Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay

Alexandre Melnikov1,9, Anand Murugan2,9, Xiaolan Zhang1,9, Tiberiu Tesileanu2,3, Li Wang1, Peter Rogov1, Soheil Feizi1,4, Andreas Gnirke1, Curtis G Callan Jr2,3, Justin B Kinney5, Manolis Kellis1,4, Eric S Lander1,6,7 & Tarjei S Mikkelsen1,8

Learning to read and write the transcriptional regulatory code is of central importance to progress in genetic analysis and engineering. Here we describe a massively parallel reporter assay (MPRA) that facilitates the systematic dissection of transcriptional regulatory elements. In MPRA, microarray-synthesized DNA regulatory elements and unique sequence tags are cloned into plasmids to generate a library of reporter constructs. These constructs are transfected into cells and tag expression is assayed by high-throughput sequencing. We apply MPRA to compare >27,000 variants of two inducible enhancers in human cells: a synthetic cAMP-regulated enhancer and the virus-inducible interferon-β enhancer. We first show that the resulting data define accurate maps of functional transcription factor binding sites in both enhancers at single-nucleotide resolution. We then use the data to train quantitative sequence-activity models (QSAMs) of the two enhancers. We show that QSAMs from two cellular states can be combined to design enhancer variants that optimize potentially conflicting objectives, such as maximizing induced activity while minimizing basal activity.

Genetic analysis and engineering would greatly benefit from an improved understanding of how transcriptional regulatory elements are encoded in DNA. Evolutionary analysis and chromatin-state mapping have revealed myriad regulatory elements across the human genome1,2, but we are largely unable to explain why an element is active in a specific cell type or to predict the effect of a specific mutation. Moreover, although synthetic regulatory elements can provide powerful tools for genetics, high-throughput screening and gene therapy3–5, our ability to engineer such elements is limited, particularly in mammalian systems, where directed evolution is generally impractical and traditional functional assays6 suffer from low throughput.

To enable systematic dissection and optimization of transcriptional regulatory elements, we developed MPRA (Fig. 1). Briefly, we first synthesized tens of thousands of oligonucleotides7 that contain a library of regulatory elements, each coupled to a short tag. We used the oligonucleotides to generate a pool of plasmids, where each plasmid contains one of the regulatory elements, an optional invariant promoter, an arbitrary open reading frame (ORF) and an identifying sequence tag. We co-transfected these plasmids into cells, where active elements drive transcription of mRNAs containing the tags in their 3′ untranslated regions. To estimate their relative activities, we sequenced and counted the tags in the reporter mRNAs and the plasmids pools, and then took the ratios of these counts. In contrast to the synthetic saturation mutagenesis assay of ref. 8, which was based on in vitro transcription of linear DNA, MPRA is suitable for use in mammalian cells and therefore allows assaying regulatory activity in a more natural context. The resulting data are amenable to a variety of analyses, including high-resolution footprinting and quantitative modeling9.

As a proof of concept, we applied MPRA to study two inducible enhancers: a synthetic cAMP-regulated enhancer (CRE), which is widely used as a cellular cAMP sensor4, and the virus-inducible enhancer of the human interferon-β gene (IFNB, also known as IFNB1), which is one of the most comprehensively studied mammalian regulatory elements10. These sequences represent two different enhancer architectures11. The synthetic CRE is a ‘billboard’ enhancer that contains multiple nonoverlapping binding sites for the cAMP-responsive transcription factor CREB. In contrast, the IFNB enhancer contains overlapping binding sites for six different transcription factors that assemble into a highly cooperative ‘enhanceosome’.

In this report, we first establish that MPRA can accurately identify functional sequence features in both enhancers at nucleotide resolution. Next, we use MPRA data to train QSAMs9,12,13 that describe the activity of the enhancers in their induced or uninduced states.

1Broad Institute, Cambridge, Massachusetts, USA. 2Department of Physics, Princeton University, Princeton, New Jersey, USA. 3Simons Center for Systems Biology, Institute for Advanced Study, Princeton, New Jersey, USA. 4MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts, USA. 5Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA. 6Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 7Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA. 8Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. 9These authors contributed equally to this work. Correspondence should be addressed to T.S.M. (tarjei@broadinstitute.org).

Received 23 August 2011; accepted 20 January 2012; published online 26 February 2012; doi:10.1038/nbt.2137
Finally, we demonstrate that these QSAMs can be combined to identify mutations that increase enhancer inducibility (the ratio of induced versus uninduced activity).

RESULTS

Experimental design and mutagenesis strategies

We synthesized 142-mer oligonucleotide pools containing 87-nt CRE and IFNB enhancer variants, as well as 10-nt tags and various invariant sequences required for cloning (Supplementary Fig. 1).

We tested two different mutagenesis strategies. The first was ‘single-hit scanning’ where we assayed ~1,000 specific enhancer variants, including all possible single substitutions, multiple series of consecutive substitutions and small insertions at all positions (Supplementary Table 1). Each scanning variant was linked to 13 tags for a total of 13,000 distinct enhancer-tag combinations. This redundancy provides parallel measurements for each variant, which can be used to both quantify and reduce the impact of experimental noise, including tag-dependent bias (Supplementary Fig. 2). The second was ‘multi-hit sampling’ where we assayed ~27,000 distinct enhancer variants (Supplementary Table 2), each linked to a single tag. These variants were constructed by introducing random nucleotide substitutions into the enhancers at a rate of 10% per position. Because the variants were designed in silico and then synthesized, they provided a uniform mutational spectrum. This strategy is advantageous because each substitution is assayed in a larger fraction of the variants and the use of multiple substitutions enables detection of interactions; one disadvantage is that the measurements for individual variants are less accurate.

We cloned oligonucleotide pools synthesized according to both strategies into identical plasmid backbones, inserted a minimal TATA-box promoter and a luciferase gene between the variants and tags, and transfected the resulting plasmid pools into human embryonic kidney (HEK293T) cells. To induce the CRE or IFNB enhancer, we treated the transfected cells with forskolin or infected them with Sendai virus, respectively. To estimate the relative activities of the enhancer variants, we sequenced 20–120 million PCR-amplified mRNA and plasmid tags from each transfection.

Assay validation

We validated the resulting data using several different approaches (Supplementary Fig. 3). First, we examined the distributions of plasmid tag counts. We found that the vast majority (>99.6%) of the tags we designed were indeed present in each pool, and that their relative concentrations were similar (coefficient of variation, 0.45–1.0). This confirms we successfully generated high-complexity plasmid pools.

Second, we synthesized and transfected each of the two CRE plasmid pools twice. We found that ~13,000 and ~27,000 pairs of mRNA-plasmid tag ratios obtained from the single- and multi-hit pools, respectively, were highly correlated (Pearson $r^2 = 0.61$ and 0.67, least significant $P < 10^{-100}$). The medians of the 13 tag ratios from each distinct variant in the replicate single-hit pools were even more similar ($r^2 = 0.89, P < 10^{-100}$). This indicates that MPRA is robust, and that the noise level can be controlled by adjusting the number of distinct tags linked to each distinct variant.

Finally, we subcloned 24 plasmids from each of two CRE pools and individually measured their luciferase expression levels after forskolin treatment. We found a linear relationship between the MPRA- and luciferase-based activities for both pools ($r^2 = 0.45$ and 0.75, $P < 0.0002$). This indicates that MPRA is directly comparable to traditional reporter assays.

Single-hit scanning

We began our analysis by attempting to dissect the two induced enhancers using the scanning mutagenesis data. We estimated the relative activity of each variant by comparing the median of its 13 mRNA/plasmid tag ratios to the median ratio for tags linked to the corresponding wild-type enhancer.

We first focused on the CRE, which contains two consensus CREB dimer binding sites (denoted as sites 1 and 4 in Fig. 2a) separated by two monomer sites (sites 2 and 3). We found that 154 of the 261 possible single substitutions significantly altered its activity (5% FDR), with the majority (79%) resulting in decreased activity (Fig. 2b and Supplementary Table 3). The substitutions that resulted in the largest decreases were in or immediately flanking the CREB sites. Substitutions in the promoter-proximal CREB site 4 had the largest effects, which is consistent with reports of the cAMP responsiveness of CREB sites being inversely correlated with their distance from a TATA-box. Within the two dimer sites, substitutions in the central CGs were the most deleterious. This is consistent with biochemical data that show that this dinucleotide is critical for high-affinity CREB-DNA interactions.

Figure 1 Overview of MPRA. Oligonucleotides containing enhancer variants coupled to distinguishing tags are first generated using microarray-based DNA synthesis. The variants and tags are separated by two common restriction sites (circles/squares). The oligonucleotides are PCR amplified from universal primer sites (not shown) and directionally cloned into a plasmid backbone. An invariant promoter-ORF segment is then inserted between the variants and tags by double digestion and directional ligation. The resulting reporter plasmid pool is co-transfected into a population of cells. The relative regulatory activities of the transfected variants are inferred by sequencing and counting their corresponding tags from the cellular mRNA and the transfected plasmid pool. See Supplementary Figure 1 for additional details.
Substitutions at 47 of 61 positions outside of the CREB sites also caused significant (5% FDR), although generally more subtle, changes in activity. This may reflect the effects of cryptic non-CREB binding sites. In particular, two substitutions upstream of CREB site 1, as well as almost every substitution in a C-rich motif flanking CREB site 4, resulted in increased CRE activity. These substitutions may therefore cause either increased recruitment of activating factors or decreased recruitment of repressors.

Scanning the CRE with blocks of eight consecutive substitutions caused changes that were consistent with the single substitutions, but often more deleterious (Fig. 2c and Supplementary Fig. 4). Notably, although most single substitutions in CREB site 1 had no detectable effects, the functional relevance of this site was clearly supported by the combined effect of multiple substitutions.

Insertions of both 5 and 10 nt were well-tolerated at multiple positions between CREB sites 1 and 2 and between sites 3 and 4 (Fig. 2d and Supplementary Fig. 5). This implies that the CRE activity is not dependent on specific spacing or phasing between these sites. In contrast, insertions between sites 2 and 3 resulted in decreased activity, despite single substitutions having small effects in the same region. This may reflect a direct interaction between proteins at these two sites, which was also suggested by a study of these sites in their natural context16.

We next focused on the IFNB enhancer, which is a 44-nt sequence containing overlapping, nonconsensus binding sites for an ATF-2/c-Jun heterodimer, two IRF-3 and two IRF-7 proteins, and a p50/RELA (NF-κB) heterodimer (Fig. 3a)10. We included a small amount of flanking genomic sequence, for a total length of 87 nt. We found that 83 of the 261 possible single substitutions altered the enhancer's activity in virus-infected cells (5% FDR), and that almost all (92%) of these were within the 44-nt core (Fig. 3b and Supplementary Table 4). Scanning with consecutive substitutions did not reveal any unambiguously functional sequences outside of this core (Fig. 3c and Supplementary Fig. 6).

Within the core, there were only nine positions where all alternate nucleotides could be introduced without affecting the enhancer's activity. Strikingly, seven of these positions were in gaps between the 5’- and 3’-halves of IRF sites, where these proteins primarily interact with the DNA backbone10. Insertions were also largely deleterious within the core (Fig. 3d and Supplementary Fig. 7). Both 5- and 10-nt insertions were, however, tolerated between IRF-7 site 2 and the p50/RELA site, which is consistent with the absence of a known protein or interaction spanning this gap.

Finally, seven single substitutions within the core caused a significant increase in activity (5% FDR). At least four of these would be predicted to increase the affinity of a protein-DNA interaction, by introducing a central CG into the ATF-2/c-Jun site (TGAC(y)TAG to TGACGTGAGTAGGTACCGGCAGTATGACACTGCAGAAAGTCTGTGGGGTAACTGCAGTTACCCTCTTG-3’). Notably, although most single substitutions in CREB site 1 had no detectable effects, the functional relevance of this site was clearly supported by the combined effect of multiple substitutions.

Multiple-hit information footprints

We next attempted to dissect the two enhancers using the multi-hit sampling data9. To quantify the dependency between enhancer activity...
and substitutions at a specific position, we estimated the mutual information between the nucleotides at that position and the corresponding tag ratios across the ~27,000 variants. To infer the effect of substitutions on the basal enhancer activities, we also assayed the variants in untreated cells. The resulting ‘information footprints’ [9,19] are shown in Figures 4 and 5.

We found that the 27 most informative positions in the induced CRE footprint were all located in or immediately flanking the four CREB sites (Fig. 4a). The more symmetric footprint of dimeric CREB site 4 compared to site 1 likely reflects the palindromic flanks of the former (ATTGACGTCAAT versus AGTACGTCAGC). The information contents of CREB sites 2–4 (that is, the mutual information between their constituent nucleotides and the CRE activity) were substantially lower in the uninduced state, which is consistent with cAMP-dependence. In contrast, the information contents of CREB site 1 and the cryptic binding sites near CREB sites 1 and 4 were higher in the uninduced footprint. This is again consistent with the most promoter-distal CREB site being less cAMP-dependent [14] and suggests that these sites may be important for controlling the basal CRE activity.

The IFNB enhancer footprint from virus-infected cells shows, as expected, that its functionally relevant nucleotides are concentrated in the 44-nt core (Fig. 5a). Indeed, 35 of 46 positions that had significant mutual information with the enhancer’s activity (5% FDR) are located in the core. Strikingly, the uninduced IFNB footprint revealed only 8 informative positions, compared to 73 in the induced CRE footprint. This likely reflects the very low basal activity of the IFNB enhancer (at least fivefold lower than the uninduced CRE in luciferase assays).

Quantitative sequence-activity models

We next attempted to develop QSAMs [9,12,13] for the two enhancers, with the goal of predicting the activity of novel variants. As a first step, we used linear regression to train QSAMs where each nucleotide position is simply assumed to contribute additively to the log-transformed activity of the enhancers in the induced or uninduced states [12,13].

Linear QSAMs trained on the multi-hit data are shown in Figures 4b and 5b (see Supplementary Figs. 8 and 9 for models trained on single-hit data). Inspection revealed good qualitative correspondence with the sequence features described above. For example, the two CRE models show that CREB site 1 is critical for maximizing the induced activity, whereas site 4 has the largest influence on the basal activity.

To quantify how well the linear models describe our data, we compared their predictions to the observed activities for both the ~27,000 variants in the multi-hit training sets and the 261 single substitutions in the independent single-hit data. For the CRE, we found that the linear model for the induced state generates predictions that are highly correlated with the observed activities of both multi- and single-hit variants ($r^2 = 0.63$, $P < 10^{-100}$ and $r^2 = 0.79$, $P < 10^{-89}$, respectively). Remarkably, this model therefore explains ~90% of the nontechnical variance in both data sets (compare to $r^2 = 0.67$ and 0.89 between replicates, see above). The large number of multi-hit measurements ensures that this is not the result of overfitting ($r^2 \geq 0.62$ on fivefold cross-validation). In contrast, the induced IFNB model performed significantly better on single-hit variants ($r^2 = 0.61$, $P < 10^{-54}$) than on multi-hit variants ($r^2 = 0.071$, $P < 10^{-100}$), despite being trained on the latter set.
The difference in the fit of linear models appears to reflect the different architectures of the enhancers. Most CRE multi-hit variants disrupt one or more of the nonoverlapping consensus CREB sites, which caused large (median = 4.7-fold) and roughly additive reductions in its induced activity, until an apparent minimum is reached (Supplementary Table 5). Multiple substitutions in the induced IFNB enhancer generally caused weaker (median = 1.8-fold) and nonadditive reductions in activity, which may reflect its initially weaker nonconsensus binding sites or more complex interactions between its transcription factors.

Because both enhancers showed evidence of nonlinear responses, we next attempted to refine our QSAMs by incorporating functional nonlinearities. We fit a variety of QSAMs to the data, including ones describing either dinucleotide interactions or biophysical interactions between DNA-bound proteins (Supplementary Notes and Supplementary Tables 5 and 6). Model parameters were optimized using linear regression or mutual information maximization. For the CRE, the best performing QSAM was a ‘linear-nonlinear’ model in which each nucleotide position is assumed to contribute additively to a linear activation measure, and a sigmoidal function of that measure then gives the transcriptional response. The optimal parameters for the linear part of this model are virtually identical ($r^2 = 0.98$) to the strictly linear QSAM, but the two additional parameters that describe the sigmoidal nonlinearity allow the model to describe both minimum and maximum activation levels. Notably, this nonlinearity appears to capture much of the remaining nontechnical variance in the induced CRE data ($r^2 = 0.72$, $P < 10^{-100}$, compared to $r^2 = 0.67$ between the two replicates). For the IFNB enhancer, the best performing models were those that incorporated dinucleotide interactions, which is consistent with its more complex architecture, although no model provided more than a modest improvement over the linear QSAM (up to $r^2 = 0.10$, $P < 10^{-100}$). Thus, although linear QSAMs are imperfect representations of the underlying biological systems, in these cases they appear to provide a reasonable trade-off between complexity and predictive power.

Model-based optimization

Linear QSAMs have previously proven useful for engineering regulatory elements in bacteria. To explore the potential for model-based optimization of synthetic regulatory elements in mammals, we next attempted to design enhancers with modified activities (Fig. 6).

We first attempted a ‘greedy’ approach to maximize the induced enhancer activities. We selected, for each position, the nucleotide predicted to make the largest activity contribution according to the corresponding linear model. This resulted in changing the CRE at 36 of 87 positions (CRE-A1 in Fig. 6a). These changes left the consensus CREB sites intact, but introduced predicted activating mutations into the flanks of CREB sites 1–3 and into the two cryptic binding sites. For the IFNB enhancer, we limited modifications to the 44-nt core. This resulted in changes at 15 positions (IFNB-A1 in Fig. 6c), including conversion of every nonconsensus IRF half-site to the GAAA consensus and strengthening of the p50 half-site. We individually synthesized these two variants and then compared them to their wild types using a luciferase assay. We found that both new variants had significantly higher induced activities (2.1-fold for CRE-A1, $P < 0.0001$, and 2.6-fold for IFNB-A1, $P < 0.0001$; Fig. 6b,d). Notably, the increase for CRE-A1 (2.1-fold) was substantially lower than predicted by the simple linear model (32-fold), but close to the value predicted by the linear-nonlinear model (1.7-fold). In contrast, the increase for IFNB-A1 (2.6-fold) was close to the value predicted by its linear model (2.1-fold). This difference likely reflects that the wild-type CRE is composed of consensus activator sites and therefore operates much closer to saturation than the IFNB enhancer. We also found, however, that both new variants had disproportionately higher uninduced activities (19-fold for CRE-A1 and 17-fold for IFNB-A1). This suggests that mutations that increase the induced activity of an enhancer may often decrease its inducibility, which would likely be detrimental in most biological and engineering contexts.

Accordingly, we attempted instead to maximize the inducibility of the two enhancers. We simultaneously considered the induced and uninduced linear QSAMs and, for each position, selected the nucleotide predicted to maximize inducibility, without (i) increasing the uninduced activity or (ii) decreasing the induced activity...
relative to that of the wild type. For the CRE, we synthesized three variants (CRE-I1 to CRE-I3 in Fig. 6a). CRE-I1 and -I2 were predicted by QSAMs trained on each of the two replicate CRE data sets and contained 10 and 12 substitutions, respectively. CRE-I3 contained only the five substitutions that were shared between the first two. Only one variant (CRE-I2) contained any activating substitutions in the cryptic motifs near CREB sites 1 and 4. We found that all three variants showed a significant ($P < 0.0001$) increase in induced activity without the large decrease in inducibility seen for CRE-A1 (Fig. 6b). Moreover, CRE-I3 showed no increase in uninduced activity, which resulted in a ~25% increase in inducibility relative to that of the wild type (~44-fold versus ~35-fold).

Notably, we failed to isolate variants with similar or higher inducibilities from the original random variants (Supplementary Fig. 10). For the IFNB enhancer, we synthesized one variant containing five substitutions in the core, none of which modified the nonconsensus sites (IFNB-I1 in Fig. 6c). This variant also showed increased inducibility relative to that of the wild-type (~100-fold versus ~67-fold).

Figure 5 Multi-hit sampling mutagenesis of the virus-inducible IFNB enhancer. (a) Information footprints of the IFNB enhancer in its induced (top) and uninduced (bottom) states. Red indicates significant information content at the corresponding position (permutation test, 5% FDR). Error bars show uncertainties inferred from subsampling. Similar analysis was performed on uninduced data. (b) Schematic diagram of the virus-inducible IFNB promoter with the promoters and enhancer domains marked. Numbers indicate start times in minutes.

Figure 6 Model-based optimization. (a) CRE variants predicted to maximize induced activity (A1) or inducibility (I1-I3) based on linear QSAMs trained on multi-hit data. Differences from wild type are indicated by red shading. Darker shading indicates a higher predicted contribution to the change in activity. (b) Luciferase activity of the wild-type (WT) and optimized CRE variants in untreated and forskolin-treated cells. Relative light unit. (c) Inducibility of the CRE variants in response to cAMP elevation caused by forskolin treatment. (d) IFNB enhancer variants predicted to maximize induced activity (A1) or inducibility (I1) based on linear QSAMs trained on multi-hit data. Differing from wild type are indicated by red shading. Darker shading indicates a higher predicted contribution to the change in activity. Luciferase activity of the WT and optimized IFNB enhancer variants in untreated and forskolin-treated cells. (e) Inducibility of the WT and optimized IFNB enhancer variants in response to virus infection. Mean activity across 12 replicates is plotted for each condition. Error bars show s.e.m. (SE). All statistical comparisons are relative to WT in the same state; n.s., not significant; ***, $P < 0.0001$; two-tailed t-test. Orange bars show the range from (mean activity in induced state)/(mean activity in uninduced state) to (mean activity in induced state)/(mean activity in uninduced state).
DISCUSSION
We have developed a massively parallel reporter assay that enables functional analysis of transcriptional regulatory elements at significantly higher throughput than traditional bioluminescence- and fluorescence-based assays. In our initial experiments, we used MPRA to map functional transcription factor binding sites at single-nucleotide resolution and to train simple quantitative sequence-activity models. The ability to infer QSARs of arbitrary functional form using data similar to ours has been demonstrated in bacteria. Applied to mammalian cells, this approach may help elucidate the physiologic basis of inducible and cell type–specific enhancer activity.

MPRA can be readily adapted to other experimental designs by varying the oligonucleotide composition, promoter-ORF insert, plasmid backbone or transfected cell types. For example, promoter activity can be assayed by leaving out the optional invariant promoter, silencer activity can be assayed by including a promoter with strong basal activity and regulatory elements that directly affect RNA stability can be assayed by incorporating the synthetic variants in the reporter transcript. Advances in DNA synthesis technology promise to enable analysis of longer elements in the near future and transposon–derived sequences can be included in the backbone to support genomic integration. We therefore expect that the assay will facilitate screening and dissecting the large variety of regulatory elements that are being identified by the ENCODE Project, the NIH Roadmap Program on Epigenomics and similar efforts.

Beyond studying variants of naturally occurring DNA sequences, the flexibility and decreasing cost of DNA synthesis is enabling development of novel regulatory elements. Strong synthetic promoters have previously been selected from combinatorial libraries using fluorescence-activated cell sorting and transposon–or virus–derived sequences can be included in the backbone to support genomic integration. We therefore expect that the assay will facilitate screening and dissecting the large variety of regulatory elements that are being identified by the ENCODE Project, the NIH Roadmap Program on Epigenomics and similar efforts.

METHODS
Methods and any associated references are available in the online version of the paper at http://www.nature.com/naturebiotechnology/

Accession codes. All analyzed sequence data has been deposited in NCBI GEO under accession GSE31982.

AUTHOR CONTRIBUTIONS
A. Mel., X.Z., P.R., A.G. and T.S.M. developed MPRA and performed the molecular biology experiments. L.W. cultured the cells, and performed the plasmid transfections and luciferase assays. A.Mur., T.T., S.F., C.G.C., J.B.K., M.K., E.S.I. and T.S.M. analyzed the data. T.S.M. wrote the main text with substantial input from all authors. C.G.C. and J.B.K. wrote the Supplementary Notes with substantial input from A. Mur. and T.S.M.

COMPETING FINANCIAL INTERESTS
The authors declare competing financial interests: details accompany the full-text HTML version of the paper at http://www.nature.com/naturebiotechnology/.

Published online at http://www.nature.com/naturebiotechnology/. Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).
2. Lander, E.S. Initial impact of the sequencing of the human genome. Nature 470, 43–43 (2011).
3. Dorer, D.E. & Nettelbeck, D.M. Targeting cancer by transcriptional control in cancer gene therapy and viral oncology. Adv. Drug Deliv. Rev. 61, 545–571 (2009).
4. Loew, R., Heinz, N., Hampf, M., Bujard, H. & Gossen, M. Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol. 10, 81 (2010).
5. Carey, M., Peterson, C.L. & Smale, S.T. Transcriptional Regulation in Eukaryotes: Concepts, Strategies, and Techniques. Edn. 2 (Cold Spring Harbor Laboratory Press, 2009).
6. Peprzak, D.E. & Nettelbeck, D.M. Targeting cancer by transcriptional control in cancer gene therapy and viral oncology. Adv. Drug Deliv. Rev. 61, 545–571 (2009).
7. Patwardhan, R.P. et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol. 27, 1173–1179 (2009).
8. Kiner, J.B., Murugan, A., Callan, G.C. Jr. & Cox, E.C. Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence. Proc. Natl. Acad. Sci. USA 107, 9158–9163 (2010).
9. Panne, D., Maniatis, T. & Harrison, S.C. An atomic model of the interferon-beta enhancerosome. Cell 129, 1111–1123 (2007).
10. Anrosti, D.N. & Kuikarni, M.M. Transcriptional enhancers: Intelligible enhanceromes or flexible billboards? J. Cell. Biochem. 94, 890–898 (2005).
11. Jonsson, J., Norberg, T., Carlsson, L., Gustafsson, C. & Wold, S. Quantitative sequence activity models (QSAMs)–tools for sequence design. Nucleic Acids Res. 21, 733–739 (1993).
12. Toros, G.D., Schneider, T.D. & Gold, L. Quantitative analysis of the relationship between nucleotide sequence and functional activity. Nucleic Acids Res. 14, 6661–6679 (1986).
13. Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation–dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609 (2001).
14. Benbrook, D.M. & Jones, N.C. Different binding specificities and transactivation between nucleotide sequence and functional activity. Nucleic Acids Res. 14, 2522–2540 (2010).
15. Baren, T. & Montminy, M. Transcriptional regulation by the phosphorylation–dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 1972–1977 (2001).
16. Fink, J.S. et al. The CGTCA sequence motif is essential for biological activity of the cassette intestinal peptide gene cAMP-regulated enhancer. Proc. Natl. Acad. Sci. USA 85, 6662–6666 (1988).
17. Kunsch, C., Ruben, S.M. & Rosen, C.A. Selection of optimal kapa B/Rea DNA–binding motifs: interaction of both subunits of NF-kappa B with DNA is required for transcriptional activation. Mol. Cell. Biol. 12, 4412–4421 (1992).
18. Falvo, J.V., Parekh, B.S., Lin, C.H., Fraenkel, E. & Maniatis, T. Assembly of a functional beta interferon enhancerosome is dependent on ATF-2-c-Jun heterodimer orientation. Mol. Cell. Biol. 20, 4814–4825 (2000).
19. Schneider, T.D. & Stormo, G.D. Excess information at bacteriophage T7 genomic promoters detected by a random cloning technique. Nucleic Acids Res. 17, 659–674 (1989).
20. Bishop, C.M. Pattern Recognition and Machine Learning (Springer, 2006).
21. De Mey, M., Maertens, J., Lequeux, G.J., Soetaert, W.K. & Vandamme, E.J. Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering. BMC Biotechnol. 7, 34 (2007).
22. Guan, J. et al. Parallel on-chip gene synthesis and application to optimization of protein expression. Nat. Biotechnol. 29, 449–452 (2011).
23. Matzuk, M. et al. High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat. Biotechnol. 28, 1291–1294 (2010).
24. Bernstein, B.E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).
25. Edelman, G.M., Meech, R., Owens, G.C. & Jones, F.S. Synthetic promoter elements obtained by nucleotide sequence variation and selection for activity. Proc. Natl. Acad. Sci. USA 97, 3038–3043 (2000).
26. Schlabach, M.R., Hu, J.K., Li, M. & Elledge, S.J. Synthetic design of strong promoters. Adv. Drug Deliv. Rev. 61, 2538–2543 (2010).
27. Holland, J.H. Adaptation in Natural and Artificial Systems: AN Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence Edn. 1 (MIT Press, 1992).
ONLINE METHODS
Oligonucleotide library design and synthesis. We designed 142-mer oligonucleotides to contain, in order, the universal primer site AGATCGGAAGAGCGTCG (β wild-type CRE sequence was derived from pGL4.29 (Promega). The wild-type interferon-β enhancer sequence was derived from the NB363/hg18 human genome reference assembly. The enhancer variants were designed as described in 'Experimental design and mutagenesis strategies,' and 100 distinct wild-type enhancer-tag pairs were included in each multi-hit pool. The distinct tags were selected from randomly generated 10-nt sequences, with the following constraints: (i) must contain all four nucleotides, (ii) must not contain a run of more than four identical nucleotides, (iii) must not contain a KpnI or XbaI restriction site, and (iv) must not contain a known mammalian microRNA seed sequence (obtained from miRBase). The enhancer variants were digested with KpnI/XbaI to cut between the enhancer variants and tags, ORF, and then transformed into E. coli (perkinElmer).

For transfection of individual validation plasmids, 2.3 × 10^4 cells were seeded into each well of 96-well plates. Each well was transfected with 15 μl of Opti-MEM I Reduced Serum Medium (Invitrogen) containing 100 ng of luc2 reporter plasmid with CRE- or IFNB-derived variants and 10 ng of pGL4.73[hRLuc/SV40] (Promega) for normalization, 0.25 μl Lipofectamine LTX and 0.1 μl Plus Reagent (Invitrogen). Cells were treated with forskolin or infected with Sendai virus as described above. Luciferase activities were measured using Dual-Glo Luciferase Assay (Promega) and an EnVision 2103 Multilabel Plate Reader (PerkinElmer).

Tag-Seq. mRNA was extracted from total RNA using MicroPoly(A) Purist kits (Ambion) and treated with DNase I using the Turbo DNA-free kit (Ambion). First-strand cDNA was synthesized from 400-700 ng mRNA using High Capacity RNA-to-cDNA kits (Applied Biosystems).

Tag-Seq sequencing libraries were generated directly from 12% of a cDNA reaction or 50 ng plasmid DNA by 26 cycle PCR using Pfu Ultra HS DNA polymerase 2× master mix (Ambion) and primers AATGATACGGCGACCA TAGACTACACCTTCTTCTACACTCTTTCCCTACACGACGCTCTTCCGATCT and CA TAACTGGCCGCTTCACTG and GTTTAAGGCCTCCGAGGCCGACGCT CTTC to add SfiI sites.

To generate the plasmid backbone for the MPRA constructs, the luc2 reporter gene was removed from pGL4.10[luc2] (Promega) by HindIII-XbaI digestion. The S′ extension of the HindIII site was filled in with Klenow fragment of DNA polymerase I (NEB) and the XbaI site was eliminated by treatment with Mung Bean nuclease (NEB). The resulting linear plasmid was self-ligated to generate cloning vector pGL4.10M.

To insert the variable regions into the MPRA vector, purified oligonucleotide PCR products were digested with SfiI and directionally cloned into SfiI-digested pGL4.10M using One Shot TOP10 Electrocomp E. coli cells (Invitrogen). To preserve library complexity, the efficiency of transformation was maintained at >3 × 10^8 cfu/μg. Isolated plasmid pools were digested with KpnI/XbaI to cut between the enhancer variants and tags, ligated with the 1.78 kb KpnI-XbaI fragment of pGL4.23[luc2/minP] (Promega), which contains a minimal TATA-box promoter and the luc2 ORF, and then transformed into E. coli as described above. Finally, to remove vector background, the resultant plasmid pools were digested with KpnI, size selected on a 1% agarose gel, self-ligated and re-transformed into E. coli.

For validation of QSAM optimized enhancers, each variant was individually synthesized with the constant flanking sequences TGCGCT TAACCTGGCGCTTACCTG and GTTACCTGAGCGCTTGC (IDT). The oligonucleotides were PCR amplified as described above with primers CTGGCCCTAACTGGC and CGGAGCTACTTCTTCTTCTTACACGAGGCCGCTCTTCCGATCT and CA TAACTGGCCGCTTCACTG and GTTTAAGGCCTCCGAGGCCGACGCT CTTC to add SfiI sites.

To infer the tag copy numbers in each Tag-Seq library, all sequence reads were examined, regardless of their quality scores. If the first 10 nt of a read perfectly matched one of the 13,000 or 27,000 designed tags and the remaining nucleotides matched the expected upstream MPRA construct sequence, this was counted as one occurrence of that tag. All reads that did not meet this criterion were discarded. All tags that did not have a count of at least 20 in every sequenced CRE or IFNB enhancer plasmid pool were also discarded. The mRNA/plasmid tag ratios were normalized by multiplying by the ratio of the total number of plasmid and mRNA tag counts from the corresponding Tag-Seq libraries.

Analysis of single-hit scanning variants. To estimate the relative activity of each distinct enhancer variant, the median of its 13 mRNA/plasmid tag ratios were compared to the median of the mRNA/plasmid ratios for tags linked to the corresponding WT enhancer. To increase the accuracy of this comparison, 65 distinct WT enhancer-tag pairs were included in each pool design. Significant differences in the median ratios were inferred by applying the Mann-Whitney U-test to all variant-WT pairs and then applying the Benjamini-Hochberg procedure to identify the 5% false discovery rate (FDR) threshold.

Analysis of multi-hit sampling variants. Information footprints were generated as described in ref. 9. Briefly, the mRNA/plasmid tag ratios from each transfection experiment were first quantized by partitioning into five equally sized bins. The mutual information values between the bases at each position and the quantized activities were then estimated using the Treves-Panzeri limited sample correction as:

$$I(h; μ) = \sum_{h_i, μ} f(h_i, μ) \log_2 \left(\frac{f(h_i)}{f(μ)} \right)$$

$$N$$

where $$h_i$$ is the base at the $$i$$th position, $$μ$$ is the quantized activity, $$f()$$ gives the corresponding joint and marginal frequency distributions and $$N$$ is the number of assayed variants.

Error bars on these values were determined by computing uncorrected mutual information estimates $$I^{50\%}_{\text{naive}}(h_i; μ)$$ for 10,000 random sub-samples.
that each contained 50% of the enhancer variants. The uncertainties in $I(b; \mu)$ were computed from the variance of these estimates:

$$\delta I(b; \mu) = \frac{1}{\sqrt{2}} \sqrt{\text{var}(I_{\text{naive}}(b; \mu))}$$

To identify positions with significant information content, empirical null distributions for $I(b; \mu)$ were generated from 10,000 random permutations of the mapping between the quantized activities and the enhancer variants. The probability of the absence of information at the ith position was estimated as $(n_i + 1)/10,000$, where n_i is the number of random permutations for which $I(b_i; \mu)$ exceeded the original value. The Benjamini-Hochberg procedure was then applied to identify the 5% FDR threshold 28.

Quantitative sequence-activity modeling. The method of ordinary least-squares was used to train linear QSAMs of the form

$$\log(\text{activity}(\sigma)) = \sum_{b,i} A_{bi} x_{bi}$$

where A_{bi} is the activity contribution of base b at the ith position, and x_{bi} is an indicator variable that is 1 if the enhancer variant σ contains base b at the ith position and 0 otherwise. Other models, including nonlinear QSAMs, are described in the Supplementary Notes.

Model-based optimization of the induced activity of each enhancer was performed by identifying and synthesizing

$$\text{arg max}_{\sigma} \text{activity}_{\text{induced}}(\sigma)$$

based on the corresponding linear QSAMs (without interaction terms).

Model-based optimization of the inducibility of each enhancer was performed by identifying and synthesizing

$$\text{arg max}_{\sigma} \frac{\text{activity}_{\text{induced}}(\sigma)}{\text{activity}_{\text{uninduced}}(\sigma)}$$

based on the corresponding linear QSAMs, with the constraints

$$A_{Qi_{\text{induced}}} \geq A_{WTi_{\text{induced}}}$$

$$A_{Qi_{\text{uninduced}}} \leq A_{WTi_{\text{uninduced}}}$$

where WTi is the base at the ith position of the wild-type enhancer.

28 Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J. R. Stat. Soc. B* **57**, 289–300 (1995).

29 Treves, A. & Panzeri, S. The upward bias in measures of information derived from limited samples. *Neural Comput.* **7**, 399–407 (1995).