EINSTEIN HOMOGENEOUS BISYMMETRIC FIBRATIONS

FÁTIMA ARAÚJO

Abstract. We consider a homogeneous fibration $G/L \to G/K$, with symmetric fiber and base, where G is a compact connected semisimple Lie group and L has maximal rank in G. We suppose the base space G/K is isotropy irreducible and the fiber K/L is simply connected. We investigate the existence of G-invariant Einstein metrics on G/L such that the natural projection onto G/K is a Riemannian submersion with totally geodesic fibers. These spaces are divided in two types: the fiber K/L is isotropy irreducible or is the product of two irreducible symmetric spaces. We classify all the G-invariant Einstein metrics with totally geodesic fibers for the first type. For the second type, we classify all these metrics when G is an exceptional Lie group. If G is a classical Lie group we classify all such metrics which are the orthogonal sum of the normal metrics on the fiber and on the base or such that the restriction to the fiber is also Einstein.

1. Introduction

A Riemannian manifold (M,g) is said to be Einstein if its Ricci curvature satisfies an equation of the form $\text{Ric} = Eg$, for some constant E. This equation is a system of second order partial differential equations, which is in general unmanageable. Fully general results are not known, but many results of existence and classification of Einstein metrics are known for some special manifolds. Example of this are the Kähler-Einstein (\cite{23}) and the Sasakian-Einstein manifolds (\cite{4}). For a homogeneous space the Einstein equation is a system of algebraic equations, which is an easier problem than its general version. Due to this, most of the known examples of existence or non-existence of Einstein metrics are homogeneous spaces. For example, every isotropy irreducible space is clearly an Einstein manifold and recently Einstein metrics on homogeneous spaces with exactly two isotropy summands were classified by Dickinson and Kerr (\cite{7}). Einstein metrics on spheres and projective spaces were classified by Ziller (\cite{24}) and Einstein normal homogeneous manifolds were classified by Wang and Ziller (\cite{20}). It is known that every compact simply connected homogeneous manifold with dimension less or equal to 11 admits a homogeneous Einstein metric (\cite{1}, \cite{3}, \cite{5}, \cite{6}, \cite{12}, \cite{15}). There are examples in dimension 12 which do not admit an Einstein homogeneous metric (\cite{5}, \cite{21}). For a survey on results for Einstein manifolds, see \cite{18}. Riemannian submersions have also been used to construct new Einstein metrics. We recall the work of Jensen on principal fibers bundles (\cite{13}) and the work of Wang and Ziller on principal torus bundles (\cite{22}). We use some results obtained by the author in \cite{9} about Einstein homogeneous fibrations to investigate the existence of Einstein metrics on the total space of fibrations whose fiber and base are symmetric spaces.

Let G be a compact connected semisimple Lie group and $L \lhd K \lhd G$ connected closed non-trivial subgroups, such that G/K is an irreducible symmetric space,
K/L is a simply-connected symmetric space, not necessarily irreducible, and L has maximal rank. We consider the homogeneous fibration

\begin{equation}
M = G/L \to G/K = N \text{ with fiber } F = K/L.
\end{equation}

Throughout, we call a fibration as above a **bisymmetric fibration**. We consider on M the class of metrics g_M such that the natural projection $M \ni aL \mapsto aK \in N$, $a \in G$, is a Riemannian submersion with totally geodesic fibers. Throughout a metric with this property is called an **adapted** metric (see [9]). The aim of this paper is to classify G-invariant Einstein adapted metrics on bisymmetric fibrations.

Let g, k and l denote the Lie algebras of G, K and L, respectively. Let Φ be the Killing form of G and consider the $\text{Ad}G$-invariant symmetric bilinear form given by

\begin{equation}
B = -\Phi.
\end{equation}

Since G is compact and semisimple, B is positive definite. We consider a B-orthogonal decomposition of g given by

\begin{equation}
g = l \oplus m = l \oplus p \oplus n,
\end{equation}

where $g = l \oplus m$, $g = t \oplus n$ and $t = l \oplus p$ are reductive decompositions for M, N and F, respectively. We consider a B-orthogonal decomposition $p = p_1 \oplus \ldots \oplus p_s$ of p into irreducible $\text{Ad}L$-modules. We note that n is an irreducible $\text{Ad}K$-module, but not necessarily $\text{Ad}L$-irreducible.

We denote by B_q the restriction of B to some subspace $q \subset g$. A metric on M defined by an $\text{Ad}L$-invariant Euclidean product on m of the form

\begin{equation}
g_m = (\oplus_{a=1}^s \lambda_a B_{p_a}) \oplus \mu B_n, \quad \lambda_a, \mu > 0
\end{equation}

is an adapted metric. Throughout, we assume the following hypothesis:

\begin{equation}
p_1, \ldots, p_s \text{ are pairwise inequivalent irreducible } \text{Ad}L\text{-submodules;}
p \text{ and } n \text{ do not contain equivalent } \text{Ad}L\text{-submodules.}
\end{equation}

Under the hypothesis (1.4), any adapted metric on M is determined by an $\text{Ad}L$-invariant Euclidean product on m of the form g_M, its restriction to the fiber by g_F and its projection onto the base space by g_N.

For a bisymmetric fibration as in (1.1), we call (g, t, l) a **bisymmetric triple** of maximal rank. The triple (g, t, l) is said to be irreducible if g is simple. Clearly, there is a one-to-one correspondence between bisymmetric fibrations, up to cover, and bisymmetric triples. All the bisymmetric triples considered in this paper are irreducible and such that l has maximal rank.

The classification of isotropy irreducible symmetric spaces is very well known and can be found in [10]. By using this classification we obtain a list of all possible triples (g, t, l) such that l and t are subalgebras of maximal rank of g and (g, t) and (t, l) are symmetric pairs. In particular, any irreducible bisymmetric triple of maximal rank is of Type I or II, where (g, t, l) is said to be of **Type I** if $F = K/L$ is an isotropy irreducible symmetric space and of **Type II** if $F = K/L$ is the direct product of two isotropy irreducible symmetric spaces. A bisymmetric fibration $M = G/L \to G/K = N$ is said to be of Type I or II if the corresponding bisymmetric triple (g, t, l) is either of Type I or II, respectively. We present a list
of all irreducible bisymmetric triples of maximal rank. More precisely we will show the following result in Section 4:

Lemma 1.1. An irreducible bisymmetric triple \((\mathfrak{g}, \mathfrak{k}, \mathfrak{l})\) of maximal rank is either of Type I or II. Moreover, all such bisymmetric triples are those in Tables and 4, 5, 6 and 7.

We classify all the Einstein adapted metrics for bisymmetric fibrations of type I. Since the fiber \(F\) for a bisymmetric fibration of type I is an isotropy irreducible symmetric space, any adapted metric \(g_M\) is determined by an \(\text{Ad} L\)-invariant Euclidean product of the form

\[
g_m = \lambda B_p \oplus \mu B_n.
\]

A metric of this form is called a **binormal** metric (see [9]). We remark that the fact that the base space \(N\) and the base \(F\) are isotropy irreducible does not imply that \(M\) has only two isotropy submodules. Indeed, the horizontal subspace \(n\) is \(\text{Ad} K\)-irreducible but is not in general \(\text{Ad} L\)-irreducible. The particular case of existence of \(G\)-invariant Einstein metrics when \(M\) has exactly two irreducible isotropy subspaces was studied by McKenzie Y. Wang and Ziller, under some assumptions, in [21] and, more recently and in full generality, by W. Dickinson and M. M. Kerr in [7], who classified all such metrics. For more details on the decomposition of the isotropy representation for irreducible bisymmetric fibrations of maximal rank see [8]. In Section 4 we prove the following result.

Theorem 1.2. The bisymmetric fibrations \(M = G/L \rightarrow G/K\) of Type I such that \(M\) admits an Einstein adapted metric are those in Tables 8 and 9. For each case there are exactly two Einstein adapted metrics. Furthermore, these Einstein metrics are, up to homothety, given by

\[
g_m = B_p \oplus X B_n,
\]

where the two distinct values of \(X\) are indicated in the tables mentioned above. In all the cases, \(g_N\) and \(g_F\) are also Einstein.

For bisymmetric fibrations of type II the vertical space \(p\) decomposes into two irreducible \(\text{Ad} L\)-submodules. Hence, an adapted metric is not necessarily binormal (see (1.5)). Moreover, there may exist adapted metrics whose restriction to the fiber is not Einstein. Theorems 1.3 and 1.4 classify all the bisymmetric fibrations of type II which admit an Einstein binormal metric or an Einstein adapted metric whose restriction to the fiber is also Einstein. These results are proved in Section 4.

Theorem 1.3. The bisymmetric fibrations \(M = G/L \rightarrow G/K\) of Type II such that \(M\) admits an Einstein binormal metric are those listed in Table 10. Furthermore, the binormal Einstein metrics are, up to homothety, given by

\[
g_m = B_p \oplus X B_n,
\]

where \(X\) is indicated in Table 10. In all the cases, \(g_N\) and \(g_F\) are also Einstein.

In particular, if \(M\) admits an Einstein binormal metric, then \(G\) is a classical Lie group.
Theorem 1.4. The bisymmetric fibrations $M = G/L \to G/K$ of Type II such that M admits an Einstein adapted metric g_M whose restriction g_F to the fiber $F = K/L$ is also Einstein are

(i) those with an Einstein binormal metric, given by Theorem 1.3 and Table 10;
(ii) the fibration given by

$$(\mathfrak{su}_2(l+s), \mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathbb{R}, \mathfrak{su}_l \oplus \mathfrak{su}_l \oplus \mathfrak{su}_s \oplus \mathfrak{su}_s \oplus \mathbb{R}^3),$$

whose Einstein adapted metric is, up to homothety, given by

$$g_m = \frac{2l}{l+s} B_{p_1} \oplus \frac{2s}{l+s} B_{p_2} \oplus B_n.$$

The metric in (ii) is binormal if and only if $l = s$.

Furthermore, if M admits an Einstein adapted metric whose restriction to the fiber is also Einstein, then G is a classical Lie group.

According to Theorems 1.3 and 1.4, if G is an exceptional Lie group it does not admit an Einstein binormal metric or an Einstein adapted metric which restricts to an Einstein metric on the fiber. However, in the exceptional case it is possible to classify all the Einstein adapted metrics. In Section 4 we show the following:

Theorem 1.5. The only bisymmetric fibrations $M = G/L \to G/K$ of Type II, for an exceptional Lie group G, which admit an Einstein adapted metric are those listed in Table 12. The Einstein adapted metrics are, up to homothety, given by

$$g_m = \frac{1}{X_1} B_{p_1} \oplus \frac{1}{X_2} B_{p_2} \oplus B_n$$

and approximations for X_1, X_2 are given in Table 12. These metrics are not binormal and the restriction to the fiber is not Einstein.

Unlike the exceptional case, if G is a classical Lie group, due to the complexity of the Einstein equations, we do not present a full classification of Einstein adapted metrics for type II. Still it is possible to classify all the Einstein adapted metrics for type II if the two eigenvalues γ_1, γ_2 of the Casimir operator of \mathfrak{k} on p_1, p_2, respectively, satisfy the condition $\gamma_2 = \gamma_1$ or $\gamma_2 = 1 - \gamma_1$. This is the case when the restriction g_F of an Einstein adapted metric g_M to the fiber is Einstein (see Section 2). In particular, this implies that if M admits an Einstein adapted metric g_M such that g_F is also Einstein, then we can classify all the other Einstein adapted metrics on M.

We recall that if U is a vector subspace of \mathfrak{g}, the Casimir operator of U is the operator

$$C_U = \sum_i (ad_{u_i})^2 \in \mathfrak{gl}(\mathfrak{g}),$$

where $\{u_i\}_i$ is an orthonormal basis of U with respect to Φ. The result is as follows:

Theorem 1.6. Let $M = G/L \to G/K$ be a bisymmetric fibration of Type II. Let γ_1, γ_2 be the eigenvalues of the Casimir operator $C_\mathfrak{k}$ on p_1, p_2, respectively.

Suppose that $\gamma_2 = \gamma_1$ or $\gamma_2 = 1 - \gamma_1$. If M admits an Einstein adapted metric g_M such that g_F is not Einstein, then the corresponding bisymmetric triple $(\mathfrak{g}, \mathfrak{k}, \mathfrak{l})$ is
one of the triples in Table 11. The Einstein adapted metrics are, up to homothety, given by,

\[g_m = \frac{1}{X_1} B_{p_1} \oplus \frac{1}{X_2} B_{p_2} \oplus B_n \]

and \(X_1, X_2 \) are indicated in Table 11.

This paper is organized as follows: in Section 2 we state some results about Einstein adapted metrics on the total space of a homogeneous fibration with symmetric fiber. In Section 3 we provide formulae to compute the eigenvalues of Casimir operators intervenient in the Einstein equations of an adapted metric. We prove all the results stated above for bisymmetric fibrations in Section 4. In Section 5, we obtain a list of all compact simply-connected 4-symmetric spaces of maximal rank which admit an Einstein adapted metric. The results presented in Section 5 are an immediate consequence of the results for bisymmetric fibrations proved in this paper and the classification of 4-symmetric spaces obtained by Jimenez in [14]. Finally, all the tables mentioned in this paper are presented in Section 6.

2. Riemannian Fibrations with Symmetric Fiber

Let \(G \) be a compact connected semisimple Lie group and \(L \triangleleft K \triangleleft G \) closed non-trivial subgroups such that \(N = G/K \) is isotropy irreducible and \(F = K/L \) is a simply-connected symmetric space. We consider the natural fibration

\[(2.1) \quad M = G/L \to G/K = N \text{ with fiber } F = K/L \]

and investigate the existence of Einstein adapted metrics on \(M \). We use some results proved in [9] to deduce conditions for existence of an Einstein adapted metric and to describe some special class of Einstein adapted metrics on \(M \), in the case of a fibration given by (2.1). We first introduce some notation and recall some useful results from [9].

Let \(B = -\Phi \), where \(\Phi \) is the Killing form of \(G \). We recall that since \(G \) is compact and semisimple, \(B \) is positive definite. We consider a \(B \)-orthogonal decomposition

\[(2.2) \quad g = l \oplus m = l \oplus p \oplus n \]

of \(g \). We choose (2.2) such that \(g = l \oplus m, g = \mathfrak{k} \oplus \mathfrak{n} \) and \(\mathfrak{k} = l \oplus p \) are reductive decompositions for \(M, N \) and \(F \), respectively. Since \(F = K/L \) is a compact simply-connected symmetric space, we consider its DeRham decomposition

\[(2.3) \quad K/L = K_1/L_1 \times \ldots \times K_s/L_s, \]

where each \(K_a \) is simple. In particular, each \(K_a/L_a \) is an irreducible symmetric space. By \(\mathfrak{k}_a \) and \(\mathfrak{l}_a \) we denote the Lie algebras of \(K_a \) and \(L_a \), respectively. Let \(\mathfrak{p}_a \) be a symmetric reductive complement of \(\mathfrak{l}_a \) in \(\mathfrak{k}_a \). Hence, we have a decomposition of \(m \) given by

\[(2.4) \quad m = \mathfrak{p}_1 \oplus \ldots \oplus \mathfrak{p}_s \oplus \mathfrak{n}, \]
where each p_a is AdL-irreducible and n is AdK-irreducible. Throughout, we assume that hypothesis (1.4) is satisfied, i.e., p_1, \ldots, p_s are inequivalent AdL-submodules and p, n do not contain equivalent AdL-submodules.

Under the construction above, any adapted metric g_M on M (see Section 1) is defined by an AdL-invariant Euclidean product on m of the form

\[g_m = (\oplus_{a=1}^s \lambda_a B_{p_a}) \oplus \mu B_n, \lambda_a, \mu > 0. \]

Recall the Casimir operator of a subspace defined by (1.6). Since each \mathfrak{a}_a is simple and n is an irreducible AdK-module, the Casimir operator of \mathfrak{k} is scalar on each \mathfrak{k}_a and on n. Let γ_a and $c_{\mathfrak{k},n}$ be the corresponding eigenvalues:

\[C_{\mathfrak{k}} |_{\mathfrak{k}_a} = \gamma_a Id \]

\[C_{\mathfrak{k}} |_{n} = c_{\mathfrak{k},n} Id \]

Necessary conditions for existence of Einstein adapted metrics are given as algebraic conditions on the Casimir operators of \mathfrak{k} and p_a. More exactly, we recall the following result proved in [9]:

Theorem 2.1. [9] Let $M = G/L \to G/K = N$ be a homogeneous fibration, for a compact connected semisimple Lie group G such that N is isotropy irreducible. If M admits an Einstein adapted metric, then there are constants $\lambda_1, \ldots, \lambda_s > 0$ such that $\sum_{a=1}^s \lambda_a C_{p_a}$ is scalar on n, where C_{p_a} is the Casimir operator of p_a.

The condition given in Theorem 2.1 is a very useful test for existence of Einstein adapted metrics as we shall see in Section 4. In particular, the condition in Theorem 2.1 is satisfied if the Casimir operators C_{p_a} are scalar on n. Under this assumption, Einstein adapted metrics on M are given by positive solutions of a system of s algebraic equations of degree $s - 1$ with s variables. More precisely, we can state the following:

Theorem 2.2. [8, §2.5] Let $M = G/L \to G/K$ be a homogeneous fibration with symmetric fiber $F = K/L$ as in (2.1). Suppose that C_{p_a} is scalar on n, i.e., $C_{p_a} |_{n} = b_a Id, a = 1, \ldots, s$.

M admits an Einstein adapted metric if and only if there are positive solutions of the following system of s algebraic equations on the unknowns X_1, \ldots, X_s:

\[2 \gamma_1 X_1^2 X_a + (1 - \gamma_1) X_a - 2 \gamma_a X_1 X_a^2 - (1 - \gamma_a) X_3 = 0, a = 2, \ldots, s \]

\[2 \sum_{a=1}^s b_a X_1 \ldots \hat{X}_a \ldots X_s - 4 r X_1 \ldots X_s + 2 \gamma_1 X_1^2 X_2 \ldots X_s + (1 - \gamma_1) X_2 \ldots X_s = 0, \]

where γ_a is the eigenvalue of $C_{\mathfrak{k}}$ on p_a, $r = \frac{1}{2} \left(\frac{1}{\lambda_a} + c_{\mathfrak{k},n} \right)$ and $c_{\mathfrak{k},n}$ is the eigenvalue of $C_{\mathfrak{k}}$ on n. To each s-tuple (X_1, \ldots, X_s) corresponds, up to homothety, an adapted metric on M given by

\[g_m = \oplus_{a=1}^s \frac{1}{X_a} B_{p_a} \oplus B_n. \]

\(^1\hat{X}_a\) means that X_a does not occur in the product.
The proof of Theorem 2.2 is out of the scope of this paper and can be found in [8, §2.5]. A special class of adapted metrics is the class of binormal metrics. A metric is said to be binormal if it is defined by an \(\text{Ad} L \)-invariant Euclidean product of the form

\[
g_m = \lambda B_p \oplus \mu B_n.\]

Einstein binormal metrics are studied in [9]. We state the following two results proved in [9] which we use to describe Einstein binormal metrics when the fiber is a symmetric space.

Theorem 2.3. [9] Let \(M = G/L \to G/K \) be a homogeneous fibration, for a compact connected semisimple Lie group \(G \) and \(L \subseteq K \subseteq G \) connected closed non-trivial subgroups of \(G \). Let \(p = p_1 \oplus \ldots \oplus p_s \) be a \(B \)-orthogonal decomposition into irreducible \(\text{Ad} L \)-submodules and \(n = n_1 \oplus \ldots \oplus n_n \) be a \(B \)-orthogonal decomposition into irreducible \(\text{Ad} K \)-submodules.

(i) If \(C_p \) is not scalar on some \(n_j \), then there are no Einstein binormal metrics on \(M \);

(ii) Suppose that \(C_p \) is scalar on each \(n_j \), i.e., \(C_p \mid n_j = b^j \text{Id}_{n_j} \). Then there is a one-to-one correspondence, up to homothety, between Einstein binormal metrics on \(M \) and positive solutions of the following set of quadratic equations on the unknown \(X \in \mathbb{R} \):

\[
\delta_{ij}^t (1 - X) = \delta_{ij}, \quad \text{if } n > 1,
\]

\[
(2\delta_{ab}^t + \delta_{ab})X^2 = \delta_{ab}^t, \quad \text{if } s > 1,
\]

\[
(\gamma_a + 2c_{t,a})X^2 - (1 + 2c_{t,j})X + (1 - \gamma_a + 2b_j) = 0,
\]

for \(a, b = 1, \ldots, s \) and \(i, j = 1, \ldots, n \), where \(c_{t,a} \) is the eigenvalue of \(C_t \) on \(p_a \), \(\gamma_a \) is the constant determined by

\[
\Phi_t \mid_{p_a \times p_a} = \gamma_a \Phi_p,
\]

\(c_{t,j} \) is the eigenvalue of \(C_t \) on \(n_j \) and the \(\delta \)'s are the differences \(\delta_{ij}^t = c_{t,i} - c_{t,j} \), \(\delta_{ij} = c_{l,i} - c_{l,j} \), \(\delta_{ab} = \gamma_a - \gamma_b \) and \(\delta_{ab}^t = c_{l,a} - c_{l,b} \).

If such a positive solution \(X \) exists, then Einstein binormal metrics are, up to homothety, defined by

\[g_m = B_p \oplus XB_n. \]

Theorem 2.4. [9] Let \(M = G/L \to G/K \) be a homogeneous fibration, for a compact connected semisimple Lie group \(G \) and \(L \subseteq K \subseteq G \) connected closed non-trivial subgroups of \(G \). Suppose \(F \) is not isotropy irreducible and that there exists a constant \(\alpha \) such that

\[
\Phi \circ C_t \mid_{p \times p} = \alpha \Phi_t \mid_{p \times p}.
\]

For \(a = 1, \ldots, s \), let \(\gamma_a \) be the constant determined by

\[
\Phi_t \mid_{p_a \times p_a} = \gamma_a \Phi \mid_{p_a \times p_a}.
\]

If for some \(a, b = 1, \ldots, s \), \(\gamma_a \neq \gamma_b \) and there exists on \(M \) an Einstein binormal metric, then the number \(\sqrt{2\alpha + 1} \) is a rational.
From Theorems 2.3 and 2.4 we deduce the following result for the case when the fiber is a symmetric space and the base is isotropy irreducible:

Corollary 2.5. Let $M = G/L \rightarrow G/K$ be a homogeneous fibration with symmetric fiber $F = K/L$ as in (2.1).

(i) If C_p is not scalar on n or C_k is not scalar on p, then there is no Einstein binormal metric on M.

(ii) Suppose that C_p is scalar on n and C_k is scalar on p, i.e., $C_p|_n = bId$ and $C_k|_p = \gamma Id$. There is an one-to-one correspondence between Einstein binormal metrics on M and positive roots of the quadratic equation

$$2\gamma X^2 - (1 + 2c_{t,n})X + (1 - \gamma + 2b) = 0.$$

where $c_{t,n}$ is the eigenvalue of C_k on n. If such a positive solution X exists, then Einstein binormal metrics are, up to homothety, given by

$$g_m = B_p \oplus XB_n.$$

Proof: We first note that the constant $\gamma \alpha$ defined by (2.12) coincides with the eigenvalue of k on k as defined in (2.6). If F is isotropy irreducible, then C_k is scalar on p. Suppose F is not irreducible. Since F is a symmetric space, then $\Phi \circ C_k|_{p \times p} = \alpha \Phi|_{p \times p}$, with $\alpha = \frac{1}{2}$. The number $\sqrt{2\alpha + 1} = \sqrt{2}$ is not a rational. Hence, from Theorem 2.4 we conclude that if exists a binormal Einstein metric on M, then $\gamma = \ldots = \gamma_s = \gamma$ for some constant γ, i.e., the Casimir operator of t is scalar on p.

By using Theorem 2.3, the condition that C_p is scalar on n is a necessary condition for the existence of an Einstein binormal metric. Also, the condition (2.10) from Theorem 2.3 is satisfied since for $\gamma = \ldots = \gamma_s$, we have $\delta_t^{ab} = \delta_t^{ab} = 0$. Since $N = G/K$ is isotropy irreducible, (2.9) is trivial. Finally, the polynomial (2.13) is just (2.11) from Theorem 2.3, for $c_{t,n} = \frac{\gamma}{2} = \frac{\gamma}{2}$ and $n = 1$.

\[\square\]

If both fiber and base are isotropy irreducible symmetric spaces we obtain the following simplification of Corollary 2.5.

Corollary 2.6. Let $M = G/L \rightarrow G/K = N$ be a homogeneous fibration with symmetric fiber $F = K/L$ as in (2.1). Suppose that F and N are irreducible symmetric spaces and $\dim F > 1$. There exists on M an Einstein adapted metric if and only if C_p is scalar on n and $\Delta \geq 0$, where

$$\Delta = 1 - 2\gamma(1 - \gamma + 2b),$$

γ is the eigenvalue of C_k on p and b is the eigenvalue of C_p on n. If these two conditions are satisfied, then Einstein adapted metrics are, up to homothety, determined by

$$g_m = B_p \oplus XB_n$$

where $X = \frac{1 \pm \sqrt{\Delta}}{2\gamma}$.

Proof: It follows immediately from Corollary 2.5 and from the fact that if N is a symmetric space, then $c_{t,n} = \frac{1}{2}$.

\[\square\]

Another special class of Einstein adapted metrics are those whose restriction g_F to the fiber F is also an Einstein metric. We state the following result from [9]:

\[\square\]
Theorem 2.7. Let g_M be an Einstein adapted metric on the homogeneous fibration $M = G/L \to G/K = N$, such that N is isotropy irreducible, defined by the $Ad L$-invariant Euclidean product $g_m = (\oplus_{a=1}^{s} \lambda_a B_{p_a}) \oplus \mu B_n$.

If g_F is also Einstein, then

(2.14) \[\frac{\lambda_a}{\lambda_b} = \frac{c_{n,b}}{c_{n,a}} \]

for, $a, b = 1, \ldots, s$, where $c_{n,a}$ is defined by $\Phi(C_k, \cdot) |_{p_a \times p_a} = c_{n,a} \Phi |_{p_a \times p_a}$.

In particular, there exists at most one K-invariant metric g_F on F such that g_M is Einstein.

Below we obtain a necessary condition for existence of an Einstein adapted metric with this property in terms of the Casimir operator of k, when the fiber is a symmetric space.

Corollary 2.8. Let $M = G/L \to G/K = N$ be a homogeneous fibration with symmetric fiber $F = K/L$ as in (2.1). Let γ_a be the eigenvalue of C_k on p_a and g_M an adapted metric on M. If g_M and g_F are both Einstein, then

(2.15) \[\gamma_a = \gamma_b \text{ or } \gamma_a = 1 - \gamma_b, \quad a, b = 1, \ldots, s. \]

Proof: If F is irreducible, then the statement is trivial. We suppose that F is reducible. First we recall that since F is a symmetric space, the Ricci curvature of g_F is given by $Ric^F = \frac{1}{2} \Phi_{\mathfrak{t}}$, where $\Phi_{\mathfrak{t}}$ is the Killing form of \mathfrak{t}. Therefore, for $X \in p_a$,

(2.15) \[Ric^F(X, X) = -\frac{1}{2} \Phi_{\mathfrak{t}}(X, X) = -\frac{1}{2} \Phi(C_k X, X) = -\frac{\gamma_a}{2} \Phi(X, X). \]

If g_F is Einstein with Einstein constant E_F, then (2.15) implies that $\frac{\gamma_a}{2} = E \lambda_a$. Consequently, we obtain the following relations

(2.16) \[\frac{\lambda_a}{\lambda_b} = \frac{\gamma_a}{\gamma_b} \]

Let $C_{n,a}$ be the constant defined by $\Phi(C_n, \cdot) |_{p_a \times p_a} = c_{n,a} \Phi |_{p_a \times p_a}$. Clearly, we have

(2.17) \[C_{n,a} = 1 - \gamma_a. \]

The identity given by Theorem 2.7, together with (2.16) and (2.17), imply that

(2.18) \[\frac{\gamma_a}{\gamma_b} = \frac{1 - \gamma_b}{1 - \gamma_a} \]

Consequently, $\gamma_a = \gamma_b$ or $\gamma_a = 1 - \gamma_b$.

For a homogeneous fibration with symmetric fiber, Einstein binormal metrics restrict to an Einstein metric on the fiber:

Corollary 2.9. Let $M = G/L \to G/K$ be a homogeneous fibration with symmetric fiber $F = K/L$ as in (2.1). If there exists on M an Einstein binormal metric g_M, then g_F is Einstein. The converse holds if C_k is scalar on \mathfrak{p}.
2.2 can be solved. The result below describes Einstein adapted metrics such that g only two isotropy irreducible symmetric spaces, the Einstein equations in Theorem Let C_γ. Hence, $\gamma_1 = \ldots = \gamma_s = \gamma$ for some γ. By (2.15) we obtain

$$Ric^F = \frac{\gamma}{2}B_p$$

and, consequently, g_F is Einstein with Einstein constant $E_F = \frac{\gamma}{2\gamma}$. Conversely, let g_M be any Einstein adapted metric on M as in (2.5). If C_γ is scalar on p, then $\gamma_1 = \ldots = \gamma_s$. Hence, if g_F is also Einstein, the equality (2.16) in the proof above implies that $\lambda_1 = \ldots = \lambda_s$. Therefore, g_M is binormal.

There might be non-binormal Einstein adapted metrics whose restriction to the fiber is still Einstein. The existence of an Einstein adapted metric g_M such that g_F is Einstein implies that the Casimir operator of \mathfrak{k} satisfies one of the condition given in Corollary 2.8. If in addition we suppose that F is the direct product of only two isotropy irreducible symmetric spaces, the Einstein equations in Theorem 2.2 can be solved. The result below describes Einstein adapted metrics such that g_F is also Einstein in this case.

Corollary 2.10. Let $M = G/L \to G/K$ be a homogeneous fibration with symmetric fiber $F = K/L$ as in (2.1). Suppose that $p = p_1 \oplus p_2$ is a decomposition of p into $Ad L$-irreducible submodules and $C_{p_a}|_n = b_aId$, for some constants b_a, $a = 1, 2$. Let γ_a be the eigenvalue of $C_\mathfrak{k}$ on p_a and $c_{\mathfrak{k}, a}$ be the eigenvalue of $C_\mathfrak{t}$ on n.

If there exists on M an Einstein adapted metric g_M such that g_F is also Einstein, then one of the following cases holds:

(i) $\gamma_2 = \gamma_1$ and $\Delta \geq 0$, where

$$\Delta = (1 + c_{\mathfrak{k}, a})^2 - 8\gamma_1(1 - \gamma_1 + 2b).$$

If these two conditions are satisfied, then g_M is the binormal metric given, up to homothety, by

$$g_m = B_p \oplus XB_n,$$

where $X = \frac{1 + c_{\mathfrak{k}, a} \pm \sqrt{\Delta}}{2\gamma_1}$.

(ii) $\gamma_2 = 1 - \gamma_1$ and $D(\gamma_1) \geq 0$, where

$$D(\gamma_1) = 4r^2 - 4b_1\gamma_1 - 4b_2(1 - \gamma_1) - 2\gamma_1(1 - \gamma_1)$$

and $r = \frac{1}{2}(\frac{1}{2} + c_{\mathfrak{k}, a})$. If these two conditions are satisfied, then g_M is given, up to homothety, by

$$g_m = \frac{1}{X_1}B_{p_1} \oplus \frac{1}{X_2}B_{p_2} \oplus B_n,$$

where

$$X_2 = \frac{\gamma_1 X_1}{1 - \gamma_1}$$

and $X_1 = \frac{2r \pm \sqrt{D(\gamma_1)}}{2\gamma_1}$.

Proof: Let g_M be an Einstein adapted metric on M associated to the $Ad L$-invariant Euclidean product $g_m = (\oplus_{a=1}^s \lambda_a B_{p_a}) \oplus \mu B_n$.

If the restriction to F is also Einstein then, by Corollary 2.8, either $\gamma_2 = \gamma_1$ or $\gamma_2 = 1 - \gamma_1$. The statement (i), for the case $\gamma_2 = \gamma_1$, follows from Corollaries 2.5 and 2.9. In the case $\gamma_2 = 1 - \gamma_1$, the equality (2.16) implies that
On the other hand, by simplifying the equations given by Theorem 2.2, an adapted Einstein metric on M corresponds to positive solutions of the equations

$$2\gamma_1 X_1^2 X_2 + (1 - \gamma_1) X_2 - 2\gamma_2 X_1 X_2^2 - (1 - \gamma_2) X_1 = 0$$

$$2b_1 X_2 + 2b_2 X_1 - 4r X_1 X_2 + 2\gamma_1 X_1^2 X_2 + (1 - \gamma_1) X_2 = 0$$

where $X_a = \frac{d}{dt}$, for $a = 1, 2$. By using the identity (2.18), we write

$$X_2 = \frac{\gamma_1}{1 - \gamma_1} X_1$$

We solve the system of equations (2.19) and (2.20) using (2.21) and $\gamma_2 = 1 - \gamma_1$. This proves statement (ii).

Even under the assumption that the fiber has only two isotropy subspaces, to classify all the Einstein adapted metrics is a complicated problem. The Einstein equations given by Theorem 2.2 are still unmanageable. Under the conditions $\gamma_2 = \gamma_1$ or $\gamma_2 = 1 - \gamma_1$, on the Casimir operator of \mathfrak{k}, it is possible to solve these equations. Corollaries 2.11 and 2.12 below describe all the Einstein adapted metrics on these spaces. Their proofs are similar to the proof of Corollary 2.10 by solving the equations given by Theorem 2.2. We omit these two proofs which can be found in [8, §2.5]. We note that, in particular, if M admits an Einstein adapted metric whose restriction to the fiber is Einstein, then the following two results give all the others Einstein adapted metrics on M.

Corollary 2.11. [8, p.50] Let $M = G/L \to G/K$ be a homogeneous fibration with symmetric fiber $F = K/L$ as in (2.1). Suppose that $\mathfrak{p} = \mathfrak{p}_1 \oplus \mathfrak{p}_2$ is a decomposition of \mathfrak{p} into $\text{Ad} L$-irreducible submodules and $C_{\mathfrak{p}_a}|_{\mathfrak{n}} = b_a \text{Id}$, for some constants b_a, $a = 1, 2$. Let γ_a be the eigenvalue of $C_{\mathfrak{t}}$ on \mathfrak{p}_a and $c_{\mathfrak{t}, n}$ be the eigenvalue of $C_{\mathfrak{t}}$ on \mathfrak{n}.

Suppose that $\gamma_2 = \gamma_1$, i.e., $C_{\mathfrak{t}}$ is scalar on \mathfrak{p}. If there exists on M an Einstein adapted metric $g_{\mathcal{M}}$, then one of the following two cases holds:

(i) g_F is also Einstein and $g_{\mathcal{M}}$ is a binormal metric given by Corollary 2.10 (i).

(ii) $D(\gamma_1) \geq 0$, where

$$D(\gamma_1) = 4r^2(1 - \gamma_1) - 2\gamma_1(2b_2 + 1 - \gamma_1)(2b_1 + 1 - \gamma_1)$$

and $r = \frac{1}{2} \left(\frac{1}{2} + c_{\mathfrak{t}, n} \right)$. The metric $g_{\mathcal{M}}$ is given, up to homothety, by

$$g_{\mathcal{M}} = \frac{1}{X_1} B_{\mathfrak{p}_1} \oplus \frac{1}{X_2} B_{\mathfrak{p}_2} \oplus B_{\mathfrak{n}}.$$

where

$$X_2 = \frac{1 - \gamma_1}{2\gamma_1 X_1} \text{ and } X_1 = \frac{2r(1 - \gamma_1) \pm \sqrt{(1 - \gamma_1)D(\gamma_1)}}{2\gamma_1(2b_2 + 1 - \gamma_1)}.$$

In this second case, g_F is not Einstein and $g_{\mathcal{M}}$ is not binormal.
Corollary 2.12. [8, p.50] Let $M = G/L \to G/K$ be a homogeneous fibration with symmetric fiber $F = K/L$ as in (2.1). Suppose that $\mathfrak{p} = \mathfrak{p}_1 \oplus \mathfrak{p}_2$ is a decomposition of \mathfrak{p} into $\text{Ad} L$-irreducible submodules and $C_{p_a} \mid _n = b_n \text{Id}$, for some constants b_a, $a = 1, 2$. Let γ_a be the eigenvalue of $C_{\mathfrak{f}}$ on \mathfrak{p}_a and $c_{\mathfrak{t},n}$ be the eigenvalue of $C_{\mathfrak{t}}$ on \mathfrak{n}.

Suppose that $\gamma_2 = 1 - \gamma_1$. If there exists on M an Einstein adapted metric g_M, then one of the following two cases holds:

(i) g_F is also Einstein and g_M is the metric given by Corollary 2.10 (ii).

(ii) $D(\gamma_1) \geq 0$, where

$$D(\gamma_1) = 4r^2 - 2(2b_2 + \gamma_1)(2b_1 + 1 - \gamma_1)$$

and $r = \frac{1}{2} (\frac{1}{2} + c_{\mathfrak{t},n})$. The metric g_M is given, up to homothety, by

$$g_m = \frac{1}{X_1} B_{p_1} + \frac{1}{X_2} B_{p_2} + B_n,$$

where

$$X_2 = \frac{1}{2} X_1 \quad \text{and} \quad X_1 = \frac{2r \pm \sqrt{D(\gamma_1)}}{2(2b_2 + \gamma_1)}.$$

g_M is never binormal and in the second case g_F is not Einstein.

3. The Casimir Operators

In this section we consider a compact connected semisimple Lie group G and $L \subseteq K \subseteq G$ connected closed non-trivial subgroups. We only suppose that L and K have maximal rank in G and $N = G/K$ is isotropy irreducible. Using the notation from previous sections, we provide formulae to compute the eigenvalues of the Casimir operator of the vertical space \mathfrak{p} on the horizontal direction \mathfrak{n} and the eigenvalues of the Casimir operator of \mathfrak{k} on the vertical direction \mathfrak{p}. Also as above,

$$\mathfrak{p} = \mathfrak{p}_1 \oplus \ldots \oplus \mathfrak{p}_s$$

is a decomposition of \mathfrak{p} into $\text{Ad} L$-irreducible submodules. We recall some theory of roots of a semisimple Lie group (see [10],[11]). Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}^C, such that $\mathfrak{h} \subset \mathfrak{c}^C$, and let \mathcal{R} be a system of nonzero roots for \mathfrak{g}^C, with respect to \mathfrak{h}. We have a decomposition of \mathfrak{g}^C into root subspaces given by

$$\mathfrak{g}^C = \mathfrak{h} \oplus (\oplus_{\alpha \in \mathcal{R}} \mathfrak{g}^\alpha).$$

We consider a standard normalized basis $\{E_{\alpha}\}_{\alpha \in \mathcal{R}}$ of $\oplus_{\alpha \in \mathcal{R}} \mathfrak{g}^\alpha$ and the elements $H_\alpha = [E_{\alpha}, E_{-\alpha}] \in \mathfrak{h}$. We recall that $\Phi(H_\alpha, h) = \alpha(h)$, for every $h \in \mathfrak{h}$. In particular, the length $|\alpha|$ of a root $\alpha \in \mathcal{R}$ in \mathfrak{g} is defined by $|\alpha|^2 = \alpha(H_\alpha) = \Phi(H_\alpha, H_\alpha)$. For every $\alpha, \beta \in \mathcal{R}$ such that $\alpha + \beta \in \mathcal{R}$, the structure constants are the numbers $N_{\alpha,\beta} \in \mathbb{C}$ defined by

$$[E_{\alpha}, E_{\beta}] = N_{\alpha,\beta} E_{\alpha+\beta},$$

They satisfy the properties

$$N_{\alpha,\beta} = -N_{\beta,\alpha} \text{ and } N_{-\alpha,\beta+\alpha} = N_{-\beta,-\alpha} = N_{\alpha,\beta}.$$
We identify \(g \) with the compact real form generated by maximal toral subalgebra \(\mathfrak{h}_\mathbb{R} \) and by the elements

\[
X_\alpha = \frac{E_\alpha - E_{-\alpha}}{\sqrt{2}} \quad \text{and} \quad Y_\alpha = \frac{i(E_\alpha + E_{-\alpha})}{\sqrt{2}}, \quad \alpha \in \mathcal{R}^+,
\]

where \(\mathcal{R}^+ \subseteq \mathcal{R} \) is a subset of positive roots. We define the subsets of roots

\[
\mathcal{R}_\mathfrak{t} = \{ \alpha \in \mathcal{R} : E_\alpha \in \mathfrak{t}^\mathbb{C} \} \quad \text{and} \quad \mathcal{R}_\mathfrak{p}_\alpha = \{ \alpha \in \mathcal{R} : E_\alpha \in \mathfrak{p}^\mathbb{C}_\alpha \}.
\]

Since \(\mathfrak{t} \) has maximal rank and \(g = \mathfrak{t} \oplus \mathfrak{n} \), we have \(\mathfrak{n}^\mathbb{C} = \langle E_\alpha : \alpha \in \mathcal{R}_\mathfrak{n} \rangle \), where \(\mathcal{R}_\mathfrak{n} = \{ \alpha \in \mathcal{R} : E_\alpha \in \mathfrak{n}^\mathbb{C} \} = \mathcal{R} - \mathcal{R}_\mathfrak{t} \).

By hypothesis the \(\text{Ad} K \)-module \(\mathfrak{n} \) is irreducible. If \(\mathfrak{n} = \oplus_j \mathfrak{n}^j \) is a decomposition of \(\mathfrak{n} \) into irreducible \(\text{Ad} L \)-submodules, we write

\[
\mathcal{R}_{\mathfrak{n}^j} = \{ \phi \in \mathcal{R} : E_\phi \in (\mathfrak{n}^j)^\mathbb{C} \}.
\]

We recall that a necessary condition for existence of an Einstein adapted metric on \(M \), given by Theorem 2.1, is that there are \(\lambda_1, \ldots, \lambda_s > 0 \) such that the operator \(\sum_{a=1}^s \lambda_a C_{\mathfrak{p}_a} \) is scalar on \(\mathfrak{n} \). The Casimir operator \(C_{\mathfrak{p}_a} \) is necessarily scalar on the irreducible \(\text{Ad} L \)-submodules \(\mathfrak{n}^j \). We shall write \(b^j_\alpha \) for this eigenvalue, i.e.,

\[
C_{\mathfrak{p}_a} |_{\mathfrak{n}^j} = b^j_\alpha Id.
\]

Furthermore, the eigenvalue of \(C_{\mathfrak{p}_a} \) on \(\mathfrak{n}^j \), \(b^j_\alpha \), must coincide with the eigenvalue of \(C_{\mathfrak{p}_a} \) on \((\mathfrak{n}^j)^\mathbb{C} \). Hence, we also have

\[
b^j_\alpha = \Phi(C_{\mathfrak{p}_a}^\mathbb{C} E_\phi, E_{-\phi}), \quad \forall \phi \in \mathcal{R}_{\mathfrak{n}^j}.
\]

We next prove a formula to compute the eigenvalues \(b^j_\alpha \). For any roots \(\phi \) and \(\alpha \) let \(\phi + n\alpha, p_\alpha \phi \leq n \leq q_\alpha \phi \), be the \(\alpha \)-series containing \(\phi \) (see [10, Chap.III §4]). By definition, the \(\alpha \)-series containing \(\phi \) is the set of all roots of the form \(\phi + n\alpha \) where \(n \) is an integer. For \(\alpha, \phi \in \mathcal{R} \),

\[
N_{\alpha,\phi}^2 = \frac{q_\alpha \phi (1 - p_\alpha \phi)}{2 \alpha (H_\alpha)}.
\]
Proposition 3.1. Let $n^j \subseteq n$ be an irreducible $\text{Ad} L$-submodule and $\phi \in R_{n^j}$. For $a = 1, \ldots, s$,

$$b^j_a = \frac{1}{2} \sum_{\alpha \in R^+_{n^j}} d_{\alpha \phi} |\alpha|^2,$$

where $d_{\alpha \phi} = q_{\alpha \phi} - p_{\alpha \phi} - 2p_{\alpha \phi}q_{\alpha \phi}$ and $\phi + n\alpha, p_{\alpha \phi} \leq n \leq q_{\alpha \phi}$ is the α-series containing ϕ.

Proof: By using (3.11) and (3.7) we obtain the following:

$$b^j_a = \Phi(C_{p_{\alpha \phi}E_{\alpha}, E_{-\phi}}) = \sum_{\alpha \in R_{n^j}} N_{\alpha, \phi} \Phi([E_{-\alpha}, [E_{\alpha}, E_{\phi}]], E_{-\phi})$$

$$= \sum_{\alpha \in R_{n^j}} N_{\alpha, \phi} N_{\alpha, \phi + \alpha} \Phi(E_{\phi}, E_{-\phi})$$

$$= \sum_{\alpha \in R_{n^j}} N_{\alpha, \phi} N_{\alpha, \phi + \alpha + \alpha}$$

From (3.3) we have $N_{-\alpha, \phi + \alpha} = N_{\alpha, \phi}$ and we get

$$b^j_a = \sum_{\alpha \in R_{n^j}} N_{2\alpha, \phi} = \sum_{\alpha \in R^+_{n^j}} (N_{2\alpha, \phi} + N_{2\alpha, \phi}^2).$$

(3.13)

Now let $\phi + n\alpha, p_{\alpha \phi} \leq n \leq q_{\alpha \phi}$, be the α-series containing ϕ. The number $N_{2\alpha, \phi}^2$ is given by (3.12). To compute $N_{-\alpha, \phi}^2$ we need the $(-\alpha)$-series containing ϕ. Clearly, this series is $\phi - n'\alpha$, where $-q_{\alpha \phi} \leq n' \leq -p_{\alpha \phi}$. Hence,

$$N_{-\alpha, \phi}^2 = \frac{-p_{\alpha \phi}(1 - (-q_{\alpha \phi}))}{2}(-\alpha)(H_{-\alpha}) = \frac{-p_{\alpha \phi}(1 + q_{\alpha \phi})}{2}a(H_{\alpha}).$$

(3.14)

Replacing (3.12) and (3.14) in (3.13) concludes the proof.

Let us consider a decomposition of \mathfrak{t} into its center \mathfrak{t}_0 and simple ideals \mathfrak{t}_a, for $a = 1, \ldots, t$,

$$\mathfrak{t} = \mathfrak{t}_0 \oplus \mathfrak{t}_1 \oplus \ldots \oplus \mathfrak{t}_t,$$

and let γ_a denote the eigenvalue of the Casimir operator of \mathfrak{t} on \mathfrak{t}_a. We present a formula to compute the eigenvalues γ_a's by making use of dual Coxeter numbers (see [2, §V.5],[11, 10.4]). The dual Coxeter number of a simple Lie algebra \mathfrak{g} is the number given by

$$h^*(\mathfrak{g}) = \frac{1}{|\alpha|^2},$$

(3.16)

where α is a long root (see [17]). We may suppose that $\mathfrak{h}_a = \mathfrak{h} \cap \mathfrak{t}_a$ is a Cartan subalgebra of \mathfrak{t}_a and thus a root of \mathfrak{t}_a can be viewed as a root for \mathfrak{g}. Hence we can
compare lengths of roots of \mathfrak{g} with lengths of roots of \mathfrak{k}_n. So let δ_n be the ratio of the square length of a long root for \mathfrak{g} to that of \mathfrak{k}_n, i.e.,

\begin{equation}
\delta_n = \frac{|\alpha|^2}{|\beta|^2} = \frac{\Phi(H_\alpha, H_\alpha)}{\Phi(H_\beta, H_\beta)}
\end{equation}

where α is a long root of \mathfrak{g} and β is a long root of \mathfrak{k}_n. Clearly, $\delta_n = 1$ if there exists only one length for \mathfrak{g} or if both \mathfrak{g} and \mathfrak{k}_n have two lengths. If $\delta_n \neq 1$, δ_n is equal to either 2, if G is of type G_2, or 3, if G is of type F_4, B_n or C_n. We state the following result by D. Panyushev which gives a formula to compute the eigenvalue of C_t on \mathfrak{k}_n:

Proposition 3.2. [17] Suppose that \mathfrak{g} is simple. Then

$$
\gamma_a = \frac{h^*(\mathfrak{k}_n)}{\delta_n h^*(\mathfrak{g})}, \quad a = 1, \ldots, s,
$$

where $h^*(\mathfrak{k}_n)$ and $h^*(\mathfrak{g})$ are the dual Coxeter numbers of \mathfrak{k}_n and \mathfrak{g}, respectively.

4. **Bisymmetric Fibrations**

In this section we prove Lemma 1.1 of classification of bisymmetric fibrations and show all the other results stated in Section 1 about classification of Einstein adapted metrics for bisymmetric fibrations.

We recall that for a bisymmetric fibration $M = G/L \rightarrow G/K = N$, as introduced in Section 1 (see (1.1)), the fiber $F = K/L$ is a compact simply-connected symmetric space. Therefore, we apply the results from Section 2 to investigate the existence of Einstein adapted metrics on M. Furthermore, the eigenvalues b_t^a’s and γ_a’s as in Section 2 are calculated using Propositions 3.1 and 3.2. Their values are indicated in Tables 4, 5, 6 and 7 in Section 6 for each irreducible bisymmetric triple of maximal rank. Whereas the computation of the γ_a’s is a straightforward application of Proposition 3.2 together with the Coxeter numbers given in Table 1, the computations of the b_t^a’s are long. These calculations are outlined in [8, Appendix A], where all the essential information is presented.

4.1. **Classification.** We prove Lemma 1.1 stated in Section 1 which classifies irreducible bisymmetric triples of maximal rank into type I or II.

A classification of isotropy irreducible symmetric spaces can be found in [10]. By using this we obtain a list of all possible triples $(\mathfrak{g}, \mathfrak{k}, \mathfrak{l})$ such that \mathfrak{g} is simple, $L \subset K$ are subgroups of maximal rank of G and K/L, G/K are symmetric spaces with $N = G/K$ isotropy irreducible and $F = K/L$ simply-connected.

Proof of Lemma 1.1: By inspection of the classification of symmetric pairs $(\mathfrak{g}, \mathfrak{t})$ of compact type in [10] we obtain that those of maximal rank are the pairs in Tables 2 and 3. We obtain the list of all bisymmetric triples by combining all possible K’s and L’s which make K/L a symmetric space as well. We just need to observe that K/L is isotropy irreducible or has two isotropy irreducible submodules.

We observe that the cases when \mathfrak{l} is the centralizer of a torus are only the cases $(\mathfrak{c}_6, \mathfrak{so}_{10} \oplus \mathbb{R})$, $(\mathfrak{c}_7, \mathfrak{c}_6 \oplus \mathbb{R})$, $(\mathfrak{so}_{2n}, \mathfrak{u}_n)$, $(\mathfrak{so}_{n}, \mathbb{R} \oplus \mathfrak{so}_{n-2})$, $(\mathfrak{sp}_n, \mathfrak{u}_n)$ and $(\mathfrak{su}_{n}, \mathfrak{su}_p \oplus \mathfrak{su}_{n-p} \oplus \mathbb{R})$. In all the other cases \mathfrak{l} is semisimple. If \mathfrak{l} is simple then $(\mathfrak{g}, \mathfrak{l})$ shall be an irreducible symmetric pair, i.e., \mathfrak{p} is an irreducible $Ad\mathfrak{L}$-submodule. Thus, $(\mathfrak{g}, \mathfrak{t}, \mathfrak{l})$ is of type I. In the cases where $\mathfrak{t} = \mathfrak{t}_1 \oplus \mathbb{R}$ with \mathfrak{t}_1 a simple ideal of \mathfrak{t}, since
we require l to be of maximal rank, we have $l = i_1 \oplus \mathbb{R}$, where i_1 is a subalgebra of \mathfrak{t}_1 with maximal rank and $(\mathfrak{t}, l) \cong (\mathfrak{t}_1, i_1)$ is an irreducible symmetric pair. Thus, in this case, $p = p_1$ is also an irreducible L-invariant subspace and (g, \mathfrak{t}, l) is of type I.

In the cases where $\mathfrak{t} = \mathfrak{t}_1 \oplus \mathfrak{t}_2$, with \mathfrak{t}_1 and \mathfrak{t}_2 simple ideals of \mathfrak{t}, we have $l = i_1 \oplus i_2$, where, for $i = 1, 2$, i_i is a subalgebra of \mathfrak{t}_i of maximal rank. Clearly, one of the i_i's must be proper as we require that l is a proper subalgebra of \mathfrak{t}. If both i_1 and i_2 are proper, then $p = p_1 \oplus p_2$, where p_1 and p_2 are nonzero irreducible l-invariant subspaces. Hence, in this case, (g, \mathfrak{t}, l) is of type II. If exactly one of i_i's coincides with \mathfrak{t}_i, then $(\mathfrak{t}, l) \cong (\mathfrak{t}_i, i_j)$ and $p = p_j$, for that j satisfying $i_j \neq \mathfrak{t}_i$, and once again (g, \mathfrak{t}, l) is of type I. Finally, we have the case of the spaces $(\mathfrak{su}_n, \mathfrak{su}_p \oplus \mathfrak{su}_{n-p} \oplus \mathbb{R})$, $p = 1, \ldots, n-1$. Clearly, l must be of the form $l = i_1 \oplus i_2 \oplus \mathbb{R}$, where i_1 and i_2 are maximal rank subalgebras of \mathfrak{su}_p and \mathfrak{su}_{n-p}, respectively. We obtain a triple of type I if exactly one of the i_i's is proper and a triple of type II if both i_1 and i_2 are proper.

\[\square \]

4.2. Einstein Adapted Metrics for Bisymmetric Triples of Type I. We prove Theorem 1.2 stated in Section 1. The bisymmetric triples of type I are given in Tables 4 and 5 (see Lemma 1.1).

We recall that for Type I, the vertical isotropy subspace p is an irreducible $Ad L$-submodule. Since $F = K/L$ and $N = G/K$ are irreducible symmetric spaces, Einstein adapted metrics are given by Corollary 2.6. In particular, any Einstein adapted metric is binormal.

We recall that b^j is the eigenvalue of C_p on the $Ad L$-irreducible submodule $n^j \subseteq n$ (see (3.10)). For each bisymmetric triple, these eigenvalues are indicated in Tables 4 and 5 in the column b^j. A necessary condition for existence of an Einstein adapted metric, given by Corollary 2.6, is that C_p is scalar on n. Hence, the first test for existence of an adapted Einstein metric is to observe if there exists only one value b^j in the corresponding columns of Tables 4 and 5. If C_p is scalar on n, we denote its unique eigenvalue by b as in Corollary 2.6.

The eigenvalue of the Casimir operator of \mathfrak{t} on p is denoted by γ as in Corollary 2.6. For each bisymmetric triple, these eigenvalues are also indicated in Tables 4 and 5 in the column γ.

Proof of Theorem 1.2: By Corollary 2.6, the existence of an adapted Einstein metric implies that the Casimir operator of p is scalar on n. By inspection we conclude from Tables 4 and 5 that the only spaces satisfying this condition are those corresponding to the labels

$A.6, A.13, A.21, A.25, A.26, A.31, A.32, A.34, A.36, A.41, A.43, A.46, A.52, A.53$

$A.1$ for $l = \frac{p}{2}, p$ even ($b = \frac{p}{4n}$),
$A.5$ for $s = \frac{n-2}{2}, n - p$ even ($b = \frac{n-p}{2(2n-1)}$),
$A.10$ for $l = \frac{p}{2}, p$ even ($b = \frac{p}{4(n-1)}$),
$A.18$ for $l = \frac{p}{2}, p$ even ($b = \frac{p}{8(n+1)}$),
$A.50$ for $p = 1$ ($b = \frac{1}{3}$),
$A.54$ for $p = 1$ ($b = \frac{1}{5}$).

For each of these cases, we compute $\triangle = 1 - 2\gamma(1 - \gamma + 2b)$ given by Corollary 2.6, and the values obtained are as follows
Finally, we compute $X = \frac{1 + \sqrt{\Delta}}{2}$ (see Corollary 2.6) for those cases when $\Delta > 0$. The values of X are indicated in Table 8. For each case, both g_F and g_N are Einstein because both F and N are isotropy irreducible.

Remark 4.1. The triples A.41 and A.46, for $p = 6$, do not admit an Einstein adapted metric since $\Delta < 0$. These are the fibrations

$$M = \frac{E_8}{SU(8) \times SU(2)} \to \frac{E_7}{SU(2)}$$

and

$$M = \frac{E_7}{SO(6) \times SO(6) \times SU(2)} \to \frac{E_7}{SO(12) \times SU(2)}.$$

In both cases, the isotropy representation of M has only two irreducible $Ad L$-modules, i.e., n is also $Ad L$-irreducible. Therefore, any G-invariant metric is an adapted metric. Hence, from Theorem 1.2, we conclude that M has no G-invariant Einstein metrics. This conclusion is also obtained by Dickinson and Kerr in [7].

4.3. Einstein Adapted Metrics for Bisymmetric Triples of Type II

We prove Theorems 1.3, 1.4, 1.5 and 1.6 stated in Section 1. The bisymmetric triples of type II are given in Tables 6 and 7 (see Lemma 1.1).

For a bisymmetric fibration of type II, the fiber $F = K/L$ is the direct product of two irreducible symmetric spaces. Hence, the vertical subspace p decomposes as $p = p_1 + p_2$, where p_i, $i = 1, 2$, are irreducible $Ad L$-modules. Moreover, n is an irreducible $Ad K$-module. According to Theorem 2.1, a necessary condition for existence of an Einstein adapted metric is that there exist $\lambda_1, \lambda_2 > 0$ such that the operator

$$\lambda_1 C_{p_1} + \lambda_2 C_{p_2}$$

is scalar on n.

A.1	$\left(\frac{n-p}{n}\right)^2 > 0$	A.32	$\frac{n}{n-1} > 0$	A.34	$\frac{7p^2-56p+113}{225} > 0$
A.5	$\frac{4p^2+8p-40+5}{(2n-1)^2} > 0$, $\forall p = \left\lfloor \frac{4n-1}{2} \right\rfloor$, \ldots, $n-1$	A.6	$\frac{2p+1}{2n-1}^2 > 0$	A.36	$\frac{196}{25} > 0$
A.10	$\frac{p^2-(2n+1)p+n^2+1}{(n-1)^2} > 0$	A.13	$\frac{p-n}{n-1}^2 > 0$	A.41	$\frac{4p}{8p+1} < 0$
A.18	$\frac{3p^2+(3-4n)p+2(n^2+1)}{(2n+1)^2} > 0$	A.21	$\frac{2p}{n}^2 > 0$	A.43	$\frac{64}{3} > 0$
A.25	$\frac{106-63p+7p^2}{162} > 0$, iff $p = 1, 7$	A.26	$\frac{19}{7} > 0$	A.50	$\frac{22}{7} > 0$
A.31	$\frac{1}{4} > 0$	A.52	$\frac{1}{9} > 0$, $p = 2$; $-\frac{1}{9}, p = 4$	A.53	$\frac{9}{4} > 0$
A.54	$\frac{1}{7} > 0$				
The eigenvalues b_1, b_2 of C_{p_1}, C_{p_2}, respectively, on the AdL-irreducible submodules $\mathfrak{n}_1 \subseteq \mathfrak{n}$ (see (3.10)) are given in Tables 6 and 7. By inspection of Tables 6 and 7 and Theorem 2.1 we immediately conclude the following:

Lemma 4.2. The only bisymmetric triples satisfying condition (4.1) are the cases $A.15$, $A.23$, $A.33$, $A.42$, $A.47$ and

- $A.3$ for $p=2l$, $n-p=2s$,
- $A.12$ for $p=2l$, $n-p=2s$,
- $A.16$ for $p=2l$,
- $A.20$ for $p=2l$, $n-p=2s$,
- $A.24$ for $p=2l$,
- $A.55$ for $p=1$.

For all other bisymmetric triples of Type II we can conclude that there exists no Einstein adapted metric on M.

Note that for all the triples listed in Lemma 4.2, not only condition (4.1) is satisfied, but also C_{p_1} and C_{p_2} are scalar on \mathfrak{n}. Thus C_p is scalar on \mathfrak{n} as well. We write

\[(4.2)\quad C_p|_n = b_n Id_n, \quad a = 1, 2 \quad \text{and} \quad C_p|_n = bId_n, \quad \text{for} \quad b = b_1 + b_2,\]

following the notation used in previous sections. We recall that γ_1, γ_2 are the eigenvalues of the Casimir operator C_k on p_1, p_2, respectively (see (2.6)). Their values are also given in Tables 6 and 7.

Proof of Theorem 1.3: Einstein binormal metrics are given by Corollary 2.5. First we observe that in order to exist an Einstein binormal metric on M, C_p must be scalar on \mathfrak{n} and C_k must be scalar on p. The triples which satisfy the first condition are those listed in Lemma 4.2. Furthermore, C_k is scalar on p if and only if $\gamma_2 = \gamma_1$. We conclude from Tables 6 and 7 that the spaces from Lemma 4.2 which satisfy the condition $\gamma_2 = \gamma_1$ are those listed below:

	$\gamma_1 = \gamma_2$	b_1	b_2
A.3, for $s = l = 2p, n = 4l$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
A.12, for $s = l = 2p, n = 4l, l \geq 2$	$\frac{2l-1}{4l-1}$	$\frac{l}{2(l-1)}$	$\frac{l}{2(l-1)}$
A.15, for $n = 2p, p \geq 2$	$\frac{p-1}{2p-1}$	$\frac{l}{4(p-1)}$	$\frac{l}{4(p-1)}$
A.16, for $p = 2l, n = 4l$	$\frac{2l-1}{4l-1}$	$\frac{l}{2(l-1)}$	$\frac{l}{2(l-1)}$
A.20, for $s = l = 2p, n = 4l$	$\frac{2l+1}{4l+1}$	$\frac{l}{4(l+1)}$	$\frac{l}{4(l+1)}$
A.23, for $n = 2p$	$\frac{p+1}{2p+1}$	$\frac{l}{4(p+1)}$	$\frac{l}{4(p+1)}$
A.24, for $p = 2l, n = 4l$	$\frac{2l+1}{4l+1}$	$\frac{l}{4(l+1)}$	$\frac{l}{4(l+1)}$

In particular, we observe that for this list of spaces, G is classical Lie group. For these spaces, Einstein binormal metrics, if exist, are given by positive solutions of (2.13) in Corollary 2.5. Since $c_{t,n} = \frac{1}{2}$, we simplify (2.13) and conclude that there exists an Einstein binormal metric if and only if
\[
\Delta = 1 - 2\gamma (1 - \gamma + 2b) \geq 0,
\]

where \(\gamma = \gamma_1 = \gamma_2 \) and \(b \) is the eigenvalue of \(C_p \) on \(n \), i.e., \(b = b_1 + b_2 \). In this case, the Einstein adapted metrics are given by homotheties of

\[
g_m = B_p \oplus XB_n, \quad \text{where} \quad X = \frac{1 \pm \sqrt{\Delta}}{2\gamma}.
\]

The values of \(\Delta \) are as follows:

\(\Delta \)	\(\Delta \)
A.3 \(\frac{1}{4l+1} > 0 \)	A.20 \(\frac{4l^2+2l+1}{(4l+1)^2} > 0 \)
A.12 \(\frac{1}{4l-1} > 0 \)	A.23 \(\frac{1}{2l-1} < 0 \)
A.15 \(\frac{1}{2l-1} > 0 \)	A.24 \(\frac{l(2l-1)}{(4l+1)^2} > 0 \)
A.16 \(\frac{2l}{(4l-1)} > 0 \)	

Except in the case A.23, there exists an Einstein adapted metric. The values for \(X \) are indicated in Table 10. Since the base space \(N \) is isotropy irreducible, \(g_N \) is Einstein. Moreover, it follows from Corollary 2.9 that \(g_F \) is Einstein.

\(\Box \)

Proof of Theorem 1.4: The only cases which may admit an Einstein adapted metric \(g_M \) are those listed in Lemma 4.2, since they are the only that satisfy the necessary condition (4.1). For bisymmetric fibrations of type II, Einstein adapted metrics \(g_M \) such that \(g_F \) is also Einstein are given by Corollary 2.10. In particular, one of the two conditions in Corollary 2.8 must be satisfied. In the first case, \(\gamma = \gamma_1 = \gamma_2 \), the Einstein adapted metrics with this property are binormal. Einstein binormal metrics are given by Theorem 1.3 and listed in Table 10. In the second case, we have \(\gamma_2 = 1 - \gamma_1 \) and these metrics are described by (ii) in Corollary 2.10. This case is possible only for the triple A.3 when \(p = 2l \) and \(n - p = 2s \). In this case \(\gamma_1 = \frac{l}{2l-1}, \gamma_2 = \frac{l}{2l+1} = 1 - \gamma_1, b_1 = \frac{1}{2} \) and \(b_2 = \frac{1}{4l+1} = 1 - \gamma_1 \). Note that on the formula for \(D \), in Corollary 2.10, \(r = \frac{1}{2} \) since \(N \) is a symmetric space. Using Corollary 2.10, we obtain \(D(\gamma_1) = 0 \) and thus \(X_1 = \frac{l+1}{2l}, X_2 = \frac{l+1}{2s} \).

\(\Box \)

Proof of Theorem 1.5: It follows from Lemma 4.2 that the only cases of Type II with \(g \) exceptional which may admit an Einstein adapted metric are the cases A.55 for \(p = 1 \), A.33, A.47 and A.42. We recall that for each of these spaces any Einstein adapted metric is of the form

\[
g_m = \frac{1}{X_1} B_{p_1} \oplus \frac{1}{X_2} B_{p_2} \oplus B_n,
\]

where \(X_1 \) and \(X_2 \) are positive solutions of the system of equations given in Theorem 2.2 which are as follows:

\[
2\gamma_1 X_1^2 X_2 + (1 - \gamma_1)X_2 - 2\gamma_2 X_1 X_2^2 - (1 - \gamma_2)X_1 = 0,
\]

\[
2b_1 X_2 + 2b_2 X_1 - 2X_1 X_2 + 2\gamma_1 X_1^2 X_2 + (1 - \gamma_1)X_2 = 0.
\]
Also we recall that the eigenvalues b_i and γ_i, for $i = 1, 2$, can be found in Table 6.

We explain briefly how to obtain solutions of these equations for each case. Most of the calculations are performed with Maple and we omit the details. This proof can be found in more detail in [8, §3.4]. For each case, the solution is given as follows: $X_1 = \alpha$, $X_2 = f(\alpha)$, where f is a polynomial with degree 3 and α is a root of a polynomial t with degree 4. Hence, the number of Einstein adapted metrics is the number of positive roots α of t such that $f(\alpha) > 0$. We indicate the polynomials f and t for each case and the number of Einstein adapted metrics. Approximations of the solutions are given in Table 12. For exact solutions see [8, §3.4].

\begin{align*}
A.33) & \quad f(\alpha) = -\frac{7}{3} \alpha^3 + 12 \alpha^2 - \frac{5899}{36} \alpha + 19 \\
& \quad t(z) = 63z^4 - 432z^3 + 1088z^2 - 1224z + 513 \\
& \quad 2 \text{ Einstein adapted metrics}
\end{align*}

\begin{align*}
A.55) & \quad f(\alpha) = -\frac{156}{3} \alpha^3 + \frac{552}{3} \alpha^2 - \frac{571}{2} \alpha + \frac{176}{7} \\
& \quad t(z) = 234z^4 - 828z^3 + 993z^2 - 474z + 77 \\
& \quad 4 \text{ Einstein adapted metrics}
\end{align*}

\begin{align*}
A.47, \text{ for } p=2) & \quad f(\alpha) = -\frac{449}{3} \alpha^3 + 148 \alpha^2 - \frac{681}{3} \alpha + \frac{184}{9} \\
& \quad t(z) = 350z^4 - 1110z^3 + 1179z^2 - 492z + 69 \\
& \quad 4 \text{ Einstein adapted metrics}
\end{align*}

\begin{align*}
A.47, \text{ for } p=4) & \quad f(\alpha) = -\frac{100}{3} \alpha^3 + 100 \alpha^2 - \frac{262}{3} \alpha + 26 \\
& \quad t(z) = 200z^4 - 600z^3 + 614z^2 - 264z + 39 \\
& \quad 2 \text{ Einstein adapted metrics}
\end{align*}

\begin{align*}
A.47, \text{ for } p=6) & \quad f(\alpha) = -\frac{2500}{3} \alpha^3 + 820 \alpha^2 - 235 \alpha + 24 \\
& \quad t(z) = 1250z^4 - 1230z^3 + 415z^2 - 60z + 3 \\
& \quad 2 \text{ Einstein adapted metrics}
\end{align*}

\begin{align*}
A.42) & \quad t(z) = 9z^4 - 195z^3 + 1198z^2 - 1395z + 464 \text{ has no positive roots} \\
& \quad \text{No Einstein adapted metrics}
\end{align*}

\[\Box\]

Proof of Theorem 1.6: This an application of Corollaries 2.11 and 2.12. The only case when $\gamma_2 = 1 - \gamma_1$ is A.3, for $p = 2l$ and $n = 2(l + s)$. For this case, we have $\gamma_1 = \frac{l}{l+s}$, $\gamma_2 = \frac{s}{l+s}$, $b_1 = \frac{l}{4(l+s)} = \frac{\gamma_1}{4}$ and $b_2 = \frac{s}{4(l+s)} = \frac{1 - \gamma_1}{4}$. Since the restriction to the fiber g_F is not Einstein, the required metric is given by Corollary 2.12 (ii). A simple calculation show that $D(\gamma_1) = -\frac{1}{4} \gamma_1 (1 - \gamma_1) < 0$, for every l, s, since $0 < \gamma_1 < 1$. Hence, in this case there are no other Einstein adapted metrics besides those found previously.

The cases such that $\gamma_2 = \gamma_1$ are those listed in the proof of Theorem 1.3. In this case, there exists an Einstein adapted metric such that g_F is not Einstein if and only if $D(\gamma_1) \geq 0$, where

\[D(\gamma_1) = 4\gamma_1^2(1 - \gamma_1) - 2\gamma_1 (2b_2 + 1 - \gamma_1)(2b_1 + 1 - \gamma_1),\]

according to Corollary 2.11 (ii). Since $N = G/K$ is a symmetric space, $r = \frac{1}{4}$.

\[A.3, \ s = l = 2p, \ n = 4l \]
\[\gamma_1 = \frac{1}{2}, \ b_1 = b_2 = \frac{1}{8} \]
\[D(\gamma_1) = \frac{1}{2}(-\gamma_1^3 + 4\gamma_1^2 - 6\gamma_1 + 2) < 0 \]
No metric

\[A.15, \ n = 2p, \ p \geq 2 \]
\[\gamma_1 = \frac{p}{2p - 4}, \ b_1 = b_2 = \frac{7}{16} \]
\[D(\gamma_1) = \frac{1}{2}(-\gamma_1^3 + 4\gamma_1^2 - 6\gamma_1 + 2) > 0 \]
2 metrics for \(p = 2, \ldots, 6 \)

\[A.23, \ n = 2p \]
\[\gamma_1 = \frac{p + 1}{2p - 1}, \ b_1 = b_2 = \frac{7}{4} \]
\[D(\gamma_1) = \frac{1}{2}(-\gamma_1^3 + 4\gamma_1^2 - 6\gamma_1 + 2) < 0, \forall p \]
No metric

\[A.12, \ s = l = 2p \geq 2, \ n = 4l \]
\[\gamma_1 = \frac{2p - 1}{4l}, \ b_1 = b_2 = \frac{l}{2(4l - 1)} = \frac{1 - \gamma_1}{4} \]
\[D(\gamma_1) = -\frac{1}{2}(3\gamma_1 - 1)(3\gamma_1 - 2) < 0, \forall l \]
No metric

\[A.16, \ p = 2l, \ n = 4l \]
\[\gamma_1 = \frac{2l - 1}{4l - 1}, \ b_1 = b_2 = \frac{l}{2(4l - 1)} = \frac{1 - \gamma_1}{4} \]
\[D(\gamma_1) = \frac{1}{2}(1 - \gamma_1)(3\gamma_1^2 - 6\gamma_1 + 2) > 0 \]
2 metrics for \(l = 1 \)

\[A.20, \ s = l = 2p, \ n = 4l \]
\[\gamma_1 = \frac{2l + 1}{4l + 1}, \ b_1 = b_2 = \frac{l}{4(4l + 1)} = \frac{1 - \gamma_1}{8} \]
\[D(\gamma_1) = \frac{1}{2}(1 - \gamma_1)(5\gamma_1^2 - 25\gamma_1 + 8) > 0, \forall l \]
2 metrics for \(\forall l \)

\[A.24, \ p = 2l, \ n = 4l \]
\[\gamma_1 = \frac{2l + 1}{4l + 1}, \ b_1 = b_2 = \frac{l}{4(4l + 1)} = \frac{1 - \gamma_1}{8} \]
\[D(\gamma_1) = \frac{1}{2}(1 - \gamma_1)(5\gamma_1^2 - 10\gamma_1 + 4) > 0 \]
2 metrics for \(l \geq 3 \)

For each case, we calculate \(X_1, X_2 \) according to the formulas given by Corollaries 2.11 and 2.12. These values are indicated in Table 11.

\[\square \]

5. APPLICATION TO 4-SYMMETRIC SPACES

A homogeneous space \(G/L \) is said to be a 4-symmetric space if there exists \(\sigma \in Aut(G) \) such that

\[(G_\sigma)_0 \subset L \subset G_\sigma \]

and \(\sigma \) has order 4. Compact simply connected irreducible 4-symmetric spaces have been classified by J.A. Jimenez in [14] following the previous work of V. Kač (see e.g. [10], Chap.X), J.A. Wolf and A. Gray [19]. It is shown in [14] that any compact simply connected irreducible 4-symmetric space is the total space of a fiber bundle whose fiber and base space are symmetric spaces and the base is an isotropy irreducible space of maximal rank. These spaces are fully described in Tables III, IV and V in [14]. Hence, for each compact simply connected irreducible 4-symmetric space \(M = G/L \) there is a bisymmetric fibration \(M = G/L \to G/K = N \) such

\[G/L = \text{compact simply connected irreducible 4-symmetric space} \]
that N is isotropy irreducible and K has maximal rank. Therefore, we can apply the results obtained in previous sections. We recall that the bisymmetric fibrations $M = G/L \to G/K = N$ considered in this paper are such that L has maximal rank. This allow us to take conclusions for 4-symmetric spaces of maximal rank. The bisymmetric triples (g, t, l) corresponding to 4-symmetric spaces of maximal rank must be some of Tables 4, 5, 6 and 7. Each of these tables contains a column which indicates if the space is a 4-symmetric space. Hence, a simple comparison between the Tables in this paper and the classification in [14] allow us to easily conclude about the existence of Einstein metrics on 4-symmetric spaces.

Corollary 5.1. Let $M = G/L \to G/K$ be a bisymmetric fibration such that M is a compact simply-connected irreducible 4-symmetric space (of maximal rank). If M admits an Einstein adapted metric, then the corresponding bisymmetric triple (g, t, l) is one of the triples in Tables 8, 9, 10, 11 and 12.
6. Tables

Table 1. Dual Coxeter Numbers

Coxeter group	Dual Coxeter number
A_n	$n + 1$
B_n	$2n - 1$
C_n	$n + 1$
D_n	$2n - 2$
E_6	12
E_7	18
E_8	30
F_4	9
G_2	4

Table 2. Symmetric pairs of compact type of maximal rank - Exceptional Spaces

\mathfrak{g}	\mathfrak{k}
\mathfrak{f}_4	$\mathfrak{sp}_3 \oplus \mathfrak{su}_2$
\mathfrak{f}_4	\mathfrak{so}_9
\mathfrak{g}_2	$\mathfrak{su}_2 \oplus \mathfrak{su}_2$
\mathfrak{e}_6	$\mathfrak{so}_{10} \oplus \mathfrak{R}$
\mathfrak{e}_6	$\mathfrak{su}_6 \oplus \mathfrak{su}_2$

Table 3. Symmetric pairs of compact type of maximal rank - Classical Spaces

\mathfrak{g}	\mathfrak{k}
\mathfrak{so}_{2n}	\mathfrak{u}_n
\mathfrak{so}_n	$\mathfrak{so}_{2p} \oplus \mathfrak{so}_{n-2p}$
\mathfrak{sp}_n	\mathfrak{u}_n
\mathfrak{sp}_n	$\mathfrak{sp}_p \oplus \mathfrak{sp}_{n-p}$
\mathfrak{su}_n	$\mathfrak{su}_p \oplus \mathfrak{su}_{n-p} \oplus \mathfrak{R}$
Table 4. Bisymmetric triples of type I and their eigenvalues - Exceptional spaces

g	ℓ	l	γ	h^j		
A.25	f_4	so_3	so_p ⊕ so_3...p, p = 1, 3, 5, 7	7/9	p(9−p)	
A.26	f_4	sp_3 ⊕ su_2	sp_3 ⊕ R	7/9	1/18	
A.27	u_4	su_2	u_4 ⊕ su_2	4/9	1/7, 7/9	
A.28	sp_2 ⊕ su_2 ⊕ su_2			4/9	1/7, 7/9	
A.31	g_2	su_2 ⊕ su_2	R ⊕ su_2	7/9	1/6	
A.32	su_2 ⊕ R			7/9	1/6	
A.34	e_8	so_16	so_2p ⊕ so_16−2p, p = 1, ..., 4	1/6	1/60, 4/15, 7/15	
A.35	u_8			1/6		
A.36	e_8	e_7 ⊕ su_2	e_7 ⊕ R	1/3	1/30	
A.37	e_6	e_6 ⊕ R ⊕ su_2	4/9	11/18, 1/3		
A.39	so_12 ⊕ su_2 ⊕ su_2	4/9	1/3, 1/3			
A.41	su_8 ⊕ su_2			4/9	1/3	
A.43	e_7	so_12 ⊕ su_2	so_12 ⊕ R	4/9	1/30	
A.44	u_6	su_2	u_6 ⊕ su_2	4/9	1/30, 7/18	
A.46	so_p ⊕ so_12−p ⊕ su_2, p = 2, 4, 6	4/9	p(12−p)			
A.48	e_7	e_6 ⊕ R	so_10 ⊕ R ⊕ R	4/9	1/15, 1/15, 1/3	
A.49	su_6 ⊕ su_2 ⊕ R	4/9	1/15, 1/3			
A.50	e_7	su_8	su_p ⊕ su_8−p ⊕ R, 1 ≤ p ≤ 4	4/9	1/15, 1/15, 1/3	
A.51	e_6	so_10 ⊕ R	u_5 ⊕ R	4/9	p(10−p)	
A.52	so_p ⊕ so_10−p ⊕ R, p = 2, 4	4/9	p(10−p)			
A.53	su_6 ⊕ su_2	su_6 ⊕ R	4/9	p(10−p)		
A.54	su_p ⊕ su_6−p ⊕ R ⊕ su_2	4/9	p(10−p)			
Table 5. Bisymmetric triples of type I and their eigenvalues - Classical spaces

	\(\mathfrak{g} \)	\(\mathfrak{t} \)	\(\mathfrak{l} \)	\(\gamma \)	\(\mu \)
A.1	\(\mathfrak{su}_n \oplus \mathfrak{su}_{n-p} \oplus \mathbb{R} \)	\(\mathfrak{su}_l \oplus \mathfrak{su}_{p-l} \oplus \mathbb{R} \oplus \mathfrak{su}_{n-p} \oplus \mathbb{R} \)	\(\frac{p}{n} \)	\(\frac{p-l}{2n} \), \(\frac{l}{2n} \)	
A.4	\(\mathfrak{so}_{2n+1} \oplus \mathfrak{so}_{2p+1} \oplus \mathfrak{so}_{2(n-p)}, p = 0, \ldots, n-1 \)	\(\mathfrak{so}_{2l+1} \oplus \mathfrak{so}_{2(p-l)} \oplus \mathfrak{so}_{2(n-p)} \)	\(\frac{2p-1}{2n-1} \), \(\frac{4l+1}{2n-1} \), \(\frac{4}{2n-1} \)		
A.5	\(\mathfrak{so}_{2p+1} \oplus \mathfrak{so}_{2s} \oplus \mathfrak{so}_{2(n-p-s)} \)	\(\mathfrak{so}_{2p+1} \oplus \mathfrak{u}_{n-p} \)	\(\frac{2(n-p-1)}{2n-1} \)	\(\frac{n-1}{2} \), \(\frac{n-1}{2n-1} \)	
A.6	\(\mathfrak{so}_{2n} \oplus \mathfrak{u}_n \)	\(\mathfrak{u}_p \oplus \mathfrak{u}_{n-p}, p = 1, \ldots, n-1 \)	\(\frac{n}{2(n-1)} \)	\(\frac{n-p}{2(n-1)}, \frac{p}{2(n-1)}, \frac{n-2}{3(n-1)} \)	
A.10	\(\mathfrak{so}_{2n} \oplus \mathfrak{so}_{2(n-p)}, p = 1, \ldots, \left\lfloor \frac{n}{2} \right\rfloor \)	\(\mathfrak{so}_{2l} \oplus \mathfrak{so}_{2(p-l)} \oplus \mathfrak{so}_{2(n-p)} \)	\(\frac{n-1}{2(n-1)} \), \(\frac{l}{2(n-1)} \)	\(\frac{p-1}{2(n-1)}, \frac{4}{2(n-1)} \)	
A.13	\(\mathfrak{sp}_n \oplus \mathfrak{sp}_{n-p} \)	\(\mathfrak{sp}_l \oplus \mathfrak{sp}_{p-l} \oplus \mathfrak{sp}_{n-p} \)	\(\frac{n}{2(n+1)} \)	\(\frac{n-p}{2(n+1)}, \frac{n-1}{2(n+1)}, \frac{p}{2(n+1)}, \frac{n-2}{2(n+1)} \)	
A.17	\(\mathfrak{sp}_n \oplus \mathfrak{sp}_{n-p} \)	\(\mathfrak{sp}_l \oplus \mathfrak{sp}_{p-l} \oplus \mathfrak{sp}_{n-p} \)	\(\frac{n+1}{n+1} \), \(\frac{p+1}{4(n+1)} \), \(\frac{n+2}{4(n+1)} \)	\(\frac{n-1}{4(n-1)} \), \(\frac{n-1}{4(n-1)} \)	
Table 6. Bisymmetric triples of type II and their eigenvalues - Exceptional spaces

g	ℓ	l	γ₁	γ₂	μ₁	μ₂
A.29	f₄	su₃ ⊕ su₂	2/9	2/9	1/38	1/38
A.30	su₂ ⊕ sp₂ ⊕ R	2/9	2/9	1/18	1/18	
A.33	g₂	su₂ ⊕ su₂	1/9	1/9	1/9	1/9
A.38	e₈	e₇ ⊕ su₂	3/15	3/15	1/60	1/60
A.40	su₁₂ ⊕ su₂ ⊕ R	1/12	1/12	1/60	1/60	
A.42	su₈ ⊕ R	1/15	1/15	1/60	1/60	
A.45	e₇	so₁₂ ⊕ su₂	3/9	3/9	1/36	1/36
A.47	su₆ ⊕ su₆ ⊕ R, p even	1/9	1/9	1/4	1/4	
A.55	e₆	su₆ ⊕ su₆ ⊕ R	1/9	1/9	1/20	1/20
Table 7. Bisymmetric triples of type II and their eigenvalues - Classical spaces

\(g\)	\(t\)	\(l\)	\(\gamma_1\)	\(\gamma_2\)	\(b^1\)	\(b^2\)	
A.3	\(su_n\)	\(su_p \oplus su_{n-p} \oplus \mathbb{R}\)	\(su_l \oplus su_{p-l} \oplus su_{n} \oplus su_{n-p-s} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}\)	\(\frac{p}{n}\)	\(\frac{n-p}{n}\)	\(\left(\frac{p-l}{2n}, \frac{l}{2n}\right)\)	\(\left(\frac{n-p-s}{2n}, \frac{s}{2n}\right)\)
A.8	\(so_{2n+1}\)	\(so_{2} \oplus so_{2}(n-p)\)	\(so_{2l+1} \oplus so_{2}(p-l) \oplus so_{2a} \oplus so_{2}(n-p-s)\)	\(\frac{2p-1}{2n-1}\)	\(\frac{2(n-p-1)}{2n-1}\)	\(\left(\frac{p-l}{2n-1}, \frac{4l+1}{4(n-1)}\right)\)	\(\left(\frac{n-p-s}{2n-1}, \frac{s}{2n-1}\right)\)
A.7	\(so_{2n}\)	\(so_{2p} \oplus so_{2}(n-p)\)	\(so_{2l+1} \oplus so_{2}(p-l) \oplus so_{2a} \oplus so_{2}(n-p-s)\)	\(\frac{p-1}{n-1}\)	\(\frac{n-p-1}{n-1}\)	\(\left(\frac{p-l}{2(n-1)}, \frac{l}{2(n-1)}\right)\)	\(\left(\frac{n-p-s}{2(n-1)}, \frac{s}{2(n-1)}\right)\)
A.15	\(u_{p} \oplus u_{n-p}\)	\(u_{p} \oplus u_{n-p}\)	\(u_{p} \oplus u_{n-p}\)	\(\frac{p-1}{n-1}\)	\(\frac{n-p-1}{n-1}\)	\(\left(\frac{p-l}{2(n-1)}, \frac{l}{2(n-1)}\right)\)	\(\left(\frac{n-p-s}{2(n-1)}, \frac{s}{2(n-1)}\right)\)
A.16	\(so_{2l} \oplus so_{2}(p-l) \oplus u_{n-p}\)	\(so_{2l} \oplus so_{2}(p-l) \oplus u_{n-p}\)	\(so_{2l} \oplus so_{2}(p-l) \oplus u_{n-p}\)	\(\frac{p-1}{n-1}\)	\(\frac{n-p-1}{n-1}\)	\(\left(\frac{p-l}{2(n-1)}, \frac{l}{2(n-1)}\right)\)	\(\left(\frac{n-p-s}{2(n-1)}, \frac{s}{2(n-1)}\right)\)
A.20	\(sp_{n}\)	\(sp_{p} \oplus sp_{n-p}\)	\(sp_{l} \oplus sp_{p-l} \oplus sp_{a} \oplus sp_{n-p-s}\)	\(\frac{p+1}{n+1}\)	\(\frac{n-p+1}{n+1}\)	\(\left(\frac{p-l}{4(n+1)}, \frac{l}{4(n+1)}\right)\)	\(\left(\frac{n-p-s}{4(n+1)}, \frac{s}{4(n+1)}\right)\)
A.23	\(u_{p} \oplus u_{n-p}\)	\(u_{p} \oplus u_{n-p}\)	\(u_{p} \oplus u_{n-p}\)	\(\frac{p+1}{n+1}\)	\(\frac{n-p+1}{n+1}\)	\(\left(\frac{p-l}{4(n+1)}, \frac{l}{4(n+1)}\right)\)	\(\left(\frac{n-p-s}{4(n+1)}, \frac{s}{4(n+1)}\right)\)
A.24	\(sp_{l} \oplus sp_{p-l} \oplus u_{n-p}\)	\(sp_{l} \oplus sp_{p-l} \oplus u_{n-p}\)	\(sp_{l} \oplus sp_{p-l} \oplus u_{n-p}\)	\(\frac{p+1}{n+1}\)	\(\frac{n-p+1}{n+1}\)	\(\left(\frac{p-l}{4(n+1)}, \frac{l}{4(n+1)}\right)\)	\(\left(\frac{n-p-s}{4(n+1)}, \frac{s}{4(n+1)}\right)\)
Table 8. Einstein Bisymmetric triples of type I - Exceptional spaces

g	f	l	4-sym.	X
$\mathfrak{so}_3 \oplus \mathfrak{su}_2$	$\mathfrak{so}_3 \oplus \mathfrak{R}$	yes	$1, \frac{4}{7}$ (a)	
\mathfrak{so}_8	$\mathfrak{so}_7 \oplus \mathfrak{R}$	no	$1, \frac{2}{7}$ (c)	
$\mathfrak{su}_2 \oplus \mathfrak{su}_2$	$\mathfrak{so}_2 \oplus \mathfrak{su}_2$	yes	$\frac{1}{2}, \frac{3}{2}$	
$\mathfrak{su}_2 \oplus \mathfrak{R}$	$\mathfrak{su}_2 \oplus \mathfrak{R}$	yes	$\frac{6+\sqrt{22}}{2}$	
$\mathfrak{so}_{10} \oplus \mathfrak{R}$	$\mathfrak{so}_8 \oplus \mathfrak{R} \oplus \mathfrak{R}$	yes	$1, \frac{1}{7}$ (c)	
$\mathfrak{su}_6 \oplus \mathfrak{su}_2$	$\mathfrak{su}_5 \oplus \mathfrak{su}_2$	yes	$\frac{1}{2}, \frac{3}{2}$ (a)	
$\mathfrak{su}_6 \oplus \mathfrak{R}$	$\mathfrak{so}_{12} \oplus \mathfrak{R}$	yes	$\frac{1}{2}, \frac{11}{12}$ (a)	
$\mathfrak{so}_{12} \oplus \mathfrak{su}_2$	$\mathfrak{so}_{12} \oplus \mathfrak{R}$	no	$\frac{1}{7}, \frac{1}{2}$	
$\mathfrak{so}_{12} \oplus \mathfrak{so}_{10} \oplus \mathfrak{su}_2$	$\mathfrak{so}_{12} \oplus \mathfrak{R}$	no	$\frac{1}{7}, \frac{1}{2}$	
$\mathfrak{so}_4 \oplus \mathfrak{so}_8 \oplus \mathfrak{su}_2$	$\mathfrak{so}_{12} \oplus \mathfrak{R}$	no	$\frac{1}{7}, \frac{1}{2}$	
\mathfrak{so}_{16}	$\mathfrak{so}_2 \oplus \mathfrak{so}_{16-2p}$	yes	$15\pm \sqrt{7p^2-56p+113}$ (b)	

See Theorem 1.2. Compare with Table 4.
(a) Metrics also obtained by Dickinson and Kerr in [7].
(b) idem for $p = 1, 3$. For $p = 4$, one of the metrics is the standard metric obtained by Wang and Ziller in [20].
(c) The standard metric was obtained by Wang and Ziller in [20].
Table 9. Einstein Bisymmetric triples of type I - Classical spaces

g	\mathfrak{r}	\mathfrak{l}	4-sym.	X
\mathfrak{so}_{2n}	$\mathfrak{so}_p \oplus \mathfrak{so}_{2(n-p)}$	$\mathfrak{so}_p \oplus \mathfrak{so}_p \oplus \mathfrak{so}_{2(n-p)}$, p even	no	$\frac{n-1\pm\sqrt{p^2-(2n+1)p+n^2+1}}{2(p-1)}$
	$\mathfrak{u}_p \oplus \mathfrak{so}_{2(n-p)}$		yes	$\frac{n}{p-1} - \frac{1}{2}$ (a)
\mathfrak{so}_{2n+1}	$\mathfrak{so}_{2p+1} \oplus \mathfrak{so}_{2(n-p)}$	$\mathfrak{so}_{2p+1} \oplus \mathfrak{so}_{n-p} \oplus \mathfrak{so}_{n-p}$, $n-p$ even	yes	$\frac{2n-1\pm\sqrt{4p^2+8p-4n+5}}{4(n-p-1)}$
	$\mathfrak{so}_{2p+1} \oplus \mathfrak{u}_{n-p}$		no	$\frac{n}{2(n-p-1)}$ (a)
\mathfrak{sp}_n	$\mathfrak{sp}_{2l} \oplus \mathfrak{sp}_{n-2l}$	$\mathfrak{sp}_{2l} \oplus \mathfrak{sp}_l \oplus \mathfrak{sp}_{n-2l}$	no	$\frac{n+1\pm\sqrt{6l^2+13-4n+1+n^2+1}}{2(2l+1)}$
	$\mathfrak{sp}_p \oplus \mathfrak{sp}_{n-p}$	$\mathfrak{sp}_p \oplus \mathfrak{sp}_{n-p}$	yes	$\frac{1}{2} \pm \frac{n-p}{2l+1}$ (a)
\mathfrak{su}_n	$\mathfrak{su}_{2l} \oplus \mathfrak{su}_{n-2l} \oplus \mathfrak{R}$	$\mathfrak{su}_{2l} \oplus \mathfrak{su}_{l} \oplus \mathfrak{SU}_{n-2l} \oplus \mathfrak{R}$	no	$\frac{1}{2} \pm \frac{n}{2l}$

See Theorem 1.2. Compare with Table 5.

(a) Metrics also obtained by Dickinson and Kerr in [7].
Table 10. Bisymmetric triples of type II with Einstein metric such that g_F is also Einstein

g_M binormal

g	ℓ	l	4-sym.	X
su_4l	$su_2l \oplus su_2l \oplus R$	$su \oplus su \oplus su \oplus su \oplus su \oplus su \oplus R^3$	no	1 (a)
so_6l	$so_4l \oplus so_4l$	$so_2l \oplus so_2l \oplus so_2l \oplus so_2l$	yes	$\frac{2l-1}{2l-3}$ (a)
so_6l	$so_4l \oplus so_4l$	$so_2l \oplus so_2l \oplus u_2l$	no	$\frac{4l+1+\sqrt{7l}}{2l(2l-1)}$
so_4l	$so_2l \oplus so_2l$	$u_l \oplus u_l, l \geq 2$	no	$\frac{2l-1+\sqrt{2l}}{2l(2l-1)}$
sp_4l	$sp_2l \oplus sp_2l$	$sp_l \oplus sp_l \oplus sp_l \oplus sp_l$	no	$\frac{4l+1+\sqrt{2l^2+2l+1}}{2l(2l+1)}$
sp_4l	$sp_2l \oplus sp_2l$	$sp_l \oplus sp_l \oplus u_2l$	no	$\frac{4l+1+\sqrt{7l(2l-1)}}{2l(2l+1)}$

g_M non-binormal

g	ℓ	l	4-sym.	X_1	X_2
$su_2l(1+s)$	$su_2l \oplus su_2l \oplus R$	$su \oplus su \oplus su \oplus su \oplus su \oplus u_2 \oplus R^3$	yes	$\frac{l+s}{2l}$	$\frac{l+s}{2l}$

See Theorems 1.3 and 1.4. Compare with Tables 6 and 7.
(a) The standard metric was obtained by Wang and Ziller in [20].

Table 11. All other Einstein adapted metrics for the bisymmetric triples of Type II which admit an EAM g_M such that g_F is Einstein

g	ℓ	l	4-sym.	X_1	X_2
so_4l	$so_2l \oplus so_2l$	$u_l \oplus u_l, l = 2, \ldots, 6$	no	$\frac{2l(l-1)+\sqrt{(-l^2+7l^2+5l^2+1)/2}}{2l(2l-1)}$	$\frac{l}{2l(2l-1)}X_1$
so_4l	$so_4l \oplus so_4l$	$R \oplus R \oplus u_2$	no	$\frac{4l+1}{5}$	$\frac{1}{X_1}$
sp_4l	$sp_2l \oplus sp_2l$	$sp_l \oplus sp_l \oplus sp_l \oplus sp_l, l \geq 1$	no	$\frac{4l+1+\sqrt{4l^2+7l+4}}{5(2l+1)}$	$\frac{l}{2l+1}X_1$
sp_4l	$sp_2l \oplus sp_2l$	$sp_l \oplus sp_l \oplus u_2l, l \geq 3$	no	$\frac{2l+1+\sqrt{4l^2-8l-1}}{6(2l+1)}$	$\frac{l}{2l+1}X_1$

See Theorem 1.6. Compare with Tables 6, 7 and 10.
Table 12. Einstein bisymmetric fibrations of Type II with g exceptional

g	f	l	4-sym.	X_1	X_2
$\mathfrak{so}_7 \oplus \mathfrak{so}_2$	$\mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{so}_5 \oplus \mathfrak{so}_5 \oplus \mathfrak{so}_5$	yes	0.3086	7.4890	
				0.4686	0.6737
				0.9326	0.6496
				1.4616	8.1878
$\mathfrak{so}_7 \oplus \mathfrak{so}_2$	$\mathfrak{so}_6 \oplus \mathfrak{so}_6 \oplus \mathfrak{so}_6 \oplus \mathfrak{so}_6 \oplus \mathfrak{so}_6$	yes	0.3136	7.3931	
				1.4517	8.0839
$\mathfrak{so}_7 \oplus \mathfrak{so}_2$	$\mathfrak{so}_6 \oplus \mathfrak{so}_6 \oplus \mathfrak{so}_6 \oplus \mathfrak{so}_6 \oplus \mathfrak{so}_6$	yes	0.3163	7.3606	
				1.4292	8.0485

See Theorem 1.5. Compare with Table 6.

Acknowledgements

I would like to thank professor Dmitri Alekseevsky for his useful advice and enlightening discussions. This work was sponsored by Fundação para a Ciência e a Tecnologia.

References

[1] D. Alekseevsky, I. Dotti, C. Ferraris (1996) Homogeneous Ricci Positive 5-Manifolds, Pacific Journal of Mathematics, 175 (1), 1-12.
[2] T. Bröcker, T. Dieck (1985) Representations of Compact Lie Groups, Springer-Verlag.
[3] A. Besse (1987) Einstein Manifolds, Springer-Verlag.
[4] C.P. Boyer, K. Galicki (2000) On Sasakian-Einstein Geometry, Internat.J.Math. 11, 873-909.
[5] C. Böhm, M.M. Kerr (2005) Low-dimensional Homogeneous Einstein Metrics, Trans. Amer. Math. Soc. 358 (4), 1455-1468.
[6] L. Castellani, L.J. Romans, N.P. Warner (1984) A Classification of Compactifying Solutions for $d=11$ Supergravity, Nuclear Physics 241 B, 429-262.
[7] W. Dickinson, M.M. Kerr (2008) The Geometry of Compact Homogeneous Spaces with Two Isotropy Summands, Ann Glob Anal Geom. 34, 329-350.
[8] F. Araújo (2008) Einstein Homogeneous Riemannian Fibrations, PhD Thesis of The University of Edinburgh, arXiv:0905.3143v1 [math.DG].
[9] F. Araújo (2009) Some Einstein Homogeneous Riemannian Fibrations, submitted to Differential Geometry and its Applications, arXiv:0907.0228v1 [math.DG].
[10] S. Helgason (1978) Differential Geometry, Lie Groups and Symmetric Spaces, Ac.Press, Mathematics 80.
[11] J.E Humphreys (1972) Introduction to Lie Algebras and Representation Theory, Springer-Verlag.
[12] G.R. Jensen (1969) *Homogeneous Einstein Spaces of Dimension 4*, J.Diff.Geometry, 3, 309-349.
[13] G.R. Jensen (1973) *Einstein Metrics on Principal Fiber Bundles*, J.Diff.Geometry, 8, 599-614.
[14] J.A. Jimenez (1988) *Riemannian 4-Symmetric Spaces*, Trans. Amer. Math. Soc. 306 (2), 715-734.
[15] Y.G. Nikonorov, D. E. Rodionov (1999) *Compact 6-dimensional Homogeneous Einstein Manifolds*, Dokl.Math. RAR 336, 599-601.
[16] L.A. Onischchik, E.B. Vinberg (1990) *Lie Groups and Algebraic Groups*, Springer Series in Soviet Mathematics, Springer-Verlag.
[17] D. Panyushev (2001) *Isotropy Representations, Eigenvalues of a Casimir Element and Commutative Lie subalgebras*, J.London Math. Soc. 64 (2), 61-80.
[18] M.Y. Wang (1999) *Einstein Metrics from Symmetry and Bundle Constructions*, Surveys in Differential Geometry, VI: Essays on Einstein Manifolds, International Press, 287-325.
[19] J.A.Wolf, A.Gray (1968), *Homogeneous Spaces Defined by Lie Group Automorphisms I, II*, J.Diff.Geom. 2, 77-114, 115-59.
[20] M.Y. Wang, W. Ziller (1985) *On Normal Homogeneous Einstein Manifolds*, Annales Scientifiques de l'E.N.S., 18 (4), 563-633.
[21] M.Y. Wang, W. Ziller (1986) *Existence and Non-existence of Homogeneous Einstein Metrics*, Inventiones Math. 84, 177-194.
[22] M.Y. Wang, W. Ziller (1990) *Einstein Metrics on Principal Torus Bundles*, J.Diff.Geom. 31, 215-248.
[23] S.T. Yau (1978) *On the Ricci Curvature of a Compact Kähler Manifold and the Complex Monge-Ampère Equation I*, Comm. Pure Appl. Math. 31, 339-411.
[24] W. Ziller (1982) *Homogeneous Einstein Metrics on Spheres and Projective Spaces*, Math. Ann. 259, 351-358.

School of Mathematics, The University of Edinburgh, JCMB, The Kings Buildings, Edinburgh, EH9 3JZ

E-mail address: m.d.f.araujo@sms.ed.ac.uk