On the maxima of continuous and discrete time Gaussian order statistics processes

Citation: 中国科学: 数学 48, 623 (2018); doi: 10.1360/N012017-00210
View online: http://engine.scichina.com/doi/10.1360/N012017-00210
View Table of Contents: http://engine.scichina.com/publisher/scp/journal/SSM/48/5
Published by the 《中国科学》杂志社

Articles you may be interested in

Extremes of order statistics of self-similar processes
SCIENTIA SINICA Mathematica 46, 1139 (2018);

CONTINUOUS TIME MARKOV DECISION PROCESSES (CTMDP) WITH NON-UNIFORMLY BOUNDED TRANSITION RATES
Science in China Series A-Mathematics, Physics, Astronomy & Technological Science 31, 1281 (1988);

The discrete approximation of a class of continuous-state nonlinear branching processes
SCIENTIA SINICA Mathematica 49, 403 (2019);

Electromagnetic retarded interaction and symmetry violation of time reversal in high order stimulated radiation and absorption processes of light
Science in China Series G-Physics, Mechanics & Astronomy 51, 282 (2008);

Gaussian fluctuation for linear eigenvalue statistics of large dilute Wigner matrices
SCIENCE CHINA Mathematics 57, 1221 (2014);
连续与离散时间 Gauss 次序统计过程的极值

谭中权

嘉兴学院数理与信息工程学院，嘉兴 314001
E-mail: tzq728@163.com

摘要 本文研究一类由平稳 Gauss 过程生成的 Gauss 次序统计过程的极值与其过程离散化后的极值的渐近关系。结果表明，当 Gauss 过程是弱相依并且离散化格点足够稀疏时，这两个极值之间是渐近独立的，否则这两个极值之间是渐近相依的。

关键词 Gauss 过程 连续时间过程 离散时间过程 极值 次序统计过程

MSC (2010) 主题分类 60F05, 60G15

1 引言

假设 \(\{X(t), t \geq 0\} \) 是均值为 0、方差为 1 的具有连续样本轨道的平稳 Gauss 过程，其协方差函数为 \(r(t) \)。本文假设 \(r(t) \) 满足如下条件：对某个 \(\alpha \in (0, 2] \)，有

\[
r(t) = 1 - |t|^{\alpha} + o(|t|^{\alpha}), \quad \text{当} \ t \to 0,
\]

\[
r(t) < 1, \quad \text{当} \ t > 0,
\]

以及

\[
r(t) \ln t \to r \in [0, \infty], \quad \text{当} \ t \to \infty.
\]

在文献中，如果 (1.2) 对于 \(r = 0 \) 成立，则称 Gauss 过程 \(\{X(t), t \geq 0\} \) 是弱相依的，否则称 Gauss 过程是强相依的。

设 \(\{X_1(t), \ldots, X_n(t)\} \) \((t \geq 0) \) 是一列 Gauss 向量过程，其分量是 Gauss 过程 \(\{X(t), t \geq 0\} \) 的独立复制。令 \(\{X_{m:n}(t), t \geq 0\} \) \((1 \leq m \leq n) \) 表示 \(\{X_i(t), t \geq 0\} \) \((1 \leq i \leq n) \) 的第 \(m \) 个最大值，其准确定义如下：

\[
X_{1:n}(t) := \max_{1 \leq i \leq n} X_i(t) \geq \cdots \geq X_{m:n}(t) \geq \cdots \geq X_{n:n}(t) := \min_{1 \leq i \leq n} X_i(t), \quad t \geq 0.
\]
文献中该过程称为 Gauss 次序统计过程, 参见文献 [1-4]. 近年来, 由于 Gauss 次序统计过程在许多统计应用中扮演着重要的角色, 因此, 该过程的极值的极限性质吸引了许多学者的注意力. 文献 [1-3] 研究了该过程的极值 sup_{t \in [0,T]} M_{m,n}(t) 的渐近性. 文献 [4] 则获得了 sup_{t \in [0,T]} X_{m,n}(t) 的极限分布. 其他相关研究参见文献 [5-8].

在实际应用领域, 关于连续时间过程的极值的极限结果并不能直接被应用, 因为我们能获得的样本都是离散的. 另外, 对连续时间的极值问题, 当不能用数学工具处理时, 我们经常使用随机模拟的方法来代替. 随机模拟这些过程的时候使用的样本是离散的, 但是所得的结论必须在连续时间背景下来解释. 因此, 考察连续时间极值与其离散下的极值的渐近关系就显得非常重要. 文献 [9] 首次研究了平稳 Gauss 过程的极值与其离散化的极值的渐近关系. 这类研究称为 Piterbarg 极大离散化问题, 参见文献 [10-12]. Piterbarg 极大离散化问题在 Gauss 领域已经获得了足够多的关注, 并取得了丰富的成果, 参见文献 [10-14]. 然而, Gauss 模型具有一定局限性, 不能用其模拟带“重尾”性格的随机现象, 因此把上面问题推广到非 Gaussian 形式是一项非常有意义的工作. 一方面, 文献 [15] 的模型结构下, 文献 [16] 考虑了非 Gaussian 情形, 但是该文献包含了一些错误. 这些错误在文献 [17] 中得到了一定程度的修正. 另一方面, 文献 [18] 在 χ 过程模型下考虑了该问题. 并获得了相应的 Piterbarg 极大离散化定理. 本文的主要目的是研究 Gauss 次序统计过程的 Piterbarg 极大离散化问题.

与文献 [9] 一样, 考虑均匀格点 R(p) = {kp : k ∈ N}, p = p(T) > 0. 设 p 满足

\[p(T) \left(\frac{2}{m} \ln T \right)^{1/\alpha} \to D, \quad T \to \infty. \]

当 \(D = \infty \) 时, 格点 R(p) 称为稀疏的; 当 \(D \in (0, \infty) \) 时, 格点 R(p) 称为 Pickands 型的; 当 \(D = 0 \) 时, 格点 R(p) 称为稠密的. 对给定的格点 R(p), 定义

\[M_m(T) := \sup_{t \in [0,T]} X_{m,n}(t) \quad \text{和} \quad M_m^p(T) := \sup_{k \in [0,T]} X_{m,n}(kp). \]

本文主要研究 \(M_m(T) \) 与 \(M_m^p(T) \) 之间的渐近关系.

本文结构如下: 第 2 节陈述主要结论. 主要证明在第 3 节. 一些技术性引理放在附录 A-C. 贯穿全文, \(\Psi(\cdot) \) 和 \(\Phi(\cdot) \) 分别表示标准正态随机变量的分布函数和分布函数.

2 主要结论

为了陈述主要结论, 首先引入如下的 Pickands 类型常数. 令 \(B^{(i)}_\alpha(t) \) \((i = 1, 2, \ldots, m)\) 表示一列独立的标度的分量. Brown 运动, 定义

\[\mathcal{H}_{m,\alpha}(\lambda) = \int_{\mathbb{R}^m} e^{\sum_{i=1}^m w_i} \left\{ \sup_{t \in [0,\lambda]} \min_{1 \leq i \leq m} (\sqrt{2} B^{(i)}_\alpha(t) - t^\alpha > w_i) \right\} dw. \]

其中 \(\mathbf{w} = (w_1, \ldots, w_m) \). 由文献 [3] 易知,

\[\mathcal{H}_{m,\alpha} := \lim_{\lambda \to \infty} \frac{\mathcal{H}_{m,\alpha}(\lambda)}{\lambda} \in (0, \infty). \]

定理 2.1 设 \(\{X(t), t \geq 0\} \) 为一列标准化的具有连续样本轨道的平稳 Gauss 过程. 其相关系数函数为 \(r(t) \), 满足 (1.1) 和 (1.2). 其中 \(r \in [0, +\infty) \), 则对任意的稀疏型格点 R(p), 当 T → ∞ 时,

\[\mathbb{P}\{a_{m,T}(M_m(T) - b_{m,T}) \leq x, a_{m,T}(M_m^p(T) - b_{m,T}) \leq y\} \]

\[\rightarrow E \exp(-(e^{-x-r+\sqrt{2mN}} + e^{-y-r+\sqrt{2mN}})), \]

其中 \(\mathcal{N} \) 是标准正态随机变量，正则化常数 \(a_{m,T}, b_{m,T} \) 和 \(b_{m,T}^p \) 定义如下：

\[
a_{m,T} = \sqrt{2m \ln T}, \quad b_{m,T} = \frac{1}{m} a_{m,T} + a_{m,T}^{-1} \ln(a_{m,T}^{2\alpha-m} C_n H_{m,\alpha}(2\pi)^{-m/2}),
\]

\[
b_{m,T}^p = \frac{1}{m} a_{m,T} + a_{m,T}^{-1} \ln(a_{m,T}^{-m} C_n^{m}(2\pi)^{-m/2} p^{-1}),
\]

这里 \(C_n^m = \frac{n!}{m!(n-m)!} \).

作为定理 2.1 的特殊情况，可以得到如下的离散化 Gauss 次序统计过程的极值的极限分布，该结论本身也是有意义的。

推论 2.1 在定理 2.1 的条件下，对任意的稀疏型格点 \(\mathfrak{R}(p) \)，当 \(T \to \infty \) 时，

\[P\{a_{m,T}(M_{m,T}^p(T) - b_{m,T}^p) \leq x \} \to E \exp(-e^{-x-r+\sqrt{2mN}}). \]

为了陈述 Pickands 情形，我们还需引入如下两类 Pickands 型常数。对任意的常数 \(d > 0 \) 和 \(k \in \mathbb{N} \)，定义

\[
\mathcal{H}_{d,m,\alpha}(\lambda) = \int_{\mathbb{R}^m} e^{\sum_{i=1}^m w_i} P\{ \sup_{k \in [0,\lambda]} \min_{1 \leq i \leq m} (\sqrt{2B_{\alpha/2}^{(i)}(kd) - (kd)^\alpha} > w_i) \} dw.
\]

通过类似文献 [3] 的讨论可得

\[\mathcal{H}_{d,m,\alpha} := \lim_{\lambda \to \infty} \frac{\mathcal{H}_{d,m,\alpha}(\lambda)}{\lambda} \in (0, \infty). \]

对任意的常数 \(d > 0 \) 和 \(k \in \mathbb{N} \)，定义

\[
\mathcal{H}^{x,y}_{d,m,\alpha}(\lambda) = \int_{\mathbb{R}^m} e^{\sum_{i=1}^m w_i} P\{ \sup_{t \in [0,\lambda]} \min_{1 \leq i \leq m} (\sqrt{2B_{\alpha/2}^{(i)}(t) - t^\alpha} > w_i + x), \\
\sup_{k \in [0,\lambda]} \min_{1 \leq i \leq m} (\sqrt{2B_{\alpha/2}^{(i)}(kd) - (kd)^\alpha} > w_i + y) \} dw,
\]

由附录 A 可得

\[\mathcal{H}^{x,y}_{d,m,\alpha} := \lim_{\lambda \to \infty} \frac{\mathcal{H}^{x,y}_{d,m,\alpha}(\lambda)}{\lambda} \in (0, \infty). \]

定理 2.2 在定理 2.1 的条件下，对任意的 Pickands 型格点 \(\mathfrak{R}(p) = \mathfrak{R}(d(\frac{2}{m} \ln T)^{-1/\alpha}), d > 0 \)，当 \(T \to \infty \) 时，

\[P\{a_{m,T}(M_{m,T} - b_{m,T}) \leq x, a_{m,T}(M_{m,T}^p(T) - b_{m,T}^p) \leq y \} \to E \exp(-e^{-x-r+\sqrt{2mN}} + e^{-y-r+\sqrt{2mN}} - \mathcal{H}_{d,m,\alpha}(\mathfrak{H}_{d,m,\alpha}^x + \mathfrak{H}_{d,m,\alpha}^y + y e^{-r+\sqrt{2mN}})), \]

其中

\[b_{d,m,T} = \frac{1}{m} a_{m,T} + a_{m,T}^{-1} \ln(a_{m,T}^{-m} C_n H_{d,m,\alpha}(2\pi)^{-m/2}). \]

对稠密型格点，我们有如下结论。

定理 2.3 在定理 2.1 的条件下，对任意的稠密型格点，当 \(T \to \infty \) 时，

\[P\{a_{m,T}(M_{m,T} - b_{m,T}) \leq x, a_{m,T}(M_{m,T}^p(T) - b_{m,T}^p) \leq y \} \to E \exp(-e^{-\min(x,y)-r+\sqrt{2mN}}). \]

定理 2.4 设 \(\{X(t), t \geq 0\} \) 是一列标准化的具有连续样本轨道的平稳 \(\text{Gauss} \) 过程，其相关系数函数为 \(r(t) \)，满足 (1.1) 和 (1.2)，其中 \(r = \infty, \alpha \in (0,1) \)。设 \(r(t) (t \geq 0) \) 是凸函数，且 \(\lim_{t \to \infty} r(t) = 0 \)。进一步，设 \(r(t) \ln t \) 对充分大的 \(t \) 是单调增的。则对任意的格点 \(\mathfrak{R}(p) \)，当 \(T \to \infty \) 时，

\[
P\left\{ \frac{1}{\sqrt{r(T)}} (M_m(T) - \sqrt{1-r(T)} b_{m,T}) \leq x, \frac{1}{\sqrt{r(T)}} (M_p^*(M_m(T) - \sqrt{1-r(T)} b_{m,T}) \leq y \right\} \to \Phi(\min\{x,y\}),
\]

其中当 \(\mathfrak{R}(p) \) 是稀疏型格点时 \(b_{m,T} = b_{m,T}^* \); 当 \(\mathfrak{R}(p) \) 是 Pickands 型格点时 \(b_{m,T} = b_{d,m,T} \); 当 \(\mathfrak{R}(p) \) 是稠密型格点时 \(b_{m,T} = b_{m,T} \)。

注 2.1 在上述定理中，如果取 \(m \equiv 1 \) (显然 \(n = 1 \)，则上述的 \(\text{Gauss} \) 次序统计过程退化成平稳 \(\text{Gauss} \) 过程，因此，由定理 2.1-2.4 可得文献 [9-12] 的部分结论。

3 主要结论的证明

3.1 定理 2.1-2.3 的证明

首先，定义 \(\rho(T) = r/\ln T \)，设常数 \(a \) 和 \(c \)，满足 \(0 < c < a < 1 \)。把区间 \([0,T]\) 分割成长度分别为 \(T^a \)（简记为 \(T^a \)）和 \(T^b \) 的交替的子区间。易知长区间的个数为 \(l = l_T = [T/(T^a + T^b)] \)，其中 \([x]\) 表示 \(x \) 的整数部分。令 \(O_i = [(i-1)(T^a + T^b), (i-1)(T^a + T^b) + T^a], Q_i = [(i-1)(T^a + T^b) + T^a, i(T^a + T^b)], i = 1, \ldots, l \)。记 \(E_i = O_i \cup Q_i, O = \bigcup_i O_i \)。注意到可能还剩余一个长度小于 \(T^a + T^b \) 的区间，我们将其看作小区间，记为 \(Q_{l+1} \)。

令 \(\{Y^*_j(t), t \in E_i\} (i = 1,2, \ldots, l, j = 1,2, \ldots, n) \) 是 \(\{X(t), t \geq 0\} \) 的独立复制。对 \(j = 1,2, \ldots, n, \) 定义

\[
\xi^*_j(t) = (1 - \rho(T))^{1/2} \sum_{i=1}^{l} Y^*_j(t) 1(t \in E_i) + \rho^{1/2}(T)N, \quad t \geq 0,
\]

其中 \(\| \) 表示示性函数，\(N \) 是独立于 \(\{X(t), t \geq 0\} \) 和 \(\{Y^*_j(t), t \in E_i\} (i = 1,2, \ldots, l, j = 1,2, \ldots, n) \) 的标准正态随机变量。令 \(g(t,s) \) 表示 \(\xi^*_j(t), t \geq 0 \) 的相关系数函数，则易得

\[
g(t,s) = \begin{cases} r(|t-s|) + (1-r(|t-s|))\rho(T), & s \in E_i, \ t \in E_j, \ i = j, \\ \rho(T), & s \in E_i, \ t \in E_j, \ i \neq j. \end{cases}
\]

令 \(\{Y^*_{m,n}(t), t \geq 0\} \) 和 \(\{\xi^*_{m,n}(t), t \geq 0\} \) 分别表示由 \(\{Y^*_j(t), t \geq 0\} \) 和 \(\{\xi^*_j(t), t \geq 0\} \) 生成的 \(\text{Gauss} \) 次序统计过程。

在本文后面部分，\(C \) 表示正的常数，其取值每次出现可能不一样。为了简化，对某个常数 \(b > 0 \)，记

\[
q = q(T) = b \left(\frac{2}{m \ln T} \right)^{-1/\alpha}.
\]

为了证明定理 2.1 和 2.2，我们需要下面的引理。

引理 3.1 设 \(\mathfrak{R}(p) \) 是稀疏型格点或 Pickands 型格点。对任意的常数 \(B > 0 \) 和 \(x,y \in [-B,B] \)，当 \(T \to \infty \) 时，

\[
P\left\{ a_{m,T}(M_{m}(T) - b_{m,T}) \leq x, a_{m,T}(M^*_p(T) - b^*_{m,T}) \leq y \right\}
\]

...
3.1 在引理 (3.3) 证明和 (3.1) (3.2) 证明的思路与文献 A.1 类似的条件下，其中对稀疏型格点 $b_{m,T} = b_{m,T}^*$，对 Pickands 型格点 $b_{m,T} = b_{m,d,T}$.

证明 证明的思路与文献 [9, 引理 6] 类似。显然，

$$
| P\{a_{m,T}(M_m(T) - b_{m,T}) \leq x, a_{m,T}(M_m(T) - b_{m,T}^*) \leq y \} - P\{a_{m,T}(\max_{t \in O} X_{m:n}(t) - b_{m,T}) \leq x, a_{m,T}(\max_{t \in \mathbb{R}(p) \cap O} X_{m:n}(t) - b_{m,T}^*) \leq y \} |
$$

$$
\leq \sum_{i=1}^{l+1} P\{\max_{t \in Q_i} X_{m:n}(t) > b_{m,T} + \frac{x}{a_{m,T}}\} + \sum_{i=1}^{l+1} P\{\max_{t \in \mathbb{R}(p) \cap Q_i} X_{m:n}(t) > b_{m,T}^* + \frac{y}{a_{m,T}}\}. \quad (3.1)
$$

为了估计 (3.1) 的右端，我们需要如下结论。对任意的 $S \in (0, \exp(\kappa u^2))$ (其中 $\kappa \in (0,1/2)$)，有

$$
P\{\sup_{t \in [0,S]} X_{m:n}(t) > u\} = C_m P\{\sup_{t \in [0,S]} X_{m:m}(t) > u\}(1 + o(1))
$$

$$
= C_m S \mathcal{H}_{m,n} u^{\alpha} \psi^m(u)(1 + o(1)), \quad u \to \infty. \quad (3.2)
$$

对固定的 S，上述结果已经由文献 [2] 证明。对于 $S \to \infty$ 情形，其证明类似于文献 [19, 引理 D.2] 的证明，故省略。因此，利用 $a_{m,T}$ 和 $b_{m,T}$ 的定义，当 $T \to \infty$ 时，可得

$$
\sum_{i=1}^{l+1} P\{\max_{t \in Q_i} X_{m:n}(t) > b_{m,T} + \frac{x}{a_{m,T}}\}
$$

$$
= O(1) \sum_{i=1}^{l+1} \text{mes}(O_i) \left(b_{m,T} + \frac{x}{a_{m,T}} \right)^{2/\alpha} \psi^m \left(b_{m,T} + \frac{x}{a_{m,T}} \right)
$$

$$
= O(1) \frac{\sum_{i=1}^{l+1} \text{mes}(Q_i)}{T^\alpha}
$$

$$
\leq O(1) \frac{(l+1)T^\alpha + T^\alpha}{T}
$$

$$
\to 0,
$$

其中 mes(·) 表示 Lebesgue 测度。对于 (3.1) 右端第 2 项，对稀疏型格点和 Pickands 型格点情形分别利用引理 A.1 和 A.2 的第 2 个结论，类似的讨论得同样的估计。证毕。 □

引理 3.2 在引理 3.1 的条件下，对 Pickands 型格点 $\mathfrak{R}(q) = \mathfrak{R}(b(\frac{T}{m}\ln T)^{-1/\alpha})$，当 $T \to \infty$ 和 $b \downarrow 0$ 时，

$$
| P\{a_{m,T}(\max_{t \in O} X_{m:n}(t) - b_{m,T}) \leq x, a_{m,T}(\max_{t \in \mathbb{R}(p) \cap O} X_{m:n}(t) - b_{m,T}^*) \leq y \} - P\{a_{m,T}(\max_{t \in \mathbb{R}(p) \cap O} X_{m:n}(t) - b_{m,T}) \leq x, a_{m,T}(\max_{t \in \mathbb{R}(p) \cap O} X_{m:n}(t) - b_{m,T}^*) \leq y \} |
$$

$$
\to 0,
$$

其中对稀疏型格点，$b_{m,T}^* = b_{m,T}^p$；对 Pickands 型格点，$b_{m,T}^* = b_{m,d,T}$.
【证明】易知 (3.3) 的左端不超过
\[
P\left\{ \max_{t \in O} X_{m,n}(t) > a^{-1}m + b_{m,T}, \max_{t \in [0,1]} X_{m,n}(t) \leq a^{-1}m + b_{m,T} \right\}
\leq TP\left\{ \max_{t \in [0,1]} X_{m,n}(t) > a^{-1}m + b_{m,T}, \max_{t \in [0,1]} X_{m,n}(t) \leq a^{-1}m + b_{m,T} \right\}.
\]

文献 [2] 已经证明了 Gauss 次序统计过程 \(X_{m,n}(t) \) 满足文献 [15] 中条件 B 和 \(C^0(\Lambda) \)，而这又蕴涵着文献 [20, 条件 (3.7)] (详细内容参见文献 [15, 定理 10])。利用文献 [20, 条件 (3.7)], 易知当 \(T \to \infty \) 和 \(b \downarrow 0 \) 时, 上述概率不超
\[
o(1) T \left(b_{m,T} + \frac{x}{a_{m,T}} \right)^{2/\alpha} \Psi^{\prime}(b_{m,T} + \frac{x}{a_{m,T}}) = o(1).
\]
引理证毕.

引理 3.3 在引理 3.1 的条件下, 对 Pickands 型格点 \(R(q) = R(b(\frac{1}{m} \ln T)^{-1/\alpha}) \), 当 \(T \to \infty \), 对 \(b > 0 \), 一致地有
\[
\left| P\left\{ a_{m,T} \left(\max_{t \in [0,1]} X_{m,n}(t) - b_{m,T} \right) \leq x, a_{m,T} \left(\max_{t \in [0,1]} X_{m,n}(t) - b_{m,T}^* \right) \leq y \right\} - P\left\{ a_{m,T} \left(\max_{t \in [0,1]} X_{m,n}(t) - b_{m,T} \right) \leq x, a_{m,T} \left(\max_{t \in [0,1]} X_{m,n}(t) - b_{m,T}^* \right) \leq y \right\} \right| \to 0,
\]
其中对稀疏型格点, \(b_{m,T}^* = b_{m,T}^* \); 对 Pickands 型格点, \(b_{m,T}^* = b_{m,d,T} \).

证明 为了简化, 记 \(w_T = b_{m,T} + x/a_{m,T}, w_T^* = b_{m,T}^* + y/a_{m,T} \), 利用引理 C.1, 可得
\[
\begin{align*}
&\left| P\left\{ a_{m,T} \left(\max_{t \in [0,1]} X_{m,n}(t) - b_{m,T} \right) \leq x, a_{m,T} \left(\max_{t \in [0,1]} X_{m,n}(t) - b_{m,T}^* \right) \leq y \right\} - P\left\{ a_{m,T} \left(\max_{t \in [0,1]} X_{m,n}(t) - b_{m,T} \right) \leq x, a_{m,T} \left(\max_{t \in [0,1]} X_{m,n}(t) - b_{m,T}^* \right) \leq y \right\} \right| \\
&\leq C \sum_{t \in [0,1], j \in \mathbb{N}} |r(t,s) - g(s,t)| \int_0^1 \frac{u_T^{-2(m-1)}}{(1 - r(t,s))^m} \exp\left(-\frac{mu_T^2}{1 + |r(t,s)|}\right) dh \\
&+ C \sum_{t \in [0,1], j \in \mathbb{N}} |r(t,s) - g(s,t)| \int_0^1 \frac{u_T^{-2(m-1)}}{(1 - r(t,s))^m} \exp\left(-\frac{mu_T^2}{1 + |r(t,s)|}\right) dh,
\end{align*}
\]
其中 \(r(t,s) = hr(t,s) + (1 - h)g(t,s) \). 进而, 使用引理 B.1–B.3 即可完成引理证明.

定理 2.1 的证明 首先, 由 \(\left\{ \xi_{m,n}(t), t \in O \right\} \) 的定义可得
\[
P\left\{ a_{m,T} \left(\max_{t \in [0,1]} \xi_{m,n}(t) - b_{m,T} \right) \leq x, a_{m,T} \left(\max_{t \in [0,1]} \xi_{m,n}(t) - b_{m,T}^* \right) \leq y \right\}
= \frac{1}{(2\pi)^{1/2}} \int_R e^{-\frac{1}{2} \sum_{i=1}^l \left(\max_{t \in [0,1]} Y_{m,n}(t) \leq b_{m,T} + x/a_{m,T} - \rho^{1/2}(T)z \right) (1 - \rho(T))^{1/2}}.
\]
\[
\begin{align*}
\max_{t \in \mathbb{R}(p) \cap O_i} Y_{m,n}^i(t) & \leq \frac{b_{m,T}^* + x/a_{m,T} - \rho^{1/2}(T)x}{(1 - \rho(T))^{1/2}} \\
= \mathbb{E} \prod_{i=1}^n P \left\{ \max_{t \in \mathbb{R}(q) \cap O_i} Y_{m,n}^i(t) \leq v_T, \max_{t \in \mathbb{R}(p) \cap O_i} Y_{m,n}^i(t) \leq v_T^* \right\},
\end{align*}
\]

其中，当 \(T \to \infty \) 时，

\[
\begin{align*}
v_T & := \frac{b_{m,T} + x/a_{m,T} - \rho^{1/2}(T)x}{(1 - \rho(T))^{1/2}} = \frac{x + r - \sqrt{2mN}}{a_{m,T}} + b_{m,T} + o(a_{m,T}), \\
v_T^* & := \frac{b_{m,T}^* + y/a_{m,T} - \rho^{1/2}(T)x}{(1 - \rho(T))^{1/2}} = \frac{y + r - \sqrt{2mN}}{a_{m,T}} + b_{m,T} + o(a_{m,T}),
\end{align*}
\]

这里，对稀疏型格点，\(b_{m,T}^* = b_{m,T}^d \); 对 Pickands 型格点，\(b_{m,T}^* = b_{m,T} \)。因此，由引理 3.1-3.3 可知，为证明定理 2.1，只需证明当 \(T \to \infty \) 时，

\[
\left| \mathbb{E} \prod_{i=1}^n P \left\{ \max_{t \in \mathbb{R}(q) \cap O_i} Y_{m,n}^i(t) \leq v_T, \max_{t \in \mathbb{R}(p) \cap O_i} Y_{m,n}^i(t) \leq v_T^* \right\} - \mathbb{E} \exp \left(- \left(e^{-x-r+\sqrt{2mN}} + e^{-y-r+\sqrt{2mN}} \right) \right) \right| \to 0,
\]

其中 \(v_T \) 和 \(v_T^* \) 的定义分别见 (3.4) 和 (3.5)。利用 \(\{ Y_{m,n}^i(t), t \in E_i \} \) 关于 \(t \) 的平稳性，可得

\[
\prod_{i=1}^n P \left\{ \max_{t \in \mathbb{R}(q) \cap O_i} Y_{m,n}^i(t) \leq v_T, \max_{t \in \mathbb{R}(p) \cap O_i} Y_{m,n}^i(t) \leq v_T^* \right\}
\]

\[
= \left(P \left\{ \max_{t \in \mathbb{R}(q) \cap [0,T^*]} Y_{m,n}^i(t) \leq v_T, \max_{t \in \mathbb{R}(p) \cap [0,T^*]} Y_{m,n}^i(t) \leq v_T^* \right\} \right)^n
\]

\[
= \exp \left(\ln \left(P \left\{ \max_{t \in \mathbb{R}(q) \cap [0,T^*]} Y_{m,n}^i(t) \leq v_T, \max_{t \in \mathbb{R}(p) \cap [0,T^*]} Y_{m,n}^i(t) \leq v_T^* \right\} \right) \right)
\]

\[
= \exp \left(- n \left(1 - P \left\{ \max_{t \in \mathbb{R}(q) \cap [0,T^*]} Y_{m,n}^i(t) \leq v_T, \max_{t \in \mathbb{R}(p) \cap [0,T^*]} Y_{m,n}^i(t) \leq v_T^* \right\} \right) \right) + R_n,
\]

其中 \(R_n \) 是 Taylor 展开 \(\ln x = -(1 - x + \frac{x^2}{2} + \cdots) (0 < x < 1) \) 的余项。利用 \(v_T \) 和 \(v_T^* \) 的定义，当 \(T \to \infty \) 时，可得

\[
P_n := P \left\{ \max_{t \in \mathbb{R}(q) \cap [0,T^*]} Y_{m,n}^i(t) \leq v_T, \max_{t \in \mathbb{R}(p) \cap [0,T^*]} Y_{m,n}^i(t) \leq v_T^* \right\} \to 1,
\]

进而，对余项 \(R_n \) 有 \(R_n = o(n(1 - P_n)) \)。利用引理 A.1 并令 \(b \downarrow 0 \)，当 \(T \to \infty \) 时，可得

\[
\ln \left(1 - P \left\{ \max_{t \in \mathbb{R}(q) \cap [0,T^*]} Y_{m,n}^i(t) \leq v_T, \max_{t \in \mathbb{R}(p) \cap [0,T^*]} Y_{m,n}^i(t) \leq v_T^* \right\} \right)
\]

\[
\sim \ln \left(1 - \left(e^{-x-r+\sqrt{2mN}} + e^{-y-r+\sqrt{2mN}} \right) \right)
\]

\[
\sim e^{-x-r+\sqrt{2mN}} + e^{-y-r+\sqrt{2mN}},
\]

而这结合控制收敛定理即可得定理 2.1 的证明。
定理 2.2 的证明 与定理 2.1 的证明类似，利用引理 3.1–3.3，我们只需证明，当 $T \to \infty$ 时，

$$
E \left[\prod_{i=1}^{T} \max_{t \in [0,T]} Y_{m,n}^{\dagger}(t) \leq v_T, \max_{t \in [0,T]} Y_{m,n}^{\ddagger}(t) \leq v_T^* \right]
\exp \left(-\left(e^{-x-r+\sqrt{2mN}} + e^{-y-r+\sqrt{2mN}} \right) \right)
\to 0.
$$

其中 v_T 和 v_T^* 的定义分别见 (3.4) 和 (3.5). 类似定理 2.1 的证明，利用引理 A.2，首先令 $b \downarrow 0$，然后 $T \to \infty$，可得

$$
l \left(1 - \prod_{t \in [0,T]} \max_{t \in [0,T]} Y_{m,n}^{\dagger}(t) \leq v_T, \max_{t \in [0,T]} Y_{m,n}^{\ddagger}(t) \leq v_T^* \right)
\prod_{t \in [0,T]} \max_{t \in [0,T]} Y_{m,n}^{\dagger}(t) > v_T
\prod_{t \in [0,T]} \max_{t \in [0,T]} Y_{m,n}^{\ddagger}(t) > v_T^*
\sim IT^n \left(e^{-x-r+\sqrt{2mN}} + e^{-y-r+\sqrt{2mN}} \right)
\sim IT^n \left(e^{-x-r+\sqrt{2mN}} + e^{-y-r+\sqrt{2mN}} \right)
\to 0.
$$

结合控制收缩定理即得定理 2.2 的证明.

定理 2.3 的证明与文献 [11，定理 2.2(ii)] 类似，故略去.

3.2 定理 2.4 的证明

为了证明定理 2.4，我们需要下面的引理。首先，注意到，由 Polya 按则[21] 可知，协方差函数 $r(t)$ 的凸性保证存在一列平稳可分的 Gauss 过程 $\{Z(t), 0 \leq t \leq T\}$ 具有协方差函数

$$
\gamma_T(t) = \frac{r(t) - r(T)}{1 - r(T)}, \quad t \leq T.
$$

设 $\{Z_j^T(t), 0 \leq t \leq T\}$ 是 $\{Z(t), 0 \leq t \leq T\}$ 的独立复制，也设 $\{Z_{m,n}(t), 0 \leq t \leq T\}$ 是相应的 Gauss 次序统计过程。令

$$
M_{m,n}^T(t) = \max_{0 \leq s \leq T} Z_{m,n}^T(s), \quad M_{m,n}^T(T) = \max_{t \in [0,T]} Z_{m,n}^T(t).
$$

引理 3.4 在定理 2.4 的条件下，对任意的 $\varepsilon > 0$，当 $T \to \infty$ 时，

$$
P\{ |M_{m,n}^T - b_{m,n}| > \varepsilon r^{1/2}(T) \} \to 0; \quad (3.6)
$$

对稀疏型格点，有

$$
P\{ |M_{m,n}^T - b_{m,n}| > \varepsilon r^{1/2}(T) \} \to 0; \quad (3.7)
$$

对 Pickands 型格点，有

$$
P\{ |M_{m,n}^T - b_{m,n}| > \varepsilon r^{1/2}(T) \} \to 0, \quad (3.8)
$$

其中 $b_{m,n}$、$b_{m,n}^T$ 和 $b_{d,m,n}$ 的定义如定理 2.4.
证明 首先证明 (3.6). 注意到 $\gamma_T(t)$ 满足

$$
\gamma_T(t) = \frac{r(t) - r(T)}{1 - r(T)} = 1 - C(T)|t|^\alpha + o(|t|^\alpha), \quad t \rightarrow 0,
$$

(3.9)

其中

$$
C(T) = \frac{1}{1 - r(T)} \rightarrow 1, \quad T \rightarrow \infty.
$$

利用 $\{Z(t), 0 \leq t \leq T\}$ 的平稳性、(3.2) 以及 $b_{m,T}$ 的定义，有

$$
P\{M^Z_m(T) - b_{m,T} > \varepsilon r^{1/2}(T)\}
\leq ([T] + 1)P\left\{\max_{0 \leq t \leq [T]} Z_{m,n}(t) > \varepsilon r^{1/2}(T) + b_{m,T}\right\}
\leq O(1)([T] + 1)(\varepsilon r^{1/2}(T) + b_{m,T})^2 \exp\left(-\frac{m}{2}r(T) + b_{m,T}^2\right)
\leq O(1)([T] + 1)\left(\frac{1}{\alpha} - m/2\right)\exp\left(\frac{m}{2}r(T) + b_{m,T}^2\right)
= O(1)e^{-\sqrt{m}(r(T)\ln T)^{1/2}}.
$$

(3.10)

进而利用条件 $r(T)\ln T \uparrow \infty$ 可得，当 $T \rightarrow \infty$ 时，

$$
P\{M^Z_m(T) - b_{m,T} > \varepsilon r^{1/2}(T)\} \rightarrow 0.
$$

另一方面，由文献 [4, 定理 4.1(b)] 的证明可得，当 $T \rightarrow \infty$ 时，

$$
P\{M^Z_m(T) - b_{m,T} < -\varepsilon r^{1/2}(T)\} \rightarrow 0.
$$

因此，(3.6) 证毕。

其次，我们证明 (3.7). 设 $\{\eta(k), k \in \mathbb{N}\}$ 是标准化的独立的 Gauss 随机序列, 并设 $\{\eta_j(k), k \in \mathbb{N}\}$ ($j = 1, 2, \ldots, n$) 是 $\{\eta(k), k \in \mathbb{N}\}$ 的独立复制. 令 $\eta_{m,n}(k)$ 表示由 $\{\eta_j(k), k \in \mathbb{N}\}$ ($j = 1, 2, \ldots, n$) 生成的 Gauss 次序统计序列, 并记

$$
M^\eta_m(T) = \max_{k=0}^{[T/p]} \eta_{m,n}(k).
$$

因为 $\gamma_T(t) > 0$, 利用关于 Gauss 次序统计量的比较不等式 (参见文献 [4, 推论 2.3]), 有

$$
P\{M^{Z,p}_m(T) - b^{p}_{m,T} > \varepsilon r^{1/2}(T)\} \leq P\{M^\eta_m(T) - b^\eta_{m,T} > \varepsilon r^{1/2}(T)\}
$$

注意到, 当 $T \rightarrow \infty$ 时 $b^{p}_{m,T}r^{1/2}(T) \rightarrow \infty$. 进而由推论 2.1 可得, 当 $T \rightarrow \infty$ 时，

$$
P\{M^\eta_m(T) - b^\eta_{m,T} > \varepsilon r^{1/2}(T)\} \rightarrow 0.
$$

因此，当 $T \rightarrow \infty$ 时，

$$
P\{M^{Z,p}_m(T) - b^{p}_{m,T} > \varepsilon r^{1/2}(T)\} \rightarrow 0.
$$

类似于文献 [4, 定理 4.1(b)] 的证明，当 $T \rightarrow \infty$ 时，

$$
P\{M^{Z,p}_m(T) - b^{p}_{m,T} < -\varepsilon r^{1/2}(T)\} \rightarrow 0.
$$

故 (3.7) 得证. 因为 (3.8) 的证明与 (3.6) 类似，所以略去.
定理 2.4 的证明 对于稀疏型和 Pickands 型情形，类似于文献 [22]，把 \(M_m(T) \) 和 \(M^p_m(T) \) 分别分解成

\[
M_m(T) = (1 - r(T))^{1/2} M^Z_m(T) + r^{1/2}(T) N,
\]

和

\[
M^p_m(T) = (1 - r(T))^{1/2} M^{Z_p}_m(T) + r^{1/2}(T) N,
\]

其中 \(N \) 是独立于 \(\{Z_m,n(t), t \geq 0\} \) 的标准正态随机变量。利用引理 3.4，当 \(T \to \infty \) 时，可得

\[
P \left\{ \frac{M_m(T) - (1 - r(T))^{1/2} b_{m,T}}{r^{1/2}(T)} \leq x, \frac{M^p_m(T) - (1 - r(T))^{1/2} b^{*}_{m,T}}{r^{1/2}(T)} \leq y \right\}
= P \left\{ (1 - r(T))^{1/2} (M^Z_m(T) - b_T) + N \leq x, (1 - r(T))^{1/2} (M^{Z_p}_m(T) - b_T^*) + N \leq y \right\}
\]

\[
\to P \{ N \leq x, N \leq y \} = \Phi(\min\{x, y\}).
\]

稠密型情形的证明与文献 [10, 定理 2.2(ii)] 证明类似，略去。

致谢 衷心感谢两位审稿人提出的宝贵建议，他们的意见和建议使得本文有了进一步的提高。

参考文献

1. Dębicki K, Hashorva E, Ji L, et al. On the probability of conjunctions of stationary Gaussian processes. Statist Probab Lett, 2014, 88: 141–148
2. Dębicki K, Hashorva E, Ji L, et al. Extremes of order statistics of stationary processes. TEST, 2015, 24: 229–248
3. Dębicki K, Hashorva E, Ji L, et al. Extremes of vector-valued Gaussian processes: Exact asymptotics. Stochastic Process Appl, 2015, 125: 4039–4065
4. Dębicki K, Hashorva E, Ji L, P, et al. Comparision inequality for order statistics of Gaussian arrays. ALEA Lat Am J Probab Math Stat, 2017, 14: 93–116
5. Dębicki K, Kosinski K M. An Erdős-Rényi type law of the iterated logarithm for order statistics of a stationary Gaussian process. J Theoret Probab, doi: 10.1007/s10959-016-0710-8, 2017
6. Zhao C M. Extremes of order statistics of stationary Gaussian processes. J Math Anal Appl, 2014, 409: 299–314
7. Hashorva E. On Piterbarg’s max-discretisation theorem for multivariate stationary Gaussian processes. J Math Anal Appl, 2014, 409: 299–314
8. Piterbarg V I. Discrete and continuous time extremes of Gaussian processes. Extremes, 2004, 7: 161–177
9. Tan Z, Hashorva E. On Piterbarg’s max-discretisation theorem for multivariate stationary Gaussian processes. J Math Anal Appl, 2014, 409: 299–314
10. Hashorva E. On Piterbarg’s max-discretization theorem for stationary vector Gaussian processes observed on different grids. Statistics, 2015, 49: 328–340
11. Piterbarg V I. Asymptotic Methods in the Theory of Gaussian Processes and Fields. Providence: Amer Math Soc, 1996

632
附录 A

本节给出两个引理, 它们在定理 2.1 和 2.2 的证明中分别扮演着重要角色. 设 \(\{Y_j(t), t \geq 0\} (j = 1, 2, \ldots, n) \) 是 \(\{X(t), t \geq 0\} \) 的独立复制, \(\{Y_m:n(t), t \geq 0\} \) 是相应的 Gauss 次序统计过程. 由条件 (1.1) 可知, 我们可以选择 \(\epsilon > 0 \) 使得对任意的 \(|s - t| \leq \epsilon < 2^{-1/\alpha} \), 有
\[
\frac{1}{2}|s - t|^\alpha \leq 1 - r(|t - s|) \leq 2|s - t|^\alpha. \tag{A.1}
\]
令 \(\vartheta(x) = \sup_{t \leq |t - x|} r(|t - s|) \). 条件 (1.1) 蕴涵着对所有的 \(T \) 和任意 \(\epsilon \in (0, 2^{-1/\alpha}) \), \(\vartheta(\epsilon) < 1 \) 成立. 进而, 对充分大的 \(T \), 可以选择常数 \(a \) 和 \(c \) 满足
\[
0 < c < a < \frac{1 - \vartheta(\epsilon)}{1 + \vartheta(\epsilon)} < 1. \tag{A.2}
\]

引理 A.1 对某个常数 \(b > 0 \), 令 \(q = q(T) = b(\frac{\alpha}{m} \ln T)^{-1/\alpha} \). 在定理 2.1 的条件下, 当 \(b \downarrow 0 \) 且 \(T \to \infty \) 时,
\[
P\left\{ \max_{t \in \mathcal{R}(q) \cap [0, T^s]} Y_{m:n}(t) > v_T \right\} = T^{a-1} e^{-z-t + \sqrt{2m}N}(1 + o(1));
\]
当 \(T \to \infty \) 时,
\[
P\left\{ \max_{t \in \mathcal{R}(p) \cap [0, T^s]} Y_{m:n}(t) > v_T^* \right\} = T^{a-1} e^{-z-t + \sqrt{2m}N}(1 + o(1));
\]
当 \(T \to \infty \) 时, 对 \(b > 0 \), 一致地有
\[
P\left\{ \max_{t \in \mathcal{R}(q) \cap [0, T^s]} Y_{m:n}(t) > v_T, \max_{t \in \mathcal{R}(p) \cap [0, T^s]} Y_{m:n}(t) > v_T^* \right\} = o(T^{a-1}),
\]
其中 \(v_T \) 和 \(v_T^* \) 定义分别见 (3.4) 和 (3.5).

证明 首先, 注意到 \(\mathcal{R}(q) \) 是 Pickands 型格点, 当 \(b \downarrow 0 \) 时,
\[
P\left\{ \max_{t \in \mathcal{R}(q) \cap [0, T^s]} Y_{m:n}(t) > v_T \right\} \to P\left\{ \max_{t \in [0, T^s]} Y_{m:n}(t) > v_T \right\},
\]
通过一些简单计算, 利用 (3.2) 和 \(v_T \) 的定义即可得到引理 A.1 的第一个断论.

其次, 注意到 \(\mathcal{R}(p) \) 是稀疏型格点. 利用 Bonferroni 不等式易得
\[
\sum_{t \in \mathcal{R}(p) \cap [0, T^s]} P\{Y_{m:n}(t) > v_T^* \} \geq P\left\{ \max_{t \in \mathcal{R}(p) \cap [0, T^s]} Y_{m:n}(t) > v_T^* \right\}
\]
\[
\geq \sum_{t \in \mathcal{R}(p) \cap [0, T^s]} P\{Y_{m:n}(t) > v_T^* \}
\]
\[
- \sum_{t \in \mathcal{R}(p) \cap [0, T^s]} P\{Y_{m:n}(t) > v_T^*, Y_{m:n}(s) > v_T^* \}
\]
\[
633
\]

20 Leadbetter M R, Rootzén H. Extreme value theory for continuous parameter stationary processes. Z Wahrsch Verw Gebiete, 1982, 60: 1–20
21 Leadbetter M R, Lindgren G, Rootzén H. Extremes and Related Properties of Random Sequences and Processes. Series in Statistics. New York: Springer, 1983
22 Mittal Y, Ylvisaker D. Limit distributions for the maxima of stationary Gaussian processes. Stochastic Process Appl, 1975, 3: 1–18
的证明可得
\[\epsilon \]
利用文献 [2, 引理 1], 当 \(u \to \infty \) 时,
\[
P\{Y_{m,n}(0) > u\} = C_m^n P\{Y(0) > u\}^m (1 + o(1))
\]
\[
= C_m^n \Psi_m(u)(1 + o(1)).
\]
因此, 利用 \(\epsilon_T \) 的定义可得, 当 \(T \to \infty \) 时,
\[
P_{T,1} = \sum_{t \in \mathbb{R}(\cap [0,T^m])} P\{Y_{m,n}(t) > \epsilon_T\}
\]
\[
= T^n p^{-1} P\{Y_{m,n}(0) > \epsilon_T\}
\]
\[
= T^n p^{-1} C_m^n \Psi_m(\epsilon_T)(1 + o(1))
\]
\[
= T^n p^{-1} e^{-\psi + \sqrt{2mN}}(1 + o(1)).
\]
进而, 为了完成第二个论断的证明, 我们只需证明当 \(T \to \infty \) 时, \(P_{T,2} = o(T^{n-1}) \) 对 \(b > 0 \) 一致成立. 把 \(P_{T,2} \) 作如下分割:
\[
P_{T,2} = \sum_{t \in \mathbb{R}(\cap [0,T^m])} P\{Y_{m,n}(t) > \epsilon_T, Y_{m,n}(s) > \epsilon_T\}
\]
\[
= \sum_{t \in \mathbb{R}(\cap [0,T^m])} P\{Y_{m,n}(t) > \epsilon_T, Y_{m,n}(s) > \epsilon_T\}
\]
\[
= P_{T,21} + P_{T,22},
\]
其中 \(\epsilon \) 满足 (A.1). 利用文献 [1, 引理 2.2], 类似于文献 [2, 引理 9] 的证明可得
\[
P_{T,21} = \sum_{t \in \mathbb{R}(\cap [0,T^m])} P\{Y_{m,n}(s) > \epsilon_T\} P\{Y_{m,n}(t) > \epsilon_T \mid Y_{m,n}(s) > \epsilon_T\}
\]
\[
\leq \sum_{t \in \mathbb{R}(\cap [0,T^m])} C_m^n \Psi_m(\epsilon_T)^2 m^{m+1} \Psi_m\left(\epsilon_T^2 \frac{1 - r(s-t)}{1 + r(s-t)}\right).
\]
利用 (A.1), 我们选择足够小的 \(\epsilon > 0 \) 使得
\[
\frac{1 - r(s-t)}{1 + r(s-t)} \geq \frac{1}{4}|t - s|^\alpha
\]
成立. 进而有
\[
P_{T,21} \leq C \sum_{t \in \mathbb{R}(\cap [0,T^m])} \left[\Psi(\epsilon_T^2) \Psi\left(\frac{1}{2} |t - s|^\alpha/2\right)\right]^m
\]
\[
\leq C \Psi_m(\epsilon_T) \sum_{t \in \mathbb{R}(\cap [0,T^m])} \frac{1}{|t - s|^{\alpha m/2}(\epsilon_T^2)} \exp\left(-\frac{1}{8} m |t - s|^\alpha (\epsilon_T^2)^2\right).
\]
634
注意到$\mathfrak{R}(p)$是稀疏型格点，因此，$\lim_{T \to \infty}(\ln T)^{1/\alpha}p = \infty$，故由$v_T^*$的定义可得

$$P_{T,21} \leq CT^{a-1} \sum_{0 < kp \leq \epsilon} \frac{1}{(kp)^{a/2}(v_T^*)^{a}} \exp \left(- \frac{1}{8} m(kp)^a (v_T^*)^2 \right)$$

$$= CT^{a-1} \sum_{0 < kp \leq \epsilon} \frac{1}{(kp)^{a/2}(v_T^*)^{a}} \exp \left(- \frac{1}{4} m(kp(\ln T)^{1/\alpha}a) + o(1) \right)$$

$$\leq CT^{a-1} \frac{1}{[p(\ln T)^{1/\alpha}a]^{2}} \sum_{0 < k \leq \epsilon/p + 1} \exp \left(- \frac{1}{4} m(kp(\ln T)^{1/\alpha}a) + o(1) \right)$$

$$= CT^{a-1} \frac{1}{[p(\ln T)^{1/\alpha}a]^{2}} (1 + o(1))$$

$$= T^{-1} \text{ o}(1).$$

因此，当$T \to \infty$时，$P_{T,21} = o(T^{a-1})$。对第二项，使用关于 Gauss 次序统计量的比较不等式（参见文献 [4, 定理 2.4]），可得

$$P_{T,22} = \sum_{t \in \mathfrak{R}(p) \cap [0,T^a]} P\{Y_{m,n}(t) > v_T^*, Y_{m,n}(s) < v_T^*\}$$

$$\leq \sum_{t \in \mathfrak{R}(p) \cap [0,T^a]} \left[\Psi^2(v_T^*) + C(v_T^*)^{-2(m-1)} \exp \left(- \frac{m(v_T^*)^2}{1 + |\epsilon(t-s)|} \right) \right]$$

$$\leq CT^{a-1} \sum_{l \in \mathfrak{R}(p) \cap [0,T^a]} \left[\Psi^2(v_T^*) + C(v_T^*)^{-2(m-1)} \exp \left(- \frac{m(v_T^*)^2}{1 + |\epsilon(l)|} \right) \right]$$

$$\leq CT^{a-1} \frac{1}{[p(\ln T)^{1/\alpha}a]^{2}} \left[\Psi^2(v_T^*) + C(v_T^*)^{-2(m-1)} \exp \left(- \frac{m(v_T^*)^2}{1 + |\epsilon(l)|} \right) \right]$$

$$= : P_{T,221} + P_{T,222}.$$

再次使用$v_T^* \sim v_T \sim (\frac{2}{m} \ln T)^{1/2}$，可得

$$P_{T,221} \leq CT^{a-1} \frac{1}{[p(\ln T)^{1/\alpha}a]^{2}} \left[\exp \left(- \frac{1}{2} mu_T^2 \right) \right]$$

$$\leq CT^{a-1} \frac{1}{[p(\ln T)^{1/\alpha}a]^{2}} m^{-m} T^{-2}$$

$$= o(T^{a-1}),$$

$$P_{T,222} \leq CT^{a-1} \frac{1}{[p(\ln T)^{1/\alpha}a]^{2}} \left[\exp \left(- \frac{m(v_T^*)^2}{1 + \epsilon(l)} \right) \right]$$

$$\leq CT^{a-1} \frac{1}{[p(\ln T)^{1/\alpha}a]^{2}} p^{-2(m-1)} (\ln T)^{-(m-1)}.$$

条件(A.2)和$(\ln T)^{1/\alpha}p = \infty$共同蕴涵着当$T \to \infty$时，$S_{T,22} = o(T^{a-1})$。

最后，我们证明第3个论断。显然，

$$P \left\{ \max_{t \in \mathfrak{R}(p) \cap [0,T^a]} Y_{m,n}(t) > v_T, \max_{t \in \mathfrak{R}(p) \cap [0,T^a]} Y_{m,n}(t) > v_T^* \right\}$$

$$\leq \sum_{t \in \mathfrak{R}(p) \cap [0,T^a]} P\{Y_{m,n}(t) > v_T, Y_{m,n}(s) > v_T^*\}.$$
注意到 $\Psi(p)$ 是稀疏型格点，故有 $\lim_{T \to \infty} p(\ln T)^{1/\alpha} = \infty$，进而类似于 $P_{T, 21}$ 讨论可得

$$Q_{T, 21} \leq C \sum_{t \in \mathbb{Z}^n \cap [0, T^n], \rho \in \mathbb{Z}^n \cap [0, T^n], \left| t - s \right| > \varepsilon} \left[\Psi^n(v_T) \Psi^n \left(\frac{v_T^*}{4} |t - s|^2 \right) \right]$$

$$\leq C \Psi^n(v_T) \sum_{t \in \mathbb{Z}^n \cap [0, T^n], \rho \in \mathbb{Z}^n \cap [0, T^n], \left| t - s \right| > \varepsilon} \frac{1}{(kp)^{\alpha/2}(v_T^*)^{m}} \exp \left(-\frac{1}{8} m|t - s|^2 (v_T^*)^2 \right)$$

$$\leq CT^{a-1}b^{-1} \sum_{0 < k \leq T/2} \frac{1}{(kp)^{\alpha/2}(\ln T)^{m/2}} \exp \left(-\frac{1}{4} (kp)^{\alpha} \ln T \right)$$

$$\leq CT^{a-1}b^{-1} \frac{1}{(\ln T)^{1/2} p^{\alpha/2}} \sum_{0 < k \leq \lceil \epsilon/p \rceil + 1} \exp \left(-\frac{1}{4} (kp)^{\alpha} \ln T \right)$$

$$= T^{a-1}o(1)$$

对 $b > 0$ 一致成立。为了控制 $Q_{T, 22}$，再次使用关于 Gauss 次序统计量的不等式，类似于 $P_{T, 22}$ 的讨论，有

$$Q_{T, 22} = \sum_{t \in \mathbb{Z}^n \cap [0, T^n], \rho \in \mathbb{Z}^n \cap [0, T^n], \left| t - s \right| > \varepsilon} \left[\Psi^n(v_T) \Psi^n \left(\frac{v_T^*}{4} |t - s|^2 \right) \right]$$

$$\leq \sum_{t \in \mathbb{Z}^n \cap [0, T^n], \rho \in \mathbb{Z}^n \cap [0, T^n], \left| t - s \right| > \varepsilon} \left[\Psi^n(v_T) \Psi^n \left(\frac{v_T^*}{4} |t - s|^2 \right) \right]$$

$$\leq CT^{a-1}p^{-1}q^{-1} \left[\Psi^n(v_T) + C(v_T^*)^{-2(m-1)} \exp \left(-\frac{m(v_T^*)^2}{1 + \vartheta(o)} \right) \right]$$

$$= Q_{T, 221} + Q_{T, 222}$$

类似与 $P_{T, 221}$ 和 $P_{T, 222}$ 的证明，易证当 $T \to \infty$ 时，$Q_{T, 221} = o(T^{a-1})$ 和 $Q_{T, 222} = o(T^{a-1})$ 对 $b > 0$ 一致成立。引理证毕。

引理 A.2 对某个 $b > 0$，令 $q(q(T)) = b(\frac{\alpha}{\ln T})^{-1/\alpha}$。在定理 2.2 的条件下，当 $b \downarrow 0$ 时，

$$P \left\{ \max_{t \in \mathbb{Z}^n \cap [0, T^n]} Y_{m,n}(t) > v_T \right\} = T^{a-1}e^{-r+\sqrt{2mN}}(1 + o(1))$$

当 $T \to \infty$ 时，

$$P \left\{ \max_{t \in \mathbb{Z}^n \cap [0, T^n]} Y_{m,n}(t) > v_T^* \right\} = T^{a-1}e^{-r+\sqrt{2mN}}(1 + o(1))$$

当 $b \downarrow 0$ 时，

$$P \left\{ \max_{t \in \mathbb{Z}^n \cap [0, T^n]} Y_{m,n}(t) > v_T, \max_{t \in \mathbb{Z}^n \cap [0, T^n]} Y_{m,n}(t) > v_T^* \right\}$$

$$= Q_{T, 221} + Q_{T, 222}$$

$$= T^{a-1}o(1)$$
\[T^{a-1}H_{d,m,\alpha}^{\ln(H_{d,m,\alpha})+x,\ln(H_{d,m,\alpha})+y}e^{-r+\sqrt{2\tau mN}(1+o(1))}, \]

其中 \(v_T \) 和 \(v_T^* \) 的定义见 (3.4) 和 (3.5)。

证明 第一个论断即为引理 A.1 中的第一个人结论。为了方便引用与比较，我们再次陈述。注意到在定理 2.2 的条件下，\(\mathcal{R}(p) = \mathcal{R}(d(\frac{2}{m}\ln T)^{-1/\alpha}) \) (\(d > 0 \)) 是 Pickands 型格点。第 2 个论断的证明与文献 [3, 命题 2.1 和定理 4.1] 一样，仅仅只需要把 \(H_{m,\alpha} \) 用 \(H_{d,m,\alpha} \) 替换即可。为了避免重复，我们略去详细过程。

最后，我们考察第 3 个论断的证明。类似于文献 [3, 命题 1.1] 中的讨论，易证当 \(u \to \infty \) 时，

\[
\mathcal{P} \left(\max_{t \in [0,\lambda u^{-2/\alpha}]} Y_{m,n}(t) > u + \frac{x}{u}, \max_{t \in [0,\lambda u^{-2/\alpha}]} Y_{m,n}(t) > u \right) = \mathcal{H}_{d,m,\alpha}^{x,0}(\lambda)\Psi^m(u)(1+o(1)),
\]

其中 \(\mathcal{R}(d) = (dku^{-2/\alpha}) (k \in \mathbb{N}) \) 是 Pickands 型格点。

\(\mathcal{H}_{d,m,\alpha}^{x,0}(\lambda) = \int_{\mathbb{R}^m} e^{\sum_{i=1}^m w_i} \mathcal{P} \left(\sup_{t \in [0,\lambda u^{-2/\alpha}]} (\sqrt{2}B_{\alpha/2}^{(i)}(t) - t^\alpha > w_i + x), \sup_{kd \in [0,\lambda u^{-2/\alpha}]} (\sqrt{2}B_{\alpha/2}^{(i)}(kd) - (kd)^\alpha > w_i) \right) dw. \)

类似于文献 [3, 命题 1.1] 的讨论可得

\[\mathcal{H}_{d,m,\alpha}^{x,0} := \lim_{\lambda \to \infty} \mathcal{H}_{d,m,\alpha}^{x,0}(\lambda) \in (0, \infty). \]

类似于文献 [2, 定理 2.1] 的证明易得，当 \(u \to \infty \) 时，

\[
\mathcal{P} \left(\max_{t \in [0,\lambda u^{-2/\alpha}]} Y_{m,n}(t) > u + \frac{x}{u}, \max_{t \in [0,\lambda u^{-2/\alpha}]} Y_{m,n}(t) > u \right) = C_n^m \mathcal{P} \left(\max_{t \in [0,\lambda u^{-2/\alpha}]} Y_{m,n}(t) > u + \frac{x}{u}, \max_{t \in [0,\lambda u^{-2/\alpha}]} Y_{m,n}(t) > u \right)(1+o(1)),
\]

利用上述结论，类似于文献 [19, 定理 7.1 和推论 7.3] 的证明可得，当 \(T \to \infty \) 时，

\[
\lim_{b \to 0} \mathcal{P} \left(\max_{t \in [0,T^{-1/\alpha}]} Y_{m,n}(t) > v_T + \frac{x}{v_T}, \max_{t \in [0,T^{-1/\alpha}]} Y_{m,n}(t) > v_T \right) = \mathcal{P} \left(\max_{t \in [0,T^{-1/\alpha}]} Y_{m,n}(t) > v_T + \frac{x}{v_T}, \max_{t \in [0,T^{-1/\alpha}]} Y_{m,n}(t) > v_T \right) = T^{a-1} \mathcal{H}_{d,m,\alpha}^{x,0}(\lambda)\Psi^m(v_T)(1+o(1)).
\]

因此，为了完成第 3 个论断的证明，我们只需作如下的变换。利用 (3.4) 和 (3.5)，可得

\[
v_T = \frac{x + r - \sqrt{2\tau mN}}{a_{m,T}} + b_{m,T} + o(a_{m,T}^{-1})
\]

\[
= v_T^* + b_{m,T} - b_{d,m,T} + \frac{x - y}{a_{m,T}} + o(a_{m,T}^{-1})
\]

\[
= v_T^* + \frac{\ln(H_{m,\alpha}) - \ln(H_{d,m,\alpha}) + x - y}{v_T^*} + O((\ln \ln(T))^2(\ln T)^{-3/2}).
\]

637
注意到 $v_T^2 \sim \left(\frac{2}{m} \ln T\right)^{1/2}$，余项 $O(\cdot)$ 可以忽略。因而，再次使用 v_T 定义可得

$$
\lim_{t \to 0} P \left\{ \max_{t \in \Re(q) \cap [0, T_e]} Y_{m:n}(t) > v_T, \max_{t \in \Re(p) \cap [0, T_e]} Y_{m:n}(t) > v_T^* \right\}
= T^{\alpha} \sum_{d,m} \mathcal{H}_{d,m,a} Z_{d,m,a} (Y_{d,m,a})^{2/\alpha} \Psi (Y_{d,m,a}) \left(1 + o(1)\right)
= T^{\alpha- \frac{1}{2}} \sum_{d,m,a} \mathcal{H}_{d,m,a} Z_{d,m,a} \phi (Y_{d,m,a}) \left(1 + o(1)\right),
$$

其中 $Z_{d,m,a} = \ln(\mathcal{H}_{d,m,a}) - \ln(\mathcal{H}_{d,m,a}) + x - y$。最后替换定义 $\mathcal{H}_{d,m,a}$ 中的变量可得 $\frac{Z_{d,m,a}}{y/a} \mathcal{H}_{d,m,a}$，注意到 v_T 定义可得 $\mathcal{H}_{d,m,a}$，而这就完成了引理的证明。

附录 B

本小节给出 3 个引理，它们在引理 3.3 证明中起重要作用。回顾 $u_T = b_{m,T} + x/a_{m,T}, u_T^* = b_{m,T}^*$，其中对稀疏型格点，$b_{m,T} = b_{m,T}^*$；对 Pickands 型格点，$b_{m,T} = b_{d,m,T}$。另外，$\rho(T)(t,s) = hr(\{t - s\} + (1 - h)\rho(t,s), h \in [0, 1] \}$，令

$$
\theta(t,s) = \max\{|r(t-s)|, |\rho(t,s)|\}
$$

和

$$
\theta(z) = \sup_{|s-t| \leq z} \{\theta(t,s)\}.
$$

由条件 (1.1) 易知，对任意的 $\varepsilon > 0$ 和充分大的 T，有 $\theta(\varepsilon) < 1$。进而，我们可以选择常数 a 和 c，满足对充分大的 T 和某个 $\varepsilon > 0$，有

$$
0 < c < a < \frac{1 - \theta(\varepsilon)}{1 + \theta(\varepsilon)} < 1.
$$

(B.1)

再次由条件 (1.1) 可知，对所有 $|s - t| \leq \varepsilon < 2^{-1/\alpha}$，有

$$
\frac{1}{2} |s - t|^\alpha \leq 1 - r(s - t) \leq 2 |s - t|^\alpha
$$

(B.2)

成立。

引理 B.1 在引理 3.3 的条件下，当 $T \to \infty$ 时,

$$
\sum_{\omega \in \Re(q) \cap [0, T_e] \cap \{0\} \cup \Omega_{z}} |r(t-s) - \rho(s,t)| \int_0^1 \frac{u_T^{2(m-1)}}{(1 - r^{(h)}(t,s))^{m/2}} \exp \left(- \frac{mu_T^2}{1 + r^{(h)}(t,s)} \right) dh \to 0.
$$

(B.3)

证明 注意在引理 3.3 的条件下 $\Re(q)$ 是 Pickands 型格点。首先考虑 s 和 t 属于同一个区间 O_q，把 (B.3) 左端作如下分割:

$$
\sum_{\omega \in \Re(q) \cap [0, T_e] \cap \{0\} \cup \Omega_{z}} + \sum_{\omega \in \Re(q) \cap [0, T_e] \cap \{0\} \cup \Omega_{z}} =: J_{T,1} + J_{T,2}.
$$

(B.4)

对于 $J_{T,1}$，注意到 $g(t,s) - r(t-s) = \rho(T)(1 - r(t-s))$。利用条件 (1.1)，我们可以选择足够小的 $\varepsilon > 0$ 使得对充分大的 T 以及所有满足 $|t-s| \leq \varepsilon$ 的 s 和 t，$g(t,s) = r(t-s) + (1 - r(t-s))\rho(T) \sim r(t-s)$ 成立。由 u_T 定义可得

$$
\frac{u_T^2}{m} = \frac{2}{m} \ln T + \frac{2}{m} \ln[(\ln T)^{1/2} - m/2] + O(1).
$$

(B.5)
进而有

$$J_{T,1} \leq C \sum_{t \in \mathbb{R}(q) \cap [0,T],|t| < \epsilon} |r(t) - s| - g(s,t)| \frac{u_T^{2(m-1)}}{(1 - r(|t - s|))(1 + r(|t - s|))} \exp \left(- \frac{m u_T^2}{1 + r(|t - s|)} \right)$$

$$= C T b^{-1} u_T^{2/2} \rho(T) u_T^{2(m-1)} \exp \left(- \frac{m u_T^2}{2} \right) \sum_{t \in \mathbb{R}(q) \cap [0,T],|t| < \epsilon} (1 - r(t))^{1-m/2} \exp \left(- \frac{m(1 - r(t)) u_T^2}{2(1 + r(t))} \right).$$

利用 (B.2) 和 (B.5) 结合 $\rho(T) = r/\ln T = O(u_T^{-2})$, 有

$$J_{T,1} \leq C b^{-1} u_T^{2(m-1)} \sum_{t \in \mathbb{R}(q) \cap [0,T],|t| < \epsilon} \sqrt{2} |t|^{\alpha - \frac{m\alpha}{2}} \exp \left(- \frac{m |t|^\alpha u_T^2}{8} \right)$$

$$\leq C b^{-1} u_T^{2(m-1)} \sum_{t \in \mathbb{R}(q) \cap [0,T],|t| < \epsilon} \sqrt{2} |t|^{\alpha - \frac{m\alpha}{2}} e^{-\frac{1}{4} m(kb)^\alpha}$$

$$\leq C b^{-1} u_T^{2(m-1)}. \quad \text{(B.6)}$$

这表明，当 $T \to \infty$ 时，$J_{T,1} \to 0$ 对 $b > 0$ 一致成立。利用事实 $u_T \sim (\frac{2}{\ln T})^{1/2}$, 我们有

$$J_{T,2} \leq C u_T^{-2} \sum_{t \in \mathbb{R}(q) \cap [0,T],|t| < \epsilon} \exp \left(- \frac{m u_T^2}{1 + r(|t - s|)} \right)$$

$$\leq C T^{1 + a} b^{-2} u_T^{2(m-1)} \exp \left(- \frac{m u_T^2}{1 + \theta(\epsilon)} \right)$$

$$\leq C T^{1 + a} b^{-2} u_T^{2(m-1)} (T)^{-\frac{2}{1 + \theta(\epsilon)}}$$

$$\leq C T \exp \left(- \frac{d(\epsilon)}{1 + \theta(\epsilon)} \right) b^{-2} (\ln T)^{2/\alpha - m + 1}. \quad \text{(B.7)}$$

注意到 $a < \frac{1 - \theta(\epsilon)}{1 + \theta(\epsilon)}$, 所以，当 $T \to \infty$ 时，$J_{T,2} \to 0$ 对 $b > 0$ 一致成立。

其次，考虑情形 $t \in O_i$ 和 $s \in O_j, i \neq j$. 注意当 $s \in O_i$ 且 $t \in O_j (i \neq j)$ 时，$|t - s| \geq T^\epsilon, g(s,t) = \rho(T)$. 选取 β 使得 $0 < \alpha < a < \beta < \frac{1 - \theta(\epsilon)}{1 + \theta(\epsilon)}$, 并把 (B.3) 左端作如下分割:

$$\sum_{t \in \mathbb{R}(q) \cap [0,T],|t| < \epsilon} + \sum_{t \in \mathbb{R}(q) \cap [0,T],|t| < \epsilon} =: S_{T,1} + S_{T,2}. \quad \text{(B.8)}$$

对于 $S_{T,1}$, 类似于 (B.6) 的讨论可知

$$S_{T,1} \leq C u_T^{-2} \sum_{t \in \mathbb{R}(q) \cap [0,T],|t| < \epsilon} \exp \left(- \frac{m u_T^2}{1 + r(|t - s|)} \right)$$

$$\leq C T^{1 + \beta} b^{-2} u_T^{2(m-1)} \exp \left(- \frac{m u_T^2}{1 + \theta(\epsilon)} \right)$$

$$\leq C T^{1 + \beta} b^{-2} u_T^{2(m-1)} (T)^{-\frac{2}{1 + \theta(\epsilon)}}$$

$$\leq C T^{\beta} \exp \left(- \frac{d(\epsilon)}{1 + \theta(\epsilon)} \right) b^{-2} (\ln T)^{2/\alpha - m + 1}. \quad \text{(B.9)}$$

进而注意到 $\beta < \frac{1 - \theta(\epsilon)}{1 + \theta(\epsilon)}$, 我们有当 $T \to \infty$ 时，$S_{T,1} \to 0$ 对 $b > 0$ 一致成立。对 $S_{T,2}$, 我们需要更精细的估计。由条件 (1.2) 可知，存在常数 $C > 0$ 和 $K > 0$, 使得对充分大 T 和 $t \geq C$, 有

$$\theta(t) \ln t \leq K.$$
因此，对充分大的 T 和满足 $t \geq T^3$ 的 t, 有 $\theta(t) \leq K/\ln(T^3)$. 进而利用 (B.5), 可得

$$T^2 u_T^{4/\alpha}(\ln T)^{-m} \exp \left(- \frac{m u_T^2}{1 + \theta(T^3)} \right)$$

$$\leq T^2 u_T^{4/\alpha}(\ln T)^{-m} \exp \left(- \frac{m u_T^2}{1 + K/\ln(T^3)} \right)$$

$$\leq O(1) T^2 (\ln T)^{2/\alpha} (T^{-2}(\ln T)^{-(2/\alpha - m)})^{1 + K/\ln(T^3)}$$

$$\leq O(1) T(2K/\ln(T^3))^{1/(1 + K/\ln(T^3))} (\ln T)^{(2/\alpha - m)K/\ln(T^3)}(1 + K/\ln(T^3))$$

$$= O(1). \quad (B.9)$$

因此，类似于文献 [21, 引理 6.4.1] 的证明，可得

$$S_{T,2} \leq C u_T^{-2(m-1)} \sum_{t \in \mathcal{Q} \cap [0,T)} |r(t - s)| - \rho(T) | \exp \left(- \frac{m u_T^2}{1 + \theta(T^3)} \right)$$

$$\leq C T b^{-1} u_T^{2/\alpha} u_T^{2(m-1)} \exp \left(- \frac{m u_T^2}{1 + \theta(T^3)} \right) \sum_{t \in \mathcal{Q} \cap [0,T], t > T^3} |r(t) - \rho(T)|$$

$$= C T^2 (\ln T)^{-m} u_T^{4/\alpha} \exp \left(- \frac{m u_T^2}{1 + \theta(T^3)} \right) b^{-1} \ln T \sum_{t \in \mathcal{Q} \cap [0,T], t > T^3} |r(t) - \rho(T)|$$

$$\leq C b^{-1} \ln T \sum_{t \in \mathcal{Q} \cap [0,T], t > T^3} |r(t)|$$

$$\leq C b^{-1} \frac{1}{\beta T u_T^{2/\alpha}} \sum_{t \in \mathcal{Q} \cap [0,T], t > T^3} |r(t)| \ln t - r + C b^{-1} \frac{r}{T u_T^{2/\alpha}} \sum_{t \in \mathcal{Q} \cap [0,T], t > T^3} \left| 1 - \frac{\ln T}{\ln t} \right|$$

$$= O \left(b^{-1} \frac{r}{\ln T} \int_0^1 |\ln x| dx \right). \quad (B.10)$$

利用条件 (1.2) 可得当 $T \to \infty$ 时, (B.10) 右端第一项趋于 0 对 $b > 0$ 一致成立. 类似地, 使用一个积分估计可得

$$C b^{-1} \frac{r}{T u_T^{2/\alpha}} \sum_{t \in \mathcal{Q} \cap [0,T], t > T^3} \left| 1 - \frac{\ln T}{\ln t} \right| \leq C b^{-1} \frac{r}{T u_T^{2/\alpha}} \frac{1}{\ln T^3} \sum_{t \in \mathcal{Q} \cap [0,T], t > T^3} \left| \ln t - \ln T \right|$$

$$= O \left(b^{-1} \frac{r}{\ln T^3} \int_0^1 |\ln x| dx \right).$$

这表明，当 $T \to \infty$ 时, $S_{T,2} \to 0$ 对 $b > 0$ 一致成立. 引理完毕.

引理 B.2 在引理 3.3 的条件下, 当 $T \to \infty$ 时,

$$\sum_{t \in \mathcal{Q} \cap [0,T], t > T^3} |r(t - s)| - \rho(s, t) | \int_0^1 u_T^{-2(m-1)} \frac{1}{(1 - r^h(t, s))} \exp \left(- \frac{m (u_T^2)}{1 + r^h(t, s)} \right) dh \to 0. \quad (B.11)$$

引理 B.2 证明与引理 B.1 类似，略去.

引理 B.3 在引理 3.3 的条件下, 当 $T \to \infty$ 时,

$$\sum_{t \in \mathcal{Q} \cap [0,T], t > T^3} |r(t - s)| - \rho(s, t) | \int_0^1 u_T^{-2(m-1)} \frac{1}{(1 - r^h(t, s))} \exp \left(- \frac{m (u_T^2 + u_s^2)}{1 + r^h(t, s)} \right) dh \to 0. \quad (B.12)$$
证明 注意在引理 B.3 中，\(R(p) \) 可以是稀疏型格点也可以是 Pickands 型格点。我们只给出稀疏型情形的证明 \(R(p) \)，因为 Pickands 型的证明是类似的。首先，考虑 \(s \) 和 \(t \) 属于同一个区间 \(O \)，把 (B.12) 作如下分割：

\[
\sum_{t \in [q(p)]^{(1)}, t \in [q(p)]^{(2)}} + \sum_{t \notin [q(p)]^{(1)}, t \notin [q(p)]^{(2)}} =: W_{T,1} + W_{T,2}.
\] (B.13)

对于 \(W_{T,1} \)，注意到对于这种情形，由 \(\xi(t) \) 定义可得 \(g(t, s) - r(t-s) = \rho(T)(1-r(t-s)) \)。由条件 (1.1) 可知，我们可以选择足够小的 \(\varepsilon > 0 \) 使得对充分大的 \(T \) 和满足 \(|t-s| \leq \varepsilon \) 的 \(s \) 和 \(t \), \(g(t, s) = r(t-s) \) 成立。由 \(u_T \) 和 \(u_T^* \) 定义易得

\[
w_T^2 := \frac{1}{2}(u_T^2 + (u_T^*)^2) = \frac{2}{m} \ln T + \frac{1}{m} \ln(\ln T)^{1/\alpha - m/2} + \frac{1}{m} \ln(p^{-1}(\ln T)^{-m/2}) + O(1).
\] (B.14)

进而有

\[
W_{T,1} \leq C(u_T^{-2m-1}) \sum_{t \in [q(p)]^{(1)}, t \in [q(p)]^{(2)}} |r(t-s) - g(s, t)| \frac{1}{(1-r(t-s))^{m/2}} \exp \left(-\frac{m w_T^2}{m^2} \right)
\]

\[
\leq C T^{-1} u_T^{-2m-1} \rho(T) \exp \left(-\frac{m w_T^2}{2} \right) \sum_{t \notin [q(p)]^{(1)}, t \in [q(p)]^{(2)}} (1-r(t))^{-1/2} \exp \left(-\frac{m(1-r(t)) w_T^2}{2} \right).
\]

然后利用 (B.2) 和 (B.14) 可得

\[
W_{T,1} \leq C p^{-1/2} u_T^{-2m-1} \sum_{t \in [q(p)]^{(1)}, t \in [q(p)]^{(2)}} \ |t|^{1/\alpha - m/2} \exp \left(-\frac{|t|^\alpha w_T^2}{8} \right).
\]

\[
\leq C(p \ln T)^{1/\alpha - 1/2} u_T^{-2m}. \]

注意到，对稀疏型格点，\(p(\ln T)^{1/\alpha} \to \infty \)，所以，当 \(T \to \infty \) 时，\(W_{T,1} \to 0 \) 对 \(b > 0 \) 一致成立。利用事实

\[
w_T \sim (\frac{2}{m} \ln T)^{1/2},
\]

可得

\[
W_{T,2} \leq C \sum_{t \in [q(p)]^{(1)}, t \in [q(p)]^{(2)}} \exp \left(-\frac{w_T^2}{1+r(t-s)} \right)
\]

\[
\leq C T^{1+a} u_T^{-2/\alpha} p^{-1} b^{-1} w_T^{-2(m-1)} \exp \left(-\frac{w_T^2}{1+r(\varepsilon)} \right)
\]

\[
\leq C T^{1+a} u_T^{-2/\alpha} p^{-1} b^{-1} w_T^{-2(m-1)} \exp \left(-\frac{w_T^2}{2 \varepsilon} \right)
\]

\[
\leq C T^{1+a} u_T^{-2/\alpha} p^{-1} b^{-1} w_T^{-2(m-1)} \exp \left(-\frac{w_T^2}{2 \varepsilon} \right)
\]

因此，注意到 \(a < \frac{1-g(\varepsilon)}{1+|\theta(\varepsilon)|} \)，可得当 \(T \to \infty \) 时，\(W_{T,2} \to 0 \) 对 \(b > 0 \) 一致成立。余下的证明与引理 B.1 类似，故略去。

附录 C

本小节给出一个关于 Gauss 次序统计量的比较不等式，它是文献 [4, 定理 2.4] 的推广。令 \(X = (X_d)_{d \times n} \) 和 \(Y = (Y_d)_{d \times n} \) 表示两个元素为标准正态随机变量的 Gauss 随机矩阵，用 \(\Sigma^{(1)} = (\sigma_{d,j,k}^{(1)})_{d \times d \times d} \)
和 \(\Sigma^{(0)} = (\sigma_{d,jk}^{(0)})_{dn \times dn} \) 分别表示 \(\mathcal{X} \) 和 \(\mathcal{Y} \) 的协方差矩阵，即 \(\sigma_{d,jk}^{(0)} := EX_{d}X_{jk}, \sigma_{d,jk}^{(0)} := EY_{d}Y_{jk}, \) \(1 \leq i, j \leq d, 1 \leq l, k \leq n \)。令 \(X_{(m)} = (X_{1(m)}, \ldots, X_{d(m)}) (1 \leq r \leq n) \) 表示由 \(\mathcal{X} \) 生成的 Gauss 次序统计向量

即

\[
X_{i(1)} = \min_{1 \leq l \leq n} X_{il} \leq \cdots \leq X_{i(m)} \leq \cdots \leq \max_{1 \leq l \leq n} X_{il} = X_{i(n)}, \quad 1 \leq i \leq d.
\]

类似地，\(Y_{(m)} = (Y_{1(m)}, \ldots, Y_{d(m)}) \) 表示由 \(\mathcal{Y} \) 生成的 Gauss 次序统计向量。假设 \(\mathcal{X} \) 和 \(\mathcal{Y} \) 内部行与行之间是相互独立的，即对某些 \(\sigma_{ij}^{(0)}, 1 \leq i, j \leq d, \) \(\kappa = 0, 1, \) 有

\[
\sigma_{ij}^{(0)} = \sigma_{ij}^{(k)} = \delta_{ij}, \quad 1 \leq i, j \leq d, \quad 1 \leq l, k \leq n, \quad \kappa = 0, 1,
\]

引理 C.1 设 \(u_{T} = (u_{T1}, \ldots, u_{Td}) \)。假设当 \(T_{i} \to \infty \) 时，\(u_{T1} \to \infty \) 且对所有的 \(i, j \in \{1, 2, \ldots, d\}, \) \(u_{T1}/u_{Tj} \to 1 \), 则对充分大的 \(T \), 有

\[
|P(X_{(m)} \leq u_{T}) - P(Y_{(m)} \leq u_{T})| \\
\leq C u_{T1}^{-2(m-1)} \sum_{1 \leq i < j \leq d} |\sigma_{ij}^{(0)} - \sigma_{ij}^{(1)}| \int_{0}^{1} (1 - \delta_{ij}^{(h)})^{-m/2} \exp \left(\frac{-m(u_{T1}^{2} + u_{Tj}^{2})}{2(1 + |\delta_{ij}^{(h)}|)} \right) dh,
\]

其中 \(\delta_{ij}^{(h)} = h \sigma_{ij}^{(0)} + (1 - h) \sigma_{ij}^{(1)} \).

证明 引理的证明与文献 [4, 定理 2.4] 类似。设 \((Z_{i}, Z_{j}) \) 是具有协方差 \(|\delta_{ij}^{(h)}| \) 的标准化的二元正态随机向量。类似于文献 [21, 第 225 页] 的证明可得 (对充分大的 \(T_{i} \))

\[
P(Z_{i} > u_{T1}, Z_{j} > u_{Tj}) \leq \frac{C}{u_{T1}(u_{Tj} - |\delta_{ij}^{(h)}|/u_{T1})} \phi(u_{T1}, u_{Tj}; |\delta_{ij}^{(h)}|) \leq \frac{C}{u_{T1}^{2}} \phi(u_{T1}, u_{Tj}; |\delta_{ij}^{(h)}|),
\]

其中 \(\phi(u, v, r) \) 表示二元正态随机向量的概率密度函数。利用上式替换文献 [4] 中定理 2.4 的证明的 (4.28)，即可完成引理 C.1 的证明。 \(\square \)

On the maxima of continuous and discrete time Gaussian order statistics processes

Zhongquan Tan

Abstract In this paper, we study the asymptotic relation between the maximum of a continuous order statistics process formed by stationary Gaussian processes and the maximum of this process sampled at discrete time points. It is shown that, these two maxima are asymptotically independent when the Gaussian processes are weakly dependent and the discrete points are sufficiently sparse, while for other cases, these two maxima are asymptotically dependent.

Keywords Gaussian processes, continuous time process, discrete time process, extreme values, order statistics processes

MSC(2010) 60F05, 60G15
doi: 10.1360/N012017-00210