Elevated CO₂ Enhances Dynamic Photosynthesis in Rice and Wheat

Huixing Kang¹, Ting Zhu¹, Yan Zhang¹, Xinran Ke¹, Wenjuan Sun², Zhenghua Hu³, Xinguang Zhu⁴, Haihua Shen², Yao Huang² and Yanhong Tang*¹

¹ Key Laboratory for Earth Surface Processes of Ministry of Education, Department of Urban and Environmental Sciences, Peking University, Beijing, China, ² State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China, ³ School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China, ⁴ Center of Excellence for Molecular Plant Sciences, State Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai, China

Crops developed under elevated carbon dioxide (eCO₂) exhibit enhanced leaf photosynthesis under steady states. However, little is known about the effect of eCO₂ on dynamic photosynthesis and the relative contribution of the short-term (substrate) and long-term (acclimation) effects of eCO₂. We grew an Oryza sativa japonica cultivar and a Triticum aestivum cultivar under 400 μmol CO₂ mol⁻¹ air (ambient, A) and 600 μmol CO₂ mol⁻¹ air (elevated, E). Regardless of growth [CO₂], the photosynthetic responses to the sudden increase and decrease in light intensity were characterized under 400 (a) or 600 μmol CO₂ mol⁻¹ air (e). The Aa¹, Ae², Ea³, and Ee⁴ treatments were employed to quantify the acclimation effect (Ae vs. Ee and Aa vs. Ea) and substrate effect (Aa vs. Ae and Ea vs. Ee). In comparison with the Aa treatment, both the steady-state photosynthetic rate (Pₘ) and induction state (IS) were higher under the Ae and Ee treatments but lower under the Ea treatment in both species. However, IS reached at the 60 sec after the increase in light intensity, the time required for photosynthetic induction, and induction efficiency under Ae and Ee treatment did not differ significantly from those under Aa treatment. The substrate effect increased the accumulative carbon gain (ACG) during photosynthetic induction by 45.5% in rice and by 39.3% in wheat, whereas the acclimation effect decreased the ACG by 18.3% in rice but increased it by 7.5% in wheat. Thus, eCO₂, either during growth or at measurement, enhances the dynamic photosynthetic carbon gain in both crop species. This indicates that photosynthetic carbon loss due to an induction limitation may be reduced in the future, under a high-CO₂ world.

Keywords: acclimation, dynamic photosynthesis, elevated CO₂, photosynthetic induction, rice, wheat

INTRODUCTION

According to IPCC (2014), “the atmospheric CO₂ concentration is projected to reach beyond 550 μmol CO₂ mol⁻¹ air by 2100 under high emissions scenarios.” Increase in atmospheric CO₂ has been reported to enhance photosynthesis under constant light conditions, i.e., steady-state photosynthesis (Ainsworth and Long, 2005; Ainsworth and Rogers, 2007). However, terrestrial plants in natural environments are exposed to fluctuating light...
(Pearcy, 1983; Tang et al., 1988; Pearcy et al., 1990), which increases leaf carbon gain more than steady light under long-term exposure to elevated CO$_2$ (eCO$_2$) (Leakey et al., 2002). Thus, knowledge about photosynthetic responses to fluctuating light, i.e., dynamic photosynthesis, at eCO$_2$ conditions helps improve our understanding of the future global carbon flux.

Plasticity in photosynthesis in response to long-term eCO$_2$ can be attributed to the short-term (substrate) effect, long-term (acclimation) effect, or both. The substrate effect is related to increased CO$_2$ supply, which is reported to enhance dynamic photosynthesis greatly (Tomimatsu and Tang, 2012; Tomimatsu et al., 2014, 2019; Kaiser et al., 2017b). The acclimation effect is related to variations in leaf morphological, anatomical, and biochemical traits, but little information is known about its role and relative contribution.

The activation of Calvin-Benson cycle enzymes and stomatal opening regulate the photosynthetic response to a sudden increase in light intensity (Way and Pearcy, 2012; Kaiser et al., 2015) and are affected by variations in leaf chemical and morphological traits. Leaves exposed to long-term eCO$_2$ have a lower Rubisco activase (Rca) content (Geiger et al., 1999; Aranjuelo et al., 2011; Tomimatsu et al., 2019) and develop small stomata (Maherali et al., 2002; Zhu et al., 2018; Zheng et al., 2019). The rate of Rubisco activation is proportional to Rca content (Woodrow and Mott, 1989; Yamori et al., 2012). Stomatal morphology affects the stomatal opening kinetics in some species (Drake et al., 2013; Kardiman and Raebild, 2018; Zhang et al., 2019), although contradictory evidence has also been reported (Elliott-Kingston et al., 2016; McAusland et al., 2016). Whether and how acclimation to eCO$_2$ affects dynamic photosynthesis remains untested.

All studies listed in Table 1 have investigated woody species, except for one study on C$_4$ grass (Knapp et al., 1994). Rice and wheat are important for the global population as direct sources of food (FAO, 2016); yet, there are no available reports on the effect of long-term eCO$_2$ on dynamic photosynthesis in rice, wheat, or any other C$_3$ crop plants. The light environments for crop plants are characterized by long periods of sunlight punctuated by shadeflacks (Pearcy et al., 1990), whereas those for within-canopy woody plants are characterized by long periods of diffuse light punctuated by sunflacks (Tang et al., 1988; Chazdon and Pearcy, 1991). The slow photosynthetic induction in wheat crops at least 21% of its daily potential assimilation (Taylor and Long, 2017). Thus, it is of great importance to investigate whether acclimation to eCO$_2$ improves dynamic photosynthesis in C$_3$ crop plants.

In this study, we aimed to address: (1) how eCO$_2$ affects dynamic photosynthesis; (2) the relative contribution of the acclimation and substrate effects of eCO$_2$ on dynamic photosynthesis.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

The study was conducted at the Agricultural Meteorology and Ecology Experimental Station, Nanjing University of Information Engineering, Nanjing, China (32°16 N, 118°46 E). An *Oryza sativa japonica* cultivar (Nanjing 9108) and a *Triticum aestivum* cultivar (Yangmai 22) were used. There are many cultivars of rice and wheat since both are widely cultivated crop species with a very long cultivation history. Nanjing 9108 was nominated as “super rice” by the Chinese Ministry of Agriculture in 2015, whereas Yangmai 22 is a high-yield wheat cultivar. Currently, both are the major and most widely cultivated cultivars in the middle and lower reaches of the Yangtze River. The rice seeds were sown (rice, May 2017; wheat, October 2017) at 400 µmol CO$_2$ mol$^{-1}$ air. Afterward, the rice seedlings were transplanted into octagonal open-top chambers (OTCs) with 400 (ambient, denoted by A) or 600 µmol CO$_2$ mol$^{-1}$ air (elevated, denoted by E). The wheat seeds were directly sown in the soil in each OTC. The OTCs were 3 m high with a bottom area of ~12 m2. Ventilation fans were installed on the inner walls of the OTCs to minimize the impact of heterogeneous temperature and CO$_2$ concentration on the height of the flag leaves. The plants grown within the core area of an ambient [CO$_2$] OTC and an elevated [CO$_2$] OTC were selected for the experiment. The soil was carefully plowed before transplanting the rice seedlings and sowing the wheat seeds. These practices allowed for fairly homogeneous soil conditions for the two CO$_2$ treatments (OTCs), which were only 8–10 m apart from each other. The soil nutrition content at a 0–20-cm depth before sowing the wheat seeds was 1.25 vs. 1.34 g N kg$^{-1}$, .84 vs. .83 g P kg$^{-1}$, and 18.1 vs. 18.08 g K kg$^{-1}$ for the ambient vs. elevated OTC, respectively. Atmospheric environments during the growth period were also similar between the two OTCs (Supplementary Figure 1). Furthermore, all plants in the two treatments received the same management practices, e.g., fertilization, irrigation, and pest control. All these conditions ensured that the major difference between the two treatments was growth CO$_2$ concentration. We then focused on the biological replication, i.e., the individual plants, for photosynthetic measurement replicates. The measurements were conducted during grain filling: rice, September 15–28, 2017; wheat, April 20–27, 2018.

Gas Exchange Measurement

In both species, flag leaves contribute an important portion of assimilates used for grain filling (Yoshida, 1981; Carmo-Silva et al., 2017). We then decided on all the measurements to be conducted with the flag leaves. Gas exchange parameters were measured on the south-facing, fully expanded flag leaves with portable infrared gas analyzers (Li-Cor 6400 and Li-Cor 6800, LI-COR Biosciences, Lincoln, NE, USA). Air temperature during grain filling was slightly higher for rice than for wheat; therefore, the block temperature was set to 32.5°C for rice and 30°C for wheat. Relative humidity was maintained at 60–65%. Measurements were made on three to four leaves from different plants (one leaf per plant).

To determine the responses of the net photosynthetic rate to the intercellular CO$_2$ concentration ($P_{N\cdot C_i}$ curves, equivalent to A-C$_i$ curves as in common usage), leaves were acclimated to a saturating light intensity of 1,500 µmol photons m$^{-2}$ s$^{-1}$ at a CO$_2$ concentration identical to growth [CO$_2$]. Then, the CO$_2$ concentration in the reference cell was varied from 50...
References	Species	Metabolism/life form	CO₂ treatment (µ mol CO₂ mol⁻¹ air)	Treatment duration	Percentage change per 100 µ mol CO₂ mol⁻¹ air (%)
Knapp et al. (1994)	Andropogon gerardii Vitrman	C₄/grass	ambient vs. double ambient¹	<1 year	
Naumburg and Ellsworth (2000)	Acer rubrum	C₃/woody	365 vs. 569	14–15 years	U
	Liriodendron tulipifera	C₃/woody	365 vs. 569	14–15 years	U
	Cornus florida	C₃/woody	365 vs. 569	14–15 years	U
	Liquidambar styaciflua	C₃/woody	365 vs. 569	14–15 years	U
Leakey et al. (2002)	Shorea leprosula Miq.	C₃/woody	377 vs. 710	216 days	+29.71 –8.00 +14.00 +7.43
Holíšova et al. (2012)	Fagus sylvatica	C₃/woody	355 vs. 724	3 year	–1.43
	Picea abies	C₃/woody	355 vs. 724	3 year	–8.00
Tomimatsu and Tang (2012)	Populus euramericana cv. I-55	C₃/woody	380 vs. 720	60 days	–24.61 –15.62
	Populus koreana × trichocarpa cv. Pea	C₃/woody	380 vs. 720	60 days	–11.14 –5.01
	Populus koreana × trichocarpa cv. Pea	C₃/woody	380 vs. 1020	60 days	–7.16 –3.14

Data were taken from tables and figures shown in the articles using WebPlotDigitizer version 4.2 (https://automeris.io/WebPlotDigitizer/index.html). Shown are the normalized effects of eCO₂, which were calculated as percentage changes in parameters divided by the differences in CO₂ concentrations applied. “U” indicates no changes in the parameter. Numbers in bold style indicate significant eCO₂ effects on the parameters at $P = 0.05$ level.

¹Ambient CO₂ concentration was 330–340 ml L⁻¹.
to 1,500 µmol CO₂ mol⁻¹ air. Altogether, 14 different CO₂ concentrations were investigated.

To characterize dynamic photosynthesis, we measured the photosynthetic time course in response to a simulated increase and decrease in light intensity. The leaves were first acclimated at 100 µmol photons m⁻² s⁻¹ for over 30 min, then the light intensity within the leaf chamber was increased to 1,500 µmol photons m⁻² s⁻¹, and kept constant for 5 min. Afterward, the light intensity was decreased to 50 µmol photons m⁻² s⁻¹ and kept constant for 5 min. The net photosynthetic rate and stomatal conductance (gₛ) were recorded every second for the entire measurement period. Photosynthetic characteristics in plants grown at 600 µmol CO₂ mol⁻¹ air were influenced not only by the short-term but also the long-term effect of eCO₂, in comparison with plants grown at 400 µmol CO₂ mol⁻¹ air. To distinguish both effects, we measured dynamic photosynthesis at 400 (denoted by a) and 600 µmol CO₂ mol⁻¹ air (denoted by e), regardless of growth [CO₂]. The differences between the two growth conditions [CO₂] under the same measurement [CO₂] (i.e., Ae vs. Ee and Aa vs. Ea) were considered to be caused by the acclimation effect of eCO₂, while the differences between the two measurements [CO₂] from the same growth [CO₂] (i.e., Aa vs. Ae and Ea vs. Ee) were considered to be due to the instantaneous substrate effect of eCO₂.

Carbon and Nitrogen Analysis

The leaves used for the gas exchange measurements were collected, brought to the laboratory, and then oven-dried at 65°C for 48 h before grinding. The carbon and nitrogen concentrations of ground samples were determined using a CHNOS elemental analyzer (Vario EL III, Elementar Analysensysteme GmbH, Langenselbold, Germany).

Stomatal Anatomy

Five flag leaves other than those used for the gas exchange measurements from the same OTC were sampled and kept in a 2.5% glutaraldehyde solution. Images of the center of the abaxial leaf surface at ×800 magnification for rice and ×400 for wheat were acquired with a scanning electron microscope (FEI Quanta 200F; Thermo Fisher Scientific, Waltham, MA, USA). Stomatal density and guard cell length were determined using the ImageJ software (National Institute of Health, Bethesda, MD, USA) from 10–20 fields of view.

Data Analysis

To evaluate the rates of photosynthetic and stomatal induction responses, we calculated the time to reach 50 and 90% of the steady-state photosynthetic rate (Pₛ₅₀ and Pₛ₉₀%) and gₛ (Tₛ₅₀% and Tₛ₉₀%) at 1,500 µmol photons m⁻² s⁻¹. Photosynthetic induction state (IS) was calculated after Chazdon and Pearcy (1986):

\[IS(t) = \frac{Pₛ(t) - Pₛ,100}{Pₛ,1500 - Pₛ,100} \times 100\% \]

where \(Pₛ,100 \) is the steady-state \(Pₛ \) reached at 100 µmol photons m⁻² s⁻¹ and \(Pₛ,1500 \) is the steady-state \(Pₛ \) reached at 1,500 µmol photons m⁻² s⁻¹. Both were calculated by averaging single values over the last half-minute of each period.

We assumed that the transition between the Rubisco-limited state and the ribulose 1,5-bisphosphate (RuBP) regeneration-limited state occurs at a \(Cᵢ \) of 200–400 µmol CO₂ mol⁻¹ air at ambient growth [CO₂] and a \(Cᵢ \) of 400–600 µmol CO₂ mol⁻¹ air at elevated growth [CO₂] during the induction response. Then, \(Pₛ-Cᵢ \) curves were divided into two parts and fitted separately to obtain the apparent maximum Rubisco carboxylation rate \((V_{c,max}) \), electron transport rate at 1,500 µmol photons m⁻² s⁻¹ (\(I_{1500} \)), and CO₂ photo compensation point \((Γ⁺) \). Parameters estimated from the \(Pₛ-Cᵢ \) curves were then used to correct transient \(Pₛ \) by removing stomatal limitations. Since RuBP regeneration limitation typically relaxes within 2 min (Taylor and Long, 2017) and triose phosphate use limitation barely occurs at the CO₂ concentration investigated in this study (Long and Bernacchi, 2003), the \(Pₛ \) was corrected only 2 min after the increase in light intensity. Under Rubisco limitation, \(Pₛ \) at time \(t \) can be calculated after Farquhar et al. (1980):

\[Pₛ(t) = V_{c,max}(t)[\frac{Cᵢ(t) - Γ⁺}{Cᵢ(t) + Kᵢ}] - Rᵢ \]

where \(V_{c,max}(t) \) and \(Cᵢ(t) \) is \(V_{c,max} \) and \(Cᵢ \) at time \(t \), respectively, \(Kᵢ \) is the Michaelis–Menten constants of Rubisco taken from Bernacchi et al. (2001), and \(Rᵢ \) is mitochondrial respiration rate in the light and assumed to be 60% of dark respiration rate (Way et al., 2019), which was determined in a preliminary test. To remove the stomatal limitation, \(Pₛ \) was recalculated by replacing \(Cᵢ(t) \) with the final, steady-state \(Cᵢ(Cₛ,D) \):

\[Pₛ^*(t) = V_{c,max}(t)[\frac{Cᵢ,f - Γ⁺}{Cᵢ,f + Kᵢ}] - Rᵢ \]

where \(Pₛ^*(t) \) is corrected \(Pₛ(t) \). Combining Equations (1, 2) to eliminate the unknown variable \(V_{c,max}(t) \):

\[Pₛ^*(t) = \frac{[Pₛ(t) + Rᵢ][Cᵢ,f - Γ⁺][Cᵢ(t) + Kᵢ]}{[Cᵢ(t) - Γ⁺][Cᵢ,f + Kᵢ]} - Rᵢ \]

The time courses of \(Pₛ^*(t) \) were then fitted to the model proposed by Woodrow and Mott (1989):

\[Pₛ^*(t) = Pₛ^*_N,f - \left(Pₛ^*_N,f - Pₛ^*_N,i \right) e^{-\left(t - tᵢ \right) / τᵢ} \]

where \(Pₛ^*_N,f \) and \(Pₛ^*_N,i \) are the final corrected and estimated initial photosynthetic rate, respectively; \(τᵢ \) is the apparent time constant of Rubisco activation. Diffusional and biochemical limitations were estimated after Kaiser et al. (2017a).

Accumulative carbon gain (ACG) during a period of time was calculated as

\[ACG(t) = \int_{t₀}^{t} \frac{Pₛ(t) dt}{Pₛ,100*(t - t₀)} \]

where \(t₀ \) is the time when light intensity was increased. The eCO₂ may affect the steady-state \(Pₛ \) and photosynthetic
induction, both of which result in changes in transient P_N during photosynthetic induction and, thus, affect ACG (Figure 1). To distinguish the relative contribution of eCO$_2$ to the ACG via accelerated photosynthetic induction from the enhanced steady-state P_N, we decomposed ACG into ideal carbon gain (ICG) and induction efficiency (IE). The ICG during the same period of time was defined as

$$ICG(t) = (P_{N,1500} - P_{N,100}) \times (t - t_0)$$

(7)

As Equation (7) shows, ICG is determined by steady-state P_N only. Thus, IE is calculated by dividing the ACG by the ICG, after Tang et al. (1994):

$$IE(t) = \frac{\int_{t_0}^{t} P_N(t)dt - P_{N,100} \times (t - t_0)}{(P_{N,1500} - P_{N,100}) \times (t - t_0)}$$

(8)

Induction efficiency is linearly correlated with $T_{P90\%}$ (Supplementary Figure 2); thus, the accelerated photosynthetic induction will result in a higher IE. The relative contribution of eCO$_2$ on ACG via accelerated photosynthetic induction is represented as the percentage difference in ACG under the Aa treatment and estimated using IE under the Ae and Ee treatments.

Additionally, post-illumination carbon gain (PICG) due to the simulated lightfleck was calculated as,

$$PICG = \int_{t_1}^{t} [P_N(t) - P_{N,50}] dt, \text{ when } P_N(t) > P_{N,50}$$

(9)

where t_1 is the time when light intensity was decreased.

Statistical Analysis

A two-way ANOVA was performed to evaluate the contribution of the acclimation and substrate effects and their interaction. When the requirement of the normality and homogeneity of variances were met, the differences in the means of different treatments (Aa, Ae, Ea, and Ee) were then assessed by a least significant difference test. All statistical analyses were carried out with SPSS Statistics Version 26 for Windows (IBM Corp., Armonk, NY, USA) at a significance level of 0.05.

RESULTS

Steady-State Photosynthesis Under Different CO$_2$ Treatments

In both species, the $P_{N,100}$ and $P_{N,1,500}$ in leaves from both growth [CO$_2$] treatments were higher when the measurements were conducted under eCO$_2$ (Table 2). The averaged $P_{N,1,500}$ under the Ee treatment was significantly higher than that under the Aa treatment by 30.5% in rice and 37.8% in wheat. The averaged $P_{N,30}$ did not differ significantly across treatments in rice. In wheat, $P_{N,50}$ was significantly lower under the Ea treatment compared with the other three treatments. In both species, $g_{s,1,500}$ did not differ significantly across treatments (Table 2). In rice, $g_{s,100}$ did not differ significantly across treatments, however, $g_{s,50}$ was higher under the Ae and Ea than under the Ee and Aa treatments. In wheat, both $g_{s,100}$ and $g_{s,30}$ were higher under the Aa and Ee than under the Ae and Ea treatments. The averaged $C_{i,50}$, $C_{i,100}$, and $C_{i,1,500}$ were higher when measurements were conducted under eCO$_2$ than under ambient CO$_2$ in both species.

In rice, the differences in $P_{N,100}$ and $P_{N,1,500}$ were attributable to measurement [CO$_2$] only, whereas the differences in $g_{s,100}$ and $g_{s,1,500}$ were attributable to the interaction of growth and measurement [CO$_2$] only. The differences in $g_{s,1,500}$ were also, to a less extent, attributable to measurement [CO$_2$]. In wheat, the differences in P_N and g_s were attributable to measurement [CO$_2$]; the differences in $P_{N,100}$ and $g_{s,100}$ were also attributable to the interaction of growth and measurement [CO$_2$].
TABLE 2 | Steady-state photosynthetic rate (PN), stomatal conductance (gs), and intercellular CO2 concentration (Ci) reached under different light intensities in rice and wheat.

Parameter	CO2 treatment	Aa	Ae	Ea	Ee
Rice					
PN,100	2.22 ± 0.38a	3.77 ± 0.38b	3.08 ± 0.40ab	3.57 ± 0.17b	
gS,100	0.058 ± 0.006	0.094 ± 0.012	0.104 ± 0.021	0.080 ± 0.010	
Ci,100	323 ± 4a	506 ± 17b	335 ± 6a	502 ± 10b	
PN,1,500	18.98 ± 0.73a	28.04 ± 1.59b	18.45 ± 0.61a	24.77 ± 1.01b	
gS,1,500	0.393 ± 0.040	0.400 ± 0.022	0.551 ± 0.057	0.361 ± 0.030	
Ci,1,500	272 ± 10a	424 ± 6b	299 ± 5c	423 ± 6b	
PN,50	0.21 ± 0.10	0.84 ± 0.18	1.09 ± 0.34	0.59 ± 0.10	
gS,50	0.036 ± 0.003a	0.082 ± 0.006b	0.069 ± 0.016bc	0.050 ± 0.004ac	
Ci,50	378 ± 4a	564 ± 2b	363 ± 5c	560 ± 4b	
Wheat					
PN,100	4.41 ± 0.21a	4.78 ± 0.30a	3.46 ± 0.21b	5.07 ± 0.13a	
gS,100	0.268 ± 0.027a	0.130 ± 0.014b	0.175 ± 0.019bc	0.199 ± 0.024bc	
Ci,100	357 ± 3a	518 ± 8b	353 ± 3a	536 ± 5c	
PN,1,500	28.24 ± 0.65a	37.65 ± 1.06b	26.70 ± 1.34a	38.91 ± 1.39b	
gS,1,500	0.643 ± 0.043	0.503 ± 0.037	0.547 ± 0.047	0.523 ± 0.019	
Ci,1,500	275 ± 4a	406 ± 6b	270 ± 1a	406 ± 4b	
PN,50	1.58 ± 0.15a	1.39 ± 0.15a	0.62 ± 0.13b	1.51 ± 0.07a	
gS,50	0.427 ± 0.043a	0.195 ± 0.038b	0.249 ± 0.019ab	0.256 ± 0.011ab	
Ci,50	382 ± 1a	571 ± 1b	385 ± 1a	574 ± 1b	

Values are the means (± SE) of three to four biological replicates, i.e., individual plants for each species. Different letters following the means indicate significant (P < 0.05) differences across treatments within each species.

PN,50, PN,100, PN,1,500, gS,50, gS,1,500, C2O2, Ci,1,500, and Ci,1,500 were steady-state photosynthetic rate (unit µmol CO2 m−2 s−1), stomatal conductance for H2O (unit mol H2O m−2 s−1), and intercellular CO2 concentration (unit µmol CO2 mol−1 air) reached at 50, 100, and 1,500 µmol photons m−2 s−1, respectively, calculated by averaging single values over the last half-minute of each period. The uppercase letters A and E indicate ambient and elevated growth [CO2], respectively, and the lowercase letters a and e indicate ambient and elevated measurement [CO2], respectively.

†Statistical analysis using a Dunnett’s T3 test.

Dynamic Photosynthesis Under Different CO2 Treatments

In both species, PN increased faster when measurements were conducted under eCO2 after the sudden increase in light intensity (Figures 2A,B). During the photosynthetic induction and post-illumination period, transient PN was highest under the Ae treatment in rice but was higher under the Ee treatment in wheat. Transient IS was similar between the Aa and Ae treatments, whereas, in wheat, the IS was surprisingly higher under the Aa than under the Ae treatment over the first 5 min of photosynthetic induction. In rice, transient gS was higher under the Ae and Ea treatments than under the Aa and Ee treatments (Figure 2E). In wheat, transient gS was higher under the Ae than under the Ae treatment but was similar between the Ea and Ee treatments (Figure 2F). During the first 10 min of photosynthetic induction, transient Ci was higher than under the Ee treatment in both species (Figures 2G,H). Transient C1 was higher under the Ee than under the Aa treatment in rice but was higher under the Aa than under the Ea treatment in wheat. During the post-illumination period, transient Ci was similar across treatments in both species.

In both species, the averaged TP50% and TP90% were lower under the Ee than under the Aa and Ae treatments, despite that such differences were insignificant (Figures 3A,B). In wheat plants grown at an ambient CO2 concentration, TP50% was significantly higher under the Ae than under the Aa treatment, whereas TP90% was higher under the Aa than the Ae treatment (Figures 3C,D). In wheat plants grown at an eCO2 concentration, both TP50% and TP90% were higher under the Ee than under the Ea treatment. However, TP50% and TP90% were similar in rice leaves from different growth conditions [CO2] or between different measurements [CO2] from the same growth [CO2]. No significant differences in the IS50% values across treatments were found in both species (Figure 3E). In both species, TP50% was shorter when measurements were conducted under eCO2 (Figure 3F). In wheat, the differences in TP90% were attributable to measurement [CO2] and the interaction of growth and measurement [CO2] (Table 3). The differences in TP50% in both species were attributable to the interaction of growth and measurement [CO2] only. In both species, the diffusional limitation was similar between the Aa and the Ea treatment, i.e.,
the limitation showed minimal significant differences in leaves from different growth conditions [CO$_2$] when measurements were conducted under ambient CO$_2$. However, the diffusional limitation was lower under the Ee than under the Ae treatment. The biochemical limitation tended to be lower when measurements were conducted under eCO$_2$, regardless of growth [CO$_2$] (Supplementary Figure 3). The percentage of diffusional limitation among the total photosynthetic limitation was lower than 10% during most of the time of the photosynthetic induction period (Supplementary Figures 3A,B). Biochemical limitation dominated over diffusional limitation for the first 3 min of induction in both species.

ACG and IE
In comparison with the Aa treatment, ACG$_{30min}$ was higher by 45.5 (Ae) and 27.2% (Ee) in rice (Figure 4A) and by 39.3 (Ae) and 46.8% (Ee) in wheat (Figure 4B). However, ACG$_{30min}$ was lower under the Ea than the Aa treatment by 10.9% in rice and by 4.7% in wheat. In comparison with the Aa treatment, PICG was higher by 45.4 (Ae) and 67% (Ee) in rice (Figure 4C) and by 4.7 (Ae) and 4.1% (Ee) in wheat (Figure 4D). In rice, PICG was higher under the Ea than the Aa treatment by 29.4% in rice but was lower by 26.3% in wheat.

Despite these changes in ACG$_{30min}$, the IE$_{30min}$ did not differ significantly among the Aa, Ae, and Ee treatments in both species (Figures 5A,B). In both species, IE$_{30min}$ was lowest under the Ea treatment. There were no significant differences observed in IE between the Aa and the Ae treatments in both species. In wheat, the averaged IE was highest under the Ee treatment throughout photosynthetic induction.

To further evaluate the contribution of accelerated photosynthetic induction under the Ae and Ee treatments
FIGURE 3 | The rates of photosynthetic induction and stomatal opening in rice and wheat leaves. (A) Time required for the photosynthetic rate to reach 50% of $P_{N,1,500}$ ($T_{P50\%}$). (B) Time required for the photosynthetic rate to reach 90% of $P_{N,1,500}$ ($T_{P90\%}$). (C) Time required for stomatal conductance to reach 50% of $g_{s,1,500}$ ($T_{g50\%}$). (D) Time required for stomatal conductance to reach 90% of $g_{s,1,500}$ ($T_{g90\%}$). (E) The IS reached 30 s following an increase in light intensity ($S_{I_{30s}}$). (F) The apparent time constant of Rubisco activation (τ_R). Bars and vertical lines indicate the means and standard errors of three to four biological replicates, i.e., individual plants for each species, respectively. Different letters above error bars indicate significant differences between two treatments within each species. The absence of letters denotes the absence of significant difference.

to ACG$_{30\text{min}}$, we estimated the potential ACG$_{30\text{min}}$, assuming no effect of eCO$_2$ on steady-state P_N, which was equivalent to no changes in ICG. Compared with the Aa treatment, the increase in IE$_{30\text{min}}$ under Ae alone increased ACG$_{30\text{min}}$ by 0.6% in rice and by 0.9% in wheat, whereas the increase in IE$_{30\text{min}}$ under Ee alone increased ACG$_{30\text{min}}$ by 0.4% in rice and by 3.3% in wheat (Figures 6A,B). The changes in steady-state P_N under Ae alone increased ACG$_{30\text{min}}$ by 44.5% in rice and 38.1% in wheat, whereas the changes in steady-state photosynthesis under Ae alone increased ACG$_{30\text{min}}$ by 26.3% in rice and 42.1% in wheat.

Rubisco Carboxylation Capacity, Stomatal Anatomy, and Element Analysis

The Rubisco carboxylation capacity ($V_{c,max}$) was lower at elevated than at ambient growth [CO$_2$]; the difference was significant in wheat (Supplementary Table 1). Regardless of growth [CO$_2$], $V_{c,max}$ was higher in wheat than in rice. There were no significant differences in stomatal density at the two growth conditions [CO$_2$] (Supplementary Table 1). Guard cells were shorter at elevated than at ambient growth [CO$_2$]; the difference was significant in wheat. No significant differences in carbon or nitrogen content were found between ambient and elevated growth [CO$_2$] (Supplementary Table 1).

DISCUSSION

Increased CO$_2$ Supply Enhances Leaf Dynamic Photosynthesis Without Accelerating Photosynthetic Induction in Crops

Several studies reported accelerated photosynthetic induction in woody species at eCO$_2$ (Leakey et al., 2002; Holišova et al., 2012; Tomimatsu and Tang, 2012). In this study, the differences in T_P between the Aa and Ae treatments were small in two crop species (Figures 3A,B), and the differences in $T_{P50\%}$ were not related to different measurement [CO$_2$]. The modeling analysis also indicates that the changes in IE$_{30\text{min}}$ under the Ae treatment alone increased ACG$_{30\text{min}}$ by $<1\%$ in both species (Figure 6). On the contrary, the changes in steady-state P_N alone increased ACG$_{30\text{min}}$ by more than one-third in both species (Figure 6). Acevedo-Siaca et al. (2020)
reported that, in rice, increases in the photosynthetic carbon gain in fluctuating light are smaller compared with those in steady state. If the contribution of improved transient \(P_N \) at eCO\(_2\) on carbon gain were excluded in their study, the increased CO\(_2\) supply may play a limited role in accelerating photosynthetic induction in crops. Thus, an increased CO\(_2\) supply improves crop photosynthesis by improving steady-state and transient \(P_N \) (Table 2, Figures 2A,B), rather than accelerating photosynthetic induction.

There are no relevant investigations on why an increased CO\(_2\) supply imposes limited influences on the rate of photosynthetic induction in crop species, however, we hypothesized that dumbbell-shaped stomata, which respond to light faster than kidney-shaped stomata (Franks and Farquhar, 2007; McAusland et al., 2016; Harrison et al., 2020), lower the diffusion limitation imposed on photosynthetic induction in the crop species. Therefore, crop species may exhibit little changes in the rates of photosynthetic induction when there is a minimal increase in CO\(_2\) supply. The difference in measurement [CO\(_2\)] in our study (230 \(\mu \)mol CO\(_2\) mol\(^{-1}\) air) was smaller than that in the studies reporting significant effects of eCO\(_2\) on photosynthetic induction (Table 1).

Differential Effect of Elevated CO\(_2\) on Leaf Carbon Gain in Rice and Wheat

The effect of acclimation to eCO\(_2\) has rarely been distinguished from the effect of increased CO\(_2\) supply because the measurement [CO\(_2\)] was the same as the growth [CO\(_2\)] in previous studies. In comparison with the \(A_e \) treatment, the acclimation effect alone resulted in a 18.3% decrease in ACG\(_{30\text{min}}\) in rice but a 7.5% increase in ACG\(_{30\text{min}}\) in wheat (Figures 4A,B), suggesting the differential influences of the acclimation effect on the photosynthetic carbon gain between the two crop species. Such differences are likely to be related to the difference in the acclimation effect on \(P_{N,1,500} \), because the high IE\(_{30\text{min}}\) under the \(E_e \) treatment led to a smaller increase in ACG\(_{30\text{min}}\) than high \(P_{N,1,500} \), correspondingly ICG\(_{30\text{min}}\), under the \(E_e \) treatment in both species (Figure 6). Previous eCO\(_2\) experiments also show that the enhancement of photosynthesis is greater in wheat than in rice (Long et al., 2006). Wheat allocates less leaf nitrogen to Rubisco and a greater catalytic constant of Rubisco carboxylation than rice (Supplementary Table 1), and thus may have greater benefits from eCO\(_2\) (Makino, 2011).

In this study, IS\(_{60\%} \), TP\(_{90\%} \), and IE did not differ significantly between \(E_e \) and \(A_e \), or even between the \(E_e \) and \(A_e \) treatments (Figures 2C,D, 3B, 5), suggesting limited influence of acclimation effect on the rate of photosynthetic induction. At timescales of minutes, the rate of photosynthetic induction is mainly determined by the light-activation of Rubisco and stomatal opening (Way and Pearcy, 2012; Kaiser et al., 2015). To speed up the rate of Rubisco activation, more resources should be allocated to Rca, which is necessary for Rubisco activation (Yamori et al., 2012). This requirement is unlikely to be met at eCO\(_2\), as previous studies reported the decreased content of Rca in rice (Chen et al., 2005) and wheat (Zhang et al., 2009; Aranjuelo et al., 2011). This is consistent with the finding that \(R_g \) (Figure 3F) and biochemical limitation (Supplementary Figures 3C,D) did not differ significantly between the \(A_e \) and \(E_e \) treatments in both species. On the contrary, the differences in \(T_p \) between the \(A_e \) and \(E_e \) treatments may be related to the changes in the rate of stomata opening. Accumulating evidence demonstrates that species with fast stomatal opening show fast photosynthetic induction (Drake et al., 2013; Deans et al., 2019; Yamori et al., 2020). In comparison with the \(A_e \) treatment, the stomata tended to open faster (Figures 3C,D) and stomatal limitation tended to be lower (Supplementary Figures 3A,B) under the \(E_e \) treatment in both species. We hypothesized that the faster stomatal opening in the leaves acclimated to eCO\(_2\) was achieved by a decrease in guard cell length (Supplementary Table 1), which is consistent

Table 3: The influences of growth (G) and measurement CO\(_2\) concentration (M) on the differences in the photosynthetic characteristics of rice and wheat.

Parameter	Factors	G x M	
Rice			
\(P_{N,50} \)	2.838	0.110	8.912**
\(P_{N,1,100} \)	1.249	12.005**	3.232
\(g_s \)	3.693	76.750***	1.432
\(g_s \)	0.000	2.531	15.160***
\(T_{R}\)	1.607	0.229	5.953*
\(T_{P}\)	1.727	4.973*	11.119**
\(T_{T}\)	2.970	0.015	0.190
\(T_{R}\)	0.457	3.689	1.874
\(T_{R}\)	0.399	0.193	4.383*
\(T_{P}\)	0.000	1.700	2.759
\(I_{S,60}\)	2.350	0.564	0.001
\(R_g \)	0.606	7.724	0.770
\(I_{E,30\text{min}}\)	0.546	1.095	0.395
\(ACG_{30\text{min}}\)	5.374*	43.884***	0.343
Wheat			
\(P_{N,50} \)	14.087***	9.541**	22.845***
\(P_{N,1,100} \)	2.882	26.314***	10.332**
\(g_s \)	0.020	118.795***	1.977
\(g_s \)	4.752*	17.685***	20.164***
\(g_s \)	0.374	9.378*	18.629***
\(g_s \)	1.360	6.140*	3.067
\(T_{R}\)	0.000	0.313	3.552
\(T_{P}\)	0.000	4.300*	4.582*
\(T_{T}\)	1.656	1.979	10.051**
\(T_{R}\)	1.753	6.336*	2.765
\(T_{P}\)	1.070	0.672	5.868*
\(I_{S,60}\)	3.825	4.224	0.083
\(R_g \)	0.036	8.278**	4.200*
\(I_{E,30\text{min}}\)	0.121	132.070***	2.373
\(ACG_{30\text{min}}\)	2.054	6.274*	1.838

Shown are Wald \(\chi^2 \) statistics followed by significance symbols, which are \(* P < 0.05, ** P < 0.01, *** P < 0.001, \) respectively.
FIGURE 4 | Accumulative carbon gain during a time period of 30 min following an increase in light intensity from 100 to 1,500 µmol photons m⁻² s⁻¹ (A,B) and during the post-illumination period (C,D) in rice (A,C) and wheat (B,D) leaves. Values are means of three to four biological replicates, i.e., individual plants for each species. Blue-filled bars lines indicate the substrate effect of eCO₂, whereas red-filled and open bars with red dotted frames indicate the acclimation effect of eCO₂. Numbers indicate the extent of the substrate and acclimation effect of eCO₂ on ACG, taking ACG₃₀min under the Aa treatment as the base value.

with previous studies (Maherali et al., 2002; Zhu et al., 2018; Zheng et al., 2019). In general, small dumbbell-shaped stomata open faster than large ones within the same genus (McAusland et al., 2016). However, a negative correlation between stomatal size and $T_{50\%}$ in the genus *Oryza* was reported recently (Zhang et al., 2019). More research is needed to address how acclimation to eCO₂ in stomatal morphology affects photosynthesis.

Implications

The effects of eCO₂ on the dynamic photosynthesis in crops have been rarely investigated until recently (Acevedo-Siaca et al., 2020; Ohkubo et al., 2020). This study showed that eCO₂ has limited influences on the rates of photosynthetic induction in two crop species but increased photosynthetic carbon gain greatly by improving steady-state and transient P_N. These findings indicate that photosynthetic carbon loss due to induction limitation may be reduced in the future, under a high CO₂ world. We acknowledge that the photosynthetic responses to increasing CO₂ concentration are complex. To project crop photosynthesis and yield in the future, both field experiments and *in silico* modeling, spanning a wide range of CO₂ concentrations, are urgently needed (Drag et al., 2020). The findings in this study, which clarified the contribution of the substrate and acclimation effects of eCO₂, imply that dynamic photosynthesis is likely to reduce photosynthetic induction limitation under temporally changing light environments in the future, under a high CO₂ world.

In comparison with wheat, the photosynthetic acclimation to eCO₂ in rice compromised the beneficial effect of an increased CO₂ supply on ACG₃₀min but further improved PICG (Figure 4A). Such an increase in PICG may counterbalance the decrease in ACG if rice leaves receive many brief (<1 min) sunflecks. Nonetheless, photosynthetic characteristics vary greatly among rice and wheat accessions (Qu et al., 2017; Salter et al., 2019; Acevedo-Siaca et al., 2020), and the effects of eCO₂ on photosynthesis are likely to differ between them. The results presented here do not necessarily suggest an advantageous position for wheat in the future. Instead, this study may provide a potential reason for the lower enhancement of yield in rice than in wheat at eCO₂ (Long et al., 2006), though detailed assessments are needed because of the large variations in photosynthetic light utilization among them.

CONCLUSIONS

By examining dynamic photosynthesis under four different CO₂ treatments, this study showed that neither an increased CO₂ supply nor an acclimation to eCO₂ imposes large influences on the rates of photosynthetic induction in two crop species. But, an increased CO₂ supply enhances photosynthetic carbon gain
greatly via improving steady-state P_N. The acclimation effect of eCO$_2$ may compromise, or slightly strengthen, the beneficial effect of an increased CO$_2$ supply, depending on the species and the fluctuations in light intensity. Our study suggests that the photosynthetic carbon gain in the two crop species is likely to be enhanced in a CO$_2$-enriched future when photosynthetic induction limitation becomes significant for leaf carbon gain.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

YT and YH conceived and designed the experiment. WS and ZH provided the experimental materials. HK, TZ, YZ, XK, and HS conducted the experiment and collected data. HK, TZ, and YZ analyzed the data and drafted the manuscript. All authors contributed to the editing and revising of the final version of the manuscript.

FUNDING

This study was supported by the Key Research of Plant Functional Ecology Program of Peking University (No. 7101302307), National Natural Science Foundation of China (Grant No. 41530533), and Key Laboratory of College of Urban and Environmental Sciences (No. 7100602014).

ACKNOWLEDGMENTS

We thank Jianguo Gao and Yixin Ma for their useful comments on the manuscript and Chao Liu and Chunhua Lv for their assistance in fieldwork.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.727374/full#supplementary-material
REFERENCES

Acevedo-Siaca, L. G., Coe, R., Wang, Y., Kromdijk, J., Quick, W. P., and Long, S. P. (2020). Variation in photosynthetic induction between rice accessions and its potential for improving productivity. New Phytol. 227, 1097–1108. doi: 10.1111/nph.17644

Ainsworth, E. A., and Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372. doi: 10.1111/j.1469-8137.2004.01224.x

Ainsworth, E. A., and Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270. doi: 10.1111/j.1365-3040.2007.01614.x

Aranjuelo, I., Cabrera-Bosquet, L., Morcende, R., Avicé, J. C., Nogues, S., Araus, J. L., et al. (2011). Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? J. Exp. Bot. 62, 3957–3969. doi: 10.1093/jxb/err095

Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R., and Long, S. P. (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 24, 253–259. doi: 10.1046/j.1365-3040.2001.00668.x

Carmo-Silva, E., Andralojc, P. J., Scales, J. C., Drier, S. M., Mead, A., Lawson, T., et al. (2017). Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield. J. Exp. Bot. 68, 3473–3486. doi: 10.1093/jxb/erx169

Chazdon, R. L., and Pearcy, R. W. (1986). Photosynthetic responses to light variation in rainforest species: I. Induction under constant and fluctuating light conditions. Oecologia 69, 517–523. doi: 10.1007/BF00410357

Chazdon, R. L., and Pearcy, R. W. (1991). The importance of sunflecks for forest understory plants. BioScience 41, 760–766. doi: 10.2307/1311725

Chen, G. Y., Yong, Z. H., Liao, Y., Zhang, D. Y., Chen, Y., Zhang, H. B., Drag, D. W., Slattery, R., Siebers, M., DeLucia, E. H., Ort, D. R., and Bernacchi, Chazdon, R. L., and Heuvelink, E. (2019). Rate of photosynthetic induction in fluctuating light varies widely between rice accessions. Plant Cell Environ. 42, 175–184. doi: 10.1111/pce.13705

Delucia, E. H., and Ellsworth, D. S. (2000). Photosynthetic sunfleck utilization differences among species of the United States. J. Exp. Bot. 51, 2543–2549. doi: 10.1093/jxb/er135

Farquhar, G. D., von Caemmerer, S., and Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Plant Cell Physiol. 14, 78–90. doi: 10.1093/plb/149.1.78

F. (2017a). Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance. Annu. Bot. 119, 191–205. doi: 10.1093/aob/mcw226

Kaiser, E., Morales, A., Harbison, J., Kromdijk, J., Heuvelink, E., and Marcelis, L. F. (2017a). Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance. Annu. Bot. 119, 191–205. doi: 10.1093/aob/mcw226

Kaiser, E., Morales, A., Harbison, J., Kromdijk, J., Heuvelink, E., and Marcelis, L. F. (2015). Dynamic photosynthesis in different environmental conditions. J. Exp. Bot. 66, 2415–2426. doi: 10.1093/jxb/eru406

Kaiser, E., Zhou, D., Heuvelink, E., Harbison, J., Morales, A., and Marcelis, L. F. (2017b). Elevated CO2 increases photosynthesis in fluctuating irradiance regardless of photosynthetic induction state. J. Exp. Bot. 68, 5629–5640. doi: 10.1093/jxb/erx357

Kardiman, R., and Rabiłd, A. (2018). Relationship between stomatal density, size and speed of opening in Sumatran rainforest species. Tree Physiol. 38, 696–705. doi: 10.1038/treesphysi0149

Knapp, A. K., Fahnestock, J. T., and Owensby, C. E. (1994). Elevated atmospheric CO2 alters stomatal responses to variable sunlight in a C4 grass. Plant Cell Environ. 17, 189–195. doi: 10.1046/j.1365-3040.1994.tb00282.x

Leakey, A. D. Press, M. C., Scholes, J. D., and Watling, J. R. (2002). Relative enhancement of photosynthesis and growth at elevated CO2 is greater under sunflecks than uniform irradiance in a tropical rain forest tree seedling. Plant Cell Environ. 25, 1701–1714. doi: 10.1046/j.1365-3040.2002.00944.x

Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nössberger, J., and Ort, D. R. (2006). Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312, 1918–1921. doi: 10.1126/science.1114722

Long, S. P., and Bernacchi, C. J. (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? procedures and sources of error. J. Exp. Bot. 54, 2393–2401. doi: 10.1093/jxb/erg262

Maherali, H., Reid, C. D., Polley, H. W., Johnson, H. B., and Jackson, R. B. (2002). Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 pollygrass. Plant Cell Environ. 25, 557–566. doi: 10.1046/j.1365-3040.2002.00832.x

Makino, A. (2011). Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol. 155, 125–129. doi: 10.1104/pp.110.165076

McAusland, L., Vialet-Chabrand, S., Davey, P., Baker, N. R., Brendel, O., and Lawson, T. (2016). Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytol. 211, 1209–1220. doi: 10.1111/nph.14000

Naumburg, E., and Ellsworth, D. S. (2000). Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO2 in FACE. Oecologia 122, 163–174. doi: 10.1007/PL00008844

Ohkubo, S., Tanaka, Y., Yamori, W., and Adachi, S. (2020). Rice cultivar takanari has higher photosynthetic performance under fluctuating light than koshikihari, especially under limited nitrogen supply and elevated CO2. Front. Plant Sci. 11:1308. doi: 10.3389/fpls.2020.01308

Pearcy, R. W. (1983). The light environment and growth of C3 and C4 tree species in the understorey of a Hawaiian forest. Oecologia 58, 19–25. doi: 10.1007/BF00384537

Pearcy, R. W., Roden, J. S., and Gamon, J. A. (1990). Sunfleck dynamics in relation to canopy structure in a soybean (Glycine max (L.) Merr.) canopy. Agri. For. Meteorol. 52, 359–372. doi: 10.1016/0168-1923(90)90092-K

Quo, M., Zheng, G., Hamdani, S., Essemione, J., Song, Q., Wang, H., et al. (2017). Leaf photosynthetic parameters related to biomass accumulation in a global rice diversity survey. Plant Physiol. 175, 248–258. doi: 10.1104/pp.17.00332

Sailer, W. T., Merchant, A. M., Richards, R. A., Trehthowan, R., and Buckley, T. N. (2019). Rate of photosynthetic induction in fluctuating light varies widely among genotypes of wheat. J. Exp. Bot. 70, 2787–2796. doi: 10.1093/jxb/erz100

Tang, Y., Hiroshi, K., Mitsumasa, S., and Izumi, W. (1994). Characteristics of transient photosynthesis in Quercus serrata seedlings grown under lightfleck
and constant light regimes. *Oecologia* 100, 463–469. doi: 10.1007/BF00317868

Tang, Y., Washitani, I., Tsuchiya, T., and Iwaki, H. (1988). Fluctuation of photosynthetic photon flux density within a *Miscanthus sinensis* canopy. *Ecol. Res.* 3, 253–266. doi: 10.1007/BF02348584

Taylor, S. H., and Long, S. D. (2012). Slowness induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. *Philos. Trans. Royal Soc. B Biol. Sci.* 372:543. doi: 10.1098/rstb.2016.0543

Tomimatsu, H., Iio, A., Adachi, M., Saw, L. G., Fletcher, C., and Tang, Y. (2014). High CO2 concentration increases relative leaf carbon gain under dynamic light in *Dipterocarpus sublamellatus* seedlings in a tropical rain forest, Malaysia. *Tree Physiol.* 34, 944–954. doi: 10.1093/treephys/tpu066

Tomimatsu, H., Sakata, T., Fukayama, H., and Tang, Y. (2019). Short-term effects of high CO2 accelerate photosynthetic induction in *Populus koreana* x *trichocarpa* with always-open stomata regardless of phenotypic changes in high CO2 growth conditions. *Tree Physiol.* 39, 474–483. doi: 10.1093/treephys/tpy078

Tomimatsu, H., and Tang, Y. (2012). Elevated CO2 differentially affects photosynthetic induction response in two *Populus* species with different stomatal behavior. *Oecologia* 169, 869–878. doi: 10.1007/s00442-012-2256-5

Way, D. A., Aspinwall, M. J., Drake, J. E., Crous, K. Y., Campany, C. E., Ghannoum, O., et al. (2019). Responses of respiration in the light to warming in field-grown trees: a comparison of the thermal sensitivity of the Kok and Laik methods. *New Phytol.* 222, 132–143. doi: 10.1111/nph.15366

Way, D. A., and Pearcy, R. W. (2012). Sunflecks in trees and forests: from photosynthetic physiology to global change biology. *Tree Physiol.* 32, 1066–1081. doi: 10.1093/treephys/tps064

Woodrow, I. E., and Mott, K. A. (1989). Rate limitation of non-steady-state photosynthesis by ribulose-1,5-bisphosphate carboxylase in spinach. *Austral J. Plant Physiol.* 16, 487–500. doi: 10.1071/PP9890487

Yamori, W., Kusumi, K., Iba, K., and Terashima, I. (2020). Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice. *Plant Cell Environ.* 43, 1230–1240. doi: 10.1111/pce.13725

Yamori, W., Masumoto, C., Fukayama, H., and Makino, A. (2012). Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature. *Plant J.* 71, 871–880. doi: 10.1111/j.1365-313X.2012.05041.x

Yoshida, S. (1981). “Physiological analysis of rice yield,” in *Fundamentals of Rice Crop Science* (Makati City: International Rice Research Institute), 231–251.

Zhang, D. Y., Chen, G. Y., Chen, J., Yong, Z. H., Zhu, J. G., and Xu, D. Q. (2009). Photosynthetic acclimation to CO2 enrichment related to ribulose-1,5-bisphosphate carboxylation limitation in wheat. *Photosynthetica* 47, 152–154. doi: 10.1007/s11099-009-0025-4

Zhang, Q., Peng, S., and Li, Y. (2019). Increase rate of light-induced stomatal conductance is related to stomatal size in the genus *Oryza*. *J. Exp. Bot.* 70, 5259–5269. doi: 10.1093/jxb/erz267

Zheng, Y., Li, F., Hao, L., Yu, J., Guo, L., Zhou, H., et al. (2019). Elevated CO2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates, and nitrogen content of soybean. *BMC Plant Biol.* 19:255. doi: 10.1186/s12870-019-1788-9

Zhu, X., Cao, Q., Sun, L., Yang, X., Yang, W., and Zhang, H. (2018). Stomatal conductance and morphology of arbuscular mycorrhizal wheat plants response to elevated CO2 and NaCl stress. *Front. Plant Sci.* 9:1363. doi: 10.3389/fpls.2018.01363

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Kang, Zhu, Zhang, Ke, Sun, Hu, Zhu, Shen, Huang and Tang. *This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.*