Identifying High Confidence microRNAs in the Developing Seeds of *Jatropha curcas*

Mingfeng Yang, Heshu Lu, Feiyian Xue & Lanqing Ma

MicroRNAs (miRNAs) are endogenously short noncoding regulatory RNAs implicated in plant development and physiology. Nine small RNA (sRNA) libraries from three typical seed developmental stages (young, intermediate, and mature) were generated by deep sequencing to identify the miRNAs of *J. curcas*, a potential oilseed crop for the production of renewable oil. Strict criteria were adopted to identify 93 high confidence miRNAs including 48 conserved miRNAs and 45 novel miRNAs. Target genes of these miRNAs were involved in a broad range of physiological functions, including gene expression regulation, primary & secondary metabolism, growth & development, signal transduction, and stress response. About one third (29 out of 93) miRNAs showed significant changes in expression levels during the seed developmental process, indicating that the miRNAs might regulate its targets by their changes of transcription levels in seed development. However, most miRNAs were found differentially expressed in the late stage of seed development, suggesting that miRNAs play more important roles in the stage when seed accumulating organic matters and suffering dehydration stress. This study presents the first large scale identification of high confidence miRNAs in the developing seeds of *J. curcas*.

Huge consumption of fossil fuel leading to higher and higher levels of carbon dioxide released into the atmosphere is a key concern in the world. Biodiesel, as an alternative for fossil fuel, is an environmentally friendly biofuel. *Jatropha curcas*, a perennial, drought-resistant small tree belonging to the family of Euphorbiaceae, can be grown on non-agricultural land without sacrificing agricultural land. Its seed has a high content of oil that can be reformed as biodiesel for diesel engines. However, improving the seed yield, the oil content, and the oil quality remains challenging, and these problems prevents fulfilling the promise of this energy crop. Understanding the molecular processes of seed development and oil metabolism is crucial to solve these problems. Much efforts have therefore been made to analyze the gene expression in all kinds of tissues in *Jatropha*, especially in the developing seeds. The genomic sequences and protein-encoding genes obtained through genome analysis have laid the foundation for further exploration of the genetics and genomics of *J. curcas*.

MicroRNAs (miRNAs) are endogenous small non-coding RNAs that act as post-transcriptional regulators of gene expression in animals and plants by targeting mRNAs for cleavage or translational repression. In plants, miRNAs are encoded in intergenic regions, where they are typically transcribed by RNA Polymerase II as long polyadenylated transcripts called pri-miRNAs. Then pri-miRNAs are recognized and processed by DICER-Like1 (DCL1) into miRNA precursors (pre-miRNAs), which are further processed to generate 18~24 nucleotide (nt) mature miRNAs. The mature miRNAs bind to target mRNAs for cleavage or translational inhibition, depending on the degree of complementarity between the miRNAs and its target mRNAs. In recent years, researchers found that miRNAs play critical roles in plant development and growth as well as a range of physiological processes, including abiotic and biotic stress responses and probably lipid metabolism.

To our knowledge, only several recent studies focused on the identification of miRNAs from *J. curcas*. Wang et al. cloned 52 putative miRNAs from leaves and seeds without providing information on the miRNA precursor sequence. Vishwakarma and Jadeja used known plant miRNAs to search for *J. curcas* miRNAs from EST and GSS sequences, and only 24 putative conserved miRNAs were identified. Galli et al. investigated miRNAs through small RNAs (sRNA) deep sequencing from mature seeds, and revealed 180 conserved miRNAs and 41 precursors as well as 16 novel pre-miRNAs, but miRNAs involved in other developmental stages are yet to be

Key Laboratory of Urban Agriculture (North China) Ministry of Agriculture, Beijing University of Agriculture, Beijing, 102206, China. Mingfeng Yang and Heshu Lu contributed equally. Correspondence and requests for materials should be addressed to L.M. (email: lqma@bua.edu.cn)
found24. Furthermore, quite a few miRNAs identified in these reports could not be qualified as high confidence miRNAs according to the current strict criteria25,26.

In this study, high confidence miRNAs from *J. curcas* were identified through the deep sequencing of sRNA from three typical developing stages of seeds (young, intermediate and mature). The prediction of miRNA targets indicates that these miRNAs are involved in a wide range of physiological processes. In addition, differentially expressed miRNAs were found mainly in the late stages, providing important information on the possible function of miRNAs in seed development.

Results and Discussion

Deep Sequencing of sRNAs.

To identify miRNAs and their expression patterns in the developing seeds of *J. curcas*, nine sRNA libraries from three typical developmental stages of seeds (young, intermediate and mature seeds; Supplementary Fig. S1) with three biological replicates were generated and sequenced by next-generation sequencing (NGS), resulting in 16.7–21.6 million raw reads for each sample and 162.7 million raw reads in total, which was a deep resource for extensive discovery of miRNAs. After trimming the adaptors, filtering out the low quality reads and noise, we obtained 13.8~18.9 million clean reads for each of the nine sRNA libraries, and no less than 95% of the reads had a high Detection Accuracy (> 95% of the reads had a high Detection Accuracy (> 99.9%) (Table 1).

The clean reads were mapped to the SILVA tRNA, Rfam, tRNAdb, and Repbase databases to annotate the composition of the sRNA population. It showed that tRNA had the highest read frequency (19.65~41.56%) followed by rRNA (1.46~3.52%) in the total clean reads of every library. Repetitive elements, scRNA, snRNAs and snoRNA were less frequent in the sRNA library. Taken together, 55.24~77.1% of the clean reads were unannotated reads for the nine sRNA libraries, and these unannotated reads could be used for miRNA detection (Table 2).

Among the clean reads, the most abundant sequences were 21 nt (8.0%), 22 nt (6.1%), 23 nt (10.5%), and 24 nt (45.4%) (Supplementary Table S1). This distribution pattern of the sRNA size was similar to those seeds from other species, such as the developing seeds of canola27,28 and safflower29, and the mature seeds of *J. curcas*.

In these reports, the most abundant sRNA types are 21~24-nt long and 24-nt sRNA is also the most abundant one (40%), indicating that 21~24-nt long sRNA might be the main sRNA products, and these plants might have similar sRNA biogenesis patterns in seeds.

Identification of High Confidence miRNAs.

To analyze the unannotated reads for discovery of miRNAs, the miRDeep2 core algorithm with modifications for plant miRNAs was employed30,31. In brief, the unannotated reads were mapped onto the genome of *J. curcas* reads were mapped onto the genome of *J. curcas* and the flanking sequences of the mapped sites were extracted as candidate miRNA precursors. The mfe (minimal free energy) of the precursor structure, read counts of mature and star miRNA sequences, randfold p-values, and minimum 60% nucleotides paired in the candidate mature and star miRNAs, were considered and scored by the miRDeep2 core algorithms. In total, 108 potential miRNAs were identified in the developing seeds of *J. curcas*.

The stem-loop structures and other characters of miRNA precursors were displayed in miRDeep2 outputs (Supplementary Fig. S2 and Supplementary Table S2). These data were further manually examined for mismatches between the miRNA and star miRNA, the number of asymmetric bulges in the stem region, the size of asymmetric bulges, 3′ overhangs in duplex, dominance of the miRNA relative to other sRNAs in abundance, and precise miRNA/star miRNA excision, to annotate high confidence microRNAs according to the rules detailed by Meyers et al.25,32. Four rules must be followed if miRNAs could be accepted as high confidence ones: (1) The miRNA and star miRNA form a duplex with two nt 3′ overhangs (if star miRNA is absent, candidate miRNA must be found in multiple, independent libraries); (2) four or fewer mismatches between the miRNA and the other arm of the hairpin; (3) not more than one asymmetric bulge and less than two bases in the bulge, especially within the duplex; and (4) stem-loops that slightly violate one of these criteria could still be annotated as miRNAs, if precise miRNA/star miRNA excision is shown, i.e., more than 75% sRNA localized in one arm of miRNA/star

Samples	BMK-ID	Raw reads	Low quality reads	Containing ‘N’ reads	Length < 18	Length > 30	Clean reads	Q30 (%)	Clean/Raw (%)
Mature1	S01	19043797	0	5092	1233213	1949732	15855760	95.0	83.3
Mature2	S02	18295787	0	5067	1298051	1603578	15389091	95.2	84.1
Mature3	S03	17673444	0	4844	1277677	1293943	15096980	95.3	85.4
Intermediate1	S04	17064128	0	4787	1551724	1000675	14506942	95.2	85.0
Intermediate2	S05	16791723	0	4686	1975254	1061054	13750767	94.9	81.9
Intermediate3	S06	17893351	0	4814	1099554	1248391	15540592	95.2	86.9
Young1	S07	21600131	0	16164	1767628	959579	18857360	95.0	87.3
Young2	S08	16697519	0	12765	1645390	745144	14294220	95.2	85.6
Young3	S09	17647543	0	13223	512391	1686789	15435140	95.1	87.5

Table 1. Deep sequencing of sRNAs from 9 libraries of *J. curcas* developing seeds. Samples: samples named by authors; BMK-ID: samples named by Biomarker Technologies; Raw reads: raw data of sequencing; Low quality reads: reads with > 20% bases < Q30, where Q30 mens one error in 1000 bases; Containing ‘N’ reads: unknown bases > 10%; Length < 18nt reads: less than 18 nucleotides after trimming adaptors; Length > 30nt reads: more than 30 nucleotides after trimming adaptors; Clean reads: remaining reads after filtering; Q30 (%): percentage of reads with quality value > = Q30 (Q30 means Detection Accuracy >99.9%). Clean/Raw (%): percentage of Clean reads in Raw reads.
Table 2. Small RNA types in 9 sRNA libraries of J. curcas developing seeds. Types: small RNA types; Total: Total clean reads; rRNA: ribosomal RNA; scRNA: small cytoplasmic RNA; snRNA: Small nuclear RNA; snoRNA: small nucleolar RNA; tRNA: Transfer RNA; Repbase: repetitive elements; Unannotated: The remaining reads without rRNAs, scRNAs, snRNAs, snoRNAs, tRNA, or repetitive elements; %: the percentage of small RNAs in total clean reads.

Samples	S01	S02	S03	S04	S05	S06	S07	S08	S09	
Type	Number	%								
rRNA	3459293	21.8	4660796	30.3	2966676	19.7	4872274	32.6	5714339	38.5
scRNA	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
snoRNA	11202	0.1	9190	0.1	9954	0.1	13000	0.1	12554	0.1
snRNA	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
tRNA	452768	2.9	541892	3.5	44180	2.9	316681	2.2	325241	2.1
Repbase	18492	0.1	16968	0.1	36403	0.2	16925	0.1	22427	0.2
Unannotated	11914005	75.1	10160245	66.0	11639767	77.1	9282932	64.0	7595720	55.2

miRNA duplex. According to these rules, 93 high confidence miRNAs were obtained from the developing seeds (Supplementary Fig. S2 and Supplementary Table S2). That is to say, about 86% (93/108) miRNAs were qualified as high confidence miRNAs, confirming the efficiency and accuracy of the modified miRDeep2 in plant miRNA identification. Most of the unqualified miRNAs were ruled out due to the imprecise miRNA/star miRNA excision or improper 3′ overhangs. If more stringent filtering strategies were adopted, three more rules should be added according to Kozomara and Griffiths-Jones: (5) At least 10 reads must map with no mismatches to each of the two possible mature microRNAs derived from the hairpin precursor; (6) at least 50% of reads mapping to each arm of the hairpin precursor must have the same 5′ end; and (7) the predicted hairpin structure must have a folding free energy of <−0.2 kcal/mol/nt. Finally, we got 45 very high confidence miRNAs satisfying all the seven rules mention above (Supplementary Table S2). Almost all the 48 miRNAs failed to be qualified for very high confidence ones due to failure to satisfy the fifth rule: less than 10 reads of star miRNAs mapped with no mismatches. Considering the fact that star miRNAs are expressed at low level or even hardly detected for some miRNAs, some miRNAs could be approved as high confidence ones if they meet all the ancillary criteria. For example, in the absence of star miRNA confirmation, a clear dominance of the miRNA sequences from one arm of a predicted stem-loop was found (Supplementary Fig. S2). Furthermore, the annotation was well supported by miRNA identification from multiple, independent libraries. Most of the 93 miRNAs were found in 9 independent libraries, except that Jcr4S02343_14511 and Jcr4S00022_291 could not be detected in young seeds. All the miRNAs identified in this work had high read counts. For instance, Jcr4S00996_1114 had the smallest (285) and Jcr4S01201_8767 had the highest read counts (74967). These features could be considered as ancillary criteria that strongly bolster miRNA annotations as suggested by Meyers et al. When we checked the structures of J. curcas miRNAs published in previous reports by Wang et al. and Galli et al., less than half of the miRNAs could satisfy Meyer’s rules (2) and (3) mentioned above, let alone other rules. Therefore, the miRNA screening criteria adopted by this work are stringent enough to qualify the 93 miRNAs as high confidence miRNAs.

The lengths of the 93 mature miRNAs varied from 19 nt to 24 nt. More than half (50/93) of miRNAs were 21 nt, followed by 24-nt miRNAs (28) (Fig. 1a). Accordingly, 21-nt and 24-nt sRNAs were the most abundant ones (Fig. 1b). Plants have at least four Dicer-like proteins (DCL1–4), among which DCL1 mainly produces 18–21-nt long sRNA while DCL2, DCL3, and DCL4 produce 22-, 24-, and 21-nt long sRNA, respectively, and 21, 22, and 24 nt are typical sizes for plant Dicer-like (DCL)-derived products. Although 24-nt sRNAs accounted for almost half (45.4%) of the total sRNAs and 21-nt sRNAs took up much less (8.0%) (Supplementary Table S1), it is interesting to note that more than half miRNAs (50/93) were 21 nt in length, which is quite accordant to the fact that DCL1 is responsible for most plant miRNA biogenesis and plant miRNAs are predominantly 21 nt in length. However, both the 24-nt miRNAs and 24-nt sRNAs were the second large population in total clean reads, indicating DCL3 might play a part in the sRNA production in the developing seeds. We also determined the frequency of the first base of mature miRNAs, and it showed that the 20-, 21-, and 22-nt miRNAs preferentially started with ‘U’ (7/7, 34/50, and 6/6, respectively), while 24-nt miRNAs preferred ‘C’ at the first base (9/24) (Fig. 1c). Similar base bias trend for 20-, 21-, and 22-nt miRNAs is also found in other plant species, such as Camellia and canola. This is well in accordance to that plant miRNAs prefer to begin with a ‘U’ residue. However, the first base bias may determine their assembling into different AGO complexes and might result in a different regulatory outcome in the developing seeds of J. curcas.

Identification of Conserved and Novel miRNAs. High confidence miRNAs were then aligned to known miRNAs from miRBase. A total of 48 miRNAs shared homology with known miRNAs were identified as conserved miRNAs, and 45 miRNAs did not match any entries in miRBase (Supplementary Table S2). The 48 conserved miRNAs belonging to 23 families (Jcu-MIR156, 159, 160, 162, 164, 166, 167, 168, 171, 172, 319, 390, 393, 394, 395, 396, 398, 403, 408, 477, 827, 1446, and 6445) could be found in at least one plant species except for J. curcas, and most (39/48) were identified in more than 10 species (Supplementary Table S2). Jcu-MIR156 and MIR166 were the biggest families with 6 members each, followed by Jcu-MIR319 (5 members). Four families (Jcu-MIR56, 159, 390, and 6445 (named nMIR001-5p in Galli’s report)) were also detected in the mature
seeds of *J. curcas* in a previous report24. Jcu-MIR166 and Jcu-MIR167 families were both discovered in mature seeds based on deep sequencing24 and bioinformatic prediction based on expressed sequence tags23. Jcu-MIR167 (JcumiR027 in Wang’s work) was also identified in the leaf of *J. curcas* by cDNA cloning method, but not in the seed tissues22. The 45 novel miRNAs belonged to 34 families (named Jcu-nMIR001~Jcu-nMIR034). In previous reports, Jcu-nMIR020 (nMIR002-5p in Galli’s work) was only observed in the mature seeds24 and Jcu-nMIR005 (JcumiR019-3p in Wang’s work) was identified in the leaves instead of seed tissues of *Jatropha*22. However, Jcu-MIR167 and Jcu-nMIR005 were detected in all the three developing seed stages with extremely high read counts (>400,000) in this work, but neither were detected in the seeds of *Jatropha* by cDNA cloning method22, implying that even high abundance of miRNAs could not guarantee their detectability by the cloning method, because some miRNAs could be missed by chance when cloned into the pGEMT vector and sequenced22. To our knowledge, a total of 17 conserved (except Jcu-MIR156, 159, 166, 167, 390, and 6445) and 32 novel (except Jcu-nMIR020 and Jcu-nMIR005) miRNA families were identified in *J. curcas* for the first time.

Prediction of miRNA Targets. In plants, as a post-transcriptional regulator, the mature miRNA binds to target mRNAs by their complementarity for cleavage or translational repression, and therefore miRNA target prediction is crucial for understanding the functions of miRNAs14–16,18. Based on the complementarity, target mRNAs of *J. curcas* miRNAs were predicted by using the web-based psRNATarget35 and Targetfinder software36. A total of 331 potential target genes were found for 73 miRNAs with an average of 4.5 targets per miRNA (Supplementary Table S2). Some miRNAs had a larger number of targets, such as Jcu-MIR156 and Jcu-MIR396 (>12 targets for each family members), which were also observed to have the most targets in cassava27; The target genes of 22 conserved and 24 novel miRNA families were obtained. In other words, targets were spotted for almost all conserved miRNAs (46/48) and conserved miRNA families (22/23), whereas only for about half of novel miRNAs (27/45) and novel miRNA families (24/34), and a similar trend was observed in the targets determination in a previous report24. These results are in line with the idea that novel plant miRNAs, in contrast to deeply conserved miRNAs, are more divergent and tend to lack targets38.

A total of 188 unique target sequences were obtained after removing the redundancy in the 331 potential targets for the 73 miRNAs, and the functions of the 188 unique targets were annotated according to previous reports11,12 or by using BLASTX against NCBI nr and Swiss-Prot/Uniprot protein databases (Supplementary Table S3), followed by a GO analysis to evaluate their putative functions in regards to the cellular component,
the molecular function and the biological process (Supplementary Fig. S3). The majority of miRNA targets are localized in nucleus or membrane, and some are in cytoplasm, ribosome, chloroplast, mitochondrion, cell wall, or even extracellular region; most miRNA targets participate in DNA binding, ATP binding, or had transcription factor activity; the miRNA targets mainly participate in DNA-saturated regulation of transcription, oxidation reduction, developmental process, metabolic processes, protein phosphorylation or ubiquitination, electron transport, and signaling pathways (Supplementary Fig. S3). Most targets are involved in transcription regulation, and have a broad range of physiological functions. The function categories of miRNA targets in GO analysis are overlapped and complicated, and we therefore categorized the targets roughly into five aspects of plant physiological process according to the annotation in NCBI nr, Uniprot data, and previous reports: gene expression regulation, primary & secondary metabolism, growth & development, signal transduction, and stress response. To be concise, the miRNAs identified in this work are parenthesized behind their targets in the following text.

The first aspect comprises genes involved in all levels of gene expression regulation: DNA replication, transcription, post-transcriptional regulation, translational process and posttranslational modification. Non-structural maintenance of chromosomes element 4 (Jcu-MIR6445) is involved in DNA replication, recombination and repair. Most targets are involved in gene transcription process and some are well known families of transcription factors, such as DELLA protein, leucine zipper protein, AP2/ERF and B3 domain-containing protein, NAC domain-containing protein, WRKY, squamosa promoter-binding-like protein, MYB, GAMYB, etc (Supplementary Table S3). The targets are also involved in post-transcriptional regulation, such as endoribonuclease Dicer homolog 1 (Jcu-MIR162) and argonaute 2 (Jcu-MIR403), which contribute to the production of miRNA or siRNA. Pentatricopeptide repeat (PPR) proteins (Jcu-nMIR021) are a large family of modular RNA-binding proteins which mediate several aspects of gene expression primarily in organelles but also in nucleus. These proteins facilitate processing, splicing, editing, stability, RNA processing and modification. Translation initiation factor eIF-2B subunit (Jcu-MIR025) and eukaryotic peptide chain release factor GTP-binding subunit EF3A (Jcu-MIR1446) are typical factors involved in translational process. Some target genes function at posttranslational modification level, in which protein turnover is regulated through ubiquitin-dependent pathway, such as RING-H2 finger protein ATV5 (Jcu-nMIR011), F-box only protein 6 (Jcu-MIR394), E3 ubiquitin-protein ligase (Jcu-MIR396), ubiquitin-conjugating enzyme (Jcu-nMIR021), and ubiquitin-like modifier-activating enzyme (Jcu-MIR172). The results indicate that miRNAs are involved indirectly in all levels of gene expression regulation, though miRNAs per se are post-transcriptional regulators.

The second aspect includes the genes involved in primary & secondary metabolism. Some target genes play roles in primary metabolism, i.e., protein, carbohydrate, and lipid metabolism. A sec. 1 family domain-containing protein MIP3 (Jcu-nMIR003) is required for proper maturation of seed storage proteins and it forms a complex with MAG2, ZW10/MIP1 and MIP2 on the endoplasmic reticulum which may be responsible for efficient transport of seed storage proteins. The 1, 4-alpha-glucan-branching enzyme 2–2 (Jcu-nMIR011) is involved in starch biosynthetic process. Eight miRNA targets are related to lipid metabolic pathways (Supplementary Table S3), among which three targets were involved in the lipid or fatty acid biosynthetic processes: cytochrome P450 (Jcu-MIR156f) catalyzes the omega-hydroxylation of various fatty acids, which is important for cutin biosynthesis, trichome differentiation, establishment of apical dominance and senescence45; GP1 mannosyltransferase 1 (Jcu-MIR403) works in the pathway of cosylphosphatidylinositol-anchor biosynthesis, a part of glycolipid biosynthesis; and malonate-CoA ligase (Jcu-MIR403) catalyzes the formation of malonyl-CoA directly from malonate and CoA. Among the eight targets related to lipid metabolic pathways, five targets play a part in the lipid catabolic processes: monoacylglycerol lipase ABHD6 (Jcu-nMIR013), sn1-specific diacylglycerol lipase (Jcu-MIR394), E3 ubiquitin-protein ligase (Jcu-MIR396), ubiquitin-conjugating enzyme (Jcu-nMIR021), and ubiquitin-like modifier-activating enzyme (Jcu-MIR172). The results indicate that miRNAs are involved indirectly in all levels of gene expression regulation, though miRNAs per se are post-transcriptional regulators.

The third aspect comprises genes involved in growth & development, including genes involved in cell division, cell differentiation and seed development. Growth-regulating factors (GRF1, 2, 4, 5, 7, 8 and 9) targeted by Jcu-MIR396 are transcription activators associated with the cell expansion of leaves and cotyledons. The evidences obtained from Arabidopsis, rice, and maize proved that miR396-GRF, a conserved regulatory network in plants, plays an important role in leaf growth and seed development, acting in the regulation of meristem function, at least partially through cell proliferation control44,45. Protein CUP-SHAPED COTYLEDON 2 (Jcu-MIR164) involved in meristem initiation and cell division patterns is also a target of Ath-MIR164 in Arabidopsis46. Coiled-coil domain-containing protein SCD2, AUGMIN subunit 5, and trafficking protein particle complex II-specific subunit targeted by Jcu-MIR156, 477, and nmiR001 respectively, take part in cell division and cell expansion47–49. Callose synthase 9 (Jcu-MIR319), cellulose synthase-like protein G3 (Jcu-MIR395), and leucine-rich repeat extensin-like protein 2 (Jcu-nMIR005) are involved in cell wall organization. Homeobox-leucine zipper protein ATHB-8, ATHB-14 (PHABULOSA), ATHB-15 (CORONA), and REVOLUTA belong to class III homeodomain-leucine zipper genes,
Differentially Expressed miRNAs During Seed Development. Plant miRNAs play pivotal roles in the regulation of plant growth and development and therefore it is crucial to outline the spatiotemporal expression patterns of miRNAs. To gain insight into the possible developmental stage-dependent roles of miRNAs in *Jatropha*, the expression levels and patterns of miRNAs in seed were determined at three different developmental stages. The miRNA expression levels were shown as TPM values which were comparable between different developmental stages.

Figure 2. The differentially expressed miRNAs during seed development of *J. curcas*. The miRNA expression levels were estimated for each sample by mapping sRNA back onto the miRNA precursor sequence, and read count for each miRNA was obtained from the mapping results. Differential expression analyses of miRNAs were performed based on Read counts using the DESeq 2, in which *p* values were adjusted using the Benjamini and Hochberg’s approach for controlling the false discovery rate (FDR). The variation of miRNA levels in three different developmental stages, i.e., young (Y), intermediate (I) and mature (M) seeds were shown as the base-2 logarithm of ratios (log2 fold change) between different developmental stages (I/Y, M/I and M/Y). The miRNAs whose expression levels between any two of the different developmental stages changed significantly (|log2 fold change| > 1 and FDR adjusted *p* < 0.05) were assigned as differentially expressed miRNAs (indicated by *).
young through mature stages without fluctuation (Fig. 2). Among these differentially expressed miRNAs, Jcu-MIR171a/b and Jcu-MIR390 were down-regulated most significantly. Jcu-MIR171b targets scarecrow-like protein 15 (XM_012224813.2) which is a transcription factor involved in plant development. MIR390 targets protein NRT1/ PTR FAMILY 4.6 (XM_012224813.2) which is involved in cellular abscisic acid (ABA) transport and uptake65. Jcu-nMIR001, nMIR002 and nMIR013 were very highly expressed in mature seeds, but hardly detected in young and intermediate stages (Supplementary Table S4). Chloroplastic photosynthetic NDH subunit of subcomplex B 3 (XM_012223240.2; target of Jcu-nMIR001) shuttles electrons in the photosynthetic electron transport in photosystem I to produce energy66. Another target of Jcu-nMIR001 is trafficking protein particle complex II-specific subunit 130 (XM_012215242.2), which is responsible for growing cell plate in mitotic active cells48. Jcu-nMIR002 targets auxin-responsive protein SAUR50-like (XM_020682576.1), which promotes cell expansion during plant growth67. Jcu-nMIR013 targets monoacylglycerol lipase ABHD6 (XM_012226208.2) which participates catabolic process of lipids, and the high level of Jcu-nMIR013 in mature seeds should repress the lipid catabolic process and so benefit the lipid accumulation.

Jatropha 11 kD late embryogenesis abundant protein belongs to late embryogenesis (LEA) group 1 (XM_012232372.2) involved in the acquisition of desiccation tolerance during late phase of embryogenesis68,69. It is targeted by Jcu-MIR394, which was down-regulated significantly during seed maturation, probably facilitating the accumulation of LEA protein at mature stage to improve desiccation tolerance. However, it is hard to find an unambiguous inverse correlation between the differentially expressed miRNAs and the target mRNAs levels (data not shown), because miRNAs might play a part role in the regulation of mRNA levels and some targets were regulated by miRNAs at translational level instead of cleavage. Degradome sequencing should be a better choice to solve this problem28.

To our surprise, most differentially expressed miRNAs were observed during seed development from intermediate to mature stages, and only three miRNAs (Jcu-MIR390 and Jcu-395a/b) were observed from young to intermediate. Reverse transcription (RT) quantitative real-time PCR (qPCR) was then performed for the validation of differentially expressed miRNAs. In addition to Jcu-miR390 and Jcu-395a/b, three more miRNAs (Jcu-miR477, Jcu-nMIR011, and Jcu-nMIR023) were observed to be differentially expressed from young to intermediate seeds, which was still much less than the number of differentially expressed miRNAs from young to mature (29 miRNAs). Nevertheless, the trend of expression variation of miRNAs from RT-qPCR agreed very well with the sequencing results in terms of up or down regulation (Supplementary Fig. S4). A heatmap was made to gain an overview of the differentially expressed miRNAs (Fig. 3). The global expressions of the 29 differentially expressed miRNAs had high correlations among three replicates, and samples from three different developmental stages of J. curcas seeds were grouped into three clades accordingly, suggesting that the data sets were reliable and ideal for statistical analysis for differentially expressed miRNAs (Fig. 3). The heatmap profiles were similar between young seeds and intermediate ones, which might be due to the young seeds were in the histodifferentiation stage and...
the intermediate seeds were in the early transition from histodifferentiation to seed filling stage\(^7\), and the two stages might have overlapped physiological process such as cell division and tissue differentiation. Nonetheless, a huge difference for the global profile of miRNA levels in mature seeds was observed when compared with the young and intermediate stages (Fig. 3). During the transition from intermediate to mature stage, seeds were developing much faster than before in regards to length, fresh weight and dry weight, and were suffering desiccation stress (Supplementary Fig. S1). These results from deep sequencing and RT-qPCR both suggested that the post-transcriptionally regulation of genes by miRNAs mainly happened at the late seed developmental stages when seeds experienced organic matter accumulation and desiccation stress.

Identification of IsomiRNAs. Some miRNA variants, known as isomiRNAs (isomiRs), have additional nucleotides in the 5' or 3' terminus when compared to canonical miRNAs, which might be a consequence of inaccuracies in Dicer pre-miRNA processing or post-transcriptional modification\(^1\)–\(^4\)\(^7\)\(^–\)\(^8\). A total of 36 isomiRs belonging to 13 families (Jcu-MIR 159, 166, 167, 319, 393, 396, nMIR003, nMIR004, nMIR005, nMIR010, nMIR022, nMIR026, nMIR027; see Supplementary Table S6) were detected. Among these isomiRs, thirty 3' isomiRs (3' deletion, extension and nontemplated modifications), seven 5' isomiRs (5' deletion and extension) and four polymorphic isomiRs (only harbor distinct nucleotide compositions within the miRNA sequences) were identified, which agrees to the fact that 3' isomiRs are the most frequently observed type of isomiR in animals and plants, in terms of both number and abundance\(^8\). Interestingly, no polymorphism within the seed sequence (2–9 nt) was observed, and it might suggest that the modification in these miRNA variants has little effect on target selection, because most of the isomiRs had similar targets with the canonical miRNAs (data not shown). The target miRNAs are recognized by multiple isomiRs plus the canonical miRNA, which might increase the specificity and efficacy of the target silencing\(^8\).

When inspecting the expression of these isofrom variants among nine libraries, most isofroms displayed a similar trend of expression during seed development, whereas only a few isofroms had significant divergence. It is noteworthy that isomiR319-1 increases while isomiR319-3 decreases sharply during the seed developing process (Supplementary Table S5), suggesting that isomiR members in the same family might have different regulation mechanisms.

Conclusions

The identification of 93 high confidence miRNAs and their targets provides useful insights into miRNA-mediated regulatory mechanism, substance accumulation, and the adaption to dehydration stress during seed development of \(J.\ curcas\). A lot of miRNAs were predicted to regulate target genes involved in transcription regulation, lipid metabolism and other important biological processes. These miRNAs might be valuable in improving the yield and quality of \(J.\ curcas\) seed oil. Most differentially expressed miRNAs were observed in the late stage of seed development, indicating that miRNAs play important roles in the accumulation of organic matter and dehydration stress during seed maturation. However, further studies are necessary to validate the miRNA targets and the roles of miRNAs in the complex regulation mechanism.

Materials and Methods

Seed Collection and RNA Isolation. Fruits from \(J.\ curcas\) L. trees grown in Xishuangbanna Tropical Botanical Garden (21°54' N, 101°46' E, 580 m a.s.l.,) located in Mengla County, Yunnan Province, China, were collected randomly from 6 plants at 5–10 (young seeds, with seed length less than 10 mm), 12–20 (intermediate seeds, with seed length in the range of 13 to 17 mm) and 25–35 (mature seeds, with seed length more than 20 mm) days after flower opening (DAF) (Supplementary Fig. S1). Three independent biological replicates of developing seeds at each stage were collected and immediately frozen in liquid nitrogen and then stored at \(-80^\circ C\). Total RNA was isolated from a pool of seeds from each stage with Trizol (Invitrogen, CA, USA), according to the manufacturer's protocol.

sRNA Library Construction and Deep Sequencing. Total RNA (1.5 μg per sample) was sent to Biomarker Technologies (Beijing, China) for sRNA library construction and deep sequencing. The sRNA libraries were generated using NEBNext® UltraTM small RNA Sample Library Prep Kit for Illumina® (NEB, USA) following the manufacturer's recommendations. In brief, RNA bands corresponding to a size range of 16–30 nt were purified from the acrylamide gel. The sRNA molecules ligated with 5' adapters were used for reverse transcription and subsequent PCR. Small RNA samples were sequenced using Illumina HiSeq 2500 platform (San Diego, CA, USA) and single-end reads were generated. Three independent sRNA libraries were constructed from each of the three stages of developing seeds.

Sequence Data Analysis. The reads generated by sRNA-sequencing (named raw reads) were preprocessed with Fastx-toolkit (https://hannonlab.cshl.edu/fastx_toolkit/). First, the raw reads were processed to remove adapters. Then reads with >20% bases <Q30, or with N base >10%, or with polyA/T/C/G, or read length <18 nt or >30 nt, were filtered. The remaining reads named clean reads were used for further analysis. sRNAs derived from Viridiplantae rRNAs, scRNA, snRNAs, snoRNAs, tRNA, and repetitive elements (from the SILVA RNA, Rfam, tRNAdb, and Repbase databases) were identified by mapping with Bowtie v 0.12.9 without mismatches\(^8\). The remaining reads named unannotated reads without rRNA, scRNA, snoRNA, SNP, or repetitive element were used for miRNA identification.

miRNA Identification. The unannotated reads containing miRNAs were processed for miRNA identification by miRDeep2 v 2.0.0.5\(^3\) with modified parameters (sRNAs ≤ 15 hits; 250 nt flanking sequences) for plant miRNA characters\(^8\). In brief, the analysis procedure of miRDeep2 were: (1) The unannotated reads were aligned to the Jatropha genome sequences using Bowtie v 0.12.9 with perfect matches\(^8\), and only sRNAs with no more
than 15 hits were kept and their flanking sequences (250 nt on each side) on the genome were extracted as candidate miRNA precursors, to satisfy the parameters of miRNAs in plant species as described\(^3\); (2) the precursors were folded in silico using RNAfold (v2.1.7; default parameters) to find the precursors with expected structures; and (3) the unannotated reads were aligned to the precursors, and statistical analyses of read distributions were generated for true miRNA evaluation. To select high confidence miRNAs, more strict criteria were adopted to check the mirDeep2 output figures manually\(^25,26,32\). Candidate miRNAs were then aligned to the known miRNAs from miRBase 21.0. The miRNAs shared homology with known miRNAs (allowed two mismatches) were identified as conserved miRNA, and those shared no homology to all known sequences in miRBase, novel miRNAs. Isoform miRNAs (isomiRNAs) were analyzed using isomiRiD v 0.53 (using default parameters except for cutoff value 100; RangeSize: 18–26)\(^77\). The reads that were perfectly matched in the annotated miRNA precursors but not representing the identified miRNA mature and star sequences, shifted not more than four positions from their original mature or star miRNA 5’ position (allowing one mismatch in the middle), and had a total number of reads not less than 50% of the total reads of their reference miRNA or had a total reads of more than 10,000, were considered as isoform miRNAs in *Jatropha*.

miRNA Target Prediction. The miRNA target prediction was performed by aligning the mature miRNA sequences against *J. curcas* RNA sequences, with Targetfinder v 1.6 using a strict prediction score cutoff value 3 (default = 4)\(^19\) and psRNAAtarget (2017 release) using default parameters\(^18\). Target annotation was performed by using BLASTX (blast 2.2.25++; -evalue 1e-6, -word_size 6, and -max_target_seqs. 10) based on sequence similarity with genes from the NCBI nr, Swiss-Prot/Uniprot protein databases (http://www.expasy.ch/sprot), and Clusters of Orthologous Groups of proteins (COG) database (http://www.ncbi.nlm.nih.gov/COG/). Blast2GO was employed to obtain Gene Ontology (GO) annotation (http://www.geneontology.org) according to molecular function, biological process, and cellular component ontology with default parameters to evaluate their putative functions\(^78\).

For those miRNA targets could not be mapped by Blast2GO, eggNOG (v4.5) was used to characterize their functional terms\(^79\).

In Silico Expression Analysis of miRNAs. The read count for each miRNA was obtained from each sample by mapping sRNA back onto the precursor sequence using the quantifier module of miRDeep2 v 2.0.0.5 with parameters allowing one mismatch and a small window of 2 nt upstream and 5 nt downstream as described by Friedländer et al.\(^31\). To compare the abundances of miRNA between different samples, a normalized read counts named TPM value for each sample was defined as ‘counts of reads mapped to miRNA × 1 000 000/’reads mapped to the reference genome’\(^20,26\). The DESeq2 software provides statistical routines for determining differential expression in digital miRNA expression data using a model based on the negative binomial distribution\(^80\), and therefore the read counts of miRNAs from different samples were further analyzed using the DESeq2R package (1.14.1) with default parameters. The resulting ‘log, fold change’ represented the base-2 logarithm of fold change of expression levels between any two of young, intermediate, and mature stages; the resulting adjusted \(p\) values were \(p\) values adjusted using the Benjamini and Hochberg's approach for controlling the false discovery rate (FDR). The miRNAs whose expression levels between any two of the three different developmental stages varied significantly (|log2 fold change| \(>1\); FDR adjusted \(p < 0.05\)) were assigned as differentially expressed ones.

RT-qPCR. RT-qPCR was performed following previously reported procedures\(^81\). In brief, small RNAs (<200bp) were extracted with the BioTeKe miRNA extraction kit (BioTeKe Corporation, China). The extracted small RNAs were treated with DNase I and polyadenylated by poly(A) polymerase (New England Biolabs) following by reverse transcription using SuperScriptTM III reverse transcriptase (Invitrogen) according to the manufacturer's instructions. Real-time PCR was performed following a standard SYBR Premix Ex Taq II (TaKaRa) protocol. PCRs were performed in ABI StepOne (USA) as follows: 95 °C for 5 min; then followed by 40 cycles of denaturing (95 °C for 10 s, 60 °C for 30 s). The differences in gene expression were calculated using the \(2^{-\Delta\Delta C_{t}}\) analysis method\(^82\), and the transcription levels were determined by relative quantification using the 5.8S RNA as internal reference gene and the young seeds as control. All primers use in RT-qPCR experiments were listed in Supplementary Table S6.

Data Availability

All sequencing data were deposited in the NCBI Sequence Read Archive under ID SRA616450. All data generated or analyzed during this study are included in this published article and its Supplementary Information files.

References

1. Yang, M. F. et al. Proteomic analysis of oil mobilization in seed germination and postgermination development of *Jatropha curcas*. *J. Proteome Res.* **8**, 1441–1451 (2009).
2. Kandpal, J. B. & Madan, M. J. *Jatropha curcas*: a renewable source of energy for meeting future energy needs. *Renew. Energ.* **6**, 159–160 (1995).
3. Abdulla, R., Chan, E. S. & Ravindra, P. Biodiesel production from *Jatropha curcas*: a critical review. *Crit. Rev. Biotechnol.* **31**, 53–64 (2011).
4. Opanashaw, K. A review of *Jatropha curcas*: an oil plant of unfulfilled promise. *Biomass Bioenergy* **19**, 1–15 (2000).
5. Berchmans, H. J. & Hirata, S. Biodiesel production from crude *Jatropha curcas* L. seed oil with a high content of free fatty acids. *Bioreour. Technol.* **99**, 1716–1721 (2008).
6. Xu, G., Huang, J., Yang, Y. & Yao, Y. A. Transcriptome analysis of flower sex differentiation in *Jatropha curcas* L. using RNA sequencing. *PLoS ONE* **11**, e0145613 (2016).
7. Natarajan, P. et al. Gene discovery from *Jatropha curcas* by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. *BMC Genomics* **11**, 606 (2010).
8. Costa, G. G. L. et al. Transcriptome analysis of the oil-rich seed of the bioenergy crop *Jatropha curcas*. *BMC Genomics* **11**, 462 (2010).
9. Xu, R. H., Wang, R. L. & Liu, A. Z. Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in developing seeds of *Jatropha curcas L.*. *Biomass Bioenergy* **35**, 1683–1692 (2011).

10. Jiang, H. W. *et al.* Global analysis of gene expression profiles in developing physic nut (*Jatropha curcas L.*) seeds. *PLoS One* **7**, e36522 (2012).

11. Zhang, L. *et al.* Global analysis of gene expression profiles in physic nut (*Jatropha curcas L.*) seedlings exposed to salt stress. *PLoS One* **9**, e97878 (2014).

12. Sato, S. *et al.* Sequence analysis of the genome of an oil-bearing tree, *Jatropha curcas L.* DNA Res. **18**, 65–76 (2010).

13. Hirakawa, H. *et al.* Upgraded genomic information of *Jatropha curcas L.*. *Plant Biotechnol.* **29**, 123–130 (2012).

14. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell* **116**, 281–297 (2004).

15. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. *Cell* **136**, 215–233 (2009).

16. Voinnet, O. Origin, biogenesis, and activity of plant microRNAs. *Cell* **136**, 669–687 (2009).

17. Kurihara, Y. & Watanabe, Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. *Proc. Natl. Acad. Sci. USA* **101**, 12753–12758 (2004).

18. Rogers, K. & Chen, X. Biogenesis, turnover, and mode of action of plant microRNAs. *Plant Cell* **25**, 2383–2399 (2013).

19. Corbes, A. P. *et al.* Identifying conserved and novel microRNAs in developing seeds of *Brassica napus* using deep sequencing. *PLoS One* **7**, e50663 (2012).

20. Chuck, G., Candela, H. & Hake, S. Big impacts by small RNAs in plant development. *Curr. Opin. Plant Biol.* **12**, 81–86 (2009).

21. Wang, C. M. *et al.* Isolation and Identification of miRNAs in *Jatropha curcas*. *Int. J. Biol. Sci.* **8**, 418–429 (2012).

22. Gali, V. *et al.* Identifying microRNAs and transcript targets in *Jatropha seeds*. *PLoS One* **9**, e83727 (2014).

23. Meyers, B. C. *et al.* Criteria for annotation of plant MicroRNAs. *Plant Cell* **20**, 3186–3190 (2008).

24. Kozomara, A. & Grifiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. *Nucleic Acids Res.* **42**, D68–73 (2014).

25. Huang, D., Koh, C., Feurtado, J., Tsang, E. & Cutler, A. MicroRNAs and their putative targets in *Brassica napus seed* maturation. *BMC Genomics* **14**, 140 (2013).

26. Wang, Z., Qiao, Y., Zhang, J., Shi, W. & Zhang, J. Genome wide identification of microRNAs involved in fatty acid and lipid metabolism of *Brassica napus* small RNA and degradation sequencing. *Gene* **619**, 61–70 (2017).

27. Cao, S. *et al.* Comparative profiling of miRNA expression in developing seeds of high linoleic and high oleic safflower (*Carthamus tinctorius L.*) plants. *Front. Plant Sci.* **4**, 489 (2013).

28. Yang, X. & Li, L. miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. *Bioinformatics* **27**, 2614–2615 (2011).

29. Friedlander, M. R., Mackowiak, S. D., Li, N., Chen, W. & Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. *Nucleic Acids Res.* **40**, 37–52 (2012).

30. Taylor, R. S., Tarver, J. E., Hiscock, S. J. & Donoghue, P. C. Evolutionary history of plant microRNAs. *Trends Plant Sci.* **19**, 175–182 (2014).

31. Yin, H. *et al.* Phylogenetic tree-informed microRNAome analysis uncovers conserved and lineage-specific miRNAs in *Camellia* during floral organ development. *J. Exp. Bot.* **67**, 2641–2653 (2016).

32. Bartel, B. & Bartel, D. P. MicroRNAs: at the root of plant development? *Plant Physiol.* **132**, 709–717 (2003).

33. Dui, X. & Zhao, P. X. pRNATarget: a plant small RNA target analysis server. *Nucleic Acids Res.* **39**, W153–159 (2011).

34. Fahlgren, N. *et al.* High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. *PLoS One* **2**, e219 (2007).

35. Rogans, S. J. & Rey, C. Unveiling the microneme of *cassava* (*Manihot esculenta Crantz*). *PLoS One* **11**, e0147251 (2016).

36. Cuperus, J. T., Fahlgren, N. & Carrington, J. C. Evolution and functional diversification of MIRNA genes. *Plant Cell* **23**, 431–442 (2011).

37. Manna, S. An overview of pentatricopeptide repeat proteins and their applications. *Biochimie* **113**, 93–99 (2015).

38. Pinot, F. & Beisson, F. Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles. *FEBS J.* **278**, 195–205 (2011).

39. Divakara, B. N., Upadhaya, H. D., Wani, S. P. & Gowda, C. L. L. Biology and genetic improvement of *Jatropha curcas L.*: A review. *Appl. Energy* **87**, 732–740 (2010).

40. Power, R., Kurz, W. G. & De Luca, V. Purification and characterization of acetylcoenzyme A: deacylating vinylolone 4-O-acetyltransferase from *Catharanthus roseus*. *Arch. Biochem. Biophys.* **279**, 370–376 (1990).

41. Takahashi, S. *et al.* Functional characterization of prennaspirodiene oxygenase, a cytochrome P450 catalyzing regio- and stereo-specific hydroxylations of diverse sesquiterpene substrates. *J. Biol. Chem.* **282**, 31744–31754 (2007).

42. Zhang, K. *et al.* Investigation of miR396 and growth-regulating factor regulatory network in maize grain filling. *Acta Physiol. Plant.* **37**, 1–12 (2015).

43. Samad, A. F. *et al.* MicroRNA and transcription factor: key players in plant regulatory network. *Front. Plant Sci.* **8**, 565 (2017).

44. Laufs, P., Peaucelle, A., Morin, H. & Traas, J. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. *Development* **131**, 4311–4322 (2004).

45. McMichael, C. M. *et al.* Mediation of clathrin-dependent trafficking during cytokinesis and cell expansion by Arabidopsis stomatal cytokinesis defective proteins. *Plant Cell* **25**, 3910–3925 (2013).

46. Jaber, E. *et al.* A putative TRAPPII tethering factor is required for cell plate assembly during cytokinesis in Arabidopsis. *New Phytol.* **187**, 751–763 (2010).

47. Hotta, T. *et al.* Characterization of the Arabidopsis augmum complex uncovers its critical function in the assembly of the acentrosomal spindle and phragmoplast microtubule arrays. *Plant Cell* **24**, 1494–1509 (2012).

48. Prigge, M. J. *et al.* Class III homeodomain-leucine zipper gene family members have overlapping, antagonist, and distinct roles in Arabidopsis development. *Plant Cell* **17**, 61–76 (2005).

49. Baima, S. *et al.* The arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. *Plant Physiol.* **126**, 643–655 (2001).

50. Green, K. A., Prigge, M. J., Katzman, R. B. & Clark, S. E. CORONA, a member of the class III homeodomain leucine zipper gene family in Arabidopsis, regulates stem cell specification and organogenesis. *Plant Cell* **17**, 691–704 (2005).

51. Ochando, I. *et al.* Mutations in the microRNA complementarity site of the INCURVATA4 gene perturb meristem function and axialize lateral organs in Arabidopsis. *Plant Physiol.* **141**, 607–619 (2006).

52. Pagnussat, G. C. *et al.* Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. *Development* **132**, 603–614 (2005).

53. Schommer, C. *et al.* Control of jasmonate biosynthesis and senescence by miR319 targets. *PLoS Biol.* **6**, e230 (2008).

54. Itoh, K. D., den Boer, B. G., Van Montagu, M. & Okamura, J. K. Control of Arabidopsis flower and seed development by the homeotic gene *APETALA2*. *Plant Cell* **6**, 1211–1223 (1994).

55. Koyama, T., Furutani, M., Tanaka, M. & Ohme-Takagi, M. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. *Plant Cell* **19**, 473–484 (2007).
58. Riefler, M., Novak, O., Strnad, M. & Schmulling, T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18, 40–54 (2006).
59. Wojciech, A. M. & Gaj, M. D. miR393 contributes to the embryonic transition induced in vitro in Arabidopsis via the modification of the tissue sensitivity to auxin treatment. Plant Cell 244, 231–243 (2016).
60. Yang, J. H., Han, S. J., Yoon, E. K. & Lee, W. S. Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res. 34, 1892–1899 (2006).
61. Kushwaha, R., Singh, A. & Chattopadhyay, S. Calmodulin7 plays an important role as transcriptional regulator in Arabidopsis seedling development. Plant Cell 20, 1747–1759 (2008).
62. Gong, Z. et al. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc. Natl. Acad. Sci. USA 99, 11507–11512 (2002).
63. Gong, Z. et al. A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17, 256–267 (2005).
64. Ren, H. & Gray, W. M. SAUR proteins as effectors of hormonal and environmental signals in plant growth. Mol. Plant 8, 1153–1164 (2015).
65. Liang, T., Yu, J., Liu, C. & Guo, L. IsomiR expression patterns in canonical and Dicer-independent microRNAs. Plant Sci. 181, 623–631 (2011).
66. Ifuku, K., Endo, T., Shikanai, T. & Aro, E. M. Structure of the chloroplast NADH dehydrogenase-like complex: nomenclature for nuclear-encoded subunits. Plant Cell Physiology 52, 1560–1568 (2011).
67. Neilsen, C. T., Goodall, G. J. & Bracken, C. P. IsomiRs—the overlooked repertoire in the dynamic microRNAome. Trends Genet. 28, 544–549 (2012).
68. Liu, H. et al. Proteomic analysis of the seed development in Jatropha curcas: From carbon flux to the accumulation of I. Proteomics 91, 23–40 (2013).
69. Neilsen, C. T., Goodall, G. J. & Bracken, C. P. IsomiRs—the overlooked repertoire in the dynamic microRNAome. Trends Genet. 28, 544–549 (2012).
70. Guo, L. & Chen, F. A challenge for miRNA: multiple isomiRs in mRNAomics. Gene 544, 1–7 (2014).
71. Liang, T., Yu, J., Liu, C. & Guo, L. IsomiR expression patterns in canonical and Dicer-independent microRNAs. Mol. Med. Report. 15, 1071–1078 (2017).
72. Ebhardt, H. A., Fedynak, A. & Fahelman, R. P. Naturally occurring variations in sequence length creates microRNA isoforms that differ in argonaute effector complex specificity. Silence 1, 12 (2010).
73. Ahmed, F. et al. Comprehensive analysis of small RNA-seq data reveals that combination of miRNA with its isomiRs increase the accuracy of target prediction in Arabidopsis thaliana. RNA Biol. 11, 1414–1429 (2014).
74. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
75. de Oliveira, L. E., Christoff, A. P. & Margis, R. isomiRID: a framework to identify microRNA isoforms. Bioinformatics 29, 2521–2523 (2013).
76. Gotz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435 (2008).
77. Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–293 (2016).
78. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
79. Zhong, C. Y. et al. Conservation and divergence of microRNAs and their functions in Euphorbiaceae plants. Nucleic Acids Res. 38, 981–995 (2010).
80. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 delta delta Ct method. Methods 25, 402–408 (2001).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (31370674; 21606020); Beijing Natural Science Foundation (2164059); Funding Project for Scientific Research Quality Improvement in Beijing University of Agriculture (GJB2013001). We thank Prof. Rogerio Margis for helping us in the isomiR analysis.

Author Contributions
M.F.Y. and L.Q.M. designed the experiments, analyzed the data and wrote the main manuscript text; F.Y.X. prepared Supplementary Figs S1–S4; H.S.L. analyzed the data and prepared all other figures and tables. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-41189-y.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.