Factors Affecting the Clinical Outcome of Hepatocellular Carcinoma in Elderly Patients: A Retrospective, Multicenter Study

Takehiro Matsumoto1, Naota Taura1*, Tatsuki Ichikawa2, Hisamitsu Miyaaki1, Eisuke Ozawa3, Masaya Shigeno4, Yuji Kato5, Takashi Goto6, Noboru Kinoshita7, Nobuyoshi Fukushima8, Kazuo Ohba9, Hiroshi Yatsuhashi10, Kazuhiko Nakao1

1Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences Nagasaki University, Nagasaki, Japan
2Department of Gastroenterology and Hepatology, Nagasaki Harbor Medical Center, Nagasaki, Japan
3Department of Gastroenterology and Hepatology, Sasebo City General Hospital, Nagasaki, Japan
4Department of Gastroenterology and Hepatology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
5Department of Gastroenterology and Hepatology, Oita Prefectural Hospital, Oita, Japan
6Director Digestive Organ Center, Japan Labour and Welfare Organization Nagasaki Labour Welfare Hospital, Nagasaki, Japan
7Department of Gastroenterology and Hepatology, Sasebo Chuo Hospital, Nagasaki, Japan
8Department of Internal Medicine, Nagasaki Prefectural Goto Central Hospital, Nagasaki, Japan
9Department of Gastroenterology and Hepatology, Isahaya Health Insurance General Hospital, Nagasaki, Japan
10Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Nagasaki, Japan

*Corresponding author: Naota Taura, Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, Japan. Tel: +81958197482, Fax: +81958197482; Email: ntau-ra-gsi@umin.ac.jp

Citation: Matsumoto T, Taura N, Ichikawa T, Miyaaki H, Ozawa E, et al. (2018) Factors Affecting the Clinical Outcome of Hepatocellular Carcinoma in Elderly Patients: A Retrospective, Multicenter Study. J Aging Neuro Psychol: JANP-117. DOI: 10.29011/JANP-117.100017

Received Date: 14 August, 2018; Accepted Date: 12 September, 2018; Published Date: 19 September, 2018

Abstract

Background: The incidence of hepatocellular carcinoma (HCC) in Japanese elderly patients (ages sixty-five and older) has been on the increase, but the clinical characteristics of patients with HCC have not been well described. The aim of the present study was to evaluate the impact of aging on the clinical characteristics findings and the survival of HCC patients.

Method: A total of 2,370 patients with HCC diagnosed between 1999 and 2011, were recruited for this study. The age of HCC was categorized to four groups; not old: sixty-four and younger, young old: sixty-five to seventy-four, old old: seventy-five to eighty-four, oldest old: eighty-five and older. The significance of clinical parameter was examined for elderly HCC patients using logistic regression analysis.

Result: Multivariate analysis identified sex, body mass index (BMI), alcohol consumption, Child-Pugh grade, etiology of liver disease, alanine aminotransferase (ALT), α-fetoprotein (AFP) and Tumor-Node-Metastasis (TNM) stage, as independent and significant risk factors for elderly HCC patients. Additionally, the significant risk factors for elderly HCC patients according to four age groups are presented. The ratio of male, BMI, alcohol intake patients, ALT, and AFP decreased significantly from 80%, 23.0, 40%, 50 IU/l and 48.7 ng/ml in not old group to 57%, 21.6, 26%, 28IU/l and 12.8 ng/ml in oldest old group, respectively. The ratio of Child-Pugh grade A and non-hepatitis virus infection increased significantly from 60% and 17% in not old group to 80% and 43% in oldest old group, respectively. When patients were classified according to the TNM stage, patients in the oldest old group with TNM stage I or II had a lower cumulative survival rate than those in the younger three groups.

Conclusion: It appears that eighty-five years and older patients with HCC were poorer prognosis than that younger patients in early stage HCC.
Citation: Matsumoto T, Taura N, Ichikawa T, Miyaaki H, Ozawa E, et al. (2018) Factors Affecting the Clinical Outcome of Hepatocellular Carcinoma in Elderly Patients: A Retrospective, Multicenter Study. J Aging Neuro Psychol: JANP-117. DOI: 10.29011/JANP-117.100017

Introduction

Primary liver cancer is the most common primary cancer of the liver, accounting for approximately 6% of all human cancers. It is estimated that half a million cases occur worldwide annually, making primary liver cancer the fifth most common malignancy in men and the ninth in women [1-6]. Hepatocellular Carcinoma (HCC) accounts for 85% to 90% of primary liver cancers [7], and the age-adjusted HCC mortality rate has increased in recent decades in Japan [8]. Similarly, a trend of increasing rates of HCC has been reported in several developed countries of North America, Europe, and Asia [9,10]. HCC often develops in patients with liver cirrhosis caused by hepatitis B virus (HBV), hepatitis C virus (HCV), excessive alcohol consumption, or non-alcoholic fatty liver disease. Of the hepatitis viruses causing HCC, HCV is predominant in Japan [11-14]. However, it has been reported that the number and ratio of both hepatitis B surface antigen (HBsAg)- and HCV antibody (HCVAb)-negative HCC (HCC-nonBC) is steadily increasing in Japan [15,16].

The prognosis for patients with HCC is still poor. Surgical resection and liver transplantation are the standard forms of curative treatment available. Recently, radio-frequency ablation (RFA) and percutaneous ethanol injection (PEI) is also recognized as effective methods to induce complete tumor necrosis for small HCCs [17]. With advances in diagnostic and biomedical technologies, most of the studies have shown that treatment of elderly patients with HCC is as safe and effective as in younger patients, with overall post-treatment survival rate similar to those of younger patients. However, unintentional bias in the selection of patients might have occurred in the above-mentioned studies, with inclusion of patients with good liver function or those without severe concomitant diseases for the aggressive treatment of HCC [18-25].

In this retrospective cohort study, our aim was to characterize elderly patients who were diagnosed consecutively with HCC in a 12-year period (1999-2011) at the centers composing the Nagasaki Association Study of Liver Disease (NASLD) group. The aim of the present study was to evaluate the effect of age on the clinical outcome of HCC patients, including tumor stage, treatment, and survival.

Keywords: Elderly Patients; HCC; Multicenter Study; Prognosis

Patients and Methods

Patients

A total of 2,370 patients, diagnosed with HCC between 1999 and 2011 by the NASLD group, were recruited for this study. The diagnosis of HCC was based on α-fetoprotein (AFP) and/or des-gamma-carboxy prothrombin (DCP) levels; results of imaging techniques such as ultrasonography (USG), Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Hepatic Angiography (HAG); and/or liver biopsy. The diagnostic criteria included characteristic liver biopsy findings, elevated AFP (≥20 ng/ml) and/or DCP (≥40 ng/ml), and neovascularization on HAG, CT and/or MRI.

The diagnosis of chronic HCV infection was based on the presence of HCVAb (microparticle enzyme immunoassay; Abbott Laboratories) and HCV RNA, as detected by polymerase chain reaction. The diagnosis of chronic HBV infection was based on the presence of HBsAg (enzyme-linked immunosorbent assay; Abbott Laboratories). Serum AFP level was measured by radioimmunoassay (Abbott Laboratories). The history of alcohol intake was noted from medical records; excessive drinking was defined as an average daily consumption of an amount equivalent to 80 g of pure ethanol for a period of more than 10 years, and not excessive drinking was defined as an average daily consumption of an amount equivalent to 1-79 g of pure ethanol for a period of more than 10 years.

Patients were divided into four groups according to age: not old (≤64 years); young old (65-74 years); old old (75-84 years); and oldest old (≥85 years). The stages of aging were defined as per the Japan Geriatrics Society. Logistic regression analysis was performed to evaluate the association between HCC and age, sex, Body Mass Index (BMI), alcohol intake, diabetes mellitus, underlying liver disease, Child-Pugh grade, platelet count, prothrombin time (PT), Albumin (ALB), Total Bilirubin (Bil), Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), AFP, DCP, and Tumor Node Metastasis (TNM) stage.

Treatment Modalities

Patients diagnosed with HCC were assessed for surgery on the basis of the extent of lobar involvement and liver function status. The extent of lobar involvement was evaluated by a combination of USG, CT, MRI, and HAG. Patients were considered unfit for resection if they met the following criteria: (1) bilobar involvement, (2) evidence of tumor infiltration into the main portal vein or thrombosis of the vein, (3) evidence of extrahepatic metastases, (4) Child–Pugh grade C cirrhosis, or (5) poor cardiac and respiratory statuses. If the patients were deemed unfit for operation or refused to undergo operation, RFA or PEI therapy was the second choice of treatment offered to such patients with HCCs less than 3 cm in diameter. The remaining patients without main portal vein thrombosis or extrahepatic metastasis were advised to undergo Transcatheter Arterial Chemo- Embolization (TACE) irrespective of the size and number of tumors.

After initial treatment, AFP levels and liver function of the patients were assessed every 1 to 3 months, and USG imaging was performed every 3 to 6 months during the follow-up period.
Patients suspected to have HCC recurrence were further evaluated by CT and/or MRI. The assessment of treatment for recurrent HCC was based on lobar involvement and liver function status as described for the initial treatment. RFA or liver transplantation to treat HCC was started at our institution in 2002. Furthermore, none of the subjects in our study received either of these treatments for recurrent HCC during the follow-up period.

Statistical Analysis

The time of survival was measured from the time of the diagnosis of HCC to the time of death or until the time of preparation of the manuscript. The survival rate was analyzed using the Kaplan-Meier method, and the differences between the survival probability curves were tested using the log-rank test. Descriptive summaries of study groups are reported as the median (range) and number (%). Data were analyzed using the Mann-Whitney U test for continuous ordinal data, and the chi-square test with Yates’ correction and Fisher’s exact test were performed for intergroup comparisons to determine the association between two qualitative variables. P-values <0.05 were considered statistically significant. Variables achieving statistical significance according to univariate analysis were subsequently included in the multivariate analysis using a logistic regression model and are described as Hazard Ratio (HR) with 95% Confidence Interval (CI). Coefficients were calculated from the linear discriminating function of the variables. Data analysis was performed using SPSS version 16.0 for Windows. We followed the methods of Akahoshi et al. (2010) [26].

Results

Patient Characteristics at Enrollment

We diagnosed 2,370 patients with HCC during the study period. Patient characteristics at the time of diagnosis of HCC are presented in Table 1. We assigned 716 (30%) patients to the not-old group, 881 (37%) to the young-old group, 704 (30%) to the old-old group, and 69 (3%) to the oldest-old group.

Overall, the median survival of all 2,370 patients was 5.6 years. The cumulative survival rate was 54% at the 5th year.

Characteristics	(Range) (%)
Number	2,370
Age (years)	71

Sex	
Male	1,605
Female	765

Alcohol consumption	
Excessive	200
not excessive	552

No consumption	1,648	70
DM (unknown patients: 39)		
(+)	681	29
(-)	1,650	70
BMI (kg/m²)	22.7	13.0-45.3
Hepatitis virus		
HBV	426	18
HCV	1,337	56
B+C	23	1
NBNC	584	25

| Underlying liver disease (unknown patients: 113) |
| Chronic hepatitis | 745 | 31 |
| Cirrhosis | 1,512 | 64 |
| Child-Pugh Grade (unknown patients: 81) |
A	1,618	68
B	542	23
C	129	5
TNM stage		
I	571	24
II	951	40
III	533	22
IVa	210	9
IVb	105	4

| Therapy |
Surgical resection	417	18
RFA and/or PEIT	603	25
TACE and/or TAI	1,079	45
Chemotherapy	54	2
LDLT	10	1
BSC	207	9
Plt (10³/ml)	120	8-980
ALT (IU / L)	43	4-19679
Bil (mg/dl)	0.9	0.2-30.1
Alb (g/dl)	3.7	1.4-7.2
PT (%)	83	7-134
AFP (ng/ml)	24	1-2,920,000

Volume 2018; Issue 01
Table 1: Demographic and clinical characteristics of the 2,370 patients with hepatocellular carcinoma.

Univariate and Multivariate Analyses of the Factors Associated with HCC in the Elderly

Univariate and multivariate analyses were performed to identify the independent factors associated with HCC in elderly patients (Table 2). In the univariate analysis, the following 13 significant factors were identified: sex, BMI, alcohol intake, underlying liver disease, Child-Pugh grade, hepatitis virus, platelet count, PT, Bil, ALT, AFP, DCP, and TNM stage. Subsequent multivariate analysis identified sex (female, HR 2.20), BMI (≥25 kg/m², HR 0.35), alcohol intake (not excessive drinker, HR 0.64; excessive drinker, HR 0.36), Child-Pugh grade (B, HR 0.68; C, HR 0.32), etiology of liver disease (HCV, HR 9.12; HBV and HCV, HR 4.32; non-hepatitis virus infection, HR 11.28), ALT (>46 IU/l, HR 0.53), AFP (≥200 ng/ml, HR 0.53), and TNM stage (II, HR 1.65) as independent significant risk factors for HCC in elderly patients (Table 3).
Table 2: Univariate analysis of the factors associated with hepatocellular carcinoma in elderly patients.

Parameters	Hazard ratio	95% CI	P value	
Sex	Female	2.2	1.65-2.93	<0.001
BMI (kg/m²)	≥25	0.35	0.59-0.98	0.035
Alcohol consumption	No consumption	1	---	---
	Moderate	0.64	0.48-0.85	0.002
	Excessive	0.36	0.23-0.55	<0.001
Underlying liver disease	Cirrhosis	1.23	0.91-1.65	0.173
Hepatitis virus	HBV	1	---	---
	HCV	9.12	6.69-12.39	<0.001
	HBV+HCV	4.32	1.55-12.06	0.005
	NBNC	11.28	7.73-16.47	<0.001
Platelet (10⁹/μL)	<120	0.79	0.60-1.05	0.1

Table 3: Multivariate analysis of the factors associated with hepatocellular carcinoma in elderly patients.

Comparison of Clinical Characteristics between the Four Age Groups

The significant risk factors for HCC in elderly patients according age are presented in Table 4. Male gender, BMI, alcohol intake, ALT, and AFP decreased significantly from 80%, 23.0 kg/m², 40%, 50 IU/ml and 48.7 ng/ml in the not-old group to 57%, 21.6 kg/m², 26%, 28 IU/l and 12.8 ng/ml in the oldest-old group, respectively (P < 0.05). Child-Pugh grade and non-hepatitis virus infection increased significantly from 60% and 17% in the not-old group to 80% and 43% in the oldest-old group, respectively (P < 0.05).
Table 4: Comparison of the clinical characteristics of hepatocellular carcinoma patients per age group.

Treatments of each group according to age and TNM stage are listed in Table 5. The percentage of patients treated with supportive care alone in TNM stage I or II was significantly higher in the oldest-old group than in the other groups (P < 0.001), and higher in patients with TNM stage III or IV than in patients with TNM stage I or II for each age group.
	Not old (<65 years)	Young old (65-74 years)	Old old (75-84 years)	Oldest old (≥85 years)	Total
TNM stage I or II					1,522
Total	405	595	479	43	
Surgical resection	103 (25)	119 (20)	90 (19)	2 (5)	314 (21)
Liver transplantation	6 (1)	2 (0)	0	0 (1)	8 (1)
RFA and/or PEIT	139 (34)	235 (39)	170 (35)	12 (28)	556 (37)
TACE and/or TAI	142 (35)	220 (37)	165 (34)	18 (42)	545 (36)
Chemotherapy	0	2 (0)	0	1 (2)	3 (0)
Supportive care	15 (4)	17 (3)	24 (5)	10 (23)	66 (4)
TNM stage III or IV					848
Total	311	286	225	26	
Surgical resection	*	*	*	***	103 (12)
Liver transplantation	1 (0)	1 (0)	0	0 (1)	2 (0)
RFA and/or PEIT	10 (3)	21 (7)	15 (7)	1 (4)	47 (6)
TACE and/or TAI	166 (53)	186 (65)	137 (61)	15 (58)	504 (59)
Chemotherapy	32 (10)	8 (2)	4 (2)	0 (1)	44 (5)
Supportive care	63 (20)	39 (14)	38 (17)	8 (31)	148 (18)

TNM	RFA	PEI	TACE	TAI
-	-	-	-	-
Tumor-Node-Metastasis	Radio-Frequency Ablation	Percutaneous Ethanol Injection	Trans Catheter Arterial Chemo-Embolization	Trans Catheter Arterial Infusion

Table 5: Treatment for hepatocellular carcinoma according to age and Tumor Node Metastasis (TNM) stage.
Matsumoto T, Taura N, Ichikawa T, Miyaki H, Ozawa E, et al. (2018) Factors Affecting the Clinical Outcome of Hepatocellular Carcinoma in Elderly Patients: A Retrospective, Multicenter Study. J Aging Neuro Psychol: JANP-117. DOI: 10.29011/JANP-117.100017

Patients in the oldest-old group with TNM stage I or II had a significantly lower cumulative survival rate than those in the younger three groups. In patients with TNM stage III or IV, the cumulative survival rate was not different among the four age groups (Figure 1).

Figure 1

Discussion

The number of elderly patients with HCC has increased over the past few years in Japan, and recent studies have reported the characteristics and prognosis of HCC in this population [15,16,27,28]. Our present study added information to the existing literature and identified a number of independent factors associated with HCC in the elderly. According to the government of Japan, an elderly person is an individual over 65 years, which is the cut-off age we used in this study.

In this study, however, the most interesting findings were made in oldest-old patients (aged 85 years or older). We found that female gender, Child–Pugh grade A, and non-hepatitis virus infection were more frequent in oldest-old HCC patients than in younger patients, and that BMI and ALT were lower in oldest-old HCC patients than in younger patients. These findings suggest that elderly patients had better hepatic reserve capacity than younger patients, which is in agreement with previous reports [24,25,28,29]. However, the survival outcome of oldest-old patients was worse than that of younger patients with early-stage HCC. In other words, patients aged 85 years or older may have poorer prognosis than younger patients with early-stage HCC. Suda et al. [28] analyzed 740 patients with HCC, including 38 patients treated with supportive care alone. They stressed that aging was an adverse factor affecting overall survival of patients with HCC, but when the survival benefit was evaluated on the basis of percent survival to life expectancy, the therapeutic approach should not be restricted due to patient age [31]. Interestingly, the percentage of early-stage HCC patients treated with supportive care alone was significantly higher in the oldest-old group than in the other groups. Hori et al. [28] reported that advanced age was a negative prognostic factor in patients with HCC due to the tendency for frequent use of conservative treatment rather than RFA or surgical treatment. The prognosis of elderly patients may be worse than younger patients, especially in patients with preserved hepatic reserve capacity or earlier stage of HCC, because in such patients RFA or surgical treatment is as effective as in younger patients.

When discussing the treatment and survival outcomes of elderly patients with HCC, clinicians should be aware of the following limitations. There may be an unintentional selection bias, because we tend to select elderly patients with a good performance status, which may favor comparable outcomes to those of younger patients. In fact, in the current study, there...
was difference in the population of patients treated with surgical treatment or RFA between the oldest old group and younger groups. Several investigators showed that elderly patients with HCC had a worse survival outcome compared with younger patients due to the tendency for them to receive less aggressive and non-curative treatment [32].

This study is associated with some other limitations. First, it was a retrospective, multicenter study. Therefore, the possibility of unintentional selection bias in selection of patients could not be fully excluded. Second, the therapeutic effects of the second and third line of treatment for HCC were not evaluated as prognostic factors in this patient population.

In conclusion, oldest-old patients had milder underlying liver damage. However, the survival outcome of oldest-old patients was worse than that of younger patients in TNM stage I or II. Early-stage HCC patients aged 85 years and older have poorer prognosis than their younger counterparts.

Acknowledgment

We were presented this study at The American Association for the Study of Liver Diseases (AASLD) The Liver Meeting 2014 and The 6th Asia-Pacific Primary Liver Cancer Expert Meeting (APPLE 2015). Author and corresponding author are employed in Hideaki Masuzaki of the Nagasaki University Hospital.

Data Availability

The clinical data used to support the findings of this study are restricted by the Ethics Committee of Medical Research, Nagasaki University Hospital in order to protect patient privacy. Data are available from corresponding author for researchers who meet the criteria for access to confidential data.

Conflict of Interest

The following people have nothing to disclose: Takehiro Matsumoto, Naota Taura, Tatsuki Ichikawa, Hisamitsu Miyaki, Eisu Ozaawa, Masaya Shigeno, Yuji Kato, Takashi Goto, Noboru Kinoshita, Nobuyoshi Fukushima, Kazuo Ohba, Hiroshi Yatsuhashi, and Kazuhiro Nakao.

References

1. El-Serag HB, Mason AC (2000) Risk factors for the rising rates of primary liver cancer in the United States. Arch Intern Med 160: 3227-3230.
2. El-Serag HB (2001) Epidemiology of hepatocellular carcinoma. Clin Liver Dis 5: 87-107.
3. El-Serag HB, Hampel H, Yeh C, Rabeneck L (2002) Extrahepatic manifestations of hepatitis C among United States male veterans. Hepatology 36: 1439-1445.
4. El-Serag HB (2002) Hepatocellular carcinoma and hepatitis C in the United States. Hepatology 36: S74-83.
5. El-Serag HB (2002) Hepatocellular carcinoma: an epidemiologic view. J Clin Gastroenterol 35: S72-78.
6. Hassan MM, Frome A, Patt YZ and El-Serag HB (2002) Rising prevalence of hepatitis C virus infection among patients recently diagnosed with hepatocellular carcinoma in the United States. J Clin Gastroenterol 35: 266-269.
7. El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132: 2557-2576.
8. Kiyosawa K,Tanaka E (2002) Characteristics of hepatocellular carcinoma in Japan. Oncology 62: 5-7.
9. McGlynn KA, Tsao L, Hsing AW, Devesa SS, Fraumeni JF Jr (2001) International trends and patterns of primary liver cancer. Int J Cancer 94: 290-296.
10. Bosch FX, Ribes J, Diaz M, Cleries R (2004) Primary liver cancer: worldwide incidence and trends. Gastroenterology 127: S5-S16.
11. Hamasaki K, Nakata K, Tsutsumi T, Tsuruta S, Nakao K, et al. (1993) Changes in the prevalence of hepatitis B and C infection in patients with hepatocellular carcinoma in the Nagasaki Prefecture, Japan. J Med Virol 40: 146-149.
12. Kato Y, Nakata K, Nagataki S, Omagari K, Furukawa R, et al. (1994) Risk of hepatocellular carcinoma in patients with cirrhosis in Japan. Analysis of infectious hepatitis viruses. Cancer 74: 2234-2238.
13. Shiratori Y, Shina S, Imamura M, Kato N, Kanai F, et al. (1995) Characteristic difference of hepatocellular carcinoma between hepatitis B- and C- viral infection in Japan. Hepatology 22: 1027-1033.
14. Shiratori Y, Shina S, Zhang PY, Ohno E, Okudaira T, et al. (1997) Does dual infection by hepatitis B and C viruses play an important role in the pathogenesis of hepatocellular carcinoma in Japan? Cancer 80: 2060-2067.
15. Taura N, Yatsuhashi H, Nakao K, Ichikawa T, Ishibashi H (2009) Long-term trends of the incidence of hepatocellular carcinoma in the Nagasaki Prefecture, Japan. Oncol Rep 21: 223-227.
16. Taura N, Fukushima N, Yatsuhashi H, Takami Y,Seike M, et al. (2011) The incidence of hepatocellular carcinoma associated with hepatitis C infection decreased in Kyushu area. Med Sci Monit 17: 7-11.
17. Omata M, Tateishi R, Yoshida H, Shina S (2004) Treatment of hepatocellular carcinoma by percutaneous tumor ablation methods: Ethanol injection therapy and radiofrequency ablation. Gastroenterology 127: S159-S166.
18. Ohki T, Tateishi R, Akahane M, Mikami S, Sato M, et al. (2013) CT with hepatic arteriopography as a pretreatment examination for hepatocellular carcinoma patients: a randomized controlled trial. Am J Gastroenterol 108: 1305-1313.
19. Huang J, Li BK, Chen GH, Li QJ, Zhang YQ, et al. (2009) Long-term outcomes and prognostic factors of elderly patients with hepatocellular carcinoma undergoing hepatectomy. Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract 13: 1627-1635.
20. Kondo K, Chijiwa K, Funagayama M, Kai M, Otani K et al. (2008) Hepatic resection is justified for elderly patients with hepatocellular carcinoma. World journal of surgery 32: 2223-2229.
Citation: Matsumoto T, Taura N, Ichikawa T, Miyaaki H, Ozawa E, et al. (2018) Factors Affecting the Clinical Outcome of Hepatocellular Carcinoma in Elderly Patients: A Retrospective, Multicenter Study. J Aging Neuro Psychol: JANP-117. DOI: 10.29011/JANP-117.100017

21. Tateishi R, Shiina S, Teratani T, Obi S, Sato S, et al. (2005) Percutaneous radiofrequency ablation for hepatocellular carcinoma. An analysis of 1000 cases. Cancer 103: 1201-1209.

22. Teratani T, Ishikawa T, Shiratori Y, Shiina S; Yoshida H, et al. (2002) Hepatocellular carcinoma in elderly patients: beneficial therapeutic efficacy using percutaneous ethanol injection therapy. Cancer 95: 816-823.

23. Takahashi H, Mizuta T, Kawazoe S, Eguchi Y, Kawaguchi Y, et al. (2010) Efficacy and safety of radiofrequency ablation for elderly hepatocellular carcinoma patients. Hepatol Res 40: 997-1005.

24. Guo H, Wu T, Lu Q, Jong D, Ren YF, et al. (2017) Hepatocellular carcinoma in elderly: Clinical characteristics, treatments and outcomes compared with younger adults. PloS one 12: e0184160.

25. Borzio M, Dionigi E, Vitale A, Rossini A, Marignani M, et al. (2017) Management and prognosis of hepatocellular carcinoma in the elderly: Results of an in-field multicenter cohort study. Liver Int 37: 1184-1192.

26. Akahoshi H, Taura N, Ichikawa T, Miyaaki H, Akiyama M, et al. (2010) Differences in prognostic factors according to viral status in patients with hepatocellular carcinoma. Oncol Rep 23: 1317-1323.

27. Honda T, Miyaaki H, Ichikawa T, Nakao K (2011) Clinical characteristics of hepatocellular carcinoma in elderly patients. Oncology letters 2: 851-854.

28. Hori M, Tanaka M, Ando E, Sakata M, Shimose S, et al. (2013) Long-term outcome of elderly patients (75 years or older) with hepatocellular carcinoma. Hepatol Res 44: 975-982.

29. Oishi K, Itamoto T, Kobayashi T, Oshita A, Amano H, et al. (2009) Hepatectomy for hepatocellular carcinoma in elderly patients aged 75 years or more. Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract 13: 695-701.

30. Tsukioka G, Kakizaki S, Sohara N, Sato K, Takagi H, et al. (2006) Hepatocellular carcinoma in extremely elderly patients: an analysis of clinical characteristics, prognosis and patient survival. World journal of gastroenterology: WJG 12: 48-53.

31. Suda T, Nagashima A, Takahashi S, Kanefuji T, Kamimura K, et al. (2013) Active treatments are a rational approach for hepatocellular carcinoma in elderly patients. World journal of gastroenterology: WJG 19: 3831-3840.

32. Pignata S, Gallo C, Daniele B, Elba S, Giorgio A, et al. (2006) Characteristics at presentation and outcome of hepatocellular carcinoma (HCC) in the elderly. A study of the Cancer of the Liver Italian Program (CLIP). Critical reviews in oncology/hematology 59: 243-249.