Algorithm for Selecting a Base Tractor Model to Form a Tractor Train

Makhamad T. Toshboltaev,
Dr.Sc.(Eng.), professor, senior research engineer;

Bakhtiyor A. Kholikov,
junior research engineer, e-mail: paytbaev@list.ru

Research Institute of Agricultural Mechanization, Tashkent region, the Republic of Uzbekistan

Abstract. The main quality indicators of tractor trains (the number of trailers and their total load capacity, speed and stability of movement, braking distance, etc.) depends largely on the correct choice of the type of a base tractor. The existing methodological principles for optimizing the dimension range of agricultural tractors do not take into account the type of trailers. Therefore, the task of a rational choice of the base tractor type, taking into account the most complete utilization of the capacity of existing trailers and engine power, has become rather relevant. (Research purpose) Selection of a tractor model for hitching a group of 2PTS-4-793-03A two-axle trailers according to the criteria for carrying capacity and energy consumption of a tractor train. (Materials and methods) The authors have studied mass, weight and velocity parameters of the 2PTS-4-793-03A two-axle trailers, as well as the parameters characterizing the mechanical capabilities of the studied tractor. The studies employed the methods of implement mounting on machine-tractor units and elements of the theory of a tractor. (Results and discussion) The authors offer an algorithm of solving a problem of choosing a tractor. As a result, the TTZ 60.10 tractor with a wheel formula of 4K2 available at farm enterprises and included in machine-and-tractor fleets and clusters has been selected as a power base of a tractor train. The authors have determined the number of trailers, which equals four, the tractor train speed ranges of 4-28 kilometers per hour, the tractor engine power amounting to 8.5-59.5 kilowatts, changes in critical values of the effective engine power corresponding to 13.492-94.444 kilowatts, as well as specified some other criteria. (Conclusions) The TTZ 60.10 tractor with a wheel formula 4K2 and 46.7 kilowatt of effective engine capacity has been considered the optimal choice. It has been proved that this tractor can move four 2PTS-4-793-03A two-axle trailers with a total weight of 15,600 kilograms along asphalt-concrete roads with a rational speed of 9.505 kilometers per hour. The rationality of choice has been proved by calculating energy saving criteria: full traction efficiency accounts for 60 percent, engine load factor is 89 percent, and traction power utilization amounts to 96 percent.

Keywords: tractor train, tractor, trailer, choosing a base tractor, number of trailers, required tractor power, energy use indicators.

I For citation: Toshboltaev M.T., Kholikov B.A. Algoritm podbora modeli bazovogo traktora dlya formirovaniya traktornogo poezda [Algorithm for selecting a base tractor model to form a tractor train]. Sel'skokhozyaystvennye mashiny i tehnologii. 2019. Vol. 13. N5. 46-50 (In Russian). DOI 10.22314/2073-7599-2019-13-5-46-50.
Многие качественные индикаторы тракторных поездов (число агрегатированных прицепов и их общая грузоподъемность, скорости движения, устойчивость и управляемость) определяются методом оптимизации энергоемкости тягача и энергоэффективности основного трактора [1]. Поэтому, для выбора основного трактора с известной производительностью, агрегатированные прицепы и их общая грузоподъемность важны, так как учитывает участие его веса и мощности в работе тракторного поезда.

Технологические принципы оптимизации и энергоэффективности тракторных поездов определяются [2-4]. В исследовании было установлено, что тип (модель) основного трактора, включая его производительность, учитывается при выборе агрегатированных прицепов и их общую грузоподъемность.

Для определения основного трактора с известной производительностью, которые агрегатированы прицепы и их общую грузоподъемность, нужно выполнить три задачи [12]:
- выбрать машину для выполнения работ,
- выбрать тягач с известной производительностью,
- определить коэффициенты поезда с известным составом машин.

Результаты и обсуждения. Мы рассматриваем следующую задачу для решения задачи.

1. На первой стадии, как основной трактор, по известной производительности, с агрегатированными прицепами и известной производительностью, учитывается при выборе основного трактора с известной производительностью, которые агрегатированы прицепы и их общую грузоподъемность, нужно выполнить три задачи [12]:
- выбрать машину для выполнения работ,
- выбрать тягач с известной производительностью,
- определить коэффициенты поезда с известным составом машин.

Материалы и методы. Изначальное конструктивное вес основного трактора \(m_{\text{TTZ}} = 1700 \) кг, среднее вес \(m_{\text{агр}} = 2200 \) кг. Нормальная максимальная скорость трактора с прицепами 28 км/ч. Так же можно использовать трактор с известной производительностью, которые агрегатированы прицепы и их общую грузоподъемность, учитывается при выборе основного трактора с известной производительностью, которые агрегатированы прицепов и их общую грузоподъемность.

Для цитирования: Тошболтаев М.Т., Холиков Б.А. Алгоритм подбора модели основного трактора для формирования тракторного поезда // Сельскохозяйственные машины и технологии. 2019. Т. 13. N5. С. 46-50. DOI 10.22314/2073-7599-2019-13-5-46-50.
3. The speed range of a tractor train consisting of a tractor TTZ 60.10 and four trailers on internal roads with asphalt and concrete pavement is $V_{\text{min}} - V_{\text{max}} = 4\div28$ km/h.

4. The power range of the tractor engine $(N_{T}^{\text{min}} + N_{T}^{\text{max}})$, providing the moving of four trailers (each weighing G_{T} with a given speed $V_{\text{min}} - V_{\text{max}}$):

$$\left(N_{T}^{\text{min}} + N_{T}^{\text{max}} \right) = \frac{V_{\text{min}} - V_{\text{max}}}{3.6} \cdot n G_{T} \cdot \frac{i}{100},$$ \hspace{1cm} (2)

where i – the slope of the road.

If $V_{\text{min}} - V_{\text{max}} = 4\div28$ km/h and $G_{T} = 38.259$ kN we have:

$$\left(N_{T}^{\text{min}} + N_{T}^{\text{max}} \right) = \frac{4\div28}{3.6} \cdot 38.259 \cdot \frac{5}{100} = (8.5 \div 59.5)$ kW.

5. The range of critical values of the tractor engine effective power:

$$(N_{e}^{\text{min}} + N_{e}^{\text{max}}) = \frac{(N_{T}^{\text{min}} + N_{T}^{\text{max}})}{\eta_{TP}(1 - \frac{\delta}{100} - \frac{f + i}{100})},$$ \hspace{1cm} (3)

If $(N_{T}^{\text{min}} + N_{T}^{\text{max}}) = (8.5 \div 59.5)$ kN we’ll get

$$\left(N_{e}^{\text{min}} + N_{e}^{\text{max}} \right) = \frac{(8.5 + 59.5)}{0.9(18/100 \cdot 0.018 + 5/100 \cdot 0.75 \cdot 0.75)} = (13.492 \div 94.444)$ kW.

6. Minimum G_{T}^{min} and maximum G_{T}^{max} limits of the required tractor operational weight:

$$\left(G_{T}^{\text{min}} + G_{T}^{\text{max}} \right) = \frac{3.6(N_{e}^{\text{min}} + N_{e}^{\text{max}})}{(V_{\text{min}} - V_{\text{max}}) \mu},$$ \hspace{1cm} (4)

or:

$$\left(G_{T}^{\text{min}} + G_{T}^{\text{max}} \right) = \frac{3.6(13.452 \div 94.444)0.9}{(4\div28)0.75 \cdot 0.75} = 43.584 \div 305.998 = (2.767 \div 135.999)$ kN.

The range of variation of the tractor’s operating weight: $\left(m_{T}^{\text{min}} + m_{T}^{\text{max}} \right) = (282.0 \div 13863)$ kg.

7. According to available data, the range of power $(N_{e}^{\text{min}} + N_{e}^{\text{max}}) = (13.492 \div 94.444)$ kW and weight $(m_{T}^{\text{min}} + m_{T}^{\text{max}}) = (282.0 \div 13863)$ kg corresponds to the tractor TTZ 60.10 with a wheel formula 4K2, power $N_{e}^{\text{n}} = 46.7$ kW and operating weight $m_{T} = 3341$ kg [16]. Operating weight of this tractor:

$$G_{T} = m_{T} g = 3341 \cdot 9.81 = 32775$ N $= 32.775$ kN.

8. We define the range of hook power change of the tractor TTZ 60.10 on coupling properties of wheels:

$$(N_{hp}^{\text{max}} + N_{hp}^{\text{min}}) = \frac{G_{T}(V_{\text{min}} - V_{\text{max}})[1 - (f + i)/100]}{3.6} - N_{e}^{\text{n}} \eta_{TP} \cdot \frac{\delta}{100},$$ \hspace{1cm} (5)

We substitute values and get:

$$\left(N_{hp}^{\text{max}} + N_{hp}^{\text{min}} \right) = \frac{32.775(4\div28)(0.75 - 0.75 - (0.018 + \frac{5}{100}))}{3.6} = -46.7 \cdot 0.9 \cdot \frac{18}{100} \cdot (10.439 \div 118.463)$ kW.

9. The maximum power on the tractor hook is:

$$(N_{hp}^{\text{max}}) = N_{e}^{\text{n}} \eta_{TP} \left(1 - \frac{\delta}{100} - \frac{f + i}{100} \right) = 46.7 \cdot 0.9 \cdot \frac{18}{100} \cdot (0.018 + \frac{5}{100}) = 29.42$ kW.

10. The total traction resistance of four loaded trailers in a tractor train [17]:

$$P_{sp} = n G_{T}(f \cos \alpha + \sin \alpha),$$ \hspace{1cm} (7)

or $P_{sp} = 43.285(0.018 \cdot \cos 3^\circ) = 10.752$ kN.

11. We determine the train’s rational speed:

$$V_{\text{рац}} = \frac{3.6 N_{e}^{\text{n}} \eta_{TP} \left(1 - \frac{\delta}{100} \right)}{P_{sp} + G_{T}(f \cos \alpha + \sin \alpha)} = \frac{3.6 \cdot 46.7 \cdot 0.9 \cdot (1 - 18/100)}{10.752 + 32.775(0.018 \cdot \cos 3^\circ + \sin 3^\circ)} = 9.505$ km/h.

Thus, $V_{\text{min}} (4$ km/h $) < V_{\text{рац}} (9.505$ km/h $) < V_{\text{max}} (28$ km/h $).

12. The power expended when moving a train at a speed of $V_{\text{рац}}$:

$$P_{sp} V_{\text{рац}} = \frac{P_{sp} V_{\text{рац}}}{3.6},$$ \hspace{1cm} (9)

That is $N_{p_{\text{ara}}} = 10.752 \cdot 9.505 = 28.388$ kN.

13. The effective power of the tractor engine, spent on overcoming the traction resistance P_{sp} at the speed of the train $V_{\text{рац}}$, is equal to:

$$N_{e} = \frac{P_{sp}}{3.6} \left[P_{sp}[2 - \eta_{TP} \left(1 - \frac{\delta}{100} \right)] + G_{T}(f + i/100) \right].$$ \hspace{1cm} (10)

If $P_{sp} = 10.752$ kN and $V_{\text{рац}} = 9.505$ km/h we’ll get:

$$N_{e} = \frac{9.505}{3.6} \left[10.752 \left(2 - 0.9 \cdot (1 - 18/100) \right) \right] + 32.775(0.018 + \frac{5}{100}) = 41.72$ kW.

14. We determine the calculated values of the tractor TTZ 60.10 characteristics:

- traction power utilization factor: $\eta_{p_{\text{ara}}} = N_{p_{\text{ara}}} / N_{e}^{\text{n}} = 28.388/29.421 = 0.96$, or 96%;
- the engine load factor: $\eta_{k} = N_{e} / N_{e}^{\text{n}} = 41.705/46.7$ or 89%;
- total traction efficiency:
\[\eta_T = \frac{N_{paz}/N_c^{aw}}{28.388/46.7} = 0.60, \text{ or } 60\%; \]
- the maximum possible traction efficiency in the train operating conditions under consideration:
\[\eta_T^{\text{max}} = \left(\frac{N_{paz}^{\text{max}}/N_c}{} \right) = (29.421/46.7) = 0.63, \text{ or } 63\% . \]

Conclusions.

The TTZ 60.10 tractor with a wheel formula 4K2 and 46.7 kW of effective engine capacity has been considered the optimal choice. It has been proved that this tractor can move four 2PTS-4.793-03A two-axle trailers with a total weight of 15.600 kg along asphalt-concrete roads with a rational speed of 9.505 km/h.

The rationality of choice has been proved by calculating energy saving criteria: full traction efficiency accounts for 60%, engine load factor is 89 %, and traction power utilization amounts to 96%.

REFERENCES

1. Artem'yev P.P., Atamanov Yu.E., Bogdan N.V. Traktornye poezda [Tractor trains.] Moscow: Mashinostroenie. 1982. 183 (In Russian).
2. Pozin B.M., Troyanovskaya I.P., Noradovyi D.I. Effektivnost' transportnogo agregata na baze traktora “Uralets” [Efficiency of a transport unit based on the “Uralets” tractor]. Mekhanizatsiya i elektrifikatsiya sel'skogo khozyaystva. 2015. N7. 22-26 (In Russian).
3. Guterman A.B. Sistemnyy podkhod k optimizatsii tiporazmernogo ryada sel'kokhozyaystvennykh traktorov [System approach to optimize the dimension range of agricultural tractors]. Mekhanizatsiya i elektrifikatsiya sotsialisticheskogo sel'skogo khozyaystva. 1981. N5. 4-6 (In Russian).
4. Ksenievich I.P. O prognozirovaniy parameetrov tiporazmernykh ryadov traktorov s ispol'zovaniem metodov matematicheskoy statistiki [Forecasting parameters of the dimension range of tractors using mathematical statistics methods]. Traktornyye i sel'khozma- shinny. 1984. N5. 8-11 (In Russian).
5. Toshboltaev M., Dzhiyanov M. Obshchaya metodika opredeleniya rational'nogo chisla pritsepow v sostave traktornogo poyezda [General method of deter- mining the demand for new equipment]. Mir agrotekhniki. Tashkent: 2012. N9. 75-76 (In Russian).
6. Kholikov B. Povyshenie tochnosti otsenki eksploatatsionnykh svoistv traktornogo poezda [Improving the accuracy of evaluating the performance properties of a tractor train]. Mir agrotekhniki. Tashkent: 2018. N8. 18-19 (In Russian).
7. Shalyagin V.N. Transportnyye i transportno-tekhniko-cheskie sredstva povyshennoy prokhodimosti [Transport and transport-and-technological means of increased cross-country means]. Moscow: Agropromizdat. 1986. 254 (In Russian).
8. Rashidov N.R. Traktornye mnogozvennyye poezda [Multitrack tractor trains]. Tashkent: Uzbekistan. 1981. 368 (In Russian).
9. Karabanitskiy A.P., Chebotarev M.I. Komplektovanie ener-gosberegayushchikh mashinno-traktornykh agregatov [Implement mounting on energy-saving machine-tractor units]. Krasnodar: KubGAI. 2012. 97 (In Russian).
10. Rashidov N., Kurtsenko L., Satvoldiev N. Puti snizheniya poter' khlopka-syrtsa pri transportirovke (obzor) [Ways to reduce the loss of raw cotton during transportation (review)]. Tashkent: Uzbekistan. 2018. N8. 18-19 (In Russian).
11. Smirnov G.A. Teoriya dvizheniya koleznych mashin [Theory of the movement of wheeled vehicles]: Moscow: Mashinostroenie. 1981. 271 (In Russian).
12. Zangiev A.A., Shpil'ko A.V., Levshin A.G. Ekspluatatsiya mashinno-traktornogo parka [Operation of the machine and tractor fleet]. Moscow: Kolos. 2004. 320 (In Russian).
13. Schitov S.V., Tikhonchuk P.V., Spirianchuk N.V. Energoszatry kak kriterii vybora traktora [Energy costs as the crite- ria for choosing a tractor]. Dostizheniya nauki i tekhniki APK. 2012. N9. 75-76 (In Russian).
14. Shchitov S.V., Tikhonchuk P.V., Spiridanchuk N.V. Energo- szatry kak kriterii vybora traktora [Energy costs as the crite- ria for choosing a tractor]. Dostizheniya nauki i tekhniki APK. 2012. N9. 75-76 (In Russian).
15. Smirnov G.A. Teoriya dvizheniya koleznik mashin [The- ory of the movement of wheeled vehicles]: Moscow: Mashinostroenie. 1981. 271 (In Russian).
16. Toshboltaev M., Kholikov B. Opredeleniya ratsional'nogo chisla pritsepow v sostave traktornogo poezda [Determination of the rational number of trailers in a tractor train]. Problemy mekhaniiki. Tashkent. 2018. N2. 76-79 (In Russian).
3. Гутерман А.Б. Системный подход к оптимизации типоразмерного ряда сельскохозяйственных тракторов // Механизация и электрификация социалистического сельского хозяйства. 1981. N5. C. 4-6.
4. Ксениевич И.П. О прогнозировании параметров типоразмерных рядов тракторов с использованием методов математической статистики // Тракторы и сельскохозяйственные машины. 1984. N5. C. 8-11.
5. Тошболтаев М., Джиянов М. Общая методика определения спроса на новую технику // Мир агroteхники. Ташкент. 2019. N2. C. 16-18.
6. Анкин Н.В., Кокорев Г.Д., Кулик С.Н. Анализ исследований устойчивости движения прицепных звеньев многозвенных тракторных поездов // Механизация и электрификация сельского хозяйства. 2016. N12. C. 22-24.
7. Миркитанов В.И. Обоснование и построение параметрического ряда моделей тракторных прицепов: Обзорно-аналитический материал. Оренбург, 1988. 44 с.
8. Щитов С.В., Тихончук П.В., Спириданчук Н.В. Энергозатраты как критерий выбора трактора // Достижения науки и техники АПК. 2012. N9. C. 75-76.
9. Тошболтаев М., Холиков Б. Повышение точности оценки эксплуатационных свойств тракторного поезда // Мир агroteхники. Ташкент: 2018. N4. C. 18-19.
10. Шалягин В.Н. Транспортные и транспортно-технологические средства повышенной проходимости. М.: Агропромиздат. 1986. 254 с.
11. Рашидов Н.Р. Тракторные многозвенные поезда. Ташкент: Узбекистан. 1981. 368 с.
12. Карабанщик А.П., Чеботарев М.И. Комплектование энергосберегающих машинно-тракторных агрегатов. Краснодар: КубГАУ. 2012. 97 с.
13. Рашидов Н., Курценко Л., Сатволдиев Н. Пути снижения потерь хлопка-сырца при транспортировке (обзор). Ташкент: УзНИИНИТИ. 1983. 20 с.
14. Смирнов Г.А. Теория движения колесных машин: М.: Машиностроение. 1981. 271 с.
15. Зангиев А.А., Шпилько А.В., Левшин А.Г. Эксплуатация машинно-тракторного парка. М.: Колос. 2004. 320 с.
16. Регулировка и эффективная эксплуатация хлопководческих и зерноводческих машин / ответ. редактор М. Тошболтаев. Ташкент: Фан. 2012. 200 с.
17. Тошболтаев М., Холиков Б. Определение рационального числа прицепов в составе тракторного поезда // Проблемы механики. Ташкент. 2018. N2. C. 76-79.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Conflict of interest. The authors declare no conflict of interest.