Evaluation of Cytotoxic Activity Alkaloid Fractions of Zanthoxylum acanthopodium DC. Fruits

Dina Maya Syari1, Rosidah Rosidah1, Poppy Anjelisa Zaitun Hasibuan1, Ginda Haro2, Denny Satria3

1Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia; 2Department of Biochemistry, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia; 3Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia

Abstract

AIM: This study was carried out to investigate cytotoxic activity towards T47D, 4T1, MCF-7, HeLa, and Raji cells of alkaloid fractions of Zanthoxylum acanthopodium DC. fruits. Zanthoxylum acanthopodium DC.

METHODS: The fruit was extracted by maceration. The ethanol extract was fractionated with liquid-liquid extraction using n-hexane, chloroform at pH 3.7, and 9 to obtain alkaloid fractions. Cytotoxic activity for fraction chloroform at pH 7 and 9 was determined with MTT assay.

RESULTS: The IC50 of fraction chloroform at pH 7 and 9 was (92.67 ± 1.37; 71.87 ± 1.04; 159.87 ± 0.63; 123.39 ± 0.81; and 103.09 ± 0.58 µg/mL for pH 7) and (451.29 ± 25.48; 247.18 ± 2.82; 318.46 ± 5.40; 303.96 ± 8.75; and 181.45 ± 1.35 µg/mL for pH 9) respectively.

CONCLUSION: The results reveal that alkaloid fractions at pH 7 and 9 of Zanthoxylum acanthopodium DC. Fruits have cytotoxic activity. Our further study is to isolate and assesses anticancer activity from alkaloid compounds.

Introduction

Alkaloids are compound which contains a nitrogen atom in their heterocyclic ring structure. Grouping of alkaloids based on biosynthetic pathways is widely used to categorise alkaloids. Alkaloids have a broad distribution in the plants and mainly stand in Spermatophyta. Moreover, many alkaloids show prominent pharmacological activities, such as for asthma, analgesic, antibacterial, and cytotoxicity. Alkaloids are either the most important active compounds in natural products, and some of them have successfully improved into anticancer drugs [1], [2], [3], [4], [5].

Zanthoxylum acanthopodium DC. has been used as aromatic substances, tonic, and treat dysentery. Indian people have used Zanthoxylum acanthopodium DC. to treat paralysed and skin diseases such as abscess and leprosy. Andaliman has been used as spices at North Sumatera, especially at North Tapanuli [6], [7], [8]. The plants from Zanthoxylum genus contain many compounds such as phenol hydroquinones, flavonoids, steroids / triterpenoids, tannins, glycosides, volatile oils, alkaloids, coumarins, lignans, amides and terpenes [9], [10], [11], [12], [13], [14], [15], [16]. Ethylacetate extract of Zanthoxylum acanthopodium DC. fruits (EAF) was showed to have cytotoxicity effect against MCF-7 and T47D cell lines. EAF was found to have the synergistic effect when combined with doxorubicin. EAF was showed to have anticancer activity towards mice induced with benzo(a)pyrene, having a cardioprotective effect and active on T47D resistance cells [17], [18], [19]. The purpose of this research was to determine cytotoxicity activity alkaloid fractions of Zanthoxylum acanthopodium DC. fruits on cancer cells.
Material and Methods

Materials

Fresh fruits of *Zanthoxylum acanthopodium* DC. were collected from Onan Rungu village, Samosir Regency, Sumatera Utara Province, Indonesia. *Zanthoxylum acanthopodium* DC. was determined in Herbarium Bogoriense, DMSO (Merck), [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide] (Sigma), chloroform (Full Time), n-hexane (Full Time).

Extraction and Fractionation

Zanthoxylum acanthopodium DC. fruits powdered (1.000 g) were extracted with ethanol 96% (3 x 3 d, 7.500 mL) at room temperature with occasional stirring. The filtrate was collected and then evaporated with a rotary evaporator (Stuart, Stone, UK) until obtained viscous extract [19], [20], [21]. The viscous extract was fractionated with n-hexane and continue with chloroform at pH 3, 7, 9 and 11 [22].

Analysis of Alkaloids with Thin Layer Chromatography

The chloroform fractions at pH 7 and 9 were carried out by thin-layer chromatography using silica gel GF254 as stationary phase and chloroform: methanol: ammonia in the ratio (18: 15: 1) were shown in Figure 1, and Rf values were shown in Table 1.

Spot	pH 7	pH 9
1	0.06	0.05
2	0.14	0.16
3	0.48	0.44
4	0.61	-
5	0.68	-

The results of the TLC analysis used the stationary phase of silica gel 60 F254 with the appearance of dragendorff spots.

Figure 1: Thin layer chromatography plates after sprayed with Dragendorff

Inhibitory Concentration 50% (IC50)

[3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide] assay was used to determine cell viability. In each handling, of fractions were shown to inhibit cells growth. The IC50 value was shown in Table 2.

Cell Line	Chloroform Fraction (µg/mL)	pH 7	pH 9
T47D	92.97 ± 1.37	451.29 ± 25.48	
4T1	71.87 ± 1.04	247.18 ± 2.82	
MCF-7	159.87 ± 0.63	318.46 ± 5.40	
HeLa	123.39 ± 0.81	303.96 ± 8.75	
Raji	103.09 ± 0.58	181.45 ± 1.35	

Statistical Analysis

The results were interpreted as means ± SD. The statistical analysis was performed with SPSS edition 21.

Results

Thin Layer Chromatography

The result of analysis of alkaloid compounds with thin layer chromatography using the GF254 gel and the chloroform: Methanol: ammonia in the ratio (18: 15: 1) were shown in Figure 1, and Rf values were shown in Table 1.

Discussion

The cytotoxic activity from natural materials is correlated with the phytochemical compounds, including in *Zanthoxylum acanthopodium* DC. and alkaloids estimated as active compounds [21], [25]. The majority of studies focus on the induced cytotoxicity of well-known alkaloids such as, taxol,
vincristine and vinflunine that are used clinically in cancer therapy worldwide. Screening for novel agents has led to the discovery of new alkaloid that showed promising anti-neoplastic and apoptotic abilities in several cancer cell lines [1, 4, 5].

Benzophenanthidine and furoquinoline are alkaloids compound from Zanthoxylum buesgenii, which has cytotoxic activity in several cell lines [26]. Benzophenanthidine derivatives from Zanthoxylum nitidum exhibited A549, HeLa, SMMC-7721 and EJ cancer cells with IC50 27.50; 37.50; 16.95; and 60.42 µM respectively [27]. Acridone alkaloids from Zanthoxylum leprieurii Guill. was showed modest cytotoxicity with LD5013.1 µg/mL at brine-shrimp (Artemia salina Leach) and active towards A549 and DLD-1 cells [28].

In conclusion, the results reveal that Zanthoxylum acanthopodium DC. fruits alkaloids fractions provide effective as anticancer towards several cell lines.

References

1. Wang ZT and Liang GY. Zhong yao hua xue. Shanghai Scientific and Technical, 2009.
2. Lee MR. The history of Ephedra (ma-huang), J Royal College of Phys of Edinburgh. 2011; 41(1):78-84. https://doi.org/10.4997/JRCP.E.2011.116 PMid:21365072
3. Benyhe S. Morphine: new aspects in the study of an ancient compound. Life Sciences. 1994; 55(13):969-979. https://doi.org/10.1016/0024-3205(94)00631-8
4. Li W, Shao Y, Hu L. BM6, a new semi-synthetic Vinca alkaloid, exhibits its potent in vivo anti-tumor activities via its high binding affinity for tubulin and improved pharmacokinetic profiles. Cancer Biology and Therapy, 2007; 6(5):787-794. https://doi.org/10.4161/cbt.6.5.4006 PMid:17872722
5. Huang M, Gao H, Chen Y. Chrmitecan, a novel 9-substituted camptothecin, with improved anticancer pharmacologic profiles in vitro and in vivo. Clinical Cancer Research. 2007; 13(4):1296-1307. https://doi.org/10.1158/1078-0432.CCR-06-1277 PMid:17287296
6. Suryanto E, Sastrohardijodo H, and Raharjo S, Tranggono. Antiradical Activity of Andaliman (Zanthoxylum acanthopodium DC.) Fruit Extract. Indonesian Food Nutri Prog. 2004; 11(1):15-19.
7. Hynniewtara SR, Kumar Y. Herbal Remedies Among The Khasi Traditional Healers and Village Folks in Meghalaya. Indian J Trad Knowledge. 2008; 7(4):581-586.
8. Sirait M, Siahaan M, Mangkudidjojo. Pemeriksaan Minyak Atsiri dan Knowledge. 2008; 7(4):581-586.
9. Pathrupsus A. Kajian Mekanisme Antibakteri Ekstrak Andaliman (Zanthoxylum acanthopodium DC.) terhadap Bakteri Patogen Pangan. Thesis. Institut Pertanian Bogor, 2006.
10. Fernandez CC, Vieira PC, Silva VC, Dall'Oglio EL, Silva LE, Sousa PT. 6-acetyl-N-methyl-dihydrocine, a New Alkaloid from Zanthoxylum riedelianum. J. Braz. Chem. Soc. 2009; 20(2):379-382. https://doi.org/10.1590/S0103-50532009020002025
11. Yao-Kuassi PA, Caron C, Ramariantsoa H, Prost E, Harakat D, Kuassi PA, Caron C, Ramiarantsoa H, Prost E, Harakat D, Kuarre N, et al. Connaughtine, a New Alkaloid from Zanthoxylum atchoum. C.R Chimie.2015; 18(8):891-897. https://doi.org/10.1016/j.crci.2015.01.005
12. Hu J, Shi X, Mao X, Chen J, Li H. Cytotoxic Mannopyranosides of Indole Alkaloids from Zanthoxylum nitidum. Chemistry & Biodiversity. 2014; 11(6):970-974. https://doi.org/10.1002/cbdv.201300381 PMid:24934882
13. Hu J, Zhang WD, Liu RH, Zhang C, Shen YH, Li HL, et al. Benzophenanthridine Alkaloids from Zanthoxylum nitidum (Roxb.) DC. and Their Analigues and Anti-Inflammatory Activities. Chemistry & Biodiversity. 2006; 3(9):990-995. https://doi.org/10.1002/cbdv.200690108 PMid:17193331
14. Yang ZD, Zhang D, Ren J, Yang M. Skimmianine, a Furoquinoline Alkaloid from Zanthoxylum nitidum as a Potential Aetylcholinesterase Inhibitor. Med Chem Res. 2012; 21:722-725. https://doi.org/10.1007/s00444-011-9581-9
15. Cui XG, Zhao QJ, Chen QL, Xu L, Song Y, Jin YS, et al. Two New Benzophenanthridine Alkaloids from Zanthoxylum nitidum. Helvetica Chemica Acta. 2008; 91(1):155-158. https://doi.org/10.1002/heth.200890006
16. Chen JJ, Yang CK, Kuo YH, Hwang TL, Kuo WL, Lim YP, et al. New Coumarin Derivatives and Other Constituents from The Stem Bark of Zanthoxylum avicennae: Effects of Neutrophil Pro-Inflammatory Responses. Int. J. Mol. Sci. 2015; 16(5):9719-9731. https://doi.org/10.3390/ijms16059719 PMid:25938967 PMCID:PMC4463613
17. Hasibuan PAZ, Harahap U, Situras P, Satria D. Ethylacetract of Zanthoxylum acanthopodium DC. fruit against doxorubicin-resistant T47D cells. Der Pharma Chemica. 2016; 8(20):172-174.
18. Siyotang YM. Uji Aktivitas Antikanker Payudara dan K redistributefek dari Ekstrak Etilasitat Daun Poguntan (Picria fel-tetrae Lour.) dan Buah Andaliman (Zanthoxylum acanthopodium DC.) secara In-Vivo. Thesis. Fakultas Farmasi USU. 2015.
19. Angraini R, Hadisahputra S, Silalahi J. Combinational effects of ethylacetract of Zanthoxylum acanthopodium DC. with doxorubicin on T47D breast cancer cells. International Journal of PharmTech Research. 2014; 6(7):2032-2035.
20. Satria D, Furqan M, Hadisahputra S, Rosidah. Combinational effects of ethylacetate extract of picria fel-tetrae lour and doxorubicin on T47d breast cancer cells. Int J Pharm Pharm. Sci. 2015; 7:73-76.
21. Hasibuan PAZ, Jessy C, Denny S. Combinational effect of ethylacetate extracts of Plectranthus ambibonicus (Lour.) Spreng with doxorubicin against T47D breast cancer cells. Int J Pharm Pharm. Sci. 2015; 7:155-159.
22. Atta-ur-Rahman, Atta-ul-Wahab, Sultani SZ, Sarfraz A, Nawaz, Choudhary MI. Bisbenzylisouquinoline alkaloids from Cocculus pendulus. Natural Product Research. 2009; 23(14):1265-1273. https://doi.org/10.1080/1478641090351303 PMid:1978625
23. Satria D, Nasution NP, Ilyas S. Cytotoxicity effect of sea horse (Hippocampus trimaculatus Leach.) extract and fractions on MCF-7 cell line. International Journal of PharmTech Research. 2014; 6(1):212.
24. Nugroho AE, Ikawati M, Hermawan A, Putri DDP, and Meilyanto E. Cytotoxic effect of ethanolic extract of fractions Indonesia Plant Ficus sepatica Burm. F. On human breast cancer t47d cell lines. International Journal of Phytomedicine. 2011; 3(2):216-226.
25. Yadav VR, Saheeb P, Bokung Y, Ramaswamy K, Bharat BA. Targeting Inflammatory Pathways by Triterpenoids for Prevention and Treatment of Cancer. Toxins. 2012; 2(10):2428-66. https://doi.org/10.3390/toxins21020428 PMid:22069560 PMCID:PMC3153165
26. Sandjo LP, Kuete V, Tchanga RS, Effertf T, Ngadju BT. Cytotoxic benzophenanthridine and furoquinoline alkaloids from Zanthoxylum buesgenii (Rutaceae). Chemistry Central Journal. 2014; 8(1):51. https://doi.org/10.1186/s13065-014-0061-4 PMid:25349626 PMCID:PMC4207896
27. Wang CF, Fan L, Tian M, Du SS, Deng ZW, Feng JB. Cytotoxicity of benzophenanthridine alkaloids from the roots of Zanthoxylum nitidum (Roxb.) DC. var. fastuosum how ex Huang. Natural Product Research. 2015; 29(14). https://doi.org/10.1080/14786419.2014.1002390 PMid:25647513
28. Nguournmo RM, Jouda JB, Mouafo FT, Kronguem J, Mboza CD, Shiao TC, et al. In vitro cytotoxic activity of isolated acridones alkaloids from Zanthoxylum leprieurii Guill. et Perr. Bioorganic and Medicinal Chemistry. 2010; 18(10):3601-3607. https://doi.org/10.1016/j.bmc.2010.03.040 PMid:20413315