ASYMPTOTIC RESULTS FOR RANDOM POLYNOMIALS ON THE UNIT CIRCLE

Gabriel H. Tucci
Philip Whiting

Abstract: In this paper we study the asymptotic behavior of the maximum magnitude of a complex random polynomial with i.i.d. uniformly distributed random roots on the unit circle. More specifically, let \(\{ n_k \}_{k=1}^{\infty} \) be an infinite sequence of positive integers and let \(\{ z_k \}_{k=1}^{\infty} \) be a sequence of i.i.d. uniformly distributed random variables on the unit circle. The above pair of sequences determine a sequence of random polynomials \(P_N(z) = \prod_{k=1}^{N} (z - z_k)^{n_k} \) with random roots on the unit circle and their corresponding multiplicities. In this work, we show that subject to a certain regularity condition on the sequence \(\{ n_k \}_{k=1}^{\infty} \), the log maximum magnitude of these polynomials scales as \(s_N^2 I^* \), where \(s_N^2 = \sum_{k=1}^{\infty} n_k^2 \) and \(I^* \) is a strictly positive random variable.

2000 AMS Mathematics Subject Classification: Primary: 60F99; Secondary: 60B10.

Keywords and phrases: Random polynomials, Brownian bridge, stochastic process.

The full text is available here.