Complete Genome Sequences of 61 Mycobacteriophages

Graham F. Hatfull,*a Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) Program,*b KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH) Mycobacterial Genetics Course,*c University of California–Los Angeles Research Immersion Laboratory in Virology,*d Phage Hunters Integrating Research and Education (PHIRE) Program*e

Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA; K-RITH, Durban, South Africa; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California–Los Angeles, Los Angeles, California, USA

Mycobacteriophages—viruses of mycobacteria—provide insights into viral diversity and evolution as well as numerous tools for genetic dissection of Mycobacterium tuberculosis. Here we report the complete genome sequences of 61 mycobacteriophages newly isolated from environmental samples using Mycobacterium smegmatis mc²155 that expand our understanding of phage diversity.

Received 25 March 2016 Accepted 23 May 2016 Published 7 July 2016

Bacteriophages are the most numerous biological entities on the planet, with a global population of 10^{31} particles. With an estimated 10^{23} productive infections per second worldwide, the population is vast, dynamic, and genetically diverse (1–4). As of March 2016, the National Center for Biotechnology Information (NCBI) lists 1,757 Caudovirales genomes, 318 of which infect Mycobacterium hosts. Previous comparative analyses of mycobacteriophages revealed substantial diversity and mosaic architectures resulting from nonhomologous recombination. Integrated research–education programs such as Phage Hunters Integrating Research and Education (PHIRE) (5), Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) (6), the Mycobacterial Genetics Course at the University of Kwazulu-Natal (K-RITH), and the University of California–Los Angeles’s Research Immersion Laboratory in Virology, isolated, sequenced, and annotated the phages reported here (Table 1) using M. smegmatis as a host.

Phages were isolated by direct plating of filtered soil extracts or from enriched cultures, followed by plaque purification. Electron microscopy shows that 60 have siphoviral morphotypes, and HyRo is the sole member of the Myoviridae. Most have isometric capsids, the exceptions being Biper, Bshah, and Zakehe101 with prolacte heads. Genomic DNA was extracted from high titer lysates, sheared, and sequenced at the University of Pittsburgh, University of California–Los Angeles, the DOE Joint Genome Institute, or Virginia Commonwealth University using either Sanger, Illumina, Ion Torrent, or 454 technology. Sequence reads were assembled using Newbler (Roche) and Consed (7) and coverage depths range from 47-fold to 2,308-fold, with an average of 200-fold. Sequence assemblies revealed discrete genome ends for 52 phages, and the 9 with circularly permuted assemblies were bioinformatically linearized such that base one was assigned in accord with other mycobacteriophages. Genomes were annotated using DNA Master (http://cobamide2.bio.pitt.edu), Phamerator (8), Glimmer (9), GeneMark (10), Aragorn (11), and tRNAscanSE (12), and functions were determined using the public databases GenBank, Protein DataBase, pfamA, and phagesdb.org with BLAST (13), and HHPred (14). Genomes were assigned to clusters or subclusters as described previously (15).

Notwithstanding the large extant collection of sequenced mycobacteriophage genomes, these newly sequenced phages considerably expand our understanding of mycobacteriophage diversity. Twenty-two are members of the largest cluster, cluster A, but span 7 of the 15 subclusters. The others are broadly distributed across other clusters, including B, C, E, F, G, I, K, L, M, N, O, and P. Cosmo has substantial nucleotide sequence similarity to the singleton phage Wildcat, forming the new cluster V. The eight cluster N phages, Cedasite (G1), and Brusacoram (P) are notable in that they contain integration-dependent immunity systems in which the phage attachment site (attP) is located within the repressor gene (16).

As is typical of other sequenced phage genomes, functions can be assigned to only ~25% of the predicted genes, primarily those involved in virion capsid and assembly and well-conserved genes associated with DNA metabolism. Two of the cluster A genomes (Eidsmoe, ArcherNM) contain partitioning systems in place of integration cassettes; several genomes (e.g., Phrann, Xeno) encode toxin-antitoxin systems; and three encode Lsr2 homologs (Lolly9, Lumos, and Snenia).

Nucleotide sequence accession numbers. Nucleotide sequence accession numbers for all phages are shown in Table 1.
Phage name	Cluster	Genome (bp)	G+C content (%)	GenBank accession no.	Finding/annotating institution
Alvin	A1	49,577	63.5	KP027205	University of Pittsburgha
ArcherNM	A2	52,561	64.2	KG761559	Washington State University, University of Floridaa
Artemis2UCLA	A6	52,244	61.4	FG603333	University of California–Los Angelesd
Backbacter	A2	52,129	63.1	KU686494	North Carolina A&T State Universityb
Bernardo	B3	68,196	67.4	KG493879	University of California–Los Angelesd
Biper	Y	77,832	67.3	KU1726633	University of Pittsburgh, Florida Gulf Coast Universityb
Bricole	M1	81,128	61.6	KT591491	Old Dominion Universityb
Bruin	E	74,210	63.0	KG602099	University of California–Los Angelesd
Brusacoram	P	47,618	67.0	KT347311	College of St. Scholastica b
Carcharodon	N	43,680	66.2	KM885859	Jacksonville State Universityb
Cedasite	G1	41,901	66.6	KT554472	Morehouse Collegea
Chandler	B3	69,450	67.5	KG272007	University of Pittsburgha
CloudWang3A	A6	52,873	61.4	KG603332	University of California–Los Angelesd
Conspiracy	A5	50,755	60.6	KG603330	University of California–Los Angelesd
Cosmo	V	78,229	56.8	KG027195	University of KwaZulu-Natald
Eidsmoe	A9	52,946	62.5	KU176094	Illinois Wesleyan Universityb
Enkosi	K1	59,052	67.2	KT281789	University of KwaZulu-Natald
Glass	B2	67,509	69.0	KT880194	Hope Collegeb
Graduation	A1	52,823	63.5	KG603331	University of California–Los Angelesd
HanShotFirst	A1	52,390	63.8	KG93880	University of California–Los Angelesd
HufflyPuff	E	76,323	63.0	KG621000	University of California–Los Angelesd
HyRo	C1	153,714	64.7	KT281790	University of KwaZulu-Natald
Iracema64A	A4	51,637	64.0	KU055616	La Salle Universityb
JAMal	B4	79,841	68.8	KG493881	University of California–Los Angelesd
JenCasNa	A3	50,877	64.0	KU255188	Howard Hughes Medical Instituteb
Jovo	A5	51,319	60.8	KG493882	University of California–Los Angelesd
Kimberflum	F1	56,826	61.4	KR935214	Gettyburg Collegeb
LadyBird	A2	53,141	63.5	KT88442	St. Edward’s Universityb
Lolly9	L3	75,816	59.3	KT281791	University of KwaZulu-Natalb
Lumos	L3	75,586	59.3	KT372003	Indian River State Collegeb
MichelleMyBell	N	42,240	66.0	KG98246	Nyack Collegeb
Mosby	E	74,533	63.1	KG493883	University of California–Los Angelesd
Nala	E	75,894	63.1	KG62101	University of California–Los Angelesd
NaSiaTalie	A2	52,920	63.4	KU297783	Howard Hughes Medical Instituteb
Numberten	B1	68,607	66.5	KJ194583	University of Pittsburghb
Panchino	N	43,516	65.9	KU935727	Lincoln Universityb
Phamished	B1	68,515	66.5	KR816508	Gettyburg Collegeb
PhatBacter	E	76,217	63.0	KG62102	University of California–Los Angelesd
Phatniss	F1	57,293	61.3	KT279576	Johns Hopkins Universityb
Phrann	N	44,872	66.3	KU935731	Southern Connecticut State Universityb
Pioneer	A9	53,219	62.6	KT285706	Indian River State Collegeb
PipsqueaksN	N	43,679	66.3	KU935730	College of Charlestonb
PopTart	F1	55,094	61.6	KT281792	University of KwaZulu-Natalb
Potter	B1	68,327	66.5	KU867907	University of Kansasb
Romney	A4	51,370	63.9	KU867906	Seton Hill Universityb
Sbash	I2	55,832	65.6	KP027201	University of KwaZulu-Natalb
Seabiscuit	A1	51,781	63.7	KJ194585	University of Pittsburghb
Seagreen	F1	57,766	61.8	KT281793	University of KwaZulu-Natalb
SkinnyPete	N	43,478	66.4	KU935729	Virginia Commonwealth Universityb
Snesia	L3	75,626	59.3	KT281794	University of KwaZulu-Natalb
Sparkdehilly	F1	56,275	61.2	KT895280	James Madison Universityb
Taspl4	A1	51,409	63.9	KT326768	Ohio State Universityb
Texage	A3	50,081	64.0	KT326767	Merrimack Collegeb
TheloniousMonk	A1	52,055	63.6	KT363731	Western Kentucky Universityb
Tres	B2	67,349	68.9	KT365402	James Madison Universityb
Wooldri	A3	50,797	64.0	KT381277	Washington State University, University of Floridaa
Xeno	N	42,395	66.8	KU935728	Southern Connecticut State Universityb
Xerxes	N	43,698	66.3	KU935726	University of Floridaa
XFactor	F1	55,617	61.7	KT281795	University of KwaZulu-Natalb
Zaka	A6	52,122	61.5	KG603534	University of California–Los Angelesd
Zakhe101	O	69,653	65.5	KT281796	University of KwaZulu-Natalb

* Phage Hunters Integrating Research and Education (PHIRE) Program, University of Pittsburgh.
* Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES).
* K-RITH Mycobacterial Genetics Course.
* University of California–Los Angeles, Research Immersion Laboratory in Virology.
ACKNOWLEDGMENTS

We thank the many undergraduates and instructors who contributed to the phage discovery and genomics initiative. We especially thank David J. Asai, William Biederman, Charles Bowman, Kevin W. Bradley, Steven Cresawn, Rebecca Garlena, Roger Hendrix, William R. Jacobs, Jr., Deborah Jacobs-Sera, Paras Jain, Victoria Kasporowicz, Michelle H. Larsen, Travis Mavrich, Welkin H. Pope, Eric Rubin, Daniel A. Russell, and Viknesh Sivanathan for their assistance in phage isolation, genome analysis, and program administration.

FUNDING INFORMATION

This work, including the efforts of Graham F. Hatfull, was funded by HHS | National Institutes of Health (NIH) (GM116884). This work, including the efforts of Graham F. Hatfull, was funded by Howard Hughes Medical Institute (HHMI) (54308198).

REFERENCES

1. Suttle CA. 2007. Marine viruses—major players in the global ecosystem. Nat Rev Microbiol 5:801–812. http://dx.doi.org/10.1038/nrmicro1750.
2. Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, Jacobs-Sera D, Falbo J, Gross J, Pannunzio NR, Brucker W, Kumar V, Kandasamy J, Keenan L, Bardarov S, Kriakov J, Lawrence JG, Jacobs WR, Jr, Hendrix RW, Hatfull GF. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182. http://dx.doi.org/10.1016/S0092-8674(03)00233-2.
3. Krupovic M, Bamford DH. 2010. Order to the viral universe. J Virol 84:12476–12479. http://dx.doi.org/10.1128/JVI.01489-10.
4. Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF. 1999. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci USA 96:2192–2197. http://dx.doi.org/10.1073/pnas.96.5.2192.
5. Hatfull GF. 2010. Bacteriophage research: gateway to learning science. Microbe 5:243–250.
6. Jordan TC, Burnett SH, Carson S, Caruso SM, Clase K, Delong RJ, Dennehy JJ, Denver DR, Dunbar D, Elgin SC, Findley AM, Gissendanner CR, Golieblovska GP, Guild N, Hartzog GA, Grillo WH, Hollowell GP, Hughes LE, Johnson A, King RA, Lewis LO, Li W, Rosenzweig F, Rubin MR, Saha MS, Sandoz J, Shaffer CD, Taylor B, Temple I, Vazquez E, Ware VC, Barker LP, Bradley KW, Jacobs-Sera D, Pope WH, Russell DA, Cresawn SG, Lopatto D, Bailey CP, Hatfull GF. 2014. A broadly implementable research course in phage discovery and genomics for first-year undergraduate students. MBio 5:e01051-13. http://dx.doi.org/10.1128/mBio.01051-13.
7. Gordon D, Green P. 2013. Consed: a graphical editor for next-generation sequencing. Bioinformatics 29:2936–2937. http://dx.doi.org/10.1093/bioinformatics/btt515.
8. Cresawn SG, Bogel M, Day N, Jacobs-Sera D, Hendrix RW, Hatfull GF. 2011. Phamerator: a bioinformatic tool for comparative bacteriophage genomics. BMC Bioinformatics 12:395. http://dx.doi.org/10.1186/1471-2105-12-395.
9. Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679. http://dx.doi.org/10.1093/bioinformatics/btm009.
10. Besemer J, Borodovsky M. 2005. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33:W451–W454. http://dx.doi.org/10.1093/nar/gki487.
11. Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16. http://dx.doi.org/10.1093/nar/gkh152.
12. Ackermann KH, Adams N, Adler C, Ahammed Z, Ahmad S, Allgower C, Amsbaugh J, Anderson M, Anderssen E, Arnesen H, Arnold L, Averichev GS, Baldwin A, Balewski J, Barannikova O, Barnby LS, Baudot J, Beddo M, Bekele S, Belaga VV, Bellwied R, Bennett S, Bercovitz J, Berger J, Betts W, Bischel H, Biener F, Bland LC, Bloomer M, Blyth CO, Bochm J, Bonnet BE, Bonnet D, Bossingham R, Botlo M, Boucham A, Bouillo N, Bouvier S, Bradley K, Brady FP, Braythwaite ES, Braythwaite W, Brandin A, Brown RL, Brugalette G, Byrd C, Caines H, Calderon de la Barca Sanchez M, Cardenas A, Carr L. 2001. Elliptic flux in Au+Au collisions at square root(S)NN = 130 GeV. Phys Rev Lett 86:402–407. http://dx.doi.org/10.1103/PhysRevLett.86.402.
13. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. http://dx.doi.org/10.1016/S0022-2836(05)80360-2.
14. Remmert M, Biegert A, Hauser A, Söding J. 2012. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9:173–175. http://dx.doi.org/10.1038/nmeth.1818.
15. Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA, Ko CC, Weber RJ, Patel MC, Germaine KL, Edgar RH, Hoyte NN, Bowman CA, Tantoco AT, Paladin EC, Myers MS, Smith AL, Grace MS, Pham TT, O’Brien MB, Vogelberger AM, Hrycikowian AJ, Wynalek JL, Donis-Keller H, Bogel MW, Peebles CL, Cresawn SG, Hendrix RW. 2010. Comparative genomic analysis of 60 mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol 397:119–143. http://dx.doi.org/10.1016/j.jmb.2010.01.011.
16. Broussard GW, Oldfield LM, Villanueva VM, Lunt BL, Shine EE, Hatfull GF. 2013. Integration-dependent bacteriophage immunity provides insights into the evolution of genetic switches. Mol Cell 49:237–248.