Knowledge in Multi-Agent Systems:
Initial Configurations and Broadcast

Alessio Lomuscio
Dept of Electronic Engineering
QMW College, University of London
London, UK

Ron van der Meyden
Computing Sciences
University of Technology
Sydney, Australia

Mark Ryan
School of Computer Science
University of Birmingham
Birmingham, UK

February 1, 2008

Abstract

The semantic framework for the modal logic of knowledge due to Halpern and Moses provides a way to ascribe knowledge to agents in distributed and multi-agent systems. In this paper we study two special cases of this framework: full systems and hypercubes. Both model static situations in which no agent has any information about another agent’s state. Full systems and hypercubes are an appropriate model for the initial configurations of many systems of interest. We establish a correspondence between full systems and hypercube systems and certain classes of Kripke frames. We show that these classes of systems correspond to the same logic. Moreover, this logic is also the same as that generated by the larger class of weakly directed frames. We provide a sound and complete axiomatization, S5WD_n, of this logic. Finally, we show that under certain natural assumptions, in a model where knowledge evolves over time, S5WD_n characterizes the properties of knowledge not just at the initial configuration, but also at all later configurations. In particular, this holds for homogeneous broadcast systems, which capture settings in which agents are initially ignorant of each others local states, operate synchronously, have perfect recall and can communicate only by broadcasting.
1 Introduction

Modal logics of knowledge have been proposed as a formal tool for specifying and reasoning about multi-agent systems in a number of disciplines, including Distributed Computing [HM99], Artificial Intelligence [McC89] and Economics [Aum76, RW90].

The logic most commonly applied in this area is the logic $S5_n$, a generalization to a multi-agent setting of the logic $S5$ (see, e.g., [HC96] and [Go92]), which was originally proposed as a model of knowledge by Hintikka [Hin62] in Philosophical Logic. This application of S5 interprets the modal formula

$$\square_i \phi$$

as "it is known that ϕ". So interpreted, the logic S5 models an ideal agent, whose knowledge has the properties of being veridical (everything the agent knows is true), and being closed under positive introspection (the agent knows what it knows) and negative introspection (it knows what it does not know). These properties have been the subject of a significant body of criticism in the philosophical literature, but S5 remains an appropriate model for applications in computer science and economics, since it captures an information theoretic notion of knowledge of interest in these areas.

The logic $S5_n$ is a multi-modal version of S5, including for each $i = 1 \ldots n$ an operator \square_i. The intended interpretation is that each $i = 1, \ldots, n$ represents an agent, and $\square_i \phi$ expresses "agent i knows that ϕ". The logic $S5_n$ can be axiomatized by taking all the propositional tautologies; the axiom schemas $\square_i (p \Rightarrow q) \Rightarrow \square_i p \Rightarrow \square_i q$, and $\square_i p \Rightarrow p$, and $\square_i p \Rightarrow \square_i \square_i p$, and $\neg \square_i 1 \Rightarrow p \Rightarrow \square_i \neg \square_i 1 \Rightarrow p$, and the inference rules Modus Ponens, Necessitation and Uniform Substitution.

The logic $S5_n$ has also been extended to deal with properties that arise when we investigate the state of knowledge of the group. Subtle concepts like common knowledge and distributed knowledge have been investigated, as has the combination of the logic of knowledge and time (see [FHMV93] and [MH93] for extensive treatments of this literature.) Although the focus of research in this literature has been on the combination of the knowledge modalities, modeled by S5, with modalities expressing other mental states, it has been noted that in certain situations, the axioms of S5WD, provide an incomplete description of the properties of knowledge. One of the characteristics of the $S5_n$ axioms is that they do not appear to state any interaction between one agent’s knowledge and that of another. Some such interactions nevertheless follow, e.g., it can be shown that $\square_i \phi \Rightarrow \neg \square_j \neg \phi$ is valid in $S5_n$. (This formula above states that agent j cannot rule out the possibility of a fact known by agent i.) However, there are specific settings in which further such interactions hold. For example, consider a distributed system composed of a group of agents $A = \{1, \ldots, n\}$ and the following situations:

One agent knowing everything the others know. An agent j is the central librarian of a distributed system of agents that rely on j to maintain all their knowledge.

Linear order in agents’ private knowledge. The agents operate within a chain of command subject to security restrictions. Each agent in the chain has a higher security clearance than the previous agent, and has access to a larger set of information sources.

These and similar scenarios can be modeled by extensions of $S5_n$ in which interaction axioms are imposed. Write $S_{i,j}$ for the axiom schema $\square_i \phi \Rightarrow \square_j \phi$. Then the first example above can be modeled by the logic $S5_n$ plus $S_{i,j}$ for all $i \in A$. The second scenario can be described by assuming an order on the set of agents reflecting their increasing information, and by taking $S5_n$ plus $S_{i,j}$ for all $i \leq j$. These are just two isolated examples but there is actually a broad spectrum of possible specifications on how private states of knowledge are affected by other agents’ knowledge (see [LR93] for a detailed exposition). At one end of the spectrum we have the system S5 in which all agents have the same knowledge. This can be modeled by taking an extension of $S5_n$ in which the axiom $S_{i,j}$ holds for all $i, j \in A$, making all the modalities collapse onto each other. This is a very strong constraint. At the other end of the spectrum is simply $S5_n$. Catach [Cat88] has studied a limited class of such interactions between knowledge of the agents.

While the examples of interaction axioms above derive directly from static assumptions about the interaction between agents’ knowledge, there are also cases where such interactions arise in more subtle ways. Rather than start with assumptions that are directly about interactions between
agents’ knowledge, one could begin with an extensional model of distributed systems, of the kind commonly used in studies of distributed computing. The notion of interpreted system of Halpern and Moses \cite{HM90, HMV97} takes this approach. The interpreted systems model describes a multi-agent system in terms of the local states of the agents and how such local states evolve over time as the agents communicate. A local state may be as mundane as a listing of the values of the set of variables maintained by the agent, or it could be a richly structured representation of the information available to the agent. A global state consists of a local state for each agent, plus a state for the environment within which the agents operate. In general, there may be constraints connecting the components of a global state, so not every possible global state need occur in the system.

One can define two situations in such a system to be equivalent for agent i if the agent has the same local state in these situations. This equivalence relation can then be used as the accessibility relation corresponding to agent i’s knowledge operator \Box_i. This approach provides an information theoretic notion of knowledge that has been found useful in analyses of distributed systems (see \cite{HMV97} for discussion of a number of examples and extensive citations.)

Generally, the logic of knowledge that arises from this semantic framework is $S5_n$. However, it has been noted that in certain quite natural special cases, additional axioms arise that state interactions between agents knowledge. Fagin et al. \cite{FHV92, FV86} present one such example. They study systems in which agents with perfect recall, operating in a static world, communicate their knowledge about that world by means of unreliable message passing.

In this paper we introduce and study another special case of the interpreted systems model that results in interaction axioms and can be axiomatized by an extension of $S5_n$ that falls into the above-mentioned spectrum. The classes of systems we investigate are called full systems and hypercubes. Both are systems in which every possible combination of individual agents’ local states occurs in some global state in the system. In hypercubes we require additionally that every combination of state of the environment and the agents’ local states occurs. Full systems and hypercubes are appropriate classes of systems for modeling the initial configurations of many systems of interest, in which no agent has any information concerning any other agent’s state. (Thus each agent considers possible every combination of the other agents’ local states.)

Full systems and hypercubes may be shown to satisfy an axiom that does not follow from $S5_n$. This axiom states in a quite intuitive fashion the property that every combination of the individual agent’s local states occurs in some global state of the system. By characterizing full systems and hypercubes in terms of certain classes of Kripke frames, we establish a sound and complete axiomatization of the logic of knowledge in these classes of systems. Interestingly, the two classes correspond to the same logic, which we call $S5WD_n$. The nomenclature arises from the fact that we show that a further class of frames, the weakly directed frames, corresponds to the same logic. We also show that $S5WD_n$ is decidable.

The definition of full systems and hypercubes takes a static viewpoint of multi-agent systems that does not use the full power of the interpreted systems model, which is also capable of modeling the evolution of knowledge over time. As noted above, these definitions provide an appropriate characterization of the agents’ knowledge in the initial configurations of many distributed systems. However, we show that the logic $S5WD_n$ has broader applicability than simply reasoning about such initial configurations. We also study in this paper the dynamic behavior of knowledge in homogeneous broadcast environments. These model a particular communication architecture, in which agents operate synchronously and can communicate only by broadcasting information to all agents. We assume that agents have perfect recall, and that their initial configuration is characterized by a hypercube. We show that not just the initial configuration, but all configurations arising in such a system can be characterized using a full system. It follows that $S5WD_n$ exactly captures the properties of knowledge in homogeneous broadcast systems. Since $S5WD_n$ extends $S5_n$, this provides another example of a natural situation in which $S5_n$ is an incomplete characterization of the logic of knowledge, analogous to the results of Fagin et al. \cite{FHV92, FV86}.

The paper is organized as follows. In Section 2 we recall the two standard semantics for knowledge in multi-agent systems (Kripke models and interpreted systems), and we introduce full systems and hypercubes. In Section 3 we formally relate full systems and hypercubes to Kripke
models by identifying corresponding classes of Kripke frames. We also show that with respect to the logic of knowledge we consider in this paper these classes of frames generate the same logic. In Section 4 we present a sound and complete axiomatization S\(_n\)WD for this logic. We prove the logic decidable in Section 5. These sections all deal with a static framework. In Section 6 we go on to consider a dynamic framework that models how agents’ knowledge changes over time. We define homogeneous broadcast systems, and show that agents’ states of knowledge in such systems can be characterized by a hypercube at each point of time, thereby showing that S\(_n\)WD is also a sound and complete axiomatization of the logic of knowledge in homogeneous broadcast systems. We illustrate the theory with an example of a two-person card game. Finally, in Section 7 we draw our conclusions and we suggest further work.

2 Definitions

Amongst the approaches that have been proposed to the semantics of logics for knowledge are interpreted systems and Kripke models. The two approaches have different advantages and disadvantages. On the one hand, interpreted systems provide a more concrete and intuitive way to model real systems, but on the other hand Kripke models come with an heritage of fundamental techniques that may be used to prove properties of the logic.

In this section we briefly recall the key definitions of Kripke frames and interpreted systems. We then we define hypercube systems and full systems, the particular classes of systems that are the focus of this paper.

We use the following mathematical notations throughout. If \(W\) is a set, we write \(|W|\) for its cardinality. If \(\sim\) is an equivalence relation on \(W\) and \(w \in W\), then we write \(W/\sim\) for the set of equivalence classes of \(\sim\), and write \([w]_\sim\) for the equivalence class containing \(w\).

2.1 Kripke models

Kripke models [Kri59] were first formally proposed in Philosophical Logic. They have since been used within computer science and Artificial Intelligence as semantic structures for logics for belief, logics for knowledge, temporal logics, logics for actions, etc., all of which are modal logics. Over the last thirty years, many formal techniques have been developed for the study of modal logics grounded on Kripke semantics, such as completeness proofs via canonical models, decidability via the finite model property [HC96], and more recently, techniques for combining logics [KW91, Gab96].

We now briefly recall a few concepts from this literature that we will be using later in the paper. For more technical details and motivation, the reader is referred to an introduction to modal logic, such as [HC96] or [Gol92] or [HC84]. We state our definitions for the multi-modal case, which is a slight generalization of those in much of the literature.

We assume a set \(Atoms = \{p, \ldots\}\) of propositional atoms, and a finite \(A = \{1, \ldots, n\}\) of agents. We will deal primarily with a formal language given by the following grammar:

\[
\phi ::= p \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \Box_i \phi
\]

where \(p \in Atoms\) and \(i \in A\). We write \(L_n\) for the set of formulae generated by this grammar when \(A = \{1, \ldots, n\}\). Intuitively the formula \(\Box_i \phi\) represents the situation in which the agent \(i\) knows the fact represented by the formula \(\phi\). Other propositional connectives such as disjunction and implication can be defined in the usual way. If \(W\) is a set, then \(id_W\) is the identity relation on \(W\), i.e., the relation \(\{(w, w) \mid w \in W\}\).

Kripke semantics is based on the following structures.

Definition 2.1 (Kripke frames and Kripke models) A frame \(F\) is a tuple \(F = (W, R_1, \ldots, R_n)\), where \(W\) is a non-empty set (called set of worlds) and for each \(i \in A\) the component \(R_i\) is a binary relation on \(W\). If all relations are equivalence relations, the frame is an equivalence frame and we write \(\sim_i\) for \(R_i\).
A model M is a tuple $M = (W, R_1, \ldots, R_n, \pi)$, where (W, R_1, \ldots, R_n) is a frame called its underlying frame and $\pi : W \to 2^{\text{Atoms}}$ is an interpretation for the atoms. An equivalence model is a model whose underlying frame is an equivalence frame.

We will call equivalence frames E-frames and equivalence models E-models. The class of equivalence frames will be denoted by \mathcal{F}_E. The class of all equivalence models is frequently taken to be the appropriate class of structures for the logic of knowledge. The logic corresponding to this class of structures is the logic $S5_n$ [HM90].

Committing an abuse of notation, given a frame (W, R_1, \ldots, R_n), and an interpretation π, we will sometimes denote $M = (W, R_1, \ldots, R_n, \pi)$ as $M = (F, \pi)$. Also when the set $A = \{1, \ldots, n\}$ is clear from the context, we will denote $M = (W, R_1, \ldots, R_n, \pi)$ as $M = (W, \{R_i\}_{i \in A}, \pi)$ and $F = (W, R_1, \ldots, R_n)$ as $F = (W, \{R_i\}_{i \in A})$.

Definition 2.2 (Satisfaction) The satisfaction of a formula ϕ in a world w of a model M, formally $M \models_w \phi$ is inductively defined as follows:

- $M \models_w p$ if $p \in \pi(w)$
- $M \models_w \neg \phi$ if $M \not\models_w \phi$
- $M \models_w \phi \land \psi$ if $M \models_w \phi$ and $M \models_w \psi$
- $M \models_w \Box \psi$ if for each $w' \in W$, wR_iw' implies $M \models_{w'} \psi$

Satisfaction for the other logical connectives can be defined in the usual way.

Validity is also defined by means of the standard definition:

Definition 2.3 (Validity) A formula ϕ is valid on a model $M = (W, R_1, \ldots, R_n, \pi)$, if for every point $w \in W$ we have $M \models_w \phi$. A formula ϕ is valid on a frame $F = (W, R_1, \ldots, R_n)$ if for every interpretation π we have $(F, \pi) \models \phi$. A class of models \mathcal{M} validates a formula ϕ, denoted $\mathcal{M} \models \phi$, if for every model $M \in \mathcal{M}$ we have $M \models \phi$. A formula ϕ is valid on a class of frames \mathcal{F}, denoted $\mathcal{F} \models \phi$, if for every frame $F \in \mathcal{F}$ we have $F \models \phi$.

Two frames $F = (W, R_1, \ldots, R_n)$ and $F' = (W', R_1', \ldots, R_n')$ are said to be isomorphic if there exists a bijective function $h : W \to W'$ such that for each $i = 1 \ldots n$ and all points $w, w' \in W$ we have wR_iw' if and only if $h(w)R_i' h(w')$. We write $F \equiv F'$ when this is the case.

We clearly have the following.

Theorem 2.1 If F and F' are frames with $F \equiv F'$ then for all $\psi \in \mathcal{L}_n$ we have $F \models \psi$ if and only if $F' \models \psi$.

Slightly more general than the notion of frame isomorphism is the notion of p-morphism. We can define these both at the level of frames and at the level of Kripke models.

Definition 2.4 (p-morphism) Let $F = (W, R_1, \ldots, R_n)$ and $F' = (W', R_1', \ldots, R_n')$ be frames. A frame p-morphism from F to F' is a mapping $p : W \to W'$ that satisfies

1. the function p is surjective, and
2. for all $u, v \in W$ and each $i = 1 \ldots n$, if uR_iv then $p(u)R_ip(v)$, and
3. for each $i = 1 \ldots n$ and $u \in W$ and $v' \in W'$, if $p(u)R_i' v'$ then there exists $v \in W$ such that $uR_i v$ and $p(v) = v'$.

If $M = (W, R_1, \ldots, R_n, \pi)$ and $M' = (W', R_1', \ldots, R_n', \pi')$ are Kripke structures, then a model p-morphism from M to M' is a mapping $p : W \to W'$ that is a frame p-morphism from (W, R_1, \ldots, R_n) to (W', R_1', \ldots, R_n') and satisfies $q \in \pi'(p(w))$ if and only if $q \in \pi(w)$ for all propositions $q \in \text{Atoms}$ and all worlds $w \in W$.

Philosophers have long held qualms about properties of knowledge (such as negative introspection) that are consequences of this class of structures [Len78]. For computer scientists and economists, however, equivalence frames capture an information theoretic notion of knowledge that is useful for their applications.
The following result shows that \(p \)-morphisms preserve satisfaction and validity for the language \(\mathcal{L}_n \).

Theorem 2.2 ([HC84] page 73) If \(p \) is a model \(p \)-morphism from \(M \) to \(M' \) then for all worlds \(w \) of \(M \) and formulae \(\varphi \in \mathcal{L}_n \), we have \(M \models_w \varphi \) if and only if \(M' \models_{p(w)} \varphi \). Thus \(\varphi \) is valid on \(M \) if and only if \(\varphi \) is valid on \(M' \).

If \(p \) is a frame \(p \)-morphism from \(F \) to \(F' \) then for all \(\varphi \in \mathcal{L}_n \), we have that if \(\varphi \) is valid on \(F \) then \(\varphi \) is valid on \(F' \).

Two classes of frames \(\mathcal{F}_1, \mathcal{F}_2 \) are validity-equivalent with respect a language \(\mathcal{L} \), denoted \(\mathcal{F}_1 \equiv_{\mathcal{L}} \mathcal{F}_2 \), if for all formulae \(\varphi \in \mathcal{L} \), we have \(\mathcal{F}_1 \models \varphi \) if and only if \(\mathcal{F}_2 \models \varphi \).

Theorem 2.3 Suppose that \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) are classes of frames such that for all \(F \in \mathcal{F}_1 \) there exists a \(p \)-morphism from \(F \) to a frame \(F' \in \mathcal{F}_2 \), and conversely, for all \(F \in \mathcal{F}_2 \) there exists a \(p \)-morphism from \(F \) to a frame \(F' \in \mathcal{F}_1 \). Then \(\mathcal{F}_1 \equiv_{\mathcal{L}_n} \mathcal{F}_2 \).

One further property of the language \(\mathcal{L}_n \) that will be of use to us is the fact that satisfaction of a formula at a world depends only on worlds connected to that world. Say that two worlds \(w, w' \) of a frame \(F = (W, \sim_1, \ldots, \sim_n) \) are connected if there exists a finite sequence \(w = w_0, \ldots, w_k = w' \) of worlds in \(W \) such that for \(j = 0 \ldots k-1 \) we have \(w_j \sim_i w_{j+1} \) for some \(i \). Say that \(F \) is connected if for all pairs of worlds \(w, w' \in W \) are connected. The connected component of a world \(w \) is the frame \(F_w = (W_w, \sim'_1, \ldots, \sim'_n) \) where \(W_w \) is the set of worlds of \(F \) connected to \(w \), and each \(\sim'_i \) is the restriction of \(\sim_i \) to \(W_w \). Similarly, the connected component of a model \(M = (F, \pi) \) containing a world \(w \) is the model \(M_w = (F_w, \pi') \) where \(\pi' \) is the restriction of \(\pi \) to \(W_w \). The model \(M_w \) is also called the model generated by \(w \) from \(M \). The following result (see, e.g., [HC84] page 80) makes precise the claim that satisfaction of a formula of \(\mathcal{L}_n \) at a world depends only on connected worlds.

Theorem 2.4 For all worlds \(w \) of a model \(M \) and for all formulae \(\psi \in \mathcal{L}_n \) we have \(M \models_w \phi \) if and only if \(M_w \models_w \phi \).

A class of frames \(\mathcal{F} \) corresponds to a formula \(\psi \) if for all frames \(F \), we have \(F \in \mathcal{F} \) if and only if \(F \models \psi \). We consider such correspondences between classes of frames and formulae at several places in the paper, since they frequently indicate that the formula can be used to obtain an axiomatization of the class of frames.

2.2 Interpreted systems

Interpreted systems are a model for distributed and multi-agent systems proposed by Fagin, Halpern, Moses and Vardi [FHMV95, HF85], based on an earlier model of Halpern and Moses [HM90]. They provide a general theoretical framework within which it is possible to model a variety of modes of communication, failure properties of communication channels, and assumptions about coordination such as synchrony and asynchrony. Its specific focus is to enable states of knowledge to be ascribed to the agents in the system, and to study the evolution of this knowledge as agents communicate. For discussion of axiomatic properties of this model see [FHMV95] and [HMV97].

The key aspect of interpreted systems that allows knowledge to be ascribed to agents is the notion of local state. Intuitively, the local state of an agent captures the complete scope of the information about the system that is accessible to the agent. This may include the values of its personal variables and data structures, its record of prior communications, etc. The agents’ local states, together with a state of the environment within which they operate, determines the global state of the system at any given time.

Consider \(n \) sets of local states, one for every agent of the system, and a set of states for the environment. We denote by \(L_i \) the non-empty sets of local states possible for agent \(i \), and by \(L_e \) the non-empty set of possible states for the environment. Elements of \(L_i \) will be denoted by \(l_1, l_2, \ldots \). Elements of \(L_e \) will be denoted by \(l_e, \ldots \).
Definition 2.5 (System of global states) A system of global states for \(n \) agents is a subset of a Cartesian product \(L_e \times L_1 \times \cdots \times L_n \). An interpreted system of global states is a pair \((S, \pi)\) where \(S \) is a system of global states and \(\pi : S \rightarrow 2^{\text{Atoms}} \) is an interpretation function for the atoms.

The reason for considering a subset is that some of the tuples in the Cartesian product might not be possible because of explicit constraints present in the multi-agent system. The framework of Fagin et al. [FHMV95] models the temporal evolution of a system by means of runs, which are functions from the natural numbers to the set of global states. An interpreted system, in their terminology, is a set of runs over global states together with a valuation for the atoms of the language on points of these runs. We simplify this notion here, since we will deal initially with an atemporal setting. However, we will consider a run-like construct in Section 6.

As shown in [FHMV95], interpreted systems can be used to ascribe knowledge to the agents by considering two global states to be indistinguishable for an agent if its local state is the same in the two global states. We formulate this here as a mapping from systems of global states to Kripke frames.

Definition 2.6 The function \(F \) mapping systems of global states to Kripke frames is defined as follows: if \(S \subseteq L_e \times L_1 \times \cdots \times L_n \) is a set of global states for \(n \) agents then \(F(S) \) is the Kripke frame \((W, \sim_1, \ldots, \sim_n)\), with \(W = S \), and for each \(i = 1 \ldots n \) the relation \(\sim_i \) defined by \((l_1, \ldots, l_n) \sim_i (l'_1, \ldots, l'_n) \) if \(l_i = l'_i \). The function \(F \) is naturally extended to map interpreted systems of global states to Kripke models as follows: if \(F(S) = (W, \sim_1, \ldots, \sim_n) \) then \(F(S, \pi) = (W, \sim_1, \ldots, \sim_n, \pi) \).

Note that for all systems of global states \(S \), the frame \(F(S) \) is an equivalence frame. Combined with the semantic interpretation of the language \(L_n \) on Kripke models, this mapping provides a way to interpret \(L_n \) on interpreted systems of global states (for \(n \) agents). We say that \(\phi \in L_n \) is valid on an interpreted system of global states \((S, \pi)\) if \(\phi \) is valid on the model \(F(S, \pi) \). Similarly, \(\phi \) is valid on the system \(S \) of global states if \(\phi \) is valid on \(F(S, \pi) \) for all interpretations \(\pi \).

2.3 Hypercube systems and full systems

We now define two classes of systems of global states, full systems and hypercube systems, that provide an intuitive model for the initial situation in many systems of interest. These classes both capture situations in which the agents do not have information about each others’ local states. In hypercubes the environment is assumed trivial, so there is no interesting correlation between the agents’ states and the environment.

Definition 2.7 (Hypercube systems) A hypercube system, or hypercube, is a Cartesian product \(H = L_e \times L_1 \times \cdots \times L_n \), where \(L_e \) is a singleton and \(L_1, \ldots, L_n \) are non-empty sets. The class of hypercube systems is denoted by \(\mathcal{H} \).

In full systems, the agents may, however, have some information about how their local state correlates with the state of the environment.

Definition 2.8 (Full system) A system \(S \subseteq L_e \times L_1 \times \cdots \times L_n \) is full if for every tuple \((l_1, \ldots, l_n) \in L_1 \times \cdots \times L_n \) there exists \(s \in L_e \) such that \(\langle s, l_1, \ldots, l_n \rangle \in S \). The class of full systems is denoted by \(\mathcal{FS} \).

Clearly, every hypercube is full. The converse is not true. The following example illustrates these definitions.

Example 2.1 Consider a card game with \(n \) players and \(n \) decks of cards. At the start of play, each player is dealt a hand of 12 cards, with player \(i \)'s cards all drawn from deck \(i \), where \(1 \leq i \leq n \). Each player sees only their own hand, and not the hand of other players, nor the undealt cards remaining in any of the decks.
The situation at the start of play may be described as a system of global states as follows. Let D be the set of all cards constituting a deck. A hand of 12 cards corresponds to a set $S \subseteq D$ with $|S| = 12$. Let H be the set of such sets S. Then the set of possible local states for each agent $i = 1 \ldots n$ is $L_i = H$. The set of possible states of the environment is $L_e = \{ D \setminus S \mid S \in H \}^n$, i.e. the set of arrangements in which each of the n decks has 12 cards removed. The set of global states of the system is

$$S = \{ \langle s, h_1, \ldots, h_n \rangle \mid h_i \in L_i \text{ for } i = 1 \ldots n \text{ and } s = (D \setminus h_1, \ldots, D \setminus h_n) \}.$$

This system is full, but not a hypercube. Using this modeling of the initial state of the game, we may address questions concerning what a player knows about the undealt cards. If the only issue of concern is a player’s knowledge about the cards that have been dealt, a more appropriate modeling of the game may be to take $S = \{1\} \times H^n$ as the system of global states. This system is a hypercube. (We note that the initial situation in most card games, where players are dealt their hand from the same deck, is neither a hypercube nor a full system. For example, a situation in which two players both hold the ace of spades is not possible in such a game.)

We will show in Section 6 that the applicability of the class of full systems and hypercubes goes beyond that of modeling the initial configurations of naturally occurring systems. We will define a dynamic framework that shows how agents’ knowledge changes over time, and illustrate it with extensions of the card-deck example. Our first aim, however, will be to axiomatize the class of hypercubes and full systems. In order to use the tools of modal logics for this aim we formally relate these classes of systems to several classes of Kripke frames.

3 Classes of frames corresponding to hypercubes and full systems

In this section we identify a number of properties of frames that can be used to characterize the frames corresponding to full systems and hypercubes up to isomorphism. We also show that, somewhat surprisingly, full systems and hypercubes generate precisely the same set of valid formulae of the language L_n. We obtain this result by establishing the existence of π-morphisms between frames in the classes of frames corresponding to these classes of systems.

3.1 Directed frames

We have seen above that every system of global states generates a frame. Our aim in this section is to characterize the frames generated by hypercubes and by full systems. The following result identifies some properties of the resulting frames based on the properties of the system of global states.

Lemma 3.1 Let S be a system of global states, and let $F(S) = (W, \sim_1, \ldots, \sim_n)$ be the frame defined from it by Definition 2.6.

1. If S is a hypercube then $F(S)$ is such that $\bigcap_{i \in A} \sim_i = \text{id}_W$;
2. If S is full and $n \geq 2$ then $F(S)$ is connected.
3. If S is full then for any $w_1, \ldots, w_n \in W$ there exists a $\overline{w} \in W$ such that $w_i \sim_i \overline{w}$ for each $i = 1, \ldots, n$.

Proof For (1), suppose that S is a hypercube and consider any two elements $w = (l_e, l_1, \ldots, l_n)$, $w' = (l'_e, l'_1, \ldots, l'_n)$ in W such that $w(\bigcap_{i \in A} \sim_i)w'$. (Note that the first component of these tuples must be the same if S is a hypercube.) Then for all i in A, $(l_e, l_1, \ldots, l_n) \sim_i (l'_e, l'_1, \ldots, l'_n)$. Therefore, by definition of the relations \sim_i, for all i in A we have $l_i = l'_i$, that is $w = w'$.

For (2), suppose that S is full and let $w = (l_0, l_1, \ldots, l_n)$ and $w' = (l'_0, l'_1, \ldots, l'_n)$ be points in S. Since S is full there exists l'_c such that $w'' = (l''_0, l_1, l'_2, \ldots, l'_n)$ is in W. Clearly $w \sim w'' \sim w'$. Thus, there is a path from w to w' of length two.

For (3), suppose that S is full and consider any $w_1 = (l^1_0, l^1_1, \ldots, l^1_n), \ldots, w_n = (l^n_0, l^n_1, \ldots, l^n_n)$. Since S is full there exists l_e such that $\overline{w} = (l^1_0, l^1_1, \ldots, l^n_n) \in S$. By Definition 2.7, the world \overline{w} is in W and by construction for each $i = 1, \ldots, n$, we have $w_i \sim_i \overline{w}$.

This shows that Kripke frames that we build from the hypercubes and full systems by means of the standard technique ([FHMY92]) constitute a proper subclass of the class of equivalence frames. We will show that the properties of Lemma 3.1 can be used to characterize the images of the hypercubes and full systems.

We will say that a frame $(W, \sim_0, \ldots, \sim_n)$ has the identity intersection property, or is an I frame, if $\bigcap_{i \in A} \sim_i = \text{id}_W$. Similarly, we say that a frame is directed, or is a D frame, if for any $w_1, \ldots, w_n \in W$ there exists a $\overline{w} \in W$ such that $w_i \sim_i \overline{w}$ for each $i = 1, \ldots, n$. We will also use combinations of these letters to refer to frames satisfying several of these properties. Thus, directed equivalence frames with the identity intersection property will be called EDI frames. Similarly, we subscript F by these letters to indicate the class of frames have the corresponding properties; thus F_{EDI} denotes the class of EDI frames. Lemma 3.1 states that the image of a full system under F is an EDI frame and since every hypercube is full, the image of a hypercube is an EDI frame.

The converse of these properties is not true, e.g., it is not the case that every EDI frame is the image of a hypercube. However, something very close to this is the case:

Lemma 3.2

1. For every EDI frame F there exists a full system S such that $F(S) \equiv F$.

2. For every EDI frame F there exists a hypercube S such that $F(S) \equiv F$.

Proof

We first show part (1). Let $F = (W, \sim_0, \ldots, \sim_n)$ be an EDI frame. Take $S \subseteq W \times W/\sim_0 \times \ldots \times W/\sim_n$ to be the set of tuples $(w, [w]_{\sim_0}, \ldots, [w]_{\sim_n})$ where $w \in W$. We show that S is a full system and such that $F(S) \equiv F$.

To see that S is full, let $w_1, \ldots, w_n \in W$. We show that there exists $w \in W$ such that $(w, [w]_{\sim_0}, \ldots, [w]_{\sim_n}) \in S$. Since F is a D frame, there exists a world w such that $w \sim_i w_i$ for each $i = 1, \ldots, n$. Thus $(w, [w]_{\sim_0}, \ldots, [w]_{\sim_n}) = (w, [w]_{\sim_0}, \ldots, [w]_{\sim_n}) \in S$. This shows that S is full.

Write $F(S) = (S, \sim'_0, \ldots, \sim'_n)$. To show that $F(S) \equiv F$, define the mapping $h : S \rightarrow W$ by $h((w, [w]_{\sim_0}, \ldots, [w]_{\sim_n})) = w$. It is clear that h is a bijection. Moreover,

$$
\langle w_1, [w_1]_{\sim_0}, \ldots, [w_1]_{\sim_n} \rangle \sim'_i \langle w_2, [w_2]_{\sim_0}, \ldots, [w_2]_{\sim_n} \rangle
$$

iff

1. $[w_1]_{\sim_i} = [w_2]_{\sim_i}$
2. $w_1 \sim_i w_2$
3. $h((w_1, [w_1]_{\sim_0}, \ldots, [w_1]_{\sim_n})) \sim_i h((w_2, [w_2]_{\sim_0}, \ldots, [w_2]_{\sim_n}))$.

Thus, h is a frame isomorphism, establishing $F(S) \equiv F$. This completes the proof of part (1).

For part (2), let $F = (W, \sim_0, \ldots, \sim_n)$ be an EDI frame. Define $S = \{1\} \times \{W/\sim_0 \times \ldots \times W/\sim_n\}$. Clearly S is a hypercube. Write $F(S) = (S, \sim'_0, \ldots, \sim'_n)$. We show that $F(S) \equiv F$.

Consider an element $\langle 1, [w_1]_{\sim_0}, \ldots, [w_n]_{\sim_n} \rangle$ of S. Since F is a D frame, there exists $w \in W$ such that $w \in [w_i]_{\sim_i}$ for each $i = 1, \ldots, n$. Moreover, because F is an I frame this w is unique. Define the mapping $h : S \rightarrow W$ by taking $h((1, [w_1]_{\sim_0}, \ldots, [w_n]_{\sim_n}))$ to be the unique w such that $w \in [w_i]_{\sim_i}$ for each $i = 1, \ldots, n$. The mapping h is surjective because for each $w \in W$ we have $h((1, [w]_{\sim_0}, \ldots, [w]_{\sim_n})) = w$. Moreover h is injective because if $h((1, [w_1]_{\sim_0}, \ldots, [w_n]_{\sim_n})) = w = h((1, [w'_1]_{\sim_0}, \ldots, [w'_n]_{\sim_n}))$ then for each $i = 1, \ldots, n$ we have that w is in both $[w_i]_{\sim_i}$ and $[w'_i]_{\sim_i}$. Thus, these equivalence classes must be the identical, and hence the tuples $(1, [w_1]_{\sim_0}, \ldots, [w_n]_{\sim_n})$ and $(1, [w'_1]_{\sim_0}, \ldots, [w'_n]_{\sim_n})$ are identical.

It remains to show that h has the homomorphism property. For this, note that by construction, for each $i = 1, \ldots, n$ we have $h((1, [w_i]_{\sim_0}, \ldots, [w_n]_{\sim_n})) \sim_i w_i$. Thus if $\langle 1, [w_1]_{\sim_0}, \ldots, [w_n]_{\sim_n} \rangle \sim'_i w_i$. Thus $\langle 1, [w_1]_{\sim_0}, \ldots, [w_n]_{\sim_n} \rangle \sim'_i w_i$. This completes the proof of both (1) and (2).
for all property.

Proof

Left to right. Let ϕ. Suppose the opposite and assume there is a formula ϕ. Consider the frame F. It is easy to see that ϕ. Thus, ϕ. This completes the proof of part (2).

Using Theorem 2.1 it follows from Lemma 3.1 and Lemma 3.2 that from the point of view of the language L_n, full systems and ED frames are equivalent, as are hypercubes and EDI frames. Stated more precisely, we have the following.

Theorem 3.1 $F(\mathcal{H}) \equiv_{L_n} F_{\text{EDI}}$ and $F(\mathcal{F}S) \equiv_{L_n} F_{\text{ED}}$.

Our strategy for axiomatising these classes of systems will be to focus on the corresponding classes of frames instead. One approach to this would be to seek axioms that correspond to the properties D and I. This turns out not to be possible.

Lemma 3.3 No modal formula corresponds to property I.

Proof Suppose the opposite and assume there is a formula ϕ that corresponds to property I. Consider the frame F' in Figure 1. The frame F' is an I frame, so $F' \models \phi$. Consider now the frame F and a function $p : F' \to F$ such that p maps points in F according to the names in the Figure. It is easy to see that p is a p-morphism from F' to F. Since p-morphisms preserve validity on frames (Theorem 2.1), we have that $F \models \phi$. But F is not an I frame and we have a contradiction.

Similar reasoning shows that the above holds even by restricting to equivalence frames.

As an aside, we note that this result is very sensitive to the language under consideration. There are extensions of the language under which it fails. For example, consider a language containing an operator for distributed knowledge [FHV92]. This operator is used to express the knowledge that the group of all agents would have if they pooled their information. Formally, if ϕ is a formula, then so is $DA\phi$. The formula $DA\phi$ is interpreted by associating the relation $\sim = \bigcap_{i \in A} \sim_i$ to the operator DA in the standard Kripke-style interpretation, i.e., we define $M \models_w DA\psi$ if $M \models_{w'} \psi$ for all $w' \sim w$. Using this operator, we can prove a correspondence result for the intersection property.

Lemma 3.4 An equivalence frame F is an I frame if and only if $F \models \phi \iff DA\phi$.

Proof Left to right. Let M be a model based on F such that $M \models_w \phi$. Since $\bigcap_{i \in A} \sim_i = \text{id}_W$, then $M \models_w DA\phi$. Analogously, suppose $M \models_w DA\phi$. Since $w(\bigcap_{i \in A} \sim_i)w$ we have $M \models_w \phi$.

Right to left. Suppose $F \models \phi \iff DA\phi$ and for all i we have $w_1 \sim_i w_2$. Take a valuation π such that $p \in \pi(w)$ if and only if $w = w_1$. Since $F, \pi \models_w p \iff DAp$ and $(F, \pi) \models_{w_1} p$, we have $(F, \pi) \models_{w_1} DAp$ and so $(F, \pi) \models_{w_2} p$. But since $\pi(p) = \{w_1\}$, it must be that $w_1 = w_2$.

![Figure 1: Two p-morphic frames used in the proof of Lemma 3.3](image-url)
This result suggests that the axiom $\phi \iff D_A \phi$ could be used as part of an axiomatization of the class of EDI frames when the language includes the distributed knowledge operator. We are concerned in this paper, however, with a weaker language. Lemma 3.3 suggests that it may be inappropriate to focus on the identity intersection property in seeking to obtain the axiomatization. Indeed, it turns out that this property has no impact on the set of valid formulae of \mathcal{L}_n in the context of interest to us. More precisely, we have the following result.

Theorem 3.2 $\mathcal{F}_{EDI} \equiv_{\mathcal{L}_n} \mathcal{F}_{ED}$

To establish Theorem 3.2, we prove that any ED frame can be seen as the target of a p-morphism from an EDI frame; the result will then follow from Theorem 2.3 using the fact that p-morphisms between frames preserve validity and that the class of DI frames is a subclass of the class of D frames. (Note that the identity map on a frame is a frame isomorphism, hence a p-morphism.)

Consider an ED frame $F = (W, \sim_1, \ldots, \sim_m)$. Write \sim for the relation $\bigcap_{i=1}^m \sim_i$; since each of the \sim_i is an equivalence relation, so is \sim. The frame F can then be viewed as the union of equivalence classes of the relation \sim, which we call *clusters*. Clusters containing more than a single point are sub-frames in which property I clearly does not hold; in general a cluster may be infinite in size.

If we want to construct an EDI frame that maps to a particular ED frame by a p-morphism, one way is to replace every cluster of the ED frame with a sub-frame that is EDI but that can still be mapped into the cluster. Figure 2 depicts the relatively simple case of an equivalence frame F composed by three points a, b, c connected by all the relations: \sim_1, \sim_2, in this case; F clearly is ED but not EF. The frame F' on the right of the figure is an EDI frame; the names of its points represent the targets of the p-morphism from F' onto F. So, for example the top left point of F' is mapped onto a of F; the relations are mapped in the intuitive way. It is an easy exercise to show that F is indeed a p-morphic image of F' and will therefore validate every formula which is valid on F'.

The aim of the following is to define precisely how to build, given any ED frame, a new EDI frame in which every cluster is “unpacked” into an appropriate similar structure and to define the relations appropriately.

In order to achieve the above, we present two set theoretic results. In Lemma 3.5 we show that every infinite set X can be seen as the image of a product X^m under a function p. Intuitively this lemma will be used by taking the set X as one of the clusters of an EDI frame F, the function

2 The relations are supposed to be the reflective transitive closure of the the ones depicted in the figure.
Lemma 3.5 Given any infinite set X, there exists a function $p : X^m \rightarrow X$ such that for all $i \in \{1, \ldots, m\}$ and for all $u, x_i \in X$, there are $x_1, \ldots, x_i-1, x_{i+1}, \ldots, x_m \in X$, such that $p(x_1, \ldots, x_m) = u$.

Proof Consider the set $T = \{\tau_{x,y} | x, y \in X\}$ of the transpositions of X, i.e. functions $\tau_{x,y} : X \rightarrow X$; where $x, y \in X$, such that if $z = x$ then $\tau_{x,y}(z) = y$, if $z = y$ then $\tau_{x,y}(z) = x$, and $\tau_{x,y}(z) = z$ otherwise. We have $|X| \leq |T| \leq |X \times X|$. But by set theory ([Lan84] page 701 for example) $|X| = |X \times X|$, and so $|X| = |T|$. So, by induction, we have $|X^{m-1}| = |X| = |T|$. Call f the bijection $f : X^{m-1} \rightarrow T$, and define $p(x_1, \ldots, x_m) = f(x_1, \ldots, x_{m-1})(x_m)$. To prove the lemma holds we consider two cases: $i \neq m$ and $i = m$.

For $i \neq m$, assume any $u \in X$, and any $x_i \in X$. Take any x_j for $j \in \{1 \ldots m-1\} \setminus \{i\}$. Then $f(x_1, \ldots, x_{m-1})$ is a transposition of X. So, there exists an $x_m \in X$ such that $f(x_1, \ldots, x_{m-1})(x_m) = u$. So $p(x_1, \ldots, x_m) = u$.

For $i = m$, assume again any $u \in X$, and any $x_m \in X$. Consider the transposition $\tau_{x_m,u}$; we have $\tau_{x_m,u}(x_m) = u$. But $\tau_{x_m,u} = f(x_1, \ldots, x_{m-1})$ for some $x_1, \ldots, x_{m-1} \in X$. So $p(x_1, \ldots, x_m) = u$.

Lemma 3.5 induces a similar result for mappings from X^m to sets whose cardinality is smaller than X.

Lemma 3.6 Given any infinite set X, and a set $C \neq \emptyset$, such that $|C| \leq |X|$, there exists a function $p : X^m \rightarrow C$ such that the following holds for all $i \in \{1, \ldots, m\}$: for all $x_i \in X, u \in C$, there exist $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_m \in X$, such that $p(x_1, \ldots, x_m) = u$.

Proof Consider a set T such that $C \cup T$ and X have the same cardinality, and let g be a bijection from X to $(C \cup T)$. Then there is a function $p' : (C \cup T)^m \rightarrow (C \cup T)$, satisfying the property expressed by Lemma 2.2. Define now a function $p'' : (C \cup T) \rightarrow C$, such that $p''(x) = x$ if $x \in C$, otherwise $p''(x) = c$, where c is any element in C. Define the function $p : X^m \rightarrow C$ by $p(x_1, \ldots, x_m) = p''(p'(g(x_1), \ldots, g(x_m)))$. We claim p has the property required. For, let $i \in \{1, \ldots, m\}$ and take any $x_i \in X$ and $u \in C$. Then $g(x_i) \in (C \cup T)$, and so by Lemma 3.4 there exist $c_1, \ldots, c_{i-1}, c_{i+1}, \ldots, c_m \in C \cup T$, such that $p'(c_1, \ldots, c_{i-1}, g(x_i), c_{i+1}, \ldots, c_m) = u$. Define $x_j = g^{-1}(c_j)$ for $j \in \{1, \ldots, m\} \setminus \{i\}$. We then have $p(x_1, \ldots, x_m) = p''(p'(c_1, \ldots, c_{i-1}, g(x_i), c_{i+1}, \ldots, c_m)) = p''(u) = u$ since $u \in C$.

We rely on the two results above to define a function p that maps tuples (c, x_1, \ldots, x_m) into c, where c is a cluster and $x_i \in X$, for some appropriate set X. The function p is defined as in Lemma 3.6 but it has an extra component for the cluster.

Corollary 3.1 Let C be a set of nonempty subsets of a set W. Then there exists a set X and a function $p : C \times X^m \rightarrow W$ such that

1. for all tuples (c, x_1, \ldots, x_m) we have $p((c, x_1, \ldots, x_m)) \in c$, and

2. for all $c \in C$, for all $u \in c$, for all $i = 1 \ldots m$, and for all $x_i \in X$, for each $j \in \{1 \ldots m\} \setminus \{i\}$ there exists $x_j \in X$, such that $p((c, x_1 \ldots x_m)) = u$.

Proof Let X be an infinite set with cardinality at least as great as the cardinality of any $c \in C$. This can be constructed by taking the union of these sets $c \in C$ or by considering the set of the natural numbers $X = \mathbb{N}$ if all the sets $c \in C$ are finite. For each $c \in C$, let $p_c : X^m \rightarrow c$ be the function promised by Lemma 3.4. Define $p : C \times X^m \rightarrow W$ by $p(c, x_1, \ldots, x_m) = p_c(x_1, \ldots, x_m)$. It is immediate that this function has the required property. \[\square \]

Theorem 3.3 Given any ED frame F, there exists an EDI frame F', and a p-morphism p, such that $p(F') = F$.

Proof Let $F = (W, \sim_1, \ldots, \sim_m)$ be a frame with m relations on its support set W. Write \sim for the relation $\bigcap_{i=1}^{m} \sim_i$. Since each of the \sim_i is an equivalence relation, so is \sim. Since the set of worlds W of the frame F is non-empty, it can be viewed as the union of the equivalence classes of the relation \sim, which we call clusters. Write C for the set of clusters of F. Consider the infinite set X and a function as described in Corollary 3.1, and define the frame $F' = (W', \sim'_1, \ldots, \sim'_m)$ as follows:

- $W' = C \times X^m$,
- $(c, x_1, \ldots, x_m) \sim'_i (d, y_1, \ldots, y_m)$ if $x_i = y_i$ and there exist worlds $u \in c$ and $v \in d$ such that $u \sim v$.

We can prove that:

1. The frame F' is EDI.

 Proof a) F' is clearly an equivalence frame.

 b) We prove F' satisfies property I. Write \sim' for $\bigcap_{i=1}^{m} \sim'_i$. Suppose $(c, x_1, \ldots, x_m) \sim' (d, y_1, \ldots, y_m)$. Then for all $i = 1 \ldots m$ we have that $x_i = y_i$, and there exist $u_i \in c$ and $v_i \in d$ such that $u_i \sim v_i$. Since c and d are equivalence classes of \sim, it follows from the latter that $u_1 \sim v_1$, and consequently that $c = d$. Thus, $(c, x_1, \ldots, x_m) = (d, y_1, \ldots, y_m)$.

 c) We prove F' satisfies property D. Consider m tuples $(c_1, x_1^1, \ldots, x_1^m), \ldots, (c_m, x_m^1, \ldots, x_m^m)$ in W'. For each $i = 1 \ldots m$ let u_i be a world in cluster c_i. Since F has property D, there exists a world w such that $w \sim u_i$ for each $i = 1 \ldots m$. Let c be the cluster containing w. Then, by construction, for each $i = 1 \ldots m$ we have $(c, x_1^i, \ldots, x_m^i) \sim'_i (c, x_1^1, \ldots, x_m^1)$. \[\square \]

2. The function p is a p-morphism from F' to F.

 Proof That the function p is surjective follows from property (2) of Corollary 3.1.

 Next, we show that p is a frame homomorphism. Consider two tuples $(c, x_1, \ldots, x_m), (d, y_1, \ldots, y_m)$ in W' such that $(c, x_1, \ldots, x_m) \sim'_i (d, y_1, \ldots, y_m)$. Then there exist $u \in c$ and $v \in d$ such that $u \sim v$. By property (1) of Corollary 3.1, we have $p((c, x_1, \ldots, x_m)) \sim u$ and $p((d, y_1, \ldots, y_m)) \sim v$. Since \sim is an equivalence relation, it follows that $p((c, x_1, \ldots, x_m)) \sim p((d, y_1, \ldots, y_m))$.

 To show the backward simulation property, consider a tuple $x = (c, x_1, \ldots, x_m)$, and assume $p(x) \sim w$ for some world w of F. Let d be the cluster containing w. By Corollary 3.1(2), there exist y_i for $j \neq i$ such that if $y = (d, y_1, \ldots, y_{i-1}, x_i, y_{i+1}, \ldots, y_m)$, then $p(y) = w$. Since $p(x) \in c$ by Corollary 3.1(1), it is immediate that $x \sim'_i y$. \[\square \]

This completes the proof of Theorem 3.2. Since we confine our attention in this paper to the language L_n, this result, together with Theorem 3.1, shows that the set of valid formulae for the class of full frames is the same as that for the class of hypercubes. Both sets of valid formulae are equal to the set of formulae valid on ED frames. We now set about attempting to axiomatize the latter. It turns out to be necessary to introduce one more class of frames in order to achieve this.
3.2 Weakly directed frames

In order to axiomatize the class of ED frames, we need to introduce one more class of frames. The reason for this is that the directedness property does not naturally correspond to any formula of L_n.

Lemma 3.7 No modal formula corresponds to n-directedness.

Proof Suppose the opposite and assume there is a formula ϕ that corresponds to n-directedness. Consider two disjoint frames, $F = (W, \sim_1, \ldots, \sim_n)$ and $F' = (W', \sim'_1, \ldots, \sim'_n)$, where $W \cap W' = \emptyset$, such that both F and F' are n-directed. Since by assumption $F \models \phi$ and $F' \models \phi$, it follows that $F \cup F' \models \phi$. (This is because satisfaction of a formula of L_n at a world w depends only on worlds connected to w (Theorem 2.4). But, then ϕ is valid on a frame which This is the opposite of what we assumed at the beginning. □

The problem here is rather superficial however. Any class of frames corresponding to a modal formula should be closed under disjoint unions. To address this problem, we define a slight weakening of the notion of directedness. We will show that the class of frames satisfying this weaker notion validates the same class of formulae.

Definition 3.1 (Weak directedness) A frame $F = (W, \sim_1, \ldots, \sim_n)$ is weakly directed when for all worlds $w_0, w_1, \ldots, w_n \in W$, if for each $i = 1, \ldots, n$ there exists $j \in \{1, \ldots, n\}$ such that $w_0 \sim_j w_i$, then there exists a world w such that $w_i \sim_i w$ for each $i = 1, \ldots, n$.

That is, weak directedness is like directedness in requiring the existence of a world w such that $w_i \sim_i w$ for each $i = 1, \ldots, n$, but it does so only under the condition that the worlds w_i are each connected to some world through a single step through one of the relations \sim_j. We use the notation “WD” to refer to the property of weak directedness. Thus, we write, e.g., F_{ED} for the class of weakly directed equivalence frames. Clearly, every directed frame is weakly directed. Moreover, the class of weakly directed frames is easily seen to be closed under disjoint unions. Indeed, this class of frames turns out to be the smallest class of frames containing the directed frames that is closed under disjoint unions. We first note the following.

Lemma 3.8 Every weakly-directed and connected equivalence frame is directed.

Proof Suppose that $F = (W, \sim_1, \ldots, \sim_n)$ is weakly directed and connected. Let w_1, \ldots, w_n be any n worlds in W. We show that there exists a world w such that $w_i \sim_i w$ for each $i = 1, \ldots, n$. Since F is connected, the worlds w_1, \ldots, w_n are in the same connected component, and hence all connected to some world w'. Since F is an equivalence frame the relations \sim_i are symmetric, so we may assume that for each i there exists a path directed from w' to w_i. We now claim that none of these paths need to be any longer than one step, for if so, we can reduce their length. For, suppose without loss of generality that the path from w' to w_1 involves more than one step. Write this path as $w' \sim_{i_1} u \sim_{i_2} v \ldots w_1$, and write the remaining paths as $w' \sim_{i_2} u \sim_{i_3} w_2 \ldots w_n$. Using weak directedness (and an ordering of the worlds $u, w_2 \ldots w_n$ such that u occurs in position j_1), we obtain a world w'' such that $u \sim_{j_1} w''$ and for each $k \neq 1$ we have $w_k \sim_{j_k} w''$ for some j_k. By symmetry of the relations, we obtain paths from w'' to the worlds w_i. For $k \neq 1$ these paths are of the form $w'' \sim_{j_k} w'_k \ldots w_k$ and have the same length as the path connecting w' to w_k. For $k = 1$ we have the path $w'' \sim_{j_1} u \sim_{j_2} v \ldots w_1$, which can be shortened to $w'' \sim_{j_1} v \ldots w_1$ by transitivity of \sim_{j_1}. This argument establishes that there exists a world w' such that for each $i = 1, \ldots, n$ we have $w' \sim_{j_i} w_i$ for some j_i. Since F is weakly directed, it follows that there exists a world w such that $w_i \sim_i w$ for each $i = 1, \ldots, n$. □

We obtain two consequences of this result. First, the characterization of the weakly directed frames claimed above.
Corollary 3.2 The class of weakly directed equivalence frames is the smallest class of equivalence directed frames that is closed under arbitrary disjoint unions and isomorphism.

Proof It is immediate from the definition that the class of weakly directed equivalence frames contains the ED frames and is closed under disjoint unions and isomorphism. To show that it is the smallest such class, we show that any weakly directed equivalence frame is isomorphic to a disjoint union of directed equivalence frames. For let \(F \) be weakly directed, and let \(W' \) be a subset of the set of worlds of \(F \) containing exactly one world from each connected component of \(F \). For each \(w \in W \) let \(F_w \) denote the connected component of \(F \) containing \(w \). By Lemma 3.8, each \(F_w \) is directed. It is then possible to show that \(F \) is isomorphic to the disjoint union of the frames \(F_w \) as \(w \) ranges over \(W' \).

The second consequence of Lemma 3.3 is the fact that the formulae of \(L_n \) validated by the weakly equivalence directed frames is the same as the set validated by the ED frames.

Corollary 3.3 \(F_{EWD} \equiv L_n \cap F_{ED} \)

Proof Since every ED frame is EWD, every formula valid on the EWD frames is valid on the ED frames. Conversely, suppose that \(\phi \in L_n \) is not valid on some ED frame \(F \). Then there exists a valuation \(\pi \) and a world \(w \) such that \(M \models \phi \), where \(M = (F, \pi) \). Let \(M_w \) be the connected component of \(M \) containing \(w \) and \(F_w \) the corresponding frame. Then \(M_w \) is a directed equivalence model, and by Theorem 2.4 we have \(M_w \models \phi \). Consequently, \(\phi \) is not valid on the ED frame \(F_w \).

This result, together with the results of the preceding sections, enables us to focus, in our quest for an axiomatization of the full systems and hypercubes, on the class of weakly directed equivalence frames.

4 Axiomatization

We are now ready to present an axiomatization of the full systems and hypercubes with respect to \(L_n \). The basis for the axiomatization will be the property of weak directedness identified in the previous section.

For convenience, we first introduce some notation and terminology. We will write \(S \phi \) for the formula \(\bigvee_{i=1,...,n} \diamond_i \phi \). Note that \(M \models \phi \) if there exists a world \(w' \) such that \(M \models \phi \) and \(w \sim_i w' \) for some \(i \). Intuitively, \(S \phi \) asserts that at least one of the agents 1,\ldots,n considers \(\phi \) possible.

For each \(i = 1,\ldots,n \), we also define a formula to be \(i \)-local if it is a boolean combination of formulae of the form \(\Box_i \phi \). Intuitively, an \(i \)-local formula expresses a property of agent \(i \)'s state of knowledge. More precisely, we have the following fact, which may be proved by a straightforward induction.

Lemma 4.1 Let \(\phi \) be an \(i \)-local formula in \(L_n \), let \(M \) be an equivalence model on \(n \) agents, and let \(w \) and \(w' \) be two worlds of \(M \) with \(w \sim_i w' \). Then \(M \models \phi \) if and only if \(M \models \phi \).

We analyze extensions of \(S5_n \) with respect to the axiom schema:

\[
\left(\bigwedge_{i=1,...,n} S \phi_i \right) \Rightarrow S S \left(\bigwedge_{i=1,...,n} \phi_i \right)
\]

where each \(\phi_i \) is required to be an \(i \)-local formula. There is a close relationship between this axiom, the property of weak directedness and the property defining full systems. Intuitively, the axiom
states that if there are \(n \) worlds (each reachable in a single step from the present world), such that the \(i \)-th world is one in which agent \(i \) is in a state of knowledge described by \(\phi_i \), then there exist a single world (reachable in two steps from the present) that realizes these \(n \) states of knowledge. This intuitive relationship may be made precise by the following correspondence result:

Lemma 4.2 For equivalence frames \(F \), we have \(F \models \text{WD} \) if and only if \(F \) is weakly-directed.

Proof We first show that if \(F \) is a WD frame then \(F \models \text{WD} \). For, suppose that \(\pi \) is an interpretation of \(F \) and \(w_0 \) a world of \(F \) such that \((F,\pi) \models w_0 (\bigwedge_{i=1,...,n} S\phi_i) \). Then for each \(i = 1, \ldots, n \) there exists a world \(w_i \) such that \(w_0 \sim_{j_i} w_i \) for some \(j_i \) and \((F,\pi) \models w_i \phi_i \). Since \(F \) is weakly directed there exists a world \(w \) such that \(w_i \sim w \) for each \(i = 1, \ldots, n \). By Lemma 4.2, we have \((F,\pi) \models w \bigwedge_{i=1,...,n} \phi_i \). Since \(w_0 \sim_{j_i} w_1 \sim w \), it follows that \((F,\pi) \models w_0 S\phi_1 \). This establishes \(F \models \text{WD} \).

Conversely, suppose \(F \models \text{WD} \). We show that \(F \) is weakly directed. Let \(w_0, w_1, \ldots, w_n \) be worlds of \(F \) such that for each \(i = 1, \ldots, n \) there exists \(j \) such that \(w_0 \sim_{j} w_i \). We need to show that there exists a world \(w \) such that \(w_i \sim w \) for each \(i = 1, \ldots, n \). To achieve this, let \(p_1, \ldots, p_n \) be \(n \) distinct propositions and define the interpretation \(\pi \) by \(p_i \in \pi(w) \) if and only if \(w \sim_{j} w_i \), for each \(i = 1, \ldots, n \). (The interpretation \(\pi \) may be defined arbitrarily on all other propositions.)

Theorem 4.1 The logic \(S5WD_n \) is sound and complete for \(\mathcal{L}_n \) with respect to the class of EWD frames.

Proof Soundness follows from what was proved in the first part of Lemma 4.2 and the fact that all axioms and rules of \(S5_n \) are sound for equivalence frames \([HM90]\). To prove completeness we...
use the canonical model technique. It is easy to show that the frame $F_{C}^{S5WD_n} = (W, R_1, \ldots, R_n)$ of the canonical model for $S5WD_n$ is reflexive, symmetric, and transitive with respect to the n relations. We prove it is also WD.

Suppose that w_0, w_1, \ldots, w_n are worlds of $F_{C}^{S5WD_n}$ such that $w_0R_iw_i$ for $i = 1, \ldots, n$. Consider the set

$$\Gamma = \bigcup_{i=1}^{n}\{\phi : \Box_i\phi \in w_i\}.$$

We show that Γ is $S5WD_n$-consistent. It then follows by the maximal extension theorem that there is a maximal $S5WD_n$-consistent extension w, which satisfies w_iR_iw by construction. This will establish that the frame is WD. To show Γ is $S5WD_n$-consistent, we assume it is not $S5WD_n$-consistent and obtain a contradiction. It follows from the assumption that for each $i = 1, \ldots, n$ there are formulae $\alpha_1^i, \ldots, \alpha_m^i$, with $\Box_i\alpha_j^i \in w_i$ for each $j = 1 \ldots m_i$, such that

$$\vdash_{S5WD_n} \neg(\alpha_1^1 \land \cdots \land \alpha_{m_1}^1 \land \cdots \land \alpha_1^n \land \cdots \land \alpha_{m_n}^n).$$

Let us now call $\alpha_i = \bigwedge_{j=1}^{m_i} \alpha_j^i$. Note that by $S5_n$ reasoning, we have $\Box_i\alpha_i \in w_i$. It follows that $\bigwedge_{j=1}^{m_i} \Box_i\alpha_i \in w_0$. (For else, $\bigwedge_{j=1}^{m_i} \Box_i\alpha_i \in w_0$, hence $\neg\bigwedge_{j=1}^{m_i} \Box_i\alpha_i \in w_i$, contradicting consistency of w_i.)

By propositional logic we obtain $S\bigwedge_{j=1}^{m_i} \Box_i\alpha_i \in w_0$. Thus, $\bigwedge_{i=1}^{n} S\bigwedge_{j=1}^{m_i} \Box_i\alpha_i \in w_0$. Now the formulae $\bigwedge_{j=1}^{m_i} \Box_i\alpha_i$ are i-local, so using WD it follows that $SS(\bigwedge_{i=1}^{n} \bigwedge_{j=1}^{m_i} \Box_i\alpha_i) \in w_0$. By $S5_n$ reasoning we get $SS(\bigwedge_{i=1}^{n} \bigwedge_{j=1}^{m_i} \Box_i\alpha_i) \in w_0$. But by $S5_n$ reasoning and the fact that $\vdash_{S5WD_n} \neg\bigwedge_{i=1}^{n} \alpha_i$ this leads to the conclusion that w_0 is inconsistent. This is the contradiction promised. \hfill \Box

Applying the equivalences with respect to \mathcal{L}_n established previously, we also obtain soundness and completeness with respect to several other semantics.

Corollary 4.1 The logic $S5WD_n$ is sound and complete for \mathcal{L}_n with respect to

1. the class of full systems
2. the class of hypercube systems
3. the class of EDI frames
4. the class of ED frames

With Corollary 4.1 we have the axiomatization of full systems and hypercubes systems that we aimed for. We remark that it can be shown that several other axioms could be used for this result instead of WD. For example, an analysis of the proofs of both the correspondence and completeness results reveals that the axiom

$$\left(\bigwedge_{i=1}^{n} S\Box_i\phi_i \right) \Rightarrow SS \left(\bigwedge_{i=1}^{n} \Box_i\phi_i \right)$$

(where the ϕ_i are not required to be i-local) also suffices. This is not surprising, since for any i-local formula ϕ it can be shown that $\phi \Leftrightarrow \Box_i\phi$ is $S5_n$-valid.

While the axiom WD is compact when expressed using the operator S, it is quite lengthy when expanded and involves considerable use of disjunction. It is possible to show that WD may be replaced by certain other axioms which are less symmetrical, but which state interactions between the agents’ knowledge of a syntactically simpler form than the expansion of WD. For a discussion of a number of alternative axioms that can be shown to be equivalent to WD, we refer the reader to the thesis of Lomuscio [Lom99]. One such alternative, for the case $n = 2$, has appeared in the literature before, as the axiom

$$\Box_1 \Box_2 p \Rightarrow \Box_2 \Box_1 p$$

due to Catach [Cat88], also discussed in [Pop94].
Theorem 4.2 WD in the case \(n = 2 \) is \(S5_2 \)-equivalent to Catach’s axiom.

Proof If \(n = 2 \) then WD is

\[
(\Diamond_1 \phi_1 \vee \Diamond_2 \phi_1) \land (\Diamond_1 \phi_2 \vee \Diamond_2 \phi_2) \Rightarrow \bigvee_{i,j \in \{1,2\}} \Diamond_i \Diamond_j (\phi_1 \wedge \phi_2)
\]

(with \(\phi_i \) i-local).

WD to Catach: Put \(\phi_1 = \Box_1 \neg p \) and \(\phi_2 = \Box_2 p \) (note that these are 1-local and 2-local respectively). WD now becomes

\[
(\Diamond_1 \Box_1 \neg p \vee \Diamond_2 \Box_1 \neg p) \land (\Diamond_1 \Box_2 p \vee \Diamond_2 \Box_2 p) \Rightarrow \bot.
\]

Now we drop the disjuncts \(\Diamond_1 \Box_1 \neg p \) and \(\Diamond_2 \Box_2 p \) (this strengthens the antecedent and hence weakens the whole formula) to obtain as a consequence

\[
\Diamond_2 \Box_1 \neg p \land \Diamond_1 \Box_2 p \Rightarrow \bot,
\]

which can be simply rearranged to obtain \(\Diamond_1 \Box_2 p \Rightarrow \Box_2 \Diamond_1 p \) as required.

Catach to WD: From \(\Diamond_1 \Box_2 p \Rightarrow \Box_2 \Diamond_1 p \) we want to obtain

\[
(\Diamond_1 \phi_1 \vee \Diamond_2 \phi_1) \land (\Diamond_1 \phi_2 \vee \Diamond_2 \phi_2) \Rightarrow \bigvee_{i,j \in \{1,2\}} \Diamond_i \Diamond_j (\phi_1 \wedge \phi_2)
\]

in the case that the \(\phi_i \) are i-local. Since the \(\phi_i \) are i-local, we have \(\Box_i \phi_i \leftrightarrow \phi_i \). Assume

\[
(\Diamond_1 \Box_1 \phi_1 \vee \Diamond_2 \Box_1 \phi_1) \land (\Diamond_1 \Box_2 \phi_2 \vee \Diamond_2 \Box_2 \phi_2)
\]

which, on distribution, is

\[
(\Diamond_1 \Box_1 \phi_1 \land \Diamond_1 \Box_2 \phi_2) \lor (\Diamond_1 \Box_1 \phi_1 \land \Diamond_2 \Box_2 \phi_2) \lor (\Diamond_2 \Box_1 \phi_1 \land \Diamond_2 \Box_2 \phi_2) \lor (\Diamond_2 \Box_1 \phi_1 \land \Diamond_1 \Box_2 \phi_2)
\]

From each of these disjuncts, we will derive either \(\Diamond_1 \Diamond_2 (\phi_1 \land \phi_2) \) or \(\Diamond_2 \Diamond_1 (\phi_1 \land \phi_2) \), thus proving WD. The derivations are as follows:

1. From \((\Diamond_1 \Box_1 \phi_1 \land \Diamond_1 \Box_2 \phi_2) \), apply Catach's axiom together with uniform substitution to the second term to obtain \((\Diamond_1 \Box_1 \phi_1 \land \Box_1 \Diamond_2 \phi_2) \). Use the \(S5_n \) axioms \(\Diamond_1 \Box_1 \psi \leftrightarrow \Box_1 \psi \) and \(\Box_2 \Diamond_1 \psi \leftrightarrow \Diamond_2 \psi \) to obtain \(\Box_1 \phi_1 \land \Diamond_1 \phi_2 \). From this we deduce \(\Diamond_1 (\phi_1 \land \phi_2) \) and from the axiom \(T: p \Rightarrow \Diamond_2 p \) and substitution we obtain \(\Diamond_2 \Diamond_1 (\phi_1 \land \phi_2) \).

2. From \((\Diamond_1 \Box_1 \phi_1 \land \Box_1 \Diamond_2 \phi_2) \), the first conjunct gives \(\Box_1 \phi_1 \), then \(\phi_1 \), then \(\Diamond_2 \phi_1 \) by \(S5_n \) axioms. The second conjunct gives \(\Box_2 \phi_2 \), so putting them together we have \(\Diamond_2 \phi_1 \land \Box_2 \phi_2 \), from which we obtain \(\Diamond_2 (\phi_1 \land \phi_2) \) as a consequence, and hence \(\Diamond_1 \Diamond_2 (\phi_1 \land \phi_2) \).

3. From \((\Diamond_2 \Box_1 \phi_1 \land \Diamond_1 \Box_2 \phi_2) \), we obtain \(\Box_1 \Diamond_2 \phi_1 \land \Box_1 \Diamond_2 \phi_2 \) by applying Catach to the first term. This now implies \(\Diamond_1 (\phi_2 \land \phi_2) \), which in turn implies \(\Diamond_1 \Diamond_2 (\phi_1 \land \phi_2) \).

4. From \((\Diamond_2 \Box_1 \phi_1 \land \Box_2 \Diamond_2 \phi_2) \), this case is similar to the first one.

\(\square \)

5 Decidability

We now prove that the logic \(S5WD_n \) is decidable. In order to do that we prove that the logic has the finite model property.

Definition 5.1 A logic \(L \) is said to have the finite model property (or fmp in short) if for any formula \(\phi \), \(\forall_L \phi \) implies that there is a finite model \(M \) for \(L \) such that \(M \not\models \phi \).
A logic can be proved to have the fmp in a number of different ways: algebraically as in [McK41], [Ber49], by the use of a “mini-canonical” model as in [HC96], etc. Here we use the another standard technique which is better suited for this case: filtrations (first presented in [Lem77]).

The idea of filtrations is the following. If a logic is complete, we know that if a formula ϕ is a non-theorem of L (i.e. if $\neg \phi$ is L-consistent), then ϕ is invalid on some model M for L. The model M might be infinite. Filtrations enable us to produce a model M' from M, such that M' is finite. If we can further prove that M' is also a model for L, then we have proved that the logic L has the finite model property.

We formally proceed as follows. Given a formula ϕ, define the set Φ_ϕ to be the set of formulae α that are either a sub-formula of ϕ or the negation of a sub-formula of ϕ. The set Φ_ϕ is obviously finite for any formula ϕ.

Definition 5.2 Let M be a model. Two worlds w, w' of M are equivalent with respect to Φ_ϕ (denoted $w \equiv_{\Phi_\phi} w'$, or simply $w \equiv w'$ if it is not ambiguous), if for every $\alpha \in \Phi_\phi$, we have $M \models_w \alpha$ if and only if $M \models_{w'} \alpha$.

We can now define filtrations as follows.

Definition 5.3 Given a formula ϕ and a model $M = (W, R_1, \ldots, R_n, \pi)$, a filtration through Φ_ϕ is a model $M' = (W', R'_1, \ldots, R'_n, \pi')$ satisfying the following three properties:

- $W' = W/\equiv_\phi$, where \equiv_ϕ is the equivalence relation defined as in [HC84] page 145 for the mono-modal case).

- For each $i \in A$, the relation R'_i is suitable, i.e. it satisfies the two properties:
 1. For all $[w_1], [w_2] \in W'$, if there exists $u \in W$ such that $w_1 R_i u$ and $u \equiv w_2$, then $[w_1] R'_i [w_2]$.
 2. For all $[w_1], [w_2] \in W'$, if $[w_1] R'_i [w_2]$ then for all formulae α such that $\Box_i \alpha \in \Phi_\phi$, if $M \models_{w_1} \Box_i \alpha$ then $M \models_{w_2} \alpha$.

- For any $p \in \text{Atoms}$, $p \in \pi'([w])$ if and only if $p \in \pi(w)$.

Note that a model M' satisfying these conditions must be finite since Φ_ϕ is finite, so the number of equivalence classes under \equiv_ϕ is finite. Indeed, the number of worlds in M' is at most $2^{\lvert \phi \rvert}$.

It can be proved by induction (see for example [HC84] page 139) that suitability of the relations R'_i guarantees the validity of the following:

Theorem 5.1 Given a model M, and any formula ϕ, a filtration M' of M through Φ_ϕ has the property that for any point $w \in W$ and for any formula $\alpha \in \Phi$, we have $M' \models_w \alpha$ if and only if $M \models \alpha$.

We now proceed to the case of interest here: the logic $S5\text{WD}_n$. Consider the canonical model M for $S5\text{WD}_n$. We know (see Theorem 4.3) that M is a weakly directed equivalence model. By Lemma 2.8, the model generated by any point of M is directed. Consider any formula ϕ. We consider the model M' defined as follows:

Definition 5.4 Given a model M and a formula ϕ define the model $M' = (W', \sim'_1, \ldots, \sim'_n, \pi')$ by

- $W' = W/\equiv_\phi$, where \equiv_ϕ is the equivalence relation defined by Definition 5.2.

- $[w_1] \sim'_i [w_2]$ if for all formulae α such that $\Box_i \alpha \in \Phi_\phi$, we have $M \models_{w_1} \Box_i \alpha$ if and only if $M \models_{w_2} \Box_i \alpha$.

- For any $p \in \text{Atoms}$, we have $p \in \pi'([w])$ if and only if $p \in \pi(w)$.

Indeed the model M' defined by Definition 5.4 is a filtration as the following shows (stated in [HC84] page 145 for the mono-modal case).
Lemma 5.1 Given an equivalence model model M and a formula ϕ, the model M' as described in Definition 5.4 is a filtration of M through Φ_ϕ.

Proof All we need to prove is that the relations \sim_i' are suitable.

Property 1. Consider worlds $[w_1], [w_2] \in W'$ such that $w_1 \sim_1 u$ and $u \equiv w_2$. We need to prove that $[w_1] \sim_i' [w_2]$, i.e. that for all formulae α such that $\square_i \alpha \in \Phi_\phi$ we have $M \models w_1 \models_i \alpha$ if and only if $M \models w_2 \models_i \alpha$. We prove it from left to right; the other direction is similar. Note that $M \models w_1 \models_i \alpha$ if and only if $M \models w_1 \models_i \square_i \alpha$ because M is an equivalence model; but $w_1 \sim_i u$ and so $M \models u \models_i \alpha$. But $\square_i \alpha \in \Phi$ and $w_2 \equiv u$, so $M \models w_2 \models_i \square_i \alpha$, which is what we wanted to prove.

Property 2. Consider worlds $[w_1], [w_2] \in W'$ such that $[w_1] \sim_i' [w_2]$. This means that for all $\square_i \alpha \in \Phi$, we have $M \models w_1 \models_i \square_i \alpha$ if and only if $M \models w_2 \models_i \square_i \alpha$. Since M is an equivalence model it follows that $M \models w_2 \square_i \alpha$. □

We now prove that the filtration defined above produces models for S5WD$_n$. We first consider the effect of the filtration on directed models.

Lemma 5.2 If M is an equivalence directed model, then the model M' defined in Definition 5.4 is also an equivalence directed model.

Proof We prove that $F' = (W', \sim_1, \ldots, \sim_n')$ is an ED frame. The relations \sim_i' are clearly equivalence relations. All it remains to show is that F' is directed. To do that, consider any $[w_1], [w_2] \in W'$. Since M is directed, there exists $w \in W$ such that $w_i \sim_i w$ for $i = 1, \ldots, n$. But each \sim_i' is suitable and so, by a consequence of property 1 of suitability we have that $[w_1] \sim_i' [w]$, for $i = 1, \ldots, n$. Therefore the frame F' is directed.

We are finally in the position to prove fnp.

Theorem 5.2 The logic S5WD$_n$ has the finite model property. Indeed, every formula ϕ with a countermodel has a countermodel with at most $2^{2|\phi|}$ worlds.

Proof Suppose $\not\models \phi$. Since by the proof of Theorem 5.2 the logic S5WD$_n$ is canonical, the canonical model $M = (W, \sim_1, \ldots, \sim_n, \pi)$ for S5WD$_n$ is an equivalence model, it is weakly-directed and there is a point $w \in W$, such that $M \models w \sim_\pi \phi$. Consider the model M_w generated by w. By Theorem 5.2, we have $M_w \models w \sim_\pi \phi$. The model M_w is clearly an equivalence model and, since it is connected it is also directed, by Lemma 3.4. Consider now the filtration M' of M_w through Φ_ϕ according to Definition 5.4. M' is a filtration and it is finite by construction because Φ_ϕ is a finite set. But M' is a filtration, and by Theorem 5.2, $M' \models w \sim_\pi \phi$, which is what we needed to prove. Therefore the bound on the size of M' follows from the observation above. □

Corollary 5.1 The logic S5WD$_n$ is decidable.

Proof By Theorem 5.2 to check that ϕ is valid, it suffices to check that ϕ has no countermodel with at most $2^{2|\phi|}$ worlds. □
6 Homogeneous broadcast systems

Hypercubes were motivated above as an appropriate model for the initial configuration of a multi-agent system, in which all agents are ignorant of each other's local state. In this section we will show that for a particular class of systems, homogeneous broadcast systems with perfect recall, hypercubes are also an appropriate model of the states of knowledge of agents that acquire information over time. In this class of systems, all communication is by synchronous broadcast, agents have perfect recall, and the agents’ knowledge in the initial configuration is characterized by a hypercube system. We establish that in such systems, the agents’ knowledge can be characterized by a hypercube system not just at the initial time, but also at all subsequent times. It follows from this result that the logic of knowledge in homogeneous broadcast systems can be axiomatized by the logic $S5^{WD}_n$ studied in the previous section. Thus, the applicability of hypercubes as a model of agents’ knowledge extends beyond initial configurations.

This section is organized as follows. In Section 6.1 we describe environments, a general model for the behavior of agents and their interaction. This model may be used in a variety of ways to ascribe a state of knowledge to the agents after a particular sequence of events has occurred. We focus here on just one of the possibilities, in which it is assumed that agents have perfect recall of their observations. In Section 6.2, we define broadcast environments, a special case of this general model that constrains all communication between agents to be by synchronous broadcast. Section 6.3 considers the special case of homogeneous broadcast environments, establishes the connection between the systems generated by these environments and hypercubes.

6.1 Environments

In the model of Halpern and Moses [HM90], a distributed system corresponds to a set of runs, where each run constitutes a history that identifies at each point of time a state of the environment and a local state for each agent. This model is perhaps overly general, since in practice one is interested in the particular sets of runs that are generated by executing a given program, or protocol, within a given communication architecture. A formal framework to capture this idea, contexts, was defined by Fagin et al. [FHMV97, FHMV95]. In this section we briefly recall a variant of this framework, environments, from [Mey96b]. (We refer the reader to [Mey96b, FHMV95] for more extensive motivation and examples.) Compared to contexts, environments admit an additional degree of freedom by allowing knowledge to be interpreted in different ways in the same set of runs. We focus here on a particular interpretation, based on the assumption that agents have perfect recall. We describe how executing a protocol in an environment with respect to an interpretation of knowledge determines a Kripke structure that ascribes a state of knowledge to the agents after the occurrence of a particular sequence of events. In Section 6.2, we will present a special case of this model that defines a particular architecture in which agents communicate by synchronous broadcast.

For the definition of environment, we assume a set $\mathcal{A} = \{0, 1, \ldots, n\}$ of agents. We also assume that for each agent $i \in \mathcal{A}$, there is a non-empty set ACT_i, representing the set of actions that may be performed by agent i. A joint action is defined to be a tuple $\langle a_0, \ldots, a_n \rangle \in ACT_0 \times \cdots \times ACT_n$. We write ACT for the set of joint actions. As before, we assume a set $Atoms$ of propositional variables of the language.

In the following definitions, agent 0 will play a role somewhat different from the other agents. Intuitively, it is intended that agent 0 be used to model aspects of the context, or communication architecture, within which the other agents operate. The actions of agent 0 correspond to non-deterministic behavior of this context. In applications of the framework, the architecture is typically fixed, and one is interested in designing programs for the behavior of agents $1 \ldots n$.

Definition 6.1 (Environment) An interpreted environment is a tuple of the form $E = \langle S, I, P_0, \tau, O, V \rangle$ where the components are defined as follows:

- S is a set of states of the environment. Intuitively, states of the environment may encode such information as messages in transit, failure of components, etc.
• I is a subset of S, representing the possible initial states of the environment.

• $P_0 : S \rightarrow \mathcal{P}(\text{ACT}_0)$ is a function, called the protocol of the environment, mapping states to subsets of the set ACT_0 of actions performable by the environment. Intuitively, $P_0(s)$ represents the set of actions that may be performed by the environment when the system is in state s.

• τ is a function mapping joint actions $j \in \text{ACT}$ to state transition functions $\tau(j) : S \rightarrow S$. Intuitively, when the joint action j is performed in the state s, the resulting state of the environment is $\tau(j)(s)$.

• O_i is a function from S to O^n for some set O. For each $i = 1, \ldots, n$, the function O_i mapping $s \in S$ to the ith component of $O(s)$, is called the observation function of agent i. Intuitively, $O_i(s)$ represents the observation of agent i in the state s.

• $V : S \times \text{Atoms} \rightarrow \{0,1\}$ is a valuation, assigning a truth value $V(s,p)$ in each state s to each atomic proposition $p \in \text{Atoms}$.

A trace of an environment E is a finite sequence $s_0 \ldots s_m$ of states such that $s_0 \in I$ and for all $k = 0 \ldots m - 1$ there exists a joint action $j = (a_0, a_1, \ldots, a_n)$ such that $s_{k+1} = \tau(j)(s_k)$ and $a_0 \in P_0(s_k)$. We write $\text{fin}(r)$ for the final state of a trace r.

Intuitively, the traces of an environment correspond to the finite histories that may be obtained from some behavior of the agents in that environment. Note that the nondeterministic choices of action made by the environment itself are constrained by the protocol of the environment, and that these choices are determined at each step from the state of the environment. On the other hand, the notion of trace assumes that the choices of action of agents $1 \ldots n$ are unconstrained. In practice, we wish these agents to behave according to some program (perhaps nondeterministic), that determines their choice of next possible action as some function of the observations that they have made. The following definition captures this intuition.

Definition 6.2 (Perfect Recall) The perfect recall local state of agent $i = 1 \ldots n$ in a trace $r = s_0 \ldots s_m$, denoted $\{r\}_i$, is defined to be the sequence $O_i(s_0) \ldots O_i(s_m)$ of observations made by the agent in the trace.

A perfect recall protocol for agent $i = 1 \ldots n$ is a function P_i mapping each sequence of observations in O^n to a non-empty subset of ACT_i. A joint perfect recall protocol is a tuple $\mathbf{P} = (P_1, \ldots, P_n)$ consisting of a perfect recall protocol P_i for each agent $i = 1 \ldots n$. We write \mathbf{P}_i for P_i when \mathbf{P} is given.

Protocols specify the possible choices of next action of the agents, given a certain history of events, as follows. For each agent $i = 1 \ldots n$, we say that an action $a_i \in \text{ACT}_i$ is enabled with respect to a protocol \mathbf{P} at a trace r of E if $a_i \in \mathbf{P}_i(\{r\}_i)$. An action a_0 of the environment is enabled at r if $a_0 \in P_0(\text{fin}(r))$. A joint action is enabled at r with respect to a protocol \mathbf{P} if each of its components is enabled at r.

We obtain the traces that result when agents execute a joint protocol in an environment as follows. Define a trace $s_0 \ldots s_m$ of E to be consistent with a joint protocol \mathbf{P} if for each $k < m$, there exists a joint action j enabled at $s_0 \ldots s_k$ with respect to \mathbf{P}, such that $\tau(a)(s_k) = s_{k+1}$. We are now in a position to describe the frame that captures the agents’ states of knowledge when they execute a protocol in an environment.

Definition 6.3 (Perfect recall frame derived from a protocol and environment) Given an environment E and a joint protocol \mathbf{P}, the perfect recall frame derived from E and \mathbf{P} is the structure $F_{E,\mathbf{P}} = (W, \sim_1, \ldots, \sim_n)$, where:

3One could also define runs of the environment, which are infinite sequences of states satisfying the same constraint on state transitions. This would correspond more closely to the framework of [vdM98]. Runs are essential when one is interested in languages containing temporal operators, but there is a precise sense in which it suffices to work with traces when only modal operators for knowledge are of interest, as in the present paper. See the appendix of [vdM98] for a discussion of this issue.
6.2 Broadcast environments

In this subsection we define broadcast environments (BE), a special case of the formalism described in Section 7. Broadcast environments model situations in which all communication is by synchronous broadcast. Examples of this are systems in which agents communicate by means of a shared bus, by writing tokens onto a shared blackboard and in face to face conversation. Other examples are classical puzzles such as the wise men, or muddy children puzzle, and a variety of games of incomplete information, including battleships, Stratego and Bridge. Broadcast environments have been considered previously in [Mey96a].

To define broadcast environments, we need to impose a number of constraints on the components making up the definition of environments given in the previous section. We do so here in a way that slightly simplifies the model in [Mey96a], eliminating some features that will be irrelevant in the context of homogeneous broadcast environments. The intuition we wish to capture is that each agent holds some private information, which is unobservable to all other agents. The actions taken by the agents will have two types of effects: they will update this private information, and the set of states which is observable to no agent.

For each agent \(i \) there exists a set \(A_i \) of external actions and a set \(B_i \) of internal actions. All the sets \(A_i \) contain the special "null" action \(\epsilon \). For \(i = 0 \ldots n \), the set \(ACT_i \) of actions of agent \(i \) consists of the pairs \(a \cdot b \) where \(a \in A_i \) and \(b \in B_i \).

The role of the null action is to allow for a uniform representation of initial states (see Assumption 6.2 below). It follows from Assumption 6.1 and the definitions of the previous section that the set of the joint actions \(ACT \) in a broadcast environment consists of the tuples of the form \(j = (a_0 \cdot b_0, a_1 \cdot b_1, \ldots, a_n \cdot b_n) \) where \(a_i \cdot b_i \in ACT_i \) for each \(i = 0 \ldots n \). We define \(A(j) \) to be the component \((a_0, a_1, a_2, \ldots, a_n) \), and call this the joint external component of \(j \). We write \(A \) for the set \(A_0 \times \ldots \times A_n \) of joint external actions.

To represent the private information held by agents, we assume that for each agent \(i = 0 \ldots n \) there exists a set \(S_i \) of instantaneous private states. Intuitively, for \(i = 1 \ldots n \) the states \(S_i \) represent the information observable by agent \(i \) only. In the case \(i = 0 \), the states \(S_0 \) represent that part of the environment’s state which is observable to no agent.

Assumption 6.2 (BE States) The set of states \(S \) of a broadcast environment is required to consist of tuples of the form \((a_0, \ldots, a_n; p_0, \ldots, p_n) \), where for each \(i = 0 \ldots n \), the component \(a_i \in A_i \) is an external action of agent \(i \) and the component \(p_i \in S_i \) is a private state of agent \(i \).
Intuitively, a tuple \(\langle a_0, \ldots, a_n; p_0, \ldots, p_n \rangle \) models a situation in which each agent \(i \) is in the instantaneous private state \(p_i \), and in which \(a_i \) is the most recent external action performed by agent \(i \). We define the joint private state at \(s \) to be the tuple \(\mathbf{p}(s) = \langle p_0, \ldots, p_n \rangle \), and agent \(i \)'s private state at \(s \), denoted \(\mathbf{p}_i(s) \), to be the private state \(p_i \). If \(s = \langle a_0, \ldots, a_n; p_0, \ldots, p_n \rangle \) is a state then we define the joint external action at \(s \), denoted \(\mathbf{a}(s) \), to be the tuple \(\langle a_0, \ldots, a_n \rangle \).

Clearly, in initial states it does not make sense to talk of a most recent external action. This motivates the following.

Assumption 6.3 (BE initial states) The set of initial states \(I \) of a broadcast environment contains only states \(\langle a_0, \ldots, a_n; p_0, \ldots, p_n \rangle \) with \(a_i = \epsilon \) for all \(i = 0 \ldots n \).

The definition of broadcast environment allows the set \(I \) of initial states to be any nonempty set of states of this form. As we will see later, homogeneous broadcast environments restrict the possible sets of initial states.

In a broadcast environment, agents are aware of their own private state, and also of the external actions performed by all agents. All communication between agents will be by means of the external actions. This constraint is modelled by the definition of the agents’ observations.

Assumption 6.4 (BE observations) For \(i = 1 \ldots n \), we require agent \(i \)'s observation function \(O_i \) to be given by \(O_i(\langle a_0, \ldots, a_n; p_0, \ldots, p_n \rangle) = \langle a_0, \ldots, a_n; p_i \rangle \).

That is, in a given state, an agent’s observation consists of the external component of the joint action producing that state, and the agent’s private state.

It will be convenient in what follows to introduce an observation function for agent 0, similarly defined by \(O_0(\langle a_0, \ldots, a_n; p_0, \ldots, p_n \rangle) = \langle a_0, \ldots, a_n; p_0 \rangle \). Moreover, we obtain using this observation function an equivalence relation \(\sim_0 \) on traces, defined exactly as the relations \(\sim_i \).

One of the effects of performing a joint action in a broadcast environment is that each agent updates its private state in a way that depends on its internal action and the joint external action simultaneously being performed. In addition to this, the joint external action will be recorded in the resulting state.

Assumption 6.5 (BE transitions) For each agent \(i = 0 \ldots n \) there exists a private action interpretation function \(\tau_i : \mathbf{A} \times B_i \rightarrow (S_i \rightarrow S_i) \). The joint action interpretation function \(\tau : \mathbf{ACT} \rightarrow (\mathbf{S} \rightarrow \mathbf{S}) \) of a broadcast environment is obtained from the private action interpretation functions as follows. For each joint action \(\mathbf{j} = \langle a_0 \cdot b_0, \ldots, a_n \cdot b_n \rangle \), the transition function \(\tau(\mathbf{j}) \) maps a state \(s = \langle a'_0, \ldots, a'_n; p_0, \ldots, p_n \rangle \) to

\[
\tau(\mathbf{j})(s) = \langle a_0, \ldots, a_n; \tau_0(\mathbf{a}(\mathbf{j}), b_0)(p_0), \ldots, \tau_n(\mathbf{a}(\mathbf{j}), b_n)(p_n) \rangle.
\]

That is, for each joint external action \(\mathbf{a} \in \mathbf{A} \) and internal action \(b_i \in B_i \), the function \(\tau(\mathbf{a}, b_i) : S_i \rightarrow S_i \) is a private state transition function, intuitively representing the effect on agent \(i \)'s private states of performing the internal action \(b_i \), when the joint external action \(\mathbf{a} \) is being simultaneously performed. The state of the environment resulting from a joint action records the external component of the joint action, and updates each agent’s private state using its private action interpretation function.

Finally, we require that the protocol \(P_0 \) of the environment depend only upon its private state and the most recent external action.

Assumption 6.6 (BE protocol) If \(s \) and \(t \) are states with \(O_0(s) = O_0(t) \) then \(P_0(s) = P_0(t) \).

The propositional constants \(\mathbf{Atoms} \) of a broadcast environment are allowed to describe any property of the global states \(\mathbf{S} \), so we do not make any assumption on the valuation \(V \).

We may now state the main definition of this section.

Definition 6.4 (Broadcast environment) A broadcast environment is an environment satisfying assumptions 6.3–6.6.

4 This is a slight simplification of the definition in [Mey96a], eliminating an extra component that is incompatible with homogeneity.
In broadcast environments, agents' mutual knowledge can be shown to have a particularly simple structure [Mey96a]. Intuitively, this is because broadcast communication maintains a high degree of common knowledge. The following section provides an illustration of this point in a special case of broadcast environments.

Example 6.1 We illustrate the definitions so far by means of a simple card game. Let us imagine an initial situation set up as described in Example 2.1 and take \(n = 2 \). Thus each of the two players has 12 cards from the respective deck. The game now proceeds as follows: at each move, provided the hands are not empty, both players select a card from their hand, and place it face up on the table, where it remains until the next move, when it is returned to its deck, so that it is no longer visible. (Of course, a player with perfect recall will remember what cards have been played.) The objective of the game does not concern us here (it may be to play a card with a value greater than that picked by the opponent, for example). Note that the players play in parallel (synchronously).

We model this game as a broadcast system together with a joint protocol.

The private states of agent \(i \geq 1 \) are now of the form \(h \subseteq D \), where \(D \) is a deck and \(h \) is a set of 12 or fewer cards. As in Example 2.1, we will consider two modelings for the private states of agent 0. The first modeling, which we call the simple modeling, takes the states of the environment to be the singleton set \(\{1\} \). This is appropriate when we wish to analyze the players' knowledge about each other's hands. If we also wish to consider the players' knowledge about the cards in the respective decks, then we use the rich modeling, in which we take agent 0's private states to be tuples \((D_1, D_2, f_1, f_2) \), where \(D_i \subseteq D \) represent the cards in the \(i \)-th deck, as before, and \(f_i \subseteq D \) contains at most one card, the card most recently placed face up by player \(i \). (In the initial states, we will have \(f_i \) empty.)

In this example, the environment is passive, so we may take the actions of agent 0 to consist of the single pair \(\epsilon \cdot \epsilon \) only, and for each state \(s \) the environment’s protocol returns \(P_0(s) = \{\epsilon \cdot \epsilon\} \). All the actions of the remaining agents are observable, so we may take the set of internal actions \(B_i \) to be \(\{\epsilon\} \) in each case, and the set of external actions \(A_i \) to be equal to the set of subsets of \(D \) with at most one element. Intuitively, \(\epsilon \in A_i \) corresponds to the action of playing the cards in \(\epsilon \), so an empty set represents the action of playing no card. Thus, the set of joint actions is the set of tuples of the form

\[j = (\epsilon \cdot \epsilon, c_1 \cdot \epsilon, c_2 \cdot \epsilon) \]

where \(c_1, c_2 \in A_i \), and the corresponding joint external action has the form \(a(j) = (\epsilon, c_1, c_2) \).

Given the above, we also see that a state of the system is a tuple of the form

\[s = (\epsilon \cdot \epsilon, c_1 \cdot \epsilon, c_2 \cdot \epsilon; p_0, h_1, h_2) \]

where, for \(i = 1, 2 \), we have that \(c_i \subseteq D \) is a set of cards with at most one element, and \(h_i \) is a set of twelve or fewer cards. In the simple modeling we have \(p_0 = 1 \); in the rich modeling \(p_0 = (D_1, D_2, f_1, f_2) \), where each set \(D_i \subseteq D \) is a set of cards, and \(f_i \subseteq D \) is a set of cards with at most one element. (In the latter case, not all such states are reachable: for example, we will have \(f_i = c_i \) in all reachable states.)

The observation of agent \(i = 1, 2 \) in a state of one of the above forms is \(O_i(s) = (\epsilon, c_1, c_2; h_i) \). Note that we model observability of the card face up through the agent's observation of the last action, since agents are assumed incapable of observing the private state of agent 0 directly. If an agent \(i = 1, 2 \) makes a sequence of observations \(\sigma \), then its final observation will have \(h_i \) equal to its current hand. Thus, we may define the protocol of each agent, representing its choice of card at each move, by \(P_i(\sigma) = \{\epsilon \mid c \in h_i\} \) if \(h_i \) is not empty, and \(P_i(\sigma) = \{\emptyset\} \) otherwise.

Transitions are given as follows, for states and joint external actions as above. For agent 0, we clearly have \(\tau_0((\epsilon, c_1, c_2), \epsilon)(1) = 1 \) in the simple modeling. In the rich modeling,

\[\tau_0((\epsilon, c_1, c_2), \epsilon)((D_1, \ldots, D_2, f_1, f_2)) = (D_1 \cup f_1, D_2 \cup f_2, c_1, c_2). \]

For agent \(i = 1, 2 \), we take

\[\tau_0((\epsilon, c_1, c_2), \epsilon)(h_i) = h_i \setminus c_i. \]
The initial states of the system are the states

\[s = \langle \epsilon \cdot \epsilon, \emptyset \cdot \epsilon, \emptyset \cdot \epsilon; p_0, h_1, h_2 \rangle \]

where for \(i = 1,2 \) we have \(h_1 \) and \(h_2 \) equal to sets of exactly 12 cards. In the simple modeling, we have \(p_0 = 1 \), and, as noted in Example 2.1, this set of states forms a hypercube. In the rich modeling, we have \(p_0 = (D \setminus h_1, D \setminus h_2, \emptyset, \emptyset) \). As we noted previously, this set of states is a full system, but not a hypercube.

In the sequel, we will make use of the following observation.

Lemma 6.1 Suppose \(E \) is a broadcast environment, and \(P \) is a joint perfect recall protocol. Let \(r \) and \(r' \) be traces of \(E \) consistent with \(P \) such that \(r \sim_i r' \), where \(i \in \{0 \ldots n\} \). Then every action of agent \(i \) that is enabled at \(r \) is also enabled at \(r' \).

The proof is immediate from the definitions. (In the case of agent 0, note that \(r \sim_0 r' \) implies \(O_0(r) = O_0(r') \) and use Assumption 6.4.)

6.3 Homogeneous broadcast environments

Homogeneous broadcast environments are a special case of broadcast environments. These environments satisfy the additional, and quite natural, constraint that agents start in a condition of ignorance about each others' states, and the state of the environment. Thus, their initial state of knowledge is characterized by a hypercube system. We will show that, under the assumption that agents have perfect recall, their knowledge can also be characterized as a hypercube system at all subsequent times.

Definition 6.5 (Homogeneous broadcast environment) A broadcast environment \(E \) is homogeneous if there exists for each agent \(i = 0 \ldots n \) a set \(I_i \subseteq P_i \) of initial private states, such that the set of initial states \(I \) of the environment \(E \) is the set of all states \(\langle \epsilon, \ldots, \epsilon; p_0, \ldots p_n \rangle \), where \(p_i \in I_i \) for \(i = 0 \ldots n \).

In other words, the set of initial states is isomorphic to the hypercube \(I_0 \times \ldots \times I_n \). That is, agents are initially ignorant of each others' states and the state of the environment. The environment in Example 6.1 is a homogeneous broadcast system under the simple modeling (but not under the rich modeling.) Of the other examples mentioned in the previous section, battleships and Stratego satisfy this constraint, but the wise men puzzle, the muddy children puzzle and Bridge do not. (For example, the initial configurations of Bridge, i.e. after cards have been dealt but before bidding, do not form a hypercube because it is not possible for two players to simultaneously hold the same card.)

We may now introduce the main object of study in this section.

Definition 6.6 (Perfect recall homogeneous broadcast frame) A perfect recall homogeneous broadcast frame is any frame \(F_{E,P} \) obtained from a joint perfect recall protocol \(P \) in a homogeneous broadcast environment \(E \).

We are now in a position to state the main result of this section.

Theorem 6.1 Every perfect recall homogeneous broadcast frame is isomorphic to a frame obtained from a disjoint union of systems of the form \(X_0 \times X_1 \times \ldots \times X_n \). In particular, every such frame is weakly-directed.

This result establishes a close connection between perfect recall homogeneous broadcast frames and hypercube systems. In particular, it follows that the logic S5WD\(_n\) is sound for this class of frames.
For the proof, it is convenient to introduce the following notions. If \(r = s_0 s_1 \ldots s_m \) is a trace of a broadcast environment, we will write \(\mathbf{a}(r) \) for the sequence \(\mathbf{a}(s_0) \ldots \mathbf{a}(s_m) \) of joint external actions performed in \(r \). If \(s = (a_0, \ldots, a_n; p_0, \ldots, p_n) \) and \(t = (a_0, \ldots, a_n; q_0, \ldots, q_n) \) are global states with the same joint external action component, and \(i \in \{0, \ldots, n\} \), define \(s \triangleright_i t \) to be the state \((a_0, \ldots, a_n; p_0, \ldots, p_i-1, q_i, p_{i+1}, \ldots, p_n) \), that is like \(s \) except that agent \(i \) has the private state it has in \(t \).

Note that for \(j \neq i \), we have \(O_j(s \triangleright_i t) = (a_0, \ldots, a_n; p_j) = O_j(s) \). Additionally, \(O_i(s \triangleright_i t) = (a_0, \ldots, a_n; q_i) = O_i(t) \). More generally, if \(r_1 = s_0 s_1 \ldots s_m \) and \(r_2 = t_0 t_1 \ldots t_m \) are sequences of states of the same length with \(\mathbf{a}(r_1) = \mathbf{a}(r_2) \) then we define \(r_1 \triangleright_i r_2 \) to be the sequence \((s_0 \triangleright_i t_0)(s_1 \triangleright_i t_1) \ldots (s_m \triangleright_i t_m) \). The following result states a closure condition of the set of traces of a homogeneous broadcast environment.

Lemma 6.2 Let \(E \) be a homogeneous broadcast environment, and \(\mathbf{P} \) a joint perfect recall protocol. If \(r_1 \) and \(r_2 \) are traces in \(E, \mathbf{P} \) with \(\mathbf{a}(r_1) = \mathbf{a}(r_2) \) then for any \(i \) we have that \(r_1 \triangleright_i r_2 \) is a trace in \(E, \mathbf{P} \) with \((r_1 \triangleright_i r_2) \sim_i r_2 \) and for \(j \neq i \) we have that \((r_1 \triangleright_i r_2) \sim_j r_1 \).

Proof Note that \(\mathbf{a}(r) = \mathbf{a}(r') \) implies that \(r \) and \(r' \) have the same length. It is immediate from the comments above that \((r_1 \triangleright_i r_2) \sim_j r_1 \) for \(j \neq i \) and \((r_1 \triangleright_i r_2) \sim_i r_2 \). It therefore suffices to show that \(r_1 \triangleright_i r_2 \) is a trace. We do this by induction on the length of the trace \(r_1 \).

The base case is straightforward. If \(r_1 \) is a trace of length one, then it consists of an initial state \(s_1 \). Similarly, \(r_2 \) consists of an initial state \(s_2 \). It is immediate from the assumption that \(I = \{ (\epsilon, \ldots, \epsilon) \} \times I_0 \times \cdots \times I_n \) that \(r_1 \triangleright_i r_2 = s_1 \triangleright_i s_2 \) is a trace.

Assume that the result has been established for traces of length \(m \), and consider traces \(r_1 \) and \(r_2 \) of length \(m + 1 \) with \(\mathbf{a}(r_1) = \mathbf{a}(r_2) \). Write \(r_1 = r_1's_1t_1 \) where \(t_1 \) is the final state of \(r_1 \) and \(s_1 \) is the next-to-final state of \(r_1 \), and similarly write \(r_2 = r_2's_2t_2 \). By the induction hypothesis, \(r = r_1's_1 \triangleright_i r_2's_2 \) is a trace indistinguishable to agent \(i \) from \(r_1's_2 \), and indistinguishable to all other agents from \(r_1's_1 \).

Let \(j_1 \) be a joint action enabled at \(r_1's_1 \) such that \(t_1 = \tau(j_1)(s_1) \), and similarly, let \(j_2 \) be a joint action enabled at \(r_2's_2 \) such that \(t_2 = \tau(j_2)(s_2) \). Note that because state transitions record the joint external action component of a joint action in the resulting state, and because \(\mathbf{a}(r_1) = \mathbf{a}(r_2) \), we have \(\mathbf{a}(j_1) = \mathbf{a}(t_1) = \mathbf{a}(t_2) = \mathbf{a}(j_2) \). Write \((a_0, \ldots, a_n) \) for the common joint external action of these states and joint actions. Then we may also write \(j_1 = (a_0 \cdot b_0, \ldots, a_n \cdot b_n) \) and \(j_2 = (a_0 \cdot c_0, \ldots, a_n \cdot c_n) \). To show that \(r_1 \triangleright_i r_2 \) is a trace we show that the joint action

\[
\mathbf{j} = (a_0 \cdot b_0, \ldots, a_{i-1} \cdot b_{i-1}, a_i \cdot c_i, a_{i+1} \cdot b_{i+1}, \ldots, a_n \cdot b_n)
\]

is enabled at \(r \) and satisfies \(\tau(j)(s_1 \triangleright_i s_2) = t_1 \triangleright_i t_2 \).

To show that \(\mathbf{j} \) is enabled at \(r \) we show that each of its components is enabled at \(r \). In the case of agents \(j \neq i \), we need to show that the action \(a_j \cdot b_j \) of agent \(j \) is enabled at \(r \). This follows, using Lemma 6.1, from the fact that \(a_j \cdot b_j \) is enabled for agent \(j \) at \(r_1's_1 \), and from the fact that \(r_1's_1 \sim r \). For agent \(i \), we need to show that the action \(a_i \cdot c_i \) is enabled at \(r \). This follows, again using Lemma 6.1, from the fact that \(a_i \cdot c_i \) is enabled for agent \(i \) at \(r_2's_2 \), and from the fact that \(r_2's_2 \sim r \).

It therefore remains to show that \(\tau(j)(s_1 \triangleright_i s_2) = t_1 \triangleright_i t_2 \). Note first that \(\mathbf{a}(\tau(j)(s_1 \triangleright_i s_2)) = \mathbf{a}(\mathbf{j}) = \mathbf{a}(j_1) = \mathbf{a}(t_1 \triangleright_i t_2) \). Thus, the states \(\tau(j)(s_1 \triangleright_i s_2) \) and \(t_1 \triangleright_i t_2 \) record the same joint external action. We show that they also have the same private state for each agent. In case of agents \(j \neq i \), we have

\[
\mathbf{p}_j(\tau(j)(s_1 \triangleright_i s_2)) = \tau_j(\mathbf{a}(j), b_j)(\mathbf{p}_j(s_1 \triangleright_i s_2)) = \tau_j(\mathbf{a}(j), b_j)(\mathbf{p}_j(s_1)) = \mathbf{p}_j(t_1)
\]

\[
= \mathbf{p}_j(t_1 \triangleright_i t_2)
\]
Thus, the set of actions of each agent is also a singleton, viz \(\{ \text{take the both the set of external actions} \} \) components. Indeed, the environment of \(S^{5}WD \) will be the component consisting of all the traces of length one, i.e., the set of states \(E = \{ \} \). Since \(S^{5}WD \) is complete for the class of all hypercubes, there exists a hypercube \(H = L_{e} \times L_{1} \times \ldots \times L_{n} \), where \(L_{e} \) is a singleton, an interpretation \(\pi_{H} \) on \(H \), and a world \(w \in S \) such that \((F(H), \pi_{H}) \models \phi \). We show that it is possible to construct a homogeneous broadcast environment \(E \) whose decomposition into a union of Cartesian products contains \(H \) as one of its components. Indeed \(H \) will be the component consisting of all the traces of length one, i.e., the component characterizing the initial state of knowledge of the agents.

We define the environment \(E = \langle S, I, P_{0}, \tau, O, V \rangle \) as follows. For each agent \(i = 0 \ldots n \), we take both the set of external actions \(A_{i} \) and the set of internal actions \(B_{i} \) to be the set \(\{ \epsilon \} \).

This completes the proof.

Note that because agents observe the most recent joint external action, if \(r \) and \(r' \) are traces in \(F_{P,E} \) with \(r \sim_{i} r' \) then these traces were generated by the same sequence of joint external actions, i.e., \(a(r) = a(r') \). It follows from this that if \(r \) and \(r' \) are in the same connected component of \(F_{P,E} \) then we also have \(a(r) = a(r') \). In fact, we have the following stronger result:

Lemma 6.3 For every trace \(r \) we have that:

- the connected component \(F \) of \(F_{P,E} \) containing \(r \) consists of all traces \(r' \) in \(F_{P,E} \) with \(a(r') = a(r) \) and

- this connected component is isomorphic to the hypercube \(\Pi_{i=0 \ldots n} \{ \{ r' \} \mid r' \in F \} \).

Proof 1) We prove that \(r \) is connected to \(r' \) if and only if \(a(r) = a(r') \). Left to right is immediate from Definition 6.3. Right to left follows from Lemma 6.2.

2) For each agent \(i = 0 \ldots n \), let \(r_{i} \) be any trace of \(F_{P,E} \) with \(a(r_{i}) = a(r) \). To show that the connected component is a hypercube, we prove that there is an \(r' \) such that \(r' \sim_{i} r_{i} \). In fact, define \(r' = (\ldots (r_{1} \bowtie r_{2}) \ldots \bowtie r_{n-1} r_{n-1}) \bowtie r_{n} r_{n} \). By Lemma 6.2, \(r' \) is a trace of \(E \), with \(r' \sim_{i} r_{i} \) for all \(i = 0 \ldots n \) and \(a(r') = a(r) \). It is immediate that all traces \(r' \) of \(F_{P,E} \) with \(a(r') = a(r) \) are connected, and that the component containing \(r \) is isomorphic to the hypercube \(\Pi_{i=0 \ldots n} \{ \{ r' \} \mid r' \in F \} \).

This lemma characterizes the sense in which agents’ states of knowledge at times other than time 0 in a homogeneous broadcast system are characterized by a hypercube system. Theorem 6.1 follows immediately from Lemma 6.3.

We now obtain a result that provides one final characterization of the logic \(S^{5}WD_{n} \).

Theorem 6.2 The logic \(S^{5}WD_{n} \) is sound and complete for the class of all homogeneous broadcast frames.

Proof Soundness is direct from Theorem 5.4. For completeness, suppose that \(\phi \) is not a theorem of \(S^{5}WD_{n} \). Since \(S^{5}WD_{n} \) is complete for the class of all hypercubes, there exists a hypercube \(H = L_{e} \times L_{1} \times \ldots \times L_{n} \), where \(L_{e} \) is a singleton, an interpretation \(\pi_{H} \) on \(H \), and a world \(w \in S \) such that \((F(H), \pi_{H}) \models \neg \phi \). We show that it is possible to construct a homogeneous broadcast environment \(E \) whose decomposition into a union of Cartesian products contains \(H \) as one of its components. Indeed \(H \) will be the component consisting of all the traces of length one, i.e., the component characterizing the initial state of knowledge of the agents.

We define the environment \(E = \langle S, I, P_{0}, \tau, O, V \rangle \) as follows. For each agent \(i = 0 \ldots n \), we take both the set of external actions \(A_{i} \) and the set of internal actions \(B_{i} \) to be the set \(\{ \epsilon \} \). Thus, the set of actions of each agent is also a singleton, viz \(\{ \epsilon \} \).

The components of the environment are as follows:

- The set of states \(S = \{ \epsilon, \ldots , \epsilon ; p_{0}, \ldots , p_{n} \} \) where \((p_{0}, \ldots , p_{n}) \in H \). Thus, the set \(S_{i} \) of instantaneous private states of agent \(i \) is exactly the set of local states \(L_{i} \) of agent \(i \) in \(H \).

- All states are initial, i.e., \(I = S \).
• Since the set actions \(\text{ACT}_0 \) of agent 0, the environment, is a singleton, the protocol of the environment is the unique function \(P_0 : S \rightarrow \text{ACT}_0 \).

• The transition function \(\tau \) is defined by \(\tau(j)(s) = s \) for (the unique) joint action \(j \) and state \(s \). (Thus, similarly, the local transition functions \(\tau_i \) satisfy \(\tau_i(a, b_i)(p_i) = p_i \) for (the unique) joint external action \(a \), (the unique) internal action \(b_i \) and private state \(p_i \in L_i \).

• The definition of the observation function \(O \) is determined by the fact that \(E \) is a broadcast environment, i.e., \(O_i(\langle \epsilon, \ldots, \epsilon; p_0, \ldots, p_n \rangle) = \langle \epsilon, \ldots, \epsilon; p_i \rangle \) for each \(i = 1, \ldots, n \).

• The valuation \(V \) is defined by \(V(\langle \epsilon, \ldots, \epsilon; p_0, \ldots, p_n \rangle, q) = \pi(H(p_0, \ldots, p_n), q) \).

This is a homogeneous broadcast environment by construction. It is now straightforward to establish that for every joint perfect recall protocol \(P \), the connected component of \(F_{E, P} \) consisting of all traces of length one is isomorphic to \((F(H), \pi_H) \). (We remark that our choice of action sets and transition function above are not actually relevant to this conclusion.)

One way to understand Theorem 6.2 is that it states completeness of \(S5WD_n \) with respect to a class of models, namely those models obtained by adding an interpretation to a homogeneous broadcast frame. In these models the interpretation could assign to a proposition a meaning at a trace that depends not just on the final state of the trace, but also on prior states and actions. The proof of Theorem 6.2 in fact establishes that \(S5WD_n \) is complete for a smaller class of models with underlying homogeneous broadcast frames, in which the interpretation \(\pi \) is derived from the environment. Given an environment \(E \) with valuation \(V \), define the interpretation \(\pi_E \) by \(\pi_E(r, p) = V(\text{fin}(r), p) \) for traces of length \(r \) of \(E \) and propositions \(p \in \text{Atoms} \).

Theorem 6.3 The logic \(S5WD_n \) is sound and complete for the class of all models of the form \((F_{E, P}, \pi_E) \), where \(E \) is a homogeneous broadcast environment and \(P \) is a joint protocol.

Proof Similar to the proof of Theorem 6.2. Note that the construction of this proof uses only the initial component of the frame. The valuation of the environment may be chosen to operate as required on this initial component.

These results are in some respects similar to results of Fagin et al. \[FHV92, FV86 \]. They show that there exist natural classes of systems with respect to which the logic of knowledge is not characterized by \(S5_n \), but by a stronger logic \(ML_n \), that consists of \(S5_n \) plus the following axiom:

\[\beta \land K_1(\beta \Rightarrow \neg \alpha) \Rightarrow K_1 \neg \alpha \lor \ldots \lor K_1 \neg \alpha \]

where \(\alpha \) is a primitive state formula (intuitively, describing the assignment associated with the current state, but not of agents knowledge), and \(\beta \) is a pure knowledge formula (intuitively, describing properties of the agents knowledge but not dealing with the assignment associated with the current state). We refer the reader to \[FHV92 \] for a precise explanation of these terms. In particular, one class of systems to which this result applies is a class of systems in which the assignment is static, agents communicate by unreliable synchronous message passing and have perfect recall \[FV86 \].

Theorem 6.2 provides another interesting and natural class of systems that requires additional axioms. In our result, agents also have perfect recall, but the class is otherwise quite different from those considered in \[FHV92, FV86 \] since our agents communicate by reliable broadcast, and we allow the assignment to vary significantly from moment to moment. The axiom (WD) we need to capture such systems is also quite different from that used by Fagin et al.

We remark that it is possible to prove a variant of the results of this section that deal with full systems rather than hypercubes. For this variant, we modify the definition of homogeneity to state that the initial states of the environment form a full system. Moreover, instead of Assumption 6.6, we assume that for all states \(s \) and \(t \) with the same joint external action, i.e., \(a(s) = a(t) \), and for all external actions \(a_0 \) of agent 0, there exists an internal action \(b_0 \) of agent 0 such that \(a_0 \cdot b_0 \in P_0(s) \)
iff there exists an internal action b'_0 of agent 0 such that $a_0 \cdot b'_0 \in P_0(s)$. (Informally, this means that an external action of agent 0 is enabled in s iff it is enabled in t.) The environment and protocol in Example 6.1 satisfy both these assumptions.

Under these assumptions, Lemma 6.2 holds provided we restrict i and j to range over agents 1 to n only (i.e., we exclude agent 0.) The proof is a trivial adaptation. Consequently, we also obtain an analogue of Lemma 6.3 stating that the connected components of $F_{E,P}$ are full systems.

7 Conclusions and further work

In this paper we have formally investigated several classes of interpreted systems that arise by considering the full Cartesian product of the local state spaces. We have argued that these interpreted systems provide an appropriate model for the initial configurations of many systems of interest. Moreover, we have shown that a similar constraint arises at all later configurations in the special case of homogeneous broadcast systems. By relating these classes of systems to several classes of Kripke frames, we have established that a single modal logic, SSWD_n, provides a sound and complete axiomatization in all these cases. On the conceptual level, this logic provides a well motivated example of interaction among agents’ knowledge. We hope that in the near future SSWD_n will be just one of the formal options available in the literature and that, with the availability of more examples, a systematic study of types of interactions can be carried out.

In conducting this work, we have identified the interesting class of WD equivalence frames that generates a complete and decidable logic. The variation of the canonical model technique we used to prove completeness heavily relies on the frames being reflexive, symmetric and transitive, properties guaranteed by the fact that we were analyzing extensions of SS_n. This raises the question of whether it is possible to prove similar results for weaker logics, such as SS_4_n, which model agents that do not have negative introspection capabilities.

Our results leave open many other questions. It should be noted that the fact that the same logic SSWD_n axiomatizes all the different classes of semantic structures we have studied is due in part to the limited expressive power of the language we have considered. It would be interesting to investigate more expressive languages containing operators such as distributed knowledge and common knowledge. In the former case we have already identified the axiom $\phi \iff D_A \phi$ as of interest with respect to equivalence I frames (Lemma 3.4).

Although we have shown decidability of SSWD_n, the precise complexity of this logic remains open. It would also be of interest to determine which of the language extensions contemplated above maintain decidability of the logic. Finally, for the dynamic model we have considered, extensions of the language to include temporal operators are of interest. Indeed, consideration of the logic of knowledge and time in homogeneous broadcast systems is just one example of a range of unresolved issues concerning the knowledge of agents operating within specific communications models: a great deal of work remains to be done in the axiomatization of logics of knowledge with respect to such models.

References

[Aum76] R. J. Aumann. Agreeing to disagree. Annals of Statistics, 4(6):1236–1239, 1976.
[Ber49] G. Bergmann. The finite representations of S5. Methodos, 1:217–219, 1949.
[Cat88] L. Catach. Normal multimodal logics. In T. M. Smith and G. R. Mitchell, editor, Proceedings of the 7th National Conference on Artificial Intelligence (AAAI’88), pages 491–495, St. Paul, MN, August 1988. Morgan Kaufmann.
[Che80] B. Chellas. Modal Logic. Cambridge University Press, Cambridge, 1980.
[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT Press, Cambridge, 1995.
[Lom99] A. Lomuscio. *Knowledge Sharing among Ideal Agents*. PhD thesis, School of Computer Science, University of Birmingham, Birmingham, UK, June 1999.

[LR77] R. E. Ladner and J. H. Reif. The computational complexity of provability in systems of modal propositional logic. *SIAM Journal on Computing*, 6(3):467–480, 1977.

[LR99] A. Lomuscio and M. Ryan. A spectrum of modes of knowledge sharing between agents. In M. J. Wooldridge and N. R. Jennings, editors, *Intelligent Agents VI — Proceedings of the Sixth International Workshop on Agent Theories, Architectures, and Languages (ATAL-99)*, Lecture Notes in Artificial Intelligence. Springer-Verlag, Heidelberg, 1999. To appear.

[McC89] John McCarthy. Artificial intelligence, logic and formalizing common sense. In Richmond Thomason, editor, *Philosophical Logic and Artificial Intelligence*. Kluwer Academic, 1989.

[McK41] J.C McKinsey. A solution of the decision problem for the Lewis systems S2 and S4 with an application to topology. *The Journal of Symbolic Logic*, 6:117–134, 1941.

[MDH86] Y. Moses, D. Dolev, and J. Y. Halpern. Cheating husbands and other stories: A case study of knowledge, action, and communication. *Distributed Computing*, 1(3):167–176, 1986.

[Mey96a] R. van der Meyden. Finite state implementations of knowledge-based programs. In *Proceedings of the Conference on Foundations of Software Technology and Theoretical Computer Science*, Springer LNCS No. 1180, pages 262–273, Hyderabad, India, December 1996.

[Mey96b] R. van der Meyden. Knowledge based programs: On the complexity of perfect recall in finite environments. In Yoav Shoham, editor, *Proceedings of the Sixth Conference on Theoretical Aspects of Rationality and Knowledge*, pages 31–50, San Francisco, March 17–20 1996. Morgan Kaufmann Publishers.

[MH95] J.-J. Ch. Meyer and W. van der Hoek. *Epistemic Logic for AI and Computer Science*, volume 41 of *Cambridge Tracts in Theoretical Computer Science*. Cambridge University Press, 1995.

[MT88] Y. Moses and M. R. Tuttle. Programming simultaneous actions using common knowledge. *Algorithmica*, 3:121–169, 1988.

[Nii86] H. P. Nii. Blackboard systems (part one): the blackboard model of problem solving and the evolution of blackboard architectures. *The AI Magazine*, Summer:38–53, 1986.

[Pop94] S. Popkorn. *First Steps in Modal Logic*. Cambridge University Press: Cambridge, England, 1994.

[RW90] A. Rubenstein and A. Wolinsky. On the logic of ‘agreeing to disagree’ type results. *Journal of Economic Theory*, 51:184–193, 1990.

[vdM98] Ron van der Meyden. Common knowledge and update in finite environments. *Information and Computation*, 140(2):115–157, 1 February 1998.