Perioperatives Hämostasemanagement bei HNO-Eingriffen
Hemostatic Management of Patients undergoing Ear-Nose-Throat-Surgery

Zusammenfassung ▼

Das perioperative Hämostasemanagement gewinnt auch in der Otorhinolaryngologie zunehmend an Bedeutung. Die vorliegende Übersichtsarbeit fasst den aktuellen Stand der Literatur zusammen und erläutert das perioperative Hämostasemanagement. Mit Bezug auf die HNO-Heilkunde werden die allgemeinen Prinzipien der Risikobewertung, Thromboseprophylaxe, und der Überbrückung der Antikoagulation erläutert.

1. Einführung ▼

Das perioperative Hämostasemanagement wird auch in der Hals-Nasen-Ohren-Heilkunde (HNO) immer wichtiger. Aufgrund einer alternden Bevölkerung steigt der Anteil an Patienten mit medikamentös verursachten Gerinnungsstörungen. Damit wächst die Notwendigkeit für Strategien, diese Patienten vor, während und nach einer Operation (OP) hämostaseologisch zu begleiten, um Blutungs- sowie Thromboserisiko zu senken.

Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indikation zur dauerhaften therapeutischen Antikoagulation oder Thrombozytenaggregationshemmung, sodass ein Hämostasemanagement über die standardmäßige postoperative Thromboseprophylaxe hinausgehen muss. Dies ist eine besondere Herausforderung, da sowohl Blutungs- als auch Thrombozyteneinfluss zu senken. Viele Patienten erhalten inzwischen vor der OP antithrombotisch wirksame Arzneimittel aufgrund einer Indик
Hämostasemanagement zunehmend komplex. Alle Strategien müssen das individuelle Risiko des Patienten, die Dringlichkeit der OP sowie das OP-assozierte Blutungsrisiko berücksichtigen. Vor allem Hochrisikopatienten benötigen die interdisziplinäre Zusammenarbeit mehrerer Fachrichtungen. Darüber hinaus hilft die Kenntnis der pharmakologischen Eigenschaften der Gerinnungshemmer dabei, das Management erfolgreich zu gestalten.

Die vorliegende Übersichtsarbeiten das aktuellen Stand der Literatur zusammen und erläutert das perioperative Hämostasemanagement. Sie soll eine praktische Hilfe bieten und die Hintergründe zur Risikobewertung, der Thrombose prophylaxe und der Überbrückung einer antithrombotischen Therapie während operativer Eingriffe im HNO-Bereich erläutern.

2. Präoperative Risikobewertung

Vor jedem Eingriff muss das Blutungs- und Thromboiserisiko mithilfe der Anamnese [2] und, wenn erforderlich, weiteren Laboruntersuchungen eingeschätzt werden. Das OP-assozierte Blutungsrisiko sollte ebenfalls berücksichtigt werden. Ziel ist es, präoperativ Patienten mit einem erhöhten Blutungs- oder Thromboiserisiko zu erkennen.

2.1 Blutungsrisiko

2.1.1 Der standardisierte Gerinnungsfragebogen

Eine systematische Blutungsanamnese wird mittlerweile vielerorts durchgeführt, um Patienten mit einem erhöhten Blutungsrisiko zu erkennen. Hierzu sollte ein validierter Fragebogen benutzt werden [2], ähnlich einer Checkliste. Der Fragebogen erfragt standardisiert die Blutungsanamnese einschließlich Blutungskomplikationen bei vorangegangenen Eingriffen, Blutungs- symptome, Familienanamnese und Medikamente (insbesondere antithrombotisch wirksame Substanzen) [3]. Bei der Medikamentenanamnese sollte beachtet werden, dass häufig eingenommene Schmerzmittel vom NSAID-Typ (non-steroidal anti-inflammatory drugs), einige Antikonvulsiva, sowie selektive Serotonin-Wiederaufnahmehemmer das perioperative Blutungsrisiko erhöhen können, da diese die Thrombinproduktion hemmen. Dies betrifft vor allem prädisponierte Patienten mit einer milden Thrombozytopathie. Daher sollte spezifisch nach einer Zunahme von Blutungssymptomen gefragt werden, die nach Beginn der Medikation aufgetreten ist.

Eine negative Anamnese hat einen hohen negativen prädiktiven Wert und eine Blutungsneigung kann nahezu ausgeschlossen werden. In diesem Fall kann in Abhängigkeit von der Größe des Eingriffes auch auf eine präoperative Laboruntersuchung verzichtet werden [3, 4]. Ist der Fragebogen positiv, sollte hingegen eine weitere Abklärung mithilfe eines erweiterten Panels an Laboruntersuchungen erfolgen. Ein Beispiel für einen präoperativen Gerinnungsfragebogen kann unter folgender Webseite abgerufen werden: http://www.medizin.uni-greifswald.de/transfus/index.php?id = 391

2.1.2 Präoperative Labordiagnostik

Routinemäßig werden vor einem chirurgischen Eingriff die Thrombozytenzahl, der INR-Wert und die aktivierte partielle Thromboplastinzeit (aPTT) bestimmt. Leider können diese Tests keinen Mangel an Faktor (F) XIII, von Willebrand-Faktor oder die Thrombozytenfunktion erfassen. Störungen der Thrombozytenfunktion oder ein mildes von Willebrand-Syndrom sind aber durchaus häufig (im Prozentbereich) und sind Risikofaktoren für Blutungen, z. B. nach Adenotonsillektomien bei Kindern [5]. Risikofaktoren für Blutungen nach Tonsillektomie bei älteren Patienten sind der mittlere arterielle Blutdruck, höheres Alter, eine chronische Tonsillitis, sowie ein verstärkter intraoperativer Blutverlust [6]. Alle erwähnten Risikofaktoren werden nicht mit dem Routinegerinnungslabor erfasst, weshalb Thrombozytenzahl, INR und aPTT zum Ausschluss einer Blutungsneigung vor HNO-Eingriffen nicht ausreichend sind [7–10]. Die standardisierte Anamnese mit Checkliste erfasst Patienten mit Blutungsneigung sicherer.

Dagegen sollte nach einer positiven Blutungsanamnese eine erweiterte Diagnostik erfolgen [11], die INR, aPTT, von Willebrand-Faktor (Antigen und Aktivität), FXIII, und einen Thrombozytenfunktionstest einschließt. Der Platelet Function Analyzer 100 (PFA-100) ist hierbei sensitiv, um ein von Willebrand-Syndrom und in manchen Fällen eine Thrombozytopathie zu erkennen. Da aber bei weitem nicht alle Thrombozytenfunktionsstörungen erfasst werden, sollte bei anamnestischer Blutungsneigung ein Thrombozytenaggregationstest erfolgen (z. B. Aggregometrie nach Born). Prinzipiell gilt, dass jede unerklärte Veränderung der Gerinnungswerte vor dem Eingriff abgeklärt werden sollte, da sich hierunter seltene erworbene Gerinnungsstörungen mit einem erhöhten Blutungsrisiko verbergen können [12]. Auch wenn wir an Stelle der Bestimmung der Basisgerinnungswerte (Quick, PTT, Trombozytenzahl) die standardisierte Anamnese zur Erkennung blutunggefährdeter Patienten empfehlen, ist vor operativen Eingriffen mit einem potentiell hohen Blutverlust und möglichem Transfusionsbedarf eine präoperative Bestimmung von Fibrinogen, Trombozytenzahl, INR und aPTT sinnvoll [11]. Diese Diagnostik hilft im Falle einer Blutungskomplikation die Dynamik und den Verlauf der Koagulopathie durch Vergleich mit intraoperativ bestimmten Werten einzuschätzen. Ferner kann die Transfusionstherapie darauf abgestimmt werden.

Häufig suchen Patienten unter antithrombotischer Therapie den HNO-Arztp wegen Nasenbluten auf. Auch hier ist die Anamnese v. a. in Notfällen essenziell [13], da insbesondere nach Einnahme der neuen oralen Antikoagulantien kein medikamenten-typisches Gerinnungsprofil erwartet werden kann. Dies steht im Gegensatz zu den vertrauten Vitamin-K-Antagonisten (VKAs), bei denen die INR eine hinreichende Abschätzung des Blutungsriskos ermöglicht. Auch Thrombozytenaggregationshemmer interferieren nicht mit der Trombozytenzahl, der INR und der aPTT, obwohl sie das Blutungsrisiko deutlich erhöhen können.

Die direkten oralen FXa- und Fila-Inhibitoren können sich auf INR und aPTT sehr unterschiedlich auswirken [13]. Dies ist abhängig, welches Medikament eingenommen wurde und welche Testreagenzien im Labor Verwendung finden. Die Thrombinzeit ist sehr sensitiv zur Detektion des Fila Inhibitors Dabigatran. Die verdünnte Thrombinzeit erlaubt die quantitative Bestimmung des Dabigatranceplings. Anti-Fxa-basierte Tests können quantitative Plasmakonzentrationen nach Gabe von nieder molekularem Heparin (NMH), Fondaparinux sowie direkten oralen FXa-Inhibitoren Apixaban und Rivaroxaban messen [14]. Sie können allerdings nicht für eine direkte Bewertung des Blutungsriskos herangezogen werden da es hierzu bislang keine Daten gibt. Sie erlauben es aber zu entscheiden, ob eine abwartende Haltung bis zur Elimination der Arzneimittel aus dem Kreislauf sinnvoll ist, oder ob eine prokoagulatorische Therapie vor einem Notfalleingriff erfolgen sollte (Tab. 5).
12 h vor dem Eingriff pausiert wurde) das OP-bedingte Blutungsrisiko erhöht.

2.1.4 Algorithmus zum Ausschluss eines Blutungsrisikos

Abb. 1 zeigt einen Algorithmus zur präoperativen Erkennung von Patienten mit einem erhöhten Blutungsrisiko. Ist die Anamnese für eine Blutungsneigung leer und die OP mit einem niedrigen Risiko behaftet, kann der Eingriff ohne Laborbestimmung durchgeführt werden. Ist das perioperative Blutungsrisiko erhöht, empfehlen wir eine präoperative Laborbestimmung. Die Indikation einer Thromboseprophylaxe sollte ebenfalls präoperativ gestellt und deren Durchführung festgelegt werden (s. Abschnitt 2.2).

Eine positive Blutungsanamnese sollte zur weiteren Abklärung führen. Basierend auf den Ergebnissen kann das perioperative Management geplant werden, wobei hier in der Regel eine interdisziplinäre Abstimmung erforderlich ist.

2.2 Venöses Thrombose- und Embolierisiko

Das perioperative Risiko venöser Thrombembolien ist bei HNO-Eingriffen geringer als bei Eingriffen an den unteren Extremitäten oder an größeren und wichtigen Organen). Die meisten Schätzungen stammen aus Observationsstudien und gehen von einem Risiko von unter 1% aus [16, 17]. Dies gilt nieder als für Tumorpatienten [18]. In einer kürzlich veröffentlichten prospektiven Studie betrug das Risiko für eine perioperative Thrombose bis zu 13% bei HNO-Patienten mit Tumoren, die ohne medikamentöse Thromboseprophylaxe durchgeführt wurden [19]. In dieser Studie wurden Thrombosen mittels Ultraschall detektiert, sodass auch klinisch inapparente Ereignisse gezählt wurden. Die klinische Relevanz von klinisch asymptomatischen Ereignissen wird jedoch fraglich sein. Daher dürfte die Inzidenz klinisch relevanter venöser Thrombembolien bei Tumorpatienten nach HNO-Eingriffen etwas niedriger im Bereich von etwa 6% liegen [20].

Risikofaktoren für die Entwicklung perioperativer Thrombosen können im sog. Caprini-Score zusammengefasst werden [21], welcher etwa 40 Faktoren erfasst. Hohe Caprini-Scores sind auch bei HNO-Eingriffen mit einer erhöhten Thromboserate assoziiert [22]. Jedoch ist die Evaluation jedes Patienten anhand dieses Risiko-Scores im klinischen Alltag sehr aufwendig. Wichtige Risikofaktoren sind eine positive Anamnese für Thrombosen, aktive Tumorerkranzung, höheres Alter (>60) oder größere Eingriffe (>45 min). Eine positive Familienanamnese für venöse Thrombosen bei Verwandten ersten Grades erhöht ebenfalls das Thromboserisiko.

2.3 Prothrombotisches Risiko von Patienten unter Antikoagulation

Die häufigste Indikation für die Verschreibung einer Antikoagulation ist die Prävention von Schlaganfällen bei Patienten mit Vorhofflimmern (VHF). Eine temporäre Unterbrechung der Antikoagulation führte perioperativ bei etwa 0,7% aller VHF-Patienten zu einem gemeinsamen Endpunkt aus Apoplex, Herzinfarkt oder systemischen Embolien in der ROCKET-AF-Studie [23]. Das Risiko steigt vor allem postoperativ. Das jährliche Schlaganfallrisiko bei Patienten mit VHF kann anhand des CHADS2-Score ermittelt werden [24]. Der CHADS2-Score eignet sich ebenfalls zur groben Abschätzung des perioperativen Schlaganfallrisikos nach Absetzen der Antikoagulation [25]. Es ist zu betonen, dass das perioperative Risiko für Schlaganfälle unter einer kurzzeitigen

Tab. 1 Operativ bedingtes Blutungsrisiko bei häufigen HNO-Eingriffen (Klassifikation anhand einer nichtrepräsentativen Umfrage unter den Operateuren unserer Klinik).

Risiko	OP	Intraoperatives Blutungsrisiko	Postoperatives Blutungsrisiko
hoch	Transorale Tumor-Chirurgie (Pharynx)	hoch	hoch
	Tonsillektomie	moderat	hoch
	Thyroidektomie	moderat	hoch
	Glosstumormorphirurgie	hoch	moderat
moderat	Parotidektomie	moderat	moderat
	Neck Dissection	moderat	moderat
	Laryngektomie	moderat	moderat
	Laryngeale Laser-Chirurgie	moderat	moderat
	Nasennebenhöhlen-Chirurgie	moderat	moderat
	Septorhinoplastik	moderat	moderat
	Septumplastik	moderat	moderat
	Turbinoplastik	moderat	moderat
	Abszessdrainage	moderat	moderat
	Adenotomie	gering	moderat
	Mikrovaskuläre Lappenplastik	gering	moderat
	Akustikusneurinom-Chirurgie	gering	moderat
	Mittelgesichtsfraktur-Chirurgie	gering	moderat
	Submandibulektomie	gering	moderat
gering	Cochlea-Implantat-Chirurgie	gering	gering
	Tympanoplastik	gering	gering
	Eingriffe am externen Gehörorgan	gering	gering
	Lymphknotenexstirpation	gering	gering
	Panendoskopie	gering	gering
	Phonochirurgie	gering	gering
	Tracheotomie	gering	gering
	Hautexzision	gering	gering
Unterbrechung der Antikoagulation deutlich unter dem jährlichen Risiko liegt.

Ein deutlich höheres Risiko besteht für Patienten nach Herzklappenersatz. Hier sind die Position und der Typ der Herzklappe entscheidend. Künstliche Mitralklappen oder multiple Klappenersätze haben ein hohes Risiko für Thromboembolien. Für Aortenklappen ist das Risiko etwas niedriger [26]. Biologische Klappen sind kurze Zeit nach der Implantation deutlich weniger thrombogen. Es empfiehlt sich, bei Patienten mit Herzklappenersatz generell einen Kardiologen oder Hämostaseologen zu konsultieren, um das perioperative Management zu planen. Bei Patienten nach venösen Thrombosen oder Embolien ist das Zeitintervall zum letzten thrombotischen Ereignis wichtig, um das prothrombotische Risiko einzuschätzen. Eine Risikoanalyse für antikoagulierte Patienten ist zusammengefasst in Tab. 3, welche ein hohes (> 10% pro Jahr), moderates (5–10% pro Jahr), und geringes Risiko (< 5% pro Jahr) unterscheidet [27].

2.4 Prothrombotisches Risiko bei Patienten mit Thrombozytenaggregationshemmern

Thrombozytenaggregationshemmern werden zur Prophylaxe und Therapie arterieller Verschlüsse und am häufigsten bei koronarer Herzkrankheit verschrieben. Das Risiko, perioperativ einen arteriellen Verschluss zu erleiden, steigt nach kürzlichem Herzinfarkt oder einer Stentimplantation. Hierbei ist es wichtig, zwischen medikamentbeschichteten (drug eluting stents, DES) und unbeschichteten (bare metal stents, BMS) Gefäßstützen zu unterscheiden. Das Risiko für Stenthrombosen nach Absetzen der Thrombozytenaggregationshemmung besteht länger nach Einsatz eines DES als nach BMS-Implantation. Daher wird in der Regel nach der Versorgung mit einem DES eine längere duale Thrombozytenaggregationshemmung für 6–12 Monate durchgeführt. Neuere Everolimus-beschichtete Stents haben ein etwas geringeres Risiko [30,31] und die neueste Generation von Zotarolimus-beschichteten Stents brauchen nur noch eine 3-monatige duale Thrombozytenaggregationshemmung nach elektivem Stenting. Für die Risikostatifizierung wurden vor kurzem Kriterien zusammengefasst (MACCE: major adverse cardiac and cerebrovascular events), welche analog zu antikoagulierten Patienten ein hohes, moderates und geringes Risiko unterscheiden [33].

Tab. 2 CHADS2-Score und Schlaganfallrisiko bei Patienten mit Vorhofflimmern (adaptiert nach [24,25,28]).

CHADS2-Score *	jährliches Schlaganfallrisiko [%]	30-Tage-Risiko für postoperative Schlaganfälle [%]
0	1,9 (95 Kl, 1,2–3,0)	1,01 (95 Kl, 0,83–1,21)
1	2,8 (95 Kl, 2,0–3,8)	1,62 (95 Kl, 1,46–1,79)
2	4,0 (95 Kl, 3,1–5,1)	2,05 (95 Kl, 1,87–2,24)
3	5,9 (95 Kl, 4,6–7,3)	2,63 (95 Kl, 2,26–3,04)
4	8,5 (95 Kl, 6,3–11,1)	3,62 (95 Kl, 2,64–4,80)
5	12,5 (95 Kl, 8,2–17,5)	3,65 (95 Kl, 1,83–6,45)
6	18,2 (95 Kl, 10,5–27,4)	7,35 (95 Kl, 2,42–16,3)

* CHADS2-Score: C = congestive heart failure (Herzinsuffizienz) 1 Punkt; H = hypertension (Hypertonie) 1 Punkt; A = age (Alter > 75 Jahre) 1 Punkt; D = Diabetes 1 Punkt; S=stroke(Apoplex) 2 Punkte; Kl: Konfidenzintervall

Tab. 3 Risikostratifizierung von Patienten unter Antikoagulation (adaptiert nach [1,24,26,27,29]).

Risiko	Indikationen für Antikoagulation	CHADS2-Score (Tab. 2)
hoch (>10% /Jahr)	mechanischer Mitralklappenersatz	
	biologischer Mitralklappenersatz < 3 Monate	
	multiple mechanische Klappenersätze	
	VHF und Apoplex × 3 Monate	
	rheumatoide Herzklappenerkrankung	
	TVT oder LAE × 3 Monate	
	CHADS2-Score 5–6	
moderat (5–10% /Jahr)	Aortenklappenersatz und weitere Risikofaktoren	
	VHF und CHADS2-Score 2–4	
	rezidivierende TVT/LAE	
	solide Tumoren	
gering (<5% /Jahr)	Aortenklappenersatz ohne weitere Risikofaktoren	
	VHF und CHADS2-Score <2	
	TVT/LAE × 12 Monate	

VHF = Vorhofflimmern; TVT = tiefe Venenthrombose; LAE = Lungenarterienembolie; CHADS2-Score (Tab. 2)
3. Perioperatives Management

3.1 Prävention venöser Thrombosen und Embolien

Möglichkeiten zur Thromboseprophylaxe sind die frühe Mobilisierung, postoperative Kompressionsbehandlung, intermittierende pneurnatische Kompression sowie eine medikamentöse Behandlung. Patientenspezifische Risiken helfen bei der Festlegung der perioperativen Thromboseprophylaxe (s. Abschnitt 2.2). Das Risiko einer Blutung ist unter einer medikamentös-ten Thromboseprophylaxe bei positiver Anamnese für Throm-bosen, aktiver Tumorerkrankung, höherem Alter (>60) oder größerem Eingriff (>45 min) sowie positiver Familienanamnese bei Verwandten ersten Grades, internistischen Grunderkran- kungen oder Immobilität. Tumorpatienten könnten auch nach größeren HNO-Eingriffen von einer verlängerten postoperativen Thromboseprophylaxe für 4 Wochen profitieren [35], auch wenn es hierzu keine belastbaren Daten gibt.

3.2 Perioperatives Management der Antikoagulation

3.2.1 Pharmakologie und Antagonisierung von Antikoagulanzien

Tab. 5 zeigt orale und parenterale Antikoagulanzien, ihr pharmakologisches Profil und Optionen, die Hämostase nach Einnahme dieser Mittel in Notfällen zu verbessern. Wichtig ist zu beachten, dass eine bestehende Niereninsuffizienz die Halbwertzeiten einiger Antikoagulanzien deutlich verlängert (z.B. NMH, Fondaparinux, Danaparoid oder Dabigatran) und damit für längere Zeit das Blutungsrisiko erhöht bleibt. In Notfällen kann eine prothrombotische Therapie erforderlich sein. Vitamin K-Antagonisten (VKA) können durch die Gabe von Prothrombinkomplexkonzentratren (PPSB) antagonisiert werden [36], was eine rasche Hämostase und OP-Fähigkeit ermöglicht. Zusätzlich zum PPSB sollte Vitamin K gegeben werden (10 mg i.v.), da die Vitamin K-abhängigen Gerinnungsfaktoren im PPSB in 9–13 h möglich 24–48 h Anti-FXa; 91–321 ng/ml FEI BA, PP SB, rFVII FEB, PP SB, rFVII FEB, PP SB, rFVII

Tab. 5 Antikoagulanzien (adaptiert nach [1,44] und den entsprechenden Fachinformationen).

Substanz	Mechanismus	Halbwertzeit	Akkumulation bei Niereninsuffizienz	Mindestabstand zwischen letzter Einnahme und OP*	Monitoring: Therapeutischer Bereich/Cmax**	Prohämostatische Therapie
oderal Antikoagulanzen						
Phenprocoumon	Inhibition der Vitamin K-^{-abhängigen} γ-Carboxylierung	100–200 h (~7 d bis zur INR-Normalisierung)	ja	~168 h	INR 2–3,5	Vitamin K, PPSB
Dabigatran	Direkte Thrombininhibition	12–14 h	nein	24–48 h	Verdünnte Thrombinzeit: 60–300 ng/ml	Dialyse, FEIBA, PPSB, rFVII
Rivaroxaban	Direkte Faktor Xa-Inhibition	9–13 h	ja	24–48 h	Anti-FXa; 90–360 ng/ml	FEIBA, PPSB, rFVII
Apixaban	Direkte Faktor Xa-Inhibition	8–15 h	möglich	24–48 h	Anti-FXa; 91–321 ng/ml	FEIBA, PPSB, rFVII
parenteral Antikoagulanzen	AT-abhängige Inhibition von Serin-proteasen	30–60 min	ja	4 h	aPTT; 1,5–2,5-fache Verlängerung	Prostamin
Niedermolekulares Heparin	AT-abhängige Inhibition von Serin-proteasen	3–6 h	ja	12–24 h	Anti-FXa; 0,4–1,1 U/ml	~30–40% durch Protamin
Fondaparinux	AT-abhängige Inhibition von FXa	17 h	ja	Normalisierung des Anti-Xa-Tests	Anti-FXa; 0,5–1,0 mg/L	–
Argatroban	Direkte Thrombininhibition	45 min	nein	4 h	aPTT; 2–3fach	–
Danaparoid	AT-abhängige Inhibition von Faktor Xa	24 h	ja	Normalisierung des Anti-Xa-Tests	Anti-FXa; 0,4–0,8	–

* Vor Eingriffen mit hohem Blutungsrisko sollte die längere Zeitspanne abgewartet werden, bei Niereninsuffizienz u. U. noch länger;
** Cmax = Spitzenspiegel im Steady State unter therapeutischer Dosierung
PPSB: Prothrombin-Komplex-Konzentrat; FEIBA: aktiviertes Prothrombin-Komplex-Konzentrat; rFVII: rekombinanter aktivierter Faktor VII (z.B. Novoseven)

Thiele T et al. Perioperatives Hämostasemanagement bei HNO-Eingriffen … Laryngo-Rhino-Otol 2015; 94: S143–S152
Abfall der transfundierten Gerinnungsfaktoren bereits eigene, funktionsfähige Gerinnungsfaktoren für die weitere Gerinnung zur Verfügung stehen. Als weiteres Antikoagulans können nur noch Heparin, und in Teilen auch NMH, direkt antagonisiert werden. Hier steht Protamin als Antagonist zur Verfügung, welches jedoch in zu hoher Dosis selbst auch wieder antikoagulatorisch wirkt und deshalb mit Vorsicht eingesetzt werden sollte. Für alle anderen Substanzen existieren bislang keine spezifischen Antidot. PPSB, aktiviertes PPSB (FEIBA) sowie rekombinante Antihemophilie-Antikörper (rFVIIa) sind zur Behandlung von Blutungs komplikationen unter diesen Antikoagulantien eingesetzt worden. Definitive Aussagen zur Effektivität dieser Therapie lassen sich jedoch aufgrund der wenigen verfügbaren Daten nicht ableiten. Dabigatran kann mittels Dialyse oder Hämofiltration aus dem Kreislauf entfernt werden. Dies ist jedoch zeitaufwendig und führt in Notfällen nicht zu einer schnellen Optimierung der Gerinnung. Die Antikoagulation mit VKAs sollte bei Patienten mit hohem Thrombo- und Blutungsrisiko mehr besteht. VKAs werden dabei berücksichtigt. Die Blutungsrisiko häufig den postoperativen Verlauf negativ beeinflussen. Die Patienten mit hohen Dabigatran spitzen und gleichzeitig bestehender Niereninsuffizienz. Spezifische Antidot sind aktuell in der Frühphase der klinischen Erfahrung für FIIa- und FXa-Inhibitoren und werden hoffentlich in Zukunft einsetzbar sein.

3.2.2 Überbrückung der Therapie mit Vitamin K-Antagonisten

„Bridging“ oder „Überbrückung“ bezeichnet die zeitweise Unterbrechung einer Therapie mit langwirkenden VKA und deren Ersatz durch kürzer wirksame Substanzen (zumeist Heparine). Letztere können kurzzeitig vor operativen Eingriffen pausiert werden, womit eine perioperative Hämostase ermöglicht wird. Tab. 6 fasst wesentliche Punkte der Bridging-Therapie von VKA zusammen. Alle möglichen Risikokonstellationen (Tab. 3) werden dabei berücksichtigt. Die Antikoagulation mit VKAs sollte bei Patienten mit hohem Thrombo- und Blutungsrisiko mehr besteht. VKAs werden dabei berücksichtigt. Die Blutungsrisiko häufig den postoperativen Verlauf negativ beeinflussen. Die Patienten mit hohen Dabigatran spitzen und gleichzeitig bestehender Niereninsuffizienz. Spezifische Antidot sind aktuell in der Frühphase der klinischen Erfahrung für FIIa- und FXa-Inhibitoren und werden hoffentlich in Zukunft einsetzbar sein.

Tab. 6 Prinzipien der Überbrückung einer Antikoagulation mit VKA.

Prothrombotisches Risiko	hoch	Blutungsrisiko	gering
eklektive Eingriffe verschieben	eklektive Eingriffe verschieben	kleinere Hauteingriffe: Antikoagulation fortsetzen	
interdisziplinäres Management	interdisziplinäres Management	eklektive Eingriffe verschieben	
VKA 7 Tage präoperativ pausieren	VKA 7 Tage präoperativ pausieren	kleinere Hauteingriffe: VKA fortsetzen	
bei INR < 2 Beginn Thromboseprophylaxe mit NMH, letzte Gabe 24h präoperativ	bei INR < 2 Beginn Thromboseprophylaxe mit NMH, letzte Gabe 24h präoperativ	VKA 7 Tage präoperativ pausieren	
Thromboseprophylaxe mit NMH 6–24h postoperativ fortsetzen	Thromboseprophylaxe mit NMH 6h postoperativ fortsetzen	bei INR < 2 Beginn Thromboseprophylaxe mit NMH, letzte Gabe 24h präoperativ	
Beginn VKA überlappend mit NMH bis INR > 2, wenn kein Nachblutungsrisiko mehr besteht	Beginn VKA überlappend mit NMH bis INR > 2, wenn kein Nachblutungsrisiko mehr besteht	Thromboseprophylaxe mit NMH 6h postoperativ fortsetzen	
VKA 7 Tage präoperativ pausieren	VKA 7 Tage präoperativ pausieren	kleinere Hauteingriffe: VKA fortsetzen	
bei INR < 2 Beginn Thromboseprophylaxe mit NMH, letzte Gabe 24h präoperativ	bei INR < 2 Beginn Thromboseprophylaxe mit NMH, letzte Gabe 24h präoperativ	VKA 7 Tage präoperativ pausieren	
Thromboseprophylaxe mit NMH 24h postoperativ fortsetzen	Thromboseprophylaxe mit NMH 6–24h postoperativ fortsetzen	Thromboseprophylaxe mit NMH 6h postoperativ beginnen	
Beginn VKA überlappend mit NMH bis INR > 2, wenn kein Nachblutungsrisiko mehr besteht	Beginn VKA überlappend mit NMH bis INR > 2, wenn kein Nachblutungsrisiko mehr besteht	Beginn VKA überlappend mit NMH bis INR > 2, wenn kein Nachblutungsrisiko mehr besteht	

* VKA: Kleinere Hauteingriffe möglich bei INR <2,5
Bei Patienten mit moderatem Thromboserisiko und hohem bzw. moderatem Blutungsrisiko ist keine therapeutische NMH-Dosis erforderlich. Hier können die VKA 7 Tage präoperativ pausiert und ab einer INR < 2 auf NMH in prophylaktischer Dosierung eingestellt werden. Die letzte NMH-Gabe erfolgt 12–24 h vor dem Eingriff sowie ab 6 h postoperativ. Eine therapeutische NMH-Dosis braucht erst wieder gegeben werden, wenn das postoperative Blutungsrisiko gering ist (in der Regel ab dem 7. postoperativen Tag). Da nach dem Beginn von VKA mindestens 5 Tage vergehen, um therapeutische INR-Werte zu erreichen, sollten diese frühzeitig nach der OP begonnen werden.

Patienten mit niedrigem Thromboserisiko sollten VKA 7 Tage präoperativ pausieren und erst 6–24 h postoperativ mit einer NMH-Prophylaxe beginnen.

In Notfällen ist die rasche Antagonisierung mit PPSB und Vitamin K erforderlich (Abschnitt 3.2.1, Tab. 5), um normale INR-Werte und damit eine intraoperative Hämostase zu gewährleisten. Beachtet werden sollte hier, dass postoperativ das prothrombotische Risiko wieder schnell ansteigt. Daher empfehlen wir, spätestens nach 24 h eine Thrombozytoprophylaxe zu beginnen, wenn bis dahin keine relevanten Nachblutungen aufgetreten sind. Tab. 6 einfügen

3.2.3 Umgang mit direkten oralen FIIa- und FXa-Inhibitoren

Die Einnahme oraler FIIa- und FXa-Inhibitoren erfordert kein Bridging im klassischen Sinn, da diese Medikamente deutlich kürzere Halbwertszeiten als die VKA haben (Tab. 5). Hier ist in der Regel bei Patienten mit normaler Nierenfunktion eine Pausierung von 24 h vor Eingriffen mit niedrigem sowie von 48 h vor OP mit hohem Blutungsrisiko ausreichend für eine perioperative Hämostase. Besonders wichtig ist es, die Nierenfunktion der Patienten zu beachten. Eine Niereninsuffizienz kann die Halbwertszeiten z.T. erheblich verlängern, entsprechend muss vor dem Eingriff länger pausiert werden. Bspw. kann für Dabigatran eine Pausierung von bis zu 96 h notwendig sein [38]. Eine Überprüfung der Nierenfunktion ist vor dem Eingriff daher notwendig. Auch eine präoperative Bestimmung der FIIa- und FXa-Inhibitorenangebot zum Ausschluss einer relevanten Restaktivität der Antikoagulanzen kann hilfreich sein (Abschnitt 3.1.2).

In Notfällen sind die Dringlichkeit und das Blutungsrisiko des Eingriffs sowie die Pharmakokinetik der oralen FIIa- und FXa-Inhibitoren entscheidend. Häufig genügt es bereits, mit der OP solange zu warten, bis die Wirkstoffkonzentrationen abgefallen sind. Auch akute Blutungen können meist konservativ behandelt werden, bis die Wirkstoffkonzentrationen abgefallen sind und die Blutungstendenz nachlässt. Faktisch reduziert jede Stunde nach dem Erreichen der Spitzenspiegel das weitere Blutungsrisiko.

Sollte eine OP dennoch umgangen sein, müssen Faktorenkonzentrate (z.B. PPSB, oder FEIBA, oder rekombinanter FVIIa) gegeben werden, um die Hämostase zu verbessern (Tab. 5). Nach dem Eingriff empfehlen wir, die weitere Antikoagulation mit einer NMH-Thromboasephrophylaxe durchzuführen (6–24 h nach der OP). Ein zu prompter Wiederbeginn der orale Antikoagulation erhöht deutlich das Blutungsrisiko, weil FIIa- und FXa-Inhibitoren innerhalb von 3–4 h nach Einnahme therapeutische Wirkstoffkonzentrationen erreichen. Wir empfehlen, die therapeutische Antikoagulation mit FIIa- und FXa-Inhibitoren erst wieder zu beginnen, wenn das Nachblutungsrisiko als gering eingeschätzt wird. Eine überlappende Therapie mit NMH, wie bei der Einstellung auf VKA, ist nicht erforderlich.

3.3 Perioperatives Management von Thrombozytenaggregationshemmern

3.3.1 Thrombozytenaggregationshemmern (Tab. 7) zeigt verfügbare Plättchenhemmer und ihre Pharmakokinetik. Die meisten Thrombozytenaggregationshemmern binden irreversibel an ihr Zielmolekül in den Plättchen. Daher braucht es nach dem Absetzen der Plättchenhemmung in der Regel eine Woche, bis deren Wirkung aufgehoben ist, da erst genügend neue Plättchen synthetisiert werden müssen. Kann also die Plättchenhemmung präoperativ abgesetzt werden, sollte dies mindestens 7 Tage vor dem Eingriff erfolgen. Azetylsalicylsäure (ASS) bildet eine Ausnahme, hier sind 3 Tage ausreichend [47,48].

Bei Notfällen kann die Plättchenhemmung nicht sofort aufgehoben werden. Nur die Transfusion von Thrombozyten führt zu einer schnellen zellulären Hämostase. Hierbei müssen die pharmacokinetischen Eigenschaften der Plättchenhemmer berücksichtigt werden (Halbwertszeit [HWZ], Metabolismus und Bindungsmodus), da transfundierte Plättchenzyme nur dann wirken können, wenn keine aktiven Wirkstoffe oder deren Metaboliten im Kreislauf zirkulieren [49]. ASS hat bspw. eine Halbwertszeit von 20–30 min und ist damit nach etwa 2 h nicht mehr im Kreislauf. Clopidogrel ist ein Prodrug, dessen aktiver Metabolit ebenfalls nur eine kurze HWZ hat [53,54]. Aufgrund der stark variablen Metabolisierung kann es aber 6–8 h dauern, bis der Metabolit nicht mehr zirkuliert [50,51].

3.3.2 Management einer Monotherapie mit Plättchenhemmern

Die Therapie mit einem Plättchenhemmer wird meist zur primären oder sekundären Prophylaxe arterieller Verschlüsse eingesetzt und betrifft damit Patienten mit einem geringen oder moderaten MACCE-Risiko (Tab. 6). ASS wird dabei am häufigsten verwendet. Die kürzlich veröffentlichte POISE-2 Studie zeigte, dass bei diesen Patienten die Vorteile der perioperativen
ASS-Unterbrechung überwiegen. Die ASS-Einnahme reduzierte nicht den kombinierten Endpunkt aus Herzinfarkt, Schlaganfall und der Mortalität, erhöhte dagegen aber signifikant das Blutungsrisiko [47]. Entsprechend der POISE-2-Studie sollten Patienten mit einer ASS-Monotherapie diese 3 Tage vor einem Eingriff pausieren und erst 7 Tage nach dem Eingriff fortsetzen. In Einzelfällen kann ein hohes kardiovaskuläres Risiko die frühzeitige Wiederaufnahme der ASS-Therapie rechtfertigen (z. B. nach multiplen Stentimplantationen). Dann sollte ASS frühestens 6 h postoperativ wieder eingesetzt werden.

Im Notfall können die meisten HNO-Eingriffe auch kurz nach ASS-Einnahme erfolgen. Hier sollte ein möglichst wenig invasives Verfahren gewählt werden. Wegen der kurzen HWZ von ASS empfehlen wir zudem, den Eingriff frühestens 2 h nach der letzten Einnahme durchzuführen, damit im Fall einer Blutungskomplikation eine Behandlung mit Thrombozytenkonzentrat möglich ist.

3.3.3 Management der dualen Thrombozytenaggregationshemmung

Patienten mit einer dualen Plättchenhemmung haben mindestens ein moderates, meist jedoch ein hohes MACCE-Risiko. Auf elektive Eingriffe sollte bei diesen Patienten verzichtet und die Eingriffe auf einen Zeitpunkt mit niedrigerem Risiko verschoben werden (Tab. 4) [52,53]. Nur sehr selten besteht eine Indikation, die duale Thrombozytenfunktionshemmung länger als 12 Monate beizubehalten.

Für Notfalleingriffe empfehlen die aktuellen ESC-Leitlinien, den Eingriff unter dualer Plättchenhemmung durchzuführen und das Risiko der Blutung in Kauf zu nehmen [53]. Für die meisten Notfälle in der HNO könnte das intraoperative Blutungsrisiko sogar tolerabel sein [54]. Valide Daten existieren aber nicht, und unter der dualen Thrombozytenfunktionshemmung sollte mit einem deutlich erhöhten peri- und postoperativen Blutungsrisiko gerechnet werden [15,55,56]. Solche postoperativen Blutungen können den Gesamtverlauf unangenehm beeinflussen und letztlich auch zu einem erhöhten kardiovaskulären Risiko führen [57]. Da diese Fragen aufgrund von Studien momentan nicht beantwortet werden können, sollte für Patienten mit dringlicher OP-Indikation und hohem MACCE-Risiko interdisziplinär eine individuelle Risiko-Nutzen-Abwägung erfolgen [52].

Die präoperative Behandlung mit prohämostatischen Medikamenten, z. B. DDAVP (Minirin) sollte aufgrund des kardialen Risikos bei Patienten mit hohem MACCE nicht durchgeführt werden. Es sei zudem nochmals erwähnt, dass eine duale Plättchenhemmung nicht durch Heparin ersetzt werden kann [58,59]. Das „Bridging“ der dualen Thrombozytenfunktionshemmung mit niedermolekularem Heparin in therapeutischer Dosierung ist daher nicht sinnvoll.

Um in dringlichen Fällen dennoch einen Eingriff zu ermöglichen, haben wir ein Protokoll entwickelt, mit dessen Hilfe eine duale Plättchenhemmung passager „antagonisiert“ werden kann [60] (Abb. 2). Basierend auf den HWZ von ASS und Clopidogrel werden diese 12–24 h pausiert und dann ca. 30 min vor der Operation 2 Thrombozytenkonzentrate transfundiert und darunter die OP begonnen. ASS wird 6–12 h nach dem Eingriff wieder begonnen und Clopidogrel nach etwa 12–24 h. Die Wiederaufnahme der Plättchenhemmung erfolgt jeweils nur, wenn es keine relevante Blutungskomplikation gegeben hat. Dieses Protokoll kann nicht ohne weiteres auf andere Plättchenhemmer übertragen werden, da diese eine andere Pharmacokinetik haben. Aktive Metaboliten von Prasugrel und Ticagrelor haben eine HWZ von 8 h [61] bzw. 13 h [62]. Für Ticagrelor besteht für bis zu 96 h ein erhöhtes Blutungsrisiko, ohne dass mit Thrombozytenkonzentrat gegengesteuert werden kann. Dies liegt am reversiblen Wirkmechanismus und der hohen Plasmaelution von Ticagrelor, sodass der Wirkstoff bis zu 90 h noch im Plasma vorhanden ist bzw. von autologen Thrombozyten dissoziieren und die transfundierten Thrombozyten hemmen kann.

Es sollte berücksichtigt werden, dass sich bei Patienten mit einem hohen MACCE-Risiko rasch ein akutes Koronsyndrom entwickeln kann. Daher sollten Möglichkeiten zur schnellen Koronarintervention vorhanden sein, wenn OPs an solchen Patienten durchgeführt werden. Weitere Alternativen bestehen in einer Überbrückung mit Tirofiban [63], einem intravenös applizierbaren Plättchenhemmer mit kurzer HWZ. Vor koronarer Bypass-Chirurgie wurde zudem Cangrelor erfolgreich vom Pausieren der oralen Thienopyridinder therapie bis zur OP eingesetzt [64], jedoch ist Cangrelor aktuell nicht verfügbar.

4. Schlussfolgerungen

Das perioperative Hämostasemanagement wird durch eine älter werdende Bevölkerung mit einer höheren Inzidenz kardiovaskulärer Erkrankungen zunehmend komplex und ist eine Herausforderung im klinischen Alltag. Die Evidenzbasis für HNO-Eingriffe ist gering. Jedoch können allgemeine Prinzipien der Risikoevaluation und der Risiko-adaptierten Überbrückung einer antithrombotischen Therapie auch für HNO-Patienten angewendet werden. Präoperativ muss zwischen plasmatischer und thrombozytärer Gerinnungshemmung unterschieden werden. In vielen Fällen besteht ein moderates oder niedriges Thrombose- oder Embolierisiko. Daher ist die Überbrückung einer oralen Antikoagulation mit einer therapeutischen NMH-Dosis meist nicht erforderlich und erhöht nur unnötig das prä- und perioperative Blutungsrisiko. Für die neuen oralen Antikoagulanzen ist praoperativ gar keine zusätzliche NMH-Gabe erforderlich, es genügt das rechtzeitige Pausieren der antithrombotischen Therapie. Von besonderer Bedeutung ist dabei, dass bei Nierenfunktionseinschränkung vor blutungsgefährdeten HNO Eingriffen (im Einzel-
Henstt Management of Patients undergoing Ear-Nose-Throat-Surgery

Perioperative hemostatic management is increasingly important in Otolaryngology. This review summarizes the key elements of perioperative risk stratification, thromboprophylaxis, and therapies for bridging of antithrombotic treatment. It gives a practical advise based on the current literature with an emphasis for patients undergoing ear-nose-throat surgery.

Abstract

Hemostatic Management of Patients undergoing Ear-Nose-Throat-Surgery

Perioperative hemostatic management is increasingly important in Otolaryngology. This review summarizes the key elements of perioperative risk stratification, thromboprophylaxis, and therapies for bridging of antithrombotic treatment. It gives a practical advise based on the current literature with an emphasis for patients undergoing ear-nose-throat surgery.

Literatur

1 Ortel TL. Perioperative management of patients on chronic antithrombotic therapy. Blood 2012; 120: 4699–4705
2 Koscielny J, Ziemer S, Radtke H et al. A practical concept for preoperative identification of patients with impaired primary hemostasis. Clin Appl Thromb Hemost 2004; 10: 195–204
3 Chee YL, Crawford JC, Watson HG, Greaves M. Guidelines on the assessment of bleeding risk prior to surgery or invasive procedures. British Committee for Standards in Haematology. Br J Haematol 2008; 140: 496–504
4 Kaplan EB, Sheiner LB, Boekmann AJ et al. The usefulness of preoperative laboratory screening. JAMA 1985; 253: 3576–3581
5 Prim MP, De Diego JJ, Jimenez-Yuste V, Sastre N, Rabanal I, Cavilan J. Analysis of the causes of immediate unanticipated bleeding after pediatric adenotonsillectomy. Int J Pediatr Otorhinolaryngol 2003; 67: 341–344
6 Mysiordek D, Alvi A. Post-tonsilllectomy hemorrhage: an assessment of risk factors. Int J Pediatr Otorhinolaryngol 1996; 37: 35–43
7 Scheckenbach K, Bier H, Hoffmann TK et al. Risk of hemorrhage after adenoidectomy and tonsillectomy. Value of the preoperative determination of partial thromboplastin time, prothrombin time and platelet count. HNO 2008; 56: 312–320
8 Schwaab M, Hansen S, Curr A, Dazert S. Significance of blood tests prior to adenoidectomy. Laryngorhinootologie 2008; 87: 100–106
9 Ebert W, Wendt I, Schroeder HG. Preoperative coagulation screening prior to adenoidectomy and tonsillectomy. Klin Padiatr 2005; 217: 20–24
10 Asaf T, Reuveni H, Verrmaia T et al. The need for routine pre-operative coagulation screening tests (prothrombin time PT)/partial thromboplastin time PTT for healthy children undergoing elective tonsillectomy and/or adenoidectomy. Int J Pediatr Otorhinolaryngol 2001; 61: 217–222
11 Pfanner G, Koscienly J, Pernersstorfer T et al. Preoperative evaluation of the bleeding history. Recommendations of the working group on perioperative coagulation of the Austrian Society for Anaesthesia, Resuscitation and Intensive Care. Anaesthesist 2007; 56: 604–611
12 Sumng A, Grovedent A, Westphal A, Fiene M, Greinacher A, Thiele T. Acquired hemophilia with inhibitors presenting as an emergency: misinterpretation of clotting results during direct oral anticoagulation. Dtsch Arztebl Int 2014; 111: 345–348
13 Steiner T. Neue direkte Orakloagulanzen: Was im Notfall zu beachten ist. Dtsch Arztebl Int 2012; 109: A-1928–A-1930
14 Schmitz EM, Boonen K, van den Heuvel DJ et al. Determination of dabigatran, rivaroxaban and apixaban by ultra-performance liquid chromatography – tandem mass spectrometry (UPLC-MS/MS) and coagulation assays for therapy monitoring of novel direct oral anticoagulants. J Thromb Haemost 2014; 12: 1636–1646
15 Knopp A, Freundgesperl I, Stark T, Scherer E. ENT surgery in patients with anticoagulants and platelet aggregation inhibitors. HNO 2014; 62: 350–357
16 Moreno EH, Hutchison JL, McCulloch TM, Graham SM, Funk GF, Hoffman HT. Incidence of deep vein thrombosis and pulmonary embolism in otolaryngology-head and neck surgery. Otolaryngol Head Neck Surg 1998; 118: 777–784
17 Garrizano FG, Lehman EB, Andrews GC. Incidence of venous thromboembolism in otolaryngology-head and neck surgery. JAMA Otolaryngol Head Neck Surg 2013; 139: 21–27
18 Thai L, McCarrn K, Stott W et al. Venous thromboembolism in patients with head and neck cancer after surgery. Head Neck 2013; 35: 4–9
19 Clayburgh DR, Stott W, Cordiero T et al. Prospective study of venous thromboembolism in patients with head and neck cancer after surgery. JAMA Otolaryngol Head Neck Surg 2013; 139: 1143–1150
20 Clayburgh D, Stott W, Kochanowski T et al. Prospective study of venous thromboembolism in patients with head and neck cancer after surgery: interim analysis. JAMA Otolaryngol Head Neck Surg 2013; 139: 161–167
21 Capruni JA, Arccdus JI, Reyna JJ. Effective risk stratification of surgical and nonsurgical patients for venous thromboembolism disease. Semin Hematol 2001; 38 (2 Suppl 5): 12–19
22 Shuman AG, Hu HM, Panucci CJ, Jackson CR, Bradford CR, Bahl V. Stratifying the risk of venous thromboembolism in otolaryngology. Otolaryngol Head Neck Surg 2012; 146: 719–724
23 Sherwood MW, Douketis JD, Purtil MR et al. Outcomes of temporary interruption of rivaroxaban compared with warfarin in patients with nonvalvular atrial fibrillation: results from the rivaroxaban once daily, oral, direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation (ROCKET AF). Circulation 2014; 129: 1850–1859
24 Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Reddy MR. Validation of clinical prediction schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA 2001; 285: 2864–2870
25 Kaatz S, Douketis JD, Zhou H, Gage BF, White RH. Risk of stroke after surgery in patients with and without chronic atrial fibrillation. J Thromb Haemost 2010; 8: 884–890
26 CammJrger SC, Rosendaal FR, Breet E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 1994; 89: 635–641
27 Douketis JD, Spyropoulos AC, Spencer FA et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141 (2 Suppl): e326S–e350S
28 Douketis JD. Perioperative management of patients who are receiving warfarin therapy: an evidence-based and practical approach. Blood 2011; 117: 5044–5049
29 Sun JC, Davidson MJ, Lamy A, Eikelboom JW. Antithrombotic management of patients with prosthetic heart valves: current evidence and future trends. Lancet 2009; 374: 565–576
30 Brener SJ, Kereitakes DJ, Simonton CA et al. Evorilimus-eluting stents in patients undergoing percutaneous coronary intervention: final 3-year results of the Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System in the Treatment of Subjects With de Novo Native Coronary Artery Lesions trial. Am Heart J 2013; 166: 1035–1042
31 Dansget GD, Serruys PW, Kereitakes DJ et al. Meta-analysis of everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease: final 3-year results of the SPIRIT clinical trials program (Clinical Evaluation of the Xience V Everolimus Eluting Coronary Stent System in the Treatment of Patients With De Novo Native Coronary Artery Lesions). JACC Cardiovasc Interv 2013; 6: 914–922
32 Feres F, Costa RA, Abdo A et al. Three vs. twelve months of dual antiplatelet therapy after zotarolimus-eluting stents: the OPTIMIZE randomized trial. JAMA 2013; 310: 2510–2522
33 Spyropoulos AC, Albaladejo P, Godier A et al. Periprocedural antiplatelet therapy: recommendations for standardized reporting in patients on antiplatelet therapy: communication from the SSC of the ISTH. J Thromb Haemost 2013; 11: 1583–1596
34 AWFM-Referenlinie Prophylaxe der venösen Thrombosethrombose (VTE) 2010
35 Gould MK, Garcia DA, Wren SM et al. Prevention of VTE in nonorthopedic surgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141 (2 Suppl): e227S–e277S

36 Sørøe R, Milling TJ Jr, Refaiu MA et al. Efficacy and safety of a 4-factor prothrombin complex concentrate in patients with vitamin K antagonists presenting with major bleeding: a randomized, plasma-controlled, phase IIIb study. Circulation 2013; 128: 1234–1243

37 Beyer-Westendorf J, Forster K, Pannach S et al. Rates, management, and outcome of rivaroxaban bleeding in daily care: results from the Dresden NOAC registry. Blood 2014; 124: 955–962

38 Heidbuchel H, Verhamme P, Alings M et al. EHRA practical guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation: executive summary. Eur Heart J 2013; 34: 2094–2106

39 Warkentin TE, Margetts SJ, Connolly SJ, Margetts SJ, and outcome of dabigatran-associated postcardiac surgery bleeding. Blood 2012; 119: 2172–2174

40 Singh T, Maw TT, Henry BL et al. Extracorporeal therapy for dabigatran removal in the treatment of acute bleeding: a single center experience. Clin J Am Soc Nephrol 2013; 8: 1533–1539

41 Selleng T, Thiele T, Sumnig A, Mayerle J, Greinacher A. Dabigatran may redistribute into the vascular compartment after hemodialysis – a case report. Abstract GTH Annual Meeting 2013

42 Schiele F, van Rijn J, Canada K et al. A specific antidote for dabigatran: functional and structural characterization. Blood 2013; 121: 3554–3562

43 Lu G, DeGuzman FR, Hollenbach SJ et al. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. Nat Med 2013; 19: 446–451

44 Thiele T, Althaus K, Greinacher A. Heparin-induced thrombocytopenia. Internist (Berl) 2010; 51: 1127–1132 1134–1135

45 Nast A, Ernst H, Rosmeuck S, Erdmann R, Jacobs A, Sperbeck B. Risk of complications due to anticoagulation during dermatosurgical procedures: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol 2014

46 Birnie DH, Healey JS, Wells GA et al. Pacemaker or defibrillator surgery without interruption of anticoagulation. N Engl J Med 2013; 368: 2084–2093

47 Devereaux PJ, Mirokobrada M, Sessler DI et al. Aspirin in patients undergoing noncardiac surgery. N Engl J Med 2013; 370: 1494–1503

48 Li C, Hirsh J, Xie C, Johnston MA, Eikelboom JW. Reversal of the anti-platelet effects of aspirin and clopidogrel. J Thromb Haemost 2012; 10: 521–528

49 Zafar MU, Santos-Gallego C, Vorhceimer DA et al. Platelet function normalization after a prasugrel loading-dose: time-dependent effect of platelet supplementation. J Thromb Haemost 2013; 11: 100–106

50 Farid NA, Payne CD, Snell DS et al. Cytochrome P450 3A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently. Clin Pharmacol Ther 2007; 81: 735–741

51 Jakubowski JA, Payne CD, Li YG et al. A comparison of the antiplatelet effects of prasugrel and high-dose clopidogrel as assessed by VASP-phosphorylation and light transmission aggregometry. Thromb Haemost 2008; 99: 215–222

52 Rorte W, Cattaneo M, Chassot PG et al. Peri-operative management of antipatelet therapy in patients with coronary artery disease: joint position paper by members of the working group on Perioperative Haemostasis of the Society on Thrombosis and Haemostasis Research (GHT), the working group on Perioperative Coagulation of the Austrian Society for Anaesthesiology, Resuscitation and Intensive Care (OGAI) and the Working Group Thrombosis of the European Society for Cardiology (ESC). Thromb Haemost 2011; 105: 743–749

53 Authors/Task Force m, Windecker S, Kolb P et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 2014

54 Sylvester DC, Coatesworth AP. Antiplatelet therapy in ENT surgery: a review. J Laryngol Otol 2012; 126: 331–336

55 Albaladejo P, Charbonneau H, Samama CM et al. Bleeding complications in patients with coronary stents during non-cardiac surgery. Thromb Res 2014; 134: 268–272

56 Savage JR, Parmar A, Robinson PJ. Antiplatelet drugs in elective ENT surgery. J Laryngol Otol 2012; 126: 886–892

57 Vaishnava P, Eagle KA. The yin and yang of percutaneous medicine. N Engl J Med 2014; 370: 1554–1555

58 Vicenzi MN, Meislitzer T, Heitzinger B, Halaj M, Fleisher LA, Metzler H. Coronary artery stenting and non-cardiac surgery – a prospective outcome study. Br J Anaesth 2006; 96: 686–693

59 Collet JP, Himbert F, Steg PG. Myocardial infarction after aspirin cessation in stable coronary artery disease patients. Int J Cardiol 2000; 76: 257–258

60 Thiele T, Sumnig A, Hor G et al. Platelet transfusion for reversal of dual antiplatelet therapy in patients requiring urgent surgery: a pilot study. J Thromb Haemost 2012; 10: 968–971

61 Farid NA, Kuroha A, Wrighton SA. Metabolism and disposition of the thienopyridine antiplatelet drugs ticlopidine, clopidogrel, and prasugrel in humans. J Clin Pharmacol 2010; 50: 126–142

62 Butler K, Teng R. Pharmacokinetics, pharmacodynamics, safety and tolerability of multiple ascending doses of ticagrelor in healthy volunteers. Br J Clin Pharmacol 2010; 70: 65–77

63 Savonitto S, D’Urbano M, Caracciolo M et al. Urgent surgery in patients with a recently implanted coronary drug-eluting stent: a phase II study of ‘bridging’ antiplatelet therapy with tirofiban during temporary withdrawal of clopidogrel. Br J Anaesth 2010; 104: 285–291

64 Angiolillo DJ, Firstenberg MS, Price MJ et al. Bridging antiplatelet therapy with cangrelor in patients undergoing cardiac surgery: a randomized controlled trial. JAMA 2012; 307: 265–274