Aims: Postoperative shivering is unpleasant and annoying for the patient, occurring in up to 65% of cases undergoing general anesthesia. Various mechanisms were suggested for postoperative shivering. Shivering after anesthesia can cause complications, such as cardiovascular conditions, bleeding, and infection. This study compared the effects of dexamethasone, pethidine, and ketamine on the prevention of shivering after general anesthesia.

Methods & Materials: In total, 164 patients with ASA classes one and two in the age range of 20-60 years under general anesthesia with orthopedic surgery, urology, and general surgery were included in the study. This study was a double-blind, randomized, placebo-controlled study. The study patients were divided into 4 groups of 41 subjects. After the induction of anesthesia and before surgery, in the first group, dexamethasone 0.15 mg/kg body weight, in the second group, ketamine 0.5 mg/kg, in the third group, pethidine 0.5 mg/kg, and in the fourth group, normal saline 0.9% were all given in 2 cc volume. After surgery, the examined patients were monitored for visible shivering by the researcher. The obtained data were analyzed using SPSS.

Findings: The frequency and severity of shivering were lower in the dexamethasone (P=0.009), pethidine (P=0.004), and the ketamine (P=0.000) groups, compared to the control group. Besides, there was a significant difference between each of these 3 groups and the controls. The frequency and severity of shivering in the dexamethasone group were not significantly different from those of the pethidine group (P=0.565). The frequency and severity of shivering in the dexamethasone and ketamine groups were not statistically significant (P=0.071). The frequency and severity of shivering in the pethidine group with ketamine were not statistically significant (P=0.063).

Conclusion: The obtained results indicated that dexamethasone, pethidine, and ketamine were effective in preventing postoperative shivering. There was no difference between these medications in the prevention of postoperative shivering.
1. Introduction

Postoperative shivering is unpleasant and annoying for the patient and occurs in up to 65% of patients undergoing general anesthesia [1, 2]. The causes of chills include heat loss, decreased sympathetic tone, and systemic released foreign febrile substances [1, 3]. Various mechanisms were suggested for postoperative shivering. Postoperative shivering is usually but not always associated with hypothermia; thus, a mechanism of postoperative shivering [4]. Surgery-Induced hypothermia is caused by the dysfunction of the thermoregulatory system due to anesthesia medications and the patient’s contact with the cold environment of the operating room [5]. However, postoperative shivering cannot be prevented by warming during and after surgery [5, 6]. Another proposed mechanism is based on the observation that the brain and spinal cord do not concurrently recover from general anesthesia. The faster return of spinal functions leads to the emergence of non-repressed reflexes that appear as clonic activities [4].

Other suggested mechanisms include the following: receptor mechanisms, including a- the activity of kappa receptors; the activity of NMDA receptor c; the activity of 5-hydroxytryptamine receptor [4]. Factors, such as uncontrolled spinal reflexes, pain, decreased sympathetic system activity, adrenal gland inhibition, the release of febrile mediators during surgery, the use of inhaled anesthetics, drug deprivation, blood loss, and the duration of surgery may be involved in the development of thermoregulatory shivering in response to hypothermia [5]. Post-anesthesia shivering can cause cardiovascular complications, bleeding, and infection [5]. Shivering increases oxygen consumption (100% increase in oxygen consumption), elevates CO₂ production and enhances sympathetic tone [4]. Postoperative shivering can cause complications, such as discomfort in the patient, as well as increased cardiac output, blood pressure, intracranial pressure, intracranial pressure, minute ventilation, and pain at the operation site by skin incision [4].

There exist pharmacological and non-pharmacological methods to reduce chills. Non-pharmacological methods include preventing hypothermia with warm blankets and inhaling warm, moist oxygen. Various drugs, such as meperidine, clonidine, or ketamine are used to control postoperative shivering [5]. The medication method mainly has the effect of reducing the chill temperature threshold [1]. Intravenous pethidine is among the most common drugs used to treat shivering after anesthesia [4]. Using pethidine has adverse effects for the patient; the prevention of these adverse effects becomes more important immediately after anesthesia. Impaired breathing, nausea and vomiting, drowsiness and prolonged recovery time and confusion, especially in the elderly, urinary retention, pruritus, and constipation, (each of which alone) can prolong the length of hospital stay and impose additional costs on the patient and the community are among these complications [4]. Dexamethasone can reduce the difference between core body temperature and skin temperature through its anti-inflammatory function and the inhibition of the release of vasoconstrictors and febrile cytokines [7]. Modulating immune responses by dexamethasone can reduce chills [8]. Ketamine is an anesthetic drug and a non-competitive NMDA receptor antagonist; in doses below anesthia, it has the property of suppressing pain. Besides, in several stages, it regulates the temperature and prevents the occurrence of chills. The NMDA receptor modulates noradrenergic and serotonergic neurons in the locus coeruleus [1]. Therefore, considering the anti-tremor (treatment) effects of all 3 drugs, this study aimed to compare the effects of preoperative dexamethasone, ketamine, and pethidine injections on the prevention of postoperative shivering.

2. Materials and Methods

After the approval of the present study by the University Research Council and obtaining the necessary permissions and the consent of patient candidates for orthopedic surgery, urology, and general surgery referring to 15 Khor-dad Hospital and Allameh Behlool Gonabadi Hospital, 164 patients with ASA class one and two in the age range of 20-60 years were entered into the study. The inclusion criteria were the range of 20-60 years, anesthesia classes 1 and 2, willingness to participate in the intervention and providing informed consent forms, no heart disease, no lung disease, no thyroid disorders, no allergy to drugs, no Parkinson’s disease, the lack of autonomy, no Raynaud’s syndrome, no alcohol abuse, no use of vasodilators, and no neuropsychological disorders. The exclusion criteria were transfusion during surgery, malignant hyperthermia, drop in central temperature to <36.5°C and increase to >38°C, and any clinical conditions that prevented the patient from being evaluated after surgery.

The study patients were then divided into 4 groups of ketamine, pethidine, dexamethasone, and placebo. The first group received dexamethasone at a dose of 0.15 mg per kg body weight in a volume of 2 ccs; the second group received ketamine at a dose of 0.5 mg per kg and a volume of 2 ccs; the third group received pethidine at a dose of 0.5 mg per kg and volume 2 cc, and the fourth group received normal saline with a volume of 2 ccs after induction of anes-
The collected data were analyzed in SPSS v. 22. The Kolmogorov-Smirnov test was used to determine the normal distribution of the data. P<0.05 was considered significant.
injected in the first group and placebo in the control group immediately after inducing anesthesia and before incision. The incidence of postoperative shivering equaled 12% in the dexamethasone group and 31% in the control group. Dexamethasone was found to reduce postoperative shivering \((P<0.001) \) [7]. In our study, dexamethasone also reduced the incidence and severity of postoperative shivering.

Bahman Hasannasab et al. explored the prophylactic effects of doxapram, ketamine, and meperidine on postoperative shivering in 120 patients aged 20 to 45 years under general anesthesia. The first group received meperidine 20 mg, the second group, ketamine 0.25 mg/kg, and the third group received doxapram 0.25 mg/kg intravenously immediately before wound closure. In the meperidine group, one (2.5%) patient, in the ketamine group, 3 (7.5%) subjects, and the doxapram group, 4 (10%) individuals developed postoperative shivering. This study highlighted that meperidine, ketamine, and doxapram were equally effective in preventing postoperative shivering. In our study, ketamine also reduced the prevalence and severity of postoperative shivering, i.e., consistent with this study.

Ishwar Bhukal et al. examined the effect of pethidine on preventing postoperative shivering in 60 women aged 25 to 35 years with laparoscopic gynecological surgery. In the first group, pethidine dose was 0.3 mg/kg, in the second group, pethidine equaled 0.5 mg/kg, and in the third group, normal saline was intravenously injected just before the induction of anesthesia. In the first group, 6 (30%), in the second group, 3 (15%), and the third group, 9 (45%) patients developed postoperative shivering. This study reflected that a low dose of pethidine does not insignificantly impact the prevention of postoperative shivering [10]. In our study, pethidine was used at a dose of 0.5 mg/kg, which reduced the incidence of postoperative shivering.

Masood Entezarías et al. explored the effects of dexamethasone and pethidine on the prevention of postoperative shivering among 120 general surgery patients. The first group received normal saline 10 ccs, the second group dexamethasone 0.1 mg/kg with a volume of 10 ccs, and the third group received pethidine 25 mg with a volume of 10 ccs after the induction of anesthesia. In the placebo group, 19 (47.5%) patients, in the dexamethasone group 4 (10%) patients, and the pethidine group 15 (37.5%) subjects pre-

Table 1. Comparing the frequency of age in different study groups

Groups	Ages	Dexamethasone (76% male & 24% female)	Pethidine (27% male & 73% female)	Ketamine (73% male & 27% female)	Placebo (57% male & 43% female)
21-30	44 (18)	34 (14)	30 (13)	50 (20)	
31-40	36 (15)	23 (9)	40 (16)	7 (3)	
41-50	10 (4)	27 (11)	20 (8)	33 (14)	
51-60	10 (4)	16 (7)	27 (4)	10 (4)	

Table 2. Comparing the frequency of shivering in different study groups

Group	%				
Dexamethasone	57	30	10	3	0
Pethidine	57	30	3	10	0
Ketamine	83	7	7	3	0
Placebo	1	33	27	13	10
sented postoperative shivering. The difference between dexamethasone and placebo groups as well as between pethidine and placebo groups was significant (P=0.001).

This study suggested that pethidine and dexamethasone were effective in preventing postoperative shivering; however, dexamethasone was more effective in preventing postoperative shivering than pethidine. However, our study data revealed that pethidine at a dose of 0.5 mg/kg and dexamethasone at a dose of 0.15 mg/kg were equally effective in reducing the incidence of postoperative shivering. This was due to the dose we used in the study.

Vida Ayatollahi et al. compared the prophylactic use of pethidine and ketamine to prevent post-anesthesia shivering in 120 patients aged 20 to 50 years undergoing general anesthesia for sinus endoscopic surgery. The first group received meperidine 0.4 mg/kg, the second group ketamine 0.3 mg/kg, the third group ketamine 0.5 mg/kg, and the fourth group meperidine normal saline 20 minutes before the end of surgery. In the first group (pethidine) no patient encountered shivering after anesthesia; in the second group (ketamine 0.3) 3 subjects, in the third group (ketamine 0.5) one individual, and the placebo group, 9 patients generated shiver after anesthesia. The difference between the first 3 groups and the normal saline group was significant; however, the difference between the first 3 groups was not significant. The level of hallucination was lower in the ketamine group with a lower dose than in the ketamine group with a higher dose [11]. These results were consistent with those of the present study.

Shakya et al. compared the prophylactic effects of ketamine and ondansetron on chills after spinal anesthesia among 120 lower abdominal surgery patients. In the first group, ketamine 0.25 mg/kg, in the second group ondansetron 4 mg, and in the third group normal saline was provided after spinal anesthesia. In the normal saline group 17(42.50%), in the ondansetron group 4(10%), and the ketamine group only one (2.5%) patients manifested postoperative shivering. This study indicated that epitestosterone and low doses of ketamine reduce chills without spinal side effects after spinal anesthesia [12].

Ayatollahi et al. explored the application of triangular sequence analysis to evaluate the efficacy of low-dose dexamethasone in reducing postoperative shivering performed on 140 patients in elective urology, gynecology, orthopedics, and general surgery. In the case group, 70 subjects received a low dose of dexamethasone 0.15 mg/kg and the second group consisted of a placebo group of 70 individuals. Clinically, it was observed that using low-dose dexamethasone significantly reduced the incidence of postoperative shivering, compared to placebo (11.4% vs. 28.6%) [13]. The results were consistent with those of our study.

Mahouri et al. examined the effects of low-dose intravenous ketamine on the prevention of shivering after inguinal hernia repair in 60 patients with ASA I and II candidates for inguinal hernia surgery. The study patients were randomly assigned to receive intravenous ketamine 0.5 mg/kg or a normal volume of saline 5 minutes before surgery. The frequency of shivering in patients at the beginning of recovery and 10 and 20 minutes after the surgery was the same in both research groups; however, the severity of shivering was significantly lower in the test group, compared to the control group (P=0.007) [14]. However, in our study, the frequency and severity of chills were significantly reduced with this dose of ketamine.

In a comparative study by Jebel Ameli et al., the prophylactic effect of intravenous injection of dexamethasone and pethidine on postoperative elective cesarean section shivering under spinal anesthesia was explored in 99 pregnant women who were pregnant for the first time and were in ASA class one and two. The study participants were randomly assigned to one of three groups of 33 individuals based on the type of shivering medication: group D: 0.15 mg/kg dexamethasone + normal saline up to 4cc, group P: 0.5 mg/kg pethidine + normal saline up to 4 cc’s, group C (Control group): normal saline up to 4 cc’s after umbilical cord clamping and drugs were injected intravenously within 10-15 seconds. The incidence and severity of postoperative shivering were lower in the groups receiving pethidine and dexamethasone, compared to the control group, with a mean score of shivering of 0.03, 0.15, and -0.27, respectively; the difference between them was significant (P=0.005) [15].

Seyed Morteza Heidari et al. used pethidine, ketamine, and dexamethasone half an hour before the end of surgery to prevent chills. They concluded that pethidine was more effective than the others. The reason for the discrepancy with our study is the time of use of these drugs. Dexamethasone presents a delayed onset of action; thus, it is recommended to be used at the beginning of surgery [16].

5. Conclusion

The current study data indicated that dexamethasone, pethidine, and ketamine were effective in preventing postoperative shivering.
Ethical Considerations

Compliance with ethical guidelines

This research was approved by the ethics committee of the Gonabad University of Medical Sciences (Code: IRCT2017012432099N3) and registered in the Regional Research Ethics Council of Gonabad University of Medical Sciences (Code: IR.GMU.REC.1395.35).

Funding

This article was supported by the Research Council of Gonabad University of Medical Sciences.

Authors’ contributions

All authors equally contributed to preparing this article.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

We would like to thank the Staff, Officials, and Doctors working in the operating room of 15 Khordad Baydokht Hospital in Gonabad and Allameh Behlool Gonabadi who helped us.
مقدمه
لرز بعد از عمل برای بیمار ناخوشایند و آزاردهنده است و در بیمارانی که بیهوشی عمومی می‌شود تا 85 درصد موارد رخ می‌دهد. 65 درصد از بیمارانی که بیهوشی عمومی می‌شوند، لرز بعد از عمل برای بیمار ناخوشایند و آزاردهنده است و در بیمارانی که بیهوشی عمومی می‌شود تا 85 درصد موارد رخ می‌دهد.

لرز بعد از عمل برای بیمار ناخوشایند و آزاردهنده است و در بیمارانی که بیهوشی عمومی می‌شود تا 85 درصد موارد رخ می‌دهد. لرز بعد از عمل برای بیمار ناخوشایند و آزاردهنده است و در بیمارانی که بیهوشی عمومی می‌شود تا 85 درصد موارد رخ می‌دهد.

لرز بعد از عمل برای بیمار ناخوشایند و آزاردهنده است و در بیمارانی که بیهوشی عمومی می‌شود تا 85 درصد موارد رخ می‌دهد. لرز بعد از عمل برای بیمار ناخوشایند و آزاردهنده است و در بیمارانی که بیهوشی عمومی می‌شود تا 85 درصد موارد رخ می‌دهد. لرز بعد از عمل برای بیمار ناخوشایند و آزاردهنده است و در بیمارانی که بیهوشی عمومی می‌شود تا 85 درصد موارد رخ می‌دهد.
مطالب و روش‌ها

پس از تضعیف مطالعه در شورای پژوهشی دانشگاه تغییر درجه حرارت بیمار گرفته شد. در اتاق ریکاوری درجه حرارت مرکزی بیمار از روی پرده تمپان قبل نئوستیگمین و آتروپین، وقتی بیمار تلاش تنفسی کافی و مناسب سرم رینگر انفوزیون شد. مانیتورینگ ورود بیمار به اتاق عمل و فراهم نمودن خط وریدی محیط مناسب و شخص ارزیابی نسبت به گروه بیمار بی‌اطلاع بودند. بعد از برای تسهیل دو‌سوکور بودن مطالعه، متخصص بیهوشی که در سیسه بعد از القای بیهوشی و قبل از شروع عمل جراحی، سیسه و گروه چهارم سالین میلی گرم بر 5/40 ml اکلر، استفاده نکرد از وازودیلاتور و مبتلا نبودن به اختلالات نیوپروپوکسیاکس، میکروپتیژیم عروج از مطالعه وارد شدند. در اتاق ریکاوری پرده تمپان کنار بیمار قرار گرفت و افراد کنترل کردند. در مطالعه، نیودمیا، سالسکوکس، کمپریدین، کلونیدین یا کتامین برای کنترل لرز بعد از عمل به کار خورده بودند. افزایش به بیش از 5/20 mg/kg مپریدین، کلونیدین یا کتامین برای کنترل لرز بعد از عمل می‌تواند سبب عواملی از قبیل ایجاد تأثیرات ضرری در بیماران، افزایش بیانونی کتامین کنار خون، افزایش فشار داخل خمیر، افزایش شکستگی خون‌ریزی نهایی و افزایش هزینه درمانی باشد.

1. Kappa
بیماران پوشیده بهدیه و اکسیژن را با ماسک ساده صورت دریافت می‌کردند. درجه بندی (گرید) لرز بعد از عمل به این شکل بود:

گرید	توصیف
0	بدون لرز
1	فاسیکولاسیون خفیف در صورت و گردن
2	فعالیت عضلانی مشاهده شده در یک گروه عضلات
3	فعالیت عضلانی مشاهده شده در بیش از یک گروه عضلات
4	فعالیت عضلانی شدید که همه بدن را درگیر می‌کرد

در هر بیمار، اسکور لرز بعد از عمل به اندازه میلی‌گرم پتیدین درمان شد. درد بعد از عمل با معیار بینایی درد 3 با مورفین 4 نمره دهی شد و درد مساوی یا بیشتر از 10 تا 0 بین میلی‌گرم درمان شد.

عوارض جانبی از قبیل تهوع و استفراغ، توهم، افت فشار خون، برادیکاردی یا تاکیکاردی در طی بیهوشی و برای یک ساعت در اتاق ریکاوری ثبت شد.

تجزیه و تحلیل آماری اطلاعات جمع‌آوری شده با کمک نرم‌افزار Spss انجام شد. برای تعیین وضعیت تبعیت داده‌ها از نسخه 22 این نرم‌افزار استفاده شد و مقادیر معنی‌دار در نظر گرفته شد.

بیماران مطالعه شد و هیچ بیماری از مطالعه خارج نشد. تعداد 164 بیمار در این مطالعه بین جنس و لرز رابطه معنی‌داری وجود نداشت (P=0.463). فقط در گروه پلاسیبو لرز شدید گرید P=0.009 و در گروه پتیدین در گروه دگزامتازون کمتر از گروه کنترل بود و اختلاف آماری معنی‌داری بین دو گروه وجود داشت. بنابراین دگزامتازون در پیشگیری از لرز مؤثر است. همچنین در گروه پتیدین فراوانی و شدت بروز لرز در گروه دگزامتازون کمتر از گروه کنترل بود و اختلاف آماری معنی‌داری بین دو گروه وجود داشت (P=0.004) و در گروه دگزامتازون با گروه پتیدین اختلاف آماری معنی‌داری نداشت (P=0.565).

جوله ۱	مقایسه فراوانی درصد بروز لرز در گروه‌های گوناگون				
گروه	گرید 0	گرید 1	گرید 2	گرید 3	گرید 4
دگزامتازون	47	30	27	13	7
پتیدین	47	30	27	13	7
پلاسیبو	27	13	45	10	10

جدول ۱ نشان می‌دهد که لرز بعد از عمل با اندازه میلی‌گرم پتیدین درمان شد و در گروه دگزامتازون، پتیدین، کتامین و پلاسیبو به ترتیب با پتیدین، کتامین و پلاسیبو درمان شد. در این مطالعه به ۲۲۰ مورد از مطالعه گروه دگزامتازون، پتیدین و کتامین در مقایسه با پلاسیبو در پیشگیری از لرز مؤثر بودند.

تحلیل آماری

تحلیل آماری تابع

مقایسه فراوانی رده‌های سنی در گروه‌های گوناگون

گروه	۲۰-۳۰	۳۱-۴۰	۴۱-۵۰
مذکر	۴۳	۱۰	۷
کمیته	۵۷	۳۰	۳۰
مشاركة	۷۰	۲۷	۲۷

مقایسه فراوانی شدت بروز لرز در گروه‌های گوناگون

گروه	گرید 0	گرید 1	گرید 2	گرید 3	گرید 4
دگزامتازون	۵۷	۳۰	۲۷	۱۳	۷
پتیدین	۵۷	۳۰	۲۷	۱۳	۷
پلاسیبو	۲۷	۱۳	۴۵	۱۰	۱۰
درصد لرز بعد از عمل داشتند. این مطالعه نشان داد که در گروه کتامین، فقط یک درصد، در گروه اندازه کمتر و در گروه سوم نرمال سالین را بعد از انجام بی‌حسی نخاعی دریافت می‌کردند. این نتایج با دوز بالاتر میزان هالوسیناسیون کمتر بود.

در مطالعه انتظاری اصل و همکارش درباره اثر دگزامتازون و استفاده شد که باعث کاهش دوز میزان شیوع و شدت لرز بعد از عمل مؤثرند. این به دلیل دوزی بود که ما در مطالعه به طور برابری در کاهش توصیه می‌شود. اما اثر دگزامتازون در پیشگیری از لرز بعد از عمل بهتر از پتدین و دگزامتازون در پیشگیری از لرز بعد از عمل مشاهده شد. تفاوت بین گروه دگزامتازون با پلاسمابو درصد، در گروه دوم کتامین از پتدین و کتامین برای پیشگیری از لرز بعد از بی‌حسی بود. در گروه اول مپریدین، کتامین و دوکساپرام به طور برابر در جلوگیری از لرز و دچاری از عمل مؤثر بودند. این باعث کاهش شیوع و شدت لرز بعد از عمل می‌شد که مشخص شد دگزامتازون باعث کاهش لرز بعد از عمل می‌شود. در مطالعه ما هم کتامین باعث کاهش لرز بعد از عمل مؤثر بود اما مطالعه ما نشان داد که پتدین با دوز بالاتر میزان هالوسیناسیون کمتر بود.

در مطالعه حسن نسب و همکاران درباره اثر پتدین بر پیشگیری از لرز بعد از عمل که روی ۲۰۰ پیمان جراحی اجتناب انجام شد در بهر گروه فورسمل/‌پالس‌کارگری مارک (پتدین) در صورت اثرات ویژه ای از پتدین و کتامین ارائه شد، در گروه کنترل نرمال سالین بود. در گروه اول مپریدین، کتامین و دوکساپرام به طور برابر در جلوگیری از لرز و دچاری از عمل مؤثر بودند. این باعث کاهش شیوع و شدت لرز بعد از عمل می‌شد که مشخص شد دگزامتازون باعث کاهش لرز بعد از عمل می‌شود. در مطالعه ما هم کتامین باعث کاهش لرز بعد از عمل مؤثر بود اما مطالعه ما نشان داد که پتدین با دوز بالاتر میزان هالوسیناسیون کمتر بود.

در مطالعه خسروی و همکاران درباره اثر پتدین بر پیشگیری از لرز بعد از عمل که روی ۲۰۰ پیمان جراحی اجتناب انجام شد در بهر گروه فورسمل/‌پالس‌کارگری مارک (پتدین) در صورت اثرات ویژه ای از پتدین و کتامین ارائه شد، در گروه کنترل نرمال سالین بود. در گروه اول مپریدین، کتامین و دوکساپرام به طور برابر در جلوگیری از لرز و دچاری از عمل مؤثر بودند. این باعث کاهش شیوع و شدت لرز بعد از عمل می‌شد که مشخص شد دگزامتازون باعث کاهش لرز بعد از عمل می‌شود. در مطالعه ما هم کتامین باعث کاهش لرز بعد از عمل مؤثر بود اما مطالعه ما نشان داد که پتدین با دوز بالاتر میزان هالوسیناسیون کمتر بود.

در مطالعه مومسی و همکاران درباره تأکید پترونیون و مورالسین در ۲۰۰ پیمان بی‌حسی اجتناب انجام شد در بهر گروه فورسمل/‌پالس‌کارگری مارک (پتدین) در صورت اثرات ویژه ای از پتدین و کتامین ارائه شد، در گروه کنترل نرمال سالین بود. در گروه اول مپریدین، کتامین و دوکساپرام به طور برابر در جلوگیری از لرز و دچاری از عمل مؤثر بودند. این باعث کاهش شیوع و شدت لرز بعد از عمل می‌شد که مشخص شد دگزامتازون باعث کاهش لرز بعد از عمل می‌شود. در مطالعه ما هم کتامین باعث کاهش لرز بعد از عمل مؤثر بود اما مطالعه ما نشان داد که پتدین با دوز بالاتر میزان هالوسیناسیون کمتر بود.

در مطالعه شکیبا و همکاران درباره تأکید پترونیون و مورالسین در ۲۰۰ پیمان بی‌حسی اجتناب انجام شد در بهر گروه فورسمل/‌پالس‌کارگری مارک (پتدین) در صورت اثرات ویژه ای از پتدین و کتامین ارائه شد، در گروه کنترل نرمال سالین بود. در گروه اول مپریدین، کتامین و دوکساپرام به طور برابر در جلوگیری از لرز و دچاری از عمل مؤثر بودند. این باعث کاهش شیوع و شدت لرز بعد از عمل می‌شد که مشخص شد دگزامتازون باعث کاهش لرز بعد از عمل می‌شود. در مطالعه ما هم کتامین باعث کاهش لرز بعد از عمل مؤثر بود اما مطالعه ما نشان داد که پتدین با دوز بالاتر میزان هالوسیناسیون کمتر بود.
در مطالعه آینده‌الزمانی و همکاران، برای کاهش تقلیل دندان‌های ملایمی در زیر‌ترازی و کاهش کروز کم‌دوزی در انسان از بیماری روش محاسبه گردیده است. با استفاده از کردهای پوزشی و کاهش دوز کردهایی که در آزمایش‌های خود، ستاره‌های بی‌بدوخت و گزارش‌های کاهش دوز دارد. در مطالعه آیت اللهی و همکاران درباره کاربرد روش تحلیل دنباله‌ای مثلثی در ارزش‌یابی کارایی دوز کم دگزامتازون در کاهش بیمار در جراحی‌های انتخابی اورولوژی، 1400 لرز بعد از عمل که روی ژنیکولوژی، ارتوپدی و جراحی عمومی انجام شد، در گروه اول برای 10-15 میلی‌گرم و گروه دوم شامل 70 نفر درمان دیگر کرده بودند. تا نورالی بیماران، در کنار استمناتور از میزان دوز پوزشی نسبت به داروهای موجود، 20% بر اساس میزان استفاده از میزان دوز دگزامتازون نسبت به داروها بروز لرز بعد از عمل را به طور معنی‌داری کاهش می‌یافت.

نتایج این مطالعه با مطالعه ما همخوانی دارد.

نتایج این مطالعه نشان داد که در مطالعه‌های دگزامتازون و پتیدین:

- در مطالعه جبل آملی و همکارش درباره بررسی مقایسه‌ای تأثیر پروفیلاکسی تزریق وریدی دگزامتازون و پتیدین بر لرز بعد از عمل ترمیم فتق مغبنی که روی یک و دو انجام شد، به شکل تصادفی ASA حاملگی اول و در کلاس ASA میلی‌گرم بر کیلوگرم + دوز پتیدین به طور معنی‌داری کاهش پیدا می‌کرد.
- در مطالعه حیدری و همکاران که پتیدین، کتامین و دگزامتازون را تزریق در مدت زمان و همکاران روش تحفیظی تازه‌کاری یکی با کلیه اخلاقیات علم و پزشکی کتاب‌های تایید شده است. (کد 35-1395.35 IR.GMU.REC.1395.35)

نگاه دارد.
References

[1] Hasannasab B, Banihashem N, Khoshbakiht A. Prophylactic effects of doxapram, ketamine and meperidine in postoperative shivering. Anesthesiology and Pain Medicine. 2016; 6(1):e27515. [DOI:10.5812/aapm.27515] [PMID]

[2] Elvan EG, Oğ B, Uunun Ş, Karabulut E, Koçkun F, Ayppar Ü. Desmedetomidine and postoperative shivering in patients undergoing elective abdominal hysterectomy. European Journal of Anaesthesiology. 2008; 25(5):357-64. [DOI:10.1017/S0265021507003110] [PMID]

[3] Sessler DI. Temperature regulation and monitoring. In: Miller RD, Eriscon LJ, Fleisher LA, Wiener-Kronish JP, Young WL, editors. Miller’s Anesthesia. 7th ed. Philadelphia, PA: Churchill Livingstone; 2005. pp. 1533-1552.

[4] Miller RD. Anesthesia book. 7th ed. Philadelphia, PA: Churchill Livingstone; 2015.

[5] Pawar MS, Suri N, Kaul N, Lad S, Khan RM. Hydrocortisone reduces postoperative shivering following day care knee arthroscopy. Canadian Journal of Anaesthesia. 2011; 58(10):924-8. [DOI:10.1007/s12630-011-9566-7] [PMID]

[6] Smith I, Newson CD, White PF. Use of forced-air warming during and after outpatient arthroscopic surgery. Anesthesia and Analgesia. 1994; 78(5):836-41. [DOI:10.1213/00000539-199405000-00003] [PMID]

[7] Khosravi A, Mooinvaziri MT, Esmali MH, Farbood AR, Nik-Khoo H, Yarmohammadi H. Treatment of postoperative shivering with dexamethasone: A prospective randomized clinical trial. Iranian Journal of Medical Sciences. 2002; 27(1):15-7. https://ijms.sums.ac.ir/article_40239.html

[8] Entezari Asl M, Izazadehfar Kh. Dexamethasone for prevention of postoperative shivering: A randomized double-blind comparison with pethidine. International Journal of Preventive Medicine. 2013; 4(7):818-24. [PMID] [PMCID]

[9] Entezari Asl M, Izazadehfar Kh, Mohammadian A, Khoshbaten M. Ondansetron and meperidine prevent postoperative shivering after general anesthesia. Middle East Journal of Anaesthesiology. 2011; 21(1):67-70. [PMID]

[10] Bhukal I, Solanki SL, Kumar S, Jain A. Pre-induction low dose pethidine does not decrease incidence of postoperative shivering in laparoscopic gynecological surgeries. Journal of Anaesthesiology, Clinical Pharmacology. 2011; 27(3):349-53. [DOI:10.4103/0970-9185.83680] [PMID] [PMCID]

[11] Apatollahi V, Hajiesmaeil MR, Behdad Sh, Gholipur M, Abbasi HR. Comparison of prophylactic use of meperidine and two low doses of ketamine for prevention of post-anesthetic shivering: A randomized double-blind placebo controlled trial. Journal of Research in Medical Sciences. 2011; 16(10):1340-6. [PMID] [PMCID]

[12] Shakya S, Chaturvedi A, Sah BP. Prophylactic low dose ketamine and ondansetron for prevention of shivering during spinal anaesthesia. Journal of Anaesthesiology, Clinical Pharmacology. 2010; 26(4):465-9. [PMID] [PMCID]

[13] Apatollahi M, Jafari P, khosravi A, Behbodiyan J. [A triangular test to assess the efficacy of low dose dexamethasone in postoperative shivering (Persian)]. Medical Journal of Tabriz University of Medical Sciences. 2005; 27(3):7-11. https://mj.tbzmed.ac.ir/article-8356

[14] Mahoori AR, Valizade Hasanloei MA, Hassani E, Sadighi F. [The effect of intravenous low dose ketamine for prevention of shivering after inguinal herniorrhaphy (Persian)]. Studies in Medical Sciences. 2013; 24(10):779-84. http://umj.umsu.ac.ir/article-1-1986-en.html

[15] Jebel Ameli M, Radmanesh A. [Comparative study on the prophylactic effect of pethidine injection and dexamethasone on postoperative shivering under spinal anaesthesia for caesarean section (Persian)]. Journal of Isfahan Medical School. 2014; 32(285):678-89. http://jims.mui.ac.ir/index.php/jims/article/view/2773

[16] Heidari Tabaei Zavareh SM, Morovati L, Mehrabi Kouchki A. A comparative study on the prophylactic effects of ketamine, dexamethasone, and pethidine in preventing postoperative shivering. Journal of Research in Medical Sciences. 2012; 17(Spec 2):5175-81. http://jrms.mui.ac.ir/index.php/jrms/article/view/8227
This Page Intentionally Left Blank