A filtration question on Belyĭ pairs and dessins

Jonathan Fine
Milton Keynes
England
jfine@pytex.org

28 September 2009

Abstract

A Belyĭ pair is a holomorphic map from a Riemann surface to S^2 with additional properties. A dessin d’enfants is a bipartite graph with additional structure. It is well known that there is a bijection between Belyĭ pairs and dessins d’enfants.

Vassiliev has defined a filtration on formal sums of isotopy classes of knots. Motivated by this, we define a filtration on formal sums of Belyĭ pairs, and another on dessin d’enfants. We ask if the two definitions give the same filtration.

1 Introduction

First, we recall some definitions [2, 3]. A Belyĭ pair is a Riemann surface C together with a holomorphic map $f : C \to S^2 = \mathbb{C} \cup \{\infty\}$ to the Riemann sphere, such that $f'(p)$ is non-zero provided $f(p)$ is not 0, 1 or ∞. (Belyĭ proved that given C such an f can be found iff C can be defined as an algebraic curve over the algebraic numbers.)

A dessin d’enfants, or dessin for short, is a graph G together with a cyclic order of the edges at each vertex, and also a partition of the vertices V into two sets V_0 and V_1 such that every edge joins V_0 to V_1. Necessarily, G must be a bipartite graph. Traditionally, the vertices in V_0 and V_1 are coloured black and white respectively.

It is easy to see that a Belyĭ pair gives rise to a dessin, where $V_0 = f^{-1}(0)$, $V_1 = f^{-1}(1)$, and the edges are the components of the inverse image $f^{-1}([0,1])$ of the unit interval in \mathbb{C}. The cyclic order arise from local monodromy around the vertices.

A much harder result, upon which our definitions rely, is that up to isomorphism every dessin arises from exactly one Belyĭ pair, or in other words that there is a bijection between isomorphism classes of Belyĭ pairs and dessins.
2 Definitions

Definition 1 (Belyi object). A Belyi object B consists of $((B_C, B_f), B_D)$ where (B_C, B_f) is a Belyi pair and B_D is the associated dessin (or vice versa for the dessin and the pair).

Definition 2 (Vassiliev space). The Vassiliev space $V = V_C$ (for Belyi objects) is the vector space over \mathbb{C} which has as basis the isomorphism classes of Belyi objects.

Clearly, when an edge is removed from a dessin then it is still a dessin. Suppose D is a dessin, and T is a subset of its edges. We will use $D \setminus T$ to denote the dessin so obtained. This same operation can also be applied to a Belyi object B, even though computing the associated curve $(B \setminus T)_C$ from B_D and T might be hard.

We will now define one or two filtrations of V.

Definition 3 (Dessin with d optional edges). Let D be dessin and S a d-element subset of D. Each subset T of S determines a dessin $S \setminus T$ and hence a Belyi object $B_{S \setminus T}$. Let $|T|$ denote the number of edges in T. Use

$$B_S = \sum_{T \subseteq S} (-1)^{|T|} B_{S \setminus T}$$

to define a vector B_S in V, which we call the expansion of a dessin with d optional edges.

Definition 4 (Dessin filtration). Let $V_{D,d}$ be the span of the expansions of all dessins with d optional edges. The sequence

$$V = V_{D,0} \supseteq V_{D,1} \supseteq V_{D,2} \supseteq V_{D,3} \ldots$$

is the dessin filtration of V.

We can also think of a Belyi object as a map $f : C \to S^2$ (with special properties). Let (C_1, f_1) and (C_2, f_2) be Belyi pairs. Then there is of course a map

$$g : C_1 \times C_2 \to S^2 \times S^2.$$

Let $\Delta \subset S^2 \times S^2$ denote the diagonal, and let C denote $g^{-1}(\Delta)$, and f the restriction of g to C. In general

$$f : C \to \Delta \cong S^2$$

will not be a Belyi pair. There are two possible problems. The first is that $C \subset C_1 \times C_2$ might have self intersections or be otherwise singular. If this happens, we replace C by its resolution, which is unique.

The second problem is more interesting. It might be that f has critical points not lying above the special points $0, 1$ and ∞. This problem cannot be avoided. However, the above discussion does show that there is product, which we will denote by ‘\cdot’, on holomorphic branched covers of S^2.

2
Definition 5 (Product filtration). Let W be the vector space with basis isomorphism classes of branched covers of S^2. We set W_n to be the span of all products of the form

$$(A_1 - B_1) \circ (A_2 - B_2) \circ \ldots \circ (A_n - B_n)$$

for A_i and B_i basis vectors of W. Clearly, the W_n provide a filtration of W.

Definition 6 (Bely˘ı filtration). The induced filtration of V defined by $V_{B,n} = W_n \cap V$ is called the Bely˘ı filtration of V.

3 Questions

Question 1. Are the two filtrations V_D and V_B equal?

If so, then we have also answered the next two questions.

Question 2. The absolute Galois group acts on Bely˘ı pairs, and preserves the Bely˘ı filtration. Does this action also preserve the dessin filtration?

Question 3. Because the dessins with d edges, all of which are optional, span V_d/V_{d+1}, the dessin filtration has finite dimensional quotients. Does the Bely˘ı filtration have finite dimensional quotients?

Investigating the last two questions might help us answer the first. They might also be of interest in their own right.

References

[1] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), 423–472

[2] G. V. Bely˘ı, Another proof of the three points theorem, Subornik: Mathematics 193 (2002), 329–32.

[3] Leila Schneps, ed, The Grothendieck Theory of Dessins d’Enfants, London Math. Soc. Lecture Note Ser., vol 200, Cambridge Univ. Press 1994.