Tachyon Condensation on a Nonstationary Dp-brane with Background Fields in Superstring Theory

F. Safarzadeh-Maleki and D. Kamani

Physics department, Amirkabir University of Technology (Tehran Polytechnic)
P.O.Box: 15875-4413, Tehran, Iran
e-mails: f.safarzadeh@aut.ac.ir, kamani@aut.ac.ir

Abstract

Using the boundary state formalism we obtain the partition function corresponding to a dynamical (rotating-moving) Dp-brane in the presence of electromagnetic and tachyonic background fields in the superstring theory. The instability of such Dp-brane due to the tachyon condensation is investigated.

PACS numbers: 11.25.-w; 11.25.Uv

Keywords: Tachyon condensation; Rotating-Moving brane; Boundary state; Partition function.
1 Introduction

D-branes can be described in terms of closed string states, hence by using the boundary state formalism many interesting properties have been shown [1]-[9]. By means of the boundary state, all relevant properties of the D-branes could be revealed. The boundary state formalism has been applied to the various D-branes configurations in the presence of different background fields [10]-[14].

On the other hand, investigating the stability of D-branes is one of the most important subjects that can be studied via the tachyon dynamics of open string and tachyon condensation phenomenon [15]. These concepts have been verified by various methods [16]-[18] and more recently by the boundary string field theory (BSFT) in different configurations [19]-[24]. It has been conjectured that the open string tachyon condensation describes the decay of unstable D-branes into the closed string vacuum or to the lower dimensional unstable D-branes as intermediate states. Study of this physical process namely, decaying of unstable objects, is an important phenomenon because of its interpolation between two different vacua and also since it is a way to reach the concept of background independent formulation of string theory.

Some aspects of the boundary state, accompanied by the tachyon condensation, are as follow. The boundary state is a source for closed strings, therefore, by using this state and tachyon condensation, one can find the time evolution of the source for each closed string mode. Also it has been argued that the boundary state description of the rolling tachyon is valid during the finite time which is determined by string coupling, and the energy could be dissipated into the bulk beyond this time [23]. Moreover, this method shows the decoupling of the open string modes at the non-perturbative minima of the tachyon potential [25].

Previously we have calculated the boundary states associated with a dynamical (rotating and moving) Dp-brane in the presence of the electromagnetic and tachyonic background fields [12, 24]. Now, by making use of the same boundary state we shall construct the corresponding partition function, which is obtained by the BSFT method. Then, we shall examine the instability of a Dp-brane. We demonstrate that this process can make such a dynamical brane unstable, and hence reduces the brane’s dimension.
2 Boundary state of a dynamical brane

For constructing a boundary state corresponding to a dynamical (rotating-moving) D-brane in the presence of some background fields, we start with the action

\[
S = -\frac{1}{4\pi\alpha'} \int_\Sigma d^2\sigma \left(\sqrt{-g} g^{ab} \partial_a X^\mu \partial_b X^\nu + \varepsilon^{ab} B_{\mu\nu} \partial_a X^\mu \partial_b X^\nu \right) \\
+ \frac{1}{2\pi\alpha'} \int_{\partial\Sigma} d\sigma (A_\alpha \partial_\sigma X^\alpha \omega_{\alpha\beta} J^{\alpha\beta}_\tau + T(X^\alpha)),
\]

(1)

where \(\Sigma\) and \(\partial\Sigma\) are worldsheet of closed string and its boundary, respectively. This action contains the Kalb-Ramond field \(B_{\mu\nu}\), a \(U(1)\) gauge field \(A_\alpha\), an \(\omega\)-term for rotation and motion of the brane and a tachyonic field. We shall apply \(\{X^\alpha|\alpha = 0, 1, \ldots, p\}\) for the worldvolume directions of the brane and \(\{X^i|i = p+1, \ldots, d-1\}\) for directions perpendicular to it.

The background fields \(G_{\mu\nu}\) and \(B_{\mu\nu}\) are considered to be constant, and for the \(U(1)\) gauge field we use the gauge \(A_\alpha = -\frac{1}{2} F_{\alpha\beta} X^\beta\) which possesses a constant field strength. Besides, the tachyon profile \(T = \frac{1}{2} U_{\alpha\beta} X^\alpha X^\beta\) will be used, where the symmetric matrix \(U_{\alpha\beta}\) is constant. The \(\omega\)-term, which is responsible for the brane’s rotation and motion, contains the anti-symmetric angular velocity \(\omega_{\alpha\beta}\) and angular momentum density \(J^{\alpha\beta}_\tau\) which is given by \(\omega_{\alpha\beta} J^{\alpha\beta}_\tau = 2 \omega_{\alpha\beta} X^\alpha \partial_\tau X^\beta\). In fact, the component \(\omega_{0\beta}|_{\beta\neq 0}\) denotes the velocity of the brane along the direction \(X^\alpha\) while \(\omega_{\alpha\beta}\) represents its rotation.

It should be noted that rotation and motion of the brane are considered to be in its volume. In fact, according to the various fields inside the brane, the Lorentz symmetry is broken and hence such a dynamic (rotation and motion) is sensible.

Suppose that the following mixed elements vanish, i.e. \(B_{\alpha i} = U_{\alpha i} = 0\). The oscillating part of the bosonic boundary state is given by

\[
|B_{\text{Bos}}^{\text{(osc)}}\rangle = \prod_{n=1}^{\infty} [\det Q(n)]^{-1} \exp \left[-\sum_{m=1}^{\infty} \frac{1}{m} \alpha_m S(m)_{\mu\nu} \bar{\alpha}^\nu \right] |0\rangle_\alpha \otimes |0\rangle_{\bar{\alpha}},
\]

(2)

in which the matrices are as follows:

\[
Q(n)_{\alpha\beta} = \eta_{\alpha\beta} - \mathcal{F}_{\alpha\beta} + \frac{i}{2n} U_{\alpha\beta}, \\
S(m)_{\mu\nu} = (\Delta(m)_{\alpha\beta}, -\delta_{ij}), \\
\Delta(m)_{\alpha\beta} = (M^{-1}(m) N(m))_{\alpha\beta}, \\
M(m)_{\alpha\beta} = \eta_{\alpha\beta} + 4 \omega_{\alpha\beta} - \mathcal{F}_{\alpha\beta} + \frac{i}{2m} U_{\alpha\beta}, \\
N(m)_{\alpha\beta} = \eta_{\alpha\beta} + 4 \omega_{\alpha\beta} + \mathcal{F}_{\alpha\beta} - \frac{i}{2m} U_{\alpha\beta}, \\
\mathcal{F}_{\alpha\beta} = \partial_\alpha A_\beta - \partial_\beta A_\alpha - B_{\alpha\beta}.
\]

(3)
The normalization factor \(\prod_{n=1}^{\infty} [\text{det} \, Q(n)_{\alpha\beta}]^{-1} \) is an effect of the disk partition function. In addition, the zero-mode part of the bosonic boundary state has the feature

\[
|B_{\text{Bos}}(0)\rangle = \frac{T_p}{2} \int_{-\infty}^{\infty} \exp \left\{ i \alpha' \left[\sum_{\alpha=0}^{p} (U^{-1} A)_{\alpha\alpha} (p^\alpha)^2 + \sum_{\alpha, \beta=0, \alpha \neq \beta}^{p} (U^{-1} A + A^T U^{-1})_{\alpha\beta} p^\alpha p^\beta \right] \right\} \times \left(\prod_{\alpha} |p^\alpha\rangle dp^\alpha \right) \otimes \prod_{i} \delta(x^i - y^i) |p^i = 0\rangle,
\]

where \(A_{\alpha\beta} = \eta_{\alpha\beta} + 4 \omega_{\alpha\beta} \).

The NS-NS and R-R sectors possess the following fermionic boundary states

\[
|B_{\text{Ferm}}\rangle_{\text{NS}} = \prod_{r=1/2}^{\infty} [\text{det} \, Q(r)] \exp \left\{ i \sum_{r=1/2}^{\infty} (b^{\nu}_{r} S_r)_{\mu
u} \bar{b}^{\nu}_{r} \right\} |0\rangle,
\]

\[
|B_{\text{Ferm}}\rangle_{\text{R}} = \prod_{n=1}^{\infty} [\text{det} \, Q(n)] \exp \left\{ i \sum_{m=1}^{\infty} (d^{\mu}_{-m} S_m)_{\mu
u} \bar{d}^{\nu}_{-m} \right\} |B_{\text{R}}(0)\rangle.
\]

The explicit form of the zero-mode state \(|B\rangle_{\text{R}}(0)\) in the Type IIA and Type IIB theories and its contribution to the spin structure can be found in [24] in complete details. It is not modified here because for obtaining the partition function it will be projected onto the bra-vacuum, hence, the remaining state would be the boundary state built on the vacuum.

The total boundary state in the NS-NS and R-R sectors are given by

\[
|B\rangle_{\text{NS,R}} = |B_{\text{Bos}}\rangle_{\text{osc}} \otimes |B_{\text{Bos}}(0)\rangle \otimes |B_{\text{Ferm}}\rangle_{\text{NS,R}}.
\]

In fact, the total boundary state also has the ghosts and superghosts boundary states. Since these parts are free of the background fields, and specially free of the characteristic matrix of the tachyon, we put them away. Note that the boundary state (7) contains significant information about the nature of the brane.

3 Tachyon condensation and collapse of a \(\text{D}p \)-brane

The structure of the configuration space for the boundary string field theory (BSFT) can be described as follows: the space of 2-dimensional worldsheet theories on the disk with arbitrary boundary interactions deals with the disk partition function of the open string theory and a fixed conformal worldsheet action in the bulk. It has been demonstrated that, at the tree level, the disk partition function in the BSFT appears as the normalization factor of the boundary state. In other word, the partition function can be acquired by the vacuum amplitude of the boundary state

\[
Z_{\text{Disk}} = \langle \text{vacuum}|B\rangle.
\]
Thus, in our setup the partition function possesses the following feature
\[
Z_{\text{Disk}}^{\text{Bos}} = \frac{T_p}{2} \int_{-\infty}^{\infty} \prod_{\alpha} dp^\alpha \exp \left\{ i \alpha \left[\sum_{\alpha=0}^{p} (U^{-1}A)_{\alpha\alpha} (p^\alpha)^2 + \sum_{\alpha,\beta=0,\alpha \neq \beta}^{p} (U^{-1}A + ATU^{-1})_{\alpha\beta} p^\alpha p^\beta \right] \right\} \\
\times \prod_{n=1}^{\infty} \left[\det Q(n) \right]^{-1},
\]
for the bosonic part of the partition function, and
\[
Z_{\text{Disk}}^{\text{Ferm}} = \prod_{k>0}^{\infty} \left[\det Q(k) \right],
\]
for the fermionic part, where \(k\) is half-integer (integer) for the NS-NS (R-R) sector. Therefore, after integrating on the momenta and considering both fermionic and bosonic parts, the total partition function in superstring theory is given by
\[
Z_{\text{Disk}}^{\text{total}} = \frac{T_p}{2} \left(\frac{i\pi}{\alpha'} \right)^{(p+1)/2} \frac{1}{\sqrt{\det(D + H)} \prod_{n=1}^{\infty} \left[\det Q(n) \right]},
\]
where the diagonal matrix possesses the elements \(D_{\alpha\beta} = (U^{-1}A)_{\alpha\alpha} \delta_{\alpha\beta}\), and the the matrix \(H_{\alpha\beta}\) is defined by
\[
H_{\alpha\beta} = \begin{cases}
(U^{-1}A + ATU^{-1})_{\alpha\beta}, & \alpha \neq \beta, \\
0, & \alpha = \beta.
\end{cases}
\]

The partition function enables us to investigate the effect of the tachyon condensation on the instability of the Dp-brane. According to the conventional literature, the tachyonic mode of open string spectrum makes the D-branes instable. This phenomenon is called tachyon condensation. As the tachyon condenses, the dimension of the brane decreases and in the final stage, one receives a closed string vacuum. Using the boundary sigma-model, the tachyon condensation usually starts with a conformal theory with \(d\) Neumann boundary conditions in the UV, and then adding relevant tachyon field will cause the theory to roll toward an IR fixed point as a closed string vacuum with a Dp-brane, which corresponds to a new vacuum with \((d-p-1)\) Dirichlet boundary conditions.

According to the characteristic matrix of our tachyon, investigating of the tachyon condensation in this work is more general than the conventional studies which usually consider a single parameter for the tachyon field. Now let’s check the stability or instability of the Dp-brane in our setup. The tachyon condensation can be occurred by taking at least one of the tachyon’s elements to infinity, i.e. \(U_{pp} \to \infty\). At first look at the R-R sector. By making use of the \(\lim_{U_{pp} \to \infty} (U^{-1})_{pa} = \lim_{U_{pp} \to \infty} (U^{-1})_{ap} = 0\) the dimensional reduction of
the matrices $U^{-1}A$, A^TU^{-1} and D is obvious. Therefore, according to Eq. (11), in the R-R sector we observe that the direction x^p has been omitted from the resulted brane.

Now concentrate on the factor $\prod_{r=1}^{\infty} [\det Q_r]/\prod_{n=1}^{\infty} [\det Q_n]$ in the NS-NS sector of the superstring partition function. Using the limit

$$\lim_{U_{pp} \to \infty} \prod_{n=1}^{\infty} [\det Q_n]^{1/2} = \lim_{U_{pp} \to \infty} \prod_{n=1}^{\infty} [\det Q_n]^{1/2}$$

the effect of tachyon condensation on this factor is given by

$$\lim_{U_{pp} \to \infty} \prod_{n=1}^{\infty} [\det Q_n]^{1/2} = \lim_{U_{pp} \to \infty} \prod_{n=1}^{\infty} [\det Q_n]^{1/2}$$

The $p \times p$ matrices are similar to the initial $(p+1) \times (p+1)$ matrices in which the last rows and last columns have been omitted. In order to avoid divergent quantities due to the existence of infinite product, in the second and third factors we used the ζ-function regularization. For this reason we used the arrow sign instead of equality. However, it is evident that in this sector the dimensional reduction also occurs.

Let us check this factor after successive tachyon condensation, i.e.,

$$\lim_{U \to \infty} \prod_{r=1}^{\infty} [\det Q_r]^{1/2} = \lim_{U \to \infty} \prod_{n=1}^{\infty} [\det Q_n]^{1/2} = \lim_{U \to \infty} \left(\frac{i\pi}{2} \right)^{(p+1)/2} \sqrt{\det U},$$

where in the last term again, ζ-function regularizations for infinite products have been used. Therefore, the total partition function finds the feature

$$Z_{\text{total}} = \frac{T_p}{2} \left(-\frac{\pi^2}{2\alpha'} \right)^{(p+1)/2} \sqrt{\frac{\det U}{\det(D + H)}}.$$
According to the above condensation processes, via the boundary state and the BSFT approaches, the result is that in our setup the dimensional reduction is taken place in both NS-NS and R-R sectors of the superstring theory. That is, after tachyon condensation, such a rotating-moving D_p-brane with photonic and tachyonic background fields, reduces to an unstable $D(p-1)$-brane with its own background fields, rotation and motion. Thus, imposing rotation and motion to an unstable D-brane does not preserve it against collapse during the process of tachyon condensation.

References

[1] M. Frau, I. Pesando, S. Sciuto, A. Lerda and R. Russo, Phys. Lett. B400 (1997) 52.

[2] C.G. Callan and I.R. Klebanov, Nucl. Phys. B465 (1996) 473; C.G. Callan, C. Lovelace, C.R. Nappi and S.A. Yost, Nucl. Phys. B308 (1988) 221.

[3] S. Gukov, I.R. Klebanov and A.M. Polyakov, Phys. Lett. B423 (1998) 64.

[4] M. Li, Nucl. Phys. B460 (1996) 351.

[5] T. Kitao, N. Ohta and J.G. Zhou, Phys. Lett. B428 (1998) 68.

[6] M.B. Green and P. Wai, Nucl. Phys. B431 (1994) 131; C. Schmidhuber, Nucl. Phys. B467 (1996) 146; M.B. Green and M. Gutperle, Nucl. Phys. B476 (1996) 484.

[7] M. Billo, P. Di Vecchia and D. Cangemi, Phys. Lett. B400 (1997) 63.

[8] F. Hussain, R. Iengo and C. Nunez, Nucl. Phys. B497 (1997) 205.

[9] O. Bergman, M. Gaberdiel and G. Lifschytz, Nucl. Phys. B509 (1998) 194.

[10] P. Di Vecchia, M. Frau, I. Pesando, S. Sciuto, A. Lerda and R. Russo, Nucl. Phys. B507 (1997) 259; M. Billo, P. Di Vecchia, M. Frau, A. Lerda, I. Pesando, R. Russo and S. Sciuto, Nucl. Phys. B526 (1998) 199; P. Di Vecchia and A. Liccardo, “D branes in string theories, II”, hep-th/9912275.

[11] H. Arfaei and D. Kamani, Phys. Lett. B452 (1999) 54, hep-th/9909167; Nucl. Phys. B561 (1999) 57-76, hep-th/9911146; Phys. Lett. B475 (2000) 39-45, hep-th/9909079; D. Kamani, Nucl. Phys. B601 (2001) 149-168, hep-th/0104089; Z. Rezaei and D. Kamani, J. Exp. Theor. Phys. 114: 234-242, 2012, ariv:1107.1183 [hep-th].
[12] F. Safarzadeh-Maleki and D. Kamani, Phys. Rev. D 89, 026006 (2014), arXiv:1312.5489 [hep-th].

[13] M.M. Sheikh-Jabbari, Phys. Lett. B425 (1998) 48.

[14] C. Bachas, Phys. Lett. B374 (1996) 37.

[15] A. Sen, Int. J. Mod. Phys. A14, 4061 (1999); Int. J. Mod. Phys. A20, 5513 (2005); JHEP 08 (1998) 010; JHEP 08 (1998) 012; JHEP 10 (1999) 008; JHEP 12 (1999) 027.

[16] P. Mukhopadhyay and A. Sen, JHEP 0211 (2002) 047; G. Arutyunov, S. Frolov, S. Theisen, A.A. Tseytlin, JHEP 0102 (2001) 002.

[17] E. Witten, JHEP 9812 (1998) 019; Nucl. Phys. B268 (1986) 253.

[18] O. Bergman and M.R. Gaberdiel, Phys. Lett. B441, (1998) 133.

[19] D. Kutasov, M. Marino and G. Moore, JHEP 0010 (2000) 045.

[20] P. Kraus and F. Larsen, Phys. Rev. D63 (2001) 106004; T. Takayanagi, S. Terashima and T. Uesugi, JHEP 0103 (2001) 019; M. Naka, T. Takayanagi and T. Uesugi, JHEP 0006 (2000) 007.

[21] E.Witten, Phys. Rev. D46 (1992) 5467; Phys. Rev. D47 (1993) 3405.

[22] S.P. de Alwis, Phys. Lett. B505 (2001) 215; K. Okuyama, Phys. Lett. B499 (2001) 305. T. Lee, K.S. Viswanathan and Y. Yang, J. Korean Phys. Soc. 42 (2003) 34; Z. Rezaei, Phys. Rev. D85, 086011 (2012).

[23] T. Okuda and S. Sugimoto, Nucl. Phys. B647 (2002) 101; S.J. Rey and S. Sugimoto, Phys. Rev. D67 (2003) 086008.

[24] F. Safarzadeh-Maleki and D. Kamani, Zh. Eksp. Theor. Phys. 146: 769-778, 2014, arXiv:1406.2667 [hep-th].

[25] G. Chalmers, JHEP 0106 (2001) 012.