Expression of calreticulin is associated with infiltration of T-cells in stage III B colon cancer

Rui-Qing Peng, Ying-Bo Chen, Ya Ding, Rong Zhang, Xing Zhang, Xing-Juan Yu, Zhi-Wei Zhou, Yi-Xin Zeng, Xiao-Shi Zhang

AIM: To investigate the correlation between expression of calreticulin and infiltration of lymphocytes in stage III B colon cancer.

METHODS: Sixty-eight pathologically-confirmed specimens were obtained from stage III B (T3N1M0) colon cancer patients who underwent radical resection between January 1999 and May 2002 at the Cancer Center of Sun Yat-Sen University, Guangzhou, China. Immunohistochemical analysis was performed to show infiltration of lymphocytes and expression of calreticulin in colon cancer. Association between calreticulin expression, infiltration of lymphocytes, and 5-year survival rate of patients was assessed.

RESULTS: The expression level of calreticulin was lower in cancer nest than in its adjacent normal epithelium since 61.8% (42/68) of the samples were stained with calreticulin in colon cancer. The expression of calreticulin in colon cancer was associated with the infiltration of CD45RO+ cells rather than with that of CD3+ cells. In addition, the stronger expression of calreticulin and the higher infiltration of CD3+ and CD45RO+ cells in colon cancer were associated with the higher 5-year survival rate of patients.

CONCLUSION: Expression of calreticulin is associated with infiltration of T-cells, which implies that a low expression level of molecular marker may represent a new mechanism underlying immune escape in colon cancer.

Key words: Calreticulin; Tumor-infiltrating lymphocyte; Colon cancer; Immune escape

© 2010 Baishideng. All rights reserved.
ed with infiltration of T-cells in stage III B colon cancer. World J Gastroenterol 2010; 16(19): 2428-2434 Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i19/2428.htm DOI: http://dx.doi.org/10.3748/wjg.v16.i19.2428

INTRODUCTION

Mounting evidence indicates that colorectal cancer is immunogenic[6]. For example, when immunologic effector cells, such as CD3+ T-cells, CD45RO+ T-cells and macrophages, infiltrate colorectal cancer tissue, tumor progression is decreased[28-30]. However, colorectal cancer cells have developed multiple immune escape mechanisms, such as reduced expression of HLA-I molecules, expression of immune inhibitors including TGF-β and indoleamine 2,3-dioxygenase (IDO), and induction of NKG2D may serve as danger signals, thereby inducing an immune response[17,18]. More importantly, targeting the immune system can stimulate an immune response in colorectal cancer[12,16]

The mechanisms by which colorectal cancer cells induce an immunologic response remain unknown. Recently, evidence indicates that a subset of damage-associated molecular patterns (DAMPs) is involved in the induction of immune response. During the apoptosis of cancer cells, translocation of calreticulin (CRT) from endoplasmic reticulum (ER) to membrane (ecto-CRT exposure), expression of heat-shock proteins, release of HMGBl from cells, and expression of NKG2D may serve as danger signals, thereby inducing an immune response[19,20]. CRT is a highly conserved 46 kDa Ca2+-binding protein, which is mainly located in the lumen of ER and has various versatile functions, such as chaperone activity, regulation of Ca2+ homeostasis, adhesion signaling, involving gastrointestinal mucin synthesis at the stage of folding and oligomerization in ER, inhibiting angiogenesis and tumor growth[19-23]. Within ER, CRT interacts with various molecules like EPr57 and calnexin (CNX) to aid in proper folding of proteins[24]. Furthermore, CRT plays an important role both in the assembly of MHC class I molecule and in the loading of antigen peptides onto the MHC-I molecule within ER[25]. Besides, it has been shown that nuclear CRT can regulate nuclear protein transport and influence signaling via nuclear steroid receptors and integrins[26,27]. When cells are treated with anthracyclines, oxaliplatin, radiation and hypoxia, ecto-CRT exposure works as an “eat me” signal for dendritic cells and macrophages, initiating an immune response[28-30].

Altered expression of calreticulin has been detected in melanoma, and in liver, bladder, prostate, lung, pancreatic and breast cancers[35-37]. However, the clinical significance of CRT expression remains poorly understood and controversial. It has been reported that overexpression of CRT is related to the promotion of breast cancer and decreases the progression of prostate cancer[38,39]. Additionally, interaction between calnexin and calreticulin contributes to metastasis of melanoma[32]. Since the clinical evidence supporting the immune regulation of CRT is scant, this study examined the expression of CRT in stage III B colon cancer patients to evaluate whether the expression of CRT is associated with the immunogenicity of colon cancer.

MATERIALS AND METHODS

Materials

Sixty-eight pathologically-confirmed specimens were obtained from patients with stage III B (T3N1M0; AJCC, 2002) colon cancer between January 1999 and May 2002 at the Cancer Center of Sun Yat-Sen University, Guangzhou, China (Table 1). All the patients underwent radical resection and 5-FU-based adjuvant chemotherapy after operation for 6 mo. The patients were evaluated every 3 mo during the first year, every 6 mo in the second year, and once every year thereafter for a total of 5 years. If a recurrence or a metastasis occurred, 5-FU-based chemotherapy was given according to the national comprehensive cancer network (NCCN) guidelines. No patients received preoperative blood transfusion or non-steroidal anti-inflammatory drugs. Overall survival was defined as the time from surgery to death. Data analysis was done on the last known day when the patient was alive.

Immunohistochemical assay and scoring systems

Formalin-fixed, paraffin-embedded tissue was cut into 4-μm thick sections. The size of each tissue section was about 1 cm × 1 cm. Then, the sections were dehydrated, rehydrated, and blocked with hydrogen peroxide. Antibodies were retrieved in 10 mmol/L citrate buffer (pH 6.0) for 10 min and cooled to room temperature. After blocked with sheep serum, the sections were incubated overnight at 4°C with either rabbit polyclonal antibody against human calreticulin at a dilution of 1:2000 (Abcam, Cambridge, MA, USA) or mouse monoclonal antibody against human CD3 and CD45RO (Zymed, San Diego, CA, USA), both of which were diluted to 1:100. Subsequently, biotinylated secondary antibodies and streptavidin-biotinylated horseradish peroxidase complexes were used. The sections were developed with diaminobenzidine tetrahydrochloride (DAB) and counterstained with hematoxylin. Negative controls in which primary antibody was replaced with a phosphate buffered solution (PBS), were employed.

Infiltration of lymphocytes in the tumor was scored with Hussein’s method[39] and expression of calreticulin in colon cancer was interpreted via immunoreactivity using the 0-4 semi-quantitative system derived from Remmle and Stegner for both the intensity of staining and the percentage of positive cells (labeling frequency percentage)[39]. The cells were counted in at least 10 different fields for each section, and the size of each high-power field (× 400) was about 300 μm × 300 μm. The cells were counted in tumor stroma. The highest infiltration areas of lymphocytes were chosen. Necrotic areas were avoided. Two observers counted the cells at the same time and in the same field under a multiple-lens microscope. The results were expressed as mean ± SE. Cytoplasm staining
was divided into no staining/background of negative controls (score = 0), weak staining above background (score = 1), moderate staining (score = 2), and intense staining (score = 3). The labeling frequency was scored as 0 (< 1%), 1 (1%-24%), 2 (25%-49%), 3 (50%-74%), and 4 (> 75%), respectively. The product index was obtained by multiplying the intensity and percentage and scored as (−), (+), (++), and (+++), which indicate the cross-indices of 0-2, 3-5, 6-8, and 9-12, respectively. (−) was defined as no or negative expression, and (+)(++)(+++ +) as positive expression. Each section was independently scored by two pathologists. If an inconsistency occurred, a third pathologist was consulted to achieve a consensus.

Statistical analysis

Correlation between calreticulin expression, or infiltration of lymphocytes and parameters of patients was analyzed by χ2 test or Fisher's exact test. Factors, including gender and age of the patients, pathologic grade, tumor site, infiltration of CD3+ cells and CD45RO+ cells, and calreticulin expression level in colon cancer, were assessed by univariate and multivariate analysis to determine their influence on the overall survival rate of patients. Kaplan-Meier curve and log-rank test were used to estimate the distribution of variables in relation to survival. Cox regression model was used to correlate the assigned variables with the overall survival rate. All statistical analyses were carried out using SPSS 13.0 software (SPSS Inc., Chicago, IL, USA). P < 0.05 was considered statistically significant.

RESULTS

Expression of CRT and infiltration of lymphocytes in stage III B colon cancer

CRT was stained in cytoplasm rather than in nuclei of cancer cells and normal epithelium. The expression level of CRT was lower in colon cancer than in its adjacent normal epithelium. Of the stained samples, 61.8% (42/68) were positive for CRT in cancer nest (Figure 1A and B, Table 2). CD3+ and CD45RO+ cells were observed in all samples from tumor stroma and its adjacent normal mucosa. Positively stained antigens were found on cell membrane (Figure 1C-F).

Relation between expression of CRT and infiltration of CD3+ or CD45RO+ cells

The cut-off value for infiltration of lymphocytes in colon cancer was 75%. Infiltration of 18 CD3+ cells and 26 CD45RO+ cells was observed in per high-power field, and was thus recorded as high and low infiltration. Log-rank test was used to analyze the relation between expression of CRT and infiltration of CD3+ and CD45RO+ cells in colon cancer, showing that positive expression of CRT (+)(++)(+++ +) was associated with high infiltration of CD45RO+ cells (P = 0.010, Table 2). No correlation was observed between expression of CRT and infiltration of CD3+ cells or other parameters of the patients, such as age, gender, tumor site.

Univariate and multivariate survival analysis

By the end of a 5-year follow-up period, 52 patients were alive with a 5-year survival rate of 76.5%. Kaplan-Meier survival analysis indicated that positive expression of CRT was associated with a higher 5-year survival rate. The 5-year survival rate of patients with positive and negative expression of CRT was 85.5% (36/42) and 61.5% (16/26), respectively (P = 0.022, Table 3). However, the survival curves for patients with positive and negative expression of CRT were crossed at 18 mo (Figure 2). In addition, high infiltration of CD3+ and CD45RO+ cells in colon cancer was associated with a higher 5-year survival rate (P = 0.000, Figure 3).

Table 1 Parameters of patients (n = 68)

Parameters	n (%)
Age (yr)	
< 60	30 (44.1)
≥ 60	38 (55.9)
Gender	
Male	38 (55.9)
Female	30 (44.1)
Tumor site	
Left hemicolon	45 (66.2)
Right hemicolon	23 (33.8)
Pathological grade	
G1	10 (14.7)
G2	51 (75.0)
G3	7 (10.3)
Survival time (mo)	
≥ 60	52 (76.5)
< 60	16 (23.5)

Table 2 Relation between expression of calreticulin, infiltration of lymphocytes and parameters of patients (n = 68)

Parameters	Calreticulin expression	P
	(-)	(+)(++)(+++ +)
Gender		
Male	15	23
Female	11	19
Age (yr)		
< 60	12	26
≥ 60	14	16
Tumor site		
Left hemicolon	15	30
Right hemicolon	11	12
Pathological grade		
G1	5	5
G2	19	32
G3	2	5
Infiltration of CD3+ cells per high-power field		
> 18	18	33
≤ 18	8	9
Infiltration of CD45RO+ cells per high-power field		
> 26	15	36
≤ 26	11	6

Peng RQ et al. Expression of calreticulin in colon cancer

WJG | www.wjgnet.com 2430 May 21, 2010 | Volume 16 | Issue 19 |
Cox regression model revealed that neither expression of CRT nor infiltration of CD3+ cells or CD45RO+ cells in colon cancer had an independent prognostic value (Table 4).

DISCUSSION

In this study, the expression level of CRT was lower in colon cancer than in its adjacent normal epithelium, indicating that expression of CRT is associated with infiltration of CD45RO+ cells rather than with CD3+ cells and may serve as a mechanism underlying immune escape in colon cancer, although it is not an independent prognostic indicator.

A few studies have examined the role of CRT in the progression of colon cancer [40,41]. Toquet et al. [40] reported that the expression of CRT is decreased in non-mucinous colonic adenocarcinoma while Vougas reported that the expression of CRT is increased in poorly-differentiated colon cancer and advanced tumor [41]. In this study, however, neither the pathological classification nor the differentiation grade was associated with the expression level of CRT.

It is still unknown whether CRT is involved in the mechanism underlying immune escape in colon cancer. Colorectal cancer with microsatellite instability (MSI-H) is immunogenic due to infiltration of a large number of lymphocytes, which is consistent with our findings that the expression of CRT is associated with immune infiltration in colon cancer.

Table 3 Univariate survival analysis (n = 68)

Parameters	Survival time (mo)	P	
	< 60	≥ 60	-----
Gender	0.542		
Male	10 28		
Female	6 24		
Age (yr)	0.973		
≥ 60	9 29		
< 60	7 23		
Tumor sites	0.722		
Left hemicolon	10 35		
Right hemicolon	6 17		
Pathological grade	0.919		
G1	2 8		
G2	12 39		
G3	2 5		
Infiltration of CD3+ cells	0.000		
per high-power field ≥ 18	6 45		
≤ 18	10 7		
Infiltration of CD45RO+ cells per high-power field ≥ 26	0.000		
< 26	5 46		
Calreticulin expression	0.022		
(-)	10 16		
(+)-(+++)]	6 36		

Figure 1 Expression level of CRT in cancer nest (A) and in its adjacent normal epithelium (B) [× 100 in A, × 200 in B, normal epithelium (red arrow), atypical hyperplasia (black arrow) and tumor tissue (blue arrow), respectively], high infiltration of CD3+ cells (C) and CD45RO+ cells (E) in colon cancer stroma (× 400), low infiltration of CD3+ cells (D) and CD45RO+ cells (F) in colon cancer stroma (× 400).

Figure 2 Relation between CRT expression and 5-year survival rate.

P = 0.022
dendritic cells, resulting in a favorable prognosis\cite{42,43}. Microarray analysis showed that CRT expression was up-regulated in 27 cases of colorectal cancer with MSI-H, while quantitative RT-PCR analysis failed to confirm it in another 26 cases of colorectal cancer with MSI-H\cite{44}. In this study, the relation between expression level of CRT and infiltration of lymphocytes was assessed, which indicates that expression of CRT is related with infiltration of CD45RO+ cells in colon cancer. Since CD45RO+ cells contribute to a favorable prognosis of colon cancer patients, it is reasonable to infer that CRT expression is involved in immune response that occurs in colon cancer. However, this study failed to show that either CRT expression or infiltration of CD45RO+ cells was associated with the 5-year survival rate in a Cox statistical model. Therefore, further study is needed to confirm the role of CRT expression in the progression of colon cancer.

In conclusion, a low expression level of endogenous “danger signals”, such as CRT, may represent a new mechanism underlying immune escape in colon cancer.

COMMENTS

Background

There is evidence that colorectal cancer is immunogenic. The mechanisms by which colorectal cancer cells induce an immunologic response remain unknown. A subset of damage-associated molecular patterns (DAMPs) has been recently found to be involved in the induction of immune response. Calreticulin is one of the most important DAMPs. Whether calreticulin is associated with the immunogenicity of colon cancer remains controversial.

Research frontiers

Calreticulin is a multifunctional chaperone protein which mainly locates in the lumen of endoplasmic reticulum (ER). When exposed on the cell surface, calreticulin works as an "eat me" signal for dendritic cells and macrophages, initiating an immune response. Whether the expression of calreticulin in colon cancer is involved in induction of immune response is a hot topic on the role of calreticulin in pathogenesis of colon cancer.

Innovations and breakthroughs

Studies indicate that the expression of calreticulin is decreased in non-mucinous colon adenocarcinoma while is increased in poorly-differentiated colon cancer and advanced tumor. Other studies have shown that one of the calreticulin fragments inhibits angiogenesis and growth of colon cancer cells. However, the correlation between expression of calreticulin and survival of colon cancer patients remains unknown. In this study, the expression of calreticulin in stage III/B colon cancer was associated with the lower infiltration of CD45RO+ lymphocytes which was associated with a shorter 5-year survival time, suggesting that reduced expression of CRT may serve as a mechanism underlying immune escape in colon cancer.

Applications

In this study, reduced expression of endogenous “danger signals”, such as calreticulin, was found to be a new mechanism underlying immune escape in colon cancer, which is important for a better understanding of the immunogenicity of colon cancer, thus providing a new immunotherapy for colon cancer.

Terminology

Calreticulin: A highly conserved 46 kDa Ca$^{2+}$-binding protein, which is mainly located in the lumen of ER and has various versatile functions, like chaperone activity, regulation of Ca$^{2+}$ homeostasis, and adhesion signaling. When cells were treated with anthracyclines, oxaliplatin, radiation and hypoxia, calreticulin fragments inhibits angiogenesis and growth of colon cancer cells. Whether the expression of calreticulin in colon cancer is involved in induction of immune response is a hot topic on the role of calreticulin in pathogenesis of colon cancer.
REFERENCES

1 Camus M, Tosolini M, Mlecnik B, Pagès F, Kirilovsky A, Berger A, Costes A, Bindea G, Charoentong P, Bruneval P, Trajanoski Z, Fridman WH, Galon J. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res 2009; 69: 2685-2693

2 Pagès F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind P, Marliot F, Bruneval P, Zatloukal K, Trajanoski Z, Berger A, Fridman WH, Galon J. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 2009; 27: 5944-5951

3 Xie ZJ, Jia LM, He YC, Gao JF. Morphological observation of tumor infiltrating immunocytes in human rectal cancer. World J Gastroenterol 2006; 12: 1757-1760

4 Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoué F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pagès F. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313: 1960-1964

5 Hansler J, Wissniewski TT, Schuppau D, Witte A, Bernatik T, Hahn EG, Strobel D. Activation and dramatically increased cytolytic activity of tumor specific T lymphocytes after radio-frequency ablation in patients with hepatocellular carcinoma and colorectal liver metastases. World J Gastroenterol 2006; 12: 3716-3721

6 Nagorsen D, Voigt S, Berg E, Stein H, Thiel E, Loddenkemper C. Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med 2007; 5: 62

7 Laghi L, Bianchi P, Miranda E, Balladore E, Pacetti V, Grizzi F, Allavena P, Torri V, Repici A, Santoro A, Mantovani A, Roncalli M, Malesci A. CD3+ cells at the invasive margin of deep invading (pT3-T4) colorectal cancer and risk of post-surgical metastasis: a longitudinal study. Lancet Oncol 2009; 10: 877-884

8 Ohtani H. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer. Cancer Immun 2007; 7: 4

9 Waldner M, Schimanski CC, Neurath MF. Colon cancer and the immune system: the role of tumor invading T cells. World J Gastroenterol 2006; 12: 7233-7238

10 Mazzolini G, Murillo O, Atorrasagasti C, Dubrot J, Tirapu I, Rizzo M, Arina A, Alfaro C, Asculturua E, Berasain C, Perez-Gracia JL, Gonzalez A, Melero I. Immunotherapy and immune response in colorectal cancer. World J Gastroenterol 2007; 13: 5822-5831

11 Gao YF, Peng RQ, Li J, Ding Y, Zhang X, Wu XJ, Pan ZZ, Wan DS, Zeng YX, Zhang XS. The paradoxical patterns of expression of indoleamine 2,3-dioxygenase in colon cancer. J Transl Med 2009; 7: 71

12 Correale P, Cusi MG, Tsang KY, Del Vecchio MT, Marsili S, Piaca ML, Intrinici C, Aquino A, Michelì L, Nencini C, Ferrari F, Giorgi G, Bonmassar E, Francini G. Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFIRI 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients. J Clin Oncol 2005; 23: 8950-8958

13 Morris M, Platell C, Iacopetta B. Tumor-infiltrating lymphocytes and perforation in colon cancer predict positive response to 5-fluorouracil chemotherapy. Clin Cancer Res 2008; 14: 1413-1417

14 Gardini A, Ercolani G, Riccobon A, Ravaoli M, Ridolfi L, Flamini E, Ridolfi R, Grazi GL, Cavallari A, Amadori D. Adjuvant, adoptive immunotherapy with tumor infiltrating lymphocytes plus interleukin-2 after radical hepatic resection for colorectal liver metastases: 5-year analysis. J Surg Oncol 2004; 87: 46-52

15 Ma YH, Cheng WZ, Gong F, Ma AL, Yu QW, Zhang JY, Hu CY, Chen XH, Zhang DQ. Active Chinese mistletoe lectin-55 enhances colon cancer surveillance through regulating innate and adaptive immune responses. World J Gastroenterol 2006; 12: 5274-5278

16 Xiao ZY, Wu W, Egleton N, Chen HQ, Shao J, Teng H, Liu TH, Jiang ZM, Yao HR. Silencing Fas-associated phosphatase 1 expression enhances efficiency of chemotherapy for colon carcinoma with oxaliplatin. World J Gastroenterol 2010; 16: 112-118

17 Obeid M, Tesniere A, Ghiringhelli F, Finma GM, Apeloth L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, Métrieur D, Laroquette N, van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Cell Biol 2007; 13: 54-61

18 Obeid M, Tesniere A, Panaretakis T, Tufi R, Joza N, van Endert P, Ghiringhelli F, Apeloth L, Chapat N, Flament C, Ulrich E, de Bottom S, Zitvogel L, Kroemer G. Ecto-calreticulin in immunogenic chemotherapy. Immuno Rev 2007; 220: 22-34

19 Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M, Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 2009; 417: 651-666

20 Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, Agostinis P. Immunogenic cell death, DAMPs and anticancre therapies: an emerging amalgamation. Biochim Biophys Acta 2010; 1805: 53-71

21 Villagomez M, Szabo E, Podcheko A, Feng T, Papp S, Opas M, Calreticulin and focal-contact-dependent adhesion. Biochem Cell Biol 2009; 87: 545-556

22 McCool DJ, Okada Y, Forster JN, Forstner GG. Roles of calreticulin and calnexin during mucin synthesis in LS180 and HT29/A1 human colonic adenocarcinoma cells. Biochem J 1999; 341 (Pt 3): 593-600

23 Pike SE, Yao L, Jones KD, Cherney B, Appella E, Sakaguchi K, Nakhasi H, Teruya-Feldstein J, Wirth P, Gupta G, Tosato G. Vasoostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 1998; 18: 2349-2356

24 Ellgaard L, Frickel EM, Calnexin, calreticulin, and ERp57: teammates in glycoprotein folding. Cell Biochem Biophys 2003; 39: 223-247

25 Solheim JC. Class I MHC molecules: assembly and antigen presentation. Immunol Rev 1999; 172: 11-19

26 Brünagel G, Shah U, Schoen RE, Getzenberg RH. Identification of calreticulin as a nuclear matrix protein associated with human colon cancer. J Cell Biochem 2003; 89: 238-243

27 Mesei N, Phillips C. Impaired p53 expression, function, and nuclear localization in calreticulin-deficient cells. Mol Biol Cell 2004; 15: 1862-1870

28 Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, Aymeric L, Michaud M, Apeloth L, Barault L, Mendiboure J, Pignon JP, Jooste V, van Endert P, Ducreux M, Zitvogel L, Piard F, Kroemer G. Immunogenic death of human colon cancer cells treated with oxaliplatin. Oncogene 2010; 29: 452-491

29 Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, Durchschlag M, Joza N, Pierron G, van Endert P, Yuan J, Zitvogel L, Madeo F, Williams DB, Kroemer G. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 2009; 28: 578-590

30 Gelebart P, Opas M, Michalak M, Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem
Peng RQ et al. Expression of calreticulin in colon cancer

Cell Biol 2005; 37: 260-266
31 Dissemond J, Busch M, Kothen T, Mors J, Weimann TK, Lindke A, Goos M, Wagner SN. Differential downregulation of endoplasmic reticulum-residing chaperones calnexin and calreticulin in human metastatic melanoma. Cancer Lett 2004; 203: 225-231
32 Kageyama S, Isono T, Iwaki H, Wakabayashi Y, Okada Y, Kontani K, Yoshimura K, Tera A, Arai Y, Yoshiki T. Identification by proteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic accuracy of its detection in urine. Clin Chem 2004; 50: 857-866
33 Kageyama S, Isono T, Matsuda S, Ushio Y, Satomura S, Tera A, Arai Y, Kawakita M, Okada Y, Yoshiki T. Urinary calreticulin in the diagnosis of bladder urothelial carcinoma. Int J Urol 2009; 16: 481-486
34 Seliger B, Stoehr R, Handke D, Mueller A, Ferrone S, Wullich B, Tannapfel A, Hofstaedter F, Hartmann A. Association of HLA class I antigen abnormalities with disease progression and early recurrence in prostate cancer. Cancer Immunol Immunother 2010; 59: 529-540
35 Hong SH, Misek DE, Wang H, Puravs E, Giordano TJ, Green- son JK, Brenner DE, Simeone DM, Logsdon CD, Hanash SM. An autoantibody-mediated immune response to calreticulin isoforms in pancreatic cancer. Cancer Res 2004; 64: 5504-5510
36 Erić A, Juranić Z, Milovanović Z, Marković I, Inić M, Stanoević-Bakić N, Vojinović-Golubović V. Effects of humoral immunity and calreticulin overexpression on postoperative course in breast cancer. Pathol Oncol Res 2009; 15: 89-90
37 Bergner A, Kellner J, Tuftman A, Huber RM. Endoplasmic reticulum Ca2+-homeostasis is altered in small and non-small Cell Lung Cancer cell lines. J Exp Clin Cancer Res 2009; 28: 25
38 Hussein MR, Hassan HI. Analysis of the mononuclear inflammatory cell infiltrate in the normal breast, benign proliferative breast disease, in situ and infiltrating ductal breast carcinomas: preliminary observations. J Clin Pathol 2006; 59: 972-977
39 Remmele W, Stegner HE. [Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue] Pathologe 1987; 8: 138-140
40 Toquet C, Jarry A, Bou-Hanna C, Bach K, Denis MG, Mors- nier JF, Laboisse CL. Altered Calreticulin expression in hum- man colon cancer: maintenance of Calreticulin expression is associated with mucinous differentiation. Oncol Rep 2007; 17: 1101-1107
41 Vougas K, Gaitanarou E, Marinos E, Kittas C, Voloudakis-Baltatzis IE. Two-dimensional electrophoresis and immuno- histochemical study of calreticulin in colorectal adenocarcinoma and mirror biopsies. J BUON 2008; 13: 101-107
42 Ropponen KM, Eskelinen MJ, Lipponen PK, Alhava E, Kos- ma VM. Prognostic value of tumour-infiltrating lympho- cytes (TILs) in colorectal cancer. J Pathol 1997; 182: 318-324
43 Greenson JK, Huang SC, Herron C, Moreno V, Bonner JD, Tomsho LP, Ben-Izhak O, Cohen HI, Trougouboff P, Bejar J, Sova Y, Pinchev M, Rennert G, Gruber SB. Pathologic predictors of microsatellite instability in colorectal cancer. Am J Surg Pathol 2009; 33: 126-133
44 Banerjea A, Ahmed S, Hands RE, Huang F, Han X, Shaw PM, Fearns R, Bustin SA, Dorudi S. Colorectal cancers with microsatellite instability display mRNA expression signatures characteristic of increased immunogenicity. Mol Cancer 2004; 3: 21

S- Editor Tian L L- Editor Wang XL E- Editor Ma WH