Analysis of *Caenorhabditis elegans* via Bioinformatics Approaches Basis on their Precursors Statistics Values

Alka Dubey1*; Shashi Prabha Agarwala; Neelesh Yadav3 and Rajnish Kumar2

1Bioinformatics Infrastructure Facility (Funded by Dept. of Biotechnology, Govt. of India), Forest Research Institute, Dehradun, India
2Assistant Professor; D.A-V College Kanpur, India
3Bioinformatics Centre, Forest Research Institute, Dehradun, India

*Corresponding author: Alka Dubey, Visiting Research Associate, in Bioinformatics Infrastructure Facility (Funded by Dept. of Biotechnology, Govt. of India) of Forest Research Institute, Dehradun, India, Tel: + 08394837352; E-mail: alkabioinfo964@gmail.com

Rec date: Mar 28, 2016; Acc date: June 9, 2016; Pub date: June 13, 2016

Abstract

MicroRNA (miRNA) are a class of small regulatory non-coding RNAs. These are about 21 to 25 nucleotides in length. Analysis of miRNA is leading to new paradigms for control of gene expression during plants and animals. Most noncoding RNAs are characterized by a specific secondary structures that determine their function. In present study we determine the minimum free energy (MFE) of *C. elegans* precursor’s sequences. That retrieves from miRBASE.

Keywords MicroRNA; *C. elegans*; Minimum free energy (MFE); Noncoding; Transcriptional regulators; Ribonuclease III

Introduction

Micro RNA regulates gene expression. miRNAs are well conserved in both plants and animals, and are thought to be a vital and evolutionarily ancient component of genetic regulation [1]. Mature microRNAs (miRNAs) are a class of naturally occurring small non-coding RNA molecules; about 21 to 25 nucleotides in length. MicroRNAs are partially complementary to one or more messenger RNA (mRNA) molecules and their main function is to down-regulate gene expression in a variety of manners, including translational repression, mRNA cleavage and deadenylation [2]. miRNAs are a class of post-transcriptional regulators [3]. Most non-coding RNAs are characterized by a specific secondary and tertiary structure that determines their function.

Analysis of miRNAs is leading to new paradigms for control of gene expression during development in plants and animals. miRNAs arise from larger precursor molecules that can fold into a stable stem-loop structure [4-8]. Those structures are processed by ribonuclease III-like nuclease Dicer in animals and Dicer like in plants and all have a typical stem-loop shape [4-11].

In present study we predicted the minimum free energy (MFE) values of secondary structures of noncoding RNA sequences, such as microRNA precursors of *C. elegans* with the help of computational software miRBase.

Methodology

The precursors (pre-miRNA) sequences of *C. elegans* were retrieved from miRBase and then go for secondary structure with optimal minimum free energy [12]. Optimal minimum free energy was found out with the help of RNA fold web servers (http://rna.tbi.univie.ac.at) then retrieve the sequence of miRNA from miRBase. Present study which is exclusively based on in silico firstly retrieves precursor sequences from miRBase and then retrieve sequence is submitted in RNA fold web server for minimum free energy values and calculated the minimum free energy for objective analysis [13].

S.No.	Precursor No.	Accession No.	Free energy of thermodynamics (kcal/mol)	Frequency of MFE structure	Ensembled diversity	Minimum free energy of secondary structure (kcal/mol)	Optimal secondary structure minimum free energy (kcal/mol)
1	>cel-let-7	M10000001	-43.63	6.09%	9.04	-37.90 kcal/mol	-41.90 kcal/mol
2	>cel-lin-4	M10000002	-41.20	8.80%	7.90	-39.60 kcal/mol	-39.70 kcal/mol
3	>cel-mir-1	M10000003	-40.09	62.68%	1.40	-39.80 kcal/mol	-39.80 kcal/mol
4	>cel-mir-2	M10000004	-38.30	6.30%	6.21	-35.40 kcal/mol	-36.60 kcal/mol
5	>cel-mir-34	M10000005	-36.47	9.16%	6.53	-35.00 kcal/mol	-35.00 kcal/mol
6	>cel-mir-35	M10000006	-54.07	28.84%	5.76	-50.50 kcal/mol	-53.30 kcal/mol
7	>cel-mir-36	M10000007	-50.93	7.15%	4.73	-48.40 kcal/mol	-49.30 kcal/mol
	Entry	Precursor	Result 1	Result 2	Result 3	Result 4	
---	---------	-----------	----------	----------	----------	----------	
8	cel-mir-37 M0000008	-43.70 kcal/mol	16.70%	3.06	-42.60 kcal/mol	-42.60 kcal/mol	
9	cel-mir-38 M0000009	-49.47 kcal/mol	4.06%	7.27	-47.50 kcal/mol	-47.50 kcal/mol	
10	cel-mir-39 M0000010	-44.12 kcal/mol	16.28%	3.45	-43.00 kcal/mol	-43.00 kcal/mol	
11	cel-mir-40 M0000011	-46.35 kcal/mol	29.44%	2.61	-45.60 kcal/mol	-45.60 kcal/mol	
12	cel-mir-41 M0000012	-41.95 kcal/mol	29.48%	9.07	-41.20 kcal/mol	-41.20 kcal/mol	
13	cel-mir-42 M0000013	-41.91 kcal/mol	14.00%	4.63	-41.50 kcal/mol	-41.50 kcal/mol	
14	cel-mir-43 M0000014	-47.24 kcal/mol	18.65%	4.27	-46.20 kcal/mol	-46.20 kcal/mol	
15	cel-mir-44 M0000015	-44.32 kcal/mol	5.18%	8.74	-43.10 kcal/mol	-43.10 kcal/mol	
16	cel-mir-45 M0000016	-42.70 kcal/mol	37.73%	4.26	-42.10 kcal/mol	-42.10 kcal/mol	
17	cel-mir-46 M0000017	-40.52 kcal/mol	10.03%	12.08	-39.10 kcal/mol	-39.10 kcal/mol	
18	cel-mir-47 M0000018	-42.03 kcal/mol	41.98%	4.90	-41.50 kcal/mol	-41.50 kcal/mol	
19	cel-mir-48 M0000019	-36.68 kcal/mol	14.65%	5.36	-33.10 kcal/mol	-33.50 kcal/mol	
20	cel-mir-49 M0000020	-36.97 kcal/mol	17.61%	4.69	-37.70 kcal/mol	-37.90 kcal/mol	
21	cel-mir-50 M0000021	-61.30 kcal/mol	8.75%	5.84	-59.80 kcal/mol	-59.80 kcal/mol	
22	cel-mir-51 M0000022	-34.90 kcal/mol	0.40%	5.3	-33.30 kcal/mol	-31.50 kcal/mol	
23	cel-mir-52 M0000023	-26.80 kcal/mol	2.82%	7.58	-24.50 kcal/mol	-24.60 kcal/mol	
24	cel-mir-53 M0000024	-31.59 kcal/mol	10.46%	6.92	-30.20 kcal/mol	-30.20 kcal/mol	
25	cel-mir-54 M0000025	-35.03 kcal/mol	6.00%	8.56	-31.00 kcal/mol	-33.30 kcal/mol	
26	cel-mir-55 M0000026	-35.63 kcal/mol	15.91%	7.79	-34.50 kcal/mol	-34.50 kcal/mol	
27	cel-mir-56 M0000027	-62.07 kcal/mol	15.09%	5.96	-58.80 kcal/mol	-59.90 kcal/mol	
28	cel-mir-57 M0000028	-32.39 kcal/mol	27.97%	5.52	-31.60 kcal/mol	-31.60 kcal/mol	
29	cel-mir-58a M0000029	-37.29 kcal/mol	10.42%	8.52	-35.60 kcal/mol	-35.90 kcal/mol	
30	cel-mir-59 M0000030	-36.94 kcal/mol	15.65%	7.37	-33.30 kcal/mol	-35.80 kcal/mol	
31	cel-mir-60 M0000031	-36.59 kcal/mol	3.38%	9.31	-33.30 kcal/mol	-34.50 kcal/mol	
32	cel-mir-61 M0000032	-52.19 kcal/mol	6.45%	5.23	-50.50 kcal/mol	-50.50 kcal/mol	
33	cel-mir-63 M0000034	-38.66 kcal/mol	24.84%	5.78	-37.80 kcal/mol	-37.80 kcal/mol	
34	cel-mir-64 M0000035	-37.69 kcal/mol	6.45%	9.76	-31.40 kcal/mol	-36.00 kcal/mol	
35	cel-mir-65 M0000036	-42.68 kcal/mol	33.35%	2.72	-42.00 kcal/mol	-42.00 kcal/mol	
36	cel-mir-66 M0000037	-39.16 kcal/mol	34.08%	2.53	-38.50 kcal/mol	-38.50 kcal/mol	
37	cel-mir-67 M0000038	-32.72 kcal/mol	8.45%	5.96	-31.20 kcal/mol	-31.20 kcal/mol	
38	cel-mir-70 M0000041	-32.86 kcal/mol	17.40%	5.12	-31.10 kcal/mol	-31.80 kcal/mol	
39	cel-mir-71 M0000042	-37.50 kcal/mol	19.59%	5.77	-36.50 kcal/mol	-36.50 kcal/mol	
40	cel-mir-72 M0000043	-43.59 kcal/mol	16.92%	4.07	-42.50 kcal/mol	-42.50 kcal/mol	
41	cel-mir-73 M0000044	-36.16 kcal/mol	13.05%	6.62	-34.90 kcal/mol	-34.90 kcal/mol	
42	cel-mir-74 M0000045	-38.57 kcal/mol	24.51%	4.22	-37.70 kcal/mol	-37.70 kcal/mol	
43	cel-mir-75 M0000046	-34.87 kcal/mol	7.86%	5.79	-33.30 kcal/mol	-33.30 kcal/mol	
ID	Name	Energy	Percent	Value	Comp Value		
-------	------------	--------	---------	-------------	-------------		
44	cel-mir-77	-35.74 kcal/mol	6.97%	9.80	-32.10 kcal/mol	-34.10 kcal/mol	
45	cel-mir-79	-33.50 kcal/mol	19.60%	4.26	-31.10 kcal/mol	-32.50 kcal/mol	
46	cel-mir-80	-29.47 kcal/mol	6.64%	12.39	-27.80 kcal/mol	-27.80 kcal/mol	
47	cel-mir-81	-42.01 kcal/mol	5.32%	7.80	-39.90 kcal/mol	-40.20 kcal/mol	
48	cel-mir-82	-34.56 kcal/mol	27.98%	2.55	-33.80 kcal/mol	-33.80 kcal/mol	
49	cel-mir-83	-28.16 kcal/mol	10.94%	11.86	-22.50 kcal/mol	-26.80 kcal/mol	
50	cel-mir-84	-24.11 kcal/mol	14.01%	11.86	-22.90 kcal/mol	-22.90 kcal/mol	
51	cel-mir-85	-40.70 kcal/mol	7.44%	6.18	-38.70 kcal/mol	-39.10 kcal/mol	
52	cel-mir-86	-43.84 kcal/mol	15.83%	3.50	-40.30 kcal/mol	-42.70 kcal/mol	
53	cel-mir-87	-46.54 kcal/mol	1.63%	5.79	-44.90 kcal/mol	-44.00 kcal/mol	
54	cel-mir-88	-44.62 kcal/mol	10.02%	4.46	-43.20 kcal/mol	-43.20 kcal/mol	
55	cel-mir-89	-39.59 kcal/mol	14.58%	6.87	-36.40 kcal/mol	-38.40 kcal/mol	
56	cel-mir-90	-44.86 kcal/mol	15.23%	4.06	-41.90 kcal/mol	-43.70 kcal/mol	
57	cel-mir-91	-55.67 kcal/mol	1.54%	17.64	-50.90 kcal/mol	-53.10 kcal/mol	
58	cel-mir-92	-39.42 kcal/mol	5.19%	6.85	-37.50 kcal/mol	-37.60 kcal/mol	
59	cel-mir-93	-33.40 kcal/mol	5.40%	8.80	-31.60 kcal/mol	-31.60 kcal/mol	
60	cel-mir-94	-37.20 kcal/mol	16.90%	5.00	-35.80 kcal/mol	-36.10 kcal/mol	
61	cel-mir-95	-38.92 kcal/mol	8.53%	4.73	-37.40 kcal/mol	-37.40 kcal/mol	
62	cel-mir-96	-27.04 kcal/mol	8.26%	4.88	-25.50 kcal/mol	-25.50 kcal/mol	
63	cel-mir-97	-31.29 kcal/mol	1.76%	13.20	-27.50 kcal/mol	-28.80 kcal/mol	
64	cel-mir-98	-38.76 kcal/mol	3.55%	7.62	-36.70 kcal/mol	-36.70 kcal/mol	
65	cel-mir-99	-37.15 kcal/mol	3.57%	6.10	-31.50 kcal/mol	-35.10 kcal/mol	
66	cel-mir-100	-39.38 kcal/mol	10.60%	6.22	-37.70 kcal/mol	-38.00 kcal/mol	
67	cel-mir-101	-33.64 kcal/mol	13.28%	4.78	-32.40 kcal/mol	-32.40 kcal/mol	
68	cel-mir-102	-38.52 kcal/mol	31.16%	2.88	-37.80 kcal/mol	-37.80 kcal/mol	
69	cel-mir-103	-22.86 kcal/mol	5.74%	7.14	-20.90 kcal/mol	-21.10 kcal/mol	
70	cel-mir-104	-34.89 kcal/mol	2.88%	6.77	-32.20 kcal/mol	-32.70 kcal/mol	
71	cel-mir-105	-36.99 kcal/mol	20.12%	4.55	-36.00 kcal/mol	-36.00 kcal/mol	
72	cel-mir-106	-31.62 kcal/mol	16.36%	8.64	-27.00 kcal/mol	-30.50 kcal/mol	
73	cel-mir-107	-24.77 kcal/mol	12.66%	6.57	-23.50 kcal/mol	-23.50 kcal/mol	
74	cel-mir-108	-37.58 kcal/mol	4.76%	8.19	-35.70 kcal/mol	-35.70 kcal/mol	
75	cel-mir-109	-39.30 kcal/mol	14.37%	2.84	-38.50 kcal/mol	-38.10 kcal/mol	
76	cel-mir-110	-47.25 kcal/mol	5.85%	5.22	-45.30 kcal/mol	-45.50 kcal/mol	
77	cel-mir-111	-28.55 kcal/mol	9.54%	10.17	-24.10 kcal/mol	-27.10 kcal/mol	
78	cel-mir-112	-36.67 kcal/mol	17.72%	5.05	-35.60 kcal/mol	-35.60 kcal/mol	
79	cel-mir-113	-37.24 kcal/mol	2.26%	9.21	-34.10 kcal/mol	-34.90 kcal/mol	
80	cel-mir-356b MI0019158	-20.09 kcal/mol	6.45%	6.52	-15.30 kcal/mol	-18.40 kcal/mol	
81	cel-mir-358 MI0000757	-36.09 kcal/mol	1.76%	9.90	-33.60 kcal/mol	-33.60 kcal/mol	
82	cel-mir-392 MI0000819	-38.44 kcal/mol	35.39%	3.11	-37.80 kcal/mol	-37.80 kcal/mol	
83	cel-mir-784 MI0005184	-28.76 kcal/mol	9.34%	4.10	-24.50 kcal/mol	-27.30 kcal/mol	
84	cel-mir-786 MI0005186	-36.92 kcal/mol	7.28%	6.03	-35.30 kcal/mol	-35.30 kcal/mol	
85	cel-mir-787 MI0005187	-39.99 kcal/mol	32.58%	3.58	-39.30 kcal/mol	-39.30 kcal/mol	
86	cel-mir-788 MI0005188	-33.38 kcal/mol	33.34%	1.90	-32.70 kcal/mol	-32.70 kcal/mol	
87	cel-mir-789-2 MI0005190	-64.03 kcal/mol	7.10%	5.04	-60.50 kcal/mol	-62.40 kcal/mol	
88	cel-mir-790 MI0005191	-34.37 kcal/mol	20.68%	2.47	-33.30 kcal/mol	-33.40 kcal/mol	
89	cel-mir-791 MI0005192	-33.49 kcal/mol	20.02%	4.20	-32.50 kcal/mol	-32.50 kcal/mol	
90	cel-mir-794 MI0005195	-27.49 kcal/mol	27.76%	2.51	-26.70 kcal/mol	-26.70 kcal/mol	
91	cel-mir-795 MI0005196	-34.45 kcal/mol	15.54%	4.99	-33.30 kcal/mol	-33.30 kcal/mol	
92	cel-mir-797 MI0005198	-28.50 kcal/mol	2.81%	11.22	-26.10 kcal/mol	-26.30 kcal/mol	
93	cel-mir-800 MI0005201	-54.97 kcal/mol	55.06%	0.89	-54.60 kcal/mol	-54.60 kcal/mol	
94	cel-mir-1820 MI0007982	-40.02 kcal/mol	22.60%	5.32	-39.10 kcal/mol	-39.10 kcal/mol	
95	cel-mir-1821 MI0007983	-32.09 kcal/mol	2.06%	11.81	-27.20 kcal/mol	-29.70 kcal/mol	
96	cel-mir-1822 MI0007984	-32.27 kcal/mol	17.50%	4.79	-31.20 kcal/mol	-31.20 kcal/mol	
97	cel-mir-1823 MI0007985	-26.43 kcal/mol	11.52%	5.28	-22.70 kcal/mol	-25.10 kcal/mol	
98	cel-mir-1829b MI0008198	-21.74 kcal/mol	67.49%	1.00	-21.50 kcal/mol	-21.50 kcal/mol	
99	cel-mir-1829c MI0008199	-20.35 kcal/mol	56.50%	1.38	-20.00 kcal/mol	-20.00 kcal/mol	
100	cel-mir-1830 MI0008200	-35.96 kcal/mol	34.49%	3.70	-35.30 kcal/mol	-35.30 kcal/mol	
101	cel-mir-1832a MI0008202	-36.86 kcal/mol	11.07%	3.56	-35.50 kcal/mol	-35.50 kcal/mol	
102	cel-mir-1832b MI0010967	-44.60 kcal/mol	32.19%	2.79	-43.60 kcal/mol	-43.90 kcal/mol	
103	cel-mir-2208a MI0010956	-24.02 kcal/mol	36.44%	1.69	-23.40 kcal/mol	-23.40 kcal/mol	
104	cel-mir-2208b MI0010957	-27.27 kcal/mol	33.97%	1.94	-26.60 kcal/mol	-26.60 kcal/mol	
105	cel-mir-2221 MI0010974	-43.52 kcal/mol	11.81%	7.16	-42.20 kcal/mol	-42.20 kcal/mol	
106	cel-mir-4805 MI0017535	-49.11 kcal/mol	16.52%	8.53	-48.00 kcal/mol	-48.00 kcal/mol	
107	cel-mir-4813 MI0017543	-39.96 kcal/mol	47.56%	1.24	-39.50 kcal/mol	-39.50 kcal/mol	
108	cel-mir-4814 MI0017544	-66.59 kcal/mol	38.34%	2.76	-66.00 kcal/mol	-66.00 kcal/mol	
109	cel-mir-4816 MI0017546	-24.54 kcal/mol	35.29%	2.53	-23.90 kcal/mol	-23.90 kcal/mol	
110	cel-mir-5545 MI0019066	-64.97 kcal/mol	46.98%	2.35	-64.50 kcal/mol	-64.50 kcal/mol	
111	cel-mir-5592-1 MI0019153	-40.09 kcal/mol	27.56%	2.99	-39.30 kcal/mol	-39.30 kcal/mol	
of the local free energy contributions suggests a linear relationship of centriod secondary structure. The free energy values.

For computational analysis of miRNA we always predict the MFE values from precursor statistics values, analyze the overall stability of an RNA structure by adding independent contributions of local free energy interactions due to adjacent base pairs and loop regions. In sequences with homogeneous nucleotide arrangements and compositions, the additive and independent nature of the local free energy contributions suggests a linear relationship between computed MFE and sequence length. Normalization by length, obtained by dividing MFE by the number of nucleotides, was introduced to exploit this linear relationship to directly compare the minimum free energies of RNAs of various lengths [14,15].

In Table 1 we have predicted Free energy of thermodynamics, Frequency of MFE structure, Ensemble diversity, Minimum free energy of centeriod secondary structure. The minimum free energy (MFE) of ribonucleic acids (RNAs) increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes.

Conclusion

In this study entitled: Analysis of C. elegans via bioinformatics approaches basis on their precursors statistics values, analyze the statistical values of miRNA and their precursors. For computational analysis of miRNA we always predict the MFE values from precursor sequences which is already experimentally identified and this precursor sequences retrieves from miRBase, for miRNA targeted genes and other analysis also. This table explains all precursors and miRNAs mainly important values, these values always used in noncoding RNA analysis via the system biology. Our computational findings may be useful for researchers.

Acknowledgements

The corresponding author wish to thanks Er. NEELESH YADAV, Scientist and Coordinator, Bioinformatics Centre, Forest Research Institute, Dehradun, INDIA for providing valuable scientific platform. I am also thankful to DBT center for providing necessary facilities.

References

1. Dubey A, Agrawal SP, Yadav N (2013) Evidences for big roles of miRNAs from Pristionchus pacificus to human targeted genes via bioinformatics approaches. American Journal of Biological, Chemical and Pharmaceutical Sciences 3: 1-15.
2. Saxena VL, Dwivedi A (2013) In silico identification of miRNAs and their target prediction from Japanese encephalitis. Journal of Bioinformatics and Sequence Analysis 5: 25-33.
3. Dubey A, Shanker U, Kalra SS, Yadav N (2013) Viral micro RNA analysis via the bioinformatics approaches basis on their Statistics values. American Journal of Biological, Chemical and Pharmaceutical Sciences 1: 42-66.
4. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854.
5. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294: 853-858.
6. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858-862.
7. Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14: 1605-1619.
8. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Gene Dev 16: 1616-1626.
9. Hutvagner G, Zamore PD (2002) RNAi: nature abhors a doublestrand. Curr Opin Genet Dev 12: 225-232.
10. Schauer SE, Jacobsen SE, Meinke DW, Ray A (2002) DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 7: 487-491.
11. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettying JC, et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901-906.
12. Ambros V, Bartel B, Bartel DP, Burge CR, Carrington JC, et al. (2003) A uniform system for microRNA annotation. RNA 9: 277-279.
13. Kibbe WA (2007) An online oligonucleotide properties calculator. Nucleic Acids Research 35: W43-46.
14. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288: 911-940.
15. Mathews DH, Fterns MD, Childs JL, Schroeder SJ, Zuker M, et al. (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 101: 7287-7292.

Table 1: This table explains that miRBase precursors of C. elegans. These sequences pass from RNA fold web server for thermodynamics analysis with minimum free energy

Results and Discussion

Here we have analyzed optimal minimum free energy (MFE) of miRBase precursors of C. elegans. Present study is exclusively based on in silico. Firstly we retreives precursor sequences from miRBase and then this sequence is submitted in RNA fold web server for minimum free energy values.

The most common software programs, employed to predict the secondary RNA structures by MFE algorithms, make use of the so-called nearest-neighbor energy model. This model uses free energy rules based on empirical thermodynamic parameters and computes the overall stability of an RNA structure by adding independent contributions of local free energy interactions due to adjacent base pairs and loop regions. In sequences with homogeneous nucleotide arrangements and compositions, the additive and independent nature of the local free energy contributions suggests a linear relationship between computed MFE and sequence length. Normalization by length, obtained by dividing MFE by the number of nucleotides, was introduced to exploit this linear relationship to directly compare the minimum free energies of RNAs of various lengths [14,15].

Precursor ID	MFE Value	Frequency	MFE/Length	MFE Value	MFE Value
>cel-mir-5592-2	-41.50 kcal/mol	32.17%	3.28	-40.80 kcal/mol	-40.80 kcal/mol
>cel-mir-5594	-26.98 kcal/mol	14.80%	3.10	-25.80 kcal/mol	-25.80 kcal/mol

Table 1: This table explains that miRBase precursors of C. elegans. These sequences pass from RNA fold web server for thermodynamics analysis with minimum free energy.