Utilization of Pectin Isolated from Orange Kisar (Citrus sp) peel as Phenol Adsorbent

M F J D P Tanasale¹, J Latupeirissa, E G Fransina, C Y Batawi

¹ Department of Chemistry, Faculty Mathematics and Natural Sciences, University of Pattimura Jl. Ir. Putuhena Poka 97233, Ambon-Maluku- Indonesia

Abstract. Pectin isolated from orange kisar (Citrus sp) peel has been used as phenol adsorbent. The ability of the pectin as phenol adsorbent was examined at several contact times, pHs, and phenol concentrations. Determination of phenol adsorption was carried out by UV-Vis spectrophotometry method. The optimum conditions of phenol adsorption by the pectin were obtained at the contact time of 20 minutes, pH 3.0, and phenol concentration of 25 ppm. Phenol adsorption by the pectin follows the nonlinear model of the Freundlich adsorption isotherm with the correlation coefficient (r^2), Freundlich’s constant (K_F), and indicator of concentration dependence (n) were 99.51%, 0.6439 (mg/g) (L/mg)$^{1/n}$, and 1.620, respectively.

1. Introduction
Phenol is a colorless crystalline substance that has a distinctive odor with its chemical formula of C₆H₅OH (Fig. 1), toxic and corrosive to the skin (irritating) and its structure has a hydroxyl group (-OH) that binds to the phenyl ring. Phenol is contained in the waste produced by oil refining, steel, plastics, pharmaceuticals, fertilizers, paints, textiles, and formaldehyde industries [1–4]. In Indonesia, phenol is considered safe for the environment if the concentration ranges from 0.5–1.0 mg / L according to the Decree of the Minister of Environment Republic of Indonesia No. 51/MENLH/10/1995 and phenol limit in drinking water shall be 0.002 mg / L [5]. If these values are exceeded, side effects are likely to appear due to the presence of phenols for humans such as sour mouth, diarrhea, excretion of dark urine and impaired vision [4]. To reduce the presence of phenols in wastewater, electrochemical oxidation, solvent extraction [6], membrane separation [7], chemical coagulation [8], photocatalytic degradation [9] and bioremediation [10] methods can be used. From the available methods, adsorption method is the most widely used method to reduce phenolic compounds from wastewater [1,11] as there is plenty of presence of adsorbent in nature with a relatively low price. Some materials used as phenol adsorbent include activated carbon [12–14], peat, bentonite and fly ash [15], zeolites [16], silica gel and activated alumina [17], rice husk [18], rice straw [19], chitin [20,21] and chitosan [21–23].
Pectin (Fig. 2) or pectate compound is a complex polysaccharide found in middle lamella or intercellular space of higher plant tissue. Concentrated polysaccharide compounds and cellulose fibers bind together to form strong tissue that functions as an adhesive between cells, rich in galacturonic acid and has been reported as bioactive, biocompatible, and biodegradable [24]. Fruits and vegetables contain many of these compounds [25]. In orange fruit, the flesh is not the only thing that can be utilized, but also its peels can also be used to produce pectin. In previous studies, pectin has been used as a heavy metal adsorbent [26–29] and dyes [30–32].

This study is a follow up on a previous study [33] which has isolated and characterized pectin from the kisar orange peel (Citrus sp). The kisar oranges (Fig. 3) are endemic plants from Kisar Island (Southwest Maluku). This study aimed to determine the time, phenol concentration and optimum pH in the phenol adsorption process on isolated pectin and to determine the type of adsorption isotherm followed by phenol adsorption process on isolated pectin in a linear or nonlinear model.

2. Experimentals

2.1. Material
The materials used in this study were comprised of isolated pectin of kisar orange (Citrus sp) peels [33], phenol p.a (E. merck), Whatman 42 filter paper, potassium hydrogen phthalic (pa
Merck), HCl pa (E. Merck), KH$_2$PO$_4$ (pa Merck), K$_2$HPO$_4$ p.a (E. Merck); NaOH pa (E. merck), NaHCO$_3$ (Merck pa), aquades, KOH (p.amerck), H$_3$BO$_3$ p.a (E. merck) and 4-amino antipyrine (4-AAP) p.a (E. merck).

2.2. The effect of contact time
A 0.5 g (m) pectin was inserted into Erlenmeyer containing 25 mL (V) solution of 25 ppm (c_0) phenol standard. Then, the solution was shaken in the contact time variation of 20, 40, 60, 80, 100, and 120 minutes, respectively. After that, it was filtered through filter paper and its filtrate absorbance was measured with UV-Vis spectrophotometer in order to specify the remaining phenol or in a state of equilibrium (c_e) with 4-AAP method [34] as reported in our previous studies [14,23].

2.3. The effect of pH
Three Erlenmeyers were filled with a solution containing pH variation of 3, 7 and 11 adjusted using a buffer solution. The buffer solution used for pH variation, respectively are: 0.1 M potassium hydrogen phthalate, 0.1 M HCl, and aquades; solution of 0.1 M KH$_2$PO$_4$, 0.1 M K$_2$HPO$_4$; and solution of 0.05 M NaHCO$_3$, 0.1 M NaOH, and aquades with differing ratio for each volume for each buffer solution. Maximum phenol concentration with pH of 3, 7, and 11 are mixed. Then, 25 mL of solution 25 ppm phenol was added with 0.5 g of pectin to each pH solution. Then the solution is stirred at 300 rpm for an optimum contact time. The pectin adsorbed solution was filtered with filter paper, and the filtrate absorbance was measured using UV-Vis spectrophotometer in a state of equilibrium phenol concentration using 4-AAP method.

2.4. The effect of initial phenol concentration
A total of 5 Erlenmeyers were added with 0.5 g pectin each, then each Erlenmeyer flask was added with 25 mL of 25 ppm, 30 ppm, 40 ppm, 50 ppm, and 60 ppm phenol, respectively. The five solutions were shaken and kept overnight so that it gets equilibrated, then each solution was filtered with Whatman filter paper and absorbances of its filtrate was measured with UV-Vis spectrophotometer in a state of equilibrium phenol concentration using 4-AAP method.

2.5. Determination of adsorption capacity and adsorptivity
The adsorption capacity of pectin adsorbents (x/m) and adsorptivity (Q) was calculated based on Equation 1 and Equation 2.

\[
\frac{x}{m} = \frac{(c_0 - c_e) x V}{m}
\]

\[
Q = \frac{c_0 - c_e}{c_0} \times 100\%
\]

3. Results and Discussion

3.1. Data on the measurement of absorbance after the adsorption process for various variations
Prior to the determination of phenol adsorbed by pectin isolated from kisar orange peel, absorbance measurement was performed on phenol standard solution. The measurement was
done using UV-VIS spectrophotometer at a wavelength of 650 nm. Based on this absorbance data, a phenol standard curve was created (Fig. 4). The linearity relation between absorbance and the concentration of standard phenol solution was used to calculate the final concentration at each stage by inputting the absorbance value of the sample on y function of the regression equation. The optimization stage included the variations in contact time, pH, and phenol concentration. From the data obtained can we would then determine the appropriate adsorption isotherms for this adsorption process.

![Figure 4. Standard phenol curve](image)

3.2. The effect of contact time

The effect of contact time on phenol adsorption, using 25 ppm phenol. The contact time variation of 20, 40, 60, 80, 100, and 120 minutes, stirred at a speed of 300 rpm with 0.5 g of adsorbent dosage. The results obtained is presented in Table 1.

Contact time (min.)	Absorbance	C_0 (ppm)	C_e (ppm)	Adsorbed concentration (ppm)	Capacity of adsorption (mg g$^{-1}$)	Q (%)
20	0.023	25	3.4054	21.5946	1.0793	86.37
40	0.039	25	7.7297	17.2703	0.8634	69.08
60	0.042	25	8.5405	16.4595	0.8228	65.83
80	0.053	25	11.5135	13.4865	0.6742	53.94
100	0.087	25	20.7027	4.2973	0.2148	17.18
120	0.094	25	22.5945	2.4055	0.1202	9.62

Based in the data on Table 1, it can be seen that at 20 minutes of contact time, the concentration of adsorbed phenol was at its highest level and continued to the 40-120 minutes contact time, the concentration was shrinking. This result is due to the active site at adsorbent surface has been saturated by phenol. The gradually saturated adsorbents began to release the phenol and reverted to the solution, thus making the extension of time no longer increases the adsorption level. In other words, the process of phenol desorption by pectin adsorbents has occurred. In this study, at the contact time of 20 minutes, the optimum adsorption condition
was attained with an absorbed concentration of 21.5946 ppm and an adsorption capacity of 1.0793 mg g\(^{-1}\).

3.3. The effect of \(pH\) variations

At \(pH\) variation, 25 ppm phenol solution was used, the \(pH\) was conditioned by using buffer solutions respectively at \(pH\) 3, 7 and 11. Then, it was *shaken* with a speed of 300 rpm, with a contact time of 20 minutes, and an adsorbent weight of 0.5 g. The results are presented in Table 2.

Table 2. The measurement results of phenol absorbance in various \(pH\)s

\(pH\)	Absorbance	\(C_0\) (ppm)	\(C_e\) (ppm)	Adsorbed concentration (ppm)	Capacity of Adsorption (mg g\(^{-1}\))	\(Q\) (%)
3	0.028	25	4.7567	20.2433	1.0113	80.97
7	0.033	25	6.1081	18.8919	0.9440	75.56
11	0.038	25	7.4594	17.5406	0.8766	70.16

The degree of acidity (\(pH\)) in a solution has an influence on the adsorption process. The adjustment of \(pH\) in a solution has an effect on the adsorbent surface load, the degree of ionization, stability, and color intensity of the compounds in the solution [35]. At \(pH\) variations, the acidic \(pH\) (\(pH\) 3), neutral \(pH\) (\(pH\) 7), and basic \(pH\) (\(pH\) 11) were used. In this study, the largest concentration of adsorbed phenol was at \(pH\) 3 with 20 minutes of adsorption time, with the adsorbed concentration of 20.2433 ppm, and shrunk at \(pH\) 7 and \(pH\) 11 at an adsorbed concentration of 18.8919 and 17.5406 ppm consecutively. Thus, it can be concluded that the less the \(pH\), the greater the concentration is absorbed. This result was also found in the phenol adsorption system by rice husk [18] which explains that at a high \(pH\), the phenolic ion fraction is higher than the phenol molecule because phenol is a weak acid (\(pK_a = 10\)), thus the process of phenol absorption at a high \(pH\) was reduced due to the repulsive force. Conversely, at a low \(pH\), the adsorbate surface would be surrounded by H\(^+\) ion which increased the interaction of phenolic compounds with the adsorbent bindings due to the increasing the attractive force. Thus, the optimum phenol absorption by pectin is at an acidic \(pH\).

3.4. The effect of concentration variations

The effect of concentration on phenol adsorption using concentration variations of 25, 30, 40, 50, and 60 ppm which was conditioned at \(pH\) 3 using a buffer, with 0.5 g of adsorbent, shaken with a speed of 300 rpm, and contact time of 20 minutes. The results are then presented in Table 3.

Based on the data of phenol adsorption on the concentration variation presented in Table 3, the maximum concentration was adsorbed at a 25 ppm which has the highest \(Q\) value of 90.70%. The higher the initial concentration, the lower the \(Q\) value. This decrease in adsorption is due to desorption. Desorption is the process of releasing ions or molecules that are bound by an active group in the adsorbent. Thereby, the adsorption of phenol by isolated pectin from sweet orange peel would be better at a lower concentration.
3.5 The Determination of Adsorption Isotherms

The data of phenolic concentration variations help us determine the adsorption isotherms suitable for the adsorption systems of phenol by pectin isolated from sweet orange peels. The adsorption isotherms commonly used are Langmuir adsorption isotherms and Freundlich adsorption isotherms. Both of these isotherms can be written as a linear equation model or nonlinear equation model as presented in Table 4 and Table 5 [36–38].

Table 3. The measurement results of phenol absorbance in various concentrations

C₀ (ppm)	Absorbance	Cₑ (ppm)	Adsorbed concentration (ppm)	Q (%)
25	0.019	2.3243	22.6757	90.70
30	0.023	3.4054	26.5946	88.64
40	0.029	5.0270	34.9730	87.43
50	0.037	7.1891	42.8109	85.62
60	0.044	9.0810	50.9190	84.86

Table 4. Linear equation model of Langmuir adsorption isotherm and Freundlich adsorption isotherm

Type	Forms of linear method equation	Plot	No. Equation	Parameters
Langmuir	Cₑ/(x/m) = 1/(x/m)max + 1/(x/m)max	cₑ/(x/m) vs cₑ	3	(x/m)max = 1/M; K_L = M/C
Linear-1				
Langmuir	1/(x/m) = (1/(x/m)max + 1/(x/m)max)/(1/cₑ)	1/(x/m) vs 1/cₑ	4	(x/m)max = 1/C; K_L = C/M
Linear-2				
Langmuir	1/cₑ = (K_L/(x/m)max)(1/(x/m)) – K_L	1/cₑ vs 1/(x/m)	5	(x/m)max = - M/C; K_L = - C
Linear-3				
Langmuir	(x/m)/cₑ = (K_L/(x/m)max)(1/(x/m)) – K_L	(x/m)/cₑ vs (x/m)	6	(x/m)max = - C/M; K_L = - M
Linear-4				
Freundlich	ln(x/m) = ln K_F + ln cₑ/n	ln (x/m) vs ln cₑ	7	K_F = exp(C); n = 1/M
Table 5. Nonlinear equation model of Langmuir adsorption isotherm and Freundlich adsorption isotherm

Type	Forms of nonlinear method equation	Plot	No. Equation	Persamaan Nonliner	Parameters
Langmuir Nonlinear	\(\frac{x}{m} = \frac{x}{m_{\text{max}}} \frac{K_Lc_e}{1 + K_Lc_e} \)	(x/m) vs c_e	8	\(y = \frac{A}{1 + Bx} \)	\((x/m)_{\text{max}} = \frac{A}{B} \); \(K_L = B \)
Freundlich Nonlinear	\(\frac{x}{m} = K_F c_e^{1/n} \)	(x/m) vs c_e	9	\(y = A x^B \)	\(K_F = A \); \(n = 1/B \)

The calculation results of the phenol adsorption system by pectin isolated from orange peels as Langmuir adsorption isotherms and Freundlich adsorption isotherms are presented in Fig. 5 to Fig. 9 for a linear equation model and Fig. 10 for nonlinear equation model, while the adsorption parameters are presented in Table 6.

Linear equation:
\[
y = 1.711 + 0.2170x \\
r^2 = 95.59\%
\]

Adsorption parameters:
\((x/m)_{\text{max}} = 4.6083 \text{ mg/g} \)
\(K_L = 0.1270 \text{ L/mg} \)

Figure 5. Linear equation model of Langmuir type-1 adsorption isotherm (Langmuir linear-1) and its parameters
Linear equation:
\[y = 0.2542 + 1.533x \]
\[r^2 = 97.33\% \]

Adsorption parameters:
\[(x/m)_{\text{max}} = 3.9339 \text{ mg/g} \]
\[K_L = 0.1658 \text{ L/mg} \]

Figure 6. Linear equation model of Langmuir type-2 adsorption isotherm (Langmuir linear-2) and its parameters

Linear equation:
\[y = -0.1552 + 0.6349x \]
\[r^2 = 97.33\% \]

Adsorption parameters:
\[(x/m)_{\text{max}} = 4.0908 \text{ mg/g} \]
\[K_L = 0.1552 \text{ L/mg} \]

Figure 7. Linear equation model of Langmuir type-3 adsorption isotherm (Langmuir linear-3) and its parameters
Linear equation:
\[y = 0.5991 - 0.1341x \]
\[r^2 = 87.04\% \]

Adsorption parameters
\((x/m)_{\text{max}} = 4.4676 \text{ mg/g} \)
\(K_L = 0.1341 \text{ L/mg} \)

Figure 8. Linear equation model of Langmuir type-4 adsorption isotherm (Langmuir linear-4) and its parameters

Linear equation
\[y = -0.4119 + 0.6005x \]
\[r^2 = 99.30\% \]

Adsorption parameters
\(K_F = 0.6624 \text{ (mg/g) (L/mg)}^{(1/n)} \)
\[n = 1.6653 \]

Figure 9. Linear equation model of Freundlich adsorption isotherm and its parameters
Nonlinear Equation of Langmuir:
\[y = \frac{0.5650x}{1 + 0.1177x} \]
\[r^2 = 98.38\% \]
\[(x/m)_{\text{max}} = 4.8003 \text{ mg/g} \]
\[K_L = 0.1177 \text{ L/mg} \]

Nonlinear Equation of Freundlich:
\[y = (0.6439)x^{0.6172} \]
\[r^2 = 99.51\% \]
\[K_F = 0.6439 \text{ mg/g} \]
\[n = 1.620 \]

Figure 10. Nonlinear equation model of Langmuir adsorption isotherm (Langmuir Nonlinear …..), Freundlich adsorption isotherm (Freundlich Nonlinear ----) and parameters of adsorption

According to Atkins (1998) [39], the Langmuir model is based on the assumption that the isotherm is applicable for one-layer adsorption and all sites are equivalent as well as the surface is uniform. At an adsorbent surface, there are certain active sites which are proportional to the adsorbent surface area, thus if the active site on the adsorbent cell surface wall has been saturated, the concentration addition can no longer increase the adsorbent adsorptivity. Each active site of adsorbent can only adsorb one adsorbent molecule which then forms monolayer adsorption. The Freundlich adsorbent isotherm is assumed to have a heterogeneous surface and each molecule has different adsorption potentials, with a number of active adsorption centers [39].

Table 6. The adsorption parameters of Langmuir adsorption isotherm and Freundlich adsorption isotherm

Type	Equation Model	\(r^2 \)	Parameters
Langmuir Linear-1	\(y = 1.711 + 0.2170x \)	95.59%	\((x/m)_{\text{max}} = 4.6083 \text{ mg/g} \)
			\(K_L = 0.1270 \text{ L/mg} \)
Langmuir Linear-2	\(y = 0.2542 + 1.533x \)	97.33%	\((x/m)_{\text{max}} = 3.9339 \text{ mg/g} \)
			\(K_L = 0.1658 \text{ L/mg} \)
Langmuir Linear-3	\(y = -0.1552 + 0.6349x \)	97.33%	\((x/m)_{\text{max}} = 4.0908 \text{ mg/g} \)
			\(K_L = 0.1552 \text{ L/mg} \)
Langmuir Linear-4	\(y = 0.5991 - 0.1341x \)	87.04%	\((x/m)_{\text{max}} = 4.4676 \text{ mg/g} \)
			\(K_L = 0.1341 \text{ L/mg} \)
Freundlich Linear	\(y = -0.4119 + 0.6005x \)	99.30%	\(K_F = 0.6624 \text{ (mg/g)(L/mg)}^{(1/n)} \)
			\(n = 1.6653 \)
Langmuir Nonlinear	\(y = \frac{0.5650x}{1 + 0.1177x} \)	98.38%	\((x/m)_{\text{max}} = 4.8003 \text{ mg/g} \)
			\(K_L = 0.1177 \text{ L/mg} \)
Freundlich Nonlinear	\(y = (0.6439)x^{0.6172} \)	99.51%	\(K_F = 0.6439 \text{ (mg/g)(L/mg)}^{(1/n)} \)
			\(n = 1.620 \)
Based on Table 6, it can be concluded that the phenolic adsorption by pectin isolated from kisar orange peels better fits the nonlinear adsorption model of Freundlich isotherms with the coefficient of determination (r^2) close to 1 which is 0.9951. Thus, it means that the adsorption occurred at the heterogeneous layer [40]. Based on nonlinear graph of Freundlich isotherm (Fig. 10), the value of K_F and n can be calculated using nonlinear Freundlich isotherms equation which resulted in the K_F value of 0.6439 mg g$^{-1}$ and n value of 1.620. The K_F value showed that the greater K_F value capacity of an adsorbent adsorptivity, the bigger the capacity of the adsorbent to adsorb the adsorbent [40]. The K_F value obtained in this study is quite significant. This means that the capacity of pectin from sweet orange peel in adsorbing phenol is relatively good. A value of $1/n$ indicates the concentration dependence associated with adsorption. If the value is $1/n < 1$, the adsorption process is beneficial making the adsorption capacity increases and new adsorption sites occur. Conversely, if $1/n > 1$, the adsorption bond is weakened and unfavorable adsorption occurs making the adsorption capacity decreases [41]. Thus, the phenol adsorption process by pectin isolated from orange peel is categorized as a favorable adsorption process.

Similar results were also obtained at phenol adsorption on rice-husk [18] and rice straw [19] which were $1/n < 1$ while at phenol adsorption on chitosan [23], activated carbon from rice husk [14], peat and bentonite [15] which obtained the value of $1/n > 1$. Conversely, in some phenol adsorption systems by other adsorbents generated Langmuir adsorption isotherms, such as fly ash [15] and activated carbon [13,18]. The findings summary of phenol adsorption systems by several adsorbents is presented in Table 7.

Adsorbent	Isotherm and Parameters	References
Chitosan isolation from shrimp	Freundlich ($K_F = 0.479; n = 0.214$)	[23]
Activated carbon from rice husk	Freundlich ($K_F = 0.057; n = 0.2586$)	[14]
Peat	Freundlich ($K_F = 4.6 \times 10^{-4}; n = 0.529$)	[15]
Bentonite	Freundlich ($K_F = 5.1 \times 10^{-1}; n = 0.251$)	[15]
Fly ash	Langmuir ($((x/m)_{\text{max}} = 22 \text{ mg/g}; K_L = 0.211 \text{ mg/L}$)	[15]
Rice husk	Freundlich ($K_F = 33.58; n = 1.855$)	[18]
Activated carbon	Langmuir ($((x/m)_{\text{max}} = 11.23 \text{ mg/g}; K_L = 44.5 \text{ mg/L}$)	[18]
Rice straw	Freundlich ($K_F = 4.540; n = 3.610$)	[19]
Activated carbon	Langmuir ($((x/m)_{\text{max}} = 49.72 \text{ mg/g}; K_L = 0.1099 \text{ mg/L}$)	[13]
Pectin isolation from kisar orange peel	Freundlich ($K_F = 0.6439; n = 1.620$)	This study

Nonlinear adsorption isotherms model is better than the linear models found in the adsorption systems of safranin dyes on rice husk [38], phenol on soil [37] and nitrate ion on OS-nZVI [36]. The most significant disadvantage of the linear model is the distribution of non-constant errors. If the nonlinear isotherm is converted into a linear form, the structure and distribution of errors changes and this may affect the variation of errors and normality
assumptions from the least standard squares. In addition, isotherm parameters for nonlinear models can be directly obtained without prior conversion as compared to linear models [36]. The same finding was also obtained for nonlinear model of tartrazine adsorption kinetics on chitosan [42].

4. Conclusion
Based on the findings of our study, the following conclusions can be drawn:
1. Pectin from sweet orange peels can adsorb phenol at an optimum contact time of 20 minutes, pH solution is in acidic condition (pH 3), as well as an optimum concentration at 25 ppm.
2. Phenol adsorption by pectin isolated from sweet orange peels is consistent with nonlinear isotherm Freundlich with correlation coefficient \(r^2 \) of 99.51\%, \(K_F \) of 0.6439 (mg/g) \((L/mg)^{(1/n)}\) and \(n \) value of 1.620, which indicated that the process of adsorption is favorable.

References

[1] Ahmaruzzaman M and Sharma D K 2005 Adsorption of phenols from wastewater *Journal of Colloid and Interface Science* 287 14–24

[2] Busca G, Berardinelli S, Resini C and Arrighi L 2008 Technologies for the removal of phenol from fluid streams: A short review of recent developments *Journal of Hazardous Materials* 160 265–88

[3] Wang C, Feng Y, Gao P, Ren N and Li B-L 2012 Simulation and prediction of phenolic compounds fate in Songhua River, China *Science of The Total Environment* 431 366–74

[4] Kulkarni S J, Tapre R W, Patil S V and Sawarkar M B 2013 Adsorption of Phenol from Wastewater in Fluidized Bed Using Coconut Shell Activated Carbon *Procedia Engineering* 51 300–7

[5] Keputusan Menteri Negara Lingkungan Hidup RI No. KEP-51/MENLH/10/1995 Tentang Baku Mutu Limbah Cair Bagi Kegiatan Industri

[6] Lazarova Z and Boyadzhieva S 2004 Treatment of phenol-containing aqueous solutions by membrane-based solvent extraction in coupled ultrafiltration modules *Chemical Engineering Journal* 100 129–38

[7] Kujawski W, Warszawski A, Ratajczak W, Porębski T, Capała W and Ostrowska I 2004 Removal of phenol from wastewater by different separation techniques *Desalination* 163 287–96

[8] Tomaszewska M, Mozia S and Morawski A W 2004 Removal of organic matter by coagulation enhanced with adsorption on PAC *Desalination* 161 79–87

[9] Sano N, Yamamoto T, Yamamoto D, Kim S-I, Eiad-Ua A, Shinomiya H and Nakaiwa M 2007 Degradation of aqueous phenol by simultaneous use of ozone with silica-gel and zeolite *Chemical Engineering and Processing: Process Intensification* 46 513–9
[10] Scott Alderman N, N’Guessan A L and Nyman M C 2007 Effective treatment of PAH contaminated Superfund site soil with the peroxy-acid process Journal of Hazardous Materials 146 652–60

[11] Crisafulli R, Milhome M A L, Cavalcante R M, Silveira E R, De Keukeleire D and Nascimento R F 2008 Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin Bioresource Technology 99 4515–9

[12] Gonzalez-Serrano E, Cordero T, Rodriguez-Mirasol J, Cotoruelo L and Rodriguez J J 2004 Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors Water Research 38 3043–50

[13] Özkaya B 2006 Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models Journal of Hazardous Materials 129 158–63

[14] Tanasale M F, Latupeirissa J and Tuhalauruw E 2015 The Capability Test Of Rice Husk (Oryza sativa L) As Active Carbon For Phenol Adsorption Indo. J. Chem. Res. 2 223–230

[15] Viraraghavan T and de Maria Alfaro F 1998 Adsorption of phenol from wastewater by peat, fly ash and bentonite Journal of Hazardous Materials 57 59–70

[16] Su F, Lv L, Hui T M and Zhao X S 2005 Phenol adsorption on zeolite-templated carbons with different structural and surface properties Carbon 43 1156–64

[17] Roostaei N and Tezel F H 2004 Removal of phenol from aqueous solutions by adsorption Journal of Environmental Management 70 157–64

[18] Barve S M W and Vijayababu D P V 2013 Some studies on removal of phenol from waste water using low cost adsorbent

[19] Sarker N and Fakhruddin A N M 2017 Removal of phenol from aqueous solution using rice straw as adsorbent Appl Water Sci 7 1459–65

[20] Figueiredo S A, Loureiro J M and Boaventura R A 2005 Natural waste materials containing chitin as adsorbents for textile dyestuffs: Batch and continuous studies Water Research 39 4142–52

[21] Milhome M A L, Keukeleire D de, Ribeiro J P, Nascimento R F, Carvalho T V and Queiroz D C 2009 Removal of phenol and conventional pollutants from aqueous effluent by chitosan and chitin Química Nova 32 2122–7

[22] Crini G 2005 Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment Progress in Polymer Science 30 38–70

[23] Tanasale M, Killay A and Saily M 2006 Kitosan dari limbah udang windu (Penaeus monodon) sebagai adsorben fenol J. Alchemy 5 23–30

[24] Kadam A A, Jang J and Lee D S 2016 Facile synthesis of pectin-stabilized magnetic graphene oxide Prussian blue nanocomposites for selective cesium removal from aqueous solution Bioresour. Technol. 216 391–8
[25] Gawkowska D, Cybulska J and Zdunek A 2018 Structure-Related Gelling of Pectins and Linking with Other Natural Compounds: A Review Polymers (Basel) 10

[26] Khotimchenko M V, Kolchenenko E A, Khotimchenko Y S, Khozhaenko E V and Kovalev V V 2010 Cerium binding activity of different pectin compounds in aqueous solutions Colloids Surf B Biointerfaces 77 104–10

[27] Sutapa I, Siahay V and Tanasale M 2014 Adsorption Cu2+ Metal Ion Of Pectin From “Tongka Langit” Banana’s Crust (Musa Species Van Balbisiana) Indonesian Journal Of Chemical Research 1 72–77

[28] Mata Y N, Blázquez M L, Ballester A, González F and Muñoz J A 2009 Sugar-beet pulp pectin gels as biosorbent for heavy metals: Preparation and determination of biosorption and desorption characteristics Chemical Engineering Journal 150 289–301

[29] Khotimchenko M Y, Kolchenenko E A and Khotimchenko Y S 2008 Zinc-binding activity of different pectin compounds in aqueous solutions J Colloid Interface Sci 323 216–22

[30] Lessa E F, Gularte M S, Garcia E S and Fajardo A R 2017 Orange waste: A valuable carbohydrate source for the development of beads with enhanced adsorption properties for cationic dyes Carbohydrate Polymers 157 660–8

[31] Rakhshaee R and Panahandeh M 2011 Stabilization of a magnetic nano-adsorbent by extracted pectin to remove methylene blue from aqueous solution: a comparative studying between two kinds of cross-linked pectin J. Hazard. Mater. 189 158–66

[32] Agustina A and Sari R N 2017 Utilization of Pectin from Durian (Durio zibethinus) Seeds in Adsorption of Methyl Violet Dye 7

[33] Latupeirissa J, Fransina E G and Tanasale M F J D P 2019 Ekstraksi Dan Karacterisasi Pektin Kulit Jeruk Manis Kisor (Citrus sp.) I 7 53–60

[34] Kang C, Wang Y, Li R, Du Y, Li J, Zhang B, Zhou L and Du Y 2000 A modified spectrophotometric method for the determination of trace amounts of phenol in water Microchemical Journal 64 161–71

[35] Silva L S, Lima L C B, Ferreira F J L, Silva M S, Osajima J A, Bezerra R D S and Filho E C S 2015 Sorption of the anionic reactive red RB dye in cellulose: Assessment of kinetic, thermodynamic, and equilibrium data Open Chemistry 1

[36] Ghaffari H R, Pasalari H, Tajvar A, Dindarloo K, Goudarzi B, Alipour V and Ghanbarnejad A 2017 Linear and Nonlinear Two-Parameter Adsorption Isotherm Modeling: A Case-Study The International Journal of Engineering and Sciences (IJES) 6 1–11

[37] Subramanyam B and Das A 2009 Linearized and non-linearized isotherm models comparative study on adsorption of aqueous phenol solution in soil Int. J. Environ. Sci. Technol. 6 633–40

[38] Vasanth Kumar K and Sivanesan S 2007 Sorption isotherm for safranin onto rice husk: Comparison of linear and non-linear methods Dyes and Pigments 72 130–3

[39] Atkins P and de Paula J 2002 Atkins’ Physical Chemistry, 7th Ed. (Oxford; New York: OUP Oxford)
[40] Lynam M M, Kilduff J E and Weber W J 1995 Adsorption of p-Nitrophenol from Dilute Aqueous Solution: An Experiment in Physical Chemistry with an Environmental Application J. Chem. Educ. 72 80

[41] Özcan A S, Erdem B and Özcan A 2004 Adsorption of Acid Blue 193 from aqueous solutions onto Na–bentonite and DTMA–bentonite Journal of Colloid and Interface Science 280 44–54

[42] Fransina E G and Tanasale M F J D P 2019 Adsorption kinetics of tartrazine on chitosan: Comparison of linear and non-linear methods Rasayan J. Chem. 12 2241–51