Characterization of the Metabolic Activation of Hepatitis C Virus Nucleoside Inhibitor \(\beta\)-d-2’-Deoxy-2’-fluoro-2’-C-methylcytidine (PSI-6130) and Identification of a Novel Active 5’-Triphosphate Species*

Han Ma1, Wen-Rong Jiang, Nicole Robledo, Vincent Leveque, Samir Ali, Teresa Lara-Jaime, Mohammad Masjedizadeh, David B. Smith, Nick Cammack, Klaus Klumpp, and Julian Symons

From the Roche Palo Alto LLC, Palo Alto, California 94304

\(\beta\)-d-2’-Deoxy-2’-fluoro-2’-C-methylcytidine (PSI-6130) is a potent inhibitor of hepatitis C virus (HCV) replication in the subgenomic HCV replicon system, and its corresponding 5’-triphosphate is a potent inhibitor of the HCV RNA polymerase in vitro. In this study the formation of PSI-6130-triphosphate was characterized in primary human hepatocytes. PSI-6130 and its 5’-phosphorylated derivatives were identified, and the intracellular concentrations were determined. In addition, the deaminated derivative of PSI-6130, the intracellular concentrations were determined. In addition, the deaminated derivative of PSI-6130, \(\beta\)-d-2’-deoxy-2’-fluoro-2’-C-methyluridine (RO2433, PSI-6026) and its corresponding phosphorylated metabolites were identified in human hepatocytes after incubation with PSI-6130. The formation of the 5’-triphosphate (TP) of PSI-6130 (PSI-6130-TP) and RO2433 (RO2433-TP) increased with time and reached steady state levels at 48 h. The formation of both PSI-6130-TP and RO2433-TP demonstrated a linear relationship with the extracellular concentrations of PSI-6130 up to 100 \(\mu\)M, suggesting a high capacity of human hepatocytes to generate the two triphosphates. The mean half-lives of PSI-6130-TP and RO2433-TP were 4.7 and 38 h, respectively. RO2433-TP also inhibited RNA synthesis by the native HCV replicase isolated from HCV replicon cells and the recombinant HCV polymerase NS5B with potencies comparable with those of PSI-6130-TP. Incorporation of RO2433-5’-monophosphate (MP) into nascent RNA by NS5B led to chain termination similar to that of PSI-6130-TP. These results demonstrate that PSI-6130 is metabolized to two pharmacologically active species in primary human hepatocytes.

Hepatitis C is a major health problem affecting \(~170\) million people worldwide of which around \(~3\) million chronically infected patients reside within the United States (1). The current standard treatment for hepatitis C consisting of pegylated interferon-\(\alpha\) and ribavirin only results in about a 50% sustained virological response in patients infected with genotype 1 hepatitis C virus (HCV),2 the most predominant genotype in the United States and Europe (2–4). New treatment options with improved clinical efficacy and greater tolerability are urgently needed. Novel antiviral agents targeting essential processes of HCV replication as part of optimized combination regimens could achieve increased clinical efficacy and potentially improved adverse event profiles as well as shortened treatment duration as compared with the current standard of care.

HCV RNA replication is mediated by a membrane-associated multiprotein replication complex (5, 6). The HCV NS5B protein, the RNA-dependent RNA polymerase, is the catalytic subunit of the HCV replication complex and is responsible for the synthesis of the RNA progeny and, hence, is a prime target of anti-viral inhibition. Nucleoside analogs have been established as successful antiviral agents targeting the active site of DNA polymerases for the treatment of other viral diseases, including human immunodeficiency virus, hepatitis B virus, and herpes simplex virus (7). The majority of marketed antiviral nucleoside analogs need to be converted to the active 5’-triphosphate forms in the target cells. These nucleotide triphosphate analogs then serve as alternative substrates for the viral DNA polymerases and compete with the incorporation of the corresponding natural nucleotide triphosphates. Upon incorporation by the viral DNA polymerases, the lack of the 3’-hydroxyl group in the deoxyribose moiety leads to the termination of the nascent viral DNA (chain termination).

In the past few years a number of ribonucleoside analogs with 2’-C-methyl, 2’-O-methyl, or 4’-azido substituents on the ribose moiety have been reported to be inhibitors of HCV replication in the subgenomic replicon system (8–13). Prodrugs of two nucleoside analogs, 2’-C-methylcytidine (NM107) and 4’-azidocytidine (R1479), have successfully progressed into clinical development and shown efficacy in HCV-infected patients (14, 15). The corresponding nucleotide triphosphate analogs are substrates for HCV polymerase NS5B and inhibit RNA synthesis activity of HCV NS5B in vitro. The incorporation of the nucleotide analogs into nascent HCV RNA strongly reduces the efficiency of further RNA elongation by NS5B,

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 To whom correspondence should be addressed: Roche Palo Alto LLC, 3431 Hillview Ave., Palo Alto, CA 94304. Tel.: 650-852-3190; Fax: 650-354-7554; E-mail: han.ma@roche.com.

2 The abbreviations used are: HCV, hepatitis C virus; MP, 5’-monophosphate; DP, 5’-diphosphate; TP, 5’-triphosphate; HPLC, high performance liquid chromatography.
resulting in termination of the nascent RNA product. Therefore, these nucleoside analogs are non-obligatory chain terminators despite the presence of a 3'-hydroxyl group.

Recently, β-d-2'-deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130) has been identified as a potent and selective inhibitor of HCV replication in the subgenomic replicon system with little or no cytotoxicity in various human cell lines or bone marrow precursor cells (16). The corresponding triphosphate of PSI-6130 is an inhibitor of HCV NS5B competitive with natural CTP (17). Conversion to the active 5'-triphosphate form by cellular kinases is an important part of the mechanism of action for nucleoside analogs. In this study we determined the metabolism of β-d-2'-deoxy-2'-fluoro-2'-C-methylcytidine in primary human hepatocytes isolated from several donors. We show that β-d-2'-deoxy-2'-fluoro-2'-C-methylcytidine was converted to β-d-2'-deoxy-2'-fluoro-2'-C-methyluridine 5'-triphosphate and β-d-2'-deoxy-2'-fluoro-2'-C-methyluridine 5'-triphosphate via deamination of the phosphorylated cytidylates. Furthermore, we determined the kinetics of the formation of the two active triphosphates and the potency of the two triphosphates against the native HCV replicase and NS5B as well as the molecular mechanism of action of the two triphosphates.

EXPERIMENTAL PROCEDURES

Compounds—β-d-2'-Deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130) was provided by Pharmasset, Inc. (18). A stock solution of 10 mM PSI-6130 was prepared in Dulbecco’s phosphate-buffered saline and stored at -20 °C. Tritiated PSI-6130 was synthesized at Roche Palo Alto LLC. The tritiated compound was dissolved in 50% (v/v) ethanol at the concentration of 0.97 mCi/ml with a specific activity of 25.78 Ci/mmol. The stock solution was stored at -20 °C. The phosphorylated derivatives of PSI-6130, namely PSI-6130-MP, -DP, and -TP, were provided by Pharmasset, Inc. β-d-2'-Deoxy-2'-fluoro-2'-C-methyluridine (RO2433) was synthesized at Roche Palo Alto LLC. RO2433-MP, -DP, and -TP were synthesized by TriLink BioTechnologies (San Diego, CA). Compound stock solutions were prepared in nuclease-free H2O and stored at -20 °C. 3'-dCTP was purchased from TriLink BioTechnologies.

Cell Culture of Primary Human Hepatocytes—Plated fresh human hepatocytes or hepatocyte suspensions were obtained either from CellzDirect, Inc. or from In Vitro Technologies, Inc. Fresh human hepatocytes obtained from each company were plated or cultured on 6-well collagen coated plates (BD Biosciences #356400) at 1.5 million cells per well using complete serum containing medium obtained from the respective companies. Cells were allowed to recover for at least 18 h before the addition of the compound. All incubations were carried out at 37 °C in a humidified 5% CO2 atmosphere.

To determine the time course of uptake and phosphorylation of PSI-6130, human primary hepatocytes were incubated with tritium-labeled PSI-6130 at 0, 2, 10, 25, 50, 100, and 250 μM for 24 h. Final concentrations of PSI-6130 were achieved by supplementing 3H-labeled PSI-6130 with non-radiolabeled PSI-6130. Duplicate cell samples were harvested after 24 h of incubation. To determine the half-life of the triphosphates of PSI-6130 and RO2433, human primary hepatocytes were incubated for 24 h with tritium-labeled PSI-6130 at 0, 0.5, 1, 2, 4, 6, 8, 24, 48, and 72 h time points after the removal of PSI-6130. Duplicate cell samples were set up for each time point. The viable cell numbers of the untreated cell controls for each experiment were determined at the end of the experiment using the trypan blue exclusion method.

Preparation of Cell Extract for High Performance Liquid Chromatography (HPLC) Analysis—At the time of cell harvest the cell culture medium was aspirated, and the cells were washed once with cold phosphate-buffered saline. The cells were scraped into 1 ml of pre-chilled 60% (v/v) methanol and extracted in methanol for 24 h at -20 °C. The extracted samples were then centrifuged at 10,000 × g for 15 min to remove cell debris. The supernatant was transferred to new tubes and evaporated in a speed vacuum at room temperature. The pellets were stored at -80 °C until analysis.

The dried pellets of cell extracts were dissolved in H2O and filtered through a nanopore MF centrifugal device (Pall Life Sciences #ODM02C34). Before HPLC analysis, cell extract samples were spiked with unlabeled reference standards PSI-6130, RO2433, and their phosphorylated derivatives.

HPLC—The phosphorylated derivatives of PSI-6130 were separated by ion exchange HPLC with a Whatman Partisil 10 SAX (4.6 × 250 mm) column coupled to a radiometric detector (β-RAM, IN/US Systems, Inc.). The mobile phase gradient was composed of 0% buffer A (H2O) to 100% buffer B (0.5 M KH2PO4 + 0.8 M KCl) between 4 and 8 min. 100% buffer B ran from 8 to 18 min and changed back to 100% A in 1 min. Buffer A was used until 25 min. The flow rate was 1 ml/min. A ratio of 5:1 FloScint IV or Ultima-Flo™ AP (PerkinElmer Life Sciences) to column eluent was used for the detection of radiolabeled species in the β-RAM detector (IN/US Systems, Inc.).

The separation of PSI-6130 and RO2433 was performed by reverse phase chromatography with a Zorbax SB-C8 column (4.6 × 250 mm, 5 μm) coupled to a radiometric detector (β-RAM). The gradient changed linearly from 100% buffer A (0.01 M heptane sulfonic acid, sodium salt, 0.1% (v/v) acetic acid in water) to 10% buffer B (0.01 M heptane sulfonic acid sodium salt, 0.1% (v/v) acetic acid in 1:1 methanol water) between 0 and 3 min and then changed linearly from 10% buffer B to 95% buffer B between 3 and 18 min. 95% buffer B ran from 18 to 22 min and then changed back to 100% A in 0.1 min. Buffer A ran until 25 min. The flow rate was 1 ml/min. PSI-6130 and its intracellular metabolites were identified by comparison of the retention times of the intracellular species in the radiochromatogram with the retention times of nonradioactive reference standards spiked in the cell extract samples and detected by UV absorption at 270 nm.
Metabolism and Mechanism of Action of β-D-2’-Deoxy-2’-fluoro-2’-C-methylcytidine

Acid Phosphatase Treatment of Cell Extracts—Hepatocyte cell extracts were incubated with acid phosphatase (Sigma #P-0157) at a final concentration of 0.05 mg/ml (23.9 units/ml) at 37 °C for 2.5 h to dephosphorylate any phosphorylated metabolites of PSI-6130. After digestion the samples were analyzed by reversed phase HPLC.

HCV Replicon Assay—The 2209-23 cell line containing a bicistronic HCV subgenomic replicon (genotype 1b, Con1 strain), which expresses a Renilla luciferase reporter gene as an index of HCV RNA replication, has been described before (9). The analysis of inhibition of HCV replication by nucleoside analogs and IC50 determinations were performed as described (12).

HCV Replicase Assay—The membrane-associated native HCV replicase complexes were isolated from 2209-23 replicon cell lines as described (6). The inhibition of the RNA synthesis activity of the HCV replicases by PSI-6130-TP was determined as described (6) except that 5 μl of cytoplasmic replicase complex (2.5 × 106 replicon cell equivalent) was added to a 20-μl reaction for 60 min. The inhibition of the RNA synthesis activity of the HCV replicases by RO2433-TP was determined in reactions containing 6.25 μl of cytoplasmic replicase complex (3.1 × 106 replicon cell equivalent), 50 mM HEPES, pH 7.5, 10 mM KCl, 10 mM dithiothreitol, 5 mM MgCl2, 20 μg/ml actinomycin D, 1 mM ATP, GTP, and CTP, 24 μCi of (0.4 μM) [α-33P]UTP (PerkinElmer #NEG607H), 1 units/μl SUPERase. In (Ambion), 10 mM creatine phosphate, 200 μg/ml creatine phosphokinase with or without the nucleotide triphosphate inhibitor in a final volume of 20 μl for 90 min.

HCV Polymerase Assay—The inhibition potency of PSI-6130-TP on the RNA-dependent polymerase activity of recombinant NS5B570-Con1 (genotype 1b, GenBank™ accession number AJ242654) was measured as the incorporation of radiolabeled nucleotide monophosphate into acid-insoluble RNA products as described (6) with the following modifications; IC50 determinations were carried out using 200 nM in vitro transcribed complementary internal ribosome entry site RNA template, 1 μCi of tritiated UTP (42 Ci/mmol), 500 μM ATP, 500 μM GTP, 1 μM CTP, 1× TMDN buffer (40 mM Tris-HCl, pH 8.0, 4 mM MgCl2, 4 mM dithiothreitol, 40 mM NaCl) and 200 nM NS5B570-Con1. The inhibition potency of RO2433-TP was determined as described above with the following modification of NTP concentrations: 1 μCi of tritiated CTP (39 Ci/mmol), 500 μM ATP, 500 μM GTP, 1 μM UTP. The compound concentration at which the enzyme-catalyzed rate is reduced by 50% (IC50) was calculated using equation,

\[
Y = \% \text{ Min} + \frac{(% \text{ Max} - \% \text{ Min})}{(1 + \frac{X}{IC50})} \quad \text{(Eq. 1)}
\]

where Y corresponds to the relative enzyme activity, % Min is the residual relative activity at saturating compound concentration, % Max is the relative maximum enzymatic activity, and X corresponds to the compound concentration.

The apparent Michaelis constants (Km(app)) for UTP or CTP were measured using assay conditions above with the following modifications; Km(app) for CTP was measured using 2 μCi of tritiated UTP (0.93 μM), 4.07 μM unlabeled UTP, 50 μM ATP, 50 μM GTP, and 5 nM to 50 μM CTP; Km(app) for UTP was measured using 2 μCi of tritiated CTP (1.67 μM), 3.33 μM unlabeled CTP, 50 μM ATP, 50 μM GTP, and 5 nM to 50 μM UTP. Apparent Km(app) values were calculated by nonlinear fitting using Equation 2,

\[
Y = \frac{V_{\text{max(app)}}X}{K_{\text{m(app)}} + X} \quad \text{(Eq. 2)}
\]

where Y corresponds to the rate of RNA synthesis by NS5B, Vmax(app) is the maximum rate or RNA synthesis at saturating substrate concentration, and X corresponds to CTP or UTP concentration.

Ki values were derived from the Cheng-Prusoff Equation (Equation 3) for competitive inhibition,

\[
K_i = \frac{IC50}{1 + \frac{[\text{NTP}]}{K_{\text{m(app)}}}} \quad \text{(Eq. 3)}
\]

where [NTP] is the concentration of CTP or UTP, and Km(app) is the apparent Michaelis constant for CTP or UTP. Mean Ki values were averaged from independent measurements at 0.2, 1, 5, and 25 μM CTP or UTP concentrations in triplicate experiments.

Gel-based Nucleotide Incorporation Assay—The RNA template-directed nucleotide incorporation and extension of nucleotide triphosphates and nucleotide triphosphate analogs by HCV polymerase was performed with a 19-nucleotide RNA oligo (5’-AUGUUGAUAUUAAUGCAGCC-3’) under assay conditions as described (9). The incorporation and extension of CTP and CTP analogs were determined with 5’-end-radiolabeled GG primer and nucleotide triphosphates at the indicated concentrations. The incorporation and extension of UTP and UTP analogs were performed similarly with the same RNA oligo template, 5’-end-radiolabeled GGC primer and nucleotide triphosphates at the indicated concentrations. The radiolabeled RNA products were separated on a TBE-urea acrylamide gel and analyzed using phosphorimaging (GE Healthcare).

RESULTS

Metabolic Profile of PSI-6130—Cellular extracts from primary human hepatocytes incubated with tritium-labeled β-D-2’-deoxy-2’-fluoro-2’-C-methylcytidine (PSI-6130) were resolved by ion exchange HPLC. PSI-6130 and metabolites derived from PSI-6130 were identified by comparing the retention times of radiolabeled species with the retention times of unlabeled reference compounds (Fig. 1A). As shown in Fig. 1B, PSI-6130 (3.0 min) and the 5’-phosphorylated derivatives PSI-6130-DP (13.2 min) and PSI-6130-TP (16.8 min) were identified in human hepatocytes incubated with PSI-6130. In addition, metabolites with retention times corresponding to those of the deaminated product of PSI-6130, 3β-D-2’-deoxy-2’-fluoro-2’-C-methyluridine (RO2433, 3.8 min) and its corresponding 5’-phosphates RO2433-DP (12.5 min) and RO2433-TP (14.8 min), were detected (Fig. 1B). The mono-phosphates of the cytidine and uridine analogs PSI-6130-MP and RO2433-MP were not separated sufficiently under the
Metabolism and Mechanism of Action of β-D-2'-Deoxy-2'-fluoro-2'-C-methylcytidine

In Vitro Potency of RO2433 and RO2433-TP—As described above, incubation of human hepatocytes with PSI-6130 resulted in the formation of substantial concentrations of the triphosphate of its uridine analog, RO2433-TP. Next we determined whether the PSI-6130-derived uridine analog RO2433 could inhibit HCV replication targeting NS5B polymerase. Huh7 cells containing a subgenomic genotype 1b Con1 strain HCV replicon were incubated with RO2433 or PSI-6130 for 72 h, and dose-dependent inhibition of luciferase reporter activity was determined. RO2433 did not inhibit the HCV replication in the HCV subgenomic replicon system at concentrations up to 100 μM, whereas PSI-6130 inhibited HCV replication with a mean IC₅₀ of 0.6 μM under the same assay conditions (Table 1). The lack of potency in the replicon could be related to inefficient compound phosphorylation. To address whether the triphosphate of RO2433 directly inhibits the HCV RNA polymerase, the RNA synthesis activity of the native membrane-associated HCV replication complexes isolated from the same replicon cells was tested in the presence of RO2433-TP. RO2433-TP inhibited the RNA synthesis activity of HCV replicase with a mean IC₅₀ of 1.19 μM, whereas PSI-6130-TP inhibited HCV replication with a mean IC₅₀ of 0.34 μM (Table 1). RO2433-TP also inhibited the RNA synthesis activity of the recombinant HCV Con1 NS5B on a heteropolymeric RNA template derived from the 3'-end of the negative strand of the HCV genome with an IC₅₀ of 0.023 μM (Table 1). These results established that both RO2433-TP and PSI-6130-TP are intrinsically potent inhibitors of RNA synthesis by HCV polymerase.
Metabolism and Mechanism of Action of β-d-2′-Deoxy-2′-fluoro-2′-C-methylcytidine

To investigate the molecular mechanism of HCV polymerase inhibition by PSI-6130-TP and RO2433-TP, we measured their incorporation and chain-termination properties. The incorporation of nucleotide and nucleotide analogs by HCV polymerase NS5B was determined in a gel-based assay using a short RNA template (Fig. 3A). Incorporation of CMP, PSI-6130-MP, and 3′-dCMP was initiated from a 33P-labeled GG primer (Fig. 3A). Incorporated CMP (Fig. 3B, lane 6) could be further extended in the presence of the next nucleotide UTP (Fig. 3B, lanes 7–10). PSI-6130-TP and 3′-dCTP could also serve as substrates for HCV NS5B and were incorporated into the nascent RNA product (Fig. 3B, lane 11 and 16). After incorporation of PSI-6130-MP or 3′-dCMP, further extension in the presence of the next nucleotide UTP was completed blocked even when UTP was present at concentrations up to 1 mM (Fig. 3B, lanes 12–15 and lanes 16–20, respectively). Incorporation of UMP, RO2433-MP, and 3′-dUMP was initiated from a 33P-labeled GGC primer using the same RNA template (Fig. 3A). Incorporated UMP (Fig. 3C, lane 6) could be further extended in the presence of the next nucleotide ATP (Fig. 3C, lanes 7–10). Full-length RNA product was observed in the presence of UTP and ATP but absence of CTP (Fig. 3C, lanes 7–10), possibly due to misincorporation by NS5B through G-U wobble base-pairing. HCV NS5B was also able to incorporate RO2433-MP (Fig. 3C, lane 11) and 3′-dUMP (Fig. 3C, lane 16) but was unable to further extend the incorporated RO2433-MP and 3′-dUMP in the presence of the next nucleotide ATP (Fig. 3C, lanes 12–15 and lanes 17–20, respectively). The control samples with GG primer and UTP-only as well as GGC primer and ATP-only did not lead to further extension of the primers, suggesting the incorporation of PSI-6130-MP and RO2433-MP was base-specific. Taken together, these results demonstrate that PSI-6130-TP and RO2433-TP serve as alternative substrates for HCV NS5B and act as functional chain terminators once incorporated into nascent RNA. While this manuscript was under preparation it was reported that the incorporation of PSI-6130-MP into the nascent RNA by HCV polymerase led to chain termination, in agreement with our observations (17).

Kinetics of Phosphorylation of PSI-6130 in Primary Human Hepatocytes—To determine the steady state level of the two triphosphates in hepatocytes after exposure to PSI-6130, primary human hepatocytes from 4 different donors were incubated with 2 μM PSI-6130 for up to 72 h. The uptake of PSI-6130 by human hepatocytes was fast, and total intracellular activity reached steady state levels at 1 h of PSI-6130 incubation, the earliest time point in this study (Table 2). PSI-6130-TP was detectable in hepatocytes from all 4 donors at 6 h after PSI-6130 incubation and increased with time to reach steady state levels...
TABLE 2
Time course of uptake and phosphorylation of PSI-6130
Levels of total intracellular species, PSI-6130-TP, and RO2433-TP were determined in hepatocytes incubated with 2 μM PSI-6130 for the indicated lengths of time. Data shown are mean ± S.D. derived from four independent experiments using hepatocytes from four donors. BQL, below the quantification limit.

Time (h)	Total intracellular species	PSI-6130-TP	RO2433-TP
1	30.4 ± 18.8	BQL	BQL
6	32.9 ± 16.8	0.6 ± 0.5	0.3 ± 0.01
16	34.4 ± 20.8	0.7 ± 0.6	0.4 ± 0.3
24	36.4 ± 21.3	1.1 ± 0.7	1.3 ± 1.1
48	31.9 ± 17.1	1.3 ± 0.3	2.0 ± 1.1
72	34.6 ± 15.4	1.0 ± 0.4	2.0 ± 1.3

*Mean ± S.D. derived from 2 donors as RO2433-TP was only detectable in 2 out of 4 donors at the 6-h time point.

at 24–48 h. The formation of the triphosphate of the uridine metabolite, RO2433-TP, demonstrated a delayed time course relative to that of PSI-6130-TP. RO2433-TP was detectable in hepatocytes from only 2 of 4 donors at 6 h and in hepatocytes of all 4 donors at 16 h. RO2433-TP formation reached steady state levels at 48–72 h. RO2433-TP concentrations were lower than those of PSI-6130-TP at time points earlier than 16 h but surpassed those of PSI-6130-TP at 24 h and beyond. The mean steady state level concentrations of PSI-6130-TP and RO2433-TP after incubation with 2 μM PSI-6130 were 1.3 ± 0.6 and 2.0 ± 1.1 pmol/10^6 cells at 48 h, respectively. Unchanged PSI-6130 was the major intracellular species at all time points tested after incubation of human hepatocytes with radiolabeled PSI-6130 (Fig. 4).

To determine whether increasing the exposure of hepatocytes to PSI-6130 will lead to increased uptake of PSI-6130 and formation of PSI-6130-TP and RO2433-TP, primary human hepatocytes from 4 different donors were incubated with PSI-6130 at different concentrations up to a maximal concentration of 250 μM for 24 h. Total intracellular species, determined by total intracellular radioactivity in the cell extracts, increased linearly with the extracellular PSI-6130 concentrations up to 250 μM (Table 3). The mean total intracellular species at 250 μM extracellular PSI-6130 reached 3591 pmol/10^6 cells, with the unphosphorylated PSI-6130 being the predominant species (data not shown). The formation of both PSI-6130-TP and RO2433-TP increased linearly with the extracellular PSI-6130 concentrations up to 100 μM (Fig. 5). The concentrations of PSI-6130-TP and RO2433-TP at 100 μM extracellular PSI-6130 were 34.3 and 71.2 pmol/10^6 cells, respectively. At 250 μM extracellular PSI-6130, PSI-6130-TP and RO2433-TP levels were slightly increased over the levels obtained at 100 μM extracellular PSI-6130, but the relationship was no longer linear. PSI-6130-TP and RO2433-TP were the major intracellular phosphorylated species at all extracellular PSI-6130 concentrations (Table 3), suggesting a high capacity of the hepatocytes to convert the parent compound to the triphosphate forms and no accumulation of either mono- or diphosphates. At all concentrations of extracellular PSI-6130, PSI-6130-TP levels were higher than those of PSI-6130-TP.

Intracellular Stability of PSI-6130-TP and RO2433-TP—Primary human hepatocytes from 4 different donors were incubated for 24 h with 2 μM PSI-6130, at which point extracellular PSI-6130 was removed, and the concentrations of intracellular PSI-6130-TP and RO2433-TP were quantified at different time points up to 72 h (see “Experimental Procedures”).

The PSI-6130-TP level remained constant up to 1 h after the removal of extracellular PSI-6130. Thereafter, PSI-6130-TP decreased after a single-phase exponential decay kinetics pattern with a mean half-life of 4.7 ± 0.6 h (Fig. 6, Table 4). The PSI-6130-TP level was below quantification limit at 48 h after the removal of extracellular PSI-6130. The RO2433-TP level increased slightly to reach steady state level at 1–2 h after extracellular PSI-6130 removal and remained at steady state level for up to 6 h before decreasing toward base-line levels. RO2433-TP decreased with a mean half-life of 38.1 ± 16.1 h (Fig. 6, Table 4). The levels of unphosphorylated species PSI-6130 and RO2433 decreased rapidly after removal of extracellular RO1656 (data...
TABLE 3
Dose response of uptake and phosphorylation of PSI-6130
Levels of total intracellular species, PSI-6130-TP, and RO2433-TP were determined in hepatocytes incubated with 2, 10, 25, 50, 100, or 250 μM PSI-6130 for 24 h. Data shown are the mean ± S.D. of values of three experiments using hepatocytes from three donors. BQL, below the quantification limit.

Extracellular PSI-6130 (μM)	Total intracellular species	PSI-6130-MP + RO2433-MP	PSI-6130-DP	RO2433-DP	PSI-6130-TP	RO2433-TP
	pmol/million cells	pmol/million cells	pmol/million cells	pmol/million cells	pmol/million cells	pmol/million cells
2	34.5 ± 9.8	0.3 ± 0.3	0.3 ± 0.4	0.9 ± 0.7	1.4 ± 1.3	2.4 ± 1.5
10	165.5 ± 38.2	1.1 ± 1.0	2.4 ± 2.7	4.8 ± 2.7	5.6 ± 5.8	9.6 ± 6.4
25	439.1 ± 150.4	5.0 ± 5.9	3.4 ± 4.3	9.5 ± 4.9	11.3 ± 13.0	21.7 ± 13.4
50	847.9 ± 327.7	8.2 ± 8.2	8.2 ± 7.3	20.3 ± 12.2	18.7 ± 17.7	34.9 ± 17.2
100	1529.9 ± 413.1	3.4 ± 5.9	13.4 ± 15.4	34.7 ± 25.0	34.3 ± 36.3	71.2 ± 14.7
250	3591.3 ± 1102.5	BQL	19.6 ± 19.6	40.9 ± 35.4	40.4 ± 35.4	84.0 ± 28.7

FIGURE 5. Dose response of the formation of PSI-6130-TP and RO2433-TP. Primary human hepatocytes were incubated with PSI-6130 for 24 h at 2, 10, 25, 50, 100, or 250 μM concentrations. The data plotted represent the mean values and S.D. of experiments with hepatocytes from three donors.

FIGURE 6. Intracellular stability of PSI-6130-TP and RO2433-TP. Primary human hepatocytes were incubated with PSI-6130 at 2 μM for 24 h, at which point extracellular PSI-6130 was removed, and PSI-6130-TP and RO2433-TP levels were determined at 1, 2, 4, 6, 8, 24, 48, and 72 h after extracellular PSI-6130 removal. Representative kinetic profiles of PSI-6130-TP (A) and RO2433-TP (B) elimination in hepatocytes from one donor are shown.

TABLE 4
Intracellular half-life of PSI-6130-TP and RO2433-TP
The half-life (t_{1/2}) values were calculated by nonlinear fitting of intracellular triphosphate concentrations to a single phase exponential decay equation. t_{1/2} was defined as the time needed for the triphosphates to be reduced to 50% of the highest level of the triphosphates after extracellular parent compound removal. Data shown are the mean ± S.D. of values of four independent experiments using hepatocytes from four donors.

	PSI-6130-TP	RO2433-TP
t_{1/2}h (mean ± S.D. (n = 4))	4.7 ± 0.6	38 ± 16
that the antiviral potency of PSI-6130 is not compromised by intracellular deamination.

The formation of the active triphosphates PSI-6130-TP and RO2433-TP increased with time and reached steady levels at 48 h after exposure to parent PSI-6130. The mean steady state intracellular concentrations of PSI-6130-TP and RO2433-TP at 2 μM extracellular PSI-6130 were 1.3 and 2.0 pmol/10^6 cells, respectively (Table 2). These values are equivalent to about 0.43 μM for PSI-6130-TP and 0.67 μM for RO2433-TP, based on a 3-μl volume of normal human liver parenchymal cells as determined by the stereological method (20). These steady state concentrations are above the median of the phosphate levels from highest to lowest intracellular concentration was: triphosphates > diphosphates > monophosphates at all time points of compound incubation and all extracellular concentrations (Fig. 4, Table 3). This suggests that the first cellular activation step to monophosphate is the rate-limiting step among the three phosphorylation steps. Recently, it has been reported that the human cellular kinases responsible for the sequential three-step phosphorylation of PSI-6130 to triphosphate are 2'-deoxycytidine kinase, uridine/cytidine monophosphate kinase (YM PK), nucleoside diphosphate kinase (ND PK), deoxycytidylate deaminase (dCMP deaminase).

FIGURE 7. Proposed metabolic pathway of PSI-6130. Enzymes involved in the phosphorylation and deamination catalysis: deoxycytidine kinase (dCK), uridine/cytidine monophosphate kinase (YM PK), nucleoside diphosphate kinase (NDPK), deoxycytidylate deaminase (dCMP deaminase).

Despite the intrinsic potency of RO2433-TP against HCV replicase, RO2433 was not active in the HCV replicon system at concentrations up to 100 μM. RO2433 was either not phosphorylated in the replicon cells or could not penetrate the cell membrane. However, RO2433, when formed intracellularly from radiolabeled PSI-6130, dissociated rapidly across the cell membrane with a half-life faster than 30 min. Therefore, RO2433 is most likely not efficiently phosphorylated to form RO2433-MP. Similarly, the uridine analog of the HCV replicon system. Here we demonstrated that PSI-6130 was converted to two pharmacologically active triphosphates, PSI-6130-TP and its uridine analog RO2433-TP, in primary human hepatocytes. It is worth noting that RO2433-TP demonstrated greater intracellular stability (t_{1/2} = 38 h) as compared with PSI-6130-TP (t_{1/2} = 4.7 h). PSI-6130 has recently entered clinical development for the treatment of HCV infected patients. The longer intracellular half-life of RO2433-TP may have pharmacologic relevance for maintaining more constant concentrations of the antiviral triphosphate over the dosing period in clinical studies.

Acknowledgments—We thank Dr. Jim Barnett and group members for providing recombinant NS5B protein and Nixy Zutshi and group members for providing HCV replicon cells. We thank Dr. Phillip A. Farman at Pharmasset, Inc. for providing PS1–6130 and the phosphorylated derivatives of PSI-6130.

REFERENCES
1. Alter, M. J., Kruszon-Moran, D., Nainan, O. V., McQuillan, G. M., Gao, F., Moyer, L. A., Kaslow, R. A., and Margolis, H. S. (1999) N. Engl. J. Med. 341, 556–562
2. Manns, M. P., McHutchison, J. G., Gordon, S. C., Rustgi, V. K., Shiffman, M., Reindollor, R., Goodman, Z. D., Koury, K., Ling, M., and Albrecht, J. K. (2001) Lancet 358, 958–965
3. Fried, M. W., Shiffman, M. L., Reddy, K. R., Smith, C., Marinatos, G., Goncalves, F. L., Jr., Haussinger, D., Diago, M., Carosi, G., Dhumeaux, D., Craxi, A., Lin, A., Hoffman, J., and Yu, J. (2002) N. Engl. J. Med. 347, 975–982
4. Hadziyannis, S. J., Sette, H., Jr., Morgan, T. R., Balan, V., Diago, M., Mar-
Metabolism and Mechanism of Action of β-D-2′-Deoxy-2′-fluoro-2′-C-methylcytidine

cellin, P., Ramadori, G., Bodenheimer, H., Jr., Bernstein, D., Rizzetto, M., Zeuzem, S., Pockros, P. J., Lin, A., and Ackrill, A. M. (2004) *Ann. Intern. Med.* **140**, 346–355

5. Hardy, R. W., Marcotrigiano, J., Blight, K. J., Majors, J. E., and Rice, C. M. (2003) *J. Virol.* **77**, 2029–2037

6. Ma, H., Leveque, V., De Witte, A., Li, W., Hendricks, T., Clausen, S. M., Cammack, N., and Klumpp, K. (2005) *Virology* **332**, 8–15

7. Vivet-Boudou, V., Didierjean, J., Isel, C., and Marquet, R. (2006) *Cell. Mol. Life Sci.* **63**, 163–186

8. Carroll, S. S., Tomassini, J. E., Bosserman, M., Getty, K., Stahlhut, M. W., Eldrup, A. B., Bhat, B., Hall, D., Simcoe, A. L., LaFemina, R., Rutkowski, C. A., Wolanski, B., Yang, Z., Migliaccio, G., De Francesco, R., Kuo, L. C., MacCoss, M., and Olsen, D. B. (2003) *J. Biol. Chem.* **278**, 11979–11984

9. Klumpp, K., Leveque, V., Le Pogam, S., Ma, H., Jiang, W. R., Kang, H., Granycome, C., Singer, M., Laxton, C., Hang, J. Q., Sarma, K., Smith, D. B., Heindl, D., Hobbs, C. J., Merrett, J. H., Symons, J., Cammack, N., Martin, J. A., Devos, R., and Najera, I. (2006) *J. Biol. Chem.* **281**, 3793–3799

10. Migliaccio, G., Tomassini, J. E., Carroll, S. S., Tomei, L., Altamura, S., Bhat, B., Bartholomew, L., Bosserman, M. R., Ceccacci, A., Colwell, L. F., Cortese, R., De Francesco, R., Eldrup, A. B., Getty, K. L., Hou, X. S., LaFemina, R. L., Ludmerer, S. W., MacCoss, M., McMasters, D. R., Stahlhut, M. W., Olsen, D. B., Hazuda, D. J., and Flores, O. A. (2003) *J. Biol. Chem.* **278**, 49164–49170

11. Eldrup, A. B., Prhavc, M., Brooks, J., Bhat, B., Prakash, T. P., Song, Q., Bera, S., Bhat, N., Dande, P., Cook, P. D., Bennett, C. F., Carroll, S. S., Hall, R. G., Bosserman, M., Burlein, C., Colwell, L. F., Fay, J. F., Flores, O. A., Getty, K., LaFemina, R. L., Leone, J., MacCoss, M., McMasters, D. R., Tomassini, J. E., Von Langen, D., Wolanski, B., and Olsen, D. B. (2004) *J. Med. Chem.* **47**, 5284–5297

12. Le Pogam, S., Jiang, W. R., Leveque, V., Rajayaguru, S., Ma, H., Kang, H., Jiang, S., Singer, M., Ali, S., Klumpp, K., Smith, D., Symons, J., Cammack, N., and Najera, I. (2006) *Virology* **351**, 349–359

13. Smith, D. B., Martin, J. A., Klumpp, K., Baker, S. J., Blomgren, P. A., Devos, R., Granycome, C., Hang, J., Hobbs, C. J., Jiang, W. R., Laxton, C., Pogam, S. L., Leveque, V., Ma, H., Maile, G., Merrett, J. H., Pichota, A., Sarma, K., Smith, M., Swallow, S., Symons, J., Vesev, D., Najera, I., and Cammack, N. (2007) *Bioorg. Med. Chem. Lett.* **17**, 2570–2576

14. Afshal, N., Rodriguez-Torres, M., Lawitz, E., Godofsky, E., Chao, G., Fielman, B., Knox, S., and N., B. (2005) in *40th Annual Meeting of the European Association for the Study of the Liver*, April 13–17, 2005, European Association for the Study of the Liver (EASL), Paris, abstract 93

15. Roberts, S., Cocksley, G., Dore, G., Robson, R., Shaw, D., Berns, H., Brandl, M., Fettner, S., Hill, G., Ipe, D., Klumpp, K., Mannino, M., O’Mara, E., Tu, Y., and Washington, C. (2006) *Hepatology* **44**, (Suppl. 1), 692 (abstr.)

16. Stuyver, L. J., McBrayer, T. R., Tharnish, P. M., Clark, J., Holllecker, L., Lostia, S., Nachman, T., Grier, J., Bennett, M. A., Xie, M. Y., Schinazi, R. F., Morrey, J. D., Julander, J. L., Furman, P. A., and Otto, M. J. (2006) *Antiviral Chem. Chemother.* **17**, 79–87

17. Murakami, E., Bao, H., Ramesh, M., McBrayer, T. R., Whitaker, T., Micolochick Steuer, H. M., Schinazi, R. F., Stuyver, L. J., Obikohod, A., Otto, M. J., and Furman, P. A. (2007) *Antimicrob. Agents Chemother.* **51**, 503–509

18. Clark, J. L., Holllecker, L., Mason, J. C., Stuyver, L. J., Tharnish, P. M., Lostia, S., McBrayer, T. R., Schinazi, R. F., Watanabe, K. A., Otto, M. J., Furman, P. A., Stec, W. J., Patterson, S. E., and Pankiewicz, K. W. (2005) *J. Med. Chem.* **48**, 5504–5508

19. Tomassini, J. E., Getty, K., Stahlhut, M. W., Shim, S., Bhat, B., Eldrup, A. B., Prakash, T. P., Carroll, S. S., Flores, O., MacCoss, M., McMasters, D. R., Migliaccio, G., and Olsen, D. B. (2005) *Antimicrob. Agents Chemother.* **49**, 2050–2058

20. Duarte, M. I., Andrade, H. F., Jr., Mariano, O. N., Corbett, C. E., and Sesso, A. (1989) *J. Submicrosc. Cytol. Pathol.* **21**, 275–279

21. Perrone, P., Luoni, G., Kelleher, M. R., Daverio, F., Angell, A., Mulready, S., Congiatu, C., Rajayaguru, S., Martin, J. A., Leveque, V., Le Pogam, S., Najera, I., Klumpp, K., Smith, D. B., and McGuigan, C. (2007) *J. Med. Chem.* **50**, 1840–1849

22. Mancini, W. R., and Cheng, Y. C. (1983) *Mol. Pharmacol.* **23**, 159–164

23. Heinemann, V., and Plunkett, W. (1989) *Biochem. Pharmacol.* **38**, 4115–4121

24. Van Rompay, A. R., Johansson, M., and Karlsson, A. (2000) *Antimicrob. Agents Chemother.* **44**, 346–350

25. Carroll, S. S., and Olsen, D. B. (2006) *J. Med. Chem.* **49**, 5172–5179

26. Clark, J. L., Holllecker, L., Mason, J. C., Stuyver, L. J., Tharnish, P. M., Lostia, S., McBrayer, T. R., Schinazi, R. F., Watanabe, K. A., Otto, M. J., Furman, P. A., Stec, W. J., Patterson, S. E., and Pankiewicz, K. W. (2005) *J. Med. Chem.* **48**, 5504–5508

27. Tomassini, J. E., Getty, K., Stahlhut, M. W., Shim, S., Bhat, B., Eldrup, A. B., Prakash, T. P., Carroll, S. S., Flores, O., MacCoss, M., McMasters, D. R., Migliaccio, G., and Olsen, D. B. (2005) *Antimicrob. Agents Chemother.* **49**, 2050–2058

28. Duarte, M. I., Andrade, H. F., Jr., Mariano, O. N., Corbett, C. E., and Sesso, A. (1989) *J. Submicrosc. Cytol. Pathol.* **21**, 275–279

29. Perrone, P., Luoni, G., Kelleher, M. R., Daverio, F., Angell, A., Mulready, S., Congiatu, C., Rajayaguru, S., Martin, J. A., Leveque, V., Le Pogam, S., Najera, I., Klumpp, K., Smith, D. B., and McGuigan, C. (2007) *J. Med. Chem.* **50**, 1840–1849

30. Mancini, W. R., and Cheng, Y. C. (1983) *Mol. Pharmacol.* **23**, 159–164

31. Heinemann, V., and Plunkett, W. (1989) *Biochem. Pharmacol.* **38**, 4115–4121

32. Van Rompay, A. R., Johansson, M., and Karlsson, A. (2000) *Antimicrob. Agents Chemother.* **44**, 346–350

33. Carroll, S. S., and Olsen, D. B. (2006) *J. Med. Chem.* **49**, 5172–5179