Original Research Article

An observational study to compare adenosine deaminase level among diabetes patients

Vivek Sharma¹, Sangeeta Bhattacharya¹, Purnima Dey Sarkar²*, Gini Garima¹, Neeraj Gour³, Meenakshi Chaudhary⁴

¹Department of Biochemistry, SHKM Govt. Medical College, Nuh, Haryana, India
²Department of Biochemistry, MGM Medical College, Indore, Madhya Pradesh, India
³Department of Community Medicine, SHKM Govt. Medical College, Nuh, Haryana, India
⁴Department of Pathology, Index Medical College & Research Centre, Indore, Madhya Pradesh, India

Received: 07 December 2018
Accepted: 03 January 2019

*Correspondence:
Dr. Purnima Dey Sarkar,
E-mail: drneerajg04@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Obesity is a complex disorder that involves some degree of over-consumption coupled with a metabolic derangement. As ADA has been putatively associated with inflammation, and adipose tissue inflammation is the hallmark of insulin resistance in obese T2DM patients. This study attempted to compare serum ADA in T2DM subjects.

Methods: This observational cross-sectional study was conducted in the Department of Biochemistry at MGM Medical College and MY Hospital. All the patients and controls were clinically examined, and routine biochemical tests were analyzed for all subjects. ANOVA has been applied to assess the variance between groups.

Results: Mean age of controls was 56.91 years where as mean age in the group of a subject with Obesity with diabetes was 40.91 years and with Obesity without diabetes was 48.10 years. ADA level was more among diabetes patients having obesity than diabetes patients having no obesity and controls.

Conclusions: This is very much evident through this study that ADA may be treated as prognostic predictor of diabetes either linked to obesity or not, though more studies are warranted in same direction to make this finding conclusive and acceptable biochemical evidence.

Keywords: ADA, Diabetes, Obesity

INTRODUCTION

Obesity is a complex disorder that involves some degree of over-consumption coupled with a metabolic derangement.¹ Adipose tissue previously was considered a passive storage depot for fat but is now known to play an active role in metabolism.² In India, the second most populous country in the world and where under-nutrition has been the major public health concern over the past several decades, little attention has been paid to obesity until recently.

The intimate relationship between diabetes and obesity has given rise to the term “diabesity” to characterize the close association of these two disorders and one study showed that overweight/obesity and central obesity were significantly associated with diabetes.³,⁴ In India, the prevalence of diabetes is expected to increase from 31.7million in 2000 to 79.4million in 2030.⁵
Adenosine deaminase (ADA) is a polymorphic enzyme which is present in all mammalian tissue. ADA catalyses the irreversible deamination of adenosine to inosine contributing to the regulation of intracellular and extracellular concentration of adenosine and is suggested to be an important enzyme for modulation of insulin bioactivity. The physiological function of ADA is crucial in regulating the steady state concentrations of adenosine in a variety of systems, especially immunology, neurological and cardiovascular systems.

As ADA has been putatively associated with inflammation, and adipose tissue inflammation is the hallmark of insulin resistance in obese T2DM patients, the serum level of ADA in T2DM is ill-defined. This study has been conducted with the objective to compare serum ADA in T2DM subjects.

METHODS

This observational comparative study was conducted in the Department of Biochemistry at MGM Medical College and MY Hospital.

Cases were divided into three groups namely, Group 1: normal, healthy adults as control group, Group 2: obese subjects, without diabetes, Group 3: obese subjects, with diabetes. 100 cases were selected in each group. Convenient sampling method has been adopted for the recruitment of subjects.

Data collection

The obese diabetic subjects and obese non diabetic subjects were taken from the outpatient department of Endocrinology, MGM Medical College and MY Hospital while the control subjects were recruited from the subjects coming to the department for a routine health check-up. A written informed consent from the patient and control was obtained after complete explanation of the study. All the patients and controls were clinically examined and routine biochemical tests were analyzed for all subjects prior to selection. The BMI and other anthropometric measurement of all subjects were done. The patients on insulin treatment, obesity, hypertension, ischemic heart disease, neurological disorders, renal failure, chronic liver disease, cancer, and immunological disorders were excluded from this study. The study was approved by the institutional ethics committee.

Biochemical assays

About 3ml venous blood samples were obtained from the patients as well as controls after 8-10hours of fasting. All the routine biochemical parameters were analyzed by automated clinical analyzers (Roch P 800 and ELISA). The serum ADA level was measured using a spectrophotometer based on the method by Giusti and Galanti. ADA activity is described as U/L.

Table 1: Distribution of subjects on the basis of gender.

Groups	Male Number	Male %	Female Number	Female %
Controls (n=100)	81	81	19	19
Obesity with diabetes (n=100)	67	67	33	33
Obesity without diabetes (n=100)	63	63	37	37

Age of all the participants was collected during the study. Mean age of controls was 56.91 years where as mean age in the group of a subject with obesity with diabetes was 40.91 years and with Obesity without diabetes was 48.10 years (Table 2).

Table 2: Distribution of subjects on the basis of age.

Groups	Age (Years) Mean±SD
Controls (n=100)	56.91±9.37
Obesity with diabetes (n=100)	40.91±8.34
Obesity without diabetes (n=100)	48.10±10.71

BMI of all participants were also calculated measuring weight and height of all study participants. Mean BMI of controls was 23.26. Mean BMI in the group of subjects with Obesity with diabetes was 32.43 and of subjects with Obesity without diabetes were 32.06 (Table 3).

Table 3: Distribution of subjects on the basis of body mass index (BMI).

Parameters	Controls (n=100)	Obesity with diabetes (n=100)	Obesity without diabetes (n=100)
Mean±SD	Mean±SD	Mean±SD	
BMI	23.26±3.60	32.43±2.27	32.06±2.59
Kg/m²			
Blood sample of all participants has been drawn and measurement of ADA was done among all three groups and it was maximum among subjects having obesity with diabetes (Mean=22.71) followed by people having obesity without diabetes (Mean=21.79). Difference of ADA measurement was also found to highly significant among all three groups (ANOVA F value: 47.14, P<0.005) (Table 4).

DISCUSSION

The study was conducted in the Department of Biochemistry at MGM Medical College and MY Hospital. Volunteer patients diagnosed with mentioned disorder were selected for the study. Complete care was taken in protecting the anonymity of patients and the privacy of patient medical records. Administration of any drug/medication or any surgical procedure to the patients was not involved in the study, only analysis was done. The samples were collected by standard procedures under aseptic conditions. Standard procedures were followed for the preservation and storage of samples before analysis. There is a global obesity pandemic. However, the prevalence of overweight and obesity among men and women varies greatly within and between countries, and overall, more women are obese than men. These gender disparities in overweight and obesity are exacerbated among women in developing countries, particularly in the Middle East and North Africa. Yet, in developed countries, more men are overweight than women.4 In our study Healthy subjects (controls) 81 cases are of males which were maximum in comparison of any group, 67 males subjects were in obesity with diabetes and 63 males were there in obesity without diabetes which is minimum in comparison to any group. Elderly obesity worldwide has become a growing public-health concern in developed countries with aging populations. The global epidemic of elderly obesity could be a major risk factor not only for resurgent chronic diseases, such as hypertension, cardiovascular disease, or diabetes, but also for impairing one's quality of life.9 In this study, mean age of controls, diabetes with obesity and without obesity was 56.91 years, 40.91 years and 48.10 years respectively. Body weight, body mass index (BMI), waist and hip circumferences, waist/hip ratio (WHR), triceps and subscapular skinfolds were all positively predictive of NIDDM independent of age and sex.10 In our study Mean BMI of controls, diabetes with obesity and without obesity was 23.26, 32.43 and 32.06 respectively. The body mass index (BMI) of subjects was calculated and adenosine deaminase activity was determined in their fasting blood sample. Serum adenosine deaminase activity was significantly increased in overweight and obese subjects and as well as in combined overweight and obese group as compared to control (P<0.0001).11 Our study also reported conforming findings i.e. ADA level was far more higher among obese and diabetic patients than normal so ADA measurement can become early predictor of Insulin resistance and in turn for diabetes linked with obesity either.

Our study supports this mechanism as ADA is increased in obese subjects and the increase is directly proportional to the increase in BMI. By inactivating extracellular adenosine which is spontaneously released by adipocytes, ADA impairs the insulin sensitivity for glucose transport.12 Although adenosine is endogenous anti-inflammatory agent and may limit cytokine production, various studies have proved that production of TNF-α is increased in obesity.13 It has also been proved that inhibition of re-phosphorylation of adenosine by adenosine kinase or its degradation by ADA improves survival from sepsis in various models.14,15

It has already been proven that ADA is increased in patients with diabetes mellitus.16 Hence, we state that an increase in ADA activity is more than expected and insulin resistance develops in obesity and these obese persons then progress to develop NIDDM and with the background of a country like India, where people are more prone to diabetes, drugs used in the treatment of inflammatory disease such as adenosine kinase inhibitors methotrexate sulfasalazine or aspirin which exert their beneficial effects by releasing adenosine should be given to overweight and obese persons.17-19

CONCLUSION

This is very much evident through this study that ADA may be treated as prognostic predictor of diabetes either linked to obesity or not, though more studies are warranted in same direction to make this finding conclusive and acceptable biochemical evidence.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Amatruda JM, Statt MC, Welle SL. Total and resting energy expenditure in obese women reduced to ideal body weight. J Clin Invest. 1993;92:1236-42.
2. Flier JS. The adipocytes: storage depot or node on the energy information superhighway? Cell. 1995;80:15-8.
3. Dhingra V, Chatterjee A, Guleria R, Sharma R, Pandey RM, Talwar KK, Misra A. Adverse physical activity pattern in urban adolescents. J Assoc Physicians India. 2002;50:1521.

4. Singh RB, Bajaj S, Niaz MA, Rastogi SS, Moshiri M. Prevalence of type 2 diabetes mellitus and risk of hypertension and coronary artery disease in rural and urban population with low rates of obesity. Int J Cardiol. 1998;66:65-72.

5. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047-53.

6. Spencer N, Hopkinson D, Harris H. Adenosine deaminase polymorphism in man. Ann Hum Genet. 1968;32:9-14.

7. Bottini E, Gloria-Bottini F. Adenosine deaminase and body mass index in non-insulin-dependent diabetes mellitus. Metabolism. 1999;48:949-51.

8. Kanter R, Caballero B. Global Gender Disparities in Obesity: A Review. American Society for Nutrition. Adv Nutr. 2012;3:491-8.

9. Kim IH, Chun H, Kwon JW. Gender differences in the effect of obesity on chronic diseases among the elderly Koreans. J Kor Med Sci. 2011;26(2):250-7.

10. Wei M, Gaskill SP, Haffner SM, Stern MP. Waist circumference as the best predictor of noninsulin dependent diabetes mellitus (NIDDM) compared to body mass index, waist/hip ratio and other anthropometric measurements in Mexican Americans-a 7-year prospective study. Obesity research. 1997 Jan;5(1):16-23.

11. Green A. Adenosine receptor down-regulation and insulin resistance following prolonged incubation of adipocytes with an A1 adenosine receptor agonist. J Biol Chem. 1987;262:15702-7.

12. Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsole RB. The expression of tumour necrosis factor in human adipose tissue. Regulation of obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest. 1995;95:2111-19.

13. Firestein GS, Boyle D, Bullough DA, Gruber HE, Sajjadi FG, Montag A, et al. Protective effect of an adenosine kinase inhibitor in septic shock. J Immunol. 1994;152:5853-9.

14. Adanis S, Yalovetskiy IV, Nardulli BA, Sam II AD, Jonjev ZS, Law WR. Inhibiting adenosine deaminase modulates the systemic inflammatory response syndrome in endotoxemia and sepsis. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1324-32.

15. Mohan V. Why are Indians more prone to diabetes? J Assoc Physicians India. 2004;52:468-74.

16. Cronstein BN, Eberle MA, Gruber HE, Levin RI. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc Natl Acad Sci USA. 1991;88:2441-5.

17. Cronstein BN, Montesinos MC, Weissmann G. Salicylates and sulfasalazine, but not glucocorticoids, inhibit leukocyte accumulation by an adenosine-dependent mechanism that is independent of inhibition of prostaglandin synthesis and p105 of NFκB. Proc Natl Acad Sci USA. 1999;96:6377-81.

18. Cronstein BN, Naime D, Firestein GS. The anti-inflammatory effects of an adenosine kinase inhibitor are mediated by adenosine. Arthritis Rheum. 1995;38:1040-45.

19. Gadangi P, Longaker M, Naime D, Levin RI, Recht PA, Montesinos MC, et al. The anti-inflammatory mechanism of sulfasalazine is related to adenosine release at inflamed sites. J Immunol. 1996;156:1937-41.

Cite this article as: Sharma V, Bhattacharya S, Sarkar PD, Garima G, Gour N, Chaudhary M. An observational study to compare adenosine deaminase level among diabetes patients. Int J Res Med Sci 2019;7:473-6.