An Association Between Subclinical Hypothyroidism and Sight-Threatening Diabetic Retinopathy in Type 2 Diabetic Patients

JIN-KUI YANG, MD, PHD¹
WEI LIU, MD²
JING SHI, RN²
YI-BING LI, MD, PHD²

OBJECTIVE — To determine the relationship between subclinical hypothyroidism (SCH) and the prevalence of diabetic retinopathy in type 2 diabetic patients.

RESEARCH DESIGN AND METHODS — A total of 1,170 type 2 diabetic patients were screened for thyroid function. There were 127 type 2 diabetic patients with SCH and 200 randomly selected euthyroid type 2 diabetic patients selected. Those with more severe than moderate nonproliferative diabetic retinopathy were classified as having sight-threatening diabetic retinopathy (STDR).

RESULTS — The trend for severe retinopathy was significantly higher in the SCH group than in the euthyroid group (χ² = 20.43, P = 0.000). SCH was associated with greater prevalence of diabetic retinopathy, especially STDR [odds ratio (95% CI): 4.15 (2.17–7.96), P = 0.000] after an adjustment for age, sex, duration of diabetes, A1C, BMI, hypertension, and LDL cholesterol. Even euthyroid patients with thyroid-stimulating hormone levels between 2.0 and <4.0 µIU/ml had a higher rate of STDR than those between 0.4 and <2.0 µIU/ml (P = 0.008).

CONCLUSIONS — Type 2 diabetic patients with SCH are associated with an increased risk of STDR.

Diabetic retinopathy is one of the most common microvascular complications and the leading cause of blindness worldwide. Common risk factors for the development of microvascular complications include duration of diabetes, poor glycemic control, elevated blood pressure, and dyslipidemia (1,2).

Subclinical hypothyroidism (SCH) is defined as an asymptomatic state characterized by a normal serum thyroxin level and elevated serum concentration of thyroid-stimulating hormone [TSH]. Patients with SCH sustain an obvious increase in cardiovascular event rates (3,4). Despite this, there is a distinct lack of relevant research into risk factors associated with microvascular complications in type 2 diabetes with SCH. In fact, only a single study conducted by Chen et al. (5) has attempted to elucidate these issues. Yet this study focused predominantly on the issue of diabetic nephropathy, as defined solely by elevated microalbuminuria, rather than retinopathy. However, in most diabetic patients with elevated microalbuminuria, other chronic kidney diseases should be considered in the absence of diabetic retinopathy (6). Our investigation examined the relationship between SCH and diabetic retinopathy in large Chinese type 2 diabetic patient samples.

RESEARCH DESIGN AND METHODS — A total of 1,170 subjects comprising hospital-based patients with type 2 diabetes (aged 59.3 ± 14.0 years, with a mean duration of known diabetes for 8.8 ± 6.8 years) were investigated. Those with normal free triiodothyronine (FT3), free thyroxine (FT4), and an increased TSH (≥4 µIU/ml) level were diagnosed with SCH. We further divided euthyroid type 2 diabetic patients into two subgroups (TSH: 2.0 to <4.0 vs. 0.4 to <2.0 µIU/ml) and compared the two based on a more stringent “normal” reference interval of TSH suggested by the National Health and Nutrition Examination Survey (NHANES) III (7).

© 2010 by the American Diabetes Association. Readers may use this article as long as the work is properly marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
cholesterol), SCH was also associated with diabetic retinopathy [odds ratio (95% CI): 2.02 (1.18–3.46), \(P = 0.011 \)] and STDR [4.15 (2.17–7.96), \(P = 0.001 \)]. Additionally, type 2 diabetic patients with SCH had a significantly lower glomerular filtration rate.

In 200 euthyroid type 2 diabetic patients, 187 patients without cataracts were analyzed. Of the 187 patients, 15 of 125 patients (12.0%) with a TSH level between 2.0 and 2.4 \(\mu U/\text{ml} \) had STDR, while 13 of 34 patients (38.2%) with a TSH level between 2.0 and \(<4.0 \mu U/\text{ml} \) had STDR. A subgroup with a higher TSH level had a significantly higher rate of STDR (Fisher exact test, \(P = 0.008 \)).

CONCLUSIONS — SCH is a common endocrine disorder and has been reported to range from 4-10% in large general population screening surveys (9) and has been found to be 4–17% in diabetic patients in previous studies (10).

SCH is an asymptomatic stage of hypothyroidism, but it is often complicated with endothelial dysfunction, including capillary and precapillary arterioles, manifested by thickening of the capillary basement membrane (11). Serum high-sensitive C-reactive protein levels in subjects with SCH were higher than control subjects (12). These changes lead to small vessel dysfunction (13), increasing the prevalence of retinopathy. The reference range for "normal" TSH has been the focus of considerable debate. Some clinicians have advocated reducing the upper limit of the normal reference interval for TSH to 2.5 or 3.0 \(\mu U/\text{ml} \). Individuals in the 3.0–5.0 \(\mu U/\text{ml} \) TSH range are considered as possibly exhibiting the early signs of developing hypothyroidism, prompting continued monitoring (14). Our study supports this, since euthyroid patients with TSH levels between 2.0 and \(<4.0 \mu U/\text{ml} \) demonstrated a higher rate of STDR than patients with levels between 0.4 and \(<2.0 \mu U/\text{ml} \).

The prevalence of retinopathy and the potential treatment of SCH in type 2 diabetic patients.

Acknowledgments — This work was supported by the National 863 Program of China (2006AA02A409).

No potential conflicts of interest relevant to this article were reported.
Hypothyroidism and retinopathy in type 2 diabetes

7. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, Braverman LE. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab 2002;87:489–499

8. Wilkinson CP, Ferris FL 3rd, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT, the Global Diabetic Retinopathy Project Group. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003;110:1677–1682

9. McDermott MT, Ridgway EC. Subclinical hypothyroidism is mild thyroid failure and should be treated. J Clin Endocrinol Metab 2001;86:4585–4590

10. Chubb SA, Davis WA, Inman Z, Davis TM. Prevalence and progression of subclinical hypothyroidism in women with type 2 diabetes: the Fremantle Diabetes Study. Clin Endocrinol (Oxf) 2005;62:480–486

11. Cappola AR, Ladenson PW. Hypothyroidism and atherosclerosis. J Clin Endocrinol Metab 2003;88:2438–2444

12. Tuzcu A, Bahceci M, Gokalp D, Tuzun Y, Gunes K. Subclinical hypothyroidism may be associated with elevated high-sensitivity c-reactive protein (low grade inflammation) and fasting hyperinsulinemia. Endocr J 2005;52:89–94

13. Baycan S, Erdogan D, Caliskan M, Pamuk BO, Ciftci O, Gullu H, Yildirim A, Guvener ND, Muderrisoglu H. Coronary flow reserve is impaired in subclinical hypothyroidism. Clin Cardiol 2007;30:562–566

14. Duggal J, Singh S, Barsano CP, Arora R. Cardiovascular risk with subclinical hyperthyroidism and hypothyroidism: pathophysiology and management. J Cardio Metab Syndr 2007;2:198–206

15. Helfand M. Screening for subclinical thyroid dysfunction in nonpregnant adults: a summary of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 2004;140:128–141