XAFS study on a photodeposition process of Pt nanoparticles on TiO$_2$ photocatalyst

T. Yoshida*1,2, Y. Minoura3, Y. Nakano1, M. Yamamoto5, S. Yagi1, H. Yoshida4,5
1EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan,
2The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka 558-8585, Japan
3Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan,
4Kyoto University, Graduate School of Human and Environmental Studies, Kyoto 606–8501, Japan
5Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto, 606-8501, Japan

E-mail: tyoshida@ocarina.osaka-cu.ac.jp

Abstract. A photodeposition process of Pt metal particles on anatase TiO$_2$ in the aqueous solution of H$_2$PtCl$_6$ (precursor) and methanol (reductant) was studied using transmission electron microscopy, UV-vis spectroscopy and X-ray absorption fine structure spectroscopy. These analyses proposed the photodeposition mechanism of Pt on TiO$_2$ by the photogenerated electrons: the photo-assisted adsorption of Pt$^{4+}$ complexes on TiO$_2$ through the ligand exchange at the initial stage, followed by the successive rapid reduction of Pt$^{4+}$ to Pt$^0$ to grow the Pt metal particles, which gives small and almost uniform size of Pt metal nanoparticles.

1. Introduction

Photoreduction is one of the most popular methods for recovering noble metals, removing metal cations from aqueous effluents and preparing metal-loaded photocatalysts [1-5]. The UV irradiation on a semiconductor material such as TiO$_2$ photocatalyst can form photoexcited electrons on the surface, which can reduce some kinds of metal cations having appropriate redox potential to produce metal particles on the surface. The interaction between the semiconductor and the metal could play an important role for the photocatalytic activity, since the support-metal junction could influence the electronic properties of them, the electron transfer between them and the morphology of the metal particles [6,7]. However, there are only a few studies dealing with the mechanism of the photodeposition process and the structure of the photodeposited metal species [8-10].

Recently, Ohyama et al.[8] studied the photodeposition process of Rh metal particles on TiO$_2$ using in situ time-resolved energy dispersive X-ray absorption fine structure spectroscopy (DXAFS) and reported that the RuCl$_3$ precursor was reduced to form Rh metal particles where the coordination number of the reduced Rh atom increased proportionally with the photoirradiation time, suggesting that fine Rh metal particles with uniform size appeared one after another. In the present study, we examined the photodeposition processes of Pt metal particles on anatase TiO$_2$ by means of XAFS, together with UV-vis spectroscopy and transmission electron microscopy.
2. Experimental

Photodeposition of Pt metal particles on TiO$_2$ was carried out as follows: H$_2$PtCl$_6$·6H$_2$O powder of 13.4 mg was dissolved in a methanol aqueous solution of 60 mL (the mixture of 50 mL of distilled water and 10 mL of methanol). 1.0 g of an anatase TiO$_2$ sample (Kishida Kagaku Co., BET surface area was 5.3 m$^2$/g) calcined at 673 K in air was suspended in the aqueous solution of the Pt precursor. The suspension was irradiated for various periods (0–180 min) with a 300 W Xe lamp equipped with a band path filter (ca. 340±30 nm, 30 mW/cm$^2$), and then filtered and washed with purified water. UV-vis diffuse reflectance spectra were measured by a JASCO V-670 spectrometer. TEM images were obtained with a JEOL JEM-2100M transmission electron microscope operating at an accelerating voltage of 200 kV. TEM samples were prepared by depositing drops of methanol suspension containing small amounts of the sample powders onto a carbon-coated copper grid and allowing the methanol to evaporate in air. The XAFS measurements at the Pt L$_3$-edge were carried out at BL-9C [11] of the Photon Factory at the High Energy Accelerator Research Organization (KEK, Tsukuba Japan, proposal number 2011G575 and 2014G548) with a Si(111) double-crystal monochromator in the fluorescence mode by using a Lytle detector filled with an Ar(100%) flow with a Ga filter ($\mu t$=6). Ion chamber of the I$_0$ detector was filled with a N$_2$(85%)/Ar(15%) flow. The above UV-vis, TEM and XAFS measurements were conducted ex-situ for the Pt species deposited/adsorbed on TiO$_2$ samples.

3. Results and discussion

Difference UV-vis spectra of the Pt/TiO$_2$ samples are shown in Figure 1. The difference spectrum of each sample was obtained by subtracting UV-vis spectrum of the pristine TiO$_2$ sample. As shown in Figure 1, the spectra of the Pt/TiO$_2$ samples prepared by photodeposition for 5, 10, 15 min showed a band around 400 nm, which would be attributed to the Pt precursors and possibly increasing Pt metallic clusters on the TiO$_2$ surface. Note that the band became broader and flat feature for the Pt/TiO$_2$ samples prepared by photodeposition for 20 min, which would originate from metal nanoparticles. This means that the aggregation of Pt atoms occurred under photoirradiation. After that, the band intensity increased with the further photoirradiation whereas the flat spectral profile did not change. These results suggest that the number or the particles size of the Pt nanoparticles on the surface increased with photoirradiation time.

The size of the Pt nanoparticles was observed by TEM measurements. Although the Pt particles were not observed in the Pt/TiO$_2$ samples prepared by photodeposition for less than 20 min, the Pt nanoparticles were observed and the average size increased from ca. 3.3 to 4 nm with the increase of the photoirradiation time more than 25 min as shown in Figure 2. As mentioned, the absorbance clearly became large as shown in Figure 1, though the size did not varied so drastically as shown in Figure 2. These results suggest that the number of the Pt nanoparticles with similar size of ca. 3–4 nm increased during the photoirradiation after 20 min.

![Figure 1](image1.jpg)  
**Figure 1.** Difference diffuse reflectance UV-Vis spectra of a series of Pt species on TiO$_2$ by photodeposition for 5, 10, 15, 20, 25, 30, 60 and 180 minutes.

![Figure 2](image2.jpg)  
**Figure 2.** Variation of the average Pt particle size with photoirradiation time. The sizes were obtained from TEM images.
We also investigated the photodeposition process of the Pt metal nanoparticles by XAFS spectroscopy. Figure 3(A) shows normalized Pt L$_3$-edge XANES spectra of the Pt/TiO$_2$ samples together with Pt foil and PtO$_2$ as references. Note that these XANES spectra were normalized by the jump of Pt L$_3$-edge, i.e., normalized by a Pt atom on the TiO$_2$ surface. The sharp and narrow absorption band at an absorption edge, which is called white line [12], corresponds to the electronic transition from 2p$^{3/2}$ core level states to 6s and 5d orbitals of Pt atoms mainly. The large area of L$_3$ edge absorption around 11565 eV for PtO$_2$ results from the vacancy in the 5d orbital of Pt atoms. As shown in Figure 3(A), the feature of XANES spectrum of the TiO$_2$ sample adsorbing the Pt precursor before photoirradiation was almost similar to that of the reference PtO$_2$ sample, meaning that the adsorbed Pt species also had similar octahedral structure as PtO$_2$. Only the difference between the two spectra was the very small peak around 11.545 keV, which is assignable to L$_2$ edge absorption (11.54 keV) of tungsten as an impurity in the TiO$_2$ support. The small peak was clearly observed for the Pt/TiO$_2$ samples prepared by the photodeposition for 0, 5, 10 and 15 min, suggesting that the amount of Pt$^{4+}$ precursors stabilized on TiO$_2$ surface were still small in the initial stage of the photodeposition.

The energy position of the main peak of XANES shifted to lower X-ray energy with the elongation of photoirradiation time, indicating a decrease in the ratio of Pt$^{4+}$ ions by reduction. Figure 3(B) shows the variation of the spectral shape in this process, where the XANES spectra changed from that of Pt$^{4+}$ ion to that of Pt$^0$ with an isosbestic point, indicating that Pt$^{4+}$ ions were reduced to Pt$^0$ without through any stable intermediates. This means that the photoreduction from the adsorbed Pt species to metallic Pt nanoparticles take place drastically.

Actually, all XANES spectra of the Pt/TiO$_2$ samples were reproduced with the linear combination of two XANES spectra of PtO$_2$ and Pt metal, and the fractions of the Pt$^{4+}$ ion and the Pt$^0$ atom for all the Pt/TiO$_2$ samples were directly evaluated as shown in Figure 4. Pt$^{4+}$ was the main component in the Pt/TiO$_2$ samples prepared by photodeposition for 0, 5, 10, and 15 min while the reduction of Pt$^{4+}$ to Pt$^0$ occurred drastically after 15 min and almost completed after 30 min. Here, we also evaluated the height of edge jump in the raw XAFS spectra of the Pt/TiO$_2$ samples recorded in the fluorescence mode in order to compare the amount of the Pt species deposited on these samples. Figure 5 shows the variation of the relative height of the edge jump with the photodeposition time. As is evident from Figures 4 and 5, in the initial stage before 15 min, the valence of the adsorbed Pt species was almost tetravalent and the amount of the Pt species increased. It is clear that ca. 20 % of Pt$^{4+}$ complexes were adsorbed on the TiO$_2$ before photodeposition (0 min) and the Pt$^{4+}$ complexes increased to ca. 50 % by photo-assisted adsorption after 15 min. In the successive period for 20–30 min, the amount of the adsorbed Pt species drastically increased and the reduction of Pt$^{4+}$ to Pt$^0$ drastically occurred on the photoirradiated TiO$_2$. After that, the fraction of Pt$^0$ atoms gradually increased by further photoreduction.

These results lead us to speculate the Pt deposition mechanism on the TiO$_2$ surface. On the whole,
photoexcited electrons reduce the Pt precursor ([Pt(IV)Cl$_6^{2-}$] + 4 e$^-$ $\rightarrow$ Pt(0) + 6 Cl$^-$), while positive holes oxidize methanol in the solution. The details for the photoreduction would be described as follows: (i) during the induction period, the photoexcited electron would stabilize the precursor with ligand-exchange at the surface ([Pt(IV)Cl$_6^{2-}$] + -OH$^-$ + e$^-$ + H$^+$ $\rightarrow$ [Pt(IV)Cl$_5$O$^{2-}$]ad$_2$$^-$$+$$Cl^-$$+$$H_2$), where the initial amount of the adsorbed Pt complex would be limited by the amount of the surface adsorption sites. (ii) the surface Pt$^{4+}$ complex would be further reduced by the photoexcited electrons to form the Pt metal seeds ([Pt(IV)Cl$_5$O$^{2-}$]ad$_2$$^-$$+$$3$$e^-$$\rightarrow$$Pt(0)O$^-$ + 5 Cl$^-$), and (iii) further photoexcited electrons would drastically reduce the residual Pt$^{4+}$ complexes over the Pt metal seeds to grow itself and to form the Pt metal particles, where the photoexcited electron could be effectively lead to the Pt metallic particles to accelerate the reduction rate of the residual Pt$^{4+}$ complex. The growth of the Pt particles could be limited by the amount of the Pt complexes in the solution.

We have started to investigate the effects of the amount of the Pt precursors and the kind of TiO$_2$ structural phase on the photodeposition process as well as the morphology of the Pt particles on TiO$_2$.

![Figure 4](image-url)  
**Figure 4.** Dependence of the fractions of Pt metal and Pt$^{4+}$ ions on the photoirradiation time.

![Figure 5](image-url)  
**Figure 5.** Dependence of the relative height of the edge jump on the photoirradiation time.

### 4. Conclusion

We studied photodeposition process of Pt particles on an anatase TiO$_2$ sample. The Pt$^{4+}$ precursors were found to be photo-adsorbed on the TiO$_2$ surface through ligand exchange at the initial stage. After the formation of the metallic Pt seeds, they were drastically reduced to form the Pt metal particles with almost similar size of 3–4 nm in the present condition.

### References

[1] Kraeutler B and Bard A. J, *J. Am. Chem. Soc.* 1977 **99** 7729.
[2] Kraeutler B and Bard A. J *J. Am. Chem. Soc.* 1978 **100** 4317.
[3] Duonghong D, Borgarello E and Graetzel M, *J. Am. Chem. Soc.* 1981 **103** 4685.
[4] Courbon H, Herrmann J M and Pichat P, *J. Phys. Chem.* 1984 **88** 5210.
[5] Goren Z, Willner I, Nelson A J and Frank A J, *J. Phys. Chem.* 1990 **94** 3784.
[6] Bond GC 1982 Metal-support and metal-additive effect in catalysis, (Amsterdam, Elsevier) p 1.
[7] Thomson SJ, *J Chem Soc Faraday Trans Part I* **83** 1893.
[8] Ohyama J, Teramura K, Ookuoka K, Yamazoe S, Kato K, Shishido T and Tanaka T 2010 *Langmuir* **26** 13907.
[9] Ohyama J, Yamamoto A, Teramura K, Shishido T and Tanaka T, 2011 *ASC Catal.* **1** 187.
[10] Tanaka T, Ohyama J, Teramura T and Hitomi Y, *Catal. Today*, 2012 **183** 108.
[11] http://pfxafs.kek.jp/beamline/bl9c
[12] Brown M, Peiels RE and Stern EA 1977 *Phys Rev B* **15** 738.