Limits on Superconductivity-Related Magnetization in Sr$_2$RuO$_4$ and PrOs$_4$Sb$_{12}$ from Scanning SQUID Microscopy

Clifford W. Hicks,1,2 John R. Kirtley,3 Thomas M. Lippman,1,3 Nicholas C. Koshnick,3 Martin E. Huber,4 Yoshiiteru Maeno,5 William M. Yuhasz,6 M. Brian Maple,7 and Kathryn A. Moler1,3

1Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
2School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
3Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
4Departments of Physics and Electrical Engineering, University of Colorado Denver, Denver, Colorado, 80217, USA
5Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
6Department of Materials Sciences and Engineering, Ames Laboratory, Ames, Iowa 50011, USA
7Department of Physics, University of California–San Diego, La Jolla, California 92093, USA

(PACS numbers:)

We present scanning SQUID microscopy data on the superconductors Sr$_2$RuO$_4$ (T_c = 1.5 K) and PrOs$_4$Sb$_{12}$ (T_c = 1.8 K). In both of these materials, superconductivity-related time-reversal symmetry-breaking fields have been observed by muon spin rotation; our aim was to visualize the structure of these fields. However in neither Sr$_2$RuO$_4$ nor PrOs$_4$Sb$_{12}$ do we observe spontaneous superconductivity related magnetization. In Sr$_2$RuO$_4$, many experimental results have been interpreted on the basis of a p_x ± $i p_y$ superconducting order parameter. This order parameter is expected to give spontaneous magnetic induction at sample edges and order parameter domain walls. Supposing large domains, our data restrict domain wall and edge fields to no more than ~0.1% and ~0.2% of the expected magnitude, respectively. Alternatively, if the magnetization is of the expected order, the typical domain size is limited to ~30 nm for random domains, or ~500 nm for periodic domains.

Introduction

Sr$_2$RuO$_4$ is a highly two-dimensional, layered perovskite superconductor with T_c ≈ 1.5 K in the clean limit. Its in-plane coherence length is $\xi_{ab}(0) = 66$ nm [1], and magnetic penetration depth $\lambda_{ab} = 160$–190 nm [2–4]. On the Fermi sheet thought to be dominant for superconductivity (the γ-sheet) the electron mass is 16m_e (5.5 times the band mass) [1]. PrOs$_4$Sb$_{12}$ is a heavy fermion superconductor of cubic symmetry, with m^* in the range of tens of m_e [5–6]. Measurements of specific heat show an unusual double superconducting transition, with $T_{c1} \approx 1.86$ K and $T_{c2} \approx 1.70$ K [7–9]. The coherence length of PrOs$_4$Sb$_{12}$ is $\xi = 12$ nm, while muon spin rotation (μSR) measurements yield $\lambda(0) \approx 350$ nm [10–11].

Sr$_2$RuO$_4$ and PrOs$_4$Sb$_{12}$ both have unusual superconducting states. Strong evidence for either line nodes or deep gap minima, or both, in Sr$_2$RuO$_4$ comes from, e.g., RF [12], microwave [2] and specific heat measurements [13–14]. In PrOs$_4$Sb$_{12}$, RF and thermal conductivity measurements suggest point nodes [15], while μSR and Sb NQR show fully-gapped superconductivity (at ambient pressure) [16–21]. Nodes may exist on a small-gap band suppressed by modest applied fields [11]. Additional thermal conductivity measurements confirm multi-band superconductivity, but indicate no nodes on either gap [17]. In Sr$_2$RuO$_4$, specific heat measured against applied field confirms multi-band superconductivity [13], and that if not nodes there are at least deep minima on the primary band.

Triplet pairing has been shown in Sr$_2$RuO$_4$ with high certainty by measurement of the 17O Knight shift [18]. Measurement of the muon Knight shift in PrOs$_4$Sb$_{12}$ also indicates triplet pairing, but with less certainty: owing to low-laying crystal electric field states, the expected Knight shift for singlet pairing is less clear [19].

The absence of a Hebel-Slichter peak in Ru NMR measurements on Sr$_2$RuO$_4$ [20], and in Sb NQR measurements on PrOs$_4$Sb$_{12}$ [16–21] indicate unconventional superconductivity in both materials. In Sr$_2$RuO$_4$ it is confirmed by demonstration that $T_c \rightarrow 0$ as the mean free path shrinks to $\sim \xi_{ab}$ [22]. In PrOs$_4$Sb$_{12}$, T_{c1} shows a modest, and T_{c2} possibly a more pronounced, sensitivity to sample quality [7]. Odd-parity orbital symmetry in Sr$_2$RuO$_4$ has been shown by fabrication of a π-SQUID [23], and superconductivity-related time-reversal symmetry-breaking (TRSB) by measurement of the Kerr effect [24]. A two-component order parameter is indicated by Josephson interferometry [23], hysteretic transport in microstructures [25], and a jump in the transverse sound velocity at T_c [27]. These results have all been interpreted in terms of a chiral $p_x \pm ip_y$ orbital order parameter. The order parameter of PrOs$_4$Sb$_{12}$ remains an open question; possibilities for both singlet and triplet pairing are listed in Ref. [28].

Along with the shared features described above, Sr$_2$RuO$_4$ and PrOs$_4$Sb$_{12}$ are also the only two materi-
als where observation of spontaneous, superconductivity-related TRSB fields by μSR is well-established. In Sr$_2$RuO$_4$, an average internal induction far below T_c of \sim0.5 G is found, with the rapid initial decay of muon polarization indicating a peak induction of at least \sim5 G, indicating a dilute density of sources. In PrOs$_4$Sb$_{12}$, the average internal induction is at least twice as large, \sim1.5 G, but its distribution is not as peaked as in Sr$_2$RuO$_4$, suggesting a higher source density. The TRSB appears to onset at the upper (\sim1.85 K) T_c.

For $p_x \pm ip_y$ order in Sr$_2$RuO$_4$ a magnetization along the z axis (crystalline c axis) is expected: the orbital angular momentum of the condensate would give an uncancelled current at domain edges (meaning domain walls and sample edges). Inward from these edges, Meissner screening would in turn result in counterflowing screening currents. If each pair in the γ-sheet condensate is assigned angular momentum \hbar, an edge current of $k_F^2\hbar/e2\pi m^*$ = 2.6 μA per layer results, for a field discontinuity of 50 G. Matsumoto and Sigrist (MS) have solved the Bogoliubov-de Gennes equations in a quasiclassical approximation for an ideal $p_x \pm ip_y$ superconductor (without secondary bands or gap minima/nodes, and with specular scattering at edges) and obtain edge and domain wall inductions peaking at \sim10 and \sim20 G, respectively.

There is conflicting experimental guidance on domain size: Kerr rotation indicates domains at least a few times larger than the beam size, or \sim100 μm [24], while Josephson interferometry suggests domains at the edges \sim1 μm across [25]. The π-SQUID required phase coherence across the 0.6 mm width of the Sr$_2$RuO$_4$ crystal, indicating large domains [23]. If the MS result is approximately correct (i.e., a \sim10 G field across a width \sim2λ_b at domain walls), the 0.5 G average internal field observed by μSR suggests \sim10 μm domains. Domain size might be affected by the cooling rate through T_c, which was \sim1 K/hr for the Kerr, Josephson interferometry, and π-SQUID experiments, and faster for the μSR measurement. Domain size is discussed in more detail in Ref. [33]. The π-SQUID required phase coherence across the 0.6 mm width of the Sr$_2$RuO$_4$ crystal, indicating large domains [23]. If the MS result is approximately correct (i.e., a \sim10 G field across a width \sim2λ_b at domain walls), the 0.5 G average internal field observed by μSR suggests \sim10 μm domains. Domain size might be affected by the cooling rate through T_c, which was \sim1 K/hr for the Kerr, Josephson interferometry, and π-SQUID experiments, and faster for the μSR measurement. Domain size is discussed in more detail in Ref. [33]. The π-SQUID required phase coherence across the 0.6 mm width of the Sr$_2$RuO$_4$ crystal, indicating large domains [23]. If the MS result is approximately correct (i.e., a \sim10 G field across a width \sim2λ_b at domain walls), the 0.5 G average internal field observed by μSR suggests \sim10 μm domains. Domain size might be affected by the cooling rate through T_c, which was \sim1 K/hr for the Kerr, Josephson interferometry, and π-SQUID experiments, and faster for the μSR measurement. Domain size is discussed in more detail in Ref. [33].

To date, edge and domain wall fields have not been observed by scanning magnetic probes in Sr$_2$RuO$_4$. Scanning Hall probe measurements by Björnsson et al constrain edge and domain wall currents to be less than \sim3 and 8% of the MS results, respectively [34, 35] [The scan area was (70 μm)2, so domain walls may have been absent.] Kirtley et al, in SQUID scans spanning a \sim1 mm-wide sample, improve the limit on both edge and domain wall currents to about 1% of the expectation, for domains larger than \sim8 μm [35].

Analysis by Ashby and Kallin show that nonspecular or pair-breaking edge scattering could reduce the expected edge magnetization, but not by the orders of magnitude required for consistency with experiment [36]. Selection of Ginzberg-Landau parameters nearer the edge of stability for $p_x \pm ip_y$ order reduces the edge currents, but also spreads them out over a larger range, so the total flux, and the observed signal in scanning probes microns above the surface, would not be greatly reduced.

The work here further tightens the limits on chiral currents and domain structure in Sr$_2$RuO$_4$. We also discuss the possibility of periodic domains, and show the first magnetic scans of PrOs$_4$Sb$_{12}$.

Magnetic scans of Sr$_2$RuO$_4$

The scanning SQUID used here is a niobium-based device, described in Refs. [37] and [38]. Flux is coupled into the SQUID through a 3.2 μm-diameter pick-up coil (Fig. 1). The leads to the pick-up coil are shielded to minimize flux coupling into the space between the leads. SQUIDs are flux-sensitive devices, so the units on the data shown in this work are units of flux; 1 $\Phi_0 \equiv \hbar c/2e$ in a 3.2 μm loop corresponds to an average induction of \sim2.5 G. The SQUID was generally scanned on a plane \sim1 μm out of contact with the sample, to reduce noise and spurious features from surface roughness.

The Sr$_2$RuO$_4$ crystal (photograph: Fig. 1) was grown in a floating zone furnace, and was not annealed after growth [39]. All scans were done at $T = 0.4$ K, with fairly rapid cooling through T_c, \sim1 K/min. For the mosaic of scans shown in Fig. 1, the crystal was cooled in Earth’s \sim1/2 Oe field with the out-of-plane component cancelled by \sim50% by an applied field, however the applied field was subsequently turned off and vortices reintroduced into the sample, to approximately match the ambient field, by electromagnetic noise from the positioners. The weak tails that extend leftwards from each vortex, clearly visible in the close-up of a single vortex, are artifacts of
Upper-left-to-lower-right stripes. A striped vortex distribution was also reported in \[\text{[44]}\]. In highly anisotropic superconductors c-axis vortices can form chains along in-plane vortices, a phenomenon that has been observed in Sr$_2$RuO$_4$ \[\text{[43]}\]. However an in-plane field of \(\sim 10 \text{ Oe}\) appears to be required to form and orient well-defined chains \[\text{[40]}\], whereas the field for Fig. 2 was no more than Earth’s \(\sim 1/2 \text{ Oe}\), and \(\sim 50 \text{ mOe}\) in Ref. \[\text{[34]}\].

Fig. 3 shows this paper’s main results on Sr$_2$RuO$_4$ magnetic scans in the near-absence of vortices. The scans overlap, however each is a separate thermal cycle (to above \(T_c\)). Four prominent features appear in the scans: (1) In panel (a), there are two vortices, one at the lower left, and the other beyond the right edge of the scan. (The extended dipole-like feature is part of its tail.) (2) The step changes in the signal across cleave terraces and the sample edge result from SQUID-sample interaction, not static magnetization: the SQUID is scanned on a plane \(\sim 1 \mu\text{m}\) above the sample surface, so when the pick-up coil passes over topographic features its proximity to the sample changes. In operation, the SQUID is biased with a DC voltage and the current, which varies with the SQUID’s critical current, is measured. Changing the proximity between the pick-up coil and a metallic surface affects the inductance of that arm of the SQUID, which in turn affects the critical current (as does varying flux in the SQUID, the desired signal) \[\text{[44]}\]. (3) An edge shadow, the blurred dark line in panels (b) and (c), is also an artifact. It appears to correspond to a step change in magnetic field across the sample edge, with the \(\sim 70 \mu\text{m}\) distance between the shadow and the edge being set by the far extent of the SQUID imaging kernel, \(i.e.\) the tails discussed above. (4) There are numerous magnetic dipoles, most very weak: compare their signals with that from the vortex. The source of the dipoles was not investigated, however typical dipoles in the scans, with peak signals of \(0.1–5 \text{ m}\Phi_0\), could be accounted for by inclusions of SrRuO$_3$, a ferromagnet with \(1.6–2 \mu_B/\text{Ru}\) \[\text{[45]}\], \(\sim 20–80 \text{ nm}\) on a side. (Tails on some of the dipoles, like the vortex tails, are imaging kernel artifacts.)

The absence of observed spontaneous magnetization in Sr$_2$RuO$_4$

No edge or domain wall magnetization, expected for \(p_x \pm ip_y\) order, is apparent in the Sr$_2$RuO$_4$ scans. To compare this null result with theoretical expectation, it is necessary to account for the finite sensor resolution and scan height. We model the pick-up coil as a 3.2 \(\mu\text{m}\)-diameter wire loop parallel to the surface, with perfect coupling of \(B_z\) inside and zero outside. Empirical scan heights consistent with this model are obtained by studying the vortex and dipoles in Fig. 3. For scan heights much larger than \(\lambda_{ab}\), the field distribution of a vortex approaches that of a monopole placed a depth \(\lambda_{ab}\) be-
FIG. 3: Overlapping scans of Sr$_2$RuO$_4$ at 0.4 K; each is a separate thermal cycle. In none of these three scans does the spontaneous edge and domain wall magnetization expected from chiral superconductivity appear. (a) A scan over the cleave terraces, of total height ~700 nm, indicated in Fig. 1(a), and (lower panel) a section along the dashed line. Note the broken color scale: the peak vortex signal far exceeds all other features. The terrace signal is an artifact of SQUID-sample interaction. The vortex tail, from a vortex ~50 μm beyond the right edge of the scan, is an imaging kernel artifact. (b) An area with fewer terraces. The “edge shadow” is an imaging kernel artifact. Other features include dipoles (magnetic inclusions) and some terraces. (c) A scan over the sample edge, and (lower panel) a section along the dashed line. The rms signal in the solid and dotted boxes, after local plane subtraction, are 0.06 mΦ$_0$ and 0.05 mΦ$_0$, respectively.

neath the surface. The vortex in Fig. 3(a) has a FWHM (along y) of 3.8 μm and a peak signal of 0.25Φ$_0$. In the monopole model, these values correspond to heights above the monopole of 1.6 and 1.9 μm, respectively, or, subtracting λ, ~1.6 μm above the sample surface. Heights above the dipoles are obtained by fitting the 2D scan data to the simulated response from a point-like dipole, with dipole strength, dipole orientation and scan height as free parameters. The very prominent dipole near the bottom of Fig. 3(b) gives a height of 1.7 μm. Fits to two other dipoles in Fig. 3(b) give heights around 1.5 μm, and to two dipoles in Fig. 3(a), a few 0.1 μm higher. In the Sr$_2$RuO$_4$ scans, the scan height above the surface is $z \approx 1.5$ μm.

The MS calculation gives the magnetic induction deep beneath the upper surface of the sample. We extend their results to the space above the sample following the procedure in Refs. 35 and 46. If the source inductions within the superconductor are along z, then

$$B_z(k, z) = \frac{K}{k + K} B_{0,z}(k)e^{-kz},$$

where $K = \sqrt{k^2 + (1/\lambda_{ab})^2}$, $B_z(k)$ is the Fourier transform of $B_z(x)$, and z is the height above the sample surface. The $K/(k + K)$ prefactor arises from Meissner screening: at $z \gg \lambda$, its effect is that the field distribution at height z is what it would be at $z + \lambda$ without the prefactor. We obtain the expected signal at edges and domain walls by applying eq. 1, with $\lambda_{ab} = 190$ nm, to the MS results, then averaging over a 3.2 μm-diameter circle. (The accounting of Meissner screening in eq. 1 is correct over featureless surfaces. However we apply eq. 1 to edges, too: the error on z exceeds λ, so this is a secondary error that does not affect our conclusions.) Comparisons of expected and observed signals are shown in Fig. 4. The expected signal is shown for $z = 1.5$ μm, however the choice of z is not critical: a doubling of z reduces expected edge signals by ~30% and domain wall signals by ~60%.

Fig. 5(a) and (b) show simulated scans, taking $z = 2$ μm (the upper bound of the actual scan height), for particular configurations of domains averaging 15 and 2 μm across, respectively. The domains are quasiperiodic for computational convenience; their rms area variation is 38% of the mean. In panel (d) the simulated scans multiplied by a scale factor are added to the observed signal. For domains 2 μm and larger, domain wall fields would have been visible at ~0.1% of the MS result. To look at edge fields separately, in (e) the edge fields alone of the simulation are added to the data. Weak edge fields appear as modulations of the shape of the step, and would have been visible at ~0.2% of the expectation for 4 μm or larger domains, or ~1% for 2 μm domains.

We cannot definitively exclude the possibility that the entire sample is a single domain, and the edge signal is merged with the 6 mΦ$_0$ step at the sample edge (due
to SQUID-sample interaction). In this case the limit on the edge signal is $\sim 6 \, \Phi_0$, or $\sim 3\%$ of the expectation. However, we note again that the $0.5 \, G$ induction observed by μSR is a volume average: it is highly unlikely that its source is entirely excluded from our $\sim (150 \, \mu m)^2$ scan area.

How large could domains be if they were completely random? For random domains magnetized along \hat{z}, the expected field at scan height z is given by eq. 15 of ref. [6]:

$$\langle B_z^2 \rangle = \frac{15 \pi}{2} \frac{\lambda^3}{(z + \lambda)^6} M^2 V,$$

where M is the typical magnetization and V typical domain volume. B_z would vary on a length scale $\sim z$; here z is comparable to the pick-up coil radius, so the signal is $\sim B_z z^2$. The observed signal over a featureless area of the sample is $0.06 \, \Phi_0$ rms [see Fig. 3(c)], and over a section of vacuum, $0.05 \, \Phi_0$ rms. Taking $z = 2 \, \mu m$, obtaining a signal less than $0.02 \, \Phi_0$ with $M = 10 \, [1] \, G$ requires $V < (6 \, nm)^3 \approx (30 \, nm)^3$.

Larger domains are not excluded if they are periodic. Fig. 4(c) shows the expected signal from domains periodic along one direction in the ab plane, taking the MS result for the domain wall magnetization. Domains perfectly periodic along a could have been as wide as $\sim 0.5 \, \mu m$ without being detected.

Domains could also be periodic along c. To estimate a limit on c-axis domain widths, we take $M = (0, 0, \pm M)$ everywhere, with M constant; i.e. the magnetization is equivalent to thin sheet currents at the sample edge. Meissner screening does not strongly affect the field distribution for domain thicknesses $L \ll \lambda$, and so is neglected. Two possibilities for c-axis periodic domains are illustrated in Fig. 4(d). If the domains are all of equal thickness L, then the upper half of the top domain gives a far-field $|B|$ linear in L. (All remaining edge current is incorporated into alternating dipoles.) If $|M|$ is $10 \, G$, then for a $3.2 \, \mu m$-diameter pick-up coil at heights $z = 1, 1.5$ and $2 \, \mu m$, $L = 0.02 \, \mu m$ gives peak edge signals of $2.5, 1.8$ and $1.5 \, \Phi_0$, respectively. Alternatively, if the thickness of the top domain is halved the long-range field scales as L^2. For $L = 0.40 \, \mu m$ and $z = 1, 1.5$ and $2 \, \mu m$, the peak edge signal is expected to be $\approx 3.8, 2.3$ and $1.5 \, \Phi_0$ (in the absence of Meissner screening, which would reduce the signal somewhat further).

A brief summary on the limits on chiral currents and domains sizes in Sr_2RuO_4:

1. For domains of $p_x \pm ip_y$ order larger than $2 \, \mu m$ across, domain wall currents are at most $\sim 0.1\%$ of the expectation (as calculated by MS). Edge currents are at most $\sim 0.2\%$ of expectation for $4 \, \mu m$
and larger domains, and ∼1% for 2 µm domains.

2. If domain wall currents are of the expected magnitude and domains are perfectly periodic stripes in the \(ab \) plane, the domain width can be up to ∼0.5 µm (periodicity 1 µm).

3. If \(|M| \sim 10 \text{ G} \) [1 G] and the domains are random, their volume is at most ∼(6 nm)\(^3\) [∼(30 nm)\(^3\)].

4. If \(|M| \sim 10 \text{ G} \) and \(M \) is periodic along \(c \), the domain width can be up to ∼0.5 µm (periodicity 1 µm).

If a reason were found for chiral edge and domain wall currents to be vastly less than the MS result, then a separate explanation for the source of the \(\mu \text{SR} \) signal would be required.

Magnetic scans of PrOs\(_4\)Sb\(_{12}\)

As with Sr\(_2\)RuO\(_4\), in anticipation of possible edge currents an area of the PrOs\(_4\)Sb\(_{12}\) extending over an edge was selected for scanning. Scans of the mixed state under \(H < 1 \text{ Oe} \) are shown in Fig. 6b. [The edge is of a deep trench rather than the sample edge; a spread-out vortex, far beneath the SQUID, appears at the lower right of Fig. 6c.] Also as with Sr\(_2\)RuO\(_4\), the cooling rate through \(T_c \) was ∼−1 K/min.

The vortices clustered strongly at extended sample defects, the more prominent of which are visible in the photograph. Where the sample is relatively free of defects [the lower right portion of Fig. 6a], the vortex distribution is homogeneous, in contrast to Sr\(_2\)RuO\(_4\).

A few opposite-sign vortices appear in panel (b), where the cooling field was 160 mOe, and in the same area of a 300 mOe scan. They do not appear in panel (c), where the cooling field was near zero, and so are not due to a magnetic inclusion. They may be a consequence of trapping of positive-sign vortices combined with overall flux expulsion: the vortex density in the 760 mOe scan approximately matches the cooling field, but a significant portion of the flux was expelled in the 160 mOe scan (even after accounting for the nonzero background field).

Like the cleave terraces in Sr\(_2\)RuO\(_4\), surface defects appear clearly in the nearly vortex-free scan [Fig. 6c], as a results of SQUID-sample interaction. This is proved by reversing the SQUID bias: the surface defect signal changes sign whereas the edge shadow, resulting from static magnetic fields at the edge, does not (Fig. 7).

The scan height over the PrOs\(_4\)Sb\(_{12}\) sample can be determined by studying a few vortices, as in Sr\(_2\)RuO\(_4\). The isolated vortex in Fig. 6c) has a FWHM of 3.8 µm and a peak signal of 0.30Φ\(_0\), giving scan heights (above

FIG. 6: (a-c) Magnetic scans of the PrOs\(_4\)Sb\(_{12}\) sample shown in Fig. [a]. All scans are at 0.4 K, under different cooling fields, \(H_a \). Vortices cluster at extended defects. The indicated vortices in (b) are used for scan height determination. In (c), \(H_a = 19 \text{ mOe} \) cancels the background \(z \)-axis field. Four vortices remain towards the left side of the scan, and a fifth in a deep trench on the right side. Note the broken colour scale: the vortex signal greatly exceeds other features. Away from the vortices, surface defects appear as an artifact of SQUID-sample interaction. A shadow ∼70 µm left of the edge is an artifact of the imaging kernel and the edge. No magnetic features appear that could explain the ∼1.5 G internal induction observed by \(\mu \text{SR} \). After local plane subtraction, the rms signal in the solid box is 11 mΦ\(_0\), and in the dotted box, 10 mΦ\(_0\). (d) Sections along the solid and dashed lines in (c).
the monopole) in the monopole model of 1.6 μm and 1.5 μm, respectively, or, subtracting λ, z ≈ 1.3 μm. The indicated vortices in panel (b) yield z ≈ 0.9 and 1.0 μm, or ≈0.5 μm lower than in the SrRuO₃ scans.

At a similar level to Sr₂RuO₄, no superconductivity-related TRSB fields are visible in the PrOs₄Sb₁₂ scans. Applying eq. 2, for the case of random magnetic domains, with M = 1 G, λ = 0.3 μm and z = 1 μm, a signal of less than 0.1 mΦ₀ implies domains of volume less than (30 nm)³. The lower scan height allows a somewhat tighter limit on periodic domains than in Sr₂RuO₄: if the domain magnetization is comparable to the MS result, the upper limit on domain width is ≈0.4 μm.

Discussion and Conclusions

Ref. 30 discusses the possibility that domain wall fields in line with expectation account for the μSR data, while edge fields are sharply reduced. Two mechanisms to achieve this are discussed: pair-breaking edge scattering combined with a balancing of Ginzberg-Landau parameters, and a competing edge order. If the induction observed by μSR is from domain walls, however, then as discussed above it is unlikely that observable domain walls would have been absent from the scans here and in Ref. 35. Mechanisms that might eliminate edge and domain wall fields, while maintaining pₓ ± ipᵧ order, include a balancing of GL parameters such that the pₓ and pᵧ components are everywhere nearly equal 47, or the effects of multiple bands, or nodes / deep gap minima, or strong spin-orbit coupling 48. However the origin of the TRSB fields observed in μSR would be left unexplained. Ref. 30 discusses, in regards to PrOs₄Sb₁₂, the possibility of a finite hyperfine field induced at the µ⁺ sites, which would require a nonunitary order parameter. Nonunitary pairing under H = 0 has not been confirmed in any material, however, and is considered unlikely for Sr₂RuO₄ 4. Magnetization through pair-breaking at impurity sites is not likely to be the source of the μSR signal: observable magnetization did not appear at defect sites, of which there must have been very many, across a ~100 μm range, in the scans here. Also, μSR data on a lower-Tc sample, with more defects, indicate weaker, not stronger, TRSB fields 4.

As described above, random static domains of magnetization consistent with the μSR data would need to be on a scale ~ χ or smaller to have evaded detection. It seems unlikely that domains of an orbital order parameter could be so small. Also, in Sr₂RuO₄, the field distribution observed by μSR is more consistent with dilute sources than dense random magnetization.

The limits on periodic domains are less severe. If edge currents are of the predicted order (accounting for the μSR data), then the most plausible scenario described here for eliminating long-range edge fields may be domain periodicity along the c-axis. If the periodicity is good then the domains could be up to ~400 nm ~100ξc in width, implying an energy cost below 1% of the condensation energy.

Closely-spaced c-axis domain walls extending throughout the sample are not ruled out by experiments to date: if the structure of a domain wall is such that one of kₓ or kᵧ remains finite across the wall, then by slow cooling it may be possible to obtain one of kₓ or kᵧ finite throughout the crystal — domain formation may be controlled by dynamics near Tc, where χ is longer and domain walls may interact more strongly — which would permit fabrication of π-SQUIDs 29. Also, supposing that kₓ is the dominant component, a natural dichotomy, as observed 29, would arise in Josephson interferometry, between junctions along the face ∥ x̂, where the phase would be constant across the face, and ∥ ẑ, where it would alternate on a tight length scale.

However the energetics that would drive c-axis domain formation are not clear: Meissner screening of the kₓ ± ikᵧ edge currents cancels the long-range fields that encourage domain formation in conventional ferromagnets. Also, the absence of magnetization at microscopic surface features, such as cleave terraces, implies a tighter limit on c-axis domain width than ~400 nm, such that c-axis domains should be considered a possibility rather than a likelihood.

There is less experimental guidance on the possibilities for PrOs₄Sb₁₂. Because PrOs₄Sb₁₂ is cubic, if the orbital OP turns out to break time reversal symmetry then a more complex domain structure than in Sr₂RuO₄ is expected 39. E.g. in Ref. 28, a singlet OP ∼ (dₓᵧ + idₓz + 0dxz) is illustrated, which would give six types of domains: ±x, ±y and ±z. If a domain structure does exist in PrOs₄Sb₁₂, then the μSR data indicate that the domains would likely be smaller (as scaled by λ) than in Sr₂RuO₄ 30.

In conclusion, magnetic scans of Sr₂RuO₄ and PrOs₄Sb₁₂ have been presented. No static magnetiza-
ation remotely near the TRSB fields observed by μSR in both materials, or theoretical expectation for $p_x \pm ip_y$ order in Sr$_2$RuO$_4$, was observed.

Acknowledgements

This work was funded by the United States Department of Energy (DE-AC02-76SF00515). YM acknowledges funding from a Grant-in-Aid for Global COE programs from MEXT, Japan. MBM acknowledges fundings from MEXT, Japan. MBM acknowledges fundings from a Grant-in-Aid for Global COE program from MEXT, Japan. MBM acknowledges fundings from a Grant-in-Aid for Global COE program from MEXT, Japan.

[1] A.P. Mackenzie, Y. Maeno: Rev. Mod. Phys. 75 (2003) 657
[2] P.J. Baker, R.J. Ormeno, C.E. Gough, Z.Q. Mao, S. Nishizaki, Y. Maeno: Phys. Rev. B 80 (2009) 115126
[3] T.M. Riseman, et al.: Nature (London) 396 (1998) 242
[4] G.M. Luke, et al.: Physica B 289-290 (2000) 373
[5] E.D. Bauer, N.A. Frederick, P.C. Ho, V.S. Zapf, M.B. Maple: Phys. Rev. B 65 (2002) 100506R
[6] M.B. Maple, P-C. Ho, V.S. Zapf, N.A. Frederick, E.D. Bauer, W.M. Yuhasz, F.M. Woodward, J.W. Lynn: J. Phys. Soc. Jpn. Suppl. 71 (2002) 23
[7] M.A. Messson, D. Braithwaite, G. Lapertot, J.P. Brison, J. Flouquet, P. Bordet, H. Sugawara, P.C. Canfield: Phys. Rev. B 77 (2008) 134517
[8] R. Völlelm, A. Faitz, C. Pfeiferder, H.v. Löhneysen, E.D. Bauer, P.-C. Ho, V. Zapf, M.B. Maple: Phys. Rev. Lett. 90 (2003) 057001
[9] K. Grube, S. Drobnik, C. Pfeiferder, H.v. Löhneysen, E.D. Bauer, M.B. Maple: Phys. Rev. B 73 (2006) 104503
[10] D.E. MacLaughlin, J.E. Sonier, R.H. Heffner, O.O. Bernal, B.L. Young, M.S. Rose, G.D. Morris, E.D. Bauer, T.D. Do, M.B. Maple: Phys. Rev. Lett. 89 (2002) 157001
[11] Lei Shu, et al.: Phys. Rev. B 79 (2009) 174511
[12] I. Bonalde, B.D. Yunoff, M.B. Salamon, D.J. van Harlingen, E.M.E. Chia, Z.Q. Mao, Y. Maeno: Phys. Rev. Lett. 85 (2000) 4775
[13] K. Deguchi, Z.Q. Mao, H. Yaguchi, Y. Maeno: Phys. Rev. Lett. 92 (2004) 047002
[14] K. Deguchi, Z.Q. Mao, Y. Maeno: J. Phys. Soc. Japan 73 (2004) 1313
[15] E.E.M. Chia, M.B. Salamon, H. Sugawara, H. Sato: Phys. Rev. Lett. 91 (2003) 247003
[16] H. Kotegawa, M. Yogi, Y. Imamura, Y. Kawasaki, G.Q. Zheng, Y. Kitaoka, S. Ohsaki, H. Sugawara, Y. Aoki, H. Sato: Phys. Rev. Lett. 90 (2003) 027001
[17] G. Seyfarth, J.P. Brison, M.A. Messson, D. Braithwaite, G. Lapertot, J. Flouquet: Phys. Rev. Lett. 97 (2006) 236403
[18] K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z.Q. Mao, Y. Mori, Y. Maeno: Nature (London) 394 (1998) 658
[19] W. Higemoto, S. Saha, A. Koda, K. Ohishi, R. Kadono, Y. Aoki, H. Sato: Phys. Rev. B 75 (2007) 020510
[20] K. Ishida, Y. Kitaoka, K. Asayama, S. Ikeda, S. Nishizaki, Y. Maeno, K. Yoshida, T. Fujita: Phys. Rev. B 56 (1997) R505
[21] S. Kawasaki, K. Katayama, H. Sugawara, D. Kikuchi, H. Sato, G.Q. Zheng: Phys. Rev. B 78 (2008) 064510
[22] A.P. Mackenzie, R.K.W. Haselwimmer, A.W. Tyler, G.G. Lonziarch, S. Nishizaki, Y. Maeno: Phys. Rev. Lett. 80 (1998) 161
[23] K.D. Nelson, Z.Q. Mao, Y. Maeno, Y. Liu: Science 306 (2004) 1151
[24] Jing Xia, Y. Maeno, P.T. Beyersdorf, M.M. Fejer, A. Kapitulnik: Phys. Rev. Lett. 97 (2006) 167002
[25] F. Kidwingira, J.D. Strand, D.J. van Harlingen, Y. Maeno: Science 314 (2006) 1267
[26] H. Kambara, S. Kashiwaya, H. Yaguchi, Y. Asano, Y. Tanaka, Y. Maeno: Phys. Rev. Lett. 101 (2008) 267003
[27] N. Okuda, T. Suzuki, Z.Q. Mao, Y. Maeno, T. Fujita: Physica C 388-89 (2003) 497
[28] S. Mukherjee, D.F. Agterberg: Phys. Rev. B 74 (2006) 174505
[29] G.M. Luke, et al.: Nature (London) 394 (1998) 558
[30] Y. Aoki, et al.: Phys. Rev. Lett. 91 (2003) 067003
[31] M. Stone, R. Roy: Phys. Rev. B 69 (2004) 184511
[32] M. Matsumoto, M. Sigrist: J. Phys. Soc. Japan 68 (1999) 944, 3120
[33] C. Kallin, A.J. Berlinsky: J. Phys.: Condens. Matter 21 (2009) 164210
[34] P.G. Björnsson, Y. Maeno, M.E. Huber, K.A. Moler: Phys. Rev. B 72 (2005) 012504
[35] J.R. Kirtley, C. Kallin, C.W. Hicks, E.A. Kim, Ying Liu, K.A. Moler, Y. Maeno, K.D. Nelson: Phys. Rev. B 76 (2007) 014526
[36] P.E.C. Ashby, C. Kallin: Phys. Rev. B 79 (2009) 224509
[37] N.C. Koshnick, M.E. Huber, J.A. Bert, C.W. Hicks, J. Large, H. Edwards, K.A. Moler: Appl. Phys. Lett. 93 (2008) 243101
[38] M.E. Huber, N.C. Koshnick, H. Bluhm, L.J. Archuleta, T. Azua, P.G. Björnsson, B.W. Gardner, S.T. Halloran, E.A. Lucero, K.A. Moler: Rev. Sci. Instrum. 79 (2008) 053704
[39] Z.Q. Mao, Y. Maeno, H. Fukazawa: Mater. Res. Bull. 35 (2000) 1813
[40] V.O. Dolocan, C. Veauvy, F. Servant, P. Lejay, K. Hasselbach, Y. Liu, D. Mailly: Phys. Rev. Lett. 95 (2005) 097004
[41] K. Hasselbach, V.O. Dolocan, P. Lejay, D. Mailly: Physica C 460-462 (2007) 277
[42] V. Moshchalkov, M. Menghini, T. Nishio, Q.H. Chen, A.V. Silhanek, V.H. Dao, L.F. Chibotaru, N.D. Zhigadlo, J. Karpinski: Phys. Rev. Lett. 102 (2009) 117001
[43] V.O. Dolcan, P. Lejay, D. Mailly, K. Hasselbach: Phys. Rev. B 74 (2006) 144505
[44] C.D. Tesche, J. Clarke: J. Low Temp. Phys. 29 (1977) 301
[45] J.S. Dodge, et al.: Phys. Rev. B 60 (1999) 6987R
[46] H. Bluhm: Phys. Rev. B 76 (2007) 144507
[47] N.A. Logoboy, E.B. Sonin: Phys. Rev. B 79 (2009) 094511
[48] M.W. Haverkort, I.S. Elfinov, L.H. Tjeng, G.A. Sawatzky, A. Damascelli: Phys. Rev. Lett. 101 (2008) 026406
[49] T.R. Abu Alrub, S.H. Curnoe: Phys. Rev. B 76 (2009) 054514