Effects of alkaline-electrolyzed and hydrogen-rich water, in a high-fat-diet nonalcoholic fatty liver disease mouse model

Karen Jackson, Noa Dressler, Rotem S Ben-Shushan, Ari Meerson, Tyler W LeBaron, Snait Tamir

ARRIVE guidelines statement: The authors have read the ARRIVE guidelines, and the manuscript was prepared and revised according to the ARRIVE guidelines.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence author to: Karen Jackson, PhD, Senior Lecturer, Senior Researcher, Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, POB 831, Kyriat Shmona 11016, Israel. karen@migal.org.il

Abstract

AIM
To identify the effect of hydrogen-rich water (HRW) and electrolyzed-alkaline water (EAW) on high-fat-induced non-alcoholic fatty acid disease in mice.

METHODS
Mice were divided into four groups: (1) Regular diet (RD)/regular water (RW); (2) high-fat diet (HFD)/RW;
In this work, we compared the effects of two functional waters: Electrolyzed alkaline water and Hydrogen-rich water in a high-fat-diet-induced nonalcoholic fatty liver disease (NAFLD) mouse model. Hydrogen-rich water (HRW) has potential for NAFLD treatment by attenuating hepatic lipid accumulation, inflammation, and CD36 expression. However, neither electrolyzed-alkaline water (EAW) nor HRW with a low H₂ concentration had protective effects on NAFLD. Additionally, we demonstrated that H₂ pretreatment has a protective effect by modifying gene expression. The results demonstrate that H₂ has a surprisingly positive impact in preventing NAFLD in mice and is also the key agent responsible in EAW for these benefits.

CONCLUSION

H₂ is the therapeutic agent in electrolyzed-alkaline water and attenuates HFD-induced nonalcoholic fatty liver disease in mice.

Key words: Hydrogen-rich-water; Nonalcoholic fatty liver disease; Alkaline water; Metabolic syndrome; Molecular hydrogen; High-fat diet

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In this work, we compared the effects of two functional waters: Electrolyzed alkaline water and Hydrogen-rich water in a high-fat-diet-induced nonalcoholic fatty liver disease (NAFLD) mouse model. Hydrogen-rich water (HRW) has potential for NAFLD treatment by attenuating hepatic lipid accumulation, inflammation, and CD36 expression. However, neither electrolyzed-alkaline water (EAW) nor HRW with a low H₂ concentration had protective effects on NAFLD. Additionally, we demonstrated that H₂ pretreatment has a protective effect by modifying gene expression. The results demonstrate that H₂ has a surprisingly positive impact in preventing NAFLD in mice and is also the key agent responsible in EAW for these benefits.
Hepatic tumorigenesis in a streptozotocin-induced choline-deficient diet-induced NASH model, ingestion of significantly lowered levels of oxidative stress and with hyperglycemia and hyperlipidemia, found H different models. For example, one study and hydrogen therapy have been reported using studies involving metabolic and liver conditions further metabolic syndrome, hyperlipidemia, liver inflammation such as Parkinson’s disease, type II diabetes, rheumatoid have demonstrated beneficial effects in several diseases Clinical studies of drinking hydrogen-rich water (HRW) preliminary animal and human studies are promising. molecular mechanism(s) and optimal dosing for H although more research is needed to elucidate the potential therapeutic effects have now been confirmed in over 100 different human and animal-disease models and in essentially every organ of the human body. H has recently been demonstrated to exert therapeutic benefits in animal and human clinical studies in ameliorating excessive inflammation and oxidative stress. It was first confirmed to have therapeutic potential in animals for cancer (hyperbaric chamber) and ischemia-reperfusion (inhalation) in studies published in Science and Nature Medicine, respectively. H’s potential therapeutic effects have now been confirmed in over 100 different human and animal-disease models. H is nonpolar, hydrophobic, and the smallest molecule, thus allowing it to quickly diffuse through cell membranes and reach the mitochondria, nucleus, endoplasmic reticulum, and other subcellular compartments. These properties make it an attractive molecule for NAFLD treatment. Although more research is needed to elucidate the molecular mechanism(s) and optimal dosing for H, preliminary animal and human studies are promising. Clinical studies of drinking hydrogen-rich water (HRW) have demonstrated beneficial effects in several diseases such as Parkinson’s disease, type II diabetes, rheumatoid arthritis, mitochondrial myopathies, muscle fatigue, metabolic syndrome, hyperlipidemia, liver inflammation (hepatitis B) and others reviewed previously. Clinical studies involving metabolic and liver conditions further support the potential benefits of hydrogen on NAFLD. Several animal and cells studies concerning NAFLD and hydrogen therapy have been reported using different models. For example, one study using hydrogen-rich saline in a NAFLD rat model induced with hyperglycemia and hyperlipidemia, found H significantly lowered levels of oxidative stress and inflammation. In another study using a methionine-choline-deficient diet-induced NASH model, ingestion of HRW significantly attenuated steatohepatitis to a degree comparable to the drug pioglitazone and suppressed hepatic tumorigenesis in a streptozotocin-induced NASH-related hepatocarcinogenic mouse model. Similar positive effects of H have also been reported in other studies. In the present study, we used a different NAFLD animal model induced by a high-fat diet (HFD) which is more relevant to human physiology. We aimed to determine the influence of both types of functional waters, EAW and HRW, on an HFD-induced-NAFLD model, and the importance of H as a therapeutic factor in EAW. Furthermore, we investigated if pretreatment with HRW could protect cells from further exposure to a high-fat environment.

MATERIALS AND METHODS

Animal and animal care
Animal protocols were approved by the Israeli National Committee for Animal Ethics and Welfare. In all experiments, animals had ad libitum access to food and water.

Electrolyzed water on NAFLD
Forty-eight C57bl/6j young male mice (three weeks old, approximately 20 g) were obtained from Harlan Laboratories (Israel). The mice were randomly separated into conventional polycarbonate rodent cages (six animals per cage) and fed a regular diet (RD), which was a commercial purified control diet composed of 17% calories from fat, 23% calories from protein, and 60% calories from carbohydrates (TD 120455, Harlan Laboratories, United States). Conventional polycarbonate bottles with a stainless-steel cap were put on the top of each cage. Cages were maintained at 23 ± 1°C and 40%-60% humidity under a 12:12 h light:dark cycle. During this time, animals were weighed twice a week to check that there were no differences in the initial growth rate.

After a 2-week acclimation period, mice were divided into four groups (n = 12) according to the type of diet and water: (1) RD/Regular Water (RW); (2) RD/EAW; (3) HFD/RW; and (4) HFD/EAW. Mice were individually identified by ear punching. The HFD was a purified commercial diet for inducing obesity (TD 06414, Harlan Laboratories, United States) and was composed of 60.3% calories from fat, 21.3% from carbohydrates, and 18.4% from protein. Formula and specific components of both the RD and HFD are shown in Table 1.

EAW was prepared with a Water Ionizer Batch System (BTM-3000, BionTech, Korea). Commercial mineral water (initial pH 7.8) was electrolyzed continuously for 3 h, and the water at the cathode was collected (pH 11 ± 0.48, ORP of -495 ± 27 mV, H ≈ 0.2 mg/L). The water was transferred to feeding bottles and added to the mice’s cages. Fresh electrolyzed water was prepared twice a week.

Body weight was measured weekly at 9 AM before the morning feeding using an Ohaus Scout Pro 200 g scale (Nänikon Switzerland). Body composition: fat
according to the reaction: Mg + 2H₂O → Mg(OH)₂ + H₂. The final pH of the solution reached ≈ 11.0 and contained dissolved hydrogen at a concentration of 1.2 mg/L. The solution was then diluted with regular water to make high (0.8 mg/L) and low (0.3 mg/L) concentrations of HRW each at a pH of approximately 8.0.

Each solution was transferred to mice-feeding bottles in which a new magnesium sachet was added. Due to the alkaline pH of the water, the amount of H₂ produced via the above reaction was minimal (the rate of escape ≈ rate of production) but was enough to maintain the low and high H₂ concentration for 24 h.

Fresh HRW was produced every other day. The sachets kept in the feeding bottles were rinsed with 5% acetic acid followed by RW every time the water was changed. The H₂ concentration in water was measured daily.

Determination of hydrogen concentration in water
The hydrogen concentration in water was determined with H₂ Blue (H₂ Sciences Inc., United States), which is a redox titration reagent composed of methylene blue and a colloidal platinum catalyst.

Liver histology
After dissection, the liver was cut into small pieces, immersed in 4% paraformaldehyde at room temperature for 24 h, and then stored at 4 °C for 24 h. Samples were dehydrated with ethanol and cleared with xylene and embedded in paraffin. Five-micrometer sections were cut and stained with Hematoxylin and Eosin (HE). Pictures of 4-6 different fields per sample were taken under an Axiovert40-CFL (Zeiss, Germany) microscope equipped with a digital camera (AxioCam MRC, Germany).

Real-time polymerase chain reaction
Total RNA was extracted using Tri-Reagent (T-9424, SIGMA). One microgram of RNA from each sample was

Table 1 Composition of the regular and high-fat diet

Ingredients	Ingredient concentration (g/kg)	Regular diet	High fat diet
Casein	210.0	265.0	
L-cystine	3.0	4.0	
High amylose corn starch	500.0		
Maltodextrin	100.0	160.0	
Sucrose	39.14	90.0	
Anhydrous milkfat	20.0		
Lard	20.0	310.0	
Soybean oil	20.0	30.0	
Cellulose	35.0	65.5	
Mineral mix, AIN-93G-MX (94046) (g/kg)	35.0	48.0	
Calcium phosphate, dibasic	-	3.4	
Vitamin mix, AIN-93-VX (94047)	15.0	21.0	
Choline bitartrate	2.75	3.0	
TBHQ, antioxidant	0.01	-	
Protein (% by weight)	18.6	23.5	
Carbohydrate (% by weight)	50.6	27.3	
Fat (% by weight)	6.2	34.3	

Jackson K et al. Preventive effects of molecular hydrogen on NAFLD
reverse transcribed into cDNA using the Verso cDNA Synthesis Kit (Thermo Fisher Scientific). Quantitative RT-PCR was performed in quadruplicate in 384-well plates using the ABI Prism® 7900HT sequence detection system (Applied Biosystems). Each well contained 2 µL of cDNA template (diluted X 20 after the RT reaction), 2.5 µL SYBR green (Bio-Rad, United States), and 0.25 µL each of both forward and reverse gene-specific primers at 10 µmol/L (primers are listed in Table 2). Beta-2 microglobulin (β2m) and β-Actin were used as endogenous reference genes for normalization. The thermal profile was 95 ℃ for 1 min followed by 40 amplification cycles of 95 ℃ for 15 s and 60 ℃ for 30 s. After that melting curve analysis was done. The resulting Ct values were used to determine the relative gene expression.

In vitro experiments
Hepatocytes from mice that drank H-HRW or RW were isolated by perfusion to test if consumption of H-HRW had a long-term effect.

Twelve C57bl/6J male mice (three weeks old) were obtained from Harlan Laboratories (Israel). Mice were divided into two groups: (1) One that drank HRW (0.8 mg/L) and (2) the second that drank RW; both groups were fed a regular diet. After four weeks, hepatocytes (one mouse from each group) were isolated using perfusion under anesthesia through the portal vein according to Zhang et al.[37].

The primary hepatocytes were isolated through a two-step collagenase perfusion system as described in a previous report[38]. Isolated hepatocytes from each mouse were seeded in 6-well plates (10⁶ cells/wells) for measuring gene expression, and in 12-well plates (200000 cells/well) for the steatosis assay in William’s E medium (Sigma, St. Louis, United States) containing 10% fetal bovine serum (FBS) (Invitrogen, Carlsbad, United States). Cells obtained from each mouse were seeded in a different plate. After 3 h, the medium was replaced with fresh medium without FBS, and the plates were prepared for further processing.

Steatosis assay
Cells were exposed overnight to 0.3 mmol/L palmitate-BSA conjugate or BSA as a control (in quadruplicate). Preparation of the palmitate stock solution was carried out as described previously[39]. Briefly, 20-mM palmitate (Sodium Palmitate, SIGMA) stock solution was prepared in 0.01 mol/L NaOH by heating at 80 ℃. A 2 mmol/L FFA-free BSA (Sigma) solution was prepared in ddH₂O and maintained at 37 ℃ in a water bath. A 4 mmol/L FFA/1% BSA (5:1) solution was obtained by complexing the appropriate amount of palmitate stock solution to the BSA at 50 ℃ for another 15 min.

After overnight incubation with BSA-palmitate, the medium was removed, and cells were stained with Oil-Red-O to examine fat accumulation (steatosis)[40]. Plates were washed with cold phosphate-buffered saline and fixed in 4% paraformaldehyde for 1 h. After two changes of 70% ethanol, plates were rinsed in distilled water and stained for 30 min by Oil-Red-O and then placed to dry at room temperature. The stain collected by the cells was then extracted with 100% isopropanol. Steatosis was estimated according to the extracted oil red concentration (determined by measuring the absorbance at 520 nm). The steatosis percentage was determined by dividing the average OD value of experimental wells (treated with palmitate) by the average OD value of control cells (treated with BSA only) × 100. In each assay, two plates (HRW or RW)
were processed in parallel.

Gene expression

Six-well plates containing \(1 \times 10^6\) cells were used. The cells were exposed to 0.3 mmol/L bovine serum albumin-palmitate conjugate for 4 h, after which RNA was extracted from cells as described above.

Statistical analysis

Data are expressed as mean values ± SD. Data were analyzed by Kruskal-Wallis nonparametric test followed by a Mann-Whitney nonparametric test. A \(P\)-value ≤ 5\% is considered statistically significant. The data were analyzed using the SPSS version 24 (SPSS Inc., Chicago, IL, United States). The statistical methods of this study were reviewed by Ms. Adi Sharabi-Nov of Tel -Hai Academic College.

RESULTS

Effect of EAW on body weight and composition

Water and food intake were measured for the entire group (\(n = 12\)) and calculated for each mouse once per week. As expected, mice fed an HFD showed a high-calorie intake when compared to mice fed chow (10.65 kcal/mouse/d vs 8.30 kcal/mouse/d, \(P < 0.01\)). Daily water intake was similar in mice drinking RW and EAW (2.49 mL/mouse).

Mice fed an HFD had higher body weights compared to RD mice. Significant body weight differences were observed from the fifth week until the end of the experiment (Figure 1). At the end of 12 wk, the weight was 72\% greater in HFD mice than in RD mice (\(P < 0.001\)). The differences in final body weight were due to an increase in fat mass. Larger retroperitoneal and epididymal fat pads were detected in HFD mice. The HFD also affected liver morphology. Livers from mice fed an HFD were light brown and showed a heterogenic flocculent texture. There was no difference in the weight of mice drinking RW or EAW in either group.

Body composition measurements based on NMR are shown in Figure 2. After 12 wk on different diets, the mice fed a HFD contained more fat (21.7 g ± 2.5 g) than RD mice (8.1 g ± 1.7 g, \(P < 0.001\)). However, FFM was similar in both groups (16.5 g ± 0.8 g and 15.1 g ± 1.2 g in RD and HFD, respectively). EAW did not affect body composition of mice in either the RD or the HFD group.

EAW water effects on liver histology

The HE stained sections from livers are shown in Figure 3. Most of the liver parenchyma of HFD mice (Figure 3C and D) was steatotic with many enlarged cells, which were distributed among the remaining normal parenchyma. The enlarged hepatocytes showed micro- and macrovesicular steatosis. RD-fed mice presented liver parenchyma with no signs of steatosis (Figure 3A and B). EAW water did not affect the liver histology in the RD group or the HFD group.

Effect of HRW on NAFLD development

To evaluate the impact of HRW on NAFLD, we used mice fed an HFD only. Mice were separated into three groups according to the type of water. Control group received RW, and experimental groups received HRW at either low (HRW-L, 0.3 mg/L) or high (HRW-H, 0.8 mg/L) concentration. After 12 wk, mice were sacrificed, and liver histology and gene expression were analyzed. Body weight and composition were measured throughout the experiment.

Water and food consumption

Average water consumption was significantly higher...
for H-HRW group (8.83 mL/mouse/d) than for L-HRW group (3.66 mL/mouse/d), and control group (3.34 mL/mouse/d, \(P = 0.012 \)). However, the differences in water consumption did not affect appetite and food consumption. All three groups had the same caloric intake consisting of 9.99 kcal/mouse/day for the control group, 9.38 kcal/mouse/day for L-HRW group, and 10.5 kcal/mouse/day H-HRW group (\(P = 0.505 \)).

Body weight and body composition

All three groups gained weight during the experiment; however, the H-HRW gained less weight compared to the two other groups (\(P = 0.0567 \)).

Body composition was significantly affected by HFD. As expected, the total body mass of the three groups increased, mainly due to the addition of fat mass. However, mice in the H-HRW group showed a smaller increase in fat tissue when compared to the other two groups (\(p = 0.002 \)). At the end of the experiment, mice in the H-HRW group showed a body composition of 46% fat mass and 42% lean body mass, compared to 61% fat mass and 28% lean body mass of the control group. There were also no differences in body water content among the three groups (Figure 4). Since the body mass composition of mice in the L-HRW group was similar to the control group, no further analysis of the L-HRW group was performed.

Liver fat content and histology

Mice that drank H-HRW water accumulated significantly (\(P < 0.01 \)) less hepatic lipids (30.49 mg ± 4.3 mg/300 mg tissue) in comparison to mice that drank RW (48.24 mg ± 6.0 mg/300 mg tissue). This result is corroborated by the histological sections.

Figure 5 shows liver H&E sections of the control group and H-HRW group (two mice from each group, the heaviest and lightest). Each pair of pictures shows the livers of mice of the two different groups that reached a similar total weight. Figure 5A and B show livers of mice in the H-HRW group and control group that achieved final weights of 35.5 g and 35.9 g, respectively. The liver in the control group has visible steatosis, mainly at the periphery of the lobule. In contrast, the liver sections of the H-HRW group hardly developed fat inclusions. Figure 5C and D shows mice livers in the H-HRW group and control group weighing 40.0 g and 40.9 g, respectively. Although both livers are steatotic, the steatosis of the control group is visibly more pronounced. The hepatocytes show microvesicular steatosis at acinar zones 2 and 3; macrovesicular steatosis is most concentrated at zone 1. In contrast, the liver of H-HRW group is characterized by only mild steatosis, mainly at zone 1, and the beginning of microvesicular steatosis at zones 2 and 3.

NAFLD-related genes expression

The effect of HRW on the expression of several genes involved in NAFLD development compared to control is shown in Table 3. Acetyl CoA oxidase (ACOX), a gene related to lipid metabolism, was significantly up-regulated (\(P < 0.05 \)), while others (such as carnitine palmitoyltransferase 1 (CPT1) and acetyl-CoA carboxylase), did not change significantly. HRW consumption did not alter the expression of the lipogenic enzymes SREBP1-c, fatty acid synthase (FAS) or acetyl-CoA carboxylase (ACC1). The most significant change was in the expression of CD36, which was markedly reduced in the H-HRW group (\(P = 0.028 \)). Additionally, while the expression of adiponectin receptor 2 (AdipoR2) did not change significantly, a significant increase in adiponectin expression was detected (\(P = 0.022 \)).

Genes related to oxidative stress [such as catalase (CAT) and superoxide dismutase (SOD)] did not change significantly; however, the inflammatory gene tumor necrosis factor (TNF)-\(\alpha \), but not interleukin (IL)-6 was significantly down-regulated. However, when the gene expression was measured after overloading with 0.3 mmol/L BSA-palmitate for 4 h, TNF-\(\alpha \) and IL-6 were
both significantly down-regulated ($P = 0.036$ and $P = 0.002$, respectively) as shown in Table 4.

Long-term influence of HRW on hepatocytes

To investigate the long-term effects of HRW on hepatocytes, we extracted cells from different mice drinking either HRW or regular water and compared the fat accumulation after exposing them overnight to 0.3 mmol/L BSA-palmitate *in vitro*. There was less fat accumulation ($P = 0.057$) in the hepatocytes from the mice that drank HRW (44.0% ± 18.6%) compared to hepatocytes from mice that drank regular water (52.8% ± 20.9%).

DISCUSSION

The high prevalence of NAFLD and the lack of safe and effective treatments have resulted in the search for natural alternative methods. The claims of purported functional waters for human health have increased in

Table 3 Expression of genes relevant to nonalcoholic fatty liver disease

Gene	RW M	SD	HRW M	SD	P value
IL-6	1.10	0.46	1.17	0.26	0.26
TNF-α	1.19	0.36	0.68	0.22	0.02
SREBP-1c	1.04	0.19	0.71	0.06	0.02
ACOX	1.04	0.21	1.43	0.40	0.14
CD36	1.08	0.37	1.42	0.23	0.64
CPT1	1.12	0.50	1.05	0.17	0.13
ACC2	1.06	0.14	1.13	0.36	0.29
ACC1	1.09	0.42	1.42	0.36	0.29
FAS	1.04	0.17	0.96	0.08	0.86
SOD	1.04	0.21	1.12	0.24	0.80
Cat	1.04	0.22	1.14	0.28	0.23
AdipoR2	1.01	0.29	1.32	0.38	0.004
Adipo	0.92				

Each value is the average of 8 mice after normalization with keeping genes (β2m, β-actin). Statistically significant difference marked by different letters $P < 0.05$ (Kruskal-Wallis, Mann Whitney test). Regular water or hydrogen-rich water.

Figure 3 Histological sections stained by hematoxylin eosin of livers from mice fed regular diet and regular water (A), regular diet and electrolyzed alkaline water (B), high fat diet and regular water (C), high fat diet and electrolyzed alkaline water (D). Note the prominent steatosis in mice fed on high-fat diet. Microvesicular inclusions (big arrow), macrovesicular inclusion (small arrow).
Table 4 Expression of genes relevant to nonalcoholic fatty liver disease from hepatocytes isolated from mice drinking regular water or hydrogen-rich water after palmitate overloading in vitro

Gene	RW M	RW Sd	HRW M	HRW Sd	P value
TNF-α	9.16⁺	1.90	5.71⁺	4.59	0.036
IL-6	3.2⁺	0.87	2.24⁺	0.64	0.002
CRP	0.96	0.28	1.20	0.34	0.065
SREBP-1c	0.96	0.12	1.05	0.19	0.196
ACC1	0.84	0.18	0.86	0.14	0.092
SOD	1.07	0.34	1.30	0.56	0.184
AdipoR2	0.80	0.08	0.78	0.18	1.000
Adipo	1.00	0.30	0.79	0.30	0.097

Each value is the average of hepatocytes obtained from 4 different mice after normalization with keeping genes (β2m, β-actin). Statistically significant difference marked by different letters (Kruskal-Wallis, Mann Whitney test).

As expected, mice fed a HFD gained significantly more weight (72%) as fat mass with accompanying liver steatosis compared to mice fed a RD. However, contrary to previous findings, using EAW and HRW, we focused on the early stages of NAFLD, a disease associated with obesity and insulin resistance, which has become the leading cause of liver disease affecting adults and children worldwide.

Recent years; however, many of these claims are not supported by the scientific literature. Therefore, our study used mice fed a HFD to determine and compare the potential effects of two claimed functional waters (EAW and HRW). We aimed to establish the early stages of NAFLD, a disease associated with obesity and insulin resistance, which has become the leading cause of liver disease affecting adults and children worldwide.

To understand the mechanism by which H₂ affects NAFLD, we measured the expression of several essential genes related to the disease, including those genes related to oxidative stress, lipid metabolism, and inflammation. From the enzymes related to lipid metabolism, only peroxisomal fatty acyl-CoA oxidase (ACOX) showed significant differences. ACOX is one of the first enzymes in the metabolism of lipids and is a rate-limiting enzyme for beta-oxidation of very-long-chain fatty acids in peroxisomes. The participation of ACOX in suppressing NAFLD is essential. Fan et al. found that lack of ACOX expression in homozygous (ACOX-/-) mice resulted in liver steatosis, and Kohjima et al. found that in humans with NAFLD, its expression was increased two-fold, most likely to compensate for the increase in lipid accumulation. We found that mice that drank HRW showed a significant increase in ACOX expression, which would help enhance fatty acid oxidation.

Figure 4 Body mass composition: Fat, fluids and free fatty mass at weeks 1 (first three columns) and 12 (last three columns), (n = 8). Data are expressed as mean ± SD. Different letters show a significant difference in fat content (Mann Whitney and Kruskal-Wallis P < 0.05). RW: Regular water; HRW-l: Hydrogen-rich water low concentration; HRW-h: Hydrogen-rich water high concentration.
oxidation, compared to the control group. The increase in ACOX expression is mediated by the transcription factor peroxisome proliferator-activated receptor [46], which can be upregulated by H₂[31,43].

Fatty acid translocase-36 (CD36), also known as FAT (fatty acid translocase), is a member of the scavenger receptor family and is involved in low-density lipoprotein, long chain fatty acid, and phospholipid oxidation[47]. CD36 expression in normal livers is relatively low; however, it was demonstrated that an increase in CD36 expression is related to a HFD, liver steatosis, and NAFLD. Wilson et al[48] showed that CD36 deletion in mice fed a HFD reduced their liver lipid contents and induced insulin resistance, while specific induction of CD36 transport in livers led to hepatomegaly and fatty liver[49]. In our study, HRW significantly caused downregulation of CD36 mRNA expression. Suppression of fatty acid uptake and lipid accumulation in Hep G2 cells overloaded with palmitate through CD36 downregulation at the protein level has been reported to have been induced by HRW[33]; however, contrary to our work, the downregulation was only detected at the protein but not the mRNA level[39].

HRW also influenced the expression of other genes related to de novo fatty acid synthesis (such as ACC1, FAS), which are upregulated in NAFLD, and the carnitine palmitoyltransferase 1 gene, which is usually downregulated in NAFLD[46]. Another factor affecting NAFLD is adiponectin, which is a peptide mainly released by adipocytes but also can be released by liver cells[50,51]. When adiponectin binds to its receptor (AipoR2) in the liver, it affects intracellular signaling (resulting in a decrease in de novo lipogenesis) and FFA influx by causing downregulation of CD36 expression and increase in FFA oxidation[52]. In addition to those metabolic effects, adiponectin also has anti-inflammatory actions via inhibition of TNF-α expression through the nuclear factor-κB pathway[53]. In our study, we found that mice that drank HRW showed an increase in the mRNA expression of adiponectin and a decrease in the mRNA expression of TNF-α. The reduction in TNF-α mRNA expression caused by H₂ in a similar model has been previously reported[32]. In a double-blinded, human crossover study, drinking HRW for eight weeks also increased adiponectin levels[23].

We did not detect an increase in the mRNA expression of the antioxidant enzymes SOD and CAT in the HFD groups that drank RW or HRW. However, NAFLD mice already have higher levels of SOD and CAT that are required to help neutralize the enhanced HFD-induced reactive oxygen species (ROS) production[46]. Although many H₂ studies have reported increased levels of these antioxidants via activation of the Nrf2 pathway (reviewed here[19]), in some cases, H₂ causes a decrease in their levels because it mitigates their need by attenuating the assault[54-58]. Thus, HRW may have attenuated some ROS by mitigating the HFD-induced damage, which reduced the need for higher antioxidant levels.

Figure 5 Histological sections of livers (HE) of mice fed a high-fat diet for 12 wk. A and C: Hydrogen-rich water (HRW) group; B and D: Regular water (RW) group. Each row shows sections of different mice that reached a similar weight at the end of the experiment. Note the pronounced steatosis in mice that drank RW in compare to mice of the same weight that drank HRW. Insert detail of each section. Bar = 200 µm HWR: Hydrogen-rich water; RW: Regular water.

Jackson K et al. Preventive effects of molecular hydrogen on NAFLD
In the in vitro study, we checked for a residual effect resulting from drinking HRW that could be reflected in hepatocytes overloaded with palmitate in vitro. We compared the function of hepatocytes isolated from mice that were fed regular chow and drank HRW to mice that drank regular water. It has previously been demonstrated that hepatocytes respond to palmitate overload by increasing steatosis and cytokine production. Interestingly, hepatocytes from mice that drank HRW showed less fat accumulation and significantly lower mRNA expression of the cytokines TNF-α and IL-6. Therefore, drinking HRW for four weeks before exposure to palmitate appeared to confer hepatocyte protection to palmitate overload in vitro, which may partly be explained by HRW's effects on pro-inflammatory cytokine gene expression. This residual effect was sustained for at least 24 h after animals were sacrificed. A similar result was demonstrated in hydrogen preconditioning of ex vivo lung grafts, in which it improved post-transplant graft function.

Our study demonstrates that the functional water, HRW, may have the potential for the prevention of NAFLD by attenuating HFD-induced increases in fatty tissues, lipid accumulation in the liver, inflammation, and CD36 expression. However, neither EAW nor L-HRW had beneficial protective effects. This result also confirmed the importance of H₂ as the therapeutic agent in these waters. Effectively, all three waters could be considered HRW at different concentrations. EAW still had a negative ORP due to the presence of H₂, whereas L-HRW only contained 0.3 mg/L, and H-HRW contained 0.8 mg/L. However, the mice in the H-HRW group drank nearly three times more water than L-HRW or control. Due to the higher volume of consumed water and higher concentration, the actual dose of H₂ per day in the H-HRW group would have been significantly more (~eight times) than what was ingested in the L-HRW group. It is unknown why mice in the H-HRW group ingested nearly 3 times more water. Perhaps the magnesium/water reaction continued to elevate the pH after our initial measurements, which may then result in an increased thirst sensation. Acidic beverages are generally considered more satisfying to quench thirst than those of higher pH. Additionally, we demonstrated that H₂ pretreatment had a residual protective effect by modifying gene expression and conferring future cytoprotection. H₂ is already in use without any reports of known side effects. However, more research is needed to determine the benefits and optimal dosing to be recognized as a conventional therapy for the prevention and treatment for NAFLD.

ARTICLE HIGHLIGHTS

Research background
Nonalcoholic fatty liver disease (NAFLD) is a major growing metabolic health condition. Conventional pharmaceuticals and drugs are not effective in preventing or treating this disease condition. There is a deep interest in searching for novel, safe, and effective methods to prevent and treat NAFLD. For many years there have been many claims about healthy functional waters including alkaline ionized water, also known as electrolyzed reduced water. Some of those claims suggest it is beneficial for obesity and metabolic disturbances. However, there is a paucity of scientific data on this electrolyzed water, but significant noise and claims by commercial companies marketing and selling it. There are untenable claims about the benefits of high pH, alkaline water, or the oft claimed, albeit impossible, microclustering/structuring of the water. Strong claims have also been made regarding the water’s negative oxidation-reduction potential. However, electrolysis of water does produce hydrogen gas at the cathode, and H₂ gas does produce a negative oxidation-reduction potential. Interestingly, biomedical investigations of molecular hydrogen have demonstrated that this small molecule does have therapeutic potential. Perhaps electrolyzed alkaline water does have beneficial effects, but they are not due to its high alkaline pH or other impossible properties, but due to the presence of dissolved H₂ gas produced during electrolysis. Additionally, molecular hydrogen may be an important molecule to combat against NAFLD.

Research motivation
We first wanted to examine if the claimed functional water, electrolyzed alkaline water, could exert therapeutic effects on a mouse model of NAFLD induced by a high-fat diet. We also wanted to compare these results to water with a similar and a greater concentration of molecular hydrogen. This would allow us to know if electrolyzed water has any beneficial effects on NAFLD, and the importance of molecular hydrogen in that water. Additionally, if molecular hydrogen was shown to be therapeutic as previous studies suggest, then it would add to the body of literature lending support for more research.

Research objectives
To determine the effects of H₂ water in preventing NAFLD development under an obesogenic diet. This is the first step to understanding the efficacy of this approach for preventing and treating the disease.

Research methods
In this research mice under an obesogenic high fat diet were used for developing NAFLD. Control mice ingested regular water while the experimental consumed two types of hydrogen-rich water produced in two different ways: via electrolysis with an alkaline water ionizer or via a chemical reaction between water and metallic magnesium. General parameters as food and water consumption, body weight and composition were measured during the experiment. In the end, livers were sampled for histology and gene expression measuring by means of RT-PCR. In the in vitro experiment hepatocytes obtained from mice drinking either regular water or H₂-rich water were exposed to a high-fat environment in order to check the residual protective effects of H₂-rich water.

Research results
This study demonstrated the positive effects of H₂-rich water on NAFLD. Mice fed a high-fat diet that were drinking H₂-rich water showed less weight gain, more lean body tissue, less steatosis, and better liver histology when compared to the control group. It was also demonstrated that electrolyzed water with a high pH, -ORP, but a low H₂ concentration did not result in any improvement. Hepatocytes derived from mice drinking H₂-rich water were more resilient to palmitate overload in vitro when compared to hepatocytes obtained from mice drinking regular water. H₂-rich water positively affected the expression of several NAFLD-related genes. However, the mechanism of action of H₂-rich water needs further investigation.

Research conclusions
This study demonstrated that the H₂ dissolved in water is the therapeutic agent in functional waters since electrolyzed water with a high pH and a negative ORP did not show any effect on preventing the development of NAFLD. Apparently, H₂ works at a molecular level since it changed the expression of specific genes related to the disease. This study also demonstrates a long-term protective effect of H₂ in an in vitro experiment. Functional water rich in H₂ could be a preventive agent in NAFLD. The Therapeutic aspect of H₂ still need to be elucidated and the optimum dosage determined.
Research perspectives
H-rich water is already consumed by humans without any contraindication, which makes it a good candidate for future human clinical studies on NAFLD patients.

ACKNOWLEDGMENTS
We thank Adi Sharabi-Nov for assistance with statistical methods.

REFERENCES
1. Paschos P, Paletas K. Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia 2009; 13: 9-19 [PMID: 19240815]
2. Ahmed M. Non-alcoholic fatty liver disease in 2015. World J Hepatol 2015; 7: 1450-1459 [PMID: 26085906 DOI: 10.4245/wjh.v7.i11.1450]
3. Abd El-Kader SM, El-Den Ashmawy EM. Non-alcoholic fatty liver disease: The diagnosis and management. World J Hepatol 2015; 7: 846-858 [PMID: 25937862 DOI: 10.4245/wjh.v7.i6.846]
4. Scalera A, Tarantino G. Could metabolic syndrome lead to hepatocarcinoma via non-alcoholic fatty liver disease? World J Gastroenterol 2014; 20: 9217-9228 [PMID: 25071314 DOI: 10.3748/wjg.v20.i28.9217]
5. Xu X, Lu L, Dong Q, Li X, Zhang N, Xin Y, Xuan S. Research advances in the relationship between nonalcoholic fatty liver disease and atherosclerosis. Lipids Health Dis 2015; 14: 158 [PMID: 26631018 DOI: 10.12969/j.cnki.issn1009-0141.2015.11.002]
6. Vilari-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, Torres-Gonzalez A, Gra-Oramas B, Gonzalez-Fabian L, Friedman SL, Diago M, Romero-Gomez M. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology 2015; 149: 367-378.e5; quiz e14-e15 [PMID: 25865049 DOI: 10.1053/j.gastro.2015.04.005]
7. Dajani A, Abuflammou A. Treatment of nonalcoholic fatty liver disease: Where do we stand? an overview. Saudi J Gastroenterol 2016; 22: 91-105 [PMID: 26992714 DOI: 10.4103/1319-3767.178527]
8. Takaki A, Kawai D, Yamamoto K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). Int J Mol Sci 2013; 14: 20704-20728 [PMID: 24132155 DOI: 10.3390/ijms141020704]
9. Henry M, Chambron J. Physico-Chemical, Biological and Therapeutic Characteristics of Electrolyzed Reduced Alkaline Water (ERAW). Water 2013; 5(4): 2094-115 [DOI:10.3390/w5042094]
10. Ignacio RM, Kang TY, Kim CS, Kim SK, Yang YC, Sohn JH, Lee KJ. Anti- obesity effect of alkaline reduced water in high fat-fed obese mice. Biol Pharm Bull 2013; 36: 1052-1059 [PMID: 23811554 DOI: 10.1248/bpb.b12-00781]
11. Shirahata S, Kabayama S, Nakano M, Miura T, Kusumoto K, Gotoh M, Hayashi H, Otsubo K, Morisawa S, Katakura Y. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem Biophys Res Commun 1997; 234: 269-274 [PMID: 9169001 DOI: 10.1006/ bbrc.1997.6622]
12. Jin D, Ryu SH, Kim HW, Yang EJ, Lim SJ, Ryang YS, Chung CH, Park SK, Lee KJ. Anti-diabetic effect of alkaline-reduced water on OLETF rats. Biosci Biotechnol Biochem 2006; 70: 31-37 [PMID: 16428818 DOI: 10.1271/bbb.70.731]
13. Tsai CF, Hsu YW, Chen WK, Chang WH, Yen CC, Ho YC, Lu FJ. Hepatoprotective effect of electrolyzed reduced water against carbon tetrachloride-induced liver damage in mice. Food Chem Toxicol 2009; 47: 2031-2036 [PMID: 19477216 DOI: 10.1016/j.fct.2009.05.021]
14. Shirahata S, Hamasaki T, Teruya K. Advanced research on the health benefit of reduced water. Trends Food Sci Technol 2012; 23(2): 124-131 [DOI: 10.1016/j.tifs.2011.10.009]
15. Hamaasaki T, Harada G, Nakamichi N, Kabayama S, Teruya K, Fujietsu B, Gong W, Sakata I, Shirahata S. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. Plas One 2017; 12: e0171192 [PMID: 28182635 DOI: 10.1371/journal.pone.0171192]
16. Siezäk J, Kura B, Frimmel K, Zálešák M, Ravingertová T, Vízcenzová C, Okruhilcová E, Tribulová N. Preventive and therapeutic application of molecular hydrogen in situations with excessive production of free radicals. Physiol Res 2016; 65 Suppl 1: S11-S28 [PMID: 27643933]
17. Dole M, Wilson FR, Eife WP. Hyperbaric hydrogen therapy: a possible treatment for cancer. Science 1975; 190: 152-154 [PMID: 1166304]
18. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 2007; 13: 688-694 [PMID: 17486809 DOI: 10.1038/nm1577]
19. Ichihara M, Sobe S, Ito M, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med Gas Res 2015; 5: 12 [PMID: 26483953 DOI: 10.1186/s13618-015-0035-1]
20. Ohta S. Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications. Methods Enzymol 2015; 555: 289-317 [PMID: 25747486 DOI: 10.1016/bs.mie.2014.11.038]
21. Takaki A, Kawai D, Yamamoto K. Molecular mechanisms and new treatment strategies for non-alcoholic steatohepatitis (NASH). Int J Mol Sci 2014; 15: 7352-7379 [PMID: 24788695 DOI: 10.3390/ijms15055732]
22. Yoritaka A, Takamushi M, Hirayama M, Nakahara T, Ohta S, Hattori N. Pilot study of H2 therapy in Parkinson’s disease: a randomized double-blind placebo-controlled trial. Mov Disord 2013; 28: 836-839 [PMID: 23400965 DOI: 10.1002/mds.25375]
23. Kajiyama S, Hasegawa G, Asano M, Hosoda H, Fukui M, Nakamura N, Kitawaki J, Imai S, Nakano K, Ohta M, Adachi T, Obayashi H, Yoshikawa T. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res 2008; 28: 137-143 [PMID: 19083400 DOI: 10.1016/j.nutres.2008.01.008]
24. Ishibashi T, Sato B, Rikitake M, Seo T, Kurokawa R, Hara Y, Naritomi Y, Hara H, Nagao T. Consumption of water containing a high concentration of molecular hydrogen reduces oxidative stress and disease activity in patients with rheumatoid arthritis: an open-label pilot study. Med Gas Res 2012; 2: 27 [PMID: 23031079 DOI: 10.1186/2045-9912-2-27]
25. Ito M, Ibi T, Sahashi K, Ichihara M, Ito M, Ohno K. Open-label trial and randomized, double-blind, placebo-controlled, crossover trial of hydrogen-enriched water for mitochondrial and inflammatory myopathies. Med Gas Res 2011; 1: 24 [PMID: 22146674 DOI: 10.1186/2045-9912-1-24]
26. Aoki K, Nakao A, Adachi T, Matsui Y, Miyakawa S. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes. Med Gas Res 2012; 2: 12 [PMID: 22520831 DOI: 10.1186/2045-9912-2-12]
27. Nakao A, Toyoda Y, Sharma P, Evans M, Guthrie N. Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome-an open label pilot study. J Clin Biochem Nutr 2010; 46: 140-149 [PMID: 20216947 DOI: 10.3146/jcbn.09-100]
28. Song G, Li M, Sang H, Zhang L, Li X, Yao S, Yu Y, Zong C, Xue Y, Qin S. Hydrogen-rich water decreases serum LDL-cholesterol levels and improves HDL function in patients with potential metabolic syndrome. J Lipid Res 2013; 54: 1884-1893 [PMID: 23610159 DOI: 10.1194/jlr.M036640]
Jackson K et al. Preventive effects of molecular hydrogen on NAFLD

rich water on oxidative stress, liver function, and viral load in patients with chronic hepatitis B. Clin Transl Sci 2013; 6: 372-375 [PMID: 24217924 DOI: 10.1111/cts.12076]

30 Nicoson GL., de Mattos GF, Settineri R, Costa C, Ellithorpe R, Rosenblatt S. Clinical Effects of Hydrogen Administration: From Animal and Human Diseases to Exercise Medicine. Int J Clin Med 2016; 7 [DOI: 10.4236/ijcm.2016.71005]

31 Zhao X, Chen X, Lu J, Zhang Y, Sun X, Huang Q, Wang Q. Hydrogen-rich saline improves non-alcoholic fatty liver disease by alleviating oxidative stress and activating hepatic PPARα and PPARγ. Mol Med Rep 2017; 15: 1305-1312 [PMID: 28098910 DOI: 10.3892/mmr.2017.6120]

32 Kawai D, Takaki A, Nakatsuaka A, Wada J, Tamaki N, Yasunaka T, Koike K, Tsuzuki R, Matsumoto K, Miyake Y, Shiraha H, Morita M, Makino H, Yamamoto K. Hydrogen-rich water prevents progression of nonalcoholic steatohepatitis and accompanying hepatocarcinogenesis in mice. Hepatology 2012; 56: 912-921 [PMID: 22505328 DOI: 10.1002/hep.25782]

33 Ito A, Ito M, Itoh T, Terazawa R, Fujita Y, Nozawa Y, Ohawa S, Ohno K, Ito M. Molecular hydrogen attenuates fatty acid uptake and lipid accumulation through downregulating CD36 expression in HepG2 cells. Med Gas Res 2013; 3: 6 [PMID: 23484206 DOI: 10.1186/2045-9912-3-6]

34 Hou C, Wang Y, Zhu F, Yan C, Zhao L, Wang X, Qiu Y, Shen H, Xun S, Feng Z, Liu J, Long J. Coral calcium hydride prevents hepatic steatosis in high fat diet-induced obese rats: A potent mitochondrial nutrient and phase II enzyme inducer. Biochim Biophys Acta 2016; 10: 85-97 [PMID: 26774456 DOI: 10.1016/j.bjcp.2015.12.020]

35 Roepchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, Raskin I. Dietary Polyphenols Promote Growth and Metabolism in HFD-Fed Mice. Endocrinology 2015; 64: 830-840 [PMID: 19207680 DOI: 10.1210/en.2015-1866]

36 Seo T, Kurokawa R, Sato B. A convenient method for determining the concentration of hydrogen in water: use of methylene blue with colloidal platinum. Med Gas Res 2012; 2: 1 [PMID: 22273079 DOI: 10.1186/2045-9912-2-1]

37 Zhang W, Sargis RM, Voiden PA, Carman CM, Sun XJ, Brady MJ. PCB 126 and other dioxin-like PCBs specifically suppress hepatic PEPCK expression via the aryl hydrocarbon receptor. PLoS One 2012; 7: e37103 [PMID: 22615911 DOI: 10.1371/journal.pone.0037103]

38 Klaunig JE, Goldblatt PJ, Hinton DE, Lipsky MM, Trump BF. Mouse liver cell culture. II. Primary culture. In Vitro 1981; 17: 926-934 [PMID: 7309042 DOI: 10.2307/4292596]

39 Ricchi M, Odoardi MR, Carulli L, Anzivino C, Ballestri S, Loria P. Differential effect of oleic and palmitic acid on hepatic mitochondrial nutrient and phase II enzyme inducer. Biochim Biophys Acta 2016; 103: 85-97 [PMID: 26774456 DOI: 10.1016/j.bjcp.2015.12.020]

40 Mehlam A, Hagberg CE, Muhl L, Eriksson U, Falkevall A. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat Protoc 2013; 8: 1149-1154 [PMID: 23702831 DOI: 10.1038/nprot.2013.055]

41 Jun Y, Teruya K, Katakura Y, Otsubo K, Morisawa S, Shirahata S. Suppression of invasion of cancer cells and angiogenesis by electrolyzed reduced water. In Vitro Cell Dev-An 2004; 40: 79A

42 Kinjo T, Yole J, Yan H, Hamasaki T, Nakashima H, Toh K, Nakamichi N, Kabayama S, Teruya K, Shirahata S. Suppressive effects of electrolychernically reduced water on matrix metalloproteinase-2 activities and in vitro invasion of human fibrosarcoma HT1080 cells. Cytotechnology 2012; 64: 357-371 [PMID: 22695858 DOI: 10.1007/s10616-012-9469-7]

43 Kamimura N, Nishimaki K, Ohawa S, Ohta S. Molecular hydrogen improves obesity and diabetes by inducing hepatic FGF21 and stimulating energy metabolism in db/db mice. Obesity (Silver Spring) 2011; 19: 1396-1403 [PMID: 21293445 DOI: 10.1088/oby.2011.6]
lipid accumulation in a new model of non-alcoholic fatty liver disease. *BMC Gastroenterol* 2012; **12**: 20 [PMID: 22380754 DOI: 10.1186/1471-230X-12-20]

Noda K, Shigemura N, Tanaka Y, Bhama J, D'Cunha J, Kobayashi H, Luketich JD, Bermudez CA. Hydrogen preconditioning during ex vivo lung perfusion improves the quality of lung grafts in rats. *Transplantation* 2014; **98**: 499-506 [PMID: 25121557 DOI: 10.1097/TP.0000000000000254]

P- Reviewer: Das U, Tarantino G, Xu CF S- Editor: Wang XJ L- Editor: A E- Editor: Huang Y
