EQUIVARIANT VECTOR BUNDLES OVER CLASSIFYING SPACES FOR PROPER ACTIONS

DIETER DEGRIJSE AND IAN J. LEARY

Abstract. Let G be an infinite discrete group and let EG be a classifying space for proper actions of G. Every G-equivariant vector bundle over EG gives rise to a compatible collection of representations of the finite subgroups of G. We give the first examples of groups G with a cocompact classifying space for proper actions EG admitting a compatible collection of representations of the finite subgroups of G that does not come from a G-equivariant (virtual) vector bundle over EG. This implies that the Atiyah-Hirzebruch spectral sequence computing the G-equivariant topological K-theory of EG has non-zero differentials. On the other hand, we show that for right angled Coxeter groups this spectral sequence always collapses at the second page and compute the K-theory of the classifying space of a right angled Coxeter group.

1. Introduction

Let G be an infinite discrete group and \mathcal{F} be the family of finite subgroups of G. Recall that a classifying space for proper actions of G, denoted by EG, is a proper G-CW-complex such that the fixed point set EG^H is contractible for every $H \in \mathcal{F}$. The space EG is said to be cocompact if the orbit space $G \backslash EG = BG$ is compact. Many interesting classes of groups G have cocompact models for EG, for example cocompact lattices in Lie groups, mapping class groups of surfaces, Out(F_n), CAT(0)-groups and word-hyperbolic groups. We refer the reader to [7] for more examples and details.

Now assume G is an infinite discrete group admitting a cocompact classifying space for proper actions EG. If

$$\xi : E \to EG$$

is a G-equivariant complex vector bundle over EG (see Definition 2.2) and x is a point of EG, then the fiber $\xi^{-1}(x)$ is a complex representation of the finite isotropy group G_x. The connectivity of the fixed point sets of EG ensures that these representations are compatible (see Definition 2.1) with one another as x and hence G_x varies. Therefore, every G-equivariant complex vector bundle over EG gives rise to a compatible collection of complex representations of the finite subgroups of G, and hence to an element of

$$\lim_{G/H \in O_FG} R(H).$$

Here, $\lim_{G/H \in O_FG} R(H)$ is the limit over the orbit category O_FG of the representation ring functor

$$R(\cdot) : O_FG \to \text{Ab} : G/H \mapsto R(H).$$

Date: April 29, 2015.

The first author was supported by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92).
Denoting the Grothendieck completion of the monoid of isomorphism classes of complex G-vector bundles over EG by $K^0_G(EG)$, one obtains a map
\[\varepsilon_G : K^0_G(EG) \to \lim_{G/H \in \mathcal{O}_G} R(H) \]
that maps a formal difference of (isomorphism classes) vector bundles (i.e. a virtual vector bundle) to a formal difference of (isomorphism classes) of compatible collections of representations of the finite subgroups of G. We say a compatible collection of representations of the finite subgroups of G can be realized as a (virtual) G-equivariant vector bundle over EG if there exists a (virtual) G-equivariant vector bundle over EG that maps to this collection under ε_G. One can also look at the corresponding situation for real (orthogonal) vector bundles and real (orthogonal) representations and obtain the map
\[\varepsilon_G : KO^0_G(EG) \to \lim_{G/H \in \mathcal{O}_G} RO(H). \]

The maps ε_G are equal to the edge homomorphisms of certain Atiyah-Hirzebruch spectral sequences converging to $K^*_G(EG)$ and $KO^*_G(EG)$ (see (1) and (2)). Lück and Oliver proved that (see Proposition 2.4) the map ε_G (real or complex) is rationally surjective, meaning that a high enough multiple of every element in the target of ε_G is contained in the image of ε_G. In the last paragraph of [10, p. 596] Lück and Oliver ask for an example of a group G admitting a cocompact classifying space for proper actions EG such that ε_G is not surjective. In Section 3 of this paper we give the first example of such a group in the complex case. In Section 4 we give the first example of such a group in the real case. In both cases we also explain how to construct an example of a group G admitting a cocompact classifying space for proper actions EG that maps to this collection of representations under ε_G. On the other hand, these examples are more explicit and lower dimensional.

In the last section we show that for a right angled Coxeter group W, every compatible collection of representations of the finite subgroups of W can be realized as a W-equivariant vector bundle over EW, so that the map
\[\varepsilon_W : K^0_W(EW) \to \lim_{W/H \in \mathcal{O}_W} R(H). \]
is always surjective. Moreover, we show that this map is actually an isomorphism and that the higher equivariant K-theory (see Theorem 2.3) vanishes, i.e.
\[K^1_W(EW) = 0. \]

Using a version of the Atiyah-Segal completion theorem for infinite discrete groups proven by Lück and Oliver, we use these results to compute the complex K-theory of BW, the classifying space of W (see Corollary 5.5).

2. G-VECTOR BUNDLES AND ISOPTROPY REPRESENTATIONS

Throughout, let G be a discrete group and let X be a cocompact proper G-CW-complex, i.e. X has finite isotropy and the orbit space $G \backslash X$ has a finite number of cells. The family of finite subgroups of G will be denoted by \mathcal{F}. Although it is not necessary for most of the statements in this section, we will also assume that for every $H \in \mathcal{F}$, the fixed point set X^H is non-empty and connected. For $H \in \mathcal{F}$, we also fix a zero cell $e_H \in X^H$. Recall that the
orbit category $\mathcal{O}_F G$ is the category whose objects are the cosets G/H, for all $H \in F$, and whose morphism are all G-equivariant maps between the objects.

Definition 2.1. Let Γ be either the unitary group $U(n)$ or the real orthogonal group $O(n, \mathbb{R})$. For $H \in F$, let

$$\text{Rep}_\Gamma(H) = \text{Hom}(H, \Gamma)/\text{Inn}(\Gamma).$$

Note that if $\Gamma = U(n)$ ($\Gamma = O(n)$), then $\text{Rep}_\Gamma(H)$ is the set of isomorphism classes of n-dimensional complex (real) representations of H. One can consider $\text{Rep}_\Gamma(-)$ as a functor from $\mathcal{O}_F G$ to Sets. An element of the limit

$$\alpha = ([\alpha_H])_{H \in F} \in \lim_{G/H \in \mathcal{O}_F G} \text{Rep}_\Gamma(G/H)$$

is a called a compatible collection of complex or real n-dimensional representations of the finite subgroups of G. For $H \in F$, let $R(H)$ ($RO(H)$) be the complex (real) representation ring of H, i.e. the Grothendieck completion of the abelian cancellative monoid of isomorphism classes of finite dimensional complex (real) representations of H. Note that $\text{Rep}_{U(n)}(H)$ is naturally a subset of $R(H)$ and $\text{Rep}_{O(n)}(H)$ is naturally a subset of $RO(H)$. One can consider $R(-)$ as a functor from $\mathcal{O}_F G$ to Ab. An element of the inverse limit

$$\alpha = ([\alpha_H])_{H \in F} \in \lim_{G/H \in \mathcal{O}_F G} R(H)$$

is a called a compatible collection of complex virtual representations of the finite subgroups of G. One has

$$\lim_{G/H \in \mathcal{O}_F G} \text{Rep}_{U(n)}(G/H) \subset \lim_{G/H \in \mathcal{O}_F G} R(H)$$

and every element of $\lim_{G/H \in \mathcal{O}_F G} R(H)$ can be written as the difference of elements in $\lim_{G/H \in \mathcal{O}_F G} \text{Rep}_{U(n)}(G/H)$ and $\lim_{G/H \in \mathcal{O}_F G} \text{Rep}_{U(m)}(G/H)$, for n and m large enough. The analogous statements for $O(n, \mathbb{R})$ and RO also hold.

Definition 2.2. A complex (real) G-vector bundle over X is a complex (real) vector bundle $\pi : E \rightarrow X$ such that π is G-equivariant and each $g \in G$ acts on E and X via a bundle isomorphism. An isomorphism of G-vector bundles over X is just an isomorphism of vector bundle that is G-equivariant. The set of isomorphisms classes of complex (real) G-vector bundles over X will be denoted by $\text{Bdl}_G(X)$ ($\text{Brd}_G(X)$). For every $x \in X$, the fiber $\pi^{-1}(x)$ is denoted by E_x. We refer the reader to [10] Section 1] and [14 Section I.9] for elementary properties of G-vector bundles over proper (cocompact) G-CW complexes.

Theorem 2.3. [10 Th. 3.2 and 3.15] There exists a 2-periodic (8-periodic) equivariant cohomology theory $K^p_G(X, A)$ ($KO^p_G(X, A)$) on the category of proper G-CW-pairs such that $K^0_G(X)$ ($KO^0_G(X)$) is the Grothendieck completion of the monoid of isomorphism classes of complex (real) G-vector bundles over X. In particular, for every $H \in F$, $K^0_G(G/H)$ ($KO^0_G(G/H)$) equals $R(H)$ ($RO(H)$).

As usual (see [11 Section 6] and [3 Th. 4.7]), the skeletal filtration of X induces Atiyah-Hirzebruch spectral sequences

$$E_2^{p,q} = H^p_G(X, K^q_G(G/-)) \Longrightarrow K^{p+q}_G(X),$$

and

$$E_2^{p,q} = H^p_G(X, KO^q_G(G/-)) \Longrightarrow KO^{p+q}_G(X),$$

where $H^p_G(X, -)$ denotes Bredon cohomology of X (see [11]).
Proposition 2.4. [11 Prop 5.8] The spectral sequences (1) and (2) above rationally collapse, meaning that the images of all differentials in these spectral sequences consist of torsion elements.

By our assumptions on X, the degree zero Bredon cohomology group $H^0_G(X, R(-))$ (resp. $H^0_G(X, RO(-))$), equals the limit of the functor $R(-)$ (resp. $RO(-)$), over the orbit category $\mathcal{O}_F G$. Consider the edge homomorphisms

$$\varepsilon_G : K^0_G(X) \to H^0_F(X, R(-))$$

and

$$\varepsilon_G : KO^0_G(X) \to H^0_F(X, RO(-))$$

of the spectral sequences (1) and (2). If $[\pi]$ is the isomorphism class of an n-dimensional complex G-vector bundle $\pi : E \to X$, then $\varepsilon_G([\pi])$ equals

$$(E_H)_H \in F \lim_{G/H \in \mathcal{O}_F G} \text{Rep}_{U(n)}(H) \subset H^0_G(X, R(-))$$

where $[E_H]$ denotes the isomorphism class in $R(H)$ of the H-representation E_H. The corresponding statement for real G-vector bundles also holds. Note that it follows from Proposition 2.4 that a suitable multiple of every compatible collection of (virtual) real or complex representations of the finite subgroups of G is contained in the image of the edge homomorphism ε_G.

Recall that the classifying space for proper actions EG is a terminal object in the homotopy category of proper G-CW complexes (e.g. [7 Th. 1.9]). Hence, if X is any proper cocompact G-CW complex such that X^H is non-empty and connected for each $H \in F$, then there exists a G-map $X \to EG$ that is unique up to G-homotopy and induces commutative diagrams

$$
\begin{array}{ccc}
K^0_G(X) & \to & \lim_{G/H \in \mathcal{O}_F G} R(H) \\
\downarrow K^0_G(EG) & & \downarrow \lim_{G/H \in \mathcal{O}_F G} RO(H) \\
KO^0_G(X) & \to & KO^0_G(EG). \\
\end{array}
$$

Hence, if a compatible collection α of representations can be realized as a G-vector bundle over EG, it can also be realized as a G-vector bundle over X.

3. Complex vector bundles

The purpose of this section is to construct a group G with a cocompact classifying space for proper actions EG admitting a compatible collection of complex representations of the finite subgroups of G that cannot be realized as G-equivariant virtual complex vector bundle over EG, i.e. so that the edge homomorphism

$$\varepsilon_G : K^0_G(EG) \to \lim_{G/H \in \mathcal{O}_F G} R(H).$$

is not surjective.

Let $F = C_4 \rtimes C_2$ be the dihedral group of order 8 where σ is generator for C_4 and ε is a generator of C_2. Let $H = \langle \sigma^2 \rangle$ be the center of F, which has order two and denote the
n-skeleton of the universal F/H-space $E(F/H)$ by X^n. We let F act on X and X^n via the projection onto F/H. Consider the complex 1-dimensional representation

$$\lambda : H = (\sigma^2) \to U(1) = S^1 : \sigma^2 \mapsto -1.$$

Lemma 3.1. The isomorphism class $[\lambda]$ is contained in $R(H)^{F/H}$. For $k \in \mathbb{Z}$, the multiple $[\lambda^k]$ is contained in the image of the restriction map $\text{res} : R(F) \to R(H)$ if and only if k is even.

Proof. Since H is the center of F it follows that the conjugation action of F/H on $R(H)$ is trivial, hence $[\lambda] \in R(H)^{F/H} = R(H)$. One easily verifies that the representation

$$\mu : F \to U(2)$$

defined by

$$\mu(\sigma) = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \quad \text{and} \quad \mu(\varepsilon) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

satisfies $\text{res}([\mu]) = [\lambda^2]$. Hence, $[\lambda^k]$ is contained in the image of res for every even $k \in \mathbb{Z}$. Note that, as a free abelian group, $R(H)$ is generated by $[\lambda]$ and the isomorphism class of the 1-dimensional complex trivial representation $[\tau]$. Now suppose k is odd and there exists an element $[\mu] - [\rho] \in R(F)$ such that $\text{res}([\mu] - [\rho]) = [\lambda^k]$. There are integers l, m, n and such that $\text{res}([\mu]) = [\tau^l] + [\lambda^m]$, $\text{res}([\rho]) = [\tau^l] + [\lambda^n]$ and $m - n = k$. By changing the representative of $[\mu]$, we may also assume that

$$\mu : F \to U(l + m)$$

where $\mu(\sigma)$ is a diagonal matrix. Since $\mu(\sigma^2)$ has an m-dimensional eigenspace with eigenvalues -1 and an l-dimensional eigenspace with eigenvalue 1, it follows that $\mu(\sigma)$ has an s-dimensional eigenspace with eigenvalue i and a t-dimensional eigenspace with eigenvalue $-i$ such that $s + t = m$. Moreover, $\mu(\sigma^3)$ has an s-dimensional eigenspace with eigenvalue $-i$ and a t-dimensional eigenspace with eigenvalue i. Since σ and σ^3 are conjugate in F, it follows that $s = t$ proving that m is even. A similar argument shows that n is also even. But this contradicts the fact that $k = m - n$ is odd. Hence, there does not exist an element $[\mu] - [\rho] \in R(F)$ such that $\text{res}([\mu] - [\rho]) = [\lambda^k]$, if k is odd.

The following lemma uses the notation introduced above and will be cited in the next section.

Lemma 3.2. Every complex one-dimensional F-bundle over X^3 is isomorphic to the pullback of a complex one-dimensional F-bundle over $E(F/H)$ along the inclusion $i : X^3 \to E(F/H)$.

Proof. Let S be the family of subgroups of F containing only H and the trivial subgroup. Note that isomorphism classes of complex one-dimensional F-vector bundles are the same as isomorphism classes of F-equivariant principal S^1-bundles, or $(F,S^1 = U(1))$-bundles, in the sense of [10, Section 2] and [12, Section 2,3]. Let $\pi : E \to X^3$ be a complex one-dimensional F-bundle and let $[\alpha_H : H \to U(1) = S^1]$ be the isomorphism class in $\text{Rep}_{S^1}(H)$ of the H-representation induced on the fibers of π. If we set $\alpha_{\{e\}} : \{e\} \to S^1$, then $A = ([\alpha_K])_{K \in S} \in \lim_{S \in S} \text{Rep}_{S^1}(K)$. It follows from [10, Lemma 2.4(b)] for $\Gamma = S^1$, that in order to show that p is the pullback of a complex one-dimensional F-bundle over $E(F/H)$ along the inclusion $i : X^3 \to E(F/H)$, it suffices to show that every F-map from X^3 to $B_S(F,A)$
can be extended to an F-map from $E(F/H)$ to $BS(F,A)$. Here $BS(F,A)$ is a certain F-CW-complex such that $BS(F,A)^S$ is homotopy equivalent to $BS^1 = \mathbb{C}P^\infty$ for all $S \in S$, by [10, Lemma 2.4(a)] for $\Gamma = S^1$. It follows from Bredon’s equivariant obstruction theory (see [1]) that the potential obstruction for doing this lies in the relative Bredon cohomology groups $H^{n+1}_F(E(F/H),X;\pi_n(BS(F,A)^-))$ for $n \geq 3$. Since $\pi_n(\mathbb{C}P^\infty)$ is zero unless $n = 2$, the lemma is proven.

The idea for the following lemma is contained in [10, p 596].

Lemma 3.3. There exists an $n \geq 1$ such that $[\lambda]$ is not contained in the image of the edge homomorphism

$$K^n_F(X^n) \to R(H)^{F/H}.$$

Proof. By [5, Theorem 5.1] for $X = \{e\}$, $\mathcal{F} = \{e, H\}$ and $E\mathcal{F} = E(F/H)$, there are maps

$$\alpha_n : \{R(F)/I^n\}_{n \geq 0} \xrightarrow{\cong} \{K^n_F(X^n)\}_{n \geq 0}$$

that induce an isomorphism of pro-rings. Here I is the kernel of the restriction map $R(F) \to R(H)$. This implies that for sufficiently large $n \geq 1$ there exists a map $\beta_1 : K^n_F(X^n) \to R(F)/I$ making the following diagram commute

$$\begin{array}{ccc} R(F)/I^n & \xrightarrow{\alpha_n} & K^n_F(X^n) \\ & \searrow \downarrow \swarrow \downarrow \swarrow & \\ R(F)/I & \xrightarrow{\alpha_1} & K^n_F(X^1). \end{array}$$

This shows that the image of the restriction map

$$R(F) \to R(H)^{F/H}$$

coincides with the image of the edge homomorphism

$$K^n_F(X^n) \to R(H)^{F/H}.$$

Since $[\lambda]$ does not lie in the image of $R(F) \to R(H)^{F/H}$ by Lemma 3.1, the lemma follows. \qed

Let $n \geq 3$. By [6, Th. A & Th. 8.3] there exists a compact n-dimensional locally CAT(0)-cubical complex T_X^n equipped with a free cellular F/H-action and an F/H-equivariant map $t_X^n : T_X^n \to X^n$ that induces an isomorphism

$$H^*_F(X^n) \cong H^*_F(T_X^n)$$

for any equivariant cohomology theory $H^*_F(\cdot)$ (e.g. see [9, section 1]). (We remark that [6, Th. 8.3] is stated for equivariant homology theories, but the analogous statement holds for equivariant cohomology theories by essentially the same proof.) The action of F on T_X^n in the above is via the projection $F \to F/H$. Now let Y^n be the univeral cover of T_X^n and let Γ_n be the group of self-homeomorphisms of Y^n that lift the action of F/H on T_X^n. Since F/H acts freely on T_X^n, Γ_n acts freely on Y^n. In particular, Γ_n is torsion-free and Y^n is an n-dimensional CAT(0)-cubical complex on which Γ_n acts freely, compactly and cellulary. By construction there is a surjection $\Gamma_n \to F/H$ whose kernel N_n is the torsion-free group...
of deck transformation of the covering \(Y^n \rightarrow T_X^n \). Now define the group \(G_n \) to be the pullback of \(\pi_n : \Gamma_n \rightarrow F/H \) along \(F \rightarrow F/H \). Then \(G_n \) acts on \(Y^n \) via the quotient map \(G_n \rightarrow G_n/H = \Gamma_n \) and fits into the short exact sequence

\[
1 \rightarrow N_n \rightarrow G_n \xrightarrow{p_n} F \rightarrow 1.
\]

Note that the only non-trivial finite subgroup of \(G_n \) is \(H \cong C_2 \) and that since \(N_n \) acts freely on \(Y^n \), the \(F \)-equivariant quotient map \(Y^n \rightarrow N_n \setminus Y^n = T_X^n \) induces an isomorphism (Lemma 3.5])

\[
(4) \quad K^*_F(T_X^n) \cong K^*_G(Y^n).
\]

Applying (3) and (4) to the composition \(Y^n \rightarrow T_X^n \rightarrow X^n \) and the equivariant cohomology theories \(K^*_F(\cdot) \) and \(H^*_F(\cdot, R(\cdot)) \) with \(* = 0 \), we obtain a commutative diagram

\[
\begin{array}{ccc}
K^0_F(X^n) & \xrightarrow{\cong} & K^0_G(Y^n) \\
\downarrow{\varepsilon_F} & & \downarrow{\varepsilon_G} \\
R(H)^{F/H} & \xrightarrow{\cong} & \lim_{G/H \in \mathcal{O}G} R(S).
\end{array}
\]

Since we proved in Lemma 3.3 that, for \(n \) large enough, the isomorphism class of \(\lambda \) does not lie in the image of the edge homomorphism

\[
K^0_F(X^n) \rightarrow R(H)^{F/H}
\]

it follows from the commutative diagram above that the compatible system of representations

\[
(\lambda \circ p_n[S])_{S \in \mathcal{F}} \in \lim_{G_n/S \in \mathcal{O}G_n} R(S) = H^0_F(G_n, R(\cdot)).
\]

does not lie in the image of the edge homomorphism

\[
\varepsilon_G_n : K^0_G(Y^n) \rightarrow \lim_{G_n/S \in \mathcal{O}G_n} R(S).
\]

Recall from [2] that non-empty CAT(0)-cube complexes are contractible and that the fixed point set for a finite group action on a CAT(0)-cube complex is contractible. Since \(G_n \) acts cellularly properly and cocompactly on the CAT(0)-cube complex \(Y_n \), we deduce that \(Y_n \) is a cocompact model for \(E\Gamma_n \). To summarize, we have constructed a group \(G = G_n \) with a cocompact classifying space for proper actions \(EG \) admitting a compatible collection of complex representations of the finite subgroups of \(G \) that cannot be realized as \(G \)-equivariant virtual complex vector bundle over \(EG \).

4. Real vector bundles

One could apply the same technique of the previous section in the real setting to obtain a group \(G \) with cocompact classifying space for proper actions \(EG \) so that the edge homomorphism

\[
\varepsilon_G : KO^0_G(EG) \rightarrow \lim_{G/H \in \mathcal{O}G} R(O(H))
\]

is not surjective. Instead we give an explicit description of a group \(G \) that admits \(\mathbb{R}^2 \) as a cocompact model for \(EG \) and admits a compatible collection of real representations of its finite subgroups that cannot be realized as a real \(G \)-vector bundle over \(\mathbb{R}^2 \).

We start by describing a related group \(\Gamma \) that is a 2-dimensional crystallographic group, or wallpaper group; this group is known as \(p2gg \), but we will describe it explicitly. Endow \(\mathbb{R}^2 \)
Figure 1. A wallpaper pattern for $\Gamma = p2gg$

with the CW-structure coming from the standard tessellation by unit squares with vertices at \mathbb{Z}^2, and let Γ be the group of automorphisms of this CW-structure that preserves the pattern shown in Figure [1]. The stabilizer of a 2-cell is clearly trivial, and so the 2-cells form a single free Γ-orbit. There are two orbits of 1-cells, the vertical and horizontal edges, and again each orbit is free. There are two orbits of 0-cells, and the stabilizer of a 0-cell is cyclic of order two, generated by the rotation of order two fixing the point. Since the stabilizer of each cell acts trivially on that cell, the given CW-structure makes \mathbb{R}^2 into a Γ-CW-complex.

The translation subgroup T of Γ has index four, and consists of the elements $(x, y) \mapsto (x + 2m, y + 2n)$. The orientation-preserving subgroup N of Γ has index two, and consists of T together with the rotations through π about some point of \mathbb{Z}^2, which are of the form $(x, y) \mapsto (2m - x, 2n - y)$. Finally the elements of $\Gamma - N$ are the glide reflections whose axes bisect the sides of the 2-cells: $(x, y) \mapsto (2m + 1 - x, 2n + 1 + y)$ and $(x, y) \mapsto (2m + 1 + x, 2n + 1 - y)$. The quotients $T \backslash \mathbb{R}^2, N \backslash \mathbb{R}^2$ and $\Gamma \backslash \mathbb{R}^2$ are respectively a torus consisting of four squares, an S^2 obtained by identifying the boundaries of two squares, and a copy of $\mathbb{R}P^2$ obtained by identifying the edges of a square in pairs. The fact that $\Gamma - N$ contains no torsion elements is reflected in the fact that Γ/N acts freely on the sphere $N \backslash \mathbb{R}^2$.

Now let F be a copy of C_4 and let $H \cong C_2$ be the index two subgroup of F. The group G is defined as the pullback of the two maps $\Gamma \to \Gamma/N \cong C_2$ and $F \to F/H \cong C_2$. By construction the group G admits \mathbb{R}^2 as a cocompact model for EG, and fits into a short exact sequence

$$ 1 \to N \to G \to F \to 1 $$

such that $p(F) = H$.

Now let

$$ \lambda : H \to O(1, \mathbb{R}) = C_2 $$

be the 1-dimensional real sign representation of H, i.e. λ is the identity map. The isomorphism class $[\lambda]$ is clearly contained in $RO(H)^{F/H}$, since F is abelian.
Lemma 4.1. The isomorphism class \([\lambda^k]\) is contained in the image of the restriction map \(RO(F) \to RO(H)^{F/H}\).

if and only if \(k\) is even.

Proof. Recall that the irreducible real representations of \(C_4\) are up to isomorphism the one-dimensional trivial representation and the one-dimensional sign representation of \(F/H = C_2\) and one 2-dimensional faithful representation in which the elements of order four act as rotations by \(\pm \frac{\pi}{2}\). The restriction of the first two of the representations to \(H\) gives the trivial one-dimensional representation of \(H\), while the restriction of \(H\) of the third is \(\lambda \oplus \lambda\). We therefore conclude that the image of \(RO(F) \to RO(H)^{F/H}\) consists of element of the form \(2n[\lambda] + m[\text{tr}]\), where \(\text{tr}\) is the trivial one-dimensional representation of \(H\) and \(n, m \in \mathbb{Z}\). This shows that \([\lambda^k]\) is contained in the image of the restriction map \(RO(F) \to RO(H)^{F/H}\) if and only if \(k\) is even.

Lemma 4.2. Let \(F\) act on the infinite dimensional sphere \(S^\infty\) by first projecting onto \(F/H = C_2\) and then acting via the antipodal map. View \(S^2\) as the 2-skeleton of \(S^\infty\). Every \(F\)-equivariant orthogonal real bundle over \(S^2\) is isomorphic to the pullback of a \(F\)-equivariant orthogonal real bundle over \(S^\infty\) along the inclusion \(S^2 \to S^\infty\).

Proof. Let \(S\) be the family of subgroups of \(F\) containing \(H\) and the trivial subgroup. Note that \(F\)-equivariant orthogonal real bundles are the same as \(F\)-equivariant \(O(1, \mathbb{R}) = C_2\)-bundles, or \((F,C_2)\)-bundles, in the sense of [10] section 2. Now let \(\xi\) be an \((F,C_2)\)-bundle over \(S^\infty\) with fibers \(A = (\xi_S) \in \lim_{S \leq S} \text{Rep}_{C_2}(S)\). Note that \(B_S(F,A)^\infty \cong \mathbb{R}P^\infty_\infty\) for all \(S \in S\) (see [10] Def. 2.3 and Lemma 2.4). By [10] Lemma 2.4 it suffices to show that every \(F\)-map \(f : S^2 \to B_S(F,A)\) can be extended to an \(F\)-map \(\tilde{f} : S^\infty \to B_S(F,A)\). It follows from Bredon’s equivariant obstruction theory that the obstruction for doing this lies in the relative Bredon cohomology groups \(H^{n+1}_F(S^\infty, S^2; \pi_n(B_S(F,A)^\infty))\) for \(n \geq 2\). Since \(\pi_n(\mathbb{R}P^\infty_\infty)\) is zero unless \(n = 1\), the lemma is proven.

Lemma 4.3. Let \(F\) act on \(S^2\) by first projecting onto \(F/H = C_2\) and then acting via the antipodal map. There does not exist a real \(F\)-vector bundle \(\xi : E \to S^2\) such that the representation of \(H\) on the fibers of \(\xi\) is isomorphic to \(\lambda\).

Proof. Consider the infinite dimensional sphere \(S^\infty\) as a the universal \(C_2\)-space \(EC_2\), where \(C_2\) acts via the antipodal map and let \(F\) act on \(S^\infty\) via first projection onto \(F/H = C_2\) and then acting via \(C_2\). Now assume that there exists a real \(F\)-vector bundle \(\xi : E \to S^2\) such that the representation of \(H\) on the fibers of \(\xi\) is isomorphic to \(\lambda\). By Lemma [12] there also exists a real \(F\)-vector bundle \(\xi : E \to S^\infty\) such that the representation of \(H\) on the fibers of \(\xi\) is isomorphic to \(\lambda\). By [23] Corollary 5.2 (and the comments below) for \(X = \{\ast\}\) and \(E\xi = S^\infty\), there is an isomorphism

\[p : RO(F) \overset{\sim}{\to} \mathbb{KO}_F^0(S^\infty),\]

where the completion is the I-adic completion with respect to the kernel of the restriction map \(RO(F) \to RO(H)\). Moreover, as explained in [23] Example 5.5, the edge homomorphism of the equivariant Atiyah-Hirzebruch spectral sequence provides a map

\[\mathbb{KO}_F^0(S^\infty) \to RO(H)^{C_2}\]

such that composition with \(p\) is the restriction map \(RO(F) \overset{\sim}{\to} RO(H)^{F/H}\). This implies that the fibers of any \(F\)-vector bundle over \(S^\infty\), considered as \(H\)-representations, always lie
in the image of the restriction map $\text{RO}(F) \to \text{RO}(H)$. Since λ does not lie in the image of $\text{RO}(F) \to \text{RO}(H)$ by Lemma 4.1, we arrive at a contradiction and conclude that there does not exist a real F-vector bundle $\xi : E \to S^2$ such that the representation of H on the fibers of ξ is isomorphic to λ.

Now consider the compatible system of real orthogonal representations

$$(\lambda \circ p|_{S\times F})_{S \in F} \in \varprojlim_{G/S \in \text{O}(G)} \text{RO}(S) = H^0_{\text{F}}(G, \text{RO}(-))$$

and assume that there exists a real G-vector bundle $\xi : E \to \mathbb{R}^2$ that realizes it. Since the kernel of p is N it follows from the lemma below and our observations above that $N \setminus \xi : N \setminus E \to N \setminus X$ is an F-vector bundle over S^2, where F acts on S^2 via projection onto $F/H = C_2$, followed by the antipodal map. Moreover, the representation of H on the fibers of $N \setminus \xi$ is by construction exactly λ. This however contradicts Lemma 4.3, so we conclude that there does not exist a real G-vector bundle $\xi : E \to \mathbb{R}^2$ that realizes the compatible system of real orthogonal representations $(\lambda \circ p|_{S\times F})_{S \in F}$.

Lemma 4.4. If $\xi : E \to X$ is a G-vector bundle over X and N is a normal subgroup of G such that $N \cap G_{\xi}$ acts trivially on $\xi^{-1}(x)$ for every $x \in X$, then

$$N \setminus \xi : N \setminus E \to N \setminus X$$

is a G/N-vector bundle over $N \setminus X$.

Proof. Denote the projection $G \to G/N = Q$ by π. Let us first consider the case where ξ is trivial (trivial in the sense of Section 6.1), i.e. assume ξ is a pullback

$$
\begin{array}{ccc}
G \times_H V & \longrightarrow & G/H \\
\uparrow r & \downarrow p & \\
E & \longrightarrow & X \\
\end{array}
$$

of the G-vector bundle $G \times_H V \to G/H$ along the G-map $p : X \to G/H$ where H is some point stabilizer of X. Note that $H \cap N$ acts trivially on V and consider the pullback diagram

$$
\begin{array}{ccc}
Q \times_{\pi(H)} V & \longrightarrow & Q/\pi(H) \\
\uparrow w & \downarrow \uparrow N \setminus p & \\
P & \longrightarrow & N \setminus X \\
\end{array}
$$

of the Q-vector bundle $Q \times_{\pi(H)} V \to Q/\pi(H)$ along the Q-map $N \setminus p : N \setminus X \to Q/\pi(H)$. We define the map

$$
\psi : N \setminus E \to P : (g, v, x) \mapsto (\pi(g), v, x).
$$

It is easy to check that ψ is a well-defined Q-equivariant open map. We claim that ψ is a bijection. To prove surjectivity, let $(\pi(g), v, x) \in Q \times_{\pi(H)} V \times (N \setminus X)$ be an element of P. This means that there exists an $n \in N$ such that $ngH = p(x)$. Hence, $(ng, v, x) \in N \setminus E$ and $\psi((ng, v, x)) = (\pi(g), v, x)$. To prove injectivity, consider (g, v, x) and (g', v', x) in $N \setminus E$ and assume that $\psi((g, v, x)) = \psi((g', v', x'))$, i.e. $(\pi(g), v, x) = (\pi(g'), v', x')$. This implies that there exists an $h \in H$ such that $\pi(h)v = v'$ and $\pi(g) = \pi(g'h)$. Also, there exists an $n \in N$
such that $nx = x'$. Since (g, v, x) and (g', v', x) in $N \setminus E$ we have $gH = p(x)$ and $g'H = p(x')$, which implies that $g'h' = ng$ for some $h' \in H$. Now

$$n(g, v, x) = (ng, v, x') = (g'h', v, x') = (g', h'v, x').$$

We also compute,

$$ng = g'h' = g'hh'^{-1}h' = n'gh'^{-1}h'$$

for some $n' \in N$. Multiplying this last equation by g^{-1} on the left and using normality of N, we conclude that $h'^{-1}h' \in H \cap N$ and hence $h'^{-1}v'v = v$. Since $hv = v'$, this implies that $n(g, v, x) = (g', v', x')$. Hence $(g, v, x) = (g', v', x')$, proving injectivity and the claim. Since $q \circ \psi = N \setminus \xi$ and $w \circ \psi = N \setminus r$, we conclude that the lemma holds in case ξ is trivial.

Now consider the general case. Let $x \in N \setminus X$. Since $\xi : E \to X$ is locally trivial, $x \in X$ has an open G-neighbourhood U such that there is a G-map $p : U \to G/H$ where $H = G_x$ and $\xi|_U$ is (homeomorphic to) the pullback

$$G \times_H V \to G/H$$

of the G-vector bundle $G \times_H V \to G/H$ along the G-map $p : X \to G/H$, where $V = \xi^{-1}(x)$. By the above, the quotient diagram

$$Q \times_{\pi(H)} V \to Q/\pi(H)$$

$$N \setminus \xi|_U \to N \setminus U$$

is a pullback diagram. Since $N \setminus U$ is an open Q-neighbourhood of ξ and $Q_{\xi} = \pi(H)$, it follows that $N \setminus \xi : N \setminus E \to N \setminus X$ is a Q-vector bundle.

We finish this section by noting that a similar approach to the above together with Lemma 3.2 (which is the complex version of Lemma 4.2) and an application of [6, Th. A] can be used to produce a group G admitting a three dimensional cocompact model for EG that has a compatible system of one-dimensional complex representations that cannot be realized as a complex G-vector bundle over EG.

5. Right angled Coxeter groups

Let Γ be a finite graph. We denote the vertex set of Γ by $S = V(\Gamma)$ and the set edges of Γ by $E(\Gamma) \subseteq V(\Gamma) \times V(\Gamma)$. The right angled Coxeter group determined by Γ is the Coxeter group W with presentation

$$W = \langle S \mid s^2 \text{ for all } s \in V(\Gamma) \text{ and } (st)^2 \text{ if } (s, t) \in E(\Gamma) \rangle.$$
Note that W fits into the short exact sequence

$$1 \rightarrow N \rightarrow W \xrightarrow{p} F = \bigoplus_{s \in S} C_2 \rightarrow 1$$

where p takes $s \in S$ to the generator of the C_2-factor corresponding to s. A subset $J \subseteq S$ is called spherical if the subgroup $W_J = \langle J \rangle$ is finite (and hence isomorphic to $\bigoplus_{s \in J} C_2$). The empty subset of J is by definition spherical. We denote the poset of spherical subsets of S ordered by inclusion by \mathcal{S}. If $J \in \mathcal{S}$, then W_J is called a spherical subgroup of W, while a coset wW_J is called spherical coset. We denote the poset of spherical cosets, ordered by inclusion, by $W\mathcal{S}$. Note that W acts on $W\mathcal{S}$ by left multiplication, preserving the ordering. The Davis complex Σ of W is the geometric realization of $W\mathcal{S}$. One easily sees that Σ is a proper cocompact W-CW-complex. Since Σ admits a complete CAT(0)-metric such that W acts by isometries, it follows that Σ is a cocompact model for E_W (see [3, Th. 12.1.1 & Th. 12.3.4]). A consequence of this fact is that every finite subgroup of W is subconjugate to some spherical subgroup of W. This implies that the group N defined above is torsion-free.

Let \mathcal{F} be the family of finite subgroups of W and let Γ be either the orthogonal group $O(n, \mathbb{R})$ or the unitary group $U(n)$. Given an abelian group A, we denote by

$$\mathbf{A} : \mathcal{O}_F W \rightarrow \text{Ab}$$

the trivial functor that takes all objects to A and all morphism to the identity map. One can verify that

$$H^*_G(EF, \mathbf{A}) \cong H^*(BG, A).$$

Lemma 5.1. Every element of

$$\lim_{W/H \in \mathcal{O}_F W} \text{Rep}_\Gamma(H)$$

is of the form $([\lambda \circ p_H])_{H \in \mathcal{F}}$ for some group homomorphism $\lambda : F \rightarrow \Gamma$.

Proof. Every finite subgroup H of W is isomorphic to a finite direct sum of C_2's. Since every element of order 2 in Γ is conjugate in Γ to a diagonal matrix with ± 1 on the diagonal and commuting matrices can be simultaneously diagonalized, it follows that the image of every homomorphism $H \rightarrow \Gamma$ is conjugate to a finite subgroup of Γ consisting of diagonal matrices with diagonal entries equal to ± 1. It follows that every element of $\lim_{W/H \in \mathcal{O}_F W} \text{Rep}_\Gamma(H)$ is of the form $([\alpha_H])_{H \in \mathcal{F}}$ where $\alpha_H : H \rightarrow \Gamma$ is a homomorphism whose image lands in the finite abelian subgroup of Γ consisting of diagonal matrices with diagonal entries equal to ± 1. Since every finite subgroup of W is subconjugate to a special subgroup W_J, the compatibility of the representations tells us that $([\alpha_H])_{H \in \mathcal{F}}$ is completely determined by the homomorphisms $\alpha_{(s)} : \langle s \rangle \rightarrow \Gamma$, for $s \in S$. Now define the homomorphism

$$\lambda : F = \bigoplus_{s \in S} C_2 \rightarrow \Gamma : (\sigma_s)_{s \in S} \mapsto \sum_{s \in S} \alpha_{(s)}(\sigma_s).$$

Then the compatibility of the representations implies that

$$([\lambda \circ p_H])_{H \in \mathcal{F}} = ([\alpha_H])_{H \in \mathcal{F}},$$
proving the following lemma. □

The following theorem applies to both complex and real representations and vector bundles.

Theorem 5.2. Let W be a right angled Coxeter group. Every compatible collection of representations of the finite subgroups of W can be realized as a W-equivariant vector bundle over the Davis complex $\Sigma = E\omega W$.

Proof. Let $A = ([\alpha_H])_{H \in F} \in \lim_{W/H \in O \omega W} \text{Rep}_F(H)$. It follows from [10, Lemma 2.4(b)] that the existence of a (W,A)-bundle over Σ (see [10, p. 591]) follows from the existence a W-map $\Sigma \to B_F(G,A)$. Since $B_F(G,A)^{H}$ is homotopic to $BC_F(\alpha_H) = BF$ for all $H \in F$, it follows that the functor

$$\pi_k(B_F(W,A)^-): O_F(W) \to \text{Ab} : W/H \mapsto \pi_k(B_F(G,A)^H)$$

equals the trivial functor $\pi_k(BF)$ for all $k \geq 0$. From (5) and the contractibility of BW, it follows that the Bredon cohomology groups $H^{k+1}_W(\Sigma, \pi_k(B_F(W,A)^-)) : O_F(W) \to \text{Ab}$ are zero for all $k \geq 0$. Since there certainly exists a W-map from the 0-skeleton of Σ to $B_F(G,A)$, it follows from Bredon’s equivariant obstruction theory that there exists a W-map $\Sigma \to B_F(G,A)$. In particular, we conclude that there exists a (W,A)-bundle over Σ, where $A = ([\alpha_H])_{H \in F} \in \lim_{W/H \in O \omega W} \text{Rep}_F(H)$.

Now consider a compatible collection of representations of the finite subgroups of W. By Lemma 5.1(i) above, this collection is of the form $([\lambda \circ p_H])_{H \in F} \in \lim_{W/H \in O \omega W} \text{Rep}_F(H)$ for some group homomorphism $\lambda : F \to \Gamma$. Since $A = ([p_H])_{H \in F} \in \lim_{W/H \in O \omega W} \text{Rep}_F(H)$, it follows from the above that there exists a (W,A)-bundle $\xi : E \to \Sigma$. If $\Gamma = O(n,\mathbb{R})$ then

$$\xi : E \times F \mathbb{R}^n \to \Sigma$$

is a real W-vector bundle over Σ that realizes $([\lambda \circ p_H])_{H \in F}$, and if $\Gamma = U(n)$ then

$$\xi : E \times F \mathbb{C}^n \to \Sigma$$

is a complex W-vector bundle over Σ that realizes $([\lambda \circ p_H])_{H \in F}$. Here F acts on \mathbb{R}^n or \mathbb{C}^n via the map λ. □

Lemma 5.3. If W is a right angled Coxeter group, then $H^n_W(\Sigma, R(-)) = 0$ for all $n > 0$, and $H^n_W(\Sigma, R(-))$ is free abelian of rank equal to the number of spherical subgroups of W.

Proof. This is proven in much the same way as the corresponding result for homology in [13]. In more detail, one uses the cubical structure on Σ, in which there is one orbit of n-cubes with stabilizer isomorphic to $(C_2)^n$ for each n-tuple of commuting elements of S. Since the stabilizer of a cube of strictly positive dimension acts non-trivially on the cube, this is not a W-CW-structure on Σ. However, its barycentric subdivision is isomorphic to the realization of the poset WS as described in the introduction to this section.

Let Σ^n denote the n-skeleton of Σ with this cubical structure. Firstly, Σ^0 consists of a single free W-orbit of vertices, so $H^0_W(\Sigma^0; R(-))$ is isomorphic to the ordinary cohomology of
a point; since \(W \) acts freely the calculation reduces to an equivariant cohomology calculation for the trivial group action.

Let \(I = [-1, 1] \) be an interval, with \(C_2 \) acting by \(x \mapsto -x \) (i.e., swapping the ends of the interval). Note that \(I \) is isomorphic to the Davis complex for the Coxeter group \(C_2 \). Let \(\partial I \) denote the two end points \(\{-1, 1\} \). A direct computation shows that \(H^m_{C_2}(I, \partial I; R(-)) \) is isomorphic to \(\mathbb{Z} \) for \(m = 0 \) and is zero for \(m > 0 \).

Next consider \(I^n \) with \(C_2^n \) acting as the direct product of \(n \) copies of the above action of \(C_2 \) on \(I \). This is the Davis complex for the Coxeter group \(C_2^n \). Since the representation ring of a direct product of finite groups is naturally identified with the tensor product of the representation rings, the \(C_2^n \)-Bredon cochain complex for the pair \((I^n, \partial I^n) \) with coefficients in \(R(-) \) is naturally isomorphic to the tensor product of \(n \) copies of the \(C_2 \)-Bredon cochain complex for \((I, \partial I)\) with coefficients in \(R(-) \). Since \(H^*_C(I, \partial I; R(-)) \) is free abelian one obtains a K"unneth formula

\[
H^*_C(I^n, \partial I^n, R(-)) \cong \bigotimes_{i=1}^{n} H^*_C(I, \partial I; R(-)).
\]

It follows that for each \(n \), \(H^m_{C_2}(I^n, \partial I^n; R(-)) \) is isomorphic to \(\mathbb{Z} \) for \(m = 0 \) and is zero for \(m > 0 \).

From these computations, it follows easily that \(H^m_{C_2}(\Sigma^n, \Sigma^{n-1}; R(-)) \) is zero for \(m > 0 \) and is isomorphic to a direct sum of copies of \(\mathbb{Z} \) indexed by the \(W \)-orbits of \(n \)-cubes in \(\Sigma \). By induction on \(n \) one sees that \(H^m_{C_2}(\Sigma^n; R(-)) \) is zero for \(m > 0 \) and isomorphic to a direct sum of copies of \(\mathbb{Z} \) indexed by the \(W \)-orbits of cubes of dimension at most \(n \) for \(m = 0 \). The claimed result follows, since the \(W \)-orbits of cubes in \(\Sigma \) are in bijective correspondence with the spherical subgroups of \(W \).

\(\square \)

Theorem 5.4. Let \(W \) be the right angled Coxeter group determined by a finite graph \(\Gamma \). Then \(K^0_W(\mathbb{Z}[V(\Gamma)]) = 0 \) and there is a ring isomorphism

\[
K^0_W(\mathbb{Z}[V(\Gamma)])(E^q)^{\mathbb{Z}[V(\Gamma)]} \cong \mathbb{Z}[V(\Gamma)]/\langle s^2 - 1, st - s - t + 1 \mid s \in V(\Gamma), (s, t) \notin E(\Gamma) \rangle.
\]

Here, \(\mathbb{Z}[V(\Gamma)] \) is the polynomial ring with variables in \(V(\Gamma) \) and integer coefficients. In particular,

\[
K^0_W(\mathbb{Z}[V(\Gamma)]) \cong \mathbb{Z}^d
\]
as an abelian group, where \(d \) is the number of spherical subgroups of \(W \).

Proof. Consider the Atiyah-Hirzebruch spectral sequence

\[
E_2^{p, q} = H^p_W(\mathbb{Z}[V(\Gamma)], K_0^q_W(W/-)) \Rightarrow K^{p+q}_W(\mathbb{Z}[V(\Gamma)])
\]

where \(K^0_W(W/-) = R(-) \) if \(q \) is odd and \(K^0_W(W/-) = 0 \) if \(q \) is even. In the lemma above, we proved that \(H^p_W(\Sigma, R(-)) = 0 \) for \(k > 0 \). It therefore follows that

\[
K^*_W(\mathbb{Z}[V(\Gamma)]) = \begin{cases}
H^0_W(\mathbb{Z}[V(\Gamma)], R(-)) = \lim_{H \in O \cap W} R(H) & \text{if } n = 0 \\
0 & \text{if } n = 1.
\end{cases}
\]

Let \(I \) be the ideal

\[
\langle s^2 - 1, st - s - t + 1 \mid s \in V(\Gamma), (s, t) \notin E(\Gamma) \rangle
\]
in the polynomial ring \(\mathbb{Z}[V(\Gamma)] \). Note that as an abelian group \(\mathbb{Z}[V(\Gamma)]/I \) is free, with basis elements the commuting products \(s_1 \ldots s_k \) for all \(J = \{s_1, \ldots, s_k\} \in S \) \((J = \emptyset \) corresponds to the unit of \(\mathbb{Z}[V(\Gamma)]/I \)). This shows that

\[
\mathbb{Z}[V(\Gamma)]/I \cong \mathbb{Z}^d
\]
as an abelian group, where d is the number of spherical subgroups of W.

We claim there is an isomorphism of rings

$$
\lim_{W/H \in O_{F}W} R(H) \cong \mathbb{Z}[V(\Gamma)]/I.
$$

Since $\lim_{W/H \in O_{F}W} R(H) = H^0_W(\Sigma, R(-)) = H^0_W(\Sigma^1, R(-))$, one can use the explicit description of Σ to see that

$$
\lim_{W/H \in O_{F}W} R(H) \cong \lim_{J \in S} R(W_J).
$$

as rings. Since $W_J = \bigoplus_{s \in J} C_2$ and $R(C_2) = \mathbb{Z}[X]/(X^2 - 1)$, we have that

$$
R(W_J) = \bigotimes_{s \in J} \mathbb{Z}[s]/(s^2 - 1).
$$

as rings. For each $J \subseteq S$, we define the unital ring homomorphism

$$
\rho_J : \mathbb{Z}[V(\Gamma)]/I \to R(W_J)
$$

by setting

$$
\rho_J(s) = \begin{cases}
1 \otimes \ldots \otimes 1 \otimes s \otimes 1 \otimes \ldots \otimes 1 \in R(W_J) & \text{if } s \in J \\
1 \otimes \ldots \otimes 1 \otimes 1 \in R(W_J) & \text{if } s \notin J.
\end{cases}
$$

One easily verifies that the maps ρ_- are compatible with the restriction maps of $R(-)$, i.e. for $J \subset T \in S$, we have a commutative diagram

$$
\begin{array}{ccc}
Z[V(\Gamma)]/I & \xrightarrow{\rho_T} & R(W_T) \\
\downarrow{\rho_J} & & \downarrow{R_J} \\
R(W_J) & & \end{array}
$$

This implies that there is a ring homomorphism

$$
\rho : \mathbb{Z}[V(\Gamma)]/I \to \lim_{J \in S} R(W_J) \subseteq \bigoplus_{J \in S} R(W_J) : f \mapsto (\rho_J(f))_{J \in S}.
$$

Using the explicit basis for $\mathbb{Z}[V(\Gamma)]/I$ given above, one easily verifies that ρ is an isomorphism. \qed

Corollary 5.5. Let W be a right angled Coxeter group determined by a finite graph Γ. Then there is an isomorphism of rings

$$
K^n(BW) \cong \begin{cases}
\mathbb{Z}[[V(\Gamma)]]/(s(s + 2), st \mid s \in V(\Gamma), (s, t) \notin E(\Gamma)) & \text{if } n = 0 \\
0 & \text{if } n = 1.
\end{cases}
$$

Here, $\mathbb{Z}[[V(\Gamma)]]$ is the formal power series ring with variables in $V(\Gamma)$ and integer coefficients.

Proof. The version of the Atiyah-Segal completion theorem that is proven for infinite discrete groups admitting a cocompact model for the classifying space for proper actions in [10, Theorem 4.4.(b)] implies that

$$
K^n(BW) = K^n_W(EW)_J,
$$

where $E = \bigoplus_{s \in \Sigma} C_2$. \qed
where the ideal J is the kernel of the augmentation map $K^n_W(EW) \to \mathbb{Z}$ that maps vector bundles to their dimension. It therefore follows from the theorem above that

$$K^n(BW) = \begin{cases} \left(\mathbb{Z}[V(\Gamma)]/I\right)_J & \text{if } n = 0 \\ 0 & \text{if } n = 1. \end{cases}$$

where the ideal J is the kernel of the ring homomorphism

$$\mathbb{Z}[V(\Gamma)]/I \to \mathbb{Z}$$

that takes $s \in V(\Gamma)$ to $1 \in \mathbb{Z}$ and

$I = (s^2 - 1, st - s - t + 1 \mid s \in V(\Gamma), (s, t) \notin E(\Gamma))$.

Using the map $s \mapsto s + 1$, we obtain an isomorphism

$$\left(\mathbb{Z}[V(\Gamma)]/I\right)_J \cong \left(\mathbb{Z}[V(\Gamma)]/(s(s + 2), st \mid s \in V(\Gamma), (s, t) \notin E(\Gamma)) \right)_{(s, s \in V(\Gamma))}.$$

Since there is an inclusion of ideals

$$(s(s + 2), st \mid s \in V(\Gamma), (s, t) \notin E(\Gamma)) \subseteq (s, s \in V(\Gamma)),$$

and it is well-known that $\mathbb{Z}[V(\Gamma)]_{(s, s \in V(\Gamma))} = \mathbb{Z}[\{V(\Gamma)\}]$, we obtain the isomorphism

$$\left(\mathbb{Z}[V(\Gamma)]/I\right)_J \cong \mathbb{Z}[\{V(\Gamma)\}]/(s(s + 2), st \mid s \in V(\Gamma), (s, t) \notin E(\Gamma)).$$

□

References

[1] Bredon, G.E., Equivariant cohomology theories, Lecture Notes in Mathematics 34, Springer (1967)
[2] Bridson, M.R. and Haefliger, A., Metric spaces of non-positive curvature, Springer Verlag Vol. 319 (1999)
[3] Davis, M., The geometry and topology of Coxeter groups, Princeton University Press, vol. 32 (2008)
[4] Davis, J. F. and Lück, W., Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory, K-theory 15 (1998), 201–252.
[5] Jackowski, S., Families of subgroups and completion, Journal of Pure and Applied Algebra 37 (1985), 167–179
[6] Leary, I.J., A metric Kan-Thurston theorem, Journal of Topology 6(1) (2013), 251–284
[7] Lück, W., Survey on classifying spaces for families of subgroups, Infinite Groups: Geometric, Combinatorial and Dynamical Aspects, Springer (2005), 269–322.
[8] Lück, W., The Burnside ring and equivariant stable cohomotopy for infinite groups, Journal of Pure and Applied Mathematics Quarterly 1(3) (2005), 479–541
[9] Lück, W., Equivariant cohomological Chern characters, International Journal of Algebra and Computation 15 (2005), 1025–1052
[10] Lück, W. and Oliver, B., The completion theorem in K-theory for proper actions of a discrete group, Topology 40 (2001), 585–616
[11] Lück, W. and Oliver, B., Chern characters for the equivariant K-theory of proper G-CW-complexes, Cohomological methods in homotopy theory (2001), 217–24
[12] Lück, W. and Uribe, B., Equivariant principal bundles and their classifying spaces, Algebraic and Geometric Topology 14 (2014), 1925–1995
[13] Sánchez-García, R., Equivariant K-homology for some Coxeter groups, Journal of the London Mathematical Society, 75(3), (2007), 773–790
[14] t. Dieck, T., Transformation groups, Studies in Math. 8, de Gruyter (1987)