Earth, Planets and Space

Recent Advances in Geo-, Paleo- and Rock- Magnetism

Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS)
The Seismological Society of Japan
The Volcanological Society of Japan
The Geodetic Society of Japan
The Japanese Society for Planetary Sciences

Springer Open
Journal Scope

Earth, Planets and Space (EPS) is the official journal of Society of Geomagnetism and Earth, Planetary and Space Sciences, The Seismological Society of Japan, The Volcanological Society of Japan, The Geodetic Society of Japan, and The Japanese Society for Planetary Sciences. EPS is a peer-reviewed, open-access journal published under SpringerOpen. It is an international journal covering scientific articles in the entire field of earth and planetary sciences, particularly geomagnetism, aeronomy, space science, seismology, volcanology, geodesy, and planetary science. EPS also welcomes articles in new and interdisciplinary subjects, and technical reports on instrumentation and software.

The journal was launched in 1998 and has since published over 3500 articles. All of them are available for free on SpringerLink:

https://link.springer.com/journal/40623/volumes-and-issues

More information about the journal, its article collections, and the submission process is available on the journal homepage:

https://earth-planets-space.springeropen.com

Submit your next research article to Earth, Planets and Space via:

https://www.editorialmanager.com/epsp

Yours sincerely,

Prof. Takeshi Sagiya
Editor-in-Chief, Earth, Planets and Space
eic@earth-planets-space.org
PREFACE

Special issue “Recent advances in geo-, paleo- and rock-magnetism”

John A. Tarduno1,2*, Hirokuni Oda3, Yuhji Yamamoto4, Chuang Xuan5, Ioan Lascu6 and Koji Fukuma7

The special issue of Earth, Planets and Space “Recent Advances in Geo-, Paleow- and Rock-Magnetism” was motivated by presentations given in Session S-EM18 “General Contributions in Geomagnetism, Paleomagnetism, and Rock magnetism” held during the Japan Geoscience Union–American Geophysical Union (JpGU–AGU) 2017 Joint Meeting (20–25 May in Chiba, Japan). Contributions span the broad range of topical developments in Earth magnetism including the disciplines of archeomagnetism, paleomagnetism, paleointensity, rock magnetism, crustal magnetism and biogeomagnetism. In addition, several contributions present advances in methods of analysis. These areas are briefly introduced below with an emphasis on the advances represented, current community debates and the motivation the new results provide for further study.

Archeomagnetism and paleomagnetism

Contributions in archeomagnetism and paleomagnetism display the continual advances in the collection of new data recording the history of the geomagnetic field. Kitahara et al. (2018) present Tsunakawa–Shaw paleointensity estimates from a tenth-century kiln from Japan that further demonstrate the viability of this protocol for defining field strength from archeological materials. The field intensity values derived are somewhat lower values than those reported in prior studies in Japan; this should provide motivation for further investigation. Ahn et al. (2018) discuss the potential of sediments from Jeju Island, Korea, for recording young (17–22 kyr) excursions and the challenges of distinguishing these concerning rock magnetic complexities. Li et al. (2018) discuss loess and paleosol paleomagnetic records of Brunhes geomagnetic excursions from Central Asia. In particular, they highlight recordings of the Blake and Laschamp geomagnetic excursions.

Global records of the archeomagnetic field and excursions are of crucial importance not only for understanding the past magnetic field but also for providing context on modern changes. Specifically, there is a debate over what excursions tell us about the rapidly diminishing modern dipole field; some analyses of the rate of intensity changes support the idea of an impending reversal or excursion, whereas others argue that the geomagnetic field patterns during recent excursions differ from those of the present-day field. The latter interpretation is highly dependent on the nature of global data coverage. Endeavors of the type defined by Kitahara et al. (2018), Ahn et al. (2018) and Li et al. (2018) can move us closer to global coverage; they are crucial for improving predictions of the future magnetic field and our planetary magnetic shield.

In a Frontier Letter, Kato et al. (2018) present paleointensity results from single silicate crystals separated from Cretaceous granites of Japan. They yield data from plagioclase feldspars that bear on the ongoing debate over the field during Superchrons, periods tens of millions of years long with few (or no) geomagnetic reversals. Numerical simulations, theory and prior paleointensity data from single feldspars argue for a strong field during the Cretaceous Normal Superchron and an inverse relationship between geomagnetic reversal frequency and field strength. However, results from whole rocks fail to show this relationship. The results of Kato et al. (2018) not only highlight the potential of single silicate crystal studies, but also strongly support a high field during the Cretaceous Normal Superchron, representing a major contribution to this fundamental issue.
Rock magnetism

Rock magnetism describes the basic physics of rock and mineral magnetic recorders and as such underpins our understanding of paleomagnetism. The Verwey transition, the change from cubic to monoclinic crystal structure in magnetite at 120 K, continues to be a focus of interest in the community. Lindquist et al. (2019) use transmission electron microscope imaging to document domain wall motion across the Verwey transition in a magnetite sample deformed in the laboratory. These authors relate these data to the role stress, and dislocations can play in controlling magnetic properties. In contrast, Dunlop and Özdemir (2018) study magnetite annealed to remove the effects of stress. Their rock magnetic data on size-controlled magnetite allow them to study the degree to which remanence memory occurs when cycling across the transition. While the authors conclude that the results are still too scattered to be useful for magnetic granulometry, these results together with the observations of Lindquist et al. (2019) further define the phenomenology of the Verwey transition and may eventually lead to a better understanding of other observations such as magnetic field controls on low-temperature magnetic properties.

Biogeomagnetism

Biogeomagnetism is an expanding field and one in which many discoveries await further research. In an Express Letter, Oda et al. (2018) offer one such discovery. The authors report the first identification of magnetofossils of magnetotactic bacteria in ferromanganese crust from the Pacific Ocean. The report of this occurrence is surprising and has far-reaching implications. Bacterial magnetite has long been known to be concentrated at the modern redox boundary in pelagic sediments (e.g., studies of the Ontong Java Plateau of the Western Pacific Ocean). The observations of Oda et al. (2018), however, reveal that one should not assume that seemingly fully oxic deep-sea ferromanganese crusts are devoid of magnetotactic bacteria. This should motivate studies to define paleomicroenvironments in these crusts. Moreover, these new observations suggest a greater role of ferromanganese crusts and related deposits for global iron cycling. In a Frontier Letter, Zhang and Pan (2018) review the characterization of magnetite associated with magnetoferritins and magnetotactic bacteria. The former relates to important potential biomedical applications, whereas the latter applies to the continued effort to define modern magnetotactic bacteria populations and magnetofossils in deep geologic time.

Marine geology/geophysics

From the earliest definition of the marine magnetic anomalies that were crucial for the plate tectonics scientific revolution, magnetic investigations have been central in marine geology and geophysics. Today there remain unknowns about seafloor magnetization processes. Studies addressing these unknowns take on even greater importance as we look for terrestrial analogs for hydrothermal processes on other planets and satellites. Fujii et al. (2018) discuss the fundamental hydrothermal alteration effects on the magnetic properties of submarine basalts from the Okinawa Trough. Although their data cannot completely exclude effects of alteration-induced self-reversal by ionic recording, available geochemical constraints support a conversion of high magnetic titanomagnetites to non-magnetic phases. Fujii and Okino (2018) combine magnetic mapping with submersible photographic documentation and sampling to study off-axis lava flows of the Central Indian Ridge near hydrothermal fields. This diverse data set allows the authors to draw inferences on the emplacement of altered and less magnetic material versus more highly magnetized recently erupted flows.

Global magnetic field studies and applications

A plethora of new satellite data offer opportunities for analyses of tectonic structure, magnetic anomalies and seismicity. Lei et al. (2018) identify a possible correlation between the vertical component of the lithospheric magnetic field and continental seismicity in Mainland China and surrounding areas and discuss this in terms of lithospheric viscosity and temperature gradients. Roger et al. (2019) discuss the investigation of core flow using Slepian functions. Although the authors conclude that more work is needed to address spectral leakage, potential remains to study features of core flow, including the potential influence of unusual core–mantle features such as large low-shear-velocity provinces that have been proposed to be long-term sites of flux expulsion affecting the most recent and paleofield of the South Atlantic Anomaly region.

Methods

Retrieving pristine rock magnetic and paleomagnetic records from natural samples remains challenging, especially as the discipline seeks records with ever greater spatial and temporal resolution. A number of contributions address advances in techniques of sample preparation and/or data analysis. Myre et al. (2019) present applications of a fast spatial domain algorithm “TNT-NN” to address the inversion of data sets from scanning SQUID magnetometers (SSMs).
As opposed to ultrasensitive three-component SQUID magnetometers, these magnetometers directly measure only the vertical component on the magnetization, and therefore, the other components must be inferred by an inversion of the data with associated uncertainties. The work of Myre et al. (2019) is an important step forward in providing a robust framework for the analyses of SSM data.

Analyses of data derived from continuous measurements of sedimentary cores using pass-through SQUID magnetometers have also been a target of software development. Yamamoto et al. (2018) present a successful application of a software UDECON (Xuan and Oda 2015) to deconvolve natural remanent magnetization data obtained from such continuous measurements spanning a geomagnetic reversal; tests show that the software can help extract fine-scale features in the data which are in good agreement with discrete paleomagnetic sample measurements.

In technical reports, Hatakeyama (2018) present online plotting options for viewing paleomagnetic and rock magnetic data assisting international collaborations, whereas Anai et al. (2018) discuss a reductive chemical demagnetization approach with the promise of being able to remove secondary minerals and their magnetizations reveals primary recordings of the geomagnetic field from reef limestones and potentially other rock types.

The rock magnetic study of single silicate grains has mainly focused on their use in paleointensity or paleodirections, but their use in provenance studies has only recently been recognized. Usui et al. (2018) present methods of separation and present the first rock magnetic results from quartz and feldspar derived from red clays, presenting their results as a new provenance indicator. Given the area distribution of red clays, this work opens many new possibilities for future investigations.

Authors’ contributions

All authors served as guest editors for this special issue. Lead guest editor John Tarduno drafted the preface which was edited and approved by all authors. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA. 2 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA. 3 Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8567, Japan. 4 Center for Advanced Marine Core Research, Kochi University, Nankoku, Kochi 783-8502, Japan. 5 School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, UK. 6 Department of Mineral Sciences, Smithsonian Institution, National Museum of Natural History, Washington, DC 20560, USA. 7 Department of Environmental Systems Science, Doshisha University, Kyoto, Japan.

Received: 22 May 2019 Accepted: 24 May 2019

Published online: 17 June 2019

References

Ahn H-S, Sohn YK, Lee J-Y, Kim JC (2018) Preliminary paleomagnetic and rock magnetic results from 17 to 22 ka sediment of Jeju island, Korea: Geomagnetic excursional behavior or rock magnetic anomalies? Earth Planets Space 70:78. https://doi.org/10.1186/s40623-018-0850-4

Anai C, Mochizuki N, Shibuya H (2018) R educing chemical demagnetization: a new approach to magnetic cleaning and a case study of reef limestones. Earth Planets Space 70:184. https://doi.org/10.1186/s40623-018-0954-x

Dunlop DJ, Özdemir O (2018) Remanence cycling of 0.6–135 μm magnetites across the Verwey transition. Earth Planets Space 70:164. https://doi.org/10.1186/s40623-018-0958-6

Fujii M, Okino K (2018) Near-seafloor magnetic mapping of off-axis lava flows near the Kairei and Yokoniva hydrothermal vent fields in the Central Indian Ridge. Earth Planets Space 70:188. https://doi.org/10.1186/s40623-018-0959-5

Fujii M, Sato H, Togawa E, Shimadaand K, Ishibashi J (2018) Seafloor hydrothermal alteration affecting magnetic properties of abyssal basaltic rocks: insights from back-arc lavas of the Okinawa Trough. Earth Planets Space 70:196. https://doi.org/10.1186/s40623-018-0958-6

Hatakeyama T (2018) Online plotting applications for paleomagnetic and rock magnetic data. Earth Planets Space 70:139. https://doi.org/10.1186/s40623-018-0906-5

Kato C, Sato M, Yamamoto Y, Tsunakawa H, Kirschvink JL (2018) Paleomagnetic studies on single crystals separated from the middle Cretaceous Iritonono granite. Earth Planets Space 70:176. https://doi.org/10.1186/s40623-018-0945-y

Kitahara Y, Yamamoto Y, Ohno M, Kuwahara Y, Kameda S, Hatakeyama T (2018) Archeointensity estimates of a tenth-century klin: first application of the Tsunakawaka–Shaw paleointensity method to archeological relics. Earth Planets Space 70:79. https://doi.org/10.1186/s40623-018-0841-5

Lei Y, Jiao L, Chen H (2018) Possible correlation between the vertical component of lithosphere magnetic field and continental seismicity. Earth Planets Space 70:179. https://doi.org/10.1186/s40623-018-0949-7

Li G, Xia D, Appel E, Wang Y, Jia J, Yang X (2018) A paleomagnetic record in loess–paleosol sequences since late Pleistocene in the arid Central Asia. Earth Planets Space 70:44. https://doi.org/10.1186/s40623-018-0814-8

Lindquist AK, Feinberg JM, Harrison RJ, Loudon JC, Newell AJ (2019) The effects of dislocations on crystallographic twins and domain wall motion in magnetite at the Verwey transition. Earth Planets Space 71:3. https://doi.org/10.1186/s40623-018-0981-7

Myre JM, Lascu I, Lima EA, Feinberg JM, Saar MO, Weiss BP (2019) Using TNT-NN to unlock the fast full spatial inversion of large magnetic microscopy data sets. Earth Planets Science 71:14. https://doi.org/10.1186/s40623-019-0998-8

Oda H, Nakasato Y, Usui A (2018) Characterization of marine ferromanganese crust from the Pacific using residues of selective chemical leaching: identification of fossilmagnetotactic bacteria with FE-SEM and rock magnetic methods. Earth Planets Space 70:165. https://doi.org/10.1186/s40623-018-0924-3

Roger HF, Beggan CD, Whaler KA (2019) Investigation of regional variation in core flux models using spherical Steplin functions. Earth Planets Science 71:19. https://doi.org/10.1186/s40623-019-0997-7

Usui Y, Shimono T, Yamazaki T (2018) Rock magnetism of quartz and feldspars chemically separated from pelagic red clay: a new approach to provenance study. Earth Planets Space 70:153. https://doi.org/10.1186/s40623-018-0918-1

Xuan C, Oda H (2015) UDECON: deconvolution optimization software for restoring high-resolution records from pass-through paleomagnetic measurements. Earth Planets Space 67:183. https://doi.org/10.1186/s40623-015-0332-x

Yamamoto Y, Yamazaki T, Kanamatsu T (2018) An initial case study to deconvolve natural remanent magnetization of a continuous paleomagnetic sample using the software UDECON. Earth Planets Space 70:184. https://doi.org/10.1186/s40623-018-0954-x

Zhang T, Pan Y (2018) Constraining the magnetic properties of ultrafine- and fine-grained biogenic magnetite. Earth Planets Space 70:206. https://doi.org/10.1186/s40623-018-0978-2

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Paleomagnetic studies on single crystals separated from the middle Cretaceous Iritono granite

Chie Kato*, Masahiko Sato, Yuhji Yamamoto, Hideo Tsunakawa and Joseph L. Kirschvink

Earth, Planets and Space 2018, 70:176 DOI: 10.1186/s40623-018-0945-y
Received: 3 July 2018, Accepted: 25 October 2018, Published: 13 November 2018

Abstract

Investigations of superchrons are the key to understanding long-term changes of the geodynamo and the mantle’s controlling role. Granitic rocks could be good recorders of deep-time geomagnetic field behavior, but paleomagnetic measurements on whole-rock granitic samples are often disturbed by alterations like weathering, and the presence of multi-domain magnetite. To avoid such difficulties and test the usefulness of single silicate crystal paleomagnetism, here we report rock-magnetic and paleomagnetic properties of single crystals and compare those to the host granitic rock. We studied individual zircon, quartz and plagioclase crystals separated from the middle Cretaceous Iritono granite, for which past studies have provided tight constraints on the paleomagnetism and paleointensity. The occurrence of magnetite was very low in zircon and quartz. On the other hand, the plagioclase crystals contained substantial amounts of fine-grained single-domain to pseudo-single-domain magnetite. Microscopic features and distinctive magnetic behavior of plagioclase crystals indicate that the magnetite inclusions were generated by exsolution. We therefore performed paleointensity experiments by the Tsunakawa–Shaw method on 17 plagioclase crystals. Nine samples passed the standard selection criteria for reliable paleointensity determinations, and the mean value obtained was consistent with the previously reported whole-rock paleointensity value. The virtual dipole moment was estimated to be higher than 8.9 ± 1.8 × 10^{22} Am², suggesting that the time-averaged field strength during middle of the Cretaceous normal superchron was several times as large as compared to that of non-superchron periods. Single plagioclase crystals which have exsolved magnetite inclusions can be more suitable for identification of magnetic signals and interpretation of paleomagnetic records than the conventional whole-rock samples or other silicate grains.

Keywords: Paleointensity, Granite, Single crystals, Feldspar, Zircon

Corresponding author: Chie Kato, chiekato15@gmail.com

Constraining the magnetic properties of ultrafine- and fine-grained biogenic magnetite

Tongwei Zhang and Yongxin Pan*

Earth, Planets and Space 2018, 70:206 DOI: 10.1186/s40623-018-0978-2
Received: 2 September 2018, Accepted: 14 December 2018, Published: 24 December 2018

Abstract

Four samples containing ultrafine- and fine-grained magnetite of magnetoferritins and magnetotactic bacteria cells were magnetically characterized at both room and low temperatures. Transmission electron microscopy analysis showed that the biometrically synthesized magnetoferritins (M-HFn) have magnetite cores with a mean size of 3.3 ± 1.2 nm inside protein shells, while Magnetospirillum gryphiswaldense MSR-1 cell produced intracellular magnetosome magnetites have a mean size of 29.6 ± 7.6 nm, arranged in a single chain. A pure M-HFn sample (M), MSR-1 whole cell sample (M₅) and two samples (M₄, M₃) mixing M-HFn with MSR-1 whole cells in different weight percentages were measured, including hysteresis, temperature dependency of magnetization and remanence and frequency dependence of AC susceptibility at low temperature. At room temperature, the ultrafine-grained magnetite core of M-HFn has a Verwey transition temperature at around 100 K, which is consistent with previous observations on magnetotactic bacteria. This study provides useful clues for identification of SP and SD magnetite in sediments, as well as related potential biomedical and biomagnetic applications.

Keywords: Superparamagnetism (SP), Magnetoferritins, Magnetosome magnetite, Low-temperature measurements, Biogenic magnetite

Corresponding author: Yongxin Pan, yxpan@mail.iigcas.ac.cn
FULL PAPER

A paleomagnetic record in loess–paleosol sequences since late Pleistocene in the arid Central Asia

Guanhua Li*, Dunsheng Xia, Erwin Appel, Youjun Wang, Jia Jia and Xiaoqiang Yang

*Corresponding author: Guanhua Li, ligh1986@gmail.com

Earth, Planets and Space 2018, 70:44 DOI: 10.1186/s40623-018-0814-8

Received: 5 January 2018, Accepted: 7 March 2018, Published: 19 March 2018

Abstract

Geomagnetic excursions during Brunhes epoch have been brought to the forefront topic in paleomagnetic study, as they provide key information about Earth’s interior dynamics and could serve as another tool for stratigraphic correlation among different lithology. Loess–paleosol sequences provide good archives for decoding geomagnetic excursions. However, the detailed pattern of these excursions was not sufficiently clarified due to pedogenic influence. In this study, paleomagnetic analysis was performed in loess–paleosol sequences on the northern piedmont of the Tianshan Mountains (northwestern China). By radiocarbon and luminescence dating, the loess section was chronologically constrained to mainly the last c.130 ka, a period when several distinct geomagnetic excursions were involved. The rock magnetic properties in this loess section are dominated by magnetite and maghemite in a pseudo-single-domain state. The rock magnetic properties and magnetic anisotropy indicate weakly pedogenic influence for magnetic record. The stable component of remanent magnetization derived from thermal demagnetization revealed the presence of two intervals of directional anomalies with corresponding intensity lows in the Brunhes epoch. The age control in the key layers indicates these anomalies are likely associated with the Laschamp and Blake excursions, respectively. In addition, relative paleointensity in the loess section is basically compatible with other regional and global relative paleointensity records and indicates two low-paleointensity zones, possibly corresponding to the Blake and Laschamp excursions, respectively. As a result, this study suggests that the loess section may have the potential to record short-lived excursions, which largely reflect the variation of dipole components in the global archives.

Keywords: Geomagnetic excursion, Blake excursion, Laschamp excursion, Relative paleointensity, Loess, Arid Central Asia

*Corresponding author: Guanhua Li, ligh1986@gmail.com

FULL PAPER

Preliminary paleomagnetic and rock magnetic results from 17 to 22 ka sediment of Jeju Island, Korea: Geomagnetic excursional behavior or rock magnetic anomalies?

Hyeon-Seon Ahn*, Young Kwan Sohn, Jin-Young Lee and Jin Cheul Kim

*Corresponding author: Hyeon-Seon Ahn, mitsuki_ahs@hotmail.com; hs.ahn@gnu.ac.kr

Earth, Planets and Space 2018, 70:78 DOI: 10.1186/s40623-018-0850-4

Received: 2 January 2018, Accepted: 7 March 2018, Published: 19 March 2018

Abstract

Paleomagnetic and rock magnetic investigations were performed on a 64-cm-thick section of nonmarine unconsolidated muddy sediment from the Gosan Formation on Jeju Island, Korea. This sediment was recently dated to have been deposited between 22 and 17 kyr BP calibrated, with a sedimentation rate of 13–25 cm/kyr, based on many radiocarbon ages. Interestingly, stepwise alternating field (AF) demagnetization revealed characteristic natural remanent magnetizations with anomalous directions, manifested by marked deviations from the direction of today’s axial dipole field, for some separate depth levels. On the other hand, stepwise thermal (TH) demagnetization showed more complex behavior, resulting in the identification of multiple remanence components. For all TH-treated specimens, consistently two different components are predominant: a low-temperature component unblocked below 240–320 °C entirely having characteristic natural remanent magnetizations with anomalous directions, manifested by marked deviations from the direction of today’s axial dipole field, for some separate depth levels. On the other hand, stepwise thermal (TH) demagnetization showed more complex behavior, resulting in the identification of multiple remanence components. For all TH-treated specimens, consistently two different components are predominant: a low-temperature component unblocked below 240–320 °C entirely having natural-polarity apparently within the secular variation range of the Brunhes Chron, and a high-temperature component with unblocking temperatures (Tubs) between 240–320 and 520–580 °C that have anomalous directions, concentrated in the ~ 13–34-cm-depth interval (~ 17–19 ka in inferred age) and possibly below ~ 53 cm depth (before ~ 20 ka). Rock magnetic results also infer the dominance of low-coercivity magnetic particles having ~ 300 and ~ 580 °C Curie temperature as remanence carriers, suggestive of (titanio)maghemite and/or Ti-rich titanomagnetite and maghemite (or Ti-poor titanomagnetite), respectively. A noteworthy finding is that AF demagnetizations in this study often lead to incomplete separation of the two remanence components possibly due to their strongly overlapping AF spectra. The unusual directions do not appear to result from self-reversal remanences. Then, one interpretation is that the low-temperature components are attributable to post-depositional chemical remanences, associated possibly with the later formation of the mineral phase having Tub ~ 300 °C, whereas the high-temperature components are of primary detrital origin that survived later chemical influence. Accordingly, the unusual directions might record geomagnetic instability within the ~ 17–22 ka period manifested by multiple excursional swings, partly associated with the Tianschi/Hilina Pali excursion. However, further work is needed to verify this interpretation and distinguish it from alternative explanations that invoke rock magnetic complexities as the cause of the unusual directions.

Keywords: Gosan formation, Jeju Island, Paleomagnetism, Rock (sediment) magnetism, Geomagnetic instability, Tianschi excursion, Hilina Pali excursion, 17–22 ka period

*Corresponding author: Hyeon-Seon Ahn, mitsuki_ahs@hotmail.com; hs.ahn@gnu.ac.kr
Archeointensity estimates of a tenth-century kiln: first application of the Tsunakawa–Shaw paleointensity method to archeological relics

Yu Kitahara*, Yuhji Yamamoto, Masao Ohno, Yoshihiro Kuwahara, Shuichi Kameda and Tadahiro Hatakeyama

Earth, Planets and Space, 2018, 70:79
DOI: 10.1186/s40623-018-0841-5
Received: 3 January 2018, Accepted: 14 April 2018, Published: 9 May 2018

Abstract

Paleomagnetic information reconstructed from archeological materials can be utilized to estimate the archeological age of excavated relics, in addition to revealing the geomagnetic secular variation and core dynamics. The direction and intensity of the Earth’s magnetic field (archeodirection and archeointensity) can be ascertained using different methods, many of which have been proposed over the past decade. Among the new experimental techniques for archeointensity estimates is the Tsunakawa–Shaw method. This study demonstrates the validity of the Tsunakawa–Shaw method to reconstruct archeointensity from samples of baked clay from archeological relics. The validity of the approach was tested by comparison with the IZZI-Thellier method. The intensity values obtained coincided at the standard deviation (1σ) level. A total of 8 specimens for the Tsunakawa–Shaw method and 16 specimens for the IZZI-Thellier method, from 8 baked clay blocks, collected from the surface of the kiln were used in these experiments. Among them, 8 specimens (for the Tsunakawa–Shaw method) and 3 specimens (for the IZZI-Thellier method) passed a set of strict selection criteria used in the final evaluation of validity. Additionally, we performed rock magnetic experiments, mineral analysis, and paleodirection measurement to evaluate the suitability of the baked clay samples for paleointensity experiments and hence confirmed that the sample properties were ideal for performing paleointensity experiments. It is notable that the newly estimated archeomagnetic intensity values are lower than those in previous studies that used other paleointensity methods for the tenth century in Japan.

Keywords: Archeointensity experiment, Sueki kiln in Japan, Tsunakawa–Shaw method

*Corresponding author: Yu Kitahara, 3gs15005w@s.kyushu-u.ac.jp

Rock magnetism of quartz and feldspars chemically separated from pelagic red clay: a new approach to provenance study

Yoichi Usui*, Takaya Shimono and Toshitsugu Yamazaki

Earth, Planets and Space, 2018, 70:153
DOI: 10.1186/s40623-018-0918-1
Received: 8 May 2018, Accepted: 5 September 2018, Published: 26 September 2018

Abstract

Magnetic mineral inclusions in silicates are widespread in sediments as well as in igneous rocks. Because they are isolated from surrounding environment, they have potential to preserve original magnetic signature even in chemically altered sediments. Such inclusions may provide proxies to help differentiating the source of the host silicate. We measure magnetism of quartz and feldspars separated by chemical digestion of pelagic red clay. The samples are from the upper 15 m of sediments recovered at Integrated Ocean Drilling Program Site U1366 in the South Pacific Gyre. The quartz and feldspars account for 2.3–22.7 wt% of the samples. X-ray diffraction analyses detect both plagioclase feldspar and potassium feldspar. Plagioclase is albite-rich and abundant in the top ~7.4 m of the core. Potassium feldspar mainly occurs below ~10.4 m. The dominance of albite-rich plagioclase differs from a previous investigation of coarser fraction of sediments from the South Pacific. Saturation isothermal remanence (SIRM) intensities of the quartz and feldspars are 7.45 × 10⁻⁴ to 1.98 × 10⁻³ Am²/kg, accounting for less than 1.02% of the SIRM of the untreated bulk samples. The depth variations of the silicate mineralogy and the previously reported geochemical end-member contributions indicate that quartz and/or plagioclase above 8.26 m is likely to be Australian dust. In contrast, the relative abundance and the magnetic properties of quartz and feldspars vary below 10.42 m, without clear correlation with geochemical end-member contributions. We consider that these changes trace a subdivision of the volcanic component. Our results demonstrate that magnetism of inclusions can reveal additional information of mineral provenance, and chemical separation is an essential approach to reveal the environmental magnetic information carried by magnetic inclusions.

Keywords: Magnetic inclusions, South Pacific Gyre, Eolian dust, Environmental magnetism

*Corresponding author: Yoichi Usui, yoichi@jamstec.go.jp
An initial case study to deconvolve natural remanent magnetization of a continuous paleomagnetic sample using the software UDECON

Yuhji Yamamoto*, Toshitsugu Yamazaki and Toshiya Kanamatsu

*Corresponding author: Yuhji Yamamoto, y.yamamoto@kochi-u.ac.jp

Remanence cycling of 0.6–135 µm magnetites across the Verwey transition

David J. Dunlop* and Özden Özdemir

*Corresponding author: David J. Dunlop, dunlop@physics.utoronto.ca
Near-seafloor magnetic mapping of off-axis lava flows near the Kairei and Yokoniwa hydrothermal vent fields in the Central Indian Ridge

Masakazu Fujii* and Kyoko Okino

*Corresponding author: Masakazu Fujii, fujii.masakazu@nipr.ac.jp

Recent Advances in Geo-, Paleo- and Rock-Magnetism

Possible correlation between the vertical component of lithospheric magnetic field and continental seismicity

Yu Lei, Liguo Jiao* and Huaran Chen

*Corresponding author: Liguo Jiao, lgjiao@cea-igp.ac.cn

Near-seafloor magnetic mapping of off-axis lava flows near the Kairei and Yokoniwa hydrothermal vent fields in the Central Indian Ridge

Masakazu Fujii* and Kyoko Okino

*Corresponding author: Masakazu Fujii, fujii.masakazu@nipr.ac.jp
Seafloor hydrothermal alteration affecting magnetic properties of abyssal basaltic rocks: insights from back-arc lavas of the Okinawa Trough

Masakazu Fujii*, Hiroshi Sato, Eri Togawa, Kazuhiro Shimada and Jun-ichiro Ishibashi

Earth, Planets and Space 2018, 70:196 DOI: 10.1186/s40623-018-0958-6
Received: 7 April 2018, Accepted: 13 November 2018, Published: 13 December 2018

Abstract
Seafloor hydrothermal systems in the back-arc region of the Okinawa Trough have been viewed as a modern analogue to the Kuroko-type volcanogenic massive sulfide deposits. Detection of magnetic signatures is widely utilized and assumed to facilitate the understanding of geological controls on hydrothermal system genesis. However, the magnetic properties of seafloor volcanic rocks are still poorly understood because of the difficulties of sample acquisition. Here, we report rock magnetic data along with linked geochemical and petrological data of volcanic rock samples obtained from the Irabu knolls of the southern Okinawa Trough. Both fresh and hydrothermally altered basaltic andesites were successfully obtained from the seafloor via submersible. A fresh sample, with single-domain titanomagnetite grains, is strongly magnetized with NRM intensity of up to 100 A/m. Minute skeletal and dendritic titanomagnetite grains are also observed. A second fresh sample, with multi-domain titanomagnetite grains, contains a greater amount of titanomagnetite grains, but exhibits NRM intensity ~ 10 A/m at most. In contrast to the fresh samples, hydrothermally altered samples show extremely low NRM intensities along with low saturation magnetization and certain contribution of paramagnetic minerals. Grain assemblages of pyrite and chalcopyrite grains appear along cracks in the groundmass. Our results indicated that fine titanomagnetite grains in groundmass within back-arc lava flows are altered due to hydrothermal processes. The recorded primary remanent magnetization of the lava flows is thus partly removed by hydrothermal alteration. Magnetization reduction related to hydrothermal activity produces local crustal magnetization lows and thus enables us to detect hydrothermal alteration zones by utilizing magnetic field measurements in space. In particular, the lavas we examined (via their resultant basaltic andesites) have high Curie temperatures greater than 400 °C, which is significantly higher than those indicated by mid-ocean ridge basalts, suggesting that the thermal effect for crustal magnetization may be less in back-arc settings.

Keywords: Magnetic properties, Hydrothermal alteration, Titanomagnetite, Back-arc basaltic andesite, Okinawa Trough

Graphical abstract

*Corresponding author: Masakazu Fujii, fujii.masakazu@nipr.ac.jp

The effects of dislocations on crystallographic twins and domain wall motion in magnetite at the Verwey transition

Anna K. Lindquist*, Joshua M. Feinberg, Richard J. Harrison, James C. Loudon and Andrew J. Newell

Earth, Planets and Space 2019, 71:5 DOI: 10.1186/s40623-018-0981-7
Received: 15 August 2018, Accepted: 24 December 2018, Published: 15 January 2019

Abstract
Pure magnetite experiences a first-order phase transition (the Verwey transition) near 120–125 K wherein the mineral's symmetry changes from cubic to monoclinic. This transformation results in the formation of fine-scale crystallographic twins and is accompanied by a profound change in magnetic properties. The Verwey transition is critical to a variety of applications in environmental magnetism and paleomagnetism because its expression is diagnostic for the presence of stoichiometric (or nearly stoichiometric) magnetite and cycling through the Verwey transition tends to remove the majority of multidomain magnetic remanence. Internal and external stresses demonstrably affect the onset of the Verwey transition. Dislocations create localized internal stress fields and have been cited as a possible source of an altered Verwey transition in deformed samples. To further investigate this behavior, a laboratory-deformed magnetite sample was examined inside a transmission electron microscope as it was cooled through the Verwey transition. Operating the microscope in the Fresnel mode of Lorentz microscopy enabled imaging of the interactions between dislocations, magnetic domain walls, and low-temperature crystallographic twin formation during the phase transition. To relate the observed changes to more readily measurable bulk sample magnetic behavior, low-temperature magnetic measurements were also taken using SQUID magnetometry. This study allows us, for the first time, to observe the Verwey transition in a defect-rich area. Dislocations, and their associated stress fields, impede the development of monoclinic magnetite twin structures during the phase transition and increase the remanence of a magnetite sample after cooling and warming through the Verwey transition.

Keywords: Verwey transition, Magnetite, Dislocations, Domain wall, Transmission electron microscopy, TEM, Low-temperature demagnetization, Oxidation, Phase transition

Graphical abstract

*Corresponding author: Anna K. Lindquist, alindqu1@macalester.edu
Investigation of regional variation in core flow models using spherical Slepian functions

Hannah F. Rogers*, Ciarán D. Beggan and Kathryn A. Whaler

Abstract

By assuming that changes in the magnetic field in the Earth’s outer core are advection-dominated on short timescales, models of the core surface flow can be deduced from secular variation. Such models are known to be under-determined and thus require other assumptions to produce feasible flows. There are regions where poor knowledge of the core flow dynamics gives rise to further uncertainty, such as within the tangent cylinder, and assumptions about the nature of the flow may lead to ambiguous patches, such as if it is assumed to be strongly tangentially geostrophic. We use spherical Slepian functions to spatially and spectrally separate core flow models, confining the flow to either inside or outside these regions of interest. In each region we examine the properties of the flow and analyze its contribution to the overall model. We use three forms of flow model: (a) synthetic models from randomly generated coefficients with blue, red and white energy spectra, (b) a snapshot of a numerical geodynamo simulation and (c) a model inverted from satellite magnetic field measurements. We find that the Slepian decomposition generates unwanted spatial leakage which partially obscures flow in the region of interest, particularly along the boundaries. Possible reasons for this include the use of spherical Slepian functions to decompose a scalar quantity that is then differentiated to give the vector function of interest, and the spectral frequency content of the models. These results will guide subsequent investigation of flow within localized regions, including applying vector Slepian decomposition methods.

Keywords: Spherical Slepian functions, Outer core flow, Geostrophic flows, Tangent cylinder

*Corresponding author: Hannah F. Rogers, h.f.rogers@sms.ed.ac.uk
Online plotting applications for paleomagnetic and rock magnetic data

Tadahiro Hatakeyama

Earth, Planets and Space 2018, 70:139 DOI: 10.1186/s40623-018-0906-5
Received: 5 April 2018, Accepted: 10 August 2018, Published: 23 August 2018

Abstract
This paper describes the development and release of a series of web-based services to generate plots of paleomagnetic and rock magnetic data. All plotting services require a World Wide Web browser as the user interface. The use of online plotting services facilitates rapid and easy sharing of work of analysis and preliminary results with collaborators who use different platforms and operating systems. To implement these routines, two paleomagnetic data types (stepwise demagnetization and paleodirection) are formally defined. These have been popular among researchers for many decades.

Keywords: Paleomagnetism, Rock magnetism, Drawing applications, Online services

Graphical abstract

Corresponding author: Tadahiro Hatakeyama, hatake@center.ous.ac.jp
Abstract
Chemical demagnetization is not preferred as a demagnetizing method in paleomagnetism because strong acids are cumbersome to handle and require considerable time compared to alternating field and thermal demagnetizations. Particularly, for rocks with carbonate minerals, strong acidic solutions are not applicable. This study presents a new method, termed reductive chemical demagnetization (RCD), using ascorbic acid solution as a reductive etchant. Ascorbic acid is a strong reductive agent and converts Fe$^{3+}$ ions of secondary magnetic minerals to water-soluble Fe$^{2+}$ ions, which facilitate chemical demagnetization of carbonate rocks. The carbonate frame can remain intact if the pH of the solution is buffered at approximately 7 with sodium bicarbonate. This etchant is more suitable than strong acid in terms of handling in a paleomagnetic laboratory, particularly in a magnetic field free room. To reduce the required time, a technique of dripping the etchant on the sample was also devised. This helps the fresh etchant flow through the voids between the grains of rocks to rapidly remove dissolved Fe$^{2+}$ ions. As a case study of RCD, reef limestone samples were examined. The results showed that the dripping experiments with 5% ascorbic acid solution were the most effective. It took 72 h to reach the remaining isothermal remanent magnetization (IRM) constant. Thermal demagnetizations of 3-component IRM indicate that RCD removed the high coercivity remanences carried by hematite and goethite. These magnetic minerals were considered to be precipitated between the grains of the rock, and thus they were dissolved by the RCD treatment. A chemical remanent magnetization (CRM), acquired by secondary magnetic minerals, can easily mask the primary remanence for sedimentary rocks of weak magnetization, and the coercivity or unblocking-temperature spectra of the primary remanence and secondary CRM overlap; however, RCD can effectively remove the secondary CRM. RCD prior to alternating field or thermal demagnetization has the potential to improve paleomagnetic demagnetization of sedimentary rocks.

Keywords: Reductive chemical demagnetization, Reductive etchant, Ascorbic acid, Reef limestone

*Corresponding author: Chisato Anai, chisato@kumamoto-u.ac.jp
Information for Contributors

General
1. Manuscripts should be submitted through the journal’s Editorial Manager system (https://www.editorialmanager.com/epsp/default.aspx).
2. Only papers not previously published will be accepted, and the emphasis is on the originality of concept or observation.
3. Five varieties of article types are available.
 3.1 “Full Paper” without word limit.
 3.2 “Express Letter” has a limit of 5000 words including the main text, figure legends and table legends. The sum of the number of figures and tables should be less than or equal to 5.
 3.3 “Frontier Letter” can be submitted upon invitation by the Editor-in-Chief.
 3.4 “Technical Report” describes the technical development of instrument or software.
 3.5 “Comment” is a substantial re-analysis of a previously published article in the journal. “Comment” should not exceed 1000 words.
4. Authors retain the copyright, and distribution of articles is free under the CC BY license.

Technical
1. Manuscripts should be written in English with double spacing.
2. Each manuscript should be organized in the following order: title, authors’ names, affiliations, abstract, key words, main text, acknowledgement, appendix, references, and supplementary materials. A graphical abstract image must be uploaded during submission which should provide the reader with a visual description of the topic covered in the article.
3. The corresponding author should be clearly indicated.
4. The abstract is limited to 350 words and should be informative and include principal findings and conclusions. Please avoid abbreviations.
5. The main text can have multiple free headings.
6. High-resolution figures should be provided in the following format; PDF (preferred format for diagrams), PNG (preferred format for photos or images), EPS, TIFF, JPEG, BMP. The graphical abstract should be approximately 920 × 300 pixels and should be uploaded as a JPEG, PNG or SVG file.
7. References must follow the Springer Basic style.

Correspondence
If you have any questions, please contact info@springeropen.com.

© EPS Steering Committee 2021 All rights reserved.
A Grant-in-Aid for Publication of Scientific Research Results (19HP1001) from Japan Society for the Promotion of Science is used for printing.
Contents

Special issue “Recent advances in geo-, paleo- and rock-magnetism” .. John A. Tarduno, Hirokuni Oda, Yuhji Yamamoto, Chuang Xuan, Ioan Lascu and Koji Fukuma
Paleomagnetic studies on single crystals separated from the middle Cretaceous Iritono granite ... Chie Kato, Masahiko Sato, Yuhji Yamamoto, Hideo Tsunakawa and Joseph L. Kirschvink
Constraining the magnetic properties of ultrafine- and fine-grained biogenic magnetite ... Tongwei Zhang and Yongxin Pan
A paleomagnetic record in loess–paleosol sequences since late Pleistocene in the arid Central Asia ... Guanhua Li, Dunsheng Xia, Erwin Appel, Youjun Wang, Jia Jia and Xiaoqiang Yang
Preliminary paleomagnetic and rock magnetic results from 17 to 22 ka sediment of Jeju Island, Korea: Geomagnetic excursional behavior or rock magnetic anomalies? .. Hyoe-Seon Ahn, Young Kwan Sohn, Jin-Young Lee and Jin Cheul Kim
Archeointensity estimates of a tenth-century kiln: first application of the Tsunakawa–Shaw paleointensity method to archaeological relics ... Yu Kitahara, Yuhji Yamamoto, Masao Ohno, Yoshihiro Kuwahara, Shuichi Kameda and Tadahiro Hatakeyama
Rock magnetism of quartz and feldspars chemically separated from pelagic red clay: a new approach to provenance study... Yoichi Usui, Takaya Shimono and Toshitsugu Yamazaki
An initial case study to deconvolve natural remanent magnetization of a continuous paleomagnetic sample using the software UDECON .. Yuhji Yamamoto, Toshitsugu Yamazaki and Toshiya Kanamatsu
Remanence cycling of 0.6–135 μm magnetites across the Verwey transition………………… David J. Dunlop and Özden Özdemir
Possible correlation between the vertical component of lithospheric magnetic field and continental seismicity .. Yu Lei, Ligu Jiao and Huaran Chen
Near-seafloor magnetic mapping of off-axis lava flows near the Kairei and Yokonima hydrothermal vent fields in the Central Indian Ridge ... Masakazu Fujii and Kyoko Okino
Seafloor hydrothermal alteration affecting magnetic properties of abyssal basaltic rocks: insights from back-arc lavas of the Okinawa Trough Anna K. Lindquist, Joshua M. Feinberg, Richard J. Harrison, James C. Loudon and Andrew J. Newell
The effects of dislocations on crystallographic twins and domain wall motion in magnetite at the Verwey transition ... Joseph M. Myre, Ioan Lascu, Eduardo A. Lima, Joshua M. Feinberg, Martin O. Saar and Benjamin P. Weiss
Using TNT-NN to unlock the fast full spatial inversion of large magnetic microscopy data sets .. Hannah F. Rogers, Ciarán D. Beggan and Kathryn A. Whaler
Investigation of regional variation in core flow models using spherical Slepian functions .. Hirokuni Oda, Yoshio Nakasato and Akira Usui
Characterization of marine ferromanganese crust from the Pacific using residues of selective chemical leaching: identification of fossil magnetotactic bacteria with FE-SEM and rock magnetic methods .. Chisato Anai, Nobutatsu Mochizuki and Hidetoshi Shibuya
Online plotting applications for paleomagnetic and rock magnetic data ... Tadahiro Hatakeyama
Reductive chemical demagnetization: a new approach to magnetic cleaning and a case study of reef limestones

Cover image: Fujii, M. et al., Earth, Planets and Space 2018, 70:188 DOI: 10.1186/s40623-018-0959-5