Bivariate ensemble model output statistics approach for joint forecasting of wind speed and temperature

Sándor Baran¹ · Annette Möller²

Received: 29 July 2015 / Accepted: 31 May 2016 / Published online: 9 June 2016 © Springer-Verlag Wien 2016

Abstract Forecast ensembles are typically employed to account for prediction uncertainties in numerical weather prediction models. However, ensembles often exhibit biases and dispersion errors, thus they require statistical post-processing to improve their predictive performance. Two popular univariate post-processing models are the Bayesian model averaging (BMA) and the ensemble model output statistics (EMOS). In the last few years, increased interest has emerged in developing multivariate post-processing models, incorporating dependencies between weather quantities, such as for example a bivariate distribution for wind vectors or even a more general setting allowing to combine any types of weather variables. In line with a recently proposed approach to model temperature and wind speed jointly by a bivariate BMA model, this paper introduces an EMOS model for these weather quantities based on a bivariate truncated normal distribution. The bivariate EMOS model is applied to temperature and wind speed forecasts of the 8-member University of Washington mesoscale ensemble and the 11-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service and its predictive performance is compared to the performance of the bivariate BMA model and a multivariate Gaussian copula approach, post-processing the margins with univariate EMOS. While the predictive skills of the compared methods are similar, the bivariate EMOS model requires considerably lower computation times than the bivariate BMA method.

1 Introduction

Accurate and reliable prediction of future states of the atmosphere is the most important objective of weather prediction. These forecasts are issued on the basis of observational data and numerical weather prediction (NWP) models, which are capable of simulating the atmospheric motions taking into account the physical governing laws of the atmosphere and the connected spheres (typically sea or land surface). The NWP models consist of sets of partial differential equations which have only numerical solutions and strongly depend on initial conditions. To reduce the uncertainties caused by the possibly unreliable initial conditions and the numerical weather prediction process itself, one can run the models with various initial conditions or parametrization schemes resulting in a forecast ensemble (Leith 1974). Using a forecast ensemble, not only the classical point forecasts (ensemble median or mean) can be obtained, but also an estimate of the distribution of the future weather variable, which allows probabilistic forecasting (Gneiting and Raftery 2005). The first operational implementation of the ensemble prediction method dates back to the 1990s (Buizza et al. 1993; Toth and Kalnay 1997) and in the last 20 years it became a widely used technique in the meteorological community. Recently, all major national meteorological services have been operating their own ensemble...
prediction systems (EPSs); see, e.g., the PEARP1 EPS of Météo France (Descamps et al. 2015) or the COSMO-DE2 EPS of the German Meteorological Service (DWD; Bouallégue et al. 2013), whereas the most well-known organization issuing ensemble forecasts is the European Centre for Medium-Range Weather Forecasts (ECMWF Directorate 2012). However, as it has been observed with several operational EPSs (see, e.g., Buizza et al. 2005), the forecast ensemble is usually underdispersive and consequently badly calibrated. One possible improvement area of the ensemble forecasts is the statistical post-processing of the ensemble to transform the original ensemble member-based probability density function (PDF) into a more reliable and realistic one.

From the various post-processing techniques (for an overview see, e.g., Gneiting 2014; Williams et al. 2014), probably the most popular approaches are the Bayesian model averaging (BMA; Raftery et al. 2005) and the ensemble model output statistics (EMOS) or non-homogeneous regression (Gneiting et al. 2005). These methods are partially implemented in the ensembleBMA and ensembleMOS packages of \texttt{R} (Fraley et al. 2011) and both approaches provide estimates of the distributions of the predictable weather quantities.

In the case of the BMA, the predictive PDF of a future weather quantity is a weighted mixture of individual PDFs corresponding to the members of the ensemble, where the weights express the relative performance of the ensemble members during a given training period. The BMA models of various weather quantities differ only in the PDFs of the mixture components. For temperature and sea-level pressure, a normal distribution (Raftery et al. 2005), for wind speed a gamma (Sloughter et al. 2010) or a truncated normal distribution (Baran 2014), whereas for surface wind direction a von Mises distribution (Bao et al. 2010) are suggested.

The EMOS predictive PDF uses a single parametric distribution with parameters depending on the ensemble members. EMOS models have already been developed for calibrating ensemble forecasts of temperature and sea-level pressure (Gneiting et al. 2005), wind speed (Thorarinsdottir and Gneiting 2010; Lerch and Thorarinsdottir 2013; Baran and Lerch 2015) and precipitation (Scheuerer 2014).

Besides the calibration of univariate weather quantities, recently an increasing interest has appeared in modeling correlations between the different weather variables. In the special case of wind vectors, Pinson (2012) suggested an adaptive calibration technique, whereas Schuhen et al. (2012) and Sloughter et al. (2013) introduced bivariate EMOS and BMA models, respectively. Further, Möller et al. (2013) developed a general approach where after univariate calibration of the weather variables, the component predictive PDFs are joined into a multivariate predictive density with the help of a Gaussian copula. Another idea appears in the ensemble copula coupling (ECC) method (Schefzik et al. 2013) where after univariate calibration the rank order information in the raw ensemble is used to restore correlations. Finally, Baran and Möller (2015) developed a BMA model for joint post-processing of ensemble forecasts of wind speed and temperature.

In the present paper, we introduce an EMOS model for joint calibration of wind speed and temperature which is based on a truncated normal distribution with cutoff at zero in its first (wind) coordinate. The method is tested on the ensemble forecasts of wind speed and temperature of the eight-member University of Washington Mesoscale Ensemble (UWME; Eckel and Mass 2005) and of the Limited Area Model EPS of the Hungarian Meteorological Service (HMS) called ALADIN-HUNEPS3 (Horányi et al. 2011). The performance of the EMOS model is compared to the forecasting skills of the previously investigated BMA method of Baran and Möller (2015) and to the Gaussian copula approach of Möller et al. (2013), where the margins of the multivariate predictive distribution are estimated by EMOS.

2 Data

2.1 University of Washington mesoscale ensemble

The eight-member University of Washington mesoscale ensemble covers the Pacific Northwest region of western North America providing forecasts on a 12 km grid. The ensemble members are obtained from different runs of the fifth-generation Pennsylvania State University, National Center for Atmospheric Research mesoscale model (PSU-NCAR MM5) with initial conditions from different sources (Grell et al. 1995). Our database [identical to the one used in Möller et al. (2013) and Baran and Möller (2015)] contains ensembles of 48 h forecasts and corresponding validation observations of 10 m maximum wind speed (given in m/s) and 2 m minimum temperature (given in K) for 152 stations in the Automated Surface Observing Network (National Weather Service 1998) in the US states of Washington, Oregon, Idaho, California and Nevada for the calendar years 2007 and 2008. By maximum wind speed, we mean the maximum of the hourly instantaneous wind speeds, that is 2-min averages from the period of 2 min before the hour to on the hour, over the previous 18 h;

1 PEARP: Prévision d’Ensemble ARPege.

2 COSMO: Consortium for Small scale Modeling.

3 ALADIN: Aire Limitée Adaptation dynamique Development International.
see, e.g., Slaughter et al. (2010). The forecasts are initialized at 0 UTC (5 pm local time when daylight saving time (DST) is in use and 4 pm otherwise) and the generation of the ensemble implies that its members are not exchangeable. In the present study, we investigate only forecasts for the calendar year 2008 with additional data from 2007 used for parameter estimation. After removing days and locations with missing data, 90 stations remained where the number of days for which forecasts and validating observations are available varies between 141 and 290.

2.2 ALADIN-HUNEPS ensemble

The ALADIN-HUNEPS system of the HMS covers a large part of Continental Europe with a horizontal resolution of 8 km and it is obtained by dynamical downscaling (by the ALADIN limited area model) of the global ARPEGE\(^4\) based PEARP system of Météo France (Horányi et al. 2006; Descamps et al. 2015). The ensemble consists of 11 members, 10 initialized from perturbed initial conditions and 1 control member from the unperturbed analysis, implying that the ensemble contains groups of exchangeable forecasts. The database contains 11 member ensembles of 42 h forecasts for 10 m instantaneous wind speed (given in m/s) and 2 m temperature (given in K) for 10 major cities in Hungary (Miskolc, Szombathely, Győr, Budapest, Debrecen, Nyíregyháza, Nagykanizsa, Pécs, Kecskemét, Szeged) produced by the ALADIN-HUNEPS system, together with the corresponding validating observations for the 1-year period between 1 April 2012 and 31 March 2013 and for the period from 1 October 2010 to 25 March 2011. The forecasts are initialized at 18 UTC (8 pm local time when DST operates and 7 pm otherwise). The data sets are fairly complete since there are only 6 and 3 days, respectively, when no forecasts are available and these days have been excluded from the analysis.

3 Ensemble model output statistics

As mentioned in Sect. 1, the EMOS predictive PDF of a weather quantity (vector) \(X\) is a single parametric density function where the parameters depend on the ensemble members. For temperature and pressure, a normal distribution can be fit reasonably well (Gneiting et al. 2005), while for wind vectors a bivariate normal distribution can be applied (Schuhem et al. 2012). However, for modeling non-negative quantities such as wind speed, a skewed distribution is required. Thorarinsdottir and Gneiting (2010) introduced an EMOS model based on truncated normal distribution with cutoff at zero, but EMOS models utilizing a generalized extreme value distribution (Lerch and Thorarinsdottir 2013) and a log-normal distribution (Baran and Lerch 2015) have also been tested. The EMOS models of Gneiting et al. (2005) and Thorarinsdottir and Gneiting (2010) suggest the idea of joint modeling wind speed and temperature using a bivariate normal distribution with first (wind) coordinate truncated from below at zero. This particular distribution has already been applied in the bivariate BMA model of Baran and Möller (2015).

Denote by \(f_1, f_2, \ldots, f_M\) the ensemble of distinguishable forecast vectors of wind speed and temperature for a given location and time. This means that each ensemble member can be identified and tracked, which holds for example for the UWME (see Sect. 2.1). However, most of the currently used ensemble prediction systems provide ensembles where at least some members are statistically indistinguishable. Such ensemble systems are simulating uncertainties by perturbing the initial conditions, and they usually have a control member (the one without any perturbation), whereas the remaining ensemble members form one or two exchangeable groups. This is the case, e.g., for the 51-member ECMWF ensemble (Leutbecher and Palmer 2008) or for the ALADIN-HUNEPS ensemble described in Sect. 2.2.

In what follows, if we have \(M\) ensemble members divided into \(m\) exchangeable groups, where the \(k\)th group contains \(M_k \geq 1\) exchangeable ensemble members (\(\sum_{k=1}^m M_k = M\)), notation \(f_{k\ell}\) will be used for the \(\ell\)th member of the \(k\)th group.

3.1 Bivariate truncated normal model

Denote by \(\mathcal{N}^0_2(\mu, \Sigma)\) the bivariate normal distribution with location vector \(\mu\), scale matrix \(\Sigma\), and first coordinate truncated from below at zero. Let

\[
\mu = \begin{bmatrix} \mu_W \\ \mu_T \end{bmatrix} \quad \text{and} \quad \Sigma = \begin{bmatrix} \sigma_W^2 & \sigma_{WT} \\ \sigma_{WT} & \sigma_T^2 \end{bmatrix}.
\]

If \(\Sigma\) is regular, then the PDF of this distribution is

\[
g(x \mid \mu, \Sigma) := \frac{(\det(\Sigma))^{-1/2}}{2\pi \Phi(\mu_W/\sigma_W)} \times \exp \left(-\frac{1}{2} (x - \mu)^\top \Sigma^{-1} (x - \mu) \right) 1_{\{x_W \geq 0\}},
\]

\(x = [x_W, x_T]^\top \in \mathbb{R}^2\), where \(\Phi\) denotes the cumulative distribution function (CDF) of the standard normal distribution and by \(1_H\) we denote the indicator function of a set \(H\). Short calculation shows (see, e.g., Rosenbaum 1961), that the mean vector \(\kappa\) and covariance matrix \(\Xi\) of \(\mathcal{N}^0_2(\mu, \Sigma)\) are

\(^4\) ARPEGE: Action de Recherche Petite Echelle Grande Echelle.
\[\kappa = \mu + \frac{\varphi(\mu_w/\sigma_w)}{\Phi(\mu_w/\sigma_w)} \begin{bmatrix} \sigma_w \\ \sigma_{WT}/\sigma_w \end{bmatrix} \quad \text{and} \]
\[\mathbf{Z} = \mathbf{S} - \begin{bmatrix} \mu_w \Phi(\mu_w/\sigma_w) + \left(\frac{\varphi(\mu_w/\sigma_w)}{\Phi(\mu_w/\sigma_w)} \right)^2 \end{bmatrix} \times \begin{bmatrix} \sigma_w^2 & \sigma_{WT} \\ \sigma_{WT} & \sigma_{WT}^2/\sigma_w^2 \end{bmatrix}, \]

respectively, where \(\varphi \) denotes the PDF of the standard normal distribution.

The proposed EMOS predictive distribution of wind speed and temperature is
\[N_2^0 \left(\mathbf{A} + B_1 \mathbf{f}_1 + \cdots + B_M \mathbf{f}_M, C + D \mathbf{S}^T \right) \quad (2) \]
with
\[S := \frac{1}{M-1} \sum_{k=1}^{M} (\mathbf{f}_k - \overline{\mathbf{f}})(\mathbf{f}_k - \overline{\mathbf{f}})^T, \]

where \(\overline{\mathbf{f}} \) denotes the ensemble mean vector. Parameter vector \(\mathbf{A} \in \mathbb{R}^2 \) and two-by-two real parameter matrices \(B_1, \ldots, B_M \) and \(C, D \) of model (2), where \(C \) is assumed to be symmetric and non-negative definite, can be estimated from the training data consisting of ensemble members and verifying observations from the preceding \(n \) days. According to the general procedure for EMOS models, the estimates optimize the mean of a given verification score over all forecast cases of the training set. Here we optimize the mean logarithmic score, i.e., the negative logarithm of the predictive PDF evaluated at the verifying observation (Gneiting et al. 2008). We remark that under the assumption of independence in space and time, this approach is equivalent to the maximum likelihood (ML) method. Obviously, the forecast errors are usually not independent; however, since one is estimating the conditional distribution of a single weather quantity vector with respect to the corresponding forecasts, the parameter estimates are not really sensitive to this assumption (see, e.g., Raftery et al. 2005).

If the ensemble can be divided into groups of exchangeable members, ensemble members within a given group will get the same coefficient matrix of the location parameter (Fraley et al. 2010; Gneiting 2014) resulting in a predictive distribution of the form
\[N_2^0 \left(\mathbf{A} + B_{1,1} \sum_{i_1=1}^{M_1} \mathbf{f}_{1,i_1} + \cdots + B_{M,M} \sum_{i_M=1}^{M_M} \mathbf{f}_{m,i_M}, C + D \mathbf{S}^T \right), \quad (3) \]
where again, \(S \) denotes the empirical covariance matrix of the ensemble.

Once the predictive density is given, its mean or median can be taken as a point forecast for the bivariate vector of wind speed and temperature. In one dimension, the definition of the latter is obvious, whereas for a given \(d \)-dimensional cumulative CDF \(F \) a multivariate median is a vector \(\mathbf{z} \) minimizing the function
\[\psi(\mathbf{z}) := \int_{\mathbb{R}^d} ||\mathbf{z} - \mathbf{x}|| F(d\mathbf{x}), \]

where \(|| \cdot || \) denotes the Euclidean norm. If \(F \) is not concentrated on a line in \(\mathbb{R}^d \), then the median is unique (Milasevic and Ducharme 1987). The details of calculation of the bivariate median for predictive distributions (2) and (3) are given in Sect. 3.2.

3.2 Verification scores

To investigate the predictive skills of the probabilistic and point forecasts, we apply the multivariate scores proposed by Gneiting et al. (2008).

The first step is to check the calibration of probabilistic forecasts, whose notion means a statistical consistency between the predictive distributions and the observations (see, e.g., Thorarinsdottir and Gneiting 2010). For one-dimensional ensemble forecasts, a frequently used tool for this purpose is the verification rank histogram, i.e., the histogram of ranks of validating observations with respect to the ensemble forecasts (see, e.g., Wilks 2011, Section 8.7.2). The closer the distribution of the ranks to the uniform distribution on \(\{1, 2, \ldots, M + 1\} \), the better is the calibration. The deviation from uniformity can be quantified by the reliability index \(\Delta \) defined as
\[\Delta := \frac{1}{M+1} \sum_{r=1}^{M+1} |\rho_r - \frac{1}{M+1}|, \]

where \(\rho_r \) is the relative frequency of rank \(r \) (Delle Monache et al. 2006). Note that the reliability index is negatively oriented, that is, the smaller the reliability index, the better is it and the optimal value of \(\Delta \) is 0. In the multivariate case, the proper definition of ranks is not obvious. Similar to Baran and Möller (2015), in the present work we use the multivariate ordering proposed by Gneiting et al. (2008). For a probabilistic forecast, one can calculate the reliability index from a preferably large number of ensembles (we use 100) sampled from the predictive PDF and the corresponding verifying observations.

For evaluating multivariate probabilistic forecasts, the most popular scoring rules are the logarithmic score and the energy score (ES), introduced by Gneiting and Raftery (2007). Both the logarithmic and the energy score are proper scoring rules which are negatively oriented, and the
latter is a direct multivariate extension of the continuous ranked probability score (CRPS). Given a predictive CDF F on \mathbb{R}^d and a d-dimensional observation x, the energy score is defined as

$$ ES(F, x) := \mathbb{E}\|X - x\| - \frac{1}{2} \mathbb{E}\|X - X'\|, $$

where X and X' are independent random vectors with CDF F. However, for the bivariate truncated normal distribution, the energy score cannot be given in a closed form, so it is replaced by a Monte Carlo approximation

$$ ES(F, x) := \frac{1}{n} \sum_{j=1}^{n} \|X_j - x\| - \frac{1}{2(n-1)} \sum_{j=1}^{n-1} \|X_j - X_{j+1}\|, \quad (4) $$

where X_1, X_2, \ldots, X_n is a (large, we use $n = 10,000$) random sample from F (Gneiting et al. 2008). Finally, if F is a CDF corresponding to a forecast ensemble f_1, f_2, \ldots, f_M, then (4) reduces to

$$ ES(F, x) = \frac{1}{M} \sum_{j=1}^{M} \|f_j - x\| - \frac{1}{2M} \sum_{k=1}^{M} \sum_{j=1}^{M} \|f_j - f_k\|. $$

Besides the proper calibration, probabilistic forecasts should result in sharp predictive distributions. In the univariate case, this usually means small standard deviations leading to narrow central prediction intervals. For a d-dimensional quantity, one can consider the determinant sharpness (DS) defined by

$$ DS := (\det(\Sigma))^{1/(2d)}, $$

where Σ is the covariance matrix of an ensemble or of a predictive PDF.

Finally, point forecasts (median and mean) can be evaluated using the mean Euclidean distance (EE) of forecasts from the corresponding validating observations. For multivariate forecasts, the ensemble median can be obtained, e.g., using the Newton-type algorithm given in Dennis and Schnabel (1983) or the algorithm of Vardi and Zhang (2000). For a detailed comparison of different algorithms, see, e.g., Fritz et al. (2012). Given a predictive CDF, to determine the corresponding median the chosen algorithm might be applied on a preferably large sample from this distribution. In the present work, we make use of the algorithm of Vardi and Zhang (2000) implemented in the R package pcaPP with a sample size of 10,000.

3.3 Parameter estimation

There are two possible approaches to the choice of training data for estimating the unknown parameters of the various EMOS models (Thorarinsdottir and Gneiting 2010; Schuhlen et al. 2012). The regional EMOS technique uses ensemble forecasts and validating observations from a rolling training period for all available stations. In this way, one gets a universal set of parameters across the entire ensemble domain, which is then used at all observation sites, e.g., in case of the ALADIN-HUNEPS ensemble, this means a single set of parameters for all ten cities. In contrast, local EMOS produces distinct parameter estimates for the different stations using only the training data of the given station. These training sets contain only one observation per day, so local EMOS models require long training periods.

Now, e.g., in the bivariate model (3), the number of free parameters to be estimated is $4m + 10$, which means 14 parameters even in the simplest case of a single exchangeable ensemble group. Hence, for estimating the parameters of models (2) and (3), only the regional EMOS approach is applicable.

The mean logarithmic score is optimized numerically with the help of the `optim` function in R, using principally the Nelder and Mead (1965) algorithm. This method is slower but more robust than the popular Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Press et al. 2007, Section 10.9), which in case of a small training set becomes unstable. Both optimization methods require initial values, and the starting values of the location parameters A and B_1, \ldots, B_M are coefficients of the bivariate linear regression of the observations on the ensemble forecasts over the training period. Further, for the scale parameters C and D, the previous day’s estimates can serve as initials values; however, according to our experience, fixed starting values (we simply use two-by-two unit matrices) provide slightly better results. Finally, to enforce the non-negative definiteness of the parameter matrix C, one can set $C = CC^T$ and perform the optimization with respect to C.

4 Reference models

To check the predictive performance of the bivariate EMOS approach introduced in Sect. 3.1, as reference we consider the bivariate BMA model of Baran and Möller (2015) and the Gaussian copula method of Möller et al. (2013).

4.1 Bivariate Bayesian model averaging

Using the notations of Sect. 3, for a non-exchangeable ensemble f_1, f_2, \ldots, f_M the joint BMA predictive PDF of wind speed and temperature is the mixture

$$ p(x | f_1, \ldots, f_M) := \sum_{k=1}^{M} \omega_k g(x | A_k + B_k f_k, \Sigma), \quad (5) $$

\[\text{ Springer} \]
where g is the PDF defined by (1), A_k is a bivariate real vector, B_k is a two-by-two real matrix and weights $\omega_k \geq 0$ satisfy $\omega_1 + \omega_2 + \cdots + \omega_M = 1$. Similar to the EMOS model (3), in case of existence of exchangeable groups in the ensemble, ensemble members within a given group share the same weight and location parameters. Model parameters and mixture weights are estimated with the ML approach, where for finding the maximum of the log-likelihood function the expectation-maximization (EM) algorithm for truncated normal mixtures, suggested by Lee and Scott (2012), is applied.

4.2 Gaussian copula approach

The Gaussian copula approach allows to construct a post-processed joint distribution based on the individually post-processed margins. For d weather variables of interest, with (individually post-processed) marginal distributions F_1, F_2, \ldots, F_d, the joint distribution F of the weather variables takes the following form under a Gaussian copula model

$$F(x_1, \ldots, x_d \mid C) := \Phi_d(\Phi^{-1}(F_1(x_1)), \ldots, \Phi^{-1}(F_d(x_d)) \mid C).$$

Here, Φ^{-1} denotes the inverse CDF of a standard Gaussian distribution, $\Phi_d(\cdot \mid \Sigma)$ is the CDF of a d-variate Gaussian distribution with covariance matrix Σ, whereas C is a $d \times d$ correlation matrix, i.e., a positive definite matrix with unit diagonal. To be fully defined, the Gaussian copula requires only the marginal distributions F_1, F_2, \ldots, F_d and the correlation matrix C. For univariate post-processing of the marginal distributions F_1, F_2, \ldots, F_d any post-processing model of choice can be used. In the original approach of Möller et al. (2013), the margins were post-processed with suitable BMA models, whereas for the comparison with the bivariate EMOS method presented in Sect. 3.1, the copula margins are fitted with appropriate univariate EMOS models. While each observation is associated with its own copula F, they all share the same correlation matrix. Therefore, C can be obtained by estimating latent Gaussian factors $z_j = \Phi^{-1}(F_j(x_j)), j = 1, 2, \ldots, d$, from observations $x = (x_1, x_2, \ldots, x_d)$ of a separate (historic) data set. The correlation matrix is then directly estimated from the fitted latent Gaussian factors; for further details see Möller et al. (2013).

5 Results

As mentioned in Sect. 1, the predictive performance of the bivariate EMOS model (see Sect. 3.1) is tested on the eight-member UWME and on the ALADIN-HUNEPS ensemble of the HMS. The goodness of fit of the predictive distributions is quantified with the multivariate scores given in Sect. 3.2, and the obtained results are compared to the fits of the independent EMOS models of wind speed (Thorarinsdottir and Gneiting 2010) and temperature (Gneiting et al. 2005), the Gaussian copula method proposed by Möller et al. (2013), but with marginal distributions estimated by EMOS models and the bivariate BMA model of Baran and Möller (2015). We remark that the parameters of the independent univariate EMOS models are estimated by minimizing the mean CRPS of the training data. For fitting the marginal predictive distributions in the Gaussian copula approach, we employ the same univariate EMOS models for wind speed and temperature as in the independent approach. Therefore, their model parameters are estimated by the minimum CRPS method as well. If one has a closed expression for the CRPS, which is the case both for the normal and the truncated normal distribution, this method usually gives better results than optimization with respect to the logarithmic score.

5.1 University of Washington mesoscale ensemble

5.1.1 Raw ensemble

Several studies have verified that wind speed and temperature forecasts of the UWME are strongly underdispersive (see, e.g., Thorarinsdottir and Gneiting 2010; Fraley et al. 2010), and consequently uncalibrated. Obviously, the lack of calibration will remain valid if one considers these ensemble forecasts together as predictions of a bivariate weather quantity (Baran and Möller 2015). The underdispersive character of the raw ensemble can be well observed in Fig. 1 [identical to Figure 1 of Baran and Möller (2015)] displaying the univariate verification rank histograms of wind speed and temperature forecasts together with their joint multivariate rank histogram. The corresponding reliability indices Δ are 0.647, 0.842 and 0.550, respectively, and in many cases the raw ensemble either over- or underestimates the verifying observation. Further, the need of bivariate modeling can be justified both by the positive correlation of 0.125 of the verifying observations of wind speed and temperature for the calendar year 2008, taken along all dates and locations, and by the correlations of 0.187 and 0.189 of forecast errors of the ensemble median and mean, respectively.

5.1.2 Bivariate EMOS calibration

The first step of EMOS (and BMA) post-processing of ensemble forecast is the selection of the length of the rolling training period. To ensure comparability of the
results with the findings of earlier studies, we apply the same 40 days training period length as in Möller et al. (2013) and Baran and Möller (2015). This training period length was a result of an exploratory data analysis on a subset of the data set. Similar to the previous studies, we produce EMOS predictive PDFs for the whole calendar year 2008, using also the data from the last two months of the calendar year 2007. After removing dates with missing data, this means 291 calendar days with a total of 24,302 forecast cases. As the eight ensemble members of the UWME are not exchangeable, for calibration we apply the bivariate EMOS model (2) with $M = 8$.

In case of the copula method, the data from the calendar year 2007 are applied for estimating the correlation between the two weather quantities, and the resulting correlation matrix is then carried forward into the analysis of the 2008 data. This is in accordance with the BMA-based copula calibration of Baran and Möller (2015).

In Table 1 the verification scores calculated using the EMOS model (2), the independent EMOS models of wind speed and temperature, the copula model of Möller et al. (2013) with EMOS post-processed margins, the BMA model of Baran and Möller (2015) and the raw ensemble are given, whereas Table 2 contains the results of two-tailed Diebold–Mariano (DM; Diebold and Mariano 1995) tests of equal predictive performance in terms of the mean energy score (ES), mean determinant sharpness (DS) and mean Euclidean errors (EE) of point forecasts. Compared to the raw ensemble, all post-processing techniques substantially improve the calibration of probabilistic forecasts which is quantified by the significant decrease of the ES and large change in the reliability index (Δ) and can also be observed in Fig. 2 showing the rank histograms of post-processed forecasts. These histograms should be compared to the rank histogram of the raw ensemble plotted in Fig. 1. Although, e.g., the Chi-square test rejects the uniformity in all cases, this might be a consequence of the very large

![Fig. 1 Verification rank histograms of the eight-member UMWE forecasts of maximum wind speed (left) and minimum temperature (center) and the multivariate rank histogram (right). Period: 1 January–31 December 2008](image)

Probabilistic forecasts	Median forecasts	Mean forecasts	
ES Δ DS	EE ϱ ϱ_{err}	EE ϱ ϱ_{err}	
EMOS	2.127 0.025 2.273	2.982 0.165 0.182	2.982 0.157 0.182
Indep. EMOS	2.118 0.059 2.206	2.966 0.164 0.176	2.966 0.155 0.178
Copula	2.088 0.021 2.169	2.967 0.162 0.178	2.967 0.156 0.179
BMA	2.110 0.015 2.250	2.973 0.154 0.182	2.972 0.155 0.183
Raw ensemble	2.562 0.550 0.773	3.087 0.017 0.187	3.072 0.007 0.189

Empirical correlation of observations corresponding to the forecast cases: 0.125
sample size (2,430,200 values). However, e.g., the mean p values of 10,000 random samples of multivariate ranks of sizes 2500 each nicely reflect the shapes of histograms of Fig. 2 and reliability indices Δ of Table 1. The price to pay for the better calibration is the significant loss in sharpness (see the corresponding values of DS), however, this is a direct consequence of the small dispersion of the raw ensemble (see again Fig. 1). Post-processing also results in slightly (but significantly) smaller mean Euclidean errors (EE), indicating more accurate median and mean forecasts. Further, the empirical correlations q of the wind and temperature components of the post-processed point forecasts are much closer to the correlation of 0.125 of the verifying observations than the corresponding correlations of the

Forecast	EMOS	Indep. EMOS	Copula	BMA	Raw ensemble
(a) Determinant sharpness (DS)—energy score (ES)					
EMOS	–	5.646	6.675	8.838	–82.730
Indep. EMOS	–160.51	–	5.533	5.857	–91.522
Copula	–213.49	–145.77	–	–3.868	–66.265
BMA	–12.881	24.751	45.02	–	–87.994
Raw ensemble	–1012.2	-1081.3	-1045.9	-613.77	–
(b) Euclidean error (EE), mean–median					
EMOS	–	6.812	6.286	2.936	–19.119
Indep. EMOS	–7.013	–	–2.679	–3.452	–24.624
Copula	–6.276	3.864	–	–2.896	–24.379
BMA	–3.807	3.517	2.618	–	–21.380
Raw ensemble	16.781	22.403	22.055	20.046	–

Negative/positive values indicate a superior predictive performance of the forecast given in the row/column label, bold numbers correspond to tests with p values under 0.05 level of significance.

Fig. 2 Multivariate rank histograms for EMOS (upper left), independent EMOS (upper right), Gaussian copula (lower left) and BMA (lower right) post-processed UWME forecasts of maximum wind speed and minimum temperature. The average p values of Chi-square tests for uniformity (mean significance for 10,000 random samples of sizes 2500 each) are: EMOS: 0.382; independent EMOS: 0.047; Gaussian copula: 0.382; BMA: 0.438
ensemble median and mean. This latter is a weakness of the raw ensemble; however, one should also remark that all error correlations \(\rho_{er} \) (including the raw ensemble) are very similar to each other (around 0.180).

Comparing the different post-processing techniques, one can observe that the main difference between the various approaches appears in the reliability index. The bivariate BMA model results in the smallest \(D \) value, followed by the copula and the bivariate EMOS methods, which is in line with the shapes of the multivariate rank histograms plotted in Fig. 2. Further, the large \(\Delta \) value and the U-shaped rank histogram of the independent EMOS approach support the idea of bivariate modeling. However, in the model choice, one should also take into account that the copula method requires additional data for estimating the correlation matrix, whereas in the BMA and EMOS approaches the parameters are estimated using only the training data. Finally, in case of the latter two methods, the computational costs (see Sect. 5.3) might also have an influence on the decision.

5.2 ALADIN-HUNEPS ensemble

5.2.1 Raw ensemble

Wind speed and temperature forecasts of the ALADIN-HUNEPS EPS are better calibrated than those of the UWME; however, the rank histograms in Fig. 3 still exhibit a strong underdispersive character. The bivariate reliability index equals 0.317, whereas the reliability indices of wind speed and temperature are 0.322 and 0.455, respectively. The need of bivariate post-processing is again supported by the forecast error correlations of 0.119 and 0.123 of the ensemble median and mean, respectively; however, in this case the verifying observations of wind speed and temperature show a very slight negative correlation of \(-0.029\). This latter difference compared to the UWME, where this correlation equals 0.125, might be explained by the different types of wind and temperature quantities being examined (see Sects. 2.1 and 2.2).

5.2.2 Bivariate EMOS calibration

Similar to the case of the UWME, to ensure the comparability of the results with the bivariate BMA post-processing of the same forecast data, we keep the 40-day training period of Baran and Möller (2015). This particular training period length was the outcome of a preliminary data analysis consisting of univariate BMA and EMOS calibration of wind speed and temperature forecasts. Hence, ensemble forecasts, validating observations and predictive distributions are available for the period from 12 May 2012 to 31 March 2013, which means 318 days and 3180 forecast cases, as 6 days with missing forecasts are excluded from the analysis.

Further, the way the ALADIN-HUNEPS ensemble is generated (see Sect. 2.2) induces a natural grouping of the ensemble members into two groups. The first group contains just the control member \(f_c \), whereas in the second are the ten statistically indistinguishable ensemble members \(f_{p,1}, \ldots, f_{p,10} \), initialized from randomly perturbed initial conditions. This results in the predictive PDF

\[N^0_2 \left(A + B f_c + B_p \sum_{t=1}^{10} f_{p,t}, C + D S D^T \right), \]

which is a special case of model (3). One should remark here that in Baran et al. (2013), a different grouping is also suggested [and later investigated in Baran (2014), Baran et al. (2014) and Baran and Möller (2015), too], where the
odd- and even-numbered exchangeable ensemble members form two separate groups. This idea is justified by the method by which their initial conditions are generated, since only five perturbations are calculated and then added to (odd-numbered members) and subtracted from (even-numbered members) the unperturbed initial conditions. However, since in the present study the results corresponding to the two- and three-group models are rather similar, only the two-group case is reported.

In line with the similar case study of Baran and Möller (2015), to estimate the correlation matrix of the Gaussian copula, additional data of the period from 1 October 2010 to 25 March 2011 are utilized, and the estimated correlation matrix is employed for combining the univariate EMOS marginals for 2012/2013 in the Gaussian copula.

The effects of statistical calibration of ensemble forecasts are quantified by the multivariate scores reported in Table 3, whereas Table 4 gives the results of DM tests for equal predictive performance. Compared to the raw ensemble, all four post-processing methods result in significantly lower energy scores and substantially smaller reliability indices (compare Figs. 3, 4). Similar to the UWME, one can also observe a significant loss in determinant sharpness which is again an effect of the underdispersive nature of the ensemble. However, here the increase in DS is around 60%, whereas for the UWME the raw ensemble is almost three times sharper than the various predictive PDFs. This again indicates the better calibration of the ALADIN-HUNEPS ensemble which is fully consistent with Figs. 1 and 3 and the corresponding reliability indices given in Sects. 5.1.1 and 5.2.1, respectively. Further, the ensemble median and mean vectors produce significantly larger Euclidean errors than the corresponding post-processed point forecasts. Moreover, the empirical correlations of the components of the ensemble median and mean are almost the double that of the nominal correlation –0.033 of observations, whereas the correlations of wind speed and temperature components of the BMA and EMOS point forecasts are close to this value. Finally, both the ensemble median/mean and their calibrated counterparts exhibit almost the same forecast error correlations.

From the competing post-processing methods, the Gaussian copula approach results in the lowest energy score and Euclidean errors; however, the differences compared to the corresponding scores of the BMA and EMOS models (especially in the EE values) are rather small. Reliability indices show far larger variability and the highest scores belong to the copula model and to the independent EMOS approach. The Δ values in Table 3 are in accordance with the rank histograms in Fig. 4 and with the corresponding mean p values of Chi-square tests for uniformity as well: the rank histogram of the copula method is strongly hump shaped indicating overdispersion (see, e.g., Gneiting et al. 2008), whereas the histogram of the independent EMOS approach exhibits some underdispersion. For the ALADIN-HUNEPS ensemble, the bivariate BMA model has the best overall performance closely followed by the bivariate EMOS method; however, similar to the case of the UWME, the computational costs might also affect the model choice.

Table 3

Probabilistic forecasts	Median forecasts	Mean forecasts							
ES	Δ	DS	EE	\overline{q}	$\overline{q}_{\text{err}}$	EE	\overline{q}	$\overline{q}_{\text{err}}$	
EMOS	1.442	0.034	1.478	2.015	−0.041	0.132	2.016	−0.049	0.132
Indep. EMOS	1.436	0.051	1.456	2.002	−0.033	0.128	2.002	−0.044	0.127
Copula	1.384	0.075	1.557	2.000	−0.036	0.128	2.000	−0.044	0.127
BMA	1.434	0.031	1.539	2.004	−0.032	0.129	2.007	−0.041	0.129
Raw ensemble	1.623	0.327	0.935	2.102	−0.068	0.122	2.083	−0.060	0.124

Empirical correlation of observations corresponding to the forecast cases: −0.033

5.3 Computational aspects

For all EMOS methods which have been developed so far, the most time-consuming and problematic part of ensemble post-processing is the numerical optimization used in parameter estimation. In case of the bivariate EMOS calibration of the ALADIN-HUNEPS ensemble, only the robust Nelder–Mead algorithm is reliable, as one has to estimate 18 free parameters with the help of 400 forecast cases of the training data. For the UWME, the
data/parameter ratio is much better, as 42 free parameters have to be estimated using on average 3354 forecast cases. For this data set, the reported Nelder–Mead and the faster BFGS algorithm give almost the same results.

In case of the BMA calibration, the bottleneck with respect to the computation costs is the EM algorithm applied for ML estimation of the parameters. The bivariate BMA model of Baran and Möller (2015) makes use of a modification of the truncated data EM algorithm for Gaussian mixture models (Lee and Scott 2012) which operates with closed formulae and there is no need of numerical optimization. However, due to the large number

Table 4 Values of the test statistics of the two-tailed DM test for equal predictive performance based on (a) DS (lower triangle) and ES (upper triangle); (b): EE of mean (lower triangle) and median (upper triangle) forecasts for the ALADIN-HUNEPS ensemble

Forecast	EMOS	Indep. EMOS	Copula	BMA	Raw ensemble
(a) Determinant sharpness (DS)—energy score (ES)					
EMOS	–	1.933	5.344	2.437	–17.972
Indep. EMOS	–13.777	–	5.133	0.478	–18.671
Copula	32.227	54.589	–	–4.776	–17.854
BMA	24.386	31.265	–5.777	–	–18.518
Raw ensemble	–80.666	–78.650	–100.95	–96.837	–
(b) Euclidean error (EE), mean–median					
EMOS	–	2.712	3.283	2.304	–6.506
Indep. EMOS	–2.852	–	3.131	–0.290	–7.539
Copula	–3.509	–3.629	–	–0.839	–7.783
BMA	–1.791	1.045	1.710	–	–7.269
Raw ensemble	5.321	6.450	6.753	5.948	–

Negative/positive values indicate a superior predictive performance of the forecast given in the row/column label, bold numbers correspond to tests with p values under 0.05 level of significance.

Fig. 4 Multivariate rank histograms for EMOS (upper left), independent EMOS (upper right), Gaussian copula (lower left) and BMA (lower right) post-processed ALADIN-HUNEPS forecasts of instantaneous wind speed and temperature. The average p values of Chi-square tests for uniformity (mean significance for 10,000 random samples of sizes 2500 each) are: EMOS: 0.274; independent EMOS: 0.135; Gaussian copula: 0.021; BMA: 0.312.

Fig. 4 Multivariate rank histograms for EMOS (upper left), independent EMOS (upper right), Gaussian copula (lower left) and BMA (lower right) post-processed ALADIN-HUNEPS forecasts of instantaneous wind speed and temperature. The average p values of Chi-square tests for uniformity (mean significance for 10,000 random samples of sizes 2500 each) are: EMOS: 0.274; independent EMOS: 0.135; Gaussian copula: 0.021; BMA: 0.312.
of free parameters (UWME: 59; ALADIN-HUNEPS: 17), it requires quite a lot of iterations resulting in long computation times.

Figure 5a, b show the kernel density estimates of the distribution of computation times over the days in the verification period for bivariate BMA and EMOS models (implemented in R) for the UWME and ALADIN-HUNEPS ensemble, respectively, calculated on a portable computer under a 64-bit Fedora 20 operating system (Intel Quad Core i7-4700MQ CPU (2.40 GHz × 4), 20 Gb RAM). We remark that in Fig. 5a, the density of computation times of the EMOS model with BFGS optimization is also plotted. The densities displayed in Fig. 5 clearly show that in terms of computation time, the EMOS model outperforms the BMA approach. However, one should also remark that these computation times are still too long for operational use.

Finally, the Gaussian copula method starts with extremely fast univariate EMOS calibrations, where the mean computation times allocated to parameter estimation of wind speed/temperature models for individual days in the verification periods of the UWME and the ALADIN-HUNEPS ensemble are 2.193/4.908 and 0.097/0.068 s, respectively. However, this approach utilizes an additional data set for estimating the correlation matrix of the Gaussian copula on the basis of additional post-processing of the univariate predictive PDFs. Hence, in terms of computational efficiency, the presented version of the copula method is not comparable with the bivariate approaches and it is excluded from our analysis. Note that a model estimating EMOS parameters and copula covariances dynamically from the training data would be more appropriate for comparison. Such a dynamic approach of estimating the copula correlation was briefly investigated for the case study of Möller et al. (2013), but did not yield significant improvement over the static approach. However, investigating the benefit of this extension for the bivariate situation studied here is beyond the scope of the present work.

6 Conclusions

We introduce a new EMOS model for joint calibration of ensemble forecasts of wind speed and temperature providing a predictive PDF which follows a bivariate normal distribution truncated from below at zero in its first coordinate. The model is tested on wind speed and temperature forecasts of the 8-member University of Washington mesoscale ensemble and of the 11-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service. These ensemble prediction systems differ both in the weather quantities being forecasted and in the generation of the ensemble members.

Using appropriate verification measures (energy score, reliability index and determinant sharpness of probabilistic and Euclidean errors, correlations, as well as correlations of errors of median/mean forecasts), the predictive performance of the bivariate EMOS model is compared to the forecast skills of the independent EMOS calibration of wind speed and temperature, the Gaussian copula method of Möller et al. (2013) based on univariate EMOS models, the bivariate BMA model suggested by Baran and Möller (2015) and the raw ensemble vectors as well.

From the results of the presented case studies, one can conclude that compared to the raw ensemble, post-processing always improves the calibration of probabilistic and accuracy of point forecasts. Further, in terms of predictive performance, the bivariate EMOS model is able to keep up with the other two bivariate methods. Concerning the computational costs, it outperforms the bivariate BMA method, whereas compared to the Gaussian copula approach it does not require an additional data set for estimating the correlations.
Acknowledgments An essential part of this work was made during the visit of Sándor Baran at the Heidelberg Institute for Theoretical Studies. The research stay in Heidelberg was funded by the DAAD program “Research Stays for University Academics and Scientists, 2015”. Sándor Baran was also supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The authors are indebted to Tilmann Gneiting for his useful suggestions and remarks, the University of Washington MURI group for providing the UWME data, Mihály Szücs from the HMS for the ALADIN-HUNEPS data and Thordis Thorarinsdottir and Alex Lenkoski for their help with the R codes for the copula method. Last but not least, the authors are very grateful to the unknown reviewer for his/her valuable comments and suggestions.

References

Bao L, Gneiting T, Raftery AE, Grimit EP, Guttorp P (2010) Bias correction and Bayesian model averaging for ensemble forecasts of surface wind direction. Mon Weather Rev 138:1811–1821
Baran S (2014) Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components. Comput Stat Data Anal 75:227–238
Baran S, Lerch S (2015) Log-normal distribution based EMOS models for probabilistic wind speed forecasting. Q J R Meteorol Soc 141:2289–2299
Baran S, Möller A (2015) Joint probabilistic forecasting of wind speed and temperature using Bayesian model averaging. Environmetrics 26:120–132
Baran S, Horányi A, Nemoda D (2013) Statistical post-processing of probabilistic wind speed forecasting in Hungary. Meteorol Z 22:273–282
Baran S, Horányi A, Nemoda D (2014) Probabilistic temperature forecasting with statistical calibration in Hungary. Meteorol Atmos Phys 124:129–142
Bouallégue BZ, Theis S, Gebhardt C (2013) Enhancing COSMO-DE ensemble forecasts by inexpensive techniques. Meteorol Z 22:49–59
Buizza R, Tribbia J, Molteni F, Palmer T (1993) Computation of optimal unstable structures for a numerical weather prediction system. Tellus A 45:388–407
Buizza R, Houtekamer PL, Toth Z, Pellerin G, Wei M, Zhu Y (2005) A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon Wea Rev 133:1076–1097
Delle Monache L, Hacker JP, Zhou Y, Deng X, Stull RB (2006) Probabilistic aspects of meteorological and ozone regional ensemble forecasts. J Geophys Res 111:D24307
Dennis J, Schnabl R (1983) Numerical methods for unconstrained optimization and nonlinear equations. Prentice Hall, New Jersey
Descamps L, Labadie C, Joly A, Bazzile E, Arbogast P, Cébron P (2015) PEARP, the Météo-France short-range ensemble prediction system. Q J R Meteorol Soc 141:1671–1685
Diebold FX, Mariano RS (1995) Comparing predictive accuracy. J Bus Econ Stat 13:253–263
Eckel FA, Mass CF (2005) Effective mesoscale, short-range ensemble forecasting. Wea Forecast 20:328–350
ECMWF Directorate (2012) Describing ECMWF’s forecasts and forecasting system. ECMWF Newsl 133:11–13
Fraley C, Raftery AE, Gneiting T (2010) Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging. Mon Weather Rev 138:190–202
Fraley C, Raftery AE, Gneiting T, Sloughter JM, Berrocal VJ (2011) Probabilistic weather forecasting in R. J Statist Soc A 174:571–597
Fritz H, Filzmoser P, Croux C (2012) A comparison of algorithms for the multivariate L1-median. Comput Stat 27:393–410
Gneiting T (2014) Calibration of medium-range weather forecasts. ECMWF Technical Memorandum No. 719. http://old.ecmwf.int/publications/library/ecpublications/ _pdf/tm/701-800/tm719. Accessed 27 July 2015
Gneiting T, Raftery AE (2005) Weather forecasting with ensemble methods. Science 310:248–249
Gneiting T, Raftery AE (2007) Strictly proper scoring rules, prediction and estimation. J Am Stat Assoc 102:359–378
Gneiting T, Raftery AE, Westveld AH, Goldman T (2005) Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon Weather Rev 133:1098–1118
Gneiting T, Stanberry LI, Grimit EP, Held L, Johnson NA (2008) Assessing probabilistic forecasts of multivariate quantities, with applications to ensemble predictions of surface winds (with discussion and rejoinder). Test 17:211–264
Grell GA, Dudhia J, Stauffer DR (1995) A description of the fifth-generation Penn state/NCAR mesoscale model (MMS). Technical note NCAR/TN-398+STR. National Center for Atmospheric Research, Boulder. http://nldr.library.ucar.edu/repository/assets/technotes/ TECH-NOTE-000-000-000-214. Accessed 27 July 2015
Horányi A, Kertész S, Kullmann L, Radnóti G (2006) The ARPEGE/ALADIN mesoscale numerical modeling system and its application at the Hungarian Meteorological Service. Időjárás 110:203–227
Horányi A, Mile M, Szücs M (2011) Latest developments around the ALADIN operational short-range ensemble prediction system in Hungary. Tellus A 63:642–651
Lee G, Scott C (2012) EM algorithms for multivariate Gaussian mixture models with truncated and censored data. Comput Stat Data Anal 56:2816–2829
Leith CE (1974) Theoretical skill of Monte-Carlo forecasts. Mon Weather Rev 102:409–418
Lerch S, Thorarinsdottir TL (2013) Comparison of non-homogeneous regression models for probabilistic wind speed forecasting. Tellus A 65:21206
Leutbecher M, Palmer TN (2008) Ensemble forecasting. J Comput Phys 227:3515–3539
Milasevic P, Ducharme GR (1987) Uniqueness of the spatial median. Ann Stat 15:1332–1333
Möller A, Lenkoski A, Thorarinsdottir TL (2013) Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas. J Q R Meteorol Soc 139:982–991
National Weather Service (1998) Automated Surface Observing System (ASOS) Users guide. http://www.weather.gov/asos/aumtoc. Accessed 27 July 2015
Nelder JA, Mead R (1965) A simplex algorithm for function minimization. Comput J 7:308–313
Pinson P (2012) Adaptive calibration of (u,v)-wind ensemble forecasts. J Q R Meteorol Soc 138:1273–1284
Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes. The art of scientific computing, 3rd edn. Cambridge University Press, Cambridge
Raftery AE, Gneiting T, Balabdaoui F, Polakowski M (2005) Using Bayesian model averaging to calibrate forecast ensembles. Mon Weather Rev 133:1155–1174
Rosenbaum S (1961) Moments of a truncated bivariate normal distribution. Test 17:211–264
Schefzik R, Thorarinsdottir TL, Gneiting T (2013) Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat Sci 28:616–640
Scheuerer M (2014) Probabilistic quantitative precipitation forecasting using ensemble model output statistics. Q J R Meteorol Soc 149:1086–1096

Schuhen N, Thorarinsdottir TL, Gneiting T (2012) Ensemble model output statistics for wind vectors. Mon Weather Rev 140:3204–3219

Sloughter JM, Gneiting T, Raftery AE (2010) Probabilistic wind speed forecasting using ensembles and Bayesian model averaging. J Am Stat Assoc 105:25–37

Sloughter JM, Gneiting T, Raftery AE (2013) Probabilistic wind vector forecasting using ensembles and Bayesian model averaging. Mon Weather Rev 141:2107–2119

Thorarinsdottir TL, Gneiting T (2010) Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression. J R Stat Soc Ser A 173:371–388

Toth Z, Kalnay E (1997) Ensemble forecasting at NCEP and the breeding method. Mon Weather Rev 125:3297–3319

Vardi Y, Zhang CH (2000) The multivariate L_1-median and associated data depth. Proc Natl Acad Sci USA 97:1423–1426

Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. Elsevier, Amsterdam

Williams RM, Ferro CAT, Kwasniok F (2014) A comparison of ensemble post-processing methods for extreme events. Q J R Meteorol Soc 140:1112–1120