Fungal Contamination of Air-conditioned Air Flow with Special Reference to Antifungal Activity of Eight Plant Oil Vapor Against Aspergillus Niger

Salah Mahdi Al-Bader*, Ardalan Abdulhameed Osman, Sahar Hussainnagad
Knowledge University-College of Science- Department of Medical Laboratory Science - Erbil-Kurdistan region-Iraq

salah.saleem@knu.edu.iq
ardalan.osman@knu.edu.iq
sahar.hassan@knu.edu.iq

Abstract. Modern buildings without air conditioning are unimaginable. This made them closely related to indoor air quality, especially microbial content. Filters and ducts of AC are colonized by microorganisms, and the air flowing from the AC will carry fungal structures that affect human health. Forty indoor air samples were collected by the plate exposure method from the air current of conditioners in classrooms/secondary school. Samples were collected at the start of operation (S1) and two hours after (S2). This study aimed to isolate and identify of fungi from AC air current, and analysis of the fungal community, as well as in vitro antifungal exam of eight oil vapor against Aspergillus niger. Oils of Hacinathus sp., Cymbopogon citratus, Myrtus communis, Eucalyptus sp., Laurus nobilis, Cinnamon sp., Rosemary officinalis, and Cyperus rotundus were used. Eight fungal genera were listed from a total of 355 fungal colonies: Aspergillus (4 sp.), Penicillium sp, Cladosporium sp, Mucor sp, Alternaria, Geotrichum, Candida, Rhodotorula, besides sterile mycelia. From S1 and S2 samples, 189 colonies (8 genera), and 83 colonies (5 genera) were recognized respectively. Aspergilli showed the highest occurrence of 100% and frequency76.4%. All examined vapor reduced growth of A. niger, C. citratus, Eucalyptus sp., and Cinnamon sp. oils gave the highest significant antifungal activity in comparison with control. It was realized that ACs are an effective source of indoor airborne fungi, and eco-friendly materials have shown significant antifungal activity. They can be the choice of the future.

Kew words. Indoor air, Bio-fungicide, A. Niger, C. citratus, vapor phase.

1. Introduction
Air conditioners (ACs) have been one of the common essential requirements of modern buildings, they were used around the year to provide a comfortable indoor environment. As ACs provide a suitable temperature and humidity, they cause increasing of indoor airborne microorganisms (IABM) which can benefit from the availability of nutrients and lack of direct sunlight to grow and multiply quickly. Therefore, ACs may be a potential source of air contamination [1, 2]. The effect of the indoor environment on human health refers to as sick building syndrome (SBS), and no doubt, IABMs play an important role in this subject [3, 4, 5].
The IABF was studied thoroughly in several types of buildings such as hospitals, classrooms, offices, malls, and residents [2, 6, 7, 8, 9], and the relation between IABF and ACs were carefully discussed. The ACs may act as a reservoir and spreader of indoor biological air pollutants [10], at the same time several technical applications were taking place to minimize the air conditioners contamination, as using of chemical compounds and ultraviolet as germicidal agents [11, 12, 13]. Even though chemical compounds have a high effect on fungi associated with ACs, but they cause air pollution (Myatt 2008). Looking for active and safety treatments was a goal of several previous studies, and the current study was conducted to explain the indoor airborne fungal community concerning ACs operation time. The study aimed also to evaluate the effect of vapor state of eight plant oils on the commonest fungus isolating here Aspergillus niger.

2. Materials and Methods

2.1. Samples collection

Air samples were taken by plate exposure method (passive sampling method), Plates with Typha polLens agar medium [15] were uncovered for 5 minutes in two appointments (start of operation and two hours after). The AC was continuously work during these period (2 hours). Plates were fixed 15 cm far from the AC air outlet, then they were covered, and were sealed by paraffin tape, and were kept in clean nylon bag at room temperature.

2.2. Fungal identification

The fungal colonies have been counted after four days, and fungal identification lasted for three weeks, isolates were identified according to morphological characteristics base on [16, 17]. Occurrence%, and frequency% for fungal isolates were collected as in [1]. Richness index (R) was calculated as the formula below:

\[
O\% = \frac{\text{no.of fungal appear} \times 100}{\text{no.of collected samples}}
\]

\[
F\% = \frac{\text{no.of isolated species} \times 100}{\text{no.of total isolates}}
\]

\[
R = \frac{\text{no.of colonies}}{\text{no.of samp}}
\]

2.3. Test of oils vapor affect

The Crude oils of Hacinathus sp., C. citratus, M. communis, Eucalptus sp., L. nobilis, Cinnamon sp., R. officinalis and C. rotundus were extracted from plant materials which were purchased from a specific privat traditional medicine center in Erbil city. A simple steam distillation apparatus was fitted for this purpose. Evaluation of the vapor phase of oils against A. niger carried out firstly in sterile vials with screw cap to avoid vapor losing. A 15 ml of TPA slant medium were prepared, and then was inoculated by single needle prick of a 10 days A. niger pure culture. 0.1 ml of each oil were placed in vial cap, and incubated in upside down vertical direction. Test was performed by three replicates inside the isolation chamber. The growth of A. niger was checked and carefully observed after seven days. According to their higher antifungal activity, oil of C. citratus, Eucalyptus sp. and Cinnamon sp. were examined by disc evaporation method [18].

3. Results and Discussion

Due to their close relationship to human daily life, the indoor airborne fungi have been deeply studied, and researchers discussed there taxonomic, ecologic, and hygienic impact [19, 20, 21]. In the current study, all forty collected samples were positive, 272 colonies related to 8 genera were recorded. Aspergillus (4 sp.), Penicillium, Cladosporium, Alterna ria, and Geotrichum, beside one genus related to zygomycetes, ascomycetes, and basidiomycetes, they were Mucor, Candida, and Rhodotorula respectively (Table-1). The isolated fungi are common as indoor airborne, and highly related to outdoor environment. [22].
Table 1. Isolated fungi from air samples with their occurrence% (O%), frequency% (F%), and taxonomic groups (TG).

S	Fungi	O%	F%	TG	S1	S2
1	*Alternaria*	5%	0.7%	Hyphomycetes	+	+
2	*Aspergillus*(4sp.)	100%	76.4%	Hyphomycetes	+	+
3	*Candida*	10%	5.8%	Ascomycetes	+	+
4	*Cladosporium*	10%	2.9%	Hyphomycetes	+	+
5	*Geotricum*	5%	0.7%	Hyphomycetes	+	-
6	*Mucor*	10%	0.7%	Zygomyctes	+	-
7	*Penicillium*	10%	5.8%	Hyphomycetes	+	+
8	*Rhodotorula*	5%	0.7%	Basidiomycetes	+	-
9	Sterile mycelia	20%	4.4%	Unknown	+	+

TCC 189 colonies related to 8 genera were counted in S1 samples, while they were 89 colonies and 5 genera in S2 (table-1). The high colony count of S1 air samples indicate the role of ACs machines as a source of fungal fragments, which were hold /puffed by the air current to hall space. The total colonies count inversely proportional to the operating time. The richness index (R) of S1 = 4.725, it was about twice of S2 = 2.075. The spores formation and dryness during shutdown period (14-16 h.) may cause the increasing of fungal structures and made them easily to separate. Hamada and Fujita [23] mentioned the role of ACs as a source and spreader of IABM and the air current at the beginning of AC operation hold more fungal structures than afterward.

Most previous studies for indoor airborne fungi recorded Aspergillus, Penicillium, Cladosporium as common isolates. [24]. Aspergillus niger showed the highest prevalence in the current study, thus it was used as an indicator to evaluate the antifungal activity of tested oil vapors. The eight oils of Hacinathus sp., *C. citratus*, *M. communis*, Eucalptus sp., *L. nobilis*, Cinnamon sp., R. officinalis and C. rotundus were selected according to their aromatic characteristics and antifungal activity which was mentioned previously [25, 26, 27]. The results of the primary checking of antifungal activity of oil vapor explained that all treatments decreased the growth of A. niger in comparison with control (Figure 1.).

C. citratus oil showed the highest activity followed by Eucalyptus sp. and Cinnamon sp (fig-1/2,4,7 respectively). The antifungal activity of these oils was mentioned by several workers [27, 28]. Results of vapor state antifungal activity of the three oils against *A. niger* radial growth showed significant difference (fig. 2 and 3), the highest reduction in fungal radial growth caused by *C. citratus* treatment.
Figure 2. Antifungal activity of three oil vapors on radial growth (mm) of A. niger (mean of 3 replicates).

Eucalyptus sp., and Cinnamon sp. showed full inhibition to spore formation and effect on the morphology of fungal mycelia growth (fig.3).

Figure 3. Antifungal activity of C. citratus (1), Eucalyptus sp. (2), and Cinnamon sp. (3) vapor oil on A. niger, control (4)

The antifungal activity of C. citratus oil as well as its chemical ingredients were carefully discussed, the plant essential oil was suggested as a successful alternative antifungal agent. [18, 29]. Sites of effect and the mechanism of inhibition were explained, and there is a semi-agreement that essential oils damage the functions of cell membranes and disturbed cell transport systems [30].

Although Eucalyptus oil vapor has widely used in traditional medicine its antifungal activity attracts less attention, the volatile compounds showed strong activity against several phytopatho gens [31]. The antifungal activity of Cinnamon oil and its effective compounds were reported by several studies, the effectiveness of oil vapor has also been demonstrated against many bacterial and fungal isolates from various sources, [32, 33].

4. Conclusion
The current study gave hopeful results to use vapor state of essential oils as antifungal agents against indoor aerobiological pollution, and air conditioner contamination. Farther studies should be conducted to increase the fungicidal effect threw test of oil combination (C. citratus, Eucalyptus sp., and Cinnamon sp.), duration of evaporation and vapor concentration. Due to their activity, quick degradation, low toxicity, and aromatic characteristics, the plant essential oils and/or their components highly expected to be the expectable treatment of indoor airborne fungi.

References
[1] Al-Bader, S., Ismael, L. and Ahmood, A. (2018). Fungal Contamination of Airconditioner Units in Five Hospitals of Erbil Province- Kurdistan Region /Iraq. Science Journal of University of Zakho, 6(4), pp.146-149.
[2] Nascimento, J., Queijeiro López, A., de Araújo, M., de Araujo, L. and Silva Filho, E. (2019). Airborne Fungi in Indoor Hospital Environments. International Journal of Current
Microbiology and Applied Sciences, 8(01), pp.2749-2772.

[3] Al-Bader, S., Ahamood, A. and Al-Hamdani, M. (2013). The Relation Between Fungi Isolated from Higher Respiratory Tract of Allergic and Asthmatic Patients, and air fungi in Their residence. Rafedain journal of Sciences, 24(2), 1-12.

[4] Ghaffarianhoseini, A., AlWaer, H., Omrany, H., Ghaffarianhoseini, A., Alalouch, C., Clements-Croome, D. and Tookey, J. (2018). Sick building syndrome: are we doing enough? Architectural Science Review, 61(3), pp.99-121.

[5] Straus, D., Cooley, J., Wong, W. and Jumper, C. 2003. Studies on the Role of Fungi in Sick Building Syndrome. Archives of Environmental Health: An International Journal, 58(8), pp.475-478.

[6] Fauzan, N., Jalaludin, J. and Chua, P. (2016). Indoor Air Quality and Sick Building Syndrome (SBS) among Staff in Two Different Private Higher Learning Institution Settings in Kuala Lumpur and Selangor. International Journal of Applied Chemistry. ISSN 0973-1792 Volume 12, Number 1 (2016) pp. 57-61.

[7] Chao, H., Schwartz, J., Milton, D. and Burge, H. (2003). The work environment and workers health in four large office buildings. Environmental Health Perspectives, 111(9), pp.1242-1248.

[8] Naruka K, and Gaur J, (2014). Distribution pattern of airborne bacteria and fungi at market area. Am-Eurasian J Sci Res 9:186-194 doi:10.5829/ idosi. aejr.2014. 9. 6. 86254

[9] Wang, X., Liu, W., Huang, C., Cai, J., Shen, L., Zou, Z., Lu, R., Chang, J., Wei, X., Sun, C., Zhao, Z., Sun, Y. and Sundell, J. 2016. Associations of dwelling characteristics, home dampness, and lifestyle behaviors with indoor airborne culturable fungi: On-site inspection in 454 Shanghai residences. Building and Environment, 102, pp.159-166.

[10] Bassam M Aboul-Nasr, Abdel-Naser A. Zohri and Enas Mahmoud Amer (2014). Indoor Surveillance of Airborne Fungi Contaminating Intensive Care Units and Operation Rooms in Assiut University Hospitals, Egypt.J. of Health Science, 2(1).

[11] Weaver, L., Michels, H. and Keevil, C, 2010. Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminum. Letters in Applied Microbiology, 50(1), pp.18-23.

[12] Deccis, S., Sardella, D., Triganza, T., Brincat, J., Gatt, R. and Valdramidis, V. (2017). Assessing the anti-fungal efficiency of filters coated with zinc oxide nanoparticles. Royal Society Open Science, 4(5), p.161032.

[13] Levetin, E., Shaughnessy, R., Rogers, C. and Scheir, R, 2001. Effectiveness of Germicidal UV Radiation for Reducing Fungal Contamination within Air-Handling Units. Applied and Environmental Microbiology, 67(8), pp.3712-3715.

[14] Myatt, T., Minegishi, T., Allen, J. and MacIntosh, D, 2008. Control of asthma triggers in indoor air with air cleaners: a modeling analysis. Environmental Health, 7(1).

[15] Al-Bader S M (2019). Characterization and evaluation of a fungal growth medium composed of Cattail (Typha domingensis Pers). 5th Kurdistan International Conference on Science and Technology .24th - 25th April 2019.

[16] Domsch, K.H.; Gams, W.; Anderson, T. (2007). Compendium of soil fungi. 2nd Edition. IHW Verlag. Eching, Germany. 672 pp.

[17] Müller, J. (1996). G. S. De Hoog & J. Guarro (eds), 1995. Atlas of Clinical Fungi. Baarn: Centrallbureau voor Schimmelcultures. Mycoses, 39(1-2), pp.71-71.

[18] Dobre, A. A. and Gagiu, V. (2011). Antimicrobial activity of Essential oils against food-borne bacteria evaluated by two preliminary methods. Romanian Biotechnological Letters 16(6).

[19] Rostami, N., Alidadi, H., Zarrinfar, H. and Salehi, P, 2016. Assessment of indoor and outdoor airborne fungi in an Educational, Research and Treatment Center. Italian Journal of Medicine, 10.

[20] Seppänen O, Kurnitski J. Moisture control and ventilation. In: WHO Guidelines for Indoor Air Quality: Dampness and Mould. Geneva: World Health Organization; 2009. 3. Available from:
[21] Wu, F., Jacobs, D., Mitchell, C., Miller, D. and Karol, M, 2007. Improving Indoor Environmental Quality for Public Health: Impediments and Policy Recommendations. Environmental Health Perspectives, 115(6), pp.953-957.

[22] Oliveira, M., Ribeiro, H., Delgado, J. and Abreu, I, 2009. Aeromycological profile of indoor and outdoor environments. Journal of Environmental Monitoring, 11(7), p.1360.

[23] Hamada, N. and Fujita, T. (2002). Effect of air-conditioner on fungal contamination. Atmospheric Environment, 36(35), pp.5443-5448.

[24] Mirhoseini, S., Nikaeen, M., Satoh, K. and Makimura, K, 2016. Assessment of Airborne Particles in Indoor Environments: Applicability of Particle Counting for Prediction of Bioaerosol Concentrations. Aerosol and Air Quality Research, 16(8), pp.1903-1910.

[25] Al-Bader, S., Ismail, L., Ali, H. And Saleh, A. (2019). Effect of natural oil vapor phase on fungal contaminated car air-conditioner filters in Erbil city-Kurdistan region-Iraq. 3 rd International Conference on Biological & Health Sciences (CICBIOHS’19), Joint conference of Cihan University-Erbil and Hawler Medical University. April 30th – May 1st 2019. Erbil

[26] Karzan, K., Shnawa, B. and Gorony, S. (2017). Antimicrobial Activity of Cyperus rotundus Linn. Extracts and Phytochemical Screening. Eurasian Journal of Science and Engineering, 3(2).

[27] Boukhatem, M., Ferhat, M., Kameli, A., Saidi, F. and Kebir, H. (2014). Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs. Libyan Journal of Medicine, 9(1), p.25431.

[28] Nazzaro, F., Fratianni, F., Coppola, R. and Feo, V, 2017. Essential Oils and Antifungal Activity. Pharmaceuticals, 10(4), p.86.

[29] Silva, C., Guterres, S., Weisheimer, V. and Schapoval, E,2008. Antifungal activity of the lemongrass oil and citral against Candida spp. Brazilian Journal of Infectious Diseases, 12(1).

[30] Chuenarom, V., Kerdchoechuen, O. and Laohakunjit, N. (2011). Volatile compounds and antifungal activity of four essential oils. Agricultural Sci J 2011; 42(2): 345-348

[31] Ramezani H, H.P., Singh H P, Batish D R, and Kohli R K, 2002. Short report Antifungal activity of the volatile oil of Eucalyptus citriodora. Fitoterapia 73 2002 261 Ž. 262. doi:10.3402/ljm.v9.25431

[32] Sukatta U, Haruthaithanasan V, Chantarapanont W, Dilokkunanan U, and Suppakul P, 2008. Antifungal Activity of Clove and Cinnamon Oil and Their Synergistic Against Postharvest Decay Fungi of Grape in vitro. Kasetsart J. (Nat. Sci.) 42: 169

[33] López P, Sánchez C, Batlle R, and Nerín C, 2007. Vapor-Phase Activities of Cinnamon, Thyme, and Oregano Essential Oils and Key Constituents against Foodborne Microorganisms. J. Agric. Food Chem. 2007, 55, 11, 4348–4356.

[34] Zhang M, Ge J, Yu X, 2018. Transcriptome Analysis Reveals the Mechanism of Fungicidal of Thymol Against Fusarium oxysporum f. sp. niveum. Current Microbiology. Apr, 2018; 75(4):410-419. DOI: 10.1007/s00284-017-1396-6.