Implications of QRS Duration in Dogs With Pacing-Induced Heart Failure

Y. WANG1,3, X. GONG2,3, Y. SU2,3, J. CUI2,3, X. SHU1,2,3

1Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China, 2Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China, 3Shanghai Institute of Cardiovascular Diseases, Shanghai, China

Received January 20, 2011
Accepted May 6, 2011
On-line October 12, 2011

Summary
The objective of this study was to find out the implication of QRS duration in dogs with rapid pacing-induced heart failure. Sixteen Beagle dogs were implanted with transvenous cardiac pacemakers and underwent rapid right ventricular pacing for 3 weeks at 260 bpm to induce heart failure. Dogs were divided into two groups according to the QRS duration: 9 with normal QRS duration (<100 ms) and 7 with prolonged QRS duration (≥100 ms). Cardiac systolic function and size was analyzed by real time 3-dimensional echocardiography and left ventricular dyssynchrony was assessed by speckle tracking strain imaging. Congestive heart failure developed 3 weeks after rapid right ventricular pacing. Dogs with prolonged QRS duration showed more extensive radial strain and circumferential strain dyssynchrony than dogs with normal QRS duration. At the end of 4-week recovery, greater improvement of left ventricular ejection fraction and left ventricular end-systolic volume was detected in dogs with normal QRS duration. The findings suggested that left ventricular dyssynchrony, indicated by a prolonged QRS duration, predicted an unsatisfying recovery in dogs with rapid pacing-induced heart failure. QRS duration had the potential to be a prognostic indicator for dogs with heart failure.

Key words
Echocardiography • Dyssynchrony • Prognosis • Remodeling

Introduction
Rapid pacing-induced dilated cardiomyopathy was first described by Armstrong et al. (1986). In their experiment, dogs showed an increase in cardiac size and a fall in cardiac systolic function after 3 weeks of rapid right ventricular pacing (Damiano et al. 1987, Howard et al. 1988, Stambler et al. 2003, Vanoli et al. 2004). The hemodynamic and cardiac structural changes induced by rapid pacing generally recovered in a few weeks after the pacemakers were turned off. As a surrogate for electrical dyssynchrony in human, QRS duration prolonged in nearly half of patients with reduced left ventricular ejection fraction (Wang et al. 2008). Besides, a prolonged QRS duration in heart failure patients indicated a worse prognosis (Shamim et al. 1999, Shenkman et al. 2002). In animals, QRS duration also increased after rapid ventricular pacing (Akar et al. 2004, Nishijima et al. 2005) and correlated with enlarged cardiac size (Nakayama et al. 2001). So far, few data was available on the prognostic value of QRS duration in dogs with left ventricular systolic dysfunction. According to the criteria for dogs, prolonged QRS duration can be defined as ≥100 ms (Birchard and Sherding 1994, Liu et al. 2002). Our study aimed to compare the outcome between dogs with prolonged and normal QRS duration during the recovery from rapid pacing-induced heart failure.

Materials and Methods

Surgical Preparation
The experimental procedures were approved by
the Animal Welfare Committee of Zhongshan Hospital and
complied with Guide for the Care and Use of Laboratory
Animals published by the US National Institutes of Health
(NIH publication No. 85-23, revised 1996).

Sixteen Beagle dogs received rapid right
ventricular (RV) pacing (260 beats/min) continuously for
3 weeks and then were divided into two groups according
to their QRS duration: prolonged QRS duration group
(pQRSd group with QRS duration ≥100 ms) and normal
QRS duration group (nQRSd group with QRS duration
<100 ms).

All dogs were anesthetized with sodium
pentobarbital (30 mg/kg induction; intravenously
1.0 mg/kg/h with intermittent boluses as needed). RV
pacing systems were implanted under fluoroscopic
guidance. Bipolar endocardial pacing leads were positioned
at RV apices through jugular vein and connected to the
pacemakers (model 8084, Medtronic, Inc.).

Electrocardiography and echocardiography

Dogs were studied at intrinsic sinus rhythm in
conscious state during three periods: 1) at baseline before
initiation of rapid pacing; 2) at the end of 3-weeks rapid
pacing; 3) at the end of 4-weeks recovery.

Standard 12-leads electrocardiography (ECG)
was acquired at a paper speed of 50 mm/s and a scale of
10 mm/mV, when the pacemaker was turned off. The
longest QRS duration on surface lead was recorded by
two experienced observers who were blinded to the
echocardiography data.

Transthoracic two-dimensional images were
acquired in a left lateral position with a 1.7 MHz to
3.4 MHz M3S probe (Vivid 7; General Electric Medical
Systems, Horten, Norway). Short-axis images at the level
of papillary muscles with the frame rate of 70-100 frames/s
were acquired for speckle tracking strain analysis.

Real time 3-dimensional echocardiography
(RT3DE) was performed with a 1.0 MHz to 3.0 MHz X-3
probe (IE33; Philips Medical Systems, Bothell, WA,
USA) to derive left ventricular (LV) volumes and
ejection fractions. The frame rate was above 40 frames/s.
The offline analysis was performed with the available
software (QLAB, version 7.0, Philips Medical Systems,
Bothell, WA, USA).

Speckle tracking of short-axis two-dimensional images

All mid-level short-axis images were analyzed by
the 2D strain software (EchoPAC PC, version 7.0, General
Electric Medical Systems, Horten, Norway). The speckles
of interest were followed throughout the entire cardiac
cycle and the parameters of myocardial radial and
circumferential deformation were calculated automatically.
Finally the 6 segmental time-strain curves for radial strain
and circumferential strain were displayed. The mechanical
dysynchrony was assessed by the standard deviation of
the time from the onset of QRS to the peak radial strain
(Trs-6SD) and circumferential strain (Tcs-6SD).

The standard deviations of time to peak radial
strain and circumferential strain were expressed by the
percentage of the cardiac cycle (the beginning of one
heart beat to the beginning of the next) length in order to
adjust for different heart rates (Cui et al. 2010).

Reproducibility assessment

Intraobserver agreement and interobserver
agreement were assessed with Bland-Altman method and
expressed as the mean percentage error (difference/ mean).

Intraobserver variability: Limits of agreement
were as follows: QRS duration (0.83±3.81 ms), Trs-6SD
(0.39±0.98 %) and Tcs-6SD (-0.37±1.53 %). The
variability for each parameter was computed to be 4.2 %,
6.3 % and 6.8 %, respectively.

Interobserver variability was determined by two
independent observers: The limits of agreement and
variability for QRS duration, Trs-6SD and Tcs-6SD were
(1.04±4.16 ms) and 4.8 %, (-0.46±1.11 %) and 7.9 %,
(0.49±1.39 %) and 8.3 %, respectively.

Statistical analysis

Analysis was performed with the SPSS 11.5
software (SPSS, Chicago, IL, USA). Continuous variables
were expressed as mean (S.D.). Data within the groups
were compared by paired 2-tailed Student’s t test. Data
between groups were assessed by the one-way ANOVA or
Mann-Whitney U-test as appropriate. Then covariance
analysis was used to compare variables at the end of
4-week recovery between pQRSd Group and nQRSd
Group with adjustment for the post-pacing values. The
correlation between the QRS duration after rapid pacing
and the change of LV ejection fraction (LVEF) during the
recovery was assessed by Pearson’s correlation coefficient.
Statistical significance was defined as two-sided p<0.05.

Results

Changes in dogs with pacing-induced heart failure

Sixteen Beagle dogs (50 % male, 50 % female;
mean age 1.9 years, range 1.5-2.5 years; mean weight
10.8 kg, range 9.5-12.2 kg) were included in the analysis. Basic characteristics and dyssynchrony parameters were summarized in Table 1. After 3 weeks of rapid pacing, all dogs developed dysphoria, anorexia, tachypnea and anesthetics intolerance. LV end-diastolic volume (LVEDV) and end-systolic volume (LVESV) increased, while LVEF decreased significantly compared with baseline (all \(p<0.05 \)). In addition, a significant increase of QRS duration, Trs-6SD and Tcs-6SD (\(p<0.05 \), respectively) was present. A typical image of strain curves from a dog before and after rapid pacing indicated that posterior and lateral segments were activated later than other segments (Fig. 1). During a recovery period of 4 weeks, LVEF and LVESV improved, while LVEDV remained enlarged (\(p>0.05 \)). A decrease of Trs-6SD and Tcs-6SD could be observed in heart failure dogs during the recovery, but the QRS duration did not change (\(p>0.05 \)).

Table 1. Basic characteristics and dyssynchrony parameters of 16 Beagle dogs.

	Pre	HF	Post
LVEF, %	60.3 ± 2.9	32.1 ± 1.6*	48.1 ± 5.6†
LVEDV, ml	26.2 ± 3.2	35.5 ± 5.1*	34.8 ± 4.5
LVESV, ml	10.4 ± 1.7	24.1 ± 3.6*	18.0 ± 3.1†
HR, bpm	109 ± 14	123 ± 13†	114 ± 15†
QRS, ms	60.9 ± 11.3	84.1 ± 25.0*	82.8 ± 22.5
Trs-6SD, %	2.02 ± 0.83	10.41 ± 5.96*	8.82 ± 4.22†
Tcs-6SD, %	3.70 ± 0.90	8.88 ± 1.63*	7.80 ± 1.09‡

Data are presented as mean ± S.D. Pre: at baseline; HF: at the end of 3-weeks rapid ventricular pacing; Post: at the end of 4-weeks recovery; LVEF = LV ejection fraction; LVEDV = LV end-diastolic volume; LVESV = LV end-systolic volume; HR = heart rate; QRS = duration of QRS complex; Trs-6SD = S.D. of time to peak radial strain; Tcs-6SD = S.D. of time to circumferential strain; *\(p<0.05 \) Pre vs. HF; †\(p<0.05 \) HF vs. Post.

Fig. 1. A: radial strain curves, and B: circumferential strain curves obtained by speckle tracking strain imaging from the animal at baseline (Top) and the same animal with prolonged QRS duration and heart failure (Bottom). White arrow indicated the peak strain of the earliest and latest segments. LV dyssynchrony was present with later activation of posterior and lateral segments after rapid RV pacing (yellow=anterior septum; light blue=anterior segment; green=lateral segment; purple=posterior segment; dark blue=inferior segment; red=septum).
Comparisons between dogs with prolonged and normal QRS duration

Of the 16 dogs with rapid pacing-induced dilated cardiomyopathy, 7 were classified as having a prolonged QRS duration of ≥100 ms (pQRSd group, n=7). The remaining 9 were classified as having a normal QRS duration and heart failure (nQRSd group, n=9). All features were comparable between two groups at baseline including age, gender and weight (Table 2). When heart failure was induced, Trs-6SD and Tcs-6SD were greater in the pQRSd group than those in the nQRSd group (p<0.05, Table 3). LVEF, LVEDV and LVESV were not different between two groups (p>0.05).

After 4 weeks of recovery, the QRS duration in the pQRSd group remained prolonged. LVEF improved in both groups, while the improvement was greater in the nQRSd group (52.5±2.2 vs. 42.6±2.9 %, p<0.05, Table 3). The QRS duration after rapid pacing was negatively correlated with the LVEF and the increase of LVEF (r=0.94, 0.93, respectively; both p<0.001, Fig. 2). It was similar to the LVEF scenario that dogs with normal QRS duration displayed a more prominent improvement of LVESV (16.5±2.0 vs. 20.3±3.3 ml, p<0.05, Table 3). Besides, LVEDV decreased in the nQRSd group only. Though Trs-6SD and Tcs-6SD shortened in both groups, they were still longer in the pQRSd group than in the nQRSd group (12.64±3.36 vs. 5.84±1.45 %, 8.73±0.82 %, both p<0.05, Table 3), which inferred that severe LV dyssynchrony among dogs in the pQRSd group still existed after the 4-weeks recovery course.

Table 2. Baseline characteristics of both groups.

	pQRSd	nQRSd	P Value
Number	7	9	
Age, years	1.9 ± 0.3	2.0 ± 0.4	NS
Gender, male/female	4/3	4/5	NS
Weight	10.7 ± 0.9	10.9 ± 1.0	NS
LVEF, %	59.6 ± 2.6	60.9 ± 3.1	NS
LVEDV, ml	26.5 ± 3.2	25.9 ± 3.3	NS
LVESV, ml	10.7 ± 1.5	10.2 ± 1.9	NS
HR, bpm	108 ± 14	110 ± 16	NS
QRS, ms	59.3 ± 12.4	62.2 ± 10.9	NS
Trs-6SD, %	1.98 ± 1.04	2.06 ± 0.69	NS
Tcs-6SD, %	3.83 ± 0.62	3.60 ± 1.10	NS

Data are presented as mean ± S.D. LVEF = LV ejection fraction; LVEDV = LV end-diastolic volume; LVESV = LV end-systolic volume; HR = heart rate; QRS = duration of QRS complex; Trs-6SD = S.D. of time to peak radial strain; Tcs-6SD = S.D. of time to circumferential strain; NS = not significant.

Table 3. Comparisons between dogs with prolonged and normal QRS duration.

	pQRSd (n=7)	Post	nQRSd (n=9)	Post
LVEF, %	31.9 ± 2.1	42.6 ± 2.9 t	32.4 ± 1.1	52.5 ± 2.2 t
LVEDV, ml	34.2 ± 4.4	34.8 ± 5.0	36.5 ± 5.6	34.7 ± 4.5 t
LVESV, ml	23.3 ± 3.2	20.3 ± 3.3 t	24.7 ± 3.9	16.5 ± 2.0 t
HR, bpm	125 ± 12	117 ± 13 t	122 ± 14	112 ± 17 t
QRS, ms	109.3 ± 8.4	106.4 ± 6.3	64.4 ± 11.3 t	64.4 ± 7.3 t
Trs-6SD, %	15.47 ± 5.63	12.64 ± 3.36 t	6.47 ± 1.74 t	5.84 ± 1.45 t
Tcs-6SD, %	9.97 ± 0.93	8.73 ± 0.50 t	8.03 ± 1.58 t	7.08 ± 0.82 t

Data are presented as mean ± S.D. HF: at the end of 3-weeks rapid ventricular pacing; Post: at the end of 4-weeks treatment; LVEF = LV ejection fraction; LVEDV = LV end-diastolic volume; LVESV = LV end-systolic volume; HR = heart rate; QRS = duration of QRS complex; Trs-6SD = S.D. of time to peak radial strain; Tcs-6SD = S.D. of time to circumferential strain; 'p<0.05 HF vs. Post; *p<0.05 pQRSd group vs. nQRSd group.
Discussion

Rapid ventricular pacing-induced heart failure is a reversible process. To the best of our knowledge, our study was the first report to demonstrate that the improvement of LV systolic function and remodeling was greater in dogs with normal QRS duration than dogs with prolonged QRS duration.

LVEF is the most commonly used parameter to qualify LV systolic function (Serres et al. 2008). LVESV and LVEDV reduction has been recognized as the evidence for reverse remodeling in heart failure patients (St John Sutton et al. 2003, Yu et al. 2005). In order to assess LVEF, LVESV and LVEDV more accurately and objectively, we needed a feasible and reproducible method to qualify LV function and volumes. RT3DE permitted a rapid capture of the complete LV and an automatic detection of the endocardial border in a threedimensional view. Therefore RT3DE, recommended by Jenkins et al. (2004) and Sugeng et al. (2006), was applied in the experiment. We observed that chronic rapid ventricular pacing led to severe LV dysfunction characterized by decreased LVEF and enlarged LVESV and LVEDV. Impaired myocardial contractility was able to recover after the pacemaker switched off.

QRS duration increased significantly after 3 weeks of rapid ventricular pacing. About 40 % of the dogs with pacing-induced heart failure had a prolonged QRS duration of ≥ 100 ms (Birchard and Sherding 1994, Liu et al. 2002) and the others had a normal QRS duration of <100 ms. At 4-weeks follow-up of recovery, LVEF increased and LVESV decreased more significantly in dogs with normal QRS duration than dogs with prolonged QRS duration. LVEDV remained unchanged in dogs with prolonged QRS duration, but decreased significantly in dogs with normal QRS duration.

Previous study suggested that cardiac electrical properties were useful in preclinical evaluation of myocardial injury (Potáčková et al. 2007). QRS duration is an accurate measure of ventricular activation time (Sutherland et al. 2008). But the implication of prolonged QRS duration in animals with systolic dysfunction has hardly been referred to. After 3 weeks of rapid pacing, all parameters were comparable between dogs with prolonged and normal QRS duration except for Trs-6SD and Tcs-6SD derived from speckle tracking analysis. Speckle tracking was a novel technique to assess timing of regional wall strain (Schwarzwald et al. 2009) and qualify LV dyssynchrony (Suffoletto et al. 2006, Delgado et al. 2008). The accuracy of speckle tracking analysis as a Doppler angle independent method (Zemánek et al. 2010) was confirmed by MRI tagging as a reference method (Amundsen et al. 2006). Its superiority to tissue Doppler imaging (TDI) in detecting ventricular dyssynchrony was further proved by Arita et al. (2007). Moreover, LV dyssynchrony always led to inefficient LV contraction with a decreased cardiac output and was associated with a poor outcome (Bleeker et al. 2006). Given these results, the adverse implication of a prolonged QRS duration in dogs with heart failure was attributed to the presence of LV mechanical dyssynchrony.

As electrocardiography is a relatively cost-efficient, non-invasive and bedside test, the prognostic value of QRS duration is tempting (Schober et al. 2007, Santilli et al. 2008, Wess et al. 2010). LV dyssynchrony, indicated by a prolonged QRS duration, predicted an unsatisfying recovery in dogs with rapid pacing-induced heart failure. A negative correlation was found between the QRS duration after rapid pacing and the increase of LVEF during the recovery.

Our study has several limitations. It is uncertain whether the prognostic value of QRS duration could be extended to dogs with other kinds of remediable heart failure (Pirk 2009). Further investigation will be needed to evaluate the association between prolonged QRS duration and high mortality in dogs with idiopathic
dilated cardiomyopathy. In human, QRS duration $\geq 120 \text{ ms}$ has been accepted as one of the established patient selection criteria for cardiac resynchronization therapy (CRT) (Novák et al. 2008). Whether the outcome of dogs with prolonged QRS duration and heart failure can be improved by CRT requires further research.

In summary, myocardial contractility was severely impaired by supraphysiologic heart rates in Beagle dogs. About 40% of the dogs with pacing-induced heart failure demonstrated prolonged QRS duration. Prolonged QRS duration indicated left ventricular mechanical dyssynchrony. Dogs with normal QRS duration showed greater improvement in cardiac function and size than dogs with prolonged QRS duration during the recovery.

Conflict of Interest
There is no conflict of interest.

Acknowledgements
We thank Ruiming Yao and Zhaohua Yang for excellent technical support. The study was supported by the National Natural Science Foundation of China (grant no. 30671999, 30972812) and the Shanghai Excellent Academic Leader Project (grant no.09XD1401000).

Abbreviations
RV, right ventricular; RT3DE, real time 3-dimensional echocardiography; LV, left ventricular; Trs-6SD, standard deviation of the time from the onset of QRS to the peak radial strain; Tcs-6SD, standard deviation of the time from the onset of QRS to the peak circumferential strain; LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; TDI, tissue Doppler imaging; CRT, cardiac resynchronization therapy.

References
AKAR FG, SPRAGG DD, TUNIN RS, KASS DA, TOMASELLI GF: Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. *Circ Res* 95: 717-725, 2004.

AMUNDSEN BH, HELLE-VALLE T, EDVARDSEN T, TORP H, CROSBY J, LYSEGGEN E, STØYLEN A, IHLEN H, LIMA JA, SMISETH OA, SLORDAHL SA: Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. *J Am Coll Cardiol* 47: 789-793, 2006.

ARITA T, SORESCU GP, SCHULER BT, SCHMARKEY LS, MERLINO JD, VINTEN-JOHANSEN J, LEON AR, MARTIN RP, SORESCU D: Speckle-tracking strain echocardiography for detecting cardiac dyssynchrony in a canine model of dyssynchrony and heart failure. *Am J Physiol Heart Circ Physiol* 293: H735-H742, 2007.

ARMSTRONG PW, STOPPS TP, FORD SE, De BOLD AJ: Rapid ventricular pacing in the dog: pathophysiologic studies of heart failure. *Circulation* 74: 1075-1084, 1986.

BLEEKER GB, BAX JJ, STEENDIJK P, SCHALIJ MJ, VAN DER WALL EE: Left ventricular dyssynchrony in patients with heart failure: pathophysiology, diagnosis and treatment. *Nat Clin Pract Cardiovasc Med* 3: 213-219, 2006.

CUI W, GAMBIETTA K, ZIMMERMAN F, FRETER A, SUGENG L, LANG R, ROBERSON DA: Real-time three-dimensional echocardiographic assessment of left ventricular systolic dyssynchrony in healthy children. *J Am Soc Echocardiogr* 23: 1153-1159, 2010.

DAMIANO RJ JR, TRIPP HJ JR, ASANO T, SMALL KW, JONES RH, LOWE JE: Left ventricular dysfunction and dilatation resulting from chronic supraventricular tachycardia. *J Thorac Cardiovasc Surg* 94: 135-143, 1987.

DELGADO V, YPENBURG C, VAN BOMMEL RJ, TOPS LF, MOLLEMA SA, MARSAN NA, BLEEKER GB, SCHALIJ MJ, BAX JJ: Assessment of left ventricular dyssynchrony by speckle tracking strain imaging comparison between longitudinal, circumferential, and radial strain in cardiac resynchronization therapy. *J Am Coll Cardiol* 51: 1944-1952, 2008.

HOWARD RJ, STOPPS TP, MOE GW, GOTLIEB A, ARMSTRONG PW: Recovery from heart failure: structural and functional analysis in a canine model. *Can J Physiol Pharmacol* 66: 1505-1512, 1988.

JENKINS C, BRICKNELL K, HANEKOM L, MARWICK TH: Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. *J Am Coll Cardiol* 44: 878-886, 2004.
LIU L, TOCKMAN B, GIROUARD S, PASTORE J, WALCOTT G, KENKNIGHT B, SPINELLI J: Left ventricular resynchronization therapy in a canine model of left bundle branch block. *Am J Physiol Heart Circ Physiol* **282**: H2238-H2244, 2002.

NAKAYAMA H, NAKAYAMA T, HAMLIN RL: Correlation of cardiac enlargement as assessed by vertebral heart size and echocardiographic and electrocardiographic findings in dogs with evolving cardiomegaly due to rapid ventricular pacing. *J Vet Intern Med* **15**: 217-221, 2001.

NISHIJIMA Y, FELDMAN DS, BONAGURA JD, OZKANLAR Y, JENKINS PJ, LACOMBE VA, ABRAHAM WT, HAMLIN RL, CARNES CA: Canine nonischemic left ventricular dysfunction: a model of chronic human cardiomyopathy. *J Card Fail* **11**: 638-644, 2005.

NOVÁK M, LIPOLDOVÁ J, MELUZÍN J, KREJCÍ J, HUDE P, FEITOVÁ V, DUŠEK L, KAMARÝT P, VÍTOVEC J: Contribution to the V-V interval optimization in patients with cardiac resynchronization therapy. *Physiol Res* **57**: 693-700, 2008.

PIRK J: The role of cardiac surgery in treatment of chronic heart failure. *Physiol Res* **58**: S167-S169, 2009.

POTÁČOVÁ A, ADAMCOVÁ M, ČAJNÁKOVÁ H, HRBATOVÁ L, ŠTĚRBA M, POPELOVÁ O, ŠIMŮNEK T, POŇKA P, GERŠL V: Evaluation of ECG time intervals in a rabbit model of anthracycline-induced cardiomyopathy: a useful tool for assessment of cardioprotective agents. *Physiol Res* **56**: 251-254, 2007.

SANTILLI RA, PEREGO M, CROSARA S, GARDINI F, BELLINO C, MORETTI P, SPADACINI G: Utility of 12-lead electrocardiogram for differentiating paroxysmal supraventricular tachycardias in dogs. *J Vet Intern Med* **22**: 915-923, 2008.

SCHOBER KE, MAERZ I, LUDEWIG E, STERN JA: Diagnostic accuracy of electrocardiography and thoracic radiography in the assessment of left atrial size in cats: comparison with transthoracic 2-dimensional echocardiography. *J Vet Intern Med* **21**: 709-718, 2007.

SCHWARZWALD CC, SCHOBER KE, BERLI AS, BONAGURA JD: Left ventricular radial and circumferential wall motion analysis in horses using strain, strain rate, and displacement by 2D speckle tracking. *J Vet Intern Med* **23**: 890-900, 2009.

SERRES F, CHETBOUL V, TISSIER R, POJOL L, GOUNI V, CARLOS SAMPEDRANO C, POUCHELON JL: Comparison of 3 ultrasound methods for quantifying left ventricular systolic function: correlation with disease severity and prognostic value in dogs with mitral valve disease. *J Vet Intern Med* **22**: 566-577, 2008.

SHAMIM W, FRANCIS DP, YOUSUFUDDIN M, VARNEY S, PIEOPLI MF, ANKER SD, COATS AJ: Intraventricular conduction delay: a prognostic marker in chronic heart failure. *Int J Cardiol* **80**: 171-178, 1999.

SHENKMAN HJ, PAMPATI V, KHANDELWAL AK, MCKINNON J, NORI D, KAATZ S, SANDBERG KR, McCULLOUGH PA: Congestive heart failure and QRS duration: establishing prognosis study. *Chest* **122**: 528-534, 2002.

SMITH FWK, TILLEY LP, MILLER MS: Electrocardiography. In: *Saunders Manual of Small Animal Practice*. BIRCHARD SJ, SHERDING RG (eds), WB Saunders, Philadelphia, 1994, pp 415-416.

ST JOHN SUTTON MG, PLAPPERT T, ABRAHAM WT, SMITH AL, DELURGIO DB, LEON AR, LOH E, KOCOVIC DZ, FISHER WG, ELLESTAD M, MESSENGER J, KRUGER K, HILPISCH KE, HILL MR; MULTICENTER INSYNC RANDOMIZED CLINICAL EVALUATION (MIRACLE) STUDY GROUP: Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. *Circulation* **107**: 1985-1990, 2003.

STAMBLER BS, FENELON G, SHEPARD RK, CLEMO HF, GUIRAUDON CM: Characterization of sustained atrial tachycardia in dogs with rapid pacing-induced heart failure. *J Cardiovasc Electrophysiol* **14**: 499-507, 2003.

SUFOLETTO MS, DOHI K, CANNESSON M, SABA S, GORCSAN J 3RD: Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. *Circulation* **113**: 960-968, 2006.
SUGENG L, MOR-AVI V, WEINERT L, NIEL J, EBNER C, STERINGER-MASCHERBAUER R, SCHMIDT F, GALUSCHKY C, SCHUMMERS G, LANG RM, NESSER HJ: Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. *Circulation* **114**: 654-661, 2006.

SUTHERLAND DR, NI Q, MACLEOD RS, LUX RL, PUNSKE BB: Experimental measures of ventricular activation and synchrony. *Pacing Clin Electrophysiol* **31**: 1560-1570, 2008.

VANOLI E, BACCHINI S, PANIGADA S, PENTIMALLI F, ADAMSON PB: Experimental models of heart failure. *Eur Heart J Suppl* **6** (Suppl F): F7-F15, 2004.

WANG NC, MAGGIONI AP, KONSTAM MA, ZANNAD F, KRASA HB, BURNETT JC JR, GRINFELD L, SWEDBERG K, UDELSON JE, COOK T, TRAVER B, ZIMMER C, ORLANDI C, GHEORGHIADE M; EFFICACY OF VASOPRESSIN ANTAGONISM IN HEART FAILURE OUTCOME STUDY WITH TOLVAPTAN (EVEREST) INVESTIGATORS: Clinical implications of QRS duration in patients hospitalized with worsening heart failure and reduced left ventricular ejection fraction. *JAMA* **299**: 2656-2666, 2008.

WESS G, SCHULZE A, GERAGHTY N, HARTMANN K: Ability of a 5-minute electrocardiography (ECG) for predicting arrhythmias in Doberman Pinschers with cardiomyopathy in comparison with a 24-hour ambulatory ECG. *J Vet Intern Med* **24**: 367-371, 2010.

YU CM, BLEEKER GB, FUNG JW, SCHALIJ MJ, ZHANG Q, VAN DER WALL EE, CHAN YS, KONG SL, BAX JJ: Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy. *Circulation* **112**: 1580-1586, 2005.

ZEMÁNEK D, TOMAŠOV P, PŘICHYSTALOVÁ P, LINHARTOVÁ K, VESELKA J: Evaluation of the right ventricular function in hypertrophic obstructive cardiomyopathy: a strain and tissue Doppler study. *Physiol Res* **59**: 697-702, 2010.