Recent Advances in Development of a Lexicon-Grammar of Polish: PolNet 3.0

Zygmunt Vetulani, Grażyna Vetulani, Bartłomiej Kochanowski

To cite this version:

Zygmunt Vetulani, Grażyna Vetulani, Bartłomiej Kochanowski. Recent Advances in Development of a Lexicon-Grammar of Polish: PolNet 3.0. Tenth International Conference on Language Resources and Evaluation (LREC 2016), May 2016, Portorož, Slovenia. pp.2851-2854, Tenth International Conference on Language Resources and Evaluation (LREC 2016). <http://www.lrec-conf.org/proceedings/lrec2016/index.html>. <hal-01414304>

HAL Id: hal-01414304
https://hal.archives-ouvertes.fr/hal-01414304

Submitted on 12 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Recent Advances in Development of a Lexicon-Grammar of Polish: PolNet 3.0
Zygmun Vetulani, Grażyna Vetulani, Bartłomiej Kochanowski
Adam Mickiewicz University in Poznań
ul. Wieniawskiego 1, 61-712 Poznań, Poland
E-mail: vetulani@amu.edu.pl, gravet@amu.edu.pl, bkochanowski@amu.edu.pl

Abstract
In this paper we present recent works contributing to transformation of the initial PolNet, a Polish wordnet developed at the Adam Mickiewicz University, into a Lexicon Grammar of Polish. We focus on granularity issues that occurred at the stage of including verb-noun collocations as well as information related to language registers.

Keywords: wordnet, synonymy, granularity, valency structure, lexicon grammar, collocations, registers

1. Introduction.
In the mid-1980s, G. Miller started the development of a novel approach to systematize the semantic description of words (Miller, 1985). The leading idea was to organize a lexicon as a lexical database (Princeton WordNet / PWN) consisting of a hierarchical network of classes of synonyms. PWN appeared useful in AI applications involving NLP. Some PWN followers decided to go one step further and enrich the word descriptions with complex data structures to represent events, relations and situations. The forerunners of this idea (Gross (1994) and Polański (1992)) considered the elementary sentence as a “minimal unit of sense” and the sense of a word as determined by the minimal sentences containing this word. This led to the concept of lexicon-grammar where grammatical information sufficient to describe elementary sentences is contained in the lexical entries and where the elementary sentence is the basic unit of meaning. Their contributions preceded the future works within the FrameNet (Fillmore et al., 2002) and VerbNet (Palmer, 2009) projects. The first one referred to Frame Semantics developed by Fillmore. Frames describe lexical units (typically verbs) and their syntactic dependents characterized by frame elements. In the VerbNet project, verbs are grouped according to shared meaning and similar syntactic behavior. Palmer used thematic roles, selectional restrictions on the arguments, and frames containing syntactic description of the verb.

2. The initial PolNet: inspiration and methodology
We started PolNet in 2006 intending to build a lexical ontology as a wordnet similar to PWN. Initially PolNet was implemented for nouns. We decided to compile PolNet from scratch (merge development model) in the way inspired by the PWN and EuroWordNet projects (Vossen 2002). This method guarantees (quasi)one-to-one correspondence between the structure of synsets and the conceptualization shared by a (quasi)totality of users of the language concerned. This is an important quality factor often underestimated by the wordnet designers applying the less costly expand model. The first milestone (2009) of the PolNet project was reached on attaining over 10K synsets for some 10K words (corresponding to almost 19K word+meaning pairs). The selection of the lexical material for the initial PolNet was importance-driven. A major subset of nouns was taken from the frequency list (compiled for the IPI PAN Corpus (Przepiórkowski, 2004) and the list of semantic descriptors (761) used by Polański (Vetulani, Z., 2003) to express semantic restrictions on verb arguments. The PolNet development algorithm (Vetulani, Z. et al., 2007) was based on several traditional dictionaries of Polish and the DEBVisDic platform (Pala et al. 2007). As a test-bed for using PolNet as an ontology we chose the Point-112-SMS system (Vetulani and Marcińak, 2011) with natural language understanding functionality (homeland security domain). For testing purposes we augmented the lexical coverage by domain specific terminology.

3. Addition of the verbal component: from the initial PolNet to a lexicon-grammar
Our intention to make PolNet useful for systems with language functionality was the reason to extend PolNet to verbs (initially simple, then compound). This was also the first step to transform a lexical ontology for Polish (PolNet) into a lexicon-grammar (Vetulani, Z. Obrębski, T., and Vetulani, G. 2007). In a lexicon-grammar, to describe the

1 First developed for French (since the early 1970s until late 1990s; Gross 1994). This idea was already implemented in our first implementations of the NL interfaces for Polish (Vetulani 1988). Several large scale projects have been recently launched in the area of valency dictionaries both for simple and compound verbs (Vetulani G. 2000, 2012), (Przepiórkowski et al. 2014).
2 http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
3 For merge/expand models see (Vossen, 2002), p. 52, section 3.1.
4 We are aware that some experts may contest this statement as too strong, but we bring the reader’s attention to the fact that this is a matter of granularity (see section 4 below).
5 In PolNet 3.0 (now) the number of synsets is 12,011 for nouns, and 3,645 for simple and compound verbs (corresponding to 28,574 word+meaning pairs).
6 Some 2,400 of these synsets were aligned to the PWN equivalents.
7 Some examples of semantic descriptors proposed by Polański (Vetulani, Z., 2003): instrument (instrument), organ (body part), zwierzę (animal), roślinna (plant), kwiat (flower), drzewo (tree),...
meaning of a predicative word one seeks to characterize the
set of elementary sentences having this word as predicate.
Our method of implementing this idea differs from what
Gross did for French (through syntactic tables). In
particular we introduce the so called semantic role
relations such as Agent, Object, Patient, Beneficial8
between verb and noun synsets to encode how the verbs
and nouns combine to form simple sentences.

8 In PolNet we use a set of semantic roles adapted from Filmore
(1977) and Palmer (2009).

The first stage of extending PolNet with 900 simple verbs

carefully selected among the most important verbs was
done in a relatively short time due to the high quality of the
description of Polish verbs. This stage resulted in the
publicly available release of PolNet 1.0 under a CC license
and distributed at the LTC (November, 2011) and shortly
after at the Global Wordnet Conference (January, 2012).9

4. Recent enlargement of PolNet: granularity
and other issues

Extension of the initial PolNet with simple verbs (PolNet
1.0) and verb-noun collocations10 (PolNet 2.0)11 opened up
new application opportunities and motivated us to re-
consider the fundamental problem of synonymy, directly
related to the granularity of the wordnet. For verbs, and
generally for all predicative structures, we focus on
relations between the verb synsets (corresponding to
predicative concepts) and noun synsets (representing
nominal concepts), rather than on hierarchical relations,
in order to show the semantic/morpho-syntactic connectivity
restrictions corresponding to arguments. For these words,
we propose to refine the concept of synonymy by
considering valency structures. By valency structure we
mean the structured information on the arguments opened
by the predicative word including both semantic
constraints on the arguments (semantic role values) as well
as the surface morpho-syntactic and pragmatic properties
of the text fillers of argument positions (case, number,
preposition, register etc.)12. The valency structure of a verb is one of the formal indices of meaning and should
be considered as an attribute of a synset, i.e. all synset’s
members should share the valency structure. Strict
application of this principle results in a fine granularity
of the verb section of the wordnet.13

Extending the initial PolNet (in particular adding collocations) was not straightforward because of specific
phenomena frequent in highly inflected languages but rare
in low inflected ones. Paraphrasing a sentence by replacing
it’s verb by a collocation often requires change of the
argument’s grammatical case. Although the simple verbs
“kupić” (“to buy”), “nabyć” (“to buy”), as well as the
collocation “dokonać zakupu” (“to make a purchase”), may
all be translated into to buy in English, the grammatical
case of the inanimate object (“towar”/”goods”) will change
from Accusative to Genitive when replacing any of the
simple verbs (kupić/nabyć towarz(Acc)) by the collocation
dokonać zakupu towara (Gen). To simplify further
processing, we decided to apply our definition of
synonymy rigorously. This decision implies storing
collocations and their corresponding single word
equivalents in separate synsets, if only their valency
structures are different (even if the intuitive meaning and

POS: v ID: 3441
Synonyms: (pomóc:1, pomagać:1, udzielić pomocy:1, udzielać pomocy:1) (to help)
Definition: "wziąć udział w pracy jakiejs osoby, aby ułatwić jej tę pracę" ("to participate in sb’s work in order to help him/her")
VALENCY:
- Agent(N)_Benef(D)
- Agent(N)_Benef(D) Action(’w’+NA(L))
- Agent(N)_Benef(D) Manner
- Agent(N)_Benef(D) Action(’w’+NA(L)) Manner
Usage: Agent(N)_Benef(D); "Pomogłam jej." (I helped her)
Usage: Agent(N)_Benef(D) Action(’w’+NA(L)); "Pomogłam jej w robięnię lekcji." (I helped her in doing homework)
Usage: Agent(N)_Benef(D) Manner Action(’w’+NA(L)); "Chętnie udzieliłam jej pomocy w lekcjacach." (I helped her willingly doing her homework)
Usage: Agent(N)_Benef(D); "Chętnie jej pomagalam." (I used to help her willingly)
Semantic_role: [Agent] {człowiek:1, homo sapiens:1, istota ludzka:1, ...} {[man:1,...,human being:1,...]}
Semantic_role: [Benef] {człowiek:1, homo sapiens:1, istota ludzka:1, ...} {[man:1,...,human being:1,...]}
Semantic_role: [Action] {czynność:1} {activity:1}
Semantic_role: [Manner]
{CECHA_ADVERB_JAKOŚĆ:1} {qualitative adverbial}

Fig. 1. Simplified DEBVisDic presentation of a PolNet synset containing both simple verbs and collocations (Vetulani and Kochanowski, 2014).
usage seem be identical). However, in all such cases we keep the corresponding synsets related by the transformational relations which describe the differences among their morpho-syntactic properties. Fig. 2. presents the (fragment of) valency structures /simplified/ for the verbs “kupić” and “nabyć” in opposition to the valency structure for “dokonać zakupu”. We observe the grammatical case transformation of the direct object between a sentence and the collocation-based paraphrase.

"Piotr kupił mieszkanie(Acc)"
<VALENCY>
<FRAME>Agent(N) _ Object(Acc) </FRAME>
</VALENCY>

"Piotr nabył mieszkanie(Acc)"
<VALENCY>
<FRAME>Agent(N) _ Object(Acc) </FRAME>
</VALENCY>

"Piotr dokonał zakupu mieszkania(Gen)"
<VALENCY>
<FRAME>Agent(N) _ Object(D) </FRAME>
</VALENCY>

Fig. 2. Case transformation of the Object

	PolNet 0.1 (2009)	PolNet 1.0 (2011)	PolNet 2.0 (2013)	PolNet 3.0 (2016)
Nouns	10,629	11,700	11,700	12,011
Simple verbs	---	1,500	1,500	3,645
Collocations	---	---	1,200	1,908

Fig. 3. Growth of the PolNet’s main parts (in synsets17). Notice. This table does not represent the effort invested in the development of PolNet as an important deal of work was engaged in the wordnet cleaning operations.

5. Future work
The version PolNet 3.0 which contains the recent improvements and extensions has already been user-tested as a resource for modeling semantic similarity between words (Kubis, 2015). We intend it will to proposed it for distribution through Data Centers (ELRA, META-SHARE) under a CC license. In the future, we plan both quantitative enlargement of the existing categories as well as inclusion the parts of speech not considered so far.

6. Credits
The recent results presented in this paper were mainly obtained within the Polish National Program for Humanities and were covered by the grant 0022/FniTP/H11/80/2011 (2012-2015). Earlier works on PolNet were partially covered by the Polish Government grant MNiSW nr R00 028 02 (2006-2010), and the grant of the City of Poznań RoM.III/3420-52/10 Fn2625/10 (2011).

7. Bibliographical References
Gross,M., (1994). Constructing Lexicon-Grammars. In B.T.S. Atkins and A. Zampolli (Eds.). Computational Approaches to the Lexicon, Oxford University Press, UK, pp. 213–263.

Kubis, M. (2015). A semantic similarity measurement tool for WordNet-like databases. In Z. Vetulani and J. Mariani

14 Vetulani, Z., Kubis,M., Obrebski, T. (2010). PolNet – Polish WordNet: Data and Tools, LREC 2010
15 (Vetulani, 2014)
16 (Vetulani and Kochanowski, 2014),
17 The number of synsets should not be confused with the number of words.
(Eds), Proceedings of the 7th Language and Technology Conference, Poznań, Poland, 27-29 November 2015. FUAM, Poznań, pp. 150–154.

Fillmore, Ch., Baker, C.F. and Sato, H. (2002). The FrameNet Database and Software Tools. In Proceedings of the Third International Conference on Language Resources and Evaluation. Vol. IV. LREC: pp. Las Palmas, pp. 1157—1169.

Miller, G. A., Beckwith, R., Fellbaum, Ch., Gross, D. and Miller, K. (1990). WordNet: An online lexical database. Int. J. Lexicography. 3, 4, pp. 235–244.

Pala, K., Horák, Horák, A., Rambousek, A., Vetulani, Z., Konieczka, P., Marciniak, J., Obrębski, T., Rzepecki, P. & Walkowska, J. (2007). DEB Platform tools for effective development of WordNets. In application to PolNet. In Z. Vetulani (Ed.). Proceedings of the LTC 2007, Wyd. Poznańskie, Poznań, pp. 514-518.

Palmer, M. (2009). Semlink: Linking PropBank, VerbNet and FrameNet. In Proceedings of the Generative Lexicon Conference. Sept. 2009, Pisa, Italy: GenLex.

Polanski, K. (Ed.) (1980-1992). Słownik syntaktyczno-generatywny czasowników polskich vol. I-IV, Ossolineum, Wrocław (1980-1990), vol. V, Kraków (1992), IJP PAN.

Przepiórkowski, A. (2004). The IPI PAN Corpus. Preliminary Version. Warszawa : IPI PAN.

Przepiórkowski, Hajniece, E., Patejuk, A., Woliński, M., Skwarski, F., Świdziński, M. (2014). Walenty: Towards a comprehensive valence dictionary of Polish. In Proceedings of the Ninth International Conference on Language Resources and Evaluation. LREC: Rejkyavik, pp. 2785-2792.

Vetulani, Z. (1988). PROLOG Implementation of an Access in Polish to a Data Base, In Studia z automatyki, vol. XII, PWN, 1988, pp. 5-23.

Vetulani, G. (2000). Rzeczowniki predykatywne języka polskiego. W kierunku syntaktycznego słownika rzeczowników predykatywnych (in Polish). Poznań: Wyd. Nauk. UAM.

Vetulani, G. (2012). Kolokacje werno-nominalne jako samodzielne jednostki języka. Syntaktyczny słownik kolokacji wero-nominalnych języka polskiego na potrzeby zastosowań informatycznych. Część I. (in Polish) Poznań: Wyd. Nauk. UAM.

Vetulani, Z. (2003). Linguistically Motivated Ontological Systems, in: N. Callaos, W. Lesso, K.D. Schewe, E. Atlam, (Eds.), Proceedings of the 7th World Multiconference on Systemics, Cybernetics and Informatics, vol. XII, Int. Inst. of Informatics and Systemics, pp. 395-400.

Vetulani, Z., Walkowska, J., Obrębski, T., Konieczka, P., Rzepecki, P. and Marciniak J. (2007). PoINet - Polish WordNet project algorithm. Z. Vetulani (Ed.). Proceedings of the LTC 2007, Wyd. Poznańskie, Poznań, pp. 172-176.

Vetulani, Z., Obrębski, T., Vetulani, G. (2007). Towards a Lexicon-Grammar of Polish: Extraction of Verbo-Nominal Collocations from Corpora. In Proceedings of FIALRS-07, AAAI Press, Menlo Park, pp. 267-268.

Vetulani, Z. and Marciniak, J. (2011). Natural Language Based Communication between Human Users and the Emergency Center: POLINT-112-SMS. LectureNotes in Artificial Intelligence 6562, Springer-Verlag, pp. 303-314.

Vetulani, Z. and Vetulani, G. (2013). Through Wordnet to Lexicon Grammar. Fryni Kokoiyianni-Doa (Ed.). Penser le lexique-grammaire : perspectives actuelles, Editions Honoré Champion, Paris, pp. 531-545.

Vetulani, Z., Kochanowski, B. (2014). PolNet – Polish WordNet project : PolNet 2.0 - a short description of the release, In: H. Orav, Ch. Fellbaum, and P. Vossen. (Eds.), Proc. of the Seventh Global Wordnet Conference, Jan. 2014, Tartu, pp. 400-406.

Vetulani, Z. (2014). PolNet-Polish Wordnet, In Lecture Notes in Artificial Intelligence 8387, Springer-Verlag, pp. 408-416.

Vossen, P., (Ed.) (2002). EuroWordNet General Document, Version 3. Final, July 1. http://www.vossen.info/docs/2002/EWNGeneral.pdf; access 12.11.2015.

13. Language Resource References

The last public release of PolNet – Polish Wordnet may be found at the ISRLN site through http://www.islrn.org/ using the resource ISLRN number 944-121-942-407-9.