LOCALLY UNMIXED MODULES AND LINEARLY EQUIVALENT
IDEAL TOPOLOGIES

MONA BAHADORIAN, MONIREH SEDGHI AND REZA NAGHIPOUR

Abstract. Let \(R \) be a commutative Noetherian ring, and let \(N \) be a non-zero finitely generated \(R \)-module. The purpose of this paper is to show that \(N \) is locally unmixed if and only if, for any \(N \)-proper ideal \(I \) of \(R \) generated by \(\text{ht}_N I \) elements, the topology defined by \((IN)^{(n)} \), \(n \geq 0 \), is linearly equivalent to the \(I \)-adic topology.

1. Introduction

Let \(R \) denote a commutative Noetherian ring, \(I \) an ideal of \(R \) and \(N \) a non-zero finitely generated \(R \)-module. We denote by \(R[It] \) (resp. \(R[It, u] \)) the graded ordinary (resp. extended) Rees ring \(\oplus_{n \in \mathbb{N}_0} I^n t^n \) (resp. \(\oplus_{n \in \mathbb{Z}} I^n t^n \)) of \(R \) with respect to \(I \), where \(t \) is an indeterminate and \(u = t^{-1} \). Also, the graded ordinary Rees module \(\oplus_{n \in \mathbb{N}_0} I^n N \) over \(R[It] \) (resp. graded extended Rees module \(\oplus_{n \in \mathbb{Z}} I^n N \) over \(R[It, u] \)) is denoted by \(N[It] \) (resp. \(N[It, u] \)), which is finitely generated. For any multiplicatively closed subset \(S \) of \(R \), the \(n \)th \((S) \)-symbolic power of \(I \) with respect to \(N \), denoted by \(S(I^n N) \), is defined to be the union of \(I^n N :_N s \) where \(s \) varies in \(S \). The \(I \)-adic filtration \(\{I^n N\}_{n \geq 0} \) and the \((S) \)-symbolic filtration \(\{S(I^n N)\}_{n \geq 0} \) induce topologies on \(N \) which are called the \(I \)-adic topology and the \((S) \)-symbolic topology, respectively. These two topologies are said to be linearly equivalent if, there is an integer \(k \geq 0 \) such that \(S(I^{n+k} N) \subseteq I^n N \) for all integers \(n \). In particular, if \(S = R \setminus \bigcup \{p \in \text{mAss}_R N/IN\} \), where \(\text{mAss}_R N/IN \) denotes the set of minimal prime ideals of \(\text{Ass}_R N/IN \), the \(n \)th \((S) \)-symbolic power of \(I \) with respect to \(N \), is denoted by \((IN)^{(n)} \), and the topology defined by the filtration \(\{(IN)^{(n)}\}_{n \geq 0} \) is called the symbolic topology. The purpose of this paper is to show that \(N \) is locally unmixed if and only if, for each \(N \)-proper ideal \(I \) that is generated by \(\text{ht}_N I \) elements, the \(I \)-adic and the symbolic topologies are linearly equivalent.

P. Schenzel has characterized unmixed local rings [19, Theorem 7] in terms of comparison of the topologies defined by certain filtrations. Also, D. Katz [9, Theorem 3.5] and J. Verma [21, Theorem 5.2] have proved a characterization of locally unmixed rings in terms of \(s \)-ideals. Equivalence of \(I \)-adic topology and \((S) \)-symbolic topology has been studied, in the case \(N = R \), in [9 15 19 18 17], and has led to some interesting results.

Key words and phrases. Analytic spread, locally unmixed modules, ideal topologies, Rees ring.

2010 Mathematics Subject Classification: 13A30, 13E05.

*Corresponding author: e-mail: naghipour@ipm.ir (Reza Naghipour).
Let \(p \in \text{Supp}(N) \). Then \(N \)-height of \(p \), denoted by \(\text{ht}_N p \), is defined to be the supremum of lengths of chains of prime ideals of \(\text{Supp}(N) \) terminating with \(p \). We have \(\text{ht}_N p = \dim_{R_p} N_p \). We shall say an ideal \(I \) of \(R \) is \(N \)-proper if \(N/IN \neq 0 \), and, when this is the case, we define the \(N \)-height of \(I \) (written \(\text{ht}_N I \)) to be

\[
\inf \{ \text{ht}_N p : p \in \text{Supp}(N) \cap V(I) \}
\]

\((= \inf \{ \text{ht}_N p : p \in \text{Ass}_R(N/IN) \}).\)

If \((R, m)\) is local, then \(\widehat{R} \) (resp. \(\widehat{N} \)) denotes the completion of \(R \) (resp. \(N \)) with respect to the \(m \)-adic topology. In particular, for any \(p \in \text{Spec}(R) \), we denote \(\widehat{R}_p \) and \(\widehat{N}_p \) the \(pR_p \)-adic completion of \(R_p \) and \(N_p \), respectively. Then \(N \) is said to be an \emph{unmixed module} if for any \(p \in \text{Ass}_R \widehat{N} \), \(\dim \widehat{R}/p = \dim N \). More generally, if \(R \) is not necessarily local and \(N \) is non-zero finitely generated, \(N \) is a \emph{locally unmixed module} if for any \(p \in \text{Supp}(N) \), \(N_p \) is an unmixed \(R_p \)-module.

As the main result of this paper we characterize the locally unmixed property of a non-zero finitely generated \(R \)-module \(N \) in terms of the linearly equivalence of the topologies defined by \(\{I^nN\}_{n \geq 0} \) and \(\{(IN)^{(n)}\}_{n \geq 0} \), for certain \(N \)-proper ideals \(I \) of \(R \). More precisely we shall show that:

Theorem 1.1. Let \(R \) be a Noetherian ring and \(N \) a non-zero finitely generated \(R \)-module. Then the following conditions are equivalent:

(i) \(N \) is locally unmixed.

(ii) For each \(N \)-proper ideal \(I \) of \(R \) that is generated by \(\text{ht}_N I \) elements, the topology given by \(\{(IN)^{(n)}\}_{n \geq 0} \) is linearly equivalent to the \(I \)-adic topology on \(N \).

One of our tools for proving Theorem 1.1 is the following, which plays a key role in this paper. Recall that a prime ideal \(p \) of \(R \) is called a \emph{quitessential prime ideal of} \(I \) with respect to \(N \) precisely when there exists \(q \in \text{Ass}_{R_p} \widehat{N}_p \) such that \(\text{Rad}(I\widehat{R}_p + q) = p\widehat{R}_p \).

The set of quitessential primes of \(I \) is denoted by \(Q(I, N) \). Then, the set of \emph{essential primes} of \(I \) with respect to \(N \), denoted by \(E(I, N) \), is defined to be the set \(\{q \cap R \mid q \in Q(uR[It, u], N[It, u])\} \).

Theorem 1.2. Let \(R \) denote a Noetherian ring, \(N \) a non-zero finitely generated \(R \)-module and \(I \) a \(N \)-proper ideal of \(R \) such that \(E(I, N) = \text{mAss}_R N/IN \). Then, the \(I \)-adic topology \(\{I^nN\}_{n \geq 0} \) and the topology defined by \(\{(IN)^{(n)}\}_{n \geq 0} \) are linearly equivalent.

The proof of Theorem 1.2 is given in 1.13.

Throughout this paper, \(R \) will always be a commutative Noetherian ring with non-zero identity, \(N \) will be a non-zero finitely generated \(R \)-module, and \(I \) will be an \(N \)-proper ideal of \(R \), i.e., \(N/IN \neq 0 \). For each \(R \)-module \(L \), we denote by \(\text{mAss}_p L \) the set of minimal primes of \(\text{Ass}_R L \). For any ideal \(J \) of \(R \), the \emph{radical of} \(J \), denoted by \(\text{Rad}(J) \), is defined to be the set \(\{x \in R : x^n \in J \text{ for some } n \in \mathbb{N}\} \). For any unexplained notation and terminology we refer the reader to [6] or [12].
2. The Results

The main result of this section is to show that a non-zero finitely generated module N over a Noetherian ring R is locally unmixed if and only if, for any N-proper ideal I of R that can be generated by $\text{ht}_N I$ elements, the topologies defined by $\{I^n N\}_{n \geq 0}$ and $\{(IN)^{(n)}\}_{n \geq 0}$, on N, are linearly equivalent. We begin with the following remark.

Remark 2.1. Let R be a Noetherian ring and N a finitely generated R-module. For a submodule M of N and an ideal I of R, the increasing sequence of submodules

$$M \subseteq M :_N I \subseteq M :_N I^2 \subseteq \cdots \subseteq M :_N I^n \subseteq \cdots$$

becomes stationary. Denote its ultimate constant value by $M :_N \langle I \rangle$. Note that $M :_N \langle I \rangle = M :_N I^n$ for all large n. Let $M = Q_1 \cap \cdots \cap Q_r \cap Q_{r+1} \cap \cdots \cap Q_s$ be an irredundant primary decomposition of M, with $I \subseteq \text{Rad}(Q_i :_R N)$, exclusively for $r + 1 \leq i \leq s$. Then, from the definition, it easily follows that $M :_N \langle I \rangle = Q_1 \cap \cdots \cap Q_r$. Therefore

$$\text{Ass}_R N/(M :_N \langle I \rangle) = \{p \in \text{Ass}_R N/M : I \not\subseteq p\} = \text{Ass}_R (N/M) \setminus V(I).$$

Now we can state and prove the following lemma. Here $D_I(L)$ denotes the ideal transform of the R-module L with respect to an ideal I of R (see \cite[2.2.1]{1}).

Lemma 2.2. Let (R, \mathfrak{m}) be local (Noetherian) ring, I an ideal of R and N a non-zero finitely generated R-module such that depth $N > 0$. Then, for all integers $n \geq 0$, we have

$$I^n N :_N \langle \mathfrak{m} \rangle \subseteq D_{I^n}(N).$$

Proof. The assertion follows from \cite[Corollary 2.2.18]{1} and the fact that depth $I^n N > 0$ for all integers $n \geq 0$. \hfill \square

The next result concerns the associated prime ideals of the Rees module $N[It]$ for a non-zero finitely generated module N over a Noetherian ring R and an ideal I in R.

Proposition 2.3. Let R be a Noetherian ring, I an ideal of R and N a non-zero finitely generated R-module. Then

$$\text{Ass}_{R[It]} N[It] = \left\{ \oplus_{n \geq 0} (I^n \cap p) : p \in \text{Ass}_R N \right\}.$$

Proof. Let $q \in \text{Ass}_{R[It]} N[It]$. Then in view of \cite[Lemma 1.5.6]{1} there exists a homogenous element x of $N[It]$ such that $q = \text{Ann}_{R[It]} x$. Suppose that $x \in I^n N$ for some integer $v \geq 0$. Then we have

$$q = (0 :_{R[It]} x) = \oplus_{n \geq 0} (0 :_R x) \cap I^n.$$

Now, it is easy to see that $p := (0 :_R x)$ is a prime ideal of R and so $p \in \text{Ass}_R N$. Hence $q = \oplus_{n \geq 0} (I^n \cap p)$ for some $p \in \text{Ass}_R N$. Conversely, let $p \in \text{Ass}_R N$ and $q = (0 :_R x)$ for an element $x \in N$. Then

$$q := (0 :_{R[It]} x) = \oplus_{n \geq 0} (I^n \cap p)$$

is a prime ideal of $\text{Ass}_{R[It]} N[It]$, because $R[It]/q \cong R/p((I + p/p)t)$ is a domain. \hfill \square
Definition 2.4. Let R be a Noetherian ring and N an R-module. A decreasing sequence $\{N_n\}_{n \geq 0}$ of submodules of N is called a filtration of N. If I is an ideal of R, then the filtration $\{N_n\}_{n \geq 0}$ is called I-filtration whenever $IN_n \subseteq N_{n+1}$ for all integers $n \geq 0$.

Lemma 2.5. Let R be a Noetherian ring, I an ideal of R and N an R-module. Let $\{N_n\}_{n \geq 0}$ be an I-filtration of submodules of N such that the ordinary Rees module $N/I[\mathfrak{m}]$ is finitely generated over $R[I]$. Then there exists an integer k such that $N_{n+k} \supseteq I^nN_k$, for all integers $n \geq 0$.

Proof. The result follows easily from [4, Lemma 2.5.4]. □

Corollary 2.6. Let (R, \mathfrak{m}) be a local (Noetherian) ring and I an ideal of R. Let N be an R-module and set $N_n = I^nN : _N\langle \mathfrak{m}\rangle$ for each integer $n \geq 0$. Suppose that the module $\oplus_{n \geq 0}N_n$ is finitely generated over the ordinary Rees ring $R/I[\mathfrak{m}]$. Then there is an integer k such that $I^{n+k}N : _N\langle \mathfrak{m}\rangle \subseteq I^nN$, for all integer $n \geq 0$.

Proof. As $I(I^nN : _N\langle \mathfrak{m}\rangle) \subseteq I^{n+1}N : _N\langle \mathfrak{m}\rangle$, for all integers $n \geq 0$, the claim follows from Lemma 2.5. □

Definition 2.7. Let (R, \mathfrak{m}) be a local (Noetherian) ring, I an ideal of R and N an R-module. We define the R-module $D(I, N)$ as the following:

$$D(I, N) := \bigoplus_{n \geq 0}D_m(I^nN).$$

As $D_m(.)$ is an R-linear and left exact functor, it follows that $\{D_m(I^nN)\}_{n \geq 0}$ is a decreasing sequence and $ID_m(I^nN) \subseteq D_m(I^{n+1}N)$ for all integers $n \geq 0$. Hence $D(I, N)$ is an $R[I]$-module, by Lemma 2.5.

Lemma 2.8. Let R be a Noetherian ring, I an ideal of R and N a finitely generated R-module. Then the following conditions are equivalent:

(i) $D_I(N)$ is a finitely generated R-module.

(ii) For all $p \in \text{Ass}_R N$, the R/p-module $D_{R/p}(R/p)$ is finitely generated.

Proof. See [3, Lemma 3.3]. □

Proposition 2.9. Let (R, \mathfrak{m}) be a local (Noetherian) ring, I an ideal of R and N a finitely generated R-module. Then the following conditions are equivalent:

(i) $D(I, N)$ is a finitely generated $R[I]$-module.

(ii) For all $p \in \text{Ass}_R N$, the module $\oplus_{n \geq 0}D_m(I^n + p/p)$ is finitely generated over the Rees ring $R/p[I + p/p][t]$.

Proof. In order to prove the implication (i) \implies (ii), suppose that $p \in \text{Ass}_R N$. Then in view of Proposition 2.3, there exists $q \in \text{Ass}_{R/I[t]}(\oplus_{n \geq 0}I^nN)$ such that $q = \oplus_{n \geq 0}(I^n \cap p)$. Since

$$D(I, N) \cong D_m(\oplus_{n \geq 0}I^nN) \cong D_{m(R[I]/q)}(\oplus_{n \geq 0}I^nN),$$

is a finitely generated $R[I]$-module, it follows from Lemma 2.8 that the $R[I]/q$-module $D_{m(R[I]/q)}(R[I]/q)$ is finitely generated. Now, as

$$R[I]/q \cong R/p[(I + p/p)t],$$

and $D_{m(R[I]/q)}(R[I]/q) \cong \oplus_{n \geq 0}D_m(I^n + p/p)$,
we deduce that the $R/p[(I+p/p)t]$-module $\oplus_{n\geq 0} D_m(I^n + p/p)$ is finitely generated.

Now, we show the conclusion (ii) \implies (i). To do this end, let $q \in \text{Ass}_{R/I}[N[I]]$. Then, by virtue of Proposition 2.3, there exists $p \in \text{Ass}_R N$ such that $q = \oplus_{n\geq 0} (I^n \cap p)$. Since

$$R/I[q] \cong R/p[(I+p/p)t]$$

and

$$D_m(R/I[q]) \cong \oplus_{n\geq 0} D_m(I^n + p/p),$$

it follows from Lemma 2.8 that the R/I-module $D_m(R/I)(N[I])$ is finitely generated, and so the R/I-module $\oplus_{n\geq 0} D_m(I^n N)$ is finitely generated, as required. \square

The next proposition gives us a criterion for the finiteness of R/I-module $D_m(R/I)(N[I])$, whenever (R, m) is a local ring and N is a finitely generated module over R. To this end, let us, firstly, recall the important notion analytic spread of I with respect to N, over a local ring (R, m), introduced by Brodmann in [3]:

$$l(I, N) := \dim N[I]/(m, u) N[I],$$

in the case $N = R$, $l(I, N)$ is the classical analytic spread $l(I)$ of I, introduced by Northcott and Rees (see [14]).

Proposition 2.10. Let (R, m) be a local (Noetherian) ring and I an ideal of R. Let N be a finitely generated R-module such that $l(I\hat{R} + p/p) < \dim R/p$ for all $p \in \text{Ass}_R \hat{N}$. Then the R/I-module $D_m(R/I)(N[I])$ is finitely generated, and depth $N > 0$.

Proof. It is easy to see that

$$D_m(R/I)(N[I]) \otimes_{R/I} \hat{R}[(I\hat{R})t] \cong D_m(R[I\hat{R}t])\oplus_{n\geq 0} I^n \hat{N},$$

and so by faithfully flatness of R/I over R/I, it is enough for us to show that the R/I-module $\oplus_{n\geq 0} D_m(R/I)(I^n \hat{N})$ is finitely generated. In order to do this, in view of Proposition 2.9, it is enough to show that $\oplus_{n\geq 0} D_m(I^n \hat{R} + p/p)$ is finitely generated over $\hat{R}/p[(I\hat{R} + p/p)t]$ for all $p \in \text{Ass}_R \hat{N}$. But this follows easily from [19], Proposition and the assumption $l(I\hat{R} + p/p) < \dim \hat{R}/p$. \square

Remark 2.11. Before bringing the next result we fix a notation, which is employed by P. Schenzel in [13] in the case $N = R$. Let S be a multiplicatively closed subset of a Noetherian ring R. For a submodule M of a finitely generated R-module N, we use $S(M)$ to denote the submodule $\bigcup_{s \in S} (M : N s)$. Note that the primary decomposition of $S(M)$ consists of the intersection of all primary components of M whose associated prime ideals do not meet S. In other words

$$\text{Ass}_R N/S(M) = \{ p \in \text{Ass}_R N/M : p \cap S = \emptyset \}.$$

In particular, if $S = R \setminus \bigcup\{ p \in \text{mAss}_R N/IN \}$, then for any $n \in \mathbb{N}$, $S(I^n N)$ is denoted by $(IN)^{(n)}$, where I is an ideal of R.

The following lemma is needed in the proof of Theorem 2.13.

Lemma 2.12. Let R be a Noetherian ring and N an R-module. Let M and L be two submodules of R such that $M_p \subseteq L_p$ for all $p \in \text{Ass}_R N/L$. Then $M \subseteq L$.

Proof. The assertion follows from the fact that $\text{Ass}_R (M + L)/L \subseteq \text{Ass}_R N/L$. \square
Following, we investigate a fundamental characterization for linearly equivalence between the \(I \)-adic and symbolic topologies on a finitely generated \(R \)-module \(N \), for certain ideal \(I \) of \(R \). This result plays a key role in the proof of the main theorem.

To this end, recall that, in \[16\], L.J. Ratliff, Jr., (resp. in \[2\] Brodman n) introduced the interesting set of associated primes \(A^*(I) := \text{Ass}_R R/(I^n)_a \) (resp. \(A^*(I, N) := \text{Ass}_R N/I^n(N) \), for large \(n \). Here \(I_a \) denotes the integral closure of \(I \) in \(R \), i.e., \(I_a \) is the ideal of \(R \) consisting of all elements \(x \in R \) which satisfy an equation \(x^n + r_1 x^{n-1} + \cdots + r_n = 0 \), where \(r_i \in I, i = 1, \ldots, n \).

Moreover, recall that a local ring \((R, \mathfrak{m})\) is said to be a quasi-unmixed ring if for every \(\mathfrak{p} \in \text{mAss} \hat{R} \), the condition \(\dim \hat{R}/\mathfrak{p} = \dim R \) is satisfied.

Theorem 2.13. Let \(R \) be a Noetherian ring, \(I \) an ideal of \(R \) and let \(N \) be a finitely generated \(R \)-module such that \(E(I, N) = \text{mAss}_R N/IN \). Then, the \(I \)-adic topology, \(\{I^n N\}_{n \geq 0} \) and the topology defined by the filtration \(\{(IN)^{(n)}\}_{n \geq 0} \) are linearly equivalent.

Proof. Let \(q \in A^*(I, N) \setminus \text{mAss}_R N/IN \) and let \(z \in \text{Ass}_R \hat{N}_q \). Then, by assumption, \(q \notin E(I, N) \). Hence, in view of \[11\] Lemma 3.2, \(qR_q \notin E(IR_q, N_q) \), and so it follows from \[11\] Proposition 3.6 that \(q\hat{R}_q/z \notin E(I\hat{R}_q + z/z) \). Thus by virtue of \[11\] Lemma 2.1, \(q\hat{R}_q/z \notin A^*(I\hat{R}_q + z/z) \). As \(\hat{R}_q/z \) is quasi-unmixed, it follows from McAdam’s result \[10\] Proposition 4.1 that

\[
\ell(I\hat{R}_q + z/z) < \dim \hat{R}_q/z. \tag{\dagger}
\]

Now, we show that there exists a non-negative integer \(k \) such that \((IN)^{(n+k)} \subseteq I^n N \) for all integers \(n \geq 0 \). To do this, it is easy to see that, \((IN)^{(s)}_p \subseteq (I^n N)_p \) for all \(p \in \text{mAss}_R N/IN \) and for all integers \(s \geq 0 \). Moreover, if for every \(q \in A^*(I, N) \setminus \text{mAss}_R N/IN \) there exists an integer \(k_q \) such that

\[
(IN)_{q}^{(n+k_q)} \subseteq (I^n N)_q,
\]

then by considering

\[
k := \max\{k_q : q \in A^*(I, N) \setminus \text{mAss}_R N/IN\},
\]

one easily sees that \((IN)^{(n+k)} \subseteq I^n N \). Since both \(A^*(I, N) \) and \(\text{mAss}_R N/IN \) behave well under localization, we may assume by localizing at \(q \) that \((R, \mathfrak{m})\) is a local ring.

Now, we use induction on \(\dim N/IN := d \). It is clear that \(d \geq 1 \). Now, if \(d = 1 \), then, as \(\text{Ass}_R N/IN \subseteq \text{Supp} N/IN \) and \(\mathfrak{m} \in \text{Supp} N/IN \) it follows that the only possible embedded prime of \(\text{Ass}_R N/IN \) is \(\mathfrak{m} \), and so in view of Remark 2.1 we have

\[
I^n N :_N \langle \mathfrak{m} \rangle = (IN)^{(s)}
\]

for all integers \(s \geq 0 \). Next, it follows from (\dagger) and Proposition 2.10 that the \(R[I^t] \)-module \(\oplus_{n \geq 0} D_{\mathfrak{m}}(I^n N) \) is finitely generated and depth \(N > 0 \). Hence in view of Lemma 2.2, the module \(\oplus_{n \geq 0} (I^n N :_N \langle \mathfrak{m} \rangle) \) is finitely generated over the Rees ring \(R[I^t] \), and so by virtue of Corollary 2.6, there exists an integer \(t \) such that \(I^{n+t} N :_N \langle \mathfrak{m} \rangle \subseteq I^n N \) for all integers \(n \geq 0 \). Therefore \((IN)^{(n+k)} \subseteq I^n N \), and so the result holds for \(d = 1 \).
We therefore assume, inductively, that $d > 1$ and the result has been proved for smaller values of d. If $q \neq m$ and $q \in A^s(I, N)$, then
\[\dim N_q/IN_q = \text{ht}_{N/IN} q < \text{ht}_{N/IN} m = \dim N/IN = d. \]
Hence by induction hypothesis, there exists a non-negative integer k_q such that
\[(IN)_q^{(n+k_q)} \subseteq (I^N)_q, \]
for all integers $n \geq 0$. Now, in view of Remark 2.1,
\[\text{Ass}_R N/(I^n N :_N (m)) = \text{Ass}_R N/IN \setminus V(m), \]
it follows that for all $q \in \text{Ass}_R N/(I^n N :_N (m))$, there exists a non-negative integer k_q such that
\[(IN)_q^{(n+k_q)} \subseteq (I^N)_q \subseteq ((I^N)_q :_{N_q} (mR_q)), \]
for all integers $n \geq 0$. Hence by considering
\[k := \max\{k_q : q \in \text{Ass}_R N/(I^n N :_N (m))\}, \]
we get
\[(IN)_q^{(n+k)} \subseteq (I^N)_q :_{N_q} (mR_q), \]
for all $q \in \text{Ass}_R N/(I^n N :_N (m))$ and all integers $n \geq 0$. Therefore, by virtue of the Lemma 2.12, we have
\[(IN)^{(n+k)} \subseteq (I^N) :_N (m). \]
On the other hand, in view of Corollary 2.6, there exists an integer $s \geq 0$ such that
\[I^{n+s} :_N (m) \subseteq I^n N \]
for all integers $n \geq 0$. Consequently
\[(IN)^{(n+k+s)} \subseteq I^{n+s} :_N (m) \subseteq I^n N, \]
for all integers $n \geq 0$, and thus the topologies defined by the filtrations $\{I^N\}_{n \geq 0}$ and $\{(I^N)^{(n)}\}_{n \geq 0}$ are linearly equivalent. \qed

We are now ready to state and prove the main theorem of this paper, which is a new characterization of locally unmixed modules in terms of comparison of the topologies defined by certain decreasing families of submodules of finitely generated modules over a commutative Noetherian ring. One of the implications in the proof of this theorem follows from [13, Theorem 3.2].

Theorem 2.14. Let R be a Noetherian ring and N a non-zero finitely generated R-module. Then the following conditions are equivalent:

(i) N is locally unmixed.

(ii) For any N-proper ideal I of R generated by $\text{ht}_N I$ elements, the I-adic topology is linearly equivalent to the symbolic topology.
Proof. The implication (ii) ⇒ (i) follows easily from [13, Theorem 3.2]. In order to prove the conclusion (i) ⇒ (ii), let \(I \) be an \(N \)-proper ideal of \(R \) which is generated by \(h_N I \) elements. Then, in view of Theorem 2.13 it is enough for us to show that \(E(I, N) = \text{mAss}_R N/I N \). Suppose that \(p \in E(I, N) \), and we show that \(p \in \text{mAss}_R N/I N \).

Let \(h_N I := n \). Then by [13, Theorem 2.1], there exist the elements \(x_1, \ldots, x_n \) in \(I \) such that \(h_N (x_1, \ldots, x_i) = i \) for all \(1 \leq i \leq n \). As, in view of [13, Corollary 3.11], \(x_1, \ldots, x_n \) is an essential sequence on \(N \), and the fact that \(\text{egrade}(I, N) \leq h_N I \), it follows that \(\text{egrade}(I, N) = n \). Now, analogous to the proof of [8, Theorem 125], it is easy to see that \(I \) can be generated by an essential sequence of length \(n \). Therefore by [13, Lemma 3.8], we have \(p \in \text{mAss}_R N/I N \), and so \(E(I, N) \subseteq \text{mAss}_R N/I N \). As the opposite inclusion is obvious, the result follows.

\[\square \]

Acknowledgments

The authors are deeply grateful to the referee for his/her careful reading of the paper and valuable suggestions. Also, we would like to thank Professors M.P. Brodmann and S. Goto for their useful comments on Theorem 2.13.

References

[1] S.H. Ahn, Asymptotic primes and asymptotic grade on modules, J. Algebra 174 (1995), 980-998.
[2] M. P. Brodmann, Asymptotic stability of \(\text{Ass}_R(M/I^n M) \), Proc. Amer. Math. Soc. 74 (1979), 16-18.
[3] M.P. Brodmann, The asymptotic nature of the analytic spread, Math. Proc. Cambridge Philos. Soc. 86 (1979), 35-39.
[4] M.P. Brodmann, Finiteness of ideal transforms, J. Algebra 63 (1980), 162-185.
[5] M.P. Brodmann and R.Y. Sharp, Local Cohomology; an Algebraic Introduction with Geometric Applications, Cambridge University Press, Cambridge, 1998.
[6] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, UK, 1998.
[7] E.E. Enochs and M.G. Jenda, Relative Homological Algebra, Walter de Gruyter, Berlin, New York, 2000.
[8] I. Kaplansky, Commutative Rings, Univ. of Chicago Press, Chicago, 1974.
[9] D. Katz, Prime divisors, asymptotic \(R \)-sequences and unmixed local rings, J. Algebra 95 (1985), 59-71.
[10] S. McAdam, Asymptotic Prime Divisors, Lecture Notes in Math. 1023, Springer-Verlag, New York, 1983.
[11] S. McAdam, Quintasymptotic primes and four results of Schenzel, J. Pure Appl. Algebra 47 (1987), 283-298.
[12] M. Nagata, Local Rings, Interscience, New York, 1961.
[13] R. Naghipour, Locally unmixed modules and ideal topologies, J. Algebra 236 (2001), 768-777.
[14] D.G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145-158.
[15] L. J. Ratliff, The topology determined by the symbolic powers of primary ideals, Comm. Algebra 13 (1985), 2073-2104.
[16] L.J. Ratliff, Jr., On asymptotic prime divisors, Pacific J. Math. 111 (1984), 395-413.
[17] P. Schenzel, Finiteness of relative Rees ring and asymptotic prime divisors, Math. Nachr. 129 (1986), 123-148.
[18] P. Schenzel, On the use of local cohomology in algebra and geometry, Six lectures on commutative algebra (Bellaterra, 1996), 241-292.
[19] P. Schenzel, *Independent elements, unmixedness theorems and asymptotic prime divisors*, J. Algebra 92 (1985), 157-170.

[20] P. Schenzel, *Symbolic powers of prime ideals and their topology*, Proc. Amer. Math. Soc. 93 (1985), 15-20.

[21] J. K. Verma, *On ideals whose adic and symbolic topologies are linearly equivalent*, J. Pure Appl. Algebra 47 (1987), 205-212.

Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.
E-mail address: mona.bahadorian@gmail.com

Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.
E-mail address: m.sedghi@tabrizu.ac.ir
E-mail address: sedghi@azaruniv.ac.ir

Department of Mathematics, University of Tabriz, Tabriz, Iran.
E-mail address: naghipour@ipm.ir
E-mail address: naghipour@tabrizu.ac.ir