Quantifying target-specific motion in anal cancer patients treated with intensity modulated radiotherapy (IMRT)

Lisa Durrant, Maxwell Robinson, Maria A. Hawkins, Frank Van den Heuvel, Rebecca Muirhead

CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, UK

Article info

Article history:
Received 16 May 2016
Accepted 13 August 2016
Available online 28 August 2016

Keywords:
Anal cancer IMRT
Inguinal node
Elective irradiation
Margin reduction

ABSTRACT

Background and purpose: Intensity modulated radiotherapy requires all target areas to be treated by a single radiotherapy plan. In anal cancer, the pelvic nodes, inguinal nodes and primary tumour represent three different targets. We aim to calculate target-specific motion in anal cancer radiotherapy, when delivered using a single pelvic online auto-match.

Materials and methods: Twenty consecutive patients treated using IMRT at a single institution were studied. CBCTs were retrospectively re-matched around the inguinal nodes and primary tumour. Match values were recorded relative to origin, defined as pelvic CBCT auto-match. Systematic and random errors were quantified to determine target-specific motion and suggested margins calculated using van Herk formulae.

Results: The suggested margins to cover the independent motion of the inguinal and anal targets for LR, CC and AP set up around the inguinal nodes were 1.5 mm, 2.7 mm and 2.8 mm; and the primary tumour were, 4.6 mm, 8.9 mm and 5.2 mm respectively.

Conclusions: Target-specific set up will likely result in reduced treatment volumes and as such reduced toxicity. This is the first time a relationship has been described between pelvic bones, inguinal nodes and primary tumour. The PLATO study will prospectively assess the toxicity and outcomes of this target-specific margins strategy.

© 2016 The Authors. Published by Elsevier Ireland Ltd. Radiotherapy and Oncology 121 (2016) 92–97
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The issue with a standard set up margin around all three anal cancer targets is the potential for either geographical miss in areas where there is increased motion; or increased toxicity where the margin which covers the most mobile target being unnecessarily large for the more static targets. Chen et al. confirmed that the smaller margins reduced the doses to organs at risk [14]. Robinson et al. also reported a similar finding with reduced bone marrow toxicity using smaller margins [15]. Radiation to these different targets results in different toxicities. Whole pelvis versus prostate alone studies have demonstrated that irradiation of pelvic nodes results in increased gastrointestinal toxicity [16,17]. Treatment of inguinal nodes is associated with dermatitis, groin pain and lymphoedema of the legs [18]. In addition, when the set up margin is added to create the PTV, the inguinal volumes increase the dose to the genitalia causing toxicities such as vaginal stricture, fistulas, dryness and dyspareunia [19]. Lastly the major toxicity of anal irradiation is ulceration and faecal incontinence [20]. As such it is important to use accurate, target-specific margins to minimise each of these associated toxicities.

This study aims to quantify the target-specific CTV to PTV growth to aid in the decision process in determining adequate margins required in the elective inguinal nodes and primary anal tumour when using an online CBCT image guided radiotherapy (IGRT) protocol.

Materials and methods

Patient selection

Twenty consecutive anal cancer patients, treated between 2013 and 2015, at Oxford University Trust; were evaluated within this retrospective study. Patients had a diagnosis of squamous cell carcinoma; had completed full dose chemoradiotherapy to primary tumour and all elective nodes according to United Kingdom (UK) IMRT guidelines [21,22]; did not have a hip prosthesis; and had uninvolved inguinal nodes as determined radiographically by FDG_PET and MRI imaging.

Treatment

Patients were immobilised supine with a comfortably full bladder, indexed knee support under the popliteal fossa and ankles stocks. Treatment was delivered over 28 fractions. Volumes were delineated as per UK guidance [21,22] by an experienced clinician on a 2.5 mm contrast enhanced planning CT. In summary the primary gross anal tumour (GTV_Anal) was delineated and enlarged by 25 mm to create PTV_Anal (15 mm CTV and 10 mm for PTV) which received 50.4 or 53.2 Gy according to stage. The involved pelvic nodes were delineated plus a margin of 20 mm to create PTV_Nodes and treated to a dose of 50.4 Gy. Lastly the elective node volume (CTV_Elective) was delineated and enlarged by 10 mm to create PTV_Elective which received 40 Gy. Both elective nodal targets were delineated or edited to exclude local muscles and bones. Treatments were inversely planned using 7–9 field IMRT with a simultaneous integrated boost.

Chemotherapy was delivered with Mitomycin C 12 mg/m² on day 1 and Capecitabine 825 mg/m² twice daily on all days of radiotherapy.

Patients underwent daily imaging using a Varian Clinac IX with OBI (CBCT) (Varian Medical Solutions, CA, USA). On fractions 1–5, 10, 15, 20, 25 a CBCT was performed with paired orthogonal kV imaging all other fractions. Online pelvic auto-match was performed daily. Initially an auto-match including pitch, yaw and roll rotation was performed. If rotation was <3 mm a further pelvic auto-match was performed without rotation, prior to shifts and treatment. The patient was repositioned and re-imaged if rotation was >3 degrees.

Retrospective image matching

Twenty patients with 9 CBCTs each were analysed. The 180 CBCTs underwent 3 matches (pelvic, inguinal, and anal) summat-
ing 540 matches.

For matching purposes CTV_Elective was modified to create one further volume of interest (VOI), the inguinal node volume (VOI_Inguinal) encompassing the inguinal nodes alone. The GTV_Anal was used as the anal VOI (VOI_Anal). The different volumes of interest are illustrated in Fig. 1.

Fig. 1. Planning CT scan demonstrating the VOI used for the primary tumour (VOI_Anal, red contour) and the inguinal nodes (VOI_Elective, light blue contour) and the ROI used for pelvic auto-match (green contour) in (A) Sagittal, (B) Axial and (C) Coronal slices.
Three matches were performed to represent our departmental standard range of corrections; lateral or left/right (LR), longitudinal or cranial/caudal (CC) and vertical or anterior/posterior (AP) were permitted. Rotations were not measured, nor corrected.

1. A rigid, pelvic auto-match using a region of interest (ROI) to encompass the bony pelvis. ROI borders were: the anterior border of the symphysis pubis, anterior border the sacrum, femoral heads laterally and the full extent of the CBCT image (16 cm on a Varian Clinac IX). The values for the pelvic match were recorded to act as a point of origin and reference for further matches.

2. A rigid, auto-match to VOI_Anal.

3. A rigid, auto-match to VOI_Inguinal.

Matches were assessed visually by an experienced radiographer to ensure clinical relevance and analysis pooled by combining the measurements from all 9 CBCT images for each patient.

All matches used the registration module of Eclipse Treatment Planning System Version 13 (Varian Medical Systems, CA, USA).

Systemic and random motion calculations

We are interested in the inter-fractional variation of the position of the VOI under investigation with respect to the bony anatomy. The use of the word “motion” indicates this variation in the remainder of the text.

To calculate motion for the inguinal nodes and primary tumour relative to the pelvic bones, the shift from the pelvic auto-match to the VOI_Inguinal and VOI_Anal respectively was calculated. The systematic (\(\Sigma \)) and random motion (\(\sigma \)) was calculated for both areas for all 3 degrees of freedom as per Van Herk et al. publication, and which is reflected in the IPEM guidance document [23,24].

Target-specific margin calculations

Van Herk et al. equation \((2.5 \Sigma + 0.7\sigma) \) was used to propose target-specific motion for inguinal nodes and primary tumour [24]. While this equation is routinely used to calculate set up margins, we have used it in this case to quantify the motion in order to guide the determination of a PTV margin for each target.

Reproducibility analysis

To ensure reproducibility and consistency of matches to VOI_Inguinal and VOI_Anal, the auto-matches for day 2 CBCT, in all 20 patients were repeated a further 2 times, by the same observer, summating 120 matches. The standard deviation (SD) of these 3 auto-matches was then calculated.

The data were then pooled by calculating a mean from each match in each direction for both inguinal and primary tumour targets.

Results

Patient and tumour demographics are documented in Table 1.

All patients (n = 20)
Age (y), median (range)

Gender	
Male	5
Female	15

T stage	
T1	5
T2	11
T3	3
T4	1

N stage	
N0	15
N1	4
N2	0
N3	1

RT dose to primary tumour (Gy)	
50.4 Gy	12
53.2 Gy	8

| GTV_A Volume (cc’s), median (range) | 33.6 (3–175) |

Abbreviations: BMI = RT, radiotherapy; GTV, gross tumour volume.

Fig. 2. Patient where the CBCT pelvic bony auto-match resulted in good alignment of the inguinal target (green contour) but poor alignment of anal target (red contour). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The pooled analysis for each patient demonstrated that inguinal node matches conformed more closely to the pelvic auto-match than the primary tumour in all directions (Fig. 3).

The differences between the shifts between the inguinal nodes and the primary target demonstrate while there is more correlation between the shifts in the lateral direction, the two targets move independently in terms of both distance and direction to each other (Fig. 4).
Systematic and random errors

In all cases the systematic and random errors were larger for the primary tumour than the inguinal nodes, they are documented in Table 2.

Target-specific set up calculations

The suggested margins, to incorporate the target-specific motion for LR, CC and AP directions around the VOI_Inguinal were 2 mm, 3 mm and 3 mm respectively. Around VOI_Anal the margin required to encompass the increased motion of this target were 5 mm, 9 mm and 5 mm respectively.

Reproducibility of matches

The mean (SD) of all the standard deviations for each match in LR, CC and AP directions was 0.44 mm (0.31), 0.88 mm (0.95) and 0.75 mm (0.71) respectively in the inguinal node matching and 0.42 mm (0.28); 1.18 mm (0.87), 0.73 mm (0.61) respectively in the primary tumour match. The majority of deviations is sub-millimetre and confirms the auto-match process is reliable.

The standard deviation of the 3 repeated matches in each direction for the two targets is shown in Supplementary material Fig. 5.

Discussion

To our knowledge the concept and quantification of target-specific motion has not been described previously in anal cancer. In this study we have quantified the motion around the inguinal nodes and primary tumour, and offer appropriate margins to ensure adequate coverage and reduce un-necessary toxicity; which can be prospectively verified.

In the clinical application of these data, it must be acknowledged that standard isotropic margins are often chosen for ease of use. In addition, although the motion of the CTV over the treatment course is the predominant factor in CTV to PTV margins, there are other potential errors for example interclinician variation in delineation, table sag, laser calibration, etc. Finally, the accuracy of different linear accelerators must be considered; when considering margins <3 mm it must be acknowledged that some linear accelerators do not have this degree of accuracy in delivery and slice thickness of some scanners may exceed the set up. As such we would suggest the use of 10 mm from CTV_Anal to PTV_Anal.
as a pragmatic compromise. It must also be taken into account that the GTV_Anal was used as the VOI_Anal, therefore an additional margin from GTV_Anal to CTV_Anal must be used for microscopic disease prior to adding the set up margin. Similarly the pragmatic margin for CTV_Inguinal to PTV_Inguinal would be 5 mm.

Our study did not investigate rotational moves however the three degrees of freedom investigated, represent the online corrections performed on the majority of standard linear accelerators and therefore our study is appropriate for the purposes of calculating set up for routine clinical care.

It must be noted that the matches and as such the errors and margins calculated are only relevant for similar verification techniques, ROIs / VOI, threshold for shifts and matches. For centres using different delineation techniques for their elective inguinal nodes, or imaging/matching techniques or frequencies, or have a minimum threshold for shifting; a centre specific margin should be calculated. In addition, individual centres not involved in large scale audits or trials should intermittently prospectively assess these margins and outcomes to ensure they are unchanged by slight changes in matches or delineation, by changes in staff or equipment.

We selected patients without involved inguinal nodes. The authors had concerns that the soft tissue auto-match may have been improved by the incorporation in the VOI of a defined large node. By selecting patients without involved nodes the calculation of set up is performed without the benefit of defined lymph nodes and as such would be appropriate for all anal cancer patients with and without nodes as this margin is required around elective nodes even in those patients that are node positive.

Further patient specific patient individualisation may be possible for outliers who require bigger margins. If these patients can be identified prior to treatment, appropriate margins can be used from outset. Factors that could affect the required margins include patient sex, BMI, tumour size, location, bowel and bladder filling at outset. Alternatively a number of adaptive planning techniques have been suggested such as the use of a “multiple adaptive plan” where multiple plans are created at outset and a plan of the day is selected, the use of an adaptive morphing algorithm or daily plan adjustment following online image assessment [25–27]. Anecdotally the image quality, bowel gas and tumour shrinkage, were factors that affected the anal match.

Previously the UK IMRT guidance suggested 10 mm CTV to PTV margin around the inguinal nodes which our study suggests could be reduced to 5 mm. The Anal GTV to CTV and CTV to PTV margins were previously combined in the UK IMRT guidance suggesting a total margin of 25 mm. Data from skin squamous cell carcinoma would suggest 11 mm in early disease and 14 mm in locally advanced disease is an appropriate margin for microscopic disease [28]. Therefore in early disease 20 mm GTV_Anal to CTV_Anal (GTV_Anal = 10 mm + CTV_Anal = 10 mm) and in locally advanced disease suggested GTV_Anal to PTV_Anal margin of 25 mm (GTV_Anal to CTV_Anal = 15 mm + CTV_Anal to PTV_Anal = 10 mm).

In terms of margins used internationally; the RTOG 0529 protocol suggested a 1 cm CTV to PTV margin [29] while the TROG atlas recognise the different verification protocols may allow different margins, suggesting 5–7 mm with daily online imaging and 10 mm without [30]. The numerous series published used a wide range of CTV to PTV margins ranging from 5 mm to 15 mm [31–34] but none of the published literature suggests individualised margins for different targets. This widespread variation suggests there remains uncertainty regarding the correct margin and the need for studies similar to our own.

While the quantification of margins is essential in anal radiotherapy, other potential errors in the move to IMRT must be addressed. Delineation and planning discrepancies are problematic in the move from conformal treatment to IMRT in anal cancer. RTOG 0529 had a thorough quality assurance programme and reported 33% had incorrectly delineated inguinal node compartments. 81% had unacceptable plans initially, despite clear delineation and planning instructions and an atlas; and 46% had continued unacceptable plans following feedback. As such it is important to audit and report outcomes of large series after implementation such as the national UK audit of IMRT in anal cancer [35].

Chen et al. already reported reductions in standard margins across different target areas reduced the dose to organs at risk [14]. Although dosimetric modelling of consequences to organs at risk using these target-specific margins could be performed, the prospective assessment of toxicity and outcomes within a large international trial is far superior method of assessment. The upcoming PLATO study (ISRCTN88455282), investigating individualised radiotherapy doses, plans to incorporate these margins and has a built in safety and toxicity pilot which will assess these.

Conflicts of interest statement

None to declare.

Acknowledgement

RM and MAH are supported by Medical Research Council (MRC), UK, grant MC_PC_12001/2.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.radonc.2016.08.011.

References

[1] Glynne-Jones R, Northover JM, Cervantes A, Group EGW. Anal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010;21:v87–92.
[2] James RD, Glynne-Jones R, Meadows HM, Cunningham D, Mynit AS, Saunders MP, et al. Mitomycin or cisplatin chemoradiation with or without maintenance chemotherapy for treatment of squamous-cell carcinoma of the anus (ACT II): a randomised, phase 3, open-label, 2×2 factorial trial. Lancet Oncol 2013;14:516–24.
[3] NIH National Cancer Institute Surveillance, Epidemiology, and End Results Program 2000 [Online] Available at: <http://seercancer.gov/statfacts/html/anushmt.html> [accessed 16.02.16].
[4] Rachinc LA, Winter K, Myerson RJ, Goodyear MD, Willins J, Esthappan J, et al. RTOG 0529: a phase 2 evaluation of dose-painted intensity modulated radiation therapy (IMRT). Bethesda: International Commission on Radiation Units and Measurements; 2010.
[5] ICRU. Report 50: prescribing, recording and reporting photon beam intensity-modulated radiation therapy (IMRT). Bethesda: International Commission on Radiation Units and Measurements; 1999.
[6] ICRU. Report 50: prescribing, recording and reporting photon beam therapy. Bethesda: International Commission on Radiation Units and Measurements; 2010.
[7] ICRU. Report 62: Prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50). Bethesda: International Commission on Radiation Units and Measurements; 1999.
[8] Stroom JC, Heijmen BJM. Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiother Oncol 2002;64:75–83.
[9] Schippers MG, Bol GJ, de Leeuw AA, van der Heide UA, Raaymakers BW, Verkooyen HM, et al. Position shifts and volume changes of pelvic and para-aortic nodes during IMRT for patients with cervical cancer. Radiother Oncol 2014;111:42–2–5.
[10] van Rooijen DC, Pool R, van de Kamer JB, Hulshof MC, Koning CC, Bel A. Independent position correction on tumor and lymph nodes; consequences for bladder cancer irradiation with two combined IMRT plans. Radiat Oncol 2010;5:53.
