Study of submicrocapsules structure stabilized by modified silica dioxide nanoparticles

B Zh Mutaliyeva¹, A B Tleuova², G M Madybekova¹,³ and A S Kurmanbayeva⁴

¹ M. Auezov South-Kazakhstan State university, 5, Tauke khan av., Shymkent, 160012, Republic of Kazakhstan
² University of Chemistry and Technology Prague, 5, Technická, Prague 6, 166 28 Czech Republic
³ South-Kazakhstan State Pedagogical University, 13, Baitursynov str., Shymkent, 160012, Republic of Kazakhstan
⁴ Sh. Ualikhanov Kokshetau State university, 76, Abay str., Kokshetau, 020000, Republic of Kazakhstan

E-mail: mbota@list.ru

Abstract. In this research the structures of Miglyol 812 submicrocapsules, stabilized by silica dioxide nanoparticles, modified by oleic acid, were studied. It was found that the size distribution of silica particles modified with oleic acid depends on the amount of oleic acid. There is a limit to the ratio of oleic acid to silica at modification of silica particles with oleic acid. Experimental results have shown that the optimal ratio of oleic acid to silica is in the range from 1·10⁻² to 5·10⁻¹. The use of silica particles modified with oleic acid allows to obtain an emulsion with a 30 % of oil phase, with an average size from 80-300 nm. Thus, modification of hydrophilic silica particles with surfactants such as oleic acid in order to make them more hydrophilic and able to be adsorbed at the oil / water interface can be used to prepare a stable Pickering emulsion. As a result the stable Pickering emulsions which can be used for encapsulation of various substances were obtained, and the use of microcapsules allows one to decrease their impact on environment and increase efficiency of usage.

1. Introduction

Microencapsulation and controlled release of various active substances, for example agricultural chemicals, can help to reduce encapsulated agent toxicity, to reduce the impact of substances on the environment, and to improve agent efficiency and efficacy [1].

That is why microencapsulation has found a great application in agriculture as an active substances delivery system. The different plant protection products were microencapsulated, for instance, insecticides [2-4], herbicides [5-8], fungicides [9], essential oils pesticides [10, 11]. Also, microencapsulation of microbial cells [12] can help to prevent stress caused by environment and to increase their stability [13, 14]. Technologies of microencapsulation can improve the stability and residual action of bioactive substances, and this could increase their field use.

Thus, encapsulation is being attracting method because it improves cell’s stability and tolerance to inhibitors, increases the amount of biomass inside of reactor, and reduces the cost of cell restoration, utilization and further processing. There are many studies have reported on microencapsulation of active
ingredients by use of several methods including spray drying [15], simple coacervation [16], complex coacervation [17], emulsion extrusion [18] and supercritical fluid deposition [19]. However, these methods do not yet solve the problems of the duration of use due to unreliability of used capsules. Therefore further researches have to be carried out to find methods that allow to ensure mechanical strength of capsules and reliable release. For this, it is necessary to find methods that will ensure the mechanical strength of the capsules and reliable release.

This research aims to study the potential of emulsions, including Pickering emulsions, to maintain the effectiveness of various biocides in relation to pathogenic microflora for use in various industries.

2. Methods of research

In case of using oleic acid to modify the surface of silica nanoparticles the following procedure was used [20]. The Ludox TM-40 silica particles were ultrasonicated (Bandelin, Sonopuls HD 3100) for 10 min at 30 W power prior to use to avoid aggregation. The particle dispersion had a transparent and slightly bluish appearance. The oleic acid-water mixture was also ultrasonicated for 10 min at 30 W power to effectively disperse oleic acid in water as micrometer-sized droplets. Afterward, the proper amounts of this mixture were added to the silica particles suspension. The resulting sample was ultrasonicated at 30 W power in pulse mode (3 s pulses with 1 s pauses) for 10 min to provide further energy for mixing and adsorption.

To prepare the emulsions, the modified silica particle dispersions were transferred to a vial, to which water, and then the lipophilic phase, were added. For pure oil dispersions, 30% of the total volume was oil (Miglyol 812). The resulting mixture was ultrasonicated at 60 W to disperse the oil phase for 10 min, which led to a milky suspension. All measurements were performed at 25 °C.

3. Results and discussion

Figure 1 shows the mean diameter of silica nanoparticles by intensity. The results correspond with specification sheet of the product. Only one peak with maximum value at of 20-30 nm can be seen.

![Size Distribution by Intensity](image)

Figure 1. Size distribution by intensity of 5 wt. % dispersion of silica particles Ludox TM-40, nm.
These particles were modified by oleic acid. In Figure 2 the results of size distribution by intensity of 5 wt. % dispersion of silica particles modified by 12 mM oleic acid are shown. Measurements show that two more picks appeared.

According to DLS results the first pick corresponds to size of 36 nm, the second – 418 nm, and the third – 4.7 µm. The value of first pick can be explained by modification of separate silica nanoparticles by oleic acid, however the second pick might be aggregates of modified nanoparticles. There is the third pick with a 4.7 µm diameter that is most probably oleic acid droplets that were coagulated before modification of silica nanoparticles. It can also indicate that all silica particles were modified and there is a certain extra amount of oleic acid and it is possible to decrease amount of oleic acid.

The second pick can be emulsion droplets stabilized by silica nanoparticles that can be seen from SEM photograph (Figure 3).

However, the results of size distribution by volume show that in case of modified particles the number of particles with size of 418 nm and 4.7 µm can be neglected because of its extremely small amount (Figure 4).
Figure 4. Size distribution by volume of non-modified and modified silica particles, nm. Red - 5 wt. % dispersion of silica particles, green - 5 wt. % dispersion of silica particles modified by 12 mM oleic acid.

Considering red line (Ludox TM-40 nanoparticles) and the highest pick of green line (silica particles modified by 12 mM oleic acid) it can be seen that the diameter of separate silica nanoparticles increased from 22 to 36 nm that indicated success of the modification process. The experimental results showed the formation of uniform emulsion with white colour and average size of droplets of 350 nm. Comparing (Figure 5) modified silica particles size (green line) with emulsion droplets size (red line) by intensity it can be clearly seen that the number of particles with the diameter of 36 nm reduced significantly, meanwhile the pick corresponding to particles with the diameter of 300-400 nm increased.

Figure 5. Comparison of silica particles modified by 12mM oleic acid and emulsion obtained using these particles. Green – modified silica particles 5% with 12mM oleic acid; Red – Miglyol 30% submicrocapsules stabilized with 5 wt. % dispersion of silica particles modified by 12 mM oleic acid

4. Conclusion
Thus, emulsions were prepared using silica nanoparticles modified with oleic acid. Experimental results showed that use of modifier leads to formation of stable emulsions with a diameter of 80 – 300 nm. The presence of more than one picks says that it is necessary to adjust the optimal ratio, and modification and emulsification modes.

On the basis of experimental results Middle chain triglyceride Miglyol 812 allowed one to obtain stable Pickering emulsion that can be used for encapsulation of various substances, and use of microcapsules allows one to reduce their impact on environment and increase efficiency of using.
5. Acknowledgments
Authors would like to express their sincere gratitude to the Ministry of Education and Sciences of the Republic of Kazakhstan for the support of project AP 05132810 “Scientific-practical bases of microencapsulation of bioactive substances and principally new stimulators of plant development with the purpose of agricultural production intensification”, as well as to PROJECT 585761-EPP-1-2017-1FI-EPPKA2-CBHE-JP EduEnvi Enhancing Competences of Sustainable Waste Management in Russian and Kazakh HEIs” of the Erasmus + program.

Disclaimer: "This project has been funded with support of the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein".

References
[1] Shirley I M, Scher H B, Perrin R M, Wege P J, Rodson M, Chen J L and Rehmke A W 2001 Delivery of biological performance via micro-encapsulation formulation chemistry Pest Management Science 57 129-132
[2] Sims S R, Appel A G and Eva M J 2010 Comparative toxicity and repellency of microencapsulated and other liquid insecticide formulations to the german cockroach (Dictyoptera: Blattellidae) Journal Of Economic Entomology 103 (6) 2118-25
[3] Bagle A V, Jadhav R S, Gite V V, Hundiwale D G and Mahulikar P P 2013 Controlled release study of phenol formaldehyde microcapsules containing neem oil as an insecticide International Journal of Polymeric Materials and Polymeric Biomaterials 62 (8) 421-25
[4] De Oliveira J L, Campos E V R, Bakshi M, Abhilash P C and Fraceto L F 2014 Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises Biotechnology Advances 32 1550–1561
[5] Faria D M, Dourado Júnior S M, do Nascimento J P L, da Silva Nunes E, Marques R P, Rossino L S and Moreto J A 2017 Development and evaluation of a controlled release system of TBH herbicide using alginate microparticles Materials Research 20 (1) 225-235
[6] Garrido J J, Cagide F, Melle-Franco M, Borges F and Garrido E M 2014 Microencapsulation of herbicide MCPA with native β-cyclodextrin and its methyl and hydroxypropyl derivatives: An experimental and theoretical investigation Journal of Molecular Structure 1061 76–81
[7] Sopeña-Vázquez F, Morillo E, Villaverde J and Maqueda C 2008 Reduction of pesticide pollution in agricultural soils by using controlled release formulations: Efficacy and persistence studies Fresenius Environmental Bulletin 17 (10B) 1705-1710
[8] Undabeytia T, Sopeña F, Sánchez-Verdejo T, Villaverde J, Nir S, Morillo E and Maqueda C 2010 Performance of slow-release formulations of alachlor Soil Science Society of America Journal 74(3) 898-905
[9] Fernandes L P, Turatti I C C, Lopes N P, Ferreira J C, Candido R C and Oliveira W P 2008 Volatile retention and antifungal properties of spray-dried microparticles of Lippia sidoides essential oil Drying Technology 26 (12) 1534-1542
[10] Chung S K, Seo J Y, Lim J H, Park H H, Yea M J and Park H J 2013 Microencapsulation of essential oil for insect repellent in food packaging system Journal of Food Science 78 E709–E714
[11] Devi N, Maji T K 2011 Neem seed oil: encapsulation and controlled release – search for a greener alternative for pest control Pesticides Use and Management. – InTechOpen pp 191–232
[12] Schoebitz M, López M D and Roldán A 2013 Bioencapsulation of microbial inoculants for better soil–plant fertilization A review Agronomy for Sustainable Development 33 751–765
[13] He X, Sun Z, He K and Guo S 2017 Biopolymer microencapsulations of Bacillus thuringiensis crystal preparations for increased stability and resistance to environmental stress Applied Microbiology and Biotechnology 101 2779–2789
[14] John R P, Tyagi R D, Brar S K, Surampalli R Y and Prévost D 2011 Bio-encapsulation of microbial cells for targeted agricultural delivery Critical Reviews in Biotechnology 31 (3) 211-226
[15] Shaikh J, Bhosale R and Singhal R 2006 Microencapsulation of Black Pepper Oleoresin *Food Chemistry* 94 (1) 105-110
[16] Lazko J, Popineau Y and Legrand J 2004 Soy Glycinin Microcapsules by Simple Coacervation Method *Colloids and Surfaces B:Biointerfaces* 37 (1) 1-8
[17] Chang C P, Leung T K, Lin C M and Hsu C C 2006 Release Properties on Gelatin-Gum Arabic Microcapsules Containing Camphor Oil with Added Polystyrene *Colloids and Surfaces B:Biointerfaces* 50 (2) 5-20
[18] Yuliani S, Torley P J, D'Arcy B, Nicholson T and Bhandari B 2006 “Extrusion of Mixtures of Starch and D-Limonene Encapsulated with β-Cyclodextrin: FlavourRetention and Physical Properties” *Food Research International* 39 (3) 318-331
[19] Martín Á, Varona S, Navarrete A and Cocero M J 2010 Encapsulation and Co-Precipitation Processes with Supercritical Fluids: Applications with Essential Oils *Open Chemical Engineering* 4 31-41
[20] Sadeghpour A, Pirolt F and Glatter O 2013 Submicrometer-Sized Pickering Emulsions Stabilized by Silica Nanoparticles with Adsorbed Oleic Acid *Langmuir* 29 6004–6012