Validation and Similarity Evaluation of Leukocyte

P.Deepa and D.Deepa

Department of Electronics and Instrumentation Engineering, St. Joseph’s College of Engineering, Chennai 600119, India
deeapakumaran2002@gmail.com, deepaeie1997@gmail.com

Abstract. Generally the Examination of WBC to identify the foreign particles, abnormal conditions and it shows the status of the leukocyte. To avoid risk factors disease of brain such as aneurism, stroke and tumor at initial stage. It also show the types, region and severity. The individual examination of basophil(B), eosinophil(E), lymphocyte(L), monocyte(M) and neutrophil(N) predetermination of patient body condition are possible in clinical level examination to get a suggestion regarding the diseases to get treated and some of the techniques are used to reduce the complexity. Automated and semi-automated tool is useful for the process. The microscopic images of different classification of leukocyte is taken from the microscopic images. Each image is evaluated, validated, compared and verified with ground truth image.

Keywords: leukocyte, predetermination, automated and semi-automated tool.

1. INTRODUCTION

Nowadays patient’s body condition is monitored and bio-signals are recorded for further investigation. The recorded signal is viewed during the treatment period by using the bio-images or bio-signal most of diseases are detected in initial stages. The way of classification and determination of severity can also be examine the immunity power, lower count indicates poor immune and higher count than the specified count chances of severe disease. The semi-automated technique work is proposed to appraise image of Peripheral-Blood-Cell(PBC). It is analysed for testing purpose by using the Leukocyte-Image-For-Segmentation-Classification(LISC). The microscopic images are digitalized and recorded by comparing the given sample with ground truth. Ground truth are the doctor’s feedback that is known value. Here the work incorporates on the social-group-optimization plus shannon’s entropy (SGO+SE) based thresholding and chan-ve segmentation (CVS) to extract the images of foreign particles or stained portion from the PBC.

These kind of techniques will help the doctors to predicate the condition and can collect validated bio-image. Similarities of given sample with pre-processing, post-processing and then extracted image is compared with ground truth. Now the datasets are collected and more number of images are taken for the examination. Each sets of images are threshold and segmented. The extracted stain portion from the given samples.

Traditionally blood detection of patient was a difficult thing to analysis the conditions. There are five different types of WBC on the LISC dataset are Basophil (B), Eosinophil (E), Lymphocyte...
(L), Monocyte (M) and Neutrophil (N). Usually computer assisted diagnostic procedures are involved in up-coming procedures. PBC picture is examined to obtain a maximum accuracy of WBC. Peripheral-Blood-Cell (PBC) is normally stored with digital microscope. Further processes are integrated like Social-Group-Optimization, Shannon’s Entropy (SGO+SE), thresholding and Chan-Vese Segmentation (CVS) to differentiate each image for detection of WBC.

2. LITERATURE REVIEW

Nearly 250 images of Leukocyte Images for Segmentation and Classification (LISC) database were taken from the Hematology-Oncology and BMT Research Center of Imam Khomeini Hospital in Tehran, Iran. Generally WBC has nucleus and cytoplasm were segmented by manual pixels of images contains 720x576 pixels and Gismm-Right technique is used to smeared and stained. This kind of simulation code used in vast areas like feature sets (Hydrodynamics, Black holes etc) where the images are acquired by a light microscope (Microscope-Axioskope 40). The digital analysis of blood cell(clinics in laboratory medicine the work of L.D Costa et al(2015) used are Leukocyte nuclei segmentation using entropy function and chan-vese approach. Semi-automated tool helps to optimal thresholding of image. Multi-thresholding(three level) processed(SGO+SE) sample image is now subjected to segmentation process with the help of CVS. Chan-vese segmentation method is used in multi-thresholded image. For a better performance hybridization of multi-thresholding and segmentation of given sample image of WBC. Leukocyte processed to mined nuclei to compare with ground truth image. The ground truth dataset image will helps for future evaluation.

Basically the ground truth prepared for 250 leukocytes to compare the both images. By comparing of extracted image of leukocyte and corresponding image of ground truth image as shown in Figure 1 are used for optimal validation and similarities are Jaccard (JI), Dice (DC), Sensitivity (SE), Specificity (SP), Accuracy (AC), Precision (PR).

![Figure 1 The sample leukocytes images](image)

3. EXTRACTION TOOL

It helps to optimize the entire extraction procedure with Hybridization of SGO+SE and CVS techniques by using MatLab software for role of thresholding. In semi-automated tool development extract the strained portion by multi-thresholding level. Gathering of most suitable values to evaluate, in order to overcome a mathematical complexities, it acquires an enhancement of sample image. SGO attempts the various complex problems such as consistency in optimal solution, computation, optimal solution etc. the semi-automated tool. Shannon’s entropy helps to obtain more random signals and organization of signal which is obtained from the Social-Group-Optimization. More numbers of data or signals are measured and the degree of freedom is reduced to get a solution. Chan-VeseSegmentation is used to mine the required portion and the extracted nuclei to compare the given sample with ground truth image. It shows the contour and object of both two dimensions and three dimensions. It has a property
of enhancement of object and contour detection, good comparison of defective and non-defective images, calculating the intensity of image, area, perimeter, volume such information can be extracted to obtain measurement details. The hybridization of SGO+SE and CVS Segmentation to evaluate the Picture-Similarity-Measurements (PSM) of JI, DC, SE, SP, AC, PR.

4. SOCIAL-GROUP-OPTIMIZATION
The Social-Group-Optimization is mainly used for the minimization of parameters are allowed. It is recently adopted in medical field for various applications. It reduces the complexity of many solutions in simple ways. Due to the reduced complexity of mathematics it is used widely in bio-medical applications. It also helps to find global solutions. The initial step of image with multi-thresholding.

5. SHANNON’S ENTROPY
The term Shannon’s Entropy is storing a random of uncertainty values in bit wise and it is also used to measure the randomness of random variable. Compression of data of image in bit wise. While compression process takes place there is a chance of loss in information.

6. CHAN-VESE-SEGMENTATION
In order to extract the stained portion of WBC after the thresholding process, minimal energy value is required to display the region which lies inside the image contour. Now the ground truth image and extracted image are compared to get computed values of PSM. The complete hybridization is done with the semi-automated tool. An Iteration process is carried until to get an identical pixels are obtained. Most of the information obtained regarding the similarities of leukocyte are evaluated.

7. BLOCK DIAGRAM
The methodology of hybrid image examination in Leukocyte image data sets are depicted in Figure 2.

8. RESULTS AND DISCUSSION
With the help of the Semi-Automated tool development extraction is compared with ground truth images obtained a computed values which are tabulated in Table 1. Each image is compared with the ground truth image to get a values of Jaccard, DC, SE, SP, AC, PR. With the hybridization of SGO+SE for the purpose of multi-thresholding Process and the CVS Segmentation process for the extraction of certain strained areas are achieved.
Table 1 Thresholding and Segmentation of leukocytes images

Table 2 The validation and similarities of leukocytes images

S.no	Jl	DC	SE	SP	AC	PR
1.	0.043	0.082	0.049	0.001	0.043	0.258
2.	0.246	0.395	0.300	0.003	0.246	0.575
3.	0.191	0.320	0.250	0.005	0.192	0.445
4.	0.186	0.314	0.220	0.001	0.186	0.544
5.	0.282	0.441	0.336	0.318	0.332	0.640

9. CONCLUSION
The proposed method Semi-Automated performs the action to get a set of values which are obtained from the given sample images of leukocytes. An individual image was examined to validated the image and similarities are obtained for a given samples images by which doctors can easily conclude the results. The above result executed well with the help of the tool MATLAB Software. This method useful in real time application. This technique can also be modified for other applications.

10. REFERENCES
[1] N. Dey, A.S. Ashour, F. Shi, S.J. Fong, R.S. Sherratt, Developing residential wireless sensor networks for ECG healthcare monitoring, IEEE Transactions on Consumer Electronics, 63(4) (2017) 442-449.
[2] N. Dey, A.S. Ashour, S. Beagum, D.S. Pistola, M. Gospodinov, E.P. Gospodinova, J.M.R.S. Tavares, Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: An application for brain MRI image denoising, Journal of Imaging, 1(1) (2015) 60-84.

[3] N. Dey, A.S. Ashour, F. Shi, R.S. Sherratt, Wireless capsule gastrointestinal endoscopy: direction-of-arrival estimation based localization survey, IEEE reviews in biomedical engineering, 10 (2017) 2-11.

[4] N. Dey, A.S. Ashour, F. Shi, S.J. Fong, R.S. Sherratt, Developing residential wireless sensor networks for ECG healthcare monitoring, IEEE Transactions on Consumer Electronics, 63(4) (2017) 442-449.

[5] N. Dey, V. Rajinikanth, A.S. Ashour, J.M.R.S. Tavares, (2018). Social Group Optimization Supported Segmentation and Evaluation of Skin Melanoma Images. Symmetry, 10(2) (2018) 51.

[6] V. Rajinikanth, N. Dey, S.C. Satapathy, A.S. Ashour, An approach to examine magnetic resonance angiography based on Tsallis entropy and deformable snake model, Future Generation Computer Systems, 85 (2018) 160-172. Doi: 10.1016/j.future.2018.03.025.

[7] L.B. Dorini, R. Minetto, N.J. Leite, Semiautomatic white blood cell segmentation based on multiscale analysis, IEEE Journal of Biomedical and Health Informatics, 17(1) (2013) 250-256.

[8] S.S. Ahmed, N. Dey, A.S. Ashour, D. Sifaki-Pistolla, D. Bălas-Timar, V.E. Balas, J.M.R.S. Tavares, Effect of fuzzy partitioning in Crohn’s disease classification: a neuro-fuzzy-based approach, Medical & biological engineering & computing, 55(1) (2017) 101-115.

[9] N. Dey, A.S. Ashour, F. Shi, S.J. Fong, J.M.R.S. Tavares, Medical cyber-physical systems: A survey, Journal of Medical Systems, 42(4) (2018)74.

[10] V. Rajinikanth, N.S.M. Raja, K. Kamalanand, Firefly algorithm assisted segmentation of tumor from brain MRI using Tsallis function and Markov random field, Journal of Control Engineering and Applied Informatics, 19(2) (2017) 97-106.

[11] J. Prinyakupt, C. Pluemпitiwiriyawej, Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers, BioMedical Engineering Online, 14 (2015) 63. Doi: 10.1186/s12938-015-0037-1.

[12] S. Arslan, E. Ozyurek, C. Gunduz-Demir, A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images, Cytometry A, 85(6) (2014) 480-490.

[13] L. Putzu, C.D. Ruberto, White blood cells identification and counting from microscopic blood image, International Journal of Medical and Health Sciences, 7(1) (2013) 20-27.

[14] K. Manickavasagam, S. Sutha, K. Kamalanand, Development of systems for classification of different plasmodium species in thin blood smear microscopic images, Journal of Advanced Microscopy Research, 9(2) (2014) 86–92.

[15] N.S. Balan, A.S. Kumar, N.S.M. Raja, V. Rajinikanth, Optimal multilevel image thresholding to improve the visibility of plasmodium sp. in blood smear images, Advances in Intelligent Systems and Computing, 397 (2016) 563-571.