Estimation of salt intake from spot urine may assist the risk assessment of gastric cancer

Atsushi Goto,¹,* Jun Nishikawa,² Shunsuke Ito,¹ Eizaburo Hideura,¹ Tomohiro Shirasawa,¹ Koichi Hamabe,¹ Shinichi Hashimoto,¹ Takeshi Okamoto,¹ Hideo Yanai² and Isao Sakaida¹

¹Department of Gastroenterology and Hepatology and ²Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, Minami-kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
²National Hospital Organization Kanmon Medical Center, Department of Clinical Research, Chofu-sotouracho 1-1, Shimonoseki, Yamaguchi 752-8510, Japan

(Received 25 July, 2019; Accepted 29 September, 2019)

Daily salt intake can be estimated by measuring sodium and creatinine concentrations in spot urine. Excessive salt intake is risk factor for gastric cancer. We examined the correlation between estimated salt intake from spot urine and risk of gastric cancer. This study included gastric cancer patients who underwent treatment at our hospital and patients in whom esophagogastroduodenoscopy was performed but gastric cancer was not observed. The history of H. pylori infection was known in these patients. Spot urine was collected, and daily salt intake was estimated from urine sodium and urine creatinine. Mean estimated salt intake was significantly higher in 120 gastric cancer patients (9.18 g/day) than in 80 non-gastric cancer patients (8.22 g/day). Multivariate analysis revealed estimated salt intake and H. pylori infection to be independent risk factors for gastric cancer. Among H. pylori-infected patients, salt intake was significantly higher in gastric cancer patients (9.25 g/day) than in non-gastric cancer patients (8.01 g/day). In conclusion, salt intake estimated from spot urine was high in patients with gastric cancer, especially in H. pylori-infected patients. Spot urine is a simple examination and it may be applied as a new risk assessment of gastric cancer.

Key Words: gastric cancer, estimated salt intake, spot urine, urine sodium, Helicobacter pylori

The most established risk factor for the development of gastric cancer (GC) is Helicobacter pylori infection. Excessive salt intake is also a risk factor for GC development. Tsugane et al.¹ and Shikata et al.² evaluated the trend of salt intake by recording meals and prospectively examining the relationship with carcinogenesis. Excessive salt intake has been shown to be a dose-dependent risk factor for GC. Furthermore, urine sodium excretion measured by 24-h urine collection was correlated with GC mortality at the population level.³ It thus appears that GC is likely to occur in H. pylori-infected persons who consume highly salty foods.

Questionnaire surveys and 24-h urine collection have been performed to estimate daily salt intake, but these are laborious and burdensome for patients and examiners. The rate of failure of 24-h urine collection was reported to be 40%.⁴ Tanaka et al.⁵ reported that 24-h urine sodium excretion can be estimated by measuring sodium and creatinine concentrations in spot urine. This method is based on the database of Japanese people who participated in the INTERSALT Study,⁶ an international collaborative study on the correlation between salt intake and blood pressure. The formula is recommended as a simple and practical evaluation method in the Guidelines for the Management of Hypertension of the Japanese Society of Hypertension⁷ and is used as an indicator of blood pressure management in cardiovascular disease patients.⁸ We attempted to evaluate relationship between salt intake and GC using the estimation method of salt intake from spot urine.

Materials and Methods

Patients and methods. This study is cross-sectional study. The subjects comprised GC patients treated at Yamaguchi University Hospital from August 2016 to September 2018 and those with no indication of GC by esophagogastroduodenoscopy. Estimation of 24-h urine sodium excretion from spot urine in patients with stage 3–4 chronic renal failure is not accurate.⁹ Patients with a serum creatinine level ≥2.0 mg/dl and those taking diuretics were excluded from the study.

With the consent of the subjects, spot urine was collected once and urine sodium (mEq/L) and urine creatinine (mg/dl) were measured. Daily salt intake was estimated according to the following calculation formulae reported by Tanaka et al.⁵

Predicted value of 24-h urine creatinine (mg/day) = -2.04 × age + 14.89 × weight (kg) + 16.14 × height (cm) - 2,244.45 (1)

Estimated 24-h sodium urine (mEq/day) = (21.98 × Na concentration in the spot urine/creatinine concentration in the spot urine × predicted value of 24-h urine creatinine)³.³⁹² (2)

Estimated 24-h salt intake (g/day) = estimated 24-h urine sodium × 0.0585 (3)

We examined the correlations between estimated salt intake and presence or absence of GC, age, sex, history of alcohol consumption, history of smoking, family history of GC, and H. pylori infection. Patients with serum H. pylori IgG antibody titer of ≥10 and no history of eradication were considered currently H. pylori-infected patients. Patients with H. pylori IgG antibody titer <10 and a history of eradication were considered previously H. pylori-infected patients. The currently H. pylori-infected patients and the previously H. pylori-infected patients were combined into the H. pylori infection group. Patients with H. pylori IgG antibody titer <10, no history of eradication therapy, and no evidence of atrophic gastritis endoscopically were considered H. pylori-uninfected patients. Patients who did not fit into any category were excluded as subjects of the study because the status of H. pylori infection was unclear. Thus, 120 GC patients and 80 non-GC patients who fulfilled these conditions were selected as subjects. Patients with a history of alcohol consumption were those who had habitually consumed alcohol, even if they were currently abstaining from alcohol. Similarly, patients with a history

*To whom correspondence should be addressed.
E-mail: agoto@yamaguchi-u.ac.jp

doi: 10.3164/jcbn.19-65

J. Clin. Biochem. Nutr. | Published online: 28 November 2019 | 1-4
of smoking were those who had habitually smoked, even if they were currently abstaining from smoking.

Assessment of clinicopathological findings. Clinicopathological findings of GC (i.e., macroscopic type, tumor diameter, differentiated type, depth of invasion, lymphovascular invasion, degree of atrophy, and occurrence of multiple GCs) were respectively evaluated for a correlation with estimated salt intake. Regarding macroscopic type, tumors were classified into lesions mainly comprising a protruded type and flat or depressed type. Tumor diameter was classified into lesions of <30 mm or lesions >30 mm. Histologically, cancers were classified into differentiated cancer and undifferentiated cancer according to the Nakamura et al. classification. When these cancers were mixed, the cancer was classified as the predominant type. Of the 120 GC cases, 118 were of early GC for which endoscopic resection was performed. Therefore, depth of invasion was classified into intramucosal invasion and submucosal or deeper invasion. According to the Kimura-Takemoto classification of atrophy, background mucosa was classified as open-type severe atrophy, closed-type mild atrophy, or non-atrophy. Multiple GC was defined when two or more cancers were mixed, the cancer was classified as open-type severe atrophy, closed-type mild atrophy, or non-atrophy. Multiple GC was defined when ≥ 2 cancers occurred synchronously or metachronously.

Statistical analysis. In univariate analysis, Fisher’s exact test for discrete variables and t test for continuous variables were used. Multiple logistic regression analysis was used for multivariate analysis (Ekusuru-Toukei 2010 for Windows; Social Survey Research Information Co., Ltd., Tokyo, Japan), and each result was determined to be significantly different when $p<0.05$.

Statement of ethics. This study was performed according to the guidelines of the Declaration of Helsinki and the study protocol was approved by the institutional Review Board of Yamaguchi University Hospital (approval number H26-119).

Results

Patient characteristics of the 200 subjects and estimated salt intake were evaluated. The GC group comprised 120 patients, and the non-GC group comprised 80 patients. There were 148 men (74%) and 52 women (26%) whose median age was 70 (35–91) years. Median sodium concentration in spot urine was 101 (15–337.9) mg/dl, and median estimated salt intake was 8.68 (2.47–17.04) g/day. History of alcohol consumption was noted in 120 patients (60%), smoking history in 125 (62.5%), and family history of GC in 42 (21%). In total, 84 (42%) were currently H. pylori-infected patients, 81 (40.5%) were previously infected, and 35 (17.5%) were uninfected.

Analysis results of GC patients and non-GC patients can be compared in Table 1. Mean estimated salt intake in GC patients and non-GC patients was 9.18 g/day and 8.22 g/day, respectively, and was significantly higher in GC patients. Univariate analysis revealed that patients with GC had significantly higher age and included more men and more cases of current and previous H. pylori infection. Multivariate analysis revealed significant differences for estimated salt intake and current or previous H. pylori infection.

Table 1. Results of univariate and multivariate analyses of gastric cancer and non-gastric cancer cases

Variable	Univariate analysis	Multivariate analysis			
	Gastric cancer	Non-gastric cancer	p value	Odds ratio (95% confidence interval)	p value
Age (Years (mean))	70.9	66.3	0.003	1.03 (0.99 to 1.06)	0.13
Sex					
Male	95	53	0.049	2.39 (0.94 to 6.09)	0.067
Female	25	27			
Drinking history					
Presence	74	46	0.56	0.79 (0.35 to 1.81)	0.58
Absence	46	34			
Smoking history					
Presence	75	50	1	0.8 (0.34 to 1.91)	0.62
Absence	45	30			
Family history of gastric cancer					
Presence	30	12	0.11	1.08 (0.46 to 2.53)	0.86
Absence	90	68			
H. pylori infection					
Current infection	51	33	2.3 x 10^{-10}	7.94 (2.63 to 23.9)	2.4 x 10^{-4}
Previous infection	64	17		17.7 (5.69 to 55.2)	7.2 x 10^{-7}
Uninfected	5	30			
Estimated salt intake (g/day) (mean)	9.18	8.22	0.005	1.16 (1.01 to 1.35)	0.048

Discussion

We revealed that estimated salt intake and H. pylori infection were significantly related for GC by the multivariate analysis. This suggests that one of the GC risk may be evaluated by a simple examination such as spot urine. Tsugane et al. showed an almost linear correlation between the cumulative mortality rate of GC and the urinary salt excretion level in 24-h urine samples. Furthermore, they estimated salt intake by a questionnaire survey, and showed that high-salt diet is a dose-dependent risk of GC in

![Figure 1](https://example.com/figure1.png)
A. Goto et al.

In a Netherlands cohort study, 120,852 people and 282 GC cases were investigated during the 6.3 years of follow-up by a questionnaire survey. The results suggested that dietary salt and salted meat intake were weakly positively associated with the risk of GC. Spot urine is an examination used in general medical checkup, thus more patients may be able to be aware of the risk of gastric cancer as well as measures against hypertension.

Two studies using spot urine were recently made to evaluate GC risk. Park et al. showed that 24-h urine sodium excretion estimated from spot urine correlates with the prevalence of GC. In the study, H. pylori infection was not evaluated and could not be excluded as a confounding factor. Thapa et al. showed that salt intake estimated by urinary sodium/creatinine ratio is associated with progression of GC or dysplasia in patients with persistent H. pylori infection at a risk ratio of 1.49. This result was originally intended for patients who were positive for H. pylori, and H. pylori-uninfected patients were not included. The novelty of our study was that the estimated salt intake was evaluated based on the presence or absence of H. pylori infection. We showed that

Table 2. Relations between clinicopathologic factors of gastric cancer and estimated salt intake by univariate analysis

Macroscopic type	(n = 120)	Estimated salt intake (g/day) (mean)	p value
Protruded	38	9.01	0.59
Depressed	82	9.25	
Tumor diameter (mm)			
≤30	105	9.27	0.23
>30	15	8.52	
Differentiated type			
Differentiated	112	9.24	0.23
Undifferentiated	8	8.25	
Depth of invasion			
Intramucosal	97	9.1	0.46
Submucosal or deeper	23	9.49	
Lymphovascular invasion			
Absence	111	9.14	0.57
Presence	9	9.59	
Degree of atrophy			
Closed type or non-atrophy	28	8.83	0.35
Open type	92	9.28	
Multiple gastric cancer			
Single gastric cancer	80	8.91	0.07
Multiple gastric cancer	40	9.7	

![Fig. 1. Relations between H. pylori infection and estimated salt intake by univariate analysis.](image-url)
estimated salt intake was significantly higher in patients with GC in the *H. pylori* infection groups, whereas we found that GC patients without *H. pylori* infection did not have high salt intake. Three patients had signet ring cell carcinomas, and two had fundic gland-type GCs. Risk factors of GCs occurring in *H. pylori*-uninfected individuals are unknown. Excessive salt intake might not be related to carcinogenesis in *H. pylori*-negative GC.

Kato et al. (18) reported that salt intake induces carcinogenesis in a dose-dependent manner under N-methyl-N-nitrosourea administration in *H. pylori*-infected Mongolian gerbils. Continuous salt intake is thought to change the gastric mucus environment and promote gastric carcinogenesis in the *H. pylori* infected stomach. Reduction of salt intake combined with *H. pylori* eradication might inhibit the development of GC.

Hirata et al. (17) reported that expression level of CD44 variant 9 (CD44v9), a functional cancer stem cell marker, was a predictor in a dose-dependent manner under N-methyl-N-nitrosourea administration in *H. pylori*-infected Mongolian gerbils. Continuous salt intake is thought to change the gastric mucus environment and promote gastric carcinogenesis in the *H. pylori* infected stomach. Reduction of salt intake combined with *H. pylori* eradication might inhibit the development of GC.

As a limitation of the study, diurnal variation and meals on the day before urine collection may affect the value (20). When conducting patient guidance with reference to estimated salt intake from spot urine, it may be necessary to perform multiple measurements under the same urine collection conditions. Because there are few cases of *H. pylori*-uninfected GC patients, it cannot be concluded whether salt intake is not related to the carcinogenesis in *H. pylori*-uninfected patients. It is a future task to increase the number of *H. pylori*-uninfected GC patients.

In conclusion, estimated salt intake from spot urine was significantly higher in patients with *H. pylori*-positive GC. Spot urine is a very simple examination, and it may be applied as a risk assessment for GC in general medical checkup without patient burden.

Author Contributions

AG, study concept and design, drafting of the manuscript; JN, study concept and design; SI, acquisition of data; EH, acquisition of data; TS, statistical analysis; KH, SH, TO, and HY, revision of the manuscript for important intellectual content; IS, study supervision.

Conflict of Interest

No potential conflicts of interest were disclosed.

References

1. Tsugane S, Sasazuki S, Kobayashi M, Sasaki S. Salt and salted food intake and subsequent risk of gastric cancer among middle-aged Japanese men and women. *Br J Cancer* 2004; 90: 128–134.
2. Shiokata K, Kiyohara Y, Kubo M, et al. A prospective study of dietary salt intake and gastric cancer incidence in a defined Japanese population: the Hisayama study. *Int J Cancer* 2006; 119: 196–201.
3. JoosSENS JV, HIll MJ, Elliott P, et al. Dietary salt, nitrate and stomach cancer mortality in 24 countries. European Cancer Prevention (ECP) and the INTERSALT Cooperative Research Group. *Int J Epidemiol* 1996; 25: 494–504.
4. Mori T. Health education using 24-hour urine collection. *Nippon Kosha Eisei Zasshi* 1987; 34: 282.
5. Tanaka T, Okamura T, Miura K, et al. A simple method to estimate population 24-h urinary sodium and potassium excretion using a casual urine specimen. *Hum Hypertens* 2002; 16: 97–103.
6. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24-hour urinary potassium and sodium excretion. Intersalt Cooperative Research Group. *BMJ* 1988; 297: 319–328.
7. Shimamoto K, Ando K, Fujita T, et al.; Japanese Society of Hypertension Committee for Guidelines for the Management of Hypertension. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2014). *Hypertens Res* 2014; 37: 253–390.
8. Lee J, Lee H, Kim K, Park JH, Kim S, Oh J. A higher salt intake leads to a lower rate of adequate blood pressure control. *J Korean Med Sci* 2014; 29 (Suppl 2): S103–S108.
9. Dougher CE, Rifkin DE, Anderson CA, et al. Spot urine sodium measurements do not accurately estimate dietary sodium intake in chronic kidney disease. *Am J Clin Nutr* 2016; 104: 298–305.
10. Nakamura K, Sugano H, Takagi K. Carcinoma of the stomach in incipient phase: its histogenesis and histological appearances. *Gan* 1968; 59: 251–258.
11. Tsugane S, Gey F, Ichinowatari Y, et al. Cross sectional epidemiologic study for assessing cancer risks at the population level. II. Baseline data and correlation analysis. *J Epidemiol* 1992; 2: 83–89.
12. van den Brandt PA, Botterweck AA, Goldbohm RA. Salt intake, cured meat consumption, refrigerator use and stomach cancer incidence: a prospective cohort study (Netherlands). *Cancer Causes Control* 2003; 14: 427–438.
13. Park JH, Kim YC, Koo HS, Oh SW, Kim S, Chin HJ. Estimated amount of 24-hour urine sodium excretion is positively correlated with stomach and breast cancer prevalence in Korea. *J Korean Med Sci* 2014; 29 Suppl 2: S131–S138.
14. Thapa S, Fischbach LA, Delongchamp R, Faramawi MF, Orloff M. Association between dietary salt intake and progression in the gastric precancerous process. *Cancers (Basel)* 2019; 11 pii: E467.
15. Yamamoto Y, Fujisaki J, Onma M, Hirayasu T, Igarashi M. *Helicobacter pylori*-negative gastric cancer: characteristics and endoscopic findings. *Dig Endosc* 2015; 27: 551–561.
16. Kato S, Tsukamoto T, Mizoshita T, et al. High salt diets dose-dependently promote gastric chemical carcinogenesis in *Helicobacter pylori*-infected Mongolian gerbils associated with a shift in mucin production from glandular to surface mucous cells. *Int J Cancer* 2006; 119: 1558–1566.
17. Hirata K, Suzuki H, Imaeda H, et al. CD44 variant 9 expression in primary early gastric cancer as a predictive marker for recurrence. *Br J Cancer* 2013; 109: 379–386.
18. Tsugawa H, Mori H, Matsuzaki J, et al. CAPZA1 determines the risk of gastric carcinogenesis by inhibiting *Helicobacter pylori* CagA-degraded autophagy. *Autophagy* 2019; 15: 242–258.
19. Tsugawa H, Kato C, Mori H, et al. Cancer stem-cell marker CD44v9-positive cells arise from *Helicobacter pylori*-infected CAPZA1-overexpressing cells. *Cell Mol Gastroenterol Hepatol* 2019; 8: 319–334.
20. Dossent JB, Gorman HM, Beck JC. The diurnal rhythm of urinary electrolyte excretion. I. Observations in normal subjects. *Metabolism* 1963; 12: 1083–1099.