Effect of Grafting on Growth, Yield, and Verticillium Wilt of Eggplant

Fotios Bletsos1
NAGREF, Agricultural Research Center of Macedonia and Thrace, Department of Vegetables, P.O. Box 60458, GR-570 01 Thermi-Thessaloniki, Greece

Costas Thanassoulopoulos
Aristotle University of Thessaloniki, Faculty of Agriculture, Plant Pathology Laboratory, 540 06 Thessaloniki, Greece

Demetrios Roupakias
Aristotle University of Thessaloniki, Faculty of Agriculture, Genetics and Plant Breeding Laboratory, 540 06 Thessaloniki, Greece

Additional index words. Solanum species, rootstock, economic value

Abstract. Eggplant (Solanum melongena L.) seedlings (‘Tsakoniki’) were grafted by hand on the Verticillium dahliae Kleb. resistant wild species Solanum torvum Sw. (GST) and Solanum sisymbriifolium Lam. (GSS). Grafted and nongrafted eggplants were transplanted to a fumigated soil with methyl bromide and to infested soil with microsclerotia of V. dahliae. Grafted plants were more vigorous, as measured by plant height, main stem diameter, and root system weight, than the nongrafted ‘Tsakoniki’. This resulted in an increased early production (GST, 45.5%; GSS, 18.4%) and late production (GST, 69.3%; GSS, 59.2%) as compared to the noninfected controls. The mean yield reduction (over years) in early production caused by the disease, as compared to the controls grown in fumigated soil, was 29.4%, 36.6%, and 77.9% for eggplant grafted on S. torvum, S. sisymbriifolium, and nongrafted plants, respectively. This yield reduction in total production was 6.9%, 20.5%, and 56.8%, respectively. The disease incidence in ungrafted plants was 96% and 100% during early and late harvest periods. In contrast, the disease incidence in grafted plants was significantly lower, averaging 28.1% (GST) and 52.6% (GSS) in early production, and 37.6% and 79.3%, respectively, in late production. Solanum torvum was found more resistant than S. sisymbriifolium, because grafted infected plants developed mild symptoms, as indicated by significantly lower leaf symptom index (average value 1.2 and 2.22) and disease index (average value 1.55 and 3.38), respectively. In conclusion, grafting of eggplant on either wild species had positive effects on growth, production, and verticillium wilt control.

Received for publication 10 Sept. 2001. Accepted for publication 23 June 2002. Financial assistance from the general secretariat for research and technology is gratefully acknowledged. The authors are indebted to Mrs. Maria Thanassouloupolou, teacher of English, for editing the English draft.

© 2003 The American Society for Horticultural Science

Materials and Methods

The experiments were carried out during 1998 and 1999 at the Agricultural Research Centre of Macedonia and Thrace, Greece. The soil was a sandy loam and had a pH of 7.25, free CaCO3 = 2.65%, organic matter 1.75%, electric conductivity 3.12 mmhos/cm, Olsen’s phosphorus > 200 ppm, and exchangeable potassium 895 ppm.

The Greek eggplant ‘Tsakoniki’ was planted in soil artificially infested with V. dahliae. Iso-lates of V. dahliae from tomato, potato, and eggplant were grown on potato dextrose agar and were used in a mixture (1:1:1) throughout. Inoculum was prepared by growing each isolate for 8 d at 20 ± 2 °C in plastic petri dishes, 5.5 cm in diameter. A quantity of ≤5 mL of sterile distilled water was added per dish and the colonies were scarped with a sterilized needle. The contents of each dish were filtered through cheesecloth; the filtrates were combined; and the inoculum suspension consisted of microc symbiosis adjusted to 106 spores/mL. Five milliliters of the above inoculum suspension was used to inoculate a 1-L glass jar containing 200 g growth medium made of 1 cornmeal : 1 perlite : 1 water (by weight). The jars were kept at 20 ± 2 °C and the fungus grew during the first 7 d at daylight; then they were covered with black plastic during the following 23 d in order to...
Table 1. Mode of calculation of verticillium wilt index

LSI	VDF	LSI × VDI	DF
1	1	1	1
2	2	2	2
3	3	3, 4, 5	3
4	4	6, 8, 9	4
5	5	10, 12, 15	5
6	6	16, 18, 20, 24	6

1LSI = Leaf symptom index.
2VDF = Vascular discoloration index.
3DI = Disease index.

The numbers 7, 11, 13, 14, 17, 19, 21, 22, and 23 cannot be used as products of columns 1 and 2.

Table 2. Effect of grafting eggplant on verticillium wilt resistant rootstocks (S. torvum and S. sisymbriifolium) compared with nongrafted eggplant, on scion plant height and several fruit and yield parameters, during the early production period of 1998 and 1999, when grown on both soil fumigated with methyl bromide and soil infested with Verticillium.

Grafting on/Year	Characteristics													
	Total early yield (g)	Marketable yield (g)	No. of fruit	No. of marketable fruit	Mean wt of marketable fruit wt (g)	Mean fruit wt (g)	Plant ht (cm)							
	1998	1999	1998	1999	1998	1999	1998	1999	1998	1999	1998	1999	1998	1999
Fumigated soil														
S. torvum	2867 a	993 bc	2294 a	894 b	20.3 a	6.0 bc	14.0 a	4.5 b	159.7 a	182.3 a	137.7 ab	226.5 a	124 a	116 ab
S. sisymbriifolium	2217 b	1240 b	1516 b	1080 b	18.3 a	9.4 a	10.3 b	7.5 a	142.7 a	162.1 ab	119.7 ab	158.7 b	103 ab	124 a
Not grafted	914 cd	1599 a	722 c	1469 a	6.7 b	10.5 a	4.3 cd	9.3 a	136.0 b	139.8 bc	118.3 ab	130.6 bc	92 b	115 b

Infested soil

S. torvum	2491 ab	452 d	1848 ab	404 c	18.0 a	2.8 d	11.3 ab	2.0 c	160.0 a	110.7 cd	140.7 a	106.1 bc	115 b	99 c
S. sisymbriifolium	1283 c	879 c	863 c	782 b	10.0 b	6.3 b	6.3 b	5.3 c	125.0 ab	121.4 cd	108.0 b	130.0 bc	86 bc	99 c
Not grafted	534 d	413 d	175 d	310 c	6.3 b	3.9 cd	1.3 d	8.3 b	96.6 d	76.5 c	90.0 c	64 d	67 d	

Means in the same column followed by the same letter are not significantly different (P ≤ 0.05) according to Duncan’s multiple range test.
infested and noninfested soil. Total and marketable yield in 1998 decreased significantly on nongrafted as compared to GST when the plants were grown in fumigated or infested soil. Furthermore, root biomass and stem diameter decreased significantly in the control compared to GST. A significant decrease was also observed during the late production period for all parameters studied (except number of marketable fruit and marketable yield in 1999) on the plants grown in infested soil (Table 3). Finally, nongrafted and noninfected plants had marketable yield and plant height significantly higher than nongrafted and infected ones in the early production period, while all values were significantly higher (except number of marketable fruit in both years, marketable yield in 1998, and weight of marketable fruit in 1999) in the late production period (Table 3).

Differences in performance between S. torvum and S. sisybriifolium. In fumigated soil, during the early production period, the total early yield, marketable yield, and number of marketable fruit in 1998 had significantly higher values for plants grafted on S. torvum than on S. sisybriifolium. In 1999, however, significantly higher values for GST were observed for mean fruit weight and for GSS for number of fruit and number of marketable fruit (Table 2). In the late production period, only stem diameter in 1998 and biomass and root biomass in 1999 were significantly higher for plants grafted on S. torvum when compared to GSS. In infested soil and during the early production period, GST gave significantly higher total early yield, marketable yield, number of fruit, and mean fruit weight in 1998 when compared to GSS, while in 1999 the results were reversed for total early yield, marketable yield, and number of fruit. In the late production period, plants grafted on S. torvum produced significantly higher values for biomass and aerial biomass in 1998 and root biomass and height in 1999 when compared to GSS. Root biomass in 1998, however, was significantly higher for plants grafted on S. sisybriifolium. Over the 2 years in early production, plants grafted on S. torvum outyielded the ones grafted on S. sisybriifolium by 22.8% and 37.0% in fumigated and infested soil, respectively, and in late production by 6.3% and 24.5%, respectively.

Isolations from all plants showed positive results only on the susceptible eggplant scion, whereas the resistant Solaum rootstocks apparently remained free of infection, as evidenced by lack of vascular discoloration and the failure to isolate the pathogen from rootstock vascular tissue. The pathogen occurred at epidemic levels in nongrafted (control) plants, with essentially 96% and 100% disease incidence in the early and late production periods, respectively. In addition, the average value of LSI during early production and DI during late production were 3.78 and 5.23, respectively. Grafted plants that were infected by the pathogen generally developed mild symptoms, as indicated by a very low LSI (over years 1.2 and 2.22) and DI (over years 1.55 and 3.38) for GST and GSS, respectively.

The resistance of the grafted plants was indicated by the increased percentage of the healthier plants observed in the grafted group as compared to the nongrafted ones (Table 4). The percentage of the severely diseased plants for GST, GSS, and nongrafted were 0.0%, 22.9%, and 79.0%, respectively. Healthy plants were observed among nongrafted plants only in the early production period.

Discussion

The high percentage of successful grafting observed for both Solaum species with no change in fruit quality indicated that both rootstocks are suitable for eggplant grafting. The yield advantage of the grafted plants was obvious when grown on infested soil (Tables 2 and 3). Yet, the advantage of the grafted plants was not justified in 1999 when the plants were grown in pathogen-free soil. The taller plants and the larger main stem diameter of the grafted plants were attributed to the vigorous root system (Table 3) of the rootstock. Similarly, the increased yield of grafted plants is believed to be due to enhanced water and mineral uptake (Lee, 1994). According to Young (1989), the rootstock’s vigorous root system is often capable of absorbing water and nutrients more efficiently than scion roots. Thus, the significantly higher marketable yield of the plants grafted on S. torvum and S. sisybriifolium were expected over the years 1.2 and 2.22 and DI (over years 1.55 and 3.38) for GST and GSS, respectively.

Table 3. Effect of grafting eggplant on verticillium wilt resistant rootstocks (S. torvum and S. sisybriifolium) compared with nongrafted eggplant on plant parameters and fruit yield quality, during the final harvest period in 1998 and 1999, when grown on both soil fumigated with methyl bomide and soil infested with Verticillium.

Grafting on/Year	Marketable yield (g)	No. of marketable fruit	Wt of marketable fruit (g)	Biomass (g)	Aerial biomass (g)	Root biomass (g)	Stem diam (cm)	Ht (cm)
1998	1999	1998	1999	1998	1999	1998	1999	1998
Fumigated soil								
S. torvum	4560 a	1912 a	29.3 a 12.6 ab	158 a 161 a	2090 ab 2514 a	1923 ab 2225 a	167 ab 289 a	3.16 a 2.96 a 154 a 165 a
S. sisybriifolium	3979 a	2108 a	26.3 a 15.0 a	157 a 157 a	1995 ab 1936 b	1798 b 1719 b	198 a 171 cd	2.36 c 2.80 a 137 ab 156 ab
Not grafted	1601 b	7.97 b 13.0 ab		153 a 143 ab	1960 b 1693 b	1838 b 1543 b	122 c 150 d	2.60 c 2.26 b 145 ab 136 bc
Infested soil								
S. torvum	4719 a	1310 ab	30.0 a 7.6 a	159 a 152 a	2327 a 2144 a	1938 ab	134 bc 262 ab	3.06 a 2.60 ab 129 b 156 ab
S. sisybriifolium	3549 a	1291 ab	23.0 a 8.6 ab	149 a 150 a	1192 c 2357 a	1508 c 2095 a	183 a 171 cd	2.80 ab 2.30 b 137 ab 133 c
Not grafted	882 b	678 b 6.7 b 6.3 b		96 b 119 b	692 d 789 c 719 c	79 d 70 e 1.47 c 1.76 c	86 c 98 d	

Means in the same column followed by the same letter are not significantly different (P < 0.05) according to Duncan’s multiple range test.

Table 4. Distribution of the eggplants in each grade of leaf symptom index and disease index during a) the early production period and b) at the final production period during the 2 years (1998 and 1999), when grafted on S. torvum and S. sisybriifolium or not grafted.

Grafting on/Year	Percentage of plants in each grade of leaf symptom index	Percentage of plants in each grade of disease index
1998	1999	1999
S. torvum		
S. sisybriifolium		
Not grafted		

Means in the same column followed by the same letter are not significantly different (P < 0.05) according to Duncan’s multiple range test.
Literature Cited

Alconero, R., W. Robinson, B. Dicklow, and J. Shail. 1988. Verticillium wilt resistance in eggplant, related Solanum species, and interspecific hybrids. HortScience 23:388–390.

Bletos, F.A., C.C. Thanassoulopoulos, and D.G. Roupakias. 1997a. The susceptibility of Greek eggplant varieties to verticillium wilt. Acta Hort. 462:211–216.

Bletos, F.A., C.C. Thanassoulopoulos, and D.G. Roupakias. 1997b. Level of resistance to Verticillium dahliae of an interspecific F₁ hybrid (Solanum melongena × Solanum torvum). J. Genet. Breeding 51:69–73.

Bletos, F.A., C.C. Thanassoulopoulos, and D.G. Roupakias. 1998a. Sensitivity of two Greek eggplant varieties and the wild species Solanum sisymbriifolium Lam. to verticillium wilt. J. Genet. Breeding 52:99–102.

Bletos, F.A., C.C. Thanassoulopoulos, and D.G. Roupakias. 1999. Water stress and verticillium severity on eggplant (Solanum melongena L.). J. Phytopathol. 147:243–248.

Ferrari, V. 1998. Fusarium and root knot nematodes, two adversaries of melon which are difficult to control chemically. Informateur-Agrario-Supplemento 54(3):48–50. (Abstr.)

Ginaux, G. and P. Douple. 1985. Greffe par perforation laterale de l’aubergine et de la tomate. Revue Horticole 253:29–34.

Ginaux, G., P. Douple., C. Guimbard, and J.M. Lefebvre. 1979. Tomato grafting, a method of controlling soil pests. II. Pepinieristes-Horticulteurs-Maraichers 194:19–29.

Kaloo, G. 1993. Eggplant (Solanum melongena L.), p. 587–604. In: G. Kaloo and B.O. Bergh (eds.). Genetic improvement of vegetable crops. Pergamon Press, Oxford, U.K.

Klose, P., H.J. Hertwig, and K. Kuhnert. 1980. Long-term experiments with grafting of greenhouse cucumbers on Cucurbita ficifolia in the LPG “Fruhgemusezentrum Dresden.” Gartenbau 27(11):330–332. (Abstr.)

Kurata, K. 1994. Cultivation of grafted vegetables II. Development of grafted robots in Japan. HortScience 29:240–244.

Lee, J.M. 1994. Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. HortScience 29:235–239.

Lockwood, J.L., O.L. Yoder, and M.K. Bente. 1970. Grafting eggplants on resistant rootstocks as a possible approach for control of verticillium wilt. Plant Dis. Rep. 54:846–848.

Nicklow, C.W. 1983. The use of recurrent selection in efforts to achieve Verticillium resistance in eggplant. HortScience 18:600.

O’Brien, M. 1983. Evaluation of eggplant accessions and cultivars for resistance to verticillium wilt. Plant Dis. Rep. 67:763–764.

Oda, M. 1995. New grafting methods for fruit-bearing vegetables in Japan. Jarq 29:187–194.

Oda, M., K. Okada, H. Sasaki, S. Akazawa, and M. Seli. 1997. Growth and yield of eggplants grafted by a newly developed robot. HortScience 32:848–849.

Ristaino, J.B. and W. Thomas. 1997. Agriculture, methyl bromide, and the ozone hole: Can we fill the gaps? Plant Dis. 81:964–977.

Sakata, Y., T. Nishio, and S. Mon’ma. 1989. Resistance of Solanum species to verticillium wilt and bacterial wilt. p. 177–181. Proc. Eucarpia VIIth Mtg. Genet. Breeding on Capsicum and Eggplant, 27–30 June 1989, Krnigucevac, Yugoslavia.

Tachibana, S. 1994. Eggplant. p. 63–66. In: Organizing Comm. XXIVth Intl. Hort. Congr. (ed.). Horticulture in Japan.

Wheeler, W.B. and N.S. Kawar. 1997. Environmental hazards fumigants: The need for safer alternatives. Arab J. Plant Protection 15:154–162.

Young, E. 1989. Cytokinin and soluble carbohydrate concentrations in xylem sap of apple during dormancy and bud break. J. Amer. Soc. Hort. Sci. 114:297–300.