Materials Research Express

PAPER

On compressive and morphological features of 3D printed almond skin powder reinforced PLA matrix

Rupinder Singh1,3,4, Ranvijay Kumar1, Mohit Singh1 and Pawan Preet1
1 Dept. of Production Engineering, Guru Nanak Dev Eng. College, Ludhiana, India
2 Dept. of Mechanical Engineering, Chandigarh University, Mohali, India
3 Dept. of Mechanical Engineering, National Institute of Technical Teachers Training and Research, Chandigarh, India
4 Author to whom any correspondence should be addressed.

E-mail: rupindersingh78@yahoo.com

Keywords: 3D printing, fused filament fabrication, compressive strength, Young's modulus

Abstract

This paper reports the compressive, morphological and surface hardness properties of almond skin powder reinforced polyactic acid (PLA) matrix based 3D printed functional prototypes prepared by fused filament fabrication (FFF) as biomedical scaffolds. In this study the 3D printed functional parts were subjected to compression, morphological and Shore D hardness investigations. The results of this study highlight that maximum compressive strength at peak (37.712 MPa), maximum compressive strength at break (33.93 MPa) and Young’s modulus (387.80 MPa) was observed in case of sample printed at infill density 100%, infill angle 90° and infill speed 70 mm s−1 (as per ASTM D695). The maximum modulus of toughness as 3.47 MPa was observed in the case of printed sample at infill density 60%, infill angle 60° and infill speed 70 mm s−1. The results are supported by optical photomicrographs and Shore D hardness. Finally mathematical equations were developed (as empirical model) to predict different mechanical properties (based upon historical data approach) supported by Taguchi analysis.

1. Introduction

Additive Manufacturing (AM) technologies have become a new standard in design due to product customization and fabrication [1]. Material extrusion process has widely adopted FFF technology for different polymers mainly due to its low cost and ease of use. The FFF form 3D geometries by layer by layer deposition of thermoplastics in form of extruded filament through nozzle for preparation of functional components [2]. The layer by layer deposition in FFF printed parts leads to mechanical disadvantages such lower elastic properties than injection moulded components and possible de-lamination effects, resulting in premature failure. So reinforcements are required for the enhancement of mechanical properties [3]. Also, recent studies reveal that mechanical properties can be improved with proper selection of optimal printing parameters in FFF [4–6]. It has been reported that reinforcement of almond skin powder (in different wt%) in polycaprolactone (PCL) leads to improvement in mechanical properties [7]. The significant gain in elastic modulus (17%) at 10 wt% particle loading was observed in comparison to 0% almond skin powder reinforcement. Also, the crystallinity of bio–composite was improved in comparison to virgin PCL [6, 7]. The almond skin reinforced PCL is being used commercially for packaging purpose being more environmental friendly material [8]. Some studies have reported that the addition of almond shell particles with urea formaldehyde resin resulted into reduced flexural properties as well as internal bond strength was decreased, but significant improvement in water resistance of the panels were recorded [9].

Natural fibres from plants and animals provides good tensile mechanical properties (e.g., strength, stiffness), when reinforced with economic and environmental friendly thermoplastic materials (such as PLA) in-terms of rapid renewability, low cost and worldwide availability [10, 11]. The reinforcement pattern, reinforcement distribution, print orientation and percentage of fibre affect the compressive properties of material. It has been reported that maximized compressive response was achieved with a 0.244 carbon fibre volume ratio, concentric and equidistant reinforcement configuration, resulting in a compressive modulus of 2.102 GPa and a compressive strength at
proportional limit of 53.3 MPa [12]. Some researchers outlined that increase of infill density with sufficient no. of perimeters for outer wall, the compressive strength of the specimen increases significantly [13]. It has been observed that performance of 3D printed specimen is influenced by the forced air-cooling setup attached to the print head [14]. The impregnation quality of aramid fibre reinforced PLA influence the mechanical properties of 3D printed parts [15]. Compressive properties were affected by a reduction of infill density of 3D printed components. Nevertheless, insignificant differences were detected in the compressive properties at infill densities of 80 and 90%, which was possibly due to fibre reinforcement in the molecular structure of the acrylonitrile butadiene styrene (ABS) [16]. It has been reported that various input parameters (Infill density, layer thickness, shell thickness, print speed etc) are responsible for the significant changes in mechanical strength and dimensional accuracy of the printed specimens [17]. The compressive strength of 3D-printed PLA samples was reported to be increased with increase of infill density, however lower infill values significantly increases the building speed, and the time of printing the sample would be decreased [17]. In 3D printing of PLA, the optimised parameters based upon Taguchi method, were 0.05 mm of layer thickness, nozzle temperature of 199.8 °C and 45.1 °C. In addition, tensile strength of printed part was affected by layer thickness, while dimensional errors were caused by raster angle [18]. Some researchers have explored the influence of extrusion speed, deposition angle and infill speed in FFF [19].

It has been reported that hybrid high modulus (HM) carbon fibre composite have compressive strength with 30% more axial modulus than intermediate modulus (IM) carbon fibre composites for 3D printed functional parts [20]. Some researchers outlined that reinforced nylon parts have higher mechanical properties than the non-reinforced nylon parts [21]. The compressive strength of the 3D printed poly amide (PA)12 composite lattice structures with fibre-reinforcements is lower than that without fibre-reinforcements, but the repetitive energy absorption property of the 3D printed PA12 composites lattice structures with fibre-reinforcements are more stable than that without fibre-reinforcements [22]. With the reinforcement of carbon fibre composites the compression strength varies linearly with fibre volume loading and the reason of failure is the shear at approximately 45° with respect to the loading axis [23]. The abstract of 1.5 wt% of wood flour in phenolic foams provides a reinforced material with a compressive modulus and strength 130% and 154% more than unreinforced foam [24]. Compressive properties were found to be increased when alkali-treated bamboo fibres were used in the hybrid composites. Also, glass fibre content helps to increase the compressive property [25].

The literature reveals that the use of biodegradable/green waste enhances the mechanical properties and reduces the environmental pollution as well as cost [25–31]. But hitherto little has been reported on the use of the almond skin in powder form for enhancement of the compressive properties [13,31–34]. In this study, composite of PLA and almond skin powder was subjected to compression test (as per ASTM D695), surface hardness (Shore D) investigation for possible use as biomedical scaffold as an extension of previously reported study [35] on preparation of feed stock filament for FFF.

2. Materials and methods

The compressive test was carried out as perASTM D695standard. The test specimen geometry was prepared using a computer aided design (CAD) software, exported as a stereolithography file (STL) and STL file was imported into the slicing software (Repetier -Host v0.95 f) for the fabrication (slicing) of 3D model. Test specimens were printed using input printing parameters like: infill density, infill angle, infill speed (based upon trial runs). The aim of present study was to maximize compressive properties, by analysing, which factors and levels combinations have a statistical significant effect on the outputs compressive strength and Young’s (compressive) modulus. The 3D compressive specimens were tested for load at peak, load at break, deformation at peak, deformation at break, Young’s modulus (compressive modulus), modulus of toughness, surface characteristics. The methodology used for the current investigation is shown in figure 1.

3. Experimentations

The previous reported study clearly reveals that the reinforcement of almond skin 2.5% by weight in PLA gives optimized mechanical properties [35]. Based on the optimised composition/proportion of reinforced almond skin 2.5% by weight in PLA matrix, it was used for the fabrication of feed stock filament through TSE at predefined input parameters (extrusion temperature of 190 °C, torque 0.3 Nm, and 10 kg load). As per nozzle size of FFF setup available, specific dimensions of feed stock filament diameter was 1.75 ± 0.05 mm. The scanning electron microscopy (SEM) was used to capture images of feed stock filament prepared by TSE at cross-section followed by energy dispersive spectroscopy (EDS) analysis (figure 2).

Figure 2 shows almost similar dispersion of reinforcement (almond skin) in PLA matrix (as observed from two different spectrum used for analysis). Further the spectrum window used for EDS analysis was processed on image processing software to get 3D rendered image and surface roughness (Ra) profile (figure 3). As observed
from figure 3 the Ra value at cut-off length of 0.05 mm lies in close range thus ensures uniform dispersion of reinforcement in PLA matrix.

The specimens of 12.7 mm diameter and 25.40 mm of length were 3D printed with FFF and tested in accordance with standard ASTM D695. The standard dimensions and 3D printed part after compressive testing is shown in figures 4 and 5 respectively.

To study the output of compressive testing (like: load at peak, load at break, deformation at peak, deformation at break, compressive strength at peak, compressive strength at break, Young’s modulus (compressive modulus), modulus of toughness) universal testing machine (UTM) (Make: Shanta Engineering,
Pune, India) of 20000 N capacity at speed of 100 mm min$^{-1}$ was used. Analysis of variance (ANOVA) tool in Minitab 17 statistical software was used, for the further optimization of compressive test outputs. 3D printing of specimens of compressive test was done by varying different printing parameters (table 1). The compressive properties of functional prototypes printed were optimised by using design of experiment (DOE) based upon Taguchi L9 orthogonal array as shown in table 2.

3.1. Static parameters used in this study are

1. Bed temperature: 65 °C
2. Nozzle diameter: 0.5 mm
3. Fan output: 50%
4. Number of parameters: 4

4. Results and discussion

The specimens in this study were tested on UTM and load-displacement as well as stress–strain curves were analysed to investigate the effect of different fabrication variables on the mechanical properties of the specimens. The mechanical properties obtained from the compressive test in term of load at peak, load at break, deformation at peak, deformation at break, compressive strength at peak, compressive strength at break, Young’s modulus (compressive modulus), modulus of toughness are shown in table 3. It should be noted that

Sample	Rendered image	Roughness (Ra) values at the cut-off length 0.05mm
a	![Sample a](image)	![Roughness (Ra) values](image) Ra: 8.482 nm
b	![Sample b](image)	![Roughness (Ra) values](image) Ra: 10.37nm

Figure 3. 3D rendered image and Ra profile at cut-off length of 0.05 mm.

Figure 4. Compressive specimen dimensions [mm].
diameter of specimen was 12.70 mm, grip separation 25.40 mm and area of cross section was 126.67 mm2. The results of compressive test performed with 9 specimens (with three repetitions) based on Taguchi L9 OA is shown in table 3. It has been observed from the compressive test result that, the maximum compressive strength at peak (37.712 MPa) and maximum compressive strength at break (33.93 MPa) observed in sample no. 9, which was printed at infill density 100%, infill angle 90$^\circ$ and infill speed 70 mm s$^{-1}$. Also, the maximum Young's modulus (compressive modulus) was observed in sample no. 9, with a value of 387.80 MPa. The maximum value of modulus of toughness (3.47 MPa), was observed in the case of sample no. 2, which was printed at infill density 60%, infill angle 60$^\circ$ and infill speed 70 mm s$^{-1}$. Figure 6 shows stress strain curve (based upon table 3). Further figure 7 shows 3D view of specimens after compressive testing.

Table 1. Variable and fixed input parameters of FFF.

Input parameters of FDM used as variables	Infill density (3 levels)	Infill angle (3 levels)	Infill speed (3 levels)
(a) 60%	(a) 45$^\circ$	(a) 50 mm s$^{-1}$	
(b) 80%	(b) 60$^\circ$	(b) 70 mm s$^{-1}$	
(c) 100%	(c) 90$^\circ$	(c) 90 mm s$^{-1}$	

Table 2. DOE based on Taguchi L9 OA.

Sample no.	Infill density	Infill angle	Infill speed
1	60%	45$^\circ$	50 mm s$^{-1}$
2	60%	60$^\circ$	70 mm s$^{-1}$
3	60%	90$^\circ$	90 mm s$^{-1}$
4	80%	45$^\circ$	70 mm s$^{-1}$
5	80%	60$^\circ$	90 mm s$^{-1}$
6	80%	90$^\circ$	50 mm s$^{-1}$
7	100%	45$^\circ$	90 mm s$^{-1}$
8	100%	60$^\circ$	50 mm s$^{-1}$
9	100%	90$^\circ$	70 mm s$^{-1}$
Table 3. Observations for mechanical properties (Compressive).

Sample no.	Load at peak (N)	Load at break (N)	Deformation at peak (mm)	Deformation at break (mm)	Compressive strength at peak (MPa)	Compressive strength at break (MPa)	Young’s modulus (MPa)	Modulus of toughness (MPa)
1	3270 ± 12	2943 ± 11	2.85 ± 0.5	3.42 ± 0.45	25.815 ± 2.3	23.23 ± 2.1	230.07 ± 2.5	1.56 ± 0.5
2	3275 ± 15	2947 ± 14	4.94 ± 0.9	7.60 ± 0.8	25.854 ± 2.0	23.26 ± 1.98	132.93 ± 1.3	3.47 ± 0.7
3	2731 ± 10	2458 ± 9	2.85 ± 0.4	3.80 ± 0.4	21.55 ± 1.8	19.40 ± 1.8	192.05 ± 1.7	1.45 ± 0.2
4	2314 ± 8	2083 ± 8	1.90 ± 0.2	4.18 ± 0.3	18.26 ± 1.3	16.44 ± 1.1	244.107 ± 3.2	1.35 ± 0.2
5	3318 ± 13	2986 ± 12	2.47 ± 0.5	3.99 ± 0.4	26.19 ± 1.7	23.57 ± 1.7	166.72 ± 1.8	1.85 ± 0.4
6	1897 ± 9	1707 ± 8	4.18 ± 0.9	4.18 ± 0.8	14.97 ± 0.89	13.47 ± 0.7	90.96 ± 0.8	1.108 ± 0.1
7	4689 ± 16	4220 ± 15	3.42 ± 0.8	3.42 ± 0.7	37.017 ± 2.1	33.314 ± 1.6	274.92 ± 2.7	2.24 ± 0.3
8	4703 ± 13	4233 ± 12	2.66 ± 0.3	2.66 ± 0.3	37.127 ± 1.9	33.417 ± 1.5	354.52 ± 3.1	1.74 ± 0.4
9	4777 ± 14	4299 ± 12	2.47 ± 0.3	2.47 ± 0.3	37.712 ± 1.8	33.93 ± 1.4	387.80 ± 3.2	1.64 ± 0.3
4.1. Optimization of process parameters

For optimisation of the input parameters signal to noise (SN) ratio has been calculated as shown in table 4. The SN ratio for large is better type case has been calculated as:

\[\eta = -10 \log \left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{y^2} \right) \]

Where: \(\eta \) is SN ratio, \(n \) is the no. of experiment and \(y \) is the material properties at experiment no. \(k \).

On the basis of table 4 and figure 8 shows the main effect plots of SN ratio on compressive properties of 09 set of samples. As observed from figure 8 the best setting of input parameters for load at peak, load at break, strength at peak and strength at break are: infill density 100\%, infill angle 60\° and infill speed 90 mm s\(^{-1}\). Whereas best settings of input parameters for deflection at peak (infill density 60\%, infill angle 60\° and infill speed 50 mm s\(^{-1}\)), deflection at break (infill density 60\%, infill angle 60\° and infill speed 70 mm s\(^{-1}\)), Young’s modulus (infill density 100\%, infill angle 45\° and infill speed 70 mm s\(^{-1}\)) and modulus of toughness (infill density 60\%, infill angle 60\° and infill speed 70 mm s\(^{-1}\)) are different. Therefore in order to understand the reason for proposed settings analysis of variance (ANOVA) was conducted for various SN ratios of compressive test results. The ANOVA (for SN ratios of load at peak) and ranking table for input parameters of load at peak are shown in tables 5 and 6 respectively. Further ANOVA for SN ratios of other outputs and ranking tables are shown in appendix A (tables A1–A14).
As observed from tables 5–A14 for almost all output parameters no input parameters are significant as \(P > 0.05 \) (at 95% confidence level), so various models (like: two factor integration(2FI), quadratic models) were applied on the outputs with Design expert 12 software package by using historical data approach (appendix B). Based on tables B1–B8, final equations (2)–(9) in term of factors are given as:

\[
\begin{align*}
\text{Load at peak} & = 3441.18 + 1055.39 A + 166.889 B + 217.278 C + 31.6667 AB + 623 AC + 716.889 BC + 28.2374 A^2 + 171.613 B^2 + 28.2506 C^2 + 10.6805 \times A \times B + 166.889 A \times C + 217.278 B \times C + 31.6667 A^2 - 958.958 B^2 \quad (2) \\
\text{Load at break} & = 3097.01 + 950.222 A + 149.472 B + 195.694 C + 27.3333 AB + 560.167 AC + 479.917 BC + 28.3627 A^2 + 23.5044 B^2 + 23.5044 C^2 + 12.0159 A \times B + 25.2300 A \times C + 25.2300 B \times C + 24.3180 A^2 - 863.208 B^2 \quad (3) \\
\text{Deformation at peak} & = 2.27062 - 1.15833 A - 0.06625 B - 0.34041 AB - 0.033333 AC - 0.3075 BC - 28.3627 A^2 + 23.5044 B^2 + 23.5044 C^2 + 12.0159 A \times B + 25.2300 A \times C + 25.2300 B \times C + 24.3180 A^2 - 863.208 B^2 \quad (4) \\
\text{Deformation at break} & = 3.91045 - 1.8136 A - 0.775938 B - 0.306854 AB - 0.784276 AC - 1.31385 BC - 28.3627 A^2 + 23.5044 B^2 + 23.5044 C^2 + 12.0159 A \times B + 25.2300 A \times C + 25.2300 B \times C + 24.3180 A^2 - 863.208 B^2 \quad (5) \\
\text{Compressive strength at peak} & = 27.1509 + 8.33267 A + 1.31429 B + 1.71863 C + 4.91025 AB + 4.20329 AC + 28.2374 A^2 - 7.56331 B^2 \quad (6) \\
\text{Compressive strength at break} & = 24.4311 + 7.49131 A + 1.17189 B + 1.54803 C + 0.224583 AB + 4.40533 AC + 3.78242 BC + 7.407 A^2 - 6.78921 B^2 \quad (7) \\
\text{Young’s modulus (Compressive modulus)} & = 230.396 + 130.6 A - 0.708667 B + 15.0279 AB + 23.0322 AC + 116.737 BC + 7.407 A^2 - 6.78921 B^2 \quad (8) \\
\text{Modulus of toughness} & = 0.851111 - 0.667222 A - 0.628889 B + 0.355556 C + 0.731667 AB + 0.94 AC - 1.37667 BC + 1.50667 \quad (9)
\end{align*}
\]

Note—A- Infill density, B- Infill angle, C- Infill speed.

Based upon tables B1–B8 (appendix B) cube plots were drawn to observe the interaction of three input parameters with all the outputs obtained from the compressive tests (figure 9).

Further to predict the load at peak with respect to different input process parameters, based on table 6, following formula has been used:

\[
\beta_{\text{opt}} = u + (u_{A3} - u) + (u_{B2} - u) + (u_{C3} - u) \quad (10)
\]

\[
\beta_{\text{opt}} = \text{optimum SN ratio value for load at peak, } u = \text{overall mean of SN ratios, } u_{A3} = \text{mean of SN ratios for infill density at level 3, } u_{B2} = \text{mean of SN ratios for infill angle at level 2, } u_{C3} = \text{mean of SN ratios for infill speed at level 3,}
\]

\[
\begin{align*}
u &= 70.33 \text{ dB, } u_{A3} = 73.48 \text{ dB, } u_{B2} = 71.39 \text{ dB, } u_{C3} = 70.86 \text{ dB} \\
\beta_{\text{opt}} &= 70.33 + (73.48 - 70.33) + (71.39 - 70.33) + (70.86 - 70.33) \\
\beta_{\text{opt}} &= 75.07 \text{ dB} \quad (11)
\end{align*}
\]
Figure 8. Main effects plots of SN ration for compressive properties (a) load at peak, (b) load at break, (c) deflection at peak, (d) deflection at break, (e) compressive strength at peak, (f) compressive strength at break, (g) young’s modulus(compressive modulus), (h) modulus of toughness.
The predicted value of load at peak can be achieved by using the below mentioned formula (equation (12))

\[x_{opt}^2 = (10)^{y_{opt}/10} \] (For properties when larger is better)

(12)

Putting the value of \(\beta_{opt} \) (equation (11)) in the equation (12), \(x_{opt}^2 = (10)^{31.3/10}, x_{opt}^2 = 5668.91 \) N

The predicted settings for other outputs in compressive test based on ASTM D695 standard (as per tables A1–A14) are shown in table 7.

The Shore duro-meter (Shore D hardness tester) was used for the measurement of hardness of polymer/composite material (table 8). As observed from table 8, sample no. 9 with maximum compressive strength at peak (37.712 MPa), maximum compressive strength at break (33.93 MPa) and maximum Young’s modulus (387.80 MPa) (as per table 3) shows the maximum hardness (79.5 Shore D) which is highest hardness among all the 9 samples. The observations of Shore D hardness are in line with the compressive test results.

The photomicrographs of compressed samples have been taken on tool maker microscope at ×30 magnifications (figure 10). The tool maker microscopic images clearly show the deformed portion of the samples under compressive load. As a matter of fact sample with better Young’s/compressive modulus (Sample no. 9, table 4) should have less deformation in comparison to sample with small value of Young’s/compressive modulus (Sample no.6, table 3), which can clearly ascertained from figure 10.

In order to quantify the deformation under compressive loads the optical photo micro-graphic images were processed with image processing software to get 3D rendered images and Ra profile (figure 11).

As observed from figure 11, the Ra value of surface after compression testing is minimum for sample no.9 (having highest Young’s/compressive modulus) and maximum for sample no. 6 (having lowest Young’s/compressive modulus) which are in line observations of mechanical properties (table 3).

5. Conclusions

Following are the conclusions from the study:-

1. The maximum compressive strength at peak (37.712 MPa), compressive strength at break (33.93 MPa), Young’s modulus/compressive modulus(387.80 MPa) and surface hardness (79.5 Shore D) was observed for 3D printed almond skin powder reinforced PLA matrix based functional prototype prepared at infill density 100%, infill angle 90° and infill speed 70 mm s⁻¹. Hence sample no 9 (as per table 2) may be considered as best candidate for 3D printed structure (just similar to laminated material) for applications requiring better resistance properties.

2. As regard to the modulus of toughness, sample no. ‘2’ has highest value among all the 9 samples (mainly because of high value of strain at break), whereas 6th sample has the lowest value of modulus of toughness. Therefore sample no. 2 may be used for the crash applications.
Table 7. Predicted settings for different outputs (as per tables A1–A14).

Load at peak (N)	Load at break (N)	Deformation at peak (mm)	Deformation at break (mm)	Compressive strength at peak (MPa)	Compressive strength at break (MPa)	Young’s modulus (MPa)	Modulus of toughness (MPa)
5668.91	5093.30	3.94	6.011	44.71	41.20	437.01	2.92
3. Finally the empirical relations for different mechanical properties have been developed in form of coded equations (based upon historical data approach) along with prediction of different mechanical properties (based upon Taguchi analysis). The empirical relations in form of coded equations resulted into significant model terms (tables B1–B8) at 95% significant level.

Figure 9. Cube plots for: (a) load at peak, (b) load at break, (c) deformation at peak, (d) deformation at break, (e) compressive strength at peak, (f) compressive strength at break, (g) young’s modulus, (h) modulus of toughness.
Figure 10. Photomicrographs of compressive tested 9 samples (as per table 2).

Table 8. Observed values of average Shore D hardness.

Sample No.	Average surface hardness	
1	69 ± 1.0	
2	70 ± 0.5	
3	71 ± 1.0	
4	68.5 ± 1.5	
5	70 ± 1.0	
6	68 ± 1.0	
7	73 ± 1.5	
8	72.5 ± 1.0	
9	79.5 ± 1.5	
Sample no.	Rendered image	Ra values at the cut-off length 0.05mm
------------	----------------	--------------------------------------
1	![Rendered image](image1)	![Ra profile](image2)
		Ra: 13.78 nm
2	![Rendered image](image3)	![Ra profile](image4)
		Ra: 13.27 nm
3	![Rendered image](image5)	![Ra profile](image6)
		Ra: 13.51 nm
4	![Rendered image](image7)	![Ra profile](image8)
		Ra: 15.23 nm
5	![Rendered image](image9)	![Ra profile](image10)
		Ra: 13.08 nm

Figure 11. 3D rendered image and Ra profiles of specimens (as per table 2).
Acknowledgments

The authors are thankful to Manufacturing Research Lab (Department of Production Engineering), Guru Nanak Dev Engineering College, Ludhiana, for providing research facilities and SERB under AISTDF Seretariat (File No. IMRC/AISTDF/R&D/P-10/2017, Dated 01-02-2018) for financial support.

Figure 11. (Continued.)
Appendix. A

Table A1. ANOVA for SN ratios of load at break.

Source	DoF	SS	Adj SS	Adj MS	F	P	%C
Infill density	2	50.660	50.660	25.330	9.42	0.096	0.786
Infill angle	2	6.612	6.612	3.306	1.23	0.448	0.102
Infill speed	2	1.791	1.791	0.895	0.33	0.730	0.0277
Residual Error	2	5.377	5.377	2.688	0.083		
Total	8	64.440					

Table A2. Response table for SN ratios of load at break (Larger is better).

Level	Infill density	Infill angle	Infill speed
1	68.86	69.42	68.85
2	66.84	70.47	69.48
3	72.57	68.37	69.94
Delta	5.73	2.10	1.09
Rank	1	2	3

Table A3. ANOVA for SN ratios of deformation at peak.

Source	DoF	SS	Adj SS	Adj MS	F	P	%C
Infill density	2	7.266	7.266	3.632	0.19	0.839	0.14
Infill angle	2	4.517	4.517	2.258	0.12	0.894	0.088
Infill speed	2	1.464	1.464	0.731	0.04	0.963	0.028
Residual Error	2	37.952	37.952	18.978	0.741		
Total	8	51.198					

Table A4. Response table for SN ratios of deformation at peak (Larger is better).

Level	Infill density	Infill angle	Infill speed
1	10.689	8.451	10.006
2	8.618	10.075	9.101
3	9.011	9.791	9.210
Delta	2.072	1.625	0.905
Rank	1	2	3

Table A5. ANOVA for SN ratios of deformation at break.

Source	DoF	SS	Adj SS	Adj MS	F	P	%C
Infill density	2	30.140	30.140	15.070	1.55	0.391	0.47
Infill angle	2	6.862	6.862	3.431	0.35	0.739	0.108
Infill speed	2	6.644	6.644	3.322	0.34	0.745	0.105
Residual Error	2	19.390	19.390	9.695	0.307		
Total	8	63.035					
Table A6. Response table for SN ratios of deformation at break (Larger is better).

Level	Infill density	Infill angle	Infill speed
1	13.297	11.262	10.534
2	12.289	12.711	12.631
3	9.011	10.624	11.432
Delta	4.287	2.087	2.097
Rank	1	3	2

Table A7. ANOVA for SN ratios of compressive strength at peak.

Source	DoF	SS	Adj SS	Adj MS	F	P	%C
Infill density	2	50.704	50.704	25.3522	9.41	0.096	0.78
Infill angle	2	6.624	6.624	3.3118	1.23	0.449	0.102
Infill speed	2	1.789	1.789	0.8943	0.33	0.751	0.027
Residual Error	2	5.388	5.388	2.6940			0.083
Total	8	64.505					

Table A8. Response table for SN ratios of compressive strength at peak (Larger is better).

Level	Infill density	Infill angle	Infill speed
1	27.72	28.28	27.71
2	25.70	29.34	28.34
3	31.43	27.23	28.80
Delta	5.73	2.10	1.09
Rank	1	2	3

Table A9. ANOVA for SN ratios of compressive strength at break.

Source	DoF	SS	Adj SS	Adj MS	F	P	%C
Infill density	2	50.687	50.687	25.3437	9.40	0.096	0.786
Infill angle	2	6.623	6.623	3.3114	1.22	0.448	0.102
Infill speed	2	1.793	1.793	0.8964	0.32	0.750	0.027
Residual Error	2	5.378	5.378	2.6892			0.083
Total	8	64.481					

Table A10. Response table for SN ratios of Young’s modulus.

Level	Infill density	Infill angle	Infill speed
1	26.80	27.36	26.80
2	24.78	28.42	27.42
3	30.51	26.32	27.89
Delta	5.73	2.10	1.09
Rank	1	2	3

Table A11. ANOVA for SN ratios of Young’s modulus.

Source	DoF	SS	Adj SS	Adj MS	F	P	%C
Infill density	2	76.094	76.094	38.047	1.87	0.348	0.58
Infill angle	2	9.699	9.699	4.850	0.24	0.807	0.074
Infill speed	2	3.656	3.656	1.828	0.09	0.917	0.028
Residual Error	2	40.639	40.639	20.319			0.312
Total	8	130.087					
Table A12. Response table for SN ratios of Young’s modulus (Larger is better).

Level	Infill density	Infill angle	Infill speed
1	45.13	47.92	45.80
2	43.79	45.97	47.33
3	50.52	45.54	46.30
Delta	6.73	2.39	1.53
Rank	1	2	3

Table A13. ANOVA for SN ratios of modulus of toughness.

Source	DoF	SS	Adj SS	Adj MS	F	P	%C
Infill density	2	15.34	15.34	7.670	1.38	0.420	0.236
Infill angle	2	26.56	26.56	13.281	2.39	0.295	0.409
Infill speed	2	11.89	11.89	5.947	1.07	0.483	0.183
Residual Error	2	11.12	11.12	5.562	0.17		
Total	8	64.92					

Table A14. Response table for SN ratios of modulus of toughness (Larger is better).

Level	Infill density	Infill angle	Infill speed
1	5.965	4.491	3.188
2	2.947	6.987	5.903
3	5.371	2.805	5.192
Delta	3.019	4.182	2.715
Rank	2	1	3

Appendix. B

Table B1. ANOVA for Quadratic model (for load at peak).

Source	SS	DoF	MS	F	P	%C
Model	2.745E + 07	8	3.432E + 06	3.861E + 05	<0.0001	Significant
A-Infill density	7.291E + 06	1	7.291E + 06	8.202E + 05	<0.0001	
B-Infill angle	94368.79	1	94368.79	1.277E + 05	<0.0001	
C-Infill speed	4.688E + 05	1	4.688E + 05	52744.56	<0.0001	
AB	2674.07	1	2674.07	300.83	<0.0001	
AC	4.050E + 05	1	4.050E + 05	4562.97	<0.0001	
BC	4.359E + 05	1	4.359E + 05	4906.58	<0.0001	
A²	2.363E + 06	1	2.363E + 06	2.661E + 05	<0.0001	
B²	1.213E + 06	1	1.213E + 06	1.365E + 05	<0.0001	

Table B2. ANOVA for Quadratic model (for Load at break).

Source	SS	DoF	MS	F	P	%C
Model	2.226E + 07	8	2.782E + 06	4.695E + 06	<0.0001	Significant
A-Infill density	5.910E + 06	1	5.910E + 06	9.973E + 06	<0.0001	
B-Infill angle	75699.77	1	75699.77	1.277E + 05	<0.0001	
C-Infill speed	3.803E + 05	1	3.803E + 05	6.418E + 05	<0.0001	
AB	1992.30	1	1992.30	3362.00	<0.0001	
AC	3.274E + 05	1	3.274E + 05	5.525E + 05	<0.0001	
BC	3.510E + 05	1	3.510E + 05	5.923E + 05	<0.0001	
A²	1.918E + 06	1	1.918E + 06	3.236E + 06	<0.0001	
B²	9.833E + 05	1	9.833E + 05	1.659E + 06	<0.0001	
Table B3. ANOVA for Quadratic model (for deformation at peak).

Source	SS	DoF	MS	F	P
Model	22.07	8	2.76	3448.76	<0.0001
A-Infill density	8.78	1	8.78	10977.84	<0.0001
B-Infill angle	0.0149	1	0.0149	18.39	0.0004
C-Infill speed	1.15	1	1.15	1438.55	<0.0001
AB	0.0030	1	0.0030	3.70	0.0702
AC	0.0987	1	0.0987	123.33	<0.0001
BC	5.09	1	5.09	6358.54	<0.0001
A²	5.49	1	5.49	6858.73	<0.0001
B²	0.1475	1	0.1475	184.42	<0.0001
C²	0.0000	0			

- **Significant**

Table B4. ANOVA for 2FI model (for deformation at break).

Source	SS	DoF	MS	F	P
Model	42.71	6	7.12	10.48	<0.0001
A-Infill density	38.99	1	38.99	57.39	<0.0001
B-Infill angle	6.42	1	6.42	9.45	0.0060
C-Infill speed	1.12	1	1.12	1.64	0.2146
AB	3.65	1	3.65	5.38	0.0311
AC	7.89	1	7.89	11.62	0.0028
BC	20.45	1	20.45	30.11	<0.0001

Table B5. ANOVA for Quadratic model (for compressive strength at peak).

Source	SS	DoF	MS	F	P
Model	1712.98	8	214.12	3.30E+06	<0.0001
A-Infill density	454.47	1	454.47	7.01E+06	<0.0001
B-Infill angle	5.85	1	5.85	90298.97	<0.0001
C-Infill speed	29.33	1	29.33	4.52E+05	<0.0001
AB	0.1631	1	0.1631	2516.86	<0.0001
AC	25.16	1	25.16	3.88E+05	<0.0001
BC	26.89	1	26.89	4.15E+05	<0.0001
A²	119.70	1	119.70	3.54E+05	<0.0001
B²	75.49	1	75.49	1.16E+06	<0.0001

Table B6. ANOVA for Quadratic model (for compressive strength at break).

Source	SS	DoF	MS	F	P
Model	1385.16	8	173.14	5.12E+05	<0.0001
A-Infill density	367.33	1	367.33	1.08E+06	<0.0001
B-Infill angle	4.65	1	4.65	13781.80	<0.0001
C-Infill speed	23.80	1	23.80	70487.39	<0.0001
AB	0.1345	1	0.1345	398.37	<0.0001
AC	20.25	1	20.25	59979.16	<0.0001
BC	21.80	1	21.80	64569.71	<0.0001
A²	119.70	1	119.70	3.54E+05	<0.0001
B²	60.82	1	60.82	1.80E+05	<0.0001
Table B7. ANOVA for 2FI model (for Young’s modulus).

Source	SS	DoF	MS	F	P
Model	2.219E + 05	6	36980.49	85.61	<0.0001
A-Infill density	2.022E + 05	1	2.022E + 05	468.04	<0.0001
B-Infill angle	5.36	1	5.36	0.0124	0.9124
C-Infill speed	1905.03	1	1905.03	4.41	0.0486
AB	1341.68	1	1341.68	3.11	0.0933
AC	2425.05	1	2425.05	5.61	0.0280
BC	80959.73	1	80959.73	187.41	<0.0001

Table B8. ANOVA for Quadratic model (for modulus of toughness).

Source	SS	DoF	MS	F	P
Model	11.53	8	1.44	2428.30	<0.0001
A-Infill density	2.91	1	2.91	4907.77	<0.0001
B-Infill angle	1.34	1	1.34	2236.96	<0.0001
C-Infill speed	1.26	1	1.26	2114.52	<0.0001
AB	1.43	1	1.43	2404.35	<0.0001
AC	0.9220	1	0.9220	1552.90	<0.0001
BC	2.89	1	2.89	4863.98	<0.0001
A²	4.95	1	4.95	8341.73	<0.0001
B²	0.0246	1	0.0246	41.51	<0.0001

ORCID iDs

Rupinder Singh [orcid.org/0000-0001-8251-8943]
Ranjivay Kumar [orcid.org/0000-0001-8430-6186]
Mohit Singh [orcid.org/0000-0002-5097-8272]

References

[1] ASTM Committee F42 on Additive Manufacturing Technologies 2012 ASTM Committee F42 on Additive Manufacturing Technologies. Subcommittee F42. 91 on Terminology. Standard Terminology for Additive Manufacturing Technologies (ASTM International)
[2] Melenka G W, Cheung B K, Schofield J S, Dawson M R and Carey JP 2016 Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures Compos. Struct. 153 866–75
[3] Jiang D and Smith D E 2017 Anisotropic mechanical properties of oriented carbon fiber filled polymer composites produced with fused filament fabrication Additive Manufacturing 18 84–94
[4] Koch C, Van Hulle L and Rudolph N 2017 Investigation of mechanical anisotropy of the fused filament fabrication process via customized tool path generation Additive Manufacturing 16 138–45
[5] Chacon J M, Caminero M A, Garcia-Plaza E and Nunez P J 2017 Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection Mater. Des. 124 143–57
[6] Raney K, Lani E and Kalla D K 2017 Experimental characterization of the tensile strength of ABS parts manufactured by fused deposition modeling process Materials Today: Proceedings 4 7956–61
[7] Garcia A V, Santonja M R, Sanahuja A B and Selva M D 2014 Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues Polym. Degrad. Stab. 108 269–79
[8] Garcia A V et al 2014 Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues Polym Degrad Stabl 108 269–79
[9] Pirazeh H and Khazaeian A 2012 Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite Composites Part B: Engineering 43 1475–9
[10] Singh B and Gupta M 2005 Natural fiber composites for building applications Natural Fibers, Biopolymers, and Biocomposites 261–90
[11] Billington S L, Srubar W V, Miche A T and Miller S A 2014 Renewable biobased composites for civil engineering applications Sustainable Composites: Fibers, Resins and Applications ed A N Netravali and C M Pastore 2 313–56
[12] Araya-Calvo M, Lopez-Gomez I, Chamberlain-Simon N, Leon-Salazar J L, Guillen-Girón T, Corrales-Cordero J S and Sánchez-Benites O 2018 Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology Additive Manufacturing 22 157–64
[13] Singh R, Singh G, Singh J and Kumar R 2019 Investigations for tensile, compressive and morphological properties of 3D printed functional prototypes of PLA-PEKK-HAp-CS J. Thermoplast. Compos. Mater. 0892705719870595
[14] Lee C Y and Liu C Y 2019 The influence of forced-air cooling on a 3D printed PLA part manufactured by fused filament fabrication Addit Manuf 25 196–203
[15] Bettini P, Alita G, Sala G and Di Landro L 2017 Fused deposition technique for continuous fiber reinforced thermoplastic J. Mater. Eng. Perform. 26 843–8
[16] Abdallah A M, Mohamad D, Rahim T N, Akiil H M and Rajon Z A 2019 Effect of narrow infill density gap on the compressive properties of 3D printed carbon fibre reinforced acrylonitrile butadiene styrene J. Mech. Sci. Technol. 33 2339–43
[17] Abbas T, Othman F M and Ali H B 2017 Effect of infill Parameter on compression property in FDM process dimensions International Journal of Engineering Research and Application 7 16–19
[18] Tontowi A E, Ramdani L, Erzdizon R V and Baroroh D K 2017 Optimization of 3D-printer process parameters for improving quality of polyactic acid printed part International Journal of Engineering and Technology (IJET) 9 589–600
[19] Lužanin O, Movrin D and Plančak M 2014 Effect of layer thickness, deposition angle, and infill on maximum flexural force in FDM-built specimens Journal for Technology of Plasticity 39 49–58
[20] Makeea A, Ghaffari S and Seon G 2019 Improving compressive strength of high modulus carbon-fiber reinforced polymeric composites through fiber hybridization Int. J. Eng. Sci. 142 145–57
[21] Justo I, Távara L, García-Guzmán L and Paris F 2018 Characterization of 3D printed long fibre reinforced composites Compos. Struct. 185 537–48
[22] Hao W, Liu Y, Wang T, Guo G, Chen H and Fang D 2019 Failure analysis of 3D printed glass fiber/PA12 composite lattice structures using DIC Compos. Struct. 211 192
[23] Hancox N L 1975 The compression strength of unidirectional carbon fibre reinforced plastic J. Mater. Sci. 10 234–42
[24] Del Saz-Orozco B, Alonso M V, Ollet M, Dominguez J C and Rodriguez F 2014 Effects of formulation variables on density, compressive mechanical properties and morphology of wood flour–reinforced phenolic foams Composites Part B: Engineering 56 546–52
[25] Raghavendra Rao H, VaradaRajuula A, Ramachandra Reddy G and Hemachandra Reddy K 2010 Flexural and compressive properties of bamboo and glass fiber–reinforced epoxy hybrid composites J. Reinf. Plast. Compos. 29 1446–50
[26] Singh N, Singh R and Ahuja I P 2019 Thermomechanical investigations of SiC and Al₂O₃–reinforced HDPE J. Thermoplast. Compos. Mater. 32 1347–60
[27] Singh R, Singh I, Kumar R and Brar G S 2019 Waste thermosetting polymer and ceramic as reinforcement in thermoplastic matrix for sustainability: thermomechanical investigations J. Thermoplast. Compos. Mater. 0892705719847237
[28] Sharma R, Singh R and Batish A 2019 Study on barium titanate and graphene reinforced PVDF matrix for 4D applications J. Thermoplast. Compos. Mater. 0892705719865004
[29] Bedi P, Singh R and Ahuja I P 2018 Multifactor optimization of FDM process parameters for development of rapid tooling using SiC/Al₂O₃–reinforced LDPE filament J. Thermoplast. Compos. Mater. 0892705718408572
[30] Singh R, Kumar R, Tiwari S, Vishwakarma S, Kakkar S, Rajora V and Bhatoo S 2019 On secondary recycling of ZrO₂–reinforced HDPE filament prepared from domestic waste for possible 3D printing of bearings J. Thermoplast. Compos. Mater. 0892705719846268
[31] Singh R, Kumar R and Singh I 2019 Investigations on 3D printed thermosetting and ceramic–reinforced recycled thermoplastic–based functional prototypes J. Thermoplast. Compos. Mater. 0892705719864623
[32] Singh J, Singh R, Kumar R, Rahman M M and Ramakrishna S 2019 PLA–PEKK–HAp–CS composite scaffold joining with friction stir spot welding J. Thermoplast. Compos. Mater. 0892705719859609
[33] Ranjan N, Singh R and Ahuja I P 2018 Development of PLA–HAp–CS–based biocompatible functional prototype: a case study J. Thermoplast. Compos. Mater. 0892705718555331
[34] Singh R and Ranjan N 2018 Experimental investigations for preparation of biocompatible feedstock filament of fused deposition modeling (FDM) using twin screw extrusion process J. Thermoplast. Compos. Mater. 31 1455–69
[35] Singh R, Kumar R, Preet P, Singh M and Singh J 2019 On mechanical, thermal and morphological investigations of almond skin powder reinforced polyactic acid feedstock filament J. Thermoplast. Compos. Mater. (https://doi.org/10.1177/0892705719864623)