Weak interaction corrections to hadronic top quark pair production: contributions from quark-gluon and $b\bar{b}$ induced reactions.

Werner Bernreuthera, Michael Fücker a, Zong-Guo Sib

aInstitut für Theoretische Physik, RWTH Aachen, 52056 Aachen, Germany
bDepartment of Physics, Shandong University, Jinan, Shandong 250100, China

Abstract

As an addendum to our previous evaluation of the weak-interaction corrections to hadronic top-quark pair production [3] we determine the leading weak-interaction contributions due to the subprocesses $b\bar{b} \rightarrow t\bar{t}$ and $gq(\bar{q}) \rightarrow t\bar{t}q(\bar{q})$. For several distributions in $t\bar{t}$ production at the LHC we find that these contributions are non-negligible as compared to the weak corrections from the other partonic subprocesses.

PACS number(s): 12.15.Lk, 12.38.Bx, 13.88.+e, 14.65.Ha

Keywords: hadron collider physics, top quarks, QCD and electroweak corrections, spin effects, parity violation
The physics of top quarks at the Tevatron and at the upcoming Large Hadron Collider (LHC) offers the unique possibility to explore the interactions of the heaviest known fundamental particle. At the LHC one expects to investigate with some precision also the so-far unknown high-energy regime, i.e., single top-quark and top antitop-quark ($t\bar{t}$) events with transverse momenta and/or pair-invariant masses in the TeV range. The analysis and interpretation of such events will require, in particular, precise standard model (SM) predictions. In this context the electroweak corrections to hadronic $t\bar{t}$ production were recently determined: the $O(\alpha^2)$ contributions of W, Z and Higgs boson exchange to quark-antiquark annihilation $q\bar{q} \rightarrow t\bar{t}$ \cite{1,2} and to gluon fusion $gg \rightarrow t\bar{t}$ \cite{3,4,5}, extending earlier work of \cite{1,6}, and the photonic corrections to hadronic top-quark pair production \cite{7}.

In this addendum to \cite{3} we analyze a further set of weak-interaction corrections which we found to have some impact on a few kinematic distributions: i) the contributions of order α^2 and $\alpha_s\alpha$ to

$$b\bar{b} \rightarrow t\bar{t}, \quad (1)$$

and ii) the $O(\alpha_s\alpha^2)$ and $O(\alpha_s^2\alpha)$ contributions to the reactions

$$gq (\bar{q}) \rightarrow t\bar{t}q (\bar{q}) \quad (q = u, d, s, c, b). \quad (2)$$

We employ here the so-called 5-flavor scheme \cite{13}, where the (anti)proton is considered to contain also b and \bar{b} quarks in its partonic sea. Thus the reaction (1) is a leading-order (LO) process in this scheme, while (2), $q = b$, is a next-to-leading order (NLO) QCD correction to (1). The $O(\alpha_s^2\alpha)$ corrections to the processes (2) were calculated already in \cite{3} which we include here for completeness. For several top quark observables – in particular, for the $t\bar{t}$ cross section – the contributions i) and ii) are insignificant. However, here we show that for the pair-invariant mass distribution and for the top-quark helicity asymmetry, which are among the key observables in the tool-kit for search of new physics in $t\bar{t}$ events, these corrections do matter if one aims at predictions with a precision at the percent level.

The amplitude of (1) receives, in Born approximation and putting $m_b = 0$, the following contributions: a) t-channel W boson exchange $b\bar{b} \rightarrow t\bar{t}$, b) s-channel photon and Z boson exchanges $b\bar{b} \gamma, Z \rightarrow t\bar{t}$ and c) s-channel gluon exchange $b\bar{b} \rightarrow g \rightarrow t\bar{t}$. The t-channel W boson exchange contribution a) is not suppressed by a small Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix element, in contrast to the corresponding t-channel amplitudes $b\bar{d}, b\bar{s} \rightarrow t\bar{t} + \text{c.c.}$ channels.

The lowest order weak-interaction induced contribution to the squared transition matrix element $|M(b\bar{b} \rightarrow t\bar{t})|^2$ are of order α^2 and $\alpha_s\alpha$; the latter arises from the interference of the amplitudes a) and c).

\footnote{The supersymmetric QCD corrections to $t\bar{t}$ production were recently reexamined in \cite{8}. The computation of \cite{9} includes also electroweak MSSM effects, which were analyzed before in \cite{10,11,12}.}
The dominant part of $|\mathcal{M}(bb \rightarrow t\bar{t})|^2$ is due to W exchange a), as can be understood from inspecting the various terms in the limit of large parton center-of-mass energy $\sqrt{s} \gg 2m_t$. It has the following properties: First, it is positive while the weak-interaction corrections to $gg, q\bar{q} \rightarrow t\bar{t}$ ($q \neq b$) are negative in most of the kinematic range of \hat{s}. Second, t-channel W exchange produces top quarks mostly in the forward region. Thus one expects these contributions to be relevant only for relatively small transverse momentum p_T of the (anti)top-quark. For the distribution of the pair-invariant mass $M_{t\bar{t}} = \sqrt{(p_t + p_{\bar{t}})^2}$ no such conclusion can be drawn. Third, t-channel W exchange generates left-handed top quarks and right-handed antitop-quarks. In the high-energy regime $M_{t\bar{t}} \gg m_t$, where the top quarks behave more and more like massless quarks, the (anti)top quarks due to a) have, therefore, (positive) negative helicity.

The Feynman diagrams for the reactions (2) are shown in Fig. 1 to leading order in the weak and strong interactions. The exchange of the SM Higgs boson is numerically insignificant and therefore not taken into account. The diagrams Fig. 1b1 - Fig. 1b4 with W-boson exchange are relevant only for b quarks in the initial state. For $q = s, d$ the corresponding amplitudes are suppressed by small CKM mixing matrix elements ($|V_{ts}| \sim 7 \times 10^{-3}$ and $|V_{td}| \sim 3.5 \times 10^{-2}$ [15]). Here we compute the $O(\alpha_s \alpha^2)$ contributions to the squared matrix elements (Figs. 1a for $q \neq b$ and Figs. 1a and 1b for $q = b$). The terms corresponding to the squares of Figs. 1a2 and 1b3, their interference, and the interference between Fig. 1b3 and Fig. 1c2 have initial-state collinear singularities which we removed within the standard MS factorization scheme. These terms are therefore expected to exhibit some sensitivity to variations of the factorization scale μ_F. For completeness, we take into account in the numerical evaluations below also the weak-interaction corrections of $O(\alpha_s^2 \alpha)$ (i.e., the interferences Figs. 1a and 1b: for $q \neq b$ and Figs. 1a, b and 1c: for $q = b$) which were computed in [3].

The qualitative discussion in the previous paragraphs is corroborated by the numerical evaluation of the corrections i) and ii). As far as the contributions of these terms to the hadronic $t\bar{t}$ production cross sections at the Tevatron and at the LHC are concerned, they are below the percent level and are, like the electroweak contributions from the other partonic subprocesses [3, 2, 7], smaller than the uncertainties of the present QCD predictions. Next we analyze three distributions relevant for top physics: the transverse momentum distribution, the pair-invariant mass distribution, and the helicity asymmetry. At the Tevatron (i.e., for $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV) b-quark induced $t\bar{t}$ production plays no role, and the weak-interaction induced contributions to these distributions from (1) and (2) are completely negligible. However, they matter for the LHC, i.e., for $pp \rightarrow t\bar{t}X$ at $\sqrt{s} = 14$ TeV.

Let us now discuss the p_T and $M_{t\bar{t}}$ distribution and the top-quark helicity asymmetry for the LHC. We compare the corrections i) and ii) with the weak-interaction induced contributions of order α^2 and $\alpha_s^2 \alpha$ due to the subprocesses $q\bar{q} \rightarrow t\bar{t}$ ($q \neq b$) and $gg \rightarrow t\bar{t}$ [1, 3], which
we denote by corrections iii) in the following. These depend on the unknown SM Higgs boson mass, for which we use the values $m_H = 120$ GeV and 200 GeV. The corrections i), ii), and iii) will be normalized to the respective distributions $d\sigma_{LO}$ obtained in lowest-order QCD from $q\bar{q}, gg \to t\bar{t}$. In the case of the parity-violating helicity asymmetry, i), ii), and iii) are normalized to $d\sigma_{LO}/dM_{t\bar{t}}$. As in [3] we use $m_t = 172.7$ GeV, $\alpha_s(2m_t) = 0.1$, and $\alpha(2m_t) = 1/126.3$. The LO QCD terms and the contributions of i) and ii) to the distributions are evaluated with the LO parton distribution functions (PDF) CTEQ6.L1, while for the computation of the contributions from ii), which depend on the factorization scale, the set CTEQ6.1M [16] is used. The scale μ_F is varied between $m_t/2 \leq \mu_F \leq 2m_t$. Dependence on the renormalization scale μ_R enters only via the \overline{MS} coupling α_s. The ratio of the corrections iii) and $d\sigma_{LO}$ is practically independent of α_s, while the corresponding ratios involving i) and ii) vary weakly with μ_R.

Fig. 2a shows the various weak-interaction contributions to the transverse momentum distribution of the top quark at the LHC, normalized to $d\sigma_{LO}/dp_T$. The hatched areas depict the range of values when $\mu = \mu_F = \mu_R$ is varied between $m_t/2$ and $2m_t$. Fig. 2a shows that the weak correction i) to the p_T distribution of the top quark is positive, as expected, and small. Its significance is confined to the region $p_T \lesssim 100$ GeV, where it dominates the other weak corrections. However, in this region these corrections make up only between 1% and 2% of the LO QCD p_T distribution. In the high p_T region, where the weak-interaction corrections to the p_T spectrum become relevant, the contribution from the processes (1) and (2) do not matter in comparison to the weak corrections iii). Fig. 2b displays the ratio of the sum of the weak corrections i), ii), and iii) and the LO QCD contribution.

In Fig. 3a the analogous ratios are displayed for the $M_{t\bar{t}}$ distribution. The weak-interaction corrections i) and ii) are both positive and show a considerable scale uncertainty. They reduce the magnitude of the leading weak corrections iii), which are negative, by an amount of about 50%, as shown in Fig. 3b.

Finally, we consider the parity-violating helicity asymmetry for t quarks defined by

$$\Delta_{hel} = \frac{Z_{hel}}{d\sigma_{LO}/dM_{t\bar{t}}}, \quad Z_{hel} = \frac{d\sigma_+}{dM_{t\bar{t}}} - \frac{d\sigma_-}{dM_{t\bar{t}}}. \quad (3)$$

The subscripts \pm in (3) refer to a t quark with positive/negative helicity while the helicity states of the \bar{t} are summed. (In [3] a different normalization was chosen for Δ_{hel}.) Fig. 4a displays the weak-interaction induced contributions i), ii) and iii) to Δ_{hel}. (As the SM Yukawa coupling is parity-conserving, iii) does not depend on m_H.) Each correction i) and ii) shows a considerable scale dependence which, however, cancels to a large extent in the sum of the two contributions – c.f. Fig. 4b. The corrections i) and ii) reduce the contribution iii) to Δ_{hel} by about 50%. The t quark helicity asymmetry in the SM is then $\Delta_{hel} \lesssim 2\%$ for $M_{t\bar{t}} \lesssim 4$ TeV. Such a small effect will hardly be measurable at the LHC. Nevertheless, as
emphasized in [3], this observable is an ideal experimental sensor for tracing possible new parity-violating interactions in $t\bar{t}$ production; thus Δ_{hel} should be computed as precisely as possible within the SM.

If one takes into account only $t\bar{t}$ events with $p_T \geq p_{T_{min}}$, the corrections i), ii) will not change significantly, as long as $p_{T_{min}}$ is not too large. Choosing, for instance, $p_{T_{min}} = 30$ GeV does not lead to a significant change of the results shown in Figs. 2 - 4. Eventually, the weak corrections to these distributions discussed here should be evaluated [17] in conjunction with the known NLO QCD corrections, for which NLO PDF, in particular a NLO b-quark PDF is to be used. (For recent updates of this PDF, see [18],[19]). The NLO b-quark PDF enhances the b-quark induced weak contribution to the $M_{t\bar{t}}$ distribution and to Δ_{hel} at large $M_{t\bar{t}}$.

In conclusion we have determined for hadronic $t\bar{t}$ production the leading weak-interaction corrections due to the subprocesses $b\bar{b} \rightarrow t\bar{t}$ and $gq(\bar{q}) \rightarrow t\bar{t}q(\bar{q})$. For the LHC we find that in the case of the pair-invariant mass distribution and of the helicity asymmetry these contributions are non-negligible as compared to the weak corrections from $q\bar{q}, gg \rightarrow t\bar{t}$. As these distributions are key observables for investigating the interactions of top quarks in the high-energy regime these corrections should be taken into account when it comes to precision analyses of future $t\bar{t}$ events at the LHC.

Acknowledgments

We thank P. Uwer for discussions. Z.G. Si wishes to thank the Physics Department of RWTH Aachen, where part of this work was done, for its hospitality and the A. v. Humboldt Stiftung for financial support. This work was also supported by Deutsche Forschungsgemeinschaft SFB/TR9.
References

[1] W. Bernreuther, M. Fücker and Z. G. Si, Phys. Lett. B 633, 54 (2006) [arXiv:hep-ph/0508091].

[2] J. H. Kühn, A. Scharf and P. Uwer, Eur. Phys. J. C 45, 139 (2006) [arXiv:hep-ph/0508092].

[3] W. Bernreuther, M. Fuecker and Z. G. Si, Phys. Rev. D 74, 113005 (2006) [arXiv:hep-ph/0610334].

[4] J. H. Kühn, A. Scharf and P. Uwer, Eur. Phys. J. C 51, 37 (2007) [arXiv:hep-ph/0610335].

[5] S. Moretti, M. R. Nolten and D. A. Ross, Phys. Lett. B 639, 513(2006) [Erratum-ibid. B 660, 607 (2008)] [arXiv:hep-ph/0603083].

[6] W. Beenakker, A. Denner, W. Hollik, R. Mertig, T. Sack and D. Wackeroth, Nucl. Phys. B 411, 343 (1994).

[7] W. Hollik and M. Kollar, Phys. Rev. D 77, 014008 (2008) [arXiv:0708.1697 [hep-ph]].

[8] S. Berge, W. Hollik, W. M. Mösle and D. Wackeroth, Phys. Rev. D 76, 034016 (2007) [arXiv:hep-ph/0703016].

[9] D. A. Ross and M. Wiebusch, JHEP 0711, 041 (2007) [arXiv:0707.4402 [hep-ph]].

[10] J. Kim, J. L. Lopez, D. V. Nanopoulos and R. Rangarajan, Phys. Rev. D 54, 4364 (1996) [arXiv:hep-ph/9605419].

[11] W. Hollik, W. M. Mösle and D. Wackeroth, Nucl. Phys. B 516, 29 (1998) [arXiv:hep-ph/9706218].

[12] C. Kao and D. Wackeroth, Phys. Rev. D 61, 055009 (2000) [arXiv:hep-ph/9902202].

[13] M. A. G. Aivazis, J. C. Collins, F. I. Olness and W. K. Tung, Phys. Rev. D 50, 3102 (1994) [arXiv:hep-ph/9312319].

[14] U. Baur and L. H. Orr, Phys. Rev. D 76, 094012 (2007) [arXiv:0707.2066 [hep-ph]].

[15] W. M. Yao et al. [Particle Data Group], J. Phys. G 33, 1 (2006).

[16] J. Pumplin et al., JHEP 0207, 012 (2002) [arXiv:hep-ph/0201195].

[17] W. Bernreuther and Z. G. Si, in preparation.
[18] W. K. Tung et al., JHEP 0702, 053 (2007) [arXiv:hep-ph/0611254].

[19] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Phys. Lett. B 652, 292 (2007) [arXiv:0706.0459 [hep-ph]].
Figure 1: Feynman diagrams for $gq(\bar{q}) \rightarrow t\bar{t}q(\bar{q})$ to leading order in the weak and strong interactions.

Figure 2: a) Ratios $(d\sigma_{\text{weak}}/dP_T)/(d\sigma_{\text{LO}}/dP_T)$ where $d\sigma_{\text{weak}}$ are the weak-interaction corrections i), ii), and iii) to the reactions (1), (2), and $q\bar{q}, gg \rightarrow t\bar{t} (q \neq b)$, respectively. The latter corrections are shown for two different values of the Higgs boson mass. The hatched areas arise from scale variations as described in the text. b) Sum of the ratios shown in a) for two different values of m_H.
Figure 3: a) Ratios \(\frac{d\sigma_{\text{weak}}/dM_{t\bar{t}}}{d\sigma_{\text{LO}}/dM_{t\bar{t}}} \) where \(d\sigma_{\text{weak}} \) refers to the weak-interaction corrections i), ii), and iii). The latter corrections are shown for two different values of the Higgs boson mass. The hatched areas arise from scale variations as described in the text. b) Sum of the ratios shown in a) for two different values of \(m_H \).

Figure 4: a) Contribution of the various partonic subprocesses to the helicity asymmetry: initial states \(q\bar{q} (q \neq b) \) and \(gg \) (thin line), \(qg \) and \(\bar{q}g \ (q = u, \ldots, b) \) (vertically hatched area), and \(b\bar{b} \) (cross hatched area). b) Sum of the three contributions shown in a).