Metastatic Tumors to Jaw Bone and Oral Cavity- A Bird View

K.A. Kamala, S. Sankethguddad, S. G. Sujith, Ehtaisham Rahi
1. Department of Oral Medicine And Radiology, School of Dental Sciences, KIMSDU, Karad, District- Satara, Maharashtra, India.
2. Department of Periodontology, Shivtej Arogya Seva Sanstha’s Yogita Dental College and Hospital, Near Naringi River side, Dapoli Road, Khed, Ratnagiri, Maharashtra, India.
3. Department of Radio-diagnosis, Raichur Institute of Medical Sciences, Raichure.

ABSTRACT

Metastasis is a complex biological course that begins with detachment of tumor cells from the primary tumor, spreading into the distant tissues and/or organs, invading through the lymphovascular structures followed by their survival in the circulation. Metastatic tumors to the oro-facial region are uncommon and account for approximately 1-1.5% of all malignant oral tumors. Metastatic lesions can be found anywhere in the oral cavity, however, the jawbones with the molar area is the most frequently involved site. In the oral soft tissues, the gingival is the most common site, suggesting the possible role of inflammation in the attraction of metastatic deposits. Metastatic carcinomas in oral region can be the first clinical manifestation of an undiagnosed primary systemic tumor. The symptoms of metastatic carcinoma depend on the location of the tumor and can be variable, which may lead to erroneous diagnosis or may create diagnostic dilemma. Therefore, they should be considered in the differential diagnosis of inflammatory and reactive lesions that are common to the oral region. Most of the literature on oral metastases involves case reports; hence this present article is an attempt to provide a detailed review of pathogenesis, epidemiological details including clinical and radiographic presentations, microscopic features and treatment of metastatic tumors to the jaw bones and oral cavity.

Key words: metastatic tumors, jawbones, oral soft tissue.

*Corresponding Author Email: kamala.kamble@rediffmail.com
Received 03 August 2018, Accepted 29 August 2018

Please cite this article as: Kamala KA et al., Metastatic Tumors to Jaw Bone and Oral Cavity- A Bird View. American Journal of PharmTech Research 2018.
INTRODUCTION
Cancer is a disease involving complex multiple sequential irreversible dysregulated processes includes sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis, that results in morbidity and mortality.\textsuperscript{1,2}
Metastasis begins with detachment of tumor cells from the primary tumor, spreading into the distant tissues and/or organs, invading through the lymphatic or blood vessels followed by their survival in the circulation.\textsuperscript{2} Metastatic tumors to the oro- facial region are uncommon and account for approximately 1 - 1.5\% of all malignant oral tumors. Most metastatic tumors to the oro-facial region are seen in patients aged between 40 - 70 years. In younger patients, metastases is common in jaw bones compared to soft tissues.\textsuperscript{3}

Pathophysiology
The metastatic process is complex process and involves several sequential steps. Tumor cells must detach from the primary tumor, spread in the tissues, invade blood vessels, and survive their travel in the circulation. Then, the metastatic cells settle in the microvasculature of the target organ, extravasate through the vessel wall, and proliferate within the recipient tissue.\textsuperscript{4,5} The most basic feature is cell movement away from the primary tumor through the extracellular matrix (ECM). Cell motility involves remodeling of the cytoskeleton, cell-matrix interactions, localized proteolysis, actin-myosin contractions which leads to the loss of cell-to-cell contacts and the gain of cell motility. This is achieved via a process known as epithelial-to-mesenchymal transition (EMT). The EMT program dissociates the cells within epithelial cell sheets into individual cells that exhibit multiple mesenchymal attributes. Extrinsic factors in the tumor microenvironment can promote the motility of cancer cells.\textsuperscript{6} Direct invasion by carcinoma cells of the stromal compartment involves active proteolysis effected principally by matrix metalloproteinases (MMPs), while degrading the basement membrane and other ECM that lie in the path of invading tumor cells, MMP-expressing cells also liberate growth factors that are sequestered there, thereby fostering cancer cell proliferation.\textsuperscript{7} Tumor progression depends on the formation of new blood vessels (angiogenesis) and is a prerequisite for tumor outgrowth.\textsuperscript{8} The development of the tumor vasculature is dependent on the homeostatic balance between a variety of proangiogenic and antiangiogenic (vascular endothelial growth factor (VEGF) and thrombospondin, respectively), inflammatory, and coagulation factors.\textsuperscript{9,10} The critical initial stimulus for angiogenesis is hypoxia in the growing tumor. Hypoxia
leads to the up-regulation of hypoxia-induced transcription factors (HIF)-a and HIF-2a, which are the master regulators of proangiogenic signals, mainly VEGFs. The new blood vessels formed are largely immature leaky and tortuous, allowing tumor cells to intravasate easily into the vasculature.\textsuperscript{7-10}

Pathogenesis of the metastatic process in the jawbones is not clear. In the skeleton, bones with red marrow are the preferred sites for metastatic deposits.\textsuperscript{11} Hematopoietically active marrow represent an attractive site of metastatic involvement because the vascular space are sinusoidal in nature and present a relatively easy barrier for tumor cells to penetrate.\textsuperscript{12} Jawbones have little active marrow, especially in elderly persons; however, remnants of hematopoietic active marrow can be detected in the posterior areas of the mandible, especially in cases of focal osteoporotic bone marrow defects. These hematopoietically active sites may attract metastatic tumor cells.\textsuperscript{3} Expression of CXC chemokine receptor and its ligand are known to be involved in cancer metastasis and is highly expressed in bone marrow.\textsuperscript{13} In addition marrow contains growth factors which may enhance colonization of some metastatic tumors.\textsuperscript{12} Hasimoto et al\textsuperscript{14}, from a study of autopsy cases, suggested that hematopoietic areas in the mandible favor the early deposition of tumor cells.

In the oral soft tissues, the gingiva is the most common site for metastases with strong association to the presence of teeth. The rich capillary network of chronically inflamed gingiva can entrap malignant cells. The proliferating capillaries have a fragmented basement membrane through which tumor cells can more easily penetrate. The inflammatory environment present in the gingiva may provide a permissive niche for metastatic cells, allowing them to perform the essential tasks of angiogenesis, formation of supportive stroma, and immune evasion. The same pathogenesis can be attributed to metastatic deposits in post extraction sites.\textsuperscript{3,15} Soluble cytokines such as IL-1 and TNF-a which are present in the chronically inflamed gingival are known to facilitate metastatic progression by stimulating angiogenesis and accelerating the generation of ECM necessary for tumor stroma and also may attract or induce the tumor associated macrophages.\textsuperscript{16-18}

**Epidemiological Details**

There was almost equal gender distribution in jawbone metastases and a male to female ratio of 2:1 in oral soft tissues. The nature of primary tumor and the site of metastases within the oral cavity differ between the sexes.\textsuperscript{19} For men, the most common primary sites are the lung, kidney, liver, and prostate, and for women the breast, female genital organs, kidney, and colo-rectum.\textsuperscript{1} The breast is the most common primary site for tumors that metastasize to the jawbones, whereas the lung is the most common source for cancers that metastasize to the oral soft tissues (table 1 and
2). A recent literature review showed that the jawbones, particularly the mandible were more frequently affected than the oral soft tissues at a ratio of 2:1.19

Table 1 Percentage of origin of metastasis to oral mucosa and jaw bone in males.3

| Gender | Metastasis to oral mucosa | %  | Metastasis to Jaw bones | %  |
|--------|--------------------------|----|-------------------------|----|
| Male   | Lung                     | 31 | Lung                    | 25 |
|        | Kidney                   | 14 | Kidney                  | 10.8 |
|        | Skin                     | 12 | Liver                   | 8.6 |
|        | Liver                    | 7.5 | Prostate                | 7.5 |
|        | Colorectum               | 5.2 | Bone                    | 7.5 |
|        | Bone                     | 5.2 | Adrenal gland           | 5.3 |
|        | Testis                   | 4.5 | Colorectum              | 4.7 |
|        | Esophagus                | 4.5 | Testis                  | 4.4 |
|        | Stomach                  | 3.7 | Esophagus               | 3.6 |
|        | Rare tumors              | 12.4 | Stomach               | 2.5 |
|        |                          |    | Bladder                 | 2.5 |
|        |                          |    | Rare tumors             | 17.6 |

Table 2. Percentage of origin of metastasis to oral mucosa and jaw bone in females.3

| Gender | Metastasis to oral mucosa | %  | Metastasis to Jaw bones | %  |
|--------|--------------------------|----|-------------------------|----|
| Female | Beast                    | 24 | Beast                   | 36 |
|        | Genital organ            | 14.8 | Genital organ         | 9.5 |
|        | Kidney                   | 12 | Kidney                  | 8.5 |
|        | Lung                     | 9.4 | Colorectum              | 7.1 |
|        | Bone                     | 9.4 | Bone                    | 6.7 |
|        | Skin                     | 6.8 | Adrenal gland           | 5.8 |
|        | Colorectum               | 6.8 | Thyroid                 | 5.4 |
|        | Rare tumors              | 16.8 | Rare tumors           | 20.4 |

In the jawbones, the mandible was more frequently involved than the maxilla, with the molar area being the most frequent site (50%) followed by the premolar area (38%) and the angle-ramus (29%).12,15,20 In the oral soft tissues the attached gingiva is the most commonly affected site (60%) followed by the tongue (18%).20,21 The gingiva is the most common site for metastatic colonization to oral mucosa.13,22 In about 54% cases, the attached gingiva was the most commonly affected in the oral soft tissues site.19

Clinical Presentation

A rapidly progressing swelling accompanied by pain and paraesthesia are the classic symptoms of a metastatic tumor in the jawbones. Symptoms may vary according to location: for example, trismus in lesions located in the condyle and symptoms related to the sinus and exophthalmos in maxillary lesions. Mental nerve neuropathy or the so-called the “numb chin syndrome” is the consequence of loss of function of the terminal sensory division of the mandibular branch of the trigeminal nerve.1,3,4 Any pathological process involving the mental nerve, the mandibular nerve,
and even the mandibular trunk of the fifth nerve may produce this loss of function. The appearance of a mental nerve neuropathy should always raise the possibility of a metastatic disease in the mandible. Similar symptoms can be the result of odontogenic infection, trauma, benign odontogenic tumors, systemic diseases such as amyloidosis, sarcoidosis multiple sclerosis or as neurological manifestation of a non-metastatic malignancy. In most cases, the physical examination reveals a bony swelling with tenderness over the affected area.

In oral soft tissue gingival is the most frequently involved site preceded by tongue. An exophytic, highly vascularized and hemorrhagic, sometimes ulcerated lesion is the most common clinical presentation of metastatic lesions in the oral soft tissues. Early lesions, mainly those located in the gingiva may resemble a hyperplastic or reactive lesion, such as pyogenic granuloma, peripheral giant cell granuloma, fibrous epulis and periodontal abscess. With the progression of the disease, oral metastatic lesions, especially those located in the soft tissues, may cause progressive discomfort, pain, bleeding, super-infection, dysphasia, interference with mastication, and disfigurement.

**Radiographic Features**

An oral radiography survey (periapical and panoramic radiographs), use of technetium-99 m-phosphonate bone sintigraphy, CT scans, and MRIs can be obtained to evaluate the extent of the metastatic process to the jaw bones may be helpful. The most common radiographic presentation is that of a lytic lesion with ill-defined margins and occasionally osteoblastic lesions are observed. Prostate and breast tumors are often associated with radiopaque metastatic lesions. The areas appear as patchy sclerosis due to new bone formation, arising from the stimulation of surrounding normal bone. In contrast, bone metastases from kidney, lung, or breast cancers are more often osteolytic.

Mandible is most commonly affected followed by maxillary sinus, anterior hard palate and mandibular condyle. Sometimes, they may also occur as a solitary radiolucency of the jawbone which may simulate an infected cyst or osteomyelitis. The entire mandible may also have a moth-eaten appearance. The cortical bone of adjacent structures such as the mandibular canal, maxillary sinus and nasal floor is resorbed. Extension through the cortical plate of the jaws may stimulate a spiculated periosteal reaction.

Multiple myeloma may be confused with metastatic tumors; however, the border of multiple myeloma is usually better defined than in metastatic disease. When a lesion starts within the periodontal ligament space of a tooth, the appearance may be identical to that of a periapical
inflammatory lesion. A point of differentiation is that the periodontal ligament space widening from inflammation is at its greatest width and centered about the apex of the root. In contrast, the malignant tumor usually causes irregular widening, which may extend up the side of the root. An odontogenic cyst, if secondarily infected, may have an ill-defined border, giving a similar appearance to a metastatic lesion. Invasion of the jaws by primary tumors of the overlying epithelium such as squamous cell carcinoma may be indistinguishable from metastatic disease but can be differentiated by clinical examination.\(^{33}\)

**Investigations**

A details of investigatory procedures listed in table 3 and 4 and standardized workup for malignancy of undefined primary origin has been described by Amela et al.\(^{34}\) 1. Extensive physical exam (including head and neck, rectal and pelvic examination); Basic blood and biochemistry survey; CT-scan of chest, abdomen, and pelvis; a-fetal-protein and b-HCG in both sexes; Prostate specific antigen in men; Mammography in women. 2. Oriented workup: Breast MRI for women with inaugural axillary lymph nodes; [18F] fluoro-2-deoxy-Dglucose positron emission tomography; Symptom oriented endoscopies. 3. Histopathological evaluation: Immunohistochemical analysis.\(^1\) 4. Deregulated bone metabolism is associated with the release of biochemical markers amenable to noninvasive measurement in blood or urine. Examples are the amino [N]- and carboxy [C]-terminal cross-linked telopeptides of type I collagen, or NTX and CTX, which reflect osteolysis and the bone-specific alkaline phosphatase (BSAP) levels in serum reflecting the rates of osteogenesis.\(^{1,35}\)

**Table 3 Investigatory procedures to be followed in metastatic tumors.**\(^{3,34}\)

| S.No | Tests                          | Details of tests                                                                 |
|------|-------------------------------|---------------------------------------------------------------------------------|
| 1    | Review the clinical history   | a. Physical exam (including head and neck, rectal and pelvic examination)       |
|      |                               | b. If history of previous tumors exists, obtain the slides nad reports for review|
| 2    | Complete blood cell count     |                                                                                |
| 3    | Liver function test           | a. Including calcium level                                                     |
|      |                               | b. Serum creatinine value                                                      |
| 4    | Imaging studies               | a. Periapical And Panoramic Radiographs                                        |
|      |                               | b. Chest Radiographs                                                           |
|      |                               | c. CT Scans of chest, pelvis and abdomen                                        |
|      |                               | d. MRI Scans (breast MRI for women with inaugural axillary lymph nodes)         |
|      |                               | e. Bone Scintigraphy                                                           |
|      |                               | f. Ultrasound For Male Patients                                                |
|      |                               | g. Mammography For Female Patients                                             |
|      |                               | h. Positron electron transmission scanning with                                 |
fluorodeoxyglucose- to identify primary tumor

5 Cervical papanicola smear for female patient

6 a-fetal-protein and b-HCG in both sexes

7 Serum prostate specific antigen and transaminase for male patients

8 Symptom oriented endoscopies.

9 Detection of biochemical markers

Deregulated bone metabolism is associated with the release of biochemical markers like

a. amino [N]- and carboxy [C]-terminal cross-linked telopeptides of type I collagen,

b. NTX and CTX, which reflect osteolysis

c. Bone-specific alkaline phosphatase (BSAP) levels in serum reflecting the rates of osteogenesis.

10 Perform biopsy of the lesion

a. Evaluate the light microscopic features of neoplasm

b. Histological staining

c. Immunohistochemical tests

d. Electronic microscopy

Table 4 Immunohistochemical markers used to diagnose the most common malignancies metastasizing to the jaws and mouth.\textsuperscript{1,3,34,38, 39}

| S.No | Origin                      | CK7/CK20 | Additional markers                                                                 |
|------|-----------------------------|----------|------------------------------------------------------------------------------------|
| 1    | Breast                      | 7+/20-   | ER/PR, GCDFP-15, Mammaglobin                                                        |
| 2    | FGO                         | 7+/20-   | PAX8, WT-1                                                                         |
| 3    | Prostate                    | 7-/20-   | PSA, PSAp, Prostein, PSMA, NKX3.1, AMACR, Cam 5.2!/CK903-                         |
| 4    | Lung                        | 7+/20-   | TTF-1 (adenocarcinoma), nNaspin A, Surfactant                                       |
| 5    | Thyroid (papillaryand follicular) | 7+/20- | TTF-1, Thyroglobulin, PAX8                                                         |
| 6    | Thyroid medullary            | 7+/20-   | TTF-1, Calcitonin                                                                  |
| 7    | Kidney                      | 7-/20-   | EMA, PAX2, PAX8, CAIX, RCC, CD10, Vimentin                                         |
| 8    | Bladder                     | 7+/20-   | P63, Thrombomodulin (not specific), Uroplakin, GATA3                               |
| 9    | Colorectal                   | 7-/20+   | CEA, CDX2, Villin, SATB2                                                           |
| 10   | Liver                       | 7-/20-   | Hep-Par1, canalicular CD10, Bile duct specific CEA, aFP,                           |
| 11   | Adrenal                     | 7-/20-   | Inhibin, MelanA, negative AE1                                                      |
| 12   | Squamous cell carcinoma      | 7b-/20-  | P63                                                                               |

FGO-Female genital organ

\textsuperscript{b}CK7 positive in cervical carcinoma

**Treatment and Prognosis**

The treatment and prognosis is primarily based on the site of origin and the degree of metastatic spread.\textsuperscript{36} Unfortunately, the identification of a metastatic tumor usually represents a poor overall prognosis. The time from the appearance of the metastasis to death is several months. If the primary tumor was successfully treated and the patient’s medical condition permits, the metastatic
lesion should be aggressively treated. Management may involve surgical resection, radiation, chemotherapy or a combination of these techniques. If the primary is recurrent or there are widespread metastases, the jaw lesion should be managed conservatively. This goal of palliative treatment is to reduce the patient’s pain and preserve oral function. This may involve reducing the size of the tumor through radiotherapy, chemotherapy or local surgical excision. Oral metastases usually are evidence of a widespread disease and indicate a grave prognosis.

REFERENCES

1. Hirshberg A, Berger R, Allon I, Kaplan I. Metastatic Tumors to the Jaws and Mouth. Head and Neck Pathol 2014;8:463–474.
2. Kumar GS, Manjunatha BS. Metastatic tumors to the jaws and oral cavity. J Oral Maxillofac Pathol 2013;17(1):71–75.
3. Hirshberg A, James ED. Metastatic Neoplasms to the Oral Cavity. www://H:/buccal/eMedicine-Metastatic N4.htm 1/12/2007.
4. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011;147(2):275-92.
5. Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature 2016;529 (7586):298-306.
6. Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 2009; 9(4):274-84.
7. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinase: regulators of the tumor microenvironment. Cell 2010; 141(1):52-67.
8. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002;29(6 Suppl 16):15-8.
9. Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 2011;17(11):1359-70.
10. Bishop-Bailey D. Tumour vascularisation: a druggable target. Curr Opin Pharmacol 2009;9(2):96-101.
11. Hirshberg A, Leibovich P, Buchner A. Metastases to the oral mucosa: analysis of 157 cases. J Oral Pathol Med 1994;23:337-41.
13. Allon I, Pessing A, Kaplan I, Allon DM, Hirshberg A. Metastatic tumors to the gingiva and the presence of teeth as a contributing factor: a literature analysis. J Periodontol 2014;85(1):132-9.
14. Hashimoto N, Kurihara K, Yamasaki H, Ohba S, Sakai H, Yoshida S. Pathological characteristics of metastatic carcinoma in the human mandible. J Oral Pathol 1987;16:362-367.
15. Hirshberg A, Shnайдerman-Shapiro A, Kaplan I, Berger R. Metastatic tumours to the oral cavity - pathogenesis and analysis of 673 cases. Oral Oncol 2008; 44(8):743-52.
16. Otenio CC, Fonseca I, Martins MF, Ribeiro LC, Assis NM, Ferreira AP, Ribeiro RA. Expression of IL-1b, IL-6, TNF-a, and iNOS in pregnant women with periodontal disease. Genet Mol Res 2012;11(4):4468–78.
17. Bickel M, Axtelius B, Solioz C, Attstrom R. Cytokine gene expression in chronic periodontitis. J Clin Periodontol 2001;28(9):840–7.
18. Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory microenvironment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 2008;66(1):1–9.
19. Kumar GS, Manjunatha BS. Metastatic tumors to the jaws and oral cavity. J Oral Maxillofac Pathol 2013;17:71-5.
20. D’silva N, Summerline DJ, Cordell KG, Abdelsayed RA, Tomish CE, Hanks CT, Fear D, Meyrowitz S. Metastatic tumors in the jaws. A retrospective study of 114 cases. JADA 2006;137(12):1667–72.
21. Hirshberg A, Buchner A. Metastatic tumours to the oral region. An overview. Oral Oncol. Eur J Cancer 1995;31B(6):355–60
22. Seoane J, Van der Waal I, Van der Waal RI, Cameselle-Teijeiro J, Anto´n I, Tardio A, Alca´zar-Otero JJ et al. Metastatic tumours to the oral cavity: a survival study with a special focus on gingival metastases. J Clin Periodontol 2009;36(6):488–92.
23. Sanchez-Jimenez J, Acebal-Blanco F, Arevalo-Arevalo RE, and Molina-Martínez M. Metastatic tumours in upper maxillary bone of esophageal adenocarcinoma: A case report. Med Oral Patol Oral Cir Bucal 2005;10:252- 7.
24. Laurencet FM, Anchisi S, Tullen E, Dietrich PY. Mental neuropathy: report of five cases and review of the literature. Crit Rev Oncol Hematol 2000;34(1):71–9.
25. Smith SF, Blackman G, Hopper C. Numb chin syndrome: a nonmetastatic neurological manifestation of malignancy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105(3): e53–6.

26. Ahsar A, Khateery SM, Kovacs A. Mandibular metastatic hepatocellular carcinoma: a case involving severe post biopsy hemorrhage. J Oral Maxillofac Surg. 1997;55(6):547–52. Review 1 69

27. Peinado H, Lavotshkin S, Lyden D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 2011;21(2):139–46.

28. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014;2014:149185.

29. Stockmann C, Schadendorf D, Klose R, Helfrich I. The impact of the immune system on tumor: angiogenesis and vascular remodeling. Front Oncol 2014;4:69.

30. Feller L, Altini M, Lemmer J. Inflammation in the context of oral cancer. Oral Oncol 2013;49(9):887–92.

31. Tezal M, Sullivan MA, Hyland A, Marshall JR, Stoler D, Reid ME et al. Chronic periodontitis and the incidence of head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 2009;18(9):2406–12.

32. Wells A, Griffith L, Wells JZ, Taylor DP. The dormancy dilemma: quiescence versus balanced proliferation. Cancer Res 2013;73(13):3811–6.

33. White SL and Pharoah MJ. Oral Radiology Principles and Interpretation. 5th ed. St. Louis: Mosby; 2004. p. 466–68.

34. Amela EY, Lauridant-Philippin G, Cousin S, Ryckewaert T, Adenis A, Penel A. Management of “unfavourable” carcinoma of unknown primary site: synthesis of recent literature. Crit Rev Oncol Hematol 2012;84(2):213–23.

35. Coleman R, Costa L, Saad F, Cook R, Hadji P, Terpos E et al. Consensus on the utility of bone markers in the malignant bone disease setting. Crit Rev Oncol Hematol 2011;80(3):411–32.

36. Aniceto GS, Penin AG, Pages R, Morento JJM. Tumors metastatic to the mandible: analysis of nine cases and review of literature. J Oral Maxillofac Surg 1990;48:246-51.

37. Wood NK and Goaz PW. Differential Diagnosis of Oral and Maxillofacial Lesions. 5th edition. St. Louis: Mosby; 1997 p. 346 - 347.
38. Dragomir A, de Wit M, Johansson C, Uhlen M, Ponte´n F. The role of SATB2 as a diagnostic marker for tumors of colorectal origin: results of a pathology-based clinical prospective study. Am J Clin Pathol. 2014;141(5):630–8.

39. Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol. 2000;13(9):962–72.