Abstract. A family of lattice packings of n-dimensional cross-polytopes (ℓ_1 balls) is constructed by using the notion of Sidon sets in finite Abelian groups. The resulting density exceeds that of any prior construction by a factor of at least $2^{\Theta(n \ln n)}$ in the asymptotic regime $n \to \infty$.

1. Introduction

Dense packings of spheres and other bodies in Euclidean spaces have been objects of mathematical research for centuries [3, 5, 10]. Apart from their intrinsic mathematical value, they have also found applications in error correction coding, physics, etc. In this note we consider the problem of efficiently packing cross-polytopes (ℓ_1 balls) and give a simple and explicit construction of lattice packings in arbitrary dimension whose density is significantly larger than that of any prior construction.

We should also note that dense packings of cross-polytopes induce reasonably dense packings of superballs (ℓ_σ balls), especially for small values of σ (1 ≤ σ < 2), by using the trivial method of inscribing a superball inside a cross-polytope, see [12].

An n-dimensional cross-polytope C_n is a unit ball in \mathbb{R}^n with respect to the ℓ_1 metric, $C_n = \{x \in \mathbb{R}^n : \sum_{i=1}^n |x_i| \leq 1\}$. A cross-polytope of radius r is the body $rC_n = \{r x : x \in C_n\}$ of volume $\frac{(2r)^n}{n!}$. By a discrete cross-polytope of radius r we mean the set $C_n \cap \mathbb{Z}^n$ of cardinality $\sum_{j=0}^{\left\lfloor r \right\rfloor} 2^j \binom{n}{j} \binom{j}{\left\lfloor r \right\rfloor}$.

Rush [12] has shown that, for $n = \frac{p-1}{2}$, where p is an odd prime, the cross-polytope can be constructively lattice packed in \mathbb{R}^n with density δ satisfying

$$\delta \geq \frac{(2t + 1)^n}{n! (2n + 1)^t}.$$
Here \(t \) is an arbitrary number from the range \(\{1, \ldots, n\} \), and the choice that maximizes the lower bound in (1.1) is

\[
(1.2) \quad t = \frac{n}{\ln(2n + 1)} - \frac{1}{2}.
\]

The idea used in [12] was to obtain the packing lattice from a code with minimum Lee distance \(2t + 1 \) described in [11, Ch. 9], via the so-called Construction A [3]. Other codes with the desired Lee distance can be used as a basis for such a construction, e.g., the BCH-like code from [11], the resulting density being larger than the one from [12] but still smaller than the density we shall obtain below by a different method.

As pointed out in [12], better lower bounds on the packing density of cross-polytopes may be obtained via non-constructive methods such as the Minkowski–Hlawka theorem. It is desirable, however, both from the mathematical viewpoint and in applications, to have at one’s disposal explicit constructions of packings. As in [12] and most other works, we consider the “constructiveness” of our method self-evident and do not provide a formal definition of this notion (see also [6] for a discussion on this issue).

2. Results

Our construction and the resulting density are given in the statement and the proof of the following theorem.

Theorem 2.1. Let \(n \) be a prime power. The cross-polytope can be constructively lattice packed in \(\mathbb{R}^n \) with density

\[
(2.1) \quad \delta > \frac{(2t + 1)^{n-1}}{n! n^t},
\]

where \(t \) is an arbitrary positive integer.

It is easy to show that the choice of \(t \) that maximizes the expression on the right-hand side of (2.1) is

\[
(2.2) \quad t = \frac{n - 1}{\ln n} - \frac{1}{2}.
\]

Proof. Let \(b_1, b_2, \ldots, b_n \) be a collection of elements of the cyclic group \((\mathbb{Z}_q, +)\) \((q \) will be specified shortly) having the property that the sums \(b_{i_1} + b_{i_2} + \cdots + b_{i_t} \), where \(1 \leq i_1 \leq i_2 \leq \cdots \leq i_t \leq n \), are all different\(^1\). An equivalent way of expressing this condition is that the sums

\[
(2.3) \quad \sum_{i=1}^{n} r_i b_i, \quad \text{where } r_i \in \mathbb{Z}, \ r_i \geq 0, \ \sum_{i=1}^{n} r_i = t, \quad \text{are all different.}
\]

(Here \(r_i b_i \) denotes the sum of \(r_i \) copies of \(b_i \in \mathbb{Z}_q \).) Two elegant constructions of such sets were described in [2], one of which is repeated next for completeness.

1. Lee distance is essentially the \(\ell_1 \) distance defined on the torus \(\mathbb{Z}_q^n \). A code in \(\mathbb{Z}_q^n \) with minimum Lee distance \(2t + 1 \) can therefore be seen a packing of discrete cross-polytopes (\(\ell_1 \) balls) of radius \(t \) in the torus, see [4].
2. Such a collection of elements is called a Sidon set (or a Sidon sequence) of order \(t \) [9]. For more on their connection to lattice packing problems, see [7, 8].
For a prime power \(n \), let \(\alpha_1 = 0, \alpha_2, \ldots, \alpha_n \) be the elements of the Galois field \(GF(n) \) and \(\beta \) a primitive element of the extended field \(GF(n^t) \). Let \(b_1, b_2, \ldots, b_n \) be the numbers from the set \(\{1, 2, \ldots, n^t - 1\} \) defined by
\[
\beta^{b_i} = \beta + \alpha_i, \quad i = 1, \ldots, n.
\]
Then the numbers \(b_1 = 1, b_2, \ldots, b_n \) satisfy the condition (2.3), for otherwise, if we had \(b_1 + b_2 + \cdots + b_i = b_{j_1} + b_{j_2} + \cdots + b_{j_i} \), it would follow from (2.3) that
\[
(\beta + \alpha_i)(\beta + \alpha_{i_2}) \cdots (\beta + \alpha_{i_t}) = (\beta + \alpha_{j_1})(\beta + \alpha_{j_2}) \cdots (\beta + \alpha_{j_t})
\]
and, after canceling the \(\beta^t \) terms, that \(\beta \) is a root of a polynomial of degree \(< t \) with coefficients in \(GF(n) \), which is not possible.

Given the above-described elements \(b_1, b_2, \ldots, b_n \) from \(\mathbb{Z}_{n^t - 1} \), define the following lattice:
\[
\mathcal{L} = \left\{ x \in \mathbb{Z}^n : \sum_{i=1}^{n} x_i = 0 \pmod{2t+1}, \quad \sum_{i=1}^{n} x_i b_i = 0 \pmod{n^t-1} \right\}.
\]
We will show that the minimum \(\ell_1 \) distance of the points in this lattice is \(2t+1 \).

Note that any two points \(x, y \in \mathcal{L} \) with \(\sum_{i=1}^{n} x_i \neq \sum_{i=1}^{n} y_i \) satisfy \(\sum_{i=1}^{n} (x_i - y_i) = k(2t+1) \) for a nonzero \(k \in \mathbb{Z} \). They must be at distance at least \(2t+1 \) because \(\sum_{i=1}^{n} |x_i - y_i| \geq \sum_{i=1}^{n} |x_i - y_i| = |k|(2t+1) \). Therefore, it suffices to consider the points \(x, y \in \mathcal{L}, x \neq y \), with \(\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \). Assume that, for two such points, \(\sum_{i=1}^{n} |x_i - y_i| \leq 2t \). Then there exists a point \(z \in \mathbb{Z}^n \) such that \(z = x + r = y + s \), where \(r, s \in \mathbb{Z}^n \) are integer vectors satisfying \(r_i \geq 0, s_i \geq 0, \sum_{i=1}^{n} r_i = \sum_{i=1}^{n} s_i = t \). This, together with the fact that \(\sum_{i=1}^{n} x_i b_i = \sum_{i=1}^{n} y_i b_i \pmod{n^t-1} \) (see (2.6)), implies
\[
\sum_{i=1}^{n} r_i b_i = \sum_{i=1}^{n} s_i b_i \pmod{n^t-1}.
\]
As this contradicts (2.3), our assumption that \(\sum_{i=1}^{n} |x_i - y_i| \leq 2t \) must be wrong. Therefore, as claimed, the minimum \(\ell_1 \) distance of the points in the lattice \(\mathcal{L} \) is \(2t+1 \), implying that it induces a packing of cross-polytopes of radius \(t + \frac{1}{2} \).

To complete the proof, let us compute the density of the packing just described. The volume of the cross-polytope of radius \(t + \frac{1}{2} \) equals \(\frac{(2t+1)^n}{n!} \), and the determinant of the lattice \(\mathcal{L} \) — the volume of its fundamental cell — equals \(\det \mathcal{L} = (2t+1)(n^t-1) \). The packing density is therefore \(\frac{(2t+1)^n}{n!(n^t-1)} \).

In dimensions \(n \) that are not prime powers, the same construction can be used with \(b_1, b_2, \ldots, b_n \) being, e.g., the first \(n \) of the numbers \(b_1, b_2, \ldots, b_{p(n)} \) from \(\mathbb{Z}_{p(n)^t-1} \) satisfying (2.3), where \(p(n) \) is the smallest prime power greater than or equal to \(n \).

The density of the resulting lattice packing is \(\frac{(2t+1)^n}{n!(p(n))^t} \).

Comparing the densities in (1.1) and (2.1), we see that the latter is larger by a factor of \(\frac{t}{2t+1} \). When \(t \sim \frac{n}{\ln n} \) (the choice that maximizes both, see (1.2) and (2.2)), the improvement is of the order \(2^{o(n^{1/n})} \).

Compared with \([12]\), our construction has the following advantages: 1.) the packing is defined for every \(n, t \); 2.) the lattice is constructed directly, rather than from
a code with specified minimum distance; 3.) the resulting packing density is larger by a factor of $2^{\Theta(n \ln n)}$ as $n \to \infty$.

Lattice packings of discrete cross-polytopes in \mathbb{Z}^n. It is evident from the above proof that the lattice $L \subset \mathbb{Z}^n$ from (2.6) defines a packing of discrete cross-polytopes of radius t in \mathbb{Z}^n, the density of which is $\frac{|C_{t^c}\cap \mathbb{Z}^n|}{\det L}$ (by density in the discrete case we mean the fraction of points in \mathbb{Z}^n covered by the cross-polytopes). We state this result below as it may be of separate interest.

Theorem 2.2. Let n be a prime power and t an arbitrary positive integer. The discrete cross-polytope of radius t can be constructively lattice packed in \mathbb{Z}^n with density

$$\delta > \frac{\sum_{j \geq 0} 2^j \binom{n}{j} \binom{t}{j}}{(2t + 1) n^t}.$$

(2.8)

For a fixed radius t and $n \to \infty$, the asymptotic value of the expression on the right-hand side of (2.8) is

$$\frac{2^t}{t! (2t + 1)}.$$

(2.9)

For $t = 1, 2$, this lower bound can be improved. For $t = 1$ the optimal density is in fact equal to 1 for every n, as perfect packings of discrete cross-polytopes of radius 1 exist (and are easily constructed) in all dimensions [4]. For $t = 2$, the construction from [12] yields the asymptotic density $\frac{1}{\pi} = \frac{1}{7}$, while the expression in (2.9) equals $\frac{2}{5}$. For $t \geq 3$, the asymptotic density in (2.9) is, to the best of our knowledge, the highest known.

References

[1] E. R. Berlekamp, *Algebraic Coding Theory*, revised ed., World Scientific, 2015.
[2] R. C. Bose, S. Chowla, “Theorems in the Additive Theory of Numbers,” *Comment. Math. Helv.*, 37 (1962), 141–147.
[3] J. H. Conway, N. J. A. Sloane, *Sphere Packings, Lattices and Groups*, 3rd ed., Springer, 1999.
[4] S. W. Golomb, L. R. Welch, “Perfect Codes in the Lee Metric and the Packing of Polyominoes,” *SIAM J. Appl. Math.*, 18 (1970), 302–317.
[5] P. M. Gruber, C. G. Lekkerkerker, *Geometry of Numbers*, 2nd ed., North-Holland, 1987.
[6] S. N. Litsyn, M. A. Tsfasman, “Constructive High-Dimensional Sphere Packings,” *Duke Math. J.*, 54 (1987), 147–161.
[7] M. Kovačević, V. Y. F. Tan, “Improved Bounds on Sidon Sets via Lattice Packings of Simplices,” *SIAM J. Discrete Math.*, 31 (2017), 2269–2278.
[8] M. Kovačević, V. Y. F. Tan, “Codes in the Space of Multisets—Coding for Permutation Channels with Impairments,” *IEEE Trans. Inform. Theory*, 64 (2018), 5156–5169.
[9] K. O’Bryant, “A Complete Annotated Bibliography of Work Related to Sidon Sequences,” *Electron. J. Combin.*, #DS11 (2004), 39 p. (electronic).
[10] C. A. Rogers, *Packing and Covering*, Cambridge University Press, 1964.
[11] R. M. Roth, P. H. Siegel, “Lee-Metric BCH Codes and Their Application to Constrained and Partial-Response Channels,” *IEEE Trans. Inform. Theory*, 40 (1994), 1083–1096.
[12] J. A. Rush, “Constructive Packings of Cross Polytopes,” *Mathematika*, 38 (1991), 376–380.