Multiparameter Quantum Function Algebra
at Roots of 1

M. Costantini 1 and M. Varagnolo 2

Mathematics Subject Classification (1991) : 16W30, 17B37, 81R50

Introduction

In this paper we consider a multiparameter deformation $F^\varphi_q[G]$ of the quantum function algebra associated to a simple algebraic group G. This deformation has been introduced by Reshetikhin ([R], cf. also [D-K-P1]) and is constructed from a skew endomorphism φ of the weight lattice of G. When φ is zero we get the standard quantum group, that is the algebra studied by [H-L1-2-3], [Jo] and, in the compact case, by [L-S2]. In the case ($\varphi = 0$) and when the quantum parameter q is a root of unity, important results are contained in [D-L] and [D-P2]. A general φ has been considered in [L-S2] for G compact and q generic. Here we study the representation theory at roots of one for a non trivial φ.

Our arguments are similar to those used by De Concini and Lyubashe nko. Nevertheless there is a substantial difference: when $\varphi = 0$ the major tool is to understand in detail the $SL(2)$-case which allows to construct representations. Unfortunately there are not multiparameter deformations for $SL(2)$. Moreover the usual right and left actions of the braid group on $F^\varphi_q[G]$ are not so powerful as in the case $\varphi = 0$.

We first (sections 1.,2.,3.) give some properties of the multiparameter quantum function algebra $F^\varphi_e[G]$ at ε, l-th root of 1. To do this we principally use a duality, given in [C-V], between some Borel type subHopf algebras of $F^\varphi_q[G]$. In section 4. we compute the dimension of the symplectic leaves of G for the Poisson structure determined by φ. Our main result (cor. 5.7) is the link between this dimension and the dimension of the representations of $F^\varphi_e[G]$, for "good" l. More precisely, we can see $F^\varphi_e[G]$ as a bundle of algebras on G. Its theory of representations is constant over the T-biinvariant Poisson submanifold of G (T being the Cartan torus of G) and we have

Theorem Let l be a "good" integer (see 5.5) and let p be a point in the the symplectic leaf Θ of G. Then the dimension of any representation of $F^\varphi_e[G]$ lying over p is divisible by $l^{\frac{1}{2}\dim \Theta}$.

Finally, using the results in the first three sections, we describe explicitely (5.8) a class of representations of $F^\varphi_e[G]$.

1 Dipartimento di Matematica, via Belzoni 7, 35123 Padova, Italy
costantini@pdmat1.unipd.it, fax 39 49875896

2 Dipartimento di Matematica, via della Ricerca Scientifica, 00133 Roma, Italy
varagnolo@vax.mat.utovrm.it, fax 39 672594699
Notations. For the comultiplication in a coalgebra we use the notation \(\Delta x = x_{(1)} \otimes x_{(2)} \). If \(H \) is a Hopf algebra, we denote by \(H^{op} \) the same coalgebra with the opposite multiplication and by \(\Delta_{op} \), the same algebra with the opposite comultiplication.

Let \(F \) be a field and let \((H_i, \eta_i, \Delta_i, \varepsilon_i, S_i), \ i = 1, 2, \) be Hopf algebras. Then an \(F \)-linear pairing \(\pi : H_1 \otimes H_2 \rightarrow F \) is called an Hopf algebra pairing \([T]\) if:

\[
\pi(uv \otimes h) = \pi(u \otimes h_{(1)})\pi(v \otimes h_{(2)}), \quad \pi(u \otimes hl) = \pi(u_{(1)} \otimes h)\pi(u_{(2)} \otimes l)
\]

\[
\pi(\eta_1 1 \otimes h) = \varepsilon_2 h, \quad \pi(u \otimes \eta_2 1) = \varepsilon_1 u
\]

\[
\pi(S_1 u \otimes h) = \pi(u \otimes S_2 h),
\]

for \(u, v \in H_1, \ h, l \in H_2 \). Moreover \(\pi \) is said perfect if it is not degenerate.

We denote by \(R \) the ring \(\mathbb{Q}[q, q^{-1}] \) and by \(K \) its quotient field \(\mathbb{Q}(q) \). Take a positive integer \(l \) and let \(p_l(q) \) be the \(l \)th cyclotomic polynomial. We define \(\mathbb{Q}(\varepsilon) = \mathbb{Q}(q)/(p_l(q)) \) (\(\varepsilon \) being a primitive \(l \)th root of unity). Finally we recall the definition of the \(q \)-numbers:

\[
(n)_q = \frac{q^n - 1}{q - 1}, \quad (n)_q! = \prod_{m=1}^{n} (m)_q, \quad \left(\begin{array}{c} n \\ m \end{array} \right)_q = \frac{(n)_q!}{(m)_q!(n-m)_q!},
\]

\[
[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}, \quad [n]_q! = \prod_{m=1}^{n} [m]_q, \quad \left[\begin{array}{c} n \\ m \end{array} \right]_q = \frac{[n]_q!}{[m]_q![n-m]_q!}.
\]

1. The Multiparameter Quantum Group

1.1. Let \(A = (a_{ij}) \) be an indecomposable \(n \times n \) Cartan matrix; that is let \(a_{ij} \) be integers with \(a_{ii} = 2 \) and \(a_{ij} \leq 0 \) for \(i \neq j \) and let \((d_1, \ldots, d_n) \) be a fixed \(n \)-uple of relatively prime positive integers \(d_i \) such that the matrix \(TA \) is symmetric and positive definite. Here \(T \) is the diagonal matrix with entries \(d_i \).

Consider the free abelian group \(P = \sum_{i=1}^{n} \mathbb{Z} \omega_i \) with basis \(\{ \omega_i | i = 1, \ldots, n \} \) and define

\[
\alpha_i = \sum_{j=1}^{n} a_{ij} \omega_j \quad (i = 1, \ldots, n), \quad Q = \sum_{i=1}^{n} \mathbb{Z} \alpha_i, \quad P_+ = \sum_{i=1}^{n} \mathbb{Z}_+ \omega_i;
\]

\(P \) and \(Q \) are called respectively the weight and the root lattice, the elements of \(P_+ \) are the dominant weights.

Define a bilinear \(\mathbb{Z} \)-valued pairing on \(P \times Q \) by the rule \((\omega_i, \alpha_j) = d_i \delta_{ij} \) (\(\delta_{ij} \) is the Kronecker symbol); it can be extended to symmetric pairings

\[
P \times P \rightarrow \mathbb{Z}\left[\frac{1}{\det(A)} \right], \quad Q \times Q \rightarrow \mathbb{Q}
\]

where \(QP = \sum_{i=1}^{n} \mathbb{Q} \omega_i \).

To this setting is associated a complex simple finite dimensional Lie algebra \(g \) and a complex connected simply connected simple algebraic group \(G \).
1.2. Fix an endomorphism \(\varphi \) of the \(\mathbb{Q} \)-vector space \(\mathbb{Q} P \) which satisfies the following conditions:

\[
\begin{align*}
(1.1) \quad (\varphi x, y) &= -(x, \varphi y) \quad \forall x, y \in \mathbb{Q} P, \\
\varphi \alpha_i &= \alpha_i + 2\tau_i, \quad \tau_i \in \mathbb{Q}, i = 1, \ldots, n, \\
\frac{1}{2}(\varphi \lambda, \mu) &\in \mathbb{Z} \quad \forall \lambda, \mu \in P
\end{align*}
\]

We will see later the motivation of the third assumption, now observe that it implies \(\varphi P \subseteq P \).

If \(\tau_i = \sum_{j=1}^{n} x_{ij} \omega_j = \sum_{j=1}^{n} y_{ij} \alpha_j \), let put \(X = (x_{ij}), \ Y = (y_{ij}) \). Then \(TX \) is an antisymmetric matrix and the last two conditions in (1.1) are equivalent to the following:

\[
Y \in M_n(\mathbb{Z}) \cap T^{-1}A_n(\mathbb{Z})A
\]

where \(A_n(\mathbb{Z}) \) denotes the submodule of \(M_n(\mathbb{Z}) \) given by the antisymmetric matrices.

The maps

\[
1 \pm \varphi : \mathbb{Q} P \rightarrow \mathbb{Q} P, \quad \alpha_i \mapsto \alpha_i \pm \delta_i
\]

are \(\mathbb{Q} \)-isomorphisms (cf. [C-V]); moreover we have

\[
((1 + \varphi)\pm^1 \lambda, \mu) = (\lambda, (1 - \varphi)\pm^1 \mu), \quad \forall \lambda, \mu \in P
\]

and so \((1 + \varphi)^\pm (1 - \varphi)^\mp \) are isometries of \(\mathbb{Q} P \). Let us put \(r = (1 + \varphi)^{-1}, T = (1 - \varphi)^{-1} \).

We like to stress that if we want to enlarge the results of this paper to the semisimple case it is enough to ask that \(2AYA^{-1} \in M_n(\mathbb{Z}) \), which guarantees \(\varphi P \subseteq P \).

1.3. The multiparameter simply connected quantum group \(U_q^\varphi(\mathfrak{g}) \) associated to \(\varphi \) ([R],[D-K-P1],cf. [C-V]) is the \(K \)-algebra on generators \(E_i, F_i, K_{\omega_i \sigma_i}^\pm \), \(i = 1, \ldots, n \), with the same relations of the Drinfel'd-Jimbo quantum group \(U_q(\mathfrak{g}) = U_q^\varphi(\mathfrak{g}) \) and with an Hopf algebra structure given by the following comultiplication \(\Delta_\varphi \), counity \(\varepsilon_\varphi \) and antipode \(S_\varphi \) defined on generators \((i = 1, \ldots, n; \lambda \in P) \)

\[
\begin{align*}
\Delta_\varphi E_i &= E_i \otimes K_{\alpha_i + \tau_i} + K_{-\alpha_i + \tau_i} \otimes E_i, \\
\Delta_\varphi F_i &= F_i \otimes K_{\alpha_i + \tau_i} + K_{-\alpha_i + \tau_i} \otimes F_i, \\
\Delta_\varphi K_\lambda &= K_\lambda \otimes K_\lambda, \quad \varepsilon_\varphi E_i = 0, \quad \varepsilon_\varphi F_i = 0, \quad \varepsilon_\varphi K_\lambda = 1, \quad S_\varphi E_i = -K_{\alpha_i} E_i, \quad S_\varphi F_i = -F_i K_{-\alpha_i}, \quad S_\varphi K_\lambda = K_{-\lambda}
\end{align*}
\]

where for \(\lambda = \sum_{i=1}^{n} m_i \omega_i \in P \) we use the notation \(K_\lambda = \prod_{i=1}^{n} K_{\omega_i}^{m_i} \).

Put \(K_i = K_{\alpha_i} , \ q_i = q^{\alpha_i} \); we recall the relations in the algebra \(U_q^\varphi(\mathfrak{g}) \) ([D1],[J]) :

\[
(1.2) \quad K_{\omega_i} K_{\omega_i}^{-1} = 1 = K_{-\omega_i}^{-1} K_{\omega_i}, \quad K_{\omega_i} K_{\omega_j} = K_{\omega_j} K_{\omega_i},
\]

\[
(1.3) \quad K_{\omega_i} E_j K_{\omega_i}^{-1} = q_i^{\delta_{ij}} E_j, \quad K_{\omega_i} F_j K_{\omega_i}^{-1} = q_i^{-\delta_{ij}} F_j,
\]

\[
(1.4) \quad E_i F_j - F_j E_i = \delta_{ij} \frac{K_i - K_i^{-1}}{q_i - q_i^{-1}}.
\]

\[
(1.5) \quad \sum_{m=0}^{\frac{1-a_{ij}}{2}} (-1)^m \left[\begin{array}{c}
1 - a_{ij} \\
1 - a_{ij}
\end{array} \right] \begin{array}{c}
m \end{array} \frac{G_i^{1-a_{ij}-m} G_j^{m} G_i^{m}}{q_i}, \quad (i \neq j),
\]

3
in the two cases $G_i = E_i, F_i$.

1.4. Let $U_q^\phi(b_+)$ and $\overline{U}_q^\phi(b_+)$ be the sub-Hopf algebras of $U_q^\phi(g)$ generated by the $E_i's$ ($i = 1, \ldots, n$) and respectively by the sets $\{K_\lambda | \lambda \in \mathbb{P}\}$, $\{K_\lambda | \lambda \in \mathbb{Q}\}$. Similarly let $U_q^\phi(b_-)$ and $\overline{U}_q^\phi(b_-)$ be the sub-Hopf algebras of $U_q^\phi(g)$ generated by the $F_i's$ ($i = 1, \ldots, n$) and respectively by P and Q in the multiplicatively notation of the $K_\lambda's$.

Take an element u in the algebraic closure of K such that $u^{\det(A + D)} = q$. Then we know (cf. [C-V]) that the following bilinear map is a perfect Hopf algebra pairing:

$$\pi_\phi : U_q^\phi(b_-)_{op} \otimes U_q^\phi(b_+), Q(u), \left\{ \begin{array}{l} \pi_\phi(K_\lambda, K_\mu) = q^{\langle r(\lambda), \mu \rangle} \\ \pi_\phi(E_i, K_\lambda) = \pi_\phi(F_i, K_\lambda) = 0 \\ \pi_\phi(E_i, F_j) = \frac{\delta_{ij}}{q^{r(i) - q^{r(i), r_j}}} q^{\langle r(i), r_j \rangle} \end{array} \right.$$ for $\lambda, \mu \in \mathbb{P}$, $i = 1, \ldots, n$. Consider now the antisymorphism ζ_ϕ of Hopf algebras relative to a \mathbb{Q}-algebra antisymorphism $\zeta : K \rightarrow K$, $q \mapsto q^{-1}$ of the basic ring, namely

$$\zeta_\phi : U_q^\phi(g) \rightarrow U_q^{-\phi}(g), E_i \mapsto F_i, F_i \mapsto E_i, K_\lambda \mapsto K_{-\lambda},$$

which send $U_q^\phi(b_+)$ into $U_q^{-\phi}(b_-)$ and vice versa. Then $\overline{\pi}_\phi = \zeta \circ \pi_\phi \circ (\zeta_\phi \otimes \zeta_\phi)$ is a perfect Hopf algebra pairing:

$$\overline{\pi}_\phi : U_q^\phi(b_+)_{op} \otimes U_q^\phi(b_-), Q(u), \left\{ \begin{array}{l} \overline{\pi}_\phi(K_\lambda, K_\mu) = q^{-\langle r(\lambda), r_\mu \rangle} \\ \overline{\pi}_\phi(E_i, K_\lambda) = \overline{\pi}_\phi(K_\lambda, F_i) = 0 \\ \overline{\pi}_\phi(E_i, F_j) = \frac{\delta_{ij}}{q^{r(i) - q^{r(i), r_j}}} q^{-\langle r(i), r_j \rangle} \end{array} \right.$$ for a monomial $E_\underline{x} = E_{i_1} \cdots E_{i_n}$ in the $E_i's$ and a monomial $F_\underline{y} = F_{j_1} \cdots F_{j_n}$ in the $F_i's$ we define the weight $p(E_\underline{x})$ and $p(F_\underline{y})$ in the following way:

$$(1.6) \quad p(E_r) = p(F_r) = \alpha_r, \quad p(E_\underline{x}) = p(F_\underline{y}) = \sum_{j=1}^n \alpha_{i_j}.$$ If v is a monomial in the $E_i's$ or in the $F_i's$ with $p(v) = \varepsilon$ we will write $s(v)$, $r(v)$, $\tau(v)$, instead of $\frac{1}{2} \varphi(\varepsilon)$, $\frac{1}{2} r(\varepsilon)$, $\frac{1}{2} \tau(\varepsilon)$.

The next lemma is proved in [C-V].

1.5. Lemma For x and y homogeneous polynomials in the $E_i's$ and the $F_i's$ respectively and for $\lambda, \mu \in \mathbb{P}$ it holds:

$$(i) \quad \pi_\phi(yK_\lambda, xK_\mu) = \pi_\phi(y, x)q^{\langle r(\lambda), \mu - s(x) \rangle} - \langle r(y), \mu \rangle = \pi_0(y, x)q^{\langle r(\lambda), \mu - s(x) \rangle},$$

$$(ii) \quad \overline{\pi}_\phi(K_\lambda x, K_\mu y) = \overline{\pi}_\phi(x, y)q^{\langle r(\lambda), s(x) - \mu \rangle} - \langle \tau(y), \mu \rangle = \overline{\pi}_0(x, y)q^{\langle r(\lambda), \mu - s(x) \rangle}.$$
1.6. Consider the following R-subalgebra of $U_q^\varphi(g)$:

$$\Gamma(t) = \{ f \in K[Q] \mid \pi_\varphi(f, K_{(1-\varphi)\lambda}) = \pi_0(f, K_\lambda) \in R \forall \lambda \in P \}.$$

In [D-L] is given a K-basis $\{ \xi_t \mid t = (t_1, \ldots, t_n) \in \mathbb{Z}^n_+ \}$ of $K[Q]$ which is an R-basis of $\Gamma(t)$, namely

$$\xi_t = \prod_{i=1}^n \left(\frac{K_{i_1}}{q^0_{t_1}} \right) \cdots \left(\frac{K_{i_t}}{q^0_{t_t}} \right) = \prod_{s=1}^t \frac{K_{\delta_{is} - s + 1}}{q^s_{t_t} - 1} \left(\frac{K_{\delta_{is}}}{q^0_{t_t}} \right).$$

(for a positive integer s, $[s]$ denote the integer part). Note that

(1.7) $\{ f \in K[(1 + \varphi)P] \mid \pi_\varphi(f \otimes \Gamma(t)) \subseteq R \} = R[(1 + \varphi)P],$

(1.8) $\{ f \in K[(1 - \varphi)P] \mid \pi_\varphi(\Gamma(t) \otimes f) \subseteq R \} = R[(1 - \varphi)P].$

1.7. Let W be the Weyl group associated to the Cartan matrix A, that is let W be the finite subgroup of $GL(P)$ generated by the automorphisms s_i of P given by $s_i(\omega_j) = \omega_j - \delta_{ij}\alpha_i$. If $\Omega = \{ \alpha_1, \ldots, \alpha_n \}$, the root system corresponding to A is $\Phi = W\Omega$ while the set of positive roots is $\Phi_+ = \Phi \cap \sum_{i=1}^n \mathbb{Z}^+ \alpha_i$. Fix a reduced expression for the longest element ω_0 of W, say $\omega_0 = s_{i_1} \cdots s_{i_N}$ and consider the usual total ordering on the set Φ_+ induced by this choice:

$$\beta_1 = \alpha_{i_1}, \beta_2 = s_{i_1} \alpha_{i_2}, \ldots, \beta_N = s_{i_1} \cdots s_{i_{N-1}} \alpha_{i_N}.$$

Introduced, for $k = 1, \ldots, N$, the corresponding root vectors:

$$G_{\beta_k} = T_{i_1} T_{i_2} \cdots T_{i_{k-1}}(G_{i_k}), \ G_i = E_i, F_i,$$

where the T_i's are the algebra automorphisms of $U_q^\varphi(g)$ (and so of $U_q^\varphi(g)$) introduced by Lustig up to change $q \leftrightarrow q^{-1}, K_\lambda \leftrightarrow K_{-\lambda}$ (see[L2]).

For a positive integer s define

$$G_{\beta_k}^{(s)} = \frac{G_{\beta_k}}{[s]q^s_{t_t}!}, \ G_{\beta_k}^{(s)} = T_{i_1} T_{i_2} \cdots T_{i_{k-1}}(G_{i_k}^{(s)}),$$

always in the two cases $G_i = E_i, F_i$.

For $\alpha \in \Phi_+$ let put

$$q_\alpha = q^{\frac{\langle \alpha, \omega \rangle}{2}}, \ \tau_\alpha = \frac{1}{2} \varphi \alpha;$$

$$e_{\tau_\alpha} = (q_{\alpha}^{-1} - q_{\alpha})E_\alpha K_{\tau_\alpha}, \ f_{\tau_\alpha} = (q_{\alpha} - q_{\alpha}^{-1})F_\alpha K_{\tau_\alpha};$$

$$e_{\alpha} = e_{\tau_\alpha}, \ f_{\alpha} = f_{\tau_\alpha}.$$

Note that K_{τ_α} commutes with every monomial of weight α.
1.8. Define $R_q^\varphi[B_+]'$ and $R_q^\varphi[B_-]'''$ as the R-subalgebras of $U_q^\varphi(b_+)^{op}$ and $U_q^\varphi(b_-)^{op}$ respectively generated by the elements e_i^φ, $K_{(1-\varphi)\omega_i}$ $(i = 1, \ldots, n, \alpha \in \Phi_+)$.

Similarly denote by $R_q^\varphi[B_+]''$ and $R_q^\varphi[B_-]''''$ the R-subalgebras of $U_q^\varphi(b_+)^{op}$ and $U_q^\varphi(b_-)^{op}$ respectively generated by the elements f_i^φ, $K_{(1+\varphi)\omega_i}$ $(i = 1, \ldots, n, \alpha \in \Phi_+)$.

Then, by restriction from π_φ, we obtain the following two pairings:

$$\pi'_\varphi : U_q^\varphi(b_-) \otimes_R R_q^\varphi[B_-]' \longrightarrow K \quad \pi''_\varphi : R_q^\varphi[B_+]'' \otimes_R U_q^\varphi(b_+) \longrightarrow K$$

while by restriction from π'_φ we get the other two:

$$\pi'_\varphi : U_q^\varphi(b_+) \otimes_R R_q^\varphi[B_+]' \longrightarrow K \quad \pi''_\varphi : R_q^\varphi[B_-]'' \otimes_R U_q^\varphi(b_-) \longrightarrow K.$$

We get:

$$\begin{cases}
\pi'_\varphi(F_j, e_i^\varphi) = -\delta_{ij} \\
\pi'_\varphi(K_\lambda, K_{(1-\varphi)\mu}) = q^{(\lambda, \mu)}
\end{cases}
\quad
\begin{cases}
\pi''_\varphi(f_j^\varphi, E_j) = \delta_{ij} \\
\pi''_\varphi(K_{(1+\varphi)\lambda}, K_\mu) = q^{(\mu, \lambda)}
\end{cases}
\quad
\begin{cases}
\pi'_\varphi(e_i^\varphi, F_j) = -\delta_{ij} \\
\pi''_\varphi(K_{(1+\varphi)\lambda}, K_\mu) = q^{-(\lambda, \mu)}.
\end{cases}$$

We can choose as bases of $U_q^\varphi(b_+)$ and $U_q^\varphi(b_-)$ the elements (see [L2],[D-L]):

$$\xi_{m,t} = \prod_{j=N}^1 E_{\beta_j}^{(m_j)} \prod_{i=1}^n \left(K_i; 0 \right) K_i^{-[\frac{1}{2}]}$$

$$\eta_{m,t} = \prod_{j=N}^1 F_{\beta_j}^{(m_j)} \prod_{i=1}^n \left(K_i; 0 \right) K_i^{-[\frac{1}{2}]}$$

1.9. Proposition

$$q^{-\sum_{i<j}(n_i, n_j, \beta_i)} \pi'_\varphi(\eta_{m,t}, \prod_{j=N}^1 (e_i^\varphi)^{m_j} K_{(1-\varphi)\lambda}) = q^{\sum_{i<j}(n_i, n_j, \beta_i)} \pi''_\varphi(\prod_{j=N}^1 (f_i^\varphi)^{m_j} K_{(1+\varphi)\lambda}, \xi_{m,t}) =$$

$$\prod_{j=1}^N \frac{\delta_{n_j, m_j} q_{\beta_j}}{N} \prod_{i=1}^N \left(\frac{(\alpha_i, \lambda)}{t_i} \right) q^{-(\alpha_i, \lambda)[\frac{1}{2}]} = q^{-\sum_{i=1}^n (n_i, \beta_i, \lambda)}.$$

Similar formulas hold for π'_φ and π''_φ.

Proof. First of all observe that

$$\Delta_\varphi e_i^\varphi = e_i^\varphi \otimes 1 + K_{(1-\varphi)\alpha_i} \otimes e_i^\varphi, \quad \Delta_\varphi f_i^\varphi = f_i^\varphi \otimes K_{(1+\varphi)\alpha_i} + 1 \otimes f_i^\varphi,$$

and, for $\alpha \in \Phi_+$,

$$\Delta_\varphi e_\alpha^\varphi = e_\alpha^\varphi \otimes 1 + K_{(1-\varphi)\alpha_i} \otimes e_\alpha^\varphi + e, \quad \Delta_\varphi f_\alpha^\varphi = f_\alpha^\varphi \otimes K_{(1+\varphi)\alpha} + 1 \otimes f_\alpha^\varphi + f,$$

where $e (f)$ is a sum of terms $u_i \otimes v_i$, u_i and v_i being linear combination of monomials in the e_i^φ (f_i^φ) and K_λ and $ht(\beta) < ht(\alpha)$. Moreover

$$\pi'_\varphi(F_\alpha, e_\alpha^\varphi) = \pi'_\varphi(F_\alpha, e_\alpha K_{\tau_\alpha}) = \pi''_\varphi(F_\alpha, e_\alpha) \quad \forall \alpha \in \Phi_+.$$
Put now \(F = \eta_{n,0}, \) \(M = \eta_{0,t}, \) \(e^\varphi = \prod_{j=1}^N (e^\varphi_{\beta_j})^{m_j}, \) then

\[
\pi'_\varphi(F, e^\varphi K_{(1-\varphi)\lambda}) = \pi'_\varphi(F \otimes M, \Delta_{\varphi} e^\varphi K_{(1-\varphi)\lambda}) = \pi'_\varphi(F, e^\varphi K_{(1-\varphi)\lambda}) \pi'_\varphi(M, K_{(1-\varphi)\lambda}) = \\
= \pi'_\varphi(\Delta_{\varphi} F, K_{(1-\varphi)\lambda} \otimes e^\varphi) \pi'_\varphi(M, K_{\lambda}) = q^{-(e(F), (1-\varphi)\lambda)} \pi'_\varphi(F, e^\varphi) \pi'_0(M, K_{\lambda}) = \\
= q^{-(e(F), \lambda)} \pi'_\varphi(F, e^\varphi) \pi'_0(M, K_{\lambda}).
\]

Now, if \(e^0 = \prod_{j=1}^N (e^0_{\beta_j})^{m_j}, \) we have

\[
\pi'_\varphi(F, e^\varphi) = q \sum_{i < j} (m_{i\tau_i, m_j\tau_j}) \pi'_\varphi(F, \xi^0 \sum_{m_i \tau_i} \beta_i) = q \sum_{i < j} (m_{i\tau_i, m_j\tau_j}) \pi'_0(F, e^0),
\]

where the powers of \(q \) arises from the commutation of \(K_{\tau_i} \) and the last equality from 1.5. Since the value of \(\pi'_0(F, e^0) \) is calculated in [D-L] (formula (3.2)) we are done.

For the other equality as well as for the case of \(\pi'_\varphi \) we proceed in the same way. \(\square \)

1.10. Define the following \(R \)-submodules of \(U_q^\varphi(g) \):

\[
\Gamma^\varphi(b_+) = \{ x \in \overline{U}_q^\varphi(b_+) \mid \pi'_\varphi(R_q^\varphi[B+]_\text{op} \otimes x) \subset R \} \\
\Gamma^\varphi(b_-) = \{ x \in \overline{U}_q^\varphi(b_-) \mid \pi'_\varphi(x \otimes R_q^\varphi[B-]_{\text{op}}) \subset R \}.
\]

It is clear from prop.1.2. that the \(\xi_{m,t} \)'s and the \(\eta_{m,t} \)'s are \(R \)-bases of \(\Gamma^\varphi(b_+) \) and \(\Gamma^\varphi(b_-) \) respectively and so first of all they are algebras (cf. [L]) and secondly as algebras they are isomorphic to \(\Gamma^0(b_+) \) and \(\Gamma^0(b_-) \) respectively. They are also sub-coalgebras of \(U_q^\varphi(g) \), namely

\[
\begin{align*}
\Delta_{\varphi} F_i^{(p)} &= \sum_{r+s=n} q_i^{-rs} E_i^{(p)} K_{s(\tau_i, -\alpha_i)} \otimes E_i^{(s)} K_{-r\tau_i}, \\
\Delta_{\varphi} F_i^{(p)} &= \sum_{r+s=n} q_i^{-rs} F_i^{(r)} K_{s\tau_i} \otimes F_i^{(s)} K_{r(\alpha_i, +\tau_i)}, \\
\Delta_{\varphi} (K_i; 0) &= \sum_{r+s=t} q_i^{-rs} \left(K_i; 0 \right) \otimes \left(K_i; 0 \right)
\end{align*}
\]

(1.9)

(the first two equalities are proved in [C-V], the last in [D-L]).

1.11. As a consequence of 1.9, we get, by restriction, two pairings

\[
\pi'_\varphi : \Gamma^\varphi(b_-) \otimes_R R_q^\varphi[B_-] \rightarrow R, \quad \pi''_\varphi : \pi'_\varphi : \Gamma^\varphi(b_+) \otimes_R \Gamma^\varphi(b_-) \rightarrow R.
\]

Moreover the same formulas in 1.9. and (1.7), (1.8) give

\[
\{ f \in U_q^\varphi(b_+) \mid \pi'_\varphi(\Gamma^\varphi(b_-)_{\text{op}} \otimes f) \subset R \} = R_q^\varphi[B_+], \\
\{ f \in U_q^\varphi(b_-) \mid \pi''_\varphi(f \otimes \Gamma^\varphi(b_+)) \subset R \} = R_q^\varphi[B_-]^\text{op}.
\]

Clearly analogous results hold for \(\pi'_\varphi, \pi''_\varphi \) and so we have the two perfect pairings

\[
\pi'_\varphi : \Gamma^\varphi(b_+) \otimes_R R_q^\varphi[B_-] \rightarrow R, \quad \pi''_\varphi : \Gamma^\varphi(b_-) \otimes_R \Gamma^\varphi(b_-) \rightarrow R.
\]

7
Most of the definitions and notations introduced up to now are generalisations to the multiparameter case of the ones given in [D-L]. In extending De Concini-Lyubashenko results we shall only write the parts of the proofs which differ from theirs.

1.12. Lemma The algebras $R_q^\varphi[B_-]'$, $R_q^\varphi[B_+]'$, $R_q^\varphi[B_+]''$, $R_q^\varphi[B_-]''$ have an Hopf algebra structure for which π_φ', π_φ'', π_φ''' become perfect Hopf algebra pairings.

Proof. Consider for example $R_q^\varphi[B_-]'$ and let U_+ be the sub-K-algebra of $U_q^\varphi(b_+)^\text{op}$ generated by $\{e_\alpha^\varphi, K_{1-\varphi}\alpha \mid \alpha \in \Phi_+, \lambda \in P\}$. We know that (see [L]) the set $\{e_\alpha^\varphi, K_{1-\varphi}\alpha \mid i = 1, \ldots, n, \lambda \in P\}$ is a generating set for U_+. Moreover since

$$\Delta_\varphi e_i^\varphi = e_i^\varphi \otimes 1 + K_{1-\varphi}\alpha_i \otimes e_i^\varphi, \quad S_\varphi e_i^\varphi = -K_{1-\varphi}\alpha_i e_i^\varphi, \quad \varepsilon_\varphi e_i^\varphi = 0,$$

U_+ is an Hopf algebra. So $\Delta_\varphi e \in U_+ \otimes U_+$ for every $e \in R_q^\varphi[B_-]'$. In order to see that indeed $\Delta_\varphi e \in R_q^\varphi[B_-'] \otimes R_q^\varphi[B_-]$ and to conclude the proof we can proceed as in [D-L](Lemma 3.4). \qed

2. The Multiparameter Quantum Function Algebra

2.1. Consider the full subcategory C_φ in $U_q^\varphi(g) - \text{mod}$ consisting of all finite dimensional modules on which the K_i's act as powers of q. If V and W are objects of C_φ the tensor product $V \otimes W$ and the dual V^* are still in C_φ, namely one can define

$$a(v \otimes w) = \Delta_\varphi(a(v) \otimes w), \quad (af)v = f((Sa)v), \quad a \in U_q^\varphi(g), \quad v \in V, \quad w \in W, \quad f \in V^*.$$

Given $V \in C_\varphi$, for a vector $v \in V$ and a linear form $f \in V^*$ we define the matrix coefficient $c_{f,v}$ as follows:

$$c_{f,v} : U_q^\varphi(g) \longrightarrow K, \quad x \mapsto f(xv).$$

The K-module $F_q^\varphi[G]$ spanned by all the matrix coefficients is equipped with the usual structure of dual Hopf algebra. The comultiplication Δ (which doesn’t depend on φ) is given by:

$$(\Delta c_{f,v})(x \otimes y) = c_{f,v}(xy),$$

while the multiplication m_{φ} is given by:

$$m_{\varphi}(c_{f,v} \otimes c_{g,w}) = c_{f \otimes g, v \otimes w},$$

where $V, W \in C_\varphi$, $v \in V, w \in W$, $f \in V^*, g \in W^*$, $x, y \in U_q^\varphi(g)$.

Moreover, since the algebras $U_q^\varphi(g)$ and $U_q(g)$ are equal, in order to obtain $F_q^\varphi[G]$ (that as coalgebra is equal to $F_q^0[G]$) it is enough to consider the subcategory of C_φ given by the highest weight simple modules $L(\Lambda), \Lambda \in P_+.$

We recall that for these modules we have:

$$L(\Lambda) = \bigoplus_{\lambda \in \Omega(\Lambda) \subseteq P} L(\Lambda)_{\lambda}, \quad L(\Lambda)^* \simeq L(-\omega_0 \Lambda), \quad L(\Lambda)^*_{\mu} = (L(\Lambda)_{\mu})^*.$$
and that
\[F_q(G) = \bigoplus_{\Lambda \in P_+} L(\Lambda) \otimes L(\Lambda)^*. \]

2.2. We want now to link the comultiplication \(\Delta \varphi \) in \(U^\varphi_q(\mathfrak{g}) \) and the multiplication \(m_\varphi \) in \(F^\varphi_q(G) \) with a bivector \(u \in \Lambda^2(\mathfrak{h}) \), \(\mathfrak{h} \) being the Cartan subalgebra of \(\mathfrak{g} \) and to do this we firstly give the Drinfel’d definition of quantized universal enveloping algebra \(U^\varphi_q(G) \).

Let \(\mathbb{Q}[[\hbar]] \) be the ring of formal series in \(\hbar \), then \(U^\varphi_q(\mathfrak{h}) \) is the \(\mathbb{Q}[[\hbar]] \)-algebra generated, as an algebra complete in the \(\hbar \)-adic topology, by the elements \(E_i, F_i, H_i \) \((i = 1, \ldots, n) \) and defining relations :

\[[H_i, H_j] = 0, \quad [H_i, E_j] = a_{ij} E_j, \quad [H_i, F_j] = -a_{ij} F_j \]

added to relations that we can deduce from (1.5) by replacing \(q \) with \(\exp(\frac{\hbar}{2}) \) and \(K_i \) with \(\exp(\frac{\hbar}{2}d_i H_i) \).

Put now
\[u = \sum_{i,j=1}^n d_{ij} \hbar H_i \otimes H_j \in \Lambda^2(\mathfrak{h}), \]

where the matrix \(TU = (d_{ij}u_{ij}) \) is antysimmetric.

Then for all \(x \in U^\varphi_q(\mathfrak{g}) \) using the identity \([R]\)
\[\exp(-u)(\Delta_0 x)\exp(u) = \Delta_\varphi x \]

we can compute the \(\psi_{ij} \)'s, namely
\[U = A^{-1} X A^{-1}. \]

Moreover we get the following useful equality (see \([L-S2]\)):

\[m_\varphi(c_{f_1,v_1} \otimes c_{f_2,v_2}) = q^{\delta((\varphi\mu_1, \mu_2) - (\varphi\lambda_1, \lambda_2))} m_0(c_{f_1,v_1} \otimes c_{f_2,v_2}), \]

for \(\Lambda_i \in P_+ \), \(v_i \in L(\Lambda_i)_{\mu_i} \), \(f_i \in L(\Lambda_i)^*_{\lambda_i} \), \(i = 1, 2 \).

Observe that (2.1) justifies the condition \(\frac{1}{2}(\varphi\lambda, \mu) \in \mathbb{Z} \), \(\forall \lambda, \mu \in \mathbb{P} \), required for \(\varphi \) (see (1.1)).

2.3. Since we are interested in the study at roots of 1 we need an integer form \(R^\varphi_q[G] \) of the multiparameter quantum function algebra. For this purpose define \(\Gamma^\varphi(\mathfrak{g}) \) to be the \(R \)-subHopf algebra of \(U^\varphi_q(\mathfrak{g}) \) generated by \(\Gamma^\varphi(\mathfrak{b}_+) \) and \(\Gamma^\varphi(\mathfrak{b}_-) \) and consider the subcategory \(\mathcal{D}_\varphi \) of \(\Gamma^\varphi(\mathfrak{g}) - \text{mod} \)

given by the free \(R \)-modules of finite rank in which \(K_i, \left(\begin{array}{c} K_i; 0 \\ t \end{array} \right) \) act by diagonal matrices with eingevalues \(q_i^m \), \(\left(\begin{array}{c} m \\ t \end{array} \right) \). Define \(R^\varphi_q[G] \) as the submodule generated by the matrix coefficients constructed with the objects of \(\mathcal{D}_\varphi \). Similarly define \(R^\varphi_q[B_+] \) and \(R^\varphi_q[B_-] \) starting with opportune subcategories of \(\Gamma^\varphi(\mathfrak{b}_+) - \text{mod} \) and \(\Gamma^\varphi(\mathfrak{b}_-) - \text{mod} \) respectively.
In completely analogy with the case \(\varphi = 0 \) and essentially in the same way (cf. prop.4.2 in [D-L]) we can prove that the pairings \(\varphi', \varphi'', \varphi'' \) induce the Hopf algebra isomorphisms

\[
R_q^\sigma[B_+]' \simeq R_q^\sigma[B_-] \simeq R_q^\sigma[B_-]''
\]

and in fact these isomorphisms are the motivations for having introduced the pairings.

2.4. Consider now the maps

\[
\Gamma_q^\sigma(b_-) \otimes_R \Gamma_q^\sigma(b_+) \overset{\iota_-}{\longrightarrow} \Gamma_q^\sigma(g) \otimes_R \Gamma_q^\sigma(g) \overset{m}{\longrightarrow} \Gamma_q^\sigma(g)
\]

where \(\iota_\pm \) are the natural embedding and \(m \) is the moltiplication map. The corresponding dual maps composed with the isomorphisms (2.2) give the injections:

\[
\mu'_\varphi: R_q^\sigma[G] \overset{\Delta}{\longrightarrow} R_q^\sigma[G] \otimes_R R_q^\sigma[G] \overset{r}{\longrightarrow} R_q^\sigma[B_-] \otimes_R R_q^\sigma[B_+] \simeq R_q^\sigma[B_-]' \otimes_R R_q^\sigma[B_+]'
\]

\[
\mu''_\varphi: R_q^\sigma[G] \overset{\Delta}{\longrightarrow} R_q^\sigma[G] \otimes_R R_q^\sigma[G] \overset{r}{\longrightarrow} R_q^\sigma[B_+] \otimes_R R_q^\sigma[B_-] \simeq R_q^\sigma[B_+]'' \otimes_R R_q^\sigma[B_-]''.
\]

Let put, for \(M \) in \(\Gamma(\iota), \lambda \) in \(P \),

\[
M(\lambda) = \pi'_\varphi(M, K_{(1-\varphi)\lambda}) = \pi'_\varphi(M, K_{-(1+\varphi)\lambda}) = \pi''_\varphi(K_{(1+\varphi)\lambda}, M) = \pi''_\varphi(K_{-(1-\varphi)\lambda}, M) = \pi_0(M, K_\lambda).
\]

It is now easy to prove the following (see Lemma 4.3.in [D-L])

2.5. Lemma

(i) The image of \(\mu'_\varphi \) is contained in the \(R \)-subalgebra \(A'_\varphi \) generated by the elements

\[
e_\alpha^\varphi \otimes 1, \ 1 \otimes f_\alpha^\varphi, \ K_{(1-\varphi)\lambda} \otimes K_{-(1+\varphi)\lambda}, \ \lambda \in P, \ \alpha \in \Phi_+.
\]

(ii) The image of \(\mu''_\varphi \) is contained in the \(R \)-subalgebra \(A''_\varphi \) generated by the elements

\[
1 \otimes e_\alpha^\varphi, \ f_\alpha^\varphi \otimes 1, \ K_{-(1+\varphi)\lambda} \otimes K_{(1-\varphi)\lambda}, \ \lambda \in P, \ \alpha \in \Phi_+.
\]

2.6. Define as in [D-L] the matrix coefficients \(\psi_{\pm \lambda}^\alpha \), that is for each \(\lambda \in P_+ \) call \(v_\lambda \) (resp. \(v_{-\lambda} \)) a choosen highest (resp. lowest) weight vector of \(L(\lambda) \) (resp. of \(L(-\lambda) \), the irreducible module of lowest weight \(-\lambda \)). Let \(\phi_{\pm \lambda} \) the unique linear form on \(L(\pm \lambda) \) such that \(\phi_{\pm \lambda} v_{\pm \lambda} = 1 \) and \(\phi_{\pm \lambda} \) vanishes on the unique \(\Gamma(\iota)-\)invariant complement of \(K v_{\pm \lambda} \subset L(\pm \lambda) \).

For \(\rho = \sum_{i=1}^n \omega_i \), put \(\psi_{\pm \rho} = c_{\phi_{\pm \rho}, v_{\pm \rho}} \), and for \(\alpha \in \Phi_+ \) define

\[
\psi_\lambda^{\alpha}(x) = \phi_\lambda(E_\alpha x v_\lambda), \ \psi_\lambda^{-\alpha}(x) = \phi_\lambda(x F_\alpha v_\lambda),
\]

10
\(\psi_{-\lambda}^\varphi(x) = \phi_{-\lambda}(xE_{\alpha}v_{-\lambda}), \ psi_{-\lambda}^{-\varphi}(x) = \phi_{-\lambda}(F_{\alpha}xv_{-\lambda}) \).

2.7. Proposition The maps \(\mu_\varphi', \mu_\varphi'' \) induce algebra isomorphisms

\[
R_q^\varphi[G]\{\psi^{-1}\} \simeq A_\varphi', \quad R_q^\varphi[G]\{\psi^{-1}\} \simeq A_\varphi''.
\]

Proof. First of all we specify that what we want to prove is that the subalgebra generated by \(\text{Im}(\mu_\varphi') \) and \(\mu_\varphi'((\psi^{-1})) \) is indeed \(A_\varphi' \) and similarly for \(A_\varphi'' \). Consider the case of \(\mu_\varphi' \). First of all we have

\[
\mu_\varphi'(\psi_p) = K_{(1-\varphi)p} \otimes K_{-(1+\varphi)p}.
\]

Moreover an easy calculation gives

\[
\mu_\varphi'(\psi_p^{\alpha_i}) = -q^{-\frac{1}{2}(\varphi_{\alpha_i}, \omega_i)} e_i^{\varphi} K_{(1-\varphi)\omega_i} \otimes K_{-(1+\varphi)\omega_i},
\]

from which we get \(e_i^{\varphi} \otimes 1 \in < \text{Im}(\mu_\varphi'), \mu_\varphi'((\psi^{-1})) > \).

To see that \(e_i^{\varphi} \otimes 1 \in < \text{Im}(\mu_\varphi'), \mu_\varphi'((\psi^{-1})) > \) we proceed as in [D-L], by induction on \(ht(\alpha) \), namely

\[
\mu_\varphi'((\psi_p^{\alpha_i})) = (-q^{-(\tau_{\alpha, \lambda})} x(\alpha, \lambda)e_i^{\varphi} + d) K_{(1-\varphi)\lambda} \otimes K_{-(1+\varphi)\lambda}
\]

where \(d \) is a \(R \)-linear combination of monomials of degree \(\alpha \) in \(e_i^{\varphi} \) with \(ht(\beta) < ht(\alpha) \) and

\[
x(\alpha, \lambda) = \frac{q^{(\alpha, \lambda)} - q^{-(\alpha, \lambda)}}{q_\alpha - q_\alpha^{-1}}.
\]

Similar arguments hold for \(1 \otimes f_i^{\varphi} \).

\[\square\]

3. Roots of one

3.1. Consider a primitive \(l \)-th root of unity \(\varepsilon \) with \(l \) a positive odd integer prime to 3 if \(g \) is of type \(G_2 \) and define \(\Gamma_\varepsilon^\varphi(g) = \Gamma^\varphi(g) \otimes_R Q(\varepsilon), \ F_\varepsilon^\varphi[G] = R_q^\varphi[G] \otimes_R Q(\varepsilon), \ \psi : R_q^\varphi[G] \rightarrow F_\varepsilon^\varphi[G], \ \psi(c_{f,v}) = \tau_{f,v}, \) the canonical projection. By abuse of notations, the image in \(\Gamma_\varepsilon^\varphi(g) \) of an element of \(\Gamma^\varphi(g) \) will be indicated with the same symbol.

Remark that for \(q = l = 1 \) the quotient of \(\Gamma^\varphi_1(g) \) by the ideal generated by the \((K_i - 1)'s \) is isomorphic, as Hopf algebra, to the usual enveloping algebra \(U(g) \) of \(g \) over the field \(Q \); while the Hopf algebra \(F_1^\varphi[G] \) is isomorphic to the coordinate ring \(Q[G] \) of \(G \).

3.2. It is important to stress some results of Lusztig [L1] and De Concini-Lyubashenko [D-L] in the case \(\varphi = 0 \) which still hold in our case principally by virtue of formulas (1.9). More precisely :

(i) There exists an epimorphism of Hopf algebras (use (1.9)) \(\phi : \Gamma_\varepsilon^\varphi(g) \rightarrow U(g)\Q(\varepsilon) \) relative to \(R \rightarrow Q(\varepsilon) \) such that \((i = 1, \ldots, n; \ p > 0) : \)

\[
\phi E_i^{(p)} = e_i^{(p)}, \ \phi F_i^{(p)} = f_i^{(p)}, \ \phi \left(\frac{K_i}{p} ; 0 \right) = \left(\frac{h_i}{p} \right) (\text{if } l|p, \ 0 \text{ otherwise}); \ \phi q = \varepsilon.
\]
Here \(e_i, f_i, h_i \) are Chevalley generators for \(\mathfrak{g} \). Generators for the kernel \(J \) of \(\phi \) are the elements:

\[
E_i^{(p)}, F_i^{(p)}, \left(\frac{K_i}{p}, K_i - 1, p_i(q) \right), \text{ where } p_i(q) \text{ is divisible by } p; l \neq p.
\]

Moreover if \(\Gamma_l \) is the free \(R \)-module with basis

\[
\prod_{\beta} F_{\beta}^{(m_\beta)} \xi_l \prod_{\alpha} E_{\alpha}^{(n_\alpha)}, \quad m_\beta, t_i, n_\alpha \equiv 0 \pmod{l},
\]

then \(U(\mathfrak{g})_{\mathbb{Q}(\varepsilon)} \simeq \Gamma_l/p_l(q)\Gamma_l \).

(ii) Denote by \(I \) the ideal of \(\Gamma_{\mathbb{Q}(\varepsilon)}(\mathfrak{g}) \) generated by \(E_i, F_i, K_i - 1 \) \((i = 1, \ldots, n)\). The elements \(\prod_{\beta} F_{\beta}^{(m_\beta)}M \prod_{\alpha} E_{\alpha}^{(m_\alpha)} \), where \(M \) is in the ideal \((K_i - 1|i = 1, \ldots, n) \subset \Gamma_{\mathbb{Q}(\varepsilon)}(t) \) or one of the exponents \(n_\beta, m_\alpha \) is not divisible by \(l \), constitute an \(R \)-basis of \(I \). The epimorphism \(\phi \) induces the Hopf algebras isomorphism \(U(\mathfrak{g})_{\mathbb{Q}(\varepsilon)} \simeq \Gamma_{\mathbb{Q}(\varepsilon)}(\mathfrak{g})/I \) and an \(R \)-basis for \(U(\mathfrak{g})_{\mathbb{Q}(\varepsilon)} \) is given by the elements

\[
\prod_{\beta} F_{\beta}^{(m_\beta)}M \prod_{\alpha} E_{\alpha}^{(m_\alpha)}, \quad n_\beta, m_\alpha \equiv 0 \pmod{l}, \quad M \text{ polynomial in } \left(\frac{K_i}{l} \right).
\]

3.3. An important consequence of 3.2.

is the existence of a central Hopf subalgebra \(F_0 \) of \(F^\varepsilon_\varepsilon[G] \) which is naturally isomorphic to \(\mathbb{Q}(\varepsilon)[G] \). An element of \(F^\varepsilon_\varepsilon[G] \) belongs to \(F_0 \) if and only if it vanishes on \(I \) and we deduce from \([L1]\) that

\[
(3.1) \quad F_0 = \langle \bar{r}_{f,v} | f \in L((\Lambda)_{\mu}^\varepsilon), v \in L((\Lambda)_\mu), \mu, \mu \in P_+ \rangle,
\]

where \(<> \) denotes the \(\mathbb{Q}(\varepsilon) \)-span.

3.4. Lemma

Let \(\bar{r}_{f,v} \) be an element of \(F_0 \) and \(\bar{r}_{g,w} \) an element of \(F^\varepsilon_\varepsilon[G] \). Then

\[
m_\phi(\bar{r}_{f,v} \otimes \bar{r}_{g,w}) = m_0(\bar{r}_{f,v} \otimes \bar{r}_{g,w}).
\]

Proof. It is enough to consider identity (3.1) and to apply formula (2.1). \(\Box \)

3.5. Proposition

\(F^\varepsilon_\varepsilon[G] \) is a projective module over \(F_0 \) of rank \(\dim G \).

Proof. By 3.4. \(F^\varepsilon_\varepsilon[G] \) and \(F^0_\varepsilon[G] \) are the same \(F_0 \)-modules and so the result follows from \([D-L]\). \(\Box \)

3.6. Define \(A^\varepsilon_\varepsilon = A^\varepsilon_\varepsilon^0 \otimes_R \mathbb{Q}(\varepsilon) \). Let \(\mu^\varepsilon : F^\varepsilon_\varepsilon[G] \rightarrow A^\varepsilon_\varepsilon \) be the injection induced by \(\mu^\varepsilon_\varepsilon \); we get the isomorphism (see 2.7.) \(F^\varepsilon_\varepsilon[G][\psi^{-1}_{\varepsilon}] \simeq A^\varepsilon_\varepsilon \). Denote by \(A^\varepsilon_0 \) the subalgebra of \(A^\varepsilon_\varepsilon \) generated by

\[
1 \otimes (e^\varepsilon_\alpha)^I, (f^\varepsilon_\alpha)^I \otimes 1, K_{-(1+\varepsilon)(\mu,\lambda)} \otimes K_{(1-\varepsilon)(\mu,\lambda)} (\alpha \in \Phi_+, \lambda \in \Lambda),
\]

12
then \(\mu^\varphi_0 (F_0) [\psi^{-1}_\varphi] = A^\varphi_0 \) (it is a consequence of 3.2, 3.3.)

3.7. A basis for \(A^\varphi_\psi \) is the following

\[
(F_{\beta N} K_{\tau^\varphi N}) \times \cdots (F_{\beta N} K_{\tau^\varphi N}) \times (K_{-(1+\varphi)^\omega_1} \cdots K_{-(1-\varphi)^\omega_n} \otimes K_{(1+\varphi)^\omega_1} \cdots K_{(1-\varphi)^\omega_n} (E_{\beta N} K_{\tau^\varphi N}) \times \cdots (E_{\beta N} K_{\tau^\varphi N}) \times \cdots)
\]

Moreover \(A^\varphi_\psi \) is a maximal order in its quotient division algebra. We can prove this following the ideas in [D-P1], th. 6.5. (cf also [D-K-P1]).

3.8. Theorem \(F^\varphi_\psi [G] \) is a maximal order in its quotient division algebra.

Proof. In order to repeat the reasoning in th.4 of [D-L] we need elements \(x_1, \ldots, x_r \) in \(F_0 \) such that \((x_1, \ldots, x_r) = (1) \) and \(F^\varphi_\psi [G] [x^{-1}_i] \) is finite over \(F_0 [x^{-1}_i] \). In fact, when \(\varphi \neq 0 \) we cannot use left translations (by elements of \(W \)) of \(\psi^{-1}_\varphi \). For \(g \in G \), let \(\mathcal{M}_g \) be the maximal ideal in \(\mathcal{Q}(G) \) determined by it. Then \((F^\varphi_\psi [G])_{\mathcal{M}_g} \) is a free \((F_0)_{\mathcal{M}_g} \)-module of finite type (by 3.5.) and there exists \(x_g \in F_0 \setminus \mathcal{M}_g \) (that is \(x_g (g) \neq 0 \)) such that \(F^\varphi_\psi [G] [x_g^{-1}] \) is a free \(F_0 [x_g^{-1}] \)-module of finite type. Now \(G = \bigcup_x D(x_g) \), where \(D(x_g) = \{ x \in G \mid x_g (x) \neq 0 \} \), and so there exist \(x_1, \ldots, x_r \in F_0 \) for which \(G = \bigcup_{i=1}^r D(x_i) \), that is the assert.

4. Poisson structure of \(G \)

4.1. To the quantization \(\Gamma^\varphi (g) \) of \(U(g)_{\mathcal{Q}(\psi)} \) is associated, in the sense of [D2], a Manin triple \((\mathfrak{d}, g, g_\varphi)\) and a Poisson Hopf algebra structure on \(F_0 = \mathcal{Q}(\psi) G \).

The Manin triple is composed of \(g_\varphi \), identified with the diagonal subalgebra of \(g = g \times g \), and of \(g_\psi = g_\varphi \oplus u \), where \(g_\varphi = \{ (x + \varphi(x), x + \varphi (x)) \mid x \in h \} \), \(u = \{ n_+ \times n_- \} \), \(n_+ \) is the nilpotent radical of a fixed Borel subalgebra \(\mathfrak{b}_\pm \) of \(g \). Here we denote, by abuse of notation, again by \(\varphi \) the endomorphism of \(h \) obtained by means of the identification \(h \leftrightarrow h^* \) with the Killing form. The bilinear form on \(g_\varphi \), for which \(g_\varphi \) and \(g_\psi \) become isotropic Lie subalgebras, is defined by

\[
\langle x, y \rangle \ast \langle x', y' \rangle = \langle x, x' \rangle - \langle y, y' \rangle,
\]

where \(\langle \cdot, \cdot \rangle \) is the Killing form on \(g \).

In order to define a bracket \(\{ \cdot, \cdot \}_\varphi \) on \(F_0 \) we can proceed as in [D-L], namely lemma 8.1. still hold after substitution \(\Delta \leftrightarrow \Delta_\varphi \). We want here to give also a direct construction starting from the bracket \(\{ \cdot, \cdot \}_0 \) corresponding to \(\varphi = 0 \).

4.2. Proposition Let \(\Lambda_i \in P_+ \), \(v_i \in L(l(\Lambda_i))_{\mu_i} \), \(f_i \in L(l(\Lambda_i))_{-l(\Lambda_i)}, c_i = c_{f_i, v_i}, i = 1, 2 \) and define \(\chi(1, 2) = \frac{1}{2} ((\varphi \mu_1, \mu_2) - (\varphi \lambda_1, \lambda_2)) = -\chi(2, 1). \) Then :

\[
\{ \tau_1, \tau_2 \}_\varphi = \{ \tau_1, \tau_2 \}_0 + 2\chi(1, 2)m_\varphi (\tau_1 \otimes \tau_2).
\]

Proof. Let \([\cdot, \cdot]_\varphi \) be the commutator in the algebra \(R^\varphi_q [G] \). The using (2.1) we obtain :

\[
[c_1, c_2]_\varphi - [c_1, c_2]_0 = (q^2\chi(1, 2) - 1)m_0 (c_1 \otimes c_2) - (q^2\chi(2, 1) - 1)m_0 (c_2 \otimes c_1).
\]
Now we recall that, by construction (see [D-L]), if \([c_1,c_2]_{\varphi} = p_t(q)c\), we put

\[
\{\overline{c}_1, \overline{c}_2\}_{\varphi} = \left(\frac{p_t(q)}{l(q^l - 1)}\right)_{q=\epsilon} t,
\]
and that (by 3.4.) in \(F_0\), \(m_{\varphi}\) coincides with \(m_0\). Then, by projecting in \(F_\epsilon[G]\) and using the commutativity in \(F_0\), we get :

\[
\{\overline{c}_1, \overline{c}_2\}_{\varphi} = \{\overline{c}_1, \overline{c}_2\}_0 + (h_{12} - h_{21})m_{\varphi} (\overline{c}_1 \otimes \overline{c}_2),
\]
where

\[
h_{ij} = \left(\frac{d^2\chi(i,j)}{p_t(q)} - 1\right)_{q=\epsilon} = \left(\frac{d^2\chi(i,j)}{l(q^l - 1)}\right)_{q=\epsilon} = \left(\frac{q^{d^2\chi(i,j)} - 1}{l(q^l - 1)}\right)_{q=\epsilon}.
\]

Define

\[
p(x) = \frac{x^l\chi(1,2) - x^{-l}\chi(1,2)}{l(x-1)} = \frac{x^{-l}\chi(1,2)}{l}\left(\sum_{k=0}^{2l\chi(1,2)-1} x^k\right) \in \mathbb{Q}[x, x^{-1}],
\]
then \(h_{12} - h_{21} = p(1) = 2\chi(1,2)\) and we are done.

4.3. Corollary

(i) Any function \(\{\overline{c}_1, \overline{c}_2\}_{\varphi}, \overline{c}_i \in F_0\), vanishes on the torus \(T = \exp h \subseteq G\).

(ii) Right and left shift by an element of the torus are automorphisms of the Poisson algebra \(\mathbb{Q}(\epsilon)[G]\).

Proof. (i) In [D-L] the assert is proved for \(\{\cdot,\cdot\}_0\) then, by 4.2., we only need to prove that \(2\chi(1,2)m_{\varphi}(\overline{c}_1 \otimes \overline{c}_2)\) vanishes in the elements of torus. An easy calculation shows (here we use the identification \(h_i \leftrightarrow \left(K_i ; 0\right)\)) in agreement with 3.1.(i) that, for \(t \in T\), \((\overline{c}_1 \otimes \overline{c}_2)(\Delta_{\varphi} t) \neq 0\) if \(\lambda_i = \mu_i\), that is if \(\chi(1,2) = 0\).

(ii) The right shift by the element \(t \in T\) is defined as the element \(\overline{c} = \overline{c}_{11} \cdot \overline{c}_{12}(t)\) (similarly for the left shift) and then the claim follows from (i) and from formal properties of the bracket in a Poisson Hopf algebra.

4.4. Let \(T, C_{\varphi}, U_+, B_\pm\), be the closed connected subgroups of \(G\) associated to \(\mathfrak{h}, \mathfrak{c}_{\varphi}, n_\pm, b_\pm\) and let \(D\) be \(G \times G\). Put :

\[G_{\varphi} = C_{\varphi}(U_+ \times U_-), H = \{(x,x) | x \in T\}, \mathfrak{h} = \{(x,x) | x \in \mathfrak{h}\}\].

We have the Bruhat decomposition

\[D = \bigcup_{w \in W \times W} HG_{\varphi} wG_{\varphi}.
\]

The symplectic leaves, that is the maximal connected symplectic subvarieties of \(G\), are the connected components, all isomorphic, of \(X_{\varphi}^w = p^{-1}(G_{\varphi}\setminus \Delta_{\varphi} wH_{\varphi})\) for \(w\) running in \(W \times W\), where \(p : G \rightarrow D = G_{\varphi}\setminus D\) is the diagonal immersion followed by the canonical projection (see [L-W]). Moreover \(X_{\varphi}^w\) are the minimal \(T\)-biinvariant Poisson submanifolds of \(G\). Observe that \(\epsilon_{\varphi} + \mathfrak{h} = \epsilon_0 + \mathfrak{h}\) and so \(C_{\varphi}H = C_0H\), that is \(X_{\varphi}^w = X_{\varphi}^w = X_w = (B_+ w B_+ \cap \mathbb{B}_- w_2 \mathbb{B}_-)\) for all \(w = (w_1, w_2) \in W \times W\).
4.5. Proposition Let \(w = (w_1, w_2) \in W \times W \). The dimension of a symplectic leaf in \(X_{w_1, w_2} \) is equal to

\[
\dim \mathcal{T} = \dim \mathcal{T}_{w_1, w_2} + l(w_1) + l(w_2),
\]

where \(l(\cdot) \) is the length function on \(W \).

Proof. Since \(p \) is an unramified finite covering of its image, it is enough to calculate the dimension of the \(G_\varphi \)-orbits in \(G_\varphi \backslash D \). Moreover \(G_\varphi \subseteq B_+ \times B_- = B \), then we can consider the map \(\pi : G_\varphi \backslash D \to B \backslash D \), equivariant for the right action of \(G_\varphi \) and so preserving \(G_\varphi \)-orbits. In \(B \backslash D \) the \(G_\varphi \)-orbits coincide with the \(B \)-orbits which are equals to \(G \). Note that \(\pi \) is a principal \(T/T \)-bundle, where \(\Gamma = \{ t \in T | t^2 = 1 \} \). Let \(\Theta \) be a \(G_\varphi \)-orbit in \(D \) such that \(\pi(\Theta) = \Theta(w_1, w_2) \), then \(\pi : \Theta \to \Theta(w_1, w_2) \) is a principal \(T_{w_1, w_2} / T \)-bundle where \(T_{w_1, w_2} = \{ t \in T | t \Theta = \Theta \} \). From it follows \(\dim \Theta = \dim (T_{w_1, w_2} / \Gamma) + \dim \Theta(w_1, w_2) \), that is

\[
\dim \Theta = \dim T_{w_1, w_2} + l(w_1) + l(w_2).
\]

In order to calculate \(\dim T_{w_1, w_2} \) take \(n_1, n_2 \) representatives of \(w_1, w_2 \) in the normalizer of \(T \). We get \(t \Theta = \Theta \) if and only if there exist \((t_1, t_2), (s_1, s_2) \in C_\varphi \) and \((s_1, s_2)(t, t) = (n_1, n_2)(t_1, t_2)(n_1, n_2)^{-1} \). Let \(u, v \) be elements in \(h \) such that

\[
(s_1, s_2) = (\exp(-u + \varphi u), \exp(u + \varphi u)), \quad (t_1, t_2) = (\exp(-v + \varphi v), \exp(v + \varphi v)).
\]

We are so reduced to find \(x \in h \) for which

\[
\begin{cases}
- u + \varphi u + x = w_1(- v + \varphi v) \\
u + \varphi u + x = w_2(v + \varphi v)
\end{cases}
\]

that is

\[
\begin{cases}2x + 2\varphi u = (-w_1(1 - \varphi) + w_2(1 + \varphi))v \\
u = (w_1(1 - \varphi) + w_2(1 + \varphi))v
\end{cases}
\]

We find \(2x = ((1 + \varphi)w_1(1 - \varphi) - (1 - \varphi)w_2(1 + \varphi))v \) and so

\[
\dim T_{w_1, w_2} = rk((1 + \varphi)w_1(1 - \varphi) - (1 - \varphi)w_2(1 + \varphi)).
\]

\(\square \)

5. Representations

5.1. In all this paragraph we shall substitute the basic field \(\mathbb{Q}(\varepsilon) \) with \(\mathbb{C} \). The fact that \(\mathcal{F}_\varepsilon[G] \) is a projective module of rank \(l^{\dim(G)} \) over \(F_0 \) allows us to define a bundle of algebras on \(G \) with fibers \(\mathcal{F}_\varepsilon[G](g) = \mathcal{F}_\varepsilon[G]/\mathcal{M}_g\mathcal{F}_\varepsilon[G] \) (for more details on this construction confront section 9 in [D-L]). From the results of previous chapter also in our case the algebras \(\mathcal{F}_\varepsilon[G](g) \) and \(\mathcal{F}_\varepsilon[G](h) \) are isomorphic for \(g, h \) in the same \(X_{w_1, w_2} \) that is, using the central character map \(\text{Spec}(\mathcal{F}_\varepsilon[G]) \to \text{Spec}(F_0) = G \), the representation theory of \(\mathcal{F}_\varepsilon[G] \) is constant on the sets \(X_{w_1, w_2} \).
5.2. Let \(w_1, w_2 \) be two elements in \(W \). Choose reduced expressions for them, namely \(w_1 = s_{i_1} \cdots s_{i_t} \), \(w_2 = s_{j_1} \cdots s_{j_m} \), and consider the corresponding ordered sets of positive roots \(\{ \beta_1, \ldots, \beta_t \} \) and \(\{ \gamma_1, \ldots, \gamma_m \} \) with \(\beta_i = \alpha_{i_i}, \beta_r = s_{i_{r-1}} \cdots s_{i_{r-s}} \alpha_{i_r} \) for \(r > 1 \) and similarly for the \(\gamma_i \)'s. Define \(A_{\phi}(w_1, w_2) \) as the subalgebra in \(A_\phi \) generated by the elements

\[
1 \otimes e_{\beta_i}, f_{\beta_i} \otimes 1, K_{-(1+\varphi)\lambda} \otimes K_{(1-\varphi)\lambda}, \quad (i = 1, \ldots, t), \quad (j = 1, \ldots, m, \lambda \in \mathbb{P}),
\]

and put \(A_{\phi}(w_1, w_2) = A_{\phi}(w_1, w_2) \cap A_\phi \). Note that these definitions do not depend on the reduced expressions (see [D-K-P2]). The algebra \(A_{\phi}(w_1, w_2) \) is a free module of rank \(l^l \) over its central subalgebra \(A_{\phi}(w_1, w_2) \) and so it is finite over its centre and has finite degree. We will call \(d_\varphi(w_1, w_2) \) the degree of \(A_{\phi}(w_1, w_2) \).

5.3. There is an algebra isomorphism \(A_{0,0}(w_1, w_2) \simeq A_{0,\varphi}(w_1, w_2) \) induced by the isomorphism between the algebras \(A_0 \) and \(A_0 \) given by

\[
1 \otimes e_{\alpha_i} \mapsto 1 \otimes (e_{\alpha_i'})^l, \quad f_{\alpha_i} \otimes 1 \mapsto (f_{\alpha_i'})^l \otimes 1, \quad K_{-(1+\varphi)\lambda} \otimes K_{(1-\varphi)\lambda} \mapsto K_{-(1+\varphi)\lambda} \otimes K_{(1-\varphi)\lambda}.
\]

Therefore \(\text{Spec}(A_{\phi}(w_1, w_2)) \) is birationally isomorphic to \(X_{w_1, w_2} \cap \text{Spec}(A_\phi) \) (cf. prop. 10.4 in [D-L]). From this, and reasoning as in [D-L], it follows that the dimension of any representation of \(F_\varphi[G] \) lying over a point in \(X_{w_1, w_2} \) has dimension divisible by \(d_\varphi(w_1, w_2) \).

5.4. In order to calculate the degree \(d_\varphi(w_1, w_2) \) we introduce another set of generators for \(A_{\phi}(w_1, w_2) \). Call \(\Xi \) the antimorphism of algebras \(\Xi : U_q^\varphi(\mathfrak{g}) \rightarrow U_q^\varphi(\mathfrak{g}) \) which is the identity on \(E_i, F_i, q \) and send \(K_i \) into \(K_i^{-1} \); we get \(T_i^{-1} = \Xi(T_i) \Xi \) (see [L2]). For \(\alpha \in \{ \gamma_1, \ldots, \gamma_m \} \), let \(\Xi(f_\alpha)K_{\gamma_i} = f_{\alpha'} \). Observe that, for \(r = 1, \ldots, m \), \((F_{\gamma_i}) = T_i^{-1} \cdots T_{i-1}^{-1}(F_{\gamma_i}) \). We want now to show that the sets \(\{ f_{\beta_i} \mid i = 1, \ldots, m \} \) and \(\{ f_{\beta_i'} \mid i = 1, \ldots, m \} \) generate the same subalgebras of \(R_\varphi[B_+]^{m'} \).

Let \(H_1, H_2 \) be the subalgebras respectively generated by these sets. From \(\Xi(U_q^\varphi(n_-)) = U_q^\varphi(n_-) \) and \(T_i^{\frac{1}{2}}(R_\varphi[B_+]^{m'}) \subseteq R_\varphi[B_+]^{m'} \) for every \(i \), follow that \(f_{\gamma_i} \) belongs to the algebra generated by \(\{ f_{\gamma_i} \mid i = 1, \ldots, m \} \) and

\[
f_{\alpha'} = f_\alpha' K_{\gamma_i} = \sum c_{\phi}(f_{\gamma_i})^m \cdots (f_{\gamma_i})^n K_{\gamma_i} = \sum c_{\phi}(f_{\gamma_i})^m \cdots (f_{\gamma_i})^n \in H_1,
\]

where \(c_{\phi} = q^{r_1}c_{\phi} \) for an integer \(r_1 \). In a similar way we can show that \(f_{\alpha'} \in H_2 \).

Put now, in \(A_{\phi}(w_1, w_2) \),

\[
x_i' = 1 \otimes e_{\beta_i}, \quad (i = 1, \ldots, t), \quad y_j' = f_{\beta_i} \otimes 1, \quad (j = 1, \ldots, m), \quad z_r' = K_{-(1+\varphi)\omega_r} \otimes K_{(1-\varphi)\omega_r}, \quad (r = 1, \ldots, n).
\]

As in the case \(\varphi = 0 \), \(A_{\phi}(w_1, w_2) \) is an iterated twisted polynomial algebra and the corresponding quasipolynomial algebra is generated by elements \(x_i, y_j, z_r \) with relations which are easily found (see [L-S1] and [D-K-P2]). Namely:

\[
x_i x_j = \varepsilon(\beta_i, (1+\varphi)\beta_j) x_j x_i, \quad (1 \leq j < i \leq t), \quad y_i y_j = \varepsilon(-\gamma_i, (1+\varphi)\gamma_j) y_j y_i, \quad (1 \leq j < i \leq m),
\]
\[z_i z_j = z_j z_i \quad (1 \leq i, j \leq n), \quad x_i y_j = y_j x_i \quad (1 \leq i \leq t, i \leq j \leq m), \]
\[z_i x_j = \varepsilon^{((1-\varphi)\omega_i, \beta_j)} x_j z_i \quad (1 \leq i \leq n, i \leq j \leq t), \quad z_i y_j = \varepsilon^{((1+\varphi)\omega_i, \gamma_j)} y_j z_i \quad (1 \leq i \leq n, i \leq j \leq m). \]

5.5. Let \(\mathbb{Z}_\varphi \) be the ring \(\mathbb{Z}[(2d_1 \cdots d_n \det(1-\varphi))^{-1}] \) and denote by \(\vartheta \) the isometry \((1+\varphi)(1-\varphi)^{-1}\).
For each pair \((w_1, w_2)\) in \(W \times W\), consider the map \(e_\varphi(w_1, w_2) = 1 - w_1^{-1} \vartheta^{-1} w_2 \vartheta : P \otimes \mathbb{Z}_\varphi \leftarrow Q \otimes \mathbb{Z}_\varphi\).
Define \(l(\varphi) \) to be the least positive integer for which, for every \((w_1, w_2)\), the image of \(P \otimes \mathbb{Z}_\varphi[l(\varphi)^{-1}] \) is a split summand of \(Q \otimes \mathbb{Z}_\varphi[l(\varphi)^{-1}]\) (in special cases, namely when \(\vartheta \) fix the set of roots, one can explicitly take \(l(\varphi) = a_1 \cdots a_n \), where \(\sum_{i=1}^n a_i \alpha_i \) is the longest root, as in [D-K-P2], but in general we need a case by case analysis).

An integer \(l \) is said to be a \(\varphi \)-good integer if, besides being prime to the \(2d_i \), it is prime to \(\det(1-\varphi) \) and \(l(\varphi) \).

5.6. Theorem Let \(l \) be a \(\varphi \)-good integer, \(l > 1 \). Then,
\[
\begin{align*}
d_\varphi(w_1, w_2) &= l^{\frac{1}{2}l(\varphi)} + l((w_1) + l((w_2) + \sum_{i=1}^n a_i \alpha_i) - (1+\varphi)w_2(1-\varphi)).
\end{align*}
\]

Proof. We work over \(S = \mathbb{Z}_\varphi[l(\varphi)^{-1}] \). Let \(w_1, w_2 \) be in \(W \). Consider free \(S \)- modules \(V_{w_1}, V_{w_2} \) with basis \(u_1, \ldots, u_t \) and \(v_1, \ldots, v_m \) respectively. Define on \(V_{w_1}, V_{w_2} \) skew symmetric bilinear forms by
\[
\langle u_i | u_j \rangle = (\beta_i, (1+\varphi)\beta_j) \quad (1 \leq j < i \leq t), \quad \langle v_i | v_j \rangle = (\gamma_i, (1+\varphi)\gamma_j) \quad (1 \leq j < i \leq m),
\]
and denote by \(C^\varphi_{w_1}, C^\varphi_{w_2} \) their matrices in the bases of the \(u_i \)’s and \(v_j \)’s respectively. Finally, let \(D^\varphi_{w_1}, D^\varphi_{w_2} \) be the \(t \times n, m \times n \) matrices whose entries are \((\beta_i, (1-\varphi)\omega_j)\) and \((\gamma_i, (1+\varphi)\omega_j)\) respectively. Put
\[
\Delta^\varphi_{w_1, w_2} = \begin{pmatrix} C^\varphi_{w_1} & 0 & D^\varphi_{w_1} \\ 0 & -C^\varphi_{w_2} & D^\varphi_{w_2} \\ -tD^\varphi_{w_1} & tD^\varphi_{w_2} & 0 \end{pmatrix}, \quad \Delta = \begin{pmatrix} C^0_{w_1} & 0 & D^0_{w_1} \\ 0 & -C^0_{w_2} & D^0_{w_2} \\ -tD^0_{w_1} & tD^0_{w_2} & 0 \end{pmatrix}.
\]

We want first of all prove that \(\Delta^\varphi_{w_1, w_2} \) is equivalent to \(\Delta \), that is we want to exhibit an \(n \times t \) matrix \(M_1 \) and an \(m \times n \) matrix \(M_2 \) for which :
\[
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & M_2 \\ 0 & 0 & 1 \end{pmatrix} \Delta^\varphi_{w_1, w_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ M_1 & 0 & 1 \end{pmatrix} = \Delta,
\]
or equivalently for which
\[
C^\varphi_{w_1} + D^\varphi_{w_1} M_1 = C^0_{w_1}, \quad C^\varphi_{w_2} + M_2(tD^\varphi_{w_2}) = C^0_{w_2}, \quad D^\varphi_{w_2} M_1 = M_2(tD^\varphi_{w_1}).
\]
First of all we need some notations. If \(f : V_1 \rightarrow V_2 \) is a linear map and \(B_1 \) (resp. \(B_2 \)) is a basis of \(V_1 \) (resp. \(V_2 \)) we will indicate by \(M(f, B_1, B_2) \) the matrix of \(f \) in these given bases. Let now
\(\alpha_i = \frac{\alpha_i}{n} \) and denote by \(\nu : SP \to (SP)^* \) the map given by \(\nu(\alpha_i) = \omega_i^* \) or, equivalently, the map which send \(\alpha_i \) to the linear form \((\alpha_i, \cdot) \). We define the following maps:

\[
\begin{align*}
&c_i^1 : V_{w_1} \to V_{w_1}^*, \ u_j \mapsto \sum_{i>j} (\beta_j, (1+\varphi)\beta_i)u_i^* - \sum_{i<j} (\beta_i, (1+\varphi)\beta_j)u_i^*; \\
&c_i^2 : V_{w_2} \to V_{w_2}^*, \ v_j \mapsto \sum_{i>j} (\gamma_j, (1+\varphi)\gamma_i)v_i^* - \sum_{i<j} (\gamma_i, (1+\varphi)\gamma_j)v_i^*; \\
&d_i^1 : Z'P \to V_{w_1}^*, \ \omega_i \mapsto \sum_j ((1+\varphi)\beta_j, \omega_i)u_j^*; \ d_i^2 : Z'P \to V_{w_2}^*, \ \omega_i \mapsto \sum_j ((1-\varphi)\gamma_j, \omega_i)v_j^*; \\
&h_1 : V_{w_1} \to SP, \ u_j \mapsto \beta_j; \ h_2 : V_{w_2} \to SP, \ v_j \mapsto \gamma_j.
\end{align*}
\]

Then we have

\[
\begin{align*}
d_i^0 &= \nu h_1, \ d_i^0 = \nu h_2, \ d_i^1 = d_i^0(1-\varphi), \ d_i^2 = d_i^0(1+\varphi),
\end{align*}
\]

and we can easy verify that

\[
c_i^1 - c_i^0 = -d_i^0\varphi h_1, \ c_i^2 - c_i^0 = -d_i^0\varphi h_2.
\]

Moreover, if \(Z = M(\varphi, \{\omega_i\}, \{\omega_i\}) \), we get

\[
\begin{align*}
&C_{w_1}^0 = M(c_i^1, \{u_i\}, \{u_i^*\}), \ C_{w_2}^0 = M(c_i^2, \{v_i\}, \{v_i^*\}); \\
&D_{w_1}^0 = M(x_i^*, \{\omega_i\}, \{u_i^*\}) = D_{w_1}^0(1 - Z), \ D_{w_2}^0 = M(x_i^*, \{\omega_i\}, \{v_i^*\}) = D_{w_2}^0(1 + Z).
\end{align*}
\]

Let \(R = M(id, \{\alpha_i\}, \{\omega_i\}) \) and define

\[
M_1 = (1-Z)^{-1}ZR(1+Z)^{-1}, \ M_2 = D_{w_2}^0ZR(1+Z)^{-1},
\]

now it is a straightforward computation to verify that these two matrices satisfy the required properties.

Let now \(d \) be the the map corresponding to \(\Delta \) with respect to the bases \(\{u_i, v_j, \omega_r\} \) and \(\{u_i^*, v_j^*, \alpha_r\} \). We want to show that the image of \(d \) is a split direct summand, and to calculate the rank of \(\Delta \). The result will then follow from the proposition on page 34 in [D-P1], due to restrictions imposed to \(l \).

From the results in [D-K-P2] we now that the map corresponding to \((C_{w_1}^0, D_{w_1}^\varphi) : V_{w_1} \oplus SP \to V_{w_1} \) is surjective with kernel

\[
\{(u_{(1-\varphi)\lambda}, (1+(1-\varphi)^{-1}w_{1(1-\varphi)})\lambda)| \lambda \in SP\}.
\]

Similarly the map corresponding to \((-C_{w_2}^0, D_{w_2}^\varphi) : V_{w_2} \oplus SP \to V_{w_2} \) is surjective with kernel

\[
\{(-v_{(1+\varphi)\lambda}, (1+(1+\varphi)^{-1}w_{2(1+\varphi)})\lambda)| \lambda \in SP\}.
\]

Here, for \(\lambda = \omega_r \) \((r = 1, \ldots, n)\), we have defined

\[
I_r^1 = \{k \in \{1, \ldots, t\}| i_k = r\}, \ I_r^2 = \{k \in \{1, \ldots, m\}| j_k = r\}; \ u_\lambda = \sum_{k \in I_r^1} u_k, \ v_\lambda = \sum_{k \in I_r^2} v_k
\]

\[18\]
and the extension of the definition of \(u_\lambda, v_\lambda \) to all \(\lambda \in P \) is the only compatible with linearity. We start the study of \(d \). We consider the first row \((C_{w_1}^0, 0, D_{w_1}^c) : V_{w_1} \oplus V_{w_2} \rightarrow V_{w_1} \); it is surjective with kernel
\[
H = \{(u_{(1-\varphi)\lambda}, v, (1+(1-\varphi)^{-1}w_1(1-\varphi))\lambda) | \lambda \in SP \ v \in V_{w_2}\}.
\]
Our aim is now to study the image of the restriction of \(d \) on \(H \). We proceed as follows. We define the composite map \(f : V_{w_2} \oplus SP \rightarrow H \rightarrow V_{w_2}^* \oplus SQ \),
\[
(v, \lambda) \mapsto (u_{(1-\varphi)\lambda}, v, (1+(1-\varphi)^{-1}w_1(1-\varphi))\lambda) \mapsto d(u_{(1-\varphi)\lambda}, v, (1+(1-\varphi)^{-1}w_1(1-\varphi))\lambda).
\]
With respect to the bases \(\{v_i, \omega_j\} \), \(\{v_i^*, \alpha_j\} \), \(f \) is represented by the matrix
\[
\begin{pmatrix}
-C_{w_2}^0 & D_{w_2}^c (1+(1+\Phi)^{-1}W_1(1-\Phi)) \\
-t^tD_{w_2}^c & -(1+\Phi)(1-W_1)(1-\Phi)
\end{pmatrix},
\]
where \(W_1, \Phi \) are the matrices representing \(w_1, \varphi \) respectively with respect to the basis \(\{\omega_j\} \). To study this matrix is equivalent to study its opposite transpose (since we are essentially interested in their elementary divisors). Let \(M = (1+(1-\Phi)^{-1}W_1(1-\Phi)), N = (1+\Phi)(1-W_1)(1-\Phi) \). We consider therefore the matrix
\[
\begin{pmatrix}
-C_{w_2}^0 & D_{w_2}^c \\
-t^tM^tD_{w_2}^c & t^tN
\end{pmatrix}.
\]
Let \(g : V_{w_2} \oplus SP \rightarrow V_{w_2}^* \oplus SQ \) be the map represented by this matrix with respect to the bases \(\{v_i, \omega_j\} \), \(\{v_i^*, \alpha_j\} \). Then \((-C_{w_2}^0, D_{w_2}^c) : V_{w_2} \oplus SP \rightarrow V_{w_2}^* \) is surjective with kernel
\[
L = \{(u_{(1+\varphi)\lambda}, (1+(1+\varphi)^{-1}w_2(1+\varphi))\lambda) | \lambda \in SP\}
\]
and we are left to study the following composite \(e : SP \rightarrow L \rightarrow SQ \),
\[
\lambda \mapsto (-u_{(1+\varphi)\lambda}, (1+(1+\varphi)^{-1}w_2(1+\varphi))\lambda) \mapsto g((-u_{(1+\varphi)\lambda}, (1+(1+\varphi)^{-1}w_2(1+\varphi))\lambda).
\]
With respect to the bases \(\{\omega_i\} \) and \(\{\alpha_i\} \), \(e \) is represented by the matrix
\[
t^tM(1-\Phi)(1-W_2)(1+\Phi) + t^tN(1+\Phi)^{-1}W_2(1+\Phi),
\]
that is
\[
(1^t(1-\Phi)^tW_1^t(1-\Phi)^{-1})(1-\Phi)(1-W_2)(1+\Phi) + t^t(1-\Phi)(1-W_1)^t(1+\Phi)(1+(1+\Phi)^{-1}W_2(1+\Phi)).
\]
Since \(w \) is an isometry and \(\varphi \) is skew (one should use at each step appropriate bases), we get that \(e(\lambda) \) is the element
\[
((1+(1+\varphi)w_1^{-1}(1+\varphi)^{-1})(1-\varphi)(1-w_2)(1+\varphi) + (1+\varphi)(1-w_1^{-1})(1-\varphi)(1+(1+\varphi)^{-1}w_2(1+\varphi))\lambda,
\]
that is
\[
e(\lambda) = (1+(1+\varphi)w_1^{-1}(1+\varphi)^{-1})(1-\varphi)(1-w_2)(1+\varphi) + (1+\varphi)(1-w_1^{-1})(1-\varphi)(1+(1+\varphi)^{-1}w_2(1+\varphi)).
\]
It follows that
\[e(\lambda) = 2(1 + \varphi)(1 - \varphi) - 2(1 + \varphi)w_1^{-1}(1 + \varphi)^{-1}(1 - \varphi)w_2(1 + \varphi) = 2(1 + \varphi)(1 - w_1^{-1} \vartheta^{-1} w_2 \vartheta)(1 - \varphi). \]
Since both SP and SQ are invariant under \(2(1 - \varphi)\) and \(2(1 + \varphi)\), we are left to study the map
\[1 - w_1^{-1} \vartheta^{-1} w_2 \vartheta : \text{SP} \rightarrow \text{SQ}. \]
The restriction imposed to \(l\) imply that the image of \(1 - w_1^{-1} \vartheta^{-1} w_2 \vartheta\)
is a split direct summand.

It is also clear at this point that the rank of \(\Delta\) is precisely \(l(w_1) + l(w_2)\). But \(rk(1 - w_1^{-1} \vartheta^{-1} w_2 \vartheta) = rk(\vartheta w_1 - w_2 \vartheta) = rk((1 + \varphi)w_1(1 - \varphi) - (1 - \varphi)w_2(1 + \varphi))\) and we are done.

5.7. Corollary Let \(l\) be a \(\varphi\)-good integer and let \(p\) be a point of the symplectic leaf \(\Theta\) of \(G\). Then the dimension of any representation of \(F^\varphi[\mathcal{G}]\) lying over \(p\) is divisible by \(l^{\dim \Theta}\).

5.8. As a consequence of (2.2) we have the following isomorphisms of Hopf algebras
\[R^\varphi_q[B_+] \cong R^0_q[B_+] \cong \Gamma^0(\mathfrak{g}-)_\text{op}. \]
Now the algebra \(\Gamma^c(\mathfrak{g}-)\) is equal to the algebra \(\Gamma^0(\mathfrak{g}-)\) and so we have the isomorphism of algebras
\[R^\varphi_q[B_+] \cong R^0_q[B_+] \]
and similarly for the case \(B_-\). Then the representations of \(F^\varphi_c[\mathcal{G}]\) over the sets \(X_{(w,1)}\) and \(X_{(1,w)}\) are like in the case \(\varphi = 0\) (they are studied in [D-P2]). In particular there is an isomorphism between the one dimensional representations of \(F^\varphi_c[\mathcal{G}]\) and the points of the Cartan torus \(T\) (given explicitly [D-L]).

Appendix

In 4. we determined the dimension \(d_\varphi(w_1, w_2)\) of a symplectic leaf \(\Theta\) contained in \(X_{(w_1, w_2)}\);
\[d_\varphi(w_1, w_2) = l(w_1) + l(w_2) + rk((1 + \varphi)w_1(1 - \varphi) - (1 - \varphi)w_2(1 + \varphi)). \]
This means, of course, that \(d_\varphi(w_1, w_2)\) is an even integer. Here we give a direct proof of this fact in the more general context of finite Coxeter groups. Using the definitions from [H], let \(W = < s_1, \ldots, s_n >\) be a finite Coxeter group of rank \(n\), \(\sigma : W \leftarrow GL(V)\), the geometric representation of \(W\), \(B\) the \(W\)-invariant scalar product on \(V\), \(\Phi\) the root system of \(W\), \(l(\cdot)\) the usual length function on \(W\). We recall a fact proved in [C] for Weyl groups and which holds with the same proof for finite Coxeter groups. Each element \(w\) of \(W\) can be expressed in the form \(w = s_{r_1} \cdots s_{r_k}\), \(r_i \in \Phi\), where \(s_i\) is the reflection relative to \(v\), if \(v\) is any non zero element of \(V\). Denote by \(\bar{l}(w)\) the smallest value of \(k\) in any such expression for \(w\). We get

Lemma \(\bar{l}(w) = rk(1 - w).\)

Proof. It is Lemma 2 in [C].
We can now prove

Proposition 1 Let w_1, w_2 be in W. Then $l(w_1) + l(w_2) + rk(w_1 - w_2)$ is even.

Proof. We have

$$rk(w_1 - w_2) = rk(1 - w_2w_1^{-1}) = l(w_2w_1^{-1}) \equiv l(w_2w_1^{-1}) \mod 2.$$

But $l(w_2w_1^{-1}) \equiv l(w_2) + l(w_1^{-1}) \mod 2$ and finally $l(w_1^{-1}) = l(w_1)$. Hence $l(w_1) + l(w_2) + rk(w_1 - w_2) \equiv l(w_1) + l(w_2) + l(w_1) \equiv 0 \mod 2$. \square

Suppose now φ is an endomorphism of V which is skew relative to B, and let ϑ be the isometry $(1 + \varphi)^{-1}(1 - \varphi)$. To prove the general result, we recall that, if η is an isometry of V and r is the rank of $1 - \eta$, then η can be written as a product of $r + 2$ reflections (cf. [S], where a more precise statement is given). In particular if $\eta = s_{v_1} \cdots s_{v_k}$, then $rk(1 - \eta) \equiv k \mod 2$.

Proposition 2 Let w_1, w_2 be in W. Then $l(w_1) + l(w_2) + rk((1 + \varphi)w_1(1 - \varphi) - (1 - \varphi)w_2(1 + \varphi))$ is even.

Proof. We have $rk((1 + \varphi)w_1(1 - \varphi) - (1 - \varphi)w_2(1 + \varphi)) = rk(1 - \vartheta w_2 \vartheta^{-1}w_1^{-1})$. If we write ϑ, w_1, w_2 as products of a, a_1, a_2 reflections respectively, we get from the previous observation that $rk(1 - \vartheta w_2 \vartheta^{-1}w_1^{-1}) \equiv a + a_2 + a + a_1 \mod 2$. Hence

$$rk(1 - \vartheta w_2 \vartheta^{-1}w_1^{-1}) \equiv rk(1 - w_2w_1^{-1}) \equiv rk(w_1 - w_2) \mod 2$$

and the result comes from prop.1. \square

Acknowledgements

The authors are grateful to C. De Concini for helpful discussions and enlightening explanations.

References

[C] Carter, R.W.: Conjugacy Classes in the Weyl Group. Compositio Math. *25*,1-59 (1972)

[C-V] Costantini, M., Varagnolo, M.: Quantum Double and Multiparameter Quantum Groups. to appear in Comm.Algebra

[D-K-P1] De Concini, C., Kac, V.G., Procesi, C.: Quantum Coadjoint Action. *J.of AMS* 5,151-189 (1992)

[D-K-P2] De Concini, C., Kac, V.G., Procesi, C.: Some Quantum Analogues of Solvable Groups. preprint

[D-L] De Concini, C., Lyubashenko, V.: Quantum Function Algebra at roots of 1. to appear in Adv.Math.

[D-P1] De Concini, C., Procesi, C.: Quantum Groups. preprint

[D-P2] De Concini, C., Procesi, C.: Quantum Schubert Cells and Representations at Roots of 1. preprint
[D1] Drinfel’d, V.G.: Hopf Algebras and the Quantum Yang-Baxter Equation. Soviet.Math.Dokl. 32, 254-258 (1985)

[D2] Drinfel’d, V.G.: Quantum Groups, Proceedings of the ICM, AMS, Providence. R.I. 1, 798-820 (1987)

[H] Humphreys, J.E.: Reflection Groups and Coxeter Groups. London : Cambridge University Press 1990

[H-L1] Hodge, T.J., Levasseur, T.: Primitive ideals of $C_q[SL(3)]$. Comm.Math.Phys. 156, 581-605 (1993)

[H-L2] Hodge, T.J., Levasseur, T.: Primitive ideals of $C_q[SL(n)]$. J. Algebra, to appear

[H-L3] Hodge, T.J., Levasseur, T.: Primitive ideals of $C_q[G]$. preprint

[J] Jimbo, M.: A q-difference analog of $U(g)$ and the Yang-Baxter Equation. Lett.Math.Phys. 10, 63-69 (1985)

[Jo] Joseph, A.: On the Prime and Primitive Spectra of the Algebra of Functions on a Quantum group. preprint

[L-S1] Levendorskii, Ya.S.Soibelman, Ya.S.: Quantum Weyl Group and Multiplicative Formula for the R-Matrix of a Simple Lie Algebra. Funk. Anal. Pri. 25, 73-76 (1991)

[L-S2] Levendorskii, Ya.S.Soibelman, Ya.S.: Algebras of Functions on Compact Quantum Groups, Schubert Cells and Quantum Tori. Commun.Math.Phys. 139, 171-181 (1991)

[L-W] Lu, J.H., Weinstein, A.: Poisson Lie Groups, Dressing Transformations and Bruhat Decompositions. J.Diff. Geometry 31, 501-526 (1990)

[L] Lusztig, G.: Quantum Deformations of Certain Simple Modules over Enveloping Algebras. Adv. in Math 70, 237-249 (1988)

[L2] Lusztig, G.: Quantum Groups at Roots of 1. Geom.Dedicata 35, 89-113 (1990)

[R] Reshetikhin, N.: Multiparameter Quantum Groups and Twisted Quasitriangular Hopf Algebras. Lett.Math.Phys. 20, 331-335 (1990)

[S] Scherk, P.: On the Decomposition of Orthogonalities into Symmetries. In : Proceeding of A.M.S., vol.1, 481-491 (1950)

[T] Takeuchi, M.: Matched Pairs of Groups and Bismash Products of Hopf Algebras. Comm.Algebra 9, 841-882 (1981)