Fifth International Conference on
PERSPECTIVES IN HADRONIC PHYSICS
Particle-Nucleus and Nucleus-Nucleus Scattering at Relativistic Energies

22 - 26 May 2006

Electromagnetic form factors
in the relativized Hypercentral CQM

E. SANTOPINTO
Università degli Studi di Genova & INFN
Dipartimento di Fisica
Via Dodecaneso, 33
16146 Genova
ITALY

These are preliminary lecture notes, intended only for distribution to participants
Electromagnetic form factors in the relativized Hypercentral CQM

E. Santopinto

Trieste 22_26 May 2006

M. Ferraris, M. Giannini, M. Pizzo, E. Santopinto, L. Tiator, Phys. Lett. B 364, 231 (1995).
M. Aiello, M. Ferraris, M. Giannini, M. Pizzo, E. Santopinto, Phys. Lett. B 387, 215 (1996).
E. Santopinto, F. Iachello, M. Giannini, Eur. Phys. J. A 1, 307 (1998).
R. Bijker, E. Santopinto, F. Iachello, J. Phys. A 31, 9041 (1998).
M. De Sanctis, M.M. Giannini, L. Repetto, E. Santopinto, Phys. Rev. C 62, 025208 (2000).
De Sanctis, M. Giannini, E. Santopinto, A. Vassallo, Nucl. Phys. A 755, 294 (2005)
Introduction

The hypercentral Constituent Quark Model

The elastic nucleon form factors (relativistic effects)

Conclusion

Work done in collaboration with M. Giannini, A. Vassallo, M. De Santis
New Jlab data on nucleon f.f.

Give rise to problems:

• compatibility with old (Rosenbluth plot) data

• why the ratio G_E/G_M decreases?

• is there any zero in the f.f.?
VMD models (fits)

$$FF = F_{\text{intr}} \times \text{VMD propagators}$$

Mesons F_{intr}

- JIL $\rho \ \omega \ \phi$
 - dipole
 - monopole

- G K $\rho \ \omega \ \phi$
 - QCD-interpolation
Skyrme Model

Holzwarth 1996,2002

ff given by soliton + VMD
dip at $Q^2 3 \text{ GeV}^2$

Boosting of the soliton
dip at $Q^2 10 \text{ GeV}^2$

Skyrmion (nucleon) mass 1648 MeV
The Hypercentral Constituent Quark Model

M. Ferraris et al., Phys. Lett. B364, 231 (1995)
SPACE WAVE FUNCTION

Jacobi coordinates

\[
\rho = \frac{r_1 - r_2}{\sqrt{2}}
\]

\[
\lambda = \frac{r_1 + r_2 - 2r_3}{\sqrt{6}}
\]

Hyperspherical coordinates

\((\rho, \lambda, \Omega_\rho, \Omega_\lambda) \rightarrow (x, \xi, \Omega_\rho, \Omega_\lambda)\)

\[
x = \sqrt{\rho^2 + \lambda^2}
\]

\[
\xi = \arctan \frac{\rho}{\lambda}
\]

(size)

(shape)
Hypercentral Hypothesis

\[V = V(x) \]

- **Factorization**

 \[\psi(x, t, \Omega_\rho, \Omega_\lambda) = \psi_{\nu\gamma}(x) \quad Y_{[\gamma, l_\rho, l_\lambda]} \]

 ("dynamics") ("geometry")

 \(\nu \) hyperradial excitation \quad \(\gamma \) grand angular quantum number

- **3 Body Forces**
Motivations

- QCD fundamental mechanism

- Flux tube model

- Hypercentral approximation

\[\sum_{i<j} V(r_{ij}) \approx V(x) + \ldots \]
Hypercentral Model

\[H_{3q} = 3m + \sum_{i=1}^{3} \frac{p_i^2}{2m} + V(x) + H_{hyp} \]

M. Ferraris, M. M. Giannini, M. Pizzo, S. Santopinto, L. Tiator, Phys. Lett. B364 (1995), 231

- \(V(x) = -\frac{\tau}{x} + \alpha x; \quad H_{hyp} = A \left[\sum_{i<j} V^S(r_i, r_j) \sigma_i \cdot \sigma_j + \text{tensor} \right] \)

- 3 parameters \(\tau, \alpha, A \) ← fixed to the spectrum, \(m = \frac{M}{3} \)

\[\begin{array}{c c c}
N & \Delta \\
1900 & \quad & \quad \\
1700 & \quad & \quad \\
1500 & \quad & \quad \\
1300 & \quad & \quad \\
\end{array} \]

\(\tau = 4.59 \)
\(\alpha = 1.61 \text{ fm}^{-1} \)
\(A \leftarrow (N - \Delta) \)
3-quark lattice potential

G.S. Bali
Phys. Rep. 343, 1 (2001)
Electromagnetic properties

- Photocouplings
 M. Aiello et al., PL B387, 215 (1996)

- Helicity amplitudes (transition f.f.)
 M. Aiello et al., J. of Phys. G24, 753 (1998)

- Elastic form factors of the nucleon
 M. De Sanctis et al., EPJ A1, 187 (1998)

- Structure functions
 to be published

Fixed parameters \rightarrow predictions
$A_{1/2}^P N(1535) S11$
Dynamical model (Mainz group)

--- pion cloud contribution

is included in phenomenological approach

but not in the constituent quark model

- Q^2 dependent fit (superglobal fit)
- hypercentral constituent quark model
please note

- the calculated proton radius is about 0.5 fm (value previously obtained by fitting the helicity amplitudes)
- not good for elastic form factors
- there is lack of strength at low Q^2 (outer region) in the e.m. transitions
- emerging picture: quark core (0.5 fm) plus (meson or sea-quark) cloud
ELASTIC FORM FACTORS

1. - Relativistic corrections to the elastic form factors

2. - Results with the semirelativistic CQM

3. - Introduction of Quark form factors
1.- Relativistic corrections to form factors

- Breit frame
- Lorentz boosts applied to the initial and final state
- Expansion of current matrix elements up to first order in quark momentum
- Results

\[
A_{\text{rel}}(Q^2) = F \ A_{n,\text{rel}}(Q^2_{\text{eff}}) \\
F = \text{kin factor} \\
Q^2_{\text{eff}} = Q^2 \left(\frac{M_N}{E_N}\right)^2
\]
Elastic Form Factors in the hCQM

M. De Sanctis, M.M. Giannini, L. Repetto, E. Santopinto, Phys. Rev. C 62, (2000) 025208.

\[\mu_p \frac{G_E^p(Q^2)}{G_M^p(Q^2)} \]

\[Q^2 \text{(GeV)} \]

calculated

NO QUARK FORM FACTORS

\[T_{NR}, \text{ BOOSTS, CURRENT EXPANSION} \]
2.- Results with the semirelativistic kinetic energy

M. De Sanctis, M. Giannini, E. Santopinto, A. Vassallo,
Nucl. Phys. A 755, 294 (2005)

- Relativistic kinetic energy
- Boosts to initial and final states
- Expansion of current to any order
- Conserved current
\[H_{3q} = \sum_{i=1}^{3} \sqrt{p_i^2 + m^2} + V(x) + H_{hyp} \]

V(x) = - \frac{\tau}{x} + \alpha x

\[V(x) = - \frac{\tau}{x} + \alpha x \]

\[\alpha \text{ and } \tau \text{ not much different from the NR case} \]
Calculated values!
3.- Quark form factors

M. De Sanctis, M. Giannini, E. Santopinto, A. Vassallo,
Nucl. Phys. A.755,294(2005)

• Quark form factors are added into the current

\[ff = F_{\text{intr}} \ast \text{quark form factors} \]

\[\text{semirelativistic hCQM input (calculated)} \]

• Monopole + dipole form for qff

• Fit of:

 – \(G_{E}^{p}/G_{M}^{p} \) ratio (polarization data)
 – \(G_{M}^{p}; G_{E}^{n}; G_{M}^{n} \)
Conclusion

• The hCQM provides a consistent framework for the description of all the 4 nucleon electromagnetic form factors

• Relativity is crucial in explaining the decrease of the ratio G_E/G_M

• Quark form factors are necessary in order to get a good reproduction of the Q^2 behaviour