Sublinear Dynamic Interval Scheduling (on one or multiple machines)

Pawel Gawrychowski¹ and Karol Pokorski¹

¹Institute of Computer Science, University of Wroclaw, Poland
[gawry,pokorski]@cs.uni.wroc.pl

Abstract

We revisit the complexity of the classical Interval Scheduling in the dynamic setting. In this problem, the goal is to maintain a set of intervals under insertions and deletions and report the size of the maximum size subset of pairwise disjoint intervals after each update. Nontrivial approximation algorithms are known for this problem, for both the unweighted and weighted versions [Henzinger, Neumann, Wiese, SoCG 2020]. Surprisingly, it was not known if the general exact version admits an exact solution working in sublinear time, that is, without recomputing the answer after each update.

Our first contribution is a structure for Dynamic Interval Scheduling with amortized $\tilde{O}(n^{1/3})$ update time. Then, building on the ideas used for the case of one machine, we design a sublinear solution for any constant number of machines: we describe a structure for Dynamic Interval Scheduling on $m \geq 2$ machines with amortized $\tilde{O}(n^{1-1/m})$ update time.

We complement the above results by considering Dynamic Weighted Interval Scheduling on one machine, that is maintaining (the weight of) the maximum weight subset of pairwise disjoint intervals. We show an almost linear lower bound (conditioned on the hardness of Minimum Weight k-Clique) for the update/query time of any structure for this problem. Hence, in the weighted case one should indeed seek approximate solutions.

1 Introduction

The INTERVAL SCHEDULING (IS) problem is often used as one of the very first examples of problems that can be solved with a greedy approach. In this problem, we have a set of jobs, the i-th job represented by an interval (s_i, f_i). Given n such intervals, we want to find a maximum size subset of pairwise disjoint intervals. In this context, disjoint intervals are usually called compatible. This admits a natural interpretation as a scheduling problem, where each request corresponds to a job that cannot be interrupted and require exclusive access to a machine. Then, the goal is to schedule as many jobs as possible using a single machine. The folklore greedy algorithm solves this problem in $O(n)$ time, assuming that the intervals are sorted by the values of f_i [19]. While it may appear to be just a puzzle, interval scheduling admits multiple applications in areas such as logistics, telecommunication, manufacturing, or personnel scheduling. For more applications and a detailed summary of different variants of interval scheduling, we refer to [21].

In many real-world applications, there is a need for maintaining the input under certain updates (for example, insertions and deletions of items), so that we can report the optimal solution (or its cost) after each operation. The goal is to avoid the possibly very expensive recalculation of the answer (which surely takes at least linear time in the size of the input) by maintaining some kind of additional structure. The first step in this line of research is to design a structure with sublinear update/query time. Then, the next goal is to bring down the time complexities to polylogarithmic (in the size of the input). Examples of problems in which this has been successfully accomplished include dynamic graph connectivity [16,17,23], dynamic longest increasing subsequence [13,20], dynamic suffix array [2,18], dynamic graph clustering [10], and many others. For some dynamic problems no such solutions are known, and we have tools for proving (conditional) polynomial hardness for dynamic algorithms [14].

This suggests the following DYNAMIC INTERVAL SCHEDULING (DIS) problem, in which we want to maintain a set S of intervals subject to insert and delete operations. After each update, we should report the size of the maximum size subset of pairwise compatible intervals. Note that reporting the subset itself might be not feasible, as it might contain $\Omega(n)$ intervals. Similarly, neither is explicitly maintaining this
subset, as an update might trigger even $\Omega(n)$ changes in the unique optimal subset. Thus, the challenge is to maintain an implicit representation of the current solution that avoids recomputing the answer after each update, that is, supports each update in sublinear time. Besides being a natural extension of a very classical problem, we see this question as possibly relevant in practical application in which we need to cope with a dynamically changing set of jobs.

1.1 Previous work

Surprisingly, to the best of our knowledge, the complexity of general exact DIS was not considered in the literature. However, Gavruskin et al. [12] considered its restricted version, in which there is an extra constraint on the set S. Namely, it should be monotonic at all times: for any two intervals $(s_i, f_i), (s_j, f_j) \in S$ we should have $s_i < s_j$ and $f_i < f_j$ or vice versa. Under such assumption, there is a structure with $O(\log^2 n)$ amortized time per update and $O(\log n)$ amortized time per query. Alternatively, the update time can be decreased to $O(\log n)$ if the query only returns if a given interval belongs to the optimal solution.

For the general version of DIS, Henzinger, Neumann and Wiese [15] designed an efficient approximation algorithm that maintains an $(1 + \epsilon)$-approximate solution in polylogarithmic time. The dependency on ϵ has been very recently improved from exponential to polynomial by Compton, Mitrović and Rubinfeld [7]. In fact, both solutions work for the weighted version of the problem, called Dynamic Weighted Interval Scheduling (DWIS). In this problem, each interval has its associated weight, and the goal is to maintain a subset of pairwise compatible intervals with the largest total weight. Note that the static version of this problem, called Weighted Interval Scheduling (WIS), can be solved by a straightforward dynamic programming algorithm [19] (but the greedy strategy no longer works now that we have weights). This brings the challenge of determining if the unweighted (and weighted) version of the problem admits an efficient exact solution.

A natural generalization of interval scheduling is to consider multiple machines. In such a problem, there is a shared set of jobs to process, each job can be either discarded or scheduled on one of the available m machines. Jobs scheduled on each machine must be pairwise compatible. The goal is to maximize the number (or the total weight) of scheduled intervals. IS on multiple machines (IS+) can be solved by extending the greedy algorithm considering intervals by the earliest end time. For each considered interval, if no machine is free at the respective time, the interval is discarded. If there are some free machines, the interval is assigned to the available machine that was busy at the latest. A direct implementation of this approach incurs a factor of m in the running time, but this can be avoided [6, 11]. The weighted version of the problem (WIS+) can be formulated and solved as a min-cost flow problem [3, 5]. For the dynamic version, Compton, Mitrović and Rubinfeld [7] extend their methods for maintaining an approximate answer to multiple machines, however, their bounds are mostly relevant for the unweighted case. A related (but not directly connected) question is to maintain the smallest number of machines necessary to schedule all jobs in the current set [12].

1.2 Our contribution

In this paper, we consider dynamic interval scheduling on one and multiple machines. We show that the unweighted version of the problem admits a sublinear dynamic solution, and furthermore, we make non-trivial progress on decreasing the exponent in the time complexity of the solution.

The starting point is a simple structure for the general DIS problem with $O(\sqrt{n} \log n)$ amortized update/query time. This is then improved to $\tilde{O}(n^{1/3})$ amortized update/query time. For multiple machines, we begin with $m = 2$, and show how to solve the corresponding problem, denoted DIS2, in $O(\sqrt{n})$ amortized time per update. Next, we use this solution to solve the general DIS+ problem in $\tilde{O}(n^{1-1/m})$ amortized time per update. While designing a solution working in $O(n^{1-1/(m+1)})$ time is not very difficult, our improved time bounds require some structural insight that might be of independent interest.

Theorem 1. There is a data structure for Dynamic Interval Scheduling on $m \geq 1$ machines that supports any update in $O(\max(n^{1/3}, n^{1-1/m}))$ amortized time.

We complement the above result by a (conditional) lower bound for the weighted version of the problem, even with $m = 1$. We show that, for every $\epsilon > 0$, under the Minimum Weight $(2\ell + 1)$-Clique Hypothesis, it is not possible to maintain a structure that solves DWIS in $O(n^{1-\epsilon})$ time per operation. This shows an interesting difference between the static and dynamic complexities of the unweighted and
weighted versions: despite both IS and WIS admitting simple efficient algorithms, DIS admits a sublinear solution while DWIS (probably) does not.

1.3 Techniques and ideas

A natural approach to DIS is to efficiently simulate the execution of the greedy algorithm.

Definition 2. For an interval \(I_i = (s_i, f_i) \), the leftmost compatible interval \(\text{LC}(I_i) \) is the interval \((s'_i, f'_i) \in S \) with the smallest \(f'_i \) such that \(s'_i \geq f_i \) and \(\text{LC}(I_i) = \bot \) if there is no such interval.

Note that if the greedy algorithm includes \(I_i \) in the solution then it also includes \(\text{LC}(I_i) \). Thus, it is easy to prove that if \(I_i \) is the interval with the smallest \(f_i \) in \(S \), then the (optimal) solution generated by the greedy algorithm is \(\{ I_i, \text{LC}(I_i), \text{LC}^2(I_i), \ldots \} \).

One can consider a forest in which each interval is represented as a node and an interval \(I_i \) has parent \(\text{LC}(I_i) \). By creating an artificial root and connecting all forest roots to it, we make this representation a tree. We call it the greedy tree (of \(S \)). The answer to the DIS query is the length of the longest path from any node to the root in the tree. We know this is actually the path from the earliest ending interval thanks to the greedy algorithm.

![Figure 1: An input instance for DIS with the optimal solution generated by the greedy algorithm marked using bold lines and the corresponding greedy tree.](image)

A standard approach used in dynamic problems is splitting the current input into several smaller pieces and recomputing some information only in the piece containing the updated item. Then, the answer is obtained by using the information precomputed for every piece. An attempt to use such an approach for DIS could be as follows. We partition \(S \) into parts, either by the start or the end times, and in every part we precompute the result of running the greedy algorithm from every possible state. The goal is to accelerate running the algorithm by being able to jump over the parts. For \(m = 1 \), we can simply maintain the greedy tree, as it allows us to simulate running the greedy algorithm not only from the interval with the smallest end time but in fact from an arbitrary interval \(I_i \). We call this resuming the greedy algorithm from \(I_i \). This allows us to jump over the whole part efficiently, and by appropriately balancing the size of each part we obtain a data structure with \(O(n^{1/2}) \) time per update. This is described in detail in Appendix A. A similar approach works for \(m > 1 \), except that instead of the greedy tree we need to preprocess the answer for every \(m \)-tuple of intervals, resulting in \(O(n^{1-1/(m+1)}) \) time per update.

We improve on this basic idea for both \(m = 1 \) and \(m > 1 \). For \(m = 1 \), we design a way to solve the decremental variant of DIS in only (amortized) polylogarithmic time per update, and couple this with maintaining a buffer of the most recent insertions. For \(m = 2 \), the greedy tree is no longer sufficient to capture all possible states of the greedy algorithm. However, by a careful inspection, we prove that for a piece consisting of \(n \) intervals, instead of precomputing the answers for all \(\Theta(n^2) \) possible states, it is enough to consider only \(O(n) \) carefully selected states. For \(m > 2 \), we further extend this insight by identifying only \(O(n^{1-1/m}) \) states, called compressible. Interestingly, using these states to simulate the greedy algorithm starting from an arbitrary state requires a separate \(O(n^2) \) precomputation, hence we need to consider the case \(m = 2 \) separately.

2 Interval scheduling on one machine

For our structures, it is sufficient that \(s_i \) and \(f_i \) characterizing intervals are pairwise comparable but to simplify the presentation, we assume that \(s_i, f_i \in \mathbb{R}_+ \). One can also use an order maintenance structure [4,9] to achieve worst-case constant time comparisons between endpoints even if we only assume that when inserting an interval \((s_i, f_i)\) we know just the endpoints of existing intervals in \(S \) that are the nearest predecessors of \(s_i \) and \(f_i \). We make endpoints of all intervals pairwise distinct with the standard
perturbation. We assume that each insert operation returns a handle to the interval which can later be used to delete.

Our structures work in epochs. At the beginning of each epoch, we set \(N \) to be the number of intervals in \(S \). When the number of intervals is outside range \([\frac{1}{2}, 2N]\), the new epoch begins. At the beginning of an epoch, we construct an additional data structure \(D \) of all intervals in \(S \) by a sequence of inserts in any order. These reconstructions have no impact on the amortized update time complexity as \(n \) actual operations are turned into \(\mathcal{O}(n) \) insertions and deletions. We maintain \(D \) during the epoch.

We maintain a global successor structure storing all intervals sorted by their end time that enables efficient computation of \(\text{LC}(\cdot) \). There are \(k \) separators that split the universe of coordinates into parts of similar size. Intervals are assigned into parts \(\mathcal{P}_0, \mathcal{P}_1, \ldots, \mathcal{P}_k \) by their start time. Some intervals are \emph{internal} (if they fully fit in the part) and other are \emph{external} (otherwise). Both \(\mathcal{O}(n^{1/2}) \) and \(\mathcal{O}(n^{1/3}) \) structures are able to efficiently find the internal result for an interval \(I \) in a part, that is how many intervals the greedy algorithm can choose from \(I \) until reaching the exit (the last selected) interval of the part, so \(\text{DIS} \) query is solved by iterating over these parts and applying the exit of one part as an input to the next one.

We recommend reading Appendix A, where we introduce the above idea by showing a simpler but slower algorithm. Here we extend this approach and present a data structure showing the following.

Theorem 3. There is a data structure for \(\text{DIS} \) that supports any sequence of \(n \) insert/delete/query on intervals in \(\tilde{\mathcal{O}}(n^{1/3}) \) amortized time per each operation.

The separators are chosen such that each part has size at most \(2N^{2/3} \) and for any two consecutive parts \(\mathcal{P}_j \) and \(\mathcal{P}_{j+1} \) at least one has size at least \(\frac{1}{2}N^{2/3} \). Thus, there are always \(\mathcal{O}(n^{1/3}) \) parts. More details on how to maintain this partition are provided in Appendix A.

Since our goal is to achieve \(\mathcal{O}(n^{1/3}) \) update time and parts are larger, we cannot afford to recompute the whole part from scratch for every update in it (as we did in Appendix A). Instead, we keep internal intervals of a part in two structures: a decremental structure and a buffer. External intervals are only kept in the global balanced binary search tree containing all the intervals. We first sketch the idea and describe the details in the following subsections.

The decremental structure of each part contains \(\mathcal{O}(n^{2/3}) \) intervals, has no information about buffer intervals, can be built in \(\tilde{\mathcal{O}}(n^{2/3}) \) time and allows deletions in \(\mathcal{O}(\text{polylog } n) \) time. The buffer \(B_j \subseteq \mathcal{P}_j \) contains only at most \(N^{1/3} \) last inserted internal intervals in \(\mathcal{P}_j \). Each operation in a part leads to the recomputation of information associated with the buffer in \(\tilde{\mathcal{O}}(n^{1/3}) \) time. When \(B_j \) overflows, we rebuild the decremental structure from scratch using all internal intervals from the part and clear the buffer. Such recomputation happens every \(\Omega(n^{1/3}) \) updates inside a part. This way the update time of our solution can still be within the claimed bound.

As the optimal solution may use intervals both from the decremental collection and the buffer interchangeably, we need to combine information stored for these sets. For buffer intervals, we can afford to precompute the whole internal result and the exit of the part being fully aware of the content of the decremental collection. However, we also need to “notify” intervals of the decremental collection about potential better solutions that can be obtained by switching to buffer intervals. For this we store an additional structure of total size of \(\tilde{\mathcal{O}}(n^{1/3}) \), recomputed every update in a part, specifying for which intervals of the decremental collection there exists an “interesting” buffer interval.

2.1 Active and inactive intervals

Definition 4. An interval \(I_i = (s_i, f_i) \) in a collection \(C \) of intervals is active if there is no other \((s_{i'}, f_{i'}) \in C\) such that \(s_i \leq s_{i'} \leq f_{i'} \leq f_i \). Otherwise \(I_i \) is inactive.

Lemma 5. For any set \(S \) of intervals and an interval \(I_i \in S \), the greedy algorithm for \(\text{IS} \) resumed from \(I_i \) chooses (after \(I_i \)) only active intervals from \(S \).

*Proof.*** Assume there are two intervals \(I_1 = (s_1, f_1) \) and \(I_2 = (s_2, f_2) \) such that \(s_2 < s_1 < f_1 < f_2 \). \(I_1 \) is considered earlier by the greedy algorithm. If it is scheduled, \(I_2 \) can no longer be scheduled as \(I_1 \) and \(I_2 \) are overlapping. If it is not, \(I_2 \) also can not be scheduled as the set of compatible intervals with \(I_2 \) is the subset of the compatible intervals with \(I_1 \). \(\square \)

A collection of only active intervals is monotonic by definition. This provides a well defined, natural order on the active intervals in the collection: \((s_i, f_i) < (s_{i'}, f_{i'}) \iff s_i < s_{i'} \iff f_i < f_{i'}.\) Because of
this additional structure, we focus on describing how to maintain the subset of active intervals inside a collection and only look for the solution of (D)IS in this subset.

The decremental structure D_j in each part only allows rebuilding and deletions. We maintain set of active intervals $A_j \subseteq D_j$ in the decremental collection. When an interval from A_j is deleted, the set should report new active intervals. We stress that the decremental structure is not aware of any buffer intervals of P_j and in order to determine if a particular interval is active in the decremental collection we do not take into account any buffer intervals.

Lemma 6. There is a structure that allows maintaining the subset of active intervals in a delete-only or insert-only collection of size n in $O(\log n)$ amortized time per insertion/deletion and can be built in $O(n \log n)$ time.

Proof. Each interval (s_i, f_i) is translated into a point $(s_i, -f_i)$ in a plane. We say that point (x, y) dominates point (x', y') if $x > x' \wedge y > y'$. Point (x', y') is then dominated by (x, y). We say that a point is dominated if there is a point that dominates it. The interval is active in the collection if and only if the point representing it is not dominated. The set of non-dominated points forms a linear order: the larger x-coordinate implies the smaller y-coordinate. We store the front of non-dominated points in a predecessor/successor structure. Additionally, we maintain a range search tree indexed by x storing in each node the points of the appropriate range of x-coordinates and what is the point with the maximum y among them.

We start by describing the insert-only structure. When a point (x, y) is inserted, we search for its predecessor (x_r, y_r) and its successor (x_s, y_s) in the front of non-dominated points. This way we can either find if (x, y) is dominated by (x_r, y_r) or if it dominates (x_t, y_t). We then update the front and the range search tree appropriately.

To build the delete-only structure, we insert points one by one in any order as described above. When a point (x, y) is deleted, we search for its predecessor (x_r, y_r) and its successor (x_s, y_s) in the front and find what are the points in the range (x, x_r) that become non-dominated, that is what are new maximums of nodes in the range search tree after removal of (x, y) from appropriate nodes. These new non-dominated points are added to the front and each interval from the decremental structure is activated only at most once. Thus, the time charged to each interval in the collection is bounded by $O(\log n)$. □

2.2 Decremental structure

For $I_i \in P_j$, we define $LC_{decr}(I_i)$ to be the next greedy choice in A_j after I_i.

Proposition 7. The set of greedy predecessors of I_i (\{$I_j \mid LC_{decr}(I_j) = I_i$\}) forms a continuous range of active intervals in A_j.

Proof. For any active intervals I_1, I_2, we have $I_1 \prec I_2 \Rightarrow LC_{decr}(I_1) \preceq LC_{decr}(I_2)$, so if there are three active intervals $I_1 \prec I_3 \prec I_2$ such that $LC_{decr}(I_1) = LC_{decr}(I_2)$ then also $LC_{decr}(I_3) = LC_{decr}(I_1)$.

Intervals of A_j form a forest where a node representing an interval I_i is the parent of I_i’s node when $LC_{decr}(I_i) = I_i$. As in the previous section, we add an auxiliary interval to make this representation a tree, we denote it T_j and call it a greedy tree of the part P_j. Greedy predecessors of I_i are the children of node I_i in the greedy tree. We stress that the greedy tree is built only for the intervals of the decremental collection.

We internally represent the greedy tree as an augmented top tree \mathcal{T}_j [1]. This allows maintaining underlying fully dynamic forest (updates are insertions/deletions of edges and changes to node/edge weights). Because deletions and activations of intervals in the decremental structure may change values of $LC_{decr}(\cdot)$ for many nodes, we slightly alter the structure as described in Section 2.3. This is also one of the reasons why one cannot apply techniques described in [12] to solve even the decremental variant of DIS despite being able to efficiently maintain the (monotonic) set of active intervals.

When $I_i \in A_j$ is to be deleted, its children $C = c_1 \prec c_2 \prec \cdots \prec c_k$ have to connect to other nodes of the greedy tree. Let $I_{k+1} = LC_{decr}(I_k)$ before deletion and $I_1 \prec I_2 \prec \cdots \prec I_k$ are the activated intervals after removing I_i. Note that $I_k \prec I_{k+1}$. Other nodes than the elements of C do not change its parent.

We first observe that $I_1, I_2, \ldots, I_{k+1}$ are the only possible parents for nodes in C, remind the fact that $I_i \prec I_{i+1} \Rightarrow LC(I_i) \preceq LC(I_{i+1})$ and use Proposition 7 to see that some (possibly empty) prefix of children sequence $(c_1, c_2, \ldots, c_{r_2})$ has to be connected to I_1, then the next range $(c_{r_1+1}, c_{r_1+2}, \ldots, c_{r_2})$
has to be connected to \(I_2 \) and so on until finally some suffix of children sequence \((c_{r_k+1}, c_{r_k+2}, \ldots, c_{r}) \) has to be connected to \(I_{k+1} \). We use binary search on the children sequence to find indices \(r_1, r_2, \ldots, r_k \) in this order. We update the parents of the nodes in the found ranges in the greedy tree as described in Section 2.3 and it takes \(\mathcal{O}(\text{polylog } n) \) per each activated interval.

Using the appropriate query to the top tree, we can resume the execution of the greedy algorithm restricted to \(\mathcal{A}_j \) from any \(I_i \in \mathcal{A}_j \) in \(\mathcal{O}(\text{polylog } n) \) time.

2.3 Top tree

The underlying information maintained in \(\mathfrak{T}_j \) is chosen to compute the following:

- weighted level ancestors,
- nearest marked ancestors,
- the total path weight from a node to the root (the sum of weights).

The discussion on how to maintain information that allows efficient computation of the above in \(\mathfrak{T}_j \) can be found in [1].

\(\mathfrak{T}_j \) represents an underlying modified greedy tree \(\mathfrak{T}_j \), namely, we binarize the tree by reorganizing the children of each non-leaf node and adding auxiliary nodes as presented in Fig. 2. A node in such a modified greedy tree that represents an actual interval has a weight 1, all other auxiliary nodes have a weight 0. The weight of the path between nodes is the sum of the weights of the nodes on the path (including the endpoints). This way, the weight of a path from a node representing an interval \(I_i \) to the root of the modified greedy tree represents the number of intervals chosen by the greedy algorithm from \(I_i \).

\(\mathcal{A}_j \) is always monotonic so we use \(\prec \) order on children. This way, we can update values of \(\text{LC-DECR}(\cdot) \) for a range of children of a node in \(\mathcal{O}(\text{polylog } n) \) time by the appropriate splits and joins in \(\mathfrak{T}_j \). Apart from auxiliary nodes, pre-order traversals of \(\mathfrak{T}_j \) and \(\mathfrak{T}_j \) are equal.

\(\mathfrak{T}_j \) and \(\mathfrak{T}_j \) are only internal representations of \(\mathfrak{T}_j \) that enable efficient implementation of the necessary operations. Any updates of \(\mathfrak{T}_j \) are naturally translated into updates of \(\mathfrak{T}_j \) and \(\mathfrak{T}_j \) or were described above. We proceed with describing the further details on \(\mathfrak{T}_j \).

Definition 8. For an interval \(I_i \in \mathcal{A}_j \), we define its depth as the depth in \(\mathfrak{T}_j \). The set of intervals of the same depth \(d \) is called a layer \(d \) in \(\mathfrak{T}_j \) (or \(\mathfrak{T}_j \)).

Remark 9. We already have all the ingredients for the algorithm to solve the delete-only DIS variant in \(\mathcal{O}(\text{polylog } n) \) time. In this case, we do not partition intervals nor use a buffer. Instead, we only use the top tree representing the greedy tree of all the active intervals in the whole decremental collection of intervals.

Similarly, we remind that the structure for maintaining the subset of active intervals can be also maintained for the insert-only variant of DIS (Lemma 6). Now we also observe that we can maintain the greedy tree when the intervals are only inserted. A new interval \(I_i \) may only improve \(\text{LC}(\cdot) \) for some continuous range of intervals and we can binary search the endpoints of this range. To account for the cost of reconnecting these nodes, which may have many different parents, we observe that for any insertion, there is only at most one interval that loses a child in the greedy tree and is not deactivated. We charge the time of reconnection of the range of its children to the insertion of \(I_i \). We charge the time needed to
reconnect other nodes to the insertion of their (deactivated, thus actually deleted) parent. This establishes the time complexity of the insert-only variant of DIS to \(O(\text{polylog } n) \).

2.4 Buffer

Definition 10. For intervals \(I_1 \in A_j \) and \(I_2 \in B_j \), we say that \(I_1 \) directly wants to switch to \(I_2 \) if and only if all the following conditions hold:

- \(I_1 \) ends earlier than \(I_2 \),
- \(I_1 \) and \(I_2 \) are compatible,
- \(I_2 \prec \text{LC-decr}(I_1) \).

The aim of the above definition is to capture that sometimes the value of \(\text{LC}(\cdot) \) may be different from \(\text{LC-decr}(\cdot) \). Note that if \(I_1 \) directly wants to switch to \(I_2 \) it does not necessarily imply that \(\text{LC}(I_1) = I_2 \). It just means that \(I_2 \) is (in sense of \(\prec \)) a better next greedy choice for \(I_1 \) than it appears from the computation in the decremental collection. Note that it also means that the greedy algorithm resumed from any node in the subtree of \(I_1 \) in the greedy tree will not choose \(\text{LC-decr}(I_1) \). Thus we define the following.

Definition 11. For intervals \(I_1 \in A_j \), \(I_2 \in B_j \) we say that \(I_1 \) wants to switch to \(I_2 \) if and only if there exists an integer \(k \geq 0 \) such that \(\text{LC-decr}^k(I_1) \) directly wants to switch to \(I_2 \).

![Figure 3: An instance of DIS, example part. Intervals in the decremental collection are shown above the dotted line and buffer intervals are below. Dashed arrows connect intervals with their respective LC-decr(). Here intervals 1, 2, 3 and 4 want to switch to B1 (3 and 4 directly) and interval 3 wants to (directly) switch to B2.](image)

Proposition 12. For an interval \(I_i \in B_j \), there exist an integer \(d \) such that the set of intervals in \(A_j \) that directly want to switch to \(I_i \) is either:

- a continuous range of a layer \(d \),
- a suffix of layer \(d \) and a prefix of layer \(d + 1 \).

Proof. Let \(I_1 \prec I_3 \prec I_2 \) and assume that \(I_1 \) and \(I_2 \) want to switch to \(I_i \). Then, also \(I_3 \) wants to switch to \(I_i \); \(I_1 \) ends earlier than \(\text{LC-decr}(I_3) \) because \(I_1 \) wants to switch and \(I_3 \) can switch to \(I_i \) because \(I_2 \) can. This shows that the nodes that want to switch to \(I_i \) form a continuous range in \(\prec \). Active intervals that directly want to switch to any particular \(I_i \) are pairwise overlapping. Indeed, with of any two compatible intervals \(I_1 \prec I_2 \), we would have \(\text{LC}(I_1) \leq I_2 \) so \(\text{LC}(I_1) \) ends earlier than any buffer interval compatible with \(I_2 \) to the right of \(I_2 \). This also proves that a node and its parent in the greedy tree cannot both directly want to switch to the same buffer interval thus completing the proof.

Proposition 12 shows that the actual size of the information needed to notify the intervals from \(A_j \) that want to directly switch to a particular buffer interval is short. For each buffer interval, it is enough to remember endpoints of at most two ranges.

We want to efficiently store also indirect switching. Intervals that want to switch to \(I_i \) are the nodes in subtree of any node in ranges from Proposition 12. From range from \(I_1 \) to \(I_2 \) on layer \(d \) that wants to directly switch to \(I_1 \), any node \(I_3 \) on layer \(d' = d + k \geq d \) satisfying \(I_1 \leq \text{LC-decr}^k(I_3) \leq I_2 \) wants to switch to \(I_i \), see Fig. 4.

Note that if we traverse the greedy tree in BFS order (visiting children left-to-right) we obtain exactly \(\prec \) order. Thus, when comparing two intervals on the same layer we can just see which one is earlier in
the pre-order traversal of T_j. This way we can treat layers as sorted collections of intervals (actually, subranges of \prec).

We use a 2D range search tree indexed by depth and position in the pre-order traversal of intervals in A_j. The structure allows us to store a collection of three-sided rectangles, so that given query point we can check if it is contained in at least one of the rectangles. To mark nodes as in Fig. 4 we add $[d, +\infty) \times [\pre(I_1), \pre(I_2)]$ to the tree.

An interval may want to switch to multiple intervals but the actual switching point for any $I_i \in A_j$ is the earliest in \prec (the deepest in T_j) interval that wants to directly switch to a buffer interval on the path from I_i to the root in T_j. We can deduce the actual earliest switching to buffer interval from any $I_i \in A_j$ on layer d in $O(\text{polylog } n)$ time by using a binary search on depth $d' \leq d$, each time querying the 2D range search tree if a point (d', I_j) is covered by at least one rectangle. The result for the prefix of the path until reaching the buffer can be obtained from the top tree T_j. We recreate the whole range search tree after an update in the part.

For any $I_i \in B_j$ we store the total length of the path to the root of T_j (this is the internal result for I_i in P_j) and the latest actual interval of P_j just before reaching the root (this is the exit for I_i in P_j). This information is recomputed for all buffer intervals in P_j using dynamic programming by iterating the buffer intervals by decreasing end times as follows. For $I_i \in B_j$, we compute $\text{LC}(I_i)$ and if it is a buffer interval, we use its exit result and its internal result plus 1 as the information for I_i (and, by the order of the computation, we already know these). If $\text{LC}(I_i) \in A_j$, we query the decremental collection for the next buffer interval after I_i selected by the greedy algorithm as described above and combine its result with the prefix of the traversed path from $\text{LC}(I_i)$ in the decremental collection. This is computed in $\tilde{O}(n^{1/3})$ time.

3 Interval scheduling on multiple machines

We stress that we assume that there are constant number of machines thus we are going to ignore $O(\text{poly } m)$ factors in time complexities. The difference between naive application of standard techniques and our algorithms is negligible when m is large.

As the main idea of our algorithm is to efficiently simulate the folklore greedy algorithm for IS+ (described in [6,11]), we now remind it. The intervals are considered separately by the earliest end time. For each considered interval, if there is no available machine at the time, the job is rejected. Otherwise, it is accepted and assigned the available machine that was busy at the latest time. The proof of correctness is a standard exchange argument.

The state of the partial execution (up to some time t) of the greedy algorithm can be fully described by the sequence of length m, where i-th entry describes which interval was last scheduled on i-th machine before or at time t. Some of the entry intervals to P_j may not belong to P_{j-1} if some machine had not accepted any intervals in P_{j-1}. At the same time, we want to preprocess information only for tuples of intervals from P_j, thus we need the following additional notation.

Definition 13. The greedy state G_t (at time t) is the (multi)set of m input intervals. Each element $I_i = (s_i, f_i) \in G_t$ means that at time t there is a machine that was busy up to time f_i. We use elements T_i to indicate that there is a machine which was busy up to time s_i.

—— indicates that the particular machine is blocked for all intervals that start too early. Thus, despite each interval can only be selected once, we may want to mark that some machines are busy up to the
same time. For this reason, we decided to use multisets for greedy states. \((s_i, f_i)\) can be simulated by an artificial interval \((-\infty, s_j)\).

The greedy algorithm only considers values of \(t\) that are end times of intervals \(I_i = (s_i, f_i)\) in the input. We slightly abuse the notation and use \(G_k\) to denote the greedy state at time \(f_k\) and assume the intervals are ordered according to the order of the IS+ algorithm i.e. \(f_1 < f_2 < \ldots < f_n\). To not consider cases with \(|G_k| < m\) we add \(m\) pairwise overlapping intervals ending all earlier than the beginning of any actual input interval.

If \(G_{k-1} \neq G_k\), exactly one element of \(G_{k-1}\) needs to be updated to obtain \(G_k\). It is the one that is ending the latest among the elements of \(G_{k-1}\) compatible with \(I_k\). One can see the same from a slightly different perspective. Let assume that \(i\) is the index for which \(\text{LC}(I_i)\) is the earliest ending interval among \(G_k\). Then \(G_k = G_{k+1} = \ldots = G_{k'-1} \neq G_{k'}\) and \(G_{k'} = G_k \setminus \{I_i\} \cup \{\text{LC}(I_i)\}\). We call \(G_{k'}\) the next greedy state after \(G_k\) and denote it \(\text{Next}(G_k)\). Because \(\text{LC}(\cdot)\) can be computed in \(O(\text{polylog} n)\) time using the appropriate structure as described in Appendix A, we iterate through all candidates for \(I_i\) in the greedy state and thus have the following.

Corollary 14. \(\text{Next}(G_k)\) can be computed in \(\tilde{O}(m)\) time for any \(G_k\).

We use insights from Section 2 and Appendix A and split the intervals into \(O(n^{1-1/m})\) parts of size at most \(O(n^{1/m})\). But now the part to which the interval belongs is determined by its end. Other details like epochs, splitting and merging the parts remain the same. We restrict \(\text{LC}(\cdot)\) to only consider intervals in the same part as the argument of the operation (it can return \(\bot\)). We build an additional structure for internal intervals in each part and rebuild it every update in the part. As in the case of interval scheduling on one machine, our goal is to be able to efficiently handle (in \(O(\text{polylog} n)\) time) a query for the internal result (the number of accepted intervals) and the exit greedy state from the part for a given entry greedy state \(G_k\) in the part – we call this the part query from the greedy state \(G_k\).

Notice that during the execution of the greedy algorithm up to \(P_{j-1}\), it may happen that some machine will not accept any new interval in \(P_{j-1}\), so the exit greedy state coming from \(P_{j-1}\) may contain intervals also from earlier parts. Let us now describe how to translate such an exit greedy state coming from \(P_{j-1}\) into an entry greedy state of \(P_j\), so we can later only consider the content of one part. We observe that the decisions of the greedy algorithm only depend on the relative order of endpoints of the considered intervals. If a machine was busy up to time \(t\) and there are no intervals starting before time \(t' > t\), we can safely assume that the machine is busy up to time \(t'\) without changing the execution of the greedy algorithm. Thus, we round up the end of each interval in the greedy state to the earliest start of some interval in \(P_j\). See Fig. 5. We stress that the result of rounding is not necessarily part of the solution generated by our algorithm. It just indicates times up to which the machines are busy. After computing the exit greedy state for \(P_j\), we inspect if there are machines that have not accepted any intervals from \(P_j\) and revert the rounding for these.

We stick to Definition 4, but we cannot make direct use of Lemma 5 because in the case of multiple machines it may happen that inactive intervals are part of the optimal solution. As these intervals may not form a monotonic collection, we redefine \(\prec\) order as follows: \((s_1, f_1) \prec (s_2, f_2) \iff f_1 < f_2\). We still maintain the greedy tree \(T_j\) and the top tree \(\Sigma_j\) as described for one machine. We identify intervals with the nodes representing them in \(T_j\).

Lemma 15. Let \(I_i = (s_i, f_i)\) be an inactive interval and let \(I'_{i'} = (s_{i'}, f_{i'})\) be the latest (in \(\prec\)) interval contained inside \(I_i\). If \(I_i \in G_i\), then also \(I'_{i'} \in G_i\).

\(^1\)We could also use simpler structures as we only need a subset of operations provided by the top tree and we can afford to rebuild the structure from scratch every update.
Proof. Any interval compatible with \(I_i \) is also compatible with \(I_{i'} \) and \(I_{i'} \) ends earlier than \(I_i \). This means that if \(I_i \) is accepted then also \(I_{i'} \) is (at time \(f_{i'} \)). From time \(f_{i'} \) up to time \(f_i \) the machine that accepted \(I_{i'} \) cannot accept other interval: it would have to start after \(f_{i'} \) and end before \(f_i \) thus violating our assumption that \(I_i \) is the latest interval contained inside \(I_i \). This implies that \(I_{i'} \in G_i \). \(\square \)

Lemma 16. Let \(G = \{ I_1, I_2, \ldots, I_m \} \) be a greedy state for which all elements are active intervals. Let \(I_* = (s_*, f_*) \) be the earliest (in \(\prec \)) interval being a common ancestor of any pair of elements of \(G \). Let \(N(I_1, I_2) \) be a prefix of \(\{ I_1, LC(I_1), LC^2(I_1), \ldots \} \) intervals preceding \(I_* \), and let \(S(I_1, I_2) \) be the latest of \(N(I_1, I_2) \).

Then \(N(I_1, I_2) \cup N(I_2, I_3) \cup \ldots \cup N(I_{m-1}, I_m) \) are the only elements scheduled by the greedy algorithm for \(IS^+ \) resumed from \(G \) before reaching time \(f_* \). Additionally, just before time \(f_* \) the greedy state of the algorithm is \(\{ S(I_1, I_2) : i \in \{1, 2, \ldots, m\} \} \).

Proof. First, we make a technical note that thanks to the artificial root added to form the greedy tree, the interval \(I_* \) always exists.

The candidates for values of \(\text{NEXT}(G_i) \) are \(G_i \)s with exactly one of the intervals replaced by its \(LC(\cdot) \) assigned to the same machine. Thus, by using this reasoning inductively for \(\text{NEXT}^k(G) \) for increasing \(k \), we observe that when moving forward along the path from any \(I_i \in G \) to the root in the greedy tree, at least until reaching some interval \(\succeq I_* \), all the traversed intervals will be scheduled on the same machine as \(I_i \). Additionally, for different \(I_{i'}, I_{i''} \in G \), the paths from \(I_{i'} \) and \(I_{i''} \) in the greedy tree do not share any nodes that are \(\prec I_* \) (by definition). This way, all and the only elements that are included in some greedy state after \(G \) before considering \(I_* \) are the elements of \(N(I_1, I_2) \) and also just before considering \(I_* \) all the latest elements of \(N(\cdot, I_2) \) are in the greedy state. See Fig. 6. \(\square \)

If the elements of greedy state \(G \) are all active, we can naively compute \(I_* \) as in Lemma 16 by checking LCAs of all pairs of intervals in \(G \) in the greedy tree and then proceeding to the last interval before \(I_* \) independently from each node to obtain the last greedy state before reaching \(I_* \) as in Fig. 6. Thus we have the following.

Corollary 17. Let \(G = \{ I_1, I_2, \ldots, I_m \} \) be a greedy state with only active intervals and let \(I_* \) be defined as in Lemma 16. It is possible to compute both the smallest \(k \) for which \(I_* \in \text{NEXT}^k(G) \) and the value of \(\text{NEXT}^k(G) \) itself in \(\tilde{O}(m^2) \) time.

3.1 An \(\tilde{O}(n^{1/2}) \)-time algorithm for two machines

In this section, we focus on describing an efficient algorithm for dynamic interval scheduling on two machines and prove the following.

Theorem 18. There is a data structure for DIS2 that supports any sequence of \(n \) insert/delete/query on intervals in \(\tilde{O}(n^{1/2}) \) amortized time per each operation.

Lemma 19. There are only three possible forms of a greedy state for two machines.

(a) \(\{ I_1, I_2 \} \) where \(I_1 \prec I_2 \), \(I_1 \) and \(I_2 \) are compatible and \(I_2 \) is active,

(b) \(\{ I_1, I_2 \} \) where \(I_1 \) ends earlier than \(I_2 \), \(I_1 \) and \(I_2 \) are overlapping and \(I_2 \) is active,

(c) \(\{ I_1, I_2 \} \) where an active interval \(I_1 \) is fully contained inside (an inactive) \(I_2 \).
We now describe our algorithm for DIS2. For each part it maintains the following:

- $B[I_i]$ for all active intervals I_i, the result of part query from the greedy state $\{I_i, I_r\}$ of the form (b) where I_r is direct successor (in \(\prec\)-order),
- $C[I_i]$ for all inactive intervals I_i, the result of part query from the greedy state $\{I_i, I_r\}$ of the form (c) where I_r is the latest (in \(\prec\)-order) active interval fully inside I_i.

When a part is updated, $B[\cdot]$ and $C[\cdot]$ structures are rebuilt from scratch. Computation of $B[I_i]$ or $C[I_i]$ is nothing else than answering a part query for the appropriate greedy state. We ask these queries in decreasing order of the sum of indices (in \(\prec\)-order) of the two intervals of the greedy state. This way, during the recomputation of $B[\cdot]$ and $C[\cdot]$ structures, whenever the algorithm is going to use some other result of $B[\cdot]$ or $C[\cdot]$ it is already computed as the queried sum of indices will be larger. See the details below.

Additionally, for each active interval I_i we precompute the earliest (in \(\prec\)) interval I_{r_i} on the path from I_i to the root of T_j. We do this using dynamic programming, inspecting all the intervals in decreasing order of \prec and it takes $O(n^{1/2})$ time. Similarly, we precompute the number of intervals on the path from I_i to the latest interval ending earlier than I_{r_i}.

We now describe how to answer the part query from a greedy state G_i following the proof of Lemma 19 and considering all forms of G_i.

If G_i is of the form (a) we focus on finding the greedy state $G_{i'} = \text{Next}^k(G_i)$ for which k is the smallest such that $I_1 \notin \text{Next}^k(G_i)$. If I_1 is replaced in $G_{i'}$ by an active interval I_r', it has to be the earliest (in \(\prec\)) interval overlapping with an interval I_{r_i} on the path from I_2 to the root in T_j (it can also be I_2 itself). We know which one and what is the contribution to the internal result as we precomputed it. Moreover, we observe that $G_{i'} = \{I_{r_i}, I_{r_i}\}$ and its part result is stored in $B[I_{r_i}]$ so we just read the result from there. If I_1 is replaced in $G_{i'}$ by an inactive interval I_{r_i} it has to be the earliest (in \(\prec\)) interval compatible with I_1. Then $G_{i'} = \{I_{r_i}, I_{r_i}\}$ where I_{r_i} is the latest (in \(\prec\)) active interval fully inside I_{r_i}. Thus, we read the part result for $G_{i'}$ from $C[I_{r_i}]$.

Figure 7: Three possible forms of a greedy state and cases as in Lemma 19. Active intervals are marked with bold lines and potential cases for I_3 are marked with dotted lines. Note that I_1 in forms (a) and (b) may be either active or inactive.

Proof. First we assume, without losing generality, that the greedy algorithm considered at least two intervals and resumes from the greedy state G_2 that is of the form (a) and $I_1 = (s_1, f_1), I_2 = (s_2, f_2)$. One can easily prepend any instance of DIS+ with few intervals to achieve this.

Let assume that the next accepted interval by the greedy algorithm is $I_3 = (s_3, f_3)$ and the next greedy state after G_2 is G_3. There are three cases (as on Fig. 7):

\[(a) f_2 < s_3 \quad \text{then } I_3 \text{ is an active interval and } G_3 = \{I_1, I_3\} \text{ is of the form (a)},\]
\[(b) s_2 < s_3 < f_2 \quad \text{then } I_3 \text{ is an active interval and } G_3 = \{I_2, I_3\} \text{ is of the form (b)},\]
\[(c) s_3 < s_2 \quad \text{then } I_3 \text{ is an inactive interval and } G_3 = \{I_2, I_3\} \text{ is of the form (c)}.\]

We now proceed to similar analysis of what are the forms of next greedy states that can be reached from states of the form (b) and (c).

If G_2 is of the form (b) then I_4 is either compatible with I_2 (case (ba)) and G_3 is of the form (a), or it overlaps with I_2 (case (bb)) and G_3 is of the form (b). Note that I_3 can not overlap with I_1 as then I_3 would be rejected.

Similarly, if G_2 is of the form (c) then I_3 is either compatible with I_2 (case (ca)) and G_3 is of the form (a), or it overlaps with I_2 (case (cb)) and G_3 is of the form (b).

No other forms than (a), (b) or (c) are reachable from (a) and this concludes the proof. \(\square\)
Thus, we cannot precompute part queries for all possible greedy states. Instead, we carefully select specific part tuples of possible entry greedy states for a part to be able to efficiently answer part queries.

Proof. Assuming that intervals in part are ordered by \(< \) we proceed as described above or of the form (b) but with both greedy state intervals active (case (bb) of the proof of Lemma 19), for which we use Corollary 17 to reach the greedy state of the form (a) and later proceed as described above.

If \(G_i \) is of the form (c), then \(\text{Next}(G_i) \) is either of the form (a) or (b) and we proceed as described above.

3.2 An \(\tilde{O}(n^{1-1/m}) \)-time algorithm for \(m \geq 3 \) machines

Surprisingly, before we start describing the final algorithm for \(m \geq 3 \) machines, we need an additional building block for the two machine case.

Definition 20. For a collection of intervals \(S \), for \(I_1 < I_2 \) from \(S \), we define the first machine replacement \(\text{FMR}(I_1, I_2) \) to be the interval in \(S \) which replaces \(I_1 \) in the greedy state when resumed the greedy execution from the greedy state \(\{I_1, I_2\} \) on two machines. In other words, \(\text{FMR}(I_1, I_2) \) is the earliest ending accepted interval after \(I_2 \) that will be scheduled on the same machine as \(I_1 \) by the greedy algorithm for \(IS^+ \).

Within the desired time bounds, for \(m \geq 3 \), we can afford recomputing \(\text{FMR}(\cdot, \cdot) \) in parts from scratch for every pair of intervals in the updated part, as long as this recomputation takes \(\tilde{O}(|P_j|^2) \) time. We could not do the same for \(m = 2 \).

Lemma 21. The values of \(\text{FMR}(\cdot, \cdot) \) for all pairs of intervals in a collection of \(n \) intervals, can be computed in \(\tilde{O}(n^2) \) time.

Proof. Assuming that intervals in part are ordered by \(< \) and given names \(I_1, I_2, \ldots \) in line with this order, we compute \(\text{FMR}(I_{i'}, I_{i''}) \) in decreasing order of the sum of \(i' + i'' \) indices. To compute \(\text{FMR}(I_{i'}, I_{i''}) \), for \(I_{i'} = (s_{i'}, f_{i'}) \) and \(I_{i''} = (s_{i''}, f_{i''}) \) we first find the earliest ending interval \(I_{i'''} \) that ends later than \(I_{i''} \) and is compatible with \(I_{i'} \). To solve this subproblem we take a geometric view: each interval \((s, f) \) is converted into a point \((s, f) \) in 2D plane, the goal is to find the point with smallest \(y \)-coordinate above and to the right of \((s_{i'}, f_{i''})\). This is solved by a 2D range search tree indexed by \((x, y)\)-coordinates storing the appropriate result. Thus, the subproblem is solved. We proceed with the computation of \(\text{FMR}(I_{i'}, I_{i''}) \). We have two cases: either \(I_{i'''} \) is overlapping with \(I_{i''} \) and then \(\text{FMR}(I_{i'}, I_{i''}) = I_{i'''} \), or \(I_{i'''} \) is compatible with \(I_{i''} \) and then \(\text{FMR}(I_{i'}, I_{i''}) = \text{FMR}(I_{i'}, I_{i''}) \) which is already known by the order of the computation. We can also compute the number of intervals chosen by the greedy algorithm when resumed from state \(\{I_{i'}, I_{i''}\} \) until reaching \(\text{FMR}(I_{i'}, I_{i''}) \) (just 1 or the number chosen from \(I_{i'}, I_{i''} \) plus 1 depending on the above cases).

As it turns out, the values of \(\text{FMR}(\cdot, \cdot) \) play important role in the algorithm for \(m \geq 3 \). We want to preprocess tuples of possible entry greedy states for a part to be able to efficiently answer part queries. The problem is that we have \(\tilde{O}(n^{1/m}) \) intervals in each part, but we aim at \(\tilde{O}(n^{1-1/m}) \) time complexity. Thus, we cannot precompute part queries for all possible greedy states. Instead, we carefully select specific compressible greedy states for which part query results are actually stored and design an algorithm that can push the simulation forward to the next compressible state or the exit state from the part.

Definition 22. Let \(G_i = \{I_1, I_2, \ldots, I_m\} \) be a greedy state. We assume \(I_1 < I_2 < \cdots < I_m \). We say that \(G_i \) is compressible if at least one of the following conditions hold:

(a) \(I_m \) is inactive,

(b) \(I_m \) is active and exists active interval \(I_p \) such that \(\text{LC}(I_p) = I_m \),

(c) \(I_m = \text{FMR}(I_1, I_{m-1}) \).
Lemma 23. In a part of n intervals for DIS+ on m machines, there are only $O(n^{m-1})$ compressible greedy states.

Proof. We consider all the forms of the compressible greedy state as in Definition 22.

(a) from Lemma 15 we know that the greedy state also contains the latest interval fully inside I_m and thus we can forget this interval, so there are $O(n^{m-1})$ such states,
(b) there is an edge (I_p, I_m) in the greedy tree of P_j, we can store $(m - 2)$-tuple of other intervals and the identifier of the appropriate edge, so there are $O(n^{m-1})$ such states,
(c) we forget I_m as it is equal to $\text{FMR}(I_1, I_{m-1})$, so there are $O(n^{m-1})$ such states.

Note that we can decompress the representations from Lemma 23 in $O(m)$ time to obtain a full greedy state of size m. Also, by taking into account the sizes of the parts, we obtain that there are only $O(n^{m-1}/m)$ compressible greedy states for n intervals in S.

For an update in P_j, we recompute part query results for all compressible greedy states in P_j. As in Section 3.1, we do this using dynamic programming, in decreasing order of the sum of indices of the uncompressed state. The problem of computing the results for the states stored in the dynamic programming table is once again translated into the general query that has m-tuple as an input and has to push the simulation forward either to the next part or at least to a compressible greedy state from which we read the already preprocessed result and combine it with the traversed prefix of the path. We proceed with describing how to solve this general query.

We distinguish three forms of the greedy state $G = \{I_1, I_2, \ldots, I_m\}$ for $I_1 \preceq I_2 \preceq \ldots \preceq I_m$:

(*) I_m is inactive,
(**) there is $1 < p \leq m$ such that all intervals $I_p, I_{p+1}, \ldots, I_m$ are active,
(***) all I_1, I_2, \ldots, I_m are active.

For the (*) case, we compute $G' = \text{Next}(G)$. Either the latest accepted interval in G' is inactive and then G' is compressible of type (a) or it is active, thus G' is either of the (**) or (***) form and we proceed with it as described below.

For the (***) case, we use Corollary 17 to find the earliest greedy state $G' = \text{Next}^k(G)$ for which $I_* \in G'$. We observe that such G' is compressible of type (b), as both I_* and at least one of its children are elements of G'.

We now consider the (**) case. We compute $G' = \text{Next}(G)$ and consider the following subcases depending on the latest accepted interval I_+ in G':

(1) I_+ is inactive,
(2) I_+ is active, overlapping with I_m and $I_1 \in G'$,
(3) I_+ is active, overlapping with I_m and $I_1 \not\in G'$,
(4) I_+ is active and not overlapping with I_m.

In case (1), we see that G' is compressible of type (a). In case (2), we observe that $I_+ = \text{FMR}(I_1, I_m)$, so G' is compressible of type (c). In case (3), we observe that G' remains of type (**), but with smaller p. We proceed with computing $\text{Next}(G')$ until we reach any other case, which happens after at most $O(m)$ iterations. In case (4), we observe that $G' = G \setminus \{I_m\} \cup \{I_+\}$ and I_+ is compatible with every other interval from G'. We read $\text{FMR}(I_1, I_+)$ and push the simulation forward until reaching the first greedy state G'' with accepted interval I_{++} that will be scheduled on a different machine than I_m. Notice that if I_{++} is active then it is compatible with I_1 so $I_{++} = \text{FMR}(I_1, I_m)$. As $m \geq 3$, I_{++} will replace $I_{m-1} \neq I_1$ in the greedy state thus G'' is compressible of type (c) and if I_{++} is inactive then G'' is compressible of type (a).

References

[1] Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Maintaining information in fully dynamic trees with top trees. ACM Trans. Algorithms, 1(2):243–264, October 2005. doi: 10.1145/1103963.1103966.

[2] Amihood Amir and Itai Boneh. Dynamic suffix array with sub-linear update time and poly-logarithmic lookup time. CoRR, abs/2112.12678, 2021.
[3] Esther M. Arkin and Ellen B. Silverberg. Scheduling jobs with fixed start and end times. *Discrete Applied Mathematics*, 18(1):1–8, 1987. URL: http://www.sciencedirect.com/science/article/pii/0166218X87900370, doi:10.1016/0166-218X(87)90037-0.

[4] Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, and Jack Zito. Two simplified algorithms for maintaining order in a list. In *European Symposium on Algorithms*, pages 152–164. Springer, 2002.

[5] Khalid I. Bouzina and Hamilton Emmons. Interval scheduling on identical machines. *Journal of Global Optimization*, 9(3):379–393, Dec 1996. doi:10.1007/BF00121680.

[6] Martin C. Carlisle and Errol L. Lloyd. On the k-coloring of intervals. *Discrete Applied Mathematics*, 59(3):225–235, 1995. URL: http://www.sciencedirect.com/science/article/pii/0166218X9580003M, doi:10.1016/0166-218X(95)80003-M.

[7] Spencer Compton, Slobodan Mitrovic, and Ronitt Rubinfeld. New partitioning techniques and faster algorithms for approximate interval scheduling, 2020. arXiv:2012.15002.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms, Third Edition*. The MIT Press, 3rd edition, 2009.

[9] P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In *Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing*, STOC ’87, page 365–372, New York, NY, USA, 1987. Association for Computing Machinery. doi:10.1145/28395.28434.

[10] Christof Doll, Tanja Hartmann, and Dorothea Wagner. Fully-dynamic hierarchical graph clustering using cut trees. In Frank Dehne, John Iacono, and Jörg-Rüdiger Sack, editors, *Algorithms and Data Structures*, pages 338–349, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[11] Ulrich Faigle and Willem M. Nawijn. Note on scheduling intervals on-line. *Discrete Applied Mathematics*, 58(1):13–17, 1995. URL: http://www.sciencedirect.com/science/article/pii/0166218X95001125, doi:10.1016/0166-218X(95)00112-5.

[12] Alexander Gavruskin, Bakhadyr Khaloussainov, Mikhail Kokho, and Jianou Liu. Dynamic algorithms for monotonic interval scheduling problem. *Theoretical Computer Science*, 562:227–242, 2015. URL: http://www.sciencedirect.com/science/article/pii/S0304397514007361, doi:https://doi.org/10.1016/j.tcs.2014.09.046.

[13] Pawel Gawrychowski and Wojciech Janczewski. Fully dynamic approximation of LIS in polylogarithmic time. In Samir Khuller and Virginia Vassilevska Williams, editors, *STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing*, Virtual Event, Italy, June 21-25, 2021, pages 654–667. ACM, 2021. doi:10.1145/3406325.3451137.

[14] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In *STOC*, pages 21–30. ACM, 2015.

[15] Monika Henzinger, Stefan Neumann, and Andreas Wiese. Dynamic Approximate Maximum Independent Set of Intervals, Hypercubes and Hyperrectangles. In Sergio Cabello and Danny Z. Chen, editors, *36th International Symposium on Computational Geometry (SoCG 2020)*, volume 164 of *Leibniz International Proceedings in Informatics (LIPIcs)*, pages 51:1–51:14, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2020/12209, doi:10.4230/LIPIcs.SoCG.2020.51.

[16] Monika R. Henzinger and Valerie King. Randomized fully dynamic graph algorithms with polylogarithmic time per operation. *J. ACM*, 46(4):502–516, jul 1999. doi:10.1145/320211.320215.

[17] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. *J. ACM*, 48(4):723–760, jul 2001. doi:10.1145/502090.502095.

[18] Dominik Kempa and Tomasz Kociumaka. Dynamic suffix array with polylogarithmic queries and updates. *CoRR*, abs/2201.01285, 2022. URL: https://arxiv.org/abs/2201.01285, arXiv:2201.01285.
Theorem 24. There is a data structure for DIS that supports any sequence of n insert/delete operations in $O(\sqrt{n} \log n)$ amortized time per update.

We choose the set of separators $x_1 < x_2 < \cdots < x_k$. Separators split the universe of coordinates into $k+1$ parts: P_0, P_1, \ldots, P_k. Assuming that $x_{k+1} = +\infty$, each part P_j contains intervals (s_i, f_i) with $x_j \leq s_i < x_{j+1}$. Thus, at any time parts represent partition of intervals. We define the size of a part as the number of intervals in it. Intervals store references to parts in which are contained.

Separators (and pointers to the appropriate parts) are stored in a predecessor/successor data structure (we use balanced binary search trees [8] 2) and are chosen to satisfy the following invariant: each part has size at most $2\sqrt{n}$ and for every two consecutive parts P_j and P_{j+1} at least one has size at least $\frac{1}{2} \sqrt{n}$. Thus, there are $O(\sqrt{n})$ parts at any time and local rebuild of parts of size $O(\sqrt{n})$ happens after $\tilde{O}(\sqrt{n})$ operations affecting the part. As these rebuilds are simply appropriate separate insertions, the amortized update time complexity does not change.

Intervals in part P_j satisfying $f_i < x_{j+1}$ are called \textit{internal} and all the others are called \textit{external}. Internal intervals are stored in predecessor/successor data structures: sorted by s_i and, separately, sorted by f_i. Additionally, we have the same structures defined globally, for all the intervals in S. This allows to compute $LC(I_i)$ in $O(\log n)$ time.

For each internal interval I_i in part P_j we store its leftmost compatible internal interval in the same part, denoted by $LC\text{-}\text{int}(I_i)$ (either $LC(I_i)$ or \perp in case $LC(I_i) \not\in P_j$ or is external). Additionally, we store the information to resume the greedy execution from an internal interval I_i to the latest interval in the same part. This includes: $RES\text{-}\text{int}(I_i)$ – the largest $r \geq 0$ such that $LC\text{-}\text{int}'(I_i) \not\perp$ and $EXIT\text{-}\text{int}(I_i) = LC^{RES\text{-}\text{int}(I_i)-1}(I_i)$.

When the content of P_j is updated, all the above values for intervals of P_j are recomputed naively from scratch: we start with computing $LC\text{-}\text{int}(\cdot)$ in decreasing order of f_i. We set $LC\text{-}\text{int}((s_i, f_i))$ to be the interval I' with the smallest f_j' among intervals with $s_i' \geq f_i$ or \perp if there is no such interval. We update which interval is I' whenever the computation of $LC\text{-}\text{int}(\cdot)$ proceeds to smaller values of f_i by

2If for all intervals s_i, f_i are small integers bounded by U, we could use y-fast tries [24]. This way we could achieve $O(\sqrt{n} \log \log U)$ amortized time per operation.
querying the appropriate part structure (containing only internal intervals) sorted by s_i. Overall, this naive recomputation of all information for all internal intervals in the part takes $O(\sqrt{n}\log n)$ time.

With the above, we can resume the greedy algorithm from any I_i in any P_j until reaching the earliest interval in the solution outside P_j in $O(\log n)$ time. For an external interval I_i it is enough to proceed to $LC(I_i)$ to exit P_j. If I_i is internal, we increase the total result by the number of selected intervals in the part (the internal result for I_i) and proceed to $I_i^* = LC(EXIT-INT(I_i))$. I_i^* may already be in some further part or it may be an external interval in P_j and then we proceed to $LC(I_i^*) \notin P_j$.

To answer a DIS query, we simulate the execution of the greedy algorithm starting from the earliest ending interval and traversing the parts as described above. The query as described takes $O(\sqrt{n}\log n)$ time.

To insert an interval (s_i, f_i) to S, we first locate the appropriate part P_j in the separators structure, insert the interval into P_j, recompute the additional information associated with P_j and update the global structures. All these take $O(\sqrt{n}\log n)$ time. During insertion, it may happen that P_j becomes too large. In this case, we make sure that P_j becomes larger. This splits P_j into two new parts, which we recompute from scratch. This, again, works in $O(\sqrt{n}\log n)$ time.

Deletion of an interval of P_i is similar and in the case of underflow of pair P_j and P_{j+1} or P_{j-1} and P_j, we merge the parts by removing the separator between them and recomputing the new part.

B Lower bound for Dynamic Weighted Interval Scheduling

The Minimum Weight k-Clique problem is to find, in an edge-weighted graph, a clique of exactly k nodes having the minimum total weight of edges.

The following hypothesis about Minimum Weight k-Clique problem was formulated.

Conjecture 25 (Min Weight $(2\ell + 1)$-Clique Hypothesis [22]). There is a constant $c > 1$ such that, on a Word-RAM with $O(\log n)$-bit words, finding a k-Clique of minimum total edge weight in an n-node graph with non-negative integer edge weights in $[1, n^c]$ requires $n^{k-o(1)}$ time.

The Minimum Weight $(2\ell + 1)$-Cycle problem is to find, in an edge-weighted graph, a cycle consisting exactly $2\ell + 1$ edges having the minimum total weight.

Theorem 26 ([22]). If there is an integer $\ell \geq 1$ and a constant $c > 0$ such that Minimum Weight $(2\ell + 1)$-Cycle in a directed weighted n-node graph $m = \Theta(n^{\ell+1/c})$-edge graph can be solved in $O(mn^{1-\epsilon} + n^2)$ time, then the Min Weight $(2\ell + 1)$-Clique Hypothesis is false.

Based on the above, we formulate the following.

Theorem 27. Unless the Min Weight $(2\ell + 1)$-Clique Hypothesis is false, for all $\epsilon > 0$ there is no algorithm for DWIS problem with $O(n^{1-\epsilon})$ update and query time.

Proof. As in [22], we use the fact that Minimum Weight $(2\ell + 1)$-Cycle is still hard if restricted only to k-circle layered graphs, that is k-partite graphs in which, for each $i \in [k]$, all edges from nodes in i-th part end in $(i \mod k + 1)$-th part.

We reduce Minimum Weight $(2\ell + 1)$-Cycle in a weighted $(2\ell + 1)$-circle layered graph to DWIS. The input instance has n nodes and $m = \Theta(n^{1+1/\ell})$ edges of integer weights in range $[n^{c\ell} = W]$ for large enough c. We enumerate parts from 1 to $2\ell + 1$ and we enumerate nodes independently in each part starting from 0. For all $p \in [2\ell]$, for all edges from u-th node in p-th part to v-th node in $(p+1)$-th part, we insert an interval $[(p-1)n+u, pn+v)$ of weight $(f_i-s_i)(2\ell + 1)(W + 1) + (W - w)$ where w is the weight.

The optimal cycle has to go through some node s_i in the first part. We guess this node by inserting an interval $[-1, s)$ of weight $(f_i-s_i)(2\ell + 1)(W + 1)$ and, for all edges from u-th node in $(2\ell + 1)$-th part to s of weight w, we insert an interval $[2\ell n+u, 2\ell n+w)$ of weight $(f_i-s_i)(2\ell + 1)(W + 1) + (W - w)$. To start with another choice of s, we delete the corresponding intervals before inserting the new ones.

The selection of edge weights in our instance guarantees that the optimal solution maximizes the total length of chosen intervals and then minimizes the weight resulting from weights of edges in the graph, as each unit of length increases the value of the solution by $(2\ell + 1)(W + 1)$ while the additional gain from edge weights is, in total, at most $(2\ell + 1)W$.

The only possibility to obtain the value of at least $(2\ell + 1)(W + 1)$ is to choose the intervals spanning the whole interval $[-1, (2\ell + 1)n)$ in the created instance. Such selection ensures that an interval
representing node \(s\) in the first part is selected, as well as all intervals representing the edges on the cycle, including the last edge going to the first part represented by the interval with \(f_i = (2\ell + 1)(W + 1)\). Because in this scenario there is no gap nor overlap in coordinates of the selected intervals, any two consecutive edges share a common node, so they form a \((2\ell + 1)\)-cycle. Thus, there is 1-1 correspondence between \((2\ell + 1)\)-cycles going through node \(s\) in the first part and solutions of weight at least \((2\ell + 1)(W + 1)n\). Nodes of the optimal \((2\ell + 1)\)-cycle can be deduced by inspecting endpoints of the selected intervals.

To solve Minimum Weight \((2\ell + 1)\)-Cycle by the above reduction we invoked \(O(m)\) insertions and deletions to DWIS structure. By choosing the input instance to have \(\ell = \frac{1}{2}\) and \(n = c\ell\) for large enough \(c\), and assuming (ad absurdum) that these \(O(m) = O(n^{1+\epsilon})\) operations took \(O(m \cdot m^{1-\epsilon})\) time, we obtained \(O(n^{2+\epsilon-\epsilon^2})\)-time algorithm for the Minimum Weight \((2\ell + 1)\)-Cycle problem, thus violating Theorem 26.