Second line molecular diagnosis for bovine tuberculosis
to improve diagnostic schemes
Lorraine Michelet, Krystel de Cruz, Claudine Karoui, Jennifer Tambosco,
Jean-Louis Moyen, Sylvie Hénault, María Laura Boschirolı

To cite this version:
Lorraine Michelet, Krystel de Cruz, Claudine Karoui, Jennifer Tambosco, Jean-Louis Moyen, et al., Second line molecular diagnosis for bovine tuberculosis to improve diagnostic schemes. PLoS ONE, 2018, 13 (11), pp.e0207614. 10.1371/journal.pone.0207614. anses-03910916

HAL Id: anses-03910916
https://anses.hal.science/anses-03910916
Submitted on 22 Dec 2022
Second line molecular diagnosis for bovine tuberculosis to improve diagnostic schemes

Lorraine Michelet¹, Krystel de Cruz¹, Claudine Karoui¹, Jennifer Tambosco¹, Jean-Louis Moyen², Sylvie Hénault¹, María Laura BoschiroliI*¹

¹ University Paris-Est, French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Animal Health, Maisons-Alfort, France, ² Laboratoire Départemental d’Analyse et de Recherche de Dordogne, Coulounieix Chamiers, France

* maria-laura.boschiroli@anses.fr

Abstract

Surveillance of bovine tuberculosis (bTB) is partly based on the sanitary inspection of carcasses at the abattoir to detect bTB-like lesions which, in compliance with EU recommendations, are analysed by bacteriology and histopathology to disclose Mycobacterium bovis (or M. caprae) infection. Moreover, since 2012, a PCR method with similar sensitivity and specificity values of histopathology and bacteriology respectively is additionally employed in France, partially compensating for the weaknesses of classical diagnostic methods. We analysed a collection of bTB-like lesions from cattle presenting positive histological results albeit with negative PCR results. We present here the results of these samples, recovered from 292 animals culled between 2013 and 2016, analysed with a second line molecular diagnosis approach that consists in a combination of PCRs targeting the M. tuberculosis-M. avium complexes as well as the Mycobacterium genus and sequencing of hsp65 gene. These molecular analyses disclosed to identify the presence of non-tuberculous bacteria which could be responsible for most of these non-specific TB lesions: non tuberculous mycobacteria (24%) or Actinomycetales (56%) such as Rhodococcus equi (53%); 24% of the samples were negative. M. bovis -or any other MTBC members- was neither detected by molecular methods nor isolated in any of them at the end of the 3 months of culture. In conclusion, these results highlight the lack of specificity of histopathology and the usefulness of a first line PCR with a second line molecular diagnostic test to circumvent it. This diagnostic strategy makes it possible to reduce the number of suspect bTB cases raised at the abattoir or shortening their lock-up periods. By simplifying diagnostic schemes, the use of this tool could improve bTB surveillance and make eradication programs more efficient in the future.

Introduction

Bovine tuberculosis (bTB), mainly due to Mycobacterium bovis, is an important re-emergent zoonotic disease in Europe [1]. Although France has been officially bTB free (OTF) since 2001, the persistence of the disease in livestock and its occurrence in wildlife in some areas is of great
concern [2, 3]. The bTB control campaign in France, in compliance with the EU Directive 64/432, is mainly based on regular skin testing of animals and on detection of bTB-lesions during routine veterinary inspections at the abattoir. Indeed, inspection at the abattoir is a cost-effective method, especially in low prevalence areas or OTF countries [4]. In this particular context, the submission of all suspect lesions detected during meat inspection to the laboratory for histopathology and/or culture examination is necessary to increase the sensitivity of the surveillance system [5, 6]. Still, only by implementing more epidemiologically adapted control measures could eradication be envisaged [7].

BTB diagnosis by bacteriology can take up to three months due to the slow growth of the Mycobacterium tuberculosis complex (MTBC) mycobacteria [8]. Alternative more rapid tools such as histopathology are employed to circumvent the bacteriology slowness drawback. However, although histopathology is a fast and sensitive method it lacks specificity [9]. Actually, in a recent study on the evaluation of sensitivity and specificity of confirmatory bTB diagnostic tests, it was shown that histopathology was less specific than bacteriology, albeit as sensitive as another rapid test, a MTBC PCR introduced in France as a first line method, in parallel with bacteriology, to detect bTB infected animals [10]. This PCR method thus compensates for the specificity deficiency of histopathology which has been until now the only recognised rapid test in accordance with the EU Directive 64/432. Furthermore, the bovine tuberculosis National Reference Laboratory (NRL) applies a second line molecular diagnosis method that enables the identification of mycobacterial species either on mycobacteria bacteriological isolates or directly on DNA extracted from animal samples. This method provides rapid information about bTB or any other mycobacterial infection.

A significant and increasing number of cattle samples were analysed at the NRL, after discordant histopathological positive–first line PCR negative results. In this study we summarise the results of 4 years analyses on such samples with our second line molecular diagnosis scheme, which made it possible to identify non-tuberculous bacterial agents giving rise to non-specific bTB-like lesions, to avoid cumbersome -albeit official- diagnostic alternatives such as culture for confirming the bTB-free status of the herd, thus gaining diagnostic specificity and confidence for bTB status confirmation.

Materials and methods

Ethical statement

BTB is a notifiable disease for which there are control and surveillance campaigns in France. Official methods for diagnosis of this disease are culture, PCR and histopathology. Therefore, all the samples included in this study are issued from animals analysed within an official context. No purpose killing of animals was performed for this study. All samplings were in complete agreement with national and European regulations. No ethical approval was necessary.

Sample collection

Samples included in our study presented macroscopic bTB-like lesions at routine abattoir inspection between 2013 and 2016. Inspection procedures for bovine carcasses implemented in France (DGAL/SDSPA/SDSSA/N2013-8123, https://info.agriculture.gouv.fr/gedei/site/bo-agri/instruction-N2013-8123) follow the regulation (EC) No 854/2004 (Annex I, Section IV, Chapter I). Typically, lesions due to M. bovis have a centre of caseous necrosis, sometimes associated with calcification, surrounded by epithelioid cells, lymphocytes and neutrophils [6, 11]. Samples had previously been submitted to first-line bTB diagnosis (bacteriology/PCR and histopathology) by authorised regional laboratories (RL) of the national surveillance network for bTB [10]. Briefly, histopathology was based on Hematoxylin-Eosine and Ziehl Neelsen
staining. Bacterial culture is performed following the protocol established by the French NRL (NF U 47–104) for isolation of *M. bovis*. Two to 5 g of sampled tissues were crushed with a 4% sulfuric acid solution to decontaminate the tissue. After 10 min, the acid was neutralized by adding a 6% sodium hydroxide solution. After decontamination, the supernatant was seeded on two different solid media: Löwenstein-Jensen and Coletos. All seeded media were incubated at 37˚C +/- 3˚C for three months and examined every two weeks. Any isolated mycobacterial strain is submitted to the NRL for further characterisation. DNA from each sample was extracted by using the QIAamp DNA mini kit (Qiagen, Courtaboeuf, France) or by Magvet MV384 (Thermo Fisher scientific, Villebon-sur-Yvette, France) with a King Fisher KF96 automate, following the manufacturer’s instructions and analysed with the LSI VetMAX Mycobacterium tuberculosis Complex Real-Time PCR Kit (Thermo Fisher scientific, Villebon-sur-Yvette, France). Samples submitted to the NRL for further molecular analyses were those that (i) presented a histopathological result suggesting tuberculosis, and (ii) showed a negative result with the first-line PCR.

Samples from 81 TB-free cattle without TB-like lesions following diagnostic slaughter and having presented a negative PCR result at the first-line bTB diagnosis were also included as a control population.

Confirmatory tests-second line molecular diagnosis

For further analyses at the NRL, original tissue, macerated tissue and extracted DNA were sent by the RLs. A first analysis on DNAs was done by real-time PCR targeting insertion sequences IS6110 and IS1081 for MTBC identification, IS1245 for Mycobacterium avium complex (MAC) identification, and the 65 kDa heat shock protein gene (*hsp65*) for *Mycobacterium* sp. detection (Table 1). Real-time PCR assays were performed in a final volume of 25 μl using the TaqMan Fast Universal PCR Master Mix (Roche Diagnostics, Meylan, France) at a 1X final concentration, with primers at 300 nM and probes at 250 nM. PCR cycling comprised of 2 min at 50˚C and 20 s at 95˚C, followed by 50 cycles of 2-step amplification of 3 s at 95˚C, and 30 s at 60˚C. If necessary (negative or doubtful results) a second analysis was done with a new DNA extraction with the High Pure PCR Template Preparation Kit (Roche Diagnostics, Meylan, France) from the original tissue and the macerated lesion. Quality of the DNA extraction and PCR inhibition was tested with DiaControlDNA™ (Diagenode, Thermo Fisher, USA-diagnostics, Belgium).

Targeted genes or sequences	Primers-Probe name	Sequence 5’– 3’
IS6110	TR IS6110 F	GGT AGC AGA CCT CAC CTA TGT GT
	TR IS6110 R	AGG CGT CCG TGA CAA AGG
	TR IS6110 P	(FAM)-CAC GTA GAA CCC-(MGB-NFQ)
IS1081	TR IS1081 F	CCG CCA CCG TGA TTT CTA
	TR IS1081 R	GCC AGT CCG GGA AAT AGC T
	TR IS1081 P	(FAM)-CCG CAA CCA TCG AGC TC-(MGB-NFQ)
IS1245	TR IS1245 F	GCC GCC GAA ACG ATC TAC
	TR IS1245 R	TGA CCC GGT GCG CAG CTT
	TR IS1245 P	(FAM)-TCG CGT CCG CCG CCG AGC CTG CTC A-(BHQ1)
Hsp65	F MSP	GCC AAG GAG GTC GAG ACC AA
	R MSP	CTC CTC GAC GGT GAT GAC
	P MSP	(FAM)-ACC TTA TCC TAT GCC TCG GGG AT-(BHQ1)

https://doi.org/10.1371/journal.pone.0207614.t001
Identification of non-tuberculous mycobacteria species was done by sequencing using primers targeting the 65 kDa heat shock protein gene (hsp65) [12] or the β subunit of bacterial RNA polymerase sequence (rpoB) [13]. The obtained sequences were compared to the GenBank/EMBL/DDBJ databases using the BLAST program.

Results

This retrospective analysis includes all cattle cases sent to the NRL which had a negative result for MTBC PCR but with a bTB suggestive histopathology. Between 2013 and 2016, we analysed samples of 292 cattle from 278 herds (Table 2). The majority (91%) of samples were draining lymph nodes (LN) (102 retropharyngeal, 67 mediastinal and 96 tracheobronchial), while the remaining samples were a few other LN (6%) and organs (liver or lung) (3%).

The histopathological profiles of these animals were almost the same, i.e. encapsulated granulomas with necrosis areas and the presence of Langhan’s giant cells. For some samples, other types of cells, like lymphocytes or macrophages, were observed as well as a partial to complete mineralisation. The identification of acid-alcohol resistant bacillus by Ziehl Neelsen staining was positive for a few samples (15/292), latter identified as MAC (n = 11) or Mycobacterium sp. (n = 1), R. equi (n = 1) and a Nocardia sp. (n = 1).

Only 31 out of the 292 samples were bacteriology positive. Identification of these isolates was performed by hsp65 sequencing: 13 were MAC, 15 were other non-tuberculous mycobacteria (NTM) (1 M. aichiense, 2 M. bougerlatii, 2 M. kansasi, 8 M. nonchromogenicum, 1 M. petroleumphilum, and 1 M. pyrenivorans) and four Rhodococcus equi. The identification by bacteriology was congruent with the one on tissue for 22 samples (S1 Table). For the other nine samples, the results suggest co-infection as different pathogens were identified by bacteriology and PCR on tissue samples.

Of the 292 cases submitted to the NRL, 24% were NTM, 56% were Actinomycetales and 24% were negative based on sequencing (Table 2). In 11 cases, we identified co-infection, either between two NTM (M. avium avium and M. nonchromogenicum) or between a NTM (M. aichiense, M. bougerlatii, M. kansasi, M. nonchromogenicum or MAC) and an Actinomyceteal (Rhodococcus equi). Identification of the bacteria species by sequencing highlighted that 95% of the Actinomycetales were R. equi. Among the NTM, MAC represents 26% of the cases, while the other half were various mycobacteria species (Table 3). These NTM and Actinomycetales were found in various samples, most frequently in retropharyngeal LN (31%), followed

Table 2. Number of histology +/-PCR—Samples analysed and final diagnosis (bacteriology or molecular) obtained at the National Reference Laboratory for Tuberculosis.

Number of bovine	292*
Number of LN	
Retropharyngeal LN	102
Mediastinal LN	67
Other LN	18
Organs	9
Final diagnosis	
Total	292
Non tuberculous mycobacteria	69
Actinomycetales	164
Negative	70

LN: Lymph node
* Eleven samples were co-infected by two bacteria
* Several LNs (1–5) per cattle were analysed

https://doi.org/10.1371/journal.pone.0207614.t002
by tracheobronchial LN (25%), mediastinal LN (18%), other LN (4%) or organs (0.7%). More than 55% of the retropharyngeal and tracheobronchial LN was infected by *R. equi*.

Of the 240 LN from control animals without bTB-like lesions and a negative first-line PCR results, 96% remained completely negative to the second line diagnosis (Table 4). Only two NTM were identified in mediastinal LN (*M. lentiflavum* and *M. gordonae*) and 8 actinobacteria from various genus: *Corynebacterium* sp., *Streptomyces* sp., *Arthrobacter* sp. and *Nakamurella* sp. These results confirm that bacteria identified in nonspecific bTB-like lesions are not ubiquitous and accordingly that they are the real causative agents of them.

Table 3. Bacteria identified by *hsp65* and *rpoB* sequencing from DNA extracted from lymph nodes with bTB-like lesions.

Group	Species	N
Non tuberculous mycobacteria	*M. aichiense*	1
	M. avium avium	18
	M. avium hominisuis	4
	M. avium paratuberculosis	5
	M. bourgelatii	2
	M. genavense	1
	M. gordonae	1
	M. intracellular	1
	M. kansasii	3
	M. nonchromogenicum	9
	M. petroleophilum	1
	M. pyrenivorans	1
	M. shimoidei	1
	M. thermoresistibile	1
	Mycobacterium sp.	20
Actinomycetales	Gordonia sp.	1
	Nocardia sp.	5
	Rhodococcus erythropolis	2
	Rhodococcus equi	155
	Rhodococcus pyridinivorans	1
Total		233*

*Eleven samples were co-infected.

https://doi.org/10.1371/journal.pone.0207614.t003

Table 4. Number of histology-/PCR—Samples analysed and final diagnosis (bacteriology or molecular) obtained at the National Reference Laboratory for Tuberculosis.

Final diagnosis	Total	Non tuberculous mycobacteria	Actinomycetales	Negative
Number of bovine	81*	2	8	230
Number of corresponding herd	42	2	7	42
Retropharyngeal LN	72	0	1	71
Tracheobronchial LN	72	0	1	67
Mediastinal LN	71	2	2	67
Other LN	25	0	0	25

LN: Lymph node
* Eleven samples were co-infected by two bacteria
* Several LNs (1–5) per cattle were analysed

https://doi.org/10.1371/journal.pone.0207614.t004
Discussion

We studied bTB suspect cases resulting from abattoir inspection which presented nonspecific histopathology bTB-like lesions and a negative first line MTBC PCR and focused on the identification of the bacteria responsible for them. The number of this type of nonspecific susceptions increased since 2013 as a result of awareness campaigns organised for abattoir agents, one of a series of measures introduced to reinforce the national bTB control campaign in 2011 [14].

None of these cases were real bTB infections, but other bacteria, i.e. NTM or Actinomycetales, have been identified in the lesions. Indeed, bTB-like lesions could also be caused by other granuloma forming organisms such as NTM or Nocardia species [15]. Moreover, mycobacteria and some Actinomycetales (of the genus Nocardia, Rhodococcus or Corynebacterium) shared the same tinctorial properties and thus are identified as acid resistant bacilli by Ziehl Neelsen staining [16].

Many environmental mycobacteria may interfere with the bTB surveillance program at post-mortem inspections at the abattoir [17]. NTM have recently been detected in lymph nodes of clinically healthy Swiss cattle, emphasizing the need of more specific diagnostic tools [18]. A study in Northern Ireland tried to identify mycobacteria in lymph nodes of cattle belonging to herds with previous evidence of bTB. The identified bacteria species were almost the same as in our study but with different proportions: a majority of M. nonchromogenicum, few MAC, few M. kansasii and only one R. equi [19]. NTM as well as R. equi, have been recognised in lymph node infection of domestic and wild animals (swine and wild boar (Sus scrofa), roe deer (Capreolus capreolus) or red deer (Cervus elaphus)), which could lead to a possible misdiagnosis of M. bovis [20–22]. Indeed, real tuberculosis lesions in cattle are commonly found in retropharyngeal LN (29.4%), mediastinal LN (28.2%) and tracheobronchial LN (18%) [6], i.e. the same locations as the non-tuberculous agents in our study.

Our results strongly suggest the link between R. equi and the presence of nonspecific bTB-like lesion as this species was not identified in the LN of cattle without any bTB-like lesions. Rhodococcus equi and non-tuberculous mycobacteria (especially MAC) are facultative intracellular pathogens surviving inside macrophages and inducing granulomatous inflammation [17, 23]. Rhodococcus equi (formerly Corynebacterium equi) is a coccobacillus bacterium commonly found in soil which is pathogenic for domesticated animals such as horses, pigs and cattle [24, 25]. Even if its pathogenicity is low in cattle, it may occasionally cause lymph node granulomas, which are detected at abattoir post-mortem examination [26]. The interference caused by R. equi in the monitoring of bTB was already acknowledged 35 years ago [27]. This bacterium has the capacity to modify the phagocytic vacuole of host macrophages and present similarities on cellular responses attributed to resemblances in cell wall composition and antigenic structure with bTB agents [9, 25]. Granulomas caused by R. equi are most frequently observed in retropharyngeal, bronchial and mediastinal lymph nodes [25] and are really difficult to differentiate from M. bovis granulomas, even if the presence of a heavy infiltration of neutrophils and/or extensive sheets of macrophages could presumably allow distinction [26]. Non-tuberculous mycobacteria and MAC are ubiquitous in the environment and particularly found in wet soil, water or plants [20, 22]. Infection of animals in our study probably occurred by the oral route through ingestion of food or water contaminated by these environmental organisms [25]. Some of the identified NTM species are recognised as leading to misdiagnosis of bovine tuberculosis, especially MAC [17] and Mycobacterium nonchromogenicum which is known to interfere with ante-mortem diagnosis of bTB [17, 28, 29]. The role of the other identified species as cattle pathogens is unclear. Mycobacterium bourgelatii, closely related to M. intermedium and described for the first time in 2013, was isolated from cattle lymph nodes [30]. M. intermedium is classified as a ‘pathogen’, together with M. gordonae and M. kansasii,
in a recent phylogenetic analysis [31]. Thus, their role in nonspecific bTB diagnosis cannot be ruled out [17]. *Mycobacterium aichiense* closely related to *M. gilvum* [32], *M. petroleophilum* closely related to *M. aurum* [33], *M. pyrenivorans* and *M. thermoresistibile* are all rapidly growing mycobacteria found in the environment, potentially opportunistic in humans and included in the same phylogenetic group [31]. *Mycobacterium genavense*, slow growing mycobacteria, is responsible for infection both in birds and humans and has also been isolated from the environment [34]. *Mycobacterium shimoidei*, slow growing mycobacteria, is an opportunistic pathogen of humans but few pulmonary cases have been reported worldwide [35].

In our study, the majority of the samples presented a histological profile with an encapsulation of the granuloma and the presence of giant Langhans cells, sometimes in association with others cells (lymphocytes, neutrophils or epithelioid cells). The presence of epithelioid macrophages and Langhans cells is not pathognomonic as these cells are seen in immunologic granulomas [36], especially in tuberculous ones [37]. The histopathological results of our cases were quite the same for lesions due to NTM or Actinomycetales, indicating a clear lack of specificity in histopathological diagnosis. However, the use of immunohistochemistry, in complement of special staining, could have increased the specificity of this diagnostic test by demonstrating *M. bovis* antigen immuno-localisation [36]. In a previous study, the sensitivity and specificity of confirmatory tests (bacteriology, histopathology and PCR) were estimated under French field conditions [10]. Histopathology was found to be as sensitive as PCR but less specific than bacteriology or PCR, which means that this test cannot be used alone as a confirmatory test. Our results confirm and explain histopathology’s lack of specificity. Besides, second line PCR showed its usefulness as it clearly improves bTB diagnosis by disclosing false MTBC-infected cases. The second line molecular tests used at the NRL have shown an excellent negative predictive value and have quickly reduced the number of bTB suspicions through the identification of other non-tuberculous bacteria; however, as the proposed molecular diagnosis scheme is not a EU officially recognised strategy, animal movement restrictions in the 278 incriminated herds were maintained during at least 3 months awaiting for declaration of a negative *M. bovis* culture. In conclusion, second line molecular tests used at the NRL could confidently be added as an official test in order to accelerate the diagnosis process and improve bTB surveillance in Europe and to render control and eradication programs more efficient in the future.

Supporting information

S1 Table. Congruence of culture and PCR results.

(DOCX)

Acknowledgments

We are grateful to Victoria Boschiroli for her useful comments on the article. We are also grateful to the regional veterinary services, the regional bTB coordinators and the Cirev for their invaluable help.

Author Contributions

Conceptualization: Lorraine Michelet, Sylvie Hénault, María Laura Boschiroli.

Data curation: Lorraine Michelet, Jean-Louis Moyen, María Laura Boschiroli.

Formal analysis: Lorraine Michelet, María Laura Boschiroli.

Funding acquisition: María Laura Boschiroli.
Investigation: Lorraine Michelet, Krystel de Cruz, Claudine Karoui, Jennifer Tambosco, Jean-Louis Moyen, María Laura Boschiroli.

Methodology: Krystel de Cruz, Claudine Karoui, Jennifer Tambosco, Sylvie Hénault, María Laura Boschiroli.

Project administration: María Laura Boschiroli.

Supervision: María Laura Boschiroli.

Validation: Lorraine Michelet, Jean-Louis Moyen, María Laura Boschiroli.

Writing – original draft: Lorraine Michelet.

Writing – review & editing: María Laura Boschiroli.

References

1. Muller B, Durr S, Alonso S, Hattendorf J, Laisse CJ, Parsons SD, et al. Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerg Infect Dis. 2013; 19(6):899–908. https://doi.org/10.3201/eid1906.120543 PMID: 23735540.

2. Lambert S, Hars J, Réveillaud E, Moyen JL, Gares H, Rambaud T, et al. Host status of wild roe deer in bovine tuberculosis endemic areas. Eur J Wildl Res. 2017; 63:15. https://doi.org/10.1007/s10344-016-1071-4

3. Hauer A, De Cruz K, Cochard T, Godreuil S, Karoui C, Henault S, et al. Genetic evolution of Mycobacterium bovis causing tuberculosis in livestock and wildlife in France since 1978. PloS one. 2015; 10(2): e0117103. https://doi.org/10.1371/journal.pone.0117103 PMID: 25658691.

4. Schiller I, Waters WR, Vordermeier HM, Jenmi T, Welsh M, Keck N, et al. Bovine tuberculosis in Europe from the perspective of an officially tuberculosis free country: trade, surveillance and diagnostics. Vet Microbiol. 2011; 151(1–2):153–9. https://doi.org/10.1016/j.vetmic.2011.02.039 PMID: 21439740.

5. Radunz B. Surveillance and risk management during the latter stages of eradication: experiences from Australia. Vet Microbiol. 2006; 112(2–4):283–90. https://doi.org/10.1016/j.vetmic.2005.11.017 PMID: 16321479.

6. Domingo M, Vidal E, Marco A. Pathology of bovine tuberculosis. Res Vet Sci. 2014; 97 Suppl:S20–9. https://doi.org/10.1016/j.rvsc.2014.03.017 PMID: 24731532.

7. Fediaevsky A, Courcoul A, Boschiroli ML, Réveillaud E. Bovine tuberculosis in France: positive signs but a situation that is still complex in some areas. Bull Epid Sante Anim Alim. 2013; 59:9–40.

8. Gormley E, Corner LA, Costello E, Rodríguez-Campos S. Bacteriological diagnosis and molecular strain typing of Mycobacterium bovis and Mycobacterium caprae. Res Vet Sci. 2014; 97 Suppl:S30–43. https://doi.org/10.1016/j.rvsc.2014.04.010 PMID: 24833269.

9. Varello K, Pezzolato M, Mascarino D, Ingravalle F, Caramelli M, Bozzetta E. Comparison of histologic techniques for the diagnosis of bovine tuberculosis in the framework of eradication programs. J Vet Diagn Invest. 2008; 20(2):164–9. https://doi.org/10.1177/104063870802000204 PMID: 18319428.

10. Courcoul A, Moyen JL, Brugere L, Faye S, Henault S, Gares H, et al. Estimation of sensitivity and specificity of bacteriology, histopathology and PCR for the confirmatory diagnosis of bovine tuberculosis using latent class analysis. PloS one. 2014; 9(3):e80334. https://doi.org/10.1371/journal.pone.0090334 PMID: 24625670.

11. Thoen CO, Huchzermeyer H, Himes EM. Laboratory diagnosis of bovine tuberculosis. In: Thoen CO, Steele JH, editors. Mycobacterium bovis infection in animals and humans. Iowa: Iowa State University Press; 1995. p. 63–72.

12. Telenti A, Marchesi F, Balz M, Bally F, Bottger EC, Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol. 1993; 31(2):175–8. PMID: 8381805.

13. Adekambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol. 2003; 41(12):5699–708. https://doi.org/10.1128/JCM.41.12.5699-5708.2003 PMID: 14662964.

14. Cavalerie L, Courcoul A, Boschiroli ML, Réveillaud E, Gay P. Bovine Tuberculosis in France in 2014: a stable situation. Bull Epid Sante Anim Alim. 2015; 71:4–11.
K, editors. The ecology of Mycobacteria: impact on animal’s and human’s health: Springer; 2009. p. 199–281.

35. Galizzi N, Tortoli E, Gori A, Morini F, Lapadula G. A case of mild pulmonary disease due to Mycobacterium shimoidei with a favorable outcome. J Clin Microbiol. 2013; 51(10):3467–8. https://doi.org/10.1128/JCM.01028-13 PMID: 23926163.

36. Watrelot-Virieux D, Drevon-Gaillot E, Toussaint Y, Belli P. Comparison of three diagnostic detection methods for tuberculosis in French cattle. J Vet Med B Infect Dis Vet Public Health. 2006; 53(7):321–5. https://doi.org/10.1111/j.1439-0450.2006.00957.x PMID: 16930276.

37. Menin A, Fleith R, Reck C, Marlow M, Fernandes P, Pilati C, et al. Asymptomatic cattle naturally infected with Mycobacterium bovis present exacerbated tissue pathology and bacterial dissemination. PloS one. 2013; 8(1):e53884. https://doi.org/10.1371/journal.pone.0053884 PMID: 23326525.