The study of triple gauge boson anomalous interactions via process $e^-\gamma \rightarrow W^-\nu$. Leptonic W decay mode.

To be published at PHOTON'2001 and QFTHEP proceedings.

Dmitriy A. Anipko, Ilya F. Ginzburg, Alexey V. Pak

Sobolev Institute of mathematics SB RAS, prosp. Koptyuga 4
and Novosibirsk State University, ul. Pirogova 2
Novosibirsk, 630090, Russia
E-mail: ginzburg@math.nsc.ru

Abstract

We study possibilities to measure the triple anomalous W-boson couplings to photon in the $e\gamma \rightarrow W\nu$ process via its lepton decay channel (with the simplest signature). We found that in the study of the W quadruple momentum λ one can limit himself within a small region in phase space. A way to find this region is proposed. The obtained estimates for λ at TESLA project are roughly twice better than anticipated for e^+e^- mode. For W anomalous magnetic momentum the discussed mode gives no improvements as compared e^+e^- mode.

Study of anomalous interactions of gauge bosons (beyond the Standard Model – SM) is an essential part of the program of Linear Colliders (LC), both in e^+e^- and $e\gamma, \gamma\gamma$ modes (Photon Colliders) \cite{1,2}. The e^+e^- mode of the LC has been studied thoroughly \cite{3}. The process $e\gamma \rightarrow W\nu$ was considered in respect to Photon Collider program in 1984 \cite{4} first. Anomalous gauge boson interactions in $e^+e^- \rightarrow WW, \gamma\gamma \rightarrow WW, e\gamma \rightarrow W\nu$ processes have been studied in the papers \cite{5,7} with neglected backgrounds, W–boson decay and involving initial particles’ spectra, polarizations and luminosities far from modern understanding.

The $e\gamma \rightarrow W\nu$ process has the following advantages as compared to as compared to the $e^+e^- \rightarrow WW$:
(a) much higher cross section not falling down at higher energies, as compared to the $\sigma(e^+e^- \rightarrow WW)$, which decreases with energy;
(b) only γWW anomalies contribute here, making analysis more definite comparing with $e^+e^- \rightarrow WW$ case when ZWW anomalies influence as well.

We use the standard effective lagrangian parameterization with anomalous parameters Δk and λ – anomalous magnetic and quadruple momenta of W–boson respectively as

$$ e[W^\dagger_{\mu\nu}W^\mu F^\nu - W^\dagger_{\mu}F_\nu W^{\mu\nu} + (1 + \Delta k)W^\dagger_{\mu}W^\nu F^{\mu\nu} + \frac{\lambda}{m_W^2}W^\dagger_{\lambda\mu}W^\mu F^{\nu\lambda}] $$

Some important features of the $e\gamma \rightarrow W\nu$ reaction can be seen before numerical simulations:
• Since only left–hand polarized fermions interact in the $We\nu$ vertex, the cross section
is proportional to \((1 - 2\lambda_e)\) where \(\lambda_e\) stands for the degree of electron longitudinal polarization. Thus, varying the mean electron helicity, one can measure the right current admixture in this vertex in the new region of \(W\) virtualities.

- In our problem we assume anomalous effects to be relatively weak. Therefore, in the observable variations of cross sections only linear by \(\Delta k\) and \(\lambda\) effects should be considered to be experimentally observable. The structure of helicity amplitudes for \(e\gamma \rightarrow W\nu\) process (without decay) shows that for the left hand or right hand polarized initial photons both anomalies (\(\Delta k\) and \(\lambda\)) contribute to the cross sections while for unpolarized photons linear on \(\lambda\) effects are canceled. Therefore, the analysis with unpolarized photons is incomplete.

To analyze the process we considered observable channels after \(W\) decays. Note that the description of these channels contains additional diagrams (not only \(e\gamma \rightarrow W\nu\) with subsequent decay). For example, the muon decay channel contains a diagram in which an initial photon interacts with the muon after \(W\) decay.

We classify the observable channels of the reaction by the observable particle and its origin (Table 1). We distinguish, for example, two muon channels, where channel 1 corresponds to direct \(W\) decay into \(\mu\bar{\nu}\), and channel 2 corresponds to cascading decay to muon and neutrinos with intermediate \(\tau\) state.

We consider first only muon channel.

Event selection cuts. We impose two constraints on muon escape angle \(\theta\) and its transverse momentum \(p_\perp\) (for operations with \(\sqrt{s} \leq 1\) TeV):

1. \(\pi - \theta_0 \geq \theta \geq \theta_0 = 10\) mrad;
2. \(p_\perp > p_{\perp 0} = 10\) GeV.

Condition 1 corresponds to the TESLA detector expected angular limitation. The second cut allows to exclude or suppress many background processes. We found that reasonable (not excessive) increase of \(\theta_0\) and \(p_{\perp 0}\) influences our results weakly.

Background processes are those where either muon is only particle that can be observed or where other charged particles and photons cannot be detected due to their small escape angles. These are:

1. Processes in which all the final particles can potentially be observed in principle — \(e\gamma \rightarrow e\mu^+\mu^-\), \(e\gamma \rightarrow eZ\gamma\) (\(Z \rightarrow \mu\bar{\mu}\)).
2. Processes including neutrinos in the final state — \(e\gamma \rightarrow e\bar{\tau}\tau\) (\(\tau \rightarrow \mu\)), \(e\gamma \rightarrow eZZ\) (\(Z \rightarrow \nu\bar{\nu}, Z \rightarrow \mu\bar{\mu}\)), \(e\gamma \rightarrow \nu WZ\) (\(Z \rightarrow \nu\bar{\nu}, W \rightarrow \mu\nu\)), \(e\gamma \rightarrow eW^-W^+\) (\(W^+ \rightarrow \ell^+\nu_\ell, W^- \rightarrow \mu\bar{\nu}_\mu\)).
3. Processes caused by deviation of the state from ideal due to conversion mechanism. There happen \(e^- e^- \rightarrow \nu W^- e^- \) collisions with residual electrons in the photon beam and \(\gamma \gamma \rightarrow W^- W^+ \) process with beamsstrahlung photons. We consider in this group also the process \(e\gamma \rightarrow W \nu \) with photons from multiple electron scattering on laser photons.

Transverse momentum conservation along with the cuts imposed exclude processes of the first group (it is impossible that with the energy and angular cuts given only one observed particle has transverse momentum higher than 10 GeV).

Of the third group processes, \(e\gamma \rightarrow W \nu \) collisions with low energy photons from multiple electron scattering have been simulated and analyzed in detail. As for other processes, they cannot be excluded only by cuts. But it follows from our analysis that the anomalies considered can be extracted with good efficiency from the regions of muon momentum plane \((p_L, p_\perp)\) close to boundaries of the phase space permissible in the reaction. These regions are either beyond the reach of some background processes or their estimated cross sections are relatively small in these regions. Therefore, at the first analysis most of the backgrounds should not have been simulated.

Main parameters. In our analysis the electron longitudinal polarization was taken as \(2\lambda_e = -0.85 \), luminosity value in \(e\gamma \) mode was considered \(1/4 \) of its value in \(e^+ e^- \) mode \(\int L_{e\gamma} dt = \frac{1}{4} \int L_{e^+ e^-} dt \). Different signs of photon circular polarization have been accounted. \(W \) parameters were taken from \[6\].

We assume main parameter for \(e \rightarrow \gamma \) conversion \(x = 4.8 \) (corresponding to \(E_e = 500 \) GeV). Shape of the high energy part of the photon spectrum depends weakly on details of conversion, the beam size and laser flash energy. We used here spectra from papers \[4\],\[10\] with parameter \(\rho = 1 \). On the contrary, shape of the low-energy part does depend strongly on interaction details and cannot reliably be determined in advance. In addition, low-energetic photons are almost unpolarized. To imitate this part of spectrum, we used the low energy part of backscattered photons’ energy spectrum, given in the conversion point with completely unpolarized photons. It has been found that these low energy photons don’t influence the results significantly.

To take into account the electron initial state radiation we used the effective electron spectrum from refs. \[3\],\[9\].

Calculations. We calculated distribution of final muons over components of their momentum \(\partial^2 \sigma / (\partial p_\parallel \partial p_\perp) \) in SM and with anomalies, using CompHEP package \[11\] for symbolic and numerical calculations. For the 2nd \(\mu \)-channel distribution over \(\tau \) momenta was calculated using CompHEP (the same as for channel 1), result was numerically convoluted with distribution (which is simple to calculate) of muons from \(\tau \) decay with \(\tau \) decay branching ratio from \[6\]. This procedure allowed us to avoid analyzing the multiparticle final phase space (after integration over neutrino momenta and averaging over muon spin this distribution becomes independent on the polarization of intermediate \(\tau \). Indeed, this distribution is determined by two 4-momenta \(p_\tau \) and \(p_\mu \) and one pseudovector of \(\tau \) spin \(s_\tau \), but one cannot combine a scalar value, including \(s_\tau \) and both momenta). This approximation is acceptable since \(\tau \)-lepton width is rather small. We found that final distributions on muon momentum for these two channels are similar.

Computed distributions in SM and with anomalous interactions were used to calculate Statistical Significance (SS) defined as:
$SS = \frac{N_{(SM+anom)} - N_{SM}}{\sqrt{N_{SM}}}$

The quantity $\sqrt{N_{SM}}$ in denominator corresponds to the situation where relative influence of anomalies on cross section is small.

On the first step we put values $\lambda = \lambda_{sim} = 0.1$ or $\Delta k = \Delta k_{sim} = 0.1$ and calculated SS in separate cells of phase space. These SS vary strong in the $(p_{\parallel},p_{\perp})$ plane (example on Figure 1).

The best estimates can be obtained using not the entire phase space but a region limited with suitable cuts. To find natural cuts, i.e. regions of phase space providing the maximal SS value (examples are shown at Figure 2), the following iterative procedure was used.

On each step the current region is modified by the following rule, starting with empty region:
1. On each step we choose a random phase space cell (no matter belonging or not to the region found up to the moment)
2. SS value is recalculated for the area with this cell included (or excluded, if it was already included to the area)
3. If SS increases, this area change is accepted

This process converges relatively fast (thousands of steps for our lattice) and results of this procedure are independent on the choice of the starting cell. The obtained areas are different for Δk and λ and depend on energy and photon helicity.

The areas responsible for λ detection belong to a small phase space region. One of the essential features is that reduction of the region to the borders of the phase space reduces SS slightly (by 10-20% with momentum cut at $0.7p_{max}$). With this reduction the intersection of areas, responsible for two considered anomalies, becomes small. That means, Δk and λ can be measured practically independently.

At the second step we obtain the final values of the anomalous parameters achieved in the process by linear extrapolation with signal level SL (values of signal measured in $\sqrt{N_{SM}}$ units, fixed by convention) from the equations

$$\lambda_{exp} = \lambda_{sim}\left(\frac{SL}{SS}\right),...$$

In the final estimates we also take into account contribution of e-channel as well.
\[\sqrt{s_{ee}} = 500 \text{ GeV}, \lambda = \lambda_{\text{sim}}, \Delta k = 0 \]

Figure 2: Phase space areas (in muon \(p_{\perp}, p_{||} \) plane), bringing the best SS value, – in grey. Dark are kinematically forbidden regions.

For this channel, some new background processes should be added not present in the \(\mu \)–channel. However, their effect is estimated as small in the areas responsible for anomalies. Therefore, in preliminary estimates we can account both \(e \) and \(\mu \) channels by doubling the number of events found for \(\mu \) channel.

In the Table 2 we compare the results for \(e^+e^- \rightarrow W^+W^- \) in all possible channels with muon and electron channels of \(e\gamma \rightarrow W\nu \) process. For this comparison we use \(SL = 1 \), as used in [3]. Left column represents here the C.M.S. energy for the initial \(ee \) system. Numerical inaccuracy of the shown results is less than 5%.

\(\sqrt{s_{ee}}, \) GeV	\(\int \mathcal{L} dt, fb^{-1} \)	\(\lambda \)	\(\Delta k \)
130 \(e\gamma \)	100	3.3 \(\times 10^{-2} \)	1.2 \(\times 10^{-3} \)
500 \(e\gamma \)	125	2.5 \(\times 10^{-4} \)	1.0 \(\times 10^{-3} \)
500 \(e^+e^- \)	500	5.9 \(\times 10^{-4} \)	3.3 \(\times 10^{-4} \)
800 \(e\gamma \)	250	1.7 \(\times 10^{-4} \)	1.0 \(\times 10^{-3} \)
800 \(e^+e^- \)	1000	3.3 \(\times 10^{-4} \)	1.9 \(\times 10^{-4} \)

Table 2: Final values of \(\Delta k \) and \(\lambda \) which can be obtained from \(e\gamma \rightarrow W\nu \) reaction (\(e \) and \(\mu \) channels) and from \(e^+e^- \rightarrow WW \)

These results can be improved by the factor 0.88 accounting the \(\tau \) hadron channel, with branching ratios from [3].

Here the same approach may be used as for simulating \(\mu \) channel 2. Since muon distributions in \(\mu \)-channels 2 and 1 are similar and \(m_\tau \ll M_W \), one can also use here the data obtained for muon channels. \(\tau \) hadron decay products should have low multiplicity and small effective mass. Experimentally these events can be extracted by corresponding cuts (\(M_{\text{eff}} < m_\tau \)), and distribution over total momentum of hadrons should be similar to those for \(\mu \) channels 1 and 2. Additional background processes are not likely to appear under imposed event selection conditions.

Let us summarize our results.
1. Even only lepton modes of the process $e\gamma \rightarrow \mu \nu$ potentially can provide better opportunities for extracting λ, than the process $e^+e^- \rightarrow W^+W^-$; Δk is better measured in the process $e^+e^- \rightarrow WW$ (compared to only lepton modes for $e\gamma \rightarrow \mu \nu$).

2. In most cases, estimates obtained with unpolarized photons are irrelevant to the problem.

3. The small part of final particles’ phase space is responsible for the best statistical significance for λ anomaly. This part is located near the kinematically allowed border. This allows one to suppress or even exclude contribution of some background processes.

4. The measured values of Δk and λ are correlated weakly.

The following steps of the analysis are planned:

1. Due to estimated small influence of backgrounds on the result, their description can be simplified by approximations like one used at simulating of the second muon channel (convolution of production and decay distributions). Even though the estimates show the backgrounds to influence the results weakly, these processes will be simulated. That will lead to more precise predictions and will provide useful experience for analyzing more complicated processes.

2. W-boson quark decay mode should be simulated. We hope this will also influence the results significantly.

We are grateful for helpful discussions to E.Boos, A.Djouadi, P.Heu er, F.Kapusta, M.Krawczyk, V.Serbo and V.Telnov. This paper is supported by grants RFBR 99-02-17211, 00-15-96691 and INTAS 00-00679.

References

[1] I.F. Ginzburg, G.L. Kotkin, V.G. Serbo, V.I. Telnov, *Nucl. Instrum. Methods* **205**, 47 (1983); I.F. Ginzburg, G.L. Kotkin, S.L. Panfil, V.G. Serbo, V.I. Telnov, *Nucl. Instrum. Methods, A* **219**, 5 (1984); Zeroth-order Design Report for the NLC, SLAC Report 474 (1996)

[2] *TESLA Technical Design Report*, p. VI, chap.1 DESY 2001-011, p.1-98, hep-ex/0108012

[3] *TESLA Technical Design Report*, p. III DESY 2001-011, TESLA Report 2001-23, TESLA FEL 2001-05 (2001) 192p, hep-ph/0106315

[4] I.F. Ginzburg, G.L. Kotkin, S.L. Panfil, V.G. Serbo. *Nucl. Phys. B**228**, 285 (1983) (E: B**243**, 550 (1984))

[5] E. Yehudai. *Phys. Rev. D**45**, 33 (1990)

[6] Particle Data Group. *Eur. Phys. J. C* **15** 1-878 (2000)
[7] S.Y. Choi, F. Schrempp. *Phys. Lett.* **B272**, 149 (1991)

[8] E.A. Kurayev, V.S. Fadin. *Yad. Fiz.* **41**, 733 (1985)

[9] M. Skrzypek, S. Jadach. *Z. Phys.* **C49**, 577 (1991)

[10] I.F. Ginzburg, G.L. Kotkin. *Eur. Phys. J.* **C13**, 295 (2000)

[11] A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin, S. Shichanin, A. Semenov. *CompHEP User’s manual*, hep-ph/9908288.