Investigation of Technological Parameters for Machining Toroidal Section of Solid Ceramic End Mills

S N Grigoriev1, V A Grechishnikov1, M A Volosova1, X Jiang2 and P M Pivkin1,*

1 Moscow State University of Technology “STANKIN”, 127055, Moscow, Russia
2 University of Shanghai of Science and Technology, 200093, Shanghai, China

*PMPivkin@gmail.com

Abstract. Solid ceramic mills are a promising technological solution for cutting heat-resistant materials. Although nanostructured cutting ceramics has a number of valuable physical and mechanical properties providing high operational performance of mills, it has low strength. The design of a solid ceramic mills is formed by smooth surfaces without stress concentrators to ensure operability and to reduce the probability of failure. The most important structural element of solid ceramic end mill is a helical groove with a negative rake angle needed to increase surface strength. This groove can be machined with standard grinding wheels of type 1A1 or 1V1. However, the application of grinding wheels of a standard shape requires the use of reduced cutting parameters to prevent chipping on the forming sections of the cutter. Chipping can be caused by too short length of the contact line and the stress concentration at the end point of the profile of the grinding wheel, which is typically fully responsible for shaping the front surface and its transition to the tooth back. In this paper, in order to increase the contact line, we develop a new approach to designing grinding wheels for machining helical grooves of solid mills and determining rational technological and operational parameters for their use. A new approach is developed based on the fundamental principles of analytical geometry and linear algebra, numerical methods and basic axioms of the shaping theory. In this study, we have identified the key relationships between parameters determining the position of the grinding wheel relative to the workpiece and the geometrical parameters of a solid ceramic mills. The developed approach allowing to determine the specific design of the grinding wheel, depending on the initial parameters of the mill and the trajectory of the axis of the wheel relative to the mill, was implemented in the MathCAD environment.

1. Introduction
Unique physical and mechanical properties such as low plasticity, high corrosion resistance, low density and high hardness even at very high temperatures open up wide prospects for ceramics as a material for cutting tools [1-3].

Heat-resistant materials are widely used in various industries. Cutting ceramics is an ultimate choice for processing heat-resistant materials [4,5] and is widely used in indexable tools. In the aerospace industry, a large fraction of total production is represented by products made of heat-resistant materials with a small varying surface curvature [6-10]. The use of indexable tools for processing of such surfaces is quite limited due to the large size that can cause the undesirable interference of the surface being processed with the tool [11, 12].
In the view of these circumstances, the development of the theoretical foundation of design of and new technologies for the production of unique ceramic mills is very important and highly promising. A number of contactless processes such as laser [13], plasma [14-18], electron beams [19, 21], electrochemical [22], ultrasonic [23-25] and water-jet [24] methods, with the preparation of the front surface via applying wear-resistant coatings [25-28], are widely used for producing ceramic cutting tools. However, in most cases ceramic cutting tools are produced by grinding with diamond grinding wheels with small abrasive grain [29-33] that helps to reduce the degree of chipping of the cutting edges [34].

Our group has carried out in-depth studies of the geometric parameters of mills and has developed a new mill design, described in detail in Patent 2019145011/02(086799) under approval. The cutting edge on the toroidal section of the cutting part of the mill is a complex line in 3D space, which can be represented as the intersection of the helical surface of the chip groove and the toroidal cutting surface. Based on the distribution of the normal rake angle along the cutting edge obtained from a mathematical model of the cutting part of the mill, which was developed based on the revealed functional relationships between the main geometric parameters of the end ceramic cutter with a toroidal cutting part with a radius of curvature Rt = 1 mm, it was found that the rake angle varies along the cutting edge from -14 ° to -35 ° and that the helical groove at γ = -14, Dserd = 3.34 mm and w = 30 degrees uniformly transits into the toroidal part. [35-37].

In order to implement the trajectory using the control program on a CNC machine, it is necessary to perform transformations in the tool coordinate system in such a way as to make the design system universal [38-41].

The geometrical properties of the helical groove directly affects the tool strength, tool rigidity, chip forming, directions of cutting forces and cutting conditions. Science the groove profile of the end mill [35] has a complex shape, determining the parameters of the parameters of the grinding wheel is quite a complicate task. The groove can be properly shaped using a newly designed grinding wheel of complex with taking into account its position relative to the mill.

Petukhov have made a valuable contribution to the solution of this problem, having discovered many new approaches to the determination of the parameters of the grinding wheel relative to the mill using numerical methods with the three key parameters such as the angle of intersection of the axes, the distances between axes and the position of the point of intersection of the axes [42-45]. Guochao Li [46,47] and Radzevich [48, 49] proposed to use vector algebra for determining the shape of a second-order tool along the normals to the helical surface with minimal curvature. Semenchenko [50], Grechishnikov [51] and Rodin [52] were among the first to develop such an approach, based on the presence of a common normal between the machined surface and the cutting surface of the grinding wheel, known as the second condition of shaping, and to apply it to machining of the helical groove. Karpuschewski et al. [53] proposed a method for determining the position of the grinding wheel of 1A1 type relative to the workpiece. The mathematical model of Karpuschewski et al. allows to uniquely set the position of the grinding wheel via the four key parameters such as movements along two axes and the angles of rotation of the wheel around these axes. Wei Ji and Lihui b Wang developed an extended numerical model of determining the shape of the grinding wheel while machining helical grooves using circular projections, which is based on angular positioning on the radial section on the grinding wheel [54].

Grooves of a solid ceramic mills with a negative geometry of the front surface have points with intermittent changes in the positions of the normals along the profile in the cross section. This complicates profiling of the grinding wheel using the envelope method and limits the validity range of numerical methods. No analytical solution to the problem of profiling of the grinding wheel for a helical groove with a sharp drop in the curvature radius exists at the present time.

In this paper, the following tasks have been accomplished:

The key features of the design of solid ceramic mills have been analyzed;

Initial setting parameters for positioning of the axis of the grinding wheel relative to the workpiece have been identified;
A new mathematical model of the dependence of the shape of the grinding wheel; A new approach to determine the profile of the grinding wheel using the analytical method with the increased accuracy due to the exclusion of discontinuities at points with sharp changes in curvature has been developed; The efficiency and performance of the newly developed model and approach to the design of the grinding wheel have been thoroughly evaluated. The key advantage of the new mathematical model and approach over the existing ones is their ability to reveal new functional relationships and new key parameters controlling forming that can be used to improve the design of ceramic mills. Other advantage of the aforementioned model and approach is the ability to determine the shape of the grinding wheel based on setting conditions with sudden jump-like changes in the curvature radius that cannot be done by the existing numerical and analytical models. The developed mathematical model is easy to use and the amount of analytical transformations and calculations needed to execute the model and, hence, computational costs, are greatly reduced compared to widely used numerical methods of circular projections and combined sections. The developed model is more universal compared to competitors and allows identifying new functional relationships between the setting parameters of the grinding wheel and the shape of the helical groove without developing numerical algorithms for each specific case.

2. Results and Discussion

2.1. Analysis of surfaces of solid ceramic mill being machined
The primary reason for the failure of solid ceramic mills is the low strength. The helical surface of the cutting part, passing from the cylindrical periphery to the rake surface, has a uniform load distribution without stress concentrators on the toroidal section of the cutting surface (see Fig.1). Changes in the rake, clearance and wedge angle along the profile on the toroidal section affect the distribution of cutting forces and residual stresses in the cutting material. The geometric parameters of the toroidal part are controlled by the helical groove profile. The solid ceramic mill has negative rake surface.

The front surface of a solid ceramic milling cutter is formed in a radial section based on the recommended negative values of the rake angle. The profile of the front surface \(F_{pp1}(X) \) and the back surface \(F_{pp1}(G) \) in the XOY coordinate system is represented by dependences (1), based on which the helical front surface with a step \(T \) is expressed by equations (2):

\[
F_{pp1}(X) = b(y) - \sqrt{2 \cdot a(y) \cdot X - X^2 + R_{pp} - a(y)^2};
\]

\[
F_{pp1}(G) = b_1 - \sqrt{2 \cdot a_1 \cdot G - G^2 + R_{pp} - a_1^2}
\]

\[
F_{pp}(X, v) = \begin{cases}
X \cdot \cos(v) - \sin(v) \cdot \left(b(y) - \sqrt{R_{pp}^2 - X^2 + 2 \cdot a(y) \cdot X - a(y)^2} \right) \\
\cos(v) \cdot \left(b - \sqrt{R_{pp}^2 - X^2 + 2 \cdot a(y) \cdot X - a(y)^2} + X \cdot \sin(v) \right) \\
\left(\frac{T}{2\pi} \right) \cdot v + L_z
\end{cases}
\]

\[
F_{pp}(G, v) = \begin{cases}
G \cdot \cos(v) - \sin(v) \cdot \left(b_1 - \sqrt{2 \cdot a_1 \cdot G - G^2 + R_{pp} - a_1^2} \right) \\
\cos(v) \cdot \left(b_1 - \sqrt{2 \cdot a_1 \cdot G - G^2 + R_{pp} - a_1^2} + G \cdot \sin(v) \right) \\
\left(\frac{T}{2\pi} \right) \cdot v + L_z
\end{cases}
\]
Figure 1. Main geometrical parameters of toroid-shaped solid ceramic end mill.

2.2. Mathematical model of the position of the grinding wheel relative to the machined surface

The coordinate system of the grinding wheel $O_{Xw}Y_{w}Z_{w}$ is fixed to the grinding wheel so that the axis of the wheel corresponds to the axis OZ_{w}, and in the initial position is aligned with the tool coordinate system $OXYZ$ (Fig. 2). The position of the grinding wheel relative to the ceramic mill is controlled by three parameters: the distance between axes A, which is determined by the radii of the core of the mill and the grinding wheel, the angle of intersection of the axes ε and the position L_{z} of the axis of the grinding wheel relative to the initial profile of the mill groove. Change in the distance L_{z} allows varying the position of the maximum diameter of the grinding wheel profile along the axis OZ_{w}.

Figure 2. Scim of degerming grinding weal profile.
The location of the grinding wheel relative to the helical surfaces of the back and the front surface of the cutter is described by the following parametric relationships:

\[
F_r(x, y) = \begin{cases}
\cos(\Psi) \cos(y) \sin(\psi) \left(X - \frac{R_p F_w X}{2} + 2 a \cos(\Psi) \frac{x}{2} \right) - \frac{R_p F_w X}{2} \cos(\Psi) \\
\cos(\Psi) \cos(y) \sin(\psi) \left(X - \frac{R_p F_w X}{2} + 2 a \cos(\Psi) \frac{x}{2} \right) - \frac{R_p F_w X}{2} \cos(\Psi) \\
\cos(\Psi) \cos(y) \sin(\psi) \left(X - \frac{R_p F_w X}{2} + 2 a \cos(\Psi) \frac{x}{2} \right) - \frac{R_p F_w X}{2} \cos(\Psi)
\end{cases}
\]

2.3 Search for a mathematical model determining the profile of the grinding wheel

The profile of the grinding wheel is the envelope of the profiles of the helical front surface Zk0 (X, \Psi), Yk0 (C, \Psi) and the back surface Zk (G, \Psi), Yk (G, \Psi) in the axial sections of the grinding wheel OWyZw in the plane OXwYwZw.

\[
F_{w}(X, y) = -\cos(\Psi) \cos(x) \sin(y) \left(\frac{R_p F_w X}{2} - \frac{R_p F_w X}{2} \right) - X \cos(y) - \frac{R_p F_w X}{2} \cos(\Psi) \left(\frac{a}{2} - X \sin(y) \right) - \frac{R_p F_w X}{2}
\]

The solution of the aforementioned equation has been performed using the Newton method (see Figs 3 and 4).

![Graph 3](image1.png) \quad ![Graph 4](image2.png)

The screw parameter \(v_t \), defining the profile of the screw groove \(F_{w}(X, v_t) \), \(F_w(G, v_t) \) the envelope of which determines the shape of the grinding wheel with improved properties for machining a helical groove.

\[
v_t(X) = \frac{v_p R_p + \cos(\Psi) \cos(x) \sin(y) \sin(\psi)}{\cos(\Psi) \cos(x) \sin(y) \sin(\psi) - \frac{a}{2} - X \sin(y)}
\]

After the substitution of the obtained screw parameter \(v_t \) into the contact equation of the screw surface, we obtain the parametric equations \(F_{w}(X, v_t) \) \(F_w(G, v_t) \). By varying the rotation angle of the axial section of the grinding wheel \(\Psi \) we determine the set of shape-forming profiles of the screw surface \(F_{w}(X, v_t) \), \(F_w(G, v_t) \), the envelope of which determines the shape of the grinding wheel with improved properties for machining a helical groove (Fig. 5).
Figure 5 Scheme of determining the profile of a grinding wheel implemented in the MathCad environment.

\[
F_{w_1}(X, v_t) = \cos(\Psi) \cdot \left(\cos(v) \cdot \left(b(y) - \sqrt{R_{pp}^2 - X^2 + 2 \cdot a(y) \cdot X - a(y)^2} \right) - A + X \cdot \sin(v) \right) - \sin(\Psi) \cdot (\cos(v) \cdot (\sin(v) \cdot (b(y) - \sqrt{R_{pp}^2 - X^2 + 2 \cdot a(y) \cdot X - a(y)^2} - X \cos(v)) + \sin(\xi) \cdot (L_z + \frac{v \cdot \pi}{2})) \right)
\]

(7)

\[
F_{w_2}(X, v_t) = \cos(\xi) \cdot \left(L_z + \frac{v \cdot \pi}{2} \right) \cdot v - \sin(\xi) \left(\sin(v) \left(b(y) - \sqrt{R_{pp}^2 - X^2 + 2 \cdot a(y) \cdot X - a(y)^2} \right) - X \cos(v) \right)
\]

(8)

2.4 Discussion on the mathematical model for determining the profile of the grinding wheel

It is clear that the use of a special grinding wheel can significantly increase the length of the contact line between the wheel and the helical surface. This will provide an improvement in the depth of cutting along the grinding wheel profile.

To verify the accuracy of the proposed mathematical model, the obtained profile \(F_{w_1}(X, v_t) \) was specified in the T-Flex CAD system. An array of model grinding wheels with the profile \(F_{w_1}(X, v_t) \) was formed in accordance with the forming conditions and shapes of the model grinding wheels in the cross section of the model grinding wheel. The controllable profile of the helical groove in the cross section represents the envelope of profiles of these grinding wheels. It was found that maximum deviation of less than 0.01 mm has been achieved after the fifth iteration of the Newton method (Fig. 6-7).
3. Conclusions
Based on the shaping theory, analytical geometry, linear and vector algebra, the cutting theory and some knowledge of computer graphics, a new approach to the design of grinding wheels under rational installation conditions was developed. The inverse profiling problem solved in T-Flex CAD proves evidence of the viability of the newly developed approach and its applicability to the design of grinding wheels for machining solid ceramic mills.

The present study leads us to the following conclusions:
1. New design of the grinding wheel allows to increase the length of the contact line between the grinding wheel and the machined helical surface, which provide a more uniform distribution of the cutting depth along the profile of the wheel, which in turn increase the cutting parameters without compromising the quality of the surface being machined.
2. The developed mathematical model provides an analytical description of shaping, which may be an important instrument of finding new dependencies in shaping of the screw surfaces of solid ceramic mills.
3. The precise determination of the shape of the forming profiles depends on the screw parameter, groove profile parameter in the cross section, set conditions such as A, Eps, H, the radius of the grinding wheel and the angle of inclination of the helical groove.
4. It was found that the greatest influence on the groove processing is played by the ratio of the angle of inclination of the helical groove and the angle of installation of the grinding wheel relative to the workpiece and also by the angle of intersection of the axes of the grinding wheel and solid ceramic mill.
5. It was found that the main contribution to the accuracy of forming the profile of the front surface is made by the profile section of the grinding wheel with the length of less than 30%.

Acknowledgements
The support of this work by Russian Science Foundation under Project № 18-19-00599 is gratefully acknowledged.

References
[1] Grigorev S N, Kuzin V V, Burton D, Batako A D 2012 Influence of ceramic properties on the stress-strain state of a plate in steady heat conduction Russian Engineering Research 32(4) 374-379.
[2] Grigoriev S N, Fedorov S V, Hamdy K 2019 Materials, properties, manufacturing methods and cutting performance of innovative ceramic cutting tools – A review Manuf. Rev. 6 1–27, http://doi:10.1051/mfreview/2019016.
[3] Kim S 1994 Material properties of ceramic cutting tools Switzerland Key Engineering Materials, Trans Tech Publications 96 33-80.
[4] Bernd Bitterlich, Sebastian Bitsch, Kilian Friederich 2008 SiAlON based ceramic cutting tools, Journal of the European Ceramic Society 28(5) 989-994, ISSN 0955-2219, https://doi.org/10.1016/j.jeurceramsoc.2007.09.003.
[5] Sørby K, Vagnorius Z 2018 High-pressure cooling in turning of Inconel 625 with ceramic cutting tools Procedia CIRP 77 pp 74 – 77.
[6] Zlámal T, Hajnyš J, Petřu J, Mrkvica I 2018 Effect of the Cutting Tool Geometry on the Tool Wear Resistance when Machining Inconel 625. Advances in Science and Technology Research Journal 12(1) 236-243. https://doi.org/10.12913/22998624/86262.
[7] Grigoriev S N, Gurin V D, Volosova M A 2013 Development of residual cutting tool life prediction algorithm by processing on CNC machine tool Materialwissenschaft und werkstofftechnik 44(9) 790-796.
[8] Vereschaka A A, Volosova M A, Grigoriev S N 2013 Development of wear-resistant complex for high-speed steel tool when using process of combined cathodic vacuum arc deposition (2nd CIRP Global Web Conference - Beyond modern manufacturing: Technology for the factories of the future (CIRPe2013)) Procedia CIRP 9 pp 8-12
[9] Isaev A, Grechishnikov V, Pivkin P, Ilyukhin Yu, Kozochkin M, Peretyagin P 2016 Structure and machinability of thin-walled parts made of titanium alloy powder using electron beam melting technology *Journal of Silicate Based and Composite Materials* **68(2)** 46–50 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.8

[10] Grigoriev S N, Sinopalnikov V A, Tereshin M V 2012 Control of parameters of the cutting process on the basis of diagnostics of the machine tool and workpiece *Measurement techniques* **55(5)** 555-558

[11] Heng Zhang, Jiaqiang Dang, Weiwei Ming, Xingwei Xu, Ming Chen, Qinglong An 2020 Cutting responses of additive manufactured Ti6Al4V with solid ceramic tool under dry high-speed milling processes *Ceramics International* **46(10)A** 14536-14547, ISSN 0272-8842, https://doi.org/10.1016/j.ceramint.2020.02.253.

[12] Pengbo Bo, Michael Bartoň, Helmut Pottmann 2017 Automatic fitting of conical envelopes to free-form surfaces for flank CNC machining *Computer-Aided Design* **91** 84-94, ISSN 0010-4485, https://doi.org/10.1016/j.cad.2017.06.006.

[13] Romoli L, Tantussi G, Dini G 2011 Experimental approach to the laser machining of pmma substrates for the fabrication of microfluidic devices *Opt. Lasers Eng.* **49** 419–427.

[14] Grigoriev S N, Metel’ A S, Fedorov S V 2012 Modification of the structure and properties of high-speed steel by combined vacuum-plasma treatment *METAL SCIENCE AND HEAT TREATMENT*: **54(1-2)** 8-12

[15] Godin N, Reynaud P, R’Mili M, Fantozzi G 2016 Identification of a Critical Time with Acoustic Emission Monitoring during Static Fatigue Tests on Ceramic Matrix Composites: Towards Lifetime Prediction *Appl. Sci.* **6** 43.

[16] Grigoriev S, Melnik Y, Metel A 2001 Broad fast neutral molecule beam sources for industrial-scale beam-assisted deposition 6th International Workshop on Plasma-Based Ion Implantation *Univ Joseph Fourier; Inst Natl Polytechn Grenoble; European Commiss; Minist Affaires Etrangeres; Minist Educ Natl; Minist Defense/DGA; City Grenoble; Reg Rhone Alpes; Grenoble Alps METROPOLE SURFACE & COATINGS TECHNOLOGY* (France, Grenoble) **156**(1-3) pp 44-49

[17] Metel A S, Grigoriev S N, Melnik 2012 Broad beam sources of fast molecules with segmented cold cathodes and emissive grids *Instruments and Experimental Techniques* **55**(1) 122-130

[18] Metel A S, Grigoriev S N, Melnik Yu A 2011 Glow discharge with electrostatic confinement of electrons in a chamber bombarded by fast electrons *Plasma physics reports* **37**(7) 628-637

[19] Grigoriev S N, Krapostin A A 2016 Multilayer composite nanoscale coatings as a method to increase reliability and tool life of cutting tools made of mixed ceramic Al2O3-TiC. *Mech. Ind.* **17** 704.

[20] Spinney P, Howitt D, Smith R, Collins S 2010 Nanopore formation by low-energy focused electron beam machining *Nanotechnology* **21** 375301.

[21] Grigoriev S, Metel A 2004 Plasma- and beam-assisted deposition methods NATO-Russia Advanced Research Workshop on Nanostructured Thin Films and Nanodispersion Strengthened Coatings (Technol Univ, Moscow State Inst Steel & Alloys) *NATO, Brussels, Public Diplomacy Div, Collaborat Programmers Sect NANOSTRUCTURED THIN FILMS AND NANODISPERSION STRENGTHENED COATINGS* (NATO science series, Series II: Mathematics, physics and chemistry) (Russia, Moscow) **155** 147-154

[22] Tiwari A, Mandal A, Kumar K 2015 Multi-objective optimization of electro-chemical machining by non-dominated sorting genetic algorithm. *Mater. Today Proc.* **2** 2569–2575.

[23] Liu D, Cong W, Pei Z J, Tang Y 2012 A cutting force model for rotary ultrasonic machining of brittle materials. *Int. J. Mach. Tools Manuf.* **52** 77–84.

[24] Isaev A, Grechishnikov V, Kozochkin M, Pivkin P, Petuhov Y and Romanov V 2016 Physical mechanism of ultrasonic machining (3rd International Conference on Competitive Materials and Technology Processes (IC-CMTP3)) *IOP Publishing IOP Conf. Series: Materials Science and Engineering* **123** p 012045 https://doi:10.1088/1757-899X/123/1/012045.
[25] Singh R P, Singhal S 2018 An experimental study on rotary ultrasonic machining of macor ceramic. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232 1221–1234.

[26] Feng Yan Xia, et al. Surface Characteristics of Ceramics Milled with Abrasive Waterjet Technology Key Engineering Materials (Trans Tech Publications, Ltd.) 329 335–340. https://doi:10.4028/www.scientific.net/kem.329.335.

[27] Azizi M W, Belhadi S, Yallese M A, Lagred A, Bouziane A and Boulanouar L 2016 Study of the machinability of Hardened 100Cr6 Bearing Steel With TiN coated Ceramic Inserts Third International Conference on Energy, Materials, Applied Energetics and Pollution (ICEMAE 2016)

[28] Vereschaka A A, Grigoriev S N, Vereschaka A S 2014 Nano-scale multilayered composite coatings for cutting tools operating under heavy cutting conditions 6th CIRP International Conference on High Performance Cutting (HPC) (Univ Calif, Berkeley & Davis Campuses, Berkeley) CIRP 6TH CIRP INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE CUTTING (HPC2014) Procedia CIRP 14 pp 239-244

[29] Panda A, Das S R & Dhupal D 2020 Machinability investigation and sustainability assessment in FDHT with coated ceramic tool. Steel and Composite Structures 34(5) 681–698. https://doi.org/10.12989/SCS.2020.34.5.681.

[30] Grigoriev S N, Melnik Yu A, Metel A S 2009 A Compact Vapor Source of Conductive Target Material Sputtered by 3-keV Ions at 0.05-Pa Pressure Instruments and experimental techniques 52(5) 731-737

[31] Dana Stancekova, Jana Petrů, Aroslava Svobodová 2018 The Application of Grinding of Ceramic Materials Materials Science Forum 919 215-221 https://doi.org/10.4028/www.scientific.net/MSF.919.215.

[32] Bi Zhang, Zhaohui Deng 2002 Grinding of nanostructured ceramic coatings: Surface observations and material removal mechanisms International Journal of Machine Tools and Manufacture.

[33] Ma L J, Gong Y, Dand Chen X H 2014 Study on surface roughness model and surface forming mechanism of ceramics in quick point grinding. Int J Mach Tool Manu. 77 82–92.

[34] Wei S, Liu Y, Liu X, Zhao H 2019 Investigation on edge chipping evaluation of Si 3 N 4 ceramics milling surface Meas J Int Meas Confed 133 241–250. https://doi.org/10.1016/j.measurement.2018.10.015.

[35] Grechishnikov V A, Grigoriev S N, Pivkin P M, et al. 2019 Solid Ceramic Toroidal End Mill Russ. Engin. Res. 39 1084–1087 https://doi.org/10.3103/S1068798X19120074.

[36] Vladimir Grechishnikov, Sergey Grigoriev, Petr Pivkin, Marina Volosova, Alexander Isaev, Dmitry Nikitin and Ilya Minin 2019 Design of Toroid-Shaped Solid Ceramic End Mill EPJ Web Conf. 224 05001 https://doi.org/10.1051/epjconf/201922405001.

[37] Grigoriev S N, Grechishnikov V A, Volosova M A, et al. 2020 Machining High-Temperature Alloys by Means of Solid Ceramic End Mills. Russ. Engin. Res. 40 79–82 https://doi.org/10.3103/S1068798X20010086.

[38] Petr Nikishechkin, Nadezhda Chervonnova, Anatoly Nikich 2018 Approach to the construction of specialized portable terminals for monitoring and controlling technological equipment (International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2018)) (Russia, Sevastopol) MATEC Web Conf. 224 pp.1-9.

[39] Martinov G M, Nikischechkin P A, Grigoriev A S, et al. 2019 Organizing Interaction of Basic Components in the CNC System AxiOMA Control for Integrating New Technologies and Solutions Automation and Remote Control 80(3) pp. 584–591

[40] Kovalev I A, Nikishechkin P A, Grigoriev A S 2017 Approach to Programmable Controller Building by its Main Modules Synthesizing Based on Requirements Specification for Industrial Automation 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) pp 1-4

[41] Grigoriev Sergej N, Martinov Georgi M 2014 Research and development of a cross-platform CNC kernel for multi-axis machine tool (6TH CIRP INTERNATIONAL CONFERENCE ON
HIGH PERFORMANCE CUTTING (HPC2014)) Procedia CIRP 14 517-522

[42] Kolesov N V, Petukhov Y E 2007 Computer models of cutting tools Russ. Engin. Res. 27 812–814 https://doi.org/10.3103/S1068798X07110184.

[43] Petukhov Yu E 2004 Forming by numerical methods (Russia, Moscow,"Janus-K") p 200

[44] Petukhov Y E, Kolesov N V & Yurasov S Y 2014 Geometric shaping in cutting. Russ. Engin. Res 34 374–380 https://doi.org/10.3103/S1068798X14060161.

[45] Petukhov Y E, Vodovozov A A 2015 Sharpening helical bits with curvilinear cutting edges at the rear surface Russ. Engin. Res 35 670–673

[46] Guochao Li 2017 A new algorithm to solve the grinding wheel profile for end mill groove machining Int J Adv Manuf Technol 90 775–784 https://doi.org/10.1007/s00170-016-9408-4.

[47] Guochao Li, Lei Dai, Jiao Liu, Honggen Zhou, Guizhong Tian, Lei Li 2020 An approach to calculate grinding wheel path for complex end mill groove grinding based on an optimization algorithm Journal of Manufacturing Processes 53 99-109 ISSN 1526-6125, https://doi.org/10.1016/j.jmapro.2020.02.011.

[48] Radzevich S P 2008 CAD/CAM of sculptured surfaces on multi-axis NC machine: The DG/ K-based approach (California, San Rafael, M&C Publishers) p 114

[49] Radzevich S P 2014 Generation of surfaces: Kinematic geometry of surface machining (Boca Raton Florida: CRC Press) p 738

[50] Semenchenko I I 1944 Cutting tool. Design and production. T.3 (Russia).

[51] Kozhevnikov D V, Grechishnikov V A, et al. 2007 Cutting tool (Moscow, Mechanical Engineerin) pp 528.

[52] Rodin P R 1971 Geometriya rezhushchei chasti spiral’nogo sverla (Cutting Geometry of a Helical Bit) (Kiev, Tekhnika)

[53] Karpuschewski B, Jandecka K, Mourek D 2011 Automatic search for wheel position in flute grinding of cutting tools CIRP Ann - Manuf Technol 60 347–350

[54] Xianli Liu, Zhan Chen, Wei Ji, Lihui 2019 Wang Iteration -based error compensation for a worn grinding wheel in solid cutting tool flute grinding Procedia Manufacturing 34 161-167 ISSN 2351-9789, https://doi.org/10.1016/j.promfg.2019.06.134.