Dense RepPoints: Representing Visual Objects with Dense Point Sets

Ze Yang1*, Yinghao Xu2*, Han Xue3*, Zheng Zhang5, Raquel Urtasun4, Liwei Wang1, Stephen Lin5, Han Hu5
Background

Current framework for visual perception system.

RCNN pipeline

```
Use bounding box as intermediate representation
```
Background

Why bounding box?
• Bounding box is convenient to annotate with little ambiguity.
• Easy feature extraction.

Limitations.
• Coarse object feature extraction.
• Unable to tackle irregular object, e.g. roads.
Background

RepPoints (representative points) for object detection

RepPoints is a set of points connecting stages. It serves as:

1) flexible geometric 2D representation
2) semantically aligned feature extraction.
Background

Can we extend representative points to dense segmentation tasks?
Instance segmentation representation

Foreground Mask Representation

1. Detect rectangular regions
2. Pixel-wise verification inside rectangular regions

Contour Representation

- **Energy minimization framework**
- **Learning contour regression**

RCNN framework
Dense RepPoints

Use *Dense RepPoints* to represent *contour* and *grid mask* through sampling.
Dense RepPoints

Use **Dense RepPoints** to represent contour and grid mask through sampling.

\[\mathcal{R} = \left\{ (x_i, y_i, a_i) \right\}_{i=1}^{n} \]

- **point location**
- **foreground score**

- **contour**
- **boundary sample**
- **foreground mask**
- **grid sample**
Dense RepPoints

A new sampling strategy, combines merits of both **contour** and **grid mask**.

efficient as contour, strong as grid mask
Learning Dense RepPoints

Learning point set coordinates.
Learning per points foreground probability
Learning instance class from point set
Learning point set coordinates.

1. Sample points from GT object annotation

- Sample points
- Contour
- Sample along boundary
- Grid mask
- Grid point

sample few points

sample more points
Learning point set coordinates.

1. Sample points from GT object annotation

Sample more points near object boundary
Learning Dense RepPoints

Learning point set coordinates.

2. Optimize the point set loss between predicted points and sampled points.

\[
R_p = \{(x_i, y_i, a_i)\}_{i=1}^n \\
R_{reg} = \{(x_i + \Delta x_i, y_i + \Delta y_i, a_i)\}_{i=1}^n
\]

Dense RepPoints Regression:

\[
B_p = (x_p, y_p, w_p, h_p) \\
B_{reg} = \left(x_p + w_p \Delta x_p, y_p + h_p \Delta y_p, w_p e_p^{\Delta w_p}, h_p e_p^{\Delta h_p}\right)
\]

Bounding Box Regression:
Learning Dense RepPoints

Learning per points foreground probability

We use position-sensitive map similar to R-FCN and TensorMask.
Learning Dense RepPoints

Classifying the instance category from point set

We use group pooling to reduce the computation to constant time.
Infer segments from Dense RepPoints

Infer from contour sampling
Infer from grid points sampling
Infer from distance transform sampling
Inference

Inference contour using concave hull
Inference

Inference foreground mask from grid points

bilinear interpolation
Inference

Inference foreground mask from boundary points

non-grid interpolation
Inference

Inference foreground mask from boundary points

triangulation

Barycentric interpolation

Predict as background

Predict as foreground
Visualization

Top: The learned points (225 points) is mainly distributed around the object boundary.

Bottom: The foreground masks generated by triangulation post-processing.
Experiments

Ablation study

State-of-the-art comparison
Ablation Study

Different representation of object segments

number of points	9	25	81	225	729
Contour	19.7	23.9	26.0	25.2	24.1
Grid points	5.0	17.6	29.7	31.6	32.8
Boundary points	13.9	24.5	31.5	32.8	33.8

“boundary sampling” is efficient at both small and large number of points

Number of points

number of points	81	225	441	729
AP	31.5	32.8	33.3	**33.8**
AP@50	54.2	54.2	54.5	**54.8**
AP@75	32.7	34.4	35.2	**35.9**

Performance increase consistently with number of points, “densify” is important
Experiments

Instance segmentation performance

Method	Backbone	epochs	jitter	AP	AP_{50}	AP_{75}	AP_{S}	AP_{M}	AP_{L}
Mask R-CNN [18]	ResNet-101	12		35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN [18]	ResNeXt-101	12		37.1	60.0	39.4	16.9	39.9	53.5
TensorMask [7]	ResNet-101	72	✓	37.1	59.3	39.4	17.4	39.1	51.6
SOLO [42]	ResNet-101	72	✓	37.8	59.5	40.4	16.4	40.6	54.2
ExtremeNet [50]	HG-104	100	✓	18.9	-	-	10.4	20.4	28.3
PolarMask [45]	ResNet-101	24	✓	32.1	53.7	33.1	14.7	33.8	45.3
Ours	ResNet-101	36	✓	39.1	62.2	42.1	21.8	42.5	50.8

+1.3 improvement over state-of-the-art
Experiments

Object detection performance

Method	Backbone	epochs jitter	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Faster R-CNN[27]	ResNet-101	12	36.2	59.1	39.0	18.2	39.0	48.2
Mask R-CNN[18]	ResNet-101	12	38.2	60.3	41.7	20.1	41.1	50.2
Mask R-CNN[18]	ResNeXt-101	12	39.8	62.3	43.4	22.1	43.2	51.2
RetinaNet[28]	ResNet-101	12	39.1	59.1	42.3	21.8	42.7	50.2
RepPoints[47]	ResNet-101	12	41.0	62.9	44.3	23.6	44.1	51.7
ATSS[48]	ResNeXt-101-DCN	24 ✓	47.7	66.5	51.9	29.7	50.8	59.4
CornerNet[25]	HG-104	100 ✓	40.5	56.5	43.1	19.4	42.7	53.9
ExtremeNet[50]	HG-104	100 ✓	40.1	55.3	43.2	20.3	43.2	53.1
CenterNet[49]	HG-104	100 ✓	42.1	61.1	45.9	24.1	45.5	52.8
Ours	ResNeXt-101+DCN	36 ✓	**48.9**	**69.2**	**53.4**	**30.5**	**51.9**	**61.2**

+1.2 improvement over state-of-the-art
Insights

• Unstructure data representation for 2D visual tasks, especially for high-definition media.

 ![Structured data vs Unstructured data](image)

• Unsupervised keypoints/correspondence learning from video, simulation.

• Box-free visual perception task, e.g. key-point estimation, video tracking, etc.