Prioritization and comprehensive analysis of genes associated with melanoma

CHENG FENG, MING BAI, HAILIN ZHANG, ANG ZENG and WENCHAO ZHANG

Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China

Received August 13, 2018; Accepted February 28, 2019

DOI: 10.3892/ol.2019.10284

Abstract. Melanoma is a malignant tumor derived from melanocytes, which occurs mostly in the skin. A major challenge in cancer research is the biological interpretation of the complexity of cancer somatic mutation profiles. The aim of the present study was to obtain a comprehensive understanding of the formation and development of melanoma and to identify its associated genes. In the present study, a pipeline was proposed for investigating key genes associated with melanoma based on the Online Mendelian Inheritance in Man and Search Tool for the Retrieval of Interacting Genes/Proteins databases through a random walk model. Additionally, functional enrichment analysis was performed for key genes associated with melanoma. This identified a total of 17 biological processes and 30 pathways which may be associated with melanoma. In addition, melanoma-specific network analysis followed by Kaplan-Meier analysis along with log-rank tests identified tyrosinase, hedgehog acyltransferase, BRCA1-associated protein 1 and melanocyte inducing transcription factor as potential therapeutic targets for melanoma. In conclusion, the present study increased the knowledge of melanoma progression and may be helpful for improving its prognosis.

Introduction

Melanoma is the most lethal skin malignancy, and the estimated number of new cases with melanoma of the skin based on conventional cancer incidence rates is 96,480 and the estimated number of cases of mortality is 7,230 for 2019 (1-3). Cutaneous melanoma is the fifth most common type of cancer, with its incidence rate increasing continuously during the past decades (4,5). Despite high diagnostic accuracy and appropriate treatment due to medical advances, its pathogenesis and natural course remain unclear.

Melanoma is a malignant type of tumor, which may be composed of epidermal melanocytes, nevocytes or dermal melanocytes. Epidemiology studies revealed that melanoma is likely to be caused by hereditary factors and environmental risk factors, including sex, age, ethnicity and geographic location (6,7). This is in line with the most vital and potentially reversible risk factor of malignant melanoma arising from an interaction between environmental exposure and genetic susceptibility. Gandini et al (8) revealed the association between melanoma and ultraviolet (UV)-irradiation, and concluded that intermittent sunlight may be a vital determinant of risk. Additionally, other types of UV ray exposure, including sunburn and artificial UV-irradiation, may cause melanoma development (9,10). Out of all melanoma cases, ~25% occur together with pre-existing moles, suggesting that melanocytes are benign accumulations of themselves and nevus cells (11). A family history may be a strong risk factor for the disease, and provides a direction for elucidating the genetic basis of melanoma (12,13). In addition, melanoma has a high degree of malignancy, and is prone to early lymphoid and blood tract metastasis, which are associated with poor prognosis; therefore, it is important to identify susceptibility genes. Genomic profiling and sequencing will form the basis for molecular taxonomy for more accurate subgrouping of patients with melanoma in the future.

Identification of associated genes is a central challenge of modern genetics aiming to modulate signal pathways and biological processes for a number of well-known diseases, including various types of cancer. Melanoma is highly complicated; therefore, research strategies are limited. Computational methods provide important complementary tools for this problem. Over the past decades, as biotechnology has advanced, a large amount of gene expression data has been collected and submitted to several large-scale databases. These have been extensively used to explore the molecular mechanism of tumorigenesis with bioinformatics analysis methods (14,15). However, a previous study (16) based on sequence- and network-based methods has been conducted to identify melanoma-associated genes.

The purpose of the present study was to establish a comprehensive method to identify melanoma-associated biological mechanisms and to predict key genes associated with melanoma using the random walk method. Gene Ontology (GO)
of each candidate gene was calculated as follows:

to their strength of association with melanoma. The risk score
walk algorithm produced a ranked list of the genes, according
provides a comprehensive catalogue of protein-protein inter-
Genes/Proteins (STRING) database (http://string-db.org)
in the present study.

as seed genes for prioritization of melanoma candidate genes
melanoma-associated genes were identified. These were used
as background was obtained and the melanoma-associated
obtained from OMIM and candidate genes in the mela-
Random walk
Prioritization of melanoma candidate genes.
11,181 genes and 39,043 interaction pairs.

Materials and methods

Data collection/data set. The present study searched for
genes associated with melanoma using the Online Mendelian
Inheritance in Man (OMIM) database (https://www.omim.
org/), which is a comprehensive, authoritative and timely
research resource, and includes descriptions of human
genes, phenotypes and their associations (17). A total of 74
melanoma-associated genes were identified. These were used
as seed genes for prioritization of melanoma candidate genes
in the present study.

The Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) database (http://string-db.org)
provides a comprehensive catalogue of protein-protein inter-
actions along with their confidence score according to means
obtaining them. In the present study, the full list of gene pairs
as background was obtained and the melanoma-associated
network was extracted by retaining only the direct neighbor-
hoods of the 74 seed genes, which resulted in a network of
11,181 genes and 39,043 interaction pairs.

Prioritization of melanoma candidate genes. Random walk
on heterogeneous networks is an emerging approach for
effective disease gene prioritization. Melanoma-associated
genes obtained from OMIM and candidate genes in the mel-
oma-associated network were used as inputs. The random
walk algorithm produced a ranked list of the genes, according
to their strength of association with melanoma. The risk score
of each candidate gene was calculated as follows:

\[p^{t+1} = (1-r)p^t + rp^0 \]

Where \(p \) represents the melanoma risk vector at walk step
\(t \), the parameter \(r \in (0, 1) \) is the restart probability, and \(Q \) is the
risk probability transfer matrix.

According to the Perron-Frobenius theorem (18), the
eigenvalues of stochastic matrix \(Q \) are in the range of \([-1, 1]\)
and \(r=0.1 \) was finally obtained as the optimal parameter.
Generally, the transition probability from gene \(q_i \) to phenotype
\(q_j \) is defined as:

\[q_{ij} = \frac{w_{ij}}{\sum_{k \in \text{neighbor}(i)} w_{kj}} \]

These probabilities can reach a steady state following a
sufficiently large number of iterations. The iterations were
conducted until the difference between \(p \) and \(p_{t+1} \) (measured
by the L1 norm) fell below \(10^{-6} \).

Functional enrichment analysis. The GO database
(http://geneontology.org), which unifies genetic and gene product
characteristics of all species, is an effective and efficient tool to
screen genes. In the present study, GO functional enrichment
analysis of melanoma candidate genes was performed to inter-
pret their biological significance using the WEB-based Gene
SeT AnaLysis Toolkit (http://www.webgestalt.org) (19), with a cut-off criterion of \(P<0.05 \).

The full list of KEGG pathways was downloaded from the
KEGG database (https://www.genome.jp/kegg/), and pathway
enrichment analysis for melanoma candidate genes was
conducted using the following formula:

\[p = 1 - \sum_{n=0}^{\infty} \left(\frac{Q^n}{n!} \right) \]

Where \(N \) is the total number of genes in the KEGG
pathway database, \(n \) is the number of melanoma candidate
genes annotated by the KEGG pathway database, \(m \) is the
number of melanoma candidate genes annotated by a specific
KEGG pathway and \(M \) is the total number of genes involved
in a specific pathway. KEGG pathways were considered as
statistically significant if \(P<0.05 \) following correction using the Benjamini-Hochberg method (20).

Pathway crosstalk analysis. Associations among significantly
enriched pathways were explored through crosstalk analysis
using the overlap coefficient (OC) and the Jaccard coefficient
(JC), which were defined as follows:

\[OC = \frac{|A \cap B|}{\min(|A|, |B|)} \]

\[JC = \frac{|A \cap B|}{|A \cup B|} \]

Where \(A \) and \(B \) represent the melanoma candidate gene
numbers contained in pathway \(A \) and pathway \(B \), respectively.
Pathway \(A \) and pathway \(B \) were considered to be connected if
\(OC>0.5 \) and \(JC>0.25 \). Furthermore, Cytoscape 3.0 software
(http://cytoscape.org/) was used to visualize connections
among KEGG pathways.

Melanoma-specific network analysis. The melanoma candi-
date genes were uploaded to the STRING database to obtain
a melanoma-specific network by using the threshold of confi-
dence score \(>0.4 \). Additionally, gene degree and betweenness
were applied for evaluating gene importance in the network.
Khuri and Wuchty (21) hypothesized that MDSets could
provide a novel method of evaluating the core proteins of an
organism. The present study considered genes contained in
the MDSet with a high degree and betweenness as important
biomarkers for melanoma progression.

Survival analysis. To evaluate the association among
melanoma-associated biomarkers and survival rates, the
Gene Expression Profiling Interactive Analysis (GEPIA;
http://gepia.cancer-pku.cn) database was used to perform
survival analysis. Melanoma samples were classified
into high or low expression groups according to the
median expression value of specific respective genes. The
Kaplan-Meier method and a two-side log-rank test were
used for overall survival comparison between two groups.
P<0.05 was considered to indicate a statistically significant
difference.
Statistical analysis. All statistical analyses were conducted in R version 3.4.1 (https://www.r-project.org/). For functional analysis, the enrichment method was used. For survival analysis, the Kaplan-Meier method was adopted to plot survival curves, followed by a log-rank test to compare the differences between the survival curves. Data was presented as the mean ± standard deviation with at least three repeats in every group. P<0.05 was considered to indicate a statistically significant difference.

Results

Melanoma candidate gene prioritization. Fig. 1 shows the workflow of the present study. A total of 74 genes were reported to be associated with melanoma in the OMIM database, and used as seed genes for following analyses. Additionally, 39,043 interaction pairs among 11,181 genes were obtained from the STRING database by extracting the direct interactions of the 74 seed genes, which was considered as the melanoma-associated network. By applying the random walk algorithm to the 74 seed genes and 11,181 candidate genes, a score was assigned to every candidate gene and the top 1% of genes (n=111) with the highest scores were considered as melanoma-associated genes.

Significantly enriched functions. The 111 melanoma-associated genes were identified to be significantly enriched in 13 GO biological process (BP) terms, two cellular component (CC) terms and two molecular function terms (Fig. 2A). The BP terms mainly involved in the process of pigmentation, catabolism, telomeres and thymus development. The CC terms melanosome and pigment granule were also considerably enriched. These are involved in pigmentation.

Enrichment Map (http://www.baderlab.org/Software/EnrichmentMap) was used to explore the associations among significantly enriched GO terms, which resulted in two clusters (Fig. 2B). One cluster included biological processes associated with telomeres and pigmentation, including ‘telomere maintenance’ and ‘pigment cell differentiation’, and the other cluster included biological processes associated with catabolism.

There were 30 pathways that were significantly enriched in association with the 111 melanoma-associated genes (Table I), and 12 of them were involved in cancer-associated processes. In addition, endocrine system pathways (melanogenesis and gonadotropin-releasing hormone signaling pathway) and pathways in the translation process [epidermal growth factor receptor signaling pathway and mechanistic target of rapamycin (mTOR) signaling pathway] were also included in the results. The immune system (T cell receptor signaling pathway, NOD-like receptor signaling pathway and natural killer cell mediated cytotoxicity) was identified to be overrepresented in melanoma-associated genes. Pathway crosstalk analysis obtained two pathway clusters that were associated with cancer development and the neuroendocrine system, respectively, which were connected by pathways in cancer (Fig. 2C).

Melanoma-specific network. Fig. 3A illustrates the melanoma-specific network that contains 56 melanoma-associated genes and 98 gene pairs. The network MDSet, obtained by using the binary integer linear method, contained 16 genes. Three genes, including tyrosinase (TYR), mitogen-activated protein kinase (MAPK) 3 and cancer/testis antigen 2 (CTAG2), intersected with the top 16 genes with highest betweenness or degree and were considered as important melanoma progression biomarkers. Fig. 3B illustrates associations of genes in
Figure 2. Significantly enriched GO terms and KEGG pathways of 111 melanoma-associated genes. (A) Dot plot illustrating the full list of significantly enriched GO terms and their corresponding logarithm transformed P-values and gene numbers. (B) GO term clustering analysis according to overlapping genes among them. (C) KEGG pathway crosstalk analysis. Nodes represent pathways, and two nodes are connected if there are any overlapping genes between them. Larger node size indicates more genes contained in a pathway, and thicker edges indicate more overlapping genes between two pathways. BP, biological process; CC, cellular component; GnRH, gonadotropin-releasing hormone; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MF, molecular function.
the network with significantly enriched GO terms and KEGG pathways.

Survival analysis. Associations among genes contained in the network and overall survival rates of patients with melanoma were evaluated using the GEPIA database. As a result, two genes, TYR and microphthalmia-associated transcription factor (MITF), were identified to be significantly associated with the overall survival rates of patients with melanoma. Elevated expression levels of the four genes were all closely associated with poor melanoma prognosis (Fig. 4).

Discussion

The purpose of the present study was to explore the underlying mechanism of melanoma and potential gene biomarkers using comprehensive bioinformatics methods. The random walk method identified 111 potential melanoma-associated genes, and functional enrichment analysis identified several biological processes and pathways which may contribute to melanoma progression. A melanoma-specific network in combination with survival analysis identified more reliable biomarkers for melanoma diagnosis and treatment.

Table I. Significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways of the 111 melanoma-associated genes.

Pathway	P-value	PBH-value	Melanoma-associated genes included in the pathway
Melanoma	9.45x10⁻⁷	1.30x10⁻⁵	MITF; CDK4; BRAF; MAPK3; MAPK1; CDKN2A
Bladder cancer	1.32x10⁻⁷	1.30x10⁻⁴	CDK4; BRAF; MAPK3; MAPK1; CDKN2A
Pancreatic cancer	6.10x10⁻⁷	1.30x10⁻³	CDK4; BRCA2; BRAF; MAPK3; MAPK1; CDKN2A
Non-small cell lung cancer	6.57x10⁻⁶	4.21x10⁻⁴	CDK4; BRAF; MAPK3; MAPK1; CDKN2A
Melanogenesis	7.12x10⁻⁶	4.21x10⁻⁴	GNAQ; MITF; TYR; MC1R; MAPK3; MAPK1
Long-term depression	8.99x10⁻⁶	4.43x10⁻⁴	GNAQ; GNA11; BRAF; MAPK3; MAPK1
Glioma	1.34x10⁻⁵	4.94x10⁻⁴	CDK4; BRAF; MAPK3; MAPK1; CDKN2A
Pathways in cancer	1.18x10⁻⁵	4.94x10⁻⁴	GNAQ; MITF; CDK4; BRCA2; GNA11; BIRC7; BRAF; MAPK3; MAPK1; CDKN2A
Chronic myeloid leukemia	2.36x10⁻⁵	7.77x10⁻⁴	CDK4; BRAF; MAPK3; MAPK1; CDKN2A
Other glycan degradation	8.13x10⁻⁵	2.41x10⁻³	NEU4; NEU2; NEU3
Vascular smooth muscle contraction	2.55x10⁻⁶	6.67x10⁻³	GNAQ; GNA11; BRAF; MAPK3; MAPK1
Long-term potentiation	2.70x10⁻⁴	6.67x10⁻³	GNAQ; BRAF; MAPK3; MAPK1
Thyroid cancer	3.51x10⁻⁴	7.99x10⁻⁴	BRAF; MAPK3; MAPK1
Gap junction	8.11x10⁻⁴	1.60x10⁻²	GNAQ; GNA11; MAPK3; MAPK1
ErbB signaling pathway	7.77x10⁻⁴	1.60x10⁻²	NCK1; BRAF; MAPK3; MAPK1
GnRH signaling pathway	9.02x10⁻⁴	1.70x10⁻²	GNAQ; GNA11; MAPK3; MAPK1
Sphingolipid metabolism	1.47x10⁻⁴	2.36x10⁻⁵	NEU4; NEU2; NEU3
Chagas disease (American trypanosomiasis)	1.51x10⁻³	2.36x10⁻²	GNAQ; GNA11; MAPK3; MAPK1
T cell receptor signaling pathway	1.51x10⁻³	2.36x10⁻⁵	NCK1; CDK4; MAPK3; MAPK1
Serotonic synapse	1.99x10⁻³	2.68x10⁻⁵	GNAQ; BRAF; MAPK3; MAPK1
Endometrial cancer	1.97x10⁻³	2.68x10⁻²	BRAF; MAPK3; MAPK1
Cholinergic synapse	1.93x10⁻³	2.68x10⁻⁵	GNAQ; GNA11; MAPK3; MAPK1
Acute myeloid leukemia	2.56x10⁻³	3.03x10⁻²	BRAF; MAPK3; MAPK1
NOD-like receptor signaling pathway	2.56x10⁻³	3.03x10⁻²	CXCL1; MAPK3; MAPK1
Neurotrophin signaling pathway	2.56x10⁻³	3.03x10⁻²	MAGED1; BRAF; MAPK3; MAPK1
mTOR signaling pathway	2.97x10⁻³	3.25x10⁻⁵	BRAF; MAPK3; MAPK1
Viral carcinogenesis	2.86x10⁻³	3.25x10⁻²	CDK4; HLA-E; MAPK3; MAPK1; CDKN2A
Colorectal cancer	3.26x10⁻³	3.44x10⁻²	BRAF; MAPK3; MAPK1
Natural killer cell mediated cytotoxicity	3.92x10⁻³	3.87x10⁻²	BRAF; HLA-E; MAPK3; MAPK1
Renal cell carcinoma	3.89x10⁻³	3.87x10⁻²	BRAF; MAPK3; MAPK1
brown melanin than those with lighter hair or skin. Several studies have demonstrated that skin which contains brown melanin provides weak UV protection, suggesting that brown melanin may actually be a prooxidant and photosensitive to DNA damage, while eumelanin may act as a light-protective antioxidant (23,24). Reactive oxygen species (ROS) may also be produced as byproducts during pigment synthesis (24). It has been considered that the role of melanocyte organelles is to provide protection against ROS-induced injury by containment (25). Leakage of toxic substances from the melanosome can be damaging to melanocytes. Additionally, pheomelanin synthesis stimulates melanoma genesis via an UV-independent pathway that induces ROS-mediated DNA damage, which may lead to melanoma carcinogenesis (26).

The deubiquitinating enzyme BAP1 is a tumor suppressor, which is inactivated in a variety of types of cancer (27). BAP1 inactivation is expected to affect transcription regulation, either through direct gene expression dysregulation or chromatin structure perturbation (28,29). It has been reported that BAP1 affects ROS homeostasis and serves a major role in regulating cell morphology, cell migration and mitochondrial respiration in mesothelioma (30). In uveal melanoma, BAP1 inactivation is associated with metastasis development and poor prognosis (31). Therefore, BAP1 may promote tumor cell motility and invasiveness, and stimulates metastasis formation in vivo, which is consistent with the results of the study by Joseph et al (32).

MITF is the main regulator of melanocytes and serves a vital role in the pigmentation pathway. It also has antioxidant and prooxidant components (33). There are at least nine isoforms of MITF, which exhibit tissue-specific expression patterns, and the M isoform of MITF is selectively expressed in melanocytes (34). Melanoma is considered to arise from melanocytes, the pigment-producing cells of the skin, hair and eyes. In addition to its vital roles in normal melanocytes, MITF may also serve vital roles in melanoma, where it has been revealed to be a genetically-specific survival oncogene that is amplified in ~20% of human types of melanoma (35). Previously,
MITF has been demonstrated to be involved in regulating metabolism and oxidative stress by directly regulating the expression of the main mitochondrial regulator; peroxisome proliferator-activated receptor γ coactivator 1α (36).

The TYR gene, which encodes melanogenesis enzymes, has been associated with melanoma (37). Subsequent to identifying that variants of TYR affect pigmentation features, these same variants were revealed to be associated with the risk of skin cancer, even when accounting for available assessments of pigmentation (38). The association of TYR and its variants is robust in regulating pigmentation effects.

The hedgehog family of secreted proteins act as morphogens to control embryonic patterning and development in a variety of organ systems. HHAT mutation occurs in the conserved membrane bound O-acyltransferase domain. HHAT has been demonstrated to be expressed in the somatic cells of XX and XY gonads at the time of sex determination, and HHAT loss of function recapitulates the majority of the testicular, skeletal, neuronal and growth defects observed in humans (39). In the developing testis, HHAT is not required for Sertoli cell commitment but serves a role in proper testis cord formation and the differentiation of fetal Leydig cells.

Figure 4. Kaplan-Meier curves for melanoma samples with lower (blue lines) or higher (red lines) expression levels of TYR, HHAT, BAP1 and MITF. The median expression values were used as thresholds. n=228 for HHAT as the data for one case was not available. BAP1, BRAC1 associated protein 1; HHAT, hedgehog acyltransferase; HR, hazard ratio; MITF, melanocyte inducing transcription factor; TYR, tyrosinase.
Optimal BP terms were consistent with expectations, and several catabolism-associated terms were among them. Optimal features contained the terms ganglioside catabolic process, oligosaccharide catabolic process, glycosphingolipid catabolic process, ceramide catabolic process, transfer RNA threonylcarbamoyladenosine metabolic process and glycolipid catabolic process. A previous study demonstrated that numerous melanoma genes control cell metabolism, suggesting that melanoma may be a metabolic disease (40). Melanoma patterns in normal cells depend on the availability of substrates and oxygen. The regulation of metabolic pathways in cancer cells and the regulation of metabolic pathways in normal cells are significantly different. A number of studies have revealed fundamental differences in metabolic characteristics between normal melanocytes and melanoma cells in vitro (41-43). The metabolic characteristics of the two cell types were further characterized by the use of stable isotopes as tracers to quantify cell metabolic flux (44). According to the Warburg effect, the relative contribution of mitochondrial respiration to energy production in melanoma cells is generally low due to its higher glycolytic rate. In addition, melanoma cells exhibit high levels of glutaminase, which is the reverse flux of the tricarboxylic acid cycle and provides carbon for synthesis of fatty acids (44).

A total of 40-60% of cutaneous types of melanoma harbor B-Raf proto-oncogene \(\text{BRAF}^{\text{V600}}\) mutations (45). \text{BRAF} mutations are known to constitutively activate the MAPK signaling pathway (46,47). MAPK3 belongs to the MAPK family, which includes extracellular signal regulation kinases (48). When activated by upstream kinases, MAPK phosphorylates several transcription factors and serves a vital role in regulating cancer cell proliferation, differentiation and other cellular activities directly associated with cancer. A previous study revealed that the expression levels of members of the MAPK signaling pathway were altered in patients with metastatic melanoma, which may activate this signaling pathway (49).

The telomere-associated terms, including ‘telomere maintenance’, ‘telomere organization’ and ‘establishment of protein localization to telomere’, may also be associated with melanoma. Telomere length was considered to be a major risk factor for melanoma, increasing melanoma risk in a study of 557 cases (50), and increasing nevus number (51,52). In addition, high penetrative melanoma mutations were reported in genes encoding the protection of telomeres 1 (POT1) components, which are essential for telomere maintenance and signal transduction functions (53). POT1 mutations result in longer telomeres (54). A previous study investigated the mechanism of melanoma, and hypothesized that longer telomeres increase the duration of cell proliferation in a melanocytic nevus (52). If the process of aging is delayed in melanocytes, it could lead to further mutations, which increases the probability of developing a malignant tumor (50).

The thymus development process is also associated with melanoma. Interleukin-32 (IL-32) is a novel cytokine, involved in cancer development, and expressed in numerous human tissues and organs, including the thymus. Nicholl et al (55) reported that exogenous addition of IL-32 can effectively inhibit the proliferation of human melanoma cell lines, and that it is associated with increased expression of p21, p53 and tumor necrosis factor receptor superfamily member 10a. In previous studies, IL-32 has been reported to inhibit the growth and metastasis of cancer cells by regulating nuclear factor \(\kappa\)B (NF-\(\kappa\)B) signaling (56,57). NF-\(\kappa\)B is a transcription factor that regulates the expression of cytokines, growth factors and apoptosis inhibiting factors. Additionally, IL-32 is associated with signal transducer and activator of transcription 3 (STAT3) signaling in cancer cell growth (58). Numerous studies have reported that STAT3 signaling promotes cancer development, while loss of STAT3 inhibits cancer development (59-61).

In KEGG pathway analysis, certain types of cancer, including pancreatic and bladder cancer, were significantly enriched, which may indicate that melanoma has a similar phenotype, mechanism or co-morbidity with these types of cancer. Pathways, including chronic myeloid leukemia and acute myeloid leukemia, are directly associated with cancer and potential oncogenes. As a result, the abnormal expression of oncogenes may lead to cell cycle disturbances, continued cell proliferation, reduced apoptosis and tumor metastasis (62). The mTOR signaling pathway is involved in regulating cell growth, division, survival and transcription (63). Overactivation of mTOR can promote proliferation and reduce apoptosis. In addition, mTOR pathway dysfunction has been observed in several types of tumor (64,65). A previous study suggested that CTAG2 is closely associated with cancer/testis antigen 1B (CTAG1B) (66). CTAG2 and CTAG1B are overexpressed in numerous types of tumor, including melanoma, sarcoma and multiple myeloma, as well as certain types of carcinoma, including lung, head and neck, and ovarian carcinoma (66,67).

In the present study, TYR, HHAT, BAP1 and MITF were identified as potential therapeutic targets for melanoma. As the occurrence and development of melanoma is a complex event, the specific roles of these genes in the regulatory network remain to be determined by further experiments. Furthermore, in addition to the present study, multiple biomarkers have been identified to be associated with melanoma progression, proliferation, immune response, oncogenesis and other aspects by microarray studies (68,69). As the public databases used, including OMIM and STRING, did not provide patient characteristics information, the association between the expression levels of candidate genes and clinicopathological parameters could not be assessed. Further analysis will be conducted in a future study with information from The Cancer Genome Atlas and Gene Expression Omnibus data sets. Additionally, it remains a great challenge to apply this information in a therapeutic manner.

In conclusion, in the present study, prioritization and comprehensive analysis of melanoma candidate genes were conducted to obtain several potential biomarkers and biological processes which may contribute to melanoma progression. This should be helpful in understanding the underlying mechanisms of melanoma, as well as for its diagnosis and treatment. However, further experimental validation of the results of the present study is required.

Acknowledgements
Not applicable.

Funding
No funding was received.
Availability of data and materials

All data generated and/or analyzed during this study are included in this published article.

Authors' contributions

CF and MB made substantial contributions to the conception and design of the study. CF, HZ and AZ participated in the acquisition, analysis and interpretation of data. MB, HZ and WZ have been involved in drafting the manuscript or revising it critically for important intellectual content. WZ participated in the data analysis. CF and MB gave final approval of the version to be published. CF and MB have agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. MacKie RM, Hauschild A and Eggermont AM: Epidemiology of invasive cutaneous melanoma. Ann Oncol 20 (Suppl 6): vii-7, 2009.
2. Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin 69: 7-34, 2019.
3. Cai I, Candini S, Sera F, Raimondi S, Fargnoli MC, Boniol M and Armstrong BK: Meta-analysis of risk factors for cutaneous melanoma according to anatomical site and clinico-pathological variant. Eur J Cancer 45: 3054-3063, 2009.
4. Ingraffea A: Melanoma. Facial Plast Surg Clin North Am 21: 33-42, 2013.
5. Owens B: Melanoma. Nature 515: S109, 2014.
6. Markovic SN, Erickson LA, Rao RD, Weening RH, Pockaj BA, Bardia A, Vachon CM, Schild SE, McWilliams RR, Hand JL, et al: Malignant melanoma in the 21st century, part I: Epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin Proc 82: 364-380, 2007.
7. Rigel DS: Epidemiology of melanoma. Semin Cutan Med Surg 29: 204-209, 2010.
8. Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P and Melchi CF: Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer 41: 45-60, 2005.
9. Elwood JM and Jopson J: Melanoma and sun exposure: An overview of published studies. Int J Cancer 73: 198-203, 1997.
10. Stern RS: PUVA Follow up Study: The risk of melanoma in association with long-term exposure to PUVA. J Am Acad Dermatol 44: 755-761, 2001.
11. Bevona C, Goggins W, Quinn T, Fullerton J and Tsao H: Cutaneous melanomas associated with nevi. Arch Dermatol 139: 1620-1624, 2003.
12. Tsao H and Niendorf K: Genetic testing in hereditary melanoma. J Am Acad Dermatol 51: 803-808, 2004.
13. Stam-Posthuma JJ, van Duinen C, Scheffer E, Vink J and Bergman W: Multiple primary melanomas. J Am Acad Dermatol 44: 22-27, 2001.
14. Hanauer DA, Rhodes DR, Sinha-Kumar C and Chinnaiyan AM: Bioinformatics approaches in the study of cancer. Curr Mol Med 7: 133-141, 2007.
15. Cho A, Shim JE, Kim E, Supak F, Lehner B and Lee I: MUFFINN: Cancer gene discovery via network analysis of somatic mutation data. Genome Biol 17: 129, 2016.
16. Ding KF, Finlay D, Yin H, Hendriks WPD, Sereck S, Kiefer J, Sekulic A, LoRusso PM, Vuori K, Trent JM and Schork NJ: Network rewiring in cancer: Applications to melanoma cell lines and the cancer genome atlas patients. Front Genet 9: 228, 2018.
17. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF and Hamosh A: OMIM.org: Online mendelian inheritance in man (OMIM(R)), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43: D789-D798, 2015.
18. Dembélé D: Analysis of high-throughput biological data using their rank values. Stat Methods Med Res 22:8201876418, 2018 (Epub ahead of print).
19. Wang J, Duncan D, Shi Z and Zhang B: WEB-based GEne SeT Analysis Toolkit (WebGestalt): Update 2013. Nucleic Acids Res 41: W77-W83, 2013.
20. Abbas A, Kong XB, Liu Z, Jing BY and Gao X: Automatic peak selection by a Benjamini-Hochberg-based algorithm. PLoS One 8: e53112, 2013.
21. Khuri S and Wuchty S: Essentiality and centrality in protein interaction networks revisited. BMC Bioinformatics 16: 109, 2015.
22. Ito S and Wakamatsu K: Chemistry of mixed melanogen-sivotal roles of dopamine. Photochem Photobiol 84: 582-592, 2008.
23. Samokhvalov A, Hong L, Liu Y, Garugoilo J, Nemanich RJ, Edwards GS and Simon JD: Oxidation potentials of human eumelanin and pheomelanin. Photochem Photobiol 81: 145-148, 2005.
24. Meredith P and Sarma T: The physical and chemical properties of eumelanin. Pigment Cell Res 19: 572-594, 2006.
25. Stros TMG, Valencia JC Gil, Gottesman MM: Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res 22: 740-749, 2009.
26. Montano SP, Pigli YZ and Rice PA: The mu transposome structure sheds light on DDE recombine evolution. Nature 491: 413-417, 2012.
27. Wiesner T, Murali R, Fried I, Cerroni L, Busam K, Kutzner H and Bastian BC: A distinct subset of atypical Spitz tumors is characterized by BRAF mutation and loss of BAP1 expression. Am J Surg Pathol 36: 818-830, 2012.
28. Deey A, Sehavayee D, Noubade R, French DM, Liu J, Chaureushiya MS, Kirkpatrick DS, Pham VC, Lill JR, Bakalaris CE, et al: Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 337: 1541-1546, 2012.
29. Baymaz HI, Fournier A, Laget S, Ji Z, Janssen PW, Smits AH, Ferry L, Mensinga A, Poser I, Sharrocks A, et al: MMDB and MDEB interact with the human PR-DUB complex through their methyl-CpG-binding domain. Proteomics 219: 2179-2189, 2014.
30. Uher T, Bellanger D, Guillais C, Campagne A, Dingli F, Loew D, Fievet A, Jacquemin V, Popova T, Jean D, et al: Modulating BAP1 expression affects ROS homeostasis, cell motility and mitochondrial function. Oncotarget 8: 72513-72527, 2017.
31. Harboe JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, Council ML, Matatall KA, Helms C, Bowcock AM: Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330: 1410-1413, 2010.
32. Joseph RW, Kapur P, Serie DJ, Eckel-Passow JE, Pararasinka M, Ho T, Cheville JC, Frenkel E, Rakheja D, Brugarolas J and Parker A: Loss of BAP1 protein expression is an independent marker of poor prognosis in patients with low-risk clear cell renal cell carcinoma. Cancer 120: 1059-1067, 2014.
33. Hershey CL and Fisher DE: Genomic analysis of the microphthalmia locus and identification of the MITF-J/MITf-J isoform. Gene 437: 73-82, 2005.
34. Fuse N, Yasumoto K, Suzuki H, Takahashi K and Shibahara S: Identification of a melanocyte-type promoter of the microphthalmia-associated transcription factor gene. Biochem Biophys Res Commun 219: 702-707, 1996.
35. Goh CW, Way LA, Wullind HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J, et al: Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436: 117-122, 2005.
36. Haq R, Shouq J, Ando-Perez P, Yokoyama S, Edelman H, Rowe GC, Frederick DT, Hurley AD, Nellore A, Kung AL, et al: Oncogenic BRAF regulates oxidative metabolism via PGClalpha and MITF. Cancer Cell 23: 302-315, 2013.
37. Gudbjartsson DF, Sulem P, Stacey SN, Goldstein AM, Rafnar T, Sigurgeirsson B, Benediktsson KR, Thorisdottir K, Ragnarsson R, Sveinsdottir SG, et al: ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. Nat Genet 40: 886-891, 2008.

38. Saternus R, Pilz S, Gräber S, März W, Vogt T and Reichrath J: A closer look at evolution: Variants (SNPs) of genes involved in skin pigmentation, including EXOC2, TYR, TYRP1, and DCT, are associated with 25(Oh)D serum concentration. Endocrinology 156: 39-47, 2015.

39. Callier P, Calvel P, Matevossian A, Kurosaka H, Vannier A, Thauvin-Robinet C, Borel C, Mazaud-Guittot S, et al: A Loss of Function mutation in the palmitoyltransferase HHAT Leads to Syndromic 46,XY disorder of sex development by impeding hedgehog protein palmitoylation and signaling. PLoS Genet 10: e1004340, 2014.

40. Abildgaard C and Guldberg P: Molecular drivers of cellular metabolic reprogramming in melanoma. Trends Mol Med 21: 164-171, 2015.

41. Abildgaard C, Dahl C, Basse AL, Ma T and Guldberg P: Bioenergetic modulation with dichlororacetate reduces the growth of melanoma cells and potentiates their response to BRAFV600E inhibition. J Transl Med 12: 247, 2014.

42. Barb de Moura M, Vincent G, Fayewicz SL, Bateman NW, Saternus R, Pilz S, Gräber S, Kleber M, März W, Vogt T and Callier P, Calvel P, Matevossian A, Kurosaka H, Vannier A, Thauvin-Robinet C, Borel C, Mazaud-Guittot S, et al: Mitochondrial respiration—an important therapeutic target in melanoma. PLoS One 7: e40690, 2012.

43. Hall A, Meyle KD, Lange MK, Klima M, Sanderhoff M, Dahl C, Abildgaard C, Thorup K, Moghimis SM, Jensen PB, et al: Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E)BRAF oncogene. Oncotarget 4: 584-599, 2013.

44. Scott DA, Richardson AD, Filipp FV, et al: Bioenergetic modulation with dichloroacetate reduces the growth of melanoma cells and potentiates their response to BRAFV600E inhibition. J Transl Med 12: 247, 2014.

45. Ronai ZA, Osterman AL and Smith JW: Comparative metabolic flux profiling of melanoma cell lines: Beyond the Warburg effect. J Biol Chem 286: 42626-42634, 2011.

46. Richon VM, Lerman TB, Lerman A, Slaughter PL, et al: Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E)BRAF oncogene. Oncotarget 4: 584-599, 2013.

47. Scott DA, Richardson AD, Filipp FV, et al: Bioenergetic modulation with dichloroacetate reduces the growth of melanoma cells and potentiates their response to BRAFV600E inhibition. J Transl Med 12: 247, 2014.

48. Ronai ZA, Osterman AL and Smith JW: Comparative metabolic flux profiling of melanoma cell lines: Beyond the Warburg effect. J Biol Chem 286: 42626-42634, 2011.

49. Ronai ZA, Osterman AL and Smith JW: Comparative metabolic flux profiling of melanoma cell lines: Beyond the Warburg effect. J Biol Chem 286: 42626-42634, 2011.

50. Ronai ZA, Osterman AL and Smith JW: Comparative metabolic flux profiling of melanoma cell lines: Beyond the Warburg effect. J Biol Chem 286: 42626-42634, 2011.
Author/s:
Feng, C; Bai, M; Zhang, H; Zeng, A; Zhang, W

Title:
Prioritization and comprehensive analysis of genes associated with melanoma

Date:
2019-07-01

Citation:
Feng, C., Bai, M., Zhang, H., Zeng, A. & Zhang, W. (2019). Prioritization and comprehensive analysis of genes associated with melanoma. ONCOLOGY LETTERS, 18 (1), pp.127-136. https://doi.org/10.3892/ol.2019.10284.

Persistent Link:
http://hdl.handle.net/11343/271970

File Description:
Published version

License:
CC BY-NC-ND