Functional evaluation of autism-associated mutations in NHE9

Kalyan C. Kondapalli¹*, Anniesha Hack¹*, Maya Schushan², Meytal Landau³, Nir Ben-Tal² & Rajini Rao¹

NHE9 (SLC9A9) is an endosomal cation/proton antiporter with orthologues in yeast and bacteria. Rare, missense substitutions in NHE9 are genetically linked with autism but have not been functionally evaluated. Here we use evolutionary conservation analysis to build a model structure of NHE9 based on the crystal structure of bacterial NhaA and use it to screen autism-associated variants in the human population first by phenotype complementation in yeast, followed by functional analysis in primary cortical astrocytes from mouse. NHE9-GFP localizes to recycling endosomes, where it significantly alkalinizes luminal pH, elevates uptake of transferrin and the neurotransmitter glutamate, and stabilizes surface expression of transferrin receptor and GLAST transporter. In contrast, autism-associated variants L236S, S438P and V176I lack function in astrocytes. Thus, we establish a neurobiological cell model of a candidate gene in autism. Loss-of-function mutations in NHE9 may contribute to autistic phenotype by modulating synaptic membrane protein expression and neurotransmitter clearance.
Autism spectrum disorders (ASDs) have emerged as a major public health concern, with an estimated prevalence of 1:88 (ref. 1). Characterized by impaired language and social communication, and stereotyped or repetitive behaviours, autism also shows significant comorbidity with intellectual disability (ID) and epilepsy. Although ASD is considered to be the most inheritable of neuropsychiatric disorders, the identification of candidate genes has been complicated by the extreme genetic heterogeneity of the disorder and the prevalence of de novo mutations not found in recent ancestry. Thus, ASD probably involves a combination of alleles with low and high penetrance, with no single variant contributing to more than ~1% of the non-syndromic cases. As the majority of mutations affect one allele, gene dosage may have a critical role in the affected pathways. Despite a growing list of suspects garnered from genome-wide association studies, linkage analysis, cytogentic and DNA microarrays, most genes remain only candidates in the absence of functional validation. The few existing functional studies have spotlighted a common pathway centring on synaptic transmission in the aetiology of ASD as well as ID and epilepsy. At the tripartite synapse, it has been proposed that altered expression and activity of proteins at pre- and postsynaptic neuronal membranes disrupts the finely tuned balance of excitatory and inhibitory inputs, with the role of astrocytes being less well studied.

Neuronal activity and synaptic transmission require precise control of ionic balance, as well as vesicular trafficking to ensure appropriate surface delivery and turnover of synaptic membrane receptors and transporters. A family of intracellular cation/proton exchangers (NHE6-9) residing on endosomal and recycling compartments regulates luminal pH to control vesicular trafficking and establishes a role for NHE9 in a neurobiological model. We show that altered gene dosage can significantly change vesicular pH and modulate cell surface expression and activity of glutamate transporters in murine cortical astrocytes, where they have the potential to impact neurotransmission. Finally, we extend the functional analysis of autism-associated coding variants in NHE9 from yeast to primary astrocytes to gain novel insight into the aetiology of ASD. All three autism-associated genetic variants in the NHE9 tested were scored as loss-of-function mutations in astrocytes and, therefore, could be causal to disease phenotype. Our study provides crucial functional insight that was lacking from previous genetic analysis and establishes a role for NHE9 in a neurobiological model.

Results

A model structure of NHE9. As a first step in determining whether rare coding variants in NHE9 contributed to the autism phenotype, we constructed a structural model of the membrane domain of NHE9, and its yeast orthologue Nhx1, based on the crystal structure of a distantly related bacterial orthologue, NhaA. Previously, we used evolutionary analysis and a composite fold-recognition approach to propose a three-dimensional model structure of NHE1, a prototype of the cation/proton superfamily. Utilizing a similar methodology, we aligned yeast Nhx1 and mammalian NHE9 to NhaA (Fig. 1a), as well as to NHE1. In accordance with phylogenetic clustering, the resulting alignments showed that both Nhx1 and NHE9 were significantly more closely related to NHE1 than to bacterial NhaA, with sequence identities of 30% and 32% for the alignments of Nhx1 and NHE9 to NHE1, respectively, whereas aligning Nhx1 and NHE9 to NhaA resulted in sequence identities of 15% and 14%, respectively. This allowed us to extend the structural model from NHE1 to NHE9 (Figs 1b and 2a) and Nhx1 (Fig. 1c). To evaluate the Nhx1 and NHE9 models, we examined characteristic traits of membrane proteins, namely the distribution of hydrophobicity and evolutionary conservation. Consistent with the reliability of the models, we show a preponderance of hydrophobic residues within the predicted membrane spans (Fig. 1b), and concentration of evolutionarily conserved residues within the core regions of the transporter (Fig. 2a).

Three autism-associated substitutions, namely V176I, L236S and S438P (Figs 1a and 2a), reside within the membrane domain of NHE9, in positions that are evolutionarily conserved among all eukaryotic transporters. A fourth mutation, P117T, is localized to a highly variable extracellular loop and could not be modelled with certainty in the yeast orthologue (Fig. 1a). Other substitutions resided outside the homology region, including the carboxy-terminal hydrophilic tail. As seen in Fig. 2a, L236 and S438 are

hygromycin B, which are all readily quantifiable phenotypes. Therefore, we used a yeast model for rapid assessment of NHE9 variants as a first approximation of function.

The abnormal accumulation of glutamate in the brain of patients with NHE6 mutations is indicative of an underlying problem in glutamate clearance from the synapse. Glutamate is excitotoxic at high concentrations, and aberrant glutamate levels are associated with neurological abnormalities of epilepsy and cerebellar degeneration, both characteristic symptoms of Angelman-like syndrome associated with NHE6 mutations. The bulk of glutamate released into the neuronal synapse is cleared by rapid uptake into astrocytes, the single largest population of cells in the brain. Given the shared clinical symptoms of epilepsy, ID and ASD in patients, it seemed probable that similar to NHE6, NHE9 could regulate glutamate clearance in the synapse.

In this study, we provide the first functional analysis of NHE9 in a neurobiological model. We show that altered gene dosage can significantly change vesicular pH and modulate cell surface expression and activity of glutamate transporters in murine cortical astrocytes, where they have the potential to impact neurotransmission. Finally, we extend the functional analysis of autism-associated coding variants in NHE9 from yeast to primary astrocytes to gain novel insight into the aetiology of ASD. All three autism-associated genetic variants in the NHE9 tested were scored as loss-of-function mutations in astrocytes and, therefore, could be causal to disease phenotype. Our study provides crucial functional insight that was lacking from previous genetic analysis and establishes a role for NHE9 in a neurobiological model.
Phenotype screening of autism-associated mutations in yeast

Phenotype complementation in yeast offers a rapid and first approach towards functional screening of mutations. The \(\text{nhx1}^{-} \) null strain exhibits clearly defined and quantifiable growth defects relating to pH, salt and drug sensitivity that have been linked to ion transport and vesicle trafficking\(^{32,33}\). Therefore, we introduced autism-associated mutations into equivalent positions in Nhx1 (Fig. 2b; A438P, I222S and V167I). As two of these positions carried moderate substitutions in Nhx1, we also generated ‘humanized’ versions, A438S and I222L, equivalent to NHE9. All five substitutions and wild-type Nhx1 were separately tagged with green fluorescent protein (GFP) or haemagglutinin and expressed in \(\text{nhx1}^{-} \) yeast. Similar to wild-type Nhx1, most mutants were localized to one to two punctate compartments (Fig. 2c) previously identified as prevacuolar endosomes\(^{38}\), and were expressed at equivalent levels (Fig. 2d). Mutant A438P showed a shift in distribution to multiple puncta, suggesting a possible delay in trafficking of the mutant protein to the prevacuolar compartment.

Sensitivity to hygromycin B toxicity is increased in \(\text{nhx1}^{-} \) as a result of defective trafficking to the vacuole, believed to be the site of drug detoxification\(^{32,33}\). Plasmid expressing wild-type Nhx1 conferred tolerance to hygromycin B growth toxicity (Fig. 3a). Similarly, the humanized versions of Nhx1, A438S and I222L were equally effective in protecting against drug toxicity. In contrast, two autism-associated variants, A438P and I222S, closely resembled the vector-transformed null mutant, consistent with complete loss of function. The third variant, V167I, resembled wild-type Nhx1. We obtained similar results with growth sensitivity to high salt (Fig. 3b) and to low pH (Fig. 3c). In each case the control substitutions, equivalent to those in NHE9, resembled wild type, whereas autism-associated variants A438P and I222S were similar to the vector-transformed \(\text{nhx1}^{-} \) strain. Consistently, the V167I variant showed no loss of function in these growth phenotypes.

Sensitivity to low pH in \(\text{nhx1}^{-} \) correlates with vacuolar hyperacidification, pointing to \(\text{Na}^{+}(\text{K}^{+})/\text{H}^{+} \) antiport as a major leak pathway for exit of protons transported into the endosome/vacuole by the V-ATPase\(^{32}\). We evaluated vacuolar pH \textit{in situ} by using the pH-sensitive fluorescent dye BCECF-AM, which is de-esterified and sequestered in the vacuolar lumen (Fig. 3d, inset)\(^{38}\) allowing fluorescence intensity to be normalized.
Investigate the spatiotemporal distribution of NHE9 in the brain in the wake of the association of NHE9 with autism, we sought to explore the expression and developmental regulation of NHE9 in brain tissues.

Expression and developmental regulation of NHE9 in brain. In the wake of the association of NHE9 with autism, we sought to investigate the spatiotemporal distribution of NHE9 in the developing and adult mouse brain. Although no single region of the brain has yet been clearly identified as being associated with autism, two decades of magnetic resonance imaging studies have implicated the cerebellum, frontal cortex, hippocampus and amygdala. Post-mortem findings, animal models and neuroimaging studies further strengthen these observations. In-situ hybridization data of the adult mouse brain obtained from the Allen Brain Atlas indicate that the expression levels of NHE9 are highest in the cortex (≈27% of total NHE9 expression in the brain), hippocampus (≈30%) and the olfactory lobes (≈50%; Fig. 4a) compared with the other regions of the brain. Variations of gene expression in the brain may have a crucial role in the behavioural phenotypes observed in autism and suggest a strong association with the cortex, which is the seat of memory, attention, thought, language and consciousness in the brain. Recent reports comparing autistic and control brains suggested an attenuation of normal differential gene expression between frontal and temporal cortex in autistic brains. Moreover, autism is a neurodevelopmental disorder we expect NHE9 to have a functional role during development. Indeed, in-situ hybridization data of the developing mouse brain revealed differential expression of NHE9 during the various stages of development (Fig. 4b). NHE9 expression was consistently high in the prosomere 1 (p1) region of the diencephalon in the embryonic forebrain (Fig. 4c). In addition to the forebrain, expression levels of NHE9 were also high in the midbrain by postnatal day 4. Although the p1 and midbrain showed high levels of NHE9 expression in postnatal day-28 pups, highest levels of NHE9 were observed in the telencephalic vesicle of the developing and adult mouse brain.

Figure 2 | Modelling of autism-associated NHE9 variants. (a) Top and side views of a model structure of the membrane domain of NHE9 based on the structure of E. coli NhaA and coloured according to the degree of ConSurf conservation, with turquoise through maroon, indicating variable through conserved amino acid positions. Three autism-associated variants (S438P, L236S and V176I) are shown in space-filled form. (b) Site-directed mutagenesis was used to introduce equivalent NHE9 mutations into yeast Nhx1 (A438P, I222S and V167I) as well as ‘humanized’ variants A438S and I222L to mimic wild-type NHE9. (c) Nhx1 constructs tagged with GFP were expressed in the nhx1Δ null strain and visualized (×100 objective) as fluorescent punctae, characteristic of prevacuolar compartments. Scale bar, 20 μm. (d) Immunoblot analysis with anti-haemagglutinin (anti-HA) was used to detect similar expression levels of HA-tagged Nhx1 and variants. GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was used as loading control.
forebrain. The pontomedullary region of the hindbrain also showed NHE9 expression comparable to the p1 region by postnatal day 28. Finally, the adult brain is primarily composed of two broad classes of cells: neurons and glial cells. We compared the mRNA transcript levels of NHE9 in neurons and astrocytes, the most abundant macroglial cells in the cortex. NHE9 expression was 1.2-fold higher in astrocytes relative to the neurons (Fig. 4d).

Functional expression and localization of NHE9 in astrocytes. Astrocytes are critical for the long-term modulation of neuronal synapses, as well as acute clearance of the excitatory neurotransmitter, glutamate, from the synaptic cleft. In animal models of autism, astrocytic clearance of glutamate is altered and glutamate transporter levels decreased. Elevated levels of glutamate in the synapse trigger seizures, and seizures are well known to be comorbid with autism. As shown by Morrow et al.,

Figure 3 | Phenotype screening of autism-associated variants in yeast. (a) Growth sensitivity to hygromycin B. Yeast nhx1Δ strains expressing the vector or indicated Nhx1 constructs were inoculated with equal numbers of cells in APG medium (pH 4.0) supplemented with hygromycin B. Growth (OD600) was measured after 17 h at 30°C and is expressed as the percentage of growth in the absence of hygromycin. (b) Growth sensitivity to KCl. Cultures, as in a, were grown in a medium supplemented with KCl. (c) Growth sensitivity to acidic pH. Cultures, as in a, were grown in APG medium buffered to pH 4.0 or 2.7 for 21 h. Results shown for a–c are averages of triplicate determinations and are representative of at least three independent experiments. (d) Measurement of vacuolar pH with BCECF (2′,7′-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein)-acetoxymethyl ester). Cells were loaded with BCECF resulting in accumulation of the dye in yeast vacuoles, as seen in the fluorescent micrograph (×100 objective). (d) Inset: scale bar, 20 μm. Fluorescence was normalized to cell number (Nn vac) and calibrated against vacuolar pH (e). Normalized, pH-sensitive fluorescence as in d for the yeast strains shown. Mean was plotted from at least three independent experiments for d and e. All error bars represent s.d. (f) Sorting of CPY. Extracellular CPY in culture supernatants (600 μl) was assessed by slot blots. Samples were applied onto fixed slots by vacuum suction and the nitrocellulose filter treated as in a western blot.
a significant subset of NHE9 variants was associated with both autism and seizures. Furthermore, elevated brain glutamate levels are observed in patients with mutations in the closely related orthologue NHE6 (ref. 19). Therefore, to confirm our findings in yeast and extend the analysis of autism-associated variants in NHE9 to a neurobiological model, we evaluated function in astrocytes. Transcript analysis revealed the presence of both NHE6 and NHE9 isoforms in primary mouse astrocytes. Transcript analysis revealed the presence of both NHE6 and NHE9 isoforms.

Figure 4 | Developmental regulation of NHE9 in mouse and expression in primary brain cells. (a) Raw expression levels of NHE9 in various regions of the mouse brain determined from in-situ hybridization (ISH) data obtained from Allen Brain Atlas (available from: http://mouse.brain-map.org/). ISOCTX, isocortex; OLF, olfactory areas; HPf, hippocampal formation; CTXsp, cortical subplate; STR, striatum; PAL, pallidum; CB, cerebellum; TH, thalamus; HY, hypothalamus; MB, midbrain; P, pons; MY, medulla. (b) NHE9 gene expression in developing mouse brain characterized by ISH in sagittal plane across four embryonic and three early postnatal ages. Feulgen-HP yellow DNA counterstain, a nuclear stain, was used to add definition to the tissue. This counterstain is used in conjunction with ISH for all data shown except for P56, to provide tissue context to the ISH signal, which is otherwise difficult to discern due to the very light tissue background for embryonic ISH. Images were obtained from the Allen Institute for Brain Science, Allen Developing Mouse Brain Atlas (available from: http://developingmouse.brain-map.org/) (c) ISH data showing expression summary of NHE9 in the various regions of the mouse brain during development, obtained from the Allen Developing Mouse Brain Atlas (available from: http://developingmouse.brain-map.org/). RSP, rostral secondary prosencephalon; Tel, telencephalic vesicle; PHY, peduncular (caudal) hypothalamus; p3, prosomere 3; p2, prosomere 2; p1, prosomere 1; M, midbrain; PPH, preponine hindbrain; PH, pontine hindbrain; PMH, pontomedullary hindbrain; MH, medullary hindbrain. Scale bar, 3168 µm. (d) Quantitative PCR analysis of NHE6 and NHE9 in primary murine neurons and astrocytes with mRNA normalized to two reference genes (GAPDH and 18S RNA) and expressed relative to NHE9 mRNA level. Error bars represent s.d. determined from triplicate measurements.

To investigate the effect of altered NHE9 levels on luminal pH in recycling endosomes, we took advantage of the excellent overlap in localization with transferrin (Fig. 7b, top panel), following 60-min uptake into live cells. Fluorescence ratio imaging was done by using a combination of pH-sensitive fluorescein isothiocyanate-tagged transferrin with pH-insensitive Alexa Fluor-tagged transferrin as control for transferrin loading, and the endosomal pH was determined from a calibration curve (Fig. 6a). Relative to the control cells (pH 5.7 ± 0.22), endosomal pH in NHE9-overexpressing cells was more alkaline (pH 6.39 ± 0.054), as expected from Na⁺/K⁺ exchange mediating proton leak from the endosomes (Fig. 6b). These results are consistent with increased endosomal pH observed by Nakamura et al. in COS7 cells overexpressing NHE9. Although luminal pH decreased upon knockdown of NHE9 (to pH 5.39, P = 0.08; Student’s t-test, n = three biological replicates; Fig. 6b), the difference fell short of significance. Therefore, we examined the effect of NHE9 knockdown in primary cultured human glioma cells (Fig. 6c). We did observe significant acidification of endosomes upon NHE9 knockdown (pH 6.60, P < 0.05; Student’s
t-test, \(n = \) three biological replicates) relative to control (pH 6.88). These results suggest functional differences between mouse and human astrocyte cells, consistent with the limitations of the mouse model in recapitulating human disease. It is possible that NHE6 compensates for loss of NHE9 in mouse cortical astrocytes. Indeed, we observed high levels of colocalization of NHE6-GFP and NHE9-DsRed in murine astrocytes (Fig. 5e,f), consistent with redundant roles for NHE6 and NHE9 in regulating endosomal pH.

Figure 5 | Subcellular localization and functional analysis of NHE9. (a) Quantitative PCR (qPCR) analysis of NHE6 and NHE9 mRNA in primary cortical astrocytes, normalized to two reference genes (GAPDH and 18S RNA) and expressed relative to NHE9 mRNA level. Error bars represent s.d. determined from triplicate measurements. Baseline expression of NHE9 is significantly lower than NHE6 (note that the eightfold difference corresponds to three cycles of PCR amplification on Log2 scale). (b) qPCR analysis showing the efficacy of overexpression of (NHE9) and short hairpin RNA knockdown (NHE9 and NHE6) in primary astrocyte culture. The data are plotted as average fold change of mRNA levels relative to control levels, with s.d. determined from triplicate measurements. (c) Subcellular localization of NHE9 in primary cultured cortical astrocytes determined by immunofluorescence confocal microscopy (\(\times 63 \) objective) after fixation with 4% paraformaldehyde. Top, NHE9-GFP (green) partly localizes with early endosome marker, EEA1 (red) as seen in the Merge. Middle, NHE9-GFP (green) partly localizes with recycling endosome marker, Rab11 (red) as seen in the Merge. Bottom, NHE9-GFP (green) does not localize with late endosome marker, LBPA (red). (d) Orthogonal views of subcellular localization of NHE9 from merged images in (c). (e) Overlapping subcellular localization of NHE6-GFP (green) and NHE9-DsRed (red) in primary cultured cortical astrocytes, as seen in Merge and (f) orthogonal view. Scale bars, 50 \(\mu \)m (for c and e).

Evaluation of autism-associated NHE9 mutations in astrocytes. Synaptic function is modulated by targeting and recycling of transporters and receptors to and from the astrocyte cell surface\(^5\). In the yeast model, Nhx1-mediated regulation of endosomal pH is critical for cell surface expression and turnover of membrane proteins. Therefore, we investigated whether NHE9 knockdown or overexpression similarly altered the function and expression of cell surface receptors and transporters in astrocytes. Steady-state levels of fluorescence-tagged transferrin were significantly elevated (by 1.75-fold) in astrocytes overexpressing NHE9 (Fig. 8a,c), with corresponding stabilization of the transferrin receptor, observed upon blocking protein synthesis by cycloheximide addition (Fig. 8b). Although internalized transferrin levels were not decreased upon knockdown of endogenous NHE9, treatment with short hairpin RNA effectively reversed the elevation seen in NHE9-overexpressing cells (Fig. 8c). We used this gain-of-function phenotype to assess the three autism-associated variants in NHE9. GFP-tagged variants, L236S, S438P and V176I, were expressed at levels equivalent to wild-type NHE9 in primary astrocytes (Fig. 7a) and individually colocalized with Alexa Fluor-labelled transferrin (Fig. 7b). After incubation with Alexa-633-transferrin for 1 h at 37°C, none of the three variants displayed elevated levels of intracellular transferrin, resembling the vector-transformed control (Fig. 8d). Unexpectedly, this included the V176I variant that retained function in the yeast model. A function specific to astrocytes at the excitatory synapse is clearance of excess glutamate. We therefore investigated the effect of NHE9 and its variants on glutamate uptake in astrocytes. GLAST (GLutamate ASpartate Transporter) is a high-affinity,
Na⁺-dependent glutamate transporter highly expressed in astrocytes, where it partially colocalizes with endosomal NHE9 (Fig. 9a–d). Overexpression of NHE9 resulted in ~1.9-fold increase in ³²P-glutamate uptake relative to control cells, whereas all three autism-associated variants were similar to vector-transformed control (Fig. 9e). Although total amounts remained unchanged in all cell lines, surface expression of GLAST transporter increased by approximately twofold in astrocytes expressing wild-type NHE9 but not the autism-associated variants L236S, S438P and V176I (Fig. 9f,g). Consistent with these observations, alkalization of the transferrin-positive endosomal compartment was only observed in cells expressing wild-type NHE9 (Fig. 10a,b). Taken together, our findings indicate that all three autism-associated variants were associated with loss-of-function phenotypes in astrocytes.

Discussion

There were two goals of this study: to assess the function of genetic variations in NHE9/SLC9A9 associated with autism and to evaluate NHE9 as a candidate gene for ASDs in a neurobiological model. To this end, we exploited studies done with cation/proton antiporter orthologues from bacteria and yeast model organisms. Phylogenetic clustering of human NHE9 with yeast NhX1 supports a common structural fold that relates back to the more distant bacterial orthologue, NhaA. Pairwise alignment allowed some autism-associated variants found in human NHE9 to be directly modelled on the yeast protein. In support of this, we found that conserved differences between NHE9 and NhX1 could be swapped out without loss of function. Therefore, yeast NhX1 serves as a convenient NHE9 surrogate for analysing a subset of variants with a conservation score of >5 (Fig. 1a), which may be mapped by homology with relatively high confidence. Given the rapidly increasing availability of genomic information and the prevalence of a large number of rare variants differing between individual genotypes, it will be important to have in place facile, inexpensive and rapid screening mechanisms for the functional evaluation of mutations and their potential contribution to autism and other disorders. As more autism-associated variants in NHE genes will be forthcoming, our approach will serve as a template for scoring their potential severity. A similar approach was recently used for p53 mutations, in which structure-driven assessment was used to correctly predict patient outcome. Although such a detailed level of insight is not yet possible in the case of autism, our study represents an important first step towards that goal.

NHE9 variants S438P and L236S, identified in autism patients with and without comorbid epilepsy, respectively, consistently scored as loss-of-function mutations in both yeast and astrocyte models. This validates predictions from the structural model placing them within highly conserved transmembrane regions of a helical bundle, central to the ion transport mechanism of the bacterial orthologues NhaA and NhaP. In contrast, the Val176le variant, found in a patient without seizures, lies in a more variable region peripheral to the transport domain. Although it was phenotypically silent in the simpler yeast cell, functional deficits were uncovered in astrocytes, suggesting additional roles in the mammalian protein, possibly via protein interactions. For example, CHP and RACK1, two non-selective binding partners of other NHE isoforms, were also shown to bind NHE9 in a heterologous system, although the functional relevance of the interaction was not established. The bacterial and eukaryotic homologues vary significantly in their amino-terminal sequences up to and including the third transmembrane helix, and the mammalian protein structure may differ from the NhaA template in this region. In this respect, it is noteworthy that cryo-electron microscopy studies of NhaP revealed that this archaeal sodium-proton antiporter features 13, rather than 12, transmembrane helices and a different mode of dimerization in comparison with NhaA. Although more disease-associated variants would need to be analysed to determine whether such differences are unusual, we can conclude that autism-associated NHE9 mutations do impact antiporter function in vitro, and therefore may be causal to disease phenotypes. NHE9 is an eminently druggable target, and it is worth noting that considerable progress has been made in correcting loss-of-function mutations in cystic fibrosis transmembrane conductance regulator (CFTR), affecting transporter activity and trafficking using small molecule potentiators and correctors, respectively, in the treatment of cystic fibrosis.

Our studies provide first insights towards establishing a neurobiological role of NHE9 in a wide range of disorders, including ASD and ADHD. Whole-brain analysis of developing murine brain reveals highly specific and regulated expression of NHE9, consistent with a role in modulation of developing synapses in both neurons and astrocytes. Further, a previous study in rat models of ADHD suggested that SLC9A9 expression is proportional to the number of synapses based on a significant correlation in the expression of NHE9 and the synaptophysin. Although overlapping distribution of the closely related NHE6 orthologue could result in functional redundancy, we did observe acidification of transferrin
yellow puncta. Scale bar, 50 μm.

Significant colocalization can be seen in merged images by the presence of transferrin after 55 min of uptake (red), as described in the Methods. Confocal fluorescence images (transfection) and cells expressing NHE9-GFP, L236S-GFP, S438P-GFP and V176I-GFP using anti-GFP antibody. (b) Localization of NHE9 and autism-associated variants to transferrin-positive endosomes in primary astrocytes. Confoal fluorescence images (∼63 objective) of GFP-tagged NHE9 and indicated patient polymorphisms (green) localize with Alexa Fluor-tagged transferrin after 55 min of uptake (red), as described in the Methods. Significant colocalization can be seen in merged images by the presence of yellow puncta. Scale bar, 50 μm.

Figure 7 | Expression and localization of NHE9 variants in primary astrocytes. (a) Expression levels of NHE9 and autism-associated polymorphisms are similar in primary astrocytes. Immunoblot of total primary astrocyte cell lysate (100 μg) from Control (empty vector transfection) and cells expressing NHE9-GFP, L236S-GFP, S438P-GFP and V176I-GFP using anti-GFP antibody. (b) Localization of NHE9 and autism-associated variants to transferrin-positive endosomes in primary astrocytes. Confocal fluorescence images (× 63 objective) of GFP-tagged NHE9 and indicated patient polymorphisms (green) localize with Alexa Fluor-tagged transferrin after 55 min of uptake (red), as described in the Methods. Significant colocalization can be seen in merged images by the presence of yellow puncta. Scale bar, 50 μm.

The synaptic membranes, and decrease of synaptic clearance of glutamate, consistent with the aetiology of epilepsy and autism.

Methods

Structural modelling. NHE1-9, Nhx1 and NhaA belong to the CPA superfamily and are classified in the monovalent CPA1 family (2.A.36) on the TCDB database. The only crystal structure available for this superfamily is the bacterial orthologue NhaA. NHE9, Nhx1 and NHE1 share a sequence identity of only 14%, 15% and 10%, respectively, with NhaA. These low-sequence identities limit the alignment of sequences using standard methods. To confirm that we were using the template with the correct fold, we used the tools available on the “TCDB (Transporter classification database) database: http://www.tcdb.org” and “PDB (Protein Data Bank) http://www.rcsb.org/pdb/home/home.do”. Searching the PDB starting with the NHE9 query, the first hit is the NaA structure (1zcd). The second hit is the bile acid transporter ASBT (3zux), which shares a similar fold but has only ten transmembranes. The next hits are the transmembrane XI of the NHE1 isoform. The other hits include NHE1 transmembrane XI, a putative YscO homologue (3k29; in the C-terminal region), Stathmin 4 (1sao; in the C-terminal region) and Aquaporin-4 (1ivz; 340 residues). The last hit (number 10) is Histone deacetylase 4 (2h8n; in the C-terminal region).

We previously used multiple state-of-the-art approaches to construct alignments between NHE1 and NhaA. An alignment of NHE9 and Nhx1 with NHE1 was constructed using the strategy described below, based on a higher shared sequence identity of 32 and 30%, respectively. The ConSeq web server (http://conseq.bioinfo.tau.ac.il) was used to generate an initial alignment. Additional pairwise alignment was calculated using the FFS30 server. Evolutionary conservation scores were calculated using the Bayesian method, an empirical approach that uses Markov chain Monte Carlo methodology. Similar to the methodology used for developing the NHE1 fold, we used profile-to-profile alignments implemented in the FFS30 server and Modeller to predict protein fold. Transmembrane boundaries of NHE9 guided the assignment of boundaries of the 12 transmembrane segments. Using an iterative process that included manually adjusting the alignments to reduce gaps in the transmembrane helices followed by Pfam, FFS30 and HMMP alignments, membrane topology of Nhx1 and NHE9 were predicted. Although there were some gaps in the alignments of NHE1, Nhx1 and NHE9, none of these gaps are located in the predicted transmembrane helices (Fig. 1a). The regions corresponding to the gaps in the alignment have no known functional roles. Evolutionarily conserved residues in both NHE9 and Nhx1 are located at the interfaces between the transmembrane segments, whereas the variable residues face the membrane lipids or are located in the extramembrane loops. The three-dimensional models are compatible with the evolutionary conservation analyses of NHE. The Consurf web server (http://consurf.tau.ac.il) was used to impose evolutionary conservation scores onto the three-dimensional models. Thus, the structural modelling procedure should provide a good approximation of helix packing in the protein core, but the conformations of some of the extramembrane loops might deviate significantly from the native structure.

Plasmids. A full-length mouse NHE9 cDNA was cloned into pcDNA3-EGFP using the following primers 5’-GATCATAGCTATGCGTGCAGCTTCGTTTACG-3’ and 5’-ATGCTAGATTCGTCATCCTGCGGTTCAGCGACGAAGG-GCGAG-3’. HindIII and EcoRI sites were added to facilitate cloning. mNHE9-EGFP was cloned into FuGW-lentiviral vector into the BamHI site. Strategue’s Quik-Change-Site-Directed Mutagenesis Kit was used to make the point mutations.

Cell culture. Cortical astrocyte cultures were prepared from two mouse pups of mixed sex. All animal protocols were conducted according to national guidelines approved by the Johns Hopkins Animal Care and Use Committee. After dissection and removal of the meninges and blood vessels, cortices were incubated with trypsin-EDTA (0.05%, 0.2 mm) for 20 min at 37 °C. Tissue was triturated and suspended in DMEM (Invitrogen) supplemented with 10% fetal bovine serum (Invitrogen), 1% Hams F-12 and 0.24% penicillin/streptomycin (10,000 U ml−1 penicillin, 10,000 mg ml−1 streptomycin). Cells (14 ml) were plated at a density of 2.5 × 105 cells per ml (3 × 105 cells per cm2) in 75 cm2 flasks and maintained in a 5% CO2 incubator at 37 °C. The growth medium was completely exchanged with fresh medium twice a week until cells were 90% confluent (9–10 days).

Quantitative real-time PCR. mRNA was isolated using RNeasy Mini kit from Qiang following the manufacturer’s instructions. RNA was treated with DNase I (1 unit for 1 μg RNA; Roche) following which the DNase was inactivated by EDTA (10 mm) at 65 °C for 10 min. High-capacity RNA cDNA kit (Applied Biosystems, Carlsbad, CA; catalogue number 4387406) was used to make cDNA from RNA, following the manufacturer’s instructions. Gene expression levels were measured by quantitative real-time PCR using Taqman gene expression assays (The Step One Plus Real-Time PCR System, Applied Biosystems). Gene expression assays used were Mm00496012_m1 (SLC3A14 solute carrier family 9 (sodium/hydrogen exchanger), member 9) and Mm00554545_m1 (SLCA6 solute carrier family 9 (sodium/hydrogen exchanger), member 6).
Mm03928990_g1 (Rn18s, 18S ribosomal RNA) and Mm99999915_g1 (GAPDH, glyceraldehyde-3-phosphate dehydrogenase) were our endogenous control. Each experiment had three technical replicates and was repeated three times independently (biological replicates) to account for intra- and interassay variances, respectively. Ct values were used for all manipulations and were first normalized to endogenous control levels by calculating the \(\Delta C_t \) for each sample. Values were then

![Figure 8](image)

Figure 8 | Functional differences between NHE9 and variants revealed by transferrin uptake. (a) Maximum projection confocal images (× 63 objective) showing steady-state Tfn-Alexa Fluor uptake in control (left) and NHE9-GFP-expressing astrocytes (right). Scale bars, 50 μm. (b) Immunoblotting, using anti-TIR antibody, showing the effects of 100 μM cycloheximide (CHX) on TIR in control and NHE9-GFP-expressing cells. TIR bands were normalized to Tubulin levels and expressed as percentage of controls lacking CHX. (c) Steady-state Tfn-Alexa Fluor uptake was significantly elevated (\(\ast \ast P < 0.005; \ Student’s t-test, n = three biological replicates) upon NHE9-GFP expression and reversed upon subsequent knockdown in the same cells. (d) Steady-state uptake of Tfn-Alexa Fluor in astrocytes expressing wild-type NHE9-GFP or three autism-association variants. Variants (L236S, S438P and V176I) failed to elevate Tfn-Alexa Fluor uptake, showing a loss-of-function phenotype (\(n = three biological replicates). Error bars (c,d) represent s.d. \(\ast \ast P < 0.005.

![Figure 9](image)

Figure 9 | Functional differences between NHE9 and variants revealed by glutamate uptake. (a) Subcellular localization of GLAST and NHE9 in primary cultured mouse cortical astrocytes determined by immunofluorescence confocal microscopy (× 63 objective). Scale bars, 50 μm. GLAST (red) is distributed to vesicular compartments in untransfected astrocytes labelled with DAPI (4’,6-diamidino-2-phenylindole; blue), as seen in the Merge. (b) NHE9-GFP (green) partly localizes with GLAST (red) in transfected astrocytes, as seen in the Merge. (c,d) Orthogonal views of subcellular colocalization of NHE9 with GLAST from merged image in b. (e) Glutamate uptake is elevated over control (empty vector) in astrocytes expressing NHE9-GFP but not the autism-associated variants. (f) Immunoblot (top) showing no significant change in total GLAST levels from astrocytes, after normalization to tubulin levels (graph), whereas (g) surface levels of GLAST, determined by biotinylation are elevated in cells expressing NHE9-GFP, but not autism-associated variants. Graphs represent average band intensity from densitometric scans of immunoblots from three biological replicates. GLAST levels were normalized to tubulin and shown relative to vector-transformed control. Statistical analysis was done using Student’s t-test (\(\ast \ast P < 0.005). Error bars (c,d) represent the average of three independent experiments with s.d.
Glucose, a synthetic minimal medium containing 10 mM arginine, 8 mM strains were grown in synthetic complete medium to saturation, washed three

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3510 | www.nature.com/naturecommunications
calculated relative to control to generate a

with similar results as in

fluorescence. (a) Expression of NHE9, but not autism-associated variants, in HEK293 cells results in alkalinization of endosomal pH. (b) NHE9 and autism-associated variants were expressed in primary mouse astrocytes, with similar results as in a. Error bars represent s.d.

Functional complementation in yeast. All Saccharomyces cerevisiae strains used were derivatives of BY4742 (ResGen; Invitrogen). The complementation studies33 and measurement of vacuolar pH3,38,61 were done as follows. Yeast strains, media and growth conditions: Derivatives of BY4742 S. cerevisiae strains were grown in synthetic complete medium to saturation, washed three times in water and used to seed 200 μl of APG medium (arginine phosphate glucose, a synthetic minimal medium containing 10 mM arginine, 8 mM phosphoric acid, 2% (w/v) glucose, 2 mM MgSO₄, 1 mM KCl and 0.2 mM Cl⁻ and trace minerals and vitamins) to a starting attenuation of 0.05 OD₆₀₀ units per ml. Phosphoric acid was used to adjust the pH to 4.0 or 2.7. NaCl, KCl or hygromycin was added as indicated and growth was monitored by measuring OD₆₀₀ after culturing for 24 h at 30 ºC. Measurement of vacuolar pH: Cells were grown for 18 h at 30 ºC in APG growth medium, absorbance readings were taken at 600 nm to measure growth, and cultures were then incubated with 50 μM BCECF (2’,7’-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein)-acetoxymethyl ester) at 30 ºC for 20 min, washed and suspended in APG medium. Normalized background-subtracted fluorescence emission values at 485 nm were calculated (NI₄₈₅ (normalized intensity at 485 nm)) using fluorescence intensity and absorbance readings taken at 485 and 600 nm, respectively. A calibration curve of the ratio of fluorescence intensity values versus pH was obtained for each yeast strain at the end of every experiment and vacuolar pH values were determined by incubating yeast cultures in 200 μl of experimental medium, titrated to five different pH values within the range of 4.0–8.0 using 1 M NaOH (refs 33,38,61). CPY secretion: Yeast cultures were seeded in synthetic complete medium to a starting OD₆₀₀ of 0.05 ml⁻¹ and grown at 30 ºC for 24 h. Cells (1.5 OD₆₀₀) were centrifuged for 2 min and 600 μl of the supernatants were applied to Immobilon-N membranes (Millipore) membranes using a slot-blot apparatus (Schleicher & Schuell Manifold II). After drying the membrane overnight, CPY was detected by immunoblotting using monoclonal anti-CPY antibody (Molecular Probes; 1:1,000 dilution).

Immunofluorescence. Cultured glial cells on coverslips were pre-extracted with PHEM buffer (60 mM PIPES, 25 mM HEPES, 10 mM EGTA, and 2 mM MgCl₂ pH 6.8) containing 0.025% saponin for 2 min, then washed twice for 2 min with PHEM buffer containing 0.025% saponin and 8% sucrose. The cells were fixed with a solution of 4% paraformaldehyde and 8% sucrose in PBS for 30 min at room temperature and blocked with a solution of 1% BSA and 0.025% saponin in PBS for 1 h. Primary antibodies were diluted in 1% BSA and incubated with the cells for 1 h. Alexa Fluor 568 goat anti-rabbit IgG (Invitrogen) and Alexa Fluor 647 (Invitrogen) goat anti-mouse IgG were used at 1:1,000 dilution for 30 min. Cells were mounted onto slides using Dako Fluorescent Mounting Medium. Slides were imaged on a Zeiss LSM510 Meta confocal microscope. Fractional colocalization was determined from Mander’s coefficient, which measures the direct overlap of green and red pixels in the confocal section. The value range is from 0 to 1 (0, no colocalization; 1, all pixels colocalize). The Mander’s coefficient is independent of differences in signal intensity between the two channels.

Steady-state transferrin uptake and pH measurement. Astrocytes or HEK293 cells were rinsed and incubated in serum-free medium for 30 min to remove any residual transferrin and then were exposed to 100 μg ml⁻¹ transferrin conjugated with Alexa Fluor 568 or 633 (Invitrogen) at 37 ºC for 55 min. Uptake was stopped by chilling the cells on ice. External transferrin was removed by washing with ice-cold serum-free DMEM and PBS, whereas bound transferrin was removed by an acid wash in PBS at pH 5.0 followed by a wash with PBS at pH 7.0. Surface-bound transferrin (less than 5% of total) was determined with a parallel sample incubated for 5 min on ice and was used for background subtraction. The fluorescence intensity of internalized transferrin was measured for at least 5,000 cells by flow cytometry using the FACSAria (BD Biosciences, San Jose, CA) instrument and the average intensity of the cell population was recorded.

Glutamate uptake assay. Glutamate uptake into primary astrocytes was measured using 0.5 μM l-glutamate and 0.3 μCi l-[³H]glutamate per sample (cold/ radioactive = 99:1)20. Cells were first washed and pre-incubated at 25 ºC for 10–20 min in Na⁺ buffer (5 mM Tris–HCl, pH 7.2, 10 mM HEPES, 140 mM NaCl, 2.5 mM KCl, 1.2 mM CaCl₂, 1.2 mM MgCl₂, 1.2 mM KH₂PO₄ and 10 mM glucose). Glutamate uptake reaction was initiated by incubating cells for 5 min at 37 ºC in Na⁺ uptake buffer (0.5 μM l-glutamate and 0.3 μCi l-[³H]glutamate per sample in Na⁺ buffer), followed by two quick washes with ice-cold Na⁺-free assay buffer (5 mM Tris–HCl, pH 7.2, 10 mM HEPES, 140 mM Choline-Cl, 2.5 mM KCl, 1.2 mM NaCl, 2 mM MgCl₂, 1.2 mM CaCl₂, 2 mM HEPES, 10 mM glucose). NaOH (0.1N) solution was then used to lyse the cells and radioactivity was measured using a scintillation counter. Background radiation was subtracted for each sample separately by incubating the cells for 0 min (immediate removal following addition of hot uptake buffer) on ice followed by quick washes with ice-cold Na⁺-free assay buffer.

Western blotting and cell surface biotinylation. Surface proteins labelled with biotin21, briefly, cells were washed three times with ice-cold PBS and incubated with 1 mg ml⁻¹ Sulpho-NHS-LC-biotin in PBS at 4 ºC for 20 min. Excess NHS groups were quenched using 100 μM glycine followed by three washes with PBS. Nonidet P-40 (1%), with protease inhibitor cocktail (Roche), was used to lyse cells and then centrifuged for 10 min at 14,000 r.p.m. at 4 ºC. Protein supernatants were mixed with 120 μl of immobilized Neutravidin beads and incubated at 4 ºC overnight with gentle rotation. Beads collected by centrifugation were washed three times with lysis buffer, and surface proteins labelled with biotin were separated by SDS–PAGE and analysed by immunoblotting. Blots were cropped to show relevant bands; all full-sized blots are shown in Supplementary Fig. S1.

References
1. Wingate, M. et al. Prevalence of autism spectrum disorders—Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2008. MMWR Surveill. Summ. 61, 1–19 (2012).
2. Gabis, L., Pomeroy, J. & Andriola, M. R. Autism and epilepsy: cause, consequence, comorbidity, or coincidence? Epilepsy Behav. 7, 652–656 (2005).
3. Devlin, B. & Scherer, S. W. Genetic architecture in autism spectrum disorder. Curr. Opin. Genet. Dev. 22, 239–247 (2012).
4. Rubenstein, J. L. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).
5. Sudhof, T. C. Neureligins and neurexins link synaptic function to cognitive disease. Nature 455, 903–911 (2008).
6. Melem, J. E. & Littleton, J. T. Synapse development in health and disease. Curr. Opin. Neurobiol. 21, 256–261 (2011).
7. Brett, C. L., Wei, Y., Donowitz, M. & Rao, R. Human Na⁺/H⁺ exchanger isoform 6 is found in recycling endosomes of cells, not in mitochondria. Am. J. Physiol. Cell Physiol. 282, C1031–C1041 (2002).
8. Okgaki, H., Nakamura, N., Tanaka, S., Teko, Y., Mitoui, K. & Kanazawa, H. Four Na⁺/H⁺ exchangers are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J. Biol. Chem. 280, 1561–1572 (2005).
9. Hill, J. K. et al. Vestibular hair bundle control CPY pH with (Na⁺, K⁺)/H⁺ exchangers NHE6 and NHE9. J. Neurosci. 26, 9944–9953 (2006).
10. Okgaki, R., Fukaura, N., Matsushita, M., Mitoui, K. & Kanazawa, H. Cell surface levels of organellar Na⁺/H⁺ exchanger isoforms 6 are regulated by interaction with RACK1. J. Biol. Chem. 283, 4417–4429 (2008).
11. Okgaki, R. et al. The Na⁺/H⁺ exchanger NHE6 in the endosomal recycling system is involved in the development of apical bile canalicular surface domains in HepG2 cells. Mol. Biol. Cell 21, 293–310 (2010).
12. Xinhan, L. et al. Na⁺/H⁺ exchanger isoform 6 (NHE6/SLC9A6) is involved in clathrin-dependent endocytosis of transferrin. Am. J. Physiol. Cell Physiol. 301, C1431–C1444 (2011).
13. Deane, E. C. et al. Enhanced recruitment of endosomal Na\(^+\)/H\(^+\) exchanger NHE6 to Dentritic spines of hippocampal pyramidal neurons during NMDA receptor-dependent long-term potentiation. J. Neurosci. 33, 595–610 (2013).

14. Roxrud, I., Raiborg, C., Gillillan, G. D., Stromme, P. & Stenmark, H. Dual degradation mechanisms ensure disposal of NHE6 mutant protein associated with neurological disease. Exp. Cell Res. 315, 3014–3027 (2009).

15. Brett, C. L., Donowitz, M. & Rao, R. Evolutionary origins of eukaryotic sodium/proton exchangers. Am. J. Physiol. Cell Physiol. 288, C223–C239 (2005).

16. Nuccitelli, R., van der Mias, M., Heekstra, D. & Kanazawa, H. Organellar Na\(^+\)/H\(^+\) exchangers: novel players in organelle pH regulation and their emerging functions. Biochemistry 50, 443–450 (2011).

17. Malo, M. E. & Fleigl, L. Physiological role and regulation of the Na\(^+\)/H\(^+\) exchanger. Can. J. Physiol. Pharmacol. 84, 1081–1095 (2006).

18. Luo, J. & Sun, D. Physiological role and pathophysiology of Na\(^+\)+H\(^+\) exchange system in the central nervous system. Curr. Neurovasc. Res. 4, 205–215 (2007).

19. Gillillan, G. D. et al. SLC9A6 mutations cause X-linked mental retardation, microcephaly, epilepsy, and ataxia, a phenotype mimicking Angelman syndrome. Am. J. Hum. Genet. 82, 1003–1010 (2008).

20. Garbern, J. Y. et al. A mutation affecting the sodium/proton exchanger, SLC9A6, causes mental retardation with tau deposition. Brain 133, 1391–1402 (2010).

21. Takahashi, Y. et al. A loss-of-function mutation in the SLC9A6 gene causes X-linked mental retardation resembling Angelman syndrome. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156B, 799–807 (2011).

22. de Silva, M. G. et al. Disruption of a novel member of a sodium/hydrogen exchanger family and DOCK3 is associated with an attention deficit hyperactivity disorder-like phenotype. J. Med. Genet. 40, 733–740 (2003).

23. Lasky-Su, J. et al. Genome-wide association scan of quantitative traits for ADHD. Hum. Genet. 126, 73–81 (2010).

24. Franke, B., Neale, B. M. & Faraone, S. V. Genome-wide association scan of quantitative traits for ADHD. Nat. Genet. 42, 13–50 (2010).

25. Garbern, J. Y. et al. Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuropharmacology 61, 880–894 (2011).

26. Lee, B. L., Li, X., Liu, Y., Sykes, B. D. & Fleigl, L. Structural and functional analysis of transmembrane XI of the NHE1 isoform of the Na\(^+\)/H\(^+\) exchanger. J. Biol. Chem. 284, 11546–11556 (2009).

27. Nakayama, K., Fujimura, T., Nakashima, N. & Tateishi, Y. Loss-of-function mutations in the SLC9A6 gene cause X-linked mental retardation, epilepsy, and ataxia, a phenotype mimicking Angelman syndrome. Am. J. Hum. Genet. 82, 1003–1010 (2008).

28. Schwede, M., Garbett, K., Mirmics, K., Geschwind, D. H. & Morrow, E. M. Genes for endosomal NHE6 and NHE9 are misregulated in autism brains. Mol. Psychiatry 18, 931–942 (2013).

29. Markunas, C. A. et al. Genetic variants in SLC9A9 are associated with measures of attention-deficit/hyperactivity disorder symptoms in families. Psychiatr. Genet. 20, 73–81 (2010).

30. Inoue, M. et al. Sodium/hydrogen exchanger 2: an exchanger with roles in brain development and disease. J. Neurosci. 36, 12009–12026 (2016).

31. Swanson, R. A. et al. Neuroal regulation of glutaate transporter subtypes in astrocytes. J. Neurosci. 17, 932–940 (1997).

32. Poeta, M. L. et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 357, 2552–2561 (2007).

33. Herz, K., Rimon, A., Olkhova, E., Kozachkov, L. & Papan, E. Transmembrane segment II of NHaA \(^+\)/H\(^+\) antiporter lines the cation passage, and Asp65 is critical for pH activation of the antiporter. J. Biol. Chem. 285, 2211–2220 (2010).

34. Mager, T., Rimon, A., Papan, E. & Fendler, K. Transport mechanism and pH regulation of the Na\(^+\)/H\(^+\) antiporter NHaA from Escherichia coli: an electrophysiological study. J. Biol. Chem. 286, 23570–23581 (2011).

35. Barriere, H. & Lukacs, G. L. Current Protocols in Cell Biology. (ed. Bonifacino, J. S. et al.) Chapter 15, Unit 15.13 (2008).

36. Vogel, S. E. et al. Astrocytic glutamate transporter GLT1 is required for neuronal survival. Neuron 46, 245–258 (2005).

37. SETA et al. Enhancing recruitment of endosomal Na\(^+\)/H\(^+\) exchanger to synaptic boutons in a mouse model of fragile X syndrome. J. Neurosci. 36, 1396–1405 (2016).

38. Herz, K. et al. Enhanced recruitment of endosomal Na\(^+\)/H\(^+\) exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol. Biol. Cell 16, 1396–1405 (2005).

39. Kessel, A. & Barriere, H. In Peptide–Lipid Interactions: Current Topics in Membranes 61, 951–960 (2015).

40. Swanson, R. A. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

41. Website: http://developingmouse.brain-map.org.