A Blocker-Resilient Receiver with Second-order Impedance Mapping for NB-IoT Applications

Tingting Shi¹, Sizheng Chen¹, Na Yan¹ and Hao Min¹

Abstract Wideband receiver used in IoT applications operating at sub-GHz suffers from strong interferes. This paper presents a blocker-resilient wideband receiver architecture for NB-IoT applications. By exploiting the impedance mapping characteristic of N-Path filter and a low noise amplifier with negative feedback, a high-order filtering characteristics of baseband is mapped to RF input so as to implement wideband impedance matching and blocker suppression. To further improve the out-of-band linearity, a dual mixer structure is employed to cancel the out-of-band blockers before the TIA. Measurements show the RX out-of-band IIP3 is +17.6 dBm, while in-band IIP3 is -13 dBm.

key words: receiver; Internet of things; blocker-resilient; blocker-cancelling; low power

Classification: Integrated circuits (memory, logic, analog, RF, sensor)

1. Introduction

Narrowband Internet of Things (NB-IoT) plays an important role in a fifth generation (5G) system, and it will support 5G Low power Wide Area (LPWA) use cases in the foreseeable future [1, 2, 3, 4, 5]. According to the NB-IoT protocol, NB-IoT system supports multiple bands from 729 MHz to 960 MHz in Low Band (LB) applications and the receiver needs to sense weak wanted signal among strong interferes which are from other sub-GHz protocols, such as GSM [6], IEEE 802.11ah [7]. Therefore, what is needed in NB-IoT system is a blocker-resilient receiver covering a wide range of frequencies, while the consuming power is low.

Conventionally, in order to cover large number of frequency bands and reject nearby interferes, multiple narrowband frontends and external RF filters are employed. This solution filters interferers, but it comes at the expense of area and cost both in on-chip and off-chip. For low power and low cost IoT applications, wideband receivers without external RF filter are required. Recently different techniques have been employed in the literatures to improve out-of-band linearity performance. Due to the high linearity of passive mixer, mixer-first receiver has garnered much attention [8, 9, 10, 11, 12, 13]. However, the excellent linearity comes at the cost of noise figure because of the lack of low noise amplifier (LNA). To reduce the noise figure of blocker-tolerant receiver, noise cancelling techniques from noise-cancelling LNA [14, 15, 16] have been improved in [17, 18, 19] to cancel the matching resistor noise by employing multiple down-conversion paths which increases the hardware complexity and power consumption.

In this paper, we propose a low-power blocker-resilient receiver for NB-IoT applications. A LNA with negative feedback and N-path filters are introduced to form a high-Q impedance matching at RF input. To further reject blockers, we introduce a blocker-cancelling technique which employs two separated down-conversion mixer structure.

2. Circuit design

2.1 Receiver Topology

The proposed wideband blocker-resilient dual-mixer receiver designed for NB-IoT applications is shown in Fig. 1. The main path begins with a LNA, which provides better noise performance, compared to mixer-first receiver. This single-ended LNA is followed by a four-phase non-overlapping clock pulses. The ON resistance of the passive mixer switch in main path is designed at about 10 Ω to avoid a large voltage gain at blocker frequencies. After down-converted to baseband by mixer,
the current signal is converted to a voltage through a transimpedance amplifier (TIA). Furthermore, for a better blocker-resilient performance, this TIA contains a second-order filter, and the analog baseband employs a third-order Butterworth filter.

2.2 LNA

According to N-path filtering theory, the frequency response of the band-pass filter is centered at the LO frequency [20, 21, 22, 23]. As a result, the proposed receiver is equivalent to a wideband and center frequency configurable receiver with selective band-pass characteristic. The input impedance of mixer-first receiver is calculated as follows [10]:

$$Z_{in}(\omega) = R_{sh} + \frac{2}{\pi^2} \cdot Z_{sh}(\omega - \omega_{lo}) \| R_{sh}$$ \hspace{1cm} (1)

where Z_{BB} is the impedance of baseband circuits, and R_{sh} is equivalent resistance of harmonic mixing.

The main part of LNA (shown in Fig. 2) used in this receiver has an active feedback between the RF port and mixer’s input [24]. It makes the baseband impedance further mapped to the RF port, without sacrificing noise performance. In addition, an auxiliary compensation path is added to enhance the linearity of amplifier [25]. The IIP3 of LNA is improved about 6 dB with only 0.13 mA current added and 0.2 dB NF degraded. The input impedance of receiver is given below:

$$Z_{in} = \frac{1}{g_{m1} + g_{m2} \cdot R_{L,\text{LNA}}} + R_{L,\text{LNA}} \| Z_{new}(\omega)$$ \hspace{1cm} (2)

where g_{m1} and g_{m2} are the transconductance of transistor M1 and transistor M2 in Fig. 2, respectively. $R_{L,\text{LNA}}$ is the output resistance of LNA and $R_{L,\text{LNA}}$ is the feedback resistance in the negative feedback loop.

According to (2), we could set the input impedance value in order to match with the source impedance by designing proper transconductance of transistors and base band impedance.

2.3 TIA with second-order filtering

To realize a higher order RF bandpass filtering, a second-order low-pass filtering TIA with high in-band impedance is employed [26]. A negative feedback is used to implement the second-order characteristics of both input impedance and transfer function. As shown in Fig. 3, the output voltage at TIA’s output goes through a high-pass path, and then the out-of-band blocker voltage is converted to current at the input of TIA by a Gm unit. The negative feedback current is combined with input blocker current out of phase. Therefore, the blockers are suppressed at the input of TIA, enhancing the linearity of TIA. The transfer function is calculated below with $R_1=9.8\,\text{k}\Omega$, $R_2=10\,\text{k}\Omega$, $C_1=3\,\text{pF}$, $C_2=6\,\text{pF}$:

$$I_{in} \cdot V_{out} \cdot sC_2 \left(R_2 + 1/sC_2 \right) sC_1 = V_{out} / R_1 \quad \hspace{1cm} (3)$$

$$V_{out} / I_{in} = R_1 / (s^2 / \omega_0^2 + s / \omega_0 + 1) \quad \hspace{1cm} (4)$$

where $\omega_0 = \sqrt{1/C_2 R_2}$, $Q = \sqrt{R_2 C_2 / (R_1 C_2)}$.

The input impedance of TIA is calculated as follows:

$$Z_{in} = 1 / \left(s^2 C_2 C_1 R_2 + (1 + A_0) \cdot s C_1 \right) \quad \hspace{1cm} (5)$$

where A_0 is the open-loop gain of OTA. It is clear that the transfer function and input impedance of this architecture has second-order filtering characteristic, as described in (3) and (4).

The advantage of this TIA is that the transfer function of this negative feedback loop is high-pass. Therefore, the noise of resistor and Gm unit is significantly attenuated by this high-pass feedback loop.

Substituting (5) into (2), it is obvious that the second-order filtering characteristics of the baseband are mapped to the RF port.

2.4 Analog filter

Fig. 4 shows the employed analog filter structure, which is a 3rd-order Butterworth low-pass filter. It contains two
stages filters and a variable gain amplifier. For a better linearity, a first-order filter is followed by Two-Thomas biquad filter. Resistors and capacitors in this circuit is designed to programmable resistor and capacitor arrays to adjust gain and compensate for process variations. It could provide 0~72 dB variable gain.

3. Frequency translational impedance mapping and blocker cancelling technique

Fig. 5 shows the impedance characteristics at different positions in the receiver. At the RF port, a blocker is standing with a wanted signal. The wanted signal is well matched with RF port, but the blocker is mismatched in order to reflecting its power. After LNA, the wanted signal and blocker are converted to currents. Because of second-order band-pass characteristic here, the wanted signal current is amplified, but blocker current is sharply suppressed, which enhance the linearity of the receiver.

To further improve the linearity, an auxiliary path in Fig. 1 is added by using a mixer-first structure, which contains only mixers and RC filter. The currents of the two paths come into the shared TIA.

Dual mixer structure separates wanted signal and blocker signal at baseband by using resistors, $R_A=10 \text{kΩ}$, and capacitors, $C_A=6 \text{pF}$, of auxiliary path, as shown in Fig. 5. Because of the existence of C_A, for wanted signal which has small baseband offsets, it’s a high impedance path, and wanted signal will go through the resistance path. On the contrary, the blocker current will pass through the capacitance path because it’s a low impedance path for large baseband offsets. Meanwhile, the main path has both wanted signal and blocker at the input of TIA. Therefore, feeding blocker current IBK+ and IBK- from auxiliary path back to the IBK- and IBK+ coming from main path at the input of TIA respectively, makes the blocker currents combined out of phase and significantly cancelled. In order to cancel the blocker current perfectly, the current gain of main path and auxiliary path should be equal at the baseband. The current gain and transconductance of LNA for perfect blocker cancellation are given as follows:

$$g_{m,LNA} \left(R_{SW,AUX} + \frac{2}{\pi} Z_{BB}(\Delta \omega) \right) = \frac{R_A}{R_A + Z_{BB}(\Delta \omega)}$$ \hspace{1cm} (6)

$$g_{m,LNA} \approx \frac{R_A C_A(\Delta \omega)}{R_{SW,AUX} \left[R_A C_A(\Delta \omega) \right]^2 + 1} \approx \frac{1}{R_{SW,AUX}}$$ \hspace{1cm} (7)

To achieve a complete linearity compensation not only requires carefully design, but also requires symmetry of layout.

4. Noise analysis

The frontend of the proposed dual-mixer structure receiver also has noise cancelling characteristic. The noise from the added auxiliary path could be cancelled by properly connection. As shown in Fig. 6, the load resistor $R_{L,AUX}$ connects to the in-phase input of TIA. The noise from auxiliary path I_{AUX} consist of load resistor noise $I_{R,AUX}^2$ and noise of mixer in auxiliary path $I_{SW,AUX}^2$. This noise current is converted to a noise voltage V_{aux}^2 at the receiver input, which includes all the local oscillator harmonics. And all these noises are down-converted to the input of TIA through the main path. Because of the inversing characteristic of LNA, the resulted noise is $-g_{m,LNA} I_{AUX}^2 R_A$. The baseband noise current $I_{AUX,BB}$ in auxiliary path only contains the noise of passive mixer’s switch resistance in the auxiliary path which is down-converted to baseband and the noise of $R_{L,AUX}$ at low frequency. With proper connection, the baseband noise current of the main path and auxiliary paths can be added in reverse, and the noise introduced by the load resistor branch N-Path can be cancelled. Meanwhile, the signals going through the two paths are added in-phase, so the energy of signal is not attenuated.

5. Measurement results

The die micrograph of proposed receiver is shown in Fig. 7.
The test chip has been fabricated in 55 nm CMOS technology. Fig. 7 shows the die micrograph of the receiver. The core area of the chip is 0.85 mm x 1 mm.

Fig. 8(a) shows the measured DSB noise figure (NF) at baseband frequency of the proposed receiver. The minimum NF is 4.2 dB at 0.4 MHz with the LO frequency of 900 MHz. To evaluate the noise performance in the presence of blocker, a sinewave blocker at 80 MHz offset is applied with different level. Fig. 8(b) plots the receiver NF with blocker. According to the requirement of NB-IoT protocol, the NF should be less than 5 dB. For this proposed receiver, the NF degrades to 5 dB in the presence of a -11 dBm blocker.

![Image](51x410 to 56x439)

![Image](53x560 to 58x579)

![Image](58x402 to 65x406)

![Image](60x568 to 65x572)

![Image](60x585 to 65x589)

![Image](60x603 to 65x607)

![Image](60x450 to 65x454)

![Image](60x550 to 65x554)

![Image](60x434 to 65x438)

![Image](62x533 to 65x537)

![Image](63x418 to 65x422)

![Image](64x380 to 71x386)

![Image](64x386 to 185x390)

![Image](64x406 to 185x410)

![Image](64x416 to 185x420)

![Image](64x437 to 185x441)

![Image](64x447 to 185x451)

![Image](64x457 to 185x461)

![Image](64x467 to 185x471)

![Image](64x477 to 185x481)

![Image](64x487 to 185x491)

![Image](64x497 to 185x501)

![Image](64x507 to 185x511)

![Image](64x517 to 185x521)

![Image](64x527 to 185x531)

![Image](64x537 to 185x541)

![Image](64x547 to 185x551)

![Image](64x557 to 185x561)

![Image](64x567 to 185x571)

![Image](64x577 to 185x581)

![Image](64x587 to 185x591)

![Image](64x597 to 185x601)

![Image](64x607 to 185x611)

![Image](64x617 to 185x621)

![Image](64x627 to 185x631)

![Image](64x637 to 185x641)

![Image](64x647 to 185x651)

![Image](64x657 to 185x661)

![Image](64x667 to 185x671)

![Image](64x677 to 185x681)

![Image](64x687 to 185x691)

![Image](64x697 to 185x701)

![Image](64x707 to 185x711)

![Image](64x717 to 185x721)

![Image](64x727 to 185x731)

![Image](64x737 to 185x741)

![Image](64x747 to 185x751)

![Image](64x757 to 185x761)

![Image](64x767 to 185x771)

![Image](64x777 to 185x781)

![Image](64x787 to 185x791)

![Image](64x797 to 185x801)

![Image](64x807 to 185x811)

![Image](64x817 to 185x821)

![Image](64x827 to 185x831)

![Image](64x837 to 185x841)

![Image](64x847 to 185x851)

![Image](64x857 to 185x861)

![Image](64x867 to 185x871)

![Image](64x877 to 185x881)

![Image](64x887 to 185x891)

![Image](64x897 to 185x901)

![Image](64x907 to 185x911)

![Image](64x917 to 185x921)

![Image](64x927 to 185x931)

![Image](64x937 to 185x941)

![Image](64x947 to 185x951)

![Image](64x957 to 185x961)

![Image](64x967 to 185x971)

![Image](64x977 to 185x981)

![Image](64x987 to 185x991)

![Image](64x997 to 185x1001)

![Image](64x1007 to 185x1011)

![Image](64x1017 to 185x1021)

![Image](64x1027 to 185x1031)

![Image](64x1037 to 185x1041)

![Image](64x1047 to 185x1051)

![Image](64x1057 to 185x1061)

![Image](64x1067 to 185x1071)

![Image](64x1077 to 185x1081)

![Image](64x1087 to 185x1091)

![Image](64x1097 to 185x1101)

![Image](64x1107 to 185x1111)

![Image](64x1117 to 185x1121)

![Image](64x1127 to 185x1131)

![Image](64x1137 to 185x1141)

![Image](64x1147 to 185x1151)

![Image](64x1157 to 185x1161)

![Image](64x1167 to 185x1171)

![Image](64x1177 to 185x1181)

![Image](64x1187 to 185x1191)

![Image](64x1197 to 185x1201)

![Image](64x1207 to 185x1209)

![Image](64x1211)
N-path filter to implement frequency translational impedance mapping. By employing two separated down-conversion mixer path to cancel blocker before TIA, the out-of-band linearity of receiver is further improved. The receiver achieves 4.2 dB noise figure with 96 dB gain from 0.6 to 1 GHz, and +17.6 dBm out-of-band IIP3, while consuming only 20.4 mW.

Acknowledgments

This work is supported by National Natural Science Foundation of China (no. 61574045 and 61774048).

References

[1] Ericsson: “NB-IoT: a sustainable technology for connecting billions of devices,” (2016).
[2] Huawei: “NB-IoT - Enabling new business opportunities,” (2015).
[3] R. Ratassuk, et al.: “NB-IoT system for M2M communication,” IEEE Wireless Communication and Networking Conference Workshops (2016) 25 (DOI: 10.1109/SSCC.2016.7598235).
[4] J.-P. Bardyn, et al.: “IoT: The era of LPWAN is starting now,” 42nd European Solid-State Circuits Conference (2016) 1005 (DOI: 10.1109/ISSCC.2016.7598235).
[5] M. Chen, et al.: “Narrow band internet of things,” IEEE Access 5 (2017) 26557 (DOI: 10.1109/ACCESS.2017.2751586).
[6] G. Gu and G. Peng: “The survey of GSM wireless communication system,” International Conference on Computer and Information Application (2010) 121 (DOI: 10.1109/ICICIA.2010.6141552).
[7] M. Park: “IEEE 802.11ah: Sub-1-GHz license-exempt operation for the internet of things,” IEEE Communications Magazine 53 (2015) 145 (DOI: 10.1109/MCOM.2015.7263359).
[8] G. Agrawal, et al.: “A compact mixer-first receiver with 24 dB self-interference cancellation for full-duplex radios,” IEEE Microwave and Wireless Components Letters 26 (2016) 1005 (DOI: 10.1109/LMWC.2016.2623253).
[9] J. Borremans, et al.: “A 40 nm CMOS 0.4-6 GHz receiver resilient to out-of-band blockers,” IEEE J. Solid-State Circuits 46 (2011) 1659 (DOI: 10.1109/JSSC.2011.2144110).
[10] C. Andrews, and A. C. Molnar: “A passive mixer-first receiver with digitally controlled and widely tunable RF interface,” IEEE J. solid-state circuits 45 (2010) 2696 (DOI: 10.1109/JSSC.2010.2077151).
[11] K. Wang, et al.: “A 580-kW 2.4-GHz Zigbee receiver front end with transformer coupling technique,” IEEE Microwave and Wireless Components Letters 28 (2018) 174 (DOI: 10.1109/LMWC.2017.2787064).
[12] Z. Ru, et al.: “Digitally enhanced software-defined radio receiver robust to out-of-band interference,” IEEE J. Solid-State Circuits 44 (2009) 3359 (DOI: 10.1109/JSSC.2009.2032272).
[13] A. Mirzaei and H. Darabi: “Analysis of imperfections on performance of 4-phase passive-mixer-based high-Q bandpass filters in SAW-less receivers,” IEEE Trans. Circuits Syst. I, Reg. Papers 58 (2011) 879 (DOI: 10.1109/TCSI.2010.2089555).
[14] F. Bruccoleri, et al.: “Noise cancelling in wideband CMOS LNAs,” IEEE ISSCC Dig. Tech. Papers (2002) 406 (DOI: 10.1109/ISSCC.2002.993104).
[15] F. Bruccoleri, et al.: “Wide-band CMOS low noise amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits 39 (2004) 275 (DOI: 10.1109/JSSC.2003.821786).
[16] H. Zhou, et al.: “Ultra-wideband low noise amplifier employing noise cancelling and simultaneous input and noise matching technique,” IEEE Electron. Express 16 (2019) 20190274 (DOI: 10.1587/exel.16.20190274).
[17] D. Murphy, et al.: “A blocker-tolerant, noise-cancelling receiver suitable for wideband wireless applications,” IEEE J. Solid-State Circuits 47 (2012) 2943 (DOI: 10.1109/JSSC.2012.2217832).
[18] A. Nejdel, et al.: “A noise-cancelling receiver front-end with frequency selective input matching,” IEEE J. Solid-State Circuits 50 (2015) 1137 (DOI: 10.1109/JSSC.2015.2415471).
[19] D. Kim, et al.: “A wideband noise-cancelling receiver front-end using a linearized transconductor,” IEICE Trans. Electron. E100.C (2017) 340 (DOI: 10.1587/transele.E100.C.340).
[20] L. Franks and I. Sandberg: “An alternative approach to the realizations of network functions: N-path filter,” Bell Syst. Tech. J. 39 (1960) 1321 (DOI: 10.1002/j.1538-7305.1960.tb03962.x).
[21] D. C. von Grunigen, et al.: “An integrated CMOS switched-capacitor bandpass filter based on N-path and frequency-sampling principles,” IEEE J. Solid-State Circuits 18 (1983) 753 (DOI: 10.1109/JSSC.1983.1052027).
[22] A. Gafarri, et al.: “Tunable high-Q N-path band-pass filters: Modeling and verification,” IEEE J. Solid-State Circuits 46 (2011) 998 (DOI: 10.1109/JSSC.2011.2117010).
[23] A. El Ouallkadi, et al.: “Fully integrated high-Q switched capacitor bandpass filter with center frequency and bandwidth tuning,” IEEE Radio Frequency Integrated Circuits Symposium (2007) 681 (DOI: 10.1109/RFIC.2007.380974).
[24] J. Borremans, et al.: “Low-area active-feedback low-noise amplifier design in scaled digital CMOS,” IEEE J. Solid-State Circuits 43 (2008) 2422 (DOI: 10.1109/JSSC.2008.205434).
[25] S. Chen, et al.: “A low power impedance transparent receiver with linearity enhancement technique for IoT applications,” Wireless Communications and Mobile Computing 2018 (2018) (DOI: 10.1105/2018/9130910).
[26] T. Y. Liu, and A. Liscidini: “A 1.92 mW filtering transimpedance amplifier for RF current passive mixers,” IESSC Dig. Tech. Papers (2016) 358 (DOI: 10.1109/ISSCC.2016.7418055).
[27] V. Aparin, and L. E. Larson: “Modified derivative superposition method for linearizing FET low-noise amplifiers,” IEEE Transactions on Microwave Theory and Techniques 53 (2005) 571 (DOI: 10.1109/TMTT.2004.840635).
[28] Z. Song, et al.: “A low-power NB-IoT transceiver with digital-polar transmitter in 180-nm CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers 64 (2017) 2569 (DOI: 10.1109/TCSI.2017.2707412).
[29] H. Hedayati, et al.: “A 1.8 dB NF blocker-filtering noise-cancelling wideband receiver with shared TIA in 40 nm CMOS,” IEEE J. Solid-State Circuits 50 (2015) 1148 (DOI: 10.1109/JSSC.2015.2403324).
[30] S. Kim and K. Kwon: “A low-power RF-to-BB current-reuse receiver employing simultaneous noise and input matching and 1/f noise reduction for IoT applications,” IEEE Microwave and Wireless Components Letters 29 (2019) 614 (DOI: 10.1109/LMWC.2019.2932841).