Least informative distributions in Maximum q-log-likelihood estimation

Mehmet Niyazi Çankayaa,b, Jan Korbelc,d,e

aApplied Sciences School, Department of International Trading, Uşak, Turkey
bUşak University, Faculty of Art and Sciences, Department of Statistics, Uşak, Turkey
cSection for the Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
dComplexity Science Hub Vienna, Josefstadterstrasse 39, 1080 Vienna, Austria
eFaculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1, Czech Republic

Abstract

We use the Maximum q-log-likelihood estimation for Least informative distributions (LID) in order to estimate the parameters in probability density functions (PDFs) efficiently and robustly when data include outlier(s). LIDs are derived by using convex combinations of two PDFs, $f_\epsilon = (1-\epsilon)f_0 + \epsilon f_1$. A convex combination of two PDFs is considered as a contamination f_1 as outlier(s) to underlying f_0 distributions and f_ϵ is a contaminated distribution. The optimal criterion is obtained by minimizing the change of Maximum q-log-likelihood function when the data have slightly more contamination. In this paper, we make a comparison among ordinary Maximum likelihood, Maximum q-likelihood estimations, LIDs based on logq and Huber M-estimation. Akaike and Bayesian information criterions (AIC and BIC) based on logq and LID are proposed to assess the fitting performance of functions. Real data sets are applied to test the fitting performance of estimating functions that include shape, scale and location parameters.

Keywords: Tsallis entropy; Maximum q-log-likelihood; Least informative distributions; robust estimation

1. Introduction

Least informative distributions (LIDs) under various characterizing restrictions on Fisher information were considered by [1,2,3,4]. LIDs in estimating functions from M-estimation are proposed in [2]. Forerunners of estimating functions and estimating equations can be found e.g. in Refs. [5,6]. Some more examples of estimating functions are from Refs. [1,2,3,4,7,8]. Maximum q-likelihood estimation method in logarithm with q–difference operator (logq) as a generalized logarithm [9,10,11] can be given as an example for estimating functions. LIDs provide a special type of M-estimation, which minimizes the change of the Maximum likelihood function under increasing contamination. Thus, M-estimators from LIDs based on logq can be not only robust but also efficient. An advantage of LID is that a neighborhood of a probability density function (PDF) can be obtained. PDFs have been proposed from maximum entropy principle by using generalized entropies [12,13,14,15,16]. The comprehensive survey on generalized divergence and their applications are introduced by [17,18,19,20,21,22,23,24,25,26]. A mixed PDF with fixed mixing proportions (or contamination rates) ϵ_1, ϵ_2 and ϵ_3 is used to construct a bimodal from two mixings [27] and a trimodal from three mixings [28] distributions for Ising model. However, LID is free from the mixing proportion ϵ. It is not essential to know the mixing proportions or we are not interested in the estimations of mixing proportions due to problems on estimating the mixing proportions.

Email addresses: mehmet.cankaya@usak.edu.tr (Mehmet Niyazi Çankaya), korbeja2@fjfi.cvut.cz (Jan Korbel)
M-estimation that is generalization of Maximum likelihood estimation (MLE) is used to produce robust estimators for parameters of a PDF. M-estimators [2, 5] are defined through an estimating functions minimizing $\sum_{i=1}^{n} \Lambda[f_0(x_i; \theta)]$ over θ. Here, Λ is a concave function that is capable of making an one to one mapping from $f_0(x; \theta)$ to Λ. M-estimators are derived by fixed functions, such as Huber, Tukey, etc. LIDs occurred by restriction on Fisher information are used to produce Huber, Tukey, etc [2]. MLE as a special case of M-estimation is a method for estimations of parameters in a PDF. It is based on logarithm and does not work properly to estimate parameters in a PDF efficiently and robustly when data which include outlier(s) are non identically distributed, therefore we will use function \log_q that mimics MLE method [5, 10]. In our proposition, the benefit of LIDs and a PDF in Λ is that one can propose the estimating functions from arbitrary PDFs to get more precise estimators for parameters in PDFs.

The more precision can be accomplished by the parameter φ and also LID in \log_q. We propose to use LIDs and a PDF in \log_q to get new estimating functions and compare them with Huber M-estimation. Finally, we have estimating functions to fit data and information criterions for these functions by using \log_q.

The rest of paper is organized as follows. Section 2 is a composition of preliminaries about estimation. Section 3 proposes a PDF and LIDs in generalized logarithms as new functions in M-estimation. Section 4 is provided to assess the fitting competence of estimating functions. Section 5 is considered for fitting competence of proposed LIDs and assessing novel Akaike and Bayesian information criterions (AIC and BIC) for LIDs and a PDF in the function Λ. Finally, a conclusion is given in section 6.

2. Preliminaries

2.1. Estimation procedure

An estimation procedure is performed when one has a sampled version of a PDF, i.e., $f_0(x; \theta)$, of $f_0(x; \theta)$. The Maximum likelihood estimation (MLE) defined as

$$L(f_0) = \prod_{i=1}^{n} f_0(x_i; \theta),$$

(1)

where θ is a vector for parameters, $f_0 : \mathbb{R} \times \mathbb{R}^d \rightarrow [0, 1]$, $\theta \in \mathbb{R}^d$, $d \in \mathbb{Z}^+$, n is a number for sample size of data set generated randomly from f_0 and $f_0(x; \theta)$ is differentiable with respect to (w.r.t) parameters θ. For convenience, MLE can be also expressed as $\sum_{i=1}^{n} \log[f_0(x_i; \theta)]$ [31].

M-estimation is a generalization of MLE proposed in [2, 3, 5]. An estimating function from M-estimation can be defined by following form for a PDF

$$\rho_{\Lambda}(f_0) = \sum_{i=1}^{n} \Lambda[f_0(x_i; \theta)].$$

(2)

Optimization (maximization or minus minimization) of ρ_{Λ} over parameters θ produces M-estimators $\hat{\theta}$. If Λ is substituted by log, then ρ_{Λ} becomes the ordinary MLE [2, 3, 5, 10]. When Λ is \log_q, MLE based on \log_q is obtained and it is called as the Maximum q-log-likelihood estimation (MqLE) method [5, 10].

Huber M-estimation leads to set of equations $\sum_{i=1}^{n} \psi(y_i) = 0$, where $\psi(f_0) = \nabla \varphi(f_0)$. As a typical example is the estimation of mean μ and standard deviation σ. For this end, one can choose $\psi(y) = y$ for $|y| \leq u$ and $\text{sign}(y)u$ for $|y| > u$. $y = \frac{u}{\varphi}$ is a score function of normal distribution when $|y| \leq u$, $\text{sign}(y)u$ is a score function of Laplace distribution when $|y| > u$. u is a tuning parameter to have robust estimators [2, 5].

2.2. q-deformed logarithms and connection to Tsallis entropy

The log-likelihood estimation is based on maximization of sum of $\log f(x_i; \theta)$. On the other hand, when we want to focus more on rare events, it can be convenient to generalize the log-likelihood to a special kind of M-estimator, based on generalization of logarithm. The generalized logarithm is defined as

$$\log_q(t) = \frac{t^q - 1}{1 - q},$$

(3)
for \(q > 0 \). For \(q \to 1 \), we recover the ordinary logarithm. The aim of the generalization of MLE method is to focus on the large or small probabilities, because with changing \(q \), the importance of probabilities is changed. The \(q \)-log-likelihood function can be therefore defined as

\[
\rho_{\log_q}(f_0(x; \theta)) = \sum_{i=1}^{n} \log_q f_0(x_i; \theta).
\]

Interestingly, the generalized logarithm is closely related to Tsallis entropy. Tsallis entropy is a non-additive generalization of Shannon entropy \([32, 33, 34, 35, 36, 37]\).

\[
S_q(f_0(x; \theta)) = E[\log_q(1/f_0)] = \frac{1}{1-q} \left(\sum_i [f_0(x_i; \theta)]^q - 1 \right).
\]

One can find the relation between Maximum \(q \)-log-likelihood function and Tsallis entropy, which is

\[
\rho_{\log_q}[f_0(x; \theta)] = S_q[f_0(x; \theta)]^{1-q}/q.
\]

3. Least informative distributions based on generalized logarithms

Generalized entropies and connected \(q \)-deformed algebra have found many applications in physics and related fields. \([32, 33, 34, 35, 36, 37]\).

Our aim is to propose the LIDs based on the Maximum \(q \)-log-likelihood. Let us consider a convex combination \(f_\epsilon \)

\[
f_\epsilon(x; \theta) = (1 - \epsilon)f_0(x; \theta) + \epsilon f_1(x; \theta)
\]

composed of PDFs \(f_0 \) and \(f_1 \), and \(\epsilon \in [0, 1] \), which a contamination rate. \(f_\epsilon \) is a contaminated distribution with contamination \(f_1 \) as outlier(s) and \(f_0 \) is an underlying distribution. It can also considered that it represents the situation when we have non-identically distributed data.

Our aim is to find the optimal parameters \(\theta \) in the function \(f_\epsilon \), for which the function \(\Lambda \) exhibits a minimal change w.r.t the parameter \(\epsilon \) when we contaminate the underlying distribution \(f_0 \) by a small amount of outlier distribution \(f_1 \), i.e., we set \(\epsilon \) in \(f_\epsilon \) as a small value close to zero. The aim is to find \(\hat{\theta} \), for which

\[
\hat{\theta} = \arg \max_{\theta} \psi_A(f_0, f_1),
\]

where

\[
\psi_A(f_0, f_1) = \frac{d \rho_A(f_\epsilon)}{d \epsilon} \bigg|_{\epsilon=0}.
\]

The operator \(\frac{d}{d \epsilon} \bigg|_{\epsilon=0} \) describes the change of estimating function \(\rho_A \) under a small contamination of \(f_0 \) by \(f_1 \). Note that the derivative can be understood a special case of variational calculus \([38]\) w.r.t parameter \(\epsilon \), which can be rewritten as

\[
\psi_A(f_0, f_1) = \frac{d \rho_A(f_\epsilon)}{d \epsilon} \bigg|_{\epsilon=0} = \sum_{i=1}^{n} \frac{\partial \Lambda(f_\epsilon(x_i; \theta))}{\partial f_\epsilon(x_i; \theta)} f_\epsilon(x_i; \theta) \bigg|_{\epsilon=0} = \sum_{i=1}^{n} \frac{\partial \Lambda(f_\epsilon)}{\partial f_\epsilon(x_i; \theta)} f_\epsilon(x_i; \theta) \bigg|_{\epsilon=0} \cdot (f_1(x_i; \theta) - f_0(x_i; \theta)).
\]

Generally, \(\log_q \) substituted to \(\Lambda \) is not the only possibility for generalization of MLE. The function \(\Lambda \) in equation \([2]\) has to be a strictly monotonic function of its argument. This can be easily investigated by the first derivative of \(\Lambda \). Let us focus on \(\Lambda(f_\epsilon) = \log_q(f_\epsilon) \). There are no roots of first derivatives for \(\log_q(f_\epsilon) \). \(\Lambda \) is an one to one mapping, but there is no a zero value coming from \(\Lambda \) except \(\log(1) = 0 \) and \(\log_q(1) = 0 \). The second derivative is \(-q f_\epsilon^{q-1} \). For \(q > 0 \), the second derivative test shows that these functions are concave. Since \(\log_q \) is concave for \(q > 0 \) and also there are no roots for the first derivative, except to \(f_\epsilon = 1 \) which is impossible, they can satisfy to be strictly monotonic functions. As a result, this is an important property to use this function for estimations of parameters in a PDF.
3.1. Estimating functions from f_0 and Least informative distributions in \log_q functions

Let us now focus on LIDs obtained from q-log-likelihood function ρ_{\log_q} defined as

$$\rho_{\log_q}(f_0) = \frac{1}{1-q} \sum_{i=1}^{n} f_0(x_i; \theta)^{-q} - 1,$$ \hspace{1cm} (11)

Now, let us consider a convex combination f_c and plug it into ρ_{\log_q}:

$$\rho_{\log_q}(f_c) = \frac{1}{1-q} \left[\sum_{i=1}^{n} (1 - \epsilon) f_0(x_i; \theta) + \epsilon f_1(x_i; \theta) \right]^{-q} - 1,$$ \hspace{1cm} (12)

after taking derivative w.r.t ϵ and putting $\epsilon = 0$, we get

$$\psi_{\log_q}(f_0, f_1) = \sum_{i=1}^{n} \left[f_1(x_i; \theta) - f_0(x_i; \theta) \right],$$ \hspace{1cm} (13)

where q is a tuning parameter for robust estimation to produce functions that are neighborhood for f_c. The equation (13) is defined to be a LID. It can be rewritten as a similar form to mixed distribution

$$\psi_{\log_q}(f_0, f_1) = \sum_{i=1}^{n} \left[w_1(x_i; \theta) f_1(x_i; \theta) + w_0(x_i; \theta) f_0(x_i; \theta) \right],$$ \hspace{1cm} (14)

where $w_1 = f_0(x_i; \theta)^{-q}$ and $w_0 = -f_0(x_i; \theta)^{-q}$.

As a special case of these generalized functions, LID obtained from MLE (i.e., when $\Lambda = \log$) is

$$\psi_{\log}(f_0, f_1) = \sum_{i=1}^{n} \left[f_1(x_i; \theta) - f_0(x_i; \theta) \right].$$ \hspace{1cm} (15)

LID from equation (15) can also be rewritten as $\sum_{i=1}^{n} \left[\frac{f_1(x_i; \theta)}{f_0(x_i; \theta)} - 1 \right]$. Having f_0 and f_1 together means that data are distributed non identically. It can also be considered that equations (13) and (15) are mixing distributions, i.e., f_c.

One can consider that generalized entropies, generalized logarithms (generalized exponentials) and divergences [34, 35, 36, 37, 38] and references therein can be applied to get new ψ, but these functions and function Λ play same role as a weighted MLE form for estimations of parameters. In this context, we can have functions that can be equal to each other for a value of parameter. For example, $\frac{1}{1-q}(f_0^{-q} - 1)$ and $\frac{1}{1-q}(f_0^{-1} - 1)$ are equal to each other when $q = 1/2$.

4. Information criterions based on estimating functions ρ_{\log} from MLE, ρ_{\log_q} from MqLE, ψ from Huber M-Estimation and $\psi_{\log}, \psi_{\log_q}$ from LID

Information criterion (IC) is a tool for assessing the fitting performance of functions. Different tools are proposed by [40, 41]. After proposing estimating functions from Λ, we will have another problem to test the fitting performance of ρ_{\log} from MLE, ρ_{\log_q} from MqLE, ψ from Huber M-Estimation and $\psi_{\log}, \psi_{\log_q}$ from LID. For this aim, robust information criterion (RIC) formulae are used to determine value of tuning parameter q.

Let us consider the equation (2) including the function log as a special case of Λ. Due to this reason, IC is

$$IC(f_0, c_k) = -2 \rho_{\log}(f_0) + c_k,$$ \hspace{1cm} (16)

IC can have two forms that are AIC and BIC. Performance of AIC depends on penalty term $c_k = 2k$, which is a deficiency of AIC [41] and references therein. As an alternative to AIC, BIC was proposed when $c_k = \log(n)k$. We propose robust version of ICs via replacing ρ_{\log} with ψ_{\log_q}, Robust versions of ICs have been proposed by [42, 43, 44] as a same approach we proposed here. ICs can be considered as an appropriate form for ψ_{\log_q} from LID

$$RIC_q(f_0, f_1, c_k) = -2\psi_{\log_q}(f_0, f_1) + c_k,$$ \hspace{1cm} (17)
where \(k \) is number of estimated parameters. When \(c_k \) is \(2k \) and \(\log(n)k \), ICs are robust Akaike and robust Bayesian ICs (RAIC\(_q\) and RBIC\(_q\)), respectively. RAIC\(_q\) for \(f_0 \) and \(\psi \) from Huber M-Estimation can be rewritten in the similar way. MLE is maximization of \(\rho_{\log}(f_0) \) according to parameters. If this function has a maximum value, then \(-2\rho_{\log}(f_0)\) and \(-2\psi_{\log}\) will have a minimum value. Minimum values of equations \([16, 17]\) mean that fitting performance is accomplished \([40, 41, 42, 43, 44]\).

5. Real data analyzing procedure and artificial data generated from underlying distribution \(f_0 \)

Optimizing \(\psi_{\log} \) defined by \(\Lambda \) according to parameters in PDFs \(f_0 \) and \(f_1 \) produces M-estimators \(\hat{a} \) and \(\hat{b} \) from LID

\[
(\hat{a}, \hat{b}) := \arg \max_{a \text{ and } b} \psi_{\log}(f_0, f_1).
\]

If only \(f_0 \) is chosen for \(\rho_{\log} \), then estimators \(\hat{a} \) and \(\hat{b} \) will be obtained from a PDF. Since \(\psi_{\log} \) and \(\rho_{\log} \) are nonlinear functions according to the parameters in a PDF, an optimization method is essential to use. The hybrid genetic algorithm (HGA) in MATLAB R2016a was used to get the estimates of parameters. Due to working principle of HGA, the prescribed interval for parameters \(a \) and \(b \) is \([0, 50]\).

The possible smallest value of RAIC\(_q\) and the frequency (counted data at divided intervals of domain) are accepted to be a best choice among them while performing our trying for different values of parameter \(q \), \(p_0 \) in \(f_0 \) and \(p_1 \) in \(f_1 \) as shape parameters. Since simultaneous estimations of the shape parameters \(p_0 \) and \(p_1 \) and parameter \(q \) in \(\log _q \) and other parameters, such as \(a \), \(b \), \(\mu \) and \(\sigma \) in PDFs are not easy and also the parameters \(p_0 \), \(p_1 \) and \(q \) are known to be the tuning parameters for robust estimations of parameters in PDFs \([2, 49]\) and references therein, we consult to use the information criterions RAIC\(_q\) and the frequency in order to adjust the values of tuning parameters. For these reasons, the parameters \(p_0 \), \(p_1 \) and \(q \) are taken to be fixed while performing the estimation procedure of the parameters \(a \), \(b \) with fixed \(q \) from distributions on \([0, \infty)\): see the examples in subsections \([5.1\) and \([5.2]\) for estimations of shape \(a \), scale \(b \) parameters and \(\mu \), \(\sigma \) with fixed \(q \), \(p_0 \) and \(p_1 \) from distributions on \((-\infty, \infty)\): see the examples in \([\text{Appendix B}]\) for estimations of location \(\mu \) and scale \(\sigma \) parameters.

Each estimating function is comparable in itself, because they are different functions from each others. However, \(\rho_{\log}(f_0) \) is comparable, because they set same mapping from PDF to \(\log[f_0(x; \Theta)] \). All of these estimating functions are different from each others, because they have not only different analytical form but also different values for \(q \). In this context, it is very difficult to know the best function for fitting, therefore we need to propose functions that are neighborhood to each others, which can help us to perform the best fitting on non identically distributed data as well.

An outlier that leads to have the non identical case is obtained by maximum value \(x \) multiplied by 2, that is \(2\max(\chi) \), for both of two examples. We added one outlier in the left and right side of data set for examples in \([\text{Appendix B.1}]\) and \([\text{Appendix B.2}]\). Thus, we can test efficiency and robustness of estimators obtained by \(\rho_{\log} \) from MLE, \(\psi_{\log} \) from MqLE, \(\psi \) from Huber M-Estimation and \(\psi_{\log} \), \(\psi_{\log} \) from LID.

5.1. Example 1: M-Estimations and MLEs of the parameters \(a \) and \(b \) in PDFs

Observations from temperature of 1951-2017 years \([45]\) are used in analyzing procedure, because there are important changes in temperature on Earth. We are interested in the estimations of parameters \(a \) and \(b \) in PDFs at \([\text{Appendix A}]\). The value of outlier is 6.5973.

The values of RAIC\(_q\) and RBIC\(_q\) for \(\psi_{\log_{\text{weib}}}(f_0 = \text{Gamma}, f_1 = \text{Weibull}) \) and \(\psi_{\log_{\text{weib}}}(f_0 = \text{Gamma}) \) are not comparable, because the mapping region is not same. For this reason, RAIC\(_q\) and RBIC\(_q\) for these estimating functions are not homogeneous to compare in their self. Therefore, we need to take in account the counted data at divided intervals of domain. The estimates from \(\psi_{\log_{\text{weib}}}(f_0 = \text{Gamma}, f_1 = \text{Weibull}) \) show more robustness when they are compared with \(\rho_{\log_{\text{weib}}}(f_0 = \text{Gamma}) \).

Among \(\rho_{\log} \) functions, \(\rho_{\log}(\text{Burr}) \) has the smallest AIC and BIC values and \(\rho_{\log}(\text{Gamma}) \) is second function on fitting performance for non-outlier case. The outlier case of Burr III distribution from \(\rho_{\log} \) has the smallest values of AIC and BIC among information criterions. Since Burr III distribution is heavy tailed, it can generate data that are far from the underlying distribution. Therefore, Gamma distribution was preferred as an underlying distribution. We can also get the efficient fitting when Gamma is underlying and Weibull is contamination distributions.
Table 1. Estimates of parameters a and b from different estimating functions without and with one outlier for temperature data

Estimating Function	\hat{a}	\hat{b}	RAIC$_q$	RBIC$_q$
$\psi_{\log,0.01} (f_0 = \text{Gamma}, f_1 = \text{Weibull})$	2.9699	0.2431	56.6114	61.6110
One Outlier	2.9699	0.2431	56.6114	61.6331
$\rho_{\log,0.05} (f_0 = \text{Gamma})$	3.0624	0.2422	110.9574	115.9570
One Outlier	3.0402	0.2395	115.3203	120.3420

Estimating Function	\hat{a}	\hat{b}	AIC	BIC
$\rho_{\log} (\text{Gamma})$	1.9280	0.5920	188.8185	193.8182
One Outlier	1.7610	0.6822	204.6059	209.6276
$\rho_{\log} (\text{Weibull})$	1.3874	1.2603	193.2213	198.2210
One Outlier	1.2882	1.3097	209.8081	214.8298
$\rho_{\log} (\text{Burr})$	2.4977	0.8109	185.1382	190.1378
One Outlier	2.3918	0.8416	196.7629	201.7847

(a) M-estimators and MLE of parameters in f_0 and LID

(b) M-estimators and MLE of parameters in f_0 and LID when one outlier is added
5.2. Example 2: M-Estimations and MLEs of the parameters a and b in PDFs

One can get data from page https://legacy.bas.ac.uk/met/READER/surface/Grytviken.All.temperature.txt:Grytviken temperature in November at each year from 1905 and 2017. The data in some years are missed. The value of outlier is 13.2.

Estimating Functions	\(a\)	\(b\)	RAIC\(_q\)	RBIC\(_q\)
\(\psi_{\log\gamma,\alpha}(f_0 = \text{Gamma}, f_1 = \text{Weibull})\)	7.5454	0.4389	106.8688	111.9765
One Outlier	7.5234	0.4491	105.4343	110.5630
\(\rho_{\log\gamma,\alpha}(f_0 = \text{Gamma})\)	5.4602	0.5590	173.6961	178.8039
One Outlier	5.7471	0.5201	175.5467	180.6754

The values of RAIC\(_q\) and RBIC\(_q\) for \(\psi_{\log\gamma,\alpha}(f_0 = \text{Gamma}, f_1 = \text{Weibull})\) and \(\rho_{\log\gamma,\alpha}(f_0 = \text{Gamma})\) are not comparable, as implied by example 1. The estimates from \(\rho_{\log\gamma,\alpha}(f_0 = \text{Gamma}, f_1 = \text{Weibull})\) show more robustness when they are compared with \(\rho_{\log\gamma,\alpha}(f_0 = \text{Gamma})\). Among \(\rho_{\log\gamma}(\text{Gamma})\) and \(\rho_{\log\gamma}(\text{Gamma})\) is the highest values of AIC and BIC among information criterions. Since Burr III distribution is heavy tailed and modelling data in example 2 is not good and also it can generate data that are far from the underlying distribution. Therefore, Gamma distribution was preferred as an underlying distribution. We can also get the efficient fitting when Gamma is underlying and Weibull is contamination distributions. As it is seen for both of two examples, the best fitting can be accomplished by such mixed distribution.

For both of examples, the parameter \(q\) is responsible for determining the tails in the left and right sides of PDF together with the overall shape of PDF, which means that we can overcome non-identicality problem in a data. Thus, the robustness and efficiency can be guaranteed. Data have their nature, therefore the modelling of them depends on the properly chosen values for the parameter \(q\) and a function considered for fitting data. In this sense, the information criterions have to be used. When we look at results, RBIC\(_q\) is sensitive, thus it is more informative when it is compared with RAIC\(_q\), because RBIC\(_q\) can detect outlier case especially for example 1. Let us consider about decreasing values of RAIC\(_q\) and RBIC\(_q\) in outlier case at example 2. Then, it is observed that the best fitting has been performed in the outlier case, because the counted data of \(\psi_{\log\gamma}(f_0 = \text{Gamma}, f_1 = \text{Weibull})\) for outlier case in Table 4 support that the best fitting has been done by \(\psi_{\log\gamma}(f_0 = \text{Gamma}, f_1 = \text{Weibull})\) very well for the general part of data set. In the decision procedure about fitting performance, we need to draw PDFs of underlying distributions at Figures 1 and 2 for the estimated values of parameters from \(\rho_{\log\gamma}\), generate artificial data (see the subsection 5.3 for details) and have information criterions as well.

Let us give a comment for Burr III distribution in \(\rho_{\log\gamma}\) from two examples 5.1 and 5.2. Although Burr III in example 5.1 has a good fitting among \(\rho_{\log\gamma}\) functions, i.e. MLE, Burr III in example 5.2 does not have a good fitting among MLEs. As it is seen, the data and \(\rho_{\log\gamma}(f_0)\) have to accommodate each others if we get the more precise estimators for the parameters. In LID and MqLE case, it is possible to drive the function via parameter \(q\) in \(\log\gamma\). Thus, we can make an accommodation between data and function.

5.3. Simulation: Artificial data set generated from distribution \(f_0\) on \(S = [0, \infty)\)

For case of estimating the parameters \(a\) and \(b\) in a PDF at Appendix A, the underlying \(f_0\) is used to generate artificial data from Gamma and Weibull distribution and draw PDFs with the estimated values from \(\rho_{\log\gamma}\), resp. \(\psi_{\log\gamma}\).
Figure 2. M-estimators and MLE of parameters in \(f_0 \) and LID when one outlier is added

The histograms in Figures 1 and 2 are given to illustrate the similarity to histograms of real data. Since we are interested in the estimations of shape and scale parameters, the artificial data must be generated to see the behaviour of shape generally. The number of replication is 100,000. Data set generated from underlying distribution is sorted in each \(n \). After sorting data in each \(n \), an arithmetic mean of 100,000 artificial data is obtained for the sample size \(n = 90 \) of example 1 in the case of estimating the parameters \(a \) and \(b \). After performing simulation, we can have more precise decision about which a PDF with its estimated values of parameters from \(\rho_{\log}(\Gamma) \), \(\rho_{\log}(\text{Weibull}) \) and \(\rho_{\log}(\text{Burr}) \) is appropriate to represent real data very precisely. Each of function in Table 3 has different counted data at bin ranges [0, 0.5, 1.5, 2.5, 20]. \(\rho_{\log}(\Gamma) \), \(\rho_{\log}(\text{Weibull}) \) and \(\rho_{\log}(\text{Burr}) \) tend to fit the data in tail especially in the case of an outlier. However, \(\psi_{\log}(f_0 = \Gamma, f_1 = \text{Weibull}) \) and \(\rho_{\log}(f_0 = \Gamma) \) are resistant to data in tail. Additionally, the numbers 52+7=59 from real data and 54+5=59 of artificial data from \(\psi_{\log}(f_0 = \Gamma, f_1 = \text{Weibull}) \) are same to each others when the counted data at left side are ignored.

Each of function in Table 3 has different counted data at bin ranges [0, 0.5, 1.5, 2.5, 50]. Generating the artificial data is performed for the sample size \(n = 95 \) at 100,000 replications for example 2 in the case of estimating the parameters \(a \) and \(b \). \(\rho_{\log}(\Gamma) \), \(\rho_{\log}(\text{Weibull}) \) and \(\rho_{\log}(\text{Burr}) \) tend to fit the data in tail especially in the case of an outlier. However, \(\psi_{\log}(f_0 = \Gamma, f_1 = \text{Weibull}) \) is resistant to data in left tail and fits the right side of data well (see also Figure 2(a) and (b)). Additionally, it can be observed that the general part of data can be represented by LID case. Especially, it can represent real data in outlier case very well when it is compared with functions \(\rho_{\log}(f_0 = \Gamma) \), \(\rho_{\log}(\Gamma) \), \(\rho_{\log}(\text{Weibull}) \) and \(\rho_{\log}(\text{Burr}) \).
Table 3. The counted data at each bins [0, 0.5, 1.5, 2.5, 20]

	Real data	One Outlier
\(\psi_{\log q}(f_0 = \text{Gamma}, f_1 = \text{Weibull})\)	31 54 5 0 0	31 55 5 0 0
\(\rho_{\log}(\text{Gamma})\)	29 56 5 0 0	31 55 5 0 0
\(\rho_{\log}(\text{Weibull})\)	20 46 18 6 0	20 45 18 8 0
\(\rho_{\log}(\text{Burr})\)	22 43 18 7 0	23 40 19 9 0

Table 4. The counted data at each bins [0, 1, 2, 3, 4, 5, 50]

	Real data	One Outlier
\(\psi_{\log q}(f_0 = \text{Gamma}, f_1 = \text{Weibull})\)	6 11 23 30 16 9 0	6 11 23 30 16 10 0
\(\rho_{\log}(\text{Gamma})\)	0 12 30 29 15 9 0	0 11 29 30 16 10 0
\(\rho_{\log}(\text{Weibull})\)	2 19 30 24 12 8 0	2 19 33 24 11 7 0
\(\rho_{\log}(\text{Burr})\)	3 19 26 21 13 13 0	3 18 26 21 14 14 0

6. Conclusions

Estimating functions from LIDs have been proposed when the data are composed of two PDFs. Since we use convex combination of two functions, the more informative data analyzing procedure can be done. We used \(\Lambda\) to propose new estimating functions \(\psi_{\log q}\) and \(\psi_{\log}\). Although we eliminate \(f_1\) from \(f_\epsilon\), it is interesting that the role of \(f_1\) keeps in LID. Thus, this procedure is also considered as a mixing of two PDFs \(f_0\) and \(f_1\). The contamination rate \(\epsilon\) is not known exactly or getting the estimations of mixing proportions is difficult task. Using \(\psi_{\log q}\) is better than using \(\rho_{\log}\) to estimate parameters efficiently and robustly, because the parameter \(q\) and also LID in \(\log q\) are advantages for us to propose a flexible function. This flexibility produces efficient and robust estimators from the neighborhood of \(f_\epsilon(x; \theta)\) and especially \(f_\epsilon(x; \theta)\) in \(\log q\). \(\text{RIC}_q\) is proposed to assess the fitting performance of estimating functions from \(\log q\). Thus, the value of tuning parameter \(q\) in \(\log q\) can be determined according to minimum values of \(\text{RIC}_q\). Here, generating the artificial data is also another important issue in order to determine the value of tuning parameter \(q\). Real data sets were provided to show the fitting competence of estimating functions. In the illustrating the performance of M-estimation, it is observed that \(\psi_{\log}(f_0, f_1)\) case can have values for \(q\) at a small range when it is compared with that of \(\rho_{\log}(f_0)\). In this sense, \(\psi_{\log}(f_0, f_1)\) can be an advantage to determine the value of \(q\) easily, as it is observed from example 1 for the estimations of the parameters \(a\) and \(b\) and also both of two examples in the estimations of the parameters \(\mu\) and \(\sigma\).

As it is well known, the concavity property of \(\Lambda\) is important to make an one to one mapping from \(f_\epsilon(x; \theta)\) to \(\Lambda\).
Otherwise, A does not give correct result for mapping. One can use the proposed $\psi_{\log_{q}}$ to produce LIDs by choosing arbitrary f_0 and f_1 if parameters in PDFs are same property, such as shape, scale and location. Thus, we have flexible LID that is a convex combination of f_0 and f_1 in A. In future, we will prepare a package for $\psi_{\log_{q}}$ in univariate and multivariate variables at open access R software. The regression case can be done as an application of location model. The robust test statistics based on \log_{q} are our ongoing research [13,14]. We will also study the score functions for these estimating functions and its connection with Fisher metric [12]. Many phenomena (data in signal [16] and image [40] processings, climate change, medical issues, etc.) which are modelled by the parametric models can be analysed by means of this package. Thus, precise and robust estimations of parameters can be done via \log_{q} and LID based on \log_{q}.

7. Acknowledgements

We are indebted to Prof. Dr. James F. Peters from the University of Manitoba, Winnipeg, Canada, for critical reading. We also thank to Foreign Language School of Usâk University for editing language and partial support from Turkish government for M.N.Ç. J. K. was supported by the Austrian Science Fund, grant No. I 3073-N32 and by the Czech Science Foundation, grant No. 17-33812L.

Appendix A. PDFs used to get estimating functions $\rho_{\log_{q}}$ from MLE, $\rho_{\log_{q}}$ from MqLE, ψ from Huber M-Estimation and $\psi_{\log_{q}}$, $\psi_{\log_{q}}$ from LID

Table A.5. Distributions on positive half-plane [47,48] (Weibull, Gamma and Burr type III) and on whole real axis [49,50] (Exponential power

PDF	θ	Role of Parameters
Weibull	a: Shape, b: Scale	$f_{\text{Weibull}}(x; a, b) = \frac{1}{\Gamma(a)}(\frac{x}{b})^{a-1}e^{-\left(\frac{x}{b}\right)^a}$
Gamma	a: Shape, b: Scale	$f_{\text{Gamma}}(x; a, b) = \frac{1}{\Gamma(a)b^a}x^{a-1}e^{-\frac{x}{b}}$
Burr type III	a, b: Shape	$f_{\text{Burr}}(x; a, b) = abx^{-(a+1)}(1 + x^{-a})(b+1)$

PDF	θ	Role of Parameters		
Exponential power	$p, \sigma, \eta > 0$	$f_{\text{EP}}(x; \mu, \sigma, p, \eta) = \frac{p}{2\exp{\eta/(2p)}}e^{-\left(\frac{	x-\mu	}{\sigma e^{p/2}}\right)^p}$
Generalized t	$p, \sigma, \nu > 0$	$f_{\text{Gt}}(x; \mu, \sigma, p, \nu) = \frac{p}{2\pi^{\nu/2}\Gamma(\nu/2)}(1 + \frac{	x-\mu	}{\sigma^{1/p} \nu^{1/2}})^{-(\nu+1)/p}$

Appendix B. Two Examples for M-estimations and MLEs of location μ and scale σ parameters

Appendix B.1. Example I

A data set is NCI60 cancer cell line panel. A protein data coded as ME:UACC-257 from Lysate Array at a website https://discover.nci.nih.gov/cellminer/ is analysed. The parameters μ and σ are estimated by using different estimating functions to see tendency (location) and spread (scale) of protein in cancer cell. The maximum value as an outlier is 11.642 at positive and -11.642 at negative sides of real axis. Therefore, we keep the symmetry of data. In HGA, our prescribed intervals for μ and σ are $[-50, 50]$ and $[0, 50]$, respectively.

We will give the comments of results and some values of p for illustrative purpose on modelling capability, comparison with Huber M-estimation and MLE. Among tried values of parameters p and q, RIC_q values of them in Table B.6 are given to see the fitting performance of PDFs of which parameters are estimated by $\rho_{\log_{q}}$ from MLE, $\rho_{\log_{q}}$ from MqLE, ψ from Huber M-Estimation and $\psi_{\log_{q}}$, $\psi_{\log_{q}}$ from LID.

10
Let us think about a comparison between LID and \(f_0 \). When \(\psi_{\log}(f_0, f_1) \) are compared with \(\rho_{\log}(f_0) \), it is seen that \(\rho_{\log}(f_0) \) of \(f_0 \) and \(\rho_{\log}(f_1) \) of \(f_1 \) are unimodal distributions, but LID as a combination of the functions \(f_0 \) and \(f_1 \) can be a bimodal distribution due to the fact that it represents the mixed distribution. It is observed that \(\psi_{\log}(f_0, f_1) \) or \(\psi_{\log}(f_0, f_1) \) can be preferred in such a situation, because the positive or negative sides of histograms in Figure B.3 show that there can be \(f_1 \) in data. Note that the bimodality is an example for non identical distribution. LID as a mixing of \(f_0 \) and \(f_1 \) can accomplish to fit data in bimodal case as well.

When we make a comparison between (a) and (b) in Figure B.3, it is observed that the best fitting can be accomplished by \(\psi_{\log}(f_0 = EP(p_0), f_1 = EP(p_1)) \). It should be also noted that the parameter \(p_0 \) in \(f_0 \) and the parameter \(p_1 \) in \(f_1 \) have an important role in getting the efficient M-estimators for the parameters \(\mu \) and \(\sigma \). Since \(f_0 \) and \(f_1 \) are unimodal distributions, \(M(f_0) \) or \(M(f_1) \) is unimodal, because the function \(M \) is an one to one mapping from \(f_0 \) to \(\Lambda \).

The M-estimators from \(\rho_{\log} \) are efficient and robust for estimations of \(\mu \) and \(\sigma \) when they are compared with MLE of \(\mu \) and \(\sigma \) in exponential power (EP) distribution. Huber M-estimation is sensitive for this data, but \(\rho_{\log}(f_0) \) are insensitive when their outlier cases are considered in their self, because the parameters \(q \), \(p_0 \) and \(p_1 \) help us to manage the behaviour of function for efficiency and robustness together. However, the tuning parameter \(u \) in Huber M-estimation is not capable of fitting the shape of data set. The parameter \(u \) is responsible for determining where the normal distribution is ended and the Laplace distribution is started. For the information criterions, \(RBIC_q \) depends on a part \(log(n) \), therefore \(RBIC_q \) can detect whenever there is a change in the sample size of data set.

Estimating Functions	\(\hat{\mu} \)	\(\hat{\sigma} \)	RAIC_q	RBIC_q
\(\psi_{\log_{0.10}}(f_0 = EP(2.26), f_1 = EP(1.17)) \)	0.8146	1.6481	20.1088	26.2840
Two Outliers				
\(\psi_{\log_{0.10}}(f_0 = EP(2), f_1 = EP(1)) \)	0.8152	1.6434	20.0963	26.2961
Two Outliers				
\(\psi_{\log}(f_0 = EP(2.26), f_1 = EP(1.17)) \)	0.7952	1.5401	22.6947	28.8699
Two Outliers				
\(\psi_{\log}(f_0 = EP(2), f_1 = EP(1)) \)	0.7956	1.5358	22.6742	28.8740
Two Outliers				
\(\rho_{\log_{0.6}}(f_0 = EP(2.13)) \)	0.5219	1.6278	470.8822	477.0574
Two Outliers				
Estimating Function	\(\mu \)	\(\hat{\sigma} \)	AIC	BIC
\(\psi(f_0 = EP(2), f_1 = EP(1), u = 1.05):Huber \)	0.7054	1.4840	680.5156	686.6908
Two Outliers				
\(\rho_{\log}(f_0 = G(2.78, v = 0.85)) \)	0.5661	2.2502	688.5012	694.6764
Two Outliers				
\(\rho_{\log}(f_0 = EP(2.36)) \)	0.4835	2.0091	670.6678	676.8429
Two Outliers				
\(\rho_{\log}(f_0 = EP(2)):Normal \)	0.4892	4.7836	140.7803	146.9555
Two Outliers				
\(\rho_{\log}(f_0 = EP(1)):Laplace \)	0.5219	1.6277	482.6470	488.8467
Two Outliers				

\(\log_q \) is a kind of generalized t as a generalized exponential, that is \(\exp_q(x) = [1 + (1 - q)x^q]^{1/(p-q)} \) that can be regarded as a similar kernel of \(G_t \) in Table A.5 if a kernel \(x^q \) of EP is based on \(\log_q \) [11]. The kernel \(x^q \) of EP in \(\log_q \) has a parameter \(q \) that manages the tail behaviour of function as well with overall shape of EP, which shows that the kernel \(x^q \) of EP in \(\log_q \) can be a good candidate for efficient fitting on data. \(\rho_{\log}(f_0 = EP(2.36)) \) has a good fitting.
Figure B.3. M-estimators and MLE of parameters in f_0 and LIDs for protein data in cancer cell

(a) Non robust M-estimators and MLE of parameters in f_0 and LIDs

(b) Non robust M-estimators and MLE of parameters in f_0 and LIDs when two outliers are added

(c) Robust M-estimators and MLE of parameters in f_0 and LIDs

(d) Robust M-estimators and MLE of parameters in f_0 and LIDs when two outliers are added
when it is compared with other ρ_{\log} functions, because AIC and BIC of $\rho_{\log}(f_0 = EP(2.36))$ are the smallest values among AIC and BIC of other ρ_{\log} functions. From here, it is observed that the nature of data is appropriate to use a function that has flat peakedness property. In other words, the data are member of a function, i.e., population, having this property. The flat peakedness can occur due to non-identicality of data as well. In this context, it is observed that LID having parameter $p_0 = 2.26$ that can model peakedness of data can be preferable. When we consider about fitting performance of $\psi_{\log-
u,w}(f_0 = EP(2.26), f_1 = EP(1.17))$ and $\psi_{\log-
u,w}(f_0 = EP(2), f_1 = EP(1))$, the first one has small AIC and BIC values when it is compared with that of second one for $q = .01$ at a same base for comparison.

For all of four examples, all of Tables show that the estimates of parameters, the values of $RAIC_q$ and $RBIC_q$ that do not go to big values for cases as the values of AIC and BIC. $RAIC_q$ and $RBIC_q$ from $\psi_{\log}(f_0, f_1)$ do not change much when they are compared with that of $\rho_{\log}(f_0)$. MLEs of parameters are not efficient and robust, however M-estimators from f_0 and LIDs in \log_q can be efficient and robust, because we can have neighborhood of PDFs via tuning parameter q and the parameters p_0 and p_1 in a PDF. Generally, the parameter q in LID case can be near to zero for robustness and efficient fitting. However, $\rho_{\log}(f_0)$ case can take values at a large interval for robustness when it is compared with that of $\psi_{\log}(f_0, f_1)$ for a such kind of data set in examples in Appendix B.1 and Appendix B.2.

$\psi_{\log}(f_0, f_1)$ is a different function from $A(f_0)$ to fit data set. Since we have a mixed function or the convex combination of f_0 and f_1, i.e, LID, its behaviour on fitting data is not same with $A(f_0)$, which shows why some results in outlier case from $\psi_{\log}(f_0, f_1)$ have different values. Here, it is taken in account that the data and the function have to accommodate each others well, because we need to get more information from data set. In another side, $\psi_{\log}(f_0, f_1)$ can be beneficial when we have f_1, that is, the data are distributed non-identically. The nonidentical case can also produce a bimodal distributed data, because equation (13) can be regarded as a mixed distribution. When we look at general results of examples in Appendix B.1 and Appendix B.2 it is observed that efficiency and robustness can work together while performing the estimation procedure.

For case of μ and σ, generating artificial data is not required, because EP distribution with estimated values of μ and σ and also $p_0 = 2.26$ from $\phi_{\log}(f_0 = EP(2.26), f_1 = EP(1.17))$ can represent histograms of real data at Figure B.3(c) and (d) well when it is compared with other PDFs drawn by the estimated values of parameters μ and σ from ρ_{\log} and ψ in (a)-(d) in Figure B.3. Using one symmetric distribution to generate data should not be preferable, because there can be an unknown contamination rate ϵ from f_1. For this reason, the bimodality cannot be constructed by means of two mixing distributions when the contamination rate cannot be known exactly. Note that the artificial data generation from underlying distribution having shape and scale parameters, such as Gamma, Weibull and Burr is easier than the location and scale models when we want to make a cross check between the artificial data and the real data. In location-scale case, we can need to determine the bimodality from the contamination rate. When this discussion has been taken care, it is not possible to make a comparison between artificial data generated from symmetric distribution and real data of phenomena for finite sampling n. Therefore, we omit to give the artificial data for two examples in Appendix B. However, we examine the bin ranges at $[-6, -4, -2, -0.5, 0.5, 2, 4, 6]$. For such bin ranges, the numbers of observations at bins are [23, 40, 40, 34, 3, 0]. According to these numbers, the numbers of observations at tail of negative and positive parts of real line are 45 and 37. From here, it is observed that LIDs and Huber M-estimation are capable of overcoming the effect of tail of negative part of real line. The numbers of negative and positive observations are 62 and 100, respectively. Since the number of positive observations is 100, it is observed that the underlying distribution can be on positive axis. The estimating functions of LID and Huber M-estimation tend to represent the underlying distribution, as it is observed from the estimates of parameters μ and σ from these functions (see Table B.6). The importance of flatness which can occur due to f_1 in data has been observed by $\rho(f_0 = EP(2.36))$, because the smallest BIC value is given by $\rho_{\log}(f_0 = EP(2.36))$. However, in the two outliers case, the BIC is drastically inflated and BIC value of $\rho_{\log}(f_0 = EP(2.36))$ is the biggest one (see Table B.6).

Appendix B.2. Example 2
A protein data coded as ME:UACC-62 from Lysate Array at a website https://discover.nci.nih.gov/cellminer/ is analysed to see tendency (location) and spread (scale) of protein in cancer cell. The maximum value as an outlier is 8,968 at positive and $-8,968$ at negative sides of real axis. Therefore, we keep the symmetry of data. In HGA, our prescribed intervals for μ and σ are $[-50, 50]$ and $[0, 50]$, respectively. The results in here are supported by the results in example 1. Therefore, we omit to rewrite the same comments for example 2. It is also noted that it is expectable to get the results which can be similar framework with example 1, because the examples 1 and 2 can have similar nature in their self. However, we will give some important results that are included by the results in example 1.
(a) Non robust M-estimators and MLE of parameters in f_0 and LIDs

(b) Non robust M-estimators and MLE of parameters in f_0 and LIDs when two outliers are added

(c) Robust M-estimators and MLE of parameters in f_0 and LIDs

(d) Robust M-estimators and MLE of parameters in f_0 and LIDs when two outliers are added

Figure B.4. M-estimators and MLE of parameters in f_0 and LIDs for protein data in cancer cell
We examine the bin ranges at $[-6, -4, -2, -0.5, 0.5, 2, 4, 6]$. For such bin ranges, the numbers of observations at bins are [0, 29, 24, 33, 41, 33, 2, 0]. According to these numbers, the numbers of observations at tail of negative and positive parts of real line are 53 and 35. From here, it is observed that LIDs and Huber M-estimation are capable of overcoming the effect of tail of negative part of real line. The numbers of negative and positive observations are 69 and 93, respectively. Since the number of positive observations is 93, it is observed that the underlying distribution can be on positive axis. The estimating functions of LID and Huber M-estimation tend to represent the underlying flatness which can occur due to contamination with outliers. In the two outliers case, the BIC is drastically inflated and BIC value of $\rho_{\log}(f_0 = EP(2.65))$ is the biggest one (see Table B.7).

Note that the non-identically distributed data, namely f_1 in data, will affect the estimations of parameters. Thus, LID is beneficial for overcoming the problem of modelling f_1 as well and the importance of LID can be observed. Here, q and p in LID case (or ν and p in Gt distribution) can interact with each other as shape parameters. Therefore, we can also need LID case for modelling data efficiently via the functions f_0 and f_1 to render the effect of this interaction as possible as we can do. In fact, the results of estimates of μ support that LID and Huber with their functions f_0 and f_1 are better than Gt with only f_0 when the modelling performance for data set which can be considered to come from the underlying distribution f_0 and the contamination with f_1 is taken in account. The estimates of location parameter tend to go to the positive side of data which can be considered to be a member of the f_0.

Especially, the estimation process requires to have LID, because we have data, that is, there is a sampling version of unknown function. Since we handle with unknownness, using functions that can be neighborhood to each others via q and LID will help us to have precise and robust estimated values of parameters, as it is observed from the applications on real data sets. At the end, the position of data where they are and the position of function where it is are extremely important to have efficient M-estimators for parameters θ.

Table B.7. Estimates of parameters μ and σ from different estimating functions without and with two outliers for protein data in cancer cell

Estimating Functions	$\hat{\mu}$	$\hat{\sigma}$	RAIC$_q$	RBIC$_q$
$\psi_{\log}(f_0 = EP(2.14), f_1 = EP(1.09))$	0.5566	1.9963	19.0393	25.2145
Two Outliers	0.5586	1.9863	18.9891	25.1889
$\psi_{\log}(f_0 = EP(2), f_1 = EP(1))$	0.5784	1.8387	20.3508	26.5260
Two Outliers	0.5795	1.8291	20.2997	26.4994
$\psi_{\log}(f_0 = EP(2.14), f_1 = EP(1.09))$	-2.0707	7.0343	133.6396	139.8148
Two Outliers	26.5503	50.0000	141.6468	147.8465
$\psi_{\log}(f_0 = EP(2), f_1 = EP(1))$	-1.9874	7.0704	142.6084	148.7386
Two Outliers	25.2716	50.0000	150.4277	156.6274
$\rho_{\log}(f_0 = EP(2.43))$	0.3452	1.7677	420.3556	426.5308
Two Outliers	0.3453	1.7677	428.5159	434.7156

Estimating Function	$\hat{\mu}$	$\hat{\sigma}$	AIC	BIC
$\psi(f_0 = EP(2), f_1 = EP(1), u = 1.08)$:Huber	0.4722	1.5653	708.2074	714.3826
Two Outliers	0.5160	1.6890	735.6557	741.8554
$\rho_{\log}(f_0 = Gt(2.34, \nu = 1.75))$	0.3079	2.6362	704.3447	710.5199
Two Outliers	0.3048	2.7208	731.4589	737.6586
$\rho_{\log}(f_0 = EP(2.65))$	0.2330	2.1809	684.4131	690.5883
Two Outliers	0.2239	2.5449	743.4512	749.6509
$\rho_{\log}(f_0 = EP(2))$:Normal	0.2756	2.0097	689.8820	696.0572
Two Outliers	0.2723	2.2296	732.4160	738.6157
$\rho_{\log}(f_0 = EP(1))$:Laplace	0.3755	1.6327	711.4166	717.5918
Two Outliers	0.3989	1.7222	737.6460	743.8457
References

[1] X.S. Ni, X. Xiaoing Huo, J. Statist. Plann. Inference 139 (2) (2009) 503.
[2] P.J. Huber, The Annals of Mathematical Statistics 35 (1) (1964) 73.
[3] P.J. Huber, Robust statistics, John Wiley and Sons, New York, USA, 1981.
[4] G. Shevlyakov, S. Morgenthaler, A. Shurygin, J. Statist. Plann. Inference 138 (10) (2008) 2906.
[5] V.P. Godambe, The Annals of Mathematical Statistics 31 (4) 1960 1208.
[6] V.P. Godambe, M. Thompson, Biometrika 71 (1) (1984) 115.
[7] Lee, J. W., Park S.W., Vil’chevskiy N., Shevlyakov G., 35(3) (1998) 755.
[8] L.A. Stefanski, D.D. Boos, The American Statistician 56 (1) (2002) 29.
[9] Y. Hasegawa, A. Masanori, Physica A 388 (17) (2009) 3399.
[10] D. Ferrari, Y. Yang, The Annals of Statistics 38 (2) (2010) 753.
[11] J.F. Bercher, J. Phys. A: Math. Theor. 45 (25) (2012) 255.
[12] M.N. Çankaya, J. Korbel, Physica A 475 (1) (2017) 1.
[13] J. Korbel, Physics Letters A 381 (32) (2017) 2588.
[14] P. Jizba, J. Korbel, V. Zaltoukal, Phys. Rev. E 95 (2017) 022103.
[15] G. Kaniadakis, Eur. Phys. J. B 70 (1) 3 (2009).
[16] H. Matsuzoe, M. Henmi, Hessian Structures and Divergence Functions on Deformed Exponential Families, Chapter 3, Geometric Theory of Information Edited by F. Nielsen, Signals and Communication Technology, Springer, 2014.
[17] A. Cichocki, S. Cruces, S.I. Amari, Entropy 17 (5) (2015) 2988.
[18] A. Cichocki, S.I. Amari, Entropy 12 (6) (2010) 1532.
[19] S. Eguchi, O. Komori, A. Obara, Entropy 16 (7) (2014) 3552.
[20] A. Toma, Entropy 16 (5) (2014) 2686.
[21] T. Kanamori, Entropy 16 (5) (2014) 2611.
[22] T. Kanamori, M. Sugiyama, Entropy 16 (2) (2014) 921.
[23] S. Eguchi, S. Kato, Entropy 12 (2) (2010) 262.
[24] A. Yalancikaya, M.N. Çankaya, O. Altundağ, Y. Taş, GU J Sci 30 (2) (2017) 247.
[25] H. Suyari, IEEE Trans. Inform. Theory 51 (2005) 753.
[26] H. Suyari, Physica A 368 (2006) 63.
[27] L.A. Stefanski, D.D. Boos, The American Statistician 56 (1) (2002) 29.
[28] Y. Hasegawa, A. Masanori, Physica A 388 (17) (2009) 3399.
[29] D. Ferrari, Y. Yang, The Annals of Statistics 38 (2) (2010) 753.
[30] J.F. Bercher, J. Phys. A: Math. Theor. 45 (25) (2012) 255.
[31] M.N. Çankaya, J. Korbel, Physica A 475 (1) (2017) 1.
[32] J. Korbel, Physics Letters A 381 (32) (2017) 2588.
[33] P. Jizba, J. Korbel, V. Zaltoukal, Phys. Rev. E 95 (2017) 022103.
[34] G. Kaniadakis, Eur. Phys. J. B 70 (1) 3 (2009).
[35] H. Matsuzoe, M. Henmi, Hessian Structures and Divergence Functions on Deformed Exponential Families, Chapter 3, Geometric Theory of Information Edited by F. Nielsen, Signals and Communication Technology, Springer, 2014.
[36] A. Cichocki, S. Cruces, S.I. Amari, Entropy 17 (5) (2015) 2988.
[37] A. Cichocki, S.I. Amari, Entropy 12 (6) (2010) 1532.
[38] S. Eguchi, O. Komori, A. Obara, Entropy 16 (7) (2014) 3552.
[39] A. Toma, Entropy 16 (5) (2014) 2686.
[40] T. Kanamori, Entropy 16 (5) (2014) 2611.
[41] T. Kanamori, M. Sugiyama, Entropy 16 (2) (2014) 921.
[42] S. Eguchi, S. Kato, Entropy 12 (2) (2010) 262.
[43] A. Yalancikaya, M.N. Çankaya, O. Altundağ, Y. Taş, GU J Sci 30 (2) (2017) 247.
[44] H. Suyari, IEEE Trans. Inform. Theory 51 (2005) 753.
[45] H. Suyari, Physica A 368 (2006) 63.
[46] L.A. Stefanski, D.D. Boos, The American Statistician 56 (1) (2002) 29.
[47] Y. Hasegawa, A. Masanori, Physica A 388 (17) (2009) 3399.