Proof of Backhaul: Trustfree Measurement of Broadband Bandwidth

Peiyao Sheng, Nikita Yadav, Vishal Sevani, Arun Babu, SVR Anand, Himanshu Tyagi and Pramod Viswanath
Open Networking

• **1990s**: Heterogeneous networks linking computers
 - TCP/IP: decentralized routing and congestion control
 - Web 1.0

• **2010**: Giant content delivery networks
 - Centralized data centers, cloud computing, caching
 - Web 2.0
Tail Winds of Decentralization: Private 5G

Components to setup private 5G networks are ready!
Blockchains: Stitching Together

- Low friction way to stitch things together
 - Open and trustless
 - Tokenization of incentives
Network Telemetry

• Centralized Telemetry
 • Monitor and optimize network performance

• Decentralized Telemetry
 • Open: no powerful servers (any device)
 • Trustfree: no trusted parties (Byzantine resistance)
 • Network meritocracy: incentive compatibility
Proof of Backhaul

A cryptographic proof system establishing that each party is contributing appropriately towards enabling backhaul bandwidth
Centralized Measurements

Speedtest: speedtest.net

- Nearby powerful servers (high bandwidth, low latency, low packet loss)
- A dedicated foreground service to flood the connection
Centralized Measurements

Speedtest: speedtest.net

- **Not open**: High barrier to entry to be a challenge server
- **Not trustfree**: Need to trust the challenge server for sending data and the prover for timing measurements
Traffic Aggregation

• Multiple challengers send packets simultaneously
• Packets arrive at the network core around the same time
• Aggregated to an equivalent powerful challenger

Open but not trustfree
Interactive Measurement

- Pathchar [97’]

\[RTT_i = \sum_{k=1}^{i} \frac{B}{\theta_k} + \text{delay} \]
\[\theta_i = \frac{B}{RTT_i - RTT_{i-1}} \]

Trustfree but not open:
For high-bandwidth provers (>100Mbps), needs a very low jitter path between the challenger and the prover
Combining Aggregation and Interactivity

• Aggregate traffic from multiple challengers

• Prover sends a timing signal upon receiving all the packets
Attacks

• **Withholding**: corrupted challengers can refuse to send the packets

• **Rushing**: corrupted prover can collude with a subset of challengers to get packets from an external channel
Trustfree Proof of Backhaul

- Open: Use Traffic Aggregation

- Trustfree: A Byzantine Fault Tolerant (BFT) interactive measurement scheme
Formal Security Properties

- Soundness: no prover can inflate the bandwidth
- Approximate Completeness: if the prover is not corrupted, the protocol will output a bandwidth $\theta'_p \geq \alpha \theta_P$

- Accuracy rate

$$\alpha = \frac{n - 2f}{n - f}$$

where n is the number of challengers, f is the number of Byzantine faults
Protocol Primitives

• Unforgeable packets
 • Digital signatures

• Robust timing measurement
 • Median is bounded by honest reports

• Short witness
 • Hash and Merkle tree
Multichallenger PoB Protocol
Multichallenger PoB Protocol
Multichallenger PoB Protocol

Blockchain (Verifier)

Server (Challenger)

$\text{sign}(m, sk_1)$

$\text{sign}(m, sk_i)$

$\text{sign}(m, sk_n)$
Multichallenger PoB Protocol
Multichallenger PoB Protocol
Multichallenger PoB Protocol

1. Verifiable traffic aggregation: Multiple challengers send unforgeable traffic
2. Short packet receipts: Prover commits received packets using Merkle root
3. Local Verification: Challengers verify that their respective challenge traffic was received
4. Robustification: Take median of the RTT measurements
Design Scope Exploration

- Packets: UDP / TCP
- Crypto primitive: with / without signature
- Threat model: with / without access to extra link

TABLE II: Comparison of different protocols in design landscape
Packets
PoB
PoB-TCP
PoB-PRG
PoB-shuffle
System View

- Practical factors: network jitter, synchronization error, computation overhead
- Lightweight: small amount of challenge data
- Open: geographically spread challengers with low bandwidth
- Secure under attacks

Technique	Secure	Challenger BW < Backhaul BW	Accuracy
Pathchar	x	✓	Low
Packet dispersion based	x	x	-
Secure BW estimation	✓	x	-
Multichallenger PoB	✓	✓	High

Backhaul BW (Mbps)	Challenger BW (Mbps)	Challenge Data (MB)	Attack	Measured BW (Error %)	Guaranteed BW (Mbps)
250	25	3.44	-	246 (1.6%)	184
500	20	6.86	-	475 (5%)	356
750	75	10.31	-	705 (6%)	529
1000	100	13.75	-	921 (8%)	691
250	32	3.44	Rushing	331 (0.6%)	249
250	32	3.44	Withholding	241 (3.6%)	181
Thanks!

Full paper: https://arxiv.org/abs/2210.11546
Github: https://github.com/multichallengerpob/proof-of-backhaul
Email: peiyaosheng@gmail.com