Introduction

Lower cognitive function in dementia is a predictor of mortality [1–3], although this has primarily been described in severe impairment, and effects of milder dysfunction remain controversial [4–10]. Lower cognitive function in older people without dementia has also been found to be associated with higher mortality, although this again remains inconclusive [8,11–17] and evidence on interventions to prevent mortality remains limited [18]. A better understanding is therefore needed of factors influencing prognosis in older people with and without dementia to aid care planning and clinical decision making [8,18,19].

Depression is commonly comorbid with dementia, and associated itself with worse outcome [10,16,20], although the relationship between the two may be complex, with depression potentially a cause of dementia, a consequence, a prodromal symptom, and/or a condition with shared risk factors [20,21]. Some research has suggested that depression is an independent risk factor for mortality in people without dementia [10,22], although others have not found this [16], and the diagnosis of depressive disorder itself is recognised to be associated with elevated mortality risk particularly in older people [23].

In the study described here, we analysed data from a retrospective cohort aged 65 years and above, using information from a large secondary mental healthcare provider in southeast London. We hypothesised that lower cognitive function assessed by Mini-Mental State Examination (MMSE) would be an independent risk factor for mortality in those with dementia, depression and those with a psychiatric diagnosis other than dementia.
Methods

Study setting

The South London and Maudsley NHS Foundation Trust (SLAM) Case Register has been described in detail previously [24]. In brief, the Clinical Record Interactive Search (CRIS) program allows researchers to access full but anonymised data from a large electronic mental health records dataset [25]. Within the UK National Health Service, secondary mental health care is provided according to defined geographic catchment areas. SLAM is one of the largest mental health providers in Europe, delivering comprehensive secondary mental health services to a population of approximately 1.23 million residents in four London boroughs (Lewisham, Lambeth, Southwark, and Croydon), including outpatient/community, inpatient, and general hospital liaison services. Currently, there are records on over 220,000 cases accessed by CRIS and this database has been extensively utilised [26–28]. The SLAM Case Register has been approved as an anonymised data resource for secondary analyses by Oxfordshire Research Ethics Committee C (08/H0606/71+5) and governance is provided for all projects by a patient-led oversight committee.

Analysed sample

All cases with at least one MMSE score recorded during the period between 1st Jan 2007 and 31st Dec 2010 were first identified. This sample was restricted to cases aged at least 65 years.

Figure 1. Diagram of sample selection and diagnosis subgroups. doi:10.1371/journal.pone.0105312.g001
Table 1. Distribution of baseline covariates among clients of a secondary mental health service provider aged 65 years old or more and by psychiatric diagnoses.

Risk factors	Number (%)/mean ± SD			
	All (N = 6,704)	Dementia (n = 3,368)	Depression (n = 1,129)	Others (n = 2,207)
Age at MMSE assessment	80.24 ± 7.69	82.04 ± 7.00	77.97 ± 7.64	78.64 ± 8.06
Gender				
Female	4,116 (61.4%)	2,111 (62.7%)	717 (63.5%)	1,288 (58.4%)
Male	2,587 (38.6%)	1,256 (37.3%)	412 (36.5%)	919 (41.6%)
Ethnic group				
White	5,341 (79.7%)	2,715 (80.6%)	958 (84.9%)	1,668 (75.6%)
Black	757 (11.3%)	392 (11.6%)	83 (7.4%)	282 (12.8%)
East Asia	96 (1.4%)	41 (1.2%)	18 (1.6%)	37 (1.7%)
South Asia	165 (2.5%)	79 (2.4%)	23 (2.0%)	63 (2.9%)
Unknown/Mixed/Others	345 (5.1%)	141 (4.2%)	47 (4.2%)	157 (7.1%)
Marital status				
Married/Civil partner/Cohabitig	1,970 (29.4%)	1,056 (31.4%)	312 (27.7%)	602 (27.3%)
Single	954 (14.2%)	403 (12.0%)	161 (14.3%)	390 (17.7%)
Separated/Divorced	629 (9.4%)	249 (7.4%)	119 (10.6%)	261 (11.8%)
Widowed	2,530 (37.7%)	1,378 (40.9%)	446 (39.5%)	706 (32.0%)
Unknown	621 (9.3%)	282 (8.4%)	91 (8.1%)	248 (11.2%)
Area-level deprivation score				
1st tertile (1.63–22.16, the least deprived group)	2,202 (32.8%)	1,143 (34.0%)	329 (29.1%)	730 (33.1%)
2nd tertile (22.17–35.25)	2,137 (31.9%)	1,061 (31.5%)	362 (32.1%)	714 (32.4%)
3rd tertile (35.26–65.53, the most deprived group)	2,167 (32.3%)	1,075 (31.9%)	392 (35.7%)	700 (31.7%)
Missing	198 (3.0%)	89 (2.6%)	46 (4.1%)	63 (2.9%)
Cognitive function				
Non-impairment (MMSE: 30-25)	2,565 (38.3%)	530 (15.7%)	749 (66.3%)	1,286 (58.3%)
Impairment (MMSE: 24-0)	4,139 (61.7%)	2,838 (84.3%)	380 (33.7%)	921 (41.7%)
MMSE score in quintiles				
1st quintile (30-28)	1,259 (18.8%)	131 (3.9%)	445 (39.4%)	683 (31.0%)
2nd quintile (27-25)	1,306 (19.5%)	399 (11.9%)	304 (26.9%)	603 (27.3%)
3rd quintile (24-21)	1,454 (21.7%)	812 (24.1%)	202 (17.9%)	440 (19.9%)
4th quintile (20-16)	1,395 (20.8%)	1,003 (29.8%)	115 (10.2%)	277 (12.6%)
5th quintile (15-0)	1,290 (19.2%)	1,023 (30.4%)	63 (5.6%)	204 (9.2%)

doi:10.1371/journal.pone.0105312.t001
Table 2. Effect of baseline covariates and associations with mortality assessed by Cox regressions (N = 6,704).

Risk factors	Death (%)	Hazard Ratio (95% Confidence Interval)
	Crude	Adjusted
Age at MMSE assessment	–	1.05 (1.05, 1.06)* –
Gender		
Female	22.79	Ref
Male	28.64	1.35 (1.22, 1.48)*
Ethnic group		
White	27.20	Ref
Black	15.06	0.52 (0.43, 0.62)* 0.61 (0.50, 0.74)*
East Asia	14.58	0.51 (0.30, 0.86) 0.66 (0.39, 1.12)
South Asia	13.94	0.49 (0.33, 0.75)* 0.59 (0.39, 0.90)
Unknown/Mixed/Others	21.74	0.87 (0.69, 1.09) 0.94 (0.70, 1.11)
Marital status		
Married/Civil partner/Cohabiting	21.12	Ref Refa
Single	26.42	1.30 (1.11, 1.52)* 1.33 (1.13, 1.55)*
Separated/Divorced	16.69	0.77 (0.62, 0.95) 0.93 (0.75, 1.16)
Widowed	27.47	1.35 (1.20, 1.53)* 1.30 (1.14, 1.48)*
Unknown	33.98	1.59 (1.35, 1.88)* 1.50 (1.27, 1.78)*
Area-level deprivation score		
1st tertile (1.63–22.16, the least deprived group)	22.84	Ref Refb
2nd tertile (22.17–35.25)	26.16	1.11 (0.98, 1.25) 1.14 (1.02, 1.29)*
3rd tertile (35.26–65.53, the most deprived group)	26.81	1.20 (1.06, 1.35)* 1.26 (1.11, 1.42)*
Missing	18.18	0.78 (0.55, 1.09) 0.79 (0.66, 1.10)
Diagnosis of dementia		
No	22.12	Ref
Yes	27.94	1.28 (1.16, 1.41)* 1.08 (0.98, 1.19)
Diagnosis of depression		
No	24.57	Ref
Yes	26.39	1.11 (0.99, 1.25) 1.32 (1.17, 1.74)*
Cognitive function		
Normal (MMSE: 30-25)	19.10	Ref Refb
Impaired (MMSE: 24-0)	28.73	1.62 (1.46, 1.80)* 1.42 (1.28, 1.58)*
MMSE score	–	0.96 (0.95, 0.96) 0.96 (0.96, 0.97)*
MMSE score in quintiles		
1st quintile (30-28)	17.39	Ref Refb
2nd quintile (27-25)	20.75	1.20 (1.01, 1.44) 1.08 (0.90, 1.29)
3rd quintile (24-21)	32.31	1.38 (1.17, 1.64)* 1.23 (1.03, 1.46)
4th quintile (20-16)	29.32	1.84 (1.56, 2.17)* 1.54 (1.30, 1.83)*
5th quintile (15-0)	34.19	2.24 (1.90, 2.63)* 1.90 (1.60, 2.25)*

*aAge and gender adjusted.

1Adjusted for age at assessment, gender, ethnicity group, marital status, and index of deprivation score; HR = 1.23 (95% CI: 1.18, 1.28) for each quintile increment.

* P-value<0.01,

p-value<0.05.

1P-value of test for linear trend <0.001.
doi:10.1371/journal.pone.0105312.t002

old at the date of this MMSE record, and excluded those with a recorded delirium diagnosis (ICD-10 code: F05) within three months before or after the date of the MMSE assessment. MMSE scores recorded during routine clinical care were derived from dedicated structured fields on the electronic health record, supplemented by a specific information extraction application developed using Generalised Architecture for Text Engineering (GATE) software: a natural language processing architecture which takes into account the linguistic context of a word or phrase of interest, thus allowing structured data to be obtained from open-text fields. The specific GATE applications were developed by programmers and validated against human raters to extract and code MMSE scores and associated dates of assessment with a recall (sensitivity) of 97% and precision (positive predictive value)
Covariates and analysis subgroups

Mental disorder diagnoses are categorised in structured fields on the source clinical record according to World Health Organization International Classification of Diseases 10th edition (ICD-10) codes. In addition, a further GATE information extraction application identifies text strings associated with a diagnosis statement in correspondence fields, and this was used for additional searches on predefined diagnostic terms. The following groups were defined for analysis: 1) a group with dementia was defined on the basis of a diagnosis (ICD-10 codes F00–F03) recorded anywhere before or up to six months after the index MMSE assessment; 2) within the non-dementia group, a group with depression (F32–F33) anytime before or up to six months after the MMSE assessment was specified for analysis; 3) the remainder within the non-dementia group consisted of elders with other diagnoses before the MMSE assessment, including schizophrenia and related psychotic disorders (F20–F29), anxiety spectrum and stress-related disorders (F40–F48), bipolar affective disorder (F30–F31), and others. Demographic data included age (defined at the index MMSE) and gender. Ethnic group was classified from a structured field in the record as: i) white British and other white background; ii) African, Caribbean and other black background; iii) east Asian; iv) south Asian; and v) mixed, unknown, or others. Marital status was categorised from a structured field into: i) married, civil partner, or cohabiting; ii) single; iii) separated or divorced; iv) widowed; and v) unknown. Area-level socioeconomic status was estimated from an index of multiple deprivation applied to the UK Census lower super output area (standard geographic areas with an average 1,500 residents). This index is defined by seven domains assessed in the national Census: employment, income, education, health, barriers to housing and services, crime and the living environment. Indices were calculated from 2001 Census output and were divided by tertiles for this analysis.

Mortality outcome

The outcome of interest in this analysis was all-cause mortality occurring from January 2007 to the end of July 2011. Information about each death was collected through a nationwide mortality tracing linked to the SLAM database on a monthly routine basis. In UK, all death certifications are linked by NHS number (a unique identifier for each UK NHS service user) to all healthcare providers, keeping these records up to date.

Results

A total of 9,683 subjects were identified with at least one MMSE score during the period of 01/01/2007 to 31/12/2010. Of these, 230 with an MMSE denominator less than 25, 2,257 aged less than 65 years old, and 492 with diagnoses of delirium were excluded (Figure 1). Of the remaining 6,704 subjects in the analysed sample, the mean (SD) index MMSE score was 21.2 (6.6), and 1,679 (25.0%) died prior to the end of the follow-up (31/07/2011). Around half (n = 3,368; 50.2%) had a diagnosis of dementia, and in those without dementia (n = 3,336), depression was the most common primary diagnosis (n = 1,129; 33.8%) followed by 30.8% with schizophrenia and related psychotic disorders, 17.1% with anxiety spectrum and stress-related disorders, and 6.8% with bipolar affective disorder.

The mean (SD) follow-up period was 26.5 (14.8) months. Figure 2 illustrates Kaplan-Meier survival curves comparing groups with and without cognitive impairment stratified by diagnosis subgroups (dementia, depression, and others). In all three subgroups, the difference between MMSE groups was statistically significant (p < 0.001).
Cognitive Function and Mortality

Table 1 revealed the basic characteristics of the study subjects. In Table 2, the unadjusted analyses showed that older age and male gender were associated with lower survival. After adjustment for age and gender, mortality was significantly raised in those with a diagnosis of depression, but did not differ significantly between those with/without dementia. Mortality risk was significantly lower in black and south Asian compared to white groups, and was higher in single and widowed compared to married/cohabiting subjects. Higher deprivation score was associated with increased risk of mortality with a significant linear trend (p-value<0.001). A fully adjusted hazard ratio (HR) of 1.42 (95% CI: 1.28, 1.58) was identified for MMSE score<25. When MMSE score was divided into quintiles, a significant linear trend was evident for all subjects with a fully adjusted HR of 1.23 (95% CI: 1.18, 1.28) for each unit increment in quintiles of MMSE estimated (Table 2), as well as in those with dementia (Figure 3 left; fully adjusted HR 1.25, 95% CI: 1.18–1.33), without dementia (adjusted HR 1.18, 95% CI: 1.12–1.25) with depression but no dementia (Figure 3 middle; 1.21, 1.10–1.33), and with other non-dementia diagnoses but no depression or dementia (Figure 3 right; 1.19, 1.11–1.28).

Discussion

In total, 6,704 older subjects were included for analyses, with 61.4% for females, 3,368 of them diagnosed as dementia and 3,336 of them as depression or other mental disorders. No matter if a dementia diagnosis was given, people with impaired cognitive function (MMSE score<25) showed worse survival with statistical significance. Linear trends of MMSE in quintiles were found for the groups of dementia and other non-dementia diagnoses. Cognitive impairment has been suggested to be associated with increased mortality in community samples [29–32], but this relationship between cognitive impairment and mortality in clinical samples has not been clear. Using a large anonymised electronic database containing mental health records for a geographic catchment of approximately 1.23 million residents, we investigated the relationship between cognitive function and mortality risk in older people within a mean period of over 2 years. We found that MMSE score was a substantial predictor of mortality, regardless of diagnosis. However, although linear trends were found for the quintiles of MMSE scores for different diagnosis subgroups, there still appeared to be individual dose-response patterns in terms of their effects on mortality.

People with dementia are known to have higher mortality rates than general population, and increasing severity of dementia is also associated with increased risk of mortality [33]. As cognitive impairment itself is a core construct in dementia, cognitive impairment is unsurprisingly a predictor of mortality in dementia [1–3]. Our analysis supported this, in that lower MMSE scores strongly predicted subsequent mortality in people with a dementia diagnosis (Figure 2 left). However, the effect was noted to be similar in people without a dementia diagnosis (Figure 2 middle & right), as has also been suggested [34]. Several studies have found that people with severe mental disorders (schizophrenia, depression, schizoaffective disorder, and bipolar disorder) have a higher mortality rate and a shortened life expectancy, comparing to the general population [35–38], an association which was not statistically significant on log-rank tests (p-value<0.001) with similar patterns.

Reference patterns in terms of their effects on mortality.

Author Contributions

Conceived and designed the experiments: YPS CKC RS. Performed the experiments: YPS CKC GP MB DT. Analyzed the data: YPS CKC. Contributed reagents/materials/analysis tools: RDH MB DT MH. Wrote the paper: YPS CKC MH RS.

References

1. Paradise M, Walker Z, Cooper C, Blizard R, Regan C, et al. (2009) Prediction of survival in Alzheimer’s disease—the LASER-AD longitudinal study. Int J Geriatr Psychiatry 24: 739-747.

2. Walsh JS, Welch HG, Larson EB (1990) Survival of outpatients with Alzheimer-type dementia. Ann Intern Med 113: 429-434.
3. Bowser JD, Malter AD, Sheppard L, Kukull WA, McCormick WC, et al. (1996) Predictors of mortality in patients diagnosed with probable Alzheimer’s disease. Neurology 47: 433–439.

4. Bassuk SS, Wypij D, Berkman LF (2000) Cognitive impairment and mortality in the community-dwelling elderly. American journal of epidemiology 151: 676–688.

5. Kelman HR, Thomas G, Kennedy GJ, Cheng J (1994) Cognitive impairment and mortality in older community residents. American journal of public health 84: 1255–1260.

6. Park MH, Kwon DY, Jung JM, Han C, Jo I, et al. (2012) Mini-Mental Status Examination as predictors of mortality in the elderly. Acta psychiatrica Scandinavica.

7. Schaufele M, Bickel H, Weyerer S (1999) Predictors of mortality among demented elderly in primary care. International journal of geriatric psychiatry 14: 946–956.

8. Steenland K, MacNeil J, Seals R, Levy A (2010) Factors affecting survival of patients with neurodegenerative disease. Neuroepidemiology 35: 38–45.

9. Wilson RS, Aggarwal NT, Barnes LL, Bienias JL, Mendes de Leon CF, et al. (2009) Biracial population study of mortality in mild cognitive impairment and Alzheimer disease. Archives of neurology 66: 767–772.

10. Lavretsky H, Zheng L, Weiner MW, Mungas D, Reed B, et al. (2010) Association of depressed mood and mortality in older adults with and without cognitive impairment in a prospective naturalistic study. The american journal of psychiatry 167: 589–597.

11. Borjesson-Hanson A, Gustafson D, Skoog I (2007) Five-year mortality in relation to dementia and cognitive function in 95-year-olds. Neurology 69: 2009–2013.

12. Nguyen HT, Black SA, Ray LA, Espino DV, Markides KS (2003) Cognitive impairment and mortality in older mexican americans. Journal of the American Geriatrics Society 51: 178–183.

13. Stump TE, Callahan CM, Hendrie HC (2001) Cognitive impairment and mortality in older primary care patients. Journal of the American Geriatrics Society 49: 934–940.

14. Sachs GA, Carter R, Holtz LR, Smith F, Stump TE, et al. (2011) Cognitive impairment: an independent predictor of excess mortality: a cohort study. Annals of internal medicine 155: 300–308.

15. Brice ML, Hoff RA, Jacobs SC, Leaf PJ (1995) The effects of cognitive impairment on 9-year mortality in a community sample. The journals of gerontology Series B, Psychological sciences and social sciences 50: P289–296.

16. Kane KD, Vochim BP, Lachterman PA (2010) Depressive symptoms and cognitive impairment predict all-cause mortality in long-term care residents. Psychology and aging 25: 446–452.

17. Wolfe CD, Crichton SL, Heuschmann PU, Mckevitt C, Toschi E, et al. (2011) Estimates of outcomes up to ten years after stroke: analysis from the prospective South London Stroke Register. PLoS Med 8: e1001033.

18. Lee M, Chodosh J (2009) Dementia and life expectancy: what do we know? Journal of the American Medical Directors Association 10: 466–471.

19. Zanetti O, Solerte SB, Canton F (2009) Life expectancy in Alzheimer’s disease (AD). Archives of gerontology and geriatrics 49 Suppl 1: 237–243.

20. Jorm AF (2000) Is depression a risk factor for dementia or cognitive decline? A review. Gerontology 46: 219–227.

21. Park D, Park J, Jun JK (2013) Cognitive impairment, depression, comorbidity of the two and associated factors among the early sixties in a rural Korean community. PLoS One 8: e79460.

22. Schoevers RA, Geerlings MI, Deeg DJ, Holwerda TJ, Jonker C, et al. (2009) Depression and excess mortality: evidence for a dose response relation in community living elderly. International journal of geriatric psychiatry 24: 169–176.

23. Vilalta-Franch J, Planas-Pujol X, Lopez-Pouza S, Llinares-Regla J, Merino-Aguado J, et al. (2012) Depression subtypes and 5-year risks of mortality in aged 70 years: a population-based cohort study. International journal of geriatric psychiatry 27: 67–75.

24. Stewart R, Soremekun M, Perera G, Broadbent M, Callard F, et al. (2009) The South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLAM BRC) case register: development and descriptive data. BMC psychiatry 9: 51.

25. Fernandes AC, Cloete D, Broadbent MT, Hayes RD, Chang CK, et al. (2013) Development and evaluation of a de-identification procedure for a case register sourced from mental health electronic records. BMC medical informatics and decision making 13: 71.

26. Chang CK, Hayes RD, Broadbent M, Fernandes AC, Lee W, et al. (2010) All-cause mortality among people with serious mental illness (SMI), substance use disorders, and depressive disorders in southeast London: a cohort study. BMC psychiatry 10: 77.

27. Hayes RD, Chang CK, Fernandes AC, Begum A, To D, et al. (2012) Functional status and all-cause mortality in serious mental illness. PLoS one 7: e44613.

28. Wu CY, Chang CK, Hayes RD, Broadbent M, Hopof M, et al. (2012) Clinical risk assessment rating and all-cause mortality in secondary healthcare: the South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLAM BRC) Case Register. Psychological medicine 42: 1581–1590.

29. Jagger C, Clarke M (1998) Mortality risks in the elderly: five-year follow-up of a total population. Int J Epidemiol 17: 111–114.

30. Liu IV, LaCroix AZ, White LR, Kirmner SJ, Wolf PA (1990) Cognitive impairment and mortality: a study of possible confounders. Ann J Epidemiol 132: 136–143.

31. Gale CR, Markyn CN, Cooper C (1996) Cognitive impairment and mortality in a cohort of elderly people. BMJ: 608–611.

32. Neale R, Brayne C, Johnson AL, Medical Research Council Cognitive F, Ageing Study Writing C (2001) Cognition and survival: an exploration in a large multicentre study of the population aged 65 years and over. Int J Epidemiol 30: 1393–1398.

33. Todd S, Barr S, Roberts M, Passmore AP (2013) Survival in dementia and predictors of mortality: a review. Int J Geriatr Psychiatry 28: 1109–1124.

34. Sinforiani E, Zacchella C, Pasotti C (2007) Cognitive disturbances in non-demented subjects: heterogeneity of neuropsychological pictures. Archives of gerontology and geriatrics 44 Suppl 1: 375–380.

35. Chang CK, Hayes RD, Perera G, Broadbent MT, Fernandes AC, et al. (2011) Life expectancy at birth for people with serious mental illness and other major disorders from a secondary mental health care case register in London. PLoS One 6: e19590.

36. Hannerz H, Borga P, Borritz M (2001) Life expectancies for individuals with psychiatric diagnoses. Public Health 115: 328–337.

37. LeFevre T, Singh-Manoux A, Stringhini S, Dugravot A, Lemogne C, et al. (2012) Usefulness of a single-term measure of depression to predict mortality: the GAZEL prospective cohort study. Eur J Public Health 22: 643–647.

38. Lemogne C, Nabi H, Melchior M, Goldberg M, Limosin F, et al. (2013) Mortality associated with depression as compared with other severe mental disorders: a 20-year follow-up study of the GAZEL cohort. J Psychiatr Res 47: 851–857.

39. Khan A, Faucett J, Morrison S, Brown WA (2013) Comparative mortality risk in adult patients with schizophrenia, depression, bipolar disorder, anxiety disorders, and attention-deficit/hyperactivity disorder participating in psychology and pharmacological clinical trials. JAMA Psychiatry 70: 1091–1099.

40. Schoevers RA, Geerlings MI, Deeg DJ, Holwerda TJ, Jonker C, et al. (2009) Depression and excess mortality: evidence for a dose response relation in community living elderly. Int J Geriatr Psychiatry 24: 169–176.

41. Bosworth HB, Schaie KW, Wills SL (1999) Cognitive and sociodemographic risk factors for mortality in the Seattle Longitudinal Study. The journals of gerontology Series B, Psychological sciences and social sciences 54: P275–282.

42. Wolfson C, Wolfson DB, Aghashian M, MT Lan CE, Ostbye T, et al. (2001) A reevaluation of the duration of survival after the onset of dementia. The New England journal of medicine 344: 1111–1116.

43. Bruce ML, Hoff RA, Jacobs SC, Leaf PJ (1995) The effects of cognitive impairment on 9-year mortality in a community sample. J Gerontol B Psychol Sci Soc Sci 50: P289–296.

44. Sinits CH, Deeg DJ, Kriegsman DM, Schmand B (1999) Cognitive functioning and health as determinants of mortality in an older population. American journal of epidemiology 150: 978–986.

45. Zahodne LJ, Mandy J, MacKay-Brandt A, Stern Y (2013) Cognitive declines precede and predict functional declines in aging and Alzheimer’s disease. PLoS One 8: e73645.