2016-03-21

Schrieffer-Wolff Transformation for periodically driven systems: strongly correlated systems w...

This work was made openly accessible by BU Faculty. Please share how this access benefits you. Your story matters.

Version	Accepted manuscript
Citation (published version):	Marin Bukov, Michael Kolodrubetz, Anatoli Polkovnikov. 2016. "Schrieffer-Wolff Transformation for Periodically Driven Systems: Strongly Correlated Systems with Artificial Gauge Fields." PHYSICAL REVIEW LETTERS, Volume 116, Issue 12, pp. ? - ? (6). https://doi.org/10.1103/PhysRevLett.116.125301

https://hdl.handle.net/2144/35965

Boston University
Schrieffer-Wolff Transformation for Periodically-Driven Systems: Strongly-Correlated Systems with Artificial Gauge Fields

Marin Bukov,1, * Michael Kolodrubetz,1, 2, 3 and Anatoli Polkovnikov1

1 Department of Physics, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
2 Department of Physics, University of California, Berkeley, CA 94720, USA
3 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

(Dated: March 1, 2016)

We generalise the Schrieffer-Wolff transformation to periodically-driven systems using Floquet theory. The method is applied to the periodically-driven, strongly-interacting Fermi-Hubbard model, for which we identify two regimes resulting in different effective low-energy Hamiltonians. In the non-resonant regime, we realize an interacting spin model coupled to a static gauge field with a non-zero flux per plaquette. In the resonant regime, where the Hubbard interaction is a multiple of the driving frequency, we derive an effective Hamiltonian featuring doublon association and dissociation processes. The ground state of this Hamiltonian undergoes a phase transition between an ordered phase and a gapless Luttinger liquid phase. One can tune the system between different phases by changing the amplitude of the periodic drive.

The Schrieffer-Wolff transformation (SWT) [1–4] is a generic procedure to derive effective low-energy Hamiltonians for strongly-correlated many-body systems. It allows one to eliminate high-energy degrees of freedom via a canonical transform. The SWT has proven useful for studying systems with a hugely degenerate ground-state manifold, such as the strongly-interacting limit of the Fermi-Hubbard model (FHM) [2], without resorting to conventional perturbation theory.

Treating interactions in such a non-perturbative way is difficult in periodically-driven systems [5–10], which have received unprecedented attention following the realisation of dynamical localisation [11–15], artificial gauge fields [16–22], models with topological [23–28] and state-dependent [29] bands, and spin-orbit coupling [30, 31]. In this paper, we consider strongly-interacting periodically-driven systems and show how the SWT can be extended to derive effective static Hamiltonians of non-equilibrium setups. The parameter space of such models, to which we add the driving amplitude and frequency, opens up the door to new regimes. We use this to propose realisations of nontrivial Hamiltonians, including spin models in artificial gauge fields and the Fermi-Hubbard model with enhanced doublon association and dissociation processes.

SWT from the High-Frequency Expansion—Intuitively, the high-frequency expansion for periodically-driven systems (HFE) and the SWT share the same underlying concept: they allow for the elimination of virtually-populated high-energy states to provide a dressed low-energy description, as illustrated in Fig. 1. For a system driven off-resonantly (Fig. 1a), virtual absorption of a photon renormalises tunnelling. Similarly, non-driven fermions develop Heisenberg interactions via off-resonant (virtual) tunnelling processes (Fig. 1b). In this paper we combine the HFE and SWT into a single framework allowing one to treat both resonantly and non-resonantly driven systems on equal footing. Let us illustrate the connection by deriving the SWT using the HFE. Consider the non-driven FHM:

$$H = -J_0 \sum_{\langle ij \rangle, \sigma} c_{i\sigma}^\dagger c_{j\sigma} + U \sum_{j} n_{j\uparrow} n_{j\downarrow}, \quad (1)$$

where J_0 is the bare hopping and U is the fermion-fermion interaction. We are interested in the strongly-correlated regime $J_0 \ll U$. Going to the rotating frame $|\psi_{\text{rot}}(t)\rangle = V(t)|\psi(t)\rangle$ w.r.t. the operator $V(t) = \exp\left(-iUt\sum_{j} n_{j\uparrow} n_{j\downarrow}\right)$ eliminates the energy U in favor of fast oscillations. If $i\hbar d_t|\psi_{\text{rot}}\rangle = H_{\text{rot}}(t)|\psi_{\text{rot}}\rangle$, then

$$H_{\text{rot}}(t) = -J_0 \sum_{\langle ij \rangle, \sigma} \left[g_{ij\sigma} + \left(e^{iUt}h_{ij\sigma}^\dagger + \text{h.c.}\right)\right], \quad (2)$$

where $h_{ij\sigma}^\dagger = n_{i\bar{\sigma}} c_{i\sigma}^\dagger c_{j\bar{\sigma}} (1 - n_{j\bar{\sigma}})$, and $g_{ij\sigma} = (1 - n_{i\bar{\sigma}}) c_{i\sigma}^\dagger c_{j\sigma} (1 - n_{j\bar{\sigma}}) + n_{i\bar{\sigma}} c_{i\sigma}^\dagger c_{j\sigma} n_{j\bar{\sigma}}$, with $\bar{\sigma} = \downarrow$ and vice-versa. The first term $g_{ij\sigma}$ models the hopping of doublons and holons, while the second term $h_{ij\sigma}$ represents the creation and annihilation of doublon-holon pairs. Since $H_{\text{rot}}(t)$ is time-periodic with frequency U, we can apply Floquet’s theorem [32]. Thus, the evolution of the system at integer multiples of the driving period $T_U = 2\pi/U$ [i.e. stroboscopically] is governed by the effective Floquet Hamiltonian H_{eff}. If
we write $H^{\text{rot}}(t) = \sum_{\ell} H^{\text{rot}}_{\ell} e^{i\Omega t}$, the HFE gives an operator expansion for $H_{\text{eff}} = H^{\text{rot}} + \sum_{\ell > 0} [H^{\text{rot}}_{\ell}, H^{\text{rot}}_{\ell}]/(U + O(U^{-2})$ [33–38]. The zeroth-order term $H_{\text{eff}}^{(0)} = H^{\text{rot}}$ is the period-averaged Hamiltonian [here the doubleon-holon hopping g], while the first-order term is proportional to the commutator $H_{\text{eff}}^{(1)} \sim J_{0}^{2}[h^{\dagger}, h]/U$, cf. Fig. 1b:

$$H_{\text{eff}} \approx -J_{0} \sum_{\langle ij \rangle, \sigma} g_{ij\sigma} + \frac{4J_{0}}{U} \sum_{\langle ij \rangle} \left(S_{i} \cdot S_{j} - \frac{n_{i}n_{j}}{4} \right). \quad (3)$$

This effective Hamiltonian is in precise agreement with the one from the standard SWT [89]. At half-filling, doubons and holons are suppressed in the ground state and this reduces to the Heisenberg model. Away from half-filling this Hamiltonian reduces to the $t-J$ model [2, 39].

Using the HFE to perform the SWT offers a few advantages: (i) the SW generator comes naturally out of the calculation, (ii) one can systematically compute higher-order corrections [33–38, 40], and (iii) the HFE allows for obtaining not only the effective Hamiltonian but also the order corrections [33–38, 40], and (iii) the HFE allows for extending the SWT to time-periodic Floquet Hamiltonians. In the following, we work in the external electromagnetic fields, and time-periodic chemical potentials are explicitly done in the Supplemental material [45], giving

$$H_{\text{eff}} = -J_{0} \sum_{\langle ij \rangle, \sigma} c_{i}^\dagger c_{j} + \sum_{j} n_{j\uparrow}n_{j\downarrow} + \sum_{j} f_{j\sigma}(t)n_{j\sigma}. \quad (4)$$

The driving protocol $f_{j\sigma}(t)$ with frequency Ω encompasses experimental tools such as mechanical shaking, external electromagnetic fields, and time-periodic chemical potentials, relevant for the recent realisations of novel Floquet Hamiltonians. In the following, we work in the limit $J_{0} \ll U, \Omega$ and assume that the amplitude of the periodic modulation also scales with Ω [40].

Since both the interaction strength U and the driving amplitude are large, we go to the rotating frame w.r.t. $V(t) = e^{-i[U\sum_{j}n_{j\uparrow}n_{j\downarrow} + \sum_{j} F_{j\sigma}(t)n_{j\sigma}]/t}$, where $F_{j\sigma}(t) = \int_{0}^{t} f_{j\sigma}(t')dt'$. The drive induces phase shifts to the hopping:

$$H^{\text{rot}}(t) = -J_{0} \sum_{\langle ij \rangle, \sigma} \left[e^{i\delta F_{ij,\sigma}(t)} g_{ij\sigma} + e^{i[\delta F_{ij,\sigma}(t)+U(t)]} h_{ij\sigma} + \text{h.c.} \right]$$

where $\delta F_{ij,\sigma}(t) = F_{ij}(t) - F_{j\sigma}(t)$. Notice that now there are two frequencies in the problem: U and Ω. Hence, $H^{\text{rot}}(t)$ is not strictly periodic in either. To circumvent this difficulty, we choose a common frequency Ω_{0} by writing $\Omega = k\Omega_{0}$ and $U = l\Omega_{0}$ where k and l are co-prime integers. Then $H^{\text{rot}}(t)$ becomes periodic with period $T_{\Omega_{0}} = 2\pi/\Omega_{0}$, and we can proceed using the HFE. Alternatively, before going to the rotating frame, we could decompose the interaction strength as $U = U + \delta U$, where δU acts as a detuning, and can continue without including the term proportional to δU in $V(t)$.

Non-resonant Driving. Let us first assume $k, l \gg 1$ such that resonance effects can be ignored. We begin by Fourier-expanding the drive $e^{i\delta F_{ij\sigma}(t)} = \sum_{\ell} A_{ij\sigma}^{(l)} e^{i\ell\Omega_{0}t}$. If opposite spin species are driven out-of-phase, we have $A_{ij\sigma}^{(l)} = (A_{ij\sigma}^{(-l)})^{*}$. Similarly, flipping the direction of the bond flips the sign of δF, so $A_{ij\sigma}^{(-l)} = (A_{ij\sigma}^{(l)})^{*}$. We now apply the generalised SWT with frequency Ω_{0}. At half-filling and for off-resonant driving double occupancies are suppressed, and the dominant term in the effective Hamiltonian is $H_{\text{eff}}^{(1)} = \sum_{\ell > 0} [H^{\text{rot}}_{\ell}, H^{\text{rot}}_{\ell}]/\Omega_{0}$. Two types of commutators occur in this sum: the first comes from terms that have no oscillation with frequency Ω_{0}, giving commutators of the form: $\sum_{ij\sigma} A_{ij\sigma}^{(l)} g_{ij\sigma} \sum_{j'\sigma'} A_{ij'\sigma'}^{(l)} g_{i'\sigma'}^{*}$; all of these commutators vanish. The second type are the same commutators relevant for the SWT: $\sum_{ij\sigma} A_{ij\sigma}^{(l)} h_{ij\sigma} \sum_{j'\sigma'} A_{ij'\sigma'}^{(-l)} h_{i'\sigma'}^{*}$, but now the presence of all higher-order harmonics induced by the drive. These involve terms rotating with $e^{i(U+\ell\Omega_{0})t}$, and thus will be suppressed by a $(U + \ell\Omega_{0})$--denominator. The commutators are explicitly done in the Supplemental material [45], giving

$$H_{\text{eff}}^{(1)} = \sum_{\langle ij \rangle, \ell} \frac{J_{0}^{2}}{U + \ell\Omega_{0}} \left(c_{i}^{\dagger} S_{i}^{+} S_{j}^{-} + \alpha_{ij}^{(1)} c_{i}^{\dagger} S_{i}^{+} S_{j}^{-} + 2\beta_{ij}^{(1)} c_{i}^{\dagger} S_{i}^{+} S_{j}^{-} \right),$$

where $\alpha_{ij}^{(1)} = A_{ij}^{(1)} A_{ij}^{(-1)}$ and $\beta_{ij}^{(1)} = |A_{ij}^{(1)}|^{2}$. One can Floquet-engineer the Heisenberg model with a uniform magnetic flux per plaquette Φ_{col}, see Fig. 2. To this end, we choose the spin-dependent driving protocol $f_{j\sigma}(t) = \sigma [A \cos(\Omega t + \phi_{j}) + \Omega m]$ (c.f. Fig. 2, inset), where $\phi_{j} = \phi_{mn} = \Phi_{\text{col}}(m + n)$, $\sigma \in \{\uparrow, \downarrow\} \equiv \{1, -1\}$, and we denote the square-lattice position by $r_{j} = (m, n)$. Such spin-sensitive drives are realised in experiments via the Zeeman effect using a periodically-modulated [29] and static [19, 20] magnetic-field gradients which couple to atomic hyperfine states. For this protocol,

$$A_{(m,n),(m,n+1)}^{(l)} \equiv A_{y}^{(l)} \equiv e^{i\phi_{mn}} J_{l}(2\zeta\phi)$$

$$A_{(m,n),(m+1,n)}^{(l)} \equiv A_{x}^{(l)} \equiv e^{i(l+1)\phi_{mn}} J_{l+1}(2\zeta\phi),$$

where J_{l} is the Bessel function of the first kind, $\zeta = A/\Omega$ is the dimensionless driving strength, and $\phi_{\text{col}} = \zeta \sin(\Phi_{\text{col}}/2)$ is the flux-modified strength [90].

There are two physically interesting limits. For $U \ll \Omega$ only $l = 0$ survives and we get
\[H_{\text{eff}}^{U=\Omega} = \sum_{m,n} \left(J_{\text{eff}}^{x,x} \left[S_{m+1,n}^z S_{m}^z + \frac{1}{2} \left(e^{2i\phi_{mn}} S_{m+1,n}^+ S_{mn}^- + \text{h.c.} \right) \right] + J_{\text{eff}}^{x,y} \left[S_{m,n+1}^z S_{m}^z + \frac{1}{2} \left(S_{m,n+1}^+ S_{mn}^- + \text{h.c.} \right) \right] \),

where \(J_{\text{eff}}^{x,y} = 4 \left[J_0 J_{1/0} (2\zeta_0) \right]^2 / U \). For \(\Omega < U \), we can set \(U + i\Omega \rightarrow U \) and sum over \(l \) to obtain

\[H_{\text{eff}}^{\Omega=U} = \frac{4J_0^2}{U} \sum_{m,n} \left[S_{m+1,n}^z S_{m}^z + \frac{J_0(4\zeta_0)}{2} \left(e^{2i\phi_{mn}} S_{m+1,n}^+ S_{mn}^- + \text{h.c.} \right) + S_{m,n+1}^z S_{m}^z + \frac{J_0(4\zeta_0)}{2} \left(S_{m,n+1}^+ S_{mn}^- + \text{h.c.} \right) \right] . \]

The exchange strengths depend on \(\Omega \) and \(U \), but both limits give spin Hamiltonians with phases along \(x \). This phase physically appears on the flip-flop and not the Ising term because the drive is spin-dependent. Thus a phase difference only occurs if the electron virtually hops as one spin and returns as the other.

Let us discuss the regime \(J_0 \ll \Omega \ll U \) a bit more. This spin Hamiltonian can be identified with the Heisenberg model in the presence of an artificial gauge field with flux \(\Phi_0 \) per plaquette. Whenever the \(S^x S^y \)-interaction is small, the Hamiltonian reduces to the fully-frustrated XY model in 2D, in which one cannot choose a spin configuration minimizing the spin-exchange energy for all XY-couplings. In the classical limit, similarly to a type-II superconductor, the minimal energy configuration is known to be the Abrikosov vortex lattice \([46,47]\). The realisation of the deep XY-regime with this particular driving protocol is limited, since \(|J_0(4\zeta_0)| < 1 \) but, at finite \(S^x S^y \)-interaction a semi-classical study showed that vortices persist and can be thought of as half-skrymion configurations of the Neel field \([48-50]\). Another interesting feature of the spin Hamiltonian is that it exhibits a Dzyaloshinskii-Moriya (DM) interaction term \([51-54]\), \(D_{mn} \cdot (S_{m+1,n} \times S_{mn}) \). The DM coupling is spatially-dependent, polarised along the \(z \)-direction \(D_{mn} = \sin(\phi_{mn})J_2(4\zeta_0)\hat{n}_z/2 \), and present only along the \(x \)-lattice direction.

Finally, let us mention that spin-1/2 systems are equivalent to hard-core bosons. In this respect, \(H_{\text{eff}}^{U=\Omega} \) and \(H_{\text{eff}}^{\Omega=U} \) model hard-core bosons with strong nn-interactions in the presence of a gauge field. For a flux of \(\Phi_0 = \pi/2 \) the non-interacting model has four topological Hofstadter bands. If we then consider the strongly-interacting model, and half-fill the lowest Hofstadter band \((S^z_{\text{tot}} = -3N_{\text{site}}/8) \), the Heisenberg model supports a fractional quantum Hall ground state \([25,55-57]\). Away from half-filling of the fermions, doublon and holon hopping terms appear in the effective Hamiltonian, cf. Suppl. \([45]\) and it would be interesting to study the effect of such correlated hopping terms \([58]\) on this topological phase.

Resonant Driving.—Novel physics arises in the resonant-driving regime \(J_0 \ll U = l\Omega \). To illustrate this, we choose a one-dimensional system with the driving protocol \(f_{ij}(t) = J A \cos \Omega t \), which was realised experimentally by mechanical shaking \([12,12-14]\). Unlike off-resonant driving, resonance drastically alters the effective Hamiltonian by enabling the lowest-order term \(H_{\text{eff}}^{(0)} \): on resonance, the doublon-holon (dh) creation/annihilation terms \(h^\dagger \) survive the time-averaging, and the leading-order effective Hamiltonian reads

\[H_{\text{eff}}^{(0)} = \sum_{\langle ij \rangle,\sigma} \left[-J_{\text{eff}} g_{ij\sigma} - K_{\text{eff}} \left((-1)^{\eta_{ij}} h^\dagger_{ij\sigma} + \text{h.c.} \right) \right] . \]

where \(\eta_{ij} = 1 \) for \(i > j \), \(\eta_{ij} = 0 \) for \(i < j \), \(J_{\text{eff}} = J_0 J_{0}(\zeta) \), and \(K_{\text{eff}} = J_0 J_{1}(\zeta) \). The first term, \(g_{ij\sigma} \), is familiar from the static SWT, with a renormalised coefficient \(J_{\text{eff}} \). The term proportional to \(h^\dagger_{ij\sigma} \) appears only in the presence of the resonant periodic drive and is the source of new physics in this regime. By adjusting the drive strength, one can tune \(J_{\text{eff}} \) and \(K_{\text{eff}} \) to a range of values, including zeroing out either one. Starting from a state with unpaired spins, dh pairs are created via resonant absorption of drive photons. Hence, holons and doublons become dynamical degrees of freedom governed by \(H_{\text{eff}}^{(0)} \).
the Heisenberg model as a subleading correction. The dh production rates and further properties of the system have been investigated both experimentally and theoretically [43, 69–89]. A DMFT study found that the AC field can flip the band structure, switching the interaction from attractive to repulsive [70].

Such correlated hopping models have been proposed to study high-T_c superconductivity [71–73]. To get an intuition about the effect of the new terms, we use the ALPS DMRG and MPS tools [74, 75] to calculate the ground state of $H^{(0)}$ at half-filling. The many-body gap in the thermodynamic limit Δ is extracted from simulations of even-length chains with open boundary conditions by extrapolation in the system size: $\Delta(L) = \text{const}/L + \Delta$. We numerically confirm that the model features a transition between a symmetry-broken ordered phase and a gapless Luttinger liquid [71–73] as follows [91]. For $K_{\text{eff}} > J_{\text{eff}}$, the physics is dominated by the dh creation/annihilation processes. In this regime, fermions can hop along the lattice by forming and destroying dh pairs. Thus, for l even the ground state exhibits bond-wave order with order parameter $B_l = \sum_\sigma c_{j+1\sigma}^\dagger c_{j\sigma} + $ h.c., while the corresponding order parameter for l odd is not yet known. This order breaks translation invariance with a 2-site unit cell, and thus yields a many-body gap for even-length chains with open boundary conditions (cf. Fig. 3). For $K_{\text{eff}} < J_{\text{eff}}$, renormalization group arguments show that bond ordering terms become irrelevant, leading to a gapless Luttinger liquid [76]. At $K_{\text{eff}} = J_{\text{eff}}$ and for l even, one surprisingly finds that the system is equivalent to free fermions. The existence of such a non-interacting point is rather striking, since it means that a strongly-driven, strongly-interacting system can effectively behave as if the fermions were free.

This phenomenon can be understood by noticing that double occupancies, effectively forbidden in the absence of the drive by strong interactions, are re-enabled by the resonant driving term. As a result, whenever the amplitude of the driving field matches a special value to give $K_{\text{eff}} = J_{\text{eff}}$, the matrix element for creation of doublons and holes becomes equal to their hopping rate and the effect of the strong interaction is completely compensated by the strong driving field. We emphasize that this is a highly non-perturbative effect since it requires a large drive amplitude $A \sim U = l\Omega$.

It bears mention that all regimes of the model are accessible using present-day cold atoms experiments [63]. We propose a loading sequence into the ground state of $H^{(0)}$ in the Supplemental material [45]. Moreover, by tuning the frequency away from resonance, one can write $U = \delta U + l\Omega$ and go to the rotating frame w.r.t. the $l\Omega$-term, keeping a finite on-site interaction δU in the effective Hamiltonian. This is required if one wants to capture important photon-absorption avoided crossings in the exact Floquet spectrum. Including artificial gauge fields is also straightforward in higher dimensions, see Suppl. [45] and expected to produce novel topological phases. By utilizing resonance phenomena, this scheme only requires shaking of the on-site potentials, which is easier in practice than other schemes which have suggested modulating the interaction strength to realize similar Hamiltonians [77, 78].

Discussion/Outlook.—It becomes clear from the discussion above how to generalise the SWT to arbitrary strongly-interacting periodically-driven models: First, we identify the large energy scale denoted by λ (e.g., $\lambda = U$) and write the Hamiltonian as $H = H_0 + \lambda H_1 + H_{\text{drive}}(t)$. Second, we go to the rotating frame using the transformation $V(t) = \exp\left(-i\lambda H_1 - i J t' H_{\text{drive}}(t')dt'\right)$ to get a new time-dependent Hamiltonian with frequencies $[92] \lambda$ and Ω: $H^{\text{rot}}(t) = V(t)H_0V(t)$. Finally, depending on whether we want to discuss resonant or non-resonant coupling, we apply the HFE to obtain the effective Hamiltonian H_{eff} order by order in λ^{-1} and Ω^{-1}. This procedure will generally work if a closed-form evaluation of $H^{\text{rot}}(t)$ is feasible. For instance, H_1 can be a local Hamiltonian or can be written as a sum of local commuting terms. The method also works if the interaction strength is periodically modulated [77–79].

Although isolated interacting Floquet systems are generally expected to heat up to infinite temperature at infinite time [5–9, 80], the physics of such systems at experimentally-relevant timescales is well-captured by the above effective Hamiltonians; indeed, it was recently argued that typical heating rates at high frequencies are suppressed exponentially [81–84], and long-lived pre-thermal Floquet steady states have been predicted [82, 84–86]. In particular, rigorous mathematical proofs [82–84] supported by numerical studies [10]...
showed that the mistake in the dynamics due to the approximative character of the HFE is under control for the large frequencies and the experimentally-relevant times considered. Our work paves the way for studying such strongly-driven, strongly-correlated systems. Both the resonant and non-resonant regimes that we analyse for the FHM yield systems directly relevant to the study of high-temperature superconductivity. More generally, we show that by using the generalised SWT, one can Floquet-engineer additional knobs controlling the model parameters of strongly-correlated systems, such as the spin-exchange coupling. Our methods are readily extensible to strongly-interacting bosonic systems, as well as many other systems under active research.

We thank L. D’Alessio, E. Altman, W. Bakr, E. Demler, M. Eckstein, A. Grushin, M. Heyl, D. Huse, A. Iaizzi, G. Jotzu, R. Kaul, S. Kourtis, M. Piraud, A. Sandvik and R. Singh for insightful and interesting discussions. We are especially grateful to M. Dolfi and all contributors to the ALPS project [74, 75] for developing the ALPS MPS and DMRG tools used in this work. This work was supported by AFOSR FA9550-13-1-0039, NSF DMR-1506340, and ARO W911NF1410540. M. K. was supported by Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

* Electronic address: mbukov@bu.edu

[1] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
[2] F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).
[3] S. Bravyi, D. Di Vincenzo, and D. Loss, Ann. Phys. 326, 2793 (2011).
[4] T. Barthel, C. Kasztelan, I. P. McCulloch, and U. Schollwöck, Phys. Rev. A 79, 053627 (2009).
[5] L. D’Alessio and A. Polkovnikov, Annals of Physics 333, 19 (2013).
[6] L. D’Alessio and M. Rigol, Phys. Rev. X 4, 041048 (2014).
[7] A. Lazarides, A. Das, and R. Moessner, Phys. Rev. Lett. 112, 150401 (2014).
[8] A. Lazarides, A. Das, and R. Moessner, Phys. Rev. E 90, 012110 (2014).
[9] P. Ponte, Z. Papić, F. Huvemeers, and D. A. Abanin, Phys. Rev. Lett. 114, 140401 (2015).
[10] M. Bukov, M. Heyl, D. A. Huse, and A. Polkovnikov, arXiv, 1512.02119 (2015).
[11] D. H. Dunlap and V. M. Kenkre, Phys. Rev. B 34, 3625 (1986).
[12] H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, and E. Arimondo, Phys. Rev. Lett. 99, 220403 (2007).
[13] A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, and E. Arimondo, Phys. Rev. Lett. 102, 100403 (2009).
[14] C. E. Creffield, F. Sols, D. Ciampini, O. Morsch, and E. Arimondo, Phys. Rev. A 82, 035601 (2010).
[15] J. Gong, L. Morales-Molina, and P. Hänggi, Phys. Rev. Lett. 103, 133002 (2009).
[16] A. Eckardt, P. Hauke, P. Soltan-Panahi, C. Becker, K. Sengstock, and M. Lewenstein, EPL 89, 10010 (2010).
[17] J. Struck, C. Ölschläger, R. Le Targatn, P. Soltan-Panahi, A. Eckardt, M. Lewenstein, P. Windpassinger, and K. Sengstock, Science 333 (6045), 996 (2011).
[18] J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M. Lewenstein, and L. Mathey, Nature Physics 9, 738 (2013).
[19] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).
[20] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).
[21] M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Nature Physics 10, 588 (2014).
[22] C. J. Kennedy, W. C. Burton, W. C. Chung, and W. Ketterle, Nature Physics 11, 859 (2015).
[23] T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009).
[24] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys. Rev. B 84, 235108 (2011).
[25] A. G. Grushin, Á. Gómez-León, and T. Neupert, Phys. Rev. Lett. 112, 156801 (2014).
[26] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Nature 515, 237 (2014).
[27] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N. Goldman, Nature Physics 11, 162 (2015).
[28] N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D. S. Lühmann, K. Sengstock, and C. Weitenberg, arXiv, 1509.05763 (2015).
[29] G. Jotzu, M. Messer, F. Görg, D. Greif, R. Desbuquois, and T. Esslinger, Phys. Rev. Lett. 115, 073002 (2015).
[30] V. Galitski and I. B. Spielman, Nature 494, 49 (2013).
[31] K. Jiménez-García, L. J. LeBlanc, R. A. Williams, M. C. Beeler, C. Qu, M. Gong, C. Zhang, and I. B. Spielman, Phys. Rev. Lett. 114, 125301 (2015).
[32] G. Floquet, Annales de l’École Normale Supérieure 12, 4788 (1883).
[33] S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. A 68, 033820 (2003).
[34] N. Goldman and J. Dalibard, Phys. Rev. X 4, 031027 (2014).
[35] N. Goldman, J. Dalibard, M. Aidelsburger, and N. R. Cooper, Phys. Rev. A 91, 033632 (2015).
[36] A. Eckardt and E. Anisimovas, New. J. Phys. 17, 093039 (2015).
[37] A. P. Itin and M. I. Katsnelson, Phys. Rev. Lett. 115, 075301 (2015).
[38] T. Mikami, S. Kitamura, K. Yasuda, N. Tsuji, T. Okai, and H. Aoki, arXiv, 1511.00755 (2015).
[39] J. Keeling, Quantum Magnetism, online lecture notes.
[40] M. Bukov, L. D’Alessio, and A. Polkovnikov, Advances in Physics 64, 139 (2015).
[41] S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and I. Bloch, Science 319, 295 (2008).
[42] M. Nakagawa and N. Kawakami, Phys. Rev. A 89, 013627
Formally, the identification of a well-defined frequency ω in the rotating frame requires that the spectrum of λ (2014).

There is an overall phase factor ($\Phi_{\lambda}+\pi$)/2 in $A_{\lambda/\gamma}$ which is irrelevant to the global physics, so we gauge it away by neglecting part of the correction terms, cf. Ref. [39].

Periodically-driven Luttinger liquids were studied in Ref. [15].

The approximate sign in Eq. (3) is used since we neglected part of the correction terms, cf. Ref. [39].

There is an overall phase factor ($\Phi_{\lambda}+\pi$)/2 in $A_{\lambda/\gamma}$ which is irrelevant to the global physics, so we gauge it away by neglecting part of the correction terms, cf. Ref. [39].

N. Strohmaier, D. Greif, R. Jördens, L. Tarruell, H. Moritz, T. Esslinger, R. Sensarma, D. Pekker, E. Altman, and E. Demler, Phys. Rev. Lett. 104, 080401 (2010).

F. Hassler and S. D. Huber, Phys. Rev. A 79, 021607 (2009).

K. Balzer and M. Eckstein, EPL 109, 57012 (2014).

P. Werner and M. Eckstein, Struct. Dyn. 3, 023603 (2016).

M. Bello, C. E. Creffield, and G. Platero, arXiv, 1510.01379 (2015).

N. Tsuji, T. Oka, P. Werner, and H. Aoki, Phys. Rev. Lett. 106, 236401 (2011).

L. Arrachea and A. A. Aligia, Phys. Rev. Lett. 73, 2240 (1994).

A. A. Aligia, K. Hallberg, C. D. Batista, and G. Ortiz, Phys. Rev. B 61, 7883 (2000).

A. A. Aligia and L. Arrachea, Phys. Rev. B 60, 15332 (1999).

B. Bauer et al., J. Stat. Mech. 05, P05001 (2011).

M. Dolfi, B. Bauer, S. Keller, A. Kosenkov, T. Ewart, A. Kantian, T. Giamarchi, and M. Troyer, Comput. Phys. Commun. 185, 3430 (2014).

G. I. Japaridze and A. P. Kampf, Phys. Rev. B 59, 12822 (1999).

M. Di Liberto, C. E. Creffield, G. I. Japaridze, and C. M. Smith, Phys. Rev. A 89, 013624 (2014).

S. Greschner, L. Santos, and D. Poletti, Phys. Rev. Lett. 113, 183002 (2014).

T. Wang, X.-F. Zhang, F. E. A. d. Santos, S. Eggert, and A. Pelster, Phys. Rev. A 90, 013633 (2014).

A. Roy and A. Das, Phys. Rev. B 91, 121106 (2015).

D. A. Abanin, W. De Roeck, and F. Huse, Phys. Rev. Lett. 115, 256803 (2015).

T. Kuwahara, T. Mori, and K. Saito, Annals of Physics 367, 96 (2016).

T. Mori, T. Kuwahara, and K. Saito, arXiv, 1509.03968 (2015).

D. Abanin, W. De Roeck, and W. W. Ho, arXiv, 1510.03405 (2015).

E. Canovi, M. Kollar, and M. Eckstein, Phys. Rev. E 93, 012130 (2016).

M. Bukov, S. Gopalakrishnan, M. Knap, and E. Demler, Phys. Rev. Lett. 115, 205301 (2015).

M. Bukov and A. Polkovnikov, Phys. Rev. A 90, 043613 (2014).

M. Bukov and M. Heyl, Phys. Rev. B 86, 054304 (2012).

The approximate sign in Eq. (3) is used since we neglected part of the correction terms, cf. Ref. [39].

There is an overall phase factor ($\Phi_{\lambda}+\pi$)/2 in $A_{\lambda/\gamma}$ which is irrelevant to the global physics, so we gauge it away by rotating $S_{mn}^+ \rightarrow S_{mn}^+ e^{i\pi m}$, see Suppl. [15].

Periodically-driven Luttinger liquids were studied in Ref. [88].

Formally, the identification of a well-defined frequency ω in the rotating frame requires that the spectrum of H_1 is commensurate, which is the case whenever H_1 is a density-density interaction.