CLASSIFICATION AND MECHANISM OF BACTERIOCIN INDUCED CELL DEATH: A REVIEW

Kajal Sharma1, Sandeep Kaur2, Rajat Singh3 and Naveen Kumar*

Introduction
Today, the world suffers from a number of infectious diseases, which are mainly caused by pathogenic organisms. Pathogenic organisms inhibit the production of antimicrobial peptides inside the body and caused several life-threatening diseases (Sharma et al., 2016; Singh et al., 2021). The important part of natural immunity in human is the production of antimicrobial peptides which protects various disease-causing organisms like bacteria, fungi, yeast viruses and cancer cells (Reddy et al., 2004; Kaushik et al., 2017). Bacteria itself release some antimicrobial peptides which are the biologically extra-cellular product of ribosomal synthesis (Klaenhammer, 1993; Pirzada et al., 2004). They are produced by both gram-positive and gram-negative bacteria including some archaea (Zheng et al., 2015). A large portion of bacteriocins from gram-negative bacteria resemble defensins which are the eukaryotic antimicrobial peptides (Baindara et al., 2018). Many bacteria are known for producing bacteriocins in humans, plants and various food products where they have a valuable place e.g. E. coli, Lactic acid bacteria (LAB), Weissella sp., Streptococcus mutans, Streptococcus salivarius, Bacillus subtilis etc. Out of which LAB described as GRAS (generally regarded as safe) for human consumption (Balcunas et al., 2013; Kaushik and Arora, 2017; Indumathi et al., 2015; Sing, 2021). The bacteriocins show inhibitory action on food deterioration and foodborne pathogenic microorganisms, additionally, the bacteriocins from lactic acid microorganisms widely known for both food preservative and therapeutic potentials (Kumari et al., 2018; Mittal et al., 2020, Sharma et al., 2016). Bacteriocins from different species of bacteria, in contrast to all other antibiotics, show killing action on the same or closely related species (Kaur et al., 2015). They also act as the competitive agents between the microbial communities (Chao et al., 1981, Majeed et al., 2013, Riley et al., 1999). Researchers had conducted a deep study on various aspects of bacteriocins like the methods for their detection, characterization, purification and identification of genetic determinants from gram-positive and gram-negative micro-organisms (Catherine et al., 1993).

Background of the review
Colicin is the very first bacteriocin discovered by Belgian scientist Gratia, (1925) a heat-labile product where he observed that Escherichia coli V inhibits Escherichia coli S during his search for the ways to kill the bacteria. The inhibition of one bacterial strain by another had been observed many times by Gratia. But the importance of bacteriocin can’t explore much at that time due to the lack of knowledge about its structure and production which led to the dominance of chemically synthesized broad-spectrum antibiotics (Syngulon.com). Fredericq, (1946) revealed the proteinaceous nature of colicin and demonstrated that the inhibitory activity of bacteriocin was due to the presence of specific surface receptors of sensitive cells. After a long period, it is verified that a large number of bacteria produced some common molecules which inhibit the growth of other strains or species, these molecules were named bacteriocins (Jacob et al., 1953). Bacteriocins have been detected in all major lineages of eubacteria and some members of Archaeabacteria and recently it becomes a viable alternative to conventional antibiotics (Torrebranca et al., 1995; Gillor et al., 2008; Cotter et al., 2013).

Classification of bacteriocins
Bacteriocins can be classified based on their molecular weight, thermostability, enzymatic sensitivity, mode of action and presence of post-translationally modified amino acids (Klaenhammer, 1993). Jack et al. (1995) reported that the presence of the number of disulfide and monosulfide (lanthionine) bonds not only forms the basis of classification but also affects the activity spectrum of bacteriocins. Furthermore, based on molecular weight gram-negative bacteria are divided into two classes namely colicins and microcin. Most bacteriocins of gram-negative bacteria are isolated from E. coli and other enterobacteria (Hassan et al., 2012). The bacteriocins of gram-positive bacteria are divided into four classes (Class I, II, III, IV) which are broadly described in previous literature. These classes from gram-negative and gram-positive bacteria are further subdivided into their respective sub-groups (Ranu et al., 2015). However, Cotter et al. classified the
bacteriocin produced from LAB (gram-positive bacteria) into two main classes, lantibiotics (class I), not containing lanthionine lantibiotics (class II) whereas class III was individually designated as bacteriocylins. It was also suggested by the authors that class IV should be extinguished (Yumbarski et al., 2018). So, recently authors have altered the classification of gram-positive bacteria from four classes to three, while different authors have used a somewhat different description of subclasses (Mokoena, 2017). Yang et al. (2014) mentioned that microcin E492 derived from gram-negative bacterial sp. Klebsiella pneumonia, so class II should be categorized under microcins of gram-negative bacteria. Moreover, the bacteriocins are currently used in agro-food as a food preservative however it may be considered as potential candidates for further development and used in health contexts. The different classification and applications of bacteriocins are enlisted in Figure 1 and 2.

Figure 1 Classification of gram-negative and gram-positive bacteriocins (Yang et al., 2014)

Figure 2 Schematic representation of various applications of bacteriocins in different sectors

PROPERTIES OF BACTERIOCIN FOR INHIBITION

Bacteriocins have some special features which make them lethal towards pathogenic organisms. They must have a cationic (mostly at pH 7.0) and highly hydrophobic nature to be lethal as observed for the most bacteriocins belonged to Class I and II. They must be active at a wide range of pH, as found in the case of numerous small size bacteriocins where they show antibacterial activity at different pH ranging from 3.0 to 9.0. Their high isoelectric point promotes the interaction at physiological pH with the anionic surface of bacterial membranes which cause the insertion of hydrophobic moiety into the bacterial membrane which finally build up a trans-membrane pore that led to cell death due to gradient dissipation (Jack et al., 1995). They are diffusible toxins that do not require contact between bacteria like type six secretion system (T6SS) and contact-dependent inhibition (CDI) (Sharp et al., 2017). Bacteriocins are potent even at the pico to nanomolar concentration as compared to eukaryotic AMPs which acts at a micromolar concentration (Hassan et al., 2012). Low molecular protein must be heat stable to show the killing action on related pathogenic strains. The stabilization of secondary structures accompanies by the complex pattern of monosulfide and disulfide intramolecular bonds which acts to reduce the number of possible unfolded structures (entropic effect) (Osčárie et al., 2001; Singh et al., 2013). However, the presence of some enzymes like proteasome K, trypsin, proteases, pronase and other proteolytic enzymes inhibitor may lead to the complete reduction of the killing action of bacteriocins produced by different bacterial species (Sharma et al., 2009; Jabeen et al., 2009; Pirzada et al., 2004; Todorov and Dicks, 2005; Tolincki et al., 2010). The way, they kill the sensitive cells is called "quantal" killing rather than "molar" cooperative killing action of classical antibiotics (Mayr-Hartung et al., 1972).

MECHANISMS OF BACTERIOCINS

Bacteriocins kill the pathogenic bacteria in several ways, like pore-forming inhibition of cell wall, nucleic acid and protein synthesis (Figure 3). Usually, they have a narrow killing spectrum as they are limited to the inhibition of closely related species and simultaneously they may have broad-spectrum activity against distantly related bacterial species (Singh et al., 2013; Klaenhammer, 1993; Adams and Moss, 2008; Kumaříček et al., 2019) and plays a defensive role by inhibiting the invasion of other strains or by limiting the growth of neighbouring cells (Riley and Wertz, 2002b). The production of bacteriocins seems to be a hereditary feature associated with cytoplasmic genes i.e. bacteriocinogenic factors. Their mode of action varies greatly from one species to another (Daw and Falkiner, 1996).
INHIBITION BY PORE FORMATION

Pore formation is the well-known mechanism in which these antibacterial proteins binds to the specific receptors on cells and forms pores in the membrane which is also called as cell permeability and thus cause the death of pathogenic microorganism (Preciado et al., 2016). These antibacterial proteins are also called c PFTs are one of the wide categories of virulence factors as they constitute 25-30% of cytotoxic bacterial proteins (Alouf, 2003; Gonzalez et al., 2008). The diameter of the pore formed by these proteins varies from one species to another, ranging between 1-50 nm consisting of 6-50 or more units of PFPs (Peraro and van der Goot, 2016). The largest pores found in cholesterol-dependent cytolysins (CDCs) whose diameter ranges from 25-40 nm (Tweetsen et al., 2015). Generally, PFPs are genetically encoded large proteins (α-toxin) or small cationic peptides which are delivered to the targeted cell for production and insertion into the membrane (Panchal et al., 2002). Based on the secondary structure of the region that allows the formation of the pore by penetrating the host cell, PFPs are divided into two main classes: α-PFPs and β-PFPs which forms pores by bundles of α-helical or by trans-membrane β-barrels respectively (Anderluh et al., 2008, Ostolaza et al., 2019). These antibacterial proteins are water-soluble monomers that bind to the lipid membrane of the cell and oligomerize to form structural assemblies called pre-pores. These pre-pores exposed the hydrophobic surface of the cell by undergoing some conformational changes that lead to the insertion into the lipid bilayer which forms a pore that causes the permeabilization of the cell membrane (Omersa et al., 2019). This mechanism is followed by β-PFPs while in the case of α-PFPs the insertion into the membrane is associated with a sequential oligomerization which then forms a partial or complete pore and the pore remains active in both cases. The β-pores are structurally more stable in comparison to α-pores due to the inter-chain interactions between the hydrogen bonds (Ostolaza et al., 2019). The formation of oligomers is a common characteristic of PFPs that pierce the cell membrane of the pathogen (Cosentino et al., 2016). Pore-forming proteins disrupt the maintenance of the osmotic balance of the cell which leads to the cytolyis (Alouf, 2003). They make the path for the passage of ions, proteins or other constitutes through the targeted membrane. The loss of potassium and magnesium ion has been implicated as the primary cause of cell death (Konisky, 1982). Pore formation also causes rapid dissipation of transmembrane electrostatic potential which lead to the rapid death of bacterial cells (Prince et al., 2016). Nisin belongs to the lantibiotic family, an amphiphilic and cationic bacteriocin (3.4kDa) isolated from the different stains of Lactococcus lactis subsp. lactis, is one of the widely studied bacteriocins. It is an FDA approved and GRAS peptide with recognized potential for clinical use (Shin et al., 2016). It acts on the targeted cells through pore formation by the use of “Docking Molecule” mediated by cell wall precursor lipid II which forms stable pores of around 2-2.5 nm diameter (Wiedemann et al., 2004). Nisin binds to lipid II with the two lanthionine rings at the N-terminus, forming a pyrophosphate cage around the head group of lipid II and flexible hinge region cause the insertion of C-terminus in a transmembrane orientation which lead to the formation of a stable pore (Prince et al., 2016). Kraaij et al., (1998) demonstrated the importance of translocation of the C-terminal region in pore formation. However, the C-terminus of Nis (immunity protein of Lactococcus lactis) found to inhibiting the nisin mediated pore formation by protecting the lipid II (Alkhatib et al., 2014). Further, nisin use all lipid II molecules to form the pore complex which uniformly consists of 8 nisin and 4 lipid-II molecules. These pores were able to resist the solubilization of the membrane environment by mild detergents (Hesper et al., 2004). The micromolar concentrations are necessary in the absence of lipid II while nanomolar concentrations are sufficient to form a pore in the presence of lipid II (Christ, 2007). Nisin also acts as an anionic selective carrier during the absence of anionic membrane phospholipids and forms nonselective, wedge-like, multistate, water-filled pores in the presence of anionic phospholipids which results from the bending of lipid surface due to co-insertion of the surface-bound aggregate to it (Moll et al., 1996). The bacteriocins that kill the pathogens by pore formation are enlist in Table 1.

CELL WALL BIOSYNTHESIS INHIBITION

The antimicrobial peptides involved in the inhibition of biosynthesis of cell wall either by inhibiting peptidoglycan synthesis or by binding to the lipid II or may impair the cell wall functions are called as cell-wall active or membrane-active bacteriocins. This mechanism may involve a concerted action with pore formation as observed in nisin, a well-known bacteriocin widely used in food preservation. This mechanism is followed by both gram-negative and gram-positive bacteria. It comprises a wide variety of structures like lipid II-binding bacteriocins, two peptide lantibiotics and non-modified bacteriocins (Rocelet et al., 2012). In eukaryotic cells, cell membrane acts as the main target of bacteriocin where they enhance the expression of negatively charged cell surface molecules on the cancer cells makes them prone to the cytotoxic activity of bacteriocins (Kaur et al., 2015). Nisin is the first example of a membrane-targeted lantibiotics (Breunink et al., 2003). However, Tol et al. (2015) suggested that nisin variants that cluster lipid II kill L-form bacteria without involving the delocalization of peptidoglycan synthesis which is the primary killing mechanism of these lantibiotics. Lactococcus 972 (Leu972) is the first unmodified, bacteriocin that binds to the cell wall precursor lipid II to inhibit the septum biosynthesis in Lactococcus lactis (Martinez et al., 2008). Scherer et al., (2015) revealed that an increase in the size of the nisin-lipid-II complex also plays a role in the inhibition of cell wall synthesis and also induce vesicle budding in the targeted cell membrane. However in some cases, the destabilization of the cell wall or outer membrane is brought by stress condition such as treatment of targeted cell with chemicals or by inducing some physical stress conditions like pH, heating, freezing etc., which may increase the sensitivity of targeted cell as observed for gram-negative bacteria (Costa et al., 2019). Besides all this, plantaricin NC8, a two-peptide non-lantibiotic class IIb bacteriocin composed of PLNC8a and PLNC8b and derived from Lactobacillus plantarum ZJ316 has been found to show antimicrobial activity against Micrococcus luteus 1.193 by following the mechanism of cell membrane disruption without targeting lipid II (Jiang et al., 2018). The bacteriocins that follow the cell wall inhibition mechanism for killing of pathogens are listed in Table 2.
Table 1 List of some bacteriocins that kill the pathogens by pore formation

Name of the bacteriocin	Producing microorganism	Inhibition spectrum	Ref.
Acanthaporin	Acanthamoeba culbertsoni	Cytotoxic for human neuronal cells, antibacterial against various bacterial strains	Michalek et al., 2013
Pentocin MQ1	Lactobacillus pentosus CS2	Potent against *M. luteus, B. cereus* and *L. monocytyogenes*, exhibit high chemical, thermal and pH stability but sensitive to proteolytic enzymes	Wayah and Philip, 2018
PmnH	Pseudomonas species	Reflects parasitism of the ferrichrome type transporter for the entry into targeted cells under iron-limited growth conditions	Ghequiret et al., 2017
Nisin (3.5kDa)	Lactococcus lactis	Antibacterial against gram-positive bacteria, potent against gram-negative bacteria when used at high concentration or when targeted cell have been pretreated with EDTA, also active against spore-forming bacteria	Parada et al., 2007, Abee et al., 2003
Ruminococcin C	Ruminococcus gnarus E1	Active against pathogenic *Clostridia* and multidrug-resistant strains	Chiumento et al., 2019
Acidophalin 801	Lactobacillus acidophilus IBB 801	Have a bactericidal effect on *Lactobacillus* strains and also effective against some gram-negative bacteria	Zamfiri et al., 2007, 2009
Cytolytin A	Escherichia coli (pathogenic strain)	Cause hemolytic phenotype of several *E. coli* strains	Fahei et al., 2013
Microcin E492	Klebsiella pneumonia RYC492	Exerts antibacterial action on related strains and also has a cytotoxic effect on malignant human cell lines	Lagos et al., 2009
Lacticin Q	Lactococcus lactis Q5	Forms a huge toroidal pore, antibacterial to the targeted cell even at nanomolar range	Yoneyama et al., 2009
Lacticin 3147	Lactococcus lactis subsp. lactis DPC3147	Acts on a broad range of gram-positive bacteria including *L. lactis, L. monocytyogenes, B. subtilis*	McAuliffe et al., 1998
Pediocin PA-1	Pediococcus acidilactici PAC1.0	Active against the relative strains forms hydrophilic pores	Chikindas et al., 1993
Lactococcin G	Lactococcus sp.	Antibacterial to the relative strains where activity depends on the complementary action of two peptides	Nissen-Meyer et al., 1992
Acidocin J1132	Lactobacillus acidophilus JCM 1132	Has narrow inhibitory spectrum	Tahara et al., 1996
Thermophilin 13	Streptococcus thermophilus	Exhibit a non-typical antilisterialporation complex	Marciset et al., 1997
Bacteriocin AS-48 (Enterocin AS-48)	Enterococcus faecalis	Has broad-spectrum antimicrobial activity against gram-positive and gram-negative bacteria, also acts as a leishmanicidal agent	Cruz et al., 2013; Abengózar et al., 2017
Plantaricin MG	Lactobacillus plantarum KLDS1.0391	Broad inhibitory activity against gram-positive and gram-negative bacteria including *L. monocytogenes and Salmonella typhimurium*	Gong et al., 2010
Lactocin 705	Lactobacillus casei CRL705	Active against relative strains of *Lactobacillus* sp.	Castellano et al., 2003
Bifidocin A	Bifidobacterium animalis BB04	Has broad antibacterial spectrum against gram-negative bacteria	Liu et al., 2016
Lactococcin MMT24	Lactococcus lactis MMT24	Has narrow spectrum and possesses a bactericidal effect on closely related species	Ghrairi et al., 2005
Bacteriocin HL32	Lactobacillus paracasei HL32	Active against *Porphyromonas gingivalis* infections	Pangsomboon et al., 2006
Pediocin PD-1	Pediococcus damnosus NCFB 1832	Inhibits the growth of several food spoilage bacteria, including malolactic bacteria isolated from wine, highly active against the cells of *Oenococcus oeni*	Bauer et al., 2005
Lacticin 160	Lactobacillus rhamnosus (Vaginal strain)	Inhibits the growth of *Micrococcus luteus ATCC 10420*	Jie et al., 2005
Bovicin HC5	Streptococcus bovis HC5	Active against *Staphylococcus cohnii* and *Staphylococcus warneri*, blocked lipid II-dependent pore formation activity of Nisin	Paiva et al., 2011
Pneumolysin	Streptococcus pneumonia	Acts as a key virulence factor against host cells especially toxic to human	Vögele et al., 2019, Rai et al., 2016
Bificin C6165	Bifidobacterium animalis	Active against almost sixteen strains of *Alicyclobacillus acidoterrestris*	Pei et al., 2014
Thuricin S	Bacillus thuringiensis	Bactericidal to sensitive cells of *B. thuringiensis* subsp. *dermatisdihensis*	Chehimi et al., 2010
Cerein 8A	Bacillus cereus	Antibacterial to closely related species also includes *E. coli* and *Salmonella enteritidis, L. monocytyogenes*	Bizani et al., 2005
Table 2 List of some bacteriocins that follow the cell wall inhibition mechanism

Name of the bacteriocin	Producing microorganism	Inhibition spectrum	Ref.
Enterolysin A (pH regulated)	Enterococcus faecalis LMG 2333	Inhibits the growth of selected enterococci, pediococci, lactococci and lactobacilli	Nilsen et al., 2003
Helveticin-M	Lactobacillus crispatus	Disrupts the cell wall of gram-positive bacteria and disinorgranized the outer membrane of gram negative bacteria. Active against S. aureus, S. supraphylococcus and Enterobacter cloacae	Sun et al., 2018
Colicin M (29.5kDa)	Escherichia coli	Kills susceptible E. coli cells and other related strains	Barretoeu et al., 2012
BacC1	Enterococcus faecium C1	Inhibit the growth of selective food spoilage bacteria	Goh & Philip, 2015
PLNCS (f)(two peptide bacteriocin)	Lactobacillus plantarum NC8	Effective against periodontal pathogen Porphyromonas gingivalis may form pores causing intracellular leakage	Khalaf et al., 2016
Mersacidin	Bacillus spp	Susceptible to gram-positive bacteria	Lazzis, 2020
Nisin	Lactococcus lactis	Kills vegetative cells of gram-positive bacteria	Jozala et al., 2015
Lysostaphin	Staphylococcus simulans bv. staphylofticus	Effective against S. aureus and may other related strains	Gründling et al., 2006
S.s bacteriocin	Streptococcus sanguinis	Effective against Candida albicans and Candida tropicalis	Ma et al., 2015
Planosporicin	Planomonospora spp.	Active against gram positive pathogens of medical importance, including multi-resistant clinical isolates	Castiglione et al., 2007
Acidocin IB	Lactobacillus acidophilus GP1B	Active against LAB and other pathogens including gram negative bacteria	Han et al., 2007
Butyrin 7423	Clostridium butyricum NCIB 7423	Have non-lytic action on C. pasteurianum but bactericidal to other species of Clostridium	Clarke et al., 1976
Halocin H6	Halobacterial sp.	Inhibit the growth of other halobacteria	Torreblanca et al., 1990
Pin 149 (amphiphatic o-helical antimicrobial peptide)	Lactobacillus plantarum NRIC 149	Active against S. cerevisiae, applicable in food industries for disrupting cells as non-enzymatic non-mechanical process	Lopes et al., 2009
Millercin B	Streptococcus milleri NMSCC 061	Active against broad spectrum of gram positive bacteria except B. subtilis W23 and E. coli ATCC 486	Beukes et al., 2000
NAI-107 (microbisporicin)	Microbispora s. ATCC PTA-5024	Active against multi-drg resistant gram-positive pathogens including MRSA and VRE and some gram negative spp.	Münch et al., 2014
SK 119	L. plantarum subsp. plantarum SK119	Listeria active bacteriocin (also forms pores but researchers insists that cell death associated with damage of cell membrane)	Botthoulath et al., 2018
Mesenterocin 52A	Leuconostoc mesenteroides subsp. Mesenteroides PR52	Inhibit membrane of Listeria ivanovii CIP 12510 without pore formation and of Listeria innocua CIP 12511 with pore formation	Jasniwerski et al., 2008

Nucleic acid activity inhibition/protein inhibition

Generally, the nucleic activity involves the breakdown of macromolecules like the disruption of bonds between nucleotides in nucleic acids such as DNA and RNA. Table 3. showed the list of bacteriocins that inhibits protein or nucleic activity of the targeted cell. The bacteriocins which follow this mechanism are also known as nuclease bacteriocins (NBs). Different nuclease bacteriocins are involved in the inhibition of DNA, RNA and protein synthesis together with permease function and show the primary effect on the deployment of energy by the bacterium (Reeves, 1972). They usually have a broad range of size, ranges from 178 to777 amino acid (Bindiya et al., 2016). The colicins, plasmid encoded bacteriocin from Escherichia coli also shows nucleic activity. Even the colicin E1 and K inhibits all macromolecule synthesis without the arrest of respiration while others may act by cleaving the precise site of particular nucleic acid (Cascaleset et al., 2007). They contain an N-terminal translocation domain, a central receptor binding domain and a C-terminal cytotoxic domain that binds a cognate immunity protein however the location of the translocation and receptor-binding domains in pyocins (bacteriocins from Pseudomonas aeruginosa) appears to be reverse (Atanaskovic et al., 2019). Translocations of nucleic colicins across the outer and inner membrane must be necessary to achieve their target in the cytoplasm (Cascales et al., 2007; de Zamaroczy et al., 2011). During translocation, the immunity proteins of nucleic colicins may be dissociated at the cell surface in a pmf-dependent step (Sharp et al., 2017). The nucleic bacteriocin delivered to the cytoplasm of a targeted cell which involves the DNA chromosomal cleavage randomly led to the cell death. Many nucleic colicins like colicin E2, E7, E8 and E9 found to exhibit their antimicrobial activity by the action of Dnase which involves the non-specific cleavage of genomic DNA (Schaller et al., 1976; Chakel et al., 1991; Cooper et al., 1984).HNH/ββα-Me motif acts as the catalytic centre of many colicins and pyocins DNases by hydrolyzing the phosphodiester bond through cleavage with a single divalent metal ion (Klein et al., 2016). Walker et al., (2007) showed that the toxic action of nucleic colicins depends upon functional Fe3, an inner membrane AAA+ ATPase and protease that dislocates misfolded membrane proteins to the cytoplasm of a targeted cell as to cause cell death. LepB which is an important inner membrane enzyme of E. coliand is a key membrane component of cellular secretion machinery offered a chaperon-like function for the penetration of several nucleic bacteriocins into a target cell in addition to this it was also reported as the necessary component of machinery hijacked by the iRNase colicin D for its import (Mora et al., 2015). Colicin like E3, E4, E6 exhibit RNase activity, out of which Colicin E3 is most widely studied, which is known to cleaves the 3' region of 16S rRNA between A1493 and G1494 (E. coli numbering) in the decoding A-site and decreases the acceptance of cognate aminoacyl-tRNAs (aa-tRNAs) and thus slow down the protein synthesis and finally cause the death of the targeted cell (Ogawa et al., 2016).

ATP SYNTHESIS INHIBITION

Many bacteriocins also show their antimicrobial activity by inhibiting the ATP synthesis or by the release of ATP out of the cell. The bacteriocin that showed the ATP inhibition accompanied by other mechanisms is shown in Table 4. The ATP synthesis inhibition accompanied by either cell wall synthesis inhibition or by pore formation which allows the secretion or reduction of ATP along with other ionic molecules as stated by many researchers. There are many examples of bacteriocins that involved in ATP synthesis inhibition like mesenterocin Y105 produced by Leuconostoc mesenteroides strain which is a pore-forming bacteriocin, had been found to show the effects on cell organelle, where it uncouples the mitochondria by increasing state 4 respiration and decreasing state 3 respiration. It also inhibits the ATP synthase and adenine nucleotide translocase of the organelle (Maftah et al., 1993). Similarly, microcin J25 also showed inhibition of ATP along with concomitant enhancement of ATP degradation. It was also observed for altering the membrane permeability and inhibiting the enzymatic activity of cytochrome C reductase (complex III) of the respiratory chain (Chirowu et al., 2004). The increased ATPase activity found to be responsible for acid sensitivity of nisin-resistant Listeria monocytogenes which cause cell death on the addition of an acid like hydrochloric acid or lactic acid (McEntree et al., 2004). Sometimes, as a consequence of a shift in the ATP equilibrium, the ATP is hydrolysed into ADP and AMP due to the effux of phosphate through the channels (Guilhard et al., 2010).
inhibition of ATP synthesis either as a primary or as a secondary action of these antimicrobials.

Name of the bacteriocin	Producing microorganism	Mode of action	Inhibition spectrum	Ref.
Colicin (E3, E4, E5, E6 and D)	*E. coli* strains	Found to inhibit protein biosynthesis by cleaving 16s rRNA or rRNAs	Active against some other strains of *E. coli* and other related bacteria	Kaur et al., 2015
Smegmatocin	*Mycobacterium smegmatis*	Inhibits the protein and DNA synthesis cells	Sensitive to Mks-A TU-7	Kaur et al., 2015
Colicin E2	*E. coli* K12	Cause specific inhibition of DNA synthesis and induce DNA damage	Active against uropathogenic *E. coli* and other related strains	Konisky, 1982; Pugsley et al., 1985; Trivedi et al., 2014
Colicin L	*Serratia marcescens*	Inhibits the synthesis of proteins, DNA, RNA	Active against certain strains of *E. coli*	Konisky, 1982
Butyricin 7423	*Clostridium butyricum* 7423	Inhibit the synthesis of proteins, DNA, RNA, also lowers the ATP levels	Active against *Clostridium pasteurianum*	Konisky, 1982
Pyocin AP41	*Pseudomonas aeruginosa* AP41	In vivo, inhibits DNA synthesis	Sensitive to *P. aeruginosa* strains	Konisky, 1982
Carocin S2	*Pectobacterium carotovorum*	Cause exhaustingly supplying of RNA which led to inactivation of protein synthesis	Inhibits the growth of closely related species	Chan et al., 2011
Bacteriocin (Unclassified)	*Bacteroides fragilis* strain	Inhibits RNA synthesis which led to the inhibition of protein synthesis but has no effect on DNA	Active only against closely related strains	Mossie et al., 1979
Staphylococcus 1580	*Staphylococcus epidermidis*	Inhibit the synthesis of proteins, DNA, RNA but also have effects on membrane	Bactericidal to many gram positive bacteria and stable staphylococcal L-forms	Jetten and Vogels, 1972
Bacteriocin (unclassified)	*Bacteroides fragilis*	Inhibit ribonucleic acid polymerase	Narrow spectrum of activity	Mossie et al., 1981
Enterocin E1A & E1B	*Streptococcus faecium* E1	Without degrading DNA or RNA it inhibits the synthesis of proteins, DNA and RNA	Active only against certain strains of *enterococci, S. salivarius* & *L. monocytogenes*	Kramer & Brandis, 1975
Megacin C	*Bacillus megaterium*	Inhibits DNA synthesis while protein and RNA are little effected	Specific for other strains of species as well as some closely related strains	Holland, 1965
Lactostreptacin 5	*Lactococcus lactis* subsp. cremoris 202	Inhibits synthesise of proteins, DNA and RNA, also cause ion leakage and interfere with uridine transport	Antimicrobial against *lactococci*	Nettles et al., 1993
Agrocin 84	*Agrobacterium radiobacter*	Inhibits DNA synthesis without degrading it	Antimicrobial against oncogenic strains of *A. Tumefaciens*	Das et al., 1978
Marcescin A	*Serratia marcescens* HY	Inhibit DNA, RNA, protein synthesis, also degrades DNA & RNA	Active against strains of *S. marcescens & E. coli*	Eichenlaub et al., 1974
Marcescin B	*Serratia marcescens* HY	Only inhibits DNA, RNA, protein synthesis	Active only against *E. coli* strains	Eichenlaub et al., 1974
Lactocin 27	*Lactobacillus helveticus* strain LP27	Inhibits primarily protein synthesis	Bacteriostatic to *L. helveticus* strain LS18	Upreti et al., 1975
Streptocin A	Group A *Streptococcus* strain FF-22	Inhibit DNA, RNA, protein synthesis, also interfere with the uptake and incorporation of glucose	Has bactericidal effect on Group A *Streptococcus* species	Tagg et al., 1973
Bacteriocin DF13	*Enterobacter cloacae* DF13	Inhibits primarily protein synthesis had no effect on DNA & RNA synthesis	Has killing action on *Klebsiella Edwardsii*	Graaf et al., 1969
Staphylococcin 462	*Staphylococcus aureus* strain 462	Stop protein synthesis, also inhibits the DNA & RNA synthesis but does not stop it	Inhibition spectrum restricted to strains of *E. faecalis*	Hale et al., 1975
Bacteriocin Bc-48	*Enterococcus faecalis* ssp. *Liquefaciens* S-48 and its mutant B-48-28(AS-48)	Inhibits protein synthesis but does not affect amino acid uptake	Inhibition spectrum restricted to strains of *E. faecalis*	Lopez-Lara et al., 1991
Clostocin O	*Clostridium saccharoperbutylicum*	Synthesis of DNA, mRNA and mononucleotides, moderately effects the lipid, mRNA and protein synthesis	Actively only against closely related strains	Kato et al., 1977
Pneumolysin	*Streptococcus pneumoniae*	Induce DNA damage and cell cycle arrest	Effective against *S. pneumoniae* infections	Rai et al., 2016
Table 4 List of bacteriocin that shows ATP inhibition accompanied by other mechanisms

Name of the bacteriocin	Producing microorganism	Primary mechanism	Effect on ATP	Ref.
Pyocin R1	Pseudomonas aeruginosa	Membrane depolarization	Cause decrease in intracellular ATP level without affecting the respiration of sensitive cells	Uratani et al., 1984
Linencin OC2	Brevibacterium linensOC2	Acts on cytoplasmic membrane (Membrane depolarization), active against Listeria innocua	Cause hydrolysis of internal ATP along with efflux of Pi and cause transient increase in oxygen consumption	Boucabelle et al., 1998
Enterocin LD3	Enterococcus hirae LD3	Cause dissipation of cell membrane (inhibits gram positive and gram negative bacteria including human pathogens)	Loss of internal ATP	Gupta et al., 2016
Pediocin PA-1	Pediococcus acidilactici PAC 1.0	Pore formation	ATP depletion occurs in concentration and time-dependent manner, also induce irreversible K+ and Pi efflux	Chen et al., 1995; Chikinidas et al., 1993
Nisin A	Lactococcus lactis strains	-	Reduced the ATP and cause the leakage of intracellular ATP out of the targeted cell i.e. Mycobacterium smegmatis	Montville et al., 1999
Pentocin 31-1	Lactobacillus pentosus	Cause cell membrane permeabilization	Efflux of ATP along with K+ and Pi	Zhou et al., 2008
Viridin B	Streptococcus mitis (mitior)	Block macromolecule synthesis without causing any degradation	ATP production of targeted cell was slightly enhanced within 1h of exposure to bacteriocin	Law et al., 1978
Lactacin F	Lactobacillus johnsonii	Form poration complex in cytoplasmic membrane	Cause hydrolysis of internal ATP along with loss of cellular K+	Abee et al., 1994
Bacteriocin CHQS	Enterococcus faecalis TG2	Changes the cell membrane permeability, integrity and proton motive force	Cause massive release of ATP and UV absorbing materials	Cao et al., 2019
Bacteriocin 2a	Lactobacillus sake strain	Pore formation	Reduce the intracellular ATP with no detectable increase in extracellular ATP	Rosa et al., 2002
Pisciecin CSS26	Carnobacterium piscicola CSS26	Pore formation	ATP level rapidly reduced without leakage of ATP from the cells, indicating ATP depletion	Suzuki et al., 2005

CONCLUSION

As described above, we can recapitulate that how these bacteriocins are inhibiting the growth of bacteria replacing the hazardous chemical preservatives in agro-food industries and become prominence for society as they involve in the killing of pathogens by following mechanisms. Due to their diversity in various aspects like mode of action, uses and their habitat they may provide new and more advanced pathways for researchers in the area of medical, pharma, agriculture and food biotechnology for the sake of humanity. To overcome, antibiotic-resistant related issue in the medical sector this can warrant an alternative and provide the researchers to remove insurmountable difficulties.

CONFLICTS OF INTEREST: No potential conflict of interest was reported by the authors.

REFERENCES

Abee, T., & Delves-Broughton, J. (2003). Bacteriocins-Nisin. In: Russell NJ, Gould GW (eds). Food Preservatives. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30042-9 8
Abee, T., Klaenhammer, T. R., & Letellier, L. (1994). Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Applied and Environmental Microbiology, 60(3), 1006-1013.
Abengózar, M. A., Cebrián, R., Saugur, J. M., Gárate, T., Valdivia, E., Martínez-Bueno, M., ... & Rivas, L. (2017). Enterocin AS-48 as evidence for the use of bacteriocins as new leishmanicidal agents. Antimicrobial agents and chemotherapy, 61(4), e02288-16. https://doi.org/10.1128/AAC.02288-16
Adams, M. R., & Moss, M. O. (2008). Food microbiology. Royal society of chemistry.

AIKhanit, Z., Lagedroste, M., Fey, I., Kleinschrodt, D., Abts, A., & Smits, S. H. (2014). Lantibiotic immunity: inhibition of nisin mediated pore formation by NisJ. PloS one, 9(7), e102246.
Alouf, J. E. (2003). Molecular features of the cytolytic pore-forming bacterial protein toxins. Folia microbiologica, 48(1), 5.
Anderluh, G., & Lakey, J. H. (2008). Disparate pr...
Bazini, D., Motta, A. S., Morris, J. A., Terra, R., Souto, A. A., & Brandelli, A. (2005). Antibacterial activity of cerein 8A, a bacteriocin-like peptide produced by Bacillus cereus. International Microbiology, 8(2), 125-131.

Bottouhlaith, V., Upachit, A., & Thumarat, U. (2018). Characterization of Listeria monocytogenes bacteriocin produced by a new strain Lactobacillus plantarum plantarum strain SK191 isolated from “ sai krok e-san mu”. International Food Research Journal, 25(6), 2362-2371.

Bouabecilé, C., Letellier, L., Simonet, J. M., & Henkes, G. (1998). Mode of action of linencin OC2 against Listeria innocua. Applied and environmental microbiology, 64(5), 1541-1544.

Breukink, E., van Heusden, H. E., Vollmerhaus, P. J., Swiezewska, E., Brunner, L., Walker, S., ... & de Kruijff, B. (2013). Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. Journal of Biological Chemistry, 287(22), 19989-19993.

Cao, S., Du, R., Ren, X. H., Han, Y., & Zhou, Z. (2019). The mode of action of bacteriocin CHQS, a high antibacterial activity bacteriocin produced by Enterococcus faecalis TG2. Food Control, 96, 470-478.

Cascales, E., Buchan, S. K., Duche, D., Kleanthou, C., Lhoubes, R., Postle, K., ... & Cavadar, D. (2007). Colicin biology. Microbiology and Molecular biology reviews, 71(4), 159-229.

Castellano, P., Raya, R., & Vignolo, G. (2003). Mode of action of lactocin 705, a two-component bacteriocin from Lactobacillus casei CRL705. International journal of food microbiology, 85(1-2), 35-43.

Castiglione, F., Cavaletti, L., Losi, D., Lazarrino, A., Carrano, L., Ferrogio, M., ... & Selva, E. (2007). A novel lantibiotic acting on bacterial cell wall synthesis prompted by a lactic acid bacterium, Lactobacillus brevis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1768(3), 358-364.

Chehimi, M. L., García-Garcera, M. J., Driessen, A. J., Ledeboer, A. M., Carbonell, E., Buchanan, S. K., & De Mot, R. (2013). Fluorescence anisotropy analysis of the mechanism of action of plantaricin NC8 from Lactobacillus plantarum. Microbiology and molecular biology reviews, 77(3), 317-337.

Choi, L., & Levin, B. R. (1981). Structured habitats and the evolution of anticompetitor toxins in bacteria. Proceedings of the National Academy of Sciences, 78(10), 6324-6328.

Clarke, D. J., & Morris, J. G. (1976). Butyricin 7423: a bacteriocin produced by a human gut symbiont. Microbiology and Molecular Biology Reviews, 40(4), 317-337.

Chehimi, M. L., Buchanan, S. K., Duché, D., Kleanthou, C., Lhoubes, R., Postle, K., ... & Cavadar, D. (2007). Colicin biology. Microbiology and Molecular biology reviews, 71(4), 159-229.

Castellano, P., Raya, R., & Vignolo, G. (2003). Mode of action of lactocin 705, a two-component bacteriocin from Lactobacillus casei CRL705. International journal of food microbiology, 85(1-2), 35-43.

Castiglione, F., Cavaletti, L., Losi, D., Lazarrino, A., Carrano, L., Ferrogio, M., ... & Selva, E. (2007). A novel lantibiotic acting on bacterial cell wall synthesis prompted by a lactic acid bacterium, Lactobacillus brevis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1768(3), 358-364.

Choi, L., & Levin, B. R. (1981). Structured habitats and the evolution of anticompetitor toxins in bacteria. Proceedings of the National Academy of Sciences, 78(10), 6324-6328.

Clarke, D. J., & Morris, J. G. (1976). Butyricin 7423: a bacteriocin produced by a human gut symbiont. Microbiology and Molecular Biology Reviews, 40(4), 317-337.

Chehimi, M. L., Buchanan, S. K., Duché, D., Kleanthou, C., Lhoubes, R., Postle, K., ... & Cavadar, D. (2007). Colicin biology. Microbiology and Molecular biology reviews, 71(4), 159-229.

Castellano, P., Raya, R., & Vignolo, G. (2003). Mode of action of lactocin 705, a two-component bacteriocin from Lactobacillus casei CRL705. International journal of food microbiology, 85(1-2), 35-43.

Castiglione, F., Cavaletti, L., Losi, D., Lazarrino, A., Carrano, L., Ferrogio, M., ... & Selva, E. (2007). A novel lantibiotic acting on bacterial cell wall synthesis prompted by a lactic acid bacterium, Lactobacillus brevis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1768(3), 358-364.

Choi, L., & Levin, B. R. (1981). Structured habitats and the evolution of anticompetitor toxins in bacteria. Proceedings of the National Academy of Sciences, 78(10), 6324-6328.

Clarke, D. J., & Morris, J. G. (1976). Butyricin 7423: a bacteriocin produced by a human gut symbiont. Microbiology and Molecular Biology Reviews, 40(4), 317-337.

Choi, L., & Levin, B. R. (1981). Structured habitats and the evolution of anticompetitor toxins in bacteria. Proceedings of the National Academy of Sciences, 78(10), 6324-6328.

Clarke, D. J., & Morris, J. G. (1976). Butyricin 7423: a bacteriocin produced by a human gut symbiont. Microbiology and Molecular Biology Reviews, 40(4), 317-337.
Micrococcus luteus without targeting lipid II. Applied microbiology and biotechnology, 102(17), 7465-7473.

Jozala, A. F., Novaes, L. C. L., & Junior, A. P. (2015). Nisin, Concepts, Compounds and the Alternatives of Antibacterials. Immunology and Microbiology, 5, 103.

Kato, S., & Kaur, S. (2015). Bacteriocins as potential anticancer agents. Frontiers in pharmacology, 6, 272. https://doi.org/10.3389/fphar.2015.00272

Kaušk, R., & Arora, S. (2017). Effect of calcium and vitamin D2 fortification on physical, microbial, rheological and sensory characteristics of yogurt. International Food Research Journal, 24(4).

Kaušk, R., Saka, S., & Saka, S. (2017). Effect of calcium and vitamin D2 fortification on quality characteristics of dahi. International Journal of Dairy Technology, 70(2), 269-276.

Khalaf, H., Nakka, S. S., Sandén, C., Svärd, A., Hultenby, K., Scherbak, N., & Bengtsson, T. (2016). Antibacterial effects of Lactobacillus and bacteriocin PLNC8 qf on the periodontal pathogen Porphyromonas gingivalis. BMC microbiology, 16(1), 1-11. https://doi.org/10.1186/s12866-016-0810-3

Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS microbiology reviews, 12(1-3), 39-85.

Klein, A., Wodjyla, J. A., Joshi, A., Josts, L., McCaughey, L. C., Housden, N. G., & Kleanthous, C. (2016). Structural and biophysical analysis of nuclear acid polymerase by a bacteriocin. Biochemical Journal, 475(18), 2799-2802. DOI: 10.1042/BCJ20160544

Konisky, J. (1982). Colicins and other bacteriocins with establisment of a receptor. Biochimica et Biophysica Acta (BBA), 700, 255-275.

Lagos, R., Tello, M., Mercado, G., García, V., & Martínez, X. (2019). Membrane Permeabilization by Pore-Forming RTX Toxins: What Kind of Lesions Do These Toxins Form? Toxins, 11(6), 354. https://doi.org/10.3390/toxins11060354

Law, D. J., & Dajani, A. S. (1978). Interactions between Neisseria sicca and viridun B, a bacteriocin produced by Strepotococcus mitis. Antimicrobial agents and chemotherapy, 13(3), 473-478.

Li, J., Aroutcheva, A. A., Faro, S., & Chikindas, M. L. (2005). Mode of action of bifidocin A, a novel broad spectrum bacteriocin isolated from natural lactic acid fermentation of wild Himalayan fig Lepis. Applied and Environmental Microbiology, 71(5), 2717-2721.

Makris, H., Sönntgen, F. D., Wechsellberger, R., Dingley, A. J., Hung, W. C., Kopp, A., & Leippe, M. (2013). Structure and function of a unique pore-forming protein from a pathogenic acanthamoeba. Nature chemical biology, 9(1), 37-42.

Moll, G. N., Roberts, G. C., Konings, W. N., & Driessen, A. J. (1996). Mechanism of lanthibiotic-induced pore-formation. Antonie van Leeuwenhoek, 69(2), 185-191. https://doi.org/10.1007/BF00399423

Mokoena, M. P. (2017). Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules, 22(8), 1255.

Molla, G. N., Roberts, G. C., Konings, W. N., & Driessen, A. J. (1996). Mechanism of lanthibiotic-induced pore-formation. Antonie van Leeuwenhoek, 69(2), 185-191. Molla, L., Moncoq, K., England, P., Oberto, J., & de Zamaroczy, M. (2015). The stable interaction between signal peptide LepB of Escherichia coli and membrane bacteriocins promotes to enter into the cytoplasm. Journal of Biological Chemistry, 290(52), 30783-30796.

Mossie, K. G., Jones, D. T., Robb, F. T., & Woods, D. R. (1979). Characterization and mode of action of a bacteriocin produced by a Bacteroides fragilis strain. Antimicrobial Agents and Chemotherapy, 10(6), 724-730.

Mossie, K. G., Robb, F. T., & Woods, D. R. (1981). Inhibition of ribonucleic acid polymerase by a bacteriocin from Bacteroides fragilis. Antimicrobial Agents and Chemotherapy, 20(4), 437-442.

Münch, D., Müller, A., Schneider, T., Kohl, B., Wenzel, M., Bandow, J. E., ... & Sahl, H. G. (2014). The lantibiotic NAI-107 binds to bacteropod-bound cell wall precursors and impairs membrane functions. Journal of Biological Chemistry, 289(17), 12063-12076.

Nettles, C. G., & Baretfoot, S. F. (1993). Biochemical and genetic characteristics of bacteriocins of food-associated lactic acid bacteria. Journal of food protection, 56(4), 338-356.

Nisel, T., Nes, I. F., & Hol, H. (2003). Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Applied and environmental microbiology, 69(5), 2975-2984.

Nissen-Meyer, J., Hol, H., Häharstein, L. S., Sletten, K., & Nes, I. F. (1992). A novel lactococcial bacteriocin whose activity depends on the complementary action of two peptides. Journal of bacteriology, 174(7), 5686-5692.

Ogawa, T. (2016). tRNA ribonuclease protein f8 binds to bactoprenol bound cell wall precursors of enterococcus faecalis ATCC 700302. Antimicrobial Agents and Chemotherapy, 60(1), 290-297.

Ogawa, T. (2016). tRNA ribonuclease protein f8 binds to bactoprenol bound cell wall precursors of enterococcus faecalis ATCC 700302. Antimicrobial Agents and Chemotherapy, 60(1), 290-297.

Ogawa, T. (2016). tRNA ribonuclease protein f8 binds to bactoprenol bound cell wall precursors of enterococcus faecalis ATCC 700302. Antimicrobial Agents and Chemotherapy, 60(1), 290-297.

Organization, K., Kaewnopparat, S., Pitakpornpreecha, T., & Srichana, T. (2006). Production of physicochemical characterization of Enterococcus faecalis ATCC HC5. Current microbial and biotechnology, 10(1), 74-85.

Lai, A. J. F. B. (2020). Biomolecular and bioprocessing for the production of bacteriocins from Bacillaceae family. Bioresources and Bioprocessing, 7(1), 1-26. https://doi.org/10.1186/s41064-020-0295-z

Law, D. J., & Dajani, A. S. (1978). Interactions between Neisseria sicca and viridun B, a bacteriocin produced by Strepotococcus mitis. Antimicrobial agents and chemotherapy, 13(3), 473-478.

Leeuwenhoek, G., & Berkeley, R. C. W. (2019). Forming RTX Toxins: What Kind of Lesions Do These Toxins Form? Toxins, 11(6), 354. https://doi.org/10.3390/toxins11060354

Paiva, A. D., Breukink, E., & Mantovani, H. C. (2011). Role of lipid II and membrane thickness in the mechanism of action of the lanthionine bovican HC5, Antimicrobial agents and chemotherapy, 55(11), 5248-5249.

Panchal, R. G., Smart, M. L., Bowser, D. N., Williams, D. A., & Petro, S. (2002). Pore-forming proteins and their application in biotechnology. Current pharmaceutical biotechnology, 3(2), 99-115.

Pangsomboon, K., Kaewnopparot, S., Ptakpomprach, T., & Sirichana, T. (2006). Antimicrobial activity of a bacteriocin from Lactobacillus paracasei paracasei H3 against pathogenic bacterium. Asian Journal of Biological Sciences, 9(9), 784-793.

Parada, J. L., Caron, C. R., Medeiros, A. B. P., & Soccol, C. R. (2007). Bacteriocins from lactic acid bacteria: purification, properties and uses as biopreservatives. Brazilian archives of biology and Technology, 50(3), 512-542.

Pei, J., Yue, T., & Yuan, Y. (2014). Control of Alicyclobacillus acidoterrestris in fruit juices by a newly discovered bacteriocin. World Journal of Microbiology and Biotechnology, 30(3), 855-863.
Tahara, T., Oshima, M., Umezawa, C., & Kanatani, K. (1996). Isolation, partial characterization, and mode of action of acidocin J1132, a two-component bacteriocin produced by Lactobacillus acidophilus IBB 801. *Applied and Environmental Microbiology*, 62(3), 892-897.

Todorov, S. D., & Dickenson, C. (2012). Lactobacillus plantarum isolated from molasses produces bacteriocin active against Gram-negative bacteria. *Enzyme and Microbial Technology*, 56(2-3), 318-326.

Tol, M. B., Morales Angeles, D., & Scheffers, D. J. (2015). In vivo cluster formation of nisin and Lipid II is correlated with membrane disruption. *Antimicrobial agents and chemotherapy*, 59(6), 3683-3686.

Tolnaički, M., Kojić, M., Lozo, J., Teržić-Vidojević, A., Topisirović, L., & Fira, D. (2010). Characterization of the bacteriocin-producing strain Lactobacillus paracasei subsp. paracasei BGUB9. *Archives of Biological Sciences*, 62(4), 889-899.

Torrebranca, M., Meseguer, I., & Rodrguez-Valera, F. (1990). Effects of halocin H6 on the sensitivity of some biofilms. *Cell Biology and Cell Communication*, 68(1), 396-399.

Trees, C., Jena, P. K., & Seshadri, S. (2014). Colicin E2 Expression in Lactobacillus brevis DT24, a vaginal probiotic isolate, against uropathogenic Escherichia coli. *International Scholarly Research Notices*, 2014. https://doi.org/10.1155/2014/806910

Tumbarski, Y., Lante, A., & Krasianov, A. (2018). Immobilization of bacteriocins from lactic acid bacteria and possibilities for application in food biotechnology. *Journal of Food Processing and Technology*, 9(1), 1-17.

Turek, R. K., Hotze, E. M., & Wade, K. R. (2015). The unique molecular choreography of giant pore formation by the cholesterol-dependent cytolysins of Gram-positive bacteria. *Annual review of microbiology*, 69, 323-340.

Turpeeng, G. C., & Hinsdill, R. D. (1975). Production and mode of action of lacticin 27: bacteriocin from a homologenic Lactobacillus. *Antimicrobial agents and chemotherapy*, 7(2), 139-145.

Uzun, G., Baskurt, A., & Ozcelik, Y. (2016). Application of bacteriocin Lactobacillus pentosus CS2 with quorum sensing regulatory mechanism in plant protection. *Frontiers in microbiology*, 7(572), 632-636.

Uma, M. K., Abraham, S., & Saleem, M. (2011). Antibacterial activity of the plant extract of Sonneratia alba, T., Oshimura, M., Umezawa, C., & Kanatani, K. (1996). Isolation, partial characterization, and mode of action of acidocin J1132, a two-component bacteriocin produced by Lactobacillus acidophilus IBB 801. *Applied and Environmental Microbiology*, 62(3), 892-897.