Abstract

SENSING THE ELECTRON-COLLISION EXCITATION CROSS-SECTIONS FOR NE-LIKE IONS OF Fe IN A PLASMA IN THE DEBYE SHILEDING APPROXIMATION

A. V. Glushkov, O. Yu. Khetselius, E. P. Gurnitskaya, D. A. Korchevsky, A. V. Loboda, G. P. Prepelitsa

Within the uniform QED energy approach with using the Debye shileding approximation it is carried out the calculation of cross-sections of electron-collisional excitation for ions of Fe in Ne-like plasma.

Key words: sensing, electron-collisional excitation cross-section, QED approach, Debye shileding approximation
In this paper we present the results of calculation of the electron collision strengths and cross-sections for Ne-like ion of iron within earlier developed new uniform energy approach, formally based on the quantum electrodynamics (QED) [1-4]. The key moment is connected with using the Debye shielding approximation (see below). Obtained data can be used in kinetic calculations of the multicharged ions plasma in order to define the optimal parameters for X-ray lasing (c.f.[5-10]). The matter in a fact that in last years the X-ray laser problem has stimulated a great number of papers devoted to the development of theoretical methods for modelling the elementary processes in collisionally pumped plasma (c.f. [13-19]). There is a hope to find lasing effects on the transitions of Li-, Ne-, Ni-like ions.

Two principal theoretical problems must be solved in order to develop a special code adequate to predict the plasma parameters needed to generate a soft-X-ray or extreme ultraviolet amplified spontaneous emission: i). accurate calculation of electron-collisional excitation cross-sections, strengths, rate coefficients for elementary processes in the plasma that are responsible for formation of emission lines spectra; ii). kinetics calculations to determine level populations, inversions, line intensities and gain coefficients at definite plasma parameters. The most elaborate codes for atomic calculations are based on different kinds of approximations to the multi-configuration Dirac-Fock method (c.f. [11]). In our opinion, the most consistent approach to construction of the optimized one-quasi-electron functions must be based on the QED. Namely such an approach is here used in calculating the electron collision strengths and cross-sections on Ne-like ion of Fe. Consider the key ideas of the method following to refs.[1-4,12,15,19].

Their imaginary parts are connected with the radiation decay (radiation) possibility. The total energy shift of the state is usually presented in the form (c.f.[7,8,12]):

$$\Delta E = \text{Re} \Delta E + i \text{Im} \Delta E \quad \text{Im} \Delta E = -\Gamma/2$$ (1)

where Γ is interpreted as the level width, and the decay possibility $P = \Gamma$. The whole calculation of the energies and decay probabilities of a non-degenerate excited state is reduced to calculation and diagonalization of the complex matrix M. To start with the QED Gell-Mann and Low formula one must choose the zero-order approximation. Usually one uses for this purpose a one-electron Hamiltonian with a central potential that can be treated as a bare potential in the formally exact QED PT. The bare potential includes the electric potential of the atomic nucleus and some model potential that is to be compensated for in all orders of PT. The minimization of the gauge dependent multielectron contribution of the lowest QED PT corrections to the radiation widths of atomic levels is proposed in [12] as “ab initio” optimization principle.

Recent advances in ultra-short laser technologies have shown laser plasmas to be a favourable source of quantum emission. In such extremely dense laser plasmas an electronic temperature of $T_e=0.1$-10 keV and a particle density of $n_e=10^{21}-10^{25}$cm$^{-3}$ can be achieved. This suggests that the electronic structure of atoms in plasmas is rarely perturbed by a strong interactions with nearby charged particles. Recent papers devoted to the development of theoretical models for X-ray lasing problems must be based on the quantum electrodynamics (QED) potential of the atomic nucleus and some model potential that is to be compensated for in all orders of PT. The minimization of the gauge dependent multielectron contribution of the lowest QED PT corrections to the radiation widths of atomic levels is proposed in [12] as “ab initio” optimization principle.

$$V(r_a, r_b) = \frac{Z_a Z_b}{|r_a - r_b|} \exp(-\mu |r_a - r_b|)$$ (1)
\[H = \sum_{i=1}^{N} (a_{ci} - \beta c^2) - \sum_{i=1}^{N} \frac{Z}{|r_i|} \exp(-\mu |r_i|) + \]

\[+ \sum_{i,j \neq i} \frac{1}{|r_i - r_j|} \exp(-\mu |r_i - r_j|) \]

(2)

In our calculations of different characteristics we dealt with atoms and ions having one, two or three quasi-particles (electron or vacancies) outside the core of closed electron shells. For example, the excited states $1s^22s^22p^5nl$ of the Ne-like ion is a two-quasi-particle (2QP) state. It is usually accepted, as the bare potential, a potential including the electric nuclear potential V_N and some parameterized potential V_C, that imitates the interaction of closed-shell electrons with quasi-particles. The parameters of the model bare potential are chosen so as to generate accurate eigen-energies of all one-quasi-particle (1QP) states, i.e. $1s^22p^6$, $1s^22s^22p^6$, $1s^22s^22p^5$ states of the F-like ion and $1s^22s^22p^5nl$ states of Na-like ions, with the same nucleus. The individual quasi-particle eigen-functions and eigen-energies satisfy the one-quasi-particle Dirac equation with model potential. Further, this potential is used as a bare potential in the PT of states with any number of quasi-particles outside the same core. To avoid accounting for the 1QP effects twice we omit the real parts of contributions of 1QP Feynman diagrams in orders of PT, thus the theoretical consistence is preserved. The method provides the reliable level structure in the zero-order PT at least for the 2QP and 3QP systems (c.f.[4,6,7,9]). In the second order of the QED PT the energy shift is expressed in terms of two-electron matrix elements [12]:

\[V(1,2,4,3) = \sqrt{(2j_1 + 1)(2j_2 + 1)(2j_3 + 1)(2j_4 + 1)} \times \]

\[\times (-1)^{j_1+j_2+j_3+j_4+n_1+n_2} \times \]

\[\times \sum_{J,M} \sum_{i,j} (-1)^i \left[j_1 \ldots j_3 \ldots j_4 \right] \left[j_2 \ldots j_4 \ldots j_1 \right] \times \]

\[\times (Q_{\text{out}}^J + Q_{\text{in}}^J) \]

(3)

Here Q_{out}^J is corresponding to the matrix elements of the Coulomb-Yukawa-type interaction and Q_{in}^J - the Breit interaction part. To calculate all necessary matrix elements one must use the basis’s of the 1QP relativistic functions.. In ref. [12] it has been proposed “ab initio” optimization principle for construction of cited basis’s. The details of procedure can be found in [1,12].

When studying the Stark effect, electron-positron pair production in nuclear collisions and elementary processes responsible for emission-lines formation in plasmas, the energy approach has been generalized to cover the problems of scattering theory (c.f. [1-3,8,12]). Here we briefly outline the main idea using, as an example, the collisional de-excitation of the Ne-like ion: $(2j_1^i \ldots 3j_1, M_1, j_r, \varepsilon_r) \rightarrow (\Phi_o, \varepsilon_o)$. Here Φ_o is the state of the ion with closed shells (ground state of the Ne-like ion); J_r is the total angular moment of the initial target state; indices iv, ie are related to the initial states of vacancy and electron; indices ε_{iv} and ε_{ie} are the incident and scattered energies, respectively to the incident and scattered electrons. The initial state of system “atom plus free electron” can be written as

\[|I> = a_{iv}^i a_{ie}^e \Phi_o C_{J_r, M_r}^{J, M} \]

(4)

Here $C_{J_r, M_r}^{J, M}$ is the Clebsch-Gordan coefficient. Final state is: $|F> = |\Phi_i \rangle$, where $|\Phi_i \rangle$ is the state of an ion with closed electron shells (ground state of ne-like ion), $|I>$ represents three-quasiparticle (3QP) state , and $|F>$ represents the one-quasiparticle (1QP) state. The justification of the energy approach in the scattering problem is in details described in refs. [1-3,8,12]. For the state (1) the scattered part of energy shift $\text{Im} \Delta E$ appears first in the second order of the atomic perturbation theory (fourth order of the QED perturbation theory) in the form of integral over the scattered electron energy ε_{ie}:

\[\int d\varepsilon_{ie} G(\varepsilon_{iv}, \varepsilon_{ie}, \varepsilon_{im}, \varepsilon_{en})/(\varepsilon_{iv} - \varepsilon_{en} - \varepsilon_{ie} - i\delta) \]

with $\text{Im} \Delta E = \pi G(\varepsilon_{iv}, \varepsilon_{ie}, \varepsilon_{im}, \varepsilon_{en}) \cdot |F>$. Here G is a definite squired combination of the two-electron matrix elements (2). The value $\sigma = -2 \\text{Im} \Delta E$ represents the collisional cross-section if the incident electron eigen-function is normalized by the unit flow condition and the scattered electron eigen-function is normalized by the energy δ function. The collisional strength $\Omega(I \rightarrow F)$ is connected with the collisional cross section σ by expression:

\[\sigma(I \rightarrow F) = \Omega(I \rightarrow F) \cdot \pi/(2J_{r} + 1)e_{iv}[(\alpha Z)^2 \varepsilon_{im} + 2)] \]

(6)

Here and below the Coulomb units are used; 1 C.u. $\approx 27,054Z^2$ eV, for energy; 1 C.u.$\approx 529\cdot10^9/Z$ cm, for length; 1 C.u. $\approx 2,419\cdot10^{-17}/Z^2$ sec for time. The collisional de-excitation cross section is:

\[\sigma(1K \rightarrow 0) = 2\pi \sum_{j_{iw}, j_{iv}} (2j_{iw} + 1) \times \]

\[\times \{ \sum_{j_{iw}, j_{iv}} < 0 | j_{iw}, j_{iv} | j_{iw}, j_{iv}, J_r, B_{\alpha, \varepsilon}^{(K)} > \}^2 \]

(7)

A. V. Glushkov, O. Yu. Khetselius, E. P. Gurnitskaya, D. A. Korchevsky, A. V. Loboda, G. P. Prepelitsa
Here B_{nK}^{Ik} is a real matrix of eigen-vectors coefficients, which is obtained after diagonalization of the secular energy matrix. The amplitude like combination in (7) has the following form:

$$
<0|J_n,J_n^{i}|j_n^{i},J_n^{i}> = \sqrt{(2J_n+1)(2J_n^{i}+1)}(-1)^{j_n^{i}+1/2}\times\sum (-1)^{i+j_n^{i}} \times \\
\times [J_{n^{i}...j_n^{i}...J_n^{i}}]O_{j}(sc,ie;iv, in) + \\
+ \left[J_{n^{i}...j_n^{i}...J_n^{i}} \right]O_{j}(ie;in;iv,sc)
$$

(8)

For the collisional excitations from the ground state (inverse process) the analogous expressions can be derived (c.f.,[1,2]). The details of the whole numerical procedure are in [1-5,12,15,19].

We applied our approach to estimate the electron collisional excitation cross-sections and strength for Ne-like ion of iron and compare the obtained results with other calculation and experiment. We do not present here the results of our calculations of energy levels for Ne-like ions. The practically coincide with the same results, presented in [1,8]. There the one-electron basis of PT was calibrated on experimental one-electron energies. Her we use ab initio one-electron basis. The first-order PT correction is calculated exactly, the high-order contributions are taken into account effectively: polarization interaction of two above-core quasiparticles and the effect of their mutual screening (c.f.,[12]). It should be noted that strong compensation of different PT terms is a characteristic feature of the states with vacancies in the core. This is one of the main reasons for the fact that the accuracy of conventional a priori calculations of such states does not always satisfy the requirements arising in many applications. Comparison with experimental energies (c.f.,[1,2]) encourages us to believe in the accuracy for highly excited states for which there is no experimental information. Our results on electron collision strengths from the ground state for Ne-like iron are presented in table 1. The whole table of data will be published separately. Summation over j_n^{i},J_n^{i} in (7) spreads over the range 1/2-23/2. The convergence of this sum has been numerically investigated. It should be noted that the higher partial-wave contribution is less than 0.8% for all states considered. The incident electron energy is $E_{e}=1,0454keV$. Our results are presented in two approximations: i) purely Coulomb approximation; ii). the Debye shielding approximation. Analysis shows that difference between data in both approximations can reach 5-15%.

Table 1

Transition	Level	J	Present theory (ii)	Present theory (i)
1-2	2s 2p	0	1.125[-03]	1.022[-03]
3	2p3/2 3s1/2	1	2.671[-03]	2.342[-03]
4	2p1/2 3s1/2	0	2.169[-04]	2.008[-04]
5	2p3/2 3p1/2	1	2.234[-03]	1.013[-03]
6	2p3/2 3p1/2	1	2.831[-03]	2.346[-03]
7	2p3/2 3p3/2	3	3.115[-03]	2.806[-03]
8	2p3/2 3p3/2	2	2.998[-03]	2.828[-03]
9	2p3/2 3p3/2	1	1.102[-03]	1.053[-03]
10	2p3/2 3p3/2	2	2.659[-03]	2.332[-03]
11	2p3/2 3p3/2	1	2.758[-03]	2.554[-03]
12	2p3/2 3p3/2	0	1.171[-03]	1.104[-03]
13	2p1/2 3p3/2	2	1.239[-03]	1.158[-03]

It should be noted that the experimental information about the electron-collisional cross-sections for high-charged Ne-like ions is very scarce and is extracted from indirect observations. Our results are at the lower margin of experimental error as the corresponding data (c.f.,[1,2]). But one must understand that extraction of the cross section from the experiment is very complicated procedure. In any case we have physically reasonable agreement between theory and experiment (see more detailed comparison in [1-3]). It is important to note that inclusion into consideration of Rydberg and autoionization Rydberg states of ions of the previous ionization stage will definitely increase collisional cross-sections. The method, which allows treatment of these states on an equal basis with the ad-
jacent continua has been elaborated in the scattering theory [1,2]. The numerical calculations on this subject are in the progress.

References
1. A.V.Glushkov, S.V.Ambrosov, A.V.Loboda, E.P.Gurnitskaya, G.P.Prepelitsa, Consistent QED approach to calculation of electron-collision excitation cross-sections and strengths: Ne-like ions // Int. Journ. Quant. Chem. —2005. — Vol.104,N5. — P.562-569.
2. A.V.Glushkov, S.V.Malinovskaya, A.V.Loboda, I.M.Shipareva, E.P.Gurnitskaya, D.A.Korchevsky, Diagnostics of the collisionally pumped plasma and search of the optimal plasma parameters of x-ray lasing: Calculation of electron-collision strengths and rate coefficients for Ne-like plasma// J.Phys.CS. — 2005. — Vol.188. — P.188-198.
3. A.V.Glushkov, E.P.Gurnitskaya, D.A.Korchevsky, A.V.Loboda, Sensing the optimal plasma parameters for X-ray lasing: calculation of electron-collision strengths for Ar-like plasma // Sensor Electr.& Microsyst. Techn. — 2006. — N2. — P.31-36
4. A.V.Glushkov, S.V.Ambrosov, A.V.Loboda A.V., Yu.G.Chernyakova, A.A.Svinarenko, O.Yu. Khetselius, QED calculation of the superheavy elements ions: energy levels, radiative corrections and hfs for different nuclear models// Nucl. Phys.A: Nucl.and Hadr. Phys. —2004. — Vol.734. — Pe21-28.
5. C.Chenais-Popovics, O.Rancu, P.Renaudin, J.C.Gauthier, X-ray Spectroscopy of Laser-Produced Hot Dense Plasmas// Phys.Scripta. — 1996. — Vol.65,N1. — 163-168.
6. Photonic, Electronic and Atomic Collisions. Eds. F.Aumar, H.Winter, World Sci., Singapore. — 1997. — P.1-650.
7. L.N.Ivanov, E.P.Ivanova, E.V.Aglitsky, Modern Trends in Spectroscopy of Multicharged Ions// Physics Rep. — 1991. — Vol.166,N6. — P.315-390.
8. L.N.Ivanov, E.P.Ivanova, L.Knight, Energy Approach to consistent QED theory for calculation of electron-collision strengths//Phys.Rev.A. — 1993. — Vol.48,N6. — P.4365-4374.
9. V.I.Goldansky, V.S.Letokhov, On problem of γ laser on nuclear transitions//JETP. — 1974. — Vol.67. — P.513-524.
10. L.N.Ivanov, V.S.Letokhov, Spectroscopy of autoionization resonances in heavy elements atoms// Com. Mod.Phys.D.:At.Mol.Phys. — 1988. — Vol.14. — P.169-184.
11. W.Cowan, Methods of atomic calculations, Plenum Press, N. — Y. — 2001.
12. A.V.Glushkov, L.N.Ivanov, Radiation Decay of Atomic States: atomic residue and gauge non-invariant contributions// Phys. Lett. A. — 1992. — Vol.170,N1. — P.33-37.
13. F.B.Rosmej, D.H.Hoffman, M.Geissel, etal, Advanced X-ray diagnostics based on an observation of high-energy Rydberg transitions from autoionizing levels in dense laser-produced plasmas// Phys. Rev.A. — 2001-Vol.63. — P.063409-063418.
14. TFR group, M.Cornille J.Dubau J., M.Loulergue, Charge-dependent wavelengths shifts & line in-tensities in dielectronic satellite spectra of He-like ions// Phys.Rev.A-1985. — Vol.32-P.3000-3010
15. A.V.Glushkov,S.V.Ambrosov, A.V.Ignatenko, D.A.Korchevsky, DC Strong Field Stark Effect for Non-hydrogenic Atoms: Consistent Quantum Mechanical Approach // Int. Journ. Quant. Chem. — 2004. — Vol.99. — P.936-941.
16. H.Okutsu, I.Sako, K.Yamanouchi, G.H.F.Diercksen, Electronic structure of atoms in laser plasmas: a Debae shielding approach// J.Phys.B. — 2005. — Vol.38. — P.917-927.
17. C.Chenais-Popovics, O.Rancu, P.Renaudin, J.C.Gauthier, X-ray Spectroscopy of Laser-Produced Hot Dense Plasmas// Phys.Scripta. — 1996. — Vol.65,N1. — 163-168.
18. E.Trabert, G.Saathoff, A.Wolf, M1/E2 decay rates in CoXI, NiXII, Cu XIII measured at a heavy-ion storage ring// J.Phys.B.At.Mol.Opt.Phys. — 2004. — Vol. 37(4). — P.945-952.
19. A.V.Glushkov, Negative ions of inert gases//JETP Lett. —1992. — Vol.55,N2. — P.97-100.