LOCAL CONFORMAL RIGIDITY IN CODIMENSION ≤ 5

SERGIO L. SILVA

Universidade do Estado do Rio de Janeiro, Instituto de Matemática e Estatística, Departamento de Estrutura Matemática, Rio de Janeiro, 20550-013, Brazil, E-mail: sergiol@ime.uerj.br

Abstract. In this paper, for an immersion f of an n-dimensional Riemannian manifold M into $(n + d)$-Euclidean space we give a sufficient condition on f so that, in case $d \leq 5$, any immersion g of M into $(n + d + 1)$-Euclidean space that induces on M a metric that is conformal to the metric induced by f is locally obtained, in a dense subset of M, by a composition of f and a conformal immersion from an open subset of $(n + d)$-Euclidean space into an open subset of $(n + d + 1)$-Euclidean space. Our result extends a theorem for hypersurfaces due to M. Dajczer and E. Vergasta. The restriction on the codimension is related to a basic lemma in the theory of rigidity obtained by M. do Carmo and M. Dajczer.

1. Introduction

Let M^n be an n-dimensional differentiable manifold and let $f: M^n \to \mathbb{R}^m$ and $g: M^n \to \mathbb{R}^l$ be two immersions into Euclidean spaces. We say that g is conformal to f when the metric induced on M^n by f and g are conformal. That f is conformally rigid means that for any other conformal immersion $h: M^n \to \mathbb{R}^m$, conformal to f, there exists a conformal diffeomorphism Υ from an open subset of \mathbb{R}^m to an open subset of \mathbb{R}^m such that $h = \Upsilon \circ f$.

In [2], do Carmo and Dajczer introduced a conformal invariant for an immersion $f: M^n \to \mathbb{R}^{n+d}$ into a Riemannian manifold \mathbb{R}^{n+d}, namely, the conformal s-nullity $\nu_s^c(p)$, $p \in M^n$, $1 \leq s \leq d$ (see Section 2 for definitions), and proved that is conformally rigid an immersion $f: M^n \to \mathbb{R}^{n+d}$ that satisfies $d \leq 4$, $n \geq 2d + 3$ and $\nu_s^c \leq n - 2s - 1$ for $1 \leq s \leq d$. Their result generalizes a result for hypersurfaces due to E. Cartan ([1]).

It was observed in Corollary 1.1 of [7] that the do Carmo-Dajczer’s conformal rigidity result also holds for $d = 5$. The restriction on the codimension is due to the following basic result in [2].

Theorem 1.1. Let $\sigma: V_1 \times V_1 \to W^{(r,r)}$ be a nonzero flat symmetric bilinear form. Assume $r \leq 5$ and $\dim N(\sigma) < 3 \dim V_1 - 2r$. Then $S(\sigma)$ is degenerate.

In the paper (see [4]), M. Dajczer and L. Florit proved that the above theorem can not be improved.

Denoting by N_{cf}^{n+d} a conformally flat Riemannian manifold of dimension $n + d$, namely an $(n + d)$-dimensional Riemannian manifold N^{n+d} which is locally conformally diffeomorphic to an open subset of Euclidean space \mathbb{R}^{n+d} with the canonical metric, Dajczer and Vergasta ([6]) proved that if $f: M^n \to N_{cf}^{n+1}$ satisfies $n \geq 6$ and $\nu^c_s \leq n - 4$ along M^n, then any immersion $g: M^n \to N_{cf}^{n+2}$ conformal to f is locally a composition in an open dense subset U of M. This result, still in the context of hypersurfaces, was extended by Dajczer-Tojeiro in [5] for $g: M^n \to N_{cf}^{n+p}$. 2 $\leq p \leq n - 4$, assuming that $\nu^c_s \leq n - p - 2$ and, if $p \geq 6$, further that M^n does not contain an open $n - p + 2$-conformally ruled subset for both f and g. In this paper, we extend for codimension ≤ 5 the result of Dajczer-Vergasta mentioned above in the following theorems.

Theorem 1.2. Let $f: M^n \to \mathbb{R}^{n+d}$ be an immersion with $d \leq 5$ and $n > 2d + 3$. Assume that everywhere $\nu^c_s \leq n - 2s - 2$, $1 \leq s \leq d$. If $g: M^n \to \mathbb{R}^{n+d+1}$ is an immersion conformal to f, then there exists an open
dense subset \mathcal{U} of M^n such that g restricted to \mathcal{U} is locally a composition $g = \Gamma \circ f$ for some local conformal immersion Γ from an open subset of \mathbb{R}^{n+d} into an open subset of \mathbb{R}^{n+d+1}.

Observing that Theorem 1.2 is local one, the following result is an immediate consequence of Theorem 1.2.

Theorem 1.3. Let $f : M^n \to N^{n+d}_{cf}$ be an immersion with $d \leq 5$ and $n > 2d + 3$. Assume that everywhere $\nu_s^c \leq n - 22 - 2$, $1 \leq s \leq d$. If $g : M^n \to N^{n+d+1}_{cf}$ is an immersion conformal to f, then there exists an open dense subset \mathcal{U} of M^n such that g restricted to \mathcal{U} is locally a composition $g = \Gamma \circ f$ for some local conformal immersion Γ from an open subset of N^{n+d}_{cf} into an open subset of N^{n+d+1}_{cf}.

2. **Proof of Theorem 1.2**

For a symmetric bilinear form $\beta : V \times V \to W$ we denote by $S(\beta)$ the subspace of W given by

$$S(\beta) = \text{span} \{ \beta(X,Y) : X,Y \in V \},$$

and by $N(\beta)$ the nullity space of β defined as

$$N(\beta) = \{ n \in V : \beta(X,n) = 0, \forall X \in V \}.$$

For an immersion $f : M^n \to \tilde{M}^{n+d}$ into a Riemannian manifold we denote by $\alpha^f : TM \times TM \to T^\perp M$ its vector valued second fundamental form and by $T_{f(p)}^\perp M$ the normal space of f at $p \in M^n$. Given an s-dimensional subspace $U^s \subseteq T_{f(p)}^\perp M$, $1 \leq s \leq d$, consider the symmetric bilinear form

$$\alpha^f_{U^s} : T_p M \times T_p M \to U^s$$

defined as $\alpha^f_{U^s} = P \circ \alpha^f$, where P denotes the orthogonal projection of $T_{f(p)}^\perp M$ onto U^s. The conformal s-nullity $\nu^c_s(p)$ of f at p, $1 \leq s \leq d$, is the integer

$$\nu^c_s(p) = \max_{U^s \subseteq U^s} \dim N(\alpha^f_{U^s} - \langle \cdot, \cdot \rangle)$$

The Lorentz space \mathbb{L}^k, $k \geq 2$, is the Euclidean space \mathbb{R}^k endowed with the metric $\langle \cdot, \cdot \rangle$ defined by

$$\langle X, X \rangle = -x_1^2 + x_2^2 + \cdots + x_k^2$$

for $X = (x_1, x_2, \ldots, x_k)$. The light cone \mathcal{V}^{k-1} is the degenerate totally umbilical hypersurface of \mathbb{L}^k given by

$$\mathcal{V}^{k-1} = \{ X \in \mathbb{L}^k : \langle X, X \rangle = 0, X \neq 0 \}.$$

For $k \geq 3$ and $\zeta \in \mathcal{V}^{k-1}$ consider the hyperplane

$$H_\zeta = \{ X \in \mathbb{L}^k : \langle X, \zeta \rangle = 1 \}$$

and the $(k - 2)$-dimensional simply connected embedded submanifold $H_\zeta \cap \mathcal{V}^{k-1} \subset \mathbb{L}^k$. Note that H_ζ intersects only one of the two connected components of \mathcal{V}^{k-1}. More precisely, H_ζ is in the Euclidean sense parallel to ζ and it does not pass through the origin. Given $p \in H_\zeta \cap \mathcal{V}^{k-1}$ the normal space of this intersection in \mathbb{L}^k is the Lorentzian plane \mathbb{L}^2 generated by p and ζ. Consequently, the metric induced by \mathbb{L}^k on $H_\zeta \cap \mathcal{V}^{k-1}$ is Riemannian. Its second fundamental form is given by

$$\alpha = -\langle \cdot, \cdot \rangle_\zeta.$$

The Gauss equation for the inclusion $H_\zeta \cap \mathcal{V}^{k-1} \subset \mathbb{L}^k$ shows that $H_\zeta \cap \mathcal{V}^{k-1}$ is flat and, consequently, is the image of an isometric embedding $J_\zeta : \mathbb{R}^{k-2} \to H_\zeta \cap \mathcal{V}^{k-1}$.

Now suppose that M^n is a Riemannian manifold and $h : M^n \to \mathbb{R}^{k-2}$ is a conformal immersion with conformal factor ϕ_h, that is, $\langle h_* X, h_* Y \rangle = \phi_h^2 \langle X, Y \rangle$ over M^n, where X, Y are vectors tangent to M^n and
\(\phi_h \) is a positive differentiable real function on \(M^n \). We associate to \(h \) the isometric immersion \(H: M^n \to V^{k-1} \subset \mathbb{L}^k \) by setting
\[
H = \frac{1}{\phi_h} J_\zeta \circ h
\]
for a chosen \(\zeta \in V^{k-1} \).

Consider \(M^n \) with the metric induced by \(f \), a fixed \(\zeta \in V^{n+d+1} \) and an isometric embedding \(J_\zeta: \mathbb{R}^{n+d} \to H_\zeta \cap V^{n+d+1} \). The isometric immersion \(F: M^n \to V^{n+d+1} \subset \mathbb{L}^{n+d+2} \) associated to \(f \) is given by
\[
F = J_\zeta \circ f.
\]
Its second fundamental form in \(\mathbb{L}^{n+d+2} \) is the symmetric bilinear form
\[
\alpha^F = -\langle \cdot, \zeta \rangle + \alpha^f.
\]
Here, we are identifying the second fundamental form \(\alpha^f \) of \(f \) in \(\mathbb{R}^{n+d} \) with the symmetric bilinear form \((J_\zeta)_* \alpha^f \).

Now let \(g: M^n \to \mathbb{R}^{n+d+1} \) be an immersion conformal to \(f \). Consider the isometric immersion \(G: M^n \to V^{n+d+2} \subset \mathbb{L}^{n+d+3} \) given by
\[
G = \frac{1}{\phi_g} J_\zeta \circ g
\]
for an fixed \(T \in V^{n+d+2} \), where \(J_\zeta: \mathbb{R}^{n+d+1} \to H_\zeta \cap V^{n+d+2} \) is an isometric embedding. Taking the derivative of \(\langle G, G \rangle = 0 \), we see that the null vector field \(G \) is normal to the immersion \(G \). The normal field \(G \) also satisfies \(A^G_\xi = -I \). The normal bundle of \(G \) is given by the orthogonal direct sum
\[
T_G^\perp M = T_g^\perp M \oplus \mathbb{L}^2
\]
where \(T_g^\perp M \) is identified with \((J_\zeta)_* T_g^\perp M \) and \(\mathbb{L}^2 \) is a Lorentzian plane bundle that contains \(G \). There exists an unique orthogonal basis \(\{ \xi, \eta \} \) of \(\mathbb{L}^2 \), satisfying \(|\xi|^2 = -1 \), \(|\eta|^2 = 1 \) and
\[
G = \xi + \eta.
\]
Writing \(\alpha^G \) in terms of this orthogonal frame we obtain
\[
\alpha^G = -\langle \alpha^G, \xi \rangle \xi + \langle \alpha^G, \eta \rangle \eta + (\alpha^G)^*
\]
where \((\alpha^G)^* = (1/\phi_g)(J_\zeta)_* \alpha^g \) is the \(T_g^\perp M \)-component of \(\alpha^G \).

Given an \(m \)-dimensional real vector space \(W \) endowed with a nondegenerate inner product \(\langle \cdot, \cdot \rangle \) of index \(r \), that is, the maximal dimension of a subspace of \(W \) where \(\langle \cdot, \cdot \rangle \) is negative definite, we say that \(W \) is of type \((r,q) \) and we write \(W^{(r,q)} \) with \(q = m - r \).

At \(p \in M^n \), let
\[
W_p = T_{f(p)}^\perp M \oplus \text{span}\{ \xi(p) \} \oplus \text{span}\{ \eta(p) \} \oplus T_{g(p)}^\perp M
\]
be endowed with the natural metric of type \((d+1,d+2) \) which is negative definite on \(T_{f(p)}^\perp M \oplus \text{span}\{ \xi(p) \} \).

We also define the symmetric tensor \(\beta: TM \times TM \to W \) setting \(\beta = \alpha^f + \alpha^G \), that is,
\[
\beta = \alpha^f - \langle \alpha^G, \xi \rangle \xi + \langle \alpha^G, \eta \rangle \eta + (\alpha^G)^*.
\]
The Gauss equations for \(f \) and \(G \) imply that \(\beta \) is flat, that is,
\[
\langle \beta(X,Y), \beta(Z,U) \rangle = \langle \beta(X,U), \beta(Y,Z) \rangle, \quad \forall X,Y,Z,U \in TM.
\]
Observe also that \(\beta(X,X) \neq 0 \) for all \(X \neq 0 \), because \(A^G_{\xi+\eta} = -I \).
With the aim of constructing locally the conformal immersion \(\Gamma \) we construct locally an isometric immersion \(\mathcal{T} \) of a neighborhood of \(L^{n+d+2} \) into a neighborhood of \(L^{n+d+3} \) such that \(G = \mathcal{T} \circ f \). This \(\mathcal{T} \) induces a conformal immersion \(\Gamma \) from an open subset of \(\mathbb{R}^{n+d} \) into an open subset of \(\mathbb{R}^{n+d+1} \) defined by

\[
J_{\mathcal{T}} \circ \Gamma = \frac{\mathcal{T} \circ J_{\mathcal{C}}}{\langle \mathcal{T} \circ J_{\mathcal{C}}, \zeta \rangle}
\]

which satisfies \(g = \Gamma \circ f \). Now we will construct locally the isometric immersion \(\mathcal{T} \).

Lemma 2.1. Given \(p \in M^n \), there exist an orthonormal basis \(\zeta_1, \ldots, \zeta_d \) of \(T^*_{f(p)}M \) and a basis \(G, \mu_o, \ldots, \mu_d, \mu_{d+1} \) of \(T^*_{f(p)}M \), with \(\langle G, \mu_o \rangle = 1, \langle \mu_o, \mu_o \rangle = 0, \langle \mu_o, \mu_j \rangle = 0 = \langle G, \mu_j \rangle, \langle \mu_i, \mu_j \rangle = \delta_{ij} \), \(1 \leq i, j \leq d+1 \), such that

\[
\alpha^G = -\langle \cdot, \cdot \rangle_{\mu_o} + \sum_{j=1}^d \langle \alpha^f, \zeta_j \rangle \mu_j + \langle A_{\mu_{d+1}}^G (\cdot), \cdot \rangle \mu_{d+1},
\]

with \(\text{rank} A^G_{\mu_{d+1}} \leq 1 \). Here, \(\langle \alpha^f, \zeta_j \rangle \) is the inner product induced in \(T^*_{f(p)}M \) by \(\mathbb{R}^{n+d} \).

With respect to flat symmetric bilinear forms we need the following from [3]:

For \(p \in M^n \), set \(V := T_p M \) and for each \(X \in V \) define the linear map

\[
\beta(X) : V \to W
\]

by setting \(\beta(X)(v) = \beta(X, v) \) for all \(v \in V \). The kernel and image of \(\beta(X) \) are denoted by \(\ker \beta(X) \) and \(\beta(X,V) \), respectively. We say that \(X \) is a regular element of \(\beta \) if

\[
\dim \beta(X,V) = \max_{Z \subseteq V} \dim \beta(Z,V).
\]

The set of regular elements of \(\beta \) is denoted by \(\text{RE}^* (\beta) \). For each \(X \in V \), set \(U(X) = \beta(X,V) \cap \beta(X,V)^\perp \) and define

\[
\text{RE}^* (\beta) = \{ Y \in \text{RE} (\beta) : \dim U(Y) = d_0 \}
\]

where \(d_0 = \min \{ \dim U(Y) : Y \in \text{RE} (\beta) \} \).

Lemma 2.2. The set \(\text{RE}^* (\beta) \) is open and dense in \(V \) and

\[
\beta(\ker \beta(X), V) \subseteq U(X), \quad \forall X \in \text{RE} (\beta).
\]

Recall that a vector subspace \(L \) of \(W \) is said to be degenerate if \(L \cap L^\perp \neq \{0\} \) and isotropic when \(\langle L, L \rangle = 0 \). We also have that

\[
\dim L + \dim L^\perp = \dim W \quad \text{and} \quad L^\perp \perp = L.
\]

Notice that \(L \) is an isotropic subspace of \(W \) if and only if \(L \subseteq L^\perp \). In this case, it follows easily from (4) that \(L \) has dimension at most \(d+1 \). Recall that \(W_p \) is a \((2d+3) \)-dimensional vector space. Since \(U(X) \) is isotropic by definition, we have that \(d_0 \leq d+1 \).

Before proving Lemma 2.1 we need several lemmas:

Lemma 2.3. In an arbitrary \(p \in M^n \) it holds that \(\dim S(\beta) \cap S(\beta)^\perp = d+1 \).

Proof. First we prove the following assertion

Assertion. There exist an orthogonal decomposition

\[
W_p = W_1^{(d,\ell)} \oplus W_2^{(d-\ell+1,d-\ell+2)}, \quad \ell \geq 1,
\]

and symmetric bilinear forms \(\omega_j : V \times V \to W_j, j = 1, 2 \), satisfying

\[
\beta = \omega_1 \oplus \omega_2
\]

such that:
Therefore, a consequence of the following result whose proof is part of the arguments for the Main Lemma 2.2 in ([2], p. 238),

\[\langle \omega_1(X, Y), \omega_1(Z, U) \rangle = 0, \forall X, Y, Z, U \in V = T_p M, \]

and

\(\omega_2 \) is flat with \(\dim N(\omega_2) \geq n - \dim W_2 \).

Notice that \(\beta(Z, Z) \neq 0 \) for all \(Z \neq 0 \) in \(TM \). Given \(X \in RE(\beta) \), there exists \(Z \neq 0 \) such that \(Z \in \ker \beta(X) \) due to \(n > 2d + 3 \). Since \(\beta \) is flat, \(\beta(Z, \cdot) \subset U(X) \) by Lemma 2.2 and \(U(X) \) is isotropic, it holds that \(\beta(Z, Z) \in S(\beta) \cap S(\beta)^\perp \). Let \(v_i = \gamma_i + b_i \xi_i + c_i \eta_i + \delta_i, 1 \leq i \leq \ell \), with \(\gamma_i \in T_p^1 M \) and \(\delta_i \in T_p^2 M \), be a basis of the isotropic subspace \(S(\beta) \cap S(\beta)^\perp \). The vectors \(\gamma_i + b_i \xi_i, 1 \leq i \leq \ell \), are linearly independent. Otherwise, there are real numbers \(\rho_i \), with some of them different of zero, such that \(\sum_i \rho_i (\gamma_i + b_i \xi_i) = 0 \). Since the vectors \(v_i, 1 \leq i \leq \ell \), are linearly independent, we have \(\sum_i \rho_i (c_i \eta_i + \delta_i) = \sum_i \rho_i v_i \neq 0 \). The metric in \(\text{span} \{\eta\} \oplus T_{g_1} M \) being positive definite, we have obtained a contradiction because the vector \(\sum_i \rho_i (c_i \eta_i + \delta_i) \) is not isotropic. Analogously, we obtain that the vectors \(c_i \eta_i + \delta_i, 1 \leq i \leq \ell \), are linearly independent.

Without loss of generality, we can suppose that the vectors \(\gamma_i = c_i \eta_i + \delta_i, 1 \leq i \leq \ell \), are orthonormal. In this case, due to \(\langle v_i, v_j \rangle = 0 \), \(1 \leq i, j \leq \ell \), we have \(\langle \xi_i, \xi_j \rangle = -\delta_{ij} \) for \(\xi_i = \gamma_i + b_i \xi_i, 1 \leq i \leq \ell \). Extend \(\eta_1, \ldots, \eta_\ell \) to an orthonormal basis \(\eta_1, \ldots, \eta_{d+2} \) of \(\text{span} \{\eta\} \oplus T_{g_2} M \), and \(\xi_1, \ldots, \xi_\ell \) to a basis \(\xi_1, \ldots, \xi_{d+1} \) of \(\text{span} \{\xi\} \oplus T_{g_2}^2 M \) that satisfies \(\langle \xi_i, \xi_j \rangle = -\delta_{ij} \). Define \(\hat{v}_i = -\xi_i + \eta_i, 1 \leq i \leq \ell \),

\[W_1 = \text{span}\{v_1, \ldots, v_\ell, \hat{v}_1, \ldots, \hat{v}_\ell\}, \quad W_2 = \text{span}\{\xi_{\ell+1}, \ldots, \xi_{d+1}, \eta_{\ell+1}, \ldots, \eta_{d+2}\} \]

and put

\[\beta = \sum_{i=1}^\ell \phi_i v_i + \sum_{i=1}^{\ell} \psi_i \hat{v}_i + \sum_{i=\ell+1}^{d+1} \phi_i \xi_i + \sum_{i=\ell+1}^{d+2} \psi_i \eta_i. \]

Note that \(W = W_1 \oplus W_2 \) is an orthogonal decomposition of \(W \). For \(1 \leq i \leq \ell \), we have \(\psi_i = \frac{1}{2} \langle \beta, v_i \rangle = 0 \).

Set

\[\omega_1 = \sum_{i=1}^\ell \phi_i v_i \quad \text{and} \quad \omega_2 = \sum_{i=\ell+1}^{d+1} \phi_i \xi_i + \sum_{i=\ell+1}^{d+2} \psi_i \eta_i. \]

Since \(\ell = \dim S(\beta) \cap S(\beta)^\perp \geq 1 \), then \(\omega_1 \) is nonzero. It is easy to verify that \(\omega_1, \omega_2 \) are symmetric bilinear forms such that \(\omega_1 \) is null and \(\omega_2 \) is flat. In order to see that \(S(\omega_2) \) is nondegenerate, let \(\sum_i \omega_2(X_i, Y_i) \in W_2 \) be an arbitrary element in \(S(\omega_2) \cap S(\omega_2)^\perp \). For all \(v, w \in V \), we get

\[\left(\sum_i \omega_2(X_i, Y_i), \beta(v, w) \right) = \left(\sum_i \omega_2(X_i, Y_i), \omega_2(v, w) \right) = 0. \]

Therefore, \(\sum_i \omega_2(X_i, Y_i) \in S(\beta) \cap S(\beta)^\perp \). Hence, \(\sum_i \omega_2(X_i, Y_i) \in W_1 \). Thus,

\[\sum_i \omega_2(X_i, Y_i) \in W_1 \cap W_2 = \{0\}. \]

Since the subspace \(S(\omega_2) \) is nondegenerate and \(d - \ell + 1 \leq 5 \), the inequality \(\dim N(\omega_2) \geq n - \dim W_2 \) is a consequence of the following result whose proof is part of the arguments for the Main Lemma 2.2 in ([2], pp. 968-974).

Lemma 2.4. Let \(\sigma : V_1 \times V_1 \to W^{(r,t)} \) be a nonzero flat symmetric bilinear form. Assume \(r \leq 5 \) and \(\dim N(\sigma) < \dim V_1 - (r + t) \). Then \(S(\sigma) \) is degenerate.

Now to conclude Lemma 2.3, that is \(\ell = d + 1 \), we proceed exactly as in proof of Assertion 3 in ([2], p. 238).
Lemma 2.5. There exist an orthonormal basis ζ_1, \ldots, ζ_d of $T^\perp_{f(p)} M$ and an orthonormal basis $\vartheta_1, \ldots, \vartheta_d$ of $T^\perp_{g(p)} M$ such that

$$\omega_1 = -\langle \alpha^G, \xi \rangle \cos \varphi + \vartheta_{d+1} \sin \theta \cos \varphi + \vartheta_1 \sin \varphi - \langle \alpha^f, \zeta_1 \rangle \cos \varphi - \vartheta_{d+1} \sin \theta \cos \varphi + \vartheta_1 \cos \varphi$$

$$- \sum_{j=2}^d \langle \alpha^f, \zeta_j \rangle (\vartheta_j + \vartheta_1)$$

(5)

$$\omega_2 = \langle \alpha^G, \eta \rangle \cos \theta + \vartheta_{d+1} \sin \theta \rangle (\eta \cos \theta + \vartheta_1 \cos \theta)) \cos \varphi + \vartheta_1 \cos \varphi).$$

Proof. Here our notations are as in proof of Assertion. We have $W_2 = \text{span}\{\eta_{d+2}\}$ due to $\ell = d + 1$. Put $\eta_{d+2} = \eta \cos \theta + \vartheta_{d+1} \sin \theta$. The vector $-\eta \sin \theta + \vartheta_{d+1} \cos \theta$ belongs to $\text{span}\{\eta_i \mid 1 \leq i \leq d + 1\}$ and its orthogonal complement in $\text{span}\{\eta_i \mid 1 \leq i \leq d + 1\}$ is the orthogonal complement of ϑ_{d+1} in $T^\perp_{g(p)} M$. The vectors $\xi_i = \gamma_i + b_i \xi$, $1 \leq i \leq d + 1$, being linearly independent, span the space $\text{span}\{\xi\} \oplus T^\perp_{f(p)} M$. Write $\xi = \sum_{i=1}^{d+1} \rho_i \xi_i$ and take the vectors in $S(\beta) \cap S(\beta)^\perp$ given by

$$\sum_{i=1}^{d+1} \rho_i v_i = \xi + \cos \varphi (-\eta \sin \theta + \vartheta_{d+1} \cos \theta) + \vartheta_1 \sin \varphi,$$

where $\vartheta_1 \in T^\perp_\varphi M$ is a unitary vector orthogonal to ϑ_{d+1}. The vector $-\sin \varphi (-\eta \sin \theta + \vartheta_{d+1} \cos \theta) + \vartheta_1 \cos \varphi$ also belongs to $\text{span}\{\eta_i \mid 1 \leq i \leq d + 1\}$ since it is orthogonal to η_{d+2}. Take ζ_1 as being the unitary vector in $T^\perp_\varphi M$ such that

$$\zeta_1 - \sin \varphi (-\eta \sin \theta + \vartheta_{d+1} \cos \theta) + \vartheta_1 \cos \varphi \in S(\beta) \cap S(\beta)^\perp.$$

Now extend ζ_1 to an orthonormal basis ζ_1, \ldots, ζ_d of $T^\perp_\varphi M$ and take the vectors $\vartheta_2, \ldots, \vartheta_d$ in $T^\perp_\varphi M$ such that $\zeta_i + \vartheta_1, 2 \leq i \leq d$, belong to $S(\beta) \cap S(\beta)^\perp$. Now it is not difficult to see that $\vartheta_1, \ldots, \vartheta_{d+1}$ is an orthonormal basis of $T^\perp_\varphi M$ and satisfies (5). \hfill \square

Note also that in (5) the form ω_1 is a linear combination of vectors orthogonal to $\beta = \alpha^f \oplus \alpha^G$. These orthogonality give us

$$\langle \alpha^G, \zeta \rangle = \langle \alpha^G, \eta \rangle \sin \theta \cos \varphi - \langle \alpha^G, \vartheta_{d+1} \rangle \cos \theta \cos \varphi - \langle \alpha^G, \vartheta_1 \rangle \sin \varphi$$

$$\langle \alpha^f, \zeta_1 \rangle = -\langle \alpha^G, \eta \rangle \sin \theta \sin \varphi + \langle \alpha^G, \vartheta_{d+1} \rangle \cos \theta \sin \varphi - \langle \alpha^G, \vartheta_1 \rangle \cos \varphi$$

$$- \langle \alpha^f, \zeta_j \rangle = \langle \alpha^G, \vartheta_j \rangle, 2 \leq j \leq d.$$

The above first two equations imply that

$$\langle \alpha^G, \vartheta_1 \rangle = -\langle \alpha^G, \xi \rangle \sin \varphi - \langle \alpha^f, \zeta_1 \rangle \cos \varphi.$$

of Lemma 2.1. First observe that in (5) we have $\sin \theta \cos \varphi \neq -1$. Otherwise, $G = \xi + \eta$ belongs to $S(\beta) \cap S(\beta)^\perp$ and, consequently,

$$0 = \langle G, \beta \rangle = \langle G, \alpha^G \rangle = -\langle \cdot, \rangle$$

which is a contradiction. Then, we can consider the orthonormal basis of $T^\perp_\varphi M$ given by

$$\mu_1 = \frac{1}{1 + \sin \theta \cos \varphi} \left[\vartheta_1 (\cos \varphi + \sin \theta) - \vartheta_{d+1} \sin \varphi \cos \theta \right],$$

$$\mu_j = \vartheta_j, 2 \leq j \leq d,$$

$$\mu_{d+1} = \frac{1}{1 + \sin \theta \cos \varphi} \left[\vartheta_1 \sin \varphi \cos \theta + \vartheta_{d+1} (\cos \varphi + \sin \theta) \right].$$

(8)
By (6), for $2 \leq j \leq d$, it holds that
\[\langle \alpha^G, \mu_j \rangle = \langle \alpha^G, \vartheta_j \rangle = -\langle \alpha^f, \zeta_j \rangle.\]

Thus, we can write
\[\alpha^G = -\langle \alpha^G, \xi \rangle (\xi + \eta) - \langle , \rangle \eta + \langle \alpha^G, \varpi_1 \rangle \varpi_1 - \sum_{j=2}^{d} \langle \alpha^f, \zeta_j \rangle \mu_j + \langle \alpha^G, \varpi_{d+1} \rangle \varpi_{d+1}.\]

The equalities in (5) give that
\[\langle \alpha^G, \varpi_1 \rangle = \langle G, \alpha^G \rangle = \langle \xi + \eta, \beta \rangle = \langle \xi + \eta, \omega_1 + \omega_2 \rangle,\]

and, jointly with $-\langle , \rangle = \langle G, \alpha^G \rangle = \langle \xi + \eta, \beta \rangle = \langle \xi + \eta, \omega_1 + \omega_2 \rangle$, that
\[\langle \alpha^G, \eta \cos \theta + \vartheta_{d+1} \sin \theta \rangle \cos \theta = -\langle , \rangle - \langle \alpha^G, \xi \rangle (1 + \sin \theta \cos \varphi) + \langle \alpha^f, \zeta_1 \rangle \sin \theta \varphi.\]

Therefore,
\[\langle \alpha^G, \varpi_1 \rangle = \frac{\sin \theta \sin \varphi}{1 + \sin \theta \cos \varphi} \langle , \rangle - \langle \alpha^f, \zeta_1 \rangle.\]

From (6) and $A_{\xi + \eta}^G = -I$, we deduce that
\[
\cos \varphi \langle \alpha^G, \xi \rangle - \sin \varphi \langle \alpha^f, \zeta_1 \rangle = -\sin \theta \langle , \rangle - \cos \theta \langle \alpha^G, \vartheta_{d+1} \rangle - \sin \theta \langle \alpha^G, \xi \rangle.
\]

So
\[
\langle \cos \varphi + \sin \theta \rangle \langle \alpha^G, \xi \rangle = \sin \varphi \langle \alpha^f, \zeta_1 \rangle - \sin \theta \langle , \rangle - \cos \theta \langle \alpha^G, \vartheta_{d+1} \rangle.
\]

Multiplying the above equation by $\cos \varphi + \sin \theta$ and introducing ϖ_{d+1} according to (8), it is a straightforward calculation to see that
\[
\langle \cos \varphi + \sin \theta \rangle^2 \langle \alpha^G, \xi \rangle = \sin \varphi (\cos \varphi + \sin \theta) \langle \alpha^f, \zeta_1 \rangle - \sin \theta (\cos \varphi + \sin \theta) \langle , \rangle \\
- \langle \alpha^G, \varpi_{d+1} \rangle (1 + \cos \varphi \sin \theta) \cos \theta + \langle \alpha^G, \vartheta_1 \rangle \cos^2 \theta \sin \varphi.
\]

This and (7) imply
\[
- \langle \alpha^G, \xi \rangle = -\frac{\sin \varphi \sin \theta}{1 + \cos \varphi \sin \theta} \langle \alpha^f, \zeta_1 \rangle + \frac{\sin \theta (\cos \varphi + \sin \theta)}{(1 + \cos \varphi \sin \theta)^2} \langle , \rangle \\
+ \frac{\cos \theta}{1 + \cos \varphi \sin \theta} \langle \alpha^G, \varpi_{d+1} \rangle.
\]

The formulae (9), (11) e (12) give us
\[
\alpha^G = \langle , \rangle \left[\frac{\sin \theta (\cos \varphi + \sin \theta)}{(1 + \cos \varphi \sin \theta)^2} (\xi + \eta) - \eta + \frac{\sin \varphi \sin \theta}{1 + \cos \varphi \sin \theta} \varpi_1 \right] \\
+ \langle \alpha^f, \zeta_1 \rangle \left[-\frac{\sin \varphi \sin \theta}{1 + \cos \varphi \sin \theta} (\xi + \eta) - \varpi_1 \right] - \sum_{j=2}^{d} \langle \alpha^f, \zeta_j \rangle \mu_j \\
+ \langle \alpha^G, \varpi_{d+1} \rangle \varpi_{d+1} + \frac{\cos \theta}{1 + \cos \varphi \sin \theta} (\xi + \eta).\]
From which it is not difficult to see that
\[
\alpha^G = \frac{1}{1 + \cos \varphi \sin \theta} [\xi - \eta \cos \varphi \sin \theta + \mu_1 \sin \varphi \sin \theta + \mu_{d+1} \cos \theta] \\
- \langle \alpha^f, \zeta_1 \rangle \left[\frac{\sin \varphi \sin \theta}{1 + \cos \varphi \sin \theta} (\xi + \eta) + \mu_1 \right] - \sum_{j=2}^{d} \langle \alpha^f, \zeta_j \rangle \mu_j \\
+ \left(\alpha^G, \mu_{d+1} + \frac{\cos \theta}{1 + \cos \varphi \sin \theta} (\xi + \eta) \right) \left[\mu_{d+1} + \frac{\cos \theta}{1 + \cos \varphi \sin \theta} (\xi + \eta) \right].
\]

Now (3) follows if we define
\[
\mu_o = -\frac{1}{1 + \cos \varphi \sin \theta} [\xi - \eta \cos \varphi \sin \theta + \mu_1 \sin \varphi \sin \theta + \mu_{d+1} \cos \theta], \\
\mu_1 = \frac{\sin \varphi \sin \theta}{1 + \cos \varphi \sin \theta} (\xi + \eta) + \mu_1, \\
\mu_{d+1} = \mu_{d+1} + \frac{\cos \theta}{1 + \cos \varphi \sin \theta} (\xi + \eta).
\]

Notice that if \(v \in V \) and \(w \in N(\omega_2) \), then
\[
\langle A^G_{\mu_{d+1}} v, w \rangle = \langle \alpha^G(v, w), \mu_{d+1} \rangle = \langle \beta(v, w), \mu_{d+1} \rangle = \langle \omega_1(v, w), \mu_{d+1} \rangle = 0
\]
due to (3), (8) and (10). Thus, \(\text{rank } A^G_{\mu_{d+1}} \leq 1 \). Recall that \(\text{dim } N(\omega_2) \geq n - 1 \) by Assertion in proof of Lemma 2.3 and \(\ell = d + 1 \).

We point out that \(p \) in Lemma 2.1 being arbitrary the decomposition (3) holds on \(M^n \).

Lemma 2.6. At \(p \in M^n \), it holds that \(\text{dim } S(\alpha^G) \geq d + 1 \). Furthermore, \(\text{dim } S(\alpha^G) = d + 1 \) at \(p \) if and only if \(A^G_{\mu_{d+1}} = 0 \) at \(p \) and \(\text{dim } S(\alpha^G) = d + 2 \) at \(p \) if and only if \(\text{rank } A^G_{\mu_{d+1}} = 1 \) at \(p \).

Proof. Consider \(S(\alpha^G)^\perp \), the orthogonal complement of \(S(\alpha^G) \) in the nondegenerate \((d + 3) \)-dimensional vector space
\[
T^\perp_{G(p)} M = \text{span } \{ G, \mu_o, \mu_1, \ldots, \mu_{d+1} \}.
\]
Note that the coordinates of an arbitrary vector \(\mu \in T^\perp_{G(p)} M \) on the basis \(G, \mu_o, \mu_1, \ldots, \mu_{d+1} \) are given by
\[
(13) \quad \mu = \langle \mu, \mu_o \rangle G + \langle \mu, \mu_1 \rangle \mu_o + \sum_{i=1}^{d} \langle \mu, \mu_i \rangle \mu_i + \langle \mu, \mu_{d+1} \rangle \mu_{d+1}.
\]

Now take \(\mu \in S(\alpha^G)^\perp \). Then, for all \(v, w \in V \), we have
\[
0 = \langle \alpha^G(w, v), \mu \rangle = \left(\left(A^G_{\sum_{i=1}^{d} \mu_i} \zeta_i - \langle \mu_o, \mu \rangle I + \langle \mu_{d+1}, \mu \rangle A^G_{\mu_{d+1}} \right) (w), v \right)
\]
due to (3). For \(w \in \text{Ker } A^G_{\mu_{d+1}} \), we obtain
\[
0 = \left(\left(A^G_{\sum_{i=1}^{d} \mu_i} \zeta_i - \langle \mu_o, \mu \rangle I \right) (w), v \right), \quad \forall v \in T_p M.
\]
So
\[
\nu^o \geq \text{dim Ker } \left(A^G_{\sum_{i=1}^{d} \mu_i} \zeta_i - \langle \mu_o, \mu \rangle I \right) \geq \text{dim Ker } A^G_{\mu_{d+1}} \geq n - 1
\]
which contradicts the hypothesis on the 1-conformal nullity of \(f \) case \(\sum_{i=1}^{d} \langle \mu_i, \mu \rangle \zeta_i \neq 0 \). Then \(\langle \mu_i, \mu \rangle = 0, 1 \leq i \leq d \), and consequently \(\langle \mu_o, \mu \rangle \neq 0 \). Thus, \(\mu \) belongs to \(\text{span } \{ \mu_o, \mu_{d+1} \} \) due to (13). From (14) we deduce that \(\mu_{d+1} \in S(\alpha^G)^\perp \) if and only if \(A^G_{\mu_{d+1}} = 0 \). Since \(\mu_o \in S(\alpha^G)^\perp \) and \(\text{rank } A^G_{\mu_{d+1}} \leq 1 \) we have proved Lemma 2.6. \(\Box \)
As a consequence of Lemma 2.6, if we define
\[
(15) \quad \omega = -\langle \cdot, \cdot \rangle_{\mu_0} + \sum_{j=1}^{d} \langle \alpha^f, \zeta_j \rangle_{\mu_j},
\]
we have \(\dim S(\omega) = d + 1 \), that is,
\[
S(\omega) = \text{span} \{ \mu_0, \mu_1, \mu_2, \ldots, \mu_d \}.
\]
In relation to \(S(\omega) \) we also claim that
\[
(16) \quad S(\omega) = \text{span}\{ \omega(X, Y) : X, Y \in \text{Ker} A^G_{\mu_{d+1}} \}.
\]
In fact, if we put \(R = \text{span}\{ \omega(X, Y) : X, Y \in \text{Ker} A^G_{\mu_{d+1}} \} \), it suffices to verify that \(\dim R = d + 1 \). For to see this we show that the orthogonal complement of \(R \) in the nondegenerate \((d + 2)\)-dimensional vector space \(\text{span}\{G, \mu_0, \mu_1, \mu_2, \ldots, \mu_d \} \) has dimension one. Let \(\mu = aG + b\mu_0 + \sum_{j=1}^{d} a_j\mu_j \) be an arbitrary vector orthogonal to \(R \). Then, for all \(X, Y \in \text{Ker} A^G_{\mu_{d+1}} \), we can write
\[
0 = \langle \omega(X, Y), \mu \rangle = -a\langle X, Y \rangle + \sum_{j=1}^{d} \langle \alpha^f(X, Y), \zeta_j \rangle a_j = \left(\left(A^f_{\mu_{d+1}} \sum_{j=1}^{d} a_j\zeta_j - aI \right) X, Y \right).
\]
Consequently, if \(\gamma = \sum_{j=1}^{d} a_j\zeta_j \neq 0 \) then the nullity of \(\alpha^f_{\text{span}}(\gamma) = \langle \cdot, \cdot \rangle_{\mu_{d+1}} \) is at least \(n - 2 \). This implies that \(\nu^f_{1} \geq n - 2 \) and we have obtained a contradiction with our hypothesis. Thus, \(a = 0 = a_j, 1 \leq j \leq d, \) and the claim have been proved.

Proof of Theorem 1.2. Let \(U \) be the subset of \(M^n \) constituted of the points \(q \) so that \(\dim S(\alpha^G) \) is constant in a neighborhood of \(q \). The subset \(U \) is open and dense in \(M^n \). In fact, clearly \(U \) is open in \(M^n \). For to see that \(U \) is dense in \(M^n \), consider an arbitrary point \(p \) in \(M^n \). By Lemma 2.6, in each point \(p \) of \(M^n \), the dimension of \(S(\alpha^G) \) is either \(d + 1 \) or \(d + 2 \). If \(\dim S(\alpha^G) = d + 2 \) at \(p \), then \(p \) belongs to \(U \) since \(\dim S(\alpha^G) \) does not decrease in a neighborhood of \(p \) by continuity. If \(\dim S(\alpha^G) = d + 1 \) at \(p \) and \(p \) does not belong to \(U \), there is a sequence of points where \(\dim S(\alpha^G) \) is \(d + 2 \), consequently a sequence of points in \(U \), that converges to \(p \). Thus, \(U \) is dense in \(M^n \). Now, for an arbitrary point \(p \in U \), we consider a connected neighborhood \(U \subset U \) of \(p \) where \(F \) is an embedding and \(\dim S(\alpha^G) \) is constant. We divide the proof of Theorem 1.2 in two cases.

Case I. \(\dim S(\alpha^G) = d + 2 \) on \(U \). In this case, \(\text{rank} A^G_{\mu_{d+1}} = 1 \) on \(U \) by Lemma 2.6 and
\[
S(\alpha^G) = \text{span} \{ \mu_0, \mu_1, \ldots, \mu_{d+1} \}
\]
due to \(\bullet \)

Lemma 2.7. In Case I we can choose \(\mu_{d+1} \) such that the unitary vector field \(\mu_{d+1} \in T^+_U \) be smooth on \(U \).

Proof of Lemma 2.7. In each point of \(U \) we choose \(\mu_{d+1} \) so that the unique nonzero eigenvalue of \(A^G_{\mu_{d+1}} \) be positive. We affirm that with this choice \(\mu_{d+1} \) is smooth. First we prove that for all continuous tangent vector fields \(X, Y \in TU \) the function \(\langle \alpha^G(X, Y), \mu_{d+1} \rangle \) is continuous. Since \(\alpha^G \) is bilinear and symmetric it suffices to prove that \(\langle \alpha^G(X, X), \mu_{d+1} \rangle \) is continuous for all continuous field \(X \) in \(TU \). All eigenvalues of \(A^G_{\mu_{d+1}} \) being nonnegative, it holds that
\[
(17) \quad \langle \alpha^G(X, X), \mu_{d+1} \rangle = \langle A^G_{\mu_{d+1}} X, X \rangle \geq 0.
\]
From \(\bullet \) it follows that
\[
\langle \alpha^G(Z, W), \mu_{d+1} \rangle^2 = |\alpha^G(Z, W)|^2 - |\alpha^f(Z, W)|^2, \forall Z, W \in TM.
\]
Recall that μ_o has zero length. In particular, $\langle \alpha^G(X, X), \mu_{d+1} \rangle^2$ is continuous. So $\langle \alpha^G(X, X), \mu_{d+1} \rangle$ is continuous due to \cite{17}. (Note that $\langle \alpha^G(Z, W), \mu_{d+1} \rangle^2$ is smooth when Z and W are smooth.) Now in a fixed $q_o \in U$ consider an orthonormal basis e_1, \ldots, e_n of $T_{q_o}M$ of eigenvectors of $A^G_{\mu_{d+1}}$ so that $A^G_{\mu_{d+1}} e_1 = \rho e_1$, $\rho > 0$, and $A^G_{\mu_{d+1}} e_j = 0$, $2 \leq j \leq n$. Extend e_1, \ldots, e_n locally to a smooth orthonormal frame E_1, \ldots, E_n of tangent vectors and define the local smooth fields $Y_1 = E_1$ and $Y_j = E_1 + E_j$, $2 \leq j \leq n$. Observe that in each point q where the vectors $Y_1(q), \ldots, Y_n(q)$ are defined they are linearly independent and so they are a basis of T_qM. Since $\dim S(\alpha^G) = d + 2$ on U we can take vectors $\alpha^G(Y_{i_k}, Y_{j_k})$, $1 \leq k \leq d + 2$, that are a basis of $S(\alpha^G)$ in a neighborhood of q_o. Consider the locally defined continuous functions

$$\psi_k = \langle \alpha^G(Y_{i_k}, Y_{j_k}), \mu_{d+1} \rangle, 1 \leq k \leq d + 2.$$

As we have seen above the functions ψ_k are continuous. We claim that each ψ_k is smooth. In fact, at q_o we have $\psi_k(q_o) = \rho > 0$. Then in a neighborhood of q_o we can suppose that ψ_k is positive since it is continuous.

We have observed previously that ψ_k^2 is smooth. Therefore, ψ_k is smooth since it is positive. Let us denote a_1, \ldots, a_{d+2} the coordinates functions of μ_{d+1} on the basis $\alpha^G(Y_{i_k}, Y_{j_k})$, $1 \leq k \leq d + 2$. Using \cite{3}, we can write

$$\mu_{d+1} = \sum_{k=1}^{d+2} a_k \alpha^G(Y_{i_k}, Y_{j_k}) = - \left(\sum_{k=1}^{d+2} a_k \langle Y_{i_k}, Y_{j_k} \rangle \right) \mu_o + \sum_{j=1}^d \left(\sum_{k=1}^{d+2} a_k \alpha^f(Y_{i_k}, Y_{j_k}), \xi_j \right) \mu_j + \left(\sum_{k=1}^{d+2} a_k \psi_k \right) \mu_{d+1}.$$

So the functions a_k satisfy the equations

$$\sum_{k=1}^{d+2} a_k \langle Y_{i_k}, Y_{j_k} \rangle = 0, \quad \sum_{k=1}^{d+2} a_k \alpha^f(Y_{i_k}, Y_{j_k}) = 0, \quad \sum_{k=1}^{d+2} a_k \psi_k = 1.$$

Taking a smooth orthonormal frame ξ_1, \ldots, ξ_d of $T_{q_o}^U M$ in a neighborhood of q_o, we have that the functions a_k satisfy the following system of $d + 2$ linear equations

$$\sum_{k=1}^{d+2} a_k \langle Y_{i_k}, Y_{j_k} \rangle = 0, \quad \sum_{k=1}^{d+2} a_k \alpha^f(Y_{i_k}, Y_{j_k}), \xi_j = 0, 1 \leq j \leq d, \quad \sum_{k=1}^{d+2} a_k \psi_k = 1.$$

The order $d + 2$ matrix of the system is an invertible smooth matrix. That it is smooth follows from the smoothness of the functions Y_i, α^f and ψ_k for all $i = 1, \ldots, n$ and $k = 1, \ldots, d + 2$. If we consider a vector $(c_1, \ldots, c_{d+2}) \in \mathbb{R}^{d+2}$ in the kernel of the system, then the equations bellow are satisfied

$$\sum_{k=1}^{d+2} c_k \langle Y_{i_k}, Y_{j_k} \rangle = 0, \quad \sum_{k=1}^{d+2} c_k \alpha^f(Y_{i_k}, Y_{j_k}), \xi_j = 0, 1 \leq j \leq d, \quad \sum_{k=1}^{d+2} c_k \psi_k = 0.$$

By \cite{3}, we deduce that $\sum_{k=1}^{d+2} c_k \alpha^G(Y_{i_k}, Y_{j_k}) = 0$. Being the vectors $\alpha^G(Y_{i_k}, Y_{j_k})$, $1 \leq k \leq d + 2$, linearly independent, we have $c_k = 0$ for all k. So the matrix of the system is invertible. Then, the functions a_k are smooth and, consequently, μ_{d+1} is an unitary smooth vector field on $T_{q_o}^U U$.

Lemma 2.8. The null vector field μ_o is smooth on U.

Proof. The proof is identical to one in Lemma 2.7, noticing that the coordinates a_1, \ldots, a_{d+2} of μ_o on the basis $\alpha^G(Y_{i_k}, Y_{j_k})$, $1 \leq k \leq d + 2$, are determined by

$$\sum_{k=1}^{d+2} a_k \langle Y_{i_k}, Y_{j_k} \rangle = -1, \quad \sum_{k=1}^{d+2} a_k \alpha^f(Y_{i_k}, Y_{j_k}), \xi_j = 0, 1 \leq j \leq d, \quad \sum_{k=1}^{d+2} a_k \psi_k = 0.$$

\square
Lemma 2.9. On U the null vector field μ_o is parallel along $\text{Ker} A^G_{\mu_{d+1}}$.

Proof. We denote by ∇ the connection of the Lorentz space E^n_{d+1} and by ∇^\perp the normal connection of the immersion G. First note that the coordinate of $\nabla^\perp \mu_o$ in the direction μ_o is zero for all $X \in TU$. In fact, we have $\nabla^\perp G = 0$ since $\nabla X G = G \cdot X$ is tangent. Now if we take derivatives on $\langle G, \nabla^\perp \mu_o \rangle = 1$ in the direction X, we obtain that $\langle G, \nabla^\perp \mu_o \rangle = 0$ and the coordinate of $\nabla^\perp \mu_o$ in the direction μ_o is zero by (13). Being μ_o a vector field of zero length, the vector $\nabla^\perp \mu_o$ has not component in the direction G by (13). Now we claim that $\nabla^\perp \mu_o$ also has not component on $L = \text{span} \{ \mu_1, \mu_2, \ldots, \mu_d \}$. In fact, consider $q \in U$ and the linear map

$$T_q M \xrightarrow{\Psi} \text{span} \{ \mu_1, \ldots, \mu_d, \mu_{d+1} \}$$

Using the Codazzi’s equations for α^G, the compatibility of the normal connection of the immersion G with the metric in $T_q^\perp M$ and that $\langle \alpha^G, \mu_o \rangle = 0$, it is a straightforward calculation to see that

$$\langle \alpha^G (X,Y), \nabla^\perp \mu_o \rangle = \langle \alpha^G (Z,Y), \nabla^\perp \mu_o \rangle, \forall X, Y, Z \in T_q M.$$

This equation is equivalent to

$$A^G_{\nabla^\perp \mu_o} X = A^G_{\nabla^\perp \mu_o} Z, \forall X, Z \in T_q M.$$

Let Ψ_L be the component of Ψ on $L = \text{span} \{ \mu_1, \mu_2, \ldots, \mu_d \}$, that is,

$$\Psi_L (Z) = \sum_{i=1}^{d} \langle \nabla^\perp \mu_o, \mu_i \rangle \mu_i, \forall Z \in T_q M.$$

Suppose that $\dim (\text{Im} \Psi_L) = r$ and $r \geq 1$. Consider a basis $\Psi_L (Z_1), \ldots, \Psi_L (Z_r)$ of $(\text{Im} \Psi_L)$. Observe that $d \geq r \geq \dim (\text{Im} \Psi) - 1$. Taking $\xi_j = \sum_{i=1}^{d} \langle \Psi_L (Z_j), \mu_i \rangle \xi_i, 1 \leq j \leq r$, and using (3) and (18), we obtain that

$$A^f_{\xi_j} X = A^G_{\nabla^\perp \mu_o} Z_j - \rho (X, E) \langle \nabla^\perp \mu_o, \mu_{d+1} \rangle E,$$

being E an unitary eigenvector such that $A^G_{\mu_{d+1}} E = \rho \cdot E, X \in T_q M$ and $j, 1 \leq j \leq r$. For each $j, 1 \leq j \leq r$, consider the linear map $\psi_j : T_q M \to \text{span} \{ E \}$ given by

$$\psi_j (X) = -\rho (X, E) \langle \nabla^\perp \mu_o, \mu_{d+1} \rangle E = A^f_{\xi_j} X - A^G_{\nabla^\perp \mu_o} Z_j.$$

Notice that if $X \in \text{Ker} \Psi \cap \cap_{j=1}^{r} \text{Ker} \psi_j$ then $X \in \cap_{j=1}^{r} \text{Ker} A^f_{\xi_j}$ due to (20). We have $\dim \left(\cap_{j=1}^{r} \text{Ker} \psi_j \right) \geq n - r$. Then, for the r-dimensional space $L = \text{span} \{ \xi_1, \ldots, \xi_r \}$, using the formula

$$\dim (L_1 + L_2) = \dim L_1 + \dim L_2 - \dim (L_1 \cap L_2),$$

valid for any two finite dimensional vector subspaces of any vector space, we obtain

$$\nu^c_r \geq \dim N (\alpha^G_L) \geq \dim \left(\text{Ker} A^f_{\xi_j} \cap \cap_{j=1}^{r} \text{Ker} \psi_j \right) \geq (n - \dim (\text{Im} \Psi)) + (n - r) - n \geq n - 2r - 1$$

which is in contradiction with our hypothesis on the r-conformal nullity. Then, $r = 0$ and $\nabla^\perp \mu_o = \langle \nabla^\perp \mu_o, \mu_{d+1} \rangle \mu_{d+1}$ for all $Z \in T_q M$. Now from (19) we deduce that

$$\langle \nabla^\perp \mu_o, \mu_{d+1} \rangle A^G_{\mu_{d+1}} X = \langle \nabla^\perp \mu_o, \mu_{d+1} \rangle A^G_{\mu_{d+1}} Z.$$
for all $X, Z \in T_q M$. Thus, if we choose $X = E$ and $Z \in \text{Ker} A_{\mu_{d+1}}^G$, we have

$$\rho \left(\nabla^+_E \mu_\alpha, \mu_{d+1} \right) E = 0$$

for all $Z \in \text{Ker} A_{\mu_{d+1}}^G$. Hence $\nabla^+_E \mu_\alpha = 0$ for all $Z \in \text{Ker} A_{\mu_{d+1}}^G$. Recall that our choice for μ_{d+1} is such that the unique nonzero eigenvalue ρ of the smooth linear map $A_{\mu_{d+1}}^G$ is positive. \hfill \square

Lemma 2.10. On U the unitary vector field μ_{d+1} is parallel along $\text{Ker} A_{\mu_{d+1}}^G$.

Proof. Notice that the coordinate of $\nabla_X \mu_{d+1}$ in the direction μ_α is zero due to

$$\langle G, \nabla_X \mu_{d+1} \rangle = -\langle \nabla_X G, \mu_{d+1} \rangle = -\langle G_* X, \mu_{d+1} \rangle = 0.$$

By Lemma 2.9, for $X \in \text{Ker} A_{\mu_{d+1}}^G$, $\nabla_X \mu_{d+1}$ also has not component in the direction G since $\langle \mu_\alpha, \nabla_X \mu_{d+1} \rangle = -\langle \nabla_X \mu_\alpha, \mu_{d+1} \rangle = 0$. Being μ_{d+1} an unitary vector field, the vector $\nabla_X \mu_{d+1}$ has not component in the direction μ_{d+1}. Thus, we only need proving that $\nabla_X \mu_{d+1}$ also has not component on $L = \text{span} \{ \mu_1, \mu_2, \ldots, \mu_d \}$ for all $X \in \text{Ker} A_{\mu_{d+1}}^G$. Consider the linear map

$$\text{Ker} A_{\mu_{d+1}}^G \xrightarrow{\Phi} \text{span} \{ \mu_1, \ldots, \mu_d \} \xrightarrow{\nabla_X \mu_{d+1}} \nabla_X \mu_{d+1}.$$

Our choice for μ_{d+1} so that the unique nonzero eigenvalue ρ of the smooth linear map $A_{\mu_{d+1}}^G$ is positive, for a well known argument, implies that ρ is smooth. Simple calculations shows that in an arbitrary point of U the $(n-1)$-dimensional distribution $\text{Ker} A_{\mu_{d+1}}^G$ is given by

$$\text{Ker} A_{\mu_{d+1}}^G = \left\{ \left(A_{\mu_{d+1}}^G - \rho I \right) W \mid W \in TU \right\}.$$

So $\text{Ker} A_{\mu_{d+1}}^G$ is a differentiable distribution on U. Therefore, if in some point q_0 of U we consider $X \in \text{Ker} A_{\mu_{d+1}}^G$, we can take in a neighborhood of q_0 in U a differentiable extension of X that lies on $\text{Ker} A_{\mu_{d+1}}^G$. With these observations, using the Codazzi’s equations for α^G and the compatibility of the normal connection of the immersion G with the metric in $T_q M$, it is a straightforward calculation to see that

$$A_{\Phi(X)} Z = A_{\Phi(X)} Z + \rho \langle [X, Z], E \rangle E,$$

for all $X, Z \in \text{Ker} A_{\mu_{d+1}}^G$. Suppose that $\dim (\text{Im} \Phi) = r$ and $r \geq 1$. At this point we proceed like in proof of Lemma 2.9, with $\text{Ker} A_{\mu_{d+1}}^G$ instead of $T_q M$, for deduce that $\dim (\text{Im} \Phi) = 0$ and Lemma 2.10 has been proved. \hfill \square

Now we consider the linear isometry $\tau: T^*_F U \to (\text{span} \{ \mu_{d+1} \}^\perp \subset T^*_F U$ given by

$$\tau(F) = G, \quad \tau(\alpha) = \mu_\alpha \quad \text{and} \quad \tau(\zeta_i) = \mu_i, \quad 1 \leq i \leq d.$$

Notice that τ is smooth since

$$T^*_F M = \text{span} \{ F \} \oplus S (\alpha^F), \quad \text{span} \{ \mu_{d+1} \}^\perp \oplus \text{span} \{ G \} \oplus S(\omega)$$

and $\tau (\alpha^F(X, Y)) = \omega(X, Y), \forall X, Y \in T M$, due to (11) and (15). Observe also that our hypothesis on the 1-conformal nullity of f implies that $S(\alpha^F)$ is a $(d+1)$-dimensional subspace of $T^*_F M$.

Since the $(n-1)$-dimensional distribution $\text{Ker} A_{\mu_{d+1}}^G$ is smooth on U, if E is a unitary differentiable vector field orthogonal to $\text{Ker} A_{\mu_{d+1}}^G$ then E is in each point an eigenvector of $A_{\mu_{d+1}}^G$ corresponding to the eigenvalue ρ. Consequently, E can be chosen smooth on U. Consider the vector bundle isometry $T: T^*_F U \oplus \text{span} \{ E \} \to (\text{span} \{ \mu_{d+1} \}^\perp \oplus \text{span} \{ E \}$ defined as $T(\delta + c E) = \tau(\delta) + c E$ for all $\delta + c E \in T^*_F U \oplus \text{span} \{ E \}$. Take the subbundle $\Lambda \subset (\text{span} \{ \mu_{d+1} \})^\perp \oplus \text{span} \{ E \}$ whose bundles are the orthogonal complement of the subspace generated by $\nabla_{E} \mu_{d+1} \perp - \rho E + \nabla_{E} \mu_{d+1}$. We observe that, being $(\text{span} \{ \mu_{d+1} \})^\perp \oplus \text{span} \{ E \}$ a $(d + 3)$-dimensional nondegenerate vector bundle, Λ is a $(d + 2)$-dimensional nondegenerate subbundle and that Λ
is transversal to TU. Now define the $(d+2)$-dimensional nondegenerate subbundle Ω of $T^\perp U \oplus \text{span} \{E\}$, transversal to TU, by setting $T(\Omega) = \Lambda$. Let $F: \Omega \to \mathbb{L}^{n+d+3}$ be defined by $F(q, \vartheta) = F(q) + \vartheta$ for all $q \in U$ and all ϑ in the fibre Ω_q. Since the fibres of Ω are transversal to TU and F is an embedding on U, F is a diffeomorphism from a neighborhood Ω of the zero section in Ω into a neighborhood W of $F(U)$ in \mathbb{L}^{n+d+3}.

Consider Ω endowed with the flat metric induced by F. Restrict to Ω_0, F become an isometry onto W. From now on F will stand for this restriction. Now let $G: \Omega_0 \to \mathbb{L}^{n+d+3}$ be defined by $G(q, \vartheta) = G(q) + T(\vartheta)$ for all $q \in U$ and $\vartheta \in \Omega_q$. We claim that G is an isometric immersion. In fact, for all differentiable curve $\theta(t) = (\gamma(t), \delta(\gamma(t)) + c(t)E(\gamma(t))) \in \Omega_0$ we have $G(\theta(t)) = G(\gamma(t)) + \tau(\delta(\gamma(t))) + c(t)E(\gamma(t))$. Consequently,

\begin{equation}
(G_\ast)_{\theta(0)} \theta'(0) = (G_\ast)_{\gamma(0)} \gamma'(0) + \nabla_{\gamma'(0)} \tau(\delta) + \tilde{\nabla}_{\gamma'(0)} cE
\end{equation}

Now if we put $\gamma'(0) = aE + v$, being v the component of $\gamma'(0)$ in $\text{Ker} A^G_{\mu_{d+1}}$, we have

\begin{equation}
\left\langle \tilde{\nabla}_{\gamma'(0)} \tau(\delta) + a^G(\gamma'(0), cE, \mu_{d+1}) \right\rangle = \left\langle \nabla_{\gamma'(0)} \tau(\delta) + cE, \mu_{d+1} \right\rangle
\end{equation}

\begin{equation}
= - \left\langle \tau(\delta) + cE, \tilde{\nabla}_{\gamma'(0)} \mu_{d+1} \right\rangle = - \left\langle \tau(\delta) + cE, a\tilde{\nabla}_E \mu_{d+1} - A^G_{\mu_{d+1}} v + \tilde{\nabla}_v \mu_{d+1} \right\rangle = 0.
\end{equation}

Recall that $\tau(\delta) + cE \in \Lambda$ is orthogonal to $\tilde{\nabla}_E \mu_{d+1}$ and that, by Lemma 2.10, $\tilde{\nabla}_v \mu_{d+1} = 0$. For to finish the proof of the claim we will need of the following

Lemma 2.11. For $X \in TU$ and $\mu \in L = (\text{span} \{\mu_{d+1}\})^\perp$, let ∇^X_μ be given by $\nabla^X_\mu = \tau(F^\ast \nabla^X_\tau^{-1}(\mu))$, being $F^\ast \nabla^X_\tau$ the normal connection of the immersion F, and let $\tilde{\nabla}^X_\mu$ be the component of $\tilde{\nabla}^X_\mu$ on L. Then, it holds that $\nabla^X_\mu = \tilde{\nabla}^X_\mu$.

Proof. For a fixed $X \in TU$, we define the linear map $K(X) : L \to L$ by $K(X)\mu = \nabla^X_\mu - \tilde{\nabla}^X_\mu$, $\forall \mu \in L$. Since L is nondegenerate, for to prove that $K(X) \equiv 0$ it suffices to prove, for all $W, V, Y, Z \in \text{Ker} A^G_{\mu_{d+1}}$, the following relations

$\langle K(X)G, G \rangle = \langle K(X)G, \omega(Y, Z) \rangle = \langle \omega, K(X)\omega(Y, Z) \rangle = \langle K(X)\omega(Y, Z), \omega(W, V) \rangle = 0$.

due to \eqref{E16} and \eqref{E21}. First we note that $K(X)G = 0$ because $F^\ast \nabla^X_\tau F = \tilde{\nabla}^X_\tau G = 0$. Also, for all $Y, Z \in \text{Ker} A^G_{\mu_{d+1}}$, we have

$\langle G, K(X)\omega(Y, Z) \rangle = \langle G, \nabla^X_\omega \omega(Y, Z) \rangle - \langle G, \tilde{\nabla}^X_\omega \omega(Y, Z) \rangle$

$= \langle \tau(F), (F^\ast \nabla^X_\tau \alpha^F(Y, Z)) \rangle - \langle \tau(F), \tilde{\nabla}^X_\tau \omega(Y, Z) \rangle = \langle F, F^\ast \nabla^X_\tau \alpha^F(Y, Z) \rangle - \langle G, \tilde{\nabla}^X_\tau \alpha^G(Y, Z) \rangle$

$= X \langle F, \alpha^F(Y, Z) \rangle - X \langle G, \alpha^G(Y, Z) \rangle = -X \langle Y, Z \rangle + X \langle Y, Z \rangle = 0$.

Now we verify that holds the relation

$K(X)\omega(Y, Z) = K(Y)\omega(X, Z)$, for all $X \in TU$ and all $Y, Z \in \text{Ker} A^G_{\mu_{d+1}}$.
In fact, for all \(\mu \in L \), we have
\[
\langle K(X)\omega(Y,Z),\mu \rangle = \langle \tau (F\nabla_{\mathring{X}}^G \alpha^F(Y,Z) - \nabla_{\mathring{X}}^G \alpha^G(Y,Z),\mu \rangle
\]
\[
= \langle \tau (F\nabla_{\mathring{X}}^G \alpha^F(Y,Z)) + \tau (\alpha^F(\nabla_X Y, Z) + \tau (\alpha^F(Y, \nabla_X Z)) - (\mathring{\nabla}_{\mathring{X}}^G)(Y,Z) - \alpha^G(\nabla_X Y, Z) - \alpha^G(Y, \nabla_X Z),\mu \rangle
\]
\[
= \langle \tau (F\nabla_{\mathring{Y}}^G \alpha^F(X,Z)) - \tau (\alpha^F(\nabla_Y X, Z)) - \tau (\alpha^F(X, \nabla_Y Z)) - \nabla_{\mathring{Y}}^G \alpha^G(X,Z) + \alpha^G(\nabla_Y X, Z) + \alpha^G(X, \nabla_Y Z),\mu \rangle
\]
\[
= \langle K(Y)\omega(X,Z),\mu \rangle.
\]
Above we have used that \(\omega = \tau (\alpha^F) \), \(\alpha^G(X,Z) = \omega(X,Z) \), for any \(X \in TM, Z \in \text{Ker} A^G_{\mu+1} \), and that \(\alpha^F \) and \(\alpha^G \) satisfy the Codazzi’s equations. It is a straightforward calculation to see that \(K(X) \) satisfies
\[
\langle K(X)\omega(Y,Z),\omega(W,V) \rangle = -\langle \omega(Y,Z), K(X)\omega(W,V) \rangle \text{ for all } W, V, X, Y, Z \in TM.
\]
Now if \(W, V, X, Y, Z \in \text{Ker} A^G_{\mu+1} \) and \(X \) is an arbitrary tangent vector, then
\[
\langle K(X)\omega(Y,Z),\omega(W,V) \rangle = \langle K(Y)\omega(X,Z),\omega(W,V) \rangle
\]
\[
= -\langle \omega(X,Z), K(Y)\omega(W,V) \rangle = -\langle \omega(X,Z), K(W)\omega(Y,V) \rangle
\]
\[
= \langle K(W)\omega(X,Z),\omega(Y,V) \rangle = \langle K(X)\omega(W,Z),\omega(Y,V) \rangle
\]
\[
= \langle K(Z)\omega(X,W),\omega(Y,V) \rangle = -\langle \omega(X,W), K(Z)\omega(Y,V) \rangle
\]
\[
= -\langle \omega(X,W), K(V)\omega(Y,Z) \rangle = \langle K(V)\omega(X,W),\omega(Y,Z) \rangle
\]
\[
= \langle K(X)\omega(W,V),\omega(Y,Z) \rangle = -\langle \omega(W,V), K(X)\omega(Y,Z) \rangle.
\]
Therefore, Lemma 2.11 has been proved.

Now, due to (23), the equality (22) becomes
\[
(G_*)_{\gamma(0)} \theta'(0) = (G_*)_{\gamma(0)} \left[\gamma'(0) - A^G_{\tau(\delta)} \gamma'(0) + \nabla_{\gamma'(0)} cE \right] + \mathring{\nabla}^G_{\gamma'(0)} \tau(\delta) + \alpha^G(\gamma'(0),cE)
\]
\[
= (G_*)_{\gamma(0)} \left[\gamma'(0) - A^G_{\tau(\delta)} \gamma'(0) + \nabla_{\gamma'(0)} cE \right] + \mathring{\nabla}^G_{\gamma'(0)} \tau(\delta) + \omega(\gamma'(0),cE)
\]
\[
= \left[(G_*)_{\gamma(0)} \circ (F_*)_{\gamma(0)} \right]^{-1} \circ (F_*)_{\gamma(0)} \left[\gamma'(0) - A^F \gamma'(0) + \nabla_{\gamma'(0)} cE \right]
\]
\[
+ \tau \left[F \nabla^F_{\gamma'(0)} \delta + \alpha^F(\gamma'(0),cE) \right].
\]
Observe that \(A^G_{\tau(\delta)} = A^F_{\delta} \). Then, \((G_*)_{\gamma(0)} \theta'(0) \) for all differentiable curve \(\theta(t) \) in \(\Omega \). This finish the proof of the claim.

Finally, taking \(T = G \circ F^{-1} \), we obtain an isometric immersion from a neighborhood of \(F(U) \) in \(\mathbb{L}^{n+d+2} \) into a neighborhood of \(G(U) \) in \(\mathbb{L}^{n+d+3} \) such that
\[
T(F(q)) = T(F(q,0)) = G(q,0) = G(q), \forall q \in U.
\]
According to previous observations \(T \) induces a conformal immersion \(\Gamma \) from a neighborhood of \(f(U) \) in \(\mathbb{R}^{n+d} \) into a neighborhood of \(g(U) \) in \(\mathbb{R}^{n+d+1} \) such that \(g = \Gamma \circ f \). This prove Theorem 1.2 in Case I.
Case II. \(\dim S (\alpha^G) = d + 1 \) on \(U \). In this case, by Lemma 2.6, rank \(A^G_{\mu + 1} = 0 \) on \(U \) and consequently,

\[
S (\alpha^G) = \text{span} \{ \mu_0, \mu_1, \ldots, \mu_d \}.
\]

by (3).

The linear isometry \(\tau: T^*_F U \to (\text{span} \{ \mu_{d+1} \})^\perp \) given by

\[
\tau(F) = G, \quad \tau(\zeta) = \mu_o \quad \text{and} \quad \tau(\xi_i) = \mu_i, \quad 1 \leq i \leq d,
\]

now satisfies \(\tau(\alpha^F(X,Y)) = \alpha^G(X,Y), \forall X, Y \in TU \). Thus, \(\tau \) is smooth. Then \(\mu_o \) also is smooth. Since \(\text{span} \{ \mu_{d+1} \} \) is the orthogonal complement of \(\text{span} \{ G \} \oplus S (\alpha^G) \) in \(T^*_G U \), the unitary vector field \(\mu_{d+1} \) can be choose smooth. Define

\[
\begin{align*}
TU & \xrightarrow{\Psi} \text{span} \{ G, \mu_1, \ldots, \mu_d \} \\
X & \quad \quad \rightarrow \nabla^G_X \mu_{d+1},
\end{align*}
\]

Using the Codazzi’s equations for \(\alpha^G \), the compatibility of the normal connection of the immersion \(G \) with the metric in \(T^*_G M \) and that \(\langle \alpha^G, \mu_{d+1} \rangle \equiv 0 \), it is not difficult to see that

\[
\langle \alpha^G(X,Y), \nabla^G_Z \mu_{d+1} \rangle = \langle \alpha^G(Z,Y), \nabla^G_X \mu_{d+1} \rangle, \quad \forall q \in U, \forall X, Y, Z \in T_q M,
\]

that is,

\[
A^G_{\nabla^G_X \mu_{d+1}} X = A^G_{\nabla^G_X \mu_{d+1}} Z, \quad \forall q \in U, \forall X, Z \in T_q M.
\]

At \(q \in U \), let us denote \(S \) the subspace of \(T^*_f(q) M \) given by

\[
S = \left\{ \sum_{i=1}^{d} \langle \nabla^G_Z \mu_{d+1}, \mu_i \rangle \zeta_i : Z \in T_q M \right\}.
\]

Suppose that \(\dim S = r \) and \(r \geq 1 \). Take a basis of \(S \) given by \(\xi_j = \sum_{i=1}^{d} \langle \nabla^G_Z \mu_{d+1}, \mu_i \rangle \zeta_i, 1 \leq j \leq r \). It holds that \(d \geq r \geq \dim (\text{Im } \Psi) - 1 \). From (3) and (24) we deduce that

\[
A^G_{\nabla^G_X \mu_{d+1}} X = A^G_{\nabla^G_X \mu_{d+1}} Z_j,
\]

for all \(q \in U, X \in T_q M \) and \(j, 1 \leq j \leq r \). Define \(\gamma \in S \) by \(\langle \gamma, \xi_j \rangle = \langle \mu_o, \nabla^G_Z \mu_{d+1} \rangle, 1 \leq j \leq r \). If \(X \in (\text{Ker } \Psi) \) then \(X \in N (\alpha_S - \langle \cdot, \gamma \rangle) \) due to (26).

Thus,

\[
\nu^c \geq \dim N (\alpha_S - \langle \cdot, \gamma \rangle) \geq \dim (\text{Ker } \Psi) = n - \dim (\text{Im } \Psi) \geq n - r - 1
\]

which is in contradiction with our hypothesis on the \(r \)-conformal nullity. Then \(r = 0 \) and \(\nabla^G_{\nabla^G_X \mu_{d+1}} G \) for all \(q \in U \) and \(Z \in T_q M \) by (3). From (25) and \(A^G_{\nabla^G_X \mu_{d+1}} = -I \), we deduce that

\[
\langle \nabla^G_{\nabla^G_X \mu_{d+1}, \mu_o} \rangle X = \langle \nabla^G_{\nabla^G_X \mu_{d+1}, \mu_o} \rangle Z, \quad \forall q \in U, \forall X, Z \in T_q M.
\]

Since \(n \geq 2 \), this implies that \(\langle \nabla^G_{\nabla^G_X \mu_{d+1}, \mu_o} \rangle = 0 \) for all \(q \in U \) and \(Z \in T_q M \). Hence \(\nabla^G_{\nabla^G_X \mu_{d+1}} = 0 \) and the unitary vector field \(\mu_{d+1} \) is parallel along \(U \). Then \(L \), the orthogonal complement of \(\text{span} \{ \mu_{d+1} \} \) in \(T^*_G U \), is a \((d + 2) \)-dimensional nondegenerate parallel subbundle of \(T^*_G U \), that is, \(\nabla^G_X \mu \in L \) for all \(X \in TU \) and \(\mu \in L \). We claim that \(\mu_{d+1} \) is constant along \(U \). In fact, for all \(X \in TU \) we have

\[
\nabla^G_X \mu_{d+1} = -A^G_{\mu_{d+1}} X + \nabla^G_X \mu_{d+1} = 0.
\]
We fix \(q \in U \) and consider a differentiable curve \(\gamma(t) \) in \(U \) with \(\gamma(0) = q \). Then, putting \(\mu_{d+1}(q) = \mu \), we have

\[
\frac{d}{dt} \langle G(\gamma(t)) - G(q), \mu \rangle = \frac{d}{dt} \langle G(\gamma(t)) - G(q), \mu_{d+1}(t) \rangle = \left(\langle (G_\ast)_{\gamma(t)} \gamma'(t), \mu_{d+1}(t) \rangle \right) + \left(\langle G(\gamma(t)) - G(q), \tilde{\nabla}_{\gamma(t)} \mu_{d+1}(t) \rangle \right) = 0.
\]

Therefore, \(\langle G(\gamma(t)) - G(q), \mu \rangle \) is constant and equal to zero. So \(G(\gamma(t)) \) lies on the \((n+d+2) \)-dimensional affine Lorentz space \(G(q) + T_q M \oplus L(q) \). Since \(\gamma(t) \) is arbitrary, it follows that \(G(U) \) lies on \(G(q) + T_q M \oplus L(q) \). Notice that \(G(q) \) belongs to the vector space \(L(q) \) and, consequently, \(-G(q) \) also belongs to \(L(q) \). Thus, \(G(q) + T_q M \oplus L(q) \) pass through the origin. Hence, \(G(U) \subset (G(q) + T_q M \oplus L(q)) \cap V^{n+d+2} = V^{n+d+1} \). By \(2 \), \(J_\gamma(g(U)) \subset H_{\gamma} \cap V^{n+d+1} = \mathbb{R}^{n+d} \). This implies that \(g \) restricts to \(U \) reduces codimension to \(n + d \). So we can apply Theorem 1.2 in \(2 \) and Corollary 1.1 in \(7 \) for conclude that there is a conformal diffeomorphism \(\Gamma \) from an open subset of \(\mathbb{R}^{n+d} \) containing \(f(U) \) to an open subset of \(\mathbb{R}^{n+d} \) containing \(g(U) \) such that \(g = \Gamma \circ f \). This finish proof of Case II and of Theorem 1.2. \(\square \)

References

[1] E. Cartan, La déformation des hypersurfaces dans l’espace conforme réel à \(n \geq 5 \) dimensions, Bull. Soc. Math. France. 45 (1917) 57–121. Jbuch. 46 p. 1129.
[2] M. do Carmo and M. Dajczer, Conformal rigidity, Amer. J. of Math. 109 (1987) 963–985.
[3] M. Dajczer, Submanifolds and isometric immersions, Math. Lec. Series 13, Publish or Perish Inc. Houston, 1990.
[4] M. Dajczer and Luis A. Florit, A counterexample to a conjecture on flat bilinear forms, Proc. of the Amer. Math. Soc. 132 (2004) 3703–3704.
[5] M. Dajczer and R. Tojeiro, A rigidity theorem for conformal immersions, Indiana Univ. Math. J. 46 (1997) 491–504.
[6] M. Dajczer and E. Vergasta, On composition of conformal immersions, Proc. of the Amer. Math. Soc. 118 (1993) 211–215.
[7] Sergio L. Silva, On isometric and conformal rigidity of submanifolds, Pacific J. of Math. 199 (2001) 177–247.