Enhancing potato (*Solanum tuberosum L.*) yield by using biological organic fertilizers and soil conservation practices on the slope andisol

Tamad, L Soesanto, Rostaman, P E Agustin and N Khoiriyah
Agrotechnology Department, Faculty of Agriculture, Jenderal Soedirman University

E-mail: tamad_1965@yahoo.com

Abstract. The purposes of this research were to determine the influence of biological organic fertilizer (BOF), chemical fertilizer and methods of soil conservation to decrease soil erosion and to enhance potato yield. This study used 3 factors, first factor is P1 (20 tons chicken manure ha-1), P2-P6 (20, 15, 10, 5 and 2.5 tons BOF ha-1); second factor is K1 (1 ton ZA ha-1 + 250 kgs Phonska ha-1), K2 (300 kgs Urea ha-1 + 500 kgs SP-36 ha-1 + 300 kgs KCl ha-1 + 200 kgs CaCO3 ha-1), K3 (1/2 K2 dose) and K4 (1/4 K2 dose) and third factor is L1 (the same direction slope), L2 (10% angle to contour) and L3 (parallel with contour). The observed variables were potato yield, soil erosion and P uptake. The result showed the highest potato yield in L3 was 16.33 tons ha-1. In the same BOF dose compared to chicken manure enhanced potato yields up 2 tons ha-1. Using of inorganic fertilizer with at K2 or K3 or K4 add more potato yield 0.2 tons ha-1 compared to inorganic fertilizer. The correlation between Potato yield and soil erosion was -0.99, while potato yield and P sorption was 0.76.

1. Introduction
Andisol is a soil type distributes widely in highland areas. The acreage of andisol in Indonesia reaches 5.39 million hectares. This soil type is suitable for vegetable cultivation especially cabbage, carrot and potato due to its fertile soil [1]. Potato is a high value cultivated commodity at highland areas with this soil type in Indonesia. Central Java is one centre of potato production, where produced 2,729,758 quintals in 2016 [2]. The production decreased by 10% from the previous years due to factors such as settlement, plant pests and diseases, quality of seeds, and soil fertility.

The main problem in andisol corresponds with soil fertility is low Phosphate (P) availability and soil erosion. The low phosphate availability is caused absorption by allophane minerals, Fe and Al hydrate oxides and Al-humus complexes [3]. Based on that problem, we use biological organic fertilizers containing phosphate-solubilizing microorganisms (PSMs), inorganic fertilizers, and conservation practices. Biological organic fertilizer (BOF) was composed from chicken manure added to the Humate-Fulvat (HF) extract of potato leaves with 0.05 N NaOH for a week incubation at a dose of 5 percent[4], phosphate-solubilizing microorganisms (PSMs) in carrier media (population 107 CFU/g) with a dose 10 L in 20 tons of chicken manures[5], Plant growth promoting rhizobacteria (PGPR) in carrier media (population 107 CFU/g) with a dose of 10 L/20 tons of chicken manure [6], and potato root extract with 10 percent acetonitrile for a week incubation as a signal quorum sensing (SQS) at dose of 5%[7].
Soil losses due to erosion at the andisol land could be overcome by using ridging or hilling and terrace ring practices or contour [8, 9]. The practices reduce soil losses from the land, improve soil quality and increase potato production. The purposes of this research were to determine the influence of biological organic fertilizer (BOF), chemical fertilizer and practices of soil conservation in decreasing soil erosion and enhancing potato yield on sloping andisol.

2. Methods
The research was carried out at Kaligua Area, Brebes, Central Java, Indonesia. The study used a randomized block design with 3 factors, namely (1) organic fertilizers (P) with 6 levels of P_1 (control), P_2-P_6 (20, 15, 10, 5 and 2.5 tons of BOF ha$^{-1}$); (2) inorganic fertilizers (K) with 4 levels, namely K_1 (1 ton ZAha$^{-1}$ and 250 kgs Phonskaha$^{-1}$), K_2 (300 kgs Urea $^{-1}$, 500 kgs SP-36 ha$^{-1}$, 300 kgs KCl $^{-1}$) and 200 kgs limestone $^{-1}$, K_3 (1/2 K_2) and K_4 (1/4 K_2) and; (3) land slope with 3 levels, namely L_1 (the same direction/parallel with slope), L_2 (angel 10 percent to contour) and L_3 (the same direction/parallel with contour). We planted potato seeds Granola variety. The observed variables were potato yield, P sorption and erosion.

3. Results and discussions
3.1. Potato yield
The highest yield (tuber) was obtained at cropping with the angel 10 percent to contour pattern (L_2) i.e.16.33 tons ha$^{-1}$, followed by the parallel with contour (L_3), ca. 15.9 tonsha$^{-1}$ ([Figure 1]; [5]). Cropping patterns based on farmers’s way (the parallel with slope) yielded only 13.76 tonsha$^{-1}$. Based on this result, it is a good indication to improve planting system of potato in sloping areas through application of contour conservation. Application minimum tillage and contour cultivation was recommended by [10].

Application of the chicken manure enriched with biological organic compounds (biological organic fertilizer, BOF) could increase potato yield [11]. Enriched chicken manure at 20 tons/ha increased addition of the tuber yield up to 2 tonsha$^{-1}$ compared to the chicken manure only yielded tuber ca. 15 tonsha$^{-1}$. Application of BOF at 2.5, 5, 10 and 15 tonsha$^{-1}$, added the tuber only ca. 0.5 tonsha$^{-1}$, compared to application of chicken manure 20 tonsha$^{-1}$.
Figure 2. Potato yield (tonha⁻¹) in application six doses of organic matter at Kaligua Brebes Province of Central Java. P₁ = 20 tons chicken manureha⁻¹, P₂-P₆ = 20, 15, 10, 5 and 2.5 tons BOFha⁻¹.

Application of inorganic fertilizers increased potato yield (Figure 3). The treatment K₂ (300 kgs Urea, 500 kgs SP-36 and 200 kgs KCl), K₃ (1/2 K₂) and K₄ (1/4 K₂) produced tuber more than 0.2 tons tuberha⁻¹ compared to farmer’s way K₁ (1 ton ZA and 250 kgs Phonska) that only yielded 15.3 tons tuberha⁻¹. The potato yield at K₂, K₃, and K₄ fertilization were not different statistically, ca. 15.5 tons ha⁻¹.

Figure 3. Potato yield (tonha⁻¹) at application four doses of inorganic fertilizer, at Kaligua Brebes Province of Central Java. K₁ (1 ton ZA and 250 kgs Phonska⁻¹), K₂ (300 kgs Urea, 500 kgs SP-36 and 200 kgs KClha⁻¹), K₃ (1/2 K₂) and K₄ (1/4 K₂)

3.2. Phosphorous Sorption
The highest P sorption value (149.56 mgs Pplant⁻¹) occurred at L₂ treatment (the 10 percent at an angle in the same direction with contour pattern) (Figure 4). This conservation method was able to reduce soil erosion. In this case, soil erosion was minimized. Nutrients and organic matters were used optimally by plant. It was different with L₁ (in the same direction with slope).
Figure 4. Phosphorous sorption by potato plant (mg P plant$^{-1}$) at three cropping patterns based on contour direction at Kaligua Brebes Province of Central Java. L$_1$ (in the same direction with slope), L$_2$ (10 percent at an angle in the same direction with contour) and L$_3$ (in the same direction with contour).

The P$_3$ treatment that was application of biological organic fertilizer 10 tonsha$^{-1}$ showed the highest P sorption value ca. 172.37 mgs P plant$^{-1}$ was greater than the others (Figure 5). [12] explained that the application of organic fertilizer can increase the availability of P in the soil that shown in high P uptake by plants. The addition of phosphate soluble microorganisms (PSMs) and humic acid to biological organic fertilizers is thought increase P uptake by plants. Biological organic fertilizers containing PSMs can increase the P dissolved ability, because PSMs produce organic acids, including citrate, malate, and acetate [13]. Dissolved P support easier P absorption for plants. According to [14] increasing phosphorus uptake by plants is related to the role of humic acid in increasing phosphorus efficiency in the soil due to the process of preventing P fixation in the soil and increasing availability of P for plants.

Figure 5. Phosphorous sorption of potato plant (mgs P plant$^{-1}$) at application of six doses of organic matter at Kaligua Brebes Central Java, (P$_1$ =20 tons chicken manureha$^{-1}$, P$_2$-P_6 = 20, 15, 10, 5 and 2.5 tons BOFha$^{-1}$)

The highest P sorption value ca. 143.50 mgs P plant$^{-1}$ occurred at K2 treatment (recommended dose, 300 kgs Urea$^{-1}$ + 500 kgs SP-36ha$^{-1}$ + 300 kgs KClha$^{-1}$ + 200 kgs limestoneha$^{-1}$) (Figure 6). Chemical fertilization can increase nutrients in the soil. According to [15], the addition of N element
from chemical fertilizers can increase root growth and development, so that P absorption is more effective. SP-36 fertilizer is thought to give the best result because it increases P sorption. [16] said that SP-36 can increase P uptake of maize plants.

Figure 6. Phosphorous sorption of potato plant (mg P plant⁻¹) at application four dose of inorganic fertilizer at Kaligua Brebes, Province of Central Java. K₁ (1 ton ZA and 250 kgs Phonskaha⁻¹), K₂ (300 kgs Urea, 500 kgs SP-36 and 200 kgs KClha⁻¹), K₃ (1/2 K₂) and K₄ (1/4 K₃)

3.3. Soil erosion

The application of conservation practices can reduce the soil erosion by 75.77 percent compared to the control. Erosion at L₁ treatment caused losses soil materials up to 6.80 tons soil ha⁻¹ year⁻¹. It was different with other practices (L₂ and L₃) that only caused soil losses lower that the first. Soil erosion at L₂ only was 1.98 tons soil ha⁻¹ year⁻¹ and L₃ was 1.32 tons soil ha⁻¹ year⁻¹ (**Figure 7**). Tolerable soil losses at andisol is only 13.5 ton soil ha⁻¹ year⁻¹[17], but at least conservation method or practice that applied at L₂ and L₃ are able to reduce the soil erosion compared L₁. Conservation practice in potato farming using contour parallel cropping system (cutting slopes) is able to reduce the rate of soil erosion up to 53.27 percent compared to the control (no conservation)[18].

Figure 7. Soil erosion (tons soilha⁻¹ year⁻¹) at three cropping patterns based on contour direction at Kaligua Brebes, Province of Central Java. L₁ (the parallel with slope), L₂ (the angle 10percentto contour) and L₃ (the parallel with contour).
3.4. Regression and correlation analysis of potato yield

The relation between potato yield (tuber) and potato P sorption was quadratic pattern, in mathematic equation \(y = 15.73 + 0.59x - 0.0018x^2 \) (Figure 8). The correlation between yield and P sorption was positive, \(r^2 = 0.76 \). It was close correlation.

Correlation between potato yield and the soil erosion was negative, \(r^2 = -0.99 \). It inferred opposite directions. The increase in erosion rate cause decrease in potato yield (Figure 9).

4. Conclusion

The highest potato yield at 10 percent an angle in the same direction with contour pattern was 16.33 tons ha\(^{-1}\), while the potato yield in the same direction with slope was 13.76 tonsha\(^{-1}\). Biological organic fertilizer (BOF) at 20 tonsha\(^{-1}\) increased addition the potato yield up to 2 tons ha\(^{-1}\), higher than the same dose chicken manure used. Fertilization of 300 kgs Urea, 500 kgs SP-36 and 200 kgs KCl ha\(^{-1}\) (or 1/2 or 1/4 dose) increased addition the yield of potatoes more than 0.2 tonsha-1 than the dose of inorganic fertilizer the farmers usually used (1 ton ZA and 250 kgs Phonska ha\(^{-1}\)). The lowest erosion occurred at the treatment of 10 percent an angle in the same direction with contour pattern with an erosion of 1.32 tons soilha\(^{-1}\)/year. The correlation between potato yields and P sorption was positive, 0.76. The correlation between potato yield and soil erosion was negative, 0.99.

Acknowledgments

We thank to the RISPRO-LPDP the aids funds program, Ministry of Finance Republic of Indonesia and Institute of Research and Community Service the Jenderal Soedirman University Purwokerto (Contract Number PRJ-28/LPDP/2017 and 14024/UN23. 14/PN.01.00/2017) for funding of this research.
References

[1] Asmar, S Amrizal and Masliyunas 2010 *Soil J.* 7 27–36
[2] Department of Agriculture and Plantation of Central Java Province 2017. *Horticulture Statistics of Central Java Province* (Semarang: Department of Agriculture and Plantation of Central Java Province)
[3] Fiantis D, N Hakim and E Van Ranst 2005 *J. Integrated Field Science* 2 29–37
[4] Stevenson FJ 1994 *Humus Chemistry: Genesis, Composition and Reaction*. 2nd ed. John Wiley and Sons, (Inc.New York. Xiii) 496 p.
[5] Tamad 2017 *Proceeding of Institute of Research and Community Service* (Purwokerto: Jenderal Soedirman University) ISBN: 978-602-1643-58-71-7
[6] Soesanto L, E Mugiastutia and RF Rahayuniati 2011 *J. Biotechnology and Biodiversity* 2 19–26
[7] Ward JP, JR King, AJ Koerber, P Williams, JM Crofland RE Sockett 2001 *J. Mathematics Applied in Medicine and Biology* 18 263–292
[8] Chow, Lien, H Rees and Z Xing 2010 *Proceeding of World Congress of Soil Science* (Brisbane: Soil Solutions for a Changing World)
[9] Steyn F 2017 *Understanding ridging to improve potato production* CHIPS
[10] Quinton JN and JA Catt 2004 *Soil Use and Management* 20 343–349
[11] Tamad 2017 *Proceeding of National Seminar* (Purwokerto:NU University) ISBN: 978-602-52292-0-9 151–160
[12] Minardi S, S Jauhari and Sukoco 2011 *J. Soil Science and Agroclimatology* 8 23–30
[13] Victoria DE, LL Reyesand ADLC Benitez 2009 *Rev. Fitotec. Mex.* 32 31–3
[14] Hermanto D, NKT Dharmayani, R Kurianingsih and SR Kamali 2013 *J. Agricultural Sciences* 16 28–41
[15] Firmansyah I, M Syakir and L Lukman 2017 *Horticulture Journal* 27 69–78
[16] Pamuna K, D Saiful and YS Pata’dungan 2013 *J. Agrotekbis.* 123–29
[17] Sukarman and A Dariyah 2014 *Andisol in Indonesia, characteristics, potential, constraints and management for agriculture* (Bogor:Center for Agricultural Land Resources Research and Development)
[18] Khatarina R 2006 *J. Indonesian Agricultural Sciences*. 1125–31