Multilevel Image Thresholding Using a Fully Informed Cuckoo Search Algorithm

Xiaotao Huang, Liang Shen*, Chongyi Fan, Jiahua Zhu and Sixian Chen

Abstract—Though effective in the segmentation, conventional multilevel thresholding methods are computationally expensive as exhaustive search are used for optimal thresholds to optimize the objective functions. To overcome this problem, population-based metaheuristic algorithms are widely used to improve the searching capacity. In this paper, we improve a popular metaheuristic called cuckoo search using a ring topology based fully informed strategy. In this strategy, each individual in the population learns from its neighborhoods to improve the cooperation of the population and the learning efficiency. Best solution or best fitness value can be obtained from the initial random threshold values, whose quality is evaluated by the correlation function. Experimental results have been examined on various numbers of thresholds. The results demonstrate that the proposed algorithm is more accurate and efficient than other four popular methods.

Index Terms—Cuckoo Search, Image segmentation, Multilevel thresholding, Metaheuristic

I. INTRODUCTION

Image segmentation plays a fundamental role in image understanding and computer vision, which partitioning a given image into several meaningful homogeneous regions. Among the last few decades, thresholding technique is one of the most common used segmentation method for various types of images, due to its simplicity, robustness and accuracy [1-9].

Basically, thresholding is used to identify and extract targets from the background on the basis of distribution of gray levels or texture in image objects[12]. If the object in an image is distinguished from the background by computing a single threshold value, it is termed as bi-level thresholding. Bi-level thresholding is easy to achieve using the conventional exhaustive methods. However, it performs unsatisfied on real-life images and remote sensing images [8]. As a result, multilevel thresholding is strongly required for such task. Multilevel thresholding is much more complex and usually needs some effective optimization methods. Nowadays, metaheuristic algorithms become popular for this problem [1-9, 11, 13-18], which take advantages of the convergence speed and accuracy when compared with the exhaustive method. The most common used algorithms include particle swarm optimization (PSO) [9, 14, 19], bacterial foraging optimization (BFO) [16, 21], differential evolution (DE) [18, 22], fire-fly algorithm (FA) [23], artificial bee colony (ABC) [1, 24], wind driven optimization (WDO) [12] and Cuckoo Search (CS) [11, 12].

Among all the involved algorithm, CS algorithm is outstanding due to its optimum performance in the multilevel thresholding framework [25]. Cuckoo is a population-based evolutionary algorithm which solves the structural optimization problems with the enhancement of Lévy flights. Various studies on multilevel thresholding based studies demonstrate that CS obviously outperforms other popular metaheuristic algorithms [11-13]. Authors in [26, 27] reported the best performance of CS when compared with genetic algorithm, PSO, ABC, DE, and BFO. Two comparative studies [11, 13] that use nature-inspired algorithms for multilevel thresholding show that CS offers the best performance when compared with PSO, DE, ABC and WDO. In addition, CS has also outperformed the recently emerging FA in solving multilevel thresholding problem in [28]. The comparative performance study in [11] has depicted the outstanding performance of CS using different objective functions as compared to other optimization algorithms with respect to the color image multilevel thresholding. Recently, an extensive study on CS algorithm using energy curve based different entropy objective criterions is discussed in [8].

In this paper, we propose a CS variant called Fully Informed Cuckoo Search (FICS) for the multilevel thresholding. The main contribution of this study is that we improved the CS through the fully informed neighborhood strategy. This strategy allows the individuals to learn from their neighbors, improving the learning efficiency and the cooperation of the population. The experimental results demonstrate that such modifications significantly improve the performance on multilevel
thresholding in terms of the objective function value, image quality measures on various level of thresholding, when compared with both the original CS and two latest modification of CS.

II. MULTILEVEL THRESHOLDING

This section introduces the multilevel thresholding problem. Multilevel thresholding is a method that classifying the pixels of a given image into multiclass using a set of threshold values. The way to find the optimal thresholds is to maximize some discriminating criteria (also called objective functions). Given an image \(I \) with gray levels ranging from 0 to \(L-1 \), suppose there are \(M \) thresholds \((t_1, t_2, ..., t_M) \) which segment the gray levels of \(I \) into \(M+1 \) classes: \(C_0 \) for \([0,t_1-1]\), \(C_1 \) for \([t_1,t_2-1]\), \..., \(C_M \) for \([t_M,L-1]\), where \(t_1 < t_2 < ... < t_M \). Then the definition to the problem of multilevel thresholding is given as follows.

\[
(t_1^*, t_2^*, ..., t_M^*) = \arg \max \left(f(t_1, t_2, ..., t_M) \right)
\]

where \(f \) means the objective function. The most popular objective function is the between-class variance, which is based on Otsu’s measure [29]. The Otsu’s measure is known for its simplicity and affectivity with regard to uniformity and shape measures[9, 30, 31].

The Otsu’s measure can be described as follows. With \(t_0 = 0 \) and \(t_{M+1} = L \), the probability \(P_i \) of gray level \(i \) and the probabilities of class occurrence \(\omega_m \) of a given image are firstly calculated as:

\[
P_i = n_i / N
\]
\[
\omega_m = \sum_{i=t_m-1}^{t_{m+1}-1} P_i
\]

where \(n_i \) is the number of pixels of the \(i \)-th level; \(N = n_0 + n_1 + ... + n_{L-1} \) denotes the total number of pixels.

Then the objective function of Otsu’s measure function is defined as:

\[
f_i = \omega_m \left(\mu_m - \mu_T \right)^2
\]

where \(\mu_m = \sum_{i=t_m-1}^{t_{m+1}-1} \frac{iP_i}{\omega_m} \) is the class mean levels; \(\mu_T = \sum_{i=0}^{L-1} \frac{iP_i}{N} \) is the total mean level.

III. CUCKOO SEARCH ALGORITHM

The cuckoo search (CS) algorithm is a population-based optimization algorithm that is originally proposed in [32]. It is developed according to two ideas: the cuckoo breeding behavior, and the Lévy flights. We first introduce the two ideas, and then give the implementation.

A. Cuckoo Breeding Behavior

CS was inspired by the obligate brood parasitism of some cuckoo species initially. The female cuckoos of these species may lay their eggs in the nests of some host birds. Meanwhile, the horde bird may also recognize these eggs with a probability \(p_a \in [0,1] \). Then, the horde bird throws the eggs from the nest or abandons the next to form a new nest.

To form the mathematical model, each individual of the host nests (with eggs) is assumed to be a candidate solution. Three main rules are concluded based on such behavior:

1. The number of available host nests (population size) is fixed, and the egg laid by a cuckoo is discovered by the host bird with a probability \(p_a \).

2. Each Cuckoo lays one egg each time at a random host nest.

3. The nests with best-quality eggs will be kept to breed the next generations.

The first rule can be further illustrated that the nests are replaced by new nests with a probability \(p_a \). Then, the cuckoo breeding behavior is modeled by (6) to generate new solutions:

\[
v_j = \begin{cases} x_{ij} + \varepsilon \cdot (x_{ij} - x_{2j}) & \text{rand} > p_a \\ x_{ij} & \text{Otherwise} \end{cases}
\]

where \(x_{ij} \) denotes the newly generated solution, which will replace \(x_j \) only if its fitness is better than \(x_j \).

B. Lévy Flights

Lévy flights is associated with the flight behavior of some animals and insects. This behavior indicates that the distance and steps of these animals and insects jump or fly obey a Lévy distribution. Such behavior is well adapted to generate new solution in the metaheuristic algorithms. In CS, Lévy flight is performed to generates random walks for the candidate solutions, where the step length is distributed according to the Lévy flight behavior, which can be formulated as (7):

\[
v = x_j + \alpha L(\lambda)(x_j - \text{best})
\]

where \(v \) is the newly generated solution, which will replace \(x_j \) only if its fitness is better than \(x_j \), \(\text{best} \) is the current best solution; \(\alpha \) is a scaling factor to control the step size; \(L(\lambda) \) is the step size randomly drawn from the Lévy distribution. The Lévy distribution is given by:

\[
L \sim \frac{\Gamma(\lambda) \sin(\pi \lambda / 2)}{\pi} \frac{1}{s^{\lambda+1}}
\]
where $\lambda = 1.5$, $\Gamma(\lambda)$ stands for the standard gamma function, and the distribution is valid for large steps $s > 0$ according to [33].

C. Implementation

In the beginning of a run, all individuals are generated randomly within the boundaries of the parameters. All the individuals (candidate solutions) undergo an iterative process where their positions are updated according to Lévy flights and breeding behavior successively after the initialization step. The best solution obtained at the last generation provides the optimal solution. The pseudo code of CS is shown in Algorithm 1.

IV. THE PROPOSED ALGORITHM

Although CS shows remarkable performance in multilevel thresholding, recent studies point that the original CS may also offer low searching capacity [34] and its convergence rate can also be improved in multilevel thresholding [20]. Next, we introduced the idea of neighborhood strategy to CS and proposed an improved CS using a fully informed neighborhood strategy.

For the individuals in the cuckoo breeding behavior of the original CS as (5) shows, each new solution is generated around the position of the individual itself. As a population-based algorithm, the self-mutation strategy lacks cooperation and interaction between the individuals, which may result in low learning efficiency. The neighborhood strategy is designed for such a problem. It is known that the neighborhood strategy can effectively improve the performance of the swarm-based algorithms [35-38]. Therefore, we introduce a neighborhood strategy called the fully informed strategy to improve the intraspecific cooperation and interaction of the population in CS.

The fully informed strategy is firstly proposed to improve PSO in [10]. It aims to define a better solution for each individual to learn from (by using the good experience of its neighbors).

Supposing there are $N_e = 2 * n + 1$ neighbors for the jth individual x_j, which can be denoted as $x_{i-1}, x_{i+1}, \ldots, x_{i_n}$. Then, the cuckoo breeding behavior refers to (5) is modified as:

$$v_j = \begin{cases} FI + \epsilon \cdot (x_{i_j} - x_{i_j}) & \text{rand} > p_e \\ x_{i_j} & \text{Otherwise} \end{cases}$$

where FI denotes the information learned from the neighbors, which is defined as (9)

$$FI = \sum_{i=0}^{N_e} w_i \cdot x_{i_j}$$

Here, w_i is the weights of the ith neighbor calculated as (10) for a maximization problem. It determines the weight of the influence from the corresponding neighbor. s is the scaling factor, or a normalization operator, which is calculated by (11).

$$w_i = \text{rand} \cdot f_i$$

$$s = 1 / \sum_{i=0}^{N_e} w_i$$

In the strategy, the new solution is generated based on FI rather than the solution itself x_j. In other words, the modified breeding behavior can generate new solution (nest) according to both the solution itself and the information from the neighbors.
In such a case, the new solution is more likely to be high-quality, and the exploitation around such a solution will promote the population to search larger potential space.

Due to the capability of dispersing the individuals towards a random position (which enhances the exploration), this strategy makes significant sense for the algorithm in terms of escaping from the local optimal and avoiding the premature convergence. The implementation of the proposed modified cuckoo breeding behavior is given in Algorithm 2, where the modifications are marked with red number.

V. EXPERIMENTAL SETUP

This section evaluates the performance of the proposed algorithm, whose advantage is illustrated by comparing with the following four algorithms: FIPSO, CS, CS-MA and CS-MC, where CS is the standard CS, FIPSO and CS-MA are the two basic studies of our method, and CS-MC is a recently published improved version of CS. To the best of our knowledge, FIPSO has never been applied for multilevel thresholding before, here we did this work in this paper and compared it with our algorithm. CS, CS-MA and CS-MC have been well applied for multilevel thresholding which have been demonstrated the best performance in the corresponding references in TABLE I.

The population size was set as 30 for all algorithms; other particular parameters of the involved algorithms were set as TABLE I shows (according to the corresponding references). 30 independent runs were carried out for each image of the algorithms on each number of thresholds in order to reduce random errors. The results of the mean objective value and the standard deviation are recorded for comparison. 2 The number of thresholds M is set to be 3, 7, 11 and 15. All methods are carried out with the same calculation limitation and the maximum

Algorithm	Parameters	Value	Reference
FIPSO	Cognitive, social acceleration	2, 2	[10]
	Inertial weight	0.95-0.4	
CS	Mutation probability value	0.25	[11]
	Scale factor	1.5	
	Step size	1	
CS-MA	Mutation probability value	0.25	[12]
	Scale factor	1.5	
CS-MC	Mutation probability value	0.5	[20]
	Scale factor	1.5	
FICS	Mutation probability value	0.5	This paper
	Scale factor	1.5	
	Neighbors Ne	3	

2 The number of thresholds limits the dimension of problem. Different researches may be a little bit different on the setting of this parameter. Common settings are: 2, 3, 4 and 5 [14] B. Akay, “A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding,” Applied Soft Computing, vol. 13, no. 6, pp. 3066-3091, 2013; 5, 7, 9 and 11 [20] S. Suresh, and S. Lal, “An efficient cuckoo search algorithm based multilevel thresholding for segmentation of satellite images using different objective functions,” Expert Systems with Applications, vol. 58, no. C, pp. 184-209, 2016 ; 5, 6, 8 and 12 [13] A. K. Bhandari, A. Kumar, and G. K. Singh, “Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms,” ibid., vol. 42, no. 22, pp. 8707-8730, 2015; 2, 5, 8 and 16 [25] S. Pare, A. Kumar, V. Bajaj, and G. K. Singh, “An efficient method for Multilevel Color Image Thresholding using Cuckoo Search Algorithm based on Minimum Cross Entropy,” Applied Soft Computing, vol. 61, 2017. Taking these literatures into consideration, we set the number of thresholds to be 3, 7, 11 and 15.
number of function evaluations was set as $1200*M$ (it corresponds to 120, 280, 440 and 600 maximum iterations for $M = 3, 7, 11$ and 15 respectively). The total gray scale level $L = 255$ and the values of the solution are directly transformed into the nearest integer in the optimization process. The tested images are shown in Fig. 1, where the first five images (images 1-5) are popular real-life test images in image process, and the other five images are optical remote sensing images.

VI. RESULTS

This section evaluates the performance of the proposed algorithm. On the one hand, the involved algorithms are compared according to the objective function values. On the other hand, we also verified the performance using two popular quality measures. The nonparametric test is used for the comparison for rigorousness.

A. Comparison on Objective Function Values

The objective function value obtained by the involved algorithms directly shows the algorithm’s performance, since the multilevel thresholding is to maximize the given objective function. TABLE II shows the results, where “Std” means the standard deviation and “h” means the pairwise comparison results between the corresponding algorithm and the proposed one. The best mean value is shown in bold.

As is illustrated, the proposed algorithm obtained the best mean value in 39 blocks and 40 blocks (both 40 in total) in TABLE II, which represented the best overall performance.

To verify whether the results generated by FICS are significantly different from the compared algorithms, we performed the nonparametric statistical Wilcoxon rank sum test [39] to perform rigorous comparisons between FICS and its peers. The test was conducted at 5% significance level. The value of h indicates whether the performance of FICS is better (i.e., $h = +$), insignificant (i.e., $h =$ "="), or worse ((i.e., $h =$ "-")) than the compared algorithm at the statistical level. The Comparison results are summed up in the button of the tables, where W/T/L means the total times FICS wins/ties/loses the comparison when compared with the corresponding algorithm.

We can observe from all the two tables that FICS wins most of the blocks in the comparison with any other algorithms, and only loses to FIPSO in one block (3-level thresholding on image 2). The most competitive algorithm to FICS is CS-MA on both the two measures. Compared with CS-MA, FICS shows close performance in 18 blocks and wins all other 22 blocks.

The Friedman test is further employed to rank all the algorithms [39, 40] and evaluate the difference of their performance. The Friedman test captured the result of locating optimal thresholds on all ten images used in the experiments according to all observed numbers of thresholds [31]. It allows us to highlight those ones whose performances are statistically different which offers valid procedures to rank the involved algorithms. The ranking is performed on each level of thresholding. Therefore, four test were conducted and 10 ($n = 10$) variables were used in each comparison in each test, where $n = 10$ denotes the number of images, the significance level is considered to be 0.05.

Fig. 2 to Fig. 5 show the ranking results of the four level thresholding respectively, where the center circle denotes the average ranks and the lines indicate the confidence intervals. Higher rank values represent a better performance and two algorithms are regarded to be significantly different if there is no overlap between any intervals of the algorithms. Generally speaking, all algorithms shows close rankings in the corresponding level thresholding, where the proposed algorithm ranks the best on all comparisons. The most competitive algorithms to FICS are FIPSO, CS-MC, CS-MA and CS-MA on 3, 7, 11 and 15 level thresholding, respectively. However, all these algorithms are not comparative in other cases.

B. QUALITY MEASURES OF SEGMENTED IMAGE

To verify the performance of FICS, we introduce two quantitative comparison measures: Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM), to evaluate the corresponding image segmentation performance of the results obtained in subsection A. PSNR and SSIM are the most two popular quality measures in multilevel thresholding [13, 14, 31]. The PSNR of segmented image indicates the accuracy of the reconstructed image calculated by (12) and (13), and SSIM shows the visual similarity of the reconstructed image against the original image according to the degradation of structural information given by (14).

$$PSNR = 10 \log_{10}\left(\frac{255^2}{MSE}\right)$$

$$MSE = \frac{1}{MN} \sum_{x} \sum_{y} [x(i, j) - y(i, j)]^2$$

$$SSIM(x, y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{\left(\mu_x^2 + \mu_y^2 + c_1\right)\left(\sigma_x^2 + \sigma_y^2 + c_2\right)}$$

where x is the original image and y is the reconstructed image, μ_x and μ_y are the mean intensities of x and y; σ_x^2 and σ_y^2 stand for the variance of x and y; σ_{xy} is the covariance of x and y. $c_1 = 6.5025$, $c_2 = 58.5225$ [31].

Without loss of generality, two practical images: Image 1 and Image 2, and two remote sensing images: Image 6 and Image 7 were chosen to illustrate the overall performance. The results of the above two parameters are listed in TABLE IV.

It can be observed that FICS won 11 times in total 16 comparisons on both PSNR and SSIM, which obviously outperforms other algorithms.

VII. CONCLUSION

This paper proposed a fully informed cuckoo search algorithm for multilevel thresholding image segmentation. The main contribution is a successively introduced full informed strategy, which improved the performance of cuckoo search on different level of thresholding for various kinds of images. The
experiments demonstrated the effectiveness of our work when comparing with four other popular metaheuristic algorithms in terms of the mean objective function value. Strict rankings based on the Friedman test clearly demonstrated the superiority of the proposed algorithm on all level thresholding. In addition, the performance of proposed thresholding technique is also validated on image quality measures such as PSNR and SSIM.

APPENDIX

Fig. 2. Ranking results of the Friedman test of 3-level thresholding.

Fig. 3. Ranking results of the Friedman test of 7-level thresholding.

Fig. 4. Ranking results of the Friedman test of 11-level thresholding.

Fig. 5. Ranking results of the Friedman test of 15-level thresholding.
Image	M	FIPSO (Std)	CS (Std)	CS-MA (Std)	CS-MC (Std)	FICS (Std)									
		Mean	h	Mean	h	Mean	h								
		Std	Mean	Std	Mean	Std									
Image 1	3	2703.564	(2.47E-02)	+	2703.535	(9.77E-02)	+	2703.530	(9.36E-02)	=	2703.552	(3.74E-02)	=	2703.572	(0.00E+00)
	7	2846.650	(1.04E+00)	+	2848.005	(5.02E-01)	+	2848.229	(4.05E-01)	=	2848.581	(2.09E-01)	+	2848.863	(4.77E-02)
	11	2874.661	(1.24E+00)	+	2877.418	(7.74E-01)	=	2877.776	(5.45E-01)	+	2876.651	(9.98E-01)	+	2878.801	(8.05E-02)
	15	2885.009	(4.92E-01)	+	2887.547	(4.83E-01)	+	2888.077	(4.47E-01)	+	2886.687	(8.16E-01)	+	2888.953	(1.25E-01)
Image 2	3	904.6902	(1.66E+00)	−	904.2343	(5.38E-01)	=	904.3875	(3.14E-01)	=	904.0448	(9.35E-01)	=	904.6897	(1.55E-02)
	7	975.4630	(5.24E-01)	=	973.3014	(1.48E+00)	=	973.8184	(1.59E+00)	+	975.1167	(1.08E+00)	+	976.4183	(4.53E-02)
	11	986.4797	(4.46E-01)	=	985.6981	(8.79E-01)	+	986.7955	(7.50E-01)	=	986.6171	(6.25E-01)	+	988.1642	(9.74E-02)
	15	991.5273	(3.32E-01)	=	991.1284	(6.22E-01)	+	991.4965	(5.16E-01)	=	991.3661	(6.02E-01)	+	993.0640	(2.81E-01)
Image 3	3	1444.736	(8.43E-03)	+	1444.506	(2.98E-01)	+	1444.623	(1.89E-01)	=	1444.645	(1.27E-01)	=	1444.741	(2.31E-13)
	7	1539.941	(8.79E-01)	+	1539.205	(1.41E+00)	=	1539.964	(1.99E+00)	+	1540.578	(1.02E+00)	+	1541.892	(3.35E-02)
	11	1558.567	(7.22E-01)	=	1558.585	(1.13E+00)	+	1559.599	(7.75E-01)	=	1558.806	(8.03E-01)	=	1561.021	(1.12E-01)
	15	1565.588	(4.95E-01)	=	1566.158	(7.12E-01)	+	1566.871	(5.76E-01)	=	1565.779	(7.40E-01)	=	1568.295	(2.63E-01)
Image 4	3	1639.511	(5.73E-02)	=	1639.419	(1.17E-01)	+	1639.445	(9.92E-02)	+	1639.523	(2.66E-02)	+	1639.532	(2.33E-03)
	7	1746.314	(7.74E-01)	+	1746.883	(6.90E-01)	+	1747.186	(5.73E-01)	+	1747.785	(2.55E-01)	+	1748.259	(3.65E-02)
	11	1767.353	(6.55E-01)	+	1769.202	(8.14E-01)	+	1769.740	(5.23E-01)	=	1768.790	(9.64E-01)	+	1770.810	(7.86E-02)
	15	1775.582	(5.62E-01)	+	1777.346	(7.19E-01)	+	1777.944	(4.94E-01)	=	1776.540	(7.71E-01)	+	1779.035	(6.12E-02)
Image 5	3	4113.762	(1.04E-02)	=	4113.713	(1.09E-01)	+	4113.737	(5.48E-02)	+	4113.766	(5.05E-03)	+	4113.767	(0.00E+00)
	7	4249.444	(9.85E-01)	+	4250.408	(6.82E-01)	+	4250.661	(2.64E-01)	+	4250.850	(2.27E-01)	+	4251.112	(5.89E-02)
	11	4274.505	(1.22E+00)	+	4276.665	(6.05E-01)	=	4277.318	(5.30E-01)	=	4276.591	(1.03E+00)	+	4278.195	(5.80E-02)
	15	4283.818	(6.84E-01)	+	4286.280	(3.79E-01)	+	4286.863	(3.73E-01)	+	4285.374	(7.98E-01)	+	4287.685	(1.16E-01)
Image 6	3	554.5900 (3.12E-02) = 554.4333 (1.74E-01) = 554.4675 (1.21E-01) = 554.5568 (6.45E-02) = 554.6008 (4.62E-13)													
---------	---	--													
	7	616.5303 (5.93E-01) + 615.5820 (1.13E+00) + 616.2803 (8.84E-01) + 617.0360 (6.44E-01) + 617.8526 (6.28E-02)													
	11	630.2058 (5.94E-01) + 630.3401 (8.14E-01) = 630.9963 (5.68E-01) = 630.5737 (7.79E-01) + 632.3331 (1.31E-01)													
	15	635.7244 (4.35E-01) + 635.7565 (4.63E-01) + 636.4803 (4.36E-01) + 635.5902 (6.20E-01) + 637.6898 (1.74E-01)													
Image 7	3	1513.281 (1.97E-02) + 1513.036 (3.49E-01) = 1513.193 (9.65E-02) = 1513.174 (1.19E-01) + 1513.287 (6.93E-13)													
	7	1583.173 (6.02E-01) + 1581.830 (1.45E+00) + 1582.477 (1.10E+00) + 1583.505 (6.67E-01) + 1584.462 (5.70E-02)													
	11	1594.583 (4.15E-01) + 1594.528 (6.98E-01) + 1595.110 (5.60E-01) = 1594.866 (5.26E-01) + 1596.580 (2.20E-01)													
	15	1600.064 (4.25E-01) + 1600.029 (6.87E-01) + 1600.835 (5.41E-01) + 1599.883 (7.61E-01) + 1602.144 (2.33E-01)													
Image 8	3	1403.174 (3.15E-01) + 1403.119 (2.60E-01) = 1403.148 (3.56E-01) + 1403.087 (3.56E-01) + 1403.358 (1.48E-01)													
	7	1542.970 (1.17E+00) + 1543.810 (9.90E-01) + 1544.180 (6.23E-01) + 1544.484 (5.29E-01) + 1545.094 (5.23E-02)													
	11	1565.415 (7.38E-01) = 1566.894 (7.53E-01) + 1567.567 (5.79E-01) = 1566.865 (1.07E+00) + 1568.876 (1.66E-01)													
	15	1574.157 (6.38E-01) = 1575.905 (4.00E-01) + 1576.223 (3.61E-01) = 1575.008 (6.58E-01) + 1577.273 (1.59E-01)													
Image 9	3	1283.569 (9.98E-03) + 1283.457 (2.94E-01) = 1283.485 (1.04E-01) + 1283.523 (8.85E-02) = 1283.574 (0.00E+00)													
	7	1384.286 (1.29E+00) + 1384.609 (8.53E-01) = 1385.241 (7.37E-01) + 1385.501 (7.24E-01) + 1386.164 (3.25E-02)													
	11	1404.916 (1.04E+00) + 1406.808 (8.54E-01) + 1407.250 (6.95E-01) = 1406.705 (7.67E-01) = 1408.521 (1.38E-01)													
	15	1413.563 (4.91E-01) = 1415.037 (4.98E-01) + 1415.512 (3.95E-01) = 1414.403 (5.79E-01) + 1416.555 (1.27E-01)													
Image 10	3	808.0678 (2.52E-02) + 807.9813 (1.32E-01) = 807.9915 (9.36E-02) = 808.0082 (7.15E-02) = 808.0769 (1.81E-03)													
	7	884.8145 (7.36E-01) + 884.6663 (1.00E+00) = 885.2203 (6.48E-01) + 885.3498 (7.66E-01) = 886.5004 (7.40E-02)													
	11	901.4185 (6.10E-01) + 901.9566 (9.07E-01) = 902.7234 (6.20E-01) + 902.5248 (8.03E-01) = 904.0290 (1.07E-01)													
	15	907.9853 (5.07E-01) = 908.2501 (6.00E-01) + 908.9904 (5.62E-01) = 908.0400 (7.09E-01) + 910.2729 (1.11E-01)													
Total	**W/T/L**	**28/11/1**	**26/14/0**	**22/18/0**	**29/11/0**										
Image	\(\kappa \)	FIPSO	CS	CS-MA	CS-MC	FICS	PSNR Comparison on Otsu’s measure	FIPSO	CS	CS-MA	CS-MC	FICS			
-------	---	------	---	------	------	-----	----------------------------------	------	---	------	------	-----			
Im1	3	25.1295	25.1280	25.1277	**25.1739**	25.1304		25.0523	25.0481	25.0448	**25.1141**	25.0540			
	7	30.5981	30.7061	30.7316	**30.7986**	30.7808		29.9804	30.0826	30.1161	30.1432	**30.1542**			
	11	33.5753	34.0265	34.0656	33.9470	**34.2564**		33.1895	33.7291	33.8282	33.7361	**34.0004**			
	15	35.5211	36.1780	36.3449	35.9962	**36.6068**		34.8523	35.7903	35.8288	35.7462	**36.3012**			
Im2	3	28.3293	28.3084	28.3132	**28.4160**	28.3304		**22.9808**	22.9645	22.9627	22.9759	22.9702			
	7	34.1908	33.8105	33.9021	34.1983	**34.3649**		**29.4617**	28.9275	28.8102	28.8002	28.7106			
	11	36.7597	36.4952	36.8457	36.8343	**37.3149**		32.7752	**33.0234**	32.9069	32.8419	32.8782			
	15	38.6578	38.5207	38.7434	38.7221	**39.5917**		34.4409	35.9424	36.1211	34.8884	**36.1878**			
Im6	3	28.5470	28.5342	28.5399	**28.6742**	28.5470		25.6679	25.6659	**25.6957**	25.6925	25.6867			
	7	33.5108	33.3684	33.4734	33.6441	**33.7112**		29.3445	**29.5263**	29.3757	28.8932	28.8543			
	11	36.2709	36.3196	36.5107	36.4689	**36.9296**		31.9781	**32.5507**	32.0732	32.1251	32.2946			
	15	38.2163	38.2111	38.5614	38.2154	**39.1897**		34.0427	34.8356	35.0773	34.7380	**35.0885**			
Im7	3	28.2665	28.2569	28.2637	**28.3411**	28.2664		24.6810	24.6842	24.6874	**24.6937**	24.6758			
	7	33.8147	33.6045	33.7100	33.9433	**34.0328**		29.4420	29.5558	29.8372	29.9860	**30.0223**			
	11	36.2314	36.1926	36.3591	36.3427	**36.8135**		32.9942	33.7411	34.1647	33.4829	**34.4926**			
	15	38.0903	38.0809	38.4494	38.0676	**39.1146**		34.3803	35.3188	35.3016	34.9791	**35.4305**			
SSIM Comparison on Otsu's measure

Image	κ	FIPSO	CS	CS-MA	CS-MC	FICS
Im1	3	0.812944	0.812918	0.812837	**0.813890**	0.813023
	7	0.919456	0.920239	0.920788	**0.921098**	0.920179
	11	0.955840	0.959896	0.960243	**0.962104**	
	15	0.971214	0.975424	0.976313	**0.978032**	
Im2	3	0.771208	0.772690	0.771862	**0.774179**	0.770761
	7	0.897624	0.889388	0.891525	0.895095	**0.898654**
	11	0.929041	0.926192	0.930153	0.925741	**0.936471**
	15	0.952162	0.951789	0.954407	0.950210	**0.960939**
Im6	3	0.900230	0.900878	0.900782	**0.902429**	0.898849
	7	0.969828	0.967750	0.968837	0.971193	**0.971827**
	11	0.984176	0.984251	0.985002	0.985034	**0.987307**
	15	0.990334	0.990144	0.990982	0.990102	**0.992641**
Im7	3	0.874624	0.874184	0.873891	**0.875225**	0.874684
	7	0.944874	0.941204	0.943065	0.945263	**0.946385**
	11	0.812944	0.812918	0.812837	**0.813890**	0.813023
	15	0.919456	0.920239	0.920788	**0.921098**	0.920179

SSIM Comparison on Kapur’s measure

	FIPSO	CS	CS-MA	CS-MC	FICS
Im1	0.811158	0.811243	0.811174	**0.812521**	0.811210
	0.908753	0.910209	**0.910427**	0.910416	0.910277
	0.951434	0.956500	0.957357	0.956341	**0.958810**
	0.965884	0.972208	0.972391	0.972176	**0.975454**
Im2	**0.549875**	0.549112	0.549320	0.549654	0.549560
	0.741089	0.722726	0.718725	0.718057	0.715328
	0.827559	**0.831293**	0.827749	0.827634	0.825095
	0.865840	0.893417	0.895156	0.871654	**0.895665**
Im6	0.768557	0.768207	**0.769717**	0.769447	0.769399
	0.877602	**0.884233**	0.878368	0.868127	0.866430
	0.931328	**0.939887**	0.930859	0.932902	0.934502
	0.958171	0.966265	0.968663	0.965761	**0.969534**
Im7	0.822707	0.822631	0.822826	**0.823348**	0.822868
	0.889366	0.890439	0.893794	0.894992	**0.895017**
	0.928672	0.935705	0.939051	0.933757	**0.941344**
	0.943997	0.948407	**0.948714**	0.946403	0.948406

| Image | 0 | 0 | 0 | 5 | 11 | 2 | 3 | 3 | 2 | 6 |
Fig. 5. Segmentation results using the proposed algorithm on Otsu’s measure.

REFERENCES

[1] M. H. Horng, “Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation,” Expert Systems with Applications, vol. 38, no. 11, pp. 13785-13791, 2011.

[2] S. Manikandan, K. Ramar, M. W. Iruhthayarajan, and K. G. Srinivasagan, “Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm,” Measurement, vol. 47, no. 1, pp. 558-568, 2014.

[3] S. Arora, J. Acharya, A. Verma, and P. K. Panigrahi, “Multilevel thresholding for image segmentation through a fast statistical recursive algorithm,” Pattern Recognition Letters, vol. 29, no. 2, pp. 119-125, 2008.

[4] S. Suresh, and S. Lal, “Multilevel thresholding based on Chaotic Darwinian Particle Swarm Optimization for segmentation of satellite images,” Applied Soft Computing, vol. 55 pp. 503-522, 2017.

[5] C. Mala, and M. Sridvi, “Multilevel threshold selection for image segmentation using soft computing techniques,” Soft Computing, vol. 20, no. 5, pp. 1793-1810, 2016.

[6] M. H. Horng, “Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization,” Expert Systems with Applications, vol. 37, no. 6, pp. 4580-4592, 2010.

[7] S. C. Satapathy, N. S. M. Raja, V. Rajinikanth, A. S. Ashour, and N. Dey, “Multi-level image thresholding using Otsu and chaotic bat algorithm,” Neural Computing & Applications, pp. 1-23, 2016.

[8] S. Pare, A. Kumar, V. Bajaj, and G. K. Singh, “A multilevel color image segmentation technique based on cuckoo search algorithm and energy curve,” Applied Soft Computing, vol. 47, no. C, pp. 76-102, 2016.

[9] Y. Liu, C. Mu, W. Kou, and J. Liu, “Modified particle swarm optimization-based multilevel thresholding for image segmentation,” Soft Computing, vol. 19, no. 5, pp. 1311-1327, 2015.

[10] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm: simpler, maybe better,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 204-210, 2004.

[11] A. K. Bhandari, A. Kumar, S. Chaudhary, and G. K. Singh, “A novel color image multilevel thresholding based segmentation using nature inspired optimization algorithms,” Expert Systems with Applications, vol. 63, no. C, pp. 112-133, 2016.

[12] A. K. Bhandari, V. K. Singh, A. Kumar, and G. K. Singh, “Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy,” Expert Systems with Applications An International Journal, vol. 41, no. 7, pp. 3558-3560, 2014.

[13] A. K. Bhandari, A. Kumar, and G. K. Singh, “Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms,” Expert Systems with Applications, vol. 42, no. 22, pp. 8707-8730, 2015.

[14] B. Akay, “A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding,” Applied Soft Computing, vol. 13, no. 6, pp. 3066-3091, 2013.

[15] S. Ouafdet, and A. Taleb-Ahmed, “Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study,” Expert Systems with Applications, vol. 55, no. C, pp. 566-584, 2016.

[16] M. A. Bakhshali, and M. Shamsi, “Segmentation of color lip images by optimal thresholding using bacterial foraging optimization (BFO),” Journal of Computational Science, vol. 5, no. 2, pp. 251-257, 2014.

[17] W. Tao, L. Liu, and L. Liu, Object segmentation using ant colony optimization algorithm and fuzzy entropy: Elsevier Science Inc., 2007.

[18] E. Cuevas, D. Zaldivar, and M. Pérez-Cisneros, “A novel multi-threshold segmentation approach based on differential evolution optimization,” Expert Systems with Applications, vol. 37, no. 7, pp. 5265-5271, 2010.

[19] H. Gao, C. M. Pun, and S. Kwong, “An efficient image segmentation method based on a hybrid particle swarm algorithm

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <
with learning strategy,” *Information Sciences*, vol. 369, pp. 500-521, 2016.

[20] S. Suresh, and S. Lal, “An efficient cuckoo search algorithm based multilevel thresholding for segmentation of satellite images using different objective functions,” *Expert Systems with Applications*, vol. 58, no. C, pp. 184-209, 2016.

[21] Y. Pan, Y. Xia, T. Zhou, and M. Fulham, “Cell image segmentation using bacterial foraging optimization,” *Applied Soft Computing*, vol. 58, pp. 770-782, 2017.

[22] H. V. H. Ayala, F. M. D. Santos, V. C. Mariani, and L. D. S. Coelho, “Image thresholding segmentation based on a novel beta differential evolution approach,” *Expert Systems with Applications*, vol. 42, no. 4, pp. 2136-2142, 2015.

[23] L. He, and S. Huang, “Modified firefly algorithm based multilevel thresholding for color image segmentation,” *Neurocomputing*, vol. 240, pp. 152-174, 2017.

[24] A. K. Bhandari, A. Kumar, and G. K. Singh, “Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions,” *Expert Systems with Applications*, vol. 42, no. 3, pp. 1573-1601, 2015.

[25] S. Pare, A. Kumar, V. Bajaj, and G. K. Singh, “An efficient method for Multilevel Color Image Thresholding using Cuckoo Search Algorithm based on Minimum Cross Entropy,” *Applied Soft Computing*, vol. 61, 2017.

[26] S. Agrawal, R. Panda, S. Bhuyan, and B. K. Panigrahi, “Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm,” *Swarm & Evolutionary Computation*, vol. 11, pp. 16-30, 2013.

[27] Civicioglu, Pinar, Besdok, and Erkan, “A conceptual comparison of the Cuckoo-search, particle swarm, optimization, differential evolution and artificial bee colony algorithms,” *Artificial Intelligence Review*, vol. 39, no. 4, pp. 315-346, 2013.

[28] I. Brajovic, and M. Tuba, *Cuckoo Search and Firefly Algorithm Applied to Multilevel Image Thresholding*: Springer International Publishing, 2014.

[29] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” *IEEE Transactions on Systems, Man, and Cybernetics*, vol. 9, no. 1, pp. 62-66, 1979.

[30] P. Ghamisi, M. S. Couceiro, F. M. L. Martins, and J. A. Benediktsson, “Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 52, no. 5, pp. 2382-2393, 2014.

[31] U. Mlakar, B. Potocnik, and J. Brest, “A hybrid differential evolution for optimal multilevel image thresholding,” *Expert Systems with Applications*, vol. 65, pp. 221-232, 2016.

[32] X. S. Yang, and S. Deb, “Cuckoo Search via Levy Flights,” *Mathematics*, pp. 210 - 214, 2010.

[33] X. S. Yang, “Flower pollination algorithm for global optimization,” in: *Unconventional Computation and Natural Computation 2012, Lecture Notes in Computer Science*, vol. 7445, pp. 240-249, 2012.

[34] A. Draa, “On the performances of the flower pollination algorithm – Qualitative and quantitative analyses,” *Applied Soft Computing*, vol. 34, no. C, pp. 349-371, 2015.

[35] Q. Liu, W. Wei, H. Yuan, Z. H. Zhan, and Y. Li, “Topology selection for particle swarm optimization α∗,” *Information Sciences*, vol. 363, pp. 154-173, 2016.

[36] M. Esfami, H. Shareef, M. Khajehzadeh, and A. Mohamed, “A Survey of the State of the Art in Particle Swarm Optimization,” *Research Journal of Applied Sciences Engineering & Technology*, vol. 4, no. 9, pp. 1181-1197, 2012.

[37] J. Kennedy, “Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance.” p. 1938 Vol. 3.

[38] T. Peram, K. Veeramachuneni, and C. K. Mohan, "Fitness-distance-based particle swarm optimization." pp. 174-181.

[39] J. Derrac, S. Garcia, D. Molina, and F. Herrera, “A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms.” *Swarm & Evolutionary Computation*, vol. 1, no. 1, pp. 3-18, 2011.

[40] García, A. Salvador, A. Ndez, J. Luengo, and F. Herrera, “Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power,” *Information Sciences*, vol. 180, no. 10, pp. 2044-2064, 2010.