Magnetotransport properties of 2D fermionic systems with \(k\)-cubic Rashba spin–orbit interaction

Alestin Mawrie, Tutul Biswas and Tarun Kanti Ghosh

Department of Physics, Indian Institute of Technology-Kanpur, Kanpur-208 016, India
E-mail: amawrie@iitk.ac.in

Received 26 May 2014, revised 13 August 2014
Accepted for publication 15 August 2014
Published 11 September 2014

Abstract

The spin–orbit interaction in heavy hole gas formed at \(p\)-doped semiconductor heterojunctions and electron gas at SrTiO\(_3\) surfaces is cubic in momentum. Here we report magnetotransport properties of \(k\)-cubic Rashba spin–orbit coupled 2D fermionic systems. We study longitudinal and Hall components of the resistivity tensor analytically as well as numerically. The longitudinal resistivity shows a beating pattern due to different Shubnikov-de Haas (SdH) oscillation frequencies \(f_{\pm}\) for spin-up and spin-down fermions. We propose empirical forms of \(f_{\pm}\) as exact expressions are not available, which are being used to find locations of the beating nodes. The beating nodes and the number of oscillations between any two successive nodes obtained from exact numerical results are in excellent agreement with those calculated from the proposed empirical formula. In the Hall resistivity, an additional Hall plateau appears between the two conventional ones as the spin–orbit coupling constant increases. The width of this additional plateau increases with spin–orbit coupling constant.

Keywords: spin–orbit coupling, quantum wells, quantum hall effects, III-V semiconductors

(Some figures may appear in colour only in the online journal)

1. Introduction

The spin degeneracy of a charge carrier in condensed matter systems is a result of spatial inversion symmetry and time-reversal symmetry together. The spin degeneracy is lifted if one of the symmetries is absent. The electric field normal to the interface of a III-V semiconductor quantum well (such as GaAs/AlGaAs heterostructure) breaks the spatial inversion symmetry. The symmetry breaking electric field gives rise to spin–orbit interaction (SOI) which breaks the spin degeneracy even in the absence of an external magnetic field. The dominant SOI in 2D electron gas (2DEG) formed at the interface of GaAs/AlGaAs heterostructure is linear in momentum and it is known as Rashba SOI [1, 2]. Moreover, the Rashba SOI strength can be controlled with the help of an external bias [3–5]. The SOI is essential to control and manipulate the spin degree of freedom of a charge carrier. After the proposal of spin field effect transistor by Datta and Das [6], a large number of theoretical and experimental studies have been performed in the emerging field of spintronics [7–9] for the possibility of detecting pure spin current. The Rashba SOI need not always be linear in momentum. There are a couple of systems where the Rashba SOI is cubic in momentum. Two such systems are 2D hole gas (2DHG) [10–13] formed at \(p\)-doped GaAs/AlGaAs heterojunction and 2DEG at SrTiO\(_3\) surfaces [14, 15]. Very recently, it was reported in [16] that \(k^3\) SOI is dominating in a 2D hole gas formed in a strained Ge/SiGe quantum well.

In general, \(4 \times 4\) Luttinger Hamiltonian [17, 18] describes 2DHG formed at \(p\)-doped semiconductor quantum well. At a very low temperature and low density only the lowest heavy hole (HH) sub-bands are occupied. The projection of \(4 \times 4\) Luttinger Hamiltonian onto the HH states \([3/2, \pm 3/2]\) leads to an effective \(k\)-cubic [11, 12] Rashba SOI. This SOI opens up a gap \(\Delta_{so} = 2\alpha k_F^2\) (where \(\alpha\) is the Rashba spin–orbit coupling constant and \(k_F\) is the Fermi wave vector) between two spin-split heavy hole sub-bands. This spin splitting has been observed experimentally [19] for holes in C-doped \(p\)-type GaAs/AlGaAs quantum well and the value of \(\Delta_{so}\) is also extracted by analyzing the beating pattern in the SdH
oscillations as well as by using the weak anti-localization method. Recently, a number of investigations have been performed to explore various properties of 2DHG like effective mass [20–22], effective g factor [23], spin polarization [24], spin rotation [25], etc. Most importantly, spin Hall effect [12, 26–31] in 2DHG has been studied experimentally as well as theoretically.

Conversely, three 3D orbitals (\(t_{2g} : d_{xy}, d_{xz}, d_{yz} \)) of a Ti ion form the conduction band [32, 33] of SrTiO3 crystal. The 3D orbitals at the surface are confined in the z-direction which is normal to the interface. As a result, it yields a 2DEG. The lowest energy states of the bulk SrTiO3 are fourfold degenerate bands, corresponding to the states \([3/2, \pm 3/2]\) and \([3/2, \pm 1/2]\). Various studies [34, 35] suggest that the confinement along the z direction lifts the \(\Gamma \)-point degeneracy between the \(d_{xy} \) band and \(d_{xz}, d_{yz} \) bands. Within the effective tight-binding Hamiltonian for \(t_{2g} \) bands of SrTiO3 surfaces, the Rashba SOI is cubic in momentum. There is experimental evidence [14] of \(k \)-cubic Rashba SOI on SrTiO3 surfaces.

In this work, we study magnetotransport coefficients of fermions with \(k \)-cubic Rashba spin–orbit interaction. The longitudinal conductivity which arises entirely due to the collision or hopping process exhibits beating patterns. We provide two empirical frequencies \(f_{\pm} \) of quantum oscillations of spin-up and spin-down fermions, which are responsible for the beating pattern. At higher values of magnetic field, the beating pattern is replaced by a resistivity peak. As \(\alpha \) increases, the peak in the resistivity splits into two asymmetric ones. On the other hand, Hall conductivity shows the conventional plateau structure. With the increase of \(\alpha \) an additional plateau arises between two conventional ones. The width of this additional plateau increases with \(\alpha \).

This paper is organized as follows. In section 2, we present the basic information about the \(k \)-cubic spin–orbit coupled fermions. In section 3, analytical calculations for the different transport coefficients are given. Numerical results and discussion are presented in section 4. We summarize our results in section 5.

2. Basic information

The Hamiltonian for a fermion with \(k \)-cubic spin–orbit interaction in the presence of a magnetic field \(\mathbf{B} = B\mathbf{z} \) is given by [36, 37]

\[
H = \frac{\hbar^2}{2m^*} + \frac{i\alpha}{2\hbar^{\lambda}} \left(\Pi_3^{\lambda} \sigma_+ - \Pi_3^{\lambda} \sigma_- \right) - \frac{3}{2} g^{*} \mu_B \sigma \cdot \mathbf{B},
\]

(1)

where \(\Pi = \mathbf{p} - e\mathbf{A} \) with \(\mathbf{A} \) is the vector potential, \(m^* \) is the effective mass of the fermion and \(\alpha \) is the Rashba spin–orbit coupling constant. Also, \(\Pi_3 = \Pi_1 \pm i\Pi_2, \sigma_\pm = \sigma_x \pm i\sigma_y \), with \(\sigma_i \)'s are the Pauli matrices, \(g^* \) is the effective Lande-g factor and \(\mu_B \) is the Bohr magneton.

Using the Landau gauge \(\mathbf{A} = (0, xB, 0) \), the Hamiltonian given by equation (1) commutes with \(p_z \), i.e. \(k_z \) is a good quantum number in this case. The energy eigenvalue for \(n \geq 3 \) is given by

\[
E_n^x = \hbar\omega_c \left[n + 1 + \sqrt{E_{xc}^x + E_0^x} \right],
\]

(2)

where \(\lambda = \pm, E_0^x = 3/2 - \chi \) with \(\chi = 3g^{*}m^*/(4\hbar^2) \), \(E_{xc} = \alpha/8n(n-1)(n-2) \). Here \(\alpha \) is defined as \(\alpha = l_0/l_c \) with \(l_0 = m^*/\hbar^2 \) and \(l_c = \sqrt{\hbar^2/(eB)} \) is the magnetic length. The corresponding eigenstates for positive and negative branches are given by

\[
\psi_{n,k_x}^+(x, y) = \frac{e^{ik_x y}}{\sqrt{L_y A_n}} \left(\phi_n(X) \right)
\]

and

\[
\psi_{n,k_x}^-(x, y) = \frac{e^{ik_x y}}{\sqrt{L_y A_n}} \left(-D_n \phi_n(X) \right)
\]

(3)

where \(L_y \) is the system length along y-direction, \(X = x - x_c \) with \(x_c = k_x l_0^2 \) and \(A_n = 1 + D_n^2 \) with \(D_n = E_n/\left(E_0 + \sqrt{E_{xc}^x + E_0^x} \right) \). Here \(\phi_n(x) \) is the oscillator wave function of order \(n \).

For \(n < 3 \) there is only one branch (+ branch). In this case the eigenvalues and eigenfunctions are given by

\[
E_n = \hbar\omega_c (n + 1/2 - \chi)
\]

(4)

and

\[
\psi_{n,k_x}^+(x, y) = \frac{e^{ik_x y}}{\sqrt{L_y}} \phi_n(X) \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]

(5)

The derivation of the energy spectrum and the corresponding eigenfunctions are given in appendix A.

3. Derivation of magnetotransport coefficients

In this section, we calculate both the longitudinal and transverse components of conductivity tensor using the Kubo formula [38]. The longitudinal conductivity contains diffusive and collisional contributions. In the presence of a perpendicular magnetic field, the diagonal matrix elements of the velocity operator become zero which in turn causes the vanishing of diffusive conductivity. Therefore, the longitudinal conductivity is solely due to the collisional contribution.

Collisonal conductivity: At a low temperature, one can safely assume that fermions are elastically scattered by charged impurities distributed uniformly over the system. The expression for collisional conductivity is given by [39–43]

\[
\sigma_{xx}^{coll} = \frac{\beta e^2}{\Omega} \sum_{\xi, \xi'} f(E_{\xi}) (1 - f(E_{\xi}')) W_{\xi\xi'} (x^x - x'^x)^2.
\]

(6)

Here \(|\xi| = |n, k_x, \lambda| \) defines a set of all quantum numbers, \(\Omega \) is the surface area of the 2D system, \(f(E_{\xi}) = 1/(\exp(E_{\xi} - \mu)/\beta + 1) \) is the Fermi distribution function with \(\beta = 1/(k_BT) \) and \(x^x = \langle \xi | x | \xi' \rangle = k_x l_0^2 \) is the expectation value of the \(x \) component of the position operator. Finally, the transition probability between two states \(|\xi \rangle \) and \(|\xi' \rangle \) is given by

\[
W_{\xi\xi'} = \frac{2\pi n_{imp}}{\hbar^2} \sum_q |U(q)|^2 |F_q\xi|^2 \delta(E_{\xi} - E_{\xi'}).
\]

(7)
where \(n_{im} \) is the impurity density and \(U(q) = e^2/(2e_0\epsilon(q^2 + k_{\perp}^2) \) is the Fourier transform of the screened Yukawa-type impurity potential \(U(r) = e^2\epsilon^{-k_r}/(4\pi\epsilon_0 dr) \) with \(\epsilon, e_0 \) and \(k_r \) as the dielectric constant of the medium, the vacuum permittivity and the screened wave vector, respectively. The term \(F_{k,q} = (\xi e^{i\eta q})(e^{i\xi q}) \) is called form factor whose complete expression is given in appendix B. Since the term \(F_{k,q} \) is proportional to \(\eta : k, q, \), the summation over \(k^2 \) in equation (7) can be easily evaluated with the replacement of \(k_r^2 \) by \(k_r + q_r \) and we have \((x^2 - x^2) = q_{21}^2k^2_r = q_{21}^2k^2_r \sin^2 \phi \). The delta function in equation (8), \(\delta(E_{k} - E_{n}) = \delta(E_{n}^2 - E_{k}^2) \), ensures the possibilities of only intra-branch and intra-level scattering i.e. \(n' = n \) and \(\lambda' = \lambda \). Again \(\delta(E_{n} - E_{n}^*) \) can be written in its usual Lorentzian representation, i.e. \(\delta(E_{n}^2 - E_{n}^{*2}) = (1/\pi)/\Gamma/(E_{n}^2 - E_{n}^{*2})^2 + \Gamma^2 \) with \(\Gamma \) is the impurity induced Landau level broadening. We also have \(\sum_{n} \rightarrow \Omega/(2l_{2}^2) \) and \(\sum_{\eta} \rightarrow (\Omega/(2\pi l_{2}^2)) \int dq dq' d\phi \). So by inserting equation (8) and after doing all the summations, one can obtain the following expression of the collisional conductivity:

\[
\sigma_{xx}^{\text{coll}} = \frac{e^2 \beta n_{i} l_{2}^2 U_{0}^2}{2\pi \Gamma} \sum_{n,\lambda} \int dq q^3 |F_{nk}^{|c}(q)|^2. \tag{9}
\]

In deriving equation (9), we have used the following approximation \(|U(q)| \simeq U_{0} = e^2/(2e_0\epsilon k_r) \), since \(q \ll k_r \). Using the fact \(n_{im} U_{0}^2 \sim (\Gamma l_{2}^2)/(4\pi) \), we finally have

\[
\sigma_{xx}^{\text{coll}} = \frac{e^2 \beta \Gamma}{4\pi^2} \sum_{n,\lambda} \int dq q^3 |F_{nk}^{|c}(1 - f(E_{n})|f(E_{n}^*)| I_{n}^2, \tag{10}\]

where \(I_{n}^2 = \int_{0}^{\infty} u du|F_{nm}(u)|^2 \). It is straightforward to evaluate the expression of \(I_{n}^2 \) as given by \(I_{n+3} = 2n+1 \) and \(I_{n+3} = [(2n-2-\lambda^3)(D_{n}^2 + 1) + \lambda 6]/A_{n}^2 \).

Hall conductivity: The expression for the Hall conductivity \(\sigma_{xy} \) is given by [41-43]

\[
\sigma_{xy} = \frac{\pi e^2}{\Omega} \sum_{\xi,\xi'} \langle \xi | v_x | \xi' \rangle \langle \xi' | v_x | \xi \rangle \frac{f(E_{\xi}) - f(E_{\xi}^*)}{(E_{\xi} - E_{\xi}^*)^2}. \tag{11}\]

The matrix elements of the components of the velocity operator are given in appendix C. By virtue of the Kronecker delta symbols in equations (C.3)-(C.10), it is confirmed that the transitions are only allowed between the adjacent Landau levels \(n' = n \pm 1 \). We mention here that inter-branch transitions are also possible along with the intra-branch scattering. Therefore, the summation in equation (11) can be split into four terms as \(\sigma_{xy} = \sigma_{++} + \sigma_{--} + \sigma_{+} - \sigma_{-} \), where the first two terms correspond to the intra-branch transition and the last two terms correspond to the inter-branch transition. Setting \(E_{n}^* = E_{n}^{|c}/(\hbar\omega) \), the total Hall conductivity is given by

\[
\sigma_{xy} = \frac{e^2}{h} \sum_{n=0}^{2}(n+1)\left|f(E_{n}) - f(E_{n+1})\right| + \sum_{\lambda,\eta=0} C_{\eta} \frac{f(E_{n+1}^{|c}) - f(E_{n+1}^{|i})}{(E_{n+1}^{|c} - E_{n+1}^{|i})^2} + C_{n} \frac{f(E_{n+1}^{|c}) - f(E_{n+1}^{|i})}{(E_{n+1}^{|c} - E_{n+1}^{|i})^2}\tag{12}\]

where \(C_{+} = B_{+}, C_{-} = K_{-}, C_{2} = B_{2}^{|c} \) and \(C_{-} = K_{2}^{|c} \) are given in appendix B.

4. Numerical results and discussion

In this section, we shall present numerical results of equations (10) and (12). Typical system parameters of p-type GaAs/AlGaAs heterostructure and SrTiO\(_3\) materials are summarized here. For 2DHG, \(n_{f} = \frac{2}{3} \times 10^{15} \text{ m}^{-2} \) is the charge carrier density, \(m^{*} = 0.41m_{0} \) with \(m_{0} \) as the free electron mass and \(g^{*} = 6.5 \). For SrTiO\(_3\) materials [14, 44], \(n_f = 2.4 - 4.7 \times 10^{16} \text{ m}^{-2}, \ m^* = 1.5m_0 \) and \(g^* = 2 \). The Landau level broadening is assumed to be \(\Gamma = 0.01 \text{ meV} \). Note that \(\Gamma \ll \Delta_{so} \ll \hbar\omega_e \) [45] so that \(\Gamma \) does not blurne discrete spectrum completely. For various plots, we adopt the parameters of GaAs/AlGaAs heterostructure.

Earlier the spin-splitting and hence the value of \(\alpha \) was determined from the difference between the two spin-split heavy hole subband densities [13, 19]. The population densities in the two spin-split sub-bands are measured by analyzing the Sdh oscillation frequencies [46]. In the present study, we give an alternative treatment for determining \(\alpha \) by simply counting the number of oscillations between two beating nodes.

In figure 1, we show the variation of \(\sigma_{xx} \) with the inverse magnetic field for two different values of \(\alpha: \alpha = 0.08 \text{ eVnm}^3 \) and \(\alpha = 0.048 \text{ eVnm}^3 \). Figure 1 clearly shows regular beating pattern formation in \(\sigma_{xx} \). Unlike the case of 2DEG with Rashba SOI [47], it is not possible to get an analytical expression of the density of states of Landau levels for 2D fermions with \(k \)-cubic Rashba SOI. It hinders to have a closed-form analytical expression of \(\sigma_{xx} \). At the same time, exact positions of the nodes would help us to determine the value of \(\alpha \). To obtain the exact locations of the nodes as shown in figure 1, we model \(\sigma_{xx} \) as

\[
\sigma_{xx} \propto \cos(2\pi f_{s}/B) \cos(2\pi f_{d}/B), \tag{13}\]

where \(f_{s} = (f_{s} + f_{s})/2 \) and \(f_{d} = (f_{s} - f_{s})/2 \) with \(f_{s} \) are the Sdh oscillation frequencies for spin-up and spin-down fermions.

Careful observations reveal that the Sdh oscillation frequencies for spin-up and spin-down electron in spin-orbit coupled 2DEG are directly related to the spin-split Landau levels. The approximate Sdh oscillation frequencies can be obtained by setting \(n = n_{f} \), where \(n_{f} \) is the Landau level quantum number corresponding to the Fermi energy \(E_{F} \) in the spin–split Landau levels. Using the same analogy for \(k \)-cubic spin–orbit coupled systems, we propose that \(f_{s} \) will have the following forms

\[
f_{s} = \frac{m^{*}}{\hbar e} \left(E_{0}^{d} \pm \sqrt{8\pi^{2}(m^{*}E_{0}^{d})^{2} + E_{0}^{2}} \right), \tag{14}\]

where \(E_{0}^{d} = (\hbar k_{0}^{2})/(2m^{*}) \) with \(k_{0}^{2} = \sqrt{2\pi n_{f}} \).

Now the beating nodes are simply given by \(2f_{s}/B_{j} = (j + 1/2) \) with \(j = 1, 2, ... \). Using equation (14), we obtain the locations of the nodes at

\[
\frac{1}{B_{j}} = \frac{e\hbar}{8\pi n_{f} m^{*}} \sqrt{\frac{(2j + 1)^{2} - 4(3 - 2\chi)^{2}}{2\pi n_{f}}}. \tag{15}\]
The number of oscillations between any two successive nodes is given by

$$N_{\text{osc}} = f_a \Delta \left(\frac{1}{B} \right) = \left(\frac{m^* E_0^3}{\hbar e} \right) \left(\frac{1}{B_j} - \frac{1}{B_{j+1}} \right).$$ \hspace{1cm} (16)

It is straightforward to find the expression for α by solving equations (15) and (16) as

$$\alpha = A \left(\sqrt{(2j + 3)^2 - C^2} - \sqrt{(2j + 1)^2 - C^2} \right),$$ \hspace{1cm} (17)

where $A = \hbar^3/(N_{\text{osc}} \sqrt{128m^3E_0^6})$ and $C = 2(3 - 2\chi)$.

Let us now check whether the results for the locations of nodes and for the number of oscillations N_{osc}, given by equations (15) and (16), obtained based on empirical expressions for f_a match with the exact numerical results given in figure 1. The positions of nodes calculated from both approaches are summarized in table 1. Moreover, the inset of figure 1 shows the number of oscillations between two successive beating nodes. As seen from the inset, there are 5 and 9 oscillations between 3rd and 4th nodes in figures 1(a) and 1(b), respectively, which are the same as those calculated from equation (16). Again, the calculated strength of Rashba SOI (α) taking $j = 3$ in equation (17) are $\alpha = 0.0799 \text{eVnm}^3$ and $\alpha = 0.0473 \text{eVnm}^3$, respectively. Thus, the numerical and approximate results are in excellent agreement.

To see the high magnetic field behavior of the longitudinal resistivity, it is convenient to plot ρ_{xy} versus magnetic field B. In figure 2, we plot longitudinal resistivity ρ_{xy} versus magnetic field B for different values of α. The height of the peaks in the SdH oscillations reduces with the increase of α. It shows that at low B field ($B < 0.5 \text{T}$), the regular beating pattern appears in the SdH oscillations. At a high magnetic field, the SOI effect is reduced and the resistivity peaks split into two, instead of showing the regular beating pattern.

Figure 3 shows the variation of the Hall resistivity ρ_{yx} versus magnetic field B for two different values of α. One can see that the integer quantum Hall plateaus occur at $\hbar/(e^2N)$, where N is an integer. It is interesting to note that as α increases, there is an additional plateau at $\hbar/(e^2(N + 1/2))$ appearing between any two conventional plateaus. On the other hand, one can find from the inset of figure 3 that the width of the additional plateau increases with increasing α. In figure 3, we also plot $d\rho_{yx}/dB$ versus B as shown by a thin line. The sudden jump in the conventional Hall resistivity is characterized by the peaks in $d\rho_{yx}/dB$. These peaks split into two when additional plateaus appear due to Rashba SOI.

5. Summary

We have studied quantum magnetotransport coefficients of k-cubic Rashba spin–orbit coupled 2D fermionic systems. Our numerical analysis shows the appearance of beating patterns in the SdH oscillations. By drawing an analogy with the Rashba spin–orbit coupled 2DEG at heterostructure, we proposed empirical forms of the oscillation frequencies of the spin-split fermions. It yields excellent matching of the locations of the nodes and number of oscillations between any two successive nodes obtained from the exact numerical calculations. Contrary to the complicated expression (see equation 6.39 in [13]) for determining a spin–orbit coupling constant, we have obtained alternative and simple expressions (see equation (17) in this article) to determine it. The longitudinal resistivity

Table 1. Beating nodes calculated from equation (15) and obtained from figure 1 are tabulated here.

α	0.048 eVnm3	0.080 eVnm3		
j	Figure 1(b)	Equation (15)	Figure 1(a)	Equation (15)
1	2.730	2.375	1.710	1.425
2	4.960	4.861	3.070	2.916
3	7.075	7.114	4.260	4.268
4	9.295	9.305	5.550	5.583
5	---	---	6.675	6.882
6	---	---	8.010	8.172
7	---	---	9.340	9.458

Figure 1. Plot of σ_{xx} as a function of $1/B$. The upper panel (a) is for $\alpha = 0.080 \text{eVnm}^3$ and the lower panel (b) is for $\alpha = 0.048 \text{eVnm}^3$. The oscillations between 3rd and 4th nodes are shown in the insets.
peaks split into two unequal peaks at a high magnetic field. We also found additional Hall plateaus between any two integer quantum Hall plateaus. The appearance of additional Hall plateaus is due to the spin–orbit interaction. The width of this additional plateau increases with the spin–orbit coupling.

Appendix A. Energy spectrum

Here we shall derive the energy spectrum and the corresponding eigenstates of the Hamiltonian H given by equation (1). With the choice of the Landau gauge $A = (0, xB, 0)$, k_r is a good quantum number since $[H, k_r] = 0$. It allows us to write the wave function as $\psi(x, y) \sim e^{ik_yy}\Phi(x)$. Now the Hamiltonian H can be expressed as

$$H = \left(a^+a + \frac{1}{\sqrt{8\alpha}} - \alpha \right) \hbar\omega_c.$$ \hspace{1cm} (A.1)

where $a^+=-i\frac{\partial}{\partial x}$ and $a=i\frac{\partial}{\partial x}$ are the ladder operators such that $a^+\phi_n = \sqrt{n+1}\phi_{n+1}$ and $a\phi_n = \sqrt{n}\phi_{n-1}$, respectively. Here,

$$\phi_n(X) = \frac{1}{\sqrt{\sqrt{\pi}2^n n!}}H_n(X/l_c)e^{-X^2/2l_c^2}$$

are the harmonic oscillator states with $H_n(X)$ being the Hermite polynomial of order n, $X = x - x_c$.

As seen from equation (A.1), one can take one of the following forms for the wave function $\Phi(X)$:

$$\Phi(X) = \left(\phi_n(X) \right) \text{ or } \Phi(X) = \left(D\phi_n(X) \right)$$ \hspace{1cm} (A.2)

which is valid for $n \geq 3$.

Substituting equation (A.2) in the time-independent Schroedinger equation $H\Phi(x) = E\Phi(x)$, we get

$$n + 1/2 - \chi + D\tilde{E}_{\alpha n} = \epsilon_n$$ \hspace{1cm} (A.3)

and

$$D'(n + 1/2 - \chi) + \tilde{E}_{\alpha n} + D(n - 3 + 1/2 + \chi) = D\epsilon_n$$ \hspace{1cm} (A.4)

where $\tilde{E}_{\alpha n} = \sqrt{8n(n-1)(n-2)}\alpha$ and $\epsilon_n = E_n/\hbar\omega_c$.

Figure 2. Plot of the collisional resistivity ρ_{yy} as a function of magnetic field B for $\alpha = 0.04 \text{ eVnm}^3$ (solid green) and $\alpha = 0.10 \text{ eVnm}^3$ (dashed red). Inset shows the beating patterns in the low magnetic field range.

Figure 3. Plot of the Hall resistivity ρ_{yx} versus B for $\alpha = 0.04 \text{ eVnm}^3$ (solid green) and $\alpha = 0.10 \text{ eVnm}^3$ (dashed red). The curve shown in a blue thin line is the plot of $d\rho_{yx}/dB$ for $\alpha = 0.10 \text{ eVnm}^3$. In the inset, the width of the additional plateau is plotted versus α around $B = 1.2 \text{T}$.
By solving either equations (A.3) or (A.4), we get the same energy spectrum
\[
E_n^\pm = \hbar \omega_s \left[n + 1 + \lambda \sqrt{\frac{E_{na}^2 + E_0^2}{2}} \right].
\] (A.5)
where \(\lambda = \pm \) and \(E_0 = 3/2 - \chi \).

Putting \(\varepsilon_n^+ = n + 1 + \sqrt{E_{na}^2 + E_0^2} \) in equation (A.3) and \(\varepsilon_n^- = n + 1 - \sqrt{E_{na}^2 + E_0^2} \) in equation (A.4), we get
\[
D = D_n = \frac{E_{na}}{E_0 + \sqrt{E_{na}^2 + E_0^2}}.
\] (A.6)
and \(D' = -D = -D_n \). The normalization factor is \(1/\sqrt{A_n} \) where \(A_n = 1 + D_n^2 \). Thus,
\[
\phi_n^+(X) = \frac{1}{\sqrt{A_n}} \left(\phi_n(X) \right)
\] (A.7)
and
\[
\phi_n^-(X) = \frac{1}{\sqrt{A_n}} \left(-D_n\phi_n(X) \right).
\] (A.8)
\[
\forall n < 3, \text{as there are no spin-split states, one can choose}
\[
\psi_{n,k}(x, y) = e^{ik_y/\sqrt{T_y}} \phi_n(x) \begin{pmatrix} 1 \\ 0 \end{pmatrix}.
\] (A.9)
which will similarly give us
\[
E_n = \left[n + 1 + \chi \right] \hbar \omega_s.
\] (A.10)

Appendix B. Form factors

The square of the form factors \(|F_{\xi,\eta}(q)|^2 \) for \(n \geq 3 \) are given by
\[
|F_{n,n'}^{++}(q)|^2 = \frac{1}{A_n A_{n'}} \frac{n'!}{n!} (-e^{-\delta_{\xi,\eta}})^{q_{\xi,\eta}}.
\] (B.1)
\[
\times \left[L_{n-n'}^0(u) + D_n D_{n'} M_{n,n'} \xi_{n,n'} L_{n'-3}^0(u) \right]^2.
\]
and
\[
|F_{n,n'}^{--}(q)|^2 = \frac{1}{A_n A_{n'}} \frac{n'!}{n!} (-e^{-\delta_{\xi,\eta}})^{q_{\xi,\eta}}.
\] (B.2)
\[
\times \left[D_n D_{n'} L_{n-n'}^0(u) + M_{n,n'} \xi_{n,n'} L_{n'-3}^0(u) \right]^2.
\]
where \(q = \sqrt{12}/\xi \) and
\[
M_{n,n'} = \frac{\sqrt{n(n-1)(n-2)/(n'(n'-1)(n'-2))}}{\Phi_{n,n}}.
\]
For \(n < 3 \), we have the following form
\[
|F_{nn}|^2 = e^{-\alpha} L_{n}^0(u).
\] (B.3)

Appendix C. Matrix elements of velocity operator

Using the Heisenberg equation of motion \(v_i = (1/i\hbar) [x_i, H] \), we calculate the following components of the velocity operator
\[
v_x = \frac{\Pi_x}{m^*} + \frac{3a}{2\hbar}\left(\sigma_x \Pi_y^2 \sigma_y \right) \] (C.1)
and
\[
v_y = \frac{\Pi_y}{m^*} + \frac{3a}{2\hbar}\left(\sigma_y \Pi_x^2 \sigma_y \right). \] (C.2)
The diagonal components of the velocity matrix elements are given by
\[
\langle \xi, + | v_x | \xi', + \rangle = ia(B_{n+1} \delta_{\xi',\xi} - B_n \delta_{\xi',\xi+1}), \] (C.3)
\[
\langle \xi, - | v_x | \xi', + \rangle = ia(K_{n+1} \delta_{\xi',\xi} - K_n \delta_{\xi',\xi+1}), \] (C.4)
\[
\langle \xi, + | v_x | \xi', - \rangle = -a(B_n \delta_{\xi',\xi-1} + B_{n-1} \delta_{\xi',\xi}), \] (C.5)
\[
\langle \xi, - | v_x | \xi', - \rangle = -a(K_n \delta_{\xi',\xi-1} + K_{n-1} \delta_{\xi',\xi}). \] (C.6)
The off-diagonal components of the velocity matrix elements are given by
\[
\langle \xi, + | v_y | \xi', - \rangle = ia(K_{n+1} \delta_{\xi',\xi} - K_n \delta_{\xi',\xi-1}), \] (C.7)
\[
\langle \xi, - | v_y | \xi', + \rangle = ia(B_{n+1} \delta_{\xi',\xi} - B_n \delta_{\xi',\xi-1}), \] (C.8)
\[
\langle \xi, + | v_y | \xi', + \rangle = a(B_n \delta_{\xi',\xi+1} + B_{n-1} \delta_{\xi',\xi}), \] (C.9)
\[
\langle \xi, - | v_y | \xi', - \rangle = a(K_n \delta_{\xi',\xi+1} + K_{n-1} \delta_{\xi',\xi}). \] (C.10)
\[
\text{where } B_n' = (G_n' + 6\alpha D_n \sqrt{n(n-1)})/\sqrt{A_n A_{n+1}}, \quad K_n' = (F_n' - 6\alpha D_n \sqrt{n(n-1)})/\sqrt{A_n A_{n+1}} \text{ with } G_n' = D_n \sqrt{(n+1)/2} + D_{n+1} \sqrt{(n-2)/2} \text{ and } F_n' = D_n D_{n+1} \sqrt{(n+1)/2} + \sqrt{(n-2)/2}.
\]

References

[1] Rashba E I 1960 Sov. Phys. Solid State 2 1109
[2] Bychkov Y A and Rashba E I 1984 J. Phys. C: Solid State Phys. 17 6039
[3] Nitta J, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335
[4] Matsuyama T, Kursten R, Meibner C and Merkt U 2000 Phys. Rev. B 61 15588
[5] Papadakis S J, De Poortere E P, Manoharan H C, Yau J B, Shayeagan M and Lyon S A 2002 Phys. Rev. B 65 245312
[6] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[7] Bandyopadhyay S and Cahay M 2008 Introduction to Spintronics (Boca Raton, FL: CRC press)
[8] Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[9] Fabian J, Matos-Abiague A, Ertler C, Stano P and Zutic I 2007 Acta Phys. Slovaca 57 565
[10] Winkler R 2000 Phys. Rev. B 62 4245
[11] Schliemann J and Loss D 2005 Phys. Rev. B 71 085308
[12] Bernevig B A and Zhang S C 2005 Phys. Rev. Lett. 95 016801
[13] Winkler R 2003 spin–orbit Coupling Effects in 2D Electron and Hole Systems (Berlin: Springer)
[14] Nakamura H, Koga T and Kimura T 2012 Phys. Rev. Lett. 108 206601
[15] Zhong Z, Toth A and Held K 2013 Phys. Rev. B 87 161102
[16] Moriya R, Sawano K, Hoshi Y, Masubuchi S, Shiraki Y, Wild A, Neumann C, Abstreiter G, Bougeard D, Koga T and Machida T 2014 Phys. Rev. Lett. 113 086601
[17] Luttinger J M and Kohn W 1955 Phys. Rev. 97 869
[18] Luttinger J M 1956 Phys. Rev. 102 1030
[19] Grbic B, Leturcq R, Ihn T, Ensslin K, Reuter D and Wieck A D 2008 Phys. Rev. B 77 125312
[20] Chiu Y T, Padmanabhan M, Gokmen T, Shabani I, Tutuc E, Shayegan M and Winkler R 2011 Phys. Rev. B 84 155459
[21] Lu T M, Li Z F, Tsui D C, Manfra M J, Pfeiffer L N and West K W 2008 Appl. Phys. Lett. 92 012109
[22] Nichele F, Pal A N, Winkler R, Gerl C, Wegscheider W, Ihn T and Ensslin K 2014 Phys. Rev. B 89 081306
[23] Winkler R, Papadakis S J, De Poortere E P and Shayegan M 2000 Phys. Rev. Lett. 85 4574
[24] Winkler R 2005 Phys. Rev. B 71 113307
[25] Pala M G, Governale M, Konig J, Zulicke U and Iannaccone I 2004 Phys. Rev. B 69 045304
[26] Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348
[27] Wunderlich J, Kaestner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204
[28] Wu M W and Zhou J 2005 Phys. Rev. B 72 115333
[29] Nomura K, Wunderlich J, Sinova J, Kaestner B, MacDonald A H and Jungwirth T 2005 Phys. Rev. B 72 245330
[30] Chen W Q, Weng Z Y and Sheng D N 2005 Phys. Rev. B 72 235315
[31] Kleinert P and Bryksin V V 2007 Phys. Rev. B 76 073314
[32] Mattheiss L F 1972 Phys. Rev. B 6 4718
[33] Bistritzer R, Kalsa G and MacDonald A H 2011 Phys. Rev. B 83 115114
[34] Popovic Z S, Satpathy S and Martin R M 2008 Phys. Rev. Lett. 101 256801
[35] Santander-Syro A F et al 2011 Nature 469 189
[36] Ma T and Liu Q 2006 Appl. Phys. Lett. 89 112102
[37] Zarea M and Ulloa S E 2006 Phys. Rev. B 73 165306
[38] Eliashberg G M 1962 Sov. Phys.—JETP 14 866
[39] Charbonneau M, van Vliet K M and Vasilopoulos P 1982 J. Math. Phys. 23 318
[40] Vasilopoulos P and Van Vliet C M 1984 J. Math. Phys. 25 1391
[41] Vasilopoulos P 1985 Phys. Rev. B 32 771
[42] Peeters F M and Vasilopoulos P 1992 Phys. Rev. B 46 4667
[43] Wang X F and Vasilopoulos P 2003 Phys. Rev. B 67 085313
[44] Caviglia A D, Gariglio S, Cancellieri C, Sacepe B, Fete A, Reyren N, Gabay M, Morpurgo A F and Triscone J M 2010 Phys. Rev. Lett. 105 236802
[45] Fogler M M and Shklovskii B I 1995 Phys. Rev. B 52 17366
[46] Yuan Z Q, Du R R, Manfra M J, Pfeiffer L N and West K W 2009 Appl. Phys. Lett. 94 052103
[47] Islam S K F and Ghosh T K 2012 J. Phys.: Condens. Matter 24 035302