Long-term outcomes of the repeated lumbar microdiscectomies using polyacrylamide hydrogel: clinico-radiological relevance

Pedachenko Ye.G., ORCID: 0000-0003-4759-6019, e-mail: pedach@i.ua
Khyzhnyak M.V., ORCID: 0000-0002-6632-4206, e-mail: khyzhnyak63@gmail.com
Krasilenko O.P., ORCID: 0000-0002-6936-6647, e-mail: elena.krasilenko@gmail.com
Pedachenko Yu.Ye., ORCID: 0000-0003-0609-424X, e-mail: yupedachenko@gmail.com
Tanasiychuk O.F., ORCID: 0000-0003-3842-1786, e-mail: shepilo@3g.ua
Kramarenko V.A., ORCID: 0000-0002-9662-0874, e-mail: vladimir.kramarenko@ukr.net
Furman A.М., ORCID: 0000-0002-1229-0821, e-mail: andrey-furman@ukr.net
Makeieva T.I., ORCID: 0000-0002-0210-9320, e-mail: tatyana.makeieva@gmail.com
Stulei V.A., ORCID: 0000-0001-7552-7024, e-mail: stuley.volodymyr@ill.kpi.ua
Zemskova O.V., ORCID: 0000-0001-9462-8330, e-mail: oxzemskova@gmail.com

1 State Institution «Romodanov Neurosurgery Institute National Academy of Medical Sciences of Ukraine», Kyiv, Ukraine
2 Shupik National Healthcare University of Ukraine of the Ministry of Health of Ukraine, Kyiv, Ukraine
3 Institute for Applied Systems Analysis National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» of the Ministry of Education and Science of Ukraine, Kyiv, Ukraine

Віддалені результати повторних поперечових мікродискектомій із використанням поліакриламідного гідрогелю: клініко-радіологічна релевантність

Педаченко Є.Г., ORCID: 0000-0003-4759-6019, e-mail: pedach@i.ua
Хижняк М.В., ORCID: 0000-0002-6632-4206, e-mail: khyzhnyak63@gmail.com
Красilenко О.П., ORCID: 0000-0002-6936-6647, e-mail: elena.krasilenko@gmail.com
Педаченко Ю.Є., ORCID: 0000-0003-0609-424X, e-mail: yupedachenko@gmail.com
Танасійчук О.Ф., ORCID: 0000-0003-3842-1786, e-mail: shepilo@3g.ua
Крамаренко В.А., ORCID: 0000-0002-9662-0874, e-mail: vladimir.kramarenko@ukr.net
Фурман А.М., ORCID: 0000-0002-1229-0821, e-mail: andrey-furman@ukr.net
Макеєва Т.І., ORCID: 0000-0002-0210-9320, e-mail: tatyana.makeieva@gmail.com
Стулей В.А., ORCID: 0000-0001-7552-7024, e-mail: stuley.volodymyr@ill.kpi.ua
Земская О.В., ORCID: 0000-0001-9462-8330, e-mail: oxzemskova@gmail.com

1 Державна установа «Інститут нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України», Київ, Україна
2 Національний університет охорони здоров'я України ім. П.Л. Шупика Міністерства охорони здоров'я України, Київ, Україна
3 Інститут прикладного системного аналізу Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського» Міністерства освіти і науки України, Київ, Україна

Резюме

Ключові слова: повторні поперечові мікродискектомії, рецидив гриж міжхребцевого диска, епідуральний фіброз, магнітно-резонансна томографія, бар’єрні матеріали, поліакриламідний гідрогель.

Актуальність. Епідуральний фіброз (ЕФ) є однією з основних причин синдрому невдало оперованого хребта, що проявляється болем у спині й кінцівках та іншими ознаками компресії або подразнення нервових утворень. Для попередження ЕФ застосовують численні підходи і вже існує багаторічний досвід з використання під час мікродискектомії різноманітних бар’єрних матеріалів, зокрема, поліакриламідного гідрогелю (ПГГ). Проте результати такого застосування і сьогодення суперечливі.

Мета роботи – оцінити радіологічні показники стану хребта (за даними МРТ) та клінічну симптоматику операційних хворих, а також визначити силу їхнього взаємозв'язку у віддаленому періоді після повторних поперечових мікродискектомій з приводу рецидиву гриж міжхребцевих дисків, виконаних із інтраопераційним епідуральним введеним ПГГ.

Матеріали та методи. В роботі представлено результати клінічної та радіологічної оцінки 96 (100 %) хворих (середній вік 45,7 років (95 % ДІ [43,5; 47,9]));
59 чоловіків та 37 жінок), включених в одну центрове проспективне когортне дослідження, що проводилось в Державній установі «Інститут нейрохірургії імені академіка А.П. Ромоданова НАН України». Хворі були розподілені на 2 групи: основна група (ОГ) 35 (36,5 %) хворих з інцидентним гриж міжкребцевих дисків (МХД), яким на завершальному етапі операції з їх виділення та декомпресії нервових структур епідуруально вводився ПГГ для профілактики рубцево-злучного ЕФ; контрольна група (КГ) – 61 (63,5 %) хворий, в яких бар'єрні матеріали не застосовувалися. Первинними кінцевими точками дослідження були віддалені результати повторних поперекових мікродисектомія: частота ЕФ у післяоперативній зоні; частота зміщення спинномозкового корінця в після-оперативній зоні; частота повторного рецидивування гриж МХД; виникнення гриж МХД de novo; а також частота випадів запаленого корінцевого болю, який за своєю локалізацією відповідав зоні хірургічного втручання, та ступінь порушення якості життя оперованих хворих. Вторинні кінцеві точки дослідження: аналіз асоціативних зв’язків із визначенням сили впливу таких факторів як ЕФ, зміщення спинно-мозкового корінця в післяоперативній зоні, повторний рецидив грижі МХД та виникнення грижі МХД de novo – на частоту виявлення запалено- вого корінцевого болю.

Результати та їх обговорення. Через 12 місця після хірургічного лікування в ОГ частота ЕФ була статистично значною нижчою, ніж у КГ, де ПГГ не засто- совувався (р = 0,02936). Не зареєстровано статистично значної різниці між групами за МРТ-ознаками зміщення спинномозкового корінця у післяопераційній зоні (р = 0,46759), нової рецидиву грижі МХД (р = 0,90904) та виникнення de novo грижі МХД (р = 0,60385). У хворих ОГ, яким застосовувався ПГГ, незареєстровано статистично значну асоціативну зв’язку між МРТ-ознаками після-оперативного ЕФ, зміщення спинномозкового корінця, нового рецидиву гриж МХД – з одного боку, та з іншого – частотою виявлення запаленно-корінцевого болю, що для локалізації відповідав зоні хірургічного втручання (р = 0,68482; р = 0,09515; р = 0,22857, відповідно). У КГ встановлено статистично значну асоціацію між зміщенням спинномозкового корінця у післяоперативній зоні та визначеною клінічною симптоматикою (р = 0,00222); показник асоціації ф = 0,41 вказував на середню силу цього впливу.

Висновки. Отримані дані в цілому можуть свідчити про доцільність використання такого бар’єрного матеріалу як ПГГ українського виробника, принаймні, у досить складної категорії спинних хворих, якіми є хворі з рецидивами грижі МХД.

Для цитування:

Педакченко Е.Г., Хижняк М.В., Красиленко О.П., Педакченко Ю.Є., Танасійчук О.Ф., Крамаренко В.А., Фурман А.М., Макеєва Т.І., Стулей В.А., Земскова О.В., 2021

Епидуральна фіброза (ЕФ) – одна з причин перекриття паравертебрального простору в хірургічному втручанні. Однак ця умова не є стандартом для підходу до хірургічного втручання. Основними асоціаційними зв’язками, які визначали сили впливу таких факторів як ЕФ, зміщення спинно-мозкового корінця, повторний рецидив грижі МХД та виникнення гриж МХД de novo – на частоту виявлення запаленно-корінцевого болю, що для локалізації відповідав зоні хірургічного втручання (р = 0,68482; р = 0,09515; р = 0,22857, відповідно). У КГ встановлено статистично значну асоціацію між зміщенням спинномозкового корінця у післяоперативній зоні та визначеною клінічною симптоматикою (р = 0,00222); показник асоціації ф = 0,41 вказував на середню силу цього впливу.

Висновки. Отримані дані в цілому можуть свідчити про доцільність використання такого бар’єрного матеріалу як ПГГ українського виробника, принаймні, у досить складної категорії спинних хворих, якіми є хворі з рецидивами грижі МХД.

For correspondence:

Zemskova Oksana Volodymyrivna
State Institution «Romodanov Neurosurgery Institute National Academy of Medical Sciences of Ukraine», Department to Adjunt Treatment CNS Tumors; 32, Platona Maiborody Str., Kyiv, Ukraine, 04050; e-mail: oxzemskova@gmail.com

© Pedachenko Ye. G., Khyzhnyak M. V., Krasilenko O. P., Pedachenko Yu. Ye., Tanasichuk O. F., Kramarenko V. A., Furman A. M., Makeieva T. I., Stulei V. A., Zemskova O. V., 2021

Key words: repeated lumbar microdiscectomies; recurrent herniation of intervertebral disc; epidural fibrosis, MRI, barrier materials, polyacrylamide hydrogel.

ABSTRACT

Background. Epidural fibrosis (EF) is one of the reasons of the failed back surgery syndrome manifesting in back pain and pain in extremities as well as other signs of the compression or irritation of the nerve structures. The numerous approaches to prevent EF have been elaborated. Nowadays, many years of experience in the usage of different barrier materials in microdisectomy such as polyacrylamide hydrogel (PAH) have been accumulated. Nevertheless, the results of such treatment are rather controversial.

Purpose – of the study was to assess the radiological data on the state of the backbone according to MRI findings and the clinical symptoms of the patients following the surgery as well as to determine the long-term strength of the interaction between the factors under study after the repeated lumbar microdiscectomies performed with intraoperative epidural PAH administration.

Materials and methods. The results of the clinical and radiological assessment of 96 patients (mean age 45.7 years; 95 % CI [43.5; 47.9]; 59 males and 37 females) enrolled into the single-center prospective cohort study performed at the State Institution «Romodanov Neurosurgery Institute National Academy of Medical Sciences of Ukraine» have been presented. The patients were divided into two groups. The main group (MG) consisted of 35 (36.5 %) patients with recurrent intervertebral disc (IVD) herniation to whom PAH was administered epidurally at the final step of the surgery comprising disc removal and decompression of the nervous structures with the aim of preventing cicatrical adhesive EF. In control group (61 patients, 63.5 %), barrier materials were not used. The primary end-points of the study were the long-term outcomes of the repeated lumbar microdiscectomies: EF rate at the postoperative site; the rate of the displacement of spinal root at the postoperative site; the rate of the repeated recurrent IVD herniation; and de novo IVD herniation; the rate of the cases with the residual radicular pain localized in the area of the surgical intervention and the extent of the worsening of life quality in the treated patients. The secondary end-points of the study were the following: the analysis of the associations with delineation of the strength of such factors...
INTRODUCTION

There is growing understanding of the mechanisms affecting the residual radicular pain as EF, the displacement of spinal root at the postoperative site, the repeated recurrent IVD herniation, the repeated recurrent IVD herniation and de novo IVD herniation.

Results. In 12 months following the surgical treatment, EF frequency was significantly lower in MG as compared with CG where PAH was not used (p = 0.02936). Nevertheless, the difference between groups was not significant when MRI findings of the displacement of spinal root at the postoperative site (p = 0.46759), the frequency of the repeated recurrent IVD herniation (p = 0.90904) and de novo IVD herniation (p = 0.60385) were compared. In study group, there were no association between MRI signs of postoperative EF, the displacement of spinal root or new recurrent IVD herniation on the one hand and the frequency of the radicular pain at the area of the surgical intervention on the other hand (p = 0.66482; p = 0.09515; p = 0.22857, respectively). In CG, the significant association between the displacement of spinal root at the postoperative site and the clinical symptoms above was revealed (p = 0.00222) with association coefficient $\varphi = 0.41$ indicating the moderate strength of this association.

Conclusions. The data obtained generally suggest the reasonability of applying PAH manufactured in Ukraine as a barrier material at least for the treatment of the patients with recurrent IVD herniation representing the challenging category of spinal patients.

For citation:

Pedachenko YeG, Khyzhnyak MV, Krasyleno OP, Pedachenko YuYe, Tanasiychuk OF, Kramarenko VA, Furman AM, Makeieva TI, Stulei VA, Zemskova OV. Long-term outcomes of the repeated lumbar microdiscectomies using polyacrylamide hydrogel: clinicoradiological relevance. Ukrainian journal of radiology and oncology. 2021;29(4):9–25.

DOI: https://doi.org/10.46879/ukroj.4.2021.09-25
Оригінальні дослідження

Український радіологічний та онкологічний журнал. 2021. Т. 29. № 4. С. 9–25

ISSN 2708-7166 (Print)
ISSN 2708-7174 (Online)

Запальним процесом з притаманними йому динамічним дисбалансом у системі регулюючих молекул і відповідними змінами клітин та позаклітинного матриксу. Показано, що зміцнене сліпівдоношення про- запальних і протизапальних цитокінів супроводжується послідовною інфільтрацією рани макрофагами функціональної різних фенотипів [4]. Так, підвищення про- запальних цитокінів (TNF-α, IL-6) позитивно корелює з початковим накопиченням макрофагів M1-типів [5]; зростання в подальшому рівня протизапальні фактори (TGF-β, IGF-1), а також про- фібротичних факторів (зокрема, ARG-1) – з наступною активацією макрофагів M2- типу [6]. Трансформація макрофагів відбувається ролю у широкому спектрі послідовних процесів загоєння ран: в очнці, реваскулярації та регенерації, а також в утворені рубцової тканини через стимулювання проліферації фіброblastів, диференціювання міофіброобластів та відкладання колагену. Є чимало доказів, що зміна кількості, щільності та метаболізму макрофагів порушують ці процеси і можуть сприяти надмірному рубцеванню [4, 7]. Суттєву роль у процесі фіброзу відіграють фіброblastи, які в ділянці пошкодження продукують у значній кількості компоненти позаклітинного матриксу – колаген та фібронектин [8–13]. Експериментальні дослідження висвітлюють і такі окремі механізми розвитку ЕФ, що реалізуються за участю позаклітинних пасток нейтрофілів (NET), сигналні шляхи HMGB1/TLR4 та TGF-β1/Smad3, тощо [14, 15].

Названі чинники, які впливають на інтенсивність та пролонгованість асептичного запалення, показано, що можуть змінюватись під впливом різних факторів [20]. Сьогодні для його попередження застосовують численні консерваційні, хірургічні та фармаакологічні засоби, але результати їх використання ще не викликають однозначного суб'єктивної відповіді на пошкодженнях у хребтовій системі [4, 7]. Трансформація макрофагів у фібробластичну тканину здійснюється під впливом макрофагів, що мають антитіла властивості як позабар’єрна тканина [16–18]. Якщо траємність позаклітинного матрикса, компоненти якого включають колаген, фібронектин [8–13], не індукує компоненти позаклітинного матрикса – колаген та фібронектин, то вони відіграють роль коагуляції, макрофагів, які в місці пошкодження запалення, сприяють розвитку ЕФ [20]

До цього часу достовірно не з’ясовано, яка саме і насичені модифікуються фактор ЕФ у хворих після мікродискеції при застосуванні бар’єрних матеріалів. Також потребує вивчення питання впливу ЕФ на клінічні результати у спінальній хірургії. Саме цим питанням присвячена наша робота.

Мета роботи – оцінити радіологічні показники стану хребта (за даними МРТ) та клінічні симптоматику оперованих хворих, а також визначити силу їх взаємозв’язку у віддаленому періоді після повторних поперекових мікродискеціях з приводу рецедиву гриж МХД, виконаних із інтраоперативним епіду- ральним введением ПІГ.

Purpose – of the study was to assess the radiological data on the state of the backbone according to MRI findings and the clinical symptoms of the patients following the surgery as well as to determine the long-term strength of the interaction between the factors under study after the repeated lumbar microdiscectomies performed with intraoperative epidural PAH administration.
U роботі представлено результати клінічної та радіологічної оцінки 96 (100 %) хворих, включених в однокентрове проспективне когортне дослідження, що проводилось в Державній установі «Інститут нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України». Усіх хворих у цій установі прооперовано у клініці малонавігаційної та лазерної спінальної нейрохірургії з рентгенопераційною в період з 2017 до 2020 рр.

Основна група (ОГ) включала 35 (36,5 %) хворих із рецидивом грижі МХД, яким на завершальному етапі операції з її видалення та декомпресії нервових структур епідурально вводився ПГГ для профілактики рубцево-злучного ЕФ. Контрольна група (КГ) складалася із 61 (63,5 %) хворого, в яких при видаленні рецидиву грижі МХД поперекового відділу хребта і декомпресії спинномозкового корінця бар'єрні матеріали не використовувались.

Критерії включення хворих у дослідження:
– вік хворих від 18 до 76 років;
– віддалений післяоперacyjний період (12 місяців) після повторної поперекової мікродискектомії з приводу рецидиву грижі МХД;
– усвідомлена добровільна поїнформована письмова згодда хворого на участь у дослідженні та схвалена Комісією з етики та біоетики Інституту нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України (протокол № 3 від 6 червня 2016 р.).

Критерії виключення з дослідження:
– вік хворих до 18 років та більше 76 років;
– післяоперacyjний період до 12 місяців після повторної поперекової мікродискектомії з приводу рецидиву грижі МХД;
– функціональний статус хворих за шкалою Карновського менше 70 балів;
– коморбідні захворювання в стадії декомпенсації;
– вагітність;
– віддалений післяоперacyjний період (12 місяців) після повторної поперекової мікродискектомії з приводу рецидиву грижі МХД;
– явна відмова хворого брати участь у дослідженні, незадовільний комплаєнс.

У табл. 1 представлено вікову та гендерну характеристику досліджуваних груп, а також розподіл їх за зваженою вагою згодою хворого на участь у дослідженні та схвалена Комісією з етики та біоетики Інституту нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України. Усіх хворих у цій однокентровій проспективній когортній дослідження, що представлено результати клінічної та радіологічної оцінки 96 (100 %) хворих, включених в однокентрове проспективне когортне дослідження, що проводилось в Державній установі «Інститут нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України». Усіх хворих у цій установі прооперовано у клініці малонавігаційної та лазерної спінальної нейрохірургії з рентгенопераційною в період з 2017 до 2020 рр.

Основна група (ОГ) включала 35 (36,5 %) хворих із рецидивом грижі МХД, яким на завершальному етапі операції з її видалення та декомпресії нервових структур епідурально вводився ПГГ для профілактики рубцево-злучного ЕФ. Контрольна група (КГ) складалася із 61 (63,5 %) хворого, в яких при видаленні рецидиву грижі МХД поперекового відділу хребта і декомпресії спинномозкового корінця бар’єрні матеріали не використовувались.

Критерії включення хворих у дослідження:
– вік хворих від 18 до 76 років;
– віддалений післяоперacyjний період (12 місяців) після повторної поперекової мікродискектомії з приводу рецидиву грижі МХД;
– усвідомлена добровільна поїнформована письмова згодда хворого на участь у дослідженні та схвалена Комісією з етики та біоетики Інституту нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України (протокол № 3 від 6 червня 2016 р.).

Критерії виключення з дослідження:
– вік хворих до 18 років та більше 76 років;
– післяоперacyjний період до 12 місяців після повторної поперекової мікродискектомії з приводу рецидиву грижі МХД;
– функціональний статус хворих за шкалою Карновського менше 70 балів;
– коморбідні захворювання в стадії декомпенсації;
– вагітність;
– віддалений післяоперacyjний період (12 місяців) після повторної поперекової мікродискектомії з приводу рецидиву грижі МХД;
– явна відмова хворого брати участь у дослідженні, незадовільний комплаєнс.

У табл. 1 представлено вікову та гендерну характеристику досліджуваних груп, а також розподіл їх за зваженою вагою згодою хворого на участь у дослідженні, незадовільний комплаєнс.

Таблиця 1. Показники віку, статі та ІМТ у групах спостереження

Група / Group	Середній вік (років) Mean age (years)	Чоловіки / Males	Жінки / Females	Середній IMT (kg/m²) Average BMI (kg/m²)				
ОГ / MG (n = 35)	43,7	95 % Ді 40,3; 47,1	95 % Сі 40,3; 47,1	медіана / median 42,0	60,0	14	40,0	26,4
СІ / Г (n = 61)	48,9	95 % Ді 44,0; 49,7	95 % Сі 44,0; 49,7	медіана / median 45,0	62,3	23	37,7	26,7
Загальна / Total (n = 96)	45,7	95 % Ді 43,5; 47,9	95 % Сі 43,5; 47,9	медіана / median 44,4	61,5	37	38,5	26,6
За рівнем проведення повторних поперекових мікродискектомій хворі розподілились таким чином: операції на рівні L3–L4 – 2 (5,7 %) в ОГ та 1 (1,6 %) у КГ; на рівні L4–L5 – 15 (42,9 %) та 30 (49,2 %), відповідно; на рівні L5–S1 – 18 (51,4 %) та 30 (49,2 %), відповідно.

Характеристики груп щодо досліджуваних клінічних показників наведено у табл. 2.

Як показано у табл. 2, до операції корінцевий біль спостерігався у всіх хворих. Він був головним проявом нейрокомпресійного синдрому, на якому базувався попередній вибір. Показник ODI (Oswestry disability index) [33], що відображає загальну оцінку хворим якості свого життя з урахуванням її обмеження болем, в обох групах до операції відповідав тяжкій інвалідизації.

Частотні характеристики вибірки щодо зареєстрованих подій для досліджуваних факторів, розраховані по відношенню до чисельності хворих у відповідних групах, наведено на рис. 1.

Рис. 1. Частотний розподіл спостережень за даними МРТ та клінічними показниками через 12 місяців після хірургічного лікування

As shown in Table 2, all patients had the radicular pain prior to the surgery. This radicular pain was the major manifestation of the neurocompression syndrome being the indication for preoperative selection. In both groups of the study, Oswestry disability index (ODI) [33] reflecting the overall self-assessment of the quality of life taking into account the restrictions due to the pain corresponded to the severe disability.

The mean score of IVD degeneration according to five-point Pfirrmann grading system [34] in MG was 3.2 (95 % CI [3.0 – 3.5]), median 3.0; in CG – 3.1 (95 % CI [2.9 – 3.3]), median 3.0. The overall mean score for all patients under study was 3.1 (95 % CI [3.0 – 3.3]), median 3.0.

The frequency distribution of the registered events for the factors being studied calculated relative to the number of patients in corresponding groups is given in Fig. 1.

Таблиця 2. Клінічні показники у групах спостереження до та через 12 місяців після операції

Група / Group	ОДI (Oswestry disability index, %)	Корінцевий біль / Radicular pain
	До операції / Prior to surgery	Через 12 місяців / In 12 months
	Дo операції / Prior to surgery	Через 12 місяців / In 12 months
	n / %	n / %
ОГ / MG (n = 35)	58,4 95 % Дl [57,0 – 59,8] 95 % CI [57,0 – 59,8] медиана / median 58,0 7,4 95 % ДI [5,7 – 9,0] 95 % CI [5,7 – 9,0] медиана / median 6,0	35 100 8 22,9
КГ / CG (n = 61)	57,4 95 % Дl [56,3 – 58,5] 95 % CI [56,3 – 58,5] медіана / median 58,0 8,2 95 % Дl [6,8 – 9,6] 95 % CI [6,8 – 9,6] медіана / median 8,0	61 100 15 24,6
Загальна / Total (n = 96)	57,8 95 % Дl [56,9 – 58,6] 95 % CI [56,9 – 58,6] медіана / median 58,0 7,9 95 % Дl [6,8 – 9,0] 95 % CI [6,8 – 9,0] медіана / median 8,0	96 100 23 23,9

Table 2. Clinical characteristics in the studied groups prior to and 12 months after the surgery.
Як показано на рис. 1, через 12 місяців після операції МРТ-ознаки ЕФ та зміцнення спинномозкового корінця спостерігалися з помітно меншою відносною частотою в ОГ порівняно з КГ. Водночас видно, що за частотою реєстрації залишкового корінця безболю, який за своєю локалізацією відповідав зоні проведенного втручання, ОГ і КГ різнилися дещо менше. Цей емпіричний аналіз дозволив сформулювати основні гіпотези дослідження, описані та перевірені за допомогою відповідних статистичних тестів, наведених нижче.

Первинними кінцевими точками дослідження були віддалені результати повторних поперечних мікродискеції: частота ЕФ і зміцнення спинномозкового корінця в після-операційній зоні; частота повторного рецидивування гріж MХD та виникнення ih de novo; а також частота виявлення залишкового болю у дерматомі, відповідному зоні хірургічного втручання, та ступінь порушення якості життя операованих хворих.

Вторинні кінцеві точки дослідження: асоціативні зв’язки та визначення сили впливу таких факторів, як ЕФ, зміцнення спинномозкового корінця у після-операційній зоні, новий рецидив гріж MХD та виникнення гріжih de novo – на частоту виявлення залишкового корінця безболю.

ЕФ та зміцнення спинномозкового корінця у після-операційній зоні, наявність/відсутність нового рецидиву або просто гріж MХD оцінювалися за результатами МРТ поперечного відділу хребта, проведеної за 12 місяців після хірургічного лікування на томографі «Intera 1.5 Ti» («Philips», Нідерланди) із індукцією магнітного поля 1,5 тл. Протокол МРТ-обстеження включає площину ЕФ і зміцнення спинномозкового корінця (STIR_TSE) з розсіюванням інтенсивності ехосигналу, STIR_TSE та T2w_TSE стандартного турбоспін-ехо, STIR_TSE та T2w_TSE, STIR_TSE та T1w_TSE з внутрішньовенним введенням парамагнітних препаратів гадолінію.

Бази даних формувалися у таблицях Excel. Статис- тичні розрахунки проводились за допомогою спеціалізованого програмного забезпечення STATISTICA 64 вер.10.0.1011.0 StatSoftInc.

У даній роботі встановлений гранічний рівень значущості α = 5 % – ймовірність відхилення нульової гіпотези (H0) з огляду на її істинність, тому при застосуванні статистичних тестів розрахункові значення p-value порівнювалися із стандартизованим рівнем 5 %: при p-value ≤ 0,05 нульова гіпотеза відхилялася.

Аналіз кількісних ознак та відповідну перевірку однорідності груп (ОГ та КГ) здійснювали методом порівняння двох незалежних груп за допомогою непараметричного критерію Манна-Утні. Категоріальні величини порівнювали, застосовуючи χ²-тест, а також точки двобічний критерій Фішера – приналежні до стовпчатах значень частот в таблицях спрощеності.

У випадку, коли H0 відхилялася, для визначення зв’язку між досліджуваними змінними розраховувався коефіцієнт асоціації φ. Для інтерпретації сили ефекту використовували такі обмеження для показника φ (правила Дж. Коена): 0,00 ≤ φ, w < 0,10 – несуттєвий; 0,10 ≤ φ, w < 0,30 – малий; 0,30 ≤ φ, w < 0,50 – середній; 0,50 ≤ φ, w < 1,00 – великий [35].

The primary end-points of the study were the long-term outcomes of the repeated lumbar microdiscectomies: EF rate at the postoperative site; the rate of the displacement of spinal root at the postoperative site; the rate of the repeated recurrent IVD herniation and de novo IVD herniation; the rate of the cases with the residual radicular pain localized at the dermatozone matching the surgical intervention site and the extent of the worsening of life quality in the treated patients.

The secondary end-points of the study were the following: the analysis of the associations with delineation of the strength of such factors affecting the residual radicular pain as EF, the displacement of spinal root at the postoperative site, the repeated recurrent IVD herniation the repeated recurrent IVD herniation and de novo IVD herniation.

EF and the displacement of spinal root at the postoperative site, presence/absence of the new recurrence or de novo IVD herniation were assessed by MRI of the lumbar spine in 12 months following the surgery on «Intera 1.5 Ti» (Philips, Netherlands) with a magnetic field induction of 1.5 T. MRI examination protocol comprised the following sequences: sagittal T1w_TSE and T2w_TSE, coronal T2w_TSE and T1w_TSE, sagittal and axial T1w_TSE with intravenous administration of gadolinium compounds as paramagnetic.

Databases were formed in Excel tables. Statistical calculations were performed using specialized software Statistica 64 ver.10.0.1011.0 StatSoft Inc.

In our study, the critical significance level I was taken as α = 5 % (the probability of rejecting the null hypothesis (H₀) when it is true). The calculated p-values were compared with the standardized 5 % level. The null hypothesis was rejected when p-value ≤ 0.05.

For analyzing quantitative variables and verifying group homogeneity, two independent groups were compared by Mann-Whitney non-parametric U test.

The categorical variables were compared in χ²-test and two-tailed Fisher exact test as to the expected frequencies in the contingency tables.

When H0 was rejected, the association coefficient φ was calculated for assessing the association between the studied variables. To interpret the strength of the association, the following limitations for φ were used (Cohen’s rule): 0.10 ≤ φ, w < 0.30 – small; 0.30 ≤ φ, w < 0.50 – moderate; 0.50 ≤ φ, w < 1.00 – large (strong) [35].
Аналіз однорідності досліджуваних груп

Статистична однорідність груп хворих для кількісних показників перевірена непараметричним U-критерієм Манна – Уїтні. За результатами розрахунків прийнято статистичну гіпотезу H₀ щодо відсутності до операції значної різниці між групами за такими показниками як вік, IMТ, ступінь дегенерації МХД (за системою Pfirrmann) та клінічний статус. Останній базувався на оцінці ступеню пов'язаного з болем обмеження якості життя (за ODI) та наявності залишкового корінцевого болю (табл. 3).

Гендерний розподіл хворих в ОГ та КГ порівнювали, застосовуючи χ²-тест (PearsonChi-square). Не було зареєстровано статистичної значущості (p > 0,05): (df = 1; p = 0,82401), що дозволило прийняти H₀ про відсутність неоднорідності розподілу за статтю в групах, що порівнювались.

За іншими вищезгаданими показниками H₀ теж була прийнята, що вказувало на однорідність досліджуваних груп (рис. 2, a–d).

Таблиця 3. Перевірка статистичної значущості різниці між ОГ та КГ за показниками віку, IMТ, ступеня дегенерації МХД та клінічного статусу за допомогою непараметричного тесту Манна – Уїтні

Ознака групи	Variable	Mann – Whitney U Test			
Вік / Age	1519,500	3136,500	889,500	–1,35115	0,176648
IMТ (кг/м²) / IMТ (kg/m²)	1610,000	3046,000	980,000	–0,66225	0,507808
Ступінь дегенерації МХД (за Pfirrmann) Grade of IVD degeneration (by Pfirrmann system)	1775,000	2881,000	990,000	0,58613	0,557786
ODI (%)/ODI (%)	1809,000	2847,000	956,000	0,84495	0,398142

The statistical homogeneity of the patients’ groups for the quantitative variables was checked by Mann – Whitney non-parametric U test. According to the results of the calculation, the statistic hypothesis H₀ was accepted as to the absence of significant preoperative differences between the groups in age, BMI, the grade of IVD degeneration (by Pfirrmann system) and the clinical status based on the self-assessment of the quality of life (ODI) and the presence of the residual radicular pain (Table 3).

The gender distribution of the patients in MG and CG was compared using χ²-test (PearsonChi-square). The statistically significant difference was not demonstrated (p >0,05): (df = 1; p = 0,82401). Therefore, H₀ hypothesis was accepted as to the absence of non-homogeneity in gender distribution in the compared groups.

H₀ hypothesis was also accepted as to other variables indicating the homogeneity in the groups under study (Fig. 2, a–d).

![Boxplot by Group](image1.png)

Рис. 2 (a, b). Порівняння ОГ та КГ за показниками:

a – вік; b – IMТ

Fig. 2 (a, b). Comparison of MG and CG by:

a – age; b – BMI
Оригінальні дослідження

Analysis of the difference between main and control groups by postoperative rates of EF, displacement of spinal root, new recurrence or de novo herniation and by clinical status

Відповідно, 31 (88.6 %) хворих ОГ та 42 (68.8 %) хворих КГ не мали переконливих МРТ-ознак ЕФ у зоні перенесеного хірургічного втручання (див. табл. 2 та 4). Разом з тим, розрахунок очікуваних випадків післяопераційного ЕФ показав, що в ОГ вони складають 8,4 – тобто більше, ніж вдвічі перевищують їх реальну кількість. Відповідно, очікуваний рівень відсутності МРТ-ознак ЕФ в ОГ склав 26,6 випадки проти 31 зареєстрованого (табл. 5).

На відміну від ОГ, у КГ очікуваний рівень МРТ-верифікації післяопераційного ЕФ (14.6) виявився нижчим за названий (19) (див. табл. 4 та 5).

Рис. 2 (c, d). Порівняння ОГ та КГ за показниками:

- c – ODI, d – ступінь дегенерації МХД (за Pfirrmann)

Fig. 2 (c, d). Comparison of MG and CG by:

- c – ODI, d – grade of IVD degeneration (according to Pfirrmann)

Таблиця 4. Окремі радіологічні та клінічні показники в ОГ та КГ та оцінка статистичної значущості міжгрупових відмінностей через 12 місяців після операції (n, %)

Table 4. Selected radiological and clinical features in MG and CG and assessment of the significance of intergroup differences in 12 months following surgery (n, %)
Крім вищеозначеної, зареєстровано статистично значущу різницю між ОГ та КГ за частотою ЕФ в післяоперативній зоні (df = 1; p = 0.02936), тому H₀ за даним показником відхилено (див. табл. 4).

Таким чином, у досліджуваній когорті було продемонстровано, що інтраопераційне епідуральне введення ПГГ супроводжується статистично значущим зниженням частоти радіологічних ознак ЕФ через 12 місяців після хірургічного лікування гриж МХД. Ознаки зміщення спинномозкового корінця в післяоперативній зоні за даними МРТ спостерігалися у 9 (25.7 %) хворих, яким застосовувався ПГГ (ОГ), та у 20 (32.8 %) хворих, у яких бар’єрні матеріали не використовували (КГ) (див. табл. 4). При цьому співвідношення розрахованих очікуваних та наявних випадків радіологічних ознак зміщення корінця в ОГ склало 10.6 : 9, в КГ – 18.4 : 20. Як бачимо, у групах, що порівнювались, ці співвідношення були протилежними.

Водночас статистично значущою різницею між досліджуваними групами за частотою МРТ-ознак зміщення спинномозкового корінця не встановлено (df = 1; p = 0.46759), на відміну від такої за рівнем ЕФ (табл. 4). Тобто відносно зміщення спинномозкового корінця H₀ прийнято.

МРТ-ознаки нового рецидиву грижки МХД через 12 місяців після повторної мікродискектомії в ОГ виявлено в 1 (2.9 %) випадку; в КГ – у 2 (3.7 %) випадках (табл. 4). Крім того, у 2 (5.7 %) хворих ОГ та 3 (4.9 %) хворих КГ виявлено de novo грижу МХД (табл. 4).

При цьому різниця між ОГ та КГ за частотою рецидиву грижки МХД через 12 місяців після повторної мікродискектомії в ОГ виявлена в 1 (2.9 %) випадку, в КГ – у 2 (3.7 %) випадках (табл. 4). Крім того, у 2 (5.7 %) хворих ОГ та 3 (4.9 %) хворих КГ виявлено de novo грижу МХД (табл. 4).

У 2 (5.7 %) хворих ОГ та 3 (4.9 %) хворих КГ виявлено de novo грижу МХД (табл. 4). При цьому співвідношення розрахованих очікуваних та наявних випадків грижки МХД в ОГ склало 10.6 : 9, в КГ – 18.4 : 20. Як бачимо, у групах, що порівнювались, ці співвідношення були протилежними.

Залишковий корінцевий біль, що за локалізацією відповідав зоні видалення грижки МХД через 12 місяців після повторної операції спостерігався у 8 (22.9 %) хворих ОГ та у 15 (24.6 %) хворих КГ (табл. 2 та 4). За частотою виявлення цієї симптоматики в групі, в якій ПГГ застосовувався, та груп, в якій ПГГ не використовувався, статистично значущою між собою не відрізнялися (df = 1; p = 0.84815). Залишковий корінцевий біль у означеної частини хворих був незначним (в середньому 2.00 ± 0.33 балів в ОГ та 2.20 ± 0.20 балів в КГ, за 10-бальну візуальну аналогову шкалу [36] (p = 0.477676)) і статистично значуще слабким (p < 0.005), порівняно з надмірно інтенсивним корінцевим білем, з яким пацієнти поступали на повторну операцію (у середньому 9.13 ± 0.35 балів та 9.31 ± 0.22 балів, відповідно; p = 0.690599).

Водночас слід зазначити, що грижки депо, які через 12 місяців після хірургічного втручання візуалізовано

Група/Group	Зведенна таблиця з групуванням за двома ознаками: очікувані частоти ЕФ	Row Totals	
	Ознаки ЕФ / EF signs		
	0	1	
ОГ / MG	26.61458	8,38542	35,00000
КГ / CG	46.38542	14,61458	61,00000
Загальна / Total	73,00000	23,00000	96,00000

Примітки:
0 – відсутні; 1 – наявні.

Notes:
0 – absent; 1 – present

Besides, the statistically significant difference between MG and CG was registered by EF frequency at the postoperative site (df = 1; p = 0.02936), therefore H₀ considering this sign has been rejected (see Table 4).

Consequently, in the cohort under study, interoperative epidural administration of PAH is associated with the significant decrease in the frequencies of the radiological signs of EF detected in 12 months following the surgical treatment of the recurrence of IVD herniation.

The MRI signs of the displacement of spinal root at the postoperative site were observed in 9 (25.7 %) patients of MG and 20 (32.8 %) patients of CG (to whom barrier materials were not administered) (see Table 4). The ratio of calculated expected to actual cases of the displacement of spinal root was 10.6:9 in MG and 18.4:20 in CG, i.e. this ratio in the compared groups was opposite.

At the same time, the difference between groups as to the frequency of MRI signs of the displacement of spinal root was not significant (df = 1; p = 0.46759), contrary to that in EF frequencies. Therefore, referring to this sign, H₀ has been accepted.

The MRI signs of the new recurrence of IVD herniation in 12 months following the repeated microsurgery were detected in 1 (2.9 %) case in MG and 2 (3.7 %) cases in CG (Table 4). Besides, in 2 (5.7 %) cases in MG and 3 (4.9 %) cases in CG, de novo IVD hernia was revealed (Table 4). The difference between MG and CG concerning these two signs also did not reach the level of the statistical significance (df = 1; p = 0.90904 and df = 1; p = 0.60385, respectively).

In 12 months following the repeated surgery, the residual radicular pain with localization matching the area where IVD was removed was registered in 8 (22.9 %) patients of MG and 15 (24.6 %) patients of CG (Tables 2 and 4). Considering this symptom, the difference between the groups was not significant (df = 1; p = 0.84815). The residual radicular pain was rather mild (on average 2.00 ± 0.33 points in MG and 2.20 ± 0.20 points in CG according to 10-points visual analogous scale [36] (p = 0.477676)). In addition, the pain was significantly less pronounced (p < 0.005) as compared to the most intensive radicular pain prior to the repeated surgery (on average 9.13 ± 0.35 points in MG and 9.31 ± 0.22 points (p = 0.690599).

Meanwhile, it should be noted that de novo hernias visualized in 12 months following the surgery in the intact spinal motion segments or contralateral segments at the level of surgical intervention have been manifested with the radicular pain in neither group under study.

ODI values assessed in 12 months since the surgery corresponded to the minimal disability...
у неоперованих хребцево-рухових сегментах або з протилежного боку на оперованому рівні, не проявлялись корінцевим болем в жодній з досліджуваних груп.

Значення ODI через 12 місяців після операції відповіли мінімальній інвалідизації (7,37 ± 0,83 % в ОГ та 8,20 ± 0,71 % у КГ) (табл. 2). Різниця між цими показниками у досліджуваних групах (p = 0,331775) не досягала рівня статистичної значущості. Разом з тим емпіричний аналіз даних, представленних на рис. 3, дозволяє висути гіпотезу про можливість спостереження нижнього ступеня порушення якості життя після операції у разі застосування ПГ.

Однак цю гіпотезу в подальшому доцільно перевірити на вибірках більшого обсягу, оскільки в даному дослідженні статистична гіпотеза Н₀ не була відхилено.

Рис. 3. Очікувані показники ступеня порушення якості життя у групах спостереження через 12 місяців після операції (за ODI)

![Boxplot by Group](image)

Рис. 3. Boxplot by Group

Оцінка асоціації між досліджуваними радіологічними та клінічними показниками

Відповідно до завдань даної роботи, через 12 місяців після видалення рецидиву грижі МХД у хворих ОГ та КГ досліджено асоціацію між такими показниками, як частота ЕФ, зміщення спинномозкового корінця, рівень рецидивування грижі МХД і утворення de novo грижі МХД – з одного боку, та з іншого – частотою виявлення залишкового корінцевого болю, локалізації якого відповідає зоні хірургічного втручання.

Нас цікавив зв’язок радіологічних показників із клінічною симптоматикою. За даними літератури він оцінюється неоднозначно. У деяких роботах показано, що рецидивуючий корінцевий біль при значному ЕФ спостерігається втричі частіше, ніж при менш вираженому рубцево-злучному процесі [37]. Водночас в інших джерелах описується безсимптомний перебіг епідуранального фіброзу [38, 39].

За нашими даними, у хворих ОГ не зареєстровано статистично значущої асоціації між післяопераційним ЕФ та залишковим корінцевим болем, що відповідав зоні видалення рецидиву грижі МХД (7.37 ± 0.83 % в MG та 8.20 ± 0.71 % в CG) (Table 2). The difference of these values between the groups was not statistically significant. Meanwhile, the empirical analysis of the data presented in Fig. 3 allows us to suggest that less impairment of the life quality seems to be registered when PAH is administered.

However, this suggestion should be verified in more numerous samples since within the framework of this study H₀ have not been rejected.

Assessment of association between the studied radiological and clinical features

According to the objectives of this study, we analyzed the associations between the frequency of the residual radicular pain in 12 months after the surgery localized in the area matching the site of the surgical intervention and such factors as EF, the displacement of spinal root at the postoperative site, the repeated recurrent IVD herniation the repeated recurrent IVD herniation and de novo IVD herniation.

We were interested in the association between radiological findings and clinical symptoms. The data on this subject are still controversial. Several authors demonstrated that the residual radicular pain in cases of the extensive EF is thrice more frequent than in cases with less pronounced cicatrical adhesions [37]. However, there are data about asymptomatic EF [38, 39].

According to our data, neither patients in MG (p = 0.66482), nor in CG (p = 0.22940) demonstrated significant association between postoperative EF and the residual radicular pain localized in the area matching the site of the surgical intervention.
(p = 0.66482). У КГ між цими показниками теж не встановлено асоціації із заданим рівнем статистичної значущості (p = 0.22940).

Водночас взаємозв'язки інших морфологічних показників і клінічної симптоматики в ОГ та КГ мали відмінності. Так, в ОГ не встановлено асоціації між зміщенням спинномозкового корінця в післяопераційній зоні та залишковим корінцевим болем. Додатково, в ОГ не виявлено асоціативного зв'язку між виникненням гріж МХД та вищеназваною симптоматикою (p = 0.22857).

До того ж, як, безумовно, і очікувалося, в ОГ не виявлено асоціативного зв'язку між виникненням гріж МХД де ново та залишковим корінцевим болем, що за локалізацією відповідає зоні хірургічного втручання (p = 0.41008).

На відміну від ОГ, у КГ встановлено статистично значущу асоціацію між частотою МРТ-ознак зміщення спинномозкового корінця у післяопераційній зоні та корінцевим болем у відповідному дерматомі (p = 0.00222). Її додаткова оцінка за показником асоціації (φ = 0.41) вказала на взаємозв'язок середньої сили. Також у КГ встановлено тенденцію впливу нових рецидивів гріж МХД на частоту цих клінічних проявів (p = 0.05738); однак дана статистична гіпотеза потребує перевірки на більш потужних вибірках.

Узагальнюючи цю частину дослідження, відмітимо, що через 12 місяців після повторної операції, незалежно від інтраопераційного введення ПГГ, наявність на оперованому рівні МРТ-ознак ЕФ істотно не вплинула на частоту виникнення корінцевого болю, відповідного зоні хірургічного втручання. Підкреслимо, що ця закономірність спостерігалась на тлі статистично значущого зниження частоти МРТ-ознак ЕФ у групі, в якій використовувалась ПГГ.

У групі, де застосовувався ПГГ, наявність на оперованому рівні МРТ-ознак зміщення корінця або нового рецидиву гріж МХД істотно не вплинула на частоту виникнення залишкового корінцевого болю, що за локалізацією відповідало зоні хірургічного втручання. Натомість у групі, де ПГГ не застосовувався, встановлено середньої сили взаємозв’язок між цією клінічною симптоматикою та МРТ-ознаками зміщення спинномозкового корінця у післяопераційній зоні, а також тенденцію до залежності клінічної симптоматики від нових рецидивів гріж МХД. Водночас при наявних відмінностях асоціативних зв’язків, групи спостереження статистично значуще не відірвані від частотою МРТ-ознак зміщення спинномозкового корінця та нових рецидивів гріж МХД.

ВИСНОВКИ

1. У групі хворих, яким під час видалення рецидиву гріж МХД та декомпресії неврахованих структур епідурально вводився ПГГ, через 12 місяців після операції частота МРТ-ознак ЕФ була статистично значущою (p = 0.02936) нижчою за частотою МРТ-ознак ЕФ у групі, де ПГГ використовувалося на першому етапі без стосовної гіпоспіза. Науки оцінки, що відбувається у відповідних дерматомах, не залишковим корінцевим болем у відповідному дерматомі.

2. Епідуральне введення ПГГ істотно не вплинуло на частоту виникнення корінцевого болю, відповідного зоні хірургічного втручання. На відміну від ОГ, у КГ встановлено значну асоціацію між частотою МРТ-ознак зміщення спинномозкового корінця та корінцевим болем у відповідному дерматомі (p = 0.09515) і між рецидивуванням гріж МХД та вищеназваною симптоматикою (p = 0.22857).

3. У групі хворих, яким під час видалення рецидиву гріж МХД та декомпресії неврахованих структур епідурально вводився ПГГ, через 12 місяців після операції частота МРТ-ознак ЕФ була статистично значущою (p = 0.02936) нижчою (11,4 %), порівняно із групою, в якій не застосовувалися бар'єрні матеріали (31,2 %). Епідуральне введення ПГГ істотно не впливало на частоту виникнення радіологічних ознак зміщення спинномозкового корінця на оперованому рівні (4 та 9, відповідно).

Оригінальні дослідження

CONCLUSIONS

1. In cases where the surgical removal of IVD hernia and decompression of the neural structures was accompanied with epidural administration of PAH, the frequency of MRI signs of EF in 12 months postoperatively was significantly lower (11.4 %; p = 0.02936) than in cases where barrier materials were not used (31.2 %).

2. Epidural administration of PAH did not affect significantly the frequency of the residual radicular pain of the corresponding localization and the residual radicular pain in corresponding dermatome (p = 0.22857 and p = 0.41008, respectively).

3. Upon PAH administration, the number of actual cases with MRI signs of EF and the displacement of the spinal root at the postoperative site (4 and 9, respect-
були нижчими за очікувані (8,4 та 10,6, відповідно) – на відміну від групи, де ПГГ не використовувався (встановлено 19 та 20, відповідно; очікувалось 14,6 та 18,4, відповідно).

4. У групі хворих, яким інтраперативно вводився ПГГ, названня на оперованих рівні МРТ-ознак Еф, зміщення корінця та нового рецидиву іксХД через 12 місяців після операції істотно не впливала на частоту виявлення залишкового корінцевого болю, що за локалізацією відповідав зоні видалення рецидиву гріж іксХД.

5. У групі, де ПГГ не застосовувався, встановлено середньої сили взаємозв’язок (ϕ = 0,41) між частотою виявлення залишкового корінцевого болю, який за локалізацією відповідає зоні видалення рецидиву гріж іксХД.

Отримані дані в цій частині свідчать про доцільність використання такого бар’єрного матеріалу як ПГГ українського виробництва, причим, у відносині складної категорії спінальних хворих, якими є хворі з рецидивами гріж іксХД. Разом з тим ми наголошуємо, що проведення нами аналізу стосувалося кожного окремого хворого, тому застерігаємо від більш широких висновків щодо сукупного впливу епідурального введення ПГГ на результати повторних поперечно-вих мікродискектомій.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

1. Daniell J. R., Osti O. L. Failed Back Surgery Syndrome: A Review Article. Asian spine journal. 2018. Vol. 12(2). Р. 372–379. DOI: https://doi.org/10.4184/asj.2018.12.2.372

2. Thomson S. Failed back surgery syndrome – definition, epidemiology and demographics. British journal of pain. 2013. Vol. 7(1). Р. 56–59. DOI: https://doi.org/10.1177/2049463713470896

3. Животово А. П., Сорокинов В. А., Кошаряк З. В., Негреева М. Б., Погало В. З., Горбунов А. В. Современные представления об эпидуральном фиброзе (обзор литературы). Acta Biomedica Scientifica. 2017. Vol. 2(6). Р. 29–33. DOI: https://doi.org/10.12737/article_Sa0a7f4e12001.59068513

4. Hesketh M., Sahin K. B., West Z. E., Murray R. Z. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing. International journal of molecular sciences. 2017. Vol. 18(7). Р. 1545. DOI: https://doi.org/10.3390/ijms18071545

5. Chen L., Wang J., Li S., Yu Z., Liu B., Song B., Su Y. The clinical dynamic changes of macrophage phenotype and function in different stages of human wound healing and hypertrophic scar formation. International wound journal. 2019. Vol. 16(2). Р. 360–369. DOI: https://doi.org/10.1111/iwj.13041

6. Doshi P., Sánchez-Rodríguez R., Scolaro T., Castegna A. The Metabolic Signature of Macrophage Responses. Frontiers in immunology. 2019. Vol. 10. Р. 1462. DOI: https://doi.org/10.3389/fimmu.2019.01462

7. Das A., Sinha M., Datta S., Abas M., Chaffee S., Sen C. K., Roy S. Monocyte and macrophage plasticity in tissue repair and regeneration. The American journal of pathology. 2015. Vol. 185(10). Р. 2596–2606. DOI: https://doi.org/10.1016/j.ajpath.2015.06.001

8. Фіщенко Я. В., Заводовский Д. О., Мотузюк О. М., Матвієнко Т. Ю., Ноздренко Д. М. Протифібратна дія діпросапану, лігандіазі та їх комбінація при механічному травмуванні міжкісткових диску ший. Фізіологічний журнал. 2017. Т. 63, № 1.

9. Gabbiani G. The myofibroblast in wound healing and fibro contractive diseases. The Journal of pathology. 2003. Р. 500–503.

10. Eckes B., Zigrino P., Kessler D., Holtkotte O., Shepherd P., Mauch C., Krieg T. Fibroblast-matrix in interactions in wound healing and fibrosis. Matrix Biology. 2000. Vol. 19. Р. 325–332.

REFERENCES

1. Daniell JR, Osti OL. Failed Back Surgery Syndrome: A Review Article. Asian spine journal. 2018;12(2):372–9. (In English). DOI: https://doi.org/10.4184/asj.2018.12.2.372

2. Thomson S. Failed back surgery syndrome – definition, epidemiology and demographics. British journal of pain. 2013;7(1):56–9. (In English). DOI: https://doi.org/10.1177/2049463713470896

3. Животово А. П., Сорокинов В. А., Кошаряк З. В., Негреева М. Б., Погало В. З., Горбунов А. В. Современные представления об эпидуральном фиброзе (обзор литературы). Acta Biomedica Scientifica. 2017;2(6). Р. 27–33. DOI: https://doi.org/10.12737/article_Sa0a7f4e12001.59068513

4. Hesketh M., Sahin K. B., West Z. E., Murray R. Z. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing. International journal of molecular sciences. 2017. Vol. 18(7). Р. 1545. DOI: https://doi.org/10.3390/ijms18071545

5. Chen L., Wang J., Li S., Yu Z., Liu B., Song B., Su Y. The clinical dynamic changes of macrophage phenotype and function in different stages of human wound healing and hypertrophic scar formation. International wound journal. 2019;16(2):360–9. (In English). DOI: https://doi.org/10.1111/iwj.13041

6. Doshi P., Sánchez-Rodríguez R., Scolaro T., Castegna A. The Metabolic Signature of Macrophage Responses. Frontiers in immunology. 2019;10:1462. (In English). DOI: https://doi.org/10.3389/fimmu.2019.01462

7. Das A., Sinha M., Datta S., Abas M., Chaffee S., Sen C. K., Roy S. Monocyte and macrophage plasticity in tissue repair and regeneration. The American journal of pathology. 2015. Vol. 185(10). Р. 2596–2606. (In English). DOI: https://doi.org/10.1016/j.ajpath.2015.06.001

8. Фіщенко Я. В., Заводовский Д. О., Мотузюк О. М., Матвієнко Т. Ю., Ноздренко Д. М. Протифібратна дія діпросапану, лігандіазі та їх комбінація при механічному травмуванні міжкісткових диску ший. Фізіологічний журнал. 2017. Т. 63, № 1.

9. Gabbiani G. The myofibroblast in wound healing and fibro contractive diseases. The Journal of pathology. 2003. Р. 500–503.

10. Eckes B., Zigrino P., Kessler D., Holtkotte O., Shepherd P., Mauch C., Krieg T. Fibroblast-matrix in interactions in wound healing and fibrosis. Matrix Biology. 2000;19:325–32. (In English).
Відомості про авторів

Педаченко Євгеній Георгійович — академік Національної академії наук України, доктор медичних наук, професор, головний розробник інноваційного Міністерства охорони здоров’я України та Національної академії медичних наук України, директор Державної установи «Інститут нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України», вул. Платона Майбороди, буд. 32, м. Київ, Україна, 04050; e-mail: pedach@iai

Информация о авторах

Pedachenko Yevhenii Heorhiiovych — Academician of the National Academy of Medical Sciences of Ukraine, Doctor of Medical Sciences, Professor, Chief Consulting Neurosurgeon of the Ministry of Health and National Academy of Medical Sciences of Ukraine, Director of the State Institution «Romodanov Neurosurgery Institute National Academy of Medical Sciences of Ukraine», Chief Researcher, Research Supervisor of the Clinic of Minimvasive and Laser Spinal Neurosurgery at the State Institution «Romodanovo Neurosurgery Institute National Academy of Medical Sciences of Ukraine»; 32, Platonov Mariinsky Str., Kyiv, Ukraine, 04050; e-mail: pedach@iai

office tel: +38 (044) 483-95-73

Author's contribution: design of scientific research, correction of the completed work, analysis of the results obtained and assessment of the efficacy of the method used.
Хижняк Михайло Віталійович – доктор медичних наук, професор, завідувач відділення малонавіязкої і лазерної спінальної нейрохірургії Державної установи «Інститут нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України»; вул. Платона Майбороди, буд. 32, м. Київ, Україна, 04050; e-mail: khyzhnyak63@gmail.com mob.: +38 (067) 775-77-76

Внесок автора: дизайн такоорганізації наукового дослідження, проведення хірургічних втручань, аналіз отриманих результатів та оцінка ефективності використаної методики.

Красиленко Оlena Петрівна – кандидат медичних наук, лікар-нейропатолог відділення підліпопераційного відділення лікування нейрохірургічних хворих, старший науковий співробітник відділу спінальної нейрохірургії Державної установи «Інститут нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України»; вул. Платона Майбороди, буд. 32, м. Київ, Україна, 04050; e-mail: elena.krasilenko@gmail.com mob.: +38 (067) 406-27-86

Внесок автора: кінічне обстеження хворих, аналіз отриманих результатів, підготовка статті до публікації.

Педаченко Юрій Євгенійович – доктор медичних наук, професор кафедри нейропатології Національного університету охорони здоров’я України ім. П.Л. Шупіка Міністерства охорони здоров’я України; вул. Дорогожицька, буд. 9, м. Київ, Україна, 04112; e-mail: yupedachenko@gmail.com mob.: +38 (067) 960-98-77

Внесок автора: проведення хірургічних втручань, аналіз отриманих результатів, висновки.

Танасійчук Олександр Феліксович – кандидат медичних наук, лікар-нейрохірург відділення малонавіязкої і лазерної спінальної нейрохірургії Державної установи «Інститут нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України»; вул. Платона Майбороди, буд. 32, м. Київ, Україна, 04050; e-mail: vladimirkramarenko@ukr.net mob.: +38 (096) 702-86-53

Внесок автора: проведення хірургічних втручань.

Фурман Андрій Миколайович – кандидат медичних наук, лікар-нейрохірург відділення нейритрамві Державної установи «Інститут нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України»; вул. Платона Майбороди, буд. 32, м. Київ, Україна, 04050; e-mail: andrey-furman@ukr.net mob.: +38 (096) 452-56-52

Внесок автора: проведення хірургічних втручань.

Макеєва Тетяна Іванівна – кандидат медичних наук, лікар-нейрохірург похідного відділення Державної установи «Інститут нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України»; вул. Платона Майбороди, буд. 32, м. Київ, Україна, 04050; e-mail: tatyana.makieieva@gmail.com mob.: +38 (067) 401-81-06

Внесок автора: ефібр хворих у групи спостереження.

Крассіленко Олена Петрівна – Кандидат медичних наук, нейрохірург-нейропатолог Поликлиничного відділення Державної установи «Інститут нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України»; вул. Платона Майбороди, буд. 32, м. Київ, Україна, 04050; e-mail: elena.krasilenko@gmail.com phone: +38 (067) 406-27-86

Author’s contribution: design of scientific research, surgical interventions, analysis of the results obtained, and assessment of the efficacy of the method used.

Крассіленко Олена Петрівна – Кандидат медичних наук, нейрохірург-нейропатолог Поликлиничного відділення Державної установи «Інститут нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України»; вул. Платона Майбороди, буд. 32, м. Київ, Україна, 04050; e-mail: elena.krasilenko@gmail.com phone: +38 (067) 406-27-86

Author’s contribution: design of scientific research, surgical interventions, analysis of the results obtained, and assessment of the efficacy of the method used.

Педаченко Юрій Євгенійович – Кандидат медичних наук, нейрохірург-нейропатолог Поликлиничного відділення Державної установи «Інститут нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України»; вул. Платона Майбороди, буд. 32, м. Київ, Україна, 04050; e-mail: vladimirkramarenko@ukr.net phone: +38 (096) 702-86-53

Author’s contribution: design of scientific research, surgical interventions, analysis of the results obtained, conclusions.

Танасійчук Олександр Феліксович – Кандидат медичних наук, лікар-нейрохірург відділення малонавіязкої і лазерної спінальної нейрохірургії Державної установи «Інститут нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України»; вул. Платона Майбороди, буд. 32, м. Київ, Україна, 04050; e-mail: vladimirkramarenko@ukr.net phone: +38 (096) 452-56-52

Author’s contribution: design of scientific research, surgical interventions.

Фурман Андрій Миколайович – Кандидат медичних наук, лікар-нейрохірург відділення нейритрамві Державної установи «Інститут нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України»; вул. Платона Майбороди, буд. 32, м. Київ, Україна, 04050; e-mail: andrey-furman@ukr.net phone: +38 (096) 452-56-52

Author’s contribution: design of scientific research, surgical interventions.

Макеєва Тетяна Іванівна – Кандидат медичних наук, лікар-нейрохірург похідного відділення Державної установи «Інститут нейрохірургії ім. академіка А.П. Ромоданова Національної академії медичних наук України»; вул. Платона Майбороди, буд. 32, м. Київ, Україна, 04050; e-mail: tatyana.makieieva@gmail.com phone: +38 (067) 401-81-06

Author’s contribution: selection of patients into the study groups.
Земскова Оксана Володимирівна – кандидат медичних наук, лікар з променевої терапії відділення радіонейрохірургії, науковий співробітник відділу ад'ювантних методів лікування при пухлинах центральної нервової системи Державної установи «Інститут нейрохірургії ім. академіка А.П. Ромоданова Национальної академії медичних наук України»; вул. Платона Майбороди, буд. 32, м. Київ, Україна, 04050;
 e-mail: oxzemskova@gmail.com
 моб. +38 (095) 575-05-75
 Внесок автора: МРТ-обстеження хворих, аналіз отриманих результатів, підготовка статті до публікації.

Стулей Володимир Анатолійович – кандидат фізико-математичних наук, доцент кафедри математичних методів системного аналізу Інституту прикладного системного аналізу Національного технічного університету України «Ігор Сікорський Київ Політехнічний інститут» Міністерства освіти і науки України; пр. Перемоги, буд. 37-А, м. Київ, Україна, 03056;
 e-mail: stuley.volodymyr@lll.kpi.ua
 моб.: +38 (067) 614-52-51
 Внесок автора: статистичний аналіз результатів дослідження.

Отримано після рецензування
Received after review
02.12.2021

Рукопис надійшов
Manuscript was received
05.11.2021

Опубліковано
Published
29.12.2021

Студентка Володимир Анатолійович – Candidate of Medical Sciences, Radiation Oncologist of Department of Radiosurgery, Department of Adjuvant Treatment of CNS Tumors, The State Institution «Romodanov Neurosurgery Institute National Academy of Medical Sciences of Ukraine»; 32, Platona Mayborody Str., Kyiv, Ukraine, 04050;
 e-mail: oxzemskova@gmail.com
 phone: +38 (095) 575-05-75
 Author’s contribution: MRI examination, data analysis, preparing of the manuscript for the publication.

Stuley Volodymyr Anatoliyovich – Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Mathematical Methods of Systems Analysis, Institute for Applied Systems Analysis, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» of the Ministry of Education and Science of Ukraine; 37-A, Peremohy Ave, Kyiv, Ukraine, 03056;
 e-mail: stuley.volodymyr@lll.kpi.ua
 phone: +38 (067) 614-52-51
 Author’s contribution: statistical data processing.