RDX and miRNA Expression in B6C3F1 Mice
doi:10.1289/ehp.0800276

In a recent issue of EHP, Zhang and Pan (2009) reported on the effects of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on the differential expression of microRNAs (miRNAs) in brain and liver of B6C3F1 mice. It is always of interest when new technologies are applied to existing toxicologic problems, with a view to increasing our understanding of the effect on, or risk to, humans. However, in the abstract of their article originally published online (but deleted from the final version), Zhang and Pan (2009) concluded that “environmental toxicant exposure alters the expression of a suite of miRNAs that in turn regulates gene expression which may lead to carcinogenesis, developmental, neuronal, and reproductive toxicity”; they reached this conclusion in the absence of any observations for dose response, clinical chemistry, histopathology, or neurotoxicity. Because their results do not support these conclusions, we felt a response was warranted.

Zhang and Pan (2009) exposed B6C3F1 female mice to RDX in food. The mouse chow was sprayed with a solution of acetone-dissolved RDX and allowed to dry; this resulted in a formulation chow containing 5 mg RDX/kg of food. At this dose of RDX, we estimated that the mice received approximately 0.75–1.5 mg/kg body weight/day, based on mouse food consumption of 3–6 g/day and an average body weight of 20 g. To put this dose in perspective, the 2-year cancer study on which RDX risk assessment was based (Lish et al. 1984) used oral doses of 0, 1.5, 7.0, 35, and 175 mg RDX/kg/day in the same mouse strain, with statistically significant cancer foci identified only in the 35 mg/kg dose group. The dose used by Zhang and Pan in their 1-month study was therefore less than the lowest dose in the 2-year mouse cancer study and over 20 times lower than the only dose of RDX associated with cancer. Furthermore, given that only a fraction of the exposed animals developed cancer at the 35 mg/kg dose in the 2-year study (Lish et al. 1984), we wonder how let-7 and other miRNAs used by Zhang and Pan (2009) identify which animals could potentially get cancer at a higher dose (i.e., susceptibility), or whether all animals could develop cancer even at this low dose (i.e., overprediction).

At high oral exposures, RDX causes tonic-clonic seizure, an effect that has been well correlated with internal dose (blood RDX was not measured in Zhang and Pan’s study). The mode of action of RDX is thought to be direct because seizures can occur within minutes of dosing. Zhang and Pan (2009) reported that brain derived miRNA 206 was increased 26-fold and brain-derived neurotrophic factor (BDNF) was computationally identified as a downstream target, with the direction of change presumably inhibitory on BDNF. Current literature shows that BDNF is actually up-regulated in response to seizure-inducing agents, such as kainite (Revuelta et al. 2005) and domoic acid (Doucette et al. 2004). Whether other presumed targets of miRNA would be up-regulated is not known, making verification of miRNA targets (miRNA) critical in the validation of this kind of study.

Although miRNAs have been used extensively to examine the profiles of small RNAs in distinct phenotypes such as cancer, their significance as predictors of toxic insult or disease has not been demonstrated. The field of miRNAs is burgeoning with publications (1,738 in 2008), many of which involve the retrospective examination of diseased tissue (tumors) for changes in the expression of miRNA species. Prospective work relating chemical exposure to changes in miRNA as predictors of imminent disease has been less successful, and a study of dioxin found miRNAs refractive (Moffat et al. 2007). More important, some reviews (Kozak 2008) caution against overinterpretation of miRNA data, especially without verification of downstream targets.

It has been said that “a difference, to be a difference, should make a difference.” We found it difficult to assess the biological significance of the suite of differentially regulated miRNAs and their computational targets culled from the study of Zhang and Pan (2009): although these miRNAs could be associated with exposure to RDX, they do not seem related to disease. In our opinion, Zhang and Pan’s results fall short of their experimental hypothesis that exposure to specific environmental agents, such as RDX, would cause alteration in miRNA expression and that “the altered miRNA expression contributes to carcinogenesis.” For innovative work of this kind, a solid model of exposure–disease is always a good starting point, coupled with the classical toxicology stalwarts of dose response and positive/negative controls, and of course, verification of putative targets. Here, we feel that poor study design, absence of phenotype, and overinterpretation of data significantly weakened a potentially informative body of work.

Zhang B, Pan X. 2009. RDX induces aberrant expression of miRNAs in mouse brain and liver. Environ Health Perspect 117:231–240.

REFERENCES

Doucette TA, Bernard PB, Husum H, Perry MA, Ryan CL, Tasker RA. 2004. Low doses of domoic acid during postnatal development produce permanent changes in rat behaviour and hippocampal morphology. Neurotox Res 6:175–186.

Kozak M. 2008. Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function. Gene 423(2):108–115.

Lish PM, Levine BS, Furedi-Machacek EM, Sagartz EM, Rac VS. 1984. Determination of the Chronic Mammalian Toxicological Effects of RDX: Twenty-Four Month Chronic Toxicity/Carcinogenicity Study of Hexahydro-1,3,5-triazine (RDX) in the B6C3F1 Hybrid Mouse. AD A180747. Chicago:U.S. Army Medical Research and Development Command.

Moffat ID, Beutros PC, Celius T, Linden J, Pohjanvirta R, Okey AB. 2007. MicroRNAs in adult rodent liver are refractory to dioxin treatment. Toxicol Sci 99(2):470–487.

Revuelta M, Castano A, Machado A, Cano J, Venero JL. 2005. Kainate-induced zinc translocation from presynaptic terminals causes neuronal and astroglial cell death and miRNA loss of BDNF receptors in the hippocampal formation and amygdala. J Neurosci Res 82(2):184–195.

Zhang B, Pan X. 2009. RDX induces aberrant expression of microRNAs in mouse brain and liver. Environ Health Perspect 117:231–240.

RDX and miRNA Expression: Zhang and Pan Respond
doi:10.1289/ehp.0800278R

We appreciate the interests and comments from Bannon et al. regarding our recent article on RDX-induced aberrant microRNA (miRNA) expression in mice (Zhang and Pan 2009). However, we disagree with their comments based on the misunderstanding of our results and conclusions.

The objective of our study (Zhang and Pan 2009) was not to use clinical chemist and histopathological features to diagnose neoplasm and carcinogenesis, but to investigate the effect of a low-dose RDX exposure on miRNA expression in mice. Our results show that exposure to RDX at 5 mg/kg in the diet for 28 days induced aberrant expression of miRNAs in B6C3F1 mice. Our discussion of the implications of altered miRNAs in the carcinogenic risk of RDX suggested by a previous study (Lish et al. 1984) are based on the knowledge that aberrant miRNA expression...
is associated with a broad range of cancers (Zhang et al. 2007). Meanwhile, we also dis-
cussed the potential anticancer effects of RDX in our article. Results in our Figure 6 indicate that RDX exposure induced miR-206 expression, which may inhibit expression of TNKS (takynase, TRF1-interacting ankyrin-related ADP-ribose polymerase). The inhibition of TNKS causes telomere shortening and apop-
tosis, which inhibits carcinogenesis, and has thus been proposed as a potential cancer ther-
apy (Seimiya 2006). Thereby, the miR-206 overexpression induced by RDX may provide a mechanism to prevent carcinogenesis.

Animals are more sensitive to chemical exposure at the gene level than at the physio-
logic level, and gene expression profile is a more powerful predictor of the outcome of
disease than standard systems based on clini-
cal and histologic criteria (van de Vijver et al. 2002). However, aberrant gene expression may or may not cause carcinogenesis. Cancer pathogenesis is a complex process associated with aberrant expression of many genes. Recently identified miRNAs play critical roles in cancer development; overexpression or down-regulation of a single miRNA could influence cancer cell growth, invasion, and metastasis (Ma et al. 2007; Takamizawa et al. 2004). Also, more and more evidence demonstrates that environmental carcino-
gens cause aberrant expression of a suite of miRNAs. For example, Kalscheuer et al. (2008) recently demonstrated the differential expression of miRNAs in early-stage neo-
plastic transformation in the lungs of F344 rats chronically treated with the tobacco
carcinogen NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone). Thus, carcinogen-
induced aberrant expression of miRNAs may be associated with carcinogenesis.

Brain-derived neurotrophic factor (BDNF) is targeted by multiple miRNAs. Besides miR-206, two experimentally vali-
dated BDNF-targeting miRNAs, miR-30a and miR-195 (Mellios et al. 2008), were also significantly up-regulated in mouse brain after RDX exposure. Thus, it is reasonable to suggest that miRNA-mediated BDNF expression is a neurotoxic effect of low RDX exposure, given that BDNF is an important expression is a neuro toxic effect of low RDX exposure, given that BDNF is an important expression at low doses but suppress miR-335 at high doses, suggesting some miRNAs respond to neurotoxins in a dose-specific manner (Sathyvan et al. 2007).

Our study (Zhang and Pan 2009) pro-
vides substantial information on miRNA expression as a phenotype in response to RDX exposure in mice. We reported many important novel findings that enlighten future research. For example, miR-206—belonging to the same family as miR-1, which regulates signal transduction at neuromuscular junc-
tions (Simon et al. 2008)—was significantly up-expressed in our study. Therefore, eluci-
dating the role of miR-206 in RDX-related neurotoxicity is an enormous project.

The authors declare they have no competing financial interests.

Baobao Zhang
Department of Biology
East Carolina University
Greenville, North Carolina
E-mail: zhangb@ecu.edu

Xiaoping Pan
Department of Chemistry
Western Illinois University
Macomb, Illinois

REFERENCES

Binder DK, Croll SD, Gall DM, Scharfman HE. 2001. BDNF and epilepsy: too much of a good thing? Trends Neurosci 24:47–53.

Burdette LJ, Cook LL, Dyer RS. 1988. Convulsant properties of cyclotrimethylenetetraimidine (RDX): spontaneous audio-
genics, and amygdaloid kindled seizure activity. Toxicol Appl Pharmacol 92:436–444.

Fattori V, Abe SI, Kobayashi K, Costa LG, Tsuji R. 2008. Effects of postnatal ethanol exposure on neurotrophic factors and signal transduction pathways in rat brain. J Appl Toxicol 28:370–376.

Kalscheuer S, Zhang X, Zeng Y, Upadhyaya P. 2008. Differential expression of microRNAs in early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone). Carcinogenesis 29:2394–2399.

Lish FM, Levine BS, Furedi-Machacek EM, Sagartz EM, Lish PM, Fattori V, Abe SI, Kobayashi K, Costa LG, Tsuji R. 2008. Effects of postnatal ethanol exposure on neurotrophic factors and signal transduction pathways in rat brain. J Appl Toxicol 28:370–376.

Kalscheuer S, Zhang X, Zeng Y, Upadhyaya P. 2008. Differential expression of microRNAs in early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-

pyridyl)-1-butanone. Carcinogenesis 29:2394–2399.

Lish FM, Levine BS, Furedi-Machacek EM, Sagartz EM, Rac VS. 1994. Determination of the Chronic Mammalian Toxicological Effects of RDX: Twenty-Four Month Chronic Toxicity/carcinogenicity Study of Hexahydrotetrazene-1,3,5-
trazine (RDX) in the B6C3F1 Hybrid Mouse. AD AD A160774.

Lish FM, Levine BS, Furedi-Machacek EM, Sagartz EM, Rac VS. 1994. Determination of the Chronic Mammalian Toxicological Effects of RDX: Twenty-Four Month Chronic Toxicity/carcinogenicity Study of Hexahydrotetrazene-1,3,5-
trazine (RDX) in the B6C3F1 Hybrid Mouse. AD AD A160774.

Chicagol.A. Medical Research and Development Command.

Ma L, Tenya-Feldstein J, Weinberg RA. 2007. Tumour inva-

sion and metastasis initiated by microRNA-10b in breast can-
cer. Nature 449:682–688.

Mellios D, Zaman V, Shetty GA. 2003. Hippocampal neuro-

trophic levels in a kainate model of temporal lobe epilepsy: a lack of correlation between brain-derived neurotrophic factor content and progression of aberrant dentate mossy fiber sprouting. J Neurochem 87:147–159.

Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endo H, et al. 2004. Reduced expression of the let-7 microRNAs in human lung cancers in associa-
tion with shortened postoperative survival. Cancer Res 64:3735–3739.

van de Vijver MJ, He YD, van ’t Veer LJ, Dai H, Hart AAM, Voskuil DW, et al. 2002. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009.

Viberg H, Mundy W, Eriksson P. 2008. Neonatal exposure to decabrominated diphenyl ether (PBDE209) results in changes in BDNF, CaMII and GAP-43, biochemical sub-
strates of neuronal survival, growth, and synaptogenesis. Neurotoxicology 29:152–159.

Zhang B, Pan X. 2009. RDX induces aberrant expression of microRNAs in mouse brain and liver. Environ Health Perspect 117:231–240.

Zhang BH, Pan XP, Cobb GP, Anderson TA. 2007. microRNAs as oncogenes and tumor suppressors. Dev Biol 301:1–2.

Don’t Flush the Yuck Factor
doi:10.1289/ehp.0800542

I enjoyed Charles Schmidt’s original and infor-
mative article on the “Yuck Factor” (Schmidt 2008). This phenomenon has come into play in my attempts to decide on whether to pur-
chase a low-flow toilet for my home. My city is currently offering rebates on low-flow toi-
lets, but only on the least consumptive models (1.6 gallons per flush). I have read on web sites
and heard from friends that these models do not quite do the job. The details are important
to me. If it is a question of not flushing gobs of toilet paper down, I can deal with that. But if these toilets leave stains on (or product in) the bowl, my family will not be happy. My discus-
sions with city officials and friends who have installed these toilets invariably break down when I press for details. The “Yuck Factor” reigns supreme. The end result may be that I do not purchase a low-flow toilet.

John Manuel
Freelance Writer
Durham, North Carolina
E-mail: john.manuel@gte.net

REFERENCE

Schmidt CW. 2008. The yuck factor: when disgust meets

to the let-7 microRNAs in human lung cancers in associa-
tion with shortened postoperative survival. Cancer Res 64:3735–3739.

van de Vijver MJ, He YD, van ’t Veer LJ, Dai H, Hart AAM, Voskuil DW, et al. 2002. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009.

Viberg H, Mundy W, Eriksson P. 2008. Neonatal exposure to decabrominated diphenyl ether (PBDE209) results in changes in BDNF, CaMII and GAP-43, biochemical sub-
strates of neuronal survival, growth, and synaptogenesis. Neurotoxicology 29:152–159.

Zhang B, Pan X. 2009. RDX induces aberrant expression of microRNAs in mouse brain and liver. Environ Health Perspect 117:231–240.

Zhang BH, Pan XP, Cobb GP, Anderson TA. 2007. microRNAs as oncogenes and tumor suppressors. Dev Biol 301:1–2.

Don’t Flush the Yuck Factor
doi:10.1289/ehp.0800542

I enjoyed Charles Schmidt’s original and infor-
mative article on the “Yuck Factor” (Schmidt 2008). This phenomenon has come into play in my attempts to decide on whether to pur-
chase a low-flow toilet for my home. My city is currently offering rebates on low-flow toi-
lets, but only on the least consumptive models (1.6 gallons per flush). I have read on web sites
and heard from friends that these models do not quite do the job. The details are important
to me. If it is a question of not flushing gobs of toilet paper down, I can deal with that. But if these toilets leave stains on (or product in) the bowl, my family will not be happy. My discus-
sions with city officials and friends who have installed these toilets invariably break down when I press for details. The “Yuck Factor” reigns supreme. The end result may be that I do not purchase a low-flow toilet.

John Manuel
Freelance Writer
Durham, North Carolina
E-mail: john.manuel@gte.net

REFERENCE

Schmidt CW. 2008. The yuck factor: when disgust meets discovery. Environ Health Perspect 116:4524–4527.