Telomeres are a region of repetitive sequences that caps the end of eukaryotic chromosomes to protect them from deterioration (Greider and Blackburn, 1985). During DNA replication, failure to fill in terminal basepairs at the lagging strand leads to the “end-replication problem” (Olovnikov, 1973, 1971; Watson, 1972), resulting in the shortening of chromosome ends at each cell division and eventual loss of replicative capacity (Hayflick and Moorhead, 1961; van Deursen, 2014). To prevent this loss of chromosome termini, the ribonucleoprotein enzyme complex telomerase, whose core components consist of a telomerase reverse transcriptase (TERT) and RNA template (TER) (Osterhage and Friedman, 2009) binds to single-stranded telomeric DNA at the 3’ end and processively extends the telomere sequence (Wu et al., 2017). Other specialized telomere binding proteins are also recruited to prevent the telomere from being detected as damaged DNA (Fulcher et al., 2014).

Eukaryotic telomeres consist of a tandem repeat of TG-rich microsatellite sequences (Podlevsky and Chen, 2016). Between species, the core telomeric repeat sequence is conserved - for instance, vertebrates have the telomeric repeat TTAGGG (Meyne et al., 1989) while in most plants the sequence is TTAGGG (Fajkus et al., 2005). The most noticeable telomere difference between organisms is in telomere lengths, which can be as short as 300 bps in yeast (Gatbonton et al., 2006) to 150 Kb in tobacco (Fajkus et al., 1995). Within species, telomere sequences also display substantial length variation, and several examples of telomere length polymorphisms and the underlying genes responsible for this variation have been identified in humans, yeast and C. elegans (Codd et al., 2013; Cook et al., 2016; Jones et al., 2012; Levy et al., 2010; Liti et al., 2009). In plants, variation in telomere lengths also have been observed between individuals (Burr et al., 1992; Fulcher et al., 2015; Maillet et al., 2006; Shakirov and Shippen, 2004), between organs (Kilian et al., 1995), and between cell types (González-García et al., 2015). Quantitative trait locus (QTL) studies in A. thaliana and maize have indicated that natural variation in telomere length is a heritable complex trait (Brown et al., 2011; Burr et al., 1992; Fulcher et al., 2015), although no specific genes have been identified.

A more puzzling question is what significance does natural variation in telomere lengths have for organisms? Telomere length variation could be neutral and result from random genetic drift or random stochasticity in the activity of the telomerase. Alternatively, telomere length differences could have fitness effects that are subject to natural selection, possibly due to their association with cellular senescence that has been implicated in controlling lifespan in yeast and animals (Aubert and Lansdorp, 2008; Kupiec, 2014). In mammals, for example, telomere shortening correlates with between-species differences in lifespans (Whittemore et al., 2019), suggesting telomeres are involved in the aging process (Aubert and Lansdorp, 2008). Indeed, it has been suggested that the aging trajectory of telomere lengths could be a product of optimization of a life-history tradeoff (Young, 2018). This is by no means universal, as in C. elegans no fitness differences or clear phenotypic consequences were associated with natural variation in telomere lengths (Cook et al., 2016).

While there is interest in the links between telomeres and life history traits (e.g., aging) in animals, comparatively little is known about how telomere length evolution impacts plant life history strategies. Aging in plants differs fundamentally from animals (Watson and Riha, 2011) and it is unclear whether the telomere-aging and evolution model are also applicable in plants. Indeed, no specific hypothesis have been put forth to explain natural telomere length variation in plants; whether telomeres have an effect on plant life history traits and are a target of natural selection remains an open question.

Here we describe the genetic basis and biological significance of natural telomere length variation in plants. Using whole genome sequence data, we determine the extent of telomere length variation in three plant species – Arabidopsis thaliana, Oryza sativa and Zea mays. We find that polymorphisms in the TERT gene is associated with natural telomere length variation in A. thaliana, and show that longer
telomeres are found in plants that flower earlier. We propose a telomere-developmental rate model for plants wherein telomere length is an adaptive trait of individuals with specific life history strategies.

Results

Genome-wide variation in *A. thaliana* tandem repeats. Satellite DNA are repetitive sequences structured as arrays of DNA that are tandemly repeated in the genome, sometimes up to 106 copies. We examined genome-wide variation in satellite DNA repeat copy number in *A. thaliana* using the program k-Seek (Wei et al., 2018, 2014). k-Seek is an assembly-free method of identifying and quantifying k-mer repeats in unmapped short read sequence data, and k-mer counts are highly correlated with direct measurements of satellite repeat abundances (Wei et al., 2014). We used whole genome re-sequencing data from the 1001 *A. thaliana* Genome Consortium project (Alonso-Blanco et al., 2016). We quantified genome-wide *A. thaliana* tandem repeat copy numbers by focusing on 483 individuals which were sequenced from leaves with identical protocols (designated as AraTha483; see Materials and Methods for details). The quantity of each k-mer sequence is presented as copies per 1× read depth after GC normalization (Flynn et al., 2017).

Adding up k-mer copy numbers, the median total length of tandem repeats per individuals is estimated at 341 Kb (Supplemental Figure 1). Across the population, individuals displayed over 25-fold differences in total tandem repeat lengths. The most abundant k-mer was the poly-A repeat, followed by the 7-mer AAACCCT (Fig. 1A). Some k-mers, such as the AC repeat, had a wide range of variation between individuals, with a range of 0 to 1,000s of copies. Our computationally based estimates were qualitatively concordant with direct estimates of repeat copy number that used Southern blot analysis (Depeiges et al., 1995).

A. thaliana telomere copy number variation and telomerase. The tandem repeat with the second highest abundance in the *A. thaliana* genome is the k-mer AAACCCT, which is the canonical telomere repeat sequence in plants [equivalent to the reported TTTAGGG telomere repeat] (Fajkus et al., 2005; Watson and Riha, 2010). There is a wide range in total copy numbers for the AAACCCT repeat, from 1,257 copies in ecotype Ler-1 to 38,850 copies in ecotype IP-Fel-2 (Supplemental Table 1), with a median of 6,411 and mean of 7,113.6 ± 161.1 copies (see Fig. 1B). We compared telomere repeat copy numbers inferred from k-Seek to a previous study that directly measured telomere lengths in various *A. thaliana* accessions using Southern blot analysis (Fulcher et al., 2015). Because the AraTha483 dataset had only 7 overlapping accessions with the Fulcher et al. dataset, we looked at data from a second set of 201 accessions (here on designated as

Figure 1. *A. thaliana* tandem repeat profile. Repeats were estimated from AraTha483 set (A) Top 25 most abundant k-mers. K-mers are ordered alphabetically, then by size. (B) Distribution of estimates of telomere repeat copy number.

Figure 2. Genome wide association (GWAS) analysis of *A. thaliana* telomere length variation. Analysis was on the AraTha483 set (A) Manhattan plot of the genome wide p-values testing association of telomere copy number using the FarmCPU approach. Red dotted line indicates the Bonferroni-corrected significance threshold (α = 0.05). The region of the most significant of the five significant SNP regions is highlighted in blue. (B) Close-up of the region with the most significant GWAS SNP, with the genes in the region indicated.
AraTha201) that were sequenced with different protocols from the AraTha483 set. There were 53 accessions in common between AraTha201 and the Fulcher et al. samples, and we found a significant positive correlation in estimated telomere lengths from the two methods (Supplemental Fig 2; Pearson’s r = 0.61 and p = 1.26 x 10^-6; Kendall’s tau = 0.189 and p = 0.046), suggesting that the k-mer approach is a valid approach to quantifying total telomere lengths.

We investigated whether natural variation in telomere length has a genetic basis, and using the AraTha483 set, we conducted genome-wide association (GWAS) mapping of telomere copy number variation. We used the FarmCPU method for the GWAS analysis, which works well for identifying loci of complex traits that may be confounded with population structure (Liu et al., 2016). GWAS analysis revealed five genomic regions with single nucleotide polymorphisms (SNPs) significantly associated with telomere repeat copy number (Fig. 2A and see Supplemental Table 2 for SNP positions). The most significant SNP marker (p < 2.05 x 10^-10) is located on chromosome 5 and found at the 3’ UTR of locus AT5G16850 (Fig. 2B) which is the telomerase reverse transcriptase (TERT) gene. The TERT gene is crucial in maintaining telomere lengths in A. thaliana (Fitzgerald et al., 1999) and other eukaryotes (Autexier and Lue, 2006). This SNP is also located in a quantitative trait locus (QTL) for telomere length previously identified in a recombinant inbred mapping study (Fulcher et al., 2015). The other four significant SNPs from the GWAS study were not in proximity to other known telomere regulating genes. However, two significant SNPs were also located in two QTL regions in chromosome 1 and chromosome 2 from the Fulcher et al. (2015) study (Fig. 2A).

Population genetics of the A. thaliana TERT gene. Haplotype network reconstruction of the TERT gene in A. thaliana showed that TERT alleles are largely divided into two major haplotype groups (haplogroups) [see Fig. 3A]. Haplogroup L (Longer) differed from haplogroup S (Shorter) by 5 mutations at TERT (Fig. 3B), and individuals carrying haplogroup L had significantly higher telomere copy numbers compared to haplogroup S (Mann Whitney U [MWU] test, p = 1.15 x 10^-8; see Fig. 3C). The significantly higher telomere copy numbers for individuals with haplogroup L were also observed in the AraTha201 set (MWU test, p = 0.0098). In addition, telomere lengths of haplogroup L individuals that were estimated by Southern blot analysis (Fulcher et al. 2015) significantly longer than those from haplogroup S (MWU test, p = 0.009 and Fig. 3C).

The TERT haplogroups were non-randomly distributed across geography. Haplogroup L was most common across individuals with Western European and Italy/Balkan/Caucasus ancestry, but was at low frequency in individuals with Asian and relic ancestry (Supplemental Table 3). Telomere copy number had significant negative correlations with both latitude and longitude (Fig. 4A), although a multiple linear regression model with both latitude and longitude showed only latitude as having a significant negative effect on telomere copy number (Supplemental Table 4). Overall, across the 1,135 samples from the...
1001 A. thaliana Consortium samples, the frequency of haplogroup L was relatively low (15.1%), potentially explaining why previous attempts at GWAS mapping on telomere length variation failed to find significant associations (Fulcher et al., 2015). Further, differential frequency of TERT haplogroup with ancestry suggests that population structure could confound GWAS analysis (Atwell et al., 2010). Indeed using GWAS mixed linear models [i.e. MLM (Yu et al., 2006), CMLM (Zhang et al., 2010), MLMM (Segura et al., 2012), and SUPER (Wang et al., 2014)], the control for population structure effectively erased associations observed from the FarmCPU method (Supplemental Fig 3).

The non-random distribution of TERT haplogroups with respect to geography and ancestry groups may be due to selection. To identify possible selective sweeps associated with TERT haplogroups, we marked the 1001 A. thaliana accessions based on which TERT haplogroup they carried, and applied OmegaPlus (Alachiotis et al., 2014)), the control for population structure effectively erased associations observed from the FarmCPU method (Supplemental Fig 3).

We also examined the direct telomere length measurements from Fulcher et al. (2015) and also found significant negative correlations with day to flowering at 10°C ($\rho = -0.216$, $p < 0.018$), and rosette leaf number [$\rho = -0.231$, $p < 0.014$] (Supplemental Table 5). To test whether these correlations were due simply to kinship/population structure, we fit a multiple linear regression model that included the first 4 axes of a principal component analysis of SNP variation. The results showed that telomere copy number was a significant negative predictor for the traits day to flowering at 16°C ($p < 0.024$), cauline leaf number ($p < 0.034$), and rosette leaf number ($p < 0.003$) even when accounting for population structure (Supplemental Table 6). It should be noted that in A. thaliana rosette leaf number is developmentally correlated with flowering time; together, these results suggest that telomere length is negatively associated with flowering time in this annual species, such that plants with longer telomeres flower earlier.

We expanded the analysis to the 1001 A. thaliana genome consortium samples by looking at the relationships between TERT haplogroup and developmental trait values (Fig. 5B). Results showed flowering time was the only trait that significantly differed between TERT haplogroups, with haplogroup L individuals flowering significantly earlier at both 10°C (MWU, $p = 0.01$) and 16°C (MWU, $p = 0.0004$).

Due to the significant associations of telomere length and TERT haplogroup with flowering time, we examined whether telomere regulating genes were in fact previously unrecognized flowering time QTLs (and vice versa). Using the AraTha483 individuals we conducted GWAS analysis on flowering time and compared the results to our GWAS analysis on telomere copy number (Fig. 2). Results showed there were no overlapping GWAS hits between the two traits, indicating that they had distinct genetic architectures (Supplemental Table 7 and Supplemental Figure 4A). Moreover, SNP markers in the TERT region were not significantly associated with flowering time (Supplemental Figure 4B). This suggests that while there is phenotypic correlation between telomere length and flowering time, this is not determined by common genes of pleiotropic effect.

A. thaliana telomere is associated with flowering time variation. The biased geographical distribution of telomere lengths and TERT genotypes suggest that length variation might have arisen as a geographical adaptation to specific environments. In A. thaliana, life history traits are often associated with geographic adaptation (Montesinos-Navarro et al., 2012; Stinchcombe et al., 2004), and we hypothesized that telomere length polymorphisms occurred as a response to adaptation to a specific life history strategy. We tested whether specific developmental traits associated with life history were correlated with variation in telomere length. We compared telomere copy number of the AraTha483 individuals to 7 different developmental traits and found significant negative correlations with 4 traits: day to flowering at 10°C (Spearman’s $\rho = -0.119$, $p < 0.009$), day to flowering at 16°C ($\rho = -0.173$, $p < 1.6\times10^{-4}$), cauline leaf number ($\rho = -0.125$, $p < 0.007$), and rosette leaf number ($\rho = -0.152$, $p < 0.001$), and positive correlation with rosette branch number [$\rho = 0.111$, $p < 0.03$] (Fig. 5A).
Flowering time is also negatively correlated with telomere copy number in rice and maize. The association between telomere length and flowering time was unexpected, but suggested individuals with different telomere lengths had contrasting life history strategies. We investigated if this correlation is found outside A. thaliana by examining the relationship between telomere length and flowering time in Oryza sativa and Zea mays. For each species we analyzed whole genome re-sequencing data from previous studies that also reported flowering time data (Flint-Garcia et al., 2005; Wang et al., 2018).

In rice (O. sativa) and maize (Z. mays) there was a wide variation in telomere copy number and, like A. thaliana, many of the differences appear to show population stratification (Supplemental Figure 5). We analyzed data for 2,952 rice varieties (Wang et al., 2018) and this species displayed the most significant differences between subpopulations, likely due to deep population structure in rice (Huang et al., 2012; Wang et al., 2018). Most rice varieties can be divided into japonica or indica subspecies (Wang et al., 2018), which possess significant genetic and physiological differentiation with each other (Zhao et al., 2011), and we analyzed each subpopulation separately (Fig. 6). In japonica, the temperate japonica (GJtmp) group had significantly higher telomere repeat copies than both subtropical (GJsubtrp) and tropical japonica (GJtrp) (MWU test, p = 0.0051 and 1.34 x 10^{-10} respectively). In indica rice, the subpopulation XI-1A (from East Asia) had significantly higher telomere copy numbers compared to subpopulation XI-1B (modern varieties of diverse origin), XI-2 (from South Asia), and XI-3 (from Southeast Asia) (MWU test, p = 0.0046, 2.38 x 10^{-20} and 1.83 x 10^{-18} respectively)[see Fig. 6].

In maize (Flint-Garcia et al., 2005) most varieties are genetically classified as either from non-stiff-stalk (NSS) and stiff-stalk (SS) populations from temperate regions (Liu et al., 2003), or from the tropical/subtropical (TS) population. Our analysis of 27 maize cultivars shows that NSS varieties had significantly higher telomere copy number than both SS and TS maize cultivars (MWU test, p = 0.003 and 0.0065. respectively)[see Fig. 6]. Noticeably, in both rice and maize, the subpopulations with the highest telomere copy numbers were from temperate regions, and these had significantly higher abundance compared to varieties from subtropical or tropical regions.

Flowering time for individuals carrying TERT haplogroup L or S in the 1001 A. thaliana Genome Consortium samples. ** indicates p < 0.01.

Figure 5. Association between telomere length and developmental traits in A. thaliana. (A) Correlation between telomere copy number and various A. thaliana life history traits for the AraTha483 set. Upper right corner shows the overall correlation (Spearman’s r) and significance. (B) Flowering time for individuals carrying TERT haplogroup L or S in the 1001 A. thaliana Genome Consortium samples.
field locations in the United States over a 3 year period in some locations; there was data for a total of 9 fields/seasons (Zhao et al., 2006). In 6 cases, there was significant negative correlation of telomere repeat copy number and flowering time \((\rho = -0.123 \text{ to } -0.169, p < 0.008 \text{ to } 0.045)\) [see Fig. 6 for one example], one was marginally non-significant \((\rho = -0.130, p < 0.057)\) and one was still negative but non-significant \((\rho = -0.057, p < 0.43)\) [Supplemental Table 8]. For both rice and maize a multiple linear model incorporating both telomere copy number and population structure as predictor variables still showed telomere length having a significantly negative effect on flowering time even after accounting for population stratification \((p < 0.02 \text{ for rice and } p < 0.033 \text{ for maize})\) [Supplemental Table 9].

GWAS analysis of telomere repeat copy number variation in rice and maize using FarmCPU showed significant SNP markers in the japonica rice, indica rice, and maize populations (Supplemental Figure 6). There were 16, 11, and 9 SNPs in indica rice, japonica rice, and maize, respectively, that were significant after Bonferroni correction (Supplemental Table 10). We identified 19 rice and maize orthologs of known telomere regulating genes (Supplemental Table 11) and compared their genomic positions to the GWAS significant SNP markers; none of the significant SNPs were in close proximity to these telomere regulating genes. We also examined the genetic architecture underlying flowering time variation in rice and maize, and like in A. thaliana we do not find any overlap in significant SNP positions for telomere length and flowering time variation (Supplemental Table 12).

Discussion

Using whole genome re-sequencing data, we were able to computationally estimate total telomere length in individual plant genotypes by quantifying telomere repeat copy numbers. As expected, we find substantial intraspecific variation in genome-wide telomere lengths in plant species as diverse as A. thaliana, O. sativa and Z. mays. Interestingly, the genetic architecture of telomere length variation is distinct in these three species, and only in A. thaliana can we implicate a key telomere regulating gene – the telomerase TERT gene – in natural variation in telomere repeat copy number. The A. thaliana TERT gene is involved in telomere elongation (Shakirov and Shippen, 2004), and this locus also overlapped a large QTL region for telomere length identified from a previous recombinant inbred line mapping study (Fulcher et al., 2015). TERT has also been identified in a human GWAS mapping study showing an association with leukocyte telomere length variation (Codd et al., 2013).

The links between telomere lengths and organismal life history traits are tantalizing, especially since telomeres are linked to cellular senescence, aging and human disease. Despite its central role in chromosomal stability, the drivers of telomere length variation and their phenotypic consequences remain unclear. This is particularly relevant for plants, where telomere length variation is not easily connected to aging and senescence as observed in animals (Watson and Rha, 2011). In our analysis, we find that natural telomere length variation in three species is related to flowering time, one of the most
crucial life history traits for plants. In Arabidopsis, rice and maize, individuals that had longer telomeres flowered earlier, and finding this correlation in three distinct species suggest that this relationship may be widespread. Indeed, we also observed this negative correlation between telomere length and flowering time arises from pleiotropic effects either of telomere regulating or flowering time genes. Our GWAS results, however, do not show any overlap in significant peaks between these two traits, indicating that they are controlled by distinct loci, and suggests that there is unlikely to be a direct causal genetic connection between telomere length and flowering time. What may drive this correlation are telomere length polymorphisms occurring as a response to adaptation to specific plant life history strategies. The link between telomere length and flowering time variation may reside in differences in plant developmental rates. In maize, for example, faster rates of cell differentiation in the shoot apical meristem is observed with earlier flowering times (Bilinski et al., 2018; Leiboff et al., 2015), and telomerase is most active in differentiating tissues such as the meristem (Fitzgerald et al., 1996; Riha et al., 1998). We theorize that in life history strategies associated with early flowering, individuals with longer telomeres have a selective advantage due to greater stability of chromosomal ends as meristematic cells go through more rapid division and differentiation (Huffman et al., 2000; Kazda et al., 2012).

Indeed, there is evidence for a selective sweep at the A. thaliana TERT haplogroup L (which is associated with longer telomeres), supporting the hypothesis that the negative correlation between telomere length and flowering time is driven by adaptive evolution. Adaptation may also explain the significant latitudinalcline of telomere length variation in Arabidopsis, and we also find longer telomeres associated with other aspects of the spring cycling life history strategy of this ruderal species such as germination in response to cold (Supplementary Fig. 7). Moreover, longer telomere lengths are found in temperate-adapted varieties of rice (temperate japonica) and maize (Non-Stiff Stalk and Stiff Stalk maize), which also flower significantly earlier in their growing seasons compared to tropical/subtropical varieties (Supplementary Fig. 8).

There has been interest in identifying effects of genome size and structure on life history traits such as flowering time (Meagher and Vassiliadis, 2005). In maize, for example, genome size is positively correlated with flowering time (Jian et al., 2017) and changes in repetitive DNA sequences are associated with altitudinal adaptation (Bilinski et al., 2018). The negative correlation between genome size, repetitive DNA content and cellular growth rate has been advanced as a plausible explanation for this phenomenon (Bilinski et al., 2018; Tenaillon et al., 2016). These studies as well as our results on telomere variation suggest that variation in life history strategy can indirectly influence chromosome and genome structure via selection. This opens up future areas of inquiry, including determining how widespread is this phenomenon, the relationship of telomere length and cell differentiation rate in plants, details of any selective advantage of telomere length in different life histories, and the precise molecular genetic mechanisms underlying telomere length polymorphisms in plant species.

Identification and quantifying tandem repeats. Initially the sequencing reads were subjected to quality control using the BBTools suite (https://jgi.doe.gov/data-and-tools/bbtools/). We used the bbduk.sh script ver. 37.66 from BBTools using the parameters minlen=25 qtrim=r trimq=10 ktrim=r k=25 mink=11 hdist=1 tpe tbo to trim off sequencing adapters and low quality sequences from the reads. The quality controlled unmapped reads were used to quantify the tandem repeat landscape of an individuals’ genome using the k-Seek method (Wei et al., 2018, 2014). Briefly this method identifies the short tandem repeat sequences (k-mers) in the raw sequencing reads using a hash table approach. k-Seek breaks up a read into smaller fragments to build a hash table consisting of the fragmentated sequences and its frequencies across the read. The hash table is then used to identify the shortest k-mer motif that is tandemly repeated in a given sequencing read. k-Seek can identify k-mers of length 1 to 20 bps and the k-mer must be a tandem repeat covering at least 50 bps of a read. The method allows a single nucleotide mismatch for a given repeating k-mer. After identifying and quantifying the repeating k-mer, the offset (i.e. AAC, ACA, ACC) is considered twice over the years but to minimize potential differences arising from sequencing platforms we analyzed the most recent sequencing batch that had resequenced the 282 panel to a higher depth using 2x150bp and Illumina HiSeq Ten X platform (Bukowski et al., 2018). The data was obtained from the NCBI SRA under the identifier PRJNA389800.
For the A. thaliana resequencing data we used the reference genome TAIR10 from The Arabidopsis Information Resource (TAIR) and implemented the method of (Flynn et al. 2017) to correct for GC content bias and genome coverage between A. thaliana genome sequencing samples and Arabidopsis dataset. We did not take into account, for example, the 100kb-long regions that were not ideal for implementing the GC content correction method. For O. sativa, the samples were sequenced across multiple runs suggesting any differences in the sequencing run should also be implemented in the correction. While for Z. mays the genome coverage was relatively low (on average ~5x) indicating a coverage based method of correction would not be ideal. Hence, for these three species we only analyzed the telomere repeat and for each sample its telomere count was divided by the average genome wide coverage to account for differences in sequencing coverage between samples. The per sample average coverage was obtained from Supplementary Data 2 of (Wang et al. 2018) for O. sativa and for Z. mays it was calculated using bedtools ver. 2.25.0 (Quinlan and Hall 2010) genomciv program.

Genome wide association study. SNP variant files were obtained from the original studies that generated the genome resequencing data and conducted the SNP calls. Specifically, for A. thaliana the population VCF file was downloaded from the 1001 genomes project website (https://1001genomes.org/), for O. sativa the population VCF was downloaded from the 3000 rice genome projects’ snp-seek website (https://snp-seek.irri.org/) (Mansuetu et al. 2017), and for Z. mays the population VCF was downloaded from Giagoscope Database (http://dx.doi.org/10.5524/100339) which is associated with (Bukowski et al. 2018).

The SNP files were initially filtered to exclude polymorphic sites that had more than 10% of the individuals with a missing genotype and filtered out sites with less than 5% minor allele frequency. We then conducted a linkage disequilibrium (LD) based pruning to remove polymorphic sites. The VCF files were converted to PLINK format using vcf2tools version 0.1.15 (Danecik et al. 2011) and the program plink ver. 1.9 (Chang et al. 2015) was used with the parameter --indep-pairwise 100 5 0.5, which scans the file in 100 variant count windows while shifting the window in 5 variants and pruning pairs of variants that have a r2 greater than 0.5.

The LD pruned PLINK file was converted to a HAPMAP format to be used for the GWAS analysis using the program GAPIIT (Tang et al. 2016). We took the log10 of the telomere copy number to transform the distribution. For detecting SNPs significantly associating with a phenotype we used the FarmCPU algorithm (Liu et al. 2016), which is a mixed linear model (MLM) incorporating population structure and kinship but is robust to false positive and negative associations then other MLM GWA algorithms. We used four principle components to model the underlying population structure.

Orthologs of A. thaliana telomere regulating genes were found in the rice and maize gene annotation using the program Orthofinder ver 2.3.12 (Emms and Kelly 2019, 2015).

A. thaliana TERT gene analysis. The SNPs for the A. thaliana TERT region were extracted using vcf2tools and missing genotypes were imputed and phased using Beagle version 5.0 (Brown AN, Lauter N, Vera DL, McLaughlin-Large KA, Steele TM, Harding KM, Cao J, Chae E, Dezwaan TM, Ding W, et al. 2016. 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana. Cell 166: 481–491).

Evidence of selective sweep were examined using the OmegaPlus method (Alachiotis et al. 2012). We extracted SNPs from chromosome 5 to exclude polymorphic sites that had more than 10% of the individuals with a missing genotype and filtered out sites with less than 5% minor allele frequency. This filtered SNP file was used for mapping missing genotypes using Beagle. The data was divided into individuals belonging to haplogroup L or S and resulting VCF file was used for the OmegaPlus ver. 3.0.3 program. We executed the program with -grid 2697 so that each grid would correspond to roughly 10,000 bp, and additional parameters -minwin 5000 -maxwin 3000000 -no-singletons.

Plant phenotype analysis. The phenotypes that were used for associating with telomere lengths were obtained from previous studies. For A. thaliana the various developmental traits were obtained from Arapheno (https://arapheno.1001genomes.org/) (Serén et al. 2017) with the phenotype names FT10 (days to flowering at 10°C), FT16 (days to flowering at 16°C), CL (cauline axillary branch number), RL (leaf number), Length (stem length), RBN (primary branch number), and Diameter (flower diameter). Seed germination response to vernalization was obtained from (Martínez-Berdeja et al. 2020), specifically from the 2nd principal component of Fig. 1 of that study.

For rice we obtained phenotype data that were measured as part of the 3000 rice genome project (Sanciangco et al. 2018; Wang et al. 2018). Dataset included 32 rice traits but we only analyzed the flowering time data, which was measured by estimating the number of days at which 80% of the plants were fully headed (code HDG_80HEAD). The data is available from https://doi.org/10.7910/DVN/HGRSJG.

For maize we obtained phenotype data from the Buckler-Goodman association panel, which consists of 57 different traits measured across 16 different environments. Phenotype file (traitMatrix_maize282NAM_v15-130212.txt) was downloaded from Panzea (https://www.panzea.org/phenotypes) and we only analyzed the days to silk trait (code GD2). FlagSilk.

Association between the telomere length and plant phenotypes were conducted in R. The multiple linear regression analysis was conducted using the lm function and population structure information was obtained from the four principle components that was used in the GWAS analysis.

Acknowledgement
We thank Kevin Wei with assistance in using the K-Seek method and discussions on satellite sequence evolution, and Jullien Flynn and Ian Caldas for assistance in implementing the GC-bias correction method. We also thank members of the Purugganan laboratory, especially Simon (Nick) Cassel, for helpful discussions. This work was supported in part by grants from the National Science Foundation Plant Genome Research Program (IOS-1546218) and the Zegar Family Foundation (A16-0051) to M.D.P.

References
Alachiotis N, Stamatakis A, Pavlidis P. 2012. OmegaPlus: a scalable tool for rapid detection of selective sweeps in whole-genome datasets. Bioinformatics 28: 2274–2275.
Alonso-Blanco C, Andrade J, Becker C, Bemm F, Bergelson J, Borgwartd KM, Cao J, Chae E, Dezwaan TM, Ding W, et al. 2016. 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana. Cell 166: 481–491.
Atwell S, Huang YS, Vilhjálmsdóttir B, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, et al. 2010. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465: 627–631.
Aubert G, Lansdorp PM. 2008. Telomeres and Aging. Physiological Reviews 88: 557–579.
Autexier C, Lue NF. 2006. The structure and function of telomerase reverse transcriptase. Annu Rev Biochem 75: 493–517.
Benjamini Y, Speed TP. 2012. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Research 40: e72–e72.
Bilinski P, Albert PS, Berg JJ, Bircher JA, Grote MN, Lorant A, Quezada J, Swarts K, Yang J, Ross-Ibarra J. 2018. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLOS Genetics 14: el067162.
Brown AN, Lauter N, Vera DL, McLaughlin-Large KA, Steele TM, Fredette NC, Bass HW. 2011. QTL Mapping and Candidate Gene Analysis of Telomere Length Control Factors in Maize (Zea mays L.). G3 (Bethesda) 1: 437–450.
Browning BL, Browning SR. 2016. Genotype Imputation with Millions of Reference Samples. The American Journal of Human Genetics 98: 116–126.
Bukowski R, Guo X, Lu Y, Zou C, He B, Rong Z, Wang B, Xu D, Yang B, Xie C, et al. 2018. Construction of the third-generation Zea mays haplotype map. Gigascience 7.
Fulcher N, Teubenbacher A, Kerdaffrec E, Farlow A, Nordborg M, Riha K. 2014. If the cap fits, wear it.

Fulcher N, Derboven E, Valuchova S, Riha K. 2014. Genetic architecture of natural variation of telomere length and their association with disease. Nature Genetics 45: 422–427.

Cook DE, Zdraljevic S, Tanny RE, Seo B, Riccardi BD, Noble LM, Rockman MV, Alkema MJ, Braendle C, Kamrnega JE, et al. 2016. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length. Genetics 204: 371–83.

Emms DM, Kelly S. 2015. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20: 238.

Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology 16: 157.

Fajkus J, Knaus BJ, Grünwald NJ. 2017. vcfr: a package to manipulate and visualize variant call format data in R. Molecular Ecology Resources 17: 44–53.

Kupiec M. 2014. Biology of telomeres: lessons from budding yeast. FEMS Microbiol Rev 38: 144–171.

Leiboff S, Li X, Hu H-C, Todt N, Yang J, Li X, Yu X, Muehlbauer GJ, Timmermans MCP, Yu J, et al. 2015. Genetic control of morphometric diversity in the maize shoot apical meristem. Nature Communications 6: 8974.

Levy D, Neuhausen SL, Hunt SC, Kimura M, Hwang S-J, Chen W, Bis JC, Fitzpatrick AL, Smith E, Johnson AD, et al. 2010. Genome-wide association identifies OBSF1 as a locus involved in human leukocyte telomere biology. Proc Natl Acad Sci USA 107: 9293–9298.

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 1303.3997v2.

Liti G, Haricharan S, Cubillos FA, Tierney AL, Sharp S, Bertuch AA, Parts L, Bailes E, Louis EJ. 2009. Segregating YKU80 and TLC1 Alleles Underlying Natural Variation in Telomere Properties in Wild Yeast. PLoS Genet 5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2734985/ (Accessed June 23, 2020).

Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebly J. 2003. Genetic Structure and Diversity Among Maize Inbred Lines as Inferred From DNA Microsatellites. Genetics 165: 2117–2128.

Liu X, Huang M, Fan B, Buckler ES, Zhang Z. 2016. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLOS Genetics 12: e1005767.

Maillot G, White CI, Gallego ME. 2006. Telomere-length regulation in inter-ecotype crosses of Arabidopsis. Plant Mol Biol 62: 859–866.

Mansuet L, Fuentes RR, Borja FN, Detras J, Abriel-Santos JM, Chebotalov D, Sanciangco M, Pals K, Copetti D, Poliakov A, et al. 2015. Single-cell telomere-length quantification involves telomere length to meristem activity and stem cell development in Arabidopsis. Cell Rep 11: 977–989.

Haylick L, Moorhead PS. 1961. The serial cultivation of human diploid cell strains. Experimental Cell Research 25: 585–621.

Huang X, Kurata N, Wei X, Wang Z-X, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, et al. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490: 497–501.

Huffman KE, Levede SD, Tesmer VM, Shay JW, Wright WE. 2000. Telomere shortening is proportional to the size of the G-rich telomeric 3'-overhang. J Biol Chem 275: 19719–19722.

Jian Y, Xu C, Guo Z, Wang S, Xu Y, Zou C. 2017. Maize (Zea mays L.) genome size indicated by 180-bp knob abundance is associated with flowering time. Scientific Reports 7: 9554.

Jones AM, Beegs AD, Carvajal-Carmona L, Farrington S, Tenesa A, Walker M, Howarth K, Ballereau S, Hodgson SV, Zabuer A, et al. 2012. TERC polymorphisms are associated both with susceptibility to colorectal cancer and with longer telomeres. Gut 61: 248–254.

Kazda A, Zellingar B, Rössler M, Derboven E, Kusenda B, Riha K. 2012. Chromosome end protection by blunt-ended telomeres. Genes Dev 26: 1703–1713.

Kilian A, Stiff C, Kleinhofs A. 1995. Barley telomeres shorten during differentiation but grow in callus culture. Proceedings of the National Academy of Sciences of the United States of America 92: 9555–9.

Kim Y, Nielsen R. 2004. Linkage disequilibrium as a signature of selective sweeps. Genetics 167: 1513–24.

Knaus BJ, Grünwald NJ. 2017. vcfr: a package to manipulate and visualize variant call format data in R. Molecular Ecology Resources 17: 44–53.

Kupiec M. 2014. Biology of telomeres: lessons from budding yeast. FEMS Microbiol Rev 38: 144–171.

Leiboff S, Li X, Hu H-C, Todt N, Yang J, Li X, Yu X, Muehlbauer GJ, Timmermans MCP, Yu J, et al. 2015. Genetic control of morphometric diversity in the maize shoot apical meristem. Nature Communications 6: 8974.

Levy D, Neuhausen SL, Hunt SC, Kimura M, Hwang S-J, Chen W, Bis JC, Fitzpatrick AL, Smith E, Johnson AD, et al. 2010. Genome-wide association identifies OBSF1 as a locus involved in human leukocyte telomere biology. Proc Natl Acad Sci USA 107: 9293–9298.

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 1303.3997v2.

Liti G, Haricharan S, Cubillos FA, Tierney AL, Sharp S, Bertuch AA, Parts L, Bailes E, Louis EJ. 2009. Segregating YKU80 and TLC1 Alleles Underlying Natural Variation in Telomere Properties in Wild Yeast. PLoS Genet 5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2734985/ (Accessed June 23, 2020).

Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebly J. 2003. Genetic Structure and Diversity Among Maize Inbred Lines as Inferred From DNA Microsatellites. Genetics 165: 2117–2128.

Liu X, Huang M, Fan B, Buckler ES, Zhang Z. 2016. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLOS Genetics 12: e1005767.

Maillot G, White CI, Gallego ME. 2006. Telomere-length regulation in inter-ecotype crosses of Arabidopsis. Plant Mol Biol 62: 859–866.

Mansuet L, Fuentes RR, Borja FN, Detras J, Abriel-Santos JM, Chebotalov D, Sanciangco M, Pals K, Copetti D, Poliakov A, et al. 2015. Single-cell telomere-length quantification involves telomere length to meristem activity and stem cell development in Arabidopsis. Cell Rep 11: 977–989.

Haylick L, Moorhead PS. 1961. The serial cultivation of human diploid cell strains. Experimental Cell Research 25: 585–621.

Huang X, Kurata N, Wei X, Wang Z-X, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, et al. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490: 497–501.

Huffman KE, Levede SD, Tesmer VM, Shay JW, Wright WE. 2000. Telomere shortening is proportional to the size of the G-rich telomeric 3'-overhang. J Biol Chem 275: 19719–19722.
A

B

Median = 6411
Mean = 7113.6
A

Haplogroup L Haplogroup S

Telomere length (kb)

Haplogroup L S

Fulcher et al.

AraTha

N=26 N=143

AraTha

N=30 N=171

N=115 N=368

Telomere Repeat Copy Number

Telomere Repeat Copy Number

N=26 N=143

Telomere length (kb)

N=30 N=171

Haplogroup

Haplogroup

Telomere length (kb)
A

\[\log_{10}(\text{Telomere Copy Number}) \]

Latitude

Longitude

\[\rho = -0.182 \]

\[p = 8.8 \times 10^{-5} \]

\[\rho = -0.165 \]

\[p = 3.8 \times 10^{-4} \]

B

\[\log_2(\omega_{\text{Haplogroup S}}) \]

\[\log_2(\omega_{\text{Haplogroup L}}) \]

TERT
Oryza sativa

Zea mays