Foundations of a Nonlinear Distributional Geometry

Michael Kunzinger∗, Roland Steinbauer†
Department of Mathematics, University of Vienna
Strudlhofg. 4, A-1090 Wien, Austria.

September, 2001

Abstract

Colombeau’s construction of generalized functions (in its special variant) is extended to a theory of generalized sections of vector bundles. As particular cases, generalized tensor analysis and exterior algebra are studied. A point value characterization for generalized functions on manifolds is derived, several algebraic characterizations of spaces of generalized sections are established and consistency properties with respect to linear distributional geometry are derived. An application to nonsmooth mechanics indicates the additional flexibility offered by this approach compared to the purely distributional picture.

Mathematics Subject Classification (2000): Primary: 46F30; secondary: 46T30, 46F10, 37J05

Keywords: Algebras of generalized functions, Colombeau algebras, generalized sections of vector bundles, distributional geometry

1 Introduction

After their introduction in [6], [7] the main applications of Colombeau’s new generalized functions lay in the field of linear and nonlinear partial differential equations involving singular coefficients or data (cf. [33], [14] and the literature cited therein for a survey). Over the past few years, however, the theory has found a growing number of applications in a more geometric context, most notably in general relativity (cf. e.g., [5], [39], [3], [28], as well as [40] for a survey). This shift of focus has necessitated a certain restructuring of the fundamental building blocks of the theory in order to adapt to the additional requirement of diffeomorphism invariance. Only recently ([13], [15]) this task has been completed for the scalar case. To be precise, this restructuring took place in the

∗e-mail: michael.kunzinger@univie.ac.at
†e-mail: roland.steinbauer@univie.ac.at
framework of the so-called full Colombeau algebra, distinguished by the existence of a canonical embedding of the space of Schwartz distributions into the algebra.

Already at a very early stage of development the so-called special (or simplified) variant of Colombeau’s algebras was introduced (cf. e.g., [2]). This variant of the construction does not allow for a canonical embedding of the space of distributions. If such an embedding is needed, then the full version of the theory ([15]) should be employed. On the other hand, in the special version due to its simpler basic structure (elements are basically equivalence classes of nets of smooth functions) an adaptation of geometric constructions from the smooth setting to the generalized functions framework can be carried out more directly than in the full variant. In particular, diffeomorphism invariance of the basic building blocks of the construction is automatically satisfied. Moreover, in applications where a distinguished regularization process is available (e.g., due to certain symmetries of the problem under consideration or due to a smoothing procedure suggested by physics) it is often preferable to work in the special setting. Consequently there has been an increasing number of applications of the special algebra to geometric problems (cf. e.g., [10], [8], [27], [28]). The aim of the present paper is to initiate a systematic development of global analysis in this setting.

For an alternative approach to algebras of generalized functions on manifolds based on the abstract differential geometry developed by A. Mallios ([30]) we refer to [31].

The plan of the present work is as follows: In the remainder of the current section we fix some notation concerning differential geometry, while in section 2 we recall the basic facts on special Colombeau algebras. In section 3 we give a quick overview of distributional geometry, introducing those constructions that later on will furnish our main objects of reference for the limiting behavior of the corresponding Colombeau objects. In section 4 we introduce several equivalent definitions of as well as some basic operations on the special algebra of generalized functions $\mathcal{G}(X)$ on a manifold X. We then derive a point value characterization of elements of $\mathcal{G}(X)$, a feature which distinguishes the present framework from the purely distributional one and serves as an important tool for generalizing notions from classical geometry. Section 5 is devoted to a study of the compatibility of the current approach with respect to distributional and smooth geometry. We discuss in detail the question of embedding $\mathcal{D}'(X)$ into $\mathcal{G}(X)$ reaching the conclusion that a canonical and geometric embedding (in a sense to be made precise there) indeed is not feasible. On the other hand we give a simple construction of a (non-canonical) embedding that extends to an injective sheaf morphism $\mathcal{D}'(__):=\mathcal{G}(__)$ which coincides with the natural ("constant") embedding on $C^\infty(__)$. Furthermore we set up coupled calculus, in particular the notion of k-association which is stronger than the notion of association used in the local theory and—in the absence of a geometric embedding of \mathcal{D}'—serves to make precise statements on the compatibility with respect to the distributional and C^k-setting. In section 6 we introduce generalized sections of vector bundles. We prove some algebraic characterizations of these sheaves of $\mathcal{G}(__)$-modules and
again establish consistency results with respect to the classical setting. Important special cases of these general constructions are worked out in sections 7 (generalized tensor analysis) and 8 (exterior algebra). In particular, section 8 provides an application to nonsmooth mechanics.

Notations from differential geometry will basically be chosen in accordance with [1], [23]. Throughout this paper, X will denote a paracompact, smooth Hausdorff manifold of dimension n. For any vector bundle $E \to X$, by $\Gamma^k(X, E)$ (resp. $\Gamma^k_c(X, E)$) ($0 \leq k \leq \infty$) we denote the $C^k(X)$-module of (compactly supported) C^k-sections in E and frequently drop the superscript if $k = \infty$. In particular, by $\mathfrak{X}(X)$ resp. $\Omega^k(X)$ we denote the space of smooth vector fields resp. k-forms on X. Generally, for M_1, \ldots, M_k, M_0 modules over a commutative ring R, $L^R(M_1, \ldots, M_k; M_0)$ denotes the R-module of R-linear maps from $M_1 \times \ldots \times M_k$ into M_0. Since we will be considering tensor products with respect to different rings R, the notation $M_1 \otimes_R M_2$ will be used. By $\mathcal{P}(X, E)$ we denote the space of linear differential operators $\Gamma(X, E) \to \Gamma(X, E)$. For $E = X \times \mathbb{R}$ we write $\mathcal{P}(X)$ for $\mathcal{P}(X, E)$.

2 Special Colombeau algebras

In this section we shortly recall some basic facts on algebras of generalized functions and, in particular, Colombeau’s so-called special construction on open sets of Euclidean space. The key idea in constructing these algebras (which contain the space of Schwartz distributions and provide maximal consistency with respect to classical analysis) is regularization by nets of smooth functions and the use of asymptotic estimates with respect to the regularization parameter ε. More precisely we employ a quotient construction as follows (for details we refer to [2], [7]): denoting by Ω an open subset of \mathbb{R}^n we set (with $I = (0, 1]$)

\[
E(\Omega) := (C^\infty(\Omega))^I \\
E_M(\Omega) := \{ (u_\varepsilon)_{\varepsilon \in I} \in E(\Omega) : \forall K \subset \subset \Omega, \forall \alpha \in \mathbb{N}^n_0, \exists N \in \mathbb{N} \sup_{x \in K} |\partial^\alpha u_\varepsilon(x)| = O(\varepsilon^{-N}) \text{ as } \varepsilon \to 0 \} \\
N(\Omega) := \{ (u_\varepsilon)_{\varepsilon \in I} \in E(\Omega) : \forall K \subset \subset \Omega, \forall \alpha \in \mathbb{N}^n_0, \forall m \in \mathbb{N} : \sup_{x \in K} |\partial^\alpha u_\varepsilon(x)| = O(\varepsilon^m) \text{ as } \varepsilon \to 0 \}.
\]

The special Colombeau algebra on Ω is defined as the quotient space

\[
\mathcal{G}(\Omega) := E_M(\Omega) / N(\Omega).
\]

Since we will only be considering this type of algebras we will omit the term “special” henceforth. Elements of $\mathcal{G}(\Omega)$ will be denoted by capital letters, representatives by small letters, i.e., $\mathcal{G}(\Omega) \ni U = \text{cl}[(u_\varepsilon)_\varepsilon] = (u_\varepsilon)_\varepsilon + N(\Omega)$. $\mathcal{G}(\omega)$ is a fine sheaf of differential algebras containing the smooth functions on Ω as a subalgebra embedded simply by $\sigma(f) = \text{cl}[(f)_\varepsilon]$.

To embed non-smooth distributions we first have to fix a mollifier $\rho \in S(\mathbb{R}^n)$ with unit integral satisfying the moment conditions $\int \rho(x) x^\alpha \, dx = 0 \forall |\alpha| \geq 1$.

Setting $\rho_\varepsilon(x) = (1/\varepsilon^n)\rho(x/\varepsilon)$, compactly supported distributions are embedded by $\iota_0(w) = ((w * \rho_\varepsilon)_{|\Omega})_\varepsilon + \mathcal{N}(\Omega)$. Using partitions of unity and suitable cut-off functions one may explicitly construct an embedding $\iota: \mathcal{D}'(\Omega) \hookrightarrow \mathcal{G}(\Omega)$ which naturally induces a unique sheaf morphism (of complex vector spaces) $\hat{\iota}: \mathcal{D}'(\Omega) \hookrightarrow \mathcal{G}(\Omega)$ extending ι_0, commuting with partial derivatives and its restriction to $\mathcal{C}_\infty(\Omega)$ being a sheaf morphism of algebras. Note that $\hat{\iota}$ depends on the choice of the mollifier ρ, hence is non-canonical. This fact reflects a fundamental property of nonlinear modeling: In general, nonlinear properties of a singular object depend on the regularization. Additional input on the regularization from, say, a physical model may enter the mathematical theory via this interface, leading to a sensible description of the problem at hand; in many cases this will be more natural than the use of a “canonical” embedding of \mathcal{D}' into \mathcal{G}.

A “macroscopic” description of calculations in \mathcal{G} can often be effected through the concept of association: $U, V \in \mathcal{G}(\Omega)$ are called associated if $u_\varepsilon - v_\varepsilon \to 0$ in $\mathcal{D}'(\Omega)$, U is called associated to $w \in \mathcal{D}'(\Omega)$ if $u_\varepsilon \to w$ in $\mathcal{D}'(\Omega)$. Clearly these notions do not depend on the particular representatives and the first one gives rise to a linear quotient space of $\mathcal{G}(\Omega)$, which extends the notion of distributional equality to the level of the algebra.

Finally, we note that inserting $x \in \Omega$ into $U \in \mathcal{G}(\Omega)$ componentwise yields a well-defined element of the ring of generalized numbers \mathcal{K} (corresponding to $\mathcal{K} = \mathbb{R}$ resp. \mathbb{C}), defined as the set of moderate nets of numbers $((r_\varepsilon)_\varepsilon)_{\varepsilon} \in \mathcal{K}^I$ with $|r_\varepsilon| = O(\varepsilon^{-N})$ for some N modulo negligible nets ($|r_\varepsilon| = O(\varepsilon^m)$ for each m).

3 Distributional geometry

We shortly recall the basic facts of distributional geometry, i.e., of the theory of distribution valued sections of vector bundles.

On open sets of \mathbb{R}^n a distribution is defined to be a continuous linear functional on the (LF)-space of smooth, compactly supported test functions φ. Any smooth (even any locally integrable) function f gives rise to a regular distribution via the (natural) assignment $\varphi \mapsto \int f(x) \cdot \varphi(x) \, dx$. On a general manifold X, these two statements cannot hold simultaneously in a meaningful way (with emphasis on “functions”). In the absence of a preferred measure the objects to be integrated are (one-)densities which are sections of the volume bundle $\text{Vol}(X)$ (cf. e.g., [28]). Thus, either the nature of test “functions” φ or of regular distributions f or of both has to be changed in such a way that their product $f \cdot \varphi$ becomes a density. Since the product of a density with a smooth function is again a density there immediately arise two (in a sense, complementary) ways of proceeding. On one hand, we can replace test functions by test densities and define a distribution to be a continuous linear functional on the space of these densities. Then again each (say, smooth) function can be considered as a distribution. This is in accordance with e.g., [24], Sec. 6.3. On the other hand, we could keep the function character of the test objects; then the regular objects would be...
in the dual space of the space of test functions have to be taken as (smooth) densities on \(X \). This is the definition adopted e.g., in [14], Ch. XVII.

More generally, the burden of rendering \(f \cdot \varphi \) a density can be split up in one part contributed by \(f \) and in a (complementary) part contributed by \(\varphi \). This is done by defining for each real \(q \) the notion of a \(q \)-density as a section of the \(q \)-volume bundle \(\text{Vol}^q(X) \) of \(X \) (see e.g., [38, 39]). Moreover for arbitrary real \(q, q' \), the product of a \(q \)-density with a \(q' \)-density is a \((q+q')\)-density; one-densities are just densities in the above sense and zero-densities correspond to functions. If we now define the test objects to be (compactly supported, smooth) \(q \)-densities, the appropriate \((1-q)\)-densities can be embedded in their dual space as regular objects. Note that the case \(q = 1/2 \) is of particular interest due to the fact that the product together with the integral induces a natural Hilbert space structure.

The goal of defining vector valued distributions of a certain density character finally is achieved by considering \(q \)-densities with values in some vector bundle \(E \) over \(X \) as test objects, that is sections of the bundle \(E \otimes \text{Vol}^q(X) \). An appropriate regular dual object for such (compactly supported, smooth) sections \(u \) obviously would be a smooth section \(f \) of the bundle \(E^* \otimes \text{Vol}^{1-q}(X) \) where \(E^* \) denotes the dual bundle of \(E \); the canonical bilinear form \((\cdot, \cdot)\) on \(E^* \times E \) and the product of densities make \((f|u)\) a one-density. Interchanging \(E \) and \(E^* \) as well as \(q \) and \(1-q \), we finally arrive at the definition of \(E \)-valued distributions of density character \(q \) and order \(k \) (to be formally given below) as the dual of the space of compactly supported \(C^k \)-sections of the bundle \(E^* \otimes \text{Vol}^{1-q}(X) \), denoted by \(\Gamma^k_c(X, E^* \otimes \text{Vol}^{1-q}(X)) \).

To set up an appropriate topology in that space we denote the bundle \(E^* \otimes \text{Vol}^{1-q} \) by \(F \) and define for any \(K \subseteq X \) the space \(\Gamma^k_c, K(X, F) := \{ u \in \Gamma^k_c(X, F) \mid \text{supp}(u) \subseteq K \} \). \(\Gamma^k_c, K(X, F) \) is a Fréchet space and we endow \(\Gamma^k_c(X, F) \) with the inductive limit topology \(\tau \) with respect to the spaces \(\Gamma^k_c, K(X, F) \). \((\Gamma^k_c(X, F), \tau) \) is isomorphic to the topological direct sum of the \((LF)\)-spaces \(\Gamma^k_c(X, F) \) where \((X_\lambda), F) \) denotes the family of connected components of \(X \) (hence it is an \((LF)\)-space only if \(X \) is second countable). In particular, \(\tau \) is Hausdorff and complete and we can write \(\Gamma^k_c(X, F) = \varprojlim \Gamma^k_c, K(X, F) \).

This renders the space of compactly supported \(C^k \)-sections of \(F \) a strict inductive limit (of \((F)\)-spaces), in the sense of Def. 2 in Ch. 4, Part 1, Sec. 3 of [16]. Most of the typical properties of strict \((LF)\)-spaces (cf. [67], 6.4–6.6; [25], 7.1.4) carry over to \(\Gamma^k_c(X, F) \): It is a complete locally convex space; on each \(\Gamma^k_c, K(X, F) \), \(\tau \) induces the Fréchet topology; every bounded subset of \(\Gamma^k_c(X, F) \) is contained (and bounded) in the Fréchet space \(\Gamma^k_c, K(X, F) \) for some \(K \subseteq X \).

Finally, the space \(\mathcal{D}'(k)(X, E \otimes \text{Vol}^q(X)) \) of \(E \)-valued distributions of order \(k \) and density character \(q \) is defined as the topological dual of \(\Gamma^k_c(X, E^* \otimes \text{Vol}^{1-q}) \), i.e.,

\[
\mathcal{D}'(k)(X, E \otimes \text{Vol}^q(X)) := [\Gamma^k_c(X, E^* \otimes \text{Vol}^{1-q}(X))]'.
\]

(1)

Analogous to the theory on open sets of Euclidean space the space of smooth regular objects, i.e., \(\Gamma^\infty(X, E \otimes \text{Vol}^q(X)) \) is sequentially dense in \(\mathcal{D}'(k)(X, E \otimes \text{Vol}^q(X)) \).
Vol^q(X)).

We explicitly mention the following special cases of (1) (already anticipated in the discussion above): for $E = X \times \mathbb{C}$, $k = \infty$, $q = 0$ resp. $q = 1$ we obtain $\mathcal{D}'(X)$ resp. $\mathcal{D}'_q(X)$, the space of distributions resp. distributional densities on X. Similarly, taking E the tensor bundle $T^*_q(X)$, $k = \infty$ and $q = 0$ resp. $q = 1$ gives the spaces $\mathcal{D}'^*_q(X)$ of tensor distributions resp. $\mathcal{D}'^*_{ds}(X)$ of tensor distribution densities.

E-valued distributions of density character q may be written as classical sections of E with distributional coefficient “functions”, more precisely

$$\mathcal{D}'(X) \otimes_{\mathcal{C}^{\infty}} \Gamma(X, E \otimes \text{Vol}^q(X)) \cong \mathcal{D}'(X, E \otimes \text{Vol}^q(X)).$$

For X an oriented manifold whose orientation is induced by a fixed nowhere vanishing $\theta \in \Omega^n(X)$, a rich theory of distributional geometry was introduced by Marsden in [2]. The basic idea underlying his approach is that of continuous extension of classical operations to spaces of currents: Since X is oriented we may identify one-densities and smooth n-forms and we set

$$\Omega^k(X)^' := \mathcal{D}'(X, E \otimes \text{Vol}(X))$$

where $E^* = \Lambda^{n-k}T^*X$. Using the above identification it follows that $\Omega^k(X)^'$ is the dual of $\Omega^{n-k}_c(X)$, the space of compactly supported $n-k$-forms (and not the dual of $\Omega^k(X)$ as might be suggested by this notation). Also, $\mathcal{D}'(X) \cong \Omega^0(X)^' \cong \mathcal{D}'_q(X)$ and $\Omega^k(X)^'$ is precisely the space of odd k-currents on X in the sense of de Rham (1). Marsden calls elements of $\Omega^k(X)^'$ generalized k-forms but we prefer here the term distributional k-forms since the term “generalized” will be reserved for Colombeau objects in this work. Embedding of regular objects into distributional k-forms is effected by the map

$$j : \Omega^k(X) \to \Omega^k(X)^'$$

$$j(\omega)(\tau) = \int \omega \wedge \tau$$

(2)

It then follows that $\Omega^k(X)^'$ is the weak sequential closure of $j(\Omega^k(X))$ (in fact, Marsden defines $\Omega^k(X)^'$ as this closure). Let us exemplify the method of continuously extending classical operations from smooth to distributional forms by considering the Lie derivative with respect to a smooth vector field ξ. By Stokes’ theorem, for $\omega \in \Omega^k(X)$, $\tau \in \Omega^{n-k}_c(X)$ we have $j(L_\xi(\omega)(\tau) = -\omega(L_\xi \tau)$.

Hence setting $L_\xi \omega(\tau) := -\omega(L_\xi \tau)$ for $\omega \in \Omega^k(X)^'$ gives the unique continuous extension of L_ξ to $\Omega^k(X)^'$. By the same strategy, operations like exterior differentiation d and insertion i_ξ can be extended to distributional forms while preserving classical relations like $L_\xi = i_\xi \circ d + d \circ i_\xi$. Finally, we note that in this setting, $\mathcal{D}'^*_q(X)$ can be identified with the space of \mathcal{C}^{∞}-multilinear maps $t : \Omega^1(X)^' \times \mathfrak{X}(X)^s \to \mathcal{D}'(X)$.

4 Basic properties, point value characterization

Lemma 1 Set $\mathcal{E}(X) := (\mathcal{C}^{\infty}(X))^f$. The following spaces of nets are equal
\[(i) \{ (u_ε)_{ε \in I} \in \mathcal{E}(X) \mid \forall K \subset X, \forall P \in \mathcal{P}(X) \exists N \in \mathbb{N} : \sup_{p \in K} |Pu_ε(p)| = O(ε^{-N}) \}\]

\[(ii) \{ (u_ε)_{ε \in I} \in \mathcal{E}(X) \mid \forall k \in \mathbb{N}_0 \exists N \in \mathbb{N} \forall ξ_1, \ldots, ξ_k \in \mathfrak{X}(X) : \sup_{p \in K} |L_{ξ_1} \ldots L_{ξ_k} u_ε(p)| = O(ε^{-N}) \}\]

\[(iii) \{ (u_ε)_{ε \in I} \in \mathcal{E}(X) \mid \text{for each chart } (V, ψ) : (u_ε \circ ψ^{-1})_ε \in \mathcal{E}_M(ψ(V)) \}\]

Proof. Since every iterated Lie derivative is an element of \(\mathcal{P}(X)\) we have (i) \(\subseteq\) (ii). (ii) \(\subseteq\) (iii) is immediate from the local form of \(L_{ξ_1} \ldots L_{ξ_k}\). Finally, (iii) \(\subseteq\) (i) follows from Peetre’s theorem (see e.g., [21], Th. 6.2).

We denote by \(\mathcal{E}_M(X)\) the set defined above and call it the space of *moderate* nets on \(X\). Definition (i) was suggested in [10], (iii) is from [2]. (ii) is mentioned explicitly since the operation of taking Lie derivatives plays a central role in the theory (in the full version of the construction, a canonical embedding of \(\mathcal{D}'\) commuting with Lie derivatives has been given in [14]). Replacing \(\exists N\) by \(\forall m\), and \(ε^{-N}\) by \(ε^m\) in (i) and (ii) as well as \(\mathcal{E}_M(ψ(V))\) by \(N(ψ(V))\) in (iii) we obtain equivalent definitions of the space \(\mathcal{N}(X)\) of *negligible* nets on \(X\).

Applying [14], Th. 13.1 locally, we arrive at the following characterization of \(\mathcal{N}(X)\) as a subspace of \(\mathcal{E}_M(X)\):

\[\mathcal{N}(X) = \{(u_ε)_ε \in \mathcal{E}_M(X) \mid \forall K \subset X \forall m \in \mathbb{N} \sup_{x \in K} |u_ε(x)| = O(ε^m) \}\] (3)

Thus for elements of \(\mathcal{E}_M(X)\) to belong to \(\mathcal{N}(X)\) it suffices to require the \(N\)-estimates to hold for the function itself, without taking into account any derivatives. The *Colombeau algebra of generalized functions on the manifold* \(X\) is defined as the quotient

\[\mathcal{G}(X) := \mathcal{E}_M(X) / \mathcal{N}(X).\]

Again, elements in \(\mathcal{G}(X)\) are denoted by capital letters, i.e., \(U = \text{cl}[(u_ε)_ε] = (u_ε)_ε + \mathcal{N}(X)\). Analogous to the case of open sets in Euclidean space, \(\mathcal{E}_M(X)\) is a differential algebra (w.r.t. Lie derivatives) with componentwise operations and \(\mathcal{N}(X)\) is a differential ideal in it. Moreover, \(\mathcal{E}_M(X)\) and \(\mathcal{N}(X)\) are invariant under the action of any \(P \in \mathcal{P}(X)\). Thus we obtain

Proposition 1 Let \(U \in \mathcal{G}(X)\) and \(P \in \mathcal{P}(X)\). Then

\[PU := \text{cl}[(Pu_ε)_ε]\]

is a well-defined element of \(\mathcal{G}(X)\)

This applies, in particular, to the Lie derivative \(\mathcal{L}_ξ U\) of \(U\) with respect to a smooth vector field \(ξ \in \mathfrak{X}(X)\). It follows that \(\mathcal{G}(X)\) is a differential \(\mathbb{K}\)-algebra w.r.t. Lie derivatives.

It is now immediate that a generalized function \(U\) on \(X\) allows for the following local description via the assignment \(\mathcal{G}(X) \ni U \mapsto (U_α)_{α \in A}\) with \(U_α := U \circ ψ_α^{-1} \in \mathcal{G}(ψ_α(V_α))\) (with \(\{(V_α, ψ_α) \mid α \in A\}\) an atlas of \(X\). We call \(U_α\) the *local expression* of \(U\) with respect to the chart \((V_α, ψ_α)\). Thus we have
Proposition 2 \(\mathcal{G}(X) \) can be identified with the set of all families \((U_\alpha)_{\alpha} \) of

generalized functions \(U_\alpha \in \mathcal{G}(\psi_\alpha(V_\alpha)) \) satisfying the following transformation law

\[
U_\alpha|_{\psi_\alpha(V_\alpha \cap V_\beta)} = U_\beta|_{\psi_\beta(V_\alpha \cap V_\beta)} \circ \psi_\beta \circ \psi_\alpha^{-1}
\]

for all \(\alpha, \beta \in A \) with \(V_\alpha \cap V_\beta \neq \emptyset \). \(\square \)

It follows that \(\mathcal{G}(_\) is a fine sheaf of \(\mathbb{K} \)-algebras on \(X \). In fact, in \([10]\) \(\mathcal{G} \) is
defined directly as a quotient sheaf of the sheaves of moderate modulo negligible sections.

An important feature distinguishing Colombeau generalized functions on open subsets \(\Omega \) of \(\mathbb{R}^n \) from spaces of distributions is the availability of a point value characterization of elements of \(\mathcal{G}(\Omega) \) (\([34]\)). This characterization allows a direct generalization of results from classical analysis to Colombeau algebras thereby enabling a consistent treatment of a variety of geometric and analytic problems (see e.g., \([19\), \([27]\)). Our aim in the remainder of this section is to
derive a point value characterization of Colombeau generalized functions also in the global context.

To begin with we shortly recall the basic notions from \([34]\). Clearly a
generalized function is not characterized by its values on all classical points: on \(\mathbb{R} \), take \(F = s(x)\mu(\delta) \); then \(F \neq 0 \) but \(F(x) = 0 \) in \(\mathcal{R} \) \(\forall x \in \mathbb{R} \). The basic idea is therefore to introduce an analogue of “nonstandard numbers” into
the theory which are flexible enough to capture all the relevant information contained in a generalized function. Let \(\Omega \subseteq \mathbb{R}^n \) open. We define the set of compactly supported sequences of points on \(\Omega \) by \(\Omega_c := \{(x_\varepsilon) \in \Omega^I \mid \exists K \subset \subset \Omega \text{ such that } x_\varepsilon \in K \ \forall \varepsilon \text{ small}\} \). Next we introduce the following equivalence relation: two elements \((x_\varepsilon, y_\varepsilon) \in \Omega_c \) are called equivalent \((x_\varepsilon) \sim (y_\varepsilon)\) if \(|x_\varepsilon - y_\varepsilon| = O(\varepsilon^m) \) for each \(m > 0 \). Finally we define the set of compactly supported generalized points as the quotient \(\Omega_c := \Omega_c/\sim \). Then for any \(U \in \mathcal{G}(\Omega) \)
and \(\bar{x} \in \bar{\Omega}_c \), the generalized point value \(U(\bar{x}) := \text{cl}[(u_\varepsilon(x_\varepsilon))_\varepsilon] \) is a well-defined generalized number (\([34]\), Prop. 2.3). Moreover, generalized functions on \(\Omega \) are characterized by their generalized point values in the sense that \(U = 0 \iff U(\bar{x}) = 0 \) for each \(\bar{x} \in \bar{\Omega}_c \) (\([34]\), Th. 2.4).

In order to transfer these notions to the manifold-setting we will make use of
an auxiliary Riemannian metric \(h \) on \(X \). Of course we will then have to show that the constructions to follow are in fact independent of the chosen \(h \).

We call a net \((p_\varepsilon)_\varepsilon \in X^I \) compactly supported if there exist \(K \subset \subset X \) and \(\eta > 0 \) such that \(p_\varepsilon \in K \) for \(\varepsilon < \eta \). Denoting by \(d_h \) the Riemannian distance induced by \(h \) on \(X \), two nets \((p_\varepsilon)_\varepsilon, (q_\varepsilon)_\varepsilon \) are called equivalent \((p_\varepsilon) \sim (q_\varepsilon)_\varepsilon \) if \(d_h(p_\varepsilon, q_\varepsilon) = O(\varepsilon^m) \) for each \(m > 0 \). The equivalence classes with respect to this relation are called compactly supported generalized points on \(X \). The set of compactly supported generalized points on \(X \) will be denoted by \(\bar{X}_c \).

The fact that \(\bar{X}_c \) does not depend on the auxiliary metric \(h \) follows immediately from the following lemma:
Lemma 2 Let h_i be Riemannian metrics inducing the Riemannian distances d_i on X ($i = 1, 2$). Then for $K, K' \subset X$ there exists $C > 0$ such that $d_2(p, q) \leq Cd_1(p, q)$ for all $p \in K, q \in K'$.

Proof. Assume to the contrary that there exist sequences p_m in K and q_m in K' such that $d_2(p_m, q_m) > md_1(p_m, q_m)$. By choosing suitable subsequences we may additionally suppose that both p_m and q_m converge to some p. Let V be a relatively compact neighborhood of p. Then denoting by $B_r^i(q)$ the d_i-ball of radius r around q it follows that there exist $r_0 > 0$ and $\alpha > 0$ such that $B_r^i(q) \subset B_{\alpha r}^i(q)$ for all $q \in V$ and all $r < r_0$ (cf. e.g., [15], Lemma 3.4). But then for $m > \alpha$ sufficiently large we arrive at the contradiction $d_2(p_m, q_m) \leq \alpha d_1(p_m, q_m)$. \blacksquare

Lemma 3 Suppose that $(p_\varepsilon, q_\varepsilon) \in X^I$ are compactly supported in some W_α which is open, geodesically convex with respect to a Riemannian metric h on X and satisfies $\overline{W_\alpha} \subset \subset V_\alpha$ for some chart (V_α, ψ_α). Then

$$d_h(p_\varepsilon, q_\varepsilon) = O(\varepsilon^m) \ \forall m > 0 \iff |\psi_\alpha(p_\varepsilon) - \psi_\alpha(q_\varepsilon)| = O(\varepsilon^m) \ \forall m > 0.$$

Proof. (⇒) Let $\gamma_\varepsilon : [\alpha_\varepsilon, \beta_\varepsilon] \to W_\alpha$ be the unique geodesic in W_α joining p_ε and q_ε. Then

$$d_h(p_\varepsilon, q_\varepsilon) = \int_{\alpha_\varepsilon}^{\beta_\varepsilon} \|\gamma'_\varepsilon(s)\|_h \, ds = O(\varepsilon^m) \ \forall m > 0.$$

Since W_α is relatively compact there exists $C > 0$ such that $|\xi| \leq C \|T_{\psi_\alpha(p)}\psi_\alpha^{-1}\xi\|_h$ for all $p \in W_\alpha$ and all $\xi \in \mathbb{R}^n$. Thus

$$|\psi_\alpha(p_\varepsilon) - \psi_\alpha(q_\varepsilon)| \leq \int_{\alpha_\varepsilon}^{\beta_\varepsilon} |(\psi_\alpha \circ \gamma_\varepsilon)'(s)| \, ds \leq C \int_{\alpha_\varepsilon}^{\beta_\varepsilon} \|\gamma'_\varepsilon(s)\|_h \, ds = O(\varepsilon^m).$$

(⇐) Let $K \subset W_\alpha$ such that $p_\varepsilon, q_\varepsilon \in K$ for ε small. Using a cut-off function supported in $\psi_\alpha(V_\alpha)$ and equal to 1 in a neighborhood W' with $\overline{W'} \subset W_\alpha$ of $\psi_\alpha(K)$ we may extend the pullback under ψ_α of the Euclidean metric on $\psi_\alpha(V_\alpha)$ to a Riemannian metric g on X. There exists $\varepsilon_0 > 0$ such that for each $\varepsilon < \varepsilon_0$ the whole line connecting $\psi_\alpha(p_\varepsilon)$ with $\psi_\alpha(q_\varepsilon)$ is contained in W'. Hence

$$d_g(p_\varepsilon, q_\varepsilon) = d_{\psi_\alpha^{-1}(W')} (p_\varepsilon, q_\varepsilon) = |\psi_\alpha(p_\varepsilon) - \psi_\alpha(q_\varepsilon)| = O(\varepsilon^m),$$

so the claim follows from Lemma 2. \blacksquare

Proposition 3 Let $U \in \mathcal{G}(X)$ and $\tilde{p} \in \tilde{X}_\varepsilon$. Then

$$U(\tilde{p}) := \text{cl}(u_\varepsilon(p_\varepsilon))$$

is a well-defined element of \mathcal{K}.

Proof. Since $(p_\varepsilon)_\varepsilon$ is compactly supported it is clear that $(u_\varepsilon(p_\varepsilon))$ is moderate resp. negligible if $(u_\varepsilon)_\varepsilon$ is. Suppose now that $(p_\varepsilon)_\varepsilon \sim (q_\varepsilon)_\varepsilon$ and choose $K \subset X$ such that $p_\varepsilon, q_\varepsilon \in K$ for ε small. We have to show that $(u_\varepsilon(p_\varepsilon) - u_\varepsilon(q_\varepsilon))_\varepsilon \in \mathcal{N}$. To this end we choose some auxiliary Riemannian metric h and cover K by
finitely many W_{a_i} with $\overline{W_{a_i}} \subset V_{a_i}$ as in Lemma 3. K can be written as the union of compact sets $K_i \subset W_{a_i}$. Then for each ε sufficiently small there exists ε such that the line connecting $\psi_{a_i}(p_x)$ with $\psi_{a_i}(q_x)$ is contained in $\psi_{a_i}(W_{a_i})$. Thus the claim follows from Lemma 3 and Lemma 3 by applying the mean value theorem as in [34], Prop. 2.3.

\[\text{Theorem 1} \quad \text{Let } U \in \mathcal{G}(X). \text{ Then } U = 0 \text{ in } \mathcal{G}(X) \iff U(\tilde{\psi}) = 0 \text{ in } K \text{ for all } \tilde{\psi} \in \tilde{X}_c. \]

\[\text{Proof.} \text{ Necessity is immediate from Proposition 3. Conversely, fix some Riemannian metric } h \text{ and cover } X \text{ by geodesically convex sets } W_{a_i} \text{ with } \overline{W_{a_i}} \subset \subset V_{a_i} \text{ for charts } (V_{a_i}, \psi_{a_i}). \text{ Let } \tilde{x} \in \psi_{a_i}(W_{a_i})^{\varepsilon}. \text{ Then by Lemma 3 } \tilde{\psi} := \text{cl}[(\psi_{a_i}^{-1}(x_{\varepsilon}))_{\varepsilon}] \text{ is a well-defined element of } \tilde{X}_c. \text{ By assumption } u_{\varepsilon}(p_x) = u_{\varepsilon} \circ \psi_{a_i}^{-1}(x_{\varepsilon}) \text{ is a negligible net in } K. \text{ Thus by } [34], \text{ Th. 2.4, } U \circ \psi_{a_i}^{-1} = 0 \text{ in } \mathcal{G}(\psi_{a_i}(W_{a_i})) \text{ for all } \alpha, \text{ so } U = 0 \text{ by Proposition 3.} \]

5 Compatibility with distributional geometry, embeddings, and association

As in [10], we call $U \in \mathcal{G}(X)$ associated to 0, $U \approx 0$, if $\int_X u_{\varepsilon} \mu \to 0 \text{ (} \varepsilon \to 0 \text{)}$ for all compactly supported one densities $\mu \in \Gamma^\infty(X, \text{Vol}(X))$ and one (hence every) representative $(u_{\varepsilon})_{\varepsilon}$ of U. Clearly, \approx induces an equivalence relation on $\mathcal{G}(X)$ giving rise to a linear quotient space. If $\int_X u_{\varepsilon} \mu \to w(\mu)$ for some $w \in D'(X)$ then w is called the distributional shadow (or macroscopic aspect) of U and we write $U \approx w$. In terms of the local description established in Proposition 3 we have

\[U \approx 0 \iff U_{\alpha} \approx 0 \text{ in } \mathcal{G}(\psi_{a_i}(V_{a_i})) \forall \alpha \tag{4} \]

From this it follows that $U_1 \approx U_2$ implies $PU_1 \approx PU_2$ for each $P \in \mathcal{P}(X)$.

By [20], 6.3.4, any $w \in D'(X)$ can be identified with a family $(w_{\alpha})_{\alpha \in A}$, where $w_{\alpha} \in D'(\psi_{a_i}(V_{a_i}))$ satisfies the transformation law

\[w_{\beta} = (\psi_{\alpha} \circ \psi_{\beta}^{-1})^*(w_{\alpha}). \]

Here f^*w denotes the pullback of a distribution w under the diffeomorphism f. In particular, $w_{\alpha} = (\psi_{a_i}^{-1})^*(w|_{V_{a_i}})$. Again a straightforward calculation gives

\[U \approx w \iff U_{\alpha} \approx w_{\alpha} \text{ in } \mathcal{G}(\psi_{a_i}(V_{a_i})) \forall \alpha \tag{5} \]

Association relations will be our main tool in establishing compatibility with linear distributional geometry later on. Before we proceed with this analysis, however, let us address the problem of embedding $C^\infty(X)$ and $D'(X)$ into $\mathcal{G}(X)$. As in the case of open subsets of \mathbb{R}^n, $C^\infty(X)$ is embedded into $\mathcal{G}(X)$ via the "constant" embedding $\sigma : C^\infty(X) \to \mathcal{G}(X), f \mapsto \text{cl}[(f)_{\varepsilon}]$.

Turning now to the interrelation between $D'(X)$ and $\mathcal{G}(X)$ let us first clarify what we can expect at all from such an embedding. The method of choice
for open subsets of \(\mathbb{R}^n \), i.e., convolution with a mollifier \(\rho \) as in Section 1 is manifestly not diffeomorphism invariant, as is demonstrated by the following simple Example 1

Consider the diffeomorphism \(\mu(x) = 2x \) on \(\mathbb{R} \) and set \(w = \delta \in \mathcal{D}'(\mathbb{R}) \). Then \(\mu^* \delta = \frac{1}{2} \delta \) and we have

\[
((\iota \circ \mu^*) \delta)_\varepsilon = \mu(\frac{1}{2} \delta)_\varepsilon = \frac{1}{2} \rho \varepsilon \\
((\mu^* \circ \iota) \delta)_\varepsilon = \mu^* \rho \varepsilon = \rho \varepsilon (2 \cdot).
\]

From this we see that \(((\iota \circ \mu^* - \mu^* \circ \iota) \delta)_\varepsilon = \frac{1}{2} \rho \varepsilon (x) - \rho \varepsilon (2x) \) is not in the ideal \(\mathcal{N}(\mathbb{R}) \). However, it is evident that \((\iota \circ \mu^* - \mu^* \circ \iota) \delta \approx 0 \). In fact diffeomorphism invariance does hold on the level of association (cf. [2], Th. 9.1.2).

Finally, as was shown in [10], Remark 3, there can be no embedding of \(\mathcal{D}'(X) \) into \(\mathcal{G}(X) \) that commutes with differentiation in all local coordinates. The fact that a canonical embedding commuting with Lie derivatives was constructed in [15] for the full Colombeau algebra rests heavily on the dependence of representatives on an additional parameter \(\phi \in \mathcal{D}(X) \) (and on the ensuing modified definition of Lie derivatives of such representatives). Therefore we cannot expect an embedding providing this property in the setting of the special Colombeau algebra on manifolds.

On the positive side, the existence of injective sheaf morphisms \(\iota : \mathcal{D}' \to \mathcal{G} \) coinciding with \(\sigma \) on \(\mathcal{C}^\infty \) and satisfying \(\iota(w) \approx w \) for each \(w \in \mathcal{D}'(X) \) has been proved by de Roever and Damsma [10] using de Rham-regularizations (cf. [3], §15). In view of the above restrictions these properties of the embedding seem optimal (unless one is willing to furnish \(X \) with additional structure).

In the following construction we give an embedding which, while also providing a sheaf morphism possessing these optimal properties, is considerably simpler than the construction in [10], Th. 1.

Theorem 2 Let \(\mathcal{A} = (\psi_\alpha, V_\alpha)_\alpha \) be an atlas of \(X \) and let \(\{ \chi_j : j \in \mathbb{N} \} \) a smooth partition of unity subordinate to \((V_\alpha)_\alpha \). Let \(\text{supp}(\chi_j) \subseteq V_\alpha \) for \(j \in \mathbb{N} \) and choose for every \(j \in \mathbb{N} \) some \(\zeta_j \in \mathcal{D}(V_\alpha) \) such that \(\zeta_j \equiv 1 \) on \(\text{supp}(\chi_j) \). Fix some mollifier \(\rho \in \mathcal{S}(\mathbb{R}^n) \) with unit integral and \(\int \rho(x)x^\alpha \, dx = 0 \) for all \(|\alpha| \geq 1 \).

The map

\[
\iota_\mathcal{A} : \mathcal{D}'(X) \to \mathcal{G}(X) \\
u \to \text{cl}[(\sum_{j=1}^\infty \zeta_j \cdot (((\chi_j \circ \psi_{\alpha j}^{-1})u_\alpha_j) \ast \rho \varepsilon) \circ \psi_{\alpha j})_\varepsilon]
\]

is a linear embedding that coincides with \(\sigma \) on \(\mathcal{C}^\infty(X) \). Moreover, for each \(u \in \mathcal{D}'(X) \) we have \(\iota_\mathcal{A}(u) \approx u \) and \(\text{supp}(u) = \text{supp}(\iota_\mathcal{A}(u)) \).

\(^1\text{suggested by M. Oberguggenberger}\)
Proof. In the proof we will for the sake of brevity replace \(\alpha_j \) by \(j \) and set \(\widetilde{V}_\alpha = \psi_\alpha(V_\alpha) \). It is obvious that

\[
u_\varepsilon := \sum_{j=1}^\infty \zeta_j \cdot ((\chi_j \circ \psi_j^{-1})u_j) \ast \rho_\varepsilon \circ \psi_j
\]

is a smooth function on \(X \). Our first task will therefore consist in verifying the \(\mathcal{E}_M \)-bounds for \((u_\varepsilon)_\varepsilon \). This means that we have to estimate \(u_\varepsilon \circ \psi_\alpha^{-1} \) for arbitrary \(\alpha \in A \). Let \(K \subset \subset \widetilde{V}_\alpha \). Then \(L_K = \psi_j(\text{supp}(\zeta_j) \cap \psi_\alpha^{-1}(K)) \) is a compact subset of \(\widetilde{V}_j \). The fact that the \(\mathcal{E}_M(V_j) \)-function \((((\chi_j \circ \psi_j^{-1})u_j) \ast \rho_\varepsilon)_\varepsilon \) satisfies the necessary bounds on \(L_j \) shows that \((u_\varepsilon \circ \psi_\alpha^{-1})_\varepsilon \in \mathcal{E}_M(\widetilde{V}_\alpha) \).

To prove injectivity of \(\iota_A \), we suppose that \((u_\varepsilon \circ \psi_\alpha^{-1})_\varepsilon \in \mathcal{N}(\widetilde{V}_\alpha) \) for all \(\alpha \in A \). We have to show that \(u_\alpha = 0 \) in \(\mathcal{D}'(\widetilde{V}_\alpha) \) for all \(\alpha \). Fix some \(\alpha \in A \) and let \(\varphi \in \mathcal{D}(\widetilde{V}_\alpha) \). The term \((u_\varepsilon \circ \psi_\alpha^{-1}, \varphi) \) is a finite sum of expressions of the form

\[
\int_{\psi_j(V_j \cap \widetilde{V}_\alpha)} \zeta_j \circ \psi_\alpha^{-1}(x)(((\chi_j \circ \psi_j^{-1})u_j) \ast \rho_\varepsilon)(\psi_j \circ \psi_\alpha^{-1})(x) \varphi(x) \, dx
\]

For \(\varepsilon \to 0 \), this converges to

\[
\langle \zeta_j \circ \psi_\alpha^{-1}, (\chi_j \circ \psi_j^{-1})u_j, \varphi \circ \psi_\alpha \circ \psi_j^{-1} \rangle \rightarrow \sum_{j=1}^\infty ((\chi_j \circ \psi_j^{-1})u_j, \varphi).
\]

Therefore, for \(\varepsilon \to 0 \) we have

\[
\langle \nu_\varepsilon \circ \psi_\alpha^{-1}, \varphi \rangle \rightarrow \sum_{j=1}^\infty ((\chi_j \circ \psi_j^{-1})u_j, \varphi) = \langle u_\alpha, \varphi \rangle.
\]

On the other hand, since \((u_\varepsilon)_\varepsilon \in \mathcal{N}(X) \), the above expression converges to 0, which establishes the injectivity of \(\iota_A \). Also, the above calculation shows that \(\iota_A(u) \equiv u \) for each \(u \in \mathcal{D}'(X) \).

Let \(f \in \mathcal{C}^\infty(X) \). We claim that \(U := \iota_A(f) = \sigma(f) \). Considered as an element of \(\mathcal{D}'(X) \), \(f \) is identified with \(((f \circ \psi_\alpha^{-1})_\alpha \), so

\[
u_\varepsilon = \sum_{j=1}^\infty \zeta_j \cdot (((\chi_j f) \circ \psi_j^{-1}) \ast \rho_\varepsilon) \circ \psi_j.
\]
We have to show that \(((u_\varepsilon - f) \circ \psi^{-1}_\alpha)_{\varepsilon} \in \mathcal{N}(\tilde{V}_j) \) for all \(\alpha \in A \). Now
\[
f(x) = \sum_{j=1}^{\infty} \zeta_j(x)(\chi_j \cdot f)(x) = \sum_{j=1}^{\infty} \zeta_j(x)((\chi_j \cdot f) \circ \psi_j^{-1})(\psi_j(x)),
\]
so
\[
(u_\varepsilon - f) \circ \psi^{-1}_\alpha = \sum_{j=1}^{\infty} \zeta_j \circ \psi^{-1}_\alpha (((\chi_j \cdot f) \circ \psi_j^{-1}) \ast \rho_\varepsilon) - (\chi_j \cdot f) \circ \psi_j^{-1} \circ \psi_j \circ \psi^{-1}_\alpha.
\]

It therefore suffices to notice that each of the terms \((\ast)\) is in \(\mathcal{N}(\tilde{V}_j) \). But this follows by Taylor expansion as in the corresponding proof for open subsets of \(\mathbb{R}^n \). Finally, preservation of supports is also deduced exactly as in the local case (cf. e.g., \([28], 1.2.8 \)).

It immediately follows that \(\iota_A \) is a local operator, i.e., it indeed induces a sheaf morphism with the above properties. Nevertheless, just as the corresponding construction in \(\bigotimes \) \(\iota_A \) is *non-geometric* in an essential way, i.e., it depends on the chosen atlas as well as on the functions \(\zeta_j, \chi_j \), etc. For practical purposes however, this drawback is often compensated by the availability of regularization procedures adapted to the specific problem at hand that can be used to model the singularities directly in \(\mathcal{G}(X) \) without the use of a distinguished embedding.

The connection to the distributional picture is then effected by means of association procedures (cf. e.g., \([28], [28] \)) whose basic properties we now continue to study.

To this end let us first discuss consistency properties with respect to classical products (in the sense of association). In the absence of a distinguished embedding \(\iota \) we have to be slightly more cautious than in the case of \(\mathbb{R}^n \). For example the following (naive) generalization of the statement that the product \(C^\infty \times D' \to D' \) is respected by association (more precisely \(\iota(f) \rho(u) \approx \iota(fu) \) for all \(f \in C^\infty(\Omega), \ u \in D'(\Omega) \): “\(U, V \in \mathcal{G}(X) \), \(U \approx f \in C^\infty \) and \(V \approx w \in D'(X) \) \(\Rightarrow UV \approx fw \)” is wrong in general. To see this take \(\rho \in D(\mathbb{R}) \) with \(f \rho = 1 \). Then \(\text{cl}((\rho(\varepsilon)))_{\varepsilon} \approx 0 \) and clearly \(\text{cl}((\varepsilon)_{\varepsilon} \rho(\varepsilon)_{\varepsilon}) \approx 0 \) but \(\rho(\varepsilon)(\varepsilon) \rho(\varepsilon) \to \delta \) \(\delta \) \(\rho^2 \) in \(D' \). The reason for the validity of the corresponding \(\mathbb{R}^n \)-statement ultimately is that \(f \ast \rho_\varepsilon \to f \) uniformly on compact sets already for a continuous function \(f \), whereas \(\rho(x/\varepsilon) \to 0 \) only weakly. Therefore we introduce the following stronger equivalence relations on \(\mathcal{G}(X) \).

Definition 1 Let \(U \in \mathcal{G}(X) \).

(i) \(U \) is called \(C^k \)-associated to \(0 (0 \leq k \leq \infty) \), \(U \approx_k 0 \), if for all \(l \leq k \), all \(\xi_1, \ldots, \xi_l \in \mathcal{X}(X) \) and one (hence any) representative \((u_\varepsilon)_{\varepsilon} \)
\[
L_{\xi_1} \ldots L_{\xi_l} u_\varepsilon \to 0 \text{ uniformly on compact sets.}
\]

(ii) We say that \(U \) admits \(f \) as \(C^k \)-associated function, \(U \approx_k f \), if for all \(l \leq k \), all \(\xi_1, \ldots, \xi_l \in \mathcal{X}(X) \) and one (hence any) representative \(L_{\xi_1} \ldots L_{\xi_l} (u_\varepsilon - f) \to 0 \) uniformly on compact sets.
Clearly if U is C^k-associated to f then $f \in C^k(X)$. Moreover, if U admits for a C^k-associated function at all the latter is unique. Note also that the above notion of convergence may equivalently be expressed by saying that all $(u_{\alpha, \varepsilon})_\varepsilon$ converge uniformly in all derivatives of order less or equal k (resp. in all derivatives if $k = \infty$) on compact sets. We are now prepared to state the following

Proposition 4 Let $U, V \in \mathcal{G}(X)$.

(i) If $V \approx w \in \mathcal{D}'(X)$, $f \in C^\infty(X)$, and either (a) $U = \sigma(f)$ or (b) $U \approx_{\infty} f$, then $UV \approx fw$.

(ii) If $U \approx_{k} f$ and $V \approx_{k} g$ then $UV \approx_{k} fg$ ($f, g \in C^k(X)$).

Proof. (i)(a) is clear since $\int f u_{\varepsilon, \mu} = u_{\varepsilon}(f \mu) \rightarrow w(f \mu)$ for all compactly supported one-densities μ. To prove (i)(b) we use the fact that multiplication: $C^\infty \times \mathcal{D}' \rightarrow \mathcal{D}'$ as a bilinear separately continuous map is jointly sequentially continuous since both factors are barrelled ([24, §42.2(3) and §40.1]). (ii) follows from elementary analysis.

Proposition 4 (i)(a) is the reconciliation of the respective C^∞-module structures of \mathcal{D}' and \mathcal{G} on the level of association. Next we introduce the notion of integration of generalized functions.

Definition 2 Let $U \in \mathcal{G}(X)$ and $\mu \in \Gamma_{\infty}(X, Vol(X))$. Then we define the integral of U with respect to μ over $M \subset X$ by

$$\int_M U \mu = \text{cl}[\left(\int_{M} u_{\varepsilon, \mu}\right)]$$

For $U \mu$ compactly supported we set $\int_X U \mu := \int_K U \mu$ where K is any compact set containing $\text{supp}(U \mu)$ in its interior. It is easily seen that this definition is independent of the chosen K. Also, we have $\int_{\mathbb{R}} \delta(x) \, dx = 1$. We close this section by showing that the Lie derivative respects associated distributions.

Proposition 5 Let X be orientable and $U \approx w$. Then $L_\xi U \approx L_\xi w$.

Orientability is supposed in order to be able to identify one-densities with n-forms, where a Lie derivative is defined. Moreover, Stokes’ theorem is used in the following

Proof. Let $\nu \in \Omega^n_c(X)$ then

$$\int (L_\xi u_{\varepsilon}) \nu = - \int u_{\varepsilon}(L_\xi \nu) \rightarrow -w(L_\xi \nu) = L_\xi w(\nu)$$
6 Generalized sections of vector bundles

For a section \(s \in \Gamma(X, E) \) we call \(s^i_\alpha := \Psi^i_\alpha \circ s \circ \psi^{-1}_\alpha \) its \(i \)-th component with respect to the vector bundle chart \((V_\alpha, \Psi_\alpha)\) \((i = 1, \ldots, n')\), where \(n' \) is the dimension of the fibers).

Definition 3 Let \(E \to X \) be a vector bundle, and again \(I = (0, 1] \).

\[
\Gamma_{E}(X, E) := (\Gamma(X, E))^I
\]

\[
\Gamma_{E'}(X, E) := \{(s_\varepsilon)_{\varepsilon \in I} \in \Gamma_{E}(X, E) : \forall \alpha, \forall i = 1, \ldots, n' :

(\alpha i_\varepsilon) := (\Psi^i_\alpha \circ s_\varepsilon \circ \psi^{-1}_\alpha)\varepsilon \in E_M(\psi_\alpha(V_\alpha))\}
\]

\[
\Gamma_{N}(X, E) := \{(s_\varepsilon)_{\varepsilon \in I} \in \Gamma_{E}(X, E) : \forall \alpha, \forall i = 1, \ldots, n' :

(\alpha i_\varepsilon) \in N(\psi_\alpha(V_\alpha))\}
\]

First note that although the composition \(f \circ U \) of a generalized function \(U \) with a smooth function \(f \) generally need not be moderate the notions of moderateness and negligibility as defined above are preserved under the change of bundle charts due to the (fiberwise) linearity of the transition functions. In particular, these notions do not depend on the chosen atlas. In fact, using Peetre’s theorem we obtain the following global description of moderate resp. negligible sections:

\[
\Gamma_{E}(X, E) = \{(s_\varepsilon)_{\varepsilon \in I} \in \Gamma_{E}(X, E) : \forall P \in P(X, E)

\forall K \subset X \exists N \in \mathbb{N} : \sup_{p \in K} \|P u_\varepsilon(p)\| = O(\varepsilon^{-N})\}
\]

\[
\Gamma_{N}(X, E) = \{(s_\varepsilon)_{\varepsilon \in I} \in \Gamma_{E}(X, E) : \forall P \in P(X, E)

\forall K \subset X \forall m \in \mathbb{N} : \sup_{p \in K} \|P u_\varepsilon(p)\| = O(\varepsilon^m)\}
\]

Here \(\| \| \) denotes the norm induced on the fibers of \(E \) by any Riemannian metric.

Similar to \((10), (12)\), Th. 13.1 yields a characterization of \(\Gamma_{N}(X, E) \) as a subspace of \(\Gamma_{E}(X, E) \) that imposes the above growth restrictions on representatives only with respect to differential operators of order 0. In order to define generalized sections of the bundle \(E \to X \) we need the following

Proposition 6 With operations defined componentwise (i.e., for each \(\varepsilon \)), \(\Gamma_{E}(X, E) \) is a \(G(X) \)-module with \(\Gamma_{N}(X, E) \) a submodule in it.

Proof. We need to establish the following statements (a) \((u_\varepsilon)_\varepsilon \in E_M(X), (s_\varepsilon)_\varepsilon \in \Gamma_{E}(X, E) \Rightarrow (u_\varepsilon s_\varepsilon)_\varepsilon \in \Gamma_{E}(X, E) \), (b) \((u_\varepsilon)_\varepsilon \in N(X), (s_\varepsilon)_\varepsilon \in \Gamma_{E}(X, E) \Rightarrow (u_\varepsilon s_\varepsilon)_\varepsilon \in \Gamma_{N}(X, E) \) and (c) \((u_\varepsilon)_\varepsilon \in E_M(X), (s_\varepsilon)_\varepsilon \in \Gamma_{N}(X, E) \Rightarrow (u_\varepsilon s_\varepsilon)_\varepsilon \in \Gamma_{N}(X, E) \), which easily follow from the local description in Proposition 2 and the definitions above.

Now we are in the position to define.

Definition 4 The \(G(X) \)-module of generalized sections of \(E \to X \) is defined as the quotient

\[
\Gamma_{N}(X, E) := \Gamma_{E}(X, E) / \Gamma_{N}(X, E).
\]
As usual we denote generalized objects by capital letters, e.g., \(S = \text{cl}([s_x]_x). \) By the very definition of \(\Gamma_G(X, E) \) we may describe a generalized section \(S \) by a family \((S_\alpha)_\alpha \equiv ((S_\alpha^n)_\alpha)_{\alpha \in 1}, \) where \(S_\alpha \) is called the local expression of \(S \). Its components \(S_\alpha^i := \Psi_i \circ S \circ \psi_\alpha^{-1} \in \mathcal{G}(\psi_\alpha(V_\alpha)) \) \((i = 1, \ldots, n') \) satisfy

\[
S_\alpha^i(x) = (\psi_{\alpha,\beta})^i_j(\psi_\beta \circ \psi_\alpha^{-1}(x)) S_\beta^j(\psi_\beta \circ \psi_\alpha^{-1}(x))
\]

for all \(x \in \psi_\alpha(V_\alpha \cap V_\beta) \), where \(\psi_{\alpha,\beta} \) denotes the transition functions of the bundle. Hence formally generalized sections of \(E \to X \) are locally simply given by “ordinary” sections with generalized “coefficients.” We shall see shortly that this property in fact also holds globally (cf. Theorem 4 below).

As before smooth sections may be embedded into \(\Gamma_G(X, E) \) by the “constant” embedding now denoted by \(\Sigma \), i.e., \(\Sigma \circ (\psi_\alpha(V_\alpha)) \). By “ordinary” sections with generalized “coefficients.” We shall see shortly that this property in fact also holds globally (cf. e.g., \([22]\), (2.2.4)) and the isomorphy of the second and third module in the above chain of course also holds locally, in order to finish the proof it suffices to show that \(\mathcal{G}(U, E) \equiv \mathcal{G}(U) \otimes_{\mathcal{C}(U)} \) \(\Gamma(U, E) \) for any trivializing open set \(U \subseteq X \).

\begin{center}
\begin{tikzcd}
\mathcal{C}(X) \times \Gamma(X, E) \arrow{r}{\sigma \times \Sigma} \arrow{d} & \Gamma(X) \times \Gamma_G(X, E) \arrow{d} \\
\Gamma(X, E) \arrow{r}{\Sigma} & \Gamma_G(X, E)
\end{tikzcd}
\end{center}

The most important structural properties of \(\mathcal{G}(X, E) \) are subsumed in the following results.

Theorem 3 \(\Gamma_G(_ , E) \) is a fine sheaf of \(\mathcal{G}(_) \)-modules.

\textit{Proof.} This is a straightforward generalization of the \(\mathbb{R}^n \)-case. \(\Box \)

Theorem 4 The following chain of \(\mathcal{C}(X) \)-module isomorphisms holds:

\[
\Gamma_G(X, E) \cong \mathcal{G}(X) \otimes_{\mathcal{C}(X)} \Gamma(X, E) \cong L_{\mathcal{C}(X)} \left(\Gamma(X, E^*) , \mathcal{G}(X) \right)
\]

\textit{Proof.} \(\Gamma(X, E) \) is projective and finitely generated (apply \([12]\), 2.23, Cor. to each connected component), \(\Gamma(X, E^*) \cong \Gamma(X, E)^* \) \(([12], 2.24, \text{Rem.}) \), and, consequently, \(\Gamma(X, E)^* \cong \Gamma(X, E) \) (Here \(\Gamma(X, E)^* \) denotes the dual \(\mathcal{C}(X) \)-module of \(\Gamma(X, E) \)). Hence \(\mathcal{G}(X) \otimes_{\mathcal{C}(X)} \Gamma(X, E) \cong L_{\mathcal{C}(X)} \left(\Gamma(X, E^*) , \mathcal{G}(X) \right) \) follows from \([1]\), Ch. II, §4, 2.

Since both \(\Gamma_G(_ , E) \) and \(L_{\mathcal{C}(_)} (\Gamma(_ , E^*), \mathcal{G}(_)) \) are sheaves of \(\mathcal{C}(_) \)-modules (cf. e.g., \([22]\), (2.2.4)) and the isomorphy of the second and third module in the above chain of course also holds locally, in order to finish the proof it suffices to show that \(\mathcal{G}(U, E) \equiv \mathcal{G}(U) \otimes_{\mathcal{C}(U)} \Gamma(U, E) \) for any trivializing open set \(U \subseteq X \). But for such a \(U \) we have \(\Gamma_G(U, E) \equiv \mathcal{G}(U)^n \) and \(\Gamma(U, E) \equiv \mathcal{C}(U)^n \), so the claim follows. \(\Box \)
Remark 1 Endowing $\mathcal{G}(X) \otimes_{C^\infty(X)} \Gamma(X,E)$ with the canonical $\mathcal{G}(X)$-module structure induced by $u_1 \cdot (u_2 \otimes \xi) = (u_1 u_2) \otimes \xi$, $(u_1,u_2 \in \mathcal{G}(X), \xi \in \Gamma(X,E))$ it follows immediately that the $C^\infty(X)$-module isomorphism $\Gamma(g) \cong \mathcal{G}(X) \otimes_{C^\infty(X)} \Gamma(X,E)$ is in fact also a $\mathcal{G}(X)$-module isomorphism.

Corollary 1 Let E_1, \ldots, E_k, F be vector bundles with base manifold X. Then the following isomorphism of $C^\infty(X)$-modules holds:

$$\Gamma_g \left(X, L(E_1, \ldots, E_k; F) \right) \cong \mathcal{L}_{C^\infty(X)} \left(\Gamma(X,E_1), \ldots, \Gamma(X,E_k); \Gamma_g(X,F) \right)$$

Proof. By Theorem 5 the right hand side can be written as

$$\mathcal{L}_{C^\infty(X)} \left(\Gamma(X,E_1), \ldots, \Gamma(X,E_k); \mathcal{G}(X) \otimes_{C^\infty(X)} \Gamma(X,F) \right)$$

$$\cong \mathcal{G}(X) \otimes_{C^\infty(X)} \mathcal{L}_{C^\infty(X)} \left(\Gamma(X,E_1) \otimes_{C^\infty(X)} \ldots \right.$$

$$\left. \ldots \otimes_{C^\infty(X)} \Gamma(X,E_k); \mathcal{G}(X) \otimes_{C^\infty(X)} \Gamma(X,F) \right)$$

$$\cong \mathcal{G}(X) \otimes_{C^\infty(X)} \mathcal{L}_{C^\infty(X)} \left(\Gamma(X,E_1), \ldots, \Gamma(X,E_k); \Gamma(X,F) \right)$$

Here the second isomorphism holds by [4], Ch. II §2., Prop. 2 since $\Gamma(X,E_1) \otimes_{C^\infty(X)} \ldots \otimes_{C^\infty(X)} \Gamma(X,E_k)$ is finitely generated and projective. Now

$$\mathcal{L}_{C^\infty(X)} \left(\Gamma(X,E_1) \ldots \Gamma(X,E_k); \Gamma(X,F) \right) \cong \Gamma \left(X, L(E_1, \ldots, E_k; F) \right)$$

by [4], 2.24, Cor. 2, so the claim follows from Theorem 5. \hfill \Box

Theorem 5 The $\mathcal{G}(X)$-module $\Gamma_g(X,E)$ is finitely generated and projective.

Proof. Choose a vector bundle F such that $E \oplus F = X \times \mathbb{R}^{n'}$ for some $n' \in \mathbb{N}$ (apply [4], 2.23 to each connected component). Then we have the following $\mathcal{G}(X)$-isomorphisms:

$$\Gamma_g(X,E) \oplus_{\mathcal{G}(X)} \Gamma_g(X,F) \cong \Gamma_g(X \times \mathbb{R}^{n'}, X) \cong \mathcal{G}(X)^{n'}$$

It follows that the $\mathcal{G}(X)$-module $\Gamma_g(X,E)$ is a direct summand in a finitely generated free $\mathcal{G}(X)$-module, hence is projective and finitely generated (see [4], Ch. II, §2, 2., Cor. 1). \hfill \Box

We will study further properties of $\Gamma_g(X,E)$ as a $\mathcal{G}(X)$-module after Lemma 5.

Analogously to the earlier cases we set up coupled calculus in order to obtain a convenient language for describing compatibility with the distributional
setting. In the following definition, $\langle . \rangle$ denotes the canonical vector bundle homomorphism

$$
\langle . \rangle := \text{tr}_E \otimes \text{id}
$$

$$(E \otimes E^*) \otimes \text{Vol}(X) \rightarrow (X \times \mathbb{C}) \otimes \text{Vol}(X) = \text{Vol}(X)
$$

where tr_E is the vector bundle isomorphism induced by the pointwise action of $v^* \in E^*_p$ on $v \in E_p$.

Definition 5

(i) A generalized section $S \in \Gamma_G(X,E)$ is called associated to 0, $S \approx 0$, if for all $\mu \in \Gamma_c(X,E^* \otimes \text{Vol}(X))$ and one (hence any) representative $(s_\varepsilon)_\varepsilon$ of S

$$
\lim_{\varepsilon \to 0} \int_X (s_\varepsilon | \mu) = 0.
$$

(ii) Let $S \in \Gamma_G(X,E)$ and $w \in \mathcal{D}'(X,E)$. We say that S admits w as associated distribution (with values in E) and call w the distributional shadow (or macroscopic aspect) of S if for all $\mu \in \Gamma_c(X,E^* \otimes \text{Vol}(X))$ and one (hence any) representative

$$
\lim_{\varepsilon \to 0} \int_X (s_\varepsilon | \mu) = w(\mu),
$$

where $w(\mu)$ denotes the distributional action of w on μ. In that case we use the notation $S \approx w$.

$S \approx T := S - T \approx 0$ defines an equivalence relation giving rise to a linear quotient of $\Gamma_G(X,E)$. If $S \approx T$ we call S and T associated to each other. In complete analogy to the scalar case, by localization we immediately have

Proposition 7

(i) $S \approx 0$ in $\Gamma_G(X,E) \Leftrightarrow S^i_\alpha \approx 0$ in $G(\psi_\alpha(V_\alpha)) \forall \alpha, i = 1, \ldots, n'$

(ii) $S \approx w \in \mathcal{D}'(X,E) \Leftrightarrow S^i_\alpha \approx w^i_\alpha$ in $G(\psi_\alpha(V_\alpha)) \forall \alpha, i = 1, \ldots, n'$

\(\square\)

Definition 6 Let $S \in \Gamma_G(X,E)$.

(i) S is called C^k-associated to 0 ($0 \leq k \leq \infty$), $S \approx_k 0$, if for one (hence any) representative $(s_\varepsilon)_\varepsilon$ and $\forall \alpha, i = 1, \ldots, n' s^i_\alpha \varepsilon \rightarrow 0$ uniformly on compact sets in all derivatives of order less or (if $k < \infty$) equal to k.

(ii) We say that S allows $t \in \Gamma^k(X,E)$ as a C^k-associated section, $S \approx_k t$, if for one (hence any) representative $(s_\varepsilon)_\varepsilon$ and $\forall \alpha, i = 1, \ldots, n' s^i_\alpha \varepsilon \rightarrow t^i_\alpha$ uniformly on compact sets in all derivatives of order less or (if $k < \infty$) equal to k.

18
As is the case with $\mathcal{G}(X)$ the different C^∞-module structures of $\mathcal{D}'(X, E)$ and $\Gamma(\mathcal{G}(X,E))$, respectively, may be reconciled at the level of association:

Proposition 8 Let $U \in \mathcal{G}(X)$ and $S \in \Gamma(\mathcal{G}(X,E))$.

(i) If $U \approx w \in \mathcal{D}'(X)$, $s \in \Gamma(X,E)$ and either (a) $S = \Sigma(s)$ or (b) $S \approx_{\infty} s$, then $US \approx ws$.

(ii) If $S \approx s \in \mathcal{D}'(X,E)$, $f \in C^\infty(X)$ and either (a) $U = \sigma(f)$ or (b) $U \approx_{f} f$, then $US \approx fs$.

(iii) If $U \approx_k f$ and $S \approx_k s$ then $US \approx_k fs$ ($f \in \mathcal{C}^k(X)$, $s \in \Gamma^k(X,E)$).

Proof. Simply apply Proposition 8 componentwise.

\[\square \]

7 Generalized tensor analysis

In the case where $E \to X$ is some tensor bundle $T^r_s(X)$ over the manifold X we shall use the notation $\mathcal{G}_s^r(X)$ for $\Gamma(\mathcal{G}(X,T^r_s(X)))$ and similarly for Γ_E, Γ_{E_M} and Γ_X. The space of smooth tensor fields will be denoted by $T^r_s(X)$. One of the main goals in our analysis of this particular case of generalized sections of vector bundles is to demonstrate the relative ease with which arguments from classical analysis can be carried over to the generalized functions setting. Our first result gives several algebraic characterizations of $\mathcal{G}_s^r(X)$.

Theorem 6 (i) As $\mathcal{G}(X)$-module, $\mathcal{G}_s^r(X) \cong L_{\mathcal{G}(X)} \left(\mathcal{G}_0^0(X)^r, \mathcal{G}_0^1(X)^s; \mathcal{G}(X) \right)$.

(ii) As $C^\infty(X)$-module, $\mathcal{G}_s^r(X) \cong L_{C^\infty(X)} \left(\Omega^1(X)^r, \mathcal{X}(X)^s; \mathcal{G}(X) \right)$.

(iii) As $C^\infty(X)$-module and also as $\mathcal{G}(X)$-module,

\[\mathcal{G}_s^r(X) \cong \mathcal{G}(X) \otimes_{C^\infty(X)} T^r_s(X). \]

To simplify notations we will set $r = 1 = s$ in the proof. We first establish the following localization result.

Lemma 4 Let $T \in L_{\mathcal{G}(X)}(\mathcal{G}_0^0(X), \mathcal{G}_0^1(X); \mathcal{G}(X))$, $A \in \mathcal{G}_0^0(X)$ and $\Xi \in \mathcal{G}_0^1(X)$ with $\Xi|_U = 0$ for some open $U \subset X$. Then $T(A,\Xi)|_U = 0$.

Proof. Since U can be written as the union of a collection of open sets $(U_p)_{p \in U}$ such that each $\bigcup_p \subset V_\alpha$ for some chart V_α and due to the sheaf property of $\mathcal{G}(X)$ we may assume without loss of generality that $\bigcup \subset V_{\alpha}$ and write $\Xi|_{V_\alpha} = \Xi^i \partial_i$ with $\Xi^i \in \mathcal{G}(V_\alpha)$ vanishing on U. Let now f be a bump function on \bigcup (i.e., $f \in \mathcal{D}(V_\alpha)$, $f|_{\bigcup} = 1$) then (using summation convention)

\[T(A,\Xi)|_U = f^2|_U T(A,\Xi)|_U = f^2 T(A,\Xi)|_U \]
\[= T(A,f\Xi^i \partial_i)|_U = f \Xi^i T(A,f \partial_i)|_U \]
\[= f\Xi^i|_U T(A,f \partial_i)|_U = 0, \]

19
where we did not distinguish notationally between \(f \) and \(\sigma(f) \). \(\square \)

From this result it follows that for any \(V \subseteq X \) open, \(A \in \mathcal{G}_0^0(V) \) and \(\Xi \in \mathcal{G}_0^0(V) \) we may unambiguously define \(T|_V(A, \Xi) \).

Proof of the theorem. (i) Let \(T = \text{cl}[(t_\varepsilon)_\varepsilon] \in \mathcal{G}(X) \), \(\tilde{T} : \mathcal{G}^0(X) \times \mathcal{G}^0(X) \to \mathcal{G}(X) \) is well-defined and \(\mathcal{G}(X) \)-bilinear, so \(\tilde{T} \in L_{\mathcal{G}(X)}(\mathcal{G}_0^0(X), \mathcal{G}_0^0(X); \mathcal{G}(X)) \). Moreover, the assignment \(T \to \tilde{T} \) is also \(\mathcal{G}(X) \)-linear, so it only remains to show that the latter is an isomorphism.

To prove injectivity assume \(\tilde{T} = 0 \), that is \((t_\varepsilon(a_\varepsilon, \xi_\varepsilon))_\varepsilon \in \mathcal{N}(X) \) for all \(A = \text{cl}[(a_\varepsilon)_\varepsilon] \in \mathcal{G}_0^0(X) \) and all \(\Xi = \text{cl}[(\xi_\varepsilon)_\varepsilon] \in \mathcal{G}_0^0(X) \). To show that \(T = 0 \in \mathcal{G}_1^1(X) \) it suffices to work locally. Choose \(K \subset \subset V_\alpha \) and \(A \in \mathcal{G}_1^1(X) \), \(\Xi \in \mathcal{G}_1^1(X) \) whose compact supports are contained in \(V_\alpha \) and such that \(A = \Sigma(dx^i) \), \(\Xi = \Sigma(\partial_j) \) on an open neighborhood \(U \) of \(K \) in \(V_\alpha \) \((1 \leq i, j \leq n)\). Then \(\mathcal{N}(U) \ni (t_\varepsilon(a_\varepsilon, \xi_\varepsilon)|_V)_\varepsilon = (t_\varepsilon(\varepsilon_j)|_V)_\varepsilon \). Since \(i, j \) were arbitrary we are done. To show surjectivity choose \(\tilde{T} \in L_{\mathcal{G}(X)}(\mathcal{G}_0^0(X), \mathcal{G}_0^0(X); \mathcal{G}(X)) \). By the remark following Lemma 3 for any chart \((V_\alpha, \psi_\alpha)\) with coordinates \(x^i \) we may define

\[
T_\alpha^{-1} = \tilde{T}|_{V_\alpha}(dx^i, \partial_j) \circ \psi_\alpha^{-1} \in \mathcal{G}(\psi_\alpha(V_\alpha)),
\]

Since \(\tilde{T} \) is globally defined the \((T_\alpha)_\alpha\) form a coherent family. Hence by the sheaf property of \(\mathcal{G}_1^1(X) \) there exists a unique \(T \in \mathcal{G}_1^1(X) \) represented by the family \((T_\alpha)_\alpha\) and by construction \(\tilde{T} \) is the image of \(T \).

(ii) follows from Corollary 2 (alternatively, it can be proved analogously to (i)). Finally, (iii) is immediate from Theorem 3 and Remark 3. \(\square \)

Theorem 3 (iii) was suggested as a *definition* for the space of Colombeau tensor fields in [12], Ch. 2. The proof of Theorem 3 (i) is easily adapted to yield the following result on spaces of generalized sections:

Proposition 9 Let \(E_1, \ldots, E_k, F \) be vector bundles with base manifold \(X \). Then the following isomorphism of \(\mathcal{G}(X) \)-modules holds:

\[
\Gamma_{\mathcal{G}}(X, L(E_1, \ldots, E_k; F)) \cong L_{\mathcal{G}(X)}(\Gamma_{\mathcal{G}}(X, E_1), \ldots, \Gamma_{\mathcal{G}}(X, E_k); \Gamma_{\mathcal{G}}(X, F))
\]

(An alternative proof of Proposition 3 can be given along the lines of [12], 2.24.) Hence

\[
L_{\mathcal{G}(X)}(\Gamma_{\mathcal{G}}(X, E), \mathcal{G}(X)) \cong \Gamma_{\mathcal{G}}(X, E^*)
\]

(7)

It follows that the \(\mathcal{G}(X) \)-module \(\Gamma_{\mathcal{G}}(X, E) \) is reflexive. Also, we note that the proof of [12], Ch. II, Prop. XIV can directly be adapted to establish:
Proposition 10 Let E, F be vector bundles with base manifold X. Then the following isomorphism of $\mathcal{G}(X)$-modules holds:

$$\Gamma_\mathcal{G}(X, E) \otimes \mathcal{G}(X, F) \cong \Gamma_\mathcal{G}(X, E \otimes F) \quad (8)$$

In particular, from [4], Proposition 1[0] and Theorem 3 we conclude:

$$L_\mathcal{G}(X) \left(\Gamma_\mathcal{G}(X, E_1), \ldots, \Gamma_\mathcal{G}(X, E_k) \right) \Gamma_\mathcal{G}(X, F)$$

$$\cong L_\mathcal{G}(X) \left(\Gamma_\mathcal{G}(X, E_1) \otimes \mathcal{G}(X) \ldots \right.$$

$$\left. \ldots \otimes \mathcal{G}(X) \Gamma_\mathcal{G}(X, E_k) \right) \otimes \mathcal{G}(X) \Gamma_\mathcal{G}(X, F) \quad (9)$$

Returning now to the special case of tensor bundles, given a generalized tensor field $T \in \mathcal{G}^r_s(X)$ we shall call the n^{r+s} generalized functions on V_α defined by

$$T^{\alpha_1 \ldots \alpha_r \beta_1 \ldots \beta_s} := T|_{V_\alpha}(dx^{i_1}, \ldots, dx^{i_r}, \partial_{j_1}, \ldots, \partial_{j_s})$$

its components with respect to the chart (V_α, ψ_α). We shall use abstract index notation (cf. [36], Chap. 2) whenever convenient and write $T^{\alpha_1 \ldots \alpha_r}_{\beta_1 \ldots \beta_s} \in \mathcal{G}^r_s(X)$.

Hence we shall denote the indices of $\Xi^{\alpha} \in \mathcal{G}^0_0(X)$ and $\Lambda_\alpha \in \mathcal{G}^0_a(X)$ w.r.t. the chart (V_α, ψ_α) by $\Xi^{\alpha \beta}$ and Λ^α, respectively. Similarly the components of a representative $(t^{\alpha_1 \ldots \alpha_r}_{\beta_1 \ldots \beta_s})_\varepsilon \in \mathcal{E}_M^\varepsilon(X)$ of $T^{\alpha_1 \ldots \alpha_r}_{\beta_1 \ldots \beta_s} \in \mathcal{G}^r_s(X)$ will be denoted by $(t^{\alpha_1 \ldots \alpha_r}_{\beta_1 \ldots \beta_s})_\varepsilon$.

The spaces of moderate respectively negligible nets of tensor fields may be characterized invariantly by the Lie derivative (similar to the scalar case, cf. Lemma 3 (ii)).

Proposition 11

$$\mathcal{E}_M^\varepsilon(X) = \{(t_\varepsilon)_{\varepsilon \in I} \in (\mathcal{E})^\varepsilon(X) : \forall K \subset X, \forall k \in \mathbb{N}_0, \exists N \in \mathbb{N} \forall \xi_1, \ldots, \xi_k$$

$$\in T_0^1(X) : \sup_{p \in K} \|L_{\xi_1} \ldots L_{\xi_k} t_\varepsilon(p)\| = O(\varepsilon^{-N}) \text{ as } \varepsilon \to 0\}$$

$$\mathcal{N}_M^\varepsilon(X) = \{(t_\varepsilon)_{\varepsilon \in I} \in (\mathcal{E})^\varepsilon(X) : \forall K \subset X, \forall k, m \in \mathbb{N}_0 \forall \xi_1, \ldots, \xi_k$$

$$\in T_0^1(X) : \sup_{p \in K} \|L_{\xi_1} \ldots L_{\xi_k} t_\varepsilon(p)\| = O(\varepsilon^m) \text{ as } \varepsilon \to 0\}$$
where \(||.|| \) denotes the norm induced on \(T^*_x(X) \) by any Riemannian metric on \(X \).

Definition 7 Let \(S \in \mathcal{G}^r_s(X) \) and \(T \in \mathcal{G}^r_{s'}(X) \). We define the tensor product \(S \otimes T \in \mathcal{G}^r_{s+s'}(X) \) of \(S \) and \(T \) by
\[
S \otimes T := \text{cl}[(s \otimes t)_\varepsilon].
\]

Using the local description it is easily checked that the tensor product is well defined. Moreover it is \(\mathcal{G}(X) \)-bilinear, associative and by a straightforward generalization of Proposition 4 displays the following consistency properties with respect to the classical resp. distributional tensor product.

Proposition 12 Let \(S \in \mathcal{G}^r_s(X) \) and \(T \in \mathcal{G}^r_{s'}(X) \).

(i) If \(T \approx w \in \mathcal{D}'_{s'}(X), s \in T^s_s(X) \) and either (a) \(S = \Sigma(s) \) or (b) \(S \approx \infty \) then \(S \otimes T \approx s \otimes w \) in \(\mathcal{G}^r_{s+s'}(X) \).

(ii) If \(S \approx k \) and \(T \approx k \) then \(S \otimes T \approx k \) in \(\mathcal{G}^r_{s+s'}(X) \).

\(\square \)

We may now easily generalize the following notions of classical tensor calculus.

Definition 8 (i) Let \(T_{a_1...a_r}^{b_1...b_s} \in \mathcal{G}^r_s(X) \). We define the contraction of \(T_{a_1...a_r}^{b_1...b_s} \) by
\[
\dot{T}_{a_1...i...a_r}^{b_1...i...b_s} := \text{cl}[(t_{a_1...i...a_r}^{b_1...i...b_s})_\varepsilon] \in \mathcal{G}^{r-1}_{s-1}(X).
\]

(ii) For any smooth vector field \(\xi \) on \(X \) the Lie derivative of \(T \in \mathcal{G}^r_s(X) \) with respect to \(\xi \) is given by
\[
L_\xi T := \text{cl}[(L_\xi t)_\varepsilon].
\]

(iii) Finally, we define the universal generalized tensor algebra over \(X \) by
\[
\dot{G}(X) := \bigoplus_{r,s} \mathcal{G}^r_s(X).
\]

The Lie derivative displays the following consistency property with respect to its distributional counterpart

Proposition 13 Let \(X \) be orientable and \(T \approx t \) in \(\mathcal{G}^r_s(X) \). Then \(L_\xi T \approx L_\xi t. \)

\(\square \)

Next we introduce the generalized Lie derivative, i.e., the Lie derivative with respect to a generalized vector field. We note that an analogous definition (i.e., Lie derivative of a distributional tensor field with respect to a distributional vector field) is impossible in the purely distributional setting (cf. [32], §5).
Definition 9 Let $\Xi \in \mathcal{G}_0^1(X)$ and $T \in \mathcal{G}_0^r(X)$. We define the generalized Lie derivative of T with respect to Ξ by
\[
L_{\Xi}(T) := \text{cl}[(L_{\xi}(t\varepsilon))_{\varepsilon}].
\]
In case $U \in \mathcal{G}(X)$ we also use the notation $\Xi(U)$ for $L_{\Xi}U$.

The well-definedness of $L_{\Xi}(T)$ is an easy consequence of the local description. Literally all classical (algebraic) properties of the Lie derivative carry over since they hold componentwise. In particular, for generalized vector fields Ξ, H we have $L_{\Xi}H = [\Xi, H] := \text{cl}[([\xi, \eta])_{\varepsilon}]$ and for all generalized functions U we have: $[U, H] = U[\Xi, H] = H(U)\Xi$. Moreover, we immediately get the following consistency properties.

Proposition 14 Let $\Xi \in \mathcal{G}_0^1(X)$ and $T \in \mathcal{G}_0^r(X)$

(i) If $\Xi = \Sigma(\xi)$ for some $\xi \in \mathcal{T}_0^1(X)$ then $L_{\Xi}(T) = L_{\xi}(T)$.

(ii) If $\Xi \approx_\xi \in \mathcal{T}_0^1(X)$ and $T \approx_t \in \mathcal{D}_0^r(X)$ or conversely, if $\Xi \approx_{\xi t} \in \mathcal{D}_0^r(X)$ and $T \approx_{\xi t} \in \mathcal{T}_0^r(X)$ then $L_{\Xi}(T) \approx_{\xi t}$.

(iii) If $\Xi \approx_{\xi t}$ and $T \approx_{\xi_{k t}} \in \mathcal{G}^{k+1}(X, TX)$ then $L_{\Xi}(T) \approx_{\xi_{k t}} \in \mathcal{G}^{k+1}(X, TX))$.

\[\square\]

For a generalized vector field Ξ the map $L_{\Xi} \equiv \Xi : \mathcal{G}(X) \to \mathcal{G}(X)$ is clearly \mathbb{R}-linear (in fact even \mathbb{R}-linear) and obeys the Leibniz rule, hence is a derivation on $\mathcal{G}(X)$. Moreover any derivation on the algebra of generalized function arises this way.

Theorem 7 $\mathcal{G}_0^1(X)$ is (\\mathbb{R}-linearly) isomorphic to $\text{Der}(\mathcal{G}(X))$.

Proof. It suffices to show that for any derivation θ on $\mathcal{G}(X)$ we may construct a unique generalized vector field Ξ such that $\theta(U) = \Xi(U)$ for all $U \in \mathcal{G}(X)$. We start by showing that θ is a local operator, i.e., that $U = 0$ on $V \subseteq X$ open implies $\theta(U)|_V = 0$. To this end choose any open W with $\overline{W} \subset \subset V$ and a function $f \in \mathcal{D}(V)$ equal to 1 on W. Then $U = (1-f)U$ and
\[\theta(U)|_W = \theta(1-f)U|_W + (1-f)\theta(U)|_W = 0 \in \mathcal{G}(W)\]
Since \mathcal{G} is a sheaf, $\theta(U)|_V = 0$. Now let (V_α, ψ_α) be a chart in X, $x = \psi_\alpha(p)$ and $U \in \mathcal{G}(X)$. Then for y in a neighborhood of x
\[
(U \circ \psi_\alpha^{-1})(y) = (U \circ \psi_\alpha^{-1})(x) + \int_0^1 \frac{dt}{dt} (U \circ \psi_\alpha^{-1})(x + t(y - x)) \ dt
\]
\[
= (U \circ \psi_\alpha^{-1})(x) + \sum_{i=1}^n (y^i - x^i) \int_0^1 D_i(U \circ \psi_\alpha^{-1})(x + t(y - x)) \ dt.
\]
Hence in a neighborhood of p ($q = \psi^{-1}_\alpha(y)$), $U(q) = U(p) + \sum_{i=1}^n (\psi^i_\alpha(q) - \psi^i_\lambda(p)) g_i(q)$, where g_i is given by the integral above whence, in particular, $g_i(p) = \frac{\partial}{\partial x_i} (U \circ \psi^{-1}_\alpha)|_x$. Consequently

\[(\theta(U))(p) = \sum_{i=1}^n \partial_i U(p) \theta(\psi^i_\alpha)(p)\]

and we define Ξ locally to be given by $\Xi^i = \theta(\psi^i_\alpha)$ (this is well-defined by the first part of the proof). It is easily checked that this indeed defines a coherent family in the sense of [2].

\[\square\]

8 Exterior Algebra, Hamiltonian Mechanics

In this section we are going to study generalized sections of the bundle $\Lambda^k T^* X$, i.e., generalized k-forms, thereby setting the stage for nonsmooth Hamiltonian mechanics.

To simplify notations we set $\bigwedge^k G(X) := \Gamma_G(X, \Lambda^k T^* X)$ and similar for the spaces of moderate resp. negligible nets of k-forms. If X is oriented (with its orientation induced by θ) it follows from the local description of generalized sections that $\Sigma(\omega) \equiv j(\omega)$ for all $\omega \in \Omega^k (X)$, where j is the embedding of regular objects into the space of distributional k-forms from $\bigwedge^k (\Omega^k G)$ (see [2]). The basic operations of exterior algebra are carried over to our setting by componentwise definitions.

Definition 10 Let $A = \text{cl}[(\alpha_\varepsilon)_\varepsilon] \in \bigwedge^k G(X)$, $B = \text{cl}[(\beta_\varepsilon)_\varepsilon] \in \bigwedge^l G(X)$ and $\Xi = \text{cl}[(\xi_\varepsilon)_\varepsilon] \in G^1(X)$. We define the exterior derivative, the wedge product and the insertion operator, respectively, by:

(i) $dA := \text{cl}[(d\alpha_\varepsilon)_\varepsilon] \in \bigwedge^{k+1} G(X)$

(ii) $A \wedge B := \text{cl}[(\alpha_\varepsilon \wedge \beta_\varepsilon)_\varepsilon] \in \bigwedge^{k+l} G(X)$

(iii) $i_\xi A := \text{cl}[(i_\xi \alpha_\varepsilon)_\varepsilon] \in \bigwedge^{k-1} G(X)$

Of course all the classical relations remain valid in our framework where (in contrast to the distributional setting) in every multilinear operation all factors may be generalized; in particular for $A \in \bigwedge^k G(X)$ and $\Xi, \Xi_1, \ldots, \Xi_k \in G^1(X)$ we have $(i_\Xi A)(\Xi_2, \ldots, \Xi_k) = A(\Xi, \Xi_2, \ldots, \Xi_k)$ and $L_\Xi = d \circ i_\Xi + i_\Xi \circ d$.

A generalized k-form A is called closed if $dA = 0$ and exact if there exists $B \in \bigwedge^{k-1} G(X)$ with $dB = A$. Clearly every exact generalized k-form is closed. The converse—as in the smooth case—holds locally:

Theorem 8 (Poincaré Lemma)

Let $A \in \bigwedge^k G(X)$ closed. Then for each $p \in X$ there exists a neighborhood U of p and $B \in \bigwedge^{k-1} G(X)$ such that

$A|_U = dB|_U$.
Proof. Since it suffices to work in a local chart we may suppose that $U \subseteq \mathbb{R}^n$ is a ball around zero. Let $(\alpha_\varepsilon)_\varepsilon$ denote a representative of A. Then $d\alpha_\varepsilon = n_\varepsilon \in \wedge_N^{k+1}(U)$. Analogous to the classical proof (cf. e.g., [1], 2.4.17) we define an operator $H : \Omega^k(U) \rightarrow \Omega^{k-1}(U)$ by

$$H\omega(x)(v_1, \ldots, v_{k-1}) = \int_0^1 t^{k-1}\omega(tx)(x, v_1, \ldots, v_{k-1}) \, dt,$$

where $v_1, \ldots, v_{k-1} \in \mathbb{R}^n$. Then $d \circ H + H \circ d = \text{id}$, so $\alpha_\varepsilon = Hd\alpha_\varepsilon + dH\alpha_\varepsilon$ for each $\varepsilon > 0$. It is immediate from the explicit form of H that $H(\wedge_{e_M}^k(U)) \subseteq \wedge_{e_M}^{k-1}(U)$ and $H(\wedge_X^k(U)) \subseteq \wedge_X^{k-1}(U)$. Thus $H\alpha_\varepsilon \in \wedge_{e_M}^{k-1}(U)$, $H(d\alpha_\varepsilon) \in \wedge_X^k(U)$ and, consequently, $A = d(HA)$ in $\wedge_{e_M}^k(U)$.

In what follows we suppose X to be oriented. Analogous to Definition 2, for $K \subset X$, $A \in \wedge_{\mathcal{M}}^n(X)$ we define the integral of $A := \text{cl}[(\alpha_\varepsilon)_\varepsilon]$ over K by

$$\int_K A := \text{cl}[(\int_K \alpha_\varepsilon)_\varepsilon].$$

For A compactly supported we set $\int_X^A = \int_K^A$ where L is any compact neighborhood of $\text{supp}(A)$. This notion of integration is compatible with the one introduced by Marsden for compactly supported distributional n-forms (cf. [32], 2.6). More precisely, let $\alpha \in \Omega^n_{\mathcal{M}}(X)'$ and $A \approx \alpha$. Then $\int A \approx \int \alpha$.

Also, Stokes’ theorem is easily generalized to the new setting by component-wise application of the classical theorem.

Theorem 9 Let X be a manifold with boundary and $A \in \wedge_{\mathcal{M}}^{n-1}(X)$ with compact support. Then

$$\int_X dA = \int_{\partial X} A.$$

Let us now turn to the task of generalizing symplectic geometry. Let (X, ω) be a symplectic manifold, i.e., suppose that X is furnished with smooth nondegenerate and closed 2-form ω. Generalizing ω to be distributional or even an element of $\wedge_{\mathcal{M}}^2$ does not seem feasible since in that setting a distributional analogue of Darboux’ theorem is not attainable (cf. [32], §7). However, by Theorem 4, $\omega \in \Omega^2(X) \subseteq \wedge_{\mathcal{M}}^2(X)$ induces a $\mathcal{G}(X)$-bilinear alternating map $\mathcal{G}_0^0(X) \times \mathcal{G}_0^0(X) \rightarrow \mathcal{G}^0(X)$. This in turn allows us to define the following extension of the classical isomorphism between vector fields and one-forms induced by ω:

$$\omega_\flat : \mathcal{G}_0^0(X) \rightarrow \mathcal{G}^0_1(X)$$

$$\omega_\flat(\Xi)(H) := \omega(\Xi, H).$$

This map is even a $\mathcal{G}(X)$-linear isomorphism. We denote its inverse by ω_\sharp and set $\Xi^\flat = \omega_\sharp(\Xi)$ and $A^\flat = \omega_\sharp(A)$. Then we have $\Xi^\flat = i_\Xi \omega \in \mathcal{G}_0^0(X)$.
\[\Xi^\sharp(Z) = -\Xi(Z^\sharp) \in \mathcal{G}(X) \] and \[A^\sharp(B) = -A(B^\sharp) \in \mathcal{G}(X) \] for \(A, B \in \mathcal{G}_0(X) \) and \(\Xi, Z \in \mathcal{G}_1(X) \). Moreover, if \(\Xi \approx \xi \in \mathcal{D}_1(X) \) resp. \(A \approx \alpha \in \mathcal{D}_0(X) \) then \(\Xi^\sharp \approx \xi^\sharp \) resp. \(A^\sharp \approx \alpha^\sharp \).

For any \(H \in \mathcal{G}(X) \) we call the generalized vector field defined by

\[\Xi_H := (dH)^\sharp \]

the generalized Hamiltonian vector field with energy function \(H \). If \(H \approx h \in \mathcal{D}'(X) \) then we have \(\Xi_H \approx X_h \), where \(X_h \) is defined according to \([32] \), Prop. 7.3.

Let \(F = \text{cl}[\{f_\varepsilon\}_\varepsilon], G = \text{cl}[\{g_\varepsilon\}_\varepsilon] \in \mathcal{G}(X) \). We define the Poisson bracket of \(F \) and \(G \) by

\[\{F, G\} := \text{cl}[\{f_\varepsilon, g_\varepsilon\}_\varepsilon]. \]

Literally all classical properties carry over. In particular, \(\{ , \} \) is antisymmetric, the Jacobi identity holds and we have \(\{F, G\} = \mathcal{L}_{\Xi_F}G = -\mathcal{L}_{\Xi_G}F \), and \(\Xi_{\{F, G\}} = -[\Xi_F, \Xi_G] \). We note that in contrast to the distributional setting \([32], \text{Prop. 7.4} \), where ill-defined products of distributions have to be avoided carefully, in our present framework both factors \(F \) and \(G \) may be generalized functions. There is of course a result analogous to Proposition \(1 \) concerning consistency with respect to the smooth resp. distributional setting in the sense of association.

Example 2 We close this section by discussing a simple example from nonsmooth mechanics to indicate the usefulness of the present setting. Let \(X = \mathbb{R}^2 \) and consider the generalized Hamiltonian function \(H(p, q) = \frac{p^2}{2} + D(q) \), where \(D \) denotes a generalized delta function in the sense of \([18] \), i.e., we suppose that \(D \) possesses a representative \(\delta_\varepsilon \) with \(\text{supp}(\delta_\varepsilon) \to \{0\}, \int \delta_\varepsilon \to 1 \) and \(\int \delta_\varepsilon \leq C \) for \(\varepsilon \) small. Clearly, every generalized delta function is associated to \(\delta_\varepsilon \). Nets \(\delta_\varepsilon \) possessing the above mentioned properties provide a general and flexible means of modeling delta-type singularities (so-called strict delta nets, cf. \([33] \), chap. II, §7). The Hamiltonian equations for this setup take the form

\[\dot{p} = -\frac{\partial H}{\partial q} = -D'(q), \quad \dot{q} = \frac{\partial H}{\partial p} = p, \]

leading to

\[\ddot{q} + D'(q) = 0 \]

\[q(0) = q_0, \quad \dot{q}(0) = \dot{q}_0. \]

(9)

This initial value problem has been studied in detail in \([33], [34] \). It was shown that provided \(D \) satisfies certain growth restrictions, a solution in the Colombeau algebra exists and is unique for arbitrary initial conditions \(q_0, \dot{q}_0 \in \mathcal{R} \). The limiting behavior of this unique solution will in general depend on the chosen regularization for \(\delta \). For example, if we choose \(\delta_\varepsilon(x) = \frac{1}{\varepsilon} \rho \left(\frac{x}{\varepsilon} \right) \) with \(\rho \in \mathcal{D}(\mathbb{R}) \) we get the picture of pure reflection at the origin, i.e., the unique solution to (9) is associated to the function \(t \to \text{sign}(q_0)|q_0 + \dot{q}_0 t| \). (The proof consists in a rather technical analysis of the limiting behavior of the trajectories, establishing that they are neither delayed nor trapped at the origin as \(\varepsilon \to 0 \).) For generalized
delta functions of different type, a more complicated limiting behavior can be observed: For any given finite subset S of $(0, \infty)$ there exists a generalized delta function such that the solutions to (9) with $x_0 \neq 0$ and $\dot{x}_0 = -\text{sign}(x_0)\sqrt{2s}$ with $s \in S$ are trapped at the origin after time $t = -\frac{x_0}{\dot{x}_0}$.

Furthermore, (9) possesses a unique flow which itself is a Colombeau generalized function. Although problematic in the distributional picture ([32], §8), energy conservation in our present setting is immediate from $\{H, H\} = 0$.

The main applications of Colombeau’s special algebra on manifolds so far have occurred in general relativity with the purpose of studying singular space-times (see [40] for a survey). Based on the framework developed in the present article, a satisfying theory for analyzing the geometry of these space-times can be given. A thorough investigation of such generalized semi-Riemannian geometries is deferred to a separate paper ([29]).

Acknowledgements: We are indebted to M. Oberguggenberger and M. Grosser for many fruitful discussions and their ongoing support and to A. Cap and A. Kriegl for helpful comments. This work was in part supported by research grant P12023-MAT of the Austrian Science Foundation (FWF).

References

[1] Abraham, R., Marsden, J. E. Foundations of Mechanics. Benjamin/Cummings, Reading, MA, second edition, 1978.

[2] Aragona, J., Biagioni, H. A. Intrinsic definition of the Colombeau algebra of generalized functions. Analysis Mathematica, 17:75–132, 1991.

[3] Balasin, H. Geodesics for impulsive gravitational waves and the multiplication of distributions. Class. Quant. Grav., 14:455–462, 1997.

[4] Bourbaki, N. Algebra I, Chapters 1–3. Elements of Mathematics. Hermann, Addison-Wesley, Paris, Massachusetts, 1974.

[5] Clarke, C. J. S., Vickers, J. A., Wilson, J. P. Generalised functions and distributional curvature of cosmic strings. Class. Quant. Grav., 13, 1996.

[6] Colombeau, J. F. New Generalized Functions and Multiplication of Distributions. North Holland, Amsterdam, 1984.

[7] Colombeau, J. F. Elementary Introduction to New Generalized Functions. North Holland, Amsterdam, 1985.

[8] Dapić, N., Pilipović, S., Scarpalézos, D. Microlocal analysis and Colombeau’s generalized functions: propagation of singularities. J. d’Analyse Math., 75:51–66, 1998.

[9] De Rham, G. Differentiable Manifolds. Grundlehren der mathematischen Wissenschaften. Springer, Berlin, 1984.
[10] De Roever, J. W., Damsma, M. Colombeau algebras on a C^∞-manifold.
Indag. Mathem., N.S., **2**(3), 1991.

[11] Dieudonné, J. *Treatise on Analysis*, Vol. 3. Academic Press, 1972.

[12] Greub, W., Halperin, S., Vanstone, R. *Connections, Curvature, and Cohomology I*, volume 47 of *Pure and applied mathematics*. Academic Press, 1972.

[13] Grosser, M., Farkas, E., Kunzinger, M., Steinbauer, R. On the foundations of nonlinear generalized functions I, II. *Mem. Am. Math. Soc.*, **153**, 2001.

[14] Grosser, M., Hörmann, G., Kunzinger, M., Oberguggenberger, M., editor. *Nonlinear theory of generalized functions*, volume 401 of *CRC Research Notes*. CRC Press, 1999.

[15] Grosser, M., Kunzinger, M., Steinbauer, R., Vickers, J. A global theory of algebras of generalized functions. *Adv. Math.*, to appear 2001.

[16] Grothendieck, A. *Topological Vector Spaces*. Notes on Mathematics and its Applications. Gordon and Breach, New York, 1973.

[17] Hermann, R. *C-O-R Generalized functions, current algebras, and control*, volume 30 of *Interdisciplinary Mathematics*. Math Sci Press, 1994.

[18] Hermann, R., Oberguggenberger, M. Generalized functions, calculus of variations and nonlinear ODEs. *Preprint*, 1997.

[19] Hermann, R., Oberguggenberger, M. Ordinary differential equations and generalized functions. In Grosser, M., Hörmann, G., Kunzinger, M., Oberguggenberger, M., editor, *Nonlinear Theory of Generalized Functions*, volume 401 of *CRC Research Notes*, pages 85–98. CRC Press, 1999.

[20] Hörmander, L. *The analysis of linear partial differential operators I*, volume 256 of *Grundlehren der mathematischen Wissenschaften*. Springer, Berlin, 1990.

[21] Kahn, D. W. *Introduction to Global Analysis*. Academic Press, 1980.

[22] Kashiwara, M., Schapira, P. *Sheaves on manifolds*. Grundlehren der mathematischen Wissenschaften. Springer, 1990.

[23] Kolar, I., Michor, P. W., Slovak, J. *Natural Operations in Differential Geometry*. Springer, Berlin, Heidelberg, 1993.

[24] Köthe, G. *Topological vector spaces II*. Springer, Berlin, Heidelberg, New York, 1979.

[25] Kunzinger, M. *Barrelledness, Baire-like and (LF)-Spaces*, volume 298 of *Pitman Research Notes in Mathematics*. Longman, Harlow, 1993.
[26] Kunzinger, M. *Lie Transformation Groups in Colombeau Algebras*. PhD thesis, University of Vienna, 1996.

[27] Kunzinger, M., Oberguggenberger, M. Group analysis of differential equations and generalized functions. *SIAM J. Math. Anal.*, **31**(6):1192–1213, 2000.

[28] Kunzinger, M., Steinbauer, R. A note on the Penrose junction conditions. *Class. Quant. Grav.*, **16**:1255–1264, 1999.

[29] Kunzinger, M., Steinbauer, R. Generalized Pseudo-Riemannian Geometry. *Submitted*, 2001.

[30] Mallios, A. *Geometry of vector sheaves. Vol. I, Vol. II*, volume **439** of *Mathematics and its Applications*. Kluwer, Dordrecht, 1998.

[31] Mallios, A., Rosinger, E. E. Abstract differential geometry, differential algebras of generalized functions, and de Rham cohomology. *Acta Appl. Math.*, **55**(3):231–250, 1999.

[32] Marsden, J. E. Generalized Hamiltonian mechanics. *Arch. Rat. Mech. Anal.*, **4**(28):323–361, 1968.

[33] Oberguggenberger, M. *Multiplication of Distributions and Applications to Partial Differential Equations*, volume **259** of *Pitman Research Notes in Mathematics*. Longman, Harlow, 1992.

[34] Oberguggenberger, M., Kunzinger, M. Characterization of Colombeau generalized functions by their pointvalues. *Math. Nachr.*, **203**:147–157, 1999.

[35] Parker, P. Distributional geometry. *J. Math. Phys.*, **20**(7):1423–1426, 1979.

[36] Penrose, R., Rindler, W. *Spinors and space-time I*. Cambridge University Press, 1984.

[37] Schaefer, H. H. *Topological Vector Spaces*. (Fifth edition), Springer, New York, 1986.

[38] Simanca, S. R. *Pseudo-differential Operators*, volume **236** of *Pitman Research in Notes in Mathematics*. Longman, Harlow, 1990.

[39] Steinbauer, R. The ultrarelativistic Reissner-Nordstrøm field in the Colombeau algebra. *J. Math. Phys.*, **38**:1614–1622, 1997.

[40] Vickers, J. A. Nonlinear generalized functions in general relativity. In Grosser, M., Hörmann, G., Kunzinger, M., Oberguggenberger, M., editor, *Nonlinear Theory of Generalized Functions*, volume 401 of *CRC Research Notes*, pages 275–290, Boca Raton, 1999. CRC Press.