Retrospective Study of the Epidemiology and Clinical Manifestations of *Cryptococcus gattii* Infections in Colombia from 1997–2011

Jairo Lizarazo¹, Patricia Escandón², Clara Inés Agudelo², Carolina Firacative²,³, Wieland Meyer³, Elizabeth Castañeda²*¹

1 Internal Medicine Department, Hospital Universitario Erasmo Meoz, Cúcuta, Norte de Santander, Colombia; **2** Microbiology Group, Instituto Nacional de Salud, Bogotá, Colombia; **3** Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia

Abstract

Background: Cryptococcosis due to *Cryptococcus gattii* is endemic in various parts of the world, affecting mostly immunocompetent patients. A national surveillance study of cryptococcosis, including demographical, clinical and microbiological data, has been ongoing since 1997 in Colombia, to provide insights into the epidemiology of this mycosis.

Methodology/Principal Findings: From 1,209 surveys analyzed between 1997–2011, 45 cases caused by *C. gattii* were reported (prevalence 3.7%; annual incidence 0.07 cases/million inhabitants/year). Norte de Santander had the highest incidence (0.81 cases/million/year), representing 33.3% of all cases. The male: female ratio was 3:1. Mean age at diagnosis was 41 ± 16 years. No specific risk factors were identified in 91.1% of patients. HIV infection was reported in 6.7% of patients, autoimmune disease and steroids use in 2.2%. Clinical features included headache (80.5%), nausea/vomiting (56.1%) and neurological derangements (48.8%). Chest radiographs were taken in 21 (46.7%) cases, with abnormal findings in 7 (33.3%). Cranial CT scans were obtained in 15 (33.3%) cases, with abnormalities detected in 10 (66.7%). Treatment was well documented in 30 cases, with most receiving amphotericin B. Direct sample examination was positive in 97.7% cases. Antigen detection was positive for all CSF specimens and for 75% of serum samples. *C. gattii* was recovered from CSF (93.3%) and respiratory specimens (6.6%). Serotype was determined in 42 isolates; 36 isolates were serotype B (85.7%), while 6 were C (14.3%). The breakdowns of molecular types were VGII (55.6%), VGIII (31.1%) and VGI (13.3%). Among 44 strains, 16 MLST sequence types (ST) were identified, 11 of them newly reported.

Conclusions/Significance: The results of this passive surveillance study demonstrate that cryptococcosis caused by *C. gattii* has a low prevalence in Colombia, with the exception of Norte de Santander. The predominance of molecular type VGII is of concern considering its association with high virulence and the potential to evolve into outbreaks.

Citation: Lizarazo J, Escandón P, Agudelo CI, Firacative C, Meyer W, et al. (2014) Retrospective Study of the Epidemiology and Clinical Manifestations of *Cryptococcus gattii* Infections in Colombia from 1997–2011. PLoS Negl Trop Dis 8(11): e3272. doi:10.1371/journal.pntd.0003272

Editor: Joseph M. Vinetz, University of California San Diego School of Medicine, United States of America

Received May 12, 2014; **Accepted** September 14, 2014; **Published** November 20, 2014

Copyright: © 2014 Lizarazo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that, for approved reasons, some access restrictions apply to the data underlying the findings. All strains are deposited in the culture collection of the national Institute of Health in Bogota (Contact Elizabeth Castañeda, email: ecastaneda21@gmail.com) and are available following the regulations of the International Biodiversity Convention (1993) and the subsequent laws of the South American states, including Colombia. The Biodiversity convention states: Article 15 access to Genetic Resources: paragraph 1: “Recognizing the sovereign rights of States over their natural resources, the authority to determine access to genetic resources rests with the national governments and is subject to national legislation”. The laws, specifically the Colombian Decree 391 of 1996, Law 165 of 1994 states: that the genetic resources of Plants, Animals and Microorganisms belong to the country of origin. As such, microbial strains can only be provided for specific projects signing material transfer agreements for the use of a specific project, with an agreed co-authorship on all publications resulting from the use of the provided microbial cultures. The microbial strains that were obtained through a material transfer agreement have to be destroyed after completion of the study, and cannot be passed on to third parties. Any additional researcher who wants to work with these strains needs to obtain the strains directly from the culture collection of the National Institute of Health, Instituto Nacional de Salud, Bogotá after signing a new material transfer agreement.

Funding: The National Health and Medical Research Council grant APP1031943 to WM. CF was supported by a PhD scholarship “Becas Francisco José Caldas” provided by COLCIENCIAS, funding agency in Colombia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: ecastaneda21@gmail.com

Introduction

Cryptococcosis is a fungal disease that affects humans and animals and is caused by two species, *Cryptococcus neoformans* and *Cryptococcus gattii* [1]. *C. gattii* has been recognized as a distinct species from *C. neoformans* due to differences in the morphology of the basidia, environmental niches, multiple gene genealogies, unique patterns generated by different molecular typing techniques, inefficient crossing of species with the production of sterile progeny and a lack of genetic recombination [2]. *C. gattii* can be easily and reliably differentiated from *C. neoformans* through a simple phenotypic procedure, growth on CGB (canavanine, guanidine base, glucose, and agar).
Cryptococcosis is caused by Cryptococcus neoformans and C. gattii, with the most serious manifestation of disease being infection of the central nervous system (CNS). C. neoformans tends to cause disease in immunosuppressed patients, especially those infected with HIV, while C. gattii affects immunocompetent patients preferentially. C. gattii is usually endemic in tropical and subtropical areas. However, highly virulent strains have recently emerged in temperate areas, such as British Columbia in Canada and the Pacific Northwest of the United States. The Colombian national cryptococcal survey characterized the demographic, clinical manifestations and microbiological aspects of C. gattii cryptococcosis. An annual average incidence of infection of 0.07 cases/million inhabitants/year was determined. In contrast, in Norte de Santander the incidence reached 0.81 cases/million inhabitants/year. The national prevalence was 3.7% among all forms of cryptococcosis. Involvement of the CNS (88%) was the commonest clinical manifestation of cryptococcosis. Molecular type VGII, which is the same molecular type as described in the recent outbreaks of this mycosis, was the most prevalent. Overall, clinical C. gattii strains from Colombia showed great genetic diversity. This work contributes to knowledge of the global epidemiology of cryptococcosis and its clinical behavior in Colombian patients.

C. gattii Cryptococcosis in Colombia

Author Summary

Cryptococcosis is caused by Cryptococcus neoformans and C. gattii, with the most serious manifestation of disease being infection of the central nervous system (CNS). C. neoformans tends to cause disease in immunosuppressed patients, especially those infected with HIV, while C. gattii affects immunocompetent patients preferentially. C. gattii is usually endemic in tropical and subtropical areas. However, highly virulent strains have recently emerged in temperate areas, such as British Columbia in Canada and the Pacific Northwest of the United States. The Colombian national cryptococcal survey characterized the demographic, clinical manifestations and microbiological aspects of C. gattii cryptococcosis. An annual average incidence of infection of 0.07 cases/million inhabitants/year was determined. In contrast, in Norte de Santander the incidence reached 0.81 cases/million inhabitants/year. The national prevalence was 3.7% among all forms of cryptococcosis. Involvement of the CNS (88%) was the commonest clinical manifestation of cryptococcosis. Molecular type VGII, which is the same molecular type as described in the recent outbreaks of this mycosis, was the most prevalent. Overall, clinical C. gattii strains from Colombia showed great genetic diversity. This work contributes to knowledge of the global epidemiology of cryptococcosis and its clinical behavior in Colombian patients.

glycine and bromothymol blue) culture medium [3]. C. gattii assimilates glycine, is resistant to canavanine and changes the color of the media due to an alteration in pH when creatinine is degraded into ammonia. C. neoformans is not able to assimilate glycine; therefore, it does not grow on this media [3].

The two species cause different clinical manifestations and have different biological characteristics [1]. C. neoformans is responsible for most cases of cryptococcosis worldwide [4]. Until recently C. gattii was considered rare, however cryptococcosis by C. gattii has gained importance because of its emergence in 1999, which resulted in an outbreak on Vancouver Island and other closely related regions in British Columbia, Canada [5] and the increasing number of cases since 2004 in the Pacific Northwest of the United States [6]. Recent studies based on Multilocus Microsatellite Type (MLMT) and Multilocus Sequence Type (MLST) analyses, as well as whole genome analysis, point towards South America as a potential origin for the outbreak strains [7,8].

Previously, it was thought that C. gattii was restricted to tropical and subtropical regions [9], but the emergence of the outbreak events due to virulent strains in temperate areas of North America suggest a more global distribution of this yeast [5,6]. In addition, independent cases have been reported from Mediterranean Europe [10].

The knowledge about the epidemiology of C. gattii is recent, although the first publications of meningeal cryptococcosis was in a child from the Congo in 1970 [11], while another proven infection occurred in a patient with a lumbar tumor as described by the French physician Ferdinand Curtis in 1896 [12].

C. gattii is a fungal pathogen globally set, with a potential primary ecological niche being associated in some way with decaying wood from a large range of tree species [13]. C. gattii has been associated with at least 54 species of trees native to tropical, subtropical and temperate regions [13,14]. Currently, four major molecular types of C. gattii (VG1 = AFLP4, VGII = AFLP6, VGIII = AFLP5 and VGIV = AFLP7) are accepted according to the characterization by PCR fingerprinting, Random Amplification of Polymerorphic DNA (RAPD), Amplified Fragment Length Polymorphism (AFLP), MLMT and MLST analyses, which are different to the genotypes of C. neoformans (VNI to VNIV) [15–17]. In addition a number of hybrids, including inter-species (C. neoformans var. neoformans x C. gattii DB, C. neoformans var. grubii x C. gattii AB) and intra-species (C. neoformans var. grubii x C. neoformans var. neoformans AD) hybrids, have been identified [18,19].

In Colombia, a national survey on cryptococcosis is ongoing since 1997, led by the Instituto Nacional de Salud in Bogotá (INS) and the Corporación para Investigaciones Biológicas in Medellín (CIB) [20,21]. The objective of the present work was to analyze demographic, clinical and microbiological data concerning cryptococcosis caused by C. gattii received through the survey during the period of 1997–2011. Our overarching aim was to provide a broad brushstroke picture of this mycosis in Colombia.

Materials and Methods

Design

This is a descriptive study of the clinical, epidemiologic and microbiological characteristics of cases of cryptococcosis due to C. gattii in Colombia, identified through an ongoing national survey.

Survey

The information was obtained by a survey designed according to the guidelines of the European Confederation of Medical Mycology, and processed by health professionals in different public and private health care institutions in Colombia, which also sent the corresponding strains from each case to the INS for centralized genotyping.

The survey contained the following information: year of diagnosis of cryptococcosis, patient’s demographic data, such as gender and age, department (Colombia political divisions) and place of residence, risk factors for cryptococcosis (HIV infection, use of corticosteroids, autoimmune disease, organ transplants, presence of malignant solid tumors and hematologic malignancies, diabetes mellitus, liver cirrhosis, chronic kidney disease and sarcoidosis). In cases associated with HIV infection, we asked if cryptococcosis defined AIDS; the date of diagnosis of HIV, the clinical manifestations of cryptococcosis and the type of initial treatment. Also, diagnostic tests performed viz. direct examinations, cultures and the determination of the capsular antigen in serum and cerebrospinal fluid (CSF) and the findings of diagnostic imaging (radiographs of the chest and cross-sectional neuroimaging). In addition to the aforementioned information, the evolution of the disease was determined for patients from Norte de Santander.

Ethical statement

The study was approved by the Ethics Committee of the CIB. Additionally, it had technical and ethical approval of the INS.

Analysis

With the information received, a database was created using Biometrics ver. 7.5.44 (BioAware SA., Belgium), while the data were analyzed statistically using EpiInfo ver. 6.1 (CDC, USA).

Case definition

A case was considered probable when there were clinical findings consistent with cryptococcosis. Cases were confirmed after
isolation of a Cryptococcus spp from a normally sterile site, from sputum, bronchoalveolar lavage or biopsy.

Incidence
The mean annual incidence rate was determined using as denominator the Colombian population census done in 2003, an intermediate year of the surveillance, determined by DANE [22]. For Norte de Santander, the population for the year 2003 was also used [22].

Microbiology
Strain identification was done using conventional mycology techniques. Determination of species was performed by culturing the strains on CGB media [3]. In the first years of surveillance, serotype (B versus C) was determined using specific antisera available commercially (Iatron, Japan).

Antifungal susceptibility
The susceptibility profiles to amphotericin B (AMB) using the E-test (BioMerieux, France) and to fluconazole (FCZ) and voriconazole (VCZ) using disc diffusion method M44-A described by the Clinical Laboratory Standards Institute (CLSI) were determined at the CIB laboratory. Quality control was done by including the Candida albicans strain ATCC 90028, which shows an inhibition range between 32–43 mm.

Molecular type and mating type
Molecular type was determined in all strains using PCR fingerprinting with the primer (GTG)₅ [15]. Mating type a or α (alpha) was determined using specific primers described previously [23].

Multilocus Sequence Typing (MLST)
For 44 strains, seven unlinked genetic loci, including CAP59, GPD1, LACI, PLB1, SOD1, URA5 and the IGS1 region, were amplified following the ISHAM consensus MLST typing scheme for C. neoformans and C. gattii [16]. Amplification of loci was carried out in the Molecular Mycology Research Laboratory, University of Sydney at Westmead Hospital, Westmead, Australia, and the sequences were obtained commercially (Macrogen Inc., Korea). The generated sequences were manually edited using the Sequencher ver. 5.2 (Gene Codes Corporation, USA) software. With the concatenated sequences, a dendrogram showing the genetic relationships between the strains was constructed with the program Mega version 5.05 [24], based on maximum likelihood analysis. Allele types and sequence types (ST) were identified using the ISHAM consensus MLST database at mlst.mycologylab.org. The reference strains for C. gattii WM 179 (VG1 = AFLP4; B/alpha), WM 178 (VGII = AFLP6; B/alpha), WM 175 (VGIII = AFLP5; B/alpha) and WM 779 (VGIV = AFLP7; C/alpha), were included in the genetic analyses for verification of the four major molecular types of C. gattii [15]. Genetic diversity was assessed by calculating the Simpson’s diversity index (D) [25].

Literature review
A search was performed using the Medline database about cryptococcosis by C. gattii, reported from January 1970 to 31 July 2014, its prevalence and the molecular types of clinical strains from the world using the following search terms in English: Cryptococcus gattii, epidemiology, meningitis, HIV, AIDS, children. Articles in Spanish and Portuguese were searched in the databases SciELO and Lilacs. Only available articles were included. In addition, some references cited in articles obtained in the primary search were included also.

Figure 1. Distribution per year and molecular type of Cryptococcus gattii strains recovered in Colombia from 1997–2011. doi:10.1371/journal.pntd.0003272.g001

Results
Prevalence, incidence of cases per year and place of origin
Over the period from January 1997 to December 2011, 1,209 surveys were completed, with corresponding cultured isolate, and were submitted from 76 centers in 25 departments of Colombia and Bogotá D.C. Of these, 45 (3.7%) corresponded to cases of cryptococcosis by C. gattii.

The number of cases received per year is shown in Figure 1 and Table S1 and the origin and number of cases per department is shown in Figure 2 and Table S1. It should be noted that almost a third of the patients (33.3%) resided in Norte de Santander. The average annual incidence of C. gattii in Colombia was 0.07 cases per million inhabitants per year, but in Norte de Santander, it was 0.81 cases per million inhabitants per year.

Demographic information
A preponderance of males 34 (75.5%) was found, with the male: female ratio being 3.3:1. The average age of the patients was 40±16 years with a range of 4 to 68 years. The age and gender distribution is shown in Figure 3. There were 2 (4.5%) cases in children under 16 years-of-age.

Risk factors
No predisposing risk factors were reported in 41 (91.1%) of patients. From the cases in which the risk factors were known, the most frequent were: HIV infection (3; 6.7%) and autoimmune disease with the use of steroids (1; 2.2%). Analysis of the Norte de Santander patients revealed that 93% had no apparent risk factor.

Clinical findings
Clinical manifestations were available for 41 patients (Table 1). The most frequent abnormal physical findings were: headache (33; 80.5%), nausea and vomiting (23; 56.1%), mental changes (20; 48.8%) and visual alterations (18; 43.9%).

The most common clinical presentation was neurocryptococccis (39 cases; 86.7%), followed by pulmonary cryptococcosis (3; 4.4%). Clinical presentation was not determined in 1 case (2.2%).

Diagnostic imaging
In 21 (46.7%) cases results of chest X-ray were available, with 7 (33.3%) showing abnormalities. Computed tomography (CT) of the
head was conducted in 15 (33.3%) cases with abnormalities reported in 10 (66.7%).

Treatment
Initial antifungal therapy was reported in 30 (66.7%) surveys. AMB was used most often, in 29 (96.7%) patients.

Microbiology
Various diagnostic methods were carried out for cryptococcal identification, including direct microscopy, determination of the capsular antigen in serum and CSF and culture of CSF and respiratory samples. The results of these tests are described in Table 2. The serotype was determined in 42 (93.3%) strains: 36 (85.7%) were serotype B, while 6 (14.3%) were serotype C.

Antifungal susceptibility
Susceptibility to antifungals was determined for 42/45 C. gattii strains. All strains were susceptible to AMB (MIC <2 µg/ml). Thirteen (31%) were susceptible (MIC ≤8 µg/ml), 14 (33.3%) susceptible dose-dependent (SDD) (MIC 16–32 µg/ml) and 15 (35.7%) resistant (MIC ≥64 µg/ml) to FCZ. With regard to VCZ, 39 (92.9%) were susceptible (MIC ≤1 µg/ml), 1 (2.4%) SDD (MIC 2 µg/ml) and 2 (4.8%) resistant (MIC ≥4 µg/ml).
Molecular type and mating type

The molecular types of the 45 VG isolates in order of frequency were: VGII 25 (55.6%), VGIII 14 (31.1%), and VGI 6 (13.3%) (Table 2). The distribution of isolates per molecular type per department is shown in Figure 2. In regard to mating type of the strains, 24 (53.3%) were mating type α and 21 (46.7%) were mating type α (Table 2).

Multilocus sequence typing (MLST). Among the 44 isolates genotyped, 16 sequence types (ST) were identified: two STs amongst the VGI strains, nine STs amongst the VGII strains (with ST25 being the most common; 17 (68%) strains) and five STs amongst the VGIII strains (Table 3). Eight STs of the VGII strains (ST8, ST12, ST31, ST46, ST321, ST322, ST323 and ST324) and three of the VGIII strains (ST59, ST64 and ST85) were identified for the first time in this study. The genetic relationship of the studied strains is shown in Figure 4, while the distribution of the STs per department is shown in Figure 2. The MLST data was incorporated into the C. neoformans and C. gattii MLST databases accessible at http://mlst.mycologylab.org and the sequences of identified alleles were deposited in GenBank (Table S2).

To estimate the genetic diversity of the isolates studied, the Simpson’s Diversity index (D) was calculated. In general, C. gattii strains from Colombia were highly diverse ($D = 0.20$). The greatest diversity was identified in the molecular type VGIII ($D = 0.26$), followed by VGII ($D = 0.48$) and VGI ($D = 0.56$).

Follow-up

For 11 patients treated in Norte de Santander, follow-up was undertaken. Nine (81.8%) were discharged alive, while 2 (18.2%) died during hospitalization.

Literature review

Table S3 reflects the prevalence of cryptococcosis by C. gattii around the world, as well as their molecular types, when reported [26–112].

Discussion

The incidence of cryptococcosis caused by C. gattii globally is generally low overall [113]. The mean annual incidence found in this study for Colombia, of 0.07 cases per million inhabitants per year reflects this rarity. Similar findings (0.09 cases per million per year) have been described from New Zealand [111]. However, some regions and population groups of the world have very high incidence, such as Papua New Guinea (43 cases per million per year) [114], the Australian aborigines domiciled in the Northern Territory (6.3 cases per million per year) [115] and British Columbia, Canada (5.8 cases per million per year) [62]. It is striking that the incidence of this disease in the department Norte de Santander is eleven times higher than the national (0.81 cases per million per year), which puts it at the level described for Australia as a continent (0.61 cases per million per year) [115].

Regarding the prevalence of C. gattii infections, the value of 3.7% found in this survey reflects Colombia is a country of overall low prevalence, despite being in the torrid zone of the planet. However, Norte de Santander has a high prevalence of 33.3% (60% in patients without AIDS) [59], placing this region of Colombia on level with other countries of high prevalence such as Papua New Guinea [107,108], the Northern Territory of Australia [110], and Brazil [27] (Table S3). In Brazil, there is a clear difference between the North and South. In the area that covers the North and Northeast regions, the prevalence is very high, with values above 20% [28–33], while in the regions Center West, Southeast and South, the prevalence is low [34–48]. Interestingly, a high proportion of cases of cryptococcosis due to C. gattii in the northern region of Brazil have been present in HIV-negative children [28]. A high prevalence of disease has also been reported from Venezuela [15,52–54], French Guiana [55] Vietnam [100] and Hong Kong (China) [87]. Similar findings have been reported in some African countries, especially Botswana and Malawi, where

Table 1. Clinical manifestations of patients with Cryptococcus gattii cryptococcosis in Colombia, 1997–2011.

Signs and symptoms	n/Total	%
Headache	33/41	80.5
Nausea and vomiting	23/41	56.1
Mental alterations	20/41	48.8
Visual alterations	18/41	43.9
Fever	15/41	36.6
Meningeal signs	14/41	34.1
Intracranial hypertension with or without hydrocephalus	12/41	29.3
Seizures	7/41	17.1
Focal neurological signs	6/41	14.6
Cough	4/41	9.8

doi:10.1371/journal.pntd.0003272.t001
a prevalence of 13\% of *C. gattii* cryptococcosis was found in patients with AIDS, a high value for this type of population [76]. Another study reported a prevalence of 30\% of *C. gattii* in hospitalized AIDS patients in Botswana [77] (Table S3). On the other hand, the overall prevalence in Europe is low, and many of the cases are from people immigrating coming from other regions in the world where cryptococcosis is more common[10,68,69]. Against this trend, an apparently endemic strain from an environmental source in the Netherlands was recently reported [116]. A low prevalence of cryptococcosis by *C. gattii* was also reported from South Africa, where AIDS-related cryptococcosis due to *C. neoformans* is epidemic [82]. Similar findings have been reported from other countries of the African continent [79–81,84], in Mexico [50,51], Argentina [15,56,57] and Asia including China (without Hong Kong) [85,86], India [93–95] and in Southeast Asia [96–99] but excluding Vietnam and Thailand (Table S3).

As in cryptococcosis patients infected with *C. neoformans*, disease referable to *C. gattii* is more frequent in men [117], typically young adults [115], although in this study we found children also and older patients.

The presence of cryptococcosis by *C. gattii* in children domiciled in tropical areas in Brazil [28,34], French Guiana [55], and parts of Australia (Meyer, unpublished) in a remarkable finding that invites further enquiry and research.

The majority (91.1\%) of the Colombian patients described in the current study did not report any apparent risk factor. There were, however, some cases in patients with AIDS or immunosuppressed by another means. The behavior of Colombian patients is in accord with the descriptions of previous studies [111,118,119]. The epidemiology of cryptococcosis by *C. gattii* has changed in the last decade, with the recognition that disease affects immunocompetent and immunosuppressed patients, including patients with AIDS, in regions of the world outside of the tropical and subtropical areas [14,120,121]. In Australia, where this trend is also observed, the number of immunosuppressed patients without AIDS increased from 9\% to 28\% [115]. In British Columbia, Canada the risk factors for infection with *C. gattii* were the use of oral steroids, the presence of pneumonia and other lung diseases [120]. Also, cryptococcosis was more frequent in patients older than 50 years, active smokers, HIV-positive individuals and a history of invasive cancer [120]. In the Pacific Northwest of the United States, patients infected with the outbreak strains of *C. gattii*, when compared with patients infected with different strains, were significantly more likely to have predisposing conditions and respiratory symptoms and a lower probability of having CNS involvement [121]. In Colombian patients, the most common clinical presentation was the CNS involvement with predominance of cryptococcal meningitis and intracranial hypertension. These clinical manifestations have been described in Latin America [39], Asia [96], Africa [82,83], Australia [115] and Papua New Guinea [107,108]. This contrasts with the patients described in Vancouver, the Pacific Northwest of the United States and the Northern Territory of Australia where primary lung disease with granuloma formation predominates [120,121].

It is believed that *C. gattii* is clinically more virulent than *C. neoformans*, as well as being more likely to be a primary pathogen, with a propensity to cause multiple cryptococcal granulomas in the lungs and the brain of affected patients [111,118]. In a mouse model, clinical isolates of *C. gattii* from the outbreak in British Columbia induced an inflammatory response less protective because the organisms somehow inhibit the migration of neutrophils towards the sites of infection. Additionally, in contrast to *C. neoformans*, they fail to induce the production of protective cytokines [122].

Table 2. Clinical, microbiological and molecular data of *Cryptococcus gattii* cryptococcosis cases in Colombia, 1997–2011.

Type of exam	n/total	%
Positive direct examination	42/43	97.7
Capsular antigen detection	14/18	77.8
Serum reactive	6/8	75.0
CSF reactive	14/14	100.0
Positive culture	45/45	100.0
Origin of strains		
CSF	40/45	88.9
CSF and blood	2/45	4.4
Bronchoalveolar lavage	1/45	2.2
Lung biopsy	1/45	2.2
Sputum	1/45	2.2
Serotype		
B	36/42	85.7
C	6/42	14.3
Molecular type		
VG1	6/45	13.3
VGII	25/45	55.6
VGIII	14/45	31.1
Mating type		
a	21/45	46.7
alpha	24/45	53.3

Doi:10.1371/journal.pntd.0003272.t002
Figure 4. Genetic relationship of the Cryptococcus gattii strains causing cryptococcosis in Colombia from 1997 to 2011. Sequence types identified for the first time in this study are indicated with an asterisk (*).
doi:10.1371/journal.pntd.0003272.g004
Table 3. Molecular type, mating type, allele types and sequence types of Colombian *Cryptococcus gatti* clinical strains.

Molecular type RFLP/AFLP	Strain number	Other collection number	State	Mating type	CAP59	GPD1	IGS1	LAC1	PLB1	SOD1	URA5	ST
VGI/AFLP4	H0058-I-628	WM 2039	Bogotá	a	16	5	3	5	5	32	12	51
	H0058-I-645	WM 2039	Boyacá	alpha	16	5	3	5	5	32	12	51
	H0058-I-3151	WM 2039	Norte de Santander	alpha	16	5	3	5	5	32	12	51
	H0058-I-3286	WM 2039	Antioquia	alpha	16	5	3	5	5	32	12	51
	H0058-I-3031	WM 2039	Cundinamarca	alpha	16	5	3	5	5	32	12	51
	H0058-I-3172	WM 2039	Valle	alpha	16	5	3	5	5	32	12	51
VGI/AFLP6	H0058-I-652	WM 2043	Antioquia	a	2	6	25	4	18	12	10	25
	H0058-I-675	WM 04.77, LA584	Bolivar	alpha	2	6	25	4	18	12	10	25
	H0058-I-838	WM 2065, LA596	Arauca	a	2	6	25	4	18	12	10	25
	H0058-I-881	WM 08.295, LA225	Norte de Santander	a	2	6	25	4	18	12	10	25
	H0058-I-902	WM 2069, LA 603	Santander	alpha	2	6	25	4	18	12	10	25
	H0058-I-1278	WM 05.275	Norte de Santander	a	2	6	25	4	18	12	10	25
	H0058-I-1311	WM 05.399	Norte de Santander	a	2	6	25	4	18	12	10	25
	H0058-I-1652	WM 05.394	Caquetá	a	2	6	25	4	18	12	10	25
	H0058-I-2029	WM 05.394	Bogotá	a	2	6	25	4	18	12	10	25
	H0058-I-2151	WM 05.394	Caquetá	a	2	6	25	4	18	12	10	25
	H0058-I-2263	WM 05.394	Bogotá	a	2	6	25	4	18	12	10	25
	H0058-I-2792	WM 08.297	Norte de Santander	a	2	6	25	4	18	12	10	25
	H0058-I-2858	WM 08.298	Norte de Santander	a	2	6	25	4	18	12	10	25
	H0058-I-2877	WM 08.299	Norte de Santander	a	2	6	25	4	18	12	10	25
	H0058-I-3096	WM 11.119	Antioquia	alpha	2	6	25	4	18	12	10	25
	H0058-I-3266	WM 11.119	Norte de Santander	a	2	6	25	4	18	12	10	25
	H0058-I-3590	WM 05.349	Antioquia	a	2	6	25	4	18	12	10	25
	H0058-I-1391	WM 05.349	Valle	a	2	6	10	4	18	12	2	8*
	H0058-I-1348	WM 04.76, LA 221	Caquetá	alpha	2	6	45*	4	18	12	10	321*
	H0058-I-1346	WM 04.76, LA 221	Caquetá	alpha	2	6	95*	4	18	12	10	323*
	H0058-I-3407	WM 04.76, LA 221	Norte de Santander	a	2	21	25	4	41*	12	2	324*
	H0058-I-1543	WM 05.397	Bogotá	alpha	11*	21	6	4	16	5*	2	12*
	H0058-I-2052	WM 04.76, LA 221	Risaralda	a	14	21	94*	4	18	107*	7	322*
	H0058-I-762	WM 04.78, LA224	Santander	alpha	4	6	6	4	18	22*	2	31*
	H0058-I-1959	WM 05.272	Norte de Santander	a	26*	6	4	28	2	27*	2	46*
	H0058-I-1792	WM 2063, LA594	Bogotá	alpha	29	9	5	9	4	28	21	85*
	H0058-I-1442	WM 11.102	Meta	alpha	29	7	5	2	4	28	21	79
	H0058-I-2023	WM 11.105	Norte de Santander	alpha	29	7	5	2	4	28	21	79
	H0058-I-2086	WM 11.106	Califas	alpha	29	7	5	2	4	28	21	79
Molecular type	Other collection number	Strain number	State	Mating type	GPD1	LAC1	PLB1	SOD1	URA5	ST	RFLP/AFLP	
---------------	------------------------	---------------	-------	-------------	------	------	------	------	------	----	-----------	
ST1	H0058-I-1255	18	alpha	1	3	1	3	3	17	18	146	
	H0058-I-1509	28	Norte de Santander	1	3	1	3	17	19	146		
	H0058-I-2442	36	Risaralda	1	3	1	3	17	17	19		
	H0058-I-2961	36	Bogota	1	3	1	3	17	17	19		
	H0058-I-3043	36	Risaralda	1	3	1	3	17	17	19		
	H0058-I-1134	36	Risaralda	1	3	1	3	17	17	19		
	H0058-I-1708	36	Valle	1	3	1	3	17	17	19		
	H0058-I-1276	36	Risaralda	1	3	1	3	17	17	19		
	H0058-I-1812	36	Valle	1	3	1	3	17	17	19		

Note: *New allele or sequence type.

dendritic cells are able to destroy cryptococci, but *C. gattii* evades adaptive immunity by preventing maturation of those cells and causing an inadequate activation and proliferation of T cells [125]. Recently, it has been shown in mice that infection by *C. gattii* decreases the effective response of Th1/Th17 mediated by dendritic cells and regulates the low expression of lung cytokines, resulting in an inability to produce a protective immunity in immunocompetent hosts [124].

Compared to patients with *C. neoformans* infections, meningoencephalitis caused by *C. gattii* responds more slowly to antifungal therapy, and patients require a longer duration of treatment [111,119]. Diagnostic imaging of the lung and brain are typically abnormal in patients infected with *C. gattii*. In the current study a third of the patients presented with gross lung abnormalities.

In immunocompetent patients affected by *C. gattii*, pulmonary nodules or masses with diameters ranging from 5 to 52 mm in diameter and focal areas of consolidation have been described [125]. Some clinical considerations in the differentiation of the infectious caused by *C. gattii* and *C. neoformans* were recently revised [126].

The diagnosis of the vast majority of the Colombian patients reported in the study was obtained by analysis of CSF samples. Direct microscopic examination showed high positivity (97.77%), compared with much lower rates reported for this test in patients without AIDS [87,127]. Also, capsular antigen in the CSF was reactive in all cases as measured by latex agglutination. Definitive diagnosis was established in all patients using culture, and the use of CBG agar established which cases were caused by *C. gattii*. The most frequently identified serotype was VGII (85.7%), which is the most prevalent serotype in clinical and environmental samples. *C. gattii* serotype C was less common although has been associated with AIDS and with immunocompetent patients [13].

In Colombian patients, three of the four molecular types of *C. gattii* were found with a clear predominance of VGII, followed by VGIII and to a lesser extent VGI. The preponderance of the molecular type VGII in Colombia is similar to that reported in Western Australia [109,112], Brazil (especially in the Northern region) [27] and Venezuela [15]. Equally, the molecular type VGII is the main biotype responsible for outbreaks in British Columbia, Canada [63] and the Pacific Northwest of the United States [64]. Hence the importance of determining the taxonomy of *C. gattii* strains because of the epidemic potential associated with the VGII molecular type.

The emergence of specific genotypes of endemic and epidemic disease has been reflected in the large global effort being made to increase knowledge about the population genetics of *C. neoformans* and *C. gattii* [15,112]. MLST data has demonstrated that Colombian *C. gattii* strains are genetically diverse. In spite of the small number of isolates studied, several genotypes were identified belonging to the full range of molecular types, in contrast to the less diverse and rather clonal *C. gattii* populations reported in other countries such as Canada, USA, eastern Australia and Thailand, where few genotypes have been identified amongst a much larger number of strains [5,6,23,63,99]. The identification of the same STs in different departments (Figure 2), for example the prevalent VGII ST25 found in 7 different departments, the VGI ST31 and ST58, and the VGIII ST64, ST79 and ST146, suggests the circulation of genotypes in the country.

The finding of STs previously reported in other parts of the world, shows a wider geographic dispersion of some *C. gattii* genotypes, especially amongst the VGI isolates, for which the herein identified STs have been reported from several countries; ST31 was previously found in Australia, China, India, Mexico, Papua New Guinea and USA [10,16,128], while ST38 had already been described from the
C. gattii Cryptococcosis in Colombia

Netherlands, Germany and USA [68]. Among the VGII isolates, the commonest ST identified in this study, ST25, was already reported in one isolate from Aruba [129], while the STs among the VGIII isolates, ST79 and ST146, were reported in two and one isolates from Mexico and the USA, respectively [129].

In Colombia, the majority of the strains of C. gattii are mating type a [130], in contradistinction to what was found in British Columbia, Canada [5] and of the Pacific coast of the United States [6], and southwestern Western Australia where the main mating type is α, which could suggest the possibility of genetic exchange that could have had an impact on the origin of the outbreaks. C. gattii has been recovered frequently from the environment in Colombia and in the city of Cúcuta (Norte de Santander), with both serotypes B and C having been cultured [131,132].

The initial treatment of cryptococcosis in almost all patients from Colombian was done with AMB, with or without FCZ, which is in agreement with the results of susceptibility testing of all strains of C. gattii to these antifungals and according with the international guidelines for countries with limited resources [133].

The resistance of approx. half of the Colombian strains to fluconazole is a phenomenon that is being studied by the group of the CIB (C de Bedout, personal communication).

Supporting Information

Checklist S1 STROBE checklist.

Table S1 Number of Cryptococcus gattii cryptococcosis cases in Colombia, per state, year and molecular type. Number of cases in brackets.

Table S2 Gene Bank accession numbers for the allele types of Colombian Cryptococcus gattii clinical strains.

Table S3 Cryptococcus gattii. Prevalence and molecular type of clinical isolates reported worldwide.

Acknowledgments

Colombian Group for the Study of Cryptococcosis

Antioquia: Catalina de Bedout, Angela Tobón, Angela Restrepo, Myrrha Arango, Corporación para Investigaciones Biológicas, Medellín. Dora Rivas, Luz Marina Meléquiquz, Victoria García, Hospital General de Medellín. Ana María Restrepo, Clínica CES. Maryan Vásquez, Magda Cárdenas, Maybel Henao, Edna Vásquez, Clínica Saludcoop Medellín. Carlos Angelado, Alejandro Vélez, Carlos Ignacio Gómez, Hospital Pablo Tobón Uribe, Hilda Álvarez, Hospital Marco Fidel Suárez, Marcelo Gaviría, Clínica Medellín. Bogotá: María Isabel Medina, Luz Maldonado, Hospital Simón Bolívar. Carlos Álvarez, Nidia Torres, Judy Andrea Puerta, Claudia Linares, Maritza Rojas, Hospital San Ignacio. Claudia Clavijo, Clínica San Rafael. Martha Isabel Garzón, Hospital el Tunal. Claudia Clavijo, Clínica San Rafael. Sandra Nuñez, Gloria Inés Gallo, LSP Bogotá. Luz Mery Jiménez, Hospital La Victoria. Andrea López Guachetá, Hospital Meissen. Nubia Escobar, Hospital de Kennedy. Bogotá: Neiva, Clínica Nueva, Norte de Santander: Yeni Peña, Hospital Universitario Erasmo Meoz. Valle: Claudia Rocio Castañeda, Mónica Recalde, Juan Diego Vélez, Juan Carlos Alvir, Álvaro Iván Muñoz, Fernando Rozo, Fundación Valle del Lili, Nancy Villamarín, Hospital Universitario del Valle. Caldas: Martha Cecilia Kogson, Gilberto Manjarres, Hospital Santa Sofia. Hulda: Luis Fernando Duran, Hospital Universitario de Neiva. Meta: Sandra Hurtado, Hospital Departamental de Villavicencio. Risaralda: Myriam Gómez, Hospital San Jorge.

We also acknowledge the anonymous reviewers for critical comments on the manuscript and Richard Malik for reviewing the manuscript.

Author Contributions

Conceived and designed the experiments: JL EC. Performed the experiments: JL PE CF EC. Analyzed the data: JL CIA CF EC. Wrote the paper: JL PE CIA CF WM EC.

References

1. Idnurm A, Bahn YS, Nielsen K, Lin X, Fraser JA, et al. (2005) Deciphering the morphologic pathogen Cryptococcus neoformans. Nat Rev Microbiol 3: 753–764.
2. Kwon-Chung KJ, Boekhout T, Fell JW, Diaz M (2002) Proposal to conserve the name Cryptococcus gattii against C. hondurensis and C. balticaspers (Basilidomycota, Hymenomycetes, Tremellomycetidae). Taxon 51: 804–806.
3. Kwon-Chung KJ, Polacheck I, Bennett JE (1982) Improved diagnostic medium for separation of Cryptococcus neoformans var. neoformans (serotypes A and D) and Cryptococcus neoformans var. gattii (serotypes B and C). J Clin Microbiol 15: 355–357.
4. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, et al. (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23: 525–530.
5. Kidd SE, Hagen F, Tscharke RL, Huynh M, Bartlett KH, et al. (2004) A rare type of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci U S A 101: 17258–17263.
6. Byrnes EJ 3rd, Li W, Lewit Y, Ma H, Voelz K, et al. (2010) Emergence and evolution of the human fungal pathogen Cryptococcus gattii from the Amazon rainforest. PLoS One 5: e11746.
7. Euzeby JL, Druzhko DM, Hicks ND, Gulledge JD, Roe CC, Schupp JM, et al. (2014) Cryptococcus gattii in North American Pacific Northwest: whole-population genome analysis provides insights into species evolution and dispersal. mBio 5: e01664–9.
8. Hagen F, Cerecini PC, Polacheck I, Ma H, van Nieuwburgh F, et al. (2013) Ancient dispersal of the human fungal pathogen Cryptococcus gattii from the Amazon rainforest. PLoS One 8: e71148.
9. Barnett JA (2010) A history of research on yeasts 14: medical yeasts part 2, Cryptococcus neoformans. Yeast 27: 675–904.
10. Springer DJ, Chaturvedi V (2010) Projecting global occurrence of Cryptococcus gattii. Emerg Infect Dis 16: 14–20.
11. Chaturvedi V, Chaturvedi S (2011) Cryptococcus gattii: a resurrect fungal pathogen. Trends Microbiol 19: 564–571.
12. Meyer W, Castañeda A, Jackson S, Huhny M, Castañeda E, et al. (2003) Molecular typing of AeroAmerican Cryptococcus neoformans isolates. Emerg Infect Dis 9: 189–195.
13. Meyer W, Aarnsen DM, Boekhout T, Cogliatti M, Diaz MR, et al. (2009) Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol 47: 561–570.
14. Meyer W, Gilgado F, Ngomkuhrungpjo P, Trilles I, Hagen F, et al. Molecular typing of the Cryptococcus neoformans/Cryptococcus gattii species complex (2011) In: Heatman J, Koezl TR, Kwon-Chung J, Perfert JR, Canaveal A. Cryptococcus: form human pathogens to model yeast. Washington D.C.: ASM Press. pp 327–357.
15. Bovers M, Hagen F, Kuramae EE, Diaz MR, Spanjaard L, et al. (2006) Unique hybrids between fungal pathogens Cryptococcus neoformans and Cryptococcus gattii. FEMS Yeast Res 6: 599–607.
16. AminiMradj M, Diaz M, Arbatris M, Castañeda E, Lazera M, et al. (2012) Identification of novel hybrids between Cryptococcus neoformans var. grubii VNI and Cryptococcus gattii VGIII. Mycopathologia. 173: 337–46.
17. Lizarazo J, Linares M, de Bedout C, Restrepo A, Agudelo CL, et al. (2007) Estudio clínico y epidemiológico de la criptococosis en Colombia: resultados de mueve años de la encuesta nacual, 1997–2005. Biomedical 27: 94–109.
18. Escandón P, de Bedout C, Lizarazo J, Agudelo CL, Tobón A, et al. (2012) Cryptococcosis en Colombia: resultados de la encuesta nacional, 2006–2010. Biomedical 32: 386–398.
19. Departamento Administrativo Nacional de Estadística (DANE) (2012) http://www.dane.gov.co/index.php?option=com_content&view=article&id=75&Itemid=72 consulted June 11, 2012.
20. Halliday CL, Carter DA (2003) Clonal reproduction and limited dispersal in an environmental population of Cryptococcus neoformans var. gattii isolates from Australia. J Clin Microbiol 41: 703–711.
48. Casali AK, Goulart L, Rosa e Silva LK, Ribeiro AM, Amaral AA, et al. (2003) Clinical epidemiological study of 171 cases of cryptococcosis in the state of Paraná, Brazil. Rev Soc Bras Med Trop 36: 505–506.

49. Simpson EH. (1949) Measurement of diversity. Nature. 163: 680.

50. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.

51. Motta A, Almeida GD, Almeida J, Pinto MI, Onorio S, Rossi F (2010) Clinical, epidemiological and outcome features of 123 cases of cryptococcosis in Goiânia city, Goiás, Brazil. Rev Soc Bras Med Trop 43: 1647–1652.

52. Acosta ME, Tracogna MF, Fernández MS, Carol Rey MC, Sosa MA, et al. (2011) Antifungal susceptibilities of clinical and environmental isolates of Cryptococcus neoformans var. grubii in the geographic region of San Juan, Puerto Rico. PLoS One 6: e20915.

53. Velegraki A, Kiosses VG, Pitsouni H, Toukas D, Daniilidis VD, et al. (2001) Regional pattern of the molecular types of Cryptococcus neoformans in Greece. Eur J Clin Microbiol Infect Dis 20: 149–151.

54. Lourenço LH, Casali AK, Goulart L, Rosa e Silva LK, Ribeiro AM, et al. (2003) Molecular typing and antifungal susceptibility of clinical isolates of the Cryptococcus neoformans species complex from the Amazonas State in Brazil. Rev Iberoam Microl 39: 40–43.

55. Martins LM, Vanke L, Zayas MDo S, Trilles L, Barbosa GG, et al. (2011) Genotypic distribution of Cryptococcus neoformans and C. gattii as agents of endemic cryptococcosis in Teresina, Piauí (Northeastern Brazil). Mem Inst Oswaldo Cruz 106: 725–730.

56. Matos CS, de Souza Andrade A, Oliveira NS, Barros TF (2012) Microbiological and molecular characteristics of isolates of Cryptococcus spp. in Bahia, Brazil. Mol Biol Evol 29: 273–279.

57. Montes NC, de Souza Andrade A, Oliveira NS, Barros TF (2012) Clinical, epidemiological and outcome features of 171 cases of cryptococcosis in the state of Paraná, Brazil. Rev Soc Bras Med Trop 36: 505–506.

58. Rozenbaum R, Gonçalves AJ (1994) Clinical epidemiological study of 171 cases of cryptococcosis in the city of Resistencia (Chaco, Argentina). Rev Argent Microbiol 37: 140–147.

59. Illnait-Zaragozí MT, Ortega-Gonzalez LM, Hagen F, Martínez-Machín GF, Pérez JA, et al. (2011) Fatal Cryptococcus gattii genotype AFLP5 infection in an immunocompetent Cuban patient. Med Mycol Case Rep. 8: 48–51.

60. Hagen F, van Assen S, Luijckx GJ, Boekhout T, Kampinga GA (2010) Genetic analysis of Cryptococcus neoformans var. grubii from a teaching hospital from São Paulo-Brazil. Int J Infect Dis 14: e126.

61. Illnait-Zaragozí MT, Ortega-Gonzalez LM, Hagen F, Martínez-Machín GF, Pérez JA, et al. (2011) Fatal Cryptococcus gattii genotype AFLP5 infection in an immunocompetent Cuban patient. Med Mycol Case Rep. 8: 48–51.

62. Favalessa OC, Lázaro Mdos S, Wanke B, Oliveira RV, Barbosa GG, et al. (2008) Primary endemic Cryptococcus gattii by molecular type VGII in the state of Paraná, Brazil. Mem Inst Oswaldo Cruz 103: 813–816.

63. Matsos NC, de Souza Andrade A, Oliveira NS, Barros TF (2012) Clinical and molecular characteristics of isolates of Cryptococcus spp. in Bahia, Brazil. Mol Biol Evol 29: 273–279.

64. Tsujiiaki RA, Paniago AM, Lima Junior MS, Alencar Dde S, Sposito FL, et al. (2012) First molecular typing of the causative Cryptococcus species in central-west Brazil. Mycopathologia 176: 267–272.

65. Souza LD, Fernandes O de F, Kobayashi CC, Passos XS, Costa CR, et al. (2005) Antifungal susceptibilities of clinical and environmental isolates of Cryptococcus neoformans var. grubii in Goiânia city, Goiás, Brazil. Rev Iberoam Microl 39: 40–43.

66. Byrnes EJ 3rd, Li W, Ren P, Lewit Y, Voelz K, et al. (2011) A diverse population of Cryptococcus gattii genotypes in the northwest British Columbia, Canada, 1999–2007. Emerg Infect Dis 16: 251–257.

67. Maduro AP, Mansinho K, Teles F, Silva I, Meyer W, et al. (2013) Insights on Cryptococcus gattii strains isolated from patients with cryptococcosis meningitis in a hospital of the tertiary level. Acta Med Colomb 38: 49–61.

68. Velegraki A, Kioussis VG, Pitsouni H, Toukas D, Daniilidis VD, et al. (2001) Molecular typing and antifungal susceptibility of clinical sequential isolates of Cryptococcus neoformans var. grubii from Sao Paulo State, Brazil. Rev Soc Bras Med Trop 34: 535–540.

69. Chaturvedi S, Dyavaiah M, Larsen RA, Chaturvedi V (2005) Cryptococcosis gattii var. grubii in patients with cryptococcal meningoencephalitis in Mexico. J Clin Microbiol 43: 3540–3550.

70. Mendes LD, Ferreira MS, Ribas RM, Borges AS (2006) Cryptococcosis: clinical and epidemiological features of 150 patients with cryptococcosis meningitis in a tertiary hospital in Brazil. Rev Soc Bras Med Trop 39: 559–562.

71. Chaturvedi S, Dyavaiah M, Larsen RA, Chaturvedi V (2005) Cryptococcus gattii var. grubii in AIDS patients, southern California. Emerg Infect Dis 11: 1696–1699.

72. Dueñas E, Cronin CM, Ewing K, Gordin F (2005) Clinical and epidemiological data of cryptococcosis in Austria, Germany and Switzerland with special focus on the characterization of clinical isolates. Mycoses 48: 655–664.

73. Colmenar M, Arrebola P, Martín JR, Pajares FX, de la Cal TA, et al. (2004) Molecular analysis of 311 Cryptococcus neoformans isolates: correlation of the genetic diversity with clinical characteristics. FEMS Yeast Res 6: 614–619.

74. Chaturvedi S, Dyavaiah M, Larsen RA, Chaturvedi V (2005) Cryptococcosis gattii var. grubii in AIDS patients, southern California. Emerg Infect Dis 11: 1696–1699.

75.Table 1. Comparison of Cryptococcus gattii genotypes in the northwest British Columbia, Canada, 1999–2007. Emerg Infect Dis 16: 251–257.

76. Dueñas E, Cronin CM, Ewing K, Gordin F (2005) Clinical and epidemiological data of cryptococcosis in Austria, Germany and Switzerland with special focus on the characterization of clinical isolates. Mycoses 48: 655–664.
91. Hwang SM (2012) Molecular typing of clinical
93. Banerjee U, Datta K, Casadevall A (2004) Serotype distribution of
88. Liaw SJ, Wu HC, Hsueh PR (2010) Microbiological characteristics of clinical
82. Morgan J, McCarthy KM, Gould S, Fan K, Arthington-Skaggs B, et al. (2006)
81. Bogaerts J, Rouvroy D, Taelman H, Kagame A, Aziz MA, et al. (1999) AIDS-
90. Choi YH, Ngamskulrungroj P, Varma A, Sionov E, Hwang SM, et al. (2010)
86. Li M, Liao Y, Chen M, Pan W, Weng L (2012) Antifungal susceptibilities of
83. Meiring ST, Quan VC, Cohen C, Dawood H, Karstaedt AS, et al. (2012) A
79. Bii CC, Makimura K, Abe S, Taguchi H, Mugasia OM, et al. (2007)
94. Jain N, Wickes BL, Keller SM, Fu J, Casadevall A, et al. (2005) Molecular
75. Iatta R, Hagen F, Fico C, Lopatriello N, Boekhout T, et al. (2012)
76. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical
79. Bii CC, Makimura K, Abe S, Taguchi H, Mugasia OM, et al. (2007)
99. Kaocharoen S, Ngamskulrungroj P, Firacative C, Trilles L, Poulybacka M, et al. (2013) Molecular epidemiology reveals genetic diversity amongst isolates of Cryptococcus neoformans/C. gattii species complex in Thailand. PLoS Negl Trop Dis 7:e2297.
99. Kaocharoen S, Ngamskulrungroj P, Firacative C, Trilles L, Poulybacka M, et al. (2013) Molecular epidemiology reveals genetic diversity amongst isolates of Cryptococcus neoformans/C. gattii species complex in Thailand. PLoS Negl Trop Dis 7:e2297.
80. Pooboon N, Mikami Y, Poonwan S, Boon-Long J, Meka N, et al. (1997) Serotyping of Cryptococcus neoformans strains isolated from clinical specimens in Thailand and their susceptibility to various antifungal agents. Eur J Epidemiol 13: 335–340.
80. Pooboon N, Mikami Y, Poonwan S, Boon-Long J, Meka N, et al. (1997) Serotyping of Cryptococcus neoformans strains isolated from clinical specimens in Thailand and their susceptibility to various antifungal agents. Eur J Epidemiol 13: 335–340.
78. Kaosaenon S, Ngamskulrungroj P, Fireacite C, Trilles L, Ploybacka M, et al. (2013) Molecular epidemiology reveals genetic diversity amongst isolates of Cryptococcus neoformans/C. gattii species complex in Thailand. PLoS Negl Trop Dis 7:e2297.
77. Steele KT, Thakur R, Nithobanasing R, Steenhoff AP, Bisson GP (2010) In-hospital mortality of HIV-infected cryptococcal meningitis patients with C. gattii and C. neoformans infection in Gabonese, Togo. Med Mycol 48: 1112–1115.
77. Steele KT, Thakur R, Nithobanasing R, Steenhoff AP, Bisson GP (2010) In-hospital mortality of HIV-infected cryptococcal meningitis patients with C. gattii and C. neoformans infection in Gabonese, Togo. Med Mycol 48: 1112–1115.
76. Litvintseva AP, Thakur R, Banda K, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
76. Litvintseva AP, Thakur R, Banda K, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
75. Iatta R, Hagen F, Fico C, Lopatriello N, Boekhout T, et al. (2012) Cryptococcal meningitis in human immunodeficiency virus-infected patients in Zaire, Southern Italy. J Infect Dis 192: 1112–1115.
74. Iatta R, Hagen F, Fico C, Lopatriello N, Boekhout T, et al. (2012) Cryptococcal meningitis in human immunodeficiency virus-infected patients in Zaire, Southern Italy. J Infect Dis 192: 1112–1115.
75. Iatta R, Hagen F, Fico C, Lopatriello N, Boekhout T, et al. (2012) Cryptococcosis in the Republic of Korea. FEMS Yeast Res 10: 769–786.
73. Iatta R, Hagen F, Fico C, Lopatriello N, Boekhout T, et al. (2012) Cryptococcosis in the Republic of Korea. FEMS Yeast Res 10: 769–786.
71. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
70. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
69. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
68. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
67. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
66. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
65. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
64. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
63. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
62. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
61. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
60. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
59. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
58. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
57. Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus neoformans var. grubii among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192: 689–892.
128. Walraven CJ, Gerstein W, Hardison SE, Wormley F, Lockhart SR, et al. (2011) Fatal disseminated Cryptococcus gattii infection in New Mexico. PLoS One 6:e28625.

129. Carriconde F, Gilgado F, Arthur I, Ellis D, Malik R, et al. (2011) Clonality and α-α recombination in the Australian Cryptococcus gattii VGII population—an emerging outbreak in Australia. PLoS One 6:e16936.

130. Escandón P, Sánchez A, Martínez M, Meyer W, Castañeda E (2006) Molecular epidemiology of clinical and environmental isolates of the Cryptococcus neoformans species complex reveals a high genetic diversity and the presence of the molecular type VGII mating type α in Colombia. FEMS Yeast Res 6: 625–635.

131. Callejas A, Ordoñez N, Rodríguez MC, Castañeda E (1998) First isolation of Cryptococcus neoformans var. gattii, serotype C, from the environment in Colombia. Med Mycol 36: 341–344.

132. Firacative C, Torres G, Rodríguez MC, Escandón P (2011) First environmental isolation of Cryptococcus gattii serotype B, from Cúcuta, Colombia. Biomédica 31: 118–123.

133. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, et al. (2010) Clinical practice guidelines for the management of cryptococcal disease: 2010 Update by the Infectious Diseases Society of America. Clin Infect Dis 50: 291–322.