Single-particle digitization strategy for quantum computation of a ϕ^4 scalar field theory

João Barata
Instituto Galego de Física de Altas Enerxías (IGFAE),
Universidade de Santiago de Compostela, E-15782 Galicia, Spain

Niklas Mueller
Department of Physics, University of Maryland, College Park, MD 20742, USA

Andrey Tarasov
Department of Physics, The Ohio State University, Columbus, OH 43210, USA and
Joint BNL-SBU Center for Frontiers in Nuclear Science (CFNS) at Stony Brook University, Stony Brook, NY 11794, USA

Raju Venugopalan
Physics Department, Brookhaven National Laboratory, Bldg. 510A, Upton, NY 11973, USA

Motivated by the parton picture of high energy quantum chromodynamics, we develop a single-particle digitization strategy for the efficient quantum simulation of relativistic scattering processes in a $d+1$ dimensional scalar ϕ^4 field theory. We work out quantum algorithms for initial state preparation, time evolution and final state measurements. We outline a non-perturbative renormalization strategy in this single-particle framework.

I. INTRODUCTION

Significant effort has been invested towards studying problems in quantum chemistry [1–4], condensed matter physics [5–7], cosmology [8–10], and in high energy and nuclear physics [11–16], with digital quantum computers and analog quantum simulators [17–22]. A major motivation is to deepen our understanding of conventionally intractable features of the ground state properties of strongly correlated many-body systems such as the spectrum of bound states. Another is to advance the state-of-the-art in scattering problems, which provide dynamical information on such complex systems.

In this work, our focus will be on the problem of developing quantum algorithms for high energy scattering and multi-particle production in relativistic quantum field theory. Underlying our work is the promising yet distant goal of extracting dynamical information on the properties of hadrons and nuclei in quantum chromodynamics (QCD).

Examples of scattering problems in QCD where quantum information science can accelerate our present computational capabilities are low energy scattering in nuclear many-body systems [23, 24], the thermalization process in ultrarelativistic ion-ion collisions [25], studies of the structure of nuclear matter probed in Deeply Inelastic Scattering (DIS) of electrons off protons and nuclei [26–33] and the fragmentation of quarks and gluons into jets of hadrons [34, 35]. For instance, both jet fragmentation functions and DIS structure functions require one to compute autocorrelation functions of currents in Minkowski spacetime; this poses a challenge to classical Monte Carlo methods that are constructed to compute Euclidean spacetime correlators [36–43].

Quantum devices have the potential to overcome the limitations of classical computers in addressing many of the above problems. However presently their limitation is that scattering problems involve a vast range of spatial (momentum) and temporal (energy) scales and require that a large number of (local) quantum field operators be quantum simulated. This is challenging with present day NISQ era technology restricted to few tens of non-error-corrected qubits [22].

As discussed in seminal papers by Jordan, Lee and Preskill [44, 45], quantum simulating scattering problems in relativistic quantum field theories requires a lattice discretization and, in the case of a bosonic theory, the truncation of the local Hilbert space of field operators. One can view such a digitization as defining a (low energy) effective theory, in the sense of a generalized renormalization group (RG) [46]. We will argue here that, from this viewpoint, a digitization scheme does not necessarily need to be based on a decomposition of local field operators but, more
II. HIGH ENERGY SCATTERING

Understanding the structure of matter at the sub-nucleon scales of nuclear and particle physics requires a wide range of scattering experiments. The theoretical foundations of these scattering problems is well developed within the framework of relativistic quantum field theory. The simplest formulation of a scattering process is through the S-matrix, $S_{\beta\alpha} = \langle \psi^\text{out}_\beta | \psi^\text{in}_\alpha \rangle$, defined as the overlap of asymptotic in- $(|\psi^\text{in}_\alpha\rangle)$ and out- $(|\psi^\text{out}_\beta\rangle)$ states which are time-independent eigenstates of the Hamiltonian $H = H_0 + V$.

In the Heisenberg picture, all non-trivial information on these states is encoded in the Lippmann-Schwinger equation \cite{52,53},

$$|\psi^\text{in/out}_\alpha\rangle = |\phi_\alpha\rangle + G_0 V |\psi^\text{in/out}_\alpha\rangle = (V - V G_0 V)^{-1} V |\phi_\alpha\rangle,$$

where $G_0 = (\mathbb{1} - V H_0 V)^{-1}$. This equation provides a powerful tool in quantum scattering theory for calculating scattering amplitudes and cross-sections.
where $|\phi_\alpha\rangle$ are single particle eigenstates of the free Hamiltonian H_0 satisfying $H_0|\phi_\alpha\rangle = E_\alpha|\phi_\alpha\rangle$, $G_0 \equiv (E_\alpha - H_0 \pm i\epsilon)^{-1}$ and $V - VG_0V$ is the Schwinger operator. The S-matrix can also be expressed as

$$S_{\beta\alpha} = \delta_{\alpha\beta} - 2\pi i \delta(E_\alpha - E_\beta) T_{\beta\alpha},$$

where energy conservation is explicit, and the T-matrix is defined as

$$T_{\beta\alpha} = \langle \phi_\beta|V|\Psi^\text{out}_\alpha\rangle = \langle \Psi^\text{in}_\beta|V|\phi_\alpha\rangle = \langle \Psi^\text{in}_\beta|(V - VG_0V)|\Psi^\text{out}_\alpha\rangle.$$

The cross-section for a scattering process $\alpha \rightarrow \beta$ is given by the modulus squared of $T_{\beta\alpha}$ (multiplied by kinematic factors),

$$|T_{\beta\alpha}|^2 = \langle \Psi^\text{in}_\beta|(V - VG_0V) P^\text{out}_\beta(V - VG_0V)^\dagger|\Psi^\text{in}_\alpha\rangle,$$

with $P^\text{out}_\beta = |\Psi^\text{out}_\beta\rangle\langle\Psi^\text{out}_\beta|$. The T-matrix elements in Eq. (3) can be computed by solving the Lippmann-Schwinger equation. This can be achieved using analytic perturbative techniques such as the Born expansion or non-perturbatively using Schwinger’s variational principle, the Schwinger-Lanczos or R-matrix approaches. At present, we are not aware of any quantum computational variant of these time-independent algorithms. We will discuss later in Section IV D.

Before we proceed in that direction, we note that our single-particle digitization strategy for the S-matrix can be mapped on to a cluster decomposition/virial expansion framework first developed to discuss the partition function,1 as we shall soon discuss. The generalization of these ideas relating asymptotic scattering phase shifts to differences in energy levels of static scattering particles 2 was pioneered by Luscher and has also been discussed recently in the context of quantum computing [67]. As we will discuss later in Section IV D, an analogous approach relating energy differences to scattering amplitudes will form a key element of non-perturbative renormalization in our single-particle framework.

A. Schrödinger picture of S-matrix scattering

In the Schrödinger picture, the scattering process is described in terms of time-dependent wavepackets

$$|\Psi^\text{in/out}_g(t)\rangle \equiv \int d\alpha \ g(\alpha) e^{-iE_\alpha t} |\Psi^\text{in/out}_\alpha\rangle,$$

where $g(\alpha)$ is a function that describes the localization of the wavepacket. In this approach, the Lippmann-Schwinger equation can be expressed as

$$|\Psi^\text{in/out}_g(t)\rangle = |\phi_g(t)\rangle + \int_0^\infty dT \ e^{\pm i(H_0 \mp i\epsilon)T} V|\Psi^\text{in/out}_g(t \mp T)\rangle,$$

where $|\phi_g(t)\rangle$ is defined identically as in Eq. (6). The in-wavepacket satisfies the boundary condition $|\Psi^\text{in}_g(\mp \infty)\rangle = |\phi_g(\mp \infty)\rangle$ at negative infinity and the out-wavepacket satisfies a similar condition at positive infinity. In the Schrödinger picture, one may interpret $V(T) \equiv V e^{-i|T|}$ as adiabatically turning on the interaction to obtain $|\Psi^\text{in}(t)\rangle$ from evolution of the initial condition $|\phi_g(\mp \infty)\rangle$ using Eq.(7) and likewise, in reverse, for $|\Psi^\text{out}\rangle$. This approach, employing single particle wavepackets, will form the basis of our algorithm in Section IV.

1 This expression, originally formulated as a quantum many-body extension [58, 59], to the famous Beth-Uhlenbeck formula was later generalized to discuss relativistic many-body $n \leftrightarrow m$ inelastic processes [60, 61].
B. Spacetime picture of scattering experiments at high energies

At high energies, the gap of single particle states to continuum particle-antiparticle pairs becomes small, and a description of scattering in terms of the second quantized language of quantum field operators appears natural. Quantum simulation of this problem is desirable because of the well-known challenges of classical computation.

However interestingly at high energies, for a wide class of scattering problems, single particle digitization strategies applied at lower energies may be viable and indeed desirable. The latter can be understood straightforwardly in the context of the scattering of two protons at the ultrarelativistic energies of the Large Hadron Collider (LHC). The wavepackets of the two colliding protons can be constructed formally, along the lines of Eq. 6; however such wavepackets, as observed by Bjorken and Feynman, for many final states of interest in scattering at high energies are accurately described in terms of the scattering of pointlike “parton” (quark, antiquark and gluon) constituents within the protons that are eigenstates of the free QCD Hamiltonian [28, 68]. In this parton picture of high energy scattering, as we will now discuss, the switch-on/off time τ_0 and the interaction time τ_I can be related to physical time scales.

These time scales are best understood in the context of the deeply inelastic scattering (DIS) of electrons (and other leptons) off protons and nuclei. In DIS, the incoming electron emits a virtual photon that strikes a quark or antiquark within the hadron, thereby providing information on the quark and (indirectly) gluon distributions within. The relevant DIS kinematic variables are the momentum resolution Q of the probe (with $Q^2 \gg \Lambda_{\text{QCD}}^2$, the QCD confinement scale) and the Bjorken variable x_{Bj}, defined as the generator of translations in x^+, the lightfront Poincaré group is isomorphic to the symmetry group of two dimensional quantum mechanics [72], allowing one to formulate scattering problems in quantum field theory in the language of nonrelativistic quantum mechanics. In particular, due to time dilation at high energies, the lightfront potential is suppressed (by powers of the energy) with a direct product state of single-particle parton states that make up the hadron’s quantum numbers. In contrast, the parton picture is manifest when field theories are quantized on a lightlike surface $x^+=0$, with the lightcone Hamiltonian $P^- = P_0^- + V$, defined as the generator of translations in x^+. The Galilean subgroup of the lightfront Poincaré group is isomorphic to the symmetry group of binary quantum mechanics [72], allowing one to formulate scattering problems in quantum field theory in the language of nonrelativistic quantum mechanics. In particular, due to time dilation at high energies, the lightfront potential is suppressed (by powers of the energy) relative to the kinetic term; Fock states, which are single particle direct product states of partons, therefore provide a good eigenbasis for high energy scattering [73].

Even though the single particle picture of high energy scattering finds an elegant representation in lightfront quantization, it is not restricted to it. It is a generic feature of Feynman diagrams in perturbation theory [74] and more recently of so-called “conformal truncation” methods [75–77] introduced in the context of conformal field theory [78]. This property of high energy scattering motivates exploring a single particle digitization strategy, which we will discuss at length in the rest of this paper in conventional equal time quantization [79, 80].

Our single particle digitization strategy will encounter significant challenges when applied to gauge theories. Nevertheless one may be able to make progress employing this strategy in physical problems where hybrid quantum/classical techniques are applicable; in QCD, these include EFTs for jet physics [81], high parton densities (small x) [82] and at finite temperature [83], and a lattice EFT for computing parton distributions [38].

2 We refer readers unfamiliar with DIS to our paper [39] for some of the key references and for a discussion of aspects of this scattering problem from a quantum computing perspective.

3 In general, the coherence time is a distribution, with the stated value being the upper bound. For fluctuations of the virtual photon into a highly excited QCD Fock state, coherence time estimates are considerably shorter [79].

4 For recent work on quantum computing in lightcone quantization, see [79, 80].
III. SINGLE-PARTICLE STRATEGY

In this Section, and in the next, we will develop a single particle digitization strategy for a relativistic (real) scalar field theory with local quartic interactions in $d + 1$ spacetime dimensions. The Hamiltonian for this theory is given by

$$H = \int d^d x \left[\frac{\pi^2}{2} + \frac{1}{2} (\nabla \phi_x)^2 + \frac{m^2}{2} \phi^2_x + \frac{\lambda}{4!} \phi^4_x \right],$$

(8)

where \vec{m} and $\bar{\lambda}$ are the (bare) mass and quartic coupling, and ∇ is the spatial gradient operator in d dimensions. The Heisenberg field operators are

$$\phi_x = \int \frac{d^d p}{(2\pi)^d} \frac{1}{\sqrt{2\omega_p}} \left[a_p + a_p^\dagger \right] e^{ip \cdot x},$$

(9)

which satisfies, with its canonical conjugate operator π_x, the equal-time commutation relations $[\phi_x, \pi_y] = i\delta^{(d)}(x - y)$. The annihilation (creation) operators $a_p (a_p^\dagger)$ are momentum-space Fock operators, corresponding to a set of harmonic oscillators with frequency $\omega_p = \sqrt{p^2 + m^2}$ and commutation relations $[a_p, a^\dagger_k] = (2\pi)^d \delta^{(d)}(p - k)$, $[a_p, a_k] = [a_p^\dagger, a_k^\dagger] = 0$. Single particle states are defined as

$$|p\rangle_{phys} \equiv \sqrt{2\omega_p} a_p^\dagger |vac\rangle,$$

(10)

which satisfy the relativistic normalization condition $(p|k)_{phys} = 2\omega_p \delta^{(3)}(p - k)$, where $|vac\rangle$ denotes the Fock vacuum.

We discretize the theory on a spatial lattice of size N_s^d and express the Hamiltonian (in dimensionless units) as

$$H \equiv a_s H = \sum_n \left[\frac{1}{2} \pi_n^2 + \frac{1}{2} (\nabla \phi_n)^2 + \frac{m^2}{2} \phi_n^2 + \frac{\lambda}{4!} \phi_n^4 \right],$$

(11)

where $m = \bar{m} a_s$, $\lambda = \bar{\lambda} a_s^{d-d}$ are dimensionless bare mass and coupling parameters, a_s the lattice spacing and $n = (n_1, \ldots, n_d), n_i \in [0, N_s - 1]$ labels a point $x = n a_s$ on the lattice. We will likewise define a momentum space lattice vector $q = (q_1, \ldots, q_d)$, $q_i \in [-\frac{N_s}{2}, \frac{N_s}{2} - 1]$. The lattice field operators are

$$\phi_n = \frac{1}{\sqrt{V}} \sum_q \frac{1}{\sqrt{2\omega_q}} \left[a_q + a_q^\dagger \right] e^{i2\pi n \cdot q / N_s},$$

$$\pi_n = -\frac{i}{\sqrt{V}} \sum_q \sqrt{\omega_q} \left[a_q - a_q^\dagger \right] e^{i2\pi n \cdot q / N_s},$$

(12)

where $V = N_s^d$ and $\omega_q = \bar{\omega} a_s^{-1}$ is the dimensionless energy. Note that we use the same notation for the dimensionless lattice Fock operators a_q and the dimensionful continuum operators in Eq.(1).

We will implement below the time evolution operator of the free Hamiltonian (setting $\lambda = 0$ in Eq.(11)) in the momentum representation. This allows us to use the continuum dispersion relation $\omega_q = \sqrt{p^2 + m^2}$ ($p \equiv p(q)$), as opposed to the lattice dispersion relation that one has when working in position space; this potentially reduces discretization errors significantly.

We can decompose the many-particle Hilbert space into single-particle sectors $\mathcal{H} = \bigotimes_{i=0}^\infty \mathcal{H}_i$, with each \mathcal{H}_i spanned by empty and occupied single-particle states,

$$\mathcal{H}_i = \text{span}\{ |\Omega\rangle^{(i)}, |\{q_i\}^{(i)}\rangle \},$$

(13)

and similarly in position space. A “register” of $N \equiv \log V + 1$ spins (qubits) represents a relativistic single-particle state with momentum $q = (q_1, \ldots, q_d)$ in d dimensions,

$$|q\rangle^{(i)} \equiv |q_1, \ldots, q_d\rangle |\uparrow\rangle.$$

(14)

Here, one qubit $|n\rangle = |\uparrow\rangle$ denotes that the single-particle state is occupied and likewise, $|\downarrow\rangle$ denotes it is unoccupied; further, each momentum component of the single-particle state $|q_i\rangle \equiv |s_i\rangle |q_i\rangle$ is represented by $(N - 1)/d$ qubits, where $s_i = \text{sign}(q_i)$ is the sign (one qubit) and $|q_i\rangle$ the absolute value (abs). Note that $N_{abs} = \frac{N-1}{d} - 1 = \log (V/2^d)$.
qubits, in a binary representation. Concrete examples of the single-particle digitization scheme are given in Appendix A. The normalization \(\langle q|q' \rangle = \delta_{q,q'} \) of these basis states differs from the relativistic normalization in Eq. (10), with \(\langle q \rangle = |p|^\text{phys} / \sqrt{2\omega_q} \).

We define an unoccupied single-particle state

\[
|\Omega|^{(l)} \equiv \downarrow \otimes d_{-}N_{\text{abs}}, \downarrow \otimes d_{+} \downarrow,
\]

as a state where the abs, sign and occupation number qubits (now explicitly written) are all in the \(\downarrow \rangle \) state, The Fock vacuum is defined as \(|\text{vac} \rangle = \bigotimes_q |\Omega|^{(l)} \). States with zero occupation number but finite \(q \) are unphysical and are excluded.

A generic state \(|\psi|^{(l)} \in \mathcal{H}^l \) can be written as

\[
|\psi|^{(l)} = a_0|\Omega|^{(l)} + \sum_q a_q|q|^{(l)},
\]

with \(|a_0|^2 + \sum_q |a_q|^2 = 1 \). The free part \(H_0 (\lambda = 0) \) of the Hamiltonian in Eq. (11) is block-diagonal \(\langle \Omega|^{(l)} H^{(l)}|\Omega|^{(l)} \rangle = 0 \) and proportional to the particle number operator. Particle number eigenstates are on-shell single-particle states and those that are not correspond to virtual particles.

The Fock operators in Eq. (12) for the \(M \) many-particle states on the combined Hilbert space \(\mathcal{H} = \bigotimes_{l=0}^{\infty} \mathcal{H}^l \), are

\[
a_q \equiv \lim_{M \to \infty} \frac{1}{\sqrt{M}} \sum_{l=0}^{M-1} a_q^{(l)},
\]

with \(a_q^{(l)} \), \(a_q^{(l)} \) denoting chains of spin raising and lowering operators for each \(q \), and \((a_q^{(l)})^2 = (a_q^{(l)})^2 = 0 \). In practice, one truncates the number of single-particle registers at a finite \(M \). If \(M \) is large compared to the typical occupancy of a state \(n \equiv \sum_n n^{(l)} \), the bosonic commutation algebra is realized, \([a_q, a_q^\dagger] = \delta_{q,q'} + O(\frac{n}{M}) \). Additional details of this construction are presented in Appendix A.

In this single-particle digitization of the Hilbert space of the scalar field theory, its dimension grows logarithmically with the volume \(V \) and linearly with \(M \). This is ideal for high energy scattering problems, where the particle number density is small, such as the Bjorken limit of the DIS problem we discussed earlier. This digitization is not economical for a very dense system because, as we will discuss, Bose symmetrization creates a large overhead of unphysical states. However, as we also noted, this digitization strategy could potentially be extended to such dense systems employing a hybrid quantum/classical approach.

IV. QUANTUM ALGORITHM

In this Section, we provide an algorithm to quantum compute scattering cross-sections. In line with the spacetime picture discussed in Section II and paralleling the approach of Jordan, Lee and Preskill, the components of our algorithm are

A. Initial state preparation, discussed in Section IV A

B. Simulating the time evolution, discussed in Section IV B

C. Measurement of observables and their relation to scattering cross-sections, discussed in Section IV C

D. Renormalization, discussed in Section IV D

and are compactly summarized in Fig. (1).

We will first discuss the preparation of the initial state of (non-interacting) particles in spatially separated wavepackets. This is particularly simple using the digitization presented in Section III compared to the field based approach of [56, 57, 58], because single-particle states and the vacuum are computational basis states. Our algorithm consists of preparing a quantum mechanical superposition of these basis states to form wavepackets, placing them in separated regions of phase space and finally Bose-symmetrization of the resulting few/many-body wavefunction.

\[5 \] To avoid a sign ambiguity, we choose the lattice such that \(q_i = 0 \) is excluded. Then \(s_i = \uparrow (\downarrow) \) is a positive (negative) sign. We use a physical convention \(\{|\uparrow,\downarrow\} \) of up/down spins to label states, instead of the more common \(|0/1 \rangle \) notation.
FIG. 1. Overview of the general algorithm to quantum compute high energy scattering cross-sections, including the values of the bare couplings λ and m for simulation time t. Initial state preparation is discussed in Section IV A, time evolution in Section IV B, and measurement of particle cross-sections in Section IV C. The choice of (renormalized) couplings $\lambda(t)$, $m(t)$ is discussed in Section IV D.

To implement the time evolution operator, we employ a Suzuki-Trotter scheme [85, 86]. We will treat the time evolution of the free and interacting parts of the Hamiltonian in Eq. (11) separately. We first evolve the wavepacket with the free Hamiltonian H_0, which in our digitization scheme is diagonal in the momentum representation. This is followed by a squeezing operation (analogous to that performed in quantum optics [87, 88]), a quantum Fourier transformation [89] from momentum space to position space, and lastly, an implementation of the interaction term in position space, where it is local.

This algorithm differs from the field based approach of [56, 57, 84] where the time evolution operator is split into a part diagonal in the ϕ_x-basis and one diagonal in the conjugate π_x-basis. While the overall Trotter complexity scales as $O(V)$ in both cases, an important difference is that we avoid the lattice discretization of the Laplacian in Eq.(11) by working directly in momentum space.

Time evolution involves a switch-on of interactions from the non-interacting theory in the infinite past, $m(0) \equiv m_0$, $\lambda(0) = 0$ (in practice at some finite time $t = 0$) towards acquiring the renormalized, physical couplings $m(\tau_0) \equiv m^{\text{ren}}$, $\lambda(\tau_0) = \lambda^{\text{ren}}$ at $t = \tau_0$ right before the particles collide. The non-perturbative renormalization in the single-particle framework, which differs from that of [56, 57], is discussed in Section IV D.

An important practical issue for the quantum algorithm is the spreading of the wavepackets during the switch-on time of interactions, which may potentially cause the wavepackets to interact before the coupling is turned to its final value. For this one may use the “forward-backward” evolution scheme outlined in [56, 57]. Note however that because at large energies the dispersion is approximately linear $\omega \sim |p|$, the spreading of the wavepackets is anticipated to be small [90].

Another relevant point is that the adiabatic preparation of single-particle states [56, 57] will require a very large number of Trotter steps at high energies (and likewise, for the turn-off of interactions). This can be understood by considering the energy gap between single-particle states with momentum p and energy $E = (p^2 + m^2)^{1/2}$, and the lowest of the two-particle states with total momentum $\hat{p} \equiv p_1 + p_2$ (with relative momentum $\hat{q} \equiv p_1 - p_2 = 0$) and energy $E = (\hat{p}^2 + (2m^2)^{1/2}$ at weak coupling. Because this gap vanishes as $p \to \infty$ and $P \to \infty$, adiabatic state preparation is all but impractical at high energies. We note however that, departing from the strictly idealized S-matrix picture, in scattering processes such as Deeply Inelastic Scattering in QCD discussed in Section II B, the Ioffe time and like physical scales are the relevant time scales for state preparation and may allow for quicker non-adiabatic state preparation. Because the algorithm discussed below is general, and not restricted to any particular scattering scenario, we will not say anything further beyond noting this interesting possibility.

We will discuss finally in this Section the determination of scattering cross-sections, utilizing a natural connection of our digitization strategy to particle physics concepts. In contrast to field based digitizations [56, 57], particle number measurements do not require any additional gate operations. Measurement of energy density or momentum, for example, via a phase estimation algorithm, have a simple gate complexity. Some of the “classical analysis” in high energy experiments, of binning data or imposing kinematic cuts, can be incorporated directly in the quantum algorithm. We argue that, using novel techniques such as oblivious amplitude amplification [89, 91, 92], a quantum computer could possibly “beat” an actual particle physics experiment by producing rare events with a higher probability.
A. Initial State Preparation

We will now discuss the state preparation of a Bose-symmetric state of single particle wavepackets at $t=0$ and zero coupling that are well separated in position space. As a first step, we create wavepackets separately in n of the M particle registers (where n is the number of initial scatterers, typically $n=2$). Each wavepacket $i=0,\ldots,n-1$ is centered at (\bar{x}_i, \bar{p}_i) and is Gaussian distributed with a width $(\Delta x, \Delta p)$ around this center, where $|\Delta x| \ll |\bar{x}_i - \bar{x}_j|$ for all $i \neq j$ (here assumed to be identical for all particles). Typically one chooses $|\Delta x| \sim 1/m$, and $|\Delta p| \gg |\Delta p|$ for all m is the mass (in dimensionless units), so that particles are well localized on macroscopic scales.

Wavepackets comprised of single-particle states $|q\rangle$, located at the origin $(\bar{x}_0, \bar{p}_0) = (0,0)$, are written in a momentum space representation as

$$|\Psi\rangle = \frac{1}{\sqrt{V}} \sum_{q} \Psi_{q}|q\rangle,$$

(18)

where Ψ_{q} is a real, positive and strongly localized distribution such as a Gaussian distribution. Each such wavepacket can be translated to $(\bar{x}_i, \bar{p}_i) \neq (0,0)$ such that as previously, $|\bar{x}_i - \bar{x}_j| \gg |\Delta x|$, and \bar{p}_i corresponds to projectile kinematics, using circuits we will discuss shortly.

To create a wavepacket in the momentum space representation, centered at $(\bar{x}_i, \bar{p}_i) = (0,0)$, and with width Δp $(|\Delta x| \sim |\Delta p|^{-1})$, from the vacuum state $|\Omega\rangle$ (Eq.(15)) we use a simple variant of the algorithm in [33 34] which we illustrate below for $d=1$ spatial dimensions. First, accounting for the $q \rightarrow -q$ symmetry of Ψ_{q}, we first flip the occupation number qubit and then apply the Hadamard gate (H) to the sign qubit,

$$|\downarrow \otimes N_{\text{abs}}^{\downarrow}, \uparrow \downarrow \rangle \xrightarrow{\sigma_{y}H} \frac{1}{\sqrt{2}} \left[|\downarrow \otimes N_{\text{abs}}^{\downarrow}, \uparrow \uparrow \rangle + |\downarrow \otimes N_{\text{abs}}^{\downarrow}, \downarrow \downarrow \rangle \right].$$

(19)

Subsequently, we rotate all remaining $N_{\text{abs}} \sim \log_2(N_s)$ qubits by an angle $\theta_k = \pi/4 - \epsilon_k$,

$$|\downarrow \rangle^{(k)} \rightarrow \cos(\theta_k)|\downarrow \rangle^{(k)} + \sin(\theta_k)|\uparrow \rangle^{(k)}.$$

(20)

where $k \in [0,N_{\text{abs}} - 1]$ and $\epsilon_k \in [0, \pi/4]$. Thus for each $|\downarrow \rangle^{(k)}$ the state gets a $\cos(\theta_k)$ coefficient, while each $|\uparrow \rangle^{(k)}$ receives a $\sin(\theta_k)$ contribution. One can relate each ϵ_k to a specific distribution.

Subsequently, we displace the centers of every single-particle wavepacket in position and momentum space, such that they are widely separated $|\bar{x}_i - \bar{x}_j| \gg |\Delta x|$, with \bar{p}_i denoting the initial momentum of each projectile. To achieve this, we need to use the translation operator T_n (T_q) in position space (momentum space), defined as

$$T_n|q\rangle = e^{-i2\pi n \cdot q/N_s}|q\rangle, \quad T_n|\Omega\rangle = |\Omega\rangle,$$

(21)

where $x = n x_s$ and $n = (n_1, \ldots, n_d)$. It can be decomposed in terms of one-dimensional translation operators $T_n \equiv \bigotimes_{k=1}^d T_{n_k}^{(k)}$. To illustrate the circuit implementation of $T_{n_k}^{(k)}$, we will consider the operator for a translation by one lattice site in the positive direction $T_{1}^{(k)}$. A finite translation can then be achieved by successive applications of $T_{n_k}^{(k)} = (T_{1}^{(k)})^{n_k}$ for $n_k > 0$ ($n_k < 0$), or directly via a simple modification of the algorithm for $T_{1}^{(k)}$, with identical gate complexity.

The circuit for an infinitesimal translation T_1 is given in Fig. 2 acting on a state in the momentum space basis, using the gate $R_{t} \equiv \text{diag}(1, \exp(-2\pi i/2^t))$. Because the operators T and T^\dagger act on the register containing $|q\rangle$, their action is controlled by the sign qubit to account for the sign in the exponent of Eq. (21). The momentum translation operator T_q can be implemented using exactly the same circuit, preceded by a change of basis $|q\rangle \rightarrow |\text{abs}\rangle$ (via a quantum Fourier transform, as will be discussed in Section [45]). The generalization to arbitrary d is straightforward and has $O(M \log(V))$ circuit complexity.

The result of this procedure is multi-particle initial states comprised of widely separated, non-overlapping, wavepackets $|\Psi_i\rangle$ and “empty” vacuum registers $|\Omega\rangle$,

$$|\phi\rangle \equiv |\Psi_0, \Psi_1, \ldots \Psi_{n-1}, \Omega, \ldots, \Omega, \ldots\rangle.$$

(22)

We will henceforth drop the label (l) denoting a particular single-particle state, as in Eq.(16).

This distribution should be one that is probabilistic, namely, efficiently integrable with importance sampling techniques [33].

We will consider now the $d=1$ case and drop the label k.

Assuming large volumes, we will not discuss the action of the translation operator on the spatial boundaries.
The authors plan to return to this case in future work, with the expectation that this leads to novel fermion-qubit mappings \cite{95}.

One can pick $M = 2$, we can illustrate as,

$$|\Psi, \Omega \rangle \rightarrow \frac{1}{\sqrt{2}} \left[|\Psi, \Omega \rangle (0) + |\Omega, \Psi \rangle (1) \right] \rightarrow \frac{1}{\sqrt{2}} \left[|\Psi, \Omega \rangle + |\Omega, \Psi \rangle \right] (0) = |\phi_B \rangle. \quad (24)$$

The basic idea is to introduce $s \equiv \log_2 \left(M!/(M-n)! \right) \sim O(M^n)$ ancilla qubits ($s = 1$ in this example), that are prepared in a symmetric Bell superposition state. Each term in this superposition controls a specific SWAP operation between pairs of particle registers. The CNOT operation uses the occupation number qubits of the registers to uncompute the ancilla. Circuits for arbitrary n and M do not differ fundamentally from this example but are slightly more complicated and are discussed in Appendix B.

In particular, if M and n cannot be chosen such that s is an integer, one must choose $s = [\log_2 \left(M!/(M-n)! \right) \sim O(M^n)$, where the symbol $[y]$ denotes the smallest integer larger than y. As discussed in Appendix B, the symmetrization yields some unwanted permutations in this case which are eliminated through measurements and the symmetrization procedure becomes probabilistic as opposed to exact if $\log_2 \left(M!/(M-n)! \right)$ is an integer. The chance of returning the desired state is then at least $p_{\text{success}} = 2^{-k}$, where $k \equiv 2^{\log_2 \left(M!/(M-n)! \right) - M!/(M-n)!}$; in practice one can pick M and n so that k is not larger than $O(1 - 10)$ – recall that $n = 2$ is the archetypical case for a scattering experiment. Note that the un-computation of the ancilla qubits for $n \geq 2$ requires using information stored in the momentum/position registers as control qubits. Fermionic states can be prepared along similar lines.

Particles generated during the time evolution of the initial state are accommodated by a large number of empty registers $n_\Omega \equiv M - n \approx M \gg n$ initially. A rough estimate for M is the number of particles in the final state, ranging widely with energy from a few to few tens to few hundreds, an upper bound for which is the ratio of the collision energy to the particle mass \sqrt{s}/m.

This algorithm for initial state preparation can be contrasted with the corresponding one in the field based digitization \cite{56,57}. In the latter case, one first prepares the non-interacting vacuum state in a Gaussian basis state using the algorithm of \cite{96} while in our case the vacuum is a computational basis state. Secondly, one employs a Suzuki-Trotter scheme to realize the application of position space Fock operators onto the vacuum state approximated by a linear combination of the field operators ϕ_x and π_x in a region of space. In this case, Bose-symmetrization is built into the realization of operators ϕ_x and π_x and does not need to be enforced explicitly. In our case, a superselection rule specifies the physical sector removing unsymmetrized states.

\section{Time Evolution}

We will follow a Trotter-Suzuki scheme with $N_\delta = (t - t_0)/\delta$ steps to implement the time evolution operator,

$$U(t, t_0) \equiv e^{-iH(t-t_0)} = (e^{-iH\delta})^{N_\delta} + O(\delta^2) = (e^{-iH_1\delta} e^{-iH_0\delta})^{N_\delta} + O(\delta^2) \equiv (U_1 U_0)^{N_\delta} + O(\delta^2), \quad (25)$$

\footnote{The authors plan to return to this case in future work, with the expectation that this leads to novel fermion-qubit mappings \cite{95}.}
FIG. 3. Overview of the time evolution scheme for one Trotter-Suzuki step δ. Here S (discussed in Section IV B 2) and qFT (discussed in Section IV B 3) denote the squeezing operation and the quantum Fourier transformation, respectively.

FIG. 4. Quantum circuit for U_0, using $O(M \text{poly log}(V))$ operations and 2ℓ ancilla qubits. Double lines indicate particle registers (including $|q\rangle$, sign and occupation number qubits).

separating the evolution operator into free $U_0 \equiv \exp\{-iH_0\delta\}$ and interacting $U_I \equiv \exp\{-iH_I\delta\}$ parts, where H_0 is given by the quadratic terms and H_I by the ϕ^4 interaction term in Eq.(11).

We implement U_0 in the momentum space basis of Bose-symmetrized states Eqs.(13-16), where it is diagonal. Using a combined squeezing operation and Fourier transformation, the interaction part U_I is then implemented in position space where it is local. Our strategy is summarized in Fig. (3), and the different elements are worked out below.

1. Free part U_0

The infinitesimal (normal-ordered) time evolution operator U_0 is given by

$$U_0 \equiv \exp\{-i \sum_q \omega_q a_q^\dagger a_q\} = \exp\{-i \frac{\delta}{M} \sum_q \omega_q \left[\sum_{i=0}^{M-1} a_q^{(i)^\dagger} a_q^{(i)} + \sum_{i \neq j=0}^{M-1} a_q^{(i)^\dagger} a_q^{(j)}\right]\},$$

(26)

where U_0 is diagonal when acting on a state $|\psi\rangle$ in the representation discussed above. It can be written as multiplication by a phase factor,

$$U_0 |\psi\rangle = e^{-\frac{i}{\pi} \sum_q \omega_q n_q (1+n_0)} |\psi\rangle = S_{\varphi}^{1+n_0} |\psi\rangle,$$

(27)

where $S_{\varphi} \equiv \exp\{-i \frac{\delta}{\pi} \varphi\}$, $\varphi \equiv \sum_q \omega_q n_q$ is the total energy of all occupied states, and n_q (n_0) the number of registers with momentum q (empty registers), while ω_q is the continuum dispersion relation. The factor $n_q(1+n_0)$ reflects the two terms in the exponent of Eq.(26).

The algorithm for computing Eq.(27) is summarized in Fig. (4). It involves first computing the phase φ. This is done by the sub-circuit depicted in Fig. (5) with two auxiliary registers of ℓ qubits. Here ℓ is determined by the precision of the algorithm to compute φ, $\varphi \equiv \sum_q \omega_q n_q$ is the quantum-addition operation [97, 98] and we treat the circuit $[\varphi]$ to compute ω_q as a quantum “oracle”. The number of ancilla registers 2ℓ is determined by the precision with which we wish to compute ω_q from q. It should be taken to be similar to the number of qubits $\ell \sim O(\log(V)/d)$ that are necessary to realizing q in one dimension. The number of gate operators included in $[\varphi]$ is $O(\text{poly log}(V))$. Efficient algorithms to compute simple arithmetic functions can be found in the literature [99–102].

Once φ is computed, one follows with $O(M)$ diagonal phase rotations $S_{\varphi}^{1+n_0}$, using the occupation number qubits of each register as control qubits. (The detailed circuit is shown in Appendix C). Finally, we un-compute $|\varphi\rangle$, so that in total we use $O(M)$ $[\varphi]$ and $[\omega]$ gates. As a consequence, the algorithm for U_0 has an overall complexity of $O(M \text{poly log}(V))$ gate operations per Trotter step.
FIG. 5. Quantum circuit to compute φ, based on the algorithm in [103]. ω is an oracle to compute $\omega(q)$ for input $|q\rangle$, and \oplus is a quantum-addition circuit [97] [98]. The \oplus symbol appearing in the gate \oplus denotes that the associated register is an input into the gate. The relevant particle register input for the ω gates is denoted by (small) black boxes accordingly.

2. Squeezing Transformation

In order to implement the interaction piece of the time evolution operator U_I, we first perform a transformation from the single-particle representation in momentum space to position space. In a relativistic theory, single particle states in position and momentum space are not simply Fourier conjugates. Therefore to obtain one from the other requires a combined squeezing operation [88] followed by a (quantum-) Fourier transformation. To illustrate this, note that position space Fock operators are given by

$$a_n = \frac{1}{\sqrt{2}} (\phi_n + i\pi_n), \quad a_n^\dagger = \frac{1}{\sqrt{2}} (\phi_n - i\pi_n),$$

with the commutation relations $[a_n, a_n^\dagger] = \delta_{n,n'}$, and the single-particle decomposition $a_n = \sum_i a_n^{(i)}/\sqrt{M}$, $a_n^\dagger = \sum_i a_n^{(i)}/\sqrt{M}$. We can define the Fourier conjugates A_q of a_n as

$$a_n = \frac{1}{\sqrt{V}} \sum_q A_q e^{i2\pi q n/N},$$

and likewise for their Hermitian conjugate counterparts. These are related [88] to the momentum space Fock operators a_q, a_q^\dagger by

$$A_q = \frac{1}{2} [\omega_q^{1/2} + \omega_q^{-1/2}] a_q + \frac{1}{2} [\omega_q^{-1/2} - \omega_q^{1/2}] a_q^\dagger,$$

and likewise for A_q^\dagger. Such squeezing operations are well-known in quantum optics [87] [103] [105], where they are natural in the preparation of squeezed states. We will work out here their implementation on a digital quantum computer. To do so, note that Eq.(30) is realized by

$$A_q = S a_q S^\dagger, \quad A_q^\dagger = S a_q^\dagger S^\dagger,$$

where $S \equiv \prod_q S_q$ and

$$S_q \equiv \exp \left\{ -z_q [a_q^\dagger a_{-q}^\dagger - a_{-q} a_q] \right\},$$

is a unitary operator with $z_q \equiv \frac{1}{2} \log(\omega_q)$. See also Appendix D where we derive Eq.(30) from Eq.(31) and Eq.(32).

The circuit implementation of S_q is compactly summarized in Fig. (7). We can use a Trotter scheme to implement S, splitting the operation into V modes q and $M(M-1)/2$ steps over all possible register pairs $i \neq j$, $i, j = 0, \ldots M-1$, with a Trotter error of $O(\|n_q z_q/M\|^2)$, where n_q is the occupation number of the mode q of the state the operator acts on. We can then write

$$S = \prod_{q,(i \neq j)} S_{q,ij},$$

and

$$S_{q,ij} \equiv \exp \left\{ -z_q \frac{M}{M} [a_q^{(i)} a_{-q}^{(j)} - a_{-q} a_q^{(i)}] \right\}.$$
FIG. 6. Squeezing operator decomposition $S = \prod_{q=q_0}^{q_{\nu-1}} S_q$. Notice that since creation and annihilation operators of different momentum modes commute, there is no Trotter error associated to this decomposition. See Eq. (32).

FIG. 7. Trotter decomposition of the squeezing operator S into $M(M-1)/2$ operations $S_{q,ij} \ (i \neq j)$. Note that because $S_{q,ij} = S_{q,ji}$, we can simplify $S_{q,ij}(z_q)S_{q,ji}(z_q) = S_{q,ij}(2z_q)$.

To implement $S_{q,ij}$, we decompose the single particle Fock operators into spin raising and lowering operators (see Appendix A),

$$S_{q,ij} \equiv \exp \left\{ -\frac{i}{M} \sigma^y_{q,ij} \right\},$$

(35)

where $\sigma^y_{q,ij} = (-i)[a_q^{(i)\dagger} a_q^{(j)} - a_q^{(j)} a_q^{(i)}]$. In the matrix representation of the \mathcal{H} occupation and momentum qubits spanning $\{|q\rangle \otimes |-q\rangle, |\Omega\rangle \otimes |\Omega\rangle\}$, this can be written as

$$\sigma^y_{q,ij} = \left(\begin{array}{cccc} 0 & \cdots & 0 & -i \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ i & 0 & \cdots & 0 \end{array} \right) \equiv \sigma^y_{\mathcal{H}}.$$

(36)

Following a similar strategy as in [106], we block-diagonalize $\sigma^y_{\mathcal{H}}$, using the (periodic) binary increment operator $I_{\mathcal{H}} (I_1 = \sigma^z)$

$$I^\dagger_{\mathcal{H}} \sigma^y_{\mathcal{H}} I_{\mathcal{H}} = \left(\begin{array}{cccc} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ 0 & 0 & -i \end{array} \right) \equiv \tilde{\sigma}^y_{\mathcal{H}}.$$

(37)

The binary increment operator is a simple circuit and can be found in the literature (for example, in Fig. (2) of [106]), and is given explicitly in Appendix D. The recursion relation

$$\tilde{\sigma}^y_{\mathcal{H}} = \frac{1}{2}(1 - \sigma^z) \otimes \tilde{\sigma}^y_{\mathcal{H}-1},$$

(38)

where $\tilde{\sigma}^y_1 = -\sigma^y$, allows us to write

$$\tilde{\sigma}^y_{\mathcal{H}} = \left(\bigotimes_{i=2}^{\mathcal{H}} \frac{1}{2}(1 - \sigma^z) \right) \otimes \tilde{\sigma}^y_{\mathcal{H}-1}.$$

(39)
FIG. 8. Circuit implementation of $S_{q,i,j}$ (Eq. (35)), using the bit-increment operator $I_\mathbb{N}$ and the diagonal single qubit rotation $\exp\left\{ i\sigma_z^q \right\}$. It acts on the \mathbb{N} qubits that make up $(-i)\left[a_q^{(i)} a_q^{(j)\dagger} - a_q^{(j)} a_q^{(i)\dagger} \right]$. Because $(1 - \sigma_z)$ is diagonal, the problem reduces to diagonalizing $\tilde{\sigma}_y^q = -\sigma_y = -S H \sigma^z H^\dagger$, using the Hadamard H and phase gate \tilde{S} acting on one qubit. Consequently, we can write

$$S_{q,i,j} = I_\mathbb{N} \left(1 \otimes \ldots \otimes H \tilde{S} \right) R [z^q_M] \left(1 \otimes \ldots \otimes \tilde{S} H \right) I_\mathbb{N}^\dagger, \quad (40)$$

where $R [z^q_M] = \exp\left\{ i \frac{z^q_M}{M} \left[\otimes_{i=1}^{\mathbb{N}} [1 - \sigma^z]_i \otimes \sigma^z \right] \right\}$ is a simple controlled (diagonal) σ^z-rotation. The algorithm is compactly summarized in Fig. (8).

The circuit implementation of the squeezing transformation contains $O(M^2 V \text{poly log}(V))$ elementary gate operations per Trotter time-step, where $\text{poly log}(V)$ stands for the complexity of the bit increment $I_\mathbb{N}$ and controlled z-rotation $R(z^q/M)$. The M^2 factor is due to iterations over pairs of particle registers, while V reflects the operation being performed for all modes q.

3. Quantum Fourier Transform

Because the quantum Fourier transformation in Eq. (29) is a standard transformation and can be found in many textbooks [89], our discussion here will be brief. Within our digitization framework, it is performed separately for each register and dimension, conditional on whether the corresponding register is occupied. Towards this end, we first bring states (Eqs. (13-16)) into a form where we can apply known algorithms for the symmetric quantum Fourier transform. This is done by first flipping the sign qubits which we then use to control σ_x-operations of all remaining qubits making up q_i, $i = 1, \ldots, d$. Interpreting the sign qubits as the major qubits of the decomposition of each q_i, this allows us to apply the algorithm of [84], with $O(M \text{poly log}(V))$ elementary gate operations.

4. Interaction part U_I

We now turn to the final quantum circuit for the time evolution operator, that of the interaction term U_I. The ϕ^4 interaction term is local in position space and can be decomposed into V Trotter steps per time step δ,

$$U_I = \exp\left\{ -i \delta \sum_n \frac{\lambda}{4!} \phi_n^4 \right\} = \prod_n \exp\left\{ -i \frac{\delta \lambda}{4!} \phi_n^4 \right\} \equiv \prod_n U_{I,n}. \quad (41)$$

To implement the circuit for this operator, we write the field operator as $\phi_n \equiv \sum_{i=0}^{M-1} \phi_n^{(i)} / \sqrt{M}$, where

$$\phi_n^{(i)} \equiv \frac{a_n^{(i)} + a_n^{(i)\dagger}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \ddots & 0 \\ \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix} \equiv \frac{1}{\sqrt{2}} \sigma_{\mathbb{N}}^x, \quad (42)$$

with $\sigma_{\mathbb{N}}^x$ being the \mathbb{N}-qubit operator decomposition of $\phi_n^{(i)}$, comprised of the qubits that span $\{|n\rangle, |\Omega\rangle\}$, as outlined in Appendix A. Following a similar strategy as before for the implementation of the squeezing operation in Section IV B 2, we write

$$U_{I,n} = V_n U_{I,n}^{\text{diag}} V_n^\dagger \quad (43)$$
where $U^{\text{diag}}_{I,n}$ is a diagonal rotation matrix given by

$$U^{\text{diag}}_{I,n} \equiv e^{-i\Delta \sum_{\langle i,j,k,l \rangle} \phi_n^{(i)\text{diag}} \phi_n^{(j)\text{diag}} \phi_n^{(k)\text{diag}} \phi_n^{(l)\text{diag}}},$$

with $\Delta \equiv \delta \lambda/(96M^2)$ and $V_n \equiv \prod_{i=0}^{M-1} V_n^{(i)}$ where

$$V_n^{(i)} = \mathcal{R}(1 \otimes \ldots \otimes 1 \otimes H).$$

Here $I_\mathcal{R}$ is the bit-increment operator and H the Hadamard gate, while $\phi_n^{(i)\text{diag}} \equiv V_n^{(i)\dagger} \phi_n^{(i)} V_n^{(i)}$ satisfies $\phi_n^{(i)\text{diag}} = \bigotimes_j \frac{1}{2} (1 - \sigma^z_j) \otimes \sigma^z$, in analogy to the previous Section.

The algorithm to implement $U_{I,n}$ is compactly summarized in Fig. 9, where $U^{\text{diag}}_{I,n}$ can be realized using standard techniques for quantum simulation [89]. The exact form of $U^{\text{diag}}_{I,n}$ can be obtained by performing the summation over $\langle i,j,k,l \rangle$ in Eq.(44). There are five distinct cases in this sum: either the four particle’s indices match, three indices match, two indices match, two pairs of indices match independently or they all differ; to exemplify how this summation is carried out, we explicitly compute $U^{\text{diag}}_{I,n}$ for $M = 4$ and $n = -1/2$ in Appendix E.

The algorithm for U_I involves $O(M^4V\text{poly log}(V))$ elementary gate operations. The M^4 dependence originates from the need to account for all the possible ways to form four-tuples with M particles, and reflects the brute force approach detailed in Appendix E. This bound can be lowered (presumably down to $O(M)$), provided one finds an efficient algorithm to deal with the combinatorics in computing the respective phases by summing over $\langle i,j,k,l \rangle$; unfortunately we have not been able to construct such a simplified algorithm thus far. The linear dependence on volume is due to the fact that one has to loop over all positions while performing, for each one, $O(\text{poly log}(V))$ gate operations.

The Trotter complexity of the single-particle algorithm presented scales linearly with volume, similar to that of the field operator based strategy in [56, 57, 107]. A meaningful comparison between the approaches will depend on the problem under consideration. Determining the precision required to quantum simulate a simple scattering process, including taking the continuum limit, both in terms of the qubit representation of states and in the accuracy of the time evolution operator, will require a detailed numerical study using larger systems.

Moreover, error mitigation techniques [89, 108] need to be applied should one attempt a quantum simulation with presently available devices. This is particularly important for the scheme presented because the size of the unphysical Hilbert space of non-Bose-symmetric states grows with M. This is similar to the problem of quantum simulating gauge theories where simulation errors may drive the system away from the physical Hilbert space defined by Gauss law. It has been suggested that one can detect such violations of symmetries without compromising the information encoded in the system and thereby correct for them [109, 113].

C. Measurement

In the spacetime picture of S-matrix scattering developed thus far, we first discussed the preparation of wavepackets in the interacting theory by adiabatically turning on the interaction over a time scale τ_0. After this time scale, the wavepackets overlap and interact over a time scale τ_I, determined given by their spatial overlap. We will discuss here the algorithm for the measurement process subsequent to the scattering.
After the scattering, the wavefunction of the system can be written in the most general form\footnote{The position space representation has an identical form and is used interchangeably in the forthcoming discussion. In fact, when we use the word “localized” here it can equally well mean “in position space”, albeit the formulas we give are in the momentum space representation.}

\[|\Psi(t)\rangle = \sum_\ell \alpha_\ell(t)|\Psi_\ell\rangle \equiv \sum_{\text{basis states}} \frac{\alpha_{\ell(q,q',...,q')(t)}}{\sqrt{N_{\ell(q,q',...,q')(t)}}} [q,q',...,\Omega] + \text{symm.}, \]

(46)

with unknown coefficients \(\alpha_{\ell(q,q',...,q')(t)} \). Here ‘symm’ denotes Bose-symmetric permutations and \(N_{\ell(q,q',...,q')(t)} \) is a generalization of the Bose-symmetric factor \(N \) introduced in Section IV A for the \(M \) single-particle registers, now also accounting for the possibility of degenerate momenta among particle registers.

Upon measurement of all qubits\footnote{This is to be contrasted with the procedure in [44, 57] where particle number measurement requires additional gate operations.} the wavefunction in Eq.(46) will collapse to a state with well defined particle number for every mode \(q \) (a Fock state) with probability \(|\alpha_{\ell(q,q',...,q')(t)}|^2 \). Despite this, it is important to note that Eq.(40) does not imply any kind of localization/clustering of the particles measured in a detector, if measured at \(t = \tau_0 + \tau_1 \). One may further evolve the system over a time \(\tau_2 \) during which one turns off the interaction slowly to avoid interactions between separated wavepackets\footnote{Obviously, one can go beyond this picture by extracting information on the scattering process through measurements at \(\text{any} \) time, as we shall discuss below.} until one ends up with localized particles over macroscopic scales that are theory specific. These are then straightforward to measure due to Eq.(46).

Measurements of identical Bose particles, with different orderings amongst the particle registers, are physically equivalent. Up to kinematic factors, this measurement defines the differential cross-section

\[\frac{d\sigma}{d^dp_0 \cdots d^dp_n}, \]

(47)

of \(n = \sum q \cdot n_q \) particles for a given outcome. From this perspective, running the quantum computer multiple times is very similar to accumulating events in an actual particle physics experiment – followed by a classical analysis of events. However on the quantum computer, every outcome allowed by energy-momentum conservation, as well other conserved quantities corresponding to symmetries of the system, is contained in the state Eq.(46). For example, one can simply measure only occupancy qubits, but not their corresponding momentum counterparts, to obtain an integrated cross-section,

\[\sigma_n \equiv \int d^dp_0 \cdots d^dp_n \frac{d\sigma}{d^dp_0 \cdots d^dp_n}, \]

(48)

directly. Similarly, in more complicated theories, one can introduce single-particle registers with qubits corresponding to electric charge, spin or color and directly project on to desired values of these for a specific measurement.

One can also instruct the quantum algorithm to impose kinematical cuts such as measuring localized particle number in some region \(p \in [p^\text{min}, p^\text{max}] \). To achieve this, one requires \(2d \) auxiliary registers (of size \(\log(\mathcal{V}) \)) set to kinematic bounds \(p^\text{min/\text{max}} \) in \(d \) dimensions. One further requires a unitary comparator circuit \footnote{We note however that the regime at \(\lambda = 0 \), and that of its physical value, may not be adiabatically connected because the spectrum of the latter may consist of bound states. In this case, one omits the evolution over a time \(\tau_f \) where one turns off the interaction and instead should keep the interaction time \(\tau_f \) long enough to include the physical time it takes to form such a bound state. As we discussed previously, the minimal time scale for this to occur is the Wigner time delay – for a discussion of resonance formation in the S-matrix picture, see [179]. Once this is done, and bound states are sufficiently separated, one can make local measurements of quantum numbers such as particle number or momentum (electric charge and spin can also be measured in more complicated theories, for example), the operator for the latter defined as}

\[P^i_{vp} \equiv \int_{v_p} d^dp \ p^i a^\dagger_p a_p, \]

(49)
where $i = 1, \ldots, d$ and \tilde{V}_p stands for a region in momentum space. Its expectation value can be obtained using variants of the phase estimation algorithm (PEA) \cite{120,123}. The idea is to act on the state with $U = \exp(-iP^i_p)$ to determine the operator expectation value $\langle P^i_p \rangle$. The PEA determines, with high probability, this expectation value to within precision ε. It requires extra $O(\log(\varepsilon^{-1})) \sim O(\log(V)/d)$ ancilla qubits\cite{3} and $O(\log(\varepsilon^{-1}))$ applications of the controlled-U operations. In our digitization scheme, it is straightforward to obtain $\langle P^i_p \rangle$ because the circuits of Section IV B 1 can be applied with small modifications. Concretely, one replaces ω_p by p^i in this algorithm and also uses a comparator circuit to check if p^i is in \tilde{V}_p controlling the execution of the circuit.

Likewise, the energy operator, restricted to \tilde{V}_p, is

$$H_{\tilde{V}_p} \equiv \int_{\tilde{V}_p} dp H_p = \int_{\tilde{V}_p} dp H_{0,p} + \int_{\tilde{V}_p} dp H_{1,p},$$

where $H_{0,p}$ and $H_{1,p}$ are the Fourier transforms of the Hamiltonian densities $H_{0,x}$ and $H_{1,x}$, with $H_0 = \int dx H_{0,x}$ and $H_1 = \int dx H_{1,x}$. One can measure the contribution to the expectation value $\langle H_{\tilde{V}_p} \rangle$ from the first term just as in Eq.\ref{eq:49}. To obtain the second term, we write

$$\int_{\tilde{V}_p} dp H_{1,p} = \int dp H_{1,p} \theta_{\tilde{V}_p}(p),$$

where $\theta_{\tilde{V}_p}(p)$ is a (smooth) envelope function restricting the integrand to \tilde{V}_p. To illustrate the procedure, we now assume for simplicity that $\theta_{\tilde{V}_p}(p)$ is a sharp envelope function, e.g. a d-dimensional box function with equal length, i.e. $\theta_{\tilde{V}_p}(p) = 1$ if $p \in \tilde{V}_p$ and zero otherwise, where $\tilde{V}_p \equiv (L_p)^d$ is centered at some p. We can make use of the Fourier convolution theorem to compute this term. First, using the momentum space translation operator introduced in Section IV A, we translate the state such that \tilde{V}_p is centered around zero. After performing the squeezing and Fourier transformations discussed in sections IV B 2 and IV B 3, Eq.\ref{eq:51} can be written as

$$\int dx H_{1,x} g(-x),$$

where the Fourier transform of the box function (centered around zero) is real, $g(x) = (2\pi)^{d/2} \prod_{i=1}^d \sin(|x|L_p/2)$. The PEA \cite{120,123} can be applied again, replicating the algorithm of Section IV B 4, albeit with the replacement $\lambda \rightarrow \lambda g(-x)$. For this specific envelope function, the measurement has a gate complexity of $O(VM^4/\text{poly} \log(V))$. A sharp envelope function is not ideal because it requires evaluating also the side-bands of the $\sin(x)/x$ function. In practice, one should use a smooth cutoff function, whose Fourier transform is known analytically or numerically, which falls off exponentially. In this case, the estimate will only depend on the much smaller sub-volume $V_x \subset V$ over which the Fourier transform of the envelope function is supported, instead of the full volume V. Similar algorithms are applied to compute energy and momentum densities restricted in position space.

One example where the spectrum of the free and interacting theory are not adiabatically connected is that of QCD. While color charged quark and gluon states arguably form a good basis to represent the proton wavefunction at high energies and short time intervals, at large distances and time intervals they are not contained in the physical spectrum because of the confinement/deconfinement phase transition, as is manifest in the dynamical process of hadronization/fragmentation between these regimes \cite{124,127}.

In general, being able to control the wavefunction of a many-body system at any time t one can in principle follow the entire spacetime evolution of a particular collision system, instead of measuring just its asymptotic outcome, and thereby obtain snapshots of the collision process. This is important for systems such as ultrarelativistic heavy ion collisions where the primary interest lies in the thermalization and hydrodynamization of the produced matter \cite{23} as opposed to the asymptotic final states. Likewise, following Feynman’s idea of quantum simulating a particle physics experiment in its entirety, having full control over the time evolution allows one to measure arbitrary (non-equal time) correlation functions directly. (See also \cite{128} where this point is discussed.) This will allow for a more direct comparison with current theoretical efforts such as computing parton distribution functions \cite{35} or hadronic and Compton scattering amplitudes \cite{129} from correlation functions.

Moreover, quantum computation allows one to address the question of entanglement in nuclear physics \cite{130} and in high energy physics. With regard to the latter, the single particle basis described here may be useful to quantify entanglement between partons as probed in DIS experiments \cite{131,134}, its role in thermalization of the quark-gluon plasma, in hadronization \cite{135,137}, or in the composition of the proton’s spin \cite{138,139}.

\footnote{We require that the precision of the PEA should be the same as that for the momentum space discretization.}
D. Renormalization

The renormalization of quantum fields to absorb the apparent infinities that appear in computations is a fundamental feature of quantum field theories. It is therefore important to understand how to treat this problem in the real time Hamiltonian description of the evolution of quantum fields and its implementation on a quantum computer. More specifically, we need to understand how to implement the renormalization group for scattering problems in our single-particle framework.

We begin our discussion with a general overview of the renormalization group procedure in the Hamiltonian formalism. We will illustrate this picture in perturbation theory. We argue however that non-perturbative renormalization is essential to ensure one does not vitiate the reduction in computational complexity presented by quantum computations relative to classical approaches. With this in mind, we will outline a concrete non-perturbative scheme closely paralleling the corresponding procedure in classical lattice computations in the (Euclidean) path integral formalism.

1. Operator formulation

The renormalization of quantum fields and operators requires finding a Hamiltonian for the effective field theory of interest (defined with an ultraviolet cutoff) concretely through a lattice discretization as well as the truncation of the Hilbert space imposed by a given digitization scheme. Since renormalization in the Hamiltonian operator formalism has been developed extensively \[140\], as well as its applications to single-particle strategies \[141\]–\[143\], we will only outline the basic ideas in the context of this work. Working in the computational basis (the eigenbasis of the free Hamiltonian \(H_0\)) introduced in Section \[\text{III}\] we can write the Hamiltonian in the block form

\[
H = \begin{pmatrix}
H_{ll} & H_{lh} \\
H_{hl} & H_{hh}
\end{pmatrix},
\]

(53)

The matrix elements in this representation are between states with energies \(E = \sum_p \omega_p n_p\), either below \((l)\) or above \((h)\) a cutoff \(\Lambda\).

A renormalization group (RG) transformation consists of the similarity transformation

\[
H^\text{eff} \equiv T H T^\dagger,
\]

(54)

where \(T \equiv \exp(i\eta)\) block-diagonalizes \(H\), eliminating matrix elements between the low and high energy sectors such that \(H^\text{eff}_{ll}\) in the new basis defines a low energy effective field theory \[145\] (EFT). The generator \(\eta\) of this similarity transformation is not known a priori. It can however be constructed to realize a non-perturbative RG, the so-called similarity RG \[140\], by integrating out one energy shell at a time in infinitesimal steps. This point is discussed further in Appendix \[\text{F}\].

If the coupling is small enough, perturbative renormalization is applicable. This procedure is very familiar to the high energy physicist in its Lorentz covariant path integral formulation; in the Hamiltonian operator picture, it is best illustrated through a Schrieffer-Wolf transformation, as discussed in \[145\]. Concretely, Eq. (54) can be expanded as

\[
H^\text{eff} = H + [i\eta, H] + \frac{1}{2!} [i\eta, [i\eta, H]] + \cdots = H_0 + H_I + [i\eta, H_0] + [i\eta, H_I] + \frac{1}{2} [i\eta, [i\eta, H_0]] + O(\lambda^3),
\]

(55)

where \(H = H_0 + H_I\) and \(H_I \sim O(\lambda), \eta \sim O(\lambda)\). We label eigenstates \(H_0|\alpha, i\rangle = E_{\alpha, i}|\alpha, i\rangle\), where \(\alpha = l, h\) denote low and high energy sectors (the computational basis states of Section \[\text{III}\]). To block-diagonalize \(H\) so that \(\langle \alpha, i|H^\text{eff}|\beta, j\rangle = 0\) if \(\alpha \neq \beta\), we require that the diagonal elements of \(i\eta\) vanish, \(\langle \alpha, i|i\eta|\alpha, j\rangle = 0\), and we set \(\langle \alpha, i|i\eta|\beta, j\rangle = \langle \alpha, i|H_I|\beta, j\rangle / (E_{\alpha, i} - E_{\beta, j})\) for \(\alpha \neq \beta\). With this, the off-diagonal elements of \(H^\text{eff}\) cancel to \(O(\lambda^2)\). In this case, \(H^\text{eff} = H_0 + H_I + \frac{1}{2} [i\eta, H_I] + O(\lambda^3)\), with the low energy matrix elements given by

\[
\langle l, i|H^\text{eff}|l, j\rangle = \langle l, i|H|l, j\rangle + \frac{1}{2} \sum_k \langle l, i|H_I|l, k\rangle \langle k, h|H_I|l, j\rangle \left[\frac{1}{E_{l, i} - E_{h,k}} + \frac{1}{E_{l, j} - E_{h,k}} \right].
\]

(56)

The same transformation applies to any operator \(O^\text{eff} = T O T^\dagger\), which can be expressed as \(\langle l, i|O^\text{eff}|l, j\rangle = \langle l, i|O|l, j\rangle + \langle l, i|\Delta O|l, j\rangle\). For the matrix elements for an observable diagonal in the eigenbasis of \(H_0\) (such as particle number),

\[\text{Note that a self-consistent formulation of the S-matrix in this picture may provide deeper insight into ambiguities regarding the elementarity of the degrees of freedom included in the EFT} \[119\]. For a recent discussion, see \[144\].\]
Examples of such algorithms include variational approaches \[148, 149\], adiabatic state preparation with quantum phase estimation \[150, 151\], quantum approximate optimization \[148, 152\], quantum imaginary time and quantum Lanczos algorithms \[153\], and efficient operator averaging techniques \[120–123\].

A caveat here is that since the scattering process likely covers a larger range of scales, the continuum extrapolation of the cross-section is more challenging than that of the low energy spectrum.

16 This formalism is analogous to a Poisson bracket formalism invented in the context of weak wave turbulence in fluids \[146\]. Interestingly, it has been exploited recently to study the self-similar infrared behavior of a scalar ϕ^4 theory far-off-equilibrium \[147\].

17 Examples of such algorithms include variational approaches \[148, 149\], adiabatic state preparation with quantum phase estimation \[150, 151\], quantum approximate optimization \[148, 152\], quantum imaginary time and quantum Lanczos algorithms \[153\], and efficient operator averaging techniques \[120–123\].

the procedure outlined can in principle be continued to arbitrary order $O(\lambda^n)$. However it is not difficult to see that doing so comes with a steeply increasing number of terms in Eqs. (56-57) of factorial complexity, just as the number of Feynman diagrams grows factorially with loop order in a path integral formulation. Moreover such a perturbative computation will break down if there is a phase transition in the physical Hamiltonian at $t = \tau_0$ or if $D = 2, 3$ for scalar ϕ^4 theory; for QCD, this expansion will be problematic for quantum simulations that attempt to treat hadronization of parton single-particle degrees of freedom.

Therefore to match the quantum advantage of the renormalization procedure with that of the non-perturbative formulation of the rest of our treatment of the scattering problem, we will outline below a practical scheme to non-perturbatively renormalize the theory on a quantum computer.

2. Non-perturbative renormalization scheme

We begin by outlining how exactly renormalization enters our algorithm. As shown in Fig. (1), the algorithm includes a turn-on of interactions from a free (but unphysical) theory at $t = 0$, where the initial state can be prepared, to the interacting (physical) theory at $t = \tau_0$ with time-dependent Hamiltonian $H(t) = \lambda(t, m(t))$.

It is only the couplings in the physical Hamiltonian at $t \geq \tau_0$,

$$\lambda(\tau_0) = \lambda^{\text{ren}}, \quad m(\tau_0) = m^{\text{ren}},$$

that are to be determined by a renormalization group procedure which we outline below. The ‘unphysical’ theories defined by $H(t) = \lambda(t, m(t))$ at $t < \tau_0$, including the initial values

$$\lambda(0) = 0, \quad m(0) = m_0,$$

are not renormalized because there is simply no physical renormalization for them. Instead, one simply works with a linear interpolation

$$\lambda(t) = \lambda^{\text{ren}} \frac{t}{\tau_0}, \quad m(t) = m_0 \left(1 - \frac{t}{\tau_0}\right) + m^{\text{ren}} \frac{t}{\tau_0},$$

for $t \in [0, \tau_0]$ and constant thereafter. From a practical perspective, the unknown parameter m_0 may be chosen to represent a relevant energy scale in the weakly coupled regime of the theory such as for example the bare quark mass in QCD. However if the system undergoes a phase transition during this turn-on procedure, the mass and energy scales of the weakly and strongly coupled regimes of the theory are very different (as is the case in QCD), requiring large lattices to resolve both regimes.

We now turn our attention to determining the renormalized values for the bare parameters $\lambda(t)$ and $m(t)$ at $t \geq \tau_0$. We will assume form invariance of the Hamiltonian of the form Eq. (11) for all values of lattice spacing a_s and particle number cutoff M. In other words, we do not add dimensionful operators that would be generated by the similarity transformation in Eq. (54). (These could in principle improve the convergence to the continuum limit.)

To renormalize the Hamiltonian operator, it is sufficient to perform the computation of a static property and then use the result as the input for the computation of a scattering process \[17\]. The non-perturbative renormalization strategy consists of the following steps:

1. First, one quantum computes a static and dimensionless physical quantity such as the energy ratio of two lowest-lying excitations at a given a_s and M. One then repeats the computation adjusting the bare parameters λ, m so that the physical value is reproduced for that a_s and M. We will not discuss the details of such computations here but note that algorithms \[18\] to do so can be applied to our single-particle digitization.

16 This formalism is analogous to a Poisson bracket formalism invented in the context of weak wave turbulence in fluids \[146\]. Interestingly, it has been exploited recently to study the self-similar infrared behavior of a scalar ϕ^4 theory far-off-equilibrium \[147\].

17 A caveat here is that since the scattering process likely covers a larger range of scales, the continuum extrapolation of the cross-section is more challenging than that of the low energy spectrum.

18 Examples of such algorithms include variational approaches \[148, 149\], adiabatic state preparation with quantum phase estimation \[150, 151\], quantum approximate optimization \[148, 152\], quantum imaginary time and quantum Lanczos algorithms \[153\], and efficient operator averaging techniques \[120–123\].
2. One then repeats the computation at a somewhat different \(a_s, M \) along the direction \(a_s \to 0 \) and \(M \to \infty \), and adjusts the values of \(\lambda, m \) so that the aforementioned physical quantity does not change.

3. One repeats this computation for various \(a_s, M \) along a line of constant physics. Because there are now two directions \((a_s, M) \), this procedure is in principle ambiguous. In practice however it should be subject to an optimization procedure identifying the most relevant RG direction, such as determined by a steepest decent approach. We will not discuss such a procedure here.

4. Once the renormalized values \(\lambda^{\text{ren}} \) and \(m^{\text{ren}} \) are known for a range of \((a_s, M) \), one performs the scattering experiment outlined in this manuscript with these values as input. This also includes the renormalization of operators \((O^{\text{eff}}) \) measured in Section IV C such as particle number, momentum and energy density. In the simplest case, one sets \(O = ZO^{\text{eff}} \) and determines \(Z \) in the same way as for the bare \(\lambda \) and \(m \).

5. Finally, one performs a continuum extrapolation of the observables obtained in the scattering experiment. This dynamical problem will require determining the \(\lambda^{\text{ren}} \), \(m^{\text{ren}} \) and \(Z \) over a large range \((a_s, M) \) which is likely computationally demanding even with a quantum computer.

This procedure is similar to the Luscher formalism that relates energy differences between static long-lived states and S-matrix elements. Extracting the latter from the former is in general an inverse scattering problem and a number of sophisticated techniques have been developed in this regard \[154\]. A potential advantage of the quantum computation is that both sides of the Luscher relation can be computed in real time; realizing this in practice is of course very challenging.

V. SUMMARY AND OUTLOOK

In this work, we developed a novel single-particle digitization strategy for the quantum simulation of scattering in a relativistic scalar \(\phi^4 \) field theory in \(d \) dimensions. The basic idea is a relativistic generalization of a single-particle picture consisting of \(M \) “particle registers” whose Hilbert space spans states over a volume \(\mathcal{V} \). Our approach is non-perturbative and fully general and may offer a quantum advantage over other digitization strategies for a class of interesting physical problems that are challenging to address with purely classical methods.

The conceptual elements of this framework are outlined in sections II and III. We developed quantum circuits for the initial state preparation of scattering wavepackets in Section IV A, their time evolution through the scattering process in Section IV B and the subsequent measurement of final states in Section IV C. We sketched in Section IV D the elements of a non-perturbative renormalization strategy that must be implemented in the quantum simulation to achieve physically meaningful results.

The overall gate complexity of the elements of a quantum circuit for a scattering simulation are compactly summarized in Table I. The initial state preparation requires \(O(M^n \log(\mathcal{V})) \) elementary gate operations, where \(n \) is the initial number of particles (the simplest case being two-particle scattering with \(n = 2 \)), and \(O(\log(M^n)) \) ancilla qubits. The algorithm may become probabilistic, requiring additional measurements for certain choices of \(n \) and \(M \) depending on Bose combinatorics. A Trotter scheme is employed to separate the time evolution operator into free and interaction parts; these are evaluated respectively in momentum and position space representations of the single-particle digitization basis. The change of basis from the former to the latter is achieved through a combination of squeezing and quantum Fourier transform operations. The dominant cost of the algorithm is from the \(O(M^4\mathcal{V}\text{polylog}(\mathcal{V})) \) gate operations per Trotter step required to compute the interaction part of the time evolution operator. The measurement of particle number incurs no additional cost; the estimation of the localized momentum and energy density (in a sub-volume \(\mathcal{V}_x \subset \mathcal{V} \)), via the phase estimation algorithm, requires \(O(M\text{polylog}(\mathcal{V})) \) and \(O(M^4\mathcal{V}_x\text{polylog}(\mathcal{V})) \) operations respectively.

Our framework can be compared to the paradigmatic description of scattering on quantum computers by Jordan, Lee and Preskill (JLP) \[43, 53\] which, in contrast, is based on the digitization of field operators.\[50\] Our digitization strategy differs fundamentally from JLP and other field digitization approaches since the number of degrees of freedom in our approach scales linearly with the particle number (and as a logarithm of the volume) as opposed to the linear scaling with volume in the field digitization approach. However the logarithmic scaling in our approach only holds if the system is dilute; for dense systems with high occupancy, one recovers linear scaling or greater with the volume and the single-particle strategy is no longer preferred. This is seen on the algorithmic level when the required Bose/Fermi-symmetrization creates a large overhead of unphysical/unused states in Hilbert space. Because \(M \sim \mathcal{V} \) in such

19 The implementation of the JLP program for scattering problems has been discussed at length recently \[107\] and compared to an alternative digitization strategy employing a harmonic oscillator basis in position or momentum space \[155, 157\].
For discussions of first principles quantum simulation of (non-Abelian) gauge theories see [159–165].

While we work in the eigenbasis of the free Hamiltonian, we will test, using exact diagonalization, how well the spectrum of the theory can be reproduced in the interacting theory at finite energy density includes a factor V_t, volume V, occupied registers in initial state n, dimension d, Trotter time steps t. (**) If $\log_2(M!/(M - n)!)$ cannot be chosen integer, the initial state is prepared with probability $p_{\text{success}} = 2^{-k}$ where $k \equiv 2^{\lceil \log_2(M!/(M - n)!)} - M!/(M - n)!$ (typically one can choose M such that $k \sim O(1 - 10)$). (***) Measurements of (localized) energy and momentum densities are via the phase estimation algorithm (PEA) [120–123]. The cost estimate for the localized energy density includes a factor $V_k \subset V$ denoting a small sub-volume of the total V, see Section IV C.

The situation is analogous to the virial expansion we discussed previously which breaks down for high-density systems. Thus just as the virial expansion is very useful for a wide class of many-body problems, our single-particle approach may present a quantum advantage for a number of physical problems. From a purely practical point of view, the logarithmic scaling with volume of our approach will be useful in benchmark computations for a class of scattering problems with NISQ era quantum hardware, where only few tens to hundreds of noisy qubits will be available. A physics application where our strategy may provide a quantum advantage is the Feynman diagram approach to compute scattering amplitudes at weak coupling. As pointed out in [44, 45] a quantum computation avoids the combinatorial complexity with increasing precision that burdens classical computations. Another appealing feature of our strategy is the relative simplicity of initial state preparation and of the extraction of inclusive cross-sections; the latter, for instance, requires no additional gate operations. Not least, the single-particle approach, as articulated in Section IV D, provides a transparent realization of a non-perturbative renormalization scheme that can simultaneously be used to fix lattice masses and couplings from comparisons to static properties of the system and to compute physically meaningful cross-sections.

One can extend our strategy to fermionic theories and theories involving internal symmetries. For a fermionic theory, the algorithm in Section IV A can be modified to produce antisymmetrized wavefunctions, and may offer a new fermion qubit mapping that is useful in higher dimensions. Internal symmetries such as spin and color can also be realized via the strategy discussed in [31]. For example, to realize a Dirac fermion in $3 + 1$ dimensions, one only needs to modify Eq. (14) to include two extra fermionic degrees of freedom; these can then be mapped on to two qubits by means of a Jordan-Wigner transformation, thereby realizing the four-dimensional spinor matrix space. Likewise, for color $SU(3)$ in the fundamental representation, only three extra qubits are required. Details of the spin and extensions to $SU(N_c)$ in arbitrary representations are given in [31, 159, 165].

The theory can be non-pertubatively coupled to gauge fields (20). An important consequence in doing so is that the quadratic term of the Hamiltonian, whose implementation is discussed in Section IV B, is not diagonal anymore. A significant downside would be that one no longer can work with the continuum dispersion relation in momentum space but would instead have to use a lattice discretization of the Laplacian operator in Eq. (11). This introduces larger discretization errors which are unknown in the strongly coupled regime and are likely more severe than the cost of the squeezing and quantum Fourier transformations that are avoided by working purely in the coordinate space basis.

As a next step, we aim to perform a numerical study focusing on the simplest case of $d = 1$ spatial dimensions. While we work in the eigenbasis of the free Hamiltonian, we will test, using exact diagonalization, how well the spectrum of the theory can be reproduced in the interacting theory at finite λ for given lattice discretization and M. This is similar to what is done in [54] using the digitization of [44, 45]. At weak coupling, the results of such study can be compared with lattice perturbation theory, unlike at strong coupling where the analysis includes varying M and V over a wider range, hoping for eventual convergence.

20 For discussions of first principles quantum simulation of (non-Abelian) gauge theories see [159, 165].

Initial State preparation	$O(M^n \log(V))$	$p_{\text{success}} = 1$ [exact*]	$\log(M!/(M - n)!)$ [exact*]
Squeezing transform S	$O(M^2 \nu \log(V)t)$	$O(\log(V)/d)$	
Interaction part U_I	$O(M^4 \nu^2 \log(V)t)$	$O(\log(V)/d)$	
Total	$O(M^4 \nu^2 \log(V)t)$	$O(\log(V)/d)$	
Measurement		$O(M \log(V))$ (PEA**)	$O(\log(V)/d)$

Table I. Cost of the circuit implementation discussed in this manuscript, assuming noiseless qubits. We use the following abbreviations: number of particle registers M, volume V, occupied registers in initial state n, dimension d, Trotter time steps t. (**) If $\log_2(M!/(M - n)!)$ cannot be chosen integer, the initial state is prepared with probability $p_{\text{success}} = 2^{-k}$ where $k \equiv 2^{\lceil \log_2(M!/(M - n)!)} - M!/(M - n)!$ (typically one can choose M such that $k \sim O(1 - 10)$). (***) Measurements of (localized) energy and momentum densities are via the phase estimation algorithm (PEA) [120–123].
Next, one could classically compute our algorithm within the simplest case of $M = 2$ in $d = 1$ dimensions with $N_s = 8$ (16) lattice sites. This would correspond to a quantum simulation with 8 (10) qubits, plus an overhead of ancilla qubits. An important motivation for such a study would be to quantify the consequences of the violation of Bose symmetry by injecting errors into the simulation.

With this as benchmark, we plan to implement elements of our circuit on available quantum hardware, starting in the simplest case of $M = 2$ in $d = 1$ dimensions which we assume can be done using lattices up to $N_s \sim O(8)$ sites. While negligible for large systems, the overhead from ancilla qubits is a significant part of the computational budget for such small number of sites. Preparing the Bose-symmetrized initial state is already a non-trivial task involving entangling the two particle registers. To implement the time evolution algorithm, a quantum algorithm for the oracle to compute the single particle energy ω_q from the momentum q has to be devised for the free part of the time evolution operator U_0. While it is certainly possible to come up with an efficient circuit for ω_q, a simpler strategy would be to simulate U_0 in position space albeit with a lattice discretized Laplacian operator. The resulting complexity of $O(V)$ versus $O(\log(V))$ would hardly make a difference on lattices this small.

Finally, we should mention that we see important applications of our single particle basis digitization strategy to quantum computing scattering cross-sections, nuclear structure functions and jet fragmentation functions probed at high energy collider experiments such as the Large Hadron Collider, the Relativistic Heavy Ion Collider and the upcoming Electron-Ion Collider [169]. A single particle basis may also be useful to quantify the role of entanglement in high energy and nuclear physics, for example, between partons probed in DIS experiments [131–134], the evolution of entanglement during the parton fragmentation process [135–136] and its role in the composition of the proton’s spin [137]. We also see novel applications of this approach [151–167] to systems in high energy nuclear and particle physics that can be described by hybrid quantum/classical dynamics such as QCD in the Regge limit [82] and the thermalization dynamics of the quark-gluon plasma in ultrarelativistic heavy ion collisions [25, 166].

ACKNOWLEDGMENTS

N.M. would like to thank Ning Bao, Zohreh Davoudi, Nikhil Karthik, Alex Shaw and Torsten Zache for discussions. R.V. would like to thank Robert Konik for a useful discussion. This project was supported by a fellowship to J.B. from “la Caixa” Foundation (ID 100010434)– fellowship code LCF/BQ/ DI18/11660057, and by funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 713673. J.B. is supported by Ministerio de Ciencia e Innovacion of Spain under project FPA2017-83814-P; Unidad de Excelencia Maria de Maeztu under project MDM-2016-0692; European research Council project ERC-2018-ADG-835105 YoctoLHC; and Xunta de Galicia (Conselleria de Educacion) and FEDER. J.B. also acknowledges the support from the Fulbright Commission and the hospitality of Brookhaven National Laboratory. N.M. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project 404640738 and by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract No. DE-SC0004286 whilst at Brookhaven National Lab where a significant part of the work presented was performed. A.T.’s work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0004286 and in part by the joint BNL/Stony Brook Center for Frontiers in Nuclear Science (CFNS). This material is based upon R.V.’s work supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers. R.V.’s work is also supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract No. DE-SC0012704.

[1] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, Molecular Physics 109, 735 (2011).
[2] I. Kassal, J. D. Whitfield, A. Perdomo-Ortiz, M.-H. Yung, and A. Aspuru-Guzik, Annual review of physical chemistry 62, 185 (2011).
[3] P. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, et al., Physical Review X 6, 031007 (2016).
[4] C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H. Shen, P. Jurcevic, B. P. Lanyon, P. Love, R. Babbush, et al., Physical Review X 8, 031022 (2018).
[5] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, and U. Sen, Advances in Physics 56, 243 (2007).
[6] I. Bloch, J. Dalibard, and S. Nascimbene, Nature Physics 8, 267 (2012).
[7] N. Bao, P. Hayden, G. Salton, and N. Thomas, New Journal of Physics 17, 093028 (2015).
[8] U. R. Fischer and R. Schützhold, Physical Review A 70, 063615 (2004).
[9] P. Jain, S. Weinacht, M. Visser, and C. Gardiner, Physical Review A 76, 033616 (2007).
[10] A. Chatrchyan, K. Geier, M. K. Oberthaler, J. Berges, and P. Hauke, arXiv preprint arXiv:2008.02290 (2020).
Appendix A: Single-particle digitization scheme

In this Appendix, we provide additional details on the single-particle digitization strategy introduced in Section III based on mapping single particle states to a chain of spins Eqs. (14, 15), where

\[
a_q^\dagger = \frac{1}{\sqrt{M}} \sum_{i=0}^{M-1} a_q^{(i)} \dagger,
\]

and similarly for \(a_q\). Here \(a_q^{(i)}\) and \(a_q^{(i)}\dagger\) are “hard-core boson” creation (annihilation) operators which can be written as a product of spin raising (lowering) operators \(S^\pm = 1/2(\sigma^x \pm i\sigma^y)\). A simple example is a digitization with \(N = 4\) qubits per particle register in \(d = 1\) dimensions, where there are eight “occupied” states with \(q \in [-7/2, 7/2]\),

\[
| \pm 1/2 \rangle \equiv |\downarrow\downarrow; \uparrow/\downarrow; \rangle, \quad | \pm 3/2 \rangle \equiv |\downarrow\uparrow; \uparrow/\downarrow; \rangle, \quad | \pm 5/2 \rangle \equiv |\downarrow\downarrow; \uparrow/\downarrow; \rangle, \quad | \pm 7/2 \rangle \equiv |\uparrow\uparrow; \uparrow/\downarrow; \rangle,
\]

and the empty state \(|\Omega\rangle = |\downarrow\downarrow; \downarrow/\downarrow; \rangle\). Fock operators are then

\[
a_{-1/2} = S_0^+, \quad a_{3/2} = S_2^+, \quad a_{-5/2} = S_3^+, \quad a_{-7/2} = S_5^+, \quad a_{+1} = S_1^+ a_{-1} \equiv S_1^+ a_{-1}, \quad a_{-3} = S_1^+ a_{-1} = -S_1^+ a_{-1},
\]

where \(a_{+1}^\dagger = S_1^+ a_{-1}^\dagger\). We label the \(k=0, \ldots, 3\) qubits from right to left so that \(k = 0\) labels the occupation number qubit, \(k = 1\) the sign qubit and \(k = 2, 3\) are the binary decomposition of \(|q\rangle\). We use the identical map for states in the position representation.

One can check that \(a_q^{(i)} |\Omega\rangle = |q\rangle\) and \((a_q^{(i)}\dagger)^2 = (a_q^{(i)})^2 = 0\). Using Eq. (A1), one can also show that \([a_q^\dagger a_q^\dagger] = [a_q, a_q^\dagger] = 0\) and

\[
[a_q, a_q^\dagger] = \frac{1}{M} \sum_{i=0}^{M-1} (a_q^{(i)}, a_q^{(i)}\dagger + 2a_q^{(i)} a_q^{(i)}) = 1 + O(1/M),
\]

where \(1\) is a unit matrix in the space spanned by \(|q\rangle\) and \(|\Omega\rangle\), as well as \([a_q, a_q^\dagger] = O(n_q/M)\) where \(n_q\) is the occupation number of the mode \(q\).

Appendix B: State Preparation – Details

In this Appendix, we present additional details for the initial state preparation algorithm of Section IV A. The idea behind the algorithm is to start from an unsymmetrized state, work out all permutations of particle registers that together give the symmetrized state (a simple combinatorial problem) and then use an ancilla register in a Bell superposition. Every state in this superposition is interpreted as the binary representation of a number labelling the respective Bose-permutations of the initial unsymmetrized state. Each combination may then be used as the control qubits to execute an unique swap operation.

A simple but non-trivial example is the case of \(n = 2\) initial wave packets in \(M = 3\) registers, where the Bose symmetrized state, obtained from the initial unsymmetrized state \(|\Omega, \Psi_1, \Psi_0\rangle\), reads

\[
\frac{1}{\sqrt{6}} \left[|\Omega, \Psi_1, \Psi_0\rangle + |\Omega, \Psi_0, \Psi_1\rangle + |\Psi_0, \Psi_1, \Omega\rangle + |\Psi_0, \Omega, \Psi_1\rangle + |\Psi_1, \Omega, \Psi_0\rangle + |\Psi_1, \Psi_0, \Omega\rangle \right].
\]

(B1)

Following the recipe given in the main text, the number of possible Bose permutation for this \(M\) and \(n\) is not a power of two. Using \(s = 3\) ancilla qubits in a Bell superposition in fact gives \(2^3 = 8\) different permutations. Because of this the following state is generated:

\[
|\Omega, \Psi_1, \Psi_0\rangle \rightarrow \frac{1}{\sqrt{8}} \left[|\Omega, \Psi_1, \Psi_0\rangle |0, 0, 0\rangle + |\Omega, \Psi_0, \Psi_1\rangle |0, 0, 1\rangle + |\Psi_0, \Psi_1, \Omega\rangle |1, 0, 0\rangle + |\Psi_1, \Psi_0, \Omega\rangle |1, 0, 1\rangle + |\Psi_0, \Omega, \Psi_1\rangle |0, 1, 1\rangle + |\Psi_1, \Omega, \Psi_0\rangle |0, 1, 0\rangle + |\Psi_1, \Omega, \Psi_0\rangle |1, 1, 0\rangle + |\Psi_1, \Omega, \Psi_0\rangle |1, 1, 1\rangle \right],
\]

(B2)

where states \(|\Psi_0, \Omega, \Psi_1\rangle\) and \(|\Psi_1, \Omega, \Psi_0\rangle\) are now twice as likely as any other state. These unwanted permutations can be eliminated by introducing a single ancilla \(|0\rangle\), and flipping it to \(|1\rangle\) if either \(|1, 1, 0\rangle\) or \(|1, 1, 1\rangle\) is detected by a simple controlled \(\sigma^z\) gate. If the ancilla is then measured in the \(|0\rangle\) state, Eq. (B2) collapses onto Eq. (B1) with
probability given by ratio of the number of desired terms in Eq. \ref{B2} to the total number of states, in this specific example 6/8. In the main text, we will always estimate this probability as being 1/2 constituting the worst case scenario, for most cases of interest.

In general, \(s \) has to be an integer such that \(2^s \) is the closest power of two to \(N = M!/(M-n)! \) from above, i.e. \(s = \lfloor \log_2(M!/(M-n)!)) \rfloor = O(\log(M^n)) \). If \(s \neq \log_2(M!/(M-n)!)) \), one will need to eliminate \(k = 2^s - N \) permutations, \(k \) being an upper bound for the number of additional ancillas and required measurements to do so, thus increasing the cost by a factor of at most \(O(2^s) \). As discussed above, the probability of success is actually larger than 1/2 in most cases. In practice, one can eliminate multiple undesired states by fewer measurements, choosing the encoding of the swap operations wisely (Eq.\ref{B2} is one example where this is the case), and by choosing \(M \) optimally.

The next step is to un-compute the \(s \) ancilla qubits, as described in the main text. For \(n = 2 \) this can be done using the occupation number qubit, as well as sign qubit, because the initial wavepackets have opposite momentum in order to be able to interact. The major difference for \(n > 2 \) is that it is not sufficient to only use sign and occupation number qubits alone to un-compute the ancilla qubits. In this case, one must also use \(r \) of the qubits making up the momentum \(q \) (or position \(x \) after the respective transformation). Because the wavepackets are assumed widely separated, a small number of qubits should suffice to un-compute the ancillas. The cost of un-computing the ancillas would increase from \(O(M^n) \), to \(\sim O(M^n r) \ll O(M^n \log(V)) \), where \(r \ll \log(V) \) is the number of qubits representing the momentum/position of each wavepacket which differ uniquely from each other. One then un-computes the \(s' \leq s \) ancillas that are in the \(|1\rangle \) state. Since one can choose \(s' \) to be very small (compared to \(s \)) its contribution to the overall scaling estimate is subleading. Overall, the algorithm uses \(s \) Hadamard gates to prepare the ancilla register, and \(O(2^s \log(V)) \sim O(M^n \log(V)) \) controlled swap operations, and the un-computation of the ancilla register requires \(O(M^n) \) operations; the overall gate complexity is \(O(M^n \log(V)) \).

Appendix C: Details of the Kinetic term

In this Appendix, we discuss the implementation of the gates \([\omega]\) and \([s_z^{1+n_\Omega}]\) necessary for the algorithm introduced in Section \[IV B\]. The gate \([\omega]\) takes as an input two registers, one of which is a particle register \(|q\rangle\) and the other an ancilla register of \(l \) qubits in the state \(|0^l\rangle\). Under the action of this gate, the state \(|q\rangle \otimes |0^l\rangle\) transforms to \(|q\rangle \otimes |\omega_q\rangle\). Assuming that an efficient classical algorithm exists to compute \(\omega_q \) for any \(q \), and ensuring that for \(|\Omega\rangle\), \(\omega_{\Omega} = 0 \) (using the occupation number qubit as control), we treat \([\omega] \) as a quantum oracle. The gate implementing Eq.\ref{27} is given in Fig. \[10\] and consists on the sequential application of single controlled gates \(S_\varphi \) which takes the state \(|\psi\rangle \otimes |\varphi\rangle\) to \(\exp(-i\frac{\delta}{M}\varphi)|\psi\rangle \otimes |\varphi\rangle\). This set of operations uses conditional single qubit phase shift gates \(C_\varphi \).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig10.png}
\caption{Circuit implementing the final step in the time evolution dictated by \(H_0 \). The first \(S_\varphi \) gate contributes with \(S_\varphi \) to the phase, while the last \(M \) gates only contribute if controlled by a particle register in the vacuum state, thus generating the term proportional to \(n_\Omega \) in the phase.}
\end{figure}

\[\Phi_{172}\], with matrix representation

\[C_\varphi \equiv \begin{pmatrix}
1 & 0 \\
0 & e^{i\varphi}
\end{pmatrix}, \quad (C1) \]

where \(\phi = -\frac{\delta}{M}2^d \) \((0 \leq d \leq l - 1)\) chosen accordingly to the binary decomposition of \(\varphi \). The full multi-qubit gate is constructed as a product of single qubit gates.
Appendix D: Details of the Squeezing transformation

In this Section, we will show that the operator S realizes Eq.(30). First, note that

\[S a_q S^\dagger = \prod_{p,p'} \exp\left(-z_p (a_p^\dagger a_p - a_{-p}^\dagger a_{-p}) \right) e^{z_p a_p^\dagger a_p} \exp\left(-z_{-p} (a_{-p}^\dagger a_{-p} - a_p a_p) \right). \]

Taking into account that a_p and a_p^\dagger obey the canonical commutation relations, Eq.$(D1)$ takes the form

\[e^X a_q e^{-X} = \sum_{k=0}^{\infty} \frac{1}{k!} \left[X, \ldots, [X, a_q] \right] \ldots, \]

where $X = -z_q (a_q^\dagger a_q - a_{-q} a_{-q})$. Using the simple identities

\[\left[X, a_q \right] = z_q a_q^\dagger, \quad \left[X, a_{-q}^\dagger \right] = z_q a_q, \]

it follows directly that for $z_q < 0$

\[e^X a_q e^{-X} = \sum_{k=0}^{\infty} \frac{1}{(2k)!} \left(z_q \right)^{2k} a_q + \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} \left(z_q \right)^{2k+1} a_{-q} = \cosh(z_q) a_q + \frac{z_q}{\sinh(z_q)} \sinh(z_q) a_{-q}. \]

In the implementation of the squeezing operation introduced in the main text, we made use of the bit increment operator I_N, that performs the transformation $|j\rangle \rightarrow |j+1\rangle (\mod 2^N)$, where $|j\rangle = |j_0, j_1, \ldots, j_{N-2}, j_{N-1}\rangle$ and $j_i \in \{0,1\}$ for any i. A decomposition of I_N in terms of usual quantum gates is given in Fig. 11, an alternative formulation is given in Eq.$(A7)$ of [106].

The implementation of I_N in terms of Fig. 11 uses the fact that unitary increments in the binary basis consist in consecutively flipping all qubits, i.e. $|0\rangle \rightarrow |1\rangle$ and $|1\rangle \rightarrow |0\rangle$, while keeping track of the first time the state $|0\rangle$ is given as an input qubit. To do this, a flag ancilla qubit is prepared in the $|1\rangle$ state and it is only flipped back to $|0\rangle$ just after one performs the transformation $|0\rangle \rightarrow |1\rangle$ (on an input qubit); all possible remaining qubit flips are skipped. This operation is performed by the circuit detailed to the left of the vertical red (color online) line in Fig. 11. In the end, one un-computes the ancilla back to the state $|1\rangle$ via a single σ^x gate. The special (boundary) case $|1, 1, \ldots, 1\rangle \otimes |1\rangle \rightarrow |0, 0, \ldots, 0\rangle \otimes |1\rangle$ has the ancilla un-computed by the last gate in the diagram shown.

![Circuit-Implementing-the-bit-Increment-Operator](image)

FIG. 11. Circuit implementing the bit increment operator I_N, introduced by Kaye [173, 174]. The number of basic quantum gate operations required scales as $O(9^N)$ for $9 \geq 3$, leading to the polylogarithm scaling mentioned in the main text.

Appendix E: Details of the Interaction term

In this Appendix, we will discuss how to explicitly construct the operator $U_{i,n}^{\text{diag}}$. We illustrate the algorithm for the simplest example $n = -1/2$ and $M = 4$. The generalization for all n and M is discussed below.

For this simple example, $\phi^{(i\downarrow)\text{diag}}_{-1/2}$ is simply the σ^z operator acting only on the occupancy qubit of register i; see Eq.$(A3)$. For $M = 4$, $U_{i, -1/2}^{\text{diag}}$ acts only on the respective occupancy qubits of the four particle registers. Using the
fact that \((\sigma^z)^2 = 1\), we can write \(U_{l,-1/2}^{\text{diag}}\) as
\[
U_{l,-1/2}^{\text{diag}} \equiv \exp\left\{-i\Delta \sum_{s=0}^{2} c_{s,-1/2} \mathcal{O}_{s,-1/2}\right\}.
\] (E1)

The three distinct operators appearing in Eq.(E1) are \(\mathcal{O}_{0,-1/2} = 1 \otimes \sigma^z \otimes \sigma^z\), \(\mathcal{O}_{1,-1/2} = (\sigma^z)^2 \otimes \sigma^z\), and \(\mathcal{O}_{2,-1/2} = \mathcal{P}_{\Sigma}(1 \otimes 1 \otimes \sigma^z \otimes \sigma^z)\), with coefficients \(c_{0,-1/2} = 4!(4 + 12), c_{1,-1/2} = 4!\) and \(c_{2,-1/2} = 4!(2 + 1)\). Here \(\mathcal{P}_{\Sigma}(\hat{X})\) stands for the sum over all permutations of the operator \(\hat{X}\) in the tensor product. Each operator is simply a product of standard Pauli \(z\)-rotations [89]. The generalization of Eq.(E1) to arbitrary \(n\) (and \(M\)) requires replacing \(\sigma^z\) by its higher dimensional analogue, given in Section IVB4. For \(M > 4\) one has to repeat the algorithm for all \(M(M-1)(M-2)(M-3)/4! \sim O(M^4)\) possible four-tuples formed out of \(M\) registers.

Appendix F: Details of the Renormalization procedure

In this Appendix, we present some details of the renormalization procedure. The generalization of Eq.(57) to an operator that is not diagonal in the \(H_0\) eigenbasis is
\[
\langle l, i | \Delta \mathcal{O} | l, j \rangle = \sum_k \left\{ \langle l, i | H_I | h, k \rangle \langle h, k | \mathcal{O} | l, j \rangle \langle l, i | \mathcal{O} | h, k \rangle \langle h, k | H_I | l, j \rangle \frac{1}{E_{l,i} - E_{h,k}} + \frac{1}{2} \sum_{k,m} \left\{ \langle l, i | H_I | h, k \rangle \langle h, k | H_I | l, m \rangle \frac{1}{E_{l,i} - E_{h,k}} \right\} \right\}.
\] (F1)

To generalize the renormalization procedure beyond weak coupling, one may use Wegner’s formulation of an infinitesimal operator renormalization group [140] whereby states inside an energy shell of width \(\delta\) around the cutoff \(\Lambda\) are integrated: \(H(\Lambda - \eta\delta) = T(n)H(\Lambda)T(n)\) with \(T(n) = \exp(i\eta(n))\), \(H(\Lambda - N\delta) = H_{\text{eff}}\) after a number of RG steps \(N\), and \(\eta(n) = [H_d(n), H(n)]\). Here \(H_d(n)\) is the diagonal part of the Hamiltonian obtained after \(n \leq N\) steps. The Hamiltonian \(H(\Lambda \to \infty)\) is usually not known, and in practice one starts from an ansatz for \(H_{\text{eff}}\) at finite \(\Lambda\), such as Eq.(11), and takes the continuum limit as described in Section IVD. (Classical) numerical procedures have been derived from Wegner’s operator RG [175] and it would be interesting to explore their use in quantum computation.