Dualities between Laplace Transform and Some Useful Integral Transforms

Sudhanshu Aggarwal, Kavita Bhatnagar

Abstract: Integral transforms have wide applications in the various disciplines of engineering and science to solve the problems of heat transfer, springs, mixing problems, electrical networks, bending of beams, carbon dating problems, Newton’s second law of motion, signal processing, exponential growth and decay problems. In this paper, we will discuss the dualities between Laplace transform and some useful integral transforms namely Kamal transform, Elzaki transform, Aboodh transform, Sumudu transform, Mahgoub (Laplace-Carson) transform, Mohand transform and Sawi transform. To visualize the importance of dualities between Laplace transform and mention integral transforms, we give tabular presentation of the integral transforms (Kamal transform, Elzaki transform, Aboodh transform, Sumudu transform, Mahgoub transform, Mohand transform and Sawi transform) of mostly used basic functions by using mention dualities relations. Results show that the mention integral transforms are strongly related with Laplace transform.

Keywords: Laplace; Kamal; Elzaki; Aboodh; Sumudu; Mahgoub (Laplace-Carson); Mohand; Sawi transforms.

AMS Subject Classification 2010: 44A05, 44A10, 44A15.

I. INTRODUCTION

Many process and phenomenon of science, engineering and real life can be expressed mathematically and solved by using integral transforms. The problems arise in the field of signal processing, statistics, thermal science, medicine, fractional calculus, aerodynamics, civil engineering, control theory, cardiology, quantum mechanics, space science, marine science, biology, gravitation, nuclear magnetic resonance, heat conduction, economics, telecommunications, nuclear reactors, detection of diabetes, chemistry, stress analysis, electricity, physics, potential theory, mathematics, deflection of beams, vibration of plates, defense, Brownian motion and many other fields can be easily handle with the help of integral transforms by converting them into mathematical form. In the advanced time, researchers are interested in solving the advance problems of research, science, space, engineering and real life by introducing new integral transforms. Aggarwal and Chaudhary [1] discussed Mohand and Laplace transforms comparatively by solving system of differential equations using both integral transforms. Recently many scholars [2-7] used different integral transforms namely Kamal transform, Elzaki transform, Aboodh transform, Sumudu transform, Mahgoub (Laplace-Carson) transform and Mohand transform for evaluating improper integrals which contains error function in the integrand. Mahgoub [8] gave Sawi transform which is a new integral transform.

The aim of this study is to establish duality relations between Laplace transform and some useful integral transforms namely Kamal transform, Elzaki transform, Aboodh transform, Sumudu transform, Mahgoub (Laplace-Carson) transform, Mohand transform and Sawi transform.

II. LAPLACE TRANSFORM

The Laplace transform of the function \(Z(y), y \geq 0 \) is given by [1]

\[
L(Z(y)) = \int_0^\infty Z(y)e^{-\gamma y} dy = B(\gamma)
\]

III. KAMAL TRANSFORM

Kamal transform of the function \(Z(y), y \geq 0 \) is given by [2]

\[
K(Z(y)) = \int_0^\infty Z(y)e^{-\gamma y} dy = C(\gamma),
\]

IV. ELZAKI TRANSFORM

Elzaki transform of the function \(Z(y), y \geq 0 \) is given by [3]

\[
E(Z(y)) = \int_0^\infty Z(y)e^{-\gamma y} dy = D(\gamma),
\]

V. ABOODH TRANSFORM

Aboodh transform of the function \(Z(y), y \geq 0 \) is given by [4]

\[
A(Z(y)) = \frac{1}{\gamma} \int_0^\infty Z(y)e^{-\gamma y} dy = F(\gamma),
\]

VI. SUMUDU TRANSFORM

Sumudu transform of the function \(Z(y), y \geq 0 \) is given by [5]

\[
S(Z(y)) = \int_0^\infty Z(\gamma)e^{-\gamma y} dy = G(\gamma),
\]

VII. MAHGOUB (LAPLACE–CARSON) TRANSFORM

Mahgoub (Laplace-Carson) transform of the function \(Z(y), y \geq 0 \) is given by [6]

\[
M_1(Z(y)) = \epsilon \int_0^\infty Z(\gamma)e^{-\gamma y} dy = H(\gamma),
\]

VIII. MOHAND TRANSFORM

Mohand transform of the function \(Z(y), y \geq 0 \) is given by [1, 7]

\[
M(Z(y)) = \epsilon^2 \int_0^\infty Z(\gamma)e^{-\gamma y} dy = I(\gamma),
\]

A9433.109119
DOI: 10.35940/ijeat.A9433.109119

Revised Manuscript Received on October 15, 2019

Sudhanshu Aggarwal, Assistant Professor, Department of Mathematics, National P.G. College, Barhaglanj, Gorakhpur-273402, U.P., India, Email: sudhanshu30187@gmail.com

Dr. Kavita Bhatnagar, Assistant Professor, Department of Mathematics, Noida Institute of Engineering & Technology, Greater Noida-201306, U.P., India, Email: kavita.sinha0682@gmail.com
Dualities between Laplace Transform and Some Useful Integral Transforms

IX. SAWI TRANSFORM

Sawi transform of the function $Z(y)$, $y \geq 0$ is given by [8]

$$S^{*}\{Z(y)\} = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} Z(y)e^{-\frac{y^2}{4}}dy = f(\epsilon),$$

$$0 < k_1 \leq \epsilon \leq k_2$$

X. DUALITIES OF LAPLACE TRANSFORM WITH SOME USEFUL INTEGRAL TRANSFORMS

In this section, we define the dualities between Laplace transform and some useful integral transforms namely Kamal transform, Elzaki transform, Aboodh transform, Sumudu transform, Mahgoub (Laplace-Carson) transform, Mohan transform and Sawi transform.

A. Laplace – Kamal Duality

If Laplace and Kamal transforms of $Z(y)$ are $B(\epsilon)$ and $C(\epsilon)$ respectively then

$$B(\epsilon) = C\left(\frac{1}{\epsilon}\right)$$

and

$$C(\epsilon) = B\left(\frac{1}{\epsilon}\right)$$

Proof: From (1),

$$B(\epsilon) = \int_{0}^{\infty} Z(y)e^{-\epsilon y}dy = \int_{0}^{\infty} Z(y)e^{-\frac{y}{\epsilon}}dy$$

Now, using (2) in above Equation, we obtain

$$B(\epsilon) = C\left(\frac{1}{\epsilon}\right).$$

To drive (10), we use (2)

$$C(\epsilon) = \int_{0}^{\infty} Z(y)e^{\frac{y}{\epsilon}}dy$$

It is immediately concluded using (1) in (11),

$$C(\epsilon) = B\left(\frac{1}{\epsilon}\right).$$

B. Laplace – Elzaki Duality

If Laplace and Elzaki transforms of $Z(y)$ are $B(\epsilon)$ and $D(\epsilon)$ respectively then

$$B(\epsilon) = \epsilon D\left(\frac{1}{\epsilon}\right)$$

and

$$D(\epsilon) = \epsilon B\left(\frac{1}{\epsilon}\right)$$

Proof: Using (1) follows

$$B(\epsilon) = \int_{0}^{\infty} Z(y)e^{-\epsilon y}dy$$

$$\Rightarrow B(\epsilon) = \epsilon \left[\int_{0}^{\infty} Z(y)e^{-\frac{y}{\epsilon}}dy \right]$$

Now, using (3) in above equation, we obtain

$$B(\epsilon) = \epsilon D\left(\frac{1}{\epsilon}\right).$$

To drive (13), we use (3)

$$D(\epsilon) = \epsilon \int_{0}^{\infty} Z(y)e^{\frac{y}{\epsilon}}dy$$

It is immediately concluded using (1) in above equation,

$$D(\epsilon) = \epsilon B\left(\frac{1}{\epsilon}\right).$$

C. Laplace – Aboodh Duality

If Laplace and Aboodh transforms of $Z(y)$ are $B(\epsilon)$ and $F(\epsilon)$ respectively then

$$B(\epsilon) = \epsilon F(\epsilon)$$

and

$$F(\epsilon) = \frac{1}{\epsilon} B(e)$$

Proof: It is immediately concluded from (1)

$$B(\epsilon) = \int_{0}^{\infty} Z(y)e^{-\epsilon y}dy$$

$$\Rightarrow B(\epsilon) = \epsilon \left[\int_{0}^{\infty} Z(y)e^{-\frac{y}{\epsilon}}dy \right]$$

Now, using (4) in above Equation, we have

$$B(\epsilon) = \epsilon F(\epsilon).$$

To drive (16), we use (4)

$$F(\epsilon) = \frac{1}{\epsilon} \int_{0}^{\infty} Z(y)e^{-\epsilon y}dy$$

It is immediately concluded using (1) in above equation,

$$F(\epsilon) = \frac{1}{\epsilon} B(\epsilon).$$

D. Laplace – Sumudu Duality

If Laplace and Sumudu transforms of $Z(y)$ are $B(\epsilon)$ and $G(\epsilon)$ respectively then

$$B(\epsilon) = \frac{1}{\epsilon} \epsilon G\left(\frac{1}{\epsilon}\right)$$

and

$$G(\epsilon) = \frac{1}{\epsilon} B\left(\frac{1}{\epsilon}\right)$$

Proof: From (1), we have

$$B(\epsilon) = \int_{0}^{\infty} Z(y)e^{-\epsilon y}dy$$

Put $\epsilon y = u \Rightarrow dy = \frac{du}{\epsilon}$ in above equation, we have

$$B(\epsilon) = \int_{0}^{\infty} Z\left(\frac{u}{\epsilon}\right)e^{-u}du$$

$$\Rightarrow B(\epsilon) = \frac{1}{\epsilon} \int_{0}^{\infty} Z\left(\frac{u}{\epsilon}\right)e^{-u}du$$

Now, using (5) in above equation, we have

$$B(\epsilon) = \frac{1}{\epsilon} G\left(\frac{1}{\epsilon}\right).$$

To drive (18), we use (5)

$$G(\epsilon) = \int_{0}^{\infty} Z(\epsilon y)e^{-\epsilon y}dy$$

Put $\epsilon y = u \Rightarrow dy = \frac{du}{\epsilon}$ in above equation, we have

$$G(\epsilon) = \int_{0}^{\infty} Z(u)e^{-\frac{u}{\epsilon}}du$$

$$\Rightarrow G(\epsilon) = \frac{1}{\epsilon} \int_{0}^{\infty} Z(u)e^{-\frac{u}{\epsilon}}du$$

It is immediately concluded using (1) in above equation,

$$G(\epsilon) = \frac{1}{\epsilon} B\left(\frac{1}{\epsilon}\right).$$

E. Laplace – Mahgoub (Laplace – Carson) Duality

If Laplace and Mahgoub transforms of $Z(y)$ are $B(\epsilon)$ and $H(\epsilon)$ respectively then

$$B(\epsilon) = \frac{1}{\epsilon} H(\epsilon)$$

and

$$H(\epsilon) = \epsilon B(\epsilon)$$

Proof: From (1), we have

$$B(\epsilon) = \int_{0}^{\infty} Z(y)e^{-\epsilon y}dy$$

$$\Rightarrow B(\epsilon) = \frac{1}{\epsilon} \int_{0}^{\infty} Z(\epsilon y)e^{-\epsilon y}dy$$

Now, using (6) in above equation, we have

$$B(\epsilon) = \frac{1}{\epsilon} H(\epsilon).$$

To drive (20), we use (6)

$$H(\epsilon) = \epsilon \int_{0}^{\infty} Z(\epsilon y)e^{-\epsilon y}dy$$

It is immediately concluded using (1) in above equation,

$$H(\epsilon) = \epsilon B(\epsilon).$$

F. Laplace – Mohand Duality

If Laplace and Mohand transforms of \(Z(y) \) are \(B(e) \) and \(I(e) \) respectively then

\[
B(e) = \sum_{n=0}^{\infty} e^{ny} B(n)
\]

and

\[
I(e) = e^{-2B(e)}
\]

Proof: From (1), we have

\[
B(e) = \int_{0}^{\infty} \frac{Z(y)}{e^{2y}} \, dy
\]

and

\[
I(e) = \frac{e^{-2}}{e^{2y}} I(y)
\]

Now, using (7) in above equation, we have

\[
B(e) = \frac{1}{e^{2}} I(e)
\]

To drive (22), we use (7)

\[
I(e) = e^{2} \int_{0}^{\infty} Z(y) e^{-2} \, dy
\]

It is immediately concluded using (1) in above equation,

\[
I(e) = e^{-2B(e)}
\]

G. Laplace – Sawi Duality

If Laplace and Sawi transforms of \(Z(y) \) are \(B(e) \) and \(J(e) \) respectively then

\[
B(e) = \sum_{n=0}^{\infty} e^{ny} B(n)
\]

and

\[
J(e) = \frac{1}{e^{2}} B(e)
\]

Proof: Using (1) follows

\[
B(e) = \int_{0}^{\infty} \frac{Z(y)}{e^{2y}} \, dy
\]

and

\[
J(e) = \frac{1}{e^{2}} B(e)
\]

Now, using (8) in above equation, we obtain

\[
B(e) = \frac{1}{e^{2}} \int_{0}^{\infty} \frac{1}{e^{y}}
\]

To drive (24), we use (8)

\[
J(e) = \frac{1}{e^{2}} \int_{0}^{\infty} Z(y) e^{-2y} \, dy
\]

Now, using (1) in above equation, we obtain

\[
J(e) = \frac{1}{e^{2}} \int_{0}^{\infty} \frac{1}{e^{y}}
\]

XI. APPLICATIONS OF MENTION DUALITY RELATIONS FOR FINDING INTEGRAL TRANSFORMS (KAMAL TRANSFORM, ELZAKI TRANSFORM, ABOODH TRANSFORM, SUMUDU TRANSFORM, MAHGOUB TRANSFORM, MOHAND TRANSFORM AND SAWI TRANSFORM) OF USEFUL BASIC FUNCTIONS

We are giving tabular presentation of the integral transforms of mostly used basic functions by using mention dualities relations to visualize the usefulness of dualities between Laplace transform and mention integral transforms in the application field.

| Table-I: Kamal transform of useful basic functions with the help of Laplace – Kamal duality relation |
|-----------------|---|------------------|
| S. N. | \(Z(y) \) | \(K[Z(y)] \) \(= B(e) \) | \(K[Z(y)] \) \(= C(e) \) |
| 1. | 1 | \(\frac{1}{e} \) | \(\epsilon \) |
| 2. | \(y \) | \(\frac{1}{e^{2}} \) | \(e^{2} \) |
| 3. | \(y^{2} \) | \(\frac{2!}{e^{3}} \) | \(2!e^{3} \) |
| 4. | \(y^{n}, \, n \in N \) | \(\frac{n!}{e^{n+1}} \) | \(n!e^{n+1} \) |
| 5. | \(y^{n}, \, n > -1 \) | \(\frac{\Gamma(n+1)}{e^{n+1}} \) | \(\Gamma(n+1)e^{n+1} \) |
| 6. | \(e^{\gamma y} \) | \(\frac{1}{e - a} \) | \(\frac{e}{1 - ae} \) |
| 7. | \(\sin y \) | \(\frac{\alpha}{e^{2} + a^{2}} \) | \(\frac{ae^{2}}{1 + a^{2}e^{2}} \) |
| 8. | \(\cos y \) | \(\frac{\alpha}{e^{2} + a^{2}} \) | \(\frac{e^{2}}{1 + a^{2}e^{2}} \) |
| 9. | \(\sinh y \) | \(\frac{\alpha}{e^{2} + a^{2}} \) | \(\frac{ae^{2}}{1 + a^{2}e^{2}} \) |
| 10. | \(\cosh y \) | \(\frac{\alpha}{e^{2} + a^{2}} \) | \(\frac{e^{2}}{1 + a^{2}e^{2}} \) |

| Table-II: Elzaki transform of useful basic functions with the help of Laplace – Elzaki duality relation |
|-----------------|---|------------------|
| S.N. | \(Z(y) \) | \(L[Z(y)] \) | \(E[Z(y)] \) |
| 1. | 1 | \(\frac{1}{e} \) | \(e^{2} \) |
| 2. | \(y \) | \(\frac{1}{e^{2}} \) | \(e^{3} \) |
| 3. | \(y^{2} \) | \(\frac{2!}{e^{3}} \) | \(2!e^{3} \) |
| 4. | \(y^{n}, \, n \in N \) | \(\frac{n!}{e^{n+1}} \) | \(n!e^{n+1} \) |
| 5. | \(y^{n}, \, n > -1 \) | \(\frac{\Gamma(n+1)}{e^{n+1}} \) | \(\Gamma(n+1)e^{n+1} \) |
| 6. | \(e^{\gamma y} \) | \(\frac{1}{e - a} \) | \(\frac{e^{2}}{1 - ae} \) |
| 7. | \(\sin y \) | \(\frac{\alpha}{e^{2} + a^{2}} \) | \(\frac{ae^{2}}{1 + a^{2}e^{2}} \) |
| 8. | \(\cos y \) | \(\frac{\alpha}{e^{2} + a^{2}} \) | \(\frac{e^{2}}{1 + a^{2}e^{2}} \) |
| 9. | \(\sinh y \) | \(\frac{\alpha}{e^{2} + a^{2}} \) | \(\frac{ae^{2}}{1 + a^{2}e^{2}} \) |
| 10. | \(\cosh y \) | \(\frac{\alpha}{e^{2} + a^{2}} \) | \(\frac{e^{2}}{1 + a^{2}e^{2}} \) |
Table-III: Aboodh transform of useful basic functions with the help of Laplace – Aboodh duality relation

S.N.	$Z(y)$	$L[Z(y)] = B(ε)$	$A[Z(y)] = F(ε)$
1.	1	$\frac{1}{ε}$	$\frac{1}{ε^2}$
2.	$γ$	$\frac{1}{ε^2}$	$\frac{1}{ε^3}$
3.	$γ^2$	$\frac{2!}{ε^3}$	$\frac{2!}{ε^4}$
4.	$γ^n, n ∈ N$	$\frac{n!}{ε^{n+1}}$	$\frac{n!}{ε^{n+2}}$
5.	$γ^n, n > -1$	$\frac{Γ(n + 1)}{ε^{n+1}}$	$\frac{Γ(n + 1)}{ε^{n+2}}$
6.	e^{ay}	$\frac{1}{(ε - a)}$	$\frac{1}{ε(ε - a)}$
7.	$sinay$	$\frac{a}{(ε^2 + a^2)}$	$\frac{a}{ε(ε^2 + a^2)}$
8.	$cosay$	$\frac{ε}{(ε^2 + a^2)}$	$\frac{1}{ε^2 + a^2}$
9.	$sinhay$	$\frac{a}{(ε^2 - a^2)}$	$\frac{a}{ε(ε^2 - a^2)}$
10.	$coshay$	$\frac{ε}{(ε^2 - a^2)}$	$\frac{1}{(ε^2 - a^2)}$

Table-IV: Sumudu transform of useful basic functions with the help of Laplace – Sumudu duality relation

S.N.	$Z(y)$	$L[Z(y)] = B(ε)$	$S[Z(y)] = G(ε)$
1.	1	$\frac{1}{ε}$	1
2.	$γ$	$\frac{1}{ε^2}$	$ε$
3.	$γ^2$	$\frac{2!}{ε^3}$	$2!ε^2$
4.	$γ^n, n ∈ N$	$\frac{n!}{ε^{n+1}}$	$n!ε^n$
5.	$γ^n, n > -1$	$\frac{Γ(n + 1)}{ε^{n+1}}$	$Γ(n + 1)ε^n$
6.	e^{ay}	$\frac{1}{(ε - a)}$	$\frac{1}{(ε - a)}$
7.	$sinay$	$\frac{a}{(ε^2 + a^2)}$	$\frac{ae}{ε^2 + a^2}$
8.	$cosay$	$\frac{ε}{(ε^2 + a^2)}$	$\frac{ε^2}{ε^2 + a^2}$
9.	$sinhay$	$\frac{a}{(ε^2 - a^2)}$	$\frac{ae}{ε^2 - a^2}$
10.	$coshay$	$\frac{ε}{(ε^2 - a^2)}$	$\frac{ε^2}{ε^2 - a^2}$

Table-V: Mahgoub (Laplace – Carson) transform of useful basic functions with the help of Laplace – Mahgoub (Laplace – Carson) duality relation

S.N.	$Z(y)$	$L[Z(y)] = B(ε)$	$M[Z(y)] = H(ε)$
1.	1	$\frac{1}{ε}$	1
2.	$γ$	$\frac{1}{ε^2}$	$\frac{1}{ε}$
3.	$γ^2$	$\frac{2!}{ε^3}$	$2!ε^2$
4.	$γ^n, n ∈ N$	$\frac{n!}{ε^{n+1}}$	$n!ε^n$
5.	$γ^n, n > -1$	$\frac{Γ(n + 1)}{ε^{n+1}}$	$Γ(n + 1)ε^n$
6.	e^{ay}	$\frac{1}{(ε - a)}$	$\frac{1}{(ε - a)}$
7.	$sinay$	$\frac{a}{(ε^2 + a^2)}$	$\frac{ae}{ε^2 + a^2}$
8.	$cosay$	$\frac{ε}{(ε^2 + a^2)}$	$\frac{ε^2}{ε^2 + a^2}$
9.	$sinhay$	$\frac{a}{(ε^2 - a^2)}$	$\frac{ae}{ε^2 - a^2}$
10.	$coshay$	$\frac{ε}{(ε^2 - a^2)}$	$\frac{ε^2}{ε^2 - a^2}$
In the present paper, duality relations between Laplace transform and some useful integral transforms namely Kamal transform, Elzaki transform, Aboodh transform, Sumudu transform, Mahgoub (Laplace-Carson) transform, Mohand transform and Sawi transform are established successfully. Tabular presentation of the integral transforms (Kamal transform, Elzaki transform, Aboodh transform, Sumudu transform, Mahgoub (Laplace-Carson) transform, Mohand transform and Sawi transform) of mostly used basic functions are given with the help of mention dualities to visualize the importance of dualities between Laplace transform and mention integral transforms. Results show that the Laplace transform and mention integral transforms in this paper are strongly related to each others. In future using these duality relations, we can easily solved many advanced problems of modern era such as motion of coupled harmonic oscillators, drug distribution in the body, arms race models, Brownian motion and the common health problem such as detection of diabetes.

REFERENCES

1. Aggarwal, S. and Chaudhary, R., A comparative study of Mohand and Laplace transforms, Journal of Emerging Technologies and Innovative Research, Vol. 6, No. 2, Feb. 2019, pp. 230-240.
2. Aggarwal, S. and Singh, G.P., Kamal transform of error function, Journal of Applied Science and Computations, Vol. 6, No. 5, May 2019, pp. 2223-2235.
3. Aggarwal, S., Gupta, A.R. and Kumar, A., Elzaki transform of error function, Global Journal of Engineering Science and Researches, Vol. 6, No. 5, May 2019, pp. 412-422.
4. Aggarwal, S. and Singh, G.P., Aboodh transform of error function, Universal Review, Vol. 10, No. 6, June 2019, pp. 137-150.
5. Aggarwal, S., Gupta, A.R., Sharma, S.D., Chauhan, R. and Sharma, N., Mahgoub transform (Laplace-Carson transform) of error function, International Journal of Latest Technology in Engineering, Management & Applied Science, Vol. 8, No. 4, April 2019, pp. 92-98.
6. Aggarwal, S., Gupta, A.R., Sharma, S.D., Chauhan, R. and Sharma, N., Mahgoub transform of error function, International Journal of Research in Advent Technology, Vol. 7, No. 5, May 2019, pp. 224-231.
7. Mahgoub, Mohand M. Abdelrahim, The new integral transform "Sawi Transform", Advances in Theoretical and Applied Mathematics, Vol. 14, No. 1, 2019, pp. 81-87.
AUTHORS PROFILE

Sudhanshu Aggarwal received his M.Sc. degree from M.S. College, Saharanpur in 2007. He has also qualified CSIR NET examination (June-2010, June-2012, June-2013, June-2014 and June-2015) in Mathematical Sciences. He is working as an Assistant Professor in National P.G. College Barhagunj, Gorakhpur. He is equipped with an extraordinary caliber and appreciable academic potency. His fields of interest include Integral Transform Methods, Differential and Partial Differential Equations, Integral Equations and Number Theory. He has published many research papers in national and international journals.

Dr. Kavita Bhatnagar has been associated with the NIET, Greater Noida for the last three years as a competent, successful and responsible faculty member in Mathematics. She is working as an Assistant Professor in the Department of Applied Sciences there. She is awarded with the degree of Ph.D. by Rajasthan University, Jaipur in 2015. She has published ten research papers in National and International Journals. She has also participated in various workshops. She has around 12 years of teaching experience in the Engineering Colleges.