Anatomy and neuro-pathophysiology of the cough reflex arc

Citation
Polverino, Mario, Francesca Polverino, Marco Fasolino, Filippo Andò, Antonio Alfieri, and Francesco De Blasio. 2012. Anatomy and neuro-pathophysiology of the cough reflex arc. Multidisciplinary Respiratory Medicine 7(1): 5.

Published Version
doi:10.1186/2049-6958-7-5

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10468020

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Anatomy and neuro-pathophysiology of the cough reflex arc

Mario Polverino1*, Francesca Polverino2, Marco Fasolino3, Filippo Andò4, Antonio Alfieri1 and Francesco De Blasio5

Abstract

Coughing is an important defensive reflex that occurs through the stimulation of a complex reflex arc. It accounts for a significant number of consultations both at the level of general practitioner and of respiratory specialists. In this review we first analyze the cough reflex under normal conditions; then we analyze the anatomy and the neuro-pathophysiology of the cough reflex arc. The aim of this review is to provide the anatomic and pathophysiologic elements of evaluation of the complex and multiple etiologies of cough.

Keywords: Cough, C-Fibers, Rapidly adapting receptors, Reflex arc, Slowly adapting stretch receptors

Review

Cough is one of the most common symptoms for which outpatient care is asked [1], accounting for up to 40% of the practice activity [2]. Coughing is an important defensive reflex that enhances clearance of secretions and particulates from the airways and protects from aspiration of foreign materials occurring as a consequence of aspiration or inhalation of particulate matter, pathogens, accumulated secretions, postnasal drip, inflammation, and mediators associated with inflammation. Under normal conditions cough serves an important protective role in the airways and lungs, but in some conditions it may become excessive and nonproductive, and is troublesome and potentially harmful to the airway mucosa. These contrasting consequences of coughing can be attributed to the parallel afferent pathways regulating this important defensive reflex of the airways.

Each cough occurs through the stimulation of a complex reflex arc. This is initiated by the irritation of cough receptors which are found in the trachea, main carina, branching points of large airways, and more distal smaller airways; also, they are present in the pharynx. Laryngeal and tracheobronchial receptors respond to both mechanical and chemical stimuli. Chemical receptors sensitive to acid, heat, and capsaicin-like compounds trigger the cough reflex via activation of the type 1 vanilloid (capsaicin) receptor [3-5]. In addition, more airway receptors are in the external auditory canals, eardrums, paranasal sinuses, pharynx, diaphragm, pleura, pericardium, and stomach. These are probably mechanical receptors only, which can be stimulated by triggers such as touch or displacement.

Impulses from stimulated cough receptors traverse an afferent pathway via the vagus nerve to a ‘cough center’ in the medulla, which itself may be under some control by higher cortical centers. The cough center generates an efferent signal that travels down the vagus, phrenic, and spinal motor nerves to expiratory musculature to produce the cough.

Therefore, the cough reflex arc is constituted by:

1. Afferent pathway: Sensory nerve fibers (branches of the vagus nerve) located in the ciliated epithelium of the upper airways (pulmonary, auricular, pharyngeal, superior laryngeal, gastric) and cardiac and esophageal branches from the diaphragm. The afferent impulses go to the medulla diffusely.

2. Central Pathway (cough center): a central coordinating region for coughing is located in the upper brain stem and pons.

3. Efferent pathway: Impulses from the cough center travel via the vagus, phrenic, and spinal motor nerves to diaphragm, abdominal wall and muscles. The nucleus retroambigualis, by phrenic and other spinal motor nerves, sends impulses to the inspiratory and expiratory muscles; and the nucleus...
ambiguus, by the laryngeal branches of the vagus to
the larynx.

The terminations of the vagal afferents are found in
abundance in the airway mucosa and in the airway wall
from the upper airways to the terminal bronchioles and
lung parenchyma. Afferent neuronal subtypes can be
identified based on their physicochemical sensitivity,
adaptation to sustained lung inflation, neurochemistry,
origin, myelination, conduction velocity (A-fiber, > 3 m/s;
C-fiber, < 2 m/s), and sites of termination in the airways.
These attributes can be used to identify at least three
broad classes of airway afferent nerves:

1. Rapidly Adapting Receptors (RAR)
2. Slowly Adapting Stretch Receptors (SARs)
3. C-Fibers

Rapidly adapting receptors (RAR)
Functional studies of RARs suggest that they terminate
within or beneath the epithelium of both intrapulmonary
and extrapulmonary airways, but primarily the intrapul-
monary airways. RARs are differentiated from other air-
way afferents by their rapid adaptation (in 1 - 2 seconds)
to sustained lung inflations [6-19]. Other distinguishing
properties of RARs include their sensitivity to lung col-
apse and/or lung deflation, their responsiveness to
alterations in dynamic lung compliance (and thus their
sensitivity to bronchospasm), and their conduction vel-
ocity (4 to 18 m/s), which is suggestive of myelinated
axons. The sustained activation of RARs produced by
dynamic lung inflation, bronchospasm, or lung collapse
indicates that the adaptation of RARs is not attributable
to an electrophysiologic adaptation. Perhaps RARs are
thus better defined as dynamic receptors that respond
to changes in airway mechanical properties (e.g. diameter,
length, and interstitial pressures). RARs are sporadically
active throughout the respiratory cycle, are activated by
the dynamic mechanical forces accompanying lung infla-
tion and deflation, and become more active as the rate
and volume of lung inflation increase. RARs are activated
by stimuli that evoke bronchospasm or obstruction
resulting from mucus secretion or edema. Substances
such as histamine, capsaicin, substance P, and bradykinin
activate RARs in a way that can be markedly inhibited or
abolished by preventing the local end-organ effects that
these stimuli produce (e.g. bronchospasm and mucus
secretion). RAR activation initiates reflex bronchospasm
and mucus secretion through parasympathetic pathways.
RARs can also respond to stimuli that evoke cough and
fulfill many criteria for mediating cough. Further evi-
dence for their role in coughing comes from studies of
vagal cooling, which blocks cough at temperatures that
selectively abolish activity in myelinated fibers (including
RARs) while preserving C-fiber activity. RARs may act
synergistically with other afferent nerve subtypes to in-
duce coughing.

Slowly adapting stretch receptors (SARs)
SARs are highly sensitive to the mechanical forces that
are put on the lung during breathing. SAR activity
increases during inspiration and peaks just prior to the
initiation of expiration [13]. SARs are thus thought to be
the afferent fibers involved in the Hering-Breuer reflex,
which terminates inspiration and initiates expiration
when the lungs are adequately inflated. SARs can be dif-
fferentiated from RARs in some species based on action
potential conduction velocity, and in most species by
their lack of adaptation to sustained lung inflations.
SARs may also be differentially distributed throughout
the airways: they appear to terminate primarily in the
intrapulmonary airways. SARs also differ from RARs
with respect to the reflexes they precipitate. SAR activa-
tion results in the central inhibition of respiration and
the inhibition of the cholinergic drive to the airways,
leading to decreased phrenic nerve activity and
decreased airway smooth muscle tone (due to a with-
drawal of cholinergic nerve activity) [14]. The sensory
terminals of SARs assume a complex and varying posi-
tion within the airway wall: most of these SARs are
found in the peripheral airways (associated with alveoli
or bronchioles). Occasionally, SAR dendritic arbors are
associated with the bronchiolar smooth muscle. SARs
may facilitate coughing by a central cough network via
activation of brainstem second-order neurons of the
SAR reflex pathway.

C-fibers
The majority of afferent nerves innervating the airways
and lungs are unmyelinated C-fibers. They are similar in
many ways to the unmyelinated somatic sensory nerves
innervating the skin, skeletal muscle, joints, and bones
that respond to noxious chemical and mechanical stimuli
(called nociceptors). In addition to their conduction vel-
cocity (< 2 m/s), airway vagal afferent C-fibers are distin-
guished from RARs and SARs by their relative
insensitivity to mechanical stimulation and lung infla-
tion. C-fibers are further distinguished from RARs by the
observation that they are directly activated by bradykinin
and capsaicin, not indirectly through effects on smooth
muscle or the airway vasculature. Moreover, prostaglan-
din E2, adrenaline, and adenosine, which by bronchodili-
ating the airways might inhibit RAR activation by
bradykinin and capsaicin, actually sensitize C-fibers to
capsaicin and bradykinin through direct effects on their
peripheral nerve terminals [15-17]. Morphologic studies
in rats and in guinea pigs have revealed that afferent C-
fibers innervate the airway epithelium as well as other
effector structures within the airway wall. C-fibers may synthesize neuropeptides that are subsequently transported to their central and peripheral nerve terminals. C-fibers are generally quiescent throughout the respiratory cycle but are activated by chemical stimuli such as capsaicin, bradykinin, citric acid, hypertonic saline solution, and sulfur dioxide (SO2). Reflex responses evoked by C-fiber activation include increased airway parasympathetic nerve activity, and the chemoreflex, characterized by apnea (followed by rapid shallow breathing), bradycardia, and hypotension. Stimulants of C-fibers such as capsaicin, bradykinin, SO2, and citric acid evoke cough in conscious animals and in humans, and capsaicin desensitization abolishes citric acid-induced coughing in guinea pigs.

Sex-related differences in cough reflex sensitivity explain the observation that women are more likely than men to develop chronic cough [18-20].

The mechanical events of a cough can be divided into three phases [21]:

1. Inspiratory phase: Inhalation, which generates the volume necessary for an effective cough.
2. Compression phase: Closure of the larynx combined with contraction of muscles of chest wall, diaphragm, and abdominal wall result in a rapid rise in intrathoracic pressure.
3. Expiratory phase: The glottis opens, resulting in high expiratory airflow and the coughing sound. Large airway compression occurs. The high flows dislodge mucus from the airways and allow removal from the tracheobronchial tree.

The specific pattern of the cough depends on the site and type of stimulation. Mechanical laryngeal stimulation results in immediate expiratory stimulation (sometimes termed the expiratory reflex), probably to protect the airway from aspiration; stimulation distal to the larynx causes a more prominent inspiratory phase, presumably to generate the airflow necessary to remove the stimulus.

During vigorous coughing, intrathoracic pressures may reach 300 mm Hg and expiratory velocities approach 800 kilometers per hour [22]. While these pressures and velocities are responsible for the beneficial effects of cough on mucus clearance, they are also responsible for many of the complications of cough, including exhaustion, self-consciousness, insomnia, headache, dizziness, musculoskeletal pain, hoarseness, excessive perspiration, urinary incontinence [23]. Cough-induced rib fractures are another painful and potentially serious complication of chronic cough. Fractures often involve multiple ribs, particularly ribs five through seven. Women with decreased bone density are at the greatest risk of this complication; however, fractures can occur in patients with normal bone density as well [24].

A nonproductive cough is a well-recognized complication of treatment with angiotensin converting enzyme (ACE) inhibitors, occurring in up to 15% of patients treated with these agents [25]. Although the pathogenesis of the cough is not known with certainty, it has commonly been hypothesized that accumulation of bradykinin, which is normally degraded in part by ACE, may stimulate afferent C-fibers in the airway [26].

The important observation that cough does not appear to occur with increased frequency in patients treated with angiotensin II receptor antagonists (which do not increase kinin levels) is consistent with the kinin hypothesis.

Lesions that compress the upper airway, including arteriovenous malformations and retrotracheal masses, may present with chronic cough [27-29]. Cough can also be a symptom of tracheobronchomalacia, which results from loss of rigid support of the large airways and inspiratory collapse, and is usually seen in conjunction with obstructive lung disease in patients with a history of cigarette smoking [30].

Laryngeal sensory neuropathy has been identified as the cause of chronic cough in 18 of 26 patients with acute onset of cough that was often associated with laryngospasm or throat clearing [31]. Chronic tonsillar enlargement has been proposed as a cause of chronic cough, but clinical evidence of this association is limited. One series of 236 patients referred for evaluation in a specialized clinic noted tonsillar enlargement in the absence of other known causes of chronic cough in 8 (3.4%) individuals [32]. Following tonsillectomy, these patients had decreased cough sensitivity and significantly improved symptom control. At this moment, these observations need further investigations.

Irritation of the external auditory canal by impacted foreign bodies or cerumen is another unusual cause of chronic dry cough [33]. The etiology of the ‘ear-cough’ (or oto-respiratory) reflex is related to stimulation of the auricular branch of the vagus nerve (Arnold's nerve) [34,35]. Another rare cause of chronic cough is Holmes-Adie syndrome due to autonomic dysfunction affecting the vagus nerve [36] patients present anisocoria, abnormal deep tendon reflexes, and patchy areas of hyperhidrosis or anhidrosis.

In adults, habit (also known as ‘psychogenic’) cough may rarely be the cause of a chronic cough that remains troublesome despite a thorough evaluation, including ruling out tic disorders.

Differences among several sites from which cough stimuli can originate may result in variations in the sounds and patterns of coughing.

Laryngeal stimulation produces a choking type of cough without a preceding inspiration.
Inadequate mucociliary clearance mechanisms (as in bronchiectasis or cystic fibrosis) may produce a pattern of coughing with less violent acceleration of air and a sequence of interrupted expirations without any intervening inspiration.

Awareness of cough varies considerably: it can be distressing when it appears suddenly, especially if associated with discomfort due to chest pain, dyspnea, or copious secretions, while a cough that develops over decades (e.g. in a smoker with chronic bronchitis) may be hardly noticeable or may be considered normal by the patient.

Since cough is an important defensive reflex, required to maintain the health of the lungs, people who do not cough effectively are at risk of atelectasis, recurrent pneumonia, and chronic airways disease from aspiration and retention of secretions. Many disorders can impair the ability to cough effectively, which may result in persistent cough. The elderly, newborns, lung transplant recipients, and patients with paralysis or neuromuscular disorders have a poorly developed and/or compromised cough reflex, and are rendered highly susceptible to lung infections and aspiration pneumonia. Patients with paralysis or neuromuscular disorders (including rib fractures) and chest wall deformities may not generate the high flow rates needed for effective clearance of secretions.

Conclusions

Based on this complex mechanism, the treatment often requires an early symptomatic approach in order to prevent the vicious cycle of cough perpetuating cough [40] and a chronic disorder which has been reported to be the fifth most common complaint seen by primary care physicians in the world and the third in Italy [41].

Competing interests

The authors declare that they have no competing interests.

References

1. Irwin RS, Baumann MH, Bolser DC, Boulet LP, Braman SS, Bridghting CE, Brown KK, Canning BJ, Chang AB, Deaconisaitis PV, Eccles R, Gromb WB, Goldstein LB, Graham LM, Hargrave FE, Kvale PA, Lewis SJ, McColl FD, McCory DC, Prakash UB, Pratter MR, Rosen MJ, Schulman E, Shannon JJ, Smith Hammond C, Tarlo SM, Tarlo SM, American College of Chest Physicians (ACCP): Diagnosis and management of cough executive summary: ACCP evidence-based clinical practice guidelines. Chest 2006, 129(1 Suppl):15–235.

2. Irwin RS, Curley FJ, French CL: Chronic cough. The spectrum and frequency of causes, key components of the diagnostic evaluation, and outcome of specific therapy. Am Rev Respir Dis 1990, 141:640–647.

3. Irwin RS, Corrao WM, Pratter MR: Chronic persistent cough in the adult: the spectrum and frequency of causes and successful outcome of specific therapy. Am Rev Respir Dis 1981, 123(4):413–417.

4. Kelkall A, DeCalmier S, McGuinness K, Woodcock A, Smith JA: Sex differences and predictors of objective cough frequency in chronic cough. Thorax 2009, 64:393–398.

5. Haque RA, Usmani OS, Barnes PJ: Chronic idiopathic cough: a discrete clinical entity? Chest 2005, 127:1710–1713.

6. Ho CY, Gu Q, Lin YS, Lee LY: Sensitivity of vagal afferent endings to chemical irritants in the rat lung. Respir Physiol 2001, 127:113–124.

7. Widdicombe J: Functional morphology and physiology of pulmonary rapidly adapting receptors (RARs). Anat Rec A Discov Mol Cell Evol Biol 2003, 270:2–10.

8. Widdicombe J: Airway receptors. Respir Physiol 2001, 125:3–15.

9. Armstrong DJ, Luck JC: A comparative study of imitant and type J receptors in the cat. Respir Physiol 1974, 23:67–60.

10. Sant Ambrogio G, Widdicombe J: Reflexes from airway rapidly adapting receptors. Respir Physiol 2001, 125:33–45.

11. Coleridge JC, Coleridge HM: Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol 1994, 99:1–110.

12. Ford PA, Barnes PJ, Usmani OS: Global physiology and pathophysiology of cough: ACCP evidence-based clinical practice guidelines. Chest 2006, 129(1 Suppl):485–535.

13. Irwin RS, Glomb WB, Chang AB: Habit cough, tic cough, and psychogenic cough in adult and pediatric populations: ACCP evidence-based clinical practice guidelines. Chest 2006, 129(1 Suppl):1745–1793.

14. Comroe JH Jr: Special acts involving breathing. In: Physiology of Respiration: an Introductory Text. Chicago: Year Book Medical Publishers; 1974:230.
25. Groneberg DA, Nimi A, Dinh QT, Cosio B, Hew M, Fischer A, Chung KF: Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough. *Am J Respir Crit Care Med* 2004, 170:1276–1280.

26. Israili ZH, Hall WD: Cough and angioedema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology. *Ann Intern Med* 1992, 117:234–242.

27. Park SW, Lee YM, Jang AS, Lee JH, Hwangbo Y, Kim DJ, Park CS: Development of chronic airway obstruction in patients with eosinophilic bronchitis: a prospective follow-up study. *Chest* 2004, 125:1998–2004.

28. McLaughlin RB Jr, Wetmore RF, Tavill MA, Gaynor JW, Spray TL: Vascular anomalies causing symptomatic tracheobronchial compression. *Laryngoscope* 1999, 109:312–319.

29. Gülmez I, Oğuzkaya F, Bilgin M, Oymak S, Demir R, Ozesmi M: Posterior mediastinal goiter. *Monaldi Arch Chest Dis* 1999, 54:402–403.

30. Waldron D, Coffey J, Murphy S, Bresnihan E, Finnegan P, Lynch V: Retrotracheal goiter: a diagnostic and therapeutic problem. *Ann Thorac Surg* 1990, 50:133–135.

31. Lee B, Woo P: Chronic cough as a sign of laryngeal sensory neuropathy: diagnosis and treatment. *Ann Otol Rhinol Laryngol* 2005, 114:253–257.

32. Birring SS, Passant C, Patel RB, Prudon B, Murty GE, Pavord ID: Chronic tonsillar enlargement and cough: preliminary evidence of a novel and treatable cause of chronic cough. *Eur Respir J* 2004, 23:199–201.

33. Jegoux F, Legent F, Beaulieu de Montreuil C: Chronic cough and ear wax. *Lancet* 2002, 360:618.

34. Bloustine S, Langston L, Miller T: Ear-cough (Arnold’s) reflex. *Ann Otol Rhinol Laryngol* 1976, 85:406–407.

35. Feldman JI, Woodworth WF: Cause for intractable chronic cough: Arnold’s nerve. *Arch Otolaryngol Head Neck Surg* 1993, 119:1042.

36. Kimber J, Mitchell D, Mathias CJ: Chronic cough in the Holmes-Adie syndrome: association in five cases with autonomic dysfunction. *J Neurol Neurosurg Psychiatry* 1998, 65:583–586.

37. Schramm CM: Current concepts of respiratory complications of neuromuscular disease in children. *Curr Opin Pediatr* 2000, 12:203–207.

38. Chang AB: Cough, cough receptors, and asthma in children. *Pediatr Pulmonol* 1999, 28:59–70.

39. Wildicombe JG: Sensory neurophysiology of the cough reflex. *J Allergy Clin Immunol* 1996, 98:584–589.

40. De Blasio F, Virchow JC, Polverino M, Zanasi A, Behrakis PK, Kilinc G, Balsamo R, De Daneli G, Lanata L: Cough management: a practical approach. *Cough* 2011, 7:7.

41. Magni C, Chellini E, Zanasi A: Cough variant asthma and atopic cough. *Multidiscip Resp Med* 2010, 5:99–103.

Cite this article as: Polverino et al.: Anatomy and neuro-pathophysiology of the cough reflex arc. *Multidisciplinary Respiratory Medicine* 2012 7:5.