Genetic Relationships among 10 Prunus Rootstock Species from China, Based on Simple Sequence Repeat Markers

Qijing Zhang and Dajun Gu1
Liaoning Institute of Pomology, Yingkou, Liaoning 115009, People’s Republic of China

ABSTRACT. To improve the efficiency of breeding programs for Prunus rootstock hybrids in China, we analyzed the subgenus status and relationship of 10 Chinese rootstock species, by using 24 sets of simple sequence repeat (SSR) primers. The SSR banding patterns and phylogenetic analysis indicated that subgenus Cerasus is more closely related to subgenus Prunophora than to subgenus Amygdalus, and that subgenus Lithocerasus is more closely related to subgenus Prunophora and subgenus Amygdalus than to subgenus Cerasus. In addition, Prunus triloba was more closely related to Prunus tomentosa than to the members of subgenus Amygdalus. Therefore, we suggest that P. tomentosa and P. triloba should be assigned to the same group, either to subgenus Lithocerasus or Prunophora, and we also propose potential parent combinations for future Prunus rootstock breeding.

Prunus (Rosaceae) is a large genus with significant economic importance, since it includes a variety of popular stone fruit species [e.g., peach (Prunus persica), apricot (Prunus armeniaca), almond (Prunus dulcis), and sweet cherry (Prunus avium)]. The genus comprises a polyploid series, of which the basic chromosome number is \(x = 8 \), and is characterized morphologically by flowers with five sepals, five petals, and a solitary carpel with a terminal style; fruit that are fleshy drupes; and branches with solid pith (Rehder, 1990). Many Prunus species are also important as sources of rootstocks. Furthermore, the genetic resources within the genus are abundant, since the genus comprises \(\approx 200 \) species, and \(\approx 100 \) Prunus species are indigenous to China (Yü and Li, 1986). However, the classification of Prunus species is sometimes controversial, partly owing to the ease of interspecific hybridization (Dosba et al., 1994), which results in the frequent occurrence of intermediate morphotypes. Previously, Rehder (1990) divided Prunus into five subgenera: Prunophora (plum and apricot), Amygdalus (peach, nectarine, and almond), Cerasus (cherry), Padus (cluster cherry), and Laurocerasus (laurel cherry), and later, Ingram (1948) added a sixth subgenus, Lithocerasus, by splitting the bush cherry and rock cherry.

Species that originated in China include P. tomentosa, P. triloba, Prunus japonica, Prunus glandulosa, and Prunus humilis, which are among the important dwarf rootstock species used for peach, plum, and apricot (Ding, 1997). Of these species, P. tomentosa has been cultivated for fruit production in China for over 2000 years, owing to its cold resistance and good fruiting habit (Yü and Li, 1986), and P. humilis has been gradually increasing in popularity as a promising Chinese fruit tree, owing to the high calcium content of its fruit. Meanwhile, Prunus pseudocerasus and Prunus serrulata (subgenus Cerasus) have long been used as rootstocks for sweet cherry, ever since sweet cherry was introduced to China, and Prunus davidiana can be used as a rootstock for plum, apricot, and peach, whereas Prunus salicina and Prunus sibirica can be used as a rootstock for cherry, plum, apricot, and peach. Hybridization among Prunus species has been successful and has been taken up as an effective strategy for improving rootstock cultivars (Felipe, 2009; Jones, 1928; Shoferstov, 1989; Zhang and Gu, 2015). However, using such a strategy to improve the efficiency of breeding programs requires a sufficient understanding of the groups’ phylogeny and of the degree of homology between the genomes of different species.

Therefore, the analysis of genetic relationships among Prunus species can provide basic information for broadening the genetic basis of rootstock breeding programs. Molecular systematic analyses have been performed on Prunus rootstock species using isozymes (Mowrey and Werner, 1990), restriction-fragment length polymorphisms [RFLPs (Uematsu et al., 1991)], random amplified polymorphic DNA [RAPD (Shimada et al., 2001)], intertranscribed spacer (ITS) sequences (Sangtae and Wen, 2001), and the combination of nuclear ribosomal ITS and plastid markers (Chin et al., 2014). In addition, genomic SSR markers have also been used for genotyping, germplasm characterization, and fingerprinting in many plant species, since they are polymerase chain reaction (PCR)-based, highly polymorphic, codominant, abundant, and highly reproducible (Powell et al., 1996), and moreover, genomic SSR markers have been developed in almost every cultivated Prunus species. However, previous studies of rootstock species from China have not used these SSR markers. Accordingly, in the present study, we aimed to determine the relationships and genetic diversity of 17 Prunus species and two hybrids using SSR analysis, with particular emphasis on the genetic relationships of 10 rootstock species that originated in China.

Materials and Methods

PLANT MATERIALS. We sampled 40 accessions from the Xiongyue Arboretum (Yingkou, China) of which five accessions

Received for publication 20 May 2016. Accepted for publication 22 July 2016.
1Corresponding author. E-mail: dajungu@163.com.
(three species) belonged to subgenus Prunophora, five accessions (three species) to subgenus Amygdalus, eight accessions (four species) to subgenus Lithocerasus, and 22 accessions (seven species and two hybrids) to subgenus Cerasus (Table 1).

Genomic DNA extraction. Total genomic DNA was extracted from young expanded terminal leaves using the citrimonium bromide method (Doyle and Doyle, 1990) with minor modifications. Then, the concentration and quality of the DNA were assessed using ultraviolet–visible spectrophotometry (DU 800; Beckman Coulter, Fullerton, CA) and electrophoresis on 1% TAE agarose gels, and the samples were diluted to a final concentration of 250 ng·µL⁻¹.

Table 1. Forty *Prunus* accessions used in genetic relationship analysis among 10 rootstock species from China by simple sequence repeat.

Code	Accession	Type	Species	Subgenus	Origin
1	Bing	Cherry	*Prunus avium*	Cerasus	America
2	Hongdeng	Cherry	*P. avium*	Cerasus	China
3	Lapins	Cherry	*P. avium*	Cerasus	Canada
4	Early Ruby	Cherry	*P. avium*	Cerasus	Russia
5	Gisela 5	Cherry	*Prunus cerasus*	Cerasus	Germany
6	Colt	Cherry	*P. avium* × *Prunus canescens*	Cerasus	UK
7	Xinxing	Cherry	*Prunus fruticosa*	Cerasus	Russia
8	Askaya	Cherry	*P. fruticosa*	Cerasus	Russia
9	Xiwang	Cherry	*P. fruticosa*	Cerasus	Russia
10	Early Richmond	Cherry	*P. cerasus*	Cerasus	Unknown
11	Shanyingtao A	Cherry	*P. cerasus*	Cerasus	Unknown
12	Shanyingtao B	Cherry	*P. cerasus*	Cerasus	Unknown
13*	Daqingye	Cherry	*P. pseudocerasus*	Cerasus	China
14*	Xiaqingye	Cherry	*P. pseudocerasus*	Cerasus	China
15*	Liyangaiying	Cherry	*P. pseudocerasus*	Cerasus	China
16*	Dawolouye	Cherry	*P. pseudocerasus*	Cerasus	China
17*	Shanying A	Cherry	*Prunus serrulata*	Cerasus	China
18*	Shanying B	Cherry	*P. serrulata*	Cerasus	China
19*	Shanying C	Cherry	*P. serrulata*	Cerasus	China
20*	Shanying D	Cherry	*P. serrulata*	Cerasus	China
21	Mahaleb	Cherry	*Prunus mahaleb*	Cerasus	Unknown
22*	Maoyingtao A	Cherry	*Prunus tomentosa*	Lithocerasus	China
23*	Maoyingtao B	Cherry	*P. tomentosa*	Lithocerasus	China
24*	Maoyingtao C	Cherry	*P. tomentosa*	Lithocerasus	China
25*	Yuyemei A	Almond	*Prunus triloba*	Amygdalus	China
26*	Yuyemei B	Almond	*P. triloba*	Amygdalus	China
27*	Yuyemei C	Almond	*P. triloba*	Amygdalus	China
28*	Fuli	Plum	*Prunus salicina*	Prunophora	China
29	Gaixiandali	Plum	*P. salicina*	Prunophora	China
30	Xiaohuangli	Plum	*P. salicina*	Prunophora	China
31*	Gaiguo 3	Cherry	*Prunus humilis*	Lithocerasus	China
32*	Gaiguo 4	Cherry	*P. humilis*	Lithocerasus	China
33*	Yuli	Cherry	*Prunus japonica*	Lithocerasus	China
34*	Mailiwhite	Cherry	*Prunus glandulosa*	Lithocerasus	China
35*	Malireh	Cherry	*P. glandulosa*	Lithocerasus	China
36	Yinhua	Cherry	*Prunus yedoensis*	Cerasus	Japan
37	Shantao	Peach	*Prunus davidiana*	Amygdalus	China
38	Chongyanghong	Peach	*Prunus persica*	Amygdalus	China
39	Katy	Apricot	*Prunus armeniaca*	Prunophora	America
40*	Shanxing	Apricot	*Prunus sibirica*	Prunophora	China

Prunus rootstock species that originated in China.

PCR amplification and product electrophoresis. The diluted genomic DNA was PCR amplified using 24 sets of SSR primers that were previously developed in peach, apricot, and cherry (Table 2). The 20-µL reaction mixture contained 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 4 mM MgCl₂, 0.1 mM each dNTP, 0.2 M each primer, 40 ng genomic DNA, and 0.45 U Taq polymerase and were amplified using a thermocycler (PTC-200; MJ Research, Waltham, MA) with the following program: an initial denaturation of 4 min at 94 °C; 28–31 cycles of 45 s at 94 °C, 45 s at 57.5–62 °C, and 45 s at 72 °C; and a final extension of 8 min at 72 °C. The amplification products were electrophoresed on 8% polyacrylamide gels in 1× TBE buffer with a constant current of 40 mA, and the gels were stained with silver nitrate (Promega, Madison, WI), according to the manufacturer’s instructions. In addition, amplification with each primer combination was performed twice to verify the reproducibility of our results.

SSR data analysis. Each SSR band was considered an individual character, and the presence or absence of the band was scored using binary code (present = 1, absent = 0). Subsequently, a data matrix was assembled and analyzed using PAUP* (Swofford, 1998), and a pairwise distance matrix was generated based on total character differences. The genetic relatedness of the *Prunus* species was analyzed using the unweighted pair group method with arithmetic mean (UPGMA), based on total character difference, and bootstrap analysis was conducted using UPGMA search methods with 10,000 replicates, to obtain confidence values for the branches of the tree.

Results and Discussion.

SSR marker characterization. Bands or banding patterns that are unique to specific groups can be used for species identification or subgenus classification (Zhang et al., 2008). To identify the more common alleles shared by different species, 24 SSR primer sets were selected from over 170 pairs of primers that were previously developed for peach, cherry, and apricot (Zhang et al., 2008). In the present study, a total of 251 alleles were identified, with a mean of 10.5 alleles per SSR locus. Among the 24 loci, the CPPCT27 locus was the most polymorphic, with 17 alleles, whereas the UCD-CH12 locus was the least polymorphic, with only six alleles (Table 2).
Both common and unique alleles were identified using 10 group-specific markers on a certain set of species (Table 3). For example, one allele at the UDP96-003 locus was shared by accessions of *P. tomentosa*, *P. humilis*, *P. japonica*, and *P. glandulosa* and, therefore, was able to distinguish species in subgenus *Lithocerasus* from those in the other subgenera, whereas another allele from the same locus was shared by *P. triloba* and *P. salicina* (Fig. 1A). Similarly, the PacA10 locus was able to distinguish *P. salicina* (subgenus *Prunophora*) from *P. tomentosa*, *P. triloba*, *P. humilis*, *P. japonica*, *P. glandulosa* (subgenus *Lithocerasus*), *P. davidiana*, and *P. persica* [subgenus *Amygdalus* (Fig. 1B)]; and the UCD-CH31 and UCD-CH39 loci were able to distinguish *P. tomentosa* from all other species. In addition, both the UDP96-008 and UDP97-401 loci yielded species-specific alleles for each of *P. japonica*, *P. humilis*, and *P. glandulosa*; and the UDP96-008, UDP98-024, and CPPCT27 loci yielded a common allele for *P. davidiana* and *P. persica* (subgenus *Amygdalus*).

Table 2. List of simple sequence repeat primers used in genetic relationship analysis and their amplified products in 40 *Prunus* accessions.

Primer	Primer sequence (5′→3′)	Motif	Source	Size range (bp)	Alleles (no.)
UDP96-001	AGTTTGTATTTCTGATGCTACCC	(CA)17	Cipriani et al. (1999)	100–150	8
UDP96-003	TGTGCTAAAAGTGTCGTTGC	(CT)11(CA)28	Cipriani et al. (1999)	85–150	16
UDP96-008	TTGTCACACCTCCAGCTGG	(CA)23	Cipriani et al. (1999)	130–190	10
UDP97-401	TAAGGAGATCTTTTGGCTTGG	(GA)19	Cipriani et al. (1999)	110–150	9
UDP97-403	CTGGCTTACAACCTCACAGTCA	(AG)22	Cipriani et al. (1999)	95–170	15
UDP98-021	AAGCAGAAACCTGCAATAAC	(GA)22(CA)11	Testolin et al. (2000)	100–150	12
UDP98-022	CTAGTTGTGACACTCAAGC	(TG)12(AG)24	Testolin et al. (2000)	85–165	13
UDP98-024	CTTGATGCTAAACTAACACAGC	(GT)19TC(TG)7	Testolin et al. (2000)	75–125	12
UDP98-046	TCGGAAACTGGTAGATGAGAAG	(AG)15	Testolin et al. (2000)	70–105	8
UDP98-416	TTTCTCTGACAGCAAAACAAAATGTTCGTCTCCTC	(AG)18	Testolin et al. (2000)	80–125	12
Pchgm52	GTCAATGAGTTCCTGCTACACTC	(CT)24	Sosinski et al. (2000)	135–190	8
Pchgm54	ATCTTCACAACCTAAATGTC	(CT)21	Sosinski et al. (2000)	160–200	9
PceGA59	AGAATCTAAAGAGGCTTAAAAC	(CT)30	Cantini et al. (2001)	140–300	12
PMS30	CTGCGAAGATGTTGGGCTATGC	ATGATTGTGAGGCTAGTGGGG			
PMS40	TCACCTTCGTTCAATTTCCTCCTTCC	(AG)18	Testolin et al. (2000)	80–125	12
CPPCT27	GAGCAGTTCATAAATGTTGGGAAACCA	(CT)15	Struss et al. (2003)	95–170	10
UCD-CH11	TGCTATGTGATCAAACTGCTCCC	(CT)15	Struss et al. (2003)	170–220	6
UCD-CH12	AGACAAGGGATTGTGGGGC	(CT)10	Struss et al. (2003)	135–270	8
UCD-CH13	ACCGCTTACTACGGG	(CT)12	Struss et al. (2003)	105–150	10
UCD-CH19	GTACAAAGCTGTTAAGACCTGCTG	(CT)26	Struss et al. (2003)	90–200	10
UCD-CH31	TCACCTTCCTTGAGTGTTGG	(CT)28	Struss et al. (2003)	95–175	9
UCD-CH39	CCTAGCTTCTCAGTGTTGG	(CT)28	Struss et al. (2003)	95–175	9
PacB35	ATGGGAGCAGGTTGCTGTTT	(GA)14(GA)11	Decroocq et al. (2003)	210–295	8
PacA10	TGAGCATAATTGGGGCAG	(GA)14	Decroocq et al. (2003)	65–150	9
Prunus mahaleb, Prunus yedoensis, P. cerasus × P. canescens, and P. avium × P. pseudocerasus) could be distinguished by a unique allele at the Pchgms2 locus. Although subgenus Cerasus exhibits a wide geographic distribution, all the specimens included in the present study possessed the same allele, whereas the other species exhibited polymorphism. During the optimization of Pchgms2 amplification, only a single allele was amplified under different annealing temperatures (52, 55, 58, and 60 °C) in the 22 accessions representing subgenus Cerasus. Thus, the locus Pchgms2 was very useful for identifying subgenus Cerasus.

Among the 24 loci, the UCD-CH12 locus was determined to be the most suitable for homology analysis, with four common alleles shared by the 17 species and 2 hybrids analyzed, and P. persica at locus UDP98-416; and P. humilis, P. japonica, P. glandulosa, P. davidiana, and P. tomentosa shared a distinguishing allele with P. salicina at locus UCD-CH31. This could be useful for elucidating relationships within the genus. Thus, it might eventually be possible to classify Prunus species using only one or two SSR markers. Cipriani et al. (1999) reported that 59% of peach SSR primer pairs amplified products of expected size in other Prunus species. Our results also show that the examined Prunus species were closely related and that SSR primer pairs exhibit high transferability within the genus. Although Dirlewanger et al. (2002) reported that the transferability of primer pairs across species is not related to genetic distance, our results indicated that more closely related species were more likely to share similar alleles. For example, P. persica and P. avium, which supports the hypothesis that P. cerasus arose as an allotetraploid from the hybridization of P. avium (2n = 2x = 16) and P. fruticosa (2n = 4x = 32; Olden and Nybom, 1968). Meanwhile, the hybrid ‘Gisela 5’ (P. cerasus × P. canescens) connected the P. avium group to the group that contained P. cerasus and P. fruticosa, and the hybrid ‘Colt’ (P. avium × P. pseudocerasus) was grouped between the cherries from Asia and Europe.

Phylogenetic Analysis. All the accessions from subgenus Cerasus clustered together (Fig. 2), thus providing support for their common genetic origin. P. cerasus and P. fruticosa were more closely related to each other than to P. avium, which supports the hypothesis that P. cerasus arose as an allotetraploid from the hybridization of P. avium (2n = 2x = 16) and P. fruticosa (2n = 4x = 32; Olden and Nybom, 1968). Meanwhile, the hybrid ‘Gisela 5’ (P. cerasus × P. canescens) connected the P. avium group to the group that contained P. cerasus and P. fruticosa, and the hybrid ‘Colt’ (P. avium × P. pseudocerasus) was grouped between the cherries from Asia and Europe.

Table 3. Ten group-specific simple sequence repeat markers applied to genetic relationship analysis among 40 Prunus accessions.

SSR marker	Species	Band size (bp)
UDP96–003	Prunus triloba, Prunus salicina	80
	Prunus tomentosa, Prunus humilis, Prunus japonica, Prunus glandulosa	90
UDP96–008	P. humilis, P. japonica, P. glandulosa	140
	Prunus davidiana, Prunus persica	142
UDP97–401	P. humilis, P. japonica, P. glandulosa	120
UDP98–024	P. davidiana, P. persica	105
UDP98–416	P. salicina, P. humilis, P. japonica, P. glandulosa	90
Pchgms2	Prunus avium, Prunus fruticosa, Prunus cerasus, Prunus pseudocerasus, Prunus serrulata, Prunus mahaleb, Prunus yedoensis, P. cerasus × Prunus canescens, P. avium × P. pseudocerasus	135
CPCT27	P. davidiana, P. persica	110
UCD–CH31	P. triloba, P. salicina, P. humilis, P. japonica, P. glandulosa, P. davidiana, P. persica, Prunus armeniaca, Prunus sibirica	155
	P. tomentosa	158
UCD–CH39	P. tomentosa	95
PacA10	P. tomentosa, P. triloba, P. humilis, P. japonica, P. glandulosa, P. davidiana, P. persica, Prunus armeniaca, Prunus sibirica	95

Fig. 1. Simple sequence repeat band patterns of 21 Prunus accessions generated by UDP96–003 and PacA10 markers. (A) Marker UDP96–003: allele “a” was shared by Prunus tomentosa, Prunus humilis, Prunus japonica, and Prunus glandulosa; allele “b” was shared by Prunus triloba and Prunus salicina. (B) Marker PacA10: allele “c” was shared by Prunus armeniaca and Prunus sibirica; allele “d” was shared by P. tomentosa, P. triloba, P. humilis, P. japonica, P. glandulosa, Prunus davidiana, and Prunus persica. Prunus accession numbers are detailed in Table 1; M = DNA size markers.
Although *P. mahaleb* originated in Europe, it was closely related to cherries from Asia. Generally, subgenus *Cerasus* is more divergent from the other groups. Subgenus *Cerasus* was also more closely related to subgenus *Prunophora* than to subgenus *Amygdalus*, which confirms the hypothesis that cherry is genetically more distant from peach than from apricot (Badenes and Parfitt, 1995; Chin et al., 2014; Watkins, 1976).

Successful hybridization among *Prunus* species has been reported [e.g., *Prunus amygdalus* × *P. persica* (Felipe, 2009), *Prunus domestica* × *P. armeniaca* (Jones, 1928), *P. davidiana* × *Prunus mira* (Shoferistov, 1989)], which indicates that hybridization and crossing could occur among plum, apricot, and peach, but not with cherry.

The *P. salicina* accessions formed a group with high bootstrap values, along with a group that included *P. humilis*, *P. japonica*, and *P. glandulosa* (Fig. 2), which together formed a group with *P. tomentosa* and *P. triloba*. The apricot group (*P. armeniaca, P. sibirica*) was more similar to the plum group (*P. salicina*) than to the peach group (*P. davidiana, P. persica*). A previous morphological study suggested that the evolution of these species progressed from peach > apricot > plum > cherry (Yü and Li, 1986), which is corroborated by the molecular analysis of the present study.

Genetic diversity of four species from subgenus *Lithocerasus*. The four species from subgenus *Lithocerasus* that were included in the present study failed to cluster into a single group and, instead, were grouped with members of the subgenus *Prunophora*. This grouping suggests that subgenus *Lithocerasus* is closely related to *P. salicina*. A close relationship was previously reported between *P. glandulosa* and *P. japonica*, which belong to subgenus *Prunophora* and subgenus *Amygdalus*, respectively, based on RAPD analysis (Shimada et al., 2001). The present study grouped *P. japonica*, *P. glandulosa*, and *P. humilis*, and within this group, *P. glandulosa* was more closely related to *P. japonica* than to *P. humilis*. In addition, a previous isozyme study (Mowrey and Werner, 1990) indicated that *P. japonica* only differed from *P. glandulosa* by one of 110 alleles and, moreover, that *P. japonica* and *P. glandulosa* grouped together in subgenus *Cerasus*. However, although the present study confirms the genetic similarity of *P. humilis, P. japonica*, and *P. glandulosa*, the species were placed in subgenus *Prunophora* (Fig. 2), in agreement with the ITS sequence analysis of Bortiri et al. (2006), which indicated that *P. tomentosa* and *P. glandulosa*.

Evidence from interspecific crosses also supports the classification of subgenus *Lithocerasus* as distinct from subgenus *Cerasus* and suggests that subgenus *Lithocerasus* is more closely related to subgenus *Prunophora*. For example, members of subgenus *Lithocerasus* section *Microcerasus* have been reported [e.g., *Prunus amygdalus × P. persica* (Felipe, 2009), *Prunus domestica × P. armeniaca* (Jones, 1928), *P. davidiana × Prunus mira* (Shoferistov, 1989)], which indicates that hybridization and crossing could occur among plum, apricot, and peach, but not with cherry.

The *P. salicina* accessions formed a group with high bootstrap values, along with a group that included *P. humilis*, *P. japonica*, and *P. glandulosa* (Fig. 2), which together formed a group with *P. tomentosa* and *P. triloba*. The apricot group (*P. armeniaca, P. sibirica*) was more similar to the plum group (*P. salicina*) than to the peach group (*P. davidiana, P. persica*). A previous morphological study suggested that the evolution of these species progressed from peach > apricot > plum > cherry (Yü and Li, 1986), which is corroborated by the molecular analysis of the present study.

Genetic diversity of four species from subgenus *Lithocerasus*. The four species from subgenus *Lithocerasus* that were included in the present study failed to cluster into a single group and, instead, were grouped with members of the subgenus *Prunophora*. This grouping suggests that subgenus *Lithocerasus* is closely related to *P. salicina*. A close relationship was previously reported between *P. glandulosa* and *P. japonica*, which belong to subgenus *Prunophora* and subgenus *Amygdalus*, respectively, based on RAPD analysis (Shimada et al., 2001). The present study grouped *P. japonica*, *P. glandulosa*, and *P. humilis*, and within this group, *P. glandulosa* was more closely related to *P. japonica* than to *P. humilis*. In addition, a previous isozyme study (Mowrey and Werner, 1990) indicated that *P. japonica* only differed from *P. glandulosa* by one of 110 alleles and, moreover, that *P. japonica* and *P. glandulosa* grouped together in subgenus *Cerasus*. However, although the present study confirms the genetic similarity of *P. humilis, P. japonica*, and *P. glandulosa*, the species were placed in subgenus *Prunophora* (Fig. 2), in agreement with the ITS sequence analysis of Bortiri et al. (2006), which indicated that *P. tomentosa* and *P. glandulosa*.

Evidence from interspecific crosses also supports the classification of subgenus *Lithocerasus* as distinct from subgenus *Cerasus* and suggests that subgenus *Lithocerasus* is more closely related to subgenus *Prunophora*. For example, members of subgenus *Lithocerasus* section *Microcerasus* have been reported [e.g., *Prunus amygdalus × P. persica* (Felipe, 2009), *Prunus domestica × P. armeniaca* (Jones, 1928), P. davidiana × Prunus mira (Shoferistov, 1989)], which indicates that hybridization and crossing could occur among plum, apricot, and peach, but not with cherry.

The *P. salicina* accessions formed a group with high bootstrap values, along with a group that included *P. humilis*, *P. japonica*, and *P. glandulosa* (Fig. 2), which together formed a group with *P. tomentosa* and *P. triloba*. The apricot group (*P. armeniaca, P. sibirica*) was more similar to the plum group (*P. salicina*) than to the peach group (*P. davidiana, P. persica*). A previous morphological study suggested that the evolution of these species progressed from peach > apricot > plum > cherry (Yü and Li, 1986), which is corroborated by the molecular analysis of the present study.

Genetic diversity of four species from subgenus *Lithocerasus*. The four species from subgenus *Lithocerasus* that were included in the present study failed to cluster into a single group and, instead, were grouped with members of the subgenus *Prunophora*. This grouping suggests that subgenus *Lithocerasus* is closely related to *P. salicina*. A close relationship was previously reported between *P. glandulosa* and *P. japonica*, which belong to subgenus *Prunophora* and subgenus *Amygdalus*, respectively, based on RAPD analysis (Shimada et al., 2001). The present study grouped *P. japonica*, *P. glandulosa*, and *P. humilis*, and within this group, *P. glandulosa* was more closely related to *P. japonica* than to *P. humilis*. In addition, a previous isozyme study (Mowrey and Werner, 1990) indicated that *P. japonica* only differed from *P. glandulosa* by one of 110 alleles and, moreover, that *P. japonica* and *P. glandulosa* grouped together in subgenus *Cerasus*. However, although the present study confirms the genetic similarity of *P. humilis, P. japonica*, and *P. glandulosa*, the species were placed in subgenus *Prunophora* (Fig. 2), in agreement with the ITS sequence analysis of Bortiri et al. (2006), which indicated that *P. tomentosa* and *P. glandulosa*.
The status and relationship of *P. tomentosa* and *P. triloba*. The species *P. tomentosa* and *P. triloba* are morphologically similar and are mainly distinguished by fruit morphology. The fruit of *P. triloba* is larger and dry at maturity, whereas the fruit of *P. tomentosa* is smaller and remains fleshy. However, it is difficult to distinguish the two species without flowers or fruit, and few studies have investigated their phylogenetic relationship. The topology of the present study agrees with the species’ morphological similarity, since *P. tomentosa* and *P. triloba* were grouped together and formed a sister group to subgenus *Prunophora*. Previously, RAPD analysis (Shimada et al., 2001) placed the two species in subgenus *Amygdalus*; however, isozyme analysis grouped the species together as a separate clade that was closer to members of subgenus *Prunophora* than to those of subgenus *Cerasus* (Mowrey and Werner, 1990). Further, according to the analysis of nrITS sequences and plastid markers (Chin et al., 2014), *P. tomentosa* and *P. triloba* are grouped together and are more closely related to *P. glandulosa* (subgenus *Lithocerasus*) and subgenus *Prunophora* than to subgenus *Amygdalus* or subgenus *Cerasus*. Our findings support the conclusions drawn from the analysis of isozymes, nrITS sequences, and plastid markers.

Traditionally, *P. triloba* has been placed in subgenus *Amygdalus*; however, this classification has been questioned. For example, Zhao (1996) suggested that *P. triloba* be placed in subgenus *Cerasus*, along with *P. tomentosa*, based on morphology. In addition, although *P. triloba* can be used as a rootstock for plum, apricot, and peach, it causes dwarfing in peach (Ding, 1997), a phenomenon that might be explained by genetic distance, since *P. triloba* is more closely related to subgenus *Prunophora* (plum and apricot) than to subgenus *Amygdalus* (peach, nectarine, and almond). Our results also support this point of view.

Meanwhile, *P. tomentosa* cannot be used directly as a rootstock for sweet cherry, owing to the incompatibility of the two species, although using *P. tomentosa* as a rootstock and Fuli (*P. salicina*) as an interstock produces sweet cherries that grow well and fruit earlier. Grafting compatibility also suggests that *P. tomentosa* is more closely related to subgenus *Prunophora* than to subgenus *Cerasus*, since a hybrid rootstock for peach was derived from a cross between *P. tomentosa* and *Prunus cerasifera* (Warner, 1998). The interspecific hybridization of *P. tomentosa* and *P. salicina* (Zhang and Gu, 2015) also supports the conclusion that *P. tomentosa* is more closely related to subgenus *Prunophora* than to subgenus *Cerasus*. Therefore, the results of the present study suggest that *P. triloba* and *P. tomentosa* should be assigned to the same group, either in subgenus *Lithocerasus* or subgenus *Prunophora*, rather than in subgenus *Amygdalus*.

Implications for *Prunus* rootstock breeding. The genetic resources of Chinese *Prunus* species have made important contributions to global fruit production, either by direct planting or as breeding material. In addition, Chinese *Prunus* species may also be useful as a source of genetic variation for breeding *Prunus* rootstocks, especially since interspecific crosses in the genus are usually feasible and efficient (in terms of selection pressure). Such interspecific crosses permit the introgression of beneficial genes for tolerance to drought and cold and resistance to pests and disease, from wild species to cultivated species, which can result in progeny that can be cultivated over a wide range of climates or have a wide range of compatibility with other cultivars.

To identify suitable rootstocks for stone fruits, grafting experiments have typically focused on more primitive species from China, such as *P. pseudocerasus*, *P. canescens*, *P. tomentosa*, *P. humilis*, *P. japonica*, and *P. triloba*, which are characterized by their cold resistance, dwarfing, and early fruiting. Further, distant hybridization within *Prunus* species has been widely applied as the preferred strategy for fruit production and has yielded a number of cultivars. For example, ‘Colt’ (*P. avium × P. pseudocerasus*) and ‘Gisela 5’ and ‘Gisela 6’ (*P. cerasus × P. canescens*) have been important rootstocks for sweet cherry (Bielicki and Rozpara, 2010), whereas a hybrid rootstock from a cross between *P. tomentosa* and *P. cerasifera* is used for peach (Warner, 1998), and an interspecific hybrid of *P. tomentosa* and *P. salicina* exhibited dwarving, large fruit, and cold resistance (Zhang and Gu, 2015). However, an improved understanding of the genetics of *Prunus* species is fundamental to the development of new breeding programs, and the close relationships identified in the present study will improve *Prunus* breeding programs by helping breeders choose parental combinations and allow the combination of some major characteristics from wild species.

Conclusions

The findings of the present study clarify the relationships and genetic diversity of 10 *Prunus* species from China. Although members of subgenus *Lithocerasus* are morphologically similar to members of subgenus *Cerasus*, the two groups are genetically distinct, and our analysis also indicated that the four examined species of subgenus *Lithocerasus* (i.e., *P. humilis*, *P. japonica*, *P. glandulosa*, and *P. tomentosa*) were more closely related to members of subgenus *Prunophora* than to those of subgenus *Amygdalus* or subgenus *Cerasus*. Furthermore, *P. triloba* was genetically distant from members of subgenus *Amygdalus* but was closely related to *P. tomentosa*. Therefore, we suggest that *P. triloba* be grouped with *P. tomentosa* and placed in either subgenus *Lithocerasus* or subgenus *Prunophora*. The results of our molecular analysis can also be used to direct breeding programs for *Prunus* rootstocks.

Literature Cited

Aranzana, M.J., J. Garcia-Mas, J. Carbo, and P. Arus. 2002. Development and variability analysis of microsatellite markers in peach. Plant Breed. 121:87–92.

Badenes, M.L. and D.D.E. Parfitt. 1995. Phylogenetic relationships of cultivated *Prunus* species from an analysis of chloroplast DNA variation. Theor. Appl. Genet. 90:1035–1041.

Bielicki, P. and E. Rozpara. 2010. Growth and yield of ‘Kordia’ sweet cherry trees with various rootstock and interstem combinations. J. Fruit Ornamental Plant Res. 18:45–50.

Bortiri, E., B. Vanden Heuvel, and D. Potter. 2006. Phylogenetic analysis of morphology in *Prunus* reveals extensive homoplaspy. Plant Syst. Evol. 259:53–71.

Cantini, C., A.F. Iezzoni, W.F. Lamboy, M. Bortizki, and D. Struss. 2001. DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. J. Amer. Soc. Hort. Sci. 126:205–209.

Chin, S.W., J. Shaw, R. Haberle, J. Wen, and D. Potter. 2014. Diversification of almonds, peaches, plums and cherries—Molecular systematics and biogeographic history of *Prunus* (Rosaceae). Mol. Phylogenet. Evol. 76:34–38.

Cipriani, G., G. Lot, W.G. Huang, M.T. Marrazzo, E. Peterlunger, and R. Testolin. 1999. AC/GT and AG/CT microsatellite repeats in peach (*Prunus persica* (L) Batsch): Isolation, characterisation and cross-species amplification in *Prunus*. Theor. Appl. Genet. 99:65–72.
Decroocq, V., M.G. Fav, L. Hagen, L. Bordenave, and S. Decroocq. 2003. Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor. Appl. Genet. 106:912–922.

Ding, Z.X. 1997. A review on dwarfing rootstocks of deciduous fruit and their dwarfing effect in China (in Chinese). J. Sichuan Agr. Univ. 15:358–364.

Dirlewanger, E., P. Cosson, M. Tavaud, M.J. Aranzana, C. Poizat, A. Zanetto, P. Arus, and F. Laigret. 2002. Development of microsatellite markers in peach [Prunus persica (L.) Batsch.] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor. Appl. Genet. 105:127–138.

Dosba, F., R. Bernhard, and A. Zanetto. 1994. Importance des ressources génétiques des Prunus. C. R. Acad. Agr. Fr. 80:45–57.

Doyle, J.J. and J.L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13–15.

Fan, S.Y. 1999. The experiment of affect scion of Prunus japonica Thunb for stock of Prunus armeniaca L. (in Chinese). Hereditas 21:43–44.

Felipe, A.J. 2009. ’Felinem’, ‘Garnei’, and ‘Monegro’ almond × peach hybrid rootstocks. HortScience 44:196–197.

Garley, B. 1980. The sand cherry: Its origin, improvement and nomenclature. Fruit Var. J. 34:13–17.

Ingram, C. 1948. Ornamental cherries. Country Life, London, UK.

Jones, D.F. 1928. Burbank’s results with plums. J. Hered. 19:359–372.

Kataoka, I., A. Sugiura, and T. Tomana. 1988. Interspecific hybridization between Microcerasus and other Prunus species. J. Jpn. Soc. Hort. Sci. 56:398–407.

Mizutani, F., M. Yamada, and T. Taniguchi. 1985. Dwarfing effect of P. japonica and P. tomentosa rootstocks on ‘Ohkubo’ peach trees. Engei Gakkai Zasshi 54:327–335.

Mowrey, B.D. and D.J. Werner. 1990. Phylogenetic relationships among species of Prunus as inferred by isozyme markers. Theor. Appl. Genet. 80:129–133.

Olden, E.J. and N. Nybom. 1968. On the origin of Prunus cerasus L. Hereditas 59:327–345.

Powell, W., M. Morgante, C. Andre, M. Hanafey, J. Vogel, S. Tingley, and A. Rafalski. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2:225–238.

Rehder, A. (ed.). 1990. Manual of cultivated trees and shrubs hardy in North America. Dioscorides Press, Portland, OR.

Sangtae, L. and J. Wen. 2001. A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Amer. J. Bot. 88:150–160.

Shimada, T., H. Hayama, K. Nishimura, M. Yamaguchi, and M. Yoshida. 2001. The genetic diversities of 4 species of subgenus Lithocerasus (Prunus, Rosaceae) revealed by RAPD analysis. Euphytica 117:85–90.

Shoferistov, E.P. 1989. Use of distant hybridization in breeding nectarine. Otdalennaya gibridizatsiya i ee rol` v intensifikatsii sadovodstva 18:76–81.

Sosinski, B., M. Gannavarapu, L.D. Hager, L.E. Beck, G.J. King, C.D. Ryder, S. Rajapakse, W.V. Baird, R.E. Ballard, and A.G. Abbott. 2000. Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 101:421–428.

Sangtae, L. and J. Wen. 2001. A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Amer. J. Bot. 88:150–160.

Shimada, T., H. Hayama, K. Nishimura, M. Yamaguchi, and M. Yoshida. 2001. The genetic diversities of 4 species of subgenus Lithocerasus (Prunus, Rosaceae) revealed by RAPD analysis. Euphytica 117:85–90.

Shoferistov, E.P. 1989. Use of distant hybridization in breeding nectarine. Otdalennaya gibridizatsiya i ee rol` v intensifikatsii sadovodstva 18:76–81.

Sosinski, B., M. Gannavarapu, L.D. Hager, L.E. Beck, G.J. King, C.D. Ryder, S. Rajapakse, W.V. Baird, R.E. Ballard, and A.G. Abbott. 2000. Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 101:421–428.

Sangtae, L. and J. Wen. 2001. A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Amer. J. Bot. 88:150–160.