Invention mechanisms and management source of false smut of rice caused by *Ustilaginoidea virens*-A Review

Uday Kumar, Shrawan Kumar Sahani, Priyanka Kumari and Amarendra Kumar

DOI: https://doi.org/10.22271/chemi.2020.v8.i3v.9422

Abstract
False smut of rice caused by *Ustilaginoidea virens* (Cooke), perfect sexual stage *Villosiclava virens*. Rice False Smut (RFS) early know as a minor disease but this time it is very severe in the majority of rice-growing areas around the world, as epidemics form. The disease incidence ranged from 5-85% and major grain yield loss of 0.2% to 49% respectively in terms reduction in quality as well as quantity threatens food safety due to its production of mycotoxin. After flowering, its symptoms are appeared when the fungus transforms into globose structures or yellowed carbonaceous masses of individual grains unfit for consumption. The infecting cycle and invasion mechanism, including the primary and secondary source of RFS infection involved different factors affecting for invention mechanisms of disease occurrence, including the infection time and pathway. Due to knowledge of epidemiology and invention mechanisms, resistance source, disease aggravates, proper management strategies needed to be framed to control the false smut disease. Improvement in completing the management source of false smut needs more emphasis. This review summarizes the present status of RFS, biochemical mechanism invention, resistant source of cultivars, and management of false smut in rice.

Keywords: Rice, false smut, *U. virens*, invention mechanism, management source.

Introduction
Rice is the most staple food commodity among the global population. It is mother source of energy and it covers more than 9% of earth’s arable land. It share 21% of global per capita energy and 15% of global per capita protein (FAO, 2016) [40]. *Ustilaginoidea virens* is Cooke, (1878) [33] in Tirunelveli district of Tamil Nadu the first time reported the causal agent of false smut of rice. Tanaka et al., (2008) [109] suggested the *Villosiclava virens* as teleomorph of *U. virens*. Its outbreak might be possibly due to high input cultivation, increased use of hybrid varieties, and climate change (Lu et al., 2009) [77]. There are different viewpoints on the source of infection in the early, but a more consistent view was that the overwintering sclerotia and chlamydospore are the main original resources of infection. There are many factors affect the occurrence and prevalence, for example, the climate conditions, temperature, humidity, hours of illumination, especially the “key growth stage of rice” (KGSR, i.e., the late booting stage and begin heading to flowering period are the susceptible period of rice to RFS) encounter the local climatic conditions which suitable for the occurrence of RFS. The disease hampers quality and quantity of rice grains as well as affects the germination percentage of the infected seedlings (Sanghera et al., 2002) [97]. Pathogen on sick grains produces antimitotic cyclic peptides, ustiloxin from its chlamydomspores, poisonous to both humans and animals (Nakamura et al., 1994; Koiso et al., 1994) [81, 60]. Disease incidence ranged from 5-85% and yield loss of 0.2% to 49% has been reported depending upon the rice cultivars and intensity of disease (Dodan and Singh 1996; Ladhalakshmi et al., 2012; Kumari and Kumar, 2015) [38, 65, 63]. Rice cultivars demonstration significant difference in quantitative resistance still no variety is yet to have complete resistance to *U. virens* (Biswas, 2001; Li et al., 2008; Huang et al., 2015) [18, 71, 54]. False smut can be effectively managed through cultural, biological, and chemical control. Various workers (Pannu et al., 2010; Mohiddin et al., 2012) [87, 80] have reported the efficacy of several fungicides for the management of false smut.
Symptoms
The usually disease occurred sporadically in the field and in an individual ear only a few grains are initially infected while severe infection many smut balls aggregate together (Singh, 1990). If infection occurs before fertilization, most of the glumes remain sterile without any visible sign of infection. Initially typical whitish creamy color smut balls occur infection occurs after fertilization then convert in large, velvety, green smut balls (Pseudomorph) develop (Kulkarni and Moniz, 1975). Initially the smut balls are small and remain confined between the glumes. They gradually increase and become 0.8 cm to 1 cm or more in diameter enclosing the floral parts. Young smut spores’ balls are flattened horse-shaped, smooth, whitish creamy, light yellow, and covered by a membrane. Later, change the membrane bursts colour and the colour in orange, yellowish-green, olive green, and finally the greenish-black. The false smut balls are covered are three outer layers, each at different stages of development of smut balls. The innermost covered is yellowish with radiating mycelial and spores in the process of formation. The next layer is orange colored consisting of mycelial and spores. The outermost layer is green and consists of matures spores together with remaining fragments of mycelial (Ou, 1985). The pathogens cause sterility of the spikelets neighboring the smut balls (Hashioka, 1971) reduced the grain weight and germination of affected grains. The sclerotial production in smut balls has been observed by severe; workers (Hashioka et al., 1951; Ikegami, 1963; Sharmaa and Joshi, 1975; Singh and Dube, 1976; Rathaih and Bhattachariya, 1993; Ladhalakshmi et al. 2012) [49, 57, 98, 101, 95, 654].

Types of Smut Ball
They are different types of smut balls, density, and distribution on infected panicles Ikekami (1961) [55] classified smut balls by colour as yellow, yellowish-green, greenish-yellow and green; the colour was essentially age-dependent, the aged the balls were, the darker was the colour. Some literature term yellow balls as orange or orange-yellow (Rani, 2014) [92] and green as greenish-black or black (Rani, 2016) [93]. Most literature presented dark balls (green or greenish-black) as the advance stage (by colour change over time) of light-colored (yellow or orange) balls (Rani, 2014) [93]. Ikegami (1961) [56] further observed that smut balls formed under conditions of 25 °C showed the highest percentage of yellow balls, whereas the high occurrence of greenish balls observed under temperatures lower than 25 °C. He found yellow balls consisted of three layers (thick yellowing brown in the outermost, light yellow in the middle and white in the center), whereas green ones had two layers (dark green in the outermost and yellow and white in the center). There were two pathways of colour formation in smut balls, according to Ikegami (1961) [56] first one is the appearance of the colour at the time just after the formation of the balls (inner alterations), and the another one is the colour changing after occurrence prompted by environment (light and temperature). Does not any information is available on whether the types of smut balls by origin are strain-related of the pathogen or not but some literature has mentioned the existence of ‘white’ smut balls (Honkura et al., 1991) [52].

Inoculation Methods
According to Fujita et al. (1989) [43] inoculated a conidial suspension (4×10⁶ Conidia/ml) of U. virens at the panicle emergence stage. It is incubate in a moist cabinet chamber initially at 15°C for 2 days and then at 26°C with 100 % humidity for 5 days. Lu et al. (1996) [78] Suggested that the panicle emergence stage is the sensitive infective stage and conidia are the main infective type. Ladhalakshmi et al. (2012) [65] injected the conidial suspension of the pathogen during the panicle emergence stage of the rice variety TN1 and typical smut balls were produce on the panicles 15 days after inoculation. Tang et al. (2013) reported that after filtering the hyphae, conidia could be collected from the filtrate by centrifugation and re-suspending the conidia in the fresh Potato Sucrose medium to a density of 2.5 × 10⁵ conidia/ml and used as the inoculum. The inoculated plants were placed in a plant growth chamber for 2 days at 20 °C with 85-95 percent relative humidity and then for 5 days at 25 °C with 3000 lux illuminances from white fluorescent tubes. Different developmental stages of rice plants were injected with 1 to 2 ml suspension of conidia and chlamydospores at a concentration of 10⁷/ml. Booting and panicle emergence stages were optimum infection stages (Anonymous, 2012) [6]. Conidial suspension (2×10⁵ conidia/ml) was sprayed at panicle emergence stage in the evening hours. The rice panicles were sprayed with sterile distilled water served as control and RH maintain 95 % a week. The maximum percent of infection and smut balls per panicle observed in genotype PR-116 (26.56 % and 1.6) (Rani et al. 2016) [92]. Nevertheless, the conidia and suspension of hyphal fragments obtained by breaking the mycelia with a high-speed blender were also used as inoculum in some lab (Lu et al. 2009) [77]. Zhang et al. (2003) [126] injected the artificial culture of U. virens in vitro during panicle emergence stage of rice at nightfall.

The Causal Agent of False Smut Rice
The Pathogen
The sound knowledge of the history, life cycle, infection mechanisms of pathogens and process for the management of rice false smut. Rice false smut disease caused by the fungal pathogen Ustilaginoidea virens, which produces both sexual ascospores and asexual chlamydospores in its life cycle (Wang et al., 1992; Biswas, 2001) [110 and 118]. The anamorph form, Ustilaginoidea virens (Cooke) Takahashi, is widely accepted of false smut in rice and maize (Rush et al., 2000; Abbas and Sciumbato, 2002) [96 and 1]. The teleomorph stage Claviceps virens Sukurai ex Nakata and Claviceps Oryza-setaria Hashioka because of the teleomorphic features of U. virens are similar to those of Claviceps. However, phylogenetic analyses using sequences of the large subunit of the ribosomal RNA gene suggested that members of Ustilaginoideae are distinct from the teleomorphic genera of Clavicipitaceae and should be recognized as a monophyletic group within Hypocreales (Bischoff et al., 2004) [17]. Molecular phylogenetic studies have also revealed that Ustilaginoidea species formed a paraphyletic group, and not congeneric with Claviceps based on the ALDH1 gene, which encodes a member of the aldehyde dehydrogenase family (Tanaka and Tanaka, 2008). Based on morphological and biological characteristics of the teleomorph, Tanaka et al. (Tanaka et al., 2008) [96] suggested Villosiclava virens as the new name for the teleomorph of Ustilaginoidea virens which is accepted and the name was used by recent reports (Ladhalakshmi et al., 2012; Fu et al., 2012, Tang et al., 2012; Ashizawa et al., 2012) [65, 42, 103, 8]. According to scientific classification, the fungus is an ascomycete, not a basidiomycete (‘true smut’), hence received its common name as ‘false smut’ and ascigerous stage of U. setariae and described the development of the fruiting bodies.
on true sclerotia and the fructification of asci and ascospores but did not propose a new taxonomic name based on the teleomorph (Tanaka et al. 2008) [105].

Geographical Distribution

RFS disease occurs in almost everywhere of the world. Historically, it was considered a minor disease causing significant yield loss (Webster and Gunnell, 1992) [115]. Now a days its traditional rank has changed with extensive reports in almost all the rice-growing countries of the globe including Africa, China, Egypt and India. RFS is a developing potential disease in India, where increasing incidence being reported from fields since the early 2010s. In Indian and part of Bangladesh subcontinent, rice is grown year-round, broadly under three seasons: early monsoon (‘Ausi’ rice), late monsoon (‘Transplanted Aman or T. Aman’ rice) and winter (‘Boro’ rice). RFSm is the disease of ‘T. Aman’ rice in Bangladesh (BRRI, 2013) [222] and parts of India (Shetty and Shetty, 1985) [99]. However, there are undocumented reports of its sporadic incidence in other two seasons also. Quantitative information on the seasonal incidence of the disease is unavailable.

Morphological Characters

Chlamydospore spore formed on spore balls are borne lately on minute sterrigmat on radial hyphae and are spherical to elliptical, echinulate, olivaceous 4-6×3-5 μm with epispore 0.3 mm in thickness (Hashioka, 1971; Singh, 1990) [50 and 102]. 3.5-5.5 μm (Sharma and Joshi 1975) [98], 4.20 to 6.54 μm (Baite et al., 2014) [111]. The scanning electron microscopy revealed that the conidial wall was echinulate and ornamented with prominent spines. The spines were pointed at the top or irregularly curved and ranged from 359.9–994.5 nm long. Characters are isolate based on colony of U. virens were grouped into three groups. Immature spores are smooth, hyaline, and prominent pointed warts characterize smaller but with maturity, the episode.

Primary Infection Source of RFS

Host pathogen interaction is the most important for the primary infection of pathogens. Rice false smut U. virens can survive in the form of mycelium, chlamydomspore, sclerotium and RFS balls. The overwintering sclerotia germinated and produced ascospores, which caused rice false smut in the coming year (Liao, 1994) [73]. Inoculation of chlamydomspores, ascospores and thin-wall conidia can successfully induce rice false smut disease (Chen et al., 1995; Yao et al., 2012) [29 and 121]. Zuo et al. (1996) [127] captured chlamydomspores over the rice fields, suggesting that chlamydomspores have a high ability of airflow dispersion and infection. Therefore, it is reduced that there is a pathogen source base or intermediate host suitable for the dormancy of chlamydomspore outside rice fields. However, there is a different point of view on this point. Chen et al., (1994) [50] believed that chlamydomspores germinate in the soil and produced conidia, these conidia are spreading by source of wind and rain and caused the primary infection RFS. However, some literature and cited gave information about the sclerotia were not found in some areas of some provinces in China, but the rice was infected by U. virens every year, so it was questionable that sclerotium was the major primary infection source (Wang, 1992; Chen et al., 1995) [110 and 29]. On the other hand, Liu et al. (2009b) [75] demonstrated that the primary infection source of RFS mainly was the seeds with a pathogen, followed by the overwintering pathogen in soil. Most scholars abroad were consistent with the views that the pathogens overwintering in the form of sclerotium and chlamydomspore were the major primary infection sources, and the chlamydomspores played a decisive role in the secondary infection (Ikegami, 1963; Ou, 1985) [57 and 82].

Secondary Source of Infection

The main key to secondary infection source of false smut is chlamydomspores. The chlamydomspores germinate in the soil and produced conidia, and the conidia caused secondary infection by spreading through wind and rain. Many studies have reported that there was a severe incidence of RFS in late-maturing varieties, and that the secondary infection may be the major factor (Chen et al., 1994) [30]. A large number of chlamydomspores could be captured over the rice field, and the number of spores was relatively increased with the arrival of the flowering period. The secondary infection source of RFS is mainly chlamydomspores and conidia by air spread (Ou, 1985) [82].

Time and Pathway of Infection

A recent study has indicated that U. virens follow a specific route, with the hyphae colonizing the outer surface of the spikelets, and then entering the insides of speckles from the apex (Azhiwaza et al., 2012) [8]. U. virens initially attached itself to the surface of the filamentous, and then formed several discrete structures, including mycelial and stroma infection hyphae. The infection periods and pathways of U. virens are not very clear yet. There are chief views of systemic infection in late booting to early heading stage infection (late-stage infection), or systemic infection, more advanced inoculation and detection technology have been employed recently, indicating that RFS infection is mainly primary infection in late booting stage and secondary infection in later stage i.e., after flowering of rice panicles. Most researchers believed that the primary infection site was the floral organ of rice, and the infection period was between the middle and late booting stages to the early heading period (Xu et al., 2001; Wang et al., 2008; Chen et al., 2013) [117, 111 and 27]. Liu et al. (2007) [74] believed that the main infection period of U. virens was between the big belly stage to begin heading period, but not the seed germination stages. Strong evidences support that the infection that occurred in the flowering stage was that artificial inoculation in the late booting stage could increase the diseased panicle rate substantially (Cai et al., 2009.) [21]. At present, it was believed that 1-2 weeks before heading are the main invasion period of RFS (Li et al., 1986; Wang, 1992; Guo et al., 2000) [70, 110 and 47]. Du et al. (1990) [39] illustrated that seed treated with biocidal there was no effect of prevention and cure RFS, and inoculation with U. virens after germination of rice seeds also did not incur the disease, proving that U. virens is not systemic infection. It was found that the hyphae of U. virens could invade the spikelet apices, via a small gap between the lemma and palea.

Infection sites: Examination of serial semi-thin and ultrathin sections of infected spikelets showed that the primary infection sites of U. virens was upper parts of the three stamen filaments located between the ovary and the lodicules. In the booting stage, U. virens specifically infects the stamen filaments of rice, and thus it grows and develops into chlamydomspores and finally formed smut ball. U. virens could not infect the ovary and anther, however, the secondary hyphae can occasionally infect the stigma and outer cells of lodicule (Dai et al., 2005) [34]. Dodan et al., (1996) [38] and Madhare et al., (2008) [79] found that the conidiophore of
fungal fungus *U. virens* could infect the ovary and single spikelet and then transformation into chlamydospore and false smut ball. A recent study has indicated that the *U. virens* follows a specific route, with the hyphae colonizing the outer surface of the spikelets, and then entering the inside of spikelets from the apex (Ashizawa et al., 2012) [8]. Consistent with a previous report (Tang et al., 2012) [106], *U. virens* initially attaches itself to the surface of the filamentous, and then formed several discrete structures, including mycelial stroma and infection hyphae.

Mechanism of Infection

The route of *U. virens* penetrates rice panicles has long been a question of debate. A recent study utilized a transgenic strain expressing green fluorescent protein gene (GEP) (Ashiwaza et al., 2012) [8] to observe the *U. virens*, and found that there were attachment and infection of the early reproduction stage of rice (Zhou et al., 2003, 2006; Wang et al., 2005a) [126, 125 and 112]. The GEP-labelled conidia of *U. virens* were injected into rice sheaths had invade spikelets through the apices, via the small gap between lemma and plelia had already reached all floral organs 144 hpi (Ashiwaza et al., 2012) [8]. According to (Hu et al., 2014) the primary site of *U. virens* colonization at the base of the filaments with the inner spikelets becoming infected by hyphae at 24 hpi after that hyphae reached its highest level at 168 hpi, before rice heading stage, as the infection extended upward from basal filamentous to the anther apex, and then enclosed all the floral organs to a velvety smut ball.

Predisposing Factors

It was demonstrated with many years’ observation in the fields, the RFS incidence of the same rice variety in different years are quite different. If the resistant varieties of rice encounter rainy days during the booting period and begin heading stage, then the incidence of RFS will be intensified; on the contrary, if the susceptible varieties encounter dryness and high-temperature weather during these stages, then the incidence of RFS will decrease or even no be infected (Wang et al., 2004) [109].

The epidemiological factor that rice plants encounter in susceptible periods or KGSR is one of the key factors determining the degree of RFS incidence. If KGSR encounter more rainy days, abundant rainfall, a short sunshine duration, the relative humidity (RH) was high (above 85%), the temperature was suitable (22-28 °C), and a small temperature difference between day and night, then the degree of RFS incidence was severe. If these factors were contrary, then the degree of RFS incidence was low (Yashoda et al., 2000; Yang, 2007; Fei et al., 2010) [122, 120, 41]. Pan et al., (1997b) [84] found that the severity of RFS was closely related to the local accumulated sunshine hours and total rainfall in KGSR. If the number of sunshine hours was reduced and the rainfall was increased, then the morbidity of RFS was aggravated. The rain days and rainfall during the KGSR were positively correlated with the infected panicle rate, the correlation coefficient was \(r = 0.8342 \) and \(r = 0.8826 \), and the related equation was \(Y = -6.7985 + 6.0538x \) and \(Y = -2.6963 + 0.3652x \), respectively. RFS is negatively correlated with the daily mean temperature but positively correlated with humidity at the beginning heading stage. When the daily mean temperature was 23-24 °C and RH 82%-87% during the beginning heading period are conducive to the occurrence of RFS, Yashoda et al., (2000) [122] that Low maximum temperature (< 31°C), low rainfall (< 5mm), high minimum temperature (19 °C), was found to be favourable for disease development also supported it. (Jie et al., 2014) [58] noticed that the effect of rice growth stage temperature, relative humidity and wetness duration on infection of rice false smut found that late panicle development stages had the highest percentage (90.00 %) of diseased panicle and highest level of disease (92.90 %) was obtained at 25 °C and 95 % RH with 120 hrs of wetness duration. But, Singh et al., (1987) found that Incidence is favored by relatively low (20 °C) temperature and high relative humidity (>90%) coupled with well-distributed moderate rainfall during flowering, also by late sowing and high soil fertility. Reports on the effect of rainfall were conflicting; high disease intensity had been attributed to rainfall at heading (Cartwright et al., 2002), but the opposite (low rainfall favoring the disease) had been reported (Dodan and Singh, 1996) [58].

Bhargava et al., (2017) [10] reported that the disease incidence and disease severity index of false smut occurred at the temperature (23-32 °C), relative humidity (66-90 %), rainfall (5-8 mm) and sunshine (4.81-6.20 hrs). Chaudhari et al., (2019) recorded that the data of meteorological during the subsequent two-year in the progress of the false smut due to closely similar weather relation. In 2018, the disease was initiated on the 37th Meteorological standard week (MSW). More dominant favourable weather conditions viz., maximum temperature (30.8, 32.7, 33.8 and 36.9 °C), average temperature (26.3, 27.3, 27.7 and 29.8 °C) and bright sunshine hours (6.8, 6.8, 8.1 and 8.6 hrs). After 40th MSW up to harvest, the disease incidence was continuously increased and recorded up to 6.68 percent disease incidence.

Nutritional Management

Different fertilizer, dosage of application and application time of fertilizer significantly affect the occurrence and severity of RFS. The incidence of RFS was higher if more nitrogen fertilizer was applied and the application time was late (Pan et al., 1993) [86]. Increasing the amount of nitrogen fertilizer significantly increased the rate of infected rice plants. Fertilization habit of partial nitrogen, excess dosage of fertilizer and late fertilization will reduce the rice resistance ability to RFS (Zhao, 2006) [125]. The applied total quantity of nitrogen (X1), amount of panicle fertilizer (X2) and application time of panicle fertilizer (X3) strongly affected the incidence of RFS (Y), the regression equation was \(Y = -93.053 + 3.393X1 + 9.265X2 + 3.711X3 \), and the correlation coefficient \(R = 0.8922** \). Among all of these factors, the direct effect of the application amount of ammonia fertilizer on the RFS incidence was the highest, P 0.1 = 0.393 (Pan et al., 1997a) [85]. If 600 kg/hectare of urea was used as panicle fertilizer, then the infected panicle rate was 17.5%, and increased by 34.6 % and 48.9 % compared with that of the 300 kg/hectare and no application of the panicle fertilizer (Chen et al., 2009) [31]. When 165.0, 225.0, 232.5, 240.0 and 300.0 kg of pure N was used as the topdressing fertilizer (urea) per hectare at heading period, the infected rice panicle rates of RFS were 1.33 %, 1.97 %, 2.13 %, 2.33 % and 3.13 % respectively. Reasonable amounts ratio of nitrogen, phosphorus and potassium fertilizer were beneficial to increasing rice yield and reducing the occurrence and harm degree of RFS (Wang et al., 2010; Hong et al., 2013; Qing et al., 2014) [113, 51 and 90].

Management Source of RFS Resistance Source
RFS resistance sources in India is very negligible due to its minor importance as a disease infecting rice while its cause severe effect on the world as an epidemic. The previous work on rice false smut resistance screening and molecular mechanism of false smut resistance is not sufficient (Zhang et al., 2014) [123]. Resistance genes to rice false smut is less reported despite considerable efforts on screening of on-field resistance and quantitative trait loci (QTL) analysis (Guo et al., 2012; Huang et al., 2015) [48 and 54]. Various attempt has been made by researchers to screen rice cultivars resistance to false smut. Singh and Singh (2005) [103] screened 98 genotypes in which 27 rice genotypes found resistant. Ashrafuazzaman (1974) [9] evaluate 91 false smut resistant lines and 4 were susceptible out of these 42 had been found resistant to false smut. Singh and Dube (1978) [101] from India observed more yield loss (~44%) in hybrid varieties compared to inbred varieties (~17 %). Barnwal and Singh (2011) [14] also from India found similar results, more yield loss in hybrid ‘HKR-126’ than inbred ‘PA 6444’. Baruah et al. (1992) [15] was also reported that hybrid varieties were more susceptible to rice false smut (compared to inbred varieties). Ansari et al. (1988) [1] screened 22 cultivars grown under natural infection by RFSm in the Andaman Islands of India, the most susceptible was ‘DR447-20’ (49 % yield loss), while the most resistant ones were ‘CR155-5029216’ (0.04 % yield loss), ‘CN758-1-1-1’ (0.1 % yield loss). Xia et al. (1989) [116] was also found that the extended angle of glume to be wider in hybrid rice and also the flowering phase to be longer in hybrid rice which resulted in more infection. He reported more incidence of false smut in hybrid rice lines. Rice cultivars, Taroni Basmati and CR-333-6-1. The crop planted on 10th June had the least incidence of false smut. False smut was maximum in CR-33-6-1 with 36.9 percent incidence and 0.6 percent smutted balls (Dodan and Singh, 1995) [36]. Rao (1955) [94] reported that the least percentage of smutted balls was recorded in case BS-158 (2.7) and the late duration cultivars were more severe. Ahonsi et al. (2000) [3] found that all the tested varieties reacted differently to false smut incidence. ITA 316 and Ex-China showed some resistance and IRAT 170 was completely free from infection. Lu et al. (2008) [76] reported that the number of smut balls on panicles or degree of blanking (chaffiness) is related to the level of resistance in the rice cultivars this was also confirmed by (Cartwright et al. 2003) [25]. Ladhulakshmi et al. (2012) [65] reported that 18 resistance of blast- resistance varieties/lines were mostly resistant against false smut. Panwar et al. (2012) [88] noted that early maturing rice varieties and hybrids (90-115 days) were found to low infected with the disease as compared to late maturing varieties (115-130 days) and disease severity ranged from 27.3-42.7 % whereas, it was ranged from 85.35-94.71 in rice hybrids. Based on a false smut score, four rice genotypes were screened by Mohiddin et al. (2012) [88]. HRI 119 being the most resistant genotype with low disease incidence. Screening of 186 rice hybrids to false smut resistance were done by Yan et al. (2014) [119] identified few hybrids with low disease incidence. Li et al., 2008 [71] mapped two major genes controlling rice false smut with polygene mixed model and the heritability of two major genes. Using near isogenic introgression line for disease resistance two QTLs were mapped (Xu et al., 2002) [119]. Li et al. (2014) [63] detected eight QTLs (qFsr1, qFsr2, qFsr4, qFsr8, qFsr10a, qFsr10b, qFsr11 and qFsr12) on chromosomes 1, 2, 4, 8, 10, 11 and 12 controlling false smut resistance. Stable inheritance of disease-resistant loci on chromosome 10 and 11 over the years have been studied by Li et al. (2011) [68]. Using a large set of random introgression lines (ILs) and field-based phenotyping, rice QRLs providing resistance to U. virens were identified. Four QRLs (qFsr-6-7, qFsr-10-5, qFsr10-2 and qFsr-11-2) have been identified with relatively larger and consistent effects across the two testing sites. Li et al. (2011) [68] identified QTL conferring resistance to false smut in IR28 from the chromosome 11 during preliminary mapping of 157 recombinant inbred lines. Chanamallikarjun et al. (2010) [26] suggested that the broad spectrum and durable disease resistance for sheath blight resistance might be associated with chitinase gene cluster. Rani et al. (2016) [92] evaluated 31 germplasm line for two year against U. virens. In first year, 8 inbred line were found to be completely free from disease. In second year, five germplasm are completely free from disease. Kumar et al. (2017) [62] evaluated 21 rice genotypes for resistance to false smut and found that four rice genotypes resistance i.e., Swarna Shreya, IR96321-1447-521-B-2-1-2, IR96321-1447-651-B-1-1-2, and IR 83294- 66-2-2-3-2 were immune or highly resistant against false smut.

Cultural Management

Initially transplanted rice had higher disease incidence as compared to late planting (Chhottaray, 1991; Dodan and Ram Singh., 1995) [32 and 36]. Conservation tillage, continuous rice cropping and moderate nitrogen fertility rates reduced false smut disease in susceptible cultivars (Brooks et al., 2009) [20]. To escape severe damage, sowing date and heading period could be planned in such a way that flowering should not coincide with rainy period. The use of sclerotic free seeds for sowing and cleaning of bunds may help the farmers to reduce the initial occurrence of the disease. In respect of cultivation practices, furrow irrigated rice cultivation systems recorded less disease severity compared to flooded fields. The mechanism behind is the reduction on the survival period of chlamydospores in soil and occurrence of physiological changes in the host plant in response to shifting of rice cultivation from anaerobic to aerobic growing conditions (Brooks et al., 2010) [21].

Fungicidal Management

In recent years, the disease has become a more severe threat to our rice cultivation due to the intervention of false smut epidemics. In order to minimize direct economic loss to farmers, suitable management practices have to be made to manage the disease. Yield loss of 44 % in Ratana and 17 % in IR8 was reported by Agarwal and Verma (1978) [2]. The control of rice false smut has mostly relied on fungicides. Various fungicides such as Wenuqning (a suspension of Bacillus subtilis in a solution of Validamycin), Copper Oxychloride, Cuproxat, Simeconazole, Tebuconazole, Copper Hydroxide, Difenoconazole and Hexaconazole have been identified for the control over 70 % of rice false smut disease (Ahonsi and Adeoti, 2003; Gao et al., 2010; Liang et al., 2014; Tripathi et al., 2014, [3, 4, 72 and 107], Baggia and Kaur (2006) [10] evaluated and reported fujii one 40 EC (0.1, 0.2 and 0.3 %) and Bavistin 50 WP (0.1 %) showed that reduced the infection of incidence when applied at the booting. Treatment with Bitox 50 WP (0.3 %) and tilt 25 EC (0.1 %) were most effective. Tasuda et al. (2006) [108] studied the application of fungicide simeconazole when applied 3 weeks before rice heading which was found to be more effective against rice false smut disease. Fungicides Trioxystrobin 25 % + Tebuconazole 50 % and Propiconazole 25 EC were evaluated by in vitro and in vivo condition which showed 100 %

International Journal of Chemical Studies

http://www.chemijournal.com

~ 1600 ~
inhibition to growth of fungal mycelium. Application of Prochloraz + Carbendazim followed by chlorothalonil were effective in controlling the false smut of rice (Mohiddin et al., 2012) [80]. Raji et al. (2016) [91] reported that Propiconazole 25 EC (0.1 %) recorded lowest disease severity than other treatments and higher grain yields were obtained when sprayed at booting stage. Control of false smut was obtained by application of combination of Propiconazole + Difenoconazole and B. subtilis with Validamycin. Spray of Propiconazole and Hexaconazole were effective in controlling the rice false smut (Barnwal et al., 2010) [14]. Application of EBI fungicides such as propiconazole have been reported to control rice false smut and sheath blight (Chen et al., 2013) [27]. Pramesh et al. (2017) [89] also found that Azoxyrstrobin (18.2 %) + Difenconazole (11.4 %) SC was highly effective in the management of disease with least infected tillers and disease severity (3.43 %), (1.80) per cent, respectively. Bhargava et al., (2017) [10] It was also reported that in case of yield, Sabour ardhajal had minimum 31.42 q/ha whereas maximum yield was found in Sushak samrat (42.22 q/ha) and early sowing 15th June sown crop had maximum yield (41.20 q/ha).

Biological Control

Plant products such as leaf extracts and plant oils could also be used to control rice false smut. Raji et al. (2016) [91] studied plant extracts under *in vitro* against rice false smut pathogen which was considerably inhibited by bulb extract of Garlic (*Allium sativum*), rhizome extract of Turmeric (*Curcuma longa*), leaf extracts of Lantana (*Lantana camara*) and Bael (*Aegle marmelos*), whereas essential oils of Lemon grass (*Cymbopogon flexuosus*), Cinnamon (*Cinnamonum zeylanicum*), and Palmarsosa (*Cymbopogon martini*) have completely inhibited the growth of *U. virens*. Bacillus subtilis (Liu et al., 2007) [74] was reported to be effectively against the disease. Kannahi et al. (2016) [59] studied the antagonistic potential of 9 isolates of *Trichoderma viride*, *Trichoderma virens*, *Trichoderma harzianum* and *Trichoderma reesei* obtained from rice rhizosphere under in vitro condition and reported that all the isolates of *Trichoderma* have showed antagonistic activity against *U. virens* but among them isolate of *T. viride* showed maximum antagonistic potential. Andargie et al., (2017) [5] reported first time *Antennariella placitae* as a potential fungal endophyte effective in reducing the negative effects of rice false smut fungus (*Ustilaginoidea virens*) both in *in vitro* and *in vivo* condition.

Conclusion

Intensive cultivation of rice over depend on climatic condition, chemical fertilizers, changes in varietal profile and false smut disease of rice has emerged as one of the major threats to rice cultivation in World as well as India. The mapping of resistance genes and stable inheritance of resistance gene have been reported. Furthermore, molecular studies on isolation and characterization the QTLs responsible for resistance to false smut is needed. Development of resistant varieties through resistant QTLs and marker-assisted selection have to be considered for further research. Cultivation of resistant varieties is the best method to control disease. Another area of work that needs attention is the prediction or forecasting of the disease occurrence for better management of the disease. However, few varieties showing resistance against false smut have been reported till date, management through fungicides only has been found effective in managing false smut of rice at present and these verities are further used for the breeding purpose. Only prophylactic sprays of selected fungicides presently manage the disease. Among the fungicides tested, Triazole group of fungicides have been reported to most potential for the management of false smut. Other effective non- chemical means of control including the use of bio-control agents or plant products need to be explored.

References

1. Abbas HK, Scumbato G, Keeking B. First report of false smut of corn (*Zea mays*) in the Mississippi Delta, Plant Dis. 2002; 86:1179.
2. Agarwal, K. C. and Verma, H. L. Studies on varietal reaction and losses due to false smut disease of rice. Jawahar Nehru Krishi Vishwa Vidyalaya. Reserch Journal. 1978; 12: 26-30.
3. Ahonsi MO, Adeoti AA, Erindle ID, Alegebojo MD, Singh BN, SY AA. Effect of variety and sowing date on false smut incidence in upland rice in Edo State, Nigeria. International Rice Research Notes, 2000, 14-25.
4. Ahonsi MO, Adeoti AYA. Evaluation of fungicides for the control of false smut of rice caused by *Ustilaginoidea virens* (Cooko) Tak. Moor Journal Agriculture Resource. 2003; 4(1):118-122.
5. Andargie M, Congyi Z, Yun Y, Li J.). Identification and evaluation of potential bio control fungal endophytes against *Ustilaginoidea virens* on rice plants. World J Micribiol Biotechnol. 2017; 33(6):120-125.
6. Anonymous. Studies on biological, infection characteristic and genetic diversity of *Ustilaginoidea virens* causing rice false smut, 2012. Available on www.agrpaper.com.
7. Ansari MM, Ram TT, Sharma TVRS. Yield loss assessment in promising rice cultivars due to false smut. 1988; 25:207-209.
8. Ashizawa T, Takahashi M, Arai M, Arie T. Rice false smut pathogen. *Ustilaginoidea virens* invades through small gap at the apex of a rice spikelet before heading. J of Gen. Pl. Pathol. 2012; 78:255-259.
9. Ashrafuzzaman MH. Varietal screening under field conditions for disease resistance in rice II. Testing of rice strains for resistance to bacterial leaf blight, leaf yellowing and false smut. Phytopathology Notes, 1974, 263.
10. Bagga PS, Kaur S. Evaluation of fungicides for controlling false smut (*Ustilaginoidea virens*) of rice. J Indian Phytopath. 2006; 59:115-117.
11. Baite MS, Sharma RK, Devi TP, Sharma P, Kamil D. Morphological and molecular characterization of *Ustilaginoidea virens* isolates causing false smut of rice in India. Indian Journal of Mycology. 2014; 58(3):224-228.
12. Barah BC. Dynamics of rice economy in India: Emerging scenario and policyoptions. Social Sciences, 2007
13. Barnwal MK, Singh R. Annual Progress Report, Directorate of Rice Research (Indian Council of Agricultural Research), Rajendra Nagar, Hyderabad, India, 2011, 100-105.
14. Barnwal MK, Singh RN, Sah A, Sathi SK. Efficacy of fungicides for the management of false smut of rice under field condition. Environment and Ecology. 2010; 28:504-507.
15. Baruah BP, Senapoty D, Ali MS. False smut: a threat to rice growers in Assam. Indian Journal of Mycology and Plant Pathology. 1992; 22:274-277.
16. Bhargava P, Kumar A, Kumar S, Azad CS. Impact of fungicides and nanoparticles on *Ustilaginoidea virens* causing false smut disease of rice. *Journal of Pharmacognosy and Phytochemistry*. 2017; 7(1):1541-1544.

17. Bischoff JF, Sullivan RF, Kjer KM J.F. White JR. Phylogenetic placement of the anamorphic tribe Ustilinoideae (Hypocreales, Ascomycota), Mycologia. 2004; 96:1088-1094.

18. Biswas, A. False smut disease of rice: a review. *Environment and Ecolology*. 2001; 19: 67-83.

19. Brefeld O, Der Reis-Brand and der setria-Brand, die Entwicklung sgliederneuer Mutterkornpilz, Botanisches Centralblatt Band. 1896; 65:97-109. (in German).

20. Brooks SA, Anders MM, Yeater KM. Effect of cultural management practices on the severity of false smut and kernel smut of rice. *Plant Disease*. 2009; 93:1202-1208.

21. Brooks SA, Anders MM, Yeater KM. Effect of furrow irrigation on the severity of false smut in susceptible rice varieties. *Plant Dis*. 2010; 94:570-574.

22. BRRI. Bangladesh Rice Research Institute, Adhunik Dhaner Chash (Modern Rice Cultivation). Gazipur-1701, Bangladesh, 2013.

23. Cai H, Zhou Y. Observation and detection of Ustilaginoidea virens in inoculated rice spikelets. *J of Fungal Res*. 2009; 7(3-4):164-166.

24. Cartwright RD, Lee FN, Beaty T, Sutton EA, Parsons CE. Reaction of rice cultivars/lines to false smut, stem rot, and black sheath rot disease. *Univ. Arkansas Agric. Exp. Stn. Res. Ser.*, 2000; 476:158-168.

25. Cartwright RD, Parsons CE, Sutton EA, Lee FN. Disease monitoring and evaluation of rice varieties on Arkansas farms. In: RJ Norman and JF Meullenet (Editors), 2003.

26. Channamallikarjuna et al. Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice. *Mol Breeding*. 2010; 25(1):155-166.

27. Chen et al. Frequency distribution of sensitivity of Ustilaginoidea virens to four EBI fungicides, prochloraz, difenoconazole, propiconazole and tebuconazole, and their efficacy in controlling rice false smut in Anhui Province of China, 2013; 41:277-284.

28. Chen H, Yao K. Preliminary report of effect on rice false smut of nitrogen fertiliser application. *Jiangsu Agri Machinery and Agri Tech, 4, 2010, 15.*

29. Chen Y, Xiao Y. The capacity of germination and infection of overwintered chlamydospores of Ustilaginoidea virens (Cooke) Tak. *Acta Phytopathologica Sinica*. 1995; 22(2):102-106.

30. Chen Z, Chen Y. Studies on infecting regularity and control technology of rice false smut. *Technology and Extension of Plant Protection*. 1994; 1:8-9.

31. Chen Z, Nie Y, Liu Y. Identification of rice resistant to rice false smut and the virulence differentiation of Ustilaginoidea virens in Jiangsu Province. *Jiangsu J of Agri Sci*. 2009b; 25(4):737-741.

32. Chhottaray PK. Doctor of Philosophy Thesis, Orissa University of Agriculture and Technology, Bhubaneswar, Orissa, 1991, 175.

33. Cooke MC. Some extra–European fungi. *Grevillea*. 1878; 7:13-15

34. Dai G, Zhao J, He R, Jin, S, Nicole M. Histochemical observation on the resistant and susceptible varieties to Ustilaginoidea virens (Cooke) Tak and the way of infection of conidia. *Acta Phytopathologica Sinica*. 2005; 35(1):37-42.

35. Devi TK, Singh IN. Aerobiology and epidemiology and false smut of rice by Ustilaginoidea virens, (Syn. Claviceps oryzae sativa) in Thoubal district, Manipur. *Journal of Mycopathological Research*. 2007; 45:107-108.

36. Dodan DS, Singh R. Effect of planting time on the incidence of blast and false smut of rice in Haryana. *Indian Phytopathology*. 1995; 48(1):185.

37. Dodan DS, Singh R. Evaluation of fungi toxicants against false smut of rice. *Journal of Mycology and Plant Pathology*. 1997; 27(1):32-34.

38. Dodan DS, Singh R. Recent advances in research on cowpea diseases. *Present Status Agri Rev*. 1996; 17(4):227-240. [https://doi.org/10.1016/S0273-1177(96)90968-7]

39. Du Y, Chu M, Wang S, Xu H, Bai Y, Shao X. Preliminary research report on the rice false smut occurrence regularity and cultivation management. *Liaoning Agri Sci*. 1990; 6(2):11-14.

40. FAO. Food and Agriculture Organization. Rome, Italy, 2013.

41. Fei Y, Chen L, Yu C, Chen Z. Analysis on meteorological conditions in 2008 that caused heavy rice false smut in Chengdu Plain. *J of Anhui Agri Sci*. 2010; 38(8):4108-4109.

42. Fu R, Ding L, Zhu J, Li P, Zheng AP. Morphological structure of propagules and electrophoretic karyotype analysis of false smut *Villosiclava virens* in rice. *Jornal Microbiology*. 2012; 50:263-69.

43. Fujita Y, Sonoda R, Yaegashi H. Inoculations with conidiospores of false smut fungus to rice panicles at the booting stage. *Annual Psychopathological Society Japan*. 1989; 55:629-634.

44. Gao B, Zhong J. Research advances in infection process of Ustilaginoidea virens. *Hunan Agri Sci*. 2013; 3:93-97. [https://doi.org/10.4028/www.scientific.net/AMR.383-390.93]

45. Gao J, Han M Zhang X. Study on control effects of several pesticides on rice false smut. *J Hebei Agric. Sci*. 2010; 14:76-77.

46. gh GP, Singh RN, Singh A. Status of false smut (FS) of rice in Eastern Uttar Pradesh, India. *IRRI Newsletter*. 987; 12(2):28

47. Guo R, Wu W, Xue Q. Studies on the invasion stage of rice false smut pathogen (Ustilaginoidea virens). *Plant Protection*. 2000; 26(2):25-26.

48. Guo X, Li y, Fan J, Li L, Haung F, Wang W. Progress in the study of false smut disease in rice. *Journal Agriculture Science Technology*. 2012; 2:1211-1217.

49. Hashioka Y, Yoshino M, Yamamoto T. Physiology of the rice false smut. *Research Bulletin. Satitama Agricultural xperiment Station*. 1951; 2:1-20.

50. Hashioka Y. Rice diseases in the world VIII. Disease due to Hypocreales. *Ascomycetes (Fungal diseases-5) Riso*. 1971; 20:235-258.

51. Hong S, Jiang S, Xu X, Huang J. Effect on the occurrence of rice sheath blight and false smut of fertilizer operations. *Jiangsu Agri Sci*. 2013; 41(7):127-128.

52. Honkura R, Miura Y, Tsugi H. Occurrence of white false smut of rice plant that shows the infection route in hill. *Annual Report of Society of Plant Protection North Japan*. 1991; 42: 24-26.

53. Honkura R, Miura Y, Tsugi H. Occurrence of white false smut of rice plant that shows the infection route in hill.
54. Huang F, Li Y, Shi J, Fan J, Xu YJ. Wang WM. Screening and polymorphism analysis of rice germplasms for resistance to false smut disease in Sichuan Province. Acta Phytopathol. Sin. 2015; 46(2):247-257.

55. Huang S, Yu L. Present situation of studies on rice false smut (Ustilaginoidea virens) in China. Acta Agriculturae Jiangxi. 2000; 14(2):45-51.

56. Ikegami H. Studies on the false smut of rice VII. Analysis on the occurrence of the smut balls at the different ages. Research Bulletin Faculty of Agriculture Gifu University. 1961; 14:27-37. (in Japanese with an English summary).

57. Ikegami H. Studies on the false smut of rice X. Invasion of chlamydospores and hyphae of the false smut fungus into rice plants. Research Bulletin Faculty of Agriculture Gifu University. 1963; 18:54-60.

58. Jie Z, Jun-Zi Z, Xiang-Hua L, Dan C, Hong-Jian Z, Bi-Da G. Complete genome sequence and organization of a novel virus from the rice false smut fungus Ustilaginoidea virens. Virus Genes. 2014; 48:329-333.

59. Kannahi M, Dhivy S. Senthilkumar R. Biological control on rice false smut disease using Trichoderma species. Int. J Pure App. Biosci. 2016; 4(2):311-316.

60. Koiso Y, Li Y, Iwasaki S, Hanaoka K, Kobayash T, Sonoda R, Fujita Y, Yabgashi H, Sato Z. Ustiloxins, Antimitic cyclic peptides from false smut balls on rice panicles caused by Ustilaginoidea virens. Journal of Antibiotics. 1994; 47:765-773.

61. Kulkarni CS, Moniz L. False smut of rice - an airborne disease. Current Science. 1975; 44:483-484.

62. Kumar S, Dwivedi SK, Kumar R, Bhakta N, Prakash V, Rao KK, Samal SK, Yadav S, Kumar K, Jaiswal, Kumar SS, Sharma BK, Mishra JS. Evaluation of Rice Genotypes for Resistance against False Smut of Rice (Oryza sativa L.) under Middle IGP of Bihar, International Journal of Current Microbiology Applied Science. 2017; 6(4):537-54.

63. Kumari S, Kumar J. Evaluation of yield losses and management practices of false smut in rice (Oryza sativa). Indian Phytopathology. 2015; 68:45-49.

64. Ladhalakshmi D, Laha GS, Krishnaveni D, Prakasam V, Prasad MS. Evaluation of selected fungicides against rice false smut disease. 3rd International conference on Agriculture and Horticulture October, 2014, 27-29.

65. Ladhalakshmi D, Laha GS, Singh R, Karthikeyan A, Mangrauthia SK, Sundaram RM, Thukkaiyannan P, Viraktamath BC. Isolation and characterization of Ustilaginoidea virens and survey of false smut disease of rice in India. Phytoparasitica. 2012; 40:171-76.

66. Li W, Li L, Feng A, Zhu X, Li J. Rice false smut fungus, Ustilaginoidea virens, inhibits pollen germination and degrades the integuments of rice ovule. American Journal of Plant Sciences. 2013; 4:2295-2304.

67. Li Y, Yang J, Huang SD, Wang C L. Analysis on quantitative trait loci for resistance to rice false smut under different environmental conditions. Agricultural Science & Technology. 2014; 15(3):449-452.

68. Li Y, Huang S, Yang J, Wang C. Analysis of quantitative trait loci for resistance to rice false smut. Acta Agronomica Sinica. 2011; 37(5):778-783. https://doi.org/10.3724/SP.J.1006.2011.00788.

69. Li Y, Zhu Z, Zhang Y, Zhao L, Wang C. Genetic analysis of rice false smut resistance using major gene plus polygene mixed genetic model. Acta Agriculturae Sinica. 2008; 34(10):1728-1733. https://doi.org/10.1016/S1875-2780(09)60007-9.

70. Li YG, Kang BJ, Zhang BD, Zeng HZ, Xie KX. A preliminary study on rice false smut. Guangdong Agricultural Science. 1986; 4:45-47.

71. Li YS, Zhu Z, Zhang YD, Zhao L, Wang CL. Genetic analysis of rice false smut resistance using mixed major genes and polygenes inheritance model. Acta Agron Sin. 2008; 34:1728-33.

72. Liang Y, Zhang X, Li D, Huang F, Hu P, Peng Y. Integrated approach to control false smut in hybrid rice in Sichuan Province, China. Rice Sci. 2014; 21:354-360.

73. Liao Q. Studies on the sclerotium of Ustilaginoidea virens (Cooke) Tak. J of Yunnan Agri Univ. 1994; 9(2):101-104.

74. Liu C, Chen Z, Zhang G. First exploration of invasion period and its pathogenic factor of rice false smut (Ustilaginoidea virens). Modern Agri Sci and Tech (Plant Protection). 2007; 21:68-70.

75. Liu J, Tang T, Zhang S, Zheng H. Preliminary studies on initial infection sources and pathogen-infecting favorable stage for rice false smut. Hybrid Rice. 2009b; 24(1):74-77.

76. Lu D, Mao J, Wang P, He Z, Chen F. Resistant difference of indica rice hybrid varieties to rice false smut. Acta Phytopathologica Sinica. 2008; 35(4):289-294.

77. Lu DH, Yang XQ, Mao JH, Ye HL, Wang P, Chen YP. Characterising the pathogenicity diversity of Ustilaginoidea virens in hybrid rice in China. Journal of Plant Pathology. 2009; 91:443-51.

78. Lu F, Chen Z, Chen Y. Studies on biological characteristics of rice false smut pathogen and some uncertain key points related to the infection cycle of the disease. Journal of Agricultural Sciences. 1996; 12: 35-40.

79. Mandhare VK, Gawade SB, Game BC, Padule DN. Prevalence and incidence of bunt and false smut in paddy (Oryza sativa L.) seeds in Maharashtra. Agri Sci Digest. 2008; 28:292-294.

80. Mohiddin FA, Bhat FA, Gupta V, Gupta D, Kalha CS. Integrated Disease Management of False Smut of Rice Caused by Ustilaginoidea virens. Trends Bioniscience. 2012; 5(4):301-302.

81. Nakamura K, Izumiyama N, Ohtsubo K, Koiso Y, Iwasaki S. “Lupinosis” like lesions in mice caused by ustiloxin produced by Ustilaginoidea virens, a morphological study. Natural toxins. 1994; 2:22-28.

82. Ou SH. False Smut (Green Smut). In S. H. Ou (Ed.), Rice Diseases. 2nd ed., pp. 307-311. Commonwealth Mycology Institute, Farnham Royal, UK, 1985.

83. Ou SH. Rice Diseases. Commonwealth Mycological Institute (Commonwealth Agricultural Bureaux), Kew, Surrey, UK, 1972, 288-295.

84. Pan X, Li K, Zhang S. Studies on the relationship between occurrence degree of rice false smut (Ustilaginoidea virens) and meteorological factors. Hebei Agri Reclamation Sci & Tech. 1997b; 2:9-12.

85. Pan X, Li K. Effect of total nitrogen fertilizer, dosage of panicle fertilizer and application period of earing fertilizer on the occurrence degree of rice false smut (Ustilaginoidea virens). Hebei Agri Reclamation Sci & Tech. 1997a; 2:6-9.

86. Pan X, Zhang S, Gao J, Zhang X. Effect of nitrogen and phosphatic fertilizer on the occurrence degree of rice false smut. Journal of Agricultural Sciences. 1996; 12: 35-40.

Annual Report of Society of Plant Protection North Japan. 1995; 42:24-26.

Prevalence and incidence of bunt and false smut in paddy (Ustilaginoidea virens) and meteorological factors. Hebei Agri Reclamation Sci & Tech. 1997b; 2:9-12.

Effect of total nitrogen fertilizer, dosage of panicle fertilizer and application period of earing fertilizer on the occurrence degree of rice false smut (Ustilaginoidea virens). Hebei Agri Reclamation Sci & Tech. 1997a; 2:6-9.

Effect of nitrogen and phosphatic fertilizer on the occurrence degree of rice false smut. Journal of Agricultural Sciences. 1996; 12: 35-40.
false smut (Ustilaginoidea virens). Hebei Agri Sci. 1993; 1:18-20.
87. Pannu PPS, Thind TS, Goswami S. Standardization of technique for artificial creation of false smut of rice and its management. Indian Phytopathology. 2010; 63:234-35.
88. Panwar AS. Studies on management of false smut of rice caused by *Ustilaginoidea virens* (cke). M.Sc. Thesis. JNKV Jabalpur, 2012.
89. Pramesh D, Muniraju KM, Mallesh SB, Mallikarjun K, Guruprasad GS. Novel Fungicides for the Management of False Smut Disease of Rice Caused by *Ustilaginoidea virens*. International Journal of Current Microbiology and Applied Sciences. 2017; 6(11):2664-2669.
90. Qing T, Zhang Z, Zhang C, Chai R. Effect of fertilization level of nitrogen phosphorus and potassium on the damage of rice false smut (*Ustilaginoidea virens*). Zhejiang Agri Sci. 2014; 2:225-226.
91. Raji P, Sumiya KV, Renjisha K, Dhanya S, Narayanankutty MC. Evaluation of fungicides against false smut disease of rice caused by *Ustilaginoidea virens*. International Journal of Applied and Natural sciences. 2016; 5:77-82.
92. Rani R, Sharma VK, Lore JS, Pannu PPS, Kaur Y. Screening of rice germplasm against *Ustilaginoidea virens*, the incident of false smut. Agricultural Research Journal. 2016; 53:134-137.
93. Rani R. Variability in Ustilaginoidea virens (Cke.) Tak. Causing False Smut of Rice and Identification of Resistance Sources, PhD thesis, Department of Plant Pathology, College of Agriculture, Punjab Agricultural University, Ludhiana–141004, India, 2014.
94. Rao GP, Reddy VTC. Occurrence of *Ustilaginoidea virens* (Cke.)Tak. On *Oryza officinalis* Wall. Indian Phytopathology. 1955; 8:72-73.
95. Rathaiah Y, Bhattacharyya A. Sclerotia of false smut of rice from Assam, India. International Rice Research Notes. 1993, 18-48.
96. Rush MC, Shahjahan AKM, Jones JP. Outbreak of false smut of rice in Louisiana. Plant Dis. 2000, 84-100.
97. Sanghera GS, Ahanger MA, Kashyap SC, Bhat ZA, Rather AG, Parray GA. False smut of rice (*Ustilaginoidea virens*) under temperate agroclimatic conditions of Kashmir, India. Elixir Bio Technology. 2010; 1255.
98. Sharma ND, Joshi R. Effect of different nutrient media on the growth and sporulation of *Ustilaginoidea virens* (cooke) Takahashi. Current Science. 1975; 44:352-54.
99. Shetty SA, Shetty HS. A hitherto unrecorded collateral host of *Ustilaginoidea virens* (Cke) Tak. Current Science. 1985; 54:646-647.
100. Singh R, Dodan DS, Sunder S, Sharma SK. Efficacy of fungitoxicants against false smut of paddy. 2002; 32:89-90.
101. Singh RA, Dube KS. Occurrence of true sclerotia in *Claviceps oryzae sativae* the causal organism of false smut of rice. Current Science. 1976; 45:772-773.
102. Singh RS. Plant Diseases. 6th Ed. Oxford and IBH Publication. New Delhi, pp. 1990; 25:1255.
103. Singh, A. K. and Singh, R. N. Screening for resistance to false smut (*Ustilaginoidea virens* Takahashi) of rice (*Oryza sativa* L.). Indian Journal Genetics. 2005; 65: 49-50.
104. Sunder S, Ram Singh, Dodan DS, Ram L and Battan KR. Estimation of yield losses due to bacterial blight and false smut of rice. Plant Disease Research. 2005; 20:87.
105. Tanaka E, Ashizawa T, Sonoda R, Tanaka C. *Villosiclava virens* gen. nov., comb. nov., teleomorph of *Ustilaginoidea virens*, the causal agent of rice false smut. Mycotaxon. 2008; 106:491-501.
106. Tang S, Gao D, Chen Y, Li Y. Study on the false smut resistance of new rice combinations (lines) from the middle and lower Yangtze River and Hunan regional trials. Journal of Agriculture. 2012a; 2(8):28-32.
107. Tripathi S, Mishra P, Sinha AP. *In-vitro* evaluation of fungicides against *Ustilaginoidea virens* (Cke.) Takahashi, the incitant of false smut of rice. International Journal of Basic and Applied Agricultural Research. 2014; 12(3):379-381.
108. Tsuda M, Sasahara M, Ohara T, Kato S. Optimal application timing of simeconazole granules for control of rice kernel smut and false smut. J G Plant Pathol. 2006; 72(5):301-304.
109. Wang D, Wang S, Fu J. Research advance on false smut of rice. Liaoning Agri Sci. 2004; 1:21-4.
110. Wang G. Studies on the infection period and the infection gate of the chlamydospores of *Ustilaginoidea virens* (Cooke) Tak on rice. Acta Phytopathologica Sinica. 1992; 19(2):97-100.
111. Wang H, Lin F. Research progress of rice false smut (*Ustilaginoidea virens*). Acta Agriculturae Zhejiangensis. 2008; 20(5):385-390.
112. Wang S, Pan Y, Fan J, Liu X, Yang H, Dong H, Zhou Y. PCR testing of rice false smut pathogen (*Ustilaginoidea virens*) on rice plants at reproductive stage. Liaoning Agri Sci. 2005a; 5:46-47.
113. wang S, Qin S, Liu M, Li Y, Dong H, Sun B. Effects of different cultivation modes on the occurrence degree of the rice false smut. Plant Protection. 2010; 36(6):165-167.
114. Wang YQ, Fan RH, Yang BH, Liu B, Zhang J Z, Hu DW. Comparison of isolation methods for, *Ustilaginoidea virens* the pathogen of rice false smut. Mycosystema, (Abst), 2010.
115. Webster RK, Gunnell PS. Compendium of Rice Diseases. American Phytopathological Society, St. Paul, Minnesota, USA, 1992.
116. Xia S. Disease and insect pests in hybrid rice in China. Procedure of the International symposium on: hybrid rice. Los Bonos, Laguna IRRI, 1989, 270.
117. Xu C, Xie G. Research status of rice false smut (*Ustilaginoidea virens*) at home and abroad. Seed. 2001; 6:31-33.
118. Xu J, Xue Q, Luo L, Li Z. Preliminary report on quantitative trait loci mapping of false smut resistance using near-isogenic introgression lines in rice. Acta. Agriculturae Zhejiangensis. 2002; 14(1):14-19.
119. Yan, L., Xue Mei, Z., De Qiang, L., Fu, H., Pei Sing, H. and Yung Liang, P. Integrated approach to control false smut in hybrid rice in Sichuan province, China. Rice Science.2014; 21(4): 354-360.
120. Yang X. Occurrence condition, forecasting and management of rice false smut in southeast of Guizhou Province. Guizhou Agri. Sci. 2007; 35(1):100-101.
121.Yao L, Ye H, Hu R, Wu J, Lu D, Mao J, He Z. Preliminary research on infection mechanism of rice false smut (*Ustilaginoidea virens*). Southwest China J of Agri. Sci. 2012; 25(4):1273-1276.
122. Yashoda H, Anahosur KH, Kulkarni S. Influence of weather parameters on the incidence of false smut of rice. Advances in Agriculture Research in India. 2000; 14:161-165.

123. Zhang et al. Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nature Communications. 2014; 5:3849 (doi: 10.1038/ncomms4849).

124. Zhang JC, Zhang BX, Chen ZY, Liu YF, Lu F. Preliminary study on inoculation method of rice false smut and its effect. Chinese Journal Rice Science. 2003; 17:390-92.

125. Zhou Y, Xie X, Wang S, Pan Y, Liu X, Yang H, Li Z. Detection of Ustilaginoidea virens from rice fields and plants by nested PCR. J of Agri. Biotech. 2006; 14(4):542-545.

126. Zhou YL, Izumitsu K, Sonoda R, Nakazaki T, Tanaka E, Tsuda M, Tanaka C. PCR-based specific detection of Ustilaginoidea virens and Ephelis japonica. J of Phytopathol. 2003; 151(9):513-518.

127. Zuo G, Ran X, Du S, Zhang S, Tian S. Studies on the original source of infection of rice false smut. Chinese Agri. Sci. Bull. 1996; 12(5):17.