A New Synthetic Allotetraploid (A₁A₁G₂G₂) between *Gossypium herbaceum* and *G. australae*: Bridging for Simultaneously Transferring Favorable Genes from These Two Diploid Species into Upland Cotton

Quan Liu☯, Yu Chen☯, Yu Chen¤, Yingying Wang, Jinjin Chen, Tianzhen Zhang, Baoliang Zhou*

State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China

☯ These authors contributed equally to this work.

¤ Current address: Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, Shandong, People’s Republic of China

* baoliangzhou@njau.edu.cn

Abstract

Gossypium herbaceum, a cultivated diploid cotton species (2n = 2x = 26, A₁A₁), has favorable traits such as excellent drought tolerance and resistance to sucking insects and leaf curl virus. *G. australae*, a wild diploid cotton species (2n = 2x = 26, G₂G₂), possesses numerous economically valuable characteristics such as delayed pigment gland morphogenesis (which is conducive to the production of seeds with very low levels of gossypol as a potential food source for humans and animals) and resistance to insects, wilt diseases and abiotic stress. Creating synthetic allotetraploid cotton from these two species would lay the foundation for simultaneously transferring favorable genes into cultivated tetraploid cotton. Here, we crossed *G. herbaceum* (as the maternal parent) with *G. australae* to produce an F₁ interspecific hybrid and doubled its chromosome complement with colchicine, successfully generating a synthetic tetraploid. The obtained tetraploid was confirmed by morphology, cytology and molecular markers and then self-pollinated. The S₁ seedlings derived from this tetraploid gradually became flavescant after emergence of the fifth true leaf, but they were rescued by grafting and produced S₂ seeds. The rescued S₁ plants were partially fertile due to the existence of univalents at Metaphase I of meiosis, leading to the formation of unbalanced, nonviable gametes lacking complete sets of chromosomes. The S₂ plants grew well and no flavescence was observed, implying that interspecific incompatibility, to some extent, had been alleviated in the S₂ generation. The synthetic allotetraploid will be quite useful for polyploidy evolutionary studies and as a bridge for transferring favorable genes from these two diploid species into Upland cotton through hybridization.
Priority Academic Program Development of Jiangsu Higher Education Institutions, and Modern Crop Production of Collaborative Innovation in Jiangsu Province. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have read the journal's policy and the authors of this manuscript have the following competing interests: Dr. Tianzhen Zhang, co-author of this paper, is a PLOS ONE Editorial Board member. The authors confirm that this does not alter their adherence to all the PLOS ONE policies on sharing data and materials.

Introduction

The genus *Gossypium* comprises 50 species, including four cultivated cotton species, i.e., two diploids (*G. arboreum*, *G. herbaceum*, 2n = 26) and two tetraploids (*G. hirsutum*, *G. barbadense*), as well as 46 wild species [1]. Approximately 90% of commercially produced cotton comes from Upland cotton, the species *G. hirsutum*. However, numerous studies have shown that Upland cotton has a low level of genetic diversity, which it has been losing over the past century [2–8] due to the overuse of relatively few cultivars in larger areas for both breeding and production [9]. Thus, the existing genetic base of cotton should be broadened to adapt to various adverse conditions including biotic and abiotic stress. Although these wild species are short-fibered or lintless, they have a number of desirable traits, such as fiber quality and resistance to salt, heat, drought, insects and diseases [10–12].

G. australis F. Mueller, a wild diploid cotton species (2n = 2x = 26, G2G2) (with short brownish straightly spreading fibers) that is native to Australia, possesses numerous economically valuable characteristics such as delayed pigment gland morphogenesis, which is conducive to the production of seeds with very low levels of gossypol as a potential source of food and feed for human and animal consumption, resistance to pest insects (aphids and mites) and diseases (*Fusarium* and *Verticillium* wilt) and tolerance to abiotic stress (drought); these traits would be useful if transferred into the most important tetraploid cultivated species, *G. hirsutum*. (2n = 4x = 52, AADD). *G. herbaceum* L., a cultivated diploid cotton species (2n = 2x = 26, A1A1) that is native to Western China and adjacent regions of the former Soviet Union, have favorable traits, such as high tolerance to drought and resistance to sucking pests (hoppers, white flies, thrips, aphids) and leaf curl virus [13,14]. There are three strategies that could be used to simultaneously introduce desirable genes from these two species into cultivated tetraploid cotton.

The first strategy (pentaploid pathway) is to make two crosses at the beginning, i.e., one cross between diploid species A and a tetraploid cotton line, the other between diploid species B and the same tetraploid cotton line for the production of two triploid interspecific hybrid F1s. Then the chromosome complement of the two triploids will be doubled to generate two hexaploids. The two hexaploids can be backcrossed with the tetraploid parent to produce two pentaploids, and then backcrossed repeatedly to the tetraploid parent to develop introgression lines, respectively [15]. Finally, inter-mating between introgression lines should be made to pyramid desirable genes both from species A and B. So, the pentaploid pathway is laborious and time-consuming. The second strategy (hexaploid pathway) is to cross one diploid species with a tetraploid cotton line, double the chromosome complement, and again cross another diploid species toward the tetraploid level and backcross repeatedly to the tetraploid parent [16–18]. The hexaploid pathway is labor-saving but time-consuming. The third strategy (tetraploid pathway) involves hybridizing two different genomic diploid species. Once the chromosome complement of this diploid hybrid is doubled, the hybrid is crossed with a cultivated tetraploid line to generate a trispecies hybrid, which is then repeatedly backcrossed with the cultivated tetraploid [19–21]. Using the third strategy, the triple hybrid strains (*G. arboreum* L. × *G. thurberi* Todaro × *G. hirsutum* L.) became the foundation of Pee Dee germplasm, which are well known to represent an array of genetic diversity in Upland cotton in the United States [22,23]. The use of the tetraploid pathway may simplify this procedure and shorten the time required to simultaneously introduce desirable genes from two species. To our knowledge, as yet, there is no report that allotetraploid (A1A1G2G2) between *Gossypium herbaceum* and *G. australis* have been successfully obtained.

In this study, because it is quite difficult to directly cross *G. herbaceum* and *G. australis* with the tetraploid *G. hirsutum* due to interspecific incompatibility, we employed the tetraploid
pathway to produce an interspecific hybrid to bridge for simultaneously transferring desirable genes from these two diploid species into Upland cotton. Here, *G. herbaceum* is used as maternal parent to cross with *G. australis* to produce interspecific F1 hybrid (2n = A1G1 = 26). To overcome its sterility, the branches from the verified F1 interspecific hybrid were treated with colchicine solution to double its chromosome complement to generate tetraploidy, which can be further confirmed by morphological and molecular cytological observation.

Materials and Methods

Plant materials

The Asiatic diploid cultivated cotton *Gossypium herbaceum* race *kuljanum* cv Hongxingcaomian (2n = 2x = 26, A1A1), a highly inbred line, and an Australian diploid wild species, *G. australis* F. Mueller (2n = 2x = 26, G2G2), were obtained from Hainan Wild Cotton Growing Garden, Cotton Research Institute of Chinese Academy of Agricultural Sciences.

Methods

Interspecific hybridization. Flowers of *G. herbaceum* were emasculated by hand in the afternoon before anthesis, and each stigma was covered with a 5 cm length of plastic straw to prevent cross-hybridization. The following morning, stigmas were pollinated by hand using fresh pollen from *G. australis* between 9 am and noon under natural field conditions in Hainan province, China; the pollinated flowers were individually tagged. The obtained putative interspecific hybrid seeds were sown in nursery pots and the seedlings were transplanted into ceramic pots at Jiangpu Breeding Station, Nanjing Agricultural University (JBS/NAU), in 2007. In the winter, all plants were moved into a greenhouse at Pailou Experimental Station (PES), NAU.

Colchicine treatment. In 2007–2012, the interspecific hybrid plants were preserved and propagated by grafting. The stem apices of vegetative branches from these hybrid plants were immersed in 0.10% (w/v) colchicine solution for 24 h and grown in ceramic pots under natural conditions.

Chromosome preparation for cytological observations. Root tips were used for mitotic metaphase chromosome preparation, and young buds approximately 3–4 mm long were used for meiotic metaphase chromosome preparation. Mitotic chromosome preparation was performed as described by Wang et al [24] with some modifications. Root tips were cut from S1 and S2 germinated seeds that had been treated with 25 μg/ml cycloheximide at 29°C for 2 h to accumulate metaphase cells. The root tips were then fixed in a solution of ethanol: acetic acid (3:1 v/v; Carnoy’s Fluid) for 24 h. After fixation, the root tips were macerated in 4% cellulase and 1% pectinase at 37°C for 40 min and fixed in Carnoy’s Fluid for more than 2 h; the treated root tips were stored in 70% ethanol at -20°C. The treated root tips were squashed onto slides in a drop of 45% acetic acid to make the tip cells disperse and to allow the metaphase chromosomes to spread out. Slides with easily visualized cells in metaphase were stored at -70°C for more than 12 h until use for GISH analysis. Prior to analysis, after the slides were transferred from -70°C storage, and the cover slips were immediately removed, and the samples were dehydrated in 100% ethanol for 5 min.

Meiotic metaphase chromosomes from S1 plants were prepared as previously described by Chen et al [25]. Young flower buds were collected between 8 and 10 am and fixed in ethanol-chloroform-acetic acid (6:3:1 v/v) fixative for 2–24 h at 4°C. Next, the buds were screened for cells in Metaphase I, and several anthers from the selected bud were placed onto an ethanol-washed glass slide with a drop of 45% acetic acid (v/v), freed of debris and squashed. The material was observed through a 100× objective lens under an Olympus BX51 microscope.
Genomic in situ hybridization (GISH). Genomic DNA was extracted from *G. australae* as described by Paterson et al [26] and labeled with digoxigenin-11-dUTP (Roche Diagnostics, Mannheim, Germany) by nick translation. The labeled DNA probe fragments were between 200 and 500 bp long. Fluorescence *in situ* hybridization was carried out as described by Wang et al [24] with some modifications. Somatic mitotic S2 (progenies from S1 self-pollinated) cells were used as targets. Chromosomal DNA was denatured by placing the slides in 50 mL 70% formamide, 2x SSC at 72°C for 2.5 min and immediately dehydrating them in an ethanol series at −20°C, followed by air-drying. Fifteen microliters of a mixture containing 25–50 ng labeled DNA, 50% (w/v) dextran sulfate, 10 μg sheared salmon sperm DNA, an appropriate amount of sheared cotton DNA as blocking DNA (probe: blocking DNA = 1:100) and 1.5 μL 20× SSC was denatured at 97°C for 10 min, chilled on ice, annealed at 37°C for 1 h and applied to a dry slide. Following overnight incubation at 37°C, the coverslips were removed and the slides were washed at increasing stringency by rinsing twice at 43°C in 2x SSC for 5 min, once in 2x SSC, 60% formamide for 13 min, twice more in 2x SSC for 5 min and once in 1x PBS for 5 min. Probes were detected with 20 μg/mL rhodamine-conjugated anti-digoxigenin antibody (Roche Diagnostics). The slides were stained in 4’,6-diamidino-2-phenylindole (DAPI; Diagnostics) for 10 min at room temperature, and anti-fade (Vector, USA) was applied under the coverslip. The slides were examined, and more than 20 images of well-spread somatic chromosomes at metaphase were obtained for each individual using an Olympus BX51 fluorescence microscope. Chromosome and FISH signal images were captured using an Evolution VF CCD camera (Media Cybernetics, Bethesda, MD, USA) and merged using Image-Pro Express software (Media Cybernetics, Bethesda, MD, USA).

SSR molecular marker identification. A total of 658 simple sequence repeat (SSR) primer pairs were randomly chosen according to our cotton genetic maps [27] and used to screen the parents for polymorphisms. The obtained polymorphic primers were employed to verify the authenticity of the putative interspecific F1 hybrid and its derivatives (the new synthetic tetraploid, S1). These SSR primer sequences are available at http://www.cottonmarker.org. SSR-PCR amplifications were performed using a Programmable Thermal Controller (MJ Research), and PCR product electrophoresis and silver staining were conducted as described by Zhang et al [28,29].

Morphological observations. The shapes and sizes of fully expanded leaves from the same position on the parents, the hybrid plants and its derivatives (the new synthetic tetraploid, S1) were characterized. Floral morphological traits were observed on the day of anthesis.

Results

Production of a new synthetic allotetraploid between *Gossypium herbaceum* and *Gossypium australae*

A total of 16 putative hybrid seeds were obtained from 200 pollinated flowers and planted in nursery pots and the seedlings were transplanted into ceramic pots at JBS/NAU in 2007. At the maturity stage, only one plant resembled *G. australae*, which was a putative F1 interspecific hybrid (2n = 2x = A1G2 = 26), while the morphological traits of the other plants were similar to those of the maternal parent; these lines were *G. herbaceum* plants, not F1 hybrids. The putative interspecific F1 hybrid plant appeared to be highly male and female sterile, as no pollen was released and no bolls were produced when the plant was pollinated by *G. herbaceum*. The sole putative hybrid plant was propagated by grafting to >20 plants for prevention of the interspecific hybrid from lost due to the death caused by colchicine treatment, and the stem apices of these grafted plants were treated with 0.10% colchicine for 24 h during squaring stage. During the first five years, no boll was produced and no seed was obtained for these grafted hybrid
plants. Finally, in the sixth year, one branch of the hybrid plant had produced three bolls (S1 Fig), and a total of 19 S1 seeds were obtained from these bolls (S2 Fig) by cleistogamy or self-pollination in 2012. The results demonstrate that the chromosome complement of the branch from this hybrid plant could be doubled to the tetraploid level (2n = 4x = A1A1G2G2 = 52) and the interspecific tetraploid hybrid had partial fertility. In the winter, all of the grafted F1 hybrid plants were preserved in a greenhouse at PES/NAU.

In 2013, we planted three S1 seeds (derived from the grafted hybrid F1) on MS medium [30] in a triangular flask to collect healthy root tips (normally expanded and elongated) for cytological observation. However, the seeds germinated very slowly and no healthy root tips were collected. Thus, we planted the S1 seedlings on soil in small plastic pots. Initially, the first four true leaves of the S1 seedlings were dark green (S3 Fig); however, the seedlings gradually became flavescent beginning at the top leaves, followed by the lower leaves after the fifth true leaf emerged (S4 Fig). We selected one stem apex from one S1 seedling to graft onto a G. barbadense plant to rescue the interspecific hybrid. Finally, the grafted S1 plant was able to further grow and set S2 seeds, while the other two S1 seedlings died two weeks later, probably due the cessation of root growth resulting from interspecific incompatibility. The rescued S1 plants propagated by vegetative fashion (grafting), however, were partially fertile, as only 22 seeds were obtained from a total of five bolls from the three grafted S1 plants (derived from vegetative production of the S1 by grafting).

In 2014, we planted three S2 seeds on MS medium in a triangular flask to collect healthy root tips for cytological observation. The seeds germinated normally, and root tips were collected. These S2 plants grew well into the squaring stage (Fig 1). No flavescent lethal phenomenon occurred during the development of S2 plants, which implies that interspecific incompatibility, to some extent, had been alleviated in the S2 generation. The above results suggest that both S1 and S2 were new synthetic allotetraploid plants.

![Fig 1. Grafted S1 plant (left) and non-grafted S2 seedling (right) grew normally. The arrow indicates the grafted part of the plant shown on the left.](doi:10.1371/journal.pone.0123209.g001)
Validation of a new synthetic allotetraploid between *Gossypium herbaceum* and *G. australe* by chromosome observation

We further confirmed the identity of the synthetic allotetraploid using four techniques, namely, molecular cytogenetic discrimination by GISH, observation of chromosome association at meiosis, morphological observation and molecular marker identification.

Genome component analysis of the synthetic allotetraploid by genomic in situ hybridization (GISH). To confirm the authenticity of the synthetic allotetraploid and to examine its genome components, we performed GISH under standard stringency conditions using G2 gDNA from *G. australe* labeled with digoxigenin (DIG)-Nick Translation Mix DNA as a labeled probe and A1 gDNA from *G. herbaceum* race *kuljianum* cv Hongxingcaomian as unlabeled DNA. Somatic S2 mitotic cells were used as targets. Red hybridization signals were consistently detected on 26 chromosomes (G2 genome) and blue signals were detected on the other 26 chromosomes (A1 genome) in over 30 well-spread somatic chromosome cells that were observed. Thus, the chromosomes from the two genomes could clearly be differentiated based on color (Fig 2). Therefore, the authenticity of the new synthetic allotetraploid has been confirmed and its genome components can be readily discriminated as well.

Chromosome associations at meiosis of PMCs from the synthetic allotetraploid. We then performed cytological observations of the new synthetic allotetraploid of *G. herbaceum × G. australe*. All of the cells observed had 52 chromosomes, indicating that they were tetraploid (2n = 4x = 52; Table 1, Fig 3), which further confirmed the authenticity of the new synthetic allotetraploid. The chromosome configurations in the synthetic allotetraploid were variable, with uni-, bi- and trivalents. Of the 49 pollen mother cells observed, most cells (24/49) had two

Fig 2. Genomic in situ hybridization showing the chromosome components of an S2 mitotic cell of the new synthetic allotetraploid (Slides were stained in 4', 6-diamidino-2-phenylindole [DAPI]). Red signals indicate the 26 chromosomes of *G. australe* (probe labeled with digoxigenin-11-dUTP) and blue signals indicate the 26 chromosomes of *G. herbaceum* (stained with DAPI).

doi:10.1371/journal.pone.0123209.g002
univalents and 25 bivalents, followed by cells (14/49) with four univalents and 24 bivalents. Some cells (9/49) contained three univalents, 23 bivalents and one trivalent. Only two cells had 26 bivalents. The average chromosome configurations were 2.67 uni-, 23.33 bi- and 0.18 trivalents. The number of univalents ranged from zero to four, with two being the most frequent number, followed by four and three. The number of bivalents ranged from 23 to 26, with 25 being the most frequent number followed by 23 and 24 (Fig 3). The high frequency of

No. of PMCs	I	II	III	No. of chromosomes
24	2	25		52
14	4	24		52
9	3	23	1	52
2		26		52
Range	0–4	23–26	0–1	52
Average	2.67	23.33	0.18	52

doi:10.1371/journal.pone.0123209.t001

Fig 3. Chromosome associations in PMCs at Metaphase I of meiosis. a, 25II + 2I; b, 24II + 4I; c, 25II + 2I; d, 23II + 3I + III; e, 24II + I + III. Arrows indicate the univalents and arrowheads indicate the trivalents. Bar = 10 μm.
doi:10.1371/journal.pone.0123209.g003
univalents in pollen mother cells (PMC) at Metaphase I in meiosis explained why the synthetic allotetraploid plants were partially fertile, since due to disordered segregation, univalents were often lost at Anaphase I, leading to the formation of unbalanced, nonviable gametes lacking a complete set of chromosomes.

Morphological traits of the synthetic allotetraploid. We examined 24 morphological traits of the synthetic allotetraploid (S1) and its parents during flowering, including the color, shape and size of leaves, flowers and so on (Table 2). The results indicate that most traits of the interspecific hybrid F1 plant tended to resemble those of the paternal parent, *G. australis*, e.g., hairiness of leaves and stems, petal color and fibers. A few traits resembled those of the maternal parent, *G. herbaceum*, e.g., anther color. Some traits exhibited intermediate phenotypes, e.g., bract shape, calyx size and the number of calyx teeth, leaf lobes, anthers, seed pigment glands and fiber (Figs 4 and 5, S2 Fig). Many characters of S1 plants, the new synthetic allotetraploid, were similar to those of the F1, while S1 plants had larger dark green leaves, which was the most distinctive trait from that of the F1 (Fig 6).

Examination of the synthetic allotetraploid using SSR molecular markers. We used a total of 658 SSR primer pairs/combinations that were randomly selected at genetic intervals of 5–10 cM (genome coverage of ~90%) from the linkage map of the *G. hirsutum* and *G. barbadense* genome constructed at our institute [27] to screen polymorphic primers between *G. herbaceum* and *G. australis* and to confirm the authenticity of the synthetic allotetraploid. Approximately 70% (459/658) of the SSRs detected polymorphisms between these two species, showing a very high diversity at SSR molecular marker level. Of the 459 pairs of polymorphic

Characters	*G. herbaceum*	*G. australis*	F1	S1
Stem color	Green	Grey green	Green	Green
Stem hairiness	Pilose	Pubescence	Pubescence	Pubescence
Leaf color	Green	Grey green	Green	Dark green
Leaf shape	Deeply lobed	Very few lobed	Deeply lobed	Deeply lobed
Leaf lobation	2–4 broad shallow	0–1	0–4 narrow deep	0–4 narrow deep
Leaf texture	Thin soft	Thick soft	Thin soft	Thick hard
Petiol color	Green	Grey green	Green	Deep green
Leaf length (cm)	5.55±0.40	7.54±0.35	6.43±0.43	6.56±0.43
Leaf width (cm)	6.71±0.32	6.00±0.49	6.23±0.57	6.38±0.43
Petiol length (cm)	3.75±0.44	3.14±0.23	3.41±0.42	3.48±0.52
Petal color	Yellow	Lilac	Pink	Dark pink
Flower size	Small	Small	Small	Small
Petal spot	Dark red	Dark red	Dark red	Dark red
Petal length (cm)	2.35±0.21	3.72±0.16	3.59±0.22	3.61±0.23
Petal width (cm)	2.19±0.24	3.46±0.19	3.35±0.38	3.36±0.32
Stigma color	Creamy	Creamy	Creamy	Creamy
Stigma length (cm)	0.38±0.08	0.62±0.10	0.49±0.10	0.48±0.12
Anther color	Yellow	Light yellow	Yellow	Yellow
Anther number	48.30±7.32	107.00±2.14	67.70±8.42	54.50±6.50
Bracteole dentation	6–12 deep	3 acicular	2–4 deep	2–4 deep
Bracteole length (cm)	1.70±0.10	1.14±0.10	1.90±0.16	1.68±0.13
Bracteole width (cm)	1.40±0.16	Very narrow	0.61±0.08	0.49±0.07
Pedicel length (cm)	0.88±0.12	0.95±0.10	1.01±0.19	1.00±0.16

Table 2. Morphological characters of interspecific hybrid F1, S1 and their parents.

doi:10.1371/journal.pone.0123209.t002
primers used to characterize the new synthetic allotetraploid, 212 (46%) showed codominance in the synthetic allotetraploid, whereas 140 (31%) were dominant in *G. herbaceum* and 107 (23%) were dominant to *G. australe*. The amplicons generated using codominant/dominant primers in the synthetic allotetraploid demonstrated that it had DNA bands from both/paternal parent(s), further confirming that the synthetic allotetraploid was derived from *G. herbaceum* and *G. australe* (Fig 7).
Discussion

The transfer of genes of interest from wild species has played an important role in cotton breeding, and great progress has been made in the introgression of desirable traits such as superior fiber quality (length, strength and fineness) and disease resistance [22,23,31]. Wild cotton species are a valuable reservoir of agronomically useful genes and genes conferring resistance to pests and diseases [32,33]. However, wild diploid cotton species have not been fully exploited to broaden the existing narrow genetic base through distant crosses with the world’s major cultivated tetraploid cotton due to both pre- and post-fertilization barriers between these species.
Fig 7. Validation of the new synthetic allotetraploid of *G. herbaceum* × *G. australe* using a randomly selected set of polymorphic SSR primers. From a to h, polymorphic amplicons of F₁, S₁, S₂ and its parents were detected using SSR primers NAU207, NAU704, NAU905, NAU2325, NAU3995, NAU7751, NAU7699 and NAU6064, respectively. Here, showed eight codominant markers. P₁, *G. herbaceum*; P₂, *G. australe*; F₁, *G. herbaceum* × *G. australe*; S₁, synthetic allotetraploid of *G. herbaceum* × *G. australe*; S₂, progeny from S₁ self-pollination; M, molecular marker sizes (100 bp ladder).

doi:10.1371/journal.pone.0123209.g007
In this study, not only did we successfully obtain an interspecific hybrid F1 and double its chromosome complement with colchicine, but we also alleviated the incompatibility of the new synthetic tetraploid \(\text{A} \text{A} \text{G} \text{G} \text{2} \text{G} \text{2} \) by grafting, which will lay a solid foundation for the transfer of genes of interest from the two parental diploid species. Theoretically, the new synthetic allotetraploid has integrated favorable genes of interest, such as fiber quality, resistance to pest insects and diseases and tolerance to drought and heat, both from \(G. \text{herbaceum} \) and \(G. \text{australe} \), which will enable us to simultaneously transfer them into Upland cotton through hybridization in the future.

Moreover, during the development of the synthetic tetraploid, we found that the chromosome complement at meiosis in PMCs did not always comprise 26 bivalents, but there was a high frequency of univalents, which is consistent with the observations on another synthetic tetraploid between \(G. \text{arboreum} \) and \(G. \text{bickii} \) [36]. Univalents are often lost at Anaphase I due to distorted segregation, leading to the formation of unbalanced, nonviable gametes lacking a complete set of chromosomes. Therefore, the fertility of synthetic tetraploids is often quite low, especially in the early generation, for example, the \(\text{A} \text{A} \text{G} \text{G} \text{2} \text{G} \text{2} \) tetraploid produced in this study. Based on our previous studies on diverse synthetic polyploids through cotton interspecific hybridization, however, we find that as the selfing generations of synthetic polyploids advance, the percentage of PMCs with univalents will decrease and the fertility of the artificial synthetic tetraploid will increase (data not show); the reasons for this are unclear. The mechanisms of genome evolution when two cell nuclei unite in a cotton line remain poorly understood despite the fact that numerous studies have focused on this issue [37–40]. Therefore, the synthetic cotton tetraploid produced in this study will be useful for elucidating the mechanisms of evolution in polyploids.

Furthermore, we found that the flavescent lethal phenomenon emerged in the \(S_1 \) generation, which represents another type of interspecific incompatibility, but the plant was rescued by grafting and the \(S_1 \) seedlings grew well and set \(S_2 \) seeds. This flavescent lethal phenomenon might be caused by the cessation of root expansion and elongation, but it only occurred in the \(S_1 \) (not the \(S_2 \)) generation. The mechanisms that caused the alleviation of interspecific incompatibility in \(S_2 \) generation remain unclear. By contrast, root tip wilting was also observed by Li et al [36] in the early generation of the amphiploid \(G. \text{arboreum} (\text{A} \text{ genome}) \times G. \text{bickii} (\text{G} \text{ genome}), \) who found that seeds germinated, but there was no further root elongation, in the absence of treatment. When the germinated seeds were treated with rooting powder solution, only a few seedlings grew. Only after several consecutive generation selections had the interspecific incompatibility been gradually alleviated [41]. The mechanisms of these two root tip wilting phenomena appear to be different. Thus, the obtained \(S_1 \) and \(S_2 \) seeds can be used to explore the mechanism underlying the flavescent lethal phenomena, which will increase our understanding of the basic physiology and genetics of flavescent lethal.

In addition, \(G. \text{australe} \) possesses unique valuable interesting characteristic—delayed pigment gland morphogenesis or high-gossypol cotton plants with low-gossypol seeds, which is conducive to the production of seeds with very low levels of gossypol as a potential source of food and feed for human and animal consumption. During the recent decades, however, several crosses were made between \(G. \text{hirsutum} \) and Australian species (\(G. \text{sturtianum}, G. \text{australe}, G. \text{bickii} \)) [42–52] or \(G. \text{arboreum} \) and \(G. \text{bickii} \) [53,54], the potential for use in commercial cotton production have not yet been reached. The failure to develop cotton varieties with delayed pigment gland morphogenesis has to do with poor understanding of complex genetic mechanisms, or labile gossypol content in cotton seeds. Moreover, no or very little homoeologous recombination occurrence between distant species under natural conditions also hinder the advances in cotton improvement. On the basis of genetic analysis by Zhu et al [54], the trait of
high-gossypol plants with low- gossypol seeds from *G. bickii*, another Australian wild G genome species, is controlled by a gene located at the Gl2 locus, which has been temporarily named Gl2b. This gene, Gl2b, is dominant to upland cotton pigment gland alleles Gl2 and gl2 in A subgenome, but is recessive and epistatic to another pigment gland gene Gl3 in D subgenome. Based on above results, Chen et al [25] also explained why no *G. hirsutum*-*G. australis* alien chromosome addition line was detected to exhibit the trait of high-gossypol plants with low- gossypol seeds. In this study, the new synthetic allotetraploid A1A1G2G2 also showed only very few glands on the cotyledon surface, which supported the analysis by Zhu et al [54]. Therefore, to develop varieties with the trait of high-gossypol plants with low- gossypol seeds, the dominant glanded gene, Gl3, in D subgenome of Upland cotton, should be replaced by Gl2b from G genome. The obtained new synthetic allotetraploid between *G. herbaceum* and *G. australis* will allow us to have more choices of interested germplasm for development of high-gossypol cotton plants with low-gossypol seeds, which intrigues cotton breeders.

Here, we propose a new strategy for the development of varieties with the trait of high-gossypol plants with low- gossypol seeds to largely eliminate the role of Gl3 in conferring gossypol synthesis (Fig 8). Firstly, the A1A1G2G2 tetraploid is employed to cross with Upland cotton (AADD) to produce the tri-species hybrid (AA1DG2). For the obtained hybrid of AA1DG2, genetic recombination between A and A1 genome chromosomes often occur due to their close relationship while very little or no recombination occurs between D and G2 genome chromosomes under natural conditions due to distant relationship. To facilitate exchanges of D and G2 genome chromosomes, secondly, radiation should be employed on seeds or pollens of the tri-species hybrid (AA1DG2) to induce chromosome translocations between D and G2 genome chromosomes. Finally, the progenies derived from radiation inducement will be self-pollinated and characterized by combination of molecular cytogenetics, molecular markers and morphology to identify chromosome translocations between D and G2 genome chromosomes, particularly Chr. D12 translocated by 12G. If Chr. D12 is translocated by 12G and Gl3 is

Fig 8. A strategy for the development of varieties with the trait of high-gossypol plants with low- gossypol seeds.

doi:10.1371/journal.pone.0123209.g008
replaced by Gl5 from *G. australe* via chromosome translocation, the translocation line should possess the traits of high-gossypol plants with low-gossypol seeds introgressed from *G. australe*. This research is under way.

Supporting Information

S1 Fig. Boll set on a chromosome-doubled branch of the hybrid F1 plant, *G. herbaceum* × *G. australe*, with the treatment of 0.10% colchicine for 24 h.

(TIF)

S2 Fig. Seeds and fibers of *G. herbaceum* (1), *G. australe* (2) and the new synthetic allotetraploid S1 (3). Bar = 25 mm.

(TIF)

S3 Fig. S1 seedling (derived from the new synthetic tetraploid self-pollinated) at the second true leaf stage.

(TIF)

S4 Fig. S1 seedling became flavescent at the fifth true leaf stage.

(TIF)

Acknowledgments

We are grateful to Dr Kunbo Wang, vice director of Cotton Research Institute of Chinese Academy of Agricultural Sciences, for kindly providing us seeds of *Gossypium herbaceum* cv Hongxingcaomian and pollens of *G. australe* at Hainan wild cotton growing garden.

Author Contributions

Conceived and designed the experiments: BZ TZ. Performed the experiments: QL YC YC YW JC. Analyzed the data: YC YC YW BZ. Contributed reagents/materials/analysis tools: YC YC YW JC. Wrote the paper: BZ QL.

References

1. Fryxell P (1992) A revised taxonomic interpretation of *Gossypium* L. (Malvaceae). Rheedia 2: 108–165.
2. Campbell B, Saha S, Percy R, Frelichowski J, Jenkins J, Park W, et al. (2010) Status of the global cotton germplasm resources. Crop Science 50: 1161–1179.
3. Fang DD, Hinze LL, Percy RG, Li P, Deng D, et al. (2013) A microsatellite-based genome-wide analysis of genetic diversity and linkage disequilibrium in Upland cotton (*Gossypium hirsutum* L.) cultivars from major cotton-growing countries. Euphytica 191: 391–401.
4. Guitierrez O, Basu S, Saha S, Jenkins J, Shoemaker D, Cheatham CL, et al. (2002) Genetic distance among selected cotton genotypes and its relationship with *F2* performance. Crop Science 42: 1841–1847.
5. Iqbal M, Reddy O, El-Zik K, Pepper A (2001) A genetic bottleneck in the ‘evolution under domestication’ of upland cotton *Gossypium hirsutum* L. examined using DNA fingerprinting. Theoretical and Applied Genetics 103: 547–554.
6. Tyagi P, Gore MA, Bowman DT, Campbell BT, Udall JA, Kuraparthy V (2014) Genetic diversity and population structure in the US Upland cotton (*Gossypium hirsutum* L.). Theoretical and Applied Genetics 127: 283–295. doi: 10.1007/s00122-013-2217-3 PMID: 24170350
7. Wendel JF, Brubaker CL, Percival AE (1992) Genetic diversity in *Gossypium hirsutum* and the origin of upland cotton. American Journal of Botany 79: 1291–1310.
8. Van Becelaere G, Lubbers EL, Paterson AH, Chee PW (2005) Pedigree-vs. DNA marker-based genetic similarity estimates in cotton. Crop Science 45: 2281–2287.
9. Gingle AR, Yang H, Chee PW, May OL, Rong J, Bowman DT, et al. (2006) An integrated web resource for cotton. Crop Science 46: 1998–2007.
10. Hutchinson JB, Silow RA, Stephens SG (1947) The evolution of Gossypium and the differentiation of the cultivated cottons. London: Oxford University Press.

11. Jena SN, Srivastava A, Rai KM, Ranjan A, Singh SK, Nisar T, et al. (2012) Development and characterization of genomic and expressed SSRs for levant cotton (Gossypium herbaceum L.). Theoretical and Applied Genetics 124: 565–576. doi: 10.1007/s00122-011-1729-y PMID: 22038488

12. Prentice AN (1972) Cotton with special reference to Africa. London: Longman Group Ltd.

13. Azhar M, Anjum Z, Mansoor S (2013) Gossypium gossypioides: A source of resistance against cotton leaf curl disease among D genome diploid cotton species. Journal of Animal and Plant Sciences 23: 1436–1440.

14. Kulkarni VN, Khadi BM, Maralappanavar MS, Deshapande LA, Narayanan S (2009) The worldwide gene pools of Gossypium arboreum L. and G. herbaceum L., and their improvement. In: Paterson AH, editor. Genetics and Genomics of Cotton. Springer Science Business Media, pp. 69–97.

15. Brubaker C, Brown A, Stewart JM, Kilby M, Grace J (1999) Production of fertile hybrid germplasm with diploid Australian Gossypium species for cotton improvement. Euphytica 108: 199–214.

16. Konan O, D’Hont A, Baudoin J-P, Mergeai G (2007) Cytogenetics of a new trispecies hybrid in cotton: [(Gossypium hirsutum L.× G. thurberi Tod.) 2× G. longicalyx Hutch. & Lee]. Plant Breeding 126: 176–181.

17. Romano GB, Sacks EJ, Stetina SR, Robinson AF, Fang DD, Gutierrez OA, et al. (2009) Identification and genomic location of a reniform nematode (Rotylenchulus reniformis) resistance locus (Ren) introgressed from Gossypium aridum into upland cotton (G. hirsutum). Theoretical and Applied Genetics 120: 139–150. doi: 10.1007/s00122-009-1165-4 PMID: 19830404

18. Sacks E, J, Robinson AF (2009) Introgression of resistance to reniform nematode (Rotylenchulus reniformis) into upland cotton (Gossypium hirsutum) from Gossypium arboreum and a G. hirsutum/Gossypium aridum bridging line. Field Crops Research 112: 1–6. PMID: 21347181

19. Beasley J (1940) The origin of American tetraploid Gossypium species. American Naturalist 74: 285–286.

20. Oakes A (1966) Sterility in certain Gossypium hybrids. I. Prefertilization phenomena. Canadian Journal of Genetics and Cytology 8: 818–829.

21. Oakes A (1966) Sterility in certain Gossypium hybrids. II. Postfertilization phenomena. Canadian Journal of Genetics and Cytology 8: 830–845.

22. Campbell B, Williams V, Park W (2009) Using molecular markers and field performance data to characterize the Pee Dee cotton germplasm resources. Euphytica 169: 285–301.

23. Culp T, Harrell D (1973) Breeding methods for improving yield and fiber quality of upland cotton (Gossypium hirsutum L.). Crop Science 13: 686–689.

24. Wang K, Song X, Han Z, Guo W, Yu JZ, Sun J, et al. (2006) Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theoretical and Applied Genetics 113: 73–80. PMID: 16609860

25. Chen Y, Wang Y, Wang K, Zhu X, Guo W, Zhang TZ, et al. (2014) Construction of a complete set of alien chromosome addition lines from Gossypium australis in Gossypium hirsutum: morphological, cytological, and genotypic characterization. Theoretical and Applied Genetics 127: 1105–1121. doi: 10.1007/s00122-014-2283-1 PMID: 24553965

26. Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Molecular Biology Reporter 11: 122–127.

27. Guo W, Cai C, Wang C, Han Z, Song X, Wang K, et al. (2007) A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 176: 527–541. PMID: 17409069

28. Zhang J, Guo W, Zhang T (2002) Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L.× Gossypium barbadense L.) with a haploid population. Theoretical and Applied Genetics 105: 1166–1174. PMID: 12582895

29. Zhang J, Wu Y, Guo W, Zhang T (2000) Fast screening of SSR markers in cotton with PAGE/silver staining. Cotton Science Sinica 12: 267–269.

30. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.

31. Qian S, Huang J, Peng Y, Zhou B, Ying M, Shen DZ, et al. (1992) Studies on the hybrid of G. hirsutum L. and G. anomalum Wawr. & Peyr. and application in breeding. Sci Agric Sinica 25: 44–51.

32. Endrizzi J, Turcotte E, Kohel R (1985) Genetics, cytology and evolution of Gossypium. Advances in genetics 23: 271–375.
33. Stewart JM (1995) Potential for crop improvement with exotic germplasm and genetic engineering. In: Constable GA, Forrester NW, editors. Challenging the future: Proceedings of the World Cotton Research Conference-1, Brisbane Australia. pp. 313–327.

34. Sacks EJ (2008) Ovule rescue efficiency of *Gossypium hirsutum* × *G. arboreum* progeny from field-grown fruit is affected by media composition and antimicrobial compounds. Plant cell, tissue and organ culture 93: 15–20.

35. Ganesh Ram S, Hari Ramakrishnan S, Thiruvengadam V, Kannan Bapu J (2008) Prefertilization barriers to interspecific hybridization involving *Gossypium hirsutum* and four diploid wild species. Plant Breeding 127: 295–300.

36. Li BL, Zhang BJ, Zhang XR, Niu YZ (1987) Studies on the Hybrid between *G. arboreum* L and *G. bickii* Prokh. Acta Genetica Sinica 14: 121–126 (in Chinese with an English abstract).

37. Adams Keith L, Wendel JF (2004) Exploring the genomic mysteries of polyploidy in cotton. Biological Journal of the Linnean Society 82: 573–581.

38. Vroh Bi I, Baudoin J-P, Mergeai G (1999) Development of high-gossypol cotton plants with low-gossypol seeds using trispecies bridge crosses and in vitro culture of seed embryos. Euphytica 106: 209–220.

39. Hu G, Hawkins JS, Grover CE, Wendel JF (2010) The history and disposition of transposable elements in polyploid *Gossypium*. Genome 53: 599–607. doi: 10.1139/g10-038 PMID: 20725147

40. Cheng SE, Sarr D, Lacape J-M, Rodier-Goud M, Jacquemin JM, Benbouza H, Toussaint A, et al. (2011) Isolation of five new monosomic alien addition lines of *Gossypium* × *G. bickii* and its inheritance. Seed 109: 65 (in Chinese).

41. Ahoton L, Lacape J-M, Baudoin J-P, Mergeai G (2003) Introduction of Australian diploid cotton genetic variation into upland cotton. Crop Science 43: 1999–2005.

42. Peng S, Li B, Zhang B (2000) Artificial synthesis of an allotetraploid of *Gossypium bickii* and its in vitro culture. Chinese Science Bulletin 45: 2313–2316.

43. Zhang BJ, Li BL, Wan LM, Han YH, Wang RH, Zhu SJ, et al. (1994) Synthesis of allotetraploid cotton with (AG) complex chromosome set. Chinese Science Bulletin 39: 1567–1572.