Monitored Lipid-Anchor Organization in Cell Membranes by PIE-FCCS

Sara B. Triffo,1,2† Hector H. Huang,1,2,3† Adam W. Smith,1,2 Eldon T. Chou,1 Jay T. Groves1,2,*

1Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, CA 94720
2Physical Biosciences and Materials Sciences Divisions, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
3Molecular & Cell Biology Department, University of California, Berkeley, CA 94720
†These authors contributed equally to this work
‡Supporting Information

KEYWORDS Fluorescence Cross-Correlation Spectroscopy, lipid anchor, cell membrane organization, membrane domains, membrane rafts, FCS, FCCS, PIE

Supporting Information Placeholder

ABSTRACT: This study examines the dynamic colocalization of lipid anchored fluorescent proteins in living cells using pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS) and fluorescence lifetime analysis. Specifically, we look at the pair-wise colocalization of anchors from LCK (myristoyl, palmitoyl, palmitoyl), RhoA (geranylgeranyl), and K-Ras (farnesyl) proteins in different cell types. In Jurkat cells, a density dependent increase in cross-correlation amongst RhoA anchors is observed, while LCK anchors exhibit a more moderate increase and broader distribution. No correlation was detected amongst K-Ras anchors or between any of the different anchor types studied. Fluorescence lifetime data reveals no significant Förster resonance energy transfer (FRET) in any of the data. In COS 7 cells, minimal correlation was detected amongst LCK or RhoA anchors. Taken together, these observations suggest that some lipid anchors take part in anchor-specific co-clustering with other existing clusters of native proteins and lipids in the membrane. Importantly, these observations do not support a simple interpretation of lipid anchor-mediated organization driven by partitioning based on binary lipid phase separation.

Introduction

Many proteins are anchored to cellular membranes through combinations of covalently attached lipid moieties.1 These modifications, along with polybasic regions of the proteins, are known to be essential for proper subcellular localization, thereby regulating interactions between certain proteins.2,3 It has been suggested that the anchors themselves contribute to the lateral organization of lipid-anchored proteins in the plasma membrane.4,8 Proteins of the Ras family of small GTPases, for example, differ only in their anchors, but are sorted and targeted to different membrane microenvironments with different signaling effects.9–12 In other instances, genetically or biochemically swapping one anchor type for another can disrupt protein function, even when proper subcellular localization is maintained.13,14 These observations, among others, highlight the role that anchors play in the proper differential lateral sorting of lipid-anchored proteins in live cell membranes. There is as yet no consensus on the spatial targeting characteristics of the various anchor types in living cells, nor even if such a simple interpretation of anchor-mediated organization exists.15–17

Natural lipid anchors include isoprenyl groups, such as farnesyl and geranylgeranyl, and saturated fatty acids, such as palmitoyl and myristoyl.18 Lipid-anchored proteins are often found to have multiple lipid modifications as well as basic amino acids near the anchor attachment point that aid in stabilizing the protein-membrane interaction, all of which we refer to here as the anchor. The different permutations of lipid modifications and basic amino acids give rise to a library of naturally occurring anchors with different chemical properties.

There is abundant evidence for the dynamic clustering and large scale spatial organization of membrane proteins, including lipid-anchored proteins in the cell membrane.19–27 However, the role of the lipid anchor itself remains in question. Early studies of detergent resistant membranes (DRMs) have suggested that palmitoylation can strongly bias the partitioning of proteins into tightly packed lipid domains.7,28 However, the detergent solubilization disrupts the native organization and is a poor indicator of live cell membrane structures.5,29–31 In giant unilamellar vesicles (GUVs) composed of synthetic or purified lipids and in giant plasma membrane vesicles (GPMVs), which are derived directly from cell membranes, lipid-mediated phase separation can be observed.32–36 Compelling observations by fluorescence microscopy confirm that lipid anchors differentially sort into tightly packed liquid ordered (Lo) domains enriched with saturated lipids and cholesterol, or liquid disordered (Ld) domains, consisting of loosely packed unsaturated lipids.37,39 However, the observed partitioning of lipid anchors between the phases is not consistent.36 In the study by Johnson et al, the anchor of LCK partitioned into the Lo domain in some GPMVs, into the Ld domain in
others, and still in others resided equally in both domains. Despite these findings, there is still confusion on the role of anchors in cell membranes. Neither study reveals evidence that anchors were responsible for partitioning into stable domains. Consequently, there is still confusion on the role of anchors in cell membrane organization.

We employ pulsed interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS) to measure the degree to which chimeric anchors colocalize in live cell membranes. In order to isolate the role of the anchor from protein-protein interactions, only the membrane anchor domain fused to either a red fluorescent protein – mCherry – or a green fluorescent protein – EGFP – is used (see Figure 1 and S6, SI Figure 1). FCCS measures the correlated movement of two fluorescent species as long as they are separated by a distance less than the detection area diameter (~0.4 μm). PIE-FCCS provides cross-talk free cross-correlation, while fluorescence lifetime histograms from the same data stream allow simultaneous monitoring of Förster resonance energy transfer (FRET). We examine the anchors in a pairwise manner, looking at colocalization of a single anchor type (labeled with two colors) or between two different anchor types. Our study considers whether interactions between these lipid anchors and membranes drive lateral organization and whether anchor identity defines differential sorting in the membrane.

In the following, we compare the organization of three chemically distinct lipid-anchors taken from three different membrane proteins: i) lymphocyte cell kinase (LCK), an immediate downstream activator of T cell receptor activation during the immune response, which has a N-terminal myristoylation and dual palmitoylations, ii) the small GTPase, RhoA, with a C-terminal geranylgeranylation, and iii) a member of the Ras oncogenic superfamily, K-Ras, with a similar C-terminal farnesylation. The saturated acyl chains of the LCK anchors contrast the bulky prenyl chains of the Ras and RhoA anchors, which differ from each other in length and sequence of the proximal basic amino acids.

The degree of two color cross-correlation between lipid-anchored fluorescent proteins, measured with PIE-FCCS, investigates the degree of their co-diffusion in living cells. The results reveal varying degrees of cross-correlation between lipid anchors of the same type in membranes of Jurkat cells transfected with either RhoA anchors or LCK anchors at high-molecular densities (>2000 molecules/μm²). In contrast, no colocalization of K-Ras anchors was detected at similar densities, despite having a C-terminal prenylation similar to the RhoA anchor. Significantly, colocalization between different anchors was never observed.

These findings suggest there are at least two distinct cluster types, into which the LCK and RhoA anchors selectively partition, existing in a background of various other membrane components. Furthermore, no significant decrease in the fluorescent lifetime of GFP is observed in any of these samples, regardless of the degree of colocalization. The clusters are not dense with fluorescent proteins, therefore they must also contain native membrane components.

Lipid mediated binary phase separation inevitably leads to domains of the minority phase (e.g. rafts) in a background of the majority phase. Thus our observation of two orthogonally composed minority domains diffusing in a majority background is inconsistent with the concept that lipid anchors are partitioning into clusters based on lipid phase alone. We suggest that native cell membrane proteins play a dominant role defining the cluster content, possibly including or even nucleating lipid phase separation. Lipid-anchored fluorescent proteins partition into these pre-existing clusters based on mutual compatibility between the anchor and the overall cluster environment. Finally, we report that membrane organization is cell type specific; LCK and RhoA anchor pairs in COS 7 cell membranes exhibit minimal colocalization with themselves or with each other.

Materials and Methods

Cloning - Construction of Truncated Lipid Anchor-Fluorescent Protein Fusion Genes. Constructs of EGFP-KRas-CT, mCherry-KRas-CT, mCherry-mGFP-KRas-CT in the plK vector with a strong CMV promoter were given as gifts from Dr. Nick Endres and Dr. John Kuriyan (UC Berkeley). Retroviral plasmids containing LCK-NT-mCherry, LCK-NT-EGFP, mCherry-RhoA-CT, and EGF-RhoA-CT were given as gifts from Dr. Björn Lillemeier and Dr. Mark Davis (Stanford). These genes were subcloned into the pN1 vector between the Ncol/NotI restriction sites. Polymerase chain reaction (PCR) primers and sequences of the genes can be found in the Supporting Information. All oligonucleotides were synthesized by Elim Bioscience (Fremont, CA) and sequenced by Elim Bioscience or the University of California Berkeley core DNA Sequencing Facility (Berkeley, CA)

Cloning - Construction of His-Tagged Fluorescent Proteins (FP-His12). Genes were cloned into the Ncol/XhoI restriction sites in the multiple cloning region downstream of a
T7 promoter in the vector pET-28b(+) (Novagen). Genes for mCherry and mGFP were amplified by PCR and cloned into the NcoI/HindIII sites of pET-28b(+)-His12. mCherry-mGFP-His12 was constructed sequentially by first cloning mCherry into the NcoI/BamHI sites of pET28b(+) with an oligo cassette encoding a 12-bis-His tag downstream of the fluorescent protein to generate pET-28b(+)-mCherry-His12. mGFP was then inserted into the BamHI/HindIII sites of pET-28b(+)•mCherry-His12 to produce pET-28b(+)-mCherry•mGFP-His12. All cloning was carried out in E. coli XL1-Blue strain (Stratagene).

Protein Expression and Purification. FP-His12 proteins were expressed in E. coli BL21 Star (DE3) strain (Invitrogen). Expression was induced during log phase growth with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG, Sigma) in 1 L suspension of Luria-Bertani bacterial media (Sigma) at 37°C for 3-5 hours. Cells were lysed by a freeze-thaw cycle, conventional treatment with 1 mg/mL Lysozyme (Sigma) for 1 hour at 4°C in lysis buffer (40 mM Tris pH 7.4, 275 mM NaCl, 20 mM Imidazole, 2% Protease Inhibitor Cocktail for His tag (Sigma)) and then by probe sonication (Sonic & Materials Inc., VCX750). Samples were on ice during pulse sonication (5 s ON/9 s OFF, 150 seconds, amplitude = 35%, with a 3 mm stepped microtip). Lysate was clarified by addition of, and incubation with, nucleases (100 ng/mL RNaseA (Roche) and 25 ng/mL DNAsel (Roche)) and high-speed centrifugation (6,000 × g) for 45 min at 4°C then filtered through a 0.45 μm syringe filter. His-tagged proteins were purified by immobilized nickel affinity chromatography in a 1 mL His-Trap column on an AKTA Explorer (GE Life Sciences) and by gel filtration chromatography on a Superdex-100 HR size exclusion column (GE Life Sciences) in phosphate buffered saline, pH 7.4 (PBS, Gibco, Cellgro) and 20% glycerol (EMD). Purified proteins were concentrated with Amicon centrifugal filters, flash frozen in liquid nitrogen in aliquots and stored at -80°C.

Supported Lipid Bilayer Formation and Protein Binding. Supported bilayers for empirical mapping of correlated fluorescence were made as previously described.1-3,5 1,2-dioleoyl-sn-glycero-3-phosphocholine (18:1 (Δ9-Cis) DOPC) and 1,2-dioleoyl-sn-glycerol-3-[N-(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl (18:1 Ni-NTA DGS) were purchased from Avanti Polar Lipids and stored at -20°C. 2 mol% and 10 mol% Ni-NTA DGS (with 98 mol% and 90 mol% DOPC, respectively) small unilamellar vesicles (SUVs) were prepared by sonication according to alternate protocol 1 in Lin et al.50 Glass coverslip membrane supports (#1 Fisherbrand 25 mm round coverglass) are cleaned of organic contaminants by a 10 min submersion in highly oxidizing Piranha etch solution (3:1 H2SO4:H2O2) thereby increasing the hydrophilicity of the support. 15 μL SUVs are mixed 1:1 with 2×Tris-buffered saline, pH 7.4 (TBS, Cellgro), and deposited on a clean, dry coverslip. Vesicles fuse to form a fluid supported bilayer on the coverglass. Coverslip and supported membranes are enclosed in a metal imaging chamber and the bilayer must remain hydrated in order to maintain fluidity. The water is exchanged for 100 mM NiCl2 in 2×TBS solution and incubated for 5 min in order to load the NTA with nickel ions. The solution is washed with filtered H2O and then exchanged with 5 mL of 1×PBS, 2, 6, and 10 mol% Ni-NTA DGS bilayers were incubated with -3, 6, or 9 nM mCherry-His12 and mGFP-His12 proteins in PBS for ~30-40 minutes, after which all unbound proteins were washed away by exchanging the solution with 10 mL of PBS.

Cell Culture/Transfection/Sample Preparation. Jurkat T cells were cultured in RPMI1640 medium (Gibco) supplemented with 1 mM sodium pyruvate (Cellgro), 100 μg/mL Penicillin/Streptomycin (Cellgro), and 10% fetal bovine serum (FBS, Atlanta Biologicals). Cells were passaged every two to three days by seeding ~106 cells in 5 mL media in a T-25 cell culture flask and were disposed of after ~15 passages. COS 7 cells were cultured in Dulbecco’s Modification Eagle’s Medium (4.5 g/L glucose DMEM, Cellgro) supplemented with 1 mM sodium pyruvate, 2 mM L-glutamine, and 10% FBS and passaged 1:20 at ~95% confluency for up to 20 passages.

Cells were transiently transfected either 1 or 2 days before the experiment. COS 7 cells are seeded at a density of 250,000 cells/9.6 cm2 well in a 6-well culture plate in 2.5 mL reduced serum Opti-MEM I (Invitrogen) the day before transfection, while 105 Jurkat cells in 2.5 mL Jurkat media are seeded in each well on the same day as transfection. For transfection, 2.5 μg plasmid DNA was added to 250 μl Opti-MEM I, then 10 μl Lipofectamine 2000 transfection reagent (Invitrogen) was added to this mixture and incubated at room temperature for 30 min. This was then added to cells in 6-well culture plates and incubated at 37°C, 5% CO2 for ~12-36 hours before the FCCS experiment.

To prepare Jurkat cells for data acquisition, cell culture media was exchanged twice with 5 mL PBS, pH 7.4 prewarmed to 37°C, by centrifuge (5 min, 250 rcf) and resuspended in 500 μL HEPES buffered saline (pH 7.2) prewarmed to 37°C and deposited on poly-L-lysine coated #1 coverglass (cleaned as before, and with 0.01% poly-L-lysine (P-L-L, Sigma) solution deposited on coverglass surface for 30 minutes, then aspirated) enclosed in a metal imaging chamber. Cells were allowed at least 15 min in the incubator in order to settle and adhere to the P-L-L coated coverslips. COS 7 cells were washed with 2 mL prewarmed PBS, pH 7.4 and lifted from the surface by 1 mL CellStripper (Cellgro) for 5-10 minutes, then resuspended with 500 μL unsupplemented DMEM. Cells were centrifuged (5-10 min, 250 rcf), and the solution was aspirated. Remaining cells were resuspended in 500 μL unsupplemented DMEM, and added to P-L-L coated coverslips in imaging chambers and allowed at least 15 min in the incubator to adhere to the coverslips.

PIE-FCCS. FCCS measurements of lipid-anchored proteins in live cells were taken on a customized microscope setup. A Kr/Ar mixed gas laser (Stabilite 2018-RM, Newport Corp., Irvine, CA) provides a wavelength of 568 nm while a pulsed diode laser (LDH-P-C-485, PicQuant, Berlin, Germany) provides a 479 nm wavelength. For FCCS, the 568 nm and 479 nm lines are combined and coupled into a single mode optical fiber. As the combined beams exit the fiber, they are collimated with an achromatic objective lens (Leica, 10 X) and directed via a custom polychroic mirror (Chroma Technology Corp., Rockingham, VT) into the optical path of the microscope (TE2000E, Nikon Corp., Tokyo, Japan). A 100X TIRF oil objective, NA 1.49 (Nikon Corp., Tokyo, Japan), focuses down the excitation beam. The fluorescence is collected through the same objective and passed through a custom notch filter (Semrock, Rochester, NY) to remove any
scattered laser light. The emitted light is then passed through a 50µm confocal pinhole (Thorlabs, Newton, NJ). A 580 nm long pass beamsplitter then splits and directs the emitted light toward two avalanche photodiodes (APDs) (SPCM-AQRH-16, PerkinElmer, Canada). 550 nm short pass and 645/75 nm band pass optical filters (Chroma Technology Corp., Rockingham, VT) for the green and red channels, respectively, further select for proper wavelengths. A time-correlated single photon-counting (TCSPC) card (PicoQuant, TimeHarp 200, Berlin, Germany) collects signal from the APD’s through a universal router (PRT 400, TTL SPAD router, PicoQuant, Berlin, Germany). The power of each laser was measured before entering the optical path of the microscope and was kept between 0.9 µW and 1.5 µW. Measurements were taken with the lasers pulsing at 10 MHz. The cw Kr/Ar beam is also pulsed at 10 MHz using an electro-optic modulator (EOM, 350-160 KD*P Series, ConOptics) to give 18 ns pulses. The pulsing of the EOM and the diode laser is controlled and synchronized by a pulse generator (Quantum Composers, 9530 Series). A delay of about 50 ns is set between the diode pulse and the EOM to ensure that the fluorescence completely decays between excitation pulses.

Cells with similar intensities in GFP and mCherry epitope-anchored fluorescent channels were selected for FCCS. When taking FCCS measurements, areas of the cell with obvious background fluorescence from proteins inserted into membranes of organelles or intracellular vesicles were avoided. The bottom membrane of the cell was brought into focus, which was maintained with an active focus stabilizer (Perfect Focus System, Nikon Corp., Tokyo, Japan). We measured up to five 15 second measurements in three to five spots in each cell for all samples. The cell samples were kept at room temperature for data acquisition and were observed for no more than 1.5 hours.

Lifetime Acquisition. Fluorescence data for lifetime analysis was gleaned from the FCCS data set or was acquired from separate samples (e.g., for cells expressing LCK-NT-EGFP only). Lifetime histograms were constructed from 15 to 120 second traces, and were tail-fit with SymphoTime software (SymphoTime 5.1.3, PicoQuant, Berlin, Germany).

Results and Discussion

FCCS measures co-diffusion of anchor constructs in live cell membranes. Jurkat and COS 7 cells were transiently transfected with pairs of green and red lipid anchored fluorescent protein constructs and each transfection sample produced a broad distribution of expression levels. As shown in Figure 1 (and S6, SI Figure 1), epi-fluorescent images of transfected cells reveal a spatially homogeneous distribution of fluorescent proteins in the plasma membrane. The lipid-anchored fluorescent fusion proteins described here are similar in design to those used in other studies.

Figure 1. Green, red epi-fluorescent, and reflection interference contrast microscopy (RICM) images of Jurkat cells expressing (A) EGFP-RhoA-CT and mCherry-RhoA-CT and (B) LCK-NT-EGFP and LCK-NT-mCherry. Anchored fluorescent proteins are localized to the plasma membrane, and bright masses are due to intracellular organelles. RICM shows cell membranes are well adhered to P-L-L coated coverslips. Images are false-colored and the scale bar is 10 µm. Cartoons detailing the lipid moiety and peptide sequence fused to EGFP or mCherry shown below images.

PIE-FCCS is used to detect dynamic colocalization of GFP and mCherry lipid anchored constructs in live cells. This technique requires no fixation of cells or extraction of cell membranes, and measurements do not perturb the native organization of the membrane. Additionally, FCCS probes colocalization at length scales from several nanometers up to the diameter of the excitation spot (~0.4 µm), which goes below the resolution of conventional fluorescence microscopy (~200 nm) and beyond the practical range of FRET (up to ~10 nm). An observation of cross-correlation indicates dynamic colocalization and requires no a priori knowledge of the spatial length of organization.5,34

**Autocorrelation of the fluorescence fluctuations (Figure 2C and E) resulting from movement of fluorophores through the excitation area is calculated by the normalized autocorrelation function in equation (1),

\[G(\tau) = \frac{\langle \delta I(t)\delta I(t+\tau) \rangle}{\langle I(t)^2 \rangle} + 1 \]

where \(\delta I(t) \) is the fluctuation in fluorescence intensity at time \(t \), and \(\tau \) is the lag time. Two-color fluorescence cross-correlation is expressed similarly in equation 2, and gives the correlation between fluctuations from two different fluorescent signals

\[G_x(\tau) = \frac{\langle \delta I_x(t)\delta I_y(t+\tau) \rangle}{\langle I_x(t)I_y(t) \rangle} + 1 \]

4
where δ(t) and δp(t) are the fluctuations in fluorescence intensity of mCherry in channel A and GFP in channel B, respectively.

While the G(τ) intercepts of the autocorrelation curves of red and green species, Gi(0) and Gj(0), are inversely proportional to the concentration of diffusing red and green species in the excitation spot, respectively, the intercept of the cross-correlation curve, Gi(0), is directly proportional to the concentration of species with both red and green fluorophores. Where the measure of cross-correlation is expressed as Fcross, which is defined in equation 3.

\[
F_{cross} = \frac{G_i(0)}{(\min\{G_r(0), G_g(0)\})^{-1}}
\]

Pulsed-interleaved excitation and time-gating of data, as shown in Figure 2 B, eliminates artificial cross-correlation due to spectral bleed-through from the broad emission spectrum of GFP. The auto- and cross-correlation curves were calculated from the reconstructed, time-gated intensity traces using a multiple-tau algorithm implemented in Matlab (The MathWorks, Inc.). Data from a single spot were averaged before fitting. Intensity traces with large and irregular fluctuations or resulting in correlation curves showing long and irregular decays were discarded, as these irregularities are usually the result of membrane fluctuations or diffusion of intracellular vesicles into the excitation area. FCS and FCCS data were fit by finding the average of the earliest ten points for an accurate G(0) value.

Relative Correlation is Scaled to Known Standards. To better represent the amount of cross-correlation present in the transfected cells, Fcross is empirically mapped, in vitro, with physical standards of polyhistidine-tagged fluorescent proteins on supported lipid bilayers corresponding to known states of correlated movements. Representative auto- and cross-correlation curves of these correlated and uncorrelated states are shown in Figure 2 D and F, respectively and these standards are illustrated in Figure 3 A. Fcross of mCherry-mGFP-His12 samples, where the movement of each red fluorescent protein is entirely correlated with that of a green fluorescent protein, is the maximum Fcross whereas Fcross of the uncorrelated mCherry-His12 and mGFP-His12 samples is the minimum.

Increased intensity from increased density of fluorophores results in linearly decreasing and even negative Fcross values as seen in Figure 3 B. The decrease in Fcross with respect to the total intensity from both detection channels can be attributed to the dead time of the TCSPC acquisition card. Photons arriving during a dead time, when the TCSPC card is busy processing a signal, are not recorded, and this results in anticorrelation between GFP and mCherry at short lag times. The TCSPC card has a longer dead time (~350 ns) than most conventional correlation cards or detection electronics. SI Figure 3 shows an example of the anticorrelation in samples in uncorrelated states. This effect has been corrected by empirically mapping our correlated and uncorrelated boundaries (SI Figure 3 B) using standards with total intensities ranging between 0 and 500 kCPS (kilocounts per second). The measured Fcross values of fluorescently labeled anchor pairs in all cell samples fall between the minimum (magenta line) and maximum (blue line) empirical boundaries of cross-correlation, as shown in Figure 3 C and D. FCCS data from live cells are normalized to relative correlation values between 0 and 1 with respect to the minimum and maximum Fcross boundaries, as shown in Figure 4.

The molecular brightness of GFP and mCherry can also be determined from these in vitro control FCCS measurements. According to the 2-dimensional diffusion model in equation 4,

\[
G(\tau) = \frac{1}{N} \left(1 + \frac{\tau}{\tau_D}\right)^{-1} + 1
\]

the intercept of the function at \(\tau = 0\), \(G(0)\) of the autocorrelation function, is inversely proportional to the number, \(N\), of diffusing species in the excitation spot. Since these polyhistidine-tagged fluorescent proteins have been engineered to be monomeric, the \(N\) measured by FCCS in the uncorrelated control sample refers to the average number of fluorescent proteins detected. The molecular brightness is calculated by dividing the average intensity for each channel by the number of fluorescent proteins of each color.
In live cell experiments the N obtained from FCCS measurements does not necessarily reflect the actual number of fluorescent proteins due to the many possible clustering states of lipid-anchored fluorescent proteins. Instead the actual density of lipid-anchored fluorescent proteins (ρ) is determined by dividing the overall fluorescence intensity by the molecular brightness of each fluorophore, determined as described above, and the area of the excitation spot (~0.1 µm2), which is measured by fitting the autocorrelation curve for standard fluorophores of known diffusion constants.

Figure 3. (A) Schematic of mCherry-mGFP-His12 diffusing on a Ni-NTA-DGS containing supported lipid bilayer representing the correlated state (top) and mCherry-His12 and mGFP-His12 diffusing independently on a supported lipid bilayer representing the uncorrelated state (bottom). (B) Scatter plot of F_{cross} versus intensity of correlated mCherry-mGFP-His12 (▲) and uncorrelated mCherry-His12 and mGFP-His12 (●). Increased intensity comes from increased surface density of His-tagged fluorescent proteins. Decreasing cross-correlation with respect to intensity is due to
TCSPC card dead time and is fit to a linear trend. (C-D) EGFP-RhoA-CT/mCherry-RhoA-CT cross-correlation (∗) and LCK-NT-EGFP/LCK-NT-mCherry cross correlation (○) with respect to increasing intensity in Jurkat cells. Blue and magenta lines represent the linear fits of the empirically mapped cross-correlation states from (B). Error bars represent the standard deviation of $G(0)$ at each spot.

Relative Correlation of Anchors in Cells is Dependent on Density. In Jurkat cells expressing RhoA-CT anchored fluorescent proteins, relative cross-correlation varies from cell to cell but increases with increasing fluorescence intensity in the membrane (Figure 4 row 2 column 2, data from 4 experiments, 11 cells), where intensity is proportional to concentration of fluorescent proteins in the cell membrane. At low fluorescent RhoA-CT intensities, the relative correlation matches that of the uncorrelated state, but rises to the maximum correlation boundary at high intensities. The presence of relative cross-correlation indicates that RhoA-CT anchors co-diffuse and exist in clusters.

Examination of a different anchor pair, LCK-NT-mCherry and LCK-NT-EGFP, reveals a similar trend (Figure 4 row 1 column 1, data from 7 experiments, 28 cells). However, the relative cross-correlation does not increase as much as the RhoA anchor and the distribution of cross-correlation values is more heterogeneous at high densities of LCK-NT anchors.

Relative Correlation is Anchor Specific. PIE-FCCS measurements between different anchor types, LCK-NT-mCherry/EGFP-RhoA-CT and mCherry-RhoA-CT/LCK-NT-EGFP (Figure 4 row 2 column 1 and row 1 column 2, data from 5 experiments, 16 cells) show no cross-correlation regardless of the intensity of either fluorophore or which anchor is attached to GFP or mCherry. This indicates that RhoA-CT and LCK-NT do not partition into the same clusters.

Figure 4. Normalizing cross-correlation to the empirically mapped correlated (1, blue) and uncorrelated (0, magenta) states for (Top Row, Left to Right) LCK-NT-EGFP/LCK-NT-mCherry (N = 87, 28 cells) (∗), LCK-NT-EGFP/mCherry-RhoA-CT (N = 17, 5 cells) (●), (Middle Row, Left to Right) EGFP-RhoA-CT/LCK-NT-mCherry (N = 36, 11 cells) (○), EGFP-RhoA-CT/mCherry-RhoA-CT (N = 37, 11 cells) (●), and EGFP-RhoA-CT/mCherry-K-Ras-CT (N = 9, 3 cells) (▲), (Bottom Row, Left to Right) EGFP-K-Ras-CT/mCherry-RhoA-CT (N = 17, 5 cells) (●), EGFP-K-Ras-CT/mCherry-K-Ras-CT (N = 49, 13 cells) (■) in Jurkat T cells. Error bars represent the normalized standard deviation of $G(0)$ for each spot.
Additionally, PIE-FCCS measurements of Jurkat cells expressing mCherry-K-Ras-CT/EGFP-K-Ras-CT (see S6, SI Figure 1) do not reveal cross-correlation within our range of observation (Figure 4 row 3 column 3, data from 4 experiments, 13 cells). Similarly, the pairwise measurements of K-Ras-CT anchor and RhoA-CT anchor, which both possess isoprenyl modifications, do not exhibit any cross-correlation (Figure 4 row 3 column 2 and row 2 column 3, data from 3 experiments, 8 cells).

In the case of LCK-NT and RhoA-CT anchors, the positive relative correlation amongst anchors of the same type is evidence that anchor interactions with the membrane can determine the lateral targeting of anchored proteins in the cell membrane. On the other hand, the absence of cross-correlation between any two different anchor types (including K-Ras-CT) reveals that all three anchor types prefer microenvironments that do not overlap with one another.

Relative Correlation is Cell Specific. In fibroblast-like COS 7 cells, PIE-FCCS measurements of the RhoA anchors (S7 SI Figure 2 C, data from 3 experiments, 6 cells, N = 21), and the LCK anchors (S7 SI Figure 2 D, data from 3 experiments, 10 cells, N = 38) do not exhibit the same level of cross-correlation as seen in Jurkat cells; RhoA-CT anchors do not exhibit any cross-correlation while LCK-NT anchors show a very slight degree of cross-correlation. The absence of measured cross correlation within the same range of intensities as that measured in Jurkat cells suggests that RhoA-CT anchors do not diffuse in clusters in COS 7 membranes. The difference in membrane organization is likely due to the differing membrane compositions and cell functions between the two cell types.

Fluorescence Lifetimes Show No Energy Transfer. Analysis of the fluorescence lifetime of the GFP-anchored proteins in our cross-correlation experiments is shown in Figure 5. The time-tagged time-resolved (TTTR) data acquisition format allows the same photon data set acquired from PIE-FCCS to be used to generate fluorescence lifetime histograms in order to examine nanometer scale clustering via FRET. Shortened GFP lifetimes are an indication of FRET between GFP and mCherry, indicating close proximity of two anchors. Cells transfected only with GFP-anchored proteins and, therefore, absent of a FRET acceptor, serve as negative controls, while cells transfected with mCherry-mGFP-K-Ras-CT, where the covalent connection between GFP and mCherry guarantees close proximity, are positive controls for the presence of FRET. All cells transfected with a pair of GFP and mCherry anchors show GFP lifetimes similar to cells expressing only LCK-NT-EGFP or EGFP-RhoA-CT indicating no energy transfer due to FRET between mCherry and GFP. The exception is the positive control, mCherry-mGFP-KRas-CT, which has a distinctly shortened lifetime as evidence of FRET. Due to the dead time effect of the TCSPC card, there is a slight decreasing trend in lifetimes of all samples as the detected intensity increases. Decreasing the excitation power mitigates the dead time effect in SI Figure 5, revealing that LCK-NT-EGFP lifetime in LCK-NT-EGFP/LCK-NT-mCherry and LCK-NT-EGFP only transfected cells are still similar and remains consistent across a range of anchor densities.

These results show that FRET experiments alone would not have unambiguously detected RhoA-CT or LCK-NT anchor co-localization in this density range and emphasize the importance of using PIE-FCCS to investigate the organization of these anchors in the membrane.

Anchors Partition into Specific Clusters. The cross-correlation results show that RhoA-CT and LCK-NT anchors exist in clusters exclusive of each other, while the absence of FRET between anchored fluorescent proteins in clusters suggests that the clusters are not densely packed with anchors. The likeliest explanation is that these anchors partition into preexisting compatible clusters of native proteins and lipids in the membrane. The data show that an anchor density threshold must be overcome before any cross-correlation between anchored fluorescent proteins is detected. The density threshold is determined by the number of clusters into which the anchors have to sort. With fewer domains, the chance of having two different colored anchors in the same domain is greater at the same density than with a larger number of domains.

To quantify the difference in the trends of cross-correlation with increasing density between RhoA-CT and LCK-NT, in Figure 6, we use the calculated density of anchored probes to compare the distribution of relative correlation to a model that assumes that correlation is strictly the result of a probabilistic distribution of anchored probes into existing clusters in the cell membrane, as described by Equation 5:
where \(\langle N \rangle \) is the average number of probes in a cluster (See S11 for a detailed description of the model). Using a least squares fit of the model to our data, we determine the average number of clusters, \(n \), where \(n = \rho \langle N \rangle \), or the density divided by the average number of probes in the cluster. In the case of the RhoA anchor data, we find there is a minimum of 1640 clusters per square micron \((R^2 = 0.593) \). This value represents a lower bound to the number of clusters because the intensity of brighter samples is likely under-detected due to the dead time of the TCSPC card. We are also limited from measuring cross-correlation at higher membrane densities because FCCS is less sensitive at higher concentrations.\(^{54}\)

The best fit of the probabilistic model to the LCK-NT cross-correlation measurements returns a cluster density of \(\approx 4800 \) clusters per square micron \((R^2 = 0.2358) \), on average. Quantifying the cluster density allows us to quantitatively compare the relative correlation between RhoA-CT and LCK-NT anchors and according to our model, we find that there are more LCK-NT anchor specific clusters than RhoA-CT anchor specific clusters in Jurkat cell membranes.

Anchor Organization is More Complex than Phase Separation. Based on these observations, we present a more complex picture of the cell membrane than has been predicted by earlier models of membrane organization. The conventional model posits the existence of nanometer-scale phase-separated lipid domains in living cells known as lipid rafts.\(^{35,24,61}\) Raft domains are believed to be enriched in cholesterol and sphingolipids and their formation is often thought to be driven by liquid-ordered and liquid-disordered phase separation, although these requirements have been debated. According to this conventional raft model, lipid anchors with saturated acyl chains, such as the LCK anchor, are expected to cluster into liquid-ordered raft domains, while isoprenylated anchors, like the RhoA anchor, would be excluded from these domains without clustering.\(^{14}\) While data from studies employing recent technological advances in superresolution techniques like Photo-Activated Localization Microscopy (PALM) and STimulated Emission Depletion (STED) FCS have hinted at greater heterogeneity in the species of clusters in the membrane, the discussion is, for the most part, still confined to describing organization within the context of a simple binary raft model that is based on disruptive detergent extraction methods and employs inappropriate terms such as “raft” marker and “non-raft” marker.

While lipids and proteins are capable of large scale phase separation in GPMV experiments, this mode of molecular sorting is insufficient to describe the level of organizational complexity seen in our live cell experiments. Rather, lipid-anchored fluorescent proteins partition into pre-existing clusters that are primarily defined by specific protein-protein and protein-lipid interactions amongst native cell membrane proteins. While this does not exclude the possibility that the clusters include or nucleate lipid phase separation, phase separation alone cannot generate the two orthogonally composed clusters into which RhoA-CT and LCK-NT partition amongst a background containing K-Ras-CT and many other membrane components. In this way, the membrane generates distinct environments capable of discriminating between the anchors.

CONCLUSIONS

PIE-FCCS has allowed a unique view of a complex and highly specific organizational scheme of the live cell membrane without relying on a priori knowledge of the composition of membrane clusters. FCCS reveals coordination of lipid
anchors that would not have been determined from fluorescence lifetime analysis.

Here we show the existence of at least two distinct, non-overlapping domains that LCK-NT anchors, RhoA-CT anchors, and K-Ras-CT anchors recognize in a background of many other protein clusters in the membrane of Jurkat cells. The interactions between anchors and the cellular plasma membrane, which includes interactions between the charged residues of the anchor and negatively charged lipid head groups, lead to differential sorting of the anchors in a complex and heterogeneous organizational scheme that is incompatible with binary phase separation of the lipid raft model.2,6,4 Moreover, the differential sorting between the RhoA and K-Ras anchors, despite their chemical similarities, is evidence that the sorting mechanism discriminates beyond just the saturation level of the lipid moiety of the anchor. The difference in FCCS results between COS 7 and Jurkat cell membranes indicates that membrane organization is cell specific. Taken together, this is evidence for a more complex level of organization in cell membranes than is normally considered.

ASSOCIATED CONTENT
Supporting Information. Gene sequences, supporting figures, and an explanation of the probability distribution model used are included in supporting information. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION
Corresponding Author
* jgroves@lbl.gov

Present Addresses
†McMichael Science Building 327B, 2625 Campus Box Elon, NC 27244

Author Contributions
‡These authors contributed equally to this work.

Funding Sources
This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the U.S. Department of Energy under Contract No. DE-AC02_05CH11231.

ACKNOWLEDGMENT
The authors acknowledge Il-Hyung Lee and Michael Coyle for contributions of Matlab analysis scripts. The authors also thank Ann Fischer from the MCB Tissue Culture Facility at UC Berkeley for obtained mammalian cell cultures, Dr. Nick Endres and Dr. John Kuriyan for K-Ras anchor containing plasmids, and Dr. Björn Lillemeier and Dr. Mark Davis for access to LCK and RhoA anchor containing plasmids. Finally, the authors thank Howard Hughes Medical Institute. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the U.S. Department of Energy under Contract No. DE-AC02_05CH11231.

ABBREVIATIONS
FCCS, Fluorescence Cross-Correlation Spectroscopy; PIE, Pulsed-Interleaved Excitation; LCK, Lymphocyte Cell Kinase; GPMV, Giant Plasma Membrane Vesicles; FRET, Förster Resonance Energy Transfer; STED, Stimulated Emission Depletion; PALM, Photo-Activated Localization Microscopy.

REFERENCES
(1) Bhatnagar, R. S.; Gordon, J. I. Trends Cell Biol. 1997, 7, 14.
(2) Engelman, D. M. Nature 2005, 438, 578.
(3) Resh, M. D. Nat. Chem. Biol. 2006, 2, 584.
(4) Zacharias, D. A.; Violin, J. D.; Newton, A. C.; Tsien, R. Y. Science 2002, 296, 913.
(5) Levental, I.; Lingwood, D.; Grzybek, M.; Coskun, Ü.; Simons, K. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 22050.
(6) Mecabe, J. B.; Berthiaume, L. G. Mol. Biol. Cell’2011, 32, 3601.
(7) Zhang, W.; Trible, R. P.; Samelson, L. E. Immunity 1998, 9, 239.
(8) Simons, K.; Ikonen, E. Nature 1997, 387, 569.
(9) Prior, I. A.; Muncke, C.; Parton, R. G.; Hancock, J. F. J. Cell Biol. 2003, 160, 165.
(10) Henis, Y. I.; Hancock, J. F.; Prior, I. A. Mol. Membr. Biol. 2008, 25, 80.
(11) Omerovic, J.; Prior, I. A. FEBS J. 2007, 276, 1817.
(12) Hancock, J. F. Nat. Rev. Mol. Cell Biol. 2003, 4, 373.
(13) Subramanian, K.; Dietrich, L. E. P.; Hou, H.; LaGrassa, T. J.; Meiringen, C. T. A.; Ungermann, C. J. Cell Sci. 2006, 119, 2477.
(14) Liang, X.; Nazarian, A.; Erdjument-Bromage, H.; Bornmann, W.; Tempst, P.; Resh, M. D. J. Biol. Chem. 2001, 276, 30987.
(15) Hancock, J. F. Nat. Rev. Mol. Cell Biol. 2006, 7, 456.
(16) Pike, L. J. J. Lipid Res. 2006, 47, 1597.
(17) Munro, S. Cell 2003, 115, 377.
(18) Magee, T.; Seabra, M. C. Curr. Opin. Cell Biol. 2005, 17, 190.
(19) Groves, J. T.; Kuriyan, J. Nat. Struct. Mol. Biol. 2010, 17, 659.
(20) Hartman, N. C.; Groves, J. T. Curr. Opin. Cell Biol. 2011, 370.
(21) Varma, R.; Mayor, S. Nature 1998, 394, 798.
(22) Sengupta, P.; Jovanovic-Talisman, T.; Skoko, D.; Renz, M.; Veatch, S. L.; Lippincott-Schwartz, J. Nat. Methods 2011, 8, 969.
(23) Bethani, I.; Skånland, S. S.; Dikic, I.; Acker-Palmer, A. EMBO J. 2010, 29, 2677.
(24) Grecco, H. E.; Schmick, M.; Bastiaens, P. I. H. Cell’2011, 144, 897.
(25) Hashimoto-Tane, A.; Yokosuka, T.; Ishihara, C.; Sakuma, M.; Kobayashi, W.; Saito, T. Mol. Cell Biol. 2010, 30, 3421.
(26) Saito, T.; Yokosuka, T.; Hashimoto-Tane, A. FEBS Lett. 2010, 584, 4865.
(27) Bromley, S. K.; Burack, W. R.; G. K.; Somersalo, K.; Sims, T. N.; Sumen, C.; Davis, M. M.; Shaw, A. S.; Allen, P. M.; Dusin, M. L. Annu. Rev. Immunol. 2001, 19, 375.
(28) Melkonian, K. A.; Ostremeyer, A. G.; Chen, J. Z.; Roth, M. G.; Brown, D. A. J. Biol. Chem. 1999, 274, 3910.
(29) Arni, S.; KeIlbaugh, S. A.; Ostremeyer, A. G.; Brown, D. A. J. Biol. Chem. 1998, 273, 28478.
(30) Heerklotz, H. Biophys. J. 2002, 83, 2693.
(31) Lichtenberg, D.; Goëti, F. M.; Heerklotz, H. Trends Biochem. Sci. 2005, 30, 430.
(32) Veatch, S. L.; Keller, S. L. Phys. Rev. Lett. 2002, 89, 268101.
(33) Veatch, S. L.; Keller, S. L. Biophys. J. 2003, 85, 3074.
(34) Baumbgart, T.; Hess, S. T.; Webb, W. W. Nature 2003, 425, 821.
(35) Veatch, S. L.; Cictua, P.; Sengupta, P.; Honerkamp-Smith, A.; Holowka, D.; Baird, B. ACS Chem. Biol. 2008, 3, 287.
(36) Baumbgart, T.; Hammond, A. T.; Sengupta, P.; Hess, S. T.; Holowka, D. A.; Baird, B. A.; Webb, W. W. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 3165.
(37) Hammond, A. T.; Beberle, F. A.; Baumbgart, T.; Holowka, D. A.; Baird, B. A.; Feigenson, G. W. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6320.
(38) Veatch, S. L.; Keller, S. L. Biochim. Biophys. Acta 2005, 1746, 172.
(39) London, E. Curr. Opin. Struct. Biol. 2002, 12, 480.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

DE-AC02-05CH11231