Quassia amara L. diameter and total height under different light conditions: implications for the management of agroecosystems

Joana A. Paulo · Roger Villalobos

Received: 16 February 2019 / Accepted: 17 September 2019 / Published online: 22 September 2019
© Springer Nature B.V. 2019

Abstract Quassia amara L. is a semi-sclrophyte species that can be found growing as a large shrub or a small tree in Neotropical rainforests. It is traditionally harvested as a non-wood forest product for culinary, medicinal and insecticidal uses. Lack of knowledge on the ecological conditions that support tree growth limits the development of sustainable forest management plans of natural forests and the development of new agroecological cultivation models. The overall objectives of the present work are to (1) compare the Quassia amara L. growth in different forest structures; (2) evaluate the impact of light conditions on Quassia amara L. diameter growth, total height growth and height–diameter relationship and (3) discuss implications for the sustainable management of the species in agroecosystems. Light conditions are characterized at the tree level by the crown illumination index (cii), which is a visual and ordinal index. Results show that tree growth varies between plots with different forest structures and light conditions. The cii was able to characterize light conditions. Best light conditions were different for diameter and total height growth: cii value of 5.0 (tree crown completely exposed to overhead and lateral direct light) and cii value of 3.5 (tree crown exposed to some vertical/overhead direct light and low direct light), respectively. The cii did not affect the height–diameter relationship. A value of cii equal to 4 was found as an intermediate condition and recommended for the establishment of new agroecosystems including the Quassia amara L.

Keywords Agroforestry · Bitter wood · Crown illumination index · Mixed forests · Non-wood forest product · Light condition · Simaroubaceae · Costa Rica

Introduction

The importance and variety of non-wood forest products (NWFP) are recognized around the world and for different reasons (e.g. FAO 1995; Wong et al. 2001; Shackleton et al. 2011; Shackleton and Pandey 2014), one being its contribution to increasing rural incomes associated with sustainable management practices taken in small-scale and family-owned farms, combining traditional knowledge with new societal demands and innovation (Ludvig et al. 2016; Pullanikkatil and Shackleton 2019). In Costa Rica and
elsewhere in Central America, the number of trees, shrub and liana species traditionally used for their NWFP production is considerable (e.g. Nair and Latt 1998; Valle et al. 2000). It represents a large potential for local and regional development and poverty reduction (Pullanikkatil and Shackleton 2019), but it also requires some protection measures when they are present in the natural forest ecosystem (Wong et al. 2001).

Quassia amara L. (commonly known as hombre grande or bitter wood) is a species that can be found growing as a large shrub or a small tree in Neotropical rainforests (Croat 1978). According to Brown (1995) and Villalobos (1995), it is classified as a semi-sciophyte with high tolerance to shade conditions but with a requirement of direct exposure to sunlight in order to complete its life cycle, in particular due to its effect on flower and fruit production. An increase in the light conditions increases flower and fruit production although it does not influence seed fertility. Therefore, its natural regeneration appears to be limited by light and interspecific competition with upper-story forest species (Leigue 1997). Its distribution extends from Southern Mexico, through Central America, to northern South America, where it can be found in the Amazon Rainforest at altitudes ranging from sea level to 900 m (Brown 1995; Croat 1978). It is traditionally harvested in natural forests and used for culinary, medicinal and insecticidal purposes (Brown 1995; Ocampo 1995). Recently, it has also been increasingly studied and sought after for its efficacy in antiamoebic, antiplasmodial and antileukemic medicines (e.g. Bertani et al. 2006; Houel et al. 2009; Ocampo and Balick 2009), dermatologic and cosmetic uses (Burlando and Cornara 2017). This has resulted in increased interest in the species by rural communities (Ocampo and Rojas 2006) for the installation of new plantations in agroecosystems or for their extraction from natural forests.

The distribution, ecology and phenology of the *Quassia amara* L. have been studied in different regions from Costa Rica (e.g. Brown 1995; Villalobos, 1995; Cifuentes 1996; Leigue 1997). Although there are no studies or inventory data on the conservation status of the species’ wild populations, Silva et al. (2001) refer to its endangered status in Brazil, and Ocampo and Rojas (2006) suggest the need for the development of sustainable agroecological cultivation models in Costa Rica in order to preserve the natural populations. This requires both knowledge of the relationship between environmental conditions and tree growth and the availability of models for the simulation of growth and production (Vanclay 1994; Burkhart and Tomé 2012). The present work contributes to fill this knowledge gap.

The objectives of the present research are (1) to compare tree growth in different plots characterized by different forest structure types; (2) to understand the impact of light conditions on *Quassia amara* L.’s diameter growth, total height growth and height–diameter relationship, using the tree crown illumination index (cii) proposed by Clark and Clark (1992). (3) Discuss implications for the sustainable management of the species in agroecosystems. The results allow us to discuss recommendations for the installation and sustainable management of new agroecosystems, such as agroforestry systems or mixed forests that include *Quassia amara* L., and the management of natural
forests where the species is naturally distributed in Costa Rica.

Materials and methods

Location and environmental description

The data sets were collected in the municipality of Talamanca, Limón province, Costa Rica. The region is naturally occupied by humid tropical forests, characterized by an annual mean temperature of 20 °C, 2300 mm of annual precipitation falling over an average 190 days per year, with no presence of a dry season (Solano 1992). There are on average 4.1 (July) to 5.9 (March and April) hours per day of direct solar radiation (measured by a heliograph), with an average value of 5.0 h (Ministerio del Ambiente y Energía 2013). The soils in the region are predominantly Ultisols (IUSS Working Group WRB 2006).

Data collection

The first data set, referred to as the permanent plot data set from now on, was collected in eight permanent plots. One of the plots was installed in the natural forest of the Kekoldi indigenous reserve (9°38′N; 82°48′W). The remaining seven plots were installed in two private farm plantations (9°45′N; 82°55′W and 9°32′N; 82°37′W). The private farm plantations of *Quassia amara* were mainly installed in 1992. Only one of the plantations was planted in 1993 due to technical constrains in the previous year. The trees were planted after 1 year of growth in the nursery (2 years after for the plot that was installed in 1993). The seeds used for the plantations were collected in the natural forest of the Kekoldi indigenous reserve. These eight plots differ in topographic location and forest structure type, representing a diverse range of growth conditions where *Quassia amara* L. can be cultivated or naturally found (Table 1). Three additional tree species occur in cultivation with *Quassia amara* L. in each one of the mixed stands:

- *Caryocar glabrum*, a native tree with a dense and spreading crown, which usually grows unbranched up to 25 m, traditionally harvested from natural forests for local use, a source of soap and wood. It is also cultivated for its fruit.
- *Magnolia mexicana*, a large native tree, growing up to 30 m, traditionally harvested from natural forests for food flavouring, medicine and as a source of wood.
- *Theobroma cacao*, a small native tree, growing up to 8 m with a globose crown, widely cultivated in lowland tropical areas around the world for its seed, which is a source of chocolate.
According to the established forest inventory procedures defined by Marmillod et al. (1995), annual measurements of tree diameter at 0.3 m (d03) and tree total height (ht) were taken between the installation year 1995 and 2000. When a tree presented more than one shoot below 0.3 m height, individual shoots were

Table 1 Characterization of the permanent plot conditions: forest structure, topographic situation and number of trees

Plot	Year of plantation	Site description	Stand structure	Topographic situation	Plantation or forest area (m²)	Plot area (m²)	Number of trees in the plot
PP_Quassia + Caryocar_1	1992	*Quassia amara* plantation (3 m × 3 m), in a mixture with adult *Caryocar glabrum* trees. Each *Quassia amara* tree was planted in the middle of 4 *Caryocar glabrum* trees.	Mixed stand	Hillside	542	412	49
PP_Quassia + Caryocar_2	1992	*Quassia amara* plantation (3 m × 3 m), in a mixture with adult *Caryocar glabrum* trees. Each *Quassia amara* tree was planted in the middle of 4 *Caryocar glabrum* trees.	Mixed stand	Hillside	558	418	40
PP_Quassia + Magnolia	1993	*Quassia amara* plantation (3 m × 3 m) mixed with adult *Magnolia mexicana* trees. *Quassia amara* was in the middle of 4 *Magnolia mexicana* trees.	Mixed stand	Hillside	567	438	49
PP_Quassia_pure_1	1992	Pure forest plantation in rows (2.5 m × 2.5 m) in a previously natural forest area subject to clearing.	Pure stand	Downhill	648	260	31
PP_Quassia + cacao_1	1992	*Quassia amara* plantation (3 m × 3 m) in rows, intercalated with adult *Theobroma cacao* tree rows. *Theobroma cacao* was frequently pruned.	Mixed stand	Downhill and hillside	3460	760	52
PP_Quassia_NatForest	–	Natural forest. *Quassia amara* trees naturally regenerated.	Natural forest	Hillside	10,000	1912	54
PP_Quassia_pure_2	1992	Pure *Quassia amara* plantation in rows (2.5 m × 2.5 m) in a previously natural forest area subject to clearing.	Pure stand	Hillside	648	289.0	48
PP_Quassia + cacao_2	1992	*Quassia amara* plantation (3 m × 3 m) in rows, intercalated with adult *Theobroma cacao* tree rows. *Theobroma cacao* was frequently pruned.	Mixed stand	Downhill	3264	760	49
NatForest_KK_invent	–	Natural forest. *Quassia amara* trees naturally regenerated.	Natural forest	Variable	–	–	402

*Downhill—bottom of the slope, flat area; hillside—high slope area, more than 40%; tophill—transition between hillside and top of the mountain, with slope lower than 40%; top of the mountain—flat and highly elevated area.
measured separately. For each individual tree or shoot, the total number of branches at 1 m height (nbt) was recorded. Since 1997, light conditions for each tree were recorded annually using the ordinal crown illumination index (cii) proposed by Clark and Clark (1992). This index scores the source (vertical/overhead and lateral) and the relative amount of crown exposure to direct light:

1—no direct light received by the crown either from overhead or side;
1.5—low direct light received laterally, and no overhead light received;
2—medium direct light received laterally, and no overhead light received;
2.5—high direct light received laterally, and no overhead light received;
3—some overhead direct light received (10–90% of the crown area exposed to vertical direct light), and no direct light received laterally;
4—full overhead light (more than 90% of the crown area exposed to vertical direct light), and no or low direct light received laterally by the crown;
5—crown completely exposed to overhead and lateral direct light.

The crown illumination index has been largely used for characterizing natural forests growing conditions in Neotropical rain forests (e.g. Cifuentes 1996; Clark and Clark 1999).

The second data set, referred to as the Kekoldi natural forest inventory data set (NatForest_KK_invent), was obtained during a forest inventory carried out in the natural forest of the Kekoldi indigenous reserve (Table 1). Trees are naturally regenerated, and their age is unknown. The management of the reserve by local communities includes the random cutting of some trees (Marmillod et al. 1995), but other than that the trees grow up to an unknown age. The forest inventory was carried out for the first time in 1997 and repeated in 1998, 1999 and 2000 (4 measurements). During this inventory, the same variables were measured at the tree level: d03, ht, cii and nbt. Summary statistics of both data sets are presented in Table 2.

Data analysis and modelling

The first step was the graphical analysis of the permanent plot data set by plot and measurement, considering the d03 and ht measurements. The NatForest_KK_invent data set was not included in this step due to the lack of information regarding tree age and the unevenly aged structure of the natural forest. A t-test, performed for α = 5%, was carried out for the comparison of the d03 and ht mean values between plots using the TTEST procedure of SAS software (SAS Institute Inc. 2011). The COCHRAN option was included in order to account for unequal variances between plots. This step allowed a first analysis of differences between plots that was later on followed by a modelling approach considering plot random effects.

The following step was an age-independent modelling approach carried out by the development of individual tree growth models for d03, ht and a d03–ht relationship model. Growth models consist of

Table 2 Summary statistics of the measured variables included in the data sets

Data set	Variable	Minimum	Mean	Maximum	SD	Mode
Permanent plots data set (n = 2222)	age	1	4.8	8	2.07	–
	d03	0.33	3.31	8.56	1.61	–
	ht	0.25	3.27	6.87	1.25	–
	cii	1.0	2.1	4.0	0.53	2.0
	nbt	1	1.50	9	1.05	1
Kekoli data set (n = 2657)	d03	0.54	4.48	11.51	1.85	–
	ht	0.50	4.16	7.18	1.11	–
	cii	1.0	2.78	5.0	1.08	4.0
	nbt	1	1.26	6	0.68	1

Age—tree age (year). Information not available for plot PP_Quassia_NatForest. d03: diameter at 0.3 m height (cm); ht—total height (m); cii—crown illumination index (Clark and Clark 1992); nbt—number of total branches at 1 m height
equations that simulate the increment of each tree during a determined growth period (e.g. Burkhart and Tomé 2012). The measured growth is known to be the result of the interaction between the intrinsic tendency of the plant towards unlimited increase (biotic potential) and the restraints imposed by environmental resistance (growing conditions) and ageing (e.g. Zeide 1993). Modelling the tree growth when age is not known is often necessary, for example, in old stands characterized by slow growing species, forest inventories, or in natural forests (e.g. Tomé et al. 2006). Although tree age was known for all except one of the plots of the permanent plot data set, it was not so for the Kekoldi data set due to the fact it was collected in natural forests. Moreover, because of the limited range of ages available (1–8 years), the age variable was not considered an independent variable in the models. Instead, and according to the objectives of the work, testing the significance of the cii variable measured at the tree level in the model parameters allowed us to research the effect of different shading conditions on individual tree growth. The nbt value was also tested in the growth models and do3–ht relationship model parameters.

Due to the short interval between two consecutive measurements (annual interval) and limited range of tree ages available, linear growth models were considered suitable and fitted for the do3 and ht growth models. Each model is formulated as:

\[y(t+1)_{ijm} = a + by(t)_{ijm} + e_{ijm}, \]

where \(y(t) \) is the tree diameter at 0.3 m or the tree total height measured in year \(t \), ‘a’ and ‘b’ are model parameters, \(i \) is the tree, \(j \) is the plot, \(m \) is the measurement, and \(e_{ijm} \) is the model error.

For the height–diameter relationship, a set of candidate models were considered. Paulo et al. (2011) suggest that the function form used to model the height–diameter relationship should be increased monotonically and have an upper asymptote. The candidate functions fulfil these requirements. They were the ones proposed by Paulo et al. (2011) based on the extended list proposed by Huang et al. (2000) but restricted to pass by (do3; ht) = (0; 0.3) point for the present data set (see Table 2 in Paulo et al. 2011).

Our analytical approach was similar for both models, although the first step was only carried out for the height–diameter model:

1. Selection of the best-fitting model by the ordinary least squares method, setting all model parameters as free. In this step, the selected function was the one resulting in the lower value of mean square error (MSE) and the highest value of adjusted \(r^2 \) (adj-\(r^2 \)).
2. Fitting of the model, including the plot random effect parameter, in all model parameters (e.g. Pinheiro and Bates 2000).
3. Testing of the statistical significance (\(\alpha = 5\% \)) of cii and nbt variables in all model parameters. The variables were tested in three distinct forms, resulting in the fitting of a set of alternative models:
 a. Linear (the more the better): \(a = a_0 + a_1 X_{ijm} \)
 b. Parabolic (an optimum condition exists): \(a = a_0 + a_1 X_{ijm} + a_2 (X_{ijm})^2 \)
 c. Hyperbolic (a maximum/optimum and asymptotic condition exists): \(a = a_0 + a_1/X_{ijm} \), where ‘a’, ‘a0’, ‘a1’, ‘a2’ are model parameters, and \(X_{ijm} \) is do3 or ht from tree \(i \), in \(j \) plot and \(m \) measurement.
4. Comparison of the alternative models fitted in the previous step using the Akaike information criterion (AIC) and selection of the final model (lowest AIC value).
5. Evaluation of the model residuals variance by plotting the conditional studentized residuals as a function of the predicted value and of the model residuals normality by the normal probability plots of the conditional studentized residuals (e.g. Pinheiro and Bates 2000).

This approach allowed us to research the impact of light conditions at the tree level on Quassia amara and identify the plots where significant differences remained unaccounted for (when plot random effects appear significant in the final model). The fitting of the models was carried out using the nonlinear least squares method implemented in the MODEL and NLINMIX procedures of SAS software (SAS Institute Inc. 2011).
Results

Graphical analysis to the permanent plot data set

Plots in the permanent plot data set revealed significant differences in the d03 and ht of the trees that increased with consecutive measurements (Fig. 1). Differences were more pronounced for d03 than for ht.

Since the first measurement, carried out at 3 years of age, plot PP_Quassia + cacao_2 was outperformed by all other plots for both variables. The same behaviour was not observed by plot PP_Quassia + cacao_1, which was characterized by the same tree species composition. PP_Quassia + cacao_1 presented average values of d03 located in the central area of the figure and values of ht close to the plot with the largest measured values (PP_Quassia + Caryocar_1). A large dispersion of d03 and ht values was noticed in several plots, expressed by the large range values from the box plot upper and lower fences. This feature increased in the last measurements, particularly for d03 values of PP_Quassia + Caryocar_2 and PP_Quassia + cacao_1.

Identifying the plots with larger d03 and ht values across the measurements did not show clear evidence for one single plot. Plot PP_Quassia_pure_2 maintained larger d03 values over all measurements, but plot PP_Quassia + Caryocar_1 had higher mean ht values over time. Regarding d03, PP_Quassia + Caryocar_1, PP_Quassia + Caryocar_2,
PP_Quassia_pure_1 and PP_Quassia + cacao_1 plots presented similar and intermediate values, with the first two reaching higher values that the last two after 6 years of age. For ht similarities between plots, measurements were more evident for plots PP_Quassia + Caryocar_2 and PP_Quassia + Magnolia as well as PP_Quassia + cacao_1, PP_Quassia_pure_1 and PP_Quassia_pure_2.

The t test (values not shown) confirmed the statistical significance of the some of the previous graphical observations regarding average values. The no rejection of the null hypothesis occurred when comparing the average values of plots PP_Quassia + Caryocar_2 and PP_Quassia + cacao_1 for mean d03 values, for ht values of plots PP_Quassia + Caryocar_2 and PP_Quassia + Magnolia, and for ht values of plots PP_Quassia + cacao_1 and PP_Quassia_pure_2.

Diameter growth model

Differences in tree d03 values and d03 growth between the plots were observed when plotting two consecutive measurements (Fig. 2). NatForest_KK_invent data set showed the largest d03 values with a maximum of 11.5 cm. For the permanent plot data set, PP_Quassia_NatForest plot was the one presenting larger d03 values at the last measurement (maximum d03 value 8.6 cm), followed by PP_Quassia_pure_2 (maximum d03 value 7.5 cm). Tree d03 growth was observed in Fig. 2 by the vertical distance of one observation to the bisector line.
showed that plot PP_Quassia_NatForest d03 is limited and overcome by other permanent plots in general. For the NatForest_KK_invent data set, d03 growth was variable.

The inclusion of the nbt variable in the model parameters resulted in non-significant estimates of the model parameters, showing that the variable does not influence d03 growth. The final fitted model included the cii variable in a parabolic form in the intercept parameter and two plot random effects in the intercept and slope parameters (Table 3).

$$d03_{t+1} = 0.1685 \text{cii} - 0.0177 \text{cii}^2 + u_0 + (1.0168 + u_1).d03_t$$

The significance of the plot random effect parameters in the intercept (‘u0’) for plots PP_Quassia + Caryocar_1 (0.2030), PP_Quassia + cacao_1 (−0.1257), PP_Quassia_NatForest (−0.1883), PP_Quassia_pure_2 (0.1779), PP_Quassia + cacao_2 (−0.1458) and the NatForest_KK_invent data set (−0.1988) showed that differences in d03 between plots remain unexplained by the model. The positive value of the random effect parameter showed a higher d03 estimated value in plots PP_Quassia + Caryocar_1 and PP_Quassia_pure_2, while the negative random effect associated with PP_Quassia + cacao_1, PP_Quassia_NatForest, PP_Quassia + cacao_2 plots and the NatForest_KK_invent data set shows that these are related to lower d03 growth. A significant random effect of the plot in the slope parameter (‘u1’), which is associated with a higher value of growth rate of d03, was only observed for plot PP_Quassia + cacao_1 (0.0411).

In this model, the maximum value for the intercept parameter occurs when cii is 4.8, a value close to 5.0

| Parameter | Plot | Parameter estimate | Cov | SE | Pr > | t $|$ |
|-----------|------|--------------------|-----|----|-------|
| a_1 | | 0.1685 | 0.0202 | < 0.0001 | |
| a_2 | | −0.0177 | 0.0034 | 0.0001 | |
| b | | 1.0168 | 0.0101 | < 0.0001 | |
| u_0 | | | 0.0248 | < 0.0001 | |
| u_0 | PP_Quassia + Caryocar_1 | 0.2030 | 0.0588 | 0.0006 | |
| u_0 | PP_Quassia + Caryocar_2 | 0.0810 | 0.0506 | 0.1096 | |
| u_0 | PP_Quassia + Magnolia | −0.0726 | 0.0469 | 0.1219 | |
| u_0 | PP_Quassia + cacao_1 | −0.1257 | 0.0498 | 0.0116 | |
| u_0 | PP_Quassia + cacao_2 | −0.1458 | 0.0408 | 0.0004 | |
| u_0 | PP_Quassia_NatForest | −0.1882 | 0.0371 | < 0.0001 | |
| u_0 | PP_Quassia_pure_1 | 0.0951 | 0.0619 | 0.1243 | |
| u_0 | PP_Quassia_pure_2 | 0.1779 | 0.0674 | 0.0084 | |
| u_0 | NatForest_KK_invent | −0.1988 | 0.0294 | < 0.0001 | |
| u_1 | | | 0.0007 | < 0.0001 | |
| u_1 | PP_Quassia + Caryocar_1 | −0.0055 | 0.0146 | 0.7070 | |
| u_1 | PP_Quassia + Caryocar_2 | 0.0180 | 0.0137 | 0.1867 | |
| u_1 | PP_Quassia + Magnolia | 0.0100 | 0.0193 | 0.6041 | |
| u_1 | PP_Quassia + cacao_1 | 0.0411 | 0.0140 | 0.0034 | |
| u_1 | PP_Quassia + cacao_2 | 0.0076 | 0.0196 | 0.6968 | |
| u_1 | PP_Quassia_NatForest | −0.0098 | 0.0125 | 0.4310 | |
| u_1 | PP_Quassia_pure_1 | −0.0347 | 0.0179 | 0.0521 | |
| u_1 | PP_Quassia_pure_2 | −0.0270 | 0.0148 | 0.0683 | |
| u_1 | NatForest_KK_invent | 0.0002 | 0.0103 | 0.9888 | |
| Residual variance | | 0.0375 | | | |

Cov covariance parameter estimates
that corresponds to the maximum cii value according to the Clark and Clark (1992), characterizing a tree crown that is completely exposed to overhead and lateral direct light. Considering the population effect [setting u_0 and u_1 parameters to zero (Paulo et al. 2011)] and an average tree size from the data set with a d03 of 3.5 cm, its estimated value of $d03_{t+1}$ is higher if the light conditions are characterized by increasing cii values with a maximum obtained for a cii value close to 5.0. A tree of the same size, growing in the same plot but with lower access to light, will have a lower d03 growth (Fig. 3).

The plot of the conditional studentized residuals showed that homoscedastic conditions were fulfilled and that normality conditions were considered acceptable (Fig. 4).

Total height growth model

The inclusion of the nbt variable in the model parameters showed that the variable was not significant for the ht growth (parameter estimates not significantly different from zero). The final fitted model included the cii variable in a parabolic form in the slope parameters (Table 4).

$$ht_{t+1} = 45.8725 + u_0 + (0.8580 + 0.0527\ cii - 0.00751\ cii^2 + u_1)\ ht_t$$

The maximum value for the slope parameter (ht growth rate) occurs when cii is 3.5, a value that characterized tree crowns exposed to some vertical or overhead direct light and low direct light received laterally by the crown. Considering the population effect [setting u_0 and u_1 parameters to zero (Paulo et al. 2011)], one can estimate that an average tree with ht_t of 3.5 m will present a higher estimated value of ht_{t+1} if the light conditions are characterized by an intermediate cii value close to 3.5 (Fig. 3).

The significance of the plot random effect parameters (Table 4) in the intercept was obtained for plots PP_Quassia + Caryocar_2 (20.8893), PP_Quassia_NatForest (−33.5354) and PP_Quassia + cacao_2 (−24.0540). Significant plot random effect parameters in the slope parameter (ht growth rate) were found for the same plots PP_Quassia + Caryocar_2 (−0.07579), PP_Quassia_NatForest (0.05426) and PP_Quassia + cacao_2 (0.06120).

The plot of the conditional studentized residuals showed that homoscedastic conditions were fulfilled and that normality conditions were considered acceptable (Fig. 4).
Height–diameter model

The relationship between these two variables demonstrated the existence of an asymptotic value of ht when d03 values increase, which is distinct between the plots of the data sets (Fig. 5).

The fitting of the models showed that for the ones including three parameters, convergence of the estimates was not obtained. Even if the fitting was carried out at the plot level, for the best definition of initialization values of the parameters, the differences between plots, expressed by distinct parameter
estimate values (in particular between plots PP_Quassia + Caryocar_2 and PP_Quassia_pure_2 and the rest of the data set) did not allow the convergence of these models. Among the other considered models characterized by two parameters, the selected one was:

\[h_t = 0.3 e^{\frac{-0.0075}{d_03 + b}} \]

When including the cii variable in the model parameters, similar AIC values were obtained compared to the previous model, demonstrating that cii does not influence the d03–ht relationship. When including the nbt variable in the model parameters, AIC values were reduced, showing that the resulting models outperformed the previous one. The best results were obtained when the nbt variable was included in a hyperbolic form in parameter ‘a’ (Table 5):

\[h_t = 0.3 e^{\frac{-0.0191}{d_03 + \frac{nbt}{1.1423(d03 + 1.1423 + u_{1})}}} \]

This model showed that the ht asymptotic value will be influenced by the nbt value, varying between 9.10 m for one single shoot (nbt = 1) to 7.29 m when the nbt tends to large values.

The significance of the plot random effect was obtained when included in the ‘a’ parameter (‘u_{0}’) for the NatForest_KK_invent data set (0.1551), PP_Quassia + Caryocar_2 (0.2614) and PP_Quassia + cacao_2 (−0.3957) plots. In the ‘b’ parameter (‘u_{1}’), significant values were obtained for the NatForest_KK_invent data set (−0.1891) and PP_Quassia + Caryocar_2 (0.3786) plots. These

Table 4 Parameter and covariance parameter estimates for the ht growth model

Parameter	Plot	Parameter estimate	Cov	SE	Pr >	t
a_{0}	PP_Quassia + Caryocar_1	45.8725	7.4971	0.0001		
b_{1}	PP_Quassia + Caryocar_2	0.8580	0.0243	< 0.0001		
b_{2}	PP_Quassia + Magnolia	0.0527	0.0103	< 0.0001		
b_{2}	PP_Quassia + cacao_1	−0.0075	0.0017	< 0.0001		
u_{0}	PP_Quassia + pure_1	18.5401	11.6183	0.1106		
u_{0}	PP_Quassia + Caryocar_2	20.8893	9.6299	0.0301		
u_{0}	PP_Quassia + Magnolia	−2.8077	9.5954	0.7698		
u_{0}	PP_Quassia + cacao_1	−1.8218	10.9269	0.8676		
u_{0}	PP_Quassia + cacao_2	−24.0540	8.9681	0.0074		
u_{0}	PP_Quassia_NatForest	−33.5354	8.8013	0.0001		
u_{0}	PP_Quassia_pure_1	7.6015	12.6068	0.5466		
u_{0}	PP_Quassia_pure_2	16.1779	12.1179	0.1820		
u_{0}	NatForest_KK_invent	−0.9900	7.9191	0.9005		
u_{1}	PP_Quassia + Caryocar_1	−0.0101	0.0275	0.7120		
u_{1}	PP_Quassia + Caryocar_2	−0.0758	0.0297	0.0106		
u_{1}	PP_Quassia + Magnolia	0.00525	0.0296	0.8593		
u_{1}	PP_Quassia + cacao_1	0.0305	0.0272	0.2614		
u_{1}	PP_Quassia + cacao_2	0.0612	0.0299	0.0407		
u_{1}	PP_Quassia_NatForest	0.0543	0.0243	0.0254		
u_{1}	PP_Quassia_pure_1	−0.0191	0.0339	0.5743		
u_{1}	PP_Quassia_pure_2	−0.0311	0.0307	0.3113		
u_{1}	NatForest_KK_invent	−0.0152	0.0201	0.4511		

Cov: covariance parameter estimates

Residual variance 1337.41

© Springer
random parameters showed that some differences remain unexplained regarding height–diameter relationship (Table 5).

The plot of the residuals showed that homoscedastic and normality conditions were fulfilled (Fig. 4).

Discussion

Quassia amara L. is described as a semi-sclerophyte species with higher tolerance to shade but requiring direct exposure to sunlight during flowering and fruit production stages (e.g. Brown 1995; Villalobos 1995; Ocampo and Rojas 2006; Leigue 1997). This part of the tree’s life cycle is essential for the establishment of natural regeneration, which can play a major role in large-scale landscape restoration in tropical regions (Chazdon and Guariguata 2016) and even surpasses active restoration practices in these natural forests (Crouzeilles et al. 2017). This feature is also encountered in other species producers of NWFP more extensively researched and found in tropical agroforestry landscapes such as *Coffea arabica*, *Camellia sinensis* L. and *Theobroma cacao* (Tscharntke et al. 2011). This evidences the importance of defining sustainable management plans for natural forests where NWFP are being extracted on the basis of reliable data collected with differentiated inventory methodologies and sampling schemes from forest inventories (e.g. Wong et al. 2001; Almeida and Tomé.
The inventories should not only allow the quantification of the species abundance and carbon stock but also of the natural regeneration, seed availability and characterization of light conditions. Proper inventory of NTFP stocks and research on NTFP ecology and sustainable harvest levels has been referred to as one of the eight crucial considerations for positioning NWFP on the development agenda by Shackleton and Pandey (2014), but these are still much less common than desirable around the globe and more so in tropical areas (e.g. Guariguata et al. 2010; Dhakal et al. 2016; Painkra et al. 2017). This work contributes to this cause with a focus on the *Quassia amara* L. species.

The differences in tree growth between the plots were clear in the two data sets. These differences were observed during the graphical analysis and by the significance of some of the plot random coefficients in the final models. These indicated that additional research on the effects of additional site variables affecting tree growth should be carried out. An important factor to consider is the tree species’ arrangement and density, which was different in the permanent plot data set. In the PP_Quassia + Caryocar_1 and PP_Quassia + Caryocar_2 plots, for example, the *Quassia amara* L. trees were planted in 3×3 m and in the middle of 4 *Caryocar glabrum* trees, while in the PP_Quassia + cacao_1 and PP_Quassia + cacao_2 plots, the *Quassia amara* L. trees were planted intercalated with adult *Theobroma cacao* tree rows. The complexity of the subject, the range of possible combinations, the time associated with data collection of forest growth, and the increase in computation capacity have converged in the development of recent modelling approaches that can be considered (Rosskopf et al. 2017). Other factors

Table 5 Parameter and covariance parameter estimates for the tree height–diameter model (d03)

| Parameter | Plot | Parameter estimate | Cov | SE | $Pr > |t|$ |
|-------------|--------------------------|--------------------|-----|-----|------|
| a_1 | | -3.6448 | 0.2570 | | <0.0001 |
| a_2 | | -0.2490 | 0.0226 | | 0.0001 |
| b | | 1.1423 | 0.0730 | | <0.0001 |
| u_0 | PP_Quassia + Caryocar_1 | -0.0529 | 0.0907 | | 0.5595 |
| u_0 | PP_Quassia + Caryocar_2 | 0.2614 | 0.0987 | | 0.0081 |
| u_0 | PP_Quassia + Magnolia | -0.1497 | 0.1251 | | 0.2312 |
| u_0 | PP_Quassia + cacao_1 | -0.0147 | 0.0886 | | 0.8681 |
| u_0 | PP_Quassia + cacao_2 | -0.3957 | 0.1406 | | 0.0049 |
| u_0 | PP_Quassia_NatForest | 0.0449 | 0.0870 | | 0.6062 |
| u_0 | PP_Quassia_pure_1 | 0.0718 | 0.1064 | | 0.4999 |
| u_0 | PP_Quassia_pure_2 | 0.0799 | 0.09670| | 0.4103 |
| u_0 | NatForest_KK_invent | 0.1551 | 0.0787 | | 0.0489 |
| u_1 | PP_Quassia + Caryocar_1 | -0.0213 | 0.1176 | | 0.8560 |
| u_1 | PP_Quassia + Caryocar_2 | 0.3786 | 0.1347 | | 0.0050 |
| u_1 | PP_Quassia + Magnolia | 0.05474 | 0.1266 | | 0.6655 |
| u_1 | PP_Quassia + cacao_1 | -0.0873 | 0.1112 | | 0.4324 |
| u_1 | PP_Quassia + cacao_2 | 0.238 | 0.1293 | | 0.0661 |
| u_1 | PP_Quassia_NatForest | 0.0156 | 0.1002 | | 0.8460 |
| u_1 | PP_Quassia_pure_1 | -0.0922 | 0.1325 | | 0.4865 |
| u_1 | PP_Quassia_pure_2 | 0.1575 | 0.1448 | | 0.2768 |
| u_1 | NatForest_KK_invent | -0.1891 | 0.0787 | | 0.0488 |

Residual variance 0.3497
that were not accounted for by the model were the topographic location and soil properties (depth, texture), which could influence water drainage, nutrient uptake and later on root development (Bellingham and Tanner 2006; Castilho et al. 2006).

Natural tropic forest areas are known for their high complexity in terms of light conditions, species composition, topography, etc. This leads to the development of variable environmental conditions that affect species distribution and growth in different ways. The data sets from natural forest areas (NatForest乴KK_inventory data set and PP_Quassia乴NatForest plot) confirmed this high variability in terms of Quassia amara L. size. The fact that they included the highest values of d03 and ht was attributed to the presence of trees older than 7 years like the ones on the permanent data set, although age could not be determined. In terms of growth rates, the NatForest_乴KK_inventory data set and the PP_Quassia乴NatForest plot were associated with lower values, observed both graphically and by the negative values of the random coefficients of the fitted models. Excessive shading conditions and interspecific competition (e.g. Picard 2019) might be one of the causes of this slow growth that should be taken into consideration when defining management plans, in particular when considering d03 growth.

The two plots where the Quassia amara L. and Theobroma cacao species were mixed (PP_Quassia + Caryocar_1 and PP_Quassia + Caryocar_2) presented distinct results, but both were associated predominantly with negative values (when significant) of the plot random parameters of the fitted models. This was more evident for the d03 growth model. One plot was outperformed by the rest, while the other was able to reach average values of d03 and ht. The latter was installed in an area with a more variable topography (from a downhill to a hillside), and hypothesis about the influence of this variable in the variability of the measurements may be raised (Bellingham and Tanner 2006; Castilho et al. 2006). The Quassia amara L., when compared to the cacao tree, seems to have a distinct need for light during its life cycle. For cacao, shade is needed for young trees and is less important in older cacao plantations (Tschamptke et al. 2011). This suggested that the association of Quassia amara L. and Theobroma cacao species might not be favourable in mixed plantations, expect in areas where the last specie is characterized by older trees that might be pruned in order to increase light conditions to promote the Quassia amara L. growth and fruit production in case natural regeneration is one of the management purposes for the plantation. Although it was known that the Theobroma cacao trees were frequently pruned in the two plots, there were no records of dates when they occurred, their frequency, pruning intensity or the total height of these cacao trees. Since different tree height values and pruning practices may affect differently overhead and sided light conditions, this fact limited a more detailed analysis of the relationship between the two species.

The two plots where the Quassia amara L. and Caryocar glabrum species were mixed (PP_Quassia + Caryocar_1 and PP_Quassia + Caryocar_2) presented similar results regarding d03 growth as well as some of the larger values among all the permanent plots, appearing as a favourable species combination. Regarding ht growth, the plot behaviour was very distinct, and plot PP_Quassia + Caryocar_2 obtained similar results to the plot where the Quassia amara L. was mixed with Magnolia mexicana (PP_Quassia + Magnolia). With similar values of tree spacing and topographic conditions, it is not possible to clarify the reason for the differences in ht values for these plots. Information about the Caryocar glabrum and Magnolia mexicana trees crown (total height, base of the crown, etc.) and local soil characteristics could be variables related to these differentiated results.

The two plots installed in pure forest plantations (PP_Quassia_pure_1 and PP_Quassia_pure_2) had similar ht growth, but plot PP_Quassia_pure_2 outperformed for d03. Since the two plots are differentiated by their topographic conditions, with PP_Quassia_pure_1 being located downhill and PP_Quassia_pure_2 located on a hillside, one might again hypothesize, as for the Quassia amara L. and Theobroma cacao plots, that the downhill location had a negative influence on tree growth due to the reduction in water drainage in the soil.

Regarding the tree level differences, the data set included annual and individual tree level evaluation of the light conditions, which was characterized by the crown illumination index (cii) proposed by Clark and Clark (1992). The assessment of the cii provides a simple and rapid evaluation of light conditions, either by visual observation or hemispherical photographs analysis (Keeling and Phillips 2007), reducing time-consuming measurements of the surrounding tree.
height and crown dimensions. Results showed that this variable was related to both diameter and total height growth. This showed that cii could provide an effective characterization of growth conditions, even in a dynamic way if assessed through time, and therefore it could be used for inventory and management purposes. Since the cii is evaluated on the basis of the crown of the surrounding trees, irrespective of the species, it is particularly useful for natural forest areas, multi-species and multi-strata cropping systems like agroforestry systems.

The cii value contributing for larger d03 and ht growth was different for the two variables. After a stage of increasing ht for increasing cii light conditions, a maximum ht growth was obtained for cii equal to 3.5. Similar results were obtained for cii equal to 3 or 4. These values indicate that favourable conditions for the Quassia amara L. ht growth are characterized by partial to full overhead light and no or low direct light received laterally by the crown. The complete exposure of the crown to overhead and lateral direct light (cii equal to 5) induces a reduction in ht growth. Maximum cii values (cii equal to 5) maximize d03 growth. Even so, it was observed that the differences in d03 growth obtained under cii values of 4 and 5 are not large. Finally, cii values of 4 are found compatible, and intermediate conditions to both variables were recommended as the best growth conditions for Quassia amara L. These suggested that the Quassia amara L. might be planted beneath and in the middle of taller tree species that provide lateral shade conditions (crown completely exposed to overhead and lateral direct light). These conditions might also be obtained by thinning and/or regular pruning operations of the taller tree species in the overstory, operations that can be an additional source of biomass, tree fodder and income for landowners (e.g. Salazar-Diaz and Tixier 2019). This issue leads to the open question related to the optimization of pruning intensity, frequency, crown pruning technics, etc.

The present study contributed to the existing literature on the determination of the relationship between light conditions and the Quassia amara tree species growth. It also contributed to the definition of suitable site characteristics and species combinations in agroforestry stands where Quassia amara may be included. Under sustainable management conditions, these are expected to help meet the increasing world demand of this species and avoid the overexploitation of the species in natural forests (Dawkins and Philip 1998; Sedjo and Botkin 2010; Silva et al. 2001). This work also raised awareness on the fact that the suitable conditions for Quassia amara L. wood production are still not fully understood. This is an essential step for increasing the awareness of farmers on the potential of the species. This knowledge gap contrasts with the growing knowledge of the chemical properties and industrial use potential of the species that ultimately presents a significant potential for increasing farmers’ income and for the diversification of resources in forestry systems (e.g. Haggar et al. 1998), agroforestry systems (e.g. Salazar-Diaz and Tixier 2019) and/or agroecological production systems (e.g. Altieri 2002) in tropical areas.

Conclusions

Tree growth varies between plots with different forest structures and light conditions. Light condition, which is assessed at the tree level by the tree crown illumination index, was shown to be an important determinant of Quassia amara’s diameter and total height growth. Best light conditions are different for diameter and total height growth with intermediate values of cii (3.5) promoting total height growth and higher values (5.0) promoting tree diameter growth. Crown illumination index values of 4 are found compatible and intermediate conditions to both variables and were recommended as the best growth conditions for Quassia amara L.

Acknowledgements Authors acknowledge researchers and officials of the old Project Conservation for Sustainable Development in Central America, of CATIE, which contributed to the establishment and measurement of research spaces on Quassia amara L., in particular: Dr. Daniel Marmillod, Rafael Ocampo, Lilibeth Leigue, Juan Carlos Barrantes, José Masis, Francisco Ling. Authors acknowledge Inês Balsa for her contribution on the design of the graphical abstract. This work was supported by SuFORun Marie Skodowska-Curie Research and Innovation Staff Exchange project (H2020-MSCA-RISE-2015) and contract SFRH/BPD/96475/2013 established with Fundação para a Ciência e Tecnologia (Portugal). Centro de Estudos Florestais is a research unit supported by Fundação para a Ciência e Tecnologia (Portugal) under contract UID/AGR/00239/2019.

Author contributions JAP contributed to methodology establishment; data analysis; modelling; paper writing. RV contributed to data collection; data analysis; paper revision.
References

Almeida A, Tomé M (2010) Field sampling of cork value before extraction in Portuguese ‘montados’. Agrofor Syst 79:419–430. https://doi.org/10.1007/s10457-009-9260-8

Altieri MA (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric Ecosyst Environ 93(1–3):1–24. https://doi.org/10.1016/S0167-8809(02)00085-3

Bellingham PJ, Tanner EVJ (2006) The influence of topography on tree growth, mortality, and recruitment in a tropical montane forest. Biotropica 32:378–384. https://doi.org/10.1111/j.1744-7429.2000.tb00484.x

Bertani S, Houel E, Stien D, Chevolot L, Jullian V, Garavito G, Bourdy G, Deharo E (2006) Simalikalactone D is responsible for the antimalarial properties of an Amazonian traditional remedy made with *Quassia amara* L. (Simaroubaceae). J Ethnopharmacol 108(1):155–157

Brown NR (1995) The autecology and agroforest potential of the bitterwood tree *Quassia amara* (Simaroubaceae). PhD thesis. Cornell University

Burlando B, Cornara L (2017) Revisiting Amazonian plants for the bitterwood tree *Quassia amara* L. ex. Blom (Simaroubaceae). PhD thesis. Cornell University

Burkhart HE, Tomé M (2012) Modeling forest trees and stands. Springer, Berlin, p 457

Burlando B, Cornara L (2017) Revisiting Amazonian plants for skin care and disease. Cosmetics 4(3):25. https://doi.org/10.3390/cosmetics4030025

Cifuentes MF (1996) Distribución espacial y potencial de aprovechamiento de *Quassia amara* L. (Simaroubaceae) en el Río San Juan, Nicaragua. BsC thesis. Instituto Tecnológico de Costa Rica, Departamento de Ingeniería Forestal. Cartago, Costa Rica

Clark DA, Clark DB (1992) Life history diversity of canopy and emergent trees in a neotropical rain forest. Ecol Monogr 62(3):315–344

Clark DA, Clark DB (1999) Assessing the growth of tropical rain forest trees: issues for forest modeling and management. Ecol Appl 9(3):981–997

Croft T (1978) Flora of Barro Colorado. Stanford University Press, Stanford, p 956

Crouzeilles R, Ferreira MS, Chazdon RL, Lindenmayer DB, Sansevero JB, Monteiro L, Iribarrem A, Latavecce AE, Strassburg BBN (2017) Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Appl Ecol 3(11):e1701345. https://doi.org/10.1111/1365-2664.12801

Dawkins HC, Philip MS (1998) Tropical moist forest silviculture and management: a history of success and failure. CAB International, Wallingford, p 377

Dhakal P, Paudel DR, Baral DR (2016) Inventory of non-timber forest products in Western Nepal and strategies for sustainable management. Int J Environ 5(3):87–103

FAO (1995) Non-wood forest products for rural income and sustainable forestry. Non-wood forest products 7. ISBN 92-5-103765-5. http://www.mekonginfo.org/asset/micads/0001410-environment-non-wood-forest-products-for-rural-income-and-sustainable-forestry.pdf. Accessed 25 Aug 2019

Guariguata MR, García-Fernández C, Sheil D, Nasi R, Herrero-Jáuregui C, Cronkleton P, Ingrama V (2010) Compatibility of timber and non-timber forest product management in natural tropical forests: perspectives, challenges, and opportunities. For Ecol Manag 259(3):237–245. https://doi.org/10.1016/j.foreco.2009.11.013

Hagger JP, Briscoe CB, Butterfield RP (1998) Native species: a resource for the diversification of forest production in the lowland humid tropics. For Ecol Manag 106(2–3):195–203. https://doi.org/10.1016/S0378-1127(97)00311-3

Houel E, Bertani S, Bourdy G, Deharo E, Jullian V, Valentin A, Chevalley S, Stien D (2009) Quassinoid constituents of *Quassia amara* L. leaf herbal tea. Impact on its antimalarial activity and cytotoxicity. J Ethnopharmacol 126(1):114–118

Huang S, Price D, Titus S (2000) Development of ecoregion-based height-diameter models for white spruce in boreal forests. For Ecol Manag 129:125–141

IUSS Working Group WRB (2006) World reference base for soil resources 2006, 2nd edn. World soil resources reports no. 103, FAO, Rome

Keeling HC, Phillips OL (2007) A calibration method for the crown illumination index for assessing forest light environments. For Ecol Manag 242:431–437. https://doi.org/10.1016/j.foreco.2007.01.060

Leigue L (1997) Ecological elements for silviculture of *Quassia amara* in Talamanca, Costa Rica. Master thesis. Centre Agronomique Tropical de Investigación y Enseñanza (CATIE). Turrialba. Costa Rica. http://hdl.handle.net/11554/4829. Accessed 25 Aug 2019

Ludvig A, Tahvanainen V, Dickson A, Evard C, Kurttila M, Forpol.2016.02.007

Marmillod D, Chang Y, Bedoya R (1995) Plan de aprovechamiento sostenible de *Quassia amara* en la Reserva Indígena de Kekoldi. In: Ocampo RA (ed) Potencial de *Quassia amara* como insectívoro natural. Colección diversidad biológica y desarrollo sustentable. IV. Metodologías. Serie Técnica. Informe Técnico n° 267. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Proyecto Conservación para el Desarrollo Sostenible en América Central (Olafo). Turrialba, Costa Rica

Ministerio del Ambiente y Energía (2013) Serie e brillo solar en Cota Rica. Instituto Meteorológico Nacional. https://www.imn.ac.cr/documents/10179/20909/Series+e+brillo+Solar+en+Cota+Rica. Accessed 25 Aug 2019

Nair PKR, Latt CR (1998) Directions in tropical agroforestry research. Forestry sciences, vol 53. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9008-2_10
Ocampo RA (1995) Potencial de *Quassia amara* como insecticida natural. Coleccion diversidade biológica y desarrollo sustentable. IV. Metodologías. Serie Técnica. Informe Técnico n° 267. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Proyecto Conservación para el Desarrollo Sostenible em América Central (Olafo). Turrialba, Costa Rica.

Ocampo R, Balick MJ (2009) Plants of Semillas Sagradas: An Ethnomedicinal Garden in Costa Rica. Finca Luna Nueva Extractos, San Carlos, p 109.

Ocampo R, Rojas RD (2006) Cultivo, conservación e industrialización del hombre grande (*Quassia amara*). Bougainvillea, San José, p 70.

Painkra M, Dutta J, Ranga MM (2017) Status survey of non-wood forest products in Surgujadistrict of Chhattisgarh: India. Appl For Ecol 5(2):20–27.

Paulo JA, Tomé J, Tomé M (2011) Nonlinear fixed and random generalized height-diameter models for Portuguese cork oak stands. Ann For Sci 68:295–309.

Picard N (2019) Asymmetric competition can shape the size distribution of trees in a natural tropical forest. For Sci. https://doi.org/10.1093/forsci/fxz018.

Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-Plus. Statistics and computing series. Springer, New York, p 528.

Pullanikkatil D, Shackleton CM (2019) Poverty reduction strategies and non-timber forest products. In: Pullanikkatil D, Shackleton C (eds) Poverty reduction through non-timber forest products. Sustainable development goals series. Springer, Cham. https://doi.org/10.1007/978-3-319-75580-9_1.

Rosskopf E, Morhart C, Nahm M (2017) Modelling shadow using 3D tree models in high spatial and temporal resolution. Remote Sens 9(7):719. https://doi.org/10.3390/rs9070719.

Salazar-Diaz R, Tixier P (2019) Effect of plant diversity on income generated by agroforestry systems in Talamanca, Costa Rica. Agrofor Syst 93:571–580. https://doi.org/10.1007/s10457-017-0151-0.

SAS Institute Inc (2011) Introduction to regression procedures (chapter). SAS/STAT 93 user’s guide. SAS Institute Inc, Cary, p 50.

Sedjo RA, Botkin D (2010) Using forest plantations to spare natural forests. Environ Sci Policy Sustain Dev 39(10):14–30. https://doi.org/10.1080/00139159709604776.

Shackleton CM, Pandey AK (2014) Positioning non-timber forest products on the development agenda. For Policy Econ 38:1–7. https://doi.org/10.1016/j.forpol.2013.07.004.

Shackleton S, Shackleton CM, Shanley P (2011) Non-timber forest products in the global context. Tropical forestry, vol 7. Springer, Berlin. https://doi.org/10.1007/978-3-642-17983-9.

Silva SR, Buitrón X, Oliveira LH, Martins MV (2001) Plantas medicinales de Brasil: Aspectos generales sobre legislación y comercio. Quito, Ecuador.

Solano J (1992) Características Básicas del Período Seco en la Vertiente del Pacífico de Costa Rica. Tesis para optar al grado de Licenciatura en Geografía. Escuela de Ciencias Geográficas, Universidad Nacional de Costa Rica. In: Solano J, Villalobos R (eds) Regione y subregione climaticas de Costa Rica. Instituto Meteorológico Nacional. https://www.imn.ac.cr/documents/10179/20909/Region alizaci%C3%B3nclim%C3%A1tica+de+Costa+Rica. Accessed 25 Aug 2019.

Tomé M, Barreiro S, Paulo JA, Tomé J (2006) Modelling tree stand and growth with growth functions formulated as age independent difference equations. Can J For Res 36(7):1621–1630. https://doi.org/10.1139/X06-065.

Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schrot G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48:619–629.

Valle GRR, Barbosa KO, Villalobos R (2000) Evaluación de los productos forestales no madereros en América Central. In: FAO (ed) Evaluación de los recursos forestales mundiales 2000. Evaluación de los productos forestales no madereros en América Central. Programa de Evaluación de los Recursos Forestales. Forest Resources Assessment Wp 22. http://www.fao.org/3/ae159s/ae159s00.htm.

Vanclay JK (1994) Modelling forest growth and yield: applications to mixed tropical forests. CAB International, Wallingford.

Villalobos RS (1995) Distribución de *Quassia amara* L. ex Blom en Costa Rica, y su relación con los contenidos de cuasina y neocuasina (insecticidas naturales) en sus tejidos. Master thesis. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Turrialba, Costa Rica. http://hdl.handle.net/11554/4806. Accessed 25 Aug 2019.

Wong JLG, Thornber K, Baker N (2001) Resource assessment of non-wood forest products: experience and biometric principles, vol 1. Food and Agriculture Organization of the United Nations, Rome, p 109.

Zeide B (1993) Analysis of growth equations. For Sci 39(3):594–616. https://doi.org/10.1093/forestscience/39.3.594.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.