A BIAS IN MERTENS’ PRODUCT FORMULA

YOUNESS LAMZOURI

Abstract. Rosser and Schoenfeld remarked that the product \(\prod_{p \leq x} (1 - \frac{1}{p})^{-1} \) exceeds \(e^\gamma \log x \) for all \(2 \leq x \leq 10^8 \), and raised the question whether the difference changes sign infinitely often. This was confirmed in a recent paper of Diamond and Pintz. In this paper, we show (under certain hypotheses) that there is a strong bias in the race between the product \(\prod_{p \leq x} (1 - \frac{1}{p})^{-1} \) and \(e^\gamma \log x \) which explains the computations of Rosser and Schoenfeld.

1. Introduction

In 1874 Mertens proved three remarkable results on the distribution of prime numbers. His third theorem asserts that

\[
\prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} \sim e^\gamma \log x, \text{ as } x \to \infty,
\]

where \(\gamma \) is the Euler-Mascheroni constant. Rosser and Schoenfeld \cite{RosserSchoenfeld} noticed that for all \(2 \leq x \leq 10^8 \), we have

\[
\prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} > e^\gamma \log x,
\]

and suggested that “perhaps” one can prove that the difference changes sign for arbitrarily large \(x \), in analogy to Littlewood’s classical result for \(\pi(x) - \text{Li}(x) \). Recently, Diamond and Pintz \cite{DiamondPintz} investigated this question and confirmed Rosser and Schoenfeld prediction. More precisely, they established that the quantity

\[
\sqrt{x} \left(\prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} - e^\gamma \log x \right)
\]

attains arbitrarily large positive and negative values as \(x \to \infty \). Let \(\mathcal{M} \) be the set of real numbers \(x \geq 2 \) such that

\[
\prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} > e^\gamma \log x.
\]

Then, Diamond and Pintz result asserts that both \(\mathcal{M} \) and its complement are unbounded. Assuming the Riemann hypothesis RH we strengthen this result by proving

2010 Mathematics Subject Classification. Primary 11N05; Secondary 11M26.

The author is partially supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.
that both \mathcal{M} and its complement have positive lower logarithmic densities. Recall that for a set $S \subset [0, \infty)$, the upper and lower logarithmic densities of S are defined respectively by

$$\delta(S) = \limsup_{x \to \infty} \frac{1}{\log x} \int_{t \in S \cap [2, x]} \frac{dt}{t},$$

and

$$\bar{\delta}(S) = \liminf_{x \to \infty} \frac{1}{\log x} \int_{t \in S \cap [2, x]} \frac{dt}{t}.$$

If $\delta(S) = \bar{\delta}(S) = \delta(S)$ we say that $\delta(S)$ is the logarithmic density of S. We prove

Theorem 1.1. Assume RH. Then $\delta(\mathcal{M}) > 0$ and $\bar{\delta}(\mathcal{M}) < 1$.

Remark 1.2. Note that the assumption of the Riemann hypothesis in Theorem 1.1 is “necessary” in a certain sense. Indeed, using the work of the author with Ford and Konyagin [3] one can show that the existence of certain configurations of zeros of the Riemann zeta function $\zeta(s)$ off the critical line implies that $\delta(\mathcal{M}) = 0$.

A natural question to ask is which of the quantities $\prod_{p \leq x}(1 - 1/p)^{-1}$ and $e^\gamma \log x$ is larger most of the time? Although Diamond and Pintz result shows that both take the lead for arbitrarily large x, the computations of Rosser and Schoenfeld seem to suggest that the product $\prod_{p \leq x}(1 - 1/p)^{-1}$ predominates. Assuming the Riemann hypothesis together with a further assumption we explain this phenomenon, by showing that the difference $\prod_{p \leq x}(1 - 1/p)^{-1} - e^\gamma \log x$ has a strong tendency to be positive. The hypothesis we assume is the Linear Independence hypothesis LI, which is the assumption that the positive imaginary parts of the non-trivial zeros of $\zeta(s)$ are linearly independent over \mathbb{Q}.

Theorem 1.3. Assume RH and LI. Then the set \mathcal{M} has logarithmic density

$$\delta(\mathcal{M}) = 0.99999973...$$

Rubinstein and Sarnak [11] have previously used the hypotheses RH and LI (and their generalizations for Dirichlet L-functions) to study several prime number races, including the race between $\pi(x)$ and Li(x) and the Shanks-Rényi race between $\pi(x; q, a)$ and $\pi(x; q, b)$ for different arithmetic progressions $a, b \pmod{q}$, where $\pi(x; q, a)$ is the number of primes $p \leq x$ such that $p \equiv a \pmod{q}$. In particular, they explained and quantified Chebyshev’s observation in 1853 that primes congruent to 3 (mod 4) predominate over those congruent to 1 (mod 4). In general, if a is a non-square modulo q and b is a square modulo q then $\pi(x; q, a)$ has a strong tendency to be larger than $\pi(x; q, b)$, a phenomenon which has become known as “Chebyshev’s bias”. For more on the history of this subject as well as recent developments, the reader is invited to consult the expository papers of Granville and Martin [4] and Martin and Scarfy [7].

Remark 1.4. Under RH and LI, it turns out that $\delta(\mathcal{M}) = 1 - \delta_0$ where δ_0 is the logarithmic density of the set of real numbers $x \geq 2$ for which $\pi(x) > \text{Li}(x)$. We shall explain why this is the case in Section 4 below.
Curiously, a similar phenomenon to Chebyshev’s bias for primes in arithmetic progressions does not appear when we consider the analogous problem of comparing the Mertens products
\begin{equation}
\prod_{\substack{p \leq x \\ p \equiv a \mod q}} \left(1 - \frac{1}{p}\right)^{-1},
\end{equation}
for different arithmetic progressions $a \pmod{q}$. Indeed, Williams \cite{12} proved that for any $(a, q) = 1$, there exists a constant $c(a, q) > 0$ such that
\begin{equation*}
\prod_{\substack{p \leq x \\ p \equiv a \mod q}} \left(1 - \frac{1}{p}\right)^{-1} \sim c(a, q) (\log x)^{1/\phi(q)}, \text{ as } x \to \infty.
\end{equation*}
Thus, if $c(a, q) > c(b, q)$ then the residue class $a \pmod{q}$ is guaranteed to win the Mertens product race as soon as x exceeds a certain number that depends only on a, b and q. Languasco and Zaccagnini \cite{5} computed many of the constants $c(a, q)$ and showed that for example $c(3, 4) > c(1, 4)$, but $c(2, 7) > c(3, 7)$ although 2 is a quadratic residue and 3 is a quadratic non-residue modulo 7. The difference with Chebyshev’s bias probably lies in the fact that the product (1.3) is heavily affected by the small primes $p \equiv a \pmod{q}$ due to the factor $1/p$. Therefore, if an arithmetic progression contains many small primes, then it has a better chance to win in the Mertens product race.

Concerning the size of the oscillations of the difference (1.2), Diamond and Pintz \cite{2} proved that
\begin{equation*}
\sqrt{x} \left(\prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} - e^{\gamma} \log x \right) = \Omega_{\pm} \left(\log \log \log x \right).
\end{equation*}
Montgomery \cite{9} used probabilistic arguments to conjecture the maximal size of $\pi(x) - \text{Li}(x)$. Following his approach we make the following conjecture

Conjecture 1.5. As $x \to \infty$ we have
\begin{equation*}
\limsup_{x \to \infty} \frac{\sqrt{x}}{(\log \log \log x)^2} \left(\prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} - e^{\gamma} \log x \right) = \frac{e^{\gamma}}{2\pi},
\end{equation*}
and
\begin{equation*}
\liminf_{x \to \infty} \frac{\sqrt{x}}{(\log \log \log x)^2} \left(\prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} - e^{\gamma} \log x \right) = -\frac{e^{\gamma}}{2\pi}.
\end{equation*}

2. **An Explicit Formula for the Remainder and the Origin of the Bias**

Let
\begin{equation*}
E_M(x) := \sqrt{x}(\log x) \left(\log \left(\prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} \right) - \log \log x - \gamma \right).
\end{equation*}
Then, observe that

\[
\prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} > e^{\gamma} \log x \quad \text{if and only if} \quad E_M(x) > 0.
\]

The key ingredient in the proofs of Theorems 1.1 and 1.3 is the following unconditional explicit formula for \(E_M(x) \) in terms of the non-trivial zeros of \(\zeta(s) \).

Proposition 2.1. For any real numbers \(x, T \geq 2 \) we have

\[
E_M(x) = 1 + \sum_{|\text{Im}(\rho)| < T} \frac{x^{\rho - 1/2}}{\rho - 1} + O \left(\frac{1}{\log x} \sum_{|\text{Im}(\rho)| < T} \frac{x^{\text{Re}(\rho) - 1/2}}{\text{Im}(\rho)^2} + \frac{\sqrt{T} (\log x)^2}{T} + \frac{1}{\log x} \right),
\]

where \(\rho \) runs over the non-trivial zeros of \(\zeta(s) \).

From this formula one can deduce that the source of the bias is the constant 1 which comes from the contribution of the squares of primes (see Lemma 2.3 below). Indeed, if we assume the Riemann hypothesis, we get the following corollary.

Corollary 2.2. Assume the Riemann hypothesis, and let \(1/2 + i\gamma_n \) runs over the non-trivial zeros of \(\zeta(s) \). Then, for any real numbers \(x, T \geq 2 \) we have

\[
E_M(x) = 1 + 2 \text{Re} \sum_{0 < \gamma_n < T} \frac{x^{\gamma_n}}{-1/2 + i\gamma_n} + O \left(\frac{\sqrt{T} (\log x)^2}{T} + \frac{1}{\log x} \right).
\]

Proof. This follows from Proposition 2.1 along with the fact that

\[
\sum_{|\gamma_n| < T} \frac{1}{\gamma_n^2} \ll 1
\]

by the Riemann-von Mangoldt formula.

In order to prove Proposition 2.1 we first need the following lemmas.

Lemma 2.3. For any real number \(x \geq 2 \) we have

\[
\log \left(\prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} \right) = \sum_{n \leq x} \frac{\Lambda(n)}{n \log n} + \frac{1}{\sqrt{x} \log x} + O \left(\frac{1}{\sqrt{x} (\log x)^2} \right).
\]

Proof. We have

\[
\log \left(\prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} \right) = \sum_{p \leq x} \sum_{k=1}^{\infty} \frac{1}{kp^k} = \sum_{n \leq x} \frac{\Lambda(n)}{n \log n} + \sum_{k \geq 2} \frac{1}{kp^k} \sum_{x^{1/k} < p \leq x} \frac{1}{k}
\]

\[
= \sum_{n \leq x} \frac{\Lambda(n)}{n \log n} + \sum_{\sqrt{x} < p \leq x} \frac{2}{p^3} + O \left(x^{-2/3} \right).
\]
Furthermore, by the prime number theorem, we have

\[\sum_{\sqrt{x} < p \leq x} \frac{1}{p^2} = \int_{\sqrt{x}}^{x} \frac{d\pi(t)}{t^2} = \int_{\sqrt{x}}^{x} \frac{dt}{t^2 \log t} + O \left(x^{-1/2} e^{\sqrt{\log x}} \right). \]

We use the change of variable \(u = \log t - (\log x)/2 \) to deduce that

\[\int_{\sqrt{x}}^{x} \frac{dt}{t^2 \log t} = \frac{1}{\sqrt{x}} \int_{0}^{(\log x)/2} \frac{2e^{-u}}{2u + \log x} \, du = -\frac{2}{\sqrt{x} \log x} \int_{0}^{(\log x)/2} e^{-u} \, du + O \left(\frac{1}{\sqrt{x} (\log x)^2} \right) = \frac{2}{\sqrt{x} \log x} + O \left(\frac{1}{\sqrt{x} (\log x)^2} \right). \]

Inserting this estimate in (2.4) completes the proof. \(\square \)

Lemma 2.4. For any \(\alpha > 1 \) and \(x, T \geq 2 \) we have

\[\sum_{n \leq x} \Lambda(n) \frac{n^\alpha}{n^\alpha} = -\frac{\zeta'}{\zeta}(\alpha) + \frac{x^{1-\alpha}}{1-\alpha} - \sum_{|\text{Im}(\rho)| \leq T} \frac{1}{\rho - \alpha} \]

\[+ O \left(x^{-\alpha} \log x + \frac{x^{1-\alpha}(\log x)^2}{T} + \frac{1}{T} \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\alpha+1/\log x}} \right). \]

Proof. Let \(c = 1/\log x \) and consider the integral

\[\frac{1}{2\pi i} \int_{c-iT}^{c+iT} -\frac{\zeta'}{\zeta}(\alpha + s) \frac{x^s}{s} \, ds. \]

First, by Perron’s formula the integral above equals

\[\sum_{n \leq x} \Lambda(n) \frac{n^\alpha}{n^\alpha} + O \left(\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\alpha+c}} \min \left(1, \frac{1}{T |\log(x/n)|} \right) \right). \]

To bound the error term of this last estimate, we first handle the terms \(n \leq x/2 \) and \(n \geq 2x \). These satisfy \(|\log(x/n)| \geq \log 2 \), and hence their contribution is

\[\ll \frac{1}{T} \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\alpha+c}}. \]

Now for \(x/2 < n < 2x \), we let \(r = n - x \). The terms with \(|r| \leq 1 \) contribute \(\ll x^{-\alpha} \log x \).

Furthermore, if \(|r| \geq 1 \) we use that \(|\log(x/n)| \gg |r|/x \). Hence, the contribution of these terms is

\[\ll \frac{x^{1-\alpha} \log x}{T} \sum_{1 \leq |r| \leq x} \frac{1}{|r|} \ll \frac{x^{1-\alpha}(\log x)^2}{T}. \]

Therefore, we deduce that the integral equals

\[\sum_{n \leq x} \Lambda(n) \frac{n^\alpha}{n^\alpha} + O \left(x^{-\alpha} \log x + \frac{x^{1-\alpha}(\log x)^2}{T} + \frac{1}{T} \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\alpha+1/\log x}} \right). \]
We now move the line of integration of (2.5) to the left. There are simple poles at 0, 1 − α and z − α for every zero z of ζ(s) with |Im(z)| ≤ T. Evaluating the residues there, we find that our integral equals
\[-\frac{\zeta'}{\zeta}(\alpha) + \frac{x^{1-\alpha}}{1-\alpha} - \sum_{\rho} \frac{x^{\rho-\alpha}}{\rho - \alpha} + \sum_{n=1}^{\infty} \frac{x^{-2n-\alpha}}{2n + \alpha}.\]
The lemma follows upon noting that
\[\sum_{n=1}^{\infty} \frac{x^{-2n-\alpha}}{2n + \alpha} \ll x^{-2-\alpha}.\]

Lemma 2.5. For any \(x \geq 2\) we have
\[\lim_{\sigma \to 1^+} \left(\log \zeta(\sigma) + \int_{\sigma}^{\infty} \frac{x^{1-\alpha}}{1-\alpha} d\alpha \right) = \log \log x + \gamma.\]

Proof. Let \(\sigma > 1\) and \(y_0 = (\sigma - 1) \log x\). Using the change of variables \(y = (\alpha - 1) \log x\) we obtain
\[\int_{\sigma}^{\infty} \frac{x^{1-\alpha}}{1-\alpha} d\alpha = -\int_{y_0}^{\infty} \frac{e^{-y}}{y} dy = \log \log x + \log(\sigma - 1) + \int_{y_0}^{1} \frac{1 - e^{-y}}{y} dy - \int_{1}^{\infty} \frac{e^{-y}}{y} dy.\]
Moreover, since \(\log \zeta(\sigma) = -\log(\sigma - 1) + O(\sigma - 1)\), we derive
\[\lim_{\sigma \to 1^+} \left(\log \zeta(\sigma) + \int_{\sigma}^{\infty} \frac{x^{1-\alpha}}{1-\alpha} d\alpha \right) = \log \log x + \int_{0}^{1} \frac{1 - e^{-y}}{y} dy - \int_{1}^{\infty} \frac{e^{-y}}{y} dy = \log \log x + \gamma.\]

We are now ready to prove the explicit formula for \(E_M(x)\).

Proof of Proposition 2.1. Let \(\sigma > 1\) be fixed. Then by Lemma 2.4 we have
\[\sum_{n \leq \infty} \Lambda(n) \frac{\log n}{n^{\sigma + 1}} = \int_{\sigma}^{\infty} \sum_{n \leq x} \Lambda(n) \frac{d\alpha}{n^\alpha} = \log \zeta(\sigma) + \int_{\sigma}^{\infty} \frac{x^{1-\alpha}}{1-\alpha} d\alpha - \sum_{|\Im(\rho)| \leq T} \int_{\sigma}^{\infty} \frac{x^{\rho-\alpha}}{\rho - \alpha} d\alpha + E_1,\]
where
\[E_1 \ll \frac{\log x}{T} + \frac{1}{x} + \frac{1}{T} \sum_{n=1}^{\infty} \frac{\Lambda(n) \log n}{n^{1+1/\log x}} \ll \frac{\log x}{T} + \frac{1}{x}.\]
Taking the limit as \(\sigma \to 1^+\) of both sides of (2.6) and using Lemma 2.5 we deduce that
\[\sum_{n \leq x} \frac{\Lambda(n)}{n \log n} = \log \log x + \gamma - \sum_{|\Im(\rho)| \leq T} x^\rho \int_{1}^{\infty} \frac{x^{-\alpha}}{\rho - \alpha} d\alpha + O \left(\frac{\log x}{T} + \frac{1}{x} \right).\]
To evaluate the integral in this estimate, we make the change of variable \(u = (\alpha - 1) \log x\) to obtain
\[\int_{1}^{\infty} \frac{x^{-\alpha}}{\rho - \alpha} d\alpha = \frac{1}{x} \int_{0}^{\infty} \frac{e^{-u}}{\log x - u} du.\]
Note that $|(\rho - 1) \log x - u| \geq |\text{Im}(\rho)| \log x$ for all $u \in \mathbb{R}$, and hence
\[
\frac{1}{(\rho - 1) \log x - u} = \frac{1}{(\rho - 1) \log x} + O\left(\frac{u}{(\text{Im}(\rho) \log x)^2}\right).
\]
Therefore, we obtain
\[
\int_{1}^{\infty} \frac{x^{-\alpha}}{\rho - \alpha} d\alpha = \frac{1}{x(\log x)(\rho - 1)} + O\left(\frac{1}{x(\log x)^2(\text{Im}(\rho))^2}\right).
\]
Inserting this estimate in (2.7) and appealing to Lemma 2.3 completes the proof. □

3. Proof of Theorem 1.1

In this section we shall use the explicit formula (2.2) along with the work of Rubinstein and Sarnak [11] to prove that both \mathcal{M} and its complement have positive lower logarithmic densities.

Proof of Theorem 1.1. Let Y be large and $x = e^Y$. First, by making the change of variable $y = \log t$ we deduce that
\[
\frac{1}{\log x} \int_{t \in \mathcal{M} \cap [2, x]} \frac{dt}{t} = \frac{1}{Y} \text{meas}\{\log 2 \leq y \leq Y : e^y \in \mathcal{M}\}
\]
\[
= \frac{1}{Y} \text{meas}\{\log 2 \leq y \leq Y : E_M(e^y) > 0\}.
\]
By Corollary 2.2 and equation (2.3) we have for all $T \geq 2$ and $y \geq \log 2$
\[
E_M(e^y) = \sum_{0 < \gamma_n < e^y} \frac{\sin(\gamma_n y)}{\gamma_n} + O\left(1 + \frac{y^2 e^{y/2}}{T}\right).
\]
Therefore, we deduce that if Y is large enough, then there exists a suitably large constant $A > 0$ such that
\[
\sum_{0 < \gamma_n < e^y} \frac{\sin(\gamma_n y)}{\gamma_n} - A < E_M(e^y) < \sum_{0 < \gamma_n < e^y} \frac{\sin(\gamma_n y)}{\gamma_n} + A,
\]
for all $1 \leq y \leq Y$.

Based on the approach of Littlewood [6], Rubinstein and Sarnak proved in Section 2.2 of [11] that for all $\lambda \gg 1$ we have
\[
\frac{1}{Y} \text{meas}\left\{1 \leq y \leq Y : \sum_{0 < \gamma_n < e^y} \frac{\sin(\gamma_n y)}{\gamma_n} > \lambda\right\} \geq c_1 \exp\left(-\exp(-c_2 \lambda)\right),
\]
and
\[
\frac{1}{Y} \text{meas}\left\{1 \leq y \leq Y : \sum_{0 < \gamma_n < e^y} \frac{\sin(\gamma_n y)}{\gamma_n} < -\lambda\right\} \geq c_1 \exp\left(-\exp(-c_2 \lambda)\right),
\]
for some absolute positive constants c_1, c_2, if Y is large enough. Therefore, combining equations (3.1), (3.2) and (3.3) we obtain
\[
\frac{1}{\log x} \int_{t \in \mathcal{M} \cap [2, x]} \frac{dt}{t} \geq \frac{1}{Y} \text{meas} \left\{ 1 \leq y \leq Y : \sum_{0 < \gamma_n < e^y} \frac{\sin(\gamma_n y)}{\gamma_n} > A \right\} + O \left(\frac{1}{Y} \right)
\]
\[
\geq \frac{c_1}{2} \exp \left(- \exp(-c_2 A) \right),
\]
if Y is large enough. Thus, we deduce that $\delta(\mathcal{M}) \geq \frac{c_1}{2} \exp \left(- \exp(-c_2 A) \right) > 0$. Similarly, by (3.4) we have
\[
\frac{1}{\log x} \int_{t \in \mathcal{M} \cap [2, x]} \frac{dt}{t} \leq \frac{1}{Y} \text{meas} \left\{ 1 \leq y \leq Y : \sum_{0 < \gamma_n < e^y} \frac{\sin(\gamma_n y)}{\gamma_n} < -A \right\} + O \left(\frac{1}{Y} \right)
\]
\[
\leq 1 - \frac{c_1}{2} \exp \left(- \exp(-c_2 A) \right).
\]
Hence, we get $\delta(\mathcal{M}) \leq 1 - \frac{c_1}{2} \exp \left(- \exp(-c_2 A) \right) < 1$, as desired.

4. A limiting distribution for $E_M(x)$ and proof of Theorem 1.3

Assuming the Riemann hypothesis and using the explicit formula (2.2) we deduce that the quantity $E_M(x)$ has a logarithmic limiting distribution. This follows from the fact that $E_M(e^y)$ is a B^2-almost periodic function. More precisely, we have

Proposition 4.1. Assume RH. Then there exists a probability measure μ_M on \mathbb{R} such that
\[
\lim_{x \to \infty} \frac{1}{\log x} \int_2^x f(E_M(t)) \frac{dt}{t} = \int_{-\infty}^{\infty} f(t) d\mu_M,
\]
for all bounded continuous functions on \mathbb{R}.

Proof. This follows from the analysis in Rubinstein and Sarnak [11], and its generalization by Akbary, Ng and Shahabi [1].

If in addition to RH we assume LI, then by Theorem 1.9 of Akbary, Ng and Shahabi [1] we have the following explicit formula for the Fourier transform of μ_M

\[
\hat{\mu}_M(t) = \int_{-\infty}^{\infty} e^{-it} d\mu_M = e^{-it} \prod_{\gamma_n > 0} J_0 \left(\frac{2t}{\sqrt{1 + \gamma_n^2}} \right),
\]
for all $t \in \mathbb{R}$, where $J_0(t) = \sum_{m=0}^{\infty} (-1)^m (t/2)^{2m} / m!^2$ is the Bessel function of order 0. We deduce

Proposition 4.2. Assume RH and LI. Let $X(\gamma_n)$ be a sequence of independent random variables, indexed by the positive imaginary parts of the non-trivial zeros of $\zeta(s)$, and
uniformly distributed on the unit circle. Then μ_M is the distribution of the random variable

$$Z = 1 + 2\text{Re} \sum_{\gamma_n > 0} \frac{X(\gamma_n)}{\sqrt{\frac{1}{4} + \gamma_n^2}}.$$

Proof. Note that $J_0(t) = \mathbb{E}\left(e^{-it\text{Re}X}\right)$ where X is a random variable uniformly distributed on the unit circle. Therefore, since the $X(\gamma_n)$ are independent we obtain that

$$\mathbb{E}\left(e^{-itZ}\right) = e^{-it} \prod_{\gamma_n > 0} \mathbb{E}\left(\exp\left(-i \frac{2t}{\sqrt{\frac{1}{4} + \gamma_n^2}} \text{Re}(\gamma_n)\right)\right) = \hat{\mu}_M(t).$$

Since the Fourier transform completely characterizes the distribution, we deduce that μ_M is the probability distribution of the random variable Z.

\[\square\]

Proof of Theorem 1.3. Since Z is the sum of continuous random variables, then by Proposition 4.2 the probability distribution μ_M is absolutely continuous. Let $\epsilon > 0$ be given, and f_1 be a continuous function such that

$$f_1(x) = \begin{cases} 1 & \text{if } x \geq 0 \\ \in [0, 1] & \text{if } -\epsilon < x < 0 \\ 0 & \text{if } x < -\epsilon. \end{cases}$$

Then it follows from Propositions 4.1 and 4.2 that

$$\delta(M) \leq \lim_{x \to \infty} \frac{1}{\log x} \int_2^x f_1(E_M(t)) \frac{dt}{t} = \int_{-\infty}^{\infty} f_1(t) d\mu_M \leq \mu_M(-\epsilon, \infty) = P(Z > 0) + O(\epsilon),$$

since μ_M is absolutely continuous. Similarly, if f_2 is a continuous function such that

$$f_2(x) = \begin{cases} 1 & \text{if } x \geq \epsilon \\ \in [0, 1] & \text{if } 0 < x < \epsilon \\ 0 & \text{if } x \leq 0. \end{cases}$$

Then

$$\delta(M) \geq \lim_{x \to \infty} \frac{1}{\log x} \int_2^x f_2(E_M(t)) \frac{dt}{t} = \int_{-\infty}^{\infty} f_2(t) d\mu_M \geq \mu_M(\epsilon, \infty) = P(Z > 0) + O(\epsilon).$$

Therefore, letting $\epsilon \to 0$ we deduce that

$$\delta(M) = P(Z > 0).$$

Assuming RH and LI, Rubinstein and Sarnak [11] proved that the limiting logarithmic distribution of $(\pi(x) - \text{Li}(x))(\log x)/\sqrt{x}$ is the probability distribution of the random variable

$$\tilde{Z} = -1 + 2\text{Re} \sum_{\gamma_n > 0} \frac{X(\gamma_n)}{\sqrt{\frac{1}{4} + \gamma_n^2}}.$$
Since the $X(\gamma_n)$ are symmetric random variables, it follows that Z and $-\tilde{Z}$ have the same distribution and hence

$$P(Z > 0) = P(\tilde{Z} < 0) = 1 - P(\tilde{Z} > 0).$$

Finally, it follows from the same argument leading to (4.2) that $P(\tilde{Z} > 0)$ is the logarithmic density of the set of real numbers $x \geq 2$ for which $\pi(x) > \text{Li}(x)$ and hence, from the computations of Rubinstein and Sarnak [11] we have $P(Z > 0) = 0.99999973...$

In the remaining part of this section, we shall explain the heuristic behind Conjecture 1.5. Note that

$$\prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} = e^\gamma (\log x) \exp \left(\frac{E_M(x)}{\sqrt{x \log x}} \right).$$

Moreover, by Corollary 2.2 and the Riemann-von Mangoldt formula we have

$$E_M(x) \ll 1 + \sum_{0 < \gamma_n < x} \frac{1}{\gamma_n} \ll (\log x)^2.$$

Therefore, we deduce that

$$\prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} = e^\gamma (\log x) \left(1 + \frac{E_M(x)}{\sqrt{x \log x}} + O \left(\frac{(\log x)^2}{x} \right) \right)$$

$$= e^\gamma \log x + e^\gamma \frac{E_M(x)}{\sqrt{x}} + O \left(\frac{(\log x)^3}{x} \right).$$

Furthermore, by the argument in the proof of Theorem 1.3 we have, under RH and LI, that

$$\lim_{Y \to \infty} \frac{1}{Y} \text{meas} \{1 \leq y \leq Y : E_m(e^y) > V\} = \mathbb{P}(Z > V).$$

Improving on a result of Montgomery [9], Monach [8] showed that for $V \gg 1$ we have

$$\mathbb{P}(Z > V) = \exp \left(-C_0 \sqrt{V} \exp \left(\sqrt{2\pi V} \right) (1 + o(1)) \right),$$

for some explicit constant $C_0 > 0$. Therefore, if the convergence in (4.4) is “sufficiently uniform” in Y, then one would deduce that

$$\sup_{1 \leq y \leq Y} E_m(e^y) = \left(\frac{1}{2\pi} + o(1) \right) (\log \log y)^2,$$

and

$$\inf_{1 \leq y \leq Y} E_m(e^y) = \left(-\frac{1}{2\pi} + o(1) \right) (\log \log y)^2.$$

Inserting these estimates in (4.3) yields Conjecture 1.5.
A BIAs IN MERTENS’ PRODUCT FORMULA

REFERENCES

[1] A. Akbary, N. Ng and M. Shahabi, Limiting distributions of the classical error terms of prime number theory. To appear in Q. J. Math. 33 pages.

[2] H. G. Diamond and J. Pintz, Oscillation of Mertens’ product formula. J. Théor. Nombres Bordeaux 21 (2009), no. 3, 523–533.

[3] K. Ford, S. Konyagin and Y. Lamzouri, The prime number race and zeros of L-functions off the critical line, part III. Q. J. Math. 64 (2013), no. 4, 1091–1098.

[4] A. Granville and G. Martin, Prime number races. Amer. Math. Monthly 113 (2006), no. 1, 1–33.

[5] A. Languasco and A. Zaccagnini, On the constant in the Mertens product for arithmetic progressions. II. Numerical values. Math. Comp. 78 (2009), no. 265, 315–326.

[6] J. E. Littlewood, Distributions des nombres premiers, C. R. Acad. Sci. Paris 158 (1914), 1869–1872.

[7] G. Martin and J. Scarfy, Comparative prime number theory: a survey. arXiv:1202.3408 37 pages, 2012.

[8] W. R. Monach, Numerical investigation of several problems in number theory. Ph.D Dissertation, University of Michigan (1980).

[9] H. L. Montgomery, The zeta function and prime numbers. Proceedings of the Queen’s Number Theory Conference, 1979. Queen’s Univ., Kingston, Ont., 1980, 1–31.

[10] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 1962 64–94.

[11] M. Rubinstein and P. Sarnak, Chebyshev’s bias. Experiment. Math. 3 (1994), no. 3, 173–197.

[12] K. S. Williams, Merten’s theorem for arithmetic progressions. J. Number Theory 6 (1974), 353–359.

Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON, M3J1P3 Canada

E-mail address: lamzouri@mathstat.yorku.ca