Introduction

Amine Oxidases (AOs) are the enzymes, which are responsible for the oxidative deamination of mono, di, tri and more than three units containing amines. There are two categories of AO’s that are differentiated by the cofactors present in them: one contains Flavin Adenine Dinucleotide (FAD) and the other contains copper. Copper containing AO creates a disulphide-linkage to form homodimer whereas FAD containing AO [1-2] is an oxidoreductase enzyme that contains 8α-S-cysteinyl covalently linked with FAD as redox cofactor in the outer mitochondrial membrane of neuronal, glial and peripheral regions [3-6]. The catalytic pathway for free radical formation by MAO is shown in Figure 1 [7-9]. The monoamine oxidase family members share structural features, including a conserved FAD-binding domain and a lysine-water-flavin triad. The substrate-binding sites, however, reflect the different substrates. In each case, there is evidence that the deprotonated amine is the functional substrate. While, nucleophilic and radical mechanisms have been proposed for oxidation of amines by MAO, the accumulation of structural and mechanistic evidence supports a common hydride transfer mechanism for all members of the MAO family.

MAO (Mitochondrial Monoamine Oxidases) exists in two types of isoforms MAO-A and MAO-B [10]. The amino acid sequences of both the forms are 70% identical or homologous [11]. They contain the pentapeptide sequence Ser-Gly-Gly-Cys-Tyr which binds to the FAD cofactor covalently in both the isoforms [12,13].

MAO-B is more abundant in brain as compared to MAO-A, which is present mainly in the peripheral regions such as intestine [14]. Therefore, MAO-A is mainly involved in the breakdown of amino acids like tyramine and hence its inhibition lead to an increased levels of tyrosine and other indirect sympathomimetic amines in the systemic circulation, releasing nor-adrenaline that leads to chase reaction as shown in Figure 2 [15-16].

Figure 1: Catalytic pathway for free radical formation by MAO enzyme.
There are several known reversible and irreversible MAO inhibitors as shown in Table 1 [17, 18].

Structure to activity relationship

This review focuses on the Structure-Activity Relationship (SAR) studies of substituted thiazolyl hydrazones as MAO-A and MAO-B inhibitors, which are present in chronological order to demonstrate sequential progress in this area (Figure 3).

Table 1: Some important reversible and irreversible MAO inhibitors.

Structure	Name	Selectivity
	MAO reversible inhibitors	
	Toloxatone [17(a)]	MAO-A
	Lazabemide [17(b)]	MAO-B
	Safinamide [17(c)]	MAO-B
	Moclobemide [17(d)]	MAO-A
	MAO irreversible inhibitors	
	Clorgyline [17(e)]	MAO-A
	L-Deprenyl (selegiline) [17(f)]	MAO-B
	Pargyline [17(f)]	MAO-B

Table 2: Structure and MAO-A and MAO-B inhibitory activity of 2-methylcyclohexylidene-(4-arylthiazol-2-yl) hydrazones 1-9.

CA	R	IC$_{50}$ (μM)	Selectivity Ratio	
		hMAO-A	hMAO-B	
1	H	41.23±3.96	0.711±0.037	58
2	4-Cl	35.22±1.81	13.12±0.51	2.7
3	4-F	43.55±3.61	0.203±0.008	2.7
4	2,4-Cl	44.70±5.23	26.81±2.74	1.7
5	2,4-F	37.95±3.41	0.014±0.000	1.7
6	4-CH$_3$	c	0.014±0.009	>701d
7	4-OCH$_3$	2.76±0.17	2.37±0.14	1.2
8	4-NO$_2$	c	0.032±0.002	>3693
9	4-CN	31.03±2.44	0.026±0.001	1183

>Each IC$_{50}$ value is the mean ± SEM from five experiments (n=5).

>level of statistical significance: P < 0.01 versus the corresponding IC$_{50}$ values obtained against hMAO-B, as determined by ANOVA/Dunnett’s test.

>Values obtained under the assumption that the corresponding the compounds IC$_{50}$ against hMAO-A is the highest concentration tested (100 μM).

>inactive at 100 μM (highest concentration tested), at higher concentration the compounds precipitate.
In order to further explore optimum substitution patterns, a majority of substituted thiazolyl-hydrazone analogs were prepared and evaluated as MAO inhibitor in the presence of kynuramine as a substrate.

A new series of 2-Methyl Cyclohexylidene (4-arylthiazolyl-2-yl) Hydrazones (compound 1-9) have been synthesized by introducing the chiral cyclohexylidene moiety for their ability to inhibit the activity of human MAO-A and MOA-B.

In humans, MAO-B inhibitors are used in the management of Parkinson’s and Alzheimer disease, while MAO-An inhibitors are proved to be antidepressant and anxiolytic agents. Preliminary SAR studies revealed that racemic analogues 1-9 (Table 2) are selective as well as biological active for both isoenzymes hMAO-A and hMAO-B.

On basis of the molecular modelling study, the new scaffold of thiazole hydrazones are designed by doing the substitution on fourth and fifth position of the thiazole ring to make a (4,5-disubstituted-thiazole-2-yl) hydrazones which exhibit good selectivity and biological activity. Detailed description is shown in Table 3, [19-21].

Some of the substituted thiazolyl hydrazones were synthesised and evaluated for MAO Inhibitory activity (Figure 4). In this series substitution was done on C4 position of the thiazole ring by various electron withdrawing and releasing groups [22] (Table 4).

A new series of [4-(3-methoxyphenyl)-thiazol-2-yl] hydrazine derivatives were synthesized and screened for their MAO inhibitory activity. The detailed description is shown in Table 5.

Halogenated series shows interesting activity and great selectivity towards the hMAO-B as expressed in baculo virus infected insect cells (BTI-TN-5B1-4). The importance of water molecules in the binding site was also evaluated as it plays an important role in mediating the protein-ligand interactions. The entire series of the synthesized compounds were inactive towards MAO-A below 100µM, suggesting (Arylidene-2-(4-(4-Halophenyl Thiazol-2-yl Hydrazine) as a promising candidate scaffold for the design of selective MAO-B inhibitors. The substitution of the phenyl moiety at position 2 of thiazole modulates the activity within a series [22] Table 6.

A new series of 4-Substituted-2-(2-(1-(Pyridin-4-yl) ethylidene) hydrazinyl) thiazole was synthesized and evaluated for MAO inhibitory activity. In the series, only six compounds were found to be most active but all these have less activity towards the hMAO-A enzyme [22-23]. It was concluded that compounds have affinity for both isoforms Table 7.

Table 3: Structure as well as MAO-A & MAO-B inhibitory activity of (4, 5-aliphatic disubstituted-thiazol-2-yl) hydrazones 10-27.

CA	R	R₁	R₂	R₃	IC₅₀ (µM)	Ratio	
	CH₃	CH₃	Phenyl	CH₃	2.55±0.17	2.08	
11	CH₃	CH₃	Phenyl	CH₃	1.55±0.07	1.00	
12	CH₃	(CH₂)₂CH₂	Phenyl	CH₃	2.52±0.13	0.95	
13	CH₃	CH₂CH	Phenyl	CH₃	1.65 ± 0.09	1.49	
14	CH₃	CH₂CH(CH₂)₂	Phenyl	CH₃	2.4 ± 0.13	2.78 ± 0.12	1.16
15	CH₃	CH₂CH₂CH=CH₂	Phenyl	CH₃	6.97±0.43	8.85±0.45	1.27
16	CH₃	(CH₂)₂CH₂	Phenyl	CH₃	3.69±0.11	6.0±2.1	1.64
17	CH₃	(CH₂)₂CH₂	Phenyl	CH₃	4.13±0.22	4.78±0.17	1.16
18	CH₂CH₂	(CH₂)₂CH₂	Phenyl	CH₃	3.91±0.19	3.75±0.12	1.04
19	CH₂	CH₂	Napthalen-2-yl	H	1.56±0.07	3.55±0.29	2.27
20	CH₂	CH₂CH₂	Napthalen-2-yl	H	1.74±0.08	2.65±0.19	1.52
21	CH₂	(CH₂)₂CH₂	Napthalen-2-yl	H	1.81±0.07	3.11±0.16	1.72
22	CH₂CH₂	CH₂CH₂	Napthalen-2-yl	H	1.86±0.06	2.32±0.03	1.25
23	CH₂	CH₂CH₂(CH₂)₃	Napthalen-2-yl	H	2.31±0.16	3.56±0.06	1.54
24	CH₂	CH₂CH₂(CH₂)₃	Napthalen-2-yl	H	1.37±0.08	3.94±0.25	2.86
25	CH₂	(CH₂)₂CH₂	Napthalen-2-yl	H	2.45±0.12	15.96±0.45	6.67
26	CH₂	(CH₂)₂CH₂	Napthalen-2-yl	H	2.93±0.12	3.76±0.13	1.28
27	CH₂	(CH₂)₂CH₂	Napthalen-2-yl	H	15.48±0.99	D	<0.25

Table 4: IC₅₀ values of Thiazolyl Hydrazones as Monoamine Oxidase Inhibitors: An Overview.

Group	IC₅₀ (µM)	Ratio					
hMAO-A	hMAO-B						
CA	R	R₁	R₂	R₃	hMAO-A	hMAO-B	Ratio
10	CH₃	CH₃	Phenyl	CH₃	2.55±0.17	5.28±0.36	2.08
11	CH₃	CH₃	Phenyl	CH₃	1.55±0.07	1.53±0.21	1.00
12	CH₃	(CH₂)₂CH₂	Phenyl	CH₃	2.52±0.13	2.31±0.08	0.95
13	CH₃	CH₂CH	Phenyl	CH₃	1.65 ± 0.09	2.45 ± 0.14	1.49
14	CH₃	CH₂CH(CH₂)₂	Phenyl	CH₃	2.4 ± 0.13	2.78 ± 0.12	1.16
15	CH₃	CH₂CH₂CH=CH₂	Phenyl	CH₃	6.97±0.43	8.85±0.45	1.27
16	CH₃	(CH₂)₂CH₂	Phenyl	CH₃	3.69±0.11	6.0±2.1	1.64
17	CH₃	(CH₂)₂CH₂	Phenyl	CH₃	4.13±0.22	4.78±0.17	1.16
18	CH₂CH₂	(CH₂)₂CH₂	Phenyl	CH₃	3.91±0.19	3.75±0.12	1.04
19	CH₂	CH₂	Napthalen-2-yl	H	1.56±0.07	3.55±0.29	2.27
20	CH₂	CH₂CH₂	Napthalen-2-yl	H	1.74±0.08	2.65±0.19	1.52
21	CH₂	(CH₂)₂CH₂	Napthalen-2-yl	H	1.81±0.07	3.11±0.16	1.72
22	CH₂CH₂	CH₂CH₂	Napthalen-2-yl	H	1.86±0.06	2.32±0.03	1.25
23	CH₂	CH₂CH₂(CH₂)₃	Napthalen-2-yl	H	2.31±0.16	3.56±0.06	1.54
24	CH₂	CH₂CH₂(CH₂)₃	Napthalen-2-yl	H	1.37±0.08	3.94±0.25	2.86
25	CH₂	(CH₂)₂CH₂	Napthalen-2-yl	H	2.45±0.12	15.96±0.45	6.67
26	CH₂	(CH₂)₂CH₂	Napthalen-2-yl	H	2.93±0.12	3.76±0.13	1.28
27	CH₂	(CH₂)₂CH₂	Napthalen-2-yl	H	15.48±0.99	D	<0.25

Citation: Yagyesh K, Fatima SN and Kapil K. Synthesis and Structure Activity Relationship of Thiazolyl Hydrazones as Monoamine Oxidase Inhibitors: An Overview. SM Anal Bioanal Technique. 2018; 3(1): 1015s2.
Table 4: Structure as well as MAO-A and MAO-B inhibitory activity of (4-aryl-thiazol-2-yl) hydrazones 28-40.

![Structure of (4-aryl-thiazol-2-yl) hydrazones](image)

CA	R	R₁	IC₅₀ (µM)	Selectivity ratio hMAO-A/hMAO-B
28	Cyclopentyl	H	7883±91¹	296±7
29	Cyclopentyl	4-Cl	7160±64⁰	262±8
30	Cyclopentyl	4-F	4443±21²	40±0.9
31	Cyclopentyl	2, 4-Cl	54,507±142³	284±11
32	Cyclopentyl	4-NO₂	344±22²	94±3
33	Cyclopentyl	4-CN	644±21²	221±2
34	Cyclohexyl	H	48,351±143⁴	116±5
35	Cyclohexyl	4-Cl	2911±17¹	211±7
36	Cyclohexyl	4-F	1752±21¹	4±0.2
37	Cyclohexyl	2, 4-Cl	N.E	202±16
38	Cyclohexyl	2, 4-F	4575±143⁵	652±22
39	Cyclohexyl	4-CH₃	23371±32⁴	3689±353
40	Cyclohexyl	4-OCH₃	7509±21³	11956±131

¹p<0.01 or ²p<0.01 versus the corresponding IC₅₀ values obtained against hMAO-B, as determined by ANOVA/Dunnett's. N.E=inactive at 100 µM (highest concentration tested). ³Value obtained under the assumption that the corresponding IC₅₀ against hMAO-A is the highest concentration tested (100 µM).

Figure 4: SAR of (4-aryl-thiazol-2-yl) hydrazones as MAO-A and MAO-B inhibitors.

Table 5: Structure as well as MAO-A and MAO-B inhibitory activity of [4-(3-methoxyphenyl)-thiazol-2-yl] hydrazine 41-50.

![Structure of [4-(3-methoxyphenyl)-thiazol-2-yl] hydrazine](image)

CA	X	IC₅₀ (µM)	Selectivity ratio hMAO-A/hMAO-B	
41		4.43±0.22	5.07±0.13	0.87
42		591.80±23.13	1.06±0.07	0.56
43		836.21±36.58	26.64±0.81	31
44		1.45±0.04	231.02±9.61	6.3
45		342.88±15.62	6.78±0.25	0.051
46		333.05±16.08	1.68±0.06	0.2
47		457.73±20.35	493.83±16.32	0.93
48		537.66±27.35	2.91±0.13	0.18
49		3.64±0.06	*** <0.036⁶	
50		***	**	

⁵Inactive at 100 µM (highest concentration tested).
⁶One hundred micromolars inhibits the corresponding hMAO activity by approximately 40-50 %. At higher concentration the compound precipitate.
⁷Values obtained under the assumption that the corresponding IC₅₀ against hMAO-B is the highest concentration tested (100 µM).
Table 6: Structure as well as MAO-B inhibitory activity of 2-(4-(4-halophenyl)thiazol-2-yl) hydrazine 51-56.

CA	R	hIC₅₀ (µM)	hMAO-A	hMAO-B
51	CH₃	***	0.79 ± 0.04	
52	Cl	***	1.32± 0.05	
53	H₃CO	***	2.39± 0.10	
54	H₃CO	***	9.24 ± 0.36	
55	CH₃	***	0.19 ± 0.01	
56	H₃C	**	44.74±1.68	

"Inactive at 100 µM (higher concentration tested). At higher concentration the compounds precipitate.

**100 µM inhibits the corresponding MAO activity by approximately 40-45%. At higher concentration the compounds precipitate.

Table 7: Structure as well as MAO inhibitory activity of 4-substituted-2-(2-(1-pyridin-4-yl) ethylidene) hydrazinyl) thiazole 57-65.

CA	Pyridine isomer	R	hIC₅₀ (µM)
57	2-Acetylpyridine	CH₃	No inhibition
58	2-Acetylpyridine	COOE	No inhibition
59	2-Acetylpyridine	Ph	16.6±2.01
60	3-Acetylpyridine	CH₃	6.910±0.227
61	3-Acetylpyridine	COOE	6.571±0.296
62	3-Acetylpyridine	Ph	21.3±0.88
63	4-Acetylpyridine	CH₃	No inhibition
64	4-Acetylpyridine	COOE	6.63±0.667
65	4-Acetylpyridine	Ph	2.67±0.082

*p <0.01 or **p<0.05 versus the corresponding IC₅₀ values against hMAO-B, as determined by ANOVA/Dunnett’s.

Conclusion

Based on our interest on heterocyclic chemistry and asymmetric synthesis [24-26], it was concluded that the hybrid scaffold of this series of thiazolyl-hydrazone derivatives could be promising for the discovery of new lead compounds as adjuvants for the treatment of neurodegenerative diseases. A variety of thiazolyl-hydrazone derivatives were prepared, and their MAO inhibitory activity may be used in the treatment of various CNS diseases such as depression, anxiety or Parkinson. A number of researches explored the SAR of thiazolyl-hydrazone derivatives as well as conformation and orientation requirements for binding site through simulation and QSAR studies. Additionally, recognition of a rational picture towards the substitutions responsible for its potency and toxicity may be a future framework in this area.

References

1. Singh R, Sharma GN. Monoamine Oxidase Inhibitors for neurological disorders: A review. Chem Biol Lett. 2014; 1: 33-39.
2. Griffith GC. Prog Cardiovasc Dis. 1960; 3: 119-133.
3. Greenawalt JW, Schnaitman C. An appraisal of the use of monoamine Oxidase as an enzyme marker for the outer membrane of rat liver mitochondria. J Cell Biol. 1970; 46: 173-179.
4. Harris RS. Thimann KV. Vitamins and hormones. Elsevier. 1944; 2.
5. Gnerre C, Catto MF, Leonetti P, Weber PA, Carrupt, Altomare C, et al. Inhibition of monoamine oxidases by functionalized coumarin derivatives: Biological activities, QSARs and 3D-QSARs. J Med Chem. 2000; 43: 4747-4758.
6. Catto M, Nicolotti O, Leonetti F, Carotti A, Favia AD, Soto-Otero R, et al. Structural Insights into Monoamine Oxidase Inhibitory Potency and Selectivity of 7-Substituted Coumarins from Ligand- and Target-Based Approaches. J Med Chem. 2006; 49: 4912-4925.
7. Youdim MB, Edmondson D, Tipton KF. The therapeutic potential of monoamine Oxidase inhibitors. Nat Rev Neurosci. 2006; 7: 295-309.
8. Gaspar A, Silva T, Yáñez M, Vina D, Orallo F, Torto F, et al. Chromone, a Privileged Scaffold for the Development of Monoamine Oxidase Inhibitors. J Med Chem. 2011; 54: 5165-5173.
9. Houslay MD, Tipton KF. The reaction pathway of membrane bound rat liver mitochondrial monoamine oxidase. Biochem J. 1973; 135: 735-750.
10. Bach A, Lan NC, Johnson DL, Abell CW, Bembeneck ME, Kwan SW, et al. cDNA cloning of human liver monoamine Oxidase A and B: Molecular basis of differences in enzymatic properties. Proc Natl Acad Sci. 1988; 85: 4934-4938.
11. Erdem SS, Buyukmenekse B. Computational investigation on the structure-activity relationship of the biradical mechanism for monoamine oxidase. J Neur Trans. 2011; 118: 1021-1029.
12. Kearney EB, Salach JL, Walker WH, Seng RL, Kenney W, Zeszotek E, et al. The covalently-bound flavin of hepatic monoamine oxidase.1. Isolation and sequence of a flavin peptide and evidence for binding at the 8alpha position. Eur J Biochem. 1971; 24: 321-327.
13. Yu PH. Studies on the pargyline binding site of different types of monoamine Oxidase and A: Molecular basis of differences in enzymatic properties. Proc Natl Acad Sci. 1988; 85: 4934-4938.
14. Davids EB. Tranylcypromine and cheese. Lancet. 1963; 282: 691-692.
17. Yogev-Falach M, Amrit T, Bar-Am O, Youdim MB, Amer JF. Soc Exper Biol. 2003; 17: 2325-2327.
18. Moureau F, Wouters J, Vercauteren DP, Collin S, Evard G, Dantur F, et al. A reversible monoamine Oxidase inhibitor, Toloxatone: Structural and electronic properties. Eur J Med Chem. 1992; 27: 939-948.
19. Mason RP, Olmscheid EG, Jacob RF. Antioxidant activity of the Monoamine Oxidase B inhibitor Lazabemide. Biochem Pharmacol. 2000; 60: 709-716.
20. Cruz MP, Xadago (Safinamide): A Monoamine Oxidase B Inhibitor for the Adjunct Treatment of Motor Symptoms in Parkinson’s disease. P.T. 2017; 42: 622-637.
21. Kom A, Eichler HG, Fischbach R, Gasic S. Modobemide, a new reversible MAO inhibitor- interaction with tyramine and tricyclic antidepressants in healthy volunteers and depressive patients. Psychopharmacol. 1986; 88: 153-157.
22. Gileter CH, Muhlbauer B, Schulm E, Antonin KH, Bieck PR. Moclobemide, a new reversible inhibitor of Thiazolyl Hydrazones as Monoamine Oxidase Inhibitors: An Overview. Chem Tech. 2018; 3(1): 1015s2
23. Ramsay RR. Inhibitor design for monoamine oxidases. Curr Pharm Des. 2013; 19: 2529-2539.
24. Chouhan M, Kumar K, Sharma R, Nair VA. Lithium hydroxide mediated synthesis of 3, 4-disubstituted pyrroles. RSC Adv. 2013; 3: 14521-14527.
25. Goyal S, Patel BK, Sharma R, Chouhan M, Kumar K, Gangar M, Nair VA. Tetrahedron Lett. 2015; 56: 5409-5412.
26. Kumar K, More SS, Goyal S, Gangar M, Kathil GL, Rawal RK, Nair VA. A convenient synthesis of 4-alkyl-3-benzoylpyrroles from o-, β-un saturated ketones and tosylmethyl isocyanide. Tetrahedron Lett. 2016; 57: 2315-2319.
27. Kumar K, Siddique J, Gangar M, Goyal S, Rawal RK, Nair VA. ZCR4 Catalysed Diastereoselective Synthesis of Spirocarbocyclic Oxindoles via [4+2] Cycloaddition. Chem Select 2016; 1: 2409-2412.
28. Kumar K, Konar D, Goyal S, Gangar M, Chouhan M, Rawal RK, et al. AIC13/Cyclohexane Mediated Electrophilic Activation of Isothiocyanates: An Efficient Synthesis of Thiolaamides. Chem Select. 2016; 1: 3228-3231.
29. Kumar K, Konar D, Goyal S, Gangar M, Chouhan M, Rawal RK, et al. Water promoted regio specific azidolysis and copper catalysed azide alkyne cycloaddition: One-pot synthesis of 3-hydroxy-1-alkyl-3-[4-aryl/alkyl-1H-1, 3-diazol-1-yl]. J Org Chem. 2016; 81: 757-7574.
30. Kumar K, More SS, Kathil GL, Rawal RK, Nair VA. A Highly Stereoselective Chiral Auxiliary Assisted Reductive Cyclisation of Furoindoline. J Heterocycl Chem. 2017; 54: 2696-2702.
31. Kaur R, Manjal SK, Rawal RK, Kumar K. Recent synthetic and medicinal perspective of tryptanthrin. Bioorg Med Chem. 2017; 25: 4533-4552.
32. Manjal SK, Kaur R, Bhatia R, Kumar K, Singh V, Shankar R, et al. Synthetic and medicinal perspective of thiazolidinones: A review. Bioorg Med Chem. 2017; 75: 406-423.
33. Mittal M, Kumar K, Anghore D, Rawal RK. ICP-MS: Analytical method for identification and detection of elemental impurities. Curr Drug Discover Tech. 2017; 14: 106-120.
34. Kaur R, Choudhary S, Kumar K, Gupta MK, Rawal RK. Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur J Med Chem. 2017; 132: 108-134.
35. Kumar B, Singh V, Shankar R, Kumar K, Rawal RK. Synthetic and medicinal perspective of structurally modified curcumins. Curr Topics Med Chem. 2017; 17: 148-161.
36. Talwan P, Choudhary S, Kumar K, Rawal RK. Chemical and medicinal versatility of substituted 1, 4 -dihydropyridines. Curr Bioac Compd. 2017; 13: 109-120.
37. Kaur R, Rani V, Abbot V, Kapoor Y, Konar D, Kumar K. Recent Synthetic and Medicinal Perspectives of Pyrroles: An Overview. J Pharm Chem Sci. 2017; 1: 17-32.