On symmetries of a matrix and its isospectral reduction

M. Röntgena,1,*, M. Pyzha,1, C. V. Morfoniosa, P. Schmelchera,b

aZentrum für Optische Quantentechnologien, Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
bThe Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

Abstract

The analysis of diagonalizable matrices in terms of their so-called isospectral reduction represents a versatile approach to the underlying eigenvalue problem. Starting from a symmetry of the isospectral reduction, we show in the present work that it is possible to construct a corresponding symmetry of the original matrix.

Keywords: Isospectral reduction, Latent symmetries, Cospectrality, Eigenvalues

2010 MSC: 05C50, 15A18, 15A27

1. Introduction

The study of matrix eigenvalue problems of the form $Hx = \lambda x$ is ubiquitous in science and technology. A promising direction in analysing this eigenvalue problem is a dimensional reduction of H. In this work, we consider the so-called isospectral reduction (ISR) \cite{ISR}, which is defined via matrix partitioning of $H \in \mathbb{C}^{N \times N}$ as

\begin{equation}
R_S(H, \lambda) = H_{SS} + H_{S\overline{S}} \left(\lambda - H_{\overline{S}\overline{S}} \right)^{-1} H_{\overline{S}S},
\end{equation}

where the set $S \subseteq \{1, \ldots, N\}$ and its complement \overline{S} are used for partitioning H. For example, H_{SS} denotes the submatrix obtained from H by taking the rows in S and the columns in S. The ISR provides valuable insights in quantum physics, where it is referred to as an effective Hamiltonian obtained from subsystem partitioning \cite{ effective Hamiltonian 1, effective Hamiltonian 2}.

As its name suggests, the ISR preserves the spectral properties of H: Defining the multiset $\sigma(M)$ as the eigenvalue spectrum of a matrix M, it has been shown that the non-linear eigenvalue spectrum $R_S(H, \lambda)$ fulfills $\sigma(R_S(H, \lambda)) = \sigma(H) - \sigma(H_{SS})$ \cite{ISR}. Thus, whenever H and H_{SS} share no eigenvalues, $R_S(H, \lambda)$ preserves the eigenvalue spectrum of H. Building on this favourable property, the ISR has been applied \cite{ISR applications} to improve the eigenvalue approximations of Gershgorin, Brauer, and Brualdi \cite{Gershgorin, Brauer, Brualdi}, to study pseudo-spectra of graphs and matrices \cite{pseudo-spectra}, to create stability preserving transformations of networks \cite{network stability 1, network stability 2, network stability 3}, to study the survival probabilities in open dynamical systems \cite{open systems}, and very recently also to explain spectral degeneracies of physical systems \cite{spectral degeneracies}.

In this work, we concentrate on symmetries of the isospectral reduction, which we define as a normal and invertible matrix T which commutes with $R_S(H, \lambda)$, that is, $[R_S(H, \lambda), T] = 0$, for

\footnotesize{*Corresponding author

Email address: mroentgen@physnet.uni-hamburg.de (M. Röntgen)

1These two authors contributed equally.
all \(\lambda \notin \sigma(H_{SS}) \). We note that, for the special case of permutations, such symmetries of \(R_S(H, \lambda) \) have been coined “latent” or “hidden” symmetries of \(H \) [13]. In that context, \(H \) is the (weighted) adjacency matrix of a graph, and its automorphisms are described by a permutation matrix commuting with \(H \). The term “latent” then refers to the fact that the ISR of \(H \) may feature non-trivial permutation symmetries, while \(H \) features only a trivial (namely: the identity operation) permutation symmetry. Interestingly, latent symmetries have been recently connected [14] to the theory of so-called “cospectral vertices” which find applications in quantum computing [15, 16, 17]. In the remainder of this work, we will adapt the generalized notion of Ref. [3], and denote also non-permutation symmetries of \(R_S(H, \lambda) \) as “latent symmetries of \(H \)”.

The nonlinear eigenvalues of \(R_S(H, \lambda) \) correspond to eigenvectors fulfilling
\[
R_S(H, \lambda)y = \lambda y,
\]
given by the projection \(y = x_S \) of the eigenvector \(x \) of \(H \) to \(S \) [18]. This allows to derive the profound impact of latent symmetries on the eigenvectors of \(H \): Whenever the symmetry \(T \) has only simple eigenvalues, and additionally \(H \) and \(H_{SS} \) share no eigenvalues, then all eigenvectors of \(H \) fulfill
\[
Tx_S = tx_S,
\]
with \(t \) being an eigenvalue of \(T \). However, when \(H \) and \(H_{SS} \) share eigenvalues, the behavior of the corresponding eigenvectors is still an open issue for general \(T \). Recently, an interesting first step in solving this problem has been made for the special case of \(T = P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) [14, 19]: It has been shown that \([R_S(H, \lambda), P] = 0 \) corresponds to the existence of an orthogonal block-diagonal matrix \(Q = P \oplus \overline{Q} \) fulfilling \([Q, H] = 0 \). Thus, \(H \) and \(Q \) can be simultaneously diagonalized, and—assuming no degeneracies of \(H \)—it follows that all eigenvectors either fulfill Eq. (2) or vanish on \(S \), that is, \(x_S = 0 \). We generalize this result in the following.

Theorem 1. Let \(R_S(H, \lambda) \) be the isospectral reduction of a self-adjoint matrix
\[
H = \begin{pmatrix} H_{SS} & H_{SS}^T \\ H_{SS}^T & H_{SS} \end{pmatrix}
\]
and \(T \) be a normal and invertible \(|S| \times |S| \) matrix. Then the following are equivalent

(i) \([R_S(H, \lambda), T] = 0 \forall \lambda \notin \sigma(H_{SS})\).

(ii) \([H^k]_{SS}, T] = 0 \forall k \in \mathbb{N} \).

(iii) There exists a normal matrix \(Q = T \oplus \overline{Q} \) fulfilling \([Q, H] = 0\).

Proof. The equivalence of (i) and (ii) has already been proven in Ref. [3]. Proving (iii) \(\Rightarrow\) (ii) is trivial, since
\[
[H, Q] = 0 \Rightarrow [H^k, Q] = 0,
\]
and writing the \(SS \)-block of this commutator gives \([H^k]_{SS}, Q_{SS} = [H^k]_{SS}, T] = 0\).

We now prove the remaining step of (ii) \(\Rightarrow\) (iii): Since \(T \) is normal and invertible, it can be spectrally decomposed as \(T = \sum_{i=1}^{n} \sum_{j=1}^{d_i} t_i \phi_{i,j} \phi_{i,j}^\dagger \) with each of its nonzero eigenvalues \(t_i \).
corresponding to a set of \(d_i\) orthonormal eigenvectors \(\phi_{i,j}\) with degeneracy index \(j = 1, \ldots, d_i\), and with \(\dagger\) denoting the conjugate transpose.

Let now \(\Phi_{i,j}\) be the \(N\)-dimensional vector obtained from \(\phi_{i,j}\) by padding it with zeros such that
\[
(\Phi_{i,j})_S = \phi_{i,j} \quad \text{and} \quad (\Phi_{i,j})_\overline{S} = 0, \quad \text{with} \quad N \text{ denoting the dimension of } H.
\]
We denote by \(K_{i,j} = \text{span} \left(\Phi_{i,j}, H_{i,j}, \ldots, H^{N-1}_{i,j} \right)\) the Krylov subspace generated by \(\Phi_{i,j}\). As we now prove, when \(l \neq m\), \(K_{i,j} \perp K_{m,j'}\) for all \(j'\). Equivalently, the hermitian inner product \(\langle H^{k_1}_{i,j}, H^{k_2}_{m,j'} \rangle = 0\) for all \(k_1, k_2\): Since \(H = H\dagger\) is self-adjoint, this inner product can be written as
\[
\Phi_{i,j} H^k \Phi_{m,j'} = (a) \phi_{i,j}^\dagger H^k S \phi_{m,j'} = \phi_{i,j}^\dagger T^{-1} H^k S T \phi_{m,j'}
\]
with \(k = k_1 + k_2\) and where we have used that (a) both \(\Phi_{i,j}\) and \(\Phi_{m,j'}\) vanish on \(S\) and (b) that \(t_i \neq t_m\).

We then proceed by defining the \(H\)-invariant subspaces \(\widetilde{K}_i = \bigoplus_j K_{i,j}\). From the above, it is clear that \(\widetilde{K}_i \perp \widetilde{K}_m\) when \(l \neq m\). We now construct an orthonormal basis of each \(\widetilde{K}_i\) as follows: As the first \(d_i\) basis vectors, we choose the generating vectors \(\Phi_{i,1}, \ldots, \Phi_{i,d_i}\) of the Krylov spaces \(K_{i,1}, \ldots, K_{i,d_i}\). These vectors are already pairwise orthonormal and are necessarily contained in \(\widetilde{K}_i\). Denoting the dimension of \(\widetilde{K}_i\) by \(\tilde{d}_i\), the remaining \(\tilde{d}_i - d_i = r_i \geq 0\) basis vectors \(\overline{\Phi}_{i,1}, \ldots, \overline{\Phi}_{i,r_i}\) can be shown to vanish on \(S\): First, being a basis vector of \(\widetilde{K}_i\), each \(\overline{\Phi}_{i,j}\) must be orthogonal to all other basis vectors of this space, and in particular to \(\Phi_{i,j'}\) for all \(j'\). Second, since \(\widetilde{K}_i \perp \widetilde{K}_{i'}\) with \(i \neq i'\), each \(\overline{\Phi}_{i,j}\) must be orthogonal to each basis vector of \(\widetilde{K}_{i'}\), and in particular to \(\Phi_{i',j'}\) for all \(j'\). Thus, \(\overline{\Phi}_{i,j}\) is orthogonal to \(\Phi_{i',j'}\) for all \(i', j'\). Now, since the set \(\{\Phi_{i,j}\}\) forms an orthogonal basis for any vector that vanishes on \(S\), and since each element of this set vanishes on \(S\), it follows that each \(\overline{\Phi}_{i,j}\) must vanish on \(S\).

The above insights allow us to finally construct
\[
Q = \sum_{i=1}^n t_i \left[\sum_{j=1}^{d_i} \Phi_{i,j} \Phi_{i,j}^\dagger + \sum_{j=1}^{r_i} \overline{\Phi}_{i,j} \overline{\Phi}_{i,j}^\dagger \right]. \tag{7}
\]
By construction, \(Q\) is a normal matrix. We now prove that \([H, Q] = 0\). To this end, let \(x_i \in \widetilde{K}_i\).
It follows that \(H x_i \in \widetilde{K}_i\) as well, since \(\widetilde{K}_i\) is by construction an \(H\)-invariant subspace. Then, by Eq. (7), all vectors in \(\widetilde{K}_i\) are eigenvectors of \(Q\) with identical eigenvalue \(t_i\). We thus have \(Q H x_i = t_i H x_i\), and also \(H Q x_i = H (t_i x_i)\). Let now \(V\) denote the orthogonal complement of \(\bigoplus_i \widetilde{K}_i\). It is obvious that for \(v \in V\) we have \(Q v = 0\) and thus also \(H Q v = 0\). Being the orthogonal complement of \(H\)-invariant subspaces, \(V\) is also \(H\)-invariant, and we also get \(H v \in V\) implying \(Q H v = 0\). In summary,
\[
Q H x = H Q x \tag{8}
\]
for any \(x\). Thus, \([Q, H] = 0\) as claimed.

We proceed by showing that \(Q_{SS} = T\). To this end, we define the vector \(e_i\) having a 1 on component \(i\) and with all other components vanishing. Then, for \(s, s' \in S\), the matrix element
\[Q_{s,s'} = e^\dagger_s Q e_{s'}, \text{ and since each basis vector } \Phi_{i,j} \text{ vanishes on } S, \text{ we have} \]

\[Q_{s,s'} = \sum_{i=1}^{n} \sum_{j=1}^{d_i} t_i e^\dagger_s \Phi_{i,j} \Phi^\dagger_{i,j} e_{s'} = \sum_{i=1}^{n} \sum_{j=1}^{d_i} t_i \left(\Phi_{i,j} \Phi^\dagger_{i,j} \right)_{s,s'} = \sum_{i=1}^{n} \sum_{j=1}^{d_i} t_i \left(\phi_{i,j} \phi_{i,j}^\dagger \right)_{s,s'} = T_{s,s'} \]

where in the last step we recognized the spectral decomposition of \(T \).

To see that \(Q_{s,s} = 0 \) and also \(Q_{s,s} = 0 \), it suffices to note that, due to Eq. (7), \(e^\dagger_s Q e_s = 0 \) for any \(s \in S, s' \in S \).

References

[1] L. Bunimovich, B. Webb, Isospectral Transformations: A New Approach to Analyzing Multi-dimensional Systems and Networks, Springer, New York, NY, United States, 2014.

[2] G. Grosso, G. P. Parravicini, Solid State Physics, Academic Press, 2013.

[3] M. Röntgen, M. Pyzh, C. V. Morfonios, N. E. Palaiodimopoulos, F. K. Diakonos, P. Schmelcher, Latent Symmetry Induced Degeneracies, Phys. Rev. Lett. 126 (18) (2021) 180601. doi:10.1103/PhysRevLett.126.180601.

[4] L. A. Bunimovich, B. Z. Webb, Isospectral graph reductions and improved estimates of matrices’ spectra, Linear Algebra Its Appl. 437 (7) (2012) 1429–1457. doi:10.1016/j.laa.2012.04.031.

[5] S. Gerschgorin, Uber die abgrenzung der eigenwerte einer matrix, Izv. Akad. Nauk SSSR Ser. Mat. 7 (3) (1931) 749–754.

[6] A. Brauer, Limits for the characteristic roots of a matrix. II., Duke Math. J. 14 (1) (1947) 21–26. doi:10.1215/S0012-7094-47-01403-8.

[7] R. A. Brualdi, Matrices eigenvalues, and directed graphs, Linear Multilinear Algebra 11 (2) (1982) 143–165. doi:10.1080/03081088208817439.

[8] Vasquez Fernando Guevara, Webb Benjamin Z., Pseudospectra of isospectrally reduced matrices, Numer. Linear Algebra Appl. 22 (1) (2014) 145–174. doi:10.1002/nla.1943.

[9] L. A. Bunimovich, B. Z. Webb, Isospectral graph transformations, spectral equivalence, and global stability of dynamical networks, Nonlinearity 25 (1) (2011) 211–254. doi:10.1088/0951-7715/25/1/211.

[10] L. A. Bunimovich, B. Z. Webb, Restrictions and stability of time-delayed dynamical networks, Nonlinearity 26 (8) (2013) 2131–2156. doi:10.1088/0951-7715/26/8/2131.

[11] D. Reber, B. Webb, Intrinsic stability: Stability of dynamical networks and switched systems with any type of time-delays, Nonlinearity 33 (6) (2020) 2660–2685. doi:10.1088/1361-6544/ab7728.
[12] L. A. Bunimovich, B. Z. Webb, Improved Estimates of Survival Probabilities via Isospectral Transformations, in: W. Bahsoun, C. Bose, G. Froyland (Eds.), Ergodic Theory, Open Dynamics, and Coherent Structures, Springer Proceedings in Mathematics & Statistics, Springer, New York, NY, 2014, pp. 119–135. doi:10.1007/978-1-4939-0419-8_7.

[13] D. Smith, B. Webb, Hidden symmetries in real and theoretical networks, Physica A 514 (2019) 855–867. doi:10.1016/j.physa.2018.09.131.

[14] M. Kempton, J. Sinkovic, D. Smith, B. Webb, Characterizing cospectral vertices via isospectral reduction, Linear Algebra Its Appl. 594 (2020) 226–248. doi:10.1016/j.laa.2020.02.020.

[15] C. Godsil, S. Kirkland, S. Severini, J. Smith, Number-Theoretic Nature of Communication in Quantum Spin Systems, Phys. Rev. Lett. 109 (5) (2012) 050502. doi:10.1103/PhysRevLett.109.050502.

[16] A. Kay, The Perfect State Transfer Graph Limbo, ArXiv180800696 Quant-Ph (Aug. 2018). arXiv:1808.00696.

[17] M. Röntgen, N. E. Palaidimopoulos, C. V. Morfonios, I. Brouzos, M. Pyzh, F. K. Diakonos, P. Schmelcher, Designing pretty good state transfer via isospectral reductions, Phys. Rev. A 101 (4) (2020) 042304. doi:10.1103/PhysRevA.101.042304.

[18] P. Duarte, M. J. Torres, Eigenvectors of isospectral graph transformations, Linear Algebra Its Appl. 474 (2015) 110–123. doi:10.1016/j.laa.2015.01.038.

[19] C. Godsil, J. Smith, Strongly Cospectral Vertices, ArXiv 170907975 (Sep. 2017). arXiv:1709.07975.