Cosmological Constant, Classical ”Vacuum” and Special Relativity
(From the Lorentz boost to the Milgrom Acceleration)

Yves Pierseaux (ypiersea@ulb.ac.be)

May 26, 2009

Abstract

VERSION 1 (results) We show that Cosmological Constant Λ is not optional in GR (general relativity) because it is required by SR (special relativity). This completely unexpected result is obtained by introducing a minimal acceleration $\alpha = \sqrt{\Lambda}$ (Milgrom) in Einstein boost with Lorentz Transformation (LT). We prove that hyperbolic rotation (LT) is an hyperbolic motion with a centrifugal acceleration. In Cosmological SR with Λ (CSR or CR), the universe is not only in expansion (with the law of Hubble) but even in accelerated expansion (cosmological parameter $q = -1$). In CR the constant Λ is naturally associated to the bending of light (Ishak and Rindler). Given that the structure of space-time in Einstein’s GR is determined by the presence of matter and Λ is associated to the absence of matter, we associate Λ not to ”quantum” vacuum but to classical ”vacuum” of Minkowski’s space-time. Finally we show that 1917 Einstein’s Cosmological Constant Λ corresponds to 1906 Poincaré’s non-electromagnetic negative pressure and we deduce density of Poincaré’s relativistic fluid.

VERSION 2 (methodology)

In §1 we switch the scale radius factor $a(t)$ of Friedman-Lemaître in the second member of Lorentz invariant $x^2 - t^2 = a^2 = H^{-2} = \alpha_M^2 = \Lambda^{-1}$ ($c = 1$, H is Hubble constant and α_M is Milgrom’s acceleration).

In §2 we sum up Einstein-Born-Rindler (EBR)’s model of acceleration in SR. EBR’s rigid motion is induced from non-relativistic rectilinear uniformly accelerated motion.

In §3 we propose another relativistic theory of acceleration induced from non-relativistic uniformly circular accelerated motion given that Euclidean rotation (centripetal acceleration) must be replaced by Hyperbolic Rotation motion (centrifugal acceleration). This new theory of acceleration in Lorentz boost involves not a rigid motion but an elastic expanding motion. We introduce a new symmetry in Minkowski’s basic diagram of (scale) hyperbolas by adopting a new definition of invariant proper distance in such a way that the LTed proper distance be a dilated distance (symmetrically with invariant proper time). By giving up Einstein’s definition of length contraction, Minkowski’s calibration hyperbola (Passive LT) and Born’s acceleration hyperbola (Active LT) become identical.

In §4 we introduce a basic minimal acceleration (Milgrom) in Lorentz boost with fundamental emission of radiation (CBR). By renormalization of Minkowski’s metric, we show that classical ”vacuum” is perfectly compatible with an expanding universe (Bondi’s factor k) where the Hubble radius $a = R_H$ is an hyperbolic horizon. CR is distinct from the ”Doubly Special Relativity” (DSR) approach, in that it does not look for a new invariance group adapted to Einstein’s definition of distance, but for a new definition of distance, adapted to the LT.

FIGURES We suggest a geometrical version of this paper with 5 figures. The principle of correspondence circle-hyperbola (PCCH) is deeply inscribed in Hyperbolic rotation (LT). This principle is valid for physical uniformly accelerated circular motion $a = \frac{v^2}{r}$ and uniformly accelerated hyperbolic motion $\alpha = \frac{c^2}{X}$. Both motion have a center but if the first one is centripetal, the second one is CENTRIFUGAL.

1 Cosmological constant as second invariant in CSR (or CR)

Let us consider fundamental hyperbolas along Ot and Ox in Minkowski’s space-time (at one space dimension with the axis, x, t of system K with light velocity $c = 1$). The two hyperbolas determining the units of measure $(x^2 - t^2 = \pm 1)$ are called hyperbolas of scale or calibration ([H. Minkowski 1908]). We focus the attention on the along Ox hyperbola defined with invariance of space interval by a passive Lorentz Transformation (PLT) (5) $x' = O'P' = O'P'$ ($t' = 0$) (Fig1, light asymptotes and standard representation of primed axis x', t' ”in scissors” or hyperbolic rotation of system K').
\[x^2 - t^2 = x'^2 \quad (t' = 0, \text{calibration hyperbola}) \quad x^2 - t^2 = 0 \quad (\text{standard metric asymptotes}) \quad (1) \]

Given that \(x' \) (the hyperbolic radius of curvature) can be as large as we wish, the calibration hyperbolas disappear at the infinity and we have only one invariant \(c = 1 \) in standard configuration. Let us however note that, only the finite interval involves, according to Minkowski, that "space by itself and time by itself are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality". Indeed an "infinite" interval \((x^2 - t^2 = \infty, \text{see } 21) \) should mean that the independent space is given for any \(t \) and therefore the return of the shadow (Absolute Space \(Ox, \forall t \)). In order to stay in relativistic configuration suppose now that we have a very small but non null constant \(\Lambda \neq 0 \) in such a way that

\[R_C^2 = x'^2 = x^2 - t^2 \to \infty \quad x^2 - t^2 = \Lambda^{-1} \quad c = 1 \quad (2) \]

Such a reformed Minkowski’s metric no longer is flat because we have an hyperbolic global curvature \(\varrho_h = \frac{1}{\Lambda} \). In this case we have a constant radius \(R_C \) of the universe and therefore a static universe incompatible with the observed universe "in dilation". However, by the same argument with the other hyperbola (Out), we could claim that we should have an observed dilated time (in K, Fig1) of Universe (see §3.4).

Let us now underline that the right branch \(x > 0 \) of Ox hyperbola \((t' = 0) \) can also represent a worldline of an uniformly \((\alpha)\) accelerated particle \(P' \). According to Rindler (Fig2, [W. Rindler (1966)])

Consider a rod of arbitrary length resting along the \(x \) axis of Minkowski space. A time \(t = 0 \) we wish to give one point of the rod a certain constant proper acceleration and we want the rod as a whole to move rigidly, i.e. in such a way that the proper length of each of its infinitesimal elements is preserved. It turns out that each point of the rod must then move with a different though also constant proper acceleration, the necessary acceleration increasing in the negative direction and become infinite at a well-defined point of the rod; the rod can evidently not to be extended beyond or even quite up to that point, since an infinite proper acceleration corresponds to motion at the speed of light. If we arrange things so that this cutoff point lies originally at the origin the equation of motion of the point originally at \(x' = X \) is (2) We take \(X \) as a convenient spatial coordinate on the rod.

\[x^2 - t^2 = X^2 = \alpha^{-2} \quad (t' = 0, \quad X > 0) \quad x^2 - t^2 = 0 \quad (x > 0) \quad (3) \]

(end of quotation). Born’s rigid motion suppose a set of hyperbolic worldlines of points belonging to a rigid rod \(x' = O'P' = X \). This basic motion with constant interval, is induced by successive ALT (Active Lorentz transformation, §2.2) which boosts the particle fixed in \(K' \) (the rigid rod) to a larger velocity. Given that in standard configuration the proper acceleration \(\alpha \) can be as small as we wish \(\alpha \to 0 \) and so the hyperbola disappears at the infinity\(^1\); it only remains the light cone that defines the standard Minkowski’s metric with only one invariant With \(a = \gamma^3 \alpha = 0 \) (14), the geodesics are straight lines in flat standard Minkowski’s metric. However in special relativity (§3.2) the acceleration is a spacelike four-vector whose norm must necessarily be larger than zero \(\alpha > 0 \). Suppose now the existence of a minimal acceleration \(\alpha_M \) (3) which corresponds to the relativistic inexistence of an infinite interval (2).

\begin{align*}
\text{(left side)} \quad \frac{1}{R_H^2} = \varrho^2 = \Lambda &= \alpha^2_M = H^2 \quad \text{(right side)} \quad (c = 1) \quad (4)
\end{align*}

where \(R_H \) is the observable radius of Hubble and \(\alpha_M \) is the observable acceleration of Milgrom ([M. Milgrom]). We rediscover the empirical standard values of constants \(x^2 - c^2 t^2 = \frac{c^4}{\alpha^2} = R_H^2, \quad (c = 3.10^8 m/s, T_H \approx 3.10^{17} s, \quad \alpha_M = 10^{-9} m/s^2 \) [M. Milgrom MOND]). The cosmological constant \(\Lambda = \frac{1}{R_H^2} \), standard value defined by static 1917 Einstein’s model) is a second invariant in our new SR which connects two previously independent empirical quantities \(R_H = cT_H \) and \(\alpha_M \). This new completed SR that we suggest to call "Cosmological (special) Relativity" (CR) introduces in physics a scalar field of acceleration \(\alpha_M \) that is non-gravitionnal because the fundamental acceleration depends on the distance and not on the square of the distance.

The constant \(\Lambda \) can be see either from the left side or the right side of equations (4).

In the first case (left side) we have a geometrical interpretation: the geodesic is no longer a straight spacetime world line but an hyperbolic spacetime worldline that can be connected with hyperbolic trajectories of

\(^1\)We underline that in cosmology Minkowski’s metric is characterized by the disappearance of Minkowki’s calibration hyperbolas. Only the asymptotes survive to the extinction (only one invariant). So Minkowski’s metric is a non-calibrated metric (see equation 21 renormalized by 34).
Pioneer sounds ([J. D. Anderson and all]). Exactly as in Euclidean geometry R^{-1} represents the global constant curvature of circle, $\varrho = R_H^{-1}$ represents in Minkowskian geometry the global constant curvature of the hyperbola. But the difference is that the radius r of the circle can be as great as we wish $r \to \infty$ (globally the curvature is zero) the maximal interval-distance is R_H in CR (globally the curvature is non-zero) The basic heuristic in CR is based on the relativistic transformation of circle into hyperbola (that is well known, Fig1) and therefore also on the relativistic transformation of non-relativistic circular uniformly accelerated motion (that is not very well known, Fig3). This “principle of correspondence ”circle-hyperbola” (PCCH) plays a basic role in our analysis (5 Figures).

In the second case (right side) we have not only a cosmological interpretation of Milgrom’s acceleration $\Lambda = \alpha^2_H$ ([L. Blanchet]) but also, very curiously, Hubble physical constant H ($c = 1 = \alpha_M$. The presence of this constant of expansion in (4) and therefore in (3 & 2) is very strange because Minkowski’s space-time is renowned incompatible with expanding universe. The fact that the Hubble radius is a constant ($R_H = R_C$) is not in contradiction with the observed expansion of the universe because we will prove that this radius is an hyperbolic horizon which involves the law of Hubble (37).

However there is a serious problem in CR because our theory is a purely logical building based on the identification (Fig1 & Fig2) between Minkowski’s hyperbola (PLT without explicit acceleration) and Born’s hyperbola (ALT, with an acceleration). This identification first involves the coincidence with O and O', center of rotation in both cases in CR ($\S 3$) does not correspond to the most sophisticated model of rigid motion ($\S 2$, according to Rindler the “end (O’) of rod is a photon”). Rindler’s representation of Einstein’s contraction involves that O' moves on the asymptote (its own infinite hyperbola) with respect to O. This is the reason why the two hyperbolas are generally not identified. Our identification involves a physical synthesis, based on hyperbolic rotation motion, between PLT and ALT and therefore the determination of a fundamental acceleration in Lorentz boost ($\S 4$).

2 Einstein-Born-Rindler’s rigid motion and Cosmology

Einstein introduced his theory of contraction of length in 1905 (second paragraph) by using rigid rods ([A. Einstein (1905)]). Born defined in 1909 the rigid motion of each points of Einstein’s rigid rod, by using accelerated hyperbolic motion of a particle ([M. Born]). Rindler found in 1966 an original metric in cosmology on the basis of Einstein-Born’s rigid motion in special relativity ([W. Rindler (GR)]).

2.1 Einstein’s contraction of rigid rod by PLT

Einstein considers two systems (rigid rods), K and K', in standard configuration. Lorentz Transformation (LT), at one space dimension is:

$$
x' = \gamma(x - \beta t) \quad t' = \gamma(t - \beta x) \quad (a) \quad x = \gamma(x' + \beta t') \quad t = \gamma(t' + \beta x') \quad (b) \quad (5)
$$

with instantaneous coincidence of $O \equiv O'$ at $t = t' = 0$ and space-time $c = 1$ units ”c = 1”, $\gamma = (1 - \beta^2)^{-\frac{1}{2}}$.

In Einstein’s paragraph 2 ([A. Einstein (1905)]), the system $K'(x' = O'P' = L)$ is in uniform translation with respect to the system K for any t ($t < 0$ and $t > 0$). Einstein uses a passive LT in order to define the length in K of a moving rigid rod $O'P'$ of K' with the simultaneity of two events $t = 0$ in K (the difference of space coordinate of two ends O' and P' of the rigid rod at the same time in K). By passive using of first LT ($5a$), we find the coordinates in K of O' and P', respectively for finite ($6a$) and differential length ($6b$):

$$
t = 0 \Rightarrow x = \gamma^{-1}x' \quad (x^2 = x'^2 - t'^2) \quad \text{global} \quad (a)
\begin{align*}
\frac{dx}{dt} = 0 & \Rightarrow dx = \gamma^{-1}dx' \quad (dx^2 = dx'^2 - dt'^2) \quad \text{local} \quad (b)
\end{align*}
\quad (6)

We note that Einstein’s contraction suppose $t = 0$ and not $t' = 0$.

2.2 Born’s rectilinear uniformly accelerated rigid motion by ALT

Let us summarize briefly Born’s procedure. In SR, the acceleration is not an invariant (a' and a) and only a proper constant acceleration in K' $a_{Born} = a'$ can be defined at the condition to do ”$v' = 0$” in the components...
of acceleration four-vector $A': \gamma'(\gamma' a'_x + \frac{dx'}{dt'}v', \gamma'^2 v'\frac{dv'}{dt'}c)$ (at one space dimension):

$$\frac{dx'}{dt'} = 0 \quad \text{and} \quad \gamma'(v') = 1 \quad \Rightarrow \quad \alpha = a' = \frac{dv'}{dt'} = \gamma^3(v) \frac{dv}{dt} = \frac{d(v\gamma)}{dt}$$

(7)

The comoving system with the particle P' is thus at each instant a new system, K', defined by successive ALT with $\gamma' = 0$ but $dv' \neq 0''$ ($dv' = \gamma^2 dv$) and with $\gamma' = 0$ but $dt' \neq 0''$. In each K system, the equation of the O'x' axis is $t' = 0$. The origin O' of successive K' is generally located in $P'(\text{Born})$; we will adopt the standard configuration (Rindler), by locating the particle P' at a distance $x' = X$ (Born-Rindler’s notations, W. Rindler (SR)) from O' in K' at the coordinate $x_0 = X$ in K ($t = t' = 0$). The differential equation ($c = 1$) is $\alpha dt = d(\gamma/\beta)$. A first integration is carried out with $\beta = 0$ at $t = 0$: $\alpha t = \gamma/\beta$ or:

$$\alpha dt = d(\gamma/\beta) \quad \Rightarrow \quad \beta = \frac{dx}{dt} = \frac{\alpha t}{\sqrt{1 + \alpha^2 t^2}}$$

(8)

A second integration yields $x = \frac{1}{\alpha} \sqrt{1 + \alpha^2 t^2}$ with $x_0 = \frac{1}{\alpha}$. And therefore the right branch of hyperbola:

$$x^2 - t^2 = x'^2 = \alpha^{-2} = X^2 (X \geq 0) \quad (a) \quad x = \gamma X \quad (b) \quad t' = t - \beta x = 0 \quad (c)$$

(9)

The accelerated hyperbolic motion is resolved by successive ALT into an infinity of instantaneous inertial motions (Fig2). This is Born’s definition of rigid motion of the rod: at each instant $t' = 0$, the entire rod (and the infinitesimal rigid rod $dX = dx'$) is at rest in its proper system K' (in Born-Rindler’s notations $X = \alpha^{-1}$). It is then impossible to separate the motion of the particle P' from the motion of the system K' (the rigid rod $O'P'$) that drags it along. In other words, it is impossible to separate successive ALT (succession of events) from successive boosts of systems K'.

EBR’s rigid motion is a relativistic interpretation of rectilinear non-relativistic accelerated motion which involves that the rod $O'P'$ is in motion with respect to the origin O. So in Rindler’s diagram (x,t) the end of the rod O' for $t > 0$ is in motion on its own infinite hyperbola (Fig2), i.e. the asymptote. We underline that EBR’s rigid motion is not correlated (PCCH, §1) with a rotation because in any rotation (including hyperbolic rotation) we have a center or a fixed point $(O' \equiv O)$. This is the reason why Rindler adopts a basic equation which result from differentiating for constant t, $\frac{dx}{dt} = X dt$, introducing Einstein’s contraction in rigid motion.

$$x = \gamma X \quad ("dilation" \text{ by } \text{ALT}) \quad x dx = \frac{X dX}{\gamma} \quad \Rightarrow \quad dx = \gamma^{-1} dX \quad (\text{contraction by } \text{PLT})$$

(10)

K’. The problem in Einstein-Born’s theory is that the entire rod $O'P'$ is defined at constant $t' = 0$ (simultaneity) and Einstein’s contraction supposes also ”at constant t'' (also simultaneity, Rindler’s representation with $P'K'$ Fig2). The quadratic form (6a) is not the quadratic form (9a): there is an asymmetry (Fig1). We underline that in Born’s theory the infinitesimal ”proper length” $dX = dx' (dt' = 0)$ appears ”as an invariant” exactly as Minkowski’s proper time $d\tau = d\tau$ $(dx' = 0)$ appears as an invariant (see note 3). But in standard SR this analogy must be limited because if the space interval defines a distance exactly as the time interval defines a duration, we obtain a dilation (9b) in both cases.

2.3 Rindler’s time parameter on rigid rod and cosmological non-Minkowskian metric

Rindler gives in 1966 a cosmological interpretation of Born’s theory. He focuses at first the attention on the fact that there is in each point of the rod a ”a different though also constant proper acceleration” but also on a singularity because the rigid rod (the ”proper length”) ”ends in a photon” (infinite acceleration $\alpha = \infty$). In order to develop analogy with Schwarzschild metric, Rindler then introduces a parameter T for observers with clocks on the rod (given that $t' = 0$):

It can be seen that the proper acceleration of the point X of the rode is $1/X$. Hence an observer at X feels a constant gravitational field of intensity $1/X$. The observers on the road can so synchronize their clocks that each sees all the other clocks neither gain nor lose relative to his own; each observer must simply speed-up his proper clock by a factor equal to the reciprocal of his coordinate X. Let T denote this new time.
With Rindler’s time parameter $T = \beta_H t$, the hyperbolic velocity and not the proper time $\beta_H = \alpha \tau$, one obtains a non-Minkowskian metric

$$\quad ds^2 = dx^2 - dt^2 = dX^2 - X^2 d\tau^2 = dX^2 - X^2 d\beta_H^2 \quad (a) \quad T = \alpha \tau \rightarrow \text{signature} (1, \ -X^2) \quad (b) \quad (11)$$

Ellis and Williams underline that Rindler’s metric $(1, -X^2)$ is based on “the boost-invariance of the proper length of the rod” or “boost-invariance of flat space-time” ([G. Ellis & R. Williams]). The fact that the “boost-invariance” involves a non-Minkowskian space-time is not consistent with the fact that the boosts in question are... Lorentz boosts. We need therefore a complete theory of ALT or Lorentz boosts (hyperbolic rotations). Rindler finally does not use the parameter τ because the proper time $\tau = \beta_H X$, in a state of acceleration of K' systems, is a different one in each point of the rod.

3 Theory of acceleration in Lorentz boost (Hyperbolic ROTATION Motion and synthesis PLT-ALT)

EBR refers to Einstein’s contraction (PLT, his paragraph 2) but not directly to Einstein’s boost (his paragraph 3). In other words EBR’s demi-hyperbola (Fig2) is not concentrated on the transition from 0-velocity to β-velocity (ALT) (Fig3). This is a natural interpretation of Born’s integral hyperbola which is deduced from a differential equation (8a) $\alpha d\tau = d(\gamma \beta)$ (unlike Minkowski’s hyperbola). We now focus the attention on the element of arc of hyperbola $P_0^0 P'$ (Fig3), i.e. on Einstein’s boost.

Einstein considers two systems K and K', at rest relatively with each other. He places a rigid rod in K, of length $L = O P$, and an identical rigid rod in K', of identical length $L = O' P'$ when both systems are at rest. Einstein then “boosts” the K' system at $t = t' = 0$, to bring it to a cruise speed of β; this calls for an acceleration. Einstein explicitly states (in 1907) that the eventual consequences of this acceleration α_{boost} on the $O' P'$ rod disappear in K' as soon as the velocity becomes uniform (a statement we do not question). Einstein however does not say anything about this acceleration and how to compute this acceleration α. Let us now develop into three successive phases (Fig3) a theory of acceleration in Einstein’s boost with ALT ($0 \to \beta$).

PHASE 1 The rod first is at rest ($v = \beta = 0$) for $t < 0$

PHASE 2 Then in $t = t' = 0$ the rod is submitted in each point to a constant acceleration α (arc of hyperbolic rotation $P_0^0 P'$).

The element of angle that subtends the element of hyperbolic arc is hyperbolic velocity

$$\quad d\beta_H = \alpha d\tau$$

PHASE 3 Finally at $t = \beta \gamma X > 0$, the rod reaches its cruise speed of β (tangent in P', M' is the intersection with asymptote).

The end of the rod, the particle P' (the end of the rod) is transported by an active LT from the point $P_0' (0, X)$ to the point $P'(\gamma X, \gamma \beta X)$ in K i.e.

$$\quad x^2 - t^2 = \alpha^{-2} = X^2 \quad (t \geq 0) \quad P(0) \rightarrow P(\beta) \quad \alpha_{boost}(P') = \alpha_{Born} \quad (ALT = \alpha LT) \quad (12)$$

Given that, in hyperbolic motion the particle P' and its proper comoving system $K'(O')$ are completely inseparable, α is therefore the acceleration in any Einstein’s boost $0 \rightarrow \beta$. Our new theory of Einstein’s boost of the rod $O'P'$ is exactly Born’s hyperbolic motion of particle P' if and only if we admit that O' coincide with O at $t = t' = 0$, for any velocity: $\forall \beta$ (this is not true with Rindler’s representation of contraction, see the contrast Fig1&2).

3.1 Hyperbolic Rotation motion with centrifugal (expanding) acceleration

Our theory of Einstein’s boost suppose that ALT must be consistent with PLT. Hyperbolic Rotation with $t' = 0$ is:

$$\quad x' = x \cosh \beta_H - t \sinh \beta_H \quad t' = t \cosh \beta_H - x \sinh \beta_H \quad (a) \quad (5-HR)$$

$$\quad x = x' \cosh \beta_H + t' \sinh \beta_H \quad t = t' \cosh \beta_H + x' \sinh \beta_H \quad (b)$$

$$\quad x' = x \cosh \beta_H - t \sinh \beta_H = \alpha^{-1} \quad t' = 0 \quad (a)$$

$$\quad x = x' \cosh \beta_H = \gamma \alpha^{-1} \quad t = x' \sinh \beta_H = t = \beta \gamma \alpha^{-1} \quad (b)$$

2Let us however think about the following “Gedanken Experiment”. Suppose a rigid rod $O'P'$ in prerelativistic kinematics at rest in the system K. If we push in $t' = 0$ the rod with a finite constant acceleration in O', instantaneously P' is in moving with the same finite constant acceleration. The two ends O' and P' of the rods are instantaneously boosted at the velocity β and therefore at the same Rindler’s time $T_{O'} = T_{P'}$. This instantaneity at distance however cannot be true in a completely relativistic kinematics.
In order to obtain this fundamental coherence (Fig1 & Fig3), we have to admit that $O'(\equiv O)$ (with $\alpha = \infty$) reaches instantaneously the $\beta - (or \beta_H)$-velocity (the center of hyperbolic rotation is the same):

$$P'(X) \xrightarrow{\text{Hyperbolic rotation (ALT)}} P'(\gamma X) \quad (a)$$

$$O \equiv O' \quad (\forall \beta, \forall t : t' = 0) \quad \text{Center of Rotation} \quad (b) \quad (13)$$

So the acceleration is clearly translated in hyperbolic motion by an elongation (13a) or extension of the space itself from the fixed point $O'(\equiv O)$ into $\gamma O'P'$ in K: Everything happens as if there was a fundamental "elastic" elongation γX of distance X. We suggest to call this motion "expanding motion". Given that, in non-relativistic rectilinear accelerated motion, the velocity is intrinsically non-constant, we admit a fundamental contrast (at one space dimension!) between a relativistic hyperbolic elastic motion ($\gamma^2 X$) and a non-relativistic circular motion ($\frac{v^2}{c^2}$) because we have in both cases (PCCH) a constant velocity (respectively v and c). In both cases (Fig3) we have also an acceleration in the direction of the center of the $O'(\equiv O)$: the center of the circle (13b) with constant distance (Euclidean orthogonality acceleration-velocity, §3-2) or the center of hyperbola (13b) with constant interval (Minkowskian orthogonality with velocity). In both cases O' does NOT move (in phase 2) with respect to O (unlike EBR, Fig2).

But if the acceleration in Euclidean rotation motion and Hyperbolic Rotation motion have the same direction, they have NOT the same sense: the former is centripetal and the latter is centrifugal (Fig3). So the basic expansion is inscribed in LT. Indeed the Principle of correspondence "circle-hyperbola" (PCCH) involves that the physical hyperbolic motion, induced by ALT, must be Hyperbolic rotation (LT), in geometrical meaning.

Elastic motion is not compatible with Einstein’s contraction in rigid motion and this is the reason why we have to give up Einstein’s definition of distance. In order to do that we have to define a passive use of LT that leads to a dilation of distance (13a). We will prove that the best way to precise Born’s "boost-invariance" of the distance is to bring invariance of proper distance into line with invariance of proper time (new symmetry in SR, §3-4).

3.2 Non-zero norm of space-like 4-vector acceleration

The essential physical data of the material point in pre-relativistic kinematics are given by the 3-vectors position \vec{r}, velocity \vec{v} and acceleration \vec{a}. In relativistic kinematics, these data are replaced by the space-temporal 4-vectors \vec{R}, \vec{U} and \vec{A}. The importance of the transition from 3-vector \vec{a} (pre-relativistic, a Galilean invariant) to that of a 4-vector \vec{A} is not underestimated. The essential characteristic of \vec{A} is that it is a space-time 4-vector, orthogonal, in the Minkowskian meaning, to the velocity 4-vector \vec{U}, which is time-like $: \vec{U} \ast \vec{A} = \vec{U} \ast \vec{A} = 0$.

We thus have the norms $\|\vec{u}\| = \|\vec{u}'\| < 0$ and $\|\vec{a}\| = \|\vec{a}'\| > 0$, that must be different from 0 (14), the zero norm being characteristic of a light-type 4-vector. In the general case of three space dimensions, the components of \vec{A}, $\gamma'(\gamma'\alpha' + 2\gamma'v'c), \gamma(\gamma'\alpha' + 2\gamma'v'c)$ describe the motion of a particle P' in K', which is also a motion in K. Let us restrict the 3-space dimensions problem to that of a single space dimension, in which case the space-time "4-vectors" become space-time 2-vectors $\vec{A}'(\alpha', \alpha') \xrightarrow{\text{LT}} \vec{A}(\alpha, \alpha')$. If the particle P' is now a rest (fixed) in K' ($v' = 0, t' = 0$) spacelike 4-vector becomes 2-vector acceleration ($a = \frac{dv}{dt}, \alpha = a' = \frac{dv}{dt}$) and invariant norm of acceleration becomes proper acceleration:

$$\vec{A}'(\alpha, 0) \xrightarrow{\text{PLT}} \vec{A}(\alpha, \gamma\beta\alpha) \quad \|\vec{A}\| = \|\vec{A}'\| = \alpha \quad \alpha_{\text{Boost}} \neq 0 = \gamma^3 a \quad (14)$$

($a_x = \gamma^2 a + \beta a_t = \gamma^2 a + \gamma^2 \beta a = \gamma a \Rightarrow \alpha = \gamma^3 a$). In Fig3 the direction of acceleration along $O'x'$ must be permanently orthogonal (in Minkowski’s meaning) to the direction of velocity. The norm α of spacelike \vec{A}, the proper acceleration in any Lorentz boost, cannot be equaled to zero (definition of lightlike 4-vector).

3.3 Proper time on elastic rod and renormalization of Minkowskian metric

We now examine the phase of acceleration in order to deduce firstly in K the duration of acceleration $\Delta t_{P'}$ and, from the elongated distance, the distance of acceleration $\Delta x_{P'}$:

$$\Delta t_{P'} = \beta \gamma X_{P'} \quad \Delta x_{P'} = \gamma X - X = X(\gamma - 1) \quad (15)$$

with kinematics form $\alpha \Delta x_{P'} = \gamma - 1 = \frac{v^2}{c^2} + ...$ (Taylor) which corresponds to relativistic kinetic energy $mc^2(\gamma - 1)$ of the particle P'. We obtain a different duration of acceleration for any point X of the rod ($0 \leq t \leq \beta \gamma X$)
We now calculate, by a simple integration, this duration in proper time of the Lorentz boost because we have $t' = 0$ but $dt' \neq 0$ with $dx' = 0$ and with (8) (in Born-Rindler’s notation we have in our theory for Ox hyperbola: $dX = 0$, note 3)

$$\tau_{P'} = \int dt' = \int d\tau = \int_0^{t_{P'}} \sqrt{1 - \beta'^2} \, dt = \int_0^{t_{P'}} \sqrt{1 - \frac{\alpha^2 t'^2}{1 + \alpha^2 t'^2}} \, dt = \frac{1}{\alpha} \text{arcsinh} \alpha t_{P'}$$

(16)

The transition between 0 and β velocity will be shorter $\tau_{P'} (\approx \frac{1}{\alpha} \ln 2 \alpha t_{P'})$ in proper time in K' than in time of K: $\tau_{P'} < t_{P'}$. By using hyperbolic velocity

$$\beta_H = \ln \sqrt{\frac{1 + \beta}{1 - \beta}} = \alpha \tau_{P'}$$

(17)

(the well known parameter of rapidity) we rediscover the hyperbolic coordinates of Ox hyperbola ($t' = 0$)

$$t_{P'} = \frac{1}{\alpha} \sinh \alpha \tau_{P'} = \frac{1}{\alpha} \sinh \beta_H = \beta_R X \quad x_{P'} = \frac{1}{\alpha} \cos \alpha \tau_{P'} = \frac{1}{\alpha} \cos \beta_H = \gamma X$$

(18)

The proper time $\tau_{P'}$ in order to reach the cruise velocity is a different one in each point of the rod in the phase of acceleration (phase 2). We have therefore the joint between the second phase and the third phase, the second limit of integration (because $t' = 0$ but $dt' \neq 0$):

$$t' = 0 \text{ but } dt' \neq 0 \quad \implies \quad t' = t - \beta x = \tau - \beta_H X = 0$$

(19)

We rediscover the instantaneous $\tau_{O'} = 0$ for one end O' of the rod and the maximal proper time $t_{P'}$ for the other end of the rod. We have the following coupling for any Hyperbolic Rotation (HR) or any LT

$$d\beta_H = d\tau = \gamma^2 d\beta \quad (\text{a) differential hyperbolic angle}) \quad \beta_H = \alpha \tau \quad (\text{b) integral hyperbolic angle})$$

(20)

given that $\beta_H = \int d\beta_H = \int \alpha d\tau = \alpha \int_0^{t_{P'}} \sqrt{1 - \beta'^2} \, dt = \alpha \int_0^{t_{P'}} \sqrt{1 - \frac{\alpha^2 t'^2}{1 + \alpha^2 t'^2}} \, dt = \text{arcsinh} \alpha t_{P'} = \alpha \tau_{P'}$. Unlike Rindler (11, note 2) we admit that the proper time, defined by (19) is the fundamental parameter on the rod. Let us remark that in proper time basic equation is of first order whose solution is an exponential (33) at the condition that $\alpha \neq 0$. So with our parameter τ we obtain naturally a Minkowskian metric $(1, -1)$ in phase 2.

$$dt^2 - dx^2 = d\tau^2 - (dx' = 0)^2 = \alpha^{-2} d\beta_H^2 = \alpha^{-2} \quad \text{signature} \ (1, -1)$$

(21)

$$\alpha = 0 \implies d\beta_H = 0 \implies dt^2 - dx^2 = \infty = \alpha^2 \quad \text{(non relativistic)}$$

However we know that there is an hidden boost α behind the “arc of hyperbola” in Minkowski’s metric with ALT (Fig3). This unexpected result is geometrically obvious because if you take a point at rest and you apply a series of αLT between two limits of integration (basic equation 19) the successive points will be placed not a straight line but... on an arc of hyperbola. Let us note that in SSR the infinitesimal interval is undeterminate if $\alpha = 0$ (Minkowski’s standard metric is a non-calibrated metric and need a course of treatment (34) of renormalization (note 1))

3.4 Synthesis between PLT and ALT and coupling ”Born’s acceleration and Minkowski’s distance”

We come back now to Minkowski’s hyperbolas (beginning of this paper). We focus the attention on the demibranch (Fig1) of hyperbola $x^2 - t^2 = x'^2 = d^2 \ (x > 0, t \geq 0)$. The distance d is defined by the interval between two simultaneous events in $K'(t' = 0)$

$$\vec{R}'(d, 0)_{PLT} \rightarrow \vec{R}(\gamma d, \gamma \beta d) \quad \|\vec{R}\| = \|\vec{R}'\| = d \quad x = \gamma d$$

(22)

Obviously d in K is no longer a “distance”, in the usual meaning, but an interval. However, if we consider that a difference of space coordinates x in K defines a distance, then such a distance $x = \gamma d$ is defined between two non-simultaneous events in K (gap of simultaneity: $\gamma \beta d$). This is very interesting for astrophysical and cosmological distances §3-5). It is clearly a non-Einsteinian definition of (the dilation of) distance. However this new definition is induced from a perfect symmetry in PLT or in Minkowski’s hyperbolas when we replace
"events at the same place" by "events at the same time" in K' and "duration" by "distance" in K − K'. The duration D between "two events not at the same place" or the distance d between "two events not at the same time" is dilated in K ([Y. Pierseaux (2009)]). Both αLT and dLT induce a dilation of distance. Minkowski's and Born's arc of hyperbola (if d = X), are completely identical and so the couple (αBorn, dMinkowski)

\[
X_{\text{Born}} = d_{\text{Minkowski}} \quad \Rightarrow \quad d = \alpha^{-1} \quad \alpha LT = dLT
\]

has to be a fundamental relativistic couple. Unlike prerelativistic kinematics, in which there is no fundamental relationship between \(\alpha\) and \(\vec{f}\), there is a relativistic four-vectorial relationship ()

\[
(d, 0)(\alpha, 0) = \alpha_{\text{Born}}d_{\text{Minkowski}} = 1 \quad \vec{A}' \cdot \vec{R}' = \vec{U}^2 = c^2 = 1 \quad (b) \quad (24)
\]

We verify with \(\alpha t = \beta \gamma\) and \(\alpha x = \gamma:\vec{A}' \cdot \vec{R}' = (x, t)(\gamma \alpha, \gamma \beta \alpha) = \alpha^2 x^2 - \alpha^2 t^2 = \alpha^2 x^2 - \alpha^2 t^2 = 1\). The factor onehalf \(\frac{1}{2}(ad = \frac{1}{2}v^2 \Longrightarrow E = \frac{1}{2}mv^2)\) disappears in a relativistic theory (\(ad = c^2 \Rightarrow E = mc^2\)).

3.5 Emission of radiation, Poincaré’s definition of distance d and Doppler redshift

According to Rindler "the rod ends in a photon". But in Born-Rindler's theory a photon dispatched to chase the particle at \(t = 0\) from \(O\) never catch up with it because the acceleration remains constant. In our new theory of Einstein's boost, the acceleration stops in the third phase and there is an intersection \(M'\) between the tangent and the wordline of the photon. In CR, Einstein's boost is structurally an emitter of radiation and this emission is not independent of the definition of distance.

3.5.1 Synchronized clocks and length L (Einstein 1905): rigid system and rigid rod

In the \(K'\) inertial system, let us first consider Einstein's rigid rod \(O'M'\) at rest in K(of length L) with a source at \(O'\) and a mirror at \(M'\). A light signal is emitted from \(O'\) at \(t' = 0\), it is reflected in \(t' = \tau/2\) at \(M'\) and returns to \(O'\) at \(t' = \tau = 2L/c\), the "time out" \(\frac{\tau}{2}\) being equal to the "back time" \(\frac{\tau}{2}\). Einstein's clock synchronization uses three successive physical events,1.2.3; \(O'(0,0), 1), M'(L, \frac{\tau}{2}), 2, O'(0, \tau/3)\). He has synchronized the two clocks at the ends of the rod and defined the simultaneity of two events "at a distance". These two simultaneous events \((0, L, \frac{\tau}{2})\) and \((L, \frac{\tau}{2})\) respectively at \(O'(x_{O'} = 0)\) and \(M'(x_{M'} = L)\) are however not explicitly given in Einstein's paper (\(\tau\) represent here Minkowski's standard proper time).

3.5.2 Synchronous distance d (Poincaré 1908): abstract systems and light-distance

The same system is used, but without Einstein's rigid rod (given a priori) and with a single clock in \(O'\). We will suppose that the mirror \(M'\) is at rest in \(K'\) (a distant reflecting object) at an unknown distance. A light signal is emitted at \(O'\) at \(t' = 0\), reflected in \(M'\) in \(D\) (Duration) and returns to \(O'\) at \(t' = 2D\). The proper, "synchronous" distance \(d\) is defined by two simultaneous events in \(K'\):

\[
\text{simultaneity: } (0, D) \text{ and } (d, D) \quad (d = D)_{\text{Poincaré}} = \frac{1}{2} \tau_{\text{Minkowski}} \quad \text{(round trip)} \quad (25)
\]

The "synchronous" distance \(d\) may be measured by a single clock in \(O'\) (2D) with a round trip signal. Such a distance, measured by the light time of travel, is not a new technique. We can replace Einstein's rigid rod by "one half light travel time (two ways or round trip 2D) distance" with Bondi's radar method ([H. Bondi]).

We add a new element: the converse (Poincaré) interpretation of Einstein's synchronization involves also that the so formed distance \(d\) is transformed by \(LT \gamma d\) like the duration \(\gamma D\). In other words, \(d\) is a distance that is defined as the proper duration, and is thus the shortest in \(K'\). As a last analysis and from a historical viewpoint, Einstein's work is based on the direct theorem (the \(O'T'\) axis), while Poincaré's opened the way to the reciprocal (the \(O'x'\) axis or \(t' = 0\)). "This Lorentz hypothesis is the immediate translation of Michelson's experiment, if the lengths are defined by the time that light takes to travel through them" ([H. Poincaré 1908], [Y. Pierseaux 2008] & [Y. Pierseaux (2009)]). In the same way that "simultaneity at a distance" cannot be defined independently from the velocity of light, the distance itself may not be defined independently from this velocity. This proper distance \(d\) (events at the same time \(t' = 0\) in \(K'\)) then becomes an "invariant" of \(LT (x^2 - t^2 = d^2 = s^2)\) in the same sense as the proper duration \(D\) (events at the same place \(x = 0\) in \(K'\)) is an "invariant" of \(LT (t^2 - x^2 = \tau^2 = s^2)\). In summary Poincaré's proper length (hyperbola along \(Ox\)) is the exact symmetric of Minkowski's proper time (hyperbola along \((Ot)\); except the one-half \(\frac{1}{2}\) factor (two-ways) in (25)).
3.5.3 One way light travel distance and Bondi’s Doppler redshift factor (phase 3)

We remark now that the proportionality duration-distance, according to Poincaré’s basic elongated ellipse[H. Poincaré 1908], is also valid for ”one way” trip (without factor \(\frac{1}{2}\)). We have in K because when the phase of acceleration stops (phase 3), O’ is in motion with respect to O:

\[
\left(\sqrt{1 - \beta \over 1 + \beta}\right)_{\text{forth}} + \left(\sqrt{1 + \beta \over 1 - \beta}\right)_{\text{back}} = 2\gamma \quad (\text{round trip}) \quad d_{bkzck} = kd(= D)
\]

So the factor defining the distance by the travel time back is no longer \(\gamma \in [1, \infty]\) but famous Bondi’s factor \(k = \sqrt{1 + \frac{\beta}{1 - \beta}} = e^{\beta n} \in [1, \infty]\). Both factors are Lorentz factor \(\beta = \tanh \ln k = \frac{k^2 - 1}{k^2 + 1} \quad (\frac{1}{k} = \beta)\). However in Bondi’s theory, this factor is introduced in the transformation of the lengthwave and not the transformation of length itself: it is a Doppler factor. Given that, any one-way length is determined by the one-way light travel time, the transformation of length and wavelength are the same. In order to define the distance we must have a source in \(P’\). Suppose a monochromatic source of lengthwave \(\lambda’\) in \(P'(K)\). Observed at O in K we have the lengthwave \(\lambda\)

\[
\frac{d_{bkzck}(\text{reception})}{d(\text{emission})} = \sqrt{1 + \beta \over 1 - \beta} = \frac{\lambda(\text{reception})}{\lambda'(\text{emission})} = k
\]

We rediscover with Poincaré’s dilation of distance the same Doppler formula as Einstein’s one (longitudinally, the direct calculus with LT is very easy, [Y. Pierseaux (2009)]). But with the theory of Lorentz boost we have structurally a redshift (\(\beta_H = \ln k\) and not \(\beta_H = \ln k^{-1}\)). We suppose here that the acceleration stops (phase 3) and so we have (the derivation with respect of the proper time \(\tau\) is primed)

\[
\alpha = \beta_H' = \frac{k'}{k} = 0 \quad \Rightarrow k(\tau) = \text{cte}
\]

So in the framework of standard SR Bondi’s factor is not an expansion factor (a scale factor) because it does not depend of proper time (see CR). Finally, we remark also that the one-way outgoing signal is still not used until now.

4 Fundamental Lorentz boost, minimal acceleration and one-way maximal distance in CR

Now we are able to transform SR into CR (§1). Until now we have a fundamental relationship between acceleration in Lorentz boost (\(\alpha_{LT}\)) and distance (\(d_{LT}\)) defined by interval in Minkowski’s space-time (23). The cause of this acceleration is not inscribed in the structure of space-time and when the cause (the force) no longer acts (\(M'\)), the acceleration stops \(\alpha = 0 = \Lambda\) and we rediscover the standard SR with uniform cruise velocity or the straight line geodesic. In vacuum flat space-time we cannot place ”on the same plane” \((x, t)\) the ALT and the PLT. Without a fundamental acceleration \(a_{\text{min}}\) there is no Lorentz boost, no active LT, no hyperbola, and finally no complete SR. Without hyperbola, it remains the light cone, with only one invariant in standard SR. If we wish take into account the hyperbola, we have to consider the existence of a minimal (\([M. Milgrom]\)) acceleration in the ”vacuum”.

\[
a_{\text{min}} \neq 0 = a_{\text{boost}} \implies a_{\text{min}}d_{\text{horizon}} = a_M R_H = c^2 = 1 \quad \iff \quad x^2 - t^2 \to \infty
\]

The existence of \(a_M\) (24) involves the existence of a fundamental Lorentz boost structurally connected with an emission of radiation. Given that distance \(d\) is measured in lightyear, if we send a light signal towards a galaxy we cannot wait for the return of the light. Our new definition of proper distance \(d\) supposes the existence of a ”one way” (without one half) \(t' = D_{\text{one-way}}\) light travel time distance, i.e. a non-infinite including unit in hyperbola (2). The radius of Hubble \(R_H\) is precisely defined by the one-way travel lifetime \(T_{\text{one-way}}\) of the universe or time of Hubble \(T_H\) (emission CBR cosmological background radiation, or photons structurally boosted fifteen billions years ago(fundamental acceleration involves fundamental emission of CBR)). With Poincaré’s distance (25) we have: \((t = 0, \text{emission})\)

\[
\text{simultaneity: } (0, \quad T_H)_2 \quad \text{and} \quad (R_H, T_H)_2 \quad \text{with } R_H = T_H \text{ (one way)}
\]
Bondi’s mirror M' becomes Penzias-Wilson antenna, Fig5).

. So with the basic including hyperbolic unit we have now

$$d_{RH} = r < R_H \quad \text{or} \quad r = \varepsilon R_H \quad 0 \leq \varepsilon \leq 1 \quad (31)$$

We will show that $\varepsilon = \beta$. On the other side, the introduction of a minimal acceleration a_M involves the deletion of the third phase of cruise velocity: any body in the vacuum undergoes a basic $a_M = HR$. The sound Pioneer P' follows in curved space-time a geodesic which is a generalization of inertial principle

4.1 Milgrom’s acceleration and cosmological acceleration of expansion

What is the relationship between Milgrom acceleration $a_M = H$ ($c = 1$) and the parameter of acceleration q_0 in Cosmology? In other words what is the relationship with our constant Hubble radius R_H and the "ad hoc" scale factor in Friedmann’s metric (Robertson-Walker’s metric), generally noted $a(t)$ (with derivatives with respect to time, $\dot{a}(t)$ and with $q_0 = -\frac{a''}{a^2}$)? In CR this factor is naturally equal to $q_0 = -1$ because we have $a_M R_H = 1$. So we have then an accelerated expansion in SR. For the remote galaxies $r \lesssim R_H$ we obtain the same result with the law of expansion in k (factor of Bondi) $(1 + z)_{\text{Friedman}} = 1 + \beta + \left(1 + \frac{2}{3}\right)\beta^2 + ... = k_{CR} = \sqrt{1 + \beta} = 1 + \beta + \frac{1}{2}\beta^2 + ...$. So we have:

$$a_M = H(c = 1) \implies q_0 = -1 \quad (32)$$

Unlike in Robertson-Walker’s metric, we does not need an ad hoc factor in CR because Hubble constant H is now explicitly connected with the logarithmic derivation of expanding Bondi factor k in proper time (primed). Indeed fundamental equation is in CR is $H = \frac{d\beta}{dt}$ and so the contrast

$$H = \frac{\dot{a}(t)}{a(t)} \quad (\text{Friedman-Lemaitre}) \quad H = \beta_H = \frac{k'(\tau)}{k(\tau)} = \alpha_M \quad (\text{CR}) \quad (33)$$

because $k(0) = 1$ in the boost. And so the non null Hubble constant involves an exponential expansion compatible with hyperbolic constant horizon. In summary we have switched to the second member $dt^2 - dx^2 = a(t) = \text{Cte}$ Friedman’s scale factor $(dt^2 - a(t)dx^2)$ by transforming it into constant. Then we showed that the scale factor of expansion is Bondi’s factor k and we have therefore to discover a relationship between R_H and k (36).

4.2 Renormalized Minkowski’s metric, hyperbolic horizon and global Hubble’s law

The Lorentz boost describes the continuous transformation from any point of the elastic rod from the velocity 0 to β. The element of proper time $d\tau$ depends in CR on Hubble constant: With $\alpha_{\text{M in}}$ we have a renormalized Minkowski’s metric (21) by introducing a fundamental unit R_H

$$dt^2 - dx^2 = d\tau^2 = H^{-2}d\beta_H^2 = R_H^2 d\beta_H^2 \quad \frac{d\beta_H}{d\tau} = k' \quad (\text{LOCAL}) \quad (34)$$

Locally for $r \ll R_H$ ($\alpha >> \alpha_{\text{M in}}$) standard flat metric of SSR is still valid. Indeed locally the hyperbola becomes a parabola $x = \frac{c}{\alpha}(1 + \frac{2t^2}{\alpha^2} + ...)$ by transforming it into constant. Then we have the curvature of fundamental Milgrom’s (semi-branch of) hyperbola $\alpha = \varrho$ (Fig5).

$$x^2 - t^2 = R_H^2 \quad \beta_H = H\tau = \ln k \quad (\text{GLOBAL}) \quad (35)$$

Let us finally show that the geometry is hyperbolic in the meaning of Cayley and Klein.. With Cayley-Klein’s hyperbolic distance r_H induced from the cross-ratio formula is given by $r_H = r_h \arctan \frac{r}{r_h} = \ln \sqrt{\frac{1+\beta}{1-\beta}}$ where r, is a Cartesian distance smaller than r_h the horizon. We have from the global form $\tau_{p'} = \frac{1}{H} \beta_H = T_H \ln \sqrt{\frac{1+\beta}{1-\beta}}$
and therefore $\tau_{p'} = T_H \ln \sqrt{\frac{1+\frac{2 \xi}{R_H}}{1 - \frac{2 \xi}{R_H}}}$. With $\xi_{p'} = c \tau_{p'}(c = 1)$ and $R_H = c T_H$ ($c = 1$) ($\xi_{p'}$ is the proper distance) with element of proper distance $d\xi_{p'} = dx'$, we have a basic relationship between k and R_H

$$\tau = T_H \ln \sqrt{\frac{1+\frac{2 \xi}{R_H}}{1 - \frac{2 \xi}{R_H}}} = \ln k \quad \Rightarrow \quad \xi = R_H \ln \sqrt{\frac{1+\frac{3 R_H}{R_H}}{1 - \frac{3 R_H}{R_H}} = R_H \ln \sqrt{1+\frac{r}{P_H}}} \quad (36)$$

where k is the redshift Doppler factor of Bondi [H. Bondi]. This is the inverse form of (33). And so we deduced, with $r \leq R_H$ the law of Hubble ($0 \leq \beta \leq 1$)

$$\beta = H r \quad (37)$$

From integral form , we can therefore deduce globally the law of Hubble. In CR, like in Esher’s drawing, there is a constant hyperbolic horizon and an expanding universe with potentially infinite hyperbolic distances, ($x \rightarrow \infty$ or $\xi \rightarrow \infty$) in time t and proper time τ as well. Then Universe in CR (33-36) is not static but in "steady state"[H. Bondi]. Nothing is changed for a light point because we have obviously $ds^2 = d\tau^2 = dt^2 - dx^2 = 0$. Is the light sensitive to the curvature in CR or to cosmological constant Λ ([W. Rindler & M. Ishak (2007)]) Given that light follows in "vacuum" a straight line and that straight line is in CR hyperbolic straight line (with curvature), the answer is therefore positive.

5 Conclusion: Einstein’s cosmological constant and Poincaré’s negative pressure of the "vacuum"

Our main heuristic principle is the principle of correspondence non-relativistic and relativistic kinematics (PCCH). We have the theater of circular motion and the theater of hyperbolic rotation motion. The roles but not the actors are the same. Let us give an example. Who plays the role of angular velocity? We have the theater of circular motion and the theater of hyperbolic rotation motion. The roles but not the actors are the same. Let us give an example. Who plays the role of angular velocity $v = R \omega$? In uniform circular motion, unlike constant angular velocity ω (in standard units s^{-1}), linear velocity v depends on radius. In hyperbolic motion linear velocity depend on the radius $c = R_H H$ unlike Hubble constant (in standard units s^{-1}) which does not depend of distance (37) $\beta = r H$.

Last but not least: Who plays the role of the transcendental π in hyperbolic CR? The fundamental differential equation in CR, based on $a_M - HR$, is a first order equation (33-36). Thanks to $\Lambda \neq 0$ the solution is not trivial and CR is exactly the completely hyperbolic theory of hyperbolic rotation, i.e. for Lorentz boost with Milgrom’s acceleration. The circulant motion governed by π is replaced in CR by an expanding hyperbolic motion governed by e. This complete substitution characterizes the aesthetic superiority of hyperbolic geometry on the other non-Euclidean geometries [R. Penrose].

Einstein had introduced in 1917 the cosmological constant Λ in the first member of Einstein’s GR equation; if it is switched to the second member, as is now the general practice, it becomes a term independent from matter in the usual sense of the word. But what is the meaning of a constant, unrelated with matter, in a theory (GR) which by essence gives a structure based on matter to the space-time? We suggest, as a consequence, not to shift it from one member to the other, but to change its relativity in order to reinsert it into its natural "environment", in other words, in the "vacuum" space-time of Minkowski.

Nothing is changed with GR except that Λ must be introduced in Einstein’s equation. The cosmological constant, Λ, when it is written on the right side, introduces the constant global curvature of the universe ([E. Gunzig]), as distinct from all the other terms of Einstein’s GR equation, which correspond to the local curvature (defined by gravitation in each point of the space-time). The fact that the acceleration may not be null is not in contradiction with the local Riemann flatness of the pseudo-Euclidean space, as derived from the affine connection (the "Christoffel"), under the condition that Λ, defined by CR, be introduced into Einstein’s GR equation.

Our use of inverted commas in the title of our paper means that the classical "vacuum" is not really empty because there is a fundamental field that can be called "Poincaré’s relativistic aether" or "hidden relativistic fluid" or in "dark energy" (it’s the fashion). Given that nothing is changed between the relation with GR except that the cosmological constant is imposed by CR, we can determine thanks to Einstein’s GR, and more precisely from

3The element of proper distance $d\xi$ is connected by the other hyperbola Ot (Fig1). We have a perfect symmetry between proper time $d\tau = dt'$ and proper length $d\xi = dx'$ with the other (Ot) hyperbola $t^2 - x^2 = T_H^2$ and $d\xi^2 = dx^2 - dt^2$ if $d\xi = idr$.

11
Einstein’s static model of Universe, the very weak density of Poincaré’s fluid with Poincaré’s non-electromagnetic negative pressure ([H. Poincaré 1908])

\[\rho_{\text{hidden fluid}} = \frac{\Lambda_{\text{Einstein}}}{4\pi G} = -p_{\text{Poincaré}} \]

If Einstein is the author of the very well known \(E = mc^2 \), Poincaré is the author of the very unknown \(p = -\rho c^2 \) in the framework of LT. Einstein considered at the end of his life that the cosmological constant \(\Lambda \) in 1917 was his "greatest mistake". Maybe Poincaré thought also, at the end of his life, that his "greatest mistake" was keeping aether in his relativistic dynamics of 1906 (a relativistic aether but an aether)? According to our last formula, maybe both, the "old Poincaré" and the "old Einstein", were wrong. If we put Einstein's cosmological constant in his own relativistic kinematics without aether, we rediscover Poincaré’s relativistic aether (La "structure fine" de la Relativité Restreinte, [Y. Pierseaux 1999]). This is the irony of the history.

Acknowledgement 1 I thank "mon petit chou" Pascal Serrano

References

[H. Minkowski 1908] "Raum und Zeit", Cologne, Phys. Z., 20, 1909, 104-111. Teubner, Leipzig - Berlin, 5ème édition, 1923, 54 - 71.

[W. Rindler (1966)] "Kruskal space and the uniformly Accelerated frame", Am. J.of Physics, Vol. 34, Issue 12, December 1966, 1174-1178.

[W. Rindler (SR)] "Relativity. Special, General and cosmological", Oxford University Press, 2001.

[W. Rindler (GR)] "Introduction to special relativity", Oxford Science Publication.

[W. Rindler & M. Ishak (2007)] "The Contribution of the Cosmological Constant to the Relativistic Bending of Light Revisited", Phys. Rev. D 76, 043006 (2007) [5 pages]

[M. Milgrom] "A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass", Astrophys J., 270, 365-370, 1983.

[M. Milgrom MOND] "The MOND paradigm", arXiv:08013133v2[astro-ph] 3 Mars 2008.

[J. D. Anderson and all] "Study of the anomalous acceleration of Pioneer 10 and 11". Phys. Rev. D. 65, 082004 (2002)

[L. Blanchet] "Dipolar Dark matter and MOND", séminaire à l’ULB, invité le 23 février 2009 par B. Famaey.

[E. Gunzig] Que faisiez-vous avant le big bang? Odile Jacob, 2008, Paris.

[A. Einstein (1905)] "Zur Elektrodynamik bewegter Körper", Ann.d.Ph,17, p892-921,1905.

[M. Born] "Die theorie des Starren Elekctrons in Kinematics des RelativitätPrinzip", Ann. Phys, Band 30 (1909), 1-56.

[G. Ellis & R. Williams] "Flat and curved space-times", Oxford University Press, 2000.

[H. Poincaré 1908] "La dynamique de l’électron”. R. Gén. des Sciences Pures et Appl., 19, 386-402, 1908.

[Y. Pierseaux 2008] "La cinématique sous-jacente à l’ellipse de Poincaré”, C.R. Physique, n° 7-8, p921-929, 2007, Paris

[Y. Pierseaux 2004] "Einstein’s spherical light waves versus Poincaré’s ellipsoidal light waves”, An. F. de Broglie, vol 30, n°3 – 4, 2005.

[Y. Pierseaux (2009)] "Du boost de Lorentz à l’accélération de Milgrom", IIHE, 2009-01, ULB-VUB, Pleinlaan, 2, 1050 Brussels.
[Y. Pierseaux 1999] "La structure fine de la Relativité Restreinte, L’Harmattan, Paris, 1999.

[H. Bondi] "Assumption and Myth in Physical Theory", Cambridge University Press, 1967.

[R. Penrose] "The large, the small and the human mind", Cambridge University press, 2000.
FIG 1

Minkowski’s hyperbolas (scale or calibration hyperbolas, c=1)

Invariance of finite Interval or finite unit

Invariant proper duration D, $t^2 - x^2 = D^2$ and invariant proper distance d: $x^2 - t^2 = d^2$

The essence of Minkowski’s space-time is the transformation of prerelativistic circle into relativistic hyperbolas. However in physics the circle $x^2 + t^2 = d^2$ has no meaning. This principle of correspondence “circle-hyperbola” (PCCH) necessarily involves a transformation from two space dimensions into one space dimension. This is particularly true for uniform circular motion and uniform hyperbolic motion.

For the “space” along (positive) Ox scale hyperbola: To be or not to be a worldline?

(EUCLIDEAN CIRCLE)

The “space” along (positive) Ox scale hyperbola defines a distance d by two simultaneous events in K' ($t'=0$).

Einstein’s definition of contraction (Born-Rindler’s rigid motion, Fig 2) suppose two simultaneous events in K ($t=0$).

Minkowski's flat metric in COSMOLOGY is characterized by the complete disappearance ($d \rightarrow \infty$) of the along Ox hyperbola. Only the asymptotes survive to the extinction of hyperbola. So standard Minkowski’s “metric” is a “non-calibrated metric in “non-hyperbolic” standard SR (SSR, only one invariant). Minkowski's calibration hyperbolas: “$d \rightarrow \infty$” does not generate a relativistic invariant. The infinite interval is the Absolute Space in which geodesics are reckoned to be straight worldlines. The “vacuum” is empty. Global Minkowski’s scale hyperbola $x^2 - t^2 = d^2$ ($t'=0$) has nothing to do, at the first sight, with Minkowski’s element of metric $dt^2 - dx^2 = dt^2$ ($t'=0$)
Einstein-Born-Rindler’s rigid motion (EBR)
(hyperbolic uniformly accelerated motion of particle P’ or rigid rod O’P’=X)
(“Boost invariance” of rigid rod
Relativistic model of the non-relativistic RECTILINEAR ACCELERATED MOTION)

Hyperbolic worldline in parametric coordinates
\[x = \gamma X \quad t = \beta \gamma X \]
and Einstein’s asymmetry
\[x_{\text{Einstein}} = \gamma^{-1} X \]
Hyperbolic worldline in Cartesian coordinates
\[x^2 - t^2 = \alpha^2 = X^2 \]
and Einstein’s quadratic form underlying contraction
\[x^2 = x'^2 - t'^2 \]
Hyperbolic worldline in Hyperbolic coordinates
\[x = X\text{ch}\beta_H \quad t = X\text{sh}\beta_H \]
and RINDLER’s parameter of time \(T \) constant on rigid rod
\[T_{\text{RINDLER}} = \beta_H \]

Rindler’s boost invariance of “proper length” is not “on the same plane” as Lorentz invariance of proper time. PLT (uniform motion) and ALT (with acceleration) are not “on the same plane”. The former is basic whilst the latter is an application for particular case of constant acceleration.

\textbf{Let us suppose now that the acceleration on O’ stops at the time} \(t = \beta \gamma X \) (Fig 3).

Unlike Minkowski’s scale hyperbola in standard SR, Born’s hyperpola is deduced integration from a differential equation \(\alpha dt = d(\beta \gamma) \) by a double integration. We can also deduce \(\alpha \tau = \beta_H \) from \(\alpha dt = d\beta_H \) or from \((dt' = d\tau) \) \(d\tau^2 = dt'^2 - dx'^2 \) by a simple integration.
Principle of correspondence “circle-hyperbola” (PCCH): **Hyperbolic rotation (LT) is hyperbolic motion.** Acceleration with constant velocity (non-relativistic \(v\) and relativistic \(c\)) is towards either the center of the circle (Euclidean orthogonality) or towards the center of the hyperbola (Minkowskian orthogonality). In the first case it is **centripetal** (in blue) in the second case it is **centrifugal** (in red).

PHASE 3 CRUISE VELOCITY AND SYNCHRONOUS DISTANCE

PHASE 2 ARC OF HYPERBOLA—ACCELERATION

PHASE 1 (rest)

Center of Rotation \((t=t'=0)\)

\[O \equiv O'\]

FOR ANY \(\beta\)

1) Velocity of \(O'\) is transformed \(0 \to \beta\) instantaneously
2) emission of photon that determines the synchronous distance \(d\) (Fig 4) \(X=d\)

EUCLIDEAN ROTATION

‘Uniform Circular Motion (UCM)

\[d = \alpha^{-1}\]

TANGENT \((dx/dt = \beta)\)

HYPERBOLIC ROTATION

Uniform Hyperbolic Motion (UHM)

\[x' \equiv t' = t - \beta x = \tau - \beta_H x = 0\]

\[M'\]

\[P' (\beta)\]

ACTIVE LT or BOOST

\(0 \to \beta\) phase of acceleration \(\alpha\)

Arc of hyperbolic rotation

\[x^2 - t^2 = \alpha^{-2} = d^2\quad (0 \leq t \leq \beta y d)\quad d \to y d\]

To be or not to be zero for \(\alpha\)? Relativistic acceleration \(\alpha\) is a spacelike 4-vector whose norm is necessarily positive.
FIG 4

Minkowski’s proper time and Poincaré’s proper length
The reciprocal (Poincaré 1908) of process of synchronization of clocks (Einstein 1905)
“Two ways” or “round trip” light travel for distance d. (FACTOR γ)
“One way” light travel for distance horizon R_{H}
For one way distance $r < R_{H}$ we have the FACTOR k of BONDI

$O = O'$
EMISSION OF RADIATION IS USED TO DETERMINE DISTANT in K'
CsR has two invariants (c and $\Lambda = \alpha_m^2$). The Radius of Hubble R_H must be define by one-way light travel time (life time of Hubble T_H). Any distance r is defined by R_H, the unity (metric) of the Universe: $\beta = H \ r$ (the law of Hubble, $H=\alpha_m$, is the constant of Hubble)

In CR, the scale factor is Bondi’s factor k and the Hubble constant is defined, exactly as in Friedman’s model, by the logarithmic derivation of this expansion factor $\ln k = \beta_H$

$$H = \frac{k'(\tau)}{k(\tau)}$$

We represent remote galaxy by a “red star” (Bondi’s factor is Doppler’s redshift factor)

$$O = O'$$

Emission of radiation CBR

$$x^2 - t^2 = \alpha_m^{-2} = R_H^2 = \Lambda^{-1}$$

where Λ is the cosmological constant

This equation is “Lorentz invariant” for any observer in uniform motion in space-time vacuum with a global curvature

Note: “NOT TO BE” in the light cone is the characteristic of the other (doted) along Ot hyperbola. Unlike Milgrom’s word-line, which is integrated from an element of proper time $d\tau$, this hyperbola is integrated from an element of proper length $d\xi$
