Validation of 3D model by the example of a supersonic inlet-isolator

R K Seleznev 1,2,3

1 Dukhov Research Institute of Automatics (VNIIA), Suschevskaya Street 22, Moscow 127055, Russia
2 Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
3 Ishlinsky Institute for Problems in Mechanics RAS, Vernadsky Street 101(1), Moscow, 119526, Russia
rkseleznev@gmail.com

Abstract. In the paper three-dimensional model for hypersonic flow are described. Comparing the result of calculation with wall pressure data, obtained in the inlet-isolator model mounted to the floor of a Mach 2.75 wind tunnel at the Stanford University, presented in this article. The present results show that three-dimensional model is able to predict the shock wave structures in a scramjet inlet/isolator.

1. Introduction
The inlet is an essential element of the ramjet and scramjet, and their design greatly affects the overall performance of the engine. Therefore, at the initial stage of creating a gas-dynamic code for describing processes in ramjet and scramjet it is very important to correctly describe the inlet and the shock-wave structure in it. Inlets are with external compression, mixed compression and internal compression [1], but they have the same function in common. In the inlet, due to the appearance of the shock-wave structure, the incoming air is compressed and the Mach number decreases to the desired value at the entrance to the engine. The isolator is also an essential part of the ramjet and scramjet. The possibility of a correct description of the shock wave structure is very important for accurate calculations of the combustion chamber. In other words, by setting the parameters at the inlet to the air intake, it becomes possible to obtain the parameters at the inlet to the combustion chamber. The model described allows us to calculate the flow in the combustion chamber, which will be demonstrated in subsequent work. Recently, experiments have appeared with a complex shape of the air intake, so it is especially important to create three-dimensional codes. For example, Rectangular-to-Elliptical Shape Transition (REST) [2–4] scramjet become common in recent years.

There are many experiments with inlets [2–12]. In this paper we consider the model of inlet-isolator mounted to the floor of a Mach 2.75 wind tunnel at the Stanford University[9]. This type of experimental setup is called jet in supersonic cross-flow (JISCF). Absolutely similar experiments were conducted in China [5,6]. In this experiment, in addition to visual observations, pressure measurements were made on the upper and lower walls. In this paper, the validation is performed on the pressure distribution in this experiment on the top wall. Besides this verification case involves the computation of the supersonic flowfield past a wedge with a half-angle of 15 degrees.
2. Description of Stanford University inlet-isolator experimental setup
Stanford University conducted a series of experiments to study the injection of fuel into the supersonic flow, as well as to study shock-wave structure in the supersonic inlet-isolator mounted to the floor of a Mach 2.75 at the Expansion Tube Facility of the High Temperature Gasdynamics Laboratory at Stanford University. (figure 1). The experimental setup consists of an input ramp with an inclination angle of 10°, and a constant-section isolator. The height at the entrance to the air intake is 23 mm. The height of the constant part of the isolator is 15mm. The width of the chamber is constant and equal to 75 mm. From the bottom wall of the chamber perpendicular to the flow, fuel is injected through a nozzle 2 mm in diameter. The injection site is located in the center of the bottom wall of the chamber at a distance of 70 mm down from the leading edge of the inlet. In the experiment, in addition to visual observations, the pressure distribution on the lower and upper walls was investigated, as well as the interaction of the blown jet with the main air flow. In this paper, injection of fuel was not considered. The following incoming air flow parameters were used:
I. Incoming flow pressure: \(P = 0.40 \) atm;
II. Incoming flow temperature: \(T = 1250 \) K;
III. Incoming flow Much Number: \(M = 2.75 \);
IV. Incoming flow gas mixture: Air.

![Figure 1](image)

Figure 1. The side-view of inlet/isolator model [9].

3. Three-dimensional computational fluid dynamic model
For three-dimensional calculations we used the NERAT-3D computer code [13]. NERAT-3D realizes the time-relaxation method. At each time step the following groups of governing equations were integrated successively: the Navier–Stokes and continuity equations, the equations of mass conservation of chemical species, the equation of energy conservation. These equations are formulated in the following form:

\[
\frac{\partial \rho}{\partial t} + \text{div} (\rho \mathbf{V}) = 0, \quad (1)
\]

\[
\frac{\partial \rho \mathbf{V}}{\partial t} + \text{div} (\rho \mathbf{VV} + \mathbf{F}) = 0, \quad (2)
\]

\[
\rho c_p \frac{\partial T}{\partial t} + \rho c_p \mathbf{V} \text{grad} T = \text{div} (\lambda \text{grad} T) + \sum_{i=1}^{N_i} \rho c_p D_i (\text{grad} Y_i \cdot \text{grad} T) - \sum_{i=1}^{N_i} \hat{h}_i \hat{\omega}_i + \frac{\partial \rho}{\partial t} + \mathbf{V} \text{grad} p + \Phi,
\]

\[
\frac{\partial \rho_i}{\partial t} + \text{div} \rho_i \mathbf{V} = -\text{div} \mathbf{J}_i + \hat{\omega}_i, \quad i = 1, 2, \ldots, N_s, \quad (4)
\]
where: t – time; \(\mathbf{V} = iu + jv + kw \) – velocity vector with projections on the axis of the Cartesian coordinate system \(x, y, z \); \(p, \rho \) – pressure and density; \(T \) – temperature of translational movement of particles; \(\mu, \lambda \) – dynamic coefficient of viscosity and coefficient of thermal conductivity; \(c_p \) – specific heat of the mixture at constant pressure; \(c_p = \sum_{i}^{N} Y_i c_{p,i} \); \(N_s \) – number of gas mixture components; \(Y_i \) – mass fraction of the \(i \)-th component of the mixture; \(c_{p,i}, h_i \) – the specific heat at constant pressure associated with translational and rotational degrees of freedom, and the enthalpy of the \(i \)-th component of the mixture; \(\dot{w}_i \) – the mass velocity of chemical transformations for the \(i \)-th component of the mixture; \(D_i \) – the effective diffusion coefficient of the \(i \)-th component of the mixture; \(\mathbf{J}_i \) – the diffusion flux density of the \(i \)-th component of the mixture; \(sN \) – number of chemical components of the gas mixture. The components of the viscous stress tensor and the dissipative function were calculated by the formulas:

\[
\Pi_{i,j,k} = -p \delta_{i,j,k} + \mu \left[\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \delta_{i,j} \left(\frac{\partial u_k}{\partial x_k} \right) \right], \quad i,j,k = 1,2,3
\]

\[
\Phi_\mu = \mu \left[2 \left(\frac{\partial u}{\partial x} \right)^2 + 2 \left(\frac{\partial v}{\partial y} \right)^2 + 2 \left(\frac{\partial w}{\partial z} \right)^2 \right]
\]

\[
+ \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right)^2 + \left(\frac{\partial w}{\partial z} + \frac{\partial u}{\partial x} \right)^2 - 2 \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right)^2 \right]
\]

The closing relations for the system of equations to be solved include the thermal equation of state of an ideal gas:

\[
\frac{p}{\rho} = \frac{R_0}{M_\gamma} T, \quad \frac{1}{M_\gamma} = \sum_{i}^{N} \frac{Y_i}{M_i}
\]

(5)

The system of equations (1) – (5) was integrated numerically by the establishment method using computer code NERAT-3D. Equations (1) – (2) were integrated by an explicit finite-difference method according to the AUSM scheme [14]. The diffusion equations (4) and energy conservation were solved using an implicit finite-difference scheme of the second order of the Crank-Nicholson approximation. Numerical solution of finite-difference equations was carried out using multi-block technology. The number of blocks used in this technology is determined by the complexity of the geometry of the calculation area. In this case, 8 blocks of the grid were used. The calculations use a structured mesh of 60×50×14 dimensions in each block, if not stated other. Chemical reactions are neglected.

4. Results

The first verification case for 3D code involves the computation of the supersonic flowfield past a wedge with a half-angle of 15 degrees. Figures 2– 3 shows the main features of the flow field. The freestream consists of air. Mach number is of 2.5. The inlet temperature is equal to 280 K. The inlet pressure is equal to 1 atm. As the flow meets the leading edge of the wedge, an oblique shock is formed as the flow turns to become tangent with the wedge surface. The parameters of the flowfield (Mach number, pressure, temperature and angle of oblique shock) past the shock is uniform and presented in table 1. The calculations use a structured mesh of 40×40×30 dimensions in each of eight blocks. Table 1 presents a comparison of the calculation results behind the oblique shock for the
NERAT 3D and WIND 2D [15] with an analytical solution [16]. It can be seen that the relative error does not exceed 4 percent.

![Figure 2. Mach number distribution within the experimental setup.](image)

![Figure 3. Pressure distribution within the experimental setup.](image)

Table 1. Comparison of the results of calculating a flat wedge with an angle of 15° with analytical and calculated data.

	Mach	Pres, atm	T, K	angle
NERAT 3D (this work)	1.860	2.560	373.0	37.14
Analytical solution	1.870	2.467	370.1	36.95
Relative error, %	0.540	3.610	0.780	0.530
WIND 2D [15]	1.868	2.469	372.5	-

The second validation case is Stanford University experimental setup. At the calculations the entrance to the inlet is set uniform flow. Figure 4 shows the results of calculated pressure distribution within the experimental setup. It should be noted the occurrence of a shock-wave structure in the
channel. However, the intensity of the shock waves attenuates. This is particularly noticeable on the results of calculated pressure distribution on the top wall. Comparison of calculated pressure distribution on the top wall obtained in this work (red line) and the experimental results (green squares) [9] presented in the figure 5. The position of first two the shock wave peaks is consistent, which allows us to conclude that the results are qualitatively identical.

![Figure 4. Pressure distribution within the experimental setup.](image)

![Figure 5. Comparison of calculated pressure distribution on the top wall obtained in this work (red line) and the experimental results (green squares) [9].](image)

5. Conclusion
Comparison of the calculation results behind the oblique shock for the NERAT 3D and WIND 2D and an analytical solution are presented. Comparison of the pressure distribution calculated by three-
dimensional model and pressure top wall distribution in the inlet-isolator model mounted to the floor of a Mach 2.75 wind tunnel at the Stanford University are presented. The present results show that our three-dimensional simulations are able to predict the shock wave structures in a scramjet inlet/isolator. This work presents a continuation of our efforts on the verification and validation of numerical methods and computational codes for calculation of various hypersonic vehicles and energetic devices [18–23].

Acknowledgments
This work was preformed within the framework of the Government program of basic research of the Russian academy of sciences (contract #AAAA-A17-117021310372-6) and partially under support of RFBR grant #016-01-00379.

References
[1] Heiser W, Pratt D, Daley D and Mehta U 1994 *Hypersonic Airbreathing Propulsion* vol 26(Washington, DC: American Institute of Aeronautics and Astronautics, Inc.)
[2] Roberts M, Smart M and Frost M 2012 HiFiRE 7: Design to Achieve Scientific Goals 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference (Reston, Virgina: American Institute of Aeronautics and Astronautics) pp 1–8
[3] Smart M and Ruf E 2006 Free-Jet Testing of a REST Scramjet at Off-Design Conditions 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (Reston, Virgina: American Institute of Aeronautics and Astronautics) pp 190–201
[4] Zhao M, Zhou T, Ye T, Zhu M and Zhang H 2017 Large eddy simulation of reacting flow in a hydrogen jet into supersonic cross-flow combustor with an inlet compression ramp *Int. J. Hydrogen Energy* 42 16782–92
[5] Zhao M, Ye T, Cao C, Zhou T and Zhu M 2016 Study of sonic injection from circular injector into a supersonic cross-flow using large eddy simulation *Int. J. Hydrogen Energy* 41 17657–69
[6] Wagner J L 2009 *Experimental Studies of Unstart Dynamics in Inlet / Isolator Configurations in a Mach 5 Flow*
[7] Wagner J L, Yu ceil K B, Valdivia A, Clemens N T and Dolling D S 2009 Experimental Investigation of Unstart in an Inlet/Isolator Model in Mach 5 Flow *AIAA J.* 47 1528–42
[8] Gamba M, Miller V, Mungal M G and Hanso R 2011 Ignition and Flame Structure in a Compact Inlet/Scramjet Combustor Model 17th AIAA Int. Sp. Planes Hypersonic Syst. Technol. Conf.
[9] Wilson Chan Y K, Razzazi S A, Wise D J and Smart M 2014 Freejet Testing of the 75%-scale HiFiRE 7 REST Scramjet Engine 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference (Reston, Virgina: American Institute of Aeronautics and Astronautics) pp 1–20
[10] Barth J 2014 *Mixing and combustion enhancement in a Mach 12 shape-transitioning scramjet engine* (The University of Queensland)
[11] Suraweera M V. and Smart M K 2009 Shock-Tunnel Experiments with a Mach 12 Rectangular-to-Elliptical Shape-Transition Scramjet at Off-design Conditions *J. Propuls. Power* 25 555–64
[12] Surzhikov S, Seleznov R, Tretjakov P and Zabaykin V 2014 Unsteady Thermo-Gasdynamic Processes in Scramjet Combustion Chamber with Periodical Input of Cold Air 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (Reston, Virginia: American Institute of Aeronautics and Astronautics) p 25
[13] Shang J and Surzhikov S 2013 Numerical Prediction of Convective and Radiative Heating of Scramjet Combustion Chamber with Hydrocarbon Fuels 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (Reston, Virgina: American Institute of Aeronautics and Astronautics) pp 1–16
[14] Shang J and Surzhikov S 2013 Radiative Heat Exchange in a Hydrogen-Fueled Scramjet Combustion Chambers 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (Reston, Virigina: American Institute of Aeronautics and Astronautics)

[15] Edwards J, Liou M-S, Edwards J and Liou M-S 1997 Low-diffusion flux-splitting methods for flows at all speeds 13th Computational Fluid Dynamics Conference vol 36 (Reston, Virigina: American Institute of Aeronautics and Astronautics)

[16] Slater J W https://www.grc.nasa.gov/www/wind/valid/wedge/wedge01/wedge01.html

[17] Marsh H 1983 Modern compressible flow Int. J. Heat Fluid Flow 4 pp 59–60

[18] Seleznev R and Surzhikov S 2013 Generalized Newton Method For Solving Differential Equations of Chemical Kinetics 44th AIAA Thermophysics Conference (Reston, Virginia: American Institute of Aeronautics and Astronautics) pp 1–17

[19] Seleznev R and Surzhikov S 2015 Quasi-One-Dimensional and Two-Dimensional Numerical Simulation of Scramjet Combustors 51st AIAA/SAE/ASEE Joint Propulsion Conference (Reston, Virginia: American Institute of Aeronautics and Astronautics) p 28

[20] Polezhayev Y V. and Seleznev R K 2014 Numerical study of the processes of resonance emergence in the experimental set-up of a pulse detonation engine High Temp. 52 225–9

[21] Seleznev R and Surzhikov S 2016 A Quasi-One-Dimensional Analysis of Hydrogen-Fueled Scramjet Combustors 52nd AIAA/SAE/ASEE Joint Propulsion Conference (Reston, Virginia: American Institute of Aeronautics and Astronautics) pp 1–27

[22] Seleznev R K 2017 Comparison of two-dimensional and quasi-one-dimensional scramjet models by the example of VAG experiment J. Phys. Conf. Ser. 815 12007

[23] Kotov M A, Ruleva L B, Solodovnikov S I and Surzhikov S T 2017 Experimental and numerical study of supersonic flow over two blunted wedges J. Phys. Conf. Ser. 815 12025