Molecular Characterization of Extended-Spectrum β-Lactamase-Producing Multidrug Resistant Escherichia coli From Swine in Northwest China

Xiaoqiang Liu, Haixia Liu, Le Wang, Qian Peng, Yinqian Li, Hongchao Zhou and Qinfan Li*

Department of Basic Veterinary, College of Veterinary Medicine, Northwest A&F University, Yangling, China

Objectives: The aim of the present study was to explore the prevalence and molecular characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli collected from pig farms in Northwest China.

Methods: Between May 2015 and June 2017, a total of 456 E. coli isolates were collected from fecal samples of healthy and diarrheal pigs in Northwest China to screen the ESBL producers. The β-lactamases, plasmid-mediated quinolone resistance (PMQR) genes and virulence genes among ESBL producers were corroborated by PCR and sequencing. Finally, ESBL producers were further grouped according to phylogenetic background and genetic relatedness.

Results: Forty-four (9.6%) out of the 456 E. coli isolates were identified as ESBL-producing isolates. All ESBL producers exhibited multidrug resistance (MDR) phenotype, and more than 90% of the ESBL producers were resistant to amoxicillin, amoxicillin-clavulanic acid, oxytetracycline, enrofloxacin and sulfamethoxazole/trimethoprim. All ESBL producers harbored at least one type of β-lactamase, with blaCTX−M, blaTEM, blaSHV, blaOXA−48, and blaKPC−2 being detected in forty, thirty, seven, four, two and one isolates, respectively. Sequencing revealed the most common blaCTX−M subtype was blaCTX−M−14 (n = 24), followed by blaCTX−M−15 (n = 14), blaCTX−M−64 (n = 11), blaCTX−M−9 (n = 10) and blaCTX−M−123 (n = 9). qnrS (n = 23) was the predominant PMQR gene, and all PMQR genes were detected in co-existence with β-lactamase genes. estA (n = 18) and F4 (n = 18) were the most prevalent enterotoxin and fimbrial adhesin, respectively, and 27 different virotypes were found with respect to the association of enterotoxins and fimbrial adhesins. Twenty-four different sequence types (STs) were identified among 44 ESBL producers, and clones ST405, ST10 and ST648 were strongly present in more than one-third (34.1%) of ESBL producers.
INTRODUCTION

Escherichia coli (E. coli) is both a ubiquitous commensal bacterium in intestinal tract and an important pathogen of diarrhea or extraintestinal infections of humans and animals, and both commensal and pathogenic isolates usually share the same environment (Wu et al., 2013). Cephalosporins are effective for gram-negative bacterial infections, especially for infections caused by multidrug resistant (MDR) *E. coli* (Silva-Sanchez et al., 2013). At present, extended-spectrum β-lactams are not the first-line treatment in food animals, whereas the resistance to β-lactams, especially to the third- and fourth-generation cephalosporins has increased markedly accompanying their massive or inappropriate use over the past decades, and it is also considered as an important public health challenge (Agersø and Aarestrup, 2013). Nowadays, one of the most worrisome resistance mechanisms to β-lactams is the emergence of extended-spectrum β-lactamases (ESBLs), which could inactivate oxyimino-β-lactams like third-generation cephalosporins and aztreonam (Liu et al., 2015). Moreover, ESBLs are generally located on the transmissible plasmids, and could be acquired between bacteria by conjugation mechanism (Cantas et al., 2015). A recent study has further suggested that ESBL-producing *E. coli* isolate, along with their antibiotic resistance genes, can spread from food animals and animals-derived foods to humans via food-chain (Geser et al., 2012). Additionally, plasmid-mediated AmpC β-lactamase *bla*CMY−2, carbapenemases *bla*NDM−1, *bla*OXA−48 and *bla*KPC−2 are also increasingly described (Conceição-Neto et al., 2017; Subirats et al., 2017). As a result, the dissemination of ESBL-producing isolates poses a serious risk to both animal and human health. Furthermore, ESBL producers have been associated with resistance to non-β-lactam antimicrobials, such as fluoroquinolones, aminoglycosides and sulfonamides, which are often used long term to treat and prevent diseases on pig farms in China (Tian et al., 2009, 2012; Yuan et al., 2009). Especially, plasmid-mediated quinolone resistance (PMQR) genes are thought to be linked with ESBL production, and spread of *E. coli* co-expressing PMQRs and ESBLs could contribute to growing concerns about resistant *E. coli* isolates (Wang et al., 2012).

The prevalence of ESBL-producing *E. coli* isolates in food animals has been increasing worldwide, and they pose a serious challenge in controlling bacterial diarrhea in swine industry. However, very little data have been reported on the occurrence and various types of β-lactamases among *E. coli* from swine in Northwest China. The main purpose of this study was to screen ESBL-producing *E. coli* isolates collected from pig farms in Northwest China, and further analyze ESBL producers based on genetic relatedness, virulence profiles, and the occurrence and transferability of β-lactamase and PMQR genes.

Conclusion: All ESBL-producing *E. coli* isolates exhibited MDR phenotype, and showed high prevalence of β-lactamase and PMQR genes. Especially, one isolate harbored ESBL genes *bla*TEM, *bla*SHV, *bla*CTX-M−9, *bla*CTX-M−14, *bla*CTX-M−64, and carbapenemase gene *bla*OXA−48 and *bla*KPC−2, as well as PMQR genes *qnrS*, *qnrB*, *qnrD*, *qepA* and *aac(6′)-Ib-cr*.

Keywords: *Escherichia coli*, antibiotic resistance, β-lactamase, OXA-48, PMQR

MATERIALS AND METHODS

Sample Collection and Bacterial Culture

During May 2015 to June 2017, 456 *E. coli* isolates (270 from healthy pigs, 186 from diarrheal pigs) were isolated from fecal samples of different swine in ten pig farms, which are widely dispersed across Shaanxi and Gansu provinces. Fecal samples were collected from individual pigs using a sterile cotton swab and transported to laboratory within 12 h. All samples were immediately seeded on MacConkey agar (Beijing Land Bridge Technology Co., Ltd, Beijing, China). After incubation at 37°C for 18 to 24 h, three colonies with typical *E. coli* morphology (bright pink with a dimple) were randomly selected and transferred to Eosin Methylene Blue agar (Qingdao Hope Bio Technology Co., Ltd, Qingdao, Shandong, China) for further purification. Finally, the suspect *E. coli* isolates on Eosin Methylene Blue agar (green colonies with a metallic sheen) were subjected to biochemical tests (indole, methyl red, oxidase, citrate, and triple sugar iron) as described previously (Liu et al., 2017). All confirmed *E. coli* isolates were stored at −80°C in Tryptic Soy broth medium containing 30% glycerol for later study.

Antimicrobial Susceptibility Testing

The minimum inhibitory concentrations (MICs) of ampicillin, amoxicillin-clavulanic acid, ceftiofur, cefotaxime, ceftriaxone, ceftazidime, meropenem, enrofloxacin, ciprofloxacin, florfenicol, sulfamethoxazole/trimethoprim, gentamicin, amikacin, oxytetracycline, and colistin were determined by a standardized microdilution method following CLSI guidelines (CLSI, 2013). All MIC determinations were performed in triplicate, with *E. coli* ATCC 25922 serving as a quality control. Meanwhile, double-disk diffusion method was used to screen for the ESBL production among all isolates with cepotaxime and ceftazidime alone and in combination with clavulanic acid by using the guidelines recommended by CLSI (2013). Initial screening analyses indicated that 44 (9.6%) *E. coli* isolates were identified as phenotypic ESBL producers, which were further investigated for molecular characterization.
Phylogenetic Grouping and Virulence Genotyping

DNA from each ESBL producer was extracted using boiling method, and the distribution of phylogenetic groups of ESBL producers were determined by quadruplex PCR as described by Clermont et al. (Clermont et al., 2013). Meanwhile, enterotoxins (elt, estA, estB, stx1, stx2, and astA) and fimbrial adhesins (F4, F5, F6, F17, F18 and F41) as well as intimin encoded by eae gene were detected using single or multiplex PCR with specific primers as previously described (Boerlin et al., 2005; Toledo et al., 2012). The E. coli strains used as positive controls were B2 (eae, stx1, stx2), 256 (estA, estB), 281 (elt), G2077 (F4), B21523 (F5), J7203349 (F6), 320 (F41), and B37429 (F18), and E. coli K12 C600 was used as a negative control. Part of control strains were kindly supplied by Dr. Boothe (Auburn University, USA). The primer sequences used for PCR detection are listed in Table S1.

Identification of β-Lactamase Genes and Plasmid-Mediated Quinolone Resistance Genes

The occurrence of β-lactamase genes (blaTEM, blaSHV, blaCTX-M-16), plasmid-mediated AmpC β-lactamase (blaCMY-2) and carbapenemase genes (blaKPC-2, blaNDM-1, and blaOXA-48) among ESBL producers were determined by PCR and sequencing using specific primers (Table S2). The PCR products were purified using a PCR Purification Kit (TianGen, Beijing, China), and then the amplified products were sequenced by Sangon Biotech (Shanghai, China). DNA Sequences were compared with known sequences available from the BLAST program (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al., 1997). Additionally, all ESBL producers were screened for the presence of PMQR genes (qnrA, qnrB, qnrC, qnrD, qnrS, aac(6′)-Ib-cr, oqxAB, and qepA) as described previously (Liu et al., 2012; Xu et al., 2015). E. coli J53 strains containing pMG252, pMG298, pMG306, and pMG298 were used as positive controls for qnrA, qnrB, qnrS, and aac(6′)-Ib-cr genes, respectively. E. coli J7261205 (pSTVqepA) and S5314175 were included as positive controls for qepA and oqxAB, respectively. The positive control strain for qnrC was not available.

Conjugation Experiments

In order to analyze the horizontal transferability of β-lactamase and PMQR genes, especially blaOXA-48 gene, conjugation experiments were performed with eight ESBL-producing E. coli isolates, including four blaOXA-48 positive isolates, from different pig farms in seven different regions. Conjugation experiments were conducted by broth mating method using E. coli J53 AZ′ as a recipient (Shaheen et al., 2011). Transconjugants were selected on Tryptic Soy agar plates containing sodium azide (150 μg/ml) and cefotaxime (2 μg/ml). All transconjugants, recipient and donors were subjected to antimicrobial susceptibility testing. PCR and sequencing were performed to verify the transferability of PMQR and β-lactamase genes.

Multilocus Sequence Typing (MLST)

MLST of ESBL-producing E. coli isolates was performed as described previously (Wirth et al., 2006). A detailed scheme of gene amplification, allelic type and sequence type assignment methods is available on the MLST website (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli).

Statistical Analysis

Significance was determined by Pearson’s Chi-squared test with Yates continuity correction using “R” software (version 3.0.1), and the level of significance was set at P < 0.05.

RESULTS

Antimicrobial Susceptibility of E. coli Isolates

The results of antibiotic resistance profiles of 456 E. coli isolates are listed in Table 1. 96.1% of the E. coli isolates were resistant to ampicillin, followed by amoxicillin-clavulanic acid (91.2%), sulfamethoxazole/trimethoprim (82%), oxytetracycline (74.3%), enrofloxacin (70%), gentamicin (61.4%), florfenicol (58.8%), ciprofloxacin (57.9%), and amikacin (52.2%). The percentage of resistance to other antibacterial agents were lower than 50%. It is noteworthy that significantly more E. coli isolates from diarrheal pigs than from healthy pigs were resistant to most antimicrobials tested (P < 0.001) with the exception of ampicillin, sulfamethoxazole/trimethoprim and colistin (Table 1). Of 456 E. coli isolates investigated, 44 isolates (9.6%, six isolates from healthy pigs and 38 from diarrhea pigs) were confirmed as phenotypic ESBL producers, and exhibited MDR phenotype. 97.7% of the ESBL producers were resistant to ampicillin, followed by oxytetracycline (93.2%), amoxicillin-clavulanic acid (93.2%), enrofloxacin (93.2%), sulfamethoxazole/trimethoprim (90.9%), ceftazidime (86.4%), cefotaxime (84.1%) and gentamicin (81.8%).

Phylogenetic Typing and Virulence Genotyping

Phylogenetic group analysis for 44 ESBL producers revealed that the predominant phylogenetic group was D (14/44, 31.8%), followed by phylogenetic groups B2 (11/44, 25%), A (9/44, 20.5%), B1 (6/44, 13.6%), C (3/44, 6.8%), and E (1/44, 2.3%) (Table 2). Groups D and B2 accounted for 56.8% of the ESBL producers. The frequencies of major virulence genes are listed in Table 2. 93.2% of the ESBL producers possessed at least one virulence gene. estA (n = 18) was the most prevalent toxin gene, followed by estB (n = 15), astA (n = 12), and elt (n = 10) genes. The most prevalent fimbrial adhesin was F4 (n = 18), followed by F18 (n = 10), F17 (n = 4), F5 (n = 3), F6 (n = 3) and F41 (n = 2). Furthermore, 86.4% (38/44) of the ESBL producers carried both enterotoxins and fimbrial adhesins, and 27 different virotypes were identified according to the combinations of enterotoxin and adhesin genes. The eae gene was detected in two ESBL producers (4.5%), while stx1 and stx2 were not detected.
Table 1: Antibiotic resistance profiles of *E. coli* isolates from swine in Northwest China.

Antimicrobials	Number of resistant isolates (%)	MIC (µg/ml)	Number of resistance (%)	MIC₅₀	MIC₉₀	Range	Number of resistance (%)	MIC₅₀	MIC₉₀	Range	Number of resistance (%)	MIC₅₀	MIC₉₀
Ampicillin	438 (96.1)	1–256	252 (93.3)	64	256	1–256	186 (100)	256	512	4–512	256 (97.7)	512	
Amoxicillin	416 (91.2)	1–512	238 (88.1)	32	256	1–256	178 (95.7)	128	512	4–512	41 (93.2)	256	512
Ceftiofur	177 (38.8)	0.063–64	56 (20.7)	0.5	16	0.5	121 (65.1)	64	128	0.5	32 (72.7)	128	256
Cefotaxime	184 (40.4)	0.25–128	51 (18.9)	0.25	32	0.25	133 (71.5)	64	256	0.25	43 (86.4)	64	256
Cefazidime	198 (41.2)	0.5–256	56 (21.5)	2	32	2	130 (69.9)	322	256	2	30 (51.2)	128	256
Ceftrizone	165 (36.2)	0.125–128	48 (17.8)	0.5	32	0.5	117 (62.9)	64	128	0.5	121 (65.1)	64	256
Meropenem	3 (0.7)	0.03–4	0 (0)	0.125	0.5	0.03–16	3 (6.8)	0.25	1	0.03–16	3 (6.8)	0.25	1
Enrofloxacin	319 (70)	0.125–256	150 (55.6)	16	64	0.063–32	169 (90.9)	128	512	2–512	41 (93.2)	128	256
Ofloxacin	264 (57.9)	0.063–128	128 (47.4)	8	32	0.063–32	136 (73.1)	64	256	1–512	32 (72.7)	128	256
Florfenicol	268 (58.8)	1–256	124 (45.9)	16	64	8–512	144 (71.4)	256	512	8–512	35 (79.5)	256	512
Gentamicin	280 (61.4)	0.125–128	134 (49.6)	16	128	0.5–512	146 (78.5)	64	256	0.5–512	36 (81.8)	128	256
Amikacin	238 (52.2)	0.063–64	121 (44.8)	8	64	0.063–512	117 (62.9)	64	256	0.063–32	31 (70.5)	128	256
Oxytetracycline	339 (74.3)	1–512	169 (62.6)	32	256	1–512	170 (91.4)	256	512	2–512	41 (93.2)	256	512
Colistin	1 (0.2)	0.03–0.5	0 (0)	0.03	0.125	0.063–8	1 (0.5)	0.125	0.5	0.063–8	1 (0.5)	0.125	0.5
Sulfamethoxazole	374 (82)	0.25–256	214 (79.3)	64	256	1–512	160 (86.0)	32	256	2–512	40 (90.9)	128	256

P-value:
- Isolates from healthy pigs vs. Isolates from diarrheal pigs
- ESBL-producing isolates

- Ampicillin: >0.05
- Amoxicillin: <0.01
- Ceftiofur: <0.001
- Cefotaxime: <0.001
- Cefazidime: <0.001
- Ceftrizone: <0.001
- Meropenem: <0.001
- Enrofloxacin: <0.001
- Oxytetracycline: <0.001
- Colistin: >0.05
- Sulfamethoxazole: >0.05
TABLE 2 | Extended-spectrum β-lactamase-producing E. coli isolates from swine in Northwest China.

Isolate ID	Phylogenetic group	Sources	MLST	Resistance profiles	β-lactamase genes	PMQR genes	Virulence genes
FF170322	A	Diarrheal pig	ST10	AMP AMC EFT CAZ CEX ENR CIP FFC SXT	TEM-1, CTX-M-9, CTX-M-123	qnrA, qnrB, qepA, oqxAB	estA, astA, F18
JY160633	A	Healthy pig	ST10	AMP AMC CAZ ENR CIP FFC OTC GEN	TEM-1, CTX-M-9, CTX-M-123	qnrS, aac(6')-Ib-cr	estA, F17
FP170743	A	Diarrheal pig	ST10	AMP AMC EFT CTX OEX ENR CIP FFC OTC SXT	TEM-1, CTX-M-14, CTX-M-123	qnrS, qnrA	estB, F18
FP170756	A	Diarrheal pig	ST10	AMP AMC EFT CTX CAZ CEX ENR CIP FFC OTC GEN AMK SXT	TEM-1, CTX-M-15	qnrS, qnrA	estA, F5
MX161024	A	Diarrheal pig	ST10	AMP AMC EFT CAZ ENR CIP FFC OTC GEN AMK SXT	TEM-1, CTX-M-15	qnrA	astA, F4
RX160912	A	Healthy pig	ST10	AMP AMC CTX OTC GEN AMK	TEM-1, CTX-M-14	qnrA	estA, F18
FP160905	A	Healthy pig	ST15	AMP AMC OTC ENR SXT	SHV-12	_	_
JY170718	A	Diarrheal pig	ST526	AMP AMX OTC CAZ FFC	TEM-1, CTX-M-14	qnrA	estA, F18
RX160826	B1	Healthy pig	ST75	AMP AMC CAZ FFC OTC	TEM-1, CTX-M-15	qnrS	estA, F17
ZZ160931	B1	Healthy pig	ST155	AMP AMC CTX OTC GEN AMK	TEM-1, CTX-M-64	_	_
ZZ170521	B1	Diarrheal pig	ST183	AMP AMC CTX CAZ ENR OTC SXT	TEM-1, CTX-M-14	qnrA	estA, F6
FP170723	B1	Healthy pig	ST302	AMP AMC CAZ ENR SXT	CTX-M-123	_	_
JY170327	B1	Diarrheal pig	ST351	AMP AMC OTC ENR SXT	TEM-1, CTX-M-14	qnrA	estA, astA, F6
FF170447	B1	Healthy pig	ST447	AMP AMC OTC ENR SXT	CTX-M-14	_	_
MX160918	B2	Diarrheal pig	ST104	AMP AMC EFT CTX OTC GEN AMK SXT	TEM-1, CTX-M-14	qnrS, aac(6')-Ib-cr	astA, estA, F4
JY160522	B2	Healthy pig	ST104	AMP AMC EFT CTX OTC GEN AMK SXT	TEM-1, CTX-M-14	qnrS, aac(6')-Ib-cr	estA, F4, F6
RX160809	B2	Diarrheal pig	ST127	AMP AMC EFT CTX OTC GEN AMK SXT	TEM-1, CTX-M-123	qnrS	estB, F6
FF170708	B2	Diarrheal pig	ST127	AMP AMC EFT CTX OTC GEN AMK SXT	CTX-M-123	_	estB, F5
JY160505	B2	Diarrheal pig	ST127	AMP AMC EFT CTX OTC GEN AMK SXT	CTX-M-9, CTX-M-14, CTX-M-64, KPC-2, OXA-48	qnrS, qnrB, qnrD, aac(6')-Ib-cr, qepA, elt	estA, F6
MX150822	B2	Diarrheal pig	ST278	AMP AMC EFT CTX OTC GEN AMK SXT	TEM-1, CTX-M-14	qnrS	astA, estB, F4
FF170416	B2	Diarrheal pig	ST356	AMP AMC EFT CTX OTC GEN AMK SXT	SHV-2, CTX-M-64	qnrB	estA, F4
FF170425	B2	Diarrheal pig	ST356	AMP AMC EFT CTX OTC GEN AMK SXT	TEM-1, CTX-M-15, CTX-M-64	_	astA, F18
MX160918	B2	Diarrheal pig	ST104	AMP AMC EFT CTX OTC GEN AMK SXT	TEM-1, CTX-M-14	qnrS, aac(6')-Ib-cr	astA, estA, F4
JY160522	B2	Healthy pig	ST104	AMP AMC EFT CTX OTC GEN AMK SXT	TEM-1, CTX-M-14	qnrS, aac(6')-Ib-cr	estA, F4, F6
RX160809	B2	Diarrheal pig	ST127	AMP AMC EFT CTX OTC GEN AMK SXT	TEM-1, CTX-M-123	qnrS	estB, F6
FF170708	B2	Diarrheal pig	ST127	AMP AMC EFT CTX OTC GEN AMK SXT	CTX-M-123	_	estB, F5
JY160505	B2	Diarrheal pig	ST127	AMP AMC EFT CTX OTC GEN AMK SXT	CTX-M-9, CTX-M-14, CTX-M-64, KPC-2, OXA-48	qnrS, qnrB, qnrD, aac(6')-Ib-cr, qepA, elt	estA, F6
MX150822	B2	Diarrheal pig	ST278	AMP AMC EFT CTX OTC GEN AMK SXT	TEM-1, CTX-M-14	qnrS	astA, estB, F4
FF170416	B2	Diarrheal pig	ST356	AMP AMC EFT CTX OTC GEN AMK SXT	SHV-2, CTX-M-64	qnrB	estA, F4
FF170425	B2	Diarrheal pig	ST356	AMP AMC EFT CTX OTC GEN AMK SXT	TEM-1, CTX-M-15, CTX-M-64	qnrS, aac(6')-Ib-cr	estB, F4, F18
FF170416	B2	Diarrheal pig	ST356	AMP AMC EFT CTX OTC GEN AMK SXT	TEM-1, CTX-M-15, CTX-M-123	qnrS, aac(6')-Ib-cr	estA, F4
MX150923	C	Diarrheal pig	ST23	AMP AMC CTX OTC ENR CAZ SXT	TEM-1, CTX-M-14	qnrS, qnrA	estA, F18
MX150814	C	Diarrheal pig	ST23	AMP AMC EFT CTX CAZ ENR CIP FFC OTC GEN SXT	TEM-1, CTX-M-14	qnrB, aac(6')-Ib-cr	elt, F4
ZZ160931	C	Healthy pig	ST23	AMP AMC EFT CTX CAZ ENR CIP FFC OTC GEN SXT	TEM-1, CTX-M-14	qnrS	astA, F18
JY160518	D	Diarrheal pig	ST38	AMP AMC EFT CTX OTC GEN AMK SXT	TEM-1, CTX-M-15, OXA-48	qnrS, qnrA	elt, estB, F4

(Continued)
Isolate ID	Phylogenetic group	Sources	MLST	Resistance profiles	β-lactamase genes	PMQR genes	Virulence genes
HX160976	D	Diarrhea pig	ST38	AMP AMC EFT CTX CAZ CEX ENR CIP FFC OTC GEN AMK SXT	CTX-M-9, CTX-M-14	qnrA	ett, estB, F41
HX160944	D	Diarrhea pig	ST38	AMP AMC EFT CTX CAZ CEX ENR CIP FFC OTC GEN AMK SXT	CTX-M-9, CTX-M-14, CTX-M-64	qnrB	ett, astA, F4
HX161006	D	Diarrhea pig	ST69	AMP AMC EFT CTX CAZ CEX ENR CIP FFC OTC GEN AMK SXT	TEM-1, CTX-M-14	qnrS, qnrA	astA, F5
MX150820	D	Diarrhea pig	ST405	AMP AMC EFT CTX CAZ MEM ENR CIP FFC OTC GEN AMK SXT	SHV-12, CTX-M-14, CTX-M-15, NDM-1	qnrB, aac(6')-Ib-cr	ett, estA, F4
LZ161015	D	Diarrhea pig	ST405	AMP AMC EFT CTX CAZ ENR CIP FFC OTC GEN AMK SXT	SHV-12, CTX-M-15	qnrS, qnrB	astB, F4
JC160611	D	Diarrhea pig	ST405	AMP AMC EFT CTX CAZ ENR CIP FFC OTC GEN AMK SXT	TEM-1, CTX-M-9, KPC-2	qnrS, qnrB	estB, F4
JY160512	D	Diarrhea pig	ST405	AMP AMC EFT CTX CAZ ENR CIP FFC OTC GEN AMK SXT	TEM-1, CTX-M-9, CTX-M-14, CTX-M-15	qnrA, qnrD, qepAB	ett, estA, F4
FP170711	D	Diarrhea pig	ST405	AMP AMC EFT CTX CAZ ENR CIP FFC OTC GEN AMK SXT	TEM-1, SHV-12, CTX-M-15, OXA-48	aac(6')-Ib-cr, aqxAB	ett, estB, F4
HX170832	D	Diarrhea pig	ST405	AMP AMC EFT CTX CAZ ENR CIP FFC OTC GEN AMK SXT	TEM-1, SHV-12, CTX-M-15, OXA-48	aac(6')-Ib-cr	ett, estB, F4
SY160832	D	Diarrhea pig	ST648	AMP AMC EFT CTX CAZ ENR CIP FFC OTC GEN AMK SXT	TEM-1, CTX-M-9, CTX-M-14, CTX-M-123	qnrA, qepAB	ettB, astA, F17
ZZ160908	D	Diarrhea pig	ST648	AMP AMC EFT CTX CAZ ENR CIP FFC OTC GEN AMK SXT	TEM-1, CTX-M-9, CTX-M-14, CTX-M-15	qnrA	estB, astA, F41
ZZ160917	D	Diarrhea pig	ST648	AMP AMC EFT CTX CAZ ENR CIP FFC OTC GEN AMK SXT	TEM-1, CTX-M-9, CTX-M-14, CTX-M-64	qnrS	astA, F18
JY160865	D	Diarrhea pig	ST648	AMP AMC EFT CTX CAZ ENR CIP FFC OTC GEN AMK SXT	TEM-1, CTX-M-9, CTX-M-14, CTX-M-64	qnrS	estB, F18
FP170733	E	Diarrhea pig	ST350	AMP AMC CTX CAZ ENR OTC SXT	TEM-1, CTX-M-9, CTX-M-14, CTX-M-64	qnrS	aae

AMP, ampicillin; AMC, amoxicillin-clavulanic acid; EFT, ceftiofur; CTX, ceftaxime; CAZ, ceftazidime; CEB, ceftriaxone; MEM, meropenem; ENR, enrofloxacin; CIP, ciprofloxacin; FFC, florfenicol; OTC, oxytetracyline; GEN, gentamicin; AMK, amikacin; SXT, sulfamethoxazole-trimethoprim; CLT, colistin.
Characterization of ESBL and PMQR Genes

Each ESBL producer harbored at least one β-lactamase gene, *blaCTX-M*, *blaTEM*, *blaSHV*, *blaOXA-48*, *blaKPC-2*, and *blaNDM-1* were detected in forty (90.9%), thirty (68.2%), seven (15.9%), four (9.1%), two (4.5%), and one (2.3%) isolates, respectively (Table 2). AmpC β-lactamase gene *blaCMY-2* was not detected. Overall, *blaCTX-M-14* (n = 24) was the predominant genotype in *blaCTX-M* positive isolates, followed by *blaCTX-M-15* (n = 14), *blaCTX-M-64* (n = 11), *blaCTX-M-9* (n = 10) and *blaCTX-M-123* (n = 9), while *blaCTX-M-1* gene was not detected. The distribution of PMQR genes among 44 ESBL-producing *E. coli* isolates is shown in Table 2. 88.6% (39/44) of ESBL producers were found to harbor at least one PMQR gene, and seven types of PMQR were identified. *qnrS, qnrA, aac(6′)-Ib-cr, qnrB, oqxAB, qnrD,* and *qepA* were detected alone or in combination in 52.3% (24/44), 34.1% (15/44), 27.3% (12/44), 20.5% (9/44), 6.8% (3/44), 4.5% (2/44), and 4.5% (2/44) of ESBL-producing isolates, respectively. *qnrS* was the most common PMQR gene, and *qnrS-qnrA* was the most common combination (n = 6). No isolates were positive for *qnrC* gene. Among 39 PMQR positive isolates, 28 (80%) isolates were positive for more than one PMQR determinant. Furthermore, all PMQR genes were detected in co-existence with β-lactamases, and one isolate from the intestinal content of a 15-day-old dead piglet with serious diarrhea harbored β-lactamase genes *blaTEM, blaSHV*, *blaCTX-M-9*, *blaCTX-M-14*, *blaCTX-M-64* and carbapenemase gene *blaOXA-48* and *blaKPC-2*, as well as PMQR genes *qnrS, qnrB, qnrD, qepA,* and *aac(6′)-Ib-cr*. *blaOXA-48* gene was detected in four meropenem-non-susceptible or meropenem-resistant isolates.

Conjugation Experiments

Five out of eight ESBL producers successfully transferred the β-lactamase genes to recipient strain *E. coli* J53 AZ. PCR analysis showed that the presence of respective β-lactamase genes, including one *blaOXA-48*-carrying plasmids from all transconjugants. Accordingly, PMQR genes *qnr* and *aac(6′)-Ib-cr* were co-transferred with β-lactamase genes (Table 3). Antimicrobial susceptibility patterns showed that all donors and their transconjugants were resistant to amoxicillin-clavulanic acid, ampicillin, ceftiofur, cefotaxime, and all transconjugants exhibited an increase of at least 8-fold in MICs compared to the recipient, *E. coli* J53 AZ. The enrofloxacin MICs for four transconjugants harboring *aac(6′)-Ib-cr* ranged from 0.125 to 0.5 mg/L, representing an increase of 4-fold to 8-fold compared with the recipient (Table 3). Additionally, the transconjugants remained susceptible to meropenem, enrofloxacin, florfenicol, oxytetracycline, gentamicin, sulfamethoxazole-trimethoprim and colistin, whereas one *blaOXA-48* positive transconjugant reduced meropenem susceptibility.

MLST Profiles

Forty-four ESBL producers belonged to 24 sequence types (STs) (Table 2). The most prevalent was ST405 (n = 6), followed by ST10 (n = 5). ST405 (n = 6), ST648 (n = 4) and ST38

TABLE 3 Antimicrobial susceptibility profiles of extended-spectrum β-lactamase-producing *E. coli* isolates used in the conjugation experiments.

DONORS	Isolates	AMP	AMC	EFT	CTX	CAZ	CEX	MEM	ENR	FFC	OTC	GEN	SXT	CLT	TEM	SHV	CTX-M-15	CTX-M-14	CTX-M-9	OXA-48	qnr	qepA	aac(6′)-Ib-cr	qnrB	qnrD	
JY160503	JY160512				8	128	64	128	64	32	128	64	128	64					+	+	+	+	+	+	+	+
FP170711	ZZ160908				16	64	128	128	64	64	128	64	128	32					+	+	+	+	+	+	+	+
MX150820	JY160503	+ 4	+ 5	+ 4														+	+	+	+	+				
JY160512	ZZ160908	+ 4	+ 5	+ 4														+	+	+	+	+				

August 2018 | Volume 9 | Article 1756
(n = 3) of phylogenetic group D accounted for 29.5% of the ESBL producers. The carbapenemases bla_{OXA−48}, bla_{NDM−1} and bla_{KPC−2} were connected with sequence types ST405, ST131 and ST38. The isolates with same STs have similar virotypes and β-lactamase profiles.

DISCUSSION

The prevalence of ESBL-producing E. coli isolates in food animals has been increasing worldwide (Liebana et al., 2013). In China, diarrhea caused by pathogenic E. coli, especially ESBL-producing E. coli poses a serious threat to the swine industry and public health (Lei et al., 2010; Xu et al., 2015). The present study is the first contribution to explore the detailed characterizations of ESBL-producing E. coli isolates from pigs in Northwest China. Forty-four (9.6%) isolates were confirmed as ESBL producers, while it is noteworthy that 456 E. coli in this study isolated from feces of healthy and diarrheal pigs, and the prevalence of ESBL producer were significantly higher among isolates from diarrheal pigs than that form healthy isolates (20.4vs. 2.2%; P < 0.001). The detectable rate of ESBL producer in diarrheal pigs was similar with the result in Sichuan (26.8%), a neighbor province of Shaanxi, while it was significantly lower than in Heilongjiang (43.2%), a province in the northeast China (Tian et al., 2009; Xu et al., 2015). Moreover, our results showed that ESBL producers mainly belonged to phylogenetic groups D and B2, and to a lesser extent to phylogenetic A, while the previous studies showed that E. coli from pigs or duck in China also mainly fell into phylogenetic groups A (Wang et al., 2010; Ma et al., 2012). It is further confirmed that the emergence of ESBL-producing E. coli has a geographic variation with respect to demographic, environmental, behavioral, socioeconomic and infectious risk factors with the extending of ESBL-producing isolates stage by stage.

All 456 E. coli isolates in this study were tested for their susceptibility to 15 antimicrobial agents. Overall, the number of resistant isolates in ESBL producers and isolates from diarrheal pigs were higher than that from healthy pigs (P > 0.001). It is suggested that the isolates from diarrheal pigs may be more likely to develop antibiotic resistance than that from healthy pigs because of the frequent use of antimicrobials in preventing and treating diarrhea. All ESBL producers were resistant to at least five antimicrobial agents, and vast majority of them (>93%) remained susceptible to meropenem and colistin, which are considered the effective candidates for treatment of serious infections caused by E. coli in pig farms of China. According to the virotypes, 86.4% of ESBL producers carried both enterotoxins and fimbrial adhesins. It is indicated that these isolates should be enterotoxigenic E. coli (ETEC), which are responsible for neonatal diarrhea and postweaning diarrhea in piglets. F4 fimbrial adhesin was present 40.9% of the ESBL producers, it is consistent with the previous studies that F4 adhesin gene is one of the most frequently found genes in E. coli isolates from suckling and weaning piglets (Vu Khac et al., 2006; Zhang et al., 2007). Furthermore, the gene combinations of F4+estA/estB were present in 34.1% of the isolates.

Since the early 2000s, CTX-M-type ESBLs have been increasingly reported, and they have now replaced TEM and SHV as the most common type of ESBL (Barguigua et al., 2011). The most predominant ESBL gene in this study was bla_{CTX−M} (90.9%), and the similar findings showed that CTX-Ms accounted for 87.1% of ESBL-producing E. coli isolated from food animals based on a previous survey in China (Rao et al., 2014). bla_{CTX−M−14} remained the most common genotype, and followed by bla_{CTX−M−15}. It is surprising that no isolate contained bla_{CTX−M−1}, whereas it was detected in the ESBL-producing E. coli from dogs, retail pork and water bodies in Shaanxi province (Xi et al., 2015; Liu et al., 2016b). In regards to the linkage of phylogenetic group and β-lactamases, isolates of group D harbored more β-lactamases genes, and isolates of group A harbored less β-lactamases. Novel hybrid β-lactamase gene bla_{CTX−M−123} was firstly discovered in E. coli from pig feces in China in 2013 (He et al., 2013), and it was detected in nine ESBL producers in this study. Moreover, four ESBL producers were commensal isolates from healthy pigs, it was further indicated that some commensal organisms in animals have acquired β-lactamase genes with the increasing use of β-lactams in animals. bla_{OXA−48} was detected in four ESBL producers from diarrheal pigs. As a globally emerging carbapenemase gene, bla_{OXA−48} could hydrolyze carbapenems and β-lactamase inhibitors but has no activity toward broad-spectrum cephalosporins (Mathers et al., 2013). bla_{OXA−48} was firstly discovered in E. coli from dogs in Germany in 2013, and afterward it was reported in E. coli from companion animals in the United States in 2016 (Stolle et al., 2013; Liu et al., 2016a). In 2017, it was reported in pigs in Italy (Pulss et al., 2017). Most recently, it was detected in Enterobacteriaceae from river water in Algeria (Tafoukt et al., 2017). Considering the importance of bla_{OXA−48} gene in public health, it is necessary to further investigate the dissemination of bla_{OXA−48} producing E. coli isolates among different sources.

PMQR genes were often found to be strongly associated with β-lactamase genes and even in the same plasmid, and they are not merely able to confer resistance against quinolones but also often related to ESBLs (Jeong et al., 2011). In this study, PMQR genes were present in 88.6% of ESBL producers, and the similar findings have been reported in ESBL-producing E. coli isolates from pigs in previous studies in China by Xu et al. (87.4%) and Liu et al (83.8%) (Liu et al., 2013; Xu et al., 2015). Thirty-seven ESBL producers (84.1%) harbored at least one qnr gene, and qnrS was the predominant, whereas a low prevalence of qnr genes was detected among ESBL-producing E. coli isolates in France and Canada (1.6 and 1%, respectively). In addition, qepA gene was detected in combination with other PMQR and β-lactamase genes in four isolates (10%). The frequent combination of β-lactamases and PMQRs in this study further supported the previous studies that coproduction of β-lactamase and PMQR genes could contribute to the dissemination of MDR isolates, and also reflect the fact that genes encoding resistance to β-lactams and quinolones are located on the same plasmid.

Twenty-four different sequence types were identified, and three sequence types (ST405, ST10, and ST648) accounted for
34.1% of the ESBL producers. Sequence types ST10, ST38, ST131, ST648, and ST405 clones were documented in different sources according to MLST databases, and could favor the dissemination of CTX-M worldwide among E. coli isolates (Hernandez and Gonzalez-Acuna, 2016). In the present study, a few isolates belonging to different STs shared similar β-lactamase and PMQR gene profiles, whereas several isolates belonging to same ST exhibited different gene profiles. The similar results were observed among E. coli isolates from dogs and cats in previous studies (Liu et al., 2016a,b). The possible explanation is that the pig trade, personnel exchanges and water sources among adjacent regions may lead to the dissemination of isolates with same gene profiles or same ST types. Anyway, deeper analyses for such isolates are necessary in the future. It is noteworthy that blaOXA-48 gene were detected in four isolates with reduced susceptibility or resistance to meropenem. The blaOXA-48 positive isolates co-harbored variants of β-lactamase genes, and they also were associated with sequence types ST38, ST405, and ST131. Additionally, blaOXA-48 positive E. coli clone ST38 had been previously reported in France, Germany and Algeria (Poirel et al., 2011; Kaase et al., 2016; Bouaziz et al., 2017). In the current study, we firstly reported the occurrence of blaOXA-48 positive E. coli clone ST38 from a sucking piglet with diarrhea in Shaanxi. Clone ST38 has been noticed as it is now rapidly and globally disseminated, and its potential to serve as a vehicle for spread of carbapenemases is profoundly alarming. blaNDM-1 producing E. coli isolate, emerging as a public health threat, has gained global attention as it could hydrolyze almost all β-lactams with the exception of aztreonam (Nordmann et al., 2012), and it has previously been detected in E. coli isolates from pigs (Fischer et al., 2012). Our results revealed that blaNDM-1 and other β-lactamase genes coexisted in one isolates, it is a potential public health concern as the pig carrying blaNDM-1 and other β-lactamase genes may enter the food chain.

CONCLUSION

In conclusion, all ESBL-producing E. coli isolates both from healthy and diarrheal pigs in Northwest China exhibited MDR phenotype. The blaCTX-M-14 and qnrS were the predominant β-lactamase gene and PMQR gene in ESBL producers, respectively. estA and F4 were the most prevalent enterotoxin and fimbrial adhesin, respectively. One ST131 isolate harbored β-lactamase genes blaTEM, blaSHV, blaCTX-M-9, blaCTX-M-14, blaCTX-M-64, and carbapenemase genes blaOXA-48 and blaKPC-2, as well as PMQR genes qnrS, qnrB, qnrD, qepA and aac(6’)-Ib-cr. The findings could provide useful information for a national monitoring of antimicrobial resistance in bacteria from food animals in China.

AUTHOR CONTRIBUTIONS

XL conceived and designed the experiments. HL and LW designed the experiment and drafted the manuscript. XL, HL, LW, HZ, and QP performed the experiments. XL, YL, and QL analyzed and explained the data for the work. All authors critically revised and approved the final manuscript.

ACKNOWLEDGMENTS

This study was supported by the National Natural Science Foundation of China (No. 31702344), the Key Research and Development Project of Shaanxi Province (No. 2018NY-005; No. 2017ZDXM-NY-079).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2018.01756/full#supplementary-material

REFERENCES

Agero, Y., and Aarestrup, F. M. (2013). Voluntary ban on cephalosporin use in Danish pig production has effectively reduced extended-spectrum cephalosporinase-producing Escherichia coli in slaughter pigs. J. Antimicrob. Chemother. 68, 569–572. doi: 10.1093/jac/dks427

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J. H., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. doi: 10.1093/nar/25.17.3389

Barguigua, A., El Otmani, F., Talmi, M., Bourjilat, F., Haouzane, F., Zerouali, K., et al. (2015). Characterization of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates from the community in Morocco. J. Med. Microbiol. 60, 1344–1352. doi: 10.1099/jmm.0.032482-0

Boerlin, P., Travis, R., Gyles, C. L., Reid-Smith, R., Janecko, N., Lim, H., et al. (2005). Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Appl. Environ. Microbiol. 71, 6753–6761. doi: 10.1128/AEM.71.11.6753-6761.2005

Bouaziz, A., Loucif, L., Ayachi, A., Guehaz, K., Bendjama, E., and Rolain, J. M. (2017). Migratory White Stork (Ciconia ciconia): a potential vector of the OXA-48-producing Escherichia coli ST38 clone in Algeria. Microb. Drug Resist. 24, 461–468. doi: 10.1089/mdr.2017.0174

Cantas, L., Suero, K., Guler, E., and Imir, T. (2015). High emergence of ESBL-producing E. coli: time to get smarter in Cyprus. Front. Microbiol. 6:1446. doi: 10.3389/fmicb.2015.01446

Clermont, O., Christenson, J. K., Denamur, E., and Gordon, D. M. (2013). The Clermont Escherichia coli phyla-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 5, 58–65. doi: 10.1111/j.1758-2229.2012.00031.x

CLSI (2013). “Performance standards for antimicrobial disk and dilution susceptibility tests for bacterial isolated from animals; approved standard.” fourth edition and supplement, CLSI document VET01-A4 (standard) and VET01-S2 (supplement).” in Clinical and Laboratory Standards Institute (Wayne, PA.)

Conceição-Neto, O. C., Aires, C. A. M., Pereira, N. F., Da Silva, L. H. J., Picco, R. C., and Carvalho-Assef, A. P. D. (2017). Detection of the plasmid-mediated mcr-1 gene in clinical KPC-2-producing Escherichia coli isolates in Brazil. Int. J. Antimicrob. Agents 50, 282–284. doi: 10.1016/j.ijantimicag.2017.05.003

Fischer, J., Rodriguez, I., Schmoger, S., Friese, A., Roesler, U., Helmuth, R., et al. (2015). High emergence of ESBL-producing enterobacterial isolates from swine in Ontario. Front. Microbiol. 6:1446. doi: 10.3389/fmicb.2015.01446

Nordmann et al., 2012. doi: 10.1089/mdr.2017.0174

Gees, N., Stephan, R., and Hächler, H. (2012). Occurrence and characteristics of extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae in

Frontiers in Microbiology | www.frontiersin.org 9 August 2018 | Volume 9 | Article 1756
food producing animals, minced meat and raw milk. BMC Vet. Res. 8:21. doi: 10.1186/1746-6148-8-21

He, D., Partridge, S. R., Shen, J., Zeng, Z., Liu, L., Rao, L., et al. (2015). CTX-M-123, a novel hybrid of the CTX-M-1 and CTX-M-9 group beta-lactamases recovered from Escherichia coli isolates in China. Antimicrob. Agents Chemother. 57, 4068–4071. doi: 10.1128/AAC.00541-13

Hernández, J., and González-Acuña, D. (2016). Antibiotic resistance genes mobilization to the polar regions. Infect. Ecol. Epidemiol. 6:2112. doi: 10.3402/iee.v6i6.2112

Jeong, H. S., Bae, I. K., Shin, J. H., Jung, H. J., Kim, S. H., Lee, J. Y., et al. (2011). Prevalence of plasmid-mediated quinoline resistance and its association with extended-spectrum beta-lactamase and AmpC beta-lactamase in Enterobacteriaceae. Korean J. Lab. Med. 31, 257–264. doi: 10.3343/kjl.2011.31.4.257

Kasse, M., Schimanski, S., Schiller, R., Beyreif, B., Thümmer, A., Steinmann, J., et al. (2016). Multicentre investigation of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in German hospitals. Int. J. Med. Microbiol. 306, 415–420. doi: 10.1016/j.immuni.2015.06.009

Lei, T., Tian, W., He, L., Huang, X. H., Sun, Y. X., Deng, Y. T., et al. (2010). Antimicrobial resistance in Escherichia coli isolates from food animals, animal food products and companion animals in China. Vet. Microbiol. 146, 85–89. doi: 10.1016/j.vetmic.2010.04.025

Liebera, E., Caratotti, A., Coque, T. M., Hasman, H., Magiorakos, A. P., Mevius, D., et al. (2013). Public health risks of Enterobacteriaceae isolates producing extended-spectrum beta-lactamases or ampC beta-lactamases in food and food-producing animals: An EU perspective of epidemiological, analytical risks, factor controls, and risk prevention options. Clin. Infect. Dis. 56, 1030–1037. doi: 10.1093/cid/cist1043

Liu, B. T., Yang, Q. E., Li, L., Sun, J., Liao, X. P., Fang, L. X., et al. (2013). Dissemination and characterization of plasmids carrying oxaAB-blaCTX-M genes in Escherichia coli isolates from food-producing animals. PLoS ONE 8:e73947. doi: 10.1371/journal.pone.0073947

Liu, H. H., Wang, Y. L., Wang, G., Xing, Q. T., Shao, L. H., Dong, X. M., et al. (2015). The prevalence of Escherichia coli strains with extended-spectrum beta-lactamases isolated in China. Front. Microbiol. 6:335. doi: 10.3389/fmicb.2015.00335

Liu, X., Booth, D. M., Thungrat, K., and Aly, S. (2012). Mechanisms accounting for fluoroquinolone multidrug resistance Escherichia coli isolated from companion animals. Vet. Microbiol. 161, 159–168. doi: 10.1016/j.vetmic.2012.07.019

Liu, X. Q., Liu, H. X., Li, Y. Q., and Hao, C. J. (2016b). High prevalence of beta-lactamase and plasmid-mediated quinoline resistance genes in extended-spectrum cephalosporin-resistant Escherichia coli from dogs in Shaanxi, China. Front. Microbiol. 7:1843. doi: 10.3389/fmicb.2016.01843

Liu, X. Q., Liu, H. X., Li, Y. Q., and Hao, C. J. (2017). Association between virulence profile and fluoroquinolone resistance in Escherichia coli isolated from dogs and cats in China. J. Infect. Dev. Ctries. 11, 306–313. doi: 10.3855/jidc.8583

Liu, X., Thungrat, K., and Booth, D. M. (2016a). Occurrence of OXA-48 carbapenemase and other beta-lactamase genes in ESBL-producing multidrug resistant Escherichia coli from dogs and cats in the United States, 2009-2013. Front. Microbiol. 7:1057. doi: 10.3389/fmicb.2016.01057

Ma, J., Liu, J. H., Li, V., Zong, Z., Sun, Y., Zheng, H., et al. (2012). Characterization of extended-spectrum beta-lactamase genes found among Escherichia coli isolates from duck and environmental samples obtained on a duck farm. Appl. Environ. Microbiol. 78, 3668–3673. doi: 10.1128/AEM.07507-11

Mathers, A. J., Hazen, K. C., Carroll, J., Yeh, A. J., Cox, H. L., Bonomo, R. A., et al. (2013). First clinical cases of OXA-48-producing carbapenem-resistant Klebsiella pneumoniae in the United States: the “menace” arrives in the new world. J. Clin. Microbiol. 51, 680–683. doi: 10.1128/JCM.02580-12

Nordmann, P., Dortet, L., and Poiré, L. (2012). Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol. Med. 18, 263–272. doi: 10.1016/j.molmed.2012.03.003

Poiré, L., Bernabéu, S., Fortineau, N., Podglajen, I., Lawrence, C., and Nordmann, P. (2011). Emergence of OXA-48-producing Escherichia coli clone ST38 in France. Antimicrob. Agents Chemother. 55, 4937–4938. doi: 10.1128/AAC.00413-11
from retail foods in Shaanxi province, China. *J. Food Prot.* 78, 1018–1023. doi: 10.4315/0362-028X.JFP-14-490

Xu, G., An, W., Wang, H., and Zhang, X. (2015). Prevalence and characteristics of extended-spectrum beta-lactamase genes in *Escherichia coli* isolated from piglets with post-weaning diarrhea in Heilongjiang province, China. *Front. Microbiol.* 6:1103. doi: 10.3389/fmicb.2015.01103

Yuan, L., Liu, J. H., Hu, G. Z., Pan, Y. S., Liu, Z. M., Mo, J., et al. (2009). Molecular characterization of extended-spectrum beta-lactamase-producing *Escherichia coli* isolates from chickens in Henan Province, China. *J. Med. Microbiol.* 58, 1449–1453. doi: 10.1099/jmm.0.01229-0

Zhang, W., Zhao, M., Ruesch, L., Omot, A., and Francis, D. (2007). Prevalence of virulence genes in *Escherichia coli* strains recently isolated from young pigs with diarrhea in the US. *Vet. Microbiol.* 123, 145–152. doi: 10.1016/j.vetmic.2007.02.018

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Liu, Liu, Peng, Li, Zhou and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.