Clinical Significance of Escherichia albertii

Tadasuke Ooka, Kazuko Seto, Kimiko Kawano, Hideki Kobayashi, Yoshiki Etoh, Sachiko Ichihara, Akiko Kaneko, Junko Isobe, Keiji Yamaguchi, Kazumi Horikawa, Tânia A.T. Gomes, Annick Linden, Marjorie Bardiau, Jacques G. Mainil, Lothar Beutin, Yoshitoshi Ogura, and Tetsuya Hayashi

Discriminating Escherichia albertii from other Enterobacteriaceae is difficult. Systematic analyses showed that E. albertii represents a substantial portion of strains currently identified as eae-positive Escherichia coli and includes Shiga toxin 2f–producing strains. Because E. albertii possesses the eae gene, many strains might have been misidentified as enterohemorrhagic or enteropathogenic E. coli.

Attaching and effacing pathogens possess a locus of enteroctye effacement (LEE)–encoded type III secretion system. They form attaching and effacing lesions on intestinal epithelial cell surfaces by the combined actions of intimin, an eae–encoded outer membrane protein, and type III secretion system effectors. Attaching and effacing pathogens include enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) and Citrobacter rodentium (1, 2). Escherichia albertii have recently been added to this group (3–5). However, the clinical significance of E. albertii has yet to be fully elucidated, partly because it is difficult to discriminate E. albertii from other Enterobacteriaceae spp. by using routine bacterial identification systems based on biochemical properties (6–9). A large number of E. albertii strains might have been misidentified as EPEC or EHEC because they possess the eae gene.

The Study

We collected 278 eae-positive strains that were originally identified by routine diagnostic protocols as EPEC or EHEC. They were isolated from humans, animals, and the environment in Japan, Belgium, Brazil, and Germany during 1993–2009 (Table 1; online Technical Appendix, wwwnc.cdc.gov/pdfs/11-1401-Techapp.pdf). To characterize the strains, we first determined their intimin subtypes by sequencing the eae gene as described (online Technical Appendix). Of the 275 strains examined, 267 possessed 1 of the 26 known intimin subtypes (4 subtypes—η, ν, τ, and a subtype unique to C. rodentium—were not found). In the remaining 8 strains, we identified 5 new subtypes; each showed <95% nt sequence identity to any known subtype, and they were tentatively named subtypes N1–N5. For subtype N1, 3 variants were identified (N1.1, N1.2, and N1.3, with >95% sequence identity among the 3 variants) (Figure 1, panel A).

To determine the phylogenetic relationships of the strains, we performed multilocus sequencing analysis of 179 strains that were selected from our collection on the basis of intimin subtype and serotype (see online Technical Appendix for selection criteria and analysis protocol). Among the 179 strains, 26 belonged to the E. albertii lineage (Figure 2). The 26 E. albertii strains were from 14 humans (13 from symptomatic patients), 11 birds, and 1 cat. All of the 5 new intimin subtypes were found in the E. albertii strains. Intimin subtypes found in other E. albertii strains were also rare subtypes found in E. coli (10). This finding suggests that more previously unknown intimin subtypes may exist in the E. albertii population.

We next analyzed the pheV, selC, and pheU loci of the 26 E. albertii strains for the presence of LEE elements as described (online Technical Appendix). These 3 genomic

Origin	No. strains
Human, n = 193	
Symptomatic	154
Asymptomatic	7
No information	32
Animal, n = 76	
Bird	38
Pig	31
Cat	1
Deer	1
Bovid	1
Sheep	1
No information	3
Environment, n = 6	6

*EPEC, enteropathogenic Escherichia coli; EHEC, enterohemorrhagic E. coli.
Clinical Significance of *Escherichia albertii*

Loci are the known LEE integration sites in *E. coli*. By this analysis, all *E. albertii* strains except 1 (EC05–44) contained the LEE in the *pheU* locus (the integration site in EC05–44 was not identified). This finding indicates that despite the remarkable diversity of intimin subtypes, the LEE elements are preferentially integrated into the *pheU* tRNA gene in *E. albertii*.

Because all *E. albertii* strains isolated so far contained the *cdtB* gene encoding the cytolethal distending toxin B subunit (8,9), we examined the presence and subtype of the *cdtB* gene as described (online Technical Appendix). This analysis revealed that all *E. albertii* strains except 1 (CB10113) possessed the *cdtB* gene belonging to the II/III/V subtype group (Figure 1, panel B); this finding is consistent with published findings (9). In addition, 2 strains (E2675 and HIPH08472) each of which was subtype I, possessed a second *cdtB* gene, (Figure 1, panel B).

We used PCR to further investigate the presence of Shiga toxin genes (*stx*) and their variants (online Technical Appendix) and found that 2 *E. albertii* strains possessed the *stx2f* gene (Figure 2, panel B). Stx2 production by these strains was confirmed by using a reverse-passive latex agglutination
kit (online Technical Appendix). The 2 stx2f-positive strains were those containing the subtype 1 cdtB gene in addition to the II/III/V subtype group gene: 1 (HIPH08472) was isolated from a patient with diarrhea and the other (E2675) was from a healthy Corvus sp. bird (Figure 2).

Last, we examined the phenotypic and biochemical properties of the 26 E. albertii strains and compared the results with those obtained in a previous study (9) and with those of E. albertii type strain LMG20976 (Table 2). To identify features that could discriminate E. albertii from E. coli, the results were further compared with those of E. coli (11). Consistent with findings in previous reports (5–7,9), the lack of motility and the inability to ferment xylose and lactose and to produce β-D-glucuronidase were common biochemical properties of E. albertii that could be used to discriminate E. albertii from E. coli, although 1 E. albertii strain was positive for lactose fermentation. The inability of E. albertii to ferment sucrose has been described as a common feature (9); however, a positive reaction to this test was found for 5 (19.2%) E. albertii strains. Moreover, approximately half of E. coli strains are positive for sucrose fermentation. Thus, the inability to ferment sucrose is not informative. Rather, the inability to ferment dulcitol (all E. albertii strains were negative, 60% of E. coli strains are positive) may be a useful biochemical property for differentiation.

Conclusions

In the current clinical laboratory setting, a substantial number of E. albertii strains are misidentified as EPEC or
Clinical Significance of Escherichia albertii

EHEC. Because 13 of the isolates were from patients with signs and symptoms of gastrointestinal infection, E. albertii is probably a major enteric human pathogen. In addition, E. albertii should be regarded as a potential Stx2f-producing bacterial species, although the clinical significance of Stx2f-producing strains is unknown.

Notable genetic, phenotypic, and biochemical properties of E. albertii, which were identified by analyzing the confirmed E. albertii strains, are 1) possession of intimin subtypes rarely or previously undescribed in E. coli, 2) possession of the II/III/V subtype group cdIB gene, 3) LEE integration into the pheU (RNA gene, 4) nonmotility, and 5) inability to ferment xylose, lactose, and dulcitol (but not sucrose) and to produce β-D-glucuronidase. These properties could be useful for facilitating identification of E. albertii strains in clinical laboratories, which would in turn improve understanding of the clinical significance and the natural host and niche of this newly recognized pathogen. In this regard, however, current knowledge of the genetic and biological properties of E. albertii might be biased toward a certain group of E. albertii strains because, even with this study, only a limited number of strains have been analyzed. To more precisely understand the properties of E. albertii as a species, further analysis of more strains from various sources is necessary.

This work was supported by the following KAKENHI (Grants-in-Aid for Scientific Research) grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan: Applied Genomics, 17019058, to T.H.; Kiban-B, 20310116, to T.H.; and Wakate-B, 23790480, to T.O.

Dr Ooka is an assistant professor at the Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki. His research interests include the genomics and pathogenicity of pathogenic bacteria, especially attaching and effacing pathogens.

Table 2. Comparison of biochemical properties of Escherichia spp. strains

Agent or test	26 E. albertii strains (this study)†	E. albertii LMG20976 (type strain)	E. albertii strains (9)	E. coli (11)†
Indole	96.2	–	100	98
Motility	0	–	0	95
Urea	0	–	0	1
ONPG	88.5	+	ND	ND
MUG	0	–	ND	(†)†
Citrate	0	–	0	1
Acetate	92.3	+	ND	90
Malonate	0	–	ND	0
H2S on triple sugar ion	0	–	ND	1
Voges-Proskauer	0	–	ND	0
Lysine decarboxylase	100	+	100	90
Ornithine decarboxylase	100	+	100	65
Arginine dihydrolase	0	–	0	17
Glucose, acid	100	+	100	100
Glucose, gas	100	+	100	95
Acid from				
Adonitol	0	–	ND	0
L-arabinose	100	+	100	99
Cellulose	0	–	ND	2
Dulcitol	0	–	ND	60
Myo-inositol	0	–	ND	1
Lactose	3.9	–	0	95
Maltose	88.5	+	ND	95
Mannitol	100	+	100	100
L-rhamnose	0	–	ND	0
Salicin	26.9	–	ND	40
D-sorbitol	57.7	–	V	94
Sucrose	19.2	–	0	50
Trehalose	96.2	+	ND	98
D-xylose	0	–	0	95

*ONPG, ortho-nitrophenyl-β-D-galactoside; MUG, methylumbelliferyl-β-D-glucuronide; –, negative; +, positive; ND, not determined.
†Average (%) of positive strains.
††Most E. coli strains produce β-D-glucuronidase.

References

1. Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol. 2010;8:26–38.
2. Schmidt MA. LEEways: tales of EPEC, ATEC and EHEC. Cell Microbiol. 2010;12:1544–52.
3. Albert MJ, Alam K, Islam M, Montanaro J, Rahman AS, Haider K, et al. Hafnia alvei, a probable cause of diarrhea in humans. Infect Immun. 1991;59:1507–13.
4. Albert MJ, Faruque SM, Ansaruzzaman M, Islam MM, Haider K, Alam K, et al. Sharing of virulence-associated properties at the phenotypic and genetic levels between enteropathogenic Escherichia coli and Hafnia alvei. J Med Microbiol. 1992;37:310–4.
5. Huys G, Cnockaert M, Janda JM, Swings J. *Escherichia albertii* sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children. Int J Syst Evol Microbiol. 2003;53:807–10.

6. Janda JM, Abbott SL, Albert MJ. Prototypal diarrheagenic strains of *Hafnia alvei* are actually members of the genus *Escherichia*. J Clin Microbiol. 1999;37:2399–401.

7. Abbott SL, O’Connor J, Robin T, Zimmer BL, Janda JM. Biochemical properties of a newly described *Escherichia* species, *Escherichia albertii*. J Clin Microbiol. 2003;41:4852–4.

8. Hyma KE, Lacher DW, Nelson AM, Bumbough AC, Janda JM, Strockbine NA, et al. Evolutionary genetics of a new pathogenic *Escherichia* species: *Escherichia albertii* and related *Shigella boydii* strains. J Bacteriol. 2005;187:619–28.

9. Oaks JL, Besser TE, Walk ST, Gordon DM, Beckmen KB, Burek KA, et al. *Escherichia albertii* in wild and domestic birds. Emerg Infect Dis. 2010;16:638–46. 10.3201/eid1604.090695.

10. Blanco M, Schumacher S, Tasara T, Zweifel C, Blanco JE, Dahbi G, et al. Serotypes, intimin variants and other virulence factors of *eae* positive *Escherichia coli* strains isolated from healthy cattle in Switzerland. Identification of a new intimin variant gene (*eae-eta2*). BMC Microbiol. 2005;5:23.

11. Nataro JP, Bopp CA, Fields PI, Kaper JB, Strockbine NA. *Escherichia, Shigella*, and *Salmonella*. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaffer MA, editors. Manual of clinical microbiology, 9th ed. Washington: ASM Press; 2007. p. 670–87.

Address for correspondence: Tetsuya Hayashi, Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan; email: thayash@med.miyazaki-u.ac.jp

MARCH 11–14, 2012

The International Conference on Emerging Infectious Diseases was first convened in 1998; ICEID 2012 marks its eighth occurrence. The conference brings together public health professionals to encourage the exchange of scientific and public health information on global emerging infectious disease issues. The program will include plenary and panel sessions with invited speakers as well as oral and poster presentations on emerging infections. Major topics to be included are current work on surveillance, epidemiology, research, communication and training, bioterrorism, and prevention and control of emerging infectious diseases, both in the United States and abroad.

Which infectious diseases are emerging?

Whom are they affecting?

Why are they emerging now?

What can we do to prevent and control them?

Hyatt Regency Atlanta
265 Peachtree Street NE
Atlanta, Georgia, USA 30303
Clinical Significance of *Escherichia albertii*

Technical Appendix

Bacterial strains, growth conditions, and DNA extraction

The 275 bacterial strains used were isolated in the laboratories participating in this study or from strain stocks from each laboratory. The sources of their isolation and other strain information are summarized in Technical Appendix Table 1. In brief, the 275 strains were isolated in Japan, Brazil, Germany, and Belgium. All of the strains had been originally identified as EPEC or EHEC. Among the 193 human isolates, 154 were isolated from patients with the clinical symptoms of a gastrointestinal infection, such as diarrhea (bloody or non-bloody), abdominal pain, vomiting, and fever. As for the remaining 39 human isolates, we confirmed that 7 were from asymptomatic carriers, while clinical records on the others were not available. The 76 animal isolates were mainly from wild birds, which were found dead due to unknown reasons and thus subjected to laboratory examinations, and healthy pigs; these isolates included several strains from other domestic and wild animals. The environmental strains were isolated from sand pit courts at elementary schools, parks, and shrines.) The *E. albertii* type strain LMG20976 was provided by RIKEN BioResource Center (Ibaraki, Japan). Bacterial cells were grown aerobically at 37°C in Luria-Bertani (LB) medium or on LB agar. Bacterial DNA used as template DNA for PCR was prepared by the alkaline-boiling method as described previously (1).

Sequence-based intimin subtyping

DNA sequences of the entire *eae* genes were determined as described by Lacher *et al.* (2). Briefly, the 5′ half of the gene and its upstream region were amplified by PCR using the cesT-F9/eae-F1 primer pair and KAPATaq (NIPPON Genetics, Tokyo, Japan), and the 3′ half and the downstream region were amplified using the eae-R3/escD-R1 primer pair. Amplicons were sequenced with the primers used for PCR amplification on the ABI 3710 autosequencer (Life Technologies Corporation, CA). To fully sequence the 3′ half, an additional sequence primer
(1669-1688) was used. Primer sequences and amplification conditions are listed in Technical Appendix Table 2.

Predicted amino acid sequences were aligned with those of the reference intimin subtypes listed in Technical Appendix Table 3 by the ClustalW program in MEGA4 (3). A phylogenetic tree was constructed with the neighbor-joining algorithm using MEGA4. Poisson correction was used to calculate protein distances. Bootstrap analysis with 1000 replicates was performed to evaluate the significance of internal branches. To define new intimin subtypes, we employed the cutoff value of 95% nucleotide sequence identity (4).

Multi-locus sequence (MLS) analysis

To determine the phylogenetic relationships of the eae-positive strains, we performed MLS analysis. For this analysis, we selected one or two representative strains for each intimin subtype. When different serotypes were found within an intimin subtype, we selected one or two strains for each serotype; thus, 179 strains were analyzed in total.

MLS analysis was performed using the nucleotide sequences of 7 housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA). Target genes were amplified and sequenced according to the protocol provided from the UCC Web site (http://mlst.ucc.ie/). Using the concatenated nucleotide sequences of the 7 genes and the maximum composite likelihood model, a neighbor-joining tree was constructed using MEGA4 software. EcoR collection strains (5) and genome-sequenced E. coli, E. fergusonii, E. albertii, Shigella sp., and Salmonella enterica serovar Typhi strains were included in a phylogenetic representation.

PCR detection and sequencing of the stx and cdtB genes

PCR screening was performed for the genes for Shiga toxins 1 and 2 (stx1, stx2 and stx2-variants) and the B subunit of cytolethal-distending toxin (cdtB). All primers and PCR conditions used for this screening are shown in Technical Appendix Table 2. PCR amplification was performed using KAPATaq Extra DNA polymerase (KAPA Biosystems, Inc., MA). Subtypes and phylogenetic relationships of the cdtB genes were determined by direct sequencing of the amplicons on the ABI 3710 autosequencer using the primers used for PCR amplification.
Detection of Stx production with or without mitomycin C (MMC) induction

The production of Stx2f by stx2f-positive E. albertii strains was determined by using a reverse-passive latex agglutination kit (VTEC-RPLA; Denka Seiken Co., Ltd., Tokyo, Japan). Bacterial cell were pre-cultured in 1 mL of Casamino Acids-yeast extract (CAYE) broth (Denka Seiken, Tokyo, Japan) overnight with shaking, and then inoculated to adjust OD₆₀₀ = 0.1 into 2mL of fresh CAYE broth and followed by 16 hrs incubation (MMC-). For mitomycin C (MMC; Kyowa Hakko Kirin Co., Ltd., Tokyo, Japan) induction, 0.5 µl of 2 mg/mL MMC solution was add to the 2 mL culture at an hour incubation (final concentration of 50 µg/mL) and followed by 15 hrs incubation. Of the cell suspension after 16 hrs incubation, 1 mL culture was treated with 1 mL of polymyxin B (Sigma-Aldrich Japan, Tokyo, Japan; final concentration of 5,000 U/mL) for 1 hr at 37°C. The solution were centrifuged for 10 min at 9,000 rpm at 4°C and used for VTEC-RPLA assay according to the manufactures instruction. E. albertii strain LMG20976 (type strain; stx-negative) and strain CB9786 (stx-negative) were used as negative controls. EHEC O128:HNM strain EC1463 (stx2f-positive) and EHEC O157:H7 strain Sakai (stx1- and stx2-positive) were used as positive control (stx2f and stx genes, respectively). The result of this analysis was shown in Technical Appendix Table 4.

Determination of the LEE integration sites

Three integration sites that have so far been identified for the LEE elements in various E. coli strains are the pheV, selC, and pheU tRNA gene loci. It is also known that although the gene organization of LEE core regions is highly conserved between strains, accessory regions of highly variable sizes and genetic structures often exist just downstream of the core region (6–8). In contrast, no or only small accessory regions have been identified upstream of the core region; thus, the genetic structures of the left (upstream) chromosome/LEE junctions are relatively well conserved. Therefore, by employing long-range PCR targeted to the escR gene in the LEE core region and chromosomal regions outside of the left chromosome/LEE junctions, we performed a systematic survey of the pheV, selC, and pheU loci of the eae-positive strains for the presence of LEE elements.

Long-range PCR screening was performed by using TaKaRa LA Taq polymerase (Takara Bio Inc. Ohtsu, Japan). Each locus was examined by PCR using an inside primer (escR-R) in
combination with outside primers targeted to the genomic regions adjacent to each tRNA gene locus. The outside primers were designed based on the genome sequences of the K-12 strain MG1655 (9) and 5 EHEC and EPEC strains (6,10,11). Primer sequences and amplification conditions are listed in Technical Appendix Table 5.

Phenotype and biochemical characterization of E. albertii strains

The phenotypic and biochemical properties of the strains identified as E. albertii in this study and the E. albertii type strain (LMG20976) were examined by conventional methods (12). Carbohydrate-fermenting abilities were determined after 7 days of incubation at 37°C in Andrade peptone water (Oxoid, Cambridge, UK) containing one of the following 15 carbohydrates (Wako Pure Chemicals, Osaka, Japan): adonitol, arabinose, cellobiose, dulcitol, glucose, inositol, lactose, maltose, mannitol, rhamnose, salicin, sorbitol, sucrose, trehalose, and xylose. The β-glucuronidase activity was examined using CLIG medium (Kyokuto Pharmaceutical, Tokyo, Japan).

Nucleotide sequence accession numbers

All nucleotide sequences obtained in this study have been deposited into the DDBJ/EMBL/GenBank database. The accession numbers are AB647359-AB647618 (for the eae genes), AB647619-AB647655 (for the cdtB genes), and AB647656-648908 (for the 7 housekeeping genes [adk, fumC, gyrB, icd, mdh, purA, and recA] used for MLS analysis).

References

1. Ooka T, Terajima J, Kusumoto M, Iguchi A, Kurokawa K, Ogura Y, et al. Development of a multiplex PCR-based rapid typing method for enterohemorrhagic Escherichia coli O157 strains. J Clin Microbiol. 2009;47:2888–94. PubMed http://dx.doi.org/10.1128/JCM.00792-09

2. Lacher DW, Steinsland H, Whittam TS. Allelic subtyping of the intimin locus (eae) of pathogenic Escherichia coli by fluorescent RFLP. FEMS Microbiol Lett. 2006;261:80–7. PubMed http://dx.doi.org/10.1111/j.1574-6968.2006.00328.x
3. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–9. PubMed http://dx.doi.org/10.1093/molbev/msm092

4. Zhang WL, Kohler B, Oswald E, Beutlin L, Karch H, Morabito S, et al. Genetic diversity of intimin genes of attaching and effacing Escherichia coli strains. J Clin Microbiol. 2002;40:4486–92. PubMed http://dx.doi.org/10.1128/JCM.40.12.4486-4492.2002

5. Ochman H, Selander RK. Standard reference strains of Escherichia coli from natural populations. J Bacteriol. 1984;157:690–3. PubMed

6. Ogura Y, Ooka T, Iguchi A, Toh H, Asadulghani M, Oshima K, et al. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci U S A. 2009;106:17939–44. PubMed http://dx.doi.org/10.1073/pnas.0903585106

7. Jores J, Rumer L, Wieler LH. Impact of the locus of enterocyte effacement pathogenicity island on the evolution of pathogenic Escherichia coli. Int J Med Microbiol. 2004;294:103–13. PubMed http://dx.doi.org/10.1016/j.ijmm.2004.06.024

8. Müller D, Benz I, Liebchen A, Gallitz I, Karch H, Schmidt MA. Comparative analysis of the locus of enterocyte effacement and its flanking regions. Infect Immun. 2009;77:3501–13. PubMed http://dx.doi.org/10.1128/IAI.00090-09

9. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, et al. The complete genome sequence of Escherichia coli K-12. Science. 1997;277:1453–62. PubMed http://dx.doi.org/10.1126/science.277.5331.1453

10. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, et al. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 2001;8:11–22. PubMed http://dx.doi.org/10.1093/dnares/8.1.11

11. Iguchi A, Thomson NR, Ogura Y, Saunders D, Ooka T, Henderson IR, et al. Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69. J Bacteriol. 2009;191:347–54. PubMed http://dx.doi.org/10.1128/JB.01238-08

12. Ewing WH. The Genus Escherichia. In: Ewing WH, Edwards PR editors. Identification of Enterobacteriaceae, 4th ed. New York: Elsevier Science Publishing; 1986. p. 93–134.
Technical Appendix Table 1. Detailed information of the strains used in this study

Serotype†	strain name	year of isolate	origin	countries	symptoms or notes	intimin subtypes	LEE integration sites (tRNA gene)	presence or absence	MLST analysis	References	
O51:H40	EC06-71	2006	human	Japan	symptomatic	theta	NT	-	Y	this study	
O40/33:H34	EC06-80	2006	human	Japan	symptomatic (diarrhea, abdominal pain, fever)	(lambda)	selC	-	-	Y	
O88:H6	EC06-90	2006	human	Japan	symptomatic	iota1	selC	-	Y	this study	
O51:H40	EC06-118	2006	human	Japan	symptomatic (diarrhea, abdominal pain)	theta	NT	-	Y	this study	
OUT:H34	EC06-119	2006	human	Japan	symptomatic (diarrhea, abdominal pain)	iota1	selC	-	Y	this study	
O175:NM	EC06-170	2006	human	Japan	symptomatic	xi	pheU	-	Y	this study	
O55:H6	18H89	2006	human	Japan	symptomatic	iota1	selC	-	Y	this study	
O145:H34	19H198	2007	human	Japan	symptomatic (diarrhea, abdominal pain, fever)	iota1	selC	-	Y	this study	
O23:H8	19H226	2007	human	Japan	symptomatic (diarrhea, abdominal pain)	theta	NT	-	Y	this study	
O65:NM	20H38	2008	human	Japan	symptomatic (diarrhea)	sigma	pheU	-	Y	this study	
O152/115:N M	20H183	2008	human	Japan	symptomatic (diarrhea)	N1.3	pheU	-	Y	this study	
O113:H19	20H186	2008	human	Japan	symptomatic (diarrhea)	epsilon2	selC	-	Y	this study	
O114:H19	20H215	2008	human	Japan	symptomatic (diarrhea)	epsilon2	selC	-	Y	this study	
O101:NM	20H250	2009	human	Japan	symptomatic (diarrhea, abdominal pain, fever)	(iota2)	pheU	-	Y	this study	
O101:NM	21H147	2009	human	Japan	symptomatic (diarrhea)	iota2	pheU	-	Y	this study	
O21:H8	EC01-376	2001	environmen t	Japan	sand pit court	theta	selC	-	Y	this study	
O66:H21	EC01-380	2001	environmen t	Japan	sand pit court	theta	NT	-	Y	this study	
O142:H34	EC01-383	2001	environmen t	Japan	sand pit court	alpha1	selC	-	Y	this study	
OUT:H21	EC01-386	2001	environmen t	Japan	sand pit court	theta	NT	-	Y	this study	
O51:H49	EC01-403	2001	environmen t	Japan	sand pit court	alpha1	selC	-	Y	this study	
OUT:H34	EC01-406	2001	environmen t	Japan	sand pit court	alpha2	selC	-	Y	this study	
O128:NM	EC01-460	2001	human	Japan	symptomatic (diarrhea, abdominal pain, fever)	beta1	NT	-	Y	this study	
O5:NM	EC03-71	2003	human	Japan	symptomatic (diarrhea, bloody stool, fever, abdominal pain)	beta1	NT	stx1&stx2	-	Y	
OUT:H34	EC03-82	2003	human	Japan	symptomatic (diarrhea, bloody stool, fever, abdominal pain)	iota1	selC	-	Y	this study	
O51:H40	EC03-93	2003	human	Japan	symptomatic (diarrhea, abdominal pain)	epsilon1	NT	-	Y	this study	
OUT:H6	EC03-126	2003	human	Japan	symptomatic (diarrhea)	beta2	selC	-	Y	this study	
Serotype†	strain name	year of isolate	origin	countries	symptoms or notes	intimin subtypes	LEE integration sites (RNA gene)	presence or absence	MLST analysis	References	
-----------	-------------	----------------	--------	-----------	------------------	----------------	-------------------------------	-------------------	--------------	------------	
O181:NM	EC03-127	2003	human	Japan	symptomatic (diarrhea)	epsilon03	pheU	-	+	Y‡	this study
O180:NM	EC03-144	2003	human	Japan	asymptomatic carrier	rho	pheU	-	-	Y	this study
O153:H21	EC03-152	2003	human	Japan	symptomatic (diarrhea, fever)	theta	NT	-	-	Y	this study
OUT:NM	EC03-195	2003	human	Japan	symptomatic	N6	pheU	-	+	Y‡	this study
OUT:H2	EC03-207	2003	animal	Japan	asymptomatic	theta	seIC	-	-	Y	this study
OUT:H2	EC03-211	2003	animal	Japan	asymptomatic	theta	NT	-	-	Y	this study
OUT:H6	EC03-224	2003	animal	Japan	asymptomatic	beta2	seIC	-	-	Y	this study
OUT:H34	EC04-81	2004	human	Japan	symptomatic (abdominal pain, vomiting)	iota1	seIC	-	-	Y	this study
O88:H25	EC04-258	2004	human	Japan	symptomatic (diarrhea, vomiting)	epsilon2	seIC	-	-	Y	this study
O21:H6	EC04-268	2004	human	Japan	symptomatic (diarrhea)	alpha2	seIC	-	-	Y	this study
O117:H21	EC04-311	2004	human	Japan	symptomatic (diarrhea, vomiting)	theta	NT	-	-	Y	this study
O152:H38	EC04-437	2004	human	Japan	symptomatic (abdominal pain)	epsilon1	NT	-	-	Y	this study
OUT:H2	EC04-500	2004	human	Japan	symptomatic (diarrhea)	beta1	NT	-	-	Y	this study
OUT:H34	EC04-569	2004	human	Japan	symptomatic (diarrhea, vomiting)	iota1	seIC	-	-	Y	this study
OUT:H2	EC04-572	2004	human	Japan	symptomatic (diarrhea, abdominal pain)	beta1	NT	-	-	Y	this study
O49:H10	EC04-588	2004	human	Japan	symptomatic (kappa)	seIC	-	-	-	Y	this study
OUT:NM	EC05-44	2005	human	Japan	symptomatic	N4	NT	-	+	Y‡	this study
O129/13:H11	EC05-63	2005	human	Japan	symptomatic (diarrhea)	epsilon1	NT	-	-	Y	this study
O108:H40	EC05-66	2005	human	Japan	symptomatic (diarrhea, abdominal pain)	epsilon1	NT	-	-	Y	this study
OUT:NM	EC05-81	2005	human	Japan	symptomatic	N3	pheU	-	+	Y‡	this study
O70:H11	EC05-86	2005	human	Japan	asymptomatic carrier	epsilon1	NT	-	-	Y	this study
O128:NM	EC05-93	2005	human	Japan	symptomatic	beta1	NT	-	-	N	this study
OUT:H34	EC05-94	2005	human	Japan	symptomatic	alpha2	seIC	-	-	N	this study
O71:H49	EC05-95	2005	human	Japan	asymptomatic carrier	kappa	seIC	-	-	Y	this study
O10:NM	EC05-134	2005	human	Japan	symptomatic (diarrhea, abdominal pain)	iota1	seIC	-	-	Y	this study
OUT:NM	EC05-160	2005	human	Japan	symptomatic	sigma	pheU	-	+	Y‡	this study
OUT:H4	EC05-165	2005	human	Japan	symptomatic	alpha1	seIC	-	-	Y	this study
O171:H19	12H133	2000	human	Japan	symptomatic	epsilon2	seIC	-	-	Y	this study
O119:H2	12H377	2000	human	Japan	symptomatic	beta1	NT	-	-	Y	this study
O2:H49	17H285	2005	human	Japan	symptomatic	iota1	seIC	-	-	Y	this study
OUT:HND	93010	1993.6.18	human	Japan	symptomatic (diarrhea)	mu	seIC	-	-	Y	this study
OUT:H40	94037	1994.6.29	human	Japan	symptomatic (diarrhea, fever)	(eta2)	seIC	-	-	Y	this study
OUT:HND	94046-2	1994.7.25	human	Japan	symptomatic (bloody diarrhea)	epsilon2	seIC	-	-	Y	this study
Serotype†	strain name	year of isolate	origin	countries	symptoms or notes	intimin subtypes	LEE integration sites (rRNA gene)	presence or absence	MLST analysis	References	
-----------	-------------	----------------	--------	-----------	------------------	----------------	---------------------------------	------------------	--------------	------------	
OUT:H7	94064	1994.9.19	human	Japan	symptomatic (diarrhea)	theta	NT	-	-	Y	this study
O86a:HND	94308	1994.6.25	human	Japan	NI	iota1	selC	-	-	Y	this study
O55:H7	94327	1994.7.12	human	Japan	NI	gamma1	selC	-	-	Y	this study
O26:H21	94358	1994.8.6	human	Japan	NI	theta	NT	-	N	Y	this study
OUT:HND	94368	1994.8.16	human	Japan	NI	theta	NT	-	Y	Y	this study
OUT:HNM	94389	1994.9.8	human	Japan	NI	sigma	phiU	+	Y	Y	this study
OUT:HNM	94414	1994.10.12	human	Japan	NI	theta	NT	-	Y	Y	this study
O55:H7	95012	1995.5.11	human	Japan	symptomatic (diarrhea)	gamma1	selC	-	N	Y	this study
O119:H2	95028	1995.6.12	human	Japan	symptomatic (diarrhea)	beta1	NT	-	Y	Y	this study
OUT:HND	95032	1995.6.16	human	Japan	symptomatic (diarrhea)	iota1	selC	-	Y	Y	this study
O26:HNM	95036-2	1995.6.18	human	Japan	symptomatic (diarrhea)	beta1	NT	-	Y	Y	this study
OUT:HND	95037	1995.6.19	human	Japan	symptomatic (diarrhea, fever)	epsilon2	selC	-	Y	Y	this study
O15:HND	95301	1995.5.9	human	Japan	symptomatic (bloody diarrhea, fever, abdominal pain)	iota1	selC	-	Y	Y	this study
O153:H7	95473	1995.10.27	human	Japan	NI	beta1	NT	-	Y	Y	this study
O26:HNM	960064	1996.7.2	human	Japan	symptomatic (bloody diarrhea)	beta1	selC	-	Y	Y	this study
O126:HND	960134	1996.8.2	human	Japan	symptomatic (diarrhea, fever)	beta1	NT	-	Y	Y	this study
OUT:HND	960135	1996.8.2	human	Japan	symptomatic (diarrhea, fever)	gamma1	selC	-	Y	Y	this study
O20:HND	960175	1996.8.23	human	Japan	symptomatic (diarrhea, fever)	beta2	selC	-	N	Y	this study
OUT:HND	960185	1996.8.29	human	Japan	symptomatic (bloody diarrhea)	beta2	selC	-	Y	Y	this study
OUT:HND	960192	1996.8.31	human	Japan	symptomatic (diarrhea, fever)	gamma1	selC	-	Y	Y	this study
O115:HND	960719	1996.9.30	human	Japan	symptomatic (diarrhea)	theta	NT	-	N	Y	this study
O20:H6	960241	1996.3.18	human	Japan	NI	beta2	selC	-	Y	Y	this study
O115:HND	960242	1996.3.19	human	Japan	symptomatic (bloody stool, abdominal pain, vomiting)	beta2	selC	-	Y	Y	this study
O15:H2	960261	1996.5.13	human	Japan	symptomatic (bloody stool, fever, abdominal pain)	beta1	NT	-	Y	Y	this study
OUT:HND	960296	1996.6.25	human	Japan	NI	iota1	selC	-	Y	Y	this study
O119:HND	960337	1996.7.15	human	Japan	NI	zeta3	selC	-	Y	Y	this study
NI	960349	1996.7.19	human	Japan	NI	zeta3	selC	-	Y	Y	this study
OUT:HND	960446	1996.8.8	human	Japan	NI	beta2	selC	-	Y	Y	this study
O26:HND	960462	1996.8.29	human	Japan	NI	kappa	selC	-	Y	Y	this study
OUT:HND	960468	1996.9.6	human	Japan	NI	eta2	selC	-	Y	Y	this study
O26:HNM	960496	1996.10.14	human	Japan	NI	beta1	selC	-	N	Y	this study
O119:HNM	97054-1	1997.8.13	human	Japan	symptomatic (diarrhea)	theta	NT	-	Y	Y	this study
Serotype†	strain name	year of isolate	origin	countries	symptoms or notes	intimin subtypes	LEE integration sites (rRNA gene)	presence or absence	MLST analysis	References	
-----------	-------------	-----------------	--------	-----------	-------------------	------------------	-------------------------------	------------------	--------------	------------	
OUT:HND	97105	1997.8.8	human	Japan	symptomatic (diarrhea, vomiting)	beta1	pheU	- -	Y	this study	
NI	97144	1997.9.11	human	Japan	symptomatic (diarrhea)	theta	NT	- -	Y	this study	
O26:HNM	97207	1997.11.14	human	Japan	symptomatic (diarrhea)	beta1	NT	- -	N	this study	
O55:H7	97214	1997.11	human	Japan	symptomatic	gamma1	selC	- -	N	this study	
O55:HND	97253-2	1997.12.20	human	Japan	symptomatic (bloody diarrhea)	gamma1	selC	- -	N	this study	
O157:HND	97255	1997.12.17	human	Japan	symptomatic (diarrhea)	alpha1	selC	- -	Y	this study	
O167:HND	97603	1997.6.9	human	NI	symptomatic (diarrhea)	beta1	NT	- -	Y	this study	
O168:HND	97604	1997.6.10	human	Japan	symptomatic (diarrhea)	gamma1	selC	- -	Y	this study	
O128:HND	97651	1997.6.21	human	Japan	symptomatic (diarrhea, abdominal pain, vomiting, fever)	beta1	NT	- -	Y	this study	
OUT:HND	97674-2	1997.6.30	human	Japan	symptomatic (bloody diarrhea, abdominal pain)	epsilon2	selC	- -	Y	this study	
O128:H2	97756	1997.7.19	human	Japan	symptomatic (diarrhea)	beta1	NT	- -	Y	this study	
OUT:HND	97845	1997.8.8	human	Japan	symptomatic (diarrhea)	iota1	selC	- -	Y	this study	
O126:H4	97846	1997.8.8	human	Japan	symptomatic (diarrhea, fever)	alpha2	selC	- -	Y	this study	
O146:H7	97938	1997.9.1	human	Japan	symptomatic (diarrhea, abdominal pain)	epsilon1	NT	- -	Y	this study	
OUT:HND	971107	1997.12.20	human	Japan	symptomatic (diarrhea)	epsilon1	NT	- -	Y	this study	
O55:H7	98078	1998.5.26	human	Japan	symptomatic (diarrhea)	beta1	pheU	- -	Y	this study	
O55:H7	98117	1998.6.24	human	Japan	symptomatic (diarrhea)	gamma1	selC	- -	N	this study	
OUT:HND	98257	1998.10.28	human	Japan	symptomatic (bloody diarrhea)	theta	NT	- -	Y	this study	
O153:H7	98275	1998.11.6	human	NI	symptomatic (diarrhea)	beta1	NT	- -	Y	this study	
O20:HNM	98288	1998.11.30	human	Japan	symptomatic (diarrhea, vomiting, fever)	beta2	selC	- -	Y	this study	
O55:H7	99600	1999.7.8	human	Japan	symptomatic (diarrhea, abdominal pain)	gamma1	selC	- -	N	this study	
OUT:H2	99622	1999.8.11	human	Japan	symptomatic (diarrhea, abdominal pain)	beta1	selC	- -	Y	this study	
O119:HNM	99638	1999.8.23	human	Japan	symptomatic (diarrhea)	beta1	selC	- -	Y	this study	
OUT:HND	99066	1999.8.3	human	Japan	symptomatic (diarrhea, abdominal pain)	iota1	selC	- -	Y	this study	
O127a:H40	99067	1999.8.2	human	Japan	symptomatic (diarrhea, abdominal pain)	theta	NT	- -	Y	this study	
O153:H7	99674	1999.9.30	human	Japan	symptomatic (diarrhea)	beta1	selC	- -	Y	this study	
O119:HNM	99697	1999.10.17	human	Japan	symptomatic (diarrhea, fever)	beta1	pheU	- -	N	this study	
O26:HNM	540	2000.4	human	Japan	symptomatic (diarrhea)	beta1	NT	- -	N	this study	
Serotype†	strain name	year of isolate	origin	countries	symptoms or notes	intimin subtypes	LEE integration sites (tRNA gene)	presence or absence	MLST analysis	References	
-----------	-------------	-----------------	--------	-----------	-------------------	----------------	-----------------------------------	-------------------	--------------	------------	
O55:H7	544	2000.4.21	human	Japan	symptomatic (bloody stool)	gamma1	seIC	-	-	N	this study
OUT:HND	24	2000.4.14	human	Japan	symptomatic (diarrhea, abdominal pain)	epsilon3	pheU	-	+	Y‡	this study
O55:H7	594	2000.7	human	Japan	symptomatic (diarrhea, abdominal pain, vomiting)	gamma1	seIC	-	-	N	this study
O128:H2	595	2000.7.22	human	Japan	symptomatic (diarrhea, abdominal pain)	beta1	NT	-	-	N	this study
O26:H11	608	2000.8.4	human	Japan	symptomatic (diarrhea, fever)	beta1	NT	-	-	N	this study
O128:H2	618	2000.8.10	human	Japan	symptomatic (diarrhea, abdominal pain)	beta1	pheV	-	-	N	this study
O26:HUT	626	2000.8	human	Japan	symptomatic (diarrhea, vomiting)	theta	NT	-	-	Y	this study
O119:HNM	629	2000.8.25	human	Japan	NI	beta1	pheU	-	-	N	this study
O159:HNM	664	2000.10.16	human	Japan	symptomatic (diarrhea)	theta	NT	-	-	Y	this study
O128:H2	674	2000.10.27	human	Japan	NI	beta1	NT	-	-	N	this study
OUT:HND	80	2000.10.6	human	Japan	symptomatic (bloody stool)	theta	NT	-	-	Y	this study
OUT:H19	1558	2001.6.16	human	Japan	symptomatic (diarrhea, abdominal pain, vomiting)	iota1	seIC	-	-	Y	this study
O124:H16	01601-2	2001.7.28	human	Japan	NI	rho	pheU	-	-	Y	this study
OUT:HNM	1065	2001.7	human	Japan	symptomatic (diarrhea)	theta	NT	-	-	Y	this study
O128:H2	1614	2001.8.16	human	Japan	NI	beta1	NT	-	-	N	this study
O20:H6	1086	2001.8.17	human	Japan	symptomatic (diarrhea, vomiting)	beta2	seIC	-	-	N	this study
O114:H19	1631	2001.9.4	human	Japan	NI	epsilon2	seIC	-	-	Y	this study
OUT:H21	1121	2001.10.10	human	Japan	symptomatic (diarrhea)	theta	seIC	-	-	Y	this study
OUT:H6	1128	2001.10.18	human	Japan	symptomatic (bloody stool, abdominal pain, fever)	beta2	seIC	-	-	Y	this study
O55:H7	1687	2001.11	human	Japan	symptomatic (bloody stool, fever)	gamma1	seIC	-	-	N	this study
O55:H7	01689-1	2001.11.27	human	Japan	symptomatic (diarrhea, fever)	gamma1	seIC	-	-	N	this study
O119:HNM	1691	2001.11.29	human	Japan	symptomatic (diarrhea, abdominal pain)	beta1	pheU	-	-	N	this study
O119:HNM	2528	2002.4.8	human	Japan	symptomatic (bloody stool)	beta1	pheU	-	-	N	this study
OUT:HND	2059	2002.6.5	human	Japan	symptomatic (diarrhea, vomiting, fever)	alpha2	seIC	-	-	Y	this study
O55:H7	2075	2002.6.27	human	Japan	symptomatic (diarrhea)	beta1	pheV	-	-	Y	this study
O128:H2	2584	2002.7.13	human	Japan	symptomatic (diarrhea, fever)	beta1	pheV	-	-	N	this study
Serotype†	strain name	year of isolate	origin	countries	symptoms or notes	intimin subtypes	LEE integration sites (IRNA gene)	presence or absence	MLST analysis	References	
-----------	-------------	-----------------	--------	-----------	-------------------	-----------------	-----------------------------------	-------------------	---------------	------------	
O128:HND	2595	2002.7.22	human	Japan	symptomatic (diarrhea, fever)	beta1	pheV	-	-	N	this study
O55:H7	2604	2002.8.3	human	Japan	NI	gamma1	selC	-	-	N	this study
O55:H7	2612	2002.8.12	human	Japan	NI	gamma1	selC	-	-	N	this study
O55:H7	2626	2002.8.26	human	Japan	symptomatic (diarrhea, fever)	gamma1	selC	-	-	N	this study
OUT:HND	2184	2002.11.25	human	Japan	symptomatic (diarrhea, vomiting)	beta2	selC	-	-	Y	this study
O55:H7	3114	2003.7.30	human	Japan	symptomatic (diarrhea, fever)	gamma1	selC	-	-	N	this study
O26:H	3641	2003.7.7	human	Japan	symptomatic (diarrhea)	beta1	NT	-	-	N	this study
OUT:HND	3124	2003.8.5	human	Japan	symptomatic (bloody stool, abdominal pain)	epsilon2	selC	-	-	Y	this study
O55:H7	3649	2003.8.1	human	Japan	symptomatic (diarrhea)	gamma1	selC	-	-	N	this study
O128:H2	3705	2003.8.29	human	Japan	symptomatic (diarrhea)	beta1	NT	-	-	N	this study
O26:HN	03706-2	2003.9.3	human	Japan	NI	beta1	NT	-	-	N	this study
O55:H7	4676	2004.9.17	human	Japan	symptomatic (diarrhea)	iota1	selC	-	-	N	this study
O153:HND	4679	2004.9.24	human	Japan	symptomatic (diarrhea)	beta1	NT	-	-	N	this study
O142:HUT	6592	2006.6.2	human	Japan	symptomatic (diarrhea, abdominal pain)	alpha1	selC	-	-	Y	this study
O55:H7	7575	2007.5.16	human	Japan	symptomatic (diarrhea)	gamma1	selC	-	-	N	this study
O55:H7	7675	2007.7.23	human	Japan	symptomatic (diarrhea)	gamma1	selC	-	-	N	this study
O55:H7	7693	2007.8.1	human	Japan	symptomatic (diarrhea)	gamma1	selC	-	-	N	this study
O55:H7	7707	2007.8.8	human	Japan	symptomatic (diarrhea)	gamma1	selC	-	-	N	this study
O119:3-H	7753	2007.8.30	human	Japan	symptomatic (diarrhea)	beta1	pheU	-	-	N	this study
O124:HUT	7852	2007.10.23	human	Japan	symptomatic (diarrhea)	theta	NT	-	-	Y	this study
O26:H	7857	2007.10.29	human	Japan	NI	beta1	NT	-	-	N	this study
O74:HND	7871	2007.11.9	human	Japan	symptomatic (diarrhea)	iota1	selC	-	-	Y	this study
O103:3-H	7929	2007.12.4	human	Japan	symptomatic (bloody stool)	beta1	NT	-	-	Y	this study
O103	NIAH_Por_1	2007	pig	Japan	rectal swab, healthy	beta1	NT	-	-	Y	this study
OUT	NIAH_Por_2	2007	pig	Japan	rectal swab, healthy	gamma1	selC	-	-	N	this study
OUT	NIAH_Por_4	2007	pig	Japan	rectal swab, healthy	gamma1	selC	-	-	N	this study
O49	NIAH_Por_5	2007	pig	Japan	rectal swab, healthy	kappa	selC	-	-	Y	this study
O171	NIAH_Por_8	2007	pig	Japan	rectal swab, healthy	theta	pheV	-	-	N	this study
OUT	NIAH_Por_9	2007	pig	Japan	rectal swab, healthy	gamma1	selC	-	-	N	this study
O88	NIAH_Por_10	2007	pig	Japan	rectal swab, healthy	beta1	pheU	-	-	Y	this study
O76	NIAH_Por_11	2007	pig	Japan	rectal swab, healthy	theta	NT	-	-	N	this study
O145	NIAH_Por_12	2007	pig	Japan	rectal swab, healthy	gamma1	selC	-	-	Y	this study
OUT	NIAH_Por_13	2007	pig	Japan	rectal swab, healthy	xi	NT	-	-	N	this study
O26	NIAH_Por_14	2007	pig	Japan	rectal swab, healthy	xi	NT	-	-	Y	this study
O2	NIAH_Por_15	2007	pig	Japan	rectal swab, healthy	iota1	selC	-	-	Y	this study
O145	NIAH_Por_16	2007	pig	Japan	rectal swab, healthy	gamma1	selC	-	-	N	this study
O53	NIAH_Por_17	2007	pig	Japan	rectal swab, healthy	gamma1	selC	-	-	Y	this study

References
- this study
| Serotype† | strain name | year of isolate | origin | countries | symptoms or notes | intimin subtypes | LEE integration sites (rRNA gene) | presence or absence | MLST analysis | References |
|-----------|--------------------|-----------------|--------|-----------|---------------------------------|-----------------|-----------------------------------|---------------------|---------------|-----------------|
| O117 | NIAH_Por_18 | 2007 | pig | Japan | rectal swab, healthy | theta | pheV | - | N | this study |
| O172 | NIAH_Por_19 | 2007 | pig | Japan | rectal swab, healthy | gamma1 | seiC | - | Y | this study |
| O172 | NIAH_Por_20 | 2007 | pig | Japan | rectal swab, healthy | gamma1 | seiC | - | N | this study |
| O117 | NIAH_Por_21 | 2007 | pig | Japan | rectal swab, healthy | theta | pheV | - | N | this study |
| O117 | NIAH_Por_22 | 2007 | pig | Japan | rectal swab, healthy | theta | pheV | - | N | this study |
| O117 | NIAH_Por_23 | 2007 | pig | Japan | rectal swab, healthy | theta | pheV | - | N | this study |
| O117 | NIAH_Por_24 | 2007 | pig | Japan | rectal swab, healthy | gamma1 | seiC | - | N | this study |
| O156 | NIAH_Por_25 | 2007 | pig | Japan | rectal swab, healthy | theta | NT | - | N | this study |
| O98 | NIAH_Por_26 | 2007 | pig | Japan | rectal swab, healthy | theta | pheU | - | N | this study |
| OUT | NIAH_Por_27 | 2007 | pig | Japan | rectal swab, healthy | xi | pheU | - | N | this study |
| O49 | NIAH_Por_33 | 2007 | pig | Japan | rectal swab, healthy | kappa | seiC | - | N | this study |
| OUT | NIAH_Por_34 | 2007 | pig | Japan | rectal swab, healthy | pheV | - | - | N | this study |
| O172 | NIAH_Por_35 | 2007 | pig | Japan | rectal swab, healthy | gamma1 | seiC | - | N | this study |
| O8 | NIAH_Por_36 | 2007 | pig | Japan | rectal swab, healthy | gamma1 | seiC | - | Y | this study |
| O145 | NIAH_Por_37 | 2007 | pig | Japan | rectal swab, healthy | gamma1 | seiC | - | N | this study |
| O145 | NIAH_Por_38 | 2007 | pig | Japan | rectal swab, healthy | gamma1 | seiC | - | N | this study |
| O53 | NIAH_Por_40 | 2007 | pig | Japan | rectal swab, healthy | gamma1 | seiC | - | N | this study |
| O71 | NIAH_Bird_1 | 2003 | Bird | Japan | feces, Treron sieboldi | kappa | seiC | - | Y | this study |
| OUT | NIAH_Bird_2 | 2002 | Bird | Japan | feces, Sturnus cinereus | sigma | pheU | + | Y‡ | this study |
| O115 | NIAH_Bird_3 | 2004 | Bird | Japan | feces, Puffinus tenuirostris | N1.1 | pheU | - | + | Y‡ |
| O137 | NIAH_Bird_4 | 2004 | Bird | Japan | feces, Passer montanus | beta2 | seiC | - | - | Y |
| O128 | NIAH_Bird_5 | 2004 | Bird | Japan | feces, Puffinus tenuirostris | beta3 | pheU | - | + | Y‡ |
| O117 | NIAH_Bird_6 | 2004 | Bird | Japan | feces, Hirundo rustica | mu | seiC | - | - | Y |
| O117 | NIAH_Bird_7 | 2004 | Bird | Japan | feces, Passer montanus | mu | seiC | - | - | N |
| O64 | NIAH_Bird_8 | 2004 | Bird | Japan | feces, Egretta garzetta | epsilon4 | pheU | - | + | Y‡ |
| O21 | NIAH_Bird_9 | 2004 | Bird | Japan | feces, Hirundo rustica | beta1 | NT | - | - | Y |
| O81 | NIAH_Bird_10 | 2004 | Bird | Japan | feces, Anas poecilorhyncha | beta2 | seiC | - | + | Y |
| O55 | NIAH_Bird_11 | 2005 | Bird | Japan | feces, Emberiza certhya | theta | NT | - | - | N |
| O2 | NIAH_Bird_12 | 2005 | Bird | Japan | feces, Sturnus cinereus | beta1 | NT | - | - | Y |
| OUT | NIAH_Bird_13 | 2005 | Bird | Japan | feces, Hypsipetes amaurots | xi | pheU | - | + | Y‡ |
| O55 | NIAH_Bird_15 | 2005 | Bird | Japan | feces, Cyanopica cyanus | theta | NT | - | - | N |
| O103 | NIAH_Bird_16 | 2005 | Bird | Japan | feces, Passer montanus | NT.1 | pheU | - | + | Y‡ |
| O55 | NIAH_Bird_17 | 2005 | Bird | Japan | feces, Streptopelia orientalis | theta | NT | - | - | N |
| O120 | NIAH_Bird_18 | 2005 | Bird | Japan | feces, Anas strepera | pi | seiC | - | - | N |
| O132 | NIAH_Bird_19 | 2005 | Bird | Japan | feces, Columba livia | alpha2 | seiC | - | - | N |
| O132 | NIAH_Bird_20 | 2005 | Bird | Japan | feces, Columba livia | alpha2 | seiC | - | - | Y |
| O50 | NIAH_Bird_21 | 2005 | Bird | Japan | feces, Streptopelia orientalis | alpha1 | seiC | - | Y | this study |
| Serotype† | strain name | year of isolate | origin | countries | symptoms or notes | intimin subtypes LEE integration sites (tRNA gene) | presence or absence | MLST analysis | References |
|-----------|-------------|----------------|--------|-----------|-------------------|--|-------------------|--------------|------------|
| O171 | NIAH_Bird_22 | 2005 | Bird | Japan | feces, *Phalacrocorax carbo* | epsilon2 selC | - | Y ‡ | this study |
| O58 | NIAH_Bird_23 | 2006 | Bird | Japan | feces, *Phalacrocorax carbo* | epsilon1 pheU | - | + | Y ‡ | this study |
| O147 | NIAH_Bird_24 | 2006 | Bird | Japan | feces, *Cyanopica cyanus* | sigma pheU | - | + | Y ‡ | this study |
| O8 | NIAH_Bird_25 | 2006 | Bird | Japan | feces, *Passer montanus* | sigma pheU | - | + | Y ‡ | this study |
| O128 | NIAH_Bird_26 | 2006 | Bird | Japan | feces, *Hypsipetes amaurotis* | beta3 pheU | - | + | Y ‡ | this study |
| O8 | NIAH_Bird_27 | 2006 | Bird | Japan | feces, *Phalacrocorax carbo* | beta1 NT | - | - | N | this study |
| O137 | NIAH_Bird_28 | 2006 | Bird | Japan | feces, *Zosterops japonica* | beta2 selC | - | - | N | this study |
| O56 | NIAH_Bird_29 | 2005 | Bird | Japan | foot, *Hypsipetes amaurotis* | beta2 selC | - | - | Y | this study |
| O55 | NIAH_Bird_30 | 2005 | Bird | Japan | foot, *Phalacrocorax carbo* | theta NT | - | - | N | this study |
| O132 | NIAH_Bird_31 | 2005 | Bird | Japan | foot, *Columba livia* | alpha2 selC | - | - | N | this study |
| O120 | NIAH_Bird_32 | 2005 | Bird | Japan | foot, *Columba japonica* | pi selC | - | - | Y | this study |
| O110 | NIAH_Bird_33 | 2006 | Bird | Japan | foot, *Puffinus tenuirostris* | beta2 selC | - | - | Y | this study |
| O2 | NIAH_Bird_34 | 2006 | Bird | Japan | foot, *Columba livia* | kappa selC | - | - | Y | this study |
| O55 | NIAH_Bird_35 | 2006 | Bird | Japan | foot, *Hypsipetes amaurotis* | theta NT | - | - | N | this study |
| O8 | NIAH_Bird_36 | 2006 | Bird | Japan | foot, *Phalacrocorax carbo* | beta1 NT | - | - | Y | this study |
| O55 | NIAH_Bird_37 | 2006 | Bird | Japan | foot, *Sturnus cineraceus* | theta NT | - | - | N | this study |
| O55 | NIAH_Bird_38 | 2006 | Bird | Japan | foot, *Columba livia* | theta NT | - | - | N | this study |
| O103:H2 | 00E001 | 2000 | human | Japan | symptomatic (diarrhea, abdominal pain, fever) | epsilon1 NT | stx1 | - | Y | this study |
| O150:H11 | 00E019 | 2000 | human | Japan | symptomatic (diarrhea, bloody stool, abdominal pain, fever) | beta1 pheU stx1 | - | Y | this study |
| O103:H11 | 01E015 | 2001 | human | Japan | symptomatic (diarrhea, abdominal pain, fever) | beta1 pheU stx1 | - | Y | this study |
| O103:H2 | 02E028 | 2002 | human | Japan | symptomatic (diarrhea, abdominal pain, fever) | epsilon1 NT | stx1 | - | N | this study |
| O165:H- | 04E077 | 2000 | human | Japan | symptomatic (diarrhea, abdominal pain, fever) | epsilon1 NT | stx2 | - | N | this study |
| O121:H14 | 06E050 | 2006 | human | Japan | symptomatic (diarrhea, bloody stool) | epsilon1 NT | stx2 | - | Y | this study |
| O103:H2 | 07E030 | 2007 | human | Japan | symptomatic (diarrhea, bloody stool, abdominal pain) | epsilon1 NT | stx1 | - | N | this study |
| O63:H6 | 07E033 | 2000 | human | Japan | symptomatic (diarrhea, abdominal pain) | (alpha2) selC stx2f | + | Y | this study |
| O165:H- | 07E051 | 2007 | human | Japan | symptomatic (diarrhea, bloody stool, abdominal | epsilon1 NT | stx1&2 | - | Y | this study |

References: this study
Serotype†	strain name	year of isolate	origin	countries	symptoms or notes (pain)	intimin subtypes	LEE integration sites (RNA gene)	presence or absence of stx1 & 2f and cdtB	MLST analysis	References
O118:H3	07E054	2007	human	Japan	symptomatic (diarrhea, abdominal pain)	beta1	NT	stx1 -	Y	this study
O103:H2	08E011	2008	human	Japan	asymptomatic carrier	epsilon1	NT	stx1 -	N	this study
O103:HUT	08E021	2008	human	Japan	asymptomatic carrier	theta	NT	stx1 -	N	this study
O121:H19	08E027	2008	human	Japan	symptomatic (diarrhea, bloody stool, abdominal pain, fever)	epsilon1	NT	stx2 -	N	this study
O76:H6	08E035	2008	human	Japan	asymptomatic carrier	gamma1	NT	stx1 -	Y	this study
O165:HNM	08E132	2008	human	Japan	symptomatic (bloody stool, abdominal pain, vomiting, fever)	epsilon1	NT	stx1 & 2f -	N	this study
O165:SEN	osen07-074	2007	Bovid	Japan	food	epsilon1	NT	stx2 -	N	this study
OUT	CB10113	2004	cat	Brazil	domestic (asymptomatic carrier)	ypsilon	pheU	- -	Y‡	Morato et al., 2009f
O180	CB9776	2003	human	Germany	symptomatic (diarrhea)	rho	pheU	- -	N	this study
O65	CB9786	2003	human	Germany	symptomatic (diarrhea)	rho	pheU	- -	Y	this study
O168	CB9791	2003	human	Germany	symptomatic (diarrhea)	rho	pheU	- +	Y‡	this study
O160	DG172/5	1990	sheep	Japan	asymptomatic carrier	rho	pheU	- -	N	this study
NT:H19	0471-1	1989	human	Germany	symptomatic (diarrhea)	rho	pheU	- -	Y	Ooka et al., 2008‡
NT:HNM	0451-6	1989	human	Brazil	symptomatic (diarrhea)	omicron	pheU	- +	Y‡	Ooka et al., 2008‡
NI	A09/332.1	2008.11	deer	Belgium	Capreolus capreolus	epsilon2	selC	- -	Y	Bardiau et al., 2010¶
O115:HNM	HPH08472	2008.8	human	Japan	symptomatic (diarrhea)	N2	pheU	stx2f -	Y‡	this study
OUT:H1	E2675	2007	bird	Japan	feces swab, Corvus spp.	N1.2	pheU	stx2f -	Y‡	this study
O156:H25	RIMD0509178	2003	human	Japan	asymptomatic carrier	zeta	pheV	stx1 -	Y	this study
O55:H6	F76193	1989	human	SSI	symptomatic (diarrhea)	alpha2	selC	- -	Y	Iida et al., 2001§
O153:HNM	HPH07217	2007.8	human	Japan	symptomatic (diarrhea, fever)	beta1	NT	stx2f +	Y	this study
O63:H6	HPH07137	2007.8	human	Japan	symptomatic (diarrhea, abdominal pain)	alpha2	selC	stx2f -	Y	this study
O145:H34	HPH08592	2008.10	human	Japan	symptomatic (diarrhea, fever)	iota1	selC	stx2f -	Y	this study
O128:HNM	EC2175	2002.7.28	human	Japan	symptomatic (one year old, diarrhea, bloody mucus stool, vomiting)	beta1	NT	stx2f +	Y	this study
O63:H6	EC2689	2006.9.16	human	Japan	symptomatic (four years old, fever, cough, soft stool)	alpha2	selC	stx2f +	N	this study
O145:H34	E2473	2006.8	human	Japan	symptomatic (diarrhea, bloody stool, abdominal pain, fever)	iota1	selC	stx2f +	N	this study

References:

Iida et al., 2001§
Morato et al., 2009f
Ooka et al., 2008‡
Bardiau et al., 2010¶
Serotype†	strain name	year of isolate	origin	countries	symptoms or notes	intimin subtypes	LEE integration sites (rRNA gene)	presence or absence	MLST analysis	References
O63:H6	A32	2003.8	human	Japan	symptomatic (diarrhea, abdominal pain)	alpha2	selC	stx1&2&2f	-	this study

NI: no information, NT: not typed
†: Determined by the serotyping system for E. coli.
‡: E. albertii strains (confirmed by MLS analysis).
ƒ: Morato et al. (2009) Domestic cats constitute a natural reservoir of human enteropathogenic Escherichia coli Types. Zoonoses Public Health. 56: 229-237.
‡: Ooka T et al. (2007) Characterization of tccP2 carried by atypical enteropathogenic Escherichia coli. FEMS Microbiol Lett. 271: 126-135.
¶: Bardiau M et al. (2010) Enteropathogenic (EPEC), enterohaemorrhagic (EHEC) and verotoxigenic (VTEC) Escherichia coli in wild cervids. J Appl Microbiol. 109: 2214-2222.
§: Iida K et al. (2001) Type 1 fimbriation and its phase switching in diarrheagenic Escherichia coli strains. Clin Diagn Lab Immunol. 8: 489–495.
 Technical Appendix Table 2. PCR primers for detection and sequencing of the stx and cdt genes

target gene	primer name	sequence (5’-3’)	PCR conditions (30 cycles)	Size of amplicon (bp)	References
5’ half of eae	eae-F1	ACTCGATTCCTCTGGTGAC	55°C, 60 s / 72°C, 2 min	around 1.3 kb	Lacher et al., 2006f
5’ half of eae	eae-R3	TCTTGTCGCTTTGGCTT	92°C, 60 s / 92°C, 60 s / 72°C, 2 min	92	Lacher et al., 2006f
3’ half of eae	escD-R1	GTATCAACATCTCCGCCA	52°C, 60 s / 72°C, 2 min	around 1.6 kb	Lacher et al., 2006f
inside of eae	1669-1688§	CAGTTGGGGAACAGGACTT	—	—	this study
stx1	stx1-F	GTCATTGCCCTCTGCAATAGGTAC	94°C, 30 s / 64°C, 30 s / 72°C, 90 s	151	Ooka et al., 2009
stx1	stx1-R	GCCGTAGATTATTAACCGCCT	94°C, 30 s / 64°C, 30 s / 72°C, 90 s	181	Ooka et al., 2009
stx2	stx2-F	CCATGCAACCGGACACCTT	94°C, 30 s / 64°C, 30 s / 72°C, 90 s	466	Toth et al., 2003†
stx2	stx2-R	CTGCTGTGACAGTGACAAAACG	94°C, 30 s / 64°C, 30 s / 72°C, 90 s	466	Toth et al., 2003†
cdtB	CDT-s1	GAAAGTAAATGGAATATAAATGTCCG	94°C, 30 s / 64°C, 30 s / 72°C, 90 s	466	Toth et al., 2003†
cdtB	CDT-s2	GAAATATAATGGAAACACACATGTCGG	94°C, 30 s / 64°C, 30 s / 72°C, 90 s	466	Toth et al., 2003†
cdtB	CDT-as1	AAATCACCAAGAATCATCCAGTTA	94°C, 30 s / 64°C, 30 s / 72°C, 90 s	466	Toth et al., 2003†

§: This primer is used only for sequencing of the eae gene.
ƒ: Lacher DW et al. (2006) Allelic subtyping of the intimin locus (eae) of pathogenic Escherichia coli by fluorescent RFLP. FEMS Microbiol Lett. 261:80-87.
*: Schmidt H et al. (2000) A new Shiga toxin 2 variant (Stx2f) from Escherichia coli isolated from pigeons. Appl Environ Microbiol. 66:1205-1208.
†: Toth I et al. (2003) Production of cytotoxic distending toxins by pathogenic Escherichia coli strains isolated from human and animal sources: establishment of the existence of a new cdt variant (Type IV). J Clin Microbiol. 41:4285-4291.
Technical Appendix Table 3. Reference sequences of the eae genes

subtype	species of origin	Serotype	Strain name	accession No.
α1 (alpha1)	Escherichia coli	O127:H6	E2348/69	AF022236
α2 (alpha2)	Escherichia coli	O125:H6	C712-65	DQ52600
α8 (alpha8)	Escherichia albertii	-	I2005002880 36	FJ609835
β1 (beta1)	Escherichia coli	O26:H-	413/89-1	AJ277443
β2 (beta2)	Escherichia coli	O119:H6	0659-79	DQ52605
β3 (beta3)	Escherichia coli	O103:H2	MT#80	DQ529406
ε2 (epsilon2)	Escherichia coli	O116:[H9]	0659-79	DQ523605
ε3 (epsilon3)	Escherichia coli	O119:H6	98B3	DQ529414
ε4 (epsilon4)	Escherichia coli	O142:[H21]	012-050982	AJ876565
γ1 (gamma1)	Escherichia coli	O157:H7	BAB37982.1	AJ876565
γ2 (gamma2)	Escherichia coli	O111:H-	95NR1	AF025311
ι1 (iota1)	Escherichia coli	O55:[H34/47]	1252-59	DQ52601
ι2 (iota2)	Shigella boydii	13	C-425	AY696842
ι (iota)	Escherichia coli	O49:[H10]	64B4	DQ523611
κ (kappa)	Escherichia coli	O33:[H34]	57A1	DQ523609
μ (mu)	Escherichia coli	O55:[H51]	MA551/1	DQ523607
ν (nu)	Escherichia albertii	-	106A5	DQ523615
ο (omicron)	Escherichia albertii	-	19982	AY696838
π (pi)	Escherichia coli	O57	AEEC-191.2	AY705052
ρ (rho)	Escherichia coli	9314	9314	DQ523613
σ (sigma)	Escherichia coli	O86:K61:H-	EPEC-EC74699	AJ781125
τ (tau)	Shigella boydii	7	K-1	AY696839
θ (theta)	Escherichia coli	O111:H8	CL-37	AF449418
ξ (xi)	Escherichia coli	O5:[H2]	60A3	DQ523610
υ (upsilon)	Escherichia coli	ONT	CB10113	AM116755.1
ζ (zeta)	Escherichia coli	92-1B	AF449417	
ζ3 (zeta3)	Escherichia coli	O85:H31	FV10126	FM872423
C. rodentium	Citrobacter	10	DBS100	AF311901

Technical Appendix Table 4. Shiga toxin production by the two stx2f-positive E. albertii strains

Strain name	Species	prevalence of stx genes	VTEC-RPLA†	References
HIPH08472	E. albertii	stx2f	MMC+	this study
E2675	E. albertii	stx2f	MMC+	this study
LMG20976	E. albertii	stx2f	MMC+	this study
CB9786	E. albertii	stx2f	MMC+	this study
O128:HNM	E. albertii	stx2f	MMC+	this study
EC1463	E. coli	stx2f	MMC+	Isobe et al., 2004
O157:H7 Sakai	E. coli	stx1, stx2	MMC+	Hayashi et al., 2000

†: The maximum dilution of culture supernatant that exhibited agglutination is shown in parentheses.

§: Hayashi T et al. (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8: 11-22.
Primer name	Sequence (5'-3')	Target locus	Location of the primers on the sequenced *E. coli* strains	Expected amplicon size (bp)	References
escR-R	ACTGGCGGATACCATCATC	escR gene on the LEE core region	-	-	this study
pheV-Ro1	CAGGTATGTACCTTCACC	pheV 3'-end of K-12 strain 26,337 bp downstream of the pheV 3'-end of MG1655	around 30 kb	this study	
pheV-gIcB	ACAATGAGTCAAACCATA	pheV 3' end of K-12 strain 13,367 bp downstream of the pheV 3' end of MG1655	around 17 kb	this study	
selC-Ro1	CACGGCGGCAATCAGAA	selC 3'-end of O103:H2 strain 1,984 bp downstream of the selC 3'-end of 12009	around 5 kb	this study	
433-f	ACGCGGGATTGTTTGG	pheU 3'-end of O157:H7 strain 14,687 bp downstream of the pheU 3'-end of Sakai	around 18 kb	Ohnishi *et al.*, 2002§	

†: PCR cycle; 2 min at 96°C, followed by 30 cycles of 20 s at 96°C and 16 min at 69°C.
§: Ohnishi M *et al.* (2002) Genomic diversity of enterohemorrhagic Escherichia coli O157 revealed by whole genome PCR scanning. Proc Natl Acad Sci USA, 99:17043-17048.