Taxane Use for Breast Cancer in Pregnancy: Neonatal Follow-Up Of Infants with Positive Detection of Intact Paclitaxel and Metabolites in Meconium at Birth

Elyce Cardonick
 Cooper Hospital University Medical Center: Cooper University Health Care

Andie O’Laughlin
 Virginia Commonwealth University

Samantha So
 Cooper Hospital University Medical Center: Cooper University Health Care

Lindsay Fleischer (✉ fleisc63@rowan.edu)
 Cooper Medical School of Rowan University: Rowan University Cooper Medical School
 https://orcid.org/0000-0001-6406-9144

Serwaa Akoto
 Cooper Hospital University Medical Center: Cooper University Health Care

Research Article

Keywords: Cancer, pregnancy, high-resolution mass spectrometry

DOI: https://doi.org/10.21203/rs.3.rs-382040/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
 Read Full License
Abstract

Paclitaxel is often excluded during pregnancy for women with breast cancer due to limited neonatal follow-up. We confirmed in utero fetal Paclitaxel exposure for 8 newborns. Birth details and follow-up to 36 months of age is reported. Meconium samples from newborns exposed to chemotherapy were screened by liquid chromatography-high resolution mass spectrometry while blinded to maternal treatment during pregnancy. Newborn information at birth and annually was obtained. Mean gestational age (GA) at cancer diagnosis and start of chemotherapy was 8.7 +/- 6.2 weeks and 17.1 +/- 3.5 weeks. Paclitaxel was started at a mean GA of 27.0 +/- 5.8 weeks. Paclitaxel followed Doxorubicin/Cyclophosphamide in 6 cases, 5-Fluouracil/Doxorubicin/Cyclophosphamide in 1, and was used alone in 1. Mean number of days between Paclitaxel and birth was 23 +/- 15. Identification of Paclitaxel and/or metabolites was made in all taxane exposed samples. Birthweight was < 10% for GA in 3 infants. Three anomalies occurred: hip dysplasia and mitral valve stenosis. The 3rd child was diagnosed with Cleidocranial Dysostosis, a familial anomaly. Mean age at pediatric follow-up is 18.7 +/- 9.3 months. Pediatricians report eczema and recurrent otitis media in 1 child, iron deficiency anemia and sinusitis in 2. One child is < 10% for height and weight at 15 months. All are meeting developmental milestones at median age of 18.7 months, range: 6–36 months. Conclusion: Up to 3 years of age, follow-up of neonates exposed to Paclitaxel in utero is reassuring. Continued observation of neonatal development is essential.

Introduction

Cancer diagnosis occurs in 1 in 1000 pregnancies [1]. The most common malignancies complicating pregnancy are breast cancer, Hodgkin’s and Non-Hodgkin’s lymphoma, and melanoma [1]. Approximately 1 in 5 breast cancers diagnosed in women aged 25 to 29 years is associated with a pregnancy, diagnosed either during pregnancy or during the first postpartum year. Given the recent trend for women to delay childbearing, we expect more cases of breast cancer to be diagnosed during pregnancy. The most common agents used during pregnancy include doxorubicin, cyclophosphamide, 5-fluouracil, and more recently paclitaxel. Neonatal outcomes after chemotherapy exposure during the second and third trimester have been reassuring with regards to malformations and general appearance at birth [2-9]. A limited number of studies provide longer follow-up including developmental and physical evaluation of chemotherapy-exposed children into the late teen years and young adulthood [7-9]. Given that the addition of taxanes to anthracycline-based (AC) regimens results in excellent response rates, longer time to progression, and improved outcomes for non pregnant women with breast cancer, offering taxanes to pregnant women could be preferred over an elective preterm birth to expedite starting taxanes postpartum. In fact, when evaluating the developmental outcomes of children exposed to chemotherapy in utero, preterm birth had a more significant impact on neonatal performance than chemotherapy exposure [8,9]. In a recent study, taxanes were demonstrated to be present in the meconium of exposed neonates, providing unequivocal evidence of in utero exposure [10]. Meconium, the first stool of a newborn that passes in the first few days after birth, begins to accumulate around the 13th week of
pregnancy, but is not excreted until birth, providing a unique window into gestational metabolism and exposures. In this study we provide follow-up on newborns positively screened to be exposed to paclitaxel in utero.

Materials And Methods

This study was approved by the Cooper Health System Institutional Research Board. Women diagnosed with cancer during pregnancy were offered enrollment in a multi center cohort study registered with clinicaltrials.gov NCT02749474 that collects diagnostic and treatment information as well as neonatal well being for this unique cohort of patients. Oncologists provided diagnostic and treatment details including the maternal body surface area (BSA), chemotherapeutic agent, doses, and dates of therapy during pregnancy. Neonatal birthweight, gestational age at delivery, and congenital anomalies were collected. Small for gestational age birthweight, defined as <10%, is documented using Fenton criteria for preterm infants or by World Health Organization (WHO) criteria for term infants. Major birth defects were defined according to the Metropolitan Atlanta Congenital Defects Program (MACDP) code modifications developed by the Division of Birth Defects and Developmental Disabilities, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, Atlanta, Georgia 30333. To evaluate fetal exposures, women were asked to provide newborn meconium on day one of life if they received chemotherapy during pregnancy. Additionally participants agreed to allow pediatric follow-up from pediatricians at 6 months and annually during the child’s birth month. Screening of the meconium using liquid chromatography-high resolution mass spectrometry (LC-HRMS) was previously described [10]. The newborns exposed to taxanes underwent inspection at birth, and then additional follow-up was requested from pediatricians at 6, 12, 24 and 36 months of age. Annual follow-up is ongoing.

Treatment regimens, dosing, maternal BSA, and timing of first treatment are detailed in Table 1. Mean gestational age at the first chemotherapy treatment 17.1 +/- 3.5 weeks and at the first taxane treatment 27 +/- 5.8 weeks. The mean number of days between last treatment during pregnancy and day of birth was 23 +/- 15 days. Meconium was provided for analysis with blinding with regards to the chemotherapy treatment given during pregnancy. For the 8 infants exposed to taxanes, with confirmed detected in meconium at birth, delivery details and neonatal follow-up are described in Table 2. Annual follow-up was requested from pediatricians including developmental age assessment, meeting of appropriate milestones, percentage for head circumference, height and weight, and the diagnosis of any medical disorders or anomalies diagnosed after birth.

Delivery and Birth Defects: Details of the quantification of paclitaxel and metabolites found in meconium has been previously described [10]. The mean gestational age at delivery was 36.6 ± 0.9 weeks, and mean birthweight 2530 ± 336g. Three term infants weighed less than the 10th percentile for their gestational age at birth per WHO criteria using gestational age and gender. Two children were noted to have a congenital anomaly at the time of birth. One child was born with a familial autosomal dominant anomaly identical to their affected parent; one child delivered breech was diagnosed with hip dysplasia, a
common association with malpresentation. While reviewing pediatric follow-up records, a third child was found to have congenital mitral stenosis during an echocardiogram at age 2 months performed due to the presence of a murmur. There was no significant difference in anomalies for 49 neonates exposed to taxanes in utero after completing anthracycline based chemotherapy compared to 58 exposed to this therapy without the addition of taxanes for breast cancer, p=0.29.

Well being: Median age at most recent pediatric evaluation is 18.7 ± 9.3 months. All children are meeting age appropriate milestones and none have been diagnosed with major medical disorders aside from typical childhood illnesses such as otitis media, eczema, anemia, and sinusitis.

Discussion

Recently, we have shown that paclitaxel crosses the human placenta as it was detected in the meconium of neonates exposed in utero [10]. Berveillier studies the transplacental transfer and placental accumulation of paclitaxel and docetaxel and found both were similarly low, especially in physiological conditions of albumin [11]. Studies in a non-human primate pregnant baboon model also demonstrated transplacental disposition of chemotherapeutics with fetal exposure to taxanes (paclitaxel and docetaxel) occurring hours after infusion [12]. Despite transplacental transfer of taxanes, several authors have documented reassuring fetal surveillance after in utero exposure to taxane chemotherapy [13-21]. Despite the detection of chemotherapeutics in human meconium, neonatal follow-up for these neonates is reassuring. A possible explanation for the low placental transfer of taxanes is the presence of transporters in the feto-placental unit which prevents the entry of xenobiotics. The most well known of these is the P-glycoprotein, or the MDR1 gene product which functions as an efflux pump that transports substrates away from the intracellular to the extracellular compartment, protecting the developing embryo and fetus from toxic substances [22]. P-glycoprotein has been detected in human placental trophoblasts from the first trimester to term [23]. In the mouse, inhibition of placental P-glycoprotein results in enhanced transplacental passage of digoxin, saquinavir, and paclitaxel into the fetus [24].

In all cases described here, paclitaxel and the other chemotherapy regimens were started after organogenesis was completed during the first trimester. All taxane-exposed children are meeting milestones with the longest follow-up to 3 years of age, and annual follow-up is ongoing.

References

1. Peccatori Fa, Azim HA Jr, Orecchia R, et al. Cancer, pregnancy and fertility: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow up. Ann Oncol 2013:24 (suppl 6)vi160-170
2. Berry DL, Theriault RL, Holmes FA, Parisi VM, Booser DJ, Singletary SE, et al. Management of breast cancer during pregnancy using a standardized protocol. J Clin Oncol. 1999;17(3):855-61.
3. Cardonick E, Iacobucci A. Use of chemotherapy during human pregnancy. Lancet Oncol. 2004;5(5):283-91.
4. Hahn KM, Johnson PH, Gordon N, Kuerer H, Middleton L, Ramirez M, et al. Treatment of pregnant breast cancer patients and outcomes of children exposed to chemotherapy in utero. Cancer. 2006;107(6):1219-26.

5. Cardonick E, Usmani A, Ghaffar S. Perinatal outcomes of a pregnancy complicated by cancer, including neonatal follow-up after in utero exposure to chemotherapy: results of an international registry. Am J Clin Oncol. 2010;33(3):221-8.

6. Cardonick E, Dougherty R, Grana G, Gilmandyar D, Ghaffar S, Usmani A. Breast cancer during pregnancy: maternal and fetal outcomes. Cancer J. 2010;16(1):76-82.

7. Aviles A, Neri N. Hematological malignancies and pregnancy: a final report of 84 children who received chemotherapy in utero. Clin Lymphoma. 2001;2(3):173-7.

8. Amant F, Vandenbroucke T, Verheecke M, Fumagalli M, Halaska MJ, Boere I, et al. Pediatric Outcome after Maternal Cancer Diagnosed during Pregnancy. N Engl J Med. 2015;373(19):1824-34.

9. Cardonick EH, Gringlas MB, Hunter K, Greenspan J. Development of children born to mothers with cancer during pregnancy: comparing in utero chemotherapy-exposed children with nonexposed controls. Am J Obstet Gynecol. 2015;212(5):658 e1-8.

10. Cardonick E, Broadrup R, Xu P, Doan MT, Jiang H, Snyder NW (2019) Preliminary results of identification and quantification of paclitaxel and its metabolites in human meconium from newborns with gestational chemotherapeutic exposure. PLoS ONE 14(2): e0211821.

11. Berveiller P, Vinot C, Mir O, Broutin S, Deroussent A, Seck A, et al. Comparative transplacental transfer of taxanes using the human perfused cotyledon placental model. Am J Obstet Gynecol. 2012;207(6):514 e1-7.

12. Calsteren KV, Verbesselt R, Devlieger R, De Catte L, Chai DC, Van Bree R, et al. Transplacental transfer of paclitaxel, docetaxel, carboplatin, and trastuzumab in a baboon model. Int J Gynecol Cancer. 2010;20(9):1456-64.

13. Gainford MC, Clemons M. Breast cancer in pregnancy: are taxanes safe? Clin Oncol (R Coll Radiol). 2006;18(2):159.

14. Mendez LE, Mueller A, Salom E, Gonzalez-Quintero VH. Paclitaxel and carboplatin chemotherapy administered during pregnancy for advanced epithelial ovarian cancer. Obstet Gynecol. 2003;102(5 Pt 2):1200-2.

15. Mir O, Berveiller P, Goffinet F, Treluyer JM, Serreau R, Goldwasser F, et al. Taxanes for breast cancer during pregnancy: a systematic review. Ann Oncol. 2010;21(2):425-6.

16. Nieto Y, Santisteban M, Aramendia JM, Fernandez-Hidalgo O, Garcia-Manero M, Lopez G. Docetaxel administered during pregnancy for inflammatory breast carcinoma. Clin Breast Cancer. 2006;6(6):533-4.

17. Potluri V, Lewis D, Burton GV. Chemotherapy with taxanes in breast cancer during pregnancy: case report and review of the literature. Clin Breast Cancer. 2006;7(2):167-70.

18. Rouzi AA, Sahly NN, Sahly NF, Alahwal MS. Cisplatinum and docetaxel for ovarian cancer in pregnancy. Arch Gynecol Obstet. 2009;280(5):823-5.
19. Smit JW, Huisman MT, van Tellingen O, Wiltshire HR, Schinkel AH. Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure. The Journal of clinical investigation. 1999;104(10):1441-7.

20. Cardonick E, Bhat A, Gilmandyar D, Somer R. Maternal and fetal outcomes of taxane chemotherapy in breast and ovarian cancer during pregnancy: case series and review of the literature. Ann Oncol. 2012;23(12):3016-23.

21. De Santis M, Lucchese A, De Carolis S, Ferrazani S, Caruso A. Metastatic breast cancer in pregnancy: first case of chemotherapy with docetaxel. Eur J Cancer Care (Engl). 2000;9(4):235-7.

22. Myllynen P, Pasanen M, Vahakangas K. The fate and effects of xenobiotics in human placenta. Expert Opin Drug Metab Toxicol. 2007;3(3):331-46.

23. Tanabe M, Ieiri I, Nagata N, Inoue K, Ito S, Kanamori Y, et al. Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J Pharmacol Exp Ther 2001;297:1137e43.

24. Smit JW, Huisman MT, van Tellingen O, Wiltshire HR, Schinkel AH. Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure. J Clin Invest 1999;104:1441e7.

Tables

Table 1 Taxane Containing Chemotherapy Regimens During Pregnancy:
Dose	Total	# of	GA DX	GA	Days	GA	T in	3-OH T	6-OH T		
mg/m²	dose	Cycles	TX	Wks	Tx to	Wks	pg/mg	Pg/mg	Pg/mg mg		
mg	Wks	Birth									
+	175	306			24.9	49	36.0	52.8			
	1	2	13		0	52.1					
T	80	131	4	4	19	31.3	21	37.3	239.2	84.2	103.4
	80	138	12	2	18	18	40	34.7	446.3	100	136.3
	80	133		23	23	37.3					
T	12	8	13			865.2	117	131.8			
T	80	140	6	15	17	30	15	37.0	431.2	97.5	106.4
T	80	164	3	15	21	33	3	36.4	367.5	88.9	86.8
	151		22	25	36.7			231.4	213.6		
T	80	12	6	14				537.2			
T	80	143	3	18	22	34	10	37.4	313.1	70.7	76.8

FAC 5Flouracil/ Doxorubicin/Cyclophosphamide
AC Doxorubicin/Cyclophosphamide
T Paclitaxel
GA Gestational Age
DX Diagnosis
TX Treatment
Wks Weeks

Table 2 Detection of Taxanes in Meconium Samples of Neonates Exposed to Chemotherapy in Utero: Neonatal Follow up: Delivery of Newborn, GA, birthweight and mean age at medical and developmental follow up
GA (delivery)	Regimen	Birthweight (g)	Anomalies or Complications at Birth	Recent Age at Follow UP (months)	Meeting Developmental Milestones	Medical Concerns
37.4	AC,T	3100		11.6	Yes	Iron deficiency anemia
36.4	AC,T	2200	MV Stenosis age 2 months	24	Yes	Sinusitis
37.0	AC,T	2690	IUGR	19	Yes	<5% height and weight for age
37.3	AC,T	2200	IUGR	6	Yes	Eczema, otitis media
34.7	T	2200	Parent and child have Cleidocranial Dysostosis-Autosomal Dominant	15	Yes	
37.3	AC,T	2495	IUGR	25	Yes	
36.0	FAC,T	2863		10	Yes	
36.7	AC,T	2495	Hip Dysplasia, breech	24	Yes	

GA Gestational Age
IUGR Intrauterine Growth Restriction
MV Mitral Valve

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- CoverLetter.docx