Review

Antispasmodic Effect of Essential Oils and Their Constituents: A Review

Simona Codruta Heghes 1, Oliviu Vostinaru 2,*, Lucia Maria Rus 1, Cristina Mogosan 2, Cristina Adela Iuga 1,3 and Lorena Filip 4

1 Department of Drug Analysis, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania; cmaier@umfcluj.ro (S.C.H.); lrus@umfcluj.ro (L.M.R.); iugac@umfcluj.ro (C.A.I.)
2 Department of Pharmacology, Physiology and Physiopathology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania; cmogosan@umfcluj.ro
3 Department of Proteomics and Metabolomics, MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
4 Department of Bromatology, Hygiene, Nutrition, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania; lfilip@umfcluj.ro

* Correspondence: oliviu_vostinaru@yahoo.com; Tel.: +40-074-118-5163

Academic Editor: Francesca Mancianti
Received: 29 March 2019; Accepted: 25 April 2019; Published: 29 April 2019

Abstract: The antispasmodic effect of drugs is used for the symptomatic treatment of cramping and discomfort affecting smooth muscles from the gastrointestinal, biliary or genitourinary tract in a variety of clinical situations. The existing synthetic antispasmodic drugs may cause a series of unpleasant side effects, and therefore the discovery of new molecules of natural origin is an important goal for the pharmaceutical industry. This review describes a series of recent studies investigating the antispasmodic effect of essential oils from 39 plant species belonging to 12 families. The pharmacological models used in the studies together with the mechanistic discussions and the chemical composition of the essential oils are also detailed. The data clearly demonstrate the antispasmodic effect of the essential oils from the aromatic plant species studied. Further research is needed in order to ascertain the therapeutic importance of these findings.

Keywords: essential oils; aromatic plants; antispasmodic effect; isolated ileum; monoterpenes

1. Introduction

The antispasmodic (spasmolytic) effect of drugs is commonly used for the reduction of excessive smooth muscle contractility, responsible for cramping and discomfort in the abdominal area, caused by multiple conditions affecting the gastrointestinal, biliary or genitourinary tract [1]. Irritable bowel syndrome (IBS), biliary colic caused by gallstones, gastritis, colitis and pancreatitis or dysmenorrhea may affect large numbers of patients and usually require antispasmodic treatment for the relief of symptoms [1–3]. Additionally, antispasmodic compounds are also used for the reduction of discomfort caused by medical procedures like colonoscopy [4]. A variety of synthetic antispasmodic drugs have been authorized worldwide by the regulatory agencies, the most important being anticholinergic agents (butylscopolamine), direct smooth muscle relaxants (papaverine), calcium antagonists (pinaverium) or opioid receptor modulators (trimebutine) [1,2]. Despite their clinical efficacy, the use of these molecules is often limited by the development of unpleasant and sometimes severe side effects which may reduce patient compliance and impair treatment efficiency [1,4]. Historically, a long time before the golden age of medicinal chemistry, several aromatic plants were used in traditional medicine for the treatment of different ailments in some parts of the world. In Europe, aromatic plants like peppermint or thyme have been used for medical purposes since antiquity while in Chinese or Indian traditional medicine other
aromatic species like cinnamon or sandalwood were known for centuries [5]. Nowadays, antispasmodic botanical remedies are used by a constantly increasing number of patients for symptomatic treatment of functional dyspepsia, intestinal, colonic or ureteral spasms, gallbladder hyperactivity and uterine cramps [6]. In the large category of medicinal plants, aromatic plants rich in essential oils are considered a valuable and easily accessible natural resource for the development of new molecules capable of becoming drug candidates. Essential oils are complex mixtures containing mainly aromatic terpenes classified in monoterpenes and sesquiterpenes according to the number of isoprene units but also phenylpropanoid compounds. These compounds are secondary metabolites formed by isoprenoid pathways in specialized secretory tissues of aromatic plants and diffused at the surface of their flowers or leaves [7]. The biological effects of essential oils have been extensively researched, as they can easily pass through cellular membranes and influence a variety of molecular targets from ion channels to intracellular enzymes [8]. Multiple in vitro and in vivo studies have confirmed the anti-oxidant, antimicrobial, antifungal, antiparasitary, anti-inflammatory, antinociceptive or antitumoral effects of essential oils [7], but the antispasmodic effect has been less studied experimentally, despite being mentioned in traditional medicine sources. Hence, this review was aimed at the investigation of the antispasmodic effect of essential oils, presenting the experimental models used for pharmacological testing with the subsequent mechanistic explanations, but also the chemical composition of the studied essential oils.

2. Methodology

A search was performed in Web of Science, PubMed and Scopus scientific databases, including the last 20 years (1998–2018). The search terms “essential oils” and “antispasmodic” (“spasmolytic”) were used for data selection. Only articles in English were included in this work. Our study investigated the antispasmodic effect of the essential oils and was not focused on the bronchodilator and vasodilator effects, presented by other reviews.

3. Results and Discussion

3.1. Preclinical Studies Investigating Antispasmodic Effect of Essential Oils

This review showed that essential oils from thirty-nine plant species belonging to twelve families presented antispasmodic properties demonstrated by specific animal models. The plants were organized alphabetically by family and botanical name, the proposed antispasmodic mechanism being also presented, where available. The families with the highest proportion of plant species showing antispasmodic effects due to essential oils (EO) were Lamiaceae (13 species), Apiaceae (6 species), and Asteraceae (5 species). Other identified families were Annonaceae and Poaceae (3 species), Rutaceae and Verbenaceae (2 species) while Anacardiaceae, Araeaceae, Geraniaceae, Rosaceae and Zingiberaceae families each presented only one plant species with antispasmodic essential oil (Table 1).
Table 1. Plant species containing essential oils with antispasmodic activity demonstrated in preclinical studies.

No.	Plant Species with Essential Oils	Experimental Model/Concentration of EO in Organ Bath	Mechanism of Antispasmodic Effect	Reference
1.	*Pistacia integerrima*—zebrawood	Isolated guinea pig ileum/50 µg/mL	Inhibition of Ca\(^{2+}\) channels	Shirole et al., 2015 [9]
2.	*Cananga odorata var. genuina*—ylang ylang	Isolated guinea pig ileum/5–729 µg/mL; Isolated rat bladder in vivo/0.01–0.05 mL/rabbit	Increase of cAMP*	Kim et al., 2003 [10]
3.	*Xylopia frutescens*	Isolated guinea pig ileum/243–729 µg/mL	Inhibition of Ca\(^{2+}\) channels; antagonism of histaminergic receptors	Souza et al., 2015 [11]
4.	*Xylopia langsdorffiana*	Isolated guinea pig ileum; isolated rat uterus/243–729 µg/mL	Decrease in cytosolic calcium concentration	Correia et al., 2015 [12]
5.	*Anethum graveolens*—dill	Isolated guinea pig ileum/0.5–2 mg/mL	Inhibition of Ca\(^{2+}\) channels	Gharib Naseri et al., 2007 [13]
6.	*Carum carvi*—caraway	Isolated guinea pig ileum/2.20–6.63 mg/mL; Dispersed smooth muscle cells of guinea pigs/2.5 mg/mL	Not available	Heinle et al., 2006 [14]; Al-Essa et al., 2010 [15]
7.	*Coriandrum sativum*—coriander	Isolated guinea pig ileum/0.3–1 mg/mL	Inhibition of Ca\(^{2+}\) channels	Gilani et al., 2006 [20]
8.	*Ferula heuffeli* Griseb.	Isolated guinea pig ileum/1–30 mg/mL;	Not available	Pavlovic et al., 2012 [17]
9.	*Foeniculum vulgare*—fennel	Isolated guinea pig ileum/243–729 µg/mL	Not available	Ostad et al., 2001 [18]
10.	*Pimpinella anisum*—aniseed	Isolated guinea pig ileum/0.3–1 mg/mL	Activation of NO-cGMP pathway	Tirapelli et al., 2007 [19]
11.	*Acorus calamus*—sweet flag, calamus	Isolated guinea pig ileum/0.3–1 mg/mL	Inhibition of Ca\(^{2+}\) channels	Gilani et al., 2006 [20]
12.	*Artemisia dracunculus*—tarragon	Isolated sheep ruminal and abomasal smooth muscles/0.1–100 µg/mL	Not available	Jalilzadeh-Amin et al., 2012 [21]
13.	*Chamaemelum nobile*—roman chamomile	Isolated guinea pig ileum/60 µg/mL	Direct smooth muscle relaxation	Sandor et al., 2018 [22]
14.	*Chrysactinia mexicana*—damianna daisy	Isolated rabbit ileum/30 µg/mL	Inhibition of Ca\(^{2+}\) channels; increase of cAMP	Zavala-Mendoza et al., 2016 [23]
15.	*Hofmeisteria schaffneri*	Gastrointestinal transit test in mouse (in vivo)/316 mg/kg	Not available	Perez-Vasquez et al., 2017 [24]
16.	*Matricaria recutita* (chamomilla)—German chamomile	Isolated rabbit ileum/0.3–3 mg/mL	K\(^{+}\) channels activation	Mehmood et al., 2015 [25]
17.	*Pelargonium graveolens*—geranium	Isolated guinea pig ileum/4.8–6 µg/mL	Reduction of calcium flux into the intestinal smooth muscles	Lis-Balchin et al., 1997 [26]
Table 1. Cont.

No.	Plant Species with Essential Oils	Experimental Model/Concentration of EO in Organ Bath	Mechanism of Antispasmodic Effect	Reference
18.	*Lavandula angustifolia*—true lavender	Isolated guinea pig ileum, isolated rat uterus/6 µg/mL	Increase of cAMP	Lis-Balchin and Hart, 1999 [27]
19.	*Melissa officinalis*—melissa	Isolated rat ileum/20 µg/mL; isolated mouse jejenum/1–50 mg/mL	Inhibition of Ca²⁺ channels; Not available	Sadraei et al., 2003 [28]; Aubert et al., 2016 [29]
20.	*Mentha x piperita*—peppermint	Isolated guinea pig ileum/10–320 µL/mL	Inhibition of Ca²⁺ channels; Inhibition of 5HT3 receptor channels	Grigoleit et al., 2005 [30]; Heimes et al., 2011 [31]
21.	*Mentha spicata*—spearmint	Isolated guinea pig ileum	Inhibition of Ca²⁺ channels; Inhibition of 5HT3 receptor channels	Grigoleit et al., 2005 [30]; Heimes et al., 2011 [31]
22.	*Mentha x villosa*—mojito mint	Isolated guinea pig ileum/250 µg/mL–1 mg/mL	Inhibition of Ca²⁺ channels	Souza et al., 2008 [33]
23.	*Ocimum basilicum*—basil	Isolated guinea pig ileum	Inhibition of Ca²⁺ channels	Janbaz et al., 2014 [34]
24.	*Ocimum selloi*—green pepperbasil	Isolated guinea pig ileum	Inhibition of Ca²⁺ channels	Souza et al., 2015 [35]
25.	*Ocimum gratissimum*—African basil	Isolated guinea pig ileum/0.1 nM–10 µM	Inhibition of Ca²⁺ channels	Janbaz et al., 2014 [34]
26.	*Origanum majorana*—sweet marjoram	Isolated rabbit jejunum, isolated rat jejunum/0.01–0.3 mg/mL	Inhibition of Ca²⁺ channels	Madeira et al., 2002 [36]
27.	*Plectranthus barbatus* synonym *Coleus forskohlii*—Indian coleus	Isolated guinea pig ileum/1–300 µg/mL	Direct smooth muscle relaxation	Camara et al., 2003 [38]
28.	*Rosmarinus officinalis*—rosemary	Isolated guinea pig ileum/150–1200 µg/mL	Inhibition of Ca²⁺ channels	Ventura-Martinez et al., 2011 [39]
29.	*Salvia officinalis*—sage	Isolated rabbit jejunum/0.1–3 mg/mL	K⁺ channels activation	Khan et al., 2011 [40]
30.	*Satureja hortensis*—summer savory	Isolated rat ileum/1.55 µg/mL	Not available	Hajhashemi et al., 2000 [41]
31.	*Cymbopogon citratus*—lemongrass	Isolated rabbit ileum/0.001–1 mg/mL	Inhibition of Ca²⁺ channels	Devi et al., 2011 [42]
32.	*Cymbopogon schoenanthus* (L.) Spreng.—cabelgrass	Isolated rat ileum/30–120 µg/mL	Not available	Pavlovic et al., 2017 [43]
33.	*Cymbopogon martinii*—palmarosa	Isolated rabbit jejunum/0.01–3 mg/mL	Inhibition of Ca²⁺ channels	Janbaz et al., 2014 [44]
34.	*Rosa indica* (L.)	Isolated rabbit jejunum/0.01–1 mg/mL	Inhibition of Ca²⁺ channels	Rasheed et al., 2015 [45]
35.	*Citrus aurantifolia* var. acidae—lime	Isolated rabbit jejunum/Not available	Not available	Spadaro et al., 2012 [46]
36.	*Citrus aurantium* var. sinensis—sweet orange	Isolated rat ileum/9.7–1000 µg/mL	Not available	Sanchez-Reccillas et al., 2017 [47]
37.	*Lippia alba*	Isolated rat ileum/7–37 mg/mL	Reduction of calcium influx, stimulation of NO production	Blanco et al., 2013 [48]
38.	*Lippia thyroidea*	Isolated guinea pig ileum/11.56–48.83 µg/mL	Not available	Menezes et al., 2018 [49]
39.	*Elettaria cardamomum*—cardamom	Isolated rabbit jejunum/3–10 mg/mL	Inhibition of Ca²⁺ channels	Gilani et al., 2008 [50]

* For the in vivo experimental models dose of essentials oils (EO) was expressed in mL/animal or mg/kg.
The majority of the presented preclinical studies used whole essential oils, the antispasmodic effect of individual chemical constituents of essential oils being rarely investigated. Sadraei et al. [28] demonstrated antispasmodic effects not only for the essential oil from Melissa officinalis but also for citral, one of its main components. Heimes et al. [31] investigated the spasmylytic effects of menthol, a major constituent in the essential oil from Mentha piperita. De Souza et al. [33] tested the antispasmodic effect of several monoterpenes from Mentha x villosa essential oil, carvone and rotundifolone being the most active compounds.

While several studies confirmed the antispasmodic effect of essential oils extracted from common vegetal species extensively used in Asia or Europe like Cananga odorata [10], Foeniculum vulgare [18] or Artemisia dracunculus [21], other studies showed significant spasmylytic effects of essential oils from less-known plant species like Xylopia langsdorffiana [12], Ferula heuffelii [17] or Hofmeisteria schaffneri [24], proving that new natural sources of bioactive molecules are constantly being discovered.

The collected data from this review confirmed other studies investigating biological effects of essential oils. Martinez-Perez et al. [51] showed that monoterpenes frequently found in essential oils are the leading class of natural molecules responsible for the antispasmodic effect, followed by flavonoids and alkaloids. De Almeida et al. [52] and Sarmento-Neto et al. [53] also showed in their studies that aromatic plants from the Lamiaceae, Apiaceae and Asteraceae families are a rich source of essential oils, highly valuable for medicinal or industrial purposes.

Also, analysis of the included studies showed that, generally, the experimental models used for the assessment of essential oil antispasmodic activity were represented by ex vivo techniques. Among these, the isolated guinea pig ileum method was preferred, being considered a precise pharmacological tool capable of investigating the antispasmodic effect of natural or synthetic compounds [54]. Other isolated organs used for the evaluation of antispasmodic effect were rabbit jejunum, rat ileum, bladder or uterus and sheep ruminal and abomasal muscles. An experimental model used in vitro cell cultures [15] and only two experiments used in vivo techniques: rabbit bladder in vivo and gastrointestinal transit test in mouse [10,24]. The ex vivo techniques are predominant due to their use without the limitations of drug bioavailability which may be a problematic issue for the in vivo models. Ex vivo methods are also well suited for mechanistic studies due to the diversity of contractile agents which could be used experimentally [55].

3.2. Clinical Studies Evaluating Antispasmodic Potential of Essential Oils

Antispasmodic effect of essential oils was investigated in several clinical studies for different situations: functional dyspepsia, irritable bowel syndrome, discomfort produced by endoscopic procedures, infantile colic or dysmenorrhea (Table 2).
Table 2. Clinical studies evaluating antispasmodic potential of essential oils.

Area of Interest	Authors	Type of Clinical Study	Number of Patients	Treatment	Results
Functional dyspepsia	Papathanasopoulos et al., 2013 [56]	Randomized, crossover study	13 healthy volunteers	Peppermint oil 182 mg p.o., single dose	Decreased intragastric pressure and gastric motility
Functional dyspepsia	Inamori et al., 2007 [57]	Randomized control study	10 healthy volunteers	Peppermint oil 6.4 mL p.o., single dose	Enhancement of gastric emptying without altering gastric emptying coefficient
Functional dyspepsia	May et al., 2000 [58]	Randomized control study	96 patients with functional dyspepsia	Peppermint oil and caraway oil combination 90 mg + 50 mg p.o., 4 weeks	Reduction of symptoms (pain, fullness, heaviness)
Functional dyspepsia	Madisch et al., 1999 [59]	Randomized control study	118 patients with functional dyspepsia	Peppermint oil and caraway oil combination 90 mg + 50 mg p.o., 4 weeks	Reduction of dyspeptic symptoms
Irritable bowel syndrome (IBS)	Cash et al., 2016 [60]	Randomized control study	72 patients with IBS	Peppermint oil 180 mg p.o., 4 weeks	Reduction of symptoms
IBS	Khanna et al., 2014 [61]	Meta-analysis	9 studies with 726 patients with IBS	Peppermint oil 200 mg	Global improvement of IBS symptoms (RR 2.23, 95% CI 1.78–2.81)
IBS	Merat et al., 2010 [62]	Randomized control study	90 patients with IBS	Peppermint oil 187 mg p.o., 8 weeks	Reduction of abdominal pain and discomfort
IBS	Cappello et al., 2007 [63]	Randomized control study	57 patients with IBS	Peppermint oil 225 mg p.o., 4 weeks	Reduction of total IBS symptoms
IBS	Pittler and Ernst 1998 [64]	Meta-analysis	8 randomized control studies	Peppermint oil	Reduction of IBS symptoms not established beyond reasonable doubt Improvement of pain and other IBS symptoms
IBS	Liu et al., 1997 [65]	Randomized control study	110 patients with IBS	Peppermint oil 187 mg p.o., 4 weeks	Non-significant reduction of duodenal contractions
Endoscopic procedures	Inoue et al., 2014 [66]	Randomized control study	226 patients with colonoscopy	L-menthol applied on the mucosa	Decreased frequency and duration of infantile colic
Endoscopic procedures	Hiki et al., 2012 [67]	Randomized control study	131 patients with gastric endoscopy	L-menthol applied on the mucosa	
Endoscopic procedures	Yamamoto et al., 2006 [68]	Randomized, control study	40 patients with endoscopic cholangiopancreatography	Peppermint oil applied to papilla	
Infantile colic	Bezerra Alves et al., 2012 [69]	Randomized crossover study	30 infants	*Mentha piperita* liquid drops, 1 drop/kg	Reduction of dysmenorrhea symptoms
Primary dysmenorrhea	Ghodsi and Asltoghiri, 2014 [70]	Randomized control study	80 female students	Fennel capsules 180 mg/day, 3 months	
The analysis of data resulted from the presented clinical studies show that peppermint oil was the predominant essential oil used for symptomatic treatment of various conditions, the strongest evidence being available for irritable bowel syndrome (IBS). The randomized controlled studies of Cash et al. [60], Merat et al. [62] and Capello et al. [63] enrolled patients with IBS diagnosed according to Rome II or III criteria, showing that peppermint oil was superior to placebo in reducing the symptom score of irritable bowel syndrome (IBS) after oral administration for one or two months. According to other studies [58,59], peppermint and caraway essential oils are a possible treatment option for patients with functional dyspepsia, reducing epigastric discomfort and abdominal bloating over four weeks of treatment. Also, L-menthol and peppermint oil were tested for the reduction of discomfort caused by endoscopic procedures being used with good results in upper GI endoscopies, colonoscopies [66,67] but also in cholangiopancreatographies [68]. The study of Bezerra Alves et al. [69] found that *Mentha piperita* essential oil reduced the frequency of infantile colic. In addition, Ghodsi and Asltoighiri [70] found that fennel essential oil reduced primary dysmenorrhea symptoms after a prolonged oral administration [70].

The systematic reviews of Chumpitazi et al. [71] and Shams et al. [72] pointed out that peppermint oil was safe and well-tolerated by the patients, with a minimal side effect profile. Nevertheless, clinical studies evaluating the antispasmodic potential of essential oils have some limitations. They were represented mainly by randomized crossover or control studies using small numbers of patients with an insufficient statistical significance. Only the studies of Khanna et al. [61] and Pittler and Ernst [64] were metaanalysis with superior statistical power. Therefore, additional clinical studies are necessary to ascertain the therapeutic value of antispasmodic essential oils.

3.3. Mechanisms of Antispasmodic Effect of Essential Oils and Their Constituents

Smooth muscles are a key element present in the internal structure of multiple abdominal organs including stomach, intestine, bladder or uterus, receiving innervation from the autonomic nervous system but also autocrine or paracrine stimuli [73]. Recently, considerable progress was made to understand in great molecular detail the complex physiology of smooth muscle contraction. Excitation-contraction coupling occurs when Ca$^{2+}$ ions enter from the extracellular side into the smooth muscle cells through sarcolemma voltage-dependent calcium channels, being also released from intracellular stores via inositol 1,4,5-triphosphate receptor (IP3R) situated on endoplasmic reticulum (ER) [74]. The calcium release from ER is triggered by the binding of agonists like acetylcholine or histamine on specific G-protein coupled receptors (GPCRs) from the membrane of smooth muscle cells, which activate phospholipase-C (PLC) to generate IP3. After the intracellular concentration of calcium has increased, Ca$^{2+}$ ions bind to calmodulin (CaM) and phosphorylate the myosin light-chain kinase (MLCK) with the subsequent activation of the contractile apparatus [75].

Thus, the identification and characterization of multiple molecular targets involved in smooth muscle contraction has led to the development of a variety of drugs able to reduce excessive contractility responsible for cramps and colics of the abdominal organs. Among potential new drug candidates, essential oils have become increasingly attractive due to their complex chemical composition and multiple pharmacological mechanisms: inhibition of voltage-dependent calcium channels, modulation of potassium channels, antagonism of cholinergic receptors, and modulation of intracellular cyclic adenosine monophosphate (cAMP) (Figure 1). Although some details of the antispasmodic effect of essential oils and their constituents have been explained, further research is needed to better understand their mechanism of action at cellular and molecular levels.
3.3.1. Inhibition of Voltage-Dependent Calcium Channels

The opening of voltage-dependent calcium channels (VDCCs) is directly responsible for Ca$^{2+}$ influx into the smooth muscle cells, partially triggering the contractile mechanism. Thus, inhibition of VDCCs has a good potential of relaxing smooth muscles, already used by several antispasmodic drugs like pinaverium [76]. Essential oils have been studied for their antispasmodic effect, the inhibitory effect on voltage-dependent calcium channels being the most commonly reported mechanism of action in the studies mentioned in our review (19 studies from 39). Some of these studies presented detailed mechanistic explanations of the antispasmodic effect for the non-fractioned essential oils. Makrane et al. [37] showed that organic fractions rich in essential oils from *Origanum majorana* showed a consistent spasmolytic effect on isolated rat and rabbit ileum not altered by atropine, L-NAME or methylene blue, and shifted to the right the concentrations-response curves for CaCl$_2$, suggesting a calcium channel blocking effect. Rasheed et al. [45] showed in an experiment on isolated rabbit jejunum that essential oil from *Rosa indica* relaxed the organ, shifting the calcium curves to the right, showing a similar effect to verapamil, a phenylalkylamine derivative from the calcium channel blocker class. The study of Souza et al. [35] identified the same mechanism for the essential oil from *Ocimum seloii* which reduced the contraction of isolated guinea pig ileum induced by carbachol, BaCl$_2$ and K$^+$ and shifted calcium concentration-response curves to the right.
Other studies were focused on the individual components of the essential oils. Amato et al. showed that menthol (0.1 mM–30 mM) reduced in a concentration-dependent manner the contractility of human colon circular muscle, acting by an antagonistic effect on L-type Ca\(^{2+}\) channels [77]. The study of Ramos-Filho et al. [78] showed that menthol markedly inhibited contractions of wild and TRPM8 knockout mice bladder strips evoked by carbachol, CaCl\(_2\) or electric field stimulation. The effects of menthol were not influenced by previous incubation with sodium or potassium channel inhibitors or by the removal of urothelium, suggesting a blockade of calcium channels. Electrophysiological studies have shown that menthol was able to inhibit the calcium influx through the low-voltage activated Ca\(^{2+}\) channels but also to enhance the inactivation of high-voltage activated Ca\(^{2+}\) channels [79]. Another monoterpene, (-)-carvone was tested by Souza et al. [32] on guinea pig ileum in order to ascertain the mechanism of its spasmolytic effect, proving to be almost 100 times more potent than verapamil, a well-known calcium channel blocker (CCB) with a similar mode of action. Devi et al. [42] studied the antispasmodic effect of another terpene, citral, the major component of *Cymbopogon citratus* essential oil on rabbit ileum, the results showing a marked reduction of contractions evoked by CaCl\(_2\), similarly to verapamil.

3.3.2. Modulation of Potassium Channels

Potassium channels are largely distributed in human and animal tissues, having important physiological roles such as the regulation of smooth muscle tone [80]. Generally, the activation of voltage-gated potassium channels induces a hyperpolarisation of cell membrane with a subsequent de-activation of calcium channels leading to smooth muscle relaxation. Only a few studies investigated the effect of essential oils on potassium channels situated on smooth muscles of internal organs. Mehmood et al. [25] showed that a crude extract from *Matricaria chamomilla* L. containing sesquiterpenes (bisabolol) and flavonoids produced a significant antispasmodic effect on isolated rabbit jejenum. The effect on low K\(^+\) induced contractions was completely blocked by 4-aminopyridine, suggesting that the activation of potassium channels was responsible for smooth muscle relaxation. Khan et al. [40] showed that a crude extract from *Salvia officinalis* rich in essential oils (thujone, 1,8-cineole, camphor, linalool) caused a dose-dependent relaxation of isolated rabbit jejunum by an activation of K\(^+\) channels.

Silva et al. [81] investigated the mechanism of smooth muscle relaxation of rotundifolone, the major constituent of *Mentha x villosa* essential oil. Patch-clamp recordings made in mesenteric smooth muscle cells showed that rotundifolone significantly increased K\(^+\) currents, effect blocked by charybdotoxin which suggested the participation of big potassium (BK) channels.

3.3.3. Antagonism of Cholinergic Receptors

The parasympathetic nervous system has an important role in the regulation of gastrointestinal motility. Muscarinic receptors located directly on smooth muscle cells can trigger their contraction in response to acetylcholine, but nicotinic receptors have also been identified on the nerve cells from the enteric nervous system. Research on the effect of essential oils on cholinergic receptors from smooth muscles is extremely rare, only a few studies being published to date. Amato et al. [82] found that menthol induced relaxation of isolated mouse stomach by inhibiting nicotinic receptors from the enteric nervous system, reducing the release of acetylcholine from enteric nerves. The study of Lozon et al. [83] investigated the effects of vanilin, pulegone, eugenole, carvone, carvacrol, carveol, thymol, thymoquinone, menthone, and limonene on human nicotinic cholinergic receptors expressed in *Xenopus* oocytes. Carveol showed the most potent inhibition at the \(\alpha 7\) subunit of the nicotinic receptor. The molecular interactions between terpenic compounds from essential oils and nicotinic cholinergic receptors were investigated by electrophysiological studies which showed that menthol caused a shortening of channel open time and a prolongation of channel closed time of human \(\alpha 4\beta 2\) nicotinic receptors [83].
3.3.4. Modulation of Intracellular Cyclic Adenosine Monophosphate (cAMP)

The main intracellular second messengers cAMP and cGMP are directly involved in smooth muscle relaxation. cAMP is generated by adenylyl cyclase mainly as a result of beta-adrenergic receptor activation. cGMP is produced by soluble guanylyl cyclase activated by nitric oxide or other mediators. Both cAMP and cGMP activate protein kinases PKA and PKG which may relax smooth muscles either by increasing the expulsion of calcium from the cell or by activation of MLC phosphatase which inhibits MLCK. The levels of cAMP and cGMP are severely reduced by the intervention of phosphodiesterases (PDE) involved in their degradation to inactive metabolites [73]. Multiple studies have investigated the effects of essential oils on the intracellular mechanisms of smooth muscle relaxation. In a study from 2018, Sandor et al. [22] studied the effects of the essential oil and extract from *Chamaemelum nobile* L. (roman chamomile) on isolated guinea pig ileum and rat gastrointestinal preparations. The essential oil significantly relaxed the isolated organs contracted with histamine, without any influence of a pretreatment with atropine, tetrodotoxin, propranolol or NG–nitro-L-arginine, thus suggesting an intracellular mechanism of the antispasmodic effect. Zavala-Mendoza et al. [23] investigated the antispasmodic mechanism of the essential oil from *Chrysactinia mexicana* on isolated rabbit ileum. The effect was reduced by the preincubation with dibutyryl-cAMP but increased by forskolin, whereas chelerytrine or L-NNa did not modify the response, suggesting an involvement of cAMP in the antispasmodic mechanism of the essential oil. The study of Kim et al. [10] showed that essential oil from *Cananga odorata* (ylang-ylang) relaxed the isolated rat bladder muscle, the effect being reduced by N-ethylmaleimide but not by inhibitors of NO pathway, demonstrating the involvement of cAMP. Also, Lis-Balchin and Hart [27] found that essential oil from *Lavandula angustifolia* induced relaxation of isolated guinea-pig ileum through a rise in intracellular level of cAMP The effects of individual components from essential oils on intracellular mechanism of antispasmodic effect were less studied. Leal-Cardoso et al. [84] found that eugenol (1–2000 microM) relaxed the isolated rat ileum precontracted with KCl, without any influence from tetrodotoxin, L-NAME, hexamethonium or indomethacin, thus suggesting an intracellular mechanism.

3.4. Chemical Composition of the Essential Oils with Antispasmodic Activity

Essential oils are complex mixtures of volatile compounds with terpenoid or non-terpenoid structure that can be extracted from different parts of plants (flower, buds, seed, leaves, and fruits). Many of those compounds have been identified in essential oils and classified as functionalized derivatives of alcohols, ketones or aldehydes, esters, ethers, oxydes and phenols [85,86]. The composition of an essential oil may vary according to the plant’s environment and growing conditions, stage of development, methods of harvesting, extraction, and storage. The major constituents of an essential oil can also vary according to different chemotypes of the same plant species [85]. Although there is a tendency to correlate pharmacological properties with the presence of certain functional groups, this concept cannot be generalized. Thus, neurotoxicity cannot be reported for all ketones, even if it was reported in the case of thujone [86,87], as not all the alcohols have a sedative action, even if it was described for l-linalool [86,88,89].

Several molecules with a structure clearly linked to the antispasmodic effect have been identified by our review. According to the surveyed literature, they are classified as alcohols (menthol), phenols (eugenol) [84], esters (linalyl acetate, neryl acetate, geranyl acetate, iso-amyl angelate and tiglate), ethers (trans-anethole, methyl chavicol or estragole, methyleugenol) [90], oxides (1,8-cineole, piperitenone oxide) [86,91,92] (Figure 2). However, other constituents present in low concentrations could be important for the pharmacological activity.
Figure 2. Chemical structures of main constituents from antispasmodic essential oils.

Chemical composition of the antispasmodic essential oils included in our study is presented in Table 3.
Plant Species	Part Use	Reference
Pistacia integerrima, (Anacardiaceae)-zebrawood	Galls	[93–95]
Cananga odorata var. genuina, (Annonaceae)—ylang ylang	Flowers	[86,96–99]
Xylopia frutescens, (Annonaceae)	Leaves	[11]
Xylopia langsdorffiana, (Annonaceae)	Fruits	[100]
Anethum graveolens, (Apiaceae)—dill	Seeds	[86,101–108]
Carum carvi, (Apiaceae)—caraway	Fruits	[86,109–111]

Table 3. Chemical composition of the studied antispasmodic essential oils.

- Hydrocarbons: **monoterpenes**: α-pinene 21.81%, β-pinene 16.18, α-terpinene 1.37%, carene 11.09%, limonene 6.35%, α-phellandrene 15.48%, β-phellandrene 5.72%, cis-β-ocimene 4.13%, trans-β-ocimene 4.25%; **sesquiterpenes**: β-caryophyllene 3.88–5.33%, β-farnesene 7.88%; **aromatic**: p-cymene 11.54%
- Alcohols: terpinen-4-ol 11.93–28.82%, 4-carvomenthenol 17.06%, p-meth-1-en-8-ol 43.38%, borneol 8.90%, spathulenol 6.35%
- Ketones: tetrahydrocarvone 10.27%
- Ethers: bornyl acetate 13.99%
- Major components differ significantly depending on the fraction of essential oil, origin of the plant material and harvesting time
- Hydrocarbons: **sesquiterpenes**: ß-caryophyllene 15–26.8%, germacrene D 8.1–25.13%, δ-cadinene 2–4.7%, α-humulene 0.9–7.1%, α-farnesene 0.3–23.75%
- Alcohols: linalool 8.7–30%, farnesol 5.6%
- Ethers: p-methyl anisole 0.39–16.5%
- Hydrocarbons: **monoterpenes**: α-pinene 2.30%, β-ocimene 8.19%; **sesquiterpenes**: caryophyllene 23.91%, γ-cadinene 12.48%, γ-elemene 4.55%, β-elemene 4.31%, α-selinene 4.29%, δ-cadinene 3.02%, α-humulene 2.48%, γ-muurolene 2.23%, β-selinene 2.11%
- Alcohols: cadin-4-en-10-ol 5.78%, viridiflorol 4.83%, sphatulenol 3.97%
- Oxides: 1,8-cineol 1.15%, caryophyllene oxide 3.79%
- Hydrocarbons: **monoterpenes**: α-pinene 37.73%, camphene 11.50%, β-pinene 4.04%, limonene 31.75%; **sesquiterpenes**: sclarene 10.38%
- Alcohols: α-terpineol 1.08%, spathulenol 1.74%
- Oxides: 1,8-cineol 1.15%, caryophyllene oxide 3.79%
- Hydrocarbons: **monoterpenes**: limonene 1.11–83%, α-phellandrene trace–25%, β-phellandrene 0–3.38%
- Phenols: carveol 2%, eugenol
- Ketones: carvone (28–62.48%), cis-dihydrocarvone 0–5.87%, trans-dihydrocarvone 0–11.7%, pipertione 0–8.2%
- Ethers: apiole 0–16.79%, dillapiole 0–26.8
- Hydrocarbons: **monoterpenes**: limonene 1.5–51.3%, carvone 30%
- Alcohols: cis-carveol 5.5%
- Ketones: carvone 44.5–95.9%
- Ethers: trans-anethole 0–2.2%, apiole 12.3%
| Plant Species | Part Use | Representative Compounds | Reference |
|---------------|------------------|---|-----------|
| *Coriandrum sativum*, (Apiaceae)—coriander | Fruits | Hydrocarbons: monoterpenes: γ-terpinene 1–8%, limonene 0.1–4%, α-pinene 0–10.9%, β-myrcene 0.2–2%; aromatic p-cymene trace–8.1% | [86,89,112,113] |
| | | Alcohols: linalool 60–87%, geraniol 1.2–3.6%, terpin-4-ol trace–3% | |
| | | Ketones: camphor 0.9–5.3% | |
| | | Esters: geranyl acetate 0.1–5.4%, linalyl acetate 0–2.7% | |
| | | Hydrocarbons: monoterpenes: α-pinene 4%, γ-terpinene 1.2%; sesquiterpenes: α-cadinene 3.4%, aromadendrene 1.8%, viridiflorene 2.1%, α-muurolene 1.7% | |
| *Ferula houffelii* Griseb., (Apiaceae) | | Alcohols: viridoflorol 1.0%, cedrol 5.1% | [17] |
| | | Ethers: myristicin 20.6%, elemicin 35.4% | |
| *Foeniculum vulgare var. dulce*, (Apiaceae)—sweet fennel | Fruits | Hydrocarbons: monoterpenes: α-pinene 0.4–10%, limonene 1.4–26.4%, α-phellandrene 0.2–9.26%, β-myrcene 0.5–3%, β-phellandrene 0.4–2.6%, γ-terpinene 10.5%, cis-β-ocimene 1.6–12%, α-terpinolene trace–3.3%; aromatic: p-cymene 0.1–4.7% | |
| | | Alcohols: fenchol trace–4% | [86,114–118] |
| | | Ketones: fenchone trace–22% | |
| | | Ethers: methyl chavicol trace–17%, cis-anethole trace–1.7%, trans-anethole 50–90% | |
| | | Oxides: 1,8-cineole 1–6% | |
| *Pimpinella anisum*, (Apiaceae) - aniseed | Fruits | Hydrocarbons: sesquiterpenes: γ-himachalene 0.4–8.2% | [86,119–121] |
| | | Alcohols: anisol 0.5–4% | |
| | | Ethers: cis-anethole 0–1%, trans-anethole 90–93.7%, methyl chavicol 0–2.3% | |
| | | Aldehydes: anisaldehyde 0–5.4% | |
| | | Hydrocarbons: monoterpenes: α-pinene 2.96%, limonene 0.1–2.8%; sesquiterpenes: β-gurjunene 0.2–28.0%, calamene 0.1–9.75%, δ-cadinene 0.5–2.1%, α-cedrene 3.09% | |
| | | Alcohols: linalool 0.3–12% | |
| *Acorus calamus*, (Araceae)—sweet flag, calamus | Rhizomes | Phenols: cis-isoeugenol 2.5–25%, trans-isoeugenol 0.5–2% | [86,122–126] |
| | | Aldehydes: asaronal 0.2–6%, citronellal 2.82%, neral 2.57% | |
| | | Ketones: shyobunone trace–13.3%, epishyobunone 0.1–4.8%, isoshyobunone 0.6–13.0%, camphor 2.42% | |
| | | Ethers: methyl eugenol trace–8.59%, cis-methyl isoeugenol 2.4–49%, trans-methyl isoeugenol 1.1–7.9%, α-asarone 1–50.09%, β-asarone 2.22–83.2% | |
| | | Major components differ significantly depending on the origin of the plant material and harvesting time | |
| *Artemisia dracunculus*, (Asteraceae)—tarragon | Flowering tops and leaves | Hydrocarbons: monoterpenes: α-pinene 5.1%, limonene 2.40–12.4%, trans-ocimene 2.99–20.6%, α-terpinolene 0.5–25.4%, cis-ocimene 2.65–22.2%, sabine 14.28–39.44% | [127–132] |
| | | Ethers: trans-anethole 10–21.2%, cis-anethole 53.37–81.0%, methyl eugenol 2.2–39.35%, methyl isoeugenol 1.8–35.8%, methyl chavicol 1.09–74.46% | |
| | | Others: asaron 21.69–40.36 | |
| Plant Species | Part Use | Representative Compounds | Reference |
|----------------------------------|-------------------|--|-------------------|
| *Chamaemelum nobile* (Asteraceae) | Flowers | Hydrocarbons: *monoterpenes*: α-terpinene 0–10%, α-pinene 0–10%, β-pinene 0–10%, sabinene 0–10%; *sesquiterpenes*: caryophyllene 0–10%
| | | Alcohols: *trans*-pinocarveol 5%
| | | Aldehydes: myrtenal 0–10%
| | | Ketones: pinocarvone 13%
| | | Oxides: 1,8-cineole 0–25%
| | | Ethers: methyl chavicol 5%
| | | Esters: 2-methylbutyl 2-methyl propionate 0.5–25%, 2-methylpropyl butanoate 0.5–10%, 2-methylbutyl 2-methylbutanoate 0.5–25%, 2-methylpropylangelate 0.5–25%, butylangelate 0.5–10%, 3-methylpentylangelate 0–10%, isobutylangelate 36–40%, isobutylisobutanoate 4%, 2-methylbutyl methyl-2-butanoate 3%, isoamyl methyl-2-butanoate 3%, hexylacetate 0.5–10%
| | | Hydrocarbons: *monoterpenes*: α-myrcene 1.20%
| | | Alcohols: linalool 1.39%
| | | Ketones: α-thujone 1.17%, piperitone 37.74%
| | | Oxides: 1,8-cineole 41.3%
| | | Esters: linalyl acetate 9.08%
| | | Major components differ depending on the harvesting time
| | | Alcohols: linalool 0.25–1.38%
| *Chrysactinia mexicana*, (Asteraceae) | Leaves | Ketones: α-thujone 1.17%, piperitone 37.74%
| | | Oxides: 1,8-cineole 41.3%
| | | Esters: linalyl acetate 9.08%
| *Hofmeisteria schaffneri* (Asteraceae) | Aerial parts | Esters: thymyl isobutyrate 1.54–3.41%, thymyl isovalerate 14.12–30.97%, 9-acetoxy-8,9-dehydrothymylangelate 2.36–5.23%, 8,9-epoxy-10-acetoxythymylangelate 0.41–15%
| | | Hydrocarbons: *sesquiterpenes* chamazulene 1–35%, *trans*-farnesene 2–13%,
| | | *trans*- α-farnesene 27%, δ-cadinene 5.2%, γ-muurolene 1.3%, α-muurolene 3.4%
| | | Alcohols: *sesquiterpenes*: α-bisabolol 2–67%
| | | Oxides: α-bisabol oxide A 0–55%, α-bisabol oxide B 4.3–19%, bisabolone oxide A 0–64%
| *Matricaria recutita* (Asteraceae)—german chamomile | Flowers | Hydrocarbons: *sesquiterpenes* chamazulene 1–35%, *trans*-farnesene 2–13%,
| | | *trans*- α-farnesene 27%, δ-cadinene 5.2%, γ-muurolene 1.3%, α-muurolene 3.4%
| | | Alcohol: *sesquiterpenes*: α-bisabolol 2–67%
| | | Oxides: α-bisabol oxide A 0–55%, α-bisabol oxide B 4.3–19%, bisabolone oxide A 0–64%
| | | Hydrocarbons: *monoterpenes*: α-pinene 22.47%; *sesquiterpenes*: guai-6,9-diene 3.9–5.3%, β-bourbonene 2.7–3.14%, germacrene D 2.92–4.33%, γ-cadinene 2.38%
| | | Alcohol: citronellol 15.2–48.44%, geraniol 6–25%, linalool 1–13.79%, octen-1-ol 18.61%
| | | Aldehydes: geranial 0–9%
| | | Ketones: menthone 0.6–6.96%, isomenthone 4–8.4%
| | | Oxides: *cis*-rose oxide 0.69–25%, *trans*-rose oxide 0.31–2.01%, cariopyllene oxide 2.52–3.7%
| | | Esters: citronellyl formate 8–24.4%, geranyl formate 1–6.22%, citronellyl propionate 1–3%, geranylangelate 1–2%, citronellylbutanoate 1.3%, geranylbutanoate 1.3%
| *Pelargonium graveolens*, (Geraniaceae)—geranium | Aerial parts | Alcohol: α-bisabol oxide A 0–55%, α-bisabol oxide B 4.3–19%, bisabolone oxide A 0–64%
| | | Hydrocarbons: *sesquiterpenes* chamazulene 1–35%, *trans*-farnesene 2–13%,
| | | *trans*- α-farnesene 27%, δ-cadinene 5.2%, γ-muurolene 1.3%, α-muurolene 3.4%
| | | Alcohol: *sesquiterpenes*: α-bisabolol 2–67%
| | | Oxides: α-bisabol oxide A 0–55%, α-bisabol oxide B 4.3–19%, bisabolone oxide A 0–64%
| | | Hydrocarbons: *monoterpenes*: α-pinene 22.47%; *sesquiterpenes*: guai-6,9-diene 3.9–5.3%, β-bourbonene 2.7–3.14%, germacrene D 2.92–4.33%, γ-cadinene 2.38%
| | | Alcohol: citronellol 15.2–48.44%, geraniol 6–25%, linalool 1–13.79%, octen-1-ol 18.61%
| | | Aldehydes: geranial 0–9%
| | | Ketones: menthone 0.6–6.96%, isomenthone 4–8.4%
| | | Oxides: *cis*-rose oxide 0.69–25%, *trans*-rose oxide 0.31–2.01%, cariopyllene oxide 2.52–3.7%
| | | Esters: citronellyl formate 8–24.4%, geranyl formate 1–6.22%, citronellyl propionate 1–3%, geranylangelate 1–2%, citronellylbutanoate 1.3%, geranylbutanoate 1.3%

Table 3. Cont.
Plant Species	Part Use	Representative Compounds	Reference
Lavandula angustifolia (Lamiaceae)	Flowers	Hydrocarbons: *monoterpene*: cis-8-ocimene 1.3–10.9%, *trans*-8-ocimene 0.8–5.8%, limonene 0.2–7%; *sesquiterpenes*: β-caryophyllene 2.6–7.6%	[33,89,99,137,145–148]
		Alcohols: linalool 26–49%, terpinen-4-ol 0.03–6.4%, α-terpineol 0.1–1.4%, bornol 0.8–1.4%, *lavadulol* 0.5–1.5%	
		Oxides: 1,8-cineole 0.5–2.5%	
		Esters: linalyl acetate 35–55%, lavandulyl acetate 0.2–5.9%	
		Major components differ significantly depending on the origin of the plant material	
		Hydrocarbons: *sesquiterpenes*: β-caryophyllene 8–10%, α-copaene 4–5%	
Melissa officinalis (Lamiaceae)	Aerial parts	Hydrocarbons: *monoterpene*: α-pinene 0.2–2%, β-pinene 0.3–4%, limonene 0.6–6%; *sesquiterpenes*: germacrene D 1.75–4.3%	[149–152]
		Alcohols: linalool 0.4–2.74%, nerol 1.4%, geraniol 0.20–27.22%, citronelol 0.26–36.71%	
		Aldehydes: neral 3.28–31.5%, geranial 0.38–31.1%, citronellal 1.48–39.6%	
		Oxides: caryophyllene oxide 0.2–10.26%	
Mentha × piperita (Lamiaceae)	Aerial parts	Hydrocarbons: *monoterpene*: α-pinene 0.2–2%, β-pinene 0.3–4%, limonene 0.6–6%; *sesquiterpenes*: germacrene D 1.75–4.3%	[153–156]
		Alcohols: menthol 25.16–48%, neomenthol 2–7.7%, α-terpineol 0.1–1.9%, *cis*-carveol 3.86%, *terpinen* 0.4–2.4%, *cis*-thujan-4-ol trace 0.6–2.7%	
		Ketones: *menthone* 16–42.97%, *isomenthone* 4–10.4%, neomenthone 2–3%, *piperitone* 0.5–1.2%, *pulegone* 4.39%	
		Oxides: 1,8-cineole 2.15–7.4%, *transpiperitonoxide* 0.5–3.1%	
		Esters: menthyol acetate 1.6–10%	
		Benzofurans: menthofuran 0.1–5.7%	
		Hydrocarbons: *monoterpene*: β-pinene 0.3–2.3%, β-myrcene 1.2–5.5, limonene 2–25%; *sesquiterpenes*: β-caryophyllene 0.3–4.41%, γ-farnesene 1.71%, β-bourbonene trace 2.14%, germacrene D 0.1–3.14%	
		Alcohols: *cis*-carveol 5.30%, menthol 0.5–2%, *terpinen* 4-ol trace 6.1%, α-terpineol 0.2–2.7%	
Mentha spicata (Lamiaceae)	Aerial parts	Ketones: *carvone* 39–70%, *menthone* trace 5.2%, *cis*-dihydrocarveol 3.1–21.6%, *trans*-dihydrocarveol 0–21%, *isomenthone* 3.33%	[86,99,156–158]
		Oxides: 1,8-cineole 0.5–17.0%, *piperetone* 20.0–79.2%	
		Esters: dihydrocarvyl acetate 1.2–24.8%, *cis*-carvyl acetate 0.2–5.5%, *trans*-carvyl acetate 0.7–5.9%, *neoisodihydrocarveol* 0–21%, *menthol acetate* 2%	
		Benzofurans: menthofuran 2%	
Mentha x vilosa Huds. (Lamiaceae)	Aerial parts	Hydrocarbons: *monoterpene*: β-pinene 1.42–4.04%, myrcene 3.10–3.66%, limonene 2.38–8.75%; *sesquiterpenes*: β-caryophyllene 2.82–5.16%, δ-cardene 9.69%, γ-muurolene 2.18–16.02%, germacrene-D trace 3.81%	[33,91,159–161]
		Oxides: 1,8-cineole 1.58–3.93%, *piperetone* oxide 58.74–79.03%, *caryophyllene oxide* 2.82%	

Table 3.
Plant Species	Part Use	Representative Compounds	Reference
Ocimum basilicum (Lamiaceae)—basil	Aerial parts	Hydrocarbons: *sesquiterpenes*: β-caryophyllene 2–3%	[86,162]
		Alcohols: linalool 40–55%, α-fenchyl alcohol 3–12%, terpinen-4-ol 1.6%, α-terpineol 2%	
		Ethers: methyl chavicol 3–31%, methyl eugenol 1–9%	
		Oxides: 1.8-cineole 2–8%	
Ocimum selloi (Lamiaceae) —green pepper basil	Aerial parts	Hydrocarbons: *sesquiterpenes*: β-caryophyllene 2.2–3%, germacrene D 0–3.14%	[35,162–164]
		Alcohols: linalool 20.6%, spathulenol 1.3%	
		Ethers: *trans*-anethole 45.42%, *cis*-anethole 3.95%, methyl chavicol 24.14–93.2%,	
		methyl eugenol 2.2–39.35%	
Ocimum gratissimum (Lamiaceae)—african basil	Aerial parts	Hydrocarbons: *monoterpenes*: β-pinene 6.2%, *cis*-ocimene 13.9–23.97%, *trans*-ocimene	[36,162,165,166]
		19.60–48.28%, γ-terpinene 0.20–28.10%, limonene 11.40%; *sesquiterpenes*: β-caryophyllene	
		2.7–3.06%, β-phellandrene (21.10), germacrene D 7.30–10.36%, *α*-trans-bergamotene 4.1%	
		γ-murolene 9.32–11.6%; *aromatic*: *p*-cymene 4.40–19.90%	
		Phoenols: eugenol 10.70–74.80%, thymol 13.10–46.60%	
		Oxides: 1.8-cineole 0–54.94%	
Origanum majorana, (Lamiaceae)—sweet marjoram	Aerial parts	Major components differ significantly depending on chemotype and the origin of the plant material	
		Hydrocarbons: *monoterpenes*: sabinene 1.45–10%, β-myrcene 1–9%, *α*-terpinolene 1–7%,	
		α-pinene 1–5%, *cis*-trans-*β*-ocimenes 6.4%, *3*-carene 6.2%, myrcene 1.12–4.7%,	
		α-terpinene 3.9–8%, γ-terpinene 11.16–20%; *sesquiterpenes*: β-caryophyllene 2–7.44%,	
		δ-cadinene 4.2%, *α*-farnesene 4.58%, germacrene D 9.2%; *aromatic*: *p*-cymene 7.0–12.05%	
		Phenols: eugenol 10.70–74.80%, thymol 13.10–46.60%	
		Oxides: 1.8-cineole 0–54.94%	
		Alcohols: terpinen-4-ol 14–38.4%, *cis*-thujan-4-ol 0.11–44%, *trans*-thujan-4-ol 1–5%,	
		linalool 2–31.68%, *α*-terpineol 7–27%	
		Phenols: carvacrol 0–83.47%	
		Esters: terpenyl acetate 0–3%, geranyl acetate 1–7.8%, linalyl acetate 2.41–17.4%	
		Hydrocarbons: *monoterpenes*: *α*-pinene 12–67%, *β*-pinene 0.1–22%, *β*-myrcene 1.8%,	
		cis-β-ocimene 1.9%, *trans*-β-ocimene 1.2%; *sesquiterpenes*: β-caryophyllene 7–12%,	
		α-copaene 8.9%, *β*-cubebene 3.7%	
		Alcohols: oct-1-en-3-ol traces 28%	
		Phenols: thymol 15.3%, carvacrol 12.1%, eugenol 25.1%	
Plectranthus barbatus synonym Coleus forskohlii, (Lamiaceae)—Indian coleus	Aerial parts	Hydrocarbons: *sesquiterpenes*: β-caryophyllene 2–3%	[38,172–174]
		Alcohols: linalool 40–55%, α-fenchyl alcohol 3–12%, terpinen-4-ol 1.6%, α-terpineol 2%	
		Ethers: methyl chavicol 3–31%, methyl eugenol 1–9%	
		Oxides: 1.8-cineole 2–8%	
Table 3. Cont.

Plant Species	Part Use	Representative Compounds	Reference
Rosmarinus officinalis ct. verbenone, (Lamiaceae)—rosemary	Aerial parts	Hydrocarbons: monoterpenes: α-pinene 15–34%, Ketones: verbenone 15–37%, camphor 1–22.35% Oxides: 1,8-cineole trace–20% Esters: bornyl acetate 12%	[86,175–177]
Salvia officinalis (Lamiaceae)—sage	Aerial parts	Alcohol: linalool 0.4–12%, terpinen-4-ol 0.2–4%, α-terpineol trace–9%, bornol 1.5–14%, viridiflorol 0–10% Ketones: α-thujone 1.1–35.7%, β-thujone 1.71–33%, camphor 4.1–43.83% Oxides: 1,8-cineole 5–57.18%, caryophyllene oxide 0.4–2.1% Esters: bornyl acetate 0.1–5.59%, linalyl acetate 1–2%	[40,86,178,179]
Satureja hortensis (Lamiaceae)—summer savory	Aerial parts	Alcohol: linalool 9–54%, terpinen-4-ol trace–7%, α-terpineol 6–9% Phenols: carvacrol 59.70–67.00%, eugenol 1–1.7%, thymol 0–29.0% Oxides: 1,8-cineole 0–37.82%	[86,99,180,181]
Cymbopogon citratus Stapf (Poaceae)—West Indian lemongrass	Aerial parts	Alcohol: α-terpineol 0.2–2.3%, linalool 1.2–3.4%, geraniol 2.6–40%, nerol 0.8–4.5%, citronellol 0.1–8%, farnesol 12.8% Aldehydes: neral 3–43%, geranial 4.5–58%, citronellal 0.1–9% Esters: geranyl acetate 0.1–3.0%	[42,86,182–185]
Cymbopogon schoenantus (L.) Spreng (Poaceae)—camelgrass	Aerial parts	Alcohol: α-eudesmol 11.5%, elemol 10.8%, β-eudesmol 8.5%, γ-eudesmol 4.2%, intermedeol 6.1–17.3%, linalool 21.6% Aldehydes: neral 3.3%, geranial 2.4% Ketones: pipertone 47.7–71.5%	[43,185]
Cymbopogon martini (Poaceae)—palmarosa	Aerial parts	Alcohol: linalool 1.6–3.4%, geraniol 67.6–83.6%, citronellol 1.6–2.1% Aldehydes: geranial 1–8.8% Esters: geranyl acetate 2.2–24.6%	[185,186]
Rosa indica L. (Rosaceae)	Aerial parts	Alcohol: citronellol 11.7%, nerol 8.0%, geraniol 24.8%, farnesol 2.0%	[45,187]
Plant Species	Part Use	Representative Compounds	Reference
---------------	----------	--------------------------	-----------
Citrus aurantifolia/Citrus medica var. acida (Rutaceae)—lime	Pericarps	Hydrocarbons: monoterpenes: limonene 36–60%, γ-terpinene 6–17.6%, α-pinene 0.2–5.03%, 8-pinene 4.9–19.5%, β-myrcene 1–2.6%; sesquiterpenes: β-caryophyllene 1.3–3.4%, α-bisabolene 2.3%; aromatic p-cymene 0.1–6.8% Alcohols: linalool 1.4–16.9%, α-terpineol 13–23% Aldehydes: citronellal 0–5.3%, neral 0.7–4.7%, geranial 1.8–6.4% Esters: linalyl acetate 26–27%	[46,86,99,188,189]
Citrus aurantium var. sinensis (Rutaceae)—sweet orange	Pericarps	Hydrocarbons: limonene 87.9–96.8%, β-myrcene 1.37–2.5%, β-phellandrene 0–1.5% Alcohols: linalool 0.5–2.4%	[86,99,190,191]
Lippia alba, (Verbenaceae)	Leaves	Hydrocarbons: monoterpenes: limonene 8.2–15.7%, γ-terpinene 4.09%, myrcene 6.6–8.3%; sesquiterpenes: β-caryophyllene 2.7–3.07%, germacrene D 3.0–5.47% Alcohols: β-elemol 5.37%, nerol 2.2%, geraniol 2.9%, linalool 0.8–64.2% Aldehydes: geranial 6.5–50.94%, neral 11.5–33.32% Ketones: carvone 16.7–33.7% Oxides: caryophyllene oxide 0–2.64%	[48,192–195]
Lippia thymoides, (Verbenaceae)	Leaves	Hydrocarbons: monoterpenes: α-pinene 0.94–2.38%, camphene 2.64–5.66%, limonene 1.67–3.75%; sesquiterpenes: copaene 2.42–3.38%, β-caryophyllene 5.32–26.27%, α-caryophyllene 3.06–5.48%, germacrene D 4.72–6.18% Alcohols: borneol 4.45–7.36% Phenols: thymol trace–66.33% Ketones: camphor 3.22–8.61% Oxides: cariophyllene oxide 0.9–2.7% Ethers: 1,8-cineole 1.86–4.5% Esters: thymol acetate 0.7–9.49%	[49,196,197]
Elettaria cardamomum, (Zingiberaceae)—cardomom	Fruits	Hydrocarbons: monoterpenes: limonene 1.7–14%, sabine 1.3–5%, β-myrcene 0.2–2.2% Alcohols: linalool 0.4–6.9%, terpinen-4-ol 0.1–3.2%, α-terpineol 0.8–5.25%, geraniol 0.2–1.6%, trans-nerolidol 0.1–2.7%, cis-nerolidol 0.2–1.6% Oxides: 1,8-cineole 15.13–50% Esters: α-terpinyl acetate 29–56.87%, linalyl acetate 0.2–7.7%	[86,198–202]
4. Conclusions

This review identified 39 plant species bearing essential oils with antispasmodic effect demonstrated in preclinical studies. The main mechanisms of the antispasmodic effect were represented by inhibition of voltage-dependent calcium channels, modulation of potassium channels and modulation of intracellular cAMP. Certain individual components identified in the chemical composition of the essential oils studied could become promising new drug candidates but future clinical studies are needed in order to ascertain their therapeutical value.

Author Contributions: Conceptualization, S.C.H. and O.V.; Methodology, O.V.; Software, L.R.; Validation, S.C.H., O.V. and C.M.; Formal Analysis, S.C.H. and O.V.; Resources, S.C.H. and O.V.; Data Curation, L.R. and C.A.I.; Writing—Original Draft Preparation, S.C.H. and O.V.; Writing—Review and Editing, S.C.H., L.R. and O.V.; Visualization, L.F.; Supervision, C.M., C.A.I. and L.F.; Project Administration, L.F.; Funding Acquisition, L.F.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hicks, G.A. Irritable Bowel Syndrome. In Comprehensive Medicinal Chemistry; Taylor, J.B., Triggle, D.J., Eds.; Elsevier Science: London, UK, 2007; pp. 643–670. ISBN 978-0-08-045044-5.
2. Annaházi, A.; Róka, R.; Rosztóczy, A.; Wittmann, T. Role of antispasmodics in the treatment of irritable bowel syndrome. World J. Gastroenterol. 2014, 20, 6031–6043. [CrossRef] [PubMed]
3. Baiu, I.; Hawn, M.T. Gallstones and Biliary Colic. JAMA 2018, 320, 1612. [CrossRef]
4. Sanagapalli, S.; Agnihotri, K.; Leong, R.; Corte, C.J. Antispasmodic drugs in colonoscopy: A review of their pharmacology, safety and efficacy in improving polyp detection and related outcomes. Therap. Adv. Gastroenterol. 2017, 10, 101–113. [CrossRef]
5. Can Baser, H.K.; Buchbauer, G. Handbook of Essential Oils: Science, Technology and Applications; CRC Press: Boca Raton, FL, USA, 2010; pp. 3–39. ISBN 9781466590465.
6. Yarnell, E.; Abascal, K. Spasmolytic botanicals. Altern. Complement. Ther. 2011, 17, 169–172. [CrossRef]
7. Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Oluwaseun Ademiluyi, A.; et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017, 22, 70. [CrossRef]
8. De Araújo, D.A.M.; Freitas, C.; Cruz, J.S. Essential oils components as a new path to understand ion channel molecular pharmacology. Life Sci. 2011, 89, 540–544. [CrossRef] [PubMed]
9. Shirole, R.L.; Shirole, N.L.; Saraf, M.N. In vitro relaxant and spasmylytic effects of essential oil of Pistacia integerrima Stewart ex Brandis Galls. J. Ethnopharmacol. 2015, 168, 409–414. [CrossRef]
10. de Souza, I.L.L.; de Carvalho Correia, A.C.; da Cunha Araujo, L.C.; Vasconcelos, L.H.C.; Silva, M.D.C.C.; de Oliveira Costa, V.C.; Tavares, J.F.; Paredes-Gamero, E.J.; de Andrade Cavalcante, F.; da Silva, B.A. Essential oil from Xylopia frutescens Aubl. reduces cytosolic calcium levels on guinea pig ileum: Mechanism underlying its spasmylytic potential. BMC Complement. Altern. Med. 2015, 15, 327. [CrossRef] [PubMed]
11. de C. Correia, A.C.; Ferreira, T.F.; Martins, I.R.R.; Macêdo, C.L.; de S. Monteiro, F.; Costa, V.C.O.; Tavares, J.F.; Silva, M.S.; Paredes-Gamero, E.J.; Buri, M.V.; et al. Essential oil from the leaves of Xylopia langsdorffiana (Annonaceae) as a possible spasmylytic agent. Nat. Prod. Res. 2015, 29, 980–984. [CrossRef]
12. Gharib Naseri, M.K.; Heidari, A. Antispasmodic effect of Anethum graveolens fruit extract on rat ileum. Int. J. Pharmacol. 2007, 3, 260–264. [CrossRef]
13. Heimle, H.; Hagelauer, D.; Pascht, U.; Kelber, O.; Weiser, D. Intestinal spasmylytic effects of STW 5 (Iberogast®) and its components. Phytonmedicine 2006, 13, 75–79. [CrossRef][PubMed]
15. Al-Essa, M.K.; Shafagoj, Y.A.; Mohammed, F.I.; Afifi, F.U. Relaxant effect of ethanol extract of Carum carvi on dispersed intestinal smooth muscle cells of the guinea pig. *Pharm. Biol.* 2010, 48, 76–80. [CrossRef] [PubMed]

16. Jabeen, Q.; Bashir, S.; Lyoussi, B.; Gilani, A.H. Coriander fruit exhibits gut modulatory, blood pressure lowering and diuretic activities. *J. Ethnopharmacol.* 2009, 122, 123–130. [CrossRef]

17. Pavlović, I.; Petrović, S.; Radenković, M.; Milenković, M.; Couladis, M.; Branković, S.; Drobac, M.P.; Niketić, M. Composition, antimicrobial, antiradical and spasmyloytic activity of Ferula heuffelii Griseb. ex Heuffel (Apiaceae) essential oil. *Food Chem.* 2012, 130, 310–315. [CrossRef]

18. Ostad, S.N.; Soodi, M.; Sharifzadeh, M.; Khosroyi, N.; Marzban, H. The effect of fennel essential oil on uterine contraction as a model for dysmenorrhea, pharmacology and toxicology study. *J. Ethnopharmacol.* 2001, 76, 299–304. [CrossRef]

19. Tirapelli, C.R.; de Andrade, C.R.; Cassano, A.O.; De Souza, F.A.; Ambrosio, S.R.; da Costa, F.B.; de Oliveira, A.M. Antispasmodic and relaxant effects of the hidroalcoholic extract of Pimpinella anisum (Apiaceae) on rat anococcygeus smooth muscle. *J. Ethnopharmacol.* 2007, 110, 23–29. [CrossRef]

20. Gilani, A.U.; Shah, A.J.; Ahmad, M.; Shaheen, F. Antispasmodic effect of Acorus calamus Linn. is mediated through calcium channel blockade. *Phytother. Res.* 2006, 20, 1080–1084. [CrossRef]

21. Jalilzadeh-Amin, G.; Maham, M.; Dalir-Naghadeh, B.; Kheiri, F. In vitro effects of Artemisia dracunculus essential oil on ruminal and abomasal smooth muscle in sheep. *Comp. Clin. Path.* 2012, 21, 673–680. [CrossRef]

22. Sándor, Z.; Mottaghipisheh, J.; Veres, K.; Hohmann, J.; Bencsik, T.; Horváth, A.; Kelemen, D.; Papp, R.; Barthó, L.; Csupor, D. Evidence supports tradition: The in vitro effects of Roman Chamomile on smooth muscles. *Front. Pharmacol.* 2018, 9, 1–11. [CrossRef]

23. Zavala-Mendoza, D.; Grasa, L.; Zavala-Sánchez, M.Á.; Pérez-Gutiérrez, S.; Murillo, M.D. Antispasmodic effects and action mechanism of essential oil of Chrysactinia mexicana A. Gray on rabbit ileum. *Molecules* 2016, 21, 783. [CrossRef] [PubMed]

24. Perez-Vasquez, A.; Angeles-Lopez, G.; Rivero-Cruz, I.; Flores-Bocanegra, L.; Linares, E.; Bye, R.; Mata, R. Spasmyloytic action of preparations and compounds from Hofmeisteria schaffneri. *Nat. Prod. Commun.* 2017, 12, 475–480. [CrossRef]

25. Mehmood, M.H.; Munir, S.; Khalid, U.A.; Asrar, M.; Gilani, A.H. Antidiarrhoeal, antisecretory and antispasmodic activities of Matricaria chamomilla are mediated predominantly through K+ channels activation. *BMC Complement. Altern. Med.* 2015, 15, 75. [CrossRef]

26. Lis-Balchin, M.; Hart, S.; Roth, G. The spasmyloytic activity of the essential oils of scented Pelargoniums (Geraniaceae). *Phytother. Res.* 1997, 11, 583–584. [CrossRef]

27. Lis-Balchin, M.; Hart, S. Studies on the mode of action of the essential oil of Lavender (Lavandula angustifolia P. Miller). *Phytother. Res.* 1999, 13, 540–542. [CrossRef]

28. Sadraei, H.; Ghannadi, A.; Malekshahi, K. Relaxant effect of essential oil of Melissa officinalis and citron oil on rat ileum contractions. *Fitoterapia* 2003, 74, 445–452. [CrossRef]

29. Aubert, P.; Guinobert, I.; Guilbot, A.; Dubourdeaux, M.; Neunlist, M. Antispasmodic and spasmyloytic activity of Melissa officinalis EPS upon mice gastrointestinal tract: An ex vivo pilot study. *Planta Med.* 2016, 82, S1–S381.

30. Grigoleit, H.G.; Grigoleit, P. Pharmacology and preclinical pharmacokinetics of peppermint oil. *Phytomedicine* 2005, 12, 612–616. [CrossRef] [PubMed]

31. Heimes, K.; Hauk, F.; Verspohl, E.J. Mode of action of peppermint oil and (-)-menthol with respect to 5-HT 3 receptor subtypes: Binding studies, cation uptake by receptor channels and contraction of isolated rat ileum. *Phytother. Res.* 2011, 25, 702–708. [CrossRef]

32. Souza, F.V.M.; Da Rocha, M.B.; De Souza, D.P.; Marçal, R.M. Carvone: Antispasmodic effect and mode of action. *Fitoterapia* 2013, 85, 20–24. [CrossRef]

33. De Sousa, D.P.; Júnior, G.A.S.; Andrade, L.N.; Calasans, F.R.; Nunes, X.P.; Barbosa-Filho, J.M.; Batista, J.S. Structure and Spasmyloytic Activity Relationships of Monoterpenes Analogues Found in Many Aromatic Plants. *Z. Naturforsch. C* 2008, 63, 808–812. [CrossRef]
34. Janbaz, K.H.; Hamid, I.; Gilani, A.-H.; Qadir, M.I. Spasmolytic, Bronchodilator and Vasodilator Activities of Aqueous-methanolic Extract of Ocimum basilicum. Int. J. Agric. Biol. 2014, 16, 321–327.

35. Souza, S.D.F.; Franca, C.S.L.; Nicolau, E.S.; Costa, L.C.B.; Pinto, J.E.B.; Alves, P.B.; Marçal, R.M. Antispasmodic effect of Ocimum seloii essential oil on the guinea-pig ileum. Nat. Prod. Res. 2015, 29, 2125–2128. [CrossRef] [PubMed]

36. Madeira, S.V.F.; Matos, F.J.A.; Leal-Cardoso, J.H.; Criddle, D.N. Relaxant effect of the essential oil of Ocimum gratissimum on isolated ileum of the guinea pig. J. Ethnopharmacol. 2002, 81, 1–4. [CrossRef]

37. Makrane, H.; Aziz, M.; Mekhfi, H.; Ziyyat, A.; Bnouham, M.; Abdelkhaleq, L.; Gressier, B.; Eto, B. Antispasmodic and Myorelaxant Activity of Organic Fractions from Origanum majorana L. on Intestinal Smooth Muscle of Rodents. European J. Med. Plants 2018, 23, 1–11. [CrossRef]

38. Câmara, C.C.; Nascimento, N.R.F.; Macêdo-Filho, C.L.; Almeida, F.B.S.; Fontelles, M.C. Antispasmodic Effect of the Essential Oil of Plectranthus barbatus and some Major Constituents on the Guinea-Pig Ileum. Planta Med. 2003, 69, 1080–1085. [CrossRef] [PubMed]

39. Ventura-Martínez, R.; Rivero-Osorno, O.; Gómez, C.; González-Trujano, M.E. Spasmolytic activity of Rosmarinus officinalis L. involves calcium channels in the guinea pig ileum. J. Ethnopharmacol. 2011, 137, 1528–1532. [CrossRef]

40. Khan, A.; Najeeb-ur-Rehman; Alkharfy, K.M.; Gilani, A.H. Antidiarrheal and antispasmodic activities of Salvia officinalis are mediated through activation of K + channels. Bangladesh J. Pharmacol. 2011, 6, 111–116. [CrossRef]

41. Hajhashemi, V.; Sadraei, H.; Ghannadi, A.R.; Mohseni, M. Antispasmodic and anti-diarrhoecal effect of Satureja hortensis L. essential oil. J. Ethnopharmacol. 2000, 71, 187–192. [CrossRef]

42. Devi, R.C.; Sim, S.M.; Ismail, R. Spasmolytic effect of citral and extracts of Cymbopogon citratus on isolated rabbit ileum. J. Smooth Muscle Res. 2011, 47, 143–156. [CrossRef] [PubMed]

43. Pavlovic, I.; Omar, E.; Drobac, M.; Radenkovic, M.; Brankovic, S.; Kovacevic, N. Chemical composition and spasmyloytic activity of Cymbopogon schoenanthus (L.) Spreng. (Poaceae) essential oil from Sudan. Arch. Biol. Sci. 2017, 69, 409–415. [CrossRef]

44. Janbaz, K.H.; Qayyum, A.; Saqib, F.; Imran, I.; Zia-Ul-Haq, M.; De Feo, V. Bronchodilator, vasodilator and spasmyloytic activities of Cymbopogon martiniii. J. Physiol. Pharmacol. 2014, 65, 859–866. [PubMed]

45. Rasheed, H.M.; Khan, T.; Wahid, F.; Khan, R.; Shah, A.J. Chemical Composition and Vasorelaxant and Antispasmodic Effects of Essential Oil from Rosa indica L. Petals. Evid. Based Complement. Alternat. Med. 2015, 2015, 279247. [CrossRef] [PubMed]

46. Spadaro, F.; Costa, R.; Circosta, C.; Occhiuto, F. Volatile composition and biological activity of key lime Citrus aurantifolia essential oil. Nat. Prod. Commun. 2012, 7, 1523–1526. [CrossRef]

47. Sánchez-Recillas, A.; Arroyo-Herrera, A.L.; Araujo-León, J.A.; Hernández Núñez, E.; Ortiz Andrade, R. Spasmyloytic and Antibacterial Activity of Two Citrus sinensis Osbeck Varieties Cultivated in Mexico. Evid. Based Complement. Alternat. Med. 2017, 2017, 3960837. [PubMed]

48. Blanco, M.A.; Colareda, G.A.; Van Baren, C.; Bandoni, A.L.; Ringuelet, J.; Consolini, A.E. Antispasmodic effects and composition of the essential oils from two South American chemotypes of Lippia alba. J. Ethnopharmacol. 2013, 149, 803–809. [CrossRef] [PubMed]

49. Menezes, P.M.N.; de Oliveira, H.R.; Brito, M.C.; de Paiva, G.O.; Ribeiro, L.A.D.A.; Lucchese, A.M.; Silva, F.S. Spasmolytic and antidiarrheal activities of Lippia thyrnoides (Verbenaceae) essential oil. Nat. Prod. Res. 2018, 1–3. [CrossRef] [PubMed]

50. Gilani, A.H.; Jabeen, Q.; Khan, A.U.; Shah, A.J. Gut modulatory, blood pressure lowering, diuretic and sedative activities of cardamom. J. Ethnopharmacol. 2008, 115, 463–472. [CrossRef] [PubMed]

51. Martínez-Pérez, E.F.; Juárez, Z.N.; Hernández, L.R.; Bach, H. Natural Antispasmodics: Source, Stereochemical Configuration, and Biological Activity. Biomed Res. Int. 2018, 3819714, 1–32. [CrossRef]

52. de Almeida, N.R.; de Fátima Agra, M.; Negromonte Souto Maior, F.; De Sousa, D.P. Essential Oils and Their Constituents: Anticonvulsant Activity. Molecules 2011, 16, 2726–2742. [CrossRef]

53. Sarmento-Neto, J.F.; Do Nascimento, L.G.; Felipe, C.F.B.; Alves, P.B.; Marçal, R.M. Analgesic potential of essential oils. Molecules 2016, 21, 20. [CrossRef]

54. Ielcu, I.; Voștînaru, O.; Oniga, S.; Mogoșan, C.; Vlase, L.; Parnau, A.; Araniciu, C.; Palage, M. Synthesis and effects of some new 2-aryl-thiazole ammonium salts on isolated ileum motility. Dig. J. Nanomater. Bios. 2013, 8, 1089–1099.
55. Mukai, T.; Yamaguchi, E.; Goto, J.; Takagi, K. Smooth muscle relaxing drugs and guinea pig ileum. *Jpn. J. Pharmacol.* 1981, 31, 147–157. [CrossRef]

56. Papathanasopoulos, A.; Rotondo, A.; Jansen, P.; Boesmans, W.; Farré, R.; Vanden Bergh, P.; Tack, J. Effect of acute peppermint oil administration on gastric sensorimotor function and nutrient tolerance in health. *Neurogastroenterol. Motil.* 2013, 25, e263–e271. [CrossRef]

57. Inamori, M.; Akiyama, T.; Akimoto, K.; Fujita, K.; Takahashi, H.; Yoneda, M.; Abe, Y.; Kubota, K.; Saito, S.; Ueno, N.; et al. Early effects of peppermint oil on gastric emptying: A crossover study using a continuous real-time 13C breath test (BreathID system). *J. Gastroenterol.* 2007, 42, 539–542. [CrossRef]

58. May, B.; Köhler, S.; Schneider, B. Efficacy and tolerability of a fixed combination of peppermint oil and caraway oil in patients suffering from functional dyspepsia. *Aliment. Pharmacol. Ther.* 2000, 14, 1671–1677. [CrossRef]

59. Madisch, A.; Heydenreich, C.-J.; Wieland, V.; Hufnagel, R.; Hotz, J. Treatment of Functional Dyspepsia with a Fixed Peppermint Oil and Caraway Oil Combination Preparation as Compared to Cisapride. *Arzneimittelforschung* 1999, 49, 925–932. [CrossRef]

60. Cash, B.D.; Epstein, M.S.; Shah, S.M. A Novel Delivery System of Peppermint Oil Is an Effective Therapy for Irritable Bowel Syndrome Symptoms. *Dig. Dis. Sci.* 2016, 61, 560–571. [CrossRef]

61. Khanna, R.; MacDonald, J.K.; Levesque, B.G. Peppermint Oil for the Treatment of Irritable Bowel Syndrome. *J. Clin. Gastroenterol.* 2013, 47, 505–512. [CrossRef]

62. Merat, S.; Khalili, S.; Mostajabi, P.; Ghorbani, A.; Ansari, R.; Malekzadeh, R. The Effect of Enteric-Coated, Delayed-Release Peppermint Oil on Irritable Bowel Syndrome. *Dig. Dis. Sci.* 2010, 55, 1385–1390. [CrossRef]

63. Cappello, G.; Spezzaferro, M.; Grossi, L.; Manzoli, L.; Marzio, L. Peppermint oil (Mintoil®) in the treatment of irritable bowel syndrome: A prospective double blind placebo-controlled randomized trial. *Dig. Liver Dis.* 2007, 39, 530–536. [CrossRef] [PubMed]

64. Pittler, M.H.; Ernst, E. Peppermint oil for irritable bowel syndrome: A critical review and metaanalysis. *Am. J. Gastroenterol.* 1998, 93, 1131–1135. [CrossRef] [PubMed]

65. Liu, J.H.; Chen, G.H.; Yeh, H.Z.; Huang, C.K.; Poon, S.K. Enteric-coated peppermint-oil capsules in the treatment of infantile colic: A crossover study. *Evid. Based Complement. Alternat. Med.* 2012, 2012, 8734589. [CrossRef] [PubMed]

66. Inoue, K.; Dohi, O.; Gen, Y.; Jo, M.; Mazaki, T.; Tokita, K.; Yoshida, N.; Okayama, T.; Kamada, K.; Katada, K.; et al. L-menthol improves adenoma detection rate during coloroscopy: A randomized trial. *Endoscopy* 2014, 46, 196–202. [CrossRef]

67. Hiki, N.; Kaminishi, M.; Yasuda, K.; Uedo, N.; Kobari, M.; Sakai, T.; Hiratsuka, T.; Ohno, K.; Honjo, H.; Nomura, S.; et al. Multicenter phase II randomized study evaluating dose-response of antiperistaltic effect of L-menthol sprayed onto the gastric mucosa for upper gastrointestinal endoscopy. *Dig. Endosc.* 2012, 24, 79–86. [CrossRef]

68. Yamamoto, N.; Nakai, Y.; Sasahira, N.; Hirano, K.; Tsujino, T.; Isayama, H.; Komatsu, Y.; Tada, M.; Yoshida, H.; Kawabe, T.; et al. Efficacy of peppermint oil as an antispasmodic during endoscopic retrograde cholangiopancreatography. *J. Gastroenterol. Hepatol.* 2006, 21, 1394–1398. [CrossRef] [PubMed]

69. Bezerra Alves, J.G.; de Cássia Coelho Moraes de Brito, R.; Cavalcanti, T.S. Effectiveness of *Mentha piperita* in the Treatment of Infantile Colic: A Crossover Study. *Evid. Based Complement. Alternat. Med.* 2012, 2012, 981352. [CrossRef]

70. Ghodsí, Z.; Aštoghíri, M. The Effect of Fennel on Pain Quality, Symptoms, and Menstrual Duration in Primary Dysmenorrhea. *J. Pediatr. Adolesc. Gynecol.* 2014, 27, 283–286. [CrossRef]

71. Chumptazi, B.P.; Kearns, G.L.; Shulman, R.J. Review article: The physiological effects and safety of peppermint oil and its efficacy in irritable bowel syndrome and other functional disorders. *Aliment. Pharmacol. Ther.* 2018, 47, 738–752. [CrossRef] [PubMed]

72. Shams, R.; Copare, J.L.; Johnson, D.A. Peppermint oil: Clinical uses in the treatment of gastrointestinal diseases. *JSM Gastroenterol. Hepatol.* 2019, 2019, 1–10. [CrossRef]

73. Kuo, I.Y.; Ehrlich, B.E. Signaling in Muscle Contraction. *Cold Spring Harb. Perspect. Biol.* 2015, 7, a006023. [CrossRef] [PubMed]

74. Sanders, K.M. Regulation of smooth muscle excitation and contraction. *Neurogastroenterol. Motil.* 2008, 20, 39–53. [CrossRef]
75. Sanders, K.M.; Koh, S.D.; Ro, S.; Ward, S.M. Regulation of gastrointestinal motility—insights from smooth muscle biology. *Nat. Rev. Gastroenterol. Hepatol.* 2012, 9, 633–645. [CrossRef] [PubMed]

76. Evangelista, S. Quaternary ammonium derivatives as spasmyotics for irritable bowel syndrome. *Curr. Pharm. Des.* 2004, 10, 3561–3568. [CrossRef]

77. Amato, A.; Liotta, R.; Mulè, F. Effects of menthol on circular smooth muscle of human colon: Analysis of the mechanism of action. *Eur. J. Pharmacol.* 2014, 740, 295–301. [CrossRef]

78. Silva, D.F.; Araújo, I.G.A.; Albuquerque, J.G.F.; Porto, D.L.; Dias, K.L.G.; Cavalcante, K.V.M.; Veras, R.C.; Nunes, X.P.; Barbosa-Filho, J.M.; Araújo, D.A.M.; et al. Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol. *Eur. J. Pharmacol.* 2016, 776, 44–51. [CrossRef]

79. Rozzon, Y.; Sultan, A.; Lansdell, S.J.; Prytkova, T.; Sadek, B.; Yang, K.-H.S.; Howarth, F.C.; Millar, N.S.; Oz, M. Involvement of cholinergic nicotinic receptors in the menthol-induced gastric relaxation. *Eur. J. Pharmacol.* 2014, 745, 129–134. [CrossRef] [PubMed]

80. Leal-Cardoso, J.H.; Lahlou, S.; Coelho-de-Souza, A.N.; Criddle, D.N.; Pinto Duarte, G.I.B.; Santos, M.A.V.; Magalhães, P.J.C. Essential oils: Chemical characterization and investigation of some biological activities: A critical review. *Medicines* 2016, 3, 25. [CrossRef] [PubMed]

81. Amato, A.; Serio, R.; Mulè, F. Involvement of cholinergic nicotinic receptors in the menthol-induced gastric relaxation. *Eur. J. Pharmacol.* 2014, 745, 129–134. [CrossRef] [PubMed]

82. Pelkonen, O.; Affass, K.; Wiesner, J. Essential oils' chemical characterization and investigation of some biological activities: a critical review. *Flavour Fragr. J.* 2014, 29, 193–219. [CrossRef]

83. Caputo, L.; Souza, L.F.; Alloisio, S.; Cornara, L.; De Feo, V. *Coriandrum sativum* and *Lavandula angustifolia* essential oils: Chemical composition and activity on central nervous system. *Int. J. Mol. Sci.* 2016, 17, 1999. [CrossRef]

84. Lima, C.C.; Criddle, D.N.; Coelho-de-Souza, A.N.; Monte, F.J.Q.; Jaffar, M.; Leal-Cardoso, J.H. Relaxant and Antispasmodic Actions of Methyleugenol on Guinea-Pig Isolated Ileum. *Plant Med.* 2000, 66, 408–411. [CrossRef]

85. Sousa, P.J.C.; Linard, C.F.B.M.; Azevedo-Batista, D.; Oliveira, A.C.; Coelho-de-Souza, A.N.; Leal-Cardoso, J.H. Antinociceptive effects of the essential oil of *Mentha x villosa* leaf and its major constituent piperitenone oxide in mice. *Brazilian J. Med. Biol. Res.* 2009, 42, 655–659. [CrossRef]

86. Bowles, E.J. *The Chemistry of Aromatherapeutic Oils*, 3rd ed.; Allen & Unwin: Crows Nest, Australia, 2003; pp. 1–256. ISBN 10: 174114051X.

87. Ansari, S.H.; Ali, M.; Qadry, J.S. Essential oils of *Pistacia integerrima* galls and their effect on the central nervous system. *Pharm. Biol.* 1993, 31, 89–95. [CrossRef]

88. Shirole, R.L.; Shirole, N.L.; Kshatriya, A.A.; Kulkarni, R.; Saraf, M.N. Investigation into the mechanism of action of essential oil of *Pistacia integerrima* for its antiasthmatic activity. *J. Ethnopharmacol.* 2014, 153, 541–551. [CrossRef]

89. Rauf, A. Chemical composition and biological screening of essential oils from *Pistacia integerrima*. *African J. Pharm. Pharmacol.* 2014, 7, 1220–1224. [CrossRef]
116. Miguel, M.G.; Cruz, C.; Faleiro, L.; Simões, M.T.F.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. *Foeniculum vulgare* essential oils: Chemical composition, antioxidant and antimicrobial activities. *Nat. Prod. Commun.* 2010, 5, 319–328. [CrossRef]

117. Marín, I.; Sayas-Barberá, E.; Viuda-Martos, M.; Navarro, C.; Sendra, E. Chemical Composition, Antioxidant and Antimicrobial Activity of Essential Oils from Organic Fennel, Parsley, and Lavender from Spain. *Foods* 2016, 5, 18. [CrossRef]

118. Aprotosoaie, A.C.; Spac, A.; Hancianu, M.; Miron, A.; Tanasescu, V.F.; Dorneanu, V.; Stanescu, U. The chemical profile of essential oils obtained from fennel fruits (*Foeniculum vulgare* Mill.). *Farmacia* 2010, 58, 46–53.

119. Orav, A.; Ra, A.; Arak, E. Essential oil composition of *Pimpinella anisum* L. fruits from various European countries. *Nat. Prod. Res.* 2008, 22, 227–232. [CrossRef]

120. Özcan, M.M.; Chalchat, J.C. Chemical composition and antifungal effect of anise (*Pimpinella anisum* L.) fruit oil at ripening stage. *Ann. Microbiol.* 2006, 56, 353–358. [CrossRef]

121. Saibi, S.; Belhadj, M.; Benyoussef, E.-H. Essential Oil Composition of *Pimpinella anisum* from Algeria. *Anal. Chem. Lett.* 2012, 2, 401–404. [CrossRef]

122. Punetha, V.D. Essential oil composition of *Acorus calamus* from district - Pithoragarh, Uttarakhand, India. *World J. Pharm. Res.* 2015, 4, 1158–1166.

123. Raina, V.K.; Srivastava, S.K.; Syamasunder, K.V. Essential oil composition of *Acorus calamus* L. from the lower region of the Himalayas. *Flavour Fragr. J.* 2003, 18, 18–20. [CrossRef]

124. Liu, X.C.; Zhou, L.G.; Liu, Z.L.; Du, S.S. Identification of insecticidal constituents of the essential oil of *Acorus calamus* rhizomes against Liposcelis bostrychophila badonnel. *Molecules* 2013, 18, 5684–5696. [CrossRef]

125. Verma, R.S.; Padalia, R.C.; Chauhan, A. Chemical Composition of Root Essential Oil of *Acorus calamus* L. *Natl. Acad. Sci. Lett.* 2015, 38, 121–125. [CrossRef]

126. Lohani, H.; Andola, H.C.; Chauhan, N.; Bhandari, U. Variations of Essential oil composition of *Acorus calamus* from Uttarakhand Himalaya. *J. Pharm. Res.* 2012, 5, 1246–1247.

127. Ayoughi, F.; Barzegar, M.; Sahari, M.A.; Naghdibadi, H. Chemical compositions of essential oils of *Artemisia dracunculus* L. and endemic *Matricaria chamomilla* L. and an evaluation of their antioxidantive effects. *J. Agric. Sci. Technol.* 2011, 13, 79–88.

128. Verma, M.K.; Anand, R.; Chisti, A.M.; Kitchlu, S.; Chandra, S.; Shawl, A.S.; Khajuria, R.K. Essential oil composition of *Artemisia dracunculus* L. (tarragon) growing in Kashmir-India. *J. Essent. Oil-Bear. Plants* 2010, 13, 331–335. [CrossRef]

129. Asili, J.; Rajabian, A.; Tayarani-Najaran, Z.; Rahimzadeh Oskooie, R.; Emami, S.A.; Hassanzadeh Khayyat, M. Phytochemical Evaluation and Antioxidant Activity of Essential Oil, and Aqueous and Organic Extracts of *Artemisia dracunculus*. *Jundishapur J. Nat. Pharm. Prod.* 2017, e32325. [CrossRef]

130. Sayyah, M.; Nadjafnia, L.; Kamalinejad, M. Anticonvulsant activity and chemical composition of *Artemisia dracunculus* L. essential oil. *J. Ethnopharmacol.* 2004, 94, 283–287. [CrossRef]

131. Obolskiy, D.; Pischel, I.; Feistel, B.; Glotov, N.; Heinrich, M. *Artemisia dracunculus* L. (Tarragon): A Critical Review of Its Traditional Use, Chemical Composition, Pharmacology, and Safety. *J Agric Food Chem.* 2011, 59, 11367–11384. [CrossRef] [PubMed]

132. Irfan-ur-Rauf, T.; Dawood, M.; Ganai, B.A.; Chishti, M.Z.; Fayaz, A.; Jehangir, S.D. Phytochemical studies on the extract and essential oils of *Artemisia dracunculus* L. (Tarragon). *African J. Plant Sci.* 2014, 8, 72–75. [CrossRef]

133. Srivastava, J.K.; Shankar, E.; Gupta, S. Chamomile: A herbal medicine of the past with bright future. *Mol. Med. Rep.* 2010, 3, 895–901. [CrossRef] [PubMed]

134. Gardiner, P. Complementary, holistic, and integrative medicine: Chamomile. *Pediatr. Rev.* 2007, 28, e16–8. [CrossRef] [PubMed]

135. Sharafzadeh, S.; Alizadeh, O. German and roman chamomile. *J. Appl. Pharm. Sci.* 2011, 1, 1–5.

136. Aremu, O.O.; Tata, C.M.; Sewani-rusike, C.R. Phytochemical composition, and analgesic and anti-inflammatory properties of essential oil of *Chamaemelum nobile* (Asteraceae L All) in rodents. *Trop. J. Pharm. Res.* 2018, 17, 1939–1945. [CrossRef]

137. De Groot, A.C.; Schmidt, E. Essential Oils, Part III: Chemical Composition. *Dermatitis* 2016, 27, 161–169. [CrossRef]
138. Al-snafi, A.E. Medical importance of Anthemis nobilis (Chamaemelum nobile)—A review. *Asian J. Pharm. Sci. Technol.* 2016, 6, 89–95.

139. Cárdenas-Ortega, N.C.; Zavala-Sánchez, M.A.; Aguirre-Rivera, J.R.; Pérez-González, C.; Pérez-Gutiérrez, S. Chemical Composition and Antifungal Activity of Essential Oil of *Chrysanthia mexicana* Gray. *J. Agric. Food Chem.* 2005, 53, 4347–4349. [CrossRef] [PubMed]

140. Pérez-Vásquez, A.; Capella, S.; Linares, E.; Bye, R.; Angeles-López, G.; Mata, R. Antimicrobial activity and chemical composition of the essential oil of *Hofmeisteria schaffneri*. *J. Pharm. Pharmacol.* 2011, 63, 579–586. [CrossRef]

141. Mousavi, E.S.; Dehghanzadeh, H.; Abdali, A. Chemical Composition and Essential Oils of *Pelargonium graveolens* (Geraniaceae) By Gas Chromatography—Mass Spectrometry (GC/MS). *Bull. Env. Pharmacol. Life Sci.* 2014, 3, 182–184.

142. Boukhris, M.; Simmonds, M.S.J.; Sayadi, S.; Bouaziz, M. Chemical Composition and Biological Activities of Polar Extracts and Essential Oil of Rose-scented Geranium, *Pelargonium graveolens*. *Phytother. Res.* 2013, 27, 1206–1213. [CrossRef]

143. Rana, V.S.; Juyal, J.P.; Amparo Blazquez, M. Chemical constituents of essential oil of *Pelargonium graveolens* leaves. *Int. J. Aromather.* 2002, 12, 216–218. [CrossRef]

144. Sharopov, F.S.; Zhang, H.; Setzer, W.N. Composition of geranium (*Pelargonium graveolens*) essential oil from Tajikistan. *Am. J. Essent. Oils Nat. Prod.* 2014, 2, 13–16.

145. Tarakemeh, A.; Rowskan, V.; Najafian, S. Essential Oil Content and Composition of *Lavandula Angustifolia* Mill. as Affected by Drying Method and Extraction Time. *Anal. Chem. Lett.* 2013, 2, 244–249. [CrossRef]

146. Mirenska; Wang, X.; Zhi, L.; Cong, Y.; Abulizi, P. Chemical composition of the essential oil of *Lavandula angustifolia* from Xinjiang, China. *Chem. Nat. Compd.* 2009, 44, 810. [CrossRef]

147. Smigielski, K.; Prusinowska, R.; Stobiecka, A.; Kunicka-Styczynska, A.; Gruska, R. Biological Properties and Chemical Composition of Essential Oils from Flowers and Aerial Parts of Lavender (*Lavandula angustifolia*). *J. Essent. Oil-Bear. Plants* 2018, 21, 1303–1314. [CrossRef]

148. Ðerban, E.S.; Socaci, S.A.; Tofan, M.; Maier, S.C.; Bojît, M.T. Chemical composition of some essential oils of Lamiaceae family. *Clujul Med.* 2010, LXXXIII, 286–289.

149. Abdellatif, F.; Hassani, A. Chemical composition of the essential oils from leaves of *Melissa officinalis* extracted by hydrodistillation, steam distillation, organic solvent and microwave hydrodistillation. *J. Mater. Environ. Sci.* 2015, 6, 207–213.

150. Verma, R.S.; Padalia, R.C.; Chauhan, A. Evaluation of essential oil quality of lemon balm (*Melissa officinalis* L) grown in two locations of northern India. *J. Essent. Oil Res.* 2015, 27, 412–416. [CrossRef]

151. Chizzola, R.; Lohwasser, U.; Franz, C. Biodiversity within *Melissa officinalis*: Variability of Bioactive Compounds in a Cultivated Collection. *Molecules* 2018, 23, 294. [CrossRef] [PubMed]

152. Efremov, A.A.; Zykova, I.D.; Gorbachev, A.E. Composition of the essential oil from the lemon balm growing in the neighborhood of Krasnoyarsk as indicated by gas chromatography–mass spectrometry data. *Russ. J. Bioorganic Chem.* 2017, 42, 726–729. [CrossRef]

153. Taherpour, A.A.; Khaf, S.; Yari, A.; Nikeafshar, S.; Fathi, M.; Ghambari, S. Chemical composition analysis of the essential oil of *Mentha piperita* L. from Kermanshah, Iran by hydrodistillation and HS/SPME methods. *J. Anal. Sci. Technol.* 2017, 8, 11. [CrossRef]

154. Moghaddam, M.; Pourbaige, M.; Tabar, H.K.; Farhari, N.; Hosseini, S.M.A. Composition and Antifungal Activity of Peppermint (*Mentha piperita*) Essential Oil from Iran. *J. Essent. Oil-Bear. Plants* 2013, 16, 506–512. [CrossRef]

155. Shahi, A.K.; Chandra, S.; Dutt, P.; Kaul, B.L.; Tava, A.; Avato, P. Essential oil composition of *Mentha x piperita* L. from different environments of north India. *Flavour Fragr. J.* 1999, 14, 5–8. [CrossRef]

156. Ainane, A. Chemical Study by GC-MS of the Essential Oils of Certain Mints Grown In the Region of Settat (Morocco): *Mentha Piperita, Mentha Pulegium and Mentha Spicata*. *Drug Des. Intellect. Prop. Int. J.* 2018, 1, 124–127. [CrossRef]

157. Hussain, A.I.; Anwar, F.; Shahid, M.; Ashraf, M.; Przybylski, R. Chemical Composition, and Antioxidant and Antimicrobial Activities of Essential Oil of Spearmint (*Mentha spicata* L.) From Pakistan. *J. Essent. Oil Res.* 2010, 22, 78–84. [CrossRef]
158. Snoussi, M.; Nourmi, E.; Trabelsi, N.; Flamini, G.; Papetti, A.; De Feo, V. *Origanum majorana* L. essential oil: Chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of vibrio spp. strains. *Molecules* 2015, 20, 14402–14424. [CrossRef] [PubMed]

159. Lahlou, S.; Carneiro-Leão, R.E.L.; Leal-Cardoso, J.H.; Toscano, C.F. Cardiovascular Effects of the Essential Oil of *Mentha x villosa* and its Main Constituent, Piperitenone Oxide, in Normotensive Anaesthetised Rats: Role of the Autonomic Nervous System. *Planta Med.* 2001, 67, 638–643. [CrossRef] [PubMed]

160. Lima, T.C.; da Silva, T.K.M.; Silva, F.L.; Barbosa-Filho, J.M.; Marques, M.O.M.; Santos, R.L.C.; de Holanda Cavallanti, S.C.; de Sousa, D.P. Larvicidal activity of *Mentha x villosa* Hudson essential oil, rotundifolone and derivatives. *Chemosphere* 2014, 104, 37–43. [CrossRef] [PubMed]

161. Costa, L.C.B.; Pinto, J.E.B.P.; Castro, E.M.; Alves, E.; Rosal, L.F.; Bertolucci, S.K.V.; Alves, P.B.; Evangelino, T.S. Phytochemical characterization of essential oil from *Ocimum selloi* leaves: Antibacterial and mode of action against selected gastroenteritis pathogens. *Microb. Pathog.* 2012, 53, 290–300. [CrossRef] [PubMed]

162. Pandey, A.K.; Singh, P.; Tripathi, N.N. Chemistry and bioactivities of essential oils of some *Ocimum* species: An overview. *Asian Pac. J. Trop. Biomed.* 2014, 4, 682–694. [CrossRef]

163. Fogaca, R.T.H.; Cavalcante, A.D.A.; Serpa, A.K.L.; Sousa, P.J.C.; Coelho-de-Souza, A.N.; Leal-Cardoso, J.H. The effects of essential oil of *Mentha x villosa* on skeletal muscle of the toad. *Phytother. Res.* 1997, 11, 552–557. [CrossRef]

164. Moraes, L.A.S.; Facanali, R.; Marques, M.O.M.; Lin, C.M.; Meireles, M.A.A. Phytochemical characterization of essential oil from *Ocimum selloi*. *An. Acad. Bras. Cienc.* 2007, 79, 183–186. [CrossRef] [PubMed]

165. Chimnoi, N.; Reuk-ngam, N.; Chuysinuan, P.; Khlaychan, P.; Khunnawutmanotham, N.; Chokchaichamnanakit, D.; Thammiyom, W.; Klayraung, S.; Mahidol, C.; Techasakul, S. Characterization of essential oil from *Ocimum gratissimum* leaves: Antibacterial and mode of action against selected gastroenteritis pathogens. *Phytother. Res.* 2014, 28, 118–122. [CrossRef] [PubMed]

166. Madeira, S.V.F.; Rabelo, M.; Soares, P.M.G.; Souza, E.P.; Meireles, A.V.P.; Montenegro, C.; Lima, R.F.; Assreuy, A.M.S.; Criddle, D.N. Temporal variation of chemical composition and relaxant action of the essential oil of *Ocimum gratissimum* L. (Labiatae) on guinea-pig ileum. *Phytomedicine* 2005, 12, 506–509. [CrossRef] [PubMed]

167. Rus, C.; POO, G.; Alexo, E.; Renata, M.S.; Dana, M.C. Antifungal activity and chemical composition of *Origanum majorana* L. essential oil. *Res. J. Agric. Sci.* 2015, 47, 179–185. [CrossRef]

168. Komaitis, M.E.; Hanti-Papatragianni, N.; Melissari-Panagiotou, E. Composition of the essential oil of marjoram (*Origanum majorana* L.). *Food Chem.* 1992, 45, 117–118. [CrossRef]

169. Brada, M.; Saadi, A.; Wathelet, J.P.; Lognay, G. The essential oils of *Origanum majorana* I. and *Origanum floribundum* munny in Algeria. *J. Essent. Oil Bear. Plants* 2012, 15, 497–502. [CrossRef] [PubMed]

170. Raina, A.P.; Negi, K.S. Essential oil composition of *Origanum majorana* and *Origanum vulgare* ssp. hirtum growing in India. *Chem. Nat. Compd.* 2012, 47, 1015–1017. [CrossRef]

171. Bağcı, Y.; Kan, Y.; Doğu, S.; Çelik, S.A. The essential oil compositions of *Origanum majorana* L. cultivated in Konya and collected from Mersin-Turkey. *Indian J. Pharm. Educ. Res.* 2017, 51, S463–S469. [CrossRef]

172. Alasbahí, R.; Melzig, M. *Plectranthus barbatus*: A Review of Phytochemistry, Ethnobotanical Uses and Pharmacology – Part 1. *Planta Med.* 2010, 76, 653–661. [CrossRef]

173. Kerntopf, M.R.; de Albuquerque, R.L.; Machado, M.I.L.; Matos, F.J.A.; Craveiro, A.A. Essential Oils from *Mentha x villosa* and *Mentha spicata* essential oil: Chemical characterization and Biological Activity of *Rosmarinus officinalis* L. *Foods* 2017, 6, 20. [CrossRef]
178. Gezici, S.; Karik, U.; Sekeroglu, N.; Tunçturk, M.; Cinar, O. Essential Oil Composition of Some Sage (Salvia spp.) Species Cultivated in Izmir (Turkey) Ecological Conditions. Indian J. Pharm. Educ. Res. 2018, 52, s102–s107. [CrossRef]

179. Khedher, M.R.B.; Khedher, S.B.; Chaieb, I.; Tounsi, S.; Hammami, M. Chemical composition and biological activities of Salvia officinialis essential oil from Tunisia. EXCLI J. 2017, 16, 160–173. [CrossRef]

180. Mohammadhosseini, M.; Beiranvand, M. Chemical Composition of the Essential Oil from the Aerial Parts of Satureja hortensis As a Potent Medical Plant Using Traditional Hydrodistillation. J. Chem. Health Risks 2013, 3, 49–60.

181. Mihajilov-Krstev, T.; Radnović, D.; Kitić, D.; Zlatković, B.; Ristić, M.; Branković, S. Chemical composition and antimicrobial activity of Satureja hortensis L. essential oil. Open Life Sci. 2009, 4, 411–416. [CrossRef]

182. Matasyoh, J.; Wagara, I.; Nakavuma, J.; Kiburai, A. Chemical composition of Cymbopogon citratus essential oil and its effect on mycotoxicigenic Aspergillus species. African J. Food Sci. 2011, 5, 138–142.

183. Mohamed Hanaa, A.R.; Sallam, Y.I.; El-Leithy, A.S.; Aly, S.E. Lemongrass (Cymbopogon citratus) essential oil as affected by drying methods. Ann. Agric. Sci. 2012, 57, 113–116. [CrossRef]

184. Machraoui, M.; Kthiri, Z.; Ben Jabeur, M.; Hamada, W. Ethnobotanical and phytopharmacological notes on Cymbopogon citratus (DC.) Stapf. J. New Sci. Agric. Biotechnol. 2018, 55, 3642–3652.

185. Machado, T.F.; Nogueira, N.A.P.; de Carvalho Junior, R.N.; Andrade, E.H.D.A. Chemical profile of Lippia thymoides, essential oil: An alternative to control green molds. Flavour Fragr. J. 2003, 18, 312–315. [CrossRef]

186. Dugo, G.; Mondello, L. Citrus oils: Composition, advanced analytical techniques, contaminants, and biological activity; CRC Press: Boca Raton, FL, USA, 2011; p. 642. ISBN 0415-28491-0.

187. Garza-González, E.; Alvarez, L.; Sandoval-Montemayor, N.E.; del Rayo Camacho-Corona, M.; García, A.; Elizondo-Treviño, E. Chemical Composition of Hexane Extract of Citrus aurantium and Anti-Mycobacterium tuberculosis Activity of Some of Its Constituents. Molecules 2012, 17, 11173–11184. [CrossRef]

188. Gupta, R.; Mallavarapu, G.R.; Ramesh, S.; Kumar, S. Composition of flower essential oils of Rosa damascena and Rosa indica grown in Lucknow. J. Med. Aromat. Plant Sci. 2000, 22, 9–12.

189. Dugo, G.; Mondello, L. Citrus oils: Composition, advanced analytical techniques, contaminants, and biological activity; CRC Press: Boca Raton, FL, USA, 2011; p. 642. ISBN 0415-28491-0.

190. Njoroge, S.M.; Phi, N.T.L.; Sawamura, M. Chemical Composition of Peel Essential Oils of Sweet Oranges (Citrus sinensis) from Uganda and Rwanda. J. Essent. Oil-Bear. Plants 2009, 12, 26–33. [CrossRef]

191. Mamun-Or-Rashid, A.N.M.; Sen, M.K.; Jamal, M.A.H.M.; Nasrin, S. A Comprehensive Ethnopharmacological Review on Lippia Alba M. Int. J. Biomed. Mater. Res. 2014, 1, 14–20. [CrossRef]

192. Juiz, P.J.L.; Lucchese, A.M.; Gambari, R.; Piva, R.; Penolazzi, L.; Di Ciano, M.; Elizondo-Treviño, E. Chemical Composition of Hexane Extract of Citrus aurantium and Anti-Mycobacterium tuberculosis Activity of Some of Its Constituents. Molecules 2012, 17, 11173–11184. [CrossRef]

193. Raina, V.K.; Srivastava, S.K.; Aggarwal, K.K.; Syamasundar, K.V.; Khanuja, S.P.S. Essential oil composition of Cymbopogon martinii from different places in India. Flavour Fragr. J. 2003, 18, 312–315. [CrossRef]

194. Veiga, G.; Biondetti, C.; Mezzetti, I.; Gatti, F.; Scelli, G. Lippia thymoides: A new polyphenolic source from different maturity levels. Int. J. Biomed. Mater. Res. 2011, 57, 113–116. [CrossRef]

195. Glamoˇ clija, J.; Sokocić, M.; Tešević, V.; Linde, G.A.; Colauto, N.B. Chemical characterization of Lippia alba essential oil: An alternative to control green molds. Braz. J. Microbiol. 2011, 42, 1537–1546. [CrossRef]

196. Silva, S.G.; da Costa, R.A.; da Oliveira, M.S.; da Cruz, J.N.; Figueiredo, P.L.B.; Brasil, D.D.S.B.; Nascimento, L.D.; Chaves Neto, A.M.D.J.; de Carvalho Junior, R.N.; Andrade, E.H.D.A. Chemical profile of Lippia thyoides, evaluation of the acetylcholinesterase inhibitory activity of its essential oil, and molecular docking and molecular dynamics simulations. PLoS ONE 2019, 14, e0213393. [CrossRef]

197. Silva, F.S.; Menezes, P.M.N.; de Sá, P.G.S.; Oliveira, A.L.D.S.; Souza, E.A.A.; Almeida, J.R.G.D.S.; de Lima, J.T.; Uetanabaro, A.P.T.; Silva, T.R.D.S.; Peralta, E.D.; et al. Chemical composition and pharmacological properties of the essential oils obtained seasonally from Lippia thyoides. Pharm. Biol. 2016, 54, 25–34. [CrossRef]

198. Mahmud, S. Composition of essential oil of Elettaria cardamomum Maton leaves. Pak. J. Sci. 2008, 60, 111–114.

199. Leela, N.K.; Prasath, D.; Venugopai, M.N. Essential oil composition of selected cardamom genotypes at different maturity levels. Indian J. Hortic. 2008, 65, 366–369.
200. Masoumi-Ardakani, Y.; Mandegary, A.; Esmaeilpour, K.; Najafipour, H.; Sharififar, F.; Pakravanan, M.; Ghazvini, H. Chemical Composition, Anticonvulsant Activity, and Toxicity of Essential Oil and Methanolic Extract of *Elettaria cardamomum*. *Planta Med.* 2016, 82, 1482–1486. [CrossRef] [PubMed]

201. Noumi, E.; Snoussi, M.; Alreshidi, M.M.; Rekha, P.-D.; Saptami, K.; Caputo, L.; De Martino, L.; Souza, L.F.; Msaada, K.; Mancini, E.; et al. Chemical and Biological Evaluation of Essential Oils from Cardamom Species. *Molecules* 2018, 23, 2818. [CrossRef] [PubMed]

202. Kumar, A.; Tandon, S.; Ahmad, J.; Yadav, A.; Kahol, A.P. Essential Oil Composition of Seed and Fruit Coat of *Elettaria cardamomum* from South India. *J. Essent. Oil-Bear. Plants* 2005, 8, 204–207. [CrossRef]