Decarboxylative sulfoximination of benzoic acids enabled by photoinduced ligand-to-copper charge transfer†

Peng Xu, Wanqi Su and Tobias Ritter

Sulfoximines are synthetically important scaffolds and serve important roles in drug discovery. Currently, there is no solution to decarboxylative sulfoximination of benzoic acids; although thoroughly investigated, limited substrate scope and harsh reaction conditions still hold back traditional thermal aromatic decarboxylative functionalization. Herein, we realize the first decarboxylative sulfoximination of benzoic acids via photo-induced ligand to copper charge transfer (copper-LMCT)-enabled decarboxylative carbometalation. The transformation proceeds under mild reaction conditions, has a broad substrate scope, and can be applied to late-stage functionalization of complex small molecules.

Introduction

Coordination of substrates including alcohols, halides, azides, and alkyl carboxylates to abundant 3d metal salts like Fe, Ni, or Cu can form photoactive metal complexes. Promoted to their excited states upon irradiation can result in intramolecular ligand-to-metal charge transfer (LMCT) within the excited state complexes to generate reactive open-shell radical intermediates with reactivity hardly reachable in the ground state. Conventional metal-catalysed or -mediated thermal decarboxylative cross-coupling reactions normally require high reaction temperature and ortho-substituents. Radical aromatic decarboxylation proceeds about three orders of magnitude slower than from aliphatic carboxyl radicals, which generally leads to undesirable side reactions such as hydrogen atom abstraction for benzyol radicals. As a consequence, many aromatic decarboxylative bond forming reactions, including sulfoximation, are still out of reach for conventional reaction chemistry. Here we report the first decarboxylative sulfoximination of benzoic acids enabled by photo-induced ligand to copper charge transfer. Photoactive copper(II) carboxylates undergo a low-barrier radical CO₂ extrusion upon irradiation, with the putative formed aryl radicals subsequently captured by copper complexes to generate CuAr(III) species for C-N reductive elimination. The synthetic utility of this method was exemplified by late-stage decarboxylative sulfoximination of several complex small-molecule benzoic acids, which are abundantly available from nature.

Photonic excitation of copper(II) complexes have been known as an effective platform for generating reactive radicals for decades. Kochi first studied the addition and Csp-H abstraction reactivity of chlorine radical generated by the photo-irradiation of CuCl₂ in different organic solvents. Based on this initial finding, Wan and co-workers developed a vicinal dichlorination of alkenes catalyzed by CuCl₂ under air, and the Rovis group realized a copper catalyzed olefination of unactivated Csp-H bonds. In addition to chlorine radicals, copper-LMCT is also suitable for N- or C-centered radical generation. In 2018, Rehbein and Reiser found that copper-LMCT was effective for azide radical generation, and Wang and Xu suggested the formation of N-centered radical cations via intramolecular LMCT of quinolinyl-8-glycinate ester coordinated alkyl-Cu(III) adducts. For C-centered radicals, Gong and co-workers proposed the generation of alkyl radical intermediates via photolysis of Cu(II)-alkyl complexes. Although copper-LMCT in copper(II) carboxylate complexes was first described by DeGraff and co-workers during their research on the photolysis of copper(II)-malonate, it was not until 2021 that our group applied this copper-LMCT reactivity to synthetic applications. We realized the first aromatic decarboxylative fluorination and the decarboxylative hydroxylation of benzoic acids. Concurrently, the MacMillan group explored the copper-LMCT reactivity in aromatic decarboxylative borylation and halogenation, and achieved copper catalysis for transformations with single electron oxidants such as 1-fluoro-2,4,6-trimethylpyridinium tetrafluoroborate (NFTPT). Stoichiometric copper is still required for nucleophiles such as fluoride. Nearly at the same time, the Yoon group developed a copper-mediated oxidative decarboxylative functionalization of aliphatic carboxylic acids. Most recently, Reiser and co-
workers reported a copper-catalysed aliphatic decarboxylative
oxgenation methodology, where oxygen was applied as the
oxidant. While we and others have developed the concept of
photo-induced copper-LMCT-enabled aromatic radical
decarboxylation to achieve previously unknown reactivity, the
coupling counterparts are generally limited to halides, carboxy-
lates or boronate esters but strong coordinating NH-nucleophiles
such as NH-sulfoximines will compete with carboxylates and form
undesired copper species that can diminish the reaction effi-
cy. Though thermal aromatic decarboxylative C–N cross
couplings under high reaction temperatures (normally more
than 140 °C) have been explored by Jia, Gooßen, and Xie,
electron-deficient ortho-substituted benzoic acids are required
for efficient CO2 extrusion (Fig. 1A). Thus, a general aromatic
decarboxylative C–N cross coupling still remains elusive.

The study of sulfoximines dates back as far as 1949 when
methionine sulfoximine was first synthesized by Bentley and
Whitehead. Today, sulfoximines play a remarkable role in
synthetic chemistry and drug discovery, they have been
applied as chiral auxiliaries, chiral ligands, asymmetric
organocatalysts and building blocks. Given that copper-LMCT
relied on the coordination of carboxylates to copper species, strong coordination of NH-nucleophiles such as
NH-sulfoximines will compete with carboxylates and form
desired copper species that can diminish the reaction effi-
cency. Because of the enhanced N–H acidity, NH-sulfoximines can undergo facile deprotonation and readily coordinate with copper species to promote the formation of key copper carboxylate intermediates and, in
turn, decrease the reaction efficiency. We hypothesized that
initial deprotonation of the benzoic acids to their carboxylates, while the careful screening of additives can hinder
the formation of undesired sulfoximine-ligated copper species.

As shown in Table 1, we verified our assumption via the
decarboxylative sulfoximation of lithium 4-fluorobenzoate (1).
A series of reaction condition optimization (see ESI for more
details) reveals that purple light irradiation of a mixture of 1,
NH-sulfoximine 2, Cu(OTf)2, LiOMe and 2,6-di-tert-butylpyri-
dine (DTBP) in MeCN can afford N-arylated sulfoximine 3 in
66% yield, together with side product ester 3a in 8% yield (Table
1, entry 1). Compared with 4-fluorobenzoic acid, 4-fluo-
robenzoate salts underwent more efficient decarboxylation, and
the lithium salts gave the best yield (entries 1–3). The result is
consistent with our hypothesis that the use of benzoate salts can promote the formation of copper carboxylates and increase the
reaction efficiency. Notably, the combination of bulky DTBP
and LiOMe is crucial to obtain a high yield. Replacing DTBP/
LiOMe with other inorganic or organic bases generally led to lower yields, and a large amount of side oxygen decarboxylation product 3a was detected (entries 4–6). Strong coordinating bi- or tridentate pyridine-based ligands or bidentate PyBOX ligand were also tested, yet no better yields were observed (see ESI for more details†). We assume that weak ligation of bulky DTBP to copper might favour C–N reductive elimination over C–O reductive elimination or help to form photoactive copper(II) carboxylates species. The role of LiOMe is not very clear; we propose that the addition of LiOMe might help decrease the concentration of free sulfoximines by forming poorly soluble sulfoximine lithium salts and in turn, accelerate the formation of copper(II) carboxylate species. Low conversion of starting substrates 1 and 2 was observed when copper sources including Cu(OAc)₂ were used instead of Cu(OTf)₂ (entry 7). Interestingly, only MeCN as solvent was productive, and DCM only afforded 12% protodecarboxylation side-product fluorobenzene (entry 8).

Control experiments confirmed the essential use of 390 nm LEDs irradiation for CO₂ extrusion, and no decarboxylation was observed under thermal reaction conditions.

Subsequently, we next studied the substrate scope of the decarboxylative sulfoximation (Fig. 2). Electron-deficient (4, 5, 9, 17), electron-neutral (3, 7, 10) and electron-rich (6, 11, 16) benzoic acids underwent smooth decarboxylative sulfoximation to afford their corresponding N-arylated sulfoximines in moderate to good yields. Owing to the high oxidative potential, radical decarboxylation of electron-deficient benzoic acids is generally problematic, however, performed well under our present reaction condition. Ortho-fluoro-substituted benzoic acid (10) gave a moderate yield; yet, benzoic acids with large ortho-substituents failed to afford productive yields, possibly owing to the insufficient generation of copper(II) carboxylates. Heteroaromatic carboxylic acids such as CF₃-substituted isonicotinic acid can also perform efficient decarboxylation to afford the corresponding N-arylated sulfoximine 12. Functional groups including aryl halides (7, 20), ketone (13), heterocycles

Fig. 2 Substrate scope. Standard reaction condition: lithium benzoate (0.20 mmol, 1.0 equiv.), sulfoximine (2.5 equiv.), Cu(OTf)₂ (2.5 equiv.), LiOMe (1.0 equiv.), DTBP (2.0 equiv.), MeCN (c = 25 mM), 18 h purple LEDs irradiation, 35 °C. Reaction was performed at 1.0 mmol scale.

N-arylated sulfoximine 12.
Fig. 3 Mechanistic investigations and synthetic application. DTBP = 2,6-di-tert-butylpyridine. (A) UV–vis absorption spectra of reaction components. (B) UV–vis spectral changes observed upon photolysis of a mixture of 1 (1.0 mM), 2 (2.5 mM), Cu(OTf)$_2$ (2.5 mM), LiOMe (1.0 mM), and DTBP (2.0 mM) in MeCN under purple LEDs irradiation (0–64 min). (C) Deuterodecarboxylation. (D) Proposed reaction mechanism. (E) Decarboxylative C–N cross-coupling with sodium saccharin as the N-nucleophile.

(8, 12, 19), nitriles (9, 18) and sulfonamides (17, 19) were well tolerated. α-O or -N (11, 14, 17, 20), benzylic (15–17, 20), and tertiary (14) C–H bonds that are sensitive to HAT do not prevent efficient decarboxylative sulfoximation. In addition, strong coordinating or oxidizable functional groups like amines inhibit the transformation. The utility of this decarboxylative sulfoximation was further displayed by the late-stage decarboxylative sulfoximation of several complex small molecules (8, 14, 19, 20). NH-Sulfoximines with electron-rich (29, 30) and electron-neutral (21–24) arenes afforded good yields; however, electron-deficient NH-sulfoximines (25, 27) gave lower yields, possibly due to their weaker N-nucleophilicity. Dialkyl (31) and diaryl (32) NH-sulfoximines furnished their corresponding N-arylated sulfoximines in moderate yields. Benefiting from the mild reaction conditions, N-arylation of enantiopure NH-sulfoximines (21, 22) proceeded in good yields, and no racemization was observed. In most cases, low conversion of the starting benzoate salts accounts for the observed low yield.

Preliminary investigations to study the reaction mechanism are consistent with the mechanism shown in Fig. 3. In the UV-vis absorption spectrum of the mixture of lithium 4-fluorobenzoate (1) and Cu(OTf)$_2$, a strong absorbance (370–470 nm) attributed to the LMCT band of copper(II) carboxylates was detected (Fig. 3A). The LMCT band overlaps with the purple LED emission spectrum, consistent with the excitation of copper(II) carboxylates under the reaction conditions. The coordination of sulfoximines to copper(II) and the coordination of 2,6-di-tert-butylpyridine (DTBP) to copper(II) are in agreement with the observation of an absorbance (370–470 nm) of a mixture of sulfoximine 2 and Cu(OTf)$_2$, and a mixture of DTBP and Cu(OTf)$_2$ (Fig. 3A). All copper(II)-containing mixtures display a broad d–d transitions absorbance at 550–900 nm, which decreased monotonously upon purple LED irradiation, consistent with the reduction of Cu(II) to Cu(I) (Fig. 3B). The formation of Cu(I) was confirmed by the observation of a characteristic purple [Cu(I)(biq)$_2$]$^+$ complex when 2,2′-biquinoline (biq) was added to the irradiated reaction mixture (see ESI for more details). Additional experiments were then performed to explore the transformation of carboxylate ions upon irradiation. In radical trapping experiments, aryl carboxyl radical adduct phenyl 3-methoxybenzoate and aryl radical adduct 3-methoxy-1,1′-biphenyl were separated, which indicated the formation of aryl carboxyl and aryl radicals (see ESI for more details†). The presence of aryl carboxyl radical and aryl radical was further confirmed by 6-endo-trig intramolecular radical cyclisation (see ESI for more details† and radical deuterodecarboxylation (Fig. 3C), respectively. N-Phenyl-sulfoximine, possibly formed by radical addition of sulfoximinoyl radical to benzene, was also identified in the radical trapping experiments. We hypothesize that the sulfoximinoyl radical is formed via a nitrogen to copper charge transfer in the copper(II) sulfoximine complex, with consumption of the copper(II) species. This result is consistent with competing coordination of sulfoximines to copper(II) and may also explain the low reaction reactivity caused by the competing coordination. Based on the above mechanistic investigation, we propose a mechanism as depicted in Fig. 3D.
Photo-induced carboxylate to copper(II) charge transfer in copper(II) carboxylates I affords aryl carboxyl radical intermediates II, which then undergo low-barrier radical decarboxylation to afford aryl radicals III. Subsequent copper-assisted aryl radical capture generates arylcopper(II) intermediates IV that finally undergo C-N reductive elimination to afford N-arylated sulfonamides (Fig. 3D). Additionally, we found that other N-nucleophiles, such as ortho-sulphobenzamide, could also be coupled by the copper-LMCT approach (Fig. 3E).

Conclusions

Copper-LMCT based radical aromatic decarboxylative carbo-metallation enabled the first decarboxylative sulfonamidification of benzoic acids. The broad substrate scope and good functional group tolerance demonstrate the generality of the copper-LMCT concept in aromatic decarboxylative sulfonamidification. Conceptually, the success of this transformation demonstrates the expansion of the copper-LMCT concept for aromatic decarboxylative cross-couplings to reactions with strongly coordinating nucleophiles.

Data availability

Procedures and compound characterization are provided in the ESI.†

Author contributions

P. X. initiated the project and performed experiments and analyzed the data. W. S. performed and analyzed experiments regarding the mechanism. T. R. directed the project.

Conflicts of interest

The authors declare no competing interests.

Acknowledgements

We thank Dr Sun Xiang (MPI KOFO) for helpful discussions.

Notes and references

1 (a) J.-J. Guo, A. Hu, Y. Chen, J. Sun, H. Tang and Z. Zuo, Angew. Chem., Int. Ed., 2016, 55, 15319–15322; (b) A. Hu, J.-J. Guo, H. Pan and Z. Zuo, Science, 2018, 361, 668–672; (c) K. Zhang, L. Chang, Q. An, X. Wang and Z. Zuo, J. Am. Chem. Soc., 2019, 141, 10556–10564; (d) W. Liu, Q. Wu, M. Wang, Y. Huang and P. Hu, Org. Lett., 2021, 23, 8413–8418; (e) L. Chang, Q. An, L. Duan, K. Feng and Z. Zuo, Chem. Rev., 2022, 122, 2429–2486; (f) T. Xue, Z. Zhang and R. Zeng, Org. Lett., 2022, 24, 977–982; (g) K. Wang and R. Zeng, Org. Chem. Front., 2022, 9, 3692–3696.

2 (a) J. K. Kochi, J. Am. Chem. Soc., 1962, 84, 2121–2127; (b) P. Lian, W. Long, J. Li, Y. Zheng and X. Wan, Angew. Chem., Int. Ed., 2020, 59, 23603–23608; (c) S. M. Treacy and T. Rovis, J. Am. Chem. Soc., 2021, 143, 2729–2735; (d) B. J. Shields and A. G. Doyle, J. Am. Chem. Soc., 2016, 138, 12719–12722; (e) Y. C. Kang, S. M. Treacy and T. Rovis, ACS Catal., 2021, 11, 7442–7449; (f) Q. Yang, Y.-H. Wang, Y. Qiao, M. Gau, P. J. Carroll, P. J. Walsh and E. J. Schelter, Science, 2021, 372, 847–852; (g) Y. Jin, Q. Zhang, L. Wang, X. Wang, C. Meng and C. Duan, Green Chem., 2021, 23, 6984–6989; (h) G. Zhang, Z. Zhang and R. Zeng, Chin. J. Chem., 2021, 39, 3225–3230; (i) C.-C. Wang, G.-X. Zhang, Z.-W. Zuo, R. Zeng, D.-D. Zhai, F. Liu and Z.-J. Shi, Sci. China: Chem., 2021, 64, 1487–1492; (j) M. I. Gonzalez, D. Gygi, Y. Qin, Q. Zhu, E. J. Johnson, Y.-S. Chen and D. G. Noceira, J. Am. Chem. Soc., 2022, 144, 1464–1472; (k) S. Oh and E. E. Stache, J. Am. Chem. Soc., 2022, 144, 5745–5749; (l) M. Yamane, Y. Kanazki, H. Mitsunuma and M. Kanai, Org. Lett., 2022, 24, 1486–1490; (m) N. Xiong, Y. Dong, B. Xu, Y. Li and R. Zeng, Org. Lett., 2022, 24, 4766–4771; (n) Z.-Y. Dai, S.-Q. Zhang, X. Hong, P.-S. Wang and L.-Z. Gong, Chem. Catal., 2022, 2, 1211–1222; (o) L. Ding, K. Niu, Y. Liu and Q. Wang, ChemSusChem, 2022, 15, e202200367.

3 A. Hossain, A. Vidyasagar, C. Eichinger, C. Lankes, J. Phan, J. Rehbein and O. Reiser, Angew. Chem., Int. Ed., 2018, 57, 8288–8292.

4 (a) J. Y. Morimoto and B. A. DeGraff, J. Phys. Chem., 1972, 76, 1387–1388; (b) P. Natarajan and G. Ferraudi, Inorg. Chem., 1981, 20, 3708–3712; (c) Z. Li, X. Wang, S. Xia and J. Jin, Org. Lett., 2019, 21, 4259–4265; (d) V. R. Yatham, P. Bellotti and B. König, Chem. Commun., 2019, 55, 3489–3492; (e) Q. Y. Li, S. N. Gockel, G. A. Lutovsky, K. S. DeGlopper, N. J. Baldwin, M. W. Bundesmann, J. W. Tucker, S. W. Bagley and T. P. Yoon, Nat. Chem., 2022, 14, 94–99; (f) J.-L. Tu, H. Gao, M. Luo, L. Zhao, C. Yang, L. Guo and W. Xia, Green Chem., 2022, 24, 5553–5558; (g) Y. Zhang, J. Qian, M. Wang, Y. Huang and P. Hu, Org. Lett., 2022, 24, 5972–5976; (h) S. Singh, N. Dagar and S. R. Roy, Chem. Commun., 2022, 58, 3831–3834; (i) A. Reichle, H. Sterzel, P. Kreitmeier, R. Fayad, F. N. Castellano, J. Rehbein and O. Reiser, Chem. Commun., 2022, 58, 4456–4459.

5 (a) Y. Abderrazak, A. Bhattacharyya and O. Reiser, Angew. Chem., Int. Ed., 2021, 60, 21100–21115; (f) F. Juliá, ChemCatChem, 2022, 14, e202200916.

6 (a) R. Shang and L. Liu, Sci. China: Chem., 2011, 54, 1670–1687; (b) N. Rodriguez and L. J. Gooszen, Chem. Soc. Rev., 2011, 40, 5030–5048; (c) J. Cornella and I. Larrosa, Chemistry, 2012, 44, 653–676; (d) Y. Wei, P. Hu, M. Zhang and W. Su, Chem. Rev., 2017, 117, 8864–8907; (e) T. Patra and D. Maiti, Chem.– Eur. J., 2017, 23, 7382–7401; (f) J. Schwarz and B. König, Green Chem., 2018, 20, 323–361; (g) A. Varenikov, E. Shapiro and M. Gandelman, Chem. Rev., 2021, 121, 412–484.

7 J. Chateauneuf, J. Luszytk and K. U. Ingold, J. Am. Chem. Soc., 1988, 110, 2886–2893.

8 J. W. Hilborn and J. A. Pincock, J. Am. Chem. Soc., 1991, 113, 2683–2686.

9 R. Qi, C. Wang, Y. Huo, H. Chai, H. Wang, Z. Ma, L. Liu, R. Wang and Z. Xu, J. Am. Chem. Soc., 2021, 143, 12777–12783.
10 Y. Li, K. Zhou, Z. Wen, S. Cao, X. Shen, M. Lei and L. Gong, J. Am. Chem. Soc., 2018, 140, 15850–15858.

11 (a) P. Xu, P. López-Rojas and T. Ritter, J. Am. Chem. Soc., 2021, 143, 5349–5354; (b) W. Su, P. Xu and T. Ritter, Angew. Chem., Int. Ed., 2021, 60, 24012–24017.

12 (a) N. W. Dow, P. S. Pedersen, T. Q. Chen, D. C. Blakemore, A.-M. Dechert-Schmitt, T. Knauber and D. W. C. MacMillan, J. Am. Chem. Soc., 2022, 144, 6163–6172; (b) T. Q. Chen, P. S. Pedersen, N. W. Dow, R. Fayad, C. E. Hauke, M. C. Rosko, E. O. Danilov, D. C. Blakemore, A.-M. Dechert-Schmitt, T. Knauber, F. N. Castellano and D. W. C. MacMillan, J. Am. Chem. Soc., 2022, 144, 8296–8305.

13 (a) W.-J. Sheng, Q. Ye, W.-B. Yu, R.-R. Liu, M. Xu, J.-R. Gao and Y.-X. Jia, Tetrahedron Lett., 2015, 56, 599–601; (b) M. P. Drapeau, J. Bahri, D. Lichtle and L. J. Goossen, Angew. Chem., Int. Ed., 2019, 58, 892–896; (c) L. Shen, J. Zhang and J. Xie, Chin. J. Org. Chem., 2019, 39, 1153–1159.

14 H. R. Bentley, E. E. McDermott, J. Pace, J. K. Whitehead and T. Moran, Nature, 1949, 163, 675–676.

15 (a) M. Frings, I. Thomé and C. Bolm, Beilstein J. Org. Chem., 2012, 8, 1443–1451; (b) S. Otocka, M. Kwiatkowska, L. Madalinańska and P. Kielbasiński, Chem. Rev., 2017, 117, 4147–4181; (c) W. Zheng, X. Chen, F. Chen, Z. He and Q. Zeng, Chem. Rec., 2021, 21, 396–416; (d) M. Andresini, A. Tota, L. Degennaro, J. A. Bull and R. Luisi, Chem.–Eur. J., 2021, 27, 17293–17321; (e) D. Zeng, Y. Ma, W.-P. Deng, M. Wang and X. Jiang, Angew. Chem., Int. Ed., 2022, 61, e202207100; (f) D. Zeng, Y. Ma, W.-P. Deng, M. Wang and X. Jiang, Nat. Synth., 2022, 1, 455–463.

16 (a) M. Frings, C. Bolm, A. Blum and C. Gnamm, Eur. J. Med. Chem., 2017, 126, 225–245; (b) P. Mäder and L. Kattner, J. Med. Chem., 2020, 63, 14243–14275; (c) Y. Han, K. Xing, J. Zhang, T. Tong, Y. Shi, H. Cao, H. Yu, Y. Zhang, D. Liu and L. Zhao, Eur. J. Med. Chem., 2021, 209, 112885–112912.

17 (a) H.-J. Gais, H. Mueller, J. Bund, M. Scommoda, J. Brandt and G. Raabe, J. Am. Chem. Soc., 1995, 117, 2453–2466; (b) M. Nagatomo, S. Yoshioka and M. Inoue, Chem.–Eur. J., 2015, 10, 120–123; (c) G. Proietti, J. Kuzmin, A. Z. Temerdashev and P. Dinár, J. Org. Chem., 2021, 86, 17119–17128.

18 (a) C. R. Johnson and C. J. Stark Jr., Tetrahedron Lett., 1979, 20, 4713–4716; (b) C. Bolm and O. Simić, J. Am. Chem. Soc., 2001, 123, 3830–3831; (c) M. Langner and C. Bolm, Angew. Chem., Int. Ed., 2004, 43, 5984–5987.

19 M. Frings, I. Thomé and C. Bolm, Beilstein J. Org. Chem., 2012, 8, 1443–1451.

20 (a) T. Zhou, P.-F. Qian, J.-Y. Li, Y.-B. Zhou, H.-C. Li, H.-Y. Chen and B.-F. Shi, J. Am. Chem. Soc., 2021, 143, 6810–6816; (b) Y.-F. Zhang, X.-Y. Dong, J.-T. Cheng, N.-Y. Yang, L.-L. Wang, F.-L. Wang, C. Luan, J. Liu, Z.-L. Li, Q.-S. Gu and X.-Y. Liu, J. Am. Chem. Soc., 2021, 143, 15413–15419.

21 (a) C. Bolm and J. P. Hildebrand, Tetrahedron Lett., 1998, 39, 5731–5734; (b) C. Bolm and J. P. Hildebrand, J. Org. Chem., 2000, 65, 169–175; (c) Y. Cho, P. Rémy, J. Jansson, C. Moessner and C. Bolm, Org. Lett., 2004, 6, 3293–3296; (d) J. Sedelmeier and C. Bolm, J. Org. Chem., 2005, 70, 6904–6906; (e) A. Correa and C. Bolm, Adv. Synth. Catal., 2008, 350, 391–394; (f) A. Wimmer and B. König, Org. Lett., 2019, 21, 2740–2744; (g) D. Liu, Z.-R. Liu, C. Ma, K.-J. Jiao, B. Sun, L. Wei, J. Lefranc, S. Herbert and T.-S. Mei, Angew. Chem., Int. Ed., 2021, 60, 9444–9449; (h) C. Zhu, A. P. Kale, H. Yue and M. Rupé, JACS Au, 2021, 1, 1057–1065.

22 (a) C. Moessner and C. Bolm, Org. Lett., 2005, 7, 2667–2669; (b) C. Wang, H. Zhang, L. A. Wells, T. Liu, T. Meng, Q. Liu, P. J. Walsh, M. C. Kozłowski and T. Jia, Nat. Commun., 2021, 12, 932.

23 J. Kim, J. Ok, S. Kim, W. Choi and P. H. Lee, Org. Lett., 2014, 16, 4602–4605.

24 H. Zhu, F. Teng, C. Pan, J. Cheng and J.-T. Yu, Tetrahedron Lett., 2016, 57, 2372–2374.

25 Y. Jiang, Y. You, W. Dong, Z. Peng, Y. Zhang and D. An, J. Org. Chem., 2017, 82, 5810–5818.

26 W. Dong, C. Liu, X. Ma, Y. Zhang, Z. Peng, D. Xie and D. An, Tetrahedron, 2019, 75, 3886–3893.

27 (a) L. Candish, M. Freitag, T. Gensch and F. Glorius, Chem. Sci., 2017, 8, 3618–3622; (b) S. Kubosaki, H. Takeuchi, Y. Iwata, Y. Tanaka, K. Osaka, M. Yamawaki, T. Morita and Y. Yoshimi, J. Org. Chem., 2020, 85, 5362–5369.

28 R. Cao, Q. Shi, D. Sun, M. Hong, W. Bi and Y. Zhao, Inorg. Chem., 2002, 41, 6161–6168.

29 (a) H. Kunkely and A. Vogler, Inorg. Chim. Acta, 2004, 357, 888–890; (b) N. Ichiishi, A. J. Canty, B. F. Yates and M. S. Sanford, Organometallics, 2014, 33, 5525–5534.