Mathematical Model Development for Navigation with Indian Constellation (NavIC) L-Band Geo Synchronous Satellite’s Direct Signal and Multipath Signals

Vivek Chamoli1 · Rishi Prakash1 · Anurag Vidyarthi1

Accepted: 29 May 2022 / Published online: 31 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
NavIC L-band satellite signal that travels from the satellite to the receiver undergoes mainly shadowing and multipath effects. In this research paper, NavIC satellites were observing and analyzing signal efficiency for both the direct signal and multipath signal over the Dehradun area. Two open space data series (direct signal and multipath signal) for Dehradun were obtained in this analysis by the satellite receiver. The methodology includes evaluation, testing, and analysis of data in both cases. Based on collected data, a general mathematical model has been developed, describing the signal intensity in the open space context. The both NavIC Mathematical model was validated with the experimental data. The average R² and RMSE values developed for the direct signal mathematical model were 0.89 and 1.08% respectively which show a good prediction of NavIC C/N₀ value with the developed model. For the multipath mathematical model, four cases have been evaluated. Comparing the graphical view of all four cases for C/N₀ multipath signal concerning raw NavIC C/N₀ multipath signal has been done to select the best mathematical model.

Keywords Mathematical model · NavIC · Direct signal · Multipath signal · Regression model

1 Introduction
This research aims at developing a mathematical model that can predict the NavIC Geosynchronous satellite’s direct signal and multipath signals. The signal distortion or maximum signal blocking of NavIC satellite signals are due to urban obstruction. One of the major sources of signal loss is multipath. When the signals are received from more than one path, the NavIC Multipath signal provides a positional error. The accuracy of the obtained signal is influenced by many factors such as temperature, the multipath [1–6], and satellite Geometry, Ionospheric effect [7], etc. Signals are also influenced by the electrical properties of the roof and the wall. Therefore, the diffraction coefficients are also used in

* Vivek Chamoli
vivekchamoli08@gmail.com

1 Department of Electronics and Communication Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
mathematical model of direct signal. Most of the work carried out in this domain belongs to Global Positioning System (GPS). Deep et al. [1] derived the regression model correlating GPS signal SNR and satellite elevation angle in an open environment. Third order polynomial has been used to develop the relationship between SNR and elevation angle. Another regression model which is given by Pai et al. [2] represents the overall signal performance in open space in Polynomial of order 4. Both models were used to predicted the SNR of GPS signal only.

Han et al. [3] proposed a curve-fitting semi-empirical model to predict SNR (signal-to-noise ratio) data collected by a GNSS receiver. The objective of this model is to reestablish the direct and reflected signals from SNR data and to extract frequency and phase information affected by soil moisture as proposed by Larson [4]. Zavorotny et al. [5] proposed a GPS multipath physical model for assessing soil moisture around the recipient. Authors have developed an electro-dynamic model that connects bare soil to power obtained by the GPS receiver. This electro-dynamic model facilitates the determination of reflection coefficients at different polarization. Reflection coefficient is a function of soil dielectric and dielectric property of soil varies with the change in moisture content of the soil. One of the drawbacks of such a model is the idea of out-of-soil water that was used to forecast soil dielectric properties and frequency scattering. The findings were confined to one place (Marshall, CO) therefore to determine the reliability of model it should be tested to other locations also.

Semi-empirical and physical models that have been established are complex and depend on numerous parameters. Consequently, there is a need for a less complex mathematical model. In this study, mathematical model for both direct and multipath signals have been developed to determine the relationship between NavIC signal intensity and angle of elevation. These mathematical models can be used in a variety of applications, including soil moisture estimation [8–14]. The measurement of soil moisture content is important in the fields of agriculture, climate monitoring, climate change, soil erosion, etc. [15–23]. Other applications of GNSS are snow depth estimation, climate model, weather monitoring, soil erosion, soil moisture modeling and integrated sensing of soil moisture, and etc. [24–31].

The paper is divided into five sections. Section 1 introduces and discusses the direct signal and multipath signal obtained from the receivers. Section 2 contains information on the experimental setup for receiving NavIC data along with difference and comparison of the NavIC data received at two different locations. Section 3 discusses the methodology for developing mathematical models to predict the direct signal and multipath signal. The results have been discussed in Sect. 4. Finally, in Sect. 5, conclusions have been made.

2 Experimental Setup for Receiving NavIC Data

Two experimental setups to predict NavIC Direct C/N_0 and multipath C/N_0 have been used in this research. The first experimental configuration consists of two modules, the first being external and the second internal. The external module comprises receiver antenna mounted on the top of the building as shown in Fig. 1. The internal module is composed of the IGS receiver [30], desktop, and energy supply as shown in Fig. 2.

The second experimental setup also consists of a receiver antenna and an IGS receiver. NavIC antenna has been mounted in the playground of Graphic Era Deemed to be University (Latitude 30.2681°N and Longitude 77.9944°E), Dehradun. This NavIC antenna was used to collect the multipath signal data from the bare land as shown in Fig. 3.
2.1 Difference Between Receiver Setup Between Rooftop and Ground

To receive the NavIC signal we have two receiver antennas, one receiver antenna is mounted on the rooftop of the building and the other one mounted in the playground. The receiver antenna also receives GPS and GAGAN signals. The antenna mounted on the rooftop is expected to receive only a direct signal and not the multipath. With the elevation angle, the received signal intensity increases. Signal power is improved with the increase in elevation angle and reached its highest value when the satellite is just above the antenna, in the case of a GPS whereas in case of a NavIC, the signal strength is maximum at 58° for NavIC—4, and NavIC—5 and 68° for NavIC—1, NavIC—2 and NavIC—9.

The antenna mounted at the height of 2-m from the ground is expected to receive direct as well as the reflected signal from the ground (in our case it is soil surface). The selection of receiver height is another important aspect of the work. The height of the receiver directly affects the multipath fluctuation of NavIC data. Several researchers have preferred to keep the receiver at a height of 2 m, 2.5 m, or 3 m in soil moisture studies [3–5, 13–15, 23–31]. In this work, we kept our receiver antenna at a height of 2 m from the soil surface to collect the multipath data. Figure 4 shows the radial distance of reflection point from the receiver base with elevation angle. It can be observed from the figure that increasing the height of receiver will also increase the coverage area of reflected signal. As the elevation angle increases, reflections received at the receiver are from a very near point. For large elevation angles, the reflection points are much far away.

2.2 Comparison of NavIC Data Received at Two Different Locations

Figures 5, 6, 7 and 8 show the comparison of data received from two different locations. The signal receives from the rooftop receiver is almost the same on all 4 days. There is a marginal
change in the C/N_0 or the contribution multipath to the C/N_0 is so little. However, when we compare GEU ground receiver data we observe that the multipath contribution in the signal is more than the receiver at the rooftop. Changes in C/N_0 with the soil moisture can be observed at a lower elevation angles. Table 1 shows the value of soil moisture for respective dates.

3 Methodology for Developing Mathematical Model

3.1 Regression Model to Predict NavIC Direct Signal

To predict the direct signal of NavIC constellation, we have developed a general mathematical model. Figure 9a–d illustrates the outcome of NavIC regression model derived for the NavIC satellite data to link the C/N_0 data to the satellite elevation angle. Chamoli et al. has proposed an empirical relationship, given by Eq. 1, to predict the NavIC C/N_0 [31].
3.2 Theoretical Retrieval of Multipath C/N0 Data for NavIC: Mathematical Model

The multipath data received by the NavIC receiver is composed by direct and reflected signal. Therefore C/N0 can be written as

\[C/N_0 = (3.199 \times 10^{-5} \times (\theta)^3 - 0.00051 \times (\theta)^2 + 0.44 \times (\theta) + 3 \times 10^{-8}) + Bandwidth_{NavIC _L5} \]

(1)

3.2 Theoretical Retrieval of Multipath C/N0 Data for NavIC: Mathematical Model

The multipath data received by the NavIC receiver is composed by direct and reflected signal. Therefore C/N0 can be written as

\[C/N_0 = A [G_d \cos \alpha + \Gamma G_r \cos(\alpha + \psi)] \]

(2)

where \(A \) is amplitude, \(\alpha \) is the initial phase, \(G_d \) and \(G_r \) are the direct signal gain of antenna and reflected signal gain of antenna, \(\Gamma \) is reflection coefficient, \(f \) represents the frequency and \(\psi \) is the phase difference of multipath signal. The phase difference due to multipath is given as
Fig. 4 Ground reflection distance of from the receiver at different elevation angle and at different antenna height

Fig. 5 Raw C/N₀ data for NavIC—4 on date 04/Sep/2017 a receiver installed on rooftop b receiver on ground

Fig. 6 Raw C/N₀ data for NavIC—4 on date 05/Sep/2017 a receiver installed on rooftop b receiver on ground
where \(h \) is the height of the receiver from the ground and \(\lambda \) is the wavelength of the transmitted signal.

The NavIC signal is a right-hand circular polarization (RHCP). This implies that a helix from a right-hand screw in the propagation path is shown by the electric field vector. Horizontal and vertical polarization elements are circular polarization. The vertical component gets inverted if the incident angle is less than Brewster Angle. The vertical component of signal remains unchanged after reflection if incidence angle is higher than Brewster Angle. Figure 10 shows the graph of Brewster angle calculation considering dielectric constant from 3 to 30. For NavIC satellite data the range of Brewster angle is 59°–79° when dielectric constant changes from 3 to 30.

\[
\psi = \frac{4\pi h}{\lambda} \sin \theta
\]

(3)
The polarization of a signal will then shift from RHCP to LHCP and vice versa, depending on the surface reflection and incidence angle \[32\]. The reflected signal can be seen as the sum of two circularly polarized signals, one which maintains the co-polarizing \(\tau_o\) (original RHCP) and a cross-polarizing \(\tau_x\) (component opposite LHCP).

\[
\tau_o = \frac{\tau_h + \tau_v}{2}
\] \hspace{1cm} (4)

Fig. 9 A modified regression model to predict C/N\(_0\) with the satellite data. a 05/September/2017 b 05/October/2018 c 20/March/2019 d 24 April 2020
where h is horizontal polarization, v is vertical polarization and θ is satellite elevation angle.

The relative dielectric constant (ε) can be evaluated by Eq. (8) with given value of soil moisture (m) [33].

$$e = 3.03 + 9.3m + 146m^2 - 76.7m^3$$ \hspace{1cm} (8)

The reflection coefficient (Γ) may be both RHCP and LHCP. Literature shows that theoretically if GNSS signal are RHCP and it’s reflected from the planer surface its changes its polarization and convert it in LHCP [32]. But practically the soil surface is not a perfect planner surface and soil dielectric also affects it, so that all RHCP polarization will not convert to LHCP polarization. Therefore following four cases have been considered to estimate the C/N_0 in this research.

(a) LHCP × Reflected gain
(b) LHCP × Direct gain
(c) RHCP × Reflected gain
(d) $(n \times $LHCP $+ n \times $RHCP$)$ Direct/Reflected gain; ($n=0–1$).
4 Result and Discussion

4.1 Regression Model to Predict NavIC Direct Signal

To access fitness, the Ordinary Least Squares (OLS) have been used. In OLS analysis, R-squared (Coefficient of determination) and Root Mean Square Error (RMSE) are used to determine the efficiency of the operation. RMSE and R-squared value for the randomly selected data for the years 2017, 2018, 2019, and 2020 have been analyzed. R^2 varies from 0.86 to 0.92 and RMSE values varies from 0.88 and 1.53%. The mean value of R^2 is therefore 0.89 and RMSE 1.08%. This model has an R^2 value of 0.89 which shows that 89% of C/N_0 variance can be represented in this regression model. For the model, RMSE is 1.08, showing the goodness of fitted regression model.

4.2 Theoretical Retrieval of Multipath C/N_0 Data for NavIC

CASE 1 When LHCP \times Reflected gain has been considered as reflection coefficient. Equation 9 gives the value of multipath C/N_0.

\[C/N_0 = A \left[G_d \cos \alpha + (LHCP \times G_r) \cos (\alpha + \psi) \right] \]

Figures 11 and 12 show the graph of C/N_0 with respect to elevation angle ranging from 13°–30° to 13°–70°, respectively. It can be observed from both the graphs that as the dielectric value of soil moisture increase the value of C/N_0 amplitude also increase whereas, after 50° we get approximately direct signal component only.

CASE 2 When LHCP \times Direct gain have been considered as reflection coefficient. Equation 10 gives the value of multipath C/N_0.

\[C/N_0 = A \left[G_d \cos \alpha + (LHCP \times G_d) \cos (\alpha + \psi) \right] \]
Figures 13 and 14 show the graph of $\frac{C}{N_0}$ with respect to elevation angle ranging from 13°–30° and 13°–70°, respectively. It can be observed from both the graphs that as the dielectric value of soil moisture increase the value of $\frac{C}{N_0}$ amplitude also increase whereas, after 70° we get approximately direct signal component only reflected signal amplitude get amplified.

CASE 3 When RHCP×Reflected gain has been considered as reflection coefficient. Equation 11 gives the value of multipath $\frac{C}{N_0}$.

$$\frac{C}{N_0} = A \left[G_d \cos \alpha + (RHCP \times G_r) \cos (\alpha + \psi)\right]$$ (11)

Figures 15 and 16 show the graph of $\frac{C}{N_0}$ with respect to elevation angle ranging from 13°–30° and 13°–70°, respectively. It can be observed from both the graphs that as the dielectric value of soil moisture increase the value of $\frac{C}{N_0}$ amplitude decrease whereas, after 40° we get approximately direct signal component only.

CASE 4 Above three cases have been considered for LHCP and RHCP, separately. Now in the 4th case we have considered the following 3 sub-cases for both because during experimentally data collection both LHCP and RHCP reflection coefficient component may have been affected the signal:

Case 4.1 Following Eq. 12 gives the value of multipath $\frac{C}{N_0}$.

$$\frac{C}{N_0} = A \left[G_d \cos \alpha + (0.3 \times LHCP) \times G_d + RHCP \times G_r \cos (\alpha + \psi)\right]$$ (12)

Figures 17 and 18 show the graph of $\frac{C}{N_0}$ with respect to Elevation angle ranging from 13°–30° and 13°–70°, respectively. It is clearly visible from both the graphs that the increase in dielectric value due to soil moisture increases the amplitude of $\frac{C}{N_0}$ data.

Case 4.2 Eq. 13 gives the value of multipath $\frac{C}{N_0}$.

$$\frac{C}{N_0} = A \left[G_d \cos \alpha + 0.3 \times (LHCP \times G_r + RHCP \times G_r) \cos (\alpha + \psi)\right]$$ (13)
Figures 19 and 20 show the graph of C/N_0 with respect to elevation angle ranging from 13°–30° and 13°–70°, respectively. It can be observed from both the graphs that as the dielectric value of soil moisture increase the value of C/N_0 amplitude decrease whereas, after 40° we get approximately direct signal component only.

Case 4.3 Eq. 14 gives the value of multipath C/N_0.

$$C/N_0 = A\left[G_d\cos\alpha + (0.7(LHCP) \ast G_r + RHCP \ast G_r)\cos(\alpha + \psi)\right]$$

Figures 21 and 22 show the graph of C/N_0 with respect to elevation angle ranging from 13°–30° and 13°–70°, respectively. It can be observed from both the graphs that as the
dielectric value of soil moisture increase the value of C/N₀ amplitude increases whereas, after 40° we get approximately direct signal component only. Table 2 shows the summary of all four Cases with respect to increase in soil dielectric values.

4.2.1 Raw Multipath Data Received by a Receiver and Its Processing

The same soil moisture values and corresponding dielectric constant used in the above mathematical model have been taken in to account to draw a comparison of theoretical and experimental result. Figure 23 shows the raw C/N₀ data received on 12th September 2017,
7th June 2018 and 14th July 2018. The methodology used for determining the multipath amplitude has been taken from the Chamoli et al. [14].

Table 3 gives the Data set of multipath amplitude with respect to soil moisture and corresponding dielectric constant.

From the experimental data, it is clear that when the soil moisture increases the value of the amplitude also increases. Table 2 lists the soil moisture, its dielectric constant and corresponding amplitude obtained experimentally. Case 1, Case 2, Case 4.1, and Case 4.3 also exhibit the same trend, i.e., the value of amplitude increased with the increase in dielectric constant. Therefore, we have four mathematical equations to determine the C/N_0 of multipath signal. The C/N_0 data have been collected in August and September 2020. In these data sets, we have an elevation angle range of 13°–70° of NavIC C/N_0 data. So
that comparing the graphical view of Case 1, Case 2, Case 4.1 and Case 4.3, with the C/N₀ of multipath signal received on date 28th Aug 2020 and 7th Sep 2020 (Fig. 24) it is clear that only Case 4.3 gives the approximately same graphical view as compare to other cases. Therefore, Eq. 14 can be used as a mathematical model to determine the NavIC C/N₀ multipath signal.

Fig. 19 Plot between C/N₀ and elevation angle (13°–30°)

Fig. 20 Plot between C/N₀ and elevation angle (13°–70°)
5 Conclusion

The current work has been done with the NavIC IGS receivers for open-space environments in the Dehradun area. In this research paper two mathematical models, i.e., mathematical model to predict direct signal of satellite and mathematical model for a multipath signal of a satellite have been developed. At any given time, NavIC direct signal can be predicted using a mathematical model (Eq. 1) in open environments. The predictive model could efficiently predict the availability of satellites and the quality of signals for
Table 2 show the summary of all four cases

Case no	Case	Amplitude	Remark
Case 1	LHCP × Reflected gain	Increased	After 50° we get approximately direct signal component only
Case 2	LHCP × Direct gain	Increased	When signal reaches upto 70° elevations angle the direct signal and reflected signal amplitude get amplified
Case 3	RHCP × Reflected gain	Decreased	After 40° we get approximately direct signal component only
Case 4	(n × LHCP + n × RHCP) direct/reflected gain; (n=0–1)		
4.1	FOR 0.3 × (LHCP × DIRECT GAIN) + RHCP × REFLECTED GAIN	Increased	When signal reaches upto 70° elevations angle the direct signal and reflected signal amplitude get amplified but less than results of case 2
4.2	FOR (0.3 × (LHCP) + RHCP) × REFLECTED GAIN	Decreased	After 40° we get approximately direct signal component only
4.3	(0.7 × (LHCP) + RHCP) × REFLECTED GAIN	Increase	After 40° we get approximately direct signal component only
numerous geographic environments. To access fitness, the Ordinary Least Squares (OLS) are used. R^2 has varies from 0.86 to 0.92 and RMSE has varies from 0.88 and 1.53%. This model has an average R^2 value of 0.89 which shows that 89% C/N_0 variance can be represented in this regression model. For the model, average RMSE is 1.08%, showing the fitted regression model is very good. The results of this study can be used to assess the impact of various mobile satellite environments in order to improve the quality of service.

The multipath data received by the NavIC receiver is a combination of direct signal and reflected signal. For developing the mathematical model for multipath signal, we have considered four cases. The value of the amplitude is increased in Case 1, Case 2, Case 4.1, and Case 4.3. Therefore we have only four Mathematical equations out of six equation models to determine the NavIC C/N_0 multipath signal. Now comparing the graphical view of in Case 1, Case 2, Case 4.1, and Case 4.3, C/N_0 multipath signal with respect to raw NavIC C/N_0 multipath signal on date 28th Aug 2020 and 7th Sep 2020. It seems clear that only Case 4.3 gives the approximately same graphical view as compare to others. Therefore, the mathematical equations (Eq. 14) have been used to determine the NavIC C/N_0 multipath signal. These mathematical models can be used in a variety of applications, including soil moisture estimation, snow depth estimation, climate model, agriculture, climate monitoring, climate change, soil erosion controlling, and etc.

![Fig. 23](image_url)

Table 3 Data set of multipath amplitude with respect to soil moisture and corresponding dielectric constant

Date	Soil moisture (%)	Amplitude (V/V)	Dielectric constant (e)
12-Sep-2017	10.25	15.75	5.4346
07-June-2018	15.72	23.85	7.8019
14-July-2018	31.85	37.51	18.3245
Author Contributions Not applicable.

Funding This work is supported by the Space Applications Center (SAC), Indian Space Research Organization (ISRO), Ahmedabad India under NavIC—GAGAN Utilization Program.

Availability of Data and Material According to the undertaking signed with SAC, this data is the property of SAC and hence cannot be shared.

Code Availability According to the undertaking signed with SAC, this data is the property of SAC and hence cannot be shared.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Fig. 24 Raw C/N₀ data received on a 28th Aug. 2020 and b 7th Sep. 2020
References

1. Deep, S., Raghavendra, S., & Bharath, B. D. (2018). GPS SNR prediction in urban environment. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 83–85.

2. Pai, B. V., Abidin, W. A. W., Othman, A. K., Zen, H., & Masri, T. (2011). Characteristics of mobile satellite L-band signal in mid-latitude region: GPS approach. 84.40. Ua.

3. Han, M., Zhu, Y., Yang, D., Hong, X., & Song, S. (2018). A semi-empirical SNR model for soil moisture retrieval using GNSS SNR data. Remote Sensing, 10(2), 280. https://doi.org/10.3390/rs10020280

4. Larson, K. M., Small, E. E., Gutmann, E., Bilich, A., Axelrad, P., & Braun, J. (2008). Using GPS multipath to measure soil moisture fluctuations: Initial results. GPS Solutions, 12(3), 173–177.

5. Zavorotny, V. U., Larson, K. M., Braun, J. J., Small, E. E., Gutmann, E. D., & Bilich, A. L. (2009). A physical model for GPS multipath caused by land reflections: Toward bare soil moisture retrievals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(1), 100–110. https://doi.org/10.1109/JSTARS.2009.2033608

6. Richter, B., & Euler, H. J. (2001). Study of improved observation modeling for surveying type applications in multipath environment. In Proceedings of the 14th international technical meeting of the satellite division of the institute of navigation (ION GPS 2001) (pp. 1048–1055).

7. Byun, S. H., Hajj, G. A., & Young, L. E. (2002). Development and application of GPS signal multipath simulator. Radio Science, 37(6), 1–23.

8. Bhardwaj, S. C., Vidyarthi, A., Jassal, B. S., & Shukla, A. K. (2017). Study of temporal variation of vertical TEC using NavIC data. In 2017 International conference on emerging trends in computing and communication technologies (ICETCCT) (pp. 1–5). IEEE.

9. Chamoli, V., Prakash, R., Vidyarthi, A., & Ray, A. (2017). Sensitivity of NavIC signal for soil moisture variation. In 2017 International conference on emerging trends in computing and communication technologies (ICETCCT) (pp. 1–4). IEEE.

10. Pandey, J., Prakash, R., Ray, A., Chamoli, V., & Vidyarthi, A. (2019). Study of GPS C/No ratio for retrieval of surface soil moisture. In 2019 International conference on signal processing and communication (ICSC) (pp. 213–216). IEEE.

11. Pandey, J., Chamoli, V., & Prakash, R. (2020). A review: Soil moisture estimation using different techniques. In S. Choudhury, R. Mishra, A. Kumar (Eds.), Intelligent communication, control and devices (pp. 105–111). Singapore: Springer.

12. Chamoli, V., Prakash, R., Vidyarthi, A., & Barthwal, S. (2021). Ground truth soil moisture estimation along with minimal drizzling time. International Journal of Modern Agriculture, 10(2), 2692–2698.

13. Chamoli, V., Prakash, R., Vidyarthi, A., & Ray, A. (2021). Analysis of NavIC multipath signal sensitivity for soil moisture in presence of vegetation. In International conference on innovative computing and communications (pp. 353–364). Singapore: Springer.

14. Chamoli, V., Prakash, R., Vidyarthi, A., & Ray, A. (2020). Capability of NavIC, an Indian GNSS constellation, for retrieval of surface soil moisture. Progress in Electromagnetics Research, 106, 255–270.

15. Shekhar, S., Prakash, R., Vidyarthi, A., & Pandey, D. K. (2020). Sensitivity analysis of navigation with Indian constellation (NavIC) derived multipath phase towards surface soil moisture over agricultural land. In 2020 6th International conference on signal processing and communication (ICSC) (pp. 138–142). IEEE.

16. Johri, A., Prakash, R., Vidyarthi, A., Chamoli, V., & Bhardwaj, S. (2021). IoT-based system to measure soil moisture using soil moisture sensor, GPS data logging and cloud storage. In International conference on innovative computing and communications (pp. 679–688). Singapore: Springer.

17. Prakash, R., Singh, D., & Pathak, N. P. (2009). Microwave specular scattering response of soil texture at X-band. Advances in Space Research, 44(7), 801–814.

18. Wan, W., Li, H., Chen, X., Luo, P., & Wan, J. (2013). Preliminary calibration of GPS signals and its effects on soil moisture estimation. Acta Meteorologica Sinica, 27(2), 221–232.

19. Phillips, A. J., Newlands, N. K., Liang, S. H., & Ellert, B. H. (2014). Integrated sensing of soil moisture at the field-scale: Measuring, modeling and sharing for improved agricultural decision support. Computers and Electronics in Agriculture, 107, 73–88.

20. Liang, W. L., Hung, F. X., Chan, M. C., & Lu, T. H. (2014). Spatial structure of surface soil water content in a natural forested headwater catchment with a subtropical monsoon climate. Journal of Hydrology, 516, 210–221.

21. Tabibi, S., Nievenski, F. G., van Dam, T., & Monico, J. F. (2015). Assessment of modernized GPS L5 SNR for ground-based multipath reflectometry applications. Advances in Space Research, 55(4), 1104–1116.
22. Zhang, D., Li, Z. L., Tang, R., Tang, B. H., Wu, H., Lu, J., & Shao, K. (2015). Validation of a practical normalized soil moisture model with in situ measurements in humid and semi-arid regions. *International Journal of Remote Sensing*, 36(19–20), 5015–5030.

23. El Hajj, M., Baghdadi, N., Zribi, M., Belaïdi, G., Cheviron, B., Courault, D., & Charron, F. (2016). Soil moisture retrieval over irrigated grassland using X-band SAR data. *Remote Sensing of Environment*, 176, 202–218.

24. Liao, W., Wang, D., Wang, G., Xia, Y., & Liu, X. (2019). Quality control and evaluation of the observed daily data in the North American soil moisture database. *Journal of Meteorological Research*, 33(3), 501–518.

25. Tabibi, S., Geremia-Nievinski, F., & van Dam, T. (2017). Statistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval. *IEEE Transactions on Geoscience and Remote Sensing*, 55(7), 3773–3785.

26. Li, Z., Chen, P., Zheng, N., & Liu, H. (2021). Accuracy analysis of GNSS-IR snow depth inversion algorithms. *Advances in Space Research*, 67(4), 1317–1332.

27. Li, Y., Chang, X., Yu, K., Wang, S., & Li, J. (2019). Estimation of snow depth using pseudorange and carrier phase observations of GNSS single-frequency signal. *GPS Solutions*, 23(4), 1–13.

28. Pitman, A. J. (2003). The evolution of, and revolution in, land surface schemes designed for climate models. *International Journal of Climatology: A Journal of the Royal Meteorological Society*, 23(5), 479–510.

29. Istanbulluoglu, E., & Bras, R. L. (2006). On the dynamics of soil moisture, vegetation, and erosion: Implications of climate variability and change. *Water Resources Research*, 42(6).

30. Sinha, S., Mathur, R., Bharadwaj, S. C., Vidyarthi, A., Jassal, B. S., & Shukla, A. K. (2018). Estimation and smoothing of TEC from NavIC dual frequency data. In *2018 4th International conference on computing communication and automation (ICCCA)* (pp. 1–5). IEEE.

31. Chamoli, V., Prakash, R., & Vidyarthi, A. (2020). Mathematical regression model to predict navigation with Indian constellation (NavIC) Geo synchronous satellite system. In *2020 Global conference on wireless and optical technologies (GCWOT)* (pp. 1–5). IEEE.

32. Motte, E., Egido, A., Roussel, N., Boniface, K., & Frappart, F. (2016). Applications of GNSS-R in continental hydrology. In N. Baghdadi, M. Zribi (Eds.), *Land surface remote sensing in continental hydrology* (pp. 281–322). Elsevier.

33. Stroosnijder, L., Lascano, R. J., Van Bavel, C. H. M., & Newton, R. W. (1986). Relation between L-band soil emittance and soil water content. *Remote Sensing of Environment*, 19(2), 117–125.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Vivek Chamoli pursuing his Ph.D. in Electronics and Communication from Graphic Era Deemed to be University, Dehradun, India He is currently a Research Fellow working with the Indian Space Research Organization, Ahmedabad, India. His research focuses on Remote Sensing, NavIC application, Image Processing, Video Processing, and Signal Processing.
Rishi Prakash did his Ph.D. from Department of ECE, IIT Roorkee. Currently he is serving as Associate Professor in Department of ECE, GEU, Dehradun, India. His research interest are soil parameter retrieval with microwave remote sensing. He has published many research paper in this field. Currently he is working on non-navigational applications of GNSS. He is closely working with Indian Space Research Organization for developing soil moisture retrieval model with NavIC constellation under different field conditions.

Anurag Vidyarthi obtained B.Sc. degree from MJPR University, Bareilly, India, in 2005 and M.Sc. degree from BU Bhopal, India, in 2007. He receives M.Tech. and Ph.D. degree from Graphic Era University, India, in 2010 and 2014 respectively. Presently he is associated with Department of Electronics and Communication Engineering, Graphic Era University, Dehradun, India. His areas of interest are rain attenuation, fade mitigation techniques, ionospheric effects on the navigation system, and applications of Navigational satellite data.