Deletion of an intronic polypyrrimidine tract of porcine DNAH17 perturbs splicing and causes defective sperm flagella

Adélá Nosková*1, Maya Hiltpold*1, Fredi Janett†, Thomas Echtermann‡, Zih-Hua Fang*, Xavier Sidler‡, Christin Selige§, Andreas Hofer§, Stefan Neuenschwander**, Hubert Pausch*

*Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, 8315 Lindau, Switzerland
†Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
‡Division of Swine Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
§SUISAG, 6204 Sempach, Switzerland
**Animal Genetics, Institute of Agricultural Science, ETH Zürich, 8092 Zürich, Switzerland

†authors contributed equally

AN: adela.Noskova@usys.ethz.ch
MH: maya.hiltpold@usys.ethz.ch
FJ: fredi.janett@uzh.ch
TE: techtermann@vetclinics.uzh.ch
ZHF: zih-hua.fang@usys.ethz.ch
XS: xsidler@vetclinics.uzh.ch
CS: cse@suisag.ch
AH: aho@suisag.ch
SN: stefan.neuenschwander@usys.ethz.ch
HP: hubert.pausch@usys.ethz.ch

Data availability:

- **DNA and RNA sequencing** data are available at the European Nucleotide Archive (ENA) of the EMBL at BioProject
 - PRJEB38156 (https://www.ebi.ac.uk/ena/browser/view/PRJEB38156)
 - PRJEB37956 (https://www.ebi.ac.uk/ena/browser/view/PRJEB37956)
 - PRJEB39374 (https://www.ebi.ac.uk/ena/browser/view/PRJEB39374)
 - PRJNA622908 (https://www.ebi.ac.uk/ena/browser/view/PRJNA622908)
 - PRJNA506525 (https://www.ebi.ac.uk/ena/browser/view/PRJNA506525)
- **Whole-genome genotypes** in the form of plink binary files and phased haplotypes of 6 affected and 100 unaffected Large White boars are available at zenodo: https://doi.org/10.5281/zenodo.4081475
- Genotypes of candidate causal variants for 5 affected and 82 unaffected boars are available in a VCF file at zenodo: https://doi.org/10.5281/zenodo.4081475
Running title: DNAH17 exon skipping in infertile boars

Key words: Sperm flagella defect, impaired male fertility, polypurimidine tract, exon skipping, genetic disorder

Corresponding author
Prof. Dr. Hubert Pausch
ETH Zurich
Animal Genomics
Institute of Agricultural Sciences (IAS)
EHB E21
Eschikon 27
8315 Lindau, Switzerland
Phone +41 52 354 92 34
hubert.pausch@usys.ethz.ch
www.ag.ethz.ch
ABSTRACT

Artificial insemination in pig (Sus scrofa domesticus) breeding involves the evaluation of the semen quality of breeding boars. Ejaculates that fulfill predefined quality requirements are processed, diluted and used for inseminations. Within short time, eight Swiss Large White boars producing immotile sperm that had multiple morphological abnormalities of the sperm flagella were noticed. The eight boars were inbred on a common ancestor suggesting that the novel sperm flagella defect is a recessive trait. Transmission electron microscopy cross-sections revealed that the immotile sperm had disorganized flagellar axonemes. Haplotype-based association testing involving microarray-derived genotypes at 41,094 SNPs of six affected and 100 fertile boars yielded strong association (P=4.22 x 10^{-15}) at chromosome 12. Autozygosity mapping enabled us to pinpoint the causal mutation on a 1.11 Mb haplotype located between 3,473,632 and 4,587,759 bp. The haplotype carries an intronic 13-bp deletion (Chr12:3,556,401-3,556,414 bp) that is compatible with recessive inheritance. The 13-bp deletion excises the polypyrinidine tract upstream exon 56 of DNAH17 (XM_021066525.1:c.8510-17_8510-5del) encoding dynein axonomal heavy chain 17. Transcriptome analysis of the testis of two affected boars revealed that the loss of the polypyrinidine tract causes exon skipping which results in the in-frame loss of 89 amino acids from DNAH17. Disruption of DNAH17 impairs the assembly of the flagellar axoneme and manifests in multiple morphological abnormalities of the sperm flagella. Direct gene testing may now be implemented to monitor the defective allele in the Swiss Large White population and prevent the frequent manifestation of a sterilizing sperm tail disorder in breeding boars.

INTRODUCTION

Artificial insemination is the most frequent method of breeding in pigs. The semen of breeding boars is collected once or twice per week at semen collection centers. All ejaculates are macro- and microscopically evaluated. Traits that are routinely measured in all ejaculates include ejaculate volume, sperm concentration, motility, and morphology. Only ejaculates that meet the quality requirements for artificial insemination are processed, diluted and used for inseminations (Colenbrander et al., 1993),(Broekhuijse et al., 2011),(Holt et al., 1997). Semen quality and insemination...
success vary within and between boars due to environmental, permanent environmental and genetic effects (Marques et al., 2017).

Access to longitudinal data on standardized semen traits for large cohorts of males is unique to livestock populations (Thibier and Wagner, 2002), (Knox, 2016). Boars suitable for breeding are selected based on semen quality and genomic predictions derived from dense SNP microarray-derived genotypes. Dense genotypes and repeated semen trait measurements for thousands of males are prerequisites to unravel the genetic architecture of male fertility. The comprehensive genetic analysis of male fertility is challenging in most species other than livestock. For instance, the analysis of male fertility in humans typically relies on correlated proxy phenotypes such as family size and birth rate (Kosova et al., 2012), small cohorts of males (Sato et al., 2018), (Sato et al., 2020), and observations from a single ejaculate per individual (Rahban et al., 2019).

Due to the widespread use of artificial insemination in livestock populations, the semen from individual male breeding animals may be used for thousands of inseminations. Boar semen quality is positively correlated with insemination success and litter size (Holt et al., 1997). Semen traits that are measured at semen collection centers have medium heritability (Marques et al., 2017). Thus, they are well suited as response variables in genome-wide association studies for male reproductive performance (Diniz et al., 2014), (Hiltpold et al., 2020). Genome-wide association studies on male fertility carried out in livestock discovered novel phenotype-genotype associations that improved our biological understanding of mammalian fertilization (Pausch et al., 2014), (Lamas-Toranzo et al., 2020, p. 95), (Noda et al., 2020), (Hiltpold et al., 2020), (Ni et al., 2020, p. 19), (Noskova et al., 2020).

Ejaculates from hundreds of boars are evaluated every year at semen collection centers as a service to the pig breeding industry. This rich resource of semen quality records facilitates to investigate sporadically occurring sperm defects using case-control association testing (Sironen et al., 2006), (Sironen et al., 2011), (Noskova et al., 2020). Once causative variants have been identified, direct gene tests and genome-based mating strategies may be implemented to avoid the birth of infertile males. Moreover, the discovery of genes that harbor pathogenic alleles that compromise male fertility is important to enhance the diagnostic yield of genetic testing also in species other than livestock (Xavier et al., 2020).
Here, we investigate an autosomal recessive sperm tail defect of Swiss Large White boars. Using genome-wide association testing, we map the disorder to porcine chromosome 12. The analysis of genome-wide DNA and RNA sequencing data of affected boars revealed that the loss of an intronic polypyrimidine tract of porcine DNAH17 is causal for the morphological abnormalities of the sperm flagella.

MATERIAL AND METHODS

Ethics approval and consent to participate
Semen samples of five breeding boars were collected by laboratory technicians at an approved semen collection center as part of their regular service to the Swiss pig breeding industry. Semen samples of three boars were flushed from the epididymis post mortem. Testes were collected after regular slaughter at an approved slaughterhouse. Our study was approved by the veterinary office of the Canton of Zurich (animal experimentation permit ZH 070/20).

Consent for publication
SUISAG, the Swiss pig breeding and competence center provided written consent to the analyses performed and agreed to publish results and data.

Animals
Eight Swiss Large White boars with a sperm tail defect were considered in our study (Table 1). Five of them were noticed at the semen collection center of SUISAG because their ejaculates contained immotile spermatozoa that had multiple morphological abnormalities of the flagella. Because the five boars were healthy and pedigree analysis indicated that they were inbred on a common ancestor, recessive inheritance of the sperm tail defect was suspected. A mating between two suspected carrier animals was performed in the field to assess phenotypic manifestations in their offspring. The pregnant sow was purchased and maintained at the research barn of the Division of Swine Medicine, Vetsuisse Faculty, University of Zurich. The sow gave birth to a litter with eleven piglets (eight females, three males). One of the male piglets (Boar_1246) died at the age of 200 days due to hemorrhagic bowel syndrome (Grahofer et al., 2017). The other two male boars (Boar_1249, Boar_1254) were slaughtered at the age of 17 months at a regular slaughterhouse.
All three male piglets from the mating of suspected carrier animals expressed the sperm tail defect (see below). Pedigree records were analyzed using the PyPedAL software package (Cole, 2007).

Table 1: Experimental design of the study

Boar	AI center	Research station	GWAS cohort	PCR-based genotyping	Whole-genome sequence data	RNA sequencing data	Macro- and microscopic sperm analyses	Eosin-nigrosin staining	TEM sections
Boar_78	X	X		SAMEA6813549	X		X		
Boar_79	X	X		SAMEA6813550	X		X		
Boar_80	X	X	X	SAMEA6813551	SAMEA6832284	X	X		
Boar_81	X	X	X	SAMEA6813552	SAMEA6832285	X	X		
Boar_82	X	X	X	SAMEA6813553	X		X		
Boar_1246a	X	X					X		
Boar_1249	X	X			X	X	X		
Boar_1254	X	X			X	X	X		

a died at the age of 200 days due to hemorrhagic bowel syndrome; sperm were flushed from the epididymis post mortem.

Details on the eight boars with a sperm tail defect. Genotypes and haplotypes for the GWAS cohort are available at https://doi.org/10.5281/zenodo.4081475. DNA and RNA sequencing data from the boars are available at the European Nucleotide Archive (ENA) of the EMBL at the BioProject PRJEB38156 under the accession numbers listed in the table.

Phenotypes

Semen samples of five breeding boars were macro- and microscopically evaluated by laboratory technicians as part of the routine service of SUISAG to the Swiss pig breeding industry. Spermatozoa from three boars (Boar_1246, Boar_1249, Boar_1254) were flushed from the epididymis post mortem. Semen samples from a fertile boar were provided by SUISAG.

Sperm concentration, total sperm count and sperm motility were determined with an IVOS II CASA system (Hamilton Thorne Inc., Beverly, U.S.A.) using Leja 2-chamber slides (Leja, Nieuw-Vennep, the Netherlands). For morphological examination, semen was fixed in buffered formol saline solution (Na2HPO4 4.93g, KH2PO4 2.54g, 38% formaldehyde 125ml, NaCl 5.41g, distilled water q.s. 1000ml) and smears prepared (Hancock, 1957). At least 200 spermatozoa were subsequently
evaluated by phase contrast microscopy using oil immersion (Olympus BX50, UplanF1 100×/1.30, Olympus, Wallisellen, Switzerland).

Assessment of sperm viability was performed using the eosin-nigrosin staining method (Blom, 1950). In stained slides at least 200 spermatozoa were evaluated under oil immersion on a light microscope (Olympus BX50, UplanF1 100×/1.30, Olympus, Wallisellen).

In order to prepare sperm flushed from the epididymis for transmission electron microscopy (TEM), the samples were washed twice in phosphate buffered saline (PBS) and subsequently centrifuged at 300g. A semen sample from an unaffected boar was first centrifuged at 300g to increase the sperm concentration and then washed in PBS. The pellet was fixed with equal volume of 6% glutaraldehyde, resuspended gently, and centrifuged at 6000g. After removing the supernatant, the sperm were fixed for a second time with 3% glutaraldehyde, and finally pelleted at 6000g. Pellets were washed three times in PBS, post-fixed in 1% osmium tetroxide, washed in ddH2O, stained in 1% uranyl acetate, dehydrated in graded series of ethanol (25, 50, 75, 90, and 100%), and embedded in Epoxy resin through increasing concentrations (25, 50, 75, and 100%) using PELCO Biowave+ tissue processor, and then cured at 60 °C for 3 days. Embedded blocks were sectioned using Leica FC6 microtome and a DIATOME diamond knife with 45° angle into 60 nm sections and mounted on Quantifoil copper grids with formvar carbon films. Sections were post-stained with 2% uranyl acetate followed by lead citrate. Grids were imaged using FEI Morgagni 268 electron microscope operated at 100 kV at 20 k magnification.

Genotypes and haplotype inference

Genotypes of 9955 Large White boars (including six boars with the sperm tail defect) and sows were provided by SUISAG. All pigs were genotyped using Illumina PorcineSNP60 Bead chips that comprised between 62,163 and 68,528 SNPs. We considered only autosomal SNPs. Physical positions of the SNPs corresponded to the Sscrofa11.1-assembly of the porcine genome (Warr et al., 2019). Quality control on the genotypes was carried using the **PLINK** (version 1.9) software (Chang et al., 2015). Animals and SNPs with more than 10% missing genotypes were excluded from subsequent analyses. We removed SNPs with minor allele frequency (MAF) less than 0.005 and SNPs for which the observed genotype distribution deviated
significantly (P < 0.00001) from Hardy-Weinberg proportions. After quality control, our dataset contained 9848 pigs and genotypes at 43,254 autosomal SNPs. Sporadically missing genotypes were imputed and haplotypes were inferred using 12 iterations of the phasing algorithm implemented in the BEAGLE (version 5.0) software (Browning et al., 2018), assuming an effective population size of 500 while all other parameters were set to default values.

Genome-wide association testing

Six boars that produced sperm with multiple morphological abnormalities of the flagella were considered as case group for a genome-wide association study. The control group consisted of 100 randomly selected boars that produced normal sperm and were fertile, i.e., each of them sired at least one litter in the Swiss Large White breeding unit.

We tested the association between the affection status of the boars and 41,094 autosomal SNPs for which the frequency of the minor allele was greater than 5%. Single marker-based case-control association testing was performed using Fisher’s exact tests of allelic association as implemented in the PLINK (version 1.9) software (Chang et al., 2015).

A linear haplotype-based association model was implemented as described in (Venhoranta et al., 2014) and (Hiltpold et al., 2020). We shifted a sliding window consisting of 25 contiguous SNPs corresponding to an average haplotype length of 1.28 ± 0.65 Mb along the chromosomes in steps of 5 SNPs. Within each of the 8583 sliding windows considered, we tested the association of between 1 and 10 haplotypes that had frequency greater than 5% with the sperm tail defect using the linear model (Hiltpold et al., 2020) \(y = \mu + \sum_{i=1}^{30} a_i PC_i + bHT + e \), where \(y \) is a vector of phenotypes (1-fertile, 2-infertile), \(\mu \) is the intercept, \(PC_i \) are the top 30 principal components of a genomic relationship matrix built based on genotypes of 43,254 autosomal SNPs using the PLINK software, \(a \) and \(b \) are effects of the principal components and the haplotype (HT) tested, respectively, and \(e \) is a vector of residuals that are assumed to be normally distributed. In total, we tested 47,685 haplotypes for association with the sperm tail defect.

SNPs and haplotypes that exceeded the Bonferroni-corrected significance threshold (\(P_{SNP}=1.22 \times 10^{-6}, P_{HAPLO}=1.05 \times 10^{-6} \)) were considered as significantly associated.
The inflation factors of the test statistics were calculated using the `estlambda()` function of the GENABEL R package (Aulchenko et al., 2007).

Analysis of positional candidate genes

The top association signal revealed a 1.11 Mb segment of extended homozygosity at chromosome 12. Genes located within the segment of homozygosity were obtained from the Refseq annotation of the porcine genome (version 106, available at ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Sus_scrofa/annotation_releases/106/GCF_000003025.6_Sscrofa11.1_genomic.gff.gz). Using publicly available RNA sequencing data (BioProject PRJNA506525, sample accession numbers SAMN10462191 – SAMN10462197) from (Robic et al., 2019), we quantified mRNA abundance of the positional candidate genes in porcine testes. To this end, we downloaded between 47 and 58 million 2 x 150 bp paired-end sequencing reads that were generated from RNA extracted from testis tissue of seven pubertal boars from European Piétrain and Landrace populations. The RNA sequencing reads were pseudo-aligned to an index of the porcine transcriptome (Refseq version 106) and transcript abundance was quantified using the KALLISTO software (Bray et al., 2016). We used the R package TXIMPORT (Soneson et al., 2015) to aggregate transcript abundances to the gene level.

Whole-genome sequencing and sequence variant genotyping

We sequenced five Swiss Large White boars that produced sperm that had multiple morphological abnormalities of the sperm flagella using 2 x 150 bp paired-end reads. Illumina TruSeq DNA PCR-free libraries with 400 bp insert sizes were prepared and sequenced at an Illumina NovaSeq6000 instrument. We used the FASTP software (Chen et al., 2018) to remove adapter sequences, poly-G tails and reads that had phred-scaled quality less than 15 for more than 15% of the bases. Between 81,145,807 and 114,616,836 filtered read pairs were aligned to the Sscrofa11.1 assembly of the porcine genome using the MEM algorithm of the BWA software (Li, 2013) with default parameter settings. We marked duplicates using the PICARD tools software suite (https://github.com/broadinstitute/picard) and sorted the alignments by coordinates using SAMBAMBA (Tarasov et al., 2015). The number of reads covering a position were extracted from the alignments using the MOSDEPHTH software (version 0.2.2) with default parameter settings (Pedersen and Quinlan, 2018). The realized
sequencing read depth of the five boars was 10.9-fold and it ranged from 8.9- to 12.5-fold.

Sequence variants (SNPs and Indels) of the five sequenced boars were genotyped together with 93 pigs from different breeds for which whole-genome sequence data were available from our in-house database using the multi-sample variant calling approach of the GENOME ANALYSIS TOOLKIT (GATK, version 4.1.0; (Depristo et al., 2011)). We filtered the sequence variants by hard-filtering according to best practice guidelines of the GATK. A detailed description of our reference-guided variant discovery and filtration approach is described in (Crysantho et al., 2019). Functional consequences of polymorphic sites were predicted according to the Refseq annotation (version 106) of the porcine genome using the VARIANT EFFECT PREDICTOR software from Ensembl (McLaren et al., 2016) along with the SpliceRegion.pm plugin (https://github.com/Ensembl/VEP_plugins/blob/release/101/SpliceRegion.pm). We considered 82 pigs with known pedigree as a control group for the present study.

Identification of candidate causal variants
We considered 14,806 SNPs and 3,856 Indels that were detected within the 1.11 Mb segment (between 3,473,632 and 4,587,759 bp) of extended homozygosity at chromosome 12 as positional candidate causal variants. To identify variants compatible with recessive inheritance of the sperm tail disorder, we applied a filtering strategy that takes into account flawed genotypes and the under-calling of heterozygous genotypes due to relatively low sequencing coverage. Specifically, we screened for alleles that had following frequency:

- ≥ 0.8 in five affected boars (at least 8 out of 10 alleles),
- ≤ 0.05 in 82 control pigs from different breeds (less than 8 alleles).

This filtration resulted in only one compatible variant which was a 13-bp intronic deletion.

Whole transcriptome sequencing and read alignment
Testes were collected immediately after slaughter at an approved slaughterhouse from two boars (Boar_80, Boar_81) that were homozygous for the 13-bp deletion and produced sperm with multiple morphological abnormalities of the flagella. Tissue samples were frozen in liquid nitrogen and stored at -80°C until RNA extraction. Paired-end RNA libraries (2 x 150 bp) were prepared using total RNA purified from
testis tissue using the Illumina TruSeq RNA Sample Preparation Kit (Illumina, San Diego, CA, USA). The libraries were sequenced at an Illumina NovaSeq6000 instrument yielding 49,198,010 and 70,451,148 reads. Quality control on the raw RNA sequencing reads was performed using the FASTP software using default parameter settings (see above). The filtered read pairs (48,889,296 and 69,988,376) were aligned to the Sscrofa11.1 reference sequence and the Refseq gene annotation (version 106) using the splice-aware read alignment tool STAR (version 2.7.3a) (Dobin et al., 2013). The number of RNA sequencing reads that covered a position was counted using the MOSDEPTH (see above).

Bioinformatic analysis
Putative branch point sequences within DNAH17 (XM_021066525.1) intron 55 were predicted using the BPP algorithm (Zhang et al., 2017). Putative 3’ splice acceptor sites were predicted using the NNSPLICE software tool (https://www.fruitfly.org/seq_tools/splice.html (Reese et al., 1997)). Domains of porcine DNAH17 (protein-ID: A0A287AFU3) were retrieved from Uniprot.

Genotyping of the 13-bp deletion
DNA was isolated from either hair roots (living pigs) or spleen (slaughtered pigs) using DNeasy blood and tissue kit (Qiagen). A PCR test was established consisting of a FAM-labelled forward primer (Fw-DNAH17: 5’-TGAGCATCTTTTGGCGAGG-3’) and a reverse primer (Re-DNAH17: 5’-GCTGTTGGATCAGCACCAGGA-3’) which bind to the wild type and mutant alleles, as well as a wild type specific reverse primer (Re-wt-DNAH17: 5’-TCGAGCTAGACGCGAGGG-3’). PCR fragments were analyzed on a DNA analyzer 3130xl (Applied Bioscience).

Availability of data
Whole-genome sequence data of 87 pigs including five boars with a sperm tail defect have been deposited at the European Nucleotide Archive (ENA) of the EMBL at BioProject PRJEB38156, PRJEB37956, PRJEB39374 and PRJNA622908, under sample accession numbers listed in Supplemental file S1. The genotypes of five affected and 82 unaffected boars at 14,806 SNPs and 3,856 Indels that were detected within the segment of autozygosity are available from Zenodo (https://doi.org/10.5281/zenodo.4081475). RNA sequencing data of testicular tissue samples of two boars homozygous for the 13-bp deletion have been deposited at the
European Nucleotide Archive (ENA) of the EMBL at the BioProject PRJEB38156 under sample accession numbers SAMEA6832284 and SAMEA6832285. RNA sequencing data of testicular tissue samples of seven pubertal boars are accessible via the European Nucleotide Archive (ENA) of the EMBL at the BioProject PRJNA506525 under sample accession numbers SAMN10462191 – SAMN10462197. The microarray-derived genotypes and haplotypes of cases and controls, the eigenvectors considered to account for stratification, the R script used to carry out haplotype-based association testing, and the results from the haplotype-based association study are available from Zenodo (https://doi.org/10.5281/zenodo.4081475).

RESULTS

Phenotypic manifestation of a sperm tail disorder in Large White boars

Five Swiss Large White boars maintained at a semen collection center produced ejaculates that contained spermatozoa with defective tails. Microscopic semen analysis revealed multiple morphological abnormalities of the sperm flagella including rudimentary, short, coiled and irregularly shaped tails (Figure 1A). Proximal cytoplasmic droplets were frequently observed at the junction of sperm head and tail. Progressively motile sperm were not detected in the ejaculates. Eosin-nigrosin staining of semen flushed from the epididymis of two affected boars indicated that 48 and 60% of the sperm were viable (Supplemental file S2). Ejaculate volume and sperm concentration were normal. Apart from producing sperm with defective tails, the boars were healthy and had no testicular abnormalities. Due to the absence of motile sperm and the high degree of abnormalities of the flagella, the boars were not suitable for breeding and were slaughtered. The sperm tail defect of the boars is commonly referred to as asthenoteratozoospermia.

Transmission electron microscopy cross-sections of sperm flagella from a fertile boar revealed the typical axonemal arrangement of nine outer microtubule doublets surrounding the central pair (9x2 + 2) (Figure 1D). In contrast, cross-sections of sperm that were flushed from the epididymis of two affected boars revealed multiple ultrastructural abnormalities including completely disorganized axonemes (Figure
Central and outer microtubule doublets were absent in some flagella. Some sperm had superfluous but disorganized axonemal structures. The cytoplasmic bags that were detected at the junction between sperm head and tail using light microscopy contained unassembled axonemal components (Supplemental file S3).

Figure 1. Characteristics of a recessive sperm tail defect of Large White boars. Representative phase contrast microscopy images of sperm produced from affected (A) and fertile (B) boars. Ejaculates of affected boars contained sperm with multiple morphological abnormalities of the flagella including short, coiled, broken and bent tails. A proximal cytoplasmic droplet was detected between the sperm head and tail at most of the spermatozoa from affected boars. Representative transmission electron microscopy cross-sections of sperm flagella from affected (C) and fertile (D) boars. Cross sections of the sperm flagella revealed the typical arrangement of nine outer microtubule doublets surrounding the central pair (9×2 + 2) in fertile boars (D). Lack of central and outer microtubules doublets and complete axonemal disorganization were frequently detected in cross-sections of the sperm flagella in affected boars. Pedigree of eight boars that produced sperm with defective tails (D).

The numbers within the boxes correspond to the IDs in Table 1. Boars 1246, 1249 and 1254 originate from a mating between two suspected carrier animals. Ovals and boxes represent female and male ancestors, respectively. The grey box indicates a common ancestor (born in 2005) on which all affected boars were inbred. Shapes filled with yellow color represent individuals that were confirmed to carry the top haplotype in heterozygous state using Illumina Porcine60K genotypes.
The boars that produced defective sperm were closely related (Figure 1E). Two affected boars were fullsibs. The average relationship coefficient between the boars was 0.28 and it ranged from 0.14 to 0.63. Their average coefficient of inbreeding was 0.087, which is slightly higher than in the fertile boars (F=0.06). All affected boars were inbred on a boar born in 2005. This common ancestor was present in both the paternal and maternal ancestry of significantly less (N=10, P_{Fisher’s exact}=4.69 \times 10^{-6}) fertile boars. Three sires of affected boars were used in artificial insemination. None of their ejaculates (n=168) contained an anomalous amount of sperm with defective flagella. These observations are compatible with an autosomal recessive inheritance of the sperm tail defect.

In order to verify the presumed recessive inheritance and monitor phenotypic manifestations in homozygous boars, a mating between two suspected carrier animals was performed in the field (Figure 1E). The sow gave birth to a litter with eight female and three male piglets (Boar_1246, Boar_1249, Boar_1254). The three male piglets were maintained at a research barn. Boar_1246 died at the age of 200 days due to hemorrhagic bowel syndrome. Testes and epididymis were collected post mortem. Testicular abnormalities were not detected. Microscopic analysis of sperm flushed from the epididymis revealed that the sperm flagella had multiple morphological abnormalities. Boar_1249 and Boar_1254 were healthy and developed normal at the research barn. At 17 months, both boars were slaughtered at a regular slaughterhouse and testes and epididymis were collected. Microscopic analysis of sperm flushed from the epididymis revealed that both boars produced sperm with multiple morphological abnormalities of the flagella.

Haplotype-based association testing maps the sperm tail defect to a 1.11 Mb interval on porcine chromosome 12

Six affected boars (Table 1) were genotyped with the Illumina PorcineSNP60 microarray. As a control group, we considered 100 randomly selected fertile boars of the Swiss Large White breeding population that also had Illumina PorcineSNP60-derived genotypes. Following quality control, genotypes at 41,094 autosomal SNPs were used for association testing. Single marker-based case/control-association testing using Fisher’s exact test of allelic association revealed eleven SNPs located on porcine chromosomes 11, 12 and 13 that exceeded the Bonferroni-corrected significance threshold (Figure 2A). The strongest association signal (P=1.87 \times 10^{-9})
resulted from SNP ASGA0052524 that is located at 2,785,333 bp on porcine chromosome 12. An inflation factor of 1.55 indicated that the SNP-based association study was enriched for false positive association signals. Inspection of the top principal components of the genomic relationship matrix revealed clustering of the boars with the sperm tail defect (Supplemental file S4), suggesting that population stratification confounded the association analysis, thereby producing spurious association signals.

Figure 2. A 1.11 Mb segment on porcine chromosome 12 is associated with the sperm tail defect. Manhattan plot of a SNP- (A) and haplotype-based (B) genome-wide association study. Red color represents eleven SNPs and twenty-one haplotypes that exceeded the Bonferroni corrected-significance threshold. Homozygosity mapping in six boars that produced sperm with defective tails using SNPs located on porcine chromosome 12 (C). Blue and pale blue represent homozygous genotypes (AA and BB), heterozygous genotypes are displayed in black. The red bar indicates a 1.11 Mb segment of extended homozygosity that was shared in all six affected boars. mRNA abundance (quantified in transcripts per million) of 15 genes that are located within the segment of extended homozygosity in testicular tissue of pubertal boars (D). The vertical line represents the standard deviation estimated across seven samples.
To take population stratification into account, we repeated the association analysis using a haplotype-based linear model that included 30 principal components of a genomic relationship matrix as covariates. An inflation factor of 1.15 indicated that the principal components-based control of population stratification was mostly successful. Twenty-one haplotypes located between 94,345 and 9,256,260 bp on chromosome 12 (SSC12) exceeded the Bonferroni-corrected significance threshold (Figure 2B). The strongest associations (P=4.22 x 10^{-15}) were detected for three overlapping haplotypes located between 2,166,472 and 3,755,956 bp. The top haplotype occurred at a frequency of 3.5% among the 100 fertile boars. Seven fertile boars were heterozygous carriers of the top haplotype. The top haplotype was not detected in the homozygous state in fertile boars. No haplotypes located on chromosomes other than SSC12 were associated with the sperm tail defect.

The haplotype-based association study peaked at a 1.11 Mb segment of extended homozygososity (between 3,473,632 and 4,587,759 bp) at porcine chromosome 12 that was identical by descent in all six affected boars, corroborating recessive inheritance (Figure 2C). According to the Refseq annotation of the porcine genome, the segment of extended autozygososity encompasses 15 genes (Figure 2D).

We suspected that the mutation causing the sperm tail defect affects a transcript that is abundant in the testes. We found expression levels greater than 10 transcripts per million for four genes (DNAH17, BIRC5, SYNGR2, SEC14L1) that were annotated within the 1.11 Mb segment of extended homozygososity (Figure 2D). Among those, only DNAH17 encoding the dynein axonemal heavy chain 17, shows a highly testis-biased expression in humans (https://gtexportal.org/home/), sheep (http://biogps.org/dataset/BDS_00015/sheep-atlas/) (Clark et al., 2017) and cattle (http://cattlegeneatlas.roslin.ed.ac.uk/) (L. Fang et al., 2020). Pathogenic alleles in human and murine orthologs of DNAH17 have been detected in males that produce immotile sperm with multiple morphological abnormalities of the flagella (Whitfield et al., 2019),(Zhang et al., 2020). Thus, we considered DNAH17 as a compelling positional and functional candidate gene for a sperm flagella defect in boars.

An intronic 13-bp deletion is associated with the sperm tail defect

We sequenced five affected boars to an average coverage of 10.9-fold using short paired-end reads. We also considered 82 sequenced pigs from our in-house variant database that were not affected by the sperm tail disorder. The analysis of
sequencing depth at the proximal region of SSC12 did not reveal large deletions or duplications that segregate with the haplotype. To identify candidate causal mutations, we considered 18,662 variants (14,806 SNPs and 3,856 indels) that were detected within the 1.11 Mb interval (between 3,473,632 and 4,587,759 bp) of extended homozygosity. Of the 82 sequenced control animals, 65 also had array-called genotypes. Three of the 65 pigs that had array- and sequence-called genotypes carried the top haplotype in heterozygous state, yielding a haplotype frequency of 2% in the sequenced control animals.

Of 18,662 positional candidate causal variants, a single variant was compatible with recessive inheritance of the sperm tail defect: a 13-bp deletion at Chr12:3,556,401-3,556,414 bp (XM_021066525.1:c.8510-17_8510-5del) located in an intron of DNAH17. The 13-bp location resides within the top window from the haplotype-based association study. Sequence variant genotyping using GATK indicated that the five sequenced boars with the sperm tail defect were homozygous for the deletion. Only the three boars from the control group, that carried the top haplotype in the heterozygous state, also carried the 13-bp deletion in the heterozygous state. The deletion did not occur in the homozygous state in animals from the control group. According to the variant classification algorithm of the VEP software, the intronic 13-bp deletion was annotated as “splice_region_variant & intron_variant”. Its impact on protein function was predicted to be low.

RNA sequencing reveals that the 13-bp deletion causes skipping of DNAH17 exon 56

Closer inspection of the 13-bp deletion revealed that it excises an intronic pyrimidine-rich sequence containing a continuous stretch of eight pyrimidine bases between 5 and 17 bases upstream of a canonical 3’ splice site of DNAH17 exon 56 (Figure 3A). The VEP plugin SpliceRegion.pm indicated that the deletion coincides with a putative polypyrimidine tract. A branch point consensus sequence (yUnAy) (Gao et al., 2008) was predicted (z-score: 4.79) 2-6 nucleotides upstream the 13-bp deletion. The pyrimidine content between the predicted branch point adenine and the splice acceptor site at the 3’ end of intron 55 is 68.4%. Considering that the polypyrimidine tract is an important cis-acting element for spliceosome assembly in canonical “GT-AG”-type acceptor splice sites (Coolidge et al., 1997), we suspected that the 13-bp deletion perturbs pre-mRNA splicing. In silico splice site prediction using NNSPLICE
indicated (prediction score 0.46) that the 13-bp deletion likely prevents recognition of the 3’ splice acceptor site at the intron-exon boundary of exon 56, thus possibly causing exon skipping.

Figure 3: A 13-bp deletion perturbs splicing of *DNAH17*. Genomic sequence at the intron-exon boundaries of exon 56 of porcine *DNAH17* (XM_021066525.1) (A). The grey background indicates the sequence of exon 56. Red color highlights 13 nucleotides that are deleted in boars with the sperm tail defect. Splice acceptor and donor sites are represented in bold-italic type. Violet color indicates the predicted (z-score: 4.79) branch point sequence (BPS). Expression of DNAH17 (in counts per million) in testes of two Swiss Large White boars (SAMEA6832284, SAMEA6832285) homozygous for the 13-bp deletion (B). The number of reads covering a position was divided by the total number of reads (in million) mapped to transcripts, and averaged across both boars. Blue color indicates the exon-intron structure of porcine DNAH17. Exon 56 is displayed in red color. DNAH17 domains according to Uniprot (protein-ID: A0A287AFU3) (C). Different colored boxes represent conserved domains in the stem of dynein heavy chains (DHC), the microtubule-binding region (MT) and six ATPase domains (ATPases associated with diverse cellular activities, AAA1-AAA6). Skipping of exon 56 truncates 89 amino acids (red color) from AAA4.

Exon 56 of porcine *DNAH17* is regularly expressed in testis tissue of pubertal boars (**Supplemental file S5**). In order to examine if the loss of the polypyrimidine tract upstream exon 56 perturbs splicing, we sequenced RNA purified from testis tissue of two boars that produced defective sperm and were homozygous for the 13-bp deletion. We aligned 49 and 70 million paired-end (2x150 nt) RNA sequencing reads to the porcine transcriptome to quantify transcript and exon abundance. An average of 49 *DNAH17* transcripts per million (TPM) were detected in the two boars.
homozygous for the 13-bp deletion. However, no reads aligned to the sequence of exon 56 corroborating that the 13-bp deletion prevents recognition of the 3’ splice site, thereby causing exon skipping (Figure 3B).

The skipping of exon 56 causes an in-frame loss of 89 amino acids (residues 2836-2924) representing 2% of porcine DNAH17 (XP_020922184.1). DNAH17 contains six evolutionarily conserved “ATPase associated with a variety of cellular activities (AAA)”-domains that are linked together as an asymmetric hexameric ring required to power the beating movement of sperm flagella (Gleave et al., 2014),(Snider et al., 2008). The 89 amino acids are truncated from AAA4 of DNAH17 (Figure 3C).

DISCUSSION

Eight Swiss Large White boars produced sperm with multiple morphological abnormalities of the flagella. Considering that all sperm were immotile, the boars were judged to be infertile and not used for breeding. Because a majority of the sperm were viable, fertilization might be possible using intracytoplasmic sperm injection (ICSI) (Nijs et al., 1996),(Ortega et al., 2011). However, success rates after ICSI may vary considerably in individuals with asthenoteratozoospermia (Wambergue et al., 2016),(Whitfield et al., 2019). In any case, the application of ICSI in livestock populations seems unwarranted if the underlying male-factor infertility follows recessive inheritance, because a defective allele would be transmitted to the offspring.

Apart from producing sperm with defective tails, the boars were healthy. Diseases and environmental stressors were less likely to be causal for the defective sperm flagella (Jurewicz et al., 2009), because the boars were maintained at a semen collection center with many other boars that produced normal semen. Idiopathic infertility and poor semen quality in healthy males may result from pathogenic alleles in genes that are specifically expressed in the male reproductive tract (Pausch et al., 2014),(Iso-Touru et al., 2019),(Pausch et al., 2016b),(Noskova et al., 2020). The eight affected boars were inbred on a common ancestor supporting the hypothesis of a shared genetic etiology. While the presence of common ancestors in the pedigrees of all affected boars is compatible with recessive inheritance, it does not rule out
other modes of inheritance (Bourneuf et al., 2017). Considering that all affected but only few fertile boars were inbred on the common ancestor, a recessive mode of inheritance was likely.

The morphological and ultrastructural flagella defects of the eight Swiss Large White boars are similar to those observed in Finnish Yorkshire boars that are homozygous for a loss-of-function allele in KPL2 (a.k.a. SPEF2) (Andersson et al., 2000),(Sironen et al., 2006). Although cross-breeding between Finnish Yorkshire and Swiss Large White pigs had not been documented recently, the defective allele could be located on an ancient shared haplotype (Pausch et al., 2016a),(Schwarzenbacher et al., 2016). However, the genomic region on chromosome 16 encompassing SPEF2 is not associated with the sperm defect of the Swiss Large White boars, indicating genetic heterogeneity.

SNPs on chromosomes 11, 12 and 13 were significantly associated with the sperm disorder using Fisher’s exact test of allelic association. This result was puzzling because an oligogenic inheritance of the sperm flagella defect was unlikely. Phenotypic misclassification and genetic heterogeneity could lead to an inconclusive association study (Manchia et al., 2013). However, the morphological abnormalities of the sperm flagella were strikingly similar in the ejaculates of eight boars. Moreover, pedigree analysis suggested monogenic recessive inheritance. Principal components analysis and a genomic inflation factor of 1.55 indicated that population stratification confounded our SNP-based association study (Price et al., 2010). Although Fisher’s exact tests have been widely applied to map binary traits (Balding, 2006), these tests are prone to type I errors when cases and controls differ in their ancestries. Following the approach from (Hiltpold et al., 2020), we fitted the top principal components of a genomic relationship matrix as covariates in a haplotype-based association model to take population stratification into account. A strong association signal at chromosome 12 remained while all other association signals disappeared. In agreement with previous studies (Price et al., 2006),(Pausch et al., 2011),(Hiltpold et al., 2020) and evidenced by a low inflation factor, the principal components-based correction successfully eliminated spurious signals that arose due to population stratification. Considering that the most significantly associated haplotype also encompasses the causal variant for the sperm flagella defect, our findings corroborate that genome-wide haplotype-based association testing offers a
powerful approach to identify trait-associated regions in stratified mapping cohorts
(Kadri et al., 2014),(Hiltpold et al., 2020),(Pausch et al., 2016a).

The haplotype associated with multiple morphological abnormalities of the sperm flagella carries a 13-bp deletion in an intron of DNAH17 encoding dynein axonemal heavy chain 17. Our results show that DNAH17 is abundant in porcine testis tissue.

Dynein axonemal heavy chains are required for the axonemal assembly and the beating movement of the flagella (Inaba, 2003),(Ben Khelifa et al., 2014),(Tu et al., 2019),(Sironen et al., 2020),(Liu et al., 2020),(Whitfield et al., 2019),(Zhang et al., 2020, p. 17),(Sha et al., 2020). Pathogenic alleles in human and murine DNAH17 manifest in sperm with an abnormal mitochondrial sheath and cytoplasmic droplets, as well as axonemal disorganization including absence of the central pair and missing peripheral microtubule doublets (Whitfield et al., 2019), (Zhang et al., 2020, p. 17),(Sha et al., 2020). Boars that are homozygous for a 13-bp deletion in intron 55 of DNAH17 also produce sperm with multiple morphological and ultrastructural abnormalities of the flagella. Although annotated as a low impact variant, the intronic 13-bp deletion perturbs pre-mRNA splicing because it disrupts the polypyrimidine tract in intron 55 of DNAH17. The mutant DNAH17 lacks part of the AAA4 domain which likely compromises axonemal assembly and the beating movement of the sperm flagellum in the homozygous state. The assembly of the flagellar axoneme is less disorganized when other domains of DNAH17 are affected by pathogenic variants (Whitfield et al., 2019),(Zhang et al., 2020),(Sha et al., 2020), likely because an intact AAA4 domain is essential to physiological DNAH17 function (Snider et al., 2008). Thus, our findings suggest that the intronic 13-bp deletion is a loss-of-function allele.

We previously identified mutations at splice donor sites and nearby splice acceptor sites that manifest in male reproductive disorders due to aberrant splicing (Iso-Touru et al., 2019),(Hiltpold et al., 2020). Our present study reveals an intronic deletion from 5 to 17 nucleotides upstream a canonical 3’ splice site that perturbs splicing as the most likely causal variant for a novel porcine sperm flagella defect. The 13-bp deletion compromises splicing because it excises a polypyrimidine tract upstream DNAH17 exon 56. Phenotypic consequences arising from polypyrimidine tract mutations had rarely been described so far (Lefévre et al., 2002),(Sartelet et al., 2015),(Abramowicz and Gos, 2018). To the best of our knowledge, our study reports...
the first phenotype-genotype association for a mutation affecting an intronic polypyrimidine tract in pigs. We provide evidence that the loss of the polypyrimidine tract in porcine DNAH17 intron 55 prevents recognition of the 3’ splice site which leads to the skipping of exon 56, thus causing defective sperm flagella. Sequence motifs that govern the assembly of the spliceosome may be more distant to 3’ splice sites than the polypyrimidine tract in porcine DNAH17 intron 55 (Zhang et al., 2017). However, standard sequence variant annotation tools are largely blind to putative consequences arising from mutations within intronic motifs. Thus, the systematic characterization of branch points and polypyrimidine tracts seems warranted to refine the functional classification of intronic variants. Our findings enable the monitoring of the 13-bp deletion and unambiguous identification of carrier and homozygous animals using direct gene testing. While homozygosity for the 13-bp deletion is easily recognized in artificial insemination boars using microscopic semen analysis, it may remain undetected in sows and natural service boars. However, affected natural service boars will be noticed after few matings due to low fertility. In agreement with previous findings on loss-of-function alleles in human and murine DNAH17 (Whitfield et al., 2019),(Zhang et al., 2020),(Sha et al., 2020), homozygous mutation carriers were healthy. Considering that the frequency of the 13-bp deletion is low and the majority of sows is inseminated artificially, economic losses due to unsuccessful breeding with homozygous boars are negligible in the Swiss Large White population. The number of recessive conditions detected in livestock populations increases steadily (Nicholas and Hobbs, 2014). Low effective population size, founder effects and inbreeding favor the manifestation of recessive conditions. However, recent advances in genome-wide genotyping and sequencing offer powerful tools for rapid detection of causal variants underpinning inherited conditions (Bourneuf et al., 2017). The phenotypic and economic consequences of the 13-bp deletion in DNAH17 are less detrimental than mutations that manifest in malformed and non-viable piglets (Fang et al., 2020). However, the 13-bp deletion becomes a threat to the breeding population if it attains higher frequency (Pausch et al., 2014),(Hiltpold et al., 2020). The 13-bp deletion in DNAH17 adds to a catalogue of sequence variants that cause male-factor infertility in pigs (Sironen et al., 2011),(Sironen et al., 2006),(Noskova et al., 2020). It remains an open question how an increasing number of undesired
recessive alleles may be considered appropriately in livestock populations (Cole, 2015), (Upperman et al., 2019). Although the newly identified 13-bp deletion does neither compromise the welfare of homozygous animals nor result in huge economic losses, its frequency should be kept at a low level to avoid the birth of homozygous boars that are infertile.

ACKNOWLEDGEMENTS

We acknowledge financial support from SUISAG, Micarna SA and the ETH Zürich Foundation. We thank Dr. Cecilia Bebeacua (ScopeM) for support in transmission electron microscopy. We are thankful for the excellent technical support provided by the ETH Zürich technology platforms FGCZ (https://fgcz.ch/), ScopeM (https://scopem.ethz.ch/), and Genetic Diversity Centre (https://gdc.ethz.ch/), respectively, for sequencing, microscopy and DNA fragment analysis.

REFERENCES

Abramowicz, A., Gos, M., 2018. Splicing mutations in human genetic disorders: examples, detection, and confirmation. J Appl Genet 59, 253–268. https://doi.org/10.1007/s13353-018-0444-7

Andersson, M., Peltoniemi, O., Makinen, A., Sukura, A., Rodriguez-Martinez, H., 2000. The Hereditary ‘Short Tail’ Sperm Defect - A New Reproductive Problem in Yorkshire Boars. Reproduction in Domestic Animals 35, 59–63. https://doi.org/10.1046/j.1439-0531.2000.00196.x

Ben Khelifa, M., Coutton, C., Zouari, R., Karaouzène, T., Rendu, J., Bidart, M., Yassine, S., Pierre, V., Delaroche, J., Hennebicq, S., Grunwald, D., Escalier, D., Pernet-Gallay, K., Jouk, P.-S., Thierry-Mieg, N., Touré, A., Arnout, C., Ray, P.F., 2014. Mutations in DNAH1, which Encodes an Inner Arm Heavy Chain Dynein, Lead to Male Infertility from Multiple Morphological Abnormalities of the Sperm Flagella. American Journal of Human Genetics 94, 95. https://doi.org/10.1016/j.ajhg.2013.11.017

Blom, E., 1950. A one-minute live-dead sperm stain by means of eosin-nigrosin. Fertility and Sterility 1, 176–177.
Bourneuf, E., Otz, P., Pausch, H., Jagannathan, V., Michot, P., Grohs, C., Piton, G., Ammermüller, S., Deloce, M.-C., Fritz, S., Leclerc, H., Péchoux, C., Boukadiri, A., Hozé, C., Sinaisian, R., Créchet, F., Mosca, M., Segelke, D., Guillaume, F., Bouet, S., Baur, A., Vasilescau, A., Genestout, L., Thomas, A., Allais-Bonnet, A., Rocha, D., Colle, M.-A., Klop, C., Esquerre, D., Wurmser, C., Flisikowski, K., Schwarzenbacher, H., Burgstaller, J., Brügmann, M., Dietschi, E., Rudolph, N., Freick, M., Barbey, S., Fayolle, G., Danchin-Burge, C., Schibler, L., Bed’Hom, B., Hayes, B.J., Daetwyler, H.D., Fries, R., Boichard, D., Pin, D., Drögemüller, C., Capitan, A., Klopp, C., Esquerré, D., Wurmser, C., Schwarzenbacher, H., Burgstaller, J., Brügmann, M., Dietschi, E., Rudolph, N., Freick, M., Barbey, S., Fayolle, G., Danchin-Burge, C., Schibler, L., Bed’Hom, B., Hayes, B.J., Daetwyler, H.D., Fries, R., Boichard, D., Pin, D., Drögemüller, C., Capitan, A., 2017. Rapid Discovery of De Novo Deleterious Mutations in Cattle Enhances the Value of Livestock as Model Species. Scientific Reports 7, 11466. https://doi.org/10.1038/s41598-017-11523-3

Bray, N.L., Pimentel, H., Melsted, P., Pachter, L., 2016. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34, 525–527. https://doi.org/10.1038/nbt.3519

Broekhuijse, M.L.W.J., Feitsma, H., Gadella, B.M., 2011. Field data analysis of boar semen quality. Reprod. Domest. Anim. 46 Suppl 2, 59–63. https://doi.org/10.1111/j.1439-0531.2011.01861.x

Browning, B.L., Zhou, Y., Browning, S.R., 2018. A One-Penny Imputed Genome from Next-Generation Reference Panels. American Journal of Human Genetics 103, 338–348. https://doi.org/10.1016/j.ajhg.2018.07.015

Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., Lee, J.J., 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7. https://doi.org/10.1186/s13742-015-0047-8

Chen, S., Zhou, Y., Chen, Y., Gu, J., 2018. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890. https://doi.org/10.1093/bioinformatics/bty560

Clark, E.L., Bush, S.J., McCulloch, M.E.B., Farquhar, I.L., Young, R., Lefevre, L., Pridans, C., Tsang, H.G., Wu, C., Afrasiabi, C., Watson, M., Whitelaw, C.B., Freeman, T.C., Summers, K.M., Archibald, A.L., Hume, D.A., 2017. A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLOS Genetics 13, e1006997. https://doi.org/10.1371/journal.pgen.1006997

Cole, J.B., 2015. A simple strategy for managing many recessive disorders in a dairy cattle breeding program. Genet Sel Evol 47. https://doi.org/10.1186/s12711-015-0174-9

Cole, J.B., 2007. PyPedal: A computer program for pedigree analysis. Computers and electronics in agriculture 57:107-113.

Colenbrander, B., Feitsma, H., Grooten, H.J., 1993. Optimizing semen production for artificial insemination in swine. J. Reprod. Fertil. Suppl. 48, 207–215.

Coolidge, C.J., Seely, R.J., Patton, J.G., 1997. Functional analysis of the polypyrimidine tract in pre-mRNA splicing. Nucleic Acids Res 25, 888–896.

Crysnanto, D., Wurmser, C., Pausch, H., 2019. Accurate sequence variant genotyping in cattle using variation-aware genome graphs. Genetics Selection Evolution 51, 21. https://doi.org/10.1186/s12711-019-0462-x

Depristo, M.A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J.R., Hartl, C., Philippakis, A.A., Del Angel, G., Rivas, M.A., Hanna, M., McKenna, A., Fennell, T.J., Kernytsky, A.M., Sivachenko, A.Y., Cibulskis, K., Gabriel, S.B., Altshuler, D., Daly, M.J., 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43, 491–501. https://doi.org/10.1038/ng.806

Diniz, D.B., Lopes, M.S., Broekhuijse, M.L.W.J., Lopes, P.S., Harlizius, B., Guimarães, S.E.F., Duijvesteijn, N., Knol, E.F., Silva, F.F., 2014. A genome-wide association study reveals...
25

a novel candidate gene for sperm motility in pigs. Animal Reproduction Science 151, 201–207. https://doi.org/10.1016/j.anireprosci.2014.10.014

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., Gingeras, T.R., 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. https://doi.org/10.1093/bioinformatics/bts635

Fang, L., Cai, W., Liu, S., Canela-Xandri, O., Gao, Y., Jiang, J., Rawlik, K., Li, B., Schroeder, S.G., Rosen, B.D., Li, C., Cole, J.B., Yu, Y., Zhang, S., Tenesa, A., Ma, L., Liu, G.E., 2020. Comprehensive analyses of 723 transcriptomes enhance genetic and biological interpretations for complex traits in cattle. Genome Res 30, 790-801. https://doi.org/10.1101/gr.250704.119

Fang, Z.-H., Nosková, A., Crysnanto, D., Neuenschwander, S., Vögeli, P., Pausch, H., 2020. A 63-bp insertion in exon 2 of the porcine KIF21A gene is associated with arthrogryposis multiplex congenita. Animal Genetics 51, 820–823. https://doi.org/10.1111/age.12984

Gao, K., Masuda, A., Matsuura, T., Ohno, K., 2008. Human branch point consensus sequence is yUnAy. Nucleic Acids Res 36, 2257–2267. https://doi.org/10.1093/nar/gkn073

Gleave, E.S., Schmidt, H., Carter, A.P., 2014. A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein. J Struct Biol 186, 367–375. https://doi.org/10.1016/j.jsb.2014.03.019

Hancock, J.L., 1957. The morphology of boar spermatozoa. J R Microsc Soc 76, 84–97. https://doi.org/10.1111/j.1365-2818.1956.tb00443.x

Hiltpold, M., Niu, G., Kadri, N.K., Crysnanto, D., Fang, Z.-H., Spengeler, M., Schmitz-Hsu, F., Fuerst, C., Schwarzenbacher, H., Seefried, F.R., Seethusen, F., Witschi, U., Schnieke, A., Fries, R., Bollwein, H., Flisikowski, K., Pausch, H., 2020. Activation of cryptic splicing in bovine WDR19 is associated with reduced semen quality and male fertility. PLOS Genetics 16, e1008804. https://doi.org/10.1371/journal.pgen.1008804

Holt, C., Holt, W.V., Moore, H.D., Reed, H.C., Curnock, R.M., 1997. Objectively measured boar sperm motility parameters correlate with the outcomes of on-farm inseminations: results of two fertility trials. J Androl. 18, 312–323.

Inaba, K., 2003. Molecular Architecture of the Sperm Flagella: Molecules for Motility and Signaling. jzoo 20, 1043–1056. https://doi.org/10.2108/zsj.20.1043

Iso-Touru, T., Wurmser, C., Venhoranta, H., Hiltpold, M., Savolainen, T., Sironen, A., Fischer, K., Flisikowski, K., Fries, R., Vicente-Carrillo, A., Alvarez-Rodriguez, M., Nagy, S., Mutikainen, M., Peippos, I., Taponen, J., Sahana, G., Gulbrandt, B., Simonen, H., Rodriguez-Martinez, H., Andersson, M., Pausch, H., 2019. A splice donor variant in CCDC189 is associated with asthenospermia in Nordic Red dairy cattle. BMC Genomics 20, 286. https://doi.org/10.1186/s12864-019-5628-y

Jurewicz, J., Hanke, W., Radwan, M., Bonde, J.P., 2009. Environmental factors and semen quality. Int J Occup Med Environ Health 22, 305–329. https://doi.org/10.2478/v10001-009-0036-1

Kadri, N.K., Sahana, G., Charlier, C., Iso-Touru, T., Gulbrandt, B., Karim, L., Nielsen, U.S., Panitz, F., Aamand, G.P., Schulman, N., Georges, M., Vilikki, J., Lund, M.S., Druet, T., 2014. A 660-Kb Deletion with Antagonistic Effects on Fertility and Milk Production Segregates at High Frequency in Nordic Red Cattle: Additional Evidence for the
Common Occurrence of Balancing Selection in Livestock. PLOS Genetics 10, e1004049. https://doi.org/10.1371/journal.pgen.1004049

Knox, R.V., 2016. Artificial insemination in pigs today. Theriogenology 85, 83–93. https://doi.org/10.1016/j.theriogenology.2015.07.009

Kosova, G., Scott, N.M., Niederberger, C., Prins, G.S., Ober, C., 2012. Genome-wide Association Study Identifies Candidate Genes for Male Fertility Traits in Humans. The American Journal of Human Genetics 90, 950–961. https://doi.org/10.1016/j.ajhg.2012.04.016

Kosova, G., Scott, N.M., Niederberger, C., Prins, G.S., Ober, C., 2012. Genome-wide Association Study Identifies Candidate Genes for Male Fertility Traits in Humans. The American Journal of Human Genetics 90, 950–961. https://doi.org/10.1016/j.ajhg.2012.04.016

Lamas-Toranzo, I., Hamze, J.G., Bianchi, E., Fernández-Fuertes, B., Pérez-Cerezales, S., Laguna-Barraza, R., Fernández-González, R., Lonergan, P., Gutiérrez-Adán, A., Wright, G.J., Jiménez-Movilla, M., Bermejo-Álvarez, P., 2020. TMEM95 is a sperm membrane protein essential for mammalian fertilization. eLife 9, e53913. https://doi.org/10.7554/eLife.53913

Lefévre, S.H., Chauveinc, L., Stoppa-Lyonnet, D., Michon, J., Lumbroso, L., Berthet, P., Frappaz, D., Dutilhailux, B., Chevillard, S., Malfoy, B., 2002. A T to C mutation in the polypyrimidine tract of the exon 9 splicing site of the RB1 gene responsible for low penetrance hereditary retinoblastoma. Journal of Medical Genetics 39, E21. https://doi.org/10.1136/jmg.39.5.e21

Li, H., 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, arXiv:13033997.

Liu, C., Miyata, H., Gao, Y., Sha, Y., Tang, S., Xu, Z., Whitfield, M., Patrat, C., Wu, H., Dulioust, E., Tian, S., Shimada, K., Cong, J., Noda, T., Li, H., Morohoshi, A., Cazin, C., Kherraf, Z., E., Arnout, C., Jin, L., He, X., Ray, P.F., Cao, Y., Touré, A., Zhang, F., Ikawa, M., 2020. Bi-allelic DNAH8 Variants Lead to Multiple Morphological Abnormalities of the Sperm Flagella and Primary Male Infertility. The American Journal of Human Genetics 107, 330–341. https://doi.org/10.1016/j.ajhg.2020.06.004

Manchia, M., Cullis, J., Turecki, G., Rouleau, G.A., Uher, R., Alda, M., 2013. The Impact of Phenotypic and Genetic Heterogeneity on Results of Genome Wide Association Studies of Complex Diseases. PLoS One 8. https://doi.org/10.1371/journal.pone.0076295

Marques, D.B.D., Lopes, M.S., Broekhuijse, M.L.W.J., Guimarães, S.E.F., Knol, E.F., Bastiaansen, J.W.M., Silva, F.F., Lopes, P.S., 2017. Genetic parameters for semen quality and quantity traits in five pig lines. J. Anim. Sci. 95, 4251–4259. https://doi.org/10.2527/jas2017.1683

McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R.S., Thormann, A., Flice, P., Cunningham, F., 2016. The Ensembl Variant Effect Predictor. Genome Biology 17:122. https://doi.org/10.1186/s13059-016-0974-4

Ni, X., Wang, J., Lv, M., Liu, C., Zhong, Y., Tian, S., Wu, H., Cheng, H., Gao, Y., Tan, Q., Chen, B., Li, Q., Song, B., Wei, Z., Zhou, P., He, X., Zhang, F., Cao, Y., 2020. A novel homozygous mutation in WDR19 induces disorganization of microtubules in sperm flagella and nonsyndromic asthenoteratospermia. J Assist Reprod Genet 37, 1431–1439. https://doi.org/10.1007/s10815-020-01770-1

Nicholas, F.W., Hobbs, M., 2014. Mutation discovery for Mendelian traits in non-laboratory animals: a review of achievements up to 2012. Anim. Genet. 45, 157–170. https://doi.org/10.1111/age.12103

Nijs, M., Vanderwalmen, P., Vandamme, B., Segal-Bertin, G., Lejeune, B., Segal, L., van Roosendaal, E., Schoysman, R., 1996. Fertilizing ability of immotile spermatozoa after...
intracytoplasmic sperm injection. Hum. Reprod. 11, 2180–2185.

Noda, T., Lu, Y., Fujihara, Y., Oura, S., Koyano, T., Kobayashi, S., Matzuk, M.M., Ikawa, M., 2020. Sperm proteins SOF1, TMEM95, and SPACA6 are required for sperm–oocyte fusion in mice. PNAS 117, 11493–11502. https://doi.org/10.1073/pnas.1922650117

Noskova, A., Wurmsers, C., Crysnanto, D., Sironen, A., Uimari, P., Fries, R., Andersson, M., Pausch, H., 2020. Deletion of porcine BOLL is associated with defective acrosomes and subfertility in Yorkshire boars. Animal Genetics, Advanced online, https://doi.org/10.1111/age.12998

Ortega, C., Verheyen, G., Raick, D., Camus, M., Devroey, P., Tournaye, H., 2011. Absolute asthenozoospermia and ICSI: what are the options? Hum Reprod Update 17, 684–692. https://doi.org/10.1093/humupd/dmr018

Pausch, H., Ammermüller, S., Wurmsers, C., Hamann, H., Tetens, J., Drögemüller, C., Fries, R., 2016a. A nonsense mutation in the COL7A1 gene causes epidermolysis bullosa in Vorderwald cattle. BMC Genet. 17, 149. https://doi.org/10.1186/s12863-016-0458-2

Pausch, H., Flisikowski, K., Jung, S., Emmerling, R., Edel, C., Götz, K.-U., Fries, R., 2011. Genome-wide association study identifies two major loci affecting calving ease and growth-related traits in cattle. Genetics 187, 289–297. https://doi.org/10.1534/genetics.110.124057

Pausch, H., Kölle, S., Wurmsers, C., Schwarzenbacher, H., Emmerling, R., Jansen, S., Trottmann, M., Fuerst, C., Götz, K.-U., Fries, R., 2014. A Nonsense Mutation in TMEM95 Encoding a Nondescript Transmembrane Protein Causes Idiopathic Male Subfertility in Cattle. PLOS Genetics 10, e1004044. https://doi.org/10.1371/journal.pgen.1004044

Pausch, H., Venhoranta, H., Wurmsers, C., Hakala, K., Iso-Touru, T., Sironen, A., Vingborg, R.K., Lohi, H., Süderquist, L., Fries, R., Andersson, M., 2016b. A frameshift mutation in ARMC3 is associated with a tail stump sperm defect in Swedish Red (Bos taurus) cattle. BMC Genet. 17, 49. https://doi.org/10.1186/s12863-016-0356-7

Pedersen, B.S., Quinlan, A.R., 2018. Mosdepth: Quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868. https://doi.org/10.1093/bioinformatics/btx699

Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., Reich, D., 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 38, 904–909. https://doi.org/10.1038/ng1847

Price, A.L., Zaitlen, N.A., Reich, D., Patterson, N., 2010. New approaches to population stratification in genome-wide association studies. Nature reviews. Genetics 11, 459. https://doi.org/10.1038/nrg2813

Rahban, R., Priskorn, L., Senn, A., Stettler, E., Galli, F., Vargas, J., Van den Bergh, M., Fusconi, A., Garlantezec, R., Jensen, T.K., Multigner, L., Skakkebaek, N.E., Germond, M., Jørgensen, N., Nef, S., NICER Working Group, 2019. Semen quality of young men in Switzerland: a nationwide cross-sectional population-based study. Andrology 7, 818–826. https://doi.org/10.1111/andr.12645

Reese, M.G., Eeckman, F.H., Kulp, D., Haussler, D., 1997. Improved splice site detection in Genie. J. Comput. Biol. 4, 311–323. https://doi.org/10.1089/cmb.1997.4.311

Robic, A., Faraut, T., Djebali, S., Weikard, R., Feve, K., Maman, S., Kuehn, C., 2019. Analysis of pig transcriptomes suggests a global regulation mechanism enabling temporary bursts of circular RNAs. RNA Biology 16, 1190–1204. https://doi.org/10.1080/15476286.2019.1621621
Sartelet, A., Li, W., Pailhoux, E., Richard, C., Tamma, N., Karim, L., Fasquelle, C., Druet, T.,
Coppieters, W., Georges, M., Charlier, C., 2015. Genome-wide next-generation DNA
and RNA sequencing reveals a mutation that perturbs splicing of the
phosphatidylinositol glycan anchor biosynthesis class H gene (PIGH) and causes
arthrogryposis in Belgian Blue cattle. BMC Genomics 16, 316.
https://doi.org/10.1186/s12864-015-1528-y

Sato, Y., Tajima, A., Kiguchi, M., Kogusuri, S., Fujii, A., Sato, T., Nozawa, S., Yoshiike, M.,
Mieno, M., Kojo, K., Uchida, M., Tsuchiya, H., Yamasaki, K., Imoto, I., Iwamoto, T.,
2020. Genome-wide association study of semen volume, sperm concentration, testis
size, and plasma inhibin B levels. Journal of Human Genetics 65, 683–691.
https://doi.org/10.1038/s10038-020-0757-3

Sato, Y., Tajima, A., Sato, T., Nozawa, S., Yoshiike, M., Imoto, I., Yamauchi, A., Iwamoto, T.,
2018. Genome-wide association study identifies ERBB4 on 2q34 as a novel locus
associated with sperm motility in Japanese men. J Med Genet 55, 1–7.
https://doi.org/10.1136/jmedgenet-2017-104991

Schwarzenbacher, H., Burgstaller, J., Seefried, F.R., Wurmser, C., Hilbe, M., Jung, S., Fuerst,
C., Dinhopf, N., Weissenböck, H., Fuerst-Waltl, B., Dolezal, M., Winkler, R., Grueter,
O., Bleul, U., Wittek, T., Fries, R., Pausch, H., 2016. A missense mutation in TUBD1 is
associated with high juvenile mortality in Braunvieh and Fleckvieh cattle. BMC
Genomics 17, 400. https://doi.org/10.1186/s12864-016-2742-y

Sha, Y., Wei, X., Ding, L., Mei, L., Huang, X., Lin, S., Su, Z., Kong, L., Zhang, Y., Ji, Z., 2020.
DNAH17 is associated with asthenozoospermia and multiple morphological
abnormalities of sperm flagella. Annals of Human Genetics 84, 271–279.
https://doi.org/10.1111/ahg.12369

Sironen, A., Shoemark, A., Patel, M., Loebinger, M.R., Mitchison, H.M., 2020. Sperm defects
in primary ciliary dyskinesia and related causes of male infertility. Cell. Mol. Life Sci.
77, 2029–2048. https://doi.org/10.1007/s00018-019-03389-7

Sironen, A., Thomsen, B., Andersson, M., Ahola, V., Vilki, J., 2006. An intronic insertion in
KPL2 results in aberrant splicing and causes the immotile short-tail sperm defect in
the pig. PNAS 103, 5006–5011. https://doi.org/10.1073/pnas.0506318103

Sironen, A., Uimari, P., Venhoranta, H., Andersson, M., Vilki, J., 2011. An exonic insertion
within Tex14 gene causes spermatogenic arrest in pigs. BMC Genomics 12, 591.
https://doi.org/10.1186/1471-2164-12-591

Snider, J., Thibault, G., Houry, W.A., 2008. The AAA+ superfamily of functionally diverse
proteins. Genome Biol 9, 216. https://doi.org/10.1186/gb-2008-9-4-216

Soneson, C., Love, M.I., Robinson, M.D., 2015. Differential analyses for RNA-seq: transcript-
level estimates improve gene-level inferences. F1000Res 4, 1521.
https://doi.org/10.12688/f1000research.7563.2

Tarasov, A., Vilella, A.J., Cuppen, E., Nijman, I.J., Prins, P., 2015. Sambamba: Fast processing
of NGS alignment formats. Bioinformatics 31, 2032–2034.
https://doi.org/10.1093/bioinformatics/btv098

Thibier, M., Wagner, H.-G., 2002. World statistics for artificial insemination in cattle.
Livestock Production Science 74, 203–212. https://doi.org/10.1016/S0301-
6226(01)00291-3

Tu, C., Nie, H., Meng, L., Yuan, S., He, W., Luo, A., Li, H., Li, W., Du, J., Lu, G., Lin, G., Tan, Y.-Q., 2019. Identification of DNAH6 mutations in infertile men with multiple
morphological abnormalities of the sperm flagella. Scientific Reports 9, 15864. https://doi.org/10.1038/s41598-019-52436-7

Upperman, L.R., Kinghorn, B.P., MacNeil, M.D., Van Eenennaam, A.L., 2019. Management of lethal recessive alleles in beef cattle through the use of mate selection software. Genetics Selection Evolution 51, 36. https://doi.org/10.1186/s12711-019-0477-3

Venhoranta, H., Pausch, H., Flisikowski, K., Wurmser, C., Taponen, J., Rautala, H., Kind, A., Schnieke, A., Fries, R., Lohi, H., Andersson, M., 2014. In frame exon skipping in UBE3B is associated with developmental disorders and increased mortality in cattle. BMC Genomics 15:890, 1–9. https://doi.org/10.1186/1471-2164-15-890

Wambergue, C., Zouari, R., Fourati Ben Mustapha, S., Martinez, G., Devillard, F., Hennebicq, S., Satre, V., Brouillet, S., Halouani, L., Marrakchi, O., Makni, M., Latrous, H., Kharouf, M., Amblard, F., Arnoul, C., Ray, P.F., Couton, C., 2016. Patients with multiple morphological abnormalities of the sperm flagella due to DNAH1 mutations have a good prognosis following intracytoplasmic sperm injection. Hum Reprod 31, 1164–1172. https://doi.org/10.1093/humrep/dew083

Warr, A., Affara, N., Aken, B., Beiki, H., Bickhart, D.M., Billis, K., Chow, W., Eory, L., Finlayson, H.A., Flicek, P., Girón, C.G., Griffin, D.K., Hall, R., Hannum, G., Hourlier, T., Howe, K., Hume, D.A., Izuogu, O., Kim, K., Koren, S., Liu, H., Manchanda, N., Martin, F.J., Nonneman, D.J., O’Connor, R.E., Phillippy, A.M., Rohrer, G.A., Rosen, B.D., Rund, L.A., Sargent, C.A., Schook, L.B., Schroeder, S.G., Schwartz, A.S., Skinner, B.M., Talbot, R., Tseng, E., Tuggle, C.K., Watson, M., Smith, T.P.L., Archibald, A.L., 2019. An improved pig reference genome sequence to enable pig genetics and genomics research. bioRxiv 668921. https://doi.org/10.1101/668921

Whitfield, M., Thomas, L., Bequignon, E., Schmitt, A., Stouvenel, L., Montantin, G., Tissier, S., Duquesnoy, P., Copin, B., Chantot, S., Dastot, F., Faucon, C., Barbotin, A.L., Loyens, A., Siffroi, J.-P., Papon, J.-F., Escudier, E., Amselem, S., Mitchell, V., Touré, A., Legendre, M., 2019. Mutations in DNAH17, Encoding a Sperm-Specific Axonemal Outer Dynein Arm Heavy Chain, Cause Isolated Male Infertility Due to Asthenozoospermia. The American Journal of Human Genetics 105, 198–212. https://doi.org/10.1016/j.ajhg.2019.04.015

Xavier, M.J., Salas-Huetos, A., Oud, M.S., Aston, K.I., Veltman, J.A., 2020. Disease gene discovery in male infertility: past, present and future. Hum Genet. https://doi.org/10.1007/s00438-020-2202-x

Zhang, B., Ma, H., Khan, T., Ma, A., Li, T., Zhang, H., Gao, J., Zhou, J., Li, Y., Yu, C., Bao, J., Ali, A., Murtaza, G., Yin, H., Gao, Q., Jiang, X., Zhang, F., Liu, C., Khan, I., Zubair, M., Hussain, H.M.J., Khan, R., Yousaf, A., Yuan, L., Lu, Y., Xu, X., Wang, Y., Tao, Q., Hao, Q., Fang, H., Cheng, H., Zhang, Y., Shi, Q., 2020. A DNAH17 missense variant causes flagella destabilization and asthenozoospermia. J Exp Med 217. https://doi.org/10.1084/jem.20182365

Zhang, Q., Fan, X., Wang, Y., Sun, M., Shao, J., Guo, D., 2017. BPP: a sequence-based algorithm for branch point prediction. Bioinformatics 33, 3166–3172. https://doi.org/10.1093/bioinformatics/btx401
SUPPLEMENTAL FILES

Supplemental file 1
Title: Accession numbers of 87 boars
Format: xlsx
Description: Accession numbers of the sequence data of five affected (asthenozoospermic) and 82 unaffected (control) boars. The third column indicates the haplotype status (0 – not carrier, 1 – heterozygous carrier, 2 – homozygous carrier) of 65 sequenced boars that also had Illumina PorcineSNP60 BeadChip-called genotypes.

Supplemental file 2
Format: jpg
Title: Sperm viability assessment by eosin-nigrosin staining
Description: Representative light microscopic image of sperm from an affected boar stained with eosin-nigrosin. The sperm were flushed post mortem from the epididymis of Boar_1249. Live sperm appear white in color. Dead sperm appear pink in color because they take up eosin due to loss of membrane integrity.

Supplemental file 3
Title: Disorganized flagellar axonemes in two affected boars
Format: png
Description: Cross-sections of sperm from two affected boars reveal multiple morphological and ultrastructural abnormalities of the flagella including the absence of outer or inner doublets, secondary flagella-like structures within the same membrane, and flagellar components in the cytoplasmic droplet-like structure.

Supplemental file 4
Title: Principal components analysis of cases and controls
Format: png
Description: Scatter plot of the top five eigenvectors of a genomic relationship matrix. Grey and red color indicates 100 fertile and six asthenoteratozoospermic boars from the Swiss Large White population. The raw data underlying the plot (genotypes, haplotypes, eigenvectors) are available at available at https://doi.org/10.5281/zenodo.4081475.
Supplemental file 5

Title: Expression profile of porcine DNAH17 in pubertal boars

Format: png

Description: Expression of DNAH17 quantified using testis RNAseq alignments of four pubertal boars (SRR2564762, SRR8237161, SRR8237162, SRR8237165). The number of reads covering a position was extracted from coordinate sorted BAM files using the MOSDEPTH software, divided by the total number of reads mapped to transcripts. Blue color indicates the exon-intron structure of porcine DNAH17. Exon 56 is displayed in red color. Although exon expression is somewhat variable between the samples, the expression of exon 56 is evident in all samples. Raw data underlying the plot are available at the European Nucleotide Archive (ENA) of the EMBL at the BioProject PRJNA506525.