WHEN DO FACTORS PROMOTING BALANCED SELECTION ALSO PROMOTE POPULATION PERSISTENCE? A DEMOGRAPHIC PERSPECTIVE ON GILLESPIE’S SAS-CFF MODEL

SEBASTIAN J. SCHREIBER

Abstract. Classical stochasticity demography predicts that environmental stochasticity reduces population growth rates and, thereby, can increase extinction risk. In contrast, in a 1978 *Theoretical Population Biology* paper, Gillespie demonstrated with his SAS-CFF model that environmental stochasticity can promote genetic diversity. Extending the SAS-CFF to account for demography, I examine the simultaneous effects of environmental stochasticity on genetic diversity and population persistence. Explicit expressions for the per-capita growth rates of rare alleles and the population at low-density are derived. Consistent with Gillespie’s analysis, if the log-fitness function is concave and allelic responses to the environment are not perfectly correlated, then per-capita growth rates of rare alleles are positive and genetic diversity is maintained in the sense of stochastic persistence i.e. allelic frequencies tend to stay away from zero almost-surely and in probability. Alternatively, if the log-fitness function is convex, then per-capita growth rates of rare alleles are negative and an allele asymptotically fixates with probability one. If the population’s low-density, per-capita growth rate is positive, then the population persists in the sense of stochastic persistence, else it goes asymptotically extinct with probability one. In contrast to per-capita growth rates of rare alleles, the population’s per-capita growth rate is a decreasing function of the concavity of the log-fitness function. Moreover, when the log-fitness function is concave, allelic diversity increases the population’s per-capita growth rate while decreasing the per-capita growth rate of rare alleles, and environmental stochasticity increases the per-capita growth rate of rare alleles but decreases the population’s per-capita growth rate. Collectively, these results (i) highlight how mechanisms promoting population persistence may be at odds with mechanisms promoting genetic diversity, and (ii) provide conditions under which population persistence relies on existing standing genetic variation.

1. Introduction

Temporal variation in fitness can have opposing effects on population growth and the maintenance of genetic diversity within a population. This temporal variation typically reduces the long-term growth rate of populations and, consequently, can increase extinction risk [Lewontin and Cohen, 1969]. Indeed, as a second order approximation, Lewontin and Cohen [1969] showed that temporal variation reduces the long-term population growth rate by one-half of the coefficient of variation of the fitness. Tuljapurkar [1982] showed a similar approximation applies to structured populations in serially uncorrelated environments as part of a series of *Theoretical Population Biology* papers on stochastic demography. This reduction can increase extinction risk by shifting long-term growth rates from positive to negative [Lewontin and Cohen, 1969, McLaughlin et al., 2002, Lande et al., 2003] or by increasing the likelihood of populations falling below critical densities where inbreeding or Allee effects drive the population extinct [Dennis, 2002, Liebhold and Bascompte, 2003, O’Grady et al., 2006, Roth and Schreiber, 2014].
In contrast to this detrimental impact of temporal variation on population persistence, temporal variation in fitness can promote genetic diversity via balancing selection [Dempster, 1954, Haldane and Jayakar, 1963, Gillespie, 1978, 1980, Gillespie and Turelli, 1989, Ellner and Hairston Jr, 1994, Turelli, 1981, Hatfield and Chesson, 1997, Turelli et al., 2001, Hedrick, 2006, Svardal et al., 2015]. In a 1978 *Theoretical Population Biology* paper, Gillespie [1978] introduced the SAS-CFF model to identify when this balancing selection occurs. At that time, Turelli [1981] called this model and its analysis as “the most cohesive and elaborate theory to account for protein polymorphisms by balancing selection.” Gillespie [1978]’s SAS-CFF model assumes there is a physiological activity scale to which alleles contribute additively in a manner that varies stochastically with environmental conditions i.e. the “Stochastic Additive Scale” of SAS-CFF. Furthermore, fitness increases in a concave fashion with the physiological activity scale i.e. the “Concave Fitness Function” of SAS-CFF. When the contributions of different alleles have the same mean and are partially correlated or uncorrelated, the SAS-CFF model predicts the maintenance of a polymorphism Gillespie [1977, 1978]. This prediction also holds when differences in mean fitness contributions are not too great [Gillespie, 1980, Turelli and Gillespie, 1980, Turelli, 1981]. Therefore, even if one allele with a higher mean fitness would asymptotically fixate in a constant environment, environmental stochasticity can mediate coexistence via a population genetics form of Chesson’s storage effect [Chesson and Warner, 1981, Chesson, 1982, 1985, 1994, Hatfield and Chesson, 1997] (see discussion in Section 3.2).

These opposing effects of environmental stochasticity of population growth and maintaining genetic polymorphisms raise several questions. First, to what extent does the maintenance of genetic polymorphisms due to environmental stochasticity offset its negative impacts on population growth? In particular, when are genetic polymorphisms necessary for population persistence? Second, to what extent do mechanisms promoting quick recovery of rare alleles also enhance population recovery from low densities? For example, to what extent does the concavity of the fitness function, which promotes genetic diversity, also promote faster population growth?

To address these questions, I introduce a demographic version of the SAS-CFF model with density-dependent population growth. For this model, recent methods [Benaïm and Schreiber, 2018] are used to provide a mathematically rigorous analysis of when alleles coexist and when the population persists in the sense of stochastic persistence from both the ensemble perspective [Chesson, 1978, Chesson and Warner, 1981, Chesson, 1982] (i.e. the probability of an allele frequency or the population density being low far into the future is small) and the typical population trajectory perspective [Benaïm and Schreiber, 2009, Schreiber et al., 2011] (i.e. the fraction of time an allele spends at low frequencies or the population spends at low densities is low). When the conditions for stochastic persistence are violated for the alleles or the population, respectively, I show that an allele asymptotically fixates with probability one or the population asymptotically goes extinct with probability one. The conditions for stochastic persistence versus asymptotic extinction are determined by the realized per-capita growth rates of alleles or the population when their frequency or density, respectively, are low. These per-capita growth rates not only determine whether the population persists and alleles coexist, but also determine how quickly alleles and the population recover when rare.
2. Models and Methods

2.1. The Model. I model a random mating population of a diploid species with discrete, non-overlapping generations. The fitness of each individual is determined by a single multiallelic locus and the population density N. There are k possible alleles, A_1, A_2, \ldots, A_k at the locus of interest. Following Gillespie [Gillespie, 1978], these alleles contribute additively to a physiological activity scale. For genotype A_iA_j, the activity level in generation t equals $(Y_i(t) + Y_j(t))/2$ where $Y_i(t), Y_j(t)$ are the additive contributions of alleles i and j, respectively. These activity levels are translated into the low-density fitness via an increasing function ϕ of the activity scale. Namely, the low-density fitness of an individual with genotype A_iA_j equals

$$\phi \left(\frac{Y_i(t) + Y_j(t)}{2} \right).$$

This fitness function ϕ can be concave, linear, or convex, but needs to be three-times differentiable i.e. a C^3 function. Hence, the “C” in SAS-CFF here corresponds to ϕ being C^3 not being concave. The activity levels $Y_i(1), Y_i(2), Y_i(3), \ldots$ for each allele i are assumed to independent and identically distributed in time.

Unlike Gillespie [1978]’s SAS-CFF model, the population density $N(t)$ is not constant across generations t. The population is regulated by negative density-dependence which reduces the fitness of an individual by a factor $D(N)$. This density-dependent reduction is severe at high densities and negligible at low densities i.e. $\lim_{N \to \infty} D(N) = 0$ and $D(0) = 1$. For example, $D(N)$ may be given by an over-compensatory model like the Ricker equation $\exp(-aN)$ [Ricker, 1954] or a compensatory model like the Beverton-Holt function $\frac{1}{1+aN}$ [Beverton and Holt, 1957]. For simplicity, I assume that density-dependent feedbacks do not differentially impact the genotypes (i.e. density-independent selection)—an assumption that is believed to hold for many natural populations [Prout, 1980, Travis et al., 2013].

To describe the dynamics, let $X_i(t)$ be the frequency of allele i at generation t. As there is random mating and non-overlapping generations, the genotypic and allelic frequencies are in Hardy-Weinberg equilibrium at the beginning of each generation i.e. the frequency of genotype A_iA_j equals $2X_i(t)X_j(t)$ for $i \neq j$ and $X_i(t)^2$ for $i = j$. The expected low-density fitness of a randomly chosen individual with at least one copy of allele i equals

$$W_i(X(t), Y(t)) = \sum_{j=1}^{k} X_j(t) \phi \left(\frac{Y_i(t) + Y_j(t)}{2} \right).$$

The expected low-density fitness of a randomly chosen individual in the population is

$$W(X(t), Y(t)) = \sum_{i=1}^{k} X_i(t) W_i(X(t), Y(t)).$$

Thus, the dynamics of the allelic frequencies and the population density are

$$N(t + 1) = N(t) W(X(t), Y(t)) D(N(t))$$

$$X_i(t + 1) = X_i(t) \frac{W_i(X(t), Y(t))}{W(X(t), Y(t))}.$$ \hfill (1)

The state space for the frequency dynamics $X(t) = (X_1(t), \ldots, X_k(t))$ is the probability simplex $\Delta = \{ x \in [0,1]^k : \sum_{i=1}^{k} x_i = 1 \}$. The allelic extinction set $\Delta_0 = \{ x \in \Delta : \prod_{i=1}^{k} x_i = 0 \}$ corresponds to one or more alleles missing from the population. The state space for the
eco-evolutionary dynamics \((X(t), N(t))\) is \(S = \Delta \times [0, \infty)\) where extinction of the population corresponds to the set \(S_0 = \Delta \times \{0\}\), and extinction of the population or an allele corresponds to the set \(S_0 \cup \{\Delta_0 \times [0, \infty)\}\).

For the analysis of equation (1), I consider the case of small temporal fluctuations and a probabilistic symmetry of allelic contributions to the physiological activity [Gillespie, 1977, 1978]. Focusing on this case, highlights the main differences between the effects of the convexity of the fitness function, allelic diversity \(k\), and stochastic fluctuations on maintaining genetic polymorphisms and population persistence. In particular, I assume a diffusion-type scaling where \(E[Y_i(t)] = 1 + \varepsilon^2 \mu + \varepsilon \sigma Z_i(t)\) with \(\varepsilon > 0\) small, \(E[Z_i(t)] = 0\), \(\text{Var}[Z_i(t)] = 1\), and \(E[Z_i(t)Z_j(t)] = \rho\) for \(i \neq j\). Thus, the mean and variance of the activity levels for every allele are \(1 + \varepsilon^2 \mu\) and \(\varepsilon^2 \sigma^2\), respectively; the correlation of these contributions from two distinct alleles is \(\rho\). By a change of variables, I can assume that \(\phi'(1) = 1\). Indeed, without this assumption, the approximations given in Lemmas 3.1, 3.2, and 3.3 still hold if one replaces the mean \(1 + \varepsilon^2 \mu\) with \(1 + \phi'(1) \varepsilon^2 \mu\), the standard deviation \(\sigma\) with \(\phi'(1) \sigma\), and the curvature \(C = \phi''(1)\) with \(\phi''(1)/\phi'(1)^2\).

2.2. Definitions and Methods. The dynamics of equation (1) are analyzed using the methods of Benaïm and Schreiber [2018]. These methods provide a mathematically rigorous approach to determining when the alleles or the population persist in the sense of stochastic persistence [Chesson, 1982, Chesson and Ellner, 1989, Schreiber, 2012a, Schreiber et al., 2011]. Specifically, for a choice of the extinction set \(\mathcal{E}\) (e.g. \(\Delta_0 \times [0, \infty)\) or \(S_0\), or \(S_0 \cup \{\Delta_0 \times [0, \infty)\}\)) the dynamics \(Z(t) = (X(t), N(t))\) is \(\mathcal{E}\)-stochastically persistent in probability if

\[
\lim_{t \to \infty} \mathbb{P}[\text{dist}(Z(t), \mathcal{E}) \leq \delta | Z(0) = z] \downarrow 0 \quad \text{as} \quad \delta \downarrow 0 \quad \text{whenever} \quad z \notin \mathcal{E},
\]

where \(\text{dist}(z, \mathcal{E}) = \min_{z' \in \mathcal{E}} ||z - z'||\) is the distance between \(z\) and the extinction set. In words, if the process starts in a persistent state, then the probability of being arbitrarily close to the extinction set far in the future is arbitrarily small. Alternatively, \(Z(t)\) is almost-surely \(\mathcal{E}\)-stochastically persistent if

\[
\lim_{T \to \infty} \frac{\#\{1 \leq t \leq T : \text{dist}(Z(t), \mathcal{E}) \leq \delta\}}{T} \downarrow 0 \quad \text{as} \quad \delta \downarrow 0 \quad \text{almost surely whenever} \quad Z(0) \notin \mathcal{E}.
\]

In words, if the process starts in a persistent state, then asymptotically the fraction of time it spends arbitrarily close to the extinction set is arbitrarily small. When both forms of \(\mathcal{E}\)-stochastic persistence are satisfied, \(Z(t)\) is called simply \(\mathcal{E}\)-stochastically persistent. When conditions for \(\mathcal{E}\)-stochastic persistence are not met, the methods of Benaïm and Schreiber [2018] are used to show asymptotic extinction with probability one i.e. \(\lim_{t \to \infty} \text{dist}(Z(t), \mathcal{E}) = 0\) with probability one.

The methods for verifying stochastic persistence and asymptotic extinction rely on the per-capita growth rates of alleles when rare or the population at low density. If allele \(i\) is infinitesimally rare and the dynamics of the other alleles are characterized by an ergodic, stationary solution \(\hat{X}(t)\) with \(\hat{X}_i(t) = 0\), then the dynamics of allele \(i\)’s frequency \(X_i(t)\) can be approximated by the solution of the stochastic linear difference equation

\[
\tilde{X}_i(t+1) = \tilde{X}_i(t) \frac{W_i(\tilde{X}(t), Y(t))}{W(\tilde{X}(t), Y(t))}
\]

where
satisfying
\[
\log \tilde{X}_i(t) = \log \tilde{X}_i(0) + \sum_{\tau=1}^{t-1} \log \frac{W_i(\hat{X}(\tau), Y(\tau))}{W(\hat{X}(\tau), Y(\tau))}.
\]
As \(\log \frac{W_i(\hat{X}(t), Y(t))}{W(\hat{X}(t), Y(t))} \) is an ergodic stationary sequence, the law of large numbers for ergodic stationary sequences implies that with probability one \(\frac{1}{t} \log \tilde{X}_i(t) \) converges to the realized per-capita growth rate of allele \(i \):
\[
(5) \quad r_i(\hat{X}) = \mathbb{E} \left[\log \frac{W_i(\hat{X}(t), Y(t))}{W(\hat{X}(t), Y(t))} \right].
\]
When \(r_i(\hat{X}) > 0 \), the frequency of allele \(i \) is predicted to increase at an exponential rate. When \(r_i(\hat{X}) < 0 \), its frequency is predicted to decrease at an exponential rate.

Alternatively, if the population density is low and the allelic dynamics at this low density are characterized by an ergodic stationary solution \(\hat{X}(t) \), then the dynamics of the population’s density \(\tilde{N}(t) \) can be approximated by the solution \(\tilde{N}(t) \) of
\[
(6) \quad \tilde{N}(t + 1) = \tilde{N}(t) W(\hat{X}(t), Y(t))
\]
given by
\[
\log \tilde{N}(t) = \log \tilde{N}(0) + \sum_{\tau=1}^{t-1} \log W(\hat{X}(\tau), Y(\tau)).
\]
Thus, with probability one \(\frac{1}{t} \log \tilde{N}(t) \) converges to the realized per-capita growth rate of the population:
\[
(7) \quad r_N(\hat{X}) = \mathbb{E}[\log W(\hat{X}(t), Y(t))].
\]
When \(r_N(\hat{X}) > 0 \), the population is predicted to increase at an exponential rate.

3. Results

3.1. The maintenance or loss of genetic diversity. I first present sufficient and necessary conditions for \(\Delta_0 \)-stochastic persistence of the allelic dynamics. These results complement the work of Gillespie [1977, 1978] in that they apply directly to the discrete-time allelic dynamics \(X(t) \), provide mathematically rigorous results for stochastic persistence, and characterize the dynamics (asymptotic fixation) when the persistence condition is violated. In contrast, Gillespie [1977, 1978] worked with limiting stochastic differential equation and provided sufficient conditions for the existence of a positive stationary distribution.

Let \(\hat{X}(t) \) be an ergodic solution for the allelic dynamics supporting a subset of \(\ell < k \) alleles. For any allele \(i \) not supported by \(\hat{X} \), the following lemma provides approximation of its realized per-capita growth rate when rare. A proof of this approximation is provided in Appendix A.

Lemma 3.1. Let \(\hat{X}(t) \) be an ergodic solution for the allelic dynamics such that \(\hat{X}_i(t) > 0 \) if and only if \(i \leq \ell < k \). For \(i > \ell \),
\[
(8) \quad r_i(\hat{X}) = \epsilon^2 \frac{\sigma^2 (1 - \rho) (1 - C)}{4 \ell} + O(\epsilon^3).
\]
Equation (8) naturally generalizes an expression derived by Gillespie [1978] for \(k = 2\) alleles to an arbitrary number alleles. It is also equivalent in sign to an expression derived by Turelli and Gillespie [1980], Turelli [1981] for any number of alleles in the diffusion limit. Equation (8) implies that if the allelic responses to the environment are not perfectly correlated (i.e. \(\rho < 1\)) and the log-fitness function \(\log \phi\) is concave at 1 (i.e. \(C - 1 < 0\)), then the realized per-capita growth rate \(r_i(\hat{X})\) of any missing allele \(i\) is positive. As the sign of \(r_i(\hat{X})\) does not depend on the number of alleles \(\ell < k\) supported by \(\hat{X}\), it follows that \(r_i(\hat{X}) > 0\) for any allele \(i\) not supported by any stationary distribution \(\hat{X}\). This positivity ensures stochastic persistence of the alleles. Alternatively, when the log-fitness function is convex at 1 (i.e. \(C - 1 > 0\)), these realized per-capita growth rates are negative. Theorem 3.1 shows that positive realized per-capita growth rates imply stochastic persistence, while negative values imply asymptotic fixation of an allele with probability one. A proof of Theorem 3.1 is given in Appendix B.

Theorem 3.1. Assume \(\varepsilon > 0\) is sufficiently small. If \(C < 1\) and \(\rho < 1\), then the allelic dynamics \(X(t)\) are \(\Delta_0\)-stochastically persistent. If \(C > 1\) and \(\rho < 1\), then
\[
\sum_{i=1}^{k} P\left[\lim_{t \to \infty} X_i(t) = 1\right] = 1
\]
and
\[
P\left[\lim_{t \to \infty} X_i(t) = 1 \mid X(0) = x\right] > 0 \text{ whenever } x_i > 0.
\]

Beyond determining persistence or extinction, the magnitude of \(r_i(\hat{X})\) determines how quickly allele \(i\) increases or decreases when it become rare. Equation (8) implies that a rare allele will recover \((C < 1)\) or be lost \((C > 1)\) more quickly when there are higher uncorrelated environmental fluctuations (i.e. \(\sigma^2(1 - \rho)\) is more positive), and there are fewer alleles in the population (i.e. \(\ell\) is smaller).

3.2. Population persistence and growth.

The condition for stochastic persistence of the population depends on whether the frequency dynamics only support a single allele \((C > 1)\) or a protected polymorphism of all the alleles \((C < 1)\). When only a single allele is supported by the frequency dynamics \((C > 1)\), Lemma 3.2 characterize the realized per-capita growth rate of the population and, hence via Theorem 3.2, the persistence and extinction of the population. Proofs are given in Appendix A and Appendix B.

Lemma 3.2. If \(C > 1\), then
\[
(9) \quad r_N(\hat{X}) = \varepsilon^2 \left(\mu + \frac{\sigma^2(C-1)}{2}\right) + O(\varepsilon^3)
\]
for the ergodic solution \(\hat{X}(t) = (1, 0, \ldots, 0)\).

Theorem 3.2. Assume \(C > 1\) and \(\varepsilon > 0\) is sufficiently small. If \(\mu + \frac{\sigma^2(C-1)}{2} > 0\), then the dynamics \((X(t), N(t))\) are \(S_0\)-stochastically persistent. If \(\mu + \frac{\sigma^2(C-1)}{2} < 0\), then \(\lim_{t \to \infty} N(t) = 0\) with probability one for all initial conditions.

These results imply that when the log-fitness function is convex \((C > 1)\), the realized per-capita growth rate (9) increases with environmental variance \(\sigma^2\). Hence, the population can persist even if the fitness at the average activity level \((1 + \varepsilon^2 \mu)\) is less than one i.e. \(\mu < 0\).
Intuitively, Jensen’s inequality implies that the more convex the fitness function \(\phi \), the more positive of an effect of a fixed level of fluctuations in the activity scale on the expected fitness.

When the log-fitness function is concave (i.e. \(C < 1 \)), the realized per-capita growth rate of the population is given by Lemma 3.3 and, as shown in Theorem 3.2, the sign of this realized per-capita growth rate determines stochastic persistence versus asymptotic extinction of the population. Proofs are given in Appendix A and Appendix B.

Lemma 3.3. Assume \(C < 1, \rho < 1 \) and \(\varepsilon > 0 \) is sufficiently small. Then

\[
(10) \quad r_N(\hat{X}) = \varepsilon^2 \left(\mu + \frac{\sigma^2 C}{4} + \frac{C - 2}{4} \frac{\sigma^2(1 + 2(1 - C)(\frac{k-1}{k}\rho + \frac{1}{k}))}{3 - 2C} \right) + O(\varepsilon^3)
\]

for any ergodic solution \(\hat{X}(t) \) with \(\hat{X}_i(0) > 0 \) for all \(i \).

Theorem 3.3. Assume \(C < 1, \rho < 1 \) and \(\varepsilon > 0 \) is sufficiently small. If \(r_N(\hat{X}) \) as defined by equation (10) is positive, then equation (1) is \(S_0 \)- and \(\Delta_0 \)-stochastically persistent. If equation (10) is negative, then \(\lim_{t \to \infty} N(t) = 0 \) with probability one for all initial conditions.

The term (\(\bullet \)) in equation (10) equals the population level variance in the physiological activity scale i.e. \(\text{Var} \left[\sum_i \hat{X}_i(t)Y_i(t) \right] \). As the coefficient \(C - 2 \) of this variance term is negative when \(C < 1 \), the variance in the physiological activity scale has a negative impact on the population growth rate \(r_N(\hat{X}) \). Moreover, as shown in Appendix A, this population-level variance is increasing with the convexity \(C \) of the fitness function. Hence, the convexity of the fitness function has two opposing effects on population growth rate \(r_N(\hat{X}) \): a positive effect via the \(\sigma^2 C/4 \) term in equation (10) and a negative effect via the population-level variance (\(\bullet \)) in the physiological activity. As shown in Appendix A, the positive effect of the convexity of the fitness functions always outweighs its negative effect. Similarly, the environmental variance \(\sigma^2 \) always has a negative effect on the realized per-capita population growth rate \(r_N \) whenever the log-fitness function is concave (\(C < 1 \)). As the population-level variance (\(\bullet \)) decreases with the number \(k \) of alleles in the population, the realized per-capita growth rate \(r_N(\hat{X}) \) increases with the number of alleles.

Due \(r_N(\hat{X}) \) increasing with the number of alleles (when \(C < 1 \), genetic diversity may be necessary for population persistence. For example, consider the special case where the fitness function is additive (\(\phi(x) = x \) and \(C = 0 \)) and allelic contributions are independent (\(\rho = 0 \)). Then, the population’s realized per-capita growth rate satisfies

\[
(11) \quad r_N(\hat{X}) = \varepsilon^2 \left(\mu - \frac{\sigma^2}{6} \left(1 + \frac{2}{k}\right) \right) + O(\varepsilon^3).
\]

For only one allele (\(k = 1 \)), equation (11) yields the classical approximation \(r_N(\hat{X}) \approx \varepsilon^2(\mu - \sigma^2/2) \) for the growth rate of a population in a fluctuating environment [Gillespie, 1973]. Thus, if the index of dispersion \(D := \sigma^2/\mu \) is greater than 2 and there is only one allele, then the population tends to extinction with probability one. In contrast, if there are many alleles (i.e. \(k \to \infty \)), then the population growth rate satisfies \(r_N(\hat{X}) \approx \varepsilon^2(\mu - \sigma^2/6) \). Thus, the population persists if the index of dispersion \(D \) is less than 6. Hence, whenever
the index of dispersion is between 2 and 6, there is a critical number of alleles $k = \frac{2}{\sigma D - 1}$ below which the population would go extinct and above which it would persist.

Figure 1 illustrates this surprising phenomena. It also illustrates, as can be shown analytically, correlated responses of the alleles to the environment make this phenomena less likely to occur: increased allelic diversity has a smaller effect on $r_N(\hat{X})$ when allelic responses are positive correlated. More generally, whether or not this allelic rescue occurs depends on the index of dispersion D and the convexity $C - 1$ of the log-fitness function $\log \phi$. As illustrated in Figure 2, the less concave the log-fitness function is (i.e. C is close to 1), the broader the range of D value for which genetic diversity is required for population persistence.

Discussion

I began with the question to what extent do factors promoting genetic diversity also promote population persistence? The analysis of a demographic extension of Gillespie [1978]'s SAS-CFF model suggests that several factors promoting one, hinder the other. First and foremost, convexity of the log-fitness function $\log \phi$ always promotes population persistence by increasing the population’s low-density, per-capita growth rate $r_N(\hat{X})$, but inhibits genetic diversity by decreasing the per-capita growth rates $r_i(\hat{X})$ of rare alleles. This difference stems from population growth being determined by the absolute log-fitness and allelic growth rates

![Figure 1. The impact of allelic diversity k and correlations ρ on the realized per-capita growth rate $r_N(\hat{X})$ of the population. For positive $r_N(\hat{X})$ values the population persists, while for negative values, it goes asymptotically extinct with probability one (cf. Theorem 3.3). Numerical estimates (crosses) of $r_N(\hat{X})$ made by running the allelic dynamics for 1,000,000 generations and evaluating equation (7); analytic approximation (solid gray) from equation (10). Model details: Y_i log-normally distributed with mean $1 + \varepsilon^2 \mu = 0.015$ and variance $\varepsilon^2 \sigma^2 = 0.05$; a linear fitness function $\phi(x) = x$.](image-url)
Figure 2. The effect of allelic diversity k and the convexity C of the fitness function on population persistence and extinction. Asymptotic extinction occurs for $k \geq 1$ in the top region, stochastic persistence occurs at sufficiently high allelic diversity in the middle region, and stochastic persistence occurs for $k \geq 1$ in the bottom region.

Figure 2. The effect of allelic diversity k and the convexity C of the fitness function on population persistence and extinction. Asymptotic extinction occurs for $k \geq 1$ in the top region, stochastic persistence occurs at sufficiently high allelic diversity in the middle region, and stochastic persistence occurs for $k \geq 1$ in the bottom region.

being determined by their relative log-fitnesses. A convex log-fitness function ϕ ($C > 1$) coupled with environmental stochasticity increases the expected log-fitness due to Jensen [1906]'s inequality; this increases $r_N(\hat{X})$. In contrast, as rare alleles are mostly found in heterozygote individuals while common alleles are also found homozygous individuals, the rare alleles experience a lower variability in its physiological scale (i.e. $\text{Var}[(Y_i + Y_j)/2] = \sigma^2(1 + \rho)/2$ for $i \neq j$) than the common alleles (i.e. $\text{Var}[(Y_i + Y_j)/2] = \sigma^2$ for $i = j$). Thus, Jensen [1906]'s inequality implies the expected log-fitness of the common allele benefits more from convexity of the log-fitness function ϕ than the rare allele.

For the reasons just outlined, the effects of environmental stochasticity on genetic diversity and population persistence depend on the convexity of the log-fitness function $\log \phi$. When the log fitness function is concave ($C < 1$), environmental stochasticity promotes protected polymorphisms but has a negative impact on population growth, a conclusion consistent with classical stochastic demography [Lewontin and Cohen, 1969, Tuljapurkar, 1982]. Alternatively, when the log-fitness function is convex (i.e. $C > 1$), environmental stochasticity results in alleles being lost faster i.e. $r_i(\hat{X})$ being more negative. In contrast, environmental stochasticity filtered through a convex log-fitness function promotes population persistence by increasing its low-density per-capita growth rate. Thus, whether the log-fitness function is convex or concave, environmental stochasticity has opposing effects on the per-capita growth rates of rare alleles and the population at low densities.
Equations (8) and (10), also highlight that the number of common alleles having opposing effects on the rate of growth of rare alleles and the population. The positive effect on the population growth rate occurs due to the population-level variance in the physiological activity (expression in (8) in 10) decreasing with the number of alleles. This effect is similar to spatial bet-hedging in which living in different, partially correlated habitats increases the realized per-capita growth rate of the population [Jansen and Yoshimura, 1998, Bascompte et al., 2002, Evans et al., 2013, Schreiber, 2012b, Evans et al., 2015]. In contrast, as the number of common alleles increases, rare alleles have fewer temporal niches to exploit and, consequently, have a lower realized per-capita growth rate.

In light of Peter Chesson’s work on the storage effect [Chesson and Warner, 1981, Chesson, 1982, 1985, 1994, 2003, Hatfield and Chesson, 1989, Kuang and Chesson, 2010, Stump and Chesson, 2017], it is natural to ask whether Gillespie [1978]’s SAS-CFF exhibits the storage effect whose ingredients are [Chesson, 1994]: (i) species-specific responses to the environment, (ii) positive covariance between environment and competition, and (iii) buffered storage effect whose ingredients are [Chesson and Warner, 1981, Chesson, 2003b, Hatfield and Chesson, 1989, Kuang and Chesson, 2010, Stump et al., 2002, Evans et al., 2013, Schreiber, 2012b, Evans et al., 2015]. In contrast, as the realized per-capita growth rate of the population [Jansen and Yoshimura, 1998, Bascompte et al., 2002, Evans et al., 2013, Schreiber, 2012b, Evans et al., 2015].

Thus, for the linear fitness function $$\phi(x) = x$$

$$C_i(t) = W(X(t), Y(t)) = \sum_{j,k} X_j(t)X_k(t)\frac{Y_j(t) + Y_k(t)}{2} = \sum_j X_j(t)Y_j(t)$$

and

$$W_i(X(t), Y(t)) = \sum_j X_j Y_i(t) + Y_j(t) = \frac{E_i(t)}{2} + C_i(t)\frac{1}{2}.$$

Thus, for the linear fitness function $$\phi(x) = x$$

$$r_i(X(t)) = \mathbb{E}[\log(E_i(t)/C_i(t) + 1)] - \log 2.$$

Ingredient (i) of the storage effects occurs whenever $$E_i(t)$$ and $$E_j(t)$$ for $$i \neq j$$ are not perfectly correlated i.e. $$\rho < 1$$. For ingredient (ii) of the storage effect, the covariance between $$E_i(t)$$ and $$C_i(t)$$ equals (assuming $$Y_i(t)$$ are independent and identically distributed with mean $$\bar{Y}$$)

$$\text{Cov}[E_i(t), C_i(t)|X(t) = x] = \mathbb{E}[Y_i(t) - \bar{Y}, \sum_j x_j Y_j(t) - \bar{Y}] = \mathbb{E}[Y_i(t) - \bar{Y}, x_i Y_i(t) - \bar{Y}] = x_i \text{Var}[Y_i(t)]$$

which is positive whenever $$x_i > 0$$. Finally, ingredient (iii) requires that the mixed partial derivative of $$r_i$$ with respect to $$E_i$$ and $$C_i$$ to be negative i.e. subadditivity. This final ingredient is satisfied as

$$\frac{\partial^2 r_i}{\partial E_i \partial C_i} = \mathbb{E} \left[-\frac{1}{(E_i(t) + C_i(t))^2} \right] < 0.$$

Biologically, this buffering occurs via alleles residing in heterozygous individuals. Namely, when environmental conditions are poor for allele $$i$$ (i.e. $$Y_i(t)$$ is small), environmental conditions for another allele $$j$$ are likely to be better. Thus, by residing in heterozygotes $$A_iA_j$$, allele $$i$$ gets buffered from these poorer environmental conditions. Verifying the storage
effect for the linear fitness function is straight-forward as the SAS-CFF model is equivalent to a special case of Chesson and Warner [1981]'s lottery model as observed by Hatfield and Chesson [1997] in their diffusion analysis of the multispecies lottery model. In the case of a nonlinear fitness function \(\phi \) verifying the storage effect appears not to be straightforward as \(r_i(X(t)) = E[\log \frac{W_i(X(t),Y(t))}{W(X(t),Y(t))}] \) can not be expressed in terms of \(E_i(t) = Y_i(t) \) and \(C_i(t) = W(X(t),Y(t)) \). Thus, one is left with the challenge of extending Chesson [1994]'s framework to general diploid models.

Other future challenges include developing conditions for population persistence under less restrictive assumptions. For example, Turelli [1981] developed results for protected polymorphisms when the mean fitness contributions \(\mu_i \) and covariances \(\rho_{ij}\sigma_i\sigma_j \) are variable. For diffusive scalings of these parameters, one can develop expressions for \(r_i(\hat{X}) \) (a rescaling of the expression found by Turelli [1981]) and \(r_N(\hat{X}) \). Using such expressions, one could evaluate the robustness of my main conclusions to asymmetries in the means and covariances. To extend the results beyond the case of a diffusion scaling is a bigger challenge. While it is possible to use the results of Benaïm and Schreiber [2018] to get abstract conditions for stochastic persistence, the main challenge is getting explicit expressions for these realized per-capita growth rates or identifying their sign under appropriate assumptions. For example, one could ask if \(\frac{d}{dx} \log \phi(x) = C - 1 \) for all \(x \), \(\mu_i = \mu \) for all \(i \), and \(Y_1(t), \ldots, Y_k(t) \) are independent and identically distributed, then does the sign of \(C - 1 \) still determine \(\Delta_0 \)-stochastic persistence? One could also include density-dependent selection into the model [Travis et al., 2013] and, thereby, make the realized per-capita growth rates \(r_i \) depend on both \(X(t) \) and \(N(t) \). Finally, one could try to relax the assumption of the additive contributions \(Y_i(t) \) to the physiological scale by allowing the fitness function to be a nonlinear bivariate function \(\phi(Y_i, Y_j) \). I can only hope that the answers to some of these and other challenges will find their way into future issues of *Theoretical Population Biology*.

Acknowledgments. I thank: Peter Chesson for discussions about the relationship between the storage effect and the SAS-CFF model and suggesting to focus on the case of the linear fitness function \(\phi(x) = x \); Michael Turelli and Vince Buffalo for several discussions about the SAS-CFF model; William Cuello for carefully reading over the derivations in the Appendices; Matthew Osmond, Michael Culshaw-Maurer, Sam Fleisher, Kelsey Lyberger, and Dale Clement for feedback on early stages of this work; The U.S. National Science Foundation for helping fund this work through Grant DMS-1716803.

References

J. Bascompte, H. Possingham, and J. Roughgarden. Patchy populations in stochastic environments: Critical number of patches for persistence. *American Naturalist*, 159:128—137, 2002.

M. Benaïm and S. J. Schreiber. Persistence of structured populations in random environments. *Theoretical Population Biology*, 76:19—34, 2009.

M. Benaïm and S.J. Schreiber. Persistence and extinction for stochastic ecological difference equations with feedbacks. *arXiv preprint arXiv:1808.07888*, 2018.

R. J. H. Beverton and S. J. Holt. *On the dynamics of exploited fish populations*, volume 2(19) of *Fisheries Investigation Series*. Ministry of Agriculture, Fisheries and Food, London, UK, 1957.
P. Chesson. Multispecies competition in variable environments. *Theoretical Population Biology*, 45:227–276, 1994.
P. Chesson. Quantifying and testing coexistence mechanisms arising from recruitment fluctuations. *Theoretical Population Biology*, 64:345–357, 2003.
P. L. Chesson. Predator-prey theory and variability. *Annual Review of Ecology and Systematics*, 9:323–347, 1978.
P. L. Chesson. The stabilizing effect of a random environment. *Journal of Mathematical Biology*, 15:1–36, 1982.
P. L. Chesson and S. Ellner. Invasibility and stochastic boundedness in monotonic competition models. *Journal of Mathematical Biology*, 27:117–138, 1989.
P. L. Chesson. Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of different sorts of variability. *Theoretical Population Biology*, 28:263–287, 1985.
P. L. Chesson and R.R. Warner. Environmental variability promotes coexistence in lottery competitive systems. *The American Naturalist*, 117:923–943, 1981.
E.R. Dempster. Maintenance of genetic heterogeneity. *Cold Spring Harbor Symp. Quant. Biol.*, 20:25–32, 1954.
B. Dennis. Allee effects in stochastic populations. *Oikos*, 96:389–401, 2002.
S. Ellner and N.G. Hairston Jr. Role of overlapping generations in maintaining genetic variation in a fluctuating environment. *The American Naturalist*, 143:403–417, 1994.
S. N. Evans, P. Ralph, S. J. Schreiber, and A. Sen. Stochastic growth rates in spatio-temporal heterogeneous environments. *Journal of Mathematical Biology*, 66:423–476, 2013.
S.N. Evans, A Hening, and S.J. Schreiber. Protected polymorphisms and evolutionary stability of patch-selection strategies in stochastic environments. *Journal of Mathematical Biology*, 71:325–359, 2015.
J.H. Gillespie. Sampling theory for alleles in a random environment. *Nature*, 266(5601):443, 1977.
J.H. Gillespie. A general model to account for enzyme variation in natural populations. v. the sas-cff model. *Theoretical population biology*, 14:1–45, 1978.
J.H. Gillespie. The stationary distribution of an asymmetrical model of selection in a random environment. *Theoretical Population Biology*, 17:129–140, 1980.
J.H. Gillespie and M. Turelli. Genotype-environment interactions and the maintenance of polygenic variation. *Genetics*, 121:129–138, 1989.
J.H. H Gillespie. Natural selection with varying selection coefficients—a haploid model. *Genetics Research*, 21:115–120, 1973.
J.B.S. Haldane and S.D. Jayakar. Polymorphism due to selection of varying direction. *Journal of Genetics*, 58:237–242, 1963.
J.S. Hatfield and P.L. Chesson. Diffusion analysis and stationary distribution of the two-species lottery competition model. *Theoretical Population Biology*, 36:251–266, 1989.
J.S. Hatfield and P.L. Chesson. Multispecies lottery competition: a diffusion analysis. In S. Tuljapurkar and H. Caswell, editors, *Structured-Population Models in Marine, Terrestrial, and Freshwater Systems*, pages 615–622. Springer, 1997.
P.W. Hedrick. Genetic polymorphism in heterogeneous environments: the age of genomics. *Annual Review in Ecology, Evolution and Systematics*, 37:67–93, 2006.
V. A. A. Jansen and J. Yoshimura. Populations can persist in an environment consisting of sink habitats only. *Proceeding of the National Academy of Sciences USA*, 95:3696–3698,
1998.

J.L.W.V. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. *Acta Mathematica*, 30:175–193, 1906.

J.J. Kuang and P. Chesson. Interacting coexistence mechanisms in annual plant communities: frequency-dependent predation and the storage effect. *Theoretical Population Biology*, 77:56–70, 2010.

R. Lande, S. Engen, and B.E. Sæther. *Stochastic population dynamics in ecology and conservation: An introduction*. Oxford University Press, 2003.

R. C. Lewontin and D. Cohen. On population growth in a randomly varying environment. *Proceedings of the National Academy of Sciences USA*, 62:1056—1060, 1969.

A. Liebhold and J. Bascompte. The Allee effect, stochastic dynamics and the eradication of alien species. *Ecology Letters*, pages 133–140, 2003.

J. F. McLaughlin, J. J. Hellmann, C. L. Boggs, and P. R. Ehrlich. Climate change hastens population extinctions. *Proceeding of the National Academy of Sciences USA*, 99:6070–6074, 2002.

J.J. O’Grady, B.W. Brook, D.H. Reed, J.D. Ballou, D.W. Tonkyn, and R. Frankham. Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. *Biological Conservation*, 133:42–51, 2006.

T. Prout. Some relationships between density-independent selection and density-dependent population growth. In M.K. Hecht, W.C. Steere, and B. Wallace, editors, *Evolutionary biology*, pages 1–68. Springer, 1980.

W. E. Ricker. Stock and recruitment. *J. Fish. Res. Board. Can.*, 11:559–623, 1954.

G Roth and S.J. Schreiber. Pushed to brink: Allee effects, environmental stochasticity, and extinction. *Journal of Biological Dynamics*, 8:187–205, 2014.

S. J. Schreiber. Persistence for stochastic difference equations: a mini-review. *Journal of Difference Equations and Applications*, 18:1381–1403, 2012a.

S. J. Schreiber, M. Benaim, and K. A. S. Atchadé. Persistence in fluctuating environments. *Journal of Mathematical Biology*, 62:655–683, 2011.

S.J. Schreiber. Evolution of patch selection in stochastic environments. *American Naturalist*, 180:17–34, 2012b.

S.M. Stump and P. Chesson. How optimally foraging predators promote prey coexistence in a variable environment. *Theoretical Population Biology*, 114:40–58, 2017.

H. Svardal, C. Rueffler, and J. Hermisson. A general condition for adaptive genetic polymorphism in temporally and spatially heterogeneous environments. *Theoretical population biology*, 99:76–97, 2015.

J. Travis, J. Leips, and F. H. Rodd. Evolution in population parameters: Density-dependent selection or density-dependent fitness? *The American Naturalist*, 181:S9–S20, 2013.

S.D. Tuljapurkar. Population dynamics in variable environments. ii. correlated environments, sensitivity analysis and dynamics. *Theoretical Population Biology*, 21:114–140, 1982.

M. Turelli. Temporally varying selection on multiple alleles: a diffusion analysis. *Journal of Mathematical Biology*, 13:115–129, 1981.

M. Turelli and J.H. Gillespie. Conditions for the existence of stationary densities for some two-dimensional diffusion processes with applications in population biology. *Theoretical population biology*, 17:167–189, 1980.

M. Turelli, D.W. Schemske, and P. Bierzychudek. Stable two-allele polymorphisms maintained by fluctuating fitnesses and seed banks: protecting the blues in linanthus parryae.
Appendix A. Proofs of Lemmas 3.1, 3.2, and 3.3

Assume that ϕ is three times differentiable at 1, $\phi(1) = 1 = \phi'(1)$ and $C = \phi''(1)$. Also assume that $Y_i(t) = 1 + \varepsilon^2 \mu + \varepsilon \sigma Z_i(t)$ where $E[Z_i(t)] = 0$, $\text{Var}[Z_i(t)] = 1$, and $E[Z_i(t)Z_j(t)] = \rho$ for $i \neq j$. Taylor’s theorem implies

$$\phi(1 + \varepsilon^2 \mu + \varepsilon \sigma (z_i + z_j)/2) = 1 + \varepsilon^2 \mu + \varepsilon \sigma (z_i + z_j)/2 + \frac{C\varepsilon^2 \sigma^2}{8} (z_i + z_j)^2 + O(\varepsilon^3).$$

We will use (12) to prove Lemmas 3.1, 3.2, and 3.3.

Proof of Lemma 3.1. Let \tilde{X} be a stationary distribution supporting $\ell \leq k$ alleles. By permuting indices, without loss of generality $P[\tilde{X}_i > 0] = 1$ for $1 \leq i \leq \ell$ and $P[\tilde{X}_i = 0] = 1$ for $i > \ell$. For any i,

$$r_i(\tilde{X}) = E \left[\log \sum_{j=1}^{\ell} \tilde{X}_j \phi \left(1 + \varepsilon^2 \mu + \varepsilon \sigma \frac{Z_i + Z_j}{2} \right) \right]$$

$$- E \left[\log \sum_{1 \leq r, s \leq \ell} \tilde{X}_r \tilde{X}_s \phi \left(1 + \varepsilon^2 \mu + \varepsilon \sigma \frac{Z_r + Z_s}{2} \right) \right]$$

(13)

where Z_j are independent of \tilde{X} and have the same distribution as $Z_j(1)$. Approximating \bullet in equation (13) using $\log(1 + x) = x - x^2/2 + O(x^3)$, equation (12), $E[Z_i] = 0$, $E[\tilde{X}_j] = \frac{1}{\ell}$ for $j \leq \ell$, $\sum_{j=1}^{\ell} \tilde{X}_j = 1$, and independence of \tilde{X}_i and Z_j, one gets

$$\bullet = \varepsilon^2 \mu + \frac{C\varepsilon^2 \sigma^2}{8} E \left[\sum_{j=1}^{\ell} \tilde{X}_j (Z_i + Z_j)^2 \right] - \frac{\varepsilon^2 \sigma^2}{8} E \left[\left(\sum_{j=1}^{\ell} \tilde{X}_j (Z_i + Z_j) \right)^2 \right] + O(\varepsilon^3)$$

$$= \varepsilon^2 \mu + \frac{C\varepsilon^2 \sigma^2}{8\ell} \sum_{j=1}^{\ell} E[(Z_i + Z_j)^2] - \frac{\varepsilon^2 \sigma^2}{8} E \left[\left(Z_i + \sum_{j=1}^{\ell} \tilde{X}_j Z_j \right)^2 \right] + O(\varepsilon^3).$$

As $E[Z_i^2] = 1$ and $E[Z_i Z_j] = \rho$ for $i \neq j$, one has

$$\frac{1}{\ell} \sum_{j=1}^{\ell} E[(Z_i + Z_j)^2] = E[Z_i^2] + \frac{2}{\ell} \sum_{j=1}^{\ell} E[Z_i Z_j] + \frac{1}{\ell} \sum_{j=1}^{\ell} E[Z_j^2]$$

$$= 2 + 2 \left\{ \begin{array}{ll} \rho + \frac{1-\rho}{\ell} & \text{if } i \leq \ell \\ \rho & \text{else} \end{array} \right.$$

By defining

$$\bigstar = \sum_{j=1}^{\ell} \tilde{X}_j Z_j,$$
one has
\[
E \left[\left(Z_i + \sum_{j=1}^{\ell} \hat{X}_j Z_j \right)^2 \right] = E[Z_i^2] + \frac{2}{\ell} \sum_{j=1}^{\ell} E[Z_i Z_j] + E[\bigcirc^2]
\]
\[
= 1 + E[\bigcirc^2] + 2 \left\{ \frac{2C(1 + \rho + \frac{1-\rho}{\ell}) - (1 + 2(\rho + \frac{1-\rho}{\ell}) + E[\bigcirc^2])}{2C(1 + \rho) - (1 + 2\rho + E[\bigcirc^2])} \right\} \text{ if } i \leq \ell
\]

Thus,
\[
\bigcirc = O(\varepsilon^3) + \varepsilon^2 \mu + \frac{\varepsilon^2 \sigma^2}{8} \left\{ 2C(1 + \rho + \frac{1-\rho}{\ell}) - (1 + 2(\rho + \frac{1-\rho}{\ell}) + E[\bigcirc^2]) \right\} \text{ if } i \leq \ell
\]

To solve for \(r_i(\hat{X}) \), Proposition 3.1(iii) from Benaim and Schreiber [2018] implies that \(r_i(\hat{X}) = 0 \) for all \(i \leq \ell \). Thus, if \(\ell = k \), then there is nothing left to show. Assume \(\ell < k \). Let \(\bigcirc^+ \) be the value of \(\bigcirc \) for an \(i \leq \ell \) and \(\bigcirc^- \) be its value for an \(i > \ell \). As \(r_i(\hat{X}) = 0 \) for \(i \leq \ell \), one has \(\bigcirc^+ = \bigcirc^- \). For \(i > \ell \),
\[
r_i(\hat{X}) = \bigcirc^- - \bigcirc = \bigcirc^- - \bigcirc^+ = \frac{\sigma^2 \varepsilon^2}{8} \left(2C(1 + \rho + \frac{1-\rho}{\ell}) - (1 + 2(\rho + \frac{1-\rho}{\ell}) + E[\bigcirc^2]) \right) + O(\varepsilon^3)
\]

Proofs of Lemmas 3.2,3.3. As Lemma 3.2 corresponds to Lemma 3.3 when \(k = 1 \), it suffices to prove Lemma 3.3. To this end, assume that \(\hat{X} \) is a stationary distribution supporting all alleles. Recall that \(r_N(\hat{X}) \) equals \(\bigcirc \) in equation (13), and \(\bigcirc = \sum_{j=1}^{\ell} \hat{X}_j Z_j \). Using \(\log(1 + x) = x - x^2/2 + O(x^3) \), equation (12), \(E[Z_j] = 0 \), and independence of \(\hat{X}_i \) and \(Z_j \), one has
\[
\bigcirc = \varepsilon^2 \mu + \frac{C \varepsilon^2 \sigma^2}{8} E \left[\sum_{1 \leq r, s \leq \ell} \hat{X}_r \hat{X}_s (Z_r + Z_s)^2 \right] - \frac{\varepsilon^2 \sigma^2}{8} E \left[\left(\sum_{1 \leq r, s \leq \ell} \hat{X}_r \hat{X}_s (Z_r + Z_s)^2 \right)^2 \right] + O(\varepsilon^3)
\]
\[
= \varepsilon^2 \mu + \frac{C \varepsilon^2 \sigma^2}{8} E \left[2 \sum_{r=1}^{\ell} \hat{X}_r Z_r^2 + 2 \bigcirc^2 \right] - \frac{\varepsilon^2 \sigma^2}{8} E \left[(2 \bigcirc)^2 \right] + O(\varepsilon^3).
\]
As \(E[Z_r^2] = 1 \), \(E[\hat{X}_r] = 1/\ell \) and \(\hat{X}_r \) is independent of \(Z_r \), one has
\[
(15) \quad \bigcirc = \varepsilon^2 \mu + \frac{\varepsilon^2 \sigma^2}{4} \left(C + (C - 2) E \left[\bigcirc^2 \right] \right) + O(\varepsilon^3).
\]
Let σ_{ℓ}^+ be σ_ℓ in equation (14) when $i = \ell = k$. As $r_i(\hat{X}) = 0$, $\sigma_{\ell}^+ = \sigma_\ell$ and equations (14)–(15) can be used to solve for $E[\sigma^2]$ upto order ε^3:

$$2C \left(1 + \rho + \frac{1 - \rho}{k}\right) - \left(1 + 2 \left(\rho + \frac{1 - \rho}{k}\right) + E[\sigma^2]\right) = 2 \left(C + (C - 2)E[\sigma^2]\right) + O(\varepsilon^3)$$

Thus,

$$r_N(\hat{X}) = \mp = \frac{\varepsilon^2\sigma^2}{4} \left(C + (C - 2)\frac{2C(\rho + \frac{1 - \rho}{k}) - (1 + 2(\rho + \frac{1 - \rho}{k}))}{2C - 3}\right) + O(\varepsilon^3)$$

as claimed.

Properties of the realized per-capita growth rates. To understand how the realized per-capita growth rate of the population r_N depends on the convexity C of the fitness function. Let $V = \text{Var}[\sum_i \hat{X}_i \sigma Z_i/2] = \frac{\varepsilon^2}{4}E[\sigma^2]$. The derivative of this variance with respect to C is

$$\frac{dV}{dC} = \frac{\sigma^2 2(k - 1)(1 - \rho)}{4 k (2C - 3)^2}$$

which equals zero for $k = 1$ and is positive for $k \geq 2$. Thus, the variance increases with C whenever there are multiple alleles. To determine the net effect of $r_N(\hat{X})$ on C, the derivative of r_N with respect to C is

$$\frac{dr_N}{dC} = \frac{d}{dC} \left(\mu + \frac{\sigma^2 \varepsilon^2}{4} (C + (C - 2)V)\right) + O(\varepsilon^3)$$

$$= \frac{\sigma^2 \varepsilon^2}{4} \left(1 + V + (C - 2)\frac{dV}{dC}\right) + O(\varepsilon^3)$$

Placing all the terms in \star over the common denominator $k(2C - 3)^2$ yields in the following quadratic in C for the numerator of \star:

$$\star_{\text{num}} = 4((k - 1)\rho + k + 1)C^2 - 12(k + 1 + (k - 1)\rho)C + (10(k - 1)\rho + 8k + 10).$$

Notice that the C^2 is positive, the C coefficient is negative, and the constant term $(10(k - 1)\rho + 8k + 10)$ is positive. Thus, the graph of \star_{num} is an upward facing parabola, positive at $C = 0$ and decreasing at $C = 0$. Furthermore, evaluating \star_{num} and $\frac{d}{dC} \star_{\text{num}}$ at $C = 1$, one gets $2k - 2(k - 1)(1 - \rho) > 0$ and $4(1 - k)\rho + 4(k + 1) < 0$, respectively. Thus, \star_{num} is positive for all $C < 1$ and $\frac{d}{dC} \star_{\text{num}} > 0$ for all $C < 1$.

To understand the effect of σ^2 on r_N, notice that r_N is upto order $O(\varepsilon^3)$ linear with respect to σ^2 with slope $\frac{1}{3}(C + (C - 1)V)$. As this slope is an increasing function of C and equals 0 at $C = 1$, this slope is negative for all $C < 1$. Thus r_N is upto order $O(\varepsilon^3)$ a decreasing function of σ^2 for $C < 1$.
To understand the effect of k on r_N, notice that r_N is up to order $O(\varepsilon^3)$ a linear function of $\frac{1}{k}$ with slope
\[
\frac{\sigma^2}{4} (C - 2) \frac{2(1 - C)(1 - \rho)}{3 - 2C} < 0
\]
and, consequently, is up to order $O(\varepsilon^3)$ a decreasing function of $\frac{1}{k}$ and an increasing function of k.

Appendix B. Proofs of Theorems 3.1, 3.2, and 3.3

In this Appendix, Theorems 3.1, 3.2, and 3.3 are proved using results from Benaïm and Schreiber [2018]. To use these theorems, one needs to ensure that the main assumptions (A1-A4) in [Benaim and Schreiber, 2018] are satisfied. To this end, I assume that the log fitness function $\log \phi$ is uniformly bounded with respect to the distribution of the $Y_i(t)$ and the population densities remain bounded. Specifically,

A1: Let $A_Y \subset (-\infty, \infty)$ be the support of the $Y_i(t)$ i.e. the smallest closed set such that $P[Y_i(t) \in A_Y] = 1$. There exists a constant $K_\phi > 0$ such that $\sup_{y \geq A_Y} |\log \phi(y)| \leq K_\phi$.

A2: There exists a $K > 0$ such that $N(t)$ enters and remains in the compact interval $[0, K]$ with probability one.

Proof of Theorem 3.1. Assume $\varepsilon > 0$ is sufficiently small, $C < 1$, and $\rho < 1$. Then Lemma 3.1 implies that for every ergodic, stationary distribution $\hat{\mathcal{X}}$ supporting a subset $I \subset \{1, \ldots, k\}$ or alleles, $r_i(\hat{\mathcal{X}}) > 0$ for all $i \notin I$. [Benaïm and Schreiber, 2018, Theorem 3.1] with $p_1 = \cdots = p_k = 1$, $\mathcal{S} = \Delta$, and $\mathcal{S}_0 = \Delta_0$ implies Δ_0-stochastic persistence.

Next, assume $\varepsilon > 0$ is sufficiently small, $C > 1$, and $\rho < 1$. Then Lemma 3.1 implies that for every ergodic, stationary distribution $\hat{\mathcal{X}}$ supporting a subset $I \subset \{1, \ldots, k\}$ or alleles, $r_i(\hat{\mathcal{X}}) < 0$ for all $i \notin I$. In particular, for a stationary solution supported on a vertex of the simplex Δ, $r_i(\hat{\mathcal{X}}) < 0$ for all the strategies not supported by that vertex. Define the set $\Delta^* = \{x \in \Delta : x_i = 1 \text{ for some } i\}$ to be the set of vertices of Δ. I will show that this set is accessible: for all $\varepsilon > 0$ there is $\delta > 0$ such that
\[
P[X_i(t) \geq 1 - \varepsilon \text{ for some } i \text{ and } t \geq 1] \geq \delta
\]
whenever $\prod_i X_i(0) > 0$. Having shown this, [Benaïm and Schreiber, 2018, Corollary 4.2] implies that $X(t)$ converges with probability one to one of the vertices as $t \to \infty$. To show Δ^* is accessible, consider $X(0) = x$ such that $\prod_i x_i > 0$. Since $\sum_i x_i = 1$, there exists some i such that $x_i \geq 1/k$. Without loss of generality (i.e. renaming the indices if needed), I will assume that $x_1 \geq 1/k$.

As $\text{Var}[Z_i(t)] = 1$ for all i and $\rho < 1$, there exist $\delta > 0$ and $\eta > 0$ such that $P[Z_i(t) > \max_{i \geq 2} Z_i(t) + \delta] \geq \eta$. For any $t \geq 1$, define the event $\mathcal{E}(t) = \{Z_1(s) > \max_{i \geq 2} Z_i(s) + \delta \text{ for } 1 \leq s \leq t\}$. By independence in time, $P[\mathcal{E}(t)] \geq \eta^t$. Assumption A1 and
\[
\log W_i(X(t), Y(t)) = \varepsilon \sigma \sum_{j=1}^{k} X_j(t) \frac{Z_i(t) + Z_j(t)}{2} + O(\varepsilon^2),
\]
imply that for \(i \neq 1 \) and \(1 \leq s \leq t \)
\[
\log \frac{W_i(X(s), Y(s))}{W_i(X(s), Y(s))} = \varepsilon \sigma \sum_j X_j(s) \left(\frac{Z_1(s) + Z_j(s)}{2} - \frac{Z_i(s) + Z_j(s)}{2} \right) + O(\varepsilon^2)
\]
\[
= \varepsilon \sigma \frac{Z_1(s) - Z_i(s)}{2} + O(\varepsilon^2)
\]
on the event \(E(t) \). Hence, for \(\varepsilon > 0 \) sufficiently small
\[
\log W_i(X(s), Y(s)) \geq \varepsilon \sigma \delta / 4 \text{ for } 1 \leq s \leq t, i \geq 2
\]
on the event \(E(t) \). Thus, for \(\varepsilon > 0 \) sufficiently small
\[
\log X_i(t) / X_i(0) \geq t \sigma \varepsilon \delta / 4 \text{ for } i \geq 2
\]
on the event \(E(t) \). As \(X_i(0) \geq 1/k \), for \(\varepsilon > 0 \) sufficiently small,
\[
X_i(t) \leq \exp(-t \sigma \varepsilon \delta / 4)X_i(0) / X_i(0) \leq \exp(-t \sigma \varepsilon \delta / 4)k
\]
on the event \(E(t) \). As the right side can be made arbitrarily small for \(t \) sufficiently large and this event occurs with a positive probability \(\eta' \) for any positive initial condition, it follows that \(\Delta^\varepsilon \) is accessible and \(\lim_{t \to \infty} X_i(t) = 0 \) for \(i \geq 2 \) with probability one.

Proof of Theorems 3.2 and 3.3. Assumption A2 implies that the state space for the full model is \(M = \Delta \times [0, K] \) and the extinction set is \(M_0 = \{(X, N) \in M : N \prod_{i=1}^k X_i = 0\} \) which corresponds to either the population being extinct (i.e. \(N = 0 \)) or one of the alleles missing (i.e. \(X_i = 0 \) for some \(i \)).

I only prove Theorem 3.3 as the proof of Theorem 3.2 is nearly identical. Assume \(C < 1, \rho < 1, \) and \(\varepsilon > 0 \) is sufficiently small. Then Lemma 3.1 implies there exists \(\eta_1 > 0 \) such that \(\sum_i r_i(\hat{X}) > \eta_1 \) for every ergodic stationary distribution \(\hat{X} \) supporting a supporting a subset of the alleles. By assumption A1, there exists a constant \(\eta_2 > 0 \) such that \(r_N(\hat{X}) \geq -\eta_2 \) for all ergodic stationary distributions \(\hat{X} \) supporting a subset of alleles (i.e. supported on \(\Delta_0 \)). Now suppose that
\[
\mu + \frac{\sigma^2 C}{4} + \frac{\sigma^2 (C - 2)}{4} \frac{1 + 2(1 - C)(\frac{k-1}{k} \rho + \frac{1}{k})}{3 - 2C} > 0
\]
Then Lemma 3.3 implies that there exists \(\eta_3 > 0 \) such that \(r_N(\hat{X}) \geq \eta_3 \) for every ergodic stationary distribution supporting all of the alleles i.e. supported on \(\Delta \setminus \Delta_0 \). Define \(p_i = 1 \) for \(i = 1, \ldots, k \) and \(p_N = \eta_1 / (2 \eta_2) \). Then
\[
\sum_i p_i r_i(\hat{X}) + p_N r_N(\hat{X}) \geq \frac{\eta_1}{2} \min\{1, \eta_3 / \eta_2\} > 0
\]
for any ergodic stationary distribution \(\hat{X} \) on \(M_0 \). [Benaïm and Schreiber, 2018, Theorem 3.1] with \(S = M \), and \(S_0 = M_0 \) implies \(M_0 \)-stochastic persistence.

Now suppose that
\[
\mu + \frac{\sigma^2 C}{4} + \frac{\sigma^2 (C - 2)}{4} \frac{1 + 2(1 - C)(\frac{k-1}{k} \rho + \frac{1}{k})}{3 - 2C} < 0
\]
Then \(r_N(\hat{X}) < 0 \) for every ergodic stationary distribution supporting all of the alleles i.e. \(S(\hat{X}) = \{1, 2, \ldots, k\} \). For \(\varepsilon > 0 \) sufficiently small, our approximations imply that \(r_N(\hat{X}) < 0 \)
for every ergodic distribution supporting any number alleles, i.e., more alleles always increase the realized per-capita growth rate. Hence, by weak* compactness and the ergodic decomposition theorem, there exists $\eta > 0$ such that $r_N(\hat{X}) \leq -\eta$ for any stationary distribution \hat{X} (including non-ergodic ones). Using a standard argument (see, e.g., the first paragraph of the proof of Proposition 7.2 in Benaïm and Schreiber [2018]), it follows that

$$\limsup_{t \to \infty} \frac{1}{t} \sum_{s=0}^{t-1} \log W(X(s), Y(s)) \leq -\eta$$

with probability one for any initial conditions $X(0)$. As the density dependent reduction term $D(N)$ is a decreasing function with $D(0) = 1$, it follows that

$$\limsup_{t \to \infty} \frac{1}{t} \log N(t) = \limsup_{t \to \infty} \frac{1}{t} \sum_{s=0}^{t-1} \log W(X(s), Y(s)) D(N(s))$$

$$\leq \limsup_{t \to \infty} \frac{1}{t} \sum_{s=0}^{t-1} \log W(X(s), Y(s))$$

$$\leq -\eta$$

with probability one whenever $N(0) > 0$. This completes the proof of Theorem 3.3.

Department of Evolution and Ecology and the Center for Population Biology, University of California, Davis, CA 95616