Spin fluctuations, interband coupling and unconventional pairing in iron-based superconductors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 New J. Phys. 11 025009
(http://iopscience.iop.org/1367-2630/11/2/025009)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 194.109.159.73
The article was downloaded on 09/03/2011 at 22:27

Please note that terms and conditions apply.
Spin fluctuations, interband coupling and unconventional pairing in iron-based superconductors

Zi-Jian Yao1,2, Jian-Xin Li1,2,3 and Z D Wang1,3

1 Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
2 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
E-mail: jxli@nju.edu.cn and zwang@hkucc.hku.hk

\textit{New Journal of Physics} 11 (2009) 025009 (8pp)
Received 12 November 2008
Published 27 February 2009
Online at http://www.njp.org/
doi:10.1088/1367-2630/11/2/025009

Abstract. Based on an effective two-band model and using the fluctuation-exchange (FLEX) approach, we explore spin fluctuations and unconventional superconducting pairing in Fe-based layer superconductors. It is elaborated that one type of interband antiferromagnetic (AF) spin fluctuation stems from the interband Coulomb repulsion, whereas the other type of intraband AF spin fluctuation originates from the intraband Coulomb repulsion. Due to the Fermi-surface topology, a spin-singlet extended s-wave superconducting state is more favorable than the nodal d_{xy}-wave state if the interband AF spin fluctuation is more significant than the intraband one, otherwise vice versa. It is also revealed that the effective interband coupling plays an important role in the intraband pairings, which is a distinct feature of the present two-band system.

The recent discovery of superconductivity with higher transition temperatures in the family of iron-based materials \cite{1} has stimulated enormous research interest both experimentally \cite{2}–\cite{11} and theoretically \cite{12}–\cite{23}. In particular, the origin and nature of superconductivity and spin density wave (SDW) ordering observed in these materials have been paid considerable attention \cite{2, 4, 9–12, 14, 15, 17, 18, 22, 24}. Currently available experimental data suggest that the superconducting pairing state exhibits nodal behavior \cite{4}, whereas preliminary theoretical arguments/analyses indicate the pairing possibilities of an extended s-wave (either without

3 Author to whom any correspondence should be addressed.
nodes [14] or with nodes [15]), a nodal d-wave [15, 18] a spin-triplet s-wave [17] and a spin-triplet p-wave [21]; all of them are based on the scenario that spin fluctuations induce the superconductivity in this kind of system (with antiferromagnetic (AF) fluctuations being responsible for the former two spin-singlet pairings whereas a ferromagnetic origin for the latter two spin-triplet pairings). Therefore, systematic and profound theoretical investigations on spin fluctuations and their relationship with the superconducting pairing are significant and of current interest.

This new family of superconductors has a layered structure, where the FeAs layer is experimentally suggested to be responsible for the superconductivity [1]–[3], [5]–[8]. The LDA band calculations [12, 13, 24] indicate that there are five bands that intersect the Fermi level in the folded Brillouin zone (BZ), in which four bands are quasi-two-dimensional. Therefore, in the representation of the unfolded (or extended) BZ, two bands may be able to reproduce the main features of the four Fermi pockets after folding. In this paper, we employ an effective two-band model Hamiltonian [20] to explore the low energy excitation physics including spin fluctuations and superconducting pairing with the fluctuation-exchange (FLEX) approach [25].

It is illustrated that one type of commensurate AF spin fluctuation stems from the interband Coulomb repulsion associated with the nesting between electron and hole Fermi pockets, whereas the other type of intraband AF spin fluctuation originates from the intraband Coulomb repulsion. Due to the Fermi-surface topology, a spin-singlet extended s-wave superconducting state is more favorable than the nodal d(xy)-wave state as the interband spin fluctuation is significant, otherwise vice versa. It is also elaborated that the effective interband coupling is enhanced by the interband AF spin fluctuation and plays an important role in the intraband pairings.

We start from an effective two-band model Hamiltonian

\[H = H_0 + H_{\text{int}}, \] (1)

where \(H_0 \) is given by

\[H_0 = \sum_{kl\sigma} \epsilon_l(k)c_{kl\sigma}^{\dagger}c_{kl\sigma}. \] (2)

Here \(c_{kl\sigma} \) denotes the band-electron annihilation operator with the wave vector \(k \), spin \(\sigma \) in the band \(l \) \((l = 1, 2) \). In the present work, the two energy bands denote the hole band (band 1) and the electron band (band 2), with their dispersions being approximated by \(\epsilon_{1,2}(k) = [\xi_{xz}(k) + \xi_{yz}(k) + \sqrt{(\xi_{xz}(k) - \xi_{yz}(k))^2 + 4\epsilon^2}] / 2 \), where \(\xi_{xz}(k) = -2t_1 \cos k_x - 2t_2 \cos k_y - 4t_3 \cos k_x \cos k_y \), \(\xi_{yz}(k) = -2t_2 \cos k_x - 2t_1 \cos k_y - 4t_3 \cos k_x \cos k_y \), and \(\epsilon(k) = -4t_4 \sin k_x \sin k_y \), as addressed in [20, 26]. Here, \(\xi_{xz}(k) \) and \(\xi_{yz}(k) \) may be understood as the iron d_{xz} and d_{yz} orbit dispersions while \(\epsilon(k) \) as the hybridization of two orbits. To produce a better topology of Fermi surface and band features of the LDA calculations [12, 13, 24], we set \(t_1 = -1.0, t_2 = 1.5, t_3 = -1.2, t_4 = -0.95 \) and \(\mu = 0.74, 1.7 \) (in units of \(|t_1| \)), which gives rise to the electron Fermi pockets and the hole Fermi pockets (being respectively denoted by the green and red lines in figure 1(a)) as well as the band structure (figure 1(c)).

The interacting term \(H_{\text{int}} \) consists of the effective intraband Coulomb interaction\(^4\), \((U/2) \sum_{i,l\sigma \neq \sigma'} c_{i\sigma}^{\dagger}c_{i\sigma'}^{\dagger}c_{il\sigma}c_{il\sigma'}\), the effective interband Coulomb interaction. \((U'/2) \sum_{l<l', \sigma \neq \sigma'} c_{il\sigma}^{\dagger}c_{il\sigma'}^{\dagger}c_{i'l\sigma'}c_{i'l\sigma}\) the Hund’s coupling \(J \sum_{l<i', \sigma \neq \sigma'} c_{i\sigma}^{\dagger}c_{i'l\sigma}^{\dagger}c_{il\sigma}c_{il\sigma'}\)

\(^4\) The effective interaction strengths \((U, U', J, J')\) used here are not equal to those defined in the orbital representation.

New Journal of Physics 11 (2009) 025009 (http://www.njp.org/)
the interband pair-hopping term $J' \sum_{l,l',\sigma \neq \sigma'} c^\dagger_{l \sigma} c^\sigma_{l' \sigma'}$, where the i-site is defined on the reduced lattice (one Fe per cell).

Experimental data [3], [9]–[11] indicated that the undoped material LaOFeAs behaves like a semimetal, and exhibits itinerant antiferromagnetism. Thus, it is reasonable to consider the Coulomb interaction to be intermediate in this system. In this sense, the FLEX approach [25] appears to be an adequate method. In this approach, spin/charge fluctuations and electron spectra are determined self-consistently by solving Dyson’s equation with primary bubble- and ladder-type effective interactions. For the two-band system, the Green’s function and the spectra are expressed as 2×2 matrices, satisfying the Dyson equation:

$$
\hat{G}(k) = \left[i\omega_n \hat{1} - \hat{\epsilon}(k) - \hat{\Sigma}(k) \right]^{-1},
$$

with $\epsilon_{11} = \epsilon_1$, $\epsilon_{22} = \epsilon_2$ and $\epsilon_{12} = \epsilon_{21} = 0$. The self-energy reads $\Sigma_{mn}(k) = (T/N) \sum_q \sum_{\mu \nu} V_{\mu m, \nu n}(q) G_{\mu \nu}(k-q)$, where the effective interaction \hat{V} is a 4×4 matrix (with the basis (11), (22), (12), (21)) given by [27]

$$
V_{\mu m, \nu n}(q) = \left[\frac{1}{2} \hat{U}^s \hat{\chi}^s(q) \hat{U}^s + \frac{1}{2} \hat{U}^c \hat{\chi}^c(q) \hat{U}^c + \frac{1}{2} \hat{U}^s - \frac{1}{2} \hat{U}^c - \frac{1}{4} (\hat{U}^s + \hat{U}^c) \hat{\chi} (\hat{U}^s + \hat{U}^c) \right]_{\mu m, \nu n},
$$

with

$$
\hat{\chi}^s(q) = \left[\hat{1} - \hat{\chi}(q) \hat{U}^s \right]^{-1} \hat{\chi}(q), \quad \hat{\chi}^c(q) = \left[\hat{1} + \hat{\chi}(q) \hat{U}^c \right]^{-1} \hat{\chi}(q)
$$

as spin and charge fluctuations. The irreducible susceptibility is $\bar{\chi}_{\mu m, \nu n}(q) = -(T/N) \sum_k G_{\mu \nu}(k+q) G_{\nu m}(k)$, and the interaction vertex reads as

$$
\hat{U}^s = \begin{pmatrix} \hat{U}_{ss}^1 & 0 \\ 0 & \hat{U}_{ss}^2 \end{pmatrix}, \quad \hat{U}^c = \begin{pmatrix} \hat{U}_{cc}^1 & 0 \\ 0 & \hat{U}_{cc}^2 \end{pmatrix},
$$

where $\hat{U}_{ss}^m = U$ for $m = n$ and $2J$ otherwise, $\hat{U}_{cc}^m = U'$ for $m = n$ and $2J'$ otherwise, $\hat{U}_{ss}^m = U$ for $m = n$ and $2U' - 2J$ otherwise, and $\hat{U}_{cc}^m = -U' + 4J$ for $m = n$ and $2J'$ otherwise. In the

![Figure 1](http://www.njp.org/)
above equations, \(k \equiv (\mathbf{k}, \omega_n) \) and \(q \equiv (\mathbf{q}, i\nu_m) \) are used, with \(\omega_m \) the Matsubara frequency, \(T \) the temperature and \(N \) the lattice site number.

The above equations form a closed set of equations and can be solved self-consistently to get the renormalized Green’s function in the presence of the interaction \(H_{\text{int}} \). After obtaining \(\hat{G}(k) \), we can look into the superconducting instability and the gap symmetry from the following Eliashberg equation \([27]\):

\[
\lambda \Delta_{mn}(k) = -\frac{T}{N} \sum_{q} \sum_{\alpha \beta} \sum_{\mu \nu} \Gamma_{am, nb}^{s, t}(q) \times G_{\alpha \beta}(k - q) G_{\beta \nu}(q - k) \Delta_{\mu \nu}(k - q)
\]

(6)

with the pairing potential being given by \(\hat{\Gamma}^{s}(q) = \frac{3}{2} \hat{U}^{s} \hat{\chi}^{s}(q) \hat{U}^{s} - \frac{1}{2} \hat{U}^{c} \hat{\chi}^{c}(q) \hat{U}^{c} + \frac{1}{2} (\hat{U}^{s} + \hat{U}^{c}) \) and \(\hat{\Gamma}^{c}(q) = -\frac{1}{2} \hat{U}^{s} \hat{\chi}^{c}(q) \hat{U}^{s} - \frac{1}{2} \hat{U}^{c} \hat{\chi}^{2}(q) \hat{U}^{c} + \frac{1}{2} (\hat{U}^{s} + \hat{U}^{c}) \) for the spin-singlet and spin-triplet states \((\hat{\Gamma}^{s}(q) \) is the same for the pairing spin projection \(S_z = \pm 1, 0 \), respectively. The eigenvalue \(\lambda \rightarrow 1 \) when the superconducting transition temperature \(T_c \) is reached. It is worth indicating that the interband Cooper pairing gap function \(\Delta_{12} \) is decoupled from the equation of intraband Cooper pairing gap functions \(\Delta_{ll} \) \((l = 1, 2) \) and is vanishingly small for the present Fermi pockets pattern.

Numerical calculations are carried out with \(32 \times 32 \) \(k \)-meshes in the extended BZ and 1024 Matsubara frequencies. The analytic continuation to the real frequency is carried out with the usual Padé approximant. As for the interaction parameters, we note that a set of parameters with \(U = 0.2 - 0.5 \) bandwidth and \(J \approx 0.09 \) was used in the literature \([16]\). Here we choose eight sets of representative parameters: \((U, U') = (6.5, 3.5) \) and \(5.5, 4.0 \) for \(J' = 1.0 \) and 0.5 and \(\mu = 0.74 \) and 1.7 with \(J = 1.0 \).

Let us first address the static spin susceptibility \(\chi^s(\omega = 0) \). \((\chi^c(\omega = 0) \ll \chi^s(\omega = 0), \) which is not shown here.) Figure 2 presents the physical spin susceptibility \(\chi_{\text{ph}}^s = \sum_{mn} \chi_{mn,mn}^s \), its intraband components \(\chi_{22}^s, \chi_{11}^s \) and the interband one \(\chi_{12}^s \) in the extended BZ with \(U = 6.5, U' = 3.5, J = J' = 1.0 \) and \(\mu = 0.74 \). (For brevity, \(\chi_{mn}^s = \chi_{mn,mn}^s \) is used hereafter.) The physical spin susceptibility displays two sets of dominant peaks, with one around \((\pi, 0) \) and its symmetric points in the extended BZ, and the other around \((0.5\pi, 0.5\pi) \) and its symmetric points. The commensurate AF spin fluctuation around \((\pi, 0) \) comes from the interband Coulomb interaction associated with the nesting between the hole and electron pockets \([18]\) (figure 1(a)), which is clearly seen from the interband component \(\chi_{12}^s \) shown in figure 2(d). The appearance of this type of AF spin fluctuation around \((\pm\pi, 0) \) and \((0, \pm\pi) \) is in good agreement with the neutron scattering measurements \([10, 11]\), and here we refer to it as the interband AF spin fluctuation. More intriguingly, the other type of intraband spin fluctuation is seen to peak around \((0.5\pi, 0.5\pi) \) in the components \(\chi_{11}^s \) and \(\chi_{22}^s \), which is mainly induced by the intraband Coulomb interaction \(U \) associated with the approximate nesting property within the renormalized Fermi pocket around the \((\pi, \pi) \) point (not shown here). Notably, the peak position corresponds to \([0, \pi] \) (and \([\pi, 0] \)) in the folded BZ and thus implies the emergence of a new component of ‘stripe’-type AF spin fluctuation in the primary lattice (with 2 Fe ions per unit cell), which could be referred to as the intraband spin fluctuation and may be detected directly by future neutron scattering experiments on single-crystal samples.

The most favorable superconducting pairing symmetry at a fixed temperature is determined by solving the Eliashberg equation with the maximum eigenvalue. The calculated maximum eigenvalues (for various possible pairing symmetries) versus temperature are plotted in figure 3(a). Firstly, one can see that the eigenvalue for the spin-triplet p-wave state is much
Figure 2. The \(k\)-dependence of the static spin susceptibility for \(U = 6.5\), \(U' = 3.5\), \(J = J' = 1\) and \(\mu = 0.74\) at temperature \(T = 0.01\). (a) The physical spin susceptibility (see text). (b)–(d) The components of the spin susceptibility \(\chi_{22}^s\), \(\chi_{11}^s\), and \(\chi_{12}^s\), respectively.

smaller than those for the spin-singlet state, and at the mean time it exhibits a flat temperature dependence. Therefore, we can safely rule out the possibility of the spin-triplet state in the present model calculation. In the spin-singlet channel, the eigenvalue of the \(d_{xy}\)-wave state is larger than that of the \(s\)-wave state, and in particular the former increases rather rapidly with decreasing temperature. In view of this tendency, although the maximum eigenvalue \(\lambda = 1\) has not been reached yet, it is reasonable to consider the spin-singlet \(d_{xy}\)-wave to be the most favorable state in this set of parameters. The calculated \(k\)-space structure of the gap functions for both the electron and hole bands in the extended BZ is depicted in figures 3(b) and (c), respectively. It is seen that the pairing symmetries in both bands are of \(d_{xy}\)-wave, namely, the gap function \(\Delta_{ij}(k) \approx \Delta_0^0 \gamma_{lk}\) with \(\gamma_{lk} \approx 2 \sin k_X \sin k_Y\), where \((k_X, k_Y)\) is the wave vector denoted in the folded BZ. Interestingly, we note that the gap magnitude in the electron band is significantly larger than that in the hole band. This feature could also be understood as follows. Equation (6) may approximately be rewritten as

\[
\lambda \Delta_i^0 = \sum_{R} K_{ii'} \Delta_i^0
\]

for \(\omega = 0\), where \(K_{ii'} = \sum_{k,k'} \tilde{V}_{ii'}(k-k')\) with the effective intraband pairing potential and interband coupling as \(\tilde{V}_{ii'} = -|G_{ii'}|^2[(U^2 + 4J^2)\chi_{ii'}^s \delta_{ii'} + 4U'J' \chi_{ii'}^s (1 - \delta_{ii'})]\gamma_{lk} \gamma_{lk'}/(N \sum_k \gamma_{lk}^2)). Since \(K_{22} \gg K_{11}\) (mainly due to the result \(\chi_{22}^s \gg \chi_{11}^s\)), the gap amplitude of the
Figure 3. (a) Temperature dependence of the maximum eigenvalues, (b) and (c) k-dependence of the gap functions $\Delta_{1}(k)$ corresponding to the largest eigenvalue, for the same set of parameters as those in figure 2 at temperature $T = 0.01$. The solid diamond is the folded BZ and the dashed circle denotes the Fermi pocket schematically.

electron band (band 2) is mainly determined from the intraband pairing of itself, whereas that of the hole band depends mainly on the interband coupling from the electron band. From the expression of $\tilde{V}_{ll'}$, it is elucidated that the intraband spin AF fluctuation leads to the intraband pairings, whereas the interband AF spin fluctuation enhances the effective interband coupling (associated with the interband coupling factor $U'J'$) and thus the intraband pairings of both bands5. The above conclusions are unchanged for $\mu = 1.7$ or $J' = 0.5$, where the intraband spin fluctuation has a better impact on the pairing. However, if the interband AF spin fluctuation is dominant over the intraband one, as seen in figure 4(a) for $U = 5.5$, $U' = 4.0$, $J = J' = 1$ and $\mu = 0.74$, an extended s-wave state (figures 4(b) and (c)) would be more favorable than the d-wave one. A similar conclusion has also been obtained in a recent renormalization group study [28].

Because the spin fluctuation χ^{s} is stronger than the charge fluctuation χ^{c} (not shown here), the pairing interaction in the spin-singlet channel is positive ($\tilde{\Gamma}^{s}(q) > 0$). Consequently, once the gap function satisfies the condition $\Delta_{l}(k)\Delta_{l'}(k + Q) < 0$, where Q is the wave vector around which the pairing interaction peaks, we are able to obtain the largest eigenvalue solution of the Eliashberg equation. Focusing merely on the interband AF spin fluctuation, the above condition leads to two candidates of pairing symmetry on the singlet channel. One is the extended s-wave, with the gap function of each Fermi pocket having the same sign, while changing the sign between the electron and hole pockets, as shown in figures 4(b) and (c). The other is the d-wave as shown in figures 3(b) and (c). Actually, which candidate is more favored depends

5 For example, when $J' = 0.5$, the gap magnitudes of both bands decrease.
mainly on the existence of the intraband spin fluctuation caused by the Coulomb interaction U. For a larger U and the approximate nesting within the renormalized Fermi pocket, this spin fluctuation that peaks at $(0.5\pi, 0.5\pi)$ emerges (see figures 2(b) and (c)), which leads the gap function to change its sign within each Fermi pocket and thus induces a nodal d_{xy}-wave pairing. In contrast, if the intraband Coulomb interaction U is relatively weak, such that the intraband spin fluctuation is not significant, the extended s-wave state would be energetically favored as it opens a full gap around the Fermi pockets6. We think that this kind of connection between the peak structure of the spin response and the pairing symmetry established here is useful for probing the superconducting pairing symmetry by measuring the k-dependence of spin fluctuations in neutron scattering.

Finally, we note that the LDA energy bands in this system exhibit a more complex structure \cite{12, 14, 15}. In the present two-band model, the d_{xz} and d_{yz} orbitals are chosen as they have the largest weights to the energy bands crossing the Fermi level \cite{29}, while the d_{xy} orbital contributes a weight to the energy band along the Γ–M direction \cite{29}, and particularly in the unfolded BZ one of the hole Fermi pockets is displaced from the $(0, 0)$ point to the (π, π) point as depicted in figures 1(a) and (b), which is actually different from that in a more realistic energy-band structure \cite{15}. However, we wish to indicate that these two deficiencies do not meaningfully affect the nesting properties of the Fermi pockets, and thus the results/conclusions obtained above are still unchanged, at least qualitatively.

In summary, based on an effective two-band model and using the fluctuation-exchange approach, we have investigated spin fluctuations and superconductivity as well as the interband coupling in iron-based layered superconductors. We have elaborated that one type of commensurate AF spin fluctuation comes from the interband Coulomb interaction associated with the nesting between the hole and electron Fermi pockets, whereas the other type of intraband AF spin fluctuation originates from the intraband Coulomb repulsion. We have elucidated that, if the interband AF spin fluctuation plays a significant role, this fluctuation leads to the pairing with the spin-singlet extended s-wave being the most favorable state. Otherwise, the pairing is mainly determined by the intraband AF spin fluctuation, with d_{xy}-wave symmetry.

6 We note that due to the essentially similar hole and electron Fermi pockets in the present model and in \cite{19}, similar interband spin fluctuation peaks are observed, which was also thought to be relevant to the occurrence of the extended s-wave pairing in \cite{19}.

\textit{New Journal of Physics 11} (2009) 025009 (http://www.njp.org/)
Note added. (i) Recently, we noted that the angle-resolved photoemission spectroscopy measurement on the (Ba, K)Fe$_2$As$_2$ superconductor [30] indicated the presence of nodeless gaps, which might imply that the interband spin fluctuation plays a dominant role at least in these iron-based superconductors. (ii) After the work was posted on the e-print archive, we noted a similar work done by Qi et al [31].

Acknowledgments

We thank F C Zhang, Q Han, Y Chen, X Dai, Z Fang, T K Ng, Q H Wang, H H Wen and S C Zhang for many helpful discussions. The work was supported by the NSFC (10525415 and 10429401), the RGC grants of Hong Kong (HKU-3/05C), the 973 project (2006CB601002, 2006CB921800) and the Ministry of Education of China (grant no. NCET-04-0453).

References

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Weng H H, Mu G, Fang L, Yang H and Zhu X 2008 Europhys. Lett. 82 17009
[3] Kamihara Y et al 2008 Nature 453 376
[4] Shan L et al 2008 Europhys. Lett. 83 57004
 Mu G et al 2008 Chin. Phys. Lett. 25 2221
[5] Chen X H et al 2008 Nature 453 761
[6] Chen G F et al 2008 Phys. Rev. Lett. 100 247002
[7] Ren Z A et al 2008 Mater. Res. Innov. 12 105
[8] Ren Z A et al 2008 Chin. Phys. Lett. 25 2215
[9] Dong J et al 2008 Europhys. Lett. 83 27006
[10] de la Cruz C et al 2008 Nature 453 899
[11] McGuire M A et al 2008 arXiv:0804.0796
[12] Singh D J and Du M H 2008 Phys. Rev. Lett. 100 237003
[13] Xu G et al 2008 Europhys. Lett. 82 67002
[14] Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003
[15] Kuroki K et al 2008 Phys. Rev. Lett. 101 087004
[16] Cao C, Hirschfeld P J and Cheng H P 2008 Phys. Rev. B 77 220506
[17] Dai X, Fang Z, Zhou Y and Zhang F C 2008 Phys. Rev. Lett. 101 057008
[18] Han Q, Chen Y and Wang Z D 2008 Europhys. Lett. 82 37007
[19] Korshunov M M and Eremin I 2008 Phys. Rev. B 78 140509
[20] Raghu S, Qi X L, Liu C X, Scalapino D J and Zhang S C 2008 Phys. Rev. B 77 220503
[21] Lee P A and Wen X G 2008 Phys. Rev. B 78 144517
[22] Weng Z Y 2008 arXiv:0804.3228
[23] Ma F, Lu Z Y and Xiang T 2008 Phys. Rev. B 78 224517
[24] Yin Z P et al 2008 Phys. Rev. Lett. 101 047001
[25] Bickers N E and Scalapino D J 1989 Ann. Phys. (NY) 193 206
 Yao Z-J, Li J-X and Wang Z D 2007 Phys. Rev. B 76 212506
[26] Graser S et al 2008 Phys. Rev. B 77 180514
[27] Takimoto T, Hotta T and Ueda K 2004 Phys. Rev. B 69 104504
[28] Wang F et al 2008 arXiv:0807.0498
[29] Boeri L et al 2008 Phys. Rev. Lett. 101 026403
[30] Ding H et al 2008 Europhys. Lett. 83 47001
[31] Qi X-L et al 2008 arXiv:0804.4332

New Journal of Physics 11 (2009) 025009 (http://www.njp.org/)