Proteome Analysis of Plant-Virus Interactome

COMPREHENSIVE DATA FOR VIRUS MULTIPLICATION INSIDE THEIR HOSTS

Jean Paul Brizard‡§, Christine Carapito¶¶, François Delalande¶¶**, Alain Van Dorsselaer¶¶, and Christophe Brugidou‡

Known host-parasite molecular interactions are widespread among parasite families, but these interactions have to be particularly large considering that viruses generally encode few proteins. Although some particular virus-host interactions are well described, no global study has yet shown multiple and simultaneous interactions in a host-parasite biological system. To prove that these multiple interactions occur in biological conditions, the complexes formed by a plant virus (rice yellow mottle virus) and the proteins of its natural host (rice) were extracted and purified from infected tissue sample. Remarkably mass spectrometry permitted the identification of a large number of proteins from the complexes that are involved in different functions not encoded by the virus but probably essential for its biological life cycle. This recruiting of proteins was strongly confirmed by the repetition of experiments using different pairs of virus-host and the use of high salt concentration to extract the complexes. We mainly identified proteins involved in plant defense, metabolism, translation, and protein synthesis and some proteins involved in transport. This study demonstrates that viruses are able to recruit many proteins from their hosts to ensure their development. Among different pairs of virus-host, similar protein functions were identified suggesting a particular importance of these proteins for viruses. The identification of particular paralog proteins among multigenic families suggests the high specificity of the recruiting for some protein functions. Molecular & Cellular Proteomics 5:2279–2297, 2006.

Although a new virus was discovered recently, the mimivirus that encodes about 1,200 genes (1), viruses such as some phages, poxviruses, phycodnaviruses, iridoviruses, and asfarviruses encode only about 500 genes, and plant viruses belonging to the Geminiviridae and Reoviridae encode only 4–12 genes (2).

To cope with the virus life cycle complexity (decapsidation-encapsulation, translation, replication, and transport) and host defenses, viruses probably recruit host proteins to carry out needed functions that are not encoded by the viral genome. To confirm this virus recruiting, we have used the rice yellow mottle virus (RYMV)1 as virus model and rice (Oryza sativa), which is fully sequenced and widely used for genomics studies, as plant model (3). RYMV causes substantial economic losses in rice production in Africa (4). Its distribution and biology are well known (5). This virus is a monopartite positive RNA strand virus about 4,450 nucleotides, and its genome organization is quite simple as it is composed of four ORFs that encode at least five proteins (5). Three isoforms (compact, transitional, and swollen) were identified according to the presence of divergent ions and pH and were localized in different cell compartments such as cytoplasm, nucleolus, vacuole, vesicle, and cell wall (6, 7). Viral particles were also suspected to be localized in chloroplast (6).

Here we report for the first time a range of analyses from the isolation of virus-host protein complexes to the identification of host proteins by mass spectrometry, allowing us to demonstrate the specific recruiting of numerous host proteins by the virus. A purification method of virus-host protein complexes was developed from infected material using gel exclusion chromatography, separation on SDS-PAGE, analysis by nano-LC-MS/MS after tryptic digestion, and protein identification (8). This new molecular method could also be applied to human and animal viruses for the purpose of finding new therapeutic targets.

EXPERIMENTAL PROCEDURES

Plant and Virus Materials—We used two rice cultivars showing a contrasted response to RYMV infection: a highly susceptible one, IR64 (O. sativa indica), and a partially resistant and tolerant one, Azucena (O. sativa japonica). IR64 is a high yielding cultivar developed at the International Rice Research Institute, and Azucena is a traditional upland cultivar from the Philippines. For both cultivars, seeds were sown separately, and plants were grown in a confined greenhouse in controlled conditions: 12-h light at 28 °C and 12-h dark at 24 °C. Two weeks after seeding, plants were mechanically inoculated with purified RYMV particles from a virulent isolate of Burkina Faso (BF1) at a concentration of 100 µg/ml in inoculation buffer (20 mM phosphate, pH 7) as described previously (9). This experiment was repeated twice. Leaves of non-inoculated and RYMV-inoculated

1 The abbreviations used are: RYMV, rice yellow mottle virus; CP, coat protein; wpi, weeks postinfection; wps, weeks postseedling; SCPMV, southern cow pea mosaic virus; FHV, flock house virus; TAPS, N-[tris(hydroxymethyl)methyl]-3-aminoopropanesulfonic acid; nano-LC-MS/MS, nanoscale capillary LC-MS/MS; TIGR, The Institute for Genomic Research.
Plants were harvested at 1, 2, and 3 weeks post-inoculation (wpi), frozen in nitrogen, and conserved at
/1100280 °C.

To compare the specificity of the recruited host proteins we used
Phaseolus vulgaris (non-host for RYMV and host for southern cowpea mosaic virus (SCPMV)) and
Nicotiana tabacum (non-host for RYMV). Infected and/or non-infected plants were cultivated and harvested in
the same conditions as rice cultivars.

Different viruses were used in our experiments. RYMV isolate BF1
(Swiss-Prot accession number Q9DGX1) was used to infect rice
cultivars, for in vitro binding experiments with rice host plant, and with
N. tabacum as non-host plant. SCPMV belongs to the same genus
(Sobemovirus) but has a different genomic organization and a limited
dicotyledonous host range (10). Flock house virus (FHV) is a member
of the insect and animal virus family Nodaviridae.

RYMV Extraction—Rice leaves were ground in liquid nitrogen and
homogenized in 0.1 M phosphate buffer, pH 5.0. Virus particles were
precipitated with 6% polyethylene glycol 8000 and resuspended in
phosphate buffer. Further purification was performed by centrifugation
through a 10–40% sucrose gradient. Virus concentration was
estimated by spectrophotometry using an extinction coefficient of
6.5.

Plant Protein Extraction—About 10 g of frozen leaves were crushed
in a liquid nitrogen-cooled mortar, and 50 ml of extraction buffer, pH
7.5 (50 mM Tris-HCl, 100 mM NaCl, 10 mM EDTA, 25 mM glucose, 5
mM EGTA, 5 mM DTT, 5% glycerol, 0.1% Triton X-100, protease
inhibitor mixture tablets (Roche Applied Science)) were added to
the resulting powder. The suspension was centrifuged at 22,000 × g for
30 min at 3 °C, and the supernatant was filtered through a 0.45-
μm syringe filter.

Extraction of Virus-Protein Complexes—Frozen infected leaves (1,
2, and 3 wpi) were treated with the protocol used for plant protein
eXtraction (see below) and then concentrated to 10 ml by ultrafiltration
with Centricon Plus 20 (Millipore) at 3 °C.

In Vitro Virus-Protein Binding Assay—3.5 mg of purified virus were
added to 100 mg of proteins extracted with buffer as described above
and then concentrated to 10 ml by ultrafiltration with Centricon Plus
20 at 3 °C. Contact between virus and proteins was ~90 min until
injection on the chromatographic column. All purification steps were
done in a cold room at 4 °C.

Purification of Virus-Protein Complexes—The concentrated mixtures
were injected on a 1,000-mm long, 26-mm-diameter column
filled with Sephacryl S500 (Amersham Biosciences), and TAPS buffer,
ph 7.6, 100 mM NaCl as eluent. The AKTAPrime system (Amersham
Biosciences) was used for injection, detection, and collection of the
proteins. Fractions corresponding to the first ½ peak of virus-protein
complexes were collected and lyophilized (Fig. 1, c1).

Fig. 1. Elution profiles of IR64 protein extraction solutions from in vivo and in vitro binding experiments. 10 ml of concentrated protein extract solution are injected with an automated injection syringe (AKTAPrime system), and elution was carried out at 1.5 ml/min with elution buffer (20 mM TAPS, pH 7.6, 100 mM NaCl). Dead volume represents the fraction of membrane fragments and/or protein aggregates that are still present in solution. Collected fractions containing RYMV-host protein complexes correspond to the first ½ part of peaks labeled c1. A, size exclusion chromatography elution profiles of purified RYMV (red) and of soluble proteins extracted from IR64 non-infected leaves (control experiment in green) and IR64 infected leaves (blue). B, size exclusion chromatography of in vitro binding experiment with soluble proteins extracted from IR64 healthy plants added with purified RYMV. C, negative contrast electron micrograph of collected fraction stained with uranyl acetate containing purified RYMV particle from fraction corresponding to the peak c1 eluted at 216 min. D, RYMV particle associated with host materials in fraction corresponding to the peak c2 eluted at 206 min. The bar represents 100 nm.
cysteine residues were reduced with dithiothreitol at 57 °C and alkylated.

The amount of protein was estimated using the BCA protein assay kit (Pierce), and about 40 μg of proteins were denatured for 5 min at 100 °C after adding 2× SDS loading buffer (100 mM Tris-HCl, pH6.8, 200 mM DTT, 4% SDS, 0.2% bromphenol blue, 20% glycerol) and loaded on a precast 4–12% acrylamide gel (Invitrogen). Gels were stained with colloidal Coomassie Blue, and sample bands were obtained from gels under sterile conditions to avoid keratin contamination (Fig. 2).

Mass Spectrometry and Protein Identification—In-gel digestion was performed with an automated protein digestion system, MassPREP Station (Waters, Milford, MA). The gel plugs were washed three times with a mixture of 50% NH4HCO3 (25 mM), 50% ACN. The cysteine residues were reduced with diithiothreitol at 57 °C and alkylated with iodoacetamide. After dehydration with acetonitrile, the proteins were digested in-gel with 30 μl of 12.5 ng/μl modified porcine trypsin (Promega, Madison, WI) in 25 mM NH4HCO3 overnight and at room temperature. Then a double extraction was performed: the first was with 60% acetonitrile in 5% formic acid, and the second was with 100% acetonitrile. The resulting peptide extracts were directly injected for nanoscale capillary LC-MS/MS (nano-LC-MS/MS) analysis.

Nano-LC-MS/MS analysis of the digested proteins was performed using a CapLC capillary LC system (Waters) coupled to a hybrid quadrupole orthogonal acceleration time-of-flight tandem mass spectrometer (Q-TOF II, Waters). Chromatographic separations were conducted on a reverse-phase capillary column (PepMap C18, 75-μm inner diameter, 15-cm length; LC Packings) with a 200 nL/min flow rate.

Mass data acquisitions were piloted by MassLynx software (Waters) using automatic switching between MS and MS/MS modes as described previously (11, 12). To improve the quality of MS/MS spectra during nano-LC-MS/MS analysis, we empirically derived energy curves depending on the m/z value of the selected precursor ion: for each m/z value, three different collision energies were applied. Fragmentation was performed using argon as the collision gas.

The mass data recorded during nano-LC-MS/MS analysis were processed and converted into MassLynx .pkf peak list format prior to searching with the search engine Mascot (Matrix Science, London, UK). The searches were performed on a local Mascot server running on a 3-GHz Pentium IV processor with a tolerance on mass measurements of 70 ppm in MS mode and 0.25 Da in MS/MS mode. One missed cleavage per peptide was allowed, and some variable modifications were taken into account such as carbamidomethylation for cysteine, oxidation for methionine, and N-acetylation of the protein. Searches were performed without constraining protein molecular weight or isoelectric point. The rice (Nippon Bare) pseudomolecule database (release 3) accessible from The Institute for Genomic Research (TIGR) (www.tigr.org/tdb/e2k1/osa1/) website was used for the identification of rice proteins, and a compilation database gathering Swiss-Prot, TrEMBL, and TrEMBLnew protein databases was used for the identifications of the other host plant proteins (P. vulgaris and N. tabacum). A total of 531 proteins were annotated for P. vulgaris, and 1,988 proteins were annotated for N. tabacum in this compilation database (July 2005). Our rice protein identification method using the complete pseudomolecule database allowed us, in some cases, to discriminate paralog genes among multigenic families (8).

Due to the strategy developed here, the virus coat protein was present in all gel bands and in very high concentration independently of the spot position on the gel. To circumvent the superabundance of the viral coat protein, we used an informatics exclusion program to prevent the selection of the coat protein peptides during the nano-LC-MS/MS analysis. This procedure allowed the identification of lower abundance proteins.

A Python language script was used to extract data from files generated by Mascot software, and Access database software (Microsoft) was used to gather and compare datasets according to the different conditions of the experiments. In this study, we validated an identification when the protein was identified by at least two peptides, both having an MS/MS ion score higher than 39.

RESULTS

Methodology Used to Isolate RYMV Host Protein Complexes in Vivo and in Vitro—RYMV-host protein complexes were isolated from infected plants (Fig. 1A) or from in vitro binding experiments with soluble proteins extracted from non-infected leaves supplemented with purified virus (Fig. 1B).

According to our protocol (see “Experimental Procedures”), after injection of purified virus (6.5 mg) we detected an elution peak at 216 min. The first elution peak of soluble proteins extracted from non-infected O. sativa (IR64) leaves, which was the control without virus (negative control), was eluted at 255 min (Fig. 1A, green) and overlapped slightly with the peak at 216 min corresponding to the experiment with the virus purified alone (Fig. 1A, c2, red). The eluted profile of soluble proteins extracted from infected leaves showed an additional peak at 206 min corresponding to virus-protein complexes (Fig. 1A, c1, blue). The same additional peak at 206 min was found in experiments using the extraction buffer added with 0.5 or 1 u NaCl (Fig. 2). In experiments with in vitro virus-host protein complexes, the same additional peak at 206 min was detected at a lower concentration in accordance with the amount of added purified virus (3.5 mg) (Fig. 1B, c1). After the purification/elution cycle, electron microscopy revealed the presence of intact virus particles in the collected fraction corresponding to peak c2 (Fig. 1C). In collected fractions corresponding to peak c1, virus particles were associated with electron dense materials (Fig. 1D). This method allowed us to isolate in vivo and in vitro virus-host protein complexes and
TABLE I
Proteins identified from in vivo and in vitro complexes

Non-redundant proteins identified in the 137 gel bands (Fig. 2B) and from the different in vivo and in vitro experiments are shown. In the first part, proteins were classified according to their similarity and number of identifications among the Azucena and IR64 cultivar in vivo; in the second part proteins were classified according to their differences and number of identifications between Azucena and IR64 cultivar in vivo. Columns annotated with 1, 2, and 3 wpi correspond to experiments realized with rice plants 1, 2, and 3 weeks postinoculation with the virus. Other columns refer to the experiments realized with different combinations of virus and host. The number inside dark rectangles indicates the number of peptides used to identify the protein, and crosses indicate that a similar function was identified in Swiss-Prot, TrEMBL, or TrEMBLnew protein databases. Some of the multigenic families are represented by two or more paralogs that were identified by a discriminating peptide. rubisco, ribulose-bisphosphate carboxylase/oxygenase.

Name of the common proteins to Azucena in vivo and IR64 in vivo	accession number	MW	Azucena in vivo	IR64 in vivo	IR64 in vitro				
5-methyl-2-thioacetamidopyridine-5-nitromethane 5-methyltransferase	11696	m12092	8549	10	10	14			
5-methyl-2-thioacetamidopyridine-5-nitromethane 5-methyltransferase	11696	m12093	8456	15	29	4			
CoA-lyase, putative	1197	m1318	6795	5	15	10			
Fructose-bisphosphate aldolase class I	11696	m13527	5679	14	18	19			
Fructose-bisphosphate aldolase class I	11696	m13528	3870	5	5	4			
Fructose-bisphosphate aldolase class I	11696	m13529	3870	5	5	4			
Fructose-bisphosphate aldolase class I	11696	m13530	3870	5	5	4			
tRNA-dependent glutamate synthase (fragments)	11673	m13550	17863	33	7	7			
nucleoside diphosphate kinase III, chloroplast/membrane protein	11692	m13559	25392	3	4	4			
Rubisco bisphosphate carboxylase, small subunit putative	11696	m13585	14205	11	9	12			
Oxygen evolving enhancer protein 3 (PEP)	11673	m13546	22567	9	10	10			
mitochondrial chaperone 60	11676	m13561	60850	3	4	4			
Porin class	11697	m13558	32710	6	7	8			
Subtilisin family protease	11697	m13560	78181	6	8	7			
reversibly glycosylated polypeptide	11698	m13564	41322	11	9	6			
probable DNA-binding protein GDP10 - rice	11696	m13570	43170	8	9	12			
glyceraldehyde-3-phosphate dehydrogenase, C-terminal domain, putative	11670	m13580	42828	9	6	6			
glyceraldehyde-3-phosphate dehydrogenase, type I	11670	m13592	36722	9	5	7			
glyceraldehyde-3-phosphate dehydrogenase, type II	11670	m13598	36722	9	5	7			
Saposin-like nucleosome modulator, putative	11696	m13553	106182	6	8	8			
expressed protein	11696	m13561	41082	4	8	6			
class F molecular chaperone hsp70 - rice (fragment)	11697	m13557	71985	2	12	6			
Protease inhibitor 1,4 and proline-rich protein	11697	m13565	12282	2	3	2			
Protease inhibitor 1,4 and proline-rich protein	11696	m13567	11283	2	3	2			
3-hydroxyisocitrate dehydrogenase, C-terminal domain, putative	11696	m13543	70840	4	8	4			
beta-lactamase	11699	m13566	59300	9	7	14			
Proteins A-type and B-type, putative	11696	m13530	20527	9	11	9			
Proteins A-type and B-type, putative	11696	m13541	20527	9	11	9			
Protease A-type and B-type, putative	11698	m13525	20527	9	11	9			
Protease A-type and B-type, putative	11696	m13525	20527	9	11	9			
protease subunit alpha type 3 (ec 3.4.25.1)	11669	m13525	28802	9	9	9			
protease subunit alpha type 3 (ec 3.4.25.1)	11669	m13525	28802	9	9	9			
protease subunit beta type 1 (ec 3.4.25.1)	11661	m13502	24369	10	6	6			
protease subunit beta type 1 (ec 3.4.25.1)	11661	m13502	24369	10	6	6			
205 protease subunit 4 subunit	11668	m13510	23493	9	10	11			
catalytic subunit serine protease	11668	m13510	23493	9	10	11			
Carbonic anhydrase, putative	11697	m13533	29117	12	5	10			
trypsin-like protease	11688	m13547	90218	17	13	21			
phosphoglycerate kinase	11692	m13511	50452	5	3	2			
aminotransferase, class V	11674	m13532	44567	6	2	3			
reversibly glycosylated protein	11673	m13544	41553	6	5	6			
chaperone protein DnaK	11696	m13513	73905	6	8	6			
ribosomal protein S15, putative	11695	m13522	58904	6	8	6			
Protease inhibitor 1,4, putative	11698	m13542	11499	3	2	2			
Protease inhibitor 1,4, putative	11698	m13543	11499	3	2	2			
Protein Name	Accession	pI	MW (kDa)	LogP	Molar Extinction	Stock Concentration	Stock Volume	Stock Protein	Stock Date
--------------	-----------	----	----------	------	------------------	--------------------	--------------	--------------	-----------
35S ribosomal protein subunit 1 (I)	11686000100	7.1	100	0.5	12000	1000	1000	100	100
35S ribosomal protein subunit 2 (I)	11686000100	7.1	100	0.5	12000	1000	1000	100	100
35S ribosomal protein subunit 3 (I)	11686000100	7.1	100	0.5	12000	1000	1000	100	100
35S ribosomal protein subunit 4 (I)	11686000100	7.1	100	0.5	12000	1000	1000	100	100

For the full dataset, please refer to the original publication.
TABLE I—continued

Name of the common proteins to Azucena in vivo and IR64 in vivo	accession number	MW	Azucena in vivo	IR64 in vivo in vitro	IR64 in vitro
phosphoenolpyruvate carboxykinase, putative	11864.m01485	73158	6	3	X
Copper/zinc superoxide dismutase, putative	11874.m04529	21301	2	2	4
Peroxidase, putative	11892.m00333	37613	3	2	10
expressed protein	11897.m01727	42739	4		

Name of the specific proteins to Azucena in vivo and to IR64 in vivo in vitro
glycine dehydrogenase
fructose-1,6-bisphosphatase
putative glyoxysomal malate dehydrogenase
peptidy/peptidyl isomerase (EC 5.2.1.8) Cypase - rice
probable chitinase (EC 3.2.1.14) L1b - rice
alpha-mannosidase
chsK protein
proteasome subunit beta type 3 (ec 3.4.25.1) (20s proteasome alpha subunit c)
putative aldehyde oxidase
phenylalanine ammonia-lyase
FMN-dependent dehydrogenase
fructose-1,6-bisphosphatase
glyceraldehyde dehydrogenase
glycine dehydrogenase
Glycolysyl hydrodats family 17
nucleoside diphosphate kinase i (ec 2.7.4.6) (ndk i)(ndk kinase i)(ndk i)
pyruvate kinase
triphosphatase isomerase
putative glutathione S-transferase
expressed protein
Peptidase family M1, putative
sucrose-UDP glucosyltransferase 2
AL161582 amino peptidase-like protein
translation elongation factor eEF-1 beta - rice
isoleucyl-tRNA synthetase, putative
Oxido reducerase NAD-binding domain, putative
Subtilase family, putative

glutamate dehydrogenase
ferredoxin-N-trik reductase
Peptidase family M1, putative
phosphoenolpyruvate carboxylase
phosphoglycerate/pyridoxal phosphate phosphatase family, putative
ribose-5-phosphate isomerase A
Calreticulin family, putative
TCP-1p60 chaperonin family
peroxiredoxin Q
putative valyl tRNA synthetase
D-isomer specific 2-hydroxyacid dehydrogenase, NAD binding domain, putative
Cuprin, putative
3-hydroxyacyl-CoA dehydrogenase, NAD binding domain, putative
Ribulose bisphosphate carboxylase large chain, N-terminal domain
glutaminyl-RNA synthetase, putative
AlpC/MTS family, putative
Remorin, C-terminal region, putative
Similar to serine carboxypeptidase II-like protein
hypothetical protein
LyfM domain, putative
rubisco subunit binding-protein alpha subunit, chloroplast precursor/60 kda chl a
co-chaperone GrpE, putative
proteasome subunit alpha type 7 (ec 3.4.25.1) (20s proteasomealpha c subunit
oxidoreductase, aldo/keto reductase family
CAA300T15.1 protein
HMN (high mobility group) box, putative
putative 14-3-3 protein
6-phosphogluconate dehydrogenase, decarboxylating
adenosine kinase
lactoyl/lactate lyase, putative
legumin-like protein
UDP-glucose-1-phosphate uridylyltransferase
chitinase (EC 3.2.1.14) III C10701 - rice
Multicopper oxidase, putative
Peroxidase, putative
putative pollen allergen
Protease inhibitor-seed storage/LTP family, putative
C2 domain, putative
Phosphatase-induced protein 1 conserved region
Phosphatase-induced protein 1 conserved region
Phosphophenylalanine/Urdeine kinase family, putative
proteasome subunit alpha type 2 (ec 3.4.25.1) (20s proteasome alpha subunit b
reversibly glycosylated polypeptide
ATP synthase F1, beta subunit
Name of the common proteins to Azucena in vivo and IR64 in vivo

ATP synthase F1, alpha subunit
Similar to ferredoxin-nitrite reductase (EC 1.7.7.1) precursor - rice
flavodoxin, putative
glucose-6-phosphate isomerase, putative
glutamate dehydrogenase 2 (EC 1.4.1.3) (gdh 2), maize-ear cross
glutamate-1-semialdehyde-2,1-aminomutase
isocitate dehydrogenase, NADP-dependent
NAD binding domain of 6-phosphogluconate dehydrogenase, putative
probable transaminase (EC 2.6.1.1) T161.1.170 [similarity] - Arabidopsis thaliana
ribulose-5-phosphate-3-epimerase
Thiamine pyrophosphate enzyme, central domain, putative
triosephosphate isomerase
ubiquitin-activating enzyme ε 1
dnaK protein
protein disulfide isomerase 2 precursor
translation elongation factor Tu
putative aldehyde oxidase
Hsp90 protein, putative
Lipoxigenase, putative
cytochrome oxidase, zinc-binding dehydrogenase family, putative
PstP
putative trypanothione-dependent peroxidase
putative salt-induced protein
Similar to salt-stress root protein ns1
Atg19170/MV11.8
NADP-ribosylation factor family
retrotransposon protein, putative, unclassified
pyruvate dehydrogenase E1 beta subunit isoform 3
Similar to 26S proteasome subunits
6,7-dimethyl-8-benzylazaine synthase, putative
ATP synthase F1, alpha subunit
citrate synthase I
similar to glucosidase II alpha subunit
was further used to identify virus-host protein partners by nano-LC-MS/MS.

SDS-PAGE Separation—At different times of plant development (3, 4, and 5 weeks postseedling (wps)) and during the time course of infection (1, 2, and 3 wpi) virus-host protein complexes were isolated from *in vivo* and *in vitro* experiments, denatured, and separated by SDS-PAGE gel (Fig. 3A). Gel protein profiles were reproducible when virus, plant varieties, and stage of development were identical (data not shown). In contrast the protein profiles for *O. sativa* IR64 variety (Fig. 3A) differed according to the stage of development and the time course of infection for *in vivo* experiments or stage of development for *in vitro* experiments. When comparing the same stage of development, we observed specific profiles for *in vivo* and *in vitro* experiments. This observation supports the idea that complexes isolated from infected plants were already present in the *in vivo* tissues and were not formed during the protein extraction process. Thus, we observed for visible bands a, b, c, d, and e different accumulations between *in vivo* and *in vitro* experiments at different stages of development (Fig. 3A). To identify these proteins, systematic cutting and nano-LC-MS/MS analysis of these gel lanes were performed.

Identification of Virus Host Protein Partners by Mass Spectrometry—As expected, we identified the RYMV coat protein (CP) (Swiss-Prot accession number Q9DGX1) around 26 kDa in accordance with the results obtained by Western blot using monoclonal antibody against the virus (data not shown). For the same total amount (20 µg) of proteins loaded on each lane, the amount of CP increased during the time course of infection, whereas equal amounts were observed for complexes purified from *in vitro* experiments (Fig. 3A).

The virus coat protein was present at such a high concentration that it was identified in all gel bands independently from location in the gel. As the nano-LC-MS/MS automatic acquisition program selected the most prevalent peptides for fragmentation, the high abundance of the coat protein prevented the identification of less abundant proteins. To circumvent this problem, we have established an exclusion program to informatically exclude the masses of the coat protein tryptic peptides, thereby preventing their selection and allowing the selection of peptides belonging to other proteins (8). As shown in Fig. 3B, 137 gel bands were analyzed by nano-LC-MS/MS for the experiments with the IR64 cultivar with RYMV, and 2,017 proteins were identified in the rice pseudomolecules release 3 database (data not shown). Nevertheless most of the proteins were identified several times, and we have presented here only the 223 non-redundant identified proteins (Table I).

Functional Distribution of Recruited Host Proteins—For the 223 identified proteins using the IR64 cultivar, the following distribution was found. 19% were identified only *in vivo*, 41% were identified both in *in vivo* and *in vitro*, and 40% were present only *in vitro*. The major functional category corresponded to proteins involved in metabolism functions (Fig. 4, Me), mainly glycolysis, photosynthesis, amino acid, lipid, and cell wall metabolism. The second category corresponded to functions involved in translation and protein synthesis (T) including translation factors, elongation factors, tRNA synthetases, protein-disulfide isomerase, chaperone proteins, and proteasome. The third category was related to defense (D) with protein chaperones (i.e. 70, 82, and 90 kDa); proteins involved in defense pathways such as superoxide dismutase, phenylalanine-ammonia lyase, homocysteine S-methyltransferase, and lipoxygenase; proteins related to oxidative stress with...
thioredoxin, peroxiredoxin, and oxidoreductase NAD binding; and glutathione S-transferase as well as pathogenesis-related proteins including peroxidase and chitinases. Other categories, less represented, were related to unknown functions (U), transport (Tp), and transcription (Tr).

Proteins identified only in in vivo experimentations (19%) might be explained by the specificity of a recruiting made in planta and by the inability for these already coated virus particles to recruit more proteins during the extraction process. Proteins identified only in vitro experimentations (40%)
might be explained by a recruiting due to the solubilization of proteins that were not accessible for the virus in planta. Some of these proteins were identified in in vivo experiments with Azucena cultivar (i.e. putative aldehyde oxidase 11669.m05835) and might be involved in a specific recruiting in planta, but for the others we could not exclude an artifact recruiting. For the common proteins, it was highly probable that they could be recruited in planta, and they were recruited in vitro because they are extracted in in vitro experimentations.

Paralog Identification—In some cases, we were able to discriminate which paralog gene among a multigenic family was specifically recruited and present in the virus-host-protein complex (see “Experimental Procedures”). This was the case for the paralog 11668.m03971 for phenylalanine-ammonia lyase (defense category) specifically identified among 10 paralogs (TIGR database) from this multigenic family. In addition, some specific paralogs were recruited only in vivo such as peroxidase, putative 11682.m00373; others were recruited only in vitro such as reversibly glycosylated polypeptide 11670.m05573. Additionally we observed the same paralogs identified in vivo and in vitro (peroxidase, putative 11667.m02169, for example). Of interest was the example of glycolaldehyde-3-phosphate dehydrogenase (in the metabolism category) where the number of recruited paralogs varied with the experimental conditions: four paralogs (Table I) were recruited in vivo and in vitro by the virus at 1 week postinfection, three paralogs were still recruited in vivo at 2 wpi instead of four in vitro, and finally no paralog from glycolaldehyde-3-phosphate dehydrogenase was recruited in vivo at 3 wpi, whereas three paralogs were identified in vitro at 3 wpi. These results suggested that some specific paralogs among multigenic families were recruited at specific points during the time course of virus infection.

Specificity of Host Protein Recruiting—To investigate the specificity of host protein recruiting by RYMV, we used the following strategy. (i) We used different NaCl concentrations to extract and isolate complexes from in vivo experimentations (13, 14) and to break membrane compartments (osmotic pressure) but not solubilize the membranes as a detergent could do. On the contrary, the increase of salt concentration to 1 M NaCl reduced the number of common proteins that were also identified at 0.1 M NaCl, suggesting that proteins still identified at high salt concentration were strongly specific to the complexes.

Different Pairs of Virus-Host Plant—To see further whether this affinity was host- and virus-dependent, we studied complexes extracted and purified from various virus-hosts combinations (Fig. 6).

First we compared at 1, 2, and 3 wpi the in vivo interaction of RYMV with two subspecies of O. sativa: the susceptible O. sativa ssp. indica (IR64) and the tolerant O. sativa ssp. japonica (Azucena) (Fig. 6A). More proteins were identified for Azucena than for IR64 (171 versus 135 proteins identified when we cumulated 1, 2, and 3 wpi identifications). Among these proteins, a large number (100) were common for both subspecies (Table I), confirming that the recruiting among subspecies was quite similar. It was likely that the proteins identified differentially in Azucena and IR64 take part in the tolerance or susceptibility of these subspecies (Table I).

We further investigated the recruiting between different viruses and different host plants: (i) a compatible interaction between another Sobemovirus (SCPMV) and its host plant P. vulgaris and (ii) three incompatible interactions, one between insect virus FHV and IR64 and two other pairs, RYMV-N. tabacum and RYMV-P. vulgaris. We identified some identical protein functions among all the different complexes (Fig. 5B), but we could not make precise conclusions about the percentage of similarity of these recruiting activities due to the lack of protein databases concerning these two others plants (Table I).
Non-redundant proteins identified with the IR64 cultivar from the different in vivo and in vitro experiments using an extraction buffer added with 0.1, 0.5, and 1 M NaCl. Proteins were classified according to their identification in all experiments compared with proteins identified only with 1 M NaCl in vivo. "rubisco, ribulose-bisphosphate carboxylase/oxygenase."
TABLE II—continued

Name of the proteins	accession number	MW	0.1 M NaCl	0.3 M NaCl	1 M NaCl	0.1 M NaCl	0.3 M NaCl	1 M NaCl
glycine dehydrogenase	11687.m05023	111258	15	6	4	9		
phosphophotolipase carboxylase	11674.m07127	10986	36	27	13			
phosphonolipase K3	11682.m03911	50492	10	10	6			
proteasome subunit alpha type 3 (ec 3.4.25.1)	11682.m03938	27200	11	6	3			
putative 90 ribosomal protein	11689.m05035	24227	2	4	3			
ribosomal protein L7A12, putative	11687.m04571	18579	5	5	3			
Similar to acidic ribosomal protein P2A-2	11687.m09016	11800	2	2	2			
Similar to ribulose 1,5-bisphosphate carboxylase	11676.m01782	36459	4	3	6			
thioredoxin peroxidase	11686.m03158	26097	11	7	6			
dnaK protein	11689.m01895	71056	9	5				
2-oxoglutarate dehydrogenase, E2 component, dihydrolipoamide succinyltransferase	11676.m03086	46283	3	11				
alpha-mannosidase	11687.m02687	114157	16	2				
arabinofuranosyltransferase I [EC:2.4.2.7]	11687.m02288	73421	2	2				
ATP synthase F1, alpha subunit	11670.m01497	55095	3	3				
expressed protein	11689.m02084	72905	8	4				
expressed protein	11689.m03961	77842	2	6				
glutamate dehydrogenase	11689.m05755	44431	10	3				
Glutamine synthetase, catalytic domain	11686.m04942	38176	12	7				
Glutamine synthetase, catalytic domain, putative	11670.m05561	49428	7	14				
glutaminyl-tRNA synthetase	11676.m01897	80386	7	3				
glyceraldehyde-3-phosphate dehydrogenase, type I, putative	11689.m03036	47081	3	4	4			
glycolate oxidase	11689.m05782	40834	7	4				
hAT family dimerisation domain, putative	11682.m02184	80786	2	6				
heat shock protein 62	11687.m03316	70720	32	26	3			
histone deacetylase HD2, putative	11682.m05012	21171	2	3				
HsP00 protein, putative	11681.m02792	91604	15	10				
Hsp90 protein, putative	11681.m02845	80150	37	21				
isoacceptor-tRNA synthetase, putative	11680.m02496	155097	4	5	5			
Lipoyltransferase	11686.m03561	104621	7	11				
LysA enzyme, N-terminal domain, putative	11687.m03146	71456	20	8				
phosphophotolipase carboxylase	11681.m01380	106863	16	10				
Proteasome A-type and B-type, putative	11682.m00922	26979	4	2				
PifA ssDNA and RNA-binding protein	11687.m01560	33200	4	3				
putative glycine hydroxymethyltransferase	11686.m03432	56380	11	2				
Similar to 28S proteasome subunits	11670.m03506	47507	2	3	2			
Transferase family, putative	11687.m07012	110473	4	4				
translation elongation factor Tu	11668.m03655	53820	5	5				
60s ribosomal protein 1A	11674.m02392	20285	4	6				
acidic ribosomal protein P3a - maize	11680.m04433	11887	2	2	2			
ferredoxin--naad reductase, leaf isozyme, chloroplast precursor (ec 1.18.11)	11680.m00922	39982	7	8	3			
histone-like protein	11689.m05256	25612	4	2				
Ositoedroductase NAD-binding domain, putative	11688.m00306	40638	7	4	4			
Paroxysm, putative	11689.m02189	37210	3	4	3	2		
proteasome subunit beta type 3 (ec 3.4.25.1)	11668.m00821	22769	5	4				
reversibly glycosylated polypeptide	11670.m03573	46605	8	3	9			
14-3-3 protein	11674.m03731	28982	3					
5-methyltetrahydrodipetroxyglutamate--homocysteine S-methyltransferase	11686.m02482	84584	20	11	14			
AAA family ATPase, CDC48 subfamily	11676.m02643	90857	7					
aconitate hydratase 1	11689.m00378	106235	2					
adenylate homologues	11687.m00117	49929	6					
Acyl-CoA synthase 1	11689.m01970	103830	7					
ATP synthase F1, beta subunit	11687.m04784	58463	2					
Catabolism family, putative	11673.m01387	50127	4					
Catalase, putative	11689.m00325	56728	9					
Name of the proteins	accession number	MW	0.1 M NaCl	0.5 M NaCl	1 M NaCl	0.1 M NaCl	0.5 M NaCl	1 M NaCl
----------------------	------------------	------	------------	------------	----------	------------	------------	----------
CoA-ligase, putative	11687.m01918	6785	11	4	13	11	4	13
co-chaperone GrpE, putative	11687.m03896	31491	8	2		8	2	
co-chaperone GrpE, putative	11687.m02441	39868	2	1	2	2	1	2
Copper/zinc superoxide dismutase, putative	11687.m04329	21301	2	1	2	2	1	2
CPSF A subunit region, putative	11682.m04969	121803	2	1	2	2	1	2
cystathionine beta-lyase	11680.m00746	41884	3	2		3	2	
cytoplasmic malate dehydrogenase	11674.m02962	35540	2	1	2	2	1	2
dnaK protein	11688.m00151	73345	5	3		5	3	
dnaK protein, putative	11688.m04698	98309	3	2		3	2	
Elongation factor 1 gamma, conserved domain, putative	11688.m03639	47930	6	6	4	6	6	4
Elongation factor G, domain IV, putative	11688.m03009	93961	11	8		11	8	
expressed protein	11687.m03764	34816	2	1	2	2	1	2
expressed protein	11688.m02220	25774	2	1	2	2	1	2
expressed protein	11688.m05132	16008	2	1	2	2	1	2
FF domain, putative	11687.m03297	106808	4	2	4	2	2	4
FMN-dependent dehydrogenase	11673.m00499	40219	4	2	4	2	2	4
fructose-1,6-bisphosphatase, putative	11670.m01491	42245	6	4		6	4	
Fructose-bisphosphatase class-I	11674.m05837	38799	15	5	13	15	5	13
Glutamine dehydrogenase 2 (ec 1.4.1.3) (gdh 2), mouse-ear cress	11680.m04472	45594	13			13		
glutathione-disulfide reductase	11689.m08534	62215	11			11		
glycine-RNA synthetase beta subunit, putative	11680.m00041	116990	3			3		
hydroxylase, carbon-nitrogen family, putative	11688.m03118	33442	4			4		
legumin-like protein	11682.m00174	38195	2			2		
LIM domain, putative	11688.m01279	140397	2			2		
Lipoygenase, putative	11674.m03993	104494	5			5		
malate dehydrogenase, NAD-dependent	11682.m04796	35414	5			5		
methyl-binding domain protein MBD106, putative	11688.m04243	31491	7	9	7	9	7	9
Nucleoside diphosphate kinase	11686.m03549	16663	6			6		
nucleoside diphosphate kinase I (ec 2.7.4.6) (ndk I) (ndk kinase I)	11673.m02949	16851	4		4			
nucleoside diphosphate kinase II, chloroplast/mitochondrial precursor (ec 11682.m04999	25921	5	3		5	3		
Peptidase family M1, putative	11688.m01161	98391	2			2		
Peroxidase, putative	11687.m02168	33279	5			5		
phosphoenolpyruvate carboxylase, putative	11689.m01495	73158	3			3		
phosphoenolpyruvate carboxylase	11681.m01307	110405	20		20		20	
phosphoribosylaminomimidazole carboxylase, ATPase subunit, putative	11667.m00991	68388	13		13		13	
plant acid phosphatase, putative	11688.m03911	32947	2			2		
prolyl-tRNA synthetase	11686.m04274	57950	2	2	2	2	2	2
Protease inhibitor/seed storage LTP family, putative	11686.m00139	12137	2			2		
putative 14-3-3 protein	11689.m05065	29160	2	4	2	4	2	4
putative aldehyde oxidase	11689.m05834	145336	6		6		6	
putative cyanase	11676.m02926	18599	7		7		7	
putative eukaryotic initiation factor subunit	11676.m03873	63129	3		3		3	
Remorin, C-terminal region, putative	11670.m04374	22415	3		3		3	
retrotransposon protein, putative, unclassified	11688.m05463	205627	2		2		2	
ribosomal protein L10, putative	11689.m01776	51817	6		6		6	
Similar to 20S proteasome subunits	11670.m03506	47567	2		2		2	
Similar to arabinofuranosidase isoenzyme AXAII	11687.m02883	140294	10		10		10	
Name of the proteins	accession number	MW	0.1 M NaCl	1 M NaCl	1 M LiCl			
---	------------------	--------	------------	----------	----------			
Threonine pyrophosphate enzyme, central domain, putative	11687.m00919	45957	3					
translation initiation factor	11682.m04971	134032	2					
60S ribosomal protein 16 (r (ribosomal protein 12).	11686.m07143	28132	3	5	3			
dihydrododecanic S-acetyltransferase	11674.m03306	52541	3	2	2			
histone H2A-like protein	11682.m00152	16490	2	2	2			
phosphoglycerate kinase	11682.m03994	50107	11		5			
putative transposases	11666.m05268	63924	7	5				
Riboosomal L37ae protein family	11687.m04734	10236	3	2				
ribosomal protein L10, putative	11674.m02777	34356	6	10				
Riboosomal protein L68a	11682.m03541	12727	3	4	3			
ribosomal protein L6e, putative	11688.m03614	93300	5	7	2			
ribosomal protein S17, putative	11687.m04006	14937	2	3	3			
ribosomal protein S17, putative	11687.m05125	17625	2	2				
ribosomal protein S17, putative	11687.m05989	15966	2	4				
ribosomal protein S20, putative	11687.m04725	21900	2	3				
Riboosomal protein S24e, putative	11688.m01419	15739	2		2			
Riboosomal protein S8e	11670.m02661	24913	5	5				
transketolase	11680.m00347	80028	6	7				
2,3-bisphosphoglycerate-independent phosphoglycerate mutase	11687.m05987	55632	2					
4-alpha-gluonanotransferase, putative	11673.m04620	105744	3	4				
60S ribosomal protein 17a	11687.m02002	23865	9					
acido ribosomal protein 3a-maze	11680.m04833	11867	4					
ATP synthase F1, beta subunit	11682.m04581	58986	3					
ATPase, AAA family, putative	11687.m04511	51421	2					
BPG-independent PGAM N-terminus (PGAM_N)	11682.m03854	52541	2					
Carboxy anhydrase, putative	11687.m04385	28022	2					
chaperonin gamma chain, putative	11680.m03352	61219	3					
chaperonin GroEL	11688.m00320	63759	5					
CRAL/TRIO N-terminus, putative	11682.m03352	63906	3					
Dehydrogenase E1 component, putative	11670.m00195	46115	2					
D-isomer specific 2-hydroxyacid dehydrogenase, NAD binding domain,	11688.m00117	44786	18	2				
elongation factor 1 beta 2	11689.m02941	24639	3					
expressed protein	11687.m06687	73528	3					
glycine dehydrogenase	11680.m04002	111404	4	7	4			
histone deacetylase HD2, putative	11682.m09013	11747	3					
histone H3.2 protein	11689.m02779	15397	4					
Kinesin motor domain, putative	11680.m01108	137542	2					
Nuclear transport factor 2 (NTF2) domain, putative	11670.m02868	51414	2					
Proteosome/Cyclosome repeat, putative	11680.m04178	98828	2					
putative 30S ribosomal protein S13	11688.m05001	19210	6					
putative TCP-1cpn62 chaperonin family protein	11689.m04189	57193	2					
Pyridine nucleotide-disulphide oxioreductase, putative	11687.m02259	58886	4					
pyruvate dehydrogenase complex dihydrododecanic acetyltransferase	11680.m00666	50144	2					
Riboosomal L27e protein, putative	11688.m01748	15569	3					
Riboosomal protein L13, putative	11687.m03775	26229	2					
ribosomal protein L44.1 family, putative	11689.m01586	34690	5					
ribosomal protein L44.1 family, putative	11673.m07688	44711	3					
ribosomal protein S135510	11673.m07090	17952	3					
ribosomal protein S4	11676.m03467	23408	2					
RNA recognition motif, (a.k.a. RRM, RBD, or RNP domain), putative	11674.m00120	94956	2					
Similar to dihydrododecanic S-acetyltransferase, putative	11686.m07772	51442	5					
Similar to myosin heavy chain	11686.m01709	71326	4					
sucrose-UDP glucosyltransferase 2	11698.m02844	82140	7					
t-complex polypeptide 1	11670.m04342	50584	4					
T-complex protein 1, epsilon subunit	11680.m03661	59094	2					
translation elongation factor EF-1, subunit alpha	11689.m00767	40620	7					
For the interaction between FHV and IR64, we identified 41 common proteins also found with the interaction RYMV-IR64 (Table I), which could explain the ability of FHV to replicate in rice (9), and suggest that a set of proteins from a host plant could interact with different viruses. The results obtained with RYMV, FHV, and SCPMV suggested that host protein recruiting occurred for different viruses and that two unrelated viruses (RYMV and FHV) could recruit the same proteins from the same plant.

DISCUSSION

We know that the viral genome encodes a small number of genes, and the virus is thus necessarily dependent on host machinery to achieve its life cycle. The recruiting of the translational machinery from host plants is now well established for different viruses, for instance in the case of potyviruses, the interaction of eIF4E, eIFiso4E, eIF4G, and the viral protein VPg (15–18). Nevertheless the question of how the virion acts in the cellular context remains.

Indeed for each stage of the virus life cycle, it is necessary to have the required host partners in the right conditions of time, concentration, localization, and conformation. It is also necessary for the virus to have a high affinity for some host proteins. The external part of virus particles could play this crucial function in recruiting host proteins. To demonstrate this recruiting, we developed a method using RYMV, which has very stable particles (7) and replicates to a high level (4). Thus, using size exclusion chromatography, virus-protein complexes were purified from infected plants and from in vitro binding experiments using purified virus and soluble proteins extracted from non-infected plants. This method is reproducible and allows us to purify enough material to analyze complexes by SDS-PAGE and nano-LC-MS/MS. Host proteins from the complexes were separated and gave reproducible protein profiles for the same experimental conditions. To demonstrate the specific recruiting by the virus, we studied three critical stages for RYMV: 1 wpi (beginning of replication), 2 wpi (replication in systemically infected leaves, first symptoms), and 3 wpi (end of viral replication in susceptible variety IR64 and development of symptoms) (4). We showed that the recruiting of host proteins was different according to the infection stages. Comparing the same infection stage in vitro and in vivo, we demonstrated that the complexes isolated from infected plants were not formed during the extraction but presumably preexisted in vivo during the infection process.

The number of identified proteins for each stage (1, 2, and 3 wpi) corresponds to a population of different complexes representative of the global situation within infected plants as the virus has the ability to infect different cell compartments. Looking at the stained SDS-PAGE gels, we clearly observed some recruited proteins showing different quantitative profiles.
according to the different stages of infection (Fig. 2, bands a, b, c, d, and e). Because of the reproducibility of this recruiting, these results reinforce the idea that virus recruits specific host proteins during the infection process.

Among the recruited proteins, some of them have a higher affinity for RYMV. This was supported by the identification of 32 proteins that were still binding to the virus at 1 M NaCl \textit{in vivo} (of 72 at 0.1 M NaCl for IR64 2 wpi), and among them, 25 proteins were identified \textit{in vitro} at 1 M NaCl (Fig. 5B). We suppose that these proteins are most likely bound directly at the surface of the virus particle. The other proteins that were identified in lower salt concentration could have a lower affinity with the surface of the virus or could bind host proteins previously recruited by the virus. Interestingly we found a recruiting coherence through some functional categories. In the metabolism category we identified a high number of enzymes involved in glycolysis, malate, and citrate cycles presumably recruited by the virus to produce energy for virus replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication. In the defense category, we identified proteins involved in reactive oxygen species (19) and detoxification (superoxide radical and hydrogen peroxide) that are presumably recruited by the virus to maintain an oxidoreduction environment compatible with viral replication.
About 15 similar protein functions were found in another study using cDNA amplified fragment length polymorphism to discover genes induced or repressed during virus infection. Some of the proteins have been identified in different virus-host interactions such as Hsp60 with hepatitis B virus (21) or human immunodeficiency virus (22) and Hsp70 with plant cisternae (23) or human immunodeficiency virus (24) suggesting that viruses may recruit the same protein functions in different hosts. Other proteins, not identified in our experiments, were identified interacting with different viruses as pectin methyltransferases (25, 26), homeodomain proteins (27), rab acceptor-related proteins (28), β-1,3-glucanase-interacting proteins (29), Fas-mediated apoptosis enhancer Daxx (30), and SUMO-1 protein (31, 32). All these results suggest that the recruiting of proteins is probably a common process for different viruses.

In this study we describe for the first time an efficient method to extract virus-host protein complexes and to identify by mass spectrometry the proteins involved in these complexes. The analysis with contrasted pathogenic isolates, in host and non-host interaction contexts, should help to identify molecular interaction mechanisms involved in viral infection. The functional relevance of these proteins remains to be evaluated using mutagenesis or silencing strategies. This method of analysis may help to identify new target proteins that may be useful to find new markers for plant selection or to develop new strategies to abort virus infection processes. It is also conceivable to use this experimental approach to isolate virus-host protein complexes from different organisms in an attempt to find new therapeutic targets in human and animal virus diseases.

Acknowledgments—We thank David Biron, Marc Van Regenmortel, Claude Faquet, and Eugénie Hébrard for helpful comments on this manuscript. We also thank Gaël Lagrange for help with bioinformatics tools, Denis Fargette for providing the RYMV isolate BF1, David Hacker for providing the SCPMV, and Anne Schneemann for providing the HfV.

* This work was supported in part by the Institut de Recherche pour le Développement. The costs of publication of this article were defrayed in part by the payment of page charges. This article must be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ To whom correspondence should be addressed: Centre Institut de Recherche pour le Développement, UMR 5096, 911, Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France. Tel.: 4-67-...
to-cell movement and assembly of a plant clustrovirus: roles for the capsid proteins and Hsp70 homolog. *EMBO J.* 20, 6997–7007

24. Gurer, C., Cimarelli, A., and Luban, J. (2002) Specific incorporation of heat shock protein 70 family members into primate lentiviral virions. *J. Virol.* 76, 4666–4670

25. Dorokhov, Y. L., Makinen, K., Frolova, O. Y., Merits, A., Saarinen, J., Kalikkin, N., Atabekov, J. G., and Saarma, M. (1999) A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaic virus movement protein. *FEBS Lett.* 461, 223–228

26. Chen, M. H., and Citovsky, V. (2003) Systemic movement of a tobamovirus requires host cell pectin methylesterase. *Plant J.* 35, 386–392

27. Desvoyes, B., Faure-Rabasse, S., Chen, M. H., Park, J. W., and Scholthof, H. B. (2002) A novel plant homeodomain protein interacts in a functionally relevant manner with a virus movement protein. *Plant Physiol.* 129, 1521–1532

28. Huang, Z., Andrianov, V. M., Han, Y., and Howell, S. H. (2001) Identification of Arabidopsis proteins that interact with the cauliflower mosaic virus (CaMV) movement protein. *Plant Mol. Biol.* 47, 663–675

29. Fridborg, I., Grainger, J., Page, A., Coleman, M., Findlay, K., and Angell, S. (2003) TIP, a novel host factor linking callose degradation with the cell-to-cell movement of potato virus X. *Mol. Plant-Microbe Interact.* 16, 132–140

30. Li, X. D., Makela, T. P., Guo, D., Sollymani, R., Koistinen, V., Vapalahti, O., Vaheri, A., and Lankinen, H. (2002) Hantavirus nucleocapsid protein interacts with the Fas-mediated apoptosis enhancer Daxx. *J. Gen. Virol.* 83, 759–766

31. Kaukinen, P., Vaheri, A., and Plyusnin, A. (2003) Non-covalent interaction between nucleocapsid protein of tula hantavirus and small ubiquitin-related modifier-1, SUMO-1. *Virus Res.* 92, 37–45

32. Maeda, A., Lee, B. H., Yoshimatsu, K., Saijo, M., Kurane, I., Arikawa, J., and Morikawa, S. (2003) The intracellular association of the nucleocapsid protein (NP) of hantaan virus (HTNV) with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). *Virology* 305, 288–297