A DISCREPANCY VERSION OF THE HAJNAL–SZEMERÉDI THEOREM

JÓZSEF BALOGH, BÉLA CSABA, ANDRÁS PLUHÁR AND ANDREW TREGLOWN

Abstract. A perfect K_r-tiling in a graph G is a collection of vertex-disjoint copies of the clique K_r in G covering every vertex of G. The famous Hajnal–Szemerédi theorem determines the minimum degree threshold for forcing a perfect K_r-tiling in a graph G. The notion of discrepancy appears in many branches of mathematics. In the graph setting, one assigns the edges of a graph G labels from $\{-1, 1\}$, and one seeks substructures F of G that have ‘high’ discrepancy (i.e. the sum of the labels of the edges in F is far from 0). In this paper we determine the minimum degree threshold for a graph to contain a perfect K_r-tiling of high discrepancy.

1. Introduction

1.1. Discrepancy of graphs. Classical discrepancy theory, or the study of irregularities of distribution, concerns with the following question: given some space, how evenly can one distribute a set of n points in it (where here evenness is measured with respect to certain subsets)? Perhaps the first significant result in the area is by Hermann Weyl on the criterion for a sequence to be uniformly distributed in the unit interval. In the other direction, answering a question by van der Corput, van Aardenne-Ehrenfest proved that some irregularity of a point sequence in the unit interval is inevitable. Since then discrepancy theory has become a widely studied area, with lots of ramifications and applications in ergodic theory, number theory, statistics, geometry, computer science, etc. For more details see the monograph by Beck and Chen [4], the book by Chazelle [7] and the book chapter by Alexander and Beck [1].

In this paper we study the discrepancy of graphs; a topic that lies in the wider framework of hypergraph discrepancy theory (see e.g. [3, 7]). Before we can rigorously discuss this topic we must introduce some definitions.

Definition 1.1. Suppose G is a graph and $f : E(G) \rightarrow \{-1, 1\}$. We say a subgraph G' of a graph G has discrepancy t (with respect to f) if $\sum_{e \in E(G')} f(e) = t$ and absolute discrepancy t (with respect to f) if $\left| \sum_{e \in E(G')} f(e) \right| = t$.

If G and G' are n-vertex graphs, then we say that G contains a copy of G' of high discrepancy (with respect to f) if there is a copy of G' in G with absolute discrepancy $\Omega(n)$. Note that this concept also has a natural rephrasing in terms of Ramsey theory: given any 2-colouring of the edges of G, one seeks a copy of G' in G whose edge set contains significantly more edges from one colour class than the other.
A natural question in graph discrepancy is to seek a fixed spanning subgraph H of a graph G of high discrepancy (or at least discrepancy ‘far’ away from zero). The first result of this type was obtained by Erdős, Füredi, Loebl and Sós [10]: they proved that, for some constant $c > 0$, given any labelling $f : E(K_n) \rightarrow \{-1, 1\}$ of K_n and any fixed spanning tree T_n with maximum degree Δ, K_n contains a copy of T_n of absolute discrepancy at least $c(n - 1 - \Delta)$. Note that in [10] this result was phrased in the equivalent Ramsey setting.

In a previous paper [3], Jing and the first three authors of this paper investigated the graph discrepancy problem of spanning trees, paths and Hamilton cycles for various classes of graphs G. For example, the following result determines the minimum degree threshold for forcing a Hamilton cycle of high discrepancy.

Theorem 1.2 (Balogh, Csaba, Jing and Pluhár [3]). Let $0 < c < 1/4$ and $n \in \mathbb{N}$ be sufficiently large. If G is an n-vertex graph with

$$\delta(G) \geq (3/4 + c)n$$

and $f : E(G) \rightarrow \{-1, 1\}$, then there is a Hamilton cycle in G with absolute discrepancy at least $cn/32$ (with respect to f). Moreover, if 4 divides n, there is an n-vertex graph with $\delta(G) = 3n/4$ and an edge labelling $f : E(G) \rightarrow \{-1, 1\}$ for which every Hamilton cycle has discrepancy 0 (with respect to f).

One can view such results about discrepancy as a measure of how robustly a graph contains a spanning structure. Indeed, Theorem 1.2 implies that every n-vertex graph G with $\delta(G) > (3/4 + o(1))n$ contains a Hamilton cycle that spans an ‘unbalanced’ collection of edges for any partition $A \cup B$ of $E(G)$. (See [22] for a survey on other measures of graph robustness.)

After submitting this paper, a multicolour extension of Theorem 1.2 was proven where the underlying graph is the random graph, see [11].

1.2. **Perfect tilings in graphs.** An H-tiling in a graph G is a collection of vertex-disjoint copies of H contained in G. An H-tiling is perfect if it covers all the vertices of G. Perfect H-tilings are also often referred to as H-factors, perfect H-packings or perfect H-matchings. H-tilings can be viewed as generalisations of both the notion of a matching (which corresponds to the case when H is a single edge) and the Turán problem (i.e. a copy of H in G is simply an H-tiling of size one).

Except for the case when H contains no component of size at least 3, the decision problem of whether a graph contains a perfect H-tiling is NP-complete (see [13]). Thus, there has been substantial efforts to obtain sufficient conditions that force a graph to contain a perfect H-tiling. In particular, a cornerstone result in extremal graph theory is the Hajnal–Szemerédi theorem [12], which characterises the minimum degree threshold that ensures a graph contains a perfect K_r-tiling.

Theorem 1.3 (Hajnal and Szemerédi [12]). Every graph G whose order n is divisible by r and whose minimum degree satisfies $\delta(G) \geq (1 - 1/r)n$ contains a perfect K_r-tiling. Moreover, there are n-vertex graphs G with $\delta(G) = (1 - 1/r)n - 1$ that do not contain a perfect K_r-tiling.

There has also been much interest in the minimum degree threshold that ensures a perfect H-tiling for an arbitrary graph H. After earlier work on this topic (see e.g. [2, 18]), Kühn and Osthus [20, 21] determined, up to an additive constant, the minimum degree that forces a perfect H-tiling for any fixed graph H. Furthermore, there are now many different generalisations of the Hajnal–Szemerédi theorem. In particular, Kierstead and Kostochka [15] proved an Ore-type analogue, Keevash and Mycroft [14] proved a version for r-partite graphs, whilst there are now several generalisations of Theorem 1.3 in the setting of directed graphs (see e.g. [8, 9]).

1.3. **Our main result.** In this paper we prove the following discrepancy version of the Hajnal–Szemerédi theorem.
Theorem 1.4. Suppose $r \geq 3$ is an integer and let $\eta > 0$. Then there exists $n_0 \in \mathbb{N}$ and $\gamma > 0$ such that the following holds. Let G be a graph on $n \geq n_0$ vertices where r divides n and where

$$\delta(G) \geq \left(1 - \frac{1}{r+1} + \eta\right)n.$$

Given any function $f : E(G) \to \{-1,1\}$ there exists a perfect K_r-tiling T in G so that

$$\left|\sum_{e \in E(T)} f(e)\right| \geq \gamma n.$$

Comparing Theorem 1.4 with Theorem 1.3 we see that having minimum degree just above that which forces a perfect K_{r+1}-tiling in fact ensures a perfect K_r-tiling of high discrepancy. Moreover, the minimum degree condition in Theorem 1.4 is essentially best-possible for all values of $r \geq 3$. Interestingly, whilst the underlying extremal graph is the same for all $r \equiv 2 \pmod{4}$, the minimum degree condition in Theorem 1.4 is essentially best-possible for all values of $r \equiv 2 \pmod{4}$. In Section 3 we construct extremal labellings in the cases when $r \equiv 1,2 \pmod{4}$. In the case when $r \equiv 0,3 \pmod{4}$ the extremal labelling is easy to describe: let K be the complete graph K_{r+1} with precisely half of its edges labelled with 1, the remaining edges with -1 (the choice of r ensures this is possible). Then for any $n \in \mathbb{N}$ divisible by $r(r+1)$ consider the blow-up of G of K with $n/(r+1)$ vertices in each class, and where the labellings of each edge in G are induced by the labelling of $E(K)$. It is easy to see that every perfect K_r-tiling in G has discrepancy precisely 0, whilst $\delta(G) = (1 - 1/(r+1))n$. Moreover, in the case when $r(r+1)$ does not divide n, the same construction G is such that every perfect K_r-tiling has absolute discrepancy $O_r(1)$.

Note that the $r=2$ case (i.e. perfect matchings) is covered by Theorem 1.2. Indeed, it is easy to see that since the hypothesis of Theorem 1.2 forces a Hamilton cycle of high discrepancy, this ensures a perfect matching of high discrepancy. Moreover, consider the 4-partite Turán graph G on n vertices (where 4 divides n). Label all edges incident to one of the vertex classes of G with -1. All remaining edges are labelled 1. Then every perfect matching in G has discrepancy 0. Thus, perhaps surprisingly, this observation and Theorem 1.4 imply that the minimum degree threshold for forcing a perfect K_3-tiling of high discrepancy is the same as the analogous threshold for perfect matchings.

The paper is organised as follows. In the next section we introduce some notation and definitions. In Section 3 we give the extremal examples for Theorem 1.4 in the cases when $r \equiv 1,2 \pmod{4}$. We introduce a number of tools that will be used in the proof of Theorem 1.4 in Section 4. In Section 5 we give an outline of the proof of Theorem 1.4 before giving the full proof in Section 6. Finally, in Section 7 we present a number of open questions.

2. Notation and definitions

Let G be a graph. We write $V(G)$ for the vertex set of G, $E(G)$ for the edge set of G and define $|G| := |V(G)|$ and $e(G) := |E(G)|$. Given a subset $X \subseteq V(G)$, we write $G[X]$ for the subgraph of G induced by X and $G \setminus X$ for the subgraph of G induced by $V(G) \setminus X$. The degree of x is denoted by $d_G(x)$ and its neighbourhood by $N_G(x)$. Given a vertex $x \in V(G)$ and a set $Y \subseteq V(G)$ we write $d_G(x,Y)$ to denote the number of edges xy where $y \in Y$. Given a subgraph F of G we write $d_G(x,F) := d_G(x,V(F))$. Given disjoint vertex classes $X,Y \subseteq V(G)$, we write $G[X,Y]$ for the bipartite graph with vertex classes X and Y whose edge set consists of all those edges in G with one endpoint in X and the other in Y; we write $e_G(X,Y)$ for the number of edges in $G[X,Y]$.

Suppose G is a graph and $f : E(G) \to \{-1,1\}$. We say that $e \in E(G)$ is a 1-edge if $f(e) = 1$ and a (-1)-edge if $f(e) = -1$. The (-1)-neighbourhood $N_G(x)$ of a vertex $x \in V(G)$ is the set of all
vertices \(y \in V(G) \) so that \(xy \) is a \((-1\)-edge in \(G \); the 1-neighbourhood \(N^+_G(x) \) of a vertex \(x \in V(G) \) is the set of all vertices \(y \in V(G) \) so that \(xy \) is a 1-edge in \(G \).

The following notion of a \(K_r \)-template is crucial for the proof of Theorem 1.4.

Definition 2.1. Let \(F \) be a graph. A \(K_r \)-template of \(F \) of size \(s \) is a collection \(\{H_1, \ldots, H_s\} \) of not necessarily distinct copies of \(K_r \) in \(F \) for which there is some \(s'_r \in \mathbb{N} \) so that every vertex \(x \in V(F) \) lies in precisely \(s'_r \) of the \(H_i \). (In fact, note we must have \(s'_r = sr/|F| \).) Suppose \(f : E(F) \to \{-1, 1\} \) and \(K := \{H_1, \ldots, H_s\} \) is a \(K_r \)-template of \(F \). We say that \(K \) has discrepancy \(t \) if

\[
\sum_{i=1}^{s} \sum_{e \in E(H_i)} f(e) = t.
\]

The following special labelled copies of \(K_r \) appear in the proof of Theorem 1.4.

Definition 2.2. We write \(K^+_r \) for a copy of \(K_r \) whose edges are each assigned 1; define \(K^-_r \) to be a copy of \(K_r \) whose edges are each assigned \(-1\). The \((K_r, +)\)-star is a copy of \(K_r \) whose 1-edges induce a copy of \(K_{1,r-1} \). We call the root of this \(K_{1,r-1} \) the head of the \((K_r, +)\)-star. We define the \((K_r, -)\)-star and its head analogously.

We write \(0 < \alpha \ll \beta \ll \gamma \) to mean that we can choose the constants \(\alpha, \beta, \gamma \) from right to left. More precisely, there are increasing functions \(f \) and \(g \) such that, given \(\gamma \), whenever we choose some \(\beta \leq f(\gamma) \) and \(\alpha \leq g(\beta) \), all calculations needed in our proof are valid. Hierarchies of other lengths are defined in the obvious way. Throughout the paper we omit floors and ceilings whenever this does not affect the argument.

3. THE EXTREMAL EXAMPLES

After its statement, we introduced an extremal example for Theorem 1.4 in the case when \(r \equiv 0, 3 \pmod{4} \). In this section we first describe an extremal example for the case when \(r \equiv 1 \pmod{4} \) and then give a construction for the \(r \equiv 2 \pmod{4} \) case.

Proposition 3.1. Let \(m \in \mathbb{N} \), \(r := 4m + 1 \) and \(n \in \mathbb{N} \) be divisible by \(2(r+1) \). Let \(G \) be the complete balanced \((r+1)\)-partite graph on \(n \) vertices (and so \(\delta(G) = (1-1/(r+1))n \)). There is a function \(f : E(G) \to \{-1, 1\} \) so that for every perfect \(K_r \)-tiling \(T \) in \(G \), \(T \) has discrepancy zero (i.e. \(\sum_{e \in E(T)} f(e) = 0 \)).

Proof. Let \(V_1, \ldots, V_{r+1} \) denote the vertex classes of \(G \); so \(|V_i| = n/(r+1) \) for all \(i \in [r+1] \). Consider a copy \(K \) of \(K_r \) on vertex set \([r]\). Since \(r = 4m + 1 \) we can assign labels from \([-1, 1]\) to each edge of \(K \) so that the \((-1\)-edges induce a spanning \(2m\)-regular subgraph of \(K \); the 1-edges induce a spanning \(2m\)-regular subgraph of \(K \). Let \(X, Y \) be a partition of \(V_{r+1} \) so that \(|X| = |Y| \).

We now define \(f : E(G) \to \{-1, 1\} \) as follows. The labelling of \(K \) induces a labelling of the edges in \(G' := G \setminus V_{r+1} \). That is, if \(xy \in E(G) \) and \(x \in V_i, y \in V_j \) where \(1 \leq i < j \leq r \), then \(f(xy) = 1 \) if \(ij \) is a 1-edge in \(K \); \(f(xy) = -1 \) if \(ij \) is a \((-1\)-edge in \(K \). Every vertex in \(X \) sends 1-edges to each vertex in \(V(G') \); every vertex in \(Y \) sends \((-1\)-edges to each vertex in \(V(G') \).

There are precisely three types of copy of \(K_r \) in \(G \): Type 1 \(K_r \) have every vertex in \(V(G') \); Type 2 \(K_r \) have one vertex in \(X \), the remaining vertices in \(V(G') \); Type 3 \(K_r \) have one vertex in \(Y \), the remaining vertices in \(V(G') \). Note that a type 1 copy of \(K_r \) has discrepancy 0, a type 2 copy of \(K_r \) has discrepancy \(r-1 \), and a type 3 copy of \(K_r \) has discrepancy \(-r+1 \). Given any perfect \(K_r \)-tiling \(T \) in \(G \), \(T \) must contain precisely the same number of type 2 and type 3 copies of \(K_r \). Thus, \(T \) has discrepancy 0, as desired. \(\square \)
A similar function \(f : E(G) \to \{-1, 1\} \) to that in Proposition 3.1 now resolves the case when \(r \equiv 2 \pmod{4} \).

Proposition 3.2. Let \(m \in \mathbb{N} \), \(r := 4m + 2 \) and \(n \in \mathbb{N} \) be divisible by \(2r(r + 1) \). Let \(G \) be the complete balanced \((r + 1)\)-partite graph on \(n \) vertices (and so \(\delta(G) = (1 - 1/(r + 1))n \)). There is a function \(f : E(G) \to \{-1, 1\} \) so that for every perfect \(K_r \)-tiling \(T \) in \(G \), \(T \) has discrepancy zero (i.e. \(\sum_{e \in E(T)} f(e) = 0 \)).

Proof. Let \(V_1, \ldots, V_{r+1} \) denote the vertex classes of \(G \); so \(|V_i| = n/(r + 1) \) for all \(i \in [r + 1] \). Consider a copy \(K_r \) on vertex set \([r] \) whose edges are assigned labels from \(\{-1, 1\} \) so that there is precisely one more 1-edge than \((-1)\)-edge. Let \(X, Y \) be a partition of \(V_{r+1} \) so that \(|X| = (r-1)n/2r(r+1) \) and \(|Y| = n/2r \).

We now define \(f : E(G) \to \{-1, 1\} \) as follows. As in Proposition 3.1, the labelling of \(K_r \) induces a partition of the edges in \(G' := G \setminus V_{r+1} \). Every vertex in \(X \) sends 1-edges to each vertex in \(V(G') \); every vertex in \(Y \) sends \((-1)\)-edges to each vertex in \(V(G') \).

As before, there are precisely three types of copy of \(K_r \) in \(G \): Type 1 \(K_r \) have every vertex in \(V(G') \); Type 2 \(K_r \) have one vertex in \(X \), the remaining vertices in \(V(G') \); Type 3 \(K_r \) have one vertex in \(Y \), the remaining vertices in \(V(G') \). Consider any perfect \(K_r \)-tiling \(T \) in \(G \). Our aim is to show that \(T \) has discrepancy 0.

Note that \(T \) contains precisely \(n/2r \) copies of \(K_r \) of type 1; each of these \(K_r \)'s has discrepancy 1. Consider the subtiling \(T' \) of \(T \) induced by the type 2 and type 3 copies of \(K_r \). Let \(T'' \) be the \(K_{r-1} \)-tiling in \(G' \) obtained from \(T' \) by removing all those vertices from \(V_{r+1} = X \cup Y \).

Note that \(T'' \) covers precisely \(n/2r \) vertices of \(K_{r-1} \) in \(G' \). Moreover, for each pair \((i,j)\) with \(1 \leq i < j \leq r \), a precisely \(\frac{n-2}{r+2} \)-proportion of the copies of \(K_{r-1} \) in \(T'' \) contain an edge \(xy \) with \(x \in V_i, y \in V_j \). Together, this implies that \(T'' \) has discrepancy

\[
\frac{r-2}{r} \times \frac{n}{r+1}.
\]

Recalling that each edge incident to \(X \) is a 1-edge and each edge incident to \(Y \) is a \((-1)\)-edge, we conclude that \(T \) has discrepancy

\[
\frac{n}{r(r+1)} + \left(\frac{r-2}{r} \times \frac{n}{r+1} \right) + |X|(r-1) - |Y|(r-1) = \frac{n}{r(r+1)} + \frac{(r-2)n}{r(r+1)} - \frac{(r-1)n}{r(r+1)} = 0,
\]
as required. \(\square \)

4. Useful results

4.1. The regularity lemma. In the proof of our main result we will use a discrepancy variant of Szemerédi’s regularity lemma [23]. Before stating this result, we introduce some notation. The **density** of a bipartite graph \(G \) with vertex classes \(A \) and \(B \) is defined to be

\[
d(A, B) := \frac{e(A, B)}{|A||B|}.
\]

Given any \(\varepsilon, d > 0 \), we say that \(G \) is \((\varepsilon, d)\)-regular if \(d(A, B) \geq d \) and, for all sets \(X \subseteq A \) and \(Y \subseteq B \) with \(|X| \geq \varepsilon|A| \) and \(|Y| \geq \varepsilon|B| \), we have \(|d(A, B) - d(X, Y)| < \varepsilon \). We say that \(G \) is \((\varepsilon, d)\)-superregular if all sets \(X \subseteq A \) and \(Y \subseteq B \) with \(|X| \geq \varepsilon|A| \) and \(|Y| \geq \varepsilon|B| \) satisfy that \(d(X, Y) > d \), that \(d_G(a) > d|B| \) for all \(a \in A \) and that \(d_G(b) > d|A| \) for all \(b \in B \).

Suppose \(G \) is a graph with edge labelling \(f : E(G) \to \{-1, 1\} \). Given disjoint \(X, Y \subseteq V(G) \) we write \(G_{+}[X, Y] \) (or \((X, Y)_{+}^G\)) for the bipartite graph with vertex classes \(X, Y \) whose edge set
consists of all those 1-edges between X and Y in G. We define $G_\perp[X, Y]$ and $(X, Y)_G$ analogously (now with respect to (-1)-edges).

We will apply the following variant of Szemerédi’s regularity lemma that can be easily deduced from the multicoloured version e.g. given in [19].

Lemma 4.1. For every $\varepsilon > 0$ and $\ell_0 \in \mathbb{N}$ there exists $L_0 = L_0(\varepsilon, \ell_0)$ so that the following holds. Let $d \in [0, 1]$ and G be a graph on $n \geq L_0$ vertices with edge labelling $f : E(G) \to \{-1, 1\}$. Then there exists a partition V_0, V_1, \ldots, V_ℓ of $V(G)$ and a spanning subgraph G' of G, such that the following conditions hold:

(i) $\ell_0 \leq \ell \leq L_0$;
(ii) $d_G'(x) \geq d_G(x) - (2d + \varepsilon)n$ for every $x \in V(G)$;
(iii) the subgraph $G'[V_i]$ is empty for all $1 \leq i \leq \ell$;
(iv) $|V_0| \leq \varepsilon n$;
(v) $|V_1| = |V_2| = \ldots = |V_\ell|$;
(vi) for all $1 \leq i < j \leq \ell$ either $(V_i, V_j)^+_{G'}$ is an $((\varepsilon, d)$-regular pair or $G'_-\{V_i, V_j\}$ is empty;
(vii) for all $1 \leq i < j \leq \ell$ either $(V_i, V_j)_{G'}^-$ is an $((\varepsilon, d)$-regular pair or $G'_+\{V_i, V_j\}$ is empty. \hfill \qed

We call V_1, \ldots, V_ℓ clusters, V_0 the exceptional set and the vertices in V_0 exceptional vertices. We refer to G' as the pure graph. The reduced graph R of G with parameters ε, d and ℓ_0 is the graph whose vertices are V_1, \ldots, V_ℓ and in which $V_i V_j$ is an edge precisely when at least one of $(V_i, V_j)^+_{G'}$ and $(V_i, V_j)^-_{G'}$ is (ε, d)-regular. Associated with the reduced graph R is an edge labelling $f_R : E(R) \to \{-1, 1\}$ where $f_R(V_i V_j) := 1$ if $(V_i, V_j)^+_{G'}$ is (ε, d)-regular and $f_R(V_i V_j) := -1$ otherwise. (So if both $(V_i, V_j)^+_{G'}$ and $(V_i, V_j)^-_{G'}$ is (ε, d)-regular, then f_R only ‘records’ the former property.)

We will use the following well-known property of the reduced graph.

Fact 4.2. Given a constant $c > 0$, let G be an n-vertex graph with $\delta(G) \geq cn$ that we have applied Lemma 4.1 to (with parameters ε, d and ℓ_0). Let R be the corresponding reduced graph. Then $\delta(R) \geq \delta - 2d - 2\varepsilon)\varepsilon |R|$. \hfill \qed

The following well-known result allows us to use subgraphs of a reduced graph as ‘templates’ for embedding in the original graph G.

Lemma 4.3 (Key lemma [19]). Suppose that $0 < \varepsilon < d$, that $q, t \in \mathbb{N}$ and that R is a graph with $V(R) = \{v_1, \ldots, v_q\}$. We construct a graph G as follows: Replace every vertex $v_i \in V(R)$ with a set V_i of t vertices and replace each edge of R with an (ε, d)-regular pair. For each $v_i \in V(R)$, let U_i denote the set of t vertices in $R(t)$ corresponding to v_i. Let H be a subgraph of $R(t)$ with maximum degree Δ and set $h := |H|$. Set $\delta := d - \varepsilon$ and $\varepsilon_0 := \delta \Delta / (2 + \Delta)$. If $\varepsilon \leq \varepsilon_0$ and $t - 1 \leq \varepsilon_0 q$ then there are at least

\[(\varepsilon_0 q)^h\] labelled copies of H in G

so that if $x \in V(H)$ lies in U_i in $R(t)$, then x is embedded into V_i in G.

The following fundamental result of Komlós, Sárközy and Szemerédi [16], known as the blow-up lemma, essentially says that (ε, d)-superregular pairs behave like complete bipartite graphs with respect to containing bounded degree subgraphs.

Lemma 4.4 (Blow-up lemma [16]). Given a graph F on vertices $\{1, \ldots, f\}$ and $d, \Delta > 0$, there exists an $\varepsilon_0 = \varepsilon_0(d, \Delta, f) > 0$ such that the following holds. Given $L_1, \ldots, L_f \in \mathbb{N}$ and $\varepsilon \leq \varepsilon_0$, let F^* be the graph obtained from F by replacing each vertex $i \in F$ with a set V_i of L_i new vertices and joining all vertices in V_i to all vertices in V_j whenever ij is an edge of F. Let G be a spanning
subgraph of F^* such that for every edge $ij \in F$ the pair $(V_i, V_j)_G$ is (ε, d)-superregular. Then G contains a copy of every subgraph H of F^* with $\Delta(H) \leq \Delta$.

4.2. An absorbing lemma. We will apply the following well-known absorbing lemma (which e.g. is a special case of [24, Theorem 4.1]). Given a graph G we say a set $S \subseteq V(G)$ is a K_r-absorbing set for $Q \subseteq V(G)$, if both $G[S]$ and $G[S \cup Q]$ contain perfect K_r-tilings.

Lemma 4.5. Let $0 < 1/n \ll \nu \ll \eta \ll 1/r$ where $n, r \in \mathbb{N}$ and $r \geq 2$. Suppose that G is a graph on n vertices with $\delta(G) \geq (1 - 1/r + \eta)n$. Then $V(G)$ contains a set M so that $|M| \leq \nu n$ and M is a K_r-absorbing set for every $W \subseteq V(G) \setminus M$ such that $|W| \in r\mathbb{N}$ and $|W| \leq \nu^3n$.

5. Overview of the proof of Theorem 1.4

In the proof of Theorem 1.4 we will apply the regularity lemma to obtain the reduced graph R of G with an associated edge labelling $f_R : E(R) \rightarrow \{-1, 1\}$. Since the reduced graph R ‘inherits’ the minimum degree condition on G (see Fact 4.2), the Hajnal–Szemerédi theorem implies that R contains a perfect K_{r+1}-tiling \mathcal{T}.

In Claim 6.1 we establish the following crucial property: (a) if \mathcal{T} has high absolute discrepancy (with respect to f_R), then we can use this structure in R as a framework to build a perfect K_r-tiling in G with high absolute discrepancy (with respect to f). To build this tiling in G we make use of the absorbing method.

We then establish another vital property of R: (b) if R has a ‘small’ subgraph F so that F has two K_r-templates with different discrepancies (with respect to f_R), then we can use this to again build a perfect K_r-tiling in G with high absolute discrepancy (see Claim 6.2).

We may therefore assume neither (a) nor (b) holds. This in turn forces the cliques of size at most $r + 2$ in R to have some very rigid structure. In particular, we deduce that every copy of K_{r+1} in R (therefore in our tiling \mathcal{T}) is one of the following: a K_{r+1}^+; a K_{r+1}^-; a $(K_{r+1}, +)$-star; a $(K_{r+1}, -)$-star (see Claim 6.5).

After this, we then argue that in fact almost all of the tiles in \mathcal{T} are copies of $(K_{r+1}, +)$-stars and $(K_{r+1}, -)$-stars. Finally, we prove that there are two tiles K, K' in \mathcal{T} for which (b) must hold with respect to $F := R[K \cup K']$, and so we do have a perfect K_r-tiling in G with high absolute discrepancy.

6. Proof of Theorem 1.4

It suffices to prove the theorem in the case when $\eta \ll 1/r$. Define additional constants $\gamma, \varepsilon, d, \nu > 0$ and $n_0, \ell_0, L_0 \in \mathbb{N}$ so that

\begin{equation}
0 < 1/n_0 \ll \gamma \ll 1/L_0 \leq 1/\ell_0 \ll \varepsilon \ll d \ll \nu \ll \eta \ll 1/r.
\end{equation}

Here L_0 is the constant obtained from Lemma 4.1 on input ε, ℓ_0.

Let G be a graph on $n \geq n_0$ vertices as in the statement of the theorem. Fix an arbitrary edge labelling $f : E(G) \rightarrow \{-1, 1\}$.

By Lemma 4.5 we obtain a set of vertices $\text{Abs} \subseteq V(G)$ where $|\text{Abs}| \leq \nu n$ and where both $G[\text{Abs}]$ and $G[\text{Abs} \cup W]$ contain perfect K_r-tilings for any set $W \subseteq V(G) \setminus \text{Abs}$ of size at most ν^3n where r divides $|W|$. Let $G_1 := G \setminus \text{Abs}$. Thus,

\begin{equation}
\delta(G_1) \geq \left(1 - \frac{1}{r + 1} + \frac{3\eta}{4}\right)n.
\end{equation}

7
6.1. **Applying the regularity lemma.** Apply the regularity lemma (Lemma 4.1) to \(G_1 \) with parameters \(\varepsilon, d, \ell_0 \). We thus obtain clusters \(V_1, \ldots, V_t \) of size \(m \) (where \(\ell_0 \leq \ell \leq L_0 \)) an exceptional set \(V_0 \) (of size at most \(\varepsilon n \)) and a pure graph \(G'_1 \) of \(G_1 \). We may assume that \(r + 1 \) divides \(\ell \). (If not, we can achieve this by deleting at most \(\ell \) of the clusters, and move the vertices in these clusters to the exceptional set \(V_0 \).) Further, we obtain the reduced graph \(R \) of \(G_1 \) with an edge labelling \(f_R : E(R) \to \{-1, 1\} \) ‘inherited’ from \(f \) (as defined in Section 4.1). Note that (2) and Fact 4.2 imply that

\[
\delta(R) \geq \left(1 - \frac{1}{r+1} + \frac{\eta}{2} \right) \ell.
\]

The following two claims will be used several times in our proof. The first implies that to obtain our desired perfect \(K_r \)-tiling in \(G \) it suffices to find a perfect \(K_{r+1} \)-tiling in \(R \) of high absolute discrepancy.

Claim 6.1. Suppose that \(R \) contains a perfect \(K_{r+1} \)-tiling \(T_R \) with absolute discrepancy \(t \geq \eta^2 \ell \) (with respect to \(f_R \)). Then \(G \) contains a perfect \(K_r \)-tiling with absolute discrepancy at least \(\gamma n \) (with respect to \(f \)).

Proof. Consider any copy \(H \) of \(K_{r+1} \) in \(T_R \). Suppose that \(H \) has discrepancy \(t_H \in \mathbb{Z} \) (with respect to \(f_H \)). The vertices \(W_1, \ldots, W_{r+1} \) in \(H \) are clusters in \(G \). Write \(G_H \) for the \((r+1)\)-partite graph \(G'_1[W_1 \cup \cdots \cup W_{r+1}] \). Through repeated applications of the key lemma (Lemma 4.3) we obtain that there is a \(K_r \)-tiling \(T_H \) in \(G_H \) so that:

(i) All but precisely \(\varepsilon^1/2 m \) vertices in \(W_i \) are covered by \(T_H \) for each \(i \in [r+1] \);

(ii) Given any edge \(xy \in E(T_H) \), if \(x \in W_i \) and \(y \in W_j \) then \(f(xy) = f_R(W_i W_j) \);

(iii) Each copy of \(K_r \) in \(T_H \) contains at most one vertex from every cluster \(W_i \). Furthermore, given any \(1 \leq i < j \leq r+1 \), a \(\frac{\varepsilon}{r+1} \)-proportion of the \(K_r \) in \(T_H \) contain an edge from \(G'_1[W_i W_j] \).

Note that (ii) follows from the definition of \(f_R \); (iii) simply states that we embed copies of \(K_r \) in \(G_H \) in a balanced way, alternating which cluster \(W_i \) is ‘uncovered by a copy of \(K_r \)’. Since \(H \) has discrepancy \(t_H \), (ii) and (iii) imply that \(T_H \) has discrepancy

\[
\frac{r - 1}{r + 1} \times |T_H| \times t_H = \frac{r - 1}{r} (1 - \varepsilon^1/2) m t_H
\]

(with respect to \(f \)).

Consider the \(K_r \)-tiling \(T' \) in \(G'_1 \) obtained by taking the union of the \(T_H \) for each \(H \) in \(T_R \). By (i), \(T' \) contains all but \(|V_0| + \varepsilon^1/2 m \leq 2\varepsilon^1/2 n \) of the vertices in \(G_1 \). Noting that \(\sum_{H \in T_R} t_H \in \{t, -t\} \), we deduce that \(T' \) has absolute discrepancy

\[
\frac{(r - 1)}{r} (1 - \varepsilon^1/2) m \ell \geq \frac{2}{3} (1 - \varepsilon^1/2) \eta^2 m \ell \geq \eta^2 \ell/2
\]

(with respect to \(f \)). Let \(W \) be the set of vertices in \(G_1 \) uncovered by \(T' \); so \(|W| \leq 2\varepsilon^1/2 n \leq \nu^3 n \). Thus, \(G[\text{Abs} \cup W] \) has a perfect \(K_r \)-tiling \(T'' \). As \(|\text{Abs} \cup W| \leq 2\nu n \), \(T' \cup T'' \) is a perfect \(K_r \)-tiling in \(G \) with absolute discrepancy at least \(\eta^2 n/2 - \left(\frac{1}{2}\right)2\nu n \geq \gamma n \), as desired.

The next claim gives us a useful condition that guarantees our desired perfect \(K_r \)-tiling in \(G \); it will be used repeatedly through the proof.

Claim 6.2. Let \(F \) be a subgraph of \(R \) on \(p \) vertices where \(r + 1 \leq p \leq 2r + 2 \). Given some \(s \leq r^{100} \), suppose that \(F \) has two \(K_r \)-templates \(\mathcal{K} = \{H_1, \ldots, H_s\} \) and \(\mathcal{K}' = \{H'_1, \ldots, H'_{s'}\} \), both of size \(s \). If \(\mathcal{K} \) and \(\mathcal{K}' \) have different discrepancies (with respect to \(f_R \)), then \(G \) contains a perfect \(K_r \)-tiling with absolute discrepancy at least \(\gamma n \).
Proof. Let W_1, \ldots, W_p denote the clusters of G'_1 that correspond to the vertices of F. So if $W_i W_j \in E(F)$ and $f_R(W_i W_j) = 1$ then $(W_i, W_j)_{G'_1}$ is (ε, d)-regular; otherwise if $W_i W_j \in E(F)$ and $f_R(W_i W_j) = -1$ then $(W_i, W_j)_{G'_1}$ is (ε, d)-regular. A well-known property of regular pairs implies that we can delete $\varepsilon^{1/2} m$ vertices from each of these clusters to obtain subclusters W'_1, \ldots, W'_p with the following properties: if $W_i W_j \in E(F)$ and $f_R(W_i W_j) = 1$ then $(W'_i, W'_j)_{G'^*_1}$ is $(2\varepsilon, d/2)$-superregular; if $W_i W_j \in E(F)$ and $f_R(W_i W_j) = -1$ then $(W'_i, W'_j)_{G'^*_1}$ is $(2\varepsilon, d/2)$-superregular. Write $m' := (1 - \varepsilon^{1/2}) m$ so $|W'_i| = m'$ for all $i \in [p]$.

Let F^* be the p-partite graph with vertex classes W'_1, \ldots, W'_p, and where for each $i \neq j$, there are all possible edges between W'_i and W'_j precisely if $W_i W_j \in E(F)$; that is, F^* is a blow-up of F. Define $f_{F^*} : E(F^*) \to \{-1,1\}$ so that $f_{F^*}(xy) = 1$ if $x \in W'_i$, $y \in W'_j$, and $f_R(W_i W_j) = 1$; $f_{F^*}(xy) = -1$ if $x \in W'_i$, $y \in W'_j$, and $f_R(W_i W_j) = -1$.

Write t for the discrepancy of K and t' for the discrepancy of K'; by the assumption in the claim, $t' \neq t$. Note that we can use K as a ‘framework’ to find a perfect K_r-tiling T in F^* as follows: consider any H_k in K and let W_{i1}, \ldots, W_{ir} be the vertices of H_k; in T there are $m'p/sr$ copies of K_r corresponding to H_k which contain precisely one vertex from each of W'_{i1}, \ldots, W'_{ir}. Thus, T has discrepancy $m'pt/sr$ (with respect to f_{F^*}).

Similarly, we can use K' as a framework to find a perfect K_r-tiling T' in F^* of discrepancy $m'pt'/sr$ (with respect to f_{F^*}).

Now applying the blow-up lemma, this ensures $G_0 := G'_1[W'_1 \cup \cdots \cup W'_p]$ contains two perfect K_r-tilings T_1 and T_2 with discrepancy $m'pt/sr$ and $m'pt'/sr$ respectively (with respect to f). Note that

$$|m'pt/sr - m'pt'/sr| \geq (1 - \varepsilon^{1/2}) \frac{m}{s} \geq \frac{n}{2L_0r^{100}} \geq 2\gamma n.$$

Further, $G \setminus G_0$ comfortably satisfies

$$\delta(G \setminus G_0) \geq (1 - 1/r)n,$$

so contains a perfect K_r-tiling T_3 by the Hajnal–Szemerédi theorem. Therefore, both $T_1 \cup T_3$ and $T_2 \cup T_3$ are perfect K_r-tilings in G, whose discrepancies differ by at least $2\gamma n$; thus, one of these perfect K_r-tilings has absolute discrepancy at least γn, as desired.

From now on we may assume that the hypotheses of Claims 6.1 and 6.2 fail; this will eventually lead to a contradiction, thereby proving the theorem.

6.2. Properties of cliques in R. The minimum degree condition on R ensures the following easy observation.

Claim 6.3. Let $1 \leq k \leq r + 1$. Every copy of K_k in R lies in a copy of K_{r+2}.

We now use Claim 6.2 to prove that the copies of K_{r+2} in R have a limited number of possible edge labellings.

Claim 6.4. Every copy K of K_{r+2} in R is one of the following: a K^+_r; a K^-_{r+2}; a $(K_{r+2}, +)$-star; a $(K_{r+2}, -)$-star.

Proof. Consider an arbitrary Hamilton cycle C in K. We obtain a K_r-template K_C of K of size $r + 2$ by going around the Hamilton cycle as follows: take each copy of K_r whose vertices are r consecutive vertices along C and add it to K_C.

Consider any two Hamilton cycles $C = W_1 W_{i+1} W_{i+2} W_{i+3} \ldots W_{r+2}$ and C' obtained from C by reordering $W_i W_{i+1} W_{i+2} W_{i+3}$ as $W_i W_{i+2} W_{i+1} W_{i+3}$ (i.e. we just swap the order of W_{i+1} and
Since we are assuming the hypothesis of Claim 6.2 does not hold, we must have that C_{K} and $C_{K'}$ have the same discrepancy with respect to f_{R}.

This implies that $f_{R}(W_{i}W_{i+1}) + f_{R}(W_{i+2}W_{i+3}) = f_{R}(W_{i}W_{i+2}) + f_{R}(W_{i+1}W_{i+3})$. (The left hand side considers the contribution to the discrepancy of K_{C} not ‘present’ in the discrepancy of $K_{C'}$; the right hand side considers the contribution to the discrepancy of $K_{C'}$ not ‘present’ in the discrepancy of K_{C}.)

The choice of the Hamilton cycle C in K was arbitrary. So this implies that

\[(4) \quad f_{R}(ab) + f_{R}(cd) = f_{R}(ac) + f_{R}(bd) \text{ for all distinct } a, b, c, d \in V(K).\]

Consider any $a \in V(K)$. Suppose $|N_{K}(a)| \geq 3$. Given any distinct $b, c, d \in N_{K}(a)$, (4) implies that $f_{R}(bd) = f_{R}(cd)$. This implies that the edges in $N_{K}(a)$ are either all 1-edges or all (-1)-edges. A similar argument holds if $|N_{K}(a)| \geq 3$.

In particular, this implies that if one of $N_{K}(a)$ and $N_{K}(a)$ are empty then K is one of the following: a K_{r+2}^{+}; a K_{r+2}^{-}; a $(K_{r+2}, +)$-star; a $(K_{r+2}, -)$-star. We may therefore assume that both $N_{K}(a)$ and $N_{K}(a)$ are non-empty, and without loss of generality assume that $|N_{K}(a)| \geq 3$.

Choose any distinct $c, d \in N_{K}(a)$ and $b \in N_{K}(a)$. Noting that ac is a 1-edge and ab is a (-1)-edge, (4) implies cd is a 1-edge and bd is a (-1)-edge. The choice of $c, d \in N_{K}(a)$ and $b \in N_{K}(a)$ was arbitrary so this implies all edges between $N_{K}(a)$ and $N_{K}(a)$ are (-1)-edges.

If $|N_{K}(a)| = 1$ we are immediately done now: indeed, we have just argued that $b \in N_{K}(a)$ sends out (-1)-edges to everything else; and as $|N_{K}(a)| \geq 3$ in this case, all edges in $N_{K}(a)$ are +1-edges. That is, K is a $(K_{r+2}, -)$-star.

Thus, we now may additionally assume $|N_{K}(a)| \geq 3$. Choose any distinct $c', d' \in N_{K}(a)$ and $b' \in N_{K}(a)$. Then (4) implies that $b'd'$ is a 1-edge. This is a contradiction, as we already proved that all edges between $N_{K}(a)$ and $N_{K}(a)$ are (-1)-edges. Thus this case does not occur, and we are done.

Combining Claims 6.3 and 6.4 we obtain the following.

Claim 6.5. Let $1 \leq k \leq r + 2$. Every copy of K_{k} in R is one of the following: a K_{k}^{+}; a K_{k}^{-}; a $(K_{k+1}, +)$-star; a $(K_{k}, -)$-star.

6.3. Using a perfect K_{r+1}-tiling in R. Note that (3) and Theorem 1.3 imply that R contains a perfect K_{r+1}-tiling T. By Claim 6.5, there are only four types of K_{r+1} in T. Let A denote the set of K_{r+1}-tiling in T; let B denote the set of K_{r+1}-tiling in T; let C denote the set of $(K_{r+1}, +)$-stars in T; let D denote the set of $(K_{r+1}, -)$-stars in T. Without loss of generality we may assume that

\[(5) \quad |B| + |C| \geq |A| + |D|.\]

6.3.1. Assume that A is non-empty.

Claim 6.6. Consider any vertex $V_{a} \in V(A)$ and any copy $K \in B$ of K_{r+1}. Then we may assume $d_{R}(V_{a}, K) \leq r - 2$ if r is even; $d_{R}(V_{a}, K) \leq r - 1$ if r is odd.

Proof. Write K_{A} for the clique in T that contains V_{a}. Let $F := R[K_{A} \cup K]$.

First consider the case when r is even, and suppose V_{a} sends $r - 1$ edges to K in R. Suppose i of these edges are 1-edges (and so $r - 1 - i$ of them are (-1)-edges). Let $X, Y \in V(K)$ be the vertices in K that are not incident to one of these $r - 1$ edges. We will prove that F satisfies the hypothesis of Claim 6.2.

Write K_{A} for the set of all copies of K_{r} in K_{A}, and K for the set of all copies of K_{r} in K; so $|K| = |K_{A}| = r + 1$.

Define K_{1} to be the K_{r}-template for F of size $2r(r + 1)$ that contains precisely r copies of each of the cliques in $K_{A} \cup K$. Note that indeed K_{1} is a K_{r}-template for F as each vertex $V \in V(F)$ is
contained in precisely \(r^2 \) of the cliques in \(\mathcal{K}_1 \). Since \(\mathcal{K}_A \in \mathcal{A}, \mathcal{K} \in \mathcal{B} \), and \(\mathcal{K}_1 \) contains the same number of copies of cliques from \(\mathcal{K}_A \) and \(\mathcal{K}, \mathcal{K}_1 \) has discrepancy 0 (with respect to \(f_\mathcal{R} \)).

We define another \(\mathcal{K}_r \)-template \(\mathcal{K}_2 \) for \(F \) of size \(2r(r+1) \) as follows:

(i) for the clique \(H \in \mathcal{K}_A \) that does not contain \(V_A \), add \(2r-1 \) copies of \(H \) to \(\mathcal{K}_2 \);
(ii) for each clique \(H \in \mathcal{K}_A \) that contains \(V_A \), add \(r-1 \) copies of \(H \) to \(\mathcal{K}_2 \);
(iii) add to \(\mathcal{K}_2 \) \(r \) copies of the clique in \(F \) that contains \(V_A \) and the \(r-1 \) vertices in \(V(K) \setminus \{X, Y\} \);
(iv) add \(r + 1 \) copies of each clique \(H \in \mathcal{K} \) that contains both \(X \) and \(Y \);
(v) add one copy of each clique \(H \in \mathcal{K} \) that avoids one of \(X \) and \(Y \).

To prove that \(\mathcal{K}_2 \) is a \(\mathcal{K}_r \)-template for \(F \) of size \(2r(r+1) \) it suffices to prove that every vertex \(V \in V(F) \) lies in precisely \(r^2 \) of the cliques in \(\mathcal{K}_2 \): if \(V \in V(K) \setminus \{V_A\} \) then (i) and (ii) give that \(V \) lies in \((2r-1)(r-1) = r^2 \) such cliques; (iii) and (iv) imply \(V \) lies in \((r-1)r + r = r^2 \) such cliques; if \(V \in V(K) \setminus \{X, Y\} \) then (iii)–(v) imply that \(V \) lies in \(r + (r+1)(r-2) + 1 \cdot 2 = r^2 \) such cliques; if \(V \in \{X, Y\} \) then (iv) and (iv) imply that \(V \) lies in \((r+1)(r-1) + 1 \cdot 1 = r^2 \) such cliques.

To compute the discrepancy of \(\mathcal{K}_2 \) note that, compared to \(\mathcal{K}_1 \) it has: one fewer clique from \(\mathcal{K}_A \); \(r \) fewer cliques from \(\mathcal{K} \); an additional \(r \) cliques (from (iii)) that each have discrepancy \(2i - \binom{r}{2} \).

As \(\mathcal{K}_1 \) has discrepancy 0 this implies that \(\mathcal{K}_2 \) has discrepancy

\[-\binom{r}{2} + (r-1)\binom{r}{2} + r \left(2i - \binom{r}{2} \right) = 2ir - r(r-1) \neq 0 \]

as \(i \neq (r-1)/2 \) (recall we assumed that \(r \) is even). So \(F \) satisfies the hypothesis of Claim 6.2.

Now suppose \(r \) is odd and \(V_a \) sends at least \(r \) edges to \(K \) in \(R \). We can fix \(r - 1 \) such edges so that \(i \neq (r-1)/2 \) of them are 1-edges and \(r - 1 - i \) of them are \((-1\)-edges. Now arguing precisely as before we conclude \(F \) satisfies the hypothesis of Claim 6.2 as desired.

Claim 6.7. Consider any \(V_a \in V(A) \) and any \(K \in \mathcal{C} \). Then we may assume \(d_R(V_a, K) \leq r - 2 \) if \(r \) is even; \(d_R(V_a, K) \leq r - 1 \) if \(r \) is odd.

Proof. Write \(\mathcal{K}_A \) for the clique in \(\mathcal{T} \) that contains \(V_a \). Let \(F := R[\mathcal{K}_A \cup \mathcal{K}] \). Write \(\mathcal{K}_A \) for the set of all copies of \(\mathcal{K}_r \) in \(\mathcal{K}_A \), and \(\mathcal{K} \) for the set of all copies of \(\mathcal{K}_r \) in \(\mathcal{K} \); so \(|\mathcal{K}| = |\mathcal{K}_A| = r + 1 \).

The proof proceeds similarly to the previous claim. If \(r \) is even, suppose \(V_a \) sends \(r - 1 \) edges to \(K \) in \(R \); if \(r \) is odd suppose \(V_a \) sends \(r \) edges to \(K \) in \(R \). If all these edges avoid the head \(^1V_H \) of \(K \) then we can argue precisely as in Claim 6.6 to obtain two \(\mathcal{K}_r \)-templates \(\mathcal{K}_1 \) and \(\mathcal{K}_2 \) of \(F \), both with the same size, but different discrepancy. Note that how we construct \(\mathcal{K}_1 \) and \(\mathcal{K}_2 \) is identical to the proof of Claim 6.6, though the discrepancies will differ from that claim since now \(K \in \mathcal{C} \).

Next suppose \(r \) is even and \(V_a \) sends \(r - 1 \) edges to \(K \) in \(R \), one of the endpoints being the head \(V_H \). Suppose \(i \) of these edges are 1-edges and \(r - 1 - i \) of them are \((-1\)-edges. Let \(X, Y \in V(K) \) be the vertices in \(K \) that are not endpoints of such edges. Again, we choose \(\mathcal{K}_1 \) and \(\mathcal{K}_2 \) as in Claim 6.6.

That is, we define \(\mathcal{K}_1 \) to be the \(\mathcal{K}_r \)-template for \(F \) of size \(2r(r+1) \) that contains precisely \(r \) copies of each of the cliques in \(\mathcal{K}_A \cup \mathcal{K} \). We define \(\mathcal{K}_2 \) as follows:

(i) for the clique \(H \in \mathcal{K}_A \) that does not contain \(V_A \), add \(2r - 1 \) copies of \(H \) to \(\mathcal{K}_2 \);
(ii) for each clique \(H \in \mathcal{K}_A \) that contains \(V_A \), add \(r - 1 \) copies of \(H \) to \(\mathcal{K}_2 \);
(iii) add to \(\mathcal{K}_2 \) \(r \) copies of the clique in \(F \) that contains \(V_A \) and the \(r-1 \) vertices in \(V(K) \setminus \{X, Y\} \);
(iv) add \(r + 1 \) copies of each clique \(H \in \mathcal{K} \) that contains both \(X \) and \(Y \);
(v) add one copy of each clique \(H \in \mathcal{K} \) that avoids one of \(X \) and \(Y \).

The same argument as in Claim 6.6 implies both \(\mathcal{K}_1 \) and \(\mathcal{K}_2 \) are \(\mathcal{K}_r \)-templates for \(F \) of size \(2r(r+1) \).

To complete the proof we have to again show the discrepancies of \(\mathcal{K}_1 \) and \(\mathcal{K}_2 \) are different. Note that (i) and (ii) imply that \(\mathcal{K}_2 \) has one fewer copy of \(\mathcal{K}_r^+ \) from \(\mathcal{K}_A \) compared to \(\mathcal{K}_1 \); compared to \(\mathcal{K}_1 \),

1\(^1K\) is a copy of a \((K_k, +)\)-star; the head of such a star was defined in Definition 2.2.
\[\mathcal{K}_2 \text{ has an additional } r \text{ cliques arising from (iii); from (iv) and (v) we conclude that } \mathcal{K}_2 \text{ has } r \text{ fewer } (K_r,+)-\text{stars from } \mathcal{K} \text{ compared to } \mathcal{K}_1; \text{ by (iv) } \mathcal{K}_3 \text{ has one more copy of a } K_r^2 \text{ from } \mathcal{K} \text{ compared to } \mathcal{K}_1. \text{ Thus, the difference in discrepancy between } \mathcal{K}_1 \text{ and } \mathcal{K}_2 \text{ is precisely} \]

\[-\left(\frac{r}{2} \right) + r \left(2i + 2(r - 2) - \left(\frac{r}{2} \right) \right) - r \left(-\left(\frac{r}{2} \right) + 2(r - 1) \right) - \left(\frac{r}{2} \right) = 2ri - r^2 - r. \]

As \(r \) is even, this term is non-zero (since \(i \neq (r + 1)/2 \) in this case). Therefore, \(\mathcal{K}_1 \) and \(\mathcal{K}_2 \) are \(K_r \)-templates for \(F \) of different discrepancies; that is, the hypothesis of Claim 6.2 holds.

Next suppose \(r \geq 5 \) is odd, and \(V_a \) has at least \(r \) neighbours in \(\mathcal{K} \), including the head \(V_H \). We can choose \(r - 1 \) such neighbours, including \(V_H \), so that \(i \) of the corresponding edges incident to \(V_a \) are 1-edges (and \(r - 1 - i \) of them are \((-1\)-edges), where vitally, \(i \neq (r + 1)/2 \). In particular, here we are using that \((r + 1)/2 < r - 1\) to guarantee that we can choose \(i \) as desired. Then arguing as in the previous case we obtain two \(K_r \)-templates for \(F \) of different discrepancies. This argument also resolves the case when \(r = 3 \) unless all the edges from \(V_a \) to \(K \) are 1-edges; in which case we would be forced to ‘choose’ \(i = 2 = (r + 1)/2 \). However, in this case we have that \(V_a \) sends two 1-edges to vertices in \(V(K) \setminus \{V_H\}. \) In this case can argue precisely as in Claim 6.6 to obtain two \(K_r \)-templates for \(F \) of different discrepancies. This completes the proof of the claim.

\[\square \]

By the last two claims we have that each \(V_a \in V(A) \) has average degree of at most \(r - 1 \) into each \(K \in B \cup C \). Trivially \(V_a \) has average degree of at most \(r + 1 \) into each \(K \in A \cup D \). So by (5), each \(V_a \in V(A) \) has average degree at most \(r \) into each \(K \in A \cup B \cup C \cup D \). This is a contradiction as \(R \) has minimum degree \(\delta(R) \geq (1 - 1/(r + 1) + \eta/2)\ell \). Thus we conclude that \(A \) is empty.

Further this implies \(B \) is small. Indeed, if \(|B| \geq \eta^2\ell \) then (5) implies that the perfect \(K_{r+1} \)-tiling \(\mathcal{T} \) of \(R \) has absolute discrepancy at least \(\eta^2 \ell \). Thus the hypothesis of Claim 6.1 holds, contradicting our assumption.

Therefore assume \(A = \emptyset \) and \(|B| \leq \eta^2 \ell \). We now split into cases.

6.3.2. Case 1: \(r \geq 4 \). Note that in this case we have \(|D| - \eta^2 \ell \leq |C| \leq |D| + \eta^2 \ell \). Indeed, otherwise (5) implies that the perfect \(K_{r+1} \)-tiling \(\mathcal{T} \) of \(R \) has absolute discrepancy at least \(\eta^2 \ell \).

Together with the fact that \(\delta(R) \geq (1 - 1/(r + 1) + \eta/2)\ell \), this implies that every \(V_c \in V(C) \) has at least \((1 - 2/(r + 1) + \eta/3)|C| \) neighbours in \(D \). Thus, this immediately implies the following.

Claim 6.8. Given any \(V_c \in V(C) \) there is some \(K \in D \) such that \(d_R(V_c, K) \geq r \). \(\square \)

Fix \(V_c \in V(C) \) to be the head of some tile \(K_C \) in \(\mathcal{T} \). So \(V_c \) sends at least \(r - 1 \) edges to \(K \setminus \{V_H\} \) where \(V_H \) is the head of \(K \). Fix \(r - 1 \) of these edges. Call the endpoints of these edges in \(K \) good. Write \(X \) for the vertex in \(K \setminus \{V_H\} \) that is not good. Write \(K_C \) for the set of all copies of \(K_r \) in \(K_C \), and \(K \) for the set of all copies of \(K_r \) in \(K \); so \(|K| = |K_C| = r + 1 \).

Set \(F := R[K_C \cup K] \). Define \(K_1 \) to be the \(K_r \)-template for \(F \) of size \(2r(r + 1) \) that contains precisely \(r \) copies of each of the cliques in \(K_C \cup K \). Note that indeed \(K_1 \) is a \(K_r \)-template for \(F \) as each vertex \(V \in V(F) \) is contained in precisely \(r^2 \) of the cliques in \(K_1 \).

We define another \(K_r \)-template \(K_2 \) for \(F \) of size \(2r(r + 1) \) as follows:

(i) for the clique \(H \in K_C \) that does not contain \(V_c \), add \(2r - 1 \) copies of \(H \) to \(K_2 \);
(ii) for each clique \(H \in K_C \) that contains \(V_c \), add \(r - 1 \) copies of \(H \) to \(K_2 \);
(iii) add to \(K_2 \) \(r \) copies of the clique in \(F \) that contains \(V_c \) and the good vertices;
(iv) for each clique \(H \in K \) that contains both \(X \) and \(V_H \), add \(r + 1 \) copies of \(H \) to \(K_2 \);
(v) add one copy of the clique \(H \in K \) that avoids \(X \);
(vi) add one copy of the clique \(H \in K \) that avoids \(V_H \).

To prove that \(K_2 \) is a \(K_r \)-template for \(F \) of size \(2r(r + 1) \) it suffices to prove that every vertex \(V \in V(F) \) lies in precisely \(r^2 \) of the cliques in \(K_2 \): if \(V \in V(K_C) \setminus \{V_c\} \) then (i) and (ii) give that \(V \)
lies in \((2r-1) + (r-1)(r-1) = r^2\) such cliques; (ii) and (iii) imply \(V_c\) lies in \((r-1)r + r = r^2\) such cliques; if \(V \in V(K) \setminus \{X, V_H\}\) then (iii)-(vi) imply that \(V\) lies in \(r + (r+1)(r-2) + 1 + 1 = r^2\) such cliques; if \(V = X\) then (iv) and (vi) imply that \(V\) lies in \((r+1)(r-1) + 1 = r^2\) such cliques; if \(V = V_H\) then (iv) and (v) imply that \(V\) lies in \((r+1)(r-1) + 1 = r^2\) such cliques.

We will now complete this case by showing that \(K_1\) and \(K_2\) have different discrepancies with respect to \(f_R\); that is, the hypothesis of Claim 6.2 holds, as desired.

Write \(i\) for the number of \((-1)-\)edges in \(F\) with one endpoint \(V_c\), the other a good vertex. So there are \(r - 1 - i\) 1-edges between \(V_c\) and the good vertices. Note that (i) implies that \(K_2\) has \(r - 1\) more copies of \(K_1\) compared to \(K_1\); compared to \(K_1\), (ii) implies that \(K_2\) has \(r\) fewer copies of \((K_r, +)-\)stars from \(K_C\); the \(r\) cliques from (iii) are contained in \(K_2\) but not \(K_1\); from (iv) and (v) we conclude that \(K_2\) has the same number of \((K_r, -)-\)stars as \(K_1\); by (vi) \(K_2\) has \(r - 1\) fewer copies of \(K_r^+\) from \(K\) compared to \(K_1\). Thus, the difference in discrepancy between \(K_1\) and \(K_2\) is precisely

\[-(r - 1)\left(\frac{r}{2}\right) - r\left(-\left(\frac{r}{2}\right) + 2(r - 1)\right) + r\left(\left(\frac{r}{2}\right) - 2i\right) - (r - 1)\left(\frac{r}{2}\right) = -r(r - 1) - 2ri < 0.\]

Therefore, \(K_1\) and \(K_2\) are \(K_3\)-templates for \(F\) of different discrepancies; that is, the hypothesis of Claim 6.2 holds, as required.

6.3.3. Case 2: \(r = 3\). As \(3(\delta(R)) \geq (3/4 + \eta/2)\ell\) and \(|B| \leq \eta \ell\) we obtain the following.

Claim 6.9. Given any \(V_c \in V(C)\) there is some \(K \in C \cup D\) such that \(d_R(V_c, K) = 4\). \(\square\)

Fix \(V_c \in V(C)\) to be the head of some tile \(K_C\) in \(T\). Write \(K_C\) for the set of all copies of \(K_3\) in \(K_C\), and \(K\) for the set of all copies of \(K_3\) in \(K\); so \(|\mathcal{K}| = |K_C| = 4\). Set \(F := R[K_C \cup K]\).

Subcase 2a: \(K \in D\).

Note that \(V_c\) together with \(K\) forms a copy of \(K_5\) in \(R\). As \(K \in D\), Claim 6.4 tells us that the edge between \(V_c\) and the head \(V_H\) of \(K\) is a \((-1)\)-edge; all other edges between \(V_c\) and \(K\) are 1-edges.

Define \(K_1\) to be the \(K_3\)-template for \(F\) of size 24 that contains precisely 3 copies of each of the cliques in \(K_C \cup K\). Note that indeed \(K_1\) is a \(K_3\)-template for \(F\) as each vertex \(V \in V(F)\) is contained in precisely 9 of the cliques in \(K_1\).

We define another \(K_3\)-template \(K_2\) for \(F\) of size 24 as follows:

(i) for the clique \(H \in K_C\) that does not contain \(V_c\), add 5 copies of \(H\) to \(K_2\);
(ii) for each clique \(H \in K_C\) that contains \(V_c\), add 2 copies of \(H\) to \(K_2\);
(iii) add to \(K_2\) one copy of each clique in \(F\) that contains \(V_c\) and precisely two of the vertices in \(V(K) \setminus \{V_H\}\);
(iv) for each clique \(H \in K\) that contains \(V_H\), add 3 copies of \(H\) to \(K_2\);
(v) add one copy of the clique \(H \in K\) that avoids \(V_H\).

It is easy to check that every \(V \in V(F)\) lies in precisely 9 cliques in \(K_2\); so indeed \(K_2\) is \(K_3\)-template for \(F\) of size 24. Further, \(K_1\) has discrepancy 0, \(K_2\) has discrepancy \(-6\). Thus, the hypothesis of Claim 6.2 holds, as desired.

Subcase 2b: \(K \in C\).

Note that \(V_c\) together with \(K\) forms a copy of \(K_5\) in \(R\). As \(K \in C\), Claim 6.4 tells us that the edge between \(V_c\) and the head \(V_H\) of \(K\) is a 1-edge; all other edges between \(V_c\) and \(K\) are \((-1)\)-edges.

We define \(K_1\) and \(K_2\) precisely as in Subcase 2a. That is, define \(K_1\) to be the \(K_3\)-template for \(F\) of size 24 that contains precisely 3 copies of each of the cliques in \(K_C \cup K\). Define \(K_2\) as follows:

(i) for the clique \(H \in K_C\) that does not contain \(V_c\), add 5 copies of \(H\) to \(K_2\);
(ii) for each clique \(H \in K_C\) that contains \(V_c\), add 2 copies of \(H\) to \(K_2\);
(iii) add to K_2 one copy of each clique in F that contains V_c and precisely two of the vertices in $V(K) \setminus \{V_H\}$;
(iv) for each clique $H \in K$ that contains V_H, add 3 copies of H to K_2;
(v) add one copy of the clique $H \in K$ that avoids V_H.

In this subcase, K_1 has discrepancy 0, K_2 has discrepancy -12. Thus, the hypothesis of Claim 6.2 holds, as desired. This completes the proof of Theorem 1.4. \hfill \Box

7. Open problems

The rth power of a Hamilton cycle C is obtained from C by adding an edge between every pair of vertices of distance at most r on C. The Pósa–Seymour conjecture states that every n-vertex graph G with minimum degree $\delta(G) \geq (1 - 1/(r + 1))n$ contains the rth power of a Hamilton cycle. Komlós, Sárközy and Szemerédi [17] proved this conjecture for sufficiently large n.

It is natural to seek a discrepancy analogue of the Pósa–Seymour conjecture. We believe that the hypothesis of Theorem 1.4 additionally ensures that the host graph G contains the $(r - 1)$th power of a Hamilton cycle with high discrepancy. Furthermore, the minimum degree in such a result should be best-possible (in the same sense Theorem 1.4 is best-possible). We believe the proof of such a result can be obtained via the connecting–absorbing method, and using Theorem 1.4 as a black-box (applied to the reduced graph of the host graph G); this would be a suitable project for a strong Master’s student. Note that such a result (combined with Theorem 1.2) would show that $\delta(G) = (3/4 + o(1))n$ is the threshold for a graph G to contain both a Hamilton cycle of high discrepancy and the square of a Hamilton cycle of high discrepancy.

It is also natural to seek an extension of Theorem 1.4 to perfect H-tilings for any graph H.

Question 7.1. Given any graph H, what is the minimum degree threshold that forces a perfect H-tiling of high discrepancy in a graph G (with respect to any edge labelling $f : E(G) \to \{-1, 1\}$)?

A famous conjecture of Bollobás and Eldridge [5], and Catlin [6] asserts that every n-vertex graph G with $\delta(G) \geq (rn - 1)/(r + 1)$ contains every n-vertex graph H with $\Delta(H) = r$.

Question 7.2. Given any $\eta > 0$ and $r \geq 2$, does there exist an $n_0 \in \mathbb{N}$ so that the following holds for all $n \geq n_0$? Let G, H be n-vertex graphs, and assume that
\[
\delta(G) \geq (1 - 1/(r + 2) + \eta)n,
\]
where $r := \Delta(H)$. Then G contains a copy of H of high discrepancy (with respect to any edge labelling $f : E(G) \to \{-1, 1\}$).

Note that the Bollobás–Eldridge–Catlin conjecture has still not been fully resolved. So it seems extremely challenging to answer Question 7.2 in general. However, our main result (Theorem 1.4) resolves Question 7.2 in the affirmative when H is a perfect K_r-tiling. It would be interesting to resolve Question 7.2 in cases for which the Bollobás–Eldridge–Catlin conjecture is known to be true (in particular the case when $r \leq 3$).

8. Acknowledgements

The first and fourth authors are grateful to the BRIDGE strategic alliance between the University of Birmingham and the University of Illinois at Urbana-Champaign. In particular, much of the research in this paper was carried out whilst the fourth author was visiting UIUC. The authors are also grateful to the referee for their helpful and careful review.
References

[1] J.R. Alexander, J. Beck, and W.W.L. Chen, Geometric discrepancy theory and uniform distribution. In Handbook of Discrete and Computational Geometry. 1997.
[2] N. Alon and R. Yuster, H-factors in dense graphs, J. Combin. Theory B 66 (1996), 269–282.
[3] J. Balogh, B. Csaba, Y. Jing and A. Pluhář, On the discrepancies of graphs, Electron. J. Combin. 27 (2020) P2.12.
[4] J. Beck and W.W.L. Chen, Irregularities of Distribution. Vol. 89 of Cambridge Tracts in Math., Cambridge University Press, 1987.
[5] B. Bollobás and S.E. Eldridge, Packing of graphs and applications to computational complexity, J. Combin. Theory Ser. B 25 (1978), 105–124.
[6] P.A. Catlin, Embedding subgraphs and coloring graphs under extremal degree conditions, Ph.D. Thesis, Ohio State Univ., Columbus (1976).
[7] B. Chazelle, The Discrepancy Method, Cambridge University Press, 2000.
[8] A. Czygrinow, L. DeBiasio, H.A. Kierstead and T. Molla, An extension of the Hajnal–Szemerédi theorem to directed graphs, Combin. Probab. Comput. 24 (2015), 754–773.
[9] A. Czygrinow, L. DeBiasio, T. Molla and A. Treglown, Tiling directed graphs with tournaments, Forum Math. Sigma 6 (2018) e2.
[10] P. Erdös, Z. Füredi, M. Loebl and V.T. Sós, Discrepancy of Trees, Stud Sci Math, 30 (1995), 47–57.
[11] L. Gishboliner, M. Krivelevich and P. Michaeli, Colour-biased Hamilton cycles in random graphs, arXiv:2007.12111.
[12] A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdős, Combinatorial Theory and its Applications vol. II 4 (1970), 601–623.
[13] P. Hell and D.G. Kirkpatrick, On the complexity of general graph factor problems, SIAM J. Computing 12 (1983), 601–609.
[14] P. Keevash and R. Mycroft, A multipartite Hajnal–Szemerédi theorem, J. Combin. Theory Ser. B 114 (2015), 187–236.
[15] H.A. Kierstead and A.V. Kostochka, An Ore-type Theorem on Equitable Coloring, J. Combin. Theory Ser. B 98 (2008), 226–234.
[16] J. Komlós, G.N. Sárközy and E. Szemerédi, Blow-up lemma, Combinatorica 17(1) (1997), 109–123.
[17] J. Komlós, G.N. Sárközy and E. Szemerédi, Proof of the Seymour conjecture for large graphs, Ann. Combin. 2 (1998), 43–60.
[18] J. Komlós, G.N. Sárközy and E. Szemerédi, Proof of the Alon–Yuster conjecture, Discrete Math. 235 (2001), 255–269.
[19] J. Komlós and M. Simonovits, Szemerédi’s Regularity Lemma and its applications in graph theory, Combinatorics, Paul Erdős is Eighty (Volume 2), Keszthely (Hungary), 1993, (D. Miklós, V.T. Sós, T. Szőnyi eds.), Bolyai Math. Stud., Budapest (1996), 295–352.
[20] D. Kühn and D. Osthus, Critical chromatic number and the complexity of perfect packings in graphs, 17th ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), 851–859.
[21] D. Kühn and D. Osthus, The minimum degree threshold for perfect graph packings, Combinatorica 29 (2009), 65–107.
[22] B. Sudakov, Robustness of graph properties, Surveys in Combinatorics 2017, Cambridge University Press, 2017, 372–408.
[23] E. Szemerédi, Regular partitions of graphs, Problèmes Combinatoires et Théorie des Graphes Colloques Internationaux CNRS 260 (1978), 399–401.
[24] A. Treglown, A degree sequence Hajnal–Szemerédi theorem, J. Combin. Theory Ser. B 118 (2016), 13–43.