Neuromodulation Special Issue

Mind the social feedback: effects of tDCS applied to the left DLPFC on psychophysiological responses during the anticipation and reception of social evaluations

Jens Allaert,1,2,3 Rudi De Raedt,3 Alvaro Sanchez-Lopez,4 Chris Baeken,1,2,3,5, and Marie-Anne Vanderhasselt1,2,3

1Department of Head and Skin, University Hospital Ghent (UZ Ghent), Ghent University, 9000 Ghent, Belgium, 2Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, 9000 Ghent, Belgium, 3Department of Experimental Clinical and Health Psychology, Ghent University, 9000 Ghent, Belgium, 4Department of Clinical Psychology, Universidad Complutense de Madrid, 28040 Madrid, Spain, and 5Department of Psychiatry, Vrije Universiteit Brussel (VUB), University Hospital UZ Brussel, 1090 Brussels, Belgium

Correspondence should be addressed to Jens Allaert, Ghent University, Campus University Hospital (UZ Ghent), 1K12F, Corneel Heymanslaan 10, 9000 Ghent, Belgium. E-mail: jens.allaert@ugent.be.

Abstract

The left dorsolateral prefrontal cortex (IDLPFC) is implicated in anticipatory (i.e. during anticipation of emotional stimuli) and online (i.e. during confrontation with emotional stimuli) emotion regulatory processes. However, research that investigates the causal role of the IDLPFC in these processes is lacking. In this study, 74 participants received active or sham transcranial direct current stimulation (tDCS) over the IDLPFC. Participants were told strangers evaluated them. These (rigged) social evaluations were presented, and in 50% of the trials, participants could anticipate the valence (positive or negative) of the upcoming social feedback. Pupil dilation (a marker of cognitive resource allocation) and skin conductance responses (a marker of arousal) were measured. The results indicate that active (compared to sham) tDCS reduced arousal during the confrontation with anticipated feedback but only marginally during the confrontation with unanticipated feedback. When participants were given the opportunity to anticipate the social feedback, tDCS reduced arousal, irrespective of whether one was anticipating or being confronted with the anticipated feedback. Moreover, tDCS reduced cognitive resource allocation during anticipation, which was associated with resource allocation increases during the subsequent confrontation. Altogether, results suggest that the IDLPFC is causally implicated in the interplay between anticipatory and online emotion regulatory processes.

Key words: transcranial direct current stimulation; dorsolateral prefrontal cortex; anticipation; emotional processing; skin conductance response; pupillary response
Introduction

The ability to regulate emotional responses to self-relevant events is of crucial importance in mental health (Gross and John, 2003). Building on the dual mechanisms of control framework (Braver, 2012), there is a growing interest in anticipatory emotional processes (i.e. processes that occur in the anticipation of an emotional event). It has been proposed that these anticipatory processes may help or hinder individuals to cope when actually confronted with these events and may be of crucial importance in emotion and stress regulation (De Raedt and Hooley, 2016). Specifically, as arousal increases over time in the emotion-generative process, regulatory processes that act early on (e.g. during the anticipation of a public speech) require less effort to regulate the emotional response when actually confronted with the stressor and may thus be more effective (Sheppes and Gross, 2011). In other words, engaging in anticipatory effortful adaptive emotion regulation contributes to more efficient online (i.e. during the actual stressor confrontation) regulation of emotional responses (Vanderhasselt et al., 2014b; Pulopulos et al., 2018). It is therefore key to further investigate these anticipatory emotional processes in self-relevant emotional situations.

The dorsolateral prefrontal cortex (DLPFC), among other prefrontal brain regions, is an important corticolimbic hub to down- and upregulate limbic responses, resulting in decreased and increased emotional reactivity, respectively (Ochsner et al., 2004, 2012; Banks et al., 2007). Moreover, the DLPFC and associated prefrontal regions have been implicated in proactive control (i.e. preparatory processes that serve to enhance conflict resolution when it is presented; Braver et al., 2009; Braver, 2012; Irlbacher et al., 2014), as well as anticipatory emotional processes (Nitschke et al., 2006; Herwig et al., 2007; Wang et al., 2018). For instance, when participants were anticipating an emotional stimulus with the instruction to prepare to downregulate their emotional responses when the stimulus was presented, anticipatory left DLPFC activity was associated with decreased emotional reactivity during subsequent stimulus presentation (Seo et al., 2014). Given that the DLPFC is also implicated in online emotion regulation (Peña-Gómez et al., 2011; Brunoni et al., 2013; Baeken et al., 2017), it can be concluded that these prefrontal regions are implicated in the modulation of both anticipatory and online emotional responses (ERs). However, research is lacking in which it is investigated (i) whether the DLPFC is differentially implicated in the online modulation of ERs to anticipated vs unanticipated self-relevant emotional stimuli; (ii) whether, within anticipatory contexts (i.e. the stimuli anticipation and subsequent presentation), the DLPFC is differentially implicated in anticipatory vs online ERs modulation; and (iii) how, within anticipatory contexts, the DLPFC is implicated in the interplay between anticipatory and online ER modulation.

Hence, the goal of the current study was to investigate these research questions using transcranial direct current stimulation (tDCS) in an ecologically valid experimental paradigm in which naturally occurring (i.e. absence of task instructions) psychophysiological ERs to self-relevant stimuli were measured. tDCS is a form of non-invasive brain stimulation (NIBS), which operates through the delivery of a constant low-intensity electrical current (e.g. 0.5–2.0 mA) to the scalp. This modulates the neuron membrane potential through depolarization (anodal tDCS; excitatory effect) or hyperpolarization (cathodal tDCS; inhibitory effect), resulting in a reduced or increased neuron firing threshold, respectively. It has been shown that tDCS can transiently modulate emotional and cognitive processes (Nitsche et al., 2008; Dedoncker et al., 2016). In the paradigm, participants were presented a series of negative and positive self-relevant stimuli, in which half of the time, the valence could be anticipated of an upcoming stimulus, prior to its presentation. The self-relevant stimuli consisted of social evaluations directed at the participant, as social belonging is a universal human need and the confrontation with social evaluations (e.g. praise, criticism) evokes strong ERs that naturally trigger self-regulatory processes (Baumeister and Leary, 1995; DeWall et al., 2011; Dickerson and Kemeny, 2004). Specifically, participants were led to believe that, based on their self-photographs, strangers had formed first impressions of them and that they would be presented with this social feedback.

To objectively assess ERs, skin conductance responses (SCRs; Spinks et al., 1985; Sabatinelli et al., 2001) and pupillary responses (Moresi et al., 2008; Vanderhasselt et al., 2014b) were measured. SCRs reflect autonomic changes in skin conductivity and are a reliable marker of emotional arousal and emotion regulatory success, with lower SCRs being associated with lower arousal and higher downregulatory success and vice versa (Eippert et al., 2007; Urry et al., 2009; Feeser et al., 2014). Moreover, decreased SCRs have been related with corticolimbic activity changes, showing increased prefrontal (e.g. DLPFC) activity and decreased limbic activity (Eippert et al., 2007; Wood et al., 2014). Pupillary responses reflect changes in pupil diameter, where pupil constriction (i.e. a decrease in pupil size), caused by the iris sphincter muscle, is under control of the parasympathetic nervous system and pupil dilation (PD; i.e. an increase in pupil size), caused by the iris dilator muscle, is under control of the sympathetic nervous system (Beatty and Lucero-Wagoner, 2000). Under constant luminance conditions, PD occurs as a function of increasing task difficulty, cognitive load, conflict processing, mental effort (Kahneman and Beatty, 1966; Kahneman, 1973; Igbal et al., 2004; Van Steenbergen and Band, 2013) and emotion regulatory effort (Siegle et al., 2003; Urry et al., 2006; Johnstone et al., 2007; van Reekum et al., 2007; Kinner et al., 2017). Moreover, PD is shown to correlate with DLPFC activity (Siegle et al., 2003). As a summary, pupillary responses inform about (emotion) regulatory processes, reflecting the amount of cognitive resources that are allocated to process (emotional) stimuli, with larger PD reflecting increased resource allocation, and vice versa. (Granholm and Steinhauser, 2004; Einhäuser, 2017; Kinner et al., 2017; van der Wel and van Steenbergen, 2018). SCRs, on the other hand, inform about (emotion) regulatory success and reflect emotional arousal (Eippert et al., 2007; Urry et al., 2009; Feeser et al., 2014).

Based on research implicating the left DLPFC (IDLPCF) in both anticipatory (Lesh et al., 2013; Seo et al., 2014; Schmid et al., 2015) and online (emotion) regulatory processes (Ochsner et al., 2002; Brunoni et al., 2013; Baeken et al., 2017), the IDLPCF was chosen as the stimulation target in the current study. For the first hypothesis (H1), we expected anodal tDCS over the IDLPCF (compared to sham tDCS) to influence ERs differentially during the confrontation with anticipated vs unanticipated social feedback. Specifically, we expected tDCS to reduce SCRs (i.e. decreased emotional arousal) during both anticipated and unanticipated feedback but expected the SCR reduction to be larger during anticipated feedback. For PD, based on studies showing excitatory NIBS applied over the IDLPCF increases (i) cognitive control over emotional material (Plewnia et al., 2015; Dedoncker et al., 2016) and (ii) increases PD to emotional stimuli (Allaert et al., 2019), we expected tDCS to increase PD (i.e. increased resource allocation) during both anticipated and unanticipated social feedback but again expected the PD increase to be larger during anticipated feedback. For the second and third hypothesis (H2 and H3), within anticipatory contexts (i.e. the anticipation of
social feedback and the subsequent confrontation), we expected the tDCS effect on ERs to occur during the anticipation (H2), which then in turn would influence subsequent ERs during the confrontation (H3). Based on the notion that an enhancement of anticipatory effort mediated by the DLPFC contributes to a more efficient subsequent online regulation (Vanderhasselt et al., 2014b; De Raedt and Hooley, 2016), we expected active tDCS (vs sham) to be associated with larger PD during the anticipation, and this in turn would be associated with smaller PD during the subsequent confrontation. For SCRs, we expected active tDCS to be associated with lower SCRs during the anticipation, which in turn would be associated with lower SCRs during the subsequent anticipation.

Materials and methods

Participants

Seventy-four 1 healthy female individuals (age M = 20.80, s.d. = 2.11) participated in the study. Given the consistent sex differences in emotional processing (McRae et al., 2008; Domes et al., 2010; Lithari et al., 2010), to reduce the sample variability, only female participants were included. For an overview of the other selection criteria, see Supplementary Materials. Participants were recruited from the general community via Internet postings on social media and posters in public places. The experiment was conducted with the approval of Ghent University’s Medical Ethical Committee and in accordance with the Declaration of Helsinki. Participants provided informed consent at the start of the experiment and received €15 for participating.

Materials

Social feedback paradigm. An adaption of a rigged social feedback paradigm was used (Vanderhasselt et al., 2015, 2018). This adaptation was conceptually inspired by a previously employed paradigm in which participants passively viewed emotional images that were preceded by a cue indicating the emotional valence of the image (Allaert et al., 2019). Rather than employing images as stimuli, we chose to use social evaluations, in order to improve ecological validity. In our adapted paradigm, participants were provided explicit (positive and negative) social feedback based on the first impressions strangers would have about them. Unbeknown to the participants, this feedback was experimentally rigged. The task comprised 80 trials, divided in 4 blocks (20 trials per block), with breaks in between. During blocks 1–3, the valence of the social feedback was equally distributed, whereas in the last block negative feedback was more prevalent (80%). In anticipatory contexts (40 trials), participants could anticipate the valence of the feedback, whereas in non-anticipatory contexts (40 trials), participants could not anticipate the feedback valence. Each trial started with an intertrial interval (ITI; 2500 ms) displaying a fixation cross. After the ITI, for an anticipatory context, a cue (8000 ms) indicated the valence (negative, positive), and afterwards a social feedback word was presented (anticipated target), next to an image of the evaluator and an image of the participant. For a non-anticipatory context, a social feedback word (unanticipated target; 8000 ms) and the self and evaluator images were directly presented after the ITI. At the end of every trial, regardless of its context type, participants were displayed a visual analog scale (VAS) in which they had to indicate how they felt in response to the received social feedback. Figure 1 displays a visual representation of the experimental sequence for each trial type. All presented images were grayscaled and matched on luminance values via the Matlab SHINE toolbox (Willenbockel et al., 2010), in order to prevent luminance-evoked pupillary responses (Bradley et al., 2008). To furthermore control luminance across the various phases of each trial sequence, a placeholder image of a cloud was presented on the location where the self and evaluator pictures are presented during the target phase, and placeholder symbols were presented during the ITI on the location where the cue and feedback words subsequently appeared. The social feedback word stimuli (see Supplementary Materials) were obtained from a validated normative database of Dutch words (Moors et al., 2013) and were matched on arousal between negative and positive valence trials. The stimuli of the so-called evaluators were obtained by taking photographs of volunteers outside of the participant pool, between the ages of 18 and 30. The order of the specific combinations of trial features (trial type, evaluator, gender of evaluator, social feedback word, location of the evaluator photograph) was counterbalanced over the four blocks, via a pseudorandomization algorithm (see Supplementary Materials). The duration of the phases of interest (cue, target) was set to 8 s to ensure enough time for the SCRs to return to baseline, as the SCR rise and half-recovery time can take up to 4 s each (Dawson et al., 2017). The paradigm was programmed in E-Prime 2.0 Professional (Psychology Software Tools, Pittsburgh, PA).

Transcranial direct current stimulation (tDCS). TDCS was applied with a pair of rubber surface electrodes (5 × 7 cm = 35 cm²) covered with electrode gel 1 and delivered with a battery-driven stimulator (DC-Stimulator Plus, neuroConn GmbH). The anodal electrode was vertically positioned over F3 (corresponding to the DLPFC) according to the 10–20 international EEG system, whereas the cathode was placed over the contralateral supraorbital area (Fp2). This electrode positioning is in accordance with previous tDCS studies on emotional processing and the level B recommendation for treating major depressive disorders (Nitsche et al., 2008; Dedoncker et al., 2016; Lefaucheur et al., 2017). A current of 2 mA (current density = 0.06), with 30 s of ramp-up/ramp-down, was applied for 20 min. Fifty percent of the participants received active tDCS, whereas the others received sham tDCS (between-subject design). For sham tDCS (i.e. placebo), the current was directly ramped down after the initial ramp-up phase (Nitsche et al., 2008). Figure 2 shows a visualization of the electric field simulation of the utilized tDCS montage, using Soterix HD-Explore software.

Skin conductance responses (SCR). Electrodermal activity was recorded at a sample rate of 1000 Hz with the Biopac EDA100c amplifier, in conjunction with the Biopac MP150 (Biopac Systems 2013).

1 A power analysis using G*Power suggested a total sample size of N = 70 to detect a small to medium effect (Cohen’s f = 0.17) via an F-test for a within-between interaction, with a power of 80% (Paul et al., 2007). Based on past experiences from studies within our lab, to account for potential data loss due to technical problems, we increased this suggested sample size with 5%, resulting in a final sample of N = 74.

2 This was done to investigate emotional recovery from mainly negative social feedback; however these results fall outside the scope of the research questions of this manuscript.

3 During piloting of the experiment, the usage of gel was favored over saline water, as the gel displayed more consistent optimal electrical conductivity.
Fig. 1. Social feedback paradigm.

Inc., Santa Barbara, CA). For details on the recording parameters and the pre-processing of the SCR data, see Supplementary Materials.

Pupillary responses. Pupillary responses were recorded at a sampling rate of 300 Hz with a Tobii TX300 eye tracker (Tobii AB, Stockholm, Sweden), in conjunction with the E-Prime Extensions for Tobii (Psychology Software Tools, Pittsburgh, PA). Participants were comfortably seated approximately 60 cm from the eye tracker. Participants’ gaze fixations were calibrated using a standard nine-point calibration sequence. For details on the pre-processing of the pupil data, see Supplementary Materials.
Self-report measurements

Online survey. To ensure comparable active and sham tDCS groups, an online survey assessing potential confounders (e.g. self-esteem, perceived criticism, symptoms of mood and anxiety disorders, habitual use of adaptive and maladaptive emotion regulation strategies) was carried out prior to the experiment. See Supplementary Materials for detailed information.

Mood. To evaluate mood changes during the experimental protocol, self-reported mood was measured at three time points (pre-stimulation [T1], post-stimulation [T2] and post-paradigm [T3]), by using six VASs (i.e. fatigue, vigorousness, angeriness, tension, sadness and happiness; McCormack et al., 1988) presented on the computer screen and ranging from ‘totally not’ (0) to ‘very much’ (100).

Mood responses. At the end of every trial, mood responses to the social feedback were measured using a VAS, displaying ‘How do you feel in response to this evaluation?’ and ranging from ‘very bad’ (0) to ‘very good’ (100).

Protocol

On a webpage, participants read the informed consent and completed the survey. Afterwards, participants were led to believe they would take part in a study in which the effects of tDCS on the processing of first impressions are investigated. It was stated that they had to form first impressions of strangers, based on their pictures. In return, these strangers would form impressions about them. On the webpage, participants were presented a series of 20 pictures of strangers along with 4 evaluative descriptive words (2 negative and 2 positive words, obtained from a validated database of Dutch words [Moors et al., 2013]). For each picture, participants were asked to indicate which word corresponded the most with the first impression they had formed about the stranger. Afterwards, participants could upload a self-photograph. At the end, participants could schedule the experiment. Participants were pseudorandomly assigned to one of the two groups, in order to have comparable groups based on the survey data. In the laboratory (see Figure 3 for an overview), participants were seated in front of a computer screen and were connected to the physiological recording equipment. Participants underwent active or sham tDCS, and mood states were assessed before and after the stimulation session. Then, the social feedback paradigm started. Finally, mood states were assessed and participants were debriefed and paid.

Data analysis

All data was analyzed in R 3.5.0 (R Core Team, 2013) in conjunction with RStudio 1.2.1335, using linear mixed-effects regression (LMER) models fitted via the ‘lmerTest’ package (Kuznetsova et al., 2017). lmerTest produces P-values for the fixed effects using the Satterthwaite approximations to degrees of freedom, and the statistical significance level was set to \(P < 0.05 \). Where applicable, to decompose interaction effects, pairwise comparisons were carried out using the ‘emmeans’ package (Lenth, 2018). For a justification of the statistical approach, see Supplementary Materials.

First, to check whether tDCS influenced mood states over the course of the protocol, six LMER models (for each mood state: tiredness, vigorousness, angeriness, tension, sadness and happiness) were fitted with group (active tDCS, sham tDCS) and time (pre-stimulation [T1], post-stimulation [T2], post-paradigm [T3]) as fixed effects, and subject as random intercept. Furthermore, to investigate the potential tDCS on mood responses to anticipated (AT) vs unanticipated targets (UT), one LMER was fitted with group (active tDCS, sham tDCS), type (AT, UT) and valence (negative, positive) as fixed factors, subject as random intercept and self-reported mood responses as dependent variable.

Second, to investigate the effects of tDCS on ERs to AT vs UT, three LMERs were fitted with group (active tDCS, sham tDCS), type (AT, UT) and valence (negative, positive) as fixed factors, subject as random intercept and log(SCR) and PD as dependent variables, respectively (H1).

Third, to investigate the effects of tDCS on ERs during cue (C) vs AT, two LMERs were fitted with group (active tDCS, sham tDCS), phase (C, AT) and valence (negative, positive) as fixed factors, subject as random intercept and log(SCR) and PD as dependent variables, respectively (H2).

Fourth, to investigate whether tDCS moderated the relationship between ERs during C and ERs during AT (H3), two LMERs were fitted with ERs (log(SCR) and PD) during C as continuous predictor, group as fixed factor, subject as random intercept and

4 During the social feedback paradigm, gaze behavior towards the various displays (i.e. self, evaluator, feedback) was also measured. However, these results will be reported elsewhere, as these fall outside of the scope of the current research questions.
log(SCR) and PD during AT as dependent variables, respectively (H3).

For brevity, the results that do not pertain to tDCS effects are reported in the Supplementary Materials.

Results

Participants were not able to correctly ascertain their stimulation group (active tDCS, sham tDCS), as the proportion of incorrect guesses (0.80) was higher than the chance level (0.50), $P < 0.001$. Furthermore, to verify that no differences in potential inter-individual confounders were present between the active and sham tDCS group, independent t-tests showed non-significant comparisons on self-report measures (e.g. self-esteem, perceived criticism, symptoms of mood and anxiety disorders, habitual use of adaptive and maladaptive emotion regulation strategies; all ts < 1.55, all Ps > 0.13), and a post hoc analysis showed no significant difference in baseline emotional arousal (as indexed by tonic skin conductance level), $F(1,70) = 0.35, P = 0.56$. For detailed information, see Supplementary Materials.

Mood

The LMERs showed a non-significant group (all Fs < 0.66, all Ps > 0.42) and group \times time (all Fs < 0.88, all Ps > 0.42) effect on tiredness, vigilance, anger, tension, sadness and happiness, indicating tDCS did not affect reported mood states across the protocol.

Mood responses

The LMER showed non-significant group, group \times valence and group \times type and group \times valence \times type interaction effects (all Fs < 0.04, all Ps > 0.83), indicating that tDCS did not affect self-reported mood responses to the social feedback.

Anticipated social feedback (AT) vs unanticipated social feedback (UT) (H1)

Skin conductance responses. The LMER showed a main effect of group, $F(1,168) = 4.61, P = 0.04$, with smaller SCRs in the active group ($M = −5.86$) vs sham group ($M = −5.32$). However, the effect of group was accounted by a group \times type interaction (see Figure 4A), $F(1,1044) = 4.32, P = 0.04$. Pairwise comparisons showed that during AT, SCRs were lower in the active ($M = −6.02$) vs sham group ($M = −5.41$), $b = −0.62, SE = 0.25, t = −2.46, P = 0.02$, whereas during UT, the difference in SCRs between active and sham was marginally significant, $b = −0.45, SE = 0.25, t = −1.78, P = 0.08$. Furthermore, SCRs were lower during AT (active $M = −6.02$, sham $M = −5.41$) compared to UT (active $M = −5.69$, sham $M = −5.24$), both for the active, $b = −0.34, SE = 0.06, t = −5.88, P < 0.001$, and sham tDCS group, $b = −0.17, SE = 0.06, t = −2.94, P = 0.003$. All remaining tDCS effects (i.e. group \times valence and group \times valence \times type) were non-significant (all Fs < 1.74, all Ps > 0.18).

Pupillary responses. The LMER showed a group \times type interaction (see Figure 4B), $F(1,1082.06) = 9.89, P = 0.002$. Pairwise comparisons showed no difference between the active and sham group during AT, $b = 0.01, SE = 0.02, t = 0.56, P = 0.58$, or UT, $b = 0.02, SE = 0.02, t = 1.01, P = 0.31$. Conversely, in the sham group, PD was smaller during AT ($M = 0.05$) vs UT ($M = 0.10$), $b = −0.04, SE = 0.01, t = −5.04, P < 0.001$, whereas in the active group, there was no difference between AT and UT, $b = −0.005, SE = 0.01, t = −0.61, P = 0.54$. All remaining tDCS effects (i.e. group, group \times valence and group \times valence \times type) were non-significant (all Fs < 0.67, all Ps > 0.41).

Anticipation of social feedback (C) vs reception of anticipated social feedback (AT) (H2)

Skin conductance responses. The LMER indicated a main effect of group (see Figure 5A), $F(1,168) = 4.55, P = 0.04$, showing smaller SCRs in the active ($M = −5.94$) vs sham tDCS group ($M = −5.40$). All remaining tDCS effects (i.e. group \times valence, group \times phase and group \times valence \times type) were non-significant (all Fs < 2.60, all Ps > 0.11).

Pupillary responses. The LMER showed a group \times phase interaction (see Figure 5B), $F(1,1075.46) = 11, P < 0.001$. Pairwise comparisons showed that during C, PD was smaller in the active ($M = 0.004$) vs sham ($M = 0.04$) tDCS group, $b = −0.03, SE = 0.02, t = −2.02, P = 0.04$, whereas during AT, there was no difference between active or sham tDCS, $b = 0.01, SE = 0.02, t = 0.79, P = 0.43$. Furthermore, in the active group, PD was larger during AT ($M = 0.07$) compared to C ($M = 0.004$), whereas this difference was only marginally significant in the sham group, $b = −0.02, SE = 0.01, t = −1.91, P = 0.06$. All remaining tDCS effects (i.e. group, group \times valence, and group \times valence \times type) were non-significant (all Fs < 0.49, all Ps > 0.22).

Relationship between the anticipation of social feedback (C) and the reception of anticipated social feedback (AT) (H3)

Skin conductance responses. The LMER showed no significant group \times SCR during C interaction, $b = 0.06, SE = 0.03, t = 1.89, P = 0.06$.

Pupillary responses. The LMER showed a significant group \times PD during C interaction (see Figure 5), $b = −0.11, SE = 0.04, t = −2.48, P = 0.02$. LMERs for each group separately showed that PD during C predicted PD during TA only in the active group, $b = −0.29, SE = 0.07, t = −4.11, P < 0.001$, but not in the sham group, $b = −0.06, SE = 0.05, t = −1.14, P = 0.25$. Specifically, in the active group, as a function of decreasing PD during C, PD during TA increased. See Figure 6 for an overview of these results.
Discussion

The aim of the present study was to investigate, using tDCS, the causal role of the lDLPFC (and its associated neural network) on (i) emotional responses (ERs) to anticipated vs unanticipated positive and negative social evaluations (H1), (ii) ERs during the anticipation vs subsequent confrontation (H2) and (iii) the relationship between anticipatory and subsequent online ERs (H3).

First, comparing ERs to anticipated vs unanticipated social feedback (H1), active (vs sham) tDCS over the lDLPFC was associated with a decrease in emotional arousal (i.e., decreased SCRs) during the confrontation with anticipated positive and negative social feedback, whereas this decrease was only marginally significant during unanticipated social feedback. Moreover, the pupillary analysis seems to suggest that active tDCS applied to the lDLPFC contributes to an equal allocation of cognitive resource between the confrontation with anticipated vs unanticipated social feedback, whereas by default (i.e. sham tDCS) less resources are consumed during anticipated social feedback. In other words, these results suggest that—when being confronted with anticipated social feedback—the lDLPFC contributes to a relative increased allocation of cognitive resources (see also next paragraph for more information). Taken together, these results partially support our hypothesis, suggesting that the lDLPFC is specifically involved in the modulation of ERs in anticipatory contexts (Schmid et al., 2015). Even though previous NIBS research suggested that the lDLPFC is also causally involved in the modulation of ERs within non-anticipatory contexts (e.g. Peña-Gómez et al., 2011; Brunoni et al., 2013; Remue et al., 2016),
these studies lack a direct comparison between ERs in anticipatory vs non-anticipatory contexts.

Second (H2 and H3), within anticipatory contexts (i.e. trials with the anticipation of feedback and the subsequent confrontation), the SCR analysis suggests that tDCS over the IDLPFC (as compared to sham) contributed to a general decrease in emotional arousal, independent of whether one was anticipating or actually being confronted with anticipated feedback. Furthermore, the pupillary analysis seems to suggest that active tDCS over IDLPFC (as compared to sham) contributed to a decreased allocation of cognitive resources during the anticipation of feedback, which in turn was associated with a relative increase of cognitive resource consumption when subsequently being confronted with this feedback. In fact, during active tDCS over the IDLPFC, the fewer resources were used during the anticipation of social feedback, the more resources were consumed during the subsequent confrontation with this feedback, whereas this dynamic was not present in the sham group. This finding was counter to our expectations, as we had expected active tDCS over the IDLPFC to increase cognitive resource allocation during the anticipation of feedback, subsequently leading to decreased resource allocation during the confrontation (De Raedt and Hooley, 2016). One potential explanation for the observed inverse effect could be that participants refrain from cognitively elaborating on information presented during the anticipation phase and thereby save valuable cognitive resources for the moment when they are confronted with the feedback. Perhaps, this may reflect a more efficient allocation of cognitive resources due to tDCS (as compared to sham) and suggests a shift towards the use of cognitive resource specifically when being confronted with the actual emotional stimuli. The fact that, within these anticipatory contexts, active tDCS was associated with a general decrease in SCRs (i.e. less emotional arousal) suggests that this resource allocation shift (observed in pupillary analyses) was adaptive. Another explanation for the inverse effect would be that the effects may be dependent on the paradigm characteristics (De Raedt and Hooley, 2016). Taken together, these results partially corroborate the second and third hypotheses and suggest that, within anticipatory emotional contexts, the IDLPFC is (i) causally involved in the general reduction of emotional reactivity (i.e. emotional arousal) and (ii) implicated in the interplay between anticipatory and online emotion regulatory processes (Wager et al., 2004; Seo et al., 2014).

Of importance, tDCS did not modulate self-reported mood responses to the social feedback. This is consistent with research showing that, among healthy individuals, NIBS over the DLPCF does not subjectively affect mood but is able to influence emotional processing (Mondino et al., 2015). Furthermore, valence was not implicated in the tDCS effects, suggesting that the IDLPFC is not associated with valence-specific emotional processing. Previous research has produced mixed results regarding valence-independent vs valence-dependent emotional processing in the DLPCF (Wager et al., 2003; Mondino et al., 2015).

As for clinical implications, how individuals cope with social evaluations plays an important role in the onset and maintenance of depressive disorders (Slavich et al., 2009; Slavich et al., 2010). Specifically, negative evaluations can trigger negative self-referent cognitions (i.e. I’m undesirable) and emotions (i.e. shame), which can contribute to depressive symptoms, when not employing appropriate adaptive emotion regulatory processes. Furthermore, inefficient and counterproductive allocation of cognitive resources has been suggested to be a hallmark of depression, in which valuable cognitive resources are deployed to repetitively process negative self-relevant cognitions and emotions, instead of allocating these to task-relevant or more adaptive emotion regulatory processes (Johnstone et al., 2007; Levens et al., 2009; Gotlib and Joormann, 2010; Connolly et al., 2014). In addition, maladaptive anticipatory emotional processes have been observed within depressed individuals (Peira et al., 2013; Vanderhasselt et al., 2014a), which may play a crucial role in mood and anxiety disorders (Scherpelt et al., 2014; Schmид et al., 2015; De Raedt and Hooley, 2016). Interestingly, within depressed individuals, increasing activity in the DLPCF using NIBS has been shown to alleviate depressive mood (Baeken and De Raedt, 2011; De Raedt et al., 2015; Baeken et al., 2016; Dedoncker et al., 2016). One potential mechanism through which these antidepressant effects are achieved may be by improving anticipatory emotional processes (by increasing IDLPFC activity; De Raedt and Hooley, 2016), contributing to more efficient cognitive resource allocation and reduced emotional reactivity. However, this notion is speculative, and further research is required to investigate this proposed mechanism of action.

Besides several strengths, such as the inclusion of an ecological valid paradigm that allows individuals to naturally respond to self-relevant stimuli, it must be noted that the present study has some limitations. First, a between-subject design was employed, and psychophysiological responses to the paradigm were not measured before receiving either active or sham tDCS, thereby lacking a within-subject control condition. The absence of this condition may hinder stringent interpretation of the observed results. Despite this implication, a between-subject design was utilized to prevent habituation and desensitization to the paradigm due to repeated exposure that would be present in a pre-post design. Furthermore, no separate control session was present prior to the stimulation session, as participants could potentially be emotionally affected by the rigged social evaluations between both sessions when no debriefing is giving after the control session. Moreover, prior to the experiment, groups were matched on a series of trait variables that could influence responding to the paradigm, and a post hoc analysis on baseline skin conductance levels showed no difference between groups, suggesting that baseline emotional arousal does not differ between groups. Furthermore, the LMER models estimate baseline individual responses to the paradigm via the inclusion of a random subject intercept and take these into account for the computation of the main and interaction effects. Taken together, these arguments satisfy our confidence in the group comparability. Second, the sample only consisted of females, limiting the generalizability of the findings. Third, tDCS is known
to produce diffuse effects, resulting in not only the neuro-modulation of the targeted brain region but also of its underlying neural network and neighboring brain regions (Stagg et al., 2009; Keeser et al., 2011). For instance, the ventromedial prefrontal cortex (vmPFC; Motzkin et al., 2014), ventrolateral prefrontal cortex (VLPFC; Seifert et al., 2013) and medial prefrontal cortex (mPFC; Ueda et al., 2003) are located near the DLPFC and have been implicated in anticipatory emotional processes. Moreover, these brain regions have shown intercorrelations with the DLPFC during the anticipation of emotional stimuli (Seifert et al., 2013). Therefore, in the current study, tDCS applied to the DLPFC likely affected not only the DLPFC, but its associated neural network (e.g. VLPFC, vmPFC, mPFC). Future NIBS studies would benefit by including neuroimaging methods, allowing to investigate how the neural network is specifically affected. Fourth, only mood was measured during the task as a self-report measure. As previous studies have shown that mood is typically unaffected by tDCS over the DLPFC (Mondino et al., 2015), other self-report measures, such as perceived valence and arousal, could have been measured instead (Peña-Gómez et al., 2011; Feeser et al., 2014). However, we wanted to retain the natural flow of the paradigm as much as possible and refrain participants from being to pre-occupied with taxing self-report measures (e.g. perceived arousal) that could potentially disrupt the results. Therefore, we focused on unobtrusive psychophysiological measures, as these also prevent potential social desirability biases that may be present in self-report measures (Van de Mortel, 2008).

In conclusion, the results from the current study suggest that the DLPFC (and its underlying neural network) is causally implicated in the modulation of emotional responses within anticipatory contexts featuring the anticipation of and confrontation with self-relevant emotional stimuli (e.g. social evaluations). Moreover, within these contexts, the results suggest that the DLPFC is causally implicated in the interplay between anticipatory and online emotion regulatory processes.

Supplementary material
Supplementary Material is available at SCAN online.

Funding
This work was supported by the Research Foundation Flanders [grant numbers G044016N, G044019N, awarded to MAV and RDR], the Special Research Fund Ghent University [grant number BOFSTA2017002501, awarded to MAV] and the Ghent University Multidisciplinary Research Partnership ‘The integrative neuroscience of behavioral control’.

Conflict of interest
None declared.

References
Allaert, J., Sanchez-Lopez, A., De Raedt, R., Baeken, C., Vanderhasselt, M.-A. (2019). Inverse effects of tDCS over the left versus right DLPFC on emotional processing: a pupillometry study. PLoS One, 14(6), e0218327. doi: 10.1371/journal.pone.0218327.
Baeken, C., De Raedt, R. (2011). Neurobiological mechanisms of repetitive transcranial magnetic stimulation on the underlying neurocircuitry in unipolar depression. Dialogues in Clinical Neuroscience, 13(1), 139–45.
Baeken, C., Brunelin, J., Duprat, R., Vanderhasselt, M.A. (2016). The application of tDCS in psychiatric disorders: a brain imaging view. Socioaffective Neuroscience and Psychology, 6, 29588. doi: 10.3402/snp.v6.29588.
Baeken, C., Remue, J., Vanderhasselt, M.A., et al. (2017). Increased left prefrontal brain perfusion after MRI compatible tDCS attenuates momentary ruminative self-referential thoughts. Brain Stimulation, 10(6), 1088–95. doi: 10.1016/j.brs.2017.09.005.
Banks, S.J., Eddy, K.T., Angstadt, M., Nathan, P.J., Phan, K.L. (2007). Amygdala–frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2(4), 303–12. doi: 10.1093/scan/nsm029.
Baumeister, R.F., Leary, M.R. (1995). The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497–529. doi: 10.1037/0033-2909.117.3.497.
Beatty, J., Lucero-Wagoner, B. (2000). The pupillary system. Handbook of Psychophysiology, 2nd ed. (pp. 142–162). New York, NY: Cambridge University Press.
Bradley, M.M., Miccoli, L., Escrig, M.A., Lang, P.J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45(4), 602–7. doi: 10.1111/j.1469-8986.2008.00654.x.
Braver, T.S. (2012). The variable nature of cognitive control: a dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–13. doi: 10.1016/j.tics.2011.12.010.
Braver, T.S., Paxton, J.L., Locke, H.S., Barch, D.M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences, 106(18), 7351–6. doi: 10.1073/pnas.0808187106.
Brunoni, A.R., Vanderhasselt, M.A., Boggio, P.S., et al. (2013). Polarity- and valence-dependent effects of prefrontal transcranial direct current stimulation on heart rate variability and salivary cortisol. Psychoneuroendocrinology, 38(1), 58–66. doi: 10.1016/j.psyneuen.2012.04.020.
Connolly, S.L., Wagner, C.A., Shapero, B.G., Pendergast, L.L., Abramson, L.Y., Alloy, L.B. (2014). Rumination prospectively predicts executive functioning impairments in adolescents. Journal of Behavior Therapy and Experimental Psychiatry, 45(1), 46–56. doi: 10.1016/j.jbtep.2013.07.009.
Dawson, M.E., Schell, A.M., Filion, D.L. (2017). The electrosurgical system. De Raedt, R., Hooley, J.M. (2016). The role of expectancy and proactive control in stress regulation: a neurocognitive framework for regulation expectation. Clinical Psychology Review, 45, 45–55.
De Raedt, R., Vanderhasselt, M.-A., Baeken, C. (2015). Neurostimulation as an intervention for treatment resistant depression: from research on mechanisms towards targeted neurocognitive strategies. Clinical Psychology Review, 41, 61–9.
Dedoncker, J., Brunoni, A.R., Baeken, C., Vanderhasselt, M.A. (2016). A systematic review and meta-analysis of the effects of Transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: influence of stimulation parameters. Brain Stimulation, 9(4), 501–17. doi: 10.1016/j.brs.2016.04.006.
DeWalt, C.N., Twenge, J.M., Koole, S.L., Baumeister, R.F., Marquez, A., Reid, M.W. (2011). Automatic emotion regulation after social exclusion: tuning to positivity. Emotion, 11(3), 623–36. doi: 10.1037/a0023554.
Dickerson, S.S., Kemeny, M.E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355.
Domes, G., Schulze, L., Böttger, M., et al. (2010). The neural correlates of sex differences in emotional reactivity and emotion regulation. Human Brain Mapping, 31(5), 758–69.

Einhäuser, W. (2017). The pupil as marker of cognitive processes. Computational and Cognitive Neuroscience of Vision, (pp. 141–169). Singapore: Springer Singapore.

Eippert, F., Veit, R., Weiskopf, N., Erd, M., Birbaumer, N., Anders, S. (2007). Regulation of emotional responses elicited by threat-related stimuli. Human Brain Mapping, 28(5), 409–23. doi: 10.1002/hbm.20291.

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedicinal sciences. Behavior Research Methods, 39(2), 175–91. doi: http://dx.doi.org/10.3758/BF03195146.

Feuer, M., Prehn, K., Kizzer, P., Mungee, A., Bajbouj, M. (2014). Transcranial direct current stimulation enhances cognitive control during emotion regulation. Brain Stimulation, 7(1), 105–12. doi: 10.1016/j.brs.2013.08.006.

Gotlib, I.H., Joormann, J. (2010). Cognition and depression: current status and future directions. Annual Review of Clinical Psychology, 6, 285–312.

Granholm, E., Steinbauer, S.R. (2004). Papillometric measures of cognitive and emotional processes. International Journal of Psychophysiology, 51(1), 6–16. doi: 10.1016/j.iippsycho.2003.12.001.

Gross, J.J., John, O.P. (2003). Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85(2), 348.

Herwig, U., Baumgartner, T., Kaffenberger, T., et al. (2007). Modulation of anticipatory emotion and perception processing by cognitive control. NeuroImage, 37(2), 652–62. doi: 10.1016/j.neuroimage.2007.05.023.

Iqbal, S.T., Zheng, X.S., Bailey, B.P. (2004). Task-evoked pupillary response to mental workload in human-computer interaction. Paper presented at the CHI’04 extended abstracts on Human factors in computing systems, pp. 1477–80.

Irlbacher, K., Kraft, A., Kehrer, S., Brandt, S.A. (2014). Mechanisms and neuronal networks involved in reactive and proactive cognitive control of interference in working memory. Neuroscience & Biobehavioral Reviews, 46(Part 1), 58–70. doi: 10.1016/j.neubiorev.2014.06.014.

Johnstone, T., van Reekum, C.M., Urry, H.L., Kalin, N.H., Davidson, R.J. (2007). Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. The Journal of Neuroscience, 27(33), 8877–84. doi: 10.1523/jneurosci.2063-07.2007.

Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice-Hall.

Kahneman, D., Beatty, J. (1966). Pupil diameter and load on memory. Science, 154(3756), 1583–5.

Keener, D., Meindl, T., Bor, J., et al. (2011). Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. Journal of Neuroscience, 31(43), 15284–93.

Kinner, V.L., Kuchinke, L., Dierolf, A.M., Merz, C.J., Otto, T., Wolf, O.T. (2017). What our eyes tell us about feelings: tracking pupillary responses during emotion regulation processes. Psychophysiology, 54(4), 508–18.

Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82(13).

Lefaucheur, J.P., Antal, A., Ayache, S.S., et al. (2017). Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clinical Neurophysiology, 128(1), 56–92. doi: 10.1016/j.clinph.2016.10.087.

Lenth, R. (2018). Emmeans: estimated marginal means, aka least-squares means. R package version, 1(1).

Lesh, T.A., Westphal, A.J., Niendam, T.A., et al. (2013). Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia(1). NeuroImage: Clinical, 2, 590–9. doi: 10.1016/j.nicl.2013.04.010.

Levens, S.M., Muhtadie, L., Gotlib, I.H. (2009). Rumination and impaired resource allocation in depression. Journal of Abnormal Psychology, 118(4), 757.

Lithari, C., Frantzidis, C.A., Papadelis, C., et al. (2010). Are females more responsive to emotional stimuli? A neurophysiological study across arousal and valence dimensions. Brain Topography, 23(1), 27–40. doi: 10.1007/s10548-009-0130-5.

McCormack, H.M., Horne, D.J., Sheather, S. (1988). Clinical applications of visual analogue scales: a critical review. Psychological Medicine, 18(04), 1007–19. doi: 10.1017/S0033291700009334.

McRae, K., Ochsner, K.N., Mauss, I.B., Gabrieli, J.J.D., Gross, J.J. (2008). Gender differences in emotion regulation: an fMRI study of cognitive reappraisal. Group Processes & Intergroup Relations, 11(2), 143–62. doi: 10.1177/1368430207088035.

Mondino, M., Thiffault, F., Festoe, S. (2015). Does non-invasive brain stimulation applied over the dorsolateral prefrontal cortex non-specifically influence mood and emotional processing in healthy individuals? Frontiers in Cellular Neuroscience, 9, 399. doi: 10.3389/fncel.2015.00399.

Moors, A., De Houwer, J., Hermans, D., et al. (2013). Norms of valence, arousal, dominance, and age of acquisition for 4,300 Dutch words. Behavior Research Methods, 45(1), 169–77. doi: 10.3758/s13428-012-0243-8.

Moises, S., Adam, J.J., Rijcken, J., Van Gerven, P.W.M., Kuipers, H., Jolles, J. (2008). Pupil dilation in response preparation. International Journal of Psychophysiology, 67(2), 124–30. doi: 10.1016/j.ijpsycho.2007.10.011.

Motzkin, J.C., Philippi, C.L., Wolf, R.C., Baskaya, M.K., Koenigs, M. (2014). Ventromedial prefrontal cortex lesions alter neural and physiological correlates of anticipation. The Journal of Neuroscience, 34(31), 10430–7. doi: 10.1523/JNEUROSCI.1446-14.2014.

Nitsche, M.A., Cohen, L.G., Wassermann, E.M., et al. (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimulation, 1(3), 206–23. doi: 10.1016/j.brs.2008.06.004.

Nitschke, J.B., Sarinopoulos, I., Mackiewicz, K.L., Schaefer, H.S., Davidson, R.J. (2006). Functional neuroanatomy of averting and its anticipation. NeuroImage, 29(1), 106–16. doi: 10.1016/j.neuroimage.2005.06.068.

Ochsner, K.N., Bunge, S.A., Gross, J.J., Gabrieli, J.D.E. (2002). Rethinking feelings: an fMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14(8), 1215–29. doi: 10.1162/08989290276087212.

Ochsner, K.N., Ray, R.D., Cooper, J.C., et al. (2004). For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. NeuroImage, 23(2), 483–99. doi: 10.1016/j.neuroimage.2004.06.030.

Ochsner, K.N., Silvers, J.A., Buhle, J.T. (2012). Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251(1), E1–24. doi: 10.1111/j.1749-6632.2012.06751.x.

Peira, N., Pourtois, G., Fredrikson, M. (2013). Learned cardiac control with heart rate biofeedback transfers to emotional reactions. PLoS One, 8(7), e70004-4. doi: 10.1371/journal.pone.0070004.

Peña-Gómez, C., Vidal-Piñeiro, D., Clemente, I.C., Pascual-Leone, A., Bartrés-Faz, D. (2011). Down-regulation of negative emotional processing by Transcranial direct current stimulation:
effects of personality characteristics. PLoS One, 6(7), e22812. doi: 10.1371/journal.pone.0022812.

Plewia, C., Schroeder, P.A., Kunze, R., Faehling, F., Wolkenstein, L. (2015). Keep calm and carry on: improved frustration tolerance and processing speed by transcranial direct current stimulation (tDCS). PLoS One, 10(4), e0122578. doi: 10.1371/journal.pone.0122578.

Pulupolus, M.M., Vanderhasselt, M.-A., De Raedt, R. (2018). Association between changes in heart rate variability during the anticipation of a stressful situation and the stress-induced cortisol response. Psychoneuroendocrinology, 94, 63–71.

R Core Team (2013). R: A language and environment for statistical computing.

Remue, J., Vanderhasselt, M.A., Baeken, C., Rossi, V., Tullo, J., De Raedt, R. (2016). The effect of a single HF-rTMS session over the left DLPFC on the physiological stress response as measured by heart rate variability. Neuropsychology, 30(6), 756–66. doi: 10.1037/neu0000255.

Sabatinelli, D., Bradley, M.M., Lang, P.J. (2001). Affective startle modulation in anticipation and perception. Psychophysiology, 38(4), 719–22.

Scherpier, S., Brühl, A.B., Opialla, S., Roth, L., Jäncke, L., Herwig, U. (2014). Altered emotion processing circuits during the anticipation of emotional stimuli in women with borderline personality disorder. European Archives of Psychiatry and Clinical Neuroscience, 264(1), 45–60. doi: 10.1007/s00406-013-0444-x.

Schmid, P.C., Kleiman, T., Amodio, D.M. (2015). Neural mechanisms of proactive and reactive cognitive control in social anxiety. Cortex, 70, 137–45. doi: 10.1016/j.cortex.2015.05.030.

Seifert, F., Schuberth, N., De Col, R., Peliz, E., Nickel, F.T., Maihöfner, C. (2013). Brain activity during sympathetic response in anticipation and experience of pain. Human Brain Mapping, 34(8), 1768–82.

Seo, D., Olman, C.A., Haut, K.M., Sinha, R., MacDonald, A.W., Patrick, C.J. (2014). Neural correlates of preparatory and regulatory control over positive and negative emotion. Social Cognitive and Affective Neuroscience, 9(4), 494–504. doi: 10.1093/scan/nst115.

Sheppes, G., Gross, J.J. (2011). Is timing everything? Temporal considerations in emotion regulation. Personality and Social Psychology Review, 15(4), 319–31. doi: 10.1177/1088868310395778.

Siegle, G.J., Steinhauer, S.R., Stenger, V.A., Konecky, R., Carter, C.S. (2003). Use of concurrent pupil dilation assessment to inform interpretation and analysis of fMRI data. NeuroImage, 20(1), 114–24. doi: 10.1016/S1053-8119(03)00298-2.

Slavich, G.M., Thornton, T., Torres, L.D., Monroe, S.M., Gotlib, I.H. (2009). Targeted reward predictions hastened onset of major depression. Journal of Social and Clinical Psychology, 28(2), 223–43.

Slavich, G.M., O’Donovan, A., Epel, E.S., Kemeny, M.E. (2010). Black sheep get the blues: a psychobiological model of social rejection and depression. Neuroscience & Biobehavioral Reviews, 35(1), 39–45. doi: 10.1016/j.neubiorev.2010.01.003.

Spinps, J.A., Blowers, G.H., Shek, D.T. (1985). The role of the orienting response in the anticipation of information: a skin conductance response study. Psychophysiology, 22(4), 385–94.

Stagg, C.J., Best, J.G., Stephenson, M.C., et al. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. Journal of Neuroscience, 29(16), 5202–6.

Ueda, K., Okamoto, Y., Okada, G., Yamashita, H., Hori, T., Yamawaki, S. (2003). Brain activity during expectancy of emotional stimuli: an fMRI study. Neuroreport, 14(1), 51–5. doi: 10.1097/01.wnr.0000050712.17082.1c.

Urry, H.L., van Reekum, C.M., Johnstone, T., et al. (2006). Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. The Journal of Neuroscience, 26(16), 4415–25. doi: 10.1523/jneurosci.3215-05.2006.

Urry, H.L., van Reekum, C.M., Johnstone, T., Davidson, R.J. (2009). Individual differences in some (but not all) medial prefrontal regions reflect cognitive demand while regulating unpleasant emotion. NeuroImage, 47(3), 852–63. doi: 10.1016/j.neuroimage.2009.05.069.

Van de Mortel, T.F. (2008). Faking it: social desirability response bias in self-report research. Australian Journal of Advanced Nursing, The, 25(4), 40.

van Reekum, C.M., Johnstone, T., Urry, H.L., et al. (2007). Gaze fixations predict brain activation during the voluntary regulation of picture-induced negative affect. NeuroImage, 36(3), 1041–55. doi: 10.1016/j.neuroimage.2007.03.052.

Van Steenbergen, H., Band, G. (2013). Pupil dilation in the Simon task as a marker of conflict processing. Frontiers in Human Neuroscience, 7(215). doi: 10.3389/fnhum.2013.00215.

Vanderhasselt, M.-A., De Raedt, R., De Paepe, A., et al. (2014a). Abnormal proactive and reactive cognitive control during conflict processing in major depression. Journal of Abnormal Psychology, 123(1), 68–80. doi: 10.1037/a0035816.

Vanderhasselt, M.A., Remue, J., Ng, K.K., De Raedt, R. (2014b). The interplay between the anticipation and subsequent online processing of emotional stimuli as measured by pupillary dilatation: the role of cognitive reappraisal. Frontiers in Psychology, 5, 207. doi: 10.3389/fpsyg.2014.00207.

Vanderhasselt, M.A., Remue, J., Ng, K.K., Mueller, S.C., De Raedt, R. (2015). The regulation of positive and negative social feedback: a psychophysiological study. Cognitive, Affective, & Behavioral Neuroscience, 15(3), 553–63. doi: 10.3758/s13415-015-0345-8.

Vanderhasselt, M.A., De Raedt, R., Nasso, S., Puttevils, L., Mueller, S.C. (2018). Don’t judge me: psychophysiological evidence of gender differences to social evaluative feedback. Biological Psychology, 135, 29–35. doi: 10.1016/j.biopsycho.2018.02.017.

Wager, T.D., Phan, K.L., Liberzon, I., Taylor, S.F. (2003). Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. NeuroImage, 19(3), 513–31.

Wager, T.D., Rilling, J.K., Smith, E.E., et al. (2004). Placebo-induced changes in fMRI in the anticipation and experience of pain. Science, 303(5661), 1162–7. doi: 10.1126/science.1093065.

Wang, M.Y., Lu, F.M., Hu, Z., Zhang, J., Yuan, Z. (2018). Optical mapping of prefrontal brain connectivity and activation during emotion anticipation. Behavioural Brain Research, 350, 122–8. doi: 10.1016/j.bbr.2018.04.051.

van der Wel, P., van Steenbergen, H. (2018). Pupil dilation as an index of effort in cognitive control tasks: a review. Psychonomic Bulletin & Review, 25(6), 2005–15. doi: 10.3758/s13423-018-1432-y.

Willedenbockel, V., Sadr, J., Fiset, D., Horne, G.O., Gosselin, F., Tanaka, J.W. (2010). Controlling low-level image properties: the SHINE toolbox. Behavior Research Methods, 42(3), 671–84.

Wood, K.H., Ver Hoef, L.W., Knight, D.C. (2014). The amygdala mediates the emotional modulation of threat-elicited skin conductance response. Emotion, 14(4), 693.