Summertime distribution of PAN and other reactive nitrogen species in the northern high-latitude atmosphere of eastern Canada

H. B. Singh, D. Herlth, D. O'Hara, K. Zahnle, J. D. Bradshaw, S. T. Sandholm, R. Talbot, G. L. Gregory, G. W. Sachse, D. R. Blake, and S. C. Wofsy

Aircraft measurements of key reactive nitrogen species (NO, NO₂, HNO₃, PAN, PPN, NO₃⁻, NO₃⁻), C₁ to C₆ hydrocarbons, acetone, O₃, chemical tracers (C₂Cl₄, CO), and important meteorological parameters were performed over eastern Canada during July to August 1990 at altitudes between 0 and 6 km as part of an Arctic Boundary Layer Expedition (ABLE3B). In the free troposphere, PAN was found to be the single most abundant reactive nitrogen species constituting a major fraction of NOₓ and was significantly more abundant than NOₓ and HNO₃. PAN and O₃ were well correlated both in their fine and gross structures. Compared to data previously collected in the Arctic/subarctic atmosphere over Alaska (ABLE3A), the lower troposphere (0-4 km) over eastern Canada was found to contain larger reactive nitrogen and anthropogenic tracer concentrations. At higher altitudes (4-6 km) the atmospheric composition was in many ways similar to what was seen over Alaska and supports the view that a large-scale reservoir of PAN (and NOₓ) is present in the upper troposphere over the entire Arctic/subarctic region. The reactive nitrogen budget based on missions conducted from the North Bay site (missions 2-10) showed a small shortfall, whereas the budget for data collected from the Goose Bay operation (missions 11-19) showed essential balance. It is calculated that 15-20 ppt of the observed NOₓ may find its source from the available PAN reservoir. Meteorological considerations as well as relationships between reactive nitrogen and tracer species suggest that the atmosphere over eastern Canada during summer is greatly influenced by forest fires and transported industrial pollution.

INTRODUCTION

Northern high latitudes are of great interest to atmospheric scientists because of the high predicted sensitivity of this region to climatic change and the paucity of available data. Despite the remoteness of the Arctic/subarctic atmosphere, significant human influences are beginning to impact this region, especially in winter and early spring [Schnell, 1984; Rahn, 1985; Barrie, 1986; Jaffe et al., 1991]. Only a few studies of the high-latitude environment have been conducted and these generally have focused on the winter/spring Arctic haze period. The NASA Global Tropospheric Experiment (GTE) seeks to understand the atmospheric chemistry associated with the earth's major ecosystems [McNeil et al., 1983]. Recent GTE field measurements are now providing a large data base to investigate atmospheric photochemical and transport processes impacting the northern high latitudes. For example, aircraft flights during the Arctic Boundary Layer Expedition3A (ABLE3A) provided measurements of a large number of reactive nitrogen species, ozone, hydrocarbons, anthropogenic tracers and important meteorological parameters over Alaska and Greenland during the summer (July to August) of 1988 [Harriss et al., 1992]. Contrary to the commonly held view that the summer Arctic atmosphere is extremely clean [Barrie, 1986], this study showed that the Arctic/subarctic atmosphere was strongly affected by transported industrial pollution, high-latitude biomass burning, and incursions of stratospheric air [Sandholm et al., 1992; Singh et al., 1992a, b; Wofsy et al., 1992a].

ABLE3B was a follow up field expedition to ABLE3A. While ABLE3A concentrated its efforts in Alaska to characterize the Arctic and North Pacific air masses prior to their transport across North America, the ABLE3B study moved to the midcontinent and eastern regions of Canada during the summer (July to August) of 1990. Details about the experimental plan and the general study objectives are presented in the overview paper by Harriss et al. [this issue]. Aircraft measurements of important reactive nitrogen species (NO, NO₂, HNO₃, PAN, PPN, NO₃⁻, NO₃⁻), C₁ to C₆ hydrocarbons, acetone, aerosols, chemical tracers (C₂Cl₄, CO), and meteorological parameters were made. This paper and other complementary efforts [Sandholm et al., this issue; Talbot et al., this issue] describe various aspects of ABLE3B reactive nitrogen distributions and associated meteorology and compare these results with the previously published results from the Alaskan Arctic and subarctic atmosphere [Jacob et al., 1992; Sandholm et al., 1992; Singh et al., 1992a, b].
ABLE3B utilized a Lockheed Electra for all airborne measurements. Instrument installation and flight tests were performed at Wallops Island, Virginia. Aircraft missions were conducted from July 5 to August 15, 1990, primarily from North Bay (46.3°N, 79.5°W) and Goose Bay (53.3°N, 60.4°W), Canada. Eight missions of approximately 5-hour duration were flown out of North Bay (NB) to the Hudson-James Bay lowlands (50°-60°N, 80°-95°W). In addition, 10 missions were conducted out of Goose Bay (GB) to the Schefferville (55°N, 67°W) area, including missions to and from Frobisher Bay on the southern tip of Baffin Island (63°N, 68°W). Field missions were divided into generic types that included boundary layer flux measurements, midtropospheric distributions, and vertical profiles to 6-km altitude. A latitude of 35°-65°N over 60°-95°W longitude was covered during this experiment. A map of the geographical extent covered during the ABLE3B missions and a summary table of individual flights are provided in the overview papers by Harriss et al. [this issue] and Shipham et al. [this issue].

An instrument named PANK (PAN-aldehyde-ketone) was flown for the first time during the ABLE3B mission by investigators from the NASA Ames Research Center. The PANK instrument was designed to measure PAN (also PPN and C2Cl4) and selected aldehydes and ketones using a pair of airborne gas chromatographs. Results based on the measurements of aldehydes and ketones are discussed in a companion paper [Singh et al., this issue]. PAN was measured by electron-capture gaschromatography. With each PAN measurement it was also possible to simultaneously measure PPN and C2Cl4. Typically 150 ml of ambient air were collected through a window probe over a 90 s sampling period at a controlled -150°C temperature to obtain detection sensitivities of about 1 parts per trillion (ppt) for PAN, PPN, and C2Cl4. The experiment was substantially computer controlled and organic nitrogen analysis was performed every 6 min. PAN calibrations were performed by using a diffusion tube filled with liquid PAN in a n-tridecane matrix held at icewater temperature. Air was passed over the diffusion tube at a constant rate of flow to provide a calibration gas stream with PAN mixing ratios in the 10 to 20-ppt range. PAN in the exit stream was measured by using an NO3 detector equipped with a molybdenum oxide converter held at 375°C. A nylon filter was inserted in line to remove any traces of nitric acid. Calibration of this chemiluminescence system was accomplished by using both NO2 and NO standards that were intercompared with National Institute of Standards and Testing (NIST) primary standards. An on board dynamic dilution system was used to generate low parts per trillion mixing ratios of PAN. Instrument precision and accuracy are estimated to be ±10% and ±25%, respectively, at the 95% confidence level for PAN mixing ratios above 50 ppt. Details of this and similar techniques can be found elsewhere [Singh and Salas, 1983; Joos et al., 1986; Ridley et al., 1990; Singh et al., 1990, 1992a].

NO, NO2, and NOy were measured by a laser-induced-fluorescence (LIF) instrument developed by Sandholm et al. [1990, 1992]. In this instrument the 226-nm and 1.1 μm laser beams are colinearly combined and passed through three separate sample cells dedicated to ambient NO, NO2, and NOy detection. Measurement precision is estimated to be ±16% NO, ±20% NO2, and ±5% NOy for 3 min integration. Absolute accuracy is estimated to be ±15% NO, ±18% NO2, and ±15% NOy (at the 95% confidence limit). Nitric acid (HNO3) was measured by the mist chamber technique described by Talbot et al. [1990]. A recent intercalibration of the mist chamber HNO3 instrument with the National Oceanic and Atmospheric Administration (NOAA) nylon filter method and the National Center of Atmospheric Research (NCAR) Lind instrument showed agreement to within ±25% in the 100- to 1000-ppt range [Atlas et al., 1992]. Sampling times varied from 3 to 45 min for HNO3 with a limit of detection of 10 ppt. The overall uncertainty was estimated to be ±20% for concentrations ≥100 ppt increasing to ±30% for concentrations near the limit of detection (10 ppt). Instrumentation principles, sampling methods, sampling times, data precision and accuracy have been summarized in the overview paper by Harris et al [this issue].

RESULTS AND DISCUSSION

It is well known that nitrogen oxides play a central role in the chemistry of the atmosphere [Levy, 1971; Crutzen, 1979; Logan et al., 1981]. Reactive nitrogen chemistry is complex and is strongly influenced by the presence of organic reservoir species [Singh and Hansi, 1981; Calvert and Madronich, 1987; Singh, 1987; Kanakidou et al., 1991]. As stated earlier, a comprehensive set of reactive nitrogen measurements (NO, NO2, HNO3, PAN, PPN, NO3- and NOy) were made during the ABLE3B deployment. Different sampling periods were employed in these measurements. Several merged files containing matching data averaged within the PAN, HNO3 and NOy sampling windows were created for the purposes of data analysis. Where fast response data were available (e.g., CO and O3) 1-min data averages were employed. For NO, NO2, and NOy both 1.5- and 3-min sampling sets were used. In the analysis and interpretation that follows, all of these data files were used as appropriate. Nitric acid sampling window was the longest and data merged to this window were used in all cases involving HNO3. Missions 2-10 are used to describe North Bay (NB) measurements, missions 11-19 are used to describe Goose Bay (GB) measurements, and missions 20-22 were transit flights terminating at Wallops Island, Virginia. Since both ABLE3A and ABLE3B sampled Arctic/subarctic air in summer, largely over Alaska and eastern Canada, comparisons are made to reveal important differences in the large-scale atmospheric chemical structures.

The atmospheric composition of air over central/eastern Canada during ABLE3B was impacted by a variety of air masses containing forest fire smoke, industrial pollution, and stratospheric air. According to the meteorological classification for the first 18 ABLE3B missions, provided by Shipham et al. [this issue], forest fires impacted missions 4-9, 11-13, and 15-18, pollution possibly affected missions 4, 5, 10, 13, 16 and 17, and stratospheric influences could be seen in upper layers during missions 1-3, 5, 7-9, 12, 14, 16-18. Forest fires were both local (missions 7-9, 11) as well as remote (missions 4-7, 11-13, 15-17). Mission 6 provided a dramatic example of the influence of haze and smoke plumes transported over long distances and has been discussed in some detail by Shipham et al. [this issue]. High C2Cl4 mixing ratios further indicated that mission 11 was impacted by pollution as well but the flow of air was from the Northwest Atlantic. It is worth pointing out that C2Cl4 and CCl3F (CFC
conventional tracers of urban pollution, were often inconclusive indicators although some enhancement in C₂Cl₄ could be seen in missions 10, 11, 13, 16, and 20-22. The reason for this was that small source signatures superimposed on a large background could not be easily separated. In rare instances (upper levels in missions 14, 15, 17), Pacific air of mixed tropical/mid-latitude origin was also sampled. In short the atmosphere over central/eastern Canada was strongly influenced by a variety of complex sources. A further discussion of selected events has been provided by Browell et al. [this issue], Shipham et al. [this issue], Singh et al. [this issue], and Wofsy et al. [this issue].

Atmospheric Distributions: Mixing Ratios, Variabilities and Vertical Structures

Figure 1a shows the mean, minimum, and maximum mixing ratios of PAN measured during each of the ABLE3B missions. Mixing ratios for missions 2-10 (NB) and 11-19 (GB) are mostly in the range of 100-300 ppt with one mission in the NB series (mission 6) showing a mean PAN concentration of about 400 ppt. This value involved measurements in elevated haze and smoke plumes presumed to originate from biomass burning and distant Alaska fires [Shipham et al., this issue]. The two transit flights back to the United States (missions 21 and 22) also show a mean PAN concentration exceeding 400 ppt and maximum values exceeding 1200 ppt because of their proximity to anthropogenic sources.

The aircraft vertical profiles for the NB and GB missions were examined to determine the height of the planetary boundary layer (PBL). Using the measurements of air temperature, dew point, and potential temperature, the PBL varied from 1500 to 3000 m with a mean height and standard deviation of 2137 ± 651 m for NB and 2193 ± 361 m for GB. On the basis of this analysis, Figure 1b shows mean PAN mixing ratios for the 0-to-2-km mean PBL, the 2-to-4-km transition layer, and the 4-to-6 km free tropospheric layer. Mean mixing ratios in the PBL and transition layers are larger for the NB missions toward James Bay than for the Labrador missions to Schefferville and toward Frobisher Bay (GB). Free tropospheric values (4-6 km), however, are comparable. This supports the contention that the northern high-latitude upper troposphere is a relatively uniform, large-scale PAN reservoir [Singh et al., 1992a].

Figure 2 shows cumulative frequency distributions of mixing ratios for NOₓ, PAN, HNO₃, and NOₓ measured during (a) NB and (b) GB flights.
TABLE 1. Characteristic Weather Patterns Over Eastern Canada During the Arctic Boundary Layer Expedition (ABLE3B)

Mission	Position of 700 mbar Polar Vortex	Direction of Synoptic flow	Air Mass Character	Air Mass Origin
2, 3 (NB)	over or east of Hudson Bay	northerly	Arctic	Arctic islands
5, 6, 7 (NB)	north/NW of Hudson Bay	northwesterly	continental polar	western Canada/Alaska
4, 8, 9, 10 (NB)	far north of Hudson Bay	southerly to southwesterly	maritime	central/western United States
11, 14, 18, 19 (GB)	north of Hudson Bay	northwesterly to westerly	maritime polar	northern Canada
13, 15, 16, 17 (GB)	north of Arctic circle	southerly to southwesterly	maritime polar	central/eastern United States

* NB, North Bay; GB, Goose Bay.

900 ppt for NO$_2$, 20-60 ppt for NO$_x$, and 10-200 ppt for HNO$_3$. These numbers are smaller for the GB missions, especially for NO$_x$ (60-400 ppt) and HNO$_3$ (10-125 ppt). Also, 17% of the NO$_x$ data for the NB missions exceeded 1000 ppt, whereas only 5% of the GB series exceeded this value. Figures 1 and 2 show that mixing ratios sampled in the Hudson Bay lowlands during the NB missions were generally higher than those obtained in the Labrador area during the GB missions.

The meteorological conditions that prevailed during ABLE3B were examined to assess their impact on measurements from different air masses and wind (air trajectory) patterns [Shipham et al., this issue]. Using height contour analyses of the lower troposphere 700 mbar (3 km msl) constant pressure surface, several characteristic weather patterns were recognized. Table 1 lists the principal features of these patterns and the mission numbers to which they apply. Typically, the prevailing synoptic patterns pointed to the flow of Arctic/subarctic air from north to northwest and the flow of potentially anthropogenically perturbed air from the south to southwest. Generally, clean conditions were encountered during northerly flow of Arctic air and NW flow of polar air except for intermittent low-level smoke and haze layers (e.g., mission 6). Figure 3 shows the vertical distribution of PAN, HNO$_3$, and O$_3$ for NB missions 5 and 9. The vertical profiles are obtained by using the available measurements of PAN, HNO$_3$ (15-min sampling time), and O$_3$ (3-min sampling time) for one ascent and one descent made during mission 5 and for two ascents and two descents made during mission 9. The profile data were obtained between Moosonee and Churchill for mission 5 and between North Bay and Moosonee for mission 9. Lines connecting the PAN and HNO$_3$ data points are drawn for visual aid. Mission 5 is characteristic of clean NW flow, whereas mission 9 represents S-SW flow. Mission 5 was downwind of distant fires in Alaska and may have been minimally impacted. However, local fires did influence mission 9 at low altitudes and biomass burning was visible during the mission. Tropospheric (2-6 km) C$_2$Cl$_4$ mixing ratios (not shown) were also slightly larger during mission 9 (11±3 ppt) compared to mission 5 (9±1 ppt). (If the data are assumed to have a normal Gaussian distribution, the probability of finding C$_2$Cl$_4$ mixing ratios of ≥ 11 ppt would be 50% in the case of mission 9 but only 2% in the case of mission 5.) In Figure 3b and 3c the combined affect of forest fires and pollution is seen in the enhanced mixing ratios of HNO$_3$ and O$_3$ below 1-km altitude observed during mission 9. Figure 4 shows similar behavior for selected GB missions (missions 14 and 17), that included several ascents and descents in the same geographical area of Schefferville, illustrating the impact of southerly flow on PAN and O$_3$. During mission 14, air trajectories in the midtroposphere came from the west-northwest across the Hudson Bay and may have been over the Pacific 10-15 days prior, while during mission 17 they came from a southwesterly direction across the North Bay area. Once again, whereas mission 14 was free of forest fires, mission 17 was impacted by both pollution and upwind fires from Alaska. Upper level (4-6 km) C$_2$Cl$_4$ concentrations were significantly larger during mission 17 (16±3 ppt) compared to mission 14 (12±2 ppt) (also see Singh et al., [this issue]). In both study areas during ABLE3B pollution episodes were often superimposed on forest fires. No data on any unique tracers of forest fire plumes (e.g., CH$_3$Cl) were available.

Figure 5 shows all NB and GB measurements of PAN, NO$_x$, and O$_3$ plotted as a function of altitude. The high data points at 3-km altitude and above are associated with the presence of haze and smoke layers, pollution episodes, and in some cases, stratospheric intrusions. For example, in Figure 5b the PAN measurements above 600 ppt were all encountered during mission 11 when air impacted with smoke was sampled. Similarly, noted outliers in Figure 5a are all from missions 6 and 9 sampling air masses mixed with smoke plumes, and mission 10 sampling polluted air in turbulent cloudy weather. The situation with NO$_x$ outliers is virtually identical. Figure 6 shows the vertical distribution of PAN, NO$_x$, and NO$_y$ for the GB missions which have been filtered to exclude some obvious cases of pollution episodes (CO<105 parts per billion (ppb)). Neglecting the outliers, the odd nitrogen species and O$_3$ show an increase with height similar to that observed over the Arctic/subarctic region sampled over Alaska [Singh et al., 1992a, b]. Details of the O$_3$ distribution over eastern Canada have been provided by Anderson et al. [this issue]. Table 2 lists mean mixing ratios (±1σ) of species measured during ABLE3A and ABLE3B for the mean boundary layer (0-2 km), the transition layer (2-4 km), and the free tropospheric layer (4-6 km). Median mixing ratios are shown in Figure 7 for easy comparison. The measurements represent those made at the primary sites of Barrow and Bethel, Alaska, and North Bay and Goose Bay, Canada. Some of the salient differences are noted as follows:

1. In the boundary layer, mean (or median) mixing ratios of PAN for the NB and GB missions were larger than those for the Alaska missions. At the free tropospheric altitudes of 4-6 km, PAN mixing ratios were comparable at all sites and
were always significantly larger than the surface values. Large variability was observed in the transition layer (2-4 km) especially for NB and GB. The largest variations occurred during missions that were impacted by haze, forest fire, and pollution plumes.

Fig. 3. Vertical profiles of ambient air mixing ratios of PAN, HNO₃, and O₃ as measured during NB missions 5 (circles) and 9 (squares). The profiles correspond to conditions of clean NW (mission 5) and polluted S-SW (mission 9) flow.

Fig. 4. Vertical profiles of ambient air mixing ratios of PAN and O₃ as measured during GB missions 14 (circles) and 17 (squares). The profiles correspond to conditions of clean W-NW (mission 14) and polluted S-SW (mission 17) flow.

2. Mean (or median) NOₓ mixing ratios were highest at NB and lowest at GB. This behavior was also reflected in the O₃/NOₓ ratios (Table 3). Standard deviations in the 2- to 4-km and 4- to 6-km layers were very large during the GB missions.

3. NOₓ values in the various tropospheric layers are comparable, except for the NB missions when mixing ratios were relatively large in the lower troposphere (0-4 km) with considerable variability. Unlike NOₓ, however, NOₓ mixing ratios at GB were not the lowest, and at high altitudes (4-6 km) were comparable to those at NB. In this respect NOₓ behavior was similar to that of PAN, CO and C₂H₂.

4. Despite substantial variabilities, HNO₃, CO, and C₂H₂ show significantly higher mixing ratios in the boundary and transition layers for the NB missions compared to other sites. Ozone values, on the other hand, are quite comparable for all altitude layers at all sites.

Overall, the atmosphere over eastern Canada during ABLE3B was perturbed by forest fires and surface pollution plumes significantly more than over Alaska (ABLE3A). These measurements did, however, confirm the existence of the large-scale upper tropospheric PAN (and NOₓ) reservoir in the
Arctic/subarctic atmosphere as postulated from the Alaskan measurements [Sandholm et al., 1992; Singh et al., 1992a, b].

PAN/NOx, PAN/NOy, and PAN/HNO3 Ratios

Figure 8 shows vertical distributions of PAN/NOx, PAN/NOy, and PAN/HNO3 ratios for NB and GB data sets. In all cases, larger ratios occurred at the higher altitudes in large part due to the rapidly increasing PAN mixing ratios. PAN/NOx ratios increased to a nominal value of about 10 between 4 and 6 km although isolated values of 20-30 were also present in the NB data. In general, these ratios were smaller during ABLE3B than those seen in ABLE3A in part because of higher NOx values encountered during ABLE3B.
operated normally prior to that. There were instances (e.g., mission 16) where both PAN and HNO₃ independently exceeded measured NOₓ. In general, these exceedances were within the uncertainties of the individual measurements. No such cases were encountered either at NB or at experiments performed in Alaska [Sandholm et al., 1992; Singh et al., 1992b]. It is also evident from Figure 8 that PAN mixing ratios significantly greater than HNO₃ were frequently encountered over eastern Canada.

Relationships Between Reactive Nitrogen and Tracer Species

The relationships between PAN, NOₓ, CO, O₃, select hydrocarbons, and C₂Cl₄ were explored to see if these can shed any light on the nature of reactive nitrogen sources. Figure 9 shows that, in general, high PAN values, both in the boundary layer and aloft, are associated with correspondingly high values of CO, C₂H₂ and NOₓ. Linear correlation coefficients (R) in the vicinity of 0.7 are calculated. Several of the high correlations such as those in Figures 9b, 9c, and 9d are the result of high concentration values measured above 2 km in polluted air. For example, the three data points (PAN > 600 ppt) in Figure 9b and the two data points (PAN > 600 ppt) in Figure 9d were measured during GB mission 11 when polluted air was sampled in turbulent cloudy weather (see also Figure 5). Similarly, the high concentration data points in Figure 9c were associated with missions affected by smoke and haze layers (e.g., NB mission 6). Although C₂Cl₄ data showed the existence of sporadic pollution, it was not possible to find distinct correlations among PAN, NOₓ, and C₂Cl₄ largely because of the extremely small variability in C₂Cl₄ mixing ratios. Both CO and C₂H₂ are tracers of biomass burning and urban air pollution. As stated earlier, no unique tracers of biomass burning (possibly CH₃Cl) were measured. Figure 9 is largely consistent with the view, also supported by meteorological analysis, that both forest fires and pollution impacted this region.

PAN was also correlated with O₃ both in the boundary layer and aloft (Figure 10) in a manner similar to that observed over Alaska [Singh et al., 1992a]. The correlation at GB was somewhat stronger than that at NB. In NB, because of the influence of smoke plumes, a greater scatter in the data is seen. However, when such cases are excluded the PAN-O₃ correlation at NB is comparable to that at GB. These PAN-O₃ relationships are indicative of the influences of continental precursors [Singh et al., 1990, 1992a]. The NOₓ-O₃ correlations are also shown. It is noteworthy that the mean NOₓ mixing ratios at GB are much smaller than those at NB for a comparable amount of O₃. Mean O₃/NOₓ ratios at NB (107±54) were about 40% smaller than at GB (179±86). This behavior was observed at all altitudes but was more significant in the free troposphere (Table 3). It is noted that O₃/NOₓ ratios observed here and over Alaska [Singh et al., 1992b] are significantly smaller than those observed in the lower stratosphere [Murphy et al., 1993]. This provides little support for the suggestion made by Jacob et al. [1992] that stratospheric transport may provide a large source of Arctic/subarctic reactive nitrogen.

Budget of Reactive Nitrogen Species

Issues relating to reactive nitrogen budget, shortfall and the associated variability have been studied in detail by Sandholm
TABLE 2. Mean Mixing Ratios and Standard Deviations of Trace Species Measured Over Eastern Canada and Alaska

Location	Altitude Range, km	NOy,* ppt	PAN, ppt	HNO₃, ppt	NOₓ, ppt	O₃, ppb	CO₂, ppt	C₂H₂, ppt	C₂Cl₄, ppt
North Bay (missions	0-2	363	88	140	63	36	125	142	11
	2-10	±304†	±83	±147	±107	±8	±27	±107	±42
	2-4	825	336	171	79	57	149	235	12
	4-6	±624	±217	±148	±219	±10	±65	±198	±23
Goose Bay (missions	0-2	±568	±193	±80	±17	±12	±25	±75	±4
	2-4	204	63	132	36	29	103	88	13
	4-6	±568	±123	±81	±17	±12	±41	±115	±22
Barrow, Alaska (Missions	0-2	366	±45	±202	±140	±9	±23	±51	±2
	2-4	±300	±226	±72	±36	±46	±105	±55	±2
	4-6	±325	±310	±45	±44	±57	±105	±118	±13
Bethel, Alaska (Missions	0-2	436	±42	±211	±140	±9	±23	±51	±2
	2-4	501	±141	±37	±24	±63	±73	±59	±13
	4-6	±277	±274	±26	±32	±79	±75	±83	±14
	±364	±59	±28	±14	±10	±4	±13	±1	
	±244	±29	±53	±43	±10	±5	±13	±1	
	±684	±123	±31	±14	±12	±41	±115	±22	
	±210	±31	±65	±35	±80	±62	±10		
	±564	±19	±42	±24	±12	±22	±2		
	±319	±90	±70	±13	±18	±47	±2		
	±636	±42	±26	±61	±86	±11			
	±319	±90	±70	±13	±18	±47	±2		
	±277	±117	±114	±12	±77	±50	±2		

For North Bay and Goose Bay, NOy, NOx, and O₃ mean concentrations are calculated from the NOy file containing 3-min data. PAN data are based on direct measurements (PAN file). All other data are computed from the merged HNO₃ data file.

*Mean ± one standard deviation

et al. [this issue]. The data used in this section is exclusively merged to the HNO₃ sampling window. Table 3 summarizes the partitioning of odd nitrogen species and ozone relative to measured NO in 2-km altitude bands. The quantity NOyi is defined as the sum of the observed gaseous odd nitrogen species (NOyi=NO+NO₂+PAN+PPN+HNO₃). PPN was present in extremely small and often undetectable concentrations. Although small amounts of aerosol nitrate were present (about 5% of NOy), the fine aerosol fraction was probably sampled by the aircraft NOy instrument. No size fractionated aerosol measurements were done. Previous studies from remote clean air have shown that a substantial fraction of nitrate aerosols are generally found in the coarse fraction (e.g., crustal materials). Hence, aerosol NO₃⁻ is not included in the definition of NOyi. To the extent that some aerosol nitrate may be sampled as NOy, a small error is possible. As expected, PAN is the dominant NOy species in the upper troposphere (4-6 km), whereas HNO₃ dominates in the boundary layer for both NB and GB measurements. On average (Table 3), NOyi is nearly always less than NOy in NB and accounts for 55 to 77% of measured NOy. Some 100-400 ppt of reactive nitrogen is unaccounted for.

In GB the picture is quite different and NOyi accounts for nearly all of NOy and actually exceeds it by a small amount in some instances (Table 3). Given the error bars in individual measurements and the inexact overlapping of sampling windows, it is not surprising for NOyi to exceed NOy some of the time. What is surprising is that this result (NOyi > NOy) is contrary to what was seen at NB where similar air masses were sampled, and in Alaska. Indeed, reactive nitrogen

TABLE 3. Odd Nitrogen Partitioning Over Eastern Canada During ABLE3B

Location	Altitude Range, km	Oy/NOy	NOy/NOy	HNO₃/NOy	NOy3⁻/NOy	PAN/NOy	NOy1⁺/NOy	NOyNOyi/NOy
North Bay (missions	0-2	138±64	0.17±0.06	0.32±0.20	0.05±0.03	0.05±0.05	2.2±0.11	0.7±0.23
	2-10	91±39	0.09±0.09	0.22±0.12	0.05±0.05	0.04±0.08	0.77±0.13	235±317
	2-4	85±30	0.06±0.02	0.09±0.09	0.04±0.08	0.38±0.21	0.54±0.21	427±370
	4-6	175±85	0.21±0.09	0.52±0.44	0.06±0.04	0.39±0.24	1.13±0.50	0±5
Goose Bay (missions	0-2	154±28	0.15±0.07	0.29±0.26	0.04±0.02	0.77±0.31	1.19±0.44	−142±155
	2-4	163±70	0.11±0.06	0.11±0.09	0.02±0.01	0.76±0.27	1.00±0.32	184±777

* Aerosol nitrate is expected to be largely present in the coarse fraction which is probably not sampled by the NOy instrument.

†NOyi = NO + NO₂ + PAN + PPN + HNO₃

†Mean ± one standard deviation (number of data points).
deficiency of 25-50% has now been observed nearly everywhere in the remote atmospheres of the northern hemisphere and has been used to infer the ubiquitous presence of unknown reactive nitrogen species [Fahey et al., 1986; Calvert and Madronich, 1987; Singh, 1987; Roberts, 1990; Ridley, 1991; Sandholm et al., 1992; Singh et al., 1992b; Atlas et al., 1992]. Independent measurements of organic nitrates have been able to account for a very small fraction of total reactive nitrogen [Buhr et al., 1990; Atlas et al., 1992]. It is pertinent to add that this deficiency is virtually nonexistent in semipolluted environments where these nitrogen species are able to account for all of NO\textsubscript{y} [Parrish et al., 1993]. Goose Bay ABLE3B measurements are the first to find near accountability in the reactive nitrogen budget at a remote site. Figure 11 shows a comparison of mean fractional (NO\textsubscript{y}/NO\textsubscript{2}) and actual (NO\textsubscript{y}/NO\textsubscript{y}) odd nitrogen deficiency as measured in Alaska, NB, and GB. It is noted that the fractional accountability of reactive nitrogen over eastern Canada was generally better than that over Alaska.

One explanation for the balanced nitrogen budget at GB
may be due to the fact that the air masses are greatly influenced by fresh emissions and not much oxidation has occurred. This would imply young air masses akin to those encountered in urban areas where essential balance is frequently observed [Parrish et al., 1993]. However, this would imply higher rather than lower hydrocarbon and NO\textsubscript{y} abundances and this was generally not the case. Another possibility may be that instrumental errors lead to low NO\textsubscript{y}, or high PAN or HNO\textsubscript{3} measurements. The possibility of instrumental problems was considered by all investigators,
but no unusual behavior could be found until mission 21. After mission 21, NOy measurements were reported only as lower limits due to possible contamination of the NOy converter [Sandholm et al., this issue]. Because of the low free tropospheric NOy the smaller NOy/O3 ratio at GB compared to NB and some instances of PAN and HNO3 exceeding NOy, an attempt was made to compared Schefferville tower NOx data (0.03 km above ground level), where NOy was measured with a chemiluminescence instrument, with that of aircraft data during periods of over flight (0.1-1 km above ground level). Table 4 summarizes these results. This comparison was made greatly difficult because of the presence of highly variable but
substantial nitrate aerosol concentrations (2-180 ppt) at the tower site [Talbot et al., this issue; Gorzelska et al., this issue]. No size fractionation was done; however, high nitrate concentrations are often associated with fresh sources and can be expected to be in the fine aerosol fraction. An unknown but large fraction of this aerosol \(\text{NO}_3^- \) was probably sampled by the tower instrument as \(\text{NO}_3^- \). Unfortunately, aerosol nitrate data at the tower site were available during only one of the four overflight periods (mission 11). The data from tower and aircraft for mission 11 were found to be in reasonable agreement. Table 4 data in no way contradict the finding by Sandholm et al. [this issue] that the \(\text{NO}_y \) instrument was behaving as expected.

Role of PAN as a Source of \(\text{NO}_x \) and \(\text{O}_3 \)

Data presented here show that significant mixing ratios of PAN and correspondingly small mixing ratios of \(\text{NO}_x \) coexist in the troposphere over eastern Canada. Whereas combustion sources of \(\text{NO}_x \) were clearly present, a certain fraction could also be produced from the PAN reservoir. During the ABLE3A Alaska effort it was calculated that 50 to 70% of the median \(\text{NO}_x \) mixing ratios present could have come from the PAN reservoir alone [Jacob et al., 1992; Singh et al., 1992b]. What fraction of the available \(\text{NO}_x \) could have come from PAN decomposition source alone in NB and GB during ABLE3B?

To explore this possibility, a one-dimensional model of NMHC-\(\text{O}_3-\text{NO}_x \) photochemistry in the troposphere was adapted to the physical and chemical environment encountered during ABLE3B (August 1, 50°N) and a calculation similar to that in the work of Singh et al. [1992b] was performed. In comparison to the previous effort, larger K values (by a factor of 2) were used in the present computations, as these values provided a better fit to measured PAN and \(\text{O}_3 \), especially in the lower troposphere. Mean atmospheric temperature as well as mixing ratios of key species were chosen so as to reproduce the mean observed values during ABLE3B (e.g., 400 ppt for PAN and 60 ppb for \(\text{O}_3 \) at 6 km). Model simulations, under clear sky conditions, were run when all sources of \(\text{NO}_x \) (e.g., lightning, soil) were set equal to zero and zero flux was assumed for \(\text{NO}_x, \text{NO}_2, \text{HNO}_3, \text{and HO}_2\text{NO}_2 \) at the upper boundary of the model. Constant deposition velocities were assumed for these gases at the ground. Surface NMHC (C\(_2\) to C\(_4\) NMHC) mixing ratios were set equal to the mean measured values [Blake et al., this issue].

Results from this one-dimensional model simulation are shown in Figure 12. Also shown in Figure 12 are the median values of the observed \(\text{NO}_x \) mixing ratios both at NB and GB. Given the assumed PAN profile, nearly 15 to 20 ppt of \(\text{NO}_x \), depending on altitude, could result from decomposition of PAN alone. These simulations suggest that the PAN reservoir in the high-latitude troposphere could provide an important
Fig. 11. A comparison of mean atmospheric reactive nitrogen budget based on measurements in Alaska (AK), NB, and GB (ABLE3B) as a function of height.

Fig. 12. Steady state odd nitrogen species distribution due to an imposed PAN source as calculated with a one-dimensional model. In this model run, all direct sources of NOx (lightning, stratospheric flux, and soil) are set to zero. PAN and O3 are set to 400 parts per trillion (ppt) and 60 ppb, respectively, at 6 km. Model is exercised at 50°N (August 1) under clear sky conditions and assumes many of the mean features observed during ABLE3B. The dashed curve [(NOx)eq] indicates the amount of NOx needed to balance the photochemical production and destruction rates of O3. Shaded bars show median NOx values observed at NB and GB.

CONCLUSIONS

The two field studies performed over Alaska and eastern Canada have shown that large abundances of PAN and NOx are present in the Arctic/subarctic troposphere of the northern hemisphere during the summer. Coincident PAN and O3 atmospheric structures suggest that continental precursors define the behavior of both PAN and O3. In the free troposphere, PAN was found to be the single most abundant

| TABLE 4. A Comparison of Aircraft and Tower NOy Measurements Near the Schefferville Site During ABLE3B |
| --- | --- | --- | --- | --- |
| Quantity | Altitude, km | Mission |
| NOy*, ppt | 0.03 AGL (tower) | 11 | 14 | 15 | 17 |
| NOy*+ ppt | 0.1 - 1 AGL (aircraft) | 400 | 240 | 275 | 195 |
| NO3^- ppt | 0.03 (tower) | 300 | 130 | 220 | 114 |
| NOy*/NOy+ | 1.32 (U) | 1.83 (U) | 1.25 (U) | 1.7 (U) |
| | 0.96 (C) | --- (C) | --- (C) | --- (C) |

*Harvard tower data. Aerosol NO3^- was measured in the 2-to 180-ppt range (46±53 ppt) from July 22 to August 3, 1991, at the 0.03-km tower level by University of New Hampshire. AGL: Above ground level.

+GIT aircraft data. NO3^- is very low (= 5% of NOy) and is expected to be largely in the coarse aerosol fraction which is probably not sampled.

†ND, no data; U, uncorrected for NO3^-; C, corrected data assuming that all NO3^- is sampled by the tower instrument as NOy.
reactive nitrogen species constituting a major fraction of NO\(_y\) and was significantly more abundant than NO\(_x\) and HNO\(_3\). The nitrogen budget based on missions conducted from the North Bay site showed a shortfall, as expected, but a similar budget from the Goose Bay operations showed essential balance, contrary to what has been previously reported from remote locations. At remote locations, reservoir species such as PAN have the ability to provide an important source of NO\(_x\). Meteorological considerations as well as relationships between reactive nitrogen and anthropogenic tracer species suggest that the atmosphere over eastern Canada during ABLE3B was strongly influenced by forest fires and transported industrial pollution.

Acknowledgments. This research was supported by the NASA Global Tropospheric Experiment. We acknowledge all ABLE3B participants for their cooperation and support. Special thanks are due to the flight and ground crew of the Wallops Electra for making this effort a success. We greatly appreciate the computational assistance provided by R. S. of the Synernet Corporation and data interpretation by W. Vizee of SRI International.

REFERENCES

Anderson, B. E., G. L. Gregory, J. D. W. Barrick, J. E. Collins, and G. W. Sachse, Summertime tropospheric ozone distributions over central and eastern Canada, J. Geophys. Res., this issue.

Atlas, E. et al., Partitioning and budget of NO\(_x\) species during MLOPEX. J. Geophys. Res., 97, 16,449-16,462, 1992.

Barrie, L. A., Arctic air pollution: An overview of current knowledge, Atmos. Environ., 20, 643-663, 1986.

Blake, D. R. T. W. Smith, T.-Y. Cheng, W. J. Whipple, and F. S. Rowland, Effects of biomass burning on summertime nonmethane hydrocarbon concentrations in the Canadian wetlands, J. Geophys. Res., this issue.

Browell, E. V., M. A. Fenn, C. F. Butler, W. B. Grant, R. C. Harriss, and M. C. Shipham, Ozone and aerosol distributions in the summertime troposphere over Canada, J. Geophys. Res., this issue.

Buhr, M. P., D. D. Parrish, R. B. Norton, F. C. Fehsenfeld, and R. C. Seivers, Contribution of organic nitrates to the total reactive nitrogen budget at a rural eastern U.S. site, J. Geophys. Res., 95, 9809-9816, 1990.

Calvert, J. G., and S. Madronich, Theoretical study of the initial products of atmospheric oxidation of hydrocarbons, J. Geophys. Res., 92, 2211-2220, 1987.

Crutzen, P. J., The role of NO and NO\(_2\) in the chemistry of the troposphere and stratosphere, Ann. Rev. Earth Planet Sci., 7, 443-472, 1979.

Fahey, D. W., G. Hübner, D. D. Parrish, E. J. Williams, R. B. Norton, B. A. Ridley, H. B. Singh, S. C. Liu, and F. C. Fehsenfeld, Reactive nitrogen species in the troposphere: Measurements of NO\(_2\), NO\(_3\), HNO\(_3\), particulate nitrate, peroxyacetyl nitrate (PAN), O\(_3\), and total reactive odd nitrogen (NO\(_x\)) at Niwot Ridge, Colorado, J. Geophys. Res., 91, 9781-9793, 1986.

Gorzelska, K., et al., Chemical composition of the atmospheric aerosol in the troposphere over the Hudson Bay lowlands and Quebec-Labrador regions of Canada, J. Geophys. Res., this issue.

Global Tropospheric Experiment (GTE), GTE/ABLE3B expedition, Aircraft navigational and meteorological data, GTE Proj. Off., Hampton, Virginia, 1990.

Harriss, R. C. et al., The Arctic Boundary Layer Expedition (ABLE3A): July-August 1988, J. Geophys. Res., 97, 16,383-16,394, 1992.

Harriss, R. C. et al., The Arctic Boundary Layer Expedition (ABLE3B): July-August 1990, J. Geophys. Res., this issue.

Jacob, D., et al., Summertime photochemistry of the troposphere at high northern latitudes, J. Geophys. Res., 97, 16,421-16,432, 1992.

Jaffe, D. A., Honrath, R. E., J. A. Herring, S. M. Li, and J. D. Kahl, Measurements of nitrogen oxides at Barrow, Alaska, during spring: Evidence for regional and northern hemispheric sources of pollution, J. Geophys. Res., 96, 7395-7405, 1991.

Joo, L. J. F. W. F. Landolfi, and H. Leuenberger, Calibration of peroxyacetyl nitrate measurements with an NO\(_x\) analyzer, Environ. Sci. Technol., 20, 1269-1273, 1986.
D. R. Blake, University of California, Irvine, CA 92717.
J. D. Bradshaw and S. T. Sandholm, Georgia Institute of
Technology, Atlanta, GA 30332.
G. L. Gregory and G. W. Sachse, NASA Langley Research Center,
Hampton, VA 23665.
D. Herlth and H. B. Singh, NASA Ames Research Center, Moffett
Field, CA 94035.

D. O'Hara, San Jose State University Foundation, Moffett Field,
CA 94035.
R. Talbot, University of New Hampshire, Durham, NH 03824.
S. C. Wofsy, Harvard University, Cambridge, MA 02138.

(Received May 12, 1992; revised March 12, 1993;
accepted April 6, 1993.)