Forecasting of Dissolved Oxygen in Shatt Al-Arab River Based on parameters of water quality Using Artificial Neural Networks

Z A Khudhur¹*, A S Dawood¹ and S A Arab¹

¹Department of civil engineering, University of Basrah, Iraq

*Corresponding author, Email: zaynapabbas@gmail.com

Abstract. The quality of water is considered as a vital quality factor that affects the life quality in different areas. Thus, its assessment and forecasting became an essential subject matter for several researches. Analytically, the common adopted feed forward error back propagation neural network technique is used to developed two types of ANN models. The first model is applied having experimental data that gotten from the Department of Environment, Basrah-Iraq, during year 2009-2014 and the data set for the current year (2019), while the second model is applied according to the data for the current year (2019) only. The parameters of input of the neural network are pH value (pH), electrical conductivity (EC), Total Dissolved Solid (TDS), Calcium (Ca), Magnesium (Mg), nitrate nitrogen (NO₃), phosphorous (PO₄³⁻) and Sulfate (SO₄²⁻), the output parameter of the neural network is dissolved oxygen (DO). Through comparing the outcomes of ANN models depending on high value of regressions coefficient (R²) and lower value of mean square error (MSE). For the first model R =0.96143 and MSE=0.00125 for testing. The second model is R=0.99225 and MSE=0.00532. The results show the proposed ANN prediction model has a great potential significance for the assessment and forecasting the dissolved oxygen.

1. Introduction

Rivers, lakes, and springs are the most important sources of fresh water and they have the characteristic of being dynamic system and might have variable nature severally within their course due to the change in the physical circumstances like the slope and bedrock geology and chemical properties due to the dissolved gases, organic as well as non-organic material. Horizontal and continuous one-way flows of a significant load of matter are carried by them in dissolved oxygen and certain matters from the natural as well as anthropogenic sources [1].

The physical and chemical properties of water play a direct role in the distribution and behavior of organisms and have a significant impact on the suitability of this water for human consumption. It is these characteristics PH and high water temperature which lead to increase the concentration of salts and contaminated elements as well as turbidity. The elements of calcium (Ca) and magnesium (Mg) are important elements that have a significant role against some diseases of the cardiovascular system. The increased concentration of nitrates and phosphates in water leads to the phenomenon of Eutrophication which has environmental effects on water pollution. Hence, the poor quality and unfit for other uses depended on the same criteria or water quality standard.

As an indication of healthy body of water, dissolved oxygen is usually used, wherein a correlation between the highly concentrated dissolved oxygen with high grade of productivity with much less
pollution. It is an important parameter when assessing the quality of water due to the influence it has on the creatures and plants that lives in that particular body of water. In the scientific studying of lakes - limnology, the oxygen that is dissolved is an extremely important element that comes secondly to that of water. Its level which could be either extremely high or low could affect water systems and harm marine life [2].

Artificial Neural Networks (ANN) represent computational metaphor that has been come through studying the system of brain as well as nerves of organisms. ANN indicate an ideal modal of mathematics of the current point of view concerning these complex systems. Ideally, the network is composed of a group of units that have layers that performs processes and interrelated connections. Their operations are performed depending on the assumption of acquiring knowledge through training sets. A set of different neural network models and learning strategies are available. Feed-forward networks and recurrent networks are considered as the wide-spread models of neural networks which could be adopted to predicate applications. For the former, the weighted connections feed activations just towards forward from the input to the output layers while for the later, for feeding the former activations back into the network, the additional weighted connections could be in use [3].

Within the present study, two types of ANN classes are developed. Both of them are adopted to identify important parameters that are affected through water quality (Dissolved Oxygen). Doing so, the preliminary procedure of the model prediction is done to lessen the non-significant parameters through conducting a statistical analysis using (IBM SPSS Statistics 21) that contains the leave one out methodology that depends in its basis on the correlation that holds every given parameter with certain water quality so that to identify which parameter contributes most in the water quality of Shatt Al-Arab River. Several studies of modeling were conducted for computing dissolved oxygen concentrations in streams [4], rivers [5], lakes [6], as well as canals. The fundamental aim behind the present study is analyzing the operations of neural network (NN) models. The structure of the ANN program that is adopted here is used for the assessment of water quality of the river and predict the dissolved oxygen based on the data of the experiments of both the present and previous ones.

2. Materials and Methods

2.1 General Description of Shatt Al-Arab River
The Shatt Al-Arab River is the main fresh water source in the south of Iraq (Figure 1). It originates from the confluence of two other Iraqi rivers, the Tigris and the Euphrates and its water empties into the Arabian Gulf after travelling about 190 km from Al-Qurna city north of Basrah Governorate (31° 00’17”N and 47° 26’29”E). Then, it flows from north to south of Basrah Governorate to the Arabian Gulf. The river width ranges from 250m at the central city of Basra, to about 1500m at the end point in Al-Fao city before entering the Arabian Gulf. The maximum depth of this river is between 5 to 12 m [7]. Shatt Al-Arab River plays a vital role in developing of the industry and agriculture in Iraq. In addition, it has other values as it serves water transportation, irrigation as well as providing the people of Basrah with the drinking water. The physical, chemical and hydrological regime aspects of the river’s water have been affected by the quality of water coming from its tributaries. At its mouth, the river is also affected by the saline water tides which come from the Arabian Gulf [8].
2.2 water quality data

The data that is used in this study is provided by the ministry of Water Resources in Iraq-Basrah for the year 2009-2014 which represent the monthly measurements at rate of twice measured values for fourteen water parameters that are used for modeling water quality in Shatt Al-Arab River. To give a comprehensive idea about the general water quality of rivers in a study area, and for the purpose of assessing water quality, 538 data have been selected to the purpose of the current study. The physic-chemical water quality parameters are:

"pH value, Total hardness (TH), Chlorides (Cl), total dissolved solids (TDS), electrical conductivity (EC), Calcium (Ca), Sulfate (SO$_4$), Nitrate (NO$_3$), Alkalinity (ALK), Magnesium (Mg), sodium (Na), potassium (k), dissolved oxygen (DO) and Phosphate (PO$_4$)" as illustrated in Table 1.

![Figure 1. Map of Shatt Al-Arab River.](image)

PARAMETERS	UNITS	Experimental value	MIN	MAX
Dissolved oxygen	mg/l	2.19	2.19	13.3
pH value	-	6.7	6.7	9.2
Electrical conductivity	µS/cm	1303	1303	52200
Total dissolved solids	mg/l	96	96	39462
Calcium	mg/l	35	35	1008
Sulfate	mg/l	100	100	3000
Magnesium	mg/l	27	27	1728
Nitrate	mg/l	3.212	3.212	19.64
Phosphate	mg/l	0.03	0.03	2.56
Chlorides	mg/l	142	142	19550
Alkalinity	mg/l	100	100	1905
Total hardness	mg/l	8.2	8.2	8600
3. Input selection technique

This technique is adopted to select the inputs which have strong correlation with dissolved oxygen. Table 1 shows the parameters of water quality in the Shatt Al-Arab River. Since a general suggestion for the present study is that an input should be removed when its regression is low as less than such number which indicates the existence of weak correlation.

The aim behind the present study is evaluating an improved model that determines the quality of river water through measuring the values of DO as outputs of the model. Since estimating these values of DO are basic, it is proposed that these represent the outputs of the FFNN based model. This indicates that the values of: "power of hydrogen (pH), Phosphate(PO4), Magnesium (Mg), Calcium (Ca), Sulphates (SO4),electrical conductivity (EC) and total dissolved solid (TDS)" are represent the input of the model.

The parameters have been chosen since it is seen from the training model that the eight parameters have shown higher regression (R) with DO values and less mean square error (mse).

4. Sample Collection

The measurement of the physical, chemical and biological parameters of water was done for eight sites along Shatt Al-Arab River in two seasons, (wet and dry). The first fieldwork started in winter during January 2019, March 2019 and May 2019 from the following stations: Al-Qurna, Al-Shafi, Al-Dair, Al-Haritha, Al-Sindibad, Al-Maqal, Al-Corniche and abufrous. while the second fieldwork was done in summer during the beginning of July (2019) as shown in Figure 2 show the location of water samples from the areas of the study.

The analysis procedure of fieldwork and laboratory work are explained as below:

1. Sampling usually started during the period of islands in Shatt Al-Arab River.
2. Each sample bottle was provided with an identification label such as:
 • Numeration of the sample.
 • Time and date of collecting the sample.
 • Geographical coordinates of sampling stations.
3. The water samples were collected in the middle of the main river by using boat and van water sampler.
4. Water sample for other analysis such as pH, EC, Tur, TDS, DO, and Water temperature (T) were measured immediately in the field, by using Hatch (HQ40d) multi device [9].
5. The concentrations of chemical parameters (NO$_3$-, PO$_4$-, Ca, Mg, SO$_4$-) were measured in the laboratories of Basrah, in the Water Analysis Laboratory in Marine Sciences.

5. **Artificial Neural Networks**

ANNs are considered as a newly initiated mathematical model which influenced the scientific community. The interest of the scientific community has increased recently which resulted conducting several studies that seeks solving a variety of problematic issues. Experiments have shown that it is more robust in comparison with the conventional statistical classifiers in identifying the patterns from noisy and complex data and in measuring their nonlinear relations. In brief, experts consider it highly effective at learning the internal representations of data in any given way.

ANNs are heuristic algorithms as they could acquire knowledge from experiences through samples and as a result, they could be used to identify new data. Such systems are set very simply to perform behavioral imitation of the network of neurons in the human brains. The basic objective behind using ANNs is to enhance the operation of the computer identification processes through the simulation of the superior features of brain [10]. Due to the great ability of the human brain in acquiring knowledge, recalling, synthesis, and solving problem, it has attracted the attention of the scientific community in different fields to try to design a model that simulates its operations. According to the biological mechanism of the brain, ANNs are models which try to have parallel simulation of the functions as well as decision making operations of the human brain’.

6. **The Mathematical Model**

The network is composed of interrelated artificial neurons which its structure is layered typically. It has three functional groups that are: the inputs that receives signals from the network’s outside and presenting them to its inside, the neuron that processes information and the neurons that initiates results.

ANN model is illustrated in figure 3. The model includes X inputs, y one output, a summation block and an activation block [11].

![Figure 3. Model of artificial neurons](image)

7. **Architectural of ANN Model**

Artificial neural networks (ANNs) are used for the assessment and forecasting of dissolved oxygen in Shatt Al-Arab River by other water quality parameters. The neural network toolbox that is available in MATLAB program (R2013a) is used for implementing the neural network in this study. This program has many advantages such as containing several types of networks and implementing many different training algorithms, such as the back-propagation algorithm.

Back-propagation neural networks are proposed to learn the relations between the input and output parameters by using the feed-forward back-propagation algorithm. The trial and error process is performed to set and train the neural networks because of the indeterminate parameters such as the number of hidden layers, nodes number in the hidden layers, number of learning patterns, and the learning parameters.

In this study, two case studies were studied in:
• Evaluating the overall quality of Shatt Al-Arab water during the period (2009-2014) of previously recorded data

• Assessing and forecasting the dissolved oxygen of the Shatt al-Arab River for pre-recorded and currently recorded data in 2019.

Table 2. Specifications of the Proposed Network

Items	Descriptions
nodes in the input layer	8
hidden layers	1 & 2
nodes in the hidden layers	[1-20]
Types of activation function	First: tansig
	Second: purelin
	Third: purelin
Training functions	Different types of functions
Nodes in the output layer	1

8. Back-propagation Training Functions

FFBP neural network which is adopted here is a wide-spread kind of artificial neural networks in hydrological time series modelling and including an input, hidden and output layers. The BP algorithm is a gradient descent method used to have the minimum mean square error.

Developing the proposed model (ANN), the Levenberg-Marquardt back-propagation algorithm (trainlm) was first used to train the network of the proposed model (ANN). This network is trained with different back-propagation algorithms to choose the algorithm that produces the best results and to reach the least error and the best network in predicting the dissolved oxygen. The LM Back Propagation (BP) algorithm is used for training the artificial neural network model, since it is often fast and highly accurate and reliable [12], related literature has shown that LM is a well-designed algorithm for setting ANN models.

A training data set was used for training the networks, and this in turn was tested by the test data set. Selecting the size of the optimal network through: "the resulted maximum coefficient of regression (R) and minimum of root mean square error (MSE) in training and testing data sets".

9. Neural Network Model (M1)

The data set utilized in the first model was produced through monitoring of water quality of Shatt Al-Arab River. Monthly sampling was carried out of 4 years (2009-2014) in addition to (2019) for the analysis of 570 data records [(data collection & samples collection (preparations data)]. 538 recordings of the training set and 32 recordings of the test set. The Levenberg-Marquardt algorithm has been used for the training the neural networks. The hidden nodes number affects the operation of network in a direct way. The hidden nodes number is identified to acquire the optimal results.
Data Collection

Table 3. Description of Variables Training and Testing.

Item	Variables	Training Range of Data	Testing Range of Data
		Min - Max	Min - Max
Input	pH -	6.7 – 9.2	7.47-8.61
	PO₄ (mg/l)	0.03- 2.56	0.01-0.088
	SO₄ (mg/l)	100 -3000	161-839
	NO₃ (mg/l)	3.212 - 19.64	0.362-12.79
	Mg (mg/l)	27- 1728	57.34-194
	Ca (mg/l)	35 - 1008	102.7-420
	TDS (mg/l)	96-39462	566-1449
	Ec (µS/cm)	1303 -52200	1109-1883
Output	DO (mg/l)	2.4 -13.30	5.58 – 11

Table 4. ANN operation having One and Two Hidden Layers

Training function	One hidden layer	Two hidden layers						
	Nodes No.	mse (test)	R (test)	Epoch	Nodes No.	mse (test)	R (test)	Epoch
trainlm	10	0.00125	0.96143	100	[14,9]	0.00235	0.96864	100
trainrp	8	0.0212	0.95324	100	[9,9]	0.0065	0.9494	100
trainingda	11	0.00253	0.94555	98	[10,10]	0.00257	0.95594	100
traingdx	11	0.00276	0.94616	100	[10,10]	0.01566	0.95931	100
traingcfg	20	0.002456	0.96279	100	[11,8]	0.003991	0.95776	100
Traincgp	20	0.00312	0.9633	100	[12,7]	0.0511	0.95577	29
traincgb	20	0.00221	0.96334	76	[13,8]	0.00342	0.95975	57
trainscg	20	0.002991	0.96173	500	[13,8]	0.00411	0.96167	100
trainbfg	8	0.00622	0.94246	100	[12,10]	0.00412	0.96104	100
trainoss	20	0.00198	0.9647	100	[8,6]	0.00699	0.96209	100
trainingdm	18	0.0255	0.96224	5000	[9,9]	0.00211	0.95005	5000

As illustrated in Table 4, (trainlm) training functioning has given the most suitable tested operation having one and two hidden layers, while (trainbfg) has given the best tested operation having two hidden layers only.

Finally, the architecture of the network is having less error and high regressions 8-10-1. The input nodes are 8 which represent the parameters of input of water quality which have an effect on the dissolved oxygen, the hidden nodes are 10 with one hidden layer. The output nodes are only 1 which
represents dissolved oxygen (DO). No significant variation among the results if two hidden layers are used, still if the architecture is used 8-[12,10]-1, the input nodes are 8, which represent the input parameters of water quality which have an effect on the dissolved oxygen, the hidden nodes are set to [12,10] having two hidden layers, that architecture of the (trainbfg) training function network gave less error (mse) and high regression. Thus, it could be selected (trainlm) training functioning as the best network for the predications of the dissolved oxygen throughout Shatt Al-Arab.

Figure 4, illustrates the regression while figure 5 shows the operation of the selected network.

![Figure 4](image1.png)

Figure 4. Regression in one and two hidden layers of the suggested Network

![Figure 5](image2.png)

Figure 5. Operation of the suggested network (mse) with one and two hidden layers

10. **Neural Network Model (M2)**

In the second model of artificial neural network, the data of water quality of Shatt Al-Arab River that were measured have been collected from current year (2019). The range of the training to test information recording is used. It indicates that 32 data recording samples collection (preparations data) 24 recordings for the training set and 8 recordings for the test set have been used. The artificial neural network has got training and tested having one and two hidden layers with variable number of nodes (1–20) for every hidden layer (see table (6)). Some of the functions of training have been tested to get the best results.
Data Preparation

Table 5. Train, Test, and Range of Variables

Item	Variables	Range of Data		
		Training	Testing	
		Max Min		
pH	8.61-7.47	8.03-7.61		
PO₄ (mg/l)	0.088-0.01	0.021-0.01		
SO₄ (mg/l)	839-161	298 – 225		
NO₃ (mg/l)	12.79-0.362	3.84-0.86		
Mg (mg/l)	194-57.34	104.4-62.24		
Ca (mg/l)	420-102.76	192-140.48		
TDS (mg/l)	1449-566	667-578		
Ec (µS/cm)	1883-1109	1285-1126		
DO	11-5.58	8.4-5.74		

Table 6. ANN operation having One and Two Hidden Layers

Training function	One hidden layer	Two hidden layer						
	Nodes NO	mse (test)	R (test)	Epoch	Nodes NO	mse (test)	R (test)	Epoch
trainlm	8	0.00532	0.99225	7	[10,8]	0.0233	0.9948	8
trainrp	8	0.0223	0.9902	99	[12,9]	0.00225	0.99389	99
trainlda	8	0.000955	0.99455	1000	[8,8]	0.00376	0.99461	1000
traindx	8	0.0167	0.9910	1000	[12,6]	0.00443	0.99177	1000
traincfgf	11	0.00499	0.98988	1000	[12,9]	0.000501	0.99765	100
traincgp	11	0.00398	0.99029	1000	[12,11]	0.00698	0.99282	100
traincgb	8	0.0235	0.98678	550	[10,7]	0.0001578	0.99554	196
trainscg	14	0.00544	0.99001	1000	[11,5]	0.00455	0.9966	100
trainbfgf	9	0.00688	0.99056	300	[10,8]	0.00344	0.99116	257
trainoss	8	0.0189	0.99105	1000	[8,8]	0.00205	0.99376	100
trainfdm	8	0.0212	0.99313	5000	[11,10]	0.0211	0.99374	5000
As can be seen in Table 6, (trainlm) training functioning has given the most suitable tested operation having one and two hidden layers. No significant variation among them if variable training functions are used, still it gives the most suitable variation having less error and high regression. Thus, this could be selected as the suggested network for the predication of dissolved oxygen allover Shatt Al-Arab. Figure 6 illustrates the regression while figure 7 shows mse of the suggested network.

11. Results and Discussion
For two neural network models construction with monthly data randomly partitioned into (training and testing) the cascade correlation algorithm choose the training of neural network which is feed-forward and supervised algorithm. The suitable number of neurons has been identified through least value of MSE of the training set as well as the test set. Being highly correlated indicates that there is a great a good homogeneity among the tested information. To specify the suitable number of neurons within the hidden layer, eight to twenty neurons every time have been employed individually within the network. The optimal number of hidden neurons is variable in the two models, but the models could result the maximum coefficient correlation and minimum error.

The current study has also concluded that the first Artificial Neural Network model that got training with algorithm (trainlm) is highly efficient to predict the concentration of DO. The selected structure has shown the maximum correlation value (R = 0.96143) as well as the minimum error (RMSE = 0.00125 for Test data) after epoch 100 for one hidden layer, the structure of this network is 8-
In addition, the network that is trained with algorithm (trainbfg) has affected predicting the concentration of DO. The selected structure has the maximum correlation value ($R = 0.96104$) and the minimum error (RMSE = 0.00412 for the tested data) after epoch 100 for two hidden layers, the structure of the network is $8- [12, 10] -1$.

Secondly, the model that got training with algorithm (trainlm) has an effect on predicting the DO concentrations. The selected structure has the maximum correlated value ($R = 0.99225$) and the minimum error (RMSE = 0.00532 for test data) having one hidden layer. In addition, the network that is trained with algorithm (trainlm) has affected predicting the concentration of DO through the use of two hidden layers. The selected structure has the maximum correlation value $R = 0.9948)$ and the minimum error (RMSE = 0.0133 for test data) for two hidden layers. This indicates that ANN has a considerable capability for learning and making predictions. The results have shown that ANNs could make prediction of DO concerning unknown data sets. Thus, it is highly worth using the ANN model for water quality prediction.

12. Conclusions

Two well-known artificial neural models have been used in the present study to model and forecast DO having 8 water quality variables. Both of these models have provided a good and powerful model for studying and measuring DO.

Three-layers (input layer, hidden layer, output layer) with BPNN of the Levenberg-Marquardt algorithm (LMA) with water quality variables such as pH, total dissolved solid (TDS), EC, Ca, Mg, SO$_4$, PO$_4$ and NO$_3$ have been applied as input data to get the output of DO. The present study has concluded that the second model approach proved that it is an effective method for water quality modeling depended on the operation of the model. It has been estimated having regression correlation (R) and MSE, 8 neurons in one hidden layer and [10, 8] in two hidden layers which were selected as the most suitable number of neurons.

R=0.99225, MSE=0.00532 for one hidden layer R=0.9948, MSE=0.0233 for two hidden layers. It could be suggested that a future study is important for improving the accuracy of the prediction of the suggested model with longer periods.

13. Reference

[1] Bakan, Gülferm, Hülya B Ö, Sevtap T, Hüseyin C 2010 Integrated Environmental Quality Assessment of Kizilirmak River and its Coastal Environmen (Turk. J. Fish. Aquat. Sci) 10(4) PP.453-462.

[2] Kemker 2014 Conductivity, Salinity and Total Dissolved Solids. ” Fundamentals of Environmental Measurements (Fondriest Environmental).

[3] Rumelhart D E, Hinton G E, and Williams R J 1987 Learning Internal Representations by Error Propagation (Paral lel Distributed Processing: Explorations in the microstructure of cognition) eds D. E. Rumelhart and J. L. McClelland, Vol. 1, MIT Press, Cambridge, Mass, pp.318-362.

[4] Abaychi J K & Mustafa Y Z 1988 An indicator of trace metal pollution in the Shatt al-Arab River, Iraq (The asiatic clam- Corbicula fluminea) Environmental Pollution, vol. 54, No. 2, pp. 109-22.

[5] Hussein N A, Al Najjar H H, Al-Saad H T, Youssef O H and Al-sabonji A 1991 Shatt al Arab, basic scientific studies (marine seince center -Basra University Basra).

[6] Butcher J B. and Covington S. 1995 (Dissolved Oxygen analysis with temperature dependence) J. Environ. Eng. pp. 756-759.

[7] Cox B A 2003 A review of dissolved oxygen modeling techniques for lowland rivers (The Science of the Total Environment) pp. 303-334.

[8] Garcia A. Revilla J.A Medina R. Alvarez C. and Juanes J A 2002 A model for predicting the tempoerarl evolution of dissolved oxygen concentration in shallow estuaries (Hydrobiologia) pp 205-211.
[9] F. Babaei Semiromi, A H Hassani, A Torabian, A R Karbassi and F. Hosseinzadeh Lotfi 2011 *Evolution of a new surface water quality index for Karoon catchment in Iran* (Water Science & Technology) Vol. **64**, No. 12 pp. 2483-2491.

[10] Civco D. L. and Waug Y. 1994 *Classification of multispectral, multitemporal, multisource spatial data using artificial neural networks* (Proceedings of 1994 Annual ASPRS/ACSM Convention, Reno, NV, USA) pp. 123-133.

[11] Hola J. and Schabowicz K. 2005 *Application of Artificial Neural Networks to determine concrete compressive strength based on non-destructive test* (Journal of civil engineering and management) **11** (1), pp. 23-32.

[12] Goh, A. T. C. 1995 *Back-propagation neural networks for modeling complex systems* (Artificial Intelligence in Engineering) No.9 pp. 143–151.