The geometry of vector bundles and derived categories on complex K3 surfaces has developed rapidly since Mukai’s seminal work [Muk87]. Many foundational questions have been answered,

- the existence of vector bundles and twisted sheaves with prescribed invariants;
- geometric interpretations of isogenies between K3 surfaces [Orl97, Cal00];
- the global Torelli theorem for holomorphic symplectic manifolds [Ver13, Huy12b];
- the analysis of stability conditions and its implications for birational geometry of moduli spaces of vector bundles and more general objects in the derived category [BMT14, BM13, Bri07].

Given the precision and power of these results, it is natural to seek arithmetic applications of this circle of ideas. Questions about zero cycles on K3 surfaces have attracted the attention of Beilinson, Beauville-Voisin [BV04], and Huybrechts [Huy12a].

Our focus in this note is on rational points over non-closed fields of arithmetic interest. We seek to relate the notion of derived equivalence to arithmetic problems over various fields. Our guiding questions are:

Question 1. Let X and Y be K3 surfaces, derived equivalent over a field F. Does the existence/density of rational points of X imply the same for Y?

Given $\alpha \in \text{Br}(X)$, let (X, α) denote the twisted K3 surface associated with α: If $\mathcal{P} \to X$ is an étale projective bundle representing α, of relative dimension $r - 1$, then $(X, \alpha) = [\mathcal{P}/\text{SL}_r]$.

Question 2. Suppose that (X, α) and (Y, β) are derived equivalent over F. Does the existence of a rational point on the former imply the same for the latter?

Date: November 16, 2014.
Note that an \(F \)-rational point of \((X, \alpha)\) corresponds to an \(x \in X(F) \) such that \(\alpha | x = 0 \in \text{Br}(F) \).

We shall consider these questions for \(F \) finite, \(p \)-adic, real, and local with algebraically-closed residue field. These will serve as a foundation for studying how the geometry of K3 surfaces interacts with Diophantine questions over local and global fields. For instance, is the Hasse/Brauer-Manin formalism over global fields compatible with (twisted) derived equivalence? See [HVAV11, HVA13, MSTVA14] for concrete applications to rational points problems.

In this paper, we first review general properties of derived equivalence over arbitrary base fields. We then offer examples which illuminate some of the challenges in applying derived category techniques. The case of finite and real fields is presented first—here the picture is well developed. Local fields of equicharacteristic zero are also fairly well understood, at least for K3 surfaces with semistable or other mild reduction. The analogous questions in mixed characteristic remain largely open, but comparison with the geometric case suggests a number of avenues for future investigation.

Acknowledgments: We are grateful to Jean-Louis Colliot-Thélène, Daniel Huybrechts, Anthony Várilly-Alvarado, Sho Tanimoto, Olivier Wittenberg, and Letao Zhang for helpful conversations. We thank Vivek Shende for pointing out the application of A’Campo’s Theorem. The first author was supported by NSF grants 0901645, 0968349, and 1148609; the second author was supported by NSF grants 0968318 and 1160859. We are grateful to the American Institute of Mathematics for sponsoring workshops where these ideas were explored.

1. Generalities on derived equivalence for K3 surfaces

1.1. Definitions. Let \(X \) and \(Y \) denote K3 surfaces over a field \(F \). Let \(p \) and \(q \) be the projections from \(X \times Y \) to \(X \) and \(Y \) respectively.

Let \(\mathcal{E} \in D^b(X \times Y) \) be an element of the bounded derived category of coherent sheaves, which may be represented by a perfect complex of locally free sheaves. The Fourier-Mukai transform is defined

\[
\Phi_\mathcal{E} : D^b(X) \rightarrow D^b(Y),
\]

\[
\mathcal{F} \mapsto q_*(\mathcal{E} \otimes p^* \mathcal{F}),
\]

where push forward and tensor product are the derived operations.
X and Y are derived equivalent if there exists an equivalence of triangulated categories over F
\[\Phi : D^b(X) \xrightarrow{\sim} D^b(Y). \]
A fundamental theorem of Orlov [Orl97] implies that \(\Phi \) arises as the Fourier-Mukai transform \(\Phi_E \) for some perfect complex \(E \in D^b(X \times Y) \).

1.2. Mukai lattices. Consider the Mukai lattice of \(X \)
\[\tilde{H}(X, \mathbb{Z}) = \tilde{H}(X, \mathbb{Z}) := H^0(X, \mathbb{Z})(-1) \oplus H^2(X, \mathbb{Z}) \oplus H^4(X, \mathbb{Z})(1), \]
where we apply Tate twists to get a Hodge structure of weight two. Mukai vectors refer to type \((1, 1) \) vectors in \(\tilde{H}(X, \mathbb{Z}) \). Let \((,) \) denote the natural nondegenerate pairing on \(\tilde{H}(X, \mathbb{Z}) \); this coincides with the intersection pairing on \(H^2(X, \mathbb{Z}) \) and the negative of the intersection pairing on the other summands. There is an induced homomorphism on the level of cohomology:
\[\phi_E : \tilde{H}(X, \mathbb{Z}) \to \tilde{H}(Y, \mathbb{Z}) \quad \eta \mapsto q_*(\text{ch}(\mathcal{E}) \cup p^* F \sqrt{\text{Td}_{X \times Y}}). \]
Note that
\[\phi_E \text{ch}(\mathcal{F}) = \text{ch}(\Phi_E(\mathcal{F})). \]

There are analogous constructions in \(\ell \)-adic and other flavors of cohomology [LO, § 2]. When working \(\ell \)-adically over a non-closed field we interpret \(\tilde{H}(X, \mathbb{Z}_\ell) \) as a Galois representation rather than a Hodge structure. Observe that \(\phi_E \) is defined on Hodge structures, de Rham cohomologies, and \(\ell \)-adic cohomologies—and these are all compatible.

1.3. Characterizations over the complex numbers.

Theorem 3. [Orl97, §3] Let \(X \) and \(Y \) be K3 surfaces over \(\mathbb{C} \), with transcendental cohomology groups
\[T(X) := \text{Pic}(X)^\perp \subset H^2(X, \mathbb{Z}), \quad T(Y) := \text{Pic}(Y)^\perp \subset H^2(Y, \mathbb{Z}). \]
The following are equivalent
- there exists an isomorphism of Hodge structures \(\tilde{H}(X, \mathbb{Z}) \cong \tilde{H}(Y, \mathbb{Z}) \);
- there exists an isomorphism of Hodge structures \(T(X) \cong T(Y) \);
- \(X \) and \(Y \) are derived equivalent;
- \(Y \) is isomorphic to a moduli space of stable vector bundles over \(X \), admitting a universal family \(\mathcal{E} \to X \times Y \), i.e., \(Y = M_v(X) \) for a Mukai vector \(v \) such that there exists a Mukai vector \(w \) with \((v, w) = 1 \).
See [Orl97, §3.8] for discussion of the fourth condition. This has been extended to arbitrary fields as follows:

Theorem 4. [LO, Th. 1.1] Let X and Y be $K3$ surfaces over an algebraically closed field F of characteristic $\neq 2$. Then the third and the fourth statements are equivalent.

Moreover, a derived equivalence between X and Y induces Galois-compatible isomorphisms between their ℓ-adic Mukai lattices.

1.4. Descending derived equivalence

Let X and Y be $K3$ surfaces projective over a field F of characteristic zero. Let \bar{X} and \bar{Y} be the corresponding surfaces over the algebraic closure \bar{F}.

Lemma 5. Let v and w be primitive Mukai vectors for X and Y respectively, with $(v,v),(w,w) \geq -2$ and such that either the rank is positive or the first Chern class is ample. Suppose they are invariant under the Galois group $\text{Gal}(\bar{F}/F)$ and there exists an isomorphism

$$\iota : M_v(\bar{X}) \xrightarrow{\sim} M_w(\bar{Y})$$

inducing

$$\iota^* : H^2(M_w(\bar{Y}), \mathbb{Z}_\ell) \xrightarrow{\sim} H^2(M_v(\bar{X}), \mathbb{Z}_\ell),$$

compatible with Galois actions. Then

$$M_v(X) \simeq M_w(Y)$$

over F.

Proof. Our assumptions on the Mukai vectors guarantee that the moduli spaces $M_v(\bar{X})$ and $M_w(\bar{Y})$ are of $K3$ type, i.e., deformation equivalent to Hilbert schemes on $K3$ surfaces, [Yos01, 8.1]. Consider the scheme $\text{Isom}(M_v(\bar{X}), M_w(\bar{Y}))$ parametrizing isomorphisms from $M_v(\bar{X})$ to $M_w(\bar{Y})$, which is smooth of dimension zero. Since $M_v(X)$ and $M_w(Y)$ are defined over F, this scheme is defined over F. In characteristic zero, Galois-fixed points of $\text{Isom}(M_v(\bar{X}), M_w(\bar{Y}))$ correspond to morphisms between the moduli spaces defined over F.

The Torelli theorem implies that the automorphism group of a $K3$ surface has a faithful representation in its second cohomology. This holds true for manifolds of $K3$ type as well—see [Mar10, Prop. 1.9] as well as previous work of Beauville and Kaledin-Verbitsky. The Galois invariance of ι^* implies that ι is defined over F. \hfill \square

Proposition 6. Suppose that \bar{X} and \bar{Y} are derived equivalent and the induced

$$\phi : \bar{H}(\bar{X}, \mathbb{Z}_\ell) \xrightarrow{\sim} \bar{H}(\bar{Y}, \mathbb{Z}_\ell)$$
is compatible with Galois actions. Then X and Y are derived equivalent over F.

Proof. We use Lemma 5 in the special case where $w = (1, 0, 0)$ and $v = \phi^{-1}(w)$ so that $M_w(Y) = Y$ and $M_v(\check{X}) = \check{Y}$. The Galois compatibility required in Lemma 5 follows from the fact that ϕ is compatible with Galois actions. We do not need to check the rank/Chern class conditions as X and Y are assumed to be K3 surfaces. □

1.5. Cycle-theoretic invariants of derived equivalence.

Proposition 7. Let X and Y be derived equivalent K3 surfaces over a field F of characteristic $\neq 2$. Then $\text{Pic}(X)$ and $\text{Pic}(Y)$ are stably isomorphic as $\text{Gal}(\bar{F}/F)$-modules, and $\text{Br}(X)[n] \simeq \text{Br}(Y)[n]$ provided n is not divisible by the characteristic.

Even over \mathbb{C}, this result does not extend to higher dimensional varieties [Add13].

Proof. The statement on the Picard groups follows from the Chow realization of the Fourier-Mukai transform—see [LO, §2.7] for discussion. The étale realization

$$\phi : \check{H}_{\text{ét}}(X, \mu_n) \to \check{H}_{\text{ét}}(Y, \mu_n)$$

gives the equality of Brauer groups, after modding out by the images of the cycle class maps. □

Recall that the index $\text{ind}(X)$ of a smooth projective variety X over a field F is the greatest common divisor of the degrees of field extensions F'/F over which $X(F') \neq \emptyset$.

Given a bounded complex of locally free sheaves on X

$$E = \{E_{-M} \to E_{-M+1} \to \cdots \to E_N\}$$

we may define the Chern character

$$\text{ch}(E) = \sum_j (-1)^j \text{ch}(E_j)$$

in Chow groups with \mathbb{Q} coefficients. The degree zero and one pieces yield the rank and first Chern class of E, expressed as alternating sums of the ranks and determinants of the terms, respectively. Similarly, we may define

$$c_2(E) = -\text{ch}_2(E) + \text{ch}_1(E)^2 / 2,$$
a quadratic expression in the Chern classes of the E_j with integer coefficients. Modulo the \mathbb{Z} algebra generated by the first Chern classes of the E_j, we may write

$$c_2(E) \equiv \sum_j (-1)^j c_2(E_j).$$

Lemma 8. If (S,h) is a smooth projective surface over F then

$$\text{ind}(S) = \gcd\{c_2(E) : E \text{ vector bundle on } S\} = \gcd\{c_2(E) : E \in D^b(S)\}.$$

Proof. Consider the ‘decomposable index’

$$\text{inddec}(S) := \gcd\{D_1 \cdot D_2 : D_1, D_2 \text{ very ample divisors on } S\}$$

which is equal to

$$\gcd\{D_1 \cdot D_2 : D_1, D_2 \text{ divisors on } S\},$$

because for any divisor D the divisor $D + Nh$ is very ample for $N \gg 0$. All three quantities above divide $\text{inddec}(S)$, so we work modulo this quantity.

By the analysis of Chern classes above, the second and third quantities agree. Given a reduced zero-dimensional subscheme $Z \subset S$ we have a resolution

$$0 \to E_{-2} \to E_{-1} \to \mathcal{O}_S \to \mathcal{O}_Z \to 0$$

with E_{-2} and E_{-1} vector bundles. This implies that

$$\gcd\{c_2(E) : E \text{ vector bundle on } S\} | \text{ind}(S).$$

Conversely, given a vector bundle E there exists a twist $E \otimes \mathcal{O}_S(Nh)$ that is globally generated and

$$c_2(E \otimes \mathcal{O}_S(Nh)) \equiv c_2(E) \pmod{\text{inddec}(S)}.$$

Thus there exists a zero-cycle Z with degree $c_2(E \otimes \mathcal{O}_S(Nh))$ and

$$\text{ind}(S) | \gcd\{c_2(E) : E \text{ vector bundle on } S\}. \quad \Box$$

Proposition 9. If X is a K3 surface over a field F then

$$\text{ind}(X) | \gcd\{24, D_1 \cdot D_2 : D_1, D_2 \text{ are divisors on } X\}.$$

This follows from Lemma 8 and the fact that $c_2(T_X) = 24$. Beauville-Voisin [BV04] and Huybrechts [Huy10] have studied the corresponding subgroup of $\text{CH}_0(X_{\bar{F}})$.
Proposition 10. Let X and Y be derived equivalent K3 surfaces over a field F. Then $\text{ind}(X) = \text{ind}(Y)$.

Proof. Theorem 4 allows us to express $Y = M_v(X)$ for $v = (r, ah, s)$ where h is a polarization on X and $a^2h^2 = 2rs$. It also yields a Mukai vector $w = (r', bg, s') \in \tilde{H}(X, \mathbb{Z}_e)$ with

$$(v, w) = abg \cdot h - rs' - sr' = 1.$$

Thus we have

$$\langle r, s \rangle = \langle 1 \rangle \pmod{g \cdot h}.$$

Consider the Fourier-Mukai transform

$$\Phi : D^b(X) \to D^b(Y)$$

and the induced homomorphism ϕ on the Mukai lattice. Note that

$$\phi(v) = (0, 0, 1)$$

reflecting the fact that a point on Y corresponds to a sheaf on X with Mukai vector v.

Suppose that Y has a rational point over a field of degree n over F; let $Z \subset Y$ denote the corresponding subscheme of length n. Applying Φ^{-1} to \mathcal{O}_Z gives an element of the derived category with Mukai vector (nr, nah, ns) and

$$c_2(\Phi^{-1}(\mathcal{O}_Z)) = \frac{c_1(\Phi^{-1}(\mathcal{O}_Z))^2}{2} - \chi(\Phi^{-1}(\mathcal{O}_Z)) + 2\text{rank}(\Phi^{-1}(\mathcal{O}_Z))$$

which equals $n(nr + r - s)$. Following the proof of Lemma 8, we compute

$$c_2(\Phi^{-1}(\mathcal{O}_Z)) \pmod{\text{inddec}(X)}.$$

First suppose that r and s have different parity, so that $\gcd(nr + r - s, 2rs) = \gcd(nr + r - s, rs)$. Then we have

$$\langle nr + r - s, rs \rangle = \langle r - s, rs \rangle = \langle r, s \rangle^2 = \langle 1 \rangle \pmod{g \cdot h}.$$

If they have the same parity then $g \cdot h$ must be odd and

$$\langle nr + r - s, 2rs \rangle = \langle nr + r - s, rs \rangle \pmod{g \cdot h}$$

and repeating the argument above gives the desired conclusion. Thus we find

$$c_2(\Phi^{-1}(\mathcal{O}_Z)) \equiv n \pmod{\text{inddec}(X)},$$

whence $\text{ind}(X) \mid n$. Varying over all degrees n, we find

$$\text{ind}(X) \mid \text{ind}(Y)$$

Thus we have

$$\langle r, s \rangle = \langle 1 \rangle \pmod{g \cdot h}.$$

Consider the Fourier-Mukai transform

$$\Phi : D^b(X) \to D^b(Y)$$

and the induced homomorphism ϕ on the Mukai lattice. Note that

$$\phi(v) = (0, 0, 1)$$

reflecting the fact that a point on Y corresponds to a sheaf on X with Mukai vector v.

Suppose that Y has a rational point over a field of degree n over F; let $Z \subset Y$ denote the corresponding subscheme of length n. Applying Φ^{-1} to \mathcal{O}_Z gives an element of the derived category with Mukai vector (nr, nah, ns) and

$$c_2(\Phi^{-1}(\mathcal{O}_Z)) = \frac{c_1(\Phi^{-1}(\mathcal{O}_Z))^2}{2} - \chi(\Phi^{-1}(\mathcal{O}_Z)) + 2\text{rank}(\Phi^{-1}(\mathcal{O}_Z))$$

which equals $n(nr + r - s)$. Following the proof of Lemma 8, we compute

$$c_2(\Phi^{-1}(\mathcal{O}_Z)) \pmod{\text{inddec}(X)}.$$

First suppose that r and s have different parity, so that $\gcd(nr + r - s, 2rs) = \gcd(nr + r - s, rs)$. Then we have

$$\langle nr + r - s, rs \rangle = \langle r - s, rs \rangle = \langle r, s \rangle^2 = \langle 1 \rangle \pmod{g \cdot h}.$$

If they have the same parity then $g \cdot h$ must be odd and

$$\langle nr + r - s, 2rs \rangle = \langle nr + r - s, rs \rangle \pmod{g \cdot h}$$

and repeating the argument above gives the desired conclusion. Thus we find

$$c_2(\Phi^{-1}(\mathcal{O}_Z)) \equiv n \pmod{\text{inddec}(X)},$$

whence $\text{ind}(X) \mid n$. Varying over all degrees n, we find

$$\text{ind}(X) \mid \text{ind}(Y)$$
and the Proposition follows. □

A spherical object on a K3 surface \(X/F\) is an element \(\mathcal{S} \in D^b(X)\) with

\[
\text{Ext}^0(\mathcal{S}, \mathcal{S}) = \text{Ext}^2(\mathcal{S}, \mathcal{S}) = F, \quad \text{Ext}^i(\mathcal{S}, \mathcal{S}) = 0, \quad i \neq 0, 2.
\]

These satisfy the following

- \((v(\mathcal{S}), v(\mathcal{S})) = -2;\)
- rigid simple vector bundles are spherical;
- each spherical object \(\bar{\mathcal{S}}\) on \(X_{\bar{F}}\) is defined over a finite extension \(F'/F\) [Huy10, 5.4];
- over \(\mathbb{C}\), each \(v = (r, D, s) \in \bar{H}(X, \mathbb{Z}) \cap H^{1,1}\) with \((v, v) = -2\) arises from a spherical object, which may be taken to be a rigid vector bundle \(E\) if \(r > 0\) [Kul89];
- under the same assumptions, for each polarization \(h\) on \(X\) there is a unique \(h\)-slope stable vector bundle \(E\) with \(v(E) = v\) [Huy12a, 5.1.iii].

The last result raises the question of whether spherical objects are defined over the ground field:

Question 11. Let \(X\) be a K3 surface over a field \(F\). Suppose that \(\bar{\mathcal{S}}\) is a spherical object on \(X_{\bar{F}}\) such that \(c_1(\bar{\mathcal{S}}) \in \text{Pic}(X_{\bar{F}})\) is a divisor defined over \(X\). When does \(\bar{\mathcal{S}}\) come from an object \(\mathcal{S}\) on \(X\)?

Kuleshov [Kul89, Kul90] gives a partial description of how to generate all exceptional bundles on K3 surfaces of Picard rank one through ‘restructuring’ operations and ‘dragons’. It would be worthwhile to analyze which of these operations could be defined over the ground field.

Example 12. We give an example of a K3 surface \(X\) over a field \(F\) with

\[\text{Pic}(X) = \text{Pic}(X_{\bar{F}}) = \mathbb{Z}h\]

and a rigid sheaf \(E\) over \(X_{\bar{F}}\) that fails to descend to \(F\).

Choose \((X, h)\) to be a degree fourteen K3 surface defined over \(\mathbb{R}\) with \(X(\mathbb{R}) = \emptyset\). This may be constructed as follows: Fix a smooth conic \(C\) and quadric threefold \(Q\) with

\[C \subset Q \subset \mathbb{P}^4, \quad Q(\mathbb{R}) = \emptyset.\]
Let X' denote a complete intersection of Q with a cubic containing C; we have $X'({\mathbb R}) = \emptyset$ and X' admits a lattice polarization
\[
\begin{array}{c|cc}
g & C \\
6 & 2 \\
2 & -2 \\
\end{array}
\]
Write $h = 2g - C$ so that (X', h) is a degree 14 K3 surface containing a conic. Let X be a small deformation of X' with $\text{Pic}(X_C) = \mathbb{Z}h$.

The K3 surface X is Pfaffian if and only if it admits a vector bundle E with $v(E) = (2, h, 4)$ corresponding to the classifying morphism $X \to \text{Gr}(2, 6)$. However, note that $c_2(E) = 5$ which would mean that $\text{ind}(X) = 1$. On the other hand, if $X({\mathbb R}) = \emptyset$ then $\text{ind}(X) = 2$.

2. EXAMPLES OF DERIVED EQUIVALENCE

2.1. Elliptic fibrations. The paper [AKW14] has a detailed discussion of derived equivalences among genus one curves over function fields. The results below are compatible with their approach—the derived equivalences we discuss restrict over the generic point to those in [AKW14, Th. 1.1].

In this section we work over a field F of characteristic zero.

A K3 surface X is elliptic if it admits a morphism $X \to C$ to a curve of genus zero with fibers of genus one. We allow $C = {\mathbb P}^1$ or a non-split conic over F.

Lemma 13. A K3 surface X is elliptic if and only if it admits a non-trivial divisor D with $D^2 = 0$.

Proof. If X is elliptic then the pull back of a non-trivial divisor from C gives a square-zero class; we focus on the converse.

This is well-known if F is algebraically closed [PSŠ71, §6, Th. 1]. Indeed, let $C_+ \subset H^2(X, \mathbb{R})$ denote the component of the positive cone $\{\eta : (\eta, \eta) > 0\}$ containing an ample divisor and $\Gamma \subset \text{Aut}(H^2(X, \mathbb{Z}))$ the group generated by Picard-Lefschetz reflections ρ_R associated with (-2)-classes $R \in \text{Pic}(X)$. Then the Kähler cone of X is a fundamental domain for the action of Γ on C_+, so that no two elements of the cone are in the same orbit and each orbit in C_+ meets the closure of the Kähler cone. Thus if $\text{Pic}(X)$ represents zero then there exists a non-zero divisor D in the closure of the Kähler cone with $D^2 = 0$, which
induces an elliptic fibration $X \to \mathbb{P}^1$. Given a divisor $D \in C_+$, we can be a bit more precise about the $\gamma \in \Gamma$ required to take D to a nef divisor. We can write

$$\gamma = \rho_{R_1} \cdots \rho_{R_m}$$

where each R_j is the class of an irreducible rational curve contained in the fixed part of the linear series $|D|$ (cf. proof in [PŠŠ71, §6], [SD74, §2]). Since every nef divisor is semiample, we conclude that two nef divisors D, D' cannot be in the same orbit under the action of Γ. Thus given a divisor $D \in C_+$, there is a unique element in its Γ-orbit contained in the nef cone.

Now suppose F is not algebraically closed and D is defined over F. Then there exists a unique $f \in \Gamma \cdot D$ in the nef cone of X, which is necessarily defined over F. This divisor is semiample, inducing our elliptic fibration. \hfill \Box

An elliptic K3 surface $J \to C$ is Jacobian if it admits a section $C \to J$. It has geometric Picard group containing

$$\begin{array}{c|cc}
 f & \Sigma \\
 \hline
 \Sigma & 0 & 1 \\
\end{array}$$

where f is a fiber and Σ is the section. Jacobian elliptic surfaces admit numerous autoequivalences [Bri98, §5]. Let $a, b \in \mathbb{Z}$ with $a > 0$ and $(a, b) = 1$. The moduli space of rank a degree b indecomposable vector bundles on fibers of $J \to C$ is an elliptic fibration with section, isomorphic to J over C. This reflects Atiyah’s classification of vector bundles over elliptic curves [Ati57, Th. 7]. The associated Fourier-Mukai transform induces an autoequivalence of J acting on $\tilde{H}(J, \mathbb{Z})$ via an element of

$$\begin{pmatrix} c & a \\ d & b \end{pmatrix} \in \text{SL}_2(\mathbb{Z})$$

obtained as in [Bri98, Th. 3.2,5.3]. This acts on the Mukai vectors (or their ℓ-adic analogues)

$$(1, 0, 0), (0, 0, 1) \in H^0(J, \mathbb{Z})(-1) \oplus H^2(J, \mathbb{Z}) \oplus H^4(J, \mathbb{Z})(1)$$

by the formula

$$(1, 0, 0) \mapsto (0, af, c), \quad (0, 0, 1) \mapsto (b, d(f + \Sigma), 0).$$
The action is transitive on the (-2)-vectors in the lattice of algebraic classes

$$(2.2) \quad H^0(J, \mathbb{Z})(-1) \oplus H^4(J, \mathbb{Z})(1) \oplus \langle f, \Sigma \rangle \simeq \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix}.$$

Thus we have established the following:

Proposition 14. Let $J \to C$ be a Jacobian elliptic K3 surface over F. Then autoequivalences of J defined over F induce a representation of $\text{SL}_2(\mathbb{Z})$ on (2.2) as above.

This should be seen as a refinement of [HLOY04a, Th. 1.6]: orientation preserving automorphisms of the Mukai lattice of a complex K3 surface arise from autoequivalences. The point is that here autoequivalences are defined over the ground field. As a consequence, we find

Corollary 15. Let J_1 and J_2 denote Jacobian elliptic K3 surfaces over a field F of characteristic zero. If J_1 and J_2 are derived equivalent then $J_1 \simeq J_2$.

Over an algebraically closed field this is [HLOY04b, Cor. 2.7.3]. For F not algebraically closed, Proposition 14 allows us to find an autoequivalence between J_1 and J_2 preserving the grading on the Mukai lattice; the Torelli Theorem implies that $J_1 \simeq J_2$ (applying the proof of Lemma 5).

Remark 16. Let X be a complex K3 surface with

$$\text{Pic}(X) = \begin{vmatrix} f & M \\ f & 0 & N \\ M & N & 2A \end{vmatrix}$$

for $N > 1$ and $0 \leq A \leq N - 1$. It would be interesting to exhibit a natural group of autoequivalences acting as above on $\tilde{H}(X, \mathbb{Z})$ via a congruence subgroup of level N. See [BM01, §4] for results in this direction.

We recall the classical Ogg-Shafarevich theory for elliptic fibrations, following [Cal00, 4.4.1, 5.4.5]: Let F be algebraically closed of characteristic zero and $J \to \mathbb{P}^1$ Jacobian elliptic K3 surface. We may interpret

$$\text{Br}(J/\mathbb{P}^1) = \text{Br}(J)$$
and each α in this group may be realized by an elliptically fibered K3 surface $X \to \mathbb{P}^1$ with Jacobian fibration $J \to \mathbb{P}^1$. If α has order n then we have natural exact sequences

$$0 \to \mathbb{Z}/n\mathbb{Z} \to \operatorname{Br}(J) \to \operatorname{Br}(X) \to 0$$

and

$$0 \to T(X) \to T(J) \to \mathbb{Z}/n\mathbb{Z} \to 0.$$

Note that if $Y = \operatorname{Pic}^c(X/\mathbb{P}^1)$ then $[Y] = c[X] \in \mathfrak{M}(J/\mathbb{P}^1)$. If c is relatively prime to n, so there exists an integer b with $bc \equiv 1 \pmod{n}$, then we have $\operatorname{Pic}^b(Y) = X$ as well. It follows that X and Y are derived equivalent with the universal sheaves inducing the Fourier-Mukai transform [Bri98, Th. 1.2].

Proposition 17. Let F be algebraically closed of characteristic zero. Let $\phi : X \to \mathbb{P}^1$ be an elliptic K3 surface with Jacobian fibration $J(X) \to \mathbb{P}^1$. Let $\alpha \in \operatorname{Br}(J(X))$ denote the Brauer class associated with $[X]$ in the Tate-Shafarevich group of $J(X) \to \mathbb{P}^1$. Then X is derived equivalent to the pair $(J(X), \alpha)$.

This follows from the proof of Căldăraru’s conjecture; see [HS06, 1.vi] as well as [Cal00, 4.4.1] for the fundamental identification between the twisting data and the Tate-Shafarevich group.

Suppose that X and Y are K3 surfaces derived equivalent over a field F, and X is elliptic. Let $\Phi : D^b(X) \to D^b(Y)$ denote the Fourier-Mukai transform and

$$\phi : \tilde{H}(X, \mathbb{Z}) \to \tilde{H}(Y, \mathbb{Z})$$

the associated map on cohomology. Write

$$\Pi(X) = H^0(X, \mathbb{Z})(-1) \oplus H^4(X, \mathbb{Z})(1) = H^2(X, \mathbb{Z})^1 \subset \tilde{H}(X, \mathbb{Z})$$

and let f_X be the class of a fiber of a designated elliptic fibration $X \to C$. Write

$$L = H^0(X, \mathbb{Z})(-1) \oplus \mathbb{Z}f_X \oplus H^4(X, \mathbb{Z})(1)$$

and note that this admits two isotropic planes

$$L_0 = \langle (1, 0, 0), f_X \rangle, L'_0 = \langle (0, 0, 1), f_X \rangle.$$

Let $M = \phi(L)$ which admits corresponding subspaces M_0 and M'_0. We know that

- M_0 and M'_0 intersect both $H^0(Y, \mathbb{Z})(-1) \oplus H^4(Y, \mathbb{Z})(1)$ and $\operatorname{Pic}(Y)$ in isotropic vectors;
we have either
\[\dim(M \cap \text{Pic}(Y)) = 2, \quad \dim(M \cap \Pi(Y)) = 1 \]
or
\[\dim(M \cap \text{Pic}(Y)) = 1, \quad \dim(M \cap \Pi(Y)) = 2. \]
• the intersections \(M \cap \text{Pic}(Y) \) and \(M \cap \Pi(Y) \) are saturated.

In the first case \(M \cap \Pi(Y) \) is therefore generated by \((0,0,1)\) or \((1,0,0)\). After applying a spherical twist by \((1,0,1)\)–which is defined over the ground field–we may assume the former. Writing \(v = \phi^{-1}(0,0,1) \) we assume \(M_v(X) = Y \). However, note that \(v \in L_0 \cap L'_0 \) thus \(v = \pm(0,f_X,0) \); in this case \(Y = \text{Pic}^1(X/C) \) so in particular \(Y \) and \(X \) are isomorphic over \(C \).

In the second case \(\Pi(Y) \subset M \) and \(M \cap \text{Pic}(Y) = \mathbb{Z}f_Y \) for an isotropic vector \(f_Y \neq 0 \). Furthermore, we may assume that that \(\phi(0,f_X,0) = (0,f_Y,0) \); after twisting, we may take \(f_Y \) to be effective as a divisor on \(Y \). Postcomposing by suitable Picard-Lefschetz reflections on \(Y \), we may assume that \(f_Y \) is the class of a fiber of an elliptic fibration \(Y \to C' \). Thus
\[\phi(0,0,1) = (0,af_Y,b) \text{ or } (b,af_Y,0) \]
for some relatively prime non-zero integers \(a \) and \(b \). Again, after applying a spherical twist and perhaps a shift we may assume
\[\phi(0,0,1) = (0,af_Y,b), \quad a > 0. \]
Thus we may interpret \(X = J^{a,b}(Y/C') \), the relative moduli space of rank \(a \) and degree \(b \) vector bundles on fibers of \(Y \to C' \). Hence we may identify \(C \) and \(C' \). Since \(a \) and \(b \) are relatively prime, taking determinants gives an isomorphism
\[J^{a,b}(Y/C) \simeq J^{1,b}(Y/C) = \text{Pic}^b(Y/C). \]
This is [BM01, Lem. 4.2] but essentially is due to Atiyah [Ati57].

Thus we have proven the following:

Proposition 18. Let \(X \) and \(Y \) be a K3 surfaces, derived equivalent over a field \(F \). Suppose that \(X \) admits an elliptic fibration \(X \to C \). Then \(Y \) admits an elliptic fibration \(Y \to C \) and we have an isomorphism
\[X \simeq \text{Pic}^b(Y/C) \]
over \(C \), for some integer \(b \).
Corollary 19. Retain the notation and assumptions of Proposition 18 and $J \to C$ denote the common Jacobian fibration of X and Y. Then we have X and Y yield elements of $\text{III}(J/C)$ and generate the same subgroup.

Indeed, by symmetry we have $X \simeq \text{Pic}^b(Y/C)$ and $Y \simeq \text{Pic}^c(X/C)$ for $b, c \in \mathbb{Z}$. As before, if $n = \text{ord}([X]) = \text{ord}([Y])$ in the Tate-Shafarevich group then $bc \equiv 1 \pmod{n}$.

Corollary 20. Let X and Y be elliptic K3 surfaces derived equivalent over a field F of characteristic zero. If $X(F) \neq \emptyset$ then $Y(F) \neq \emptyset$. The same holds for Zariski density of rational points.

The identifications given in Proposition 18 imply that X dominates Y over F, and vice versa.

2.2. Rank one K3 surfaces. We recall the general picture:

Proposition 21. [Ogu02, Prop. 1.10] Let X/\mathbb{C} be a K3 surface with $\text{Pic}(X) = \mathbb{Z}h$, where $h^2 = 2n$. Then the number m of isomorphism classes of K3 surfaces Y derived equivalent to X is given by

$$m = 2^{\tau(n)-1}, \quad \text{where } \tau(n) = \text{number of prime factors of } n.$$

Example 22. The first case where there are multiple isomorphism classes is degree twelve. Let (X, h) be such a K3 surface and $Y = M_{(2, h, 3)}(X)$ the moduli space of stable vector bundles $E \to X$ with

$$\text{rk}(E) = 2, \quad c_1(E) = h, \quad \chi(E) = 2 + 3 = 5,$$

whence $c_2(E) = 5$. Note that if $Y(F) \neq \emptyset$ then X admits an effective zero-cycle of degree five and therefore a zero-cycle of degree one. Indeed, if $E \to X$ is a vector bundle corresponding to $[E] \in Y(F)$ then a generic $\sigma \in \Gamma(X, E)$ vanishes at five points on X. As we vary σ, we get a four-parameter family of such cycles. Moreover, the cycle h^2 has degree twelve, relatively prime to five.

Is $X(F) \neq \emptyset$ when $Y(F) \neq \emptyset$?

2.3. Rank two K3 surfaces. Exhibiting pairs of non-isomorphic derived equivalent complex K3 surfaces of rank two is a problem on quadratic forms [HLOY04b, §3]. Suppose that $\text{Pic}(X_C) = \Pi_X$ and $\text{Pic}(Y_C) = \Pi_Y$ and X and Y are derived equivalent. Orlov’s Theorem implies $T(X) \simeq T(Y)$ which means that Π_X and Π_Y have isomorphic discriminant groups/p-adic invariants. Thus we have to exhibit p-adically equivalent rank-two even indefinite lattices that are not equivalent over \mathbb{Z}.
Example 23. We are grateful to Sho Tanimoto and Letao Zhang for assistance with this example. Consider the lattices
\[
\Pi_X = \begin{pmatrix} C & f \\ f & 13 & 12 \end{pmatrix}, \quad \Pi_Y = \begin{pmatrix} D & g \\ g & 15 & 10 \end{pmatrix}
\]
which both have discriminant 145. Note that \(\Pi_X \) represents \(-2\)
\[
(2f - C)^2 = (25C - 2f)^2 = -2
\]
but that \(\Pi_Y \) fails to represent \(-2\).

Let \(X \) be a K3 surface over \(F \) with split Picard group \(\Pi_X \) over a field \(F \). We assume that \(C \) and \(f \) are ample. The moduli space
\[
Y = M_{(2,C+f,10)}(X)
\]
has Picard group
\[
\begin{array}{c|cc}
2C & (C + f)/2 \\
\hline
2C & 8 & 15 \\
(C + f)/2 & 15 & 10 \\
\end{array} \cong \Pi_Y
\]
while \(M_{(2,D,2)}(Y) \) has Picard group
\[
\begin{array}{c|cc}
D/2 & 2g \\
\hline
D/2 & 2 & 15 \\
2g & 15 & 40 \\
\end{array} \cong \Pi_X
\]
and is isomorphic to \(X \).

These surfaces have the following properties:
- \(X \) and \(Y \) admit decomposable zero cycles of degree one over \(F \);
- \(X(F) \neq \emptyset \): the rational points arise from the smooth rational curves with classes \(2f - C \) and \(25C - 2f \), both of which admit zero-cycles of odd degree and thus are \(\cong \mathbb{P}^1 \) over \(F \);
- \(Y(F') \) is dense for some finite extension \(F'/F \), due to the fact that \(|\text{Aut}(Y_C)| = \infty \).

We do not know whether
- \(X(F') \) is dense for any finite extension \(F'/F \);
- \(Y(F) \neq \emptyset \).

3. Finite and real fields

The \(\ell \)-adic interpretation of the Fourier-Mukai transform yields...
Theorem 24. \[LO\] Let \(X \) and \(Y \) be K3 surfaces derived equivalent over a finite field \(F \). Then for each finite extension \(F'/F \) we have
\[
|X(F')| = |(Y(F'))|.
\]

We have a similarly complete picture over the real numbers. We review results of Nikulin [Nik79, §3] \[Nik08, §2\] on real K3 surfaces.

Let \(X \) be a K3 surface over \(\mathbb{R} \), \(X_{\mathbb{C}} \) the corresponding complex K3 surface, and \(\phi \) the action of the anti-holomorphic involution (complex conjugation) of \(X_{\mathbb{C}} \) on \(H^2(X_{\mathbb{C}}, \mathbb{Z}) \). Let \(\Lambda_{\pm} \subset H^2(X_{\mathbb{C}}, \mathbb{Z}) \) denote the eigenlattices where \(\phi \) acts via \(\pm 1 \). If \(D \) is a divisor on \(X \) defined over \(\mathbb{R} \) then
\[
\phi([D]) = -D;
\]
the sign reflects the fact that complex conjugation reverses the sign of \((1,1)\) forms. In Galois-theoretic terms, the cycle class of a divisor lives naturally \(H^2(X_{\mathbb{C}}, \mathbb{Z}(1)) \) and twisting by \(-1\) accounts for the sign change. Let \(\tilde{\Lambda}_{\pm} \) denote the eigenlattices of the Mukai lattice; note that \(\tilde{\Lambda}_{-} \) contains the degree zero and four summands. Again, the sign change reflects the fact that these are twisted in the Mukai lattice.

We introduce the key invariants: Let \(r \) denote the rank of \(\Lambda_{\pm} \). The discriminant groups of \(\Lambda_{\pm} \) are two-elementary groups of order \(2^a \) where \(a \) is a non-negative integer. Note that \(\tilde{\Lambda}_{\pm} \) have discriminant groups of the same order. Finally, we set
\[
\delta_{\phi} = \begin{cases}
0 & \text{if } (\lambda, \phi(\lambda)) \equiv 0 \pmod{2} \text{ for each } \lambda \in \Lambda \\
1 & \text{otherwise.}
\end{cases}
\]
Note that \(\delta_{\phi} \) can be computed via the Mukai lattice
\[
\delta_{\phi} = 0 \text{ iff } (\lambda, \phi(\lambda)) \equiv 0 \pmod{2} \text{ for each } \lambda \in \tilde{\Lambda},
\]
as the degree zero and four summands always give even intersections.

We observe the following:

Proposition 25. Let \(X \) and \(Y \) be K3 surfaces over \(\mathbb{R} \), derived equivalent over \(\mathbb{R} \). Then
\[
(r(X), a(X), \delta_{\phi,X}) = (r(Y), a(Y), \delta_{\phi,Y}).
\]

Proof. The derived equivalence induces an isomorphism
\[
\tilde{H}(X_{\mathbb{C}}, \mathbb{Z}) \simeq \tilde{H}(Y_{\mathbb{C}}, \mathbb{Z})
\]
compatible with the conjugation actions. Since \((r, a, \delta_{\phi})\) can be read off from the Mukai lattice, the equality follows. \(\square\)
The topological type of a real K3 surface is governed by these invariants. Let Σ_g denote a compact orientable surface of genus g.

Proposition 26. [Nik79, Th. 3.10.6] [Nik08, 2.2] Let X be a real K3 surface with invariants (r, a, δ, ϕ). Then the manifold $X(\mathbb{R})$ is orientable and

$$X(\mathbb{R}) = \begin{cases} \emptyset & \text{if } (r, a, \delta, \phi) = (10, 10, 0) \\ T_1 \sqcup T_1 & \text{if } (r, a, \delta, \phi) = (10, 8, 0) \\ T_g \sqcup (T_0)^k & \text{otherwise, where} \\ & g = (22 - r - a)/2, k = (r - a)/2 \end{cases}$$

Corollary 27. Let X and Y be K3 surfaces defined and derived equivalent over \mathbb{R}. Then $X(\mathbb{R})$ and $Y(\mathbb{R})$ are diffeomorphic. In particular, $X(\mathbb{R}) \neq \emptyset$ if and only if $Y(\mathbb{R}) \neq \emptyset$.

The last statement also follows from Proposition 10: A variety over \mathbb{R} has a real point if and only if its index is one. (This was pointed out to us by Colliot-Thélène.)

Example 28. Let X and Y be derived equivalent K3 surfaces, defined over \mathbb{R}; assume they have Picard rank one. Then $Y = M_v(X)$ for some isotropic Mukai vector $v = (r, s) \in \tilde{H}(X(\mathbb{C}), \mathbb{Z})$ with $(r, s) = 1$. For a vector bundle E of this type note that

$$c_2(E) = c_1(E)^2/2 + r\chi(O_X) - \chi(E) = rs + r - s,$$

which is odd as r and s are not both even. Then a global section of E gives an odd-degree cycle on X over \mathbb{R}, hence an \mathbb{R}-point.

4. Geometric case: local fields with complex residue field

Let X be a projective K3 surface over $F = \mathbb{C}((t))$. Consider the monodromy action

$$T : H^2(X, \mathbb{Z}) \to H^2(X, \mathbb{Z})$$

associated with a loop about $t = 0$. This is quasi-unipotent, i.e., there exist $e, f \in \mathbb{N}$ such that $(T^e - I)^f = 0$; we choose e, f minimal with this property.

Let $\Delta = \text{Spec} \mathbb{C}[[t]]$ and fix a projective model

$$\mathcal{X} \to \Delta$$
and a resolution
\[\varpi : X' \to \Delta \]
such that the central fiber \(\varpi^{-1}(0) \) is a normal crossings divisor, perhaps with multiplicities along some components. Let \(X'_0 \subset \varpi^{-1}(0) \) denote the smooth locus of the central fiber, i.e., the points of multiplicity one. A’Campo [A’C75, Th. 1] proved that
\[\chi(X'_0) = 2 + \text{trace}(T). \]
This may be interpreted as the alternating sum of the traces of the monodromy matrices on all the cohomology groups of \(X \).

An application of Hensel’s Lemma yields

Proposition 29. If \(\text{trace}(T) \neq -2 \) then \(X \to \Delta \) admits a section, i.e., \(X(F) \neq \emptyset \).

In particular, this applies when \(T \) is unipotent (\(e = 1 \)). This is the case when there exists a resolution \(X' \to \Delta \) with central fiber reduced normal crossings. (See the Appendix and Theorem 35 for further analysis.)

If \(X \) and \(Y \) are derived equivalent over \(F \) then Orlov’s Theorem (Theorem 3) implies that their Mukai lattices admit a monodromy equivariant isomorphism. Thus the characteristic polynomials of their monodromy matrices are equal.

Corollary 30. Suppose that \(X \) and \(Y \) are derived equivalent K3 surfaces with monodromy satisfying \(\text{trace}(T) \neq -2 \). Then both \(X(F) \) and \(Y(F) \) are nonempty.

We also have results when \(T \) is semisimple:

Proposition 31. Suppose that \(X \) and \(Y \) are derived equivalent K3 surfaces over \(F = \mathbb{C}((t)) \). Then the following conditions are equivalent:

- \(X \) (equivalently, \(Y \)) has monodromy acting via an element of a product of Weyl groups;
- \(X \) and \(Y \) admit models with central fiber consisting of a K3 surface with ADE singularities.

Thus both \(X(F) \) and \(Y(F) \) are nonempty.

Proof. We elaborate on the first condition: Let \(T \) denote the monodromy of \(X \). Then there exist vanishing cycles \(\gamma_1, \ldots, \gamma_s \) for \(X \) such that each \(\gamma_i^2 = -2 \), \(\langle \gamma_1, \ldots, \gamma_s \rangle \) is negative definite, and \(T \) is a product of reflections associated with the \(\gamma_i \). If \(g \) is any polarization on \(X \) then the \(\gamma_i \) are orthogonal to \(g \). Thus the Fourier-Mukai transform restricts
to an isomorphism on the sublattice generated by the γ_i. In particular, the monodromy of Y admits the same interpretation as a product of reflections.

Let L denote the smallest saturated sublattice of $H^2(X, \mathbb{Z})$ containing $\gamma_1, \ldots, \gamma_s$—the classification of Dynkin diagrams implies it is a direct sum of lattices of ADE type. Let M denote the corresponding lattice in $H^2(Y, \mathbb{Z})$, which is isomorphic to L.

After a base change

$\text{Spec}(R_1) \to \text{Spec}(R), \quad t_1^e = t$

where e is the order of T, the Torelli Theorem gives smooth (Type I Kulikov) models

$X_1, Y_1 \to \text{Spec}(R_1)$

with central fibers having ADE configurations of type M, consisting of smooth rational curves. Blowing these down yield models

$X'_1, Y'_1 \to \text{Spec}(R_1)$

which descend to

$X, Y \to \text{Spec}(R)$,

i.e., ADE models of X and Y.

An application of Hensel’s Lemma gives that $X(F), Y(F) \neq \emptyset$. □

5. Semi-stable models over p-adic fields

Let F be a p-adic field with ring of integers R. A K3 surface X over F has good reduction if there exists a smooth proper algebraic space $X \to \text{Spec}(R)$ with generic fiber X. It has ADE reduction if the central fiber has just rational double points.

We start with the case of good reduction, which follows from Theorem 4 and Hensel’s Lemma:

Corollary 32. Let X and Y be K3 surfaces over F, with good reduction and derived equivalent over F. Then $X(F) \neq \emptyset$ if and only if $Y(F) \neq \emptyset$.

We can extend this as follows:

Proposition 33. Assume that the residue characteristic $p \geq 7$. Let X and Y be K3 surfaces over F, with ADE reduction and derived equivalent over F. Then $X(F) \neq \emptyset$ if and only if $Y(F) \neq \emptyset$.

Proof. Let k be the finite residue field, $X, Y \to \text{Spec}(R)$ proper models of X and Y, X_0 and Y_0 denote the resulting reductions, and \tilde{X}_0 and \tilde{Y}_0
their minimal resolutions over \bar{k}. Applying Artin’s version of Brieskorn simultaneous resolution [Art74, Th. 2], there exists a finite extension
\[\text{Spec}(R_1) \to \text{Spec}(R)\]
and proper models
\[\tilde{X} \to \mathcal{X} \times_{\text{Spec}(R)} \text{Spec}(R') \to \text{Spec}(R'),\]
\[\tilde{Y} \to \mathcal{Y} \times_{\text{Spec}(R)} \text{Spec}(R') \to \text{Spec}(R'),\]
in the category of algebraic spaces, with central fibers \tilde{X}_0 and \tilde{Y}_0.

The Fourier-Mukai transform specializes to give an isomorphism
\[\psi : H^2_{\text{ét}}(\tilde{X}_0, \mathbb{Q}_\ell) \to H^2_{\text{ét}}(\tilde{Y}_0, \mathbb{Q}_\ell).\]
Note that since \tilde{X}, \tilde{Y} are not projective over $\text{Spec}(R')$, there is not an evident interpretation of this as a derived equivalence over $\text{Spec}(R')$. (See [BM02] for such interpretations for K3 fibrations over complex curves.) Furthermore ψ is far from unique, as we may compose with reflections arising from exceptional curves in either $\tilde{X}_0 \to \mathcal{X}_0$ or $\tilde{Y}_0 \to \mathcal{Y}_0$ associated with vanishing cycles of \mathcal{X} or \mathcal{Y}.

Let L (resp. M) denote the lattice of vanishing cycles in $H^2(X, \mathbb{Q}_\ell)$ (resp. $H^2(Y, \mathbb{Q}_\ell)$), with orthogonal complement L^\perp (resp. M^\perp). The isomorphism ψ does induce a canonical isomorphism
\[L^\perp \simeq M^\perp\]
compatible with Galois actions. As in the proof of Proposition 31, the lattices L and M are isomorphic once we fix an interpretation via vanishing cycles of our models.

Our assumption on p guarantee that the classification and deformations of rational double points over k coincides with the classification in characteristic 0 [Art77]. Choose new regular models for X and Y
\[\mathcal{X}''', \mathcal{Y}''' \to \text{Spec}(R)\]
whose central fibers \mathcal{X}''_0 and \mathcal{Y}'''_0 are obtained from \tilde{X}_0 and \tilde{Y}_0 by blowing down the (-2)-curves classes associated with L and M respectively. Let $\mathcal{X}_0 \subset \mathcal{X}'''$ and $\mathcal{Y}_0 \subset \mathcal{Y}'''$ denote the smooth loci, i.e., the complements of the rational curves associated with L and M respectively.

We claim that ψ induces an isomorphism on compactly supported cohomology
\[H^2_{c,\text{ét}}(\mathcal{X}_0, \mathbb{Q}_\ell) \simeq H^2_{c,\text{ét}}(\mathcal{Y}_0, \mathbb{Q}_\ell),\]
RATIONAL POINTS ON K3 SURFACES AND DERIVED EQUIVALENCE

compatible with Galois actions. Indeed, these may be identified with \(L^\perp \) and \(M^\perp \), respectively. The Weil conjectures yield then that

\[|X_0(k)| = |Y_0(k)| \]

and Hensel’s Lemma implies our claim. \(\square \)

Question 34. Is admitting a model with good or ADE reduction a derived invariant?

Y. Matsumoto [Mat] has recently shown that having potentially good reduction is governed by whether \(H^2_{\text{ét}}(\bar{X}, \mathbb{Q}_\ell) \) is unramified, under some technical hypotheses. This condition depends only on the \(\ell \)-adic cohomology and thus depends only on the derived equivalence class. Proposition 31 suggests a monodromy characterization of ADE reduction in the mixed characteristic case.

APPENDIX: SEMISTABILITY AND DERIVED EQUIVALENCE

Theorem 35. Let \(X \) be a K3 surface over \(F = \mathbb{C}(\!(t)\!) \). Then \(X \) admits a Kulikov model if and only if its monodromy is unipotent.

Corollary 36. Let \(X \) and \(Y \) be derived equivalent K3 surfaces over \(F \). Then \(X \) admits a Kulikov model if and only if \(Y \) admits a Kulikov model.

As we have seen, if \(X \) and \(Y \) are derived equivalent over \(F \) then their Mukai lattices admit a monodromy-equivariant isomorphism; thus the characteristic polynomials of their monodromy matrices are equal.

The remainder of this section is devoted the proof of this theorem.

Let \(R = \mathbb{C}[\![t]\!] \), \(\Delta = \text{Spec}(R) \), and \(\Delta^0 = \text{Spec}(F) \). The monodromy \(T \) of \(X \) over \(\mathbb{C}(\!(t)\!) \) satisfies

\[(T^e - I)^f = 0 \]

for some \(e, f \in \mathbb{N} \). We take \(e \) and \(f \) minimal with this property.

The semistable reduction theorem [KKMSD73] implies there exists an integer \(n \geq 1 \) such that after basechange to

\[R_2 = \mathbb{C}[\![t_2]\!], F_2 = \mathbb{C}(\!(t_2)\!), \quad t_2^n = t, \]

there exists a flat proper

\[\pi_2 : \mathcal{X}_2 \to \Delta_2 = \text{Spec}(R_2) \]

such that

- the generic fiber is the basechange of \(X \) to \(F_2 \);
- the central fiber \(\pi_2^{-1}(0) \) is a reduced normal crossings divisor.
We call this a *semistable model* for X. It is well-known that semistable reductions have unipotent monodromy so $e|n$.

By work of Kulikov and Persson-Pinkham [Kul77, PP81], there exists a semistable modification of X

$$\varpi : \tilde{X} \to \Delta_2$$

with trivial canonical class, i.e., there exists a birational map $\varphi : X_\Sigma \dashrightarrow \tilde{X}$ that is an isomorphism away from the central fibers. We call this a *Kulikov model* for X. Furthermore, the structure of the central fiber \tilde{X}_0 can be described in more detail:

Type I \tilde{X}_0 is a K3 surface and $f = 1$.

Type II \tilde{X}_0 is a chain of surfaces glued along elliptic curves, with rational surfaces at the end points and elliptic ruled surfaces in between; here $f = 2$.

Type III \tilde{X}_0 is a union of rational surfaces and $f = 3$.

We will say more about the Type III case: It determines a combinatorial triangulation of the sphere with vertices indexed by irreducible components, edges indexed by double curves, and ‘triangles’ indexed by triple points [Mor84]. We analyze this combinatorial structure of \tilde{X}_0 in terms of the integer m.

Let $\tilde{X}_0 = \bigcup_{i=1}^n V_i$ denote the irreducible components, \tilde{V}_i their normalizations, and $D_{ij} \subset \tilde{V}_i$ the double curves over $V_i \cap V_j$.

Definition 37. \tilde{X}_0 is in *minus-one form* if for each double curve D_{ij} we have $(D_{ij}^2)_{V_i} = -1$ if D_{ij} is a smooth component of D_{ij} and $(D_{ij}^2)_{V_i} = 1$ if D_{ij} is nodal.

Miranda-Morrison [MM83] have shown that after elementary transformation of \tilde{X}, we may assume that \tilde{X} is in minus-one form.

The following are equivalent [Fri83, §3],[FS85, 0.5.7.1]:

- the logarithm of the monodromy is m times a primitive matrix;
- \tilde{X}_0 admits a ‘special μ_m action’, i.e., acting trivially on the sets of components, double/triple points, and Picard groups of the irreducible components;
- \tilde{X}_0 admits ‘special m-bands of hexagons’, i.e., the triangulation coming from the components of \tilde{X}_0 arises as a degree m refinement of another triangulation.

In other words, \tilde{X}_0 ‘looks like’ it is obtained from applying semistable reduction to the degree m basechange of a Kulikov model. Its central
fiber \tilde{X}_0' can readily be described [Fri83, 4.1]—its triangulation is the one with refinement equal to the triangulation of \tilde{X}_0, and its components are contractions of the corresponding components of \tilde{X}_0.

For Type II we can do something similar [FS85, 0.3]. After elementary modifications, we may assume the elliptic surfaces are minimal. Then following are equivalent:

- the logarithm of the monodromy is m times a primitive matrix;
- $\tilde{X}_0 = V_0 \cup_E \ldots \cup_E V_m$ is a chain of $m+1$ surfaces glued along copies of an elliptic curve E, where V_0 and V_m are rational and V_1, \ldots, V_{m-1} are minimal surfaces ruled over E.

Again \tilde{X}_0 ‘looks like’ it is obtained from applying semistable reduction to another Kulikov model with central fiber $\tilde{X}_0' = V_0 \cup_E V_m$.

There are refined Kulikov models taking into account polarizations: Let (X, g) be a polarized K3 surface over F of degree $2d$. Shepherd-Barron [SB83] has shown there exists a Kulikov model $\varphi : \tilde{X} \to \Delta_2$ with the following properties:

- there exists a specialization of g to a nef Cartier divisor on the central fiber \tilde{X}_0;
- g is semi-ample relative to Δ_2, inducing

$$
\begin{array}{ccc}
\tilde{X} & \xrightarrow{|g|} & Z \\
\uparrow \varphi & & \downarrow \leftarrow \\
\Delta_2 & &
\end{array}
$$

where $\tilde{X}_0 \to Z_0$ is birational and Z_0 has rational double points, normal crossings, or singularities with local equations $xy = zt = 0$.

These will be called quasi-polarized Kulikov models and their central fibers admissible degenerations of degree $2d$.

Recall the construction in sections five and six of [FS85]: Let \mathcal{D} denote the period domain for degree $2d$ K3 surfaces and Γ the corresponding arithmetic group—the orientation-preserving automorphisms of the cohomology lattice $H^2(X, \mathbb{Z})$ fixing g. Fix an admissible degeneration (\mathcal{Y}_0, g) of degree $2d$ and its image (\mathcal{Z}_0, h), with deformation spaces $\text{Def}(\mathcal{Y}_0, g) \to \text{Def}(\mathcal{Z}_0, h)$; the morphism arises because g is semiample over the deformation space. Let

$$
\Gamma \backslash \mathcal{D}_{\mathcal{Y}_0} \supset \Gamma \backslash \mathcal{D}
$$
denote the partial toroidal compactification parametrizing limiting mixed Hodge structures with monodromy weight filtration given by a nilpotent N_{Y_0} associated with Y_0 (see [FS85, p.27]). We do keep track of the stack structure. Given a holomorphic mapping
\[f : \{ t : 0 < |t| < 1 \} \to \Gamma \backslash D, \]
that is locally liftable (lifting locally to D), with unipotent monodromy Γ-conjugate to N_{Y_0}, then f extends to
\[f : \{ t : |t| < 1 \} \to \Gamma \backslash D. \]
The period map extends to an étale morphism [FS85, 5.3.5,6.2]
\[\text{Def}(Y_0, g) \to \Gamma \backslash D. \]
Thus the partial compactification admits a (local) universal family.

Proposition 38. The smallest positive integer n for which we have a Kulikov model equals the smallest positive integer e such that T^e is unipotent.

Proof. It suffices to show that a Kulikov model exists provided the monodromy is unipotent. Suppose we have unipotent monodromy over $R_1 = \text{Spec}(C[[t_1]])$, $t_1^e = t$, and semistable reduction
\[X_2 \to \text{Spec}(R_2), \quad R_2 = \text{Spec}(C[[t_2]]), t_2^{\text{me}} = t. \]
Let $\tilde{X} \to \text{Spec}(R_2)$ denote a Kulikov model, obtained after applying elementary transformations as specified above. Write
\[mN = \log(T^e) = (T^e - I) - \frac{1}{2}(T^e - I)^2 \]
where $m \in \mathbb{N}$ and N is primitive (cf.[FS85, 1.2] for the Type III case).

Let \tilde{X}'_0 be the candidate for the ‘replacement’ Kulikov model, i.e., the central fiber of the Kulikov model we expect to find
\[\tilde{X}' \to \text{Spec}(R_1). \]
In the Type I case $\tilde{X}'_0 = \tilde{X}_0$ by Torelli, so we focus on the Type II and III cases.

Lemma 39. Suppose that \tilde{X}_0 admits a degree $2d$ semiample divisor g. Then \tilde{X}'_0 admits one as well, denoted by g'.

Proof. For Type II, let L_j denote the class of a ruling in V_j, for $j = 1, \ldots, m - 1$. Consider the collection of nonnegative numbers
\[(g_1, \ldots, g_{m-1}), \quad g_j = g \cdot L_j. \]
We claim there exist integers a_0, \ldots, a_{m-1} such that
\[\mathcal{O}_{\tilde{X}}(g + a_0V_0 + \ldots + a_{m-1}V_{m-1}) \]
remains nef but intersects each L_j trivially. Note that
\[V_i \cdot L_{i+1} = 1, \quad i = 0, \ldots, m-2, \quad V_i \cdot L_{i-1} = 1, \quad i = 2, \ldots, m \]
and also
\[L_i \cdot V_i = -2, \quad i = 1, \ldots, m-1. \]

Thus to intersect L_j trivially we need
\[g_j - 2a_j + a_{j-1} + a_{j+1} = 0, \quad j = 1, \ldots, m-2, \]
and $g_{m-1} - 2a_{m-1} + a_{m-2} = 0$ if $j = m-1$. We first choose a_2, \ldots, a_{m-1} so that
\[(a_2V_2 + \ldots + a_{m-1}V_{m-1}) \cdot L_j = -g_j, \quad j = 2, \ldots, m-1; \]
necessarily we have $a_2, \ldots, a_{m-1} \geq 0$, whence
\[(a_2V_2 + \ldots + a_{m-1}V_{m-1}) \cdot L_1 \geq 0. \]

Now we choose $a_0 \leq 0$ so that $a_0 + g_1 + a_2 = 0$. It follows that $g + a_0V_0 + \ldots + a_{m-1}V_{m-1}$ is nef: By construction, it meets L_1, \ldots, L_m trivially, and it is nef on V_0 and V_m because the conductor curves on those surfaces are themselves nef. Indeed, they are irreducible curves with self-intersection zero.

For Type III, we rely on Proposition 4.2 of [Fri83], which gives an analogous process for modifying the coefficients of h so that it is trivial or a sum of fibers on the special bands of hexagons. However, Friedman’s result does not indicate whether the resulting line bundle is nef. This can be achieved after birational modifications of the total space [SB83, Th. 1].

We can apply the Friedman-Scattone compactification construction to both (\tilde{X}_0, g) and (\tilde{X}_0', g'), with $N = N_{\tilde{X}_0'}$ and $mN = N_{\tilde{X}_0}$. Thus we obtain two compactifications
\[\Gamma \backslash \mathcal{D}_{mN} \to \Gamma \backslash \mathcal{D}_N \supset \Gamma \backslash \mathcal{D}, \]
both with universal families of degree $2d$ K3 surfaces and admissible degenerations.

To construct $\tilde{X}' \to \text{Spec}(R_1)$ we use the diagram
\[
\begin{array}{c}
\text{Spec}(R_2) \quad \to \quad \Gamma \backslash \mathcal{D}_{mN} \\
\downarrow \\
\text{Spec}(R_1) \quad \to \quad \Gamma \backslash \mathcal{D}_N.
\end{array}
\]
The liftability criterion for mappings to the toriodal compactifications gives an arrow

$$\text{Spec}(R_1) \to \Gamma \mathcal{D}_N$$

making the diagram commute. The induced universal family on this space induces a family

$$\tilde{X}' \to \text{Spec}(R_1),$$

agreeing with our original family for \(t_1 \neq 0 \) by the Torelli Theorem. This is the desired model. □

REFERENCES

[A'C75] Norbert A'Campo. La fonction zêta d'une monodromie. *Comment. Math. Helv.*, 50:233–248, 1975.

[Add13] Nicolas Addington. The Brauer group is not a derived invariant, 2013. 1306.6538.

[AKW14] Benjamin Antieau, Daniel Krashen, and Matthew Ward. Derived categories of torsors for abelian schemes, 2014. arXiv:1409.2580.

[Art74] Michael Artin. Algebraic construction of Brieskorn’s resolutions. *J. Algebra*, 29:330–348, 1974.

[Art77] Michael Artin. Coverings of the rational double points in characteristic \(p \). In *Complex analysis and algebraic geometry*, pages 11–22. Iwanami Shoten, Tokyo, 1977.

[Ati57] M. F. Atiyah. Vector bundles over an elliptic curve. *Proc. London Math. Soc. (3)*, 7:414–452, 1957.

[BM01] Tom Bridgeland and Antony Maciocia. Complex surfaces with equivalent derived categories. *Math. Z.*, 236(4):677–697, 2001.

[BM02] Tom Bridgeland and Antony Maciocia. Fourier-Mukai transforms for K3 and elliptic fibrations. *J. Algebraic Geom.*, 11(4):629–657, 2002.

[BM13] Arend Bayer and Emanuele Macrì. MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations. *Invent. Math.*, to appear, 2013. arXiv:1301.6968.

[BMT14] Arend Bayer, Emanuele Macrì, and Yukinobu Toda. Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker type inequalities. *J. Algebraic Geom.*, 23(1):117–163, 2014. arXiv:1203.4613.

[Bri98] Tom Bridgeland. Fourier-Mukai transforms for elliptic surfaces. *J. Reine Angew. Math.*, 498:115–133, 1998.

[Bri07] Tom Bridgeland. Stability conditions on triangulated categories. *Ann. of Math. (2)*, 166(2):317–345, 2007.

[BV04] Arnaud Beauville and Claire Voisin. On the Chow ring of a K3 surface. *J. Algebraic Geom.*, 13(3):417–426, 2004.

[Cal00] Andrei Horia Caldararu. *Derived categories of twisted sheaves on Calabi-Yau manifolds*. ProQuest LLC, Ann Arbor, MI, 2000. Thesis (Ph.D.)--Cornell University.

[Fri83] Robert Friedman. Base change, automorphisms, and stable reduction for type III K3 surfaces. In *The birational geometry of degenerations*
RATIONAL POINTS ON K3 SURFACES AND DERIVED EQUIVALENCE

(Cambridge, Mass., 1981), volume 29 of Progr. Math., pages 277–298. Birkhäuser Boston, Mass., 1983.

[FS85] Robert Friedman and Francesco Scattone. Type III degenerations of K3 surfaces. Invent. Math., 83(1):1–39, 1985.

[HLOY04a] Shinobu Hosono, Bong H. Lian, Keiji Oguiso, and Shing-Tung Yau. Autoequivalences of derived category of a K3 surface and monodromy transformations. J. Algebraic Geom., 13(3):513–545, 2004.

[HLOY04b] Shinobu Hosono, Bong H. Lian, Keiji Oguiso, and Shing-Tung Yau. Fourier-Mukai number of a K3 surface. In Algebraic structures and moduli spaces, volume 38 of CRM Proc. Lecture Notes, pages 177–192. Amer. Math. Soc., Providence, RI, 2004.

[HS06] Daniel Huybrechts and Paolo Stellari. Proof of Căldărașu’s conjecture. Appendix: “Moduli spaces of twisted sheaves on a projective variety” [in moduli spaces and arithmetic geometry, 1–30, Math. Soc. Japan, Tokyo, 2006;] by K. Yoshioka. In Moduli spaces and arithmetic geometry, volume 45 of Adv. Stud. Pure Math., pages 31–42. Math. Soc. Japan, Tokyo, 2006.

[Huy10] Daniel Huybrechts. Chow groups of K3 surfaces and spherical objects. J. Eur. Math. Soc. (JEMS), 12(6):1533–1551, 2010.

[Huy12a] Daniel Huybrechts. Chow groups and derived categories of K3 surfaces. In Current developments in algebraic geometry, volume 59 of Math. Sci. Res. Inst. Publ., pages 177–195. Cambridge Univ. Press, Cambridge, 2012.

[Huy12b] Daniel Huybrechts. A global Torelli theorem for hyperkähler manifolds [after M. Verbitsky]. Astérisque, (348):Exp. No. 1040, x, 375–403, 2012. Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027–1042.

[HVA13] Brendan Hassett and Anthony Várilly-Alvarado. Failure of the Hasse principle on general K3 surfaces. J. Inst. Math. Jussieu, 12(4):853–877, 2013.

[HVAV11] Brendan Hassett, Anthony Várilly-Alvarado, and Patrick Varilly. Transcendental obstructions to weak approximation on general K3 surfaces. Adv. Math., 228(3):1377–1404, 2011.

[KKMSD73] George Kempf, Finn Faye Knudsen, D. Mumford, and Bernard Saint-Donat. Toroidal embeddings. I. Lecture Notes in Mathematics, Vol. 339. Springer-Verlag, Berlin, 1973.

[Kul77] Viktor S. Kulikov. Degenerations of K3 surfaces and Enriques surfaces. Izv. Akad. Nauk SSSR Ser. Mat., 41(5):1008–1042, 1199, 1977.

[Kul89] Sergej A. Kuleshov. A theorem on the existence of exceptional bundles on surfaces of type K3. Izv. Akad. Nauk SSSR Ser. Mat., 53(2):363–378, 1989.

[Kul90] Sergej A. Kuleshov. Exceptional bundles on K3 surfaces. In Helices and vector bundles, volume 148 of London Math. Soc. Lecture Note Ser., pages 105–114. Cambridge Univ. Press, Cambridge, 1990.

[LO] Max Lieblich and Martin Olsson. Fourier-Mukai partners of K3 surfaces in positive characteristic. arXiv:1112.5114.
Eyal Markman. Integral constraints on the monodromy group of the hyperKähler resolution of a symmetric product of a K3 surface. *Internat. J. Math.*, 21(2):169–223, 2010.

Yuwa Matsumoto. Good reduction criteria for K3 surfaces. arXiv:1401.1261.

Rick Miranda and David R. Morrison. The minus one theorem. In *The birational geometry of degenerations (Cambridge, Mass., 1981)*, volume 29 of *Progr. Math.*, pages 173–259. Birkhäuser Boston, Boston, MA, 1983.

David R. Morrison. The Clemens-Schmid exact sequence and applications. In *Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982)*, volume 106 of *Ann. of Math. Stud.*, pages 101–119. Princeton Univ. Press, Princeton, NJ, 1984.

Kelly McKinnie, Justin Sawon, Sho Tanimoto, and Anthony Várilly-Alvarado. Brauer groups on k3 surfaces and arithmetic applications, 2014. arXiv:1404.5460.

Shigeru Mukai. On the moduli space of bundles on K3 surfaces. I. In *Vector bundles on algebraic varieties (Bombay, 1984)*, volume 11 of *Tata Inst. Fund. Res. Stud. Math.*, pages 341–413. Tata Inst. Fund. Res., Bombay, 1987.

V. V. Nikulin. Integer symmetric bilinear forms and some of their geometric applications. *Izv. Akad. Nauk SSSR Ser. Mat.*, 43(1):111–177, 238, 1979.

V. V. Nikulin. On connected components of moduli of real polarized K3 surfaces. *Izv. Ross. Akad. Nauk Ser. Mat.*, 72(1):99–122, 2008.

Keiji Oguiso. K3 surfaces via almost-primes. *Math. Res. Lett.*, 9(1):47–63, 2002.

Dmitri O. Orlov. Equivalences of derived categories and K3 surfaces. *J. Math. Sci. (New York)*, 84(5):1361–1381, 1997. Algebraic geometry, 7.

Ulf Persson and Henry Pinkham. Degeneration of surfaces with trivial canonical bundle. *Ann. of Math. (2)*, 113(1):45–66, 1981.

I. I. Pjateckii-Šapiro and I. R. Šafarevič. Torelli’s theorem for algebraic surfaces of type K3. *Izv. Akad. Nauk SSSR Ser. Mat.*, 35:530–572, 1971.

Nicholas I. Shepherd-Barron. Extending polarizations on families of K3 surfaces. In *The birational geometry of degenerations (Cambridge, Mass., 1981)*, volume 29 of *Progr. Math.*, pages 135–171. Birkhäuser Boston, Boston, Mass., 1983.

B. Saint-Donat. Projective models of K – 3 surfaces. *Amer. J. Math.*, 96:602–639, 1974.

Misha Verbitsky. Mapping class group and a global Torelli theorem for hyperkähler manifolds. *Duke Math. J.*, 162(15):2929–2986, 2013. Appendix A by Eyal Markman.

Kôta Yoshioka. Moduli spaces of stable sheaves on abelian surfaces. *Math. Ann.*, 321(4):817–884, 2001.
RATIONAL POINTS ON K3 SURFACES AND DERIVED EQUIVALENCE

DEPARTMENT OF MATHEMATICS, RICE UNIVERSITY, MS 136, HOUSTON, TEXAS 77251-1892, USA

E-mail address: hassett@rice.edu

COURANT INSTITUTE, NEW YORK UNIVERSITY, NEW YORK, NY 10012, USA

E-mail address: tschinkel@cims.nyu.edu

SIMONS FOUNDATION, 160 FIFTH AVENUE, NEW YORK, NY 10010, USA