Abstract
This paper presents a basic study for developing a new adhesion improvement method for railway vehicles, focusing on the tangential force characteristics between wheels and rails. In our previous studies, the following phenomena have been confirmed. First, the tangential force of the wheel/rail is increased by repeated rolling and sliding frictional force, and the tangential force is stabilized by the oxide film covering the contact surface. In addition, the tangential force under the condition where the humidity around the contact surface is low tends to be larger than that under high humidity condition. And finally, these phenomena indicate that the friction coefficient of wheel/rail can be increased by instantaneously reducing the humidity around the contact surface. Therefore, in this paper, we propose a method for improving the frictional force that reflects the above-mentioned results in our previous studies. In the proposed method, assuming that it is applied to re-adhesion control of railway vehicles, the frictional force of the wheel/rail contact is temporarily increased by lowering the humidity around the contact surface by injecting dry nitrogen gas less than 30% humidity. To verify the proposed method, using a pair of the small cylindrical specimen, tangential force was measured under the conditions with different humidity. In addition, in order to confirm the effect on the braking performance of actual railway vehicle, numerical analysis was carried out. As a result, the experimental result showed the frictional force is increased by up to approximately 40% under high humidity condition, and it was confirmed by the numerical analysis that the proposed method has an improvement effect on the reduction of braking distance during dry nitrogen gas injection even if the humidity condition around the contact surface is high.

Keywords: Railway, Wheel/rail, Adhesion, Frictional force, Gas injection, Humidity, Braking distance
背景には、車輪とレールの接触面圧は極めて高く異質で汎用性がないことから研究対象とされにくいこと、このような接触条件下適応できる測定機器が少なく接触面で生じる現象を詳細に把握できないことなどがあり、車輪とレールの接触面に関する研究に限られた進展が見られない一因となっていると考えられる。

このことから著者は、接触形状と表面性質に着目した研究により、さまざまな環境条件での車輪とレール間の接線力特性が、その接触面形状（コンタクトバッチ）と表面状態の少なくとも2つの要因と深い関係にあることを明らかに示してきた。具体的には、車輪削正後と同様の表面状態のときの接線力の増加・減少メカニズムは、その増加過程では接触面の繰り返しの転がり・すべり摩擦力（接線力）が加わり、接触面に微細な剥離が連続的に生じることで疑者は促進されたことをによるもの、その減少過程ではコンタクトバッチが不完全な面接触から摩耗による表面粗さの突起部で局所的な接触形態に変わり、接触面積が減少したことによるものと結論づけている（山本、2019）。

また、詳細は次報に譲るが、接触面に介在する水膜厚さといった水潤滑条件に依存する接線力特性は、乾燥条件と同様で、接線力は繰り返しの転動接触で増加したのち水膜条件に応じた値で飽和する傾向を示すことを確認している。鉄道の実用速度の範囲では車輪とレールは水膜により完全に遮断されないことを考慮すると、水潤滑条件での接線力特性は乾燥条件の特性の応用により推定できることになる。このことは、乾燥条件で有効となる車輪とレール間の接線力向上手法は、水潤滑条件でも同様に有効となり得ることを意味する。

本研究では、上のように実験的に明らかとした車輪とレール間の接線力特性を踏まえ、車輪とレール間の接線力特性を適切に変化させることで、鉄道車両の走行性能を向上させることを考える。本稿では、車輪の空転・滑走が誘発されやすい接触面の摩擦係数が低い環境下を対象に、湿度30%未満の乾燥ガス（以下、乾燥ガスと記す。）を接触面に噴射することで接触面を一時的に増加させ接線力を一時的に増加させることを提案する。さらに、本手法の妥当性の検証のため実施した、乾燥条件での小型円筒試験片を用いた2次元推がり接触実験について述べるとともに、本手法を実際の鉄道車両に適用することを想定し、制動性能時の停止距離の短縮効果について数値解析で検討する。本稿では、実験および数値解析の結果に基づき、本手法の実現可能性とその適用範囲について述べる。

2. 乾燥条件における接線力特性とそのときの車輪とレール間の接線力向上手法の提案

2・1 乾燥条件における接線力特性

乾燥条件における接線力特性は、接触面の周辺湿度によって大きく影響を受けることを、既報（Yamamoto, 2013）で述べた（図1）。この中で、3章で後述する鉄道総研の転がり・すべり摩擦力試験機を使った接線力測定実験から、接触面の周辺湿度が30％のときと60％のときでは、前者の接線力係数（狭義の意味から、接線力係数が飽和し最大値となったものを摩擦係数と区別する場合があるが、本稿では、これらの変動値を一括して接線力係数と

(a) An example of the characteristics of the tangential force using small cylindrical specimens(Yamamoto, 2013)

(b) Schematic figure of the contact surfaces in the case of the low/high humidity condition

Fig. 1 Characteristics of the longitudinal tangential force coefficient under the different humidity conditions. There is a tendency that the longitudinal tangential force coefficient under 30% in humidity is larger than that under 60% in humidity. This is because, there are a lot of water molecules around the contact surface of specimens under the high humidity condition, and friction coefficient becomes small due to the high lubrications.
記す。）の方が最大 0.05 程度大きい結果が得られている（図 1（a））。
接触面の周辺湿度の違いにより接線力係数に差異が生じた理由を、大気中における試験片の接触面を模式図（図 1（b））で説明する。大気中では試験片の接触面は水分を含む空気により潤滑されていると考えることができる（社団法人トライボロジー学会，2012）。このとき、接触面には水蒸気状の水分が付着しており、接触面の周辺湿度が高い条件ではこの水分量が多いことをになると、水分量が多いと接線面の潤滑効果が増すので、接触面の周辺湿度が高い条件ほど、接触面で作用する接線力は小さいと考えられる。図 1 の実験結果は、この原理に基づくものである、接触面の周辺湿度を低く保つことが接触面で作用する接線力を大きくする手段として有効となることを示唆している。

2・2 車輪とレール間の接線力向上手法の提案

本研究では、接触面周辺の湿度が高い環境下のとき、車輪とレール間に作用する接線力を一時的に増加させる
ことを考え、乾燥ガスを接触面に噴射する手法を提案する。これまでの鉄道では、鉄道車両の起動時から低速走行時までに発生する空転・滑走を低減する手法として、車輪とレールの接触面に向けて砂を撒くことが広く行われている。また、鉄道車両が高速走行するときに発生する空転・滑走を低減するため、車輪とレールの接触面に向けた微粒のアルミナを噴射する手法が開発（大野他，1995）され、この手法に基づく車上装置が新幹線電車などに搭載されている。これらの手法は、車輪とレール間に固形物を供給することで得られるくさび効果を活用したものであり、雨天時などの水潤滑条件下では接線力の向上が期待できる。その一方で、これらの手法を乾燥条件で用いた場合には接線力が低下することがあり（Lewis and Dwyer-Joyce，2006）、通常ブレーキ時など可能な限り早く鉄道車両を停止させたいときには逆効果となることが考えられた。本提案手法は、これらの手法のようにくさび効果を期待するものではなく、乾燥ガスを接触面に噴射することにより、車輪とレール間の低下した摩擦係数をこのときの接触条件で周辺湿度が低下したときに得られる最大値に近づける効果を期待し、従来の研究にはない新しい発想に基づく手法である。

本提案手法の説明の前に、接触面で作用する接線力の増加・減少メカニズムを図 2 の模式図で説明する。この図は、3，4 章で後述する実物車両とレールの接触を一対の小型円筒試験片の接触で模擬した接線力測定実験で観察された接触面の表面性状の変化の過程を、4 つのフェーズに分類したものである（山本，2019）。

左端の Phase I では、鉄道の現場で定期的に実施されている専用の旋盤で車輪を削正した後の滑らかな表面状態と同等の表面粗さを有する一対の試験片が転動接触している状態を表す。試験片を僅かに異なる回転速度で転動接触させると、接触面には微小なすべり率が生じ接線力が作用する。接触面に微小なすべり率が生じた状態で転動接触を継続すると、接触面から次第に微細な金属粉が剥離しこの部分には金属素地が現れる。金属素地が表面に現れると、これが活性化して凝着が促進されるため接線力がゆっくりと増加する。このとき同時に、金属素地は大気中の酸素と触れることで、接触面には瞬間に酸化膜が生成する。このように接触面から微細な金属粉の剥離が増加することにより接線力と接触面の表面性状が時間の経過とともに過渡的に変化する過程を Phase II と定義する。一方で、酸化膜は接触面を潤滑する効果があるため、接線力は接触面の周辺湿度の環境に応じた値で飽和すると考えられている（鈴木，2007）。このとき、すべり率が微小のときは接触面が濃い茶褐色に変色し、接線力は全過程において最大値となり安定状態が観察される。この状態を Phase III と定義する。ここから接線力は減少メカニズムに転じる。さらに接線力の変化を転動接触を行うと摩耗や塑性流動により接触面が荒れ始め、一様な面接触から表面粗さによる微小な突起部での局所的な接触形態に変化するため、接線力は若干小さくなる。この過程を Phase IV と定義する。

ここで、実際の車輪とレールの接触形態を考えたとき、鉄道車両の走行によりレール側の接触位置は時々刻々変化するため、2 円筒転がり接触実験ではこれを模擬できないと考えられることがある。このことは、摩耗に起因してコンタクトバッチが局所的に変化する場合や環境条件が時々刻々変化する場合を考慮した実際の車輪とレール間の接触面特性を、1 回の 2 円筒転がり接触実験で推定することが難しいことから一定の理解はできる。しかしながら、過去に実施したさまざまな条件における 2 円筒転がり接触実験（山本，2014，2019）（Yamamoto，2013，2018）では、乾燥および水潤滑条件の接線力特性はコンタクトバッチと表面性状の状態に応じて、図 2 と同様の過程で変化することが確認されており、接触面で作用する接線力の増加・減少メカニズムは本質的に同様であることが分かっている。さらに、当然ながら、2 円筒転がり接触実験の実験条件は、実際の車輪とレール間の一つ
ひとつの条件を模倣したものである。すなわち、円筒転がり接触実験の1条件から得られた現象は、少なくとも実際の車輪とレール間で生じる1つの現象を表したものであるとともに、前述したさまざまな条件における円筒転がり接触実験で得られた接線力特性が本質的に同様であることを考慮すると、実際の車輪とレール間の共通する多くの現象を表したものとも言うことができる。

次に、本提案手法の原理を、上記で述べた試験片の表面性状と接線力の増加・減少メカニズムの関係を対比しながら説明する。図3は、車輪とレールの接触面付近を示す模式図である。図3 (a)が本手法を適用しない通常の接触面の状態を表したもの、図3 (b)が通常の接触面に本提案手法を適用したときの状態を表したものである。

図3 (a)、(b)とともに、中央の青色二点鎖線は車輪とレール間のコンタクトパッチである。トルクにより車輪が赤色矢印の方向に回転するとき、コンタクトパッチの進行方向後端にあるすべり領域では、接線力の作用により微小な突起が剥離し金属素地が表面に現れる。

図3 (a)の通常の接触面のときは、金属素地は大気中の酸素と反応し、ここに酸化膜が生成するため、図2の過程と同様に、接線力は接触面の周辺湿度の環境に応じた値で飽和する。

一方、図3 (b)の本提案手法を適用した接触面のときは、コンタクトパッチ内のすべり領域に向けて乾燥ガスを噴射することで、図1の実験結果と同様に、接触面の周辺湿度が急激に低下し、接触面で作用する接線力が大きくなると考えられる。ここで、接線力をさらに大きくするため、接触面での酸化膜の生成を遅らせることを考える。接触面での酸化膜の生成を遅らせるには、接触面周辺を真空状態にすることが最適である。しかし、現実
乾燥ガスを接触面に噴射する手法の妥当性を検証するため,鉄道総研の転がりすべり摩擦力試験機を用いて接線力測定実験を実施した.本試験機は,著者がこれまで車輪とレール間の接触面圧を模倣した一連の実験 (山本, 2014, 2019) (Yamamoto, 2013, 2018)で使用したものと同じである.実物車輪とレールの接触を直径30mmの2つの小型円筒試験片の接触で模擬し,実物車輪とレール間の接触面圧と同等の値となる垂直荷重で互いに押し付けながら両者の間に異なる周速度で回転させることで,試験片の接触面に接線力を作用させる.このとき,接触面の状態から判断したタイミングで乾燥ガスを接触面に噴射した.乾燥ガス噴射による接線力向上効果は,「乾燥ガス噴射中の接線力係数の平均値」を「乾燥ガスの噴射前の30秒間の接線力係数の平均値」で割って求めた「接線力係数の増加率」で評価した.

3.2 実験装置
実験装置を図4に示す.実験装置は,鉄道総研の転がりすべり摩擦力試験機と乾燥ガス噴射装置を組み合わせ
せた構成とした。乾燥ガス噴射装置は、ガスボンベ（容量7000m³）の頂部に取付けた調整器の2次側端部に、直径7mmのウレタン製ホースを接続した簡易なものである。

接線力測定実験では、調整器を手動操作することでガスボンベからウレタン製ホースを介し、その開口端から試験片の接触面に向け乾燥ガスを噴射した。このときの噴射圧力は調整器2次側の圧力計で0.8MPaであった。ウレタン製ホースの開口端は、試験片の接触面の位置から15mm程度水平方向に離れた位置とした。

3・3 小型円筒試験片の仕様

車輪側試験片とレール側試験片は、それぞれ実物車輪と実物レールから切り出して製作した直径30mm、幅8mmの小型円筒試験片とした（図5）。それぞれの試験片の相互に接触する部分は、そのコンタクトパッチが楕円形状となるよう平滑形状にするとともに、レール側試験片の断面形状のみ直径300mmの円弧形状とした。接触面の表面粗さは0.2〜0.5μmである。これらの試験片の仕様は、著者が過去に実施した一連の接線力測定実験（Yamamoto, 2013, 2018）（山本, 2014, 2019）の結果と比較できるよう同一定としている。接線力測定実験では、試験片の表面の汚れや油分を除去するため、全ての試験片を石油エーテルに浸した状態で15分間の超音波洗浄を行い、完全に乾燥したものを使用した。

![image](a) Wheel specimen
![image](b) Rail specimen

Fig. 5 Wheel specimen and rail specimen. The wheel specimen and the rail specimen were made from the actual wheel and the actual rail respectively. The maximum diameters of all specimens are 30mm. In order to make the contact patch between specimens elliptic, the contact surfaces of wheel specimen and rail specimen are flat shape and an arc shape which has a radius of 300mm respectively.

3・4 実験条件

接線力測定実験の実験条件を表1に示す。過去に実施した数多くの接線力測定実験（Yamamoto, 2013）（山本, 2019）では、通常の外気温度として起こり得る範囲（8℃程度〜30℃程度）においては、試験片周辺温度が接線力特性に及ぼす影響は確認されていない。このため、本稿の実験では、チャンバー内の環境を標準基準温度である20℃程度一定とし、試験片の周辺湿度を変えたときの乾燥ガス噴射による接線力向上効果の検証を行う。

Vertical load [N]	450
Rotational velocity [rpm]	100, 1000
Longitudinal slip ratio [%]	0.3, 0.8
Attack angle(Yawing angle) [deg.]	0

3・5 乾燥ガスの成分

本稿では、乾燥ガスとして工業用窒素ガス（岩谷産業製）を使用した。窒素は大気中に存在する気体の約70%を占める不活性ガスの一つで比較的安価に入手できる利点がある。

本手法の妥当性を検証するための接線力測定実験に先立ち、実験で使用した窒素ガスの特性を把握する。ガスボンベ内の温度と湿度を直接測定することは困難であるため、本稿では、USB温度湿度ロガーLogStick LS350-TH（大
阪マイクロコンピュータ製）を入れたポリ袋（縦 85mm×横 65mm）内に窒素ガスを噴射し、そのとき測定した袋内の温度と湿度をガス単体のものとした。表2に測定結果を示す。
なお、湿度のばらつきが大きいのは、ポリ袋の密閉が厳密でないことによる。

表2 Temperature and humidity in gas cylinder.

	Temperature[℃]	Humidity[%]
Maximum	25.52	6.2
Minimum	22.28	0.01
Average	23.5	2.03

4. 接線力測定実験の結果

4・1 乾燥ガス噴射による接線力向上効果

乾燥ガス噴射による接線力向上効果を図6に示す。垂直荷重、回転数、前後方向の接線力係数、試験片周辺の温度と湿度を図6（a）～（d）にそれぞれ示す。実験条件は、垂直荷重450N（接触圧は計算値で約1GPa）、すべり率0.8％、試験片周辺の湿度は約80％、乾燥ガスの噴射圧力は0.8MPa、試験片の回転数は100rpmと1000rpmとした。また、乾燥ガスの噴射時期は、100rpmのときは桃色網掛け部、1000rpmのときは水色網掛け部の範囲である。

図6（c）から、接線力測定実験の開始から3分程度で接触面に茶褐色の酸化膜が生成し、接線力係数は最大値に達するとともに、その後はしばらくその状態で安定している。

最初に、接線力係数が最大値となり飽和傾向を示す範囲で、乾燥ガス噴射による接線力向上効果を調査する。このときの接触面の状態、図2の平滑な状態（PhaseIII）である。実験開始5分後から0.8MPaで1分間連続して乾燥ガスを噴射すると、接線力係数は乾燥ガス噴射前と比べて4.6％程度の増加が認められた。乾燥ガスの噴射を止め、接線力測定実験を継続すると、接触面の摩耗により表面粗さが大きくなるため、接触形態が一様でない面接触から接触面の微細な凹凸の突起部で接触する形態に変化する。これにより、接線力係数は実験開始から約8分後には若干低下するとともに、その後、再び安定する傾向となっている。この接線力特性の過程は、過去に実施した実験（山本、2014, 2019）(Yamamoto, 2013, 2018)でも同様の傾向が認められていることから、一般的な実験結果といえる。

次に、このように接触面が摩耗した状態のとき、乾燥ガス噴射による接線力向上効果を調べる。実験開始30分後と33分後にそれぞれ0.8MPaで1分間連続して乾燥ガスを噴射すると、接線力係数はそれぞれ約17.9％と約38.4％の増加が認められた。さらに、試験片の回転数を速くした条件での接線力向上効果を調査する。試験片の回転数を1000rpmとし同様に乾燥ガスを噴射すると、実験開始37分後と40分後に接線力係数はそれぞれ約22.8％と17.5％の増加が認められた。これらの結果から、試験片の回転数に関わらず、乾燥ガス噴射と同じタイミングで接線力係数は急激に立ち上がり、乾燥ガス噴射中の接線力係数は安定して大きな値となることが分かった。

なお、図6（a）の垂直荷重の時系列波形が一定であることから、試験片間の接触面圧は一定の状態が保たれていることから、乾燥ガス噴射の有無により試験片間の接触面圧の変化はないと考えられる。また、図6（d）に示す接触面の周辺湿度の時系列波形から、乾燥ガス噴射のタイミングで湿度が急激に低下している。これは、乾燥ガス噴射により一時的にチャンバー内が乾燥した窒素で満たされたためである。

一方で、試験片の回転数が同じ条件でも、乾燥ガス噴射による接線力向上効果にばらつきが認められる。この一因として、2・2節で述べた試験片間の接触形態および接触面の表面性状の違いによる影響が考えられる。この点については以降で詳細に検討する。

以上、接触面の周辺湿度が80％程度と高い条件のとき、乾燥ガスを接触面に噴射すると接触面に作用する接線力が向上することが分かった。
4・2 乾燥ガスの噴射方向と接線力向上効果の関係

図7 (a), (b) に示す2通りとした。接触面に対して前方から噴射（前方噴射）したときを青色〇印、同じく後方から噴射（後方噴射）したときを緑色□印とし、それぞれの接線力向上効果を図7 (c) に示す。縦軸は乾燥ガス噴射前の接触力係数の増加率で、横軸は接触面の周辺湿度である。実験条件は、すべり率0.8%，回転数100rpmである。

図7 (c) から、前方噴射と後方噴射のときの乾燥ガス噴射による接線力向上効果は、それぞれ接線面の周辺湿度が高い条件ほど同様に高いことが分かる。一方で、両者の接線力向上効果には明確な差異が認められない。このような2・2節と異なる傾向を示した理由は、ウレタン製ホースの直径が試験片間のコンタクトパッチに対して大きく、前方および後方噴射ともにコンタクトパッチ全体に乾燥ガスが十分行き渡ったことが影響したと考えられる。本実験条件における試験片のコンタクトパッチをHertz理論に基づき数値計算で求めると、幅方向が

© The Japan Society of Mechanical Engineers
3.0mm程度、長手方向が0.2mm程度で、ウレタン製ホースの直径7mmに対して小さいことが分かる。この場合、試験片の接触面に向けて乾燥ガスを噴射すると、前後いずれの方向においても、この部分に侵入できなかった乾燥ガスがその周囲を囲む形態で噴射方向の逆側に流れるため、試験片のコンタクトパッチ全体が乾燥ガスで充満した状態となると考えられる。このため、今回の実験条件では、乾燥ガスの噴射方向の違いが接線力向上効果に及ぼす影響が顕著でなかったと考えられる。

なお、鉄道車両はレール上を同じ速度で前後進する乗り物である。本手法を実際の鉄道車両に適用する場合、砂まき装置のように車輪に対して前後方向から挟み込むように噴射ノズルを設置し、進行方向や運転条件に応じて片側または両側のノズルから車輪とレールの接触面に向けて乾燥ガスを噴射制御する方法が考えられる。

4.3 接触面の周辺湿度と接線力向上効果の関係
接触面の周辺湿度と乾燥ガス噴射による接線力向上効果の関係を図8（a）に示す。縦軸はそれぞれ乾燥ガス噴射前後の接線力係数の増加率と接触面の周辺湿度を示す。すべり率は0.3％、0.8％の2通りとした。

図8（a）では、乾燥ガスの噴射方向を考慮せず同様に扱うこととする。最初に、接触面の周辺湿度の違いによる接線力向上効果について考察する。図8（a）から、接触面の周辺湿度が40％程度と低いときの乾燥ガス噴射による接線力向上効果は、すべり率0.8％のとき最大10％程度で大きくない。しかしながら、っぱつきがあるが接触面の周辺湿度が80％程度と高いときの乾燥ガス噴射による接線力向上効果は、すべり率0.8％のとき最大40％程度で大きい。このように接線力向上効果に差異が生じたのは、接触面の周辺湿度と乾燥ガス単体の湿度の差異によるものと考えられる。接触面の周辺湿度が一定条件では、接触面周辺が大気中の水分で潤滑された状態と考えることができる。このとき、乾燥ガスを接触面に向けて噴射すると、接触面周辺の水分が排除されるとともに接触面の酸化膜の生成が遅くなるので、接触面の潤滑効果が低下すると考えられる。特に、接触面の周辺湿度が高い条件ほど、接触面の周辺環境が急激に変化することになるため、乾燥ガス噴射による接線力向上効果が高いと考えられる。このため、周辺湿度が80％と高い条件のときの方が接触面に作用する接線力が大きいと考えられる。これらは2章で述べた原理と同様の現象と考えられる。

次に、すべり率の大小と接線力向上効果の関係について考察する。
図8（a）から、乾燥ガス噴射による接線力向上効果は、すべり率0.8％のときの方が高い傾向が認められる。これは、すべり率が大きい条件ほどコンタクトパッチ内のすべり領域が広いためである。すなわち、接触面で作用する接線力はコンタクトパッチ内のすべり領域でのみ作用するため、すべり領域が広いときの方が接線力は大き
い。このため、すべり率が大きい条件の方がコンタクトパッチとしての接線力が大きくなるので、乾燥ガス噴射による接線力向上効果が数字に顕著に表れたと考えられる。

最後に、試験片の回転数と接線力向上効果の関係について考察する。これらの関係を見ると、図8(b)に示す実験結果は全てすべり率0.8%のときの実験結果である。縦軸と横軸は、それぞれ乾燥ガス噴射前の接線力係数の増加率と接触面の周辺湿度を示し、青色の印が100rpmの場合、緑色の印が1000rpmの場合である。

図8(b)から、乾燥ガス噴射による接線力向上効果は、試験片の回転数に関わらず同程度であることが分かる。過去の実験（Yamamoto, 2013）では、乾燥条件のとき、試験片の回転数の違いが接線力特性に及ぼす影響が小さいことが分かっている。図8(b)も乾燥条件のため、乾燥ガスを噴射しても同様の実験結果になったと考えられる。このことから、本手法を鉄道車両の車輪とレールの接触面に適用するに当たって、乾燥条件では走行速度条件に関係なく同等の接線力向上効果が得られることが分かった。

4.4 接触面の表面性状と接線力向上効果の関係

試験片間の接触形態および接触面の表面性状の違いにより、乾燥ガス噴射による接線力向上効果が異なることを4.1節で述べた。本節では、接触面が平滑な状態（PhaseⅢ）のときと摩耗した状態（PhaseⅣ）のときに着目し、乾燥ガス噴射時の接線力向上効果の差異を考察する。図9は、図8(a)の実験結果から、すべり率0.8%のときの実験結果のみを抽出し、接触面の表面性状ごと（PhaseⅢ, PhaseⅣ）に再整理したものである。

図9から、乾燥ガス噴射による接線力向上効果は、接触面の周辺湿度が高い条件で、特に、接触面の表面性状がPhaseⅢのときよりPhaseⅣのときの方が高い傾向が認められる。両者の接線力向上効果に差異が生じた理由を、図2の接線力の增加・減少メカニズムに基づき考察する。

PhaseⅢの接触面は、接触面全体から微細な金属粉が一様に剥離し、その金属粉を踏み固めた酸化物が付着した茶褐色をしている。また、その接触形態はおおむね一様な面接触の状態である。この条件のとき、接線力は最大値で安定した状態のため、接触面ではその環境条件下で作用することができる最大接線力が作用していると考えられる。しかしながら、このときの接触面には新たな微細な金属の剥離を目視で確認することができない。このときの接触面は活性化の度合いが低い状態と考えられ、このときに乾燥ガスを噴射しても接線力向上効果の増幅は大きくないと考えられる。

Fig. 8 Experimental results of the increasing rate of tangential force by injecting dry gas under different conditions. The improving effect of the tangential force becomes large under the condition that the humidity around specimens is high, the slip ratio is large. On the other hand, the difference of rotational velocity does not have big influence on the improving effect of the tangential force.
Phase IVの接触面は、繰り返しの接線力による接触面の摩耗により金属色（銀色）をしている。また、その接触形態は微細な突起部での局所的な接触状態である。この条件のとき、Phase III のときより実際接触面積は小さく、接触面に作用する接線力も相対的に小さい。しかしながら、接触面は微細な金属がランダムな位置で連続して剥離しているため、その一部は常に活性化した状態と考えることができる。このとき、乾燥ガスをこの接触面に噴射すると、2・2 節の原理に基づき、接線力向上効果が現れると考えられる。このため、接触面の摩耗が進展した状態のときの接線力を基準として乾燥ガス噴射による接線力向上効果を求めると、その増加幅は大きくなると考えられる。

その一方で、図 6 (c) に示すように、Phase III と Phase IV のときの乾燥ガス噴射時の接線力の絶対値を比較すると、前者の方が大きい。このことから本手法は、接線力が最大となる接触形態および表面性状のとき、すなわち、Phase III のときの接線力を超過しない範囲での接線力向上手法と考えることができる。つまり、本手法による接線力向上効果は無限に大きいわけではないことになる。

5. 数値解析による本手法の鉄道車両への適用に関する検討

5・1 数値解析の概要
乾燥ガスの噴射により接触面で作用する接線力が一時的に大きくなることを室內実験により確認した。本節では、本手法が鉄道車両の制動性能に及ぼす影響を数値解析により確認する。一般的な通勤型の2軸ボギー車両（付随車）が、平坦直線区間をある初速度から制動運転する条件を考える。数値解析で対象とする鉄道車両は静止車重40kNの付随車両1両とし、それぞれ剛体と見なした一車輪・レールモデルから運動方程式を導出し、初速度x0から踏面ブレーキを動作させ停止するまでの距離（以下、停止距離）を4次の Runge-Kutta 法で求めるとともに、全8車輪に喷射装置を設置したときの乾燥ガス噴射の有無による停止距離の差異を評価した。

5・2 力学モデルと運動方程式
図 10 に一車輪・レールの力学モデルを示す。車輪とレールはそれぞれ剛体と見なし、前後、回転方向の2自由度を考慮した車輪がレールと接しながら転走する条件を考える。
図 10 の力学モデルから導出される鉄道車両の制動時の運動方程式は以下の通りである。

\[M \ddot{x}_w = -\mu(s)Mg - R(\dot{x}_w) \]
\[I \ddot{\theta}_w = -T_B + \mu(s)Mrw \]

ここで, \(x_w \) は車輪の並進方向の変位, \(\theta_w \) は回転方向の変位, \(M, I \) はそれぞれ 1 車両分の質量と回転方向に関するモーメント, \(\mu(s) \) は車輪とレール間で生じるすべり率 \(s \) を関数とする接線力係数である. さらに, 本稿の数値解析で対象とする車両はころ軸受を有する付随車 1 両とすると, 車両の走行抵抗 \(R(\dot{x}_w) \) は JIS 規格 (日本工業基準調査会, 1989) から式 (3) となる。

\[R(\dot{x}_w) = (0.78 + 0.0028\dot{x}_w)m_t + 0.27468\dot{x}_w^2 \]

ここで, \(\dot{x}_w \) は速度, \(m_t \) は編成中の付随車の全質量による荷重を表し, それぞれ単位は km/h と kN である.

制動トルク \(T_B \) は, 式 (4) に示すように時間的に増大し, 最大ブレーキトルク \(T_K \) に漸近する特性とする。

\[T_B = T_K \left(1 - e^{-t/0.5} \right) \]

ここで, 最大ブレーキトルク \(T_K \) は, \(F_B \) を制輪子の押付力, \(\mu_B \) を制輪子と車輪踏面間の摩擦係数, 車輪径を \(rw \) とすると, 式 (5) で求まる。

\[T_K = F_B\mu_Brw \]

5.3 車輪とレール間の接線力特性
実際の車輪とレール間の接線力特性は, その表面の汚れや周辺環境により大きく変化するため, これを一般的な値として示すことが難しい. このため本稿では, 車輪とレール間が既報（山本, 2019）で実験的に求めた接線力特性と考えることとする. 数値解析では, 式 (6) に示す区分ごとの直線近似式でこの接線力特性を表現する。

\[\mu(s) = \begin{cases} 0.13 \frac{s}{0.4} & (s \leq 0.4) \\ 0.11 \frac{2.4 - s}{2.4} + \left(0.13 - \frac{0.11}{6} \right) & (0.4 < s \leq 2.8) \\ 0.24 & (2.8 < s) \end{cases} \]

ここで, すべり率 \(s \) の単位は%である.

© The Japan Society of Mechanical Engineers
また、室内実験では乾燥ガスを噴射したときの接線力向上効果にばらつきが認められた。このため、車輪とレール間の接線力係数は、図9（a）の実験結果に基づき、その平均的な値として25%一律に増加することとした。数値解析は、式（6）から求まる車輪とレール間の接線力係数にこれを乗算し行った。

数値解析は、表3の諸元を用いた。

条件	値	
Mass of train sets	M	4000 × 8
Moment of inertia	I	60 × 4
Brake pressing force	F_B	30000 × 8
Friction coefficient of shoes	μ_B	0.25
Wheel radius	r	0.43

5・4 制動時の停止距離

図11は、5・2節と5・3節で示した力学モデルと車輪とレール間の接線力特性に基づき、初速度からブレーキ装置で車輪に制動力を与えたときの停止距離を数値計算で求めた結果である。図11（a）は、制輪子の押付力が50kNのときの噴射の有無による停止距離の差異を示す。青色（○）印は乾燥ガスを噴射しない場合、緑色（□）印は乾燥ガスを噴射した場合である。

図11（a）から、ブレーキ初速度が速いほど乾燥ガス噴射の有無による停止距離の差異が大きい傾向が認められる。ブレーキ初速度130km/hの場合、乾燥ガス噴射の有無による停止距離の差異は46.5mであり、本手法の有効性を確認することができる。

次に、ブレーキ初速度130km/hから異なるブレーキ力を車輪に加えたときの、乾燥ガス噴射の有無による停止距離の差異（噴射なしの停止距離から噴射ありの停止距離を減算した値）を図11（b）に示す。縦軸が乾燥ガス噴射有無による停止距離の差異で、横軸が制輪子の押付力である。

図11（b）から、制輪子の押付力が20kNのとき、乾燥ガス噴射の有無による停止距離間の差異は認められなかった。これは、車輪の回転を止めとする車輪－制輪子間の接線力が車輪とレール間の接線力より小さく、それぞれの接線特性線図に則り、車輪とレール間の接線力係数が最大値に至る前に鈍和したためである。このとき、乾燥ガスの噴射による停止距離の差異は認められなかった。しかし、車輪とレール間のすべり率は僅かに小さくなっているため、本手法は車輪の損傷防止の観点から有効と考えられる。その一方で、制輪子の押付力を50kNとしたとき、乾燥ガス噴射の有無による停止距離の差異は46.5mであり、本手法の有効性を確認することができる。

図11（b）から、制輪子の押付力が20kNのとき、乾燥ガス噴射の有無による停止距離に違いはない。これは、車輪の回転を止めとする車輪－制輪子間の接線力が車輪とレール間の接線力より小さく、それぞれの接線特性線図に則り、車輪とレール間の接線力係数が最大値に至る前に鈍和したためである。このとき、乾燥ガスの噴射による停止距離の差異は認められない。しかし、車輪とレール間のすべり率は僅かに小さくなっているため、本手法は車輪の損傷防止の観点から有効と考えられる。その一方で、制輪子の押付力を30kNとしたとき、乾燥ガス噴射の有無による停止距離の差異は46.5mであり、本手法の有効性を確認することができる。

次に、ブレーキ初速度130km/hから異なるブレーキ力を車輪に加えたときの、乾燥ガス噴射の有無による停止距離の差異（噴射なしの停止距離から噴射ありの停止距離を減算した値）を図11（b）に示す。縦軸が乾燥ガス噴射有無による停止距離の差異で、横軸が制輪子の押付力である。

図11（b）から、制輪子の押付力が30kNのとき、乾燥ガス噴射の有無による停止距離に違いはない。これは、車輪の回転を止めとする車輪－制輪子間の接線力が車輪とレール間の接線力より小さく、それぞれの接線特性線図に則り、車輪とレール間の接線力係数が最大値に至る前に鈍和したためである。このとき、乾燥ガスの噴射による停止距離の差異は認められない。しかし、車輪とレール間のすべり率は僅かに小さくなっているため、本手法は車輪の損傷防止の観点から有効と考えられる。その一方で、制輪子の押付力を50kNとしたとき、乾燥ガス噴射の有無による停止距離の差異は46.5mまで拡大している。この理由を調べるため、制輪子の押付力を30kNから50kNに大きくしたときの、車輪とレール間のすべり率と接線力係数の計算結果を時系列波形で図12に示す。

制輪子の押付力が30kNのとき（赤線）、乾燥ガスの噴射の有無に関わらず、すべり率はそれぞれ約1.6%と約0.8%で、接線力係数はそれぞれ式（6）の接線力特性線図に沿って変動するが最大値まで到達せず停止に至る。しかしながら、制輪子の押付力が40kNのとき（緑線）、図12（a）の乾燥ガス噴射なしの条件では約2秒後に車輪とレール間のすべり率が大きくなり、約11秒後に完全滑走に至っている。同接線力係数も式（6）の接線力測定線図に沿って大きくなり、最大接線力係数である0.24に至っている。一方、図12（b）の乾燥ガス噴射ありの場合、車輪とレール間のすべり率は1.8%程度で完全な滑走には至っていない。同接線力係数も式（6）の接線力測定線図に沿って約0.24で鈍和し、停止に至っている。ここで、両者の違いはすべり率のみであるため、停止距離の差異も図11（b）に示すように4.3m程度で同様である。最後に、制輪子の押付力が50kNの場合（赤線）、乾燥ガスの噴射有無に関わらず、時間は異なるが両者ともに完全滑走に至っている。このときの接線力係数比較すると、式（6）の接線力特性線図に沿って最大接線力係数である0.24を0.30にそれぞれ至っている。これらの数値解析結果から、車輪とレール間の接線力特性が5・3節で述べたようにすべり率の増加にともない接線力係数が一定値に漸近する特性を示す場合については、制動運転時に車両の停止距離を短縮させることを考えたとき、車輪とレール間の接線力係数を大きくし、早い段階から車輪を滑走させた方が有利となる。すなわち、本
手法は非常ブレーキ時など、可能な限り早く車両を停止させたいとき、現行のブレーキ制御装置を補助する手段として有効になると考えられる。

なお、本検討では車軸滑走にともなう車輪やレールの損傷については全く考慮していない。したがって、停止距離の短縮と車軸・レールの接触面の損傷低減を両立するためには、従来から実施されているように車両側の増粘着制御技術を併用することが実用の上で大切となることを付記する。

Fig. 11 Numerical analysis results of the braking distance of a railway vehicle with/without the proposed technique. In the case of the high initial velocity condition, the proposed technique is effective because the braking distance becomes short. Furthermore, the reducing effect of the braking distance is high under the condition of more than 50kN braking force.

Fig. 12 Numerical analysis results of the relationship between the slip ratio and the tangential force coefficient under different braking force conditions. The proposed technique is effective when the railway vehicle uses a big brake.

6. 結 言

本研究では、乾燥条件を対象として接触面の摩擦係数が低いことに起因して誘発される車輪とレール間の空転・滑走現象を低減させるため、湿度30%未満の乾燥ガスを接触面に噴射し、接触面に作用する接線力を一時的
に増加させる手法を提案した。さらに、本手法の妥当性を検証するため、実物車輪とレール間の接触面圧と同等の条件で、直径30mmの一対の小型円筒試験片を用いた基礎的な2円筒がり接触実験を実施した。その結果、接触面の周辺湿度が80%程度高く、すべり率が大きい条件のとき、本手法を適用することで接触面に作用する接線力を増加40%程度向上できることが分かった。基礎的な実験結果に基づき、本手法を実物の鉄道車両に適用することを想定し、鉄道車両の制動運転時の停止距離の短縮効果について数値解析で検討した。その結果、車輪とレール間の摩擦係数が小さい環境の下で、車輪が滑走状態となる程度の強いブレーキを扱うとき、本手法を併用することで滑走が低減して停止距離の短縮が期待できることが分かり、本手法の有用性を確認することができた。

今後の課題としては、接線力の増加効果をより大きくするガスの成分の精査に加え、本手法を実物の車両に搭載する場合、車輪とレール間の接触部に乾燥ガスを直接噴射することが構造的に困難となるため、これと等価となる接触面への乾燥ガスの供給方法の検討が挙げられる。

文献

日本工業標準調査会、日本工業規格 通勤用電車の性能通則、JIS E6002 (1989)。
社団法人トライボロジー学会編、摩擦・摩耗試験機とその活用、養賢堂 (2012), p.7。
熊谷則道、長谷川泉、鉄道車両における車輪滑走時の粘着力とその有効利用、日本機械学会論文集 C編、Vol.70, No.689 (2004), pp.142-148。
Lewis, R. and Dwyer-Joyce, R. S., Wear at the wheel/rail interface when sanding is used to increase adhesion, Proc IMechE Part F: J Rail and Rapid Transit, Vol.220 (2006), pp.29-41。
野中俊昭、大山忠夫、遠藤広典、吉川広、編成としての鉄道車両における滑走防止制御 (第1報、力学モデルの定式化と制御の評価法)、日本機械学会論文集 C編、Vol.71, No.705 (2005), pp.1604-1610。
大野薫、伴巧、小原孝則、川口清、セラミックス粒子による高速域の増粘着、鉄道総研報告、Vol.9, No.1 (1995), pp.31-36。
鈴木峰男、宇宙でのトライボロジー実験、日本真空学会論文集、Vol.51, No.8 (2007), pp.542-545。
Yamamoto, D., Technique of reducing steady lateral force by providing micro-ribbed wheel tread profile, Proc. of the 9th International Conference on Railway Bogies and Running Gears (BOGIE’13), Budapest (2013), pp.135-143。
山本大輔、鉄道車両の曲線常時横向きのための微小凹凸付車輪踏面の開発、日本機械学会論文集、Vol.80, No.812 (2014), DOI:10.1299/transjsme.2014trans0061。
Yamamoto, D., Characteristics of tangential force at the wheel/rail under non-steady slip ratio, 11th International Conference on Contact Mechanics and Wear of Rail/Wheel System (CM2018), Delft, The Netherlands (2018), pp.1147-1155。
山本大輔、鉄道車両における車輪滑走後の車輪とレール間の過渡的な接線力特性、日本機械学会論文集、Vol.85, No.876 (2019), DOI:10.1299/transjsme.18-00394。

References

Japan Industrial Standards Committee, Japan Industrial Standards, General Rules of Performance of Electric Railcars for Commuter Use, JIS E6002 (1989)。
Japanese Society of Tribologists, Wear/wear experiment and its utilization, Yokendo (2012), p.7 (in Japanese)。
Kumagai, N. and Hasegawa, I., A study on adhesion between wheels and rails in wheel slipping for high availability of braking force, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol.70, No.689 (2004), pp.142-148 (in Japanese)。
Lewis, R. and Dwyer-Joyce, R. S., Wear at the wheel/rail interface when sanding is used to increase adhesion, Proc IMechE Part F: J Rail and Rapid Transit, Vol.220 (2006), pp.29-41。
Nonaka, T., Ohyama, T., Endo, Y. and Yoshikawa, H., Anti-lock braking system for train sets on Railways (1st Report, Formation of dynamic model and methods of evaluation for controls), Transactions of the Japan Society of Mechanical Engineers, Series C, Vol.71, No.705 (2005), pp.1604-1610 (in Japanese)。
Ohno, K., Ban, T., Obara, T. and Kawaguchi, K., Ceramics particle jetting system to improve adhesion between wheel and rail during high speed running, RTRI Report, Vol.9, No.1 (1995), pp.31-36 (in Japanese)。
Suzuki, M., Tribology experiments in space, Journal of the Vacuum Society of Japan, Vol.51, No.8 (2007), pp.542-545 (in Japanese)。
Yamamoto, D., Technique of reducing steady lateral force by providing micro-ribbed wheel tread profile, Proc. of the 9th International Conference on Railway Bogies and Running Gears (BOGIE’13), Budapest (2013), pp.135-143.

Yamamoto, D., Development of micro-ribbed wheel tread profile of railway vehicle for reducing steady lateral force on curve, Transactions of the JSME (in Japanese), Vol.80, No.812 (2014), DOI:10.1299/transjsme.2014trans0061.

Yamamoto, D., Characteristics of tangential force at the wheel/rail under non-steady slip ratio, 11th International Conference on Contact Mechanics and Wear of Rail/Wheel System (CM2018), Delft, The Netherlands (2018), pp.1147-1155.

Yamamoto, D., Transient characteristics of tangential force at wheel/rail interface after wheel re-profiling for railway vehicle, Transactions of the JSME (in Japanese), Vol.85, No.876 (2019), DOI:10.1299/transjsme.18-00394.