Evaluation of Certain Dentofacial Characteristics as Predisposing Factors in Patients with Myofacial Pain Dysfunction Syndrome

Jayanta Bhattacharyya · Saibal Kumar Sen · Ritika Bhambhani

Received: 8 June 2011 / Accepted: 21 October 2011 / Published online: 4 November 2011
© Indian Prosthodontic Society 2011

Abstract Though a multifactorial etiology has been comprehensively documented in the literature over the years for temporomandibular joint (TMJ) disorder, none of the theories give a total explanation of all aspects of the syndrome. The aim of this study was to evaluate face form and certain occlusal parameters as relevant factors in the degree of dysfunction of the Temporomandibular joint. One hundred and three patients suffering from TMJ dysfunction attending the Out Patient Department of Dr R. Ahmed Dental College over a period of 2 years were clinically examined and subsequently tabulated and compared with the degree of dysfunction to analyze any correlation between them. The data were statistically analyzed by the student t test and χ^2 test to assess the significance of the dysfunction in relation to the various parameters examined. The study indicated a positive relationship between the degree of dysfunction of the TMJ to the face form and certain other attributes.

Keywords TM Joint · Face-form · Dysfunction · Occlusion

Introduction

The temporomandibular joint is one of the most complicated functional units of the human skeleton which bears a direct relation to the masticatory apparatus. Amongst the various disorders which affect the temporomandibular joint, Myofacial pain dysfunction syndrome is one of the most common yet poorly understood problems due to its multifactorial etiology. The syndrome is generally believed to be caused by an untoward interplay between the neuromusculature, psychology, temporomandibular joint and occlusion.

Since none of the theories gave a total explanation of all the aspects involved in the clinical picture of the syndrome, efforts have been put by various workers to find a cause and effect relationship of the same. That certain anatomic variations may predispose a patient to develop Myofacial pain dysfunction syndrome was suggested by Sickels and Ivey (1979) [1]. T.M. Graber [2] tried to relate bruxism associated with over-bite as a contributory factor for TMJ problems. V. Sassouni [3] in his classification of facial types stated that deep-bite patients have a square appearance from the frontal view and have strong masseter action. Correlating facial form with attrition A. Weinberger [4] had suggested that face form along with other factors played a major role in attrition and influenced facial growth. It is also known that dentofacial characteristics with different underlying variations are related to parafunctional oral habits leading to attrition. No comprehensive work has yet been undertaken to establish the relationship between Myofacial Pain Dysfunction syndrome and face form which may be a contributory factor to the overall symptom complex.

This study was undertaken to evaluate different face forms and certain physical characteristics as predisposing factors in Myofacial pain dysfunction syndrome and thereby demonstrate how knowledge of basic facial types would enhance the clinician’s ability to successfully diagnose and treat craniofacial disorders.
Materials and Methods

For the purpose of this study one hundred and three patients suffering from Myofacial Pain Dysfunction syndrome and attending the outpatient department of Dr. R Ahmed Dental College, Kolkata were selected. The patients were between the age range of 18–60 years, belonging to both sexes, having no developmental defects of oral and paraoral structures and possessing normal growth and development of facial structures. Patients having any history of trauma or presence of any systemic disease possibly affecting the masticatory system or the temporomandibular joint were not included in the study. Only such patients were selected who fulfilled one or more of the following criterias which are considered as cardinal manifestations of the disease.

1. Pain and tenderness in the temporomandibular joint and associated areas (Fig. 1).
2. Tenderness of the masticatory muscles.
3. Clicking or popping noise in the temporomandibular joint (Fig. 2).
4. Limitation of jaw movement unilaterally or bilaterally.

The subjects were seated on the dental chair and the nature of the experimental procedure explained to them in details. Their consent were taken prior to clinical examination and for recording different facial measurements.

The following occlusal features were examined intraorally and recorded in the history sheet.

a) Mandibular displacement from Retruded Contact Position (RCP) to Inter-Cuspal Position (ICP). The magnitude of movement of the mandibular incisors from RCP to ICP was assessed visually with the aid of a millimeter ruler in the sagittal plane. An observable anterior shift and/or lateral shift were recorded in the history sheet.

b) Presence of Balancing (Mediotrusive) contacts or interferences.

c) Nature of Occlusion – Group function or Canine guided.

d) The Maxillo-mandibular molar relation according to Angle’s classification.

To assess the severity and degree of dysfunction of the disease M. Helkimo’s [5] clinical dysfunction index was used as follows:

Score	Description	
A.	Range of mandibular movement measured at incisors	
1.	Normal range of movement (Maximum opening ≥ 40 mm; and horizontal movement ≥ 7 mm)	0
2.	Slightly impaired movement (Maximum opening 30–39 mm and horizontal movement 4–6 mm)	1
3.	Severely impaired movement (Maximum opening < 30 mm and/or horizontal movement 0–3 mm)	5
B	Temporomandibular joint function	
1.	Smooth movement without TMJ sounds, mandibular deviation on opening or closing < 2 mm	0
2.	TMJ sounds in one or both joints or mandibular deviation ≥ 2 mm on opening or closing	1
3.	Locking or luxation of the TMJ	5
C	Muscle pain	
1.	No tenderness to palpation in masticatory muscles	0
2.	Tenderness to palpation in 1–2 palpation sites of masticatory muscles	1
3.	Tenderness to palpation in 3 or more palpation sites of masticatory muscles	5
D	Temporomandibular joint pain	
1.	No tenderness to palpation	0
2.	Tenderness to palpation laterally	1
3.	Tenderness to palpation posteriorly	5
E	Pain on movement of the mandible	
1.	No pain on movement	0
2.	Pain on one movement	1
3.	Pain on 2 or more movements	5
Total Score: ___________ Points (Determined as per above examination)

DYSFUNCTION INDEX

Grades	Score
D₀ Dysfunction Group No. 0	0 points
Clinically symptom free	
D₁ Dysfunction Group No. 1	1–4 points
Mild dysfunction	
D₂ Dysfunction Group No. 2	5–9 points
Moderate dysfunction	
D₃ Dysfunction Group No.3	10–25 points
Severe dysfunction	

The clinical examination carried out under this index was as follows:

I. Range of mandibular movement
 (a) Vertical (Fig. 3).
 (b) Horizontal (Fig. 4).

II. Temporomandibular joint function.

III. Muscle Pain (Figs. 5 and 6).

IV. Temporomandibular joint pain.

In order to determine the facial form of the individual clinically M. Kollmann (1892) and H.P. Bimlar’s (1958) [3, 10, 11]. Suborbital facial types viz Euryprosopic, Lepto-prosopic and Mesoprosopic was used. The following reference points were marked on the face with an indelible pencil.

Nasion: The deepest point in bony profile between the frontal and nasal bones on the midline.

Gnathion: The lowest anterior point along the lower border of the mandible in the midline.

The midpoint of tragus of right and left ears were also marked.

Distance between nasion and gnathion was denoted as ‘H’ and the distance between tragus of both sides were denoted as ‘L’. These distances were measured in mm. by a modified Vernier slide callipers (Fig. 7).

The ratio of the vertical and horizontal component of face for determining face form was calculated by the equation H/L × 100 (Figs. 8 and 9).
When the value of the equation was more than 90 it was called Leptoprosopic, when it was within 84.9 it was called Euryprosopic and when the value varied between 85 and 89.9 the face form was termed Mesoprosopic.

All the factors which were examined were subsequently tabulated and each factor was compared with the degree of dysfunction to establish a correlation between them. The data thus obtained was analysed statistically for results.

Statistical Analysis

In the present study for statistical analysis of the data the following parameters were used.

1. The mean (X) of each parameter was calculated.
2. The standard deviation (S. D.) was drawn out.
3. The standard error (S.E.) was obtained.
4. Student t test was used to analyse the significance of the dysfunction in relation to various parameters.
5. χ^2 test was used to assess the significance of distribution of the subjects in relation to the degree of dysfunction.

Results

The frequency distribution of subjects in different categories ranging from mild dysfunction (D, I) to severe dysfunction (D, III) is shown in Table 1. After statistical analysis the distribution and occurrence of cases in relation to the three dysfunction indices were found to differ significantly (χ^2 test with 2 of freedom (df) = 31.77 $P < 0.001$, Table 2).

Table 3 shows the mean degree of dysfunction and frequency distribution of subjects with different face forms. To analyse the degree of dysfunction of subjects with different face forms, student t test was done of the mean scores in each category of face form. The average score of dysfunction of subjects with Euryprosopic face form (3.963) is slightly higher than Leptoprosopic subjects (2.600). But the score of subjects with Mesoprosopic face form (6.676) is significantly higher than both Euryprosopic and Leptoprosopic face form subjects ($t = 3.39$, df = 96; $P < 0.05$ and $t = 2.31$, df = 74, $P < 0.05$). The same manner of scoring was also found in each of the individual dysfunction index groups.

Table 4 shows the degree of dysfunction and the number of cases having the presence or absence of attrition. Statistical analysis shows this distribution of attrition positive cases to be significantly higher than attrition negative cases ($P < 0.001$). It is also seen from the table that the mean score of attrition positive cases is 6.345, which is significantly higher than the mean score of attrition negative cases which is 2.625 ($t = 3.923$; df = 101; $P < 0.05$).

The comparative evaluation of Angle’s classification of malocclusion with the degree of dysfunction is shown in Table 5. χ^2 test in Table 6 shows that the distribution of cases in the three dysfunction indices do not differ significantly between the various types of occlusion ($\chi^2 = 2.519$; df = 4; $P > 0.50$).

Table 7 shows the distribution and degree of dysfunction according to the type of tooth guidance. χ^2 test (Table 8) showed significant results ($\chi^2 = 24.13$, df = 6, $P < 0.001$) in variations in distribution of cases in the different degrees of dysfunction and the type of occlusion (tooth guidance).
The frequency distribution and degree of dysfunction according to the distance from RCP to ICP in the sagittal and horizontal plane is shown in Tables 9 and 10. The mean score of cases having RCP-ICP distances more than 2 mm is significantly greater than the mean score of cases having RCP-ICP distance between 1 and 2 mm and less than 1 mm. In the lateral component of slide the difference of mean score is statistically significant only between the subjects having a slide of more than 1 mm and subjects having a slide from 0.5 to 1 mm.

Discussion

The purpose of this study was to evaluate the relationship between the degree of dysfunction of the TM joint with different types of face form and with certain occlusal factors. The face form was evaluated directly from measurements made on the patient’s face. The highest number of cases (55) accounting for 53.4% of the total are found in dysfunction index II (DII) & the results were statistically significant ($P < 0.001$). The low number of cases in dysfunction index III (DIII, severe dysfunction) may be due to the need for medical intervention and treatment at the stage of moderate degree of severity thereby preventing further aggravation of symptoms.

The results obtained following comparison of face form with the degree of dysfunction indicate that facial morphology and activity of the masticatory muscles influence the degree of dysfunction of the Temporomandibular joint. The results finds support from the work of J.E.V. Sickles and D.W. Ivey [1] who found that individuals with square shaped faces and well developed masseter muscles had an anatomic variation of overclosure with secondary Myofacial pain dysfunction syndrome A. Weinberger (1955) [4] had stated that attrition occurs due to dysfunctional or non-masticatory habits. He suggested that attrition had a direct relationship with the facial contour and was highest in subjects with square type of face from. R.A. Pertes [6] also stated that there was high activity of masticatory

Table 1	Frequency distribution of subjects according to dysfunction										
Di	DII	DIII									
Total score	Mean score	SD	No. of males	No. of females	No. of cases	Total score	Mean score	SD	No. of males	No. of females	No. of cases
39	14.778	3,383	17	22	39	37.86	17	17	37.86	39	37.86

Table 2	Contingency table showing distribution of subjects according to dysfunction for determination of χ^2 test			
Frequency	DII	DIII	DIII	Total
Observed (O)	39	55	9	103
Expected (E)	34.33	34.33	34.33	103
$(O - E)^2/E$	0.6343	12.4401	18.6926	

$\chi^2 = 31.77, \ df = 2, P < 0.001$

D_i degree of dysfunction
Table 3 Degree of dysfunction according to face form

Sl. no.	Face form	D1	Sum of score	Mean score	S.D.	D2	Sum of score	Mean score	S.D.	D3	Sum of score	Mean score	S.D.	Total	Sum of score	Mean score	S.D.
1.	Mesoprosopic	19	51	2.684	1.057	44	301	6.841	1.311	8	122	15.250	3.284	71	474	6.676	3.894
2.	Euryprosopic	16	39	2.438	1.031	10	57	5.700	0.823	1	11	11.000	3.963	27	107	3.963	2.312
3.	Leptoprosopic	4	7	1.750	0.957	1	6	6.000	–	5	13	2.600	2.074				

D, degree of dysfunction, SD standard deviation

Table 4 Degree of dysfunction according to presence or absence of attrition

Sl. no.	Attrition	D1	Sum of score	Mean score	S.D.	D2	Sum of score	Mean score	S.D.	D3	Sum of score	Mean score	S.D.	Total	Sum of score	Mean score	S.D.
1.	Presence	26	71	2.731	1.002	52	348	6.692	1.292	9	133	14.777	3.383	87	552	6.345	3.716
2.	Absence	13	26	2.000	1.000	3	16	5.333	0.577	16	42	2.625	1.628				

D, degree of dysfunction, SD standard deviation
muscle during chewing and closing in centric occlusion in deep-bite patients indicating strong muscles of mastication. Machenna and Turker (1983) stated that maximum bite force is only developed at an optimum length: tension ratio of a muscle. The balance between the ratio of height and width which is present in mesoprosopic face form probably results in greater bite force and attrition thereby leading to masticatory muscle spasm and TMJ dysfunction.

The results of the degree of dysfunction of subjects in relation to presence or absence of attrition shows that while attrition positive cases have a mean score of 6.345; attrition negative cases have a mean score of 2.625. Severe dental wear alone and in combination with abnormal overbite was found to have a positive correlation to dysfunction symptom by M.A. Lieberman, E Gazit et al. (1985) [7]. I.E. Eriksson et al. (1987) [8] also found increased dental wear in all age groups having mandibular dysfunction. Thus the results obtained in this study justify the findings of previous workers.

In this study though Class I cases have the highest mean score it may not bear any direct significance as an etiological factor as Class I maloclusion is more prevalent in the general population compared to Class II or Class III.

The type of tooth guidance compared to the degree of dysfunction reveals that subjects having mediotrusive interferences had the highest mean score of 8.619. In this study though the mean score of cases having interferences is high but the number of cases in this group is low. Hence it can be concluded that this form of occlusal disturbance may be of etiological significance only in a small group of patients, and is not very conclusive.

The results of the comparison between degree of dysfunction and distance from RCP to ICP in sagittal and
horizontal planes shows that though the mean score of dysfunction of cases having sagittal RCP-ICP distance greater than 2 mm & lateral distance greater than 1 mm have the highest mean score the number of cases are the least in both the groups. Hence on the basis of these findings it cannot be concluded that such factors constitute a common cause of TMJ dysfunction. A.G. Pullinger et al. (1993) [9] also stated on the basis of their findings that though occlusal parameters contributed to the disease process it could not be considered as the unique or dominant factors in defining Temporomandibular disorder population.

Summary and Conclusion

With the limits of this study and on the basis of the results obtained it can concluded that

1. Face form plays a significant role in the degree of dysfunction and it is highest in subjects with mesoprosoptic face form.
2. Patients having presence of attrition had a higher degree of dysfunction.
3. Morphological malocclusion based on Angle’s classification did not have a decisive sole in determination of the degree of dysfunction.
4. Functional occlusal discrepancies in the form of mediotrusive interferences and severe RCP-ICP slides produced higher degree of dysfunction but were restricted to a small number of cases. It therefore has limited etiological significance in determining the severity of dysfunction.
Table 9 Degree of dysfunction according to RCP-ICP (Sagittal) distance

Sl. no.	RCP-ICP distance (mm)	Dj, I		Dj, II		Dj, III		Total									
		No. of cases	Sum of score	Mean score	S.D.	No. of cases	Sum of score	Mean score	S.D.	No. of cases	Sum of score	Mean score	S.D.	No. of cases	Sum of score	Mean score	S.D.
1.	0–<1	34	90	2.647	1.012	33	215	6.515	1.202	67	305	4.552	2.231				
2.	≥1–<2	5	7	1.400	0.548	19	128	6.737	1.408	3	49	16.333	5.033				
3.	≥2	3	21	7.000	2.000	6	84	14.000	2.449	9	105	11.667	4.123				

Di, degree of dysfunction, SD standard deviation

Table 10 Degree of dysfunction according to RCP-ICP (lateral) distance

Sl. no.	RCP-ICP distance (mm)	Dj, I		Dj, II		Dj, III		Total									
		No. of cases	Sum of score	Mean score	S.D.	No. of cases	Sum of score	Mean score	S.D.	No. of cases	Sum of score	Mean score	S.D.	No. of cases	Sum of score	Mean score	S.D.
1.	0–<0.5	37	94	2.541	1.043	42	272	6.476	1.254	79	366	4.633	2.278				
2.	≥0.5–<1	2	3	1.500	0.707	11	79	7.182	1.471	4	60	15.000	4.899				
3.	≥1	2	13	6.500	0.707	5	73	14.600	2.191	7	86	12.286	4.348				

Di, degree of dysfunction, SD standard deviation
References

1. Sickels JEV, Ivey DW (1979) Myofacial pain dysfunction: A manifestation of the short-face syndrome. J Prosthet Dent 42(5):547–550
2. Graber TM (1969) Overbite—the dentists challenge: J Am Dent Assoc 79:1135–1145 cited from New York State Dent J 1985: 570–578
3. Sassouni V (1969) A classification of skeletal facial types. Am J Orthod 55(2):109–123
4. Weinberger A (1955) Attritioning of teeth. Oral Surg Oral Patho Oral Med 8:1048–1059
5. Helkimo M (1974) Index for anamnestic and clinical dysfunction and occlusal state: Swed Dent J 67:101 cited from J Prosthet Dent 1983:49(3):398
6. Pertes RA (1985) A review of vertical facial types and cranio-mandibular disorders: New York State Dent J 570–578
7. Lieberman MA, Gazit E, Fuchs C, Lilos P (1985) Mandibular dysfunction in 10–18 year old school children as related to morphological malocclusion. J Oral Rehabil 12:209–214
8. Eriksson IE, Ingervall B, Carlsson GE (1983) The dependence of mandibular dysfunction in children on functional, morphologic malocclusion. Am J Orthod 83(3):187–194
9. Pullinger AG, Seligman DA, Gornbein JA (1993) A Multiple regression analysis of the risk and relative odds of temporomandibular disorders as a function of common occlusal features. J Dent Res 72(6):968–979
10. Zwemer JT, Lorber RM (1976) An annotated atlas of facial analysis. Dent Clin North Am 20:641
11. Collett AR, West VC (1993) Terminology of facial morphology in the vertical dimension. Aust Dent J 38:204–209