RADÓ THEOREM AND ITS GENERALIZATION
FOR CR-MAPPINGS

E.M.CHIRKA

Abstract. A generalization of Radó’s theorem for CR-functions on locally Lipschitz hypersurfaces is obtained. It is proved also that closed pre images of pluripolar sets by CR-mappings are removable for bounded CR-functions.

1. Introduction

A well-known theorem of Radó [9] states that a continuous function f defined on a domain in \mathbb{C} and holomorphic on the complement of its zero set $f^{-1}(0)$ is holomorphic everywhere. The result is correct for holomorphic functions in \mathbb{C}^n as well as in the plane. It is well-known that $f^{-1}(0)$ can be replaced by $f^{-1}(E)$, E a closed subset of zero capacity in \mathbb{C} (see [14]).

Recently J.-P.Rosay and E.L.Stout [10] have shown that an analogue of the classical Radó’s theorem take place for CR-functions on a C^2-hypersurface in \mathbb{C}^n with nonvanishing Levi form. Then H.Alexander [1] has proved the removability in the same situation of closed sets of the type $f^{-1}(E)$, E a closed polar set in \mathbb{C}. We improve here these results in the following theorem which can be considered as an extension of Radó’s theorem to bounded CR-mappings of hypersurfaces.

Theorem 1. Let Γ be a locally Lipschitz hypersurface in \mathbb{C}^n with one-sided extension property at each point, Σ is a closed subset of Γ and

$$f : \Gamma \setminus \Sigma \longrightarrow \mathbb{C}^m \setminus E$$

is a CR-mapping of class L^{∞} such that the cluster set of f on Σ along of Lebesgue points of f is contained in a closed complete pluripolar set E. Then there is a CR-mapping $\tilde{f} : \Gamma \longrightarrow \mathbb{C}^m$ of class $L^{\infty}(\Gamma)$ such that $\tilde{f} |_{\Gamma \setminus \Sigma} = f$.

We say that Γ has one-sided extension property at its point a if for an arbitrary neighbourhood $U \ni a$ there is a (smaller) neighbourhood $V \ni a$ and a connected component W of $V \setminus \Gamma$ such that $a \in W$ and every bounded CR-function on $\Gamma \cap U$ extends holomorphically into W. As it was shown by Trépreau [15] this property at each point has an arbitrary locally Lipschitz hypersurfaces in \mathbb{C}^2 which contains no analytic discs. The same is true for hypersurfaces of class C^2 in \mathbb{C}^n containing no complex hypersurfaces (see [15]).

1991 Mathematics Subject Classification. Primary 32D15, 32D20; Secondary 32B15, 32C30.

Key words and phrases. CR-functions, removable singularities, analytic continuation.

The final version of this paper will be submitted for publication in ”Mat.Sbornik”
We show indeed that the trivial extension of f by a constant on Σ is a CR-mapping on the whole Γ.

Theorem 1 is true also without the supposition of the one-sided extension property, but the general case is more complicated, and this is related with analytic discs belonging to Γ. We shall prove the general theorem in the next paper.

Theorem 1 is equivalent to the following new result on the removability of singularities for bounded CR-functions.

Theorem 2. Let Γ, Σ, E and f be as in Theorem 1. Then each CR-function of class L^∞ on $\Gamma \setminus \Sigma$ extends to a CR-function of class L^∞ on Γ.

Theorem 1 follows obviously from Theorem 2. In opposite direction, given a CR-function g of class L^∞ on $\Gamma \setminus \Sigma$ corresponds the mapping $(f, g) : \Gamma \setminus \Sigma \to \mathbb{C}^{m+1} \setminus E \times \mathbb{C}$

which cluster set on Σ is contained in the closed complete pluripolar set $E \times \mathbb{C}$. By Theorem 1, the map (f, g) extends to a CR-map of whole Γ, and thus its last component g extends to there as a CR-function.

If Γ is the boundary of a bounded domain or if Γ admits one-sided holomorphic extension of CR-functions (say, if $\Gamma \in C^2$ contains no complex hypersurface, as in [15]) then it follows from Theorem 2 and a uniqueness theorem that the Hausdorff $(2n - 1)$-measure of Σ vanishes, and $\Gamma \setminus \Sigma$ is locally connected.

We prefer to work here with the class L^∞ instead of C^∞, since L^∞ is stable by considering extensions whereas the CR-extension of a bounded continuous CR-function from $\Gamma \setminus \Sigma$ onto Γ is not continuous in general.

The proof of Radó theorem for CR-functions in [10] is based on results [8] on the holomorphic continuation of CR-functions from a part of the boundary of a domain in \mathbb{C}^n, $n \geq 2$ (see also [7]). In the proof of Theorem 1 we use instead of this a geometric extension of the graph in spirit of R.Harvey and H.B.Lawson [6]. Our starting point was a generalization of the Harvey - Lawson theorem [6] on boundaries of holomorphic chains for MC-cycles in the complement to a polynomially convex compact set [4, 1985]. It can be considered as a geometric version (for CR-functions of class C^1) of theorems on holomorphic continuation in [8],[10],[7].

Let us specify the terminology.

We say that a hypersurface M in a smooth k-dimensional manifold \mathcal{M} is **locally Lipschitz** if for every point $a \in M$ there is a coordinate chart (U, x), $x = (x', x_k)$ on \mathcal{M} such that $a \in U$ and $M \cap U$ is represented as the graph $x_k = h(x')$ of a function h over the domain in \mathbb{R}^{k-1} which satisfies there Lipschitz condition $|h(b) - h(c)| \leq C |b - c|$ with a constant C. Note that the Hausdorff $k-1$-measure (with respect to some fixed smooth metric on \mathcal{M}) restricted to such M is locally finite, and M has tangent planes in almost every point with respect to this measure (Rademacher’s theorem, see e.g. [5,3.1.6.]). Thus the integral on M for a differential $(k-1)$-form φ with Lipschitz coefficients and with compact $\text{supp}\varphi \cap M$ is well-defined.

A point a in a locally Lipschitz $M \subset \mathcal{M}$ is called a **Lebesque point** for a given vector-function f of class $L^1_{\text{loc}}(M)$ with values in \mathbb{R}^N if there is a constant $\tilde{f}(a) \in \mathbb{R}^N$ such that

$$\lim_{r \to 0} \frac{1}{r^{k+1}} \int_{M \cap |x'| < r} |f(x) - \tilde{f}(a)| \, dx' = 0$$
as \(r \to 0 \) in the chart \((U, x)\) with \(x(a) = 0 \) described above. It is wellknown (see [5,2.9.8.]) that almost every point \(a \in M \) is such a point and \(f(a) = 0 \) almost everywhere. Thus we shall assume in the further that \(f \) is defined (as \(\tilde{f}(a) \)) on the set of its Lebesque points \(a \) only.

For a locally Lipschitz hypersurfacse \(M \) in a complex \(n \)-dimensional manifold \(\mathcal{M} \) the notion of \(CR\)-functions of class \(L^1_{loc}(M) \) is well-defined: a function \(f \) of this class is a \(CR\)-function on \(M \) if \(\int_M f \partial \varphi = 0 \) for every smooth form \(\varphi \) of bidegree \((n, n - 2)\) in \(M \) with compact \(\text{supp} \varphi \cap M \).

A set \(E \subset \mathbb{C}^m \) is called complete pluripolar, if there is a plurisubharmonic function \(\varphi \) in \(C^m \) such that \(E = \{ \zeta : \varphi(\zeta) = -\infty \} \).

2. One-sided holomorphic extension

The problem is local, so we can assume that \(\Gamma \ni 0 \) is represented as the graph \(v = h(z', u) \) of some Lipschitz function in a domain in the space of variables \((z_1, ..., z_{n-1}, Rez_n) = (z', u)\) (it is convenient to use the notation \(z_n = u + iv \)).

Fix a connected component \(\Gamma_0 \) of \(\Gamma \setminus \Sigma \), set \(f_1 = f \) on \(\Gamma_0, f_1 = 0 \) on \(\Gamma \setminus \Gamma_0 \) and denote by \(\Gamma_1 \supset \Gamma_0 \) the set of points \(a \in \Gamma \) such that \(f_1 \) is a \(CR\)-function in a neighbourhood of \(a \) on \(\Gamma \). We have to show that \(\Gamma_1 = \Gamma \).

By the one-sided extension property, for each point \(a \in \Gamma_1 \) there is a neighbourhood \(V_a \ni a \) and a connected component \(W_a \) of \(V_a \setminus \Gamma \) such that \(a \in \overline{W_a} \) and each \(CR\)-function on \(\Gamma \) extends holomorphically into \(W_a \). Shrinking \(V_a \) we can assume that the intersection of \(V_a \) with each line \((z', u) = \text{const} \) is an interval (i.e. \(V_a \) is convex in \(v \)-direction) intersecting \(\Gamma_1 \). Then the union of all \(W_a, a \in \Gamma_1 \) is an open set of the form \(W^+ \cup W^- \) where \(W^+ \) is plased over \(\Gamma \) (i.e. \(v > h(z', u) \) on \(W^+ \)) and \(W^- \) is contained in \(\{ v < h(z', u) \} \). It follows that the set

\[
W = W^+ \cup W^- \cup (\overline{W^+} \cap \overline{W^-} \cap \Gamma_1)
\]

is open, convex in \(v \)-direction, and \(\overline{W} \supset \Gamma_1 \). By a uniqueness theorem and a removable singularities theorem the holomorphic extensions of \(f_1 \) into \(W_a, a \in \Gamma_1 \), constitute holomorphic functions in \(W^+ \) and \(W^- \), and these functions extend to a holomorphic (vector-) function in \(W \) which we denote by the same symbol \(f_1 \).

By the construction, there is a Lipschitz function \(\epsilon(z', u) \) such that \(\epsilon = 0 \) outside of \((z', u)(\Gamma_1)\), the hypersurface \(\Gamma' : v = (h + \epsilon)(z', u) \) is contained in \(W \cup \Sigma_1 \), and \(\Gamma' \setminus \Sigma_1 \) is a smooth \((C^\infty \text{ or even } C^m \text{ if you want})\). The set \((f_1)^{-1}(E) \cap W \) is pluripolar, so we can assume that its intersection with \(\Gamma' \setminus \Sigma_1 \) has the Hausdorff dimension \(2n - 3 \), in particular, it has the locally connected complement in \(\Gamma' \setminus \Sigma \). Set \(\Sigma^1_1 = \Sigma_1 \cup (\Gamma_1 \cap (f_1)^{-1}(E)) \) and \(\Gamma_1' = \Gamma' \setminus \Sigma^1_1 \). If \(\epsilon(z', u) \) is taken sufficiently small and rapidly tends to zero as \((z', u)\) approaches to \((z', u)(\Sigma_1)\), then

\[
f_1 \mid \Gamma_1' \longrightarrow \mathbb{C}^m \setminus E
\]

and the cluster set of \(f_1 \) on \(\Sigma^1_1 \) is contained in \(E \). Thus, substituting \(\Gamma \) onto \(\Gamma_1', \Sigma_1 \) onto \(\Sigma^1_1 \) and \(\Gamma_1 \) onto \(\Gamma_1' \) and then restoring old notations, we can assume that \(\Gamma_1 \) is smooth and the mapping \(f_1 \) is holomorphic in a neighbourhood of \(\Gamma_1 \).
3. Reducing to $n = 2$

We assume as above that $\Gamma \ni 0$ is represented as the graph of some Lipschitz function over a domain in the space of variables $z_1, ..., z_n, \text{Re}z_n$. Then the vector $(0, ..., 0, i)$ does not belong to $C_a\Gamma$, the tangent cone to Γ at the point a, for all $a \in \Gamma$. Shrinking Γ a little we can assume that the same is true for some C-linearly independent system of vectors $\xi_1, ..., \xi_n$, $\xi_j \notin C_a\Gamma$ for $a \in \Gamma, j = 1, ..., n$. Making a suitable C-linear changing of coordinates we obtain the situation when $i\xi_j \notin C_a\Gamma$ for all standard coordinate ors e_j in \mathbb{C}^n. It follows then that for each j there is a neighborhood $U_j \ni 0$ such that $\Gamma \cap U_j$ is represented as the graph of a Lipschitz function over a domain in the space of variables $z_k, k \neq j, \text{Re}z_j$. Set $U = \cap U_j$.

We have to show that $\int_{\Gamma} f_0 \partial \varphi = 0$ for an arbitrary smooth $(n, n - 2)$-form φ with $\text{supp}\varphi \subset U$. This form is represented as $\sum_{j<k} \varphi_{jk} dz_j \wedge dz_k \wedge dV_{jk}$ where φ_{jk} are smooth functions supported in U and $dV_{jk} = \prod_{l \neq j,k} idz_l \wedge dz_l$.

By the construction, the projection Γ_{jk} of $\Gamma \cap U_k$ into the space of variables \{z_l, l \neq j, k\} is an open set, and $\Gamma_{c(j,k)} = \Gamma \cap \{z_l = c_l, l \neq j, k\}$ is a Lipschitz hypersurface in \{z_l = c_l, l \neq j, k\} $\simeq \mathbb{C}^2$ for all $c(j,k) \in \Gamma_{jk}$. As $\partial \varphi = \sum_{j<k} \partial(\varphi_{jk} dz_j \wedge dz_k) \wedge dV_{jk}$, we have by Fubini theorem for differential forms (see e.g. [4, A4.4.]) that

$$\int_{\Gamma} f_0 \partial \varphi = \sum_{j<k} \int_{\Gamma_{jk}} (\int_{\Gamma_{z(j,k)}} f_0 \partial(\varphi_{jk} dz_j \wedge dz_k)) \wedge dV_{jk}.$$

If $f_0 | \Gamma_{c(j,k)} \in CR(\Gamma_{c(j,k)})$ for almost every $c(j,k) \in \Gamma_{jk}$, then almost all inner integrals vanish, and the right hand side is zero.

Taking φ in a dense sequence of such forms with compact $\text{supp}\varphi \cap \Gamma \setminus \Sigma$ we obtain from this representation that

$$f | \Gamma_{c(j,k)} \setminus \Sigma \longrightarrow \mathbb{C}^m \setminus E$$

are the mappings of the class $CR \cap L^\infty$ for almost every $c(j,k) \in \Gamma_{jk}$. As $\Gamma_{jk} \subset \{z_l = c_l, l \neq j, k\} \simeq \mathbb{C}^2$, we obtain that it is enough to prove Theorem 1 for the case $n = 2$.

4. Analytic extension of the graph

To show that Σ_1 is empty we assume that 0 is the boundary point of Γ_1 in Γ and come at last to a contradiction.

The base domain $G \subset \mathbb{C} \times \mathbb{R}$ can be taken bounded and convex, and the function $h(z, u)$ defined and with Lipschitz condition in a neighbourhood of \bar{G}. Then the graph $S : v = h(z, u)$ over bG is a two-dimensional sphere in \mathbb{C}^2. As 0 is limiting point for Γ_1, we can assume, that S is not contained in Σ_1. By Shcherbina’s theorem [12, 13] the polynomially convex hull \bar{S} of S is the graph of a continuous function $h(z, u)$ over \bar{G} foliated in a one-parametric family of analytic discs with boundaries on S.

The graph M of the map f_1 over Γ_1 is a smooth maximally convex 3-dimensional manifold in $\mathbb{C}^2 \times \mathbb{C}^m$ which boundary $M \setminus M$ is contained in $(\bar{S} \times \mathbb{C}^m) \cup (\mathbb{C}^2 \times E)$. As f_1 is uniformly bounded, there are closed balls B_2, B_m with centers in origins such that $M \setminus M$ is contained in $(\bar{S} \times B_m) \cup (B_2 \times E)$. This compact set is polynomially convex due to the following.
Lemma 1. Let $X_1 \subset X_2$ be polynomially convex compact sets and Y is a complete pluripolar set in \mathbb{C}^N. Then the set $X = X_1 \cup (Y \cap X_2)$ is polynomially convex.

Proof. The set Y is represented as $\{\zeta : \varphi(\zeta) = -\infty\}$ for some function φ plurisubharmonic in \mathbb{C}^N. If $a \not\in X_1 \cup Y$ then there is a polynomial p such that $p(a) = 1$ and $|p| < 1$ on X_1. Let $C = \sup(\varphi(\zeta) : \zeta \in X_1)$ and a positive integer s is taken so big that $|p(\zeta)| e^C < e^{\varphi(a)}$ for all $\zeta \in X_1$ (it is possible because $a \not\in Y$). Then the function $\psi = |p|^s e^C$ is plurisubharmonic in $\mathbb{C}^N, \psi(\zeta) < \psi(a)$ for $\zeta \in X$, and the same is true for $\zeta \in Y$ because $\psi \mid Y = 0$. It follows from the maximum principle for plurisubharmonic functions on polynomially convex hulls (see, e.g. [3]) that a is not contained in the hull of X. The rest follows from the inclusion $X \subset X_2$.

Thus, the polynomially convex hull of the set $(S \times B_m) \cup (B_2 \times E)$ for $B_2 \supset S$ is the compact set

$$K = (\tilde{S} \times B_m) \cup (B_2 \times E),$$

and the graph M of f_1 is attached to this K. By a generalization of Harvey - Lawson theorem in [4, Theorem 19.6.2] there is a two-dimensional (complex) analytic subset A in $\mathbb{C}^{2+m} \setminus (K \cup M)$ such that $A \cup K \cup M$ is compact and $M \setminus K \subset \tilde{A}$.

5. The projection of the extension

We show that A is the graph of a holomorphic mapping over an open set in \mathbb{C}^2 with the boundary in $\Gamma \cup \tilde{S}$. (The main difficulty here is that the projection of \tilde{A} is as well as $\Gamma \cup \tilde{S}$ contained in the ball B_2, the "shadow" of $B_2 \times E"). It is convenient to use in this Section coordinates (z', z'') for $\mathbb{C}^2 \times \mathbb{C}^m$.

We essentially use the pluripolarity of $B_2 \times E$ and the following result due to E.Bishop [2, 11] on the removability of pluripolar singularities for analytic sets (see [4]).

Lemma 2. Let Y be a closed complete pluripolar subset of a bounded domain $U = U' \times U'' \subset \mathbb{C}^{n+m}$, and A is a pure p-dimensional analytic subset in $U \setminus Y$ without limit points on $U' \times bU''$. Suppose that U' contains a nonempty subdomain V' such that $A \cap (V' \times U'')$ is an analytic set. Then $A \cap U$ is analytic in U.

First of all, we apply this lemma to the unbounded component U' of $\mathbb{C}^2 \setminus (\tilde{S} \cup \Gamma)$. Let U' be an open ball in \mathbb{C}^m containing B_m and $Y = U \cap B_2 \times E$. Then $A \cap (U \setminus Y)$ is an analytic set satisfying the conditions of Lemma 2. By the maximum principle, A is projected into B_2 because its boundary is contained in $K \cup M$. Thus, for $V' = U' \setminus B_2$, the set $A \cap (V' \times U'')$ is empty (hence analytic). It follows from Lemma 2 that $A \cap U$ is analytic in U. As $A \cap (V' \times U'')$ is empty and the projection of $A \cap U$ into U' is proper, the set $A \cap U$ is also empty. Thus, we have proved that the projection of A into \mathbb{C}^2 is contained in the closure of the union of all bounded component of $\mathbb{C}^2 \setminus (\Gamma \cup \tilde{S})$.

Take now an arbitrary point $a' \in \Gamma_1 \setminus \tilde{S}$ and show that the set $A \cap \{z' = a'\}$ is empty. This set is closed analytic in $a' \times (\mathbb{C}^m \setminus (E \cup a'))$ where $a' = f_1(a')$. As $E \cup a'$ is complete pluripolar, its intersection with B_m is polynomially convex. As $A \cap \{z' = a'\}$ is compact, it follows from a maximum principle on analytic sets (see, e.g., [4, 6.3]) that the dimension of $A \cap \{z' = a'\}$ is zero, i.e. this set is discrete. Thus, given $b = (a', b') \in A$ there is a neighbourhood $U = U' \times U''$ such that the projection of $A \cap U$ into U' is an analytic covering (see [4]). But $\dim A = 2$,
and there is no point in \(A \cap U \) over unbounded component of \(\mathbb{C}^2 \setminus (\Gamma \cup \tilde{S}) \) which has nonempty intersection with \(U' \). This contradiction shows that there is no such points \(b \), i.e. \(A \cap U \) is empty.

Let now \(U' \) be a bounded component of \(\mathbb{C}^2 \setminus (\Gamma \cup \tilde{S}) \) such that \(bU' \cap (\Gamma_1 \setminus \tilde{S}) \) is not empty, and \(a' \) is a point in this nonempty set. Then (see Sect.1) there is a neighbourhood \(V' \ni a' \) such that \(f_1 \) is holomorphic in \(V' \). We have in \((V' \times \mathbb{C}^m)\setminus M\) two analytic sets, \(A \cap (V' \times \mathbb{C}^m) \) and the graph of \(f_1 \) over \(V' \cap U' \), of pure dimension 2 with the same smooth boundary \(M \cap (V' \times \mathbb{C}^m) \). By a boundary uniqueness theorem for analytic sets (see [4, 10.2]), these sets coincide. Thus, the analytic covering \(A \cap (U' \times \mathbb{C}^m) \to U' \) is onesheeted over \(V' \cap U' \), which follows that it is one-sheeted over whole \(U' \). It means that \(A \) over \(U' \) is the graph of a bounded holomorphic map, and this map is a continuation of \(f_1 \) into \(U' \). In particular, we obtain that \(f_1 \) as the boundary value of this map is \(CR \) on \(bU' \cap (\Gamma \setminus \tilde{S}) \).

In terms of components of \(\Gamma \setminus \tilde{S} \), it means that there are only two possibilities: either this component is contained in \(\Gamma_1 \) or it is contained in \(\Sigma_1 \).

6. Removability of \(\Sigma \)

Return to notations \((z, w)\) for coordinates in \(\mathbb{C}^2 \) and denote by \(p \) the projection \((z, w) \mapsto (z, u)\) into \(\mathbb{C}^2 \times \mathbb{R} \).

Let \(\delta \subset \tilde{S} \) be an analytic disc with the boundary in \(S \) such that \(p(\delta) \cap p(\Gamma_1) \) is not empty. Show that \(\delta \subset p(\Gamma_1) \).

Suppose it is not. Then there is a point \(a \in \Sigma_1 \) such that \(p(a) \in p(\delta) \), and a convex domain \(G_1 \subset G \) containing \(p(a) \) such that \(bG_1 \cap p(\delta) \cap p(\Gamma_1) \) is not empty, say, it contains \(p(b) \) for some \(b \in \Gamma_1 \). By Sect.1, \(f_1 \) is holomorphic in a one-sided neighbourhood \(V \) of \(b \) convex in \(v \)-direction, as in Sect.1. Let \(h_1 \) be a Lipschitz function on \(bG_1 \) such that its graph \(S_1 : v = h_1(z, u) \) is contained in \(\Gamma \cup V \) but does not contain \(b \). We can assume \(v < h(z, u) \) on \(S_1 \cap V \) (changing \(w \) onto \(-w\) and shrinking \(V \) if it is necessary). Then for \(h_t = th + (1 - t)h_1, 0 < t < 1 \), we have \(h_t \leq h \) and \(h_t < h \) over \(p(V) \). By Shcherbina’s theorem [12, 13] polynomially convex hull \(\tilde{S}_t \) of \(S_t : v = h_t(z, u) \) is the graph of a continuous function \(h_t \) over \(G_1 \) foliated in a one-parametric family of analytic discs with boundaries in \(S_t \). As \(h_t \leq h \), we have \(h_t \leq h \), and \(h_t \to h \) as \(t \to 0 \) by continuity.

Thus, for \(t > 0 \) small enough there is a disc \(\delta_t \subset \tilde{S}_t \) such that \(p(\delta_t) \subset \delta_t \) and \(p(b\delta_t) \cap p(V) \) is not empty. As \(v \leq h(z, u) \) on \(\delta_t \) and \(v < h(z, u) \) on \(b\delta_t \cap V \), we have \(v < h(z, u) \) on the whole \(\delta_t \), i.e. the disc \(\delta_t \) is placed strongly under the hypersurface \(\tilde{S} \). (This is true because the discs \(\delta_t = (0, \epsilon) \) for \(\epsilon > 0 \) do not intersect \(\tilde{S} \), and we can apply the argument principle.)

As we proved above (with \(\tilde{S}_t \) instead of \(\tilde{S} \)), each component of \(p(\delta_t \setminus \Gamma) \) is either contained in \(p(\Gamma_1) \) or it is contained in \(p(\Sigma_1) \). But \(p(\delta_t \setminus \Gamma) \) and \(p(\tilde{S} \cap \Gamma) \) have no common point because \(\delta_t \cap \tilde{S} \) is empty, and the projection \(p \mid \Gamma \) is one-to-one. As \(p(\delta_t) \cap p(\Gamma_1) \) is not empty by the construction, the set \(p(\delta_t) \cap p(\Sigma_1) \) must be empty, in particular, \(p(a) \notin p(\Sigma_1) \). The contradiction (with choosing of \(a \)) shows that there is no such point \(a \), i.e. \(\delta \subset p(\Gamma_1) \).

If \(\Sigma_1 \) is not empty, it follows from the above that there is a disc \(\delta^0 \subset \tilde{S} \) such that \(p(\delta^0) \subset p(\Sigma_1) \cap \partial(p(\Gamma_1)) \). As \(\delta^0 \) is not contained in \(\Gamma \), there is a point \(c \in \Sigma_1 \) \(\tilde{S} \) such that \(p(c) \in p(\delta^0) \). The component \(\Gamma_c \) of \(\Gamma \setminus \tilde{S} \) containing \(c \) has nonempty intersection with \(\Gamma_1 \) because \(c \) is limiting point for \(\Gamma_1 \). As it was proved above, it
follows that Γ_c is contained in Γ_1. This contradiction (with $c \in \Gamma_1$) shows that Σ_1 is empty.

Thus, we have proved that for each component Γ_0 of $\Gamma \setminus \Sigma$ the map f_1 (equal to f on Γ_0 and to 0 outside of it) is CR on the whole Γ. As Γ contains no analytic discs, this f_1 extends holomorphically into one-sided neighbourhoods of each point of Γ. It follows from a boundary uniqueness theorem for holomorphic functions that $\Gamma \setminus \Gamma_0$ has zero Hausdorff 3-measure, in particular, Γ_0 is the single component of $\Gamma \setminus \Sigma$. In other words, the set Σ has zero Hausdorff $(2n-1)$-measure for general n, and its complement in Γ is locally connected (for every connected open set $\Gamma' \subset \Gamma$ the set $\Gamma' \setminus \Sigma$ is also connected).

References

1. H. Alexander, *Removable sets for CR-functions*, Princeton Math. Notes 38 (1992), 5.
2. E. Bishop, *Conditions for the analyticity of certain sets*, Michigan Math. J. 11 (1964), 289–304.
3. E. M. Chirka, *Approximation by holomorphic functions on smooth manifolds in \mathbb{C}^n*, Mat. Sbornik 78 (1969), no. 1, 101–123 (Russian); English transl., Math USSR, Sbornik 7 (1970), 95–114.
4. , *Complex Analytic Sets*, “Nauka”, Moscow, 1985 (Russian); English transl., Kluwer Academic Publishers, Dordrecht-Boston-London, 1989.
5. H. Federer, *Geometric Measure Theory*, Springer, 1969.
6. F. R. Harvey and H. B. Lawson, *On boundaries of complex analytic varieties. I*, Ann. of Math. (2) 102 (1975 pages 223–290).
7. A. M. Kytmanov, *Holomorphic continuation of CR-functions with singularities on a hypersurface*, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 6, 1320–1330. (Russian)
8. G. Lupaccioli, *A theorem on holomorphic extension of CR-functions*, Pacific J. Math. 124 (1986), 177–191.
9. T. Rado, *Über eine nicht fortsetzbare Riemannsche Mannigfaltigkeit*, Math. Z. 20 (1924), 1–6.
10. J. P. Rosay and E. L. Stout, *Radó’s theorem for CR-functions*, Proc. Amer. Math. Soc. 106 (1989), 1017–1026.
11. W. Rothstein, *Das Maximumprinzip und die Singularitäten analytischer Mengen*, Invent. Math. 6 (1968), 163–184.
12. N. V. Shcherbina, *On the polynomial hull of a sphere embedded into \mathbb{C}^2*, Mat. Zametki 49 (1991), 127–134. (Russian)
13. , *On the polynomial hull of a 2-sphere in \mathbb{C}^2*, Dokl. Akad. Nauk SSSR 317 (1991), 1315–1319. (Russian)
14. E. L. Stout, *A generalization of a theorem of Radó*, Math. Ann. 177 (1968), 339–340.
15. J. M. Trépreau, *Sur le prolongement holomorphe des fonctions C-R définies sur une hypersurface réelle de classe C^2 dans \mathbb{C}^n*, Invent. Math. 83 (1986), 583–592.