"Six-and-twelve" score for outcome prediction of hepatocellular carcinoma following transarterial chemoembolization. In-depth analysis from a multicenter French cohort

Xavier Adhoute, Guillaume Pénaranda, Jean-Luc Raoul, Jean-Pierre Bronowicki, Rodolphe Anty, Marc Bourlière

ORCID number: Xavier Adhoute 0000-0001-5977-800X; Guillaume Pénaranda 0000-0002-7461-4254; Jean-Luc Raoul 0000-0001-6305-8953; Jean-Pierre Bronowicki 0000-0003-1631-500X; Rodolphe Anty 0000-0002-8053-1957; Marc Bourlière 0000-0001-8976-9200.

Author contributions: Adhoute X, Raoul J, Bronowicki J and Bourlière M are physicians in charge of the patients; Adhoute X and Bronowicki J collected the data and Pénaranda G proceeded to statistical analysis; Adhoute X, Bronowicki J and Anty R wrote the manuscript.

Conflict-of-interest statement: The authors have no potential conflict of interest relevant to this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the

Abstract

The “six-and-twelve” (6&12) score is a new hepatocellular carcinoma (HCC) prognostic index designed for recommended transarterial chemoembolization (TACE) candidates. Quick and easy to use by the sum of tumor size (cm) and number, this model identifies three groups with different survival time (the sum is ≤ 6; or > 6 but ≤ 12; or > 12); a survival benefit with TACE can be expected for HCC patients with a score not exceeding twelve. Recently, Wang ZW et al showed that the “6&12” model was the best system correlated with radiological response after the first TACE. Thus, we wanted to assess its survival prediction ability as well as its prognostic value and compared it to other systems (Barcelona Clinic Liver Cancer, Hong Kong Liver Cancer (HKLC) staging, Albumin-Bilirubin grade, tumor nodularity, infiltrative nature of the tumor, alpha-fetoprotein, Child-Pugh class, and Performance Status score, Cancer of the Liver Italian Program, Model to Estimate Survival for HCC scores, up-to-seven criteria) different from Wang ZW et al study in a multicenter French cohort of HCC including only recommended TACE candidates retrospectively enrolled. As previously demonstrated, we show that the “6&12” score can classify survival within this French cohort, with a
prognostic value comparable to that of other systems, except HKLC staging. More importantly, the “6&12” score simplicity and ability in patients’ stratification outperform other systems for a routine clinical practice.

Key words: Hepatocellular carcinoma; Transarterial chemoembolization; “Six-and-twelve” score; Prognosis; Albumin-Bilirubin grade; Tumor nodularity, infiltrative nature of the tumor, alpha-fetoprotein, Child-Pugh class, and performance status score

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

TO THE EDITOR

We have read with great interest the study by Wang et al[1] who assessed and compared different prognostic models for hepatocellular carcinoma (HCC) patients undergoing transarterial chemoembolization (TACE) treatment, especially the latest “six-and-twelve” (6&12) score[2] within a nationwide Chinese HCC cohort (n = 1107). Increased survival after TACE is correlated with radiological response[3] and this study shows that the “6&12” index is the best system correlated with radiological response after the first TACE. The study population was more heterogeneous than the population used to develop the score, including patients with slightly altered performance status (PS) and logically a model like the 3rd version of the hepatoma arterial-embolization prognostic score[4] (which include liver function parameters) had a higher predictive value for survival. However, simplicity (using two cut-off values for risk stratification) and presumed reliability of the “6&12” score have convinced us to assess once again[5] the reproducibility and the predictive value of this new model in a multicenter French cohort of HCC patients including only recommended TACE candidates (n = 324) intermediate and early unresectable stages according to the treatment stage migration concept. We compared it to other systems different from Wang et al[1]’s study (Barcelona Clinic Liver cancer[6] (BCLC) staging, Child-Pugh (CP) class, Albumin-Bilirubin[7] (ALBI) grade, NIACE[8] [tumor nodularity, infiltrative nature of the tumor, alpha-fetoprotein (AFP), CP class, and PS] score (Table 1)) using time-dependent area under receiver operating characteristic curve (AUROC) values and C-indices.

Patients were retrospectively enrolled over a six years period in two centers (Marseille, Nancy). Demographic and clinical characteristics of HCC patients are shown in Table 2. HCC patients were mostly male (85%), with a median of age of 68 years. Cirrhosis was present in 96% of cases, CP class A (77%), CP class B7 (23%). Underlying liver disease was mostly related to alcohol abuse (38%) or viral C hepatitis (40%). Patients were BCLC stage B (n = 179), BCLC stage A (n = 145). HCC were multinodular in 71% of cases and the median tumor diameter was 35 mm (25-50). The mean session number of conventional TACE was 2.7 ± 1.8.

After a median follow-up duration of 24.4 (15.0-36.8) mo, eighty one percent of patients died. Kaplan-Meier analyses showed significant differences in overall survival (OS) distributions across subgroups of BCLC staging, “6&12” (Figure 1) and NIACE scores within this cohort (P < 0.05) (Table 3). Liver function at baseline also had an impact on survival; median OS was significantly different according to the CP class
Table 1 Summary of points-based scores

CLIP (0 to 7 points)	MESH (0 to 6 points)	NIACE (0 to 7 points)				
Portal vein thrombosis	1 point	Tumor extent: Beyond Milan criteria	1 point	Tumor nodules ≥ 3	1 point	
AFP ≥ 400 ng/mL.	1 point	Vascular invasion and/or Extralobar spread	1 point	Infiltrative HCC	1.5 points	
Child-Pugh grade A	0 point	PS ≥ 2	1 point	AFP ≥ 200 ng/mL	1.5 points	
B	1 point	Child-Pugh grade ≥ A6	1 point			
C	2 points					
Tumor extent	Unidolar and extension ≤ 50%	0 point	AFP ≥ 20 ng/mL	1 point	Child-Pugh grade A	0 point
Multinodular and extension ≤ 50%	1 point	Alkaline phosphatase ≥ 200 IU/l	1 point	Child-Pugh grade B	1.5 points	
Massive or extension > 50%	2 points	PS ≥ 1	1.5 points			

CLIP: Cancer of the Liver Italian Program; MESH: Model to Estimate Survival for Hepatocellular carcinoma; NIACE: Tumor nodularity, infiltrative nature of the tumor, alpha-fetoprotein, Child-Pugh class, and performance status.

Performances of the “6&12” score and other systems for survival prediction are indicated in Table 4. Time-dependent AUROC values and C-indices of the “6&12” score was not significantly different from those of other systems. We checked our results within the main cohort from Marseille (n = 252) (Table 2) by comparing the “6&12” score to other staging scoring systems (Hong Kong Liver Cancer\(^{14}\) (HKLC), Cancer of the Liver Italian Program\(^{11}\) (CLIP), Model to Estimate Survival for HCC\(^{15}\) (MESH), up-to-seven criteria\(^{13}\)). Significant differences in survival distributions were also found across subgroups of the “6&12” score and other systems within this single center cohort (P < 0.05) (Table 5). Its predictive value remained comparable to that of other systems [C-index “6&12” 0.63 (0.56-0.70) vs CLIP 0.70 (0.62-0.78) vs “up-to-seven” 0.61 (0.56-0.66) vs MESH 0.71 (0.63-0.78), not significant] except for HKLC staging, which provides a better prognostication ability [3-year AUROC (“6&12”) 0.56 (0.44-0.68) vs (HKLC) 0.69 (0.65-0.74), P = 0.0325] using a more complex stratification into five subgroups.

Firstly, our findings confirm previously published results\(^{11}\), the “6&12” score can classify survival among recommended TACE candidates. Its prognostic performance was similar within our cohort compared to Wang et al\(^{11}\)'s original study [3-year AUROC values: 0.64 (0.58-0.71) vs 0.65 (0.61, 0.70); C-indices: 0.66 (0.58-0.74) vs 0.66 (0.63, 0.69) (Table 4)], and higher than that observed in this nationwide Chinese cohort\(^{11}\) [c-index: 0.58 (0.56, 0.60)]. Moreover, HCC patients with the highest tumor burden [sum of largest tumor size (cm) and number exceeding 12] have a median survival of 15 mo similar to Wang et al\(^{11}\)'s manuscript. Thus, this model can also identify within our population a subgroup of patients with poor prognosis who may not achieve benefit from TACE. The “6&12” risk stratification into three subgroups is relevant. Indeed, the first one (sum of tumor size and number not exceeding six) identifies TACE candidates with long-term survival especially those who may achieve a complete necrosis after this treatment\(^{11,16}\). Moreover, TACE is also an effective therapy for the second subgroup (sum of tumor size and number above six and not exceeding twelve), which has clear boundaries unlike intermediate stage subclassifications\(^{11,17}\) that divide tumor burden according to the up-to-seven criteria (within/out).

Secondly, in our study the “6&12” score prognostic value is comparable to that of other systems, but most of these models cannot be used to guide treatment decision directly. “6&12” simplicity outweighs other systems for a current clinical practice including models with online calculator\(^{5}\). Indeed, therapeutic management is determined using a multidisciplinary approach and control of different published prognostic scores for TACE by clinicians (surgeons, oncologists, hepatologists and radiologists) is very unusual. By adding “the sum of largest tumor size and number”, it is true that consensus is easy to achieve among all clinicians. Moreover, other scores\(^{5}\) encompass other baseline features that are likely to impact OS such as morphology of the tumor\(^{11}\), but those parameters are not routinely recorded, which

\(\text{[CP-A, 27 (25-31) mo; CP-B7, 21 (15-24) mo (P = 0.0003)], or ALBI grade [grade 1, 35 (25-43) mo; grade 2, 26 (22-28) mo; grade 3, 16 (12-24) mo (P = 0.0029)].}\)
Table 2 Baseline characteristics of hepatocellular carcinoma patients undergoing transarterial chemoembolization treatment, n (%)

Demographic variables	Marseille/Nancy cohort, n = 324	Marseille cohort, n = 252
Age - Median [Q1-Q3], year	68 [62-74]	68 [60-73]
Gender Male/female	276 (85)/48 (15)	214 (85)/38 (15)
Liver disease HCV/HBV/Alcoholism/MS/other	129 (40)/14 (4)/122 (38)/42 (13)/17 (5)	109 (43)/12 (5)/84 (33)/37 (15)/10 (4)
ECOG (PS-0)	324 (100)	252 (100)
Cirrhosis	311 (96)	243 (96)

Tumor variables:	Marseille/Nancy cohort, n = 324	Marseille cohort, n = 252
Tumor Size – mm - median [q1-q3]	35 [25-50]	32 [25-44]
Nodule (s): 1/2/3/4/≥ 5	95 (29)/72 (22)/80 (25)/36 (12)/39 (12)	83 (33)/67 (27)/34 (13)/31 (12)/37 (15)

Laboratory variables	Marseille/Nancy cohort, n = 324	Marseille cohort, n = 252
AFP – ng/mL, median [q1-q3]	16.3 [6.0-120.3]	11.2 [5.0-77.7]
PT (%), median [q1-q3]	76 [64-88]	78 [68-88]
Albumin (g/L), median [q1-q3]	35 [28-38]	36.6 [32.7-41.0]
Total bilirubin (mcmol/L), median [q1-q3]	19.0 [13.7-28.7]	17 [11-27]
Child - Pugh grade A/B7	249 (77)/75 (23)	180 (71)/72 (29)
ALBI class	64 (20)/230 (71)/30 (9)	37 (15)/175 (73)/29 (12)
BCLC stage A/B	145 (45%)/179 (55%)	134 (56)/107 (44)
“6&12” score allocation	154 (48)/163 (50)/7 (2)	130 (54)/106 (44)/5 (2)
NIACE score allocation ≤ 1/1.5 - 3/> 3	168 (52)/134 (41)/22 (7)	
CLIP1 score allocation 0/1/2/3/4	-	55 (23)/135 (56)/45 (19)/ 6 (2)
MESH1 score allocation 0/1/2/3/4	-	41 (17)/77 (32)/78 (32)/37 (15)/8 (4)
Up-to-Seven model1 (In/Out)	-	176 (73)/65 (27)
HKLC stage 1/2a/2b/3a/3b	-	89 (37)/43 (17)/65 (27)/24 (10)/21 (9)

1 Available data for 241 patients for staging and scores calculation. The Albumin-Bilirubin (ALBI) score was calculated according to the . ALBI grades were defined as ALBI grade 1 (score ≤ -2.60), ALBI grade 2 (score > -2.60 and ≤ - 1.39) and ALBI grade 3 (score > - 1.39). Bilirubin level in mcmol/L and albumin level in g/L. Up-to-seven criteria: With seven as the sum of the largest tumor size (in cm) + number of tumor(s). Barcelona Clinic Liver cancer (BCLC) classification: Current (BCLC) staging considers solitary tumor > 2 cm or no more than 3 tumors not exceeding 3 cm in diameter (Performance Status-0, Child-Pugh (CP) class A or B7 grade) as stage A. No tumor was classified at the very early stage of hepatocellular carcinoma (HCC) (BCLC 0) in this multicenter French cohort. BCLC stage B HCC encompassed patients with multiple tumors beyond 3 cm, PS-0, CP A or B7 grade. Hong Kong Liver Cancer classification: Early tumor: ≤ 5 cm, ≤ 3 tumor nodules; CP grade A (stage 1), CP grade B (stage 2a). -Intermediate tumor: ≤ 5 cm and > 3 tumor nodules or > 5 cm and ≤ 3 tumor nodules, CP grade A (stage 2b), CP grade B (stage 3a). - Locally-advanced tumor: > 5 cm, > 3 tumor nodules, CP grade A or B (stage 3b). HCC: Hepatocellular carcinoma; TACE: Transarterial chemoembolization; HCV: Hepatitis C virus; HBV: Hepatitis B virus; MS: Metabolic syndrome; ECOG (PS): Eastern Cooperative Oncology Group (Performance Status); AFP: Alpha-fetoprotein; PT: Prothrombin Time; ALBI: Albumin-Bilirubin; BCLC: Barcelona Clinic Liver Cancer; “6&12”: “Six-and-twelve”; NIACE: Tumor nodularity, infiltrative nature of the tumor, AFP, CP, PS; CLIP: Cancer of the Liver Italian Program; MESH: Model to Estimate Survival for Hepatocellular carcinoma; HKLC: Hong Kong Liver Cancer.

Thirdly, TACE should be limited to HCC patients with preserved liver function, and our results also highlight the importance of liver function in our population that included only recommended TACE candidates. Our patients are older, with more cirrhotic patients, and more alcohol-related diseases. This probably explains the differences in survival observed between this multicenter French cohort and Wang et aloriginal study, with OS ranging from 31.0 to 15.0 mo compared to 43.3 to 16.8 mo (according to “6&12” score), respectively. However, OS observed in our cohort was comparable to that of this nationwide Chinese cohort including a more heterogeneous population with OS ranging from 31.3 to 18.5 mo.

Fourthly, Wang et alfindings on ABCR score are not surprising. This model designed for further TACE combines four parameters (AFP serum level, BCLC stage, change in Child-Pugh grade, and radiological tumor Response), but unlike ARTassessment (assessment for re-treatment with TACE) model the highest coefficient is assigned to limits their use.
Table 3 Kaplan-Meier survival analysis according to “Six-and-twelve” score and other systems in the multicenter French cohort (n = 324)

Scoring/systems	OS [95%CI], mo	P value (log-rank)	Sidak¹	Hazard ratio [95%CI]	P value
“6&12” score		< 0.0001			
sum ≤ 6 (n = 154)	31 [27-35]		Ref	Ref	
sum > 6 ≤ 12 (n = 163)	20 [17-24]	0.0009	1.55 [1.21-1.99]	0.0005	
sum > 12 (n = 7)	15 [5-19]	< 0.0001	3.80 [1.76-8.21]	0.0007	
BCLC staging		< 0.0001			
A (n = 145)	35 [29-38]	NR	Ref		
B (n = 179)	19 [17-23]	NR	1.88 [1.47-2.41]	< 0.0001	
NIACE score		< 0.0001			
≤ 1 (n = 168)	35 [28-36]	Ref	Ref		
1.5 - 3 (n= 134)	20 [16-23]	< 0.0001	1.92 [1.49-2.48]	< 0.0001	
> 3 (n = 22)	11 [5-16]	< 0.0001	6.23 [3.87-10.02]	< 0.0001	
Child-Pugh class	0.0003				
A (n = 249)	27 [25-31]	NR	Ref		
B (n = 75)	21 [15-24]	NR	1.66 [1.26-2.19]	0.0003	
ALBI grade	0.0029				
Grade 1 (n = 64)	35 [25-43]	Ref	Ref		
Grade 2 (n = 230)	26 [22-28]	0.1228	1.50 [1.06-2.11]	0.0216	
Grade 3 (n = 30)	16 [12-24]	0.0016	2.30 [1.41-3.75]	0.0009	

¹Sidak test for multiple comparisons. OS: Overall Survival; CI: Confidence Interval; “6&12”: “Six-and-twelve”; Ref: Reference; BCLC: Barcelona Clinic Liver Cancer; NIACE: Tumor nodularity, infiltrative nature of the tumor, alpha-fetoprotein, child-pugh class, performance status; ALBI: Albumin-Bilirubin.

Radiological tumor response.

In summary, in this multicenter French HCC cohort different staging/scoring systems classify survival among recommended TACE candidates with a similar predictive power. However, “6&12” score simplicity and ability in patients’ stratification outperform other systems for a routine clinical practice.
Table 4 Comparison of predictive accuracy for overall survival between “Six-and-Twelve” score and staging/scoring systems (multicenter French cohort n = 324)

Scoring(stage) systems	1-yr AUROC	P (vs ref)	2-yr AUROC	P (vs ref)	3-yr AUROC	P (vs ref)	C-index	P (vs ref)
“6&12” score	0.65 [0.57-0.74]	Ref	0.65 [0.59-0.71]	Ref	0.64 [0.58-0.71]	Ref	0.66 [0.58-0.74]	
BCLC staging	0.61 [0.54-0.67]	0.1827	0.64 [0.59-0.70]	0.7079	0.61 [0.55-0.68]	0.2317	0.61 [0.54-0.68]	NS
NIACE score	0.75 [0.68-0.83]	0.0134	0.69 [0.64-0.75]	0.2368	0.69 [0.63-0.74]	0.2827	0.70 [0.64-0.77]	NS
Child-Pugh class	0.56 [0.49-0.63]	0.1057	0.56 [0.51-0.60]	0.0217	0.55 [0.50-0.59]	0.0304	0.59 [0.55-0.64]	NS
ALBI grade	0.63 [0.57-0.69]	0.6835	0.56 [0.51-0.61]	0.0479	0.55 [0.49-0.61]	0.1033	0.62 [0.55-0.68]	NS

“6&12”: “Six-and-twelve”; AUROC: Area under receiver operating characteristic curve; C-index: Concordance index; Ref: Reference; BCLC: Barcelona Clinic Liver Cancer; NS: Not significant; NIACE: Tumor nodularity, infiltrative nature of the tumor, alpha-fetoprotein, child-pugh class, performance status; ALBI: Albumin-Bilirubin.

Table 5 Kaplan-Meier survival analysis according to “Six-and-twelve” score and other systems in the main cohort from Marseille (available data for 241 hepatocellular carcinoma patients)

Scoring(stage) systems	OS [95%CI], mo	P value (log-rank)	Sidak^{<small>i</small>}	Hazard ratio [95%CI]	P value
“6&12” score		0.0004			
sum ≤ 6 (n = 130)	32 [28-36]	Ref	Ref		
sum > 6 ≤ 12 (n = 106)	20 [17-25]	0.0017	1.61 [1.21-2.14]	0.0010	
sum > 12 (n = 5)	16 [5-34]	0.0003	3.34 [1.35-8.25]	0.0092	
CLIP		< 0.0001			
0 (n = 55)	35 [30-68]	Ref	Ref		
1 (n = 135)	28 [25-32]	0.0724	1.81 [1.23-2.67]	0.0028	
2 (n = 45)	18 [15-23]	< 0.0001	2.86 [1.81-4.54]	< 0.0001	
3 (n = 6)	10 [1-27]	< 0.0001	8.12 [3.35-19.67]	< 0.0001	
HKLC		< 0.0001			
1 (n = 89)	36 [30-40]	Ref	Ref		
2a (n = 42)	25 [19-35]	0.0024	1.79 [1.18-2.72]	0.0060	
2b (n = 65)	26 [19-34]	0.0749	1.45 [1.01-2.10]	0.0450	
3a (n = 24)	17 [11-23]	< 0.0001	3.30 [2.03-5.36]	< 0.0001	
3b (n = 21)	14 [11-16]	< 0.0001	4.55 [2.73-7.58]	< 0.0001	
Up-to-Seven		0.0001			
In (n = 176)	30 [27-35]	NA	Ref		
Out (n = 65)	18 [15-24]	NA	1.81 [1.34-2.46]	0.0001	
MESH		< 0.0001			
0 (n = 41)	43 [35-70]	Ref	Ref		
1 (n = 77)	30 [25-35]	0.1291	2.16 [1.33-3.48]	0.0017	
2 (n = 78)	26 [19-34]	0.0490	2.30 [1.41-3.74]	0.0008	
3 (n = 37) & 15 [10-21] & < 0.0001 & 6.02 [3.51-10.33] & < 0.0001
4 (n = 8) & 13 [4-24] & < 0.0001 & 9.69 [3.86-24.36] & < 0.0001

1Sidak test for multiple comparisons. "6&12": "Six-and-twelve"; OS: Overall Survival; CI: Confidence Interval; Ref: Reference; CLIP: Cancer of the Liver Italian Program; HKLC: Hong Kong Liver Cancer; MESH: Model to Estimate Survival for Hepatocellular carcinoma.

Figure 1 Kaplan-Meier analysis of overall survival according to “Six-and-twelve” criteria in the multicenter French HCC cohort (n = 324). TACE: Transarterial chemoembolization.

REFERENCES

1 Wang ZX, Wang EX, Bai W, Xia DD, Mu W, Li J, Yang QY, Huang M, Xu GH, Sun JH, Li HL, Zhao H, Wu JB, Yang SF, Li JP, Li ZX, Zhang CQ, Zhu XL, Zheng YB, Wang QH, Li J, Yuan J, Li XM, Niu J, Yin ZX, Xia JL, Fan DM, Han GH, On Behalf Of China Hcc-Tace Study Group. Validation and evaluation of clinical prediction systems for first and repeated transarterial chemoembolization in unresectable hepatocellular carcinoma: A Chinese multicenter retrospective study. World J Gastroenterol 2020; 26: 657-669 [PMID: 32103874 DOI: 10.3748/wjg.v26.i6.657]

2 Wang Q, Xia D, Bai W, Wang E, Sun J, Huang M, Mu W, Yin G, Li H, Zhao H, Li J, Zhang C, Zhu X, Wu J, Li J, Gong W, Li Z, Lin Z, Pan X, Shi H, Shao G, Liu J, Yang S, Zheng Y, Xu J, Song J, Wang W, Wang Z, Zhang Y, Ding R, Zhang H, Yu H, Zheng L, Gu W, You N, Wang G, Zhang S, Feng L, Liu L, Zhang P, Li X, Chen J, Xu T, Zhou H, Zeng H, Zhang Y, Huang W, Jiang W, Zhang W, Shao W, Li L, Liu J, Yuan J, Li X, Lv Y, Li K, Yin Z, Xia J, Fan D, Han G; China HCC-TACE Study Group. Development of a prognostic score for recommended TACE candidates with hepatocellular carcinoma: A multicentre observational study. J Hepatol 2019; 70: 893-903 [PMID: 30660709 DOI: 10.1016/j.jhep.2019.01.013]

3 Memon K, Kulik L, Lewandowski RJ, Wang E, Riaz A, Ryu BK, Sato KT, Marshall K, Gupta R, Nikolaidis P, Miller FH, Yaghmai V, Senthilnathan S, Baker T, Gates VL, Abecassis M, Benson AB 3rd, Mulcahy MF, Omary RA, Salem R. Radiographic response to locoregional therapy in hepatocellular carcinoma predicts patient survival times. Gastroenterology 2011; 141: 526-535, 535.e1-535.e2 [PMID: 21664356 DOI: 10.1053/j.gastro.2011.04.054]

4 Kim BK, Kim KA, Park JY, Ahn SH, Chon CY, Han KH, Kim SJ, Kim MJ. Prospective comparison of prognostic values of modified Response Evaluation Criteria in Solid Tumours with European Association for the Study of the Liver criteria in hepatocellular carcinoma following chemoembolisation. Eur J Cancer 2013; 49: 826-834 [PMID: 22995582 DOI: 10.1016/j.ejca.2012.08.022]

5 Cappelli A, Cucchetti A, Cabilbo G, Mosconi C, Maida M, Attardo S, Pettinari I, Pinna AD, Golfieri R. Refining prognosis after trans-arterial chemo-embolization for hepatocellular carcinoma. Liver Int 2016; 36: 729-736 [PMID: 26604044 DOI: 10.1111/liv.13029]

6 Bourlière M, Pénaranda G, Adhoute X, Bronowicki JP. The "six-and-twelve score" for TACE treatment: Does it really help us? J Hepatol 2019; 71: 1051-1052 [PMID: 31515044 DOI: 10.1016/j.jhep.2019.06.014]

7 Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet 2018; 391: 1301-1314 [PMID: 29307467 DOI: 10.1016/S0140-6736(18)30010-2]

8 Johnson PJ, Berhane S, Kagebayashi C, Satomura S, Teng M, Reeves HL, O’Beirne J, Fox R, Skowronkska A, Palmer D, Yeo W, Mo F, Lai P, Ifarrairaegui M, Chan SL, Sangro B, Maksad R, Tada T, Kumada T,
Adhoute X et al. 6&12: An user-friendly model for TACE

Toyoda H. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach—the ALBI grade. J Clin Oncol 2015; 33: 550-558 [PMID: 25512453 DOI: 10.1200/JCO.2014.57.9151]

Adhoute X, Penaranda G, Raoul JL, Bollon E, Pol B, Letret V, Perrier H, Bayle O, Monnet O, Beaurain P, Muller C, Hardwigen J, Lefolgoz G, Castellani P, Bronowicki JP, Bourlière M. NIACE score for hepatocellular carcinoma patients treated by surgery or transarterial chemoembolization. Eur J Gastroenterol Hepatol 2017; 29: 706-715 [PMID: 28195873 DOI: 10.1097/MEG.0000000000000852]

Yau T, Tang VY, Yao TJ, Fan ST, Lo CM, Poon RT. Development of Hong Kong Liver Cancer staging system with treatment stratification for patients with hepatocellular carcinoma. Gastroenterology 2014; 146: 1691-700.e3 [PMID: 24583061 DOI: 10.1053/j.gastro.2014.02.032]

A new prognostic system for hepatocellular carcinoma: a retrospective study of 435 patients: the Cancer of the Liver Italian Program (CLIP) investigators. Hepatology 1998; 28: 751-755 [PMID: 9731568 DOI: 10.1002/hep.520080322]

Liu PH, Hsu CY, Hsie CY, Lee YH, Huang YH, Su CW, Lee FY, Lin HC, Huo TI. Proposal and validation of a new model to estimate survival for hepatocellular carcinoma patients. J Hepat Cancer 2016; 63: 25-33 [PMID: 27259100 DOI: 10.1016/j.jcncn.2016.04.023]

Mazzaferro V, Llovet JM, Miceli R, Bhoori S, Schiavo M, Mariani L, Camerini T, Rosayae S, Schwartz ME, Grazzi GL, Adam R, Neuhaus P, Salizzoni M, Bruix J, Forner A, De Carolis L, Cillo U, Burroughs AK, Troisi R, Rossi M, Gerunda GE, Lerut J, Belghiti J, Boim I, Gugenheim J, Rochling F, Van Hoek B, Maipo P; Metroticket Investigator Study Group. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol 2009; 10: 35-43 [PMID: 19058754 DOI: 10.1016/S1470-2045(08)70284-5]

Golfferi R, Cappelli A, Cucchieta A, Piscaglia F, Carpenzano M, Peri E, Ravaoli M, D’Errico-Grigioni A, Pinna AD, Bolondi L. Efficacy of selective transarterial chemoembolization in inducing tumor necrosis in small (<5 cm) hepatocellular carcinomas. Hepatology 2011; 53: 1580-1589 [PMID: 21351114 DOI: 10.1002/hep.24246]

Allard MA, Sebagh M, Ruiz A, Guettier C, Paule B, Vibert E, Cunha AS, Cherqui D, Samuel D, Bismuth H, Castaing D, Adam R. Does pathological response after transarterial chemoembolization for hepatocellular carcinoma in cirrhotic patients with cirrhosis predict outcome after liver resection or transplantation? J Hepatol 2015; 63: 83-92 [PMID: 25646884 DOI: 10.1016/j.jhep.2015.01.023]

Bolondi L, Burroughs A, Dufour JF, Galle PR, Mazzaferro V, Piscaglia F, Raoul JL, Sangro B. Heterogeneity of patients with intermediate (BCLC B) Hepatocellular Carcinoma: proposal for a subclassification to facilitate treatment decisions. Semin Liver Dis 2012; 32: 348-359 [PMID: 23397536 DOI: 10.1055/s-0032-1239906]

Kudo M, Arizumi T, Ueshima K, Sakurai T, Kitano M, Nishida N. Subclassification of BCLC B Stage Hepatocellular Carcinoma and Treatment Strategies: Proposal of Modified Bolondi’s Subclassification (Kinki Criteria). Dig Dis 2015; 33: 751-758 [PMID: 2648473 DOI: 10.1159/000439290]

Kim HY, Park JW, Joo J, Jung SJ, An S, Woo SM, Kim HB, Koh YH, Lee WJ, Kim CM. Severity and timing of progression predict refractoriness to transarterial chemoembolization in hepatocellular carcinoma. J Gastroenterol Hepatol 2012; 27: 1051-1056 [PMID: 22098152 DOI: 10.1111/j.1440-1746.2011.06963.x]

Adhoute X, Penaranda O, Naude S, Raoul JL, Perrier H, Bayle O, Monnet O, Beaurain P, Bazin C, Pol B, Folgoz GL, Castellani P, Bronowicki JP, Bourlière M. Treatment with TACE: the ABCR SCORE, an aid to the decision-making process. J Hepatol 2015; 62: 855-862 [PMID: 25463541 DOI: 10.1016/j.jhep.2014.11.014]

Sieghart W, Huckle F, Pinter M, Graziaidei I, Vogel W, Müller C, Heinzl H, Trauner M, Peck-Radosavljevic M. The ART of decision making: retreatment with transarterial chemoembolization in patients with hepatocellular carcinoma. Hepatology 2013; 57: 2261-2273 [PMID: 23316013 DOI: 10.1002/hep.26256]

Adhoute X, Penaranda O, Castellani P, Perrier H, Bourlière M. Recommendations for the use of chemoembolization in patients with hepatocellular carcinoma: usefulness of scoring system? World J Hepatol 2015; 7: 521-531 [PMID: 23848475 DOI: 10.4254/wjh.v7.i3.521]
