City logistics challenges and innovative solutions in developed and developing economies: A systematic literature review

Ary Arvianto¹,²®, Bertha Maya Sopha¹, Anna Maria Sri Asih¹, and Muhammad Ali Imron³

Abstract
Varying characteristics of developed and developing countries have resulted in different challenges and innovative solutions of city logistics. This study aimed to identify research clusters on city logistics between developed and developing economies and to systematically compare city logistics challenges and associated innovative solutions for both economies. Bibliometric analysis and a systematic literature review were applied to analyze 328 peer-reviewed publications, comprising 229 (70%) and 99 (30%) articles addressing case studies in developed and developing economies, respectively. We discovered six research clusters in city logistics literature for developed countries, compared with only four for developing economies in which public policy has not been addressed. Urban growth, environmental challenges, and traffic congestion are the three major city logistics challenges in both types of economies. Furthermore, fleet increment and inadequate loading/unloading spaces are the city logistics challenges analyzed in the literature on developing countries compared with the literature on developed economies that addresses the challenges of education deficiency, regulation, emergence of new business models, and network accessibility and capacity. Consequently, innovative solutions adopted by developed countries demonstrate varied processes involving technology, policy (including public policy and sustainability measures), infrastructure, and economic measures, while for developing countries, the focus remains on effective and efficient distribution operations using optimization and collaboration efforts.

Keywords
City logistics, comparison analysis, bibliometric analysis, systematic literature review, developed economies, developing economies

Date received: 4 November 2020; accepted: 27 July 2021

Introduction
The increasing movement of goods, particularly in metropolitan centers has created a challenge for city logistics which deals with a smooth and seamless flow of goods while minimizing negative environmental impacts and improving safety, security, and healthy living conditions.¹ The majority of city logistics initiatives were initially implemented in developed economies. Nevertheless, developing countries such as China, India, Mexico, Chile, and Brazil have an earlier stage in the development of urban

¹Industrial Engineering Program, Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
²Department of Industrial Engineering, Universitas Diponegoro, Jawa Tengah, Indonesia
³Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta, Indonesia

Corresponding author:
Ary Arvianto, Industrial Engineering Program, Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Jl. Grajaka No. 2, D. I. Yogyakarta 55281, Indonesia.
Email: aryarvi@gmail.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
logistics practices than developed countries such as France, the Netherlands, and Japan.\(^2\) It appears that countries have different stages and successes in implementing solutions in urban logistics.

Urban population growth has become a challenge for city logistics in both developed and developing countries. By mid-2018, the urban population reached approximately 78.7% and 50.6% in developed and developing countries, respectively.\(^3\) Nevertheless, the urban population density is higher in developing countries than the developed countries, which then leads to different city logistics solutions. The developing countries thus prioritize congestion prevention, air pollution, and smooth traffic to city centers, whereas developed countries extent the focus not only on minimizing traffic congestion and pollution but also protecting residents from noise, such as some cities in Northern Europe and preserving historic buildings in Italy.\(^4\) Moreover, the developed countries have made use of technology advancements such as electric vehicles to deal with environmental issues\(^5\) and intelligent systems for parking improvement.\(^6\) The developed countries have shown a broader and more varied application of solutions than developing countries.\(^2\)

Furthermore, a city logistics solution that is effective in one country may not be suitable in another country. For instance, the construction of consolidation centers in several western countries has not found enough acceptance, even though it has been supported by the government, on the other hand, the urban logistics center appears to be promising solutions in developing countries.\(^3\) Many of the initiatives that have proven applicable in developed countries are not suitable for developing countries and vice versa. This fact occurs because different environmental, socio-demographic, and economic issues colliding with each other, creating trade-offs, leads to different focus and approaches of city logistics.\(^8\) The evidence indicates that the city logistics problems encountered by both developing and developed economies appear to vary. Meanwhile, city logistics initiatives or innovative solutions should be designed to fit encountered city logistics challenges. However, the lack of understanding of the type and complexity level of the city logistics problems in the two types of the economy can result in inaccuracies in initiatives. In addition, the unavailability of initiative comparisons in the two economies results in a misjudgment in the initiative’s adoption process. Therefore, an exploratory analysis of the existing city logistics literature, which compares the city logistics in developed countries and developing countries, is important to a holistic understanding of current research gaps between the two countries.

Review-based studies on city logistics have existed, such as investigation of city logistics topic from 104 studies during 2000–2015,\(^9\) a systematic review of 370 city logistics literature from 2010 to 2016,\(^10\) and a scientometrics review on city logistics literature.\(^8\) Those reviews have made a significant contribution to mapping city logistics development and future trends of city logistics. Given the need to address the city logistics studies in the developing countries,\(^11\) the present study, therefore, complements the previous studies to provide a detailed comparative analysis of the city logistics in the developed and developing countries concerning research clusters and the relationship between the experienced city logistics problems/issues and city logistics initiatives. This paper attempts to answer the following two research questions:

RQ1. What are the research clusters in the city logistics literature in the two economies?

RQ2. What are city logistics initiatives or innovative solutions developed in both economies?

The first research question is to provide a visualized relationship of research clusters which reflects core content of the literature and long-term development of specific research field, whereas the second research question contributes to providing the visualized systematic relationship between the experienced city logistics problems and associated innovative solutions in both developed and developing economies. This study was based on a survey of 328 articles published from 1986 to 2019, which were examined using bibliometric analysis and a systematic literature review (SLR).

This paper is divided into four sections. The first emphasizes the differences in city logistics in developed and developing countries, while the second describes the search, selection, and analysis of the literature. Subsequent results and discussion form the basis for the third section, which is followed by a summary of the outcomes of the study and highlights of potential avenues for future research in the fourth section.

Methodology

Bibliometric analysis\(^8\) and Systematic Literature Review (SLR)\(^12\) were conducted to meet the research questions. The SLR has been widely used in previous review-based studies on city logistics to identify different aspects of city logistics,\(^10\) to provide an accurate description of trends and gaps of city logistics,\(^8\) and to identify gaps in promoting sustainability of urban logistics system.\(^13\) The SLR appears to be useful owing to its transparent and systematic methodology which facilitates in-depth evaluation, reliable findings, and replicability of the study.

The bibliometric analysis used country data and keyword data for descriptive statistics and co-occurrence analysis. The co-occurrence analysis based on keyword data was to provide in-depth analysis and rapid understanding of meaningful research topics of city logistics in both countries.

SLR was implemented based on the framework, shown in Figure 1, to provide a more comprehensible structured process. The framework consisted of seven primary phases:
problem definition, literature search, literature selection, bibliometric analysis, SLR, analysis, and output. Figure 1 shows the individual steps, which are explained in this section.

Problem definition

The first stage defined research problems, objectives, and scope. We considered that the characteristics of the two economies result in different research clusters on city logistics, city logistics problems/challenges; therefore, the implemented initiatives differ. As studies comparing city logistics between the two types of economies are lacking, this paper contributes to the systematic analysis of existing scenarios with respect to problems and innovative solutions and attempts to comprehend the mechanism required to justify the accuracy of the solutions.

Literature search

The search for relevant literature involved the process of inquiring and filtering numerous articles based on the predetermined criteria shown in Table 1. The aim was to obtain samples directly related to the city or urban logistics. This stage commenced with the search process using city logistics, urban freight, and case as the keywords. Only peer-reviewed publications were included in this study. The literature sources were predominantly acquired from the Scopus indexed database (Elsevier, JSTOR, IEEE, Emerald, Taylor & Francis, Nature, and several other scientific bases). Subsequently, the collected articles were carefully screened and filtered to select the best fit according to Criteria 1–3 specified in Table 1. Overall, 328 journals related to city logistics from 1986 to 2019 were identified.

Bibliometric analysis

A bibliometric analysis describes a quantitative evaluation of indexed data, including author, document source, citations, country, publication year, and keywords. A bibliometric analysis was conducted in two stages. The first involved the search for scientific contributions according to the country of origin and was generated using a descriptive bibliography. Subsequently, the collected articles were carefully screened and filtered to select the best fit according to Criteria 1–3 specified in Table 1. Overall, 328 journals related to city logistics from 1986 to 2019 were identified.
location, the country underlying the empirical study was selected. This first stage produced two categories of articles from developed and developing countries, which were following the United Nations.16 The second stage involved keyword mapping through co-occurrence analysis, which was used to reveal the clusters related to city logistics topics, based on the calculation of paired data. The co-occurrence method considers the frequency of a keyword text appearance using the \textit{VOSviewer} software. Moreover, additional information related to scientific research, including the emergence of new keywords, is also provided.17 Therefore, the analysis statistically revealed the fundamental concerns of the research field and adequately represented the trend of city logistics in both developed and developing countries to address the first research question (RQ1).

Literature selection

This process involved the selection of case studies conducted by examining empirical articles on the most recent city logistics development between 2016 and 2019. Subsequently, a classification process was performed (in both regions) based on Criteria 4 and 5 (specified in Table 1) as the basis for literature selection for the SLR. The selection produced 71 articles, which were subsequently used to address the second research question (RQ2).

Full-text review (quality assessment)

The full-text review was conducted on the selected corpus of the empirical articles. The review was conducted to ascertain logistics problems and associated innovative solutions in both developed and developing countries.

This process stage involved synthesizing publications based on the framework (Figure 2) and was initiated to identify problems or challenges associated with city logistics. The prevailing challenges were categorized into two types of factors: internal and external.18 Internal factors are aspects of the implementation of carriage modes to reduce the negative effect of the urban transport system.18,19 Conversely, the external factors are part of the development with a tendency to affect conventional urban transportation systems. Furthermore, internal factors are related to transportation functions of a city’s logistics involving the physical distribution process. This refers to problems associated with the distribution system and the movement of goods, such as the use of light or medium or heavy, and electric vehicles, motorbikes, or bicycles. External factors can affect and disrupt logistics processes in urban areas. Particular examples include population growth and distribution, traffic congestion policies, and gas emissions. External factors, also known as exogenous factors, tend to hinder effective logistics operations18; therefore, they were further evaluated under impact analysis as they result from the interaction of multiple problems. Based on an impact analysis, losses were easily identified, and various aspects of city logistics were formulated. Consequently, an aspect was defined as relevant subjects, parts, or features considered in municipal logistics initiatives20,21 and was categorized into four types: infrastructure, immaterial infrastructure, equipment, and policy. Infrastructure is a supporting section of the logistics process in urban areas related to basic physical needs and services,20 e.g. road networks and logistics facilities. Immaterial infrastructure relates to research, learning, and training to improve the effectiveness of city logistics. The immaterial infrastructure also involves the processing of data and information with the aid of tools, including algorithms or technology (telematics elements). Equipment is described as a conveyance device for transporting goods, e.g. vehicles and loading units. This tool is applied to achieve optimal delivery conditions, including limited vehicles, capacity design, and new standards of equipment or handling units. Policy refers to the act of regulation, e.g. public policy. Based on these categories, innovative solutions in both developed and developing countries were systematically identified and compared.

Analysis

This stage consisted of a literature profile assessment and comparative assessment. Profile analysis comprised descriptive statistics and co-occurrence evaluation by examining the relationships among articles based on keywords (nodes). These connections included links, link strength, and total link strength. Furthermore, link indicates the relationship between keywords, while link strength is the value of the correlation (frequency) between two keywords appearing simultaneously in a series of papers. The total link strength describes the overall value of link strength. The comparative analysis was a collation of empirical problems, impacts, aspects, and solutions related to city logistics in both developed and developing countries, using a synthesis process, as detailed in the SLR section.

Output

The expected output of literature analysis was research clusters in both economies and a systematic relationship between the experienced city logistics problems and associated innovative solutions of both economies.
Results

City logistics trend

This section outlines the results of the bibliometric analysis, which was based on 328 articles published between 1986 and 2019, where 229 emanated from developed countries, while the remaining 99 were from developing nations. The analysis included an evaluation of the literature profile and co-occurrence network to identify the research clusters between the two economies. Figure 3 shows that developed and developing economies contributed up to 70% and 30% of the overall city logistics literature, respectively.

Figure 4 shows a growing interest in city logistics studies in both types of countries. Detailed investigation on the collected corpus of the papers indicates that the dominating topic of the papers deals with the evaluation and comparison of various urban logistics solutions in terms of economic benefits, emissions, congestion, delivery time, etc. It implies that searching for best/practical solutions coping with urban logistics problems fitting the context seems to correspond to the noticeable increase of the literature, which is in line with the work of Lagorio et al. 9

Figure 4(a) shows that the literature on city logistics has been published since 1986 in the developed region. However, the development of these studies was stagnant until 2009, when a significant increase in city logistics studies occurred. During the early phase, the studies focused on delivery operations, including mapping of coordinated distribution potential of goods in Uppsala,22 implications of road pricing in New York and New Jersey,23 as well as the optimization of routing challenges in Jyvaskyla, Finland.24 Along with the dynamic surge of city logistics literature in 2010, the discussed challenges of city logistics have been more diverse, including consolidation centers,25–27 routing problems,28–30 emissions,27,31,32 location of distribution facilities,33–35 city logistics regulations,36,37 traffic management,7,38,39 and delivery technology.5,29,40

Figure 3. Developed vs. developing countries in city logistics literature.

Figure 4. The trend of the city logistics literature: (a) developed countries and (b) developing countries.
Figure 4(b) shows the positive trends in city logistics research in developing countries. Studies in developing countries have focused on infrastructure to overcome challenges relating to city logistics and urban transportation. Some studies examined the shipping operation zone, urban transportation network, and distribution centers. Meanwhile, very few studies addressed vehicle routing, traffic management, and delivery technology.

Figure 5 shows the countries that contributed to the city logistics literature. The United States (36 articles), Italy (27), the United Kingdom (21), Spain (19), Belgium (14), and Germany (14) are the six most contributing countries in the city logistics literature of developed countries. Figure 5(b) shows the 14 countries contributing to city logistics literature in developing countries, in which China, Brazil, and Columbia are the 3 highest contributors.

Figure 5. City logistics literature by country: (a) developed countries and (b) developing countries.

Research clusters

A co-occurrence analysis based on keywords was conducted to evaluate the network of the literature (Figure 6). The threshold procedure for excluding keywords with fewer than five occurrences was applied. A node represented the keyword used in articles, in which the larger its size, the greater the weight value, indicating an extreme effect. However, the weight had three standard values: occurrence, links, and total link strength. Occurrence implies multiple appearances in other articles, while the value of links represents the number of links associated with a particular keyword compared to others, and the total link strength refers to the accumulation of values for a particular keyword’s link strength.

The link (represented by a line) between nodes indicates that the two keywords appear together in a document. Each link has its strength value, representing the number of articles in which the two keywords appeared simultaneously (co-occurrence). A higher keyword co-occurrence reflects a higher link strength value and implies a stronger relationship, as represented by the thickness of the line in Figure 6. For example, the link strength value = 3 for logistics–city logistics (Figure 6(b)), denoting that the two keywords appeared simultaneously (co-occurrence) in three articles,
and exhibited a firmer relation (thicker link), compared with freight transport–regression analysis (link strength value = 1), for which there was only one article appearance.

As shown in Figure 6(a), city logistics had the greatest occurrence (78). However, freight transportation had the highest total link strength (348), which implied that the concept has been established. Based on the network investigation, city logistics was observed to be closely related (keywords with a minimum link strength value of 10) to certain keywords, termed freight transportation, urban transport, and logistics. This indicated a positive match with the city logistics definition and subsequent interrelationship, owing to high co-occurrence. Meanwhile, a strength value between 5 and 9 indicated an important aspect of the primary keywords, including sustainability, transport policy, decision-making, traffic congestion, sales, costs, vehicles, vehicle routing, stakeholders, urban growth, and urban planning. In addition, many keywords had strength values between 1 and 4, e.g. smart cities, e-commerce, energy utilization, fleet operation, agent-based models, and air pollution. These were discussed in papers from developed countries, although the strength value was relatively low, and therefore requires further evaluation.

No	Keywords	Links	Total Link Strength	Occurrences
1	city logistics	82	281	78
2	freight transportation	82	348	64
3	freight transport	66	240	47
4	logistics	68	199	39
5	urban transportation	77	215	32
6	urban transport	63	209	32
7	urban planning	71	163	30
8	urban freight transport	48	107	27
9	sustainability	43	88	21
10	urban freight	52	88	20
11	vehicles	59	131	19
12	transportation	60	126	18
13	urban area	52	112	18
14	transportation policy	45	100	17
15	traffic congestion	63	130	16
16	trucks	53	100	16
17	sustainable development	47	107	16
...				
98	logistics sprawl	1	4	5

Figure 6. Co-occurrence networks: (a) developed countries and (b) developing countries.
Based on co-occurrence analysis, six topic clusters were found in developed countries, as indicated by the color of the nodes (Figure 6(a)). The six clusters are city logistics, urban transportation and economics, urban growth and environmental development, public policy, freight transport sustainability, and traffic congestion and management.

The co-occurrence analysis for developing countries, which was based on 99 articles, is shown in Figure 6(b). The keyword of logistics (27) had the highest occurrence, compared with urban transportation (19), city logistics (18), and freight transportation (14). Based on the total strength value, urban transportation (56) had the highest ranking, indicating an established concept. Based on link strength, a close relationship exists between urban transportation and freight transportation (with a link strength value of 10), indicating that both keywords are associated. In contrast, urban transportation is poorly correlated with city logistics (with a link strength value of 2), implying that city logistics are still limited in urban transportation. Therefore, efforts to resolve urban distribution in developing countries should consider the principles of city logistics. This is also evident in the lesser number of links associated with city logistics (9) compared with urban transportation (26). The co-occurrence analysis resulted in the four topic clusters (i.e., city logistics, freight transportation, air pollution, and economics) for developing countries (Figure 6(b)).

A systematic relationship between the city logistics challenges and innovative solutions

This subsection presents the results of the comparative analysis using the framework specified in Figure 2. City logistics challenges for both countries, as shown in Figure 7, were identified from the collected corpus of the papers which were categorized into internal and external factors using the categorization based on the study of He and Hafsi. The three most common city logistics challenges were identified in the literature of both developed and developing economies: urban growth, traffic congestion, and environmental problems. However, the two economies encounter specific problems. Developed countries appear
to exhibit greater complexity. In terms of internal factors, developing countries are yet to introduce the advancement of logistics operations, unlike developed countries with automated vehicles, electric automobiles, and robots. However, developing countries focus on analyzing delivery operations using light or medium vehicles. This implies a delay in embracing technological changes, such as the use of proper logistics distribution vehicles.

With respect to external factors, the challenges discovered for developed countries are education deficiency, regulation, network accessibility and capacity, and the emergence of new business models. Depopulation was also found for a few developed countries, which is not relevant for developing countries. Moreover, poor education has been discussed in developed countries but has not yet been explored in developing countries. The increase in fleets and insufficient loading/unloading space are the logistics challenges commonly addressed in developing countries.

Furthermore, based on the framework specified in Figure 2, the literature was further analyzed to understand the mechanism describing the aforementioned city logistics challenges resulting in the adoption of innovative solutions. Figure 8(a) and (b) show the mechanism of city logistics challenges/problems affecting business actors/private sector and local governments/public sector (impact analysis), instigate logistical concerns (aspects of concern), and consequently, the possible implementation of innovative solutions in both economies, respectively.

Figure 8(a) indicates that city logistics challenges in developed countries resulted in the disruption of urban delivery networks, increased urban freight capacity and frequency, difficulty in implementing regulations and enhanced urban delivery range, and traffic time. For instance, Bradford City experiences urban growth, limited network capacity, and disturbances in urban delivery networks, including parking space challenges. In addition, several city logistics challenges related to the growth of commercial areas in the city of Seville, movement of goods in Stuttgart, traffic congestion, and the growing demand in Singapore were identified.

Urban growth increased urban freight capacity and frequency. Environmental challenges have generated restrictions on transport vehicles in Swedish cities, while traffic congestion was unable to bear the increasing demands, resulting in high distribution costs.

Both environmental problems and urban growth had a significant effect on the implementation of city logistics regulations and urban delivery. The orientation of the policy changed from economic to sustainable efficiency owing to environmental challenges. Rapid population growth also affected policies regulating the movement of logistics facilities to the suburbs of Melbourne. Note that education deficiency, network capacity, and network complexity are among the logistics challenges hindering the implementation of regulatory policies.

With respect to range and delivery time, urban growth owing to the increasing population of car owners poses an obstacle that affects shipment. For instance, parking zones in Volos, Greece, are difficult to locate, thus affecting delivery time. In another instance, urban growth has resulted in the movement of logistics facilities to the suburbs in Melbourne and increased the distribution range. Furthermore, environmental pollution affects delivery times, causing them to be longer because the number of vehicles is reduced owing to restrictions on freight transport into the city.

New business models and advanced technology in delivery systems have also been identified as challenges that affect the innovation of operational distribution. A study in Cambridge demonstrated that the development of electric vehicles has affected logistical operations in which charging systems should also be provided. Moreover, drones to support last-minute delivery have also affected distribution operations.

Based on the identified impact analysis and aspects of concerns, developed countries have subsequently developed innovative solutions. Concerning infrastructure, the innovative solutions involve parking facilities, schemes of urban consolidation centers (UCCs), urban fuel or charging systems, loading or unloading zones, location of logistics facilities, spatial network evaluation, infrastructure supply, intensive land use considerations, and collection and delivery point systems. These countries have also implemented several innovative solutions to these policies, including the improvement of facility regulations, pricing emission strategies, harmonized policy plans, monetary incentives, training activities, and access regulations. Innovative solutions to immaterial infrastructure include crowd shipping models, allocation and scheduling of delivery robots, a new freight landscape, train service increase, GPS trajectories, collaborative freight operations, parking enforcement, and signalization coordination, route planning or trip assignment, empty container management, intelligent transport, combined delivery systems, dynamic scheduling, and home delivery options. The development is strongly affected by the use of modern information technology, integration of transportation systems and resources, and cooperation and information exchange between the private and public sectors. The integration of transportation systems and resources generates the innovation of equipment, i.e. cargo hitching. This innovation utilizes all transportation capacities to carry passengers while accommodating the flow of goods. Examples of cargo hitching projects are found in Saint-Etienne, Zurich, and Dresden. The result is the optimization of the existing transport capacities and an increase in urban sustainability.

Furthermore, cooperation and information exchange between the private and public sectors (government) have created solutions, such as micro hubs in combination with cargo bikes and monetary incentives. In addition, support for harmonizing long-term visions tends to facilitate the
Figure 8. (a) Systematic analysis of challenges and innovative solutions for developed countries. References: 1, 40; 2, 33; 3, 80; 4, 75; 5, 71; 6, 7; 8; 9, 30; 10, 83; 11, 6; 12, 13; 13, 14; 14; 15; 16; 17; 18; 19; 20; 21; 22, 36; 23, 30; 24, 4; 25, 29; 26, 88; 27, 38; 28, 29; 30, 31, 34; 32, 34; 33, 36; 34, 35; 35, 36; 36, 37, 38; 39, 39; 40, 40; 41; 42, 43; 43, 44; 44, 45; 45, 46; 46, 47; 47; 48, 48; 49, 50; 50; 51; 51; 52; 52; 53; 53; 54; 54; 55; 55; 56; 56; 57; 57; 58; 58; 59; 59; 60; 60; 61; 61; 62; 62; 63; 63; 64; 64; 64; 65; 65; 66; 66; 67; 67; 68; 68; 69; 69; 70; 70; 71; 71; 72; 72; 73; 73; 74; 74; 75; 75; 76; 76; 77; 77; 78; 78; 79; 79; 80; 80; 81; 81; 82; 82; 83; 83; 84; 84; 85; 85; 86; 86; 87; 87; 88; 88; 89; 89; 90; 90; 91; 91; 92; 92; 93; 93; 94; 94; 95; 95; 96; 96; 97; 97; 98; 98; 99; 99; 100; 100; 101; 101; 102; 102; 103; 103; 104; 104; 105; 105; 106; 106; 107; 107; 108; 108; 109; 109; 110; 110; 111; 111; 112; 112; 113; 113; 114; 114; 115; 115; 116; 116; 117; 117; 118; 118; 119; 119; 120; 120; 121; 121; 122; 122. (b) Systematic analysis of challenges and innovative solutions for developing countries. References: 1, 106; 2, 68; 3, 68; 4, 55; 5, 6; 6, 69; 7, 7; 8, 8; 9, 94; 10, 105; 11, 81; 12, 110; 13, 65; 14, 48; 15, 111; 16, 110; 17, 62; 18, 51; 19, 113; 20, 114.
adoption of micro hub policies, particularly for logistics providers.82 Meanwhile, information exchange through actual data has succeeded in improving the behavior and motivation of own-account or third-party logistics. This milestone is used to determine the monetary incentives for the private sector.84

Figure 8(b) shows the systematic analysis of developing countries. Several cities, including Can Tho in Vietnam,55 Shenzhen,68 and Tehran54 are concerned with urban growth, whereas Shanghai56 and Colombia107 are addressing an increase in the number of vehicles. The city logistics challenges/problems shown in Figure 8(b) have affected the capacity and frequency of urban freight, urban delivery time, difficulty in regulation implementation, and distribution operation. No literature has seemingly discussed the disruption of network urban delivery networks in developing countries.

Optimal freight network and facility locations, e.g. determination of warehouse locations in Vietnam,55 evaluation of distribution centers in Yogyakarta city, Indonesia60,61 and regional distribution centers,116 and assessment of the best network using a candidate distribution center in Tehran,54 are the solutions adopted to address infrastructural concerns. Fleet size management is used to address challenges related to logistics equipment. Note that developing countries have not adopted any innovations in delivery technology to actualize an effective and optimal distribution process. Concerning policies, facility regulation and off-hour delivery were identified as solutions. Innovative solutions to immaterial infrastructural concerns involve the introduction of green driving programs,107 collaborative distribution,63 route planning or trip assignment,52,106 fleet management practices with the use of freight application,111 and combined delivery.56

Discussion

Table 2 summarizes the findings, based on the co-occurrence network shown in Figure 6, indicating that six and four research clusters are identified in city logistics literature of the developed and developing countries, respectively. It is worthy to note that some of the topic clusters found for developing countries, such as freight transportation and economics, have seemingly not yet been specifically related to “city” or “urban”; rather, these clusters are broad concepts. This implies that city logistics concepts are still in early development in developing countries. Similar clusters, i.e. urban logistics/freight transport, air pollution/environment, are observable in both countries. It is worth noting that public policy and sustainability of freight transport were missing in the literature on developing countries. It appears that the research clusters in the developing countries focus on resolving urban logistics problems with a short-term perspective. The result of co-occurrence analysis has also pointed out new topics. Based on the lowest strength values in the co-occurrences analysis, smart cities, e-commerce, energy utilization, fleet operation, agent-based models, and air pollution are the suggested topics for the developed countries, whereas city logistics is the suggested topic for the developing countries. It implies that public policy and sustainability for city logistics are the potential research clusters to be investigated in developing countries settings, which is supported by He and Haasis18 who suggested applying long-term perspective in designing urban logistics strategies. Agent-based modeling approach,116 which appears to be receiving increasing attention in studies for the developed countries, could also be used as a potential approach to evaluate the effectiveness of the formulated public policy and to assess the sustainability performances of the potential city logistics innovations in the developing countries.

Figure 8(a) and (b) show a more structured mechanism justifying the accuracy of these resolutions for city logistics challenges/problems. We observed that developed and developing countries encounter similar major problems, such as urban growth, traffic congestion, and environmental problems. Particular variations were observed. Developed countries focused on challenges of education deficiency, regulation, network accessibility and capacity, and new business models. While developing countries encountered an increase in fleets and insufficient loading/unloading spaces. In terms of internal factor problems, developed countries have encountered problems owing to changes in physical distribution technology, including electric vehicles and robot technology. Meanwhile, developing economies have continued to rely on conventional vehicles. These differences instigate the development of solutions. In terms of infrastructure, cities in developed countries focus on road networks and warehouse locations as well as on parking facilities, loading/unloading zones, urban fuel/charging systems, spatial/
land-use planning, and delivery point systems, which are unavailable in the literature on developing countries.

In addition, the considerations in the aspects of equipment and immaterial infrastructure instigate the use of technology such as cargo hitching (equipment aspect), allocation and scheduling of delivery robots, a new freight landscape, GPS trajectories, collaborative freight operations, parking enforcement, and signalization coordination, and intelligent transport systems (immaterial infrastructure aspect). Several solutions related to the regulation of city logistics in developed economies have encouraged pricing emission strategies, harmonized policy plans, monetary incentives, and training activities regulations while developing economies focused on regulating access (off-hour delivery). However, note that the literature on developed economies addresses city logistics challenges with significant effects on network disruption; therefore, appropriate solutions involving consolidation, access regulation, and last-mile delivery initiatives are implemented (Figure 8(a)). Meanwhile, none of the papers on developing economies have discussed network disruption or resilience. As a result of high uncertainty, particularly during the current Covid-19 pandemic, there is a significant demand to explore the network resilience of urban logistics in developing economies. Because a transportation system during an emergency involves multi-faceted aspects (e.g., human, infrastructure, vehicles, operation management), a transportation service system is needed to reduce extreme uncertainty. A domain modeling framework proposed by Wang et al.117 which was used to model a service system including transportation system within the context of disaster can potentially be explored for future work.

Based on the results in Figure 8(a) and (b), Table 3 presents the ranking of innovative solutions based on the frequency of article appearance. The innovative solutions related to immaterial infrastructure appear the most dominant, with the largest percentages of 47% and 50% for developed and developing countries, respectively, while the innovation solution with respect to equipment is the least. Non-statistical differences with respect to the distribution of innovative solutions based on aspects between both countries indicate that both countries have similar proportions of innovative solutions to address infrastructure, equipment, policy, and immaterial infrastructure. However, Table 3 demonstrates that the implemented solutions are notably different. Developed countries have a wider approach than developing economies. The results are consistent with the co-occurrence analysis, indicating the

Table 3. Aspects of concern and associated innovative solutions.

No	Aspects of concern	Developed countries	Developing countries	Developed countries	Developing countries
1	Infrastructure	31%	25%	UCC/Consolidation Hubs (4); Logistic Facility Location (4); Fuel/Charging System (2); Parkin Facilities (1); Intensive Land Use (1); Spatial Network (1); Collection and Delivery Points (1)	Transport networks (3); Logistic Facility Location (2)
2	Equipment	2%	5%	Cargo Hitching (1)	Fleet Size Management (1)
3	Policy	20%	20%	Facility Regulation (4); Access Regulation (2); Pricing Emission Strategy (1); Harmonized Policy Plan (1); Monetary Incentives (1); Training Activity (1)	Off-hour Delivery (3); Facility Regulation (1)
4	Immaterial Infrastructure	47%	50%	Vehicle Routing Problem (5); Collaborative Operation (4); Intelligent Transport Systems (3); Crowd-shipping Model (1); Scheduling of Delivery Robots (1); Freight Landscape (1); Train Services (1); GPS Trajectories (1); Parking Enforcement (1); Empty Container Management (1); Delivery Behavior (1); Last-mile Initiatives (1); Combined Delivery System (1); Dynamic Scheduling (1); Home Delivery (1)	Vehicle Routing Problem (5); Collaborative Operation (2); Combined Delivery System (1); Green Driving Program (1); Advanced Fleet Management (1)

Statistical test $\chi^2 = 5.853, df = 3, p = 0.119$ Non-statistical differences with respect to the distribution of innovative solutions based on aspects of concerns
presence of larger clusters in the literature of developed economies. Diverse city logistics problems generate more varying approaches and solutions. We can conclude that innovative solutions adopted by developed economies demonstrate varied processes involving technology, policy (including public policy and sustainability measures), infrastructural, and economic measures, while for developing economies, the focus remains on effective and efficient distribution operations using optimization and collaboration efforts.

Since both economies have encountered similar major challenges, certain innovation solutions are probably of mutual benefit. For instance, in addressing problems related to e-commerce expansion, a locker box station, serving as a collection and delivery point system, is potentially adopted to manage the delivery of smaller packages or parcels. Furthermore, the involvement of law enforcement in coordinating parking activities tends to reduce the rate of vehicular movement and subsequently enhance traffic conditions. Another potential future work is deploying an integrated approach. For both developed and developing nations, the integrated approach should be taken whenever possible and appropriate. To a city, there are three primary activities: design and planning, construction, and management. According to Zhang et al., different degrees of integration may be taken by tailoring to particular types of cities, including cities of developed and developing countries, respectively.

Moreover, note that public policies related to city logistics are very limited to developing countries. This implies that further research can explore this topic, along with the identification of stakeholders and the extent of involvement. The recognition process offers new insights into the ability to predict the implementation and impact of innovative solutions. In addition, other provisions, including infrastructure, technology (i.e., robots, drones, and information technology), and appropriate economic and environmental measures are also worth exploring for future city logistics research in developing economies.

There are implications regarding the analysis of the problems and innovative solutions. Developing countries may investigate and adopt solutions from developed countries as a city logistics development based on the similarity of problem characteristics. As for developed countries, it is possible to make an integrated solution as future work to address complex problems.

Conclusion

This paper highlights that managing city logistics is a global challenge in cities. The proper management of urban logistics poses an inevitable global challenge in cities. Population growth, increasing business, and logistics activities are the major contributors to city logistics challenges. Moreover, the social and economic characteristics of developed and developing countries contribute to the complexity of prevailing circumstances. This study accomplished the objectives of mapping city logistics research clusters and systematically comparing city logistics challenges and associated innovative solutions, based on empirical evidence from the related literature from 1986 to 2019.

However, the research on city logistics seems to be progressive. As developed countries encounter more complexities compared with developing countries, the clusters of the city logistics literature of developing countries become more advanced and specific. Six topic clusters in the literature on city logistics were discovered for developed countries, compared with only four in developing countries, in which public policy has not been addressed. Hence, public policies on city logistics and stakeholder analysis of developing economies are significant to comprehend, indicating the requirement for further studies.

Both developed and developing economies encounter three primary city logistics challenges: urban growth, traffic congestion, and environmental problems, although other specific problems also exist. Furthermore, the combinations of these problems instigate similar effects, except for the disruption of the urban delivery network, which is absent in the literature on developing countries. However, the implemented innovative solutions are notably different. The innovative solutions embraced by developed countries indicate a wider approach based on technology. Moreover, the solutions involve policy (including public policy and sustainability measures), infrastructure, and economic measures. Meanwhile, developing countries have focused on distribution operations, such as the optimization of transport networks and logistics facilities, fleet size management, improvement of facility regulation, routing, off-hour delivery, and combined delivery systems. Since both economies encounter similar major challenges, innovative solutions that have been successfully adopted in developed countries can be evaluated for possible implementation in developing countries.

Acknowledgments

The authors are grateful for the financial support provided by Deputi Bidang Penguatan Riset dan Pengembangan, Kementerian Riset dan Teknologi/Badan Inovasi Nasional, Indonesia.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by Deputi Bidang Penguatan Riset dan Pengembangan, Kementerian Riset dan Teknologi/Badan Inovasi Nasional through the PDD (Penelitian Disertasi Doktor) research grant.
References

1. Taniguchi E, Thompson RG, Yamada T, et al. Introduction. In: Bell (ed) City logistics. Bingley: Emerald Group Publishing Limited, 2001, pp. 1–15.

2. TURBLOG. Handbook on urban logistics. TURBLOG_ww, 2011, pp. 1–101.

3. Department of Economic and Social Affairs. World urbanization prospects: the 2018 revision. United Nations, https://population.un.org/wup/Download/Files/WUP2018-F01_Total_Urban_Rural.xls (2018, accessed 17 August 2020).

4. Herzog OB. Urban freight in developing cities. Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH, 2010, p. 48.

5. Nicolaides D, Cebon D and Miles J. An urban charging infrastructure for electric road freight operations: a case study for Cambridge UK. IEEE Syst J 2019; 13: 2057–2068.

6. Muñuzuri J, Alho A and de Abreu e Silva J. Evaluating freight loading/unloading parking zones characteristics, usage and performance in Southern Europe. Eur Transp - Trasp Eur 2019; 73: 1–15.

7. Karatsoli M, Karakikes I and Nathanael E. Urban traffic management utilizing soft measures: A case study of Volos City. In: E Nathanael and I Karakikes (eds) Data Analytics: Paving the Way to Sustainable Urban Mobility. CSUM 2018. Advances in Intelligent Systems and Computing, Cham: Springer, pp. 655–662.

8. Hu W, Dong J, Hwang B, et al. A scientometrics review on city logistics literature: research trends, advanced theory and practice. Sustain 2019; 11: 1–27.

9. Lagorio A, Pinto R and Golini R. Research in urban logistics: A systematic literature review. Int J Phys Distrib Logist Manag 2016; 46: 908–931.

10. Neghabadi PD, Samuel KE and Espinouse M. Systematic literature review on city logistics: Overview, classification and analysis. Int J Prod Res 2018; 0: 1–23.

11. Behrends S. Recent developments in urban logistics research—a review of the proceedings of the international conference on city logistics 2009–2013. Transp Res Proc 2016; 12: 278–287.

12. Snyder H. Literature review as a research methodology: an overview and guidelines. J Bus Res 2019; 104: 333–339.

13. He Z. The challenges in sustainability of urban freight network design and distribution innovations: a systematic literature review. Int J Phys Distrib Logist Manag 2020; 50: 601–640.

14. Ellegaard O and Wallin JA. The bibliometric analysis of scholarly production: how great is the impact? Scientometrics 2015; 105: 1809–1831.

15. Neghabadi PD, Samuel KE, Espinouse M, et al. City logistics: A review and research framework to cite this version: HAL Id: hal-01420815. In: RIRL conference 2016 EPFL, Lausanne, Switzerland, 3 January 2017.

16. Department of Economic and Social Affairs. World population prospects: The 2017 revision. United Nations, https://population.un.org/wpp/Publications/Files/WPP2017_Volume-I_Comprehensive-Tables.pdf (2017, accessed 23 August 2020).

17. Li H, An H, Wang Y, et al. Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: based on two-mode affiliation network. Phys A Stat Mech Appl 2016; 450: 657–669.

18. He Z and Haasis HD. A theoretical research framework of future sustainable urban freight transport for smart cities. Sustainability 2020; 12: 1–28.

19. He Z and Haasis H-D. Integration of urban freight innovations: sustainable inner-urban intermodal transportation in the retail/postal industry. Sustainability 2019; 11: 1749.

20. Russo F and Comi A. A classification of city logistics measures and connected impacts. Proc Soc Behav Sci 2010; 2: 6355–6365.

21. Tadić S and Zečević S. A framework for structuring city logistics initiatives. Int J Traffic Transp Eng 2016; 6: 243–252.

22. Ljungberg D and Gebresenbet G. Mapping out the potential for coordinated goods distribution in city centres: the case of Uppsala. Int J Transp Manag 2004; 2: 161–172.

23. Holguín-Veras J, Wang Q, Xu N, et al. The impacts of time of day pricing on the behavior of freight carriers in a congested urban area: Implications for road pricing. Transp Res A Policy Pract 2006; 40: 744–766.

24. Bräysy O, Dullaert W and Nakari P. The potential of optimization in communal routing problems: Case studies from Finland. J Transp Geogr 2009; 17: 484–490.

25. Allen J, Browne M, Woodburn A, et al. The role of urban consolidation centres in sustainable freight transport. Transp Rev 2012; 32: 473–490.

26. Saetta S and Caldarelli V. Urban logistics: The role of urban consolidation centre for the sustainability of transportation systems. In: M Affenzeller, et al. (eds) 18th International Conference on Harbor, Maritime and Multimodal Logistics Modelling and Simulation, 26–28 September 2016 (HMS 2016). CAL-TEK SRL, 2016, pp. 69–75.

27. Paddeu D, Fadda P, Fancello G, et al. Reduced urban traffic and emissions within urban consolidation centre schemes: The case of Bristol. In: FG Bentive and R Rossi (eds) Transportation Research Procedia. Netherlands: Elsevier B.V., pp. 508–517.

28. Smirlis YG, Zeimpekis V and Kaimakamis G. Data envelopment analysis models to support the selection of vehicle routing software for city logistics operations. Oper Res 2012; 12: 399–420.

29. Liang X, Homem de Almeida Correia G and van Arem B. Applying a model for trip assignment and dynamic routing of automated taxis with congestion: System performance in the city of Delft, The Netherlands. Transp Res Rec J Transp Res Board 2018; 2672: 588–598.

30. Martins-Turner K and Nagel K. How driving multiple tours affects the results of last mile delivery vehicle routing.
31. Figliozzi MA. The impacts of congestion on time-definitive urban freight distribution networks CO₂ emission levels: results from a case study in Portland, Oregon. Transp Res C Emerg Technol 2011; 19: 766–778.

32. Kickhofer B, Agarwal A and Nagel K. Mind the price gap: How optimal emission pricing relates to the EU CO₂ reduction targets. Int J Sustain Transp 2019; 13: 378–391.

33. Heitz A, Launay P and Beziat A. Heterogeneity of logistics facilities: an issue for a better understanding and planning of the location of logistics facilities. Eur Transp Res Rev 2019; 11: 5.

34. Alho AR, de Abreu e Silva J, de Sousa JP, et al. Improving mobility by optimizing the number, location and usage of loading/unloading bays for urban freight vehicles. Transp Res D Transp Environ 2018; 61: 3–18.

35. Teye C, Bell MGH and Bliemer MCJ. Optimal location of open access urban container terminals under elastic cargo demand. In: Australasian transport research forum 2016 proceedings, Melbourne, Australia, 16–18 November 2016, pp. 1–14. Department of Infrastructure, Transport, Regional Development and Communications.

36. Elbert R and Friedrich C. Simulation-Based evaluation of urban consolidation centers considering urban access regulations. In: N Mustafee, A Skoogh, M Rabe, et al. (eds) 2018 winter simulation conference (WSC), Gothenburg, Sweden, 9–12 December 2018, pp. 2827–2838. IEEE.

37. Cidell J. Flows and pauses in the urban logistics landscape: The municipal regulation of shipping container mobilities. Mobilities 2012; 7: 233–245.

38. Mbiydzenyuy G. Impact assessments of intelligent transport system performance in a freight transport corridor. IET Intell Transp Syst 2018; 12: 1071–1081.

39. Melo S, Macedo J and Baptista P. Guiding cities to pursue a sustainable urban logistics park in Jilin city. College of Traffic and Building Engineering, Beihua University, Jilin, 132013, China, 2011, pp. 1757–1761.

40. Zhang X-D, Pan H and Han B. Study on location planning with grade nodes of Urban logistics. Traffic and Transportation School, Beijing Jiaotong University, Beijing, China, 2010.

41. Zhang X-D, Pan H and Han B. Study on location planning with grade nodes of Urban logistics. Traffic and Transportation School, Beijing Jiaotong University, Beijing, China, 2010.

42. Ye Y-L and Su J. Adjustment of freight station layout in railway terminal. School of Transportation Engineering, Tongji University, Shanghai, 200092, China, 2008, pp. 3151–3156.

43. Xiaohui L, Qingquan J, Ling F, et al. The planning of modern logistics park in Jilin city. College of Traffic and Building Engineering, Beihua University, Jilin, 132013, China, 2011, pp. 1757–1761.
58. Córdova J, Merchán D and Torres S. Redesigning a retail distribution network in restricted urban areas: A case study on beverage distribution in the historic center of Quito. J Appl Res Technol 2014; 12: 850–859.

59. Sophia BM, Asih AMS and Nursitasari PD. Location planning of urban distribution center under uncertainty: A case study of Yogyakarta Special Region Province, Indonesia. J Ind Eng Manag 2018; 11: 542.

60. Sophia BM, Asih AMS, Pradana FD, et al. Urban distribution center location. Int J Eng Bus Manag 2016; 8: 184797901667837.

61. Sophia BM, Asih AMS, Nurdiansyah HA, et al. Decision support system for an urban distribution center using agent-based modeling: a case study of Yogyakarta special region Province, Indonesia. In: City Logistics 2. Hoboken, NJ: John Wiley & Sons, Inc., pp. 179–196.

62. Sophia BM, Siagian A and Sri Asih AM. Simulating dynamic vehicle routing problem using agent-based modeling and simulation. In: IEEE Transactions on Engineering (ed) 2016 IEEE international conference on industrial engineering and engineering management (IEEM), Bali, Indonesia, 4–7 December 2016, pp. 1335–1339. IEEE.

63. Asih AMS, Sophia BM, Kairunnisa Y, et al. Heterogeneous vehicle routing delivery on collaborative distribution using genetic algorithm - The case of Yogyakarta city. In: IIESE Transactions (ed) 2017 IEEE international conference on industrial engineering and engineering management (IEEM), Singapore, 10–13 December 2017, pp. 1432–1436. IEEE.

64. Oliveira LK and Pereira LSF. An estimation of freight flow using secondary data: A case study in Belo Horizonte (Brazil). Int J Urban Sci 2014; 18: 291–307.

65. Castrellón-Torres JP, Talero Chaparro JS, Manosalva Barrera NE, et al. Information technology in city logistics: A decision support system for off-hour delivery programs. In: R Valencia-García, MA Paredes-Valverde, P Salas-Zárate, M del, et al. (eds) Studies in computational intelligence, pp. 221–238. Cham: Springer.

66. Kluschke P, Manz P, Gnann T, et al. The regional impact of heavy-duty fuel cell trucks on electricity demand - A case study for Germany. In: European Council for an Energy Efficient Economy (eds) Eceee 2019 Summer Study Proceedings. www.eceee.org, Stockholm; pp. 1009–1018.

67. Gutiérrez-Rubiano DF, Hincapíé-Montes JA and León-Vilalba AF. Collaborative distribution: strategies to generate efficiencies in urban distribution-results of two pilot tests in the city of Bogotá | Distribución colaborativa: estrategias para generar eficiencias en la distribución urbana-resultados de dos pilotos en. DYNÁ 2019; 86: 42–51.

68. Shao S, Xu G and Li M. The design of an IoT-based route optimization system: A smart product-service system (SPSS) approach. Adv Eng Informatics 2019; 42: 101006.

69. Mazzarino M and Rubini L. Smart urban planning: Evaluating urban logistics performance of innovative solutions and sustainable policies in the Venice Lagoon-the results of a case study. Sustainability 2019; 11: 4580.

70. Calabrò T, Iritiano G and Trecozzio MR. Activities training on city logistics: Case study of the Calabria region, Italy. WIT Trans Ecol Environ 2019: 238: 161–171.

71. Crimi A, Jones T and Sgalambro A. Designing a web spatial decision support system based on analytic network process to locate a freight lorry parking. Sustainability 2019; 11: 5629.

72. Groß P-O, Ehmke JF and Mattfeld DC. Cost-Efficient and reliable city logistics vehicle routing with satellite locations under travel time uncertainty. In: R Rossi (ed) Transp Res Proc. Netherlands: Elsevier B.V., pp. 83–90.

73. Paddeo D. Sustainable solutions for urban freight transport and logistics: An analysis of urban consolidation centers. In: R Sharda and S Voß (eds) Operations research/Computer science interfaces series. Springer, pp. 121–137.

74. Dalla Chiara G and Cheah L. Data stories from urban loading bays. Eur Transp Rev Rev 2017; 9: 50.

75. van Heeswijk W, Larsen R and Larsen A. An urban consolidation center in the city of Copenhagen: A simulation study. Int J Sustain Transp 2019; 13: 675–691.

76. Björklund M and Simm N. Roles and perspectives when estimating energy and environmental potentials of urban consolidation. Energies 2019; 12: 4811.

77. Alvarez P, Lerga I, Serrano-Hernandez A, et al. The impact of traffic congestion when optimising delivery routes in real time. A case study in Spain. Int J Logist Res Appl 2018; 21: 529–541.

78. Paddeo D, Parkhurst G, Fancello G, et al. Multi-stakeholder collaboration in urban freight consolidation schemes: drivers and barriers to implementation. Transport 2018; 33: 913–929.

79. Aljohani K and Thompson RG. The impacts of relocating a logistics facility on last food miles—the case of Melbourne’s fruit & vegetable wholesale market. Case Stud Transp Policy 2018; 6: 279–288.

80. Potti P, Marinov M and Sweeney E. A simulation study on the potential of moving urban freight by a cross-city railway line. Sustainability 2019; 11: 6088.

81. Hadavi S, Verlinde S, Verbeke W, et al. Monitoring Urban-freight transport based on GPS trajectories of heavy-goods vehicles. IEEE Trans Intell Transp Syst 2019; 20: 3747–3758.

82. Buldeo Rai H, Verlinde S and Macharis C. City logistics in an omnichannel environment. The case of Brussels. Case Stud Transp Policy 2019; 7: 310–317.

83. Rabe M, Kluerer A and Wuttke A. Evaluating the consolidation of distribution flows using a discrete event supply chain simulation tool: application to a case study in Greece. In: N Mustafee, A Skoogh, M Rabe, et al. (eds) 2018 winter simulation conference (WSC), pp. 2815–2826. IEEE.

84. Vallino E, Maggi E and Beretta E. An agent-based simulation of retailers’ ecological behavior in central urban areas. The case study of Turin. In: E Nathanail and I Karakikes (eds) Advances in Intelligent Systems and Computing. Cham: Springer, pp. 639–646.

85. Gusah L, Cameron-Rogers R and Thompson RG. A systems analysis of empty container logistics – a case study of
97. Ewedairo K, Chhetri P and Jie F. Estimating transportation
95. Alvarez P, Serrano-Hernandez A, Faulin J, et al. Using mod-
94. Perboli G and Rosano M. A decision support system for
93. Elia V, Gnoni MG and Tornese F. Improving logistic effi-
92. Arnold F, Cardenas I, Sørensen K, et al. Simulation of B2C
89. Amaral RR, Šemanjski I, Gautama S, et al. Urban mobility
87. Bermúdez FM, Laxe FG and Aguayo-Lorenzo E. Port sus-
86. Woudsma C and Jakubicek P. Logistics land use patterns in
85. Grabenschweiger J, Tricoire F and Doerner KF. Finding the
84. Knöbelsdorff B, Dellmann J, Mahnken L, et al. E-commerce
83. Minnebo J, Elbers L, van der Wal R, et al. The case of shared
82. Charabi Y, Ibrahim F, Koutika H, et al. Urban freight transport
81. Li Y and Yu Y. The use of freight apps in road freight
80. Li S, Wei Z and Huang A. location selection of urban
79. Arvianto et al.

Melbourne, Australia. In: S Iwan, RG Thompson and K
Kijewska (eds) Transportation Research Procedia. Nether-
lands: Elsevier B.V., pp. 92–103.
86. Woudsma C and Jakubicek P. Logistics land use patterns in
metropolitan Canada. J Transp Geogr 2020; 88: 102381.
87. Bermúdez FM, Laxe FG and Aguayo-Lorenzo E. Port sus-
tainability in Spain: the case of noise. Environ Dev Sustain
2020; 22: 8061–8078.
88. Wise S, Cheliotis K, Bates O, et al. Using an agent-based
model to explore alternative modes of last-mile parcel delivery
in urban contexts. In: H Kavak, J-S Kim and U Manzoor
(eds) Proceedings of the 1st ACM SIGSPATIAL interna-
tional workshop on GeoSpatial simulation, Seattle, 6
November 2018, pp. 1–4. New York: ACM.
89. Amaral RR, Šemanjski I, Gautama S, et al. Urban mobility
and city logistics—trends and case study | Tendências em
mobilidade e logística urbana: Uma revisão da literatura e um
estudo de caso sobre a cidade de gheir, Bèlgica. Promet
Traff Traff 2018; 30: 613–622.
90. Grabenschweiger J, Tricoire F and Doerner KF. Finding the
trade-off between emissions and disturbance in an urban context.
Flex Serv Manuf J 2018; 30: 554–591.
91. Allen J, Piecyk M, Piotrowska M, et al. Understanding the
impact of e-commerce on last-mile delivery goods vehicle activ-
ity in urban areas: The case of London. Transp Res D Transp
Environ 2018; 61: 325–338.
92. Arnold F, Cardenas I, Sørensen K, et al. Simulation of B2C
e-commerce distribution in Antwerp using cargo bikes and
delivery points. Eur Transp Res Rev 2018; 10: 2.
93. Elia V, Gnoni MG and Tornese F. Improving logistic effi-
ciency of WEEE collection through dynamic scheduling
using simulation modeling. Waste Manag 2018; 72: 78–86.
94. Perboli G and Rosano M. A decision support system for
optimizing the last-mile by mixing traditional and green
logistics. In: WMP van der Aalst, J Mylopoulos, M Rose-
mann, et al. (eds) Lecture notes in business information
processing. Germany: Springer, 2018, pp. 28–46.
95. Alvarez P, Serrano-Hernandez A, Faulin J, et al. Using mod-
eling techniques to analyze urban freight distribution. A
study of the Colombian transport sector. Energy Policy
2019; 124: 111–122.
96. Muñoz-Villamizar A, Montoya-Torres JR and Moreno-
Camacho CA. Simulation-based optimization approach for
vehicle allocation in a private transport service: a case
study. Manag Sci Lett 2019; 9: 193–204.
97. Huang Y, Savelsbergh M and Zhao L. Designing logistics
systems for home delivery in densely populated urban areas.
Transp Res B Methodol 2018; 115: 95–125.
98. Li S, Wei Z and Huang A. location selection of urban
distribution center with a mathematical modeling
approach based on the total cost. IEEE Access 2018; 6:
61833–61842.
99. Muñuzuri J, Escudero-Santana A and Aparicio-Ruiz P.
Under which conditions is carrier cooperation possible? A
case study in a Seville marketplace. Transport 2018; 33:
881–889.
100. Kedia A, Kusumastuti D and Nicholson A. Acceptability of
collection and delivery points from consumers’ perspective:
a qualitative case study of Christchurch city. Case Stud
Transp Policy 2017; 5: 587–595.
101. Wasiak M, Jacyna M, Lewczuk K, et al. The method for
evaluation of efficiency of the concept of centrally managed
distribution in cities. Transport 2017; 32: 348–357.
102. Dubie M, Kuo KC, Giron-Valderrama G, et al. An evaluation
of logistics sprawl in Chicago and Phoenix. J Transp
Geogr 2020; 88: 102298.
103. Kin B, Verlinde S, Mommens K, et al. A stakeholder-based
methodology to enhance the success of urban freight trans-
port measures in a multi-level governance context. Res
Transp Econ 2017; 65: 10–23.
104. De Marco A, Mangano G, Zenezini G, et al. Business
modeling of a city logistics ICT platform. In: S Reisman,
SI Ahamed, C Demartini, et al. (eds) 2017 IEEE 41st annual
computer software and applications conference (COMP-
SAC), Torino, Italy, 4–8 July 2017, pp. 783–789. IEEE.
105. Leila B and Saad LE. Customers’ classification for pick-
up’s demand by using the K-means clustering: A case study
of urban freight transportation in Casablanca city. In: H
Kammoun, L Fetjah and SJ Andaloussi (eds) 2019 IEEE
International Smart Cities Conference (ISC2), 14-17 Octo-
ber 2019, Casablanca, Morocco: IEEE, pp. 235–240.
106. Espinosa Valderrama M A and Behrentz E. Challenges in
greenhouse gas mitigation in developing countries: a case
study of the Columbian transport sector. Energy Policy
2019; 124: 111–122.
107. Santo-Salas Y, Sarache W and Überwimmer M. Fleet size
optimization in the discarded tire collection process.
Promet 2018; 30: 651–659.
108. Arvianto et al.

Transport Res D Transp
Environ 2018; 72: 78–86.
109. Espinosa Valderrama M A and Behrentz E. Challenges in
greenhouse gas mitigation in developing countries: a case
study of the Columbian transport sector. Energy Policy
2019; 124: 111–122.
107. Espinosa Valderrama M A and Behrentz E. Challenges in
greenhouse gas mitigation in developing countries: a case
study of the Columbian transport sector. Energy Policy
2019; 124: 111–122.
114. Bertazzo T, Hino C, Loba˜o T, et al. Business Case for Night Deliveries in the City of São Paulo During the 2014 World Cup. Transp Res Procedia 2016; 12: 533–543.

115. Aurambout J-P, Gkoumas K and Ciuffo B. Last mile delivery by drones: an estimation of viable market potential and access to citizens across European cities. Eur Transp Res Rev 2019; 11: 30.

116. Sopha BM, Sakti S, Prasetia ACG, et al. Simulating long-term performance of regional distribution centers in archipelagic logistics systems. Marit Econ Logist. Epub ahead of print 14 September 2020. DOI: 10.1057/s41278-020-00166-3.

117. Wang JW, Wang HF, Ding JL, et al. On domain modelling of the service system with its application to enterprise information systems. Enterp Inf Syst 2016; 10: 37–41.

118. Zhang WJ, Wang JW and Lin Y. Integrated design and operation management for enterprise systems. Enterp Inf Syst 2019; 13: 424–429.