Review

Advances in the Propolis Chemical Composition between 2013 and 2018: A Review

Luka Šturm, Nataša Poklar Ulrih

Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana 1000, Slovenia

ABSTRACT

Propolis is a lipophilic sticky substance collected by bees that has been used by humans for centuries. Owing to its healing, antioxidant, and other medicinal properties, its chemical composition has been widely studied. Most pharmacological properties of propolis have been attributed to its phenols and terpenes, mainly flavonoids, phenolic acids, and their derivatives. More than 500 components of propolis were known from different parts of the world until 2012. In this article, 305 new constituents of propolis described between 2013 and 2018 are being reviewed, with 19 additional compounds that were discovered between 2011 and 2012, and were excluded from a similar previous review article. Altogether more than 850 compounds were isolated from propolis until 2018.

1. INTRODUCTION

Propolis or sometimes called “bee glue” is a lipophilic, adhesive, gummy, and resins substance collected by different species of bees, including honeybees (e.g. Apis mellifera L.) and stingless bees (e.g. Tetragonisca angustula Illiger), Bees use it to seal holes in their hives, smooth out the internal walls, and protect the entrance against intruders. It also acts as a natural antibiotic to prevent bacterial, viral, or fungal infections within the hive [1–4]. Bees collect the resin from the cracks in the bark and leaf buds of different trees, including different species of poplars, conifers (e.g. pines and cypress), birches, alders, willows, palms, chestnuts, and even trees like eucalyptus, acacia, Clusia spp., and Baccharis dracunculifolia DC. Bees add salivary enzymes to the collected resin, mix it with beeswax and use this partially digested material in their hives [5–9].

The name propolis derives from the Hellenistic ancient Greek meaning “suburb/bee glue” or “defense of the city”, depending on the interpretation [5,10]. The use of propolis dates back to at least 300 BC and has been used by Egyptians, Persians, Greeks, and Romans. It was used mainly as a topical cream for cuts, ulcers, wounds, and other dermatological problems, furthermore it was used for mummification by the Egyptians. However, in medieval times the use of propolis was not very popular. It remained mostly as an alternative herbal medicine, mainly in Eastern Europe, especially in Russia, where it later became known as the “Russian penicillin”. The use of propolis was rediscovered again in the Renaissance with the growing popularity of ancient teachings and medicine. The first scientific researches of propolis began in the 19th century with its distillation and were closely connected with the development of pharmacy. The first major chemical research was conducted at the beginning of the 20th century with its fractionation. The first isolated constituents from propolis were vanillin, cinnamic acid, and cinnamyl alcohol. Even bigger breakthrough happened at the beginning of 1970s with the advances in chromatographic analytical methods, which enabled isolation of newer and newer components from different propolis samples [10]. By the beginning of 21st century, Marcucci [6] and Bankova et al. [11] registered more than 300 constituents in propolis and just between 2000 and 2012, at least 241 new compounds have been isolated from it. Subsequently, the number of constituents grew to over 500 by 2012 and is growing every year as new components are being discovered in propolis from different regions and plant origins [8]. Despite of the progress in pharmacology, the list of preparations and uses of propolis in today’s time is still enormous, mostly because of its antiseptic, bacteriostatic, antibacterial, antymycotic, antiviral, antiprotocoal, antioxidative, spasmyloic, choleric, astringent, anti-inflammatory, anesthetic, antitumor, immunostimulating, cystotatic, hepatoprotective, and other properties [7,12].

Propolis could be typified in several different ways. According to its “gatherers”, two main types of propolis are known, the first being “normal” propolis that are collected by honeybees and the second being so-called geopropolis that are collected by stingless bees, which also add soil to their propolis mixtures [5,13]. According to the plant sources, propolis has been classified into seven main types [14], including poplar propolis, which is the most widespread type of propolis (Europe, North America, non-tropical regions of Asia) [11], Baccharis or Brazil green propolis [15], Clusia or Brazil red propolis [16], eucalyptus propolis [17], Macaranga or Taiwanese green propolis [18], birch propolis [19], and Mediterranean propolis [20]. Meanwhile Graikou et al. [9] also classified propolis into seven...
Phenols, or sometimes referred to as polyphenols, are one of the most numerous and widely distributed groups of substances in the plant Kingdom. They are products of the secondary metabolism of plants. They can range from simple molecules, such as phenolic acids, to highly polymerized compounds, such as tannins. Their most characteristic feature is their aromatic ring and the alcohol (–OH) group associated with it. Phenols are further divided into at least 18 classes: simple phenols, benzoquinones, phenolic acids, acetophenones, phenylacetic acids, hydroxycinnamic acids, phenylpropenes, coumarins and isocoumarins, chromones, naftoquinones, xanthones, stilbenes, anthraquinones, flavonoids, lignans, neolignans, lignins, and condensed tannins. More than 8000 phenolic structures are known, most of them belong to the subclass of flavonoids (5000) [32,33].

Phenols are also the most abundant constituents in propolis, especially in those of poplar origin. On average, they represent around 28 ± 9% of whole mass of poplar type propolis, of which 8 ± 4% are flavones/flavonols and 6 ± 2% are flavonones/dihydroflavonols. The isolated phenols belong to many different classes of compounds, such as flavonoids, lignans, stilbenes, phenylpropanoids (including different acids), and others, among which flavonoids are the most important molecules in propolis [8,11,34]. Ghisalberti [5] mentioned more than 20 isolated phenols in propolis until the year 1979 and until 1987, at least 59 different phenol constituents have been found in propolis samples [24]. The number rapidly grew and Marcucci [6] reported 100 phenol constituents isolated from propolis until the year 1995. From 1995 to 2000, Bankova et al. [11] reported 40 new phenols and from 2000 to 2012, astounding 184 new phenols have been isolated [8]. Additional six were found in 2011 [35] and thirteen in 2012 [36,37], which were previously not included in Huang et al. [8]. Altogether, at least 330 phenols have been isolated in propolis until the year 2012 and despite those numbers, just between 2013 and 2018, 92 flavonoids (including their glycosides) and altogether 218 new phenols were isolated from propolis, which brings the final number of isolated phenols from propolis to at least 548 until 2018.

From all the constituents, phenols (such as flavonoids, lignans, caffeoylquinic acid derivatives, and hydroxycinnamic acid derivatives) and terpenes are also thought to be the main active molecules of propolis from temperate climates, whereas for the tropical regions and also some Mediterranean regions, the predominant active constituents of propolis are phenols, different from those found in poplar propolis (prenylated p-coumaric and cinnamic acids, lignans, stilbenes), and diterpenic acids [1,3,8,9,11,34]. Owing to their abundance and activity, phenols are regarded as the most important constituents of propolis [38,39].

As mentioned, among phenols, flavonoids are the most important propolis constituents, acting as the main biologically active ingredients. They are also used in determining the quality of propolis samples [39]. Walker and Crane [24] reported at least 40 known flavonoids from propolis, whereas Marcucci [6] reported at least 44 in 1995. Bankova et al. [11] mentioned seven newly isolated flavonoids in propolis between 1995 and 2000, but just between 2000 and 2012, an astounding 113 new flavonoids were isolated [8]. Despite high numbers of already isolated flavonoids, 92 (including their glycosides) were discovered in propolis for the first time between 2013 and 2018. According to their chemical structure, isolated flavonoids are classified into 11 subclasses: flavans, isoflavans, flavanones, flavonolones, flavones, isoflavones, isodihydroflavonones, flavonoids, xanthones, chlorogens, and dihydrochalcones, and

2. PHENOLS AND FLAVONOIDS

Phenols, or sometimes referred to as polyphenols, are one of the most numerous and widely distributed groups of substances in the...
neoflavonoids (Figure 1). Besides flavonoids, their glycosides are also being discovered in propolis, although until 2012 they were considered very rare. Only two flavonoid glycosides were isolated from propolis until 2009 and until 2012 their number grew only by one [8,40]. Yet in the past 6 years, 57 flavonoid glycosides were isolated from propolis for the first time, making flavonoid glycosides an important group of compounds in propolis samples. In 2004, some speculations were made that propolis samples could also contain anthocyanidins, although they have yet to be reported in propolis [41].

![Figure 1](image)

Figure 1 Flavonoid groups/classes isolated from different propolis samples around the world.

Among the 92 newly isolated flavonoids, their glycosides (57) are one of the biggest discoveries in the recent years because of their earlier rarity. They were isolated from European (Serbia, United Kingdom, and Portugal) and South American (Brazil) samples. Some other new flavonoid compounds were also isolated from Middle East (Oman and Saudi Arabia), Europe (France and Serbia), Asia (Thailand, Korea, and Fiji), Middle and South America (Ecuador, Argentina, and Brazil), and Africa (Algeria, Congo, Cameroon, and Nigeria). The newly isolated flavonoids are listed in Table 1.

No.	Chemical name	Geographic location	References
1	Fisetinidol^a	Oman	Popova et al. [42]
2	2,3-trans-3,4-trans Mollissacidin^a	Oman	Popova et al. [42]
3	2,3-trans-3,4-cis Mollissacidin^a	Oman	Popova et al. [42]
4	3,4-Dihydro-2-(3,4-dihydroxyphenyl)-2H-chromene-3,7-diol^a	Saudi Arabia	Almutairi et al. [43]
5	8-[E-phenylprop-2-en-1-on]-5-methoxy-(±)-catechin^a	France	Boisard et al. [44]
6	8-[1-(4′-Hydroxy-3′-methoxyphenyl)prop-2-en-1-yl]-(2S)-pinocembrin^a	Thailand	Athikomkulchai et al. [45]
7	5,4′-Dihydroxy-7,3′-dimethoxyflavanone^a	Ecuador	Cuesta-Rubio et al. [46]
8	Mepuberin^b	Brazil	Casilotto et al. [47]
9	Pinobanksin 3-(E)-caffeate^a	Algeria	Piccinelli et al. [48]
10	3,5,4′-Trihydroxy-7,3′-dimethoxy flavanol^a	Ecuador	Cuesta-Rubio et al. [46]
11	Psiadiarabin^a	Saudi Arabia	Almutairi et al. [43]
12	Tangeritin^a	Serbia	Ristivojević et al. [49]
13	5,7-Dihydroxy-6,4′-dimethoxy flavone (pectolinarigenin)^a	Algeria	Segueni et al. [50]
14	6,7-Dihydroxy-7,4′-dimethoxy flavone (ladanein)^a	Algeria	Segueni et al. [50]
15	5,7-Dihydroxy-2-(3,4-dihydroxyphenoxy)-4H-chromen-4-one (2-phenoxychromone)^a	Brazil	Mitsui et al. [51]

(Continued)
No.	Chemical name	Geographic location	References
16	Pinobanksin-<i>O</i>-hexenoate[●]	Portugal	Falçio et al. [52]
17	3,5,3′,4′-Tetrahydroxy-6,7-dimethoxy flavone (eupatolin)[●]	Ecuador	Cuesta-Rubio et al. [46]
18	(<i>E</i>-4′-methoxy-4,2′-dihydroxy-3′-(2′,3′,5′-trihydroxy-3′-methylbutyl)-chalcone (Jejuchalcone A)[●]	Korea	Shimomura et al. [53]
19	(<i>E,E</i>-4,2′-trihydroxy-3′-(7′-hydroxy-3′,7′-dimethyloct-2′,5′-dieneyl)-chalcone (Jejuchalcone B)[●]	Korea	Shimomura et al. [53]
20	(<i>E</i>-4,2′-trihydroxy-3′-(5′-hydroxy-3′,7′-dimethyloct-2′,6′-dieneyl)-chalcone (Jejuchalcone C)[●]	Korea	Shimomura et al. [53]
21	(<i>E</i>-4′-methoxy-3′,4′-trihydroxy-2′,2′-dimethylidihydropyranono-(2′,3′)-chalcone (Jejuchalcone D)[●]	Korea	Shimomura et al. [53]
22	(<i>E</i>-4′-methoxy-3′,4′-dihydroxy-2′-(1′″-hydroxyisopropyl)-dihydrofurano-(2′,3′)-chalcone (Jejuchalcone E)[●]	Korea	Shimomura et al. [53]
23	(<i>E</i>-4,2′-dihydroxy-2′-methyl-2′-(3′,4′-dihydroxy-4′-methylenpentanyl)-2H-pyranono-(3′,4′)-chalcone (−)-Jejuchalcone F)[●]	Korea	Shimomura et al. [53]
24	(<i>E</i>-4,2′-dihydroxy-2′-methyl-2′-(3′,4′-dihydroxy-4′-methylenpentanyl)-2H-pyranono-(3′,4′)-chalcone (−)-Jejuchalcone G)[●]	Korea	Shimomura et al. [53]
25	(−)-(E)-4,2′-dihydroxy-2′-methyl-2′-(3′,4′-dihydroxy-4′-methylenpentanyl)-2H-pyranono-(3′,4′)-chalcone ((−)-Jejuchalcone H)[●]	Korea	Shimomura et al. [53]
26	Quercetin-3-<i>O</i>-glucuronide[●]	Portugal	Falçio et al. [52]
27	Quercetin-3-<i>O</i>-glucoside[●]	Portugal	Falçio et al. [52]
28	Kaempferol-3-<i>O</i>-rutinoside[●]	Portugal	Falçio et al. [52]
29	Isorhamnetin-<i>O</i>-pentoside[●]	Portugal	Falçio et al. [52]
30	Quercetin-3-<i>O</i>-harmoside[●]	Portugal	Falçio et al. [52]
31	Isorhamnetin-<i>O</i>-glucuronide[●]	Portugal	Falçio et al. [52]
32	Kaempferol-<i>β</i>-methyl ether-<i>O</i>-glucoside[●]	Portugal	Falçio et al. [52]
33	Isorhamnetin-<i>O</i>-acetylrutinoside[●]	Portugal	Falçio et al. [52]
34	Rhamnetin-<i>O</i>-glucuronide[●]	Portugal	Falçio et al. [52]
35	Quercetin-<i>dimethyl</i> ether-<i>O</i>-rutinoside[●]	Portugal	Falçio et al. [52]
36	Quercetin-<i>dimethyl</i> ether-<i>O</i>-glucuronide[●]	Portugal	Falçio et al. [52]
37	Kaempferol-<i>O</i>-<i>ρ</i>-coumaroylrhamnoside[●]	Portugal	Falçio et al. [52]
38	Caffeic acid 4-<i>O</i>-glucoside[●]	Brazil	Righi et al. [54]
39	Caffeic acid 4-<i>O</i>-arabinoside[●]	Brazil	Righi et al. [54]
40	Caffeic acid 4-<i>O</i>-xyloside[●]	Brazil	Righi et al. [54]
41	Dimethoxy-luteolin-glucoside[●]	Brazil	Righi et al. [54]
42	Methylkaempferol-<i>O</i>-rutinoside[●]	Brazil	Righi et al. [54]
43	Naringenin-<i>C</i>-glucoside[●]	Brazil	Righi et al. [54]
44	Apigenin-<i>O</i>-rutinoside[●]	Brazil	Righi et al. [54]
45	Delphinidin arabinoside[●]	Brazil	Righi et al. [54]
46	Catechin arabinoside[●]	Brazil	Righi et al. [54]
47	Apigenin-di-<i>C</i>-glucosyl rhamnoside[●]	Brazil	Righi et al. [54]
48	Apigenin-<i>C</i>-harmoside (isomer 1)[●]	Brazil	Righi et al. [54]
49	Apigenin-6,8-<i>D</i>-glucosyl C-<i>Arabinose (isochaftoside)</sup>	Brazil	Righi et al. [54]
50	Apigenin-6,8-<i>D</i>-glucosyl C-arabinose (schaftoside)[●]	Brazil	Righi et al. [54]
51	Apigenin-6-<i>C</i>-glucosyl-8-<i>C</i>-arabinose (isochaftoside)[●]	Brazil	Righi et al. [54]
52	Luteolin-<i>O</i>-glucuronide[●]	Brazil	Righi et al. [54]
53	Apigenin-8-C-glucosyl-6-C-arabinose (schaftoside)[●]	Brazil	Righi et al. [54]
54	Luteolin-6,8-di-<i>D</i>-glucoside (lucenin-2)[●]	Brazil	Righi et al. [54]
55	Apigenin-<i>C</i>-harmoside (isomer 2)[●]	Brazil	Righi et al. [54]
56	Luteolin acetylglicoside[●]	Brazil	Righi et al. [54]
57	Chrysoeriol-<i>C</i>-glucoside[●]	Brazil	Righi et al. [54]
58	Dimethoxy naringenin-diglicoside[●]	Brazil	Righi et al. [54]
59	Apigenin-di-<i>O</i>-glucoside[●]	Brazil	Righi et al. [54]
60	Quercetin-<i>O</i>-arabinoside[●]	Brazil	Righi et al. [54]
61	Isorhamnetin-glucoside[●]	Brazil	Righi et al. [54]
62	Apigenin-<i>O</i>-glucuronide[●]	Brazil	Righi et al. [54]
63	Naringenin-4′-<i>O</i>-<i>β</i>-glucopyranoside[●]	Brazil	Da Silva et al. [55]
64	Myricetin-3-<i>O</i>-<i>β</i>-glucopyranoside[●]	Brazil	Da Silva et al. [55]
65	Chrysin glycoside formate adduct[●]	United Kingdom	Saleh et al. [56]
66	Galangin glycoside[●]	United Kingdom	Saleh et al. [56]

(Continued)
Table 1 Flavonoids identified in propolis for the first time since 2011—Continued

No.	Chemical name	Geographic location	References
67	7′-Methoxy-5′-hydroxy-8′-C-flavone rhamnosidea	Brazil	Coelho et al. [57]
68	Acacetin-di-C-acetyl dirhamnosideb	Brazil	Coelho et al. [57]
69	Apigenin-di-C-malonyl glucoside dihexoside (isomer 1)k,c	Brazil	Coelho et al. [57]
70	Apigenin-di-C-malonyl glucoside dihexoside (isomer 2)k,c	Brazil	Coelho et al. [57]
71	Apigenin-di-C-malonyl trihexosidec	Brazil	Coelho et al. [57]
72	Acacetin-di-C-malonyl trihexosidec	Brazil	Coelho et al. [57]
73	Apigenin-di-C-malonyl trihexoside (isomer 2)k,c	Brazil	Coelho et al. [57]
74	Acacetin-8-C-arabinoside-7-O-rhamnosideb	Brazil	Coelho et al. [57]
75	Apigenin-di-C-malonyl trihexoside (isomer 3)k,c	Brazil	Coelho et al. [57]
76	Catechin rhamnosideb	Brazil	Coelho et al. [57]
77	Chrysin-8-C-rhamnoside-7-O-rhamnosideb	Brazil	Coelho et al. [57]
78	Luteolin-8-C-caffeoyl rhamnosideb	Brazil	Coelho et al. [57]
79	Caffeoylquinic acid-O-arabinosideb	Brazil	Coelho et al. [57]
80	Apigenin-7-O-glucoside (apigenin)b	Serbia	Ristivojević et al. [49]
81	Apigenin 8-C-xylloside-6-C-glucoside (vicenin 3)b	Brazil	Cisilotto et al. [47]
82	Apigenin 6-C-xylloside-8-C-glucoside (vicenin 1)b	Brazil	Cisilotto et al. [47]

Prenylated flavonoids

No.	Chemical name	Geographic location	References
83	7′-O-methyl-8′-prenylnaringeninb	Oman	Popova et al. [42]
84	3′,8′-Diprenylnaringeninc	Oman	Popova et al. [42]
85	8′-Prenyl-5,7′-dihydroxy-3′-(3-hydroxy-3-methylbutyl)-4′-methoxyflavononea	Oman	Popova et al. [42]
86	Lonchocarpol Aa	Congo and Cameroon	Papachroni et al. [58]
87	6,8-Diprenyl-eriodictyloia	Congo	Papachroni et al. [58]
88	6,8-Diprenyl-aromadendrinb	Cameroon	Papachroni et al. [58]
89	Lespedezaflavonaneabc	Cameroon	Papachroni et al. [58]
90	Glyasperin Aa	Fiji	Trusheva et al. [59]
91	8′-Prenylnaringeninb	Nigeria	Omar et al. [60]
92	6′-Prenylnaringeninb	Nigeria	Omar et al. [60]

The molecular structure of the compound is not completely defined. *Constituent isolated from the honeybee propolis (from the genus *Apis* sp.). †Constituent isolated from the stingless bee propolis (from genera *Scautothrigona* sp. or *Melipona* sp.). ‡Newly discovered compound. Compounds already mentioned in Huang et al. [8] are excluded.

Among other 126 isolated “non-flavonoid” phenols, compounds from stilbenes and phenolic acids groups were the most abundant. Five of the isolated phenols were found in 2011 [35], whereas one phenolic acid ester [36] and twelve phenylpropanoids [37] were isolated in 2012. All of them are included in this review as they were excluded from the previous review article [8]. Otherwise, phenols were isolated from propolis from Europe (Italy, Portugal, Serbia, and United Kingdom), South and Middle America (Chile, Honduras, Brazil, and Argentina), Africa (Egypt, Nigeria, Ghana, Algeria, and Cameroon), Asia (Thailand, Fiji, China, and Malaysia), Middle East (Saudi Arabia), Oceania (Australia), and North America (United States and Mexico). The phenols are listed in Table 2.

Table 2 Phenolic compounds identified in propolis for the first time since 2011

No.	Chemical name	Geographic location	References
93	Caffeoyl glycerolb	Serbia	Ristivojević et al. [49]
94	Tricoumaroyl glycerolb	Serbia	Ristivojević et al. [49]
95	Coumaroyl feruloyl glycerol (isomer 1)b	Serbia	Ristivojević et al. [49]
96	Coumaroyl feruloyl glycerol (isomer 2)b	Serbia	Ristivojević et al. [49]
97	Dicaffeoyl coumaroyl glycerolb	Serbia	Ristivojević et al. [49]
98	Dicaffeoyl feruloyl glycerolb	Serbia	Ristivojević et al. [49]

Phenolic acid esters

No.	Chemical name	Geographic location	References
99	(E)-cinnamyl-(Z)-cinnamatea	Honduras	Lotti et al. [36]
100	Decyl caffeatea	Egypt	El-Hady et al. [61]
101	Caffeic acid phenacyl estera	United Kingdom	Saleh et al. [56]
102	Caffeic acid sesquiterpene ester (isomer 1)b	United Kingdom	Saleh et al. [56]
103	Caffeic acid sesquiterpene ester	United Kingdom	Saleh et al. [56]
104	Methylgalangin hydroxypropionyl ester	United Kingdom	Saleh et al. [56]
105	Caffeic acid monoterpene(geranyl) ester	United Kingdom	Saleh et al. [56]
106	Methyl methylene dioxy kaempferol hexanoyl ester (isomer 1)b	United Kingdom	Saleh et al. [56]
107	Methyl methylene dioxy kaempferol hexanoyl ester (isomer 2)b	United Kingdom	Saleh et al. [56]
108	Caffeic acid sesquiterpene ester (isomer 2)b	United Kingdom	Saleh et al. [56]

Xanthones

No.	Chemical name	Geographic location	References
109	α-Mangostinb	Thailand	Sanpa et al. [4]

(Continued)
Table 2 Phenolic compounds identified in propolis for the first time since 2011—Continued

No.	Chemical name	Geographic location	References
110	γ-Mangostin^a	Thailand	Sanpa et al. [4]
111	Mangostin^a	Thailand	Sanpa et al. [4]
112	8-Deoxygartanin^b	Thailand	Sanpa et al. [4]
113	Gartanin^b	Thailand	Sanpa et al. [4]
114	Garcinone B^b	Thailand	Sanpa et al. [4]
115	Furofuran lignan methylpinoresinol^b	Thailand	Sanpa et al. [4]
116	2-Acetyl-1-feruloyl-3-cafeoylglycerol^c	China	Shi et al. [37]
117	(+)-2-Acetyl-1-cafeoyl-3-cinnamoylglycerol^c	China	Shi et al. [37]
118	(−)-2-Acetyl-1-cafeoyl-3-cinnamoylglycerol^c	China	Shi et al. [37]
119	(+)-2-Acetyl-1-(E)-coumaroyl-3-(E)-cinnamoylglycerol^c	China	Shi et al. [37]
120	(−)-2-Acetyl-1-(E)-feruloyl-3-(E)-cinnamoylglycerol^c	China	Shi et al. [37]
121	(−)-2-Acetyl-1-(E)-feruloyl-3-(E)-cinnamoylglycerol^c	China	Shi et al. [37]
122	2-Acetyl-1,3-dicinnamoylglycerol^c	China	Shi et al. [37]
123	(−)-2-Acetyl-1-(E)-cinnamoyl-3-(3′(ζ),16″)-dihydroxy-palmitoyleglycerol^c	China	Shi et al. [37]
124	2-Acetyl-1,3-dicaffeoylglycerol^c	China	Shi et al. [37]
125	2-Acetyl-1-feruloyl-3-coumaroylglycerol^c	China	Shi et al. [37]
126	2-Acetyl-1-feruloyl-3-coumaroylglycerol^c	China	Shi et al. [37]
127	2-Acetyl-1,3-diferuloylglycerol^c	China	Shi et al. [37]
128	6-O-p-coumaroyl-D-galactopyranose^c	Brazil	De Souza et al. [13]
129	6-O-cinnamoyl-1-O-p-coumaroyl-β-D-glucopyranose^b	Brazil	De Souza et al. [13]
130	Dicoumaroyl glycerol^b	United Kingdom	Saleh et al. [56]
131	Acetyl coumaroyl glycerol^b	United Kingdom	Taddeo et al. [62]
132	Boropic acid^b	Italy	Taddeo et al. [62]
133	4′-Geranylxyferulic acid^b	Italy	Taddeo et al. [62]
134	7-Isopentenyloxycoumarin^b	Italy	Taddeo et al. [62]
135	Aurapten^b	Italy	Taddeo et al. [62]
136	Scopolin^a	Algeria	Soltani et al. [31]

Phenylpropanoid glycosides

137	Torachrysone-O-hexose^c	Malaysia	Zhao et al. [63]
138	Torachrysone-O-(acetyl)-hexose^c	Malaysia	Zhao et al. [63]
139	Torachrysone-O-(galloyl)-hexose^c	Malaysia	Zhao et al. [63]
140	Gallic acid-hexose^c	Malaysia	Zhao et al. [63]

Stilbenes

141	(E)-4-(3-methyl-2-butene-1-yl)-3,4,5-trihydroxy-3′-methoxystilbene^c	Australia	Duke et al. [64]
142	(E)-2-(3-methyl-2-butene-1-yl)-3,4,5-trihydroxy-stilbene (2-prenylresveratrol)^a	Australia	Duke et al. [64]
143	(E)-2,4-bis-(3-methyl-2-butene-1-yl)-3,3′,4,′5-tetrahydroxy-stilbene^a	Australia	Duke et al. [64]
144	(E)-2-(3-methyl-2-butene-1-yl)-3-(3-methyl-2-butenoyloxy)-3′,4,′5-trihydroxy-stilbene^a	Australia	Duke et al. [64]
145	(E)-2,6-bis-(3-methyl-2-butene-1-yl)-3,3′,5,′5′-tetrahydroxy-stilbene^a	Australia	Duke et al. [64]
146	(E)-2,6-bis-(3-methyl-2-butene-1-yl)-3′,4′,5′-trihydroxy-3′′-methoxystilbene^a	Australia	Duke et al. [64]
147	(E)-5-(2-(8-hydroxy-2-methyl-2′-(4-methylpent-3-en-1-yl)-2H-chromen-6-yl)vinyl)-2-(3-methylbut-2-en-1-yl)benzene-1,3-diol^a	Ghana	Almutairi et al. [65]
148	5′-(E)-5,5-di-dihydroxystyryl)·3·((E)-3,7-dimethylocta-2,6-dien-1-yl)benzene-1,2-diol^a	Ghana	Almutairi et al. [65]
149	Schweinfurthin C^c	Nigeria	Zhang et al. [56]
150	Mappain^c	Nigeria	Zhang et al. [56]
151	Geranyl stilbenoid^c	Nigeria	Zhang et al. [56]
152	Solomomin B^d	Fiji	Trusheva et al. [59]
153	Solomomin C^d	Fiji	Trusheva et al. [59]

Lignans

| 154 | Meso- (rel 7S,8S),(R,8′R)-3,4,5′-tetrahydroxy-7,7′-epoxy lignan^a | Argentina | Agüero et al. [35] |
| 155 | (7S,8S),(R,8′S)-3,4,5′-tetrahydroxy-4-methoxy-7,7′-epoxy lignan^a | Argentina | Agüero et al. [35] |

Phenolic acids

156	Caffeic acid derivative 1^c	Portugal	Falcão et al. [52]
157	Caffeic acid derivative 1 (isomer)^c	Portugal	Falcão et al. [52]
158	Caffeic acid derivative 2^c	Portugal	Falcão et al. [52]
159	Ferulic acid derivative^c	Portugal	Falcão et al. [52]
160	Sandaracopimaric acid^d	Saudi Arabia	Jer et al. [67]
161	(E)-3-hydroxy-1,7-diphenyleth-1-ene-5-acetate^e	Chile	Nina et al. [68]
162	(E)-5-hydroxy-1,7-diphenyleth-1-ene-3-acetate^e	Chile	Nina et al. [68]
Table 2 Phenolic compounds identified in propolis for the first time since 2011—Continued

No.	Chemical name	Geographic location	References
163	Caffeic acid hextrieneoate^a	United Kingdom	Saleh et al. [56]
164	Benzoyl dihydroxyphenylpropionic acid^b	United Kingdom	Saleh et al. [56]
165	Benzoyl hydroxyphenylacetic acid^b	United Kingdom	Saleh et al. [56]
166	Hydroxy phenyl acetyl dihydroxyphenylacetic acid^c	United Kingdom	Saleh et al. [56]
167	Pinobanksin phenyl propionate (isomer 1)^d	United Kingdom	Saleh et al. [56]
168	Dimethyl pinocembrin benzoate^e	United Kingdom	Saleh et al. [56]
169	Pentenoyl hydroxyphenylpropionic acid^c	United Kingdom	Saleh et al. [56]
170	Pinobanksin phenyl propionate (isomer 2)^d	United Kingdom	Saleh et al. [56]
171	Pinobanksin benzoate^e	United Kingdom	Saleh et al. [56]
172	Pinobanksin phenyl propionate (isomer 3)^d	United Kingdom	Saleh et al. [56]
173	Methyl pinobanksin acetate^e	United Kingdom	Saleh et al. [56]
174	Pinobanksin caffeate^e	United Kingdom	Saleh et al. [56]
175	Caffeoyl(dimethyl pinocembrin^e	United Kingdom	Saleh et al. [56]
176	Methyl chrysin acetate derivative^e	United Kingdom	Saleh et al. [56]
177	Pinobanksin dimethyl cinnamate^e	United Kingdom	Saleh et al. [56]
178	(4R,5R,9R,10R)-13-hydroxypodocarp-8(14)-en-19-oic acid^b	Brazil	Cisilotto et al. [47]

Other phenols

No.	Chemical name	Geographic location	References
179	Nordihydroguaiaretic acid^a	Argentina	Agüero et al. [35]
180	3'-Methyl-nordihydroguaiaretic acid^a	Argentina	Agüero et al. [35]
181	4'-Methyl-nordihydroguaiaretic acid^a	Argentina	Agüero et al. [35]
182	(E)-cinnamyl-(E)-cinnamylidenate^a	Thailand	Athikomkulchai et al. [45]
183	Kaempferol-dimethyl ether^e	Portugal	Falcão et al. [52]
184	5-Hexadecylresorcinol^e	Cameroon	Kardar et al. [69]
185	5-(10Z-pentadecenyl)-resorcinol^e	Cameroon	Kardar et al. [69]
186	5-(12Z-heptadecenyl)-resorcinol^e	Cameroon	Kardar et al. [69]
187	5-(14Z-heptadecenyl)-resorcinol^e	Cameroon	Kardar et al. [69]
188	5-(14Z-nonadecenyl)-resorcinol^e	Cameroon	Kardar et al. [69]
189	3-Undecyl phenol^e	Cameroon	Kardar et al. [69]
190	3-Tetradecylyphenol^e	Cameroon	Kardar et al. [69]
191	3-Pentadecylyphenol^e	Cameroon	Kardar et al. [69]
192	3-Hexadecylyphenol^e	Cameroon	Kardar et al. [69]
193	3-Heptadecylyphenol^e	Cameroon	Kardar et al. [69]
194	3-Nonadecylyphenol^e	Cameroon	Kardar et al. [69]
195	3-(10Z-pentadecenyl)-phenol^e	Cameroon	Kardar et al. [69]
196	3-(12Z-pentadecenyl)-phenol^e	Cameroon	Kardar et al. [69]
197	3-(8Z-heptadecenyl)-phenol^e	Cameroon	Kardar et al. [69]
198	3-(12Z-heptadecenyl)-phenol^e	Cameroon	Kardar et al. [69]
199	3-(14Z-heptadecenyl)-phenol^e	Cameroon	Kardar et al. [69]
200	3-(13Z-nonadecenyl)-phenol^e	Cameroon	Kardar et al. [69]
201	3-(14Z-nonadecenyl)-phenol^e	Cameroon	Kardar et al. [69]
202	Deperoxidized derivative of phuketione C^a	Cameroon	Almutairi et al. [65]
203	1.3-Dihydroxy-5-heptadecylenzene^a	Egypt	El-Hady et al. [61]
204	1.3-Dihydroxy-5-heptadecylenzene (C17:0) derivative^a	Egypt	El-Hady et al. [61]
205	1,3-Dihydroxy-5-heptadecylenzene (C19:1) derivative^a	Egypt	El-Hady et al. [61]
206	(E)-4-(3'-ethoxypropyl-1'-enylphenol (Ethyl p-coumaroyl ether)^a	United States	Sarka et al. [70]
207	Coumaric acid cinnamyl ether^e	United Kingdom	Saleh et al. [56]
208	Dimethyl kaempferol phenethyl ether^e	United Kingdom	Saleh et al. [56]
209	Dihydroxy propionyl pinocembrin methyl ether^e	United Kingdom	Saleh et al. [56]
210	Pinocembrin methyl ether (isomer 1)^e	United Kingdom	Saleh et al. [56]
211	Dimethyl galangin phenacetl ether^e	United Kingdom	Saleh et al. [56]
212	Pinocembrin methyl ether (isomer 2)^e	United Kingdom	Saleh et al. [56]
213	Hexadecenoil dimethyl pinobanksin^e	United Kingdom	Saleh et al. [56]
214	Pinobanksin-5-methylthether-3-O-propanoate^a	Mexico	Allday et al. [71]
215	Pinobanksin-5-methylthether-3-O-butryate^a	Mexico	Allday et al. [71]
216	Tetragocarbone A^a	Australia	Nishimura et al. [72]
217	Tetragocarbone B^a	Australia	Nishimura et al. [72]
218	3-(2-Hydroxy-4-methoxybenzyl)-6-methoxy-2,3-dihydrobenzofuran (Riverinol)^a	Nigeria	Omar et al. [60]

^aThe molecular structure of the compound is not completely defined. ^b Constituent isolated from the honeybee propolis (from the genus Apis sp.). ^c Constituent isolated from the stingless bee propolis (from genera Scaptotrigona sp., Melipona sp., Tetragonula sp., Trigona sp., Tetrigona sp., or Heterotrigona sp.). ^d Newly discovered compound. Compounds already mentioned in Huang et al. [8] are excluded.
2.1. Terpenoids

Terpenes and terpenoids are the biggest and most diverse group of secondary plant metabolites, which include more than 25,000 compounds. They are molecules composed from one or more isoprene (C5) units. Term terpene refers to a hydrocarbon molecule, whereas term terpenoid refers to hydrocarbon molecule that has been modified (e.g., addition of oxygen). Terpenes are further divided into seven classes: hemiterpenes (C5), monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), triterpenes (C30), tetraterpenes (C40), and polyterpenes (C45 or more) [73]. They are the second biggest and most important group of compounds and also the most abundant volatile components of propolis [74]. As mentioned before, they are one of the main biologically active substances in propolis and they play a major role in determining its quality. Terpenes were found mainly in tropical propolis, being rarer in poplar propolis type, yet some of them were also isolated from the Mediterranean propolis. Sesquiterpenes are the main group of terpenes found in propolis and are further divided into acyclic, monocyclic, dicyclic, and tricyclic sesquiterpenes. Other important terpenes from propolis are monoterpenes, triterpenes, and diterpenes, latter being the most important terpene from the pharmacological point of view [8,20,40,75].

Walker and Crane [24] mentioned 18 isolated terpenoids from propolis and Marcucci [6] added another 11. Between 2000 and 2012 Huang et al. [8] reported 58 terpenoids isolated from propolis for the first time, whereas between 2013 and 2018 another 46 were reported. In total, at least 133 terpenes were isolated from propolis until 2018. Terpenes isolated between 2013 and 2018 were found in propolis samples from Africa (Cameroon, Algeria, Egypt, and Nigeria), Asia (Malaysia and Thailand), South America (Chile, Brazil, and Bolivia), Middle East (Saudi Arabia), and Oceania (Australia and Pitcairn Island). Otherwise, most of the newly isolated terpenoids after 2013 belong to the group of triterpenes. Newly isolated terpenoids are listed in Table 3.

![Terpenoid groups/classes isolated from different propolis samples around the world.](Image)

Table 3 Terpenoids identified in propolis for the first time since 2011

No.	Chemical name	Geographic location	References
219	1,8-Terpineol^a	Cameroon	Papachroni et al. [58]
220	β-Panasinsene^a	Malaysia	Tuan et al. [76]
221	Cistadiol^a	Algeria	Piccinelli et al. [48]
222	18-Hydroxy-cis-clerodan-3-ene-15-oic acid^a	Algeria	Piccinelli et al. [48]
223	Propsiadin ((ent)-2-oxo-kaur-16-en-6,18-diol)^a	Saudi Arabia	Almutairi et al. [43]
224	Psidin^a	Saudi Arabia	Almutairi et al. [43]
225	Poilaneic acid^a	Chile	Nina et al. [68]
226	7,8,18-Trihydroxy serrulat-14-ene^a	Australia	Aminimoghadamfarouj and Nematollahi [75]
227	5,18-Epoxy serrulat-14-en-7,8-dione^a	Australia	Aminimoghadamfarouj and Nematollahi [75]
228	(18R)-5,18-epoxy serrulat-14-en-8,18-diol^a	Australia	Aminimoghadamfarouj and Nematollahi [75]
229	rel-(5S,6S,8R,9R,10S,18R,19S)-18,19-epoxy-2-oxoclerodan-3,12(E),14-triene-6,18,19-triol 18,19-diacetate 6-benzoate^a	Brazil	Tazawa et al. [77]
230	Abietinal^b	Pitcairn Island	Georgieva et al. [78]
231	3β-Acetoxy-19(29)-taraxasten-20α-ol^a	Saudi Arabia	Jerz et al. [67]
232	Pseudotaraxasterol-3β-O-acetate^a	Saudi Arabia	Jerz et al. [67]
233	β-Sitosterol^a	Saudi Arabia	Odiba et al. [79]
234	25-Cyclopropyl-3β-hydroxysyr-12-ene^a	Cameroon	Sakava et al. [80]
235	Cycloart-3β-hydroxy-12,25(26)-diene^a	Cameroon	Sakava et al. [80]
236	Lup-20(29)-en-3β-oate^a	Cameroon	Sakava et al. [80]
237	Olean-12-en-3β,28-diol (erythrodiol)^a	Cameroon	Sakava et al. [80]
238	3β-Teraxasterol-acetate^a	Cameroon	Papachroni et al. [58]

(Continued)
2.2. Fatty Acids

Fatty acids are one of the “waxy” nonpolar parts of propolis, and Heinen and Linskens [83] were one of the first researchers who isolated fatty acids (ranging from C_{18} to C_{40}) from propolis. Until 2018, there were many more found in propolis and some authors reported them as long as C_{36} [84]. Despite the fact that fatty acids were discovered in propolis relatively soon, most of the authors do not mention them in their articles. They can be present in propolis as glycosides, free fatty acids, different types of esters, or others [56,84]. There are many different types of fatty acids found in propolis: saturated, monounsaturated, polyunsaturated, and even omega-3 and omega-6 fatty acids [85]. As they are not among the most widely reported compounds in propolis, between 2013 and 2018 only two authors reported fatty acids isolated from propolis for the first time. Among those reported, 13 were free fatty acids and 4 were fatty acid glycosides. All of them were from European samples (Bulgaria and United Kingdom). Details can be found in Table 4.

Table 3 | Terpenoids identified in propolis for the first time since 2011—Continued

No.	Chemical name	Geographic location	References
239	Taraxasterol acetate^a	Cameroon	Papachroni et al. [58]
240	3α-Hydroxy-olean-12-en-30-ol^a	Cameroon	Papachroni et al. [58]
241	Bacchara-12,21-dien-3β-ol^a	Cameroon	Papachroni et al. [58]
242	Betulinaldehyde^a	Cameroon	Papachroni et al. [58]
243	4,4-Dimethyl-3-oxocholest-5-en-7-one^a	Egypt	El-Hady et al. [61]
244	3-Oxo-cycloart-24-ene-21,26-diol-26-acetate^a	Thailand	Sanpa et al. [4]
245	Dipterocarpos^a	Thailand	Sanpa et al. [4]
246	3-O-acetyl ursolic acid^a	Thailand	Sanpa et al. [4]
247	Ocotillone I^a	Thailand	Sanpa et al. [4]
248	Ocotillone II^a	Thailand	Sanpa et al. [4]
249	Cabralealactone (isomer 1)^b	Thailand	Sanpa et al. [4]
250	Cabralealactone (isomer 2)^b	Thailand	Sanpa et al. [4]
251	Ursolic aldehyde^a	Thailand	Sanpa et al. [4]
252	Oleanolic aldehyde^a	Thailand	Sanpa et al. [4]
253	Cycloart-24-en-3β,26-diol^b	Bolivia	Nina et al. [81]
254	Cycloart-24-en-3-one^b	Bolivia	Nina et al. [81]
255	24(E)-cycloart-24-en-26-ol-3-one^b	Bolivia	Nina et al. [81]
256	Mangiferonic acid methyl ester^b	Bolivia	Nina et al. [81]
257	Lup(20,29)-en-3-one^b	Bolivia	Nina et al. [81]
258	Methyl-3β,27-dihydroxycycloart-24-en-26-oate^a	Cameroon	Tallia et al. [81]
259	20-Hydroxy-24-dammaren-3-one^b	Malaysia	Zhao et al. [63]
260	3-Oxo-cycloart-24-E-en-21,26-diol-21,26-diacetate^a	Pitcairn Island	Georgieva et al. [78]
261	3-Oxo-cycloart-24-E-en-21,26-diol-21-acetate^b	Pitcairn Island	Georgieva et al. [78]
262	3-Oxo-cycloart-24-E-en-21,26-diol-21-acetate^b	Pitcairn Island	Georgieva et al. [78]
263	3-Oxo-cycloart-24-E-en-26-al^b	Pitcairn Island	Georgieva et al. [78]

| Compounds already mentioned in Huang et al. [8]. Despite the fact that fatty acids were discovered in propolis relatively soon, most of the authors do not mention them in their articles. They can be present in propolis as glycosides, free fatty acids, different types of esters, or others [56,84]. There are many different types of fatty acids found in propolis: saturated, monounsaturated, polyunsaturated, and even omega-3 and omega-6 fatty acids [85]. As they are not among the most widely reported compounds in propolis, between 2013 and 2018 only two authors reported fatty acids isolated from propolis for the first time. Among those reported, 13 were free fatty acids and 4 were fatty acid glycosides. All of them were from European samples (Bulgaria and United Kingdom). Details can be found in Table 4.

Table 4 | Fatty acids and their glycosides identified in propolis for the first time since 2011

No.	Chemical name	Geographic location	References
265	9-Oxo-(E)-12(Z)-octadecadienoic acid^a	Bulgaria	Bilikova et al. [86]
266	Dihydroxylinolenic acid^a	United Kingdom	Saleh et al. [56]
267	Dihydroxylinolenic acid (isomer 1)^a	United Kingdom	Saleh et al. [56]
268	Dihydroxy eicosenic acid^a	United Kingdom	Saleh et al. [56]
269	Hydroxylinolenic acid (isomer 1)^a	United Kingdom	Saleh et al. [56]
270	Dihydroxy docosahexanoic acid^a	United Kingdom	Saleh et al. [56]
271	Hydroxylinolenic acid (isomer 2)^a	United Kingdom	Saleh et al. [56]
272	Dihydroxylinolenic acid (isomer 2)^b	United Kingdom	Saleh et al. [56]
273	Hydroxylinoleic acid^a	United Kingdom	Saleh et al. [56]
274	Hydroxyheptadecanoic acid acetate^a	United Kingdom	Saleh et al. [56]
275	Hydroxydocosapentaenoic acid^a	United Kingdom	Saleh et al. [56]
276	Dihydroxylinolenic acid (isomer 3)^a	United Kingdom	Saleh et al. [56]
277	Hydroxydocosahexanoic acid^a	United Kingdom	Saleh et al. [56]

1. The molecular structure of the compound is not completely defined. 2. Constituent isolated from the honeybee propolis (from the genus Apis sp.). 3. Constituent isolated from the stingless bee propolis (from genera Tetragonula sp., Tetrigona sp., or Heterotrigona sp.). 4. Newly discovered compound. Compounds already mentioned in Huang et al. [8] are excluded.
2.3. Alcohols

Propolis, among other things, also contains different types of aliphatic compounds, such as simple alcohols, fatty alcohols, sugar alcohols, sterols, and others [8,24,84]. Between 2013 and 2018, two new alcohols were isolated from propolis samples from Africa (Cameroon) and Middle East (Oman). Table 5 includes only alcohols that were not included in the previous tables.

2.4. Alkaloids and their Derivatives

One of the most surprising discoveries regarding propolis in the recent years is definitely the discovery of alkaloids and their derivatives in propolis samples. Neither alkaloids nor nitrogenous compounds (except some vitamins from only a few samples) as such were reported from propolis before 2011–2012 [8,87]. To the best of our knowledge, alkaloids and their derivatives were first isolated from propolis in 2015 [57], when they were isolated from Brazilian propolis. They were later reported again, when they were isolated from Algerian propolis in 2017 [31] and from Brazilian propolis in 2018 [47]. Altogether 16 alkaloids and 5 alkaloid derivatives were isolated from propolis samples from two different countries. Specifics are listed in Table 6.

2.5. Other Compounds

Researchers also reported some new compounds in propolis that do not belong to any of the previously mentioned groups but were still isolated from propolis for the first time. Nineteen new compounds were isolated between 2013 and 2018, with the addition of one compound isolated in 2011 [35], which was not included in the review article by Huang et al. [8]. The newly isolated compounds were found in propolis from South America (Argentina), Africa (Algeria), and Europe (United Kingdom). Specifics are listed in Table 7.

Besides compounds mentioned above, there might be some that were not included in this review, either because their structures were not determined [47,60,66], because authors did not pay enough attention to their novelty and they were not specifically labelled as new [13,31,47,53,63,64,67,88], or simply because they were overlooked. In conclusion, actual number of compounds isolated in the recent years could be even higher.

Table 5 | Alcohols and related compounds identified in propolis for the first time since 2011

No.	Chemical name	Geographic location	References
282	Pinitol^b	Oman	Popova et al. [42]
283	1⁻O-eicosanyl glycerol⁴	Cameroon	Talla et al. [82]

^aConstituent isolated from the honeybee propolis (from the genus *Apis* sp.).^bConstituent isolated from the stingless bee propolis (from genera *Scaptotrigona* sp. or *Melipona* sp.). Compounds already mentioned in Huang et al. [8] are excluded.

Table 6 | Alkaloids and their derivatives identified in propolis for the first time since 2011

No.	Chemical name	Geographic location	References
284	7(3-Methoxy-2-methylbutyryl)-9-echimidinylretronecine derivative (1)⁶	Brazil	Coelho et al. [57]
285	7(3-Methoxy-2-methylbutyryl)-9-echimidinylretronecine derivative (2)⁶	Brazil	Coelho et al. [57]
286	Pagicerine^c	Algeria	Soltani et al. [31]
287	Demecolcine^c	Algeria	Soltani et al. [31]
288	Papaverine^c	Algeria	Soltani et al. [31]
289	Aspidospermidine^c	Algeria	Soltani et al. [31]
290	Morphinan-6-one-2-ol^c	Algeria	Soltani et al. [31]
291	Thebaine^c	Algeria	Soltani et al. [31]
292	N,O-dimethyl stephine^c	Algeria	Soltani et al. [31]
293	Morpholine^c	Algeria	Soltani et al. [31]
294	Lelobanoline^c	Brazil	Cisilotto et al. [47]
295	2-[6-(2-Hydroxy-propyl)-1-methyl-[2]-piperidyl]-1-phenylethanone^c	Brazil	Cisilotto et al. [47]
296	Norlobelanidine^c	Brazil	Cisilotto et al. [47]
297	Norlobeline^b	Brazil	Cisilotto et al. [47]
298	Lobeline^b	Brazil	Cisilotto et al. [47]
299	Lobelanidine^b	Brazil	Cisilotto et al. [47]

^aThe molecular structure of the compound is not completely defined.^bConstituent isolated from the honeybee propolis (from the genus *Apis* sp.).^cConstituent isolated from the stingless bee propolis (from genera *Scaptotrigona* sp. or *Melipona* sp.). Compounds already mentioned in Huang et al. [8] are excluded.
Table 7 Compounds, not belonging to any previously mentioned groups, identified in propolis for the first time since 2011

No.	Chemical name	Geographic location	References
305	4-[4-(4-Hydroxy-phenyl)-2,3-dimethyl-butyl]-benzene-1,2-diol	Argentina	Agüero et al. [35]
306	Ethoxy sulfonate^a	United Kingdom	Saleh et al. [56]
307	3,4,5-Triphenylpyrazole	Algeria	Soltani et al. [31]
308	3-(4-Methoxyphenyl)benzof[<i>f</i>]<i>quinazoline</i>	Algeria	Soltani et al. [31]
309	2-(4-Methoxyphenyl)-4-[(2-propyn-1-yl)thio]<i>quinazoline</i>	Algeria	Soltani et al. [31]
310	4-Aminobenzo[<i>g</i>]<i>quinazoline</i>	Algeria	Soltani et al. [31]
311	5-(4-Diethylaminobenzylidene)<i>rhdanine</i>	Algeria	Soltani et al. [31]
312	Carbamazepine^a	Algeria	Soltani et al. [31]
313	1-(3H-imidazol-4-yl)-ethanone^a	Algeria	Soltani et al. [31]
314	Nifenazone^a	Algeria	Soltani et al. [31]
315	Podoflox^a	Algeria	Soltani et al. [31]
316	Brallobarbital^a	Algeria	Soltani et al. [31]
317	Cyclobarbital^a	Algeria	Soltani et al. [31]
318	6,7,8-Trimethoxy-<i>isoquinoline</i>^a	Algeria	Soltani et al. [31]
319	1-<i>Butyl</i>-<i>isoquinoline</i>^a	Algeria	Soltani et al. [31]
320	1-(Phenylthioxomethyl)-2,5-pyrrolidinedione^a	Algeria	Soltani et al. [31]
321	2-(4-Methoxyphenyl)-2-methyl-1,3-dioxolane^a	Algeria	Soltani et al. [31]
322	1′H-cholesta-3,5-dieno-[3,4-<i>b</i>]<i>indol</i>	Algeria	Soltani et al. [31]
323	3-(3,4-Dimethoxyphenyl)-6-nitro-coumarin^a	Algeria	Soltani et al. [31]
324	10-Butyl-3,7-dinitro-10H-<i>phenothiazine</i>^a	Algeria	Soltani et al. [31]

^aThe molecular structure of the compound is not completely defined. [*]Constituent isolated from the honeybee propolis (from the genus <i>Apis</i> sp.). Newly discovered compound. Compounds already mentioned in Huang et al. [8] are excluded.

3. CONCLUSION

Until 2000 at least 300 compounds were reported from propolis [6,11] and Huang et al. [8] reported another 241 between 2000 and 2012. Despite these numbers, just between 2013 and 2018 at least 305 compounds were isolated from propolis for the first time, including the first isolation of alkaloids. This number excludes 19 compounds isolated between 2011 and 2012, which were excluded from the previously mentioned review by Huang et al. [8] and were thus included in this article, bringing the total number to 324. Altogether, until 2018 more than 850 compounds are reported from propolis.

Compounds included in this article were isolated from 6 different continents and from 29 different countries (including the 19 added compounds isolated in 2011–2012 mentioned above). New compounds were isolated on more than one occasion from propolis of some countries, most often from Brazil (6×). Most of the compounds belong to the groups of flavonoids (92), phenols (126), and terpenes (46), whereas fatty acids (17), alcohols (2), alkaloids (21), and other compounds (20) represent a minor fraction. Despite the fact that propolis has been intensely studied for at least 30–40 years, new discoveries are being made on a yearly basis and it is not yet known how many more will be discovered in the upcoming years.

CONFLICTS OF INTEREST

The authors declare they have no conflicts of interest.

AUTHOR CONTRIBUTIONS

The informations were gathered and the bulk of the article was written by Luka Šturm, while the critical revision and final approval were done by dr. Nataša Poklar Ulrih, whom also submitted the article.

REFERENCES

[1] De Castro SL. Propolis: biological and pharmacological activities. Therapeutic uses of this bee-product. Ann Rev Biomed Sci 2001;3:49–83.
[2] dos Santos Pereira A, Bicalho B, de Aquino Neto FR. Comparison of propolis from <i>Apis mellifera</i> and <i>Tetragonisca angustula</i>. Apidologie 2003;34:291–8.
[3] Wagh VD. Propolis: a wonder bees product and its pharmacological potentials. Adv Pharmacol Sci 2013;2013:11.
[4] Sanpa S, Popova M, Bankova V, Tunkasiri T, Eitssayeam S, Chantawannakul P. Antibacterial compounds from propolis of <i>Tetragonula laeviceps</i> and <i>Tetrigna melanoleuca</i> (Hymenoptera: Apidae) from Thailand. PLoS One 2015;10:e0126886.
[5] Ghisalberti EL. Propolis: a review. Bee World 1979;60:59–84.
[6] Marcucci MC. Propolis: chemical composition, biological properties and therapeutic activity. Apidologie 1995;26:83–99.
[7] Burdock GA. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol 1998;36:347–63.
[8] Huang S, Zhang CP, Wang K, Li GQ, Hu FL. Recent advances in the chemical composition of propolis. Molecules 2014;19:19610–32.
[9] Graikou K, Popova M, Gortzi O, Bankova V, Chinou I. Characterization and biological evaluation of selected Mediterranean propolis samples. Is it a new type? LWT – Food Sci Technol 2016;65:261–7.
[10] Kuropatnicki AK, Szlizska E, Krol W. Historical aspects of propolis research in modern times. Evid Based Complement Alternat Med 2013;2013:964149.
[11] Bankova VS, de Castro SL, Marcucci MC. Propolis: recent advances in chemistry and plant origin. Apidologie 2000;31:3–15.
[12] Fokt H, Pereira A, Ferreira AM, Cunha A, Aguiar C. How do bees prevent hive infection? The antimicrobial properties of propolis. In: Méndez-Vilas A, editor. Current Research, Technology and Education topics in Applied Microbiology and Microbial Biotechnology. Badajoz, Spain: Formatex Research Center; 2010, pp. 481–93.
[13] Alves de Souza S, Camara CA, Monica Sarmento da Silva E, Silva TMS. Composition and antioxidant activity of geopropolis collected by Melipona subintida (Jandaira) bees. Evid Based Complement Alternat Med 2013;2013:801383.

[14] Zhang J, Shen X, Wang K, Cao X, Zhang C, Zheng H, et al. Antioxidant activities and molecular mechanisms of the ethanol extracts of Baccharis propolis and Eucalyptus propolis in RAW647. cells. Pharm Biol 2016;54:2220–35.

[15] dos Santos Pereira A, de Miranda Pereira AF, Trugo LC, de Aquino Neto FR. Distribution of quinic acid derivatives and other phenolic compounds in Brazilian propolis. Z Naturforsch C J Biosci 2003;58:590–3.

[16] Alencar SM, Oldoni TLC, Castro ML, Cabral ISR, Costa-Neto CM, Cury JA, et al. Chemical composition and biological activity of a new type of Brazilian propolis: red propolis. J Ethnopharmacol 2007;113:278–83.

[17] Abu-Mellal A, Koolaji N, Duke RK, Tran VH, Duke CC. Prenylated cineamate and stilbenes from kangaroo Island propolis and their antioxidant activity. Phytochemistry 2012;77:251–9.

[18] Huang WJ, Huang CH, Wu CL, Lin JK, Chen YW, Lin CL, et al. Propolin G, a prenyllavannone, isolated from Taiwanese propolis, induces caspase-dependent apoptosis in brain cancer cells. J Agric Food Chem 2007;55:7566–76.

[19] Popravko SA, Sokolov MV. Plant sources of propolis. Pchelovodstvo 1980;2:28–9.

[20] Popova MP, Graikou K, Chinou I, Bankova VS. GC-MS profiling of diterpene compounds in Mediterranean propolis from Greece. J Agric Food Chem 2010;58:3167–76.

[21] Park YK, Ikegaki M, Alencar SM de, Moura FF de. Evaluation of Brazilian propolis by both physicochemical methods and biological activity. Honeybee Science 2000;21:85–90.

[22] Silici S, Kutluca S. Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region. J Ethnopharmacol 2005;99:69–73.

[23] Massaro CF, Simpson JB, Powell D, Brooks P. Chemical composition and antimicrobial activity of honeybee (Apis melifera ligustica) propolis from subtropical eastern Australia. Naturwissenschaften 2015;102:68.

[24] Walker P, Crane E. Constituents of propolis. Apidologie 1987;18:327–34.

[25] Cvek J, Medić-Šarić M, Vitali D, Vedrina-Dragojević I, Šmit Z, Tomić S. The content of essential and toxic elements in Croatian propolis samples and their tinctures. J Apicult Res 2008;47:35–45.

[26] Cantarelli MA, Camiña JM, Pettenati EM, Marchevsky EJ, Pellerano RG. Trace mineral content of Argentinean raw propolis. J Agric Food Chem 2008;47:35–45.

[27] Zhang CP, Liu G, Hu FL. Hydrolysis of flavonoid glycosides by propolis β-glycosidase. Nat Prod Res 2012;26:270–3.

[28] Popova M, Bankova V, Tsvetkova I, Naydenski C, Silva MV. The first glycosides isolated from propolis: diterpene rhamnosides. Zeitschrift für Naturforschung C 2001;56:1108–13.

[29] Garou EM, Troudi A, Fetoui H, Soudani N, Boudawara T, Zeghal N. Propolis attenuates cobalt induced-nephrotoxicity in adult rats and their progeny. Exp Toxicol Pathol 2012;64:837–46.

[30] Mayworm MAS, Lima CA, Tomba ACB, Fernandes-Silva CC, Salatino MLF, Salatino A. Does propolis contain tannins? Evid Based Complement Alternat Med 2014;2014:613647.

[31] Soltani EK, Cerezuela R, Charef N, Mezaache-Aichour S, Esteban MA, Zerroug MM. Algerian propolis extracts: chemical composition, bactericidal activity and in vitro effects on gillhead seabream innate immune responses. Fish Shellfish Immunol 2017;62:57–67.

[32] Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 1998;56:317–33.

[33] Balasundaram N, Sundaram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 2006;99:199–203.

[34] Bankova V. Chemical diversity of propolis and the problem of standardization. J Ethnopharmacol 2005;108:114–7.

[35] Aguiro MB, Svetaz L, Sánchez M, Luna L, Lima B, López ML, et al. Argentinean Andean propolis associated with the medicinal plant Larrea nitida Cav. (Zygophyllaceae). HPLC-MS and GC-MS characterization and antifungal activity. J Agric Food Chem 2011;49:1970–8.

[36] Lotti C, Piccinelli AL, Arevalo C, Ruiz I, Migliani De Castro GM, Figueira Reis De Sá L, et al. Constituents of Honduran propolis with inhibitory effects on Saccharomyces cerevisiae multidrug resistance protein Pdr5p. J Agric Food Chem 2012;60:10540–5.

[37] Shi H, Yang H, Zhang X, Sheng Y, Huang H, Yu L. Isolation and characterization of five glycerol esters from Wuhan propolis and their potential anti-inflammatory properties. J Agric Food Chem 2012;60:10041–7.

[38] Banskota AH, Tezuka Y, Kadota S. Recent progress in pharmacological research of propolis. Phytother Res 2001;15:561–71.

[39] Gardana C, Scaglanti M, Pietta P, Simonetti P. Analysis of the polyphenolic fraction of propolis from different sources by liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 2007;45:390–9.

[40] Popova MP, Chinou IB, Marekov IN, Bankova VS. Terpenes with antimicrobial activity from Cretan propolis. Phytochemistry 2009;70:1262–71.

[41] Kumazawa S, Hamsaka T, Nakayama T. Antioxidant activity of propolis of various geographical origins. Food Chem 2004;84:329–39.

[42] Popova M, Dimitrova R, Al-Lawati HT, Tsvetkova I, Najdenski H, Bankova V. Omani propolis: chemical profiling, antibacterial activity and new propolis plant sources. Chem Cent J 2013;7:1–158.

[43] Almutairi S, Edrada-Ebel RA, Fearnley J, Igoli JO, Alotaibi W, Clements CJ, et al. Isolation of diterpenes and flavonoids from a new type of propolis from Saudi Arabia. Phytochem Lett 2014;10:160–3.

[44] Boisard S, Le Ray AM, Landreau M, Kempf M, Cassisa V, Flurin C, et al. Antifungal and antibacterial metabolites from a French poplar type propolis. Evid Based Complement Alternat Med 2015;2015:319240.

[45] Athikomkulchai S, Awale S, Rayangrungsi N, Ruchirawat S, Kadota S. Chemical constituents of Thai propolis. Fitoterapia 2013;88:96–100.

[46] Cuesta-Rubio O, Campo Fernández M, Márquez Hernández I, Jaramillo CGJ, González VH, Montes De Oca Porto R, et al. Chemical profile and anti-leishmanial activity of three Ecuadorian propolis samples from Quito, Guayaquil and Cotacachi regions. Fitoterapia 2017;120:177–83.

[47] Cislotto J, Sandjo LP, Faqueti LG, Fernandes H, Joppi D, Biavatti MW, et al. Cytotoxicity mechanisms in melanoma cells and UPLC-QTOF/MS² chemical characterization of two Brazilian propolis.
stingless bee propolis: uncommon presence of piperidinic alkaloids. J Pharm Biomed Anal 2018;149:502–11.

[48] Piccinelli AL, Mencherini T, Celano R, Mouhoubi Z, Tamendjari A, Aquino RP, et al. Chemical composition and antioxidant activity of Algerian propolis. J Agric Food Chem 2013;61:5080–8.

[49] Ristivojević P, Trifković J, Gašić U, Andrić F, Nedić N, Tešić Z, et al. Ultrahigh-performance liquid chromatography and mass spectrometry (UHPLC–LQ/Orbitrap/MS/MS) study of phenolic profile of Serbian poplar type propolis. Phytochem Anal 2015;26:127–36.

[50] Seguini N, Zellagui A, Moussaoui F, Lahouel M, Rhouati S. Flavonoids from Algerian propolis. Arab J Chem 2016;9:S425–S8.

[51] Mitsui T, Hotta S, Tazawa S, Araiz Y, Kato K, Ichihara K. Chemical constituents of Brazilian propolis from the state of Bahia and their growth inhibitory activities against cancer cells. Biosci Biotechnol Biochem 2018;82:417–21.

[52] Falcão SI, Vale N, Gomes P, Domingues MRM, Freire C, Cardoso SM, et al. Phenolic profiling of Portuguese propolis by LC–MS spectrometry: uncommon propolis rich in flavonoid glycosides. Phytochem Anal 2013;24:390–18.

[53] Shimomura K, Sugiyama Y, Nakamura J, Ahn MR, Kumazawa S. Component analysis of propolis collected on Jeju Island, Korea. Phytochemistry 2013;93:222–9.

[54] Righi AA, Negri G, Salatino A. Comparative chemistry of propolis from eight Brazilian localities. Evid Based Complement Alternat Med 2013;2013:267878.

[55] Da Silva ECC, Muniz MP, de Cássia Saraiva Nunomura R, Nunomura SM, Carvalho Zilse GA. Phenolic constituents and antioxidant activity of geopropolis from two species of Amazonian stingless bees. Quim Nova 2013;36:628–33.

[56] Saleh K, Zhang T, Fearnley J, Watson DG. A comparison of the constituents of propolis from different regions of the United Kingdom by liquid chromatography-high resolution mass spectrometry using a metabolomics approach. Curr Metab 2015;3:42–53.

[57] Coelho GR, Mendonça RJZ, de Senna Vilar K, Figueiredo CA, Badari JC, Taniwaki N, et al. Antiviral action of hydromethanolic extract of geopropolis from Scaptotrigona postica against anti-herpes simplex virus (HSV-1). Evid Based Complement Alternat Med 2015;2015:296086.

[58] Papachroni D, Graikou K, Kosacel I, Damianakos H, Ingram V, Papachroni D, Graikou K, Kosacel I, Damianakos H, Ingram V. Phytochemical analysis and biological evaluation of selected African propolis samples from Cameroon and Congo. Nat Prod Commun 2015;10:67–70.

[59] Trusheva B, Stancheva E, Gajbhiye NA, Dimitrova R, Popova MP, et al. New cycloartane triterpenes from bio- prod. 2016;10:465–71.

[60] Abdu El-Hady FK, Souleman AMA, El-Shahid ZA. Anti-acetylcholinesterase and cytotoxic activities of Egyptian propolis with correlation to its GC/MS and HPLC analysis. Int J Pharm Sci Rev Res 2015;34:32–42.

[61] Taddeo VA, Epifano F, Fiorito S, Genovesi S. Comparison of different extraction methods and HPLC quantification of prenylated and unprenylated phenylpropanoids in raw Italian propolis. J Pharm Biomed Anal 2016;129:219–23.

[62] Zhao L, Yu M, Sun M, Xue X, Wang T, Cao W, et al. Rapid determination of major compounds in the ethanol extract of geopropolis from Malaysian stingless bees, Heterotrigona itama, by UHPLC-Q-TOF/MS and NMR. Molecules 2017;22: pii: E1935.

[63] Duke CC, Tran VH, Duke RK, Abu-Mellal A, Plunkett GT, King DI, et al. A sedge plant as the source of Kangaroo Island propolis rich in prenylated p-coumarate ester and stilbenes. Phytochemistry 2017;134:87–97.

[64] Almutairi S, Eapen B, Chunudi SM, Akhalil A, Sihere W, Clements C, et al. New anti-trypanosomal active prenylated compounds from African propolis. Phytochem Lett 2014;10:35–9.

[65] Zhang T, Omar R, Sihere W, Al Mutairi S, Clements C, Fearnley J, et al. Chromatographic analysis with different detectors in the chemical characterisation and dereplication of African propolis. Talanta 2014;120:181–90.

[66] Jerz G, Elnakhady YA, Braun A, Jäckel K, Sasse F, Al Ghamdi AA, et al. Preparative mass-spectrometry profiling of bioactive metabolites in Saudi-Arabian propolis fractionated by high-speed countercurrent chromatography and off-line atmospheric pressure chemical ionization mass-spectrometry injection. J Chromatogr A 2014;1347:17–29.

[67] Aminimoghadamfarouj N, Nematollahi A. Structure elucidation of a novel diterpene in brown propolis from the state of Bahia. J Agric Food Chem 2014;62:3860–1.

[68] Kardar MN, Zhang T, Cooxen GD, Watson DG, Fearnley J, Seidel V. Characterisation of triterpenes and new phenolic lipids in Cameroonian propolis. Phytochemistry 2014;106:156–63.

[69] Savkova MA, Dailey L, Popova M, Mihaylova R, Merritt B, Masek M, et al. Chemical composition and disruption of quorum sensing signaling in geographically diverse United States propolis. Evid Based Complement Alternat Med 2015;2015: 472593.

[70] Alday E, Valencia D, Carreño AL, Picerno P, Piccinelli AL, Rastrelli L, et al. Apoptotic induction by pinobanksin and some of its ester derivatives from Sonoran propolis in a B-cell lymphoma cell line. Chem Biol Interact 2015;242:35–44.

[71] Nishimura E, Murakami S, Suzuki K, Amano K, Tanaka R, Shinada T. Structure determination of monomeric phloroglucinol derivatives with a cinnamoyl group isolated from propolis of the stingless bee, Tetragonula carbonaria. Asian J Org Chem 2016;5:855–9.

[72] Zwenger S, Basu C. Plant terpenoids: applications and future potentials. Biotechnol Mol Biol Rev 2008;3:1–7.

[73] Bankova V, Popova M, Trusheva B. Propolis volatile compounds: chemical diversity and biological activity: a review. Chem Cent J 2014;8:28.

[74] Aminimoghadamfarouj N, Nematollahi A. Structure elucidation and botanical characterization of diterpenes from a specific type of bee glue. Molecules 2017;22: pii: E1185.

[75] Ismail TNNT, Sulaiman SA, Ponnuraj KT, Man CN, Hassan NB. Chemical constituents of Malaysian Apis mellifera propolis. Sains Malaysiana 2018;47:117–22.

[76] Tazawa S, Araiz Y, Hotta S, Mitsui T, Nozaki H, Ichihara K. Discovery of a novel diterpene in brown propolis from the state of Parana, Brazil. Nat Prod Commun 2016;11:201–5.

[77] Georgiev K, Trusheva B, Uzunova V, Stoyanova T, Valcheva V, Popova M, et al. New cycloartane triterpenes from bio-
active extract of propolis from Pitcairn Island. Fitoterapia 2018;128:233–41.

[79] Odiba JO, Musa AM, Hassan HS, Yahaya SM, Okolo EI. Antimicrobial activity of isolated Stigmast-5-en-3β-ol (β-sitosterol) from honeybee propolis from North-Western, Nigeria. Int J Pharm Sci Res 2014;5:908–18.

[80] Paul S, Emmanuel T, Matchawe C, Tiabou Alembert T, Elisabeth ZM, Sophie L, et al. Pentacyclic triterpenes and crude extracts with antimicrobial activity from Cameroonian brown propolis samples. J Appl Pharm Sci 2014;4:1–9.

[81] Nina N, Quispe C, Jiménez-Aspee F, Theoduloz C, Giménez A, Schmeda-Hirschmann G. Chemical profiling and antioxidant activity of Bolivian propolis. J Sci Food Agric 2016;96:2142–53.

[82] Talla E, Tamfu AN, Gade IS, Yanda L, Mbafor JT, Laurent S, et al. New mono-ether of glycerol and triterpenes with DPPH radical scavenging activity from Cameroonian propolis. Nat Prod Res 2017;31:1379–89.

[83] Heinen W, Linkens HE. Occurrence of fatty acids in propolis. Port Acta Biol A 1972;12:56–76.

[84] Vyssotski M, Lagutin K, Catchpole O. Simple lipids and hydrocarbons of New Zealand propolis wax. J Apicult Res 2018;57:271–7.

[85] Rebiai A, Belfar ML, Mesbahi MA, Nani S, Tiba A, Ghamem Amara D, et al. Fatty acid composition of Algerian propolis. J Fundam Appl Sci 2017;9:1656–71.

[86] Bilikova K, Popova M, Trusheva B, Bankova V. New anti-

Paenibacillus larvae substances purified from propolis. Apidologie 2013;44:278–85.

[87] Salatino A, Fernandes-Silva CC, Righi AA, Salatino MLF. Propolis research and the chemistry of plant products. Nat Prod Rep 2011;28:925–36.

[88] Haile K, Kebede T, Dekebo A. A comparative study of volatile components of propolis (bee glue) collected from Haramaya University and Assela beekeeping Centers, Ethiopia. Bull Chem Soc Ethiopia 2012;26:353–60.