Infinite Ramsey-minimal graphs for star forests

Fawwaz Fakhrurrozi Hadiputra, Valentino Vito

Department of Mathematics, Universitas Indonesia, Depok 16424, Indonesia

Abstract

For graphs F, G, and H, we write $F \to (G, H)$ if every red-blue coloring of the edges of F produces a red copy of G or a blue copy of H. The graph F is said to be (G, H)-minimal if it is subgraph-minimal with respect to this property. The characterization problem for Ramsey-minimal graphs is classically done for finite graphs. In 2021, Barrett and the second author generalized this problem to infinite graphs. They asked which pairs (G, H) admit a Ramsey-minimal graph and which ones do not. We show that any pair of star forests such that at least one of them involves an infinite-star component admits no Ramsey-minimal graph. Also, we construct a Ramsey-minimal graph for a finite star forest versus a subdivision graph. This paper builds upon the results of Burr et al. in 1981 on Ramsey-minimal graphs for finite star forests.

Key words: Ramsey-minimal graph, infinite graph, graph embedding, star forest, subdivision graph

2020 MSC: 05C55, 05C63, 05C35, 05C60, 05D10

1. Introduction

All our graphs are simple and undirected, and we allow uncountable graphs. We start by stating basic definitions. For graphs F, G and H, we write $F \to (G, H)$ if every red-blue coloring of the edges of F produces a red copy of G or a blue copy of H. A red-blue coloring of F is (G, H)-good if it produces neither a red copy of G nor a blue copy of H. If $F \to (G, H)$ and every subgraph F' of F is such that $F' \not\to (G, H)$, then F is (G, H)-minimal. The collection of all (G, H)-minimal graphs is denoted by $\mathcal{R}(G, H)$. A pair (G, H) admits a Ramsey-minimal graph if $\mathcal{R}(G, H)$ is nonempty.

If G and H are both finite, then a (G, H)-minimal graph exists. Indeed, we can delete finitely many vertices and/or edges of $K_{r(G, H)}$ until it is (G, H)-minimal. This observation does not necessarily hold when at least one of G and H is infinite, even though there exists a graph F such that $F \to (G, H)$ in the countable case by the Infinite Ramsey Theorem [20] and in general by the...
Erdős–Rado Theorem \[14\]. In fact, a pair of countably infinite graphs almost never admits a Ramsey-minimal graph—see Proposition \[2,4\]. In 2021, Barrett and the second author \[1\] introduced a characterization problem for pairs of graphs according to whether or not they admit a minimal graph.

Main Problem (\[1\]). Determine which pairs \((G, H)\) admit a Ramsey-minimal graph and which ones do not.

The primary motivation for posing the main problem is the classic problem of determining whether there are finitely or infinitely many \((G, H)\)-minimal graphs. This problem was first introduced in 1976 \[11, 17\], and it was studied for finite graphs in general by Nešetřil and Rödl \[18, 19\] and for various classes of graphs by Burr et al. \[5, 6, 7, 9, 12\]. A result by Burr et al. on Ramsey-minimal graphs for finite star forests is relevant to our discussion.

Theorem 1.1 (\[8\]). The pair of star forests \((\bigcup_{i=1}^{s} S_{n_i}, \bigcup_{j=1}^{t} S_{m_j})\) admits infinitely many Ramsey-minimal graphs for \(n_1 \geq \cdots \geq n_s \geq 2\) and \(m_1 \geq \cdots \geq m_t \geq 2\) when \(s \geq 2\) or \(t \geq 2\).

The formulation of the main problem is also motivated by the more recent work of Stein \[22, 24, 25\] on extremal infinite graph theory. It is a subfield of extremal graph theory that developed after the notion of end degrees was introduced a few years prior \[4, 22\].

Barrett and the second author mainly studied the main problem for pairs \((G, H)\) in general. The following is one of the main results presented in their paper.

Theorem 1.2 (\[1\]). Let \(G\) and \(H\) be graphs, and suppose that \(\mathcal{F}\) is a (possibly infinite) collection of graphs such that:

1. For all \(F \in \mathcal{F}\), we have \(F \rightarrow (G, H)\).
2. For every graph \(\Gamma\) with \(\Gamma \rightarrow (G, H)\), there exists an \(F \in \mathcal{F}\) that is contained in \(\Gamma\).

The following statements hold:

(i) If \(F\) is a \((G, H)\)-minimal graph, then \(F \in \mathcal{F}\) and \(F\) is non–self-embeddable.

(ii) Suppose that any two different graphs \(F_1, F_2 \in \mathcal{F}\) do not contain each other. A graph \(F\) is \((G, H)\)-minimal if and only if \(F \in \mathcal{F}\) and \(F\) is non–self-embeddable.

This paper instead focuses on pairs \((G, H)\) involving a **star forest**—a union of stars. Our first main result shows that any pair of star forests such that at least one of them involves an infinite-star component admits no Ramsey-minimal graph.

Theorem 1.3. Let \(G\) and \(H\) be star forests. If at least one of \(G\) and \(H\) contains an infinite-star component, then no \((G, H)\)-minimal graph exists.
Figure 1: The graph F_d.

This theorem is in contrast to Theorem 1.1, which states that there are infinitely many (G, H)-minimal graphs when G and H are disconnected finite star forests with no single-edge components. Loosely speaking, the existence of infinitely many finite minimal graphs hence does not give an indication that a corresponding infinite minimal graph exists.

Similarly, the existence of only finitely many finite minimal graphs does not imply that there are only finitely many corresponding infinite minimal graphs. For $n \in \mathbb{N}$—where \mathbb{N} is the set of positive integers—we denote the n-edge star by S_n. It is known from [10] that there are only finitely many (nS_1, H)-minimal graphs for $n \in \mathbb{N}$ and H a finite graph. On the other hand, if Z is the double ray—the two-way infinite path—then $(2S_1, Z \cup S_3)$ admits infinitely many minimal graphs. Indeed, we have $2F_d \in \mathcal{R}(2S_1, Z \cup S_3)$ for every $d \geq 3$, where F_d is the graph illustrated in Figure 1.

A graph is leafless if it contains no vertex of degree one, and it is non–self-embeddable if it is not isomorphic to any proper subgraph of itself. Following [10, p. 79], we denote the subdivision graph of G by $S(G)$, which is a graph obtained from G by performing a subdivision on each one of its edges. For example, if P_n denotes the n-vertex path, then $S(P_n) = P_{2n-1}$ for $n \in \mathbb{N}$.

For our second main result, we construct a Ramsey-minimal graph for a finite star forest versus the subdivision graph of a connected, leafless, non–self-embeddable graph. In 2020, subdivision graphs were used by Wijaya et al. [26] to construct new (nS_1, P_4)-minimal graphs.

Theorem 1.4. Let G be a connected, leafless, non–self-embeddable graph. For any finite star forest H, there exists a $(S(G), H)$-minimal graph.

For future investigation, it would be interesting to consider whether every pair of non–self-embeddable graphs admits a minimal graph. If true, this would generalize the observation that a pair of finite graphs always admits a minimal graph, since finite graphs are non–self-embeddable.

Question 1.5. Is it true that every pair (G, H) of non–self-embeddable graphs admits a Ramsey-minimal graph?

We give an outline of this paper. Section 2 discusses self-embeddable graphs and their relevance to the study of Ramsey-minimal graphs. In Section 3 we briefly discuss the Ramsey-minimal properties of (G, H) when H is a union of graphs. Finally, our two main theorems are proved in Sections 4 and 5.
2. Self-embeddable graphs

We first provide several preliminary definitions. A graph homomorphism \(\varphi: G \to H \) is a map from \(V(G) \) to \(V(H) \) such that \(\varphi(u)\varphi(v) \in E(H) \) whenever \(uv \in E(G) \). A graph homomorphism is an embedding if it is an injective map of vertices. Following [23], we write \(G \leq H \) if \(G \) embeds into \(H \); that is, there exists an embedding \(\varphi: G \to H \). Unlike in [23], however, we do not require that the graph image of \(\varphi \) is an induced subgraph of \(H \).

A graph \(G \) is self-embeddable if \(G \sim G' \) for some proper subgraph \(G' \) of \(G \), and the corresponding isomorphism \(\varphi: G \to G' \) is its self-embedding. Examples of self-embeddable graphs include the ray \(\mathbb{N} \)—the one-way infinite path—and a complete graph on infinitely many vertices. On the other hand, finite graphs and the double ray \(\mathbb{Z} \) are non–self-embeddable.

Proposition 2.1 provides a necessary and sufficient condition for a graph to be self-embeddable in terms of its components. This proposition is quite similar to [21, Theorem 2.5] for self-contained graphs, the “induced” version of self-embeddable graphs.

Proposition 2.1. A graph \(G \) is self-embeddable if and only if at least one of the following statements holds:

(i) There exists a self-embeddable component of \(G \).

(ii) There exists a sequence of distinct components \((C_i)_{i \in \mathbb{N}} \) of \(G \) such that \(C_1 \leq C_2 \leq \cdots \).

Proof. The backward direction can be easily proved by defining a suitable self-embedding of \(G \) for each of the two cases; it remains to show the forward direction.

Suppose that \(G \) has a self-embedding \(\varphi \) that embeds \(G \) into \(G - p \), where \(p \) is either a vertex or an edge of \(G \), and \(G \) contains no self-embeddable component. Let \(C_0 \) be the component of \(G \) containing \(p \). We write \(v \simeq w \) if the vertices \(v \) and \(w \) belong to the same component, and we denote \(\varphi^k \) as the \(k \)-fold composition of \(\varphi \).

We claim that if \(u \in V(C_0) \), then for \(0 \leq i < j \), we have \(\varphi^i(u) \neq \varphi^j(u) \). We use induction on \(i \). Let \(i = 0 \), and suppose to the contrary that \(u \) and \(\varphi^i(u) \), where \(j > 0 \), both belong to the same component, and we denote \(\varphi^k \) as the \(k \)-fold composition of \(\varphi \).

We claim that if \(u \in V(C_0) \), then for \(0 \leq i < j \), we have \(\varphi^i(u) \neq \varphi^j(u) \). We use induction on \(i \). Let \(i = 0 \), and suppose to the contrary that \(u \) and \(\varphi^i(u) \), where \(j > 0 \), both belong to the same component, and we denote \(\varphi^k \) as the \(k \)-fold composition of \(\varphi \).

We claim that if \(u \in V(C_0) \), then for \(0 \leq i < j \), we have \(\varphi^i(u) \neq \varphi^j(u) \). We use induction on \(i \). Let \(i = 0 \), and suppose to the contrary that \(u \) and \(\varphi^i(u) \), where \(j > 0 \), both belong to the same component, and we denote \(\varphi^k \) as the \(k \)-fold composition of \(\varphi \).
so $\varphi^{j-i}(v) \in V(C)$ for every $v \in V(C)$. We now prove that φ^{j-i} carries C into $C - \varphi(u)$; this would contradict the non–self-embeddability of C. Suppose that $\varphi^{j-i}(v) = \varphi'(u)$ for some vertex v. We have $\varphi^{j-i-1}(v) = \varphi^{i-1}(u)$ by injectivity. By the induction hypothesis, we also have $\varphi^{i-1}(u) \not\equiv \varphi^{j-1}(u)$, so $\varphi^{j-i-1}(v) \not\equiv \varphi^{j-1}(u)$. It follows that $v \not\equiv \varphi'(u)$, and since $\varphi'(u) \in V(C)$, we infer that $v \not\in V(C)$. Therefore, $\varphi'(u)$ cannot be the image of a vertex of C under φ^{j-i}, as desired.

Let $u \in V(C_0)$. Define a sequence $(C_i)_{i \in \mathbb{N}}$ such that C_i is the component containing $\varphi'(u)$. This sequence consists of pairwise distinct components by the previous claim. It is clear that φ carries C_i to C_{i+1}, so $C_i \leq C_{i+1}$ for $i \in \mathbb{N}$, and we are done.

Proposition 2.1 implies, as an example, that the union of finite paths is self-embeddable, but the union of finite cycles with different lengths is not. Also, we obtain the following corollary.

Corollary 2.2. A star forest is self-embeddable if and only if it is infinite.

For nonempty graphs G, a stronger property than self-embeddability is the property that $G \leq G - e$ for all $e \in E(G)$. The ray and an infinite complete graph, for example, enjoy this stronger property. On the other hand, the disjoint union $\mathbb{N} \cup \mathbb{Z}$ is self-embeddable, but does not embed into $\mathbb{N} \cup (\mathbb{Z} - e)$, where e is any edge of \mathbb{Z}. Thus $\mathbb{N} \cup \mathbb{Z}$ does not possess this stronger property.

Proposition 2.3. If G is a nonempty graph such that $G \leq G - e$ for all $e \in E(G)$, then no (G, H)-minimal graph exists for any graph H.

Proof. We will prove that for every graph F such that $F \rightarrow (G, H)$, we have $F - e \rightarrow (G, H)$ for some $e \in E(F)$. This would show that (G, H) admits no minimal graph.

Let F be a graph, and let e be any one of its edges. Set $F' = F - e$. Suppose that $F' \not\rightarrow (G, H)$—there exists a (G, H)-good coloring c' of F'. We show that $F \not\rightarrow (G, H)$. Define a coloring c on F such that $c|_{E(F')} = c'$ and e is colored red. By this definition, no blue copy of H is produced in F. We claim that c does not produce a red copy of G either. Suppose to the contrary that a red copy of G, say \hat{G}, is produced in F. Since $\hat{G} \leq \hat{G} - e$, we can choose a red copy of G in F that does not contain e; that is, there exists a red copy of G in F'. This contradicts the (G, H)-goodness of c'. As a consequence, c is a (G, H)-good coloring of F, and thus $F \not\rightarrow (G, H)$.

We note that Proposition 2.3 does not hold for self-embeddable graphs G in general—see Example 3.3.

If R is the Rado graph, then $R - e$ is also the Rado graph for every $e \in E(R)$ via [13, Proposition 2(b)]. As a result, the Rado graph satisfies the hypothesis of Proposition 2.3. Consequently, by [13], the following holds.

Proposition 2.4. For H a fixed graph, almost all countably infinite graphs G produce a pair (G, H) which admits no Ramsey-minimal graph.
3. Graph unions

Before we focus on star forests proper, we provide a quick background on graph unions in general. Consider graphs \(G, H_1, \) and \(H_2 \); let \(F_i \in \mathcal{R}(G, H_i) \) for \(i \in \{1, 2\} \). Possible candidates for a \((G, H_1 \cup H_2)\)-minimal graph include \(F_1 \), \(F_2 \), and \(F_1 \cup F_2 \).

Although \(F_1 \cup F_2 \rightarrow (G, H_1 \cup H_2) \), it not necessarily true that \(F_1 \cup F_2 \in \mathcal{R}(G, H_1 \cup H_2) \). Indeed, let us take \(H_1 = H_2 = S_1 \). For \(G \) connected, we have \(2G \in \mathcal{R}(G, 2S_1) \) provided that \(G \in \mathcal{R}(G, S_1) \). This was discussed in \[1\] but also follows from Proposition \[3.1\]. On the other hand, if \(G \) is disconnected, we have \(3Z \in \mathcal{R}(2Z, 2S_1) \)—not \(4Z \)—even though \(2Z \in \mathcal{R}(2Z, S_1) \).

Proposition 3.1. Let \(G \) and \(H \) be nontrivial, connected graphs, and let \(n \in \mathbb{N} \).

If \(F_i \in \mathcal{R}(G, H) \) for \(1 \leq i \leq n \), then

\[
\bigcup_{i=1}^{n} F_i \in \mathcal{R}(G, nH).
\]

Consequently, the existence of a \((G, nH)\)-minimal graph is assured provided that a \((G, H)\)-minimal graph exists.

Proof. The arrowing part is obvious, so we only show the minimality of \(\bigcup_{i=1}^{n} F_i \).

It is clear that \(F_i \not\rightarrow (G, 2H) \), since otherwise we would have \(F_i \notin \mathcal{R}(G, H) \). Let \(e \) be an edge of \(F_k \) for some \(1 \leq k \leq n \). Color \(F_k - e \) by a \((G, H)\)-good coloring and \(F_i \), for \(i \neq k \), by a \((G, 2H)\)-good coloring. This coloring on \(\bigcup_{i=1}^{n} F_i - e \) is easily shown to be \((G, nH)\)-good from the connectivity of \(G \) and \(H \). Since \(e \) is arbitrary, the proposition is proved.

In contrast to Proposition \[3.1\] the following proposition considers \(F_i \) as a candidate for being in \(\mathcal{R}(G, H_1 \cup H_2) \). A sufficient condition is provided for a \((G, H_1)\)-minimal graph to be \((G, H_1 \cup H_2)\)-minimal.

Proposition 3.2. Let \(G, H_1, \) and \(H_2 \) be graphs, and let \(F \in \mathcal{R}(G, H_1) \). If \(F - V(\tilde{H}_1) \rightarrow (G, H_2) \) for every \(\tilde{H}_1 \) a copy of \(H_1 \) in \(F \), then \(F \in \mathcal{R}(G, H_1 \cup H_2) \).

Proof. We first prove that \(F \rightarrow (G, H_1 \cup H_2) \). Suppose \(c \) is a coloring on \(F \) that produces no red copy of \(G \). It follows from \(F \rightarrow (G, H_1) \) that \(c \) produces a blue copy of \(H_1 \), say \(\tilde{H}_1 \), in \(F \). Let \(F' = F - V(\tilde{H}_1) \). Since \(F' \rightarrow (G, H_2) \) and \(F' \) contains no red copy of \(G \), there exists a blue copy of \(H_2 \), say \(\tilde{H}_2 \), in \(F' \). We observe that \(\tilde{H}_1 \) and \(\tilde{H}_2 \) are disjoint, so \(c \) produces a blue copy of \(H_1 \cup H_2 \). Hence \(F \rightarrow (G, H_1 \cup H_2) \). Its minimality follows immediately from the \((G, H_1)\)-minimality of \(F \).

Example 3.3. Let

\[
\begin{align*}
G &= 2S_1, \\
H_1 &= \mathbb{Z}, \\
H_2 &= \mathbb{N}, \text{ and} \\
F &= 2\mathbb{Z}.
\end{align*}
\]
The graph $2Z$ is $(2S_1, Z)$-minimal, and $Z \rightarrow (2S_1, N)$, so we can conclude by Proposition 3.2 that $2Z \in R(2S_1, Z \cup N)$. This serves as an example of a pair (G, H) involving a self-embeddable graph that admits a minimal graph. We note, however, that no $(S_1, Z \cup N)$-minimal graph exists since $Z \cup N$ is self-embeddable. Thus it is possible that a $(2G, H)$-minimal graph exists even though no (G, H)-minimal graph exists.

4. Proof of Theorem 1.3

We fix star forests G and H such that at least one of them contains a star component on infinitely many vertices. We prove in this section that (G, H) admits no Ramsey-minimal graph.

Suppose that $F \rightarrow (G, H)$. Since one of G and H contains a vertex of infinite degree, there exists a vertex v of infinite degree in F. We choose an arbitrary edge e at v. We prove that $F' \rightarrow (G, H)$, where $F' = F - e$. Toward a contradiction, suppose that F' admits a (G, H)-good coloring c'. Since $\deg(v)$ is infinite, there are two possible cases: v is incident to infinitely many red edges or infinitely many blue edges under the coloring c'.

Suppose that v is incident to infinitely many red edges. Define a coloring c on F such that $c |_{E(F)} = c'$ and e is colored red. This coloring produces no blue copy of H, so by $F \rightarrow (G, H)$ it produces a red copy of G, say \hat{G}, in F. There exists a star component S of \hat{G} that contains e since otherwise, $\hat{G} \subseteq F'$, which contradicts the (G, H)-goodness of c'.

If S is infinite, then F' clearly contains a red copy of G by removing e from \hat{G}. On the other hand, let us suppose that S has n vertices. We can pick a red star S' on n vertices that is centered on v but does not contain e, since v is incident to infinitely many red edges. The graph F' can then be shown to contain a red copy of G by exchanging S from \hat{G} for S'. In both cases, we obtain a contradiction.

The case when v is incident to infinitely many blue edges can be handled similarly, so our proof of Theorem 1.3 is complete.

5. Subdivision graphs vs. star forests

5.1. Bipartite graphs

Recall that a graph is bipartite if its vertex set can be partitioned into two parts such that each part is an independent set. Let K be a bipartite graph with bipartition $\{A, B\}$ such that $\deg(u) \neq \infty$ for all $u \in A$. Before we work on subdivision graphs $S(G)$, we construct for $n \in \mathbb{N}$, a graph $\Gamma(K, A, n)$ such that $\Gamma(K, A, n) \rightarrow (K, S_n)$.

We define $\Gamma(K, A, n)$ by adding additional vertices and edges to K. For every $u \in A$, we add vertices $u_1, ..., u_{\deg(u)n}$—each not already in $V(K)$—to K, where $m = \deg(u)$. We then insert an edge between each u_i and a vertex v of K if uv exists in K. We denote the resulting graph by $\Gamma(K, A, n)$. Also, for each $u \in A$, we define A_u as the set $\{u, u_1, ..., u_{\deg(u)n-1}\}$. As a result, $\Gamma(K, A, n)$ admits a
bipartition \(\bigcup_{u \in A} A_u, B \). Figure 2 shows the result of this construction when \(K = \mathbb{Z} \) and \(n = 3 \).

There is a natural projection \(\pi: \Gamma(K, A, n) \to K \) that is also a homomorphism. It is defined as

\[
\pi(v) = \begin{cases}
 u, & v \in A_u \text{ for some } u \in A, \\
 v, & v \in B.
\end{cases}
\]

(Proposition 5.1) Let \(K \) be a bipartite graph with bipartition \(\{A, B\} \) such that \(\deg(u) \neq \infty \) for all \(u \in A \). For \(n \in \mathbb{N} \), we have \(\Gamma(K, A, n) \to (K, S_n) \). Consequently for \(k \in \mathbb{N} \),

\[
\bigcup_{i=1}^k \Gamma(K, A, n_i) \to \left(K, \bigcup_{i=1}^k S_{n_i} \right),
\]

where \(n_1, \ldots, n_k \in \mathbb{N} \).

Proof. Suppose that \(c \) is a coloring on \(\Gamma(K, A, n) \) that produces no blue copy of \(S_n \). We prove that \(c \) produces a red copy of \(K \).

We claim that for all \(u \in A \), there exists \(v_u \in A_u \) such that \(v_u \) is incident to red edges only. By construction, the vertices in \(A_u \) share the same neighborhood \(N \) of \(m \) vertices, and \(|A_u| = m(n-1) + 1 \). If every vertex in \(A_u \) is incident to at least one blue edge, then the vertices in \(N \) in total are incident to at least \(m(n-1) + 1 \) blue edges. Since \(|N| = m \), there exists a vertex in \(N \) that is incident to at least \(n \) blue edges by the Pigeonhole Principle. This is impossible since \(\Gamma(K, A, n) \) does not contain a blue copy of \(S_n \). Therefore, \(A_u \) must contain a vertex that is incident to only red edges.

Hence we can define an embedding \(\varphi: K \to \Gamma(K, A, n) \) as

\[
\varphi(u) = \begin{cases}
 v_u, & u \in A, \\
 u, & u \in B.
\end{cases}
\]
The graph image of \(\varphi \) is a red copy of \(K \) in \(\Gamma(K, A, n) \), as desired.

The graph \(\Gamma(K, A, n) \) is not necessarily \((K, S_n) \)-minimal in general. For example, let us take \(K = S_k \) and \(A \) as the set of leaf vertices of \(S_k \). We have \(\Gamma(S_k, A, n) = S_{kn} \), which is not \((S_k, S_n) \)-minimal for \(k, n \geq 2 \) since \(S_{k+n-1} \in \mathcal{R}(S_k, S_n) \). However, we potentially have \(\Gamma(K, A, n) \in \mathcal{R}(K, S_n) \) when \(K = S(G) \) for some graph \(G \) as stated in Theorem 1.4.

5.2. Proof of Theorem 1.4

Fix a connected, leafless, non–self-embeddable graph \(G \). Building upon Subsection 5.1, we prove that for \(n_1, \ldots, n_k \in \mathbb{N} \), we have

\[
\bigcup_{i=1}^{k} \Gamma(S(G), A, n_i) \in \mathcal{R} \left(S(G), \bigcup_{i=1}^{k} S_{n_i} \right),
\]

where \(A \) is taken as the set of vertices of \(S(G) \) that subdivide the edges of \(G \). We note that \(\deg(u) = 2 \) for all \(u \in A \). First, we show that the three properties of \(G \) transfer to \(S(G) \), and that \(S(G) \) is \(C_4 \)-free— it contains no 4-cycles. The following lemma can be verified using elementary means.

Lemma 5.2. Let \(G \) and \(H \) be connected, bipartite graph with bipartition \(\{A, B\} \) and \(\{C, D\} \), respectively. For any isomorphism \(\varphi: G \to H \), either \(\varphi(A) = C \) and \(\varphi(B) = D \), or \(\varphi(A) = D \) and \(\varphi(B) = C \).

Proposition 5.3. If \(G \) is a connected, leafless, non–self-embeddable graph, then \(S(G) \) is also a connected, leafless, non–self-embeddable graph. In addition, \(S(G) \) is \(C_4 \)-free.

Proof. The first two properties obviously transfer, and \(S(G) \) is \(C_4 \)-free since \(G \) contains no multiple edges. We now prove that \(G \) is self-embeddable given that \(S(G) \) is self-embeddable.

Suppose that \(\varphi \) is a self-embedding of \(S(G) \). Let \(A \) be the set of vertices of \(S(G) \) that subdivide the edges of \(G \), and let \(B = V(G) \). Since \(S(G) \) is connected and bipartite with bipartition \(\{A, B\} \), there are by Lemma 5.2 two cases to consider.

Case 1: \(\varphi(A) \subseteq A \) and \(\varphi(B) \subseteq B \). We claim that \(\varphi \), restricted to \(V(G) \), gives rise to a self-embedding \(\tilde{\varphi} \) of \(G \). It is straightforward to show that \(\tilde{\varphi} \) is an embedding, so we only prove that there is an edge of \(G \) not in the image of \(\tilde{\varphi} \). Suppose that \(u \), where \(u \in A \) and \(v \in B \), is an edge of \(S(G) \) not in the image of \(\varphi \), and suppose that \(u \) subdivides an edge \(vw \) of \(G \).

We prove that \(uv \) is not in the image of \(\tilde{\varphi} \). Suppose toward a contradiction that \(\tilde{\varphi}(a) = v \) and \(\tilde{\varphi}(b) = w \) for two adjacent vertices \(a, b \in V(G) \). Let \(c \) be the vertex that subdivides \(ab \). It is apparent that \(\{\varphi(c), v\} \) and \(\{\varphi(c), w\} \) are edges of \(S(G) \). Also, we cannot have \(\varphi(c) = u \) since \(uv \) is not in the image of \(\varphi \). But then the vertices in the set \(\{v, u, w, \varphi(c)\} \) induce a 4-cycle on \(S(G) \), which contradicts the fact that \(S(G) \) is \(C_4 \)-free.
Case 2: \(\varphi(A) \subseteq B \) and \(\varphi(B) \subseteq A \). The map \(\varphi^2 \) is a self-embedding of \(S(G) \) that carries \(A \) into \(A \), and \(B \) into \(B \). So by appealing to Case 1, we can obtain a self-embedding of \(G \).

Armed with Proposition 5.3, we are ready to prove Theorem 1.4. But first, let us provide a straightforward application of the membership statement of (2) that we will prove later.

Example 5.4. Choose \(G = \mathbb{Z} \) and \(H = S_3 \). Since \(\mathbb{Z} \) is connected, leafless, and non-self-embeddable, and \(S(\mathbb{Z}) = \mathbb{Z} \), the graph of Figure 2(b) is \((\mathbb{Z}, S_3)\)-minimal by (2).

Proof of Theorem 1.4. First, suppose

\[
H = \bigcup_{i=1}^{k} S_{n_i}, \text{ where } 1 \leq n_1 \leq \cdots \leq n_k.
\]

Let \(A \) be the set of vertices of \(S(G) \) that subdivide the edges of \(G \) so that \(\deg(u) = 2 \) for all \(u \in A \). Define \(\Gamma_i = \Gamma(S(G), A, n_i) \), and let \(\Gamma = \bigcup_{i=1}^{k} \Gamma_i \).

Denote the corresponding set to \(A \) that belongs to \(\Gamma_i \) by \(A_{u,i} \). We have \(|A_{u,i}| = 2n_i - 1 \). If \(B_i = V(\Gamma_i) \setminus \bigcup_{u \in A} A_{u,i} \), then \(\Gamma_i \) admits a bipartition \(\bigcup_{u \in A} A_{u,i}, B_i \).

We prove for each \(e \in E(\Gamma) \) that there is a \((S(G), H)\)-good coloring of \(\Gamma - e \). This, along with Proposition 5.3, would show that \(\Gamma \in \mathcal{R}(S(G), H) \).

Lemma 5.5. For every \(e \in E(\Gamma) \), there exists a coloring \(c \) on \(\Gamma - e \) such that both of the following statements hold:

(i) The coloring \(c \) produces no blue copy of \(H \).

(ii) There exists \(u \in A \) such that for \(1 \leq i \leq k \), every vertex in \(A_{u,i} \) is incident to exactly one red edge.

Proof. Suppose that \(e \) is an edge of some \(\Gamma_j \), where \(1 \leq j \leq k \), and that \(e \) is at a vertex \(v \in A_{u,j} \) for some \(u \in A \). We color each edge in every \(\Gamma_i \), minus the edge \(e \) when \(i = j \), by the following rules:

Case 1: \(i < j \). Recall that \(|A_{u,i}| = 2n_i - 1 \) and that all vertices in \(A_{u,i} \) share the same neighborhood \(\{a, b\} \). Arbitrarily partition \(A_{u,i} \) into sets \(S \) and \(T \) such that \(|S| = n_i \) and \(|T| = n_i - 1 \). Color all the edges in \(E(S, a) \cup E(T, b) \) blue, where \(E(S, a) \) denotes the set of all edges between the vertex set \(S \) and the vertex \(a \); this produces two blue stars of sizes \(n_i \) and \(n_i - 1 \), respectively. Color the rest of \(\Gamma_i \) red.

Case 2: \(i = j \). As before, let \(a \) and \(b \) be the vertices adjacent to each vertex in \(A_{u,j} \). Partition \(A_{u,j} \setminus v \) into sets \(S \) and \(T \) both of size \(n_j - 1 \). Similarly to Case 1, we color all the edges in \(E(S, a) \cup E(T, b) \) blue. This produces two blue stars of size \(n_j - 1 \). Color the rest of \(\Gamma_j \) red.

Case 3: \(i > j \). Let \(a \) be a vertex adjacent to each vertex in \(A_{u,i} \). Color \(E(A_{u,i}, a) \) blue; this produces a blue star of size \(2n_i - 1 \). As previously, we color the rest of \(\Gamma_i \) red.
Denote the preceding coloring scheme by c. It is obvious from the preceding construction of c that (ii) holds for our $u \in A$, so it remains to prove that (i) holds.

Let j' be the least positive integer such that $n_{j'} = n_j$. Observe that we only produce blue stars of size at least n_j in Case 3 and, if $j' < j$, in Case 1 also. Every Γ_i such that $j' \leq i \leq k$ and $i \neq j$ contributes exactly one blue star of size at least n_j, so exactly $k - j'$ such blue stars are produced in $\Gamma - e$ in total. But H contains $k - j' + 1$ stars of size at least n_j, so no blue copy of H can be produced in $\Gamma - e$ by the coloring c.

We take the coloring c of Lemma 5.5. To prove that c is $(S(G), H)$-good, we need to show that c does not produce a red copy of $S(G)$ in $\Gamma - e$.

Suppose to the contrary that there exists an embedding $\xi: S(G) \to \Gamma_i$ such that its graph image is a red copy of $S(G)$. Set $\varphi = \pi \circ \xi$, where $\pi: \Gamma_i \to S(G)$ is a projection that sends each vertex in $A_{u,i}$ to u and is defined similarly to Eq. (1). We prove that φ is a self-embedding of $S(G)$, which would contradict the non-self-embeddability of $S(G)$. For illustration, we provide the following commutative diagram of graph homomorphisms:

\[
\begin{array}{ccc}
S(G) & \xrightarrow{\xi} & \Gamma_i \\
\downarrow{\varphi} & & \downarrow{\pi} \\
S(G) & &
\end{array}
\]

Suppose that $\varphi(a) = b$ for some vertices a and b of $S(G)$. If $b \in A$, then the vertex $\xi(a)$ belongs in $A_{b,i}$. Recall that $\deg(a) \geq 2$ since $S(G)$ is leafless. Since the graph image of ξ is red, $\xi(a)$ needs to be incident to at least two red edges as a result. We infer that $b \neq u$, where $u \in A$ is taken from Lemma 5.5(ii). This shows that the vertex u of Lemma 5.5(ii) is not in the image of φ.

Since $S(G)$ is C_4-free and ξ is an embedding, there cannot be a C_4 in the graph image of ξ. We now prove that φ is injective. Let a and b be distinct vertices of $S(G)$. Since a and b have degree at least two, the vertices $\xi(a)$ and $\xi(b)$ also have degree at least two. As a result, $\xi(a)$ and $\xi(b)$ cannot both belong in $A_{u,i}$ for some $u \in A$, since that would create a C_4 in the graph image of ξ. Therefore, φ is injective. This completes the proof that φ is a self-embedding and finishes our proof of Theorem 1.4.

References

[1] Barrett, J.M., Vito, V., 2021. On Ramsey-minimal infinite graphs. Electron. J. Combin. 28, P1.46.

[2] Bonato, A., Tardif, C., 2003. Large families of mutually embeddable vertex-transitive graphs. J. Graph Theory 43, 99–106.
[3] Bonato, A., Tardif, C., 2006. Mutually embeddable graphs and the tree alternative conjecture. J. Combin. Theory Ser. B 96, 874–880.

[4] Bruhn, H., Stein, M., 2007. On end degrees and infinite cycles in locally finite graphs. Combinatorica 27, 269.

[5] Burr, S.A., Erdős, P., Faudree, R.J., Rousseau, C.C., Schelp, R.H., 1978a. Ramsey-minimal graphs for multiple copies, in: Indagationes Mathematicae (Proceedings), pp. 187–195.

[6] Burr, S.A., Erdős, P., Faudree, R.J., Rousseau, C.C., Schelp, R.H., 1980. Ramsey minimal graphs for the pair star-connected graph. Studia Sci. Math. Hungar. 15, 265–273.

[7] Burr, S.A., Erdős, P., Faudree, R.J., Rousseau, C.C., Schelp, R.H., 1981a. Ramsey minimal graphs for matchings, in: The Theory and Applications of Graphs, pp. 159–168.

[8] Burr, S.A., Erdős, P., Faudree, R.J., Rousseau, C.C., Schelp, R.H., 1981b. Ramsey-minimal graphs for star-forests. Discrete Math. 33, 227–237.

[9] Burr, S.A., Erdős, P., Faudree, R.J., Rousseau, C.C., Schelp, R.H., 1982. Ramsey-minimal graphs for forests. Discrete Math. 38, 23–32.

[10] Burr, S.A., Erdős, P., Faudree, R.J., Schelp, R.H., 1978b. A class of Ramsey-finite graphs, in: Proc. 9th SE Conf. on Combinatorics, Graph Theory and Computing, pp. 171–178.

[11] Burr, S.A., Erdős, P., Lovász, L., 1976. On graphs of Ramsey type. Ars Combin. 1, 167–190.

[12] Burr, S.A., Faudree, R.J., Schelp, R.H., 1985. On graphs with Ramsey-infinite blocks. European J. Combin. 6, 129–132.

[13] Cameron, P.J., 2013. The random graph, in: Graham, R.L., Nešetřil, J., Butler, S. (Eds.), The Mathematics of Paul Erdős II. Springer, pp. 353–378.

[14] Erdős, P., Rado, R., 1956. A partition calculus in set theory. Bull. Amer. Math. Soc. 62, 427–489.

[15] Erdős, P., Rényi, A., 1963. Asymmetric graphs. Acta Math. Acad. Sci. Hungar. 14, 295–315.

[16] Harary, F., 1969. Graph theory. Addison-Wesley, Reading, MA.

[17] Nešetřil, J., Rödl, V., 1976. Partitions of vertices. Comment. Math. Univ. Carolin. 17, 85–95.

[18] Nešetřil, J., Rödl, V., 1978a. On Ramsey minimal graphs, in: Colloq. Int. CNRS Problemes Combinatoires et Theorie des Graphes, pp. 309–312.
[19] Nešetřil, J., Rödl, V., 1978b. The structure of critical Ramsey graphs. Acta Math. Acad. Sci. Hungar. 32, 295–300.

[20] Ramsey, F.P., 1930. On a problem of formal logic. Proc. Lond. Math. Soc. 2, 264–286.

[21] Shekarriz, M.H., Mirzavaziri, M., 2015. Self-contained graphs. arXiv preprint arXiv:1503.00139.

[22] Stein, M., 2007. Forcing highly connected subgraphs. J. Graph Theory 54, 331–349.

[23] Stein, M., 2010. Ends and vertices of small degree in infinite minimally k-(edge)-connected graphs. SIAM J. Discrete Math. 24, 1584–1596.

[24] Stein, M., 2011. Extremal infinite graph theory. Discrete Math. 311, 1472–1496.

[25] Stein, M., Zamora, J., 2011. The relative degree and large complete minors in infinite graphs. Electron. Notes Discrete Math. 37, 129–134.

[26] Wijaya, K., Baskoro, E.T., Assiyatun, H., Suprijanto, D., 2020. Subdivision of graphs in $\mathcal{R}(mK_2, P_4)$. Heliyon 6, e03843.