Highly Efficient Uptake of Cs+ by Robust Layered Metal Organic Frameworks with a Distinctive Ion Exchange Mechanism

Wen Maa,c, Tian-Tian Lva, Jun-Hao Tanga,c, Mei-Ling Fenga,b,c and Xiao-Ying Huanga,c

a State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

b Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China

c University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

*E-mail: fml@fjirsm.ac.cn.

Section S1. Ion-exchange experiments

Section S2. Crystal structures details

Section S3. Characterization of products before and after Cs+ ion exchange

Section S4. Kinetic and capacities studies for Cs+ ion exchange

Section S5. Studies on competitive ion exchange

Section S6. \textgreek{g} radiation resistances studies

Section S7. Elution and Recycle
Section S1. Ion-exchange experiments

In the kinetic experiments, 50 mg of grinded polycrystalline powder samples of 1 or 2 were weighed into 50 mL of 6.5 mg/L and 3.9 mg/L of Cs\(^+\) aqueous solution, respectively. The mixture was kept under magnetic stirring. The suspensions were sampled at different time intervals (0, 1, 2, 5, 30, 120, 180, 420, 600, 720 min for 1; 0, 1, 2, 5, 10, 20, 30, 60, 120, 180, 300, 420 min for 2), which were filtered by the 0.22 μm Millipore filter on the 2 mL syringe, and then diluted with ultrapure water to meet the concentration range of the test instrument. The concentrations of Cs\(^+\) were analyzed by ICP-MS (Tables S7 and S8).

The adsorption isotherm experiments of Cs\(^+\) ion exchange with two compounds were carried out as follows: the grinded polycrystalline powder samples of 1 and 2 were added into solutions with different concentrations of Cs\(^+\) ions, respectively. The \(V/m\) values of all samples were 1000 mL/g (\(V = 10\) mL, \(m = 10\) mg). The adsorption isotherm experiments lasted about 10 h with continuous stirring at room temperature. Then, the filtered suspensions were analyzed by ICP-MS (Tables S9 and S10).

The competitive experiments of 1 and 2 under the individual or coexisting K\(^+\), Na\(^+\), Mg\(^{2+}\), Ca\(^{2+}\) and Sr\(^{2+}\) were also investigated. 1 and 2 were added to the as-prepared aqueous solutions, respectively. The \(V/m\) ratio is also 1000 mL/g (\(V = 10\) mL, \(m = 10\) mg). The mixed solutions were stirred for 10 h at room temperature. The concentrations of metal ions were analyzed by ICP-MS or ICP-OES (Tables S12-S16). The simulated Cs\(^+\) ion contaminated solutions were prepared with tap water (Fuzhou, Fujian), Minjiang River (Fuzhou, Fujian), river water (Longyan, Fujian), simulated groundwater and sea water (Xiamen, Fujian), containing low concentration of Cs\(^+\). Then, ion-exchange experiments were done (Tables S17 and S18).

The ion-exchange experiments of 1 and 2 before and after irradiation were also carried out. The pristine powder samples were irradiated by 100 kGy \(\gamma\), and 200 kGy \(\gamma\) irradiations. 10 mg of pristine 1 and 2 samples and its irradiated samples were added to 10 mL of Cs\(^+\) aqueous solutions, respectively. The concentrations of Cs\(^+\) ions in filtered solutions were determined by ICP-MS. (Table S19).

In elution and reuse experiments, the raw material for the cycle experiments was firstly prepared: 300 mg of 1 was added to 150 mL of 3000 mg/L Cs\(^+\) ion aqueous solution in a glass bottle and the mixed solutions was shaken for 10 h at room temperature. And the solid product was washed for several times with deionized water, anhydrous ethanol and dried naturally. Then the Cs\(^+\)-exchanged product of 1 was mixed with 150 mL of 0.3 M KCl solution and shaken for 10 h. After that, the solid sample was washed and dried naturally, namely 1-K. The reusability of 1-K was evaluated for three cycles by adsorbing Cs\(^+\) solutions with two different concentrations, and then eluting with 0.3 M KCl solution. The concentrations of Cs\(^+\) ions in solutions were measured after each adsorption (Table S20).

The stability experiments of 1 in solutions with various pH values were carried out. The HNO\(_3\) or NaOH aqueous solutions were prepared with different pH (2.98-12.08) values. 15 mg of polycrystalline powder for 1 were soaked into 15 mL above solutions, respectively. The soaking process lasted 10 h at room temperature, and the \(V/m\) values of all the samples were 1000 mL/g (\(V = 15\) mL, \(m = 15\) mg). Then solid samples were analyzed by PXRD. The concentrations of leaching In were determined by ICP-MS on XSerise II (Table S6).
Section S2. Crystal structures details

Table S1. Crystallographic data and refinement details for compounds.

Compounds	1	1-Cs	1-K	2	2-Cs
Empirical formula	C$_{21}$H$_{12}$InN$_4$O$_{10}$	C$_{21}$H$_{12}$InN$_4$O$_{13}$	C$_{21}$H$_{12}$InK$_{2}$N$_{4}$O$_{13}$	C$_{21}$H$_{12}$InN$_4$O$_{12}$	C$_{21}$H$_{18}$.84C$_{6}$H$_{7}$:1InO$_{5}$.28
Formula weight	610.28	696.07	602.26	612.25	666.14
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/c$	$P2_1/c$	$C2/c$	$C2/c$
T/K	100(2)	100(2)	100(2)	100(2)	100(2)
λ/Å	1.54178	1.54178	1.3405	0.71073	1.3405
a/Å	10.0110(15)	9.8620(3)	9.8822(3)	14.6706(14)	13.0956(4)
b/Å	16.693(3)	16.6451(4)	16.8719(6)	13.2520(13)	14.7700(4)
c/Å	14.956(3)	14.3580(5)	13.9820(5)	12.5619(13)	12.4590(4)
α°	90	90	90	90	90
β°	$108.289(18)$	$107.5269(4)$	$108.884(4)$	$96.441(9)$	$100.745(3)$
γ°	90	90	90	90	90
V/Å3	2371.2(8)	2247.52(13)	2205.76(14)	2426.8(4)	2367.59(13)
Z	4	4	4	4	4
D_0/ Mg·m$^{-3}$	1.708	2.057	1.814	1.676	1.869
μ/mm$^{-1}$	8.535	21.490	7.256	1.041	11.494
F(000)	1240	1352	1208	1240	1303
Measured refls.	23508	18646	23596	6837	8625
Independent refls.	4837	4544	4912	2924	2643
R_{int}	0.0407	0.0363	0.0355	0.0835	0.0285
No. of parameters	353	334	328	217	182
GOF	1.081	1.040	1.047	1.216	1.035
$I/\sigma(I)$	0.0360, 0.0402, 0.0365, 0.0605	0.0916, 0.1007, 0.0943, 0.1363	0.0401, 0.0481, 0.0448, 0.0651	0.0944, 0.1075, 0.0999, 0.1386	0.0944, 0.1075, 0.0999, 0.1386
wR_2 (all data)	0.0944	0.1075	0.0999	0.1386	0.0712
CCDC	2124172	2124173	2124174	2124175	2124176

$R_1 = \sum \left| F_o \right| - \left| F_c \right| / \sum \left| F_o \right|$. $wR_2 = \left[\sum \left(w(F_o)^2 + w(F_c)^2 \right)^{1/2} / \sum w(F_o)^2 \right]^{1/2}$
Figure S1. ORTEP plot showing the crystallographically asymmetric units of (a) 1, (b) 1-Cs, (c) 1-K, (d) 2 and (e) 2-Cs. Thermal ellipsoids are given at the 30% probability level. The hydrogen atoms are omitted for clarity.
Figure S2. The coordination modes of In^{3+} ion (a) and aip$^{2-}$ ligands (b, c) in 1. The coordination mode of In$^{3+}$ ion in 1-Cs (d). The surrounding environment of Cs$^+$ ion (e) and the coordination mode of aip$^{2-}$ ligand (f) in 1-Cs. The surrounding environment of K$^+$ ion (g) and the coordination mode of aip$^{2-}$ ligand (h) in 1-K.

Figure S3. The anionic layer of [In(aip)$_2$]$^{x-}$ (a) and its simplified topological network (b) in 1.

Table S2. Selected bonds length (Å) in 1, 1-Cs and 1-K.

	1	1-Cs	1-K	
	In(1)-O(1)	In(1)-O(1)	Cs(1)-O(1)	3.001(4)
	2.531(3)	2.321(4)		
	In(1)-O(2)	In(1)-O(2)	Cs(1)-O(2)	3.118(4)
	2.154(3)	2.239(3)		
	In(1)-O(3)#1	In(1)-O(3)#1	Cs(1)#4-O(4)	3.237(4)
	2.387(3)	2.384(4)		
	In(1)-O(4)#1	In(1)-O(4)#1	Cs(1)-O(5)	3.173(4)
	2.205(2)	2.199(4)		
	In(1)-O(5)	In(1)-O(5)	Cs(1)-O(6)	3.237(4)
	2.122(3)	2.142(4)		
	In(1)-O(7)#2	In(1)-O(6)	Cs(1)-O(7)	3.184(8)
	2.333(3)	2.552(4)		
	In(1)-O(8)#2	In(1)-O(7)#2	Cs(1)-O(1W)	3.182(4)
	2.216(3)	2.296(4)		
		In(1)-O(8)#2	Cs(1)-O(2W)	3.125(6)
		2.260(3)		
			Cs(1)-O(3W)	
			Cs(1)-O(3)	

Symmetry transformations used to generate equivalent atoms: 1: #1 x+1, y, z; #2 -x+2, y+1/2, -z+1/2.
1-Cs: #1 x+1, y, z; #2 -x+1, y+1/2, -z+1/2.
1-K: #1 x-1, y, z; #2 -x, y-1/2, -z+1/2; #3 x, -y+1/2, z+1/2;
\textbf{Table S3.} Hydrogen bonding data for 1.

D-H···A	D-H (Å)	H···A (Å)	D···A (Å)	<(DHA) (°)
N(1)-H(1A)···O(7)#5	0.888(10)	2.195(17)	3.057(4)	163(4)
N(1)-H(1B)···O(1W)#6	0.896(10)	2.58(4)	3.141(5)	121(4)
N(2)-H(2A)···N(1)#7	0.890(10)	2.428(13)	3.314(5)	173(4)
N(2)-H(2B)···O(1)#8	0.890(10)	2.151(13)	3.035(5)	172(4)
C(14)-H(14)···O(1W)#9	0.95	2.46	3.389(5)	164.7
N(3)-H(3A)···O(9)	0.893(10)	1.83(2)	2.703(6)	165(6)
N(3)-H(3B)···O(1W)	0.893(10)	1.853(18)	2.731(6)	167(6)
C(17)-H(17B)···O(1)	0.98	2.38	3.161(6)	135.7
C(17)-H(17C)···O(8)#2	0.98	2.59	3.312(7)	130.7
C(21)-H(21B)···O(5)#2	0.98	2.44	3.383(6)	162.2
C(21)-H(21C)···O(2)#10	0.98	2.31	3.242(6)	158.7
O(1W)-H(1WA)···O(3)	0.831(10)	1.939(12)	2.766(4)	174(6)
O(1W)-H(1WB)···O(6)#11	0.829(10)	2.030(18)	2.831(5)	162(5)

Symmetry transformations used to generate equivalent atoms: #1 x+1, y, z; #2 -x+2, y+1/2, -z+1/2; #3 x-1, y, z; #4 -x+2, y-1/2, -z+1/2; #5 -y+3/2, z+1/2; #6 -x+1, -y+2, -z+1; #7 -x+2, y-1/2, -z+3/2; #8 -x+2, -y+1, -z+1; #9 x+1, -y+3/2, z+1/2; #10 -x+2, -y+2, -z+1; #11 x-1, -y+3/2, z-1/2.

\textbf{Figure S4.} The In-L-In angles in (a) 1, (b) 1-Cs, (c) 1-K, (d) 2 and (e) 2-Cs.
Figure S5. (a) A square-like window with one [(CH$_3$)$_2$NH$_2$]$^+$ cation in 2. (b) The anionic layer of [In(hip)$_2$]$^{n-}$ in 2. (c) The packing arrangement of the layers in 2 viewed along the c-axis. DMF, lattice water molecules, and hydrogen atoms are omitted for clarity. (d) The packing arrangement of the layers in 2 viewed along the c-axis, where the [In(hip)$_2$]$^{n-}$ layers are simplified to topological structures. Lattice water molecules are omitted for clarity. (e) A square-like window with one Cs$^+$ ion in 2-Cs. (f) The packing arrangement of the layers in 2-Cs viewed along the c-axis. Cs1B, lattice water molecules, and hydrogen atoms are omitted for clarity. (g) The packing arrangement of the layers in 2-Cs viewed along the c-axis, where the [In(hip)$_2$]$^{n-}$ layers are simplified to topological structures. Cs1B and lattice water molecules are omitted for clarity.

Table S4. Selected bonds length (Å) in 2 and 2-Cs.

	2	2-Cs		
In(1)-O(1)	2.195(4)	2.3893(17)	Cs(1B)-O(1)	3.50(3)
In(1)-O(1)#1	2.195(4)	2.3893(17)	Cs(1B)-O(1)#4	2.81(4)
In(1)-O(2) 2.356(4) In(1)-O(2) 2.1861(16) Cs(1)-O(4)#5 3.359(3)
In(1)-O(2)#1 2.356(4) In(1)-O(2)#1 2.1861(16) Cs(1)-O(4)#6 3.620(2)
In(1)-O(3)#2 2.395(4) In(1)-O(3)#2 2.3461(16) Cs(1B)-O(4)#5 3.08(4)
In(1)-O(3)#3 2.395(4) In(1)-O(3)#3 2.3461(16) Cs(1)-O(1W) 3.202(3)
In(1)-O(4)#2 2.208(4) In(1)-O(4)#2 2.2094(18) Cs(1)-O(1W)#4 3.414(3)
In(1)-O(4)#3 2.208(4) In(1)-O(4)#3 2.2094(18) Cs(1B)-O(3W)#8 3.591(9)
Cs(1)-O(1) 3.082(2) Cs(1)-O(1W)#4 3.414(3) Cs(1)-O(3W)#8 3.134(16)
Cs(1)-O(1B) 3.082(2) Cs(1)-O(1W)#4 3.414(3) Cs(1)-O(4W)#8 3.134(16)

Symmetry transformations used to generate equivalent atoms:

2: #1 x+1, y, z+3/2; #2 x-1/2, y-1/2, z; #3 x+3/2, y-1/2, z+3/2.

2-Cs: #1 x+1, y, z+1/2; #2 x-1/2, y-1/2, z+1/2; #3 x+1/2, y+1/2, z; #4 x+1/2, y+1/2, z; #5 x+1/2, y+1/2, z+1/2; #6 x, y+1, z+1/2; #8 x, y, z.

Table S5. Hydrogen bonding data for 2.

D-H···A	D-H (Å)	H···A (Å)	D···A (Å)	<(DHA) (°)
O(5)-H(5A)···O(3)#5	0.818(10)	1.916(13)	2.733(6)	176(7)
C(5)-H(5)···O(3)#5	0.95	2.62	3.298(7)	128.9
C(9)-H(9A)···O(2)#1	0.95	2.61	3.489(19)	153.7
C(11)-H(11B)···O(1)#6	0.98	2.55	3.46(4)	154.9
N(2)-H(2A)···O(1)	0.91	2.32	2.958(14)	126.7
N(2)-H(2A)···O(4)#2	0.91	2.21	3.067(16)	156.9
C(12)-H(12C)···O(2)#7	0.98	2.53	3.15(2)	121.2
C(13)-H(13C)···O(3)#7	0.98	2.49	3.421(19)	158.8
O(7)-H(7B)···O(4)	0.821(10)	2.58(13)	3.174(15)	130(15)

Symmetry transformations used to generate equivalent atoms:

#1 x+1, y, z+3/2; #2 x-1/2, y-1/2, z; #3 x+3/2, y-1/2, z+3/2; #5 x, y+1, z+1/2; #6 x-1/2, y+1/2, z; #7 x+1/2, y+1/2, z+1/2.

Section S3. Characterization of products before and after Cs⁺ ion exchange
Figure S6. The simulated and as-synthesized PXRD patterns of 1 (a); 1-Cs (b); 1-K (c); 2 (d); 2-Cs (e).

Figure S7. (a) PXRD patterns of 1 simulated, as-synthesized, and after soaked in solutions with various pH values for 10 h. (b) The leaching percentages of In for 1 soaked in different pH solutions for 10 h.

Table S6. Dissolution concentrations and leaching percentages of In for 1 after soaked in different pH solutions ($V/m = 1000$ mL/g, contact time = 10 h).

pH	Dissolution concentration of In (mg/L)	Leaching percentage of In (%)
2.98	0.0322	0.01711
4.15	0.0254	0.0135
5.28	0.0234	0.01244
6.66	0.0962	0.05113
7.65	0.1088	0.05783
8.91	0.0936	0.04975
10.13	0.302	0.16052
11.05	0.0594	0.03157
12.06	0.046	0.02445

Figure S8. Thermogravimetric curves (a) for 1, 1-Cs and 1-K; (b) for 2 and 2-Cs.
Figure S9. Optical absorption spectra (a) for 1, 1-Cs, and 1-K; (b) for 2 and 2-Cs.

Figure S10. EDS diagrams of 1-Cs (a) and 2-Cs (b).

Figure S11. X-ray photoelectron spectra of nitrogen (a) for 1 and 1-Cs; (b) for 2 and 2-Cs.
Section S4. Kinetic and capacities studies for Cs⁺ ion exchange

Equations for ion exchange analysis

The removal rate R (%) is to evaluate the removal percentage of ion (equation S1). The pseudo-first-order and pseudo-second-order kinetics could be expressed by equations S2 and S3:

$$ R = \frac{(C_0 - C_e)}{C_e} \times 100\% \quad (S1) $$

$$ \log (q_e - q_t) = \log q_e - \frac{k_1}{2.303} t \quad (S2) $$

$$ \frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e} \quad (S3) $$

Where C_0 (mg/L) and C_e (mg/L) represent the initial and equilibrium concentrations of cesium at adsorption experiment. q_e and q_t are the adsorption capacities for cesium (mg/g) at equilibrium and time t, respectively. The pseudo-first-order and pseudo-second-order rate constants are represented by k_1 (min⁻¹) and k_2 (g/mg min), respectively. The slope and intercept of the linear graph of $\log(q_e - q_t)$ vs t can be used to calculate the values of q_e and k_1, respectively. The slope and intercept of the linear graph of t/q_t vs t can be used to calculate the values of q_e and k_2, respectively.

The amount of cesium q (mg/g) absorbed by absorbents can be calculated by equation S4. Evaluation of saturation capacity q_m (mg/g) can be calculated by the Langmuir adsorption isotherms and Langmuir-Freundlich adsorption isotherms, as depicted in equations S5 and S6.

$$ q = \frac{(C_0 - C_e)V}{m} \quad (S4) $$

$$ q = q_m \frac{bC_e}{1 + bC_e} \quad (S5) $$

$$ q = q_m \frac{\left(\frac{bC_e}{1 + (bC_e)^n}\right)^{\frac{1}{n}}}{1 + (bC_e)^n} \quad (S6) $$

Where C_0 (mg/L) and C_e (mg/L) represent the initial and equilibrium concentrations of cesium at adsorption experiment, V (mL) and m (g) are the volume of the solution and the mass of the adsorbent in the ion exchange experiment, respectively. q_m is the maximum adsorption capacity (mg/g). b (L/mg), related to the free energy of exchange, is a Langmuir constant. C_e (mg/L) is the equilibrium concentration, n is a Freundlich constant.

The affinity and selectivity of adsorbents to cesium ions can be measured by distribution coefficient (K_d). It could be described by equation S7.

$$ K_d = \frac{V}{m} \frac{(C_0 - C_e)}{C_e} \quad (S7) $$

The separation factor SF is a scale for determining whether the medium can separate two ions from each other, as depicted in equation S8:

$$ SF = \frac{K_d^A}{K_d^B} \quad (S8) $$

Where, K_d^A and K_d^B represent the distribution coefficients of A and B ions, respectively.
Table S7. The data for the concentrations of Cs⁺ (C) and the relative amounts of Cs⁺ removed (R) for 1 at the different time in kinetics experiments.

Time (minutes)	C₅Cs (mg/L)	R₅Cs (%)
0	6.50	0
1	0.46	92.92
2	0.29	95.54
5	0.25	96.15
30	0.24	96.31
120	0.32	95.08
180	0.33	94.92
420	0.39	94.00
600	0.42	93.54
720	0.44	93.23

Table S8. The data for the concentrations of Cs⁺ (C) and the relative amounts of Cs⁺ removed (R) for 2 at the different time in kinetics experiments.

Time (minutes)	C₅Cs (mg/L)	R₅Cs (%)
0	3.90	0
1	0.42	89.23
2	0.42	89.23
5	0.36	90.77
10	0.33	91.54
20	0.32	91.79
30	0.34	91.28
60	0.38	90.26
120	0.51	86.92
180	0.52	86.67
300	0.58	85.13
420	0.60	84.62
Figure S12. The fitting results with pseudo-first-order kinetic model (a, c) and pseudo-second-order kinetic model (b, d) for the Cs⁺ ions removal kinetics of 1 and 2, respectively.

Table S9. Adsorption capacities for 1 at the different initial Cs⁺ concentrations.

C_0^{Cs} (mg/L)	C_e^{Cs} (mg/L)	q^{Cs} (mg/g)
24	4	20
80	8.6	71.4
140	38	102
274.5	63	211.5
460	210	250
506	255.5	250.5
630	390	240
830	590	240

Table S10. Adsorption capacities for 2 at the different initial Cs⁺ concentrations.

C_0^{Cs} (mg/L)	C_e^{Cs} (mg/L)	q^{Cs} (mg/g)
24	7.0	17
44	8.7	35.3
80	24	56
140	46	94
200	78	122
460	250	210
1105	819.5	285.5
2620	2350	270
Table S11. Isotherm fitting parameters for the capture of Cs⁺ ions by 1 and 2 (V/m = 1000 mL/g, room temperature, 10 h contact time).

Compounds	Langmuir model	Langmuir-Freundlich model					
	q_m (mg·g⁻¹)	b (L·mg⁻¹)	R²	q_m (mg·g⁻¹)	b (L·mg⁻¹)	n	R²
1	270.86	0.03028	0.9229	262.89	0.03186	0.8752	0.91037
2	297.67	0.00987	0.98714	295.82	0.01006	0.97771	0.98466

Section S5. Studies on competitive ion exchange

Table S12. The results for the Cs⁺-exchange of 1 under individual competitive excessive alkali, and alkaline-earth ions (V/m = 1000 mL/g, room temperature, 10 h contact time).

Compounds	Initial M/Cs molar ratio	C_0^M (mg/L)	C^M (mg/L)	C_0^Cs (mg/L)	C^Cs (mg/L)	R^Cs (%)	Kd^Cs (mL/g)	R^M (%)	Kd^M (mL/g)
K/Cs	19.95	12.53	8.231	2.135	0.217	89.84	8.84 × 10³	34.31	522.29
Na/Cs	92.96	22.52	22.38	1.4	0.22	84.29	5.36 × 10³	0.62	6.26
Ca/Cs	27.67	18.525	18.47	2.22	0.2325	89.53	8.55 × 10³	0.3	2.98
Mg/Cs	62.22	16.16	15.8	1.42	0.24	83.10	4.92 × 10³	2.23	22.781

Table S13. The results for the Cs⁺-exchange of 2 under individual competitive excess alkali and alkaline-earth ions (V/m = 1000 mL/g, room temperature, 10 h contact time).

Compounds	Initial M/Cs molar ratio	C_0^M (mg/L)	C^M (mg/L)	C_0^Cs (mg/L)	C^Cs (mg/L)	R^Cs (%)	Kd^Cs (mL/g)	R^M (%)	Kd^M (mL/g)
K/Cs	46.69	19.78	16.8	1.44	0.24	83.33	5.0 × 10³	15.06	177.38
Na/Cs	72.71	21.424	21.252	1.7035	0.4191	75.40	3.06 × 10³	0.80	8.09
Ca/Cs	45.46	19.74	18.54	1.44	0.28	80.56	4.14 × 10³	6.08	64.72
Mg/Cs	36.75	18.18	17.11	2.705	0.475	82.44	4.69 × 10³	5.83	62.54

Table S14. The results for the Cs⁺-exchange of 1 with competitive Sr²⁺ ions (V/m = 1000 mL/g, room temperature, 10 h contact time).

Initial Sr/Cs molar ratio	C_0^Sr (mg/L)	C^Sr (mg/L)	C_0^Cs (mg/L)	C^Cs (mg/L)	R^Cs (%)	R^Sr (%)	Kd^Cs (mL/g)	Kd^Sr (mL/g)	SF_CsSr
0.03	4.839	4.821	237	118	50.21	0.37	1.01 × 10³	3.73	270.78
0.11	6.34	5.48	87	3.8	95.63	13.56	2.19 × 10⁴	156.93	139.52
1.69	5.6	5.32	5.02	0.66	86.85	5.00	6.61 × 10³	52.63	125.59
15.29	51.4	49.3	5.1	0.64	87.45	4.09	6.97 × 10³	42.60	163.6
75.55	254	250	5.1	0.84	83.53	1.57	5.07 × 10³	16	316.96
Table S15. The results for the Cs\(^+\)-exchange of 2 with competitive Sr\(^{2+}\) ions (V/m = 1000 mL/g, room temperature, 10 h contact time).

Initial Sr/Cs molar ratio	C\(_0\)Sr (mg/L)	C\(_e\)Sr (mg/L)	C\(_0\)Cs (mg/L)	C\(_e\)Cs (mg/L)	R\(_{Cs}\) (%)	R\(_{Sr}\) (%)	K\(_d\)Cs (mL/g)	K\(_d\)Sr (mL/g)	SF\(_{Cs/Sr}\)
0.03	4.839	4.7985	237	142	40.08	0.84	0.67 \(\times 10^3\)	8.44	79.38
0.11	6.34	5.58	87	11	87.36	11.99	6.91 \(\times 10^3\)	136.2	50.73
1.86	5.36	5.144	4.36	1.385	68.23	4.03	2.15 \(\times 10^3\)	41.99	51.16
17.17	49.364	46.516	4.285	1.33	68.96	5.77	2.22 \(\times 10^3\)	61.23	36.26
75.55	254	242	5.1	1.7	66.67	4.72	2.0 \(\times 10^3\)	49.59	40.33

Table S16. The results for the Cs\(^+\)-exchange of 1 and 2 in the competitive experiments with mixed metal ions (V/m = 1000 mL/g, room temperature, 10 h contact time).

Compounds	C\(_0\) (mg/L)	C\(_e\) (mg/L)	R (%)	K\(_d\) (mL/g)
1	C\(_0\)Cs (Cs)	C\(_e\)Cs (Cs)	R\(_{Cs}\) (Cs)	6.08 \(\times 10^3\) (Cs)
	0.9045	85.87	7.22 \(\times 10^3\)	
	38.84 (K)	42.05	19.82 (Na)	
	54.5 (Na)	1.94 (Na)	54.60 (Na)	
	43.60 (Ca)	1.69 (Ca)	43.86 (Ca)	
	46.92 (Mg)	3.68 (Mg)	47.61 (Mg)	
	59.725 (Sr)	3.37 (Sr)	58.755 (Sr)	
2	C\(_0\)Cs (Cs)	C\(_e\)Cs (Cs)	R\(_{Cs}\) (Cs)	2.10 \(\times 10^3\) (Cs)
	2.065	67.73 (Cs)	9.12 \(\times 10^3\)	
	34.24 (K)	48.91 (K)	96.96 (K)	
	54.60 (Na)	1.76 (Na)	17.95 (Na)	
	43.86 (Ca)	1.10 (Ca)	11.17 (Ca)	
	47.61 (Mg)	2.28 (Mg)	23.31 (Mg)	
	58.755 (Sr)	4.94 (Sr)	52 (Sr)	

Table S17. The results of Cs\(^+\)-adsorption for 1 in tap water, Minjiang water, river water, simulated groundwater and sea water, containing low concentration of Cs\(^+\) (V = 10 mL, m = 10 mg, V/m = 1000 mL/g; 10 h contact time; at room temperature).

Experimental condition	C\(_e\)Cs (mg/L)	K\(_d\)Cs (mL/g)
Tap water, 7.40 mg/L Cs\(^+\) + 5.03 mg/L K\(^+\) + 21.85 mg/L Na\(^+\) + 12.26 mg/L Ca\(^{2+}\) + 2.64 mg/L Mg\(^{2+}\)	0.90	7.22 \(\times 10^3\)
Minjiang water, 5.31 mg/L Cs\(^+\) + 3.725 mg/L K\(^+\) + 17.108 mg/L Na\(^+\) + 10.242 mg/L Ca\(^{2+}\) + 1.967 mg/L Mg\(^{2+}\)	0.57	8.32 \(\times 10^3\)
River water, 8.955 mg/L Cs\(^+\) + 1.987 mg/L K\(^+\) + 2.664 mg/L Na\(^+\) + 3.061 mg/L Ca\(^{2+}\) + 0.431 mg/L Mg\(^{2+}\)	0.885	9.12 \(\times 10^3\)
Simulated groundwater, 4.575 mg/L Cs\(^+\) + 9.82 mg/L K\(^+\) + 375.5 mg/L Na\(^+\) + 9.38 mg/L Ca\(^{2+}\) + 4.945 mg/L Mg\(^{2+}\)	0.595	6.69 \(\times 10^3\)
Sea water, 9.725 mg/L Cs\(^+\) + 327.05 mg/L K\(^+\) + 9546 mg/L Na\(^+\) + 366.1 mg/L Ca\(^{2+}\) + 1081.5 mg/L Mg\(^{2+}\)	9.565	16.73
Table S18. The results of Cs⁺-adsorption for 2 in tap water, Minjiang water, river water, simulated groundwater and sea water, containing low concentration of Cs⁺ ($V = 10$ mL, $m = 10$ mg, $V/m = 1000$ mL/g; 10 h contact time; at room temperature).

Experimental condition	C_0^{Cs} (mg/L)	R^{Cs} (%)	K_d^{Cs} (mL/g)
Tap water, 7.40 mg/L Cs⁺ + 5.03 mg/L K⁺ + 21.85 mg/L Na⁺ + 12.26 mg/L Ca²⁺ + 2.64 mg/L Mg²⁺	0.90	87.84	7.22 × 10³
Minjiang water, 5.8 mg/L Cs⁺ + 3.69 mg/L K⁺ + 16.72 mg/L Na⁺ + 11.02 mg/L Ca²⁺ + 1.921 mg/L Mg²⁺	0.7125	87.72	7.14 × 10³
River water, 8.935 mg/L Cs⁺ + 2.77 mg/L K⁺ + 4.52 mg/L Na⁺ + 6.71 mg/L Ca²⁺ + 0.98 mg/L Mg²⁺	1.77	80.19	4.04 × 10³
Simulated groundwater, 4.575 mg/L Cs⁺ + 9.82 mg/L K⁺ + 375.5 mg/L Na⁺ + 9.38 mg/L Ca²⁺ + 4.945 mg/L Mg²⁺	1.325	71.04	2.45 × 10³
Sea water, 8.39 mg/L Cs⁺ + 310.5 mg/L K⁺ + 8645 mg/L Na⁺ + 369.5 mg/L Ca²⁺ + 988.5 mg/L Mg²⁺	8.32	0.83	8.41

Section S6. γ radiation resistances studies

Figure S13. (a) PXRD patterns for simulated and as-synthesized 1 and samples after γ irradiation; (b) PXRD patterns for simulated and as-synthesized 2 and samples after γ irradiation.

Table S19. Data for Cs⁺ ion exchange of 1 and 2 before and after irradiation.

Samples	1	2				
	Pristine	100 kGy γ irradiation	200 kGy γ irradiation	Pristine	100 kGy γ irradiation	200 kGy γ irradiation
C_0^{Cs} (mg/L)	21.4	21.4	21.4	21.4	21.4	21.4
C_e^{Cs} (mg/L)	2.255	2.065	2.46	3.555	3.365	3.485
R^{Cs} (%)	89.46	90.35	88.50	83.39	84.28	83.71
K_d^{Cs} (mL/g)	8.49 × 10³	9.36 × 10³	7.70 × 10³	5.02 × 10³	5.36 × 10³	5.14 × 10³
C_0^{Cs} (mg/L)	40.675	40.675	40.675	40.675	40.675	40.675
C_e^{Cs} (mg/L)	3.8	3.65	4.15	10.475	11.075	11.775
Section S7. Elution and Recycle

R^{Cs}_t (%)	90.66	91.03	89.80	74.25	72.77	71.05
K_d^{Cs} (mL/g)	9.70×10^3	1.01×10^4	8.80×10^3	2.88×10^3	2.67×10^3	2.45×10^3

Figure S14. EDS analysis results of the eluted products for Cs$^+$-exchanged 1 and 2 by using the 0.3 M KCl solution.

Figure S15. SEM images and elemental distribution maps of In and K of (a) 1-K and (b) elution product of 2-Cs, respectively. (c) X-ray photoelectron survey spectra for 1 and 1-K. (d) X-ray photoelectron spectrum of potassium for 1-K. EDS analysis results for the
Table S20. Data for the cycle of 1-K.

Cycle	C_0^{Cs} (mg/L)	C_{e}^{Cs} (mg/L)	R^{Cs} (%)
Cycle 1	8.735	1.32	84.89
	17.4	2.23	87.18
Cycle 2	8.735	1.26	85.58
	17.4	2.19	87.41
Cycle 3	8.735	1.705	80.48
	17.4	3.655	78.99

Figure S16. (a) PXRD patterns for 1, 1-Cs and the eluted product 1-K in cycle 0. PXRD patterns of 1-Cs and 1-Cs-K after first (b), second (c) and third (d) adsorption-elution cycles. The subscripts of 1-Cs indicate different ion exchange experiments with solutions containing various initial Cs$^+$ ions concentrations (1-Cs$_1$: 8.735 mg/L and 1-Cs$_2$: 17.4 mg/L). 1-Cs$_1$-K and 1-Cs$_2$-K indicate the eluted products of 1-Cs$_1$ and 1-Cs$_2$ by using the 0.3 M KCl solution, respectively. EDS analysis results for the 1-Cs$_1$-K (e) and 1-Cs$_2$-K (f) in cycle 3.