Supporting Information

Exploring the Mechanism of Covalent Inhibition: Simulating the Binding Free Energy of α-Ketoamide Inhibitors of the Main Protease of SARS-CoV-2

Dibyendu Mondal, Arieh Warshel*

Department of Chemistry, University of Southern California, 3620 McClintock Avenue, Los Angeles, California 90089, United States

*warshel@usc.edu

S1. The Empirical Valence Bond (EVB) Method

The theoretical background of the EVB method has been extensively discussed in many of our previous works.1-2 Here we are mentioning only a few aspects of the method to explain the functional forms of the EVB potentials and its parameters.

The EVB method is used to study the energetics of a chemical process and the reacting system is generally represented as a superposition of two (or more) diabatic states. Each state is expressed as a combination of two different force fields. Those are a) empirical quantum mechanical and b) molecular mechanics (MM) force fields.

In the case of two states representation, the Hamiltonian of the reacting system can be defined as

$$ H_{EVB} = \begin{bmatrix} H_{ii} & H_{ij} \\ H_{ij} & H_{jj} \end{bmatrix} $$

(S1)

where the diagonal terms represent the potential energy of the diabatic states and the off-diagonal term (H_{ij}) denotes the extent of coupling between these states. H_{ii} can be approximated as a function of the reacting bonds which are being broken either in the i^{th} or j^{th} state. The solution of the corresponding secular equation gives the ground state energy surface of the system.

The potential energy function (H_{ii}) of a diabatic state i can be expressed as:

$$ H_{ii} = \alpha_{gas}^i + U_{intra}(R,Q) + U_{ss}(R,Q,r,s) + U_{ss}(r,q) $$

(S2)

In eq. S2, R and r denote, the atomic coordinates of a fragment of the reaction center (solute) in the i^{th} diabatic state and the coordinates of the atoms in the rest of the system, respectively. The
partial charges of the solute and rest of the atoms in the system are denoted with Q and q in eq. S2. The first term in eq. S2 is the gas phase energy of the i^{th} diabatic state. This energy is defined as the energy of the reacting system wherein all fragments are assumed to be infinitely separated. The value of this energy is parameterized based on energetics of a reference reaction. If the activation free energy and the reaction free energy of the reference reaction are obtained from quantum mechanics (QM) based calculations or experiments, then our calculated energetics of the reference reaction can be matched with experimental or QM results by parameterizing the gas phase energy and the coupling constant (H_{ij}) simultaneously. In the EVB formalism, it is assumed that the α_{gas}^i and H_{ij} values are constant between a reference and a protein reaction.

The term U_{intra} in eq. S2 represents the intramolecular potential of the solute. In this work, the bonds that were formed or broken during a chemical reaction were represented using a Morse potential of the following form:

$$V_b = D_M [1 - e^{-\gamma (b - b_0)}]^2$$ \hspace{1cm} (S3)

The variable b in eq. S3 denotes the bonding distance. All the other bonds in the solute were expressed by harmonic potentials. The other bonding parameters such as bond-angle, proper dihedral and improper dihedral angles were represented with MM force field and the values were taken from the ENZIMIX force field. The non-bonding interactions among the solute atoms are taken in two separate ways whether the pair of atoms: (a) never form bonds in any diabatic states, and (b) form bonds only in one of the diabatic states. While in first case 12-6 Lennard Jones potentials were used, for the second case, an exponential function as in eq. S4 was used.

$$V_{nb} = C e^{-\rho r_{ij}}$$ \hspace{1cm} (S4)

r_{ij} in eq. S4 denotes the distance between two solute atoms. All the parameters, D_M, γ, b_0, C and ρ in eq. S3 and S4 are reported in Table S2.1-S2.4.

The last two terms of eq. S2, U_{Ss} and U_{ss} denote the intermolecular interaction potential between the solute (S) and the surrounding (s) atoms; and between all surrounding atoms (surrounding-surrounding ($s-s$)), respectively.

To calculate the complete reaction profile (see eq. S1), the system should move from one diabatic state to the other. This is achieved by running a free energy perturbation (FEP) based molecular
dynamic simulation on a mapping potential, ϵ_m. The mapping potential is represented as a linear combination of the diabatic potentials of the starting state (state 1), and the final state (state 2) of the reaction. Thus, for a two-states representation of the reaction, the mapping potential takes the form:

$$\epsilon_m = \lambda_m \epsilon_1 + (1 - \lambda_m) \epsilon_2 \text{ where } 0 \leq \lambda_m \leq 1 \quad (S5)$$

The mapping parameter, λ_m varies between 0 and 1 while the system is changing from the initial state to the final state.

The associated change in the free energy $\Delta G(\lambda_m)$ can be expressed as:

$$\Delta G(\lambda_m) = \Delta G(\lambda_0 \rightarrow \lambda_m) = \sum_{i=0}^{m-1} \delta G(\lambda_i \rightarrow \lambda_{i+1}) \quad (S6)$$

where

$$\delta G(\lambda_i \rightarrow \lambda_{i+1}) = -\left(\frac{1}{\beta}\right) \ln \left[\langle e^{(-\epsilon_i - \epsilon_{i+1})/\beta} \rangle_i \right] \quad (S7)$$

In S7, $\beta = 1/k_B T$, k_B is the Boltzmann constant, and T is the temperature, kept constant throughout the simulations. The angular bracket ($\langle \rangle_i$) operator averages the quantity placed within the brackets, with respect to the mapping potential ϵ_i.

Finally, the activation free energy of the reaction, Δg^\neq is calculated, using the following free energy perturbation/umbrella sampling (FEP/US) equation:

$$\exp[-\Delta g(X^n)\beta] = \exp[-\Delta G(\lambda_m)\beta] \langle \exp[-\left(E_g(X^n) - \epsilon_m(X^n)\right)\beta] \rangle_m \quad (S8)$$

where X^m is the reaction coordinate, taken in terms of a given energy gap $\epsilon_2 - \epsilon_1$.

Figure S1. Depiction of all the chemical groups included in region I of different EVB simulations. The Arabic numbers designate all the atoms in region I of the EVB simulations. Note that not all the depicted atoms were included in region I of every EVB simulations (see main text).

S2. EVB parameters

Table S2.1. The Partial Charges of Region I Atoms and All the EVB Parameters Used for the First Proton Transfer (PT1) Step

Residue	Atom No.	Partial Charges	Atom Type		
		Reactant State	Product State	Reactant State	Product State
cysteine	1	-0.138	0.243	C0	C0
	2 and 3	0.155	-0.009	H0	H0
	4	-0.412	-1.225	S0	S-
	5	0.241	0.423	H0	H0
	6	-0.445	-0.382	C0	C0
	7 and 8	0.149	0.151	H0	H0
	9	0.264	0.383	C+	C+
histidine	10	-0.439	-0.273	N0	N0
	11	0.402	0.434	H0	H0
	12	0.288	-0.046	C+	C+
----	---	---	----	----	
13	0.122	0.258	H0	H0	
14	-0.672	-0.161	N-	N0	
15	0.037	-0.219	C+	C+	
16	0.145	0.281	H0	H0	
17	0.407	0.407	C+	C+	
18	-0.407	-0.407	O-	O-	
19	0.592	0.592	C+	C+	
20	-0.592	-0.592	O-	O-	

Inhibitor

non-bonding exponential

Atom Type	C (kcal/mol)	\(\rho(\text{Å}^{-1}) \)
C0	91.0	2.5
H0	5.0	2.5
S0	53.0	2.5
S-	90.0	2.5
C+	91.0	2.5
N0	60.0	2.5
N-	60.0	2.5
O-	90.0	2.5

Morse potential

Atom pair	D (kcal/mol)	\(\gamma(\text{Å}^{-1}) \)	\(b_0 (\text{Å}) \)
S0-H0	94.0	1.4	1.345
N0- H0	100.0	2.0	0.988

EVB coupling parameters

off-diagonal (kcal/mol)	gas phase shift (kcal/mol)				
Residue	Atom No.	Partial Charges		Atom Type	
-------------	----------	-----------------	-------------	-----------------	-------------
		Reactant State	Product State	Reactant State	Product State
PT1 (no inhibitor)	-	-	-	-	-
PT1 (with inhibitor)	-	-	-	-	-
cysteine	1	0.243	-0.010	C0	C0
	2 and 3	-0.009	0.060	H0	H0
	4	-1.225	-0.410	S-	S0
	5	0.423	0.423	H0	H0
histidine	6	-0.382	-0.382	C0	C0
	7 and 8	0.151	0.151	H0	H0
	9	0.383	0.383	C+	C+
	10	-0.273	-0.273	N0	N0
	11	0.434	0.434	H0	H0
	12	-0.046	-0.046	C+	C+
	13	0.258	0.258	H0	H0
	14	-0.161	-0.161	N0	N0
	15	-0.219	-0.219	C+	C+
	16	0.281	0.281	H0	H0
Inhibitor	17	0.407	0.11	C+	C0
	18	-0.407	-1.00	O-	O-
	19	0.592	0.950	C+	C+
	20	-0.592	-0.760	O-	O-

Table S2.2. The Partial Charges of Region I Atoms and All the EVB parameters Used for the Nucleophilic Attack (NA) Step
non-bonding exponential

Atom Type	C (kcal/mol)	ρ (Å⁻¹)
C0	91.0	2.5
H0	5.0	2.5
S0	53.0	2.5
S⁻	90.0	2.5
C⁺	91.0	2.5
N0	60.0	2.5
N⁻	60.0	2.5
O⁻	90.0	2.5

Morse potential

Atom pair	D_M (kcal/mol)	γ (Å⁻¹)	b0 (Å)
S0-C0	90.0	1.4	1.86

EVB coupling parameters

\[H_{ij} = \begin{cases} \text{off-diagonal} & \text{gas phase shift (kcal/mol)} \\ Ae^{-\mu(r-r_0)} \end{cases} \]

	A= 78.5	-118.0
NA (HIS41 not in region I)	µ=0.1; r₀=1.86 Å	
	A= 85.5	-157.0
NA (HIS41 in region I)	µ=0.1; r₀=1.86 Å	

Table S2.3. The Partial Charges of Region I Atoms and All the EVB Parameters Used for the Concerted (PT1 and NA) Reaction
Atom Type	C (kcal/mol)	\(\rho (\text{Å}^{-1}) \)
C0	91.0	2.5
H0	5.0	2.5
S0	53.0	2.5
C+	91.0	2.5
N0	60.0	2.5

non-bonding exponential

Inhibitor
Morse potential

Atom pair	\(D_M \) (kcal/mol)	\(\gamma \) (\(\text{Å}^{-1} \))	\(b_0 \) (\(\text{Å} \))
S0-H0	94.0	1.4	1.345
N0- H0	100.0	2.0	0.988
S0-C0	90.0	1.4	1.86

EVB coupling parameters

\[
H_{ij} = A e^{-\mu(r-r_0)}
\]

- gas phase shift (kcal/mol)

\[
A = 82.5
\]

\[
\mu = 0.1; \quad r_0 = 1.86 \text{ Å}
\]

Table S2.4. The Partial Charges of Region I Atoms and All the EVB Parameters Used for the Second Proton Transfer (PT2) Step

Residue	Atom No.	Partial Charges	Atom Type		
		Reactant State	Product State	Reactant State	Product State
cysteine	1	-0.010	-0.052	C0	C0
	2 3	0.060	0.084	H0	H0
	4	-0.410	-0.218	S0	S0
	5	0.423	0.392	H0	H0
	6	-0.382	-0.445	C0	C0
	7 8	0.151	0.149	H0	H0
histidine	9	0.383	0.264	C+	C+
	10	-0.273	-0.439	N0	N0
	11	0.434	0.402	H0	H0
	12	-0.046	0.288	C+	C+
Inhibitor	C (kcal/mol)	\(\rho \) (Å)			
----------	--------------	-----------------			
C0	91.0	2.5			
H0	5.0	2.5			
S0	53.0	2.5			
C+	91.0	2.5			
N0	60.0	2.5			
N-	60.0	2.5			
O-	90.0	2.5			
O0	53.0	2.5			

Morse potential

Atom pair	\(D_M \) (kcal/mol)	\(\gamma \) (Å\(^{-1}\))	\(b_0 \) (Å)
N0- H0	100.0	2.0	0.988
O0-H0	102.0	2.0	0.980

EVB coupling parameters

off-diagonal (kcal/mol)	gas phase shift (kcal/mol)
-	-16.0
S3. Semi-microscopic Version of the Protein Dipole Langevin Dipole (PDLD) Method for Noncovalent Binding Free Energy Calculations

We have used the semi-microscopic version of the Protein Dipole Langevin Dipole method in the linear response approximation, with a scaled non electrostatic term (PDLD/S-LRA/β) to calculate the non-covalent binding free energies of the Mpro-13b complexes. The thermodynamic cycle shown in Figure 4 of ref. 5 is used to calculate the binding free energies. The effective PDLD/S potential for a single protein-inhibitor configuration in bound (B) and unbound (UB) states are calculated using the following equations:

\[U_{elec, l}^P = \left(\Delta G_{sol}^{l+p} - \Delta G_{sol}^{l+p} \right) \left(\frac{1}{\varepsilon_p} - \frac{1}{\varepsilon_w} \right) + \Delta G_{sol}^l \left(1 - \frac{1}{\varepsilon_p} \right) + \frac{U_{q\mu}^l}{\varepsilon_p} + \frac{U_{intra}^l}{\varepsilon_p} \]

\[U_{elec, w}^w = \left(\Delta G_{sol}^l \left(\frac{1}{\varepsilon_p} - \frac{1}{\varepsilon_w} \right) + \Delta G_{sol}^l \left(1 - \frac{1}{\varepsilon_p} \right) + \frac{U_{intra}^l}{\varepsilon_p} \right)_{UB} \]

where, \(\Delta G_{sol}^l \) denotes the solvation free energy of any group of atoms of the protein(p) (or inhibitor (l)) “l” in water. \(\varepsilon_w \) and \(\varepsilon_p \) denote the dielectric constant of water and protein respectively. The significance of \(\varepsilon_p \) can be found in ref 6. In this work \(\varepsilon_p=4 \) has been used. \(U_{q\mu}^l \) is the electrostatic interaction between the inhibitor charges (q) and the protein dipoles (\(\mu \)) in vacuum (a standard PDLD notation). \(U_{intra}^l \) is the intramolecular electrostatic interaction for l. The uncharged state (nonpolar) of the inhibitor is denoted with \(l' \).

The electrostatic interaction energy \(U_{elec, l} \) in eqs. S9 and S10 are obtained from a single configuration of protein-inhibitor complex. As a result, that energy does not properly represent the protein reorganization. Thus, the linear response approximation (LRA) is used to capture the protein reorganization. In this approximation, we calculate the average of the effective potential over the trajectories of the protein-inhibitor complex in their polar form (l) as well as nonpolar form (\(l' \)). Thus, in PDLD/S-LRA/β the electrostatic part of the binding free energy (\(\Delta G_{bind}^{elec} \)) can be expressed as,

\[\Delta G_{bind}^{elec} = \frac{1}{2} \left[\langle U_{elec, l}^P \rangle_l + \langle U_{elec, l}^P \rangle_{l'} - \langle U_{elec, l}^w \rangle_l - \langle U_{elec, l}^w \rangle_{l'} \right] \]
where the term $\langle U_{\text{elec}, l}^P \rangle_t$ designates an average of the effective potential $U_{\text{elec}, l}^P$ over a protein configuration generated with respect to the protein force field, which includes zero partial charges of the inhibitor.

Additionally, the non-electrostatic energy part of the binding free energy is calculated by scaling the van der waals (vdw) interaction energy of the polar form of the inhibitor with $\beta=0.25$. Thus, the following equation is used to calculate the binding free energy using the PDLD/S-LRA/β method:

$$
\Delta G_{\text{bind}}^{\text{PDLD/S-LRA}/\beta} = \Delta G_{\text{bind}}^{\text{elec}} + \beta \left[\langle U_{\text{vdw}, l}^P \rangle_t - \langle U_{\text{vdw}, l}^w \rangle_t \right]
$$

(S12)

References

1. Warshel, A.; Weiss, R. M., An Empirical Valence Bond Approach for Comparing Reactions in Solutions and in Enzymes. *J Am Chem Soc* 1980, 102 (20), 6218-6226.
2. Kamerlin, S. C. L.; Warshel, A., The empirical valence bond model: theory and applications. *Wires Comput Mol Sci* 2011, 1 (1), 30-45.
3. Lee, F. S.; Chu, Z. T.; Warshel, A., Microscopic and Semimicroscopic Calculations of Electrostatic Energies in Proteins by the Polaris and Enzymix Programs. *Journal of Computational Chemistry* 1993, 14 (2), 161-185.
4. Singh, N.; Warshel, A., Absolute binding free energy calculations: On the accuracy of computational scoring of protein-ligand interactions. *Proteins* 2010, 78 (7), 1705-1723.
5. Sham, Y. Y.; Chu, Z. T.; Tao, H.; Warshel, A., Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. *Proteins-Structure Function and Genetics* 2000, 39 (4), 393-407.
6. Schutz, C. N.; Warshel, A., What are the dielectric "constants" of proteins and how to validate electrostatic models? *Abstr Pap Am Chem S* 2002, 223, C75-C75.
7. Lee, F. S.; Chu, Z. T.; Bolger, M. B.; Warshel, A., Calculations of Antibody Antigen Interactions - Microscopic and Semimicroscopic Evaluation of the Free-Energies of Binding of Phosphorylcholine Analogs to Mcpc603. *Protein Eng* 1992, 5 (3), 215-228.