Weakly Supervised Learning of Presupposition Relations between Verbs

Galina Tremper
Department of Computational Linguistics
Heidelberg University, Germany
tremper@cl.uni-heidelberg.de

Abstract

Presupposition relations between verbs are not very well covered in existing lexical semantic resources. We propose a weakly supervised algorithm for learning presupposition relations between verbs that distinguishes five semantic relations: presupposition, entailment, temporal inclusion, antonymy and other/no relation. We start with a number of seed verb pairs selected manually for each semantic relation and classify unseen verb pairs. Our algorithm achieves an overall accuracy of 36% for type-based classification.

1 Introduction

A main characteristics of natural language is that significant portions of content conveyed in a message may not be overtly realized. This is the case for presuppositions; e.g., the utterance Columbus didn’t manage to reach India presupposes that Columbus had tried to reach India. This presupposition does not need to be stated, but is implicitly understood. Determining the presuppositions of events reported in texts can be exploited to improve the quality of many natural language processing applications, such as information extraction, text understanding, text summarization, question-answering or machine translation.

The phenomenon of presupposition has been thoroughly investigated by philosophers and linguists (i.a. Stalnaker, 1974; van der Sandt, 1992). There are only few attempts for practical implementations of presupposition in computational linguistics (e.g. Bos, 2003). Especially, presupposition is understudied in the field of corpus-based learning of semantic relations. Machine learning methods have been previously applied to determine semantic relations such as is-a and part-of, also succession, reaction and production (Pantel and Pennacchiotti, 2006). Chklovski and Pantel (2004) explored classification of fine-grained verb semantic relations, such as similarity, strength, antonymy, enablement and happens-before. For the task of entailment recognition, learning of entailment relations was attempted (Pekar, 2008). None of the previous work investigated subclassifying semantic relations including presupposition and entailment, two relations that are closely related, but behave differently in context.

In particular, the inferential behaviour of presuppositions and entailments crucially differs in special semantic contexts. E.g., while presuppositions are preserved under negation (as in Columbus managed/didn’t manage to reach India the presupposition tried to), entailments do not survive under negation (John F. Kennedy has been/has not been killed). Here the entailment died only survives in the positive sentence. Such differences are crucial for both analysis and generation-oriented NLP tasks.

This paper presents a weakly supervised algorithm for learning presupposition relations between verbs cast as a discriminative classification problem. The structure of the paper is as follows: Section 2 reviews state of the art. Section 3 introduces our task and the learning algorithm. Section 4 reports on experiment organization; the results are presented in Section 5. Finally, we summarise and present objectives for future work.

2 Related Work

One of the existing semantic resources related to our paper is WordNet (Fellbaum, 1998). It comprises lexical semantic information about English nouns, verbs, adjectives and adverbs. Among the semantic relations defined specifically for verbs are entailment, hyponymy, troponymy, antonymy and cause. However, not all of them are well covered, for example, there are only few entries for presupposition and entailment in WordNet.
One attempt to acquire fine-grained semantic relations from corpora is VerbOcean (Chklovski and Pantel, 2004). Chklovski and Pantel used a semi-automatic approach for extracting semantic relations between verbs using a list of patterns. The selection of the semantic relations was inspired by WordNet. VerbOcean showed good accuracy values for the antonymy (50%), similarity (63%) and strength (75%) relations. However, VerbOcean doesn’t distinguish between entailment and presupposition; they are conflated in the classes enablement and happens-before.

A distributional method for extracting highly associated verbs was proposed by Lin and Pantel (2001). This method extracts semantically related words with good precision, but it does not determine the type and symmetry of the relation. However, the method is able to recognize the existence of semantic relations holding between verbs and hence can be used as a basis for finding and further discriminating more detailed semantic relations.

3 A Weakly Supervised Approach to Learning Presupposition Relations

We describe a weakly supervised approach for learning semantic relations between verbs including implicit relations such as presupposition. Our aim is to perform a type-based classification of verb pairs. I.e., we determine the class of a verb-pair relation by observing co-occurrences of these verbs in contexts that are indicative for their intrinsic meaning relation. This task differs from a token-based classification, which aims at classifying each verb pair instance as it occurs in context.

Classified relations. We distinguish between the five classes of semantic relations presented in Table 1. We chose entailment, temporal inclusion and antonymy, because these relations may be confounded with the presupposition relation. A special class other/no comprises semantic relations not discussed in this paper (e.g. synonymy) and verb pairs that are not related by a semantic relation. The relations can be subdivided into symmetric and asymmetric relations, and relations that involve temporal sequence, or those that do not involve a temporal order, as displayed in Table 1.

Semantic Relation	Example	Symmetry	Temporal Sequence
Presupposition	find - seek, answer - ask	asymmetric yes	
Entailment	look - see, buy - own	asymmetric yes	
Temporal Inclusion	walk - step, talk - whisper	symmetric no	
Antonymy	win - lose, love - hate	symmetric no	
Other/no	have - own, sing - jump	undefined undefined	

Table 1: Selected Semantic Relations

A Weakly Supervised Learning Approach. Our algorithm starts with a small number of seed verb pairs selected manually for each relation and iteratively classifies a large set of unseen and un-

labeled verb pairs. Each iteration has two phases:

1. Training the Classifiers We independently train binary classifiers for each semantic relation using both shallow and deep features.

2. Ensemble Learning and Ranking Each of the five classifiers is applied to each sentence from an unlabeled corpus. The predictions of the classifiers are combined using ensemble learning techniques to determine the most confident classification. The obtained list of the classified instances is ranked using pattern scores, in order to select the most reliable candidates for extension of the training set.

Features. Both shallow lexical-syntactic and deep syntactic features are used for the classification of semantic relations. They include:

1. the distance between two analyzed verbs and the order of their appearance
2. verb form (tense, aspect, modality, voice), presence of negation and polarity verbs
3. coordinating/subordinating conjunctions
4. adverbial adjuncts
5. PoS-tag-contexts (two words preceding and two words following each verb)
6. the length of the path of grammatical functions relating the two verbs
7. co-reference relation holding between the subjects and objects of the verbs (both verbs have the same subject/object, subject of one verb corresponds to the object of the second or there is no relation between them).

In order to extract these features the training corpus is parsed using a deep parser.

1Polarity verbs are taken from the polarity lexicon of Nairn et al. (2006). It encodes whether the complement of proposition embedding verbs is true or false. We used the verbs themselves as a feature without their polarity-tags.
4 Experimental Setting

Initial Subset of Verb Pair Candidates. Unlike other semi-supervised approaches, we don’t use patterns for acquiring new candidates for classification. Candidate verb pairs are obtained from a previously compiled list of highly associated verbs. We use the DIRT Collection (Lin and Pantel, 2001) from which we further extract pairs of highly associated verbs as candidates for classification. The advantage of this resource is that it consists of pairs of verbs which stand in a semantic relation (cf. Section 2). This considerably reduces the number of verb pairs that need to be processed as candidates in our classification task.

DIRT contains 5,604 verb types and 808,764 verb pair types. This still represents a huge number of verb pairs to be processed. We therefore filtered the extracted set by checking verb pair frequency in the first three parts of the UKWAC corpus (Baroni et al., 2009) (UKWAC_1…3) and by applying the PMI test with threshold 2.0. This reduces the number of verb pairs to 199,393.

For each semantic relation we select three verb pairs as seeds. The only exception is temporal inclusion for which we selected six verb pairs, due to the low frequency of such verb pairs within a single sentence. These verb pairs were used for building an initial training corpus of verb pairs in context. The remaining verb pairs are used to build the corpus of unlabeled verb pairs in context in the iterative classification process.

Preprocessing. Given these verb pairs, we extracted sentences for training and for unlabeled data set from the first three parts of the UKWAC corpus (Baroni et al., 2009). We compiled a set of CQP queries (Evert, 2005) to find sentences that contain both verbs of a verb pair and applied them on UKWAC_1…3 to build the training and unlabeled subcorpora. We filter out sentences with more than 60 words and sentences with a distance between verbs exceeding 20 words. To avoid growing complexity, only sentences with exactly one occurrence of each verb pair are retained. We also remove sentences that trigger wrong candidates, in which the auxiliaries have or do appear in a candidate verb pair.

The corpus is parsed using the XLE parser (Crouch et al., 2008). Its output contains both the structural and functional information we need to extract the shallow and deep features used in the classification, and to generate patterns.

Training Corpus. From this preprocessed corpus, we created a training corpus that contains three different components:

1. Manually annotated training set. All sentences containing seed verb pairs extracted from UKWAC_1 are annotated manually with two values true/false in order to separate the negative training data.
2. Automatically annotated training set. We build an extended, heuristically annotated training set for the seed verb pairs, by extracting further instances from the remaining corpora (UKWAC_2 and UKWAC_3). Using the manual annotations of step 1., we manually compiled a small stoplist of patterns that are used to filter out wrong instances. The constructed stoplist serves as an elementary disambiguation step. For example, the verbs look and see can stand in an entailment relation if look is followed by the prepositions at, on, in, but not in case of prepositions after or forward (e.g. looking forward to).
3. Synonymous verb pairs. To further enrich the training set of data, synonyms of the verb pairs are manually selected from WordNet. The corresponding verb pairs were extracted from UKWAC_1…3. In order to avoid adding noise, we used only synonyms of unambiguous verbs. The problem of ambiguity of the target verbs wasn’t considered at this step.

The overall size of the training set for the first classification step is 15,717 sentences from which 5,032 are manually labeled, 9,918 sentences are automatically labeled and 757 sentences contain synonymous verb pairs. The distribution is unbalanced: temporal inclusion e.g. covers only 2%, while entailment covers 39% of sentences. We balanced the training set by undersampling entailment and other/no by 20% and correspondingly oversampling the temporal inclusion class.

Patterns. Similar to other pattern-based approaches we use a set of seed verb pairs to induce indicative patterns for each semantic relation. We use the induced patterns to restrict the number of the verb pair candidates and to rank the labelled instances in the iterative classification step.

The patterns use information about the verb forms of analyzed verb pairs, modal verbs and the
Data Sets. As the primary goal of this paper is to classify semantic relations on the type level, we elaborated a first gold standard dataset for type-based classification. We used a small sample of 100 verb pairs randomly selected from the automatically labeled corpus. This sample was manually annotated by two judges after we had eliminated the system annotations in order not to influence the judges’ decisions. The judges had the possibility to select more than one annotation, if necessary. We measured inter-annotator agreement was 61% \((k \approx 0.21)\). The low agreement shows the difficulty of decision in the annotation of fine-grained semantic relations.\(^2\)

While the first gold standard dataset of verb pairs was annotated out of context, we constructed a second gold standard of verb pairs annotated at the token level, i.e. in context. This second data set can be used to evaluate a token-based classifier (a task not attempted in the present paper). It also offers a ground truth for type-based classification, in that it controls for contextual ambiguity effects. I.e., we can extract a type-based gold standard on the basis of the token-annotated data.\(^3\) We proposed to one judge to annotate the same 100 verb pair types as in the previous annotation task, this time in context. For this purpose we randomly selected 10 instances for each verb pair type (for rare verb pair types only 5). We compared the gold standards elaborated by the same judge for type-based and token-based classification:

- 62% of verb pair types were annotated with the same labels on both levels, indicating correct annotation
- 10% of verb pair types were assigned conflicting labels, indicating wrong annotation
- 28% of verb pair types were assigned labels not present on the type level, or the type level label was not assigned in context

The figures show that for the most part the type-based annotation conforms with the ground truth obtained from token-based annotation. Only 10% of verb pair types were established as conflicting with the ground truth. The remaining 28% can be considered as potentially correct: either the annotated data does not contain the appropriate context for a given type label or the type-level anno-

\(^2\) Data inspection revealed that one annotator was more experienced in semantic annotation tasks. We evaluate our system using the annotations of only one judge.

\(^3\) This option was not pursued in the present paper.
The second measure was used because in many cases the relation NONE has been determined to be the majority class.

count1 is the total number of system labels for the Majority measure and count2 is the total number of system labels for the Without NONE measure.

The best performance is achieved by antonymy (72% and 42% respectively for both Majority and Without NONE measures).
Table 4: Accuracy for token-based classification measures, followed by temporal inclusion, presupposition and entailment. Accuracy scores for token-based classification (excluding NONE) are lower at 29% to 13%. Error analysis of randomly selected false positives shows that the main reason for lower accuracy on the token level is that the context is not always significant enough to determine the correct relation.

Comparison to Related Work. Other projects such as VerbOcean (Chklovski and Pantel, 2004) report higher accuracy: the average accuracy is 65.5% if at least one tag is correct and 53% for the correct preferred tag. However, we cannot objectively compare the results of VerbOcean to our system because of the difference in the set of relation classes and evaluation procedures. Similar to us, Chklovski and Pantel (2004) evaluated VerbOcean using a small sample of data which was presented to two judges for manual evaluation. In contrast to our setup, they didn’t remove the system annotations from the evaluation data set. Given the difficulty of the classification we suspect that correction of system output relations for establishing a gold standard bears a strong risk in favouring system classifications.

6 Conclusion and Future Work

The results achieved in our experiment show that weakly supervised methods can be applied for learning presupposition relations between verbs. Our work also shows that they are more difficult to classify than other typical lexical semantic relations, such as antonymy. Error analysis suggests that many errors can be avoided if verbs are disambiguated in context. It would be interesting to test our algorithm with different amounts of manually annotated training sets and different combinations of manually and automatically annotated training sets to determine the minimal amount of data needed to assure good accuracy.

In future work we will integrate word sense disambiguation as well as information about predicate-argument structure. Also, we are going to analyze the influence of single features on the classification and determining optimal feature sets, as well as the question of including patterns in the feature set. In this paper we used the same combination of features for all classifiers.

7 Acknowledgements

I would like to thank Anette Frank for supervision of this work, Dekang Lin and Patrick Pantel for sharing the DIRT resource and Carina Silberer and Christine Neupert creation of the gold standard.

References

Baroni, M., Bernardini, S., Ferraresi, A., Zanchetta, E.: The WaCky Wide Web: a collection of very large linguistically processed web-crawled corpora. Journal of Language Resources and Evaluation, Vol.43 (3), 209–226 (2009)

Bos, J.: Implementing the Binding and Accommodation Theory for Anaphora Resolution and Presupposition Projection. Computational Linguistics, Vol.29 (2), 179–210 (2003)

Chklovski, T., Pantel, P.: Verbocean: Mining the web for fine-grained semantic verb relations. Proceedings of EMNLP 2004, 33–40, Barcelona (2004)

Crouch, D., Dalrymple, M., Kaplan, R., King, T., Maxwell, J., Newman, P.: XLE Documentation. Palo Alto Research Center (2008)

Evert, S.: The CQP Query Language Tutorial (CWB Version 2.2.90). IMS, Stuttgart (2005)

Fellbaum, C.: WordNet: An Electronic Lexical Database. 1st edition, MIT Press (1998)

Lin, D., Pantel, P.: Discovery of Inference Rules for Question Answering. Natural Language Engineering, Vol.7, 343–360 (2001)

Nairn, R., Condoravdi, C., Karttunen, L.: Computing Relative Polarity for Textual Inference. Proc. of ICoS-5, Buxton, UK (2006)

Pantel, P., Pennacchiotti, M.: Espresso: Leveraging Generic Patterns for Automatically Harvesting Semantic Relations. COLING 2006, 113-120 (2006)

Pekar, V.: Discovery of event entailment knowledge from text corpora. Computer Speech & Language, Vol.22 (1), 1–16 (2008)

Stalnaker, R.C.: Pragmatic Presuppositions. Semantics and Philosophy, New York: Univ. Press (1974)

van der Sandt, R.: Presupposition Projection as Anaphora Resolution. Journal of Semantics, Vol.9, 333–377 (1992)

Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. (2005)