Supplementary Information for

Bioinspired Photo-crosslinkable Self-assembling Peptide with pH-Switchable “On–Off” Luminescence

Raffaele Pugliese1,4*, Monica Montuori3, Fabrizio Gelain1,2,*

1Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy

2Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy

3Biotechnology and Biosciences Department, University of Milan-Bicocca, 20162 Milan, Italy

4NeMO Lab, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy

*Corresponding author at: f.gelain@css-mendel.it (F.G.), raffaele.pugliese@nemolab.it (R.P.)

Figure S1. Temperature-dependent fluorescence intensity of peptide moiety after photo-cross-linking. No fluorescent decay was observed in the range of 20–42°C
Figure S2. Reversibility of “on–off” luminescence of photo-cross-linked 33Y SAP subjected to multiple cycles of pH shifts.

Figure S3. Mechanical properties of 33Y and 33Y photo-cross-linked peptides. (a) Viscosity measurements at increasing shear rate of both peptides, showing non-Newtonian shear-thinning behavior with a decrease of viscosity as the shear-rate increase. (b) Kinetics of self-assembling and photo-cross-linking of peptide solutions monitored via a 10 h time-sweep test. For both peptides, G’ trends showed typical hydrogel-like profiles, suggesting that the ruthenium photo-cross-linking does not hamper the assembly of LDLK12 backbone. (c) Strain failure tests within the linear viscoelasticity region, showing that breakage occurred for both peptides at ∼12% of strain.
Figure S4. AFM images of 33Y photo-cross-linked peptides at pH4 and pH12. The nanofibrous structure of the photo-cross-linked SAP is preserved.