RAPID COMMUNICATION

Correlated enhancement of H_{c2} and J_c in carbon nanotube doped MgB$_2$

A Serquis1, G Serrano1, S M Moreno1, L Civale2, B Maiorov2, F Balakirev3 and M Jaime3

1 Centro Atómico Bariloche—Instituto Balseiro, R8402AGP, S C de Bariloche, Argentina
2 Superconductivity Technology Center, MS K763, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
3 NHMFL at Los Alamos National Laboratory, MS E536, Los Alamos, NM 87545, USA

E-mail: aserquis@cab.cnea.gov.ar

Received 22 December 2006, in final form 30 January 2007
Published 26 February 2007
Online at stacks.iop.org/SUST/20/L12

Abstract

The use of MgB$_2$ in superconducting applications still awaits the development of a MgB$_2$-based material where current-carrying performance and critical magnetic field are optimized simultaneously. We achieved this by doping MgB$_2$ with double-wall carbon nanotubes (DWCNT) as a source of carbon in polycrystalline samples. The optimum nominal DWCNT content for increasing the critical current density, J_c, is in the range 2.5–10 at.% depending on field and temperature. Record values of the upper critical field, H_{c2} ($4K$) = 41.9 T (with extrapolated $H_{c2}(0) \approx 44.4$ T), are reached in a bulk sample with 10 at.% DWCNT content. The measured H_{c2} versus T dependences for all samples are successfully described using a theoretical model for a two-gap superconductor in the dirty limit first proposed by Gurevich and co-workers.

The superconductor MgB$_2$ has great potential for technological applications due to its high critical temperature T_c (~ 39 K) [1], low cost of raw materials, chemical simplicity and absence of weak-link limitations to the critical current density [2]. In the last few years, several groups have achieved a good improvement of the transport properties of this material, especially in thin films [3–6]. However, in polycrystalline MgB$_2$, one of the most important remaining challenges is to increase the upper critical field (H_{c2}), which in the case of undoped clean material is too low for most possible applications [7] while, at the same time, improving the critical current density (J_c). The best results for increasing J_c and the irreversibility field (H_{irr}) in bulk samples are related to an improvement in grain connectivity [5] but also to the addition of suitable defect nanoparticles or doping, i.e. Mg(B$_{1.8}$O$_{0.2}$)$_2$ [8], SiC [6, 9], Al [10], Dy$_2$O$_3$ [11], and carbon nanotubes (CNT) [12–14]. It is well known that pinning of vortex lines to defects in superconductors plays an extremely important role in determining their properties. CNT inclusions, with diameters close to the MgB$_2$ coherence length ($\xi_{ab}(0) \sim 3.7–12$ nm; $\xi_c(0) \sim 1.6–3.6$ nm) [7] may be very good candidates for vortex pinning if they do not completely dissolve in the matrix but remain as tubes acting as columnar defects. In particular, Dou et al [12] reported an enhancement of J_c on doping with multi-wall CNT controlling the extent of C substitution during the synthesis (changing the sintering time and temperature) or varying the diameter and length of CNT [13]. However, these studies were made only with samples with a nominal composition MgB$_{1.8}$C$_{0.2}$.

Another interesting issue is that theoretical models predict that the presence of two superconducting gaps could allow tuning of different upper critical fields by controlling diverse defect sublattices relative to orthogonal hybrid bands [15, 16]. These models predict a significant H_{c2} enhancement in the dirty limit and an anomalous $H_{c2}(T)$ upward curvature. Several reports indicate that H_{c2} can be significantly increased by introducing disorder through oxygen alloying, carbon doping or He-ion irradiation [4, 17–19]. All the record H_{c2} values are reported for films or fibre-textured samples (i.e. Braccini et al [4] reported $H_{c2}^{\perp}(4.2) \sim 35$ T and...
$H_c^2(4.2) \sim 51$ T, observed perpendicular and parallel to the ab plane, respectively, in epitaxial MgB$_2$ C-alloyed films and fibre-textured samples. For carbon doped bulk MgB$_2$ samples much lower extrapolated $H_c(0)$ values of between 29 and 38 T have been reported [20–23].

Although the effect of carbon substitution was one of the most studied in MgB$_2$, the results on C solubility and the effect of C doping on the critical temperature (T_c) and critical current density (J_c) reported, so far, vary significantly due to precursor materials, fabrication techniques and processing conditions used, leading to different levels of C substitution and possibly other impurity effects [20–24].

In this work CNT doped MgB$_2$ samples were prepared by solid-state reaction using as starting materials amorphous boron powder (–325 mesh, 99.99%, Alfa Aesar), magnesium powder (–325 mesh, 99.8%, Assay) and double-walled carbon nanotubes DWCNT (diameter 1.3–5 nm, length $\leq 50 \mu$m, 90%, Aldrich). Details of the reaction procedure will be reported elsewhere [25]. TEM observations were made to characterize the initial composition, main impurities, average CNT sizes, and morphology of the Aldrich DWCNT powder that may affect the pinning properties. The typical DWCNT diameter size of ~ 3 nm (see the lower inset of figure 1) may generate defects to act as effective flux pinning centres. Of the CNT observed, $\sim 90\%$ of these were DWCNT, with the remaining additives being a variety of other kinds of CNT and graphite onion structures, with diameters as large as 15 nm. Amorphous C is also present in the sample and this probably tends to dissolve easily within the MgB$_2$ structure. The shift in the lattice parameter a, obtained from measured x-ray diffraction patterns, can be used as a measure of the actual amount of C (x) in the Mg(B$_1-x$C$_x$)$_2$ structure [21]. The x values obtained from using the fitting of the Avdeev et al neutron diffraction data [24] and Kazakov et al single-crystal data [26] are listed in table 1. It seems that all C is incorporated into the MgB$_2$ structure for samples with nominal content lower than 5 at.%, while some C does not dissolve for larger nominal contents, indicating that some CNT remain as nanotubes. An increasing broadening of the peaks is observed with increasing C in the samples, which may be related to a larger internal strain [27]. T_c values as determined from magnetization (T_c^{mag}) and resistivity data (T_c^{res}) are plotted as a function of the actual C content (x) in figure 1. The ΔT_c (90–10\%) of the superconducting transitions are lower than 1 K in all cases indicating a homogeneous distribution of the C incorporated into the lattice. The $T_c(x)$ dependence is similar to other reported data [21, 26], but the T_c values are slightly lower for our samples due to an increase in the lattice strain [27]. We observe an increase in the normal state resistivity with x for our samples due to an increase in the lattice strain [27]. $\Delta T_c(x)$ in figure 1. If we take into account that values of $\rho \sim 0.4–1.6 \mu\Omega$ cm were used as typical of MgB$_2$ films in the clean limit [4], even the $x = 0$ sample (9 $\mu\Omega$ cm) is within the dirty limit. However, there is no simple correlation between the normal state ρ and H_{c2}, because the global resistivity may be limited by poor intergrain connectivity while H_{c2} is controlled by intragrain impurity scattering.

The J_cs and their field dependence calculated from the Bean model [28] are shown in figure 2 for 5 and 20 K. For clarity only a few samples are included. The CNT increase the amount of pinning centres, the optimum doping being temperature and field dependent. This increase may be coming

![Figure 1.](image1)

Figure 1. T_c determined from magnetization (solid symbols) and resistivity (open symbols) versus the actual C content (x) as determined by XRD (see the text). The upper inset shows the RRR as a function of x. A typical TEM image of a DWCNT with a 3 nm diameter is displayed in the lower inset (arrows indicate the walls of the DWCNT).

![Figure 2.](image2)

Figure 2. J_c field dependence determined by magnetization for samples CNT00, CNT25, CNT10 and CNT125, at two temperatures 5 K (solid symbols) and 20 K (open symbols). The inset illustrates J_c as function of x at 4 T and two temperatures, 5 and 20 K.

Sample	at.%	x	T_c^{mag} (K)	T_c^{trans} (K)	ΔT_c (K)	J_c (A/cm2) at 20 K	ΔJ_c (A/cm2)
CNT00	0	0	38.5	38.7	1	0	0
CNT01	1	0.015	37.5	38.4	0.1695	0.0018	0.0018
CNT25	2.5	0.026	36	37.5	0.1288	0.0016	0.0016
CNT05	5	0.035	34	35	0.1862	0.0291	0.0291
CNT75	7.5	0.040	34	35.8	0.1409	0.0275	0.0275
CNT10	10	0.043	33.5	33.5	0.1212	0.0355	0.0355
CNT125	12.5	0.052	31	31.1	0.2075	0.0536	0.0536

Table 1. Sample data for nominal DWCNT at.% and actual C content (x). T_c^{mag} and T_c^{trans} were determined from magnetization and transport measurements. The parameters η and g were deduced from the fit of $H_c(T)$ curves with equation (1).
at 4 T for several samples as a function of \(x\) of interconnectivity between grains denoted by a large \(\rho\). Due to both a larger decrease in contents between 2.5 and 10 at.% we find that as a characteristic of the presence of two gaps [16, 19]. The inset displays \(H_{c2}\) enhancement is observed in single-wall CNT doped samples [25].

We used equation (1) from [16], obtained from the Usadel equations for a two-gap superconductor in the dirty limit (from Gurevich et al. [15, 19] and Golubov et al. [16]) to describe the \(H_{c2}\) dependence on temperature observed in CNT doped samples. The proposed model considers that the nonmagnetic impurities affect the intraband electron diffusivities \(D_e\) and \(D_s\), and the interband scattering rates \(\Gamma_{\pi\pi}\) and \(\Gamma_{\pi\sigma}\). We optimized the diffusivity ratio \(\eta = D_s/D_e\) and interband scattering parameter \(g = (\Gamma_{\pi\pi} + \Gamma_{\pi\sigma})^\gamma/2\pi k_B T_0\), where \(T_0 = T_c(g = 0)\) to fit the measurements using the following equation [4]:

\[
2w(\ln t + U_+)(\ln t + U_-) + (\lambda_0 + \lambda_i)(\ln t + U_+) + (\lambda_0 - \lambda_i)(\ln t + U_-) = 0
\]

where \(t = T/T_0\) is the reduced temperature, \(U_\pm = U_\pm(T, H_{c2}, D_s, \Gamma_{\pi\pi}, \Gamma_{\pi\sigma}, \Gamma_{\pi\sigma}, \lambda_i = \lambda_i(\Gamma_{\pi\pi}, \Gamma_{\pi\sigma})\) and \(w, \lambda_0\) are constants that depend on \(\lambda_{\text{imp}}\) (\(m = \pi, \sigma\)) values obtained from \textit{ab initio} calculations [4, 15, 16].

Figure 3(b) shows \(H_{c2}(T)\) as a function of the reduced temperature \(t\), including the experimental values and the curves obtained by fitting the experimental data with the theoretical model of equation (1), for CNT00, CNT01 and CNT10 samples. The upward curvature, characteristic of a two gap effect, is clearly observed near \(t \approx 0.2\) for the CNT10 sample. The data for all samples are fitted with the same equation, where a clear difference between them can be explained as an effect of a change in the mechanism of scattering into the bands. This indicates that the two-gap nature is preserved after carbon doping, which is consistent with previous measurements [4, 20]. The fitting parameters \(\eta\) and \(g\) are listed in table 1 for all samples. The \(g\) values increase with \(x\), as the \(T_c\) of the samples decreases. It is worth noting that, although \(\eta\) does not follow a clear tendency, we observe that \(1/D_s\) follows the same dependence of \(H_{c2}(0)\) as a function of \(x\) (see the inset of figure 3(b)) signifying that C doping is affecting the \(\pi\)-band.

In summary, we prepared samples doped with DWCNT and determined that the actual amount of C in the lattice is less than the nominal CNT content. The decrease in \(T_c\) may be explained by assuming not only C incorporation into the lattice but also an increase in the lattice strain. DWCNT doping produced the two desired effects: improvement of \(J_c\) and \(H_{c2}\) for \(0.02 < x < 0.05\). The optimum CNT content for increasing \(J_c\) depends on \(H\) and \(T_c\), and it may be further improved by controlling the amount of CNT in the grain boundaries.

\(H_{c2}(T)\) can be described using the two-band model [15, 4] for a dirty two-gap superconductor that takes into account the interband scattering. \(H_{c2}\) in MgB\(_2\) bulk samples may be increased up to record value \(H_{c2}(0) \approx 44.4\) T by adding 10 at.% DWCNT. This greatly exceeds the upper critical field performance of other intermetallic superconductors such as Nb\(_3\)Sn, confirming that this compound is very attractive for applications.

\(J_c\) performance at 4 T for several samples as a function of \(x\). For nominal contents between 2.5 and 10 at.% we find that \(J_c\) is increased up to \(5 \times 10^4\ \text{A cm}^{-2}\) at 5 T and 5 K. It is apparent that \(J_c\) decreases for \(x > 0.05\) (nominal content larger than 10 at.%) due to both a larger decrease in \(T_c\) and a probable deterioration of interconnectivity between grains denoted by a large \(\rho\) (40) value (~200 \(\mu\Omega\) cm) for the CNT125 sample.

The \(H_{c2}(T)\) dependences were determined from four-probe transport measurements in the mid-pulse magnet of NHMFL-LANL, capable of generating an asymmetric field pulse up to 50 T, performed at temperatures between 1.4 and 34 K. Figure 3(a) exhibits the temperature dependences of \(H_{c2}\) and \(H_{crr}\) defined as the onset (extrapolation of the maximum slope up to the normal state resistivity) and the beginning of the dissipation, respectively, of the \(R\) versus \(H\) data for samples with several CNT contents. There is apparent in these \(H_{c2}(T)\) data the upward curvature signalled as a characteristic of the presence of two gaps [16, 19]. The inset displays \(H_{c2}\) as a function of \(x\) for 4 and 20 K and the extrapolation to 0 K for all samples. We observe that \(H_{c2}(0)\) has a maximum near \(x \approx 0.045\) for sample CNT10 and a decrease above 0.045 similar to the \(J_c\) behaviour. This enhancement is indicating that the incorporation of C in the lattice affects the scattering mechanism, consistent with the RRR variation with \(x\), increasing \(H_{c2}\) up to 44 T at 0 K, as predicted by the theoretical models. A lower \(H_{c2}\) enhancement is observed in single-wall CNT doped samples [25].

Figure 3. (a) Transport measurements of the upper critical field \((H_{c2},\) solid symbols) and the beginning of the dissipation \((H_{crr},\) open symbols) in the \(R(H)\) curves for CNT25, CNT10 and CNT125 samples. The inset shows \(H_{c2}\) (solid symbols) and \(H_{crr}\) (open symbols) as a function of \(x\) at 4 K (squares) and 20 K (circles), and the \(H_{c2}\) extrapolation at 0 K (stars). (b) \(H_{c2}\) versus \(t\) for CNT00, CNT01 and CNT10 samples and the fit to data using equation (1) (dashed lines). The inset shows the dependence of \(1/D_s\) with \(x\) (the dotted line is a guide to the eye).
Acknowledgments

The work at Bariloche was supported in part by CONICET, Fundación Antorchas, and SECYT-PICT. The work at STC-LANL was supported by the Office of Energy Efficiency and Renewable Energy, US Department of Energy. The work at the NHMFL-LANL was supported by the National Science Foundation, the State of Florida and the US Department of Energy. The authors are grateful to Judith L. MacManus-Driscoll, University of Cambridge, UK, for helpful discussions.

References

[1] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63–4
[2] Larbalestier D C et al 2001 Nature 410 186–9
[3] Flükiger R, Suo H L, Musolino N, Beneduce C, Toulemonde P and Lezza P 2003 Physica C 385 286–305 and references therein
[4] Braccini V et al 2005 Phys. Rev. B 71 012504
[5] Serquis A et al 2002 J. Appl. Phys. 92 351–6
[6] Zhou S H, Ionescu M, Liu H K and Tomlie M 2002 Appl. Phys. Lett. 81 3419–21
[7] Gurevich A and Yamashita T 2001 Supercond. Sci. Technol. 14 R115–46
[8] Liao X Z, Serquis A, Zhu Y T, Huang J Y, Civale L, Peterson D E, Xu H F and Mueller F M 2003 J. Appl. Phys. 93 6208–15
[9] Zhou S H, Pan A V, Qin M J, Liu H K and Dou S X 2003 Physica C 387 321–7
[10] Berenov A, Serquis A, Liao X Z, Zhu Y T, Peterson D E, Bugoslavsky Y, Yates K A, Blamire M G, Cohen L F and MacManus-Driscoll J L 2004 Supercond. Sci. Technol. 17 1093–6
[11] Chen S K, Wei M and MacManus-Driscoll J L 2006 Appl. Phys. Lett. 88 192512
[12] Dou S X, Yeoh W K, Horvat J and Ionescu M 2003 Appl. Phys. Lett. 83 4996–8
[13] Yeoh W K, Horvat J, Dou S X and Munroe P 2005 IEEE Trans. Appl. Supercond. 15 3284–7
[14] Yeoh W K, Kim J H, Horvat J, Dou S X and Munroe P 2006 Supercond. Sci. Technol. 19 L5–8
[15] Gurevich A 2003 Phys. Rev. B 67 184515–28
[16] Golubov A A, Kortus J, Dolgov O V, Jepsen O, Kong Y, Andersen O K, Gibson B J, Ahn K and Kremer R K 2002 J. Phys.: Condens. Matter 14 1353–60
[17] Brinkman A, Golubov A A, Rogalla H, Dolgov O V, Kortus J, Kong Y, Jepsen O and Andersen O K 2002 Phys. Rev. B 65 1805171–4
[18] Putti M, Braccini V, Ferdeghini C, Pallecchi I, Siri A S, Gatti F, Manfrinetti P and Palenzona A 2004 Phys. Rev. B 70 052509–15
[19] Gurevich A et al 2004 Supercond. Sci. Technol. 17 278–86
[20] Huang X S, Michelson W, Regan B C and Zent A 2005 Solid State Commun. 136 278–82
[21] Wilke R H T, Bud’ko S L, Canfield P C, Finnemore D K, Suplinskas R J and Hannabas S T 2004 Phys. Rev. Lett. 92 217003–7
[22] Wilke R H T, Bud’ko S L, Canfield P C, Finnemore D K, Suplinskas R J and Hannabas S T 2005 Physica C 424 1–16
[23] Senkovic B J, Giencke J E, Pataustry S, Eom C B, Hellstrom E E and Larbalestier D C 2005 Appl. Phys. Lett. 86 205202–5
[24] Avdeev M, Jorgensen J D, Ribeiro R A, Bud’ko S L and Canfield P C 2003 Physica C 387 301–6
[25] Serrano G et al 2007 in preparation
[26] Kazakov S M, Puzniak R, Rogacki K, Mironov A V, Zhigadlo N D, Jun J, Soltmann Ch, Batlogg B and Karpinski J 2005 Phys. Rev. B 71 024533–43
[27] Serquis A, Zhu Y T, Peterson E J, Coulter J Y, Peterson D E and Mueller F M 2001 Appl. Phys. Lett. 79 4399–401
[28] Bean C P 1962 Phys. Rev. Lett. 8 250–3