Physiologically-Based Pharmacokinetic Modeling Combined with Swiss HIV Cohort Study Data Supports No Dose Adjustment of Bictegravir in Elderly Individuals Living With HIV

Felix Stader¹,²,*, Perrine Courlet³, Laurent A. Decosterd³, Manuel Battegay¹,² and Catia Marzolini¹,²,⁴

Clinical studies in aging people living with HIV (PLWH) are sparse for the novel integrase inhibitor bictegravir, leading to some uncertainty about dosing recommendations for elderly PLWH. The objective of this study was to investigate the continuous impact of aging on bictegravir pharmacokinetics by combining clinically observed data with modeling to support a safe and efficient anti-HIV therapy with advanced age. A physiologically-based pharmacokinetic (PBPK) model was developed for bictegravir with clinically observed data from phase I studies. The predictive model performance was verified using bictegravir plasma concentrations sampled as part of the general therapeutic drug monitoring (TDM) program of the Swiss HIV Cohort Study in young (20–55 years) and elderly PLWH (55–85 years). The verified PBPK model subsequently predicted the continuous impact of aging on bictegravir pharmacokinetics across adulthood (20–99 years). Bictegravir exposure was unchanged in elderly compared with young PLWH when analyzing the TDM data of the Swiss HIV Cohort Study. PBPK simulations predicted clinically observed data from 60 young and 32 elderly PLWH mostly within the 95% confidence interval, demonstrating the predictive power of the used modeling approach. Simulations predicted drug exposure to increase up to 40% during adulthood, which was not statistically significantly different from the age-related pharmacokinetic changes of other HIV and non-HIV drugs. Sex had no impact on the age-related changes of bictegravir pharmacokinetics. Considering the safety margin of bictegravir, a dose adjustment for the novel integrase inhibitor is a priori not necessary in elderly PLWH in the absence of severe comorbidities.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
☑ People living with HIV (PLWH) have a similar life expectancy compared with the general population. However, elderly PLWH are often excluded from clinical studies leading to limited knowledge about the continuous impact of aging on drug pharmacokinetics, especially for novel drugs, such as the integrase inhibitor bictegravir.

WHAT QUESTION DID THIS STUDY ADDRESS?
☑ Clinically observed data combined with modeling and simulation was used to analyze bictegravir pharmacokinetics across adulthood to investigate if a dose adjustment based on the age of the treated PLWH would be necessary.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
☑ Bictegravir exposure increases by maximal 40% across adulthood, which is of no clinical relevance considering the large safety margin of bictegravir.

HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE?
☑ Dose adjustment of bictegravir based on the age of the treated male and female PLWH are a priori not necessary in the absence of severe comorbidities.

Bictegravir, a novel integrase inhibitor against HIV, was approved in 2018 in the United States and Europe.¹,² The US and European HIV guidelines recommend the combination of bictegravir, tenofovir alafenamide, and emtricitabine (tradename: Biktarvy) as an initial treatment for most people living with HIV (PLWH).³,⁴ Bictegravir is metabolized equally by CYP3A and UGT1A1, has
Bictegravir pharmacokinetics were first simulated in young healthy individuals who received single and multiple oral doses of bictegravir (single agent tablet) ranging from 5 to 600 mg. Second, bictegravir plasma concentrations were predicted in young PLWH aged 20 to 55 years, who received 50 mg of bictegravir. Third, bictegravir disposition after 50 mg of bictegravir was simulated in subjects aged 55 to 85 years without modifying any drug parameters. Predictions were judged to be successful if clinically observed data were within the 95% confidence interval of model predictions. Pharmacokinetic parameters (peak concentration (C_{max}), area under the curve (AUC), total apparent clearance, volume of distribution (VdF), and elimination terminal half-life ($t_{1/2}$)) had to be predicted within twofold of the clinically observed data, which is considered to be best practice by the regulatory agencies. Model verification of pharmacokinetic parameters is reported as arithmetic mean ± SD. Dose and dosing regimens in the simulations were similar to the conducted clinical studies. We simulated 10 trials containing 10 virtual individuals in each case.

Clinical data for model verification

The bictegravir PBPK model was verified using bictegravir TDM measurements performed in the framework of the SHCS follow-up visits for PLWH aged 20 to 85 years. The time interval between bictegravir intake and blood sampling as well as concomitant non-HIV medications were documented for each TDM sample. Bictegravir concentrations were measured at unselected times after the last drug intake.

All plasma concentrations were measured in the Laboratory of Clinical Pharmacology at the University Hospital of Lausanne. Blood samples were collected and centrifuged in EDTA-containing tubes. Plasma was aliquoted and stored at ~80°C until analysis by a validated liquid chromatography coupled to tandem mass spectrometry.

Measured bictegravir concentrations were combined within defined time intervals (0–2 hours, 2–4 hours, 4–6 hours, 6–8 hours, 8–12 hours, 12–16 hours, 16–20 hours, and 20–24 hours) to obtain a noncompartmental approximation of pharmacokinetic parameters in Matlab 2017a for young PLWH aged 20 to 55 years and elderly PLWH aged 55 to 85 years.

Extrapolating bictegravir pharmacokinetics across adulthood

The verified bictegravir PBPK model was used to predict the continuous impact of aging on bictegravir pharmacokinetics after 7 oral doses of 50 mg. Analyzed pharmacokinetic parameters (C_{max}, time to C_{max} (T_{max}), AUC, total apparent clearance, VdF, and $t_{1/2}$) were predicted across adulthood (20–99 years) in 500 virtual individuals (50% women) per 5 years and normalized to the youngest age group (20–24 years). The analysis was done for men and women to investigate whether sex has an impact on the age-related changes of bictegravir pharmacokinetics. The results were compared with our previous analysis for non-HIV and other HIV drugs. Slopes were statistically compared by a t-test for each investigated pharmacokinetic parameter. Results are given as mean (95% confidence interval (CI)).

RESULTS

Bictegravir TDM data were collected for 60 young PLWH with a mean age of 42.2 years (22.8–54.7 years) and 32 elderly PLWH with a mean age of 63.8 years (55.0–81.1 years). All subjects received 50 mg of bictegravir and no inhibitor or inducer of CYP3A and UGT1A1. An approximation of pharmacokinetic parameters from the TDM measurements can be found in Table 1. Estimated C_{max} and AUC were similar in young and elderly PLWH (ratio elderly/young: 1.04 and 1.01, respectively). In contrast, $t_{1/2}$ increased by 80% in the elderly compared with the young studied group; however, the correct determination of the terminal elimination phase would require a drug cessation.
Development of the bictegravir PBPK model
Clinically observed data in phase I studies conducted in healthy volunteers for single and multiple once daily bictegravir dosing (25 mg, 50 mg, 75 mg, 100 mg, and 300 mg) were mostly contained within the 95% CI of the model predictions (Figure S1). C\text{\text{max}} appeared to be underpredicted, but the predicted and observed mean plasma concentrations for the terminal elimination phases overlaid each other. Plasma concentrations of the 5 mg dosing regimens (single and once daily) were mostly underpredicted apart from the terminal elimination phase after a 5 mg single dose of bictegravir. In contrast, the plasma concentration of the 600 mg single dose was mostly overpredicted. Predicted pharmacokinetic parameters were up to 51.3% within 1.25-fold, up to 76.9% within 1.5-fold, and up to 94.9% within 2.0-fold of clinically observed data (Table S2). The ratio predicted:observed for all investigated dosing regimens was 0.84 (95% CI 0.43–1.43) for C\text{\text{max}}, 0.96 (95% CI 0.55–1.64) for AUC\text{t}, and 1.09 (95% CI 0.95–1.25) for t\text{1/2}. C\text{\text{max}} and AUC\text{t} were underpredicted for 5 to 100 mg with the largest underprediction for the 5 mg dosing regimen and overpredicted for 300 and 600 mg.

Verification of the bictegravir PBPK model
TDM concentrations of young and aging PLWH were mostly predicted within the 95% CI of the PBPK model simulations (Figure 1). Pharmacokinetic parameters of young and elderly PLWH were all predicted within 1.25-fold of clinically observed data apart from the t\text{1/2} in the elderly, which was underpredicted (ratio predicted:observed: 0.75). C\text{\text{max}}, AUC\text{t}, and t\text{1/2} were simulated to increase by 7% (ratio predicted:observed: 1.03), 11% (ratio predicted:observed: 1.11), and 48% (ratio predicted:observed: 0.82), respectively (Table 1).

Extrapolation of bictegravir pharmacokinetics across adulthood
C\text{\text{max}} raised by 0.31% (95% CI 0.24–0.37%) per year, leading to a maximal 25% increase in the oldest compared with the youngest studied age group (Figure S2). T\text{max} and V\text{DF} were unchanged with advanced age. AUC\text{t} and t\text{1/2} increased by 0.47% (95% CI 0.40–0.54%) and by 0.61% (95% CI 0.56–0.66%) per year, respectively, which means drug exposure of bictegravir can be increased by up to 40% in the elderly (Figure 1). The age-dependent changes for all investigated pharmacokinetic parameters of bictegravir were independent of sex (Table S3). Predicted changes of bictegravir pharmacokinetics were in a similar range as for other HIV and non-HIV drugs (Table S4).8,20

DISCUSSION
Uncertainty exists whether the dose of the novel integrase inhibitor bictegravir would need to be adjusted based on the age of the treated individual.

Our clinical data demonstrated an unchanged drug exposure in the elderly compared with the young PLWH group, which confirms sparse clinical data mentioned in the Biktarvy label.7 The exposure of other anti-HIV drugs, such as dolutegravir, were also demonstrated to be unchanged with advanced age.20 However,
one general limitation of clinical studies in the elderly is that usually two age groups (young vs. elderly) are compared, but aging is a continuous process. Longitudinal data with each subject as an own control would be necessary, which is not practical or feasible. We used a verified PBPK modeling approach to overcome these hurdles, for which the predictive performance was verified with clinically observed data from the SHCS.

Clinically observed data of bictegravir were generally within the 95% CI except for dosing regimens with 5 mg and 600 mg. The underprediction and overprediction of C_{max} at different doses can be explained by nonlinear absorption process, which was not implemented into the model due to a lack of available in vitro data. Only empirical simulations would be possible, which is against the primary aim of this work to predict bictegravir pharmacokinetics with advanced age. As it can be seen from Table S2, the model predicts dose-escalation of bictegravir between 25 and 300 mg within 1.5-fold of clinically observed data, which was judged sufficient to scale the model to the elderly. Furthermore, the dose does not change in elderly individuals to below 25 mg or above 300 mg, so that age-related changes in the nonlinearity of the absorption of bictegravir will likely not play a role. Importantly, our bictegravir model predicted the interindividual variability of bictegravir concentration in young and elderly PLWH within the 95% CI (Figure 1) and thus, the model performance was considered appropriate to predict the continuous effect of advanced aging on bictegravir pharmacokinetics.

Clearance drives the age-related pharmacokinetic changes of drugs. The reduction in clearance with advanced age is caused by a decrease in hepatic and renal blood flow and in the glomerular filtration rate but was found to be independent of drug characteristics. Bictegravir supports this hypothesis with a predicted clearance decrease by maximal 75%, which is in the same range as for other low-extraction drugs, such as warfarin and tolbutamide. The relative age-related physiological changes (e.g., of the hepatic blood flow) are similar for men and women, explaining why age-related pharmacokinetic changes of bictegravir were independent of sex. Bictegravir pharmacokinetics were not shown to be different in men and women. Drug-drug interaction studies with bictegravir showed that a 2.4-fold increase can be well tolerated. Thus, age-related changes in bictegravir exposure can be considered as nonclinically relevant and do not warrant a dose adjustment in elderly PLWH in the absence of severe comorbidities.

With the developed bictegravir model we could only verify in PLWH up to the age of 85 years and thus, simulation results at older ages need to be viewed with caution. Our included elderly PLWH had a declined glomerular filtration rate, common comorbidities (e.g., hypertension), but no severe conditions, such as heart failure classified as New York Heart Association (NYHA) 3 to 4. Therefore, results of our bictegravir study might not be applicable to elderly PLWH with severe diseases. However, it was shown in the French HIV Cohort that 75% of PLWH at least 75 years were nonfrail, demonstrating that our study might be representative for the majority of PLWH. Clinical studies investigating the combined effects of aging and severe comorbidities are warranted in the future.

In conclusion, age-related pharmacokinetic changes of bictegravir are not clinically relevant considering the safety margin of the novel integrase inhibitor. Dose adjustment is a priori not necessary for bictegravir in elderly PLWH in the absence of severe comorbidities.

SUPPLEMENTARY INFORMATION
Supplementary information accompanies this paper on the Clinical Pharmacology & Therapeutics website (www.cpt-journal.com).

ACKNOWLEDGMENTS
The authors would like to thank all study participates. The support of the Swiss HIV Cohort Study is highly acknowledged. Members of

One general limitation of clinical studies in the elderly is that usually two age groups (young vs. elderly) are compared, but aging is a continuous process. Longitudinal data with each subject as an own control would be necessary, which is not practical or feasible. We used a verified PBPK modeling approach to overcome these hurdles, for which the predictive performance was verified with clinically observed data from the SHCS.

Clinically observed data of bictegravir were generally within the 95% CI except for dosing regimens with 5 mg and 600 mg. The underprediction and overprediction of C_{max} at different doses can be explained by nonlinear absorption process, which was not implemented into the model due to a lack of available in vitro data. Only empirical simulations would be possible, which is against the primary aim of this work to predict bictegravir pharmacokinetics with advanced age. As it can be seen from Table S2, the model predicts dose-escalation of bictegravir between 25 and 300 mg within 1.5-fold of clinically observed data, which was judged sufficient to scale the model to the elderly. Furthermore, the dose does not change in elderly individuals to below 25 mg or above 300 mg, so that age-related changes in the nonlinearity of the absorption of bictegravir will likely not play a role. Importantly, our bictegravir model predicted the interindividual variability of bictegravir concentration in young and elderly PLWH within the 95% CI (Figure 1) and thus, the model performance was considered appropriate to predict the continuous effect of advanced aging on bictegravir pharmacokinetics.

Clearance drives the age-related pharmacokinetic changes of drugs. The reduction in clearance with advanced age is caused by a decrease in hepatic and renal blood flow and in the glomerular filtration rate but was found to be independent of drug characteristics. Bictegravir supports this hypothesis with a predicted clearance decrease by maximal 75%, which is in the same range as for other low-extraction drugs, such as warfarin and tolbutamide. The relative age-related physiological changes (e.g., of the hepatic blood flow) are similar for men and women, explaining why age-related pharmacokinetic changes of bictegravir were independent of sex. Bictegravir pharmacokinetics were not shown to be different in men and women. Drug-drug interaction studies with bictegravir showed that a 2.4-fold increase can be well tolerated. Thus, age-related changes in bictegravir exposure can be considered as nonclinically relevant and do not warrant a dose adjustment in elderly PLWH in the absence of severe comorbidities.

With the developed bictegravir model we could only verify in PLWH up to the age of 85 years and thus, simulation results at older ages need to be viewed with caution. Our included elderly PLWH had a declined glomerular filtration rate, common comorbidities (e.g., hypertension), but no severe conditions, such as heart failure classified as New York Heart Association (NYHA) 3 to 4. Therefore, results of our bictegravir study might not be applicable to elderly PLWH with severe diseases. However, it was shown in the French HIV Cohort that 75% of PLWH at least 75 years were nonfrail, demonstrating that our study might be representative for the majority of PLWH. Clinical studies investigating the combined effects of aging and severe comorbidities are warranted in the future.

In conclusion, age-related pharmacokinetic changes of bictegravir are not clinically relevant considering the safety margin of the novel integrase inhibitor. Dose adjustment is a priori not necessary for bictegravir in elderly PLWH in the absence of severe comorbidities.

SUPPLEMENTARY INFORMATION
Supplementary information accompanies this paper on the Clinical Pharmacology & Therapeutics website (www.cpt-journal.com).

ACKNOWLEDGMENTS
The authors would like to thank all study participates. The support of the Swiss HIV Cohort Study is highly acknowledged. Members of...
1. Markham, A. Bictegravir: first global approval. Drugs 78, 601–606 (2018).
2. European Medicines Agency. Biktavry <https://www.ema.europa.eu/en/medicines/human/EPAR/biktavry> (2018). Accessed May 6, 2020.
3. AIDSInfo. Department of Health and Human Services Adults and Adolescents Antiretroviral Guidelines Panel* Classifies a Fixed-Dose Combination Product of Bictegravir/Tenofovir Alafenamide/Emtricitabine as One of the Recommended Initial Regimens for Most People with HIV <https://aidsinfo.nih.gov> (2018). Accessed May 6, 2020.
4. European AIDS Clinical Society. European AIDS Clinical Society Guidelines Version 10.0 <https://www.eacsociety.org/files/2019_guidelines-10_0_final.pdf> (2019). Accessed December 15, 2019.
5. U.S. Food and Drug Administration. BIKTARVY. Highlights of prescribing information <https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210251s001lbl.pdf> (2018). Accessed December 16, 2019.
6. Gallant, J.E. et al. Antiviral activity, safety, and pharmacokinetics of bictegravir as 10-day monotherapy in HIV-1-infected adults. J. Acquir. Immune Defic. Syndr. 75, 61–66 (2017).
7. Stader, F., Siccardi, M., Battegay, M., Kinig, V., Penny, M.A. & Marzolini, C. Repository describing an aging population to inform physiologically based pharmacokinetic models considering anatomical, physiological, and biological age-dependent changes. Clin. Pharmacokinet. 58, 483–501 (2019).
8. Stader, F., Kinig, V., Penny, M.A., Battegay, M., Siccardi, M. & Marzolini, C. Physiologically based pharmacokinetic modelling to identify pharmacokinetic parameters driving drug exposure changes in the elderly. Clin. Pharmacokinet. 59, 383–401 (2020).
9. Burt, H.J., Riedmaier, A.E., Harwood, M.D., Crewe, H.K., Gill, K.L. & Neuhold, S. Abundance of hepatic transporters in Caucasians: a meta-analysis. Drug Metab. Dispos. 44, 1550–1561 (2016).
10. Jamei, M. Recent advances in development and application of physiologically-based pharmacokinetic (PBPK) models: a transition from academic curiosity to regulatory acceptance. Curr. Pharma. Reports 2, 161–169 (2016).
11. Wagner, C. et al. Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: report of an FDA public workshop on PBPK. CPT Pharmacometrics Sys. Pharmacol. 4, 226–230 (2015).
12. Stader, F., Penny, M.A., Siccardi, M. & Marzolini, C. A comprehensive framework for physiologically based pharmacokinetic modelling in Matlab*. CPT Pharmacometrics Sys. Pharmacol. 8, 444–459 (2019).
13. Yu, L.X. & Amidon, G.L. A compartmental absorption and transit model for estimating oral drug absorption. Int. J. Pharm. 186, 119–125 (1999).
14. Rodgers, T., Leahy, D. & Rowland, M. Physiologically based pharmacokinetic modeling. 1. Predicting the tissue distribution of moderate-to-strong bases. J. Pharm. Sci. 94, 1259–1276 (2005).
15. Rodgers, T. & Rowland, M. Physiologically based pharmacokinetic modelling. 2. Predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J. Pharm. Sci. 95, 1238–1257 (2006).
16. Rodgers, T. & Rowland, M. Mechanistic approaches to volume of distribution predictions: understanding the processes. Pharm. Res. 24, 918–933 (2007).
17. Zhang, H. et al. P176 Clinical pharmacology of the HIV integrase strand transfer inhibitor bictegravir. Sex. Transmitted Infect. 93, A74-A (2017).
18. U.S. Food and Drug Administration. Physiologically based pharmacokinetic analysis - format and content. Guidance for industry <https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM531207.pdf> (2016). Accessed January 2, 2018.
19. Shepperd, A., Hewick, D., Moreland, T.A. & Stevenson, I.H. Age as a determinant of warfarin sensitivity. Br. J. Clin. Pharmacol. 4, 315–320 (1977).
20. Miller, A., Adir, J. & Vestal, R. Excretion of tolbutamide metabolites in young and old subjects. Eur. J. Clin. Pharmacol. 38, 523–524 (1990).
21. Bernaud, C. et al. HIV-infected patients aged above 75 years. Med. Maladies Infect. 50, 43–48 (2019).

© 2021 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.