Evaluation of Global Gravitational Models Based on DGPS/leveling Data over Baghdad University (IRAQ)

Nearan S. Saray¹, Nawal K. Ghazal²

¹ Department of Physics, College of Science, Baghdad University, Baghdad, Iraq.
² Department of Remote Sensing and GIS, College of Science, Baghdad University, Baghdad, Iraq

nearansaleh82@gmail.com
nawalalobidy8@gmail.com

Abstract. GPS becomes one of the most technical favorite geodesy methods. A major dilemma in GPS survey lies in oval-based elevations, while orthometric heights are commonly used in engineering practice. Converting GPS heights into orthometric heights by applying a precise geode model is therefore necessary. This paper aims to model the local geoid in the using study region (h-H). Compared with many global gravitational models (GGMs) and three of them were selected, namely EGM96, EGM84, and EGM2008. The evaluations of the accuracy of these models and then choose the most accurate and closer to the local geode In the field of work, which is mounted on the campus of the University of Baghdad in the capital of Iraq. Techniques require the use of GGM to represent global differences or long wavelengths of the gravity field of the Earth; the gravitational field of the Earth takes into account much of the direct information about the distributions of mass density in the Earth. It then provides the basis for exploring oil and gas in this respect, and the detection of geodesics forms the basis for exploring minerals. The EGM08 is the closer GGMs to the observed local geodetic dataset, in terms of the difference of geoid undulation that have a maximum of 0.4011m), a minimum of 0.3996m), an average of -0.111256m), and a standard deviation of ±0.152859m).

Keywords. geoid, Ellipsoidal height, DGPS, Global Gravitational Models (GGMs).

1. Introduction
Another of the main objectives of geodetic surveying is to render survey applications with optimal precision in the shortest time. It is well understood that traditional leveling methods, such as geometric (spirit and precise) leveling, are the prevalent strategies for years of assessing orthometric heights [1].

The conventional leveling methodology is repetitive, time-consuming, and it applies to reference points to deliver on the relative dimensions. The creation of the Global Positioning System (GPS) based on satellite has enabled more reliable, more realistic, and economical use in geodesy and surveying occupations. Today, GPS supports a broad variety of geodetic applications from Earth’s crustal deformation tracking to GIS database (Geographical Information System) development.[2].
The GPS is a Three-dimensional surveying and positioning strategy provided to surveyors through digital technologies to solve complex location problems. GPS, sadly. Provided only height proportional to the Earth's statistical ellipse known as ellipsoidal height rather than the practical sense of the M.S.L.-related orthometric height. Therefore, parallel to the growth of G.P.S. and techniques, there is an increase in the study's purpose of obtaining cm precision of orthometric heights[3].

In this paper, the correctness of three geoid stature models, independently named EGM84, EGM96, and EGM2008, are assessed on a large part of Baghdad University campus speedy response to fit the best of them on the examination region so to overhaul its show is proposed. The assessment of the EGM08 depends on the correlations with other outer information—the paper centers on assessing EGM08 in part of the center in Iraq utilizing DGPS/leveling. The paper is structured as follows; first, it describes geoid modeling. The most used G.G.M.s in IRAQ.

2. The Methodology of Work

2.1. Geoid Modeling

The Geoid equals the equipotential surface that coincides with the mean sea level. But it makes sense because the oceans are made of water, equal the figure of the Earth.

It is the ocean surface over the continents (assuming no currents, waves, etc.). The spheroid is an excellent approximation to the Geoid to have a reference datum level to which estimations can be connected,[4].

Orthometric (H) heights Indicate to the reference surface of an isotope. The distance from that point to the geoid, measured along the normal vertical line to the geoid, is the orthometric height of a distinct point on the Earth's surface. The vertical line is curved Orthometric heights can be derived using various methods, including spirit leveling or trigonometric leveling, [5].

The effect of (GPS) All parts of studying is critical and boundless. Utilizing a reference ellipsoid, the X, Y, Z arrange characterized regarding WGS84. Ellipsoid stature can't be utilized in applications except if they are Adjusted into orthometric tallness described as an embraced equipotential surface. Using geoid height (N), orthometric height (H) can be related in terms to the ellipsoidal height (h) of a point:

\[N = h - H \]

Where:
N is the geoidal height.
H is the orthometric height.
h is the ellipsoidal height

The geoidal heights or geoidal undulations are N, h is the height based on ellipsoid or GPS, and H is the height based on MSL orthometric. The association of ellipsoidal, orthometric, and geoid heights, as seen in Fig.1,[6].

![Figure 1. Ellipsoid Height Relationship to Geoid Height, [13]](image-url)
2.2. Global Geopotential Models (GGMs)

Different GGMs have been established by various conferences over the last 30 years. To better determine orbits and height structures in science and engineering, our understanding of the Earth's gravity field, both in terms of accuracy and spatial resolution, must be dramatically enhanced. The GGM is used to calculate the long-wavelength portion of the gravitational field of the Earth and consists of a collection of fully condensed, spherical harmonic coefficients derived from the integration of gravity data from satellite measurements, land, and ship-track, Anomalies of underwater gravity resulting from satellite radar altimetry and airborne gravity data[7].

Instances, the more important well-known GGMs applied for geoid demonstrating calculations are the Earth Geopotential Models (EGM 2008), (EGM96), and (EGM84). The nature of choosing the GGMs utilized extraordinarily influences the exactness of the processed geoid. These worldwide models have been created from the mix of satellite irritation investigation With satellite field gravity and altimetry information. A short depiction for three GGMs, the most well-known worldwide, is followed,[8].

Earth Gravitational Model of 1984 (EGM84)

The EGM84 is a gravitational model of the Earth that gave us a lot of geopotential coefficients to degree and request 180. A 30-minute overall geoid tallness model for the first W.G.S. 84 ellipsoid is precomputed from EGM84. The coefficient and geoid stature records have related programming and archives: three FORTRAN projects can introduce from the network providing geoid tallness at some random scope and longitude. EGM84 was affirmed for legitimate use by the United States Department of Defense (DoD) as reported in D.M.A. TR8350.2, Second Edition, 1 September 1991,[9].

Earth Gravitational Model of 1996 (EGM96)

The EGM96 is a gravitational model of the earth that gave us a lot of geopotential coefficients to a degree, and request 360 corresponds to the spatial resolution of 55 km. This model is created in a joint effort by The National Organization for Imaging and Mapping, NASA Goddard, and Ohio State University Space Flight Center. According to LSM (least square Method), calculations are based on the aggregation method, JGM-2 / OSU91A geode model (JU 2 / Ohio State University 91a) used as a reference for longwave effects.

A 15-minute overall geoid tallness record is precomputed from the EGM96. The coefficient and geoid tallness records have related programming and reports: a FORTRAN program, named F477, grants to compute undulation dependent on geographic directions. EGM96 was affirmed for legitimate use by DOD. as 4 July 1997. EGM96, incorporating newly accessible gravimetry information, has upgraded the past mainland geoid model,[9].

Earth Gravitational Model of 2008 (EGM2008)

The EGM2008 is a gravitational model of the Earth, provided by a minimum square combination of the gravitational model ITG-GRACE03S (with its associated blunder covariance lattice) a 5'x5' free-air gravity irregularity matrix. This matrix results by integrating details referring to terrestrial, altimetry inspired, and airborne gravity. Their ghost material was updated with geologically determined gravitational data over regions where only lower targets were eligible for gravity information. Up to degree / request 2159, EGM2008 is generated with certain additional words up to degree/request 2190,[10].

EGM2008 depends On the ITG-GRACE03S gravity field model GRACE (Gravity Recovery and Atmosphere Experiment), which provides a fundamentally precise description of the long-and medium-frequency gravity field scale up to 180.0 degrees and order. Model ITG-GRACE03S joins right around six years of GRACE gravity field perceptions. And different wellsprings of gravity information, especially point gravity estimations.
Consequently, the EGM2008 circular consonant coefficients should be extended to degree 2190 instead of 2159 or 2160 when utilized in practical applications.

Commission errors for semi/geoid undulations of EGM2008 are calculated to be ~15 cm. The most severe deficiencies encountered in bumpy areas of Asia and South America (around ~30-40 cm) and Antarctica (around 100 cm). Instead, certain areas of Europe, Oceania, North America, notice the least commission mistakes. Given the utilization of thick arrangements of altimetry-inferred gravity – the seas,[11].

The EGM2008 semi/geoid commission blunders are, for the most part, sat the degree of ~ 5 cm for those regions with high surface gravity available. The Earth Geopotential Model 2008 (EGM2008) is the latest adaptation of a progression of geopotential models developed by the National Geospatial-Intelligence Agency. It incorporates core consonant coefficients obtained from the GRACE satellite, gravity irregularities obtained from satellite altimetry, and various earthly gravity irregularities.

E.G.M. 2008 is the latest geopotential earth model developed by the least-square blend of the ITG-GRACEEO35 gravitational model and its corresponding blunder covariance system gravitational data acquired from a region's worldwide arrangement-mean disturbances of free-air gravity marked on a 5-circular minute lattice section. This lattice was framed by consolidating knowledge concerning earthbound, altimetry-determined, and airborne gravity. With gravitational data implied by the geology, their ghastly material has been enhanced over zones where available. It does not consolidate any of the vertical knowledge G.P.S./Leveling or Astronomic redirections [12].

Just because This gravitational model is finished with the round consonant degree and request 2159, and includes numerous coefficients exceeding 2190 and 2159. EGM2008 's spatial (half-frequency) targets on the equator are (ostensibly) 9.3x9.3 km, which is several times greater than EGM996. EGM96 Over and more seasoned G.G.M.s, E.G.M. 2008 speaks to progress by six in goals, and by variables of three to six in exactness relying upon the gravitational amount and geographic territory, [10].

2.3. Evaluation of GGMS
To perform the process of evaluating the accuracy of the geode model in a specific geographic region, the geoid undulations for all observed points (local geoid) Nobs are compared with the ripple values for the global patterns chosen in this paper. Later, The difference between the values shall be determined by all differences at each point. So, the global model precision index will reflect this standard deviation. By way of an equation:

\[dN = N_{\text{OBS}} - N_{\text{GGM}} \] (2)

where

- \(N_{\text{OBS}} \) is the difference between ellipsoidal heights "h" and orthometric heights "H."
- \(N_{\text{GGM}} \) is geode undulations for Geode Global Models.

3. Study Area and Available Data
The chosen study area is the campus of the University of Baghdad in the heart of the capital, Baghdad, on the side of Al-Rusafa in the Al-Jadiriya complex, Al-Karrada neighborhood, surrounded by the Tigris River from three directions, meaning that it is located in a peninsula near the Ministry of Science and Technology and is shown in as shown in fig.2. Located between longitude and latitude 44 22 54.19 m,3616 12.4m. The chosen area extends between the longitude (33.2701 IDS) easting and the latitude (44.38172 IDS) northing, which covers an area of around 3km².

The number of points observed is 57 points used the Differential Global Positioning system (DGPS) and leveling together for the same observed issues, known as geometric local Geoid, to determine geoid height (h-H). The Ellipsoid measurement can be obtained with the DGPS, while the orthometric size can be obtained using the leveling tool.
4. Results and Discussion

Local geoid and Global Gravitational Models

The geometric local Geoid by applying the equation (1) that can be obtained the geode undulation values for the points observed Available

The number of points used is 57 by DGPS measurements and leveling being performed for these points. Unfortunately, the points are not regularly distributed throughout the study area's territory, and they have been obtained from different sources. The coordinates of GPS points are in the World Geodetic System 1984 (WGS84) coordinate system. The statistics of the used DGPS/leveling results are presented in Table (1), the local geoid's height values.

Global gravitational models (GGMs) Data [EGM08, EGM96, EGM84].

For computing geoid undulation(N), by using EGM2008, Online calculations are used web site:https://geographiclib.sourceforge.io/cgi-bin/GeoidEval.

The geoid height can be calculated above WGS84 ellipse using internal completion in a network of values for Earth Gravity models, EGM84, or EGM96, EGM2008. The great advantage in this way is that it can be calculated in real-time and for three models. Selecting the location in terms of latitude and longitude; for example, see this program works as shown in the fig.3, results are presented in Table (2):

![Figure 2](image)

Figure 2. The points which are monitored by (DGPS/LEVELING) for the study Region.

![Figure 3](image)

Figure 3. [Online geoid calculations by using the Geoid Eval utility].
Point No.	Northing (m)	Easting (m)	Ellipsoidal height h (m)	Orthometric height H (M.S.L) (m)
BU01	3681622.477	442158.483	34.5552	36.271
BU02	3681641.119	441821.245	35.1578	36.906
BU03	3681646.752	442271.423	34.5022	36.369
BU04	3681717.383	441480.99	36.3873	38.242
BU05	3681756.014	441869.274	35.7915	37.345
BU06	3681848.047	442032.804	34.1972	35.934
BU07	3681828.833	442952.868	35.4727	37.025
BU08	3681905.955	441876.638	35.2064	37.173
BU09	3681912.62	441946.785	34.2758	36.153
BU10	3681911.887	442069.661	35.3165	36.867
BU11	3681949.221	442265.198	35.1257	37.07
BU12	3682018.665	442240.00	35.3347	36.95
BU13	3681583.049	442107.802	34.548	36.319
BU14	3681594.571	441776.986	34.4333	36.075
BU15	3681625.908	441584.439	36.2443	37.621
BU16	3681625.188	441875.697	35.5055	37.17
BU17	3681645.93	441789.195	35.3775	36.937
BU18	3681655.103	441697.41	36.2296	37.427
BU19	3681659.146	441896.620	36.5345	36.278
BU20	3681668.477	441829.946	35.5159	37.191
BU21	3681695.023	442026.201	34.4483	36.251
BU22	3681695.209	442201.861	34.5521	36.261
BU23	3681712.222	442293.025	34.1764	35.93
BU24	3681734.101	442394.825	34.4988	36.361
BU25	3681742.759	441923.005	35.5912	37.19
BU26	3681764.947	441920.809	34.4304	36.085
BU27	3681763.181	442217.27	35.3766	37.033
BU28	3681774.058	441942.077	34.1916	36.051
BU29	3681790.089	441784.888	35.2071	37.18
BU30	3681794.279	442322.228	35.0626	36.55
BU31	3681816.006	441828.500	35.3295	37.167
BU32	3681815.803	442068.830	34.4222	36.073
BU33	3681829.915	442181.706	35.4517	37.182
BU34	3681848.047	442032.804	35.0313	36.68
BU35	3681856.927	441783.731	35.3022	37.195
BU36	3681897.294	442192.973	35.3493	37.157
BU37	3681907.554	441815.337	35.3007	37.170
BU38	3681904.639	442304.514	34.6622	36.310
BU39	3681953.127	441902.214	35.1395	36.831
BU40	3681950.55	441990.214	35.1395	36.831
BU41	3681967.148	442386.084	34.5303	36.332
BU42	3681967.438	442361.283	34.6088	36.277
BU43	3681978.494	442107.310	35.2754	37.029
BU44	3681999.104	441545.031	36.0344	37.578
BU45	3682045.226	441711.390	34.2044	36.055
BU46	3682043.878	442091.660	35.0048	36.395
BU47	3682065.388	442359.017	34.2077	36.217
BU48	3682114.854	442016.286	34.2957	35.939
Point No.	Nobs(h-H)(m)	N(EGM08)	N(EGM96)	N(EGM84)
----------	--------------	-----------	-----------	-----------
BU01	-1.7158	-1.6129	-2.2424	-3.1893
BU02	-1.7482	-1.6025	-2.2317	-3.1762
BU03	-1.8668	-1.6158	-2.2453	-3.1931
BU04	-1.8547	-1.5907	-2.2196	-3.1619
BU05	-1.5535	-1.6015	-2.2307	-3.1759
BU06	-1.7368	-1.6067	-2.236	-3.1825
BU07	-1.5523	-1.6055	-2.2348	-3.1814
BU08	-1.9666	-1.5987	-2.2277	-3.1733
BU09	-1.8772	-1.6006	-2.2297	-3.1758
BU10	-1.5505	-1.6043	-2.2335	-3.1804
BU11	-1.9443	-1.6093	-2.2386	-3.1871
BU12	-1.6153	-1.6072	-2.2363	-3.1848
BU13	-1.771	-1.6122	-2.2417	-3.1882
BU14	-1.6417	-1.6021	-2.2314	-3.1754
BU15	-1.3767	-1.5957	-2.2248	-3.1675
BU16	-1.6645	-1.6008	-2.2301	-3.1741
BU17	-1.5595	-1.6014	-2.2306	-3.1749
BU18	-1.1974	-1.5985	-2.2276	-3.1713
BU19	-1.7435	-1.6043	-2.2336	-3.1787
BU20	-1.6751	-1.6022	-2.2314	-3.176
BU21	-1.8027	-1.6075	-2.2368	-3.183
BU22	-1.7089	-1.6127	-2.2422	-3.1896
BU23	-1.7536	-1.615	-2.2446	-3.1927
BU24	-1.8622	-1.6176	-2.2472	-3.1961
BU25	-1.5988	-1.6034	-2.2327	-3.1781
BU26	-1.6546	-1.6029	-2.2321	-3.1776
BU27	-1.6564	-1.6117	-2.2412	-3.1889
BU28	-1.8594	-1.6033	-2.2326	-3.1783
BU29	-1.9729	-1.5983	-2.2274	-3.172
BU30	-1.4874	-1.6142	-2.2437	-3.1922
BU31	-1.8375	-1.5991	-2.2282	-3.1732
BU32	-1.6508	-1.6063	-2.2355	-3.1823
BU33	-1.7303	-1.6093	-2.2387	-3.1862
BU34	-1.6487	-1.6045	-2.2337	-3.1803
BU35	-1.8928	-1.5969	-2.2259	-3.1707
BU36	-1.8077	-1.6083	-2.2375	-3.1854
BU37	-1.8693	-1.5968	-2.2258	-3.1709
BU38	-1.6478	-1.6114	-2.2408	-3.1894
BU39	-1.7223	-1.5867	-2.2154	-3.1584
Evaluation of GGMS in the Study Area

To perform the process of evaluating the accuracy of the geode model in a specific geographic region. The geoid undulations for all observed points of local Geoid (N obs) are compared with the ripple values for the global patterns chosen in this research, [NEGM08, NEGM96, and, NEGM84].

Later, All the variations are determined according to the difference between the values at each point. That standard deviation would then reflect the global model accuracy index. The three gravimetric models of the Geoid for the territory of (EGM2008 and EGM96, EGM84) were compared with 57 points with high accurate leveling and DGPS determinations to evaluate the performance of selected GGMs in the Area of study applying the previously mentioned equation (2). the statistics of the obtained results are shown in Table (3):

Point No.	dN (EGM08) m	dN(EGM96) m	dN(EGM84) m
BU01	-0.1029	0.5266	1.4735
BU02	-0.1457	0.4835	1.428
BU03	-0.251	0.3785	1.3263
BU04	-0.264	0.3649	1.3072
BU05	0.048	0.6772	1.6224
BU06	-0.1301	0.4992	1.4457
BU07	0.0532	0.6825	1.6291
BU08	-0.3679	0.2611	1.2067
BU09	-0.2766	0.3525	1.2986
BU10	0.0538	0.683	1.6299
BU11	-0.335	0.2943	1.2428
BU12	-0.0081	0.621	1.5695
BU13	-0.1588	0.4707	1.4172
BU14	-0.0396	0.5897	1.5337
BU15	0.219	0.8481	1.7908
BU16	-0.0637	0.5656	1.5096
BU17	0.0419	0.6711	1.6154
BU18	0.4011	1.0302	1.9739
BU19	-0.1392	0.4901	1.4352
To choose the best GGM to be used, a review of outcomes was carried out in (Baghdad University) zone. as shown in the table (4).

Table 4. Statistical Function for Geoid Undulations Difference (dN) Computed using, EGM2008, EGM96, and EGM96.

Statistical function	dN (EGM08) m	dN(EGM96) m	dN(EGM84) m
maximum	0.4011	1.0302	1.9739
minimum	-0.3996	0.2296	1.1791
Range	0.8007	0.8006	0.7948
Average	-0.11125614	0.51795	1.46493
St. Deviation	0.152859622	0.15286	0.15252
10

Figure 4. The geoid undulation differences (dN) between (N) and \((N_{\text{GGMs}})\).

The results are clear in the table (4) and shown clearly and explicitly in fig 4. The model (EGM08) is more accurate compared to the rest of the models, as it comes first, second is (EGM96), and last the (EGM84). A comparison of the DGPS / leveling method (local geoid) was performed using the EGM2008 geode corrugation model for the study area and presented in table (5).

Table 5. Geoid Undulations of GPS/Leveling observations and their values of the EGM2008 model.

Method	Maximum(m)	minimum(m)	Mean(m)	St. Deviation
DGPS/Leveling	-1.1974	-2.0093	-1.7161	0.15347
(EGM08) m	-1.5867	-1.6176	-1.604824	0.006905
Difference	0.4011	-0.3996	-0.111256	±0.152859

The comparison results show that the accuracy of the geoid undulations is within ±0.18797 meters. The geodes' undulation's accuracy is almost perfect, with a study area of about 3 square kilometers, a relatively small area compared to the geodes' surface, in Fig.5. It can be found that the EGM08 is the closer GGMs to the local geodetic dataset measured, in terms of the geodetic undulation gap with a maximum of (0.4011 m), a minimum of (0.3996 m), an average of [-0.111256 m], and a standard deviation of [±0.152859].

Figure 5. Accuracy of geoid undulation difference between Geoid undulations (GPS/Leveling) observations and their values of the EGM2008 model.

5. Conclusions
The current study has investigated the GPS/leveling geoid modeling technique. Additionally, an evaluation of the performance of GGMs for several selected models in the study region has been carried out.
1. The value practically measured by field survey highest value (-1.1974 m) the lowest value (-2.0506 m).

2. When evaluating the accuracy of the models used in the study area, the study showed that the EGM2008 Earth Gravity Model represents more accurately a model of the true gravitational potential of the Earth compared to others.

 It was found that this model produces differences in geoid undulation in the study area ranging from (0.4011 m) to (0.3996 m) with an average of (0.111 m) and a standard deviation (SD.) Equal to [± 0.152 meters].

6. Recommendations
 Some recommendations for future research may be suggested:

 The lack of local Iraqi data tends to impact global spatial models. Therefore, the incorporation of local Iraqi data into any emerging global, regional models is strongly recommended. To enhance their efficiency in reflecting the medium and long gravitational field wavelength across Iraq, it is strongly recommended to use [GPS / leveling] across Iraq in the future with adequate and well-distributed points to boost the accuracy of geode detection in cooperation with all Iraqi survey authorities.

References
[1] El-Ashquer, M. A., Zahran, K. H., El-Fiky, G. S., and Salama, I. M.,(2010) "Accuracy Assessment of GPS leveling Applications "North West Lake Nasser, Aswan, Egypt.
[2] P.Dr. Tan Liat Choon(2014),(INTRODUCTION TO ENGINEERING SURVEYING (CE 1305)Leveling-Theory)UEL university of east london,p.2-11.
[3] Soycan, M., (2005), "A Cost-Effective GPS Leveling Method Versus Conventional Leveling Methods for Typical Surveying Applications," Analysis of Leveling Measurement along the High Dam, Aswan, Egypt," J. Geodynamics, Vol.14, No.1-4, pp. 189-219
[4] Thomas Herring (2007) “Geodesy” Massachusetts Institute of Technology, Cambridge, Volume 3, MA, USA.
[5] P.Dr. Tan Liat Choon(2014) , (INTRODUCTION TO ENGINEERING SURVEYING (CE1305)Leveling-Theory) university of east london,p.2-11.
[6] Rabah M. and Kaloop M. (2013) The use of minimum curvature surface technique in geoid computation processing of Egypt, Arabian Journal of Geosciences, April, Volume 6, Issue 4, pp. 1263-1272.
[7] Pavlis, N.K., Holmes S.A., Kenyon S.C., and Factor J.K.,(2008) Earth Gravitational Model to degree 2160: EGM2008, European Geosciences Union general assembly, Vienna, Austria, April 2008, pp.13-18.
[8] Lowrie, W. (2007), "Fundamental of geophysics," 2nd Edition, United States of America, Cambridge University Press, 2007.
[9] Lemoine, F. G., Kenyon, S. C., Factor, J. K., Trimmer, R.G., Pavlis, N. K., (1998)(The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96),
[10] Pavlis, N. K., Holmes, S. A., Kenyon, S. C., Factor, J. K. (2012) “The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)”.
[11] Lee, S., and Kim, Y., " Development of regional gravimetric geoid model and comparison with EGM2008 gravity-field model over Korea". Scientific Research and Essays V. 7 No. 3, pp. 387-397. (, 2012).
[12] Merry, C., 2009," EGM2008 Evaluation for Africa, Newton’s Bulletin".
[13] US Army Corps of Engineering. "Navistar global positioning system surveying," Technical Manual No. EM1110-1-1003, Washington, D.C., USA. (, 2003).