This work covers the effectiveness of the White tea extract as a green corrosion inhibitor and is correlated to the strength and stability bonding between the phenolic molecule and the Fe atoms in mild steel and how this interaction can be studied by altering the concentration and temperature. White tea has received considerable attention due to its capability as a corrosion inhibitor and has been extensively studied using electrochemical techniques. However, accurate and systematic functional group identification and surface modification have been missing. Our study sought to demonstrate the quantitative measurement of electrochemical impedance spectroscopy (EIS) complemented by the FTIR (Fourier transform infrared spectroscopy), Total Phenolic Test, and Raman Spectroscopy. The SEM (Scanning Electronic Microscope)/EDX (Energy-Dispersive X-Ray Spectroscopy), and AFM (Atomic Force Microscope) were used to study the surface modification. The EIS results show that the optimum inhibition efficiency was 96 % in a solution of 80 ppm at 60 °C. Acetone 70 % was used to extract White tea and gives 14.17±0.25 % phenolic compound. Spectroscopic studies show -OH, Aromatic C=C, C=O and C-O-C become major contributors in the adsorption process and are found on the surface of metals as corrosion protection. Meanwhile, the thermodynamic calculation shows the White tea was adsorbed chemically. The nearness of R² to 1 shows the adsorption agrees with the Langmuir adsorption isotherm. Eventually, the surface modification revealed that phenol molecules are responsible to reduce the corrosion rate at 16.38×10⁻³ mpy. Our results are expected to provide a guideline for future research in White tea as a green corrosion inhibitor.

Keywords: catechin, green corrosion inhibitor, chemisorption, adsorption, surface modification, Langmuir isotherm.

References

1. Attia, N. F., Fekry, A. M., Hassanen, H. M. (2011). Corrosion inhibition, hydrogen evolution and antibacterial properties of newly synthesized organic inhibitors on 316L stainless steel alloy in acid medium. International Journal of Hydrogen Energy, 36 (11), 6462–6471. doi: https://doi.org/10.1016/j.ijhydene.2011.02.134

2. Pradipita, I., Kong, D., Tan, J. B. L. (2019). Natural organic antioxidants from green tea inhibit corrosion of steel reinforcing bars embedded in mortar. Construction and Building Materials, 227, 117058. doi: https://doi.org/10.1016/j.conbuildmat.2019.117058

3. Goyal, M., Kumar, S., Bahadur, I., Verma, C., Ebenso, E. E. (2018). Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review. Journal of Molecular Liquids, 256, 565–573. doi: https://doi.org/10.1016/j.molliq.2018.02.045

4. Ashassi-Sorkhabi, H., Seifzadeh, D., Hosseini, M. G. (2008). EN, EIS and polarization studies to evaluate the inhibition effect of 3H-phenoiazin-3-one, 7-dimethylamin on mild steel corrosion in 1M HCl solution. Corrosion Science, 50 (12), 3363–3370. doi: https://doi.org/10.1016/j.corsci.2008.09.022

5. Kusumastuti, R., Pramana, R. I., Soedarsono, J. W. (2017). The use of morinda citrifolia as a green corrosion inhibitor for low carbon steel in 3.5% NaCl solution. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4978085

6. Pramana, R. I., Kusumastuti, R., Soedarsono, J. W., Rastandi, A. (2013). Corrosion Inhibition of Low Carbon Steel by Phueca Indica Less. in 3.5% NaCl Solution. Advanced Materials Research, 785-786, 20–24. doi: https://doi.org/10.4028/www.scientific.net/amm.785-786.20

7. Subekti, N., Soedarsono, J. W., Rastandi, R., Sianipar, F. D. (2020). Development of environmental friendly corrosion inhibitor from the extract of areca flower for mild steel in acidic media. Eastern-European Journal of Enterprise Technologies, 2 (6 (104)), 34–45. doi: https://doi.org/10.15587/1729-4061.2020.197875

8. Ayende, Rastandi, A., Soedarsono, J. W., Priadi, D., Sulistijono, Suprapta, D. N. et. al. (2014). Interaction of Purple Sweet Potato Extract...
with Ascorbic Acid in FeCl3 Solution. Applied Mechanics and Materials, 680, 32–37. doi: https://doi.org/10.4028/www.scientific.net/amm.680.32
9. Ayende, Rustandi, A., Soedarsono, J. W., Priadi, D., Sulistijo, Suprapta, D. N. et. al. (2014). Effects of Purple Sweet Potato Extract Addi-
tion in Ascorbic Acid Inhibitor to Corrosion Rate of API 5L Steel in
3.5%NaCl Environment. Applied Mechanics and Materials, 709, 384–
389. doi: https://doi.org/10.4028/www.scientific.net/amm.709.384
10. Guo, L., Oht, I. B., Zheng, X., Shen, X., Qiang, Y., Kaya, S., Kaya, C.
(2017). Theoretical insight into an empirical rule about organic cor-
rrosion inhibitors containing nitrogen, oxygen, and sulfur atoms. Ap-
plied Surface Science, 406, 301–306. doi: https://doi.org/10.1016/j.
apsusc.2017.02.134
11. Lgaz, H., Salghi, R., Jodeh, S., Hammouti, B. (2017). Effect of clo-
zopine on inhibition of mild steel corrosion in 1.0 M HCl me-
dium. Journal of Molecular Liquids, 225, 271–280. doi: https://
doi.org/10.1016/j.molliq.2016.11.039
12. Lasghari, S. M., Yari, H., Mahdavian, M., Ramezanzadeh, B., Bah-
lakeh, G., Ramezanzadeh, M. (2020). Unique 2-methylimidazolide
based Inorganic Building Brick nano-particles (NPs) functionalized
with 3-aminopropyltriethoxysilane with excellent controlled corrosion
inhibitors delivery performance; Experimental coupled with molecular/
DFT-D simulations. Journal of the Taiwan Institute of Chemical Engi-
ners, 117, 209–222. doi: https://doi.org/10.1016/j.jtice.2020.11.035
13. Ruge, R., Møller, B. K., Andersen, C. R., Correll, C. U., Nielsen, J.
(2012). Immunomodulatory effects of clozapine and their clinical im-
lications: What have we learned so far? Schizophrenia Research, 140
(1-3), 204–213. doi: https://doi.org/10.1016/j.schres.2012.06.020
14. 2-methylimidazolide named as a hazardous chemical (2020). Fo-
cus on Catalysts, 2020 (11), 3. doi: https://doi.org/10.1016/j.
foocat.2020.10.011
15. Caldonia, E. B., Zhang, M., Liang, G., Hollis, T. K., Webster, C. E.,
Smith, D. W., Wipf, D. O. (2021). Corrosion inhibition of mild
steel in acidic medium by simple azole-based aromatic compounds.
Journal of Electroanalytical Chemistry, 880, 114858. doi: https://
doi.org/10.1016/j.jelechem.2020.114858
16. Soedarsono, J. W., Shihab, M. N., Azmi, M. F., Maksum, A. (2018).
Study of curcuma xanthorrhiza extract as green inhibitor for
API 5L X42 steel in 1M HCl solution. IOP Conference Ser-
ties: Earth and Environmental Science, 105, 012060. doi: https:
//doi.org/10.1088/1755-1315/105/1/012060
17. Kaban, E. E., Maksum, A., Permana, S., Soedarsono, J. W.
(2018). Utilization of secang heartwood (caesalpinia sappan l).
A green corrosion inhibitor on carbon steel (API 5L Gr. B) in
3.5% NaCl environment. IOP Conference Series: Earth and Environ-
mental Science, 105, 012062. doi: https://doi.org/10.1088/
1755-1315/105/1/012062
18. Arlan, A. S., Subekti, N., Soedarsono, J. W., Rustandi, A. (2018).
Corrosion Inhibition by a Caesalpinia Sappan L Modified Imidazoline
for Carbon Steel API 5L Grade X60 in HCl 1M Environment. Ma-
terials Science Forum, 929, 158–170. doi: https://doi.org/10.4028/
www.scientific.net/msf.929.158
19. Ayende, Rachmanta, F., Soedarsono, J. W., Priadi, D., Sulistijo, S.
(2013). Corrosion Behavior of API-5L in Various Green Inhibitors.
Advanced Materials Research, 634-638, 689–693. doi: https://
doi.org/10.4028/www.scientific.net/amr.634-638.689
20. Rustandi, A., Soedarsono, J. W., Sulharno, B. (2011). The Use of
Mixture of Piper Betle and Green Tea as a Green Corrosion Inhibi-
tor for API X-52 Steel in Aerated 3.5 % NaCl Solution at Various
Rotation Rates. Advanced Materials Research, 383-390, 5418–5425.
doi: https://doi.org/10.4028/www.scientific.net/amr.383-390.5418
21. Verma, C., Verma, D. K., Ebenso, E. E., Quraishi, M. A. (2018).
Sulfur and phosphorus heteroatom-containing compounds as corro-
sion inhibitors: An overview. Heteroatom Chemistry, 29 (4), e21437.
doi: https://doi.org/10.1002/hc.21437
22. Loto, R. T. (2018). Surface coverage and corrosion inhibition ef-
effect of Rosmarinus officinalis and zinc oxide on the electrochemical
performance of low carbon steel in dilute acid solutions. Results in
Physics, 8, 172–179. doi: https://doi.org/10.1016/j.rinp.2017.12.003
23. Oliveira, P. F., Tomás, G. D., Dias, T. R., Martins, A. D., Kato, L.,
Alves, M. G., Silva, B. M. (2015). White tea consumption re-
stores sperm quality in prediabetic rats preventing testicular oxida-
tive damage. Reproductive BioMedicine Online, 31 (4), 544–556.
doi: https://doi.org/10.1016/j.rbmo.2015.06.021
24. Ryan, P., Hynes, M. J. (2007). The kinetics and mechanisms of the
complex formation and antioxidant behaviour of the poly-
phenols EGCG and ECG with iron(III). Journal of Inorganic
Biochemistry, 101 (4), 585–593. doi: https://doi.org/10.1016/
j.jinorgbio.2006.12.001
25. Pradipita, I., Kong, D., Tan, J. B. L. (2019). Natural organic anti-
oxidants from green tea form a protective layer to inhibit corrosion
of steel reinforcing bars embedded in mortar. Construction and
Building Materials, 221, 351–362. doi: https://doi.org/10.1016/
j.conbuildmat.2019.06.006
26. Yadav, M., Sinha, R. R., Kumar, S., Sarkar, T. K. (2015). Corrosion inhi-
bition effect of spropyrimidinethiones on mild steel in 15% HCl solu-
tion: insight from electrochemical and quantum studies. RSC Advances,
5 (87), 70832–70848. doi: https://doi.org/10.1039/c5ra14406j
27. Verma, C., Olausunkanni, L. O., Ebenso, E. E., Quraishi, M. A.
(2018). Substituents effect on corrosion inhibition performance of
organic compounds in aggressive ionic solutions: A review. Journal
of Molecular Liquids, 251, 100–118. doi: https://doi.org/10.1016/
jj.molliq.2017.12.055
28. El-Abbasy, H. M., Naneer, A. A., Fouda, A. S. (2016). Electrochemi-
cal assessment of inhibitive behavior of some antibacterial drugs
on 316 stainless steel in acidic medium. Protection of Metals and
Physical Chemistry of Surfaces, 52 (3), 562–573. doi: https://
doi.org/10.1134/s007668799901001x
29. Shabir, S., Rohidiana, D. (2016). Optimization and characterization of
green tea polyphenol extract from various solvents. Jurnal Penel-
itian Teh Dan Kina, 19 (1). doi: https://doi.org/10.22302/ptpt.kjur.
pptk.v19i1.82
30. Ebenso, E. E., Eddy, N. O., Odiongenyi, A. O. (2008). Corro-
sion inhibitive properties and adsorption behaviour of ethanol
ether of Piper guineensis as a green corrosion inhibitor for mild
steel in H2SO4. African Journal of Pure and Applied Chemistry,
2 (11), 107–115. Available at: https://www.researchgate.net/publi-
cation/285020680_Corrosion_inhibitive_properties_and_adsorp-
tion_behaviour_of_ethanol_extract_of_Piper_guineensis_as_a
_green_corrosion_inhibitor_for_mild_steel_in_H2SO4
31. Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M. (1999).
Analysis of total phenols and other oxidation substrates and anti-
oxidants by means of folin-ciocalteu reagent. Methods in Enzymology,
152–178. doi: https://doi.org/10.1016/S0076-6879(99)90017-1
32. Calderón, J. A., Vásquez, F. A., Carreño, J. A. (2017). Adsorption
and performance of the 2-mercaptobenzimidazole as a carbon steel
DOi: 10.15587/1729-4061.2021.228546

DEVELOPMENT OF COALESCENTS FOR PAINTS AND VARNISHES BASED ON IONIC LIQUIDS – THE PRODUCTS OF DIETHANOLAMINE AND INORGANIC ACIDS INTERACTION (p. 21–29)

Yevhenii Levchenko
SHEI «Ukrainian State University of Chemical Technology», Dnipro, Ukraine
ORCiD: https://orcid.org/0000-0001-9112-1112

Olga Sverdlkovska
SHEI «Ukrainian State University of Chemical Technology», Dnipro, Ukraine
ORCiD: https://orcid.org/0000-0001-7404-5509

Denys Chervakov
SHEI «Ukrainian State University of Chemical Technology», Dnipro, Ukraine
ORCiD: https://orcid.org/0000-0003-1521-9171

Oleh Chervakov
SHEI «Ukrainian State University of Chemical Technology», Dnipro, Ukraine
ORCiD: https://orcid.org/0000-0002-1631-3592

This paper reports the synthesis of ionic liquids through the interaction between diethanolamine and orthophosphate and boric acids in order to establish the possibility of replacing volatile coalescents in a formulation for paints and varnishes with ionogenic compounds. The results from studying the influence of polymeric coalescents based on ionic liquids on the rheological properties of water-dispersion paints and varnishes of different nature are presented. It has been established that the synthesized coalescents can be used to modify the properties of paints and varnishes based on polyurethane and styrene-acrylic aqueous dispersions. It has been shown that the product of the interaction between diethanolamine and boric acid in aqueous solutions forms an ionogenic complex compound with a unipolar conductivity in terms of OH ions. It was also established that when introduced to the formulation of water-dispersion paints and varnishes, the solutions of modifiers produce a diluting action. The influence of ionic liquids on the process of film formation of aqueous dispersions of polymers and pigmented paints and varnishes based on them was investigated. It was established that the synthesized ionogenic compounds are not inferior, in terms of their effective-ness, to the widespread conventional industrial coalescents of the Texanol® type.

Therefore, there is reason to assert the possibility of replacing the industrial coalescent Texanol® in the formulation of pigmented water-dispersion paints and varnishes based on styrene-acrylic and polyurethane dispersions with fundamentally new synthesized ionogenic modifiers. Thus, the coatings with a coalescent based on ion liquid of diethanolamine borate have a higher level of conditional hardness, which exceeds by 17 % the hardness index of the paint made on the basis of the conventional Texanol® type coalescent, without changing its decorative properties, such as color and shine.

Keywords: ionic liquid, diethanolamine, boric acid, orthophosphate acid, coalescent, paints and varnishes.

References

1. Potapov, A. M., Simbirkina, A. N., Chervakov, O. V., Kisel’, V. M. (2016). Development and Prospects of the Application of Synthetic Foam Plastics as Heat-Shielding Materials in Space-Rocket Technologies. Materials Science, 52 (1), 1–8. doi: https://doi.org/10.1016/S0973-6434(06)9919-x

2. Zarras, P., Soucek, M., Ciwari, A. (Eds.) (2020). Handbook of Waterborne Coatings. Elsevier. doi: 10.1016/978-0-0208-2

3. Lu, Y.-Y., Rout, N. C., Banerjee, M., Cooprider, T. E., Most, R. W., Stanich, G. J. (1993). Pat. No. 5,461,125 USA. Waterborne core-shell latex polymers. No. 56,380, declared: 30.04.1993; published: 24.10.1995. Available at: https://patents.google.com/patent/US5461125A/eq=5461125

4. Razavi, H. A. (1994). Pat. No. 5,629,365 USA. UV-absorbing polymer latex. No. 360,820, declared: 06.01.1994; published: 13.05.1997. Available at: https://patents.google.com/patent/US5629365A/en=5629365

5. Tabakovic, R. (1999). Pat. No. 6,194,479 USA. Latex foam. No. 09,365,887, declared: 30.07.1999; published: 27.02.2001. Available at: https://patents.google.com/patent/US6194479B1/en=9365887

6. Van Dyk, A. K., Tulchinsky, M. L. (2011). Pat. No. 2012/0,052,210 A1 USA. Coalescent for aqueous compositions. No. 13,191,501, declared: 27.07.2011, published: 01.05.2012. Available at: https://patents.google.com/patent/US20120052210A1/eq=20120052210

7. Arendt, W. D., McBride, E. (2011). Pat. No. 2,823,206 CA. New dibenzothiazole plasticizer/coalescent blends for low voc coatings. No. 2012/092370, declared: 28.12.2011; published: 24.05.2016. Available at: https://patents.google.com/patent/CA2823206C/en=2823206

8. Arendt, W. D., McBride, E. (2012). Pat. No. AU2013221582B2. Monobenzoate useful as a plasticizer/coalescent in polymeric dispersions. No. 61/598,372, declared: 14.02.2012; published: 22.08.2014. Available at: https://patents.google.com/patent/AU2013221582B2/en=2013221582

9. Emmons, W. D., Bors, D. A., Kielbiana, Jr, A. J. (1992). Pat. No. 5,349,026 USA. Reactive coalescents. No. 979,118, declared: 20.11.1992; published: 20.09.1994. Available at: https://patents.google.com/patent/US5349026A/en=5349026

10. Bloom, P. D. (2007). Pat. No. 2010/0216915 A1 USA. Levulinic acid ester derivatives as reactive plasticizers and coalescent solvents. No. 11/655,894, declared: 22.01.2007; published: 26.08.2010.
DIRECTION TOWARDS CONDENSATE OIL FROM DURING ANALYSIS OF COOLING WATER TRANSFER, DIRECTION TOWARDS CONDENSATE OIL FROM SCRAP TIRES (p. 30–37)

Budhi M Suyitno
Universitas Pancasila, South Jakarta, DKI Jakarta, Indonesia
ORCID: https://orcid.org/0000-0003-4386-0352

Erlanda Augupta Pane
Universitas Pancasila, South Jakarta, DKI Jakarta, Indonesia
ORCID: https://orcid.org/0000-0002-3534-3821

Wina Libyawati
Universitas Pancasila, South Jakarta, DKI Jakarta, Indonesia
ORCID: https://orcid.org/0000-0001-6593-0594

Chatrine Jelita
Universitas Pancasila, South Jakarta, DKI Jakarta, Indonesia
ORCID: https://orcid.org/0000-0003-2213-5734

Hendri Sukma
Universitas Pancasila, South Jakarta, DKI Jakarta, Indonesia
ORCID: https://orcid.org/0000-0002-3994-9822

Ismail
Universitas Pancasila, South Jakarta, DKI Jakarta, Indonesia
ORCID: https://orcid.org/0000-0001-7911-4163

The application of pyrolysis for the thermal decomposition of tire waste can be taken as the ideal concept to reduce and recycle tire waste. The product of the process can produce condensate oil, a typical oil that is close to crude oil properties. The critical aspect of the pyrolysis process is the design of the reactor, particularly for the condenser where the rate of heat transfer contributes to the overall quantity and quality of the produced condensate oil. This study focused on the effect of water flow direction on the condensation process of pyrolysis gas. The quantity and quality of the produced oil are examined to observe the effect of the condensation process. Two different water flow directions are tested in the process, namely, counter flow and parallel flow direction. The effect of water flow direction in the condenser clearly affects the pyrolysis process to produce the condensate oil. Based on the production quantity, the counter flow condenser is able to produce 355 ml of condensate oil while the parallel flow one merely 290 ml. Based on the quality of the produced condensate oil, the counter flow condenser is generally better than the parallel flow one where the density, flash point and viscosity are close to crude oil properties. The rate of heat transfer from the condenser to the pyrolysis gas is the main factor that contributes to the quality and quantity of the condensate oil. The average heat transfer for the counter and parallel flow is 2,728 W and 1,865 W, respectively. It can be said that using the counter flow condenser for the pyrolysis reactor can improve the quality and quantity of the condensate oil.

Keywords: counter flow, parallel flow, pyrolysis, condenser, heat transfer.

References

1. The ETRMA Statistics Report (2012). Belgium.
2. Bekhiti, M., Trouzine, H., Asroun, A. (2014). Properties of Waste Tire Rubber Powder. Engineering, Technology & Applied Science Research, 4 (4), 669–672. doi: https://doi.org/10.48084/etasr.439
3. Ouyang, S., Xiong, D., Li, Y., Zhou, L., Chen, J. (2018). Pyrolysis of scrap tyres pretreated by waste coal tar. Carbon Resources Conversion, 1 (3), 218–227. doi: https://doi.org/10.1016/j.crcon.2018.07.003
4. Zabaniotou, A. A., Stavropoulos, G. (2003). Pyrolysis of used mobile tires and residual char utilization. Journal of Analytical and Applied Pyrolysis, 70 (2), 711–722. doi: https://doi.org/10.1016/S0165-2370(03)00042-1
5. Parthasarathy, P., Choi, H. S., Park, H. C., Hwang, J. G., Yoo, H. S., Lee, B.-K., Upadhyay, M. (2016). Influence of process conditions on product yield of waste tyre pyrolysis- A review. Korean Journal of Chemical Engineering, 33 (8), 2268–2286. doi: https://doi.org/10.1007/s11814-016-0126-2
6. Wilk, A., Dave, G. (2006). Acute toxicity of leachates of tire wear material to Daphnia magna – Variability and toxic components. Chemosphere, 64 (10), 1777–1784. doi: https://doi.org/10.1016/j.chemosphere.2005.12.045
7. Torretta, V., Rada, E. C., Ragazzi, M., Trulli, E., Istrate, I. A., Cioca, I. L. (2015). Treatment and disposal of tyres: Two EU ap-
proaches. A review. Waste Management, 45, 152–160. doi: https://doi.org/10.1016/j.wasman.2015.04.018
8. Venkatesan, H., Sivamani, S., Bhutoria, K., Vora, H. H. (2018). Experimental study on combustion and performance characteristics in a DI CI engine fuelled with blends of waste plastic oil. Alexandria Engineering Journal, 57 (4), 2257–2263. doi: https://doi.org/10.1016/j.aej.2017.09.001
9. Choi, G.-G., Jung, S.-H., Oh, S.-J., Kim, J.-S. (2014). Total utilization of waste tire rubber through pyrolysis to obtain oils and CO₂ activation of pyrolysis char. Fuel Processing Technology, 123, 57–64. doi: https://doi.org/10.1016/j.fuproc.2012.04.007
10. Colom, X., Cañavate, J., Carrillo, F., Suñol, J. J. (2009). Effect of the particle size and acid pretreatments on compatibility and properties of recycled HDPE plastic bottles filled with ground tire powder. Journal of Applied Polymer Science, 112 (4), 1882–1890. doi: https://doi.org/10.1002/app.29611
11. Donatelli, A., Iovane, P., Molino, A. (2010). High energy syngas production by waste tyres steam gasification in a rotary kiln pilot plant. Experimental and numerical investigations. Fuel, 89 (10), 2721–2728. doi: https://doi.org/10.1016/j.fuel.2010.03.040
12. Dai, X., Yin, X., Wu, C., Zhang, W., Chen, Y. (2001). Pyrolysis of waste tires in a circulating fluidized-bed reactor. Energy, 26 (4), 385–399. doi: https://doi.org/10.1016/s0306-5442(01)00003-2
13. Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 3, 171–197. doi: https://doi.org/10.1016/j.tsep.2017.06.003
14. Tan, V., De Girolamo, A., Hosseini, T., Alhasen, J. A., Zhang, L. (2018). Scrap tyre pyrolysis: Modified chemical percolation devolatilization (M-CPD) to describe the influence of pyrolysis conditions on product yields. Waste Management, 76, 516–527. doi: https://doi.org/10.1016/j.wasman.2018.03.013
15. Ucar, S., Karagöz, S., Ozkan, A. R., Yanik, J. (2005). Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel, 84 (14-15), 1884–1892. doi: https://doi.org/10.1016/j.fuel.2005.04.002
16. Diez, C., Martinez, O., Calvo, L. F., Cara, J., Morán, A. (2004). Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered. Waste Management, 24 (5), 463–469. doi: https://doi.org/10.1016/j.wasman.2003.11.006
17. Kordoghli, S., Khari, B., Parashich, M., Zagrouba, F., Tazerout, M. (2017). Impact of different catalysts supported by oyster shells on the pyrolysis of tyre wastes in a single and a double fixed bed reactor. Waste Management, 67, 288–297. doi: https://doi.org/10.1016/j.wasman.2017.06.001
18. Miandad, R., Barakat, M. A., Rehan, M., Aburiazzuza, A. S., Gardy, J., Nizami, A. S. (2018). Effect of advanced catalysts on tire waste pyrolysis oil. Process Safety and Environmental Protection, 116, 542–552. doi: https://doi.org/10.1016/j.pspe.2018.03.024
19. Li, L., Yan, B., Li, H., Yu, S., Liu, S., Yu, H., Ge, X. (2018). SO₂/ZrO₂ as catalyst for upgrading of pyrolysis oil by esterification. Fuel, 226, 190–194. doi: https://doi.org/10.1016/j.fuel.2018.04.006
20. Torres, A., de Marco, I., Caballero, B. M., Laregostit, M. F., Lagarreta, J. A., Cabrera, M. A. et. al. (2000). Recycling by pyrolysis of thermoset composites: characteristics of the liquid and gaseous fuels obtained. Fuel, 79 (8), 897–902. doi: https://doi.org/10.1016/s0016-2361(09)00220-3
21. Nkosi, E., Muzenda, N. (2014). A Review and Discussion of Waste Tyre Pyrolysis and Derived Products. World Congress on Engineering, WCE 2014, 2, 979–985.
22. Palla, V. S. K. K., Papadikis, K., Gu, S. (2015). A numerical model for the fractional condensation of pyrolysis vapours. Bio-mass and Bioenergy, 74, 189–192. doi: https://doi.org/10.1016/j.biombioe.2015.01.020
23. Williams, P. T., Besler, S., Taylor, D. T. (1990). The pyrolysis of scrap automotive tyres: The influence of temperature and heating rate on product composition. Fuel, 69 (12), 1474–1482. doi: https://doi.org/10.1016/0016-2361(90)90193-t
24. Jelita, C. (2015). Design of Condenser on the Convert Machine of Waste Tire to Crude Oil. Universitas Negeri Jakarta.
25. Liu, D., Jin, J., Gao, M., Xiong, Z., Stanger, R., Wall, T. (2018). A comparative study on the design of direct contact condenser for air and fuel combustion flue gas based on Callide Oxy-fuel Project. International Journal of Greenhouse Gas Control, 75, 74–84. doi: https://doi.org/10.1016/j.jigc.2018.05.011
26. Wang, J., Li, J. M., Hwang, Y. (2018). Modeling of film condensation flow in oval microchannels. International Journal of Heat and Mass Transfer, 126, 1194–1205. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.126
27. Aishwaraya, K. N., Sinhu, N. (2016). Microwave Assisted Pyrolysis of Plastic Waste. Procedia Technology, 23, 990–997. doi: https://doi.org/10.1016/j.protcy.2016.08.197
28. Mastral, F. J., Esperanza, E., Garcia, P., Juste, M. (2002). Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time. Journal of Analytical and Applied Pyrolysis, 63 (1), 1–15. doi: https://doi.org/10.1016/s0165-2370(01)00137-1
29. Ingram, L., Mohan, D., Bricka, M., Steele, P., Strobel, D., Crocker, D. et. al. (2008). Pyrolysis of Wood and Bark in an Auger Reactor: Physical Properties and Chemical Analysis of the Produced Bio-oils. Energy & Fuels, 22 (1), 614–625. doi: https://doi.org/10.1021/ef700333k
30. Blabe, P. V., Deshpande, N. V., Thombre, S. B. (2009). Improving the low temperature properties of biodiesel fuel. Renewable Energy, 34 (3), 794–800. doi: https://doi.org/10.1016/j.renene.2008.04.037
31. Benjumea, P., Agudelo, J., Agudelo, A. (2008). Basic properties of palm oil biodiesel–diesel blends. Fuel, 87 (10–11), 2069–2075. doi: https://doi.org/10.1016/j.fuel.2007.11.004
32. Özçimen, D., Karanismanoglu, F. (2004). Production and characterization of bio-oil and biochar from rapeseed cake. Renewable Energy, 29 (5), 779–787. doi: https://doi.org/10.1016/j.renene.2003.09.006
33. Lang, X., Dalai, A. K., Bakhshi, N. N., Reaney, M. J., Hertz, P. B. (2001). Preparation and characterization of bio-diesels from various bio-oils. Bioresource Technology, 80 (1), 53–62. doi: https://doi.org/10.1016/s0960-8524(01)00051-7
34. Pereira, C. C., Pasa, V. M. D. (2005). Effect of Alcohol and Copper Content on the Stability of Automotive Gasoline. Energy & Fuels, 19 (2), 426–432. doi: https://doi.org/10.1021/ef040949h
35. Najafi, G., Ghobadian, B., Tavakoli, T., Buttsworth, D. R., Yusa, T. F., Fazollahnejad, M. (2009). Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network. Applied Energy, 86 (5), 630–639. doi: https://doi.org/10.1016/j.apenergy.2008.09.017
36. Raheman, H., Ghadge, S. V. (2007). Performance of compression ignition engine with mahua (Madhuca indica) biodiesel. Fuel, 86 (16), 2568–2573. doi: https://doi.org/10.1016/j.fuel.2007.02.019
Obtaining such substances-platforms as, in particular, 5-hydroxymethylfurfural is one of the areas most actively investigated at present. They can act as raw materials for the further production of a new generation of biopolymers, fuels, pharmaceuticals, dietary supplements, and other chemicals. This paper reports the catalysts, synthesized by using methods of ion exchange and impregnation, based on the large-pore zeolites X, Y, and M, which contain the cations of rubidium, lanthanum, calcium, and ammonium. It was found that the zeolites’ specific surface area was 400–500 m²/g; the selected synthesis conditions did not cause noticeable destruction of the microporous structure. In the presence of the synthesized catalysts, glucose dehydration in the aqueous medium and in dimethyl sulfoxide was carried out at 150–160 °C. The higher efficiency of polycrystalline forms of zeolites in a non-aqueous medium has been established. In the latter case, a 40 % yield of 5-hydroxymethylfurfural was achieved at an almost complete glucose conversion. Deactivated catalyst samples were investigated using the methods of infrared spectroscopy and differential thermal analysis/thermogravimetry. It was found that the catalyst accumulates fewer oligomerization process by-products when the reaction is implemented in dimethyl sulfoxide. The loss of mass by the samples deactivated in an aqueous medium is 30–33 %, while in dimethyl sulfoxide – up to 24 %. The obtained results are important for practical application as the only volatile conversion product is 5-hydroxymethylfurfural with a yield of up to 40 %. That is acceptable for the possible implementation of a one-stage process of obtaining 5-hydroxymethylfurfural in the future.

Keywords: large-pore zeolites, polycrystalline forms, glucose dehydration, 5-hydroxymethylfurfural, yield, glucose conversion.

References

1. Esteban, J., Yustos, P., Ladero, M. (2018). Catalytic Processes from Biomass-DerivedHexoses and Pentoses: A Recent Literature Overview. Catalysts, 8 (12), 637. doi: https://doi.org/10.3390/catal8120637
2. Chernyshov, V. M., Kravchenko, O. A., Ananik, V. P. (2017). Conversion of plant biomass to furan derivatives and sustainable access to the new generation of polymers, functional materials and fuels. Russian Chemical Reviews, 86 (5), 357–387. doi: https://doi.org/10.1070/rcr4700
3. Teong, S. P., Yi, G., Zhang, Y. (2014). Hydroxymethylfurfural production from biomass: present and future. Green Chemistry, 16 (4), 2015. doi: https://doi.org/10.1039/c3gc42018c
4. Van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasendra, C. B., Heeres, H. J., de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113 (3), 1499–1597. doi: https://doi.org/10.1021/cr300182k
5. Bodachivskyi, I., Kuzhinumpambhl, U., Williams, D. B. G. (2019). High Yielding Acid-Catalysed Hydrolysis of Cellulosic Polysaccharides and Native Biomass into Low Molecular Weight Sugars in Mixed Ionic Liquid Systems. ChemistryOpen, 8 (10), 1316–1324. doi: https://doi.org/10.1002/open.201900283
6. Ertl, G., Knözinger, H., Schuth, F., Weitkamp, J. (Eds.) (2008). Handbook of Heterogeneous Catalysis. Wiley-VCH. doi: https://doi.org/10.1070/rcr4700
7. Weikamp, J., Puppe, L. (Eds.) (1999). Catalysis and Zeolites. Fundamentals and Applications. Springer, 564. doi: https://doi.org/10.1007/978-3-662-03764-5
8. Breck, D. W. (1974). Zeolite Molecular Sieves: Structure, Chemistry, and Use. John Wiley and Sons, 771.
9. Saravanamurugan, S., Paniaguay, M., Melero, J. A., Rissager, A. (2013). Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media. Journal of the American Chemical Society, 135 (14), 5246–5249. doi: https://doi.org/10.1021/ja4009971
10. Saravanamurugan, S., Rissager, A., Taarning, E., Meier, S. (2016). Combined Function of Bronsted and Lewis Acidity in the Zeolite-Catalyzed Isomerization of Glucose to Fructose in Alcohols. ChemCatChem, 8 (19), 3107–3111. doi: https://doi.org/10.1002/cctc.201600783

DOI: 10.15587/1729-4061.2021.226575

OBTAINING GLUCOSE-BASED 5-HYDROXYMETHYLFURFURAL ON LARGE-PORE ZEOLITES (p. 38-44)

Lyubov Patrylyak
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

ORCID: http://orcid.org/0000-0002-8049-9811

Serhii Konovalov
V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, Kyiv, Ukraine

ORCID: http://orcid.org/0000-0003-3533-8061

Olesandra Pertko
V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, Kyiv, Ukraine

ORCID: http://orcid.org/0000-0003-3539-7688

Anzhela Yakovenko
V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, Kyiv, Ukraine

ORCID: http://orcid.org/0000-0002-2212-0345

Volodimyr Povazhnyi
V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, Kyiv, Ukraine

ORCID: http://orcid.org/0000-0002-0394-7035

Oleksandr Mehychuk
LLC «Fluid Management Systems», Kyiv, Ukraine

ORCID: http://orcid.org/0000-0002-6664-0006
11. Pienko, F., Ochoa-Hernández, C., Theyssen, N., Leitner, W. (2018). Kaolin: A Natural Low-Cost Material as Catalyst for Isomerization of Glucose to Fructose. ACS Sustainable Chemistry & Engineering, 6 (7), 8782–8789. doi: https://doi.org/10.1021/acsuschemeng.8b01151

12. Leviyska, S. I. (2017). Investigation of glucose isomerization into fructose on MgO-ZrO2 catalyst in flow mode. Catalysis and petrochemistry, 26, 46–52.

13. Wei, W., Wu, S. (2018). Experimental and kinetic study of glucose conversion to levulinic acid in aqueous medium over Cr/HZSM-5 catalyst. Fuel, 225, 311–321. doi: https://doi.org/10.1016/j.fuel.2018.03.120

14. Cui, M., Wu, Z., Huang, R., Qi, W., Su, R., He, Z. (2018). Integrating chromium-based ceramic and acid catalyst to convert glucose into 5-hydroxymethylfurfural. Renewable Energy, 125, 327–333. doi: https://doi.org/10.1016/j.renene.2018.02.085

15. Parveen, F., Upadhayayula, S. (2017). Efficient conversion of glucose to HMF using organocatalysts with dual acidic and basic functionalities - A mechanistic and experimental study. Fuel Processing Technology, 162, 30–36. doi: https://doi.org/10.1016/j.fuproc.2017.03.021

16. Tosi, I., Risager, A., Taarning, E., Jensen, P. R., Meier, S. (2018). Kinetic analysis of hexose conversion to methyl lactate by Sn-Beta: effects of substrate masking and of water. Catalysis Science & Technology, 8 (8), 2137–2145. doi: https://doi.org/10.1039/c8cy00335a

17. Puértolas, B., Imtiaz, Q., Müller, C. R., Pérez-Ramírez, J. (2016). Platform Chemicals via Zeolite-Catalyzed Fast Pyrolysis of Glycose. ChemCatChem, 9 (9), 1579–1582. doi: https://doi.org/10.1002/cctc.201601052

18. Patrylak, K. I., Patrylak, L. K., Voloshina, Y. G., Manza, I. A., Konovalov, S. V. (2011). Distribution of the products from the alkylation of isobutane with butenes at a zeolite catalyst and the reaction mechanism. Theoretical and Experimental Chemistry, 47 (4), 205–214. doi: https://doi.org/10.1007/s11237-011-9205-y

19. Patrylak, K. I., Patrylak, L. K., Repetskii, I. A. (2013). Mechanisms of alkylation of isobutane by butenes and H/D exchange in isobutane molecules on acid zeolites. Theoretical and Experimental Chemistry, 49 (3), 143–157. doi: https://doi.org/10.1007/s11237-013-9308-8

20. Patrylak, L., Krylova, M., Pertko, O., Voloshyna, Y. et. al. (2020). n-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite. Chemistry and Chemical Technology, 14 (2), 234–238. doi: https://doi.org/10.23939/chcht14.02.234

21. Patrylak, L. K., Iomin, V. A., Voloshina, Y. G. (2005). Correlation of Catalytic Efficiency of Faustites in the Alkylation of Isobutane by Butenes and their IR Spectral Characteristics. Theoretical and Experimental Chemistry, 41 (3), 192–197. doi: https://doi.org/10.1007/s11237-005-0039-3

22. Patrylak, L. K., Povazhnyi, V. A., Konovalov, S. V., Pertko, O. P., Yakovenko, A. V. (2020). Thermogravimetric study of nickel-containing zeolites deactivated in glucose conversion. Catalysis and petrochemistry, 30, 90–96. doi: https://doi.org/10.15407/katsa.2020.30.090

23. Ro, Y., Gim, M. Y., Lee, J. W., Lee, E. J., Song, I. K. (2018). Alkylation of Isobutane/2-Butene Over Modified FAU-Type Zeolites. Journal of Nanoscience and Nanotechnology, 18 (9), 6547–6551. doi: https://doi.org/10.1166/jnn.2018.15665

24. Patrylak, L. K. (1999). Chemisorption of Lewis Bases on Zeolites – A New Interpretation of the Results. Adsorption Science & Technology, 17(2), 115–123. doi: https://doi.org/10.1007/s0060499017000205

25. Mikula, A., Król, M., Mozgawa, W., Koleżyński, A. (2018). New approach for determination of the influence of long-range order and selected ring oscillations on IR spectra in zeolites. Spectrochimica Acta Part A. Molecular and Biomolecular Spectroscopy, 195, 62–67. doi: https://doi.org/10.1016/j.saa.2018.01.044

26. Wojciechowska, K. M., Król, M., Bajda, T., Mozgawa, W. (2019). Sorption of Heavy Metal Cations on Meso porous ZSM-5 and Mordenite Zeolites. Materials, 12 (19), 3271. doi: https://doi.org/10.3390/ma12193271

27. Erdoglu, Y., Serthakan, T. R., Gullioglu, M. T., Yurdakul, Ş., Gaveneir, A. (2018). FT-IR and Raman Spectroscopy and Computation of 5-Methylfurfural. Journal of Applied Spectroscopy, 85 (3), 517–525. doi: https://doi.org/10.1007/s10812-018-0682-9

28. Kulipina, Y. N., Prokof‘ev, V. Y., Gordina, N. E., Khmylova, O. E., Petukhova, N. V., Gazakhova, S. I. (2017). Use of IR spectroscopy for study of structure of low-modulus zeolites. Vestsiya Vysshikh Uchebnikh Zavedeni Khimiya Khimicheskaya Tekhnologiya, 60 (5), 44–50. doi: https://doi.org/10.6060/tcct.2017605.5405

29. Maruani, V., Narayanan-Richenapin, S., Framery, E., Andrioletti, B. (2018). Acidic Hydrothermal Dehydration of d-Glucose into Humins: Identification and Characterization of Intermediates. ACS Sustainable Chemistry & Engineering, 6 (10), 13487–13493. doi: https://doi.org/10.1021/acs.suschemeng.8b03479

30. Tsilemeakis, G., Orella, M. J., Lin, Z., Cheng, Z., Zheng, W., Nikolaikis, V., Vlachos, D. G. (2016). Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins. Green Chemistry, 18 (7), 1983–1993. doi: https://doi.org/10.1039/c5gc01938a

DOI: 10.15587/1729-4061.2021.227952
SYNTHESIS OF Ni(OH)2, SUITABLE FOR SUPERCAPACITOR APPLICATION, BY THE COLD TEMPLATE HOMOGENEOUS PRECIPITATION METHOD (p. 45–51)

Vadym Kovalenko
Ukrainian State University of Chemical Technology, Dnipro, Ukraine
Vyatka State University, Kirov, Russian Federation

ORCID: https://orcid.org/0000-0002-8012-6732

Valerii Kotok
Ukrainian State University of Chemical Technology, Dnipro, Ukraine
Vyatka State University, Kirov, Russian Federation

ORCID: https://orcid.org/0000-0001-8879-7189

α-Ni(OH)2 obtained by template homogeneous precipitation exhibits high electrochemical activity in supercapacitors. The main disadvantage is the high energy consumption for maintaining a high temperature during synthesis. To reduce energy consumption, it is proposed to lower the synthesis temperature. In the study, α-Ni(OH)2 was obtained by the method of cold template homogeneous precipitation using Culminal C8465 (0.5 %) as a template for 6 months at t=20–35 °С. The electrochemical characteristics of the sample were studied by cyclic voltammetry and galvanostatic charge-discharge cycling of a pasted binder-free electrode made without introducing an external binder in the supercapacitor mode. It was determined that low-crystalline α-Ni(OH)2 was formed, consisting of agglomerates of spherical particles. Low specific char-
Abstract and References. Technology organic and inorganic substances

characteristics of nickel hydroxide were revealed at the beginning of cycling due to blocking of the active surface. It was shown that the specific capacity of the sample increased with further cycling due to the breakdown of aggregates into smaller particles; specific capacities of 80 F/g and 38 mA h/g were obtained. However, the lack of binding properties of the template residues was revealed, resulting in a decrease in specific characteristics. It was concluded that it was necessary to introduce an external binder. A previously undescribed effect of a significant increase in the specific capacity during drying of an alkali-impregnated electrode caused by the disintegration of particle agglomerates during alkali carbonization (the maximum capacity is 153 F/g and 69 mA h/g) was revealed. It was concluded that using the revealed effect of any nickel hydroxide samples obtained by various methods of bulk template synthesis was promising.

Keywords: nickel hydroxide, template synthesis, cold homogeneous precipitation, supercapacitor.

References
1. Simon, P., Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7 (11), 845–854. doi: https://doi.org/10.1038/nmat2297
2. Burke, A. (2007). R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 53 (3), 1083–1091. doi: https://doi.org/10.1016/j.electacta.2007.01.011
3. Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L. (2009). Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 14 (8), 1533–1539. doi: https://doi.org/10.1007/s10008-009-0984-1
4. Lang, J.-W., Kong, L.-B., Wu, W.-J., Liu, M., Luo, Y.-C., Kang, L. (2008). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13 (2), 333–340. doi: https://doi.org/10.1007/s10008-008-0560-0
5. Aghazadeh, M., Ghaemi, M., Sabour, B., Dalvand, S. (2014). Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 18 (6), 1569–1584. doi: https://doi.org/10.1007/s10008-014-2381-7
6. Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7
7. Wang, B., Williams, G. R., Chang, Z., Jiang, M., Liu, J., Lei, X., Sun, X. (2014). Hierarchical NiAl Layered Double Hydroxide/Multicarbo Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 6 (18), 16304–16311. doi: https://doi.org/10.1021/ami504330e
8. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792. doi: https://doi.org/10.1098/rspa.2014.0792
9. Solovov, V. A., Nikolaenko, N. V., Kovalenko, V. L., Kotok, V. A., Burkov, A. A., Kondrat’ev, D. A. et. al. (2018). Synthesis of Ni(II)-Ti(IV) Layered Double Hydroxides Using Coprecipitation At High Supersaturation Method. ARPN Journal of Engineering and Applied Sciences, 13 (24), 9652–9656. Available at: http://wwwarpa journ alns.org/jcas/research_papers/tp_2018/jcas_1218_7500.pdf
10. Liu, C., Huang, L., Li, Y., Sun, D. (2010). Synthesis and electrochemical performance of amorphous nickel hydroxide codoped with Fe3+ and CO 2–3. Ions, 16 (3), 215–219. doi: https://doi.org/10.1007/s11581-009-0383-8
11. Li, J., Luo, F., Tian, X., Lei, Y., Ywan, H., Xiao, D. (2013). A facile approach to synthesis coral-like nanoporous β-Ni(OH)2 and its supercapacitor application. Journal of Power Sources, 243, 721–727. doi: https://doi.org/10.1016/j.jpowsour.2013.05.172
12. Kovalenko, V. L., Kotok, V. A., Sykchyn, A., Ananchenko, B. A., Chernyad’ev, A. V., Burkov, A. A. et. al. (2020). Al3+ Additive in the Nickel Hydroxide Obtained by High-Temperature Two-Step Synthesis: Activator or Poisons for Chemical Power Source Application? Journal of The Electrochemical Society, 167 (10), 100530. doi: https://doi.org/10.1149/1.5145-7111/a29a2a
13. Xiao-yan, G., Jian-cheng, D. (2007). Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Materials Letters, 61 (3), 621–625. doi: https://doi.org/10.1016/j.matlet.2006.05.026
14. Tizfahm, J., Safibonab, B., Aghazadeh, M., Majdabadi, A., Sabour, B., Dalvand, S. (2014). Supercapacitive behavior of β-Ni(OH)2 nanospheres prepared by a facile electrochemical method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 544–551. doi: https://doi.org/10.1016/j.colsurfa.2013.12.024
15. Aghazadeh, M., Golikand, A. N., Ghaemi, M. (2011). Synthesis, characterization, and electrochemical properties of ultrafine β-Ni(OH)2 nanoparticles. International Journal of Hydrogen Energy, 36 (14), 8674–8679. doi: https://doi.org/10.1016/j.ijhydene.2011.03.144
16. Kovalenko, V., Kotok, V. (2019). Anionic carbonate activation of layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 3 (6 (99)), 44–52. doi: https://doi.org/10.15587/1729-4061.2019.169461
17. Kovalenko, V., Kotok, V. (2019). Influence of the carbonate ion on characteristics of electrochemically synthesized layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 40–46. doi: https://doi.org/10.15587/1729-4061.2019.155738
18. Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., MacDougall, B. R. (2012). Raman and Infrared Spectroscopy of α and β Phases of Thin Nickel Hydroxide Films Electrochemically Formed on Nickel. The Journal of Physical Chemistry A, 116 (25), 6771–6784. doi: https://doi.org/10.1021/jp303546r
19. Kovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: https://doi.org/10.15587/1729-4061.2016.79406
20. Hu, M., Lei, L. (2006). Effects of particle size on the electrochemical performances of a layered double hydroxide, [Ni4Al(OH)10]NO3. Journal of Solid State Electrochemistry, 11 (6), 847–852. doi: https://doi.org/10.1016/j.jpowsour.2005.02.008
21. Vasserman, I. N. (1980). Himicheskoe osazhdenie iz rastvorov. Leningrad: Himiya, 208.
22. Bora, M. (2003). Homogeneous precipitation of nickel hydroxide powders. Iowa State University, 119. doi: https://doi.org/10.31274/rtd-180813-146
23. Tang, H. W., Wang, J. L., Chang, Z. R. (2008). Preparation and characterization of nanoscale nickel hydroxide using hydrothermal synthesis method. J. Funct. Mater., 39 (3), 469–476.
24. Tang, Y., Liu, Y., Yu, S., Zhao, Y., Mu, S., Gao, F. (2014). Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors. Electrochimica Acta, 123, 158–166. doi: https://doi.org/10.1016/j.electacta.2013.12.187

25. Yang, L.-X., Zhu, Y.-J., Tong, H., Liang, Z.-H., Li, L., Zhang, L. (2007). Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol. Journal of Solid State Chemistry, 180 (7), 2095–2101. doi: https://doi.org/10.1016/j.jssc.2007.05.069

26. Cui, H. L., Zhang, M. L. (2009). Synthesis of flower-like nickel hydroxide by ionic liquids-assisted. J. Yanan. Univ., 28 (2), 76–83.

27. Xu, L., Ding, Y.-S., Chen, C.-H., Zhao, L., Rimkus, C., Joesten, R., Suib, S. L. (2008). 3D Flowerlike α-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method. Chemistry of Materials, 20 (1), 308–316. doi: https://doi.org/10.1021/cm702207w

28. Córdoba de Torresi, S. I., Provazi, K., Malta, M., Torresi, R. M. (2001). Effect of Additives in the Stabilization of the α Phase of Ni(OH)\textsubscript{2} Electrodes. Journal of The Electrochemical Society, 148 (10), A1179. doi: https://doi.org/10.1149/1.1403731

29. Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770

30. Oliva, P., Leonardi, J., Laurent, J. F., Delmas, C., Bracconier, J. J., Figlarz, M. et. al. (1982). Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. Journal of Power Sources, 8 (2), 229–255. doi: https://doi.org/10.1016/0378-7753(82)80057-8

31. Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochemical properties of Ni(OH)\textsubscript{2} films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223

32. Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S., Sukhyy, K. (2017). A study of the influence of additives on the process of formation and corrosive properties of tripolyphosphate coatings on steel. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 45–51. doi: https://doi.org/10.15587/1729-4061.2017.111977

33. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839

34. Burmistr, M. V., Bosko, V. S., Lipko, E. O., Gerasimenko, K. O., Gonza, Y. P., Vesnin, R. L. et. al. (2014). Anitirfication and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1109/TCCA.1992.1494008

35. Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548

36. Meh dizadeh, R., Sanati, S., Saghatforoush, L. A. (2013). Effect of PEG6000 on the morphology of the β-Ni(OH)\textsubscript{2} nanostructures: solvothermal synthesis, characterization, and formation mechanism. Research on Chemical Intermediates, 41 (4), 2071–2079. doi: https://doi.org/10.1007/s11164-013-1332-8

37. Ecedvi, Z., Lazán, I., Pácuraru, C. (2007). Synthesis of mesoporous alumina using polyvinyl alcohol template as porosity control additive. Processing and Application of Ceramics, 1 (1-2), 5–9. doi: https://doi.org/10.2298/pac0702005e

38. Pon-On, W., Mejeou, S., Tang, I.-M. (2008). Formation of hydroxyapatite crystallites using organic template of polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS). Materials Chemistry and Physics, 112 (2), 453–460. doi: https://doi.org/10.1016/j.matchemphys.2008.05.082

39. Miyake, K., Hirota, Y., Uchida, Y., Nishiyama, N. (2016). Synthesis of mesoporous MFI zeolite using PVA as a secondary template. Journal of Porous Materials, 23 (5), 1305–1399. doi: https://doi.org/10.1007/s10994-016-0199-7

40. Wanchanthu, R., Thapol, A. (2011). The Kinetic Study of Methylene Blue Adsorption over MgO from PVA Template Preparation. Journal of Environmental Science and Technology, 4 (5), 352–359. doi: https://doi.org/10.3923/jest.2011.552.559

41. Kotok, V. A., Kovalenko, V. L., Solovov, V. A., Kovalenko, P. V., Ananchenko, B. A. (2018). Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis. ARPN Journal of Engineering and Applied Sciences, 13 (9), 3076–3086.

42. Tan, Y., Strinivasan, S., Choi, K.-S. (2005). Electrochemical Deposition of Mesoporous Nickel Hydroxide Films from Dilute Surfactant Solutions. Journal of the American Chemical Society, 127 (10), 3596–3604. doi: https://doi.org/10.1021/ja0434329

43. Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679

44. Parkhomchuk, E. V., Sashkina, K. A., Rudina, N. A., Kulkovskaya, N. A., Parmon, V. N. (2013). Template synthesis of 3D-structured macroporous oxides and hierarchical zeolites. Catalysis in Industry, 5 (1), 80–89. doi: https://doi.org/10.1134/s2070050412040150

45. Gu, W., Liao, L. S., Cai, S. D., Zhou, D. Y., Jin, Z. M., Shi, X. B., Lei, Y. L. (2012). Adhesive modification of indium–tin–oxide surface for template attachment for deposition of highly ordered nanostructure arrays. Applied Surface Science, 258 (20), 8139–8145. doi: https://doi.org/10.1016/j.apsusc.2012.05.009

46. Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precipitation on the properties of Ni(OH)\textsubscript{2} for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813

47. Ivanov, K. V., Alekseeva, O. V., Kraev, A. S., Agafonov, A. V. (2019). Template-Free Synthesis and Properties of Mesoporous Calcium Titanate. Protection of Metals and Physical Chemistry of Surfaces, 55 (4), 667–670. doi: https://doi.org/10.1134/s207025119040063

48. Shestakova, D. O., Sashkina, K. A., Parkhomchuk, E. V. (2019). Template-Free Synthesis of Hierarchical Zeolite ZSM-5. Petroleum Chemistry, 59 (8), 838–844. doi: https://doi.org/10.1134/s0065544119080188

49. Bhat, K. S., Nagaraja, H. S. (2019). Morphology-dependent electrochemical performances of nickel hydroxide nanostructures. Bulletin of Materials Science, 42 (6). doi: https://doi.org/10.1007/s12034-019-1951-9

50. Wang, R.-N., Li, Q.-Y., Wang, Z., Wei, Q., Nie, Z.-R. (2008). Synthesis of nickel hydroxide flower-like microphores by tem-
plate-free liquid process. Chemical Journal of Chinese Universities, 29 (1), 18–22.

51. Hadden, J. H. L., Ryan, M. P., Riley, D. J. (2019). Examining the charging behaviour of nickel hydroxide nanomaterials. Electrochemistry Communications, 101, 47–51. doi: https://doi.org/10.1016/j.elecom.2019.02.012

52. Kovalenko, V., Kotok, V. (2018). Synthesis of Ni(OH)₂ by template homogeneous precipitation for application in the binderfree electrode of supercapacitor. Eastern-European Journal of Enterprise Technologies, 4(12 (94)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.140899

53. Kovalenko, V., Kotok, V. (2019). The effect of template residual content on supercapacitive characteristics of Ni(OH)₂, obtained by template homogeneous precipitation. Eastern-European Journal of Enterprise Technologies, 5 (12 (101)), 29–37. doi: https://doi.org/10.15587/1729-4061.2019.181020

54. Kovalenko, V., Kotok, V., Kovalenko, I. (2018). Activation of the nickel foam as a current collector for application in supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 56–62. doi: https://doi.org/10.15587/1729-4061.2018.133472

DOI: 10.15587/1729-4061.2021.226587

DEFINING PATTERNS IN THE INFLUENCE EXERTED BY THE INTERRELATED BIOCHEMICAL CORROSION ON CONCRETE BUILDING STRUCTURES UNDER THE CONDITIONS OF A CHEMICAL ENTERPRISE (p. 52–60)

Oksana Shkromada
Sunny National Agrarian University, Sunny, Ukraine
ORCID: https://orcid.org/0000-0003-1751-7009

Viktoriia Ivchenko
Sunny National Agrarian University, Sunny, Ukraine
ORCID: https://orcid.org/0000-0002-5985-9712

Vadym Chivanov
Institute of Applied Physics, National Academy of Sciences of Ukraine, Sunny, Ukraine
ORCID: https://orcid.org/0000-0001-5845-2315

Liudmyla Tsyhanenko
Sunny National Agrarian University, Sunny, Ukraine
ORCID: https://orcid.org/0000-0002-6628-3635

Hennadi Tsyhanenko
Sunny National Agrarian University, Sunny, Ukraine
ORCID: https://orcid.org/0000-0002-3335-4804

Volodymir Moskalenko
Institute of Applied Physics, National Academy of Sciences of Ukraine, Sunny, Ukraine
ORCID: https://orcid.org/0000-0003-2775-1317

Iryna Kyrechata
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-0270-1586

Olena Shershheniuk
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-9959-2725

Yulia Litman
Sunny State University, Sunny, Ukraine
ORCID: https://orcid.org/0000-0001-5748-2213

The effect of microbial and chemical corrosion on concrete structures operated in the conditions of chemical enterprises has been established that makes it possible to reliably predict the timing of their decommissioning in order to prevent industrial disasters. Even though the construction complies with all building codes, concrete structures eventually undergo chemical and biological corrosion.

The innovation proposed in this study implies investigating the depth and degree of damage to concrete at the microscopic level by the method of raster electron microscopy. In addition, the TPD-MS method has been suggested for determining the quantitative and qualitative state of the carbonate components of concrete and sulfur compounds.

This study has found that in concrete samples from the titanium dioxide production plant, the amount of carbon dioxide release is twice less than in control samples at t=600 °C while the level of sulfur dioxide, on the contrary, increases. This is due to the ability of thionic bacteria to accumulate sulfate acid that destroys the cementing component in concrete. The reported results confirm the impact of products of the activity of Acidithiobacillus thiooxidans microorganisms on corrosion processes in concrete.

In addition, when using the TPD-MS method, it was established in the storage room of the finished product that heating the control sample of concrete leads to a release of the significant amount of CO₂ at t=580–600 °C. However, the experimental samples of concrete are almost lacking carbon compounds because the acid metabolites of microfungi interfere with its formation. Microscopic and REM studies revealed the localization of Acidithiobacillus thiooxidans and Aspergillus fumigatus in concrete.

This study has established patterns related to the mechanism that forms chemical compounds in concrete and the metabolism of microorganisms.

Keywords: biochemical corrosion of concrete, sulfate acid, Thio- bacillus thiooxidans bacterium, Aspergillus fumigatus micromycetes.

References

1. Qiu, L., Dong, S., Ashour, A., Han, B. (2020). Antimicrobial concrete for smart and durable infrastructures: A review. Construction and Building Materials, 250, 120456. doi: https://doi.org/10.1016/j.conbuildmat.2020.120456

2. Noetghaeri, T., Mukherjee, A., Dhami, N., Chae, S.-R. (2017). Biogenic deterioration of concrete and its mitigation technologies. Construction and Building Materials, 149, 575–586. doi: https://doi.org/10.1016/j.conbuildmat.2017.05.144

3. Shkromada, O., Paliy, A., Nechyporenko, O., Naumenko, O., Nechyporenko, V., Burlaka, O. et. al. (2019). Improvement of functional performance of concrete in livestock buildings through the use of complex admixtures. Eastern-European Journal of Enterprise Technologies, 5 (6 (101)), 14–23. doi: https://doi.org/10.15587/1729-4061.2019.179177

4. Shkromada, O., Paliy, A., Yurchenko, O., Khobot, N., Pikhtirova, A., Vysochin, I. et. al. (2020). Influence of fine additives and surfactants on the strength and permeability degree of concrete. EUReKA: Physics and Engineering, 2, 19–29. doi: https://doi.org/10.21303/2461-4262.2020.001178
6. Marquez-Peñaranda, J. F., Sanchez-Silva, M., Husserl, J., Bastidas-Arteaga, E. (2015). Effects of biodeterioration on the mechanical properties of concrete. Materials and Structures, 49 (10), 4085–4099. doi: https://doi.org/10.1016/s1527-015-0774-4

7. Pietrzak, A. P., Pauvsinchenko, M., Nanka, A., Palen, A. (2019). Construction of an algorithm for the selection of rigid steps in steel concrete beams. Eastern-European Journal of Enterprise Technologies, 1 (7 (97)), 41–49. doi: https://doi.org/10.15587/1729-4061.2019.155469

8. Sun, C., Chen, J., Zhu, J., Zhang, M., Ye, J. (2013). A new diffusion model of sulfate ions in concrete. Construction and Building Materials, 39, 39–45. doi: https://doi.org/10.1016/j.conbuildmat.2012.05.022

9. Bonakdar, A., Mobasher, B., Chawla, N. (2012). Diffusivity and micro-hardness of blended cement materials exposed to external sulfate attack. Cement and Concrete Composites, 34 (1), 76–83. doi: https://doi.org/10.1016/j.cemconcomp.2011.08.016

10. Bastidas-Arteaga, E. (2018). Reliability of Reinforced Concrete Structures Subjected to Corrosion-Fatigue and Climate Change. International Journal of Concrete Structures and Materials, 12 (1). doi: https://doi.org/10.1186/s40608-018-0235-x

11. Bordonova, O. G., Loboda, V. B., Samokhina, Y. A., Chernenko, O. M., Dolhanosova, R. V., Chivanov, V. D. (2020). Study of the Correlations Between the Dynamics of Thermal Destruction and the Morphological Parameters of Biogenic Calcites by the Method of Thermoprogrammed Desorption Mass Spectrometry (TPD-MS). Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019), 37–50. doi: https://doi.org/10.1007/978-981-15-1742-6_5

12. Kuznetsov, V. N., Yanovska, A. A., Novikov, S. V., Starikov, V. V., Kalininchenko, T. G., Kochenko, A. V. et. al. (2015). Study of Thermal Activated CO2 Extraction Processes from Carbonate Apatites Using Gas Chromatography. Journal of Nano- and Electronic Physics, 7 (3), 03034. Available at: https://jnep.sumdu.edu.ua/en/full_article/1557

13. Hial, A. A. (2016). Microstructure of Concrete. High Performance Concrete Technology and Applications. doi: https://doi.org/10.5772/64574

14. Nnaji, C. C., Amadi, U. H., Molokwu, R. (2016). Investigative Study of Biodeterioration of External Sandcrete/Concrete Walls in Nigeria. Research Journal of Environmental Toxicology, 10 (2), 88–99. doi: https://doi.org/10.3923/rjet.2016.88.99

15. Pokrovskiy, V. A. (2000). Temperature-programmed Desorption Mass Spectrometry. Journal of Thermal Analysis and Calorimetry, 62, 407–415. doi: https://doi.org/10.1023/A:100177813557

16. Walsman, S. A., Joffe, J. S. (1922). Microrganisms Concerned in the Oxidation of Sulfur in the Soil. II. Thiobacillus Thiioxidans, a New Sulfur-oxidizing Organism Isolated from the Soil. Journal of Bacteriology, 7 (2), 239–256. doi: https://doi.org/10.1128/jb.7.2.239-256.1922

17. Nieminen, S. M., Kärki, R., Auriola, S., Toivola, M., Laatshc, H., Laatikainen, R. et. al. (2002). Isolation and Identification of Aspergillus fumigatus Mycotoxins on Growth Medium and Some Building Materials. Applied and Environmental Microbiology, 68 (10), 4871–4875. doi: https://doi.org/10.1128/aem.68.10.4871-4875.2002

18. Wasik, A. (2007). Electron Microscopy: Methods and Protocols, by J. Kuo, ed. Humana Press 2007. 608 pp. ISSN 1064-3745. Acta Biochimica Polonica, 54 (4), 887–888. Available at: https://ojp.pt-bioch.edu.pl/index.php/abp/article/view/5078/4128

19. Skomoroha, V. N., Zarechnyi, V. G., Vorobyeva, I. P., Vakal, S. V., Skomoroha, V. N. (Ed.) (2002). Proizvodstvo dvukosii ti-tani pigmentnoy sul'fatnym sposobom. Sumi: ATZZ «Arsenal-Press», 204. Available at: https://essuir.sumdu.edu.ua/handle/123456789/2527?locale=uk

20. Yang, L., Zhao, D., Yang, J., Wang, W., Chen, P., Zhang, S., Yan, L. (2019). Acridithiobacillus thioxidans and its potential application. Applied Microbiology and Biotechnology, 103 (19), 7819–7833. doi: https://doi.org/10.1007/s00253-019-10098-5

21. Justs, J., Bajare, D., Korjakins, A., Mozinsks, G., Locs, J., Bumani, G. (2013). Microstructural Investigations of Ultra-High Performance Concrete Obtained by Pressure Application within the First 24 Hours of Hardening. Construction Science, 14. doi: https://doi.org/10.2478/cns-2013-0008

22. Wei, S., Jiang, Z., Liu, H., Zhou, D., Sanchez-Silva, M. (2013). Microbiologically induced deterioration of concrete: a review. Brazilian Journal of Microbiology, 44 (4), 1001–1007. doi: https://doi.org/10.1590/s1519-83822014005000006

23. Song, Y., Tian, Y., Li, X., Wei, J., Zhang, H., Bond, P. L. et. al. (2019). Distinct microbially induced concrete corrosion at the tidal region of reinforced concrete sewers. Water Research, 150, 392–402. doi: https://doi.org/10.1016/j.watres.2018.11.083

25. Cwalina, B. (2008). Biodeterioration of concrete. Architecture Civil Engineering Environment, 1 (4), 133–140. Available at: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BSL2-0022-0118

26. Yakovleva, G., Sagadeev, E., Strugarov, V., Kozlova, O., Okunev, R., Ilnskaya, O. (2018). Metabolic Activity of Micromycetes Affecting Urban Concrete Constructions. The Scientific World Journal, 2018, 1–9. doi: https://doi.org/10.1155/2018/8360287

DOI: 10.15587/1729-4061.2021.227806

AN INVESTIGATION OF THE EFFECT OF THERMOPLASTIC ADDITIVES IN ASPHALT CONCRETE MIXTURES ON THE PROPERTIES OF DIFFERENT TYPES OF ASPHALT CONCRETE (p. 61–70)

Valeriy Zhdaniuk
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine

ORCID: https://orcid.org/0000-0003-0420-7036

Oleksandr Volovyk
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine

ORCID: https://orcid.org/0000-0002-9949-3767

Dmytro Kostin
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine

ORCID: https://orcid.org/0000-0002-4278-2990

Sergey Lisovin
LLC Road Innovation Company, Kharkiv, Ukraine

ORCID: https://orcid.org/0000-0002-5252-8197
Abstract and References. Technology organic and inorganic substances

The effect of modification of asphalt concrete mixtures of different grain sizes with “Ric-PolyCell” (Ukraine) and “Duroflex®-SMA” thermoplastic polymers (Germany), which were added directly to the asphalt mixer during their preparation, on the properties of asphalt concrete was studied. It is confirmed that it is more expedient to use stone mastic asphalt concretes with a larger size of mineral crushed stone grains on high-traffic roads, as they are more rutting-resistant compared to asphalt concretes with smaller size and content of crushed stone grains.

The effect of the temperature of preparation and thermostating of asphalt concrete mixtures modified with the investigated thermoplastics on the compressive strength of asphalt concrete at a temperature of 50 °C, which were made of the studied mixtures, was investigated. It was found that the maximum possible temperatures of preparation and thermostating of asphalt concrete mixes provide a more complete modification.

The effect of the content of thermoplastic polymers in the composition of asphalt concrete mixtures on the properties and rutting resistance of fine-grained asphalt concrete, as well as stone mastic asphalt concrete, was studied. It was found that adding the “Ric-PolyCell” polymer in the amount of 1.5 % and 3 % by weight of bitumen in the composition of the studied asphalt mixtures in the asphalt mixer during their preparation increases the rutting resistance of asphalt concrete under the studied conditions by 2.52–3.86 times. Modification of asphalt concrete mixtures with the “Duroflex®-SMA” additive in the amount of 0.3 % and 0.6 % by weight of the aggregate by a similar technology also allows increasing the rutting resistance of the obtained asphalt concrete by 1.86–3.16 times. Using these modifiers in the future will have a positive effect on the service life of the entire pavement structure.

Keywords: fine-grained asphalt concrete, stone mastic asphalt concrete, bitumen, asphalt concrete mixture, thermoplastic polymer, asphalt mixer, plastic deformations, rutting resistance.

References

1. Zhu, J., Birgisson, B., Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54, 18–38. doi: https://doi.org/10.1016/j.eurpolymj.2014.02.005

2. Zhang, F., Yu, J., Han, J. (2011). Effects of thermal oxidative ageing on dynamic viscosity, TG/DTG, DTA and FTIR of SBS- and SBS/sulfur-modified asphalts. Construction and Building Materials, 25 (1), 129–137. doi: https://doi.org/10.1016/j.conbuildmat.2010.06.048

3. Gallu, R., Mèchin, F., Dalmas, F., Gérard, J.-F., Perrin, R., Loup, F. (2020). Rheology-morphology relationships of new polymer-modified bitumen based on thermoplastic polyurethanes (TPU). Construction and Building Materials, 259, 120404. doi: https://doi.org/10.1016/j.conbuildmat.2020.120404

4. Jahanian, H. R., Shafabakhsh, G., Divandari, H. (2017). Performance evaluation of Hot Mix Asphalt (HMA) containing bitumen modified with Gislone. Construction and Building Materials, 131, 156–164. doi: https://doi.org/10.1016/j.conbuildmat.2016.11.069

5. Ahmadinia, E., Zargar, M., Karim, M. R., Abdelaziz, M., Shafigh, P. (2012). Using waste plastic bottles as additive for stone mastic asphalt. Materials & Design, 32 (10), 4844–4849. doi: https://doi.org/10.1016/j.matdes.2011.06.016

6. Ameli, A., Maher, J., Mosavi, A., Nabipour, N., Babagoli, R., Norouz, N. (2020). Performance evaluation of binders and Stone Matrix Asphalt (SMA) mixtures modified by Ground Tire Rubber (GTR), waste Polyethylene Terephthalate (PET) and Anti Stripping Agents (ASAs). Construction and Building Materials, 251, 118932. doi: https://doi.org/10.1016/j.conbuildmat.2020.118932

7. Qian, C., Fan, W. (2020). Evaluation and characterization of properties of crumb rubber/SBS modified asphalt. Materials Chemistry and Physics, 253, 123319. doi: https://doi.org/10.1016/j.matchemphys.2020.123319

8. Parvez, M. A., Al-Abdul Wahhab, H. I., Hussein, I. A., Al-Mehthel, M. (2015). Thermorheology of Polyethylene Wax Modified Sulfur Asphalt. International Polymer Processing, 30 (2), 202–209. doi: https://doi.org/10.3139/217.20177

9. Zolotarev, V. A., Bratchun, V. I. (Eds.) (2003). Zhdanyuk, V., Makarchev, O., Shrestha, R., Costin, D., Volovik, A., Zhdanyuk, V. K., Masyuk, Yu. A., Chuguenko, S. A., Pligun, V. I. (2003). Zhdanyuk, V. K., Masyuk, Yu. A., Chuguenko, S. A., Pligun, V. I. (2003). Zhdanyuk, V., Makarchev, O., Shrestha, R., Costin, D., Volovik, A. (2012). Investigation of influence of modifying additives applied in bitumen on a physical properties and rutting resistance of fine-grained asphalt concrete. Visnyk Kharkivskoho natsionalnoho avtomobilno-dorozhnoho universytetu, 58, 130–133.

10. Zhdaniuk, V. K., Kostyn, D. Yu., Arinushkina, O. O. (2012). Doslidzhennia vlastyvostei shchebenevo-mastykovykh asfaltobetonykh merykiv na modyfikovanykh bitumakh. Avtoshliakhovykh Ukrainy, 6, 25–29.

11. Zhdaniuk, V., Makarchev, O., Shrestha, R., Costin, D., Volovik, A. (2012). Investigation of influence of modifying additives applied in bitumen on a physical properties and rutting resistance of fine-grained asphalt concrete. Visnyk Kharkivskoho natsionalnoho avtomobilno-dorozhnoho universytetu, 58, 130–133.

12. Zhdaniv, V., Masyuk, Yu. A., Chuguenko, S. A., Pigan, V. I. (2007). Ob otsenke ustoychivosti asfaltobetonykh pokrytiy k obra- zovaniy plasticheskih deformatsiy v vide koly. Stroiitel’stvo, rekonstruktziya i vozstanovlenie zdaniy gorodskogo hozaystva: II mezh- dunar. nauch.-tekhn. internet-konf. Kharkiv: HNAGH, 168–171.
Розробка екстракту білого чаю в якості зеленого інгібітора корозії в м'якій сталі в 1 М розчині соляної кислоти (с. 6–20)

Agus Paul Setiawan Kaban, Aga Rizhova, Gadang Priyotomo, Bema Elya, Ahmad Maksum, Yunita Sadeli, Sutopo, Taufik Aditiyawarman, Rini Riastuti, Johny Wahyuadi Soedarsono

У даній роботі розглядається ефективність екстракту білого чаю в якості зеленого інгібітора корозії, а також міцність і стабільність зв'язку між молекулою фенолу і атомами Fe в м'якій сталі і як ця взаємодія може бути вивчена шляхом зміни концентрації і температури. Білий чай отримав значну увагу завдяки своїй здатності інгібувати корозію і був широко вивчений з використанням електрохімічних методів. Однак точна і систематична ідентифікація функціональних груп і модифікація поверхні були відсутні. Представлене дослідження було спрямоване на демонстрацію кількісного вимірювання електрохімічної імпедансної спектроскопії (ЕІС), доповнено Фур'є-ІЧС (Фур'є-ІЧ-спектроскопія), вимірюванням концентрації загальних фенолів і Раманівською спектроскопією. Для дослідження модифікації поверхні використовували СЕМ (скануючий електронний мікроскоп)/ЕРС (енергодисперсійна рентгенівська спектроскопія) і АСМ (атомно-силовий мікроскоп). Результати ЕІС показують, що оптимальна ефективність інгібування склала 96 % в розчині 80 ppm при 60 °C. Ацетон 70 % використовували для екстракції білого чаю і отримували 14,17±0,25 % фенольну сполуку. Спектроскопічні дослідження показують, що -OH, ароматичні C=C, C=O і C-O-C стають основними учасниками процесу адсорбції і виявляються на поверхні металів в якості захисту від корозії. Тим часом термодинамічний розрахунок показує, що білий чай був адсорбований хімічно. Близькість R² до 1 показує, що адсорбція узгоджується з ізотермою адсорбції Ленгмюра. В кінцевому підсумку модифікація поверхні показала, що молекули фенолу відповідають за зниження швидкості корозії до 16.38 × 10⁻³ mpy. Очікується, що представлені результати послугуватимуть керівництвом для майбутніх досліджень білого чаю в якості зеленого інгібітора корозії.

Ключові слова: катехін, зелений інгібітор корозії, хемосорбція, адсорбція, модифікація поверхні, ізотерма Ленгмюра.

Розробка коалесцентів для лакофарбових матеріалів на основі іонних рідин – продуктів взаємодії діетаноламіну з неорганічними кислотами (с. 21–29)

Є. П. Левченко, О. С. Свердліковська, Д. О. Черваков, О. В. Черваков

Синтезовано іонні рідини шляхом взаємодії діетаноламіну з ортофосфатною та борною кислотами для встановлення можливості заміни летких коалесцентів у складі лакофарбових матеріалів на іоногенні сполуки. Представлено результати дослідження впливу полімерних коалесцентів на основі іонних рідин на реологічні властивості воднодисперсійних лакофарбових матеріалів різної природи. Встановлено, що синтезовані коалесценти можна використовувати для модифікації властивостей лакофарбових матеріалів на основі поліуретанових та стирол-акрилових водних дисперсій. Показано, що продукт взаємодії діетаноламіну та борної кислоти у водних розчинах утворює іоногенну комплексну сполуку з уніполярною провідністю за іонами ОН⁻. Також встановлено, що при введенні до складу воднодисперсійних лакофарбових матеріалів розчини модифікаторів чинять розріджувану дію. Проведено дослідження впливу іонних рідин на процес плівкоутворення водних дисперсій полімерів та пігментованих лакофарбових матеріалів на їх основі. Встановлено, що синтезовані іоногенні сполуки не поступаються за своєю ефективністю широко розповсюдженим традиційним промисловим коалесцентам типу Texanol®. Таким чином, є підстави стверджувати про можливість заміни промислового коалесценту Texanol® у складі пігментованих водних дисперсій на принципово нові синтезовані іоногенні коалесценти. Так, покриття з коалесцентом на основі іонної рідини діетаноламіну та борної кислоти мають більш високий рівень умовної твердості, яка перевищує на 17 % показник твердості фарби, виготовленої на основі традиційного коалесценту типу Texanol®, не змінюючи її декоративні властивості, такі як колір та блиск.

Ключові слова: іонна рідина, діетаноламін, борна кислота, ортофосфатна кислота, коалесцент, лакофарбові матеріали.

Аналіз впливу напряму потоку охолоджуючої води на конденсатне масло з відпрацьованих шин (с. 30–37)

Budhi M Suyitno, Erlanda Augupta Pane, Wina Libyawati, Chatrine Jelita, Hendri Sukma, Ismail Suyitno

Застосування піролізу для термічного розкладання відпрацьованих шин можна розглядати як ідеальну концепцію для скорочення їх кількості і переробки. В результаті цього процесу може утворюватися конденсатне масло, типове масло, близьке за властивостями до сирої нафти. Критичним аспектом процесу піролізу є конструкція реактора, особливо для конденсатора, де швидкість теплопе
Однородный гомогенный осаджени c Ni(OH)2, полученный методом холодного темплатного гомогенного осаджения.

В. Л. Коваленко, В. А. Поважный, О. В. Мельничук

ОБЕЩЕНИЯ РОССИИ ОБЕЩАЕТСЯ РЕАЛИЗОВАТЬ ОСАДЖЕНИЯ НА ОСНОВЕ ГЛЮКОЗЫ НА ШИРОКОПОРИСТИХ ЦЕОЛИТАХ (с. 38–44)

Л. К. Патриляк, С. В. Коновалов, О. П. Перкто, А. В. Яковенко, В. А. Поважный, О. В. Мельничук

Определить, что в соединении с гидроксидом никеля, темплатный синтез, холодное гомогенное осаждение, суперконденсатор.

Ключевые слова: \(\alpha \)-Ni(OH)\(_2\), \(\alpha \)-Ni(OH)\(_2\) гидроксид никеля, темплатный синтез, холодное гомогенное осаждение, суперконденсатор.

ДОИ: 10.15587/1729-4061.2021.226575

ОДЕРЖАННЯ 5-ГІДРОКСИМЕТИЛФУРФУРУЛОВУ НА ОСНОВІ ГЛЮКОЗИ НА ШИРОКОПОРИСТИХ ЦЕОЛИТАХ (с. 38–44)

Л. К. Патриляк, С. В. Коновалов, О. П. Перкто, А. В. Яковенко, В. А. Поважный, О. В. Мельничук

Однородный речёвник-платформа, синтез, 5-гидроксиметилфуфуролу, одном из направлений, что наиболее активно расширяется на сегодня. Они могут быть использованы для холодного осаждения нового поколения биополимеров, линий, фармацевтических препаратов, хранящих добавок, и других химических речёвников. Синтезирован катализаторы на основе широкопористых цеолитов \(\alpha \) и \(\beta \) методами внутреннего обмена и просачивания, что вызывает катионную диффузию, кальций и аммоний. Знайдено, что пиковая поверхность цеолитов составляет 200–500 м\(^2\)/г, а выбранное увлажнение не снижает вязкого действенного микропористой структуры. \(\alpha \) и \(\beta \) методами внутреннего обмена проведено дегидратацию глюкозы в водном растворе, и в диэтиловом эфире за 150–160 °C. За допомогою газовой хроматографии проанализировано продукты реакции, разработано виход 5-гидроксиметилфуфуролу, а также глюкозы. Встановлено вишу эффективность поликатионных форм цеолитов в водном растворе. В останнем виходе до 40 % выходит 5-гидроксиметилфуфуролу за фактически полной конверсии глюкозы. Методами инфракрасно-спектроскопии и рентгенографического анализа при использовании дезактивированных катализаторов. Встановлено, что в задачи реакции в диэтиловом эфире катализаторы могут накапливаться продукты побочных процессов экстракции. Врача мыши зрачков, дезактивированных в водном растворе, включая 30–33 %, так же в диэтиловом эфире – до 24 %. Одержані результати є практично важливими, оскільки єдиним легким продуктом перероблення є 5-гидроксиметилфуфурол з вихід до 40 %. Останні є прийнятні для можливої майбутньої реалізації одноствадійного процесу одержання 5-гидроксиметилфуфуролу.

Ключевые слова: цеолиты широкопористые, формы поликатионные, глюкозы, дегидратация, 5-гидроксиметилфуфурол, вихід, конверсия глюкозы.

ДОИ: 10.15587/1729-4061.2021.227952

СИНТЕЗ \(\text{Ni(OH)}_2 \), ПРИГОДНОГО ДЛЯ ПРИМЕНЕНИЯ В СУПЕРКОНДЕНСАТОРАХ, МЕТОДОМ ХОЛОДНОГО ГОМОГЕННОГО ТЕМПЛАТНОГО ОСАЖДЕНИЯ (с. 45–51)

В. Л. Коваленко, В. А. Коток

Високоэффективные активности в суперконденсаторах проявляют \(\text{Ni(OH)}_2 \), отражающих действие темплатным гомогенным осаждения. Основной недостаток – високие значения энергии для поддержания высоких температур при синтезе. Для снижения энергопотребления необходимо снижение температуры синтеза. Соответственно, образовавшийся \(\text{Ni(OH)}_2 \), который включает в себя агрегатов, агрегатов сферической формы. Выведено низкой питомой концентрации гидроксида натрия по початку циклования через блокировку активной поверхности. Показано, что пиковая поверхность гидроксида натрия повышается при подактивном циклования за счет увеличения плотности агрегатов на близке дробной части, отмечено, что питомой концентрации 80 % и 38 мАгод/г. Однако выявлено недостаточность затрат питомой концентрации гидроксида натрия, в результате чего происходит снижение питомых характеристик. Зроблено висновок щодо необхідності введення зовнішнього зв'язку.

Ключевые слова: гидроксид натрия, темплатный синтез, холодное гомогенное осаждение, суперконденсатор.
ВИЗНАЧЕННЯ ЗАКОНОМІРНОСТЕЙ ВПЛИВУ ВЗАЄМОПОВ’ЯЗАНОЇ БІОХІМІЧНОЇ КОРОЗІЇ НА БЕТОННІ БУДІВЕЛЬНІ КОНСТРУКЦІЇ В УМОВАХ ХІМІЧНОГО ПІДПРИЄМСТВА (с. 52–60)

О. І. Шкромада, В. Д. Івченко, В. Д. Чіванов, Л. А. Циганенко, Г. М. Циганенко, В. Б. Москаленко, І. М. Кирчата, О. М. Шершенюк. Ю. В. Ліцман

Встановлено вплив мікробної та хімічної корозії на бетонні споруди, що експлуатуються в умовах хімічних підприємств, з метою надійного прогнозування термінів виведення останніх із функціонування для попередження виробничих катастроф. Незважаючи на те, що будівництво велось із урахуванням всіх будівельних норм, бетонні конструкції з часом піддаються хімічній та біологічній корозії.

Запропоновано як новацію дослідження глибини та ступеню пошкодження бетону на мікроскопічному рівні метод растрової електронної мікроскопії. Крім того, для визначення кількісного та якісного стану карбонатних складових бетону та сполук сірки за-пропоновано метод TPD-MS.

Дослідженнями встановлено, що в зразках бетону в цеху з виробництва діоксиду титану кількість виділення двоокису вуглецю в два рази менше, ніж у контрольних зразках при t = 600 °С, а рівень двоокису сірки навпаки відповідно зростає. Це пов’язано із здатністю тіонових бактерій накопичувати сульфатну кислоту, яка руйнує цементуючі складові у бетоні. Отримані результати підтверджують вплив продуктів життедіяльності мікроорганізмів Acidithiobacillus thiooxidans на корозійні процеси у бетоні.

Крім того, методом TPD-MS у приміщені зберігання готової продукції встановлено, що при нагріванні контрольного зразка бетону виділяється значна кількість СО₂ при t = 580–600 °С. Однак у дослідних зразках бетону сполуки карбону практично відсутні через те, що кислотні метаболіти мікрогрибів перешкоджають його формуванню. Мікроскопічними та РЕМ дослідженнями виявлена локалізація в бетоні Acidithiobacillus thiooxidans та Aspergillus fumigatus.

Дослідженнями встановлені закономірності між механізмом утворення хімічних сполук в бетоні та метаболізмом мікроорганізмів.

Ключові слова: біохімічна корозія бетону, сульфатна кислота, бактерія Thiobacillus thiooxidans, мікроміцети Aspergillus fumigatus.

ДОСЛІДЖЕННЯ ВПЛИВУ ДОБАВОК ТЕРМОПЛАСТИВ ДО АСФАЛЬТОБЕТОННИХ СУМІШЕЙ НА ВЛАСТИВОСТІ АСФАЛЬТОБЕТОНІВ РІЗНИХ ТИПІВ ТА ВИДІВ (61–70)

В. К. Жданюк, О. О. Воловик, Д. Ю. Костін, С. В. Лісовін

Виконані дослідження впливу модифікації асфальтобетонних сумішей різної гранулометрії термопластичними полімерами «Ric-PolyCell» (Україна) та «Duroflex®-SMA» (Німеччина), які додавали безпосередньо у асфальтозмішувач під час їх приготування, на властивості асфальтобетонів. Підтверджено, що більш доцільно на автомобільних дорогах з високою інтенсивністю руху великовогових транспортних засобів, використовувати щебенево-мастикові асфальтобетони з більшою крупністю мінеральних зерен щебеню, оскільки вони є більш колієстійкі, порівняно з асфальтобетонами з меншім розміром та вмістом зерен щебеню.

Досліджено вплив температури приготування та термостатування асфальтобетонних сумішей модифікованих досліджуваними термопластами на показник границі міцності при стиску асфальтобетонів за температури 50 °С, які були виготовлені з досліджуваних сумішей. Встановлено, що за максимально можливих температур приготування та термостатування асфальтобетонних сумішей відбувається більш повна їх модифікація.

Досліджено вплив вмісту термопластичних полімерів у складі асфальтобетонних сумішей на властивості та колієстійкість дрібнозернистого асфальтобетону, а також щебенево-мастикових асфальтобетонів. Встановлено, що додавання полімеру «Ric-PolyCell» у кількості 1,5 % та 3 % від маси бітуму до складу досліджених асфальтобетонних сумішей у асфальтомішувачі, під час їх приготування, дозволяє підвищити колієстійкість отриманих асфальтобетонів за досліджених умов від 2,52 до 3,86 разів. Модифікація асфальтобетонних сумішей добавкою «Duroflex®-SMA» у кількості 0,3 % та 0,6 % від маси мінеральної частини за аналогічною технологією, також дозволяє підвищити колієстійкість отриманих асфальтобетонів від 1,86 до 3,16 разів. Використання зазначених модифікаторів в подальшому позитивно впливатиме на збільшення терміну експлуатації усієї конструкції дорожнього одягу.

Ключові слова: дрібнозернистий асфальтобетон, щебенево-мастиковий асфальтобетон, бітум, асфальтобетонна суміш, термо-пластичний полімер, асфальтозмішувач, пластичні деформації, колієстійкість.