Primary angiosarcoma of the small intestine with metastasis to the liver: a case report and review of the literature

Qingqiang Ni¹, Dong Shang¹*, Honghao Peng¹,², Manish Roy¹,³, Guogang Liang¹, Wei Bi¹ and Xue Gao⁴

Abstract
Angiosarcoma is a rare disease with a poor prognosis; significantly, patients with intestinal angiosarcomas who survive over 1 year after diagnosis are extraordinarily rare. This article describes the case of a 33-year-old gentleman who presented with abdominal pain of 4 months duration, which had increased in severity 2 weeks prior to presentation. After a complicated diagnostic and therapeutic process, the diagnosis of primary angiosarcoma of the small intestine with metastasis to the liver was made by pathological and immunohistochemical examinations. We reviewed previous cases of angiosarcoma described in the English literature to determine their risk factors, diagnosis and treatment, and we found that angiosarcoma is extremely rare, especially in the small intestine. To the best of our knowledge, this may be the youngest case of primary angiosarcoma of the small intestine with metastasis to the liver reported in the English literature.

Keywords: Small intestine, Primary angiosarcoma, Hepatic metastasis

Background
Angiosarcomas, which account for only 1 to 2% of all soft tissue sarcomas, are rare malignant tumors of endothelial origin [1,2]. These tumors are usually found in the scalp and facial skin of elderly individuals, with a male preponderance [3]. Primary angiosarcoma of the small intestine is extremely rare; moreover, due to the difficulty of prompt and accurate diagnosis, its prognosis is very poor [1,4]. To the best of our knowledge, few cases of primary angiosarcoma of the small intestine have been reported in the English literature [5], especially primary angiosarcoma of the small intestine with metastasis to the liver in a young patient.

Here, we report a 33-year-old gentleman who presented with abdominal pain of 4 months duration, which worsened in the last 2 weeks prior to presentation.

Case presentation
A 33-year-old gentleman admitted to our hospital on 5 August 2011 presented with a 4-month history of pain in the left lower quadrant of the abdomen, which had worsened in the last 2 weeks before presentation.

Four months ago, the patient began experiencing abdominal pain in the lower left quadrant without any apparent cause. The symptoms became increasingly aggravated during the last 2 weeks before presentation. The presenting symptoms included paroxysmal colic in the left lower quadrant of the abdomen, fever, nausea and vomiting. The patient also experienced fatigue and an 8 kg weight loss over the last 4 months. In a nearby local hospital, an abdominal plain film was obtained, which showed intestinal tympanites.

For further treatment, the patient came to our outpatient department and was admitted to the Department of Gastroenterology. A physical examination revealed a male patient with tenderness in the left lower abdominal region. There was no hepatomegaly or splenomegaly. Laboratory tests were performed, and the results were normal, including the levels of carcinoembryonic antigen and carbohydrate antigen 19–9. Computed tomography (CT) scans of the whole abdomen showed a significantly thickened intestinal wall located at the end of the jejunum and the proximal ileum, excessive ascites and a few enlarged lymph nodes in the abdomen (Figure 1). Contrast-enhanced CT...
scans showed different degrees of enhancement in the hepatic arterial phase (Figure 2).

An urgent general surgical consultation was required because of sudden severe aggravation of the abdominal pain. Abdominocentesis was performed, which showed a dark red fluid. The patient presented with peritonitis. Therefore, an emergency laparoscopic surgery was performed, which was later converted to a laparotomy following partial enterectomy. The operative findings included intra-abdominal bleeding of 1500 ml and an oedematous small intestine. Additionally, the greater omentum was found adherent to the small intestinal mesentery in the left upper abdomen with inflammation and blood oozing from the small intestine. During surgical exploration, dozens of irregular nodules of various sizes were found scattered on the surface of the liver. In addition, a mass of approximately 5.0 × 6.0 cm in size was found in the small intestine approximately 70 cm distal to the ligament of Treitz and was accompanied by an endoleak. During the operation, the tumor and the local mesentery of the small intestine were resected. Eight lymph nodes were examined, and two were found to be metastatic. On microscopic examination, vascular invasion of tumor tissue could be observed. The blood vessels of the tumor were abundant with tumor cells around them, and the tumor cells were arranged in a slit-shaped pattern (Figure 3). The immunohistochemistry results showed that the tumor cells were positive for CD31 and vimentin (Figure 4) and negative for CD34, actin, S-100, CD117 and CK56. Moreover, the Ki-67 proliferation index was less than 10% positive. On the basis of these findings, adenocarcinoma, intestinal tuberculosis, neuroendocrine tumor, malignant melanoma, Crohn's
disease, gastrointestinal stromal tumor (GIST) and lymphoma were excluded. Hence, the diagnosis of primary angiosarcoma of the small intestine with metastasis to the liver was confirmed.

After surgical resection, the patient was managed with adjuvant chemotherapy and palliative care. Approximately 400 to 500 ml hemorrhagic fluid was drained during the postoperative period through the abdominal drains. Moreover, the volume of hemorrhagic fluid increased to 600 ml on the 6th postoperative day. Therefore, a cytologic

disease, gastrointestinal stromal tumor (GIST) and lymphoma were excluded. Hence, the diagnosis of primary angiosarcoma of the small intestine with metastasis to the liver was confirmed.

After surgical resection, the patient was managed with adjuvant chemotherapy and palliative care. Approximately 400 to 500 ml hemorrhagic fluid was drained during the postoperative period through the abdominal drains. Moreover, the volume of hemorrhagic fluid increased to 600 ml on the 6th postoperative day. Therefore, a cytologic

disease, gastrointestinal stromal tumor (GIST) and lymphoma were excluded. Hence, the diagnosis of primary angiosarcoma of the small intestine with metastasis to the liver was confirmed.

After surgical resection, the patient was managed with adjuvant chemotherapy and palliative care. Approximately 400 to 500 ml hemorrhagic fluid was drained during the postoperative period through the abdominal drains. Moreover, the volume of hemorrhagic fluid increased to 600 ml on the 6th postoperative day. Therefore, a cytologic

disease, gastrointestinal stromal tumor (GIST) and lymphoma were excluded. Hence, the diagnosis of primary angiosarcoma of the small intestine with metastasis to the liver was confirmed.

After surgical resection, the patient was managed with adjuvant chemotherapy and palliative care. Approximately 400 to 500 ml hemorrhagic fluid was drained during the postoperative period through the abdominal drains. Moreover, the volume of hemorrhagic fluid increased to 600 ml on the 6th postoperative day. Therefore, a cytologic

disease, gastrointestinal stromal tumor (GIST) and lymphoma were excluded. Hence, the diagnosis of primary angiosarcoma of the small intestine with metastasis to the liver was confirmed.

After surgical resection, the patient was managed with adjuvant chemotherapy and palliative care. Approximately 400 to 500 ml hemorrhagic fluid was drained during the postoperative period through the abdominal drains. Moreover, the volume of hemorrhagic fluid increased to 600 ml on the 6th postoperative day. Therefore, a cytologic

disease, gastrointestinal stromal tumor (GIST) and lymphoma were excluded. Hence, the diagnosis of primary angiosarcoma of the small intestine with metastasis to the liver was confirmed.

After surgical resection, the patient was managed with adjuvant chemotherapy and palliative care. Approximately 400 to 500 ml hemorrhagic fluid was drained during the postoperative period through the abdominal drains. Moreover, the volume of hemorrhagic fluid increased to 600 ml on the 6th postoperative day. Therefore, a cytologic

disease, gastrointestinal stromal tumor (GIST) and lymphoma were excluded. Hence, the diagnosis of primary angiosarcoma of the small intestine with metastasis to the liver was confirmed.

After surgical resection, the patient was managed with adjuvant chemotherapy and palliative care. Approximately 400 to 500 ml hemorrhagic fluid was drained during the postoperative period through the abdominal drains. Moreover, the volume of hemorrhagic fluid increased to 600 ml on the 6th postoperative day. Therefore, a cytologic

disease, gastrointestinal stromal tumor (GIST) and lymphoma were excluded. Hence, the diagnosis of primary angiosarcoma of the small intestine with metastasis to the liver was confirmed.

After surgical resection, the patient was managed with adjuvant chemotherapy and palliative care. Approximately 400 to 500 ml hemorrhagic fluid was drained during the postoperative period through the abdominal drains. Moreover, the volume of hemorrhagic fluid increased to 600 ml on the 6th postoperative day. Therefore, a cytologic

Reference	Study population	Number of patients with angiosarcoma	Number of patients with small intestinal angiosarcoma
Gentry et al. [8] 1949	106 patients with vascular tumors of the gastrointestinal tract between 1925 and 1944.	16	3
Karpeh et al. [9] 1991	69 adult patients admitted to the Memorial Sloan-Kettering Cancer Center between 1982 and 1990.	35	≤10
Naka et al. [3] 1995	99 Japanese patients with angiosarcoma between 1974 and 1990.	99	0
Allison et al. [10] 2004	19 previously reported cases of angiosarcoma involving the gastrointestinal tract between 1990 and 2002.	19	8
Table 2 Cases of primary angiosarcoma involving the small intestine reported in the English literature

Authors	Sex/age (years)	Primary or secondary	Site	Immunohistochemical staining	History of prior radiation or other predisposing factor	Presentation	Treatment	Follow-up
Maeyashiki et al. [11]	M/72	Indeterminate	Small bowel	Positive for CD31, CD34 and factor VIII	None	Anemia, melena	Resection and daily blood transfusions	Died on hospital day 103
Siderits et al. [12]	M/79	Primary	Small bowel	Strongly positive for CD31	None	Obstruction	Resection	Unknown
Taxy and Battifora [13]	M/64	Primary	Small bowel	Positive for Factor VIII, collagen type IV and vimentin	Not available	Gastrointestinal bleeding	Resection	Died 1 year after the initial diagnosis
Taxy and Battifora [13]	F/57	Primary	Small bowel	Positive for Factor VIII, collagen type IV	Not available	Gastrointestinal bleeding, bowel obstruction, anorexia and weight loss	Resection and transfusions	Died shortly after surgery
Chami et al. [14]	M/59	Primary	Small bowel	Weakly positive for factor VIII-related antigen, Ulex europaeus I antigen and cytokeratin	None	Gastrointestinal bleeding, bowel obstruction, anorexia and weight loss	Resection and transfusions	Died on the 11th day after surgery
Ordonez et al. [15]	M/80	Primary	Small bowel	Positive immunoreaction for FVIII-RAG	None	Anemia, undue tiredness and weakness	Resection	Died on the 20th postoperative day
Hwang et al. [16]	F/60	Primary	Small bowel	Positive for Ulex europaeus agglutinin 1	History of radiotherapy	Diffuse abdominal pain	Resection	Died 2 months after discharge
Mohammed et al. [5]	F/25	Primary	Small bowel	Not available	None	Intermittent abdominal pain, weight loss, abdominal distension, hematemesis and melaena	Resection	Died on the 11th day after surgery
Fraiman et al. [17]	M/85	Primary	Small bowel	Strong positivity for vimentin and CD31; focal positivity for factor VIII and CD34	None	Weight loss, anemia, weakness and abdominal pain	Resection and thalidomide	Not available
Selk et al. [18]	M/57	Primary	Small bowel	Not available	History of radiation therapy	Progressive abdominal distention and shortness of breath	Resection	Died 4 months after surgery
Berry et al. [19]	M/51	Primary	Small bowel	Positive for Ulex europaeus and vimentin	History of 3-year irradiation	Peritonitis	Resection, adriamycin and dacarbazine	Died 5 months after initial presentation
Watanabe et al. [20]	M/64	Primary	Duodenum and upper jejunum	Positive for vimentin and anti-endothelin-1	None	Persistent gastrointestinal bleeding	Resection	Died of pulmonary metastasis 1 year after the operation
Al Ali et al. [1]	M/87	Indeterminate	Small bowel	Positive for CD31	None	Lethargy, weakness and anemia	Resection	Died 6 weeks after the initial diagnosis
Khalil et al. [21]	M/68	Primary	Small bowel	Strongly positive for CD31, CD34 and vimentin	30 year history of heavy occupational exposure to radiation and polyvinyl chloride	Gastrointestinal bleeding and melaena	Resection	Died 6 months after initial presentation
Suzuki et al. [22]	F/61	Primary	Ileum	Positive for factor VIII-related antigen and Ulex europaeus agglutinin 1	20 year history of radiotherapy	Abdominal pain	Resection and intra-abdominal cisplatin	Died 1 year after initial presentation
Name of Author(s)	Gender	Age	Site	Clinical History	Laboratory Findings	Treatment	Outcome	
---------------------------	--------	-----	--------	--	--	---	--	
Cilurcu [23]	F	74	Small bowel	Indeterminate	Positive for CD 31, CD 34; factor VIII-related antigen and keratin	Resection	Melaena	
Delvaux et al. [24]	M	67	Small bowel	Primary	Positive for CD 31, CD 34; factor VIII-related antigen	Resection	Died 3 months after diagnosis	
Policarpo-Nicolas et al. [25]	F/S1	Primary	Small bowel	Positive for CD 31, CD 34; factor VIII-related antigen	History of irradiation	Resection	Died 10 months after laparotomy	
Hansen et al. [26]	F	76	Small bowel	Primary	Positive for factor VIII and vimentin	Resection	Died 5 months after operation	
Polacarpio-Nicolas et al. [25]	F/S1	Primary	Small bowel	Positive for CD 31, CD 34; factor VIII-related antigen	History of irradiation	Resection	Died 10 months after laparotomy	
Polacarpio-Nicolas et al. [25]	F/S1	Primary	Small bowel	Positive for CD 31, CD 34; factor VIII-related antigen	History of irradiation	Resection	Died 10 months after laparotomy	
Aitola et al. [27]	F	50	Small bowel	Positive for CD 31, CD 34; factor VIII-related antigen	≥10 year history of radiotherapy	Resection	Died of sepsis 2 years after diagnosis	
Aitola et al. [27]	F	78	Jejunum	Primary	Positive for factor VIII-related antigen, CD31, CD34 and Ulex europaeus	Resection	Died of cardiac arrest on the 9th day after surgery	
Knop et al. [28]	M	72	Small bowel	Primary	Positive for factor VIII-related antigen	Resection	Gastrointestinal bleeding and anemia	
Ogawa et al. [29]	M	36	Small bowel	Positive for factor VIII-related antigen	Not available	Resection	Surgical treatment	
de Mascarenhas-Saraiva et al. [30]	M	82	Ileum	Positive for factor VIII-related antigen	Not available	Surgical treatment		
Turan et al. [31]	Not available	Indeterminate	Jejunum	Positive for factor VIII-related antigen	Not available	Surgical treatment		
Liu et al. [32]	F	39	Terminal ileum	Positive for CD31 and CD34	None	Surgical treatment		
Kelemen et al. [33]	M	76	Small bowel	Positive for CD31	Abdominal pain and fatigue	Resection	Died of cardiac arrest on the 9th day after surgery	
Fohrding et al. [34]	M	84	Small bowel	Positive for CD31, cytokeratin and vimentin; slightly weaker for CD34; Focally positive for factor VIII	Not available	Gastrointestinal bleeding		
Grewal et al. [35]	M	73	Small bowel	Positive for CD31	None	Gastrointestinal bleeding, weakness and melaena	Resection	Died within 4 months of the diagnosis

M, male; F, female
examination was performed, which showed malignant cells, confirming the diagnosis of malignant ascites. The patient received frequent blood transfusions due to a progressive drop in hemoglobin. In the early morning hours of the 27th postoperative day, the patient experienced a sudden disturbance of consciousness along with a progressive decrease in blood pressure. Due to the above-mentioned circumstances, further treatment was refused by the patient’s relatives. The patient died on the morning of the 27th postoperative day.

Discussion
Angiosarcoma, a malignant neoplasm derived from the endothelial cells of blood vessels or lymphatic vessels, is characterized by aggressively proliferating and widely distributed tumor cells [6].

In 1879, Langhans and colleagues reported the first angiosarcoma in the spleen [7]. Thereafter, only a few cases of primary angiosarcoma involving the small intestine have been reported. Gentry and colleagues reviewed 106 vascular tumors of the gastrointestinal tract at the Mayo Clinic between 1925 and 1944, among which 16 angiosarcomas were found; furthermore, only three involved the small intestine [8]. Karpeh and colleagues reviewed 69 adult patients admitted to the Memorial Sloan-Kettering Cancer Center between 1982 and 1990. In this study, 35 angiosarcomas were found, and only 10 involved the viscus or retroperitoneum [9]. Naka and colleagues reviewed 99 Japanese patients with angiosarcoma diagnosed between 1974 and 1990, and no small intestinal angiosarcomas were found [3]. Allison and colleagues reviewed the cases of angiosarcoma that were diagnosed from 1990 to 2002 at the University of Washington and the Cleveland Clinic Foundation, finding only eight cases of angiosarcoma involving the gastrointestinal tract [10] (Table 1).

To gain a deeper understanding of primary angiosarcoma of the small intestine, we searched the PubMed database. The following search terms were used: (“hemangiosarcoma”[MeSH Terms] OR “hemangiosarcoma”[All Fields] OR “angiosarcoma”[All Fields]) AND (“intestine, small” [MeSH Terms] OR “small intestine”[All Fields] OR “small bowel”[All Fields]) AND (English[Language]). Only 54 eligible articles were retrieved. We excluded articles that described secondary cases and articles describing animal angiosarcoma involving the small intestine. Finally, only 27 articles remained [1,5,11-35] (Table 2).

Only one younger case, a 25-year-old woman, was reported as having primary angiosarcoma of the small intestine with normal liver, spleen, rectum, urinary bladder, kidneys, uterus and adnexae [5]. To our knowledge, there are few reports of primary angiosarcoma of the small intestine with metastasis to the liver among such young patients in the English literature.

Intestinal angiosarcoma often presents with gastrointestinal bleeding, abdominal pain, intestinal obstruction, abdominal distention, weight loss, shortness of breath, anemia and weakness [5,10].

Young and colleagues reviewed angiosarcoma with a focus on clinical trials and outlined its risk factors [2]. According to these authors, the risk factors for angiosarcoma were varied and are listed in Figure 5.

Magnetic resonance imaging (MRI), CT, positron emission tomography (PET), X-rays, ultrasound, endoscopy, immunohistochemical testing and a pathological examination can contribute to the diagnosis of angiosarcoma [2,30,31]. MRI, CT, abdominal X-rays and ultrasound are used to delineate the extent of the lesions in the preoperative period of abdominal angiosarcoma [2,31]. CT and PET may be helpful for detecting metastases in the preoperative period [2]. The lesions and the sources of bleeding can be detected by endoscopy. Meanwhile, endoscopic biopsy can

Figure 5 Risk factors for angiosarcoma.

- **Chronic lymphoedema (Stewart-Treves syndrome)**
 - Post-surgery or radiotherapy
 - Milroy’s syndrome
 - Other types of chronic lymphoedema

- **Radiation**

- **Exogenous toxins**
 - Vinyl chloride
 - Thorium dioxide
 - Arsenic
 - Anabolic steroids
 - Foreign bodies

- **Familial syndromes**
 - Neurofibromatosis NF-1
 - Mutated BRCA1 or BRCA2
 - Maffucci syndrome
 - Klippel-Trenaunay syndrome
be performed; significantly, wireless capsule endoscopy is a new endoscopic method that can help to improve the diagnosis of deep small intestinal pathology [30]. Von Willebrand factor, CD34, CD31, Ulex europaeus agglutinin 1, vascular endothelial growth factor, melanocytic markers (such as S100), human melanoma black-45, melanoma antigen and cytokeratins all are useful for diagnosis and differential diagnosis [2]. Moreover, poorly differentiated adenocarcinoma, intestinal tuberculosis, neuroendocrine tumor, malignant melanoma, Crohn’s disease, GIST, lymphoma and mesothelioma should be excluded, although with difficulty, in differential diagnosis [10,33]. Pathological and immunohistochemical examinations can contribute to the definitive diagnosis of angiosarcoma [21].

Due to the rarity of randomized trials and prospective studies, the management guidelines for other soft tissue sarcomas tend to be utilized when dealing with angiosarcoma [2]. Complete surgical excision tends to be impossible due to the aggressive proliferation and wide metastasis of angiosarcoma [1]. In the current setting, surgical excision associated with adjuvant radiotherapy and/or chemotherapy may be useful; however, the efficacy of these treatments for angiosarcoma remains unclear. Therefore, further studies are desperately needed to determine the optimal treatment for angiosarcoma [1].

Generally speaking, the prognosis of angiosarcoma is very poor. Moreover, several investigators have noted that the site of angiosarcoma tends to affect prognosis [2], and the prognosis of angiosarcoma of the small intestine is significantly worse than that of angiosarcoma at any other site [17]. Indeed, most patients die within a few months of diagnosis, and some die within the postoperative period [17]. Patients with intestinal angiosarcomas who survive over 1 year after diagnosis are extraordinarily rare [14].

Conclusion
Primary angiosarcoma of the small intestine is an extremely rare and aggressive soft-tissue malignant tumor. The findings of this case report are of extreme significance. To our knowledge, this may be the first report of primary angiosarcoma of the small intestine with metastasis to the liver in such a young patient. In the future, we should focus on similar cases to ensure early diagnosis and proper treatment.

Consent
Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Acknowledgements
We thank Prof. Dong Shang for assisting in the preparation of this manuscript.

Author details
1. Department of General Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China. 2. Department of General Surgery, Linyi Economic And Technological Development Zone People's Hospital, Linyi, Shandong 276000, P.R. China. 3. Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China.

References
1. Al Ali J, Ko HH, Owen D, Steinbrecher UP: Epithelioid angiosarcoma of the small bowel. Gastrointest Endosc 2006, 64:1018–1021.
2. Young RJ, Brown NJ, Reed MW, Hughes D, Wolf PJ: Angiosarcoma. Lancet Oncol 2010, 11:983–991.
3. Naka N, Ohsawa M, Tomita Y, Kanno H, Uchida A, Aozasa K: Angiosarcoma in Japan. A review of 99 cases. Cancer 1995, 75:989–996.
4. Yoshida K, Ito F, Nakazawa H, Maeda Y, Tomoe H, Aiba M: A case of primary renal angiomyosarcoma. Rare Tumors 2009, 1:2x2.
5. Mohammed A, Aliyu HO, Liman AA, Abdullahi K, Abubakar N: Angiosarcoma of the small intestine. Ann Afr Med 2011, 10:346–248.
6. Aritonoe CR: Targeted therapies in gastrointestinal stromal tumors. Semin Diagn Pathol 2008, 25:295–303.
7. Delacruz V, Jorda M, Gomez-Fernandez C, Benedetto P, Ganjei P: Fine-needle aspiration diagnosis of angiosarcoma of the spleen: a case report and review of the literature. Arch Pathol Lab Med 2005, 129:1054–1056.
8. Gentry RW, Dockerty MB, Giagetti DT: Vascular malformations and vascular tumors of the gastrointestinal tract. Surg Gynecol Obstet 1949, 88:281–323.
9. Karpeh MS Jr, Caldwell C, Gaynor JH, Hayward SJ, Brennan MF: Vascular soft-tissue sarcomas. An analysis of tumor-related mortality. Arch Surg 1991, 126:1474–1481.
10. Allison KH, Yoder BJ, Bronner MP, Goldblum JR, Rubin BP: Angiosarcoma involving the gastrointestinal tract: a series of primary and metastatic cases. Ann J Surg Pathol 2004, 28:298–307.
11. Moriyashiki C, Nagata N, Uemura N: Angiosarcoma involving solid organs and the gastrointestinal tract with life-threatening bleeding. Case Rep Gastroenterol 2012, 6:772–777.
12. Siderits R, Poblete F, Saraiya B, Rimmer C, Hazra A, Aye L: Angiosarcoma of small bowel presenting with obstruction: novel observations on a rare diagnostic entity with unique clinical presentation. Case Rep Gastrointest Med 2012, 2012:80135.
13. Taxy JB, Battifora H: Angiosarcoma of the gastrointestinal tract. A report of three cases. Cancer 1988, 62:210–216.
14. Chami TN, Ratner LE, Hennebery J, Smith DP, Hill G, Katz PO: Angiosarcoma of the small intestine: a case report and literature review. Am J Gastroenterol 1994, 89:797–800.
15. Ordonez NG, del Junco GW, Ayala AG, Ahmed N: Angiosarcoma of the small intestine: an immunoperoxidase study. Am J Gastroenterol 1983, 78:218–221.
16. Hwang TL, Sun CF, Chen MF: Angiosarcoma of the small intestine after radiation therapy: report of a case. J Formos Med Assoc 1993, 92:658–661.
17. Fraiman G, Ganti AK, Potts A, Mehdi S: Angiosarcoma of the small intestine: a possible role for thalidomide? Med Oncol 2003, 20:397–402.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
QN searched the database, selected the articles, and wrote the manuscript. DS supervised the methodology, the selection of the articles, and the writing of the manuscript and is the corresponding author of the paper. HP assisted in drafting the manuscript. MR supervised the writing of the manuscript. WB, GL, KG and DS performed the surgeries. All the authors have read and approved the final manuscript.

Abbreviations
CT: Computed tomography; GIST: Gastrointestinal stromal tumor; MRI: Magnetic resonance imaging; PET: Positron emission tomography.
18. Selk A, Wehrli B, Taylor BM: Chylous ascites secondary to small-bowel angiosarcoma. Can J Surg 2004, 47:383–384.

19. Berry GJ, Anderson CJ, Pitts WC, Neitzel GF, Weiss LM: Cytology of angiosarcoma in effusions. Acta Cytol 1991, 35:538–542.

20. Watanabe K, Hoshi N, Suzuki T: Epithelioid angiosarcoma of the intestinal tract with endothelin-1-like immunoreactivity. Virchows Arch A Pathol Anat Histopathol 1993, 423:309–314.

21. Khalil MF, Thomas A, Aasad A, Rubin M, Taub RN: Epithelioid angiosarcoma of the small intestine after occupational exposure to radiation and polyvinyl chloride: a case report and review of literature. Sarcoma 2005, 9:161–164.

22. Suzuki F, Saito A, Ishi K, Koyatsu J, Maruyama T, Suda K: Intra-abdominal angiosarcomatosis after radiotherapy. J Gastroenterol Hepatol 1999, 14:289–292.

23. Cilursu AM: Massive hemorrhage due to angiosarcomatosis diagnosed by intraoperative small bowel endoscopy. Endosc 1991, 23:245.

24. Delvaux V, Scot R, Neuville B, Moermans P, Peeters M, Filez L, Van Beckvoort D, Ectors N, Geboes K: Multifocal epithelioid angiosarcoma of the small intestine. Virchows Arch 2000, 437:590–594.

25. Policarpio-Nicolas ML, Nicolas MM, Keh P, Laskin WB: Postradiation angiosarcoma of the small intestine: a case report and review of literature. Ann Diagn Pathol 2006, 10:301–305.

26. Hansen SH, Holck S, Flyger H, Tange UB: Radiation-associated angiosarcoma of the small bowel. A case of multiploidy and a fulminant clinical course. Case report. APMIS 1996, 104:891–894.

27. Aitola P, Poutiainen A, Nordback I: Small-bowel angiosarcoma after pelvic irradiation: a report of two cases. Int J Colorectal Dis 1999, 14:308–310.

28. Knop FK, Hansen MB, Meisner S: Small-bowel hemangiosarcoma and capsule endoscopy. Endosc 2003, 35:537.

29. Ogawa S, Minowa O, Ozaki Y, Kuwatani R, Sumi Y, Maehara T: Small bowel intussusception caused by intestinal angiosarcomatosis: usefulness of MR enteroclysis with infusion of water through a nasojejunal catheter. Eur Radiol 2002, 12:534–536.

30. de Mascarenhas-Saraiva MN, da Silva Araujo Lopes LM: Small-bowel tumors diagnosed by wireless capsule endoscopy: report of five cases. Endosc 2003, 35:863–868.

31. Turan M, Karadayi K, Duman M, Ozer H, Arici S, Yildirim C, Kocak O, Sen M: Small bowel tumors in emergency surgery. Ulus Travma Acol Cerrahi Derg 2010, 16:327–333.

32. Liu DS, Smith H, Lee MM, Djerić M: Small intestinal angiosarcoma masquerading as an appendiceal abscess. Ann R Coll Surg Engl 2013, 95:e22–e24.

33. Kelemen K, Yu QQ, Howard L: Small intestinal angiosarcoma leading to perforation and acute abdomen: a case report and review of the literature. Arch Pathol Lab Med 2004, 128:95–98.

34. Zacarias Fohrding L, Macher A, Braunstein S, Knoefel WT, Topp SA: Rapidly progressive metastatic multicentric epithelioid angiosarcoma of the small bowel: a case report and a review of literature. Int J Colorectal Dis 2008, 23:745–756.

doi:10.1186/1477-7819-11-242
Cite this article as: Ni et al.: Primary angiosarcoma of the small intestine with metastasis to the liver: a case report and review of the literature. World Journal of Surgical Oncology 2013 11:242.