Research Article

Fuzzy Γ-Hyperideals in Γ-Hypersemirings by Using Triangular Norms

B. A. Ersoy,1 B. Davvaz,2 S. Onar,1 and V. Leoreanu-Fotea3

1 Department of Mathematics, Yildiz Technical University, 81270 Istanbul, Turkey
2 Department of Mathematics, Yazd University, Yazd, Iran
3 Faculty of Mathematics, "Al.I. Cuza" University, Iasi, Romania

Copyright © 2014 B. A. Ersoy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The concept of Γ-semihyperrings was introduced by Dehkordi and Davvaz as a generalization of semirings, semihyperrings, and Γ-semiring. In this paper, by using the notion of triangular norms, we define the concept of triangular fuzzy sub-Γ-semihyperrings as well as triangular fuzzy Γ-hyperideals of a Γ-semihyperring, and we study a few results in this respect.

1. Introduction

In [1], Nobusawa introduced Γ-rings as a generalization of ternary rings. Let M be an additive group whose elements are denoted by a, b, c, \ldots and Γ another additive group whose elements are $\gamma, \beta, \alpha, \ldots$. Suppose that $a\gamma b$ is defined to be an element of M and that $a\beta\alpha$ is defined to be an element of Γ for every a, b, γ, β. If the products satisfy the following three conditions: (1) $(a_1 + a_2)\gamma b = a_1\gamma b + a_2\gamma b, a(\gamma_1 + \gamma_2)b = a\gamma_1 b + a\gamma_2 b$, (2) $(a\gamma b)\beta c = a\gamma(b\beta c) = a(\gamma b\beta)c$; (3) if $a\gamma b = 0$ for any a and b in M, then $\gamma = 0$; then M is called a Γ-ring in the sense of Nobusawa [1]. Barnes [2] weakened slightly the conditions in the definition of Γ-ring and gave a new definition of a Γ-ring. Let M and Γ be two additive abelian groups. Suppose that there is a mapping from $M \times \Gamma \times M \rightarrow M$ (sending (a, γ, b) into $a\gamma b$ such that (1) $(a_1 + a_2)\gamma b = a_1\gamma b + a_2\gamma b, a(\gamma_1 + \gamma_2)b = a\gamma_1 b + a\gamma_2 b$, $a\gamma(b_1 + b_2) = a\gamma b_1 + a\gamma b_2$, (2) $(a\gamma b)\beta c = a\gamma(b\beta c)$; then M is called a Γ-ring in the sense of Barnes [2]. Nowadays, Γ-rings mean the Γ-rings due to Barnes and other Γ-rings are known as Γ_0-rings, that is, gamma rings in the sense of Nobusawa. Barnes [2], Luh [3], and Kyuno [4] studied the structure of Γ-rings and obtained various generalization analogous to corresponding parts in ring theory. The notion of Γ-semirings was introduced by Rao [5] as a generalization of semirings as well as Γ-rings. Subsequently, by introducing the notion of operator semirings of a Γ-semiring, Dutta and Sardar [6] enriched the theory of Γ-semirings. Algebraic hyperstructures represent a natural extension of classical algebraic structures and they were introduced by the French mathematician Marty [7]. Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic structure, the composition of two elements is a set. Since then, hundreds of papers and several books have been written on this topic, for example, see [8–10]. In [11, 12], Dehkordi and Davvaz studied the notion of a Γ-semihyperring as a generalization of semiring, semihyperring, and Γ-semiring.

Fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets have been introduced by Zadeh (1965) as an extension of the classical notion of sets [13]. Let X be a set. A fuzzy subset A of X is characterized by a membership function $\mu_A : X \rightarrow [0, 1]$ which associates with each point $x \in X$ its grade or degree of membership $\mu_A(x) \in [0, 1]$. Fuzzy sets generalize classical sets since the characteristic functions of classical sets are special cases of the membership functions of fuzzy sets, if the latter only take values 0 or 1. After the introduction of fuzzy sets by Zadeh, reconsideration of the concept of classical mathematics began. In 1971, Rosenfeld [14] introduced fuzzy sets in the context of group theory and formulated...
the concept of a fuzzy subgroup of a group. Das characterized fuzzy subgroups by their level of subgroups in [15], since then many notions of fuzzy group theory can be equivalently characterized with the help of notion of level subgroups. The concept of a fuzzy ideal of a ring was introduced by Liu [16]. In 1992, Jun and Lee [17] introduced the notion of fuzzy ideals in \(\Gamma \)-rings and studied a few properties. In [6], Dutta and Sardar studied the structures of fuzzy ideals of \(\Gamma \)-rings. Also, see [18]. The study of fuzzy hyperstructures is an interesting research topic of fuzzy sets. There is a considerable amount of work on the connections between fuzzy sets and hyperstructures. In [19], Davvaz introduced the concept of fuzzy \(H \)-ideals of \(H \)-rings. Now, in this paper, we define the concept of triangular fuzzy sub-\(\Gamma \)-semihyperstructures and fuzzy \(\Gamma \)-hyperideals of a \(\Gamma \)-semihyperring by using triangular norms, and we study a few results in this respect.

2. Basic Concepts

Let \(H \) be a nonempty set and let \(g^*(H) \) be the set of all nonempty subsets of \(H \). A hyperoperation on \(H \) is a map \(\ast : H \times H \rightarrow g^*(H) \) and the couple \((H, \ast)\) is called a hypergroupoid. If \(A \) and \(B \) are some properties of fuzzy \(\Gamma \)-hyperideals of \(\Gamma \)-semihyperring. Now, in this paper, we define the concept of triangular fuzzy sub-\(\Gamma \)-semihyperstructures and fuzzy \(\Gamma \)-hyperideals of a \(\Gamma \)-semihyperring by using triangular norms, and we study a few results in this respect.

3. 3-T-Fuzzy Sub-\(\Gamma \)-Semihyperstructures and \(T \)-Fuzzy \(\Gamma \)-Hyperideals

In this section, we define the notion of \(T \)-fuzzy sub-\(\Gamma \)-semihyperstructures and \(T \)-fuzzy \(\Gamma \)-hyperideals of a \(\Gamma \)-semihyperring and we study some of their properties. Let \(T \) be a \(t \)-norm and \(\mu \) be a fuzzy subset of a \(\Gamma \)-semihyperring \(R \). Then, we say \(\mu \) has imaginable property if \(\text{Im} \mu \subseteq \Delta_T \).
Definition 1. Let R be a Γ-semihyperring, T be a t-norm, and μ be a fuzzy subset of R. Then, μ is called a T-fuzzy sub-Γ-semihyperring of R if

1. $T(\mu(x), \mu(y)) \leq \inf_{z \in x+y} \{\mu(z)\}$,
2. $T(\mu(x), \mu(y)) \leq \inf_{z \in x+y} \{\mu(z)\}$,

for all $x, y \in R$ and for all $y \in \Gamma$.

A T-fuzzy sub-Γ-semihyperring of R is said to be imaginable if it satisfies the imaginable property. Clearly, if R is a Γ-semiring, then μ is a T-fuzzy sub-Γ-semiring of R when

1'. $T(\mu(x), \mu(y)) \leq \mu(x+y)$,
2'. $T(\mu(x), \mu(y)) \leq \mu(xy)$,

for all $x, y \in R$ and for all $y \in \Gamma$.

Example 2. Suppose that $R = \mathbb{N}$, the set of natural numbers, and Γ is a nonempty subset of R. For any $x, y \in R$ and $y \in \Gamma$, we define $x + y = \{x, y\}$ and $xy = \{x, y\}$. Then, R is a Γ-semihyperring. We define the fuzzy subset μ of R by

$$\mu(x) = \begin{cases} 3/4 & \text{if } x \in \Gamma \\ 5/9 & \text{otherwise} \end{cases} \quad (1)$$

and we consider the t-norm $T(r,s) = rs/(2 - (r + s - rs))$, where $r, s \in [0, 1]$. Then, for any $x, y \in R$ and $y \in \Gamma$, we have

$$\inf_{z \in x+y} \{\mu(z)\} = \min \{\mu(x), \mu(y)\} = \begin{cases} 3/4 & \text{if } x, y \in \Gamma \\ 5/9 & \text{otherwise} \end{cases} \quad (2).$$

On the other hand, we have the following cases:

1. $x, y \in \Gamma$,
2. $x \notin \Gamma$ and $y \in \Gamma$ (or, $x \in \Gamma$ and $y \notin \Gamma$),
3. $x, y \notin \Gamma$.

Regarding the above cases, we have

$$T(\mu(x), \mu(y)) \leq \inf_{z \in x+y} \{\mu(z)\}, \quad (3)$$

Therefore, μ is a T-fuzzy sub-Γ-semihyperring of R.

Lemma 3. Let R be a Γ-semihyperring, T be a t-norm, and μ be a T-fuzzy sub-Γ-semihyperring of S. Then

$$\inf_{z \in x_1+y_1} \{\mu(z)\}, \quad (4)$$

for all $x_1, \ldots, x_n \in R$ and $y \in \Gamma$, where

$$T_n(t_1, \ldots, t_n)$$

and so $T(\mu(x), \mu(y)) \in \Delta_T$. Assume that $a = T(\mu(x), \mu(y))$. If $a = 0$, then

$$T(\mu(x), \mu(y)) = 0 \leq \inf_{z \in x+y} \{\mu(z)\}, \quad (8)$$

Proof. The proof is straightforward by mathematical induction. \square

Lemma 4. Let R be a Γ-semihyperring, T be a t-norm, and μ be a T-fuzzy sub-Γ-semihyperring of S. Let A and B be nonempty subsets of R. Then

$$T\left(\inf_{a \in A} \{\mu(a)\}, \inf_{b \in B} \{\mu(b)\}\right) \leq \inf_{z \in \Delta} \{\mu(z)\}, \quad (6)$$

for all $y \in \Gamma$.

Proof. The proof is straightforward. \square

Theorem 5. Let R be a Γ-semihyperring, T be a t-norm, and μ be a fuzzy subset of S with imaginable property and b the maximum of $\Im \mu$. Then, the following two statements are equivalent:

1. μ is a T-fuzzy sub-Γ-semihyperring of S,
2. $\mu^{-1}[a,b]$ is a sub-Γ-semihyperring of S whenever $a \in \Delta_T$ and $0 < a \leq b$.

Proof. (1) \Rightarrow (2): Suppose that $a \in \Delta_T$ and $0 < a \leq b$. If $x, y \in \mu^{-1}[a,b]$, then $\inf_{z \in x+y} \{\mu(z)\} \geq T(\mu(x), \mu(y)) \geq T(a,a) = a$, which implies that $x + y \subseteq \mu^{-1}[a,b]$. Similarly, assume that $a \in \Delta_T$ and $0 < a \leq b$. If $x, y \in \mu^{-1}[a,b]$ and $y \in \Gamma$, then $\inf_{z \in x+y} \{\mu(z)\} \geq T(\mu(x), \mu(y)) \geq T(a,a) = a$. Then, we have $xy \subseteq \mu^{-1}[a,b]$, and so $\mu^{-1}[a,b]$ is a sub-Γ-semihyperring of R.

(2) \Rightarrow (1): Suppose that $x, y \in S$ and $y \in \Gamma$. Since $\Im \mu \subseteq \Delta_T$, both $\mu(x)$ and $\mu(y)$ are in Δ_T. Now, we have

$$T(\mu(x), \mu(y)) = T(\mu(x), \mu(y))$$

and so $T(\mu(x), \mu(y)) \in \Delta_T$. Assume that $a = T(\mu(x), \mu(y))$. If $a = 0$, then

$$T(\mu(x), \mu(y)) = 0 \leq \inf_{z \in x+y} \{\mu(z)\}, \quad (8)$$

where $T_n(t_1, \ldots, t_n)$, $T_n(t_1, \ldots, t_n)$, and $T_n(t_1, \ldots, t_n)$.
Now, let $0 < a = T(\mu(x), \mu(y)) \leq \mu(x) \land \mu(y) \leq \mu(x) \leq b$. Hence $x, y \in \mu^{-1}[a, b]$, which implies that $x + y \subseteq \mu^{-1}[a, b]$, and $xy \subseteq \mu^{-1}[a, b]$. Therefore $T(\mu(x), \mu(y)) \leq \inf_{z \in xy} \{\inf \mu(z)\}$ and $T(\mu(x), \mu(y)) \leq \inf_{z \in xy} \{\mu(z)\}$. \hfill \Box

Definition 6. Let R be a Γ-semihyperring, T be a t-norm, and μ be a fuzzy subset of R. Then

1. μ is called a T-fuzzy left Γ-hyperideal of R if
 \[T(\mu(x), \mu(y)) \leq \inf_{z \in xy} \{\mu(z)\}, \quad \forall x, y \in R, \quad \mu(y) \leq \inf_{z \in xy} \{\mu(z)\}, \quad \forall x, y \in R, \quad \forall y \in \Gamma. \] (9)

2. μ is called a T-fuzzy right Γ-hyperideal of R if
 \[T(\mu(x), \mu(y)) \leq \inf_{z \in xy} \{\mu(z)\}, \quad \forall x, y \in R, \quad \mu(x) \leq \inf_{z \in xy} \{\mu(z)\}, \quad \forall x, y \in R, \quad \forall y \in \Gamma. \] (10)

3. μ is called a T-fuzzy Γ-hyperideal of R if it is both a T-fuzzy left Γ-hyperideal and a T-fuzzy right Γ-hyperideal of R.

Theorem 7. Let R be a Γ-semihyperring, T be a t-norm, and μ be a fuzzy subset of S with imaginable property and b the maximum of $\operatorname{Im} \mu$. Then, the following two statements are equivalent:

1. μ is a T-fuzzy Γ-hyperideal of R,
2. $\mu^{-1}[a, b]$ is a Γ-hyperideal of R whenever $a \in \Delta_T$ and $0 < a \leq b$.

Proof. The proof is similar to the proof of Theorem 5. \hfill \Box

Let μ be a fuzzy subset of R and $t \in [0, 1]$. The set $U(\mu, t) = \{x \in R | \mu(x) \geq t\}$ is called a level subset of μ. So, we obtain the following corollary.

Corollary 8. Let R be a Γ-semihyperring and μ be a fuzzy subset of R. Then

1. μ is a Min-fuzzy sub-Γ-semihyperring of R if and only if every nonempty level subset is a sub-Γ-semihyperring of R;
2. μ is a Min-fuzzy Γ-hyperideal of R if and only if every nonempty level subset is a Γ-hyperideal of R.

Corollary 9. Let A be a subset of R. Then

1. the characteristic function χ_A is a T-fuzzy sub-Γ-semihyperring of R if and only if A is a sub-Γ-semihyperring of R;
2. the characteristic function χ_A is a T-fuzzy Γ-hyperideal of R if and only if A is a Γ-hyperideal of R.

Theorem 10. Let R be a Γ-semihyperring and K be a sub-Γ-semihyperring of R. Let T' be the t-norm defined by $T(a, b) = \max\{0, a + b - 1\}$ and μ be a fuzzy subset of R defined by
 \[\mu(x) = \begin{cases} r & \text{if } x \in K \\ s & \text{otherwise}, \end{cases} \] (11)

for all $a, b \in [0, 1]$ and $x \in R$, where $r, s \in [0, 1]$ such that $s < r$. Then, μ is a T'-fuzzy sub-Γ-semihyperring of R. In particular, if $r = 1$ and $s = 0$, then μ is imaginable.

Proof. The proof is similar to the proof of Theorem 2.6 in [29]. \hfill \Box

Definition 11. Let R_1 and R_2 be Γ_1 and Γ_2-semihyperrings, respectively. If there exists a map $\varphi : R_1 \rightarrow R_2$ and a bijection $f : \Gamma_1 \rightarrow \Gamma_2$ such that
 \[\varphi(x + y) = \{ \varphi(z) \mid z \in x + y \} = \varphi(x) + \varphi(y), \] (12)

and
 \[\varphi(xy) = \{ \varphi(z) \mid z \in xy \} = \varphi(x)f(y)\varphi(y), \] for all $x, y \in R_1$ and $y \in \Gamma$, then we say (φ, f) is a homomorphism from R_1 to R_2. Also, if φ is a bijection then (φ, f) is called an isomorphism and R_1 and R_2 are isomorphic.

Proposition 12. Let R_1 and R_2 be Γ_1 and Γ_2-semihyperrings, respectively. Let (φ, f) be a homomorphism from R_1 to R_2. If λ is a T'-fuzzy sub-Γ-semihyperring of R_2, then $\varphi^{-1}(\lambda)$ is a T'-fuzzy sub-Γ-semihyperring of R_1.

Proof. Suppose that $x, y \in R_1$ and $y \in \Gamma$. Then, we have
 \[\inf_{z \in xy} \{ \varphi^{-1}(\lambda)(z) \} = \inf_{z \in xy} \{ \lambda(\varphi(z)) \} \] (13)

Therefore, $\varphi^{-1}(\lambda)$ is a T'-fuzzy sub-Γ-semihyperring of R_1. \hfill \Box

Proposition 13. Let R_1 and R_2 be Γ_1 and Γ_2-semihyperrings, respectively. Let (φ, f) be a homomorphism from R_1 to R_2. If λ is a T'-fuzzy Γ-hyperideal of R_2, then $\varphi^{-1}(\lambda)$ is a T'-fuzzy Γ-hyperideal of R_1.

Proof. The proof is similar to the proof of Proposition 12. \hfill \Box
Let \(\{a_i\}_{i \in I} \) and \(\{b_j\}_{j \in J} \) be two sets of real numbers in \([0, 1]\). Then, we say \(T \) is infinitely distributive if
\[
T \left(\sup_{i \in I} \{a_i\}, \sup_{j \in J} \{b_j\} \right) = \sup_{i \in I} \{ T(a_i, b_j) \}. \tag{14}
\]
If \(T \) is continuous, then \(T \) is infinitely distributive [30].

Lemma 14. Let \(T \) be a continuous \(t \)-norm and \(\{\mu_i\}_{i \in I} \) be a family of \(T \)-fuzzy sub-\(\Gamma \)-semihyperpings of \(R \). Then, \(\bigcap_{i \in I} \mu_i \) is a \(T \)-fuzzy sub-\(\Gamma \)-semihyperring of \(R \).

Proof. For any \(x, y \in R \) and \(y \in \Gamma \), we have
\[
\inf_{z \in x \times y} \left\{ \left(\bigcap_{i \in I} \mu_i \right)(z) \right\} = \inf_{i \in I} \left\{ \inf_{z \in x \times y} \{ \mu_i(z) \} \right\}
\[
= \inf_{i \in I} \left\{ \left(\bigcap_{i \in I} \mu_i \right)(z) \right\}
\[
\geq \inf_{i \in I} \left\{ T(\mu_i(x), \mu_i(y)) \right\}
\[
= T \left(\inf_{i \in I} \{ \mu_i(x) \}, \inf_{i \in I} \{ \mu_i(y) \} \right)
\[
= T \left(\left(\bigcap_{i \in I} \mu_i(x) \right), \left(\bigcap_{i \in I} \mu_i(y) \right) \right).
\]

Proposition 18. Let \(R_1 \) and \(R_2 \) be two \(\Gamma \)-semihyperpings and let \(\mu \) and \(\lambda \) be fuzzy subsets of \(R_1 \) and \(R_2 \), respectively. Then
\[
1. \text{ if } \mu \text{ and } \lambda \text{ are } T \text{-fuzzy sub-} \Gamma \text{-semihyperpings of } R_1 \text{ and } R_2, \text{ respectively, then } \mu \times \lambda \text{ is a } T \text{-fuzzy sub-} \Gamma \text{-semihyperring of } R_1 \times R_2;
\]
\[
2. \text{ if } \mu \text{ and } \lambda \text{ are } T \text{-fuzzy } \Gamma \text{-hyperideals of } R_1 \text{ and } R_2, \text{ respectively, then } \mu \times \lambda \text{ is a } T \text{-fuzzy } \Gamma \text{-hyperideal of } R_1 \times R_2.
\]

Proof. It is straightforward.

In [12], Dehkordi and Davvaz studied Noetherian and Artinian \(\Gamma \)-semihyperpings in crisp case. A collection \(\mathcal{A} \) of subsets of a \(\Gamma \)-semihyperring \(R \) satisfies the ascending chain condition (or Acc) if there does not exist a properly ascending infinite chain \(A_1 \subset A_2 \subset \cdots \) of subsets from \(\mathcal{A} \). Recall that a subset \(B \in \mathcal{A} \) is a maximal element of \(\mathcal{A} \) if there does not exist a subset in \(\mathcal{A} \) that properly contains \(B \). Similar to [18], in the following, we obtain some results related to fuzzy sets and Noetherian \(\Gamma \)-semihyperpings.

Proposition 19 (see [12]). Let \(R \) be a \(\Gamma \)-semihyperring. Then, the following conditions are equivalent:
\[
1. \text{ } R \text{ satisfying the Acc condition on right (left) } \Gamma \text{-hyperideals},
\]
\[
2. \text{ every nonempty family of right (left) } \Gamma \text{-hyperideals has a maximal element},
\]
\[
3. \text{ every right (left) } \Gamma \text{-hyperideals is finitely generated}.
\]

Definition 20 (see [12]). A \(\Gamma \)-semihyperring \(R \) is right (left) Noetherian if the equivalent conditions of the above proposition are satisfied. In the same way, we can define an Artinian \(\Gamma \)-semihyperring. Let \(I \) be a \(\Gamma \)-hyperideal of a \(\Gamma \)-semihyperring \(R \) and \(I \) be a Noetherian \(\Gamma \)-semihyperring. Then, \(I \) is called a Noetherian \(\Gamma \)-hyperideal of \(R \).

Example 21 (see [12]). Let \(A_n = [n, n+1] \) for every \(n \in \mathbb{Z} \), \(R = \bigcup_{n \in \mathbb{Z}} A_n \), and \(\Gamma = \mathbb{Z} \). Then, \(R \) is a Noetherian \(\Gamma \)-semihyperring with respect to the following hyperoperations:
\[
x \oplus y = A_{n+m}, \quad x \otimes y = A_{nm}, \quad \text{where } x \in A_n \text{ and } y \in A_m.
\]
Theorem 22. Let \(\{ A_k \mid k \in \mathbb{N} \} \) be a family of \(\Gamma \)-ideals of a \(\Gamma \)-semiring \(R \), where \(A_1 \supset A_2 \supset A_3 \cdots \).

Let \(\mu \) be a fuzzy subset of \(R \) defined by

\[
\mu(x) = \begin{cases}
 k+1 & \text{if } x \in A_k \setminus A_{k+1}, \ k = 0, 1, 2, \ldots \\
 1 & \text{if } x \in \bigcap_{k=0}^{\infty} A_k,
\end{cases}
\]

for all \(x \in R \), where \(A_0 \) stands for \(R \). Let \(T \) be a \(t \)-norm with \(\text{Im} \mu \subseteq \Delta_T \).

Then, \(\mu \) is a \(T \)-fuzzy \(\Gamma \)-ideal of \(R \).

Proof.
Let \(x, y \in R \). Suppose that \(x \in A_k \setminus A_{k+1} \) and \(y \in A_r \setminus A_{r+1} \) for \(k = 0, 1, 2, \ldots \) and \(r = 0, 1, 2, \ldots \). Without loss of generality, we may assume that \(k \leq r \). Then, obviously \(y \in A_k \).

Since \(A_k \) is a \(\Gamma \)-ideal of \(R \), it follows that \(x + y \subseteq A_k \) and \(xy \subseteq A_k \), which imply that \(\inf_{x \in A_k, y \in A_k} (z) \geq k/(k + 1) \) implies that \(\inf_{x \in A_k, y \in A_k} (z) \geq k/(k + 1) = \mu(y) \) for all \(\alpha \in \Gamma \).

If \(x \in \bigcap_{k=0}^{\infty} A_k \) and \(y \in \bigcap_{k=0}^{\infty} A_k \), then \(x + y \subseteq \bigcap_{k=0}^{\infty} A_k \).

Hence, \(\inf_{x \in A_k, y \in A_k} (z) = 1 = \mu(y) \).

Thus, \(\mu(x) \) is a \(T \)-fuzzy \(\Gamma \)-ideal of \(R \).

Theorem 23. Let \(R \) be a \(\Gamma \)-semiring satisfying descending chain condition, \(\mu \) be a fuzzy subset of \(R \), and let \(T \) be a \(t \)-norm with \(\text{Im} \mu \subseteq \Delta_T \).

Then, \(\mu \) is a \(T \)-fuzzy \(\Gamma \)-ideal of \(R \). If \(\mu \) is a strictly decreasing function, then \(\mu \) has finite number of values.

Proof.
Let \(\{ t_k \} \) be a strictly decreasing sequence of elements of \(\text{Im} \mu \).

Then \(0 \leq t_1 \leq t_2 \leq \cdots \leq t \). Then, \(U(\mu(t)) \) is an ideal of \(M \) for all \(r = 2, 3, \ldots \).

Let \(x \in U(\mu(t)) \).

Then \(\mu(x) \geq t_r \geq t_{r-1} \), so \(x \in U(\mu(t_{r-1})) \).

Hence \(U(\mu(t)) \subseteq U(\mu(t_{r-1})) \).

Since \(t_{r-1} \in \text{Im} \mu \), there exists \(x_{r-1} \in M \) such that \(\mu(x_{r-1}) = t_{r-1} \).

It follows that \(x_{r-1} \in U(\mu(t_{r-1})) \).

Thus, \(U(\mu(t)) \subseteq U(\mu(t_{r-1})) \) and so we obtain a strictly decreasing sequence \(U(\mu(t)) \supset U(\mu(t_{r-1})) \supset U(\mu(t_{r-2})) \supset \cdots \) of \(\Gamma \)-ideals of \(M \) which is not terminating. This contradicts the assumption that \(M \) satisfies the descending chain condition. Consequently, \(\mu \) has finite number of values.

Theorem 24. Let \(R \) be a \(\Gamma \)-semiring, \(\mu \) be a fuzzy subset of \(R \), and \(T \) be a \(t \)-norm with \(\text{Im} \mu \subseteq \Delta_T \).

Then, the following conditions are equivalent:

1. \(R \) is a Noetherian \(\Gamma \)-semiring,
2. the set of values of any \(\Gamma \)-ideal of \(R \) is a well-ordered subset of \([0, 1] \).

Proof.
(1) \(\Rightarrow \) (2): Suppose that the set of values of \(\mu \) is not a well-ordered subset of \([0, 1] \). Then, there exists a strictly decreasing sequence \(\{ t_k \} \) such that \(\mu(x) = t_k \). It follows that \(U(\mu(t_1)) \subset U(\mu(t_2)) \subset \cdots \) is a strictly ascending chain of \(\Gamma \)-ideals of \(M \), where \(U(\mu(t_r)) = \{ x \in M \mid \mu(x) \geq t_r \} \), for every \(r = 1, 2, \ldots \).

This contradicts the assumption that \(R \) is a Noetherian \(\Gamma \)-semiring.

(2) \(\Rightarrow \) (1): Suppose that the condition (2) is satisfied and \(R \) is not a Noetherian \(\Gamma \)-semiring. There exists a strictly ascending chain

\[
A_1 \subset A_2 \subset A_3 \subset \cdots
\]

of \(\Gamma \)-ideals of \(R \). Note that \(A = \bigcap_{k=0}^{\infty} A_k \) is a \(\Gamma \)-ideal of \(R \). Define a fuzzy subset in \(R \) by

\[
\mu(x) = \begin{cases}
 \alpha & \text{if } x \notin A, \\
 1 & \text{if } x \in [k, \infty),
\end{cases}
\]

for all \(x \in R \), where \(\alpha \) is a strictly decreasing sequence of elements of \(\text{Im} \mu \).

We claim that \(\mu \) is a \(T \)-fuzzy \(\Gamma \)-ideal of \(R \).

If \(x \in A_k \setminus A_{k-1} \) and \(y \in A_k \setminus A_{k-1} \), then \(x - y \in A_k \).

It follows that \(\inf_{x \in A_k, y \in A_k} (z) \geq 1/k = \mu(y) \) for all \(\alpha \in \Gamma \).

Since \(A_k \) is a \(\Gamma \)-ideal of \(R \), it follows that \(x + y \in A_k \).

Similarly, \(\mu(x) \) is a \(T \)-fuzzy \(\Gamma \)-ideal of \(R \).

Therefore, \(\mu \) is a \(T \)-fuzzy \(\Gamma \)-ideal of \(R \).

For a family \(\{ \mu_\alpha \mid \alpha \in \Lambda \} \) of fuzzy subsets in \(R \), we define the join \(\vee_{\alpha \in \Lambda} \mu_\alpha \) and the meet \(\wedge_{\alpha \in \Lambda} \mu_\alpha \) as follows:

\[
\bigvee_{\alpha \in \Lambda} \mu_\alpha (x) = \sup \{ \mu_\alpha (x) \mid \alpha \in \Lambda \},
\]

\[
\bigwedge_{\alpha \in \Lambda} \mu_\alpha (x) = \inf \{ \mu_\alpha (x) \mid \alpha \in \Lambda \},
\]

for all \(x \in R \), where \(\Lambda \) is any index set.

Theorem 25. The family of \(T \)-fuzzy \(\Gamma \)-ideals of \(R \) is a completely distributive lattice with respect to meet \(\cap \) and join \(\vee \).

Proof.
Since \([0, 1] \) is a completely distributive lattice with respect to the usual ordering in \([0, 1]\), it is sufficient to show that \(\vee_{\alpha \in \Lambda} \mu_\alpha \) and \(\wedge_{\alpha \in \Lambda} \mu_\alpha \) are \(T \)-fuzzy \(\Gamma \)-ideals of \(R \) for family \(\{ \mu_\alpha \mid \alpha \in \Lambda \} \) of \(T \)-fuzzy \(\Gamma \)-ideals of \(R \).
For any $x, y \in R$, we have

$$\inf_{z \in x \vee y} \left(\bigvee_{\alpha \in \Lambda} \mu_{\alpha}(z) \right) \geq \sup_{\alpha \in \Lambda} \left\{ T \left(\mu_{\alpha}(x), \mu_{\alpha}(y) \right) \mid \alpha \in \Lambda \right\}$$

$$\geq T \left(\sup_{\alpha \in \Lambda} \left\{ \mu_{\alpha}(x) \mid \alpha \in \Lambda \right\}, \sup_{\alpha \in \Lambda} \left\{ \mu_{\alpha}(y) \mid \alpha \in \Lambda \right\} \right)$$

$$= T \left(\left(\bigvee_{\alpha \in \Lambda} \mu_{\alpha}(x) \right), \left(\bigvee_{\alpha \in \Lambda} \mu_{\alpha}(y) \right) \right),$$

$$\inf_{z \in x \wedge y} \left(\bigwedge_{\alpha \in \Lambda} \mu_{\alpha}(z) \right) \geq \inf_{\alpha \in \Lambda} \left\{ T \left(\mu_{\alpha}(x), \mu_{\alpha}(y) \right) \mid \alpha \in \Lambda \right\}$$

$$= T \left(\left(\bigwedge_{\alpha \in \Lambda} \mu_{\alpha}(x) \right), \left(\bigwedge_{\alpha \in \Lambda} \mu_{\alpha}(y) \right) \right).$$

(21)

Now, let $x, y \in M$ and $\beta \in \Gamma$. Then

$$\inf_{z \in x \wedge y} \left(\bigvee_{\alpha \in \Lambda} \mu_{\alpha}(z) \right) \geq \sup_{\alpha \in \Lambda} \left\{ \mu_{\alpha}(y) \mid \alpha \in \Lambda \right\}$$

$$= \left(\bigvee_{\alpha \in \Lambda} \mu_{\alpha}(y) \right),$$

(22)

$$\inf_{z \in x \wedge y} \left(\bigwedge_{\alpha \in \Lambda} \mu_{\alpha}(z) \right) \geq \inf_{\alpha \in \Lambda} \left\{ \mu_{\alpha}(y) \mid \alpha \in \Lambda \right\}$$

$$= \left(\bigwedge_{\alpha \in \Lambda} \mu_{\alpha}(y) \right).$$

(23)

Hence, $\vee_{\alpha \in \Lambda} \mu_{\alpha}$ and $\wedge_{\alpha \in \Lambda} \mu_{\alpha}$ are T-fuzzy Γ-hyperideals of R. This completes the proof.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] N. Nobusawa, “On a generalization of the ring theory,” Osaka Journal of Mathematics, vol. 1, pp. 81–89, 1964.

[2] W. E. Barnes, “On the Γ-rings of Nobusawa,” Pacific Journal of Mathematics, vol. 18, no. 3, pp. 411–422, 1966.

[3] J. Luh, “On the theory of simple Γ-rings,” The Michigan Mathematical Journal, vol. 16, no. 1, pp. 65–75, 1969.

[4] S. Kyuno, “On prime Γ-rings,” Pacific Journal of Mathematics, vol. 75, no. 1, pp. 185–190, 1978.

[5] M. M. K. Rao, “T-semiring-I,” Southeast Asian Bulletin of Mathematics, vol. 19, pp. 49–54, 1995.

[6] T. K. Dutta and S. K. Sardar, “On the operator semirings of a Γ-semiring,” Southeast Asian Bulletin of Mathematics, vol. 26, no. 2, pp. 203–213, 2002.

[7] F. Marty, “Sur une generalization de la notion de groupe,” in 8iem Congress Mathematical Scandinaves, pp. 45–49, Stockholm, Sweden, 1934.

[8] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, Italy, 2nd edition, 1993.

[9] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Advances in Mathematics, Kluwer Academic, Dordrecht, The Netherlands, 2003.

[10] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press, Palm Harbor, Fla, USA, 1994.

[11] S. O. Dehkordi and B. Davvaz, “Γ-semihypergroups: approximations and rough ideals,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 35, no. 4, pp. 1035–1047, 2012.

[12] S. O. Dehkordi and B. Davvaz, “Ideal theory in Γ-semihypergroups,” Iranian Journal of Science & Technology, A, vol. 37, no. 3, pp. 251–263, 2013.

[13] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.

[14] A. Rosenfeld, “Fuzzy groups,” Journal of Mathematical Analysis and Applications, vol. 35, no. 3, pp. 512–517, 1971.

[15] P. S. Das, “Fuzzy groups and level subgroups,” Journal of Mathematical Analysis and Applications, vol. 84, no. 1, pp. 264–269, 1981.

[16] W.-J. Liu, “Fuzzy invariant subgroups and fuzzy ideals,” Fuzzy Sets and Systems, vol. 8, no. 2, pp. 133–139, 1982.

[17] Y. B. Jun and C. Y. Lee, “Fuzzy Γ-ring,” Pusan Kyongnam Mathematical Journal, vol. 8, no. 2, pp. 163–170, 1992.

[18] M. A. Öztürk, M. Uckun, and Y. B. Jun, “Characterizations of Artinian and Noetherian gamma-rings in terms of fuzzy ideals,” Turkish Journal of Mathematics, vol. 26, no. 2, pp. 199–205, 2002.

[19] B. Davvaz, “On H_{Γ}-rings and fuzzy H_{Γ}-ideals,” Journal of Fuzzy Mathematics, vol. 6, pp. 33–42, 1998.

[20] J. Zhan, B. Davvaz, and K. P. Shum, “Generalized fuzzy hyperideals of hyperrings,” Computers and Mathematics with Applications, vol. 56, no. 7, pp. 1732–1740, 2008.

[21] R. Ameri, H. Hedayati, and A. Molaei, “On fuzzy hyperideals of Γ-hyperrings,” Iranian Journal of Fuzzy Systems, vol. 6, no. 2, pp. 47–59, 2009.

[22] B. A. Ersoy and B. Davvaz, “Structure of intuitionistic fuzzy sets in Γ-semihyperrings,” Abstract and Applied Analysis, vol. 2013, Article ID 560698, 9 pages, 2013.

[23] B. A. Ersoy and B. Davvaz, “Atanassov’s intuitionistic fuzzy Γ-hyperideals of Γ-semihyperrings,” Journal of Intelligent and Fuzzy Systems, vol. 25, no. 2, pp. 463–470, 2013.

[24] T. Vougiouklis, “On some representations of hyperrings,” Annales Scientifiques de l’Université de Clermont-Ferrand II: Mathématiques, vol. 26, pp. 21–29, 1990.

[25] R. Ameri and H. Hedayati, “On fuzzy hyperideals of Γ-hyperrings,” Iranian Journal of Fuzzy Systems, vol. 6, no. 1, pp. 47–59, 2009.

[26] B. A. Ersoy and B. Davvaz, “Structure of intuitionistic fuzzy sets in Γ-semihyperrings,” Abstract and Applied Analysis, vol. 2013, Article ID 560698, 9 pages, 2013.

[27] B. A. Ersoy and B. Davvaz, “Atanassov’s intuitionistic fuzzy Γ-hyperideals of Γ-semihyperrings,” Journal of Intelligent and Fuzzy Systems, vol. 25, no. 2, pp. 463–470, 2013.

[28] J. Zhan, B. Davvaz, and K. P. Shum, “Generalized fuzzy hyperideals of hyperrings,” Computers and Mathematics with Applications, vol. 56, no. 7, pp. 1732–1740, 2008.

[29] R. Ameri and H. Hedayati, “On fuzzy hyperideals of Γ-hyperrings,” Iranian Journal of Fuzzy Systems, vol. 6, no. 2, pp. 47–59, 2009.

[30] B. A. Ersoy and B. Davvaz, “Structure of intuitionistic fuzzy sets in Γ-semihyperrings,” Abstract and Applied Analysis, vol. 2013, Article ID 560698, 9 pages, 2013.

[31] B. A. Ersoy and B. Davvaz, “Atanassov’s intuitionistic fuzzy Γ-hyperideals of Γ-semihyperrings,” Journal of Intelligent and Fuzzy Systems, vol. 25, no. 2, pp. 463–470, 2013.

[32] T. Vougiouklis, “On some representations of hyperrings,” Annales Scientifiques de l’Université de Clermont-Ferrand II: Mathématiques, vol. 26, pp. 21–29, 1990.
[30] M. M. Zahedi and M. Mashinchi, “Some results on redefined fuzzy subgroups,” *Journal of Sciences, Islamic Republic of Iran*, vol. 6, pp. 65–67, 1989.

[31] N. Ajmal, “Homomorphism of fuzzy groups, correspondence theorem and fuzzy quotient groups,” *Fuzzy Sets and Systems*, vol. 61, no. 3, pp. 329–339, 1994.