The γ-Dimension of Images the Integral Staircase

S Wibowo1, V Y Kurniawan2, Siswanto3

1,2,3 Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Indonesia

e-mail: 1supriyadi_w@staff.uns.ac.id, 2vikayugi@staff.uns.ac.id, 3sis.mipa@staff.uns.ac.id

Abstract. In this paper, we have proved that the integral staircase function defined in the γ-dimensional compact set F satisfies the bi-Lipschitz condition of order $\alpha \in (0,1)$ and as a consequence, the image of the integral staircase function does not preserve γ-dimension of its domain.

1. Introduction
Fractals are the geometrical shapes with the fractal dimension which is larger than their topological dimension. Calculus on fractals or F^α-calculus is a calculus based on fractal set $F \subset R$. The integral staircase function plays a key role in fractal F^α-calculus. The integral staircase function $S_F^\alpha(x)$ for any $x \in F$ of order (exponent) $\alpha \in (0,1)$ is a generalization of the Lebesgue-Cantor staircase function $S_C^\alpha(x)$ for any $x \in C$, where C is the triadic Cantor set (Cantor ternary set) which is created by repeatedly deleting the open middle thirds of a set of line segments. Many results regarding the F^α-calculus and its application on Cantor set or generalized Cantor set are available in the scientific literature (see, e.g., [1], [4], [5], [6] and [7]).

Parvate and Gangal (2009) showed if C is the triadic Cantor set then it is known that $|S_C^\alpha(y) - S_C^\alpha(x)|$ is bounded by $|y - x|^{\alpha}$ from below and above such that

$$c_1|y - x|^{\alpha} \leq |S_C^\alpha(y) - S_C^\alpha(x)| \leq c_2|y - x|^{\alpha}, (x, y \in C)$$

where $0 < c_1 \leq c_2 < \infty$ and $\alpha = \ln 2/\ln 3$ is the γ-dimension of C. A fractal dimension is an index for characterizing fractal patterns or sets by quantifying their complexity as a ratio of the change in detail to the change in scale [8]. The functions that satisfies condition (1) is known as a bi-Lipschitz condition of order α. It can also be showed that the image of the Lebesgue-Cantor staircase function does not preserve γ-dimensions of C, because the Lebesgue-Cantor staircase function maps the Cantor set C onto $[0,1]$ so that the γ-dimensions of $[0,1]$ is 1 ([2],[3]).

In this paper, we have proved the bi-Lipschitz condition for the integral staircase function S_F^α is defined on the γ-dimensional compact set and F -perfect set F with a dimension $\alpha \in (0,1)$. Furthermore, it has been proved the image of the integral staircase function does not preserve γ-dimensions of F.

2. F^α-Calculus
Following definition 2.1-2.5 about the coarse-grained mass, γ-dimension, the integral staircase function, F –limit, and F-continuity [9] and definition 2.6 as regards the bi-Lipschitz (bi-Holder) condition of order $\alpha \in (0,1)$, we construct definition below.

Definition 2.1 Given $\delta > 0$ and $a \leq b$, the coarse-grained mass $\gamma^\alpha(F, a, b)$ of $F \cap [a, b]$ is given by
\[
\gamma^\alpha(F,a,b) = \lim_{\delta \to 0} \inf_{|P| = \delta} \sum_{i=0}^{n-1} \frac{(x_{i+1} - x_i)^\alpha}{\Gamma(\alpha + 1)} \theta(F, [x_i, x_{i+1}])
\]
where \(|P| = \max_{0 \leq i \leq n-1} (x_{i+1} - x_i) \) and \(\theta(F, [x_i, x_{i+1}]) = 1 \) if \(F \cap [x_i, x_{i+1}] \neq \emptyset \), \(\theta(F, [x_i, x_{i+1}]) = 0 \) otherwise.

Due to the similarity of the definitions of the mass function and the Hausdorff outer measure, the mass function can be used to define a fractal dimension. We call this number the \(\gamma \)-dimension of \(F \).

Definition 2.2 The \(\gamma \)-dimension of \(F \cap [a,b] \), denoted by \(\text{dim}_\gamma(F \cap [a,b]) \), is
\[
\text{dim}_\gamma(F \cap [a,b]) = \inf \{ \beta; \gamma^\beta(F,a,b) = 0 \} = \sup \{ \beta; \gamma^\beta(F,a,b) = \infty \}.
\]

In definition 2.3 we introduce one of the central notions of this paper, the integral staircase function for a set \(F \) of the order \(\alpha \). This function, which is a generalization of functions like the Lebesgue-Cantor staircase function describes how the mass of \(F \cap [a,b] \).

Definition 2.3 Let \(a_0 \) be an arbitrary but fixed real number. The integral staircase function \(S_F^\alpha(x) \) of order \(\alpha \in (0,1) \) for a set \(F \) is given by
\[
S_F^\alpha(x) = \begin{cases}
\gamma^\alpha(F,a_0,x), & x \geq a_0 \\
-\gamma^\alpha(F,a_0,x), & x < a_0
\end{cases}
\]
The number \(a_0 \) can be chosen according to convenience.

Definition 2.4 Let \(F \subset R^1 \) and \(x \in F \). A number \(l \) is said to be the limit of \(f \) through the points of \(F \), or simply \(F \)-limit, as \(y \to x \), if given any \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that
\[
y \in F \text{ and } |y - x| < \delta \Rightarrow |f(y) - f(x)| < \varepsilon.
\]
If such a number exists, then it is denoted by
\[
l = F - \lim_{y \to x} f(y).
\]
This definition does not involve values of the function at \(y \) if \(y \notin F \). Also, \(F \)-limit is not defined at points \(x \notin F \).

All points of change of \(x \) is named these to \(f \) change of \(f(x) \) and is denoted by \(\text{Sch} (f) \). If \(\text{Sch} (S_F^\alpha) \) is a closed set and every point in it is a limit point, then \(\text{Sch} (S_F^\alpha) \) is called \(\alpha \)-perfect.

Definition 2.5 A function \(f: R \to R \) is said to be \(F \)-continuous at \(x \in F \) if
\[
f(x) = F - \lim_{y \to x} f(y).
\]
We note that the notion of \(F \)-continuity is not defined at \(x \notin F \).

Based on the definition of the Holder condition with order \(\alpha \in (0,1) \) and the definition of bi-Lipschitz condition with \(\alpha = 1 \) [3] it can be defined as the bi-Lipschitz (bi-Holder) condition with the order \(\alpha \in (0,1) \) as follows.

Definition 2.6 If \(F \subset R \) and \(f: F \to R \) satisfies a bi-Lipschitz condition, or is bi-Lipschitz continuous, then there exists real numbers \(c_1, c_2, 0 < c_1 \leq c_2 < \infty \) such that
\[
c_1 |y - x|^\alpha \leq |f(y) - f(x)| \leq c_2 |y - x|^\alpha
\]
for all \(x, y \in F \).

3. The Main Result
We will prove that \(|S_F^\alpha(y) - S_F^\alpha(x)| \) bounded by \(|y - x|^\alpha \) from below and above where \(F \) are the compact, \(\alpha \)-perfect sets, and for all \(x, y \in F \).

Theorem 3.1 If \(F \) be a compact and \(\alpha \)-perfect sets and let \(S_F^\alpha: F \subset [a,b] \to R, \alpha \in (0,1) \) be an integral staircase function, then there exists real numbers \(c_1, c_2, 0 < c_1 \leq c_2 < \infty \) such that
\[
c_1 |y - x|^\alpha \leq |S_F^\alpha(y) - S_F^\alpha(x)| \leq c_2 |y - x|^\alpha
\]
for all \(x, y \in F \cap [a,b] \).

Proof. Given \(F \) is a compact set and \([x,y] \) is closed interval for all \(x, y \in F \), then \([x,y] \cap F \) is also a compact set in \(F \). We devide the proof into two cases.

i. Case 1, for \(c_1 |y - x|^\alpha \leq |S_F^\alpha(y) - S_F^\alpha(x)|, \alpha \in (0,1) \).
Given a subdivision \(P \) of \([x,y] \) which is a finite set of points \(x = x_0, x_1, ..., x_n = y \), \(x_i < x_{i+1}, i = 0,1, ..., n - 1 \), we have
\[
\frac{1}{\Gamma(\alpha+1)}|y - x|^{\alpha} = \left| \sum_{i=0}^{n-1} \left(\frac{(x_{i+1} - x_i)^{\alpha}}{\Gamma(\alpha+1)} \right) \right| \leq \sum_{i=0}^{n-1} \frac{|x_{i+1} - x_i|^{\alpha}}{\Gamma(\alpha+1)} \\
= \sum_{i=0}^{n-1} \left(\frac{\alpha}{\Gamma(\alpha+1)} \right) \theta([x,y] \cap F, [x_i, x_{i+1}]) \\
= \sigma^\alpha([x,y] \cap F, P)
\]

where \(|P| = \max\{x_{i+1} - x_i : i = 0, 1, 2, ..., n - 1\}\) for a subdivision \(P\) and the infimum is taken over all subdivisions \(P\) of \([x,y]\) satisfying \(|P| \leq \delta\).

As \(\delta \to 0\), we get
\[
\frac{1}{\Gamma(\alpha+1)}|y - x|^{\alpha} \leq \gamma^\alpha([x,y] \cap F, x, y) = \inf_{|P| \leq \delta} \sigma^\alpha([x,y] \cap F, P)
\]
\[
\frac{1}{\Gamma(\alpha+1)}|y - x|^{\alpha} \leq |S^\alpha_F(y) - S^\alpha_F(x)|.
\]

Taking \(c_1 = \frac{1}{\Gamma(\alpha+1)}\), we get
\[
\gamma^\alpha([x,y] \cap F, x, y) \leq c_2|y - x|^{\alpha}, \alpha \in (0,1).
\]

ii. Case 2, for \(|S^\alpha_F(y) - S^\alpha_F(x)| \leq c_2|y - x|^{\alpha}, \alpha \in (0,1)\).

As \(F\) is compact set, so \(F \cap [x,y]\) have finite sub open cover \(\{D_i\}\) such that \([x,y] \cap F \subseteq \bigcup_{i=1}^{n} D_i\). Suppose \(D_i = (x_i, y_i), i = 1, 2, ..., n,\) without loss of generality we can choose this finite subcover \(\{D_i\}\) such that \(D_i \supset D_j \) whenever \(i \neq j, i, j = 1, 2, ..., n\).

Furthermore, the sets are labeled such that \(x_1 \leq y_i \leq y_{i+1}\). But as \(D_i \supset D_{i+1}\) and \(D_{i+1} \supset D_i\), it implies that \(x_i < x_{i+1}\) and \(y_i \leq y_{i+1}\). Now we consider the closures \(\overline{D_i}\) of \(D_i\) for \(i = 1, 2, ..., n\). Let \(I_1 = \overline{D_1}\), \(I_i = \overline{D_i}/D_{i-1}\) for \(2 \leq i \leq n\). The collection \(\{I_i\}\) forms a finite cover of \([x,y] \cap F\) by closed intervals \(I_i\) share at the most endpoints. The set of all the end points of \(I_i, i = 1, 2, ..., n\) forms a subdivision \(P\) of \([x,y]\), thus we obtained
\[
\sigma^\alpha([x,y] \cap F, P) = \sum_{i=1}^{n} \frac{\text{diam}(I_i)}{\Gamma(\alpha+1)} \theta([x,y] \cap F, I_i)
\]
with \(\text{diam}(I_i) = \sup|s_i - r_i| : r_i, s_i \in I_i\).

For a positive integer \(n\), it can be chosen a real number \(c\) with \(c \geq c_2 = \frac{1}{\Gamma(\alpha+1)}\) such that
\[
\max\left\{\left(\text{diam}(I_i)\right)^{\alpha} : i = 1, 2, ..., n\right\} \leq c\frac{\gamma(y-x)^{\alpha}}{n}.
\]

From (3) and (4), we obtained
\[
\sigma^\alpha([x,y] \cap F, P) \leq \frac{1}{\Gamma(\alpha+1)} \sum_{i=1}^{n} \frac{c}{n} \frac{\gamma(y-x)^{\alpha}}{\theta([x,y] \cap F, I_i})}
\leq \frac{c}{\Gamma(\alpha+1)}|y - x|^{\alpha}.
\]

A subdivision \(P\) of \([x,y]\) which can be refined to a subdivision \(Q\) such that \(|Q| \leq \delta\) such that
\[
\sigma^\alpha([x,y] \cap F, Q) \leq \frac{c}{\Gamma(\alpha+1)}|y - x|^{\alpha}.
\]

Furthermore, we also obtained
\[
\gamma^\alpha([x,y] \cap F, x, y) = \inf_{|Q| \leq \delta} \sigma^\alpha([x,y] \cap F, Q) \leq \frac{c}{\Gamma(\alpha+1)}|y - x|^{\alpha}.
\]

As \(\delta \to 0\), we obtained
\[
\gamma^\alpha([x,y] \cap F, x, y) = F - \lim_{\delta \to 0} \gamma^\alpha([x,y] \cap F, x, y) \leq \frac{c}{\Gamma(\alpha+1)}|y - x|^{\alpha}.
\]
\[
|S^\alpha_F(y) - S^\alpha_F(x)| \leq \frac{c}{\Gamma(\alpha+1)}|y - x|^{\alpha}.
\]

Taking \(c_2 \geq \frac{c}{\Gamma(\alpha+1)}\), we have
\[
|S^\alpha_F(y) - S^\alpha_F(x)| \leq c_2|y - x|^{\alpha}.
\]

By using (2) and (5), we get
\[
c_1|y - x|^{\alpha} \leq |S^\alpha_F(y) - S^\alpha_F(x)| \leq c_2|y - x|^{\alpha}
\]
and the proof is complete.
It can be seen in Theorem 3.1 that the integral staircase function satisfies the bi-Lipschitz condition with the order $\alpha \in (0,1)$.

Theorem 3.2 If F is a compact set and α–perfect set and let $S_F^\alpha : F \subset [a,b] \rightarrow R, \alpha \in (0,1)$ be an integral staircase function, then there exists real numbers $c_1, c_2, 0 < c_1 \leq c_2 < \infty$ and any real number s such that

$$(c_1)^{s/\alpha} \gamma^s(F,x,y) \leq \gamma^{s/\alpha}(S_F^\alpha(F), S_F^\alpha(x), S_F^\alpha(y)) \leq (c_2)^{s/\alpha} \gamma^s(F,x,y)$$

Proof. Let $P_{[a,b]} = \{a = x_0, x_1, ..., b = x_n\}$, $a < b, x_i < x_{i+1}, i = 0,1, ..., n-1$ be any subdivision of $[a,b]$. Therefore

$$S_F^\alpha(F \cap [x_i, x_{i+1}]) \subset [S_F^\alpha(x_i), S_F^\alpha(x_{i+1})], i = 0,1, ..., n-1$$

and with Theorem 3.1, we obtained

$$c_1|x_{i+1} - x_i|^{\alpha} \leq |S_F^\alpha(x_{i+1}) - S_F^\alpha(x_{i})| \leq c_2|x_{i+1} - x_i|^{\alpha}, i = 0,1, ..., n-1$$

for some real numbers $c_1, c_2, 0 < c_1 \leq c_2 < \infty$.

Let $P'_{[S_F^\alpha(a), S_F^\alpha(b)]}$ be any subdivision of $[S_F^\alpha(a), S_F^\alpha(b)]$, i.e.,

$$P'_{[S_F^\alpha(a), S_F^\alpha(b)]} = \{S_F^\alpha(a), S_F^\alpha(x_0), ..., S_F^\alpha(b) = S_F^\alpha(x_n)\},$$

for $i = 0,1, ..., n-1$.

We get

$$(c_1)^{s/\alpha}\frac{1}{\Gamma(\alpha+1)} \sum_{i=0}^{n-1} |x_{i+1} - x_i|^{\alpha} \theta(F, [x_i, x_{i+1}]) \leq \sum_{i=0}^{n-1} |S_F^\alpha(x_{i+1}) - S_F^\alpha(x_{i})|^{s/\alpha} \theta(S_F^\alpha(F), S_F^\alpha(F \cap [x_i, x_{i+1}])$$

$$\leq (c_2)^{s/\alpha}\frac{1}{\Gamma(\alpha+1)} \sum_{i=0}^{n-1} |x_{i+1} - x_i|^{\alpha} \theta(F, [x_i, x_{i+1}]).$$

By using Definition 2.1, we obtained

$$(c_1)^{s/\alpha} \inf_{P_{[a,b]}} \sigma^s[F,P] \leq \inf_{P'_{[S_F^\alpha(a), S_F^\alpha(b)]}} \sigma^{s/\alpha}[S_F^\alpha(F),P']$$

$$\leq (c_2)^{s/\alpha} \inf_{P'_{[a,b]}} \sigma^{s/\alpha}[F,P]$$

where $\delta' = c_2 \delta^\alpha$.

If we take infimum over all subdivisions P and P' respectively such that $|P| \leq \delta$ and $|P'| \leq \delta' = c_2 \delta^\alpha$, we get

$$(c_1)^{s/\alpha} \gamma^s(F,a,b) \leq \gamma^{s/\alpha}_\delta(S_F^\alpha(F), S_F^\alpha(a), S_F^\alpha(b)) \leq (c_2)^{s/\alpha} \gamma^s(F,a,b).$$

Taking the limit respectively as $\delta \rightarrow 0$ and $\delta' \rightarrow 0$, we have

$$(c_1)^{s/\alpha} \gamma^s(F,a,b) \leq \lim_{\delta \rightarrow 0} \gamma^{s/\alpha}_\delta(F,a,b) \leq \gamma^{s/\alpha}(S_F^\alpha(F), S_F^\alpha(a), S_F^\alpha(b)) \leq (c_2)^{s/\alpha} \gamma^s(F,a,b)$$

and we complete the proof. $

The following is given the theorem of the relationship between the γ–dimension of the fractal set F with the α–dimension of the image of the integral staircase function $S_F^\alpha(F) = \{S_F^\alpha(x) : x \in F\}$.

Theorem 3.3 If F is a compact set, α–perfect set with $\dim_{\gamma}(F) = \alpha$ and let $S_F^\alpha : F \subset [a,b] \rightarrow R, \alpha \in (0,1)$ be an integral staircase function, then

$$\dim_{\gamma}(S_F^\alpha(F)) = 1.$$

Proof. For case $s > \dim_{\gamma}(F)$ by using Theorem 3.2 and Definition 2.2, we get

$$\gamma^{s/\alpha}(S_F^\alpha(F), S_F^\alpha(x), S_F^\alpha(y)) \leq (c_2)^{s/\alpha} \gamma^s(F,x,y) = 0$$

so that it results

$$\dim_{\gamma}(S_F^\alpha(F)) \leq \frac{s}{\alpha} \text{ for } s > \dim_{\gamma}(F).$$
Thus
\[\dim_{\gamma}(S_F^\alpha(F)) \leq \frac{1}{\alpha} \dim_{\gamma}(F). \]
Conversely, for case \(s < \dim_{\gamma}(F) \) also by using Theorem 3.2 and Definition 2.2, we get
\[\infty = \left(c_1\right)^{s/\alpha} \gamma^{s}(F,x,y) \leq \gamma^{s/\alpha}(S_F^\alpha(F),S_F^\alpha(x),S_F^\alpha(y)) \]
we have
\[\frac{s}{\alpha} \leq \dim_{\gamma}(S_F^\alpha(F)) \text{ untuk } s < \dim_{\gamma}(F). \]
Hence
\[\frac{1}{\alpha} \dim_{\gamma}(F) \leq \dim_{\gamma}(S_F^\alpha(F)). \]
From (6) and (7), we get
\[\dim_{\gamma}(S_F^\alpha(F)) = \frac{1}{\alpha} \dim_{\gamma}(F) = 1 \]
and the proof is complete. ■

Based on Theorem 3.3 we have obtained \(\dim_{\gamma}(S_F^\alpha(F)) = 1 \) for any \(\alpha \in (0,1) \). This value does not depend on \(\gamma \) – dimension of \(F \). This means the image of the integral staircase function does not preserve \(\gamma \) – dimensions of \(F \).

4. Conclusions

In this paper, we based on the discussion the integral staircase function that is defined on the \(\gamma \) – dimensional compact and \(F \) – perfect sets \(F \) satisfying the bi-Lipschitz condition. Then it is showed using \(F^\alpha \) – calculus that the image of the integral staircase function does not preserve \(\gamma \) – dimensions of \(F \).

Acknowledgment

The authors would like to thank the Institute for Research and Community Services of Universitas Sebelas Maret for funding to this research in the academic year of 2018.

References

[1] Balankin A S, Golmankhanem A K, Patiño-Ortiz J, and Patiño-Ortiz M 2018 Noteworthy fractal features and transport properties of Cantor tartans. Phys. Lett. A, 382, 1534–1539
[2] Dovgoshey O, Martio O, Ryazanov V, and Vuorinen M 2006 Cantor Function. Expositiones Mathematicae Volume 24, Issue 1, Pages 1-37
[3] Falconer K 2003 Fractal geometry: Mathematical foundations and applications. second edition (Chichester, West Sussex,UK: John Wiley and Sons, Ltd)
[4] Golmankhanem A K and Balankin A S 2018 Sub-and super-diffusion on Cantor sets: Beyond the paradox. Phys. Lett. A, 382, 960–967
[5] Golmankhanem A K and Baleanu D 2016 Diffraction from fractal grating Cantor sets. J. Mod. Opt. 63, 1364–1369
[6] Golmankhanem A K and Baleanu D 2017 New heat and Maxwell’s equations on Cantor cubes Rom. Rep. Phys. 2017, 69, 109
[7] Golmankhanem A K, Fernandez A, Golmankhanem A K, and Baleanu D 2018 Diffusion on Middle-\(\xi \) Cantor Sets, Entropy, 20(7), 504
[8] Mandelbrot B B 1983 The fractal geometry of nature (New York: W. H. Freeman)
[9] Parvate A and Gangal A D 2009 Calculus on fractal subsets of real-line I: Formulation. Fractals, 17, 53–148