Disruption of the C-terminal helix by single amino acid deletion is directly responsible for impaired cholesterol efflux ability of apolipoprotein A-I Nichinan

Momoe Kono,¹ Toshitaka Tanaka,⁎ Masafumi Tanaka,⁎ Charulatha Vedhachalam,† Palaniappan S. Chetty,¹ David Nguyen † Padmaja Dhanasekaran,† Sissel Lund-Katz,† Michael C. Phillips,¹ and Hiroyuki Saito *⁠*

Department of Biophysical Chemistry,⁎ Kobe Pharmaceutical University, Kobe 658-8558, Japan; and Division of GI/Nutrition/Hepatology,† The Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318

Abstract Apolipoprotein A-I (apoA-I) Nichinan, a naturally occurring variant with ΔE235 in the C terminus, is associated with low plasma HDL levels. Here, we investigated the tertiary structure, lipid-binding properties, and ability to induce cellular cholesterol efflux of apoA-I Nichinan and its C-terminal peptide. Thermal and chemical denaturation experiments demonstrated that the ΔE235 mutation decreased the protein stability compared with wild type (WT). ApoA-I Nichinan exhibited capabilities to bind to or solubilize lipid vesicles that are intermediate to that of WT and a L230P/L233P/Y236P variant in which the C-terminal α-helix folding is completely disrupted and forms relatively larger and unstable discoidal complexes, indicating that perturbation of the C-terminal α-helical structure by the ΔE235 mutation leads to reduced lipid binding. Supporting this, apoA-I 209-241/ΔE235 peptide showed significantly decreased ability to form α-helix both in the lipid-free and lipid-bound states, and reduced efficiency to solubilize vesicles. In addition, both apoA-I Nichinan and its C-terminal peptide exhibited reduced activity in ABCA1-mediated cellular cholesterol efflux. Thus, the disruption of the ability of the C-terminal region to form α-helix caused by the E235 deletion appears to be the important determinant of impaired lipid binding and cholesterol efflux ability and, consequently, the low plasma HDL levels of apoA-I Nichinan probands. —Kono, M., T. Tanaka, M. Tanaka, C. Vedhachalam, P. S. Chetty, D. Nguyen, P. Dhanasekaran, S. Lund-Katz, M. C. Phillips, and H. Saito. Disruption of the C-terminal helix by single amino acid deletion is directly responsible for impaired cholesterol efflux ability of apolipoprotein A-I Nichinan. J. Lipid Res. 2010. 51: 809–818.

Supplementary key words natural mutation • high density lipoprotein • tertiary structure • lipid binding • peptide

This work was supported by the National Institutes of Health grant HL22633 and Takeda Science Foundation. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health or other granting agencies.

Manuscript received 23 September 2009 and in revised form 1 October 2009.

Published, JLR Papers in Press, September 23, 2009
DOI 10.1194/jlr.M002113

Copyright © 2010 by the American Society for Biochemistry and Molecular Biology, Inc.

This article is available online at http://www.jlr.org

Journal of Lipid Research Volume 51, 2010 809

Abbreviations: ANS, 8-anilino-1-naphthalenesulfonic acid; apoA-I, apolipoprotein A-I; BHK, baby hamster kidney; CD, circular dichroism; DMPC, dimyristoyl phosphatidylcholine; GdnHCl, guanidine hydrochloride; ITC, isothermal titration calorimetry; LUV, large unilamellar vesicle; MLV, multilamellar vesicle; PC, phosphatidylcholine; POPC, 1-palmitoyl-2-oleoyl phosphatidylcholine; SUV, small unilamellar vesicle; UV, ultraviolet; WMF, wavelength of maximum fluorescence; WT, wild type.

To whom correspondence should be addressed.
e-mail: saito@kobepharma-u.ac.jp
plasma HDL levels and increase the incidence of cardiovascular disease (4, 5). The large majority of mutations associated with low plasma HDL levels are clustered in the N-terminal helix bundle domain, whereas very few mutations are in the C-terminal domain (5). ApoA-I Nichinan, which contains the deletion of residue E235 in the C-terminal helical region, is known to be associated with low plasma HDL cholesterol and apoA-I levels (21, 22). Interestingly, this ΔE235 mutant is associated with normal plasma LCAT activity but a decrease in the ratio of HDL2 to HDL3 particles. Because a number of studies have demonstrated the importance of the C-terminal region of apoA-I in the ABCA1-mediated lipid efflux from cells and HDL biogenesis (23–29), it is possible that impaired lipid-binding ability caused by the deletion of E235 in apoA-I Nichinan could underlie the decreased plasma HDL concentrations seen in carriers of the mutation. However, the molecular basis for these effects, especially the structure-function relationship of apoA-I Nichinan, has not been established yet.

In the present study, we investigated the effects of the E235 deletion in apoA-I and its C-terminal peptide on the structure, lipid-binding properties, and ability to induce ABCA1-mediated cellular cholesterol efflux. The results suggest that the disruption of the helix-forming ability of the C-terminal region caused by the E235 deletion is the critical determinant of impaired cholesterol efflux ability and, consequently, low plasma HDL levels in apoA-I Nichinan prohabs.

MATERIALS AND METHODS

Preparation of apoA-I proteins and peptides

The mutation in human apoA-I to delete residue E235 was made using the QuickChange site-directed mutagenesis kit (Stratagene). Human wild type (WT) apoA-I and engineered mutants were expressed and purified as described (15, 16). The apoA-I preparations were at least 95% pure as assessed by SDS-PAGE. The C-terminal apoA-I 209–241 and 209–241/ΔE235 peptides were synthesized using Fmoc chemistry as described (30, 31). The N and C termini were capped with an acetyl group and an amide group, respectively. Peptide purity was verified by analytical HPLC (>97%) and mass spectrometry. In all experiments, apoA-I variants and peptides were freshly dialyzed from 6 M guanidine hydrochloride (GdnHCl) solution into the appropriate buffer before use.

CD spectroscopy

Near- and far-ultraviolet (UV) circular dichroism (CD) spectra were recorded with a Jasco J-810 or an Aviv 62DS spectropolarimeter. After dialysis from 6 M GdnHCl solution, the apoA-I protein or peptide solutions of 25–50 µg/ml in 10 mM sodium phosphate buffer (pH 7.4) were subjected to near-UV measurements by scanning from 185 to 260 nm in a 1–2 mm cuvette, and solutions of 0.5 mg/ml apoA-I concentration were used for near-UV measurements (270–320 nm) in a 1 cm cuvette. For the mixture with small unilamellar vesicles (SUVs), the apoA-I protein or peptide was incubated for 1 h prior to the measurement with egg phosphatidylcholine (PC) SUVs prepared by sonication as described before (32). The results were corrected by subtracting the baseline for an appropriate blank sample. The α-helix content was calculated from the molar ellipticity at 222 nm ([θ]222) using the equation: % α-helix = [(−[θ]222 + 3000)/(|56000 + 3000)] × 100 (33). Thermal unfolding was monitored from the change in [θ]222 over the temperature range of 20–90°C, as described (34). Although there was some variability in the initial and final α-helix contents, the apoA-I variants exhibited reversible thermal unfolding. The van’t Hoff enthalpy, ΔHv, was calculated from the slope of the line fitted by linear regression to the equation, ln Kv = − (ΔHv/R) 1/T + constant, where Kv is the equilibrium constant describing the unfolding of apoA-I at each temperature, R is the gas constant, and T is temperature. The kinetics of thermal unfolding of apoA-I in discoidal complexes with 1-palmitoyl-2-oleoyl PC (POPC) prepared using the cholate dispersion method (35) was monitored by temperature-jump analysis from 25 to 80–90°C (36).

Chemical denaturation studies

For monitoring chemical denaturation, lipid-free proteins at a concentration of 25–50 µg/ml were incubated overnight at 4°C with GdnHCl or urea at various concentrations. When complexed with POPC, apoA-I was completely denatured by incubating for 72 h (37). Kv at a given denaturant concentration was calculated from the change in either [θ]222 or wavelength of maximum fluorescence (WMF) of intrinsic Trp residues (15). The Trp emission fluorescence spectrum was recorded from 300 to 420 nm using an excitation wavelength of 295 nm with a Hitachi F-7000 fluorescence spectrophotometer in Tris buffer (10 mM Tris, 150 mM NaCl, 1 mM EDTA, 0.02% NaN3, pH 7.4). The Gibbs free energy of denaturation in the absence of denaturant, ΔG0°, the midpoint of denaturation, D1/2, and m value, which reflects the cooperativity of denaturation in the transition region, were determined by the linear equation, ΔG0° = ΔG0°° − m[denaturant], where ΔG0° = − RT ln Kv (19, 33).

ANS fluorescence measurements

8-Anilino-1-naphthalenesulfonic acid (ANS) fluorescence measurements were carried out with a Hitachi F-4500 fluorescence spectrophotometer. The extent of ANS binding to hydrophobic sites on the apoA-I variants was determined by measuring ANS fluorescence spectra recorded from 400 to 600 nm at an excitation wavelength of 395 nm, in the absence or presence of 50 µg/ml protein and an excess of ANS (250 µM) (15).

Isothermal titration calorimetry (ITC) measurements

Heats of apoA-I binding to SUV were measured with a MicroCal MCS isothermal titration calorimeter at 25°C (32). To ensure that the injected protein bound completely to the SUV surface, the PC to protein molar ratio was kept under 10,000. Heat of dilution determined by injecting apoA-I solution into buffer was subtracted from the heat for the corresponding apoA-I-SUV binding experiments. The decay rate constants for the heats of binding were obtained from fitting the titration curves to a one-phase exponential decay model (15).

DMPC clearance assay

The kinetics of solubilization of dimyristoyl PC (DMPC) vesicles by the apoA-I variants or peptides were measured by monitoring the time-dependent decrease in turbidity at 24.6°C. For the apoA-I proteins, DMPC large unilamellar vesicles (LUVs) extruded through a 200-nm filter at a concentration of 0.25 mg/ml were mixed with apoA-I samples (0.02–0.2 mg/ml), and incubated for 15 min to monitor the light scattering intensity at 325 nm with a Shimadzu UV-2450 spectrophotometer (20, 38). For the apoA-I peptides, much lower concentrations of DMPC multi-
lamellar vesicles (MLVs) and peptides (typically 34 μg/ml DMPC and 2–20 μg/ml peptides) were used to avoid the aggregation of DMPC/peptide complexes during experiments. The decrease in turbidity was monitored by the right-angle light scattering intensity using a Hitachi F-4500 spectrophotometer with both excitation and emission wavelengths set at 600 nm (31, 39).

Monolayer exclusion pressure measurements

The relative affinities of apoA-I peptides for the lipid-water interface were determined with a surface balance technique, as described previously (40, 41). Linear extrapolation of the initial surface pressure of egg PC monolayer in the absence of peptides (π0) versus the change in surface pressure in the presence of peptides (Δπi) curve to the point at which Δπi = 0 gave the monolayer exclusion pressure (πe). The πe value indicates the surface pressure at which the peptides are no longer able to penetrate into the egg PC monolayer.

Cell culture and cholesterol efflux

J774 murine macrophages were grown and maintained in RPMI 1640 supplemented with 10% FBS and 0.5% gentamycin. For efflux experiments, these cells were seeded in 12-well plates, grown to 80–90% confluence, and then labeled by incubating the cells for 24 h in RPMI medium supplemented with 1% FBS, 2 μg/ml CP-113,818 ACAT inhibitor, and 3 µCi/ml [3H]cholesterol. ABCA1 was induced by incubating the labeled cells for 18 h in DMEM containing 0.2% BSA, 2 μg/ml CP-113,818 ACAT inhibitor, and 0.3 mM 8-(4-chlorophenylthio)cAMP. The efflux experiments were then washed with MEM-Hepes and incubated with or without apoA-I proteins or peptides at the indicated concentrations for 4 h. To determine the free unesterified cholesterol efflux, aliquots were removed from the incubation medium at specific time points, filtered, and radioactivity was determined by liquid scintillation counting. The percent cholesterol efflux was calculated after subtracting the background cholesterol efflux (without apoA-I) as follows: (counts/min in medium at 4 h/cpm in cells at t = 0) × 100.

For efflux experiments with baby hamster kidney (BHK) cells, BHK cells transfected with human ABCA1 (a generous gift from Dr. John Oram) were grown and maintained in DMEM containing 10% FBS and 0.5% gentamycin (42). These cells were seeded in 12-well plates and then labeled by incubating the cells for 24 h in DMEM medium supplemented with 2.5% FBS, 2 µg/ml CP-113,818 ACAT inhibitor, and 3 µCi/ml [3H]cholesterol. ABCA1 was induced by incubating the labeled cells for 18 h in DMEM containing 0.2% BSA and 10 nM mifepristone. Cells were then washed with MEM-Hepes and incubated with or without apoA-I proteins or peptides under the indicated conditions of concentration for 4 h and the percentage cholesterol efflux was calculated as mentioned above.

ApoA-I variant	α-Helix (%)	Thermal Denaturation	Urea Denaturation			
		Tm°C	ΔHv cal/mol	ΔGv° kcal/mol	D1/2 M	
WT	46 ± 3	60	33	3.9 ± 0.3	1.5 ± 0.2	2.7 ± 0.1
Nichinan (ΔE235)	46 ± 2	57	41	3.3 ± 0.3°	1.4 ± 0.1	2.5 ± 0.1°
L230P/L233P/Y236P	46 ± 2	57	43	4.0 ± 0.3	1.6 ± 0.2	2.6 ± 0.1

a The reproducibility in Tm is ±1.5°C.

b Estimated error is ±0.5 kcal/mol.

*P<0.05 compared with WT apoA-I.

RESULTS

Secondary structure, thermal unfolding, and near-UV CD spectra of apoA-I C-terminal mutants

The secondary structure and thermal unfolding of apoA-I Nichinan were analyzed by far-UV CD spectroscopy, in comparison with the apoA-I L230P/L233P/Y236P mutant in which the C-terminal α-helix is completely disrupted (19, 25). The α-helix contents of the lipid-free apoA-I Nichinan and L230P/L233P/Y236P variants were no different from WT (Table 1), indicating that the deletion of E235 and the proline insertions either 1) do not perturb the local α-helical structure significantly or 2) the C-terminal region is not helical in the lipid-free state. Figure 1A shows the thermal unfolding curves for WT and the Nichinan variant. As summarized in Table 1, both apoA-I Nichinan and the L230P/L233P/Y236P variant displayed a lower midpoint (Tm) and higher van’t Hoff enthalpy (ΔHv) compared with WT, indicating that the E235 deletion and the proline insertions decrease the protein stability but increase the unfolding cooperativity of apoA-I (19).

In contrast, near-UV CD spectra of WT and the Nichinan variant were very similar, exhibiting the negative trough with a minimum at 292 nm (Fig. 1B). This suggests that the orientational ordering of the Trp residues located in the N-terminal domain is not affected by the Nichinan mutation (16, 43).

Chemical denaturatation of apoA-I C-terminal mutants

Next, we monitored chemical denaturatation profiles of apoA-I variants by the molar ellipticity at 222 nm as well as by the change in WFM of Trp fluorescence spectra. Molar ellipticity measures the unfolding of all α-helices in the protein molecule whereas Trp fluorescence measures the stability of the N-terminal helix bundle because human apoA-I contains four Trp residues, all of which are located in the N-terminal domain. In Fig. 2A, the denaturation curve of apoA-I Nichinan monitored by the molar ellipticity was shifted to lower concentrations of urea compared with WT. As a result, the Nichinan variant exhibited significant decreases in the Gibbs free energy and midpoint of denaturation compared with WT apoA-I, whereas the L230P/L233P/Y236P mutation had little effect on these parameters (Table 1). Figure 2B compares the free energies of denaturation with GdnHCl and urea for apoA-I variants as monitored by Trp fluorescence. It is thought
that the electrostatic interactions between amino acids in proteins are shielded by GdnHCl whereas uncharged urea has no effect on the electrostatic interactions (44). With both denaturants, significant decreases in the free energy of denaturation for the Nichinan variant were observed compared with WT, indicating that the E235 deletion destabilizes the N-terminal helix bundle of apoA-I via both electrostatic and nonelectrostatic interactions. In addition, large differences in ΔG_D value monitored by molar ellipticity and Trp fluorescence such as 3.3 versus 5.3 kcal/mol for the Nichinan variant (Fig. 2B and Table 1) appear to come from the fact that molar ellipticity measures only unfolding of α-helical structure whereas Trp fluorescence measures unfolding of ternary structure as well so that disruption of helix-helix contacts is included in the free energy change (20).

ANS binding

To compare the exposure of hydrophobic regions in the apoA-I C-terminal variants, ANS binding experiments were performed. Compared with free ANS, a great increase in ANS fluorescence spectrum was observed for WT apoA-I (Fig. 3), indicating the presence of ANS accessible hydrophobic surface (15, 45, 46). Because the deletion or disruption of the C-terminal helical region such as the L230P/L233P/Y236P mutation greatly decrease the hydrophobic sites created by the C-terminal domain (15, 19), the finding that the $\Delta E235$ mutation displayed the intermediate effect on ANS fluorescence between WT and L230P/L233P/Y236P apoA-I (Fig. 3) suggests that the deletion of E235 alters the conformation of the C-terminal domain and partially disrupts the hydrophobic sites.

Lipid interactions of apoA-I C-terminal mutants

To assess the lipid-binding properties of the apoA-I variants, we measured the heats of binding of apoA-I to egg PC SUVs using ITC (16, 32). As listed in Table 2, WT apoA-I exhibited a large exothermic heat of about -93 kcal/mol upon binding to SUVs; this exothermic enthalpy of binding is the major component of the favorable free energy of apoA-I binding to SUVs, and the increase in α-helical amino acids upon binding to SUVs seen in Table 2 suggest that the E235 deletion partially disrupts the ability of the C-terminal region to form α-helical structure, resulting in impaired lipid-binding capability for apoA-I Nichinan.

To further characterize the interactions of the apoA-I variants with lipids, we used a DMPC clearance assay for comparing their abilities to solubilize DMPC vesicles (16, 20, 38). The typical timecourses of clearance in Fig. 4A

Fig. 1. Thermal denaturation curves monitored by the molar ellipticity at 222 nm (A) and near-UV CD spectra (B) of human apoA-I WT (●) and $\Delta E235$ variant (○). Protein concentrations were 50 µg/ml (A) and 0.3 mg/ml (B).

Fig. 2. Chemical denaturation of the C-terminal mutants of apoA-I monitored by molar ellipticity (A) or Trp fluorescence (B). A: Urea-induced denaturation curves of apoA-I WT (●) and $\Delta E235$ variant (○). B: Comparison of the free energies of denaturation induced by GdnHCl and urea. *P < 0.05, **P < 0.01 compared with WT apoA-I.
and the dependence of clearance efficiency on protein concentrations in Fig. 4B demonstrate that the solubilizing efficiency of the apoA-I variants decreases in the order, WT > Nichinan > L230P/L233P/Y236P, which is similar to the results for the SUV binding (Table 2). Because solubilization of DMPC vesicles by apolipoprotein to form discoidal complexes involves a structural reorganization of the protein molecule (48), the self-association state of protein can affect solubilization kinetics (38). Cross-linking experiments demonstrated that apoA-I Nichinan at relatively high protein concentration (1 mg/ml) tends to form more oligomers compared with WT apoA-I (data not shown). However, the decreased DMPC clearance efficiency of the Nichinan mutant was seen even at a much lower concentration range of 25–200 μg/ml (Fig. 4B), indicating that the reduced solubilizing efficiency of apoA-I Nichinan is not mainly due to the self-association state of this protein.

We also compared the stabilities of WT and the Nichinan mutant in apoA-I-POPC discoidal complexes. Electron microscopy and non-denaturing polyacrylamide gradient gel analyses demonstrated that apoA-I-POPC discs have a major diameter of 11 nm whereas, under the same conditions, the Nichinan mutant forms much larger discs with a major diameter of 15 nm (data not shown). In Fig. 5A, the denaturation curve of apoA-I Nichinan in a POPC discoidal complex monitored by the molar ellipticity was shifted to lower concentrations of GdnHCl compared with WT, and the resultant Gibbs free energy and midpoint of denaturation for the Nichinan variant were significantly decreased compared with WT apoA-I (2.2 ± 0.2 vs. 3.0 ± 0.1 kcal/mol in ΔG° and 2.7 ± 0.1 vs. 3.2 ± 0.1 M in D1/2, respectively). In addition, comparison of the timecourse of the protein unfolding induced by a rapid increase in temperature (Fig. 5B) showed that the unfolding of apoA-I Nichinan is faster than that of WT apoA-I in POPC discs. These results indicate that apoA-I Nichinan forms less stable and larger discoidal complexes with lipids compared with WT.

Effects of E235 deletion on structure and lipid interaction of apoA-I C-terminal peptides

The effects of the ΔE235 mutation on the C-terminal α-helix properties of apoA-I were also examined using synthetic apoA-I C-terminal peptides. Like WT apoA-I, the 33-mer peptide, apoA-I 209-241, can interact with lipids (39, 41) and promote ABCA1-mediated cellular cholesterol efflux (25, 49).

Table 3 summarizes the monolayer exclusion pressure, ε, and α-helix contents of apoA-I 209-241 in the absence and presence of SUVs, consistent with the previous result for a shorter C-terminal peptide, apoA-I 220-241 (31). This directly demonstrates that the E235 deletion reduces the ability of the C-terminal region of apoA-I to form α-helix upon lipid binding. As shown in Fig. 6A and 6B, such a weak propensity of apoA-I 209-241/ΔE235 to form α-helix resulted in a reduced ability to solubilize DMPC vesicles compared with apoA-I 209-241 (50); this effect is similar to that seen for the apoA-I C-terminal variants (Fig. 4).

Table 2. Parameters of binding of apoA-I variants to egg PC SUV

ApoA-I Variant	ΔH	α-Helix Content on SUV	Increase in α-Helical Residues
WT	92.6 ± 5.3	72 ± 3	65
Nichinan (ΔE235)	72.0 ± 2.3	69 ± 4	54
L230P/L233P/Y236P	56.1 ± 4.8	64 ± 4	43

* Increase in α-helical residues was estimated from the difference in α-helix contents of apoA-I in the lipid-free state (Table 1) and bound to SUV.
the ratio V_{max} / K_m for the Nichinan variant was about half of that of WT apoA-I (2.5 vs. 4.7 for J774 cells and 1.6 vs. 3.6 for BHK cells, respectively). This indicates that the deletion of E235 greatly reduces the efficiency of cholesterol efflux to apoA-I in both types of cells (21, 22).

Similar to previous results (25, 49), apoA-I 209-241 peptide retained cholesterol efflux ability, but a linear relationship between cholesterol efflux and peptide concentration in J774 cells (Fig. 8) indicates that ABCA1-mediated cholesterol efflux to this peptide is a low affinity process. Strikingly, apoA-I 209-241/ΔE235 peptide at up to 20 μg/ml failed to induce a cholesterol efflux, indicating that the deletion of E235 abolishes the ability of the C-terminal helical region of apoA-I to induce ABCA1-mediated cholesterol efflux. This finding is consistent with previous studies with amphipathic α-helical peptides demonstrating that lipid efflux via ABCA1 is sensitive to the lipid-binding affinity of the helix (41) as well as the distribution of acidic residues (49). In addition, neither the apoA-I 209-241 nor the 209-241/ΔE235 peptide gave any cholesterol efflux from BHK cells in the concentration range studied (data not shown).

DISCUSSION

It is known that human apoA-I mutations can reduce plasma HDL levels and increase the incidence of cardiovascular disease (4, 5). ApoA-I Nichinan that contains the

Cholesterol efflux ability of apoA-I Nichinan variant and peptide

To assess the ability of the apoA-I Nichinan variant and its C-terminal peptide to promote ABCA1-mediated cellular cholesterol efflux, the concentration-dependence of cholesterol efflux from ABCA1-expressing J774 and BHK cells to apoA-I was determined. Figure 7 shows hyperbolic relationships between cholesterol efflux and the apoA-I concentrations for WT apoA-I and the Nichinan variant in both types of cells. The greater difference between the cholesterol efflux to WT apoA-I and apoA-I Nichinan observed with BHK cells (Fig. 7B) compared with J774 cells (Fig. 7A) may be due to the fact that J774 macrophages express mouse ABCA1 whereas BHK cells are transfected with human ABCA1. Apparent V_{max} and K_m values derived by fitting these hyperbolic curves to the Michaelis-Menten equation are listed in Table 4. In both types of cells, the apparent K_m value for apoA-I Nichinan was much higher than that for WT, and the catalytic efficiency expressed as

TABLE 3. Parameters for lipid binding affinity of apoA-I C-terminal peptides

| ApoA-I Peptide | Exclusion Pressure π_e, dyn/cm | α-Helix Content | Lipid-Free SUV, % | CSV |
|----------------|----------------------------------|----------------|------------------|
| 209-241 | 33 | 59 ± 2 | 70 ± 2 |
| 209-241/ΔE235 | 34 | 23 ± 3 | 50 ± 2 |

*Standard error is ±1 dyn/cm.

Fig. 5. Denaturation of apoA-I variants on POPC discs monitored by the molar ellipticity at 222 nm. A: Denaturation curves of apoA-I WT (●) and ΔE235 variant (○) on POPC discoidal complexes after incubation with GdnHCl for 72 h. B: Kinetics of apoA-I unfolding in temperature-jumps from 25 to 85°C.

Fig. 6. Solubilization of DMPC MLVs by the apoA-I C-terminal peptides. A: Timecourses of the decrease in right-angle light scattering intensity at both excitation and emission wavelengths of 600 nm after incubation of DMPC MLVs (34 μg/ml with 6.8 μg/ml peptide at 24°C. B: Increase in fraction of scattering intensity cleared in 600 s with increasing concentration of peptide. ApoA-I 209-241 (●), 209-241/ΔE235 (○).
deletion of residue E235 in the C-terminal helical region impairs lipid binding and is associated with low HDL cholesterol and plasma apoA-I levels (21, 22). To understand the structural basis for such dysfunctions of the Nichinan mutation in terms of alterations in apoA-I tertiary structure, we examined the structure, lipid-binding properties, and ability to induce cellular cholesterol efflux of apoA-I Nichinan and its C-terminal peptide.

Effects of deletion of E235 on apoA-I structure

Lipid-free human apoA-I is organized into two structural domains comprising an N-terminal helix bundle domain and a separate C-terminal domain (9, 11, 15). Because the mutation in apoA-I Nichinan occurs in the C-terminal helical region, the effects of the E235 deletion on apoA-I tertiary structure are expected to be primarily in the C-terminal domain. Indeed, there was no or little difference in the α-helix content, thermal denaturation parameters between WT and the Nichinan variant (Table 1), and similar tertiary packing of Trp residues in the N-terminal helix bundle (Fig. 1B), in contrast to the situation with a mutation in the N-terminal domain such as apoA-I Milano (R173C), which markedly destabilizes the protein structure (51). However, when the changes in molar ellipticity and Trp fluorescence caused by Gdn-HCl or urea denaturation were monitored, significant reductions in the conformational stability, ΔG^0, and midpoint of denaturation for apoA-I Nichinan were observed compared with WT apoA-I (Table 1 and Fig. 2). This indicates that the deletion of E235 not only affects the conformational stability of the C-terminal domain but also destabilizes the N-terminal helix bundle domain.

We have demonstrated recently that intramolecular interaction between the N- and C-terminal tertiary structure domains in apoA-I modulates the conformational stability of the N-terminal helix bundle, and the C-terminal helical region is responsible for this stabilizing interaction (20). Because the deletion of E235 significantly destabilizes the apoA-I structure, it is possible that the absence of E235 that removes a negative charge at this position and alters the charge distribution of the C-terminal region may result in alterations in stabilizing electrostatic interactions between the N- and C-terminal domains in apoA-I. The finding that the E235A mutation did not destabilize the apoA-I structure (unpublished observations) indicates that the E235 residue itself is not involved in the interaction with the N-terminal domain. Rather, the alteration in the charge distribution of the C-terminal region caused by the E235 deletion may disrupt optimal electrostatic interaction between the N- and C-terminal domains, resulting in the destabilization of the protein structure, as seen in human-mouse hybrid apoA-I molecules where the human C-terminal sequence is replaced with that of mouse apoA-I (16, 20).

Alternatively, it may be possible that the disruption of the ability of the C-terminal region to form α-helix caused by the deletion of E235 inhibits the hydrophobic helix-helix interaction between the N- and C-terminal domains in apoA-I Nichinan. The fact that the α-helix content of ~80% found in the crystal structure (11) is much higher than that for monomeric apoA-I in solution (~50%) (9, 32) indicates that the true conformation in solution is more flexible and less organized than the compactly folded, highly ordered structure in the crystal state. Indeed, whereas the C-terminal residues 219-242 are shown to be helical in the crystal structure (11), our recent hydrogen-deuterium exchange analysis of lipid-free apoA-I in dilute solution demonstrates that the C-terminal domain is entirely nonhelical (unpublished results). Thus, it is unlikely that the deletion of E235 affects the stability of

TABLE 4. Kinetic parameters for cholesterol efflux to apoA-I variants

ApoA-I Variant	J774 Cells	BHK Cells		
	V_{max}	K_m	V_{max}	K_m
	% cholesterol efflux/4 h	μg of apoA-I/ml	% cholesterol efflux/4 h	μg of apoA-I/ml
WT	18.5 ± 0.9	3.9 ± 0.6	26.4 ± 1.4	7.3 ± 0.9
Nichinan (ΔE235)	24.4 ± 1.5	9.9 ± 1.3	20.8 ± 1.0	12.8 ± 1.2
the N-terminal helix bundle through disrupting the C-terminal helical structure in the lipid-free apoA-I. Rather, it is likely that the helix-disrupting effect of the Nichinan mutation in the apoA-I molecule is relevant only to the lipid-bound state. In addition, the higher α-helix content seen for apoA-I 209-241 peptide than that for apoA-I 209-241/E235 in the lipid-free state is likely due to the self-association of apoA-I 209-241 peptide at the concentration studied (52).

Effects of deletion of E235 on apoA-I lipid binding

On the basis of the two-domain tertiary structure of apoA-I, we have proposed a two-step mechanism for binding of apoA-I to a phospholipid surface: the initial binding step occurs through hydrophobic α-helices in the C-terminal domain, followed by a conformational opening of the N-terminal helix bundle to interact with lipids (10, 15, 53). Thus, removal (15, 32) or modification (19, 23) of the C-terminal helical region drastically reduces the lipid-binding ability of apoA-I. The moderate effects of the E235 deletion in apoA-I Nichinan on the binding affinity to SUV (Table 2) and DMPC clearance efficiency (Fig. 4) are consistent with the notion that the deletion of E235 partially disrupts local α-helix formation of the C-terminal region. Indeed, comparison of the α-helix contents between synthetic C-terminal peptides, apoA-I 209-241 and apoA-I 209-241/D/E235 in the lipid-free or SUV-bound states (Table 3) clearly demonstrates that the E235 deletion markedly reduces the ability of the C-terminal region of apoA-I to form α-helix both in the absence and presence of lipids. Because the helical propensity of apolipoproteins is critical for their lipid-binding affinities (19, 31, 50, 54), such a weak propensity to form α-helix caused by the E235 deletion results in the less effective ability of the Nichinan protein and its C-terminal peptide to solubilize DMPC vesicles (Figs. 4 and 6). In agreement with this, apoA-I Nichinan forms relatively larger and unstable discoidal complexes with lipids compared with WT (Fig. 5). Interestingly, it was reported that the E235K mutation in apoA-I does not affect the lipid-solubilizing efficiency (23), indicating that the absence of negative charge of E235 itself does not appear to be involved in the impaired lipid-binding ability of apoA-I Nichinan. Rather, it is possible that the loss of E235 residue cause a “frameshift” that could disrupt the optimal charge distribution on the polar and nonpolar faces of the C-terminal helix, leading to the impaired α-helix formation and lipid binding. Supporting this, the E235A mutation in apoA-I protein (unpublished observations) and in the C-terminal peptide (31) has little effect on the DMPC solubilizing ability.

Effects of deletion of E235 on the cholesterol efflux ability of apoA-I

It is well established that the C-terminal α-helical region of apoA-I is important for effective cellular lipid efflux (23–25, 55) and formation of nascent HDL particles (26, 56) via the ABCA1 pathway. In this apoA-I/ABCA1 reaction, the microsolubilization of exovesiculated domains of cell plasma membrane by apoA-I is a rate-limiting step to create discoidal HDL particles (28). Consequently, the ability of apoA-I variants to solubilize phospholipid bilayer such as DMPC vesicles is correlated with the efficiency to efflux cellular lipids via the ABCA1 pathway (28). As the solubilization process requires penetration of apoA-I helices into the phospholipid bilayer with the C-terminal α-helix playing a key role (15, 16, 41), it follows that the decreased lipid-binding ability of the C-terminal helical region in apoA-I Nichinan should lead to the reduced rate of cholesterol efflux, as actually seen in the previous (22) and this study (Fig. 7). In addition, it is likely that the decrease in the hydrophobic binding site in the C-terminal domain of apoA-I Nichinan (Fig. 3) prevents the formation of preβ-HDL particles because this site is important for the acquisition of a few phospholipid molecules for the formation of preβ-HDL (56). It should be noted that the reduced ability of apoA-I Nichinan to mediate cholesterol efflux is unlikely to result from impairment of direct interactions between apoA-I and ABCA1 because the C-terminal deletion mutants, Δ190-243 and Δ223-243 apoA-I, which have reduced lipid affinity, cross-link to ABCA1 as effectively as WT apoA-I (27).

Such a reduction in the abilities to induce cellular cholesterol efflux and formation of HDL particles in the apoA-I Nichinan probands could result in a large pool of lipid-free apoA-I that is susceptible to rapid catabolism (57), consistent with a previous report that used in vivo turnover studies in rabbits to demonstrate that the Nichinan mutant is rapidly cleared (22% faster) compared with WT apoA-I (21). In addition, the fact that the size distribution of HDL particles is altered in the apoA-I Nichinan probands despite normal plasma LCAT activity (21) appears to be consistent with the notion that the stability of the N-terminal helix bundle and the lipid-binding affinity of the C-terminal domain are key factors that modulate the distribution of apoA-I among HDL subclasses (16, 53). In addition, the finding that the Nichinan mutant forms less stable and larger discoidal complexes with lipids compared with WT (Fig. 5) may also underlie the higher HDL₂ levels seen in the Nichinan probands.

In summary, the present study demonstrated that the disruption of the helix-forming ability of the C-terminal region by the mutation of E235 deletion contributes not
only to the decreased lipid-binding affinity but also to the destabilized protein structure of apoA-I Nichinan. Such alterations in physical properties of the apoA-I Nichinan protein appear to impair the abilities to induce cellular cholesterol efflux and biogenesis of HDL particles, resulting in lower plasma HDL cholesterol and apoA-I levels, as well as an altered HDL particle size distribution.

The authors thank Dr. Toru Kawakami (Institute for Protein Research, Osaka University) for his help with electron microscopy.

REFERENCES

1. Yokoyama, S. 2005. Assembly of high density lipoprotein by the ABCA1/apolipoprotein pathway. Curr. Opin. Lipidol. 16: 269–279.
2. Krimbou, L., M. Marcil, and J. Genest. 2006. New insights into the biogenesis of human high-density lipoproteins. Curr. Opin. Lipidol. 17: 258–267.
3. Fang, Y., O. Gursky, and D. Atkinson. 2003. Structure and function of apoA-I in the assembly of high density lipoprotein by the ABCA1 helix 10 in apolipoprotein-mediated cellular efflux via the ATP-binding cassette transporter ABCA1. J. Biol. Chem. 277: 39477–39484.
4. Chroni, A., T. Liu, I. Gorshkova, H. Y. Kan, Y. Uehara, A. von Eckardstein, and V. L. Zannis. 2007. The central helices of ApoA-I can promote ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux. Amino acid residues 220–231 of the wild-type ApoA-I are required for lipid efflux in vitro and high density lipoprotein formation in vivo. J. Biol. Chem. 282: 6719–6730.
5. Ajees, A. A., G. M. Anantharamaiah, V. K. Mishra, M. M. Hussain, and H. M. Murthy. 2006. Crystal structure of human apolipoprotein A-I in discoidal and spherical recombinant high density lipoprotein particles. J. Biol. Chem. 282: 25123–25130.
6. Tanaka, M., T. Tanaka, M. Sugihara, T. Kawakami, S. Aimoto, and H. Saito. 2009. Deletion of single amino acid E25 causes the structure and function of apoA-I in human apolipoprotein A-IV using fragment peptides. J. Pept. Sci. 15: 36–42.
7. Tanaka, M., T. Tanaka, M. Sugihara, T. Kawakami, S. Aimoto, and H. Saito. 2009. Deletion of single amino acid E25 affects the structure and lipid interaction of human apolipoprotein A-IV and structural stability of apolipoprotein A-I in discoidal and spherical recombinant high density lipoprotein particles. J. Biol. Chem. 284: 20974–20981.
8. Sparks, D. L., S. Lund-Katz, and M. C. Phillips. 1992. The charge and structural stability of apolipoprotein AIV in discoidal and spherical recombinant high density lipoprotein particles. J. Biol. Chem. 267: 25839–25847.
9. Acharva, P. M. L., M. A. Burgu, M. Zailou, J. Morrow, K. H. Weisgraber, M. C. Phillips, S. Lund-Katz, and J. Snow. 2002. Comparison of the stability and unfolding pathways of human apolipoprotein E isoforms by differential scanning calorimetry and circular dichroism. Biochem. Biophys. Acta. 1584: 9–19.
10. Thuanmai, S. T., S. Lund-Katz, D. L. Williams, and M. C. Phillips. 2003. Scavenger receptor class B type I-mediated uptake of various lipids into cells. Influence of the nature of the donor particle interaction with the receptor. J. Biol. Chem. 278: 43801–43808.
36. Gursky, O., Ranjana, and D. L. Gantz. 2002. Complex of human apolipoprotein C-I with phospholipid: thermodynamic or kinetic stability? Biochemistry. 41: 7375–7384.
37. Reijngoud, D. J., and M. C. Phillips. 1982. Mechanism of dissociation of human apolipoprotein A-I from complexes with dimyristoylphosphatidylcholine as studied by guanidine hydrochloride denaturation. Biochemistry. 21: 2969–2976.
38. Sakamoto, T., Manaka, C. Vedhachalam, M. Nickel, D. Nguyen, P. Dhanasekaran, M. C. Phillips, S. Lund-Katz, and H. Saito. 2008. Contributions of the carboxyl-terminal helical segment to the self-association and lipoprotein preferences of human apolipoprotein E3 and E4 isoforms. Biochemistry. 47: 2968–2977.
39. Mishra, V. K., M. N. Palgunachari, G. Datta, M. C. Phillips, S. Lund-Katz, S. O. Adeeye, J. P. Segrest, and G. M. Anantharamaiah. 1998. Studies of synthetic peptides of human apolipoprotein A-I containing tandem amphipathic α-helixes. Biochemistry. 37: 10313–10324.
40. Palgunachari, M. N., V. K. Mishra, S. Lund-Katz, M. C. Phillips, S. O. Adeeye, S. Alhuri, G. M. Anantharamaiah, and J. P. Segrest. 1996. Only the two end helices of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity. Implications for HDL assembly. Arterioscler. Thromb. Vasc. Biol. 16: 328–338.
41. Gillotte, K. L., M. Zaiou, S. Lund-Katz, G. M. Anantharamaiah, P. Holvoet, A. Dhoest, M. N. Palgunachari, J. P. Segrest, K. H. Weisgraber, G. H. Rothblat, et al. 1999. Apolipoprotein-mediated plasma membrane microsolvilization. Role of lipid affinity and membrane penetration in the efflux of cellular cholesterol and phospholipid. J. Biol. Chem. 274: 2021–2028.
42. Vaughan, A. M., and J. F. Oram. 2003. ABCA1 redistributes membrane cholesterol independent of apolipoprotein interactions. J. Lipid Res. 44: 1573–1580.
43. Gursky, O., and D. Atkinson. 1996. Thermal unfolding of human high-density apolipoprotein A-I: implications for a lipid-free molten globular state. Proc. Natl. Acad. Sci. USA. 93: 2991–2995.
44. Monera, O. D., C. M. Kay, and R. S. Hodges. 1994. Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Sci. 3: 1984–1991.
45. Rogers, D. P., C. G. Bourillette, J. A. Engler, S. W. Tendian, L. Roberts, V. K. Mishra, G. M. Anantharamaiah, S. Lund-Katz, M. C. Phillips, and M. J. Ray. 1997. Truncation of the amino terminus of human apolipoprotein A-I substantially alters only the lipid-free conformation. Biochemistry. 36: 288–300.
46. Beckstead, J. A., B. L. Block, J. K. Bielicki, C. M. Kay, M. N. Oda, and R. O. Ryan. 2005. Combined N- and C-terminal truncation of human apolipoprotein A-I yields a folded, functional central domain. Biochemistry. 44: 4591–4599.
47. Arnulphi, C., L. Jin, M. A. Tricerri, and A. Jonas. 2004. Enthalpy-driven apolipoprotein A-I and lipid bilayer interaction indicating protein penetration upon lipid binding. Biochemistry. 43: 12258–12264.
48. Segall, M. L., P. Dhanasekaran, F. Baldwin, G. M. Anantharamaiah, K. H. Weisgraber, M. C. Phillips, and S. Lund-Katz. 2002. Influence of apoE domain structure and polymorphism on the kinetics of phospholipid vesicle solubilization. J. Lipid Res. 43: 1688–1700.
49. Natarajan, P., T. M. Forte, B. Chu, M. C. Phillips, J. F. Oram, and J. K. Bielicki. 2004. Identification of an apolipoprotein A-I structural element that mediates cellular cholesterol efflux and stabilizes ATP binding cassette transporter A1. J. Biol. Chem. 279: 24044–24052.
50. Benjwal, S., S. Javaraman, and O. Gursky. 2007. Role of secondary structure in protein-phospholipid surface interactions: reconstitution and denaturation of apolipoprotein C–I/DMPC complexes. Biochemistry. 46: 4184–4194.
51. Alexander, E. T., M. Tanaka, M. Kono, H. Saito, D. J. Rader, and M. C. Phillips. 2009. Structural and functional consequences of the Milano mutation (R173C) in human apolipoprotein A-I. J. Lipid Res. 50: 1409–1419.
52. Zhu, H. L., and D. Atkinson. 2007. Conformation and lipid binding of a C-terminal (198–243) peptide of human apolipoprotein A-I. Biochemistry. 46: 1624–1634.
53. Kono, M., Y. Okumura, M. Tanaka, D. Nguyen, P. Dhanasekaran, S. Lund-Katz, M. C. Phillips, and H. Saito. 2008. Conformational flexibility of the N-terminal domain of apolipoprotein A-I bound to spherical lipid particles. Biochemistry. 47: 11340–11347.
54. Oda, M. N., T. M. Forte, R. O. Ryan, and J. C. Voss. 2003. The C-terminal domain of apolipoprotein A-I impairs cell surface binding and lipid efflux in macrophage. Biochemistry. 38: 14524–14533.
55. Duong, P. T., G. L. Weibel, S. Lund-Katz, G. H. Rothblat, and M. C. Phillips. 2008. Characterization and properties of preβ-HDL particles formed by ABCA1-mediated cellular lipid efflux to apoA-I. J. Lipid Res. 49: 1006–1014.
56. Moestrup, S. K., and L. B. Nielsen. 2005. The role of the kidney in lipid metabolism. Curr. Opin. Lipidol. 16: 301–306.