A Note on Nonvanishing Properties of Drichlet \(L \)-values Mod \(\ell \) and Applications to K-groups

Abstract

Let \(\chi \) be a Dirichlet character, \(\psi_n \) the character of \(\mathbb{Z}_p^* \) with order \(p^n \). Let \(\ell \) be a prime not equal to \(p \). We note that by directly using a theorem of Sinnott, it can be proved that \(L(-k, \chi \psi_n) \) is a \(\ell \)-unit for sufficiently large \(n \). Applying this, some boundness result of \(\ell \)-part of \(4n + 2 \)-th K-groups of rings of integers in a cyclotomic \(\mathbb{Z}_p \) extension of real abelian fields are proved.

1 Introduction

Let \(F \) be a number field. Let \(p \) be a prime number. Iwasawa theory study the ideal class groups of \(\mathbb{Z}_p \) extension of \(F \). In [3], Washington proved the \(\ell \)-part of the class numbers in cyclotomic \(\mathbb{Z}_p \) extension of \(F \) is bounded when \(F \) is an abelian number field and \(\ell \neq p \) is a prime. Since the ideal class group is isomorphic to the torsion part of the 0-th K group of \(\mathcal{O}_F \), where \(\mathcal{O}_F \) is the ring of integers of \(F \). Hence Washington’s theorem says the size of \(\ell \)-part of \(K_0(\mathcal{O}_F) \) is bounded in a cyclotomic \(\mathbb{Z}_p \) extension. By class number formula, this is essentially a mod \(\ell \) nonvanishing property of Dirichlet L-functions at \(s = 0 \).

In [4], Sinnott gave a different proof by algebraic methods. For nonvanishing properties of Dirichlet L-functions at \(s = -k \), this is proved in [7] by a refinement of Washington’s method. In this paper, we note that the nonvanishing properties of Dirichlet L-functions for \(s = -k \) can also be proved by directly using Sinnott’s theorem in [4] . Since the Lichtenbaum conjecture which relates the Dedekind zeta functions at \(s = -k \) and higher K-groups is proved for abelian number fields by Huber and Kings [9], we give some bounded results on non-\(p \) part of higher K-groups in cyclotomic \(\mathbb{Z}_p \) extensions of a real abelian number field.

This paper is organized as follows. In section 1, we state Sinnott’s theorem about rational measures on \(p \)-adic integers \(\mathbb{Z}_p \). In section 2, we use Sinnott’s theorem to show the mod \(\ell \) nonvanishing properties of \(L \)-values. In section 3, we give some applications on higher K-groups in a cyclotomic \(\mathbb{Z}_p \) extension of a real abelian number field.
2 Sinnot’s Theorem

Let \(\ell, p \) be two distinct prime numbers. A \(\overline{\mathbb{F}}_1 \) value measure on \(\mathbb{Z}_p \) is a finitely additive \(\overline{\mathbb{F}}_1 \)-valued functions on collection of compact open subsets of \(\mathbb{Z}_p \). Equivalently, a measure is a finitely additive \(\overline{\mathbb{F}}_1 \)-valued functions on the sets \(\{ c + p^n \mathbb{Z}_p | c \in \mathbb{Z}_p \} \). If \(\phi : \mathbb{Z}_p \to \overline{\mathbb{F}}_1 \) is a locally constant function, say constant on the cosets of \(p^n \mathbb{Z}_p \) in \(\mathbb{Z}_p \), then we define

\[
\int_{\mathbb{Z}_p} \phi(x) \alpha(x) = \sum_{a \mod p^n} \phi(a) \alpha(a + p^n \mathbb{Z}_p)
\]

The ring of measures. Let \(\alpha, \beta \) be two measures and \(U \) be an open compact subset of \(\mathbb{Z}_p \). Then \(\alpha + \beta \) is a measure. Define the convolution \(\alpha \ast \beta(U) = \int \int_{1U(x+y)d\alpha(x)d\beta(y)} \). Then \(\alpha \ast \beta \) is a measure and the measures is a ring respect to +, ∗.

Proposition 1. The ring of \(\overline{\mathbb{F}}_1 \)-valued measures on \(\mathbb{Z}_p \) is isomorphic to the ring of \(\overline{\mathbb{F}}_1 \)-valued functions on \(\mu_p^\infty \).

Proof. Given a measure \(\alpha \), define

\[
\hat{\alpha}(\zeta) = \int_{\mathbb{Z}_p} \zeta^x d\alpha(x)
\]

for \(\zeta \in \mu_p^\infty \).

Given a function \(f \) on \(\mu_p^\infty \), define

\[
\hat{f}(a + p^n \mathbb{Z}_p) = \frac{1}{p^n} \sum_{\zeta^{p^n}=1} f(\zeta) \zeta^{-a}.
\]

It is easy to verify these two map establish the ring isomorphism. They are Fourier transform and Fourier inversion. \(\square \)

A measure \(\alpha \) is a rational function if there is a rational function \(R(Z) \in \overline{\mathbb{F}}(Z) \) such that \(\hat{\alpha}(\zeta) = R(\zeta) \) for all but finitely many \(\zeta \in \mu_p^\infty \).

\(\alpha \) is supported on \(\mathbb{Z}_p \) if and only if \(\sum_{\epsilon^{p^n}=1} \hat{\alpha}(\epsilon \zeta) = 0 \) for every \(\zeta \in \mu_p^\infty \).

Let \(U = 1 + 2p\mathbb{Z}_p \). Let \(\psi \) be a character from \(\mathbb{Z}_p^\times \) to \(\mu_p^\infty \). Hence it is a character of \(U \) to \(\mu_p^\infty \subset \overline{\mathbb{F}}_1 \). We can view \(\psi \) as a character of \(\text{Gal}(\mathbb{Q}_\infty / \mathbb{Q}) \), where \(\mathbb{Q}_\infty \) is the cyclotomic \(\mathbb{Z}_p \) extension of \(\mathbb{Q} \). Let \(\Psi \) be the group of characters \(\mathbb{Z}_p^\times \) to \(\mu_p^\infty \subset \overline{\mathbb{F}}_1 \).

The following theorem proved by Sinnot is the main tool of this article.

Theorem 1 (Sinnot). Let \(\alpha \) be a rational function measure on \(\mathbb{Z}_p \) with values in \(\overline{\mathbb{F}}_1 \), and let \(R(Z) \in \overline{\mathbb{F}}(Z) \) be the associated rational function. Assume that \(\alpha \) is supported on \(\mathbb{Z}_p^\times \). If

\[
\Gamma_\alpha(\psi) := \int_{\mathbb{Z}_p^\times} \psi(x) d\alpha(x) = 0
\]
for infinitely many $\psi \in \Psi$, then

$$R(Z) + R(Z^{-1}) = 0.$$

3 Special values of Drichlet L-functions

Let χ be a nontrivial Drichlet character with conductor f_χ. It is well-known $L(-k, \chi)$ is algebraic when k is a non-positive integer. $L(-k, \chi) \neq 0$ if and only if $(-1)^k \chi(-1) = -1$, see [2]. Let ℓ be a prime. Fix an isomorphic ι from $\mathbb{C} \cong \mathbb{Q}_l$.

In this article, we define $\mathcal{L}(1, \chi)$.

Proposition 2. $L(-k, \chi) = (Z \frac{d}{dz})^k \mathcal{L}(Z)|_{Z=1}$, in particular, if $\ell \nmid f_\chi$, then $L(-k, \chi) \in \mathbb{Q}_l$.

Proof. Firstly, note that $\mathcal{L}(Z)$ is independent on f for any multiper of f_χ, since

$$\sum_{a=1}^{f_\chi} \chi(a) = \sum_{a=1}^{f_\chi} \chi(a)(1 + \left(Z \frac{d}{dz} \right)^{-1}) = \sum_{a=1}^{f_\chi} \chi(a)Z^a.$$

By [2] we know that $L(-k, \chi) = -\frac{B_{k+1}}{k+1}$, where B_{k+1} is defined by the following Taylor expansion

$$\sum_{a=1}^{f_\chi} \chi(a) = \sum_{a=0}^{\infty} \frac{B_{n, \chi}}{n!}.$$

Since χ is nontrivial, we have $B_{0, \chi} = \sum_{a=1}^{f_\chi} \chi(a) = 0$. So we can write

$$\sum_{a=1}^{f_\chi} \chi(a) e^{at} = \sum_{a=0}^{\infty} \frac{B_{n+1, \chi}}{(n+1)!} e^n = \sum_{n=0}^{\infty} \frac{-L(-n, \chi)}{n!} e^n.$$

On the other hand, by setting $e^t = Z$, we have

$$\left(\frac{d}{dt} \right)^n \sum_{a=1}^{f_\chi} \chi(a) e^{at} = \sum_{a=1}^{f_\chi} \chi(a) e^{at} = -((Z \frac{d}{dZ})^n F_\chi(Z)|_{Z=1}).$$
Hence
\[\sum_{a=1}^{f} \chi(a)e^{at}/(e^{ft} - 1) = \sum_{n=0}^{\infty} -((Z \frac{d}{dZ})^n F\chi(Z)|_{Z=1})t^n. \]

Therefore \(L(-k,\chi) = (Z \frac{d}{dZ})^k F\chi(Z)|_{Z=1}. \) Hence the rational function
\[(Z \frac{d}{dZ})^k F\chi(Z) \]
has finite value at \(Z = 1. \) Note that the denominator of this rational function is a power of \((1 - Zf) = [(1 - Z)(1 + Z + \cdots + Z^{f-1})], \) we know that the denominator in fact is a factor of a power of \((1 + Z + \cdots + Z^{f-1}). \) Hence its denominator of the value at \(Z = 1 \) divides \(f. \) Therefore its values at \(Z = 1 \) is in \(\mathbb{Z}_l \) if \(\ell \nmid f. \)

Let \(\theta \) be a Dirichlet character. Let \(f\theta \) be its conductor and let \(f = 2pf\theta. \) Let
\[R_k(Z) = (Z \frac{d}{dZ})^k \frac{\sum_{a=1,p|a} \theta(a)Z^a}{1 - Zf}. \]

Let \(\tilde{R}_k(Z) \in \overline{\mathbb{F}}(Z) \) be the rational function obtained from \(R(Z) \) by modulo its coefficients. We define the associated rational \(\mathbb{F}_l \)-valued measure \(\alpha_k \) on \(\mathbb{Z}_p \) by setting \(\hat{\alpha}_k(\zeta) = \tilde{R}_k(\zeta) \) for \(\zeta \in \mu_{p^\infty} \) for which \(\zeta \neq 1, \) and setting \(\hat{\alpha}_k(\zeta) = 0 \) for \(\zeta = 1. \) Note that \(\alpha \) is supported on \(\mathbb{Z}_p \times \) since \(\sum_{\epsilon \in \mathbb{F}_l} R(\epsilon Z) = 0. \)

Proposition 3. For any character \(\psi \in \Psi \) whose conductor \(p^m \) does not divide \(f, \) we have
\[\frac{1}{2} L(-k, \theta \psi) = \int_{\mathbb{Z}_p^\times} \psi(x) d\alpha_k(x) \]

Proof. View \(\psi \) as a function on \(\mathbb{Z}/p^m \mathbb{Z} \) by letting \(\psi(a) = 0 \) if \(p|a. \) Then by Fourier transform, we have
\[\psi(x) = \sum_{\zeta \in \mu_{p^m}} \tau(\psi, \zeta)\zeta^x, \]
where
\[\tau(\psi, \zeta) = \frac{1}{p^m} \sum_{x \mod p^m} \psi(x)\zeta^{-x}. \]
\(\tau(\psi, \zeta) \) vanishes unless \(\zeta \) has order \(p^m, \) see [2].

Note that
\[\int_{\mathbb{Z}_p^\times} \psi(x) d\alpha_k(x) = \int_{\mathbb{Z}_p^\times} \sum_{\zeta \in \mu_{p^m}} \tau(\psi, \zeta)\zeta^x d\alpha_k(x) \]
\[= \sum_{\zeta \in \mu_{p^m}} \tau(\psi, \zeta) R_k(\zeta) = \sum_{\zeta \in \mu_{p^m} \setminus \mu_{p^{m-1}}} \tau(\psi, \zeta) R_k(\zeta) \]
Since $R_k(Z) + R_k(Z^{-1}) = (Z \frac{d}{dZ})^k \left(\frac{\sum_{a=1}^f \theta(a)Z^a}{1-Z} \right) = (Z \frac{d}{dZ})^k \left(\frac{\sum_{a=1}^f \theta(a)Z^a}{1-Zf^m} \right)$, if ζ is a primitive p^m-th root of unity,
\[R(\zeta) + R(\zeta^{-1}) = (Z \frac{d}{dZ})^k \left(\frac{\sum_{a=1}^f \theta(a)\zeta^a Z^a}{1-Zf^m} \right) |_{Z=1}. \]

Now, since ψ is even, we have $\tau(\psi, \zeta) = \tau(\psi, \zeta^{-1})$; hence
\[2 \int_{\mathbb{Z}_p^*} \psi(x)d\alpha_k(x) = \sum_{\zeta \in \mu_{p^n} \setminus \mu_{p^n-1}} (\tau(\psi, \zeta) + \tau(\psi, \zeta^{-1}))R_k(\zeta) \]
\[= \sum_{\zeta \in \mu_{p^n} \setminus \mu_{p^n-1}} \tau(\psi, \zeta)(R_k(\zeta) + R_k(\zeta^{-1})) \]
\[= (Z \frac{d}{dZ})^k \left(\frac{\sum_{a=1}^f \theta(a)\psi(a)Z^a}{1-Zf^m} \right) |_{Z=1} \]
\[= L(-k, \theta\psi). \]

Theorem 2. Let p, ℓ be two different primes. \mathbb{Q}_∞ be the cyclotomic \mathbb{Z}_p extension of \mathbb{Q}. Let $k \geq 0$ be an integer. Let θ be a Dirichlet character such that $\theta(-1)(-1)^k = 1$. Then there are only finitely many characters of $\text{Gal}(\mathbb{Q}_\infty/\mathbb{Q})$ such that $\text{ord}_\ell(L(-k, \theta\psi)) > 0$. If ℓ does not divide the conductor of θ, $L(-k, \theta\psi)$ is a ℓ-unit for all but finitely many characters of $\text{Gal}(\mathbb{Q}_\infty/\mathbb{Q})$.

Proof. If there are infinitely many ψ such that $\text{ord}_\ell(L(-k, \theta\psi)) > 0$, then by Theorem 1 we know that $\hat{R}_k(Z) + \hat{R}_k(Z^{-1}) = 0$, by Taylor expansion at $Z = 0$, we see that the coefficient of Z of $\hat{R}_k(Z) + \hat{R}_k(Z^{-1})$ is 1. If ℓ does not divide the conductor of θ, then $\frac{1}{2}L(-k, \theta\psi)$ is already in \mathbb{Z}_l^* by Proposition 1.

4 An application on ℓ-part of K-groups in \mathbb{Z}_p extensions

We use the above theorem to give an application on K-groups in \mathbb{Z}_p extension.

We have the following theorem relates the zeta value and the order of higher K-groups the ring of integers. See [6] or [1]. For general number field, this is conjectured by Lichtenbaum.

Theorem 3. If F is totally real abelian number field, then
\[\zeta_F(1 - 2k) = (-1)^k |\mathbb{Q}[F]:\mathbb{Q}|2^{|K_{4k-2}(\mathcal{O}_F)|} \left| \frac{K_{4k-2}(\mathcal{O}_F)}{K_{4k-1}(\mathcal{O}_F)} \right| \]
for some $\epsilon \in \mathbb{Z}$.

5
Theorem 4. Let \(\ell > 2 \) and \(p \) be two distinct primes and \(F \) a real abelian number field. Let \(F_\infty/F \) be the cyclotomic \(\mathbb{Z}_p \)-extension of \(F \) and \(F_n \) its \(n \)-th layer. For an integer \(m \equiv 2, 3 \mod 4 \), let \(\ell^{e_m} \) be the exact power of \(\ell \) dividing \(|K_m(O_{F_n})| \). Then \(e_m \) is bounded as \(n \to \infty \). In addition, the \(2 \)-part of the \(K_2(O_{F_n}) \) is also bounded.

Let \(q = p \) if \(p \) is an odd prime and \(q = 4 \) if \(p = 2 \). Let \(F \) be a real abelian number field with conductor \(dp^q \), where \(p \nmid r \).

Let \(F_\infty \) be the cyclotomic \(\mathbb{Z}_p \)-extension of \(F \) and \(F_n \) be its \(n \)-th layer, hence \(\text{Gal}(F_n/F) \cong \mathbb{Z}/p^n\mathbb{Z} \). Fix a prime \(\ell \neq p \), we concern about the \(\ell \)-part of \(K \) groups of \(F_n \).

When \(n \geq r \), the character group of \(\text{Gal}(F_n/Q) \) is a subgroup of the character groups of \(\text{Gal}(\mathbb{Q}(\zeta_{dp^n})/\mathbb{Q}) \cong (\mathbb{Z}/dp^n)\times \). Any Drichlet character of \((\mathbb{Z}/dp^n)\times \) can be written in the form \(\chi \) or \(\chi\psi_m \) where \(\chi \) is a Drichlet character with \(\chi(-1) = 1 \) such that \(pq \) does not divide the conductor of \(\chi \), and \(\chi_m \) has order \(p^m \) and conductor \(qp^m \) with \(1 \leq m \leq n \).

Let \(X \) be the Dirichlet character group of \(F \). When \(n \geq r \), \(\zeta_{F_n}(s) = \prod_{\chi \in X} \prod_{\psi \in \chi} L(s, \chi \psi) \), where \(\psi \) is a character of \(\text{Gal}(\mathbb{Q}_\infty/Q) \) which has order less than \(p^n \). Then

\[
\zeta_{F_n}(1 - 2k)/\zeta_{F_n-1}(1 - 2k) = \prod_{\chi \in X} \prod_{\psi \text{ order } p^n} L(1 - 2k, \chi \psi)
\]

By Theorem 2 and Theorem 3 we know that the \(\ell \)-part of \(|K_{4k-2}(F_n)|/|K_{4k-1}(F_n)| \) is bounded as \(n \to \infty \). It remains to show that they are bounded separately. This is easy from the following proposition quoted from [1].

Proposition 4. Let \(m \geq 3 \) be an odd integer. Set \(i = \frac{m+1}{2} \).

\[
K_m(O_F) \cong \begin{cases}
Z^{r_1+r_2} \oplus Z/\omega_i(F) & n \equiv 1 \pmod{8} \\
Z^{r_2} \oplus Z/2\omega_i(F) \oplus (Z/2)^{r_1-1} & n \equiv 3 \pmod{8} \\
Z^{r_1+r_2} \oplus Z/\omega_i(F) & n \equiv 5 \pmod{8} \\
Z^{r_2} \oplus Z/\omega_i(F) & n \equiv 7 \pmod{8}
\end{cases}
\]

where \(\omega_i(F) \) is an integer defined in Section 5.3 [1]. We denote the \(\ell \)-exact power of \(\omega_i(F) \) by \(\omega_i^{(\ell)}(F) \). In [1] Section 5.3, it is proved that

\[
\omega_i^{(\ell)}(F) = \max \{ \ell^v | \text{Gal}(F(\mu_{\ell^v})/F) \text{ has exponent dividing } i \}.
\]

Thus it is clear that the \(\ell \)-part of the \(K_m(F_n) \) is bounded, since \(F_\infty \supset \cdots \supset F_n \supset \cdots \supset F_0 = F \) is cyclotomic \(\mathbb{Z}_p \) extension where \(p \neq \ell \).

References

[1] Weibel, C. Algebraic K-Theory of Rings of Integers in Local and Global Fields. Handbook of K-Theory. Vol. 1, 2, Springer, Berlin (2005), pp. 139-190
[2] Washington, L. Introduction to Cyclotomic Fields. 2nd Edition, Graduate Texts in Math. 83, Springer-Verlag, New York, Heidelberg, Berlin, (1997).

[3] Washington, L. The non-p-part of the class number in a cyclotomic \mathbb{Z}_p-extension. Invent. Math. 49 (1) (1978), 8797.

[4] Sinnott, W. On a theorem of L. Washington, Astérisque 147-148 (1987), 209224.

[5] Sinnott, W. Γ-transforms of rational function measures on \mathbb{Z}_S. Invent. Math. 89 (1) (1987), 139157.

[6] Huber, A and Kings, G. Bloch-Kato conjecture and main conjecture of Iwasawa theory for Dirichlet characters. Duke Math. J. Volume 119, Number 3 (2003), 393-464.

[7] Sun, H. Cuspidal class number of the tower of modular curves $X_1(Np^n)$, Math. Ann. 348 (2010), no. 4, 909–927.