Suppression of the Superconducting Transition in RFeAsO$_{1-x}$F$_x$ for $R =$ Tb, Dy, Ho

Jennifer A. Rodgers,1,2 George B. S. Penny,1,2 Andrea Marcinkova,1,2 Jan-Willem G. Bos,1,2 Dmitry A. Sokolov,1,3 Anna Kusmartseva,1,2 Andrew D. Huxley1,3 and J. Paul Attfield1,2,*

1Centre for Science at Extreme Conditions, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ.

2School of Chemistry, University of Edinburgh, Edinburgh, EH9 3JJ.

3SUPA, School of Physics, University of Edinburgh, Edinburgh, EH9 3JZ.

A suppression of superconductivity in the late rare earth RFeAsO$_{1-x}$F$_x$ materials is reported. The maximum critical temperature (T_c) decreases from 51 K for $R =$ Tb to 36 K for HoFeAsO$_{0.9}$F$_{0.1}$, which has been synthesised under 10 GPa pressure. This suppression is driven by a decrease in the Fe-As-Fe angle below an optimum value of 110.6°, as the angle decreases linearly with unit cell volume (V) across the RFeAsO$_{1-x}$F$_x$ series. A crossover in electronic structure around this optimum geometry is evidenced by a change in sign of the compositional dT_c/dV, from negative values for previously reported large R materials to positive for HoFeAsO$_{0.9}$F$_{0.1}$.

Rare earth (R) oxypnictides RFeAsO1 were recently discovered to superconduct when doped, with critical temperatures surpassed only by the high-T_c cuprates. Several families of superconducting iron pnictides have subsequently been
discovered.2 These all have layered structures containing AsFeAs slabs with Fe tetrahedrally coordinated by As. The main types are the 1111 materials based on $R\text{FeAsO}$ or $M\text{FeAsF}$ ($M = \text{Ca, Sr, Ba}$), the 122 phases $M\text{Fe_2As_2}$, and the 111 $A\text{FeAs}$ ($A = \text{Li, Na}$) family. The related binaries FeX ($X = \text{Se, Te}$) are also superconducting.

The electron-doped 1111 materials $R\text{FeAsO}_{1-x}\text{F}_x$ and $R\text{FeAsO}_{1-\delta}$ materials remain prominent as they have the highest T_c's, up to 56 K, and allow lattice and doping effects to be investigated through variations of the R^{3+} cation size and the anion composition. A strong lattice effect is evident at the start of the rare earth series, as T_c rises from 26 K for $\text{LaFeAsO}_{1-x}\text{F}_x$ to 43 K under pressure,3,4 and to a near-constant maximum 50-56 K in the $R\text{FeAsO}_{1-x}\text{F}_x$ and $R\text{FeAsO}_{1-\delta}$ series for $R = \text{Pr}$ to Gd,5,6,7,8,9,10 but whether lattice effects ultimately enhance or suppress superconductivity for the late R's has been unclear. The late rare earth $R\text{FeAsO}_{1-x}\text{F}_x$ materials and the oxygen-deficient $R\text{FeAsO}_{1-\delta}$ superconductors require high pressure synthesis, leading to significant challenges as single phase samples are difficult to prepare, and accurate analyses of cation stoichiometries and O and F contents are difficult. To investigate the effect of the lattice for later R we have synthesised multiple samples of $R\text{FeAsO}_{0.9}\text{F}_{0.1}$ ($R = \text{Tb, Dy, and Ho}$) under varying high pressure conditions. Here we report superconductivity in $\text{HoFeAsO}_{0.9}\text{F}_{0.1}$ for which the maximum T_c of 36 K is markedly lower than in the previous R analogs. This is part of a systematic suppression of superconductivity by the smaller, late R cations. $\text{HoFeAsO}_{0.9}\text{F}_{0.1}$ also shows a reversal in the sign of the compositional dT_c/dV ($V = \text{unit cell volume}$) compared to the early R materials, confirming that the decreasing R size has a significant effect on the bands contributing to the Fermi surface.
Polycrystalline ceramic RFeAsO$_{1-x}$F$_x$ samples ($R = \text{Tb}, \text{Dy}, \text{and Ho}$) were synthesised by a high pressure method and investigated by powder X-ray diffraction, magnetization and conductivity measurements.11 Initial results for RFeAsO$_{1-x}$F$_x$ ($R = \text{Tb}$ and Dy) were published elsewhere.12 Both materials were found to be superconducting with maximum T_c’s of 46 and 45 K respectively. Little difference in superconducting properties between samples with nominal compositions of $x = 0.1$ and 0.2 were observed, and the $x = 0.2$ materials were generally of lower phase purity, and so the $x = 0.1$ composition was used in subsequent syntheses. The best samples typically contain ~80% by mass of the superconducting phase with residual non-superconducting R_2O_3 and RAs phases also present. The sample purity and superconducting properties are not sensitive to synthesis pressure over a range that moves to higher pressures as R decreases in size; $R = \text{Tb}$ and Dy superconductors were respectively prepared at 7-10 and 8-12 GPa, heating at 1050-1100 °C. Repeated syntheses of TbFeAsO$_{1-x}$F$_x$ gave several samples with higher T_c’s than the above value, the highest value is T_c (max) = 51 K (Fig. 1). Further DyFeAsO$_{1-x}$F$_x$ samples did not show higher transitions than before, so we conclude that T_c (max) in this system is 45 K.

Tetragonal HoFeAsO$_{0.9}$F$_{0.1}$ was obtained from reactions at 10 GPa pressure and the properties of six HoFeAsO$_{0.9}$F$_{0.1}$ samples prepared under varying conditions are summarized in Table 1. Crystal structure refinements and phase analysis were carried out by fitting powder X-ray diffraction data (Fig. 2).13 Magnetisation measurements demonstrate that all six HoFeAsO$_{1-x}$F$_x$ samples are bulk superconductors with T_c’s of 29-36 K (Fig. 3). Resistivities show smooth high temperature evolutions without apparent
spin density wave anomalies. The transitions to the zero resistance state have widths of less than 4 K.

Although all of the samples in Table 1 have the same starting composition, small variations of synthesis pressure and temperature result in a dispersion in x around the nominal 0.1 value for the HoFeAsO$_{1-x}$F$_x$ phase and corresponding variations in superconducting properties. T_c increases to a maximum value, T_c(max), at the upper solubility limit of x in RFeAsO$_{1-x}$F$_x$ systems, and this is consistent with the observation that the superconducting phases in samples 1, 3 and 4, which are heated at high temperatures or longer times and so are likely to have a slightly lower F content, have lower T_c’s (average 32.1 K) than the other three samples, made under nominally identical ‘optimum’ conditions, which have average T_c = 34.8 K. Sample 6 shows the highest T_c = 36.2 K and the lowest proportion of the HoFeAsO$_{1-x}$F$_x$ phase and a correspondingly low diamagnetic volume fraction. This demonstrates that the sample is at the upper limit of the superconducting composition range and so gives a realistic T_c(max) for the HoFeAsO$_{1-x}$F$_x$ system.

Although the doping values x for the high pressure RFeAsO$_{1-x}$F$_x$ samples are not known precisely, comparing ensembles of samples with similar phase purities made under similar conditions reveals a clear suppression of superconductivity by lattice effects for heavier R. For example, all of our TbFeAsO$_{1-x}$F$_x$ superconductors have higher T_c’s (five TbFeAsO$_{1-x}$F$_x$ samples, T_c = 45-51 K) than all of the HoFeAsO$_{1-x}$F$_x$ materials (in Table 1). The T_c(max) values of 51, 45 and 36 K for RFeAsO$_{1-x}$F$_x$ with R = Tb, Dy and Ho, respectively thus represent the trend correctly.
Fig. 4 shows a plot of the maximum critical temperatures, T_c (max), against unit cell volume for many reported RFeAsO$_{1-x}$F$_x$ and RFeAsO$_{1.5}$ systems and our above materials. T_c (max) rises slowly as cell volume decreases for $R =$ La to Pr and then shows a broad maximum, between $R =$ Pr and Tb in the RFeAsO$_{1-x}$F$_x$ materials, before falling rapidly as R changes from Tb to Dy to Ho. This trend is not seen in the reported RFeAsO$_{1.5}$ superconductors, where T_c (max) remains approximately constant,14,15 apparently because they have larger cell volumes than their RFeAsO$_{1-x}$F$_x$ analogs (see Fig. 4).

The size of the R^{3+} cation tunes the electronic properties through variations in the geometry of the FeAs slab. A trend between the As-Fe-As (or equivalent Fe-As-Fe) angle and T_c has been reported for the early R materials.16 The upper panel of Fig. 4 shows representative reported values for optimal RFeAsO$_{1-x}$F$_x$ superconductors including our $R =$ Tb, Dy, and Ho materials. This demonstrates that the angle decreases monotonically with R size and so does not show a universal correlation with T_c (max). The T_c (max) variation in the RFeAsO$_{1-x}$F$_x$ series is described by a simple $\cos(\phi-\phi_0)$ function, shown in Fig. 4, where the value of the As-Fe-As angle corresponding to the global maximum T_c, $\phi_{\text{max}} = 110.6^\circ$, is close to the ideal 109.5° value for a regular FeAs$_4$ tetrahedron. All five of the Fe 3d-bands are partially occupied and contribute to the Fermi surface of the iron arsenide superconductors through hybridization with As 4s and 4p states.17 Decreasing the tetrahedral angle through 109.5° marks the crossover from tetragonal compression to elongation of the FeAs$_4$ tetrahedra. In a crystal field model, this reverses the splittings of the t_2 and e d-orbital sets and so a significant crossover in the real electronic structure is likely to occur near 109.5°.
Evidence for the above crossover also comes from a discovered change in the sign of the compositional dT_c/dV near optimum doping in the RFeAsO_{1-x}F_x systems. The unit cell parameters and volume for the six HoFeAsO_{1-x}F_x samples in Table 1 show a positive correlation with T_c (Fig. 5), in contrast to early R = La and Sm analogs where lattice parameters and volume decrease with increasing T_c. The T_c,V points for near-optimally doped R = La, Sm and Ho RFeAsO_{1-x}F_x superconductors are shown on Fig. 4 together with the derived dT_c/dV values. dT_c/dV for a single RFeAsO_{1-x}F_x system follows the overall trend in dT_c(max)/dV for different R’s, changing from a negative value at large R = La to a small positive slope at R = Ho.

The compositional dT_c/dV for a given RFeAsO_{1-x}F_x system reflects two competing effects of variations in the fluoride content x on the lattice volume. F^- is slightly smaller than O^{2-} so the anion substitution effect gives a negative contribution to the compositional dT_c/dV, independent of R. The concomitant effect of doping electrons into the Fe d-bands tends to expand the lattice (and increase T_c), but the magnitude of this positive dT_c/dV term depends on the nature of the bands at the Fermi surface. The observed shift from negative to positive dT_c/dV as R changes from La to Ho shows that the decreasing size of the R^{3+} cation leads to significant changes in the Fermi surface, with volume-expanding (antibonding) bands more prominent for smaller R. Calculations have confirmed that the electronic structure near the Fermi level is sensitive to such small changes in the As z-coordinate (equivalent to changing the Fe-As-Fe angle). Small changes in the contributions of the d-bands are likely to be particularly important in a multigap scenario for superconductivity, as evidenced in gap measurements of TbFeAsO_{0.9}F_{0.1} and other iron arsenide materials.
In summary, our analysis of multiple samples of RFeAsO$_{1-x}$F$_x$ ($R =$ Tb, Dy, and Ho) superconductors demonstrates that the maximum critical temperature falls from 51 K for $R =$ Tb to 36 K for the previously unreported Ho analog. Hence, the effect on the lattice of substituting smaller, late rare earths in the RFeAsO$_{1-x}$F$_x$ lattice suppresses superconductivity. This lattice control appears to be through tuning of the interatomic angles in the FeAs layer, with the optimum angle being 110.6°, near the ideal tetrahedral value. The compositional dT_c/dV changes sign around the optimum angle evidencing significant changes in the Fermi surface. It appears difficult to increase the critical temperatures above 56 K in 1111 type iron arsenide materials through tuning lattice effects, although the possibility of higher T_c’s in other structure types remains open.

We acknowledge EPSRC, the Royal Society of Edinburgh and the Leverhulme trust for support.

* Corresponding author: j.p.attfield@ed.ac.uk
Table 1: Synthesis conditions (all samples were synthesised at 10 GPa), refined lattice parameters and volume, T_c’s, mass fractions and superconducting volume fractions for HoFeAsO$_{1-x}$F$_x$ samples.

Sample	t_{synth} (hr)	T_{synth} (°C)	a (Å)	c (Å)	Vol (Å3)	T_c (K)	Mass frac. (%)	Diamag. frac. (%)
1	2	1150	3.8246(3)	8.254(1)	120.74(3)	29.3	75	70
2	2	1100	3.8272(2)	8.2649(8)	121.06(2)	33.0	74	85
3	1	1150	3.8258(5)	8.264(2)	120.96(4)	33.2	73	76
4	3	1100	3.8282(5)	8.261(2)	121.07(5)	33.7	84	74
5	2	1100	3.8282(2)	8.2654(7)	121.13(2)	35.2	81	57
6	2	1100	3.8297(7)	8.270(2)	121.30(7)	36.2	58	46

Fig. 1 Resistivity and (inset) susceptibility data for an optimum sample of TbFeAsO$_{0.9}$F$_{0.1}$, showing a sharp superconducting transition at $T_c = 51$ K. The sample was prepared at 7 GPa and 1050 °C.
Fig. 2 Fitted x-ray diffraction profile for HoFeAsO$_{0.9}$F$_{0.1}$ (sample 5) at room temperature. The Bragg markers (from top to bottom) are for the minority phases, Ho$_2$O$_3$ and HoAs, and for HoFeAsO$_{0.9}$F$_{0.1}$.

Fig. 3 Superconductivity measurements for HoFeAs$_{0.9}$F$_{0.1}$: (a) ac magnetic volume susceptibility for the six samples; (b) resistivities for samples 4 and 6.
Fig. 4 Variation of Fe-As-Fe angle ϕ (upper panel) and superconducting T_c (lower panel) with unit cell volume for different RFeAsO$_{1-x}$F$_x$ (circles)19,22,5,12 and RFeAsO$_{1.5}$ (triangles)14,15. T_c(max) points are shown as filled symbols. The fit of equation T_c(max) = T_c(max)$_0$.cosA(ϕ-ϕ_0) with parameters T_c(max)$_0$ = 56 K, A = 0.03, and ϕ_0 = 110.6° is also shown. dT_c/dV values are derived from the data for sub-optimally doped materials (open symbols) in the R = La,19 Sm7 and Ho (this paper) systems.

Fig. 5 Variations of T_c with the tetragonal unit cell parameters and volume for the six HoFeAsO$_{1-x}$F$_x$ samples in Table 1.
P. Quebe, L. J. Terbuchte and W. Jeitschko, *J. Alloys Compounds* **302**, 70 (2000).

2 J. W. Lynn and P. Dai, *Physica C* **469**, 469 (2009).

3 Y. Kamihara, T. Watanabe, M. Hirano and H. Hosono, *J. Am. Chem. Soc.* **130**, 3296 (2008).

4 H. Takahashi, K. Igawa, K. Ariii, Y. Kamihara, M. Hirano, and H. Hosono, *Nature* **453**, 376 (2008).

5 Z. A. Ren, J. Yang, W. Lu, W. Yi, G. C. Che, X. L. Dong, L. L. Sun, and Z. X. Zhao, *Mater. Res. Innov.* **12**, 105 (2008).

6 Z. A. Ren, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, *Europhys. Lett.* **82**, 57002 (2008).

7 X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen and D. F. Fang, *Nature* **453**, 761 (2008).

8 Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, *Chin. Phys. Lett.* **25**, 2215 (2008).

9 R. H. Liu, G. Wu, T. Wu, D. F. Fang, H. Chen, S. Y. Li, K. Liu, Y. L. Xie, X. F. Wang, R. L. Yang, L. Ding, C. He, D. L. Feng, and X. H. Chen, *Phys. Rev. Lett.* **101**, 087001 (2008).

10 P. Cheng, L. Fang, H. X. Yang, X. Zhu, G. Mu, H. Luo, Z. Wang, and H. Wen, *Sci. China. Ser. G* **51**, 719 (2008).

Samples were synthesised from stoichiometric amounts of RAs, Fe$_2$O$_3$, FeF$_2$ and Fe, using a Walker multianvil module within a 1000 tonne press. The products were dense, black, sintered polycrystalline pellets. Powder X-ray diffraction data were collected on a Bruker AXS D8 diffractometer using Cu Kα$_1$ radiation. Data were recorded at $10 \leq 2\theta \leq 100^\circ$ with a step size of 0.007$^\circ$ for Rietveld analysis. ac magnetic susceptibility was
measured from 3 to 50 K with a field of 0.5 Oe oscillating at 117 Hz using a Quantum Design SQUID magnetometer. Electrical resistivity was measured by a four-probe method between 1.7 and 300 K using a Quantum Design physical property measurement system and an APD cryogenics closed cycle refrigeration unit with an in-house built sample stage.

12 J.-W. G. Bos, G. B. S. Penny, J. A. Rodgers, D. A. Sokolov, A. D. Huxley and J. P. Attfield, Chem. Comm. 31, 3634 (2008).

13 HoFeAsO$_{0.9}$F$_{0.1}$ has a tetragonal structure (space group P4/nmm; results from fit shown in Fig. 2; goodness of fit χ^2 = 1.60, residuals; $R_{wp} = 3.94\%$, $R_p = 3.02\%$; cell parameters $a = 3.8282(2)$ Å, $c = 8.2654(7)$ Å; atom positions (x,y,z) and isotropic temperature (U) factors; Ho ($\frac{1}{4},\frac{1}{4},0.1454(4)$), 0.044(2) Å2; As ($\frac{1}{4},\frac{1}{4},0.6659(5)$), 0.029(2) Å2; Fe ($\frac{3}{4},\frac{1}{4},\frac{1}{2}$), 0.014(2) Å2; O,F ($\frac{3}{4},\frac{1}{4},0$), 0.26(2) Å2). The secondary Ho$_2$O$_3$ phase is in a high pressure B-type rare earth oxide modification, space group C2/m, $a = 13.841(2)$ Å, $b = 3.4984(5)$ Å, $c = 8.608(1)$ Å, $\beta = 100.08(1)^\circ$.

14 K. Miyazawa, K. Kihou, P. M. Shirage, C. H. Lee, H. Kito, H. Eisaki, and A. Iyo, J. Phys. Soc. Jpn. 78, 034712 (2009).

15 J. Yang, X. L. Shen, W. Lu, W. Yi, Z. C. Li, Z. A. Ren, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, New J. Phys. 11, 025005 (2009).

16 J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang and P. Dai, Nature Mater. 7, 953 (2008).

17 D. J. Singh and M. –H. Du, Phys. Rev. Lett. 100, 237003 (2008).

18 The compositional dT_c/dV quantifies the changes in T_c and unit cell volume V due to variations in doping level x at constant (atmospheric) pressure, and is complementary to
the pressure-induced dT_c/dV at constant x. Both derivatives are negative for LaFeAsO$_{1-x}$F$_x$, and we thus predict a positive pressure-induced dT_c/dV (pressure suppression of superconductivity) for HoFeAsO$_{1-x}$F$_x$.

19 Q. Huang, J. Zhao, J. W. Lynn, G. F. Chen, J. L. Lou, N. L. Wang, and P. Dai, Phys. Rev. B 78, 054529 (2008).

20 S. Lebègue, Z. P. Yin and W. E. Pickett, New J. Phys. 11, 025004 (2009).

21 K. A. Yates, K. Morrison, J. A. Rodgers, G. B. S. Penny, J. W. G. Bos, J. P. Attfield, and L. F. Cohen, New J. Phys. 11, 025015 (2009).

22 G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. 100, 247002 (2008).