Almost quasi-Sasakian manifolds equipped with skew-symmetric connection

S. V. Galaev1,*

(Submitted by A. A. Editor-name)

1Saratov State University, ul. Astrakhanskaya 83, Saratov, 410012 Russia

Received June 13, 2018

Abstract—On a sub-Riemannian manifold, a connection with skew-symmetric torsion is defined as the unique connection from the class of N-connections that has this property. Two cases are considered separately: sub-Riemannian structure of even rank, and sub-Riemannian structure of odd rank. The resulting connection, called the canonical connection, is not a metric connection in the case when the sub-Riemannian structure is of even rank. The structure of an almost quasi-Sasakian manifold is defined as an almost contact metric structure of odd rank that satisfies additional requirements. Namely, it is required that the canonical connection is a metric connection and that the transversal structure is a Kähler structure. Both the quasi-Sasakian structure and the more general almost contact metric structure, called an almost quasi-Sasakian structure, satisfy these requirements. Sufficient conditions are found for an almost quasi-Sasakian manifold to be an Einstein manifold.

Keywords and phrases: Sub-Riemannian manifold of contact type, almost contact metric manifold, inner connection, almost quasi-Sasakian manifold, skew-symmetric connection

1. INTRODUCTION

By an almost quasi-Sasakian manifold (AQS-manifold) we mean an almost normal almost contact metric manifold with a closed fundamental form for which the condition
\[d\eta(\hat{\xi}, \cdot) = 0 \]
holds true. An almost contact metric manifold is called by the author of this paper almost normal if the equality
\[\tilde{N}\varphi = N\varphi + 2\varphi^* d\eta \otimes \hat{\xi} = 0 \]
holds [5]. The „almost normality” condition is equivalent to the integrability of the transversal structure. An AQS-manifold is a generalization of a quasi-Sasakian manifold and reduces to the latter if
\[d\eta = \varphi^* d\eta. \]

An AQS-structures naturally arises on the distribution of an almost contact metric manifold [3]. In this paper, an AQS-structure is equipped with a connection with skew-symmetric torsion. The study of such connections (called canonical in this work) is motivated by the demands of theoretical physics [2,4]. Initially, an N-connection ∇^N is defined on a sub-Riemannian manifold of contact type endowed with an endomorphism $N : TM \to TM$ of the tangent bundle of the manifold M ($N\hat{\xi} = \mathbf{0}$, $N(D) \subset D$). The connection ∇^N expressed as follows in terms of the Levi-Civita connection ∇:
\[
\nabla_X^N Y = \nabla_X Y + (\nabla_X \eta)(Y)\hat{\xi} - \eta(Y)\nabla_X \xi - \eta(X)(\nabla_{\hat{\xi}} \eta)(Y)\hat{\xi} - \eta(X)(C + \psi - N)Y.
\]
We divide sub-Riemannian structures into two classes: structures of even rank and structures of odd rank. For structures of odd rank, the equality
\[\tilde{\nabla}_\xi \eta = 0 \]
is satisfied, in this case the expression for the \(N \)-connection becomes simpler:
\[\nabla^N_X Y = \tilde{\nabla}_X Y + (\tilde{\nabla}_X \eta) (Y) \tilde{\xi} - \eta(Y) \tilde{\nabla}_X \tilde{\xi} - \eta(X)(C + \psi - N) Y. \]

The case \(\tilde{\nabla}_\xi \eta = 0 \) is considered in detail in [1]. For the corresponding manifolds, conditions are found under which the \(N \)-connection has skew-symmetric torsion. This connection is uniquely defined and corresponds to the endomorphism \(N = 2\psi \), where the endomorphism \(\psi \) is given by the equality
\[\omega(X,Y) = g(\psi X,Y) \]
and is called in the paper the second structural endomorphism of an almost contact metric manifold.

In the same paper, the concept of an \(\nabla^N \)-Einstein almost contact metric manifold is introduced. For the case \(N = 2\psi \), conditions are found under which an almost contact metric manifold is a \(\nabla^N \)-Einstein manifold.

This work consists of two main parts. In the first part, conditions are found under which an \(N \)-connection on a sub-Riemannian manifold of contact type has skew-symmetric torsion. In the second part, \(N \)-connections with skew-symmetric torsion are considered applied to AQSM-manifolds. Conditions are found under which AQSM-manifolds are Einstein manifolds with respect to the canonical connection. Examples of such manifolds are given.

2. SUB-RIEMANNIAN MANIFOLDS EQUIPPED WITH A CANONICAL
SKEW-SYMMETRIC CONNECTION

Let \(M \) be a smooth manifold of odd dimension \(n = 2m + 1 \) with a sub-Riemannian structure \((M, \xi, \eta, g, D) \) of a contact type, where \(\eta \) and \(\xi \) is a 1-form and a unit vector field generating, respectively, mutually orthogonal distributions \(D \) and \(D^\perp \).

Throughout the work we use adapted coordinates. A chart \(k(x^i), i, j, k = 1, \ldots, n \), of the manifold \(M \) will be call adapted to the distribution \(D \) if
\[D^\perp = \text{Span}(\partial_n), \quad \partial_n = \xi, \]
see [3]. Let \(P : TM \to D \) be the projector defined by the decomposition
\[TM = D \oplus D^\perp, \]
and \(k(x^i) \) be an adapted chart. The vector fields
\[P(\partial_a) = \tilde{\varepsilon}_a = \partial_a - \Gamma^a_{kn} \partial_n, \quad a, b, c = 1, \ldots, n - 1, \]
are linearly independent and linearly generate the distribution \(D = \text{Span}(\tilde{\varepsilon}_a) \) in the definition domain of the corresponding chart.

For the adapted charts \(k(x^i) \) and \(k'(x'^i) \) the following coordinate transformation formulas are fulfilled:
\[x'^a = x^a(x'^i), \quad x'^n = x'^{n'} + x^n(x'^i). \]

A tensor field \(t \) of type \((p, q) \) defined on an almost contact metric manifold is called admissible (to the distribution \(D \)) or transversal if \(t \) vanishes whenever one of its arguments is \(\tilde{\xi} \) or \(\eta \). The coordinate representation of an admissible tensor field with respect to an adapted chart is as follows:
\[t = t^{a_1 \cdots a_p}_{b_{q'}} \tilde{\varepsilon}_{a_1} \otimes \cdots \otimes \tilde{\varepsilon}_{a_p} \otimes dx^{b_{q'}} \otimes \cdots \otimes dx^{b_q}. \]

The transformation of the components of an admissible tensor field in adapted coordinates obeys the following law:
\[t'^a_b = A^a_{a'} A^b_{b'} t^{a'}_{b'}. \]
where \(A_a^a = \frac{\partial x^a}{\partial x^a} \).

Thus adapted coordinates play the role of "holonomic" coordinates for the non-involutive distribution. Adapted coordinates are essentially used in foliation geometry [7].

Let \(\omega = d\eta \). The equality
\[
[\tilde{e}_a, \tilde{e}_b] = 2\omega_{ba}\partial_n
\]
holds true. This, in particular, implies an important statement for what follows: the condition \(d\eta(\xi, X) = 0 \) is equivalent to the equality \(\partial_n \Gamma_a^a = 0 \).

Let \(\tilde{\nabla} \) be the Levi-Civita connection and \(\tilde{\Gamma}_{jk}^i \) its Christoffel symbols. The following proposition may be obtained by direct computations based on the use of the equality
\[
2\tilde{\Gamma}_{ij}^m = g^{km}(\tilde{\varepsilon}_j g_{ik} + \tilde{\varepsilon}_k g_{ij} - \tilde{\varepsilon}_i g_{jk} + \Omega^l_{kj} g_{li} + \Omega^l_{ki} g_{lj}) + \Omega^m_{ij}.
\]

Proposition 1. The Christoffel symbols \(\tilde{\Gamma}_{ij}^k \) of the Levi-Civita connection of a sub-Riemannian manifold in adapted coordinates have the form:
\[
\tilde{\Gamma}_{ab}^c = \Gamma_{ab}^c, \quad \tilde{\Gamma}_{ab}^n = \omega_{ba} - C_{ab}, \quad \tilde{\Gamma}_{bn}^a = \tilde{\Gamma}_{na}^b = C_a^b + \psi_a^b,
\]
\[
\tilde{\Gamma}_{an}^n = -\partial_n \Gamma_a^n, \quad \tilde{\Gamma}_{nm}^a = g^{ab}\partial_n \Gamma_b^n,
\]
where
\[
\Gamma_{bc} = \frac{1}{2}g^{ad}(\tilde{\varepsilon}_b g_{cd} + \tilde{\varepsilon}_c g_{bd} - \tilde{\varepsilon}_d g_{bc}), \quad \psi^b_a = g^{bc}\omega_{ac}, \quad C_{ab} = \frac{1}{2}\partial_n g_{ab}, \quad C_a^b = g^{bc}C_{ac}.
\]

Here the endomorphism \(\psi : TM \to TM \) is determined by the equality
\[
\omega(X, Y) = g(\psi(X, Y),
\]
and we set
\[
C(X, Y) = \frac{1}{2}(L_{\xi}g)(X, Y).
\]

An \(N \)-connection \(\nabla^N \) is defined on a sub-Riemannian manifold endowed with the endomorphism \(N : TM \to TM \) of the tangent bundle of \(M \) (\(N\xi = 0 \), \(N(D) \subset D \)). The connection \(\nabla^N \) may be expressed in terms of the Levi-Civita connection \(\tilde{\nabla} \),
\[
\nabla^N_X Y = \tilde{\nabla}_X Y + (\tilde{\nabla}_X \eta)(Y)\xi - \eta(Y)\tilde{\nabla}_X \xi - \eta(X)\tilde{\nabla}_\xi \eta)(Y)\xi - \eta(X)(C + \psi - N)Y.
\]

Proposition 2. A linear connection \(\nabla^N \) defined on a sub-Riemannian manifold is skew-symmetric if and only if \(N = 2\xi \).

Proof. It may be directly checked that with respect to adapted coordinates the nonzero Christoffel symbols \(G_{jk}^i \) of the connection \(\nabla^N_X \) have the form
\[
G_{bc}^a = \frac{1}{2}g^{ad}(\tilde{\varepsilon}_b g_{cd} + \tilde{\varepsilon}_c g_{bd} - \tilde{\varepsilon}_d g_{bc}), \quad G^b_{na} = N^b_a, \quad G^n_{ma} = -\partial_n \Gamma^n_a.
\]

The rank of a sub-Riemannian structure is equal to \(2p \) if \((d\eta)^p \neq 0 \), \(\eta \wedge (d\eta)^p = 0 \), and equal to \(2p + 1 \) if \(\eta \wedge (d\eta)^p \neq 0 \), \((d\eta)^{p+1} = 0 \). It is easy to check that the rank of a sub-Riemannian structure is \(2p + 1 \) if and only if \(\partial_n \Gamma^n_a = 0 \).

Put \(\tilde{S}(X, Y, Z) = g(S(X, Y), Z), \ X, Y, Z \in \Gamma(TM) \). With respect to adapted coordinates the nonzero components of the tensor \(\tilde{S}(X, Y, Z) \) have the following form:
\[
\tilde{S}(\tilde{e}_a, \tilde{\partial}_n) = 2\omega_{ab},
\]
\[
\tilde{S}(\tilde{e}_a, \tilde{\partial}_n, \tilde{e}_b) = -g(N\tilde{e}_a, \tilde{e}_b),
\]
The tensor $\tilde{S}(X,Y,Z)$ is skew-symmetric if and only if $2\omega_{ab} = g(N\tilde{e}_a, \tilde{e}_b)$. This proves Proposition 2.

If $N = 2\psi$, the connection ∇^N will be called the canonical connection. Note that the canonical connection in the case of a sub-Riemannian structure of even rank is not a metric connection. Indeed,

$$\nabla^N g_{na} = -G^a_{na} = \partial_n \Gamma^a_n.$$

3. BASIC INFORMATION FROM THE GEOMETRY OF ALMOST QUASI-SASAKIAN MANIFOLDS

Consider an almost contact metric manifold M of odd dimension $n = 2m + 1$. Let $(M, \xi, \eta, \varphi, g, D)$ be an almost contact metric structure on a manifold M, where φ is a tensor of type $(1,1)$, called a structural endomorphism, ξ and η are a vector and a covector, called, respectively, a structure vector and a contact form, g is a (pseudo-)Riemannian metric. In this case, the following equalities hold true:

1) $\varphi^2 = -I + \eta \otimes \tilde{\xi}$,
2) $\eta(\tilde{\xi}) = 1$,
3) $g(\varphi X, \varphi Y) = g(X,Y) - \eta(X)\eta(Y)$, $X,Y \in \Gamma(TM)$.

The smooth distribution $D = \ker(\eta)$ is called the distribution of an almost contact structure. As a consequence of conditions 1) - 3) we obtain:

5) $\varphi \tilde{\xi} = \tilde{0}$,
6) $\eta \circ \varphi = 0$,
7) $\eta(X) = g(X, \tilde{\xi})$, $X \in \Gamma(TM)$.

The skew-symmetric tensor $\Omega(X,Y) = g(X,\varphi Y)$ is called the fundamental form of the structure. An almost contact metric structure is called a contact metric structure if the equality $\Omega = d\eta$ holds.

The smooth distribution $D^\perp = \text{Span}(\tilde{\xi})$, orthogonal to the distribution D, is called the framing of the distribution D. There is the decomposition $TM = D \oplus D^\perp$.

A Sasakian manifold is a contact metric space satisfying the additional condition

$$N^{(1)}_\varphi = N_\varphi + 2d\eta \otimes \tilde{\xi} = 0,$$

where

$$N_\varphi(X,Y) = [\varphi X, \varphi Y] + \varphi^2[X,Y] - \varphi[\varphi X,Y] - \varphi[X,\varphi Y]$$

is the Nijenhuis tensor of the endomorphism φ. The condition $N^{(1)}_\varphi = N_\varphi + 2d\eta \otimes \tilde{\xi} = 0$ means that the Sasakian space is a normal space.

An almost contact metric manifold is called an almost contact Kähler manifold [5] if the following conditions hold:

$$d\Omega = 0, \quad \tilde{N}_\varphi = N_\varphi + 2\varphi^*d\eta \otimes \tilde{\xi} = 0.$$

A manifold for which the condition $\tilde{N}_\varphi = N_\varphi + 2\varphi^*d\eta \otimes \tilde{\xi} = 0$ is satisfied is called by us an almost normal manifold. It is easy to check that an almost normal almost contact metric manifold is a normal manifold if and only if $d\eta = \varphi^*d\eta$.

Let $P : TM \to D$ be the projector defined by the decomposition $TM = D \oplus D^\perp$. Then the following proposition holds.
Proposition 3. For any almost contact metric manifold, the following equality holds: $PN^{(1)}_{\varphi} = \tilde{N}_{\varphi}$.

Proof.

$$PN^{(1)}_{\varphi}(X, Y) = P(\varphi X, \varphi Y) + \varphi^2[X, Y] - \varphi[\varphi X, Y] - \varphi[X, \varphi Y] + 2d\eta(X, Y)\xi$$

$$= P[\varphi X, \varphi Y] - P[X, Y] - \varphi[\varphi X, Y] - \varphi[X, \varphi Y]$$

$$= [\varphi X, \varphi Y] - \eta(\varphi X, \varphi Y)\xi - [X, Y] + \eta([X, Y])\xi - \varphi[\varphi X, Y] - \varphi[X, \varphi Y]$$

$$= [\varphi X, \varphi Y] + \varphi^2[X, Y] - \varphi[\varphi X, Y] - \varphi[X, \varphi Y] + 2d\eta(\varphi X, \varphi Y)\xi = \tilde{N}_{\varphi}(X, Y).$$

The proposition is proved. □

Note that the just proved proposition implies the relation:

$$N^{(1)}_{\varphi}(X, Y) = \tilde{N}_{\varphi}(X, Y) + 2(d\eta(X, Y) - d\eta(\varphi X, \varphi Y))\xi. \quad (1)$$

An internal linear connection ∇ [3] on a manifold with an almost contact metric structure is a map

$$\nabla : \Gamma(D) \times \Gamma(D) \to \Gamma(D),$$

satisfying the following conditions:

1) $\nabla_{f_1\tilde{x} + f_2\tilde{y}} = f_1\nabla\tilde{x} + f_2\nabla\tilde{y},$

2) $\nabla_{\tilde{x}} f\tilde{y} = (\tilde{x}f)\tilde{y} + f\nabla\tilde{x}\tilde{y},$

3) $\nabla_{\tilde{x}}(\tilde{y} + \tilde{z}) = \nabla\tilde{x}\tilde{y} + \nabla\tilde{x}\tilde{z},$

where $\Gamma(D)$ is the module of admissible vector fields (vector fields at each point belonging to the distribution D).

The Christoffel symbols of ∇ are determined from the relation $\nabla_{\tilde{a}}\tilde{c} = \Gamma^c_{ab}\tilde{e}_b$. From the equality $\tilde{e}_a = A^a_{\tilde{a}}\tilde{e}_{\tilde{a}}$, where $A^a_{\tilde{a}} = \frac{\partial x^a}{\partial x^{\tilde{a}}}$, the transformation formula follows

$$\Gamma^c_{ab} = A^a_{\tilde{a}} A^b_{\tilde{b}} A^c_{\tilde{c}} \Gamma^\tilde{c}_{\tilde{a} \tilde{b}} + A^a_{\tilde{a}} \tilde{e}_a A^c_{\tilde{c}}.$$

Hence, in particular, it follows that the derivatives $\partial_a\Gamma^{d}_{ac}$ are components of an admissible tensor field.

We give two examples of almost contact Kähler manifolds.

Example 1. Let $M = \{(x, y, z, u, v) \in R^5 : y \neq 0\}$ be a smooth manifold of dimension 5 equipped with an almost contact metric structure $(M, \tilde{\xi}, \eta, \varphi, g, D)$, where

1) $D = \text{Span}\{\tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{e}_4\}$, here $\tilde{e}_1 = \partial_1 - y\partial_5$, $\tilde{e}_2 = \partial_2$, $\tilde{e}_3 = \partial_3$, $\tilde{e}_4 = \partial_4$, and $(\partial_1, \ldots, \partial_5)$ is the basis of vector fields corresponding to the coordinates (x, y, z, u, v) on R^5,

2) $\tilde{\xi} = \partial_5$,

3) $\eta = dz + ydx$,

4) $\varphi\tilde{e}_1 = \tilde{e}_3$, $\varphi\tilde{e}_2 = \tilde{e}_4$, $\varphi\tilde{e}_3 = -\tilde{e}_1$, $\varphi\tilde{e}_4 = -\tilde{e}_2$, $\varphi\tilde{\xi} = 0$,

5) the basis $(\tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{e}_4, \tilde{\xi})$ consists of orthonormal vectors.
It may be directly checked that the almost contact metric manifold M is not normal, but almost normal. Indeed,

$$N_{\varphi}^{(1)}(\vec{e}_1, \vec{e}_2) = \varphi^2[\vec{e}_1, \vec{e}_2] + [\vec{e}_3, \vec{e}_4] - \varphi[\vec{e}_3, \vec{e}_2] - \varphi[\vec{e}_1, \vec{e}_4] + 2d\eta(\vec{e}_1, \vec{e}_2)\vec{\xi} = \varphi^2\vec{\xi} - \eta(\vec{\xi})\vec{\xi} = -\vec{\xi}. $$

On the other hand,

$$\tilde{N}_{\varphi}(\vec{e}_1, \vec{e}_2) = 2d\eta(\vec{e}_3, \vec{e}_4)\vec{\xi} = 0. $$

For the structure under consideration, the equality $d\eta(\vec{\xi}, X) = 0$, $X \in \Gamma(TM)$, holds. Thus $\omega = d\eta$ is an admissible tensor field, to which the internal connection ∇ may be applied [3]. Moreover, $\nabla \omega = 0$. Let, further, ψ be the endomorphism defined by the equality $\omega(X, Y) = g(\psi X, Y)$. The coordinate representation of the endomorphism ψ is of the form $\psi^b_a = g^{bc}\omega_{ac}$. Thus the trace of the square of the endomorphism ψ is constant, $\text{tr}(\psi^2) = \text{const}$.

Example 2. Considers the same manifold M as in the previous example with the only difference that

$$\vec{e}_1 = \partial_1 - yz\partial_5, \quad \eta = dz + yzd\bar{x}. $$

Unlike the previous case, the condition $d\eta(\vec{\xi}, \cdot) = 0$ is not satisfied. Indeed,

$$2d\eta(\vec{\xi}, \vec{e}_1) = -\eta(\vec{\xi}, \vec{e}_1) = y \neq 0. $$

An almost contact metric manifold is called an almost quasi-Sasakian manifold (AQS-manifold) if the following conditions are satisfied:

$$d\Omega = 0, \quad \tilde{N}_{\varphi} = N_{\varphi} + 2\varphi^*d\eta \otimes \vec{\xi} = 0, \quad d\eta(\vec{\xi}, \cdot) = 0. \quad (2) $$

Note that Example 1 implies that there exist an almost quasi-Sasakian manifolds satisfying the conditions

$$\nabla \omega = 0, \quad \text{tr}(\psi^2) = \text{const}. $$

Moreover the equality $\nabla \omega = 0$ is equivalent to the equality $\nabla \psi = 0$.

The following theorem holds.

Theorem 1. An almost contact metric structure is an almost quasi-Sasakian structure if and only if the following equality holds:

$$(\nabla_X \varphi)Y = g((\varphi \circ \varphi)Y, X)\vec{\xi} - \eta(Y)(\varphi \circ \varphi)(X) - \eta(X)(\varphi \circ \psi - \psi \circ \varphi)Y. \quad (3) $$

Proof. Let M be a AQS-manifold. Let us show that the condition (3) is satisfied. The equality

$$2g((\nabla_X \varphi)Y, Z) = 3(d\Omega(X, \varphi Y, \varphi Z) - d\Omega(X, Y, Z)) + g(N_{\varphi}^{(1)}(Y, Z), \varphi X)$$

$$+ 2N_{\varphi}^{(2)}(Y, Z)\eta(Y) + 2(d\eta(\varphi Y, X)\eta(Z) - d\eta(\varphi Z, X)\eta(Y)), $$

where the operator $N_{\varphi}^{(2)}$ is similar to $N_{\varphi}^{(1)}$, see, e.g., [1]. holds for any almost contact metric manifold. Using (2), we get

$$g((\nabla_X \varphi)Y, Z) = \eta(X)(g((\varphi \circ \varphi)Y, Z) + d\eta(Y, \varphi Z)) + g(d\eta(\varphi Y, X)\vec{\xi}, Z) + d\eta(X, \varphi Z)\eta(Y). $$

This proves the equality (3). The inverse statement may be easily proved using adapted coordinates. \hfill \Box

The following propositions are direct consequences of Theorem 1.

Proposition 4. An almost contact metric structure is a quasi-Sasakian structure if and only if the equality holds:

$$(\nabla_X \varphi)Y = g(AY, X)\vec{\xi} - \eta(Y)AX, A = \varphi \circ \psi. $$

Proposition 5. An almost quasi-Sasakian manifold is a quasi-Sasakian manifold if and only if one of the following conditions holds
1) \(d\eta = \varphi^*d\eta \),
2) \(\varphi \circ \psi - \psi \circ \varphi = 0 \),
3) \(g(X, AY) = g(AX, Y), A = \varphi \circ \psi \).

4. ALMOST QUASI-SASAKIAN MANIFOLDS WITH CANONICAL SKewed-SYMMETRIC CONNECTION

Let \((M, \vec{\xi}, \eta, \varphi, g, D)\) be an almost quasi-Sasakian structure given on a manifold \(M\), and let \(\nabla^N\) be the canonical connection. Proposition 5 implies the following

Proposition 6. An almost quasi-Sasakian manifold is a quasi-Sasakian manifold if and only if \(\nabla^N \varphi = 0\).

Further, we restrict our attention to the case when the torsion \(\tilde{S}(X, Y, Z)\) of the connection \(\nabla^N\) is parallel. It is known that this condition holds for Sasakian manifolds. At the same time, it follows from the above example that there exist such almost quasi-Sasakian manifolds that are neither quasi-Sasakian, nor Sasakian and for which the torsion is skew-symmetric and parallel.

Let \(K\) be the curvature tensor of the canonical connection \(\nabla^N\). For nonzero components of the tensor \(K\) it holds

\[
K^d_{abc} = R^d_{abc} + 4\omega_{ab}\psi^d_c,
\]

\[
K^d_{anc} = 2\nabla^a\psi^d_c.
\]

Here \(R^d_{abc} = 2\varepsilon^d_{[a|b|c]} + 2\Gamma^d_{[a|c]} \Gamma^c_{b|c}\) are components of the Schouten curvature tensor \([3]\) defined by the equality

\[
R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{P[X, Y]} Z - P[Q[X, Y], Z], \quad Q = 1 - P.
\]

The tensor \(K\) may be written in the following way:

\[
K(X, Y)Z = R(X, Y)Z + \eta(Y)(\nabla_X N)Z - \eta(X)(\nabla_Y N)Z + 4\omega(X, Y)\psi(Z), \quad X, Y, Z \in \Gamma(TM).
\]

Tensor field \(r(X, Z) = \text{tr}(Y \mapsto R(X, Y)Z), X, Z \in \Gamma(D)\), will be called the Ricci-Wagner tensor. Using adapted coordinates, we write down the components of the Ricci tensor \(k\) of the connection \(\nabla^N\):

\[
k_{ab} = r_{ab} + 4\omega_{ad}\psi^d_b,
\]

\[
k_{an} = k_{nn} = 0,
\]

\[
k_{na} = -\nabla^a\psi^d_c.
\]

From the definition of the endomorphism \(\psi\) it follows that the equality \(\nabla\omega = 0\) holds if and only if \(\nabla\psi = 0\). Hence the components of the Ricci tensor \(k\) of the connection \(\nabla^N\) with parallel torsion take the form:

\[
k_{ab} = r_{ab} + 4\omega_{ad}\psi^d_b,
\]

\[
k_{an} = k_{na} = k_{nn} = 0.
\]

Thus the following theorem turns out to be true.

Theorem 2. An almost quasi-Sasakian manifold is an Einstein manifold with respect to the canonical connection with parallel torsion if and only if

\[
r_{ab} = 4\omega_{da}\psi^d_b.
\]
As follows from Theorem 2, the existence of Einstein metric on an almost quasi-Sasakian manifold with respect to the canonical connection essentially depends on the structure of the Ricci-Wagner tensor.

We complete the work with an example of an almost quasi-Sasakian Einstein manifold.

Example 3. Let us introduce a quasi-Sasakian structure on the manifold $M = \{(x, y, z, u, v) \in \mathbb{R}^5 : y \neq 0\}$ by setting:

1) $D = \text{Span}\{\tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{e}_4\}$, where $\tilde{e}_1 = \partial_1 - y\partial_5$, $\tilde{e}_2 = \partial_2$, $\tilde{e}_3 = \partial_3$, $\tilde{e}_4 = \partial_4$, and $(\partial_1, \ldots, \partial_5)$ is the basis of vector fields corresponding to the coordinates (x, y, z, u, v) on \mathbb{R}^5,

2) $\tilde{\xi} = \partial_5$,

3) $\eta = dv + ydx$,

4) $\varphi \tilde{e}_1 = \tilde{e}_2$, $\varphi \tilde{e}_2 = -\tilde{e}_1$, $\varphi \tilde{e}_3 = \tilde{e}_4$, $\varphi \tilde{e}_4 = -\tilde{e}_3$, $\varphi \tilde{\xi} = 0$,

5) the metric tensor is given by the equality

$$g = \frac{1}{(1 + x^2 + y^2)^2}((dx)^2 + (dy)^2) + (dz)^2 + (du)^2 + \eta^2.$$

The condition $r_{ab} = 4\omega_{da}^d \psi_b^d$ reduces to the equality $r_{\alpha\beta} = -4g_{\alpha\beta}$, $\alpha, \beta = 1, 2$. It is easy to check that the above metric satisfies the condition $r_{\alpha\beta} = -4g_{\alpha\beta}$. Thus, we have obtained an example of an Einstein quasi-Sasakian manifold. If we redefine the first structural endomorphism by setting

$$\varphi \tilde{e}_1 = \tilde{e}_3$$
$$\varphi \tilde{e}_2 = \tilde{e}_4$$
$$\varphi \tilde{e}_3 = -\tilde{e}_1$$
$$\varphi \tilde{e}_4 = -\tilde{e}_2$$
$$\varphi \tilde{\xi} = 0,$$

then the quasi-Sasakian manifold reduces to an almost quasi-Sasakian manifold. Thus we have obtained an example of an Einstein AQS-manifold with respect to the canonical connection.

REFERENCES

1. S.V. Galaev, ∇^N-Einstein almost contact metric manifolds. Bulletin of Tomsk State University. Mathematics and Mechanics 2021, no. 70, 5-15.

2. I.Agricola, A.C. Ferreira, Einstein manifolds with skew torsion, Qaur. J. Math. 65 (2014), no. 3, 717-741.

3. A.V. Bukusheva, S.V. Galaev, Almost contact metric structures defined by connection over distribution. Bulletin of the Transilvania University of Brasov Series III: Mathematics, Informatics, Physics. 2011. Vol. 4 (2), no. 2, 13-22.

4. T. Friedrich, S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2002), 303–336.

5. S.V. Galaev, Admissible Hyper-Complex Pseudo-Hermitian Structures. Lobachevskii Journal of Mathematics, 2018, Vol. 39, no. 1, 71-76.

6. S.V. Galaev, Intrinsic geometry of almost contact Kählerian manifolds. Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis. 2015. Vol 31, 35-46.

7. M.A. Malakhaltsev, Foliations with leaf structures, J. Math. Sci. (New York), 108: 2 (2002), 188-210.