Citrullination in Rheumatoid Arthritis—A Process Promoted by Neutrophil Lysis?

Tal Gazitt, M.D., M.Sc.,* Christian Lood, Ph.D., and Keith B. Elkon, M.D.

Division of Rheumatology, University of Washington, Seattle, WA, USA

ABSTRACT

Anti-citrullinated protein antibodies (ACPA s) are highly specific serologic markers for rheumatoid arthritis (RA) and can pre-date clinical disease onset by up to 10 years, also predicting erosive disease. The process of citrullination, the post-translational conversion of arginine to citrulline residues, is mediated by peptidylarginine deiminase (PAD) enzymes present in polymorphonuclear cells (PMNs). Calcium ions (Ca$^{2+}$) are required for PAD activation, but the intracellular Ca$^{2+}$ concentration in normal cells is much lower than the optimal Ca$^{2+}$ concentration needed for PAD activation. For this reason, it has been proposed that PAD activation, and thus citrullination, occurs only during PMN cell death when PAD enzymes leak out of the cells into the extracellular matrix, or extracellular Ca$^{2+}$ enters the cells, with the high Ca$^{2+}$ concentration activating PAD. Recently, using artificial in vitro systems to corroborate their hypothesis, Romero et al. demonstrated that “hypercitrullination,” citrullination of multiple intracellular proteins, occurs within synovial fluid (SF) cells of RA patients, and that only modes of death leading to membranolysis such as perforin–granzyme pathway or complement membrane attack complex activation cause hypercitrullination. In order for Romero’s hypothesis to hold, it is reasonable to surmise that PMN-
Citrullination in RA—A Process Promoted by PMN Lysis?

Citrullination, the post-translational conversion of arginine to citrulline residues by peptidylarginine deiminase enzymes (PADs), is thought to be an essential contributor to the rheumatoid arthritis (RA) disease pathogenesis. The potential role of citrullination in RA pathogenesis arises from several observations: rheumatoid arthritis patients have an increase in citrullinated proteins and PAD activity in mucosal surfaces as well as in synovial fluid; the citrullination reaction relevant to RA is mediated by two isoforms, PAD 2 and 4, both of which are present in neutrophils and which are the dominant PADs found in the synovial fluid of RA patients; and therapies that reduce PAD activity (including Cl-amidine, glucocorticoids, and paclitaxel) are associated with disease amelioration in animal models of arthritis. However, as none of the mentioned drugs selectively targets PADs, and Cl-amidine and its analogues as well as paclitaxel are yet to be tested in human RA, the therapeutic effect of PAD inhibition in human RA is still uncertain.

ANTI-CITRULLINATED PROTEIN ANTIBodies IN RA

Protein citrullination occurs not only in solution but also on cell-bound targets, including synovial fluid platelet-derived microparticles. Those citrullinated proteins, either cell-bound or in solution, may be targeted by autoantibodies to induce immune complex formation and subsequent FcγR-mediated inflammatory responses. The presence of autoantibodies directed against citrullinated proteins (anti-citrullinated protein antibodies, ACPAs) is considered a specific serologic marker for RA. Anti-citrullinated protein antibodies can often pre-date clinical disease onset by up to 10 years, also predicting erosive disease. Research involving preclinical RA cohorts points to a maturation process of the ACPA response with an increase in the number of autoantibodies to different citrullinated targets close to the onset of clinical disease, likely via epitope spreading. Further, evidence of ongoing B cell activation in response to citrullinated proteins in RA comes from the work of Tan et al. on the ACPA repertoire of RA patients showing differential epitope targeting by individual peripheral blood plasmablasts to citrullinated enolase, fibrinogen, and histone H2B. The discovery of well-developed IgA ACPA responses in at-risk individuals and in the stored serum of RA patients obtained at the preclinical phase of disease suggests that the immune pathogenesis occurs at mucosal surfaces in the earliest phases of RA and may serve as a trigger of systemic autoimmunity. Of particular relevance to this hypothesis is the finding that Porphyromonas gingivalis (a bacterium associated with periodontal disease, a condition which is more prevalent in new-onset, treatment-naïve RA patients than healthy controls) is uniquely able to modify arginine residues to citrulline by virtue of having its own isoform of PAD. This isoform is thought to citrullinate molecular targets not normally accessible to endogenous human PADs. Additional support for the mucosal origin of autoimmunity is work implicating the lung in RA disease pathogenesis. Several studies have reported that smoking, the greatest known environmental risk factor for RA development, increases the citrullination of lung proteins and is associated with ACPA formation specifically in patients with the HLA-DRB1*04:01 and *04:04 RA susceptibility haplotype.

CITRULLINATION AND THE RA SHARED EPITOPE

While it has long been appreciated that the close association between the shared epitope and RA susceptibility is tied to the expression of ACPAs, recent work has shed light on this association. Work by Snir et al. revealed that peptides derived from citrullinated vimentin bound more avidly to the binding pocket of HLA-DRB1*04:01 compared to the unmodified protein. This, in turn, leads to activation of CD4+ T cells reactive to citrullinated vimentin. Subsequent work by Scally et al. aimed at elucidating the crystal
Citrullination in RA—A Process Promoted by PMN Lysis?

The notion of NETosis being sufficient to explain the broad range of citrullinated autoantigens to which ACPAs bind in RA has been questioned. In an attempt to explore the range of citrullinated targets and also the mode of cell death relevant to citrullination, Romero et al.29 examined a process that they called “hypercitrullination.” Hypercitrullination refers to citrullination of multiple intracellular proteins, which the authors showed does occur in cells obtained from RA synovial fluid. Using in vitro reagents, Romero et al.29 revealed that hypercitrullination depended on two specific immune-mediated membranolytic pathways: one mediated by cytotoxic cells through the perforin-granzyme pathway, and the other mediated by complement activation and formation of the membrane attack complex. Their findings were corroborated in a recent publication by Zhou et al.,30 who demonstrated that membranolytic agents that trigger a sufficient influx of extracellular Ca\(^{2+}\) induce a marked citrullination of multiple proteins in human neutrophils and monocytes and, to a lesser extent, in T lymphocytes and natural killer cells.

In order for Romero’s hypothesis to hold, it is reasonable to surmise that neutrophil-directed lysis should occur in the rheumatoid joint or the circulation of RA patients. Complement activation, a potential mediator of membranolytic cell death, has been shown to occur in the RA synovium31 and has long been known to participate in recruitment and activation of neutrophils in RA.32 Research conducted by Starkebaum and colleagues at the University of Washington33–36 revealed that ICs, in particular IgG targeting neutrophils, are present in RA synovial fluid (SF) and mediate neutrophil activation. Although the literature contains conflicting data regarding the nature and prevalence of anti-neutrophil-binding IgG in RA depending on the method used for analysis of antigenic targets,33,34,37,38 it is estimated that IgG-containing ICs as well as complement C3 activation fragments can be found in the joints of >90% of RA patients.39,40
COMPLEMENT ACTIVATION AS A POTENTIAL CONTRIBUTOR TO HYPERCITRULLINATION IN RA

Because IgG is known to activate complement, neutrophil-directed IgG likely participates in neutrophil lysis by complement activation. In keeping with the hypothesis of IgG-mediated complement activation in SF, Bedwell et al. and Swaak et al. both showed that high levels of aggregated IgG bearing the C3 complement activation breakdown component C3d can be found in SF of RA patients, correlating with level of complement. Further, Brodeur et al. showed that SF levels of complement C5b-9 and fragment Bb are elevated in patients with RA. The limitation of these findings, however, is that they do not conclusively support complement activation in the joint, as the source and/or target of complement activation, e.g. the underlying mechanism(s) driving complement activation, cannot be addressed by assessing complement split products in solution. Complicating matters further is the difficulty distinguishing ICs from anti-neutrophil-binding antibodies on the cell surface of neutrophils, which has made it extremely difficult to determine the precise antigenic specificity of anti-neutrophil-binding IgG in RA. Interestingly, anti-neutrophil-binding IgG has been shown to play an important role in mediating neutropenia in Felty’s syndrome, an RA-associated disease in which severe arthritis and neutropenia prevail. However, precisely how anti-neutrophil-binding IgG leads to neutropenia in these patients, and whether this plays a role in complement-mediated neutrophil lysis and hypercitrullination in RA in general, remains to be clarified.

CD8+ T CELL MEDIATED, PMN-DIRECTED CYTOTOXICITY AS A POTENTIAL CONTRIBUTOR TO HYPERCITRULLINATION IN RA

Historically, the role of CD8+ T cells in RA has been overshadowed by the unequivocal role of DRB1 MHC II susceptibility, and hence CD4+ T cells, in the disease. However, it is well known that CD4+ T cells prime CD8+ T cells for effector function. Recently, de Hair and colleagues emphasized the importance of CD8+ T cells in early RA through detection of perforin and granzyme-producing CD8+ T cells in the synovium of patients with preclinical RA. Carvalheiro et al. similarly demonstrated abundant perforin/granzyme+ CD8+ T effector cells in the peripheral blood and SF from active RA patients. They showed that this effector T cell phenotype persisted in disease remission, thus maintaining the potential for disease relapse. Remarkably, in the K/BxN chronic mouse model of RA, depletion of CD8+ T cells by thymectomy (to prevent new cells from emerging) cured the mice of RA. Together, these studies support the hypothesis that CD8+ T cell-mediated cytotoxicity (cytotoxic T lymphocytes) may indeed play an important role in promoting synovial inflammation and immune propagation in RA patients. Because polymorphonuclears are the most abundant cell type found in inflammatory SF in the RA joint, these cells may be a target of cytotoxic cells; however, this hypothesis has yet to be explored.

CONCLUSION

In summary, while evidence is accumulating in support of citrullination of multiple proteins as a potential driver in RA disease pathogenesis, direct proof linking membranolytic pathways as contributors to hypercitrullination in RA patients beyond artificial in vitro systems is still lacking. Moreover, future research in the field should establish whether there is a causative relationship between complement activation and neutrophil lysis with neutrophil-directed cytotoxicity occurring preferentially in the RA joint and promoting hypercitrullination.

REFERENCES

1. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 2013;5:178ra40. Full Text
2. Wang F, Chen FF, Gao WB, et al. Identification of citrullinated peptides in the synovial fluid of patients with rheumatoid arthritis using LC-MALDI-TOF/TOF. Clin Rheumatol 2016;35:2185–94.3.
3. Foulquier C, Sebag M, Clavel C, et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum 2007;56:3541–53. Full Text
4. Vossenaar ER, van Venrooij WJ. Citrullinated proteins: sparks that may ignite the fire in rheumatoid arthritis. Arthritis Res Ther 2004;6:107–11. Full Text
5. Bicker KL, Thompson PR. The protein arginine deiminases: structure, function, inhibition, and disease. Biopolymers 2013;99:155–63. Full Text
6. Makrygiannakis D, Revu S, Engström M, et al. Local administration of glucocorticoids decreases synovial citrullination in rheumatoid arthritis. Arthritis Res Ther 2012;14:R20. Full Text

7. Brahn E, Tang C, Banquero ML. Regression of collagen-induced arthritis with taxol, a microtubule stabilizer. Arthritis Rheum 1994;37:839–45. Full Text

8. Willis VC, Gizinski AM, Banda NK, et al. N-α-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J Immunol 2011;186:4396–404. Full Text

9. Cloutier N, Tan S, Boudreau LH, et al. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med 2013;5:235–49. Full Text

10. Sohn DH, Rhodes C, Onuma K. Local joint inflammation and histone citrullination in a murine model of the transition from preclinical autoimmunity to inflammatory arthritis. Arthritis Rheumatol 2015;67:2877–87. Full Text

11. Arend WP, Firestein GS. Pre-rheumatoid arthritis: predisposition and transition to clinical synovitis. Nat Rev Rheumatol 2012;8:573–86. Full Text

12. Sokolove J, Bromberg R, Deane KD, et al. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS One 2012;7:e35296 Full Text

13. van der Woude D, Rantapää-Dahlqvist S, Ioan-Facsinay A, et al. Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann Rheum Dis 2010;69:1554–61. Full Text

14. Tan YC, Kongpachith S, Blum LK, et al. Barcode-enabled sequencing of plasmablast antibody repertoires in rheumatoid arthritis. Arthritis Rheumatol 2014;66:2706–15. Full Text

15. Mankia K, Emery P. Preclinical rheumatoid arthritis: progress toward prevention. Arthritis Rheumatol 2016;68:779–88. Full Text

16. Bos WH, van de Stadt LA, Sohrabian A, Rönnelid J, van Schaardenburg D. Development of anti-citrullinated protein antibody and rheumatoid factor isotypes prior to the onset of rheumatoid arthritis. Arthritis Res Ther 2014;16:405. Full Text

17. Naito M, Hirakawa H, Yamashita A, et al. Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain WR3 revealed extensive genome rearrangements in P. gingivalis. DNA Res 2008;15:215–25. Full Text

18. Abou-Raya A, Abou-Raya S, Abu-Elkheir H. Periodontal disease and rheumatoid arthritis: is there a link? Scand J Rheumatol 2005;34:408–10. Full Text

19. Dissick A, Redman RS, Jones M, et al. Association of periodontitis with rheumatoid arthritis: a pilot study. J Periodontol 2010;81:223–30. Full Text

20. McGraw WT, Potempa J, Farley D, Travis J. Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase. Infect Immun 1999;67:3248–56.

21. Makrygiannakis D, Hermansson M, Ulfgren AK, et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann Rheum Dis 2008;67:1488–92. Full Text

22. Huizinga TW, Amos CI, van der Helm-van Mil AH, et al. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum 2005;52:3433–8. Full Text

23. Snir O, Rieck M, Gebe JA, et al. Identification and functional characterization of T cells reactive to citrullinated vimentin in HLA-DRB1*0401-positive humanized mice and rheumatoid arthritis patients. Arthritis Rheum 2011;63:2873–83. Full Text

24. Scally SW, Petersen J, Law SC, et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J Exp Med 2013;210:2569–82. Full Text

25. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science 2004;303:1532–5. Full Text

26. Wang Y, Li M, Stadler S, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 2009;184:205–13. Full Text

27. Dwivedi N, Radic M. Citrullination of autoantigens implicates NETosis in the induction of autoimmunity. Ann Rheum Dis 2014;73:483–91. Full Text

28. Dwivedi N, Upadhyay J, Neeli I, et al. Felty’s syndrome autoantibodies bind to deaminated histones and neutrophil extracellular chromatin traps. Arthritis Rheum 2012;64:982–92. Full Text

29. Romero V, Fert-Bober J, Negrovoi PA, et al. Immune-mediated pore-forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci Transl Med 2013;5:209ra150. Full Text

30. Zhou Y, Di Pucchio T, Sims GP, Mittereder N, Mustelin T. Characterization of the hypercitrullination reaction in human neutrophils and other leuko-
31. Neumann E, Barnum SR, Tarner IH, et al. Local production of complement proteins in rheumatoid arthritis synovium. Arthritis Rheum 2002;46:934–45. Full Text

32. Bedwell AE, Elson CJ, Carter SD, Dieppe PA, Hutton CW, Czudek R. Isolation and analysis of complement activating aggregates from synovial fluid of patients with rheumatoid arthritis using monoclonal anti-C3d antibodies. Ann Rheum Dis 1987;46:55–64. Full Text

33. Starkebaum G, Arend WP, Nardella FA, Gavin SE. Characterization of immune complexes and immunoglobulin G antibodies reactive with neutrophils in the sera of patients with Felty's syndrome. J Lab Clin Med 1980;96:238–51.

34. Gale R, Bertouch JV, Bradley J, Roberts-Thomson PJ. Direct activation of neutrophil chemiluminescence by soluble immune complexes and antibodies to neutrophils. J Lab Clin Med 1981;98:280–91. Full Text

35. Gale R, Bertouch JV, Gordon TP, Bradley J, Roberts-Thomson PJ. Neutrophil activation by immune complexes and the role of rheumatoid factor. Ann Rheum Dis 1984;43:34–9. Full Text

36. Brimmes J, Halberg P, Jacobsen S, Wiik A, Heegaard NH. Specificities of anti-neutrophil autoantibodies in patients with rheumatoid arthritis (RA). Clin Exp Immunol 1997;110:250–6. Full Text

37. Maher GM, Hartman KR. Detection of antineutrophil autoantibodies by flow cytometry: use of unfixed neutrophils as antigenic targets. J Clin Lab Anal 1993;7:334–40. Full Text

38. Cooke TD, Hurd ER, Jasen HE, Bienenstock J, Ziff M. Identification of immunoglobulins and complement in rheumatoid articular collagenous tissues. Arthritis Rheum 1975;18:541–51. Full Text

39. Holers VM. Complement and its receptors: new insights into human disease. Annu Rev Immunol 2014;32:433–59. Full Text

40. Swaak AJ, Van Rooyen A, Planten O, Han H, Hattink O, Hack E. An analysis of the levels of complement components in the synovial-fluid in rheumatic diseases. Clin Rheumatol 1987;6:350–7. Full Text

41. Brodeur JP, Ruddy S, Schwartz LB, Moxley G. Synovial fluid levels of complement SC5b-9 and fragment Bb are elevated in patients with rheumatoid arthritis. Arthritis Rheum 1991;34:1531–7. Full Text

42. Starkebaum G, Singer JW, Arend WP. Humoral and cellular immune-mechanisms of neutropenia in patients with Felty's syndrome. Clin Exp Immunol 1980;39:307–14. Full Text

43. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998;393:480–3. Full Text

44. de Hair MJ, van de Sande MG, Ramwadhdoebe TH, et al. Features of the synovium of individuals at risk of developing rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis. Arthritis Rheumatol 2014;66:513–22. Full Text

45. Carvalheiro H, da Silva JA, Souto-Carneiro MM. Potential roles for CD8(+) T cells in rheumatoid arthritis. Autoimmun Rev 2013;12:401–9. Full Text