Scaling of the conductance distribution near the Anderson transition

Keith Slevin
Department of Physics, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.

Peter Markoš
Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 842 28 Bratislava, Slovakia.

Tomi Ohtsuki
Department of Physics, Sophia University, Kioi-cho 7-1, Chiyoda-ku, Tokyo 102-8554, Japan.
(Dated: March 22, 2022)

The scaling hypothesis is the foundation of our understanding of the Anderson transition. It has long been realised that the conductance of a disordered system is a fluctuating quantity and often assumed, but never demonstrated in the literature, that the conductance distribution obeys a single parameter scaling law. We present a clear cut numerical demonstration of the scaling of the conductance distribution in the critical regime.

I. INTRODUCTION

The single parameter scaling hypothesis of Abrahams et al. is the basis of our understanding of the Anderson metal-insulator transition in disordered systems. In Ref. 1 it was proposed that the zero temperature conductance distribution obeys a single parameter scaling law. However, the large sample to sample fluctuations in the conductance of disordered systems were not explicitly considered. In the critical and localised regimes the fluctuations are of the same order as the mean conductance. (The relation of the mean conductance to the Thouless number is discussed in Ref. 2.) This led to suggestions that the scaling hypothesis should be reformulated in terms of the typical conductance or perhaps the distribution of conductance.

For a disordered system of size L in $d = 2 + \epsilon$ dimensions, Altshuler et al. estimated the cumulants c_n of the conductance distribution using a field theoretic method. At the mobility edge they found that

$$c_n(L) = \begin{cases} e^{n-2}, & n \leq n_0 \approx 1/\epsilon \\ (L/\ell)^{n^2-2n}, & n > n_0 \end{cases} \quad (1)$$

If single parameter scaling holds, the only relevant length should be the correlation length ξ, and the appearance of the mean free path ℓ in the expression for the higher cumulants is unexpected. (In the insulating regime ξ is the localisation length, while in the metallic regime it is the correlation length.) Shapiro reconstructed the critical conductance distribution from (1) and showed that, appearances to the contrary, these cumulants are consistent with a single parameter scaling of the distribution.

To apply results for $d = 2 + \epsilon$ to three dimensions we must make a questionable extrapolation to $\epsilon = 1$. While the Anderson transition occurs at weak disorder $k_F\ell \gg 1$ when $\epsilon \ll 1$, it occurs at strong disorder $k_F\ell \approx 1$ in three dimensions. (Here k_F is the Fermi wave number.) Comparison of the distribution obtained by Shapiro with numerical results shows that the behaviour of the conductance distribution at large g, and also the non-universal behaviour of the higher cumulants in (1), is qualitatively incorrect.

To try to overcome the limitation to weak disorder Cohen et al. used a Migdal-Kadanoff type real space renormalization scheme. They found that the scaling of the conductance distribution is described by two parameters; only in the limit of weak disorder is single parameter scaling recovered. However, and as pointed out by Cohen et al., the Migdal-Kadanoff scheme involves an uncontrolled approximation and some of the results obtained with it are known not to be correct. For example, in the metallic regime the predicted conductance fluctuations are too large and in disagreement with the theoretically well established and experimentally verified phenomena of universal conductance fluctuations. Recent work on Anderson localisation in one dimension has highlighted the importance of a second length scale l_s. Deych et al. demonstrated the existence of a crossover between single parameter and two parameter scaling regimes dependent on the ratio of l_s to the localisation length ξ. Single parameter scaling is observed when $\xi > l_s$, and two parameter scaling when $\xi < l_s$. The implications of this result for Anderson localisation in higher dimensions are not yet clear.

Numerical studies of the Anderson model have demonstrated single parameter scaling of the localisation length of electrons in quasi-one dimensional systems and also of the mean resistance, mean conductance and typical conductance near the Anderson transition in three dimensions. Of themselves these studies do not rule out a two parameter scaling of the conductance distribution. For example, in the Migdal-Kadanoff scheme the mean of the logarithm of resistance obeys a single parameter scaling law while at the same time the distribution obeys a two parameter scaling law. However, numerical stud-
ies have also demonstrated the existence of a universal size independent critical scaling distribution that is accessible by varying only a single parameter. This observation makes a two parameter scaling unlikely; two parameter scaling should require that both parameters be varied simultaneously to access the critical point. Nevertheless, given that the scaling hypothesis is the foundation upon which our understanding of transport in disordered systems rests, we feel that a clear cut demonstration of the scaling of the distribution of conductance, free of questionable extrapolations or uncontrolled approximations, is called for.

II. METHOD

Following Ref. [2] a single parameter scaling law for the conductance distribution \(p_L(g) \) of a three dimensional system of linear dimension \(L \) can be mathematically formulated as follows

\[
p_L(g) \simeq F(g; X), \tag{2}
\]

where \(X \) is a parameter which must obey a single parameter scaling law

\[
\frac{d \ln X}{d \ln L} = \beta(X). \tag{3}
\]

A limiting process is implicit in (2); we refer the reader to Ref. [2] for a detailed discussion. The parameter \(X \) need not be one of the moments of the distribution.

At first sight it appears that we must know the functional form of the function \(F \) in (2) in order to verify single parameter scaling of the distribution numerically. In fact, this is not so. The procedure which we have adopted is to analyse the scaling of the percentiles of the distribution. The precise definition of the percentile \(g_q \) is

\[
g_q = \int_0^{g_q} p_L(g)dg \tag{4}
\]

where \(0 \leq q \leq 1 \). By establishing single parameter scaling for a representative set of percentiles we indirectly establish (2) and (3), provided that the scaling of different percentiles are consistent. When considering the percentiles it is not necessary to distinguish \(g, \ln g \) or \(1/g \) as it is when considering average quantities.

We have analysed the conductance distribution of the Anderson model numerically. The motion of the electrons is described by

\[
H = V \sum_{<i,j>} C_i^\dagger C_j + \sum_i W_i C_i^\dagger C_i, \tag{5}
\]

where \(C_i^\dagger \) (\(C_i \)) is the creation (annihilation) operator of an electron at the site \(i \) of a three dimensional cubic lattice. The amplitude of the random potential at site \(i \) is \(W_i \). Hopping is restricted to nearest neighbours and its amplitude was taken as the unit of energy, \(V = 1 \). We assumed a box distribution with each \(W_i \) uniformly distributed on the interval \([-W/2, W/2]\). In what follows we refer to the strength of the potential fluctuations \(W \) as the disorder. The numerical method used is described in Ref. [7]. The two terminal zero temperature conductance was evaluated using the Landauer formula

\[
g = 2\text{tr}t^t t \tag{6}
\]

where \(t \) is the transmission matrix describing the propagation of electrons from one contact to the other [3,4].

The conductance distribution depends on the system size \(L \), the disorder \(W \), the Fermi energy \(E_F \) and the boundary conditions. We set \(E_F = 0.5 \) and imposed fixed boundary conditions in the transverse directions. We accumulated data for the disorder range \(15 \leq W \leq 18 \) and system sizes \(6 \leq L \leq 18 \). At the extremes of the disorder range the localisation (correlation) length is of the same order as the system size [6,7] so that our data covers the critical regime.

To estimate \(g_q \) we simulated 1,000,000 realisations of the random potential and calculated the conductance for each realisation. (For \(L = 18 \) the number of realisations was approximately 500,000.) We sorted the data into ascending order and our estimate of \(g_q \) is then the \(n = [qN_q] \) th datum in this list where \([x]\) is the integer part of \(x \). When fitting the numerical data it is also necessary to have an estimate of the accuracy of the percentiles. Following the standard method we used the binomial distribution to estimate the likely accuracy of the percentile. We define

\[
\Delta n = \sqrt{Nq(1-q)}, \tag{7}
\]

and look up the \((n + \Delta n)\)th and \((n - \Delta n + 1)\)th data in the list and calculate the differences with \(g_q \). Our estimate of the accuracy is then the largest of these two differences. In practice, we found that the accuracy of all the percentiles were comparable, being of the order of 0.2%. The data were then fitted with the finite size scaling forms below by minimizing the \(\chi^2 \) statistic in the usual way.

To fit the system size and disorder dependence of the percentile we supposed a single parameter scaling law but allowed for deviations from scaling due to an irrelevant scaling variable and non-linearity of the scaling variables [3,4]. We fitted the data to

\[
\ln g_q = F(\psi, \phi), \tag{8}
\]

where \(\psi \) is the relevant scaling variable and \(\phi \) is the irrelevant scaling variable. We approximated this scaling function by its first order expansion in the irrelevant scaling variable

\[
\ln g_q = F_0(\psi) + \phi F_1(\psi). \tag{9}
\]

We expanded each scaling function as a power series

\[
F_0(x) = \ln (g_q) + x + a_2x^2 + \cdots + a_nx^n \tag{10}
\]
$F_1(x) = 1 + b_1 x + b_2 x^2 + \cdots + b_n x^n$ \hspace{1cm} (11)

Here $(g_q)_c$ is the critical value of the percentile. The scaling variables were approximated by expansions in terms of the dimensionless disorder

$$w = (W_c - W)/W_c, \hspace{1cm} (12)$$

where W_c is the critical disorder separating the insulating and metallic phases,

$$\psi = L^{1/\nu} \left(\psi_1 w + \psi_2 w^2 + \cdots + \psi_{n_\psi} w^{n_\psi} \right) \hspace{1cm} (13)$$

and

$$\phi = L^y \left(\phi_0 + \phi_1 w + \phi_2 w^2 + \cdots + \phi_{n_\phi} w^{n_\phi} \right). \hspace{1cm} (14)$$

The critical exponent ν describes the divergence of the localisation (correlation) length as the transition is approached.

$$\xi = \xi_\pm \left| \psi_1 w + \psi_2 w^2 + \cdots + \psi_{n_\psi} w^{n_\psi} \right|^{-\nu} \hspace{1cm} (15)$$

The constants ξ_\pm, and hence the absolute scale of the localisation (correlation) length ξ, cannot be determined from the fit. The decay of the irrelevant scaling variable with system size is described by the exponent $y < 0$. Redundancy in the definition of the fitting parameters between the coefficients in the expansions of F_0 and F_1 and the expansions of ψ and ϕ are eliminated by setting some of the expansion coefficients of F_0 and F_1 to unity as shown. This choice is also necessary if F_0 and F_1 are to be universal. The total number of parameters is $N_p = n_0 + n_1 + n_\psi + n_\phi + 4$.

The minimum of χ^2 was found using the DRNLIN routine of the IMSL numerical library. The starting values of the fitting parameters supplied to DRNLIN are in the region $\nu \approx 1.6$, $W_c \approx 16.5$, $y \approx -3$, $\psi_1 \approx 1$. We set the initial value of ln $(g_q)_c$ to a value close to its best fit value by visual inspection of the raw data and all other parameters were initially zero. The results of the fitting procedure are not especially sensitive to the choice of the starting values.

Precise details of the fits are given in Table I. The estimates of the irrelevant exponent are consistent with those obtained in Ref. [9] and are not shown again here.

Data for the $q = 0.17$ percentile are plotted in Figure 1. In Figure 2 the same data, after subtraction of corrections to scaling, are re-plotted to demonstrate single parameter scaling. This is done by plotting the corrected data as a function of the ratio of the systems size L to the localisation (correlation) length ξ. When displayed in this way the data fall on two different curves corresponding to the localised (lower curve) and the delocalised (upper curve) regimes. The two curves are described by two scaling functions F_+ and F_- which are derived from F_0,

$$F_+(x) = \ln (g_q)_c + x^{1/\nu} + \cdots + a_{n_0} x^{n_0/\nu}, \hspace{1cm} (16)$$

$$F_-(x) = \ln (g_q)_c - x^{1/\nu} + \cdots + (-1)^{n_0} a_{n_0} x^{n_0/\nu}. \hspace{1cm} (17)$$

Data on the metallic branch follow

$$\ln g_q = F_+ \left(\frac{L}{\xi_+} \right) \hspace{1cm} (18)$$

while data on the the insulating branch follow

$$\ln g_q = F_- \left(\frac{L}{\xi_-} \right) \hspace{1cm} (19)$$

For completeness some representative data for the median ($q = 0.5$) and $q = 0.87$ percentiles appear in Figures 3 and 4 respectively.
TABLE I: The estimated critical values for each percentile and 95% confidence intervals.

q	W_c	$\ln (q_n)$	ν
0.025	16.48 ± 0.02	−4.14 ± 0.03	1.56 ± 0.03
0.17	16.47 ± 0.01	−2.55 ± 0.01	1.56 ± 0.01
0.5	16.48 ± 0.04	−1.08 ± 0.03	1.59 ± 0.03
0.83	16.46 ± 0.05	0.13 ± 0.03	1.60 ± 0.04

TABLE II: The details of the fit. N_d is the number of data.

q	n_0	n_ψ	n_λ	n_ϕ	N_p	N_d	χ^2	Q
0.025	3	2	1	0	10	179	159	0.7
0.17	2	2	1	0	9	179	155	0.8
0.5	3	2	1	0	10	179	172	0.4
0.83	3	2	1	0	10	179	180	0.3

We also analysed the $q = 0.975$ percentile of the distribution but were unable to convincingly fit its systems size and disorder dependence. The origin of the difficulties may be the large corrections to scaling encountered for this percentile. Larger systems sizes will probably be needed for a definitive analysis of the high conductance tail of the distribution.

For the percentiles analysed the estimates of the critical disorder and the critical exponent obtained from the scaling of different percentiles are consistent as required. The estimates of the critical exponent in Table I are consistent with our previous estimates based on the scaling of the localisation length in quasi-1d systems, scaling of higher Lyapunov exponents, and scaling of the mean conductance, mean resistance and typical conductance.

The estimates are also consistent with numerical estimates reported by other authors.

IV. CONCLUSION

Our numerical results demonstrate single parameter scaling of the zero temperature conductance distribution in the critical regime of the Anderson transition in three dimensions. This result complements a previous demonstration of the scaling of the mean conductance, typical conductance and mean resistance.

A two parameter scaling of the conductance distribution, similar to that found by by Deych et al. for one dimensional systems might be recovered in the strongly localised regime. The localisation length diverges at the critical point while l_s, which is related to the integrated density of states, is always finite. Thus on approaching the critical point we should always find $\xi > l_s$ and single parameter scaling should be observed. Far from the critical point, if ξ becomes less than l_s, a two parameter scaling might appear. It remains to be seen, however, if the results of Deych et al. carry over to higher dimensions.
FIG. 4: The data for the $q = 0.83$ percentile after corrections to scaling are subtracted and plotted as function of the ratio L/ξ to make single parameter scaling evident. The lines are the scaling functions (16) and (17) described in the text.

Acknowledgments

We would like to thank the Institute for Solid State Physics of the University of Tokyo for the use of their computer facilities. PM would like to thank the Japan Society for the Promotion of Science and Sophia University for their hospitality and financial support, and is also grateful for support under APVT Grant No. 51-021602.

1 E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
2 D. Braun, E. Hofstetter, A. MacKinnon, and G. Montambaux, Phys. Rev. B 55, 7557 (1997).
3 P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, Phys. Rev. Lett. 22, 3519 (1980).
4 B. Shapiro, Phys. Rev. B 34, 4394 (1986).
5 B. Shapiro, Phil. Mag. B 56, 1031 (1987).
6 B. L. Altshuler, V. E. Kravtsov, and I. V. Lerner, Phys. Lett. A 134, 488 (1989).
7 B. Shapiro, Phys. Rev. Lett. 65, 1510 (1990).
8 K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 78, 4083 (1997).
9 P. Markoš, Phys. Rev. Lett. 83, 588 (1999).
10 A. Cohen, Y. Roth, and B. Shapiro, Phys. Rev. B 38, 12125 (1988).
11 B. L. Altshuler, JETP Lett. 41, 648 (1985).
12 P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).
13 A. Cohen, Phys. Rev. B 51, 10406 (1995).
14 L. I. Deych, A. A. Lisyansky, and B. L. Altshuler, Phys. Rev. Lett. 84, 2678 (2000).
15 K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 82, 382 (1999).
16 K. Slevin, P. Markoš, and T. Ohtsuki, Phys. Rev. Lett. 86, 3594 (2001).
17 J. B. Pendry, A. MacKinnon, and P. J. Roberts, Proc. R. Soc. Lond. A 437, 67 (1992).
18 E. N. Economou and C. M. Soukoulis, Phys. Rev. Lett. 46, 618 (1981).
19 D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981).
20 A. MacKinnon and B. Kramer, Z. Phys. B 53, 1 (1983).
21 W. H. Press, A. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran (Cambridge University Press, Cambridge, 1992).
22 K. Slevin and T. Ohtsuki, Phys. Rev. B 63, 45108 (2001).
23 P. Markoš, J. Phys. A: Math. and Gen 33, L393 (2000).
24 A. MacKinnon, J. Phys. Cond. Matt. 6, 2511 (1994).
25 F. Milde, R. A. Römer, M. Schreiber, and V. Uski, Eur. Phys. J. B 15, 685 (2000).
26 S. L. A. de Queiroz, Phys. Rev. B 63, 214202 (2001).