Outcome of nonsurgical endodontic treatment: A 5-year recall

Abdulaziz S. Abu-Melha¹, Mohammed Thamer Alqahtani², Nawaf Abdulrahman Almufareh³

¹Department of Endodontic, American Board of Endodontics, King Khalid University, College of Dentistry, P.O. Box 3263, Abha 61471, Saudi Arabia, ²Department of Dentistry, Armed Forces Hospital, South Region, P.O. Box 888, Khamis Mushyt 160961, Saudi Arabia, ³Ministry of Health, GP, South Region, Saudi Arabia

Abstract

Background: Prognosis of nonsurgical endodontic treatment has been extensively studied over the last decades; however, the data obtained is insufficient. The purpose of this study was to retrospectively analyze the outcomes of initial endodontic treatment, and tooth retention over 5 years.

Materials and Methods: In this study, the treatment database of the King Khalid University Dental Clinics (KKUCD) is used to identify patient’s undergone nonsurgical endodontic treatment in the year 2009. 779 patients were treated by students, interns, and specialists in KKUCD. 205 patients (217 teeth) were recalled and examined their teeth presence (retention), endodontic lesion healing status, and medical history status.

Results: Among the 217 teeth, 208 were retained and 9 were extracted in 5 years. The 217 teeth, 34 treated by specialists, 90 by interns, and 93 by students. The 9 extracted teeth were 3 treated by specialists, 1 by interns, and 5 by students. The 9 extracted teeth were 4 maxillary premolars, 2 maxillary molars, 2 mandibular premolars, and 1 mandibular anterior. Using Chi-square tests, survival endodontic cases which had uncertain to successful endodontic healing are 27 treated by specialists, 86 by interns, and 75 by students. There was a significant difference (P = 0.000) in endodontic success and survivability between the normal medical status and insulin-dependent diabetes patients.

Conclusions: Within the limitations of this study, the survivability of nonsurgical endodontic treatment is very highly predictable 90%. Prosthodontics consideration is highly important since all extracted teeth in the study were not crowned. Nonsurgical endodontic treatment within insulin-dependent diabetes patients has fair to poor prognosis, which shows a less rate of success in comparison to other compromised patients.

Introduction

The general objectives of endodontic treatment are to retain teeth in function and to prevent or heal apical periodontitis.[1] Multiple treatment options are available for the patients to restore esthetic and function and replace affected tooth. The patients frequently have to select among these treatment options by weighing the risks and benefits of each options.[2]

Many studies have approached endodontic outcome to estimate the prognosis of the selected treatment modality.[3-10] Unfortunately, data obtained regarding endodontic outcomes as well as the undesirable events such as extraction is considered insufficient.[1-5] Case selection and treatment planning may be influenced by these data. Practitioners’ treatment decision should be highly predictable for long-term prognosis.[6-11] That decision must be based on a high level of evidence.[11] Reports of outcomes of initial treatment were variable among the literature.[5-7]

The purpose of this study was to retrospectively analyze the outcomes of initial endodontic treatment, and tooth retention over 5 years.

Materials and Methods

In this study, the treatment database of King Khalid University Dental Clinics (KKUCD) is used to identify patient’s undergone...
nonsurgical endodontic treatment in the year 2009. 779 patients were treated by students, interns, and specialists in KKUCD. 205 patients (217 teeth) were recalled and examined their teeth presence (retention), endodontic lesion healing status and medical history status.

Materials
A total of 779 patients (aged +18) treated in KKUCD 2009 done by students, interns, and specialist.

Methods
Call patients for a follow-up appointment; during their visit they are informed about our research, the patient visit steps:
1. Age and gender
2. Relevant medical history and vitality signs [pulse, pressure, respiratory, and temperature]
3. DH; history and any problems from his/her endodontically treated tooth in the past years. Record who did the root canal treatment (RCT) and restoration (students, interns or specialist)
4. Extra oral examination; temporomandibular joint, swelling, and lymph nodes check
5. Intraoral examination; general and teeth check (probing, mobility, palpation, and percussion) also crack, fracture leakage checking and type of coronal restoration
6. X-ray; 2 periapicals with different angles (check leakage, presence of post, type of post, and RCT status).

Results
Among the 217 teeth, 208 were retained and 9 were extracted in 5 years [Graph 1]. The 217 teeth, 34 treated by specialists, 90 by interns, and 93 by students. The 9 extracted teeth were 3 treated by specialists, 1 by interns, and 5 by students [Graph 2]. The 9 extracted teeth were 4 maxillary premolars, 2 maxillary molars, 2 mandibular premolars, and 1 mandibular anterior [Graph 3]. Using Chi-square tests, successful endodontic healing were 16 treated by specialists, 47 by interns, and 40 by students [Graph 4]. There was a significant difference ($P = 0.000$) in endodontic success and survivability between the normal medical status and insulin-dependent diabetes patients [Graph 5].

Discussion
The outcome of endodontic treatment was assessed by several studies ($1, 2 + 3-7$). The treatment outcomes were reported from 30% to 98%. This huge difference in the outcomes is mainly because of variable evaluation criteria.$[^1]$

In this study, we analyzed the outcomes of initial endodontic treatment considering lesion healing and tooth retention as evidence of treatment success and survivability, respectively.
patients, which was in accordance to Fouad\(^{[17]}\) study when they found that cases with pre-operative periradicular lesions are less likely to have successful outcome if the patient reports a history of diabetes.

Conclusions

Within the limitations of this study, the survivability of nonsurgical endodontic treatment is very highly predictable 90%. Prosthodontics consideration is highly important since all extracted teeth in the study were not crowned. Nonsurgical endodontic treatment within insulin-dependent diabetes patients has fair to poor prognosis, which shows a less rate of success in comparison to other compromised patients.

Acknowledgment

We would like to thank Dr. Adel Al-Obsaid for his immeasurable support and efforts.

References

1. Ørstavik D, Pitt Ford TR, editors. Apical periodontitis: Microbial infection and host responses. Essential Endodontontology: Prevention and Treatment of Apical Periodontitis. Oxford: Blackwell Science; 1998. p. 1-8.

2. Friedman S. Considerations and concepts of case selection in the management of post-treatment endodontic disease (treatment failure). Endod Top 2002;1:54-78.

3. Ørstavik D, Vqvist V, Stoltze K. A multivariate analysis of the outcome of endodontic treatment. Eur J Oral Sci 2004;112:224-30.

4. Marquis VL, Dao T, Farzaneh M, Abitbol S, Friedman S. Treatment outcome in endodontics: The Toronto Study. Phase III: Initial treatment. J Endod 2006;32:299-306.

5. Friedman S, Abitbol S, Lawrence HP. Treatment outcome in endodontics: The Toronto Study. Phase I: Initial treatment. J Endod 2003;29:787-93.

6. Farzaneh M, Abitbol S, Lawrence HP, Friedman S; Toronto Study. Treatment outcome in endodontics: The Toronto Study. Phase II: Initial treatment. J Endod 2004;30:302-9.

7. Trope M, Delano EO, Ørstavik D. Endodontic treatment of teeth with apical periodontitis: Single vs multivisit treatment. J Endod 1999;25:34-50.

8. Marending M, Peters OA, Zehnder M. Factors affecting the outcome of orthograde root canal therapy in a general dentistry hospital practice. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;99:119-24.

9. Huumonen S, Lenander-Lumikari M, Sigurdsson A, Ørstavik D. Healing of apical periodontitis after endodontic treatment: A comparison between a silicone-based and a zinc oxide-eugenol-based sealer. Int Endod J 2003;36:296-301.

10. Peters OA, Barbakow F, Peters CI. An analysis of endodontic treatment with three nickel-titanium rotary root canal preparation techniques. Int Endod J 2004;37:849-59.

11. Kim MY, Lin J, White R, Niederman R. Benchmarking the endodontic literature on MEDLINE. J Endod 2001;27:470-3.

12. Nobuhara WK, del Rio CE. Incidence of periradicular pathoses in endodontic treatment failures. J Endod 1993;19:315-8.

13. Fuss Z, Lustig J, Tamse A. Prevalence of vertical root fractures in extracted endodontically treated teeth. Int Endod J 1999;32:283-6.

14. Vire DE. Failure of endodontically treated teeth: Classification and evaluation. J Endod 1991;17:338-42.

15. Zadik Y, Sandler V, Bechor R, Salehrabi R. Analysis of factors related to extraction of endodontically treated teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:e31-5.

16. Segura-Egea JJ, Jimenez-Moreno E, Calvo-Monroy C, Rios-Santos JV, Velasco-Ortega E, Sánchez-Domínguez B, et al. Hypertension and dental periapical condition. J Endod 2010;36:1800-4.

17. Fouad AF. Diabetes mellitus as a modulating factor of endodontic infections. J Dent Educ 2003;67:459-67.