Complement-mediated renal diseases after kidney transplantation - current diagnostic and therapeutic options in de novo and recurrent diseases

Fedaey Abbas, Mohsen El Kossi, Jon Jin Kim, Ihab Sakr Shaheen, Ajay Sharma, Ahmed Halawa

Fedaey Abbas, Nephrology Department, Jaber El Ahmed Military Hospital, Safat 13005, Kuwait

Fedaey Abbas, Mohsen El Kossi, Jon Jin Kim, Ihab Sakr Shaheen, Ajay Sharma, Ahmed Halawa, Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom

Mohsen El Kossi, Doncaster Royal Infirmary, Doncaster DN2 5LT, United Kingdom

Jon Jin Kim, Nottingham Children Hospital, Nottingham NG7 2UH, United Kingdom

Ihab Sakr Shaheen, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom

Ajay Sharma, Royal Liverpool University Hospitals, Liverpool L7 8XP, United Kingdom

Ahmed Halawa, Sheffield Teaching Hospitals, Sheffield S57AU, United Kingdom

ORCID number: Fedaey Abbas (0000-0001-8673-4344); Mohsen El Kossi (0000-0002-2490-2784); Jon Jin Kim (0000-0003-4307-8513); Ihab Sakr Shaheen (0000-0002-4514-277X); Ajay Sharma (0000-0003-4050-6586); Ahmed Halawa (0000-0002-7305-446X).

Author contributions: Abbas F designed the study, data collection, writing the manuscript; El Kossi M, Kim JJ, Shaheen IS and Sharma A reviewed and edited the manuscript; and Halawa A contributed to conceptualization, designing the study, supervising the data collection and reviewing and editing the manuscript.

Conflict-of-interest statement: No conflict of interest.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Ahmed Halawa, FRSC, MD, Senior Lecturer, Consultant Transplant Surgeon, Sheffield Teaching Hospitals, Herries Road, Sheffield S57AU, United Kingdom. ahmed.halawa@sth.nhs.uk

Telephone: +44-778-7542128

Fax: +44-114-2714604

Received: July 19, 2018

Peer-review started: July 19, 2018

First decision: July 29, 2018

Revised: August 9, 2018

Accepted: August 27, 2018

Article in press: August 27, 2018

Published online: October 22, 2018

Abstract

For decades, kidney diseases related to inappropriate complement activity, such as atypical hemolytic uremic syndrome and C3 glomerulopathy (a subtype of membranoproliferative glomerulonephritis), have mostly been complicated by worsened prognoses and rapid progression to end-stage renal failure. Alternative complement pathway dysregulation, whether congenital or acquired, is well-recognized as the main driver of the disease process in these patients. The list of triggers include: surgery, infection, immunologic factors, pregnancy and medications. The advent of complement activation blockade, however, revolutionized the clinical course and outcome of these diseases, rendering transplantation a viable option for patients who were previously considered as non-transplantable cases.
Several less-costly therapeutic lines and likely better efficacy and safety profiles are currently underway. In view of the challenging nature of diagnosing these diseases and the long-term cost implications, a multidisciplinary approach including the nephrologist, renal pathologist and the genetic laboratory is required to help improve overall care of these patients and draw the optimum therapeutic plan.

Key words: Complement-related diseases; Kidney transplantation; De novo; Recurrent diseases

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The recent progress in our understanding of the pathophysiology of complement-mediated diseases is gaining considerable popularity. Complement dysregulation due to inherited or acquired factors is currently the culprit mechanism. Several constitutional abnormalities usually trigger the process of recurrence, with a subsequent high rate of graft loss. The development of the terminal complement inhibitor “eculizumab” is a breakthrough in controlling abnormal complement activation. While diagnosing complement abnormalities is one challenge, treatment cost with this new agent is another major hurdle in any health care system. New lines of promising therapies are currently in the pipeline.

Abbas F, El Kossi M, Kim JJ, Shaheen IS, Sharma A, Halawa A. Complement-mediated renal diseases after kidney transplantation - current diagnostic and therapeutic options in de novo and recurrent diseases. World J Transplant 2018; 8(6): 203-219 Available from: URL: http://www.wjgnet.com/2220-3230/full/v8/i6/203.htm DOI: http://dx.doi.org/10.5500/wjt.v8.i6.203

INTRODUCTION

The complement components can be seen in biopsies of almost all types of glomerulonephritis, which can be broadly divided into two main groups: (1) “complement over-activation” includes IgA nephropathy (IgAN) and immune complex membranoproliferative glomerulonephritis (MPGN); and (2) “complement dysregulation” that encompasses atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G)\(^1\). While complement activation is triggered by immune complex formation in the former group, genetic mutations are the driver of complement over-activation in the latter one. This explains why the disease process in the former class is potentially modifiable by immunosuppression in the post-transplantation period, which is not the case in the latter class. Our understanding of the biogenetic causes of C3G and aHUS/thrombotic microangiopathy (TMA) has been expanding. The mechanisms of these diseases not only affect their clinical history, but also affect the recurrence rate\(^2\). The role of complement in C3G evolution is now well-recognized\(^3\). Recent progress in understanding the pathophysiology of MPGN led to newer classifications of MPGN into immune complex-mediated and complement-mediated subtypes. The hallmark of complement-mediated MPGN is the deposition of C3 and other complement products in glomerular tissues\(^4\). This is caused by dysregulation and loss of control of the AP complement pathway\(^5\). The AP is tightly regulated under physiological conditions. It can be disrupted through either inherited (mutations/polymorphisms) or acquired (autoantibodies) interferences to the regulating components. Histological staining using immunofluorescence (IF) is currently the best determinant technique, and C3G is defined by dominant C3 with dispersed, reduced or absent immunoglobulin (Ig). Based on electron microscopy (EM) examination, C3G subdivides into complement three glomerulonephritis (C3GN) and dense deposit disease (DDD). In C3GN, discrete deposits can be seen in the mesangium and capillary walls (subendothelial and subepithelial regions). On the contrary, DDD deposits are large in size, extremely dense (osmiophilic) and intramembranous, which leads to a characteristic thickening of the glomerular basement membrane (GBM)\(^6\). The term aHUS is applied to a heterogenous group of diseases (Figure 1) that share TMA manifestations with an associated decline in renal function (classically, no IF staining of C3 or any other complement components). In aHUS, complement abnormalities (either genetic mutations or acquired autoantibodies) are well-recognized mechanisms with a clearly associated complement-mediated TMA\(^1\). In this article, we will discuss various types of complement-mediated renal diseases after kidney transplantation and their current therapeutic options.

Methodology

In view of the lack of prospective controlled trials concerned with complement-mediated diseases post-kidney transplant, we tried to shed the light in this review on the most recent expert opinions, with regard to the best tools of management for these devastating diseases.

CLINICAL PRESENTATION

Salient features of C3G

DDD and C3GN share some salient features that include proteinuria, hematuria and increased serum creatinine concentration\(^6,7\). Recurrence of C3G is typically encountered one to two years after transplant\(^7\). C3G comprises a spectrum of diseases that result from aberrant control of complement activation, deposition and dysregulation, leading to C3 glomerular deposition with characteristic electron-dense deposits (EDD) in EM (Table 1).
Renal biopsy is crucial for C3G diagnosis. LM is not helpful, due to its extremely diverse appearance. IF is the mainstay for diagnosis. A unique criterion in IF studies is the presence of dominant C3 staining, which is twice as intense as any other immunoreactant (IgG, IgM, IgA, and C1q)\[8\]. Ninety percent of DDD patients, but fewer C3GN patients, can be diagnosed through applying this criterion\[8\]. Repeated biopsy may be required to confirm the diagnosis. As C3G may present in acute infection, C3 can be observed with post-infectious GN. Humps are no longer pathognomonic criteria of post-infectious GN, however they can also be encountered in C3G. However, the presence of double contours in the GBM raises the possibility of C3G diagnosis. To differentiate DDD from C3GN, EM studies should be accomplished, as it has pivotal clinical implications. Moreover, staining for IgG as well as light chains on pronase-digested paraffin should be applied for all cases of C3GN on standard IF, particularly in adults (Figure 2 and Table 1)\[9,10\].

Table 1 Morphological features of C3 glomerulopathy

Light microscopy	Active lesions
Mesangial expansion with or without hypercellularity	
Endocapillary hypercellularity including monocytes and/or neutrophils	
Capillary wall thickening with double contours (combination of capillary wall thickening + mesangial increase is referred to as a membranoproliferative pattern)	
Fibrinoid necrosis	
Cellular/fibrocellular crescents	
Chronic lesions	
Segmental or global glomerulosclerosis	
Fibrous crescents	

IF microscopy	DDD: Dense osmiophilic mesangial and intramembranous electron dense deposits.
C3GN: Amorphous mesangial with or without capillary wall deposits including subendothelial, intramembranous and subepithelial EDD	
Subepithelial “humps” may be seen in both DDD and C3GN	

Adapted from Goodship et al\[12\]. C3G: C3 glomerulopathy; DDD: Dense deposit disease; C3GN: C3 glomerulonephritis; EDD: Electron dense deposits, fibrinoid necrosis.

Pathology

Renal biopsy is crucial for C3G diagnosis. LM is not helpful, due to its extremely diverse appearance. IF is the mainstay for diagnosis. A unique criterion in IF studies is the presence of dominant C3 staining, which is twice as intense as any other immunoreactant (IgG, IgM, IgA, and C1q)\[8\]. Ninety percent of DDD patients, but fewer C3GN patients, can be diagnosed through applying this criterion\[8\]. Repeated biopsy may be required to confirm the diagnosis. As C3G may present in acute infection, C3 can be observed with post-infectious GN. Humps are no longer pathognomonic criteria of post-infectious GN, however they can also be encountered in C3G. However, the presence of double contours in the GBM raises the possibility of C3G diagnosis. To differentiate DDD from C3GN, EM studies should be accomplished, as it has pivotal clinical implications. Moreover, staining for IgG as well as light chains on pronase-digested paraffin should be applied for all cases of C3GN on standard IF, particularly in adults (Figure 2 and Table 1)\[9,10\].

Salient features of TMA

TMA is mostly presented 3-6 mo post-transplant, but it can occur at any time after renal transplantation\[13\]. Presentation of TMA is not universal, ranging from the renal-limited form up to a complete systemic picture with its classic triad of thrombocytopenia, microangiopathic hemolytic anemia (MAHA) and decline in renal function\[14\]. MAHA is defined as increased LDH, decline in HB and haptoglobin, and appearance of schistocytes in peripheral blood smears. On the other hand, localized (renal-limited) TMA usually presents later in the post-transplant course. In the acute stage, evidence of endothelial injury with platelet aggregation (thrombosis), fibrinoid necrosis, as well as...
glomerular ischemia can be seen. On the other hand, chronic lesions show duplication and multilayering of the GBM, with clustering of the matrix layers and vessel wall cells leading to the characteristic onion skin shape appearance (Table 2). As TMA is not always present with full-blown systemic pictures, genetic studies to unmask the underlying complement defect are ultimately mandated, particularly if no other clear cause has been associated (e.g., AMR-associated TMA). AMR can give a TMA-like picture, as it is an antibody interaction with the endothelium. This is also a fundamental maneuver to differentiate de novo from recurrent disease (positive genetic testing), with consequent clinical therapeutic implications.

Extrarenal manifestations of aHUS and C3G
Twenty percent of aHUS patients express extrarenal manifestations. Their relation to complement activation and TMA evolution is unclear. Drusen is rarely seen in TMA. Drusen formation, which represents an accumulation of lipids and complement-rich proteins between Bruch’s membrane and the retinal pigment epithelium, is commonly reported in age-related macular degeneration but present at a much earlier age with C3G. In C3G, retinal drusen and acquired partial lipodystrophy have been commonly reported. The latter is most commonly encountered with C3 nephritic factors. Factor D, an essential agent for C3 convertase formation, is highly concentrated in adipocytes that undergo C3 nephritic factor-induced complement-dependent lysis (Table 3).

Pathogenesis and classification of C3G
The new classification of MPGN encompasses two

Table 2 Morphological features in microangiopathy

Active lesions	Chronic lesions
Glomeruli: Thrombi - Endothelial swelling or denudation - Fragmented RBCs - Subendothelial flocculent material. EM: Mesangiolysis - Microaneurysms	Glomeruli: LM: Double contours of peripheral capillary walls, with variable mesangial interposition - EM: New subendothelial basement membrane - Widening of the subendothelial zone
Arterioles: Thrombi - Endothelial swelling or denudation - Intramural fibrin - Fragmented red blood cells - Intimal swelling - Myocyte necrosis	Arterioles: Hyaline deposits
Arteries: Thrombi - Myxoid intimal swelling - Intramural fibrin - Fragmented red blood cells	Arteries: Fibrous intimal thickening with concentric lamination (onion skin)

Adapted from Goodship et al[12]. EM: Electron microscopy; LM: Light microscopy.
Pathophysiology and recurrence of C3G
Pathophysiology of AP activation in DDD and C3GN is nearly the same. In both disorders, disturbance of the fluid phase is triggered as a result of aberrant gene mutations or the presence of autoantibodies. However, the presence of C3 nephritic factor (C3NeF) is by far the most commonly acquired complement defect. C3NeF has the ability to block CFH-mediated decay by stabilizing C3 convertase. By binding to C3 convertase, C3NeF has the ability to trigger it approximately ten times. C3 convertase can also block the action of CFH, CR1, as well as decay-accelerating factor (DAF).

C3NeF is prevalent in 50%-80% C3G patients. Other autoantibodies have also been found (e.g., autoantibodies against factor B, CFH, and C3 convertase). In C3G, CFH mutations have been frequently reported. Different forms of mutations can be presented as defective or completely absent protein H. These mutations can be seen in homozygous or heterozygous forms. C3NeF can also be encountered, which denotes the clustering of different risk factor varieties. More recently, genetic mutations involving the CFHR gene have been reported in the C3G cohort of patients. CFHR group genetic mutations, deletions, duplications, as well as hybrid genes, have also been observed in C3G patients, either in an isolated manner or in a familial cohort. Malik and his associates reported that members of one family can develop C3G as a result of aberrant copies of CFHR3 and CFHR1 loci. The presence of familial C3G underscores the genetic basis of several C3G varieties and their relation to AP dysregulation.

To summarize, complement dysregulation is the specific etiology of C3G, which could be genetic or acquired. While genetic causes encompass complement gene mutations, acquired causes include the C3NeFs, which have the ability to impede normal complement regulation. Moreover, genetic varieties constitute the pathophysiologic basis of C3G and aHUS evolution (Table 4). Recently, a robust correlation between CFH-related proteins and a variety of complement-mediated diseases have been documented. Functional parameters (e.g., complement regulators and CFH competitors) have recently attained significant popularity.

TMA or C3G?
Both TMA and C3G have a common underlying
causation: AP dysregulation. However, the question that arises is "which factors influence the evolution of one disease rather than the other?". The prevalence of the fluid phase complement activation dysregulation in animal models suggests that C3G is the responsible factor. On the other hand, complement activation involving capillary walls can result in TMA evolution. It has also been postulated that CFH and CFH/CFHR mutations induce aHUS to inhibit CFH-binding to many cell surfaces, while C3G-associated mutations in CFHRs cannot inhibit CFH binding to endothelial cell surfaces. The prevalence of familial C3G mutations serves as a robust indicator of the genetic base of C3G recurrence.

Risk of DDD recurrence

Despite the well-known DDD variants of C3, its pathogenesis has only recently been recognized. The five-year graft survival rate was only 50% in one retrospective study of 75 children. In adults, a majority of the recipients developed recurrence in post-transplant periods, with 25% of them losing their allografts. In another broader cohort that included eighty adults and children with C3G, Medjeral-Thomas et al. reported histological recurrence in all six DDD recipients. Graft loss had resulted in 50% of his cases. For recipients who developed DDD recurrence, the ten-year graft survival rate has been reported to be up to 57.5% in an UNOS review. Risk factors for DDD recurrent disease and graft loss are not well-recognized. However, the histological recurrence rate was reported to be more than 70%. Recurrence may present spontaneously in post-transplant periods, though it may take several years to manifest. This discrepancy raises some questions, such as the impact of the longevity of follow-ups, the need for tissue diagnosis, and the real rate of DDD recurrence.

Risk of C3GN recurrence

There is no documented relation between mode of presentation, C3 serum levels, or C3NeF levels and C3GN recurrence. The only trustworthy risk factor correlated with C3 recurrence is the presence of heavy proteinuria, with two thirds of C3 patients showing vulnerability to recurrence and a high incidence of graft loss. All the available data about recurrence are based on case series, with the largest by Zand et al. that failed to reveal robust evidence of recurrence risk. This observation is partially explained by the heterogeneity of complement defects implicated in C3GN evolution. Early reports postulated HLA-B8 DR3 and living related donation as possible risk factors for recurrence. However, the more recent reports suggested the following: (1) history of graft loss owing to recurrence; (2) aggressive histopathological alterations in native kidney biopsy; and (3) hybrid CFHR3 1 gene-related C3GN. Wong et al. have recently reported a high rate of C3G recurrence (five patients received a total of eight kidney transplants). Five (50%) renal allografts had disease recurrence, of which three had biopsy-proven recurrence, with time to recurrence ranging from as early as 2 wk following living-related donor transplantation, to 93 and 101 mo for the two remaining allografts, respectively.

Diagnosis of C3G recurrence

The declining appearance of proteinuria, hematuria or eGFR is a strong indicator of C3G recurrence. Final diagnosis is usually made through LM, IF, and EM studies of kidney biopsy. After histopathological examination, a thorough evaluation of any genetic mutation in the AP should be accomplished, especially if these studies were not previously fulfilled with the native kidney disease.

Diagnosis of C3G/TMA recurrence

A robust work-up of analytic studies including genetic, biochemical and pathological evaluation should be instituted, including the following: (1) complement components and complement regulatory protein levels; (2) peripheral WBC MCP levels; (3) screening for antibodies to CFH and C3NeFs; and (4) mutation screening of CFH, CF1, CFB, C3, and MCP. Furthermore, recombination in the CFHR region should be tested.

Prognosis of DDD/C3GN

In both DDD and C3GN, recurrent disease is usually associated with allograft loss. The one-year allograft survival was reported to be 94%, with 69% at five years, and 28% at ten years. Three predictive criteria for progression to ESRD were recognized: (1) crescentic GN; (2) severe arteriolar sclerosis by LM; and (3) decline of renal function at the time of first biopsy.

Prognosis of TMA

Compared to recurrent TMA, the prognosis of de novo TMA is quite poor. Fifty percent of patients may lose their graft within a couple of years after diagnosis. Many reports were in favor of this attitude. Before
THERAPY OF COMPLEMENT DYSREGULATION-RELATED DISEASES

Treatment of de novo C3G

The therapeutic approach for de novo C3G therapy is similar to that of recurrent disease. Very minimal information is available regarding de novo C3G\(^{[58]}\).

Treatment of recurrent C3G

In light of the paucity of data from controlled studies, some experts have suggested an approach that depends on disease severity (i.e., mild, moderate and severe) based on the degree of proteinuria and the magnitude of allograft dysfunction (Table 5): (1) conservative measures, as with other glomerulitides, including RAS blockade and lipid-lowering agents; (2) glucocorticoids, MMF, rituximab and PE have been used with variable success\(^{[59,60]}\). In selected patients, MMF has been reported to be effective in C3GN controls in a retrospective study\(^{[12,61]}\); and (3) EZ was firstly reported by Bomback et al\(^{[62]}\) in treating six patients with C3G (three with DDD and three with C3GN) in an open-labelled trial. EZ dose is guided by previous experience in aHUS and used for one year. Improved kidney function was observed in two patients; one patient showed partially improved proteinuria, while another patient showed better histological and laboratory findings\(^{[62]}\). Notably, elevated serum membrane attack complex (MAC) levels were associated with clinical improvement\(^{[63]}\). Duration of therapy is not yet defined. The beneficial effects of EZ in DDD recurrence\(^{[64]}\) and C3GN recurrence\(^{[64]}\) have been shown in case reports\(^{[65]}\).

However, histopathological evidence of disease progression has been observed in subsequent biopsies. This highlights the fact that there is no standard accepted biomarker for disease monitoring, which can be used to assess the patient's response to treatment and predict better renal function.

In 2018, Garg et al\(^{[66]}\) described the spectrum of C3 pathophysiology and its clinical implications. The observed variability of the degrees of upstream (site of C3 convertase) and downstream (site of C5 convertase) complement dysregulation may result in variable phenotypic differences\(^{[67,68]}\). Consequently, the nature of this spectrum will be reflected clinically on disease progress in two ways: firstly, the variability in response to EZ therapy (Figure 4)\(^{[66]}\). In C3G, if the dominant process focused on activation of C5 convertase (resulting in increased soluble C5b-9 levels), EZ will be of therapeutic benefit. On the other hand, patients with the dominant process focused on dysregulation at the level of C3 convertase (increased C3 split product levels), the impact of EZ therapy will be less impressive, and the process of uncontrolled complement dysregulation will persist with consequent ongoing renal injury. Secondly, future application of “soluble C5b-9” as well as “C3 degradation product” measurements will be feasible in monitoring EZ therapy (and other newly introduced C3 convertase inhibitors agents) and, thereby, will help in predicting its response\(^{[66]}\): (1) compstatin is a C3 inhibitory peptide that can block C3 and its convertase interaction, so that all of the three complement pathways are activated; (2) CP40 is a compstatin analog with a selective C3 inhibitor property. CP40 can prevent in vitro complement-mediated hemolysis induced by C3GN patient sera. Moreover, it can abort dysregulated AP activation induced by autoantibodies and genetic

Table 5 Recommended therapy approach for C3 glomerulopathy based on small prospective trial, case reports, and expert opinion

All patients	Moderate disease	Severe disease
Lipid control	Urine protein > 500 mg/24 h despite supportive therapy, or	Urine protein > 2000 mg/24 h despite immunosuppression and supportive therapy or Severe inflammation represented by marked endo- or extracapillary proliferation with/without crescent formation despite immunosuppression and supportive therapy or
Optimal BP control (< 90% in children and ≤ 120/80 mm Hg in adults)	Moderate inflammation on renal biopsy or	Increased S. Cr suggesting risk for progressive disease at onset despite immunosuppression and supportive therapy or
Optimal nutrition for both normal growth in children and healthy weight in adults	Recent increase in serum creatinine suggesting risk for progressive disease	Increased S. Cr suggesting risk for progressive disease
	Recommendation	Recommendations
	Prednisone	Methylprednisolone pulse-dosing as well as other anti-cellular immune suppressants have had limited success in rapidly progressive disease
	Mycophenolate mofetil	Data are insufficient to recommend eculizumab as a first-line agent for the treatment of rapidly progressive disease

Adapted from Goodship et al\(^{[62]}\).
mutations. Since C3d is the major complement fragment deposited in C3GN and DDD, CP40 represents a promising therapeutic agent. CP40 has been evaluated in paroxysmal nocturnal hemoglobinuria and hemodialysis-induced inflammation. If CP40 is able to offer a disease-specific targeted therapy, this agent may represent a breakthrough in C3G control; (3) other novel therapeutics: antibody-based agents targeting complement function by blocking particular components of C3 convertase to hamper its formation and/or function (e.g., anti-C3b monoclonal antibodies reported by Paixao-Cavalcante et al., anti-FB antibodies as described by Subias, and anti-properdin antibodies as professed by Pauly et al.) targeting complement blockade are all under thorough evaluation.

Soluble complement receptor1 (CR1): a robust regulator of complement activity in vitro, soluble CR1 can prevent dysregulation of the AP C3 convertase. The safety and efficacy of the soluble CR1 in normalizing complement activity in pediatric patients with ESRD have been reported. With its ability to breakdown active C3b, soluble CR1 infusion can induce clinical improvement in C3GN as well as in the serum levels of MAC in patients with DDD recurrence.

Methods of achieving C3GN control are summarized in Table 5. Until enough data from randomized control trials become available, the guidelines related to complement blockade therapy of C3GN should be based on those applied in aHUS (Table 6). Renal transplantation for C3G

Minimal data is available concerning renal transplantation for C3G. The available recommendations (Table 7) are currently based on expert opinion. Recurrence post-transplant is common, with about half of the patients with C3G at risk of losing their grafts.

TREATMENT OF POST-TRANSPLANT TMA

For cases of TMA secondary to medication, switching of the culprit drug to another agent (mTOR or CNI) is associated with a better response. The first line of therapy of de novo TMA should encompass withdrawal of the offending drug, an essential step that is usually associated with correction of the hematological profile.

Plasmapheresis (PE) and intravenous immunoglobulins (IVIG) (particularly with AMR-associated TMA):
Table 6 Monitoring eculizumab therapy

CH50 (total complement activity)	AH50 (alternative pathway hemolytic activity)	Eculizumab trough	Alternative assays	
Measures the combined activity of all of the complement pathways	Measures combined activity of alternative and terminal complement pathways	May be a free or bound level	The following assays are under investigation	
Tests the functional capability of serum complement components to lyse 50% of sheep erythrocytes in a reaction mixture	Tests functional capability of alternate or terminal pathway complement components to lyse 50% of rabbit erythrocytes in a MgCl2-EGTA buffer		Free C5	
Low in congenital complement deficiency (C1-8) or during complement blockade	Will be low in congenital C3, FI, FB, properdin, FH, and FD deficiencies or during terminal complement blockade	Not affected by complement deficiencies	In vitro human microvascular endothelial cell test	
Normal range: Assay dependent	Normal range is assay-dependent.	Recommended trough level during complement blockade: 50-100 μg/mL		
Recommended goal during therapeutic complement blockade: < 10% of normal	Recommended goal during complement blockade: < 10% of normal			

Adapted from Goodship et al.[91]. aHUS: Atypical hemolytic uremic syndrome; C3: Complement component 3; C5: Complement component 5; EGTA: Ethyleneglycol tetraacetic acid; ELISA: Enzyme-linked immunosorbent assay; FB: Complement factor B; FD: Complement factor D; FH: Complement factor H; FI: Complement factor I; sC5b-9: Soluble C5b-9; sMAC: Soluble membrane attack complex; TCC: Terminal complement complex.

Table 7 Transplant considerations in C3 glomerulopathy

Timing	Donor selection	Risk reduction
Avoid transplantation during acute period of renal loss	No specific recommendation can be made on donor choice. When considering living donors, high risk of recurrence should be weighed against presumed risk of waiting on cadaveric donor list	C3G histological recurrence is as high as 90%[74]
Avoid transplantation during acute inflammation		Limited data suggest: rapid progression to ESRD in native kidneys increases recurrence risk[89]; There are no known strategies to reduce recurrence risk of C3G
No data supporting whether specific complement abnormalities (e.g., high titer C3Nef, low C3 or high soluble C5b-9) predict increased risk for relapse		Clinical recurrence should drive decision to treat[7]; In absence of clinical trials, use of anti-complement therapy is based solely on a small open-label trial and positive case reports[90] (the impact of publication bias is unknown)
C3G associated with monoclonal gammopathy has a high rate of recurrence[7]		

Based on limited retrospective cohort data. Adapted from Goodship et al.[94]. C3: Complement component 3; C3G: C3 glomerulopathy; C3Nef: C3 nephritic factor; ESRD: End-stage renal disease.

Fresh-frozen plasma (FFP) is advised as a reposition fluid, which must be type-specific, ordered in advance and thawed before use, despite the high risk of reactions; however, it replaces all plasma constituents and is appropriate for patients with TMA[91]. Before the era of EZ, the following supportive explanations have been provided: (1) proven efficacy in TTP[92]; (2) a graft salvage rate of more than 80%, as reported by Karthikeyan et al.[13]. He addressed two possible benefits for this type of therapy: clearance of the platelet aggregation factors (e.g., thromboxane A2) and replenishment of the deficient agents (e.g., PGI2-stimulating factor)[13]; (3) with frequent possibility of the presence of underlying complement dysregulation, commencing PE therapy will also be beneficial in two ways: clearance of the aberrant complement components, and replacement with normally functioning complement proteins[93]; (4) clearance of the anti-HLA antibodies in AMR-associated aHUS improved patient outcome[95,96]; (5) PE/IVIG therapy was successfully associated with a 100% response rate in five solid organ transplants complicated by a systemic form of TMA. There was no evidence of relapse after cessation of the culprit drug (e.g., tacrolimus) in a recent report[97].

Belatacept, a fusion protein composed of the Fc fragment of human IgG1 linked to the extracellular domain of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), selectively inhibits T cell activation through a co-stimulatory blockade[98].

EZ, an anti-C5 agent that blocks lytic C5b-9 MAC generation, not only revolutionized aHUS therapy but was also effective in preventing its recurrence[96]. The role of complement activation in TMA evolution has been recognized in a majority of de novo TMA patients. Chua et al[99], for example, reported deposition of C4d in all biopsies of post-transplant TMA. Efficacy of this
agent has also been documented in the management of resistant cases of medication-associated de novo TMA, including those with unidentified genetic mutations. Moreover, efficacy of EZ has been also shown in some cases of resistant AMR-associated TMA. However, Loupy et al. reported a similar graft survival (95.8% vs 89.7% at two years post-transplant, respectively) and estimated GFR (52.6 mL/min vs 46.7 mL/min) in comparing PE-treated recipients with the EZ-treated group. Considering the high cost of this drug, utilization of this agent is better confined to PE-dependent patients, AMR-associated TMA and to cases with refractory hemolysis.

Treatment of recurrent TMA
Minimal work-up of genetic studies should include: CFH, CFI, CFHR, CFB, MCP and C3. All cases with suspected TMA should be screened for all complement components and its related proteins. Cases with isolated membrane cofactor protein (MCP) mutations (not combined with other gene defects) may be safe for kidney donation. Cases with documented TMA and with a lack of definitive genetic defects may proceed with kidney transplantation under the umbrella of intensive PE therapy. Polygenic patterns of TMA should be dealt with cautiously in case of living donation.

Prevention of aHUS
Avoid trigger factors that stimulate complement activity (e.g., ischemia-reperfusion injury, viral infection and culprit medications). Immunosuppressive regimens devoid of related TMA evolution are advised. PE therapy alone is not sufficient for TMA cure and prevention, with the following explanations postulated: (1) PE alone frequently failed to prevent TMA recurrence; (2) TMA regression cannot be preserved after cessation of therapy; and (3) recipients treated with PE showed an evidence of “subclinal” disease, which declares that PE has no influence on complement activity. Prophylactic use of rituximab proved to be beneficial as an anti-CFH-antibody, and this effect can be augmented with the addition of PE therapy. The anti-C5 monoclonal antibody EZ has been reported to be successful in preventing TMA recurrence in recipients with CFH, CFH/CFHR1 hybrid gene mutations as well as in C3 gene mutations.

Prophylactic complement blockade
Eighty percent of kidney transplantation recipients with TMA proved to be associated with genetic mutations. Based on the fact that a TMA episode is suspected with trigger factor (e.g., surgery), a robust suggestion is to protect the patient with complement blockade, if not already instituted. Unfortunately, this suggestion lacks appropriate evidence.

Therapeutic protocols for aHUS recurrence
Given a clear role of complement blockade in the management of TMA, two regimens have been suggested: (1) minimal dosage to achieve complement blockade; and (2) a dose withdrawal scheme. EZ monitoring, however, is mandated for better response. There is not enough data supporting life-long therapy.

How to monitor complement blockade - Table 6 describes EZ therapy monitoring

Duration of therapy
There is not enough data supporting life-long therapy. However, sustaining EZ seems to be reasonable in certain situations. Figure 5 represents a small guide, meanwhile early biomarkers of disease recurrence and complement activation became available.

Unanswered questions
The lacunae in satisfactory data still present as proper dosage, dose intervals, and duration of therapy, as well as the impact of this type of therapy on transplant spectrum.

Cessation of therapy
Figure 5 represents a guiding scheme suggested for EZ withdrawal.

Is EZ therapy the end of the road?
In 2013, Verhave et al. reported the feasibility of successful kidney transplantation without EZ therapy in four patients with high-risk aHUS. Patients received living donor kidneys with a therapeutic regimen consisting of: Basiliximab for induction, tacrolimus in low dosage, prednisone, and MMF for maintenance.

Table 8 Eculizumab dosing in atypical hemolytic uremic syndrome based on dosing goal

Minimal dose	Discontinuation
Desire to continue dosing with the minimal dose required to achieve a pre-	Desire to discontinue complement blockade
identified level of complement blockade1	
Dose reduction or interval extension	
Goal CH50 < 10% (recommended)	No consensus exists regarding tapering of dose
Goal AH50 < 10% (recommended)	
Goal eculizumab trough >100 μg/mL	

1Additional monitoring may be required during intercurrent events (e.g., infection, surgery, vaccination) to detect unblocked complement activity. Adapted from Goodship et al. AH50: Alternative pathway hemolytic activity; CH50: Total complement activity.
immunosuppression. A statin has also been added. Further precautions include: lowering BP as much as tolerable and minimizing the cold ischemic time. For the next 16-21 mo, no recurrence or rejection events have been reported. The following conclusion has been addressed: successful kidney transplantation in recurrent aHUS patients can be achieved with an EZ-free regimen through: (1) decreasing cold ischemic time; (2) minimizing the risk of rejection; and (3) preserving endothelial integrity.

Renal transplantation in TMA

Timing of transplant: six months after commencing, dialysis should elapse before proceeding in transplant, as renal recovery can be observed several months after initiation of EZ therapy. Two prerequisites should be fulfilled before commencing renal transplantation: (1) resolution of the extrarenal manifestations of TMA; and (2) recovery of TMA hematological parameters. The magnitude of recurrence risk may be used to evaluate the recipient's need for complement blockade (Table 9).

CONCLUSION

The role of complement cascade in the evolution of kidney diseases either in the native kidney or post-transplant is well recognized. The prognosis of aHUS and, in some cases, C3G is greatly improved after commencing complement blockade. These agents are not only curative, but also successful in preventing post-transplant disease recurrence. Owing to the inherited nature of most of these diseases, the maintenance of this therapy is recommended despite cost burden. Consequently, the need for regimens allowing safe withdrawal of these agents is urgently required. However, newer therapies (e.g., new monoclonal
antibodies, recombinant proteins, and small interfering RNA (siRNA) agents hold promise for the near future.

REFERENCES
1. Salvadori M, Bertoni E. Complement related kidney diseases: Recurrence after transplantation. World J Transplant 2016; 6: 632-645 [PMID: 28058212 DOI: 10.5500/wjt.v6.i6.632]
2. Nester CM, Barbour T, de Cordoba SR, Dragon-Durey MA, Frémeaux-Bacchi V, Goodship TH, Kavanagh D, Noris M, Pickerling M, Sanchez-Corral P, Skerka C, Zipfel P, Smith RJ. Atypical aHUS: State of the art. Mol Immunol 2015; 67: 31-42 [PMID: 25843230 DOI: 10.1016/j.molimm.2015.03.046]
3. Zipfel PF, Skerka C, Chen Q, Wieg T, Goodship T, Johnson S, Frémeaux-Bacchi V, Nester C, de Cordoba SR, Noris M, Pickerling M, Smith R. The role of complement in C3 glomerulopathy. Mol Immunol 2015; 67: 21-30 [PMID: 25929733 DOI: 10.1016/j.molimm.2015.03.012]
4. Sethi S, Fervenza F C. Understanding MPGN in the Native- and Transplanted Kidney. Kidney Week 2017. Available from: url: http://www.kidneynews.org/kidney-news/special-sections/glomerul-disease/understanding-mpgn-in-the-native-and-transplanted-kidney
5. Sethi S, Fervenza FC, Zhang Y, Zand L, Vranja JA, Nasr SH, Theis JD, Dogan A, Smith RJ. C3 glomerulonephritis: clinicopathological findings, complement abnormalities, glomerular proteome profile, treatment, and follow-up. Kidney Int 2012; 82: 465-473 [PMID: 22673887 DOI: 10.1038/ki.2012.212]
6. Braun MC, Stablen DM, Hamwiqa LA, Bell L, Bartosh SM, Strife CF. Recurrence of membranoproliferative glomerulonephritis type II in renal allografts: The North American Pediatric Renal Transplant Cooperative Study Experience. J Am Soc Nephrol 2005; 16: 2225-2233 [PMID: 15888559 DOI: 10.1681/ASN.2005020175]
7. Zand L, Lorenz EC, Cosio FG, Fervenza FC, Nasr SH, Gandhi MJ, Smith RJ, Sethi S. Clinical findings, pathology, and outcomes of C3GN after kidney transplantation. J Am Soc Nephrol 2014; 25: 1110-1117 [PMID: 24357668 DOI: 10.1681/ASN.2013070715]
8. Hou J, Markowitz GS, Bombach AS, Appel GB, Herltz LC, Barry Stokes M, D’Agati VD. Toward a working definition of C3 glomerulopathy by immunofluorescence. Kidney Int 2014; 85: 450-456 [PMID: 24067430 DOI: 10.1038/ki.2013.340]
9. Larsen CP, Ambroz JH, Bosnoh SM, Bolls CL, Cossey LN, Messias NC, Silva FG, Wang YH, Golden K, Walker PD. Membran-like glomerulopathy with masked IgG kappa deposits. Kidney Int 2014; 86: 154-161 [PMID: 24429395 DOI: 10.1038/ki.2013.548]
10. Larsen CP, Messias NC, Walker PD, Fidler ME, Cornell LD, Hernandez LH, Alexander MP, Sethi S, Nasr SH. Membranoproliferative glomerulonephritis with masked monoclonal immunoglobulin deposits. Kidney Int 2015; 88: 867-873 [PMID: 26154922 DOI: 10.1038/ki.2015.195]
11. Barbour TD, Pickering MC, Terence Cook H. Dense deposit disease and C3 glomerulopathy. Semin Nephrol 2013; 33: 493-507 [PMID: 24161062 DOI: 10.1016/j.sne neph.2013.08.002]
12. Goodship TH, Cook HT, Fakhouri F, Fervenza FC, Frémeaux-Bacchi V, Kavanagh D, Nester CM, Noris M, Pickerling MC, Rodriguez de Córdoba S, Roumenina LT, Sethi S, Smith RJ; Conference Participants. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int 2017; 91: 539-551 [PMID: 27983922 DOI: 10.1016/j.kint.2016.10.006]
13. Karthikian Y, Parasuraman R, Shah V, Vera E, Venkat KK. Outcome of plasma exchange therapy in thrombotic microangiopathy after renal transplantation. Am J Transplant 2003; 3: 1289-1294 [PMID: 14510703 DOI: 10.1046/j.1600-6143.2003.00222.x]
14. Nadasdy T. Thrombotic microangiopathy in renal allografts: the diagnostic challenge. Curr Opin Organ Transplant 2014; 19: 283-292 [PMID: 24814138 DOI: 10.1097/MOT.0000000000000774]
Dragon-Durey MA, Macher MA, Zuber J, Karras A, Provet F, Moulin B, Grünfeld JP, Niaudet P, Lesavage F, Frémeaux-Bacchi V. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int 2012; 82: 454-464 [PMID: 22456601 DOI: 10.1038/ki.2012.63]

Müller D, Rudolph B, Hartmann A, Kuwertz-Bröking E, Wu K, Kirschfink M, Skerka C, Zipfel PF. Combined C3b and factor B autoantibodies and MPGN type II. N Engl J Med 2011; 365: 2340-2342 [PMID: 22168663 DOI: 10.1056/NEJMcl1107484]

Goldship TH, Pappworth JY, Toth T, Denton M, Houlberg K, Noël LH, Dragon-Durey MA, Gübler MC, Rémy J. Current concepts in C3 glomerulopathy. Indian J Nephrol 2014; 24: 339-348 [PMID: 25484526 DOI: 10.4103/0971-4605.134089]

Chen Q, Müller D, Rudolph B, Hartmann A, Kuwertz-Bröking E, Wiesener M, Skerka C, Zipfel PF. 5-Hybrid Proteins Anchor Properdin and Activate Complement at Self-Surfaces. j.molimm.2013.06.001

Thomas S, Ranganathan D, Francis L, Madkan H, John GT. Factor H autoantibodies in membranoproliferative glomerulonephritis. Mol Immunol 2011; 48: 1604-1610 [PMID: 21619123 DOI: 10.1016/ j.molimm.2011.04.005]

Goicoechea de Jorge E, Pickering MC. Atypical hemolytic uremic syndrome: telling the difference between H and Y. Kidney Int 2010; 78: 721-725 [PMID: 20877372 DOI: 10.1038/ki.2010.222]

Bell CS, Braun MC. Allograft failure in kidney transplantation recipients with primary membranoproliferative glomerulonephritis. Am J Transplant 2012; 12: 1046-1051 [PMID: 22233157 DOI: 10.1111/j.1600-6143.2011.03923.x]

Andredottir MB, Assmann KJ, Hoitsma AJ, Koene RA, Wetzels JF. Recurrence of type I membranoproliferative glomerulonephritis after renal transplantation in patients with dense deposit disease: morphological characteristics of recurrent disease and clinical outcome. Nephrol Dial Transplant 2011; 26: 299-309 [PMID: 21215503 DOI: 10.1093/ndt/gajar.13.10.09.021]

McCaughan JA, O’Rourke DM, Courtney AE. Recurrent dense deposit disease after renal transplantation: an emerging role for complement therapies. Am J Transplant 2012; 12: 1046-1051 [PMID: 22233157 DOI: 10.1111/j.1600-6143.2011.03923.x]

Andredottir MB, Assmann KJ, Hoitsma AJ, Koene RA, Wetzels JF. Recurrence of type I membranoproliferative glomerulonephritis after renal transplantation: analysis of the incidence, risk factors, and impact on graft survival. Transplantation 1997; 63: 1628-1633 [PMID: 9197356 DOI: 10.1097/00007890-199706150-00016]

Little MA, Dupont P, Campbell E, Dormain A, WalshJE. Severity of primary MPGN, rather than MPGN type, determines renal survival and post-transplantation recurrence risk. Kidney Int 2006; 69: 504-511 [PMID: 16395262 DOI: 10.1038/ski.2006084]

Wong L, Moran S, Lavin PJ, Dormain A, Conlon PJ. Kidney transplant outcomes in familial C3 glomerulopathy. Clin Kidney J 2016; 9: 403-407 [PMID: 27274824 DOI: 10.1093/ckj/sfu020]

Zuber J, Le Quintrec M, Morris H, Frémeaux-Bacchi V, Loirat C, Legendre C. Targeted strategies in the prevention and management of atypical HUS recurrence after kidney transplantation. Transplant Rev (Orlando) 2013; 27: 117-125 [PMID: 23937969 DOI: 10.1016/ j.trre.2013.07.003]

Picking MC, D’Agati VD, Nester CM, Smith RJ, Haas M, Appel GB, Alpers CE, Bajema IM, Bedoision C, Braun M, Doyle M, Fakhouri F, Fervenza FC, Fogo AB, Frémeaux-Bacchi V, Gale DP, Goicoechea de Jorge E, Griffin G, Harris CL, Holers VM, Johnson S, Lavin PJ, Medjeral-Thomas NR, Thurman JM. Complement in kidney disease: core curriculum 2015. Am J Kidney Dis 2015; 65: 156-168 [PMID: 25441433 DOI: 10.1053/j.ajkd.2014.06.035]

Goicoechea de Jorge E, Pickering MC. Atypical hemolytic uremic syndrome: telling the difference between H and Y. Kidney Int 2010; 78: 721-725 [PMID: 20877372 DOI: 10.1038/ki.2010.222]

Noris M, Remuzzi G. Glomerular Diseases Dependent on Complement Activation, Including Atypical Hemolytic Uremic Syndrome, Membranoproliferative Glomerulonephritis, and C3 Glomerulopathy: Core Curriculum 2015. Am J Kidney Dis 2015; 65: 359-375 [PMID: 26032627 DOI: 10.1053/j.ajkd.2015.03.040]

Cochat P, Fargue S, Mestrallet G, Jungfrithmayr T, Koch-Nogueira R, Panchin B, Zimmerhackl L. Disease recurrence in paediatric renal transplantation. Pediatr Nephrol 2000; 24: 2097-2108 [PMID: 10947694 DOI: 10.1007/s00467-003-0117-6]

Medjeral-Thomas NR, O’Shaughnessy MM, O’Regan JA, Traynor C, Flanagan M, Wong L, Teoh CW, Awan A, Waldron M, Cairns T, O’Kelly P, Dorman AM, Pickering MC, Conlon PJ, Cook HT. C3 glomerulopathy: clinicopathologic features and predictors of outcome. Clin J Am Soc Nephrol 2014; 9: 46-53 [PMID: 24178974 DOI: 10.2215/CJN.04700513]

Angelo JR, Bell CS, Braun MC. Allograft failure in kidney transplant recipients with membranoproliferative glomerulonephritis. Am J Kidney Dis 2011; 57: 299-291 [PMID: 21215503 DOI: 10.1093/ajkd/jajar.13.10.09.021]

McCaughan JA, O’Rourke DM, Courtney AE. Recurrent dense deposit disease after renal transplantation: an emerging role for complement therapies. Am J Transplant 2012; 12: 1046-1051 [PMID: 22233157 DOI: 10.1111/j.1600-6143.2011.03923.x]

Andredottir MB, Assmann KJ, Hoitsma AJ, Koene RA, Wetzels JF. Recurrence of type I membranoproliferative glomerulonephritis after renal transplantation: analysis of the incidence, risk factors, and impact on graft survival. Transplantation 1997; 63: 1628-1633 [PMID: 9197356 DOI: 10.1097/00007890-199706150-00016]

Little MA, Dupont P, Campbell E, Dormain A, WalshJE. Severity of primary MPGN, rather than MPGN type, determines renal survival and post-transplantation recurrence risk. Kidney Int 2006; 69: 504-511 [PMID: 16395262 DOI: 10.1038/ski.2006084]

Wong L, Moran S, Lavin PJ, Dormain A, Conlon PJ. Kidney transplant outcomes in familial C3 glomerulopathy. Clin Kidney J 2016; 9: 403-407 [PMID: 27274824 DOI: 10.1093/ckj/sfu020]

Zuber J, Le Quintrec M, Morris H, Frémeaux-Bacchi V, Loirat C, Legendre C. Targeted strategies in the prevention and management of atypical HUS recurrence after kidney transplantation. Transplant Rev (Orlando) 2013; 27: 117-125 [PMID: 23937969 DOI: 10.1016/ j.trre.2013.07.003]

Picking MC, D’Agati VD, Nester CM, Smith RJ, Haas M, Appel GB, Alpers CE, Bajema IM, Bedoision C, Braun M, Doyle M, Fakhouri F, Fervenza FC, Fogo AB, Frémeaux-Bacchi V, Gale DP, Goicoechea de Jorge E, Griffin G, Harris CL, Holers VM, Johnson S, Lavin PJ, Medjeral-Thomas N, Paul Morgan B, Nast CC, Noel LH, Peters DK, Rodriguez de Cordoba S, Servais A, Sethi S, Song WC, Tamburini P, Thurman JM, Zavros M, Cook HT. C3 glomerulopathy: consensus report. Kidney Int 2013; 84: 1079-1089 [PMID: 24172683 DOI: 10.1038/ki.2013.377]
Schwimmer J, Nadasy TA, Spitalnik PF, Kaplan KL, Zand MS. De novo thrombocytopenia and complement-mediated diseases. Post-transplant complement-mediated diseases. Kidney Int 2013; 83: 1773-1782 [PMID: 23853820 DOI: 10.1038/ajar.2013.256]

Le Quintrie M, Liotet A, Candel D, Bourdon F, Gnenmi V, Colombarat M, Goujon J-M, Frémeaux-Bacchi V, Fakhouri F. Eculizumab for treatment of rapidly progressive membranoproliferative glomerulonephropathy. Am J Kidney Dis 2015; 66: 484-489 [PMID: 25530108 DOI: 10.1053/j.ajkd.2014.09.025]

Oosterveld MJ, Garrels MR, Hoppe B, Florquin S, Roelofs JJ, van den Heuvel LP, Amann K, Danis O, Bouts AH, Schreiber S, Zand MS. Eculizumab in Pediatric Dense Deposit Disease. Clin J Am Soc Nephrol 2015; 10: 1773-1782 [PMID: 26316621 DOI: 10.2215/CJN.0130215]

Ozkaya O, Nalcacioglu H, Tekcan D, Genc G, Meydan BC, Ozdemir B, Baysal M. Eculizumab therapy in a patient with dense-deposit disease associated with partial membranoproliferative glomerulonephritis in factor H-deficient mice. J Clin Invest 2008; 118: 608-618 [PMID: 18027746 DOI: 10.1172/JCI32525]

Ristani AM, Ricklin D, Huang Y, Reis ES, Chan H, Ricci P, Lin Z, Pasciariello A, Raia M, Sica M, Del Vecchio L, Pane F, Lupu F, Notaro R, Resuollo RR, DeAngelis RA, Lambiris JD. Peptide inhibitors of C3 activation as a novel strategy of complement inhibition for the treatment of paroxysmal nocturnal hemoglobinuria. Blood 2014; 123: 2094-2101 [PMID: 24497537 DOI: 10.1182/blood-2013-11-53657]

Reis ES, DeAngelis RA, Chen H, Resuollo RR, Ricklin D, Lambiris JD. Therapeutic C3 inhibitor Cp40 abrogates complement activation induced by human podocalyxin-like. Immunobiology 2015; 220: 476-482 [PMID: 25468722 DOI: 10.1016/j.imbio.2014.10.026]

Paixão-Cavalcante D, Torreira E, Lindorfer MA, Rodriguez de Cordoba S, Morgan BP, Taylor RP, Llorca O, Harris CL. A humanized antibody that regulates the alternative pathway convertase: potential for therapy of renal disease associated with nephritic factors. J Immunol 2014; 192: 4844-4851 [PMID: 24729617 DOI: 10.4049/jimmunol.1301311]
lipoceptomy, Pediatr Nephrol 2014; 29: 1283-1287 [PMID: 24464478 DOI: 10.1007/s00467-013-2748-5]

Radhakrishnan S, Lunn A, Kirschfink M, Thorner P, Hebert D, Langlois V, Pluttho F, Licut C. Eculizumab and refractory membranoproliferative glomerulonephritis. N Engl J Med 2012; 366: 1165-1166 [PMID: 22435384 DOI: 10.1056/NEJMoa1106619]

Rousset-Rouvière C, Cailliez M, Garaix F, Bruno D, Laurent D, Tsimaratos M. Rituximab fails when eculizumab restores renal function in C3fedef-related DDD. Pediatr Nephrol 2014; 29: 1107-1111 [PMID: 24408225 DOI: 10.1007/s00467-013-2711-5]

Sánchez-Moreno A, De la Cerda F, Cabrera R, Fijo J, López-Trascasa M, Bedoya R, Rodríguez de Córdoa S, Viot-González P. Eculizumab in dense-deposit disease after renal transplantation. Pediatr Nephrol 2014; 29: 2055-2059 [PMID: 24908321 DOI: 10.1007/s00467-014-2839-y]

Vivarelli M, Pasini A, Emma F. Eculizumab for the treatment of dense-deposit disease. N Engl J Med 2012; 366: 1163-1165 [PMID: 22435383 DOI: 10.1056/NEJMoa1111953]

Le DF, Moon M, Lanning LD, McCarthy AM, Smith RJ. Clinical features and outcomes of 98 children and adults with dense deposit disease. Pediatr Nephrol 2012; 27: 775-781 [PMID: 22105967 DOI: 10.1007/s00467-011-2059-7]

Czubkowszi P, Pawłowska J, Jankowska I, Teisseyre M, Kamińska D, Markiewicz M, Ryżko J. Successful sirolimus rescue in tacrolium-induced thrombotic microangiopathy after liver transplantation. Pediatr Transplant 2012; 16: E261-E264 [PMID: 22606835 DOI: 10.1111/j.1399-3046.2011.01601.x]

Franco A, Hernandez D, Capdevila L, Errasti P, Gonzalez M, Ruiz JC. Sanchez J. HUS-Siroliimus Spanish Study Group. De novo hemolytic-uremic syndrome/thrombotic microangiopathy in renal transplant patients receiving calcineurin inhibitors: role of sirolimus. Transplant Proc 2003; 35: 1764-1766 [PMID: 12962787 DOI: 10.1007/s00431-003-6614-6]

McLeod BC. Therapeutic apheresis use of human serum albumin, fresh frozen plasma and cryoprecipiant plasma in therapeutic plasma exchange. Best Pract Res Clin Haematol 2006; 19: 157-167 [PMID: 16377548 DOI: 10.1016/j.beha.2005.01.004]

Bell WR, Braine HG, Ness PM, Kickler TS. Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients. N Engl J Med 1991; 325: 398-403 [PMID: 2062331 DOI: 10.1056/NEJM199108083250605]

Le Quintrec M, Lionet A, Kamar N, Lionet A, Kamar N, Barbier S, Buchler M, Fakhoury F, Provost F, Frimand WH, Thervet E, Legendre C, Zuber J, Frémeaux-Bacchi V. Complement mutation-associated de novo thrombotic microangiopathy following kidney transplantation. Am J Transplant 2011; 11: 2405-2413 [PMID: 21942930 DOI: 10.1111/j.1600-6143.2011.03757.x]

González-Roncero F, Suñer M, Bernal G, Cabello V, Toro M, Pereira P, Angel Gentil M. Eculizumab treatment of acute antibody-mediated rejection in renal transplantation: case reports. Transplant Proc 2012; 44: 2690-2694 [PMID: 23146495 DOI: 10.1016/j.transproce.2012.09.038]

Chehade H, Rotman S, Matter M, Girardin E, Aubert V, Pascual M. Eculizumab to treat antibody-mediated rejection in a 7-year-old kidney transplant recipient. Pediatr Nephrol 2015; 30: e551-e555 [PMID: 25624380 DOI: 10.1007/s00467-012-2275-y]

Locke J, Magro CM, Singer AL, Segev DL, Haas M, Hillel AT, King KE, Kraus E, Lees LM, Melancon JK, Stewart ZA, Warren DS, Zachary AA, Montgomery RA. The use of antibody to complement protein C5 for salvage treatment of severe antibody-mediated rejection. Am J Transplant 2009; 9: 231-235 [PMID: 18976298 DOI: 10.1111/j.1600-6143.2008.02451.x]

Lonze BE, Dagher NN, Simpkins CE, Locke JE, Singer AL, Segev DL, Zachary AA, Montgomery RA. Eculizumab, bortezomib and kidney paired donation facilitate transplantation in a highly sensitized patient without vascular access. Am J Transplant 2012; 10: 2154-2160 [PMID: 20636451 DOI: 10.1111/j.1600-6143.2010.03191.x]

Stewart ZA, Collins TE, Schlaeuter AJ, Raife TI, Holanda DG, Nair R, Reed AI, Thomas CP. Case report: Eculizumab rescue of severe accelerated antibody-mediated rejection after ABO-incompatible kidney transplantation. Transplant Proc 2012; 44: 3033-3036 [PMID: 23195021 DOI: 10.1016/j.transproceed.2012.03.053]

Tran D, Boucher A, Collette S, Poyette A, Royal V, Senécal L. Eculizumab for the Treatment of Severe Antibody-Mediated Rejection: A Case Report and Review of the Literature. Case Rep Transplant 2016; 2016: 9874261 [PMID: 27478676 DOI: 10.1155/2016/9874261]

Orandi BJ, Zachary AA, Dagher NN, Bagnasco SM, Garonzik-WJT
Wang JM, Van Arendonk KJ, Gupta N, Lonze BE, Atalchkar N, Kraus ES, Desai NM, Locke JE, Racusen LC, Seglev DL, Montgomery RA. Eculizumab and splenectomy as salvage therapy for severe antibody-mediated rejection after HLA-incompatible kidney transplants. Transplantation 2014; 98: 857-863 [PMID: 25124757 DOI: 10.1097/TP.0000000000000298].

Neyla A, Viglietti D, Mengel M. Complement inhibition in HLA-incompatible kidney transplants: persisting antibody-mediated injury despite marked decrease of clinical ABMR. Am J Transplant 2015; 15: 1139-1140 [PMID: 25731892 DOI: 10.1111/aat.13172].

Vernon KA, Gale DP, de Jorge EG, McLean AG, Galliford J, Pierides A, Maxwell PH, Taube D, Pickering MC, Cook HT. Recurrence of complement factor H-related protein 5 nephropathy in a renal transplant. Am J Transplant 2011; 11: 152-155 [PMID: 21114651 DOI: 10.1111/j.1600-6143.2010.03333.x].

Loirat C, Fremeaux-Bacchi V. Hemolytic uremic syndrome recurrence after renal transplantation. Pediatr Transplant 2008; 12: 619-629 [PMID: 18482212 DOI: 10.1111/j.1399-3046.2008.00910.x].

Zuber J, Le Quintrec M, Sbero-Sousan R, Loirat C, Fremeaux-Bacchi V, Legendre C. New insights into postrenal transplant hemolytic uremic syndrome. Nat Rev Nephrol 2011; 7: 23-35 [PMID: 21102542 DOI: 10.1038/nrneph.2010.155].

Noria M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol 2013; 33: 479-492 [PMID: 24161035 DOI: 10.1016/j.sneph.2013.08.001].

Zuber J, Le Quintrec M, Krid S, Bertoye C, Guéutin V, Lahoche M. Dimerization of complement factor H-related proteins. Neth J Med 2013; 71: 342-347 [PMID: 24038559].

Goiocochea de Jorge E, Caesar JJ, Malik TH, Patel M, Colledge M, Johnson S, Hakobyan S, Morgan BP, Harris CL, Pickering MC, Peuchmaur M, Fremeaux-Bacchi V, Loirat C. Successful pre-transplant management of a patient with anti-factor H autoantibodies-associated haemolytic uremic syndrome. Nephrol Dial Transplant 2008; 23: 2088-2090 [PMID: 18326881 DOI: 10.1093/ndt/gfn063].

Waters AM, Pappworth I, Marchbank K, Bockenhauer D, Tullus K, Pickering MC, Strain L, Sibire N, Shroff R, Marks SD, Goodship TH, Rees R. Successful renal transplantation in factor H autoantibody associated HUS. Nephrol Dial Transplant 2010; 25: 168-172 [PMID: 19951285 DOI: 10.1093/ndt/gfp206].

Zimmerhackl LB, Hofer J, Cortina G, Mark W, Würzner R, Junghaenel MC, Khursigara G, Kliche KO, Radauer W. Prophylactic eculizumab after renal transplantation in atypical hemolytic-uremic syndrome. N Engl J Med 2010; 362: 1746-1748 [PMID: 20445192 DOI: 10.1056/NEJMoa1001690].

Román-Ortu E, Mendizabal Oteiza S, Pinto S, López-Trascasa M, Sánchez-Coral P, Rodríguez de Cordoba S. Eculizumab long-term therapy for pediatric renal transplant in aHUS with CFH/FHR1 hybrid gene. Pediatr Nephrol 2014; 29: 149-153 [PMID: 23982707 DOI: 10.1007/s00467-013-2591-8].

Nester C, Stewart Z, Myers D, Jetton J, Nair R, Reed A, Thomas C, Smith R, Brophy P. Pre-emptive eculizumab and plasmapheresis for renal transplant in atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol 2011; 6: 1488-1494 [PMID: 21617085 DOI: 10.2215/CJN.01811110].

Krid S, Roumenina LT, Beury D, Charbit M, Boyer O, Fremeaux-Bacchi V, Niaudet P. Renal transplantation under prophylactic eculizumab in atypical hemolytic uremic syndrome with CFH/CFHRII hybrid protein. Am J Transplant 2012; 12: 1936-1944 [PMID: 22494769 DOI: 10.1111/j.1600-6143.2012.04051.x].

Pérez-Caballero D, González-Rubio R, Ballado ME, Vera M, López-Ortiz E, de la Mata S, Sánchez-Corral P. Clustering of missense mutations in the C-terminal region of factor H in atypical hemolytic uremic syndrome. Am J Hum Genet 2001; 68: 478-484 [PMID: 11170895 DOI: 10.1086/318201].

Licht C, Heinen S, Jozwi M, Loeschnich I, Saunders RE, Perkins SJ, Waldherr R, Skerka C, Kirschfink M, Hoppe B, Zipfel PF. Deletion of Lys224 in regulatory domain 4 of Factor H reveals a novel pathomechanism for dense deposit disease (MPGN II). Kidney Int 2006; 70: 42-50 [PMID: 16612335 DOI: 10.1038/sj.ki.5000629].

West CD, Witte DP, McAdams AJ. Composition of nephritic factor-generated glomerular deposits in membranoproliferative glomerulonephritis type 2. Am J Kidney Dis 2001; 37: 1120-1130 [PMID: 11382679 DOI: 10.1053/ajkd.2001.24511].

Herthelius M, Hourmant M, Legendre CM, Remuzzi G, Sheerin N, Zuber J, Krid S, Frédou J, Frémeaux-Bacchi V, Wirth M, Roepstorff P, Fremeaux-Bacchi V. Clinical features of anti-factor H autoantibody-associated haemolytic uremic syndrome. Neth J Med 2013; 70: 643-657 [PMID: 23026949 DOI: 10.1093/nmj/npt12.214].

Sheerin NS, Kavanagh D, Goodship TH, Johnson S. A national specialized service in England for atypical haemolytic uraemic syndrome—the first year’s experience. QJM 2016; 109: 27-33 [PMID: 25899302 DOI: 10.1093/qjmed/hcv082].

Wetzes JF, van der Kaar NC. Discontinuation of eculizumab maintenance treatment for atypical hemolytic uremic syndrome. Am J Kidney Dis 2015; 65: 342 [PMID: 25616634 DOI: 10.1053/j.ajkd.2014.04.039].

Ardissino G, Possenti I, Tel F, Testa S, Salaridi S, Ladisa V. Discontinuation of eculizumab treatment in atypical hemolytic uremic syndrome: an update. Am J Kidney Dis 2015; 66: 172-173 [PMID: 26111906 DOI: 10.1053/j.ajkd.2015.04.010].

Povey H, Vundu R, Junglee N, Jibhani M. Renal recovery with eculizumab in atypical hemolytic uremic syndrome following prolonged dialysis. Clin Nephrol 2014; 82: 326-331 [PMID: 23557793 DOI: 10.5414/CN107985].

Licht C, Greenbaum LA, Muus P, Babu S, Bedrossian CL, Cohen DJ, Delmas Y, Douglas K, Furman RR, Gabor OA, Goodship T, Herthelius M, Hourmant M, Legemendre CM, Remuzzi G, Sheerin N, Trivelli A, Loirat C. Efficacy and safety of eculizumab in atypical hemolytic uremic syndrome from 2-year extensions of phase 2 studies. Kidney Int 2015; 87: 1061-1073 [PMID: 25651368 DOI: 10.1038/ki.2014.423].

Thurman JM, Le Quintrec M. Targeting the complement cascade:
novel treatments coming down the pike. *Kidney Int* 2016; **90**:746-752 [PMID: 27325183 DOI: 10.1016/j.kint.2016.04.018]

140 Le KN, Gibiansky L, van Lookeren Campagne M, Good J, Davancaze T, Loyet KM, Morimoto A, Strauss EC, Jin JY. Population Pharmacokinetics and Pharmacodynamics of Lampalizumab Administered Intravitreally to Patients With Geographic Atrophy. *CPT Pharmacometrics Syst Pharmacol* 2015; **4**:595-604 [PMID: 26535160 DOI: 10.1002/psp4.12031]

P- Reviewer: Gonzalez F, Jamil AK, Nacif LS S- Editor: Ji FF
L- Editor: Filipodia E- Editor: Huang Y
