Supporting information

Bismuth(III) forms exceptionally strong complexes with natural organic matter

Dan B. Kleja, Jon Petter Gustafsson, Vadim Kessler, Ingmar Persson

Contents

Coordination chemistry of bismuth(III) (text).
Redox chemistry of bismuth (text)
Table S1. Hydrolysis constants of Bi$^{3+}$ in aqueous solution.
Table S2. Selected stoichiometric stability constants of bismuth(III) complexes with organic ligands in aqueous solution.
Table S3. Physicochemical characteristics of fulvic acid and soil sample.
Table S4. Bi-O distances in different coordination numbers.
Figure S1. Calculated conditional stoichiometric constants for the Bi$^{3+}$-oxalate and Bi$^{3+}$-glycine systems as a function of pH.
Figure S2. Specific UV absorbance of DOM as a function of pH in the batch experiments with the organic soil sample.
Figure S3. EXAFS data and fits of complete model and individual contributions of different bond distances and scattering paths.
Figure S4. Wavelet transform (WT) results for EXAFS data and model.
Figure S5. XRD patterns of metallic Bi samples subjected to corrosion in pure aqueous solutions and in aqueous solutions with 100 mg L$^{-1}$ fulvic acid.
Figure S6. Photo of metallic Bi samples subjected to corrosion in pure aqueous solutions and in aqueous solutions with 100 mg L$^{-1}$ fulvic acid.

S1
Coordination chemistry of bismuth(III)

Bismuth(III) exhibits a broad range of coordination numbers from 3 to 10 in complexes and coordination compounds (Table S4). The coordination chemistry of bismuth(III) is strongly influenced by its electron configuration, $5d^{10}6s^2$, and show an unusual diversity. The tendency of the heavier main group elements to adopt an oxidation state two steps below being fully oxidized was originally attributed to the effect of the so-called “inert electron-pair”. This property was explained by the relativistic stabilization of the 6s orbital, caused by the direct relativistic effect and the presence of the filled 4f subshell. According to the valence bond theory, the inert electron-pair can either occupy a hybrid orbital formed by mixing the 6s and 6p orbitals on the metal ion and as such becoming stereochemically active, or be a pure s2 electron-pair and thereby stereochemically inactive. The hybrid orbital with a lone electron-pair can in terms of coordination number be considered as at least an additional ligand in the coordination sphere normally taking up more space than that of an ordinary ligand. However, according to molecular orbital theory the classical concept of 6s/6p orbital hybridization on the isoelectronic lead(II) ion is regarded as incorrect as the energy level of these orbitals are too different and the very different spatial distribution of their wave-functions. This should certainly also apply for the isoelectronic bismuth(III) ion as it displays a similar kind of coordination chemistry as lead(II) and thallium(I). The coordination chemistry of lead(II) and bismuth(III) is not expected to be identical as the higher charge of latter will favor higher coordination numbers due stronger electrostatic bonds. The strong stereo-chemical activity observed in a large number of bismuth(III) complexes must instead be a result of an anti-bonding bismuth 6s-ligand np (6s/np) interaction which cause structural distortions in order to energetically minimize these unfavorable covalent interactions. Two general structural types of bismuth(III) complexes can be identified, i/ complexes with high symmetry and high coordination numbers, 8-10, in basical square antiprismatic, tricapped trigonal prismatic and bicapped antiprismatic fashion, respectively, ii/ complexes with a severely distorted coordination sphere with large difference between the shortest and longest Bi-O bond distance and generally with a clearly visible gap in the coordination sphere. The six-coordinated complexes can be regarded as distorted eight-coordinated ones with a gap taking up the same space as two ligands where the strongly bound ligands form a 3-legged stool. Between these and the gap are three more ligands much more weakly bound, or a distorted pentagonal pyramidal configuration with a much shorter Bi-O bond distance to the ligand in the apex than to the remaining three ones. Seven-coordinated complexes have either
distorted monocapped octahedral or bicapped pentagonal configuration both displaying a significant gap in the coordination sphere. The mean Bi-O bond distances are dependent on both coordination number and geometry as summarized in Table S4.

References

1. Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr., Sect. B 2002, 58, 380-388; Inorganic Crystal Structure Database 1.4.6 (release: 2021-1); FIZ/NIST.)
2. Sidgwick, N. V.; Powell, H. M. Bakerian Lecture. Stereochemical Types and Valency Groups. Proc. R. Soc. (London) 1940, 176, 153-180.
3. Gillespie, R. J.; Nyholm, R. S. Inorganic Stereochemistry. Q. Rev. London 1957, 11, 339-380.
4. Gillespie, R. J.; Hargittai, I. The VSEPR Model of Molecular Geometry, Allyn and Bacon, Boston, MA, 1991, ISBN-10: 020512-369-4.
5. Mudring, A.-V. in Inorganic Chemistry in Focus III, ed. Meyer, G.; Naumann, D.; Wesemann, L., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2006, ISBN: 9783527315109.
6. Mudring, A.-V.; Rieger, F. Lone Pair Effect in Thallium(I) Macrocyclic Compounds. Inorg. Chem. 2005, 44, 6240-6243.
7. Walsh, A.; Watson, G. W. The origin of the stereochemically active Pb(II) lone pair: DFT calculations on PbO and PbS. J. Solid State Chem. 2005, 178, 1422-1428.
8. Mudring, A.-V. Thallium halides - New aspects of the stereochemical activity of electron lone pairs of heavier main-group elements. Eur. J. Inorg. Chem. 2007, 882-890, and references therein.
9. Shimoni-Livny, L.; Glusker, J.P.; Bock, C.W. Lone Pair Functionality in Divalent Lead Compounds. Inorg. Chem. 1998, 37, 1853-1867, and references therein.
Redox chemistry of bismuth

Bismuth has four oxidation states with known chemistry, metallic bismuth, bismuth(I) (d\(^{10}\)s\(^2\)p\(^2\) electron configuration), bismuth(III) (d\(^{10}\)s\(^2\)) and bismuth(V) (d\(^{10}\)). The most stable oxidized form of bismuth is the oxidation state +III. Metallic bismuth \textit{versus} bismuth(III) has a positive standard electrode potential, +0.308 V, see Table. Therefore, it does not react with non-oxidizing acids such as hydrochloric acid, but oxygen in air will until a protective layer of Bi$_2$O$_3$ is formed. Bismuth(I) is uncommon oxidation state, but it is stabilized is solvents binding through covalent interactions forming e.g. an unusual dimeric solvate complex in the solvent N,N-dimethylthioformamide (dmf), [Bi$_2$(dmf)]\(^{2+}\). Bismuth(V) is a very strong oxidizing agent and is easily reduced to bismuth(III). Bismuth(V) has no known aqueous chemistry.

Table. Standard electrode potentials of some bismuth redox couples from ref. 1.

Redox couple	E\(^0\)/V
Bi\(^+\)(aq) + e\(^-\) \rightleftharpoons Bi(s)	0.5
Bi\(^{3+}\)(aq) + 3e\(^-\) \rightleftharpoons Bi(s)	0.308
Bi\(^{3+}\)(aq) + 2e\(^-\) \rightleftharpoons Bi\(^+\)(aq)	0.2
Bi$_2$O$_3$(s) + 3H$_2$O + 6e\(^-\) \rightleftharpoons 2Bi(s) + 6 OH\(^-\)(aq)	-0.46

References

1. \textit{Handbook of Chemistry and Physics}, ed. Haynes, W. M., 96th ed., 2015-2016, page 5-79, Taylor & Francis, Group, CRC Press, ISBN 978-1-4822-6096-0.
2. Lyczko, K.; Bilewicz, A.; Persson, I. Stabilization of a Subvalent Oxidation State of Bismuth in N,N-Dimethylthioformamide Solution. An EXAFS, UV-Vis, IR and Cyclic Voltammetry Study. \textit{Inorg. Chem.} \textbf{2004}, \textit{43}, 7094-7100.
Table S1. Summary of stability constants of the formation of the complexes BiOH$^{2+}$ (K_1), Bi(OH)$_2^+$ (β_2) and Bi$_6$(OH)$_{12}^{6+}$ (equivalent to [Bi$_6$O$_4$(OH)$_4$]$^{6+}$)($\beta_{6,12}$) in aqueous solution.

K_1	β_2	log $\beta_{6,12}$	Temp	Ionic medium	Ref.
12.42	168.33	298	3.0 mol·dm$^{-3}$ NaClO$_4$	1	
12.42	168.33	310	0.15 mol·dm$^{-3}$ NaClO$_4$	2	
12.6	25.8	298	0.25 mol·dm$^{-3}$ NaClO$_4$	3	
12.0		298	1.0 mol·dm$^{-3}$ NaClO$_4$	4	
12.55	26.13	295	0.10 mol·dm$^{-3}$ KNO$_3$	5	
12.36		298	0.10 mol·dm$^{-3}$ NaClO$_4$	6	
			1.0 mol·dm$^{-3}$ NaClO$_4$	7	

K_1=[BiOH$^{2+}$]/[Bi$^{3+}$][OH$^-$]; β_2=[Bi(OH)$_2^+$]/[Bi$^{3+}$][OH$^-$]2; $\beta_{6,12}$=[Bi$_6$(OH)$_{12}^{6+}$]/[Bi$^{3+}$]6[OH$^-$]12

References

1. Olin, Å. Thermochemical study of hydrolyzed Bi(ClO)$_3$ solutions. *Acta Chem. Scand., Ser. A* 1975, 29, 907-910.
2. Williams, D. R. Analytical and computer simulation studies of a colloidal bismuth citrate system used as an ulcer treatment. *J. Inorg. Nucl. Chem.* 1977, 39, 711-714.
3. Milanov, M.; Rosch, F.; Khalkin, V. A.; Henniger, U.; Hung, T. K. Electromigration of ions of radionuclides without carriers in electrolytes – hydrolysis of Bi(III) in aqueous solutions. *Sov. Radiochem.* 1987, 29, 18-25.
4. Hataye, I.; Suganuma, H.; Ikegami, H.; Kuchiki, T. Solvent-extraction study on the hydrolysis of tracer concentrations of bismuth(III) in perchlorate and nitrate solutions. *Bull Chem Soc. Jpn.* 1982, 55, 1475-1479.
5. Antonovich, V.; Nevskaya, E. V.; Shchekhina, E. I.; Nazarenko, V. A. Spectrophotometric determination of hydrolysis constants of monomeric ions of bismuth. *Zh. Neorg. Khim.* 1975, 20, 2968-2974.
6. Bidleman, T. F. Bismuth-dithizone equilibria and hydrolysis of bismuth ion in aqueous solution. *Anal. Chim. Acta* 1971, 56, 221-231.
7. Tobias, R. S. Studies on Hydrolyzed Bismuth (III) Solutions. Part I. E.m.f. Titrations. *J. Am. Chem. Soc.* 1960, 82, 1070-1072.
Table S2. Selected stoichiometric stepwise stability constants, K_n, of bismuth(III) complexes with organic ligands in aqueous solution. \(K_1 = \frac{[\text{BiL}^{(3-x)^+}]}{[\text{Bi}^{3+}][\text{L}^{x-}]} \); \(K_2 = \frac{[\text{BiL}_2^{(3-2x)^+}]}{[\text{BiL}^{(3-x)^+}][\text{L}^{x-}]} \); \(K_3 = \frac{[\text{BiL}_3^{(3-3x)^+}]}{[\text{BiL}^{(3-2x)^+}][\text{L}^{x-}]} \).

Ligand	Bind. atoms	$\log_{10} K_1$	$\log_{10} K_2$	$\log_{10} K_3$	Ionic medium	Temp.	Ref.
Oxalic acid	2O	7.65	4.81		0.2 M NaClO₄	25 °C	1
Glycine	NO	10.0			0.5 M	25 °C	2
Malonic acid	2O			$\beta_2=11.20$	0.1 M KNO₃	25 °C	3
Cysteine	NO(S)	16.2			0.5 M NaClO₄	25 °C	4
Fumaric acid	2O	6.70			0.2 M NaClO₄	25 °C	1
Succinic acid	2O	8.76			0.2 M NaClO₄	25 °C	1
				$\beta_2=11.60$	0.1 M KNO₃	25 °C	3
Malic acid	2O	9.90			25 °C	5	
Diglycolic acid	3O	7.69	5.04	3.46	0.5 M NaClO₄	25 °C	6
L-Tartaric acid	3O			$\beta_2=11.70$	0.1 M KNO₃	25 °C	3
				$\beta_2=11.3$	0.1 M NaClO₄	20 °C	7
Aspartic acid	N2O	10.47	8.65	3.67	0.1 M NaClO₄	25 °C	8
Iminodiacectic acid	N2O	12.94			0.5 M NaClO₄	25 °C	9
HAD a	N2O	12.50			0.1 M NaClO₄	20 °C	10
Diethylene triamine	3N	17.4			0.5 M	25 °C	11
Glutamic acid	N2O	10.47	8.28	3.50	0.1 M NaClO₄	20 °C	10
Picolinic acid	NO	7.48	6.46	4.16	0.50 M NaNO₃	25 °C	12
Maltol	2O	11.90	8.98	8.69	0.50 M KNO₃	30 °C	13
Kojic acid	2O	10.78	8.56	7.51	0.50 M KNO₃	30 °C	13
2-Picolyl amine	2N	9.6			0.5 M	25 °C	11
Ascorbic acid	3O	25.3			0.50 M NaNO₃	25 °C	14
Citric acid	4O	13.48			25 °C	11	
		11.80			0.1 M KNO₃	25 °C	5
		10.78	5.05		0.15 M NaNO₃	37 °C	15
Nitrilotriacetic acid	N2O	17.55			0.60 M NaClO₄	25 °C	16
		18.2			0.10 M NaClO₄	25 °C	17
		17.54	9.01		1.00 M NaClO₄	25 °C	18
Triethanol amine	N3O	9.2			0.50 M NaClO₄	25 °C	2
Phthalic acid	2O			$\beta_2=11.70$	0.1 M KNO₃	25 °C	3
12-Crown-4 \(^b\) & 4O & 16.1 & 0.50 M NaClO\(_4\) & 25 °C & 19 \\
Cyclen \(^c\) & 4N & 21.9 & 0.50 M NaClO\(_4\) & 25 °C & 20 \\
EDTA \(^d\) & 2N4O & 26.7 & 1.00 M NaClO\(_4\) & 20 °C & 21 \\
CDTA \(^e\) & 2N4O & 26.41 & 1.00 M NaClO\(_4\) & 25 °C & 16 \\
DTPA \(^f\) & 2N4O & 27.20 & 1.00 M NaClO\(_4\) & 25 °C & 22 \\

\(^a\) Hydrazine-iminodiacetic acid \\
\(^b\) 1,4,7,10-Tetraoxacyclododecane \\
\(^c\) 1,4,7,10-Tetrazacyclododecane \\
\(^d\) Ethylenetetraacetic acid \\
\(^e\) trans-1,2-diaminocyclohexanetetraacetic acid \\
\(^f\) Diethylenetriaminepentaacetic acid

References

1. Rösch, F.; Hung, T. K.; Milanov, M.; Khalkin, V. A. Electromigration of carrier-free radionuclide ions: Bismuth complexes in aqueous solutions of oxalic, fumaric and succinic acids. *Talanta* 1987, 34, 375-380.
2. Hancock, R. D.; Cukrowski, I.; Baloyi, J.; Mashishi, J. The affinity of bismuth(III) for nitrogen-donor ligands. *J. Chem. Soc., Dalton Trans.* 1993, 2895-2899.
3. Carrazon, J. M. G.; Andreu, R. G.; Batanero, P. S. Potentiometric determination of stability-constants of bismuth(III) Complexes. *Analusis* 1984, 12, 358-363.
4. Napoli, A. *Ann. Chim.* (Rome) Spectrophotometric investigation of l-cysteinate complexes with lead(II) and bismuth ions. *1982, 72, 575-583.*
5. Szczepanaik, W.; Ren, M. Use of a bismuth ion-selective electrode for investigation of bismuth complexes of citric and malic acids. *Talanta* 1986, 33, 371-373.
6. Napoli, A.; Paolillo, M. Spectrophotometric study of Bi(III) complexes with oxydiacetic and thiodiacetic acids. *J. Inorg. Nucl. Chem.* 1981, 43, 2435-2438.
7. Stary, J. Systematic study of the solvent extraction of metal oxinates. *Anal. Chim. Acta* 1963, 28, 132-149.
8. Singh, M.; Srivastava, M. Stepwise formation of palladium(II), platinum(IV), gold(III) and bismuth(II) chelates with aspartic and glutamic acids. *J. Inorg. Nucl. Chem.* 1972, 34, 2067-2069.
9. Karadakov, B. P.; Nenova, P. P.; Ivanova, K.R. Spectrophotometry of complex-formation of bismuth, copper and lead with iminodiacetic acid. *Zh. Neorg. Khim.* 1976, 21, 106-111.
10. Ivanova, K. R.; Karadakov, B. P.; Ivanov, N. A. Spectrophotometric study of bismuth(III) and lead(II) complexining with hydrazine diacetic acid. *Zh. Neorg. Khim.* 1987, 32, 611-614.
11. Hancock, R. D.; Cukrowski, I.; Antunes, I., Cukrowska, E.; Mashishi, J.; Brown, K. Complexation of Bi\(^{III}\) by nitrogen donor ligands. A polarographic study. *Polyhedron* 1995, 14, 1699-1707.
12. Cukrowski, I.; Zhang, J. M.; van Aswegen, A. Voltammetry as a Virtual Potentiometric Sensor in Modelling of a Metal/Ligand System and Refinement of Stability Constants. Part 2. Differential-Pulse- and Sampled-Current-Polarographic and Virtual Free-Metal-Ion Potentiometric Study of a Bismuth(III)/Picolinic Acid/Hydroxide System. *Helv. Chim. Acta* 2004, 87, 2135-2158.
13. Kelkar, S.; Nemade, B. A Polarographic Study of Bi(III) & Sb(III) Complexes of 2-Hydroxy-γ-pyrene. *Indian J. Chem., Ser. A* 1985, 24, 166-167.
14. Elenkova, N. G.; Palaše, Č.; Ilče, L. Spektrophotometrische untersuchung der umsetzung von wismut(III) mit ascorbinsäure. *Talanta* 1971, 18, 355-359.

15. Williams, D. R.; Analytical and computer simulation studies of a colloidal bismuth citrate system used as an ulcer treatment. *J. Inorg. Nucl. Chem.* 1977, 39, 711-714.

16. Kornev, V. I.; Troubachev, A. V. Stability of bismuth(III) complexones in aqueous-solutions. *Zh. Neorg. Khim.* 1987, 32, 2433-2437.

17. Elenkova, N. G.; Nedelcheva, T. K. Polarography of complex compounds in the absence of large excess of the complexing agent. *J. Electroanal. Chem.* 1976, 69, 395-405.

18. Karadakov, B. P.; Venkova, D. I. The complexes of bismuth(III) and nitritotriacetic acid. *Talanta* 1970, 17, 878-883.

19. Bobrowski, A.; Bond, A. M.; Ellis, S. Complexation of macrocyclic ligands with relatively non-solvated metal ions generated in dichloromethane by electrochemical oxidation of amalgam electrodes. *Inorg. Chim. Acta* 1999, 293, 223-228.

20. Cukrowski, I.; Luckay, R. C. A differential pulse polarographic study of bismuth(III) complexes with macrocyclic ligands 1,4,7,10-tetraazacyclododecane and 1,4,7,10-tetrakis (2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane. An out-of-cell determination of stability constants of polarographically active and inactive bismuth complexes at fixed ligand to metal ratio and various pH values. *Anal. Chim. Acta* 1998, 372, 323-331.

21. Bottari, E.; Anderegg, G. Komplexone XLII. Die Untersuchung der 1:1:-Komplexe von einigen drei- und vierwertigen Metall-Ionen mit Polyaminocarboxylaten mittels Redoxmessungen. *Helv. Chim. Acta* 1967, 50, 2349-2356.

22. Karadakov, B. P.; Ivanova, K. R. Spectrophotometric study of complex-formation and possibilities of determination of bismuth with ethylenediamintetraacetic and diaminecyclohexanetetraacetic acids. *Zh. Anal. Khim.* 1973, 28, 525-531.
Table S3. Physicochemical characteristics of fulvic acid and soil sample.
Data of 1R105F was obtained from the IHSS (2021).

	Fulvic acid (1R105F)	Mor
Water (%)	66	
pH(H₂O)	3.58	
BaCl₂-Extractable cations (cmol(+)/kg⁻¹)*		
Na⁺	0.49	
K⁺	0.64	
Ca²⁺	10.4	
Mg²⁺	3.46	
HNO₃-Extractable Fe and Al (mol kg⁻¹)		
Fe³⁺	0.0021	
Al³⁺	0.017	
Elemental composition (wt %)		
C	52.31	49.8
N	0.68	1.35
S	0.46	0.11
Carboxyl groups (meq (g C)⁻¹)	11.16	

*cmol charge per kg soil.

References

IHSS (International humic substance society). http://www.humicsubstances.org/ Downloaded August 11, 2021.
Table S4. Survey of reported crystal structures of bismuth(III) compounds with coordination numbers 3-9.

Three-coordination, trigonal pyramid

CSD code	Mean d(Bi-O)	Reference and compound
FAVHOA	2.025 Å	Mansfeld, D.; Mehring, M.; Schurmann, M. *Angew. Chem., Int. Ed.* 2005, 44, 245. Bi(OC(CH$_3$)$_2$)(t-O$_2$C$_3$)$_3$
JIYLUY	2.040 Å	Massiani, M.-C.; Papiernik, R.; Hubert-Pfalzgraf, L. G.; ; Daran, J.-C. *Polyhedron* 1991, 10, 437. Bi(OSi(C$_3$H$_7$)$_3$)$_3$3C$_6$H$_5$O
NAXZAO	2.042 Å	S.Pääläsmää, S.; Mansfeld, D.; Schurmann, M.; Mehring, M. Z. *Anorg. Anorg. Chem.* 2005, 633, 2433. Bi(OCi-C_3H$_2$)$_3$
HURSUK	2.056 Å	Hatanpää, T.; Vehkamäki, M.; Ritala, M.; Leskelä, M. *Dalton Trans.* 2010, 39, 3219. Bi-t-O$_2$C$_3$H$_3$
HURTAQ	2.056 Å	Hatanpää, T.; Vehkamäki, M.; Ritala, M.; Leskelä, M. *Dalton Trans.* 2010, 39, 3219. Bi-t-O$_2$Ci-C_3H$_2$H$_3$
SAJSOM	2.056 Å	Mansfeld, D.; Mehring, M.; Schurmann, M. Z. *Anorg. Anorg. Chem.* 2004, 630, 1795. Bi(OSi(C$_3$H$_7$)$_3$)(t-O$_2$C$_3$)$_3$
HUTBII	2.065 Å	Kou, X.; Wang, X.; Mendoza-Espinosa, D.; Zakharov, L. N.; Rheingold, A. L.; Watson, W. H.; Brien, K. A.; Jayarathna, L. K.; Hanna, T. A. *Inorg. Chem.* 2009, 48, 11002. Bi(OCi-C_3H$_2$H$_3$)$_3$
HUTBOO	2.065 Å	Kou, X.; Wang, X.; Mendoza-Espinosa, D.; Zakharov, L. N.; Rheingold, A. L.; Watson, W. H.; Brien, K. A.; Jayarathna, L. K.; Hanna, T. A. *Inorg. Chem.* 2009, 48, 11002. Bi(OCi-C_3H$_2$)$_3$
IDANUW	2.074 Å	Hanna, T. A.; Keitany, G.; Ibarra, C; Sommer, R. D.; Rheingold, A. L. *Polyhedron* 2001, 20, 2451. Bi(OCi-C_3H$_2$)$_3$
HUTBAA	2.085 Å	Kou, X.; Wang, X.; Mendoza-Espinosa, D.; Zakharov, L. N.; Rheingold, A. L.; Watson, W. H.; Brien, K. A.; Jayarathna, L. K.; Hanna, T. A. *Inorg. Chem.* 2009, 48, 11002. Bi(OCi-C_3H$_2$H$_3$)$_3$
BUNCUI	2.087 Å	D.Mendoza-Espinosa, D.; Hanna, T. A. *Inorg. Chem.* 2009, 48, 10312. [C$_{60}$H$_{14}$Bi$_4$O$_4$] C$_3$H$_4$O
TOQDOT	2.089 Å	Liu, L.; Zakharov, L. N.; Golen, J. A.; Rheingold, A. L.; Hanna, T. A. *Inorg. Chem.* 2008, 47, 11143. [C$_{60}$H$_{14}$Bi$_4$O$_4$]
KAXYUD	2.091 Å	Evans, W. J.; Hain Jr., J. H.; Ziller, J. W. *Chem. Commun.* 1989, 1628. Bi(OCi-C_3H$_2$H$_3$)$_3$
BUNCIX	2.097 Å	D.Mendoza-Espinosa, D.; Hanna, T. A. *Inorg. Chem.* 2009, 48, 10312. [C$_{60}$H$_{14}$Bi$_4$O$_4$] 2C$_3$H$_4$O
HUTCEF	2.098 Å	Kou, X.; Wang, X.; Mendoza-Espinosa, D.; Zakharov, L. N.; Rheingold, A. L.; Watson, W. H.; Brien, K. A.; Jayarathna, L. K.; Hanna, T. A. *Inorg. Chem.* 2009, 48, 11002. Bi(OCi-C_3H$_2$)$_3$
LIRMUV01	2.105 Å	Kou, X.; Wang, X.; Mendoza-Espinosa, D.; Zakharov, L. N.; Rheingold, A. L.; Watson, W. H.; Brien, K. A.; Jayarathna, L. K.; Hanna, T. A. *Inorg. Chem.* 2009, 48, 11002. Bi(OCi-C_3H$_2$)$_3$
LIRMUV	2.121 Å	Brym, M.; Jones, C.; Junk, P. C. *Main Group Chem.* 2006, 5, 13. Bi(OCi-C_3H$_2$H$_3$)$_3$

Mean: 2.074 Å/17 structures

Four-coordination, 3+1

CSD code	Mean d(Bi-O)	Reference and compound
CEMBAY	2.121 + 2.729 Å	Andrews, P. C.; Deacon, G. B.; Forsyth, C. M.; Junk, P. C.; Kumar, I.; Maguire, M. *Angew. Chem., Int. Ed.* 2006, 45, 5638. [C$_{108}$H$_{146}$Bi$_{14}$O$_{26}$]·18(CH$_3$)$_2$CO
HAWHAQ	2.134 + 2.758 Å	Zan-Jiao Wang, Z.-J.; Zhang, L.-C.; Zhu, Z.-M.; Chen, W.-L.; You, W.-S.; Wang, E.-B. *Inorg. Chem. Commun.* 2012, 17, 151. Na$_4$K$_5$[Bi$_2$Co$_2$Sn$_2$W$_6$(C_3H$_5$O$_3$)$_3$]25H$_2$O
HAWHEU	2.133 + 2.740 Å	Zan-Jiao Wang, Z.-J.; Zhang, L.-C.; Zhu, Z.-M.; Chen, W.-L.; You, W.-S.; Wang, E.-B. *Inorg. Chem. Commun.* 2012, 17, 151. K$_{10}$[Bi$_2$Mn$_2$Sn$_2$W$_6$(C_3H$_5$O$_3$)$_3$]30H$_2$O
HOBMOD	2.118 + 2.678 Å	Rheingold, A. L.; Hanna, T. A. CCDC code 1905550, 2019. [C$_{98}$H$_{13}$Bi$_2$O$_5$]

S10
HURTEU 2.146 + 2.389 Å Hätänpää, T.; Vehkamäki, M.; Ritala, M.; Leskelä, M. Dalton Trans. 2010, 3219. [C$_{46}$H$_{56}$Bi$_2$O$_6$]

HUTCAB 2.132 + 2.479 Å Kou, X.; Wang, X.; Mendoza-Espinosa, D.; Zakharov, L. N.; Rheingold, A. L.; Watson, W. H.; Brien, K. A.; Jayaratha, L. K.; Hanna, T. A. Inorg. Chem. 2009, 48, 11002. [C$_{21}$H$_{26}$Bi$_2$O$_6$]

HUTCJ 2.153 + 2.333 Å Kou, X.; Wang, X.; Mendoza-Espinosa, D.; Zakharov, L. N.; Rheingold, A. L.; Watson, W. H.; Brien, K. A.; Jayaratha, L. K.; Hanna, T. A. Inorg. Chem. 2009, 48, 11002. [C$_{26}$H$_{50}$Bi$_2$O$_6$]

HUTCOP 2.139 + 2.609 Å Kou, X.; Wang, X.; Mendoza-Espinosa, D.; Zakharov, L. N.; Rheingold, A. L.; Watson, W. H.; Brien, K. A.; Jayaratha, L. K.; Hanna, T. A. Inorg. Chem. 2009, 48, 11002. [C$_{49}$H$_{50}$Bi$_2$Li$_2$O$_6$]

HUSZUR 2.123 + 2.425 Å Kou, X.; Wang, X.; Mendoza-Espinosa, D.; Zakharov, L. N.; Rheingold, A. L.; Watson, W. H.; Brien, K. A.; Jayaratha, L. K.; Hanna, T. A. Inorg. Chem. 2009, 48, 11002. [C$_{46}$H$_{50}$Bi$_2$O$_6$]

JAYVAJ 2.098 + 2.885 Å Preda, A. M.; Schneider, W. B.; Rainer, M.; Ruffer, T.; Schaarschmidt, D.; Lang, H.; Mehring, M. Dalton Trans. 2017, 46, 8269. [C$_{42}$H$_{54}$Bi$_2$O$_6$S$_6$]

LUPIQ 2.175 + 2.413 Å Mendoza-Espinosa, D.; Hanna, T. A. Inorg. Chem. 2009, 48, 7452. [C$_{118}$H$_{132}$Bi$_2$Mo$_6$O$_{22}$] 3C$_6$H$_8$OH

PEWKUY 2.137 + 2.791 Å Nehefe, U.N.; Roesky, H. W.; Jancik, V.; Pal, A.; Magull, J. Inorg. Chim. Acta 2007, 360, 1248. [C$_{12}$H$_{272}$Bi$_2$Cl$_2$N$_2$O$_{30}$] 2C$_6$H$_8$O.

PUKIA 2.143 + 2.485 Å Parola, S.; Papiernik, R.; Hubert-Pfalzgraf, L. G.; Bois, C. J. Chem. Soc., Dalton Trans. 1998, 737. [C$_{16}$H$_{13}$Ba$_4$Bi$_2$O$_8$]

QAWMIM 2.105 + 2.661 Å Kou, X.; Wang, X.; Mendoza-Espinosa, D.; Zakharov, L. N.; Rheingold, A. L.; Watson, W. H.; Brien, K. A.; Jayaratha, L. K.; Hanna, T. A. Inorg. Chem. 2009, 48, 11002. [Bi$_2$C$_{46}$H$_{10}$O$_{12}$]

RADHEJ 2.131 + 2.493 Å James, S. C.; Norman, N. C.; Orpen, A. G.; Quayle, M. J.; Weckenmann, U. J. Chem. Soc., Dalton Trans. 1996, 4159. [C$_{7}$H$_{13}$Bi$_3$C$_7$O$_8$] 3C$_6$H$_8$ClO.

RUMLER 2.109 + 2.770 Å Mendoza-Espinosa, D.; Hanna, T. A. Dalton Trans. 2009, 5211. [Bi$_2$C$_{15}$H$_{14}$O$_{16}$]

RUPKIX 2.131 + 2.529 Å Mendoza-Espinosa, D.; Rheingold, A. L.; Hanna, T. A. Dalton Trans. 2009, 5226. [Bi$_2$C$_{12}$H$_{16}$O$_{12}$] 2(C$_4$H$_6$)O.

RUPKOD 2.140 + 2.428 Å Mendoza-Espinosa, D.; Rheingold, A. L.; Hanna, T. A. Dalton Trans. 2009, 5226. [Bi$_2$C$_{46}$H$_{50}$O$_{12}$] 7C$_6$H$_8$O 2H$_2$O

SUCKOT 2.121 + 2.554 Å Roschke, F.; Thiele, G.; Dhenen, S.; Mehring, M. Main Group Met. Chem. 2019, 47, 46. [C$_{7}$H$_{14}$Bi$_2$O$_6$]

TAPNIJ 2.131 + 2.688 Å Mansfeld, D.; Miersch, L.; Ruffer, T.; Schaarschmidt, D.; Lang, H.; Bohle, T.; Troff, R. W.; Schalley, C. A.; Müller, J.; Mehring, M. Chem. Eur. J. 2011, 17, 14805. [Bi$_{13}$C$_{16}$H$_{25}$O$_{20}$] (C$_6$H$_8$O)$_2$ 19(C$_2$H$_2$)CO.

TAPNOP 2.134 + 2.601 Å Mansfeld, D.; Miersch, L.; Ruffer, T.; Schaarschmidt, D.; Lang, H.; Bohle, T.; Troff, R. W.; Schalley, C. A.; Müller, J.; Mehring, M. Chem. Eur. J. 2011, 17, 14805. [Bi$_{13}$C$_{12}$H$_{25}$O$_{11}$S$_6$] (C$_6$H$_8$O)$_3$ (OH)$_2$ 9.5 (C$_2$H$_2$)OS) H$_2$O Rheingold, A. L.; Hanna, T. A. CCDC code 1961497 [C$_{80}$H$_{117}$Bi$_2$Br$_2$O$_4$] [C$_{46}$H$_{50}$Bi$_2$BrO$_4$] 2C$_6$H$_8$O$_2$

TULBUY 2.182 + 2.411 Å Andrews, P.C.; Deacon, G. B.; Junk, P. C.; Kumar, I.; MacLellan, J. G. Organometallics 2009, 28, 3999. [C$_{10}$H$_{20}$Bi$_{10}$N$_{14}$O$_{36}$] 3.25C$_6$H$_8$OH 2H$_2$O

VEFPID 2.086 + 2.524 Å Mehring, M.; Mansfeld, D.; Paalasmaa, S.; Schurmann, M. Chem. Eur. J. 2006, 12, 1767. [C$_{37}$H$_{52}$Bi$_3$O$_{25}$S$_{12}$] 3C$_6$H$_8$.

VEFPUS 2.079 + 2.500 Å Mehring, M.; Mansfeld, D.; Paalasmaa, S.; Schurmann, M. Chem. Eur. J. 2006, 12, 1767. [C$_{42}$H$_{54}$Bi$_3$O$_{25}$S$_{12}$] 3C$_6$H$_8$.

VEFIQH 2.110 + 2.343 Å Mehring, M.; Mansfeld, D.; Paalasmaa, S.; Schurmann, M. Chem. Eur. J. 2006, 12, 1767. [C$_{46}$H$_{50}$Na$_{10}$O$_{20}$S$_{12}$] 2C$_6$H$_8$.

XUTDOH 2.125 + 2.920 Å Chai, D.-F.; Ma, Z.; Yan, H.; Qiu, Y.; Liu, H.; Guo, H.-D.; Gao, G.-G. RSC Adv. 2015, 5, 78771. Na[C$_{42}$H$_{54}$Bi$_3$Cu$_2$N$_{28}$Na$_9$O$_{15}$W$_{14}$] 22H$_2$O

Mean: 2.127 + 2.591 Å/27 structures (mean of means: 2.243 Å)
Four-coordination, 2+2

CSD code	Mean d(Bi-O) Å	Reference and compound
BADNOL	2.104 + 2.332 Å	Rogow, D. L.; Fei, H.; Brennan, D. P.; Ikehata, M.; Zavalij, P. Y.; Oliver, A. G.; Oliver, S. J. Inorg. Chem. 2010, 49, 5619. [Bi2O4(OH)4][CF3SO4]4
BADNUR	2.126 + 2.376 Å	Rogow, D. L.; Fei, H.; Brennan, D. P.; Ikehata, M.; Zavalij, P. Y.; Oliver, A. G.; Oliver, S. J. Inorg. Chem. 2010, 49, 5619. [Bi2(OH)4][CF3SO4]4
CECWAJ	2.122 + 2.334 Å	Mehring, M.; Paalasmaa, S.; Schurmann, M. Eur. J. Inorg. Chem. 2005, 4891. [C8H18Bi2Na2O5Si12]3C3H6
CECWEN	2.081 + 2.322 Å	Mehring, M.; Paalasmaa, S.; Schurmann, M. Eur. J. Inorg. Chem. 2005, 4891. [C8H18Bi2Na2O5Si12]3C3H6
CECWIR	2.051 + 2.307 Å	Mehring, M.; Paalasmaa, S.; Schurmann, M. Eur. J. Inorg. Chem. 2005, 4891. [C8H18Bi2Na2O5Si12]3C3H6
ERUBAW	2.100 + 2.333 Å	D. Mendoza-Espinosa, D. Dalton Trans. 2016, 45, 13399. [C26H23Bi2O12]3C3H6O
FAVHUG	2.106 + 2.281 Å	Mansfeld, D.; Mehring, M.; Schurmann, M. Angew. Chem., Int. Ed. 2005, 44, 245. [C8H18Bi2O4Si12]2C3H6
FEVNUQ	2.160 + 2.444 Å	Geisselmann, A.; Klufers, P.; Kropfgans, C.; Mayer, P.; Piotrowski H. Angew. Chem. Int. Ed. 2005, 44, 924. Na4[C22H80Bi4O60]53H2O
JAXBAM	2.081 + 2.306 Å	Thurston, J. H.; Swenson, D. C.; Messerle, L. Chem. Commun. 2005, 4228. [C8H18Bi4O12][ClO4]4·C3H4OH
MIZQUI	2.131 + 2.337 Å	Andrews, P. C.; Junk, P. C.; Nuzhnaya, I.; Spiccia, L. Dalton Trans. 2008, 2557. [C8H18BiFe2O2]
MIZRAP	2.074 + 2.306 Å	Andrews, P. C.; Junk, P. C.; Nuzhnaya, I.; Spiccia, L. Dalton Trans. 2008, 2557. [C8H18BiFe2O2]
NOFPUT	2.172 + 2.250 Å	Klufers, P.; Mayer, P. Acta Crystallogr., Sect. C 1998, 54, 583. Na0.5[(C24H48Bi6O26)(OH)]·3H2O Bi·Bi = 3.97 Å
PAWZIW	2.079 + 2.354 Å	Parola, S.; Papiernik, R.; Hubert-Pfalzgraf, L. G.; Jagner, S.; Håkansson, M. J. Chem. Soc., Dalton Trans. 1997, 4631. [C8H3Bi3O12][Ti3]
RUPLEU	2.188 + 2.239 Å	Mendoza-Espinosa, D.; Reginold, A. L.; Hanna, T. A. Dalton Trans. 2009, 5226. [Bi13C15H30O16][5.5C3H6O2·2C3H14
SICHAO	2.123 + 2.200 Å	Klufers, P.; Mayer, P. Z. Anorg. Allg. Chem. 2007, 633, 903. [Co(NH3)6][(C24H32Bi16O40)]·9H2O
SICHIW	2.160 + 2.246 Å	Klufers, P.; Mayer, P. Z. Anorg. Allg. Chem. 2007, 633, 903. [Na2[(C24H48Bi6O26)(OH)]·3H2O Bi·Bi = 3.97 Å
VEDGOB	2.127 + 2.242 Å	Mehring, M.; Mansfeld, D.; Paalasmaa, S.; Schurmann, M. Chem. Eur. J. 2006, 12, 1767. [C8H18Bi3Na4O3Si18]
VEFQON	2.063 + 2.258 Å	Mehring, M.; Mansfeld, D.; Costisella, B.; Schurmann, M. Eur. J. Inorg. Chem. 2006, 735. [C8H18Bi3Li12O12Si2]·2C3H6CH3
VEGPON	2.063 + 2.258 Å	Mehring, M.; Mansfeld, D.; Costisella, B.; Schurmann, M. Eur. J. Inorg. Chem. 2006, 735. [C8H18Bi3Li12O12Si2]·1.5C3H6
YEGDIZ	2.162 + 2.396 Å	Miersch, L.; Ruffer, T.; Schlesinger, M.; Lang, H.; Mehring, M. Inorg. Chem. 2012, 51, 9376. [Bi2O4(OH)4](NO3)4·H2O
YEGDUL	2.160 + 2.371 Å	Miersch, L.; Ruffer, T.; Schlesinger, M.; Lang, H.; Mehring, M. Inorg. Chem. 2012, 51, 9376. [Bi2O4(OH)4](NO3)4·3H2O
ZAVMUE	2.068 + 2.276 Å	Veith, M.; Yu, E.-C.; Huch, V. Chem. Eur. J. 1995, 1, 26. [C32H23Bi2K4O8]

Mean: 2.115 + 2.299 Å/22 structures (mean of means: 2.207 Å)

Five-coordination

CSD code	Reference, bond distances, geometry and compound
CECWAJ	Mehring, M.; Paalasmaa, S.; Schurmann, M. Eur. J. Inorg. Chem. 2005, 4891. 2.099, 2.212, 2.303, 2.315, 2.578/2.666, 2.255, 2.310, 2.312, 2.531, mean 2.298 Å - distorted square pyramid, [C8H18Bi3Na2O5Si12]3C3H6
CECWEN	Mehring, M.; Paalasmaa, S.; Schurmann, M. Eur. J. Inorg. Chem. 2005, 4891. 2.083, 2.173, 2.190, 2.503, 2.704/2.884, 2.219, 2.278, 2.333, 2.346, mean 2.291 Å - distorted square pyramid, [C8H18Bi3Na2O5Si12]3C3H6
CEMBAY	Andrews, P. C.; Deacon, G. B.; Forsyth, C. M.; Junk, P. C.; Kumar, I.; Maguire, M. Angew. Chem., Int. Ed. 2006, 45, 5638. 2.083, 2.120, 2.151, 2.762, 2.800, mean 2.383 Å; [C18H146Bi3O126]18(CH3)2CO

S12
DOLDAJ Whitmire, K. H.; Hoppe, S.; Sydora, O.; Jolas, J. L.; Jones, C. M. Inorg. Chem. 2000, 39, 85. 2.108, 2.131, 2.266, 2.387, 2.628, mean 2.304 Å - distorted square pyramid, [CsH_{16}BiF_{6}O_{4}]_n·C_{6}H_{6}.

DOLDEN Whitmire, K. H.; Hoppe, S.; Sydora, O.; Jolas, J. L.; Jones, C. M. Inorg. Chem. 2000, 39, 85. 2.108, 2.220, 2.311, 2.356, 2.433, mean 2.286 Å - distorted square pyramid, [Cs_{6}BiF_{6}O_{4}]_3·3.37CH_{2}Cl_{2}.

DOLDUD Whitmire, K. H.; Hoppe, S.; Sydora, O.; Jolas, J. L.; Jones, C. M. Inorg. Chem. 2000, 39, 85. 2.042, 2.187, 2.290, 2.338, 2.532, mean 2.278 Å - distorted square pyramid, [Cs_{6}H_{16}BiF_{6}O_{4}]_1.

DOLUJ Whitmire, K. H.; Hoppe, S.; Sydora, O.; Jolas, J. L.; Jones, C. M. Inorg. Chem. 2000, 39, 85. 2.154, 2.187, 2.285, 2.331, 2.467, mean 2.285 Å - distorted square pyramid, [Cs_{6}H_{16}BiF_{6}O_{4}]_1.

EBIHED Lihua Liu; Zakharov, L. N.; Rheingold, A. L.; Hanna, T. A. Chem. Commun. 2004, 1472. 2.161, 2.169, 2.173, 2.420, 2.421/2.236, 2.244, 2.254, 2.258, 2.475 Å, mean 2.258 Å - distorted square pyramid, [C_{17}H_{29}Bi_{2}O_{10}]_{2}·C_{6}H_{6}.

ECOKUC Mehring, M.; Schurmann, M. Chem. Commun. 2001, 2354. 2.120, 2.212, 2.212, 2.438, 2.438 Å, mean 2.284 Å - distorted square pyramid, [Cs_{6}H_{16}Bi_{4}O_{6}P_{12}]·3C_{6}H_{6}·H_{2}O.

EYOSEQ Sharutin, V. V.; Egorova, I. V.; Sharutina, O. K.; Ivanenko, T. K.; Adonin, N. Y.; Starichenko, V. F.; Pushilin, M. A.; Gerasimenko, A. V. Koord. Khim. 2003, 29, 902. 2.119, 2.276, 2.308, 2.384, 2.387 Å, mean 2.295 Å, Bi···Bi = 3.806 Å - distorted square pyramid, [Cs_{6}H_{16}Bi_{2}F_{2}O_{18}]_{2}·C_{6}H_{6}.

FAQNAN Thruston, J. H.; Kumar, A.; Hofmann, C.; Whitmire, K. H. Inorg. Chem. 2004, 43, 8427. 2.127, 2.194, 2.320, 2.328, 2.517/2.186, 2.273, 2.366, 2.289, 2.606 Å, mean 2.321 Å, Bi···Bi = 4.347 Å - distorted square pyramid, [Cs_{6}H_{16}Bi_{2}Ti_{2}O_{18}]_{2}·C_{6}H_{6}.

FASYII Thruston, J. H.; Kumar, A.; Hofmann, C.; Whitmire, K. H. Inorg. Chem. 2004, 43, 8427. 2.104, 2.276, 2.299, 2.368, 2.454, mean 2.300 Å - distorted square pyramid, [Cs_{18}H_{29}Bi_{4}Ti_{4}O_{16}]·C_{6}H_{6}.

FAVHUG Mansfeld, D.; Mehring, M.; Schurmann, M. Angew. Chem., Int. Ed. 2005, 44, 245. 2.113, 2.269, 2.286, 2.339, 2.470/2.112, 2.128, 2.134, 2.528, 2.562 Å, mean 2.294 Å - distorted square pyramid, [Cs_{6}H_{16}Bi_{2}O_{4}Si_{14}]·2C_{6}H_{6}.

JAXBAM Thruston, J. H.; Swenson, D. C.; Messerle, L. Chem. Commun. 2005, 4228. 2.178, 2.184, 2.225, 2.511, 2.687/2.177, 2.182, 2.205, 2.499, 2.605 Å, mean 2.345 Å - distorted square pyramid, [Cs_{20}H_{32}Bi_{2}O_{14}]·(ClO_{3})_{2}·4C_{2}H_{5}OH.

JUMZIA Jones, C. N.; Burkart, M. D.; Whitmire, K. H. Chem. Commun. 1992, 1638. 2.119, 2.211, 2.301, 2.349, 2.411 Å, mean 2.278 Å, Bi···Bi = 4.002 Å - distorted square pyramid, [Cs_{6}H_{16}Bi_{4}O_{6}S_{2}]·C_{6}H_{6}O.

JUMZOG Jones, C. N.; Burkart, M. D.; Whitmire, K. H. Chem. Commun. 1992, 1638. 2.105, 2.139, 2.262, 2.565, 2.632/2.189, 2.233, 2.239, 2.457, 2.619 Å, mean 2.344 Å - distorted square pyramid, [Cs_{26}Bi_{2}F_{6}O_{20}]·2C_{2}H_{6}.

JUMZOG01 Whitmire, K. H.; Hoppe, S.; Sydora, O.; Jolas, J. L.; Jones, C. M. Inorg. Chem. 2000, 39, 85. 2.116, 2.120, 2.217, 2.511, 2.537/2.179, 2.229, 2.230, 2.450, 2.610 Å, mean 2.320 Å - distorted square pyramid, [Bi_{2}H_{2}O_{4}][F_{2}(NO_{3})_{2}].

NEMMOI 2.164, 2.296, 2.322, 2.556, 2.593 Å, mean 2.386 Å - distorted square pyramid, [Cs_{20}Bi_{2}F_{6}O_{20}]·2C_{2}H_{6}.

PEWKUY Nehete, U.N.; Roehsy, H. W.; Jancik, V.; Pal, A.; Magull, J. Inorg. Chim. Acta 2007, 360, 1248/2.086, 2.155, 2.307, 2.510, 2.672 Å, mean 2.346 Å - distorted square pyramid, [Cs_{15}H_{2}O_{4}Bi_{2}Cl_{4}Na_{6}O_{6}Si_{16}]·2C_{6}H_{6}.

RADHEJ James, S. C.; Norman, N. C.; Orpen, A. G.; Quayle, M. J.; Weckemann, U. J. Chem. Soc., Dalton Trans. 1996, 4159. 2.094, 2.252, 2.273, 2.335, 2.478/2.122, 2.147, 2.368, 2.399, 2.757 Å, mean 2.323 Å - distorted square pyramid, [Cs_{2}H_{3}Bi_{2}Cl_{3}O_{3}]·C_{6}H_{6}O·C_{6}H_{5}Cl_{2}O.

SELFEU01 Matchett, M. A.; Ciang, M. Y.; Buhro, W. E. Inorg. Chem. 1999, 29, 358. 2.108, 2.203, 2.209, 2.528, 2.578/2.072, 2.205, 2.2112.542, 2.562 Å, mean 2.322 Å, Bi···Bi = 3.953 Å - distorted square pyramid, [Cs_{6}H_{16}Bi_{2}Cl_{2}]_{6}.

VEFPIC Mehring, M.; Mansfeld, D.; Paalasmaa, S.; Schurmann, M. Chem. Eur. J. 2006, 12, 1767. 2.065, 2.196, 2.260, 2.313, 2.407 Å, mean 2.248 Å - distorted square pyramid, [Cs_{2}H_{3}Bi_{2}O_{6}Si_{2}]·3C_{6}H_{6}.

VEFPOM Mehring, M.; Mansfeld, D.; Paalasmaa, S.; Schurmann, M. Chem. Eur. J. 2006, 12, 1767.
Inorg. Chem. Commun. 2002, 549.

XONGOW Thurston, J. H.; Whitmire, K. H. Inorg. Chem. 2002, 5, 549. 2.050, 2.096, 2.147, 2.631, 2.658/2.081, 2.088, 2.129, 2.476, 2.618, mean 2.297 Å, Bi···Bi = 3.942 Å - distorted square pyramid, [C$_8$H$_{120}$Bi$_3$O$_{25}$]·6C$_2$H$_5$OH.

Mean: 2.301 Å/33 structures

Six-coordination – distorted octahedron

CSD code Mean (d(Bi-O)) Reference and compound
CECWEN 2.155 + 2.641 Å Mehring, M.; Paalasmaa, S.; Schurmann, M. Eur. J. Inorg. Chem. 2005, 4891. [C$_{48}$H$_{114}$Bi$_3$Na$_2$O$_{25}$Si$_{12}$]·1.5C$_2$H$_5$
CEMBAY 2.314 + 2.558 Å Andrews, P. C.; Deacon, G. B.; Forsyth, C. M.; Junk, P. C.; Kumar, I.; Maguire, M. Angew. Chem., Int. Ed. 2006, 45, 5638. [C$_{18}$H$_{16}$Bi$_3$O$_{25}$]18(CH$_3_2$)CO
DOLDAJ 2.218 + 2.494 Å Whitmire, K. H.; Hoppe, S.; Sudora, O.; Jolas, J. L.; Jones, C. M. Inorg. Chem. 2000, 39, 85. [C$_{68}$H$_{134}$Bi$_3$F$_6$O$_{16}$]·3C$_2$H$_5$
ICOVUR 2.081 + 2.831 Å Williams, P. A.; Jones, A. C.; Crosbie, M. J.; Wright, P. J.; Bickley, J. F.; Steiner, A.; Davies, H. O.; Leedham, T. J.; Critchlow, G. W. Chem. Vap. Deposition 2001, 7, 205. [Bi$_2$(C$_3$H$_{11_2}$)$_3$]
JAXBAM 2.181 + 2.614 Å Thurston, J. H.; Swenson, D. C.; Messerle, L. Chem. Commun. 2005, 4228. [C$_{20}$H$_{30}$Bi$_3$O$_{13}$][ClO$_4$]·4C$_2$H$_5$OH.
JUJVF 2.320 + 2.561 Å Troyanov, S. I.; Pisarevskii, A. P. Koord. Khim. 1991, 17, 909. [Bi(O$_2$CH$_3$)$_3$]
JUMZIA 2.249 + 2.556 Å Jones, C. N.; Burkart, M. D.; Whitmire, K. H. Chem. Commun. 1992, 1638. [C$_{62}$H$_{10}$Bi$_6$F$_6$O$_{16}$]·C$_4$H$_8$O
NAXZES 2.064 + 3.121 Å Paalasmaa, S.; Mansfeld, D.; Schurmann, M.; Mehring, M. Z. Anorg. Allg. Chem. 2005, 651, 2433. [C$_2$H$_5$Bi$_3$O$_{13}$]
NOFPUS 2.166 + 2.665 Å Klufers, P.; Mayer, P. Acta Crystallogr., Sect. C 1998, 54, 583. Na$_{12}$([C$_4$H$_{10}$Bi$_3$O$_{12}$][OH])$_3$·3H$_2$O.
VEFPIG 2.178 + 2.669 Å Mehring, M.; Mansfeld, D.; Paalasmaa, S.; Schurmann, M. Chem. Eur. J. 2006, 12, 1767. [C$_2$H$_{32}$Bi$_3$O$_{25}$Si$_{12}$]3C$_2$H$_5$.
VEFPOM 2.218 + 2.588 Å
Mehring, M.; Mansfeld, D.; Paalasmaa, S.; Schurmann, M. Chem. Eur. J.
2006, 12, 1767. [C_{37}H_{21}Bi_2O_{36}Si_{22}]: 3C-H_3

VEFQAZ 2.177 + 2.698 Å
Mehring, M.; Mansfeld, D.; Paalasmaa, S.; Schurmann, M. Chem. Eur. J.
2006, 12, 1767. [C_{37}H_{17}Bi_2O_{36}Si_{17}]: 0.5C-H_6

VEFQIH 2.171 + 2.531 Å
Mehring, M.; Mansfeld, D.; Paalasmaa, S.; Schurmann, M. Chem. Eur. J.
2006, 12, 1767. [C_{37}H_{32}Bi_2O_{36}Si_{22}]: 2C-H_6

VEFQON 2.171 + 2.747 Å
Mehring, M.; Mansfeld, D.; Paalasmaa, S.; Schurmann, M. Chem. Eur. J.
2006, 12, 1767. [C_{37}H_{12}Bi_2O_{36}Si_{18}]:

WAYYEA 2.153 + 2.652 Å
Jones, C. M.; Burkart, M. D.; Bachman, R. E.; Serra, D. L.; Shiu-Jyh Hwu;
Whitmire K. H. Inorg. Chem. 1993, 32, 5136. [C_{37}H_{32}Bi_2F_{36}O_{10}]: C_6H_{13}

WAYYEA 2.169 + 2.613 Å
Jones, C. M.; Burkart, M. D.; Bachman, R. E.; Serra, D. L.; Shiu-Jyh Hwu;
Whitmire K. H. Inorg. Chem. 1993, 32, 5136. [C_{37}H_{32}Bi_2F_{36}O_{10}]:

XONGEM 2.253 + 2.594 Å
Thurston, J. H.; Whitmire, K. H. Inorg. Chem. 2002, 41, 4194.
[C_{68}H_{36}Bi_2Nb_3O_{23}]

XONGIQ 2.268 + 2.606 Å
Thurston, J. H.; Whitmire, K. H. Inorg. Chem. 2002, 41, 4194.
[C_{68}H_{36}Bi_2Cl_{3}O_{23}]:

XONGOW 2.252 + 2.552 Å
Thurston, J. H.; Whitmire, K. H. Inorg. Chem. 2002, 41, 4194.
[C_{68}H_{36}Bi_2O_{23}]:

XOVPED 2.129 + 2.662 Å
Kessler, V. G.; Turova, N. Y.; Turevskaya, E. P.
Inorg. Chem. Commun. 2002, 5, 549. [C_{30}H_{25}Bi_6O_{25}]: 2C-H_3OH.

Mean: 2.194 + 2.648 Å/20 structures

VEGDUB 2.390 Å
Mehring, M.; Mansfeld, D.; Costisella, B.; Schurmann, M. Eur. J. Inorg. Chem. 2006, 735.
[C_{37}H_{48}Bi_3Li_3O_{13}Si_{18}]: 2C-H_3

VEFPUS 2.392 Å
Mehring, M.; Mansfeld, D.; Paalasmaa, S.; Schurmann, M. Chem. Eur. J.
2006, 12, 1767. [C_{37}H_{48}Bi_3O_{36}Si_{18}]: 2C-H_3

VEGQON 2.393 Å
Mehring, M.; Mansfeld, D.; Costisella, B.; Schurmann, M. Eur. J. Inorg. Chem. 2006, 735.
[C_{38}H_{48}Bi_3Li_3O_{13}Si_{18}]: 1.5C-H_3.

Mean: 2.417 Å/23 structures

Six-coordination – regular octahedron

CSD code	Mean d(Bi-O)	Reference and compound
TESYUL | 2.324 Å | García-Montalvo, V.; Cea-Olivares, R.; Williams, D. J.; Espinosa-Perez, G. Inorg. Chem. 1996, 35, 3948. almost regular octahedron. [Bi(O_2P_2N(C_2H_2))_2].
WOPVIG | 2.323 Å | Näslund, J.; Persson, I.; Sandström, M. Inorg. Chem. 2000, 39, 4012. almost regular octahedron. [Bi(OCN(CH_2)_3(CH_3)_2)_3][OC(OH)]_3.
YOGPAL | 2.311 Å | Carmalt, C. J.; Farrugia, L. J.; Norman, N. C. Z. Anorg. Allg. Chem. 1995, 621, 47. regular octahedron. [Bi(OCN(CH_2)_3(CH_3)_2)_3]Bi_4I_2.

Mean: 2.319 Å/3 structures

Six-coordination – distorted pentagonal pyramid

CSD code	Mean d(Bi-O)	Reference and compound
DOLDEN | 2.367 Å | Whitmire, K. H.; Hoppe, S.; Sydora, O.; Jolas, J. L.; Jones, C. M. Inorg. Chem. 2000, 39, 85. [C_{36}Bi_2F_{36}O_{26}]: 3.57CH_2Cl.
EYSEQ | 2.392 Å | Sharutina, V. V.; Egorova, I. V.; Sharutina, O. K.; Ivanenko, T. K.; Adonin, N. Y.; Starichenko, V. F.; Pushlin, M. A.; Gerasimenko, A. V. Koord. Khim. 2003, 29, 902. [C_{36}H_{16}Bi_2F_{32}O_{18}]: 2C-H_8
HARGUC | 2.389 Å | Asato, E.; Katsura, K.; Mikuriya, M.; Fujii, T.; Reedijk, J. Inorg. Chem. 1993, 32, 5322. (H,N)[C_2H_2Bi_2O_{15}]: 2H_2O
HEMIZQ | 2.347 Å | Arnelo, L.; Bandoli, G.; Casarin, M.; Depaoli, G.; Tondello, A.; E. Vittadini, A. Inorg. Chim Acta 1998, 275, 340. [Bi_2(O_2C_2H_4)_3]: H_2O
HEMQOF | 2.335 Å | Arnelo, L.; Bandoli, G.; Casarin, M.; Depaoli, G.; Tondello, A.; E. Vittadini, A. Inorg. Chim Acta 1998, 275, 340. [Bi_2(O_2C_2H_4)_3]: 3H_2O
JIRYUE | 2.378 Å | Herrmann, W. A.; Herdtweck, E.; Pajdlam L. Inorg. Chem. 1991, 30, 2579. K_2[Bi_2C_2H_{10}O_{15}]: 3H_2O
JUMZOG 2.381 Å
JUMZOG01 2.381 Å

Whitmire, K. H.; Hoppe, S.; Sydora, O.; Jolas, J. L.; Jones, C. M. Inorg. Chem. 2000, 39, 85. [C₇₈Bi₁₂F₆₅O₂₅] 2C₄H₆

MUZVEI 2.465 Å
MUZVIM 2.453 Å

Thurston, J. H.; Whitmire, K. H. Inorg. Chem. 2003, 42, 201. [C₆₀H₉₀Bi₁₂O₂₅]

NAPBOW 2.350 Å

Dikarev, E. V.; Haitao Zhang; Bo Li J. Am. Chem. Soc. 2005, 127, 6156. [C₆₀H₁₂Bi₁₂F₆₅MnO₁₅]

NAPBUC 2.348 Å

Dikarev, E. V.; Haitao Zhang; Bo Li J. Am. Chem. Soc. 2005, 127, 6156. [C₆₀H₁₂Bi₁₂F₆₅FeO₁₅]

NAPCAJ 2.351 Å

Dikarev, E. V.; Haitao Zhang; Bo Li J. Am. Chem. Soc. 2005, 127, 6156. [C₆₀H₁₂Bi₁₂F₆₅CoO₁₅]

NAPCEN 2.353 Å

Dikarev, E. V.; Haitao Zhang; Bo Li J. Am. Chem. Soc. 2005, 127, 6156. [C₆₀H₁₂Bi₁₂F₆₅NiO₁₅]

NAPCIR 2.342 Å

Dikarev, E. V.; Haitao Zhang; Bo Li J. Am. Chem. Soc. 2005, 127, 6156. [C₆₀H₁₂Bi₁₂F₆₅CuO₁₅]

NAPCOX 2.350 Å

Dikarev, E. V.; Haitao Zhang; Bo Li J. Am. Chem. Soc. 2005, 127, 6156. [C₆₀H₁₂Bi₁₂F₆₅ZnO₁₅]

NAPCUD 2.345 Å

Dikarev, E. V.; Haitao Zhang; Bo Li J. Am. Chem. Soc. 2005, 127, 6156. [BiO(C₆H₅)₂][Bi(O₂C)₆]

WIJYIX 2.336 Å

Jones, C. M.; Burkart, M. D.; Bachman, R. E.; Serra, D. L.; Shiou-Jyh Hwu; Whitmire K. H. Inorg. Chem. 1993, 32, 5136. [BiO(C₂H₅)₂]

XATWOF 2.379 Å

Sharutina, V.V.; Sharutina, I.V.; Egorova, O.K.; Sharutina, T.K.; Ivanenko, N.Yu.; Adonin, A.V.; Starichenko, V.F.; Egorova, I.V.; Sharutina, O.K.; Ivanenko, T.K.; Adonin, N.Y.; Starichenko, V.F.; Pushilin, M.A.; Gerasimenko, A.V. Koord. Khim. 2005, 31, 4. [C₅₆H₁₂Bi₁₂F₆₅O₁₅] 2C₄H₁₀

XATWUL 2.389 Å

Sharutin, V.V.; Sharutina, I.V.; Egorova, O.K.; Sharutina, T.K.; Ivanenko, N.Yu.; Adonin, A.V.; Starichenko, V.F.; Egorova, I.V.; Sharutina, O.K.; Ivanenko, T.K.; Adonin, N.Y.; Starichenko, V.F.; Pushilin, M.A.; Gerasimenko, A.V. Koord. Khim. 2005, 31, 4. [C₅₆H₁₂Bi₁₂F₆₅O₁₅] 4C₄H₁₀

YUBNIS 2.355 Å

Asato, E.; Katsura, K.; Mikuriya, M.; Turpeinen, U.; Mutikainen, I.; Reedijk, J. Inorg. Chem. 1995, 34, 2447. (NH₄)₁₂[C₆₀H₁₂Bi₁₂O₁₆]·10H₂O.

Mean: 2.361 Å/19 structures

Six-coordination with extreme gap

CSD code	Mean d(Bi-O)	Reference and compound
SUFFAA	2.394 Å	Troyanov, S. I.; Pisarevsky, A. P. Chem. Commun. 1993, 335. [C₆₀H₁₀₆Bi₁₂O₂₄]

Seven-coordination

CSD code	Reference, bond distances, geometry and compound
ALOLES	Wei Li; Lan Jin; Nianyong Zhu; Xuemei Hou; Feng Deng; Hongzhe Sun J. Am. Chem. Soc. 2003, 125, 12408. 2.101, 2.376, 2.381, 2.445, 2.453, 2.509, 2.790, mean 2.436 Å, Bi···Bi = 4.338 Å - distorted monocapped octahedron, (NH₄)₉K₁₁[C₆₀H₁₂Bi₁₂O₁₆]·14H₂O.
CEMBAY	Andrews, P. C.; Deacon, G. B.; Forsyth, C. M.; Junk, P. C.; Kumar, I.; Maguire, M. Angew. Chem., Int. Ed. 2006, 45, 5638. 2.176, 2.204, 2.235, 2.545, 2.759, 2.784, 2.824 Å, mean 2.504 Å - distorted monocapped octahedron, [C₁₅₈H₁₄₈Bi₁₂O₁₂₆]·18(CH₃)₂CO.
CEMBEC	Andrews, P. C.; Deacon, G. B.; Forsyth, C. M.; Junk, P. C.; Kumar, I.; Maguire, M. Angew. Chem., Int. Ed. 2006, 45, 5638. 2.132, 2.140, 2.313, 2.364, 2.681, 2.731, 2.951 Å, mean 2.473 Å - distorted monocapped octahedron, [C₁₅₈H₁₄₈Bi₁₂O₁₂₆]·1.5((CH₃)₂CO.
ECOKUC	Mehring, M.; Schurrmann, M. Chem. Commun. 2001, 2354. 2.209, 2.230, 2.230, 2.554, 2.554, 2.664, 2.664, mean 2.444 Å - bicapped pentagon, [C₄₈H₁₁₆Bi₁₂O₁₆P₁₂·3C₆H₁₂O₆].
FAQMUG Thurston, J. H.; Kumar, A.; Hofmann, C.; Whitmire, K. H. *Inorg. Chem.* 2004, 43, 8427.
2.277, 2.316, 2.326, 2.400, 2.534, 2.545, 2.691, mean 2.441 Å - bicapped pentagon,
[C$_{9}$H$_{18}$Bi$_{5}$Ti$_{3}$O$_{3}$].

FASYII Thurston, J. H.; Kumar, A.; Hofmann, C.; Whitmire, K. H. *Inorg. Chem.* 2004, 43, 8427.
2.108, 2.356, 2.368, 2.378, 2.530, 2.645, 2.678, mean 2.438 Å - bicapped pentagon,
[C$_{18}$H$_{32}$Bi$_{5}$Ti$_{3}$O$_{14}$]

KOFDEO Hunger, M.; Limberg, C.; Kircher, P. *Organometal.* 2000, 19, 1044.
2.181, 2.203, 2.226, 2.572, 2.594, 2.648, 2.708 Å, mean 2.447 Å - bicapped pentagon,
[C$_{9}$H$_{18}$Bi$_{5}$MoO$_{4}$].

MUMKEK Andrews, P. C.; Deacon, G. B.; Jackson, W. R.; Maguire, M.; Scott, N. M.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 2002, 4634.
2.207, 2.236, 2.326, 2.496, 2.515, 2.532, 2.758 Å, mean 2.439 Å, Bi – Bi = 4.123 Å - distorted
monocapped octahedron, [C$_{3}$H$_{4}$Bi$_{2}$O$_{3}$].

MUZVAE Thurston, J. H.; Whitmire, K. H. *Inorg. Chem.* 2003, 42, 142.
2.221, 2.275, 2.300, 2.489, 2.499, 2.639, 2.738, mean 2.452 Å – distorted monocapped
octahedron, [C$_{9}$H$_{18}$Bi$_{5}$Nb$_{2}$O$_{27}$]·3C$_{2}$H$_{6}$H$_{2}$O.

MUZTUW Thurston, J. H.; Whitmire, K. H. *Inorg. Chem.* 2003, 42, 142.
2.222, 2.289, 2.306, 2.499, 2.499, 2.637, 2.750, mean 2.457 Å – distorted
monocapped octahedron, [C$_{3}$H$_{4}$Bi$_{2}$Ta$_{2}$O$_{27}$]·3C$_{2}$H$_{6}$H$_{2}$O.

TEVPUF Feldmann, C. *Inorg. Chem.* 2001, 40, 818.
2.192, 2.257, 2.315, 2.552, 2.562, 2.614, 2.718, mean 2.459 Å – bicapped pentagon,
[C$_{3}$H$_{4}$Bi$_{3}$O$_{12}$][Bi$_{5}$Cu$_{11}$].

VEFPIG Mehring, M.; Mansfeld, D.; Paalasmaa, S.; Schurmann, M. *Chem. Eur. J.* 2006, 12, 1767.
2.097, 2.247, 2.266, 2.371, 2.745, 2.991, 3.371, mean 2.584 Å – bicapped pentagon,
[C$_{9}$H$_{18}$Bi$_{5}$Ta$_{2}$O$_{27}$]·3C$_{2}$H$_{6}$.

VEQH Mehring, M.; Mansfeld, D.; Paalasmaa, S.; Schurmann, M. *Chem. Eur. J.* 2006, 12, 1767.
2.136, 2.233, 2.252, 2.390, 2.569, 3.054, 3.406 Å, mean 2.577 Å, – bicapped pentagon,
[C$_{3}$H$_{4}$Bi$_{3}$Na$_{2}$O$_{9}$S$_{12}$]·2C$_{2}$H$_{6}$.

VEQON Mehring, M.; Mansfeld, D.; Paalasmaa, S.; Schurmann, M. *Chem. Eur. J.* 2006, 12, 1767.
2.111, 2.281, 2.344, 2.421, 2.436, 2.991, 3.008 Å, mean 2.513 Å, – distorted octahedron,
[C$_{3}$H$_{4}$Bi$_{3}$Na$_{2}$O$_{9}$S$_{18}$]·H$_{2}$O.

XATWUL Sharutin, V.V.Sharutin, I.V.Egorova, O.K.Sharutina, T.K.Ivanenko, N.Yu.Adonin,
V.F.Starichenko, M.A.Pushilin, A.V.Gerasimenko. V.; Egorova, I. V.; Sharutina, O. K.;
Ivanenko, T. K.; Adonin, N. Y.; Starichenko, V. F.; Pushilin, M. A.; Gerasimenko, A V.
Koord. Khim. 2005, 31, 4.
2.124, 2.276, 2.295, 2.391, 2.425, 2.833, 2.860 Å, mean 2.458 Å - bicapped pentagon,
[C$_{3}$H$_{4}$Bi$_{3}$F$_{3}$O$_{18}$]·4C$_{2}$H$_{10}$.

XONGUC Thurston, J. H.; Whitmire, K. H. *Inorg. Chem.* 2002, 41, 4194.
2.237, 2.309, 2.320, 2.417, 2.476, 2.607, 2.622 Å, mean 2.427 Å - tricapped square,
[C$_{7}$H$_{14}$Bi$_{3}$Ti$_{3}$O$_{30}$]·2C$_{2}$H$_{4}$.

YIJYEV Fukin, G. K.; Pisarevski, A. P.; Yanovsky, A. I.; Struchkov, Y. T. Zn. Neorg. Khim. 1993, 38, 1205.
2.133, 2.315, 2.344, 2.383, 2.384, 2.391, 3.073 Å, mean 2.432 Å - distorted monocapped
octahedron, [C$_{6}$H$_{10}$(CH$_{3}$)$_{3}$]·0.5(CH$_{3}$)$_{3}$COCH$_{2}$CO(CH$_{3}$)$_{3}$

YUBNIS Asato, E.; Katsura, K.; Mikuriya, M.; Turpeinen, U.; Mutikainen, I.; Reedijk, J. *Inorg. Chem.*
1995, 34, 2447.

Mean: 2.460 Å/18 structures

Eight-coordination

CDS codes

ALINOY, ALOLES, APUSOT, APUSUZ, CEMBAY, CEMBEC, DAPFUX, GEMBEH, HUBKOF, HUBKUL,
HUBLAS, JAXCEQ, JAXGQ, JIVTOY, LIPREI, LOHDUI, OQAPIG, NASZAK, NEDKUD, PURLAP,
PURLAP01, VEFPIG, VEFQIH, WOPVEC, ZAWXAW

Mean: 2.458 Å/25 structures
Nine-coordination

CDS codes

BOFBII, CEMBEC, DABHOE, DACDIW, DACDOC, EVUDDO, FOVXIX, IPASOH, KOKZOZ, KOZGEP, LENVIK, LOHDES, NEDKUD, OFIDAJ, PEQTOV, PEYREQ, SEYHOV, VEFPIG, WARTAL, XAFBAJ, XAFBIR, ZAWWUP, ZEZTUTM, ZEZTUT01

Mean 2.520 Å/24 structures
Figure S1. Calculated conditional stoichiometric constants for the Bi$^{3+}$-oxalate and Bi$^{3+}$-glycine systems as a function of pH. Blue lines represent K_{E1} and orange K_{E2} (Table S2). $K_{E1}=K_1/(\alpha_M \alpha_H)$ and $K_{E2}=K_2/(\alpha_M \alpha_H)$ where K_1 is the stoichiometric stability constant, α_M represents the competition from the hydrolysis of the metal ion to the complex formation and is expressed as $\alpha_M = 1+K_1[OH^-]+\beta_{6,12}[Bi^{3+}]$ using the stability constants given in Table S1, ref 1, and α_H represent the competition from the hydrogen ion concentration in the solution (pH) and is expressed as $\alpha_H = 1+K_1[H^+]$ where K_1 and K_2 stability constants formation of the protonated form of the ligand. For oxalate the following stability constants were used, $K_1=1.88\cdot10^4$ mol$^{-1}$ L and $K_2=18.9$ mol$^{-1}$ L (Kettler, R.; Palmer, D.; Wesolowski, D. Dissociation quotients of oxalic acid in aqueous sodium chloride media to 175°C. *J. Solution Chem.* 1991, 20, 905-927) and for glycine the following stability constants were used, $K_1=3.80\cdot10^9$ mol$^{-1}$ L and $K_2=219$ mol$^{-1}$ L (Borghesani, G.; Pulidori, F.; Remelli, M.; Purrello, R.; Rizzarelli, E. Non-covalent interactions in thermodynamic stereoselectivity of mixed-ligand copper(II)-D- or L-histidine complexes with L-amino acids. A possible model of metal ion-assisted molecular recognition. *J. Chem. Soc., Dalton Trans.* 1990, 2095-2100.)
Figure S2. Specific UV absorbance of DOM as a function of pH in the batch experiments with the organic soil sample. Specific UV absorbance is equal to the UV absorbance measured at $\lambda=254$ nm normalized to mg carbon.
Figure S3. Experimental raw data and model fits of bismuth(III) in soil at different pH values; experimental data (black line), calculated model with parameters given in Table 1 (red line), individual contributions of short Bi-O bond (blue line), long Bi-O bond (green line), Bi···C distance (yellow line), Bi-O-C three-leg scattering (brown line) and Bi···Bi distance (purple line).
Figure S4. Wavelet transform (WT) results for EXAFS data (left column) and model output (right column) using structural parameters in Table 1 ($\kappa = 12$, $\sigma = 2$, k range: 2.8-8 Å$^{-1}$ for pH 1.2, 2.8-10 Å$^{-1}$ for all others). High-intensity areas at $R + \Delta R \approx 3.5$ Å$^{-1}$ are consistent with a Bi–Bi interaction at 4.0 Å$^{-1}$. The WT:s were made using the Igor Pro procedure of M. Chukalina (Wavelet2. ipf, a procedure for calculating the Wavelet transform in IGOR Pro, Grenoble, France, 2010).
Figure S5. (a) XRD patterns of metallic Bi samples subjected to corrosion in pure aqueous solutions (Bi-H$_2$O) and in aqueous solutions with 100 mg L$^{-1}$ fulvic acid (Bi-FA-M). Reference data are from PDF-2 database. (b) Comparison of the background-subtracted diffractograms of for Bi-H$_2$O and Bi-FA-M (characteristic peaks for Bi$_2$O$_3$ and Bi$_2$O$_2$CO$_3$ are indicated for comparison). Background related to X-ray scattering was removed applying polynomial Bezier approximation in Bruker DIFFRAC.EVA v.12 program package (see www.bruker.com/xrd-software).
Figure S6. Metallic Bi samples subjected to corrosion in pure aqueous solutions and in aqueous solutions with 100 mg L\(^{-1}\) fulvic acid.