Use of indicators in River Basin Management Planning and Strategic Environmental Assessment processes

Rosa Santos Coelho, Pedro S. Coelho, Tomás B. Ramos & Paula Antunes

To cite this article: Rosa Santos Coelho, Pedro S. Coelho, Tomás B. Ramos & Paula Antunes (2018) Use of indicators in River Basin Management Planning and Strategic Environmental Assessment processes, Impact Assessment and Project Appraisal, 36:2, 155-172, DOI: 10.1080/14615517.2017.1364017

To link to this article: https://doi.org/10.1080/14615517.2017.1364017

Published online: 22 Aug 2017.
Use of indicators in River Basin Management Planning and Strategic Environmental Assessment processes

Rosa Santos Coelhoab, Pedro S. Coelhoc, Tomás B. Ramosa and Paula Antunesa.

aFaculdade de Ciências e Tecnologia, Departamento de Ciências e Engenharia do Ambiente, Center for Environmental and Sustainability Research (CENSE), Universidade NOVA de Lisboa, Campus da Caparica, Caparica, Portugal; bInstituto Politécnico de Santarém, Escola Superior Agrária, Santarém, Portugal; cFaculdade de Ciências e Tecnologia, Departamento de Ciências e Engenharia do Ambiente, Marine and Environmental Sciences Centre (MARE), Universidade NOVA de Lisboa, Campus da Caparica, Caparica, Portugal

\section*{ABSTRACT}
River Basin Management Planning (RBMP) and Strategic Environmental Assessment (SEA) processes often rely on the use of indicators to assess the sustainability of planning options, to communicate with stakeholders and to support decision-making. The aim of this research was to investigate the adoption of indicators to support these processes and to analyse indicators integration between them. A conceptual framework was adopted to support a qualitative content analysis of the Portuguese RBMP and corresponding SEA reports. The main findings showed that indicators are generally used in SEA and planning reports. The analysed documents used a large number of indicators, mostly quantitative, and adopted very different approaches for their organization, selection and validation. Usually no participatory process was used in this context. The research supported the identification of areas for improvement, such as the need to promote a stronger stakeholder engagement in the indicator development process, the relevance of using standardized cross-cutting indicators and the call for the identification of a set of critical indicators to be used in both processes.

\section*{1. Introduction}
Water resources are one of the most significant drivers of human development (Gleick 2014). Socio-economic development, population growth and climate change determine the diverse levels of water use around the world and establish increasing pressures on water resources (Gleick 2003). Consequently, these problems have resulted in the need to implement major policy reforms at all levels of decision-making (Savenije and Van der Zaag 2008). In this context, integrated water resources management, framed as an overall policy, is becoming increasingly relevant and is often supported by public participation and sustainability-oriented approaches, while envisaging socio-economic development, physical planning and environmental protection (Savenije and Van der Zaag 2008).

Emerging water challenges are acknowledged worldwide and have triggered governments to re-evaluate their outlook on water management (Christian-Smith et al. 2012). In past decades, many countries have promoted innovative water policies and associated assessment processes (Antunes et al. 2009). In the European Union, an ambitious legal framework to support water policy was established by the Water Framework Directive (WFD), which introduced, among others, the preparation of river basin management plans for the main river basins in the European Union (European Parliament 2000).

Water resources planning is also framed by another relevant environmental policy instrument, Strategic Environmental Assessment (SEA). The purpose of SEA is to ensure that environmental considerations are fully represented and considered in decision-making processes for new plans, policies and programmes (Fischer 2003; Therivel 2004; van-Doren et al. 2013). The SEA process in the European context is framed by the European Directive 2001/42/EC.

The two directives (WFD and SEA) have different yet complementary functions, and they can have synergistic effects (Carter and Howe 2006; Larsen and Karnov 2009). The two instruments share important requirements, namely, in terms of data collection, evaluation of alternatives and options, assessment of policies, suggestions for mitigation actions, development of monitoring procedures, and the implementation of appropriate consultation and public participation processes. Carter and Howe (2006) highlight the benefits of exploring the relationship between the WFD and SEA Directives in the context of encouraging the sustainable use and management of water resources.

\section*{KEYWORDS}
river Basin management planning; strategic environmental assessment; indicators; conceptual framework; content analysis

\section*{ARTICLE HISTORY}
Received 16 November 2016
Accepted 20 July 2017

\section*{CONTACT}
Rosa Santos Coelho
rm.coelho@campus.fct.unl.pt, rosa.coelho@esa.ipsantarem.pt, rosasantoscoelho@gmail.com

© 2017 IAIA
Indicators are often considered a key element to support both SEA and planning processes (Donnelly et al. 2007; Garfi and Ferrer-Martí 2011). Indicators are special signs that communicate value-added messages to stakeholders in a simplified and useful manner, and they can be derived from a single variable to reflect some attribute or from an aggregation of several variables (Ramos et al. 2004; Ramos and Caeiro 2010). Indicators are used for different purposes (Wong 2005; Morse 2013), such as collecting, processing and using information. Indicators should be developed to add value and to transform information into intelligence and to convey messages with meaning for political action and for the public (Therivel 2004; Wong 2005; Donnelly et al. 2007; Gao et al. 2013a).

When properly developed and used, indicators have the potential for effective communication with the general public and decision-makers and for supporting informed decision-making and guiding policy (Donnelly et al. 2007; Niemeijer and de Groot 2008; Mascarenhas et al. 2015). According to Wong (2005), the decision-making paradigm is increasingly strategic and less operational and the focus of the indicators to follow this trend has shifted from a simple and direct approach to complex methodological models of indicator construction. Indicators are also used to measure progress and monitor feedback mechanisms (Donnelly et al. 2007; Niemeijer and de Groot 2008; Mascarenhas et al. 2015) as they provide a platform for involvement, discussion and deliberation (Gao et al. 2013b).

Several authors note the need to use criteria for indicator selection (OECD 1993; Ramos et al. 2004; Therivel 2004; Donnelly et al. 2007; Ramos 2009) and to evaluate the usefulness and robustness of different sets of criteria (Mascarenhas et al. 2012, 2015). Niemeijer and de Groot (2008) present the importance of using causal-chains of cause and effect as a way to help structure and understand reality through the use of indicators. Although causal chains are often presented as models for selecting indicators, Niemeijer and de Groot (2008) report that these structures are often used to promote the presentation of indicators rather than to support the formal indicator selection process. According to the same authors, individual criteria, such as the SMART (specific, measurable, relevant and time-bound) model proposed by Schomaker (1997) and the model defined by OECD (policy relevance, analytical soundness and measurability) (OECD 1993), are often used to support the selection process. These criteria are tested in each indicator and confer crucial characteristics for its particular function in the process but do not relate it to the other indicators or to the specific context of the evaluation (Niemeijer and de Groot 2008). Wong (2005) and Mascarenhas et al. (2015) state that isolated indicators are generally pieces of information with low added value and do not convey meaningful messages.

Other key aspects for the construction and applicability of indicators are the type of data used (Ramos et al. 2004; Wong 2005) and its availability, accuracy and validity. The entities that supply data are also considered by Wong (2005) as important factors in indicator construction, selection and updating. Documentation and technical notes related to the construction or selection of each indicator should be made available to interested parties to provide a better understanding of their meaning and to enable the assessment of data availability, as well as the costs incurred to update the indicators (European Environment Agency 2005; Donnelly et al. 2007).

Regarding the use of indicators in the planning and SEA processes, Donnelly et al. (2007) and Gao et al. (2010) note that the number of studies focused on indicators in the SEA process is limited, and they encourage research aimed at identifying and assessing the potential of indicators to support planning, assessment, decision-making and monitoring. Cloquell-Ballester et al. (2006) report that it is not usually possible to use a set of existing indicators to support planning and SEA processes for all purposes. In line with this argument, Donnelly et al. (2008) emphasize the need to establish appropriate indicators that do not only fit the specific goals of each intervention but also communicate complex phenomena in a simple manner, enabling stakeholders to develop an informed opinion. Carefully selected indicators provide a mechanism to control whether the objectives and targets are attained and thus facilitate monitoring of the environmental impacts of plan implementation (Donnelly et al. 2006a; d’Auria and Cinnéide 2009). d’Auria and Cinnéide (2009) also stress that robust indicators provide an opportunity to identify appropriate stakeholders, check the accessibility and quality of data, evaluate alternatives and their potential impacts, identify conflicts and determine a set of appropriate methods and techniques to address significant environmental issues in the area of the plan. They also note that numerous lists of pre-selected indicators may be useful but may also restrict and influence planning and SEA professionals and prevent the development of tailor-made approaches.

Donnelly et al. (2007) state, as advocated above by other specialists, that the selection and development of indicators to support the planning and SEA processes should be based on a set of fundamental criteria to ensure that indicators perform the functions for which they were created and do not produce a biased analysis of the results. In addition, by standardizing the criteria, the indicator selection process should be more streamlined, costs should be reduced, duplication of effort should be minimized and consistency ensured, increasing the benefits of indicators.

In this context, where the use of indicators in planning and SEA is still underexplored, as discussed above, the research described in this paper was mainly focused on studying the adoption of indicators for the planning of water resources and associated SEA processes, as well as on the analysis of indicator integration between both processes. The specific objectives of this research are...
threefold: (i) to search for evidence on the use of indicators in water resources planning and SEA processes; (ii) to assess whether the use of indicators in water resources planning and SEA documents show evidence of contribution to crucial functions (characterization and evaluation, communication, decision-making and monitoring); (iii) to check the criteria used for selecting and developing indicators.

To meet the research aim, a conceptual framework, containing the main criteria considered relevant to analyse the use of indicators in River Basin Management Planning (RBMP) and SEA processes, as supported by a literature review, was developed. This framework was used to conduct a content analysis (CA) of the use of indicators in the Portuguese RBMP and SEA reports. This analysis was undertaken in the scope of the WFD requirements, providing relevant and timely information on this matter.

The following sections describe the conceptual framework developed to support the analysis (Section 2), the methods upon which that analysis was based (Section 3), a discussion of the results (Section 4), and finally the main conclusions and recommendations for future developments (Section 5).

2. Methods

2.1. Conceptual framework

The use of a set of indicators is seen as a relevant methodology to evaluate the objectives for RBMP as envisaged in the WFD, which has been gaining increasing relevance (Carter and Howe 2006; Donnelly et al. 2006a; Valenzuela Montes and Matarán Ruiz 2008; European Communities 2009). European and Portuguese legislation does not explicitly require the definition and use of indicators in planning and SEA processes (European Parliament 2001). Nevertheless, there are several reference documents that identify or provide recommendations for the use of indicators to support these processes (European Parliament 2000; European Parliament 2001; Lei nº 58/2005 2005; Portaria 1284/2009 19 de Outubro 2009). The analysed plans include the Technical Reports (TR) of the 10 River Basin Districts and the River Basin Plan (RBP) of Ribeiras do Oeste (RO), as well as the associated SEA main documents, considered as Supplementary Procedural Reports, which comprise the Environmental Report (ER), Non-technical Summary (NTS), Public Participation Report (PPR) and Decision Making Support Information System (DM.SIS). The SEA Scoping Reports (SR) were also analysed. The Environmental Statements (ES) were not reviewed as they were not available at the time the analysis was conducted.

As stated in the WFD, the main spatial unit for river basin management is the River Basin District (RBD). Table 2 presents the structure of the Portuguese RBD, framed by River Basin (RB) and River Basin District Administrations (RBDA), and Table 1 presents the spatial organization of the Portuguese water management system, which includes 10 RBD. The Portuguese authorities in charge of RBD management are the RBDA.

2.2. Case study

The conceptual framework described in the previous section (Table 1) was used to support research of the several documents that comprise the RBMP in Portugal and the corresponding SEA reports.

The analysed documents (dated from 2012, except the Madeira RBMP (RH10), dated from April 2014), were prepared under the scope of the current legal national and European context (European Parliament 2000; European Parliament 2001; Lei nº 58/2005 2005; Portaria 1284/2009 19 de Outubro 2009). The analysed plans include the Technical Reports (TR) of the 10 River Basin Districts and the River Basin Plan (RBP) of Ribeiras do Oeste (RO), as well as the associated SEA main documents, considered as Supplementary Procedural Reports, which comprise the Environmental Report (ER), Non-technical Summary (NTS), Public Participation Report (PPR) and Decision Making Support Information System (DM.SIS). The SEA Scoping Reports (SR) were also analysed. The Environmental Statements (ES) were not reviewed as they were not available at the time the analysis was conducted.

As stated in the WFD, the main spatial unit for river basin management is the River Basin District (RBD). Table 2 presents the structure of the Portuguese RBD, framed by River Basin (RB) and River Basin District Administrations (RBDA), and Figure 1 presents the spatial organization of the Portuguese water management system, which includes 10 RBD. The Portuguese authorities in charge of RBD management are the RBDA.

2.3. Content analysis

The document research was based on the CA technique, defined by Krippendorff (2003, p. 10) as a ‘research technique for making replicable and valid inferences from data to their context.’ The method consists of a ‘set of methods for analysing the symbolic content of any [written] communication. The basic idea is to reduce the total content of a communication to a set of categories that represent some characteristic of research interest’ (Norton 2008, p. 433). CA is a very transparent research method that can be applied to a wide variety of documents, although the validity of the results depends on the quality of the documents reviewed, including their credibility, authenticity, representation and availability (Bryman 2012).

The approach adopted for this research also considered the particular works conducted by GAO (1996) and Neuendorf (2002), which mainly focused on indicators and their assignments and implications for water resources planning and SEA documents.
Table 1. Framework for indicator analysis in planning and SEA processes.

Main clusters of criteria	Criteria for the analysis	Rationale	References	
(a) Organization, selection and validation of indicators	Classification of indicators by causal chain frameworks or other conceptual models	The work developed by the Organization for Economic Cooperation and Development (OECD) highlights the relevance of conceptual models for organizing indicators that encompass economic, environmental, and social aspects and the inter-generational nature of sustainable development. The importance of a conceptual framework to classify and systematically organize indicators according to their attributes and characteristics is highlighted by some experts who refer to the importance of adopting causal chain frameworks or other models, such as STRESS (stress-response), PSR (pressure-state-response), DPSIR (driving forces-pressure-state-impacts-response), and DSR (driving force-state-response), to facilitate decision-making, establish priorities, improve communication, and identify gaps in data and policies.	OECD (1993), RIVm/Unep (1997), OECD (2000, 2003), Ramos et al. (2004), Niemeijer and de Groot (2008), Valenzuela Montes and Matarán Ruiz (2008), Gudmundsson et al. (2010), and Mascarenhas et al. (2015)	
General criteria for selecting indicators	The selection of indicators to support the planning and SEA processes should be based on a set of fundamental criteria to ensure that indicators perform the functions for which they were created and do not produce biased analysis of the results. Individual criteria for selecting indicators are referred to by various works as a requirement for their use. Many isolated indicators can confuse their intended users, mainly the public and decision-makers. A comprehensive set of planning and SEA indicators is the minimal set that represents the phenomena of interest in a way that is both robust and amenable to decision-making.		Gallopín (1996), OECD (2000), Therivel (2004), Donnelly et al. (2007), Valenzuela Montes and Matarán Ruiz (2008), Donnelly et al. (2008), d’Auta and Cinnéide (2009), Gao et al. (2013b), and Mascarenhas et al. (2015)	
Environmental receptors and targets	Indicators should cover a range of environmental receptors or thematic areas that apply to different situations. In this case, an indicator must respond to a wide range of environmental conditions related to the impact being evaluated in the appropriate time period and geographical scale.			
Participatory processes for indicator selection and validation	The information transmitted by indicators must be adjusted to the end users’ needs. It is not necessary that all uses (e.g., decision-makers, general public) fully understand all the details behind the calculation of an indicator. However, the information conveyed should be clearly understood to support informed decisions and participation. An initial set of indicators should be identified and then refined through discussion with key stakeholders. Engagement of the various stakeholders in the selection of relevant indicators provides a number of key benefits as it allows for the indicators to be understood and used by stakeholders. The validation of indicators by a consensus of experts and of end users is a recommended requirement for indicator validation. Overall, the selected indicators should be considered important by stakeholders.		Kurtz et al. (2001), Bockstaller and Girardin (2003), Cloquell-Ballester et al. (2006), Fraser et al. (2006), Donnelly et al. (2007), Niemeijer and de Groot (2008), Ramos (2009), and Ramos and Caesio (2010)	
Lists of common indicators to be used by different SEA processes	To date, many indicator systems have been developed; however, each set is often based on different criteria or designed to cover different geographical areas. The typology of indicators suggests the use of general indicator lists. Thematic indicator lists or lists by type of plan have the potential to be a useful planning tool to provide an adequate basis for informing planning action and determining the sustainability of planning outcomes. The development of the indicator core set for the EEA is an example that was guided by the need to identify a small number of relevant indicators for policies that are stable, but not static, and that provide answers to selected priority policy questions.		European Environment Agency (2005), Valenzuela Montes and Matarán Ruiz (2008), Ramos (2009), Gao et al. (2010), Gonzalez et al. (2011), and Mascarenhas et al. (2015)	
Typology of indicators: qualitative or quantitative indicators	In planning and SEA processes, indicators may be presented as quantitative or qualitative evaluation metrics, although quantitative indicators are generally preferred by stakeholders. However, it must also be stressed that qualitative approaches are often advisable in these processes; therefore, qualitative indicators should be a common option.		Donnelly et al. (2006a), Birkmann (2007), Mascarenhas et al. (2012), and da Silva et al. (2014)	
Identification of conflicts by indicators	In many cases, the plan objectives and the SEA objectives will be in conflict, unless the plan is a conservation or environmental plan. In the SEA process, the indicators used must allow for the identification of conflicts at an early stage so that a compromise may be reached before it is too late.		OECD (2000), Therivel (2004), Donnelly et al. (2007), and Helbron et al. (2011)	
Identification of trends by indicators	Indicators must measure changes in the environment so that they will be able to assess trends. Several works highlight that the sets of historical data available and used in planning and SEA studies are neither sufficiently broad nor robust to allow for the establishment of trends.		OECD (2000), Therivel (2004), Donnelly et al. (2008), and Partidário (2012)	
Indicators for assessing planning and SEA objectives	Environmental objectives, targets and indicators are strongly linked and are the tools through which the environmental effects of a proposed plan may be assessed and through which the monitoring system is developed. In this sense, evaluation and monitoring systems are most useful when indicators are linked to objectives.		Ramos et al. (2004), Therivel (2004), Fischer (2007), Donnelly et al. (2008), and Mascarenhas et al. (2015)	
Adequacy of indicators to inform the public	Communication is one of the most emphasized goals of indicators and requires the indicator to have the ability to convey relevant information to stakeholders so that the indicators are relevant for communication, in particular with the general public and decision-makers. The comprehensibility of indicators is a criterion that focuses on their clear definition, adequate presentation and evaluation. Contradictory messages should not occur, and if any do occur, they must be explained. Documentation and technical notes of indicator construction should be made available to interested parties for a better understanding of their meaning. A smaller number of indicators will be more understandable for the public. More aggregated information (e.g., indexes) or information presented through indicator matrices is one of the recommended ways to communicate with the public.		Kurtz et al. (2001), Therivel (2004), European Environment Agency (2005), Donnelly et al. (2007), Niemeijer and de Groot (2008), Gao et al. (2013b), and Morse (2015)	
Understanding of indicators by decision-makers and the public	Relevance of indicators to support decision-making	Indicators should have the ability to provide valuable information on complex issues at an appropriate level to make policy decisions, and they should be an important policy tool if their values and information are used by a variety of users and integrated into regular decision-making processes. Reports should make clear mention of the use of indicators to support decision-making, e.g., indicator dashboards or indicator matrices.	Donnelly et al. (2007) and Mascarenhas et al. (2015)	
A relevant issue regarding the use of indicators is the compiled database and management entities. The major challenge in the development of indicators is how to effectively build valid and good quality data that are suitable for the analysis of a given real world phenomenon in a satisfactory manner. The types of data collected, the frequency and accuracy of collection, and the availability vary widely from one study to another. Although indicators are usually considered important in almost every step of the SEA process, the set of environmental indicators should preferably be selected during the scoping stage. A large number of indicators can be a problem, particularly if they are used to support the indicators to a minimum, enabling the identification of the most relevant environmental impacts of the plan in question and to establish a careful selection of indicators to be used to maximize existing resources, as well as to reduce costs. The use of indicators is considered relevant to demonstrate the impact on the environment and to enable the prediction of the effects of plans and programs. It is also one of the main challenges for the integration of sea requirements with planning processes. The different RBD followed very different strategies for indicator construction and updating. The cost of gathering data is a relevant criterion to consider in the selection and use of an indicator set. This criterion represents the ease of retrieving, processing and updating the selected indicators. The cost of gathering data is one of the most significant costs related to the indicator construction and updating processes. The cost of gathering data is a relevant criterion to consider in the selection and use of an indicator set. This criterion represents the ease of retrieving, processing and updating the selected indicators. The cost of gathering data is one of the most significant costs related to the indicator construction and updating processes.

The different RBD followed very different strategies for indicator construction and updating. The cost of gathering data is a relevant criterion to consider in the selection and use of an indicator set. This criterion represents the ease of retrieving, processing and updating the selected indicators. The cost of gathering data is one of the most significant costs related to the indicator construction and updating processes.

3. Results and discussion

The main results obtained from the CA are presented in Tables 3–6, organized according to the four main clusters included in the framework.

After CA was performed, it was possible to highlight that complete information to support the evaluation to relate indicators and criteria of analysis was mainly available in the TR and ER documents. In the remaining documents (SR, NTS, PPR and DM.SIS), the associations between the indicator sets included in those documents and the indicators used in the TR and ER were analysed.

3.1. Organization, selection and validation of indicators

The different RBD followed very different strategies for the organization, selection and validation of indicators, and several RBMP mentioned a variety of criteria for indicator selection, although their procedures were not explicitly described. Supporting guidance documentation and the adopted technical steps, indicating how the indicator was constructed and used, should be clearly stated to the interested parties to enable better understanding of its meaning (Therivel 2004; Donnelly et al. 2007; Gao et al. 2013a).

According to Gallopín (1997), Kurtz et al. (2001) and Donnelly et al. (2007), public participation in the selection of indicators is highly desirable as an obligation of a...
society looking for sustainable development. Bockstaller and Girardin (2003), Cloquell-Ballester et al. (2006) and Ramos (2009) also state that the indicator sets used in any evaluation process must be previously validated and approved by stakeholders. On the other hand, indicators that are not adjusted by stakeholders could be considered not useful and consequently not used (Mascarenhas et al. 2015). Overall, there were no references in the analysed documents to support the existence of indicator validation, with or without the use of participatory processes. However, as previously mentioned in Table 3, the proposed list of indicators identified in the scoping SEA reports was reviewed by the environmental public authorities, which determine the scope and level of detail of the information that must be included in the ER. In some cases, the indicators used in the ER were not exactly coincident with the indicators proposed in the SR. This was not necessarily a result of the environmental public authorities recommendations but may indicate that the technicians of the SEA process used relevant comments or recommendations to promote the self-validation process of the indicators (Cloquell-Ballester et al. 2006).

The majority of the indicators used in the analysed documents were quantitative, enabling a more detailed analysis of the evolution of each goal set against the proposed targets defined in the planning and SEA process. As stated by Gao et al. (2014) and da Silva et al. (2014), the use of quantitative indicators is generally prioritized in relation to qualitative indicators in the processes of planning and SEA. According to Therivel (2004) and Donnelly et al. (2006a), qualitative indicators are more subjective and more difficult to operationalize, although they may communicate relevant information.

All RBMP and SEA processes were based on a large number of indicators (Tables 7 and 8) and did not follow the recommendations made by Birkmann (2003), Donnelly et al. (2006a) and Ramos and Caeiro (2010). The large number of indicators used in the majority of assessment processes can be a problem, particularly for the implementation of the monitoring programme (Birkmann 2003).

Ramos et al. (2004), Donnelly et al. (2007) and Falck and Spangenberg (2014) stressed that indicators should cover a range of environmental receptors and should apply to different situations. When indicators cover issues identified as important from a scientific point of view and based on stakeholder concerns, the monitoring systems will be more effective. In the analysed reports, indicators were organized by environmental issue, in either the planning process or in their SEA. In each RBD, the organization of SEA indicators considered the environmental factors set out in the SEA Directive (Annex I of the Directive presents a list of twelve environmental issues and their relations), although the adopted thematic classification varies among the different RBD. The theme ‘vulnerabilities and risks’ was common to all SEA reports. This theme and the ‘resources’ theme presented...
Table 3. Content analysis assessment topics grouped by River Basin District: Cluster a. Organization, selection and validation of indicators.

Content analysis assessment variables	Total number of indicators	Classification of indicators by conceptual or other models	General criteria for selecting indicators	Participatory processes for indicator selection and validation	Entities involved in the selection process	Typology of indicators: qualitative or quantitative indicators	Environmental receptors and targets	Lists of common indicators to be used by different SEA processes
Categories of analysis	Total number of indicators in the documents	Model identification	Criteria identification	Verification of references to public participation	Entity identification	Typology identification and number of indicators in the documents	Indicators organized by different environmental receptors/themes	Identification of indicator lists
Document with responses to the analysed variables	River Basin Districts							
RH1	TR 167 ER 83	TR: DPSIR model	No explicit reference. However, SR (with indicators) were submitted to public consultation, including 'Entities with Specific Environmental Responsibilities'	No explicit reference. Regional and national authorities of water planning and cross-cutting areas were listed, but it was not stated if they had any role in the indicator selection process	TR and NTS: quantitative			
RH2	TR 163 ER 81	ER: ‘Sustainability factors’	Technical documents and indicators of sustainable development	No explicit reference. However, SR (with indicators) were submitted to public consultation, including 'Entities with Specific Environmental Responsibilities'	ER: ‘Sustainability factors’			
RH3	TR 167 ER 83	ER: ‘Sustainability factors’	Technical documents and indicators of sustainable development	No explicit reference. However, SR (with indicators) were submitted to public consultation, including 'Entities with Specific Environmental Responsibilities'	ER: ‘Sustainability factors’			
RH4	TR 170 ER 110	TR: DPSIR model	Gathering information in an easy and least-costly way; choice of measurable and audible indicators	No reference	TR and NTS: quantitative			

(Continued)
Content analysis assessment variables	Total number of indicators	Classification of indicators by conceptual or other models	Criteria for selecting indicators	Participatory processes for indicator selection and validation	Entities involved in the selection process	Typology of indicators: qualitative or quantitative indicators	Environmental receptors and targets	Lists of common indicators to be used by different SEA processes
Categories of analysis	Total number of indicators in the documents	Model identification	Criteria identification	Verification of references to public participation	Entity identification	Typology identification and number of indicators in the documents	Indicators organized by different environmental receptors/themes	Identification of indicator lists
Documents with responses to the analysed variables								
River Basin Districts	127 82	TR: DPSR model		TR: ER	TR: ER	TR: quantitative 15 were qualitative	TR: ER, NTS	TR: ER
		TR: SWOT analysis		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		TR: Critical factors for decision-making		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		TR: Robustness and measurability		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		TR: Governance/ Water planning and cross-cutting areas		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		TR: spatial planning/Socioeconomic sustainability/		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		Vularities and risks/monitoring, research and knowledge/		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		Communication and governance		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		No explicit reference. Regional and national authorities		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		to water planning and cross-cutting areas were listed,		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		but it was not stated if they had any role in the		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		indicator selection process		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		TR: Theme for sustainability: Biodiversity; Natural and		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		cultural resources; Territorial development and		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		competitiveness; Vulnerabilities and risks		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		Planning and governance		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		OECD guidelines; European and National Indicators of		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		sustainable development		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		No reference		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		TR: The indicators in the planning processes were organized		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		into seven Thematic Areas (TA): Water quality; Water		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		quantity; Risk management and exploitation of water		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		resources; Institutional and regulatory framework; Economic		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		and financial framework; Monitoring, research and knowledge;		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER
		Communication and governance		TR: ER	TR: ER	TR: quantitative ER and NTS; only 12 were qualitative	TR: ER, NTS	TR: ER

Table 3. (Continued).
Classification of Indicators

Categories of Analysis	Total Number of Indicators in the Documents	Model Identification	Criteria Identification	Verification of References to Public Participation	Entity Identification	Typology Identification and Number of Indicators in the Documents	Indicators Organized by Different Environmental Receptors/Themes	Identification of Indicator Lists
River Basin Districts	182	TR, ER	TR, ER	TR, ER	TR, ER, NTS	TR, ER	TR, ER	ER
	148	TR, ER	TR, ER	TR, ER	TR, ER, NTS	TR, ER	TR, ER	ER

Notes:
- **TR**: Technical Report
- **ER**: Environmental Report
- **SR**: Scoping Report
- **NTS**: Non-Technical Summary
- **PPR**: Public Participation Report
- **DM.SIS**: Decision-Making Support Information System

Quantitative Indicators were measures of quantities or amounts expressed in numeric form. Qualitative indicators were subjective descriptions or categories used to express results in terms of quality, which indicated the judgments, opinions, perceptions or level of satisfaction of people about a particular subject, and were normally presented in a non-numerical scale.

- In Portuguese terminology, **QSI.Ga** means Significant Issues of Water Management.
- In ER of R4H, indicators were presented as 'Critical Factors for Decision-Making' (45 indicators) and also monitoring indicators (80 indicators). Between the two indicator sets, there were 10 similar indicators, so a total number of 110 indicators referring to ER of the RBD were considered.
Table 4. Content analysis assessment topics grouped by River Basin District: Cluster b. Relevance of indicators to promote communication with stakeholders and to support decision-making.

Content analysis assessment variables	Identification of conflicts by indicators	Identification of trends by indicators	Indicators for assessing planning and SEA objectives	Adequacy of indicators to inform the public	Relevance of indicators to support decision-making	Understanding of indicators by decision-makers and the public
Categories of analysis	Reference to conflicts identified by the indicators	Identification of trends by the indicators	Identification of associations between objectives and indicators	Existence of matrices, figures (e.g., flowcharts) or other schemes and tools for indicator communication	Identification of indicator results that are used to support decision-making	Use of normalized indicators, as well as indicators aggregated in classes of quality or impact, in complement to the original units of measurement
Documents with responses to the analysed variables	TR, ER	TR, ER	TR	NTS, PPR	ER, TR, DM,SIS	ER, TR, NTS, PPR, DM,SIS
River Basin Districts	RH1 Conflict identification and management through indicator analysis was mentioned in all plans and SEA reports. However, the method used to establish the relationship was not reported, namely, the reference to the length of the data series used.	The relevance of indicators for trend analysis was identified in the plans and SEA targets. Measures to promote the achievement of each objective and the indicators supporting the evaluation of each measure were presented in each document.	Simple matrices were presented in NTS of TR and ER. It was mentioned in the examined documents that the indicators were important to promote decision-making. In most situations, simple matrices were used; however, the indicator presentation was not uniform, sometimes indicators were presented as absolute values, while on other occasions, they were displayed as standardized values.	Simple matrices were presented in NTS of ER. In the PPR, some of the comments presented concern to indicators. Simple matrices were presented in NTS of ER. In the PPR, some of the comments presented concern to indicators. Simple matrices were presented in NTS of ER. In the PPR, some of the comments presented concern to indicators. Simple matrices were presented in NTS of ER. In the PPR, some of the comments presented concern to indicators. Simple matrices were presented in NTS of ER. In the PPR, some of the comments presented concern to indicators. Simple matrices were presented in NTS of ER. In the PPR, some of the comments presented concern to indicators. Simple matrices were presented in NTS of ER. In the PPR, some of the comments presented concern to indicators. Simple matrices were presented in NTS of ER. In the PPR, some of the comments presented concern to indicators. Simple matrices were presented in NTS of ER. In the PPR, some of the comments presented concern to indicators. Simple matrices were presented in NTS of ER. In the PPR, some of the comments presented concern to indicators. Simple matrices were presented in NTS of ER. In the PPR, some of the comments presented concern to indicators. Simple matrices were presented in NTS of ER.		
	RH2 The ER and NTS were not supported by any explicit reference to the existing relationship between conflicts and indicators.					
	RH3 The ER and NTS were not supported by any explicit reference to the existing relationship between conflicts and indicators.					
	RH4 The ER and NTS were not supported by any explicit reference to the existing relationship between conflicts and indicators.					
	RH5 The ER and NTS were not supported by any explicit reference to the existing relationship between conflicts and indicators.					
	RH6 The ER and NTS were not supported by any explicit reference to the existing relationship between conflicts and indicators.					
	RH7 The ER and NTS were not supported by any explicit reference to the existing relationship between conflicts and indicators.					
	RH8 The ER and NTS were not supported by any explicit reference to the existing relationship between conflicts and indicators.					
	RH9 The ER and NTS were not supported by any explicit reference to the existing relationship between conflicts and indicators.					
	RH10 The ER and NTS were not supported by any explicit reference to the existing relationship between conflicts and indicators.					

Notes: RH1, RH2, RH3, RH4, RO, RH5, RH6, RH7, RH8, RH9, RH10 – Portuguese River Basin Districts; TR – Technical Report; ER – Environmental Report; SR – Scoping Report; NTS – Non-Technical Summary; PPR – Public Participation Report; DM,SIS – Decision-Making Support Information System.
Table 5. Content analysis assessment topics grouped by River Basin District: Cluster c. Basic information for indicator construction and updating.

Categories of analysis	Frequency of data collection to support the indicators	Data source and organizations in charge of data management, construction and updating of indicators	Information obtained at reasonable costs
Documents with responses to the analysed variables	Reference frequency of data collection	Identification of references to entities and data sources	Reference to cost of data gathering
River Basin Districts			
RH1	TR, ER	In each process, a set of relevant authorities that own the data used to construct and update the indicators was identified. River Basin District Administrations were responsible for managing each RBMP/RBP to produce and compile information to share with the various entities involved in water management	TR, ER
RH2	No reference		
RH3	TR, ER		
RH4	TR, ER		
RH5	TR, ER		
RH6	TR, ER		
RH7	TR, ER		
RH8	TR, ER		
RH9	TR, ER		
RH10	TR, ER		

Notes: RH1, RH2, RH3, RH4, RH5, RH6, RH7, RH8, RH9, RH10 – Portuguese River Basin Districts; TR – Technical Report; ER – Environmental Report; SR – Scoping Report; NTS – Non-Technical Summary; PPR – Public Participation Report; DM.SIS – Decision-Making Support Information System.

Table 6. Content analysis assessment topics grouped by River Basin District: Cluster d. Integrating indicators into plans and SEA processes.

Categories of analysis	Differences between the indicators used in SR, ER and NTS of the SEA processes	Differences between the indicators used in the different phases of the planning process	Differences between the indicators used in the planning and SEA processes	
Documents analysed:	Existence of common indicators	Existence of common indicators	Existence of common indicators	
River Basin Districts				
RH1	Each ER was supported by indicators. ER indicators were also presented in the SR. The documents stated that indicators were used to characterize the situation in reference, for environmental monitoring, assessments, to define the monitoring programme and for public participation. In some cases, the indicators used in the ER were not exactly coincident with the proposed indicators in SR	83	All RBMP used indicators. Overall, the indicators denoted in the documents as indicators of characterization, diagnosis, and economic and as pertaining to the assessment system, communication and follow-up. However, they were not disaggregated in these classes	0
RH2		81	0	
RH3		83	0	
RH4		110	0	
RH5		82	0	
RH6		60	0	
RH7		90	0	
RH8		87	0	
RH9		86	0	
RH10		0	0	

Notes: RH1, RH2, RH3, RH4, RH5, RH6, RH7, RH8, RH9, RH10 – Portuguese River Basin Districts; TR – Technical Report; ER – Environmental Report; SR – Scoping Report; NTS – Non-Technical Summary; PPR – Public Participation Report; DM.SIS – Decision-Making Support Information System.

Notes:
- In ER, there was no reference. In the TR, the importance of the costs of obtaining information was mentioned, but the implementation model was not presented.
- There was no formal reference.
- In NTS, the use of indicators was referenced, but the indicator set was not presented.
- In ER, there was no reference. In the TR, the importance of the costs of obtaining information was mentioned, but the implementation model was not presented.
- There was no formal reference.
- In NTS, the use of indicators was referenced, but the indicator set was not presented.
| Environmental themes | Total number of SEA indicators used by each RBMP | Examples of the most common indicators and respective percentagea |
|---|--|---|
| **Biodiversity** | | |
| (Biodiversity; Biodiversity and ecosystem services; Biodiversity and nature conservation) | | |
| Renaturalization of water bodies (km) | RH1: 5, RH2: 9, RH3: 18, RH4: 17, RH5: 14, RO: 16 | 67% |
| Control actions of invasive species (number) | | 67% |
| Protected areas of the National Network of Protected Areas (%) | | 33% |
| Dams with fishway devices in operation (number) | | 33% |
| **Governance** | | |
| (Governance; Governance and citizenship; Planning and governance) | | |
| Training and information activities conducted (number) | RH1: 6, RH2: 8, RH3: 5, RH4: 9, RH5: 9, RH6: 7, RH7: 7 | 71% |
| Number of consumer awareness and training actions (number) | | 43% |
| Strategy used for information dissemination of the water resources management (number) | | 43% |
| Communication and dissemination technologies used (model) | | 29% |
| Meetings/workshops of working groups (number) | | 29% |
| **Resources** | | |
| (Natural and cultural resources; Natural resources and biodiversity; Natural values and heritage; Cultural and intangible heritage; Resources knowledge and management) | | |
| Protected abstraction from groundwater and surface waters (number) | RH1: 13, RH2: 13, RH3: 8, RH4: 6, RH5: 5, RH6: 30, RH7: 30, RH8: 24, RH9: 14 | 50% |
| Classified and protected areas associated with water bodies (% of total area) | | 30% |
| Classified heritage (occurrences number) | | 30% |
| Conservation state (favourable, unfavourable, unknown) (%) | | 30% |
| Water remediation interventions (number) | | 30% |
| **Water resources** | | |
| Water consumption by sector and by source (hm3/year) | RH1: 32, RH2: 31, RH3: 32, RH4: 20, RH5: 12 | 71% |
| State of water bodies (excellent, good, mediocre, bad, unknown) (number) | | 57% |
| Water requirements by sector (hm3/year) | | 43% |
| Population served by wastewater treatment systems (%) | | 43% |
| Inspection actions (number) | | 43% |
| Level of service in water supply (%) | | 43% |
| Quantity of wastewater reused/water requirements (%) | | 29% |
| Vulnerable and/or sensitive areas (number and km2) | | 29% |
| **Socioeconomic development** | | |
| (Socioeconomic development; Economic competitiveness; Socioeconomic sustainability; Socioeconomic sustainability of water services; Economic sustainability and competitiveness) | | |
| Water use by sector (hm3) | RH1: 15, RH2: 15, RH3: 15, RH4: 9, RH5: 11, RH6: 8 | 63% |
| Cost recovery level by sector (%) | | 50% |
| Cost recovery in water services (euro/m3) | | 38% |
| Domestic water use/resident population (m3/inhabitant) | | 38% |
| **Spatial planning** | | |
| (Territorial development and competitiveness; Territorial dynamics; Spatial planning) | | |
| Protected areas outline (number) | RH1: 12, RH2: 8, RH3: 7, RH4: 17, RH5: 16, RH6: 26, RH7: 2 | 57% |
| Floodplain area (ha) | | 43% |
| Measures performed to reconcile territory uses and occupations (number) | | 29% |
| Heritage conservation status related with water (favourable, unfavourable, unknown) (%) | | 29% |
| **Vulnerabilities and risks** | | |
| (Vulnerabilities and risks; Natural and technological risks) | | |
| Areas at risk (% of total area) | RH1: 23, RH2: 22, RH3: 23, RH4: 10, RH5: 24, RH6: 14, RH7: 16, RH8: 15, RH9: 15, RH10: 14 | 64% |
| Affected population (number) | | 36% |
| Alert systems (number) | | 36% |
| Approved dam security plans (number) | | 36% |
| Registered accidents of serious pollution and/or rupture of dams (number) | | 36% |
| **Total** | | |
| 83 | 81 | 83 |
| Notes: RH1, RH2, RH3, RH4, RO, RH5, RH6, RH7, RH8, RH9, RH10 – Portuguese River Basin Districts. |
| aPercentages were calculated in relation to the total number of RBMP with indicators. |
Table 8. Planning indicators by thematic area and RBD.

Thematic areas	RH1	RH2	RH3	RH4	RH5	RO	RH6	RH7	RH8	RH9	RH10
Water quality											
Total number of indicators used by each RBMP, examples of the most common indicators and the percentage that each indicator was proposed*											
Water quality											
State of the water bodies (excellent, good, mediocre, bad) (number)	62	62	61	45	34	33	44	43	48	67	40
Total, diffuse and punctual pollutant loads (t/year)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Vulnerable areas (number)											
Installations with environmental permits (number)											
IPPC installations (number)											
Population density (inhabitants/km²)											
Water quantity											
Total water needs by sector (hm³/year)	31	29	27	27	34	32	17	17	23	36	20
Underground and surface water abstractions (number)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Total water inflow (hm³/year)											
Total water consumption by sector (hm³)											
Storage capacity in reservoirs (hm³)											
Average water price (€/year)											
Risk management and exploitation of water resources											
Areas with high risk of water erosion and fire (ha)	20	20	20	22	22	22	32	22	22	28	28
Damms covered by the Dams Safety Regulation (number)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Riparian galleries and coastline interventions (number; km)	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
Areas subject to drought and water scarcity (ha)	73%	73%	73%	73%	73%	73%	73%	73%	73%	73%	73%
Floodplain area (ha)											
Serious water pollution incidents (number)	46%	46%	46%	46%	46%	46%	46%	46%	46%	46%	46%
Large wastewater treatment plants (number)	27%	27%	27%	27%	27%	27%	27%	27%	27%	27%	27%
Institutional and regulatory framework											
Water-use licences assigned (number)	10	10	10	10	10	6	6	6	6	6	7
Inspection actions conducted (number)	20	20	20	20	20	13	13	13	13	13	13
Pollutant load in surface water bodies (kg/year)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Pollutant load in groundwater bodies (kg/year)	64%	64%	64%	64%	64%	64%	64%	64%	64%	64%	64%
Contra ordinations (number)											
Economic and financial framework											
Cost recovery level (%)	19	19	19	25	18	18	36	36	41	16	27
Water monitoring stations (number)											
Resident population (number)											
Number of tourist beds (number; %)											
Water prices (water supply, irrigation, sanitation) (€/m³)											
GVA/m³ of water consumed (by sector) (€/m³)											
Seasonal or secondary housing (number; %)											
Monitoring, research and knowledge											
Monitored water bodies (groundwater, water surface) (number)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Monitoring stations (groundwater, water surface, lakes and reservoirs) (number)	64%	64%	64%	64%	64%	64%	64%	64%	64%	64%	64%
Activities and developed projects (number)											
Projects implemented in the scope of water resources (number)	27%	27%	27%	27%	27%	27%	27%	27%	27%	27%	27%
Measures to control water quality (number)											
Communication and governance											
Information and awareness actions on water resources (number)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Participants in CRH meetings (number/year)	64%	64%	64%	64%	64%	64%	64%	64%	64%	64%	64%
Reports on the status of water bodies in the river basin district (number)	37%	37%	37%	37%	37%	37%	37%	37%	37%	37%	37%
Consults to the ARH portal (number)											
Published technical guidance documents (number)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Total	167	163	167	170	127	122	144	142	179	182	148

Notes: CRH – Council of River Basin District; ARH – Portuguese acronym for River Basin District Administrations; RH1, RH2, RH3, RH4, RO, RH5, RH6, RH7, RH8, RH9, RH10 – Portuguese River Basin Districts.

*Percentages were calculated in relation to the total number of RBMP with indicators.
the highest number of indicators. Indicators related to water resources socio-economic development were also common. In the ER of RH4, a specific set of ex post monitoring indicators was presented. Ex post monitoring indicators were not specifically identified in the other RBD. Table 7 presents the SEA indicators organized according to environmental receptors, the total number of indicators in each category and examples of the most frequently used indicators.

In the RBMP reports, indicators were organized into seven thematic categories. Table 8 presents the indicators used in the plans, organized into thematic areas. The thematic areas ‘water quality’ and ‘water quantity’ presented the highest number of indicators. To characterize, evaluate and follow-up the ‘water quality’, approximately 30% of the total number of indicators were used in all the RBD. The characterization of ‘water quantity’ was supported by a large number of indicators, whose percentage ranged from 27% in RH5 to 12% in RH6 and RH7. The indicators integrated in the theme ‘institutional and regulatory framework’ appeared in smaller numbers, approximately 4% of the total for all RBD, similar to the indicators of ‘communication and governance’ (4%) in the north and Açores RBDA (ARH Norte e ARH Açores).

In the RBMP reports, indicators were mainly structured through the conceptual DPSIR (RIVM/UNEP 1997) and PSR (OECD 1993) models, although this requirement was not established in the official guidance documents nor in the legal framework.

Figure 2 presents the number of indicators used in the planning process for each RBD and the adopted conceptual model. The adopted indicator models varied between RBD (DPSIR and PSR models). The number of indicators used in each component of the conceptual model also varied between RBD, although, on average, there was a balance between the three components of the PSR model. On average, pressure indicators represented 30% of the total number of indicators (minimum and maximum of 39 and 60 indicators); state indicators (minimum and maximum of 30 and 81) and response indicators (minimum and maximum of 32 and maximum 79) each corresponded to 27% of the total number of indicators. The impact indicators in the DPSIR model represented 4% of the total number of indicators.

Matondo (2002), Valenzuela Montes and Matarán Ruiz (2008), Helbron et al. (2011) and Juwana et al. (2012) stress the importance of using similarly structured indicator models to enable comparative analyses and to support cohesive and global decision-making.

3.2. Relevance of indicators to promote communication with stakeholders and to support decision-making

The analysed documents explicitly state that the indicators used were strictly related to the plans and SEA objectives and targets, in line with the recommendations of Donnelly et al. (2006a).

The relevance of the indicators for trend analysis was mentioned in all RBMP and SEA reports. The possibility of identifying and managing conflicts between planning and environmental assessment objectives by using indicators was also mentioned in some of the planning and SEA reports. However, the methodology and the set of indicators that could support this analysis were not mentioned. In this context, Donnelly et al. (2007) and Helbron et al. (2011) recommended that the set of indicators used in environmental assessment must allow the identification of conflicts in early stages of the planning process to reach a compromise between the planning and SEA objectives before it is too late.

Communication is one of the most emphasized goals of the indicators (European Environment Agency 2005; Niemeijer and de Groot 2008; Gao et al. 2013a).
In the plans and SEA reports, the frequency with which data were collected to update the indicator sets was not always presented; however, most indicators included data collection on an annual basis. This annual pattern follows the suggestion of Therivel (2004) and Niemeijer and de Groot (2008), who stress that data collection should be conducted on an annual basis. However, for some indicators, this rule does not apply.

The cost of data collection was not reported in the TR or ER. However, in some cases, the importance of easy and non-expensive data collection was highlighted, although there was no reference about the operationalization of this criterion. This aspect is one of the concerns identified by Wong (2005) for indicator updating. Mascarenhas et al. (2012) report that the cost criterion represents the ease with which data can be retrieved and used to update indicators in economic, logistical and human resources terms and should be one of the main elements considered in the indicator selection process. (Ramos and Caeiro 2010) state that the costs associated with the implementation of indicators should be anticipated. The cost/benefit ratio of each indicator should be reasonable since the cost may be a constraint to maintaining an existing indicator or adding a new indicator.

3.4. Integrating indicators into plans and SEA processes

In the plans and SEA reports, the frequency with which data were collected to update the indicator sets was not always presented; however, most indicators included data collection on an annual basis. This annual pattern follows the suggestion of Therivel (2004) and Niemeijer and de Groot (2008), who stress that data collection should be conducted on an annual basis. However, for some indicators, this rule does not apply.

The cost of data collection was not reported in the TR or ER. However, in some cases, the importance of easy and non-expensive data collection was highlighted, although there was no reference about the operationalization of this criterion. This aspect is one of the concerns identified by Wong (2005) for indicator updating. Mascarenhas et al. (2012) report that the cost criterion represents the ease with which data can be retrieved and used to update indicators in economic, logistical and human resources terms and should be one of the main elements considered in the indicator selection process. (Ramos and Caeiro 2010) state that the costs associated with the implementation of indicators should be anticipated. The cost/benefit ratio of each indicator should be reasonable since the cost may be a constraint to maintaining an existing indicator or adding a new indicator.

3.3. Basic information for indicator construction and updating

In all the analysed documents, sets of entities with responsibilities in the coverage area of each plan were identified. In particular, RBDA were responsible for managing each RBMP/RBP to produce and compile information to share with the various entities involved in water management. However, it was not always clearly indicated who was responsible for providing data and information to build and update the plan and SEA indicators. In the plans and SEA reports, the frequency with which data were collected to update the indicator sets was not always presented; however, most indicators included data collection on an annual basis. This annual pattern follows the suggestion of Therivel (2004) and Niemeijer and de Groot (2008), who stress that data collection should be conducted on an annual basis. However, for some indicators, this rule does not apply.

The cost of data collection was not reported in the TR or ER. However, in some cases, the importance of easy and non-expensive data collection was highlighted, although there was no reference about the operationalization of this criterion. This aspect is one of the concerns identified by Wong (2005) for indicator updating. Mascarenhas et al. (2012) report that the cost criterion represents the ease with which data can be retrieved and used to update indicators in economic, logistical and human resources terms and should be one of the main elements considered in the indicator selection process. (Ramos and Caeiro 2010) state that the costs associated with the implementation of indicators should be anticipated. The cost/benefit ratio of each indicator should be reasonable since the cost may be a constraint to maintaining an existing indicator or adding a new indicator.
the overlap between planning and SEA indicators is a major challenge for the integration of SEA requirements and planning processes, according to Therivel (2004), Schmidt et al. (2005), Donnelly et al. (2006b), Fischer and Phlipip-Jones (2008) and Gao et al. (2010).

In the RBMP reports, indicators are designated as indicators of ‘characterization, evaluation, communication and monitoring’. However, the indicators presented in the documents were not specifically disaggregated according to the abovementioned categories. If the presentation of the indicators for each river basin district followed a typological presentation model and identified, for example, the monitoring indicators of the plans and the SEA process, it would be possible to assess, in detail, the capacity for integration of environmental concerns into the planning processes. In the NTS of TR, references were made to the relevance of indicators to the planning process, but the set of indicators used in the planning process was not presented.

SEA reports stated that indicators were used for the characterization of the baseline, environmental assessment, definition of the monitoring programme and public participation. ER indicators were presented in the SR for all the RBDA and in the NTS for nearly all RBDA (except for RH9). In some cases, the indicators used in the ER were not exactly coincident with the indicators proposed in the SR.

4. Conclusions

Indicators are considered a major tool to support SEA and planning processes, and are used for different purposes, including characterization, evaluation, monitoring, communication and decision-making. Indicators are adopted to add value, to transform complex information and to convey messages with meaning for decision-makers and for the public.

The conducted research provides an understanding of the profile of indicators used to support water resources planning and management. Overall, the analysed RBMP and SEA processes were mainly supported by indicators, and some of those indicators overlapped between the two processes. The indicators were mainly selected by the technical teams involved in the planning processes and SEA, and aimed to respond to water planning and management objectives, through characterization, evaluation and follow-up of the planning actions.

The analysed documents used a large number of indicators, mostly quantitative, and adopted very different approaches for their organization, selection and validation. Usually no participatory process was used in this context. Overall, the SEA themes ‘vulnerabilities and risks’ and ‘resources’, and the planning themes ‘water quality’ and ‘water quantity’, presented the highest number of indicators.

The indicators used in these processes were mainly a result of non-structured procedures, showing the need to clarify several aspects. Several indicator issues and procedures, such as the indicator selection stage, remain to be further explored. There remain doubts regarding the criteria used in the selection of indicators, as well as the degree of stakeholder engagement in the selection process. The size of the data series, the availability and the management model should also be analysed since they are fundamental aspects of the success of indicator usage in planning and SEA processes.

Further research work should be conducted on the consultation of the stakeholders involved in the planning and SEA processes. Interviews addressing the different actors involved in the planning and SEA processes are one way to use their knowledge to promote process improvements by identifying criteria or sets of indicators to be used. Active stakeholder engagement throughout the entire process of indicator development, including design, implementation, operation and review/updating, is a key aspect to pursue and explore. The commitment to the use of standardized and more cross-cutting indicators between the planning and SEA processes is another recommendation for planners to consider. Also, for identical planning objectives in different RBD, it would be interesting to use similar indicators. The current research points to a set of critical indicators that could be used as a common framework in water management plans and SEA reports that could support comparative analysis of common water planning issues. However, future research is also needed to explore this area, including how to link common and specific tailor-made indicators, and how to operationalize it in practice.

Note

1. RH and ARH are the Portuguese acronyms for RBD and RBDA, respectively.

Acknowledgements

The authors gratefully acknowledge support from the Center for Environmental and Sustainability Research (CENSE). CENSE is funded through the Strategic Project Pest-OE/AMB/UI4085/2013, of the Fundação para a Ciência e Tecnologia, Portugal. The authors also wish to thank the helpful comments from the editor and two anonymous reviewers.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Center for Environmental and Sustainability Research (CENSE). CENSE is funded through the Strategic Project Pest-OE/AMB/UI4085/2013, of the Fundação para a Ciência e Tecnologia, Portugal.
da Silva AWL, Selig PM, Van Bellen HM. 2014. Use of sustainability indicators in strategic environmental assessment of land-use plans. Impact Assess Prog Apprais. 18:99–110.

Bryman A. 2012. Social research methods. 4th ed. New York (NY): Oxford University Press.

Carter J, Howe J. 2006. The water framework directive and the strategic environmental assessment directive: exploring the linkages. Environ Impact Assess Rev. 26:287–300.

Christian-Smith J, Gleick PH, Cooley H, Allen L, Vanderwarker A, Berry KA. 2012. A twenty-first century U.S. water policy. New York (NY): Oxford University Press.

Bonde J, Cherp A. 2000. Quality review package for strategic environmental assessments of land-use plans. Impact Assess Prog Apprais. 18:99–110.

Donnelly A, Jones M, O'Mahony T, Byrne G. 2006b. Decision-support framework for establishing objectives, targets and indicators for use in strategic environmental assessment. Impact Assess Prog Apprais. 24:151–157.

Donnelly A, Jones M, O'Mahony T, Byrne G. 2006a. Workshop approach to developing objectives, targets and indicators for use in SEA. J Environ Assess Policy Manag. 16:1450008-1-26.

Birkmann J. 2003. Measuring sustainable spatial planning in Germany: indicator-based monitoring at the regional level. Built Environ. 29:296–305.

Birkmann J. 2007. Risk and vulnerability indicators at different scales: applicability, usefulness and policy implications. Environ Hazards. 7:20–31.

Bockstaller C, Girardin P. 2003. How to validate environmental indicators. Agric Syst. 76:639–653.

Bonde J, Cher A. 2000. Quality review package for strategic environmental assessments of land-use plans. Impact Assess Prog Apprais. 18:99–110.

Bryman A. 2012. Social research methods. 4th ed. New York (NY): Oxford University Press.

Carter J, Howe J. 2006. The water framework directive and the strategic environmental assessment directive: exploring the linkages. Environ Impact Assess Rev. 26:287–300.

Christian-Smith J, Gleick PH, Cooley H, Allen L, Vanderwarker A, Berry KA. 2012. A twenty-first century U.S. water policy. New York (NY): Oxford University Press.

Bonde J, Cherp A. 2000. Quality review package for strategic environmental assessments of land-use plans. Impact Assess Prog Apprais. 18:99–110.

Donnelly A, Jones M, O'Mahony T, Byrne G. 2006b. Decision-support framework for establishing objectives, targets and indicators for use in strategic environmental assessment. Impact Assess Prog Apprais. 24:151–157.

Donnelly A, Jones M, O'Mahony T, Byrne G. 2007. Selecting environmental indicator for use in strategic environmental assessment. Environ Impact Assess Rev. 27:161–175.

Donnelly A, Prendergast T, Hanusch M. 2008. Examining quality of environmental objectives, targets and indicators in environmental reports prepared for strategic environmental assessment. J Environ Assess Policy Manag. 10:381–401.

European Communities. 2009. Common implementation strategy for the water framework directive (2000/60/EC). Official Journal of the European Communities. Guidance document 21. Luxembourg; p. 73.

European Commission. 2013. River basin network on water framework directive and agriculture. Joint Research Centre of the European Commission Report; Luxembourg; p. 266.

European Environment Agency. 2005. EEA core set of indicators. Technical report 1. p. 38. Luxembourg.

European Parliament. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000, establishing a framework for community action in the field of water policy. Off J Eur Communities. 327:1–73.

European Parliament. 2001. Directive 2001/42/EC of the European Parliament and of the Council of 27 June 2001, on the assessment of the effects of certain plans and programmes on the environment. Off J Eur Communities. 197:30–37.

Falck WE, Spangenberg JH. 2014. Selection of social demand-based indicators: EO-based indicators for mining. J Clean Prod. 84:193–203.

Fischer TB. 2003. Strategic environmental assessment in post-modern times. Environ Impact Assess Rev. 23:155–170.

Fischer, TB. 2007. The theory and practice of strategic environmental assessment: towards a more systematic approach. London: Earthscan.

Fischer TB, Phylip-Jones J. 2008. Scoping in environmental assessment. In: Fischer TB, Gazolla P, Jha-Thakur U, Belcaková I, Aschemann R, editors. Environmental assessment lecturers’ handbook. [place unknown]: TwoEAM. p. 137–167

Fraser EDG, Dougill AJ, Mabee WE, Reed M, McAlpine P. 2006. Bottom up and top down: analysis of participatory processes for sustainability indicator identification as a pathway to community empowerment and sustainable environmental management. J Environ Manage. 78:114–127.

Gallopin G. 1996. Environmental and sustainability indicators and the concept of situational indicators: a systems approach. Environ Model Assess. 1:101–117.

Gallopin G. 1997. Indicators and their use: information for decision-making. In: Moldan B, Billharz S, editors. Sustainability indicators: report of the project on indicators of sustainable development. SCOPE 58. Wiley, Chichester; p. 13–27.

Gao J, Christensen P, Kernøv L. 2014. The changing Chinese SEA indicator guidelines: top-down or bottom-up? Environ Impact Assess Rev. 44:22–30.

Gao J, Kernøv L, Christensen P. 2010. Comparative study of SEA experiences between EU and China: the use of indicators. EASY-ECO Conf Sustain Dev Eval Eur Brussels, Brussels, 1–13.

Gao J, Kernøv L, Christensen P. 2013a. Do indicators influence communication in SEA? - Experience from the Chinese practice. Environ Impact Assess Rev. 43:121–128.

Gao J, Kernøv L, Christensen P. 2013b. The politics of strategic environmental assessment indicators: weak recognition found in Chinese guidelines. Impact Assess Prog Apprais. 31:232–237.

GAO (United States General Accounting Office). 1996. Content analysis: a methodology for structuring and analyzing written material. Washington (DC) GAO; p. 77.

Garfi M, Ferrer-Martí L. 2011. Decision-making criteria and indicators for water and sanitation projects in developing countries. Water Sci Technol. 64:83–101.

Gleick PH. 2003. Water use. Annu Rev Environ Resour. 28:275–314.

Gleick PH. 2014. The world’s water. Volume 8: the biennial report on freshwater resources. In: Gleick PH, editor. Washington (DC) Island Press; p. 496.

Gonzalez A, Donnelly A, Jones M, Klostermann J, Groot A, Breil M. 2011. Community of practice approach to developing urban sustainability indicators. J Environ Assess Policy Manag. 13:591–617.
