Ciprofloxacin-Resistant Salmonella enterica Serovar Kentucky in Canada

Michael R. Mulvey, David A. Boyd, Rita Finley, Ken Fakharuddin, Stacie Langner, Vanessa Allen, Lei Ang, Sadjia Bekal, Sameh El Bailey, David Haldane, Linda Hoang, Greg Horsman, Marie Louis, Lourens Robberts, and John Wylie

We report emergence of ciprofloxacin-resistant Salmonella enterica serovar Kentucky in Canada during 2003–2009. All isolates had similar macrorestriction patterns and were multilocus sequence type ST198, which has been observed in Europe and Africa. Ciprofloxacin-resistant S. enterica serovar Kentucky represents 66% of all ciprofloxacin-resistant nontyphoidal Salmonella sp. isolates observed in Canada since 2003.

Infections with Salmonella spp. are a major health concern for humans and animals on a global scale. Although most cases of salmonellosis result in uncomplicated diarrhea, elderly and immunocompromised persons can be at risk for more severe invasive infections, which can be life-threatening and may require antimicrobial drug therapy (1). The drugs of choice for treating these invasive infections are fluoroquinolones (for adults) or ceftriaxone for children (2). The purpose of this study was to describe the epidemiology and characterize isolates of ciprofloxacin-resistant S. enterica serovar Kentucky identified in Canada.

The Study

The Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS), established in 2003, monitors antimicrobial drug use and resistance in selected species of enteric bacteria from humans, animals, and animal-derived food sources across Canada (www.phac-aspc.gc.ca/cipars-picra/surv-eng.php). Human Salmonella isolates were submitted by all provincial public health laboratories in Canada to the National Antimicrobial Resistance Monitoring System in the United States were ciprofloxacin resistant (3). The purpose of this study was to describe the epidemiology and characterize isolates of ciprofloxacin-resistant S. enterica serovar Kentucky identified in Canada.

One of the main drivers of antimicrobial drug resistance in Salmonella spp. is use of antimicrobial drugs in food-producing animals. For example, high rates of cephalosporin resistance in Salmonella enterica serovar Heidelberg isolated from poultry, retail chicken meat, and humans were observed in Quebec, Canada in 2003. After a voluntary withdrawal of cephalosporins was instituted by the Quebec broiler industry in 2005, rates of cefotaxime resistance dramatically decreased in animals and humans (2).

As with cephalosporin resistance, ciprofloxacin resistance in Salmonella spp. is a growing concern. Recently, S. enterica serovar Kentucky isolates have been described in Europe and Africa that were ciprofloxacin resistant (3). In addition, these isolates were resistant to multiple classes of antimicrobial drugs, which further complicates treatment options for invasive disease. No S. enterica serovar Kentucky isolates submitted to the National Antimicrobial Resistance Surveillance (CIPARS) program during 2003–2009, and 23 (30%) isolates showed ciprofloxacin resistance (MIC ≥4 mg/L) during the study (Figure 1). Thirty-five (46%) isolates were susceptible to all antimicrobial drugs tested. Ciprofloxacin-resistant isolates were identified from human case-patients in British Columbia (n = 2), Alberta (n = 2), Saskatchewan (n = 1), Ontario (n = 12), Quebec (n = 5), and Prince Edward Island (n = 1). Age information was available for 54 of 76 case-patients infected with S. enterica serovar Kentucky during the study period.

Of these isolates, 11 (14.5%) were resistant to ciprofloxacin. Ciprofloxacin resistance was observed among case-patients 18–69 years of age, and 5 of 11 were 18–29 years of age. Case-patients 18–29 years of age were 8 times
more likely to have a ciprofloxacin-resistant strain than case-patients 50–69 years of age (odds ratio [OR] 8.3, 95% CI 1.034–67.198, p = 0.046). Of 21 ciprofloxacin-resistant isolates from case-patients who reported site of isolation, 20 were identified from feces and 1 from urine. There were no differences in site of isolation between ciprofloxacin-resistant and ciprofloxacin-susceptible S. enterica serovar Kentucky isolates. Although the total number of isolates associated with human infections was rare, of the 21,426 nontyphoidal Salmonella spp. submitted for susceptibility testing as part of the human component of the CIPARS program since 2003, S. enterica serovar Kentucky had a significantly higher rate of ciprofloxacin resistance than all other nontyphoidal Salmonella isolates and comprised 66% (23/35; p<0.0001) of all ciprofloxacin-resistant isolates identified during that period.

In Canada, ciprofloxacin-resistant S. enterica serovar Kentucky was first identified in 2005, when 22% (2/9) of isolates submitted for drug susceptibility testing were resistant to this drug. A significant increase (OR 10.5, 95% CI 1.115–9.913, p = 0.04) in the number of isolates resistant to ciprofloxacin was observed in 2009 compared with results in 2005. The largest number occurred during 2008–2009, when ciprofloxacin-resistant isolates comprised 57% (17/30) of all S. enterica serovar Kentucky isolates identified (Figure 1). The number of cases reported in Canada is comparable with that reported in Denmark over a similar period (3).

We typed all isolates by using pulsed-field gel electrophoresis as described and restriction enzyme XbaI (5). A dendrogram depicting the results was generated with BioNumerics version 3.5 (Applied Maths, Sint-Martens-Latem, Belgium) and is shown in Figure 2. All ciprofloxacin-resistant isolates clustered with a percentage similarity >80%.
only 1 ciprofloxacin-susceptible isolate was found in this cluster (Figure 2, panel A).

Multilocus sequence typing (MLST) was performed on a subset of 8 isolates on the basis of differences in pulsed-field gel electrophoresis patterns and variations in antimicrobial drug resistance. Data were submitted to the MLST database website (http://mlst.ucc.ie/mlst/dbs/Sen-
tantimicrobial drug resistance. Data were submitted to the MLST database website (http://mlst.ucc.ie/mlst/dbs/Sen-
tamerica) to determine MLST types (6). All isolates tested
were sequence type (ST) 198 (Figure 2, panel B). This se-
quence type and similar antimicrobial drug resistance pat-
terns have been recently reported in France, England and
Wales, Denmark, Belgium, and Africa (3,7,8).

Many ST198 multidrug-resistant isolates observed in
Europe and Africa contained Salmonella genomic island 1
(SGI1) variants, particularly, SGI1-K, SGI1-Q, and SGI1-
P. To determine whether ciprofloxacin-resistant isolates
from Canada harbored similar SGI1 variants, we used PCR
to detect the chromosomal left and right junctions of SGI1
as described (9,10). The right junction was found in 22
of 23 isolates, and the left junction was found in 18 of 23
isolates (Figure 2, panel B). Further studies are needed to
identify specific SGI variants in the isolates.

Analysis of S. enterica serovar Kentucky isolates
determined during 2003–2009 from animal and retail meat
samples as part of CIPARS did not identify any cip-
brofloxacin-resistant isolates (www.phac-aspc.gc.ca/cipars-
picra/index-eng.php). This finding suggests that human
infections in Canada were not acquired from domestically
produced food. Many ciprofloxacin-resistant S. enterica
serovar Kentucky human infections identified in Europe
have been linked to travel to countries in Africa (3). Of 23
case-patients in Canada, we obtained travel history for 11.
Travel history was defined as previous travel out of Canada
within the past 7 days. Four case-patients had traveled to
Morocco (1 also had traveled to Spain and Portugal), 3 had
traveled to Egypt, 1 had traveled to Libya, and 3 had trav-
elled to Africa (no country reported).

Conclusions
Resistance to ciprofloxacin in Salmonella spp. is a
growing concern because it limits the ability to treat in-
vvasive disease. In this study, we described the characteris-
tics of ciprofloxacin-resistant S. enterica serovar Kentucky
isolates in Canada. Similar drug-resistance patterns and
genetic backgrounds of S. enterica serovar Kentucky have
been observed in Europe and linked to travel to countries
in Africa (3). That most isolates had multidrug resistance
phenotypes is of particular concern. Further studies are
required to determine risk factors for acquisition of these
infections in Canada.

This study was supported by the Public Health Agency of
Canada.

Dr. Mulvey is chief of the Antimicrobial Resistance and
Nosocomial Infections Section of the National Microbiology
Laboratory at the Public Health Agency of Canada in Winnipeg,
Manitoba, Canada. His research interests include the molecular
epidemiology of antimicrobial drug–resistant pathogens.

References
1. American Academy of Pediatrics. Salmonella infections. In: Pickering
LK, editor. Red book: 2009 report of the committee on infectious
diseases, 28th ed. Elk Grove Village (IL): American Academy of
Pediatrics; 2009. p. 584.
2. Dutil L, Irwin R, Finley R, Ng LK, Avery B, Boerlin P, et al.
Ceftiofur resistance in Salmonella enterica serovar Heidelberg from
chicken meat and humans, Canada. Emerg Infect Dis. 2010;16:48–
54. http://dx.doi.org/10.3201/eid1601.090729
3. Le Hello S, Hendriksen RS, Doubelt B, Fisher I, Nielsen EM, Which-
ard JM, et al. International spread of an epidemic population of Sal-
monella enterica serotype Kentucky ST198 resistant to ciprofloxacin.
J Infect Dis. 2011;204:675–84. http://dx.doi.org/10.1093/infdis/jir09
4. Clinical and Laboratory Standards Institute. Performance standards
for antimicrobial susceptibility testing: eighteenth informational supple-
ment. CLSI document M100–S18. Wayne (PA): The Institute; 2008.
5. Ribot EM, Fair MA, Gautrom R, Cameron DN, Hunter SB, Swami-
nathan B, et al. Standardization of pulsed-field gel electrophoresis
protocols for the subtyping of Escherichia coli O157:H7, Salmonell-
a, and Shigella for PulseNet. Foodborne Pathog Dis. 2006;3:59–67.
http://dx.doi.org/10.1089/fpd.2006.3.59
6. Harbottle H, White DG, Mcdermott PF, Walker RD, Zhao S.
Comparison of multilocus sequence typing, pulsed-field gel electro-
phoresis, and antimicrobial susceptibility typing for characterization of
Salmonella enterica serotype Newport isolates. J Clin Microbiol.
2006;44:2449–57. http://dx.doi.org/10.1128/JCM.00019-06
7. Collard JM, Place S, Denis O, Rodriguez-Villalobos H, Vrints M,
Vos P, et al. Travel-acquired salmonellosis due to Salmonella
Kentucky resistant to ciprofloxacin, ceftriaxone and co-trimoxazole
and associated with treatment failure. J Antimicrob Chemother.
2007;60:190–2. http://dx.doi.org/10.1093/jac/dkm114
8. Weill F-X, Bertrand S, Guessnier F, Baucheron S, Cloeckaert A,
Grimat PA. Ciprofloxacin-resistant Salmonella Kentucky in trav-
ellers. Emerg Infect Dis. 2006;12:1611–2. http://dx.doi.org/10.3201/
ed1210.060589
9. Boyd D, Peters GA, Cloeckaert A, Boumedine KS, Chassus-
Dancla E, Imberechts H, et al. Complete nucleotide sequence of a 43-
kilobase genomic island associated with the multidrug resis-
tance region of Salmonella enterica serovar Typhimurium DT104
and its identification in phage type DT120 and serovar Aoge-
a. J Bacteriol. 2001;183:5725–32. http://dx.doi.org/10.1128/
JB.183.19.5725-5732.2001
10. Doublet B, Praud K, Bertrand S, Collard J-M, Weill F-X, Cloeckaert
A. Novel insertion sequence- and transposon-mediated genetic rearr-
rangements in genomic island SGI1 of Salmonella enterica serovar
Kentucky. Antimicrob Agents Chemother. 2008;52:3745–54. http:
dx.doi.org/10.1128/AAC.00525-08

Address for correspondence: Michael R. Mulvey, National Microbiology
Laboratory, 1015 Arlington St, Winnipeg, Manitoba, R3E 3R2, Canada;
email: michael.mulvey@phac-aspc.gc.ca

Search past issues of EID at wwwnc.cdc.gov/eid