Persistent Wolbachia and Cultivable Bacteria Infection in the Reproductive and Somatic Tissues of the Mosquito Vector Aedes albopictus

Karima Zouache, Denis Voronin, Van Tran-Van, Laurence Mousson, Anna-Bella Failloux, Patrick Mavingui

To cite this version:

Karima Zouache, Denis Voronin, Van Tran-Van, Laurence Mousson, Anna-Bella Failloux, et al.. Persistent Wolbachia and Cultivable Bacteria Infection in the Reproductive and Somatic Tissues of the Mosquito Vector Aedes albopictus. PLoS ONE, Public Library of Science, 2009, 4 (7), pp.e6388. 10.1371/journal.pone.0006388. pasteur-01681435

HAL Id: pasteur-01681435
https://hal-pasteur.archives-ouvertes.fr/pasteur-01681435
Submitted on 11 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Persistent *Wolbachia* and Cultivable Bacteria Infection in the Reproductive and Somatic Tissues of the Mosquito Vector *Aedes albopictus*

Karima Zouache¹², Denis Voronin¹², Van Tran-Van¹², Laurence Mousson³, Anna-Bella Failloux³, Patrick Mavingui¹²*

¹Université de Lyon, Lyon, France, ²Université Lyon 1, Villeurbanne, CNRS, UMR5557, Ecologie Microbienne, Lyon, France, ³Institut Pasteur, Génétique moléculaire des Bunyavirus, Paris, France

Abstract

Background: Commensal and symbiotic microbes have a considerable impact on the behavior of many arthropod hosts, including hematophagous species that transmit pathogens causing infectious diseases to human and animals. Little is known about the bacteria associated with mosquitoes other than the vectorized pathogens. This study investigated *Wolbachia* and cultivable bacteria that persist through generations in *Ae. albopictus* organs known to host transmitted arboviruses, such as dengue and chikungunya.

Methodology/Principal Findings: We used culturing, diagnostic and quantitative PCR, as well as *in situ* hybridization, to detect and locate bacteria in whole individual mosquitoes and in dissected tissues. *Wolbachia*, cultivable bacteria of the genera *Acinetobacter*, *Comamonas*, *Delftia* and *Pseudomonas* co-occurred and persisted in the bodies of both males and females of *Ae. albopictus* initially collected in La Réunion during the chikungunya outbreak, and maintained as colonies in insectaries. In dissected tissues, *Wolbachia* and the cultivable *Acinetobacter* can be detected in the salivary glands. The other bacteria are commonly found in the gut. Quantitative PCR estimates suggest that *Wolbachia* densities are highest in ovaries, lower than those of *Acinetobacter* in the gut, and approximately equal to those of *Acinetobacter* in the salivary glands. Hybridization using specific fluorescent probes successfully localized *Wolbachia* in all germ cells, including the oocytes, and in the salivary glands, whereas the *Acinetobacter* hybridizing signal was mostly located in the foregut and in the anterior midgut.

Conclusions/Significance: Our results show that *Proteobacteria* are distributed in the somatic and reproductive tissues of mosquito where transmissible pathogens reside and replicate. This location may portend the coexistence of symbionts and pathogens, and thus the possibility that competition or cooperation phenomena may occur in the mosquito vector *Ae. albopictus*. Improved understanding of the vectorial system, including the role of bacteria in the vector’s biology and competence, could have major implications for understanding viral emergences and for disease control.

Introduction

Mosquitoes are medically important arthropod vectors of vertebrate pathogens. For instance, *Aedes albopictus*, and its sister taxon *Aedes aegypti*, are vectors of a large number of arboviruses, notably dengue and chikungunya [1]. Since 2005, La Réunion and neighboring islands in the Indian Ocean have experienced severe epidemics of chikungunya involving high incidences in the population [http://www.invs.sante.fr, 2]. The isolation and sequencing of the chikungunya virus from patients in La Réunion during a massive disease outbreak have revealed a prevalence of clinical isolates harboring nucleotide changes in both structural and non-structural loci; one particular mutation was found in glycoprotein E1, in a region predicted to interact with the target membrane [3]. Entomological field surveys [4,5] and vector competence assays in the laboratory [6] have demonstrated that *Ae. albopictus*, which is much more anthropophilic than *Ae. aegypti* in La Réunion, is a very efficient vector.

In the absence of effective vaccines, arbovirus transmission can only be reduced by limiting mosquito densities by the mechanical reduction of breeding sites and by the application of insecticides. Unfortunately, insecticides impact non-target insects as well, and most mosquito species have developed resistance [7]. There is increasing interest in the use of microbes associated with arthropod vectors to interfere with the transmission of pathogens with a view to overcoming these difficulties by sustainable approaches [8]. Indeed, if on the one hand, microbial symbionts can confer a fitness gain on their arthropod hosts, including better...
nutrition [9], heat tolerance [10,11], and resistance to pathogens [12,13,14], on the other hand, arthropod microbiota can be pathogenic for the host vector [15,16], or can have deleterious effects on host reproduction [17,18]. Finally, microbes associated with arthropods can either enhance or weaken vector competence [19,20,21]. Consequently, interference with one or more of these aspects of host behavior by natural or transgenic microbes could be exploited to manage arthropod vector-borne diseases by an approach known as “paratransgenesis” [22,23].

Despite the importance of microbes in the ecology and behavior of many arthropods [24], including hematophagous vectors such as ticks [25], tsetse flies [26] and lice [27], little is known about the mosquito-associated microbiota. Most of the few studies that have investigated the bacterial communities of Culex and Anopheles mosquitoes have focused on the midgut compartment [28, 29, 30, 31, 32, 34, 35, 36]. Very little is known about Aedes-associated bacteria. DeMaio and co-workers [37] were the first to report the midgut bacterial flora of wild Aedes triseriatus. Recently, members of the Bacillus and Seratia genera have been identified in the larval gut [38], and adult ventral diverticulum [39] of Ae. aegypti, respectively. Attempts have been made to use the gut-inhabiting bacteria to interfere with parasite transmission in mosquitoes [40,41,42]. In Ae. albopictus, the obligate intracellular bacterium Wolbachia has mainly been looked for in laboratory colonies and field-caught individuals [43,44]. This bacterium induces cytoplasmic incompatibility [45,46,47,48] that causes embryonic death, a feature that could be exploited to control insect pests [17]. More studies are needed to make a complete inventory of the microbial communities of Ae. albopictus, and identify taxa that could be manipulated for paratransgenesis purposes. In this study, we investigated the presence and location of Wolbachia and of cultivable bacteria in a colony of Ae. albopictus, collected during the explosive chikungunya epidemics in La Réunion, and maintained under laboratory conditions since 2006. Culturing and PCR-based techniques coupled with in situ hybridization were used to detect Wolbachia and cultivable bacterial genera differentially distributed in somatic and reproductive tissues.

Results

Characteristics of the dominant Proteobacteria

A total of 3 to 100 CFU were found per early emerging Ae. albopictus mosquito. Eight colony types were obtained in the two media used; notably two types from male mosquitoes and six types from females. Two representatives of each colony type were used for genomic DNA extraction and PCR amplification of the rrs gene using universal primers (Table 1). Amplified rDNA restriction analysis (ARDRA) of the amplified rrs genes revealed five distinct patterns (not shown), the corresponding PCR products of which were fully sequenced. Blastn analysis (Table 2) identified two nearly complete rrs gene sequences as being closely related to uncultured Comamonas spp. (99% similarity), and the other three were affiliated to three species, Acinetobacter calcoaceticus (99% similarity), Delftia sp. (99% similarity), and Pseudomonas alcaligenes (99% similarity). Isolates of the genera Comamonas, Delftia and Pseudomonas were recovered from females, whereas Acinetobacter isolates were obtained from males.

To obtain an overview of the total bacterial community, PCR-DGGE fingerprints of samples from whole insects and from dissected tissues were produced using specific rrs -gene primers and the corresponding hypervariable V3 regions (Figure S1). Bands were gel-excised and re-amplified. Direct sequencing of the PCR product generated in some cases double sequences, indicating the presence of more than one V3 in a particular excised band. These were excluded from the analysis. Among the single sequences, blast analysis identified an uncultivable bacterium, as well as the genera Mesorhizobium and Stenotrophomonas (Table 2). The presence of sequences affiliated with Wolbachia and with the four cultivable genera (Acinetobacter, Comamonas, Delftia and Pseudomonas) was also found.

Amplification with specific primers was performed to further explore Wolbachia and the dominant cultivable bacteria in the insect tissues. Positive PCR signals corresponding to Wolbachia strains wAlbA and wAlbB were obtained for all three of the organs tested (salivary glands, ovaries, and gut), as well as in the eggs, for four generations (Table 3), confirming the “invasive behavior” of this vertically-transmitted bacterial genus. The genus Acinetobacter was detected in the gut and salivary glands, whereas PCR products corresponding to Comamonas, Delftia and Pseudomonas were obtained only in the gut. Sequencing the amplified fragments confirmed the identity of each targeted bacterium (not shown). In the subsequent experiments, we focused on Wolbachia and Acinetobacter, which were detected in both gut and salivary glands.

Densities of Wolbachia and Acinetobacter in mosquito organs. The numbers of the bacterial cells varied depending on the genus and on the targeted organs (Table 4). The relative density (number of wsp gene per host actin gene) of Wolbachia was higher (P<0.005) in ovaries than in the gut and salivary glands. No differences (P>0.05) were found between the two Wolbachia wAlbA and wAlbB strains in all the three organs. The highest density of Acinetobacter was found in the gut (P<0.001), outnumbering Wolbachia as well (P<0.005). Densities of Wolbachia and Acinetobacter were not significantly different in the salivary glands (P>0.05).

Localization of bacteria in dissected tissues. To localize the bacteria in mosquito tissues, FISH genus-specific probes available for Acinetobacter and Wolbachia were used. To do this, FISH probes were first tested using Acinetobacter calcoaceticus isolate KZ-OAIM cultured in rich medium, and Wolbachia strain wAlbB hosted in Ae. albopictus cell line AA23. Specific signals were detected for both Acinetobacter (Fig. 1A) and Wolbachia (not shown). The probes were then hybridized against the dissected tissues using three independent biological samples. Confocal microscopic observations of somatic tissues showed hybridizing signals for Acinetobacter in the inner surface of epithelial cells and in lumen space of the foregut and the anterior midgut (Fig. 1C). These signals were observed in all 10 of the dissected guts of females from generations F2 to F5. Acinetobacter could not be detected in the cell cytoplasm or basal or ventral parts of the epithelial cells, suggesting that this bacterial genus is mainly located in the intervillous space. No significant Acinetobacter signal was detected in the central part of midgut or hindgut. Wolbachia probes detected signals in the cytoplasm of salivary gland cells (Fig. 2). The medium lobe displayed relatively low signal intensity (Fig. 1B) compared to high hybridizing dots found in the lateral lobes (Fig. 2C and D). In contrast to the positive PCR results (see above), no significant fluorescent signals were observed in the gut for Wolbachia, nor in the ovary for Acinetobacter (not shown).

To monitor the bacteria in female reproductive tissues, the ovaries were dissected before vitellogenesis. Confocal images of the gerarium and egg chambers revealed Wolbachia in all types of ovarian cells, including follicular and nurse cells, as well as in the future oocytes (Fig. 3). The highest density of bacteria was found in the future oocyte confirming a common feature of Wolbachia, which is to transfer from nurse cells into the oocyte through cytoplasmic dumping as has been shown in Drosophila [49]. As expected from the PCR results, no significant signal for Acinetobacter was found in the ovaries (not shown).
Table 1. Primers used in this study.

Organism	Gene	Primer name	Primer sequence (5’–3’)	Amplicon size/Tm	References	
Eubacteria	rrs	pA	5’ AGAGTTGTATCTGCAAGCTC 3’	1500/55	[83]	
		pH	5’ AAAGGGGTGATCCGACGAC 3’			
	rrs	16S (V3)	5’ GCCGCCGCGGCGGCGGCGGCGGCG-3’	variable	[84]	
		16S (V3)	5’ ATTACCGGGCAGCTCTGG 3’			
Wolbachia	rrs	99F	5’ TTTGAGCGCTCTGATGTATAC 3’	864/52	[85]	
		1994R	5’ CATATGGTATGTTCGCAATG 3’			
	wsp	81F	5’ TGTGCAATAAGTTATGGAAGAAG 3’	600/55	[86]	
		183F	5’ AAGGAACGAGAAGTCCATG 3’	508/52	[87]	
		328F	5’ CCAAGCAGTACTATGCG 3’	363/52	[87]	
		691R	5’ AAAAGGAGCTGATGATG 3’			
Comamonas	rrs	Com199F	5’ CTTGTGCTACTAGACG 3’	433/53	This study	
		Com614R	5’ GCAAGTCACAGATGGAGTT 3’			
Delftia	rrs	Delf63F	5’ TAAAGGAGTCTGGAGCGGG 3’	397/56	This study	
		Delf640R	5’ TCCCTGTATTAGAAGAAGCT 3’			
Pseudomonas	rrs	Ps For	5’ GGTCTGAGAGAGTAGCAG 3’	990/52	[88]	
		Ps Rev	5’ TTAGCTGCTTCAAGAGCC 3’			
Acinetobacter	rrs	Ac1	5’ ACTTTAGCGAGGGAGGCT 3’	426/58	[80]	
		Ac	5’ GCCGCACTAAGCCTAAGGCGG 3’		[82]	
Plasmid		pQuantAlb				
		QAdir1	5’ GGTTGATGTGGTAAGGAG 3’	264/60	[77]	
		QArer2	5’ CACACGCTTACTGAGGCC 3’		[77]	
		wsp wAlbA	183F	5’ AAGGAACGAGAAGTCCATG 3’	112/60	[87]
		QBrer2	5’ AGTGTGGAGTAAAGTCCAC 3’			
		actin	ActAlb-dir	5’ GCAACGTTGATCTCGAC 3’	139/60	[77]
		ActAlb-rev	5’ GTCAGGAGAACTGGTGCT 3’			
		TOPO 2.1				
		rrs Acinetobacter	ACA	5’ TAGAGTTGGGAGGAGG 3’	208/60	[81]
		Ac	5’ GCCGCACTAAGCGCCAAGGCGG 3’		[82]	

doi:10.1371/journal.pone.0006388.t001

Discussion

In recent years attempts have been made to investigate the possible use of native or genetically modified microbes to control pest arthropods and vector-borne diseases. The outcomes have varied considerably [8]. Greater knowledge about the behavior, persistence, and tissue tropism of microbes associated with vectors is essential to enhance the efficiency of paratransgenesis. Here, we investigated Wolbachia and the dominant cultivable bacteria in a colony of *Ae. albopictus* caught in La Réunion island during the 2005–2006 chikungunya epidemics. We found that the *Ae. albopictus* colony was infected by 2005–2006 chikungunya epidemics. We found that the *Ae. albopictus* colony was infected by Wolbachia, throughout the dominant cultivable bacteria of this bacterium to spread throughout the insect body. This is consistent with the reported presence of *Acinetobacter* in the hemolymph of the glassy-winged Sharpshooter or *Homalodisca vitripennis* [51]. No cultivable bacteria were detected in the oocytes of *Ae. albopictus* females. Interestingly, the PCR signal of *Acinetobacter* was detected in the salivary glands, indicating the ability of this bacterium to spread throughout the insect body. This is consistent with the reported presence of *Acinetobacter* in the hemolymph of the glassy-winged Sharpshooter or *Homalodisca vitripennis* [51].
of the Aedes albopictus colony, ruling out the possibility of transovarial transmission. Canonical transovarial transmission of cultivable bacteria is in fact not a common event. In the mosquito, only the cultivable bacterium \textit{Asia} has been reported to be transmitted via the eggs of \textit{Anopheles stephensi}, under the laboratory conditions [52]. Apart from transovarial transmission, other possible mechanisms of symbiont diffusion include proctophagy, the deposition of capsule containing microbes, and environmental acquisition [9,53,54,55]. The presence of \textit{Acinetobacter} in the gut and salivary glands, two organs where viruses are known to replicate, implies that the virus and the bacterium may share the same space in the ovaries, supporting these assumptions. Interestingly, a recent study has shown that \textit{Acinetobacter} sp. strain KNF2022 was able to produce an antiviral compound with inhibitory effects on the tobacco mosaic virus [56].

Like the cultivable bacteria, \textit{Wolbachia} was found to be associated with both female and male Aedes albopictus. \textit{Wolbachia} are obligate intracellular symbionts, and are generally passed transovarially from the female to her offspring during the early stages of oogenesis or embryogenesis. Consequently, reproductive tissues have been reported to be the main targets of \textit{Wolbachia} infection in both arthropods and nematodes [57,58,59]. In Aedes albopictus, the development of diagnostic PCR revealed two \textit{Wolbachia} strains, named \textit{wAlbA} and \textit{wAlbB}, that occur either separately or concomitantly in natural Asian populations [43,60]. These two \textit{Wolbachia} strains are transovarially transmitted, and induce cytoplasmic incompatibility (CI) in both native Aedes albopictus [45,46,47,48,61] and trans-infected \textit{Ae. aegypti}, which is naturally devoid of \textit{Wolbachia} [62]. Theoretical modeling has predicted that CI-inducing \textit{Wolbachia} could be used to control the spread of mosquitoes [63,64], this was achieved by empirical research in the medfly [17]. Here we show that the Aedes albopictus colony from La Réunion also harbored \textit{Wolbachia} strains \textit{wAlbA} and \textit{wAlbB}, which are clearly transmitted during oogenesis, as high levels of specific \textit{in situ} hybridization signals were found in ovarian cells. Indeed, \textit{Wolbachia} was present in the cytoplasm of germ cells, and in that of all the cells in egg chambers, notably follicular cells, nurse cells and future oocytes. The high density of \textit{Wolbachia} in the ovaries also supports these assumptions.

It has been established that \textit{Wolbachia} can also infect somatic tissues [65,66]. Dobson and co-workers [67] detected the WSP protein of \textit{Wolbachia} in ovaries and testes, but also in heads, thoracic muscles, midguts, and Malpighian tubules. Genes encoding this protein could be present in \textit{Wolbachia} genomes [45,46,47,48,61]

Table 2. Bacterial community of Aedes albopictus.

Sample type	Name of clone/ Band number	Size (bp)	Accession number	Phylogenetic affiliation	Closest relative organism	Accession number	No identical/total similarity (%)
Cultivable bacteria	KZ-OAI1 a	1525	FJ688377	\textit{Betaproteobacteria}	Uncultured Comamonas sp. clone DS104	DQ234187.2	1524/1525 (99)
	KZ-OAI2 a	1525	FJ688376	\textit{Betaproteobacteria}	Deltia sp. 332	EU883808.1	1524/1525 (99)
	KZ-OAI3 a	1529	FJ688378	\textit{Gammaproteobacteria}	\textit{Pseudomonas alcaligenes} strain 53	DQ115541.1	1490/1495 (99)
	KZ-OAIM b	1529	FJ688379	\textit{Gammaproteobacteria}	\textit{Acinetobacter calcoaceticus} type strain NCCB 22016	AJ888983.1	1513/1515 (99)
DDGE	[1; 2; 14; 15] a, b, d, e	169	GQ290053	\textit{Alphaproteobacteria}	\textit{Wolbachia} sp. wRi, complete genome	CP001391.1	169/169 (100)
	[3; 4; 16] a, b, d, e	194	FJ688377	\textit{Betaproteobacteria}	Uncultured \textit{Comamonas} sp. clone DS104	FJ950572.1	194/194 (100)
	[5; 13] a, b, d, e	194	GQ290055	\textit{Gammaproteobacteria}	\textit{Pseudomonas stutzeri} strain Bon_b1	FN397902.1	194/194 (100)
	[6; 7] a, b, d, e	194	GQ290057	\textit{Gammaproteobacteria}	\textit{Stenotrophomonas maltophilia} strain d402	FJ950659.1	194/194 (100)
	8 a, b, d	194	FJ688376	\textit{Betaproteobacteria}	Deltia sp. 332	EU883808.1	194/194 (100)
	9 a, b, d	169	GQ290056	\textit{Alphaproteobacteria}	Mesorhizobium loti strain U261	DQ131070.1	166/169 (98)
	10 a, b, d	195	FJ688379	\textit{Gammaproteobacteria}	\textit{Acinetobacter calcoaceticus} type strain NCCB 22016	AJ888983.1	195/195 (100)
	[11; 12] a, d	194	GQ290058	Unknown	Uncultured bacterium clone 16saw44-1d03.p1k	EF6044192.1	194/194 (100)

*Female individuals.
*a, b, c, d, e 194.
*b, c, d, e 194.
*d, e 194.
*e 194.
*f 194.
*gut.
*h 194.
*i salivary glands.

doi:10.1371/journal.pone.0006388.t002
salivary glands are crucial in virus transmission. The epidemiological consequences of this possible co-infection and potential cellular co-localization calls for careful investigation by arbovirologists, as it was shown recently that a strain of Wolbachia was able to reduce the lethal effect of viral pathogens of flies [14], indicating that Wolbachia has direct or indirect effects on the virus. Although the molecular mechanisms involved in this antiviral protection are still unknown, immunomodulation [73,74,75] and the induction of reactive oxygen species burst [76] by Wolbachia infection could account for these effects on infectious agents.

In this study, we identified a persistent infection of obligate intracellular Wolbachia and cultivable bacteria, such as Acinetobacter, in Ae. Albopictus, a major vector of arboviruses. The bacteria effectively colonize the ovaries, gut, and salivary glands, organs that are essential for the replication and transmission of pathogens, such as arboviruses. Studies of the impact of these multiple infections on the vectorial competence of the mosquito are in progress.

Materials and Methods

Mosquitoes

Laboratory-reared Ae. albopictus was obtained from the DRASS (Direction Régionale des Affaires Sanitaires et Sociales) in La Réunion. Aedes albopictus Providence was collected in 2006, and the F2 to F5 generations were used in these experiments. Colonies were maintained at 28±1°C with a light:dark cycle of 16 h:8 h, and 80% relative humidity. Larvae were reared in pans containing 10% sucrose solution ad libitum.

Whole mosquitoes were anaesthetized at 4°C, rinsed 3 times in sterilized water, surface disinfected by dipping in 70% ethanol for 5 min, and then rinsed five times in sterilized water, and once in sterilized NaCl 0.8%. Three whole mosquitoes were crushed in 250 µl sterilized NaCl 0.8%, two-fold diluted, and 100 µl of the resulting mix was plated on modified Luria Bertani agar medium (MLB: Bacto-trypthone 10 g l⁻¹, yeast extract 5 g l⁻¹, NaCl 5 g l⁻¹) and PYC medium (Peptone 5 g l⁻¹, yeast extract 3 g l⁻¹, CaCl₂.2H₂O 6 mM, pH 7.0). After incubating at 26°C, single colonies were streaked in the corresponding medium to check their purity. Purified isolates were cultured in liquid MLB at 26°C, stirred, and then stored in 25% glycerol at −80°C, until used.

DNA extraction

To recover the various organs, adult females were dissected in PBS under a binocular microscope using needles. Five whole individuals or pools of 10 dissected organs were surface disinfected, as described above. Each whole insect sample was crushed in 200 µl (or 100 µl for the organ samples) of DNA extraction buffer (2% Hexadeccyltrimethyl Ammonium Bromide, 1.4 M NaCl, 0.02 M EDTA, 0.1 M Tris pH 8, 0.2% 2-β mercaptoethanol) pre-warmed to 60°C. Homogenates were incubated for 15 min at 60°C. Proteins were removed in one volume of chloroform/isoamyl alcohol (24/1). DNA was precipitated at room temperature for 10 min with one volume of isopropyl alcohol. DNA pellet was washed once with 70% ethanol, air dried, and then dissolved in 30 µl of sterilized water. To extract the genomic DNA from the mosquito eggs, 30 to 70 mg of eggs were transferred into Eppendorf tubes, washed three times with sterilized water, surface disinfected in 70% ethanol for 5 min or dechorionized in 2.6% hypochlorite, before being rinsed twice in sterilized water. DNA extraction was then carried out as described above. For bacterial genomic extraction, an overnight culture was centrifuged at 12,000 x g, and the pelleted bacterial cells were handled using the DNeasy Tissue kit and QIAprep spin miniprep kit following the Manufacturer’s instructions (QIAGEN, Courtaboeuf, France). For Plasmid DNA extraction, the QIAprep spin miniprep kit was used following the Manufacturer’s instructions (QIAGEN, Courtaboeuf, France). All DNA samples were stored at −20°C until use.

Diagnostic and quantitative PCR

The oligonucleotide primers used were synthesized by Invitrogen, and are listed in Table 1. PCR amplification of rs genes using mosquito genomic DNA (60 ng) was performed in 25 µl of the reaction mixture in 1X polymerase reaction buffer (Roche), 200 µM of each deoxynucleoside triphosphate, 500 nM of each

Table 3. Genus-specific PCR amplifications in whole body and organs.

	Whole body male and female	Gut	Salivary glands	Ovaries	Eggs
Eubacteria		+	+	+	+
Wolbachia		+	+	+	+
Acinetobacter		+	+	−	−
Pseudomonas		+	−	−	−
Comamonas		+	−	−	−
Delfta		+	−	−	−

Bacterial isolation

Bacterial isolation

Adult mosquitoes were anaesthetized at 4°C, rinsed 3 times in sterilized water, surface disinfected by dipping in 70% ethanol for 5 min, and then rinsed five times in sterilized water, and once in sterilized NaCl 0.8%. Three whole mosquitoes were crushed in 250 µl sterilized NaCl 0.8%, two-fold diluted, and 100 µl of the resulting mix was plated on modified Luria Bertani agar medium (MLB: Bacto-trypthone 10 g l⁻¹, yeast extract 5 g l⁻¹, NaCl 5 g l⁻¹) and PYC medium (Peptone 5 g l⁻¹, yeast extract 3 g l⁻¹, CaCl₂.2H₂O 6 mM, pH 7.0). After incubating at 26°C, single colonies were streaked in the corresponding medium to check their purity. Purified isolates were cultured in liquid MLB at 26°C, stirred, and then stored in 25% glycerol at −80°C, until used.

DNA extraction

To recover the various organs, adult females were dissected in PBS under a binocular microscope using needles. Five whole individuals or pools of 10 dissected organs were surface disinfected, as described above. Each whole insect sample was crushed in 200 µl (or 100 µl for the organ samples) of DNA extraction buffer (2% Hexadeccyltrimethyl Ammonium Bromide, 1.4 M NaCl, 0.02 M EDTA, 0.1 M Tris pH 8, 0.2% 2-β mercaptoethanol) pre-warmed to 60°C. Homogenates were incubated for 15 min at 60°C. Proteins were removed in one volume of chloroform/isoamyl alcohol (24/1). DNA was precipitated at room temperature for 10 min with one volume of isopropyl alcohol. DNA pellet was washed once with 70% ethanol, air dried, and then dissolved in 30 µl of sterilized water. To extract the genomic DNA from the mosquito eggs, 30 to 70 mg of eggs were transferred into Eppendorf tubes, washed three times with sterilized water, surface disinfected in 70% ethanol for 5 min or dechorionized in 2.6% hypochlorite, before being rinsed twice in sterilized water. DNA extraction was then carried out as described above. For bacterial genomic extraction, an overnight culture was centrifuged at 12,000 x g, and the pelleted bacterial cells were handled using the DNeasy Tissue kit and QIAprep spin miniprep kit following the Manufacturer’s instructions (QIAGEN, Courtaboeuf, France). For Plasmid DNA extraction, the QIAprep spin miniprep kit was used following the Manufacturer’s instructions (QIAGEN, Courtaboeuf, France). All DNA samples were stored at −20°C until use.

Diagnostic and quantitative PCR

The oligonucleotide primers used were synthesized by Invitrogen, and are listed in Table 1. PCR amplification of rs genes using mosquito genomic DNA (60 ng) was performed in 25 µl of the reaction mixture in 1X polymerase reaction buffer (Roche), 200 µM of each deoxynucleoside triphosphate, 500 nM of each

Table 4. Bacterial density in female Ae. albopictus organs.

Organ	No. of Wolbachia (10⁹) per 10 organs	No. of Wolbachia wsp gene/No. of Ae. albopictus actin gene	No. of Acinetobacter (10⁹) per 10 organs	No. of Acinetobacter rrsA gene
Ovary	27.54±1.31A	2.62±0.13A	nd	nd
SG	0.19±0.02B	0.035±0.004B	1.58±0.44B	0.03±0.001B
Gut	2.83±0.16C	0.15±0.0087C	2.67±0.35C	0.33±0.041C

Statistical analysis was performed on log-transformed values. The dependent t-test was used to compare two means. Since multiple and non-independent tests were performed, the exact risk of rejecting a true null hypothesis is hard. For safety, we chose to reject H0 at P<0.005. Mean values±SE marked with the same letter are not significantly different (P>0.005).

doi:10.1371/journal.pone.0006388.t004
primer, 0.025 mg.ml$^{-1}$ of T4 gene protein 32 (Roche), and 0.25 U of Expand DNA polymerase (Roche, France). Wolbachia was detected using specific primers targeting the 16S rDNA and wsp loci (Table 1) under the following conditions: 25 μl of the reaction mixture containing 60 ng of DNA template in 1X polymerase reaction buffer (Invitrogen), 1.5 mM MgCl$_2$, 0.2 μM of each deoxynucleoside triphosphate, and 0.5 U of Taq polymerase (Invitrogen). Diagnostic PCR reactions were performed in a T gradient thermocycler (Biometra, France). Real-time quantitative PCR was performed using the LightCycler LC480 apparatus (Roche). The 20 μl reaction mixture contained 1X LightCycler DNA master SYBR green I (Roche), 300 nM of each primer, and 10 ng of template DNA. Amplifications consisted of 10 minutes at 95°C, followed by 40 cycles of 15 s at 95°C, 1 min at 60°C or 63°C for the wsp and rrs amplifications respectively, and a final elongation at 72°C for 30 s. Standard curves were drawn on DNA plasmids pQuantAlb [77] and TOPO 2.1-Acin, a TOPO 2.1 vector in which we have cloned a 280 bp rrs gene fragment from Acinetobacter calcoaceticus (Table 1).

DGGE
Ingeny PhorU (Apollo Instruments, Compiègne, France) system was used for DGGE analysis of the V3 PCR products as published [78]. Briefly, the 6% acrylamide gel contained a linear chemical gradient of urea and formamide from 35% to 65% (100% = 7 M urea and 40% [v/v] deionized formamide). PCR products (5 μg per well) were run in TAE buffer (40 mM Tris pH 8.0), 20 mM acetic acid, 1 mM EDTA) at 60°C for 17 h at 100 V. After electrophoresis, the gels were immersed in SYBR green for 30 min at 4°C, rinsed in sterilized water, and then photographed under a UV lamp. Bands were excised, transferred to Eppendorf tubes, and washed three times with sterilized water. After all trace of liquid had been eliminated, 30 μl of water was added to the tubes, which were heated to 60°C for 30 min, and kept overnight at 4°C. Two μl of elate were used for amplification. Products were purified (MiniElute PCR purification kit, Invitrogen), and then direct sequenced using primers from the rrs V3 region (Genoscreen, Lille, France).

Cloning, sequencing and accession numbers
PCR products were purified using QIAquick PCR purification kit (QIAGEN). ARDRA analysis was performed to screen 16S rDNA of bacterial isolates in 20 μl-reaction containing 200 ng DNA sample, 1X Buffer Tango™ and 10 U of each endonuclease RsaI and HhaI as recommended by the manufacturer (Fermentas, France). For cloning, selected products were inserted into the TOPO 2.1 vector, and used to transform the competent TOP10 Escherichia coli cells according to the procedure of the TOPO TA 2.1 cloning kit (Invitrogen). Clones containing DNA inserts were chosen.

Figure 1. Microscopic views of Acinetobacter and infected mosquito tissues. FISH with a specific oligonucleotide probe (A) and DAPI (B) targeting Acinetobacter calcoaceticus grown in a pure culture. (C) Aedes albopictus gut infected with Acinetobacter calcoaceticus (green). Nuclei are stained with propidium iodide (red). A and B, magnification 100X; C, bar 500 μm.

doi:10.1371/journal.pone.0006388.g001
for sequencing. Sequence analyses were performed using the Blastn program at the NCBI database (http://www.ncbi.nlm.nih.gov). Sequences have been deposited in the GenBank database (Table 2).

Fluorescence in-situ hybridization (FISH)

Dissected organs (ovaries, salivary glands and guts) were fixed for 20 min in freshly prepared 4% formaldehyde in PBS, and then washed once with PBS. Cell line Aa23 infected with *Wolbachia* was also used, following the fixing procedure described in [78]. For *Acinetobacter*, an overnight culture of the isolate KZ-OAM was centrifuged at 10,000 g, then 10⁵ pelleted cells were washed with PBS, and fixed as above. Hybridization was conducted using 200 ng probes in hybridization buffer [formamide 50%, SSC 5X, dextran sulfate 200 mg·l⁻¹, poly(A) 250 mg·ml⁻¹, salmon sperm DNA 250 μg·ml⁻¹, tRNA 250 μg·ml⁻¹, DTT 0.1 M, Denhardt’s solution 0.5X] at 37°C overnight. The probes were synthesized by Invitrogen and consisted of: two *Wolbachia* probes W2, 5′-CTTCTGTGAGTACCGTCAT-TATC-3′ [79] and Wol3, 5′-TCCTCTATCCTCTTTCAATC-3′ [80] 5′-end labeled with rhodamine; and two *Acinetobacter* probes ACA, 5′-ATCCCTCTGGATACCTCTCTAT-3′ [81] and Ac, 5′-GGGCACG- TAAAAGGCTCAAGGCGC-3′ [82] 5′-labelled with alexa488. Samples were washed twice in 1X SSC-10 mM DTT and twice in 0.5X SSC-10 mM DTT at 55°C for 15 min. Finally, samples were rinsed in PBS, mounted on a glass slide with glycerol alone or with 1 μg·ml⁻¹ DAPI (4′, 6′-diamidino-2-phenylindole) and viewed under a fluorescent (AXIO Imager.Z1, Zeiss) and a confocal microscope (LSM510, Zeiss) at the Microscopy Centre of University Lyon I.

Supporting Information

Figure S1 DGGE profiles of bacterial *rrs* V3 segments from *Aedes albopictus*. Females and males from generations F2 to F5 (whole insect body), dissected ovaries (OV), gut (G), and salivary glands (SG). *wRi*, *Wolbachia* strain purified from *Drosophila simulans* Riverside [89]. Numbers correspond to sequenced bands (Table 2). Found at: doi:10.1371/journal.pone.0006388.s001 (0.37 MB DOC)

Acknowledgments

We thank David Fouchet for statistical analysis.

Author Contributions

Conceived and designed the experiments: KZ PM. Performed the experiments: KZ DV VTV LM ABF. Analyzed the data: KZ DV VTV PM. Contributed reagents/materials/analysis tools: ABF PM. Wrote the paper: KZ DV PM.
References

1. Turell MJ (1988) Horizontal and vertical transmission of viruses by insect and tick vectors. In: Monath TP, ed. The Arboviruses: Epidemiology and Ecology. Boca Raton, FL: CRC Press. pp 127–152.

2. Paquet C, Quatresous I, Solet JL, Sisoko D, Renault P, et al. (2006) Chikungunya outbreak in Reunion: epidemiology and surveillance, 2005 to early January 2006. Euro Surveill 11: E060202–060203.

3. Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, et al. (2006) Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3: e263.

4. Delatte H, Paupy C, Dehecq JS, Thiria J, Failloux A-B, et al. (2008) Aedes albopictus, vector of chikungunya and dengue viruses in Reunion Island: biology and control. Parasite 15: 3–13.

5. Delatte H, Dehecq JS, Thiria J, Domerg C, Paupy C, et al. (2008) Geographic distribution and developmental sites of Aedes albopictus (Diptera: Culicidae) during a chikungunya epidemic event. Vector Borne Zoonotic Dis 8: 23–34.

6. Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, et al. (2007) Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS ONE 2: e1168.

Figure 3. Confocal Microscopy of Aedes albopictus egg chambers infected with Wolbachia. (A) Wolbachia detected in follicular cells (FC). (B, C) Detection of Wolbachia in germ cells (NC, nurse cell; O, oocyte; NNC, nuclei of nurse cells). (D) View of egg chambers hybridized in the absence of Wolbachia probes. Nuclei (blue) are stained with DAPI, and Wolbachia (red) are stained by specific rrs gene FISH probes. Bar, 100 μm. doi:10.1371/journal.pone.0006388.g003
7. Hemingway J, Hawkes NJ, McCall L, Ramon H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34: 633–663.

8. Akiyoshi S (2008) Transgenesis and the management of vector-borne disease. Preface. Adv Exp Med Biol 627: vii-viii.

9. Buchner P (1963). Endosymbiosis of animals with plant microorganisms. Intervience 21 New York.

10. Monty CB, Maxam A, Parel AP (2002) Facultative bacterial endosymbionts benefit pea aphids Agaphosum piceum under heat stress. Ecol Entomol 27: 189–193.

11. van Beek HE, Wilson AG, Ferguson NR, Moran NA (2007) Aphid thermal tolerance is governed by a heat mutation in bacterial symbionts. PLoS Biol 5: e46.

12. Scarborough CL, Ferrari J, Godfrey HC (2005) Aphid protected from pathogen by endosymbiont. Science 310: 1718.

13. Hedges LM, Brownlie JC, O'Neill SL, Johnson KN (2008) Wolbachia and virus infection in insect vectors: a review. Int J Parasitol 38: 722–780.

14. Hedges LM, Johnson KN (2008) Induction of host defence responses by Drosophila C virus. J Gen Virol 89: 1497–1501.

15. Schnepf E, Cricmore N, Van Rie J, Lereclus D, Baum J, et al. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62: 775–806.

16. Toh H, Weiss BL, Perkin SA, Yamashita A, Oshima K, et al. (2006) Massive genomic changes due to segmental duplication in the drosophila genome. PLoS Biol 4: e261.

17. Zhong J, Jasinskas A, Barbour AG (2007) Antibiotic treatment of the tick vector Ixodes ricinus reduces Wolbachia infection in I. scapularis. PLoS Negl Trop Dis 1: e81.

18. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of Wolbachia. Annu Rev Genet 42: 123–141.

19. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42: 163–190.

20. Zoloth T, Riehle MA, Jacobs-Lorena M (2005) Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. Insect Biochem Mol Biol 35: 699–707.

21. Hedges LM, Johnson KN (2008) Induction of host defence responses by Drosophila C virus. J Gen Virol 89: 1497–1501.

22. Toh H, Weiss BL, Perkin SA, Yamashita A, Oshima K, et al. (2006) Massive genomic changes due to segmental duplication in the drosophila genome. PLoS Biol 4: e261.

23. Barbour AG (2007) Antibiotic treatment of the tick vector Ixodes ricinus reduces Wolbachia infection in I. scapularis. PLoS Negl Trop Dis 1: e81.

24. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of Wolbachia. Annu Rev Genet 42: 123–141.
69. Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, et al. (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317: 1753–1756.

70. Nikoh N, Tanaka K, Shibata F, Kondo N, Hizume M, et al. (2008) Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Res 18: 272–280.

71. Chen WJ, Tsai KH, Cheng SL, Huang CG, Wu WJ (2005) Using in situ hybridization to detect endosymbiont Wolbachia in dissected tissues of mosquito host. J Med Entomol 42: 120–124.

72. Tsai KH, Huang CG, Wu WJ, Chuang CK, Lin CC, et al. (2006) Parallel infection of Japanese encephalitis virus and Wolbachia within cells of mosquito salivary glands. J Med Entomol 43: 752–756.

73. Xi Z, Gavotte L, Xie Y, Dobson SL (2008) Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host. BMC Genomics 9: 1.

74. Braquart-Varnier C, Lachat M, Herbiniere J, Johnson M, Caubet Y, et al. (2008) Wolbachia mediate variation of host immunocompetence. PLoS ONE 3: e3286.

75. Pannebakker BA, Loppin B, Elemans CP, Humblot L, Vavre F (2007) Parasitic inhibition of cell death facilitates symbiosis. Proc Natl Acad Sci USA 104: 213–213.

76. Brennan LJ, Keddie BA, Braig HR, Harris HL (2008) The endosymbiont Wolbachia pipientis induces the expression of host antioxidant proteins in an Aedes albopictus cell line. PLoS ONE 3: e2083.

77. Tortosa P, Courtiol A, Moutailler S, Failloux AB, Weill M (2008) Chinese-bermuda-Wolbachia interplay in Aedes albopictus. Insect Mol Biol 17: 677–684.

78. O'Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A 89: 2699–2702.

79. Braig HR, Zhou W, Dobson SL, O'Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 180: 2373–2378.

80. Zhou W, Rousset F, O’Neil S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 265: 509–515.

81. Widmer F, Seidler RJ, Gillevet PM, Watrud LS, Di Giovanni GD (1998) A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pasteurella (sensu stricto) in environmental samples. Appl Environ Microbiol 64: 2545–2555.

82. Mavingui P, Van VT, Labeyrie E, Rances E, Vavre F, et al. (2005) Efficient procedure for purification of obligate intracellular Wolbachia pipientis and representative amplification of its genome by multiple-displacement amplification. Appl Environ Microbiol 71: 6910–6917.