Title
Leaf Trait Plasticity Alters Competitive Ability and Functioning of Simulated Tropical Trees in Response to Elevated Carbon Dioxide

Permalink
https://escholarship.org/uc/item/3n1623nm

Journal
Global Biogeochemical Cycles, 35(2)

ISSN
0886-6236

Authors
Kovenock, Marlies
Koven, Charles D
Knox, Ryan G
et al.

Publication Date
2021-02-01

DOI
10.1029/2020gb006807

Peer reviewed
Leaf trait plasticity alters competitive ability and functioning of simulated tropical trees in response to elevated carbon dioxide

Marlies Kovenock¹, Charles D. Koven², Ryan G. Knox², Rosie A. Fisher³,⁴, & Abigail L.S. Swann⁵,¹

¹Department of Biology, University of Washington, Seattle, WA
²Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
³National Center for Atmospheric Research, Boulder, CO
⁴Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), Toulouse, France
⁵Department of Atmospheric Sciences, University of Washington, Seattle, WA

Key Points:

• Including the observed response of leaf traits to higher CO₂ results in lower competitive ability for modeled tropical trees
• Concurrent changes in multiple leaf traits could help maintain per-area photosynthetic rates and confer a competitive advantage
• Resulting ecosystem-scale carbon uptake depends on the magnitude of trait plasticity coupled with changes in plant type abundance

Corresponding author: Abigail L.S. Swann, aswann@uw.edu
Abstract

The response of tropical ecosystems to elevated carbon dioxide (CO$_2$) remains a critical uncertainty in projections of future climate. Here we investigate how leaf trait plasticity in response to elevated CO$_2$ alters projections of tropical forest competitive dynamics and functioning. We use vegetation demographic model simulations to quantify how plasticity in leaf mass per area and leaf carbon to nitrogen ratio alter the responses of carbon uptake, evapotranspiration, and competitive ability to a doubling of CO$_2$ in a tropical forest. Observationally constrained leaf trait plasticity in response to CO$_2$ fertilization reduces the degree to which tropical tree carbon uptake is affected by a doubling of CO$_2$ (up to -14.7% as compared to a case with no plasticity; 95% confidence interval CI$_{95\%}$ -14.4 to -15.0). It also diminishes evapotranspiration (up to -7.0%, CI$_{95\%}$ -6.4 to -7.7), and lowers competitive ability in comparison to a tree with no plasticity. Consideration of leaf trait plasticity to elevated CO$_2$ lowers tropical ecosystem carbon uptake and evapotranspirative cooling in the absence of changes in plant type abundance. However, 'plastic' responses to high CO$_2$ which maintain higher levels of plant productivity are potentially more competitively advantageous, thus, including changes in plant type abundance may mitigate these decreases in ecosystem functioning. Models that explicitly represent competition between plants with alternative leaf trait plasticity in response to elevated CO$_2$ are needed to capture these influences on tropical forest functioning and large-scale climate.

Plain Language Summary

When tropical trees grown in air with a high concentrations of carbon dioxide it has been observed that they grow leaves and change aspects of how leaves work, called leaf traits. We used computer simulations to look at how changes in two particular leaf traits, leaf thickness and the concentration of nitrogen in leaves, alter how much tropical trees grow when carbon dioxide concentrations are high. We find that trees grow less when they have lower concentrations of nitrogen in leaves, but that if they can simultaneously make their leaves thicker this alleviates the negative effects. This holds true both when plants are growing without any competition, and also corresponds to how likely they are to grow better than a neighbor with a different combination of leaf traits. Our findings suggest that if tropical trees change only the concentration of nitrogen in their leaves then tree growth and the related transfer of carbon into the land and water back to the atmosphere will be reduced. However if the two trait changes occur simultaneously tropical forests could maintain exchanges of carbon and water close to the rates at which they currently occur.

1 Introduction

Tropical forests currently exert strong control over large-scale carbon, water, and energy fluxes and thus strongly influence global climate (Bonan, 2008; Davin & de Noblet-Ducoudré, 2010; Cusack et al., 2016; Cox et al., 2000). Yet, the poorly understood response of tropical ecosystems to elevated carbon dioxide (CO$_2$) over the coming decades and centuries remains a key uncertainty in projections of future climate (e.g., Ciais et al., 2013; Zhang et al., 2015; Lloyd & Farquhar, 2008; Schimel et al., 2015; Brienen et al., 2015; Hickler et al., 2008; Fisher et al., 2010; Cernusak et al., 2013; Leakey, Bishop, & Ainsworth, 2012; van der Sleen et al., 2015; Cusack et al., 2016). Predictive models of the carbon cycle are predicated on using observable plant properties (traits) as inputs to mechanistic models that project the functioning of ecosystems under unobserved future conditions. Typically, most plant traits are fixed in these models for a given plant functional type, irrespective of environmental conditions, although some newer approaches allow traits to vary based on optimality arguments (e.g., Caldararu et al., 2020). In reality, leaf traits vary both across plant types as well as within plant types across envi-
ronmental gradients. Further, under experimental conditions, a number of leaf traits have demonstrated plasticity, in that the leaves of existing trees are altered in response to, for example, elevated CO$_2$ concentrations (e.g., Garbutt et al., 1990; Yin, 2002; Verheijen et al., 2015). Alterations in leaf traits can modify plant photosynthesis and evapotranspiration rates. Thus this leaf trait plasticity could alter ecosystem functioning, with potential implications for large-scale climate. We use the term ‘plasticity’, rather than ‘acclimation’ to allow for the fact that these changes might occur as a result of nutrient scarcity, rather than a specific ‘acclimation’ to altered conditions. The capacity for leaf trait plasticity to alter ecosystem functioning could act directly, without changes in plant type abundance, as well as indirectly, through changes in plant competitive dynamics and thus the relative abundance of different plant types.

Among the most commonly observed plant trait responses to experimentally elevated CO$_2$ are increases in leaf mass per area (LMA, $g$ leaf carbon $m^{-2}$ leaf area) and the ratio of carbon to nitrogen within leaves (C:N$_{leaf}$, $g$ leaf carbon $g^{-1}$ leaf nitrogen). Observations suggest that each of these leaf traits could increase by as much as one-third under doubled CO$_2$ in a wide range of tropical tree species spanning successional classes (Fig. 1; Lovelock et al., 1998; Reekie & Bazzaz, 1989; Winter et al., 2000; Winter & Lovelock, 1999) implying thicker leaves with lower mass-based nitrogen concentrations. Comparison of Earth system model simulations to observations at ecosystem-scale CO$_2$ enrichment experiments suggests that accurately representing these two leaf traits is critical to predicting ecosystem responses to elevated CO$_2$ (Zaehle et al., 2014; De Kauwe et al., 2014; Medlyn et al., 2015). Fisher et al. (2019) also found that LMA was a critical control over the responsiveness of ecosystems in the CLM5 land surface model.

The leading hypothesis for why C:N$_{leaf}$ and LMA increase with elevated CO$_2$ is that CO$_2$ fertilization leads to nitrogen limitation of plant growth and the accumulation of nonstructural carbohydrates in leaves (Winter et al., 2001; Poorter et al., 2009, 1997; Pritchard et al., 1999; Roumet et al., 1999; Meyerholt & Zaehle, 2015). This is also consistent with the prediction from optimality approaches which suggest that higher CO$_2$ should lead to lower allocation to rubisco in favor of allocating the nitrogen to other parts of the plant (Xu et al., 2012; Quebbeman & Ramirez, 2016; Smith et al., 2019). While both LMA and C:N$_{leaf}$ trait changes have potential benefits (discussed below), it is possible that these changes are forced upon plants as there is not enough nitrogen to retain default leaf traits under high CO$_2$. It is possible that even if plastic responses of LMA and C:N$_{leaf}$ do not lead to increased assimilation they could still benefit plants, i.e. by allowing for more efficient use of N across the plant. Here we impose a range of C:N$_{leaf}$ and LMA plasticity levels and quantify the total canopy nitrogen required to support each leaf trait plasticity level.

### 1.1 Direct effects of trait plasticity

Plasticity in C:N$_{leaf}$ and LMA directly influence tropical forest functioning by altering area-based photosynthetic rates. C:N$_{leaf}$ is the amount of nitrogen present in a given unit of leaf mass, with higher C:N$_{leaf}$ indicating a lower amount of nitrogen per unit leaf mass. LMA describes the mass used to construct a unit of leaf area. Together these two traits control the nitrogen per leaf area ($N_{area}$, $g$ nitrogen $m^{-2}$ leaf area) as follows:

$$N_{area} = \frac{LMA}{C:N_{leaf}} \quad (1)$$

Given that nitrogen is an essential component of photosynthetic enzymes, particularly rubisco, $N_{area}$ is an important determinant of maximum photosynthetic rates per leaf area (Drake & González-Meler, 1997; Kattge et al., 2009, 2011; Walker et al., 2014; Norby et al., 2017). $N_{area}$ is therefore used in many terrestrial biosphere models to es-
imate photosynthetic parameters, which in turn exert strong influence over modeled carbon uptake (Verheijen et al., 2013; Bonan et al., 2011; Walker et al., 2017; Rogers et al., 2017). Changes in maximum photosynthetic rates due to altered N$_{area}$ can also influence rates of evapotranspirative cooling, as transpiration is coupled to photosynthesis in all commonly used stomatal conductance algorithms (Ball et al., 1987; Medlyn et al., 2011).

Experimental manipulation of CO$_2$ in tropical forest systems has been observed to modify both LMA and C:N$_{leaf}$ in a wide range of tropical tree species across successional classes (Lovelock et al., 1998). These observations suggest that co-occurring changes in LMA and C:N$_{leaf}$ in response to a doubling of CO$_2$ most often caused N$_{area}$ to decrease (Fig. 1 below diagonal line) or, in fewer cases, to be maintained (Fig. 1 on diagonal line; Lovelock et al., 1998). Thus, in the absence of other changes (such as adjusted partitioning of nitrogen between different photosynthetic processes; e.g., Xu et al., 2012; Leakey, Ainsworth, et al., 2012; Smith et al., 2019) the observed leaf trait plasticity in response to elevated CO$_2$ has the potential to lower projections of tropical ecosystem carbon uptake and evapotranspirative cooling by reducing photosynthetic rates and stomatal conductance.

Leaf trait plasticity could also directly influence ecosystem functioning by modifying leaf area index (LAI, m$^2$ leaf area m$^{-2}$ ground), which provides the surface area over which photosynthesis and transpiration are scaled to the ecosystem level. Increasing LMA increases the carbon cost of building leaf area, as thicker leaves require more carbon to build a given unit of leaf area. For a given unit mass of carbon allocation to leaves, LMA is, by definition, used to calculate plant leaf area. In terms of nutrient budgets, for a constant C:N$_{leaf}$, increasing LMA also increases nitrogen requirements, while increasing C:N$_{leaf}$ makes leaf area less expensive in terms of nitrogen. In models, these dynamics are of course only applicable when active nitrogen cycling is represented.

There are direct trade-offs between the influences of leaf plasticity on C:N$_{leaf}$ and LMA on photosynthetic rates and leaf area under elevated CO$_2$. Increases in C:N$_{leaf}$ could reduce maximum photosynthetic rates but do not alter the carbon cost of building leaf area while increases in LMA could offset reductions in maximum photosynthetic rates due to higher C:N$_{leaf}$ but increase the cost of building leaf area. Thus, given both the conflicting impacts of increasing C:N$_{leaf}$ and LMA on N$_{area}$, and the secondary impacts on leaf area itself, the likely net response of ecosystems to elevated CO$_2$ taking into account this type of leaf trait plasticity is not immediately apparent. While some nitrogen-enabled models allow for flexible C:N stoichiometry (Zaehle & Friend, 2010; Ghimire et al., 2016; Fisher et al., 2019; Caldararu et al., 2020), we are unaware of studies that have specifically included these direct and indirect effects of plasticity in response to forcing for LMA. Further, changes in leaf area and leaf functioning incur changes in respiratory costs as well. The resulting trade-offs of changes in leaf traits for both per leaf area and total canopy rates of functioning thus depend on assumptions about how respiratory costs scale with either total leaf mass or total mass of nitrogen.

1.2 Indirect effects of trait plasticity

Competition for light is recognized to be a dominant driver of community composition in tropical forests (e.g., Sterck et al., 2011). In addition to the direct influences described above, tropical tree responses to increasing CO$_2$ could also indirectly change ecosystem functioning by altering plant competition for light and the relative abundance of different plant types (reviewed by Cusack et al., 2016). The magnitude of leaf trait responses to elevated CO$_2$ has been observed to differ among tropical tree species (Lovelock et al., 1998; Reekie & Bazzaz, 1989; Winter et al., 2000; Winter & Lovelock, 1999). Variation in leaf trait plasticity across tropical tree types could lead to differential changes in the competitive ability for light in response to elevated CO$_2$ and thus alter the abun-
dance of competing plant types. LMA and $C: N_{leaf}$ act to modify both leaf area index and biomass through their influence on per leaf area photosynthetic rates as well as total leaf area. Leaf area index and biomass in turn can influence plant competitive ability. In general, trees which accumulate less biomass may not be able to grow as tall as their neighbors and may therefore become more heavily shaded; while trees with lower leaf area index may not be able to capture as much light or shade their neighbors in competition for light. Thus changes in these traits are likely to differentially alter the competitive ability of individual trees depending on their magnitude of plasticity.

### 1.3 Results from previous studies

Observational manipulation experiments have shown that tropical tree trait responses to CO$_2$ are species-specific (Lovelock et al., 1998; Reekie & Bazzaz, 1989; Winter et al., 2000; Winter & Lovelock, 1999) and suggest that differences in CO$_2$ responses across species could lead to changes in community structure (reviewed by Cusack et al., 2016). Investigating the relationship between individual traits and community outcomes is challenging in empirical studies due to multiple, confounding changes in plants treated with elevated CO$_2$ (Lovelock et al., 1998; Reekie & Bazzaz, 1989). While increases in $C: N_{leaf}$ and increases in LMA both appear to have negative impacts on plants at first consideration each has the potential to confer advantage. Despite first-order reductions in nitrogen per unit plant area, increasing $C: N_{leaf}$ may benefit plants as an adaptation to N limited conditions. McMurtrie et al. (2008) showed that a temperate monoculture was able to maximize productivity under limited nitrogen availability and elevated CO$_2$ by increasing $C: N_{leaf}$ which enabled increased leaf area. Increasing LMA could also be beneficial despite the higher cost of leaf area. Previous modeling studies have used observations of LMA and $C: N_{leaf}$ change to simulate changes in assimilation and individual plant growth and found that increasing LMA helps to offset negative effects of higher $C: N_{leaf}$ on $N_{area}$ and photosynthetic rates per leaf area under elevated CO$_2$ (Luo et al., 1994; Ishizaki et al., 2003).

None of these studies, however, considered communities of plants or the effects of competition between different plant types, nor did they focus on tropical tree species. Other modeling studies have found variability in plant traits, such as LMA, to have strong influences on plant competition for resources and ecosystem functioning under elevated CO$_2$ (Ali et al., 2015; Verheijen et al., 2015; Fisher et al., 2010). For example, Ali et al. (2015) found that decreasing LMA (the opposite of the observed change) was beneficial to competitive success under elevated CO$_2$, but did not consider the observed concomitant changes in $C: N_{leaf}$. Thus it remains unclear how the combination of observed trait responses to CO$_2$ will influence plant competitive dynamics, the survival of responsive trees, and tropical ecosystem structure and functioning in the future. Additionally, Verheijen et al. (2015) allowed LMA to vary with CO$_2$ (along with other environmental drivers and traits) globally in a dynamic global vegetation model, however they didn’t allow LMA influence leaf area index, nor, did they focus on tropical trees.

### 1.4 Modeling Objectives

In this study we explore how plasticity in two key leaf traits mediates tropical ecosystem carbon uptake and evaporative cooling responses to a doubling of CO$_2$ using an ensemble of simulations of the Functionally Assembled Terrestrial Ecosystem Simulator (FATES; Fisher et al., 2015; Koven et al., 2020) vegetation demographic model at a tropical forest test site, Barro Colorado Island, Panama. We investigate how different levels of plasticity in $C: N_{leaf}$ and LMA (gray squares in Fig. 1) in response to a doubling of CO$_2$: 1) modify ecosystem level carbon uptake and evaporative cooling in the absence of competition; 2) alter biomass and leaf area index; and 3) alter competitive outcomes when two plant types with different leaf trait plasticity responses compete.
Figure 1. Leaf trait plasticity in response to a doubling of CO$_2$ in tropical trees for leaf C:N (leaf gC gN$^{-1}$) and leaf mass per area (gC m$^{-2}$ leaf area). Observed changes across nine tropical tree species (red circles) from Lovelock et al. (1998). Leaf trait plasticity levels sampled for our experiments (gray squares). Diagonal black line indicates where nitrogen per area (N$_{area}$, gN m$^{-2}$ leaf area) remains at control levels. Above the diagonal line nitrogen per area increases (+N$_{area}$) compared to the control; below the diagonal line it decreases (-N$_{area}$).

We test leaf trait plasticity levels that increase (+N$_{area}$), decrease (-N$_{area}$), and maintain N$_{area}$ (=N$_{area}$). Our simulations do not explicitly represent growth limitation by or competition for nitrogen. Instead, we are able to quantify the change in total canopy nitrogen (g nitrogen m$^{-2}$ ground) required to support an ecosystem with each level of leaf trait plasticity (under doubled CO$_2$). We find that leaf trait plasticity levels that decrease N$_{area}$, consistent with observed responses of LMA and C:N$_{leaf}$, could reduce projections of future carbon uptake and evapotranspiration in the absence of competition. However, trees that are able to maintain or increase N$_{area}$ under high CO$_2$ would likely have a competitive advantage and could therefore maintain higher levels of ecosystem carbon uptake and evapotranspirative cooling.

2 Methods

2.1 Model Overview

We use an ensemble of simulations of the Functionally Assembled Terrestrial Ecosystem Simulator (FATES; Fisher et al., 2015; Massoud et al., 2019; Koven et al., 2020) embedded within the Community Land Model version 5 (Lawrence et al., 2018) to test the influence of leaf trait plasticity on tropical ecosystem functioning and competitive dynamics. CLM(FATES) is a cohort-based vegetation demographic model (Fisher et al., 2018; Koven et al., 2020), that mechanistically simulates plant ecological dynamics and ecosystem assembly via processes including plant growth, competition for light, recovery from disturbance, reproduction, mortality, and recruitment. A key feature of the model, based on the ecosystem demography concept (Moorcroft et al., 2001), is that it resolves distributions of vegetation height and time since disturbance, which allows it to simulate competition for light. In the model, disturbance, from tree mortality, fire, or logging, occurs at some rate across patches of the simulated ecosystem. Plants grow upon ground area within these “patches”, which are tracked by an age that represents the time since the last disturbance that that area of ground experienced. Within a patch, individual plants are grouped into “cohorts”, which can differ in height and functional type. Thus, cohorts represent individual plants of the same plant type and height as a representative average individual. The height structure of cohorts within a patch determines...
the light profile experienced by each cohort. The leaf area of taller cohorts in the canopy

can shade cohorts deeper in the canopy, which is further depicted as discrete canopy lay-
ers using the perfect plasticity approximation (Purves et al., 2008). Photosynthesis, res-
piration, turnover, and mortality, as well as the interaction of these processes with the
abiotic environment, control the amount of carbon each cohort can use for growth. Growth
and size-dependent allometric equations then determine the height, biomass, and target
leaf area of each cohort. Thus, carbon uptake is dynamic and influences plant growth, leaf area, and size, which in turn influence competition for light. Radiation streams for
direct and diffuse light are calculated at the leaf layer level for each plant type, patch
and canopy layer. This incoming energy drives photosynthesis and the surface energy
budget, and thus rates of carbon uptake and transpiration. In sum, the model tracks fluxes
of carbon, water, and energy throughout the ecosystem. This version of CLM(FATES)
does not explicitly represent growth limitation by or competition for nutrients, thus, we
implement C:N_{leaf} and LMA plasticity levels that represent the potential influences of
nutrient limitation and quantify the total canopy nitrogen required to support each leaf
trait plasticity level.

Baseline parameters for the model (Table S1) were chosen from a parameter en-
ssemble that sampled plant parameters from observations when possible following the meth-
ods of Koven et al. (2020) and described in Kovenock (2019). In brief, Kovenock (2019)
sampled 287 plausible parameterizations from the tropical tree trait space for 12 param-
eters, 6 of which were based on observations (see further discussion in Supporting In-
formation Text S1.1 and Kovenock, 2019). Our primary results used the parameteriza-
tion that allowed the simulated ecosystem to best match present day measurements of
leaf area index, above-ground biomass, basal area, net primary productivity, latent heat
fluxes, and sensible heat fluxes at our test site, Barro Colorado Island, Panama (also used
in Koven et al., 2020). We further test the sensitivity of our results to the next two best
performing parameter sets. (See Supporting Information Text S1.1 and S2.1 for details.)

2.2 Leaf trait plasticity estimation and implementation

Our experiments test 13 levels of leaf plasticity in C:N_{leaf} and LMA sampled from
the two-dimensional leaf trait plasticity space in Fig. 1 (gray squares). We test the equi-
librium response to elevated CO₂ rather than representing dynamic changes in time. The
leaf trait plasticity space represents both observed (at or below diagonal line in Fig. 1)
and hypothetical (above the diagonal line in Fig. 1) levels of leaf trait plasticity. The
observed leaf trait plasticity space is estimated from observations of leaf responses to a
doubling of CO₂ in nine tropical tree species, including early, mid- and late successional
classes (Lovelock et al., 1998, Fig. 1 red circles), and supported by additional studies in
tropical trees and many other C3 plant types (e.g., Lovelock et al., 1998; Reekie & Baz-
zaz, 1989; Winter et al., 2000; Winter & Lovelock, 1999). These observations suggest that
both C:N_{leaf} and LMA could increase by as much as one-third in response to a doubling
of CO₂ while N_{area} (Eqn 1) decreases or remains constant. Thus, we define observed leaf
trait plasticity levels as those that maintain N_{area} at (=N_{area}) or below (-N_{area}) con-
(CTRL and CC) levels. We also test leaf trait plasticity levels that increase N_{area}
(+N_{area}), to determine if such a response could help tropical trees enhance their pro-
ductivity and competitive ability. Given the wide diversity of tropical tree species it is
possible that some tropical tree species, (e.g. those with traits that enhance nutrient for-
aging or fixing capabilities), could in principle increase N_{area} (Fig. 1 above diagonal line)
in response to higher CO₂.

Changes in C:N_{leaf} and LMA in our simulations drive changes in N_{area}, maximum
photosynthetic and respiration rates, and leaf area index. Plasticity in C:N_{leaf} and LMA
drives changes in N_{area} (as described above) and this in turn alters maximum rates of
photosynthesis (e. g. V_{max}, J_{max}, T_{pmak}) and leaf respiration, following Eqn 1. We di-
rectly implement changes in V_{max} to vary in proportion to N_{area} (which was allowed
to change with changes to $\text{C:N}_{\text{leaf}}$ and LMA). Changes in the other maximum photosynthetic rates, $J_{\text{max}25}$, and $T_{\text{pmax}25}$, are thus also altered as they are calculated by the model in proportion to $V_{\text{cmax}25}$. Changes in maximum rates of photosynthesis and leaf respiration assume no changes in nitrogen partitioning among photosynthetic enzymes (c.f. Xu et al., 2012). We assume that LMA decreases with canopy depth following the observations of Lloyd et al. (2010) as previously implemented in FATES by Kovenock (2019). In FATES, leaf area index responds dynamically to carbon available for leaf growth, reducing canopy depth until no leaf layers are in negative annual carbon balance (Fisher et al., 2015). See further discussion in Supporting Information Text S1.2 for details.

### 2.3 Simulations

We ran simulations for a tropical forest test site at Barro Colorado Island in Panama. All simulations were forced with repeating meteorological data from this site from the years 2003-2016 (Faybishenko et al., 2018). All of our simulations used one or two broadleaf evergreen tropical trees, characteristic of our tropical forest test site. This plant functional type represents an average of many species within the evergreen tropical tree plant type, and thus here is not meant to resolve trait distinctions between species or successional classes. Two control simulations represent a baseline tropical forest ecosystem without leaf trait plasticity. The first control simulates the ecosystem with CO$_2$ concentration fixed at 400 ppm CO$_2$ (CTRL; 1xCO$_2$). The second control is identical to the first except that the ecosystem experiences a fixed atmospheric CO$_2$ concentration of 800 ppm (CC; 2xCO$_2$). Plants in these control simulations do not experience leaf trait plasticity in response to elevated CO$_2$ (gray square at origin in Fig. 1). The difference between the control simulations (CC - CTRL) quantifies the influence of CO$_2$ fertilization on the baseline simulated tropical ecosystem. Meteorological air temperature does not change in response to elevated CO$_2$ in our simulations to reflect the experimental conditions under which the leaf plasticity was observed. We chose these two levels of CO$_2$ concentration to represent a doubling of CO$_2$ from current conditions which results in a similar change but slightly higher baseline values compared to the conditions imposed in (Lovelock et al., 1998) from which we draw empirical inference for the magnitude of trait response of tropical trees.

We quantify the direct influence of different degrees of leaf trait plasticity, in the absence of competition, using an ensemble of simulations that are identical to the 2xCO$_2$ control (CC). Each ensemble member imposes a different level of leaf trait plasticity (gray squares sampled from leaf trait plasticity space in Fig. 1) on all plants in the simulation. We call these simulations of the ecosystem “in absence of competition” because different plant types that compete against each other are not present. We further group leaf trait plasticity experiments by whether they decrease ($-N_{\text{area}}$, below diagonal line in Fig. 1), maintain ($=N_{\text{area}}$, on diagonal line in Fig. 1), or enhance $N_{\text{area}}$ ($+N_{\text{area}}$, above diagonal line in Fig. 1). We calculate the total canopy nitrogen required for each “in absence of competition” simulation as total canopy leaf carbon ($g$ leaf C $m^{-2}$ ground) divided by $C: N_{\text{leaf}}$ ($g$ C $g$ N$^{-1}$).

We test the influence of leaf trait plasticity level on competitive ability using a second ensemble of simulations, which we refer to as “pairwise competition” simulations. These simulations are identical to the 2xCO$_2$ control (CC) except that each experiment includes two different plant types with identical initial conditions, which are identical in all traits except in their level of leaf trait plasticity. The two plant types are allowed to compete for light within the ecosystem. We repeat these pairwise competition experiments for all factorial combinations of two levels of leaf trait plasticity sampled from the species-specific points in leaf trait plasticity space (gray squares in Fig. 1), including the control “no leaf trait plasticity” plant type (gray square at origin in Fig. 1). We find that in each competition simulation, one plant type (i.e. one level of leaf trait plasticity) always eventually out-competes the other. For an analysis of the dynamics of co-
existence in the FATES model see Koven et al. (2020). We define one plant type as “win-
ning” the competition when it overtakes at least two-thirds of the total ecosystem biomass
(see below for further details). We quantify differences in competitive ability due to leaf
trait plasticity using a measure called percent wins (% wins), which is the percent of all
pairwise competitions a plant type with a given leaf trait plasticity level wins across com-
petition with the other plant types in the ensemble.

The 1×CO\textsubscript{2} control simulation (CTRL) was started from near-bare ground and in-
tegrated for 700 years. All variables came into equilibrium within 450 years, the time
required to grow a mature forest with our model set up. The 2×CO\textsubscript{2} control simulation
(CC) and all experiments were branched from the 1×CO\textsubscript{2} control simulation (mature for-
est) at year 500 and experienced an abrupt doubling of CO\textsubscript{2} to a time-invariant concen-
tration of 800 ppm CO\textsubscript{2}. The 2×CO\textsubscript{2} control and experiment simulations were run to
the point that the community was dominated by one plant type considered the “winner”.
Specifically, every simulation was run for 3,500 years, at which point 99% of competi-
tions between plant types with different trait changes were complete (one plant type reached
at least 95% of the ecosystem biomass). In the remaining 1% of competitions one plant
type had become dominant (taken over at least 67% of ecosystem biomass and trend-
ing towards overtaking all ecosystem biomass). We analyze the last 100 years of each sim-
ulation as our equilibrium ecosystem.

2.4 Statistical Analysis

We quantify the influence of leaf trait plasticity in the absence of competition (i.e.
simulations with only one plant type) using 1) differences in annual mean ecosystem prop-
erties and 2) relationships between leaf trait plasticity levels and annual mean ecosys-
tem properties across simulations. We use bootstrap methods with model years as the
unit of replication (n = 50,000) to construct confidence intervals for annual mean leaf
area index, biomass, net primary productivity, evapotranspiration, and total canopy ni-
trogen and test for differences between simulations. We use bootstrapping methods be-
cause some variables have time series that are non-normally distributed, have unequal
variances, and temporal autocorrelation. The 100 model years we analyze for each vari-
able are unique despite repeating the 14 years of meteorological forcing, as ecological dy-
namics also influence the environment (e.g., light availability) and ecosystem structure
and functioning in our simulations. We use simple, multiple, and stepwise linear regres-
sion methods to test for relationships between leaf trait plasticity levels (C:N\textsubscript{leaf}, LMA,
N\textsubscript{area}) and annual mean ecosystem properties across simulations. Correlations between
percent wins and annual mean net primary productivity and evapotranspiration across
simulations were tested using Pearson’s linear correlation coefficient. Differences, rela-
tionships, and correlations were considered statistically significant at the 95% confidence
level. (See Supporting Information Text S1.4 for details.)

3 Results

3.1 Elevated CO\textsubscript{2} response in the control simulation

Previous observations, simulations, and theory show that elevated atmospheric CO\textsubscript{2}
concentration enhances photosynthesis and reduces stomatal conductance, which has the
potential to enhance productivity and reduce evapotranspiration at the ecosystem scale
(e.g., Cernusak et al., 2013; Cusack et al., 2016; Lloyd & Farquhar, 2008; Zhu et al., 2016;
Lloyd & Farquhar, 2008; Swann et al., 2016; De Kauwe et al., 2013, and references therein).
In our control simulation (no leaf trait plasticity) a doubling of atmospheric CO\textsubscript{2} con-
centration from 400 ppm to 800 ppm (CC-CTRL) increases annual mean net primary
productivity (+74.2%), leaf area index (+7.0%), and biomass (+102.6%), and reduces
evapotranspiration (-9.2%) (Table 1, Fig. 2). As noted in the methods section, the FATES
model we use here does not explicitly represent nutrient limitation, thus we directly im-

Figure 2. Annual mean (a) biomass (kgC m\(^{-2}\)) and (b) leaf area index (m\(^2\) m\(^{-2}\)) and (c) net primary productivity (gC m\(^{-2}\) yr\(^{-1}\)) for the 1xCO\(_2\) control, 2xCO\(_2\) control (black), and the following leaf trait plasticity levels in the absence of competition: a one-third increase in leaf C:N alone (+CN, light green), a one-third increase in leaf mass per area alone (+LMA, purple), and a one-third increase in both leaf C:N and leaf mass per area (+CN+LMA, dark green). A bootstrap 95% confidence interval for the mean value all fall within the size of the markers.

Supplement leaf trait changes in our experiments that represent potential influences of nutrient limitation and quantify the total canopy nitrogen required to support each leaf trait plasticity level.

The actual expected magnitude of tropical forest responses to elevated CO\(_2\) is highly uncertain and little experimental data exists, particularly at the ecosystem scale (Lloyd & Farquhar, 2008; Hickler et al., 2008; Mahowald et al., 2016; Cusack et al., 2016; Norby et al., 2016; Fleischer et al., 2019; Holm et al., 2020). However, our control simulation response to elevated CO\(_2\) shows reasonable agreement with observations from temperate forest FACE experiments (De Kauwe et al., 2013, 2014) if one assumes a linear scaling with increasing CO\(_2\) (Cernusak et al., 2019). For example, a +200ppm CO\(_2\) increase at Duke Forest enhanced net primary productivity by approximately 30% (De Kauwe et al., 2013), which when scaled to +400ppm results in a +60% increase in net primary productivity (we find +74.2%, in the absence of N limitation). Similarly, when scaled to +400ppm these FACE experiments saw changes equivalent to approximately +6% and +30% in leaf area index at Oak Ridge and Duke, respectively (we find +7%) ; -40% in transpiration at Oak Ridge (no significant change at Duke Forest) (we find +9.2%); and +100% in biomass increment at Duke (we find total biomass changes, which are not directly equivalent, of +102%). Thus our modeled changes are all roughly comparable with these ranges, with slightly higher modeled increases in net primary productivity in our tropical simulations compared to these observational estimates from temperate forests. Lastly, changes in each of these ecosystem properties in our control simulation also fall within the simulated ranges from 11 Earth system models at these two temperate forest FACE sites after linearly scaling for CO\(_2\) concentration (De Kauwe et al., 2013, 2014). While our control simulation response to elevated CO\(_2\) is comparable to those estimated from observations in temperate forests, tropical forest responses may of course be subject to different constraints (e.g., De Graaff et al., 2006; Luo et al., 2006; Hickler et al., 2008; Zachle et al., 2014; Fleischer et al., 2019). Davies-Barnard et al. (2020) illustrate that for five CMIP6 class models with active nitrogen cycles, the fertilization impact of
+200 ppm CO₂ had a mean net primary productivity response of 16-18% for models other than CLM4.5 (which has an anomalously strong N limitation) which is about half the size of what we find (37% for +200 ppm). These models, however, are all subject to N limitation, and also show strong spatial variation, with tropical forests showing higher than average simulated CO₂ fertilization rates.

3.2 Influence of leaf trait plasticity on canopy structure in absence of competition

We find that imposed leaf trait plasticity alters net primary productivity, biomass, and leaf area index responses to a doubling of CO₂ in the absence of competition (Fig. 2). Under elevated CO₂, increasing C:Nleaf by one-third (the upper bound of our observed range) diminishes the increase in net primary productivity (-334 gCm⁻²s⁻¹) and biomass (-10.6 kgCm⁻²), as well as decreasing leaf area index (-0.7 m²m⁻²) compared to the control plant type (CN - CC). In contrast, increasing LMA by one-third enhances the increases in both simulated biomass (+7.2 kgCm⁻²) and leaf area index (+1.4 m²m⁻²) compared to the control plant type (LMA - CC), via increases in net primary productivity (+304 gCm⁻²s⁻¹) from increasing Narea that has a larger effect than the more costly leaf construction. Increasing both C:Nleaf and LMA simultaneously by one-third under a doubling of CO₂ (CNLMA) results in only a slightly reduced increase in biomass (-2.6 kgCm⁻²) and no change in leaf area index (0.0 m²m⁻²) or net primary productivity (-0.8 gCm⁻²s⁻¹) compared to the control plant type (CNLMA - CC).

The first-order impacts are that, for any given increase in C:Nleaf, a simultaneous increase in LMA allows plants to maintain biomass and leaf area index that are closer to the control plant type. It is worth noting additionally that the simultaneous change is not a perfect cancellation between the two factors. When LMA increases in isolation leaves get thicker and more productive per area with increased Narea. When C:Nleaf is increased, Narea and net primary productivity decrease. When both factors occur simultaneously, thicker leaves compensate for a lower mass density of nitrogen. The two factors cancel one another out in terms of net primary productivity, as Narea is conserved, however biomass is reduced slightly relative to the case with no leaf change. We hypothesize that this happens because thicker leaves require more carbon allocated to leaves relative to wood and thus the overall whole plant turnover of carbon is faster resulting in a smaller total biomass. Consistent with this hypothesis, we find that the fractional allocation of net primary productivity to leaves goes up even for the case where Narea is conserved (by +0.023, see Table S2), and the lifetime of total biomass decreases (by -0.72 years, see Table S2).

3.3 Influence of leaf trait plasticity on competitive ability

We find that the control plant type, with no leaf trait plasticity (and thus no change in Narea), is more competitively advantageous than all leaf trait plasticity levels sampled where Narea either decreases or remains constant under a doubling of CO₂ (Fig. 3). The control plant type (origin in Fig. 3) wins all of pairwise competitions against plant types with leaf trait plasticity levels sampled from the trait changes that maintain Narea (=Narea, along black dashed diagonal line in Fig. 3) or reduce Narea (-Narea, below black dashed diagonal line in Fig. 3).

Increasing C:Nleaf strongly diminished competitive ability, as evidenced by the decreasing percentage of competitions a plant type wins as C:Nleaf increases (left to right, Fig. 3). At a given C:Nleaf, increasing LMA typically enhances competitive ability. At very high C:Nleaf there is little change, (bottom to top, Fig. 3) however, reflecting the trade-off between the impacts on Narea (reduced productivity) and leaf area index (increased productivity). This results from decreased net primary productivity, biomass, and leaf area index, as Narea is reduced (Fig. 4).
These results from our competition experiments are consistent with our findings in the absence of competition—higher C:N_{leaf} leads to lower net primary productivity, biomass, and leaf area index and increasing LMA results in net primary productivity, biomass, and leaf area index gains (Fig. 2). However, LMA increases sampled from plasticity levels that maintain or decrease N_{area} do not, in this model, fully compensate for the negative influence of higher C:N_{leaf} on competitive ability at any level. Furthermore, the competitive benefit of increasing LMA diminishes at higher C:N_{leaf}, as evidenced by the sinusoidal shape of the 50% wins shading (white) in Fig. 3. In sum, we find that plant types that can maintain higher N_{area} in high CO_{2}, have greater competitive ability.

Leaf trait plasticity levels that enhance N_{area} (+N_{area}, above diagonal line in Fig. 3) enhance competitive ability compared to the control leaf type, as well as all leaf trait plasticity levels sampled from the =N_{area} and -N_{area} space (Fig. 3). This is consistent with our finding that increasing LMA in isolation enhances biomass and leaf area index beyond the control case in the absence of competition (Fig. 2).

### 3.4 Changes in carbon uptake and evapotranspirative cooling

Ecosystem carbon uptake is tightly coupled to changes in LMA and C:N_{leaf}, both directly via their impacts on photosynthetic rate, and indirectly via impacts on leaf area index. In our experiments we impose changes in leaf traits, which result in emergent rates of carbon uptake, while in a fully evolving system we expect that the carbon uptake rates and nutrient availability are likely involved in setting the leaf traits to begin with (see further discussion in section 4.3). Evapotranspiration is additionally a downstream result of stomatal conductance and leaf area index. Given that the meteorological conditions are the same in our experiments and our control, the changes in ET that we found result from changes to plant traits and functioning only, and tend to change in concert with carbon fluxes. Leaf trait plasticity levels sampled from the -N_{area} space are associated with lower carbon uptake and evapotranspiration compared to the control response to a doubling of CO_{2} (CC) in our experiments reflecting the influence of reduced photosynthetic capacity (Fig. 5, Table 1). On average the observed changes in C:N_{leaf} and LMA reduce the increase in annual mean net primary productivity by -0.2% and further reduce annual mean ET by -4.4% compared to the 2xCO_{2} control (-N_{area} - CC). The largest reduction in net primary productivity (-14.7%) and evapotranspiration (-7.0%) results from the leaf trait plasticity level that increases C:N_{leaf} by one-third without a co-occurring increase in LMA (CN - CC), a response which was not specifically observed by Lovelock et al. (1998).

Leaf trait plasticity levels that maintain N_{area} equal to the control (=N_{area}) also maintain carbon uptake and evapotranspiration at control levels (Fig. 5, Table 1). Annual mean net primary productivity and evapotranspiration do not differ significantly between =N_{area} simulations and the control simulation under a doubling of CO_{2} (=N_{area} - CC). Leaf changes that enhance N_{area} (+N_{area}) increase carbon uptake and moderate the reduction in evapotranspiration compared to the control response to a doubling of CO_{2} (Fig. 5, Table 1). On average +N_{area} leaf trait plasticity levels increase annual mean net primary productivity by +8.4% and lessen the reduction in evapotranspiration by +4.8% (+N_{area} - CC). The largest enhancement of net primary productivity (+13.4%) and evapotranspiration (+7.9%) results from the leaf trait plasticity level that increases LMA by one-third but does not alter C:N_{leaf} (LMA - CC).

Leaf trait plasticity levels that confer a higher competitive advantage also have a higher carbon uptake (Fig. 5). We expect that more N_{area} generally leads to higher productivity and thus higher associated evapotranspiration. The competitive ability of a plant type with a given level of leaf trait plasticity, as measured by the percent of competi-
tions won against plant types with other levels of plasticity (percent wins), is significantly correlated with net primary productivity (r = 0.91) and evapotranspiration (r = 0.91).

3.5 Total canopy nitrogen

Progressive nitrogen limitation is hypothesized to limit plant growth in response to elevated CO$_2$ (Luo et al., 2004) and may be a cause of C: N$_{leaf}$ and LMA plasticity in response to elevated CO$_2$ (Poorter et al., 2009, 1997; Pritchard et al., 1999; Roumet et al., 1999; Meyerholt & Zaehle, 2015). Here we report the total amounts of canopy nitrogen required for ecosystems with differing levels of leaf trait plasticity, and compare them to the 1xCO$_2$ control simulation (CTRL), which provides a reference for the amount of nitrogen used by canopies in the simulated current day ecosystem. Variation in total canopy nitrogen across simulations results from the leaf trait plasticity changes we imposed and changes in overall leaf carbon, which is an emergent property of each simulation.

Under 1xCO$_2$ conditions, our control simulation (CTRL) had a total canopy nitrogen content of 8.3 gNm$^{-2}$ ground. Doubling CO$_2$ increased the control ecosystems total canopy nitrogen content by +0.3 gNm$^{-2}$ or +3.2% (Fig. 3 red contours). This increase is only due to the increase in leaf biomass, which at the canopy level in FATES is governed by a combination of within-plant optimization of leaf biomass to maximize canopy carbon export combined with the ability of plants to survive in the understory, both of which are expected to promote slightly higher leaf carbon under the elevated CO$_2$ conditions. Leaf trait plasticity levels that maintain N$_{area}$ at control levels (=N$_{area}$) but have increases in both C:N$_{leaf}$ and LMA also increase the total amount of canopy nitrogen required beyond the 1xCO$_2$ control level, although by slightly less than the 2xCO$_2$ control, with the mean change across =N$_{area}$ simulations ranging from 2.1% to 3.0% (=N$_{area}$ - CTRL; Fig. 3). The -N$_{area}$ scenarios all maintain canopy N content at or below the 1xCO$_2$ control level (-N$_{area}$; Fig. 3). Simulation with high C:N and unchanged LMA lowered canopy N content by as much as -23.2%.

4 Discussion

4.1 Large-scale climate implications

We find that observed changes in leaf C:N ratios and LMA reduce model predictions of tropical tree productivity, evapotranspiration, and competitive ability under high CO$_2$ and alter carbon and water fluxes, with implications for projections of future large-scale climate. We expect that reductions in evapotranspirative cooling over tropical forests would lead directly to local warming (Kovenock & Swann, 2018). Reductions in carbon uptake leave more CO$_2$ in the atmosphere thus if such reductions were to be widespread over tropical forests there might be global scale implications for warming through the greenhouse effect of CO$_2$ (Kovenock & Swann, 2018). We find that, as is intuitive, tropical trees which are more able to maintain their leaf nitrogen per unit area near present day levels have the highest competitive abilities and also show the smallest changes in carbon and water fluxes (Fig. 5), suggesting that if changes in plant type abundance shift to reflect the most competitive members of the community this will allow maintenance of higher gas exchange rates, leaf area index, and biomass.

4.2 Constraints from canopy nitrogen budgets

Maintaining present-day leaf N$_{area}$ with a doubling of CO$_2$ requires an increase in canopy nitrogen for the control case (CC; red contour lines in Fig. 3) to support the increase in leaf area index (Fig. 2). Thus if we assume that ecosystem N limitation imposes a requirement for conservation of canopy N$_{area}$, this limits the possible leaf trait plasticity space by excluding the control and central diagonal band along with the en-
Figure 3. The percent of pairwise competitions won (% Wins, color shading and black numbers) and percent change in total canopy nitrogen compared to the 1xCO$_2$ control (red contours) for each leaf trait plasticity level of leaf C:N and leaf mass per area. Percent wins for sampled trait changes (black numbers). Diagonal line (dashed black) indicates where nitrogen per area ($N_{area}$, gN m$^{-2}$ leaf area) remains at control levels ($=N_{area}$). Leaf trait plasticity levels below the diagonal line reduce $N_{area}$ ($-N_{area}$) compared to the control plant type. Leaf trait plasticity levels above the diagonal line enhance $N_{area}$ ($+N_{area}$) compared to the control plant type. Linear interpolation used to estimate percent wins and change in total canopy nitrogen between sampled trait changes.

4.3 Why do leaf changes occur?

Our model results suggest that, in the context of the FATES parameterization used here, observed increases in C:N$_{leaf}$ in response to elevated CO$_2$ do not confer a competitive advantage. We find that plant types in which C:N$_{leaf}$ increases in response to elevated CO$_2$ suffer in several metrics of plant fitness, including biomass, leaf area index, net primary productivity, and competitive ability. Thus our results suggest that changes in C:N$_{leaf}$ are likely forced upon plants by changes in elevated CO$_2$, rather than occurring as a beneficial acclimation. This is consistent with the leading hypothesis for the mechanism underlying C:N$_{leaf}$ increases with elevated CO$_2$. Nitrogen limitation has been proposed as a cause for lower mass-based nitrogen concentrations in leaves (e.g., Poorter et al., 1997; Winter et al., 2001; Fyllas et al., 2009; Cusack et al., 2016). As carbon dioxide fertilizes plant growth the demand for nutrients is likely to increase and eventually result in the depletion of nitrogen available for growth (Luo et al., 2004; Hungate et al., 2003). The limited availability of nitrogen, as well as accumulation of nonstructural car-
Figure 4. Changes in (a) biomass (kg C m\(^{-2}\)), (b) leaf area index (m\(^2\) m\(^{-2}\)), (c) net primary productivity (g C m\(^{-2}\) yr\(^{-1}\)), and (d) evapotranspiration (W m\(^{-2}\)) compared to the 2xCO\(_2\) control (color shading and black numbers) and percent change in total canopy nitrogen compared to the 1xCO\(_2\) control (red contours, identical on all plots) for each leaf trait plasticity level of leaf C:N and leaf mass per area. Diagonal line (dashed black) indicates where nitrogen per area (N\(_{\text{area}}\), gN m\(^{-2}\) leaf area) remains at control levels. Leaf trait plasticity levels at or below the diagonal line reduce N\(_{\text{area}}\) (-N\(_{\text{area}}\)) compared to the control plant type. Leaf trait plasticity levels above the diagonal line enhance N\(_{\text{area}}\) (+N\(_{\text{area}}\)) compared to the control plant type. Changes were measured for sampled trait changes (black numbers). Linear interpolation used to estimate changes between sampled trait changes.
Figure 5. Annual mean (a) net primary productivity (NPP, g C m$^{-2}$ yr$^{-1}$) and (b) evapotranspiration (ET, W m$^{-2}$) for the 1xCO$_2$ control, 2xCO$_2$ control (no leaf trait plasticity), and 12 ecosystems each consisting entirely of one plant type with a different level of leaf trait plasticity sampled from the -N$_{area}$, =N$_{area}$, and +N$_{area}$ trait plasticity spaces. Color indicates the percentage of all pairwise competitions won by each level of leaf trait plasticity (% Wins). Error bars show bootstrap 95% confidence intervals for the mean value.
bohydrates due to sink limitation of growth, could lower mass-based leaf nitrogen concentrations and result in higher C:N_{leaf} (e.g., Poorter et al., 1997; Winter et al., 2001). Manipulation experiments in which tropical tree seedlings are treated with elevated CO$_2$ provide evidence that CO$_2$ stimulation of growth is enhanced by the addition of soil nutrients, suggesting that nutrient limitation does indeed impact leaf trait responses (Winter et al., 2001). Plants in which C:N$_{leaf}$ increases more in response to elevated CO$_2$ may be those that are unable to adjust to lower nitrogen availability or higher competition for nitrogen. Tropical trees with traits that allow them to better acquire nitrogen, for example associations with nitrogen fixing bacteria or fungi, may be better able to maintain C:N$_{leaf}$ levels under elevated CO$_2$ with advantages for growth and competitive success (Lovelock et al., 1998; Cusack et al., 2016; Cernusak et al., 2013).

Further, it has been suggested that the increase in LMA with elevated CO$_2$ is mediated by nitrogen (or other resource limitation of plant growth causing nonstructural carbohydrates accumulation in leaves; Poorter et al., 2009, 1997; Pritchard et al., 1999; Roumet et al., 1999). We find that coordinated responses of both LMA and C:N$_{leaf}$ are beneficial: plants that are able to increase LMA most for a given level of C:N$_{leaf}$ change are those that are best able to maintain high biomass, leaf area index, productivity, and competitive ability. Concurrently increasing LMA along with C:N$_{leaf}$ leads to maintenance of equal N$_{area}$ by counteracting decreases in mass-based nitrogen concentration (Luo et al., 1994; Ishizaki et al., 2003). Indeed, we found that even when limited to control levels of total canopy nitrogen, plants could maintain close to equal amounts of N$_{area}$. As nitrogen is an essential component of photosynthetic enzymes, maintaining N$_{area}$ can maintain area-based maximum photosynthetic rates (Kattge et al., 2009, 2011; Walker et al., 2014; Norby et al., 2017), and we find that net primary productivity closely follows the amount of N$_{area}$ in our simulations. Observations by Lovelock et al. (1998) of tropical tree leaf trait responses to a doubling of CO$_2$ (Fig. 1) suggest that increases in LMA are generally higher for larger increases in C:N$_{leaf}$, helping to maintain N$_{area}$ and thus functioning – closer to control levels (Fig. 5). While it is logical that increasing LMA concurrently with C:N$_{leaf}$ is advantageous to plants, this leaves open the question of why these two factors would change in the first place if canopy nitrogen is the limiting constraint.

4.4 Other potential leaf trait plasticity trade-offs

Other coordinated plant plasticity responses to elevated CO$_2$ and nutrient limitation could further influence the impacts of leaf trait plasticity on competitive ability and tropical forest functioning. Observations show that many trees, including tropical trees, enhance carbon and nitrogen allocation to root growth at the expense of leaf growth in response to elevated CO$_2$ (e.g., Luo et al., 2006, Körner and Arnone, 1992; reviewed in Cusack et al., 2016; Cernusak et al., 2013). Such partitioning of nitrogen away from leaves could increase C:N$_{leaf}$ but benefit plants if they use the nitrogen to build other structures that help alleviate resource limitation, such as roots that can access further nutrients (reviewed in Cusack et al., 2016; Cernusak et al., 2013) although, in some cases, this growth strategy has been found to be ineffective (Norby et al., 2010). Our primary results isolate the influence of leaf trait plasticity changes and do not include changes in the target ratio of root mass to leaf area. However, we test the sensitivity of our results to increasing target root mass in coordination with leaf trait plasticity using additional simulations (Supporting Information Text S1.3.2 and S2.1). In these additional experiments, trees increase target root mass in proportion with increases in LMA. This accounts for the additional carbon cost of growing more roots to support the additional nutrient requirements for greater leaf mass. This makes it even more costly to increase LMA, which we expect should reduce the competitive advantage of doing so. In this case, we find that the control plant type is always at competitive advantage, and the benefit of increasing LMA that we saw in our primary results no longer consistently occurs.
Other potential trade-offs for leaf trait plasticity responses could be thought to alter their influence on tropical forest ecosystem dynamics and functioning. For example, enhanced leaf lifespan is associated with greater LMA across species (Wright et al., 2004) and could be expected to further enhance productivity and competitive outcomes. However, this relationship across species does not necessarily hold within species (Anderegg et al., 2018; Fisher et al., 2015; Lusk et al., 2008) and varies in response to elevated carbon dioxide (Norby et al., 2003, 2010; Taylor et al., 2008; Lovelock et al., 1998), thus we chose not to couple increases in leaf lifespan with increases in LMA in our experiments. Higher carbon to nitrogen ratios are also associated with defense against herbivory (reviewed in Cusack et al., 2016), which could increase with climate change (e.g. Deutsch et al., 2018) but are not considered in our simulations.

4.5 Indirect effects of plant type abundance

With limited changes in spatial distributions of plant types, the observed plastic response of plants under high CO$_2$ is likely to lead to decreases in N$_{area}$ and thus to overall decreases in carbon uptake and evaporative cooling. On the other hand, if the distribution of plants in an ecosystem changes due to differences in competitive ability, plant types that can maintain higher N$_{area}$ and thus confer greater competitive advantage could, in the longer term, increase in abundance and bring carbon uptake and evaporative cooling more in line with projections that assume leaf traits remain as in the control.

4.6 Potential role of rising temperatures

Warming temperatures could be expected to alter the response of leaf traits to CO$_2$, with implications for the influence of leaf trait plasticity on ecosystem functioning and composition. For example, warmer temperatures have been found to be associated with lower leaf nitrogen content across a spatial gradients in present-day tropical forests (Cusack et al., 2016; Fyllas et al., 2009; Tully & Lawrence, 2010), plausibly via the negative impacts of plant respiration with high nitrogen content (Cernusak et al., 2013). Such decreases in leaf nutrient concentration could amplify the leaf responses to elevated CO$_2$ we test here (unless there were accompanying changes in the allocation of N to different plant processes). Higher temperatures have been associated with lower LMA in manipulation experiments (Poorter et al., 2009), as well as across an elevational gradient in present-day tropical forests (Doughty et al., 2018). This influence could be expected to offset the LMA increase in response to CO$_2$ we test here. However, warming and CO$_2$ are hypothesized to influence LMA through different mechanisms (leaf expansion vs. accumulation of carbohydrates, respectively), making it difficult to predict the combined influence of these two environmental factors on LMA. Thus, the combined influence of elevated CO$_2$ and temperature on tropical tree traits remains poorly constrained (Cusack et al., 2016; Cernusak et al., 2013).

4.7 Recommendations for including leaf trait plasticity in projections of future climate

We illustrate here that a better understanding of tropical tree responses to environmental change, as well as the use of plant competition models, will be needed to accurately include the effects of leaf trait plasticity in projections of future climate.

First, more observations are required to constrain tropical tree leaf responses to multiple environmental factors - including CO$_2$, nutrient availability, and temperature - and how these responses differ by tree type (e.g. successional class or species) and develop-
mental stage (e.g., Cusack et al., 2016). Our ability to characterize leaf trait plasticity in response to environmental change may ultimately require a better understanding of whole plant carbon and nutrient dynamics, as leaf carbon and nitrogen can depend on supply and demand from other plant organs (e.g., Luo et al., 1994; Pritchard et al., 1999; Norby et al., 2010; Xu et al., 2012; Winter et al., 2001; Zaehle et al., 2014).

Second, numerous models of the terrestrial biosphere represent the cycling of nutrients, and a subset of these represent flexibility in tissue C:N ratios in response to N availability (Zaehle & Friend, 2010; Zaehle et al., 2014). Here we show that simulation of changes in C:N ratio in isolation of apparently coordinated changes in LMA may overestimate the impact of changing stoichiometry on future gas exchange. Complex as it is, models should thus strive to represent the temporal dynamics of important plant traits themselves—including LMA—under changing environmental conditions. Here we test the impacts of modifying plant traits as observed, but many studies aim to predict such plant properties from principles of evolutionary optimality theory (McMurtrie & Dewar, 2011; Prentice et al., 2014; Dewar et al., 2012; Thomas & Williams, 2014; Xu et al., 2012), for example, to maximize leaf or canopy carbon export per unit N investment, or similar metrics. Optimality models typically predict single optimal solutions for a given set of conditions, without consideration of demographic time lags or genetic limitations on trait plasticity. Vegetation demographic models, wherein competing plants might move the community mean towards an optimum, provide an alternative means of predicting plant trait dynamics in time (Weng et al., 2015; Falster et al., 2017; Fisher et al., 2018). Using a model of plant competition, we show here that changes in leaf traits can alter plant competitive dynamics and the abundance of different plant types with implications for ecosystem functioning. Ideally, some consideration of the degree to which traits are plastic within existing species would provide the best means to combining these two approaches (Fisher & Koven, 2020), but would require detailed studies of limits to plasticity (e.g., Geange et al., 2017; Power et al., 2019). Consideration of alternative optimal approaches to trait prediction will be investigated in future versions of FATES.

4.8 Implications

Here we show that leaf trait plasticity in response to elevated CO₂ could alter tropical forest influences on climate directly, by altering the functioning of tropical trees, and indirectly, by modifying plant competitive dynamics and the abundance of different plant types. As such, including the effects of leaf trait plasticity could have a significant influence on projections of future climate. These results further support the need for more observations of tropical tree responses to environmental change and the use of plant competition models within earth system models used to predict future climate change.

Acknowledgments

MK, ALSS, CDK, RAF designed the study, all authors contributed to model development, MK completed the simulations, MK analyzed the output, all authors contributed to interpretations of the results, and MK, ALSS wrote the paper with input from all authors. We thank Janneke Hille Ris Lambers an Elizabeth Van Volkenburgh for their insightful suggestions on an earlier version of this manuscript. We acknowledge support from the National Science Foundation AGS-1553715 to the University of Washington. RAF acknowledges the support of the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement 1852977. CDK acknowledges support by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy (DOE BER) under Contract DE-AC02-05CH11231 through the Early Career Research Program, the Regional and Global Model Analysis Program (RUBISCO SFA), CDK, RAF, and RGK acknowledge support from the DOE-BER Next Generation Ecosystem Experiment-Tropics (NGEE-Tropics) project. All simulations were run on the National Center for Atmospheric
### Biomass, Leaf area index (LAI), net primary productivity (NPP), evapotranspiration (ET), and total canopy nitrogen (total canopy N) mean and percent (%) changes.

|                | Biomass (kgC m\(^{-2}\)) | LAI (m\(^2\) m\(^{-2}\)) | NPP (gC m\(^{-2}\) yr\(^{-1}\)) |
|----------------|-----------------------------|-----------------------------|----------------------------------|
|                | Mean (CI\(_{95}\)) % (CI\(_{95}\)) | Mean (CI\(_{95}\)) % (CI\(_{95}\)) | Mean (CI\(_{95}\)) % (CI\(_{95}\)) |
| double CO\(_2\) | 30.1 (30,30.2) 102.6 (102.1,103) 0.45 (0.43,0.46) 7 (6.8,7.2) 967.8 (958.8,976.8) 74.2 (73.2,75.1) |
| -N\(_{area}\)   | -7.1 (-7.1,-7.2) -11.9 (-11.9,-11.7) -0.5 (-0.51,-0.49) -7.4 (-7.5,-7.2) -208.6 (-215.7,-201.6) -9.2 (-9.5,-8.9) |
| =N\(_{area}\)   | -1.6 (-1.7,-1.5) -2.7 (-2.9,-2.6) -0.02 (-0.03,-0.01) -0.3 (-0.4,-0.1) -334.3 (-342.4,-326.3) 0 (-0.3,0.3) |
| +N\(_{area}\)   | 4.1 (4.4,2) 6.9 (6.7,7) 0.76 (0.75,0.77) 11.1 (10.9,11.3) 191.9 (184.4,199.6) 8.4 (8.1,8.8) |
| +CN             | -10.6 (-10.7,-10.5) -17.8 (-18,-17.6) -0.75 (-0.76,-0.74) -11 (-11.1,-10.8) -343 (-342.4,-326.3) -14.7 (-15,-14.4) |
| +LMA            | 7.2 (7.1,7.4) 12.2 (11.9,12.4) 1.36 (1.34,1.38) 20 (19.7,20.2) 304.5 (294.2,314.9) 13.4 (12.9,13.9) |
| +CN+LMA         | -2.6 (-2.7,-2.4) -4.3 (-4.5,-4.1) -0.03 (-0.04,-0.02) -0.4 (-0.6,-0.3) -8 (-9.9,8.4) 0 (-0.4,0.4) |

|                | ET (W m\(^{-2}\)) | Total Canopy N (gN m\(^{-2}\)) |
|----------------|-------------------|-------------------------------|
|                | Mean (CI\(_{95}\)) % (CI\(_{95}\)) | Mean (CI\(_{95}\)) % (CI\(_{95}\)) |
| double CO\(_2\) | -7.3 (-7.8,-6.8) -9.2 (-9.8,-8.6) 0.26 (0.26,0.27) 3.2 (3.1,3.3) |
| -N\(_{area}\)   | -3.2 (-3.6,-2.8) -4.4 (-5,-3.9) - - |
| =N\(_{area}\)   | 0 (-0.4,0.3) -0.1 (-0.6,0.5) 3.4 4.8 - - |
| +N\(_{area}\)   | -5 (-3.3) -7 -1.93 -23.2 |
| +CN             | -5 (-5.5,-4.6) -7 (-7.7,-6.4) -1.93 (-1.93,-1.92) -23.3 (-23.3,-23.2) |
| +LMA            | 5.7 7.9 3.02 36.3 |
| +CN+LMA         | -0.1 -0.1 0.18 2.1 |

**Table 1.**
Research’s Cheyenne system. High-performance computing support from Cheyenne (doi:10.5065/D6RX99HX) was provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation. Model output used in this study is available through the University of Washington Libraries ResearchWorks digital repository at http://hdl.handle.net/1773/46218.

References

Ali, A. A., Medlyn, B. E., Aubier, T. G., Crous, K. Y., & Reich, P. B. (2015, October). Elevated carbon dioxide is predicted to promote coexistence among competing species in a trait-based model. *Ecology and Evolution*, 5(20), 4717–4733. doi: 10.1002/ece3.1733

Anderegg, L. D., Berner, L. T., Badgley, G., Sethi, M. L., Law, B. E., & HilleRisLambers, J. (2018). Within-species patterns challenge our understanding of the leaf economics spectrum. *Ecology Letters*, 21(5), 734–744. doi: 10.1111/ele.12945

Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987, January). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. *Progress in Photosynthesis research*, 4, 221–224. doi: 10.1007/978-94-017-0519-6_48

Bonan, G. B. (2008, June). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. *Science*, 320, 1444–1449. doi: 10.1126/science.1155121

Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M., Reichstein, M., … Swenson, S. C. (2011, May). Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. *Journal of Geophysical Research*, 116(G2), G02014. doi: 10.1029/2010JG001593

Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., BAKER, T. R., Lloyd, J., … Zagt, R. J. (2015). Long-term decline of the Amazon carbon sink. *Nature*, 519(7543), 344–+. doi: 10.1038/nature14283

Caldararu, S., Thum, T., Yu, L., & Zaehle, S. (2020, 2020/08/27). Whole-plant optimality predicts changes in leaf nitrogen under variable co2 and nutrient availability. *New Phytologist*, 225(6), 2331–2346. doi: 10.1111/nph.16327

Cernusak, L. A., Haverd, V., Brendel, O., Le Thiec, D., Guehl, J.-M., & Cuntz, M. (2019). Robust response of terrestrial plants to rising co2. *Trends in plant science*, 24(7), 578–586.

Cernusak, L. A., Winter, K., Dalling, J. W., Holtum, J. A. M., Jaramillo, C., Körner, C., … Wright, S. J. (2013). Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. *Functional Plant Biology*, 40(6), 531–551. doi: 10.1071/FP12309

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., … others (2013). Carbon and Other Biogeochemical Cycles. In *Climate change 2013: the physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change* (pp. 465–570). Cambridge University Press.

Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., & Totterdell, I. J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model (vol 408, pg 184, 2000). *Nature*, 408(6813), 750-750.

Cusack, D. F., Karpman, J., Ashdown, D., Cao, Q., Cicchina, M., Halterman, S., … Neupane, A. (2016). Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale. *Reviews of Geophysics*, 54(3), 523–610.

Davies-Barnard, T., Meyerholt, J., Zaehle, S., Friedlingstein, P., Brovkin, V., Fan, Y., … Wiltshire, A. (2020). Nitrogen cycling in cmip6 land surface mod-
C., . . . Lawrence, D. M. (2019). Parametric controls on vegetation responses to biogeochemical forcing in the clm5. *Journal of Advances in Modeling Earth Systems, 11*(9), 2879–2895.

Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P., Domingues, T. F., Fuchslueger, L., . . . others (2019). Amazon forest response to co2 fertilization dependent on plant phosphorus acquisition. *Nature Geoscience, 12*(9), 736–741.

Fyllas, N. M., Patiño, S., Baker, T. R., Bielefeld Nardoto, G., Martinelli, L. A., Quesada, C. A., . . . Lloyd, J. (2009). Basin-wide variations in foliar properties of amazonian forest: phylogeny, soils and climate. *Biogeosciences, 6*(11), 2677–2708. doi: 10.5194/bg-6-2677-2009

Garbutt, K., Williams, W. E., & Bazzaz, F. A. (1990, 2020/07/17). Analysis of the differential response of five annuals to elevated CO2 during growth. *Ecology, 71*(3), 1185–1194. doi: 10.2307/1937386

Geange, S. R., Briceño, V. F., Aitken, N. C., Ramirez-Valiente, J. A., Holloway-Phillips, M.-M., & Nicotra, A. B. (2017). Phenotypic plasticity and water availability: responses of alpine herb species along an elevation gradient. *Climate Change Responses, 4*(1), 5.

Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y., & Field, C. B. (2003, November). Nitrogen and climate change. *Science, 302*, 1512–1513. doi: 10.1126/science.1091390

Ishizaki, S., Hikosaka, K., & Hirose, T. (2003). Increase in leaf mass per area benefits plant growth at elevated CO2 concentration. *Annals of Botany, 91*(7), 905–914. doi: 10.1093/aob/mcg097

Kattge, J., Diaz, S., Lavorel, S., Prentice, I. C., Mjöifors, K., Miller, P., Arneth, A., & Sykes, M. T. (2008, July). CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. *Global Change Biology, 14*(7), 1531–1542. doi: 10.1111/j.1365-2486.2008.01598.x

Holm, J. A., Knox, R. G., Zhu, Q., Fisher, R. A., Koven, C. D., Nogueira Lima, A. J., . . . others (2020). The central amazon biomass sink under current and future atmospheric CO2: Predictions from big-leaf and demographic vegetation models. *Journal of Geophysical Research: Biogeosciences, 125*(3), e2019JG005500.

Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y., & Field, C. B. (2003, November). Nitrogen and climate change. *Science, 302*, 1512–1513. doi: 10.1126/science.1091390

Körner, C., & Arnone, J. A. (1992). Responses to elevated carbon dioxide in artificial tropical ecosystems. *Science, 257*(5077), 1672–1675.

Koven, C. D., Knox, R. G., Fisher, R. A., Chambers, J. Q., Christoffersen, B. O., Davies, S. J., . . . Xu, C. (2020). Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the functionally assembled terrestrial ecosystem simulator (fates) at barro colorado island, panama. *Biogeosciences, 17*(11), 3017–3044. doi: 10.5194/bg-17-3017-2020

Kovenock, M. (2019). *Ecosystem and large-scale climate impacts of plant leaf dynamics* (Unpublished doctoral dissertation). University of Washington.

Kovenock, M., & Swann, A. L. S. (2018, October). Leaf Trait Acclimation Amplifies Simulated Climate Warming in Response to Elevated Carbon Dioxide. *Global
Lawrence, D., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Vertenstein, M., ... Xu, C. (2018, May). Technical Description of version 5.0 of the Community Land Model (CLM).

Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Zhu, X., Long, S. P., & Ort, D. R. (2012). Photosynthesis in a CO2-Rich Atmosphere. In Photosynthesis in silico (pp. 733–768). Dordrecht: Springer Netherlands. doi: 10.1007/978-94-007-1579-0_29

Leakey, A. D. B., Bishop, K. A., & Ainsworth, E. A. (2012, June). A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2. Current Opinion in Plant Biology, 15(3), 228–236. doi: 10.1016/j.pbi.2012.01.009

Lloyd, J., & Farquhar, G. D. (2008, May). Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1498), 1811–1817. doi: 10.1098/rstb.2007.0032

Luo, Y., Field, C. B., & Mooney, H. A. (1994, November). Predicting responses of photosynthesis and root fraction to elevated [CO2]: interactions among carbon, nitrogen, and growth. Plant, Cell and Environment, 17(11), 1195–1204. doi: 10.1111/j.1365-3040.1994.tb02017.x

Luo, Y., Hui, D., & Zhang, D. (2006, January). Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology, 87(1), 53–63.

Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A. C., Hartwig, U., ... Field, C. B. (2004, August). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 54(8), 731–739. doi: 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2

Lusk, C. H., Reich, P. B., Montgomery, R. A., Ackerly, D. D., & Cavender-Bares, J. (2008). Why are evergreen leaves so contrary about shade? Trends in Ecology & Evolution, 23(6), 299–303. doi: 10.1016/j.tree.2008.02.006

Mahowald, N., Lo, F., Zheng, Y., Harrison, L., Funk, C., Lombardozi, D., & Goodale, C. (2016). Projections of leaf area index in earth system models. Earth System Dynamics, 7(1), 211–229. doi: 10.5194/esd-7-211-2016

Massoud, E. C., Xu, C., Fisher, R. A., Knox, R. G., Walker, A. P., Serbin, S. P., ... others (2019). Identification of key parameters controlling demographically structured vegetation dynamics in a land surface model: Clim4.5 (fates). Geoscientific Model Development, 12(9), 4133–4164.

McMurtrie, R. E., & Dewar, R. C. (2011). Leaf-trait variation explained by the hypothesis that plants maximize their canopy carbon export over the lifespan of leaves. Tree physiology, 31(9), 1007–1023.

McMurtrie, R. E., Norby, R. J., Medlyn, B. E., Dewar, R. C., Pepper, D. A., Reich, P. B., & Barton, C. V. (2008). Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Functional Plant Biology, 35(6), 521–534.

Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., ... Wingate, L. (2011, January). Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology, 17(6), 2134–2144. doi: 10.1111/j.1365-2486.2010.02375.x

Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Han-
Meyerholt, J., & Zaehle, S. (2015, July). The role of stoichiometric flexibility in modelling forest ecosystem responses to nitrogen fertilization. *New Phytologist, 208*(4), 1042–1055. doi: 10.1111/nph.13547

Moorcroft, P. R., Hurtt, G. C., & Pacala, S. W. (2001). A method for scaling vegetation dynamics: the ecosystem demography model (ED). *Ecological monographs, 71*, 557–586.

Moorcroft, P. R., Hurtt, G. C., & Pacala, S. W. (2001). A method for scaling vegetation dynamics: the ecosystem demography model (ED). *Ecological monographs, 71*, 557–586.

Norby, R. J., De Kauwe, M. G., & Domingues, T. F. (2016). Model–data synthesis for the next generation of forest free-air CO$_2$ enrichment (FACE) experiments. *New Phytologist, 209*, 17–28.

Norby, R. J., Gu, L., Haworth, I. C., Jensen, A. M., Turner, B. L., Walker, A. P., . . . Winter, K. (2017). Informing models through empirical relationships between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical forests of Panama. *New Phytologist, 215*(4), 1425–1437.

Norby, R. J., Sholtis, J. D., Gunderson, C. A., & Jawdy, S. S. (2003, August). Leaf dynamics of a deciduous forest canopy: no response to elevated CO$_2$. *Oecologia, 136*(4), 574–584. doi: 10.1007/s00442-003-1296-2

Norby, R. J., Warren, J. M., Iverson, C. M., Medlyn, B. E., & McMurtrie, R. E. (2010). CO$_2$ enhancement of forest productivity constrained by limited nitrogen availability. *Proceedings of the National Academy of Sciences of the United States of America, 107*(45), 19368–19373. doi: 10.1073/pnas.1006463107

Poorter, H., Berkel, Y. v., Baxter, R., Hertog, J. d., Dijkstra, P., Gifford, R. M., . . . Wong, S. C. (1997). The effect of elevated CO$_2$ on the chemical composition and construction costs of leaves of 27 C$_3$ species. *Plant, Cell and Environment, 20*(4), 472–482. doi: 10.1046/j.1365-3040.1997.d01-84.x

Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009, May). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. *New Phytologist, 182*, 565–588. doi: 10.1111/j.1469-8137.2009.02830.x

Power, S. C., Verboom, G. A., Bond, W. J., & Cramer, M. D. (2019). Does a tradeoff between trait plasticity and resource conservatism contribute to the maintenance of alternative stable states? *New Phytologist, 223*(4), 1809–1819.

Prentice, I. C., Dong, N., Gleason, S. M., Maire, V., & Wright, I. J. (2014). Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. *Ecology letters, 17*(1), 82–91.

Pritchard, S. H., Rogers, H. O., Prior, S. A., & Peterson, C. M. (1999). Elevated CO$_2$ and plant structure: a review. *Global Change Biology, 5*(7), 807–837. doi: 10.1046/j.1365-2486.1999.00268.x

Purves, D. W., Lichstein, J. W., Strigul, N., & Pacala, S. W. (2008). Predicting and understanding forest dynamics using a simple tractable model. *Proceedings of the National Academy of Sciences, 105*(44), 17018–17022.

Quebbeman, J., & Ramirez, J. (2016). Optimal allocation of leaf-level nitrogen: Implications for covariation of vmax and jmax and photosynthetic downregulation. *Journal of Geophysical Research: Biogeosciences, 121*(9), 2464–2475.

Reeke, E. G., & Bazzaz, F. A. (1989, January). Competition and patterns of resource use among seedlings of five tropical trees grown at ambient and elevated CO$_2$. *Oecologia, 79*(2), 212–222. doi: 10.2307/4218947?ref=no-x-route:40891e19f6c4e0308b9050ce77413

Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., von Czernymer, S., Dietze, M. C., . . . Zaehle, S. (2017, January). A roadmap for improving the representation of photosynthesis in Earth system models. *The New phytologist, 213*(1), 22–42. doi: 10.1111/nph.14283

Roumet, C., Laurent, G., & Roy, J. (1999). Leaf structure and chemical composition
as affected by elevated CO$_2$: genotypic responses of two perennial grasses. New Phytologist, 113(1), 73–81. doi: 10.1046/j.1469-8137.1999.00437.x

Schimel, D., Stephens, B. B., & Fisher, J. B. (2015, January). Effect of increasing CO$_2$ on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 436–441. doi: 10.1073/pnas.1407302112

Smith, N. G., Keenan, T. F., Colin Prentice, I., Wang, H., Wright, I. J., Niinemets, Ü.,... others (2019). Global photosynthetic capacity is optimized to the environment. Ecology letters, 22(3), 506–517.

Sterck, F., Marksteijn, L., Schieving, F., & Poorter, L. (2011). Functional traits determine trade-offs and niches in a tropical forest community. Proceedings of the National Academy of Sciences, 108(51), 20627–20632.

Swann, A. L. S., Hoffman, F. M., Koven, C. D., & Randerson, J. T. (2016, September). Plant responses to increasing CO$_2$ reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences of the United States of America, 113(36), 10019–10024. doi: 10.1073/pnas.1604581113

Taylor, G., Tallis, M. J., Giardina, C. P., Percy, K. E., Miglietta, F., Gupta, P. S.,... Karnosky, D. F. (2008). Future atmospheric CO$_2$ leads to delayed autumnal senescence. Global Change Biology, 14(2), 264–275. doi: 10.1111/j.1365-2486.2007.01473.x

Thomas, R. Q., & Williams, M. (2014). A model using marginal efficiency of investment to analyze carbon and nitrogen interactions in terrestrial ecosystems (aconite version 1). Geoscientific Model Development, 7(5), 2015–2037.

Tully, K., & Lawrence, D. (2010). Declines in leaf litter nitrogen linked to rising temperatures in a wet tropical forest. Biotropica, 526–530.

van der Sleen, P., Groenendijk, P., Vlam, M., Anten, N. P. R., Boom, A., Bongers, F.,... Zuidema, P. A. (2015, January). No growth stimulation of tropical trees by 150 years of CO$_2$ fertilization but water-use efficiency increased. Nature, 8(1), 24–28. doi: 10.1038/ngeo2313

Verheijen, L. M., Aerts, R., Brovkin, V., Cavender-Bares, J., Cornelissen, J. H. C., Kattge, J., & van Bodegom, P. M. (2015, March). Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Global Change Biology, 21(8), 3074–3086. doi: 10.1111/gcb.12871

Verheijen, L. M., Brovkin, V., Aerts, R., Bonisch, G., Cornelissen, J. H. C., Kattge, J.,... Van Bodegom, P. M. (2013). Impacts of trait variation through observed trait–climate relationships on performance of an Earth system model: a conceptual analysis. Biogeosciences, 10(8), 5497–5515. doi: 10.5194/bg-10-5497-2013

Walker, A. P., Beckerman, A. P., Gu, L., Kattge, J., Cernusak, L. A., Domingues, T. F.,... Woodward, F. I. (2014). The relationship of leaf photosynthetic traits–Vcmax and Jmax–to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecology and Evolution, 4(16), 3218–3235.

Walker, A. P., Quaife, T., van Bodegom, P. M., De Kauwe, M. G., Keenan, T. F., Joiner, J.,... others (2017). The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (vcm) on global gross primary production. New Phytologist, 215(4), 1370–1386.

Weng, E., Malyshev, S., Lichstein, J., Farrar, C., Dybzinski, R., Zhang, T.,... Pacala, S. W. (2015). Scaling from individual trees to forests in an earth system modeling framework using a mathematically tractable model of height-structured competition. Biogeosciences.
nutrient limitation is removed. *Flora*, 196(1), 47–58.

Winter, K., Garcia, M., Lovelock, C. E., Gottsberger, R., & Popp, M. (2000). Responses of model communities of two tropical tree species to elevated atmospheric CO2: growth on unfertilized soil. *Flora*, 195(4), 289–302.

Winter, K., & Lovelock, C. E. (1999). Growth responses of seedlings of early and late successional tropical forest trees to elevated atmospheric CO2. *Flora*, 194(2), 221–227.

Winter, K., & Lovelock, C. E. (1999). Growth responses of seedlings of early and late successional tropical forest trees to elevated atmospheric CO2. *Flora*, 195(4), 289–302.

Winter, K., Garcia, M., Lovelock, C. E., Gottsberger, R., & Popp, M. (2000). Responses of model communities of two tropical tree species to elevated atmospheric CO2: growth on unfertilized soil. *Flora*, 195(4), 289–302.

Zaehle, S., & Friend, A. D. (2010, February). Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. *Global Biogeochemical Cycles*, 24(1). doi: 10.1029/2009GB003521

Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hicker, T., . . . Norby, R. J. (2014, January). Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies. *New Phytologist*, 202(3), 803–822. doi: 10.1111/nph.12697

Zhang, K., Kimball, J. S., Nemani, R. R., Running, S. W., Hong, Y., Gourley, J. J., & Yu, Z. (2015, October). Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration. *Nature Publishing Group*, 1–9. doi: 10.1038/srep15956

Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., . . . Zeng, N. (2016, April). Greening of the Earth and its drivers. *Nature Climate Change*. doi: 10.1038/nclimate3004