Supporting Information

NMR insights on Nano silver post-surgical treatment of superficial caseous lymphadenitis in small ruminants

Danijela Stanisic¹*, Natália L. Fregonesi¹, Caio H. N. Barros¹, João G. M. Pontes¹, Stephanie F. Fulaz¹, Ulisses J. Menezes², Jorge L. Nicoleti², Thiago L. P. Castro³, Núbia Seyffert³, Vasco A. C. Azevedo³, Nelson Durán⁴,⁵, Ricardo W. Portela², Ljubica Tasic¹,⁴

¹Laboratório de Química Biológica, Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas-SP, Brazil.
²Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador-BA, Brazil.
³Departamento de Biologia Geral, Instituto de Estudos Avançados Transdisciplinares, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil.
⁴NanoBioss – Institute of Chemistry, University of Campinas, Campinas, SP, Brazil.
⁵UFABC, São Paulo, SP, Brazil.

Corresponding author: ljubica@iqm.unicamp.br

KEYWORDS: Corynebacterium pseudotuberculosis, Nuclear Magnetic Resonance, metabolomics, caseous lymphadenitis, biogenic nanosilver based cream, wound healing, antimicrobial activity.
Figure S1. SEM Images of *Corynebacterium pseudotuberculosis*: (a) cells at a great dilution; (b) after addition of the biogenic AgNPs synthesized from the orange (*Citrus sinensis*) peel extract in the concentration of 11.0 μg mL⁻¹ (half of the MIC); (c) at the concentration 22.0 μg mL⁻¹ (MIC); (d) bacteria with biogenic AgNPs synthesized from *Fusarium oxysporum* in the concentration 16.8 μg mL⁻¹ (half of the MIC); (e) at the concentration 33.5 μg mL⁻¹ (MIC).
Figure S2. PCA on *C. pseudotuberculosis* NMR data: 2D score (left) and loading graphs (right). NMR data variances were 31.5% in PC 1 and 18.4% in PC 2. The NMR data were normalized by sum and mean centered previous to PCA. The red circles present the group of *C. pseudotuberculosis* extract, the green circles correspond to *C. pseudotuberculosis* extract under ampicillin effects and blue circles represent the *C. pseudotuberculosis* extract under AgNP effects.

Figure S3. Cross validation of *C. pseudotuberculosis* extract PLS-DA model using different number of components. The red star indicates the best classifier.
Figure S4. Mean 1H NMR spectra of serum samples taken from goats treated with iodine solution (red line) and AgNP-based cream (gray line).

Figure S5. Mean 1H NMR spectra of serum samples taken from sheep treated with iodine solution (red line) and AgNP-based cream (gray line).
Figure S6. Subtraction of serum 1H NMR mean spectra, shown in Figure S4, iodine solution versus AgNP-based cream (I-P). There are minimal differences in spectral data when compared serum samples from two treatments.

Figure S7. Subtraction of serum 1H NMR mean spectra, shown in Figure S5. Iodine solution versus AgNP-based cream (I-P). There are minimal differences in spectral data when compared serum samples from two treatments.
Figure S8. 1H NMR PCA data on goat serum samples: 3D scores (left) and loadings (right) with variance of 28.2% in PC 1 and 14.8% in PC 2. The NMR data were normalized by sum and mean centered after the exclusion of outliers. The green circles correspond to animals treated with AgNP-based cream (P) and the red circles correspond to the NMR data of animals treated with iodine 10% (I).

Figure S9. 1H NMR PCA data on sheep’ serum samples: 3D scores (left) and loadings (right) with variance of 40.6% in PC 1 and 24.4% in PC 2. The NMR data were normalized by sum and mean centered after the exclusion of outliers. The green circles correspond to animals treated with AgNP-based cream (P) and the red circles correspond to the NMR data of animals treated with iodine 10% (I).
Figure S10. Concentration of silver in serum sample from sheep treated with AgNP-based cream during 10 weeks, numbers 1-10 mean week upon treatment had started.