Anticancer potential of cryptotanshinon on breast cancer treatment; A narrative review

Davood Dalil*, Saeid Iranzadeh and Soroush Kohansal

Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran

Breast cancer has recently been known as the first lethal malignancy in women worldwide. Despite the existing treatments that have improved the patients’ prognosis, some types of breast cancer are serious challenges to treat. Therefore, efforts are underway to provide more efficient therapy. Cryptotanshinon (CPT) is a liposoluble diterpenoid derivation of a traditional Chinese herbal medicine called Salvia miltiorrhiza Bunge. It has been considered in the past decades due to its vast therapeutic properties, including anti-tumor, anti-inflammatory, and anti-fibrosis. Recently, studies have found that CPT showed a significant anti-breast cancer effect in vivo and in vitro through different physiological and immunological mechanisms. This study summarized the latest research findings on the antitumor effect of CPT in breast cancer. Further, the main molecular mechanisms based on breast cancer types and combination with other drugs were reviewed to provide essential evidence for future longitudinal research and its clinical application in breast cancer treatment.

KEYWORDS
Salvia miltiorrhiza, cryptotanshinon, tanshinone C, breast cancer, molecular mechanism, drug combination, estrogen receptor

Introduction

Breast cancer (BRCA) is one of women’s most commonly diagnosed malignancies worldwide. The incidence of BRCA has increased gradually in recent years, becoming the top rank in 2021. (Ma and Jemal, 2013; DeSantis et al., 2014; Harbeck and Gnant, 2017; Sung et al., 2021). Based on evaluation of different biomarkers, including presence of hormone receptors (HR) [such as estrogen receptor (ER)] and overexpression of human epidermal growth factor receptor 2 (HER2), BRCA is divided into four main molecular subtypes: HR+/HER2-, HR+/HER2+, HER2+ and triple negative (TNBC) (Loibl et al., 2021). HR positive BRCA is less malignant than other subtypes. Although there are various BRCA risk factors related to lifestyle (Brody et al., 2007; Kaiser, 2013), medical condition (Anothaisintawee et al., 2013), carcinogenic genes (Gage et al., 2012), etc., it is well known that estrogen and ERs play a pivotal role in the initiation, development, and progression of breast cancer.
(Plat et al., 2004; Yager and Davidson, 2006). Three types of ER have been identified in BRCA cells, ERα and ERβ, and a G-protein coupled estrogen receptor (GPER) (Girgert et al., 2019).

The successful medical treatments for breast cancer, including surgery, chemotherapy, and radiation therapy, have been associated with better prognosis, causing a dramatic increase in the survival rate of BRCA patients (Abderrahman and Jordan, 2018). However, in some subtypes of BRCA the prognosis is poor (Tong et al., 2018). Success in controlling the progression and treatment of breast cancer with chemotherapy drugs such as tamoxifen and anti-estrogens depends on the presence of ERs, especially ERα. Thus, the treatment of ERα-negative BRCA, accounting for 40% of BRCA, is challenging. A subgroup of ERα-breast cancer overexpress the HER2, and there are few drugs for its treatment. Another group is TNBC which is so malignant to be treated, resulting in a poor prognosis (Tong et al., 2018; Girgert et al., 2019). Also, treatment obstacles, such as multidrug resistance (MDR), decrease the clinical efficacy of treatment in BRCA patients (Merikhian et al., 2017).

Therefore, more studies have been conducted to explore an effective therapeutic agent to improve the prognosis of different subtypes of BRCA, especially by targeting estrogen signaling (Li et al., 2015). Herbal products are a treasure for pharmaceutical development, providing novel biological and natural compounds to develop new medications (Cragg and Newman, 2009). These drugs are known as valuable and safe resources in the treatment of various diseases due to their low price, low adverse effects, and high public availability (Balafha-Fouce et al., 1998).

Cryptotanshinone (CPT) is a liposoluble diterpenoid derivation, that mainly exists in plants of the genus Salvia, including Salvia przewalskii Maxim, Salvia tebesana Bunge., S. miltiorrhiza Bunge., among which S. miltiorrhiza Bunge, well-known as Danshen, has rich contents of diterpenes (Wu et al., 2020). Recently, CPT has been considered due to its vast range of therapeutic properties, including anti-tumor effects (Jiang et al., 2017), anti-inflammatory (Tang et al., 2011), antifibrosis, etc. (Wu et al., 2020). For anti-tumor activity, CPT inhibited the growth of various kinds of tumor cells, including lung cancer (Lee et al., 2008), prostate cancer (Shin et al., 2009), cervical cancer (Ye et al., 2010), leukemia (Kim et al., 2011), and breast cancer (Park et al., 2012). CPT, besides its cytotoxic effect, could prevent cancer cell proliferation and increase anti-tumor immunity simultaneously (Han et al., 2019). Therefore, this study summarized the latest research findings on the anti-breast cancer activity of CPT. Furthermore, the main molecular mechanisms based on breast cancer subtypes and combination with other drugs were reviewed to provide essential evidence for future longitudinal research and possible CPT clinical application in breast cancer treatment.

Results

The crucial characteristic of an ideal anti-tumor drug is the fewest cytotoxic effect on normal cells while the most cytotoxicity on cancer cells. Studies have demonstrated that CPT has such an anti-tumor effect (Zhang et al., 2018). Regarding anti-breast cancer treatment, CPT could affect different breast cancer cell lines through various mechanisms (Table 1). Zhou et al. (2020) showed that CPT has dose-dependent cytotoxicity on ERα-positive BRCA cells (MCF-7 cells) and ERα-negative BRCA cells (MDA-MB-231), decreasing the survival and proliferation of cancerous cells. Li et al. (2021) showed that CPT in any concentration inhibits the rate of proliferation time/concentration-dependent in MCF-7 and MDA-MB-231 BRCA cells. Also, their experiments on transwell invasion and cell migration demonstrated that MCF-7 cells are more sensitive to CPT than MDA-MB-231 cells. CPT inhibited the invasive ability of BRCA cells in a dose-dependent manner. At the same concentration of CPT, the migration distance of MCF-7 cells is lesser than MDA-MB-231 cells; additionally, increasing the concentration of CPT results in more potent inhibition in the cells migration.

Cryptotanshinone against estrogen receptor alpha-positive breast cancer cells (MCF-7 cell line)

ERα is a ligand-regulated transcription factor that binds to the estrogen hormone and activates a pathway, which triggers the transcription of ER target genes via binding to the estrogen-responsive elements (EREs) on their gene promoters (Klinge, 2001; Osborne et al., 2001; Deroo and Korach, 2006). Around 70–75% of BRCA express ERα in their cells, known as estrogen receptor alpha-positive breast cancer (ERα-positive BRCA) (Cleator et al., 2009; Johnston, 2010) Cryptotanshinone, a homogeneous chemical structure with estrogen, inhibited cell viability and proliferation in ERα-positive cells more effectively than in ERα-negative cells in a dose-dependent manner (Gong et al., 2012; Li et al., 2015; Pan et al., 2017; Li et al., 2021).

Pan et al. (2017) demonstrated that the CPT-ERα binding affinity is close to estrogen and roughly half of the Tamoxifen, presenting the anti-estrogen potential of CPT. Therefore, CPT could inhibit cell survival, growth, invasion, and migration of ERα-positive BRCA (MCF-7) cells via different mechanisms through competitive binding to ERα. CPT inhibited the ERα-mediated IGF-1/akt/mTOR signaling and suppressed the IRS-1/akt cascade. Thus, CPT inhibited the AKT-mTOR cascade in MCF-7 BRCA cells. Figure 1 demonstrates the regulatory effect of CPT on ERα-positive BRCA cell survival and proliferation.
Another study by Li et al. (2015) indicated that though CPT slightly downregulated ERα expression levels, CPT-ERα competitive binding is more pivotal than downregulating ERα protein expression. CPT could significantly inhibit the viability and proliferation of breast cancer cells due to the reduction of ERα target genes transcription via competitive binding to ERα. Thus, it has more efficacy in the treatment of ERα-positive rather than ERα-negative BRCA.

To find out other anti-cancer mechanisms of CPT, the differentially expressed genes (DEGs) were identified on both ERα-positive and -negative BRCA cell lines (Li et al., 2021). The results suggested three main DEGs. The Estrogen Receptor Gene (ESR1), the Cyclin-Dependent Kinase 1 (CDK1), and CCNA2. CPT intervention decreased the expression of CCNA2 and CDK1 in both cell lines, predominantly in ERα-positive BRCA cells, while no changes were observed in the ESR1 gene expression in either of the two cell lines (Pagano et al., 1992; Stein and Yang, 1995; Wang et al., 2011; Li et al., 2021).

Pharmacological interventions, which can induce prolonged endoplasmic reticulum stress (ER-stress), has been recently suggested as a possible method for tumor therapy (Healy et al., 2009). Park et al. (2012) realized that CPT induces ER-stress markers by generating reactive oxygen species (ROS). Further, the apoptosis biochemical markers (the phosphorylation level of eIF2α and protein levels of CHOP, GRP94, and GRP78), increase of sub-G1 DNA, and induction of DNA fragmentation were found in the MCF-7 cells exposed to CPT. All suggested that CPT as a natural compound induces ER-stress-mediated apoptosis in MCF-7 breast cancer cells.

Zhou et al. (2014) investigated the novel anti-tumor therapeutic role of CPT. They showed that CPT could perform its anticancer effect by stimulating the immune system, through generating reactive oxygen species after exposure to CPT combined with arsenic species. CPT induces ER-stress-mediated apoptosis, which acts like IL-12 and causes the release of perforin from CD4+ T cells by promoting secretion of IFN-γ or perforin. CPT acts like IL-12 and causes the release of perforin from CD4+ T cells through the phosphorylation of the JAK2/STAT4 pathway, mainly inhibited the growth of breast cancer cells.

Cryptotanshinone against estrogen receptor alpha-negative breast cancer cells (MDA-MB 231, SKBR-3, Bcap37 cell lines)

ERα-negative breast cancer treatment is a big challenge due to its poor prognosis. Previous studies demonstrated the
ERα-negative breast cancer resistance against anticancer drugs (Lappano et al., 2014; Bhat et al., 2015). Thus, finding an effective treatment for ERα-negative BRCA is crucial. Some subgroups of ERα-negative BRCA cells, such as SKBR-3 cells, are membrane G protein-coupled estrogen receptor (GPER) positive (Steiman et al., 2013). In vitro research claimed that GPER might function as a tumor suppressor in BRCA cells (Ariazi et al., 2010; Weißenborn et al., 2014). Recent studies revealed that GPER and its mediated signaling pathway [phosphatidylinositol 3-kinase (PI3K)/AKT] have a vital role in the proliferation of BRCA cells (Molina et al., 2017; Hsu et al., 2019).

It has been demonstrated that CPT treatment significantly downregulated the GPER-mediated PI3K/AKT signaling pathway of the ERα-negative human breast cancer cells, SKBR-3, in a dose and time-dependent manner. CPT might arrest the cell cycle associated with GPER-mediated G1-phase block. In addition, the expression of cyclin and CDK, which modulate the cell cycle regulation, obviously decreased after CPT treatment in a dose-dependent manner (Shi et al., 2020).

Bcap37 cells, as an ERα-negative BRCA cell line, have more migration and invasion than ERα-positive BRCA cells. CPT can potentially be an apoptosis inducer, anti-proliferative, and tumor-migration inhibitor drug in the ERα-negative BRCA cell lines. Liu et al. (2016) indicated that CPT could inhibit the proliferation and migration of Bcap37 cells and could induce apoptotic pathways in a dose- and time-dependent manner by arresting the cell cycle at the S phase during interphase. The main responsible for the cytotoxic effects of CPT in the ERα-negative BRCA cells is the inhibitory effect on FOXO1 (Thannickal and Fanburg, 2000; Akasaki et al., 2014).
Cryptotanshinone in combination with other drugs

Breast cancer metastasis is a complex condition in which the tumor microenvironment plays an important role. Therefore, modulation of the tumor microenvironment through various biochemical pathways can have an anti-metastatic effect (Gao et al., 2009). Silibinin (SLB) is an herbal product that constrains tumor angiogenesis and reduces epithelial-mesenchymal transition (Deep and Agarwal, 2010; Deep and Agarwal, 2013). By modulating the tumor microenvironment via different pathways, SLB, as well as CPT, are known as anti-metastatic natural products.

Liu et al. (2020) assessed the bioavailability and anti-metastatic efficacy of oral nanoparticles for administrating the SLB and CPT lung metastasis in a 4T1 breast cancer tumor-bearing nude mouse model. They demonstrated that Silibinin- and cryptotanshinone-co-loaded nanoparticles (S/C-W-LPNs) significantly induced cell toxicity compared to SLB-co-loaded nanoparticles (S-W-LPNs) or CPT-co-loaded nanoparticles (C-W-LPNs) alone. Further, in vitro anti-metastasis study showed that S/C-W-LPNs markedly inhibited cell invasion and migration; with a relative cellular migration rate of 8.6% ± 1.38% which was less than those for C-W-LPNs and S-W-LPNs (15.5% ± 3.58%, 19.9% ± 3.35%, respectively).

Arsenic trioxide (As2O3) is known as a successful treatment for acute promyelocytic leukemia worldwide (Zhu et al., 1997). Zhang et al. (2015) explored a new therapeutic method for the treatment of ER-positive breast cancer. They exposed the MCF-7 BRCA cell line to three arsenic species, namely inorganic arsenite (IAsIII), its intermediate metabolites monomethylarsonous acid (MMAIII), and dimethylarsinous acid (DMAIII) either alone or in combination with CPT and investigated their anti-breast cancer effects. The findings suggested that the combination of MMAIII with CPT has a remarkable synergic cytotoxic effect on cell viability. Further, they reported that MMAIII with CPT induces cellular apoptosis significantly (apoptosis rates up to 40%) compared to the combination of IAsIII or DMAIII with CPT, through changing the proapoptotic proteins Bax, Bak, and cyt c in the cytoplasm and mitochondria of BRCA cells (Zhang et al., 2015).

Cryptotanshinone and conventional therapies

Recent significant progression in the cancerous cells’ drug resistance is a prominent obstacle for clinicians during chemotherapy. One of the solutions is using compounds that can synergize with conventional chemotherapy drugs. Park et al. (2012) evaluated the alone and the synchronic cytotoxic effects of CPT and chemotherapy drugs such as 5-FU, TNFa, etoposide, and cisplatin. They observed that lonely exposure to CPT or each antitumor drug has minimal effect on MCF-7 BRCA cells’ viability and has not any noticeable induction of ER-stress or apoptotic markers. On the other hand, synchronous use of CPT and antitumor drugs showed a prominent antitumor synergism with the promotion of apoptotic markers, indicating that CPT exerts its synergistic effect through potentiation of the apoptotic activity of different antitumor drugs via the stimulation of ER-stress (Park et al., 2012).

A study of treating C57 mice with cancerous MCF-7 cells with CPT or Taxol revealed that CPT remarkably inhibited the cancerous cells’ growth from day 13 compared to non-treatment mice. However, the therapeutic effect of CPT was minimally less than Taxol. But their findings suggested that CPT, along with conventional chemotherapy drugs, could have a synergic effect on breast cancer treatment (Zhou et al., 2014).

Cryptotanshinone and multi-drug resistant breast cancer

Multi-drug resistance (MDR) in breast tumors is a condition that reduces the efficacy of chemotherapy drugs (Wang et al., 2017b). Often it occurs following long-term anti-estrogen chemotherapy and ERα-negative breast cancers. MDR has a tight association with breast cancer resistance protein (BCRP). BCRP is a membrane protein that causes efflux of chemotherapy drugs from tumor cells, therefore making cancer cells less affected by chemotherapy drugs (Mao and Unadkat, 2015; Li et al., 2016).

Thus, Ni et al. (2021) stated that BCRP might have a vital role in regulating the CPT transportation across the breast cancer cells membrane. They found that although CPT could not affect the intracellular protein and mRNA levels of BCRP/ABCG2, but inhibited the efflux function of BCRP in MCF-7 cells by reducing the BCRP expression on the cell membrane, which was ERα-dependent (Figure 2). BCRP is primarily of dimer and oligomer formation on the MCF-7 cell membrane. To find whether CPT was synergistic with BCRP-mediated efflux of anticancer drugs or not, they investigated the effect of CPT along with two of the most common BCRP drugs, MX and TOPO, compared with treatment with MX or TOPO alone. The findings showed that CPT increased the efficacy of chemotherapy drugs that can be effluxed by BCRP from tumor cells, reversing MDR (Ni et al., 2021).

In a similar study, Pan et al. (2017) used cancer cells with the acquired multidrug resistance (MCF-7/ADR). The results showed an undetected Tamoxifen cytotoxic effect on the MCF-7/ADR cancer cells, while CPT had a significant inhibitory effect. Moreover, CPT conjoined with Tamoxifen plies a synergic effect on the MCF-7/ADR cells. These findings indicated that CPT suppresses cell viability and proliferation in the tamoxifen-resistant BRCA cells especially combined with Tamoxifen.
Cryptotanshinone inhibits the metabolism of breast cancer cells

Cancerous cells have a higher metabolic rate to promote tumor proliferation and progression (Fanciulli et al., 2000; Lu et al., 2008). Expression of glycolysis-related proteins, like HK2, LDHA, and PKM2, increases in breast cancer cells. PKM2, a poor prognostic marker, is an enzyme that induces glycolysis in breast cancer cells. CPT reduces the expression of PKM2 in both ERα-positive and ERα-negative breast cancer cells, inhibiting glycolysis. Glycolysis inhibition reduces metabolic rate and increases the sensitivity of cancerous cells to chemotherapy drugs (Zhou et al., 2020).

It is worth noting that some articles clarified that PKM2 also could be translocated into the nucleus of breast cancer cells, functioning as a transcription factor that transactivates β-catenin. β-Catenin is one of the most important mediators of angiogenesis, invasion, and cell migration in breast cancer (Yang...
et al., 2011; Wang et al., 2017a). Therefore CPT inhibits the invasion and migration of breast cancer cells by inhibiting the PKM2/β-catenin axis in both ERα-positive and -negative breast cancer cell lines (Zhou et al., 2020).

Conclusion

Breast cancer incidence is dramatically increasing year by year in women worldwide. It has recently passed the other malignancies and has become the most life-threatening female cancer with the first rank (Sung et al., 2021). Despite various treatments available for different severity of breast cancer, including surgical resection, chemotherapy, and radiotherapy, there are types of BRCA with poor prognosis, particularly triple-negative breast cancer. While surgical resection is prescribed for only a minority of BRCA patients, most patients undergo chemotherapy which has increased the patients’ lifespan. A beneficial drug causes minimal damage to healthy body cells while having the most cytotoxicity to cancer cells. Therefore, suggesting new anticancer medicine with greater efficacy and fewer side effects is one of the hotspots for cancer treatment in recent years.

Cryptothanshinone, a derivation of the plant S. miltiorrhiza Bunge, has been recently considered by researchers due to its numerous anti-inflammatory and antitumor activity in vivo and in vitro. Notably, this Chinese herbal medicine is efficient in cancer treatment through different molecular mechanisms, including targeting various molecular signaling pathways. In this study, we focused on the anti-cancer activity of CPT against breast cancer and summarized the various biological mechanisms through which CPT affects different types of BRCA. Most studies were conducted using ERα-positive and -negative BRCA. But no study considered the TNBC type. Therefore, evaluating the effects of CPT on the most challenging type of breast cancer, TNBC, is recommended for future studies. For ERα-Positive BRCA cells, studies have shown that CPT inhibits proliferation, migration, invasion, and cell viability of tumor cells in vivo or in vitro. Effects on estrogen receptor function, regulation of gene expression, endoplasmic reticulum stress-induced apoptosis, induction of the immune response, and inhibition of glycolysis are mechanisms that are affected by CPT.

In the case of ERα-negative BRCA cells, in vivo and in vitro studies have demonstrated that CPT provided its anti-cancer effect through GPER-mediated pathways, apoptosis via reactive oxygen species, and to a lesser extent through regulation of gene expression. Also, CPT has shown a synergic effect, more bioavailability, and more induced sensitivity to chemotherapy when combined with other drugs such as Silibinin, arsenic species, and conventional chemotherapy drugs. In summary, cryptothanshinone should be recognized as herbal medicine that offers many antitumor mechanisms and has considerable potential for treating female breast cancer.

Author contributions

DD designed the study, searched databases, and consulted literature. DD and SI participated in manuscript sorting. DD, SI, and SK drafted the manuscript. All authors carefully revised and edited the manuscript.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Abderrahman, B., and Jordan, V. C. (2018). Successful targeted therapies for breast cancer: The worcester foundation and future opportunities in women’s health. *Endocrinology* 159 (8), 2980–2990. doi:10.1210/en.2018-00263
Akasai, Y., Alvarez-Garcia, O., Saito, M., Caramés, B., Iwamoto, Y., and Lotz, M. K. (2014). FoxO transcription factors support oxidative stress resistance in human chondrocytes. *Arthritis Rheumatol.* 66 (12), 3349–3358. doi:10.1002/art.38868
Anothaisintawee, T., Wizatkapan, C., Lerdsitthichai, P., Kasamesup, V., Wongwaisayawan, S., Srinakarin, J., et al. (2013). Risk factors of breast cancer: A systematic review and meta-analysis. *Asia. Pac. J. Public Health* 25 (5), 368–387. doi:10.1177/1010539513488795
Ariazi, E. A., Braioli, E., Yerrum, S., Shupp, H. A., Slifker, M. J., Cunliffe, H. E., et al. (2010). The G protein–coupled receptor GPR30 inhibits proliferation of estrogen receptor–positive breast cancer cells. *Cancer Res.* 70 (3), 1184–1194. doi:10.1158/0008-5472.CAN-09-3068
Balata-Fouze, R., Reguera, R., Cubría, J., and Ordoñez, D. (1998). The pharmacology of esthemannianis. *Gen. Pharmacol.* 30 (4), 435–443. doi:10.1016/s0306-3623(97)00268-1
Bhat, M. A., Al-Dhflyan, A., Naglah, A. M., Khan, A. A., and Al-Omar, M. A. (2015). Lead optimization of 2-Cyclohexyl-N-[(Z)-(3-methoxyphenyl/3-hydroxyphenyl) methylidene] hydrazinecarbothioamides for targeting the HER-2 overexpressed breast cancer cell line SKBr-3. *Molecules* 20 (10), 18246–18263. doi:10.3390/201018246
Brody, J. G., Rudel, R. A., Michels, K. B., Morysich, K. B., Bernstein, L., Attfield, K. R., et al. (2007). Environmental pollutants, diet, physical activity, body size, and breast cancer: Where do we stand in research to identify opportunities for prevention? *Cancer* 109, 2627–2634. doi:10.1002/cncr.22656
Creaser, S. J., Ahmed, E., Coomber, R. C., and Palmieri, C. (2009). A 2009 update on the treatment of patients with hormone receptor—Positive breast cancer. *Clin. Breast Cancer* 9, S6–S17. doi:10.3816/CBC.2009.s.001
Cryptotanshinone enhances TNF-α and chemosensitization effects of Cryptotanshinone extracted from Salvia ijm20020306 Curr. Cancer Drug Targets

and chemosensitization effects of Cryptotanshinone extracted from Salvia ijm20020306 Curr. Cancer Drug Targets

08

Frontiers in Pharmacology

drug resistance and in et al. (2000). Energy metabolism of human LoVo colon carcinoma cells: Correlation to drug resistance and in

causes breast cancer: An overview. Cryptotanshinone is a intervention for er-positive breast cancer: An integrated approach to the study of natural product intervention mechanisms.

Cancer Biol. Ther. 11, 2223. doi:10.3389/fphar.2020.592109

Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug resist. updat. 27, 14–29 doi:10.1016/j.drup.2016.05.001

Liu, X., Pan, L., Liang, J., Li, J., and Wu, S. (2016). Cryptotanshinone inhibits proliferation and induces apoptosis via mitochondria-derived reactive oxygen species involving FOXO1 in estrogen receptor-negative breast cancer Bcap37 cells. Rsc. Adv. 6 (27), 22232–22243. doi:10.1039/c6ra22523c

Liu, Y., Xie, X., Hou, X., Shen, J., Shi, J., Chen, H., et al. (2020). Functional oral nanoparticles for delivering silibinin and cryptotanshinone against breast cancer lung. metastasis. J. Nanobiotechnology 18 (1), 83–15. doi:10.1186/s12951-020-00638-x

Loibl, S., Poortmans, P., Morrow, M., Denkert, C., and Cariglino, G. (2021). Breast cancer. Lancet 397 (10286), 1750–1769. doi:10.1016/s0140-6736(20)32381-3

Liu, C.-W., Lin, S.-C., Chen, K.-F., Lai, Y.-Y., and Tsai, S.-J. (2008). Induction of pyrrolyle dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J. Biol. Chem. 283 (42), 28106–28114. doi:10.1074/jbc.M303508200

Ma, J., and Jemal, A. (2013). "Breast cancer statistics," in Breast Cancer metastasis and drug resistance, 1–18.

Mao, Q., and Unadkat, J. D. (2015). Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport—An update. J. Pharmacol. Sci. 128 (4), 418–466. doi:10.1253/jphs.2014-31486-6

Mekhria, P., Ghadirián, R., Farahmand, L., Mansouri, S., and Majjadidroji-A, K. (2017). MUC1 induces taoxinex immunization in estrogen receptor-positive breast cancer. Expert Rev. Anti-Cancer Ther. 17 (7), 607–613. doi:10.1586/14737588.2017.1350264

Miricescu, D., Totan, A., Stanescu-Spinu, I.-L., Băduaș, S. C., Stefani, C., and Greau, M. (2020). PI3K/AKT/mTOR signaling pathway in breast cancer. From molecular landscape to clinical aspects. Int. J. Mol. Sci. 22 (1), 173. doi:10.3390/ijms202010173

Molina, L., Figueroa, C. D., Bhosla, K. D., and Ehrenfeld, P. (2017). GPER-1/GPER30 a novel estrogen receptor sited in the cell membrane: Therapeutic coupling to breast cancer. Expert Opin. Ther. Targets 21 (8), 755–766. doi:10.1517/14728222.2017.1350264

Ni, W., Fan, H., Zheng, X., Xu, F., Wu, Y., Li, X., et al. (2021). Cryptotanshinone inhibits era-dependent and -independent BCPR oligomer formation to reverse multidrug resistance in breast cancer. Front. Oncol. 11 (688), 624811. doi:10.3389/fonc.2021.624811

Osborne, C. K., Schiff, R., Faqufa, S., and Shou, J. (2001). Estrogen receptor: Current understanding of its activation and modulation. Clin. Cancer Res. 7 (12), 4338s–4342s.

Pagano, M., Pepperkok, R., Verde, F., Anzore, W., and Draetta, G. (1992). Cyclin A is required at two points in the human cell cycle. EMBO J. 11 (3), 961–971. doi:10.1002/ej.1030110320

Stein, B., and Yang, M. X. (1995). Repression of the interleukin-6 promoter by nuclear factor κB. EMBO J. 14 (15), 4971–4978. doi:10.1093/emboj/14.15.4971

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71 (3), 209–249. doi:10.3322/caac.21660

Dai et al. 10.3389/fphar.2022.979634
Tang, S., Shen, X.-Y., Huang, H.-Q., Xu, S.-W., Yu, Y., Zhou, C.-H., et al. (2011). Cryptotanshinone suppressed inflammatory cytokines secretion in RAW264.7 macrophages through inhibition of the NF-κB and MAPK signaling pathways. Inflammation 34 (2), 111–118. doi:10.1007/s10753-010-9214-3

Thannickal, V. J., and Fanburg, B. L. (2000). Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 279 (6), L1005–L1028. doi:10.1152/ajplung.2000.279.6.L1005

Tong, C. W., Wu, M., Cho, W., and To, K. K. (2018). Recent advances in the treatment of breast cancer. Front. Oncol. 8, 227. doi:10.3389/fonc.2018.00227

Wang, J., Li, M., Chen, D., Nie, J., Xi, Y., Yang, X., et al. (2017a). Expression of C-myc and β-catenin and their correlation in triple negative breast cancer. Minerva Med. 108 (6), 513–517. doi:10.2376/s0026-4806.17.05213-2

Wang, J., Seebacher, N., Shi, H., Kan, Q., and Duan, Z. (2017b). Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget 8 (48), 84559–84571. doi:10.18632/oncotarget.19187

Wang, Q., Su, L., Liu, N., Zhang, L., Xu, W., and Fang, H. (2011). Cyclin dependent kinase 1 inhibitors: A review of recent progress. Curr. Med. Chem. 18 (13), 2025–2043. doi:10.2174/092986711795590110

Weifernb, C., Ignatov, T., Poehlmann, A., Wege, A. K., Costa, S. D., Zeruchsasen, A. C., et al. (2014). GPIER functions as a tumor suppressor in MCF-7 and SK-BR-3 breast cancer cells. J. Cancer Res. Clin. Oncol. 140(4), 663–671. doi:10.1007/s00432-014-1588-2

Wu, Y.-H., Wu, Y.-R., Li, B., and Yan, Z.-Y. (2020). Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia 145, 104633. doi:10.1016/j.fitote.2020.104633

Yager, J. D., and Davidson, N. E. (2006). Estrogen carcinogenesis in breast cancer. N. Engl. J. Med. 354 (3), 270–282. doi:10.1056/NEJMra050776

Yang, W., Xia, Y., Ji, H., Zheng, Y., Liang, J., Huang, W., et al. (2011). Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature 480 (7375), 118–122. doi:10.1038/nature10598

Ye, Y., Xu, W., and Zhong, W. (2010). Effects of cryptotanshinone on proliferation and apoptosis of Hela cell line of cervical cancer. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China J. Chin. materia medica 35 (1), 118–121. doi:10.4268/cjcm20100125

Zhang, W., Yu, W., Cai, G., Zhu, J., Zhang, C., Li, S., et al. (2018). Retracted article: A new synthetic derivative of cryptotanshinone KYZ3 as STAT3 inhibitor for triple-negative breast cancer therapy. Cell Death Dis. 9 (11), 1098-1111. doi:10.1038/s41419-018-1139-z

Zhang, Y.F., Zhang, M., Huang, X. L., Fu, Y. J., Jiang, Y. H., Bao, L. L., et al. (2015). The combination of arsenic and cryptotanshinone induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in breast cancer cells. Metallomics 7 (1), 165–173. doi:10.1039/c4mt00263f

Zhou, J., Su, C.-M., Chen, H.-A., Du, S., Li, C.-W., Wu, H., et al. (2020). Cryptotanshinone inhibits the glycolysis and inhibits cell migration through PKM2/β-catenin axis in breast cancer. Oncotarget 13. 8629–8639. doi:10.2147/OTT.S239134

Zhou, J., Xu, X.-Z., Hu, Y.-R., Hu, A.-R., Zhu, C.-L., and Gao, G.-S. (2014). Cryptotanshinone induces inhibition of breast tumor growth by cytotoxic CD34+ T cells through the Jak2/STAT4/perforin pathway. Asian pac. J. Cancer Prev. 15 (6), 2439–2445. doi:10.7314/apjcp.2014.15.6.2439

Zhu, J., Koken, M. H., Quignon, F., Chelbi-Alix, M. K., Degos, L., Wang, Z. Y., et al. (1997). Arsenic-induced PML targeting onto nuclear bodies: Implications for the treatment of acute promyelocytic leukemia. Proc. Natl. Acad. Sci. U. S. A. 94 (8), 3978–3983. doi:10.1073/pnas.94.8.3978