Palladium Complexes

Phosphido-Bridged Di- and Trinuclear Palladium Complexes from Electron-Poor Phosphanes \(R_2PH\) (\(R = C_2F_5, C_6F_5, (CF_3)_2C_6H_3\))

Julia Bader,[a] Beate Neumann,[a] Hans-Georg Stammler,[a] and Berthold Hoge*[a]

Abstract: Electron-withdrawing substituents \(R\) in complexes \([L_mM(PR_2)]\) influence the P–M bond length due to a decreased \(\sigma\)-donation and enhanced \(\pi\)-back-bonding, leading to an increased Lewis acidity of the metal ion and therefore strengthening the M–L bond to electron-rich ligands \(L\). This influences the Lewis acidity and the redox behavior of corresponding transition-metal complexes, which is important for the design of optimized catalytic systems. To investigate this effect, the electron-poor phosphanes \(R_2PH\) with \(R = \text{C}_2\text{F}_5, \text{C}_6\text{F}_5, \text{2,4-} (\text{CF}_3)\text{2C}_6\text{H}_3\) were treated with \(\text{Pd(F}_6\text{acac})_2\) (\(\text{F}_6\text{acac} = \text{hexafluoroacetylacetonato}\)) and \(\text{Pd(acac})_2\) (\(\text{acac} = \text{acetylacetonato}\)). While the reaction of the phosphanes with \(\text{Pd(F}_6\text{acac})_2\) in all cases yielded the corresponding phosphido-bridged dinuclear palladium complexes \([[\text{F}_6\text{acac}]\text{Pd(µ-[PR}_2\text{])}_2]\), the compounds obtained in the reaction with \(\text{Pd(acac})_2\) were structurally more diverse. For \(R = \text{C}_2\text{F}_5\), the dinuclear palladium complex \([[\text{acac}]\text{Pd(µ-[P(C}_6\text{F}_5\text{)])}_2]\) was obtained, while the reaction with \((\text{C}_6\text{F}_5)_2\text{PH}\) yielded a trinuclear palladium complex bridged by four phosphido units. All complexes were fully characterized, including X-ray crystallography.

Introduction

The structural motif of 1,3-diphospha-2,4-dimetallacyclobutane rings is well-known in transition-metal complexes. Phosphido bridges decorated by perfluoroalkyl- or –aryl groups, however, are rare. A few iron complexes with \(\text{CF}_3\) substituents at the phosphorus atom are reported by Grobe et al.[1] Dobbie et al.[2] and Clegg,[3] other examples comprise metals of groups 6,[4] 7,[5] 9[6] and 10[7].

While complexes with \(\mu\)-diphenylphosphido ligands are well-characterized, only three compounds are described for their perfluorinated counterpart \(\text{C}_6\text{F}_5\): \([[\text{CO}]_3\text{Fe(µ-[P(C}_6\text{F}_5\text{)])}_2]\)[8] \([[\text{CO}]_3\text{Ru(µ-[P(C}_6\text{F}_5\text{)])}_2]\)[8] and \(\text{Pd}_2(\text{C}_6\text{F}_5\text{)}_2(\mu-\text{P(C}_6\text{F}_5\text{)CH}_2\text{CH}_2\text{P(}-\text{C}_6\text{F}_5\text{)}_2)\). Of these, only the palladium complex has been structurally characterized. In fact, it is the only known palladium complex with a \(\text{Pd(µ-[P(C}_6\text{F}_5\text{)])}_2\) four-membered ring in which the phosphorus atoms bear perfluorinated substituents. No such example with \(\text{CF}_3\) substituents or even alkyl substituents bearing a fluorine atom at the \(\alpha\)-carbon atom is documented; only one heavier homologue, the platinum complex \([\text{Cl(PE}_3\text{)Pt(µ-[P(CF}_3\text{H)])}_2]\), is known. And while a handful of neutral PdII complexes with bridging dialkylphosphido units have been reported in the literature,[10] no X-ray structural data are available.

The most conducive and feasible procedure to synthesize dinuclear palladium(II) complexes with bridging phosphido units was devised by Shmidt, Belykh and Goremyka.[11] They precisely describe the reaction of \(\text{Ph}_2\text{PH}\) with \(\text{Pd(acac})_2\) (\(\text{acac} = \text{acetylacetonato}\)) which led to di- and trinuclear palladium complexes bridged by diphenylphosphido units. A related complex featuring chelating \(\text{F}_6\text{acac}\) ligands (\(\text{F}_6\text{acac} = \text{hexafluoroacetylacetonato}\)), albeit synthesized differently, was published by Röschenthaler et al. including an X-ray structural investigation.[12]

Perfluoroalkyl and –aryl groups distinctly influence the electronic properties of phosphane ligands. The HOMO, which correlates with the negative ionization energy, as well as the LUMO, which correlates with the negative electron affinity, of the fluorinated phosphane derivatives are lowered (Figure 1, left), which is expressed in a decreased nucleophilicity of the complexes.
lone pair (i.e. decreased σ-bonding) and an increased Lewis acidity (i.e. enhanced π-back-bonding).[13] One means to measure this effect is the Tolman electronic parameter. In accordance with Tolman’s concept, the carbonyl vibration bands of the nickel complexes [Ni(CO)2PR3] (R = CF3, C5F5, C6F5) are shifted by 22–49 cm⁻¹ towards higher wave numbers in comparison to their non-fluorinated counterparts.[14,15]

Muir et al. documented the influence of electron-withdrawing substituents by means of the molecular structure of the complex [PdCl₂(PH₂PCH₂CH₂P(CF₃)₂)] (Figure 1, right).[17] The higher Lewis acidity of the P(CF₃)₂ unit in comparison to the Cl atom manifests itself in a shortened Pd–P(CF₃)₂ bond as a result of an increased π-back-bonding from the Pd atom. Thus, the electron-withdrawing substituents at the phosphorus ligands induce an increased Lewis acidic behavior of the central metal ion. Correspondingly, the Pd–Cl bond length to the Cl atom trans to the P(CF₃)₂ unit is shortened by about 6 pm in comparison to the Cl atom trans to the PPh₂ unit.

The increased electron-withdrawing character of perfluoroalkyl- or –aryl phosphorus units usually a highly valuable tool for compounds featuring a perfluorinated organyl group, which is observed as a sharp singlet upon ¹⁹F decoupling. This resonance is markedly shielded in comparison to the one of bis(hexafluoroacetylacetone) palladium atom.

The reaction of (C₆F₅)₂PH with Pd(F₆acac)₂ proceeds analogously to 1, with a selective formation of [[Pd(F₆acac)Pd(μ-[P(C₆F₅)₃])]]₂, 2 (Scheme 1). 2 is only poorly soluble which impedes meaningful ¹³C NMR spectra. The ³¹P NMR spectrum shows a multiplet at ~175.8 ppm which, upon ¹⁹F decoupling, turns into a sharp singlet. The resonances for the F₆acac ligand and the C₆F₅ rings in the ¹⁹F NMR spectrum are observed in the expected range and their integrals are consistent with the proposed structure.

In contrast to many functionalized bis[2,4-bis(trifluoromethyl)phenyl]phosphine derivatives, bis[2,4-bis(trifluoromethyl)phenyl]phosphine, [(CF₃)₂C₆H₃]P, has not been described in the literature before. The corresponding aminophosphine [(CF₃)₂C₆H₃]P(NH₂) was chosen as a conducive precursor which upon treatment with two equivalents of gaseous HBr selectively afforded the corresponding bromophosphine as a colorless solid in an 84 % yield. Its NMR data agree with the ones reported by Dillon et al.[23] Similar to the synthesis of [(CF₃)₂C₆H₃]P described by Schmutzler et al.,[24] the bromophosphate was treated with a 1 M solution of LiAlH₄ in diethyl ether. The mixture was subsequently quenched with aqueous HCl. After the removal of all volatile compounds in vacuo and recrystallization of the residue from n-pentane, [(CF₃)₂C₆H₃]P was obtained as a colorless solid in a 67 % yield (Scheme 2).

Results and Discussion

³¹P NMR spectroscopic monitoring of the reaction of (CF₃)₂PH with Pd(F₆acac)₂, F₆acac = hexafluoroacetylacetone discloses a broadening of the phosphine resonance. A second resonance at ~8.6 ppm is assigned to the diphosphane (CF₃)₂P(PCF₃)₂ as the result of a reductive elimination.

The reaction of the heavier homologue (C₂F₅)₂PH with Pd(F₆acac)₂, however, selectively gives rise to the formation of [[μ-P(C₂F₅)₃]Pd(Pd-F₆acac)]₃, 1 (Scheme 1). NMR spectroscopy, usually a highly valuable tool for compounds featuring a perfluoroalkyl- or –aryl phosphorus unit, failed for a satisfactory characterization of the complexes described in this paper. The molecular structures could not be derived from NMR experiments alone and had to be elucidated by an X-ray crystal structure analysis (see below). In the ³¹P NMR spectrum of 1 the phosphorus atom gives rise to a multiplet at δ(³¹P) = ~98.8 ppm which is observed as a sharp singlet upon ¹⁹F decoupling. This resonance is markedly shielded in comparison to the one of (CF₃)₂PH (δ(³¹P) = ~50.8 ppm).[15] The ¹⁹F NMR spectrum exhibits its one set of signals for the CF₃ and CF₂ units. The resonance of the CF₃ units is observed as a singlet at ~80.2 ppm, while the CF₂ units gave a multiplet of higher order at ~97.6 ppm with a 1J(PF) coupling constant of about 35 Hz, which is comparatively small for bis(pentafluoroethoxy)phosphine derivatives. ³¹P decoupling again leads to a sharp singlet. Additionally, the resonance for the CF₃ groups of the F₆acac ligand is observed at ~75.1 ppm in the typical range for one F₆acac ligand chelating a palladium atom.

![Scheme 1. Synthesis of palladium complexes 1, 2 and 3.](Image)

![Scheme 2. Synthesis of bis[2,4-bis(trifluoromethyl)phenyl]phosphine.](Image)
Its 31P NMR spectrum exhibits a doublet of septets at –49.8 ppm with a 1J(Ph) coupling constant of 232 Hz which is comparable to the C$_{6}$F$_{5}$ derivative (1J(Ph)=230 Hz) as well as the C$_{6}$F$_{5}$ (4J(Ph)=218 Hz) and Ph derivative (4J(Ph)=214 Hz). The 4J(PF) coupling constant of 38 Hz is rather small compared to other bis[2,4-bis(trifluoromethyl)phenyl]phosphane derivatives which usually are found in the range of 55–65 Hz.

The reaction of the phosphane [(CF$_{3}$)$_{2}$C$_{6}$H$_{3}$]$_{2}$PH with Pd-(F$_{6}$acac)$_{2}$, analogously, selectively furnished the dinuclear palladium complex [(F$_{6}$acac)Pd{µ-{P[C$_{6}$H$_{3}$(CF$_{3}$)$_{2}$]}}$_{2}$], Scheme 1. The 31P NMR resonance is shifted about 30 ppm to higher field and is observed at –80.6 ppm as a broad multiplet. The 19F NMR spectrum displays two broad signals for the ortho-CF$_{3}$ groups in a ratio of 1.3:1. This is probably due to a hindered rotation of one ortho-CF$_{3}$ group per P[C$_{6}$H$_{3}$(CF$_{3}$)$_{2}$] unit, as in the solid-state structure of an F···P contact was observed (see below).

The 1H NMR spectrum exhibits resonances for the aromatic protons that also point at a hindered rotation.

Treating (CF$_{3}$)$_{2}$PH with the non-fluorinated palladium precursor Pd(acac)$_{2}$ (acac = acetylacetonato) again results in a broadening of the resonance in the 31P NMR spectrum without any significant shifts in the 31P or 19F NMR spectrum, as well as in the formation of the diphosphane (F$_{3}$C)$_{2}$PP(CF$_{3}$)$_{2}$.

The reaction of Pd(acac)$_{2}$ with (C$_{2}$F$_{5}$)$_{2}$PH in diethyl ether selectively gives rise to the formation of [(acac)Pd{µ-{P(C$_{2}$F$_{5}$)$_{2}$}}]$_{2}$, Scheme 3.

The resonance in the 31P NMR spectrum is detected as a multiplet of higher order at δ(31P) = –88.6 ppm. 19F decoupling leads to a sharp singlet. The 19F NMR spectrum is similar to that of the F$_{6}$acac complex, with a singlet at –80.2 ppm for the CF$_{3}$ units and a higher-order multiplet at –98.8 for the CF$_{2}$ units with a 2J(PF) coupling constant of about 30 Hz. The 1H NMR spectrum displays signals for the acetylacetonato ligand at 5.4 and 2.2 ppm with corresponding signals in the 13C NMR spectrum at 26.5 for the CH$_{3}$ groups, 99.1 for the CH unit and 185.8 for the oxygen-bound carbon atom. The latter resonance as well as the resonance for the CH$_{3}$ groups are split into triplets with coupling constants of 3J(PC) = 2 and 4J(PC) = 6 Hz, respectively. After removal of all volatile compounds, the compound remained as a red powder.

Surprisingly, the reaction of [2,4-(CF$_{3}$)$_{2}$C$_{6}$H$_{3}$]$_{2}$PH with Pd(acac)$_{2}$ affords tetrakis[2,4-bis(trifluoromethyl)phenyl]diphosphane, Scheme 5, which was isolated as a colorless solid in a 56 % yield (Scheme 5). Until now, this diphosphane has been an elusive species. A common reaction, the treatment of a bis[2,4-bis(tri-
fluoromethyl)phenyl]halogenophosphane with elemental mercury or antimony powder, does not yield any conversion at all, not even at elevated temperatures.

The 31P NMR spectrum is characterized by a broad multiplet of higher order at –27.8 ppm. Proton-decoupling shows a slightly decreased linewidth, while fluorine-decoupling leads to a broad singlet with shoulders. The 19F NMR spectrum exhibits two signals: the resonance of the para CF$_3$ groups is observed as a singlet at –63.5 ppm, while the ortho CF$_3$ groups give rise to a multiplet (formally an $[A_3X_2]$ spin system; $A = ^{19}$F, $X = ^{31}$P) at –57.6 ppm which on 31P decoupling is observed as a singlet.

X-ray Structural Investigation

Compound 1 crystallizes in the monoclinic space group $P2_1$ with two molecules per unit cell (Figure 2); two of the six C$_2$F$_5$ groups are disordered. The overall structure is quite similar to that of $[(F_6acac)Pd\mu-(PPh_2)]_2$ described by Röschenthaler et al.[12] The only striking difference concerns the averaged Pd–O distance of 204.8 pm which is about 6 pm shorter than in the Ph derivative $[(F_6acac)Pd\mu-(PPh_2)]_2$.[12] The P–Pd bond lengths of 1, however, are with $d_{av} = 223.9$ pm comparable to those of the Ph derivative ($d_{av} = 223.6$ pm). While the π-back-bonding from the metal in 1 clearly compensates for the reduced σ-basicity which results in comparable Pd–P bond lengths of the C$_2$F$_5$ and Ph derivative, the increased Lewis acidity at the metal atom in 1 leads to shortened Pd–O bond lengths.

The Pd–Pd bond angles are 104.45(6)° and 104.67(6)° and the P–Pd–P bond angles amount to only 75.20(5)° and 75.17(5)°. This results in a Pd1–Pd2 distance of 354.23(6) pm and a short P1–P2 distance of 273.2(2) pm, which is about 100 pm shorter than the sum of the van-der-Waals radii. These structural features are also observed in many neutral Pdd complexes with a Pd(μ-P)$_2$Pd four-membered ring, although especially the P–P distance of 1 is rather short compared to the average P–P distance of about 280 pm.[9,12,28] The C–P–C angles amount to 101.6(3)° and 106.6(5)°.

2 crystallizes in the triclinic space group $P\overline{1}$ with two molecules in the unit cell (Figure 3). The distances and angles are largely comparable to 1 and are summarized in Table 1.

Table 1. Comparison of selected structural parameters of $[(F_6acac)Pd\mu-(P(C_6F_5)_2)]_2$ (1), $[(F_6acac)Pd\mu-(P(C_6F_5)_2)]_2$ (2), $[(F_6acac)Pd\mu-(P(C_6H_3(CF_3)_2)]_2$ (3), and $[Pd\mu-(P(C_6F_5)_2)]Pd(acac)_2$ (5).

	1	2	3	4	5
d_{av}(Pd–P) / pm	223.9	223.8	225.4	225.2	225.2$^{(a)}$
d_{av}(Pd–O) / pm	204.8	207.11	208.18	202.60	204.50$^{(b)}$
d(Pd–P) / pm	273.19	275.15	274.77	278.36	283.14$^{(c)}$
d(Pd–P) / pm	354.23	353.16	339.82	354.12	354.65 (1–2)
\angle_{av}(Pd–Pd–P) / °	75.19	75.84	75.10	76.34	77.91$^{(d)}$
\angle_{av}(P–Pd–P) / °	104.56	104.16	97.84	103.660	98.29
\angle_{av}(C–P–C) / °	104.14	106.65	109.70	87.993	106.38

[a] $acacPd(\mu-P)_2$. [b] $Pd(\mu-P)_4$. [c] Average.
of the \(P[\text{C}_6\text{H}_3(\text{CF}_3)_2]_2\) unit in comparison with the \(P(\text{C}_2\text{F}_5)\) unit. The four-membered ring \(\text{Pd}(\mu-P)_2\text{Pd}\) is highly bent with an angle of 143.90(3)°, which results in a shortened Pd–Pd distance of 339.82(3) pm and a Pd–P–Pd angle of only 97.84°. F18 and F19 display weak F···P contacts of 295.24(18) and 294.02(16) pm and are nearly linearly aligned with the opposite atoms (F18–P1–C6 = 175.38(9) and F19–P2–Pd1 = 176.82(4)°).

Figure 4. Molecular structure of \(\{(\text{F}_6\text{acac})\text{Pd}(\mu-P)[\text{C}_6\text{H}_3(\text{CF}_3)_2]_2\}\)\(_2\)·\(\text{Et}_2\text{O}\). Thermal ellipsoids are shown at the 50 % probability level. For clarity, \(\text{F}_6\text{acac}\) ligands are displayed in a wires/sticks model and the solvent molecule and the minor occupied CF3 group were omitted.

\(\text{4}\) crystallizes in the triclinic space group \(P\overline{1}\) at a center of inversion (Figure 5) with disordered \(\text{C}_2\text{F}_5\) groups. Due to a decomposition of the crystal at low temperatures, the measurement was performed at 250 K which led to large thermal ellipsoids. The bond lengths and angles are generally comparable to its \(\text{F}_6\text{acac}\) counterpart \(\text{1}\), with a slightly longer P–P distance of 278.36(2) pm.

Figure 5. Molecular structure of \(\{[(\text{acac})\text{Pd}(\mu-P[P(\text{C}_6\text{H}_3\text{CF}_3)_2])]_2\}\)\(_2\)·\(2\text{PhCl}\). For clarity, \(\text{acac}\) ligands are displayed in a wires/sticks model; only major occupied parts are shown.

\(\text{5}\) crystallizes in the triclinic space group \(P\overline{1}\) with two chlorobenzene molecules, which served as a solvent, per formula unit (Figure 6). The two four-membered rings (\(\text{Pd}(\mu-P)_2\text{Pd}\)) deviate significantly from planarity with fold angles of 23.55(2)° resp. 39.59(2)° along the P–P line and 29.11(2)° resp. 47.02(2)° along Pd–Pd. This results in considerably shortened Pd–Pd distances of 354.65(1) pm (Pd1–Pd2) and 341.07(1) pm (Pd2–Pd3). The mean P–P–P angle of the (acac)Pd(\(\mu-P\))\(_2\) unit (77.91°) is slightly widened compared to its counterpart in the Pd(\(\mu-P\))\(_4\) unit (74.17°). These units also exhibit significantly differing Pd–P bond lengths: The mean Pd–P bond length in the (acac)Pd(\(\mu-P\))\(_2\) units of 225.2 pm is comparable with those obtained in complexes \(\text{1–4}\), while the average Pd2–P bond length of the central Pd(\(\mu-P\))\(_4\) unit of 234.8 pm is significantly longer. A similar observation has been made by Mathey and Le Floch for their trinuclear bis(diphosphaferrocene) palladium complex in which the Pd–P bonds of 243.05(7) and 251.60(7) pm of the central Pd(\(\mu-P\))\(_4\) unit are between 20 and 30 pm longer than those in the outer L2Pd(\(\mu-P\))\(_2\) units.[29]
6 crystallizes in the monoclinic space group C2/c at a two-fold axis with four formula units per unit cell (Figure 7) and heavily disordered solvent molecules. The P–P distance of 223.15(5) pm fits well into the range of P–P bonds in diphosphines R2P–PR2, for example 221.7 for R = Ph,[100] 224.6 for R = CF3[31] 224.8 for R = C6F5[32] and 226.0 for R = Mes.[33] The C–P–C angle of 101.14°(4)° is well comparable to the ones observed in solid-state structures of other bis[2,4-bis(trifluoromethyl)phenyl]phosphane derivatives.[22,23,26] Like these examples, 6 also exhibits weak P–F contacts between ortho-CF3 fluoride atoms and the phosphorus atom in a range of 307–313 pm.

Conclusions

We investigated the influence of electron-withdrawing substituents R in the palladium complexes [[(L)Pd{μ-[PR3]}]2]. The corresponding complexes were obtained by the reaction of the phosphines R2PH (R = CF3, C2F5, C6F5, (CF3)2C6H3) with Pd(acac)2 and Pd(acac)2. A synthetic protocol for the so far unknown [[(CF3)2C6H3]2P(μ-PR3)]2 was devised. The reaction of the phosphines with Pd(acac)2 yielded the corresponding phosphido-bridged dinuclear palladium complexes [[(acac)Pd{μ-PR3}]]2, which exhibit shortened Pd–O bond lengths in comparison with the non-fluorinated Ph derivative. This can be rationalized by an increased Lewis acidity of the Pd atom, induced via the electron-withdrawing effect of the substituents R at the phosphorus atoms. The compounds obtained in the reaction with Pd(acac)2 were structurally more diverse. For R = C2F5, the dinuclear palladium complex [[{(acac)Pd{μ-[P(CF3)2]}2}]2 was obtained, while the reaction with (C5F3)2PH yielded a trinuclear palladium complex bridged by four phosphido units. The reaction with [[(CF3)2C6H3]2PH yielded the diphosphone [(CF3)2C6H3]2P[P(C6H3)(CF3)]2 as the main product.

Experimental Section

(CF3)2PH[15] (C6F5)2PH[24] and (2,4-(CF3)2C6H3)2PNET2[22] were synthesized following literature procedures. All other chemicals were obtained from commercial sources and used without further purification. Standard high-vacuum techniques were employed for all preparative procedures. Non-volatile compounds were handled in a dry N2 atmosphere using Schlenk techniques. NMR spectra were recorded with a Bruker Avance III 300 (1H: 300.13 MHz; 13C: 75.47 MHz; 19F: 282.40 MHz; 31P: 111.92 MHz) and a Bruker Avance III 500 HD spectrometer (1H: 500.20 MHz; 13C: 125.79 MHz; 19F: 470.61 MHz; 31P: 202.48 MHz) with positive shifts being downfield from the external standards (85 % orthophosphoric acid (31P), CCl3F (19F) and TMS (1H, 13C)). IR spectra were recorded on an ALPHA-FT-IR spectrometer (Bruker Daltonik GmbH, Bremen, Germany) using an ATR unit with a diamond crystal for liquids and solids. Melting and visible decomposition points were determined using a Mettler Toledo MP70-Melting Point System. Elemental analyses were carried out with a HekaTech Euro EA 3000. Crystal data were collected with a Rigaku Supernova diffractometer with MoKα radiation at 100.0 K except for 4 which was measured at 250 K. Using Olex2,[34] the structures were solved with the ShelXS[35] structure solution program using Direct Methods and refined with the ShelXL[36] refinement package using Least Squares minimization. Crystals of 6 contained heavily disordered diethyl ether molecules that could not be refined reasonably, so a solvent mask was applied. Details of the X-ray investigation are given in Table 2.

Synthesis of [(F6acac)Pd{μ-[P(CF3)2]}]2 (1): (C6F5)2PH (1.0 mmol) was condensed onto a solution of Pd(acac)2 (0.381 g, 0.732 mmol) in diethyl ether. The reaction mixture was stirred at room temperature for 24 h, during which the solution turned orange-red and an off-white solid precipitated. After filtration and washing of the solid with diethyl ether, the solid was dried in vacuo (0.413 g, 97 %). Single crystals were obtained by combining (CF3)2PH and Pd(acac)2 in diethyl ether without stirring and storage of the mixture for three days. M.p. 171–176 °C. 1H NMR (CDCl3, 300.13 MHz): δ = 6.4 ppm (s, br, 1H, F6acac); 19F NMR (CDCl3, 282.40 MHz): δ = −7.51 (s, 6F, F6acac), −80.2 (s, 6F, C6F5), −97.6 (m, 3F, C6F5); 31P NMR (CDCl3, 111.92 MHz): δ = −98.8 ppm (m); 31P{19F} NMR (CDCl3, 111.92 MHz): δ = −98.8 ppm (m); 19F (19F) NMR (CDCl3, 111.92 MHz): δ = −98.8 ppm (s); IR (ATR): ν = 2923 (vw), 2853 (vw), 1632 (w), 1610 (m), 1579 (vw), 1559 (vw), 1532 (vv), 1443 (vv), 1305 (w), 1254 (m), 1204 (vs), 1145 (vs), 1103 (vs), 952 (s), 809 (m), 749 (s), 685 (m), 630 (w), 593 (m), 513 (w), 481 (m), 443 (v), 424 (v), 407 (w) cm−1; elemental analysis calc. (%) for C18H2F32O4P2Pd2: C 18.56, H 0.17; found C 17.92, H 0.10.

Synthesis of [(F6acac)Pd{μ-[P(C6F5)2]}]2 (2): (C6F5)2PH (0.269 g, 0.735 mmol) was dissolved in diethyl ether (10 mL) and treated with solid Pd(acac)2 (0.381 g, 0.732 mmol). The yellow solution was stirred for 10 min whereupon a yellow solid precipitated. It was filtered off, washed with diethyl ether (5 mL) and dried in vacuo. [(F6acac)Pd{μ-[P(C6F5)2]}]2 remained as a yellow solid (0.400 g, 95 %). Single crystals were obtained following literature procedures. Non-volatile compounds were handled in a dry N2 atmosphere using Schlenk techniques. NMR spectra were recorded with a Bruker Avance III 300 (1H: 300.13 MHz; 13C: 75.47 MHz; 19F: 282.40 MHz; 31P: 111.92 MHz) and a Bruker Avance III 500 HD spectrometer (1H: 500.20 MHz; 13C: 125.79 MHz; 19F: 470.61 MHz; 31P: 202.48 MHz) with positive shifts being downfield from the external standards (85 % orthophosphoric acid (31P), CCl3F (19F) and TMS (1H, 13C)). IR spectra were recorded on an ALPHA-FT-IR spectrometer (Bruker Daltonik GmbH, Bremen, Germany) using an ATR unit with a diamond crystal for liquids and solids. Melting and visible decomposition points were determined using a Mettler Toledo MP70-Melting Point System. Elemental analyses were carried out with a HekaTech Euro EA 3000. Crystal data were collected with a Rigaku Supernova diffractometer with MoKα radiation at 100.0 K except for 4 which was measured at 250 K. Using Olex2,[34] the structures were solved with the ShelXS[35] structure solution program using Direct Methods and refined with the ShelXL[36] refinement package using Least Squares minimization. Crystals of 6 contained heavily disordered diethyl ether molecules that could not be refined reasonably, so a solvent mask was applied. Details of the X-ray investigation are given in Table 2.

CCDC 1937087 (for 1), 1937088 (for 2), 1937089 (for 3), 1937090 (for 4), 1937091 (for 5), and 193092 (for 6) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
Synthesis of \([2,4-(\text{CF}_3\text{)}_2\text{C}_6\text{H}_3\text{]}_2\text{PBr}\): A solution of \([2,4-(\text{CF}_3\text{)}_2\text{C}_6\text{H}_3\text{]}_2\text{PBr}\) remained as a colorless solid (3.701 g, 84 %).

Eur. J. Inorg. Chem. 2019, 3904–3912
Synthesis of \([\text{[acac]}\text{Pd}[\mu-(\text{PC}_{2}F_{5})_{2}]_{2}\text{Pd}][\text{acac}]\) (4): \((\text{C}_{2}F_{5})_{2}\text{PH}\) (1.5 mmol) was condensed onto a solution of \(\text{Pd}([\text{acac}]_{2})\) (0.178 g, 0.584 mmol) in diethyl ether. The solution mixture was filtered for 24 h at room temperature, during which the solution turned brown-red. All volatile compounds were removed in vacuo. The remaining red solid was redissolved in diethyl ether and stored for 2 days at \(-28^\circ\text{C}\). The red supernatant was removed from the brown-beige solid which was dried in vacuo. \([\text{[acac]}\text{Pd}[\mu-(\text{PC}_{2}F_{5})_{2}]_{2}\text{Pd}][\text{acac}]\) remained as a brown-beige solid (0.187 g, 70 %). \(1^H\) NMR (CDCl3, 300.13 MHz): \(\delta = 6.2 (s, 6\text{H}, \text{C}6\text{H})\), 5.4 ppm (s, 1\text{H}, CH); \(13^C\) [1H] NMR (CDCl3, 75.47 MHz): \(\delta = 26.5 (t, J_{\text{CF}}=6\text{ Hz}, \text{C}6\text{H})\), 99.1 (s, CH), 185.8 ppm (t, \(J_{\text{PC}}=2\text{ Hz}, \text{C}=0\)); \(19^F\) [1H] NMR (CDCl3, 100.20 MHz): \(\delta = -28.0 (m, 3\text{F}, \text{CF})\), -98.3 (m, \(J_{\text{PF}}\) ca. 30 Hz, CF3); \(31^P\) NMR (CDCl3, 119.12 Hz): \(\delta = -88.6 (m, J_{\text{PF}}=31\text{ Hz})\); IR (ATR): \(\tilde{\nu} = 1576 (\text{w})\), 1557 (s), 1521 (m), 1433 (v), 1372 (w), 1300 (m), 1273 (w), 1251 (s), 1201 (vs), 1125 (s), 1105 (s), 1024 (w), 784 (w), 749 (s), 686 (w), 663 (v), 626 (w), 594 (p), 546 (v), 519 (w), 480 (m), 448 (s), 415 (m) cm\(^{-1}\).

Synthesis of \([\text{[acac]}\text{Pd}[\mu-(\text{PC}_{2}F_{5})_{2}]_{2}\text{Pd}][\text{acac}]\) (5): \(\text{Pd}([\text{acac}]_{2})\) (0.280 g, 0.919 mmol) and \((\text{C}_{2}F_{5})_{2}\text{PH}\) (0.450 g, 1.23 mmol) were dissolved in diethyl ether and the reaction mixture was stirred for 10 min. The red solution was dried in vacuo. The remaining dark red solid was redissolved in acetonitrile and extracted with pentane. The combined \(n\)-pentane phases were dried in vacuo. \([\text{Pd}([\mu-(\text{PC}_{2}F_{5})_{2}]_{2}\text{Pd}][\text{acac}]\) remained as a light red solid (0.328 g, 62 %). Single-crystals were obtained by storing a PhCl solution at \(-28^\circ\text{C}\). \(1^H\) NMR (CDCl3, 300.13 MHz): \(\delta = 1.7 (s, 6\text{H}, \text{C}6\text{H})\), 5.2 ppm (s, 1\text{H}, CH); \(13^C\) [1H] NMR (CDCl3, 75.47 MHz): \(\delta = 26.9 (s, \text{C}6\text{H})\), 99.7 (s, CH), 137.1 ppm (d, \(J_{\text{CF}}=261\text{ Hz}, 2\text{ meta-CF}\)), 142.3 ppm (d, \(J_{\text{CF}}=260\text{ Hz}, \text{para-CF}\)), 147.4 ppm (d, \(J_{\text{CF}}=250\text{ Hz}, \text{ortho-CF}\)), 186.2 ppm (s, C=O); \(13^C\) [19F] NMR (CDCl3, 75.47 MHz): \(\delta = 137.1 (\text{meta-CF})\), 142.3 ppm (para-CF), 147.5 ppm (ortho-CF); \(19^F\) NMR (CDCl3, 282.40 MHz): \(\delta = 124.9 (d, J_{\text{CF}}=12\text{ Hz}, \text{H}12\text{F})\), \(J_{\text{PF}}=20\text{ Hz}, 2\text{ meta-F})\); \(31^P\) NMR (CDCl3, 119.12 Hz): \(\delta = -88.6 (m, J_{\text{PF}}=31\text{ Hz})\); IR (ATR): \(\tilde{\nu} = 1576 (\text{w})\), 1557 (s), 1521 (m), 1433 (v), 1372 (w), 1300 (m), 1273 (w), 1251 (s), 1201 (vs), 1125 (s), 1105 (s), 1024 (w), 784 (w), 749 (s), 686 (w), 663 (v), 626 (w), 594 (p), 546 (v), 519 (w), 480 (m), 448 (s), 415 (m) cm\(^{-1}\).

Acknowledgments
This work was financially sponsored by Merck KGaA (Darmstadt, Germany). Solvay (Hannover, Germany) is gratefully acknowledged for the donation of chemicals. We acknowledge the support by the Deutsche Forschungsgemeinschaft (Core Facility GEDBi, MI477/21–1) and we thank Prof. Dr. Lothar Weber for helpful discussions.

Keywords: Palladium · Bridging ligands · Fluorinated ligands · Structure elucidation · Synthesis design
katsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hase-
gawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitoa, H. Nakai, T. Veven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Broth-
ers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghava-
chari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega,
J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,
G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O.
Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09,
Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

[17] L. Manojlović-Muir, D. Millington, K. W. Muir, D. W. A. Sharp, W. E. Hill,
J. V. Quagligiano, L. M. Vallarino, J. Chem. Soc., Chem. Commun. 1974, 999–
1000.

[18] For example: a) B. Hoge, J. Bader, B. Kurscheid, N. Ignat’ev, E. F. Aust, WO
2010/009818 A1, 2010, Merck Patent GmbH, Darmstadt; b) B. Kurscheid,
L. Belkoura, B. Hoge, Organometallics 2011, 31, 1329–1334; c) B. Kurs-
cheid, B. Neumann, H.-G. Stammler, B. Hoge, Chem. Eur. J. 2011, 17,
14935–14941.

[19] a) B. Hoge, C. Thösen, T. Herrmann, I. Pantonenburg, Inorg. Chem. 2003, 42,
3633–3641; b) B. Hoge, T. Herrmann, C. Thösen, I. Pantonenburg. Inorg.
Chem. 2003, 42, 5422–5428; c) B. Hoge, C. Thösen, T. Herrmann, P. Panne,
I. Pantonenburg. J. Fluorine Chem. 2004, 125, 831–851.

[20] B. Hoge, C. Thösen, Inorg. Chem. 2001, 40, 3113–3116.

[21] A. B. Burg. Inorg. Chem. 2002, 17, 2322–2324.

[22] B. Hoge, B. Kurscheid, S. Peuker, W. Tyrra, H. T. M. Fischer, Z. Anorg.
Allg. Chem. 2007, 633, 1679–1685.

[23] A. S. Batsanov, S. M. Cornet, K. B. Dillon, A. E. Goeta, P. Hazendonk, A. L.
Thompson, J. Chem. Soc., Dalton Trans. 2002, 24, 4622–4628.

[24] J. R. Goerlich, V. Plack, R. Schmutzler, J. Fluorine Chem. 1996, 76, 29–35.

[25] K. Moedritzer, L. Maier, L. C. D. Groenweghe, J. Chem. Eng. Data 1962, 7,
307–310.

[26] B. Hoge, B. Kurscheid, Angew. Chem. Int. Ed. 2008, 47, 6814–6816; Angew.
Chem. 2008, 120, 6920.

[27] a) L. Heuer, P. G. Jones, R. Schmutzler, J. Fluorine Chem. 1990, 46, 243–
254; b) B. Kurscheid, Dissertation, Universität Bielefeld, 2011.

[28] a) M. J. Ray, M. Bühl, L. J. Taylor, K. S. Athukorala Arachchige, A. M. Z.
Slaavin, P. Kilian, Inorg. Chem. 2014, 53, 8538–8547; b) M. C. Macinnis, R.
McDonald, L. Turcuilet, Organometallics 2011, 30, 6408–6415; c) A. T.
Ekubo, M. R. J. Elsegoud, A. J. Lake, M. B. Smith, Inorg. Chem. 2010, 49,
3703–3705; d) L. Chahen, B. Therrien, G. Suss-Fink, Acta Crystallogr., Sect.
E 2007, 63, m1989–m1989; e) L. Boubakeur, L. Ricard, P. Le Floch, N.
Mézaillers, Organometallics 2005, 24, 3856–3863; f) W.-K. Wong, H. Liang,
M.-Y. Yung, J.-P. Guo, K.-F. Yung, W.-T. Wong, P. G. Edwards, Inorg. Chem.
Commun. 2004, 7, 737–740; g) H. Brunner, S. Dormeier, I. Grau, M. Zabel,
Eur. J. Inorg. Chem. 2002, 2002, 2603–2613; h) M. A. Zhuravel, J. R.
Moncarz, D. S. Glueck, K.-C. Lam, A. L. Rheingold, Organometallics 2000, 19,
3447–3454; i) T. Gebauer, G. Frenzen, K. Dehnicek, Z. Naturforsch. B 1992,
47, 1505–1512.

[29] M. Melaimi, L. Ricard, F. Mathey, P. Le Floch, J. Organomet. Chem. 2003,
684, 189–193.

[30] A. Dashti-Mommertz, B. Neumüller, Z. Anorg. Allg. Chem. 1999, 625, 954–
960.

[31] G. Becker, W. Golla, J. Grobe, K. W. Klinkhammer, D. Le Van, A. H. Maultz,
O. Mundt, H. Oberhammer, M. Sachs, Inorg. Chem. 1999, 38, 1099–1107.

[32] M. Kuprat, M. Lehmann, A. Schulz, A. Villinger, Inorg. Chem. 2011, 50,
5784–5792.

[33] S. G. Baxter, A. H. Cowley, R. E. Davis, P. E. Riley, J. Am. Chem. Soc. 1981,
103, 1699–1702.

[34] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann,
Acta Crystallogr., Sect. A 2004, 60, 243–245.

[35] G. M. Sheldrick, Acta Cryst. A 2015, 71, 3–8.

[36] G. M. Sheldrick, Acta Cryst. C 2015, 71, 3–8.

Received: July 4, 2019