Angular coefficients of Z bosons produced in pp collisions at $\sqrt{s} = 8$ TeV and decaying to $\mu^+\mu$ as a function of transverse momentum and rapidity

CMS Collaboration; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Amsler, C; Canelli, F; Chiochia, V; Kilminster, B; Hreus, T; Hinzmann, A; De Cosa, A; Lange, C; Ngadiuba, J; Pinna, D; Robmann, P; Ronga, F J; Taroni, S; Yang, Y; et al

Abstract: Measurements of the five most significant angular coefficients, A_0 through A_4, for Z bosons produced in pp collisions at $\sqrt{s}=8$ TeV and decaying to $\mu^+\mu$ are presented as a function of the transverse momentum and rapidity of the Z boson. The integrated luminosity of the dataset collected with the CMS detector at the LHC corresponds to 19.7 fb$^{-1}$. These measurements provide comprehensive information about the Z boson production mechanisms, and are compared to the QCD predictions at leading order, next-to-leading order, and next-to-next-to-leading order in perturbation theory.

DOI: https://doi.org/10.1016/j.physletb.2015.08.061
Angular coefficients of Z bosons produced in pp collisions at $\sqrt{s} = 8$ TeV and decaying to $\mu^+\mu^-$ as a function of transverse momentum and rapidity

The CMS Collaboration

Abstract

Measurements of the five most significant angular coefficients, A_0 through A_4, for Z bosons produced in pp collisions at $\sqrt{s} = 8$ TeV and decaying to $\mu^+\mu^-$ are presented as a function of the transverse momentum and rapidity of the Z boson. The integrated luminosity of the dataset collected with the CMS detector at the LHC corresponds to 19.7 fb$^{-1}$. These measurements provide comprehensive information about the Z boson production mechanisms, and are compared to the QCD predictions at leading order, next-to-leading order, and next-to-next-to-leading order in perturbation theory.

Published in Physics Letters B as doi:10.1016/j.physletb.2015.08.061.
We report the first measurement of the angular coefficients of Z bosons produced in pp collisions and decaying to muon pairs. These coefficients govern the decay of the Z boson and thereby the kinematics of the lepton. Their values follow from the vector and axial vector (V-A) structure of boson-fermion couplings. The general structure of the lepton angular distribution in the boson rest frame is given by

\[
\frac{d^2\sigma}{d\cos\theta^*d\phi^*} \propto \left[(1 + \cos^2\theta^*) + A_0 \frac{1}{2} (1 - 3 \cos^2\theta^*) + A_1 \sin(2\theta^*) \cos\phi^* + A_2 \frac{1}{2} \sin^2\theta^* \cos(2\phi^*) + A_3 \sin\theta^* \cos\phi^* + A_4 \cos\theta^* + A_5 \sin^2\theta^* \sin(2\phi^*) + A_6 \sin(2\theta^*) \sin\phi^* + A_7 \sin\theta^* \sin\phi^* \right].
\]

(1)

Here, θ^* and ϕ^* are the polar and azimuthal angles of the negatively charged lepton in the rest frame of the lepton pair. In this analysis we choose the Collins–Soper (CS) frame [1] to measure the angular coefficients A_{ij}, considering the momentum of the beam proton closest in rapidity to the Z boson as the “target momentum” in [1]. The parameters A_0, A_1, and A_2 are related to the polarization of the Z boson, whilst A_3 and A_4 are also sensitive to the V-A structure of the couplings of the muons. All angular coefficients vanish as the Z boson transverse momentum q_T approaches zero except for A_4, which is the electroweak parity violation term.

The only previous measurement of four of the angular coefficients was performed by the CDF Collaboration in $p\bar{p}$ interactions for q_T up to 55 GeV [2]. The angular coefficients in pp collisions are expected to differ from those in $p\bar{p}$ collisions for several reasons. For $p\bar{p}$ collisions, the Z boson production occurs predominantly via the $q\bar{q}$ annihilation process, whilst the contribution of the qg Compton process is larger in pp collisions than $p\bar{p}$ collisions. Using the POWHEG estimation [3–5] the fraction of qg process in pp collisions at the LHC is 47%; it is 35% near $q_T = 0$ and increases to ~80% at $q_T > 100$ GeV. For the $q\bar{q}$ process in the CS frame, $A_0 = A_2 = q_T^2 / (M_Z^2 + q_T^2)$ [7–10], where M_Z is the Z boson mass. For the qg Compton process $A_0 = A_2 = 5q_T^2 / (M_Z^2 + 5q_T^2)$ [11]. The relation $A_0 = A_2$ is known as the Lam–Tung relation [12], reflecting the full transverse polarization of vector boson coupling to quarks, as well as rotational invariance [13]. Processes containing non-planar configurations (e.g., from higher order multi-gluon emission) smear the transverse polarization, leading to $A_2 < A_0$ [14]. In contrast to what happens at the Tevatron, the average handedness of Z bosons is nonzero at the LHC, as for the W boson [15–17].

The angular coefficients of Z bosons produced in pp collisions at $\sqrt{s} = 8$ TeV and decaying to $\mu^+\mu^-$ are measured as a function of q_T and rapidity y. The data, taken with the CMS detector at the LHC, corresponds to an integrated luminosity of 19.7 fb$^{-1}$. The large Z boson event sample collected by the CMS experiment allows precision measurements of the angular distribution for $q_T < 200$ GeV and $|y| < 2.1$. The coefficients, measured as a function of q_T and $|y|$, are compared with three perturbative QCD predictions by FEWZ at next-to-next-to-leading order (NNLO) [18], POWHEG at next-to-leading order (NLO) [3–6], and MADGRAPH at leading order (LO) [19].

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and plastic scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. Muons are measured in the pseudorapidity range $|\eta| < 2.4$, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive plate chambers.
A more detailed description of the CMS detector, together with a definition of the coordinate system and the relevant kinematic variables, can be found in Ref. [20].

Matching muons to tracks measured in the silicon tracker results in a relative p_T resolution for muons with $20 < p_T < 100$ GeV of 1.3–2.0% in the barrel and better than 6% in the endcaps. A particle-flow (PF) event reconstruction algorithm [21][22] is used in this analysis. It consists of reconstructing and identifying each single particle with an optimized combination of all subdetector information. A trigger for single isolated muon is used, requiring $p_T > 24$ GeV and $|\eta| < 2.1$. The leading in p_T reconstructed muon is matched to the muon selected by the trigger.

The signal process is simulated using the MADGRAPH 1.3.30 generator [19] with zero to four additional jets, interfaced with PYTHIA v6.4.24 [23] with the ZZ* tune [24]. The matching between the matrix element calculation and the parton shower is performed with the k_T-MLM algorithm [25]. The CTEQ6L1 [26] parton distribution functions (PDF) are used for the event generation. Multiple-parton interactions are simulated by PYTHIA. The POWHEG generator [5–6] interfaced with PYTHIA (same version used for MADGRAPH) and the CT10 PDF set [27] are used as an alternate to test any model dependence in the shapes of the angular distributions.

Background simulations are performed with MADGRAPH (W+jets, t$tbar$, $t\tau$), POWHEG (single top quark [28,29]), and PYTHIA (WW, WZ, ZZ). The normalizations of the inclusive Drell–Yan, W boson [18], and t$tbar$ [30] distributions are set using NNLO cross sections. For single top quark production a higher order (approximate NNLO [31]) inclusive cross section is used. The generated events are passed through a detector simulation based on GEANT4 [32].

Each muon candidate is required to be reconstructed in the muon detectors and in the inner tracker, and the global track fit is required to have a reduced $\chi^2 < 10$. The vertex with the highest sum of p_T^2 for associated tracks is defined as the primary vertex. The distance of the muon candidate trajectories with respect to the primary vertex must be smaller than 2 mm in the transverse plane and 5 mm along the beam axis. The leading (subleading) muon is required to have $p_T > 25$ (10) GeV and $|\eta| < 2.1$ (2.4). In order to suppress background events, the muons are required to be isolated from nearby particles. The relative isolation is calculated as the ratio of the scalar sum of p_T of all PF candidates from the same primary vertex, within a cone of $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.4$, and the p_T of the muon. For the leading (subleading) muon in p_T, the relative isolation must be less than 0.12 (0.5). Oppositely charged muon pairs with an invariant mass in the range 81–101 GeV are selected. In the rare case that more than two muons are selected, the muon pair with invariant mass closest to the Z boson mass is chosen. The muon pair must satisfy $|y| < 2.1$ since at higher $|y|$ the acceptance varies rapidly. After the event selection, 4.3×10^6 events with Z boson candidates remain for $|y| < 1.0$ and 2.5×10^6 events for $1.0 < |y| < 2.1$.

A “tag-and-probe” method [33] is used to measure the efficiencies for track reconstruction, trigger, muon isolation, and muon identification in data and simulation. Efficiency corrections are applied as multiplicative scale factors to the simulation values. The efficiency for track reconstruction is measured in bins of η since the p_T dependence is weak. The trigger efficiency is determined in bins of p_T and η, separately for μ^+ and μ^-. The identification efficiency is measured in bins of p_T and η. Since the subleading muon can point in the direction of the hadronic activity, a looser isolation requirement is used and its efficiency is measured as a function of q_T, $\cos \theta^*$, and ϕ^*. The efficiency of the isolation requirement for the leading muon is measured as a function of p_T and η of the muon, as detector effects relate to these variables more directly than to the Z boson q_T and y.
After event selection, the background contribution ranges from \(\sim 0.1\% \) at low \(q_T \) to \(\sim 1.5\% \) at high \(q_T \). The yields of the backgrounds from \(t\bar{t}, \tau\tau, WW, tW, \) and \(W+\text{jets} \) production are estimated from data using lepton flavor universality. Most of these backgrounds typically have two prompt leptons, which may have the same flavor. The \(W+\text{jets} \) background is flavor asymmetric, but its contribution is small. We assume that the ratio of the number of oppositely charged background \(\mu\mu \) and \(e\mu \) events is the same in data and simulation. We use the ratio of the \(e\mu \) yields in data and simulation after applying muon and electron selection criteria \[33, 34\] to normalize the simulation to data.

The acceptance and the efficiency at the event level vary in \(\cos\theta^* \) and \(\phi^* \), and strongly with \(q_T \) and \(y \). In order to avoid a bias in the acceptance due to the modeling of the \(Z \) boson kinematics, the simulation is reweighted in fine bins of \(q_T \) and \(y \) to match the background-subtracted data distribution. The weights are determined at the reconstruction level and applied at the generator level. The weighting is iterated four times, with negligible change between the second and fourth iteration.

The angular coefficients are measured in eight bins of \(q_T \) and two bins of \(|y| \), by fitting the two-dimensional \((\cos\theta^*, \phi^*)\) distribution in data with a linear combination of templates. These templates are built for each coefficient \(A_i \) by reweighting the simulation at generator level to the corresponding angular distribution, as given in Eq. (1). The templates are based on reconstructed muons, and thereby incorporate the effects of resolution, efficiency and acceptance. A template is also built for the term \((1 + \cos^2\theta^*)\) of Eq. (1). An additional template, with shape and normalization fixed, is developed for fitting the backgrounds. A binned maximum-likelihood method with Poisson uncertainties is employed for the fit. The angular coefficients \(A_5, A_6, \) and \(A_7 \) are predicted to be very small; they are set to zero and excluded from the fit. Since \(A_0 \) through \(A_4 \) are sign invariant in \(\phi^* \), the absolute value \(|\phi^*| \) is used. The fit is made in \(12 \times 12 \) equidistant bins in \(\cos\theta^* \) and \(|\phi^*| \). The statistical uncertainties from the fit are confirmed by comparison with pseudo-experiments.

To test the robustness of the result with respect to the analysis method and trigger effect, the angular coefficients \(A_0, A_2, A_3, \) and \(A_4 \) are also measured by an independent analysis similar to that reported in Ref. [2], where one-dimensional (1D) templates produced using POWHEG are fitted to the distributions in \(\cos\theta^* \) and \(|\phi^*| \). The 1D fit analysis is performed iteratively, so as to be unbiased with respect to the assumed templates and to possible correlations between \(\cos\theta^* \) and \(|\phi^*| \). The analysis differs in the triggers, estimation of backgrounds, simulation, and selection criteria. The 1D fit analysis uses a sample that requires a dimuon trigger with asymmetric muon \(p_T \) thresholds of 17 and 8 GeV. Both results are consistent within their total systematic uncertainties, excluding uncertainties common to both analyses.

Some examples of the measured \(\cos\theta^* \) and \(|\phi^*| \) distributions from the 1D analysis are given in Fig. [1]. The measured and simulated distributions are shown together using the best fit values of the angular coefficients. The shape of the \(\cos\theta^* \) distribution changes with \(q_T \) and \(|y| \) because the acceptance and efficiency in \(\cos\theta^* \) depend strongly on these two variables. For \(|\phi^*| \), the shape of the distribution changes moderately with \(q_T \) and is almost insensitive to \(|y| \). The comparison of data and simulation shown in Fig. [1] gives confidence that the acceptance and efficiency dependences are correctly modeled in the simulation.

Several sources of systematic uncertainties are taken into account. The most significant source is the muon efficiency that includes the trigger, track reconstruction, isolation, and identification. The statistical uncertainties of the measured efficiency scale factors are taken into account by simulating 500 pseudo-experiments in which the templates are reformed, each time varying the scale factors randomly within the given uncertainty. The systematic uncertainties in
Figure 1: A few examples of the observed 1D angular distributions in $\cos \theta^*$ (left) and $|\phi^*|$ (right) compared to the MC simulation using the best fit values of the angular coefficients. The top (bottom) plots show the distributions for $10 < q_T < 20$ GeV ($120 < q_T < 200$ GeV), a region where A_0 and A_2 are small (large). The background-subtracted data points are shown with filled (open) circles for $|y| < 1$ ($1 < |y| < 2.1$), whilst the corresponding MC results are shown with the solid (dashed) lines. Vertical bars represent the statistical uncertainties. The lower panels show the data-to-MC ratios.

The extraction of the efficiency (e.g., background estimates) are also included. Another significant uncertainty stems from the statistical precision of the templates, which is estimated using pseudo-experiments. The pileup uncertainty is estimated by varying the cross section of the minimum bias events by $\pm 5\%$. The muon momentum bias is measured in data and simulation, and corresponding corrections are applied \cite{35}. The statistical uncertainties in the muon momentum correction factors are propagated to a systematic uncertainty using pseudo-experiments. In addition, a systematic uncertainty is assessed to take into account possible global offsets from the peak position of the Z boson mass. The systematic uncertainties for the background are estimated by varying the normalization scale factor of the $e\mu$ sample by 10% and the yields of WZ and ZZ events by 50%. The statistical precision of the iterative reweighting is determined using pseudo-experiments. The difference between the last two iterations is assigned as additional systematic uncertainty. The effect of final-state radiation is taken into account by adding the energy of photons within a cone of radius 0.1 around the muon direction \cite{36}. Weights are applied to the simulation to reflect the difference between a soft-collinear approach and the exact $O(\alpha_{\text{QED}})$ result and the reconstructed template is rebuilt using the weighted simulation. The difference between templates is used to estimate the systematic uncertainty from final-state radiation. Finally, the acceptance uncertainty, related to the values
of A_i assumed in the simulation, is estimated by reweighting with the fitted values of A_i, and the difference in results is included as a systematic uncertainty. Generally, the statistical uncertainties dominate in the highest bins in q_T, whilst the systematic uncertainty in the efficiency tends to be the most important elsewhere.

The results of the q_T and $|y|$ dependent measurements of the angular coefficients A_0 to A_4 as well as the difference $A_0 - A_2$ are presented along with MADGRAPH, POWHEG, and FEWZ (at NNLO) calculations in Figs. 2 and 3. The various systematic uncertainties of the five angular coefficients A_0 to A_4 are presented in Fig. 4. The values and uncertainties of the coefficients are provided in Tables 1 and 2. The PDF sets used in the calculations are CTEQ6L for MADGRAPH and CT10 for POWHEG (at NLO) and FEWZ (at NNLO). The MADGRAPH predictions for A_4 are systematically higher than those of POWHEG and FEWZ because MADGRAPH uses a weak mixing angle calculated without considering radiative corrections. The measured A_0 and A_2 coefficients agree better with the prediction of MADGRAPH than with those of POWHEG and FEWZ, especially at high q_T. At $q_T = 0$, the POWHEG prediction for A_0 is negative, which is unphysical and has been traced to approximations in the shower matching algorithm. The FEWZ prediction is shown for $q_T > 20$ GeV, where the calculations are considered reliable. We find that $A_0(q_T)$ and $A_2(q_T)$ are larger in pp collisions than those measured in p\bar{p} collisions at the Tevatron. The larger contribution from the qg process in pp collisions at the LHC is responsible for this difference. We observe the violation of the Lam–Tung relation ($A_0 = A_2$) anticipated by QCD calculations beyond leading order [37]. We find that $A_0 > A_2$, especially for high q_T. In addition, we measure nonzero values of A_1 and A_3. The comparison of the results for $|y| < 1$ and $1 < |y| < 2.1$ is shown in Fig. 5.

In summary, we presented the five major angular coefficients, A_0 through A_4, for the production of the Z boson decaying to muon pairs as a function of q_T and $|y|$ in pp collisions. These results play an important role in future high-precision measurements, such as the measurement of the mass of the W boson and of the electroweak mixing angle. Some theoretical predictions deviate from the measurements in q_T. Further refinements of the theory are needed to achieve a better agreement with the experimental results.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine);
Table 1: The five angular coefficients A_0 to A_4 and $A_0 - A_2$ in bins of q_T for $|y| < 1$.

q_T [GeV]	A_0 ±δ_{stat} ±δ_{syst}	A_1 ±δ_{stat} ±δ_{syst}	A_2 ±δ_{stat} ±δ_{syst}	$A_0 - A_2$ ±δ_{stat} ±δ_{syst}
0–10	0.018 ±0.003 ±0.009	-0.008 ±0.002 ±0.005	0.007 ±0.004 ±0.003	
10–20	0.068 ±0.004 ±0.010	-0.006 ±0.003 ±0.005	0.037 ±0.004 ±0.005	
20–35	0.179 ±0.004 ±0.013	0.014 ±0.003 ±0.008	0.136 ±0.006 ±0.014	
35–55	0.357 ±0.006 ±0.013	0.033 ±0.005 ±0.014	0.278 ±0.008 ±0.022	
55–80	0.563 ±0.007 ±0.010	0.031 ±0.007 ±0.017	0.447 ±0.012 ±0.022	
80–120	0.716 ±0.010 ±0.009	0.029 ±0.010 ±0.017	0.583 ±0.017 ±0.037	
120–200	0.834 ±0.015 ±0.014	0.002 ±0.015 ±0.013	0.741 ±0.029 ±0.043	
>200	0.928 ±0.035 ±0.015	-0.020 ±0.032 ±0.012	0.689 ±0.068 ±0.035	

Table 2: The five angular coefficients A_0 to A_4 and $A_0 - A_2$ in bins of q_T for $1 < |y| < 2.1$.

q_T [GeV]	A_0 ±δ_{stat} ±δ_{syst}	A_1 ±δ_{stat} ±δ_{syst}	A_2 ±δ_{stat} ±δ_{syst}	$A_0 - A_2$ ±δ_{stat} ±δ_{syst}
0–10	0.032 ±0.005 ±0.010	0.002 ±0.003 ±0.007	0.019 ±0.005 ±0.006	
10–20	0.077 ±0.006 ±0.009	0.018 ±0.004 ±0.006	0.038 ±0.005 ±0.007	
20–35	0.179 ±0.008 ±0.013	0.038 ±0.005 ±0.008	0.129 ±0.006 ±0.016	
35–55	0.385 ±0.011 ±0.017	0.063 ±0.007 ±0.011	0.260 ±0.009 ±0.024	
55–80	0.554 ±0.013 ±0.015	0.066 ±0.011 ±0.016	0.448 ±0.014 ±0.021	
80–120	0.737 ±0.015 ±0.014	0.059 ±0.015 ±0.019	0.587 ±0.021 ±0.031	
120–200	0.860 ±0.020 ±0.012	0.064 ±0.021 ±0.018	0.758 ±0.035 ±0.035	
>200	0.876 ±0.045 ±0.020	0.040 ±0.044 ±0.020	0.864 ±0.087 ±0.041	

q_T [GeV]	A_3 ±δ_{stat} ±δ_{syst}	A_4 ±δ_{stat} ±δ_{syst}	$A_0 - A_2$ ±δ_{stat} ±δ_{syst}
0–10	0.009 ±0.002 ±0.005	0.076 ±0.003 ±0.004	0.013 ±0.007 ±0.011
10–20	0.003 ±0.002 ±0.004	0.072 ±0.004 ±0.005	0.039 ±0.008 ±0.011
20–35	0.012 ±0.003 ±0.006	0.044 ±0.005 ±0.007	0.051 ±0.010 ±0.017
35–55	0.012 ±0.005 ±0.008	0.052 ±0.007 ±0.009	0.124 ±0.014 ±0.021
55–80	0.036 ±0.007 ±0.018	0.052 ±0.009 ±0.008	0.106 ±0.019 ±0.019
80–120	0.074 ±0.010 ±0.028	0.074 ±0.011 ±0.014	0.150 ±0.025 ±0.028
120–200	0.121 ±0.017 ±0.029	0.056 ±0.016 ±0.017	0.102 ±0.039 ±0.031
>200	0.181 ±0.041 ±0.027	0.005 ±0.034 ±0.017	0.012 ±0.090 ±0.039
Figure 2: Comparison of the five angular coefficients A_i and $A_0 - A_2$ measured in the Collins–Soper frame in bins of q_T for $|y| < 1$. The circles show the measured results. The vertical bars represent the statistical uncertainties and the boxes the systematic uncertainties of the measurement. The triangles show the predictions from MADGRAPH, the diamonds from POWHEG, and the crosses from FEWZ at NNLO. The boxes at the FEWZ values indicate the PDF uncertainties.

Figure 3: Comparison of the five angular coefficients and $A_0 - A_2$ under the same conditions as Fig. 2 for the rapidity bin $1 < |y| < 2.1$.

STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the
Figure 4: Absolute uncertainties in the five angular coefficients A_0 to A_4. Each figure shows the q_T dependence in the indicated ranges of $|y|$.
Figure 5: Comparison of the five angular coefficients A_i and $A_0 - A_2$ measured in the Collins–Soper frame in bins of q_T between $|y| < 1$ (circles) and $1 < |y| < 2.1$ (triangles). The vertical bars represent the statistical uncertainties and the boxes the systematic uncertainties of the measurement.

References

[1] J. C. Collins and D. E. Soper, “Angular distribution of dileptons in high-energy hadron collisions”, Phys. Rev. D 16 (1977) 2219, doi:10.1103/PhysRevD.16.2219

[2] CDF Collaboration, “First Measurement of the Angular Coefficients of Drell-Yan e^+e^- pairs in the Z Mass Region from $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV”, Phys. Rev. Lett. 106 (2011) 241801, doi:10.1103/PhysRevLett.106.241801, arXiv:1103.5699

[3] P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, doi:10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146

[4] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, JHEP 11 (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092
[5] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043,
[doi:10.1007/JHEP06(2010)043] arXiv:1002.2581

[6] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO vector-boson production matched with shower in POWHEG”, JHEP 07 (2008) 060,
[doi:10.1088/1126-6708/2008/07/060] arXiv:0805.4802

[7] J. C. Collins, “Simple Prediction of Quantum Chromodynamics for Angular Distribution of Dileptons in Hadron Collisions”, Phys. Rev. Lett. 42 (1979) 291,
[doi:10.1103/PhysRevLett.42.291]

[8] D. Boer and W. Vogelsang, “Drell-Yan lepton angular distribution at small transverse momentum”, Phys. Rev. D 74 (2006) 014004,
[doi:10.1103/PhysRevD.74.014004] arXiv:hep-ph/0604177

[9] E. L. Berger, J.-W. Qiu, and R. A. Rodriguez-Pedraza, “Angular distribution of leptons from the decay of massive vector bosons”, Phys. Lett. B 656 (2007) 74,
[doi:10.1016/j.physletb.2007.09.008] arXiv:0707.3150

[10] A. Bodek, “A simple event weighting technique for optimizing the measurement of the forward-backward asymmetry of Drell-Yan dilepton pairs at hadron colliders”, Eur. Phys. J. C 67 (2010) 321,
[doi:10.1140/epjc/s10052-010-1287-5] arXiv:0911.2850

[11] J. Lindfors, “Angular Distribution of Large q_T Muon Pairs in Different Reference Frames”, Physica Scripta 20 (1979) 19,
[doi:10.1088/0031-8949/20/1/003]

[12] C. S. Lam and W.-K. Tung, “Structure function relations at large transverse momenta in Lepton-pair production processes”, Phys. Lett. B 80 (1979) 228,
[doi:10.1016/0370-2693(79)90204-1]

[13] P. Faccioli, C. Lourenco, and J. Seixas, “Rotation-Invariant Relations in Vector Meson Decays into Fermion Pairs”, Phys. Rev. Lett. 105 (2010) 061601,
[doi:10.1103/PhysRevLett.105.061601] arXiv:1005.2601

[14] P. Faccioli, C. Lourenco, J. Seixas, and H. K. Woehri, “Model-independent constraints on the shape parameters of dilepton angular distributions”, Phys. Rev. D 83 (2011) 056008,
[doi:10.1103/PhysRevD.83.056008] arXiv:1102.3946

[15] CMS Collaboration, “Measurement of the Polarization of W Bosons with Large Transverse Momenta in W+Jets Events at the LHC”, Phys. Rev. Lett. 107 (2011) 021802,
[doi:10.1103/PhysRevLett.107.021802] arXiv:1104.3829

[16] ATLAS Collaboration, “Measurement of the Polarisation of W Bosons produced with large transverse momentum in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS experiment”, Eur. Phys. J. C 72 (2012) 2001,
[doi:10.1140/epjc/s10052-012-2001-6] arXiv:1203.2165

[17] Z. Bern et al., “Left-handed W bosons at the LHC”, Phys. Rev. D 84 (2011) 034008,
[doi:10.1103/PhysRevD.84.034008] arXiv:1103.5445

[18] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush, “FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order”, Comput. Phys. Commun. 182 (2011) 2388,
[doi:10.1016/j.cpc.2011.06.008] arXiv:1011.3540
[19] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

[20] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[21] CMS Collaboration, “Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E_T^{miss}”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, 2009.

[22] CMS Collaboration, “Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector”, CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010.

[23] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05 (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[24] CMS Collaboration, “Study of the underlying event at forward rapidity in pp collisions at $\sqrt{s} = 0.9, 2.76,$ and 7 TeV”, JHEP 04 (2013) 072, doi:10.1007/JHEP04(2013)072, arXiv:1302.2394.

[25] J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, doi:10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569.

[26] J. Pumplin et al., “New generation of parton distributions with uncertainties from global QCD analysis”, JHEP 07 (2002) 012, doi:10.1088/1126-6708/2002/07/012, arXiv:hep-ph/021195.

[27] H.-L. Lai et al., “New parton distributions for collider physics”, Phys. Rev. D 82 (2010) 074024, doi:10.1103/PhysRevD.82.074024, arXiv:1007.2241.

[28] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO single-top production matched with shower in POWHEG: s- and t-channel contributions”, JHEP 09 (2009) 111, doi:10.1007/JHEP02(2010)011, arXiv:0907.4076.

[29] E. Re, “Single-top Wt-channel production matched with parton showers using the POWHEG method”, Eur. Phys. J. C 71 (2011) 1547, doi:10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450.

[30] M. Czakon, P. Fiedler, and A. Mitov, “Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through $O(a_s^3)$”, Phys. Rev. Lett. 110 (2013) 252004, doi:10.1103/PhysRevLett.110.252004, arXiv:1303.6254.

[31] N. Kidonakis, “Differential and total cross sections for top pair and single top production”, in XX Int. Workshop on Deep-Inelastic Scattering and Related Subjects, p. 831. Bonn, Germany, 2012. arXiv:1205.3453, doi:10.3204/DESY-PROC-2012-02/251.

[32] GEANT4 Collaboration, “GEANT4: A simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[33] CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7$ TeV”, JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071.
[34] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, *JINST* **10** (2015) P06005,
[doi:10.1088/1748-0221/10/06/P06005](https://doi.org/10.1088/1748-0221/10/06/P06005) [arXiv:1502.02701](https://arxiv.org/abs/1502.02701).

[35] A. Bodek et al., “Extracting muon momentum scale corrections for hadron collider experiments”, *Eur. Phys. J. C* **72** (2012) 2194,
[doi:10.1140/epjc/s10052-012-2194-8](https://doi.org/10.1140/epjc/s10052-012-2194-8) [arXiv:1208.3710](https://arxiv.org/abs/1208.3710).

[36] CMS Collaboration, “Measurements of inclusive W and Z cross sections in pp collisions at $\sqrt{s} = 7$ TeV”, *JHEP* **01** (2011) 080, [doi:10.1007/JHEP01(2011)080](https://doi.org/10.1007/JHEP01(2011)080) [arXiv:1012.2466](https://arxiv.org/abs/1012.2466).

[37] E. Mirkes and J. Ohnemus, “Angular distributions of Drell-Yan lepton pairs at the Fermilab Tevatron: Order α_s^2 corrections and Monte Carlo studies”, *Phys. Rev. D* **51** (1995) 4891, [doi:10.1103/PhysRevD.51.4891](https://doi.org/10.1103/PhysRevD.51.4891) [arXiv:hep-ph/9412289](https://arxiv.org/abs/hep-ph/9412289).
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, M. Friedl, R. Frühwirth, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, V. Knünz, M. Krämer, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady, B. Rahbaran, H. Rohringer, J. Schieck, R. Schöfbeck, J. Strauss, W. TreBerter-Treberspurg, W. Waltenberger, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, S. Ochesanu, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, N. Daci, N. Heracleous, J. Keaveney, S. Lowette, M. Maes, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
C. Caillol, B. Clerbaux, G. De Lentdecker, D. Dobur, G. Fasanella, L. Favart, A.P.R. Gay, A. Grebenyuk, A. Léonard, A. Mohammadi, L. Perniè, A. Randle-conde, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang, F. Zenoni

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Crucy, A. Fagot, G. Garcia, J. Mccartin, A.A. Ocampo Rios, D. Poyraz, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi, G. Bruno, R. Castello, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco, J. Hollar, A. Jafari, P. Jez, M. Komm, V. Lemaitre, C. Nuttens, D. Pagano, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov, L. Quertenmont, M. Selvaggi, M. Vidal Marono

Université de Mons, Mons, Belgium
N. Beliy, T. Caebers, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, T. Dos Reis Martins, J. Molina, C. Mora Herrera, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Sampaio, A. Santoro, A. Szajder, E.J. Tonelli Manganote, A. Vilela Pereira
Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardesa, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, V. Genchev2, R. Hadjiiska, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, T. Cheng, R. Du, C.H. Jiang, R. Plestina7, F. Romeo, J. Tao, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, F. Zhang5, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.9

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran10, A. Ellithi Kamel11, M.A. Mahmoud12, A. Radi13,14

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva
DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, P. Busson, E. Chapon, C. Charlot, T. Dahms, O. Davignon, L. Dobrzynski, N. Filipovic, A. Florent, R. Granier de Cassagnac, L. Mastrolorenzo, P. Miné, I.N. Naranjo, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, S. Regnard, R. Salerno, J.B. Sauvan, Y. Siros, C. Veelken, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram, J.-C. Fontaine, D. Gelé, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, K. Skovpen, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beupere, C. Bernet, G. Boudoul, E. Bouvier, S. Brochet, C.A. Carrillo Montoya, J. Chasserat, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuiller, L. Mirabito, A.L. Pequegnot, S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, M. Bontenackels, M. Edelhoff, L. Feld, A. Heister, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, J. Sammet, S. Schael, J.F. Schulte, H. Weber, B. Wittmer, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbecker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, P. Millet, M. Olschweski, K. Padeken, P. Papacz, H. Reithler, S.A. Schmitz, L. Sondnvenschein, D. Teysier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Künsken, J. Lingemann, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, I. Asin, N. Bartosik, J. Behr, U. Behrens, A.J. Bell, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, G. Dolinska, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, J. Garay Garcia, A. Geiser, A. Gizhko, P. Gannellini, J. Hauk, M. Hempel, H. Jung, A. Kalogeropoulos,
The CMS Collaboration

O. Karacheban, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann, R. Mankel, I. Marfin, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, B. Röland, E. Ron, M.Ö. Sahin, J. Salfeld-Nebgen, P. Saxena, T. Schoerner-Sadenius, M. Schröder, C. Seitz, S. Spannagel, A.D.R. Vargas Trevino, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
V. Blobel, M. Centis Vignali, A.R. Draeger, J. Erfle, E. Garutti, K. Goebel, M. Görner, J. Haller, M. Hoffmann, R.S. Höing, A. Junkes, H. Kirschenmann, R. Klanner, R. Kogler, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, D. Nowatschin, J. Ott, T. Peiffer, A. Perieanu, N. Pietsch, J. Poehlsen, T. Poehlsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, F. Frensch, M. Giffels, A. Gilbert, F. Hartmann, T. Hauth, U. Husemann, I. Katkov, A. Kornmayer, P. Lobelle Pardo, M.U. Mozer, T. Müller, Th. Müller, A. Nürnberg, G. Quast, K. Rabbertz, S. Röcker, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, C. Wöhrmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Stiliaris, E. Tziaferi

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradis, J. Strologas

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, R. Gupta, U. Bhawandeep, A.K. Kalsi, M. Kaur, R. Kumar, M. Mittal, N. Nishu, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma
INFIN Sezione di Napoli, Università di Napoli ‘Federico II’, Napoli, Italy, Università della Basilicata, Potenza, Italy, Università G. Marconi, Roma, Italy
S. Buontempo, N. Cavallillo, S. Di Guida, F. Fabozzi, A.O.M. Iorio, L. Lista, S. Meola, M. Merola, P. Paolucci

INFIN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy
P. Azzi, N. Bacchetta, D. Bisello, R. Carlin, P. Checchia, M. Dall’Osso, T. Dorigo, U. Dosselli, F. Gasparini, U. Gasparini, A. Gozzelino, S. Lacaparra, M. Margoni, A.T. Meneguzzo, F. Montecassiano, M. Passaseo, J. Pazzini, N. Pozzobon, P. Ronchesè, F. Simonetto, E. Torassa, M. Tosi, P. Zotto, A. Zucchetta, G. Zumerle

INFIN Sezione di Pavia, Università di Pavia, Pavia, Italy
M. Gabusi, A. Magnani, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, I. Vai, P. Vitulo

INFIN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, D. Ciangottini, L. Fanò, P. Lariccia, G. Mantovani, M. Menichelli, A. Saha, A. Santocchia, A. Spiezia

INFIN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
K. Androssov, P. Azzurri, G. Bagliesi, J. Bernardini, T. Boccali, G. Broccolo, R. Castaldi, M.A. Ciocci, R. Dell’Orso, S. Donato, G. Fedi, F. Fiori, L. Foà, A. Giassi, M.T. Grippo, F. Liguabue, T. Lomtadze, L. Martinetti, A. Messineo, C.S. Moon, F. Palla, A. Rizzi, A. Savoy-Navarro, A.T. Serban, P. Spagnolo, P. Squillacioti, R. Tenchini, G. Tonelli, F. Gasparini, S. Casasso, S. D’imperio, P. Meridiani, R. Arcidiacono, A. Savoy-Navarro, A. Gozzelino, M. Dall’Osso, S. Di Guida, F. Fabozzi, A.O.M. Iorio, L. Lista, S. Meola, M. Merola, P. Paolucci

INFIN Sezione di Roma, Università di Roma, Roma, Italy
L. Barone, F. Cavallari, G. D’imperio, D. Del Re, M. Diemoz, C. Jorda, E. Longo, F. Margaroli, P. Meridiani, F. Micheli, G. Organtini, R. Paramatti, S. Rahatlou, C. Rovelli, F. Santanastasio, L. Soffi, P. Squillacioti, P.G. Verdini

INFIN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, R. Bellan, C. Biino, N. Cartiglia, S. Casasuso, M. Costa, R. Covarelli, A. Degano, N. Demaria, L. Fincio, C. Mariotti, S. Maselli, G. Mazza, E. Migliore, V. Monaco, M. Musich, M.M. Obertino, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, A. Romero, M. Ruspa, R. Sacchi, A. Solano, A. Staiano, U. Tamponi

INFIN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, G. Della Ricca, B. Gobbo, C. La Licata, M. Marone, A. Schizzi, T. Umer, A. Zanetti

Kangwon National University, Chunchon, Korea
S. Chang, A. Kropivnitskaya, S.K. Nam

Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Chonbuk National University, Jeonju, Korea
T.J. Kim, M.S. Ryu

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, D.H. Moon, S. Song
Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh

Seoul National University, Seoul, Korea
H.D. Yoo

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, I.C. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania
A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
J.R. Komaragiri, M.A.B. Md Ali, W.A.T. Wan Abdullah

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruecco, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
P. Bunin, M. Gavrilenko, I. Golutvin, A. Kamenev, V. Karjavin, V. Konoplyanikov, V. Korenkov, A. Lanev, A. Malakhov, V. Matveev, V.V. Mitsyn, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov, E. Tikhonenko, A. Zarubin
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, S. Semenov, A. Spiridonov, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi, M. D’Alfonso, D. d’Enterria,
A. Dabrowski, V. Daponte, A. David, F. De Guio, A. De Roeck, S. De Visscher, E. Di Marco, M. Dobson, M. Dordevic, B. Dorney, N. Dupont-Sagorin, A. Elliott-Peisert, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, M.J. Kortelainen, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, J. Marrouche, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, S. Orfanelli, L. Orsini, L. Pape, E. Perez, A. Petrilli, G. Petruchiani, A. Pfeiffer, M. Pimiä, D. Piparo, M. Plagge, A. Racz, G. Rolandi, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi, D. Treille, A. Tsirou, G.I. Veres, N. Wardle, H.K. Wöhri, H. Wollny, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, M.A. Buchmann, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, J. Hoss, G. Kasieczka, W. Lustermann, B. Mangano, A.C. Marin, M. Marioneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, D. Meister, N. Mohr, P. Musella, F. Nesi-Tedaldi, F. Pandolfi, F. Pauss, L. Perrozzi, M. Peruzzi, M. Quittnat, L. Rebane, M. Rossini, A. Starodumov, M. Takahashi, K. Theofilatos, R. Wallny, H.A. Weber

Universität Zürich, Zurich, Switzerland
C. Amsler, M.F. Canelli, V. Chiochia, A. De Cosa, A. Hinzmans, T. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, P. Robmann, F.J. Ronga, S. Taroni, Y. Yang

National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y.H. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Petrakou, J.F. Tsai, Y.M. Tzeng, R. Wilken

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, E. Gurbuz, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, D. Sunar Cerci, B. Tali, H. Topakli, M. Vergili, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, B. Bilin, S. Bilmis, H. Gamsizkan, B. Isildak, G. Karapinar, K. Ocalan, S. Sekmen, U.E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E.A. Albayrak, E. Gülmez, M. Kaya, O. Kaya, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
K. Cankocak, F.I. Vardarlı
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levcuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Keiczko, C. Lucas, Z. Meng, D.M. Newbold, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, S. Senkin, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, P. Dunne, A. Elwood, W. Ferguson, J. Fulcher, D. Futyan, G. Hall, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, Lyons, A.-M. Magnan, S. Malik, B. Mathias, J. Nash, A. Nikitenko, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp, A. Tapper, M. Vazquez Acosta, T. Virdee, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, N. Pastika, T. Scarborough, Z. Wu

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, USA
A. Avetisyan, T. Bose, C. Fantasia, P. Lawson, D. Rankin, C. Richardson, J. Rohlf, J. St. John, L. Sulak, D. Zou

Brown University, Providence, USA
J. Alimena, E. Berry, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, N. Dhingra, A. Ferapontov, A. Garabedian, U. Heintz, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Sagir, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, USA
K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova Rikova, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, A. Luthra, M. Malberti, M. Olmedo Negrete, A. Shrinivas, S. Sumowidagdo, S. Wimpenny
Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O’Brien, I.D. Sandoval Gonzalez, C. Silkworth, P. Turner, N. Varelas, M. Zakaria

The University of Iowa, Iowa City, USA
B. Bilki, W. Clarida, K. Dilsiz, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, R. Rahmat, S. Sen, P. Tan, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
I. Anderson, B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A.V. Gritsan, P. Maksimovic, C. Martin, M. Swartz, M. Xiao

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, C. Bruner, J. Gray, R.P. Kenny III, D. Majumder, M. Malek, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA
I. Chakaberia, A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, N. Shkhridzade, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
C. Anelli, A. Baden, A. Belloni, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, Y. Lu, A.C. Mignerey, K. Pedro, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, A. Baty, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, X. Niu, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephens, K. Sumorok, D. Velicanu, J. Veverka, T.W. Wang, B. Wyslouch, M. Yang, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. Gude, S.C. Kao, K. Klaoetke, Y. Kubota, J. Mans, S. Nourbakhsh, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, F. Meier, F. Ratnikov, G.R. Snow, M. Zvada

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood, J. Zhang
Northwestern University, Evanston, USA
K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Trovato, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
A. Brinkerhoff, K.M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, S. Lynch, N. Marinelli, F. Meng, C. Mueller, Y. Musienko, T. Pearson, M. Planer, R. Ruchti, G. Smith, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, B. Liu, W. Luo, D. Puigh, M. Rodenburg, B.L. Winer, H. Wolfe, H.W. Wulsin

Princeton University, Princeton, USA
O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
E. Brownson, S. Malik, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA
V.E. Barnes, D. Benedetti, D. Bortoletto, L. Gutay, Z. Hu, M.K. Jha, M. Jones, K. Jung, M. Kress, N. Leonardo, D.H. Miller, N. Neumeister, F. Primavera, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, J. Zablocki

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchar, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, S. Korjenevski, G. Petrillo, M. Verzetti, D. Vishnevskiy

The Rockefeller University, New York, USA
R. Ciesielski, L. Demortier, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, A. Lath, S. Panwalkar, M. Park, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA
O. Bouhali, A. Castaneda Hernandez, M. Dalchenko, M. De Mattia, S. Dildick, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Kholtiolvich, V. Krutelyov, R. Montalvo, I. Osipenkov, Y. Pakhotin, R. Patel, A. Perloff, J. Roe, A. Rose, A. Safonov, I. Suarez, A. Tatarinov, K.A. Ulmer
Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, E. Wolfe, J. Wood

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin, Madison, USA
D.A. Belknap, D. Carlsmith, M. Cepeda, S. Dasu, L. Dodd, S. Duric, E. Friis, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, C. Lazaridis, A. Levine, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W.H. Smith, D. Taylor, C. Vuosalo, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at Laboratoire Leprince-Ringuet, École Polytechnique, IN2P3-CNRS, Palaiseau, France
8: Also at Université Libre de Bruxelles, Bruxelles, Belgium
9: Also at Joint Institute for Nuclear Research, Dubna, Russia
10: Also at Suez University, Suez, Egypt
11: Also at Cairo University, Cairo, Egypt
12: Also at Fayoum University, El-Fayoum, Egypt
13: Also at British University in Egypt, Cairo, Egypt
14: Now at Ain Shams University, Cairo, Egypt
15: Also at Université de Haute Alsace, Mulhouse, France
16: Also at Brandenburg University of Technology, Cottbus, Germany
17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
18: Also at Eötvös Loránd University, Budapest, Hungary
19: Also at University of Debrecen, Debrecen, Hungary
20: Also at University of Visva-Bharati, Santiniketan, India
21: Now at King Abdulaziz University, Jeddah, Saudi Arabia
22: Also at University of Ruhuna, Matara, Sri Lanka
23: Also at Isfahan University of Technology, Isfahan, Iran
24: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
25: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
26: Also at Università degli Studi di Siena, Siena, Italy
27: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
28: Also at Purdue University, West Lafayette, USA
29: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
30: Also at Institute for Nuclear Research, Moscow, Russia
31: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
32: Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
33: Also at California Institute of Technology, Pasadena, USA
34: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
35: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
36: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
37: Also at University of Athens, Athens, Greece
38: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
39: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
40: Also at Gaziosmanpasa University, Tokat, Turkey
41: Also at Adiyaman University, Adiyaman, Turkey
42: Also at Mersin University, Mersin, Turkey
43: Also at Cag University, Mersin, Turkey
44: Also at Piri Reis University, Istanbul, Turkey
45: Also at Anadolu University, Eskisehir, Turkey
46: Also at Ozyegin University, Istanbul, Turkey
47: Also at Izmir Institute of Technology, Izmir, Turkey
48: Also at Necmettin Erbakan University, Konya, Turkey
49: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
50: Also at Marmara University, Istanbul, Turkey
51: Also at Kafkas University, Kars, Turkey
52: Also at Yildiz Technical University, Istanbul, Turkey
53: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
54: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
55: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
56: Also at Argonne National Laboratory, Argonne, USA
57: Also at Erzincan University, Erzincan, Turkey
58: Also at Texas A&M University at Qatar, Doha, Qatar
59: Also at Kyungpook National University, Daegu, Korea