.030 and 31.20 ± 1.463, respectively (Fig. 5A). We found no mRNA expression differences in terms of EphA7, C/EBPβ, KLF4 or ADAMTS1 among the rat ovaries of all the groups (Fig. 5B), which is consistent with the rats having indeed ovulated. Since we injected EPHA7-Fc through the caudal vein into rats, we made efforts to explore the systemic role of EPHA7 not only just in the ovary. Thus we examined the concentration of a soluble splice variant of EPHA7 in the serum to observe whether EPHA7 could mimic hormone change in the serum or not. This soluble splice variant has been previously reported [42–44]. As observed, serum EPHA7 levels reached a peak value 4 h after recombinant EPHA7-Fc protein injection and returned to the normal level 12 h later (Fig. 5C). Serum LH levels started to rise 12 h after EPHA7 injection and reached a peak 16 h later, suggesting that EPHA7 triggered an LH surge before ovulation (Fig. 5D). Serum E2 levels significantly decreased 16 h after EPHA7 injection due to increased LH levels (Fig. 5E). Based on this, EPHA7 is involved in ovulation induction and is able to (at least partially) trigger ovulation.

3.6. Successful establishment of the PCOS rat model via DHEA injection

We used DHEA injection to disrupt the normal 4-day estrus cycle of control SD rats as verified by daily examination of vaginal smears (Fig. 6A). The DHEA-treated rats maintained irregular estrus cycles throughout the examination period. We found no difference in body weights between the DHEA-treated and the control rats, but the DHEA-treated rats showed lighter ovarian weights than the control rats (Fig. 6B). In addition, GTT results showed that DHEA injection alters glucose tolerance in rats. While the fasting glucose levels were similar across groups, the DHEA-treated rats displayed marked increased glucose levels
after 30, 60 and 90 and 120 min of glucose administration, and had a bigger area under the curve compared with the control group rats (Fig. 6C). Although the serum EPHA7 level remained constant (Fig. 6D), the DHEA injection induced prominent increases in the serum LH level and in the LH/FSH ratio, but a distinct decrease in the serum FSH level compared to those in the control rats (Fig. 6E). All these data indicate a successful establishment of a PCOS rat model using the DHEA injections.

3.7. EPHA7 improved the polycystic ovarian changes and induced ovulation in PCOS rats

After confirming the relationship between EPHA7 and PCOS and verifying the significant positive role of EPHA7 in ovulation, we set up to investigate whether exogenous EPHA7 can improve the DHEA-induced phenotypic changes in PCOS rats. Recombinant EPHA7-Fc protein was injected through the caudal vein at a dose of 0.03 mg/kg at 7 weeks of age, once the PCOS rat model was considered successfully set up. Rats were divided into four groups of six each. As seen in the figures, 16 h after exogenous EPHA7 injection, the estrus cycles (Fig. 6A), body and ovarian weights (Fig. 6B), and glucose tolerance results (Fig. 6C) of PCOS rats were not affected compared with those in control rats. The serum EPHA7 level remained unchanged, which was consistent with our previous result (Fig. 6D). Although the EPHA7 injection had no effect on the serum FSH level, it significantly increased the serum LH level and the LH/FSH ratio, not only in CONTROL+EPHA7 rats but also in DHEA+EPHA7 rats (Fig. 6E). We found the EPHA7

Fig. 2. EPHA7 promotion of KLF4 expression via C/EBPβ, leading to induction of ADAMTS1 expression in KGN cells. (A) mRNA and protein abundances of KLF4 and ADAMTS1 after KLF4 knockdown in KGN cells detected by western blot analysis and qPCR analysis. The panel (left-to-right) shows representative images of western blot assays; we quantified protein abundances by measuring the densitometry of the immunoreactive bands. (B) mRNA and protein abundances of KLF4 and ADAMTS1 after KLF4 overexpression in KGN cells. (C) mRNA and protein abundances of C/EBPβ, KLF4 and ADAMTS1 after C/EBPβ knockdown in KGN cells. Left, a representative western blot is shown. Right, the immunoreactive bands were densitometrically quantified (above); and mRNA abundance is presented (below). (D) mRNA and protein abundances of C/EBPβ, KLF4 and ADAMTS1 after LAP overexpression in KGN cells. (E) mRNA and protein abundances of EPHA7, C/EBPβ, KLF4 and ADAMTS1 after EPHA7 overexpression in KGN cells. (F) mRNA and protein abundances of EPHA7, C/EBPβ, KLF4 and ADAMTS1 after EPHA7 overexpression and further incubation with PD98059 (ERK1/2 inhibitor) in KGN cells. Above, a representative western blot is shown (left), and the immunoreactive bands for ERK1/2 phosphorylation were quantified densitometrically (right). Middle, the immunoreactive bands for other proteins were also quantified densitometrically. Below, mRNA abundance is presented. (G) Above, we used a ChIP assay to detect the enrichment of C/EBPβ at the KLF4 promoter in KGN cells in response to EPHA7 overexpression. IgG served as the negative control. Below, sequence of the KLF4 promoter spanning –879 to –865 base pairs (bp). Boxed letters indicate putative transcription factor binding sites. TSS, transcription start site. β-actin or GAPDH were used as loading controls for western blot and for qPCR analyses. Blots are representative and data are presented as means ± SEM from 3 to 5 experiments. * P < .05, ** P < .01, *** P < .001 against si-NC cells or against Control-vector cells; # P < .05, ## P < .01 against EPHA7-vector cells.
injection dramatically improves the polycystic ovarian changes in PCOS rats. We observed more corpora lutea and fewer large antral follicles in the DHEA+EPHA7 rats than in the DHEA rats (Fig. 6F, S2). At the same time, the mRNA and protein abundances of steroidogenic acute regulatory protein (StAR) [3] and cytochrome P450 family 11 subfamily A member 1 (CYP11A1) (Fig. 6G), as well as the serum progesterone level (Fig. 6H), were also much higher in DHEA+EPHA7 rats compared with those in DHEA rats. According to these phenotypes, we asserted that EPHA7 might promote the progress of ovulation and the generation of the CL in PCOS rats. In addition, we detected the mRNA and protein abundances of EPHA7, C/EBPβ, KLF4 and ADAMTS1 in the ovaries of these rats. The evident lower EPHA7, C/EBPβ, KLF4 and ADAMTS1 abundances in DHEA rats compared with those in control rats (Fig. 6I) are consistent with the differences we observed in hGCs between PCOS and non-PCOS patients. Most importantly, the EPHA7 injection induced the expression of C/EBPβ, KLF4 and ADAMTS1 in rat ovaries (Fig. 6I). We also performed a similar experiment in which all rats were sacrificed 48 h after the EPHA7 injections (Fig. S3) and got very similar results. In conclusion, our results suggest EPHA7 together with its downstream factors improves the polycystic changes of ovaries and induces ovulation in rats with DHEA-induced PCOS.

4. Discussion

Ovulation is a dynamic and rather complicated process initiated by LH, leading to breakdown of the follicular wall and extrusion of the
ovulation and PCOS.

In vitro results as the

trual disorders and morphological changes of polycystic ovaries (as

rise to declined ovulatory abilities (as seen after 1 week), and to men-

tionally, the injection of

sion in the rat ovaries, especially in the GCs, theca cells, and CL. Addi-

tive tracts and participates in spermatogenesis [48,53]. Notably, the reg-

expressed in several epithelia of the male and female murine reproduc-

PCOS [19].

this study, we showed that the

expression in ovarian GCs by LH is associated with

ular and genetic data were available.

Volved in the functions of hGCs, although only limited amounts of mo-

fi

32], the role of EPHA7 in female fertility,

32], the role of EPHA7 in female fertility,

molecule and genetic data were available.

In addition to EPHA7, Krüppel-like factor 4 (KLF4) had also been

identified via ChIP-seq analyzes as a putative C/EBPβ-target gene in

PCOS [19–21]. KLF4 is a zinc-finger transcription factor suggested to

play various roles in cell differentiation, proliferation, cycle regulation,

and adipogenesis as well as to function as a tumor suppressor or an on-

cogene depending on its molecular context [48–52]. Moreover, KLF4 is

expressed in several epithelia of the male and female murine reproduc-

tive tracts and participates in spermatogenesis [48,53]. Notably, the reg-

ulation of KLF4 expression in ovarian GCs by LH is associated with

steriodogenic genes comprising the low-density lipoprotein receptor

(LDLR), STAR and CYP11A1 [54]. Our results showing rather low levels

of KLF4 mRNA abundance in the hGCs of PCOS patients were expected.

We thought it likely that KLF4 played a part in PCOS and might be in-

volved in the functions of hGCs, although only limited amounts of mo-

cular and genetic data were available. ADAMTS1 has been identified

as a new human ovulatory gene and a cumulus marker for fertilization

capacity [40]. Female rats with

AdamsT1 disruption are subfertile with mature oocytes trapped in follicles—the rats’ ovulation rates are reduced by 77% and the fertilization of ovulated oocytes is further reduced by 63% [13,55]. ADAMTS1 is indispensable for extracellular matrix remodeling during ovarian folliculogenesis and lymhangiogenesis [56].

What’s more, the decreased expression of ADAMTS1 in hGCs of PCOS patients compared to that in normally ovulating women is consistent with our results, and explains the abnormal findings in oocyte recovery, oocyte maturity, and fertilization rates [57]. Using KGN cells, we obtained evidence implicating EPHA7 as a critical positive upstream factor of ERK1/2-mediated C/EBPβ expression, which further binds to the KLF4 promoter stimulating its transcription and translation, and then leads to the downstream expression of ADAMTS1. Likewise, the rat ovaries that were injected with EPHA7 shRNA lentivirus and produced fewer oocytes, also displayed the mRNA and protein abundances of EPHA7, C/EBPβ, KLF4 and ADAMTS1 that were all distinctly reduced. Based on our data, we concluded that EPHA7 together with its downstream factors is vitally involved in ovulation.

To further investigate the role of EPHA7 in the treatment of ovulation induction for PCOS patients, we used the Recombinant Mouse EphA7-Fc Chimera Protein. The alignments of EPHA7 nucleotide and protein sequences between mice and rats are respectively 96% and 99%. After stimulating follicle development with PMSG, we injected EPHA7 through the caudal vein instead of the usual hCG. The number of oocytes retrieved was larger than that in control rats injected with PBS, which indicated a triggering role of EPHA7 for ovulation induction in rats. Four hours after EPHA7 injection, serum EPHA7 levels reached the peak and then gradually returned to normal. Serum LH levels began to rise 12 h after the injection and E2 levels decreased 16 h later. Generally, hCG is regarded as an upstream activator of ovulatory genes, but it has not been shown to be a regulator of EPH/EFN in GCs [31]. Here we propose that the exogenous EPHA7 probably contributed to the rise of serum LH levels in the female rats, and that this preovulatory LH surge initiated and synchronized a series of biochemical events before ovulation. Once serum E2 levels were not increased after EPHA7–Fc administration, we excluded the role of positive feedback of E2 in upregulating LH secretion. The decrease of serum E2 levels resulted from the increase of LH levels. As known, the serum estrogen binds ERα on the pituitary gland and stimulates LH secretion [58]. Similarly, insulin could also facilitate LH secretion via the pituitary insulin receptor [59]. EFN5 has always been considered as the ligand of EPHA7 [47,60] and it is strongly expressed in the pituitary of mice [61] and in the brain of rats [62]. Thus, we suspect that the injected recombinant EPHA7–Fc protein reached the pituitary gland via the blood circulation and reacted with EFN5, to then stimulate LH secretion. Another possibility is that the existing crosstalk between EPHB2 and EFN5 in the EPH–EFN interaction network [63,64] had indirect effects on the availability of other molecules in the system. In other words, the binding of EPHA7 and EFN5 in the peripheral blood, would free up EPHB2 molecules that would presumably interact with other factors. For example, the increased level of unbound EPHB2 might bind to EFN2, expressed on the rat pituitary gland [65,66], and would promote the secretion of LH. Alternatively, EPHA7 may directly modulate EFN2 activity via lateral cis interactions on the same cell [67], just like the reported attenuation by EFN2 of the trans ligand-binding capacity of EPHA3 and its activation via lateral cis interactions [68]. However, the exact molecular mechanism about the effect of EPHA7–Fc systemic administration on upregulating LH secretion is not yet understood and warrants further research.

We successfully established a PCOS rat model using DHEA according to a publication [36]. Sixteen hours after EPHA7 injection, more corpora lutea and fewer antral follicles were observed in PCOS rat ovaries. At the
same time, the serum LH and progesterone levels increased significantly. That is to say, EPHA7 promoted the progress of ovulation in PCOS rats. And during this process, the mRNA and protein abundances of EPHA7, C/EBPβ, KLF4 and ADAMTS1 in rat ovaries were all significantly increased. Therefore, we concluded that EPHA7 and its downstream factors directly helped trigger ovulation in PCOS rats. At the same time, EPHA7 facilitated LH secretion further contributing to ovulation. Based on our results, these two functions of EPHA7 dramatically improved the polycystic changes in PCOS rat ovaries induced by DHEA. This improvement of polycystic ovarian changes was clearer in the 48-h experiment than in the 16-h one. The levels of serum progesterone secreted by corpora lutea were also much higher in the 48-h experiment, suggesting the presence of more corpora lutea in rat ovaries. Since the serum EPHA7 level came back to normal only 16 h after the EPHA7 injection, we asserted that the resulting raised LH levels generated the ovulation after 16 h.

Considering a future clinical application for EPHA7, a protein molecule already existing in the body, we tried to confirm the safety of exogenous EPHA7 injections. We observed no changes in appearance, characteristics, or life habits of treated rats after 48 h or 14 days. We also found similar body weights (Fig. S4A), ovarian weights (Fig. S4B) and ovary appearances (Fig. S4C) between EPHA7-treated and PBS-control rats. Meanwhile, all tissue sections were free of visible acute or chronic toxicities (Fig. S4D). Finally, the negative results of routine blood examinations and blood biochemical indexes of rats implied a lack of bone marrow inhibition, or hepatic or renal toxicities (Table S1). Hence, our preliminary results indicate that exogenous EPHA7 injections can be considered safe.

Among the limitations of our study is the fact that we assessed only the number of oocytes retrieved in order to evaluate the role of EPHA7 in ovulation. The reduced fertility of PCOS patients could be attributed not only to a failure to release mature oocytes, but also to ovum growth obstacles. After all, oocyte maturity and fertilization rate are both closely related to female fertility, which would be further investigated to demonstrate the truly imperative role of EPHA7 in ovulation. Secondly, due to the technical difficulties for maintaining sufficient numbers of primary hGCs and the complexity of the EPHA7-mediated pathway studied, we decided to perform our experiments using the KGN cells. However, we obtained convincing evidence for a probable regulatory relationship between EPHA7 and downstream factors in human ovaries. Given the differences among species, more experiments in various animals and clinical trials will be required in the future.

Our study revealed that EPHA7 is a positive upstream factor of C/EBPβ contributing to the transcription and translation of KLF4, promoting ovulation via ADAMTS1. We demonstrated the functional role of EPHA7 in PCOS, which explains how the loss of EPHA7 underlies the ovulatory dysfunction. Our findings suggest EPHA7 may be a crucial and useful target for developing drugs for ovulation induction in ART treatment.

Findings from this study have been used to apply for a patent (China patent No. 201810664169.9).

Acknowledgments

We thank all sample donors and the clinicians and embryologists of the Reproduction Center of Ren Ji Hospital for their excellent assistance. We are deeply grateful to Jufen Yao for rat feeding, Jin Ma for oocyte collection, Jingwen Lang, Chuyue Zhang, Weimei Chu and Xueying Geng for assistance with sample preparation of rats. The technical support of Wangsheng Wang and Jiasheng Liu is highly appreciated. This manuscript has been proofread and edited by a professional English editing company, Enago.

Funding sources

This work was partly supported by grants from the National Key Research and Development Program of China (No. 2017YFC1001002), the National Natural Science Foundation (No.18171414 and 81440743), National Institutes of Health project, China (No.1R01HD085527), Shanghai Municipal Education Commission—Gaofeng Clinical Medicine (No.20152510), and Shanghai Commission of Science and Technology (No.17DZ2271100).

Declaration of interests

The authors declare that they have no competing interests.

Author contributions

Shang Li, Junyu Zhai, Jiasheng Liu, Fangfang Di, Yun Sun, Weiping Li, Zi-Jiang Chen and Yanzhi Du designed the study. Fangfang Di collected patient specimens and related information. Shang Li, Junyu Zhai, Fangfang Di and Yanzhi Du contributed to conducting the experiments and analyzing the data. Shang Li, Zi-Jiang Chen and Yanzhi Du drafted and revised the paper. All authors reviewed the results and approved the final version of the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jebiomed.2018.09.046.

References

[1] Dumesc DA, Oberfield SE, Steiner-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr Rev 2015;36:487–525.
[2] Stepto NK, Cassar S, Joham AE, Hutchison SK, Harrison CL, Goldstein RF, et al. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum Reprod 2013;28:777–84.
[3] Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update 2008;14:367–78.
[4] Koskinen P, Penttilä TA, Annila L, Erkkola R, Iriyä K. Optimal use of hormone determinations in the biochemical diagnosis of the polycystic ovary syndrome. Fertil Steril 1996;65:517–22.
[5] Fan HY, Liu Z, Johnson PF, Richards JS. CCAAT/enhancer-binding proteins (C/EBP)-alpha and -beta are essential for ovulation, luteinization, and the expression of key target genes. Mol Endocrinol 2011;25:253–68.
[6] Kaltsoau A, Koudi E, Fountoulakis K, Sipka C, Theochari V, Kandylis D, et al. Effects of exercise training with traditional dancing on functional capacity and quality of life in patients with schizophrenia: a randomized controlled trial. Clin Rehabil 2015;29:882–91.
[7] Panigone S, Hsieh M, Fu M, Persani L, Conti M. Luteinizing hormone signaling in pre-ovulatory follicles involves early activation of the epididymal growth factor receptor pathway. Mol Endocrinol 2008;22:2244–36.
[8] Fan HY, Liu Z, Shimada M, Sterneck E, Johnson PF, Hedrick SM, et al. MAPK1/3 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science 2009;324:938–41.
[9] Conti M, Hsieh M, Park YK, Su YQ. Role of the epididymal growth factor network in ovarian follicles. Mol Endocrinol 2006;20:715–23.
[10] Park YJ, Su YQ, Anja M, Law E, Jin SL, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 2004;303:682–4.
[11] Shimada M, Hernandez-Gonzalez I, Gonzalez-Robayna I, Richards JS. Paracrine and autocrine regulation of epididymal growth factor-like factors in cumulus oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and progesterone receptor. Mol Endocrinol 2006;20:1352–65.
[12] Curry Jr TE. ADAMTS1 and versican: partners in ovulation and fertilization. Biol Reprod 2010;83:505–6.
[13] Brown HM, Dunning KR, Robker RL, Boerboom D, Pritchard M, Lane M, et al. ADAMTS1 cleavage of versican mediates essential structural remodeling of the ovarian follicle and cumulus-oocyte matrix during ovulation in mice. Biol Reprod 2010;83:549–57.
[14] Robker RL, Russell DL, Espey LL, Lydon JP, O’Malley BW, Richards JS. Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci U S A 2000;97:4689–94.
[15] Falender AE, Lanz R, Malenfant D, Belanger L, Richards JS. Differential expression of steroidogenic factor-1 and PTF1/HNF-1 in the rodent ovary. Endocrinology 2003;144:3598–610.
[16] Duggavathi V, Vole DH, Maitaki C, Antal MC, Messaddeq N, Auwerx J, et al. Liver receptor homolog 1 is essential for ovulation. Genes Dev 2008;22:1871–6.
[17] Li Y, Bevilacqua E, Chiribau CB, Majumder M, Wang C, Croniger CM, et al. Differential expressions of the CCAAT/enhancer-binding protein beta (C/EBPbeta) products liver-enriched transcriptional activating protein (LAP) and liver-enriched transcriptional inhibitory protein (LIP) in patients with schizophrenia: a randomized controlled study. Clin Rehabil 2015;29:882–91.
[18] Fan HY, Liu Z, Johnson PF, Richards JS. CCAAT/enhancer-binding proteins (C/EBP)-alpha and -beta are essential for ovulation, luteinization, and the expression of key target genes. Mol Endocrinol 2011;25:253–68.
[19] Kaltsoau A, Koudi E, Fountoulakis K, Sipka C, Theochari V, Kandylis D, et al. Effects of exercise training with traditional dancing on functional capacity and quality of life in patients with schizophrenia: a randomized controlled trial. Clin Rehabil 2015;29:882–91.
Mizutani T, Ju Y, Imamichi Y, Osaki T, Yazawa T, Kawabe S, et al. CEBPbeta (CCAT/ enhancer-binding protein beta) mediates progesterone production through transcriptional regulation in co-operation with SF-1 (steroidogenic factor-1). Biochem J 2014;460:459–71.

Jansen E, Laven JS, Dommerholt HB, Polman J, van Rijt C, van den Hurk C, et al. Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients. Mol Endocrinol 2004;18:3050–63.

Kaur S, Archer KJ, Devi MG, Kirpani A, Strauss 3rd JF, Singh R. Differential gene expression in granulosa cells from polycystic ovary syndrome patients with and without insulin resistance: identification of susceptibility genes set through network analysis. J Clin Endocrinol Metab 2012;97:E2016–21.

Kennisberg S, Bentov Y, Chaila-Caspil V, Potashnik G, Ofir R, Birx GS. Gene expression microarray profiles of cumulus cells in lean and overweight obese polycystic ovary syndrome patients. Mol Hum Reprod 2009;15:89–103.

Murai KK, Pasquale EB. Eph receptor signaling: forward, reverse and crosstalk. J Cell Sci 2003;116:2823–32.

Pasquale EB. Eph receptor signalling casts a wide net on cell cooperation. Nat Rev Mol Cell Biol 2005;6:462–75.

Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 2010;10:165–80.

Park E, Kim Y, Noh H, Lee H, Yoo S, Park S. EphA/ephrin-A signaling is critically involved in region-specific apoptosis during early brain development. Cell Death Differ 2013;20:169–80.

Holder N, Klein R. Eph receptors and ephrins: effectors of morphogenesis. Development 1999;126:2033–44.

Nakada M, Niska JA, Tran NL, McDonough WS, Berens ME. EphB2-Ras signaling regulates glioma cell invasion, growth, and invasion. Am J Pathol 2005;167:585–96.

Galvo AM, Ferreira-Dias C, Skarzynski DJ. Cytokines and angiogenesis in the corpus luteum. Mediators Inflamm 2013;2012:80168.

Iwase A, Goto M, Harata T, Takigawa S, Nakahara T, Suzuki K, et al. Insulin attenuates induction of cyclooxygenase-2 by cortisol in the human amnion at parturition. Sci Rep 2017;7:43091.

Bruns M, Casteilla L, Gollonet B, Martin J, Treier M, et al. Cell type-specific localization of Ephs pairing with ephrin-B2 in the rat postnatal pituitary. J Cell Sci 2003;116:2823–32.

Yu Y, Zagosra D, Keck C, Pietrowski D. Expression of Eph receptor tyrosine kinases in human polycystic ovary syndrome patients. Mol Hum Reprod 2009;15:89–91.

Yoshida S, Kato T, Higuchi M, Chen M, Ueharu H, Nishimura N, et al. Localization of ephrinA5-EphA7 complex induces apoptotic cell death in a rat model of polycystic ovary syndrome. Proc Natl Acad Sci 2017;114:E3334–43.

Fuscoe JC, Zhao C, Guo C, Jia M, Qing T, et al. A rat RNA-Seq transcriptomic analysis of platelet-derived growth factor B (PDGFB) improves follicular development in Xenopus. Biochem Biophys Res Commun 2018;489:1580–7.

Li S, Wu Z, Ma P, Xu Y, Chen Y, Wang H, et al. Ligand-dependent EphA7 signaling inhibits prostate tumor growth and progression. Cell Death Dis 2017;8:e3112.

Godmann M, Katz JP, Guilhou F, Simonni M, Kaestner KH, Behr R. Krüppel-like factor 4 is involved in functional differentiation of testicular Sertoli cells. Dev Biol 2008;315:552–66.

Birsoy K, Chen Z, Friedman J. Transcriptional regulation of adipogenesis by KLF4. Cell Metab 2008;7:339–47.

Rowland BD, Bernardi R, Pepper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 2005;7:1074–82.

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663–76.

Yoon HS, Chen X, Yang VW. Kruppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J Biol Chem 2003;278:2101–5.

Godmann M, Kosan C, Behr R. Krüppel-like factor 4 is widely expressed in the mouse male and female reproductive tract and responds as an immediate early gene to activation of the protein kinase in a TM4 Sertoli cells. Reproduction 2010;139:771–82.

Natesanpillai S, Kerkvliet J, Leung PC, Veldhuis JD. Regulation of Krüppel-like factor 4, 9, and 13 genes and the steroidogenic genes LDLR, StAR, and CYP11A1 in ovarian granulosa cells. Am J Physiol Endocrinol Metab 2008;294:E385–92.

Mittaz L, Russell DL, Wilson T, Braisted M, Tkalec J, Salamonsen LA, et al. Adams-1 is essential for the development and function of the urogenital system. Biol Reprod 2004;70:1069–105.

Brown HM, Dunning KR, Robker RR, Pritchard M, Russell DL. Requirement for ADAMS-1 in extracellular matrix remodeling during ovarian folliculogenesis and lymphanangiogenesis. Dev Biol 2006;300:699–709.

Xiao S, Li Y, Li T, Chen M, Xu Y, Wen Y, et al. Evidence for decreased expression of ADAMS-1 associated with impaired oocyte quality in PCOS patients. J Clin Endocrinol Metab 2014;99:E1015–21.

Cardoso RC, Burns A, Moorel J, Skinner DC, Padmanabhan V. Developmental pro-gramming: insulin sensitizer prevents the G0B-stimulated LH hypersecretion in a sheep model of PCOS. Endocrinology 2016;157:4641–53.

Lee H, Park E, Kim Y, Park S, ParkinsonS. EphA5/EphA7 complex induces apoptotic cell death through TNFR1. Mol Cells 2013;35:430–5.