We previously presented the cloning, heterologous expression, and characterization of a novel multidomain endoxylanase from _Arthrobacter_ sp. GN16 isolated from the feces of _Grus nigricollis_. Molecular and biochemical characterization studies indicate that the glycoside hydrolase (GH) family 10 domain at the N-terminus of the multidomain xylanase (rXynAGN16L) is a low-temperature-active endoxylanase. Many low-temperature-active enzymes contain regions of high local flexibility related to their kinetic and thermodynamic properties compared with mesophilic and thermophilic enzymes. However, the thermodynamic property of low-temperature-active enzymes is typically characterized as a low-temperature-active enzyme.}

Introduction

Xylan is the most common hemicellulosic polysaccharide. The structure of xylan contains substitute groups of acetyl, 4-O-methyl-D-glucuronosyl, and α-arabinofuranosyl residues that are linked to the backbone of β-1,4-linked xylopyranose units. Endoxylanases (endo-β-1,4-xylanases; EC 3.2.1.8) are glycosidasases that can catalyze the endohydrolysis of the xylan backbone; therefore, these enzymes have been extensively applied in many industries, including food, feed, energy, textile, paper, and pulp.

More than 80% of the Earth’s biosphere, including oceans, alpine, polar regions, and caves, is permanently cold, and the remaining biosphere comprises seasonally cold environments. The highest global proportion of biomass is generated at low temperatures. Low-temperature-active enzymes exhibit high catalytic activity at low temperatures and can be potentially used in the cleaning, food, and feed industries; moreover, biotechnological processes are performed at cold temperatures to decrease economical cost and/or prevent product denaturation.

In recent years, low-temperature-active xylanases have elicited much attention. The use of low-temperature-active xylanases can effectively improve dough properties and final bread volume (up to 28%). Some studies have investigated the catalytic adaptation to low temperatures of xylanases. The majority of low-temperature-active xylanases belong to the glycoside hydrolase (GH) family 10.
Arthrobacter sp GN16 isolated from the feces of Grus nigricollis. In the previous study, the GH 10 catalytic domain at the N-terminus of the multidomain xylanase (rXynAGN16L) was expressed in Escherichia coli and the purified recombinant enzyme was characterized. Biochemical characterization indicates that rXynAGN16L plays a key role in catalysis of xylans and is active at low temperatures. Molecular characterization reveals that the structural adaptation of rXynAGN16L to low temperatures may be ascribed to the surface loop from A57 to Y77 and the decreased salt bridges. Many low-temperature-active enzymes contain regions of high local flexibility related to their kinetic and thermodynamic properties. However, the thermodynamic property of low-temperature-active xylanases, including rXynAGN16L, has rarely been reported. In the present study, the kinetic and thermodynamic properties of rXynAGN16L were determined using different substrates and temperature conditions to completely characterize its activity properties.

Kinetic characterization

K_m, V_{max}, and k_{cat} values of the purified rXynAGN16L toward xylans were determined using our previously described method. The kinetic values of rXynAGN16L were calculated according to the double-reciprocal plots (Fig. 1), and the results are summarized in Table 1. K_m, V_{max}, k_{cat}, and k_{cat}/K_m values of the purified rXynAGN16L toward beechwood xylan increased from 1.42 mg/mL to 1.81 mg/mL, 4.00 μmol/min/mg to 62.89 μmol/min/mg, 3.13/s to 49.17/s, and 2.20 mL/mg/s to 27.17 mL/mg/s, respectively, when the temperature increased from 0°C to 45°C. In addition, the K_m value determined at 30°C was 2.21 mg/mL. K_m, V_{max}, k_{cat}, and k_{cat}/K_m values of the purified rXynAGN16L toward birchwood xylan increased from 1.62 mg/mL to 2.61 mg/mL, 5.31 μmol/min/mg to 65.36 μmol/min/mg, 4.15/s to 51.10/s, and 2.56 mL/mg/s to 19.58 mL/mg/s, respectively, when the temperature increased from 0°C to 45°C. These results implied that rXynAGN16L

![Figure 1. Lineweaver–Burk plots of the purified rXynAGN16L determined using 0.5–10.0 mg/mL xylans as substrates in McIlvaine buffer (pH 5.5).](image-url)

Table 1. Kinetic characterization of rXynAGN16L.

Kinetic parameters	Beechwood xylan	Birchwood xylan								
K_m (mg/mL)	0°C	10°C	20°C	30°C	45°C	0°C	10°C	20°C	30°C	45°C
	1.42	1.46	1.92	2.21	1.81	1.62	1.93	2.06	2.51	2.61
V_{max} (μmol/min/mg)	4.00	6.97	13.72	20.66	62.89	5.31	6.39	12.23	19.12	65.36
k_{cat} (s)	3.13	5.45	10.73	16.15	49.17	4.15	5.00	9.56	14.95	51.10
k_{cat}/K_m (mL/mg/s)	2.20	3.73	5.59	7.31	27.17	2.56	2.59	4.64	5.96	19.58
exhibits higher affinity and catalytic efficiency toward beechwood xylan than toward birchwood xylan. The low-temperature-active GH 10 endoxylanases from *Glaciecola mesophila* KMM 241, *Flavobacterium johnsoniae*, and goat rumen contents also exhibit similar phenomenon. 5,11,12 Many low-temperature-active enzymes present higher *Km* values than their more thermostable homologs. 3 However, the *Km* values of the low-temperature-active endoxylanases isolated from *G. mesophila* KMM 241, *Flavobacterium* sp. MSY2, and goat rumen contents toward beechwood xylan at 30°C are 1.22, 1.8, and 1.8 mg/mL, respectively; 8,11,12 these results are similar to the values of rXynAGN16L but lower than the values of many thermostable xylanases reviewed in a previous study. 5,15 In addition, the *Km* values of rXynAGN16L determined at low temperatures were higher than those determined at intermediate temperatures; this finding indicated that rXynAGN16L exhibits a high affinity toward xylan at low temperatures. The low-temperature-active endoxylanase from *G. KMM 241 also exhibits similar phenomenon. 12 However, the *Km* values determined at 4°C of low-temperature-active endoxylanases from *F. johnsoniae* and goat rumen contents toward xylans are higher than those determined at 30°C. 5,11

Many low-temperature-active enzymes have higher *kcat* values than their more thermostable homologs. 3 However, *kcat* values of the low-temperature-active endoxylanases isolated from *G. mesophila* KMM 241 and *F. johnsoniae* toward beechwood xylan at 30°C are 69 and 10.70/s, respectively; 5,11,12 in addition, the value of rXynAGN16L is 16.15/s. The *kcat* values of the 3 low-temperature-active endoxylanases are lower than the values of many thermostable xylanases reviewed in a previous study. 5,15

Thermodynamic characterization

Activation energy (*Ea*), free energy of activation (Δ*G*), enthalpy of activation (Δ*H*), entropy of activation (Δ*S*), and temperature coefficient (*Q* ~ 0) of rXynAGN16L were calculated using the equations described in a previous study. 16 The Arrhenius plots (Fig. 2) show that the *Ea* values for the hydrolysis of beechwood and birchwood xylans by rXynAGN16L were 27.08 and 29.74 kJ/mol, respectively. *Q* ~ 0 values (35°C and 45°C) for the hydrolysis of beechwood and birchwood xylans in McIlvaine buffer (pH 5.5) by rXynAGN16L were 1.39 and 1.44, respectively. Other thermodynamic parameters, including Δ*G* ~ 0, Δ*H*, and Δ*S* at 0°C to 45°C in McIlvaine buffer (pH 5.5) for rXynAGN16L are summarized in Table 2. The Δ*G* ~ 0 and Δ*S* values of the purified rXynAGN16L toward beechwood xylan increased from 64.07 kJ/mol to 67.75 kJ/mol and from −143.80 J/mol/K to −136.21 J/mol/K, respectively, when the temperature increased from 0°C to 45°C; however, the Δ*H* ~ 0 values decreased from 24.81 kJ/mol to 24.44 kJ/mol. The Δ*G* ~ 0 and Δ*S* ~ 0 values of the purified rXynAGN16L toward birchwood xylan increased from 63.43 kJ/mol to 67.65 kJ/mol and from −134.32 J/mol/K to −127.53 J/mol/K, respectively, when the temperature increased from 0°C to 45°C; conversely, the Δ*H* ~ 0 values decreased from 27.47 kJ/mol to 27.09 kJ/mol. In addition, the Δ*S* ~ 0 value for rXynAGN16L toward birchwood xylan was −131.72 at 0°C.

Many low-temperature-active enzymes present lower *Ea* values than thermostable homologs to allow easier conformational changes during catalysis at low temperatures. 3 The *Ea* of the thermostophilic GH 10 endoxylanase from *Bacillus halodurans* TSEV1 for birchwood xylan hydrolysis is 30.51 kJ/mol, 17 which is higher than that required for rXynAGN16L. Furthermore, transition-state theory indicates that an equilibrium exists between the ground-state and transition- or activated-state reactants affected by the magnitude of the

Table 2. Thermodynamic characterization of rXynAGN16L

Thermodynamic parameters	Beechwood xylan	Birchwood xylan
Ea (kJ/mol)	27.08	29.74
Q ~ 0 (35–45°C)	1.39	1.44
Δ*G* (kJ/mol; 0°C)	64.07	63.43
Δ*H* (kJ/mol; 0°C)	24.81	27.44
Δ*S* (kJ/mol/K; 0°C)	−143.80	−131.72
Δ*G* (kJ/mol; 10°C)	65.19	65.40
Δ*H* (kJ/mol; 10°C)	24.73	27.38
Δ*S* (kJ/mol/K; 10°C)	−143.00	−134.32
Δ*G* (kJ/mol; 20°C)	65.93	66.21
Δ*H* (kJ/mol; 20°C)	24.64	27.30
Δ*S* (kJ/mol/K; 20°C)	−140.92	−132.81
Δ*G* (kJ/mol; 30°C)	67.24	67.43
Δ*H* (kJ/mol; 30°C)	24.56	27.22
Δ*S* (kJ/mol/K; 30°C)	−140.85	−132.72
Δ*G* (kJ/mol; 45°C)	67.75	67.65
Δ*H* (kJ/mol; 45°C)	24.44	27.09
Δ*S* (kJ/mol/K; 45°C)	−136.21	−127.53
ΔG° barrier between them. The ΔG° of the thermophilic GH 10 endoxylanase from *B. halodurans* TSEV1 for birchwood xylan hydrolysis is 197.65 kJ/mol, the result indicates that more energy is needed for the thermophilic endoxylanase to form the activated complex compared with rXynAGN16L.

Conclusion

This study presented the kinetic and thermodynamic properties of the GH 10 endoxylanase rXynAGN16L from *Arthrobacter* sp GN16 isolated from the feces of *G. nigricollis*. The kinetic property of rXynAGN16L is similar to that of some low-temperature-active GH 10 endoxylanases. Moreover, the thermodynamic property indicates that rXynAGN16L is typically characterized as a low-temperature-active enzyme.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Funding

This work was supported by the Key Technologies Research and Development Program of China (2013BAD10B01), the National Natural Science Foundation of China (31260215), and the Applied and Basic Research Foundation of Yunnan Province (2011FB048).

References

1. Collins T, Gerdany C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 2005; 29:3-23; PMID:15502873; http://dx.doi.org/10.1016/j.femsre.2004.06.005

2. Rodrigues DF, Tiedje JM. Coping with our cold planet. Appl Environ Microb 2008; 74:1677-86; PMID:18203853; http://dx.doi.org/10.1128/aem.02008-07

3. Siddiqui KS, Cavicchioi R. Cold-adapted enzymes. Annu Rev Biochem 2006; 75:403-33; PMID:16756497; http://dx.doi.org/10.1146/annurev.biochem.75.100804.142723

4. Petrescu I, Lamotte-Brasseur J, Chessa JP, Ntarima P, Claysens M, Devrecze B, Marino G, Gerdany C. Xylanase from the psychrophilic yeast *Crypsococcus adelae*. Extremophiles 2000; 4:157-44; PMID:10879558

5. Chen S, Kaufman MG, Miazgowicz KL, Bagdasarian M, Walker ED. Molecular characterization of a cold-active recombinant xylanase from *Flavobacterium johnsoniae* and its applicability in xylan hydrolysis. Biotechnol Technol 2015; 128:145-55; PMID:25351632; http://dx.doi.org/10.1007/s00284-014-1344-x

6. Liu Q, Wang Y, Luo H, Wang L, Shi P, Huang H, Yang P, Yao B. Isolation of a novel cold-active family 11 xylanase from the filamentous fungus *Bipora antennata* and deletion of its N-terminal amino acids on thermostability. Appl Biochem Biotech 2010; 159:367-82; PMID:20806059; http://dx.doi.org/10.1007/s12010-010-0499-3

7. Van Petegem F, Collins T, Meuwis MA, Gerdany C, Feller G, Van Beumen J. The structure of a cold adapted family 8 xylanase at 1.3 angstrom resolution-structural adaptations to cold and investigation of the active site. J Biol Chem 2003; 278:7531-9; PMID:12475911; http://dx.doi.org/10.1074/jbc.M206862200

8. Lee CC, Smith M, Kibblewhite-Accinelli R, Williams TG, Wagschal K, Robertson GH, Wong DWS. Isolation and characterization of a cold-active xylanase from *Flavobacterium* sp. Carx Microbiol 2006; 52:112-6; PMID:16450665; http://dx.doi.org/10.1007/s00284-005-4583-9

9. Lee CC, Kibblewhite-Accinelli RE, Wagschal K, Robertson GH, Wong DWS. Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 2006; 10:295-300; PMID:16532363; http://dx.doi.org/10.1007/s00792-005-0499-3

10. Zhou JP, Huang HQ, Meng K, Shi PJ, Wang YR, Luo HY, Yang PL, Bai YG, Zhou ZG, Yao B. Molecular and biochemical characterization of a novel xylanase from the symbiotic *Sphingobacterium* sp. TN19. Appl Microbiol Biot 2009; 85:323-33; PMID:19554324; http://dx.doi.org/10.1128/aem.02008-07

11. Wang G, Luo H, Wang Y, Huang H, Shi P, Yang P, Meng K, Bai Y, Yao B. A novel cold-active xylanase gene from the environmental DNA of goat rumen contents: direct cloning, expression and enzyme characterization. Bioresource Technol 2012; 102:339-6; PMID:21106368; http://dx.doi.org/10.1016/j.biortech.2010.11.004

12. Guo B, Shen XD, Sun CY, Zhou BC, Zhang YZ. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-1,4-xylanase from marine *Glaciecola meophilia* KMM 241. Appl Microbiol Biot 2009; 84:1107-15; PMID:19506861; http://dx.doi.org/10.1128/aem.02535-09; 2056-y

13. Zhou JP, Shen J, Zhang R, Tang XH, Li JJ, Xu X, Ding JM, Gao YJ, Xu DY, Huang ZX. Molecular and biochemical characterization of a novel multidomain xylanase from *Arthrobacter* sp. GN16 isolated from the feces of *Gnu nigricollis*. Appl Biochem Biotech 2015; 175:573-88; PMID:25331377; http://dx.doi.org/10.1007/s12010-014-1295-2

14. Dorner E, Verjas P, Arnaud F, Delcoux JA, Courtin CM. Use of psychrophilic xylanases provides insight into the xylanase functionality in bread making. J Agr Food Chem 2011; 59:553-62; PMID:21806059; http://dx.doi.org/10.1021/jf201752g

15. Beg QK, Kapoor M, Mahajan L, Hoonald GS. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biot 2001; 56:326-38; PMID:11548999; http://dx.doi.org/10.1128/aem.02056-01

16. Siddiqui K, Cavicchioi R, Thomas T. Thermodynamic activation properties of elongation factor 2 (EF-2) proteins from psychrothermophilic and thermophilic Archaea. Extremophiles 2002; 6:143-50; PMID:12013435; http://dx.doi.org/10.1007/s00792-001-0049-9

17. Kumar V, Satyanarayana T. Biochemical and thermodynamic characterization of thermo-alkali-stable xylanase from *Cryptococcus adeliae* sp. Curr Microbiol 2006; 53:103-6; PMID:16450065; http://dx.doi.org/10.1007/s00284-005-4583-9

18. Yang P, Yao B. Isolation of a novel cold-active family 8 xylanase from a novel polyextremophilic *Bacillus halodurans* TSEV1. Extremophiles 2013; 17:797-808; PMID:23877303; http://dx.doi.org/10.1007/s00792-013-0565-1