5/4-approximation for Symmetric TSP

Madhusudan Verma¹, Alok Chauhan*², Vijayakumar V³

¹madhusudan.verma2015@vit.ac, ²alok.chauhan@vit.ac.in, ³vijayakumar.v@vit.ac.in

¹, ², ³ VIT Chennai, India

Abstract: Travelling Salesman Problem (TSP) is one of the unsolved problems in computer science. TSP is NP-Hard. Till now the best approximation ratio found for symmetric TSP is \(\frac{3}{2} \) by Christofides’ Algorithm more than thirty years ago. There are different approaches to solve this problem. These range from methods based on neural networks, genetic algorithm, swarm optimization, ant colony optimization etc. The bound is further reduced from \(\frac{3}{2} \) but for graphic TSP. A factor of \(\frac{13}{9} \) was found for Graphic TSP. A newly proposed heuristic called k-RNN is considered here. It seems from experimental results that \(\frac{5}{4} \) is the approximation ratio. A performance analysis is done for this heuristic and it confirms experimental bound of \(\frac{5}{4} \).

Keywords: Christofides’ algorithm, 5-degree Minimum Spanning Tree, Approximation Ratio, Corresponding Edge, Symmetric TSP, k-RNN.

1. Introduction

TSP asks to visit node exactly once and all nodes in a graph. TSP is APX-Hard. However, Held-Karp LP relaxation is conjectured to have bound of \(\frac{4}{3} \). There is more general form of this problem known as Travelling Salesman Path Problem (TSPP) in which it is needed to find a path from two given points visiting all the nodes of graph exactly once. The best known algorithm for this problem is given by Hoogeveen. The bound found by this method is \(\frac{5}{3} \). However it is conjectured to have an integrality gap of \(\frac{3}{2} \) by the Held-Karp relaxation for this problem. One of the natural ways to attack this problem is to consider special cases of this problem. The most interesting is the Graphic TSP/TSPP. In Graphic TSP, we need to find a minimum cost circuit visiting nodes at least once. We can apply similar formulation to Graphic TSPP case. They are APX-hard, there are standard examples showing that the Held-Karp relaxation has a gap of at least \(\frac{4}{3} \) in the TSP case and \(\frac{3}{2} \) in the TSPP case. A significant progress has been made in approximating the graphic TSP and TSPP in recent times. Oveis Gharan gave an approximation of \(\frac{3}{2} - \varepsilon \) for Graphic TSP [3]. In which first an optimal solution of LP relaxation is computed. Then LP solution as \(\lambda \)-uniform distribution of spanning trees is written, followed by sampling of a Spanning Tree T from this distribution and at last a minimum cost matching on odd degree vertices of T is added. Following that, Mömke and Svensson
obtained a significantly better approximation ratio of \(\frac{14(\sqrt{2} - 1)}{12\sqrt{2} - 13} \approx 1.461 \) for graphic TSP, as well as factor \(3 - \sqrt{2} + \epsilon \approx 1.586 + \epsilon \) for graphic TSPP, for any \(\epsilon > 0 \). Above approach uses matching in a truly ingenious way. Instead of adding edges of a matching to a spanning tree to make it Eulerian, as it was done in previous approaches, the matching edges are added and removed. This process is guided by a so-called removable pairing of edges which essentially encodes the information on which edges can be simultaneously removed from the graph without disconnecting it. An approximation ratio of \(\frac{5}{4} \) for symmetric TSP is found in present work. This algorithm is simple to understand as well as easy to implement.

2. Motivation

The challenge to improve the approximation ratio obtained by Christofides is a big motivation. Since TSP has much wider applications, the need to work on this problem is felt.

3. Comparison with related work

Algorithm	TSP Type	Approximation Ratio	Time Complexity
Christofides	Symmetric	\(\frac{3}{2} \)	O(n^3)
Truncated Generalized Beta distribution Based on Christofides’ Algorithm [9]	Symmetric	\(1 + \frac{1}{2} \left(\frac{\alpha+1}{\alpha+2} \right)^{K-1} \) where \(\alpha >> 1 \) is the shape parameter of TGB and \(K \) is the number of iterations	O(n^4)
2-RNN [4]	Symmetric	\(\frac{5}{4} \)	O(n^3)
Random Sampling [3]	Graphic	\(\frac{3}{2} - \epsilon \)	unknown
Novel use of matching [5]	Graphic	\(\frac{13}{9} \)	unknown
By ear-decomposition optimized using forest representations of hyper graphs[6]

By ear-decomposition optimized using forest representations of hyper graphs[6]	Graphic	\(\frac{7}{5} \)	Polynomial time

Finding a cycle cover with relatively few cycles for cubic bipartite graph [7]

Finding a cycle cover with relatively few cycles for cubic bipartite graph [7]	Graphic	\(\frac{9}{7} \)	Polynomial time

By consecutive path cover improvements [8]

By consecutive path cover improvements [8]	Metric	\(\frac{8}{7} \)	Polynomial time

Table1: Comparison of various TSP algorithms

4. **2-RNN Heuristic**

The heuristic is inspired by a new human centric co-existential philosophy propounded by Late Sri A Nagraj, India [10, 11]. Before explaining about 2-RNN, first let’s understand its general form which is k-RNN. The algorithm consists of the following steps [4]:

Step 1: For every permutation of the k vertices \(v_1, v_2, \ldots v_k \) create the partial tour \(T = (v_1, v_2, \ldots v_k) \) and mark the vertices \(v_1, v_2, \ldots v_k \) as visited.

Step 2: Set \(i = k \). While there are unvisited vertices left: Select \(v_{i+1} \) as the nearest unvisited neighbor of \(v_i \) and append \(v_{i+1} \) to \(T \). If there are multiple nearest neighbors, select any. Mark \(v_{i+1} \) as visited and increment \(i \) by 1.

Step 3: Among all \(\frac{n!}{(n-k)!} \) tours found, select the shortest as the result.

2-RNN is k-RNN with k=2.

Now at first glance it seems similar to nearest neighbor algorithm, but the difference here is that instead of starting from a node, here we start from an edge.
5. Preliminaries

Statement 1 [1]: For every set of points in the plane, there exists a degree-5 MST.

Algorithm 1[1]: Algorithm for converting 5-degree MST to a spanning tree of degree 4

1. Root the MST at a leaf vertex r.
2. For each vertex \(v \in V \) do

 Compute the shortest path \(P_v \) visiting \(v \) and all its children.
3. Return \(T_4 \), the tree formed by the union of the paths \(\{P_v\} \).

Theorem 1 [1]: Let MST be a minimum spanning tree of a set of points in \(\mathbb{R}^2 \). Let \(T_4 \) be the spanning tree output by the algorithm 1, then

\[
W(T_4) \leq 1.25 \times W(\text{MST})
\]

Statement 2 [2]: Let TREE be the Minimum Spanning Tree of the given graph and OPTIMAL be the length of optimal tour in graph visiting and starting at the same node then,

\[
\text{Cost (MST)} \leq \left(1 - \frac{1}{n}\right) \text{OPTIMAL}
\]
Experimental Results for 2-RNN:

Dataset	Optimum	1-RNN	2-RNN		
a280	2579	2975	2953	14.50	
berlin52	7942	8181	8.47	7968	5.05
ber127	118282	133953	12.25	128589	8.71
brunel	25939	27384	7.83	27213	7.16
ch100	1059	8880	305.00	2020	3.59
ch130	6110	7129	16.68	6063	12.98
ch150	6538	7413	8.96	7113	8.96
di291	9608	56861	15.51	56681	15.51
di55	6218	73369	18.00	72554	18.78
di18	17820	17620	11.66	17405	10.30
d493	35032	40186	14.81	40186	14.81
d657	48912	60174	25.03	59310	21.26
dantzig42	699	864	23.61	826	18.17
eil101	629	746	18.60	743	18.12
eil51	426	482	10.15	472	10.80
eil76	538	608	15.01	598	11.15
fl1400	20117	25115	24.78	24719	22.82
fl17	11461	13987	17.08	13666	16.90
fr26	937	965	2.90	950	2.35
gr262	2478	2823	18.71	2767	18.36
gr120	6438	8438	21.55	8335	20.07
gr17	2815	2178	4.46	2178	4.46
gr21	2707	3063	10.93	2958	9.27
gr24	1732	1553	22.09	1400	10.06
gr48	5945	5840	15.74	5581	10.21
h148	11461	12137	5.90	12031	4.97
kroA100	21282	24698	16.05	24582	15.51
kroA120	20524	31479	18.08	31320	18.08
kroA200	29398	34543	17.62	34543	17.62
kroB100	22141	25884	16.01	25255	14.06
kroB120	20130	31411	20.08	31224	20.64
kroB200	29437	35386	20.22	35983	19.46
kroC100	20794	23660	16.03	23603	13.75
kroC160	21248	24853	16.71	24603	15.54
knn150	20938	24782	12.30	24445	13.77
lin105	14379	16935	17.78	16147	13.30
lin138	42029	49201	17.06	49201	17.06
lin5318	41345	49318	18.00	49201	19.00
nrw1379	56368	68531	21.00	68738	19.84
p60	3443	43627	24.20	42935	23.94
pr261	2703	3279	18.68	3269	15.31
prb1173	56892	70115	20.28	69685	21.43
prb442	59778	58950	16.09	58682	15.57
r148	103159	138921	21.04	139749	19.84
st1012	92650	94863	1.55	93981	1.44
st175	21407	22000	2.77	21906	2.33
st35	48450	56866	3.27	50032	3.27
swiss42	1273	1437	12.88	1425	11.94

Figure 1: Results for 48 instances of the Symmetric TSP taken from TSPLIB [4].

6. Performance Analysis of 2-RNN

Lemma 1: Let T be the tree obtained after removing an edge e from the minimum tour T obtained by 2-RNN for a given complete graph G, and let M be the 5-degree MST for the graph G (Statement 1), then

\[\text{Cost}(T) \leq \text{Cost}(M) \]

\[\text{Cost}(T_i) \leq \text{Cost}(M) \]
Proof: We define an edge e_c in M as a corresponding edge for an edge e in T_i such that both e_c and e have the common vertex in M and T_i respectively, and $e_c \geq e$ otherwise we could replace e by e_c in T_i and that will contradict the logic of 2-RNN because 2-RNN at each step selects the shortest next edge except when such selection results into a cycle, in that case 2-RNN checks for second shortest next edge and likewise. But such e_cs which cause formation of cycle in T_i will not exist in M in the first place as M also avoids cycle. Therefore Cost (T_i) \leq Cost(M).

Theorem 2: Let T be the optimal tour T by 2-RNN and M be the 5-degree, MST of the given graph, then

$$\text{Cost}(T) \leq \left(\frac{n}{n-1} \right) \text{Cost}(M) \text{ ... (2)}$$

Proof: Let T_i be the tree obtained after removing edge e_i, then using lemma 1, Cost(T_i) \leq Cost(M)

There are n such trees, so summing n such trees,

$$\sum_{i=1}^{n} \text{Cost}(T_i) \leq \sum_{i=1}^{n} \text{Cost}(M)$$

\Rightarrow $(n-1)\text{Cost}(T) \leq n\text{Cost}(M)$

$\Rightarrow \text{Cost}(T) \leq \left(\frac{n}{n-1} \right) \text{Cost}(M)$

Theorem 3:

Cost (T) $\leq \frac{5}{4}$ OPTIMAL

Proof: Now M can be converted to degree 4-spanning tree T_4 using algorithm 1

Therefore using inequality 2,

$$\text{Cost}(T) \leq \left(\frac{n}{n-1} \right) \text{Cost}(T_4)$$
Since \(\text{Cost} (T_4) \leq \frac{5}{4} \text{Cost(MST)} \) by theorem 1

Therefore \(\text{Cost}(T) \leq \frac{5}{4} \left(\frac{n}{n-1} \right) \text{Cost(MST)} \)

Using statement 2, \(\text{Cost(MST)} \leq \left(1 - \frac{1}{n} \right) \text{OPTIMAL} \)

We get \(\text{Cost}(T) \leq \frac{5}{4} \left(1 - \frac{1}{n} \right) \left(\frac{n}{n-1} \right) \text{OPTIMAL} \)

\(\Rightarrow \text{Cost}(T) \leq \frac{5}{4} \text{OPTIMAL} \)

Conjecture: It is conjectured that the approximation ratio for k-RNN algorithm is \(\frac{k^2 + 1}{k^2} \) for \(k > 1 \).

7. Conclusion and Future Work

If we choose any two nodes for initial tour, the bound for the ratio between tour by 2-RNN and optimal is \(\frac{5}{4} \). This can be baseline for finding the bound for the ratio if we choose \(k \) nodes as initial tour. Further research can be done to improve the time complexity of the algorithm from \(O(n^4) \).

8. References

1. Samir Khuller, Balaji Raghavachari and Neal E. Young. Low-Degree Spanning Trees of Small Weight. *SIAM Journal on Computing*, 25(2):355-368, 1996.

2. Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis. An Analysis of Several Heuristics for the Traveling Salesman Problem. *SIAM Journal on Computing*, 6(3):563-581, 1997.

3. Shayan Oveis Gharan, Amin Saberi and Mohit Singh. A Randomized Rounding Approach to the Traveling Salesman Problem. *IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011.*
4. Nikolas Klug, Alok Chauhan, Vijayakumar V and Ramesh Ragala. k-RNN. Extending NN-heuristics for the TSP. Mobile Networks and Applications, pp. 1-4, January 2019.

5. Marcin Mucha. 13/9-approximation for Graphic TSP. Theory of Computing Systems, 55(4):November 2014.

6. András Sebő and Jens Vygen. Shorter Tours by Nicer Ears: 7/5-approximation for graphic TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraph. Combinatorica, 34 (5): January 2012.

7. Jeremy A. Karp and R. Ravi. A 9/7 -approximation algorithm for Graphic TSP in cubic bipartite graphs .Discrete Applied Mathematics, 209(C):164-216, 2016.

8. Piotr Berman and Marek Karpinski. 8/7-Approximation Algorithm for (1, 2)-TSP. SODA '06 Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pp.641-648 , January 2006.

9. Wenhong Tian, Chaojie Huang and Xinyang Wang. A Near Optimal Approach for Symmetric Traveling Salesman Problem in Euclidean Space. DOI:10.5220/0006125202810287

10. A. Nagraj. Madhyasth Darshan Sahastitvavaad par Aadharit Samvaad (Part 1). Jeevan Vidhya Prakashan, 2011.

11. A. Nagraj. Madhyasth Darshan Sahastitvavaad par Aadharit Samvaad (Part 2). Jeevan Vidhya Prakashan, 2013.