GLOBAL WELL-POSEDNESS FOR THE MICROPOLAR FLUID SYSTEM IN THE CRITICAL BESOV SPACES

QIONGLEI CHEN AND CHANGXING MIAO

Abstract. We prove the global well-posedness for the 3-D micropolar fluid system in the critical Besov spaces by making a suitable transformation to the solutions and using the Fourier localization method, especially combined with a new L^p estimate for the Green matrix to the linear system of the transformed equation. This result allows to construct global solutions for a class of highly oscillating initial data of Cannone’s type. Meanwhile, we analyze the long behavior of the solutions and get some decay estimates.

1. Introduction

We consider the incompressible micropolar fluid system in $\mathbb{R}^+ \times \mathbb{R}^3$:

$$
\begin{align*}
\partial_t u - (\chi + \nu) \Delta u + u \cdot \nabla u + \nabla \pi - 2\chi \nabla \times \omega &= 0, \\
\partial_t \omega - \mu \Delta \omega + u \cdot \nabla \omega + 4\chi \omega - \kappa \nabla \text{div} \omega - 2\chi \nabla \times u &= 0, \\
\text{div} u &= 0, \\
(u, \omega)_{t=0} &= (u_0, \omega_0).
\end{align*}
$$

(1.1)

Here $u(t, x)$ and $\omega(t, x)$ denote the linear velocity and the velocity field of rotation of the fluid respectively. The scalar $\pi(t, x)$ denotes the pressure of the fluid. The constants κ, χ, ν, μ are the viscosity coefficients. For simplicity, we take $\chi = \nu = \frac{1}{2}$ and $\kappa = \mu = 1$.

Micropolar fluid system was firstly developed by Eringen [13]. It is a type of fluids which exhibits the micro-rotational effects and micro-rotational inertia, and can be viewed as a non-Newtonian fluid. Physically, micropolar fluid may represent fluids that consisting of rigid, randomly oriented (or spherical particles) suspended in a viscous medium, where the deformation of fluid particles is ignored. It can describe many phenomena appeared in a large number of complex fluids such as the suspensions, animal blood, liquid crystals which cannot be characterized appropriately by the Navier-Stokes system, and that it is important to the scientists working with the hydrodynamic-fluid problems and phenomena. For more background, we refer to [18] and references therein.

If the microstructure of the fluid is not taken into account, that is to say the effect of the angular velocity fields of the particle’s rotation is omitted, i.e., $\omega = 0$, then Eq. (1.1) reduces to the classical Navier-Stokes equations.

Due to its importance in mathematics and physics, there is a lot of literature devoted to the mathematical theory of the micropolar fluid systems. Galdi and Rionero [16] and Lukaszewicz [18] proved the existence of the weak solution. The existence and
uniqueness of strong solutions to the micropolar flows and the magneto-micropolar flows either local for large data or global for small data are considered in \[2, 18, 19\] and references therein. Recently, inspired by the work of Cannone and Karch \[5\] on the compressible Navier-Stokes equations, V.-Roa and Ferrreira \[14\] proved the well-posedness of the generalized micropolar fluids system in the pseudo-measure space which is denoted by \(PM^a\)-space whose Fourier transform verifies

\[
\sup_{\mathbb{R}^3} |\xi|^a \hat{f}(\xi) < \infty. \tag{1.2}
\]

On the wellposedness for the 2D case with full viscosity and partial viscosity one may refer to \[18\] and \[12\] respectively; On the blow-up criterion for the smooth solution and the regularity criterion for the weak solution one refers to \[21, 20\] and references therein.

For the incompressible Navier-Stokes equations

\[
\begin{aligned}
\partial_t u - \nu \Delta u + u \cdot \nabla u + \nabla p &= 0, \\
\text{div} u &= 0, \\
u(x, 0) &= u_0,
\end{aligned} \tag{1.3}
\]

Fujita and Kato \[15, 17\] proved the local wellposedness for large initial data and the global well-posedness for small initial data in the homogeneous Sobolev space \(\dot{H}^{1/2}\) and the Lebesgue space \(L^3\) respectively. These spaces are all the critical ones, which are relevent to the scaling of the Navier-Stokes equations: if \((u, p)\) solves \((1.3)\), then

\[
(u_{\lambda}(t, x), p_{\lambda}(t, x)) \overset{\text{def}}{=} (\lambda u(\lambda^2 t, \lambda x), \lambda^2 p(\lambda^2 t, \lambda x)) \tag{1.4}
\]

is also a solution of \((1.3)\). The so-called critical space is the one such that the associated norm is invariant under the scaling of \((1.4)\). Recently, Cannone \[4\] (see also \[3\]) generalized it to Besov spaces with negative index of regularity. More precisely, he showed that if the initial data satisfies

\[
\|u_0\|_{B_{p, \infty}^{-1+\frac{4}{p}}} \leq c, \quad p > 3
\]

for some small constant \(c\), then the Navier-Stokes equations \((1.3)\) is globally well-posed. Let us emphasize that this result allows to construct global solutions for highly oscillating initial data which may have a large norm in \(\dot{H}^{1/2}\) or \(L^3\). A typical example is

\[
u_0(x) = \sin \left(\frac{\lambda^3}{\varepsilon^2}\right) (-\partial_2 \phi(x), \partial_1 \phi(x), 0)
\]

where \(\phi \in \mathcal{S}(\mathbb{R}^3)\) and \(\varepsilon > 0\) is small enough. Concerning the compressible Navier-Stokes equations, we have established the similar result in the framework of the hybrid-Besov space with the help of a new estimate for hyperbolic/parabolic system with convection terms, please refers to \[8\]. And the same idea has utilized to the case of the rotating Navier-Stokes equations, please refers to \[9\].

In this paper we try to prove the same result for the micropolar fluid equation in the more natural space as the incompressible Navier-Stokes equations \((1.3)\).

Now let us sketch the main difficulty and the strategy to overcome it.
Applying the Leray projection to the equation (1.1), we obtain
\[
\begin{aligned}
\begin{cases}
\partial_t u - \Delta u + P(u \cdot \nabla u) - \nabla \times \omega = 0, \\
\partial_t \omega - \Delta \omega + u \cdot \nabla \omega + 2\omega - \nabla \text{div}\omega - \nabla \times u = 0, \\
\text{div}u = 0, \\
(u, \omega)|_{t=0} = (u_0, \omega_0).
\end{cases}
\end{aligned}
\] (1.5)

Obviously, the system has no scaling invariant compared with the incompressible Navier-Stokes equation. In general there are two ways to achieve the global existence for small data in the critical Besov space as \(B^{\frac{-1+\frac{3}{p}}{p}}, \infty\) for general \(p\). The first one is Kato's semigroup method which was extended in [4], it turns out that the both linear terms \(\nabla \times \omega\) and \(\nabla \times u\) will play bad roles if they are regarded as the perturbations.

The second way is to use the energy method together with the Fourier localization technique, but the linear coupling effect of the system (1.5) is too strong to control unless the coefficients of these two linear terms are sufficiently small, while it is impossible.

To go around the trouble from the terms \(\nabla \times \omega\) and \(\nabla \times u\), we will viewed them as certain perturbation of the Laplacian operator in some sense. More precisely, we will take the idea developed in [8] for the compressible Navier-Stokes equations, i.e., investigating the following mixed linear system of Eq. (1.5):
\[
\begin{aligned}
\begin{cases}
\partial_t u - \Delta u - \nabla \times \omega = 0, \\
\partial_t \omega - \Delta \omega + 2\omega - \nabla \text{div}\omega - \nabla \times u = 0,
\end{cases}
\end{aligned}
\] (1.6)

and studying the action of its Green matrix which is denoted by \(G(x,t)\). From [14], we have
\[
\hat{G}f(\xi, t) = e^{-A(\xi)t} \hat{f}(\xi),
\] (1.7)
where
\[
A(\xi) = \begin{bmatrix} \xi^2 I & B(\xi) \\ B(\xi) & (|\xi|^2 + 2) I + C(\xi) \end{bmatrix}
\]
with
\[
B(\xi) = i \begin{bmatrix} 0 & -\xi_3 & \xi_2 \\ \xi_3 & 0 & -\xi_1 \\ -\xi_2 & \xi_1 & 0 \end{bmatrix} \quad \text{and} \quad C(\xi) = \begin{bmatrix} \xi_1^2 & \xi_1 \xi_2 & \xi_1 \xi_3 \\ \xi_1 \xi_2 & \xi_2^2 & \xi_2 \xi_3 \\ \xi_1 \xi_3 & \xi_2 \xi_3 & \xi_3^2 \end{bmatrix}.
\]

It has been shown in [14] that \(G(x,t)\) has some similar property with the heat kernel, i.e.,
\[
|\hat{G}(\xi, t)| \leq e^{-c|\xi|^2 t},
\] (1.8)
which means that \(\|G(x,t)f\|_{L^2}\) is bounded. However, it is not enough to obtain the estimates of the solution in the Besov space as we wanted. For this purpose, we have to analyze the behavior of the derivative of \(\hat{G}(\xi, t)\) to set up the boundedness of \(G(x,t)f\) in \(L^p\). In fact, we have the better property which \(\|G(x,t)f\|_{L^p}\) has exponential decay estimate for \(f\) supported in a ring. But if we directly calculate its derivatives as well as utilizing the estimate (1.8), we only have the rough estimate for example when \(\alpha = 1,\)
\[
|D_\xi \hat{G}(\xi, t)| \leq e^{-c|\xi|^2 t}(1 + |\xi|). \] (1.9)
Obviously, the above is not enough for us to deduce that for any couple \((t, \lambda)\) of positive real numbers and \(\text{supp} \, \hat{f} \subset \lambda \mathcal{C}\) such that
\[
\|G(x, t)f\|_{L^p} \leq C e^{-ct\lambda^2} \|f\|_{L^p}, \quad 1 \leq p \leq \infty,
\]
except that for the high frequency case \(\lambda \geq 1\) and for the low frequency case only \(p = 2\). This fact is same to the one of the compressible Navier-Stokes equations and the rotating Navier-Stokes equations \([8, 9]\) for which we can get the wellposedness for highly oscillating initial data only in the hybrid-Besov space instead in \(B_{p, \infty}^{-1+\frac{2}{p}}\) as \([4]\). Owing to the speciality of the working space—the pseudo-measure space (see \((1.2)\)), only the estimate \((1.8)\) is required in \([14]\), and their method seems not to work for the derivatives estimate of \(\hat{G}(\xi, t)\).

We believe that the wellposedness of \((1.1)\) holds for highly oscillating data in the more natural Besov space \(\dot{B}_{p, \infty}^{-1+\frac{2}{p}}\) like the incompressible Navier-Stokes equation due to the second equation of \((1.5)\) presents the better property although there is negative impact from \(\nabla \times u\) and \(\nabla \times \omega\). Our ideas is to sufficiently employ the structure properties of the systems. In fact, we find that if making a suitable transformation to the solutions, then Eq. \((1.5)\) reduces to a new version. More precisely, the vector field velocity \(u = (u_1, u_2, u_3)\) is transformed to an anti-symmetric matrix \(u_A\) with
\[
u_A \overset{\text{def}}{=} \begin{pmatrix} 0 & u_3 & -u_2 \\ -u_3 & 0 & u_1 \\ u_2 & -u_1 & 0 \end{pmatrix},
\]
and decompose \(\omega\) into \(\omega_d = \Lambda^{-1} \text{div}\omega\) and \(\omega_Q = \Lambda^{-1} \text{curl}\omega\), here we denote
\[
\Lambda^sz \overset{\text{def}}{=} \mathcal{F}^{-1}(\|\xi^sz\|)
\]
and the matrix
\[
(\text{curl}z)^i_j \overset{\text{def}}{=} (\partial_j z^i - \partial_i z^j)_{1 \leq i, j \leq 3}.
\]
In light of \(\text{div}u = 0\), the system \((1.5)\) can be rewritten as
\[
\begin{cases}
\partial_t u_A - \Delta u_A - \Lambda \omega_Q = -\left(\mathbf{P}(u \cdot \nabla u)\right)_A, \\
\partial_t \omega_Q - \Delta \omega_Q + 2 \omega_Q - \Lambda u_A = -\Lambda^{-1} \text{curl}(u \cdot \nabla \omega), \\
\partial_t \omega_d - 2 \Delta \omega_d + 2 \omega_d = -\Lambda^{-1} \text{div}(u \cdot \nabla \omega), \\
\omega = \Lambda^{-1} \nabla \omega_d - \Lambda^{-1} \text{div} \omega_Q, \quad \text{div}u = 0,
\end{cases}
\]
\[
u = (u_A, \omega_Q, \omega_d)|_{t=0} = (u_{0,A}, \omega_{0,Q}, \omega_{0,d}).
\]
where \((\mathbf{P}(u \cdot \nabla u))_A\) is as follows:
\[
\begin{pmatrix}
0 & u_i \partial_i u_3 - \frac{\partial_i u_3}{\Delta} (u_i \partial_i u_j) & -u_i \partial_i u_2 + \frac{\partial_i u_2}{\Delta} (u_i \partial_i u_j) \\
-u_i \partial_i u_3 + \frac{\partial_i u_3}{\Delta} (u_i \partial_i u_j) & 0 & u_i \partial_i u_1 - \frac{\partial_i u_1}{\Delta} (u_i \partial_i u_j) \\
u_i \partial_i u_2 - \frac{\partial_i u_2}{\Delta} (u_i \partial_i u_j) & -u_i \partial_i u_1 + \frac{\partial_i u_1}{\Delta} (u_i \partial_i u_j) & 0
\end{pmatrix}.
\]

Let us observe the associate linear system of Eq. \((1.11)\). Since the third equation is mainly a heat equation, we focus our attention to the first two equations of \((1.11)\),
which leads us to consider the following coupling linear system:

\[
\begin{aligned}
&\partial_t u_A - \Delta u_A - \Lambda \omega = 0, \\
&\partial_t \omega - \Delta \omega + 2\omega - \Lambda u_A = 0, \\
&(u_A, \omega)|_{t=0} = (u_{0,A}, \omega_{0,\Omega}).
\end{aligned}
\]

(1.12)

If \(G(x, t)\) denotes by the Green matrix of (1.12), then \(G(x, t)(u_{0,A}, \omega_{0,\Omega})\) is the solution of (1.12). We have

\[
\hat{Gf}(\xi, t) = e^{-\hat{A}t} \hat{f}(\xi),
\]

with

\[
\hat{A}(\xi) = \begin{bmatrix}
|\xi|^2 & |\xi| \\
|\xi| & |\xi|^2 + 2
\end{bmatrix}.
\]

Then using the Laplace transform, the derivatives of \(\hat{G}(\xi, t)\) can be exactly and explicitly represented, see Section 3, which helps us to deduce the following crucial estimate

\[
|D^a_{\xi} \hat{G}(\xi, t)| \leq Ce^{c|\xi|^2 t}|\xi|^{-a}.
\]

This allows us to obtain that for any couple \((t, \lambda)\) of positive real numbers and \(\text{supp} \hat{f} \subset \lambda \mathcal{C}\), there holds

\[
\|G(\xi, t)f\|_{L^p} \leq Ce^{-ct\lambda^2}\|f\|_{L^p}, \quad 1 \leq p \leq \infty,
\]

here \(\mathcal{C}\) is a ring away from zero, see Proposition 3.5

Let us emphasize that the above inequality is essential to the wellposedness in the Besov spaces.

Definition 1.1. Let \(1 \leq p \leq \infty, \ T > 0\). We denote \(E^p_T\) by the space of functions such that

\[
\|(u, \omega)\|_{E^p_T} \overset{\text{def}}{=} \|(u, \omega)\|_{L^\infty(0,T;B^{\frac{3}{p}-1}_{p,\infty})} + \|(u, \omega)\|_{L^1(0,T;B^{\frac{3}{p}+1}_{p,\infty})} < \infty.
\]

If \(T = \infty\), we denote \(E^p_T\) by \(E^p\). We refer to Section 2 for the definition of \(L^r(X)\).

Our main results are stated as follows.

Theorem 1.2. There exist two positive constants \(c\) and \(M\) such that for all \((u_0, \omega_0) \in B^{\frac{3}{p}-1}_{p,\infty}\) with

\[
\|u_0\|_{B^{\frac{3}{p}-1}_{p,\infty}} + \|\omega_0\|_{B^{\frac{3}{p}-1}_{p,\infty}} \leq c.
\]

(1.14)

Then for \(2 \leq p < 6\), the system (1.1) has a global solution \((u, \omega) \in C\left((0, \infty); B^{\frac{3}{p}-1}_{p,\infty}\right)\) with

\[
\|(u, \omega)\|_{L^\infty(0,\infty;B^{\frac{3}{p}-1}_{p,\infty})} \leq M\left(\|u_0\|_{B^{\frac{3}{p}-1}_{p,\infty}} + \|\omega_0\|_{B^{\frac{3}{p}-1}_{p,\infty}}\right).
\]

Moreover, the uniqueness holds in \(E^p\).

Remark 1.3. If we work in the space \(\tilde{L}^\infty(B^{\frac{3}{p}-1}_{p,1}) \cap \tilde{L}^1(B^{\frac{3}{p}+1}_{p,1})\), the borderline case \(p = 6\) can be achieved. Moreover, the range of \(p\) for the existence and the uniqueness can be extended to \([2, \infty]\) and \([2, 6]\), respectively. In fact, using the paradifferential
calculus, it is easy to see that the nonlinear term $u \cdot \nabla u$ and $u \cdot \nabla \omega$ are bounded in $\tilde{L}^1(\dot{B}^{\frac{3}{p}-1}_{p,1})$, i.e., in light of $\operatorname{div} u = 0$,
\[
\|u \cdot \nabla \omega\|_{\dot{B}^{\frac{3}{p}-1}_{p,1}} \leq C\|u\omega\|_{\dot{B}^{\frac{3}{p}-1}_{p,1}}, \quad \text{for } p \in [2, \infty),
\]
while $u\omega$ is not continuous from $\dot{B}^{\frac{3}{p}}_{p,\infty} \times \dot{B}^{\frac{3}{p}}_{p,\infty}$ to $\dot{B}^{\frac{3}{p}}_{p,\infty}$.

Theorem 1.4. If $(u_0, \omega_0) \in \dot{H}^{1,2}$ and satisfies (1.14), then the system (1.1) has a unique global solution in $C(\mathbb{R}^+; \dot{H}^{1,2})$.

Remark 1.5. Here we don’t impose the $\dot{H}^{1,2}$ smallness condition on the initial data. Especially, this allows us to obtain the global well-posedness of (1.1) for the highly oscillating initial velocity (u_0, ω_0). For example,
\[
u_0(x) = \sin \left(\frac{x^3}{\varepsilon} \right) (-\partial_2 \phi(x), \partial_1 \phi(x), 0), \quad \omega_0(x) = e^{i \frac{x_1}{\varepsilon}} \phi(x), \quad \phi(x) \in S(\mathbb{R}^3),
\]
which satisfies
\[
\|u_0\|_{\dot{B}^{\frac{3}{p}-1}_{p,\infty}}, \quad \|\omega_0\|_{\dot{B}^{\frac{3}{p}-1}_{p,\infty}} \ll 1 \quad \text{for } p > 3
\]
if $\varepsilon > 0$ is small enough, see Proposition 2.8.

Finally, we prove that the solution has the following decay estimates.

Theorem 1.6. Let (u, ω) be a solution provided by Theorem 1.2. Then for all multi-indices α, we have
\[
\|(D_x^\alpha u, D_x^\alpha \omega)\|_{\dot{B}^{\frac{3}{p}}_{p,\infty}} \leq C_0 t^{-\frac{|\alpha|}{2}}, \quad t > 0,
\]
where C_0 is a constant depending on the initial data.

Remark 1.7. From the estimate (1.15), one know that for $t > 0$, the solution $(u, \omega) \in C^\infty(\mathbb{R}^3)$.

Notation. Throughout this paper, we denote some notations on the matrix $M = (M_{ij})_{1 \leq i,j \leq m}$
\[
|M| \overset{\text{def}}{=} \sum_{i,j} |M_{ij}|,
\]
and for a functional space X, we denote $\|M\|_X$ by
\[
\|M\|_X \overset{\text{def}}{=} \sum_{i,j} \|M_{ij}\|_X.
\]

The structure of this paper is organized as follows.

In Section 2, we recall some basic facts about the Littlewood-Paley theory and the functional spaces. In Section 3, we analyze Green’s matrix of the linear system (1.12) and show some new results concerning its regularizing effect. Section 4 is devoted to the proof of Theorem 1.2. Section 5 is devoted to the proof of Theorem 1.4. In Section 6, we give certain decay rates of the solution.
2. Littlewood-paley theory and the function spaces

Firstly, we introduce the Littlewood-Paley decomposition. Choose two radial functions \(\varphi, \chi \in \mathcal{S}(\mathbb{R}^3) \) supported in \(C = \{ \xi \in \mathbb{R}^3, \frac{3}{4} \leq |\xi| \leq \frac{8}{3} \} \), \(B = \{ \xi \in \mathbb{R}^3, |\xi| \leq \frac{4}{3} \} \) respectively such that

\[
\sum_{j \in \mathbb{Z}} \varphi(2^{-j} \xi) = 1 \quad \text{for all } \xi \neq 0.
\]

For \(f \in \mathcal{S}'(\mathbb{R}^3) \), the frequency localization operators \(\Delta_j \) and \(S_j (j \in \mathbb{Z}) \) are defined by

\[
\Delta_j f = \varphi(2^{-j} D) f, \quad S_j f = \chi(2^{-j} D) f.
\]

Moreover, we have

\[
S_j f = \sum_{k=-\infty}^{j-1} \Delta_k f \quad \text{in } \mathcal{Z}'(\mathbb{R}^3).
\]

Here we denote the space \(\mathcal{Z}'(\mathbb{R}^3) \) by the dual space of \(\mathcal{Z}(\mathbb{R}^3) = \{ f \in \mathcal{S}(\mathbb{R}^3); D^\alpha f(0) = 0; \forall \alpha \in (\mathbb{N} \cup 0)^3 \ \text{multi-index} \} \).

With our choice of \(\varphi \), it is easy to verify that

\[
\Delta_j \Delta_k f = 0 \quad \text{if } |j - k| \geq 2 \quad \text{and}
\]

\[
\Delta_j (S_{k-1} f \Delta_k f) = 0 \quad \text{if } |j - k| \geq 5. \quad (2.1)
\]

For more details, please refer to \([3, 7]\).

In the sequel, we will constantly use the Bony’s decomposition from \([\Pi]\):

\[
fg = T_f g + T_g f + R(f, g), \quad (2.2)
\]

with

\[
T_f g = \sum_{j \in \mathbb{Z}} S_{j-1} f \Delta_j g, \quad R(f, g) = \sum_{j \in \mathbb{Z}} \Delta_j f \tilde{\Delta}_j g, \quad \tilde{\Delta}_j g = \sum_{|j' - j| \leq 1} \Delta_{j'} g.
\]

Let us first recall the definition of general Besov space.

Definition 2.1. Let \(s \in \mathbb{R}, 1 \leq p, q \leq +\infty \). The homogeneous Besov space \(\dot{B}^s_{p,q} \) is defined by

\[
\dot{B}^s_{p,q} \defeq \{ f \in \mathcal{Z}'(\mathbb{R}^3): \| f \|_{\dot{B}^s_{p,q}} < +\infty \},
\]

where

\[
\| f \|_{\dot{B}^s_{p,q}} \defeq \| 2^{ks} \| \Delta_k f(t) \|_{L^p} \|_{\ell^q}.
\]

If \(p = q = 2 \), \(\dot{B}^s_{2,2} \) is equivalent to the homogeneous Sobolev space \(\dot{H}^s \).

Now let us recall Chemin-Lerner’s space-time space\([7]\).

Definition 2.2. Let \(s \in \mathbb{R}, 1 \leq p, q, r \leq \infty \), \(I \subset \mathbb{R} \) is an interval. The homogeneous mixed time-space Besov space \(\dot{L}^r(I; \dot{B}^s_{p,q}) \) is the space of the distribution such that

\[
\dot{L}^r(I; \dot{B}^s_{p,q}) \defeq \{ f \in \mathcal{D}(I; \mathcal{Z}'(\mathbb{R}^d)); \| f \|_{\dot{L}^r(I; \dot{B}^s_{p,q})} < +\infty \},
\]

where

\[
\| f(t) \|_{\dot{L}^r(I; \dot{B}^s_{p,q})} \defeq \left\| 2^{sj} \left(\int_I \| \Delta_j f(\tau) \|_p^r d\tau \right)^{\frac{1}{r}} \right\|_{\ell^q(\mathbb{Z})}.
\]
For the convenience, we sometimes use \(L^r_t(\dot{B}^s_{p,q}) \) and \(\dot{L}^r(\dot{B}^s_{p,q}) \) to denote \(L^r_t(0, t; \dot{B}^s_{p,q}) \) and \(\dot{L}^r(0, \infty; \dot{B}^s_{p,q}) \), respectively. The direct consequence of Minkowski’s inequality is that
\[
L^r_t(\dot{B}^s_{p,q}) \subseteq \dot{L}^r_t(\dot{B}^s_{p,q}) \quad \text{if } r \leq q \quad \text{and} \quad \dot{L}^r_t(\dot{B}^s_{p,q}) \subseteq L^r_t(\dot{B}^s_{p,q}) \quad \text{if } r \geq q.
\]

Let us state some basic properties about the Besov spaces.

Lemma 2.3. [7] (i) If \(s < \frac{3}{p} \) or \(s = \frac{3}{p} \) and \(r = 1 \), then \((\dot{B}^s_{p,q}; \| \cdot \|_{\dot{B}^s_{p,q}}) \) is a Banach space.

(ii) We have the equivalence of norms
\[
\| D^k f \|_{\dot{B}^s_{p,q}} \sim \| f \|_{\dot{B}^{s+k}_{p,q}}, \quad \text{for } k \in \mathbb{Z}^+.
\]

(iii) Interpolation: for \(s_1, s_2 \in \mathbb{R} \) and \(\theta \in [0, 1] \), one has
\[
\| f \|_{\dot{B}^{\theta s_1 + (1-\theta)s_2}_{p,q}} \leq \| f \|_{\dot{B}^{s_1}_{p,q}} \| f \|_{\dot{B}^{s_2}_{p,q}},
\]
The following Bernstein’s lemma will be repeatedly used throughout this paper.

Lemma 2.4. [7] Let \(1 \leq p \leq q \leq +\infty \). Then for any \(\beta, \gamma \in (\mathbb{N} \cup \{0\})^3 \), there exists a constant \(C \) independent of \(f, j \) such that
\[
\text{supp} \hat{f} \subseteq \{ |\xi| \leq A_0 2^j \} \Rightarrow \| \partial^\gamma f \|_{L^q} \leq C 2^j 2^{j|\gamma| + 3j(1 - 1/p)} \| f \|_{L^p},
\]
\[
\text{supp} \hat{f} \subseteq \{ A_1 2^j \leq |\xi| \leq A_2 2^j \} \Rightarrow \| f \|_{L^p} \leq C 2^{-j|\gamma|} \sup_{|\beta| = |\gamma|} \| \partial^\beta f \|_{L^p}.
\]

Lemma 2.5. [9] Let \(2 \leq p < +\infty \). Then for any \(f \) with \(\text{supp} \hat{f} \subseteq \{ A_1 2^j \leq |\xi| \leq A_2 2^j \} \), there exists a constant \(C \) independent of \(f, j \) such that
\[
eq 2^j \int_{\mathbb{R}^3} |f|^p dx \leq \int_{\mathbb{R}^3} (-\Delta f) |f|^{p-2} f dx.
\]

Lemma 2.6. [7] (i) Let \((s, p, r_1) \) such that \(\dot{B}^s_{p,r_1} \) is a Banach space. Then the para-product \(T \) maps continuously \(L^\infty \times \dot{B}^s_{p,r_1} \) into \(\dot{B}^s_{p,r} \). Moreover, if \(t \) is negative and \(r_2 \) such that
\[
\frac{1}{r_1} + \frac{1}{r_2} = \frac{1}{r} \leq 1,
\]
and if \(\dot{B}^{s+t}_{p,r} \) is a Banach space, then \(T \) maps continuously \(\dot{B}^{t}_{\infty,r_1} \times \dot{B}^s_{p,r_2} \) into \(\dot{B}^{s+t}_{p,r} \).

(ii) Let \((p_k, r_k) \) (for \(k \in \{1, 2\} \)) such that
\[
s_1 + s_2 > 0, \quad \frac{1}{p} \leq \frac{1}{p_1} + \frac{1}{p_2} \leq 1 \quad \text{and} \quad \frac{1}{r} \leq \frac{1}{r_1} + \frac{1}{r_2} \leq 1.
\]
The operator \(R \) maps \(\dot{B}^{s_1}_{p_1,r_1} \times \dot{B}^{s_2}_{p_2,r_2} \) into \(\dot{B}^{\sigma_2}_{p,r} \) with
\[
\sigma_{12} := s_1 + s_2 - 3\left(\frac{1}{p_1} + \frac{1}{p_2} - \frac{1}{p} \right),
\]
provided that \(\sigma_{12} < 3/p, \) or \(\sigma_{12} = 3/p \) and \(r = 1 \).

With the help of the above Lemma, we can obtain
Lemma 2.7. Let $1 \leq p \leq \infty$. Then there hold
(a) if $s_1, s_2 \leq \frac{2}{p}$ and $s_1 + s_2 > 3 \max(0, \frac{2}{p} - 1)$, then
$$\|fg\|_{\dot{B}^{s_1 + s_2 - \frac{2}{p}}_{p,1}} \leq C\|f\|_{\dot{B}^{s_1}_{p,1}}\|g\|_{\dot{B}^{s_2}_{p,1}}.$$
(b) if $s_1 < \frac{2}{p}, s_2 < \frac{3}{p}$, and $s_1 + s_2 > 3 \max(0, \frac{2}{p} - 1)$, then
$$\|fg\|_{\dot{B}^{s_1 + s_2 - \frac{2}{p}}_{p,\infty}} \leq C\|f\|_{\dot{B}^{s_1}_{p,\infty}}\|g\|_{\dot{B}^{s_2}_{p,\infty}}.$$
(c) if $s_1 \leq \frac{3}{p}, s_2 < \frac{3}{p}$, and $s_1 + s_2 \geq 3 \max(0, \frac{2}{p} - 1)$, then
$$\|fg\|_{\dot{B}^{s_1 + s_2 - \frac{2}{p}}_{p,\infty}} \leq C\|f\|_{\dot{B}^{s_1}_{p,\infty}}\|g\|_{\dot{B}^{s_2}_{p,\infty}}.$$

Proposition 2.8. Let $\phi \in S(\mathbb{R}^3)$ and $p > 3$. If $\phi_{\varepsilon}(x) \overset{\text{def}}{=} e^{i\frac{2\pi}{\varepsilon} x} \phi(x)$, then for any $\varepsilon > 0$,
$$\|\phi_{\varepsilon}\|_{\dot{B}^{1-\frac{2}{p}}_{p,\infty}} \leq C\varepsilon^{1-\frac{2}{p}},$$
here C is a constant independent of ε.

Proof. Please refer to the proof of Proposition 2.9 in [8], here we omit it.

Proposition 2.9. Let $s \in \mathbb{R}$, and $p, r \in [1, \infty]$, $\nu_1 > 0$, $\nu_2 \geq 0$. Assume that $u_0 \in \dot{B}^s_{p,q}$, $f \in L^1_t \dot{B}^s_{p,q}$. Then the equation
$$\begin{cases}
\partial_t u - \nu_1 \Delta u + \nu_2 u = f, \\
u|_{t=0} = u_0,
\end{cases}$$
has a unique solution u satisfying
$$\|u\|_{L^1_t \dot{B}^{s+\frac{2}{p}}_{p,q}} \leq C(\|u_0\|_{\dot{B}^s_{p,q}} + \|f\|_{L^1_t \dot{B}^s_{p,q}}).$$

Proof. The proof is similar with the case of the heat equations, we omit it here.

3. The linearized equations of the microfluid system

In this section, we are devoted to analyzing the Green matrix of Eq. (1.6).

First, let us introduce a notation: if $(M_{ij})_{1 \leq i, j \leq 2}$ is a matrix, $f = (f_1, f_2, f_3)$, $g = (g_1, g_2, g_3)$ are vectors, then we denote
$$(M_{ij})_{1 \leq i, j \leq 2} \begin{pmatrix} f \\ g \end{pmatrix} \overset{\text{def}}{=} \begin{pmatrix} M_{11}f + M_{12}g \\ M_{21}f + M_{22}g \end{pmatrix}.$$

Taking Fourier transform of (1.6) yields that
$$\begin{cases}
\partial_t \hat{u}_A + |\xi|^2 \hat{u}_A - |\xi|\hat{\omega}_\Omega = 0, \\
\partial_t \hat{\omega}_\Omega + (|\xi|^2 + 2)\hat{\omega}_\Omega - |\xi|\hat{u}_A = 0,
\end{cases} \quad (3.1)$$

In what follows, we will use the Laplace transform to get the explicit expression of $\hat{G}(\xi, t)$.

Let $p \in \sum_\phi$ for some $\phi \in [0, \pi/2)$, where $\sum_\phi = \{z \in \mathbb{C}\setminus\{0\}, |\arg z| < \phi\}$. Then we have
$$\begin{cases}
p(\hat{u}_A)^L + |\xi|^2(\hat{u}_A)^L - |\xi|(\hat{\omega}_\Omega)^L = u_{0,A}, \\
p(\hat{\omega}_\Omega)^L + (|\xi|^2 + 2)(\hat{\omega}_\Omega)^L - |\xi|(\hat{u}_A)^L = \omega_{0,\Omega}.
\end{cases} \quad (3.2)$$
that is,
\[
\begin{pmatrix}
(u_A)^L(\xi, t) \\
(\omega_\Omega)^L(\xi, t)
\end{pmatrix} = \begin{pmatrix}
p + |\xi|^2 & -|\xi| \\
-|\xi| & p + |\xi|^2 + 2
\end{pmatrix}^{-1} \begin{pmatrix}
\hat{u}_{0,A} \\
\hat{\omega}_{0,\Omega}
\end{pmatrix}.
\]
Setting $\lambda^2 = p + |\xi|^2$, we see that
\[
\begin{pmatrix}
(u_A)^L \\
(\omega_\Omega)^L
\end{pmatrix} = \frac{1}{\det \left(\lambda + 2 \frac{|\xi|}{\lambda^2 + 2} \lambda^2 - \frac{|\xi|}{\lambda^2 + 2} \right)} \begin{pmatrix}
\hat{u}_{0,A} \\
\hat{\omega}_{0,\Omega}
\end{pmatrix},
\]
with
\[
\det \equiv \lambda^4 + 2\lambda^2 - |\xi|^2.
\]
Then we have the explicit expression of the solution of (3.1):
\[
\begin{pmatrix}
(u_A)^L \\
(\omega_\Omega)^L
\end{pmatrix} = \left\{ L^{-1} \left(\frac{\lambda^2}{\det} \right) I + L^{-1} \left(\frac{1}{\det} \right) \begin{pmatrix}
2 & |\xi| \\
|\xi| & 0
\end{pmatrix} \right\} \begin{pmatrix}
\hat{u}_{0,A} \\
\hat{\omega}_{0,\Omega}
\end{pmatrix},
\]
where L^{-1} is the reverse Laplace transformation with respect to p, and I is the identity matrix. Denote
\[
A(\xi, t) \equiv \frac{e^{(-1-\sqrt{1+|\xi|^2})t} - e^{(-1+\sqrt{1+|\xi|^2})t}}{2\sqrt{1+|\xi|^2}},
\]
\[
B(\xi, t) \equiv \frac{e^{(-1-\sqrt{1+|\xi|^2})t} + e^{(-1+\sqrt{1+|\xi|^2})t}}{2}.
\]
Note that
\[
\int_0^\infty e^{-pt} [A(\xi, t) + B(\xi, t)] e^{-|\xi|^2 t} dt = \frac{\lambda^2}{(\lambda^2 + 1 - \sqrt{1+|\xi|^2})(\lambda^2 + 1 + \sqrt{1+|\xi|^2})} = \frac{\lambda^2}{\det},
\]
and
\[
- \int_0^\infty e^{-pt} A(\xi, t) e^{-|\xi|^2 t} dt = \frac{1}{(\lambda^2 + 1 - \sqrt{1+|\xi|^2})(\lambda^2 + 1 + \sqrt{1+|\xi|^2})} = \frac{1}{\det},
\]
we obtain the following proposition.

Proposition 3.1. There exists a unique solution $(\hat{u}_A, \hat{\omega}_\Omega)$ of Eq. (3.2) which is given by
\[
\begin{pmatrix}
\hat{u}_A \\
\hat{\omega}_\Omega
\end{pmatrix} = e^{-|\xi|^2 t} \left(\hat{G}_1(\xi, t) + \hat{G}_2(\xi, t) \right) \begin{pmatrix}
\hat{u}_{0,A} \\
\hat{\omega}_{0,\Omega}
\end{pmatrix}
\]
with
\[
\hat{G}_1(\xi, t) \equiv A(\xi, t) R(\xi), \quad \hat{G}_2(\xi, t) \equiv B(\xi, t) I,
\]
where
\[
R(\xi) = \begin{pmatrix}
-1 & -|\xi| \\
-|\xi| & 1
\end{pmatrix}.
\]
Next we will derive the pointwise estimates for $\hat{G}_1(\xi, t), \hat{G}_2(\xi, t)$ and their derivatives.
Lemma 3.2. For multi-indices α, there exists a positive constant C independent of ξ, t such that
\[
|\xi|^{\alpha_1} |D_\xi^\alpha \hat{G}_1(\xi, t)|, \quad |\xi|^{\alpha_1} |D_\xi^\alpha \hat{G}_2(\xi, t)|
\leq C \left(1 + e^{\frac{|\xi|^2 t}}\right) \left((|\xi|^2 t)^{\alpha_1} + (|\xi|^2 t)^{\alpha_1-1} + \cdots + |\xi|^2 t + 1\right). \tag{3.5}
\]

Proof. Mean value theorem tells us that there exists a constant $\theta \in [0, 1]$ such that
\[
\sqrt{1 + |\xi|^2} - 1 = \frac{1}{2} |\xi|^2 (1 + |\xi|^2)^{-\frac{1}{2}},
\]
which implies that
\[
e^{-\frac{1}{2} |\xi|^2 t} \leq e^{\frac{|\xi|^2 t}{2}}. \tag{3.6}
\]
Using the Leibnitz's formula yields that
\[
D_\xi^\alpha \hat{G}_1(\xi, t) = \sum_{|\alpha| = N, |\alpha_1| + |\alpha_2| = |\alpha|} D_\xi^{\alpha_1} \left(e^{-\frac{1}{2} |\xi|^2 t} + e^{\frac{1}{2} |\xi|^2 t}\right) \times D_\xi^{\alpha_2} \left(\frac{1}{2 \sqrt{1 + |\xi|^2}} \begin{pmatrix} -1 & -|\xi| \\ -|\xi| & 1 \end{pmatrix}\right). \tag{3.7}
\]
For simplicity, we only show the case of $|\alpha| = 1$ in details, the other cases ($|\alpha| > 1$) can be done in the same argument. Noting that
\[
1 + |\xi| \leq 2\sqrt{1 + |\xi|^2},
\]
one gets
\[
D_\xi \left(e^{-\frac{1}{2} |\xi|^2 t} \right) \frac{(1 + |\xi|)}{\sqrt{1 + |\xi|^2}} \leq C e^{-|\xi|^2 t} |\xi|.
\]
In addition, due to (3.6), we obtain
\[
D_\xi \left(e^{\frac{1}{2} |\xi|^2 t} \right) \frac{(1 + |\xi|)}{\sqrt{1 + |\xi|^2}} \leq C e^{\frac{|\xi|^2 t}{2}} |\xi|,
\]
and
\[
\left(e^{-\frac{1}{2} |\xi|^2 t} + e^{\frac{1}{2} |\xi|^2 t}\right) D_\xi \left(\frac{1}{\sqrt{1 + |\xi|^2}} \right) (1 + |\xi|)
\leq C \left(e^{-|\xi|^2 t} + e^{\frac{|\xi|^2 t}{2}}\right) |\xi|^{-1},
\]
and
\[
\left(e^{-\frac{1}{2} |\xi|^2 t} + e^{\frac{1}{2} |\xi|^2 t}\right) D_\xi \left(\frac{1}{\sqrt{1 + |\xi|^2}} \right) (1 + |\xi|)
\leq C \left(e^{-|\xi|^2 t} + e^{\frac{|\xi|^2 t}{2}}\right)(\sqrt{1 + |\xi|^2})^{-1} \leq C \left(e^{-|\xi|^2 t} + e^{\frac{|\xi|^2 t}{2}}\right)|\xi|^{-1}.
\]
Combining the four above inequalities with (3.7)\((|\alpha| = 1)\), we have
\[
|D_\xi \hat{G}_1(\xi, t)| \leq C (1 + e^{\frac{|\xi|^2 t}{2}})(t|\xi| + |\xi|^{-1}).
\]
Similarly, we can deduce that
\[
|D_\xi \hat{G}_1(\xi, t)| \leq C \left(1 + e^{\frac{|\xi|^2}{2} t} \right) \left(|\xi|^\alpha + |\xi|^{\alpha-2} t^{\alpha-1} + |\xi|^{\alpha-4} t^{\alpha-2} + \cdots + |\xi|^{-\alpha+2} t + |\xi|^{-\alpha} \right),
\]
from which the estimate (3.5) holds.

Thanks to Proposition 3.1, we have

Proposition 3.3. The Fourier transform of the Green matrix of Eq. (1.12)–\(\hat{G}(\xi, t)\) is shown to be
\[
\hat{G}(\xi, t) = e^{-|\xi|^2 t} (\hat{G}_1(\xi, t) + \hat{G}_2(\xi, t)).
\]

Lemma 3.4. For any multi-indices \(\alpha\), there exists a positive constant \(C\) independent of \(\xi, t\) such that
\[
|D_\alpha \hat{G}(\xi, t)| \leq C e^{-\frac{1}{3} |\xi|^2 t} |\xi|^{-\alpha}.
\]

Proof. Noting that for \(c > \tilde{c} > 0, k > 0\), we have
\[
e^{-c|\xi|^2 t} (|\xi|^{\gamma})^k \leq e^{-\tilde{c}|\xi|^2 t}.
\]
Then using the Leibniz formula, the estimate
\[
|\partial_\xi (e^{-|\xi|^2 t})| \leq C |\xi|^{-|\gamma|} e^{-\frac{13}{12} |\xi|^2 t},
\]
and Lemma 3.2, the estimate (3.8) follows easily by the explicit expression of \(\hat{G}(\xi, t)\).

Using this lemma, we can obtain the following smoothing effect on Green’s matrix \(G\), which will play an important role in this paper.

Proposition 3.5. Let \(C\) be a ring centered at 0 in \(\mathbb{R}^3\). There exist two positive constants \(c\) and \(C\) such that, for any real \(p \in [1, \infty]\), any couple \((t, \lambda)\) of positive real numbers such that if \(\text{supp} \hat{u} \subset \lambda C\), then we have
\[
\|G(x, t)u\|_{L^p} \leq Ce^{-c\lambda^2 t}\|u\|_{L^p}.
\]

Proof. We will adopt the spirit of the proof for heat operators as in [7]. For the completeness, here we will present a proof.

Let \(\phi \in D(\mathbb{R}^3 \setminus \{0\})\), which equals to 1 near the ring \(C\). Set
\[
g(t, x) \overset{\text{def}}{=} (2\pi)^{-3} \int_{\mathbb{R}^3} e^{ix \cdot \xi} \phi(\lambda^{-1} \xi) \hat{G}(\xi, t) d\xi.
\]
To prove (3.9), it suffices to show
\[
\|g(t, x)\|_{L^1} \leq C e^{-c\lambda^2 t}.
\]

Thanks to (3.8) and the support property of \(\phi\), we infer that
\[
\int_{|x| \leq \lambda^{-1}} |g(x, t)| dx \leq C \int_{|x| \leq \lambda^{-1}} \int_{\mathbb{R}^3} |\phi(\lambda^{-1} \xi)| |\hat{G}(\xi, t)| d\xi dx \leq Ce^{-c\lambda^2 t}.
\]
Set \(L_x \overset{\text{def}}{=} x \nabla_x \). Noting that \(L_x(e^{ix \cdot \xi}) = e^{ix \cdot \xi} \), we get by integration by part that
\[
g(x, t) = \int_{\mathbb{R}^3} L_x^4(e^{ix \cdot \xi}) \phi(\lambda^{-1} \xi) \hat{G}(\xi, t) \, d\xi
\]
\[
= (-1)^4 \int_{\mathbb{R}^3} e^{ix \cdot \xi} (L_x^*)^4(\phi(\lambda^{-1} \xi) \hat{G}(\xi, t)) \, d\xi.
\]
From the Leibniz formula and (3.8),
\[
| (L_x^*)^4(\phi(\lambda^{-1} \xi) \hat{G}(\xi, t)) |
\leq C|\lambda x|^{-4} \sum_{|\gamma|=4, |\beta| \leq |\gamma|} \lambda^{\beta} |(\nabla^{\beta} \phi)(\lambda^{-1} \xi)| e^{-\frac{1}{2} |\xi|^2 t} |\xi|^{-|\beta|}.
\]
Then we obtain, for any \(\xi \) with \(|\xi| \sim \lambda \),
\[
| (L_x^*)^4(\phi(\lambda^{-1} \xi) \hat{G}(\xi, t)) | \leq C|\lambda x|^{-4} e^{-\frac{1}{2} |\xi|^2 t},
\]
which implies that
\[
\int_{|x| \geq \frac{1}{\lambda}} |g(x, t)| \, dx \leq C e^{-c \lambda^2 t} \lambda^{3} \int_{|x| \geq \frac{1}{\lambda}} |\lambda x|^{-4} \, dx \leq C e^{-c \lambda^2 t}.
\]
This together with (3.11) gives (3.10).

Proposition 3.6. Let \(C \) be a ring centered at 0 in \(\mathbb{R}^3 \), \(G(x, t) \) is the Green matrix of the system (1.7), defined by (1.7). Then there exist two positive constants \(c \) and \(C \) such that for any couple \((t, \lambda) \) of positive real numbers satisfying: if supp \(\hat{u} \subset \lambda C \), then
\[
\| G(x, t)u \|_{L^2} \leq C e^{-c \lambda^2 t} \| u \|_{L^2}.
\] (3.12)

Proof. Thanks to Plancherel theorem and (1.8), we get
\[
\| G(x, t)u \|_{L^2} = \| \hat{G}(\xi, t) \hat{u}(\xi) \|_{L^2} \leq C \| e^{-|\xi|^2 t} \hat{u}(\xi) \|_2 \leq C e^{-c \lambda^2 t} \| u \|_2,
\]
where we have used the support property of \(\hat{u}(\xi) \).

4. **Proof of Theorem 1.2**

4.1. **A priori estimate.** In this section, we will derive a priori estimate for the linear system (1.5).

Proposition 4.1. Let \(2 \leq p < 6 \), \(T > 0 \). Assume that \((u, \omega) \) is a smooth solution of the system (1.5) on \([0, T] \), then we have
\[
\| (u, \omega) \|_{E^p_T} \leq C \left(\| (u_0, \omega_0) \|_{E^0_T} + \| (u, \omega) \|_{L^2_T} \right).
\] (4.1)

Here \(\| (u_0, \omega_0) \|_{E^0_T} \overset{\text{def}}{=} \| u_0 \|_{B^{\frac{3}{p} - 1}_\infty} + \| \omega_0 \|_{B^{\frac{3}{p} - 1}_\infty} \).

Proof. Let us consider the following frequency localized system:
\[
\begin{cases}
\partial_t \Delta_j u_A - \Delta \Delta_j u_A - \Lambda \Delta_j \omega = \Delta_j F, \\
\partial_t \Delta_j \omega - \Delta \Delta_j \omega + 2 \Delta_j \omega - \Lambda \Delta_j u_A = \Delta_j H,
\end{cases}
\] (4.2)

with
\[
F = -\left(P(u \cdot \nabla u) \right)_A, \quad H = -\Lambda^{-1} \text{curl}(u \cdot \nabla \omega) \quad \text{and} \quad \text{div} u = 0.
\]
In terms of the Green matrix G, the solution of (4.2) can be expressed as
\[
\left(\frac{\Delta_j u_A(t)}{\Delta_j \omega_\Omega(t)}\right) = G(x, t) \left(\frac{\Delta_j u_{0,A}}{\Delta_j \omega_{0,\Omega}}\right) + \int_0^t G(x, t - \tau) \left(\frac{\Delta_j F(\tau)}{\Delta_j H(\tau)}\right) d\tau. \tag{4.3}
\]
Applying Proposition 3.5 to the above equation to get
\[
\|\Delta_j u_A\|_{L^p_t L^p} + \|\Delta_j \omega_\Omega\|_{L^p_t L^p} \leq C e^{-c_2 t^2} \left(\|\Delta_j u_{0,A}\|_{L^p_t L^p} + \|\Delta_j \omega_{0,\Omega}\|_{L^p_t L^p}\right)
\]
\[+ C \int_0^t e^{-c_2 (t-\tau)} \left(\|\Delta_j F(\tau)\|_{L^p_t L^p} + \|\Delta_j H(\tau)\|_{L^p_t L^p}\right) d\tau. \tag{4.4}
\]
Taking L^r norm with respect to t gives
\[
\|\Delta_j u_A\|_{L^r_t L^p} + \|\Delta_j \omega_\Omega\|_{L^r_t L^p} \leq C 2^{-\frac{3}{r}} \left(\|\Delta_j u_{0,A}\|_{L^p_t L^p} + \|\Delta_j \omega_{0,\Omega}\|_{L^p_t L^p}\right)
\]
\[+ \|\Delta_j F\|_{L^r_t L^p} + \|\Delta_j H\|_{L^r_t L^p}.\]
Multiplying $2^{j \left(\frac{3}{p} - 1 + \frac{2}{r}\right)}$ on both sides, then taking supremum over $j \in \mathbb{Z}$, we derive
\[
\|u_A\|_{L^r_t B^\frac{3}{p} - 1 + \frac{2}{r}} + \|\omega_\Omega\|_{L^r_t B^\frac{3}{p} - 1 + \frac{2}{r}} \leq C \left(\|u_{0,A}\|_{L^r_t B^\frac{3}{p} - 1} + \|\omega_{0,\Omega}\|_{L^r_t B^\frac{3}{p} - 1} + \|F\|_{L^r_t B^\frac{3}{p} - 1} + \|H\|_{L^r_t B^\frac{3}{p} - 1}\right).
\]
According to the boundness of Riesz transform on the homogeneous Besov space and Lemma 2.7, we have
\[
\left\|\left(\frac{\text{P}(u \cdot \nabla u)}{A}\right)\right\|_{L^r_t B^{\frac{3}{p} - 1}_p} \leq C \left(\left\|u \cdot \nabla u\right\|_{L^r_t B^{\frac{3}{p} - 1}_p} + \left\|\Lambda^{-1} \text{div}(u \cdot \nabla \omega)\right\|_{L^r_t B^{\frac{3}{p} - 1}_p}\right)
\]
\[\leq C \left(\left\|u\right\|_{L^r_t B^{\frac{3}{p} - 1}_p} + \left\|\nabla \omega\right\|_{L^r_t B^{\frac{3}{p} - 1}_p}\right). \tag{4.5}
\]
From the Proposition 2.8 we infer that
\[
\left\|\omega_d\right\|_{L^r_t B^{\frac{3}{p} - 1 + \frac{2}{r}}_p} \leq C \left(\left\|\omega\right\|_{L^r_t B^{\frac{3}{p} - 1}_p} + \left\|\Lambda^{-1} \text{div}(u \cdot \nabla \omega)\right\|_{L^r_t B^{\frac{3}{p} - 1}_p}\right)
\]
\[\leq C \left(\left\|\omega\right\|_{L^r_t B^{\frac{3}{p} - 1}_p} + \left\|u\right\|_{L^r_t B^{\frac{3}{p} - 1}_p} \left\|\nabla \omega\right\|_{L^r_t B^{\frac{3}{p} - 1}_p}\right). \tag{4.6}
\]
Thanks to the interpolation
\[
\left(\frac{L^\infty_t B^{\frac{3}{p} - 1}_p, \frac{L^1_t B^{\frac{3}{p} + 1}_p}}{2}\right) = \frac{L^4_t B^{\frac{3}{p} - 1}_p}{2},
\]
\[
\left(\frac{L^\infty_t B^{\frac{3}{p} - 1}_p, \frac{L^1_t B^{\frac{3}{p} + 1}_p}}{2}\right) = \frac{L^4_t B^{\frac{3}{p} + 1}_p}{2}, \tag{4.7}
\]
which together with (4.5), (4.6) and Lemma 2.3 (ii) imply
\[
\|u_A, \omega_\Omega, \omega_d\|_{L^r_t B^{\frac{3}{p} - 1 + \frac{2}{r}}_p}
\]
\[\leq C \left(\|u\|_{L^\infty_t B^{\frac{3}{p} - 1}_p} + \|u\|_{L^1_t B^{\frac{3}{p} + 1}_p}\right) \left(\|u, \omega\|_{L^\infty_t B^{\frac{3}{p} - 1}_p} + \|u, \omega\|_{L^1_t B^{\frac{3}{p} + 1}_p}\right). \tag{4.8}
\]
On the other hand, noting that $\omega = \Lambda^{-1} \nabla \omega_d - \Lambda^{-1} \text{div} \omega_\Omega$ and
\[
\|u\|_{L^r_t B^{\frac{3}{p} - 1 + \frac{2}{r}}_p} = \sum_{i=1}^3 \|u_i\|_{L^r_t B^{\frac{3}{p} - 1 + \frac{2}{r}}_p} \leq \|u_A\|_{L^r_t B^{\frac{3}{p} - 1 + \frac{2}{r}}_p},
\]
taking \(r = \infty \) and \(r = 1 \) in (4.3), then adding up the resulting equations, we have

\[
\|(u, \omega)\|_{E^p_T} \leq C(\|(u_0, \omega_0)\|_{B^{\frac{3}{p}, 1}} + \|(u, \omega)\|^{2}_{E^p_T}).
\]

The proof is completed.

4.2. **Approximate solutions and uniform estimates.** The construction of approximate solutions is based on the following local existence theorem.

Theorem 4.2. Let \(s > 3/2 \). Assume that \((u_0, \omega_0) \in H^s(\mathbb{R}^3) - \{0\}\) with \(\text{div} u_0 = 0\), then there is a positive time \(T(\|(u_0, \omega_0)\|_{H^s})\) such that a unique solution \((u, \omega) \in C([0, T); H^s) \cap C^1((0, T); H^s) \cap C((0, T); H^{s+2})\) of system (1.1) exists.

Moreover, if there exists an absolute constant \(M > 0\) such that

\[
\limsup_{\varepsilon \to 0} \int_{T - \varepsilon}^{T} \|\Delta_j(\nabla \times u)\|_{C^0} \, dt = \delta < M
\]

then \(\delta = 0\), and the solution \((u, \omega)\) can be extended past time \(t = T\).

Let us consider a sequence \((\phi_n)_{n \in \mathbb{N}} \in \mathcal{S}\) such that \(\phi_n\) is uniformly bounded with respect to \(n\) and such that \(\phi_n \equiv 1\) in a neighborhood of the ball \(B(0, n)\). Then for the initial data \(u_0, \omega_0\), we can find a approximate sequence \(u_{0n} = \phi_n(S_nu_0)\), and \(\omega_{0n} = \phi_n(S_n\omega_0) \in H^s\) such that

\[
\lim_{n \to \infty} \|\phi_n(S_nu_0) - u_0\|_{B^{\frac{3}{p}, 1}} = 0, \quad \lim_{n \to \infty} \|\phi_n(S_n\omega_0) - \omega_0\|_{B^{\frac{3}{p}, 1}} = 0. \quad (4.9)
\]

Then Theorem 4.2 ensures that there exists a maximal existence time \(T_n > 0\) such that the system (1.5) with the initial data \((u_{0n}, \omega_{0n})\) has a unique solution \((u^n, \omega^n)\) satisfying

\[
(u^n, \omega^n) \in C([0, T_n); H^s) \cap C^1((0, T_n); H^s) \cap C((0, T_n); H^{s+2}).
\]

On the other hand, using the definition of the Besov space and Lemma 2.4 it is easy to check that

\[
(u^n, \omega^n) \in C([0, T_n); B^{\frac{3}{p}, 1}_{p, \infty}) \cap L^1(0, T_n; B^{\frac{3}{p}+1}_{p, \infty}).
\]

From (4.9) and (1.5) we find that

\[
\|(u_{0n}, \omega_{0n})\|_{B^{\frac{3}{p}, 1}} \leq C_0\eta,
\]

for some constant \(C_0\). Given a constant \(M\) to be chosen later on, let us define

\[
T^n_\ast \overset{\text{def}}{=} \sup \left\{ t \in [0, T_n); \|(u^n, \omega^n)\|_{L_t^{\infty}B^{\frac{3}{p}, 1}_{p, \infty} \cap L_t^1B^{\frac{3}{p}+1}_{p, \infty}} \leq M\eta \right\}.
\]

Firstly, we claim that

\[
T^n_\ast = T_n, \quad \forall n \in \mathbb{N}.
\]

Using the continuity argument, it suffices to show that for all \(n \in \mathbb{N}\),

\[
\|(u^n, \omega^n)\|_{L_t^{\infty}B^{\frac{3}{p}, 1}_{p, \infty} \cap L_t^1B^{\frac{3}{p}+1}_{p, \infty}} \leq \frac{3}{4}M\eta. \quad (4.10)
\]

In fact, applying Proposition 4.1 to obtain

\[
\|(u^n, \omega^n)\|_{E^p_T} \leq C(C_0\eta + (M\eta)^2). \quad (4.11)
\]
If we set $M = 4CC_0$, and choose η small enough such that
\[8C^2C_0\eta \leq 1, \]
then the inequality (4.10) follows from (4.11). In conclusion, we construct a sequence of approximate solution (u^n, ω^n) of (4.5) on $[0, T_n)$ satisfying
\[\| (u^n, \omega^n) \|_{E_{T_n}^{p, \eta}} \leq M\eta, \]
(4.12)
for any $n \in \mathbb{N}$. Next, we claim that
\[T_n = +\infty, \quad \forall n \in \mathbb{N}. \]

According to the Theorem 4.2, it remains to prove $\nabla \times u^n \in \tilde{L}_{T_n}^{1, \dot{B}_p^{0, \infty}}$. From (4.12) we know that
\[\| \nabla \times u^n \|_{\tilde{L}_{T_n}^{1, \dot{B}_p^{0, \infty}}} \leq \| \nabla u^n \|_{\tilde{L}_{T_n}^{1, \dot{B}_p^{0, \infty}}} \leq M\eta, \]
this combined with the embedding $\tilde{L}_{T_n}^{1, \dot{B}_p^{0, \infty}} \hookrightarrow \tilde{L}_{T_n}^{1, \dot{B}_p^{0, \infty}}$ implies that $\nabla \times u^n \in \tilde{L}_{T_n}^{1, \dot{B}_p^{0, \infty}}$, thus the continuation criterion in Theorem 4.2 has been verified.

4.3. Existence. We will use the compact argument to prove the existence of the solution. Due to (1.12), it is easy to see that

- u^n, ω^n is uniformly bounded in $\tilde{L}^{\infty}(0, \infty; \dot{B}_p^{0, \infty}) \cap \tilde{L}^{1}(0, \infty; \dot{B}_p^{3+1, \infty})$.

Let u^n_L, ω^n_L be a solution of
\[
\begin{aligned}
\partial_t u^n_L - \Delta u^n_L &= 0, \quad u^n_L(0) = v_{0,n}, \\
\partial_t \omega^n_L - \Delta \omega^n_L + 2\omega^n_L &= 0, \quad \omega^n_L(0) = \omega_{0,n}.
\end{aligned}
\]
It is easy to verify that u^n_L, ω^n_L tends to the solution of
\[
\begin{aligned}
\partial_t u_L - \Delta u_L &= 0, \quad u_L(0) = u_0, \\
\partial_t \omega_L - \Delta \omega_L + 2\omega_L &= 0, \quad \omega_L(0) = \omega_0.
\end{aligned}
\]
(4.13)
in $\tilde{L}^{\infty}(0, \infty; \dot{B}_p^{3-1, \infty}) \cap \tilde{L}^{1}(0, \infty; \dot{B}_p^{3+1, \infty})$.

We set $\tilde{u}^n \equiv u^n - u^n_L$ and $\tilde{\omega}^n \equiv \omega^n - \omega^n_L$. Firstly, we claim that $(\tilde{u}^n, \tilde{\omega}^n)$ is uniformly bounded in $C^{\frac{1}{2}}_{loc}(\mathbb{R}^+; \dot{B}_p^{3-2, \infty}) \times C^{\frac{1}{2}}_{loc}(\mathbb{R}^+; \dot{B}_p^{3-1, \infty} + \dot{B}_p^{3-2, \infty})$. In fact, let us recall that
\[\partial_t \tilde{u}^n = \Delta \tilde{u}^n - \mathbf{P}(u^n \cdot \nabla u^n) - \nabla \times \omega^n. \]
Thanks to Lemma 2.7, we have
\[\| \mathbf{P}(u^n u^n) \|_{L^2 \dot{B}_p^{\frac{3}{2} - 1, \infty}} \leq C \| u^n \|_{L^4 \dot{B}_p^{\frac{3}{2} - 1, \infty}} \| u^n \|_{L^4 \dot{B}_p^{\frac{3}{2} - 1, \infty}}, \]
combined with $\Delta \tilde{u}^n \in \tilde{L}^{2}(\mathbb{R}^+; \dot{B}_p^{3-2, \infty})$ and $\nabla \times \omega^n \in L^{\infty}(\mathbb{R}^+; \dot{B}_p^{3-2, \infty})$ implies $\partial_t \tilde{u}^n \in \tilde{L}^{2}_{loc}(\mathbb{R}^+; \dot{B}_p^{3-2, \infty})$, thus \tilde{u}^n is uniformly bounded in $C^{\frac{1}{2}}_{loc}(\mathbb{R}^+; \dot{B}_p^{3-2, \infty})$. On the other hand, since
\[\partial_t \tilde{\omega}^n = \Delta \tilde{\omega}^n - 2\tilde{\omega}^n - u^n \cdot \nabla \omega^n - \nabla \times u^n, \]
by the same argument as used in the proof of $\partial_t \tilde{u}^n$, we get $\partial_t \tilde{\omega}^n \in \tilde{L}^{2}_{loc}(\mathbb{R}^+; \dot{B}_p^{3-1, \infty} + \dot{B}_p^{3-2, \infty})$, which implies \tilde{u}^n is uniformly bounded in $C^{\frac{1}{2}}_{loc}(\mathbb{R}^+; \dot{B}_p^{3-1, \infty} + \dot{B}_p^{3-2, \infty})$.

Let \(\{\chi_j\}_{j \in \mathbb{N}} \) be a sequence of smooth functions supported in the ball \(B(0, j + 1) \) and equal to 1 on \(B(0, j) \). The claim ensures that for any \(j \in \mathbb{N} \), \(\{\chi_j \bar{u}^n\}_{n \in \mathbb{N}} \) is uniformly bounded in \(C^2_{\text{loc}}(\mathbb{R}^3; B_{p, \infty}^{\frac{2}{p} - 2}) \), and \(\{\chi_j \bar{\omega}^n\}_{k \in \mathbb{N}} \) is uniformly bounded in \(C^1_{\text{loc}}(\mathbb{R}^3; B_{p, \infty}^{\frac{2}{p} - 1} + B_{p, \infty}^{\frac{2}{p} - 2}) \). Observe that for any \(\chi \in C_0^\infty(\mathbb{R}^3 \times \mathbb{R}^3) \), for \(\varepsilon \in (0, 1) \), the map: \((\bar{u}^n, \bar{\omega}^n) \mapsto (\chi^2 \bar{u}^n, \chi \bar{\omega}^n)\) is compact from \((B_{p, \infty}^{\frac{2}{p} - 2} \cap B_{p, \infty}^{\frac{2}{p} - 1 - \varepsilon}) \times ((B_{p, \infty}^{\frac{2}{p} - 1} + B_{p, \infty}^{\frac{2}{p} - 1 - \varepsilon})) \) into \(B_{p, \infty}^{\frac{2}{p} - 2} \times (B_{p, \infty}^{\frac{2}{p} - 1} + B_{p, \infty}^{\frac{2}{p} - 2}) \), see [11]. By applying Ascoli’s theorem and Cantor’s diagonal process, there exists some distribution \((\bar{u}, \bar{\omega}) \in L^\infty B_{p, \infty}^{\frac{2}{p} - 1} \cap L^1 B_{p, \infty}^{\frac{2}{p} + 1} \) such that for any \(j \in \mathbb{N} \),

\[
\begin{align*}
\chi_j \bar{u}^n &\rightarrow \chi_j \bar{u} \quad \text{in} \quad C^2_{\text{loc}}(\mathbb{R}^3; B_{p, \infty}^{\frac{2}{p} - 2}), \\
\chi_j \bar{\omega}^n &\rightarrow \chi_j \bar{\omega} \quad \text{in} \quad C^1_{\text{loc}}(\mathbb{R}^3; B_{p, \infty}^{\frac{2}{p} - 1} + B_{p, \infty}^{\frac{2}{p} - 2}),
\end{align*}
\]

(4.14)

With (4.14), it is a routine process to verify that \((\bar{u} + u_L, \bar{\omega} + \omega_L)\) satisfies the system (1.5) in the sense of distribution.

Here we show as an example the case of the term \(u^n \cdot \nabla u^n \). Let \(\psi \in C_0^\infty(\mathbb{R}^3) \) and \(j \in \mathbb{N} \) such that \(\text{supp} \psi \subset [0, j] \times B(0, j) \). We write

\[
u^n \cdot \nabla u^n - u \cdot \nabla u = (u^n - u) \cdot \nabla u^n + u \cdot \nabla (u^n - u).
\]

We will only give the estimate of the first term with help of Bony’s decomposition, and the similar argument can be applied to the term \(u \cdot \nabla (u^n - u) \). Thanks to div \(u = 0 \) and Lemma 2.6

\[
\begin{align*}
\|T u^n u^n \|_{L^\infty B_{p, \infty}^{\frac{2}{p} - 3}} + \|T u^n (u^n - u) \|_{L^\infty B_{p, \infty}^{\frac{2}{p} - 3}} \\
\leq C \|u^n - u\|_{L^\infty B_{p, \infty}^{\frac{2}{p} - 2}} \|u^n\|_{L^\infty B_{p, \infty}^{\frac{5}{p} - 1}} + C \|u^n\|_{L^\infty B_{p, \infty}^{\frac{3}{p} - 1}} \|u^n - u\|_{L^\infty B_{p, \infty}^{\frac{2}{p} - 2}} \\
\leq C \|u^n - u\|_{L^\infty B_{p, \infty}^{\frac{3}{p} - 2}} \|u^n\|_{L^\infty B_{p, \infty}^{\frac{2}{p} - 1}},
\end{align*}
\]

where in the last inequality we have used the embedding \(B_{p, \infty}^{s_1} \subseteq B_{p, \infty}^{s_2} \) for \(s_1 - \frac{3}{p} = s_2 \). And

\[
\| R(u^n - u, u^n) \|_{L^1 B_{p, \infty}^{\frac{2}{p} - 1}} \leq C \|u^n - u\|_{L^\infty B_{p, \infty}^{\frac{2}{p} - 2}} \|u^n\|_{L^1 B_{p, \infty}^{\frac{2}{p} + 1}}.
\]

The other nonlinear terms can be treated in the same way.

4.4. **Uniqueness.** In this subsection, we prove the uniqueness of the solution. Assume that \((u^1, \omega^1) \in E_p^F \) and \((u^2, \omega^2) \in E_p^F \) are two solutions of the system (1.1) with the same initial data. Then we have \((\delta u, \delta \omega) = (u^1 - u^2, \omega^1 - \omega^2) \) satisfies

\[
\begin{align*}
\partial_t \delta u - \Delta \delta u &= \delta F, \\
\partial_t \delta \omega - \Delta \delta \omega - \nabla \text{div} \delta \omega + 2 \delta \omega &= \delta H, \\
(\delta a, \delta v)|_{t=0} &= (0, 0),
\end{align*}
\]

(4.15)

where

\[
\begin{align*}
\delta F &= \nabla \times \delta \omega - \mathbf{P}(\delta u \cdot \nabla u^1) - \mathbf{P}(u^2 \cdot \nabla \delta u), \\
\delta H &= \nabla \times \delta u - \delta u \cdot \nabla \omega^1 - u^2 \cdot \nabla \delta \omega.
\end{align*}
\]
Applying Proposition 2.9 to Eq. (4.15), one obtains
\[
\| (\delta u(t), \delta \omega(t)) \|_{\frac{3}{2} L^2 B_{p, \infty}} + \| (\delta u(t), \delta \omega(t)) \|_{\frac{3}{2} L^2 B_{p, \infty}}^{\frac{3}{2}-1}
\leq C \| \delta F(\tau), \delta H(\tau) \|_{\frac{3}{2} L^2 B_{p, \infty}}^{\frac{3}{2}-2}. \tag{4.16}
\]

From Lemma 2.7 and \(\text{div} \ u = 0 \), we infer that
\[
\| \delta F \|_{\frac{3}{2} L^2 B_{p, \infty}} + \| \delta G \|_{\frac{3}{2} L^2 B_{p, \infty}}^{\frac{3}{2}-2}
\leq C \| \delta u \|_{\frac{3}{4} L^2 B_{p, \infty}}^{\frac{3}{4}} + \| \delta u \|_{\frac{3}{2} L^2 B_{p, \infty}}^{\frac{3}{2}-1} \| (\omega^1, u^1, u^2) \|_{\frac{3}{2} L^2 B_{p, \infty}}^{\frac{3}{2}} \| (\omega^1, u^1, u^2) \|_{\frac{3}{2} L^2 B_{p, \infty}}^{\frac{3}{2}-1}
+ Ct^\frac{3}{2} \| \delta \omega, \delta u \|_{\frac{3}{2} L^2 B_{p, \infty}}^{\frac{3}{2}-1}. \tag{4.17}
\]

If \(t \) is taken small enough such that \(\| (\omega^1, u^1, u^2) \|_{\frac{3}{2} L^2 B_{p, \infty}}^{\frac{3}{2}} \) and \(t^\frac{3}{2} \) sufficiently small, then we conclude that \((\delta u, \delta \omega) = 0 \) on \([0, T] \), and a continuity argument ensures that \((u^1, \omega^1) = (u^2, \omega^2) \) on \([0, \infty) \).

5. The Proof of Theorem 1.4

To prove Theorem 1.4, we will use the Green matrix of the linear system (1.6). Let us return to (1.5). Due to \(\text{div} u = 0 \), we have
\[
\begin{pmatrix}
 u \\
 \omega
\end{pmatrix} = G(x, t)
\begin{pmatrix}
 u_0 \\
 \omega_0
\end{pmatrix} - \int_0^t G(x, t - \tau) \nabla \cdot \left(\frac{P(uu)}{u \omega} \right) d\tau
\]
\[
= \begin{pmatrix}
 G_{ij}(t)u_{0j}^1 \\
 G_{(i+3)j}(t)\omega_{0j}^1
\end{pmatrix} - \int_0^t \begin{pmatrix}
 G_{ij} \partial \partial k(u_k u_j) + G_{i(j+3)} \partial \partial k(u_k \omega_j) \\
 G_{(i+3)j} \partial \partial k(u_k u_j) + G_{(i+3)(j+3)} \partial \partial k(u_k \omega_j)
\end{pmatrix} d\tau
\]
\[
def \quad G(t)(u_0, \omega_0) + \begin{pmatrix}
 B(u, \omega) \\
 B(u, \omega)
\end{pmatrix}, \quad i = 1, 2, 3, \tag{5.1}
\]
here \(G_{ij}(x, t) \) is the element of the Green matrix \(G(x, t) \), and the summation convention over repeated indices \(1 \leq j, k \leq 3 \) is used.

In view of the relationship: \(\hat{H}^{\frac{3}{2}} \approx \hat{B}^{\frac{3}{2}, 2} \), we have
\[
\| B(u, \omega) \|_{\frac{3}{2} L^2 \hat{B}^{\frac{3}{2}, 2}} \leq \left\| \int_0^t G(t - \tau) \nabla \cdot (P(uu) + u \omega)(\tau) d\tau \right\|_{\frac{3}{2} L^2 \hat{H}^{\frac{3}{2}}}
\leq C \left(\sum_{j \in \mathbb{Z}} 2^{3j} \left(\sup_{t \in [0, T]} \int_0^t \| G(t - \tau) \nabla \cdot (uu + u \omega)(\tau) \|_{L^2} d\tau \right)^{\frac{3}{2}} \right)^{\frac{1}{2}}
\leq C \left(2^{3j} \sup_{t \in [0, T]} \int_0^t e^{-c2^2 t} \| \Delta_j (uu + u \omega)(\tau) \|_{L^2} d\tau \right)^{\frac{1}{2}}
\leq C \left(\| Tu u \|_{\frac{3}{2} L^2 \hat{B}^{\frac{3}{2}, 2}} + \| Tu \omega + T \omega u \|_{\frac{3}{2} L^2 \hat{B}^{\frac{3}{2}, 2}} + \| R(u, u) + R(u, \omega) \|_{\frac{3}{2} L^2 \hat{B}^{\frac{3}{2}, 2}} \right) ,
\]
where in the third inequality we have used used Lemma 2.4 and Proposition 3.6 in the last inequality we have used Bony’s decomposition. From Lemma 2.6 we have
\[
\| T_u \omega \|_{L^4_t B^{0}_{2,2}} \leq C \| u \|_{L^4_t B^{1}_{2,2}} \| \omega \|_{L^\infty_t B^{1}_{2,2}} \leq C \| u \|_{L^4_t B^{1}_{2,2}} \| \omega \|_{L^\infty_t B^{1}_{2,2}} ^{1/2},
\]
\[
\| T_\omega u \|_{L^4_t B^{0}_{2,2}} \leq C \| \omega \|_{L^4_t B^{1}_{2,2}} \| u \|_{L^\infty_t B^{1}_{2,2}} \leq C \| \omega \|_{L^4_t B^{1}_{2,2}} \| u \|_{L^\infty_t B^{1}_{2,2}} ^{1/2},
\]
and
\[
\| R(u, \omega) \|_{L^4_t B^{\frac{1}{2}}_{2,2}} \leq C \| u \|_{L^4_t B^{\frac{1}{2}}_{2,2}} \| \omega \|_{L^\infty_t B^{\frac{1}{2}}_{2,2}} \leq C \| u \|_{L^4_t B^{\frac{1}{2}}_{2,2}} \| \omega \|_{L^\infty_t B^{\frac{1}{2}}_{2,2}} ^{1/2}.
\]

The terms $T_u u$ and $R(u, u)$ can be treated in the same way as $T_u \omega$, $R(u, \omega)$, respectively. Combining the above inequalities, we obtain
\[
\| B(u, \omega) \|_{L^\infty_t \dot{H}^\frac{1}{2}} \leq C \| (u, \omega) \|_{E^p_T} \| (u, \omega) \|_{L^\infty_t \dot{H}^\frac{1}{2}}.
\]

(5.2)

Similarly, we have
\[
\| \tilde{B}(u, \omega) \|_{L^\infty_t \dot{H}^\frac{1}{2}} \leq C \| (u, \omega) \|_{E^p_T} \| (u, \omega) \|_{L^\infty_t \dot{H}^\frac{1}{2}}.
\]

(5.3)

From Proposition 3.6 it is easy to verify that
\[
\| G(t)(u_0, \omega) \|_{L^\infty_t \dot{H}^\frac{1}{2}} \leq C \| (u_0, \omega_0) \|_{E^p_T} \| (u_0, \omega_0) \|_{\dot{H}^\frac{1}{2}} \leq C \| (u_0, \omega_0) \|_{\dot{H}^\frac{1}{2}}.
\]

(5.4)

It follows from the Theorem 1.2 that $\| (u, \omega) \|_{E^p_T} \leq \eta$, then if η is sufficiently small such that $\eta C \leq \frac{1}{2}$, we have for any $T > 0$
\[
\| (u, \omega) \|_{L^\infty_t \dot{H}^\frac{1}{2}} \leq 2C \| (u_0, \omega_0) \|_{\dot{H}^\frac{1}{2}}.
\]

This finishes the existence of the proof of the Theorem 1.4.

The uniqueness in $C(\dot{H}^\frac{1}{2})$. We will adopt the spirit of 3. Firstly, let us recall the following bilinear estimate from 3:

Lemma 5.1. For any $T > 0$, the bilinear operators $B(u, v)(t)$, $\tilde{B}(u, v)(t)$ are bi-continuous from $L^\infty_t (B^1_{2,\infty}) \times L^\infty_t (\dot{H}^\frac{1}{2})$ to $L^\infty_t (B^1_{2,\infty})$. Furthermore, we have
\[
\| B(u, v) \|_{L^\infty_t B^{1}_{2,\infty}} \leq C \| (u, v) \|_{L^\infty_t B^{1}_{2,\infty}^2} \| \Delta_j v \|_{L^2_t L^2} \| (e_k, T) \|^2 \| (e_k, T) \|_{L^2}\,
\]
here
\[
e_k, T \overset{\text{def}}{=} 1 - e^{-c2^k T},
\]
where $c > 0$ is a constant independent of j, T, u, v.

Now let (u, ω) and $(v, \overline{\omega})$ be two solutions in $C(0, T; \dot{H}^\frac{1}{2})$ with the initial data $(u_0, \omega_0) \in \dot{H}^\frac{1}{2}$. Using (5.1), we have the difference
\[
u - v = B(u - G_{ij}(t)u_0, u - v) + B(G_{ij}(t)u_0, u - v) + B(u - v, G_{ij}(t)u_0) + B(u - v, G_{ij}(t)u_0, \omega - \overline{\omega}) + B(G_{ij}(t)u_0, \omega - \overline{\omega}) + B(u - v, \overline{\omega} - G_{(i+3)j}(t)u_0) + B(u - v, G_{(i+3)j}(t)u_0), \quad i = 1, 2, 3.
\]
We have the same representation for $\omega - \varpi$ replacing B by \bar{B}. We get by Lemma 5.1 that
\[
\sup_{t \in (0,T)} (\|(u - v)(t)\|_B^{1/2} + \|(\omega - \varpi)(t)\|_B^{1/2}) \\
\leq C \sup_{t \in (0,T)} (\|(u - v)(t)\|_B^{1/2} + \|(\omega - \varpi)(t)\|_B^{1/2}) \\
\times \left(\|(1 - e^{-c2^{2k}T})^{1/2}(\|\Delta_j u_0\|_2 + \|\Delta_j \omega_0\|_2)\|_{\ell^2} + \sup_{t \in (0,T)} (\|u - G(t)u_0\|_{\dot{H}^{\frac{1}{2}}} + \|v - G(t)u_0\|_{\dot{H}^{\frac{1}{2}}} + \|\varpi - G(t)\omega_0\|_{\dot{H}^{\frac{1}{2}}})\right).
\]

With the help of the fact: if T is chosen sufficiently small and $(u_0, \omega_0) \in \dot{H}^{\frac{1}{2}}$, then
\[
\|(1 - e^{-c2^{2k}T})^{1/2}(\|\Delta_k u_0\|_2 + \|\Delta_k \omega_0\|_2)\|_{\ell^2} \leq \frac{1}{4}
\]
and the strong continuity in time of the $\dot{H}^{\frac{1}{2}}$ norm of the Duhamel's term of the solution (u, ω) and (v, ϖ), then a small enough time T is to be chosen such that the three terms in the blank is dominated by $1/2$ which implies that $\|(u - v, \omega - \varpi)(t)\|_B^{1/2} \equiv 0$ on $[0, T]$. Then by the standard argument ensures that $u = v, \omega = \varpi$ on $[0, \infty)$.

6. The decay estimate

Set
\[
W(T) \overset{def}{=} \sup_{0 \leq t \leq T, 0 < |\alpha|} \int_0^{|\alpha|} t^{\frac{|\alpha|}{2}} \left(\|D_x^\alpha u\|_{B^{1/2}_p, \infty} + \|D_x^\alpha \omega\|_{B^{1/2}_p, \infty}\right).
\]

Taking D_x^α on both sides of (4.3), one gets
\[
\begin{pmatrix}
\Delta_j D_x^\alpha u_A \\
\Delta_j D_x^\alpha \omega_\Omega
\end{pmatrix} = D_x^\alpha G(\cdot, t) \begin{pmatrix}
\Delta_j u_0, A \\
\Delta_j \omega_0, \Omega
\end{pmatrix} + \int_0^t D_x^\alpha G(\cdot, t - \tau) \begin{pmatrix}
\Delta_j F(\tau) \\
\Delta_j H(\tau)
\end{pmatrix} d\tau.
\]

Applying Lemma 2.4 to the above equation, we have
\[
\|\Delta_j D_x^\alpha u_A\|_{L^p} + \|\Delta_j D_x^\alpha \omega_\Omega\|_{L^p} \leq C e^{-c2^{2j+1}t^{|\beta|}} (\|\Delta_j u_0, A\|_{L^p} + \|\Delta_j \omega_0, \Omega\|_{L^p}) + I + II
\]
where
\[
I = C \int_0^{t/2} 2^{|\beta|} (\|G(t - \tau)\Delta_j F(\tau)\|_{L^p} + \|G(t - \tau) \Delta_j G(\tau)\|_{L^p}) d\tau,
\]
\[
II = C \int_{t/2}^t 2^{|\beta|} (\|G(t - \tau) D_x^\alpha D_x^{-1} \Delta_j F(\tau)\|_{L^p} + \|G(t - \tau) D_x^\alpha D_x^{-1} \Delta_j H(\tau)\|_{L^p}) d\tau.
\]

Noting that the inequality
\[
e^{-ct2^j} t^{|\beta|} \leq e^{-ct2^j} t^{-\frac{|\beta|}{2}}, \quad |\beta| \geq 0,
\]

(6.2)
and Proposition 3.3, we get that

\[
I \leq C \int_0^{t/2} e^{-c_2^2j(t-\tau)} (t-\tau)^{-1/4} \left(\| \Delta_j F(\tau) \|_{L^p} + \| \Delta_j H(\tau) \|_{L^p} \right) d\tau
\]

\[
II \leq C \int_{t/2}^{t} e^{-c_2^2j(t-\tau)} (t-\tau)^{-1/4} \left(\| D_x^{\alpha-1} \Delta_j F(\tau) \|_{L^p} + \| D_x^{\alpha-1} \Delta_j H(\tau) \|_{L^p} \right) d\tau
\]

In the following we denote by \(c_j \) a sequence in \(\ell^1 \) with the norm \(\| \{ c_j \} \|_{\ell^1} \leq 1 \). In light of (3.3) and interpolation (4.3), the straightforward calculation shows that

\[
I \leq C t^{-|\alpha|/4} \int_0^{t/2} e^{-c_2^2j(t-\tau)} \left(\| \Delta_j F(\tau) \|_{L^p} + \| \Delta_j H(\tau) \|_{L^p} \right) d\tau
\]

\[
\leq C c_j 2^{-j(\frac{3}{p} - 1)} t^{-\frac{|\alpha|}{4}} \left(\| F \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}} + \| H \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}} \right)
\]

\[
\leq C c_j 2^{-j(\frac{3}{p} - 1)} t^{-\frac{|\alpha|}{4}} \| (u, \omega) \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}}^2
\]

\[
\leq C c_j 2^{-j(\frac{3}{p} - 1)} t^{-\frac{|\alpha|}{4}} \| (u_0, \omega_0) \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}}^2.
\]

(6.3)

Thanks to the H"{o}lder inequality, we have

\[
II \leq C \| e^{-c_2^2j} \|_{L^4} \left(\int_{t/2}^{t} (t-\tau)^{-\frac{3}{4}} d\tau \right)^{1/4} \left(\| D_x^{\alpha-1} \Delta_j F \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}} + \| D_x^{\alpha-1} \Delta_j H \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}} \right)
\]

The divergence free condition on \(u \), Lemma 2.3 and Lemma 2.7 give that

\[
\| \Delta_j D_x^{\alpha-1} H \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}} \leq C 2^{j|\alpha|} \| \Delta_j ((D_x^{\alpha-1} u) \omega + u(D_x^{\alpha-1} \omega)) \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}}
\]

\[
\leq C c_j 2^{-j(\frac{3}{p} - 2)} \left(\| D_x^{\alpha-1} u \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}} + \| \omega \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}} \right) \left(\| D_x^{\alpha-1} \omega \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}} + \| u \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}} \right)
\]

(6.4)

By means of Interpolation and Lemma 2.3 (ii), we have

\[
\| D_x^{\alpha-1} u \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}} \leq C \| u \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}}^{1/4} \| u \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}}^{3/4} \leq C \| D_x^{\alpha} u \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}}^{1/4} \| u \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}}^{3/4}
\]

\[
\leq C t^{-\frac{|\alpha|}{4} + \frac{1}{4}} \| (u_0, \omega_0) \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}} \| u \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}}^{1/4}
\]

and

\[
\| \omega \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}} \leq C \| \omega \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}}^{1/4} \| \omega \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}}^{3/4} \leq C \| \omega \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}}^{1/4} \| D_x \omega \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}}^{3/4}
\]

\[
\leq C t^{-\frac{3}{4}} \| (u_0, \omega_0) \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}}^{1/4}
\]

The term of \(F \) is done in the same way. Thus

\[
\sup_{j \in \mathbb{Z}} 2^{j(\frac{3}{p} - 1)} t^{-\frac{|\alpha|}{4}} II \leq C W(t)^{\frac{1}{4}} \| (u_0, \omega_0) \|_{L^p_{1/4} B^{\frac{3}{p} - 1}_{p, \infty}}^{1/4}.
\]

(6.4)

For the estimate of \(\omega_d \), we localize the third equation of (1.11), then taking \(D_x^\alpha \) on the localized equation yields

\[
\partial_t \Delta_j D_x^{\alpha} \omega_d - 2 \Delta \Delta_j D_x^{\alpha} \omega_d + 2 \Delta_j D_x^{\alpha} \omega_d = -\Lambda^{-1} \text{div} D_x^{\alpha} J(u \cdot \nabla \omega).
\]
Multiplying by \(p|\Delta_j D^\alpha_x \omega_d|^{p-2} \Delta_j D^\alpha_x \omega_d \) and integrating with respect to \(x \) yield that
\[
\frac{d}{dt} \| \Delta_j D^\alpha_x \omega_d \|_{L^p}^p + 2p \int_{\mathbb{R}^3} (\Delta) \Delta_j D^\alpha_x \omega_d |\Delta_j D^\alpha_x \omega_d|^{p-2} \Delta_j D^\alpha_x \omega_d \, dx
\]
\[
+ 2p \int_{\mathbb{R}^3} |\Delta_j D^\alpha_x \omega_d|^p \, dx = -p \int_{\mathbb{R}^3} A^{-1} \text{div} \Delta_j (u \cdot \nabla \omega) |\Delta_j D^\alpha_x \omega_d|^{p-2} \Delta_j D^\alpha_x \omega_d \, dx.
\]
Using Lemma \([2.3]\) produces that
\[
\frac{d}{dt} \| \Delta_j D^\alpha_x \omega_d \|_{L^p}^p + c_p (2^j + 1) \| \Delta_j D^\alpha_x \omega_d \|_{L^p}^p \leq C \| \Delta_j D^\alpha_x (u \cdot \nabla \omega) \|_{L^p} \| \Delta_j D^\alpha_x \omega_d \|_{L^p}^{p-1}.
\]
This together with Gronwall's inequality implies that
\[
\| \Delta_j D^\alpha_x \omega_d \|_{L^p} \leq e^{-c_p (2^j + 1)} \| \Delta_j D^\alpha_x \omega_{0,d} \|_{L^p} + III,
\]
where
\[
III = C \int_0^t e^{-c_p (t-\tau)^{2^j}} e^{-(t-\tau)^{1/2}} \| \Delta_j (u \cdot \nabla \omega) \|_{L^p} \, d\tau.
\]
Using Lemma \([2.3]\) and (6.2), we obtain
\[
III \leq C \int_0^{t/2} e^{-c_p (t-\tau)^{2^j}} e^{-(t-\tau)^{1/2}} \| \Delta_j (u \cdot \nabla \omega) \|_{L^p} \, d\tau
\]
\[
+ C \int_{t/2}^t e^{-c_p (t-\tau)^{2^j}} e^{-(t-\tau)^{1/2}} \| \Delta_j (u \cdot \nabla \omega) \|_{L^p} \, d\tau.
\]
The first term is treated as \(I \), the second term is treated as \(II \), then
\[
\sup_{j \in \mathbb{Z}} 2^{j(2^j+1)} \| III \| \leq CW(t)^{2^{j+1/4}} \| (u_0, \omega_0) \|_{E^p_0}^{1/4 + 1/4}.
\]
(6.5)
Combining (6.1) with (6.3)–(6.5), we have
\[
A(t) \leq \| (u_0, \omega_0) \|_{E^p_0} + C \| (u_0, \omega_0) \|_{E^p_0}^2 + CW(t)^{2^{j+1/4}} \| (u_0, \omega_0) \|_{E^p_0}^{1/4 + 1/4}.
\]
Then by the continuous induction, we have \(W(t) \leq 2CE \). This complete the proof of Theorem \((1.6)\).

7. Acknowledgments

Q. Chen and C. Miao were supported by the NSF of China grants 10701012 and 10725102 respectively.

References

[1] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. de l’Ecole Norm. Sup., 14(1981), 209-246.
[2] J. Boldrini, M. A. Rojas-Medar and E. Fernandez-Cara, Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids, J. Math. Pures Appl., 82(2003), 1519-1525.
[3] M. Cannone, Ondellettes, paraproduits et Navier-Stokes, Paris: Diderot Editeur, 1995.
[4] M. Cannone, A generalization of a theorem by Kato on Naiver-Stokes equations. Revista Matemática Iberoamericana, 13(1997)515-541.
[5] M. Cannone and G. Karch, Smooth or singular solutions to the Navier-Stokes system, J. Diff. Eq., 197(2004), 247-274.
[6] M. Cannone and F. Planchon, More Lyapunov functions for the Navier-Stokes equations, in Navier-Stokes equations: Theory and NumericalMethods, R. Salvi, ed., Lecture Notes in Pure andApplied Mathematics, 223, New York-Oxford: 2001, 19C26.
[7] J.-Y. Chemin, *Localization in Fourier space and Navier-Stokes system*. Phase space analysis of partial differential equations. Vol. 1, 2004, 53-135.

[8] Q. Chen, C. Miao and Z. Zhang, *Global well-posedness for the compressible Navier-Stokes equations with the highly oscillating initial velocity*, Comm. Pure Appl. Math., online.

[9] Q. Chen, C. Miao and Z. Zhang, *Global well-posedness for the 3D rotating Navier-Stokes equations with highly oscillating initial data*, arXiv:0910.3064.

[10] R. Danchin, *On the uniqueness in critical spaces for compressible Navier-Stokes equations*. Nonlinear Differential Equations Appl., 12(2005), 111-128.

[11] R. Danchin, *Fourier Analysis Methods for PDE’s*.

[12] B. Dong and Z. Zhang, *Global regularity for the 2D micropolar fluid flows with zero angular viscosity*. J. Differential equations, 249(2010), 200-213.

[13] A. C. Eringen, *Theory of micropolar fluids*. J. Math. Mech., 16(1966), 1-18.

[14] E. J. V.-Roa and L. C. F. Ferreira, *Micropolar fluid system in a space of distributions and large time behavior*. J. Math. Anal. Appl., 332(2007), 1425-1445.

[15] H. Fujita and T. Kato, *On the Navier-Stokes initial value problem I*. Arch. Rational Mech. Anal., 16(1964), 269-315.

[16] G. P. Galdi and S. Rionero, *A note on the existence and uniqueness of solutions of the micropolar fluid equations*. International J. Engineering Science, 15(1977), 105-108.

[17] T. Kato, *Strong L^p-solutions of Navier-Stokes equations in \mathbb{R}^n with applications to weak solutions*. Math. Zeitschrift, (187)1984, 471-480.

[18] G. Lukaszewicz, *Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology*. Birkhäuser, Basel, 1999.

[19] M. A. Rojas-Medar, *Magneto-micropolar fluid motion: existence and uniqueness of strong solution*. Math. Nach. 188(1997), 301-319.

[20] B. Yuan, *On the regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space*, PAMS, 138(2010), 2025-2036.

[21] J. Yuan, *Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations*, Math. Methods Appl. Sci., 31(2008), 1113-1130.

Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, P. R. China

E-mail address: chen_qionglei@iapcm.ac.cn

Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, P. R. China

E-mail address: miao_changxing@iapcm.ac.cn