Autoantibodies: Potential clinical applications in early detection of esophageal squamous cell carcinoma and esophagogastric junction adenocarcinoma

Yi-Wei Xu, Yu-Hui Peng, Li-Yan Xu, Jian-Jun Xie, En-Min Li

Abstract
Esophageal squamous cell carcinoma (ESCC) and esophagogastric junction adenocarcinoma (EGJA) are the two main types of gastrointestinal cancers that pose a huge threat to human health. ESCC remains one of the most common malignant diseases around the world. In contrast to the decreasing prevalence of ESCC, the incidence of EGJA is rising rapidly. Early detection represents one of the most promising ways to improve the prognosis and reduce the mortality of these cancers. Current approaches for early diagnosis mainly depend on invasive and costly endoscopy. Non-invasive biomarkers are in great need to facilitate earlier detection for better clinical management of patients. Tumor-associated autoantibodies can be detected at an early stage before manifestations of clinical signs of tumorigenesis, making them promising biomarkers for early detection and monitoring of ESCC and EGJA. In this review, we summarize recent insights into the identification and validation of tumor-associated autoantibodies for the early detection of ESCC and EGJA and discuss the challenges remaining for clinical validation.

Key words: Esophageal squamous cell carcinoma; Esophagogastric junction adenocarcinoma; Biomarker; Autoantibody; Diagnosis
INTRODUCTION

Esophageal cancer is the eighth leading malignant disease and the sixth most common cause of cancer-related death worldwide. It represents a serious health problem globally[1]. Esophageal cancer is mainly composed of two epidemiologically and histopathologically distinct sub-types designated as esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma. In China, esophageal cancer is the third leading cause of cancer death with an estimated 246000 new cases and 188000 deaths in 2015[2]. Although ESCC, which accounts for 70% of cases, remains the most prevalent form of esophageal cancer, the prevalence of ESCC has declined substantially in recent years. In contrast to the decreasing prevalence of ESCC, an alarming rise of the incidence in esophagogastric junction adenocarcinoma (EGJA) has been observed in both developed and developing countries with 260000 new cases diagnosed in 2012[2-4]. Interestingly, in China the incidence of EGJA appears to be high in areas where the prevalence of ESCC is also high[5]. This similar geographic distribution suggests similar environmental factors, similar dietary habits and even similar molecular alterations are involved in both ESCC and EGJA[6].

The prognosis of ESCC is poor with an overall 5-year incidence of survival ranging from 15% to 25%[7,8]. The high mortality in ESCC and EGJA mostly results from diagnosis at late stages due to the lack of specific symptoms of patients in early stage disease, but the prognosis is substantially better for patients diagnosed in the early stage (e.g., 5-year survival of more than 85% for ESCC patients diagnosed in early stage and more than 90% for EGJA patients with node-negative T1 tumors)[9,10]. However, effective strategies are lacking for screening or detection of pre-cancerous lesions in early-stage ESCC and EGJA. Although endoscopy is used as a primary screening technique and can identify ESCC and EGJA at an early stage, its extensive utilization is limited by the invasive nature, serious side effects and dependence on the skill of the endoscopist. Moreover, some individuals are unwilling to undergo endoscopy, whereas a simple blood test might be more acceptable. Thus, identification and validation of novel non-invasive, blood-based biomarkers can fulfill a great need for early detection of ESCC and EGJA.

Tumor-associated (TA) autoantibodies are emerging as strong candidates for clinically useful cancer biomarkers because they are produced early in tumorigenesis and can be detectable up to five years before the clinical manifestations of cancer[11-13]. Moreover, autoantibodies are also reported as biomarkers used in cancer prognosis and therapeutic monitoring (Table 1)[14-21]. A large number of articles have evaluated the potential use of TA autoantibodies for early ESCC detection. Therefore, a systematic review is warranted to assess the current potential of TA autoantibodies for the early diagnosis of patients with ESCC. Considering the similarity of the etiology and epidemiology in EGJA and ESCC, we believe that it would be much desirable to provide together a review of TA autoantibodies in EGJA and ESCC at this current time. We focus on the key aspects of the study designs and participant characteristics, the sensitivity, specificity and area under the receiver operating characteristic curve of the TA autoantibody biomarkers to help identify the most promising candidates for future clinical screening tests.
Table 1 A brief summary of the biological significance of some common tumor-associated autoantibodies

Representative tumor-associated autoantigens	Authors, year	Tumor type	Biological significance
p53	Chapman et al\[11\], 2012	Lung	Early detection
	Takeda et al[14], 2001	Colorectal	Increased recurrence
	Anderson et al\[19\], 2010	Ovarian	Increased survival
NY-ESO-1	Shan et al\[13\], 2013	Lung	Early detection
	Fossà et al\[21\], 2004	Prostate	Decreased survival
	Elke et al\[18\], 1999	Melanoma	Therapeutic monitoring
MUC1	Pedersen et al\[17\], 2014	Ovarian	Early detection
	Kurtenkov et al\[20\], 2007	Gastric	Increased survival
Hu	Chapman et al\[11\], 2011	Lung	Early detection
	Graus et al\[21\], 1997	Lung	Therapeutic monitoring and increased survival

MUC1: Mucin-1.

PROPOSED ORIGINS OF AUTOANTIBODY PRODUCTION IN CANCER

As early as the 1960s, Robert W. Baldwin showed that the immune system could react to a developing tumor\[22-24\]. Most studies have mainly focused on evaluating TA autoantibodies as early cancer biomarkers since their discovery. On the other hand, investigation of the underlying causes of TA autoantibody production may contribute to a clearer understanding of mechanisms concerning the rendering of autologous proteins immunogenic and also reveal novel therapeutic targets for potential clinical use. It is commonly accepted that autologous cellular antigens expressed in tumors, also referred to as TA antigens (TAA), can be recognized early by the immune system and thus trigger a reaction known as cancer immunoediting, which consists of three phases: Elimination, equilibration and escape\[25,26\]. Immunosurveillance occurs during the elimination phase when the first few transformed cells are recognized by the immune system and targeted by natural killer cells that secrete certain cytokines to let other immune cells convene to the tumor\[27\]. The ensuing disruption of certain transformed cells and the uptake and disposal of the corresponding fragments by the recruited immune cells activate the appropriate immune response. A cascade of dynamic events further boosts the activation of innate immunity and facilitates the expansion and generation of T and B cells (the latter produces antibodies)\[28\]. Tumor cells that escape elimination and are permitted to grow will enter into the equilibrium phase during which tumor cell variants emerge with increasing ability to survive an immune attack. The equilibrium phase is the longest among these three phases and may persist for many years. Escape eventually occurs if the host immune defenses are breached and tumor cell variants grow and proliferate in an uncontrolled manner\[29\].

It is clear that the generation of many abnormal antigens during tumorigenesis can induce the host immune response to produce autoantibodies. However, how factors exactly facilitate an enhancement or disorder of immune surveillance in cancer resulting in the TA autoantibody production response is still unclear. The generation of TA autoantibodies is thought to occur in response to mutations\[30,31\], over-expression\[32,33\] or abnormal processing\[34,35\], which lead to the formation of altered or novel epitopes, aberrantly high expression levels resulting in loss of tolerance and abnormal post-translational modifications, such as acetylation, glycosylation and phosphorylation, all of which could create a neoepitope, enhance self-epitope presentation or expose antigens normally located in immune-privileged sites (e.g., cancer-testis antigens). With these mechanisms, extracellular and intracellular host proteins could be recognized by B cells to produce TA autoantibodies. Recent research has estimated that most TA autoantigens are mutated or overexpressed proteins among which 42% are cytoplasmatic, 26.1% are expressed predominantly in the nucleus, 21.4% are membrane-bound and 10.3% are extracellular\[36\]. It is surprising that TA autoantibodies seem to be more specific to intracellular molecules rather than their more common cell surface targets. This may be explained by greater vascular permeability for cytoplasmic proteins and enhancement of autoantibody generation by the proinflammatory environment\[37,38\]. Although the exact role of TA autoantibodies in cancer is largely undefined, that secreted TA autoantibodies reflect tumor burden makes them attractive and promising biomarkers.
Although TA autoantibodies have been described in a wide variety of human malignancies in the past several decades and have shown early diagnostic relevance, most studies evaluating autoantibodies in patients with ESCC and normal controls have emerged within the last 20 years. At least 49 individual TA autoantibodies have been assessed with diagnostic parameters in ESCC. Table 2 represents a list of single TA autoantibodies reported in the literature that could serve as potential serum/plasma biomarkers for ESCC. The diagnostic value of the TA autoantibodies, whether for the same autoantibody or for different types of autoantibodies, shows large variation for ESCC in terms of sensitivity and specificity, which might be due to sample size, the ethnic group studied or the test method of evaluation.

In general, the majority of TA autoantibody biomarkers show relatively low sensitivity but high specificity. The sensitivities and specificities for ESCC range from 3.9% to 93.7% and from 78.7% to 100%, respectively (Table 2). Receiver operating characteristic curves as a summary measure will not set cutoff values artificially but rather considers sensitivity and specificity simultaneously. Nevertheless, only a few studies used receiver operating characteristic curve analysis and area under the curve values to evaluate the diagnostic performance of TA autoantibodies (Table 2). The graphical representation of the sensitivities and specificities for autoantibodies in ESCC evaluated in more than one study is shown in Figure 1. Of note, the diagnostic ability of the great majority of TA autoantibodies lack independent validation, and the numbers of cases in some of the studies are very small. It is also noteworthy that most of the single TA autoantibodies lack diagnostic assessment in patients with early stage ESCC, which is one of the most important elements for biomarker development and application in early cancer diagnosis.

The most comprehensively investigated TA autoantibodies in ESCC have been p53 autoantibodies followed by autoantibodies against P16 and c-Myc. Given the prominent feature of p53 in cancers it is not unexpected that this is the most widely studied autoantibody in ESCC. Autoantibodies against p53 in the diagnosis of ESCC have been evaluated in 17 studies (Table 2), and the sensitivities vary largely between reports (7%-60%) while less variance is observed in the specificity (range 89.5%-100%, Table 2). A meta-analysis by Zhang et al[39] showed the overall sensitivity and specificity of p53 autoantibody for esophageal cancer are 29.6% and 97.9%, respectively. Autoantibodies against P16 and c-Myc were each analyzed in five studies, and both exhibited high specificity but poor sensitivity (Table 2). Therefore, despite the high specificity, all studies show that use of a single autoantibody provides low sensitivity indicating limited clinical application. The sensitivity and specificity for Hsp70 autoantibodies reported by Fujita et al[40] can be up to 93.7% and 100%, respectively. However, the very small sample size of this study reduces the stability and power of the results. Overall, quite apparent is the fact that the diagnostic value of individual TA autoantibody biomarkers in ESCC is quite limited.

Very few clinical or translational studies have treated EGJA as a separate entity, which have been generally divided between those targeting esophageal cancer and those targeting gastric cancer. Likewise, a similar phenomenon has been observed in the studies on autoantibodies for the diagnosis of EGJA. As can be seen from Table 3, a total of 13 autoantibodies were investigated in two studies[41,42], all of which were initially assessed in ESCC by Xu et al[43] and Zhou et al[44]. As anticipated, the presence of TA autoantibodies indicates early diagnostic potential for EGJA. The sensitivity of single TA autoantibody biomarkers for EGJA ranged from 11.0% to 54.3% with generally high specificity ranging from 86.3% to 97% (Table 3). From the list of autoantibodies shown in Table 3, there is no good way of forecasting which TA autoantibodies may work. Like ESCC, the most commonly tested TA autoantibody in EGJA is the p53 autoantibody, which has the highest area under the curve value (0.799) with moderate sensitivity and specificity in the diagnosis of early stage EGJA (Table 3). However, it remains fact that the capability of a single TA autoantibody biomarker to identify EGJA patients is limited. It also should be pointed out that research on autoantibodies is still in its infancy. Thus, more autoantibody biomarkers need to be identified and evaluated to enlarge the autoantibody pool for EGJA.
Target antigen of autoantibodies	Authors, year	Stage, n	Controls, n	Sensitivity, all stages/early stage	Specificity, all stages/early stage	AUC, all stages/early stage	Method					
Survivin	Xiu et al.	159	159	0.524	14.5%/-	0.327/-	ELISA					
	Qin et al.	174	242	< 0.05	12.1%/-	0.996/-	ELISA					
	Zhou et al.	88	200	0.06	9.0%/-	0.960/-	ELISA					
	Megliorino et al.	77	82	< 0.05	10.4%/-	0.976/-	ELISA					
TOPO48	Zhang et al.	112	112	0.001	49.1%/-	100%/-	-/0.860 ELISA					
LICAM	Xu et al.	191	94	0.005	26.2%/-	0.603/-	ELISA					
	Li et al.	149	98	< 0.0001	27.5%/-	-	ELISA					
STIP1	Xu et al.	148	111	< 0.001	41.9%/-	0.682/-	ELISA					
	Chen et al.	149	98	< 0.001	24.8%/-	0.636/-	ELISA					
DKK-1	Peng et al.	185	97	< 0.0001	33.5%/-	0.643/-	ELISA					
	Jin et al.	88	208	0.0052	5.7%/-	0.991/-	ELISA					
	Qin et al.	174	242	< 0.05	18.4%/-	0.6/-	ELISA					
	Zhou et al.	88	200	0.004	11.0%/-	0.970/-	ELISA					
Study	Sample Size	Positive	Negative	Total	<p value>	% Positive	% Negative	Test Method				
--------------------	-------------	----------	----------	-------	----------	------------	------------	-------------				
Looi et al. 2006	71	-	-	82	<0.05	14.1%/-	98.8%/-	ELISA				
Zhang et al. 2016	324	5/13	100	50	<0.001	55.9%/-	98.2%/-	ELISA				
Xu et al. 2014	388	2/29	96	229	<0.001	30.0%/-	98.8%/-	ELISA				
Qin et al. 2014	174	3/8	79	52	<0.05	21.8%/-	96.3%/-	ELISA				
Chai et al. 2014	157	-	-	157	<0.01	22.9%/-	100%/-	ELISA				
Zhou et al. 2014	88	-	-	88	<0.001	22.0%/-	98.0%/-	ELISA				
Cai et al. 2008	46	10	17	30	<0.0001	39.1%/22.2%	100%/100%	ELISA				
Looi et al. 2006	71	-	-	71	<0.05	7%/-	98.8%/-	ELISA				
Muller et al. 2006	50	-	-	50	<0.05	20.0%/-	100%/-	Western blot				
Megliorino et al. 2005	77	-	-	77	<0.01	14.3%/-	97.6%/-	ELISA				
Shimada et al. 2003	301	-	-	301	<0.05	30.0%/95.5%	95.5%/-	ELISA				
Shimada et al. 2002	105	50	24	21	<0.001	26.7%/95.5%	95.5%/-	ELISA				
Ralhan et al. 2000	60	-	-	60	<0.05	60.0%/92.0%	92.0%/-	ELISA				
Shimada et al. 2000	35	-	-	35	<0.0001	40.0%/100.0%	100.0%/-	ELISA				
Hagiwara et al. 2000	46	6	15	24	<0.05	28.0%/28.6%	100%/100%	ELISA				
Shimada et al. 1998	57	6/9	9	11	<0.05	58.0%/99.0%	99.0%/-	ELISA				
Sobti et al. 1998	20	-	-	20	0.0202	30.0%/100.0%	100%/-	ELISA				
Cawley et al. 1988	23	-	-	23	0.0372	34.8%/94.7%	94.7%/-	ELISA				
NY-ESO-1	388	2/29	96	229	<0.0001	26.0%/100%	100%/-	ELISA				
Xu et al. 2014	237	2/31	114	90	<0.0001	24.0%/99.0%	99.0%/-	ELISA				
Cyclin	Imp1	Bmi-1	PRDX 6	Mmp-7	Hsp70	PRDX 6	Bmi-1	Imp1	Cyclin B1			
--------	------	-------	--------	-------	-------	--------	-------	------	----------			
172	-	-	-	-	172	-	-	-	88			
Fujita et al. [82], 2014	51	-	-	-	51	29	0.532	3.9%/-	100%/-			
Zhang et al. [58], 2014	324	5/13	130	50	39	87	324	< 0.001	31.5%/-	84.9%/-	0.617/-	ELISA
Zhou et al. [55], 2014	186	1	29	14	46	96	186	< 0.001	-	-	ELISA	
Xu et al. [83], 2008	388 (Test)	2/29	96	229	27	5	125 (Test)	< 0.001	9.0%/-	100%/-		
Fujita et al. [82], 2014	237	2/31	114	90	-	-	134 (Validation)	< 0.001	10.0%/-	100%/-		
Zhou et al. [43], 2011	50	-	-	-	-	50	58	< 0.001	78.0%	81.0%	0.87/-	ELISA
Xu et al. [55], 2014	388 (Test)	2/29	96	229	27	5	125 (Test)	< 0.001	11.0%/-	99.0%/-	ELISA	
Fujita et al. [55], 2014	237	2/31	114	90	-	-	134 (Validation)	< 0.001	8.0%/-	99.0%/-	ELISA	
Zhang et al. [82], 2011	69	-	-	-	-	69	76	> 0.01	39.1%/-	92.3%/-	ELISA	
Fujita et al. [43], 2008	16	2	7	4	3	-	13	< 0.001	93.7%/-	100%/-	ELISA	
Xu et al. [55], 2014	388 (Test)	2/29	96	229	27	5	125 (Test)	< 0.001	11.0%/-	100%/-	ELISA	
Fujita et al. [55], 2014	237	2/31	114	90	-	-	134 (Validation)	< 0.001	10.0%/-	100%/-	ELISA	
Zhang et al. [55], 2011	30	7	8	11	4	-	30	< 0.05	50.0%/	53.5%	93.4%/-	Western blot
Liu et al. [82], 2010	159	6	72	69	12	-	102	< 0.001	39.0%/-	100%/-	ELISA	
Xu et al. [55], 2014	388 (Test)	2/29	96	229	27	5	125 (Test)	< 0.01	11.0%/-	98.0%/-	ELISA	
Fujita et al. [55], 2014	237	2/31	114	90	-	-	134 (Validation)	< 0.01	8.0%/-	100%/-	ELISA	
Zhang et al. [55], 2011	159	6	72	69	12	-	102	< 0.001	39.0%/-	100%/-	ELISA	
Qin et al. [82], 2014	324	5/13	130	50	39	87	324	< 0.001	26.9%/-	81.2%/-	0.576/-	ELISA
Zhou et al. [82], 2014	186	1	29	14	46	96	186	< 0.01	-	-	ELISA	
Qin et al. [82], 2014	174	3/8	79	52	18	-	242	< 0.05	16.1%/-	98.3%/-	0.6/-	ELISA
Zhou et al. [82], 2014	88	-	-	-	-	88	200	< 0.001	14.0%/-	99.0%/-	ELISA	
Qin et al. [82], 2014	174	3/8	79	52	18	-	242	< 0.05	16.1%/-	97.9%/-	0.6/-	ELISA
Zhou et al. [82], 2014	88	-	-	-	-	88	200	0.02	10.0%/-	97.0%/-	ELISA	
Protein	Authors	Year	Cases (Validation)	Cases (Training)	p-value	Sensitivity	Specificity	Cut-off				
---------	---------	------	-------------------	-----------------	---------	-------------	-------------	---------				
C-Myc	Zhang et al	2016	186 (Validation)	1 129 14 46 96	< 0.001	100%	99.2%	0.596				
	Qin et al	2014	174 3/8 79 52 18 -	242 < 0.05	15.5%	96.7%	0.6/					
	Zhou et al	2014	88 - - - -	200 < 0.001	18.0%	96.0%	-	ELISA				
	Megliorino et al	2005	77 - - - -	82 < 0.05	7%	100%	-	ELISA				

R1A	Qin et al	2014	174 3/8 79 52 18 -	242 < 0.05	15.5%	96.7%	0.6/	
	Zhang et al	2016	186 (Validation)	1 129 14 46 96	< 0.001	100%	99.2%	0.596
	Qin et al	2014	174 3/8 79 52 18 -	242 < 0.05	12.1%	95.9%	0.5/	
	Zhou et al	2014	88 - - - -	200 0.001	13.0%	98.0%	-	ELISA
Koc	Zhang et al	2016	186 (Validation)	1 129 14 46 96	< 0.05	-	-	-
	Qin et al	2014	174 3/8 79 52 18 -	242 < 0.05	11.5%	97.9%	0.5/	
	Zhou et al	2014	88 - - - -	200 0.05	10.0%	96.0%	-	ELISA
Cyclin D1	Qin et al	2014	174 3/8 79 52 18 -	242 < 0.05	10.3%	96.3%	0.5/	
Cyclin E	Zhang et al	2016	186 (Validation)	1 129 14 46 96	< 0.05	-	-	-
	Qin et al	2014	174 3/8 79 52 18 -	242 < 0.05	10.3%	99.2%	0.5/	
HCCR	Zhang et al	2016	186 (Validation)	1 129 14 46 96	< 0.001	100%	98.8%	0.679
GSTO1	Li et al	2014	67 - - - -	67 < 0.01	44.8%	93.3%	-	ELISA
MDM2	Chai et al	2014	157 - - - -	157 < 0.01	14.0%	98.8%	-	ELISA
Protein	Authors	Year	Sample Size	Positive	t-Value	Positive	Control	t-Value	Method
HSP105	Gao et al.	2014	46	39/40	< 0.01	39.1%/42.9%	95%/95%	0.794/-	Western blot
TIM	Gao et al.	2014	46	39/40	< 0.01	34.8%/28.6%	95%/95%	0.786/-	Western blot
Prdx1	Ren et al.	2013	68	68/89	< 0.01	13.2%/-	100%/-	-	ELISA, Western blot
FOXP3	Ye et al.	2013	97	227/40	< 0.0001	22.7%/-	95.2%/-	0.70/-	ELISA, Western blot
CD25	Guan et al.	2013	97	226/40	< 0.001	37.2%/90.0%	95.2%/-	0.69/-	ELISA
ABCC3 (IgA)	Cheng et al.	2013	114	226/40	< 0.001	13.2%/-	>95%/-	0.65/-	ELISA
LY6K	Zhang et al.	2012	62	58/22	< 0.001	80.6%/73.2%	78.7%/78.7%	0.85/-	ELISA
HMCGB1	Zhang et al.	2011	69	69/76	> 0.05	7.2%/-	98.7%/-	-	ELISA
ESCA-1	Kagaya et al.	2011	146	118/40	0.0001	21.2%/98.3%	-	-	ELISA
ESCA-2	Kagaya et al.	2011	72	72/98	0.0026	15.3%/99.0%	-	-	ELISA
ESCA-3	Kagaya et al.	2011	68	68/74	0.0079	16.2%/98.6%	-	-	ELISA
CDC25B	Dong et al.	2010	134	134/40	< 0.001	56.7%/91.0%	0.87/-	-	ELISA
	Liu et al.	2008	124	123/40	< 0.05	36.3%/100%	-	-	ELISA
GPR78	Tsunemi et al.	2010	15	15/20	< 0.05	26.7%/100%	-	-	Western blot
Makorin 1	Shimada et al.	2009	73	43/40	< 0.05	25.0%/22.9%	100%/100%	-	Western blot
CUEC-23	Shimada et al.	2009	54	46/16	< 0.05	26.0%/33.3%	96.0%/-	-	Western blot
	Shimada et al.	2009	29	46/11	0.036	17.0%/100%	-	-	ELISA
MMGL	Shimada et al.	2007	91	45/13	< 0.05	47.0%/97.8%	78.8%/-	-	Western blot
TRIM21	Kuboshima et al.	2006	91	42/52	< 0.05	20.0%/13.0%	100%/100%	-	Western blot
	Kuboshima et al.	2006	54	42/52	0.013	15.0%/98.0%	-	-	ELISA
SLC2A1	Kuboshima et al.	2006	57	31/19	< 0.001	21.0%/22.0%	100%/100%	-	ELISA
SURF1	Shimada et al.	2005	21	37/13	0.0003	48%/-95%	-	-	ELISA
ESCC: Esophageal squamous cell carcinoma; AUC: Area under the curve; L1CAM: L1-cell adhesion molecule; STIP1: Stress induced phosphoryte protein 1; DKK-1: Dickkopf 1; Mmp-7: Matrix metalloproteinase 7; Hsp70: Heat shock protein 70; PRDX 6: Peroxiredoxin 6; Bmi-1: BMI1 proto-oncogene, polycomb ring finger; Imp1: Insulin-like growth factor 2 mRNA binding protein 1; CDC25B: Cell division cycle 25B; GRP78: Heat shock protein family A (Hsp70) member 5; Makorin 1: Makorin ring finger; Imp1: Insulin-like growth factor 1; MMGL: Myomegalin; TRIM21: Tripartite motif containing 21; SLC2A1: Solute carrier family 2 member 1; SURF1: SURF1 cytochrome c oxidase assembly factor; HOOK2: Hook microtubule tethering protein 2; TROP2: Tumor-associated calcium signal transducer 2.

DIAGNOSTIC PERFORMANCE OF AUTOANTIBODY PANELS IN ESCC

Over the past few years, as single TA autoantibodies do not appear to demonstrate enough diagnostic sensitivity to set up a reliable test for early detection, studies have aimed to identify a suitable panel of TA autoantibodies. These predicaments are presumably due to cancer heterogeneity. In fact, it is unlikely that most patients will respond to the same immunodominant antigens. Even tumors of the same kind are comprised of a diverse mix of biological subtypes; accordingly, cancer patients are more likely to induce an immune reaction to different sets of TAA, and not all cancers are likely to be detected by autoantibodies against a single antigen. Tables 4 and 5 give an overview of different combinations of multiple autoantibodies as potential blood-based biomarkers for ESCC and EGJ A that have been described in the literature by various research groups.

With improvements in technology, several high-throughput methods, such as proteomics platforms, have enabled the uncovering of autoantibodies and the generation of a panel of TAA. These discovery techniques encompass serological analysis of tumor antigens by recombinant cDNA expression cloning, serological proteome analysis, phage display, protein microarrays and multiple affinity protein profiling. Shimada et al. were the first to use the high-throughput method of serological analysis of tumor antigens by recombinant cDNA expression cloning in ESCC. They showed that several TAA that could elicit a humoral immune response that could be detected simultaneously, and the technique enabled the generation of an autoantibody panel that exhibited better diagnostic value (86% sensitivity and 100% specificity) than a single TA autoantibody. Subsequently, a study using serological proteome analysis identified some novel TAA associated with ESCC, and the combination of two TAA (HSP105 and TIM) can give 54.3% sensitivity and 95% specificity in distinguishing ESCC from controls. These studies all show that the combined detection of autoantibodies against several antigens in the panel can greatly increase sensitivity in the diagnosis of ESCC. However, except for the two above-mentioned studies, no other relevant literature applying proteomic technology to identify a TAA panel has appeared. This indicates, to some extent, that the identification and development of novel autoantibodies by proteomics platforms for ESCC is limited and behindhand especially compared with other tumor types, such as lung, breast and liver tumors.

On the other hand, researchers have been more inclined to evaluate the diagnostic performance of combinations of several known TAA. In accord with such thinking, eight studies reported the diagnostic value of different combinations of autoantibodies for ESCC (Table 4). From the list of autoantibodies examined in the panel (Table 4), p53 autoantibodies were the most common choice for inclusion in the biomarker combinations. As is known, p53 as a tumor suppressor gene has been linked to many cancers, including ESCC, and thus would be a rational biomarker to be investigated. Zhang et al. assessed a combination of six immunoreactive TAA in ESCC samples and normal controls with independent validation. Then, they sought to...
identify which biomarkers used in combination were more informative and allowed a similar discrimination between groups. They finally found a restricted panel of four TAA that gave similar sensitivity and specificity in early stage ESCC. Indeed, a similar research strategy had been previously performed by Xu et al[43] who used two independent cohorts to investigate the combination of autoantibodies against p53, NY-ESO-1, MMP-7, Hsp70, Prx VI and Bmi-1. This panel distinguished early stage ESCC from normal controls with a sensitivity/specificity of 45%/95% and 46%/96%, respectively in the test and validation cohorts. Interestingly, the authors also determined a simplified autoantibody panel retaining four out of six biomarkers that exhibited almost the same diagnostic efficacy (Table 4). Although it is reported that a majority of biomarkers with desirable outcomes in a first data set often result in less promising results in additional independent data sets[56], the two above studies with the combinations of known TAA all showed satisfactory diagnostic value in independent validation cohorts. This suggests potential clinical applications for autoantibody combinations to diagnose ESCC. However, we can see from Table 4 that most of the studies reviewed lack validation in an independent population. In practice, the results of biomarkers need to be validated in larger multicenter cohorts and evaluated as a screening test in high-risk populations. However, no study on the evaluation of autoantibodies in ESCC diagnosis has been able to do so. All previously identified autoantibody panels for ESCC should be validated by these procedures to evaluate their true clinical relevance and diagnostic power.

DIAGNOSTIC PERFORMANCE OF AUTOANTIBODY PANELS IN EGJA

As the combined detection of selected autoantibodies as a panel could generally increase diagnostic sensitivity while keeping relatively high specificity in ESCC, two studies have attempted to evaluate the same panels of autoantibodies identified in ESCC for early detection of EGJA and have shown promising results. They demonstrated sensitivities above 50% and specificities above 86% (Table 5). Zhou et al[41] detected autoantibodies to eight TAA, comprised of p53, IMP1, P16, cyclin B1, P62, c-Myc, survivin and Koc and suggested that successive addition of seven TAA (p53, Koc, P62, c-Myc, IMP1, survivin and P16) led to stepwise increases in sensitivity and specificity, ultimately achieving a sensitivity of 64.0% with a specificity of 87.0%. This optimized combination is somewhat different from an optimized panel identified for ESCC (p53, IMP1, P16, cyclin B1, P62 and c-Myc) studied by the same research team. Subsequently, Xu et al[42] showed that autoantibodies against a combination of p53, NY-ESO-1, MMP-7, Hsp70, PRDX6 and Bmi-1, which is the same as the panel used for evaluation of ESCC, could be potentially used for early diagnosis of EGJA. When comparing stage I and II patients to normal controls, the authors showed sensitivities and specificities of 50.0% and 90.5% and 56.0% and 90.0%, respectively, in the training and validation cohorts. It should be noted that a strict panel of p53, NY-ESO-1 and Bmi-1 to comprise informative biomarkers for EGJA gives similar diagnostic performance. Interestingly, as discussed above, a different restricted combination (p53, NY-ESO-1, PRDX6 and Hsp70) from the same autoantibody panel.
Table 3 Diagnostic performance of single tumor-associated autoantibody biomarkers in esophagogastric junction adenocarcinoma

Target antigen of autoantibodies	Authors, year	EQA cases, n	Stage, n	Controls, n	Sensitivity, all stages/early stage (%)	Specificity, all stages/early stage (%)	AUC, all stages/early stage	Method
p53	Xu et al.[4], 2019	122	I II III IV TX	169 (Validation)	35.2%/33.3% 90.5%/90.5%	0.718/0.648	ELISA	
	(Training)	70	11 14 30 15 80	80 (Validation)	< 0.0001 35.7%/40.0% 96.3%/96.3%	0.766/0.799	ELISA	
	Zhou et al.[41], 2015	75	- - - - -	140 (Validation)	24.0%/92%/92%	0.67/0.66	ELISA	
NY-ESO-1	Xu et al.[41], 2019	122	I II III IV TX	169 (Validation)	37.7%/27.8% 90.5%/90.5%	0.718/0.654	ELISA	
	(Training)	70	11 14 30 15 80	80 (Validation)	< 0.0001 34.3%/28.0% 95.0%/95.0%	0.747/0.714	ELISA	
PRDX6	Xu et al.[41], 2019	122	I II III IV TX	169 (Validation)	34.4%/38.9% 90.5%/90.5%	0.573/0.602	ELISA	
	(Training)	70	11 14 30 15 80	80 (Validation)	0.033 30.0%/28.0% 90.0%/90.0%	0.647/0.629	ELISA	
MMP-7	Xu et al.[41], 2019	122	I II III IV TX	169 (Validation)	30.3%/33.3% 90.5%/90.5%	0.597/0.575	ELISA	
	(Training)	70	11 14 30 15 80	80 (Validation)	0.005 24.3%/28.0% 95.0%/95.0%	0.599/0.609	ELISA	
Hsp70	Xu et al.[41], 2019	122	I II III IV TX	169 (Validation)	18.0%/16.7% 90.5%/90.5%	0.652/0.697	ELISA	
	(Training)	70	11 14 30 15 80	80 (Validation)	< 0.0001 28.6%/32.0% 86.3%/86.3%	0.686/0.702	ELISA	
Bmi-1	Xu et al.[41], 2019	122	I II III IV TX	169 (Validation)	22.1%/27.8% 90.5%/90.5%	0.686/0.685	ELISA	
	(Training)	70	11 14 30 15 80	80 (Validation)	< 0.0001 54.3%/40.0% 90.0%/90.0%	0.711/0.682	ELISA	
Koc	Zhou et al.[42], 2015	75	- - - - -	140 (Validation)	19.0%/91%	0.05 -	ELISA	
P62	Zhou et al.[42], 2015	75	- - - - -	140 (Validation)	16.0% 94%	0.02 -	ELISA	
C-Myc	Zhou et al.[42], 2015	75	- - - - -	140 (Validation)	11.0% 94%	0.18 -	ELISA	
IMP1	Zhou et al.[42], 2015	75	- - - - -	140 (Validation)	13.0% 95%	0.04 -	ELISA	
Survivin	Zhou et al.[42], 2015	75	- - - - -	140 (Validation)	17.0% 96%	0.002 -	ELISA	
Pl6	Zhou et al.[42], 2015	75	- - - - -	140 (Validation)	15.0% 96%	0.01 -	ELISA	
Cyclin B1	Zhou et al.[42], 2015	75	- - - - -	140 (Validation)	12.0% 97%	0.01 -	ELISA	
in early stage ESCC retains high sensitivity and specificity.

These studies suggest that the importance of individual autoantibodies in the panel assay varies in different types of cancers. However, we still need to determine which TA autoantibodies applied in combination are more informative and allow a better diagnostic value. In future work, more TA autoantibodies need to be discovered and characterized to identify the best combination for EGJA. Meanwhile, the identified signatures for EGJA should be verified in larger multicenter-appropriated cohorts of early stage patients and controls to test the diagnostic power.

CONCLUSION AND PERSPECTIVES

Endoscopic examination is a current but invasive diagnostic and screening procedure for early detection of ESCC and EGJA. The development and validation of non-invasive biomarkers is of great need for ESCC and EGJA screening. In recent decades, a large number of blood-based cancer biomarkers, such as cell-free circulating tumor DNAs, various non-coding RNAs, proteins and TA autoantibodies, have been identified and indicate the potential for early detection of esophageal cancer. Among these biomarkers, TA autoantibodies are a promising biomarker entity in early cancer detection as they are capable of identifying cancer in high-risk individuals. Moreover, they are highly stable and can be easily detected by routine methods (e.g., ELISA). Recently, a TA autoantibody assay named NY-ESO-1 CAGE, GBU4-5, MAGE A4, SOX2 and Hu-D approved by the FDA has been clinically and analytically validated. An ongoing prospective randomized trial is evaluating the clinical utility of this TA autoantibody panel and its use in a clinical setting of which the results are expected to be announced in the near future. Once this assay is successful for lung cancer, we would predict that tests for all solid tumors, including ESCC and EGJA, will follow.

Biomarker development needs several gradual steps covering preclinical studies, retrospective studies of stored specimens, multicenter validation studies and prospective screening studies. However, in ESCC and EGJA, autoantibodies studies on early detection are hampered by several issues. First, the availability of sera from early stage patients seems limited. Only few studies have investigated the diagnostic value of TA autoantibody panels in patients with early stage tumors. Access to large early stage sample cohorts is an essential and necessary issue to examine a test’s value for early stage disease. Moreover, few patients with pre-diagnostic serum samples or high-risk ESCC or EGJA cohorts are available, and up to now no study has reported on the immune response in the form of autoantibodies in these populations. Thus, an investigation of TA autoantibodies for the early detection of ESCC and EGJA will be limited mainly by the availability of human samples. On the other hand, current studies (Tables 4 and 5) investigating autoantibodies show promise but still lack the necessary validation stages. These studies need clinical multicenter validation through use of a broader population to further determine diagnostic value.

It seems that there are different patterns of TA autoantibody frequencies in different types of cancers. Thus, one encountered difficulty is the definition of the panel. This leads to the question of how to choose the optimized combination that works best in terms of sensitivity, specificity and predictive value. At this moment, there is no good guiding principle, but more advanced high-throughput proteome technology might be helpful. On the other hand, it should also be pointed out that TA autoantibodies may not be unique for specific types of cancers. Therefore, TA autoantibody panels identified for ESCC or EGJA are likely to be used as a screening test to discover the existence of cancer, and in general more specific diagnostic tools, such as endoscopy, should be carried out in the event of a positive result.

In conclusion, this review suggests that TA autoantibodies have the potential to serve as diagnostic biomarkers for ESCC and EGJA possibly as part of a general cancer screen. However, present studies in ESCC and EGJA remain at an early stage. It is clear that extensive efforts are needed to uncover promising autoantibody signatures to detect these cancers especially at the early stage. Moreover, it is too early to evaluate the diagnostic value of the autoantibodies reviewed here for clinical use. Standardized assay protocols facilitating the establishment of autoantibodies as highly accurate biomarkers is of great need in ESCC and EGJA. Finally, future studies performed with precise design and collaborative efforts among groups to build

EGJA: Esophagogastric junction adenocarcinoma; AUC: Area under the curve; PRDX 6: Peroxiredoxin 6; Mmp-7: Matrix metallopeptidase 7; Hsp70: Heat shock protein 70; Bmi-1: BMI1 proto-oncogene, polycomb ring finger; Koc: Insulin-like growth factor 2 mRNA binding protein 3; C-Myc: MYC proto-oncogene, bHLH transcription factor; IMp1: Insulin-like growth factor 2 mRNA binding protein 1.
Target antigen of auto-antibodies	Authors, year	ESCC cases, n	Stage, n	Controls, n	Sensitivity, all stages/early stage	Specificity, all stages/early stage	AUC, all stages/early stage	Method					
c-Myc, HCCR, IMP1, Koc, p53 and p62	Zhang et al[55], 2016	324 (Training)	5/13	130 50 39 87	324 (Training)	67.9%/66.9%	86.7%/86.7%	0.838/0.829	ELISA				
c-Myc, HCCR, p53 and p62	Zhang et al[55], 2016	324 (Training)	5/13	130 50 39 87	324 (Training)	67.6%/67.6%	86.4%/86.4%	0.838/0.831	ELISA				
MAGEA 4, CTAG1, TP53, SDCCA G8 and ERBB2_C	Werner et al[101], 2016	31 - - - - 31	321	67.7%/56.7%	85.5%/85.0%	0.859/0.818	-	Bead-based multiplex serology					
p53 and MDM2	Chai et al[68], 2014	157 - - - - 157	85	72.0%/63.3%	85.0%/85.0%	0.872/0.837	-	ELISA					
p53, p16, Imp-l, CyclinB1, c-Myc, RalA, p62, Survivin, Koc, Cyclin D1 and Cyclin E	Qin et al[99], 2014	174 3/8 79 52 18 - 242	75.3%/-	81.0%/-	0.78/-	-	ELISA						
p53, NY-ESO-1, MMP-7, Hsp70, PRDX 6 and Bmi-1	Xu et al[43], 2014	388 (Test) 2/29 96 229 27 5	125 (Test)	57.0%/45.0%	95.0%/95.0%	-	ELISA						
p53, NY-ESO-1, MMP-7, Hsp70 and PRDX 6	Xu et al[43], 2014	388 (Test) 2/29 96 229 27 5	125 (Test)	55.0%/45.0%	98.0%/98.0%	-	ELISA						
p53, NY-ESO-1, Hsp70 and PRDX 6	XU et al[43], 2014	88 - - - - 88	200	64.0%/-	94.0%/-	0.78/-	ELISA						
HSP105 and TIM	Gao et al[51], 2014	46 7 - - - - 39	40	54.3%/-	95.0%/-	0.823/-	Western blot						
p16, c-Myc and p53	Looi et al[67], 2006	-	-	-	-	71	82	7%/-	100%/-	-	ELISA		
------------------	-----------------	---	---	---	---	-------	------	------	-------	------	------	--------	
SURF1, LOC1462, 23, HOOK2 and AGENCourt_7	Shimada et al[50], 2005	21	-	3	13	5	-	37	86%/-	100%/-	-	ELISA	
Survivin, p53 and C-myc	Megliorini et al[59], 2005	77	-	-	-	-	-	77	82	29.9%/-	95.1%/-	-	ELISA

ESCC: Esophageal squamous cell carcinoma; AUC: Area under the curve; C-Myc: MYC proto-oncogene, bHLH transcription factor; HCCR: LETM1 domain containing 1; IMP1: Insulin-like growth factor 2 mRNA binding protein 1; Koc: Insulin-like growth factor 2 mRNA binding protein 3; MAGEA4: MAGE family member A4; CTAG1: Cancer/testis antigen 1B; SDCCAG8: Serologically defined colon cancer antigen 8; ERBB2: Erb-b2 receptor tyrosine kinase 2; MDM2: MDM2 proto-oncogene; HSP105: Heat shock protein family H (Hsp110) member 1; TIM: Rho guanine nucleotide exchange factor 5; SURF1: SURF1 cytochrome c oxidase assembly factor; HOOK2: Hook microtubule tethering protein 2.

standardized guidelines to report results will contribute greatly in this research area.
Table 5 Diagnostic performance of tumor-associated autoantibody panel in esophagogastric junction adenocarcinoma

Target antigen of auto-antibodies	Authors, year	EGJA cases, n	Stage, n	Controls, n	Sensitivity, all stages/early stage	Specificity, all stages/early stage	AUC, all stages/early stage	Method		
p53, NY-ESO-1, MMP-7, Hsp70, PRDX6 and Bmi-1	Xu et al (40), 2019	122 (Training)	0/I 2	16 87 17 122	169 (Validation)	50.0%	90.5%	0.786	ELISA	
			II 11	14 30 15 80	80 (Validation)	56.0%	90.0%	0.786	ELISA	
	Xu et al (41), 2019	122 (Training)	III 2	16 87 17 122	169 (Validation)	55.6%	90.5%	0.744	ELISA	
			IV 70	11	14 30 15 80	80 (Validation)	52.0%	93.7%	0.773	ELISA
	Zhou et al (41), 2015	75	-	-	-	75	64.0%	-	-	ELISA

EGJA: Esophagogastric junction adenocarcinoma; AUC: Area under the curve; MMP-7: Matrix metallopeptidase 7; Hsp70: Heat shock protein 70; PRDX6: Peroxiredoxin 6; Bmi-1: BMI1 proto-oncogene, polycomb ring finger; Koc: Insulin-like growth factor 2 mRNA binding protein 3; C-Myc: MYC proto-oncogene, bHLH transcription factor; IMPI: Insulin-like growth factor 2 mRNA binding protein 1.

ACKNOWLEDGEMENTS

We thank Professor Stanley Li Lin who re-read this manuscript carefully.

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424 [PMID: 30207593 DOI: 10.3322/caac.21492]
2. Colquhoun A, Arnold M, Ferlay J, Goodman KJ, Forman D, Soerjomataram I. Global patterns of cardia and non-cardia gastric cancer incidence in 2012. Gut 2015; 64: 1881-1888 [PMID: 25748648 DOI: 10.1136/gutjnl-2014-309815]
3. Devesa SS, Blot WJ, Fraumeni JF. Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer 1998; 83: 2049-2053 [PMID: 9822707 DOI: 10.1002/(SICI)1097-0142(19981115)83:10<2049::AID-CNCR1>3.0.CO;2-2]
4. Zhou Y, Zhang Z, Zhang Z, Wu J, Ren D, Yan X, Wu Y, Wang Q, Wang Y, Wang P, Zhang J, Zhu X, Yang Y, Luo C, Guo X, Tang C, Qiao L. A rising trend of gastric cardia cancer in Gansu Province of China. Cancer Lett 2008; 269: 18-25 [PMID: 18501504 DOI: 10.1016/j.canlet.2008.04.013]
5. Tran GD, Sun XD, Ahnet CC, Fan JH, Dawsey SM, Dong ZW, Mark SD, Qiao YL, Taylor PR. Prospective study of risk factors for esophageal and gastric cancers in the Luxin general population trial cohort in China. Int J Cancer 2005; 113: 456-463 [PMID: 15455378 DOI: 10.1002/ijc.20616]
6. Chen H, Wang LD, Guo M, Gao SG, Guo HQ, Fan ZM, Li JL. Alterations of p53 and PCNA in cancer and adjacent tissues from concurrent carcinomas of the esophagus and gastric cardia in the same patient in Linzhou, a high incidence area for esophageal cancer in northern China. World J Gastroenterol 2003; 9: 16-21 [PMID: 12508843 DOI: 10.3748/wjg.v9.i1.16]
7. Endinger PC, Mayer RJ. Esophageal cancer. N Engl J Med 2003; 349: 2241-2252 [PMID: 14657432 DOI: 10.1056/NEJMra035010]
8. Kim T, Grobmyer SR, Smith R, Ben-David K, Ang D, Vogel SB, Hochwald SN. Esophageal cancer—the five year survivors. J Surg Oncol 2011; 103: 179-183 [PMID: 21259254 DOI: 10.1002/jso.21764]
9. Wang QQ, Jiao GG, Chang FB, Fang WH, Song JX, Lu N, Lin DM, Xie YQ, Yang L. Long-term results of operation for 420 patients with early squamous cell esophageal carcinoma discovered by screening. Ann Thorac Surg 2004; 77: 1740-1744 [PMID: 15111177 DOI: 10.1016/j.athoracsur.2003.10.098]
Pech O, Behrens A, May A, Nachbar L, Gossner L, Rabenstein T, Tanner H, Guenter E, Huisjans N, Vieth M, Stolte M, Eli C. Long-term results and risk factor analysis for recurrence after curative endoscopic therapy in 349 patients with high-grade intraepithelial neoplasia and mucosal adenocarcinoma in Barrett's oesophagus. Gut 2008; 57: 1290-1296 [PMID: 18460553 DOI: 10.1136/gut.2007.125319]

Chapman CJ, Thorpe AJ, Murray A, Parsy-Kowalska CB, Allen J, Stafford KM, Chauhan AS, Kite TA, Maddison P, Robertson JF. Immunobiomarkers in small cell lung cancer: Potential early cancer signals. Clin Cancer Res 2011; 17: 1474-1480 [PMID: 21388538 DOI: 10.1158/1078-0432.CCR-10-1363]

Zhong L, Cee SP, Stromberg AJ, Khattar NH, Jett JR, Hirschowitz EA. Profiling tumor-associated antibodies for early detection of non-small cell lung cancer. J Thorac Oncol 2006; 1: 513-519 [PMID: 17499910 DOI: 10.1096/jci.101566.150332.X]

Trivegs GE, De Benedetti VM, Cavley HL, Caren G, Harrington AM, Bennett WP, Jett JR, Colby TV, Tazelaar H, Pairolopo M, Miller RD, Harris CC. Anti-p53 antibodies in sera from patients with chronic obstructive pulmonary disease can predate a diagnosis of cancer. Clin Cancer Res 1996; 2: 1767-1775 [PMID: 9816128 DOI: 10.1093/carcin/19.11.2277]

Takeda A, Shimada H, Nakujima K, Imaseki H, Suzuki T, Asano T, Ochiai T, Ikonon K. Monitoring of p53 autoantibodies after resection of colorectal cancer: Relationship to operative curability. Eur J Surg 2001; 167: 50-53 [PMID: 1132822 [DOI: 10.1016/S0014-4703(00)00969-2]]

Anderson KS, Wong J, Vitonis A, Crum CP, Slaas PM, Laber J, Cramer D. p53 autoantibodies as potential detection and prognostic biomarkers in serous ovarian cancer. Cancer Epidemiol Biomarkers Prev 2010; 19: 859-868 [PMID: 20200435 DOI: 10.1158/1055-9966.EPI-09-0880]

Shan Q, Lou X, Xiao T, Zhang J, Sun H, Gao Y, Cheng S, Wu L, Xu N, Liu S. A cancer/testis antigen microarray to screen autoantibody biomarkers of non-small cell lung cancer. Cancer Lett 2013; 328: 160-167 [PMID: 22922091 DOI: 10.1016/j.canlet.2012.08.019]

Fossa A, Berner A, Fossa SD, Hennies E, Gaudernack G, Smeland EB. NY-ESO-1 protein expression and humoral immune responses in prostate cancer. Prostate 2004; 59: 440-447 [PMID: 15065993 DOI: 10.1002/pros.20002]

Jäger E, Stockert E, Zidianakis Z, Chen YF, Karbach J, Jäger D, Arand M, Ritter G, Old LJ, Knuth A. Humoral immune responses of cancer patients against "Cancer-Testis" antigen NY-ESO-1: Correlation with clinical events. Int J Cancer 1999; 84: 506-510 [PMID: 10502728 DOI: 10.1020/sici.19990215.s84.5.506:aid-ijc10.3.0.co;2-6]

Pedersen JW, Gentry-Maharaj A, Nøstdal A, Fourkala EO, Dawnay A, Burnell M, Zaikin A, Burchell J, Papadimitriou JT, Clausen H, Jacobs I, Menon U, Walland HH. Cancer-associated autoantibodies to MUC1 and MUC4-a blinded case-control study of colorectal cancer in UK collaborative trial of ovarian cancer screening. Int J Cancer 2014; 134: 2180-2188 [PMID: 24122770 DOI: 10.1002/ijc.28583]

Kartenkov O, Klaamas K, Mensdorff-Pouilly S, Miljukhina L, Shljapnikova L, Chuzmarov V. Humoral immune response to MUC1 and to the Thomsen-Friedenreich (TF) glycopeptide in patients with gastric cancer: Relation to survival. Acta Oncol 2007; 46: 316-323 [PMID: 17430406 DOI: 10.1080/02481051.2007.1050441]

Baldwin RW. Tumour-specific immunity against spontaneous rat tumours. Int J Cancer 1966; 1: 257-264 [PMID: 5944065 DOI: 10.1002/ijc.29101010305]

Baldwin RW. An immunological approach to cancer. Lav Ist Anat Istol Patol Univ Studi Perugia 1971; 84: 286-2872 [PMID: 9256130 DOI: 10.1200/jp.1997.15.8.2866]

Baldwin RW, Tumour-associated antigens and tumour-host interactions. Proc R Soc Med 1971; 64: 1039-1042 [PMID: 4335921]

Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoeediting: From immunosurveillance to tumor escape. Nat Immunol 2002; 3: 991-998 [PMID: 12407406 DOI: 10.1038/ni1102-991]

Schreiber RD, Old LJ, Smyth MJ. Cancer immunoeediting: Integrating immunity's roles in cancer suppression and promotion. Science 2011; 331: 1565-1570 [PMID: 21436444 DOI: 10.1126/science.120346]

Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 2005; 2: 239-252 [PMID: 15803725 DOI: 10.1038/nri1478]

Finn OJ. Immuno-oncology: Understanding the function and dysfunction of the immune system in cancer. Nat Rev Immunol 2013; 12: 642-648 [PMID: 13654218 DOI: 10.1038/nri3228]

Kim R, Emt M, Tanabe K, Arhiro K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 2006; 66: 5572-5573 [PMID: 17640684 DOI: 10.1158/0008-5472.can-05-4128]

Winter SF, Mint MR, Johnson BE, Takahashi T, Gazdar AF, Carbone DP. Development of antibodies against p53 in lung cancer patients appears to be dependent on the type of p53 mutation. Cancer Res 1992; 52: 4165-4174 [PMID: 1322237 DOI: 10.1046/j.1365-2120.2002.00715.x]

Pardoll D. Does the immune system see tumors as foreign or self?. Ann Rev Immunol 2003; 21: 807-839 [PMID: 12615893 DOI: 10.1146/immunol.21.120601.141135]

Chen YT, Scanlan MJ, Sahin U, Türeci O, Gure AO, Tsang S, Williamson B, Stockert E, Frezendschuh M, Old LJ. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci U S A 1997; 94: 1914-1918 [PMID: 9058079 DOI: 10.1073/pnas.94.5.1914]

Goedell V, Waisman J, Salazar LG, de la Rosa C, Link J, Covenier AL, Childs JS, Finkt PA, Higgins DM, Dossi ML. Level of HER-2/neu protein expression in breast cancer may affect the development of endogenous HER-2/neu-specific immunity. Mol Cancer Ther 2008; 7: 449-454 [PMID: 18139124 DOI: 10.1158/1535-7163.MCT-07-0368]

Plotz PH. The autoantibody repertoire: Searching for order. Nat Rev Immunol 2003; 3: 73-78 [PMID: 12511877 DOI: 10.1038/sj.nri.4251076]

Burford B, Gentry-Maharaj A, Graham R, Allen D, Pedersen JW, Nudelman AS, Blixt O, Fourkala EO, Bahtta D, Dawnay A, Ford J, Deasi R, David L, Trinder P, Acker B, Schwenkert K, Gammernuk A, Reis CA, Silva L, Osório H, Hallett R, Walland HH, Mandle U, Hollingsworth MA, Jacobs I, Fentiman I, Clausen H, Taylor-Papadimitriou J, Menon U, Burchell JM. Autoantibodies to MUC1 glycopeptides cannot be used as a screening assay for early detection of breast, ovarian, lung or pancreatic cancer. Br J Cancer 2013; 108: 2045-2055 [PMID: 23652097 DOI: 10.1038/bjc.2013.211]
Autoantibodies for ESCC and EGJA

Xu YW et al. Autoantibodies for ESCC and EGJA

Autoantibodies as a biomarker for early diagnosis and prognosis in patients with esophageal squamous cell carcinoma. Gastric Cancer 2019; 22: 546-557 [DOI: 10.1007/s10027-018-0498-6]

Autoantibodies as potential biomarkers for the early detection of esophageal squamous cell carcinoma. Am J Gastroenterol 2014; 109: 36-45 [DOI: 10.1038/ajg.2013.384]

Autoantibody detection to tumor-associated antigens of P53, IMP1, P16, cyclin B1, P62, Corry, Survivin, and Kae for the screening of high-risk subjects and early detection of esophageal squamous cell carcinoma. Dis Esophagus 2014; 27: 790-797 [PMID: 24147952 DOI: 10.1111/dote.12145]

Autoantibodies in Four Types of Malignancies. Cancers 2008; 3: 1581-1585 [PMID: 26085917 DOI: 10.4254/wjh.v7.i11.1581]

Autoantibodies as potential biomarkers for the early detection of esophageal squamous cell carcinoma. Diagn Pathol 2018; 13: 95-109 [DOI: 10.1186/s13000-017-0742-x]

Autoantibodies as diagnostic biomarkers in esophagogastric junction adenocarcinoma. Gastric Cancer 2019; 22: 546-557 [DOI: 10.1007/s10027-018-0498-6]

Autoantibodies as diagnostic biomarkers in esophagogastric junction adenocarcinoma. Cancer Lett 2018; 265: 280-290 [DOI: 10.1111/canlet.2008.01.011]

Autoantibodies as diagnostic biomarkers in esophagogastric junction adenocarcinoma. Cancer Lett 2018; 42: 280-290 [DOI: 10.1111/canlet.2008.01.011]
Xu YW et al. Autoantibodies for ESCC and EGJA

10.1016/j.climc.2017.09.007

Xu YW, Peng YH, Ran LQ, Zhai TT, Guo HP, Qiu SQ, Chen HL, Wu ZY, Li EM, Xie JJ. Circulating levels of autoantibodies against L1-cell adhesion molecule as a potential diagnostic biomarker in esophageal squamous cell carcinoma. *Clin Transl Oncol* 2017; 19: 898-906 [PMID: 28181176 DOI: 10.1007/s12094-017-1623-4]

Li L, Liu M, Lin JB, Hong XB, Chen WX, Guo H, Xu LY, Xu YW, Li EM, Peng YH. Diagnostic Value of Autoantibodies against Ezrin in Esophageal Squamous Cell Carcinoma. *Dis Markers* 2017; 2017: 2534648 [PMID: 28298088 DOI: 10.1155/2017/2534648]

Xu YW, Liu CT, Huang XY, Huang LS, Luo YH, Hong CQ, Guo HP, Xu LY, Peng YH, Li EM. Serum Autoantibodies against STIP1 as a Potential Biomarker in the Diagnosis of Esophageal Squamous Cell Carcinoma. *Dis Markers* 2017; 2017: 5384091 [PMID: 28852266 DOI: 10.1155/2017/5384091]

Chen WX, Hong XB, Hong CQ, Liu M, Li L, Huang LS, Xu LY, Xu YW, Peng YH, Li EM. Tumor-associated autoantibodies against Fascin as a novel diagnostic biomarker for esophageal squamous cell carcinoma. *Clin Res Hepatol Gastroenterol* 2017; 41: 327-332 [PMID: 27956255 DOI: 10.1016/j.clinre.2016.10.011]

Peng YH, Xu YW, Guo H, Huang LS, Tan HZ, Hong CQ, Li SS, Xu LY, Li EM. Combined detection of serum Dickkopf-1 and its autoantibodies to diagnose esophageal squamous cell carcinoma. *Cancer Med* 2016; 5: 1388-1396 [PMID: 26988895 DOI: 10.1002/cam4.702]

Jin Y, Guan S, Liu L, Sun S, Lee KH, Wei J. Anti-p16 autoantibodies may be a useful biomarker for early diagnosis of esophageal cancer. *Asia Pac J Clin Oncol* 2015; 11: e37-e41 [PMID: 24811068 DOI: 10.1111/ajco.12198]

Loo L, Meglioerino R, Shi FD, Peng XX, Chen Y, Zhang JY. Humoral immune response to p16, a cyclin-dependent kinase inhibitor in human malignancies. *Oncof Rep* 2006; 16: 1105-1110 [PMID: 17016660 DOI: 10.3892/or.6.1105]

Chai Y, Peng B, Dai L, Qian W, Zhang Y, Zhang JY. Autoantibodies response to MDM2 and p53 in the immunodiagnosis of esophageal squamous cell carcinoma. *Scand J Immunol* 2014; 80: 362-368 [PMID: 24964442 DOI: 10.1111/jpi.12202]

Cai HY, Wang XH, Tian Y, Guo LY, Zhang LJ, Zhang ZY. Changes of serum p53 antibodies and clinical significance of radiotherapy for esophageal squamous cell carcinoma. *World J Gastroenterol* 2008; 14: 4082-4086 [PMID: 18609695 DOI: 10.3748/wjg.v14.i33.4082]

Muller M, Meyer M, Schilling T, Ultsperger E, Lehnter T, Zentgraf H, Struemmel W, Vollmann M, Galle PR. Testing for anti-p53 antibodies increases the diagnostic sensitivity of conventional tumor markers. *Int J Oncol* 2006; 29: 973-980 [PMID: 16964393 DOI: 10.3892/ijo.29.4.973]

Shimada H, Ochiai T, Nomura F; Japan p53 Antibody Research Group. Titration of serum p53 antibodies in 1,085 patients with various types of malignant tumors: A multinstitutional analysis by the Japan p53 Antibody Research Group. *Cancer* 2003; 97: 682-689 [PMID: 12548611 DOI: 10.1002/cncr.11092]

Shimada H, Nabeya Y, Ohtani S, Matsubara H, Funami Y, Ochiai T. Prognostic significance of serum p53 antibody in patients with esophageal squamous cell carcinoma. *Surgery* 2002; 132: 41-47 [PMID: 12110794 DOI: 10.1067/msy.2002.125307]

Rallhan R, Arora S, Chattopadhyay TK, Shukla NK, Mathur M. Circulating p53 antibodies, p53 gene mutational profile and product accumulation in esophageal squamous-cell carcinoma in India. *Int J Cancer* 2000; 85: 791-795 [PMID: 10709997 DOI: 10.1021/ai0013957-v0001585-6:791-795-a24]

Shimada H, Takeda A, Arima M, Okazumi S, Matsubara H, Nabeya Y, Funami Y, Hayashi H, Gunji Y, Suzuki T, Kobayashi S, Ochiai T. Serum p53 antibody is a useful tumor marker in superficial esophageal squamous cell carcinoma. *Cancer* 2000; 80: 1677-1683 [PMID: 11042560 DOI: 10.1021/cr970142w-v0001585-8:1677-AI-DNCNCRS-5.6.C002.9]

Hagiwara N, Onda M, Miyashita M, Sasaoka K. Detection of circulating anti-p53 antibodies in esophageal cancer patients. *J Nippon Med Sch* 2000; 67: 110-117 [PMID: 10754600 DOI: 10.1272/jnms.67.117]

Shimada H, Nakajima K, Ochiai T, Koide Y, Okazumi S, Matsubara H, Takeda A, Miyazawa Y, Arima M, Isono K. Detection of serum p53 antibodies in patients with esophageal squamous cell carcinoma: Correlation with clinicopathological features and tumor markers. *Oncol Rep* 1998; 5: 871-874 [PMID: 9625835 DOI: 10.3892/or.5.4.871]

Sobti RC, Parashar K. A study on p53 protein and anti-p53 antibodies in the sera of patients with oesophageal cancer. *Mutat Res* 1998; 422: 271-277 [PMID: 9838161 DOI: 10.1016/s0026-0657(98)00207-3]

Cawley HM, Meltzer SJ, De Benedetti VM, Hollstein MC, Muehlbauer KR, Liang L, Bennett WP, Souza RF, Greenland BD, Cawley HM, Guan S, Zhang B, Kernstine KH, Zhong L. Autoantibodies against MMP-7 as a novel diagnostic biomarker in esophageal squamous cell carcinoma. *World J Gastroenterol* 2011; 17: 1373-1378 [PMID: 21455340 DOI: 10.3748/wjg.v17.i13.1373]

Zhang J, Wang K, Zhang J, Liu SS, Dai L, Zhang JY. Using proteomic approach to identify tumor-associated proteins as biomarkers in human esophageal squamous cell carcinoma. *J Proteome Res* 2011; 10: 2863-2872 [PMID: 21217111 DOI: 10.1021/pr100141e]

Fujita Y, Nakamichi T, Hiramatsu M, Mabuchi H, Miyamoto Y, Shimizu A, Tanigawa N. Proteomics-based approach identifying autoantibodies against peroxiredoxin VI as a novel serum marker in esophageal squamous cell carcinoma. *Clin Cancer Res* 2006; 12: 6415-6420 [PMID: 17085654 DOI: 10.1158/1078-0432.ccr-06-1315]

Liu WL, Guo XZ, Zhang LJ, Wang JY, Zhang G, Guan S, Chen YM, Kong QL, Xu LH, Li MZ, Song LB.
Zeng MS. Prognostic relevance of Bmi-1 expression and autoantibodies in esophageal squamous cell carcinoma. *BMC Cancer* 2010; 10: 467 [PMID: 20809956 DOI: 10.1186/1471-2407-10-467]

Li Y, Zhang Q, Peng B, Shao Q, Qian W, Zhang JY. Identification of glutathione S-transferase omega 1 (GSTO1) protein as a novel tumor-associated antigen and its autoantibody in human esophageal squamous cell carcinoma. *Tumour Biol* 2014; 35: 10871-10877 [PMID: 25085586 DOI: 10.1007/s13277-014-2394-y]

Ren P, Ye H, Dui L, Liu M, Liu X, Chai Y, Shao Q, Li Y, Lei N, Peng B, Yao W, Zhang J. Peroxiredoxin 1 is a tumor-associated antigen in esophageal squamous cell carcinoma. *Oncof Rep* 2013; 36: 2297-2303 [PMID: 24098505 DOI: 10.3892/or.2013.2714]

Ye L, Guan S, Zhang C, Lee KH, Sun S, Wei J, Liu B. Circulating autoantibody to FOXP3 may be a potential biomarker for esophageal squamous cell carcinoma. *Tumour Biol* 2013; 34: 1873-1877 [PMID: 23483489 DOI: 10.1007/s13277-013-0729-8]

Guan S, Liu B, Zhang C, Lee KH, Sun S, Wei J. Circulating autoantibody to CD25 may be a potential biomarker for early diagnosis of esophageal squamous cell carcinoma. *Clin Transl Oncol* 2013; 15: 825-829 [PMID: 23423807 DOI: 10.1007/s12094-013-1007-3]

Cheng Y, Xu J, Guo J, Jin Y, Wang X, Zhang Q, Liu L. Circulating autoantibody to ABCG3 may be a potential biomarker for esophageal squamous cell carcinoma. *Clin Transl Oncol* 2013; 15: 398-402 [PMID: 23053755 DOI: 10.1007/s12094-012-0941-9]

Zhang B, Zhang Z, Zhang X, Gao X, Kernstine KH, Zhong L. Serological antibodies against LY6K as a diagnostic biomarker in esophageal squamous cell carcinoma. *Biomarkers* 2012; 17: 372-378 [PMID: 22515502 DOI: 10.3109/1554750X.2012.680609]

Kagaya A, Shimada H, Shiratori T, Kuboshima M, Nakashima-Fujita K, Yasaruraka M, Nishimori T, Kuri S, Hachiyu T, Murakami A, Tamura Y, Nomura F, Ochiai T, Matsubara H, Takiguchi M, Hiwasa H. Identification of a novel SEREX antigen family, ECSA, in esophageal squamous cell carcinoma. *Proteome Sci* 2011; 9: 31 [PMID: 21696638 DOI: 10.1186/1477-5956-9-31]

Dong J, Zeng BH, Xu LH, Wang JY, Li MZ, Zeng MS, Liu WL. Anti-CDC25B autoantibody predicts poor prognosis in patients with advanced esophageal squamous cell carcinoma. *J Transl Med* 2010; 8: 81 [PMID: 20813067 DOI: 10.1186/1479-5876-8-81]

Liu WL, Zhang G, Wang JY, Cao JY, Guo XZ, Xu LH, Li MZ, Song LB, Huang WL, Zeng MS. Proteomics-based identification of autoantibody against CDC25B as a novel serum marker in esophageal squamous cell carcinoma. *Biochem Biophys Res Commun* 2008; 375: 440-445 [PMID: 18722351 DOI: 10.1016/j.bbrc.2008.08.039]

Tsunemi S, Nakamichi T, Fujita Y, Bouras G, Miyamoto Y, Miyamoto A, Nomura E, Takahashi T, Tanigawa N. Proteomics-based identification of a tumor-associated antigen and its corresponding autoantibody in gastric cancer. *Oncof Rep* 2010; 23: 949-956 [PMID: 20204278 DOI: 10.3892/or_0000719]

Shimada H, Shiratori T, Yasuraka M, Kagaya A, Kuboshima M, Nomura F, Takiguchi M, Ochiai T, Matsubara H, Hiwasa T. Identification of Makorin 1 as a novel SEREX antigen of esophageal squamous cell carcinoma. *BMC Cancer* 2009; 9: 232 [PMID: 19604354 DOI: 10.1186/1471-2407-9-232]

Shimada H, Kagaya A, Shiratori T, Nomura F, Takiguchi M, Matsubara H, Hiwasa T. Detection of anti-CUEC-23 antibodies in serum of patients with esophageal squamous cell carcinoma: A possible new serum marker for esophageal cancer. *J Gastroenterol* 2009; 44: 691-696 [PMID: 19407262 DOI: 10.1007/s00535-009-0060-8]

Shimada H, Kuboshima M, Shiratori T, Nabe M, Takeuchi A, Takagi H, Nomura F, Takiguchi M, Ochiai T, Hiwasa T. Serum anti-myomelanogalin antibodies in patients with advanced esophageal squamous cell carcinoma. *Int J Oncol* 2007; 30: 97-103 [PMID: 17143517 DOI: 10.3892/ijo.30.1.97]

Kuboshima M, Shimada H, Liu TL, Nomura F, Takiguchi M, Hiwasa T, Ochiai T. Presence of serum tripartite motif-containing 21 antibodies in patients with esophageal squamous cell carcinoma. *Cancer Sci* 2006; 97: 380-386 [PMID: 16630135 DOI: 10.1111/j.1349-7006.2006.00192.x]

Kuboshima M, Shimada H, Liu TL, Nakashima K, Nomura F, Takiguchi M, Hiwasa T, Ochiai T. Identification of a novel SEREX antigen, SLC2A1/GLUT1, in esophageal squamous cell carcinoma. *Int J Oncol* 2006; 28: 463-468 [PMID: 16391802 DOI: 10.3892/ijo.28.2.463]

Nakashima K, Shimada H, Ochiai T, Kuboshima M, Kuroiwa N, Ochiai T, Matsubara H, Nomura F, Takiguchi M, Hiwasa T. Serological identification of TROP2 by recombinant cDNA expression cloning using sera of patients with esophageal squamous cell carcinoma. *Int J Cancer* 2004; 112: 1029-1035 [PMID: 15386348 DOI: 10.1002/ijc.20517]

Werner S, Chen H, Butt J, Michel A, Knabel P, Holleczek B, Zörnig I, Eichmüller SB, Jäger D, Pawlita M, Waterbrock T, Bremser H. Evaluation of the diagnostic value of 64 simultaneously measured autoantibodies for early detection of gastric cancer. *Sci Rep* 2016; 6: 25467 [PMID: 27140836 DOI: 10.1038/srep25467]
