Assessment of the Three-Dimensional Model Produced by Photogrammetric and Geodetic Surveying Techniques

Yousif Hussein Khalaf1,a* and Nagham Amer Abdulateef1,b

1Department of Surveying Engineering, University of Baghdad, Baghdad, Iraq.
ayousif.hussain1976@gmail.com, bnagham.amer1984@gmail.com

Abstract. A combination of close-range photogrammetry techniques and geodetic surveying techniques are used to produce the three-dimensional model, which is one of the major tasks in the field of surveying at present because it is used in many engineering applications, industrial, medical and in cultural heritage objects which requires regular monitoring because of the high accuracy and reliability needed to conduct the measurements. The study area was in the university of Baghdad, specifically for the building of the university tower this research has been produced the three dimensional model of the tower depending on the overlapping ground images captured by a digital camera and the total station instrument used to measure the coordinates of ground points distributed on the university of Baghdad tower. The mathematical model used in this study is the direct linear transformation method to intensify ground points which are used to produce the three-dimensional model of the university tower. Also, a photogrammetric program is used to compute the object space coordinates from the point cloud three-dimensional modeling.

Keywords: Close range photogrammetry; geodetic surveying; DLT; MATLAB; Agisoft program-3D.

1. Introduction
Digital close-range photogrammetry is a branch of photogrammetry which has been widely used for non-topographic applications in industrial and engineering areas with the digital technology and corresponding algorithms [1]. The term of close-range photogrammetry is defined as the art, science, and technology of extracting information of an object’s geometry and position from photographic images, this information may be used to recreate an accurate representation of an object in three-dimensional space, alternatively, it may be used to measure the change of an object position or shape [2]. This technique is used when an object to camera distance is not more than 300 meters as a maximum and a fraction of millimeters as a minimum. these limitations are assumed to distinguish between terrestrial, and close-range photogrammetry [3].

The close-range photogrammetry has a wide range of use and its applications are in many disciplines, such applications are different in terms of its importance some need high measurement accuracy and others don’t, the accuracy of these applications is a function of the elements of the photogrammetric system. these elements are the camera used, the accuracy achieved by any camera is a function of the principal distance, the format size, the error of image points, and the resolution of the image, the layout of the two camera stations, the layout of the two camera stations relative to the object is a function of the external orientation parameters. These parameters determine the distribution, transformation, and magnification of the image error to the corresponding object points [4]. The techniques of three-dimensional (3D) modeling have been advancing over the past few years. One of the main tasks of photogrammetry is to find the precise 3D coordinates of an object, these coordinates must be obtained...
from a stereo pair images. Features in the image can be observed and 3D coordinates are determined in a given coordinates system, under a mathematical model Direct Linear Transformation (DLT) [5].

2. Digital Close Range
Close range Photogrammetry is one of the most important subjects in geomantic engineering, according to the development in 3D modeling from a digital image, for engineering applications, which needs high resolution, many programmers have appeared which process the digital images [6].

3. Mathematical Models
The used mathematical model is the direct linear transformation (DLT) model which rely on means direct transformation from comparator coordinates of image points to object space coordinate [7]. This concept is particularly useful for imaging with non-metric cameras that have one in x image coordinate and the other in y image coordinate. The standard (DLT) equations are:

\[
\begin{align*}
x &= \frac{L_1X + L_2Y + L_3Z + L_4}{L_9X + L_{10}Y + L_{11}Z + 1} \\
y &= \frac{L_5X + L_6Y + L_7Z + L_8}{L_9X + L_{10}Y + L_{11}Z + 1}
\end{align*}
\]

Where \(x\) and \(y\) are the measured coordinates of an image point. Fiducial marks in the focal length to define the axes of the photo coordinate system.[8]. The minimum number of points required to solve these equations using the least-squares method is six points. Each point provides two equations \(X, Y, Z\):

In matrix form

\[
\begin{bmatrix}
X_1 \\
Y_1 \\
Z_1 \\
0 \\
0 \\
X_2 \\
Y_2 \\
Z_2 \\
0 \\
0
\end{bmatrix}
= \begin{bmatrix}
-x_1X_1 \\
-x_1Y_1 \\
-x_1Z_1 \\
-x_1Y_1 \\
-x_1Z_1 \\
-x_1Z_1 \\
X_1 \\
Y_1 \\
Z_1 \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
L_1 \\
L_2 \\
\vdots \\
L_11
\end{bmatrix}
\]

\[
B.X = f
\]

Where \(X\) is the vector of (DLT) parameters. (DLT) parameters can be obtained by using the principle of least squares method, we should consider solving the normal equation that can be derived from the observation, which can be expressed as [9]. The normal equation of the previous observation equation can be written as follows:

\[
(BB^T)X = (B^T)f
\]

By multiplying both sides of Eq. (7) by by \((B^T)\) and reducing we obtain:

\[
X = (BB^T)^{-1}B^Tf
\]

After computing the DLT coefficients for all images, the ground coordinate of any object point is computed. The formulas for computing object space coordinate from (DLT) coefficients is as follows [10]:

\[
(L_1 - xL_9)X + (L_2 - xL_{10})Y + (L_3 - xL_{11})Z = x - L_4
\]

\[
(L_5 - yL_9)X + (L_6 - yL_{10})Y + (L_7 - yL_{11})Z = y - L_8
\]

If the solution is done by using Matrix (which mean measuring the ground coordinates for one point in two photos) the equations will be as the following:
\[
\begin{bmatrix}
L_1^{(1)} - xL_9^{(1)} & L_2^{(1)} - xL_{10}^{(1)} & L_3^{(1)} - xL_{11}^{(1)} \\
L_5^{(1)} - yL_9^{(1)} & L_6^{(1)} - yL_{10}^{(1)} & L_7^{(1)} - yL_{11}^{(1)} \\
L_1^{(2)} - xL_9^{(2)} & L_2^{(2)} - xL_{10}^{(2)} & L_3^{(2)} - xL_{11}^{(2)} \\
L_5^{(2)} - yL_9^{(2)} & L_6^{(2)} - yL_{10}^{(2)} & L_7^{(2)} - yL_{11}^{(2)}
\end{bmatrix}
= \begin{bmatrix}
x^{(1)} - L_4^{(1)} \\
y^{(1)} - L_8^{(1)} \\
x^{(2)} - L_4^{(2)} \\
y^{(2)} - L_8^{(2)}
\end{bmatrix}
\]

(11)

4. The Agisoft Program

Agisoft PhotoScan is a stand-alone software product that performs photogrammetric processing of digital images and generates 3D spatial data [6]. After opening the digital photos in (Agisoft) control points are selected and their ground coordinate are interred, then the processes of creating the 3D model is extracted, the processing of aligning photos are done to calculate exposure stations.

5. Experimental work

This research aims to compute the 3D coordinates the are used to produce three models according to the following steps:

1) Selecting a baseline with a length of 10 m.
2) Measuring the local 3D coordinates of 178 control points and checkpoints on the University of Baghdad tower, total station instruments are used to fix the coordinates of the control points and baselines with millimeter accuracy in a predesigned network [11].
3) Using Nikon D5200 camera to take a stereo pair for the tower with an overlap equal to 100%.
4) Measuring the digital photo coordinates to compute DLT parameters.
5) Using DLT program (MATLAB language) to intensify points, 250 points have been intensified points that are inaccessible.
6) The property of symmetric in the shape of Baghdad university tower has been used to compute the coordinates of the other side and then get a 3D drawing of the tower.
7) The 3D design has been produced by using AutoCAD, QT Modeler programs, and Agisoft program.
8) The control points were precisely measured by using Topcon total station ES 105. A baseline of ten meters has been chosen with two end stations A and B. The 3D coordinates of station A assumed locally to be (5000, 5000, 40) meter, then the total station has been mounted on A and backsight on B, the 3D coordinates of the control points have been measured directly by the total station. The control points and checkpoints have been distributed on the tower same of these points are shown in Fig. 1.
To establish the DLT, at least six control points are required. If more than six points are used, so that and improved solution can be arrived at by using least square. In this research 23 points are used to compute DLT parameter the measured ground coordinates of these points are listed in Table 1.

Table 1. The measured object coordinates of the control points

Point	Northing	Easting	Elevation	Point	Northing	Easting	Elevation
Occ	500.0000	500.0000	40.0000	127	513.6983	598.8347	35.1839
B.S	508.6860	499.9978	39.9550	131	512.9127	598.5543	35.1790
63	538.4229	595.4597	35.1676	60	512.5939	599.2462	35.1811
67	537.6394	595.1849	35.1799	72	511.5658	604.4550	35.1982
68	537.3381	595.9473	35.1938	84	510.7608	604.1059	35.1823
69	532.2048	593.0862	35.1875	96	510.4714	604.9048	35.1902
73	531.4138	592.7802	35.1900	108	509.4389	610.0368	35.1944
74	531.1309	593.6083	35.2160	103	508.6574	609.7711	35.1878
75	524.2462	590.0477	35.1813	63	508.3522	610.5832	35.1718
51	523.4825	589.7672	35.1773	67	538.3408	595.3009	43.0456
52	523.1548	590.5008	35.1870	68	537.6541	595.2289	43.0604
57	517.9772	587.6124	35.1812	69	537.3600	596.0064	43.0612
58	517.1893	587.3590	35.1902	73	532.1634	593.0882	43.0527
147	516.8882	58.1155	35.1881	74	531.4112	592.8137	43.0620
175	515.8454	593.2299	35.1866	75	531.1327	593.5400	43.0467
93	515.0512	592.9373	35.1752	51	524.2568	590.1744	43.0721
117	514.7514	593.7130	35.1773	51	524.2568	590.1744	43.0721

23 control points distributed on the University of Baghdad tower are chosen for computing the (11 DLT) parameters. The photo coordinates were measured in the stereopair which is illustrated in figure (1). The results of image measurements have been listed in Table (2).
Table 2. The measured photo coordinates of the control points.

Point No.	Left image	Right image		
	x_1 (mm)	y_1 (mm)	x_2 (mm)	y_2 (mm)
63	166	321.9	167.3	328.7
67	112.6	310.5	118.2	318.7
68	135.5	309.2	139.1	316.8
69	166.3	307.3	167.4	314.2
73	113.4	297.1	118.7	305.6
74	136.1	295.4	139.4	303.1
75	166.6	292.8	167.6	299.8
51	165.3	352.3	167.1	358.8
52	193.1	352.3	193.1	358.2
57	165.6	337	167.2	343.5
58	193.2	336.3	192.9	342.3
147	170.3	131.7	168.7	140.9
175	143.6	104.4	143.8	115.8
93	167.6	242.2	167.7	249.7
117	168.9	190.4	168.2	198.8
127	120.4	178.9	123.6	189.9
131	200.7	160.2	197.8	167.2
60	242.9	342.8	251.5	347.6
72	242.3	318.1	250.3	322.7
84	241.7	294	249.1	298.5
96	241	263.3	247.7	267.5
108	240.3	240.8	246.5	244.9
163	238.3	150.2	242.7	154.4

The DLT Eqs. (1) and (2) were applied to compute the 11 DLT parameters and this process has been done by preparing a program in Matlab language as in Fig. 2. Matlab can be used for math computations, modeling and simulations, data analysis and processing, visualization and graphics, and algorithms development [12]. The results of the Matlab program are listed in Table 3.

Table 3. DLT parameters of the left and right photos.

Par.	Left photo	Right photo	Par.	Left photo	Right photo
L_1	-0.40018	-0.43797	L_7	0.55700	0.51761
L_2	0.65625	0.58083	L_8	328.66370	341.26267
L_3	-0.09993	-0.08759	L_9	-0.00168	-0.0015
L_4	-129.80528	-67.63666	L_{10}	-0.00026	-0.00039
L_5	-0.61599	-0.57830	L_{11}	-0.00050	-0.00049
L_6	-0.08596	-0.14603			
The three-dimensional coordinates of any point appear in overlapped photos can be computed by using equation (11) after computing the 11 DLT parameters of and the photo coordinates in a stereopair. 23 checkpoints were selected to validate the resulted accuracy of the 3D coordinates by determining the Root Mean Square Error (RMSE) which was found to be about RMSE = 2.2 cm as shown in Table 4.

Table 4. The coordinates of checkpoints and their RMSE.

Point No.	X (m)	Y (m)	Z (m)	ΔX (m)	ΔY (m)	ΔZ (m)
63	588.620	524.357	50.328	0.091	-0.027	0.025
67	594.238	538.601	53.646	-0.955	-0.050	-0.012
68	591.872	532.284	53.625	-0.119	0.032	0.009
69	588.683	524.374	53.585	0.034	-0.046	0.050
73	594.076	538.551	56.897	0.076	-0.010	0.025
74	591.701	532.551	56.883	0.055	0.070	0.034
75	588.955	524.431	56.934	-0.271	-0.104	-0.011
51	588.685	524.374	43.787	0.017	-0.040	-0.057
52	586.383	518.041	43.801	-0.075	0.040	-0.054
57	588.773	524.398	47.068	-0.068	0.055	-0.017
58	586.252	518.017	47.079	0.055	0.069	-0.021
147	588.786	524.365	98.723	-0.031	-0.037	-0.073
175	591.989	532.573	110.016	-0.075	0.082	0.026
93	588.712	524.414	68.945	0.011	-0.066	0.007
117	588.721	524.378	82.232	0.016	-0.038	-0.068

Figure 2. Flow chart of the computation of DLT parameter.
After applying the DLT equations, the 3D coordinates of the intensified points are computed and then these coordinates could be used to produce the 3D model of the Baghdad University tower this model is produced in this research by using two programs Auto CAD and QT modeler this drawing could be illustrated in Fig. 3.

127	594.206	538.624	88.837	-0.039	-0.101	-0.074
131	586.688	516.367	88.870	-0.056	-0.022	-0.108
60	610.747	507.304	47.109	-0.163	-0.098	-0.062
72	610.634	507.259	53.611	-0.054	-0.044	0.0005
84	610.458	507.219	60.145	0.101	-0.001	0.050
96	610.464	507.143	68.858	0.090	0.055	0.071
108	610.505	507.138	75.5002	0.053	0.055	0.038
163	610.410	506.855	105.077	-0.035	0.033	-0.064

RMSE ±0.025 ±0.024 ±0.019

Total RMSE ±0.022

After aligning the camera photos point cloud is built to calculate 3D coordinates of the model university of Baghdad tower, then points cloud mesh will create the 3D structure of the model and filtering is required to remove all unneeded noise for university of Baghdad tower, finally, the texture is made as shown in Figs. 4a and 4b.

Figure 3. (a) 3D model for the University tower by using (QT Modeler) (b) 3D Model by using (Auto CAD).

After aligning the camera photos point cloud is built to calculate 3D coordinates of the model university of Baghdad tower, then points cloud mesh will create the 3D structure of the model and filtering is required to remove all unneeded noise for university of Baghdad tower, finally, the texture is made as shown in Figs. 4a and 4b.
6. Conclusion

From the results obtained in this research, we concluded that the presented technique of DLT gives good accuracy which is suitable for many engineering applications, like architectural engineering and industrial engineering. The DLT could be used to recreate the 3D model of an object which is one of the important applications in close-range photogrammetry especially when the objects are inaccessible. The presented technique in this research can save time and effort because of the use of DLT equation which was easier than the other mathematical model in programming, the use of laser total station (without reflector), and digital camera. The other adopted techniques are represented by computing the 3D coordinates obtained from the Agisoft program is gave a centimetric accuracy of the point cloud in the 3D modeling of the tower but this photogrammetric technique is needed a high specification computer because there are millions of points of the point cloud in the 3D modeling.

References

[1] Li, X., (1999). Photogrammetric Investigation into Low-Resolution Digital Camera Systems, Doctoral Thesis, University of New Brunswick, Canada, 1999.
[2] Mikhail, E., Bethel, J. S, Glone, J. C, Wiley, J., and Inc, S. (2000). Introduction to Modern Photogrammetry.
[3] Parmehr E., G., and Azizi A., (2004). A Comparative Evaluation of the Potential of Close Range Photogrammetric Technique for the 3D Measurements of the Body of a Nissan Patrol Car, ISPRS-Helsinki.
[4] Remondino, F., (2006). Image-Based Modeling or Object and Human Reconstruction, Doctoral Thesis, Aristoteles University, Thessaloniki, Greece, Zurich.
[5] Wolf, R., and Dewitt A., (2000). Elements of Photogrammetry with Application in GIS, 3rd edition.
[6] Wong, X., and Clarke T.A. (1998). Separate Adjustment of Close Rang Photogrammetric Measurements, city University, London.
[7] Parmehr E., G., and Azizi A., (2004). A Comparative Evaluation of the Potential of Close Range Photogrammetric Technique for the 3D Measurements of the Body of a Nissan Patrol Car, ISPRS Helsinki.

[8] Satchet, M., S., (2004). Positioning by Analytical Photogrammetry with Unknown Camera Parameters, MSc. Thesis, College of Engineering, Baghdad University.

[9] Sharqi, M., M., (2002). Accuracy Assessment of Digital & Analytical Close Range Photogrammetric Techniques, MSc. Thesis, College of Engineering, Baghdad University.

[10] Abulateef, N., A., (2009). Accuracy Evaluation of Digital Close Range Photogrammetry by Free Adjustment Method, MSc. Thesis, College of Engineering, Baghdad University.

[11] Bashar S., Nagham A., Yousif H., (2019) Out of Plumb Assessment for Cylindrical-Like Minaret Structures Using Geometric Primitives Fitting. ISPRS Int. J. Geo-Inf. 8, 64.

[12] Yousif H., Nagham A., (2018). Orthophoto Production from Aerial Photograph by using Matlab and GIS. International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 9.