Laparoscopic approach in complicated diverticular disease

Nicolás A Rotholtz, Alejandro G Canelas, Maximiliano E Bun, Mariano Laporte, Emmanuel E Sadava, Natalia Ferrentino, Sebastián A Guckenheimer

Nicolás A Rotholtz, Alejandro G Canelas, Maximiliano E Bun, Mariano Laporte, Emmanuel E Sadava, Natalia Ferrentino, Sebastián A Guckenheimer, Department of Surgery, Hospital Alemán, Buenos Aires C1118AAT, Argentina

Abstract

AIM: To analyze the results of laparoscopic colectomy in complicated diverticular disease.

METHODS: This was a retrospective cohort study conducted at an academic teaching hospital. Data were collected from a database established earlier, which comprise of all patients who underwent laparoscopic colectomy for diverticular disease between 2000 and 2013. The series was divided into two groups that were compared: Patients with complicated disease (abscess, perforation, fistula, or stenosis) (G1) and patients undergoing surgery for recurrent diverticulitis (G2). Recurrent diverticulitis was defined as two or more episodes of diverticulitis regardless of patient age. Data regarding patient demographics, comorbidities, prior abdominal operations, history of acute diverticulitis, classification of acute diverticulitis at index admission and intra and postoperative variables were extracted. Univariate analysis was performed in both groups.

RESULTS: Two hundred and sixty patients were included: 28% (72 patients) belonged to G1 and 72% (188 patients) to G2. The average age was 57 (29-89) years. The average number of episodes of diverticulitis before surgery was 2.1 (r 0-10); 43 patients had no...
previous inflammatory pathology. There were significant differences between the two groups with respect to conversion rate and hospital stay (G1 18% vs G2 3.2%, P = 0.001; G1: 4.7 d vs G2 3.3 d, P < 0.001). The anastomotic dehiscence rate was 2.3%, with no statistical difference between the groups (G1 2.7% vs G2 2.1%, P = 0.5). There were no differences in demographic data (body mass index, American Society of Anesthesiology and previous abdominal surgery), operative time and intraoperative and postoperative complications between the groups. The mortality rate was 0.38% (1 patient), represented by a death secondary to septic shock in G2.

CONCLUSION: The results support that the laparoscopic approach in any kind of complicated diverticular disease can be performed with low morbidity and acceptable conversion rates when compared with patients undergoing laparoscopic surgery for recurrent diverticulitis.

Key words: Complicated diverticulitis; Laparoscopy; Recurrent diverticulitis; Sigmoid colectomy; Outcomes

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Several studies have shown clear benefits of the use of laparoscopic colectomy in diverticular disease. However, this approach is not well defined in patients with complicated disease. In the current study, the results support that laparoscopic surgery can be performed with acceptable results for any indication of diverticular disease.

Rotholtz NA, Canelas AG, Bun ME, Laporte M, Sadava EE, Ferrentino N, Guckenheimer SA. Laparoscopic approach in complicated diverticular disease. World J Gastrointest Surg 2016; 8(4): 308-314 Available from: URL: http://www.wjgnet.com/1948-9366/full/v8/i4/308.htm DOI: http://dx.doi.org/10.4240/wjgs.v8.i4.308

INTRODUCTION

Traditionally, the surgical treatment of complicated diverticular disease involved the sigmoid resection and Hartmann’s procedure. Over time, many authors demonstrated good results with the use of primary anastomosis with or without protective ostomy[1-3]. Today, it is clear that the laparoscopic approach has become the gold standard for the surgical treatment of patients with recurrent diverticulitis[4-5]. However, the application of this procedure in complicated diverticular disease remains controversial. Even more questionable is the use of the technique in patients with complicated diverticulitis on the emergency setting and the possibility of sigmoid resection in one step. The main objective of this study was to evaluate the results of the laparoscopic approach in patients with any type of complicated diverticular disease.

MATERIALS AND METHODS

Data were collected prospectively from all patients who underwent laparoscopic sigmoid resection for diverticular disease between 2000 and 2013. Those patients with any other colorectal disease were excluded. All surgeries were performed or supervised by two surgeons with similar experience in laparoscopic surgery.

The series was divided into two groups: Patients with complicated diverticular disease (G1) and patients operated for recurrent diverticultis without evidence of any complication (G2).

Patients with at least one of the following signs were considered to have a complicated diverticular disease: Presence of chronic abscess or severe sequelar inflammation at the time of surgery; fistula; stenosis; or free perforation with purulent or faecal peritonitis.

Demographic characteristics, previous abdominal surgeries and the number of previous episodes of diverticulitis were considered for analysis. Intraoperative variables (e.g., operative time, intraoperative complications and conversion rate were evaluated). Finally, recovery parameters, length of hospital stay and morbidity and mortality were studied.

Conversion was considered when an unplanned incision was made or when other maneuvers beyond the extraction of the specimen were performed over the planned incision[6].

Complications were categorized according the classification of Dindo et al[7]. Mortality related with the procedure was considered when it occurred during hospitalization or within 30 d after surgery.

Statistical analysis

G1 to G2 were compared using univariate statistical analysis. The student’s t-test or ANOVA were used to analyze continuous variables, whereas the χ² or Fisher test were used for categorical variables.

RESULTS

In a 14-year period, 260 laparoscopic sigmoid resections were performed due to diverticular disease. Seventy-two (28%) patients were included in G1 and 188 (72%) in G2.

The patients characteristics from G1 were: 31 (43%) with pericolic or pelvic abscesses; 21 (29%) with perforation; 12 (17%) with fistulae (9 colovesical and 3 colocutaneous); and 8 (11%) with stenosis.

Procedures performed in G1 were: 63 (90%) sigmoid resections with primary anastomosis; 5 (7%) sigmoid resections with primary anastomosis and protective stoma and 2 (3%) Hartmann’s procedures. Fifty-two patients (72%) were operated on emergency setting without significant differences when compared with patients operated for subacute disease. In G2, sigmoid resection with primary anastomosis was performed in all cases.
Demographic data were homogeneous between the groups but G2 patients presented more previous episodes of diverticulitis [G1: 1.36 ± 1.4 (0-5) vs G2: 2.42 ± 1.3 (0-10), \(p < 0.05 \)] (Table 1).

G1 patients had longer operative time [G1: 193 ± 66 (80-345) min vs G2: 156 ± 58 (65-400) min, \(p < 0.05 \)] and higher conversion rate [G1: 13/72 (18%) vs G2: 6/188 (3.2%), \(p < 0.05 \)]. The reasons for conversion in G1 included: Presence of a bulky inflammatory tumor (5 cases); adhesions (3 cases); otherwise unclear anatomy (2 cases); hemorrhage (2 cases); and bladder injury (1 case). In G2, the causes of conversion were: Inability to identify anatomy (4 cases); spleen injury (1 case); and ureteric injury (1 case).

In patients with complicated diverticular disease, a sigmoid resection with primary anastomosis was performed in all cases with primary anastomosis without protective stoma was performed in all cases (\(P < 0.05 \)), with necessity of splenic flexure mobilization in 73 cases (39%, \(P = 0.887 \)).

There were no differences in the rate of intraoperative complications (Table 2). In two cases of G1, an iatrogenic bowel perforation was found without necessity of conversion for its resolution. However, in one case of bladder injury, conversion was required. The intraoperative complications in G2 were: 1 epigastric vessels lesion; 2 spleen injuries; and 1 ureteric lesion. A conversion was necessary in one spleen injury and in the ureteric lesion.

Table 3 shows the variables of postoperative recovery. Patients in G1 had slower intestinal transit and slower oral intake comparing with G2. For these reasons, among others, the hospital stay was longer in this group [G1: 4.7 ± 3.1 (2-15) d vs G2: 3.3 ± 1.8 (1-17) d, \(P < 0.05 \)]. The postoperative complication rate was also higher in G1 [G1: 16/72 (22%) vs G2: 23/188 (12%), \(P < 0.05 \)], but there were no major complications in assessing differences (Grade III, IV and V) (Table 4). The mortality rate was 0.38% (1 patient), represented by a death secondary to septic shock in G2 without evidence of anastomotic fistula. There was no reason to believe that the death was related to the procedure.

Table 1 Preoperative variables \(n (%) \)

Examined variables	Complicated diverticular disease (G1) \(n = 72 (28) \)	Uncomplicated diverticular disease (G2) \(n = 188 (72) \)	\(P \) value
Sex			0.474 (N/S)
Females	24 (33)	73 (39)	
Males	48 (67)	115 (61)	\(\chi^2 \)
Age (yr)	58 ± 12 (29-84)	57 ± 11 (27-89)	0.178 (N/S)
BMI (kg/m\(^2\))	26 ± 4 (19-41)	26 ± 4 (17-41)	0.112 (N/S)
ASA			\(t \)-test
I	16 (22)	50 (27)	0.057 (N/S)
II	47 (65)	128 (68)	\(\chi^2 \)
III	9 (13)	10 (5)	\(\chi^2 \)
Previous abdominal surgery	37 (51)	107 (57)	0.605 (N/S)
Previous episodes of diverticulitis	1.36 ± 1.4 (0-5)	2.42 ± 1.3 (0-10)	< 0.05 \(t \)-test

N/S: No statistical significance; BMI: Body mass index; ASA: American Society of Anesthesiology.

Table 2 Intraoperative variables \(n (%) \)

Examined variables	Complicated diverticular disease (G1) \(n = 72 (28) \)	Uncomplicated diverticular disease (G2) \(n = 188 (72) \)	\(P \) value	
Operative time (min)	193 ± 66 (80-345)	156 ± 58 (65-400)	< 0.05 \(t \)-test	
Intra-operative complications	3 (4)	4 (2)	0.892 (N/S) \(\chi^2 \)	
2 iatrogenic colon/rectal perforation	1 bladder injury	1 epigastric vessels lesion	2 spleen injuries	1 ureteric injury
Conversion rate	13 (18)	6 (3)	< 0.05 \(\chi^2 \)	
Length of colon resected (cm)	23 ± 8 (11-4.5)	22 ± 8 (10-53)	0.531 (N/S) \(t \)-test	

N/S: No statistical significance.
DISCUSSION

Historically, the surgical management of complicated diverticular disease has consisted of laparotomy, colonic resection and end-colostomy (Hartmann’s procedure). Today, controversy exists regarding the role of primary colorectal anastomosis with or without fecal diversion and the feasibility of the use of the laparoscopic approach. Several series have demonstrated that laparoscopic sigmoid resection can be performed with acceptable morbidity and mortality for both inflammatory and neoplastic diseases. The laparoscopic approach demonstrated several advantages, such as smaller wounds, shorter ileus, early resumption of dietary intake and reductions in hospital stay. Furthermore, as shown by Jensen et al., it results in decreased costs and equivalent quality of life, making it the preferred approach in suitable patients. Laparoscopic sigmoidectomy has been shown to be safe, feasible and equivalent to open surgery for uncomplicated diverticulitis. When expertise is available, the laparoscopic approach to elective colectomy is preferred.

Since the minimally invasive approach offers important benefits, laparoscopic sigmoid resection due to recurrent diverticulitis is one of the most common procedures performed in colorectal surgery.

A prospective study published by Alves et al. comparing open vs laparoscopic elective sigmoidectomy for uncomplicated diverticular disease found that the minimally invasive approach has a low postoperative complications rate, with a conversion rate of 15.3%, whereas the overall morbidity rate was 16%.

A recent randomized controlled trial by Klarenbeek et al. comparing laparoscopic vs open sigmoidectomy for diverticular disease has shown significant advantages of laparoscopic surgery, with a 27% reduction in major morbidity for patients who underwent this approach.

In the present series, laparoscopic resection for uncomplicated diverticulitis was found to have a 3% conversion rate to open surgery, with a 12% morbidity rate. Currently, the operative management of complicated diverticulitis has progressed to include laparoscopic surgical techniques. In 1978, Hinchey’s classification was not included.

Table 3 Gastrointestinal recovery

Examined variables	Complicated diverticular disease (G1)	Uncomplicated diverticular disease (G2)	P value
Intake > 1000 mL	Day 2.1 ± 2.1 (1-10)	Day 1 ± 0.8 (0.5)	< 0.05
Intake normal diet	Day 3.1 ± 2.2 (1-11)	Day 1.8 ± 1 (0-7)	< 0.05
Bowel sound +	Day 1 ± 0.6 (0-3)	Day 0.6 ± 0.6 (0-4)	< 0.05
Gases +	Day 1.9 ± 1.4 (0-7)	Day 1.4 ± 0.7 (0-5)	< 0.05
Length of stay (d)	4.7 ± 3.1 (2-15)	3.3 ± 1.8 (1-17)	< 0.05

Table 4 Postoperative complications n (%)

Examined variables	Complicated diverticular disease (G1)	Uncomplicated diverticular disease (G2)	P value
Grade I			
1 urinary retention	8 (11.1)	6 (3.19)	< 0.05
1 vomiting	1 urinary retention	2 vomiting	
1 surgical site hematoma	5 ileus > 72 h	1 ileus	
Grade II			
1 phlebitis	6 (8.3)	9 (4.78)	0.426 (N/S)
2 surgical site hematoma	1 ileus	2 surgical site hematoma	
4 surgical site infection	1 ileus	2 urinary infection	
Grade III A	0 (0)	1 (0.53)	0.610 (N/S)
1 pancreatic fistula			
Grade III B	2 (2.7)	6 (3.1)	0.897 (N/S)
2 anastomotic leak	6 (8.3)	2 hemoperitoneum	
Grade IV	0 (0)	0 (0)	
Grade V			
1 surgical site hematoma	0 (0)		
Total	16 (22)	23 (12)	0.053 (N/S)

N/S: No statistical significance; CT: Computed tomography.
described to determine which patients should undergo primary anastomosis after resections and this remains the system used in the majority of the publications[16]. As shown in a retrospective study published by Li et al[17], there has been an increase in the use of nonoperative and minimally invasive strategies in treating patients with a first episode of acute diverticulitis. However, the Hartmann procedure remains the most frequently used urgent operative approach[17]. The laparoscopic approach has demonstrated acceptable morbidity and mortality rates, although the frequency of conversion increases with the severity of adhesions and the presence of fistulas or abscesses[18,19]. Recently, some studies have been published that include patients with complicated diverticular disease who underwent laparoscopic sigmoid resections. These studies report a conversion rate of between 11.5% and 37% and a postoperative complication rate of between 11.5% and 28%[20,22]. In the present series no differences in global morbidity were identified between the groups.

The safety of laparoscopic management for complicated and fistulizing diverticular disease has been previously addressed[21,22]. Despite the fact that laparoscopic resection for complicated disease would be expected to be challenging, reports have demonstrated no differences in operative time or conversion rate[24].

Few groups have reported their experience in laparoscopic management of colovesical or colovaginal fistula[23,25,26]. These cited studies did not identify differences in hospital stay or postoperative complications when compared to open approach. Conversion rate ranged between 7% to 25%[27,28]. The present series included 9 patients with colovesical and 3 patients with colocutaneous fistulas. All of these patients were successfully operated by laparoscopy.

Regarding colonic stenosis, studies have reported favorable outcomes but with an increased conversion rate[29,30]. In this series eight patients were treated successfully due to stenosis, with a conversion rate of 12.5%.

Historically, the treatment of perforated diverticulitis was performed in stages, as in Hartmann’s procedure, which remains the procedure of choice in Hinchey III-IV diverticulitis and is considered the best therapeutic option by many surgeons[31-35]. However, this technique has a low level of recommendation based on the literature evidence. Moreover, a further disadvantage of this approach is that the majority of these patients will never have a stoma reversal[35,36].

Recently, several studies have demonstrated the benefits of laparoscopic sigmoid resection with primary anastomosis without protective stoma[37-40]. Richter et al[22] reported that colon resections with primary anastomosis could be performed with high degree of safety in 90% of patients, although the risk increases in immunosuppressed patients or in patients with kidney or liver chronic failure.

A systematic review found no significant differences in mortality rate or other complications for patients with Hinchey III-IV who underwent Hartmann’s procedure or resection with primary anastomosis[38].

In our series, 11 Hinchey III-IV patients were treated by laparoscopic sigmoid resection without any stoma protection and only one of them was converted to open surgery. The postoperative complication rate was 10%. Neither anastomotic leaks nor mortality rate were registered.

Recently, other groups have described the use of laparoscopic peritoneal lavage (LPL) and drainage for diverticular peritonitis, with or without posterior elective surgery[41-44]. Karoui et al[45] reported that LPL in Hinchey III complicated diverticulitis is an effective and safe alternative to colon resections with primary anastomosis or protective stoma, and demonstrate that it shortens the hospital stay, avoids a stoma in the majority of patients and decreases postoperative abdominal morbidity. Rogers et al[46] reported lower mortality and morbidity than those in whom resection was considered necessary. This procedure appears promising in selected patients. However, more studies comparing LPL against laparoscopic sigmoid resection with primary anastomosis should be performed before clinical recommendations can be given.

COMMENTS

Background

Diverticular disease is among the most common diseases in developed countries. It is estimated that approximately 20% of patients with diverticulosis develop diverticulitis over their lifetime. Surgical treatment can be evaluated emergently or electively, based on the stage of the disease and clinical presentation. Laparoscopic surgery is now widely accepted for the treatment of elective diverticulitis. The benefits include reduced blood loss, pain, morbidity and length of stay. Its use for complicated diverticulitis remains controversial.

Research frontiers

In the present study, the authors reported the results of seventy-two patients with complicated diverticulitis disease treated by laparoscopic surgery.

Innovations and breakthroughs

In literature the laparoscopic surgery is widely recommended for diverticular disease. However, this approach is not well defined in patients with complicated disease.

Applications

The study suggests that the laparoscopic approach can be applied for the patients with any kind of complicated diverticulitis.

Terminology

A diverticulum is a saclike protrusion in the colonic wall. Diverticulitis describes the presence of an inflammatory process associated with diverticula. Complicated diverticular disease is defined as diverticulitis with associated abscess, phlegmon, fistula, obstruction, bleeding, or perforation.

Peer-review

This paper gives an accurate description about the role that the laparoscopy may have in the treatment of complicated acute diverticulitis, which frequency is constantly increasing in our society. This paper well structured and presented, giving to the reader, the opportunity to easily understand it.
REFERENCES

1. Constantinescu VA, Tekkis PP, Athanasiou T, Aziz O, Purkayastha S, Remzi FH, Fazio VW, Aydin N, Darzi A, Senapati A. Primary resection with anastomosis vs. Hartmann’s procedure for nonelective surgery for acute colonic diverticulitis: a systematic review. Dis Colon Rectum 2006; 49: 966-981 [PMID: 16752192 DOI: 10.1007/s10350-006-0547-9]

2. Richter S, Lindemann W, Kollmar O, Pistorius GA, Maurer CA, Schilling MK. One-stage sigmoid colon resection for perforated sigmoid diverticulitis (Hinchey stages III and IV). World J Surg 2006; 30: 1027-1032 [PMID: 16763322 DOI: 10.1007/s00268-005-0439-5]

3. Constantinescu VA, Herriot A, Remzi F, Darzi A, Senapati A, Fazio VW, Tekkis PP. Operative strategies for diverticular peritonitis: a decision analysis between primary resection and anastomosis versus Hartmann’s procedures. Ann Surg 2007; 245: 94-103 [PMID: 17197971 DOI: 10.1097/01.slta.0000225357.82218.ee]

4. Köckerling F, Schneider C, Reymond MA, Scheidbach H, Scheiner H, Konrad J, Bruch HP, Zornig C, Köhler L, Bährlemer E, Kuteh A, Sznitzel G, Richter HA, Hohenberger W. Laparoscopic resection of sigmoid diverticulitis. Results of a multicenter study. Laparoscopic Colorectal Surgery Study Group. Surg Endosc 1999; 13: 567-571 [PMID: 10347292 DOI: 10.1007/s004649901042]

5. Alves A, Panis Y, Slim K, Heyd B, Kwiatkowski F, Mantion G. French multicentre prospective observational study of laparoscopic versus open colectomy for sigmoid diverticular disease. Br J Surg 2005; 92: 1520-1522 [PMID: 16232179 DOI: 10.1002/bjs.5148]

6. Rotholtz NA, Laporte M, Zanoni G, Bun ME, Auel L, Lencinas S, Mezzadri NA, Pereyra L. Predictive factors for conversion in laparoscopic colorectal surgery. Tech Coloproctol 2008, 12: 27-31 [PMID: 18512009 DOI: 10.1007/s10151-008-0394-x]

7. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004; 240: 205-213 [PMID: 15273542 DOI: 10.1097/00000658-200401000-00003]

8. Scala A, Huang A, Dowson HM, Rockall TA. Laparoscopic colorectal surgery - results from 200 patients. Colorectal Dis 2007; 9: 701-705 [PMID: 17854291 DOI: 10.1111/j.1463-1318.2006.01198.x]

9. Lezoche E, Guerrieri M, De Sanctis A, Campagnacci R, Baldarelli M, Lezoche G, Paganini AM. Long-term results of laparoscopic versus open colorectal resections for cancer in 235 patients with a minimum follow-up of 5 years. Surg Endosc 2006; 20: 546-553 [PMID: 16508815 DOI: 10.1007/s00464-005-0338-8]

10. Faysnodd M, Stamso MJ, Arnell T, Borden C, Udani S, Varghas H. A case-control study of laparoscopic versus open sigmoid colectomy for diverticulitis. Ann Surg 2006; 244: 841-843 [PMID: 10993612]

11. Letarte F, Hallet J, Drolet S, Charles-Grégoire R, Bouchard A, Gagné JP, Thibault C, Bouchard P. Laparoscopic emergency colorectal surgery for diverticulitis. World J Surg 2007; 31: 199-211 [PMID: 17460699 DOI: 10.1007/s00268-007-0359-y]

12. Bartus CM, Lipot T, Szarw CM, Vignati PV, Johnson KH, Sardella WV, Cohen JL. Colovesical fistula: not a contraindication to elective laparoscopic colectomy. Dis Colon Rectum 2005; 48: 233-236 [PMID: 15616751 DOI: 10.1007/s00053-004-0849-8]

13. Engledow AH, Pakzad F, Ward NJ, Arulampalam T, Motson RW. Laparoscopic resection of diverticular fistula: a 10-year experience. Colorectal Dis 2007; 9: 632-634 [PMID: 17608821 DOI: 10.1111/j.1463-1318.2007.01268.x]

14. Poulin EC, Schlachtum CM, Mamazza J, Seshadri PA. Should patients with fewer than three episodes of diverticulitis may benefit from elective laparoscopic sigmoidectomy. World J Surg 2007; 31: 2444-2447 [PMID: 19641950 DOI: 10.1007/s00268-009-0162-8]

15. Chouillard E, Maggioni L, Ata T, Jarbaoui S, Rivkine E, Benhaim L, Ghiles E, Etienne JC, Fingerhut A. Laparoscopic two-stage left colonic resection for patients with peritonitis caused by acute diverticulitis. Dis Colon Rectum 2007; 50: 1157-1163 [PMID: 17294319 DOI: 10.1033/0033-0851-4]

16. Hassan I, Cima RR, Larson DW, Dozios EJ, O’Byrne MM, Larson DR, Pemberton JH. The impact of uncomplicated and complicated diverticulitis on laparoscopic surgery conversion rates and patient outcomes. Surg Endosc 2007; 21: 1690-1694 [PMID: 17593455 DOI: 10.1007/s00464-007-9413-7]

17. Zapletal C, Woeste G, Bechstein WO, Wallstein C. Laparoscopic sigmoid resections for diverticulitis complicated by abscesses or fistulas. Int J Colorectal Dis 2007; 22: 1515-1521 [PMID: 17646909 DOI: 10.1007/s00384-007-0359-y]

18. Laurent SR, Detroz B, Detry O, Degauque C, Honoré P, Meurisse M. Laparoscopic sigmoidectomy for diverticular disease: a retrospective review of 103 cases. Surg Endosc 2004; 18: 1344-1348 [PMID: 15803234 DOI: 10.1007/s00464-003-9178-6]

19. Pokala N, Delaney CP, Brady KM, Senagore AJ. Elective laparoscopic surgery for benign internal enteric fistulas: a review of 43 cases. Dis Colon Rectum 2005; 48: 219-222 [PMID: 15624055 DOI: 10.1007/s00464-004-8801-5]

20. Engledow AH, Pakzad F, Ward NJ, Arulampalam T, Motson RW. Laparoscopic resection of diverticular fistulae: a 10-year experience. Colorectal Dis 2007; 9: 632-634 [PMID: 17608821 DOI: 10.1111/j.1463-1318.2007.01268.x]

21. Poulin EC, Schlachtum CM, Mamazza J, Seshadri PA. Should enteric fistulas from Crohn’s disease or diverticulitis be treated laparoscopically or by open surgery? A matched cohort study. Dis Colon Rectum 2006; 49: 621-626; discussion 626-627 [PMID: 16826421 DOI: 10.1007/BF02235574]

22. Mezzadri N. Patients with less than three episodes of diverticulitis may benefit from elective laparoscopic sigmoidectomy. Dis Colon Rectum 2005; 48: 808-812 [PMID: 15903250 DOI: 10.1007/s00464-004-0745-2]

23. Poulin EC, Schlachtum CM, Mamazza J, Seshadri PA. Should enteric fistulas from Crohn’s disease or diverticulitis be treated laparoscopically or by open surgery? A matched cohort study. Dis Colon Rectum 2006; 49: 621-626; discussion 626-627 [PMID: 16826421 DOI: 10.1007/BF02235574]

24. Langenbecks Arch 2004; 21: 97-103 [PMID: 14985985 DOI: 10.1007/s00423-004-0454-7]

25. Garrett KA, Champagne BJ, Valerian BT, Peterson D, Lee EC. A single training center’s experience with 200 consecutive cases of diverticulitis: can all patients be approached laparoscopically? Surg Endosc 2008; 22: 2503-2508 [PMID: 18347863 DOI: 10.1007/s00464-008-9818-y]

26. The American Society of Colon and Rectal Surgeons. Practice
parameters for the treatment of sigmoid diverticulitis. The Standards Task Force. The American Society of Colon and Rectal Surgeons. *Dis Colon Rectum* 2000; 43: 289 [PMID: 10733107 DOI: 10.1007/BF02258290]

32 Wong WD, Wexner SD, Lowry A, Vernava A, Burnstein M, Denzman F, Fazio V, Kerner B, Moore R, Oliver G, Peters W, Ross T, Senatore P, Simmang C. Practice parameters for the treatment of sigmoid diverticulitis--supporting documentation. The Standards Task Force. The American Society of Colon and Rectal Surgeons. *Dis Colon Rectum* 2000; 43: 290-297 [PMID: 10733108 DOI: 10.1007/BF02258291]

33 Köhler L, Sauerland S, Neugebauer E. Diagnosis and treatment of diverticular disease: results of a consensus development conference. The Scientific Committee of the European Association for Endoscopic Surgery. *Surg Endosc* 1999; 13: 430-436 [PMID: 10094765 DOI: 10.1007/s004649901007]

34 Krukowski ZH, Matheson NA. Emergency surgery for diverticular disease complicated by generalized and faecal peritonitis: a review. *Br J Surg* 1994; 71: 921-927 [PMID: 7807457]

35 Desai DC, Brennan EJ, Reilly JF, Smink RD. The utility of the Hartmann procedure. *Am J Surg* 1998; 175: 152-154 [PMID: 9515534 DOI: 10.1016/S0002-9610(97)00272-9]

36 Schilling MK, Maurer CA, Kollmar O, Büchler MW. Primary vs. secondary anastomosis after sigmoid colon resection for perforated diverticulitis (Hinchey Stage III and IV): a prospective outcome and cost analysis. *Dis Colon Rectum* 2001; 44: 699-703; discussion 703-705 [PMID: 11357032 DOI: 10.1007/BF02234569]

37 Goossen AW, Tollenaar RA, Geelkerken RH, Smeets HJ, Bemelman WA, Van Schaardenburgh P, Goossen HG. Prospective study of primary anastomosis following sigmoid resection for suspected acute complicated diverticulitis disease. *Br J Surg* 2001; 88: 693-697 [PMID: 11350443 DOI: 10.1046/j.1365-2168.2001.01748.x]

38 Myers E, Hurley M, O'Sullivan GC, Kavanagh D, Wilson I, Winter DC. Laparoscopic peritoneal lavage for generalized peritonitis due to perforated diverticulitis. *Br J Surg* 2008; 95: 97-101 [PMID: 18076019 DOI: 10.1002/bjs.6024]

39 Kolczynski MJ, Portillo G, Trevitjo JM, Gonzalez JJ, Glass JL. Long-term experience with the laparoscopic approach to perforated diverticulitis plus generalized peritonitis. *World J Surg* 2008; 32: 1507-1511 [PMID: 18259803 DOI: 10.1007/s00268-007-9463-y]

40 Alamili M, Gögenur I, Rosenberg J. Acute complicated diverticulitis managed by laparoscopic lavage. *Dis Colon Rectum* 2009; 52: 1345-1349 [PMID: 19571714 DOI: 10.1007/DCR.0b013e3181a6d34]

41 Karoui M, Champault K, Pautrat K, Chellal F, Chechari D, Champault G. Laparoscopic peritoneal lavage or primary anastomosis with defunctioning stoma for Hinchey 3 complicated diverticulitis: results of a comparative study. *Dis Colon Rectum* 2009; 52: 669-675 [PMID: 19404062 DOI: 10.1007/DCR.0b013e3181af0674]

42 Rogers AC, Collins D, O'Sullivan GC, Winter DC. Laparoscopic lavage for perforated diverticulitis: a population analysis. *Dis Colon Rectum* 2012; 55: 932-938 [PMID: 22874599 DOI: 10.1097/DCR.0b013e31826178db]

P- Reviewer: García-Vallejo L, Petruciani N, Tartaglia D
S- Editor: Gong ZM
L- Editor: A
E- Editor: Li D
