THE STRUCTURE OF ALGEBRAIC COVARIANT DERIVATIVE CURVATURE TENSORS

J. DÍAZ-RAMOS, B. FIEDLER, E. GARCÍA-RÍO, AND P. GILKEY

Abstract. We use the Nash embedding theorem to construct generators for the space of algebraic covariant derivative curvature tensors.

1. Introduction

Let M be an m dimensional Riemannian manifold. To a large extent, the geometry of M is the study of the Riemannian curvature $R \in \otimes^4 T^* M$ which is defined by the Levi-Civita connection ∇ and, to a lesser extent, the study of the covariant derivative ∇R. For example, M is a local symmetric space if and only if $\nabla R = 0$; note that local symmetric spaces are locally homogeneous.

It is convenient to work in the algebraic context. Let V be an m-dimensional real vector space. Let $\mathcal{A}(V) \subset \otimes^4 V^*$ and $\mathcal{A}_1(V) \subset \otimes^5 V^*$ be the spaces of all algebraic curvature tensors and all algebraic covariant derivative tensors, respectively, i.e., those tensors A and A_1 having the symmetries of R and of ∇R:

$$A(x, y, z, w) = A(z, w, x, y) = -A(y, x, z, w),$$

$$A_1(x, y, z, w; v) = A_1(z, w, x, y; v) = -A_1(y, x, z, w; v),$$

$$A_1(x, y, z, w; v) + A_1(y, z, w; v) + A_1(z, x, y, w; v) + A_1(z, x, y, w; v) = 0,$$

$$A_1(x, y, z, w; v) + A_1(x, y, v, w; z) + A_1(x, y, v, w; z) = 0.$$

Let $\mathcal{S}^p(V) \subset \otimes^p V^*$ be the space of totally symmetric p forms. If $\Psi \in \mathcal{S}^2(V)$ and if $\Psi_1 \in \mathcal{S}^3(V)$, define $A_\Psi \in \mathcal{A}(V)$ and $A_{1, \Psi, \Psi_1} \in \mathcal{A}_1(V)$ by:

$$A_\Psi(x, y, z, w) = \Psi(x, y) \Psi(y, z) - \Psi(x, z) \Psi(y, w),$$

$$A_{1, \Psi, \Psi_1}(x, y, z, w; v) = \Psi_1(x, y, v) \Psi_1(y, z) + \Psi_1(x, z, v) \Psi_1(y, w) - \Psi_1(x, z, v) \Psi_1(y, w, v).$$

If one thinks of Ψ_1 as the symmetrized covariant derivative of Ψ, then A_{1, Ψ, Ψ_1} can be regarded, at least formally speaking, as the covariant derivative of A_Ψ.

Fiedler [7] used group representation theory to show:

Theorem 1.1 (Fiedler).

1. $\mathcal{A}(V) = \text{Span}_{\Psi \in \mathcal{S}^2(V)} \{A_\Psi\}$.

2. $\mathcal{A}_1(V) = \text{Span}_{\Psi \in \mathcal{S}^2(V), \Psi_1 \in \mathcal{S}^3(V)} \{A_{1, \Psi, \Psi_1}\}$.

Let $A \in \mathcal{A}(V)$ and $A_1 \in \mathcal{A}_1(V)$ be given. Choose $\nu(A)$ and $\nu_1(A_1)$ minimal so that there exist $\Psi_i \in \mathcal{S}^2(V)$, $\tilde{\Psi}_j \in \mathcal{S}^2(V)$, $\tilde{\Psi}_{1,j} \in \mathcal{S}^3(V)$, and constants $\lambda_i, \lambda_{1,j}$ so:

$$A = \sum_{1 \leq i \leq \nu(A)} \lambda_i A_{\Psi_i}, \quad A_1 = \sum_{1 \leq j \leq \nu_1(A_1)} \lambda_{1,j} A_{1, \tilde{\Psi}_{1,j}, \tilde{\Psi}_{1,j}}.$$
Set
\[\nu(m) := \sup_{A \in \mathcal{A}(V)} \nu(A) \quad \text{and} \quad \nu_1(m) := \sup_{A_1 \in \mathcal{A}_1(V)} \nu_1(A_1). \]
The main result of this paper is the following:

Theorem 1.2. Let \(m \geq 2 \).

1. \(\frac{1}{2}m \leq \nu(m) \) and \(\frac{1}{2}m \leq \nu_1(m) \).
2. \(\nu(m) \leq \frac{1}{2}m(m + 1) \) and \(\nu_1(m) \leq \frac{1}{2}m(m + 1) \).

We shall establish the lower bounds of Assertion (1) in Section 2. The upper bound given in Assertion (2) for \(\nu(m) \) is due to Díaz-Ramos and García-Ríó [4] who used the Nash embedding theorem [17]; they also gave a separate argument to show \(\nu(2) = 1 \) and \(\nu(3) = 2 \). In Section 3 we shall generalize their approach to establish the following simultaneous ‘diagonalization’ result from which Theorem 1.2 (2) will follow as a Corollary:

Theorem 1.3. Let \(V \) be an \(m \) dimensional vector space. Let \(A \in \mathcal{A}(V) \) and let \(A_1 \in \mathcal{A}_1(V) \) be given. There exists \(\Psi_i \in S^2(V) \) and \(\Psi_{1,i} \in S^3(V) \) so that
\[A = \sum_{1 \leq i \leq \frac{1}{2}m(m+1)} A_{\Psi_i} \quad \text{and} \quad A_1 = \sum_{1 \leq i \leq \frac{1}{2}m(m+1)} A_{1,\Psi_i,\Psi_{1,i}}. \]

The study of the tensors \(A_{\Psi} \) arose in the original instance from the Osserman conjecture and related matters; we refer to [9] [11] for a more extensive discussion than is possible here, and content ourselves with only a very brief introduction to the subject.

1.1. **The Jacobi operator.** If \(M \) is a pseudo-Riemannian manifold of signature \((p,q)\) and dimension \(m = p + q \), let \(S^+(M) \) (resp. \(S^-(M) \)) be the bundle of unit spacelike (resp. timelike) tangent vectors. The Jacobi operator \(J(x) \) for \(x \in TM \) is the self-adjoint endomorphism of \(TM \) characterized by the identity:
\[g(J(x)y, z) = R(y, x, x, z). \]
One says that \(M \) is **spacelike Osserman** (resp. **timelike Osserman**) if the eigenvalues of \(J(\cdot) \) are constant on \(S^+(M) \) (resp. \(S^-(M) \)). It turns out these two notions are equivalent and such a manifold is simply said to be **Osserman**.

Restrict for the moment to the Riemannian setting \((p = 0)\). If \(M \) is a local rank 1 symmetric space or is flat, then the local isometries of \(M \) act transitively on the sphere bundle \(S(M) = S^+(M) \) and hence the eigenvalues of \(J(\cdot) \) are constant on \(S(M) \) and \(M \) is Osserman. Osserman [22] wondered if the converse held; this question has been called the Osserman conjecture by subsequent authors. The conjecture has been answered in the affirmative if \(m \neq 16 \) by work of Chi [3] and Nikolayevsky [13] [19] [20].

In the Lorentzian setting \((p = 1)\), an Osserman manifold has constant sectional curvature [2] [5]. In the higher signature setting \((p > 1, q > 1)\) it is more natural to work with the Jordan normal form rather than just the eigenvalue structure. One says that \(M \) is **spacelike Jordan Osserman** (resp. **timelike Jordan Osserman**) if the Jordan normal form of \(J(\cdot) \) is constant on \(S^+(M) \) (resp. \(S^-(M) \)); these two notions are not equivalent. The following example is instructive. Let \((\vec{x}, \vec{y})\) for \(\vec{x} = (x_1, \ldots, x_p) \) and \(\vec{y} = (y_1, \ldots, y_p) \) be coordinates on \(\mathbb{R}^p \) where \(p \geq 3 \). Let \(f = f(\vec{x}) \in C^\infty(\mathbb{R}^p) \). Define a pseudo-Riemannian metric \(g_f \) of signature \((p,p)\) on \(\mathbb{R}^{2p} \) by setting
\[g_f(\partial_i^x, \partial_j^x) = \partial_i^x f \cdot \partial_j^x f, \quad g_f(\partial_i^y, \partial_j^y) = 0, \quad \text{and} \quad g_f(\partial_i^x, \partial_j^y) = g_f(\partial_i^y, \partial_j^x) = \delta_{ij}. \]
Let \(\Psi \) be the Euclidean Hessian:
\[\Psi(\partial_i^x, \partial_j^x) = \partial_i^x \partial_j^x f, \quad \Psi(\partial_i^y, \partial_j^y) = 0, \quad \text{and} \quad \Psi(\partial_i^x, \partial_j^y) = \Psi(\partial_i^y, \partial_j^x) = 0. \]
One then has that $R = A_1 \Psi$. We suppose that the restriction of Ψ to $\text{Span}\{\partial_1^e, \partial_2^e\}$ is positive definite henceforth. Then M is a complete pseudo-Riemannian manifold which is spacelike and timelike Jordan Osserman. Similarly set

$$\Psi_1(\partial_1^e, \partial_2^e, \partial_3^e) = \partial_1^e \partial_2^e \partial_3^e f$$

and extend Ψ_1 to vanish if any entry is ∂_i^e. One has $\nabla R = A_1, \Psi, \Psi_1$; thus if f is not quadratic, M is not a local symmetric space. With a bit more work one can show that for generic such f, M is curvature homogeneous but not locally affine homogeneous. We refer to [5, 14] for further details.

1.2. The skew-symmetric curvature operator. Let $\{e_1, e_2\}$ be an orthonormal basis for an oriented spacelike (resp. timelike) 2 plane π. The skew-symmetric curvature operator $\mathcal{R}(\pi)$ is characterized by the identity

$$g(\mathcal{R}(\pi)y, z) = R(e_1, e_2, y, z);$$

it is independent of the particular orthonormal basis chosen. One says that M is spacelike Ivanov-Petrova (resp. timelike Ivanov-Petrova) if the eigenvalues of $\mathcal{R}()$ are constant on the Grassmannian of oriented spacelike (resp. timelike) 2-planes; these two notions are equivalent and such a manifold is simply said to be Ivanov-Petrova. The notions spacelike Jordan Ivanov-Petrova and timelike Jordan Ivanov-Petrova are defined similarly and are not equivalent.

The Riemannian Ivanov-Petrova manifolds have been classified [10, 13, 21]; they have also been classified in the Lorentzian setting [23] if $m \geq 10$. For all these manifolds, the curvature tensors have the form $R = A_\Psi$ where Ψ is an idempotent isometry and $\mathcal{R}(\pi)$ always has rank 2. Conversely, in the algebraic setting, if R is a spacelike Jordan Ivanov-Petrova algebraic curvature tensor on a vector space of signature (p, q) where $q \geq 5$ and where $\text{Rank}\{\mathcal{R}()\} = 2$, then there exist λ and Ψ so that $R = \lambda A_\Psi$. This once again motivates the study of these tensors. Unfortunately, the situation in the indefinite setting is again quite different. There exist spacelike Ivanov-Petrova manifolds of signature $(s, 2s)$ where $\mathcal{R}(\pi)$ has rank 4 and where the curvature tensor does not have the form $R = A_\Psi$. We refer to [15] for further details.

1.3. The Szabó operator. There is an analogous operator to the Jacobi operator which is defined by ∇R. The Szabó operator $J_1(x)$ is the self-adjoint endomorphism of TM characterized by $g(J_1(x)y, z) = \nabla R(y, x, x, z; x)$. One says that M is spacelike Szabó (resp. timelike Szabó) if the eigenvalues of $J_1(\cdot)$ are constant on $S^+(M)$ (resp. $S^-(M)$); these notions are equivalent and such a manifold is simply said to be Szabó. The notion spacelike (resp. timelike) Jordan Szabó is defined similarly.

In his study of 2 point symmetric spaces, Szabó [23] gave a very lovely topological argument showing that any Riemannian Szabó manifold is necessarily a local symmetric space—i.e. $\nabla R = 0$. This result was subsequently extended to the Lorentzian case [16]. In the higher signature setting, again the situation is unclear. The metric g_1 described in Display [16] defines a Szabó pseudo-Riemannian manifolds of signature (p, p).

Even in the algebraic setting, there are no known non-zero elements $A_1 \in \mathcal{A}(V)$ which are spacelike Jordan Szabó. It has been shown [12] that if A_1 is a spacelike Jordan Szabó algebraic covariant derivative curvature tensor on a vector space of signature (p, q), where $q \equiv 1 \mod 2$ and $p < q$ or where $q \equiv 2 \mod 4$ and $p < q - 1$, then $A_1 = 0$. This algebraic result yields an elementary proof of the geometrical fact that any pointwise totally isotropic pseudo-Riemannian manifold with such a signature (p, q) is locally symmetric. The general question of finding non-trivial spacelike Jordan Szabó covariant algebraic curvature tensors, or conversely showing non exist, remains open.
The examples discussed above motivate consideration of the tensors $A_{1,\Psi,\Psi}$, and more generally of tensors which are combinations of these. We hope that Theorems 1.2 and 1.3, although of interest in their own right, will play a central role in these investigations.

2. A LOWER BOUND FOR $\nu(m)$ AND FOR $\nu_1(m)$

Let V be an m dimensional vector space, let $A \in \mathcal{A}(V)$, and let $A_1 \in \mathcal{A}_1(V)$. Give V a positive definite inner product $\langle \cdot, \cdot \rangle$. The associated curvature operators are then defined by the identities:

$$\langle \mathcal{R}_A(\xi_1, \xi_2)z, w \rangle = A(\xi_1, \xi_2; z, w),$$

and

$$\langle \mathcal{R}_{A_1}(\xi_1, \xi_2, \xi_3)z, w \rangle = A_1(\xi_1, \xi_2, z; \xi_3).$$

Theorem 1.2 (1) will follow from the following Lemma:

Lemma 2.1. Let V be a vector space of dimension $m = 2m$ or $m = 2n+1$.

1. If $\Psi \in S^2(V)$ and if $\Psi_1 \in S^3(V)$, then for any $\xi_1, \xi_2, \xi_3 \in V$ one has:

 $$\text{Rank}\{\mathcal{R}_{A_1}(\xi_1, \xi_2)\} \leq 2 \quad \text{and} \quad \text{Rank}\{\mathcal{R}_{A_1,\Psi,\Psi_1}(\xi_1, \xi_2, \xi_3)\} \leq 2.$$

2. If $A \in \mathcal{A}(V)$ and $A_1 \in \mathcal{A}_1(V)$, then for any $\xi_1, \xi_2, \xi_3 \in V$ one has:

 $$\text{Rank}\{\mathcal{R}_A(\xi_1, \xi_2)\} \leq 2\nu(A) \quad \text{and} \quad \text{Rank}\{\mathcal{R}_{A_1}(\xi_1, \xi_2, \xi_3)\} \leq 2\nu(A_1).$$

3. There exist $A \in \mathcal{A}(V)$, $A_1 \in \mathcal{A}_1(V)$, and $\xi_1, \xi_2, \xi_3 \in V$ so:

 $$\text{Rank}\{\mathcal{R}_A(\xi_1, \xi_2)\} = 2m \quad \text{and} \quad \text{Rank}\{\mathcal{R}_{A_1}(\xi_1, \xi_2, \xi_3)\} = 2\bar{m}.$$

Proof. If $\Psi \in S^2(V)$ and $\Psi_1 \in S^3(V)$, let ψ and $\psi_1(\cdot)$ be the associated self-adjoint endomorphisms characterized by the identities

$$\langle \psi x, y \rangle = \Psi(x, y) \quad \text{and} \quad \langle \psi_1(z)x, y \rangle = \Psi_1(x, y, z).$$

Assertion (1) follows from the expression:

$$\mathcal{R}_{A_1}(\xi_1, \xi_2) = \{\Psi(\xi_2, y)\psi_1 - \{\Psi_1(\xi_2, y)\psi_1\} \xi_2, \quad \text{and} \quad \mathcal{R}_{A_1,\Psi,\Psi_1}(\xi_1, \xi_2, \xi_3) = \{\Psi(\xi_2, y)\psi_1 - \{\Psi_1(\xi_2, y)\psi_1\} \xi_2, \xi_3\}.$$

Let $A_i := A_{\psi_i}$, $A_{1,i} := A_{1,\psi_i,\psi_i}$, $R_i := R_{A_i}$, and $R_{1,i} := R_{A_{1,i}}$. Set

$$A = \sum_{1 \leq i \leq \nu(A)} A_i \quad \text{and} \quad A_1 = \sum_{1 \leq i \leq \nu(A_1)} A_{1,i}.$$

Assertion (2) follows from Assertion (1) as

$$\text{Rank}\{\mathcal{R}_A(\cdot)\} = \text{Rank}\{\sum_{1 \leq i \leq \nu(A)} \mathcal{R}_i(\cdot)\} \leq \sum_{1 \leq i \leq \nu(A)} \text{Rank}\{\mathcal{R}_i(\cdot)\} \leq 2\nu(A),$$

$$\text{Rank}\{\mathcal{R}_{A_1}(\cdot)\} = \text{Rank}\{\sum_{1 \leq i \leq \nu(A_1)} \mathcal{R}_{1,i}(\cdot)\} \leq \sum_{1 \leq i \leq \nu(A_1)} \text{Rank}\{\mathcal{R}_{1,i}(\cdot)\} \leq 2\nu(A_1).$$

If $\dim(V) = 2m$, let $\{e_1, \ldots, e_m, f_1, \ldots, f_m\}$ be an orthonormal basis for V; if $\dim(V)$ is odd, the argument is similar and we simply extend A and A_1 to be trivial on the additional basis vector. Define the non-zero components of $\Psi_i \in S^2(V)$ and $\Psi_{1,i} \in S^3(V)$ by:

$$\Psi_{i}(e_j, e_k) = \Psi_{i}(f_j, f_k) = \delta_{ij}\delta_{ik},$$

$$\Psi_{1,i}(e_j, e_k, e_l) = \Psi_{1,i}(f_j, f_k, f_l) = \delta_{ij}\delta_{ik}\delta_{il};$$

$\Psi_{i}(\cdot, \cdot)$ and $\Psi_{1,i}(\cdot, \cdot, \cdot)$ vanish if both an ‘e’ and an ‘f’ appear. Let

$$A := \sum_{1 \leq i \leq \bar{m}} A_i, \quad A_1 := \sum_{1 \leq i \leq \bar{m}} A_{1,i},$$

$$\xi_1 := e_1 + \ldots + e_{\bar{m}}, \quad \xi_2 := f_1 + \ldots + f_{\bar{m}}, \quad \xi_3 := \xi_1 + \xi_2.$$
We may then complete the proof of Assertion (3) by computing:

\[\mathcal{R}_A(\xi_1, \xi_2)e_i = \mathcal{R}_1(e_i, f_i)e_i = -f_i, \]
\[\mathcal{R}_A(\xi_1, \xi_2)f_i = \mathcal{R}_1(e_i, f_i)f_i = e_i, \]
\[\mathcal{R}_A(\xi_1, \xi_2, \xi_3)e_i = \mathcal{R}_{1, i}(e_i, f_i, e_i + f_i)e_i = -2f_i \]
\[\mathcal{R}_A(\xi_1, \xi_2, \xi_3)f_i = \mathcal{R}_{1, i}(e_i, f_i, e_i + f_i)f_i = 2e_i. \]

3. GEOMETRIC REALIZABILITY

Henceforth, let \(\langle \cdot, \cdot \rangle \) be a non-singular innerproduct on an \(m \)-dimensional vector space \(V \), let \(A \in \mathcal{A}(V) \) and let \(A_1 \in \mathcal{A}(V) \).

Although the following is well-known, see for example Belger and Kowalski [1] where a more general result is established, we shall give the proof to keep the development as self-contained as possible and to establish notation needed subsequently.

Lemma 3.1.

1. If \(g \) is a pseudo-Riemannian metric on \(\mathbb{R}^m \) with \(\partial g_{jk}(0) = 0 \), then:
 \(R_{ijk}(0) = \frac{1}{2} \{ \partial_k g_{ijl} + \partial_j g_{kil} - \partial_l g_{kij} - \partial_i g_{klj} \}(0) \).
 \(R_{ijk}(0) = \left(\partial_k \Gamma_{i j l} - \partial_l \Gamma_{i j k} \right)(0) \).
 \(R_{ikjn}(0) = \{ \partial_n R_{ijk}(0) \} \).

2. There exists the germ of a pseudo-Riemannian metric \(g \) on \((\mathbb{R}^m, 0) \) and an isomorphism \(\Xi \) from \(T_0(\mathbb{R}^m) \) to \(V \) so that
 \(\Xi^* \langle \cdot, \cdot \rangle = g|_{T_0(\mathbb{R}^m)} \).
 \(\Xi^* A = R|_{T_0(\mathbb{R}^m)} \).
 \(\Xi^* A_1 = \nabla R|_{T_0(\mathbb{R}^m)} \).

Proof. Since the 1 jets of the metric vanish at the origin, we have

\[\Gamma_{ijk} := g(\nabla_{\partial_i} \partial_j, \partial_k) = \frac{1}{2} (\partial_k g_{ij} + \partial_j g_{ik} - \partial_i g_{jk}) = O(|x|), \]
\[R_{ijk}(0) = \{ \partial_k \Gamma_{i j l} - \partial_l \Gamma_{i j k} \}(0), \quad \text{and} \]
\[R_{ikjn}(0) = \{ \partial_n R_{ijk}(0) \} \).

Assertion (1) now follows; see, for example, [11] [cf Lemma 1.1.1] for further details. To prove the second assertion, choose an orthonormal basis \(\{ e_1, \ldots, e_m \} \) for \(V \) so that \(\langle e_i, e_j \rangle = \pm \delta_{ij} \); we use this orthonormal basis to identify \(V = \mathbb{R}^m \). Let \(A_{ijk} \) and \(A_{i, jkl} \) denote the components of \(A \) and of \(A_1 \), respectively. Define

\[g_{ik} = \langle e_i, e_k \rangle = \frac{1}{3} \sum_{j} A_{ijk} x_j x_l - \frac{1}{6} \sum_{j} A_{i, jkl} x_j x_l x_n. \]

Clearly \(g_{ik} = g_{ki} \). As \(g|_{T_0 \mathbb{R}^m} = \langle \cdot, \cdot \rangle \), \(g \) is non-degenerate on some neighborhood of \(0 \). Since the 1 jets of the metric vanish at 0 we have by Assertion (1) that

\[R_{ijk}(0) = \frac{1}{6} \{ -A_{jk,l} - A_{jkl} - A_{i,jlk} - A_{j,lk} + A_{i,jl} + A_{ijkl} \} \]
\[= \frac{1}{6} \{ 4A_{ijkl} - 2A_{il,jk} - 2A_{iklj} \} = A_{ijkl}, \]
\[R_{ikjn}(0) = \frac{1}{12} \{ -A_{jkln} + A_{jkl} + A_{jnkl} - A_{jkn} - A_{jnl} - A_{jnk} - A_{jnk} \}
- A_{ijkn} + A_{i,jkn} - A_{i,nkj} + A_{i,nkj} - A_{i,jkn} - A_{i,jkn}
+ A_{i,jkn} + A_{jkn} + A_{jln} + A_{jln} + A_{jln} + A_{jln} + A_{jln} + A_{jln}
+ A_{i,jkn} + A_{jkn} + A_{jln} + A_{jln} + A_{jln} + A_{jln} + A_{jln} + A_{jln}
\]
We suppose the inner product $\langle \cdot , \cdot \rangle$ is positive definite henceforth. We apply the Nash embedding theorem \[17\] to find an embedding $f : \mathbb{R}^m \rightarrow \mathbb{R}^{m+\kappa}$ realizing the metric g constructed in Lemma 3.1. By writing the submanifold as a graph over its tangent plane, we can choose coordinates (x, y) on $\mathbb{R}^{m+\kappa}$ where $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_\kappa)$ so that

$$f(x) = (x, f_1(x), \ldots, f_\kappa(x)) \quad \text{where} \quad df_{\nu}(0) = 0 \quad \text{for} \quad 1 \leq \nu \leq \kappa.$$

Since $f_\nu(\partial_x^i) = (0, \ldots, 1, \ldots, 0, \partial_x^i f_1, \ldots, \partial_x^i f_\kappa)$, we have

$$g_{ij}(x) = \delta_{ij} + \sum_{1 \leq \sigma \leq \kappa} \partial^i f_\sigma \cdot \partial^j f_\sigma.$$

Let $\Psi^\sigma_{ij} := \partial^i \partial^j f_\sigma(0)$ and $\Psi^\sigma_{ik} := \partial^i \partial^k f_\sigma(0)$. As $dg_{ij}(0) = 0$, by Lemma 3.1

$$R_{ijkl}(0) = \frac{1}{2} \sum_{1 \leq \sigma \leq \kappa} \{ (\Psi^\sigma_{ij} \Psi^\sigma_{kl} + \Psi^\sigma_{il} \Psi^\sigma_{kj}) + (\Psi^\sigma_{ji} \Psi^\sigma_{lk} + \Psi^\sigma_{jk} \Psi^\sigma_{li}) \}$$

$$- \{ (\Psi^\sigma_{ij} \Psi^\sigma_{lk} + \Psi^\sigma_{il} \Psi^\sigma_{kj}) - (\Psi^\sigma_{ji} \Psi^\sigma_{lk} + \Psi^\sigma_{jk} \Psi^\sigma_{li}) \}$$

$$= \sum_{1 \leq \sigma \leq \kappa} \{ \Psi^\sigma_{ij} - \Psi^\sigma_{il} \Psi^\sigma_{jk} - \Psi^\sigma_{ik} \Psi^\sigma_{jl} \} = \sum_{1 \leq \sigma \leq \kappa} A_{\Psi^\sigma},$$

Consequently, $\nu(A) \leq \kappa$ and $\nu(A_1) \leq \kappa$. Theorem 1.3 follows from the Nash embedding theorem as in the analytic category we may take $\kappa \leq \frac{m}{2}(m+1)$.

\section*{Acknowledgments}

J.C. Díaz-Ramos and E. García-Río are supported by project BFM2003-02949, Spain. Research of P. Gilkey partially supported by the MPI (Leipzig).

\section*{Dedication}

11 de Marzo de 2004 Madrid: En memoria de todas las víctimas inocentes. Todos íbamos en ese tren. (In memory of all these innocent victims. We were all on that train.)

\section*{References}

[1] M. Belger and O. Kowalski, Riemannian metrics with the prescribed curvature tensor and all its covariant derivatives at one point, Math. Nachr. 168 (1994), 209–225.

[2] N. Blažič, N. Bokan and P. Gilkey, A Note on Osserman Lorentzian manifolds, Bull. London Math. Soc. 29 (1997), 227–230.

[3] Q.-S. Chi, A curvature characterization of certain locally rank-one symmetric spaces, J. Differential Geom. 28 (1988), 187–202.

[4] J. C. Díaz-Ramos and E. García-Río, A note on the structure of algebraic curvature tensors, Linear Algebra Appl. (to appear).

[5] C. Dunn and P. B. Gilkey, Curvature homogeneous pseudo-Riemannian manifolds which are not locally homogeneous, to appear in the Proceedings of the Conference in honor of L. Vanhecke, preprint [math.DG/0506072].

[6] B. Fiedler, Determination of the structure of algebraic curvature tensors by means of Young symmetrizers, Séminaire Lotharingien de Combinatoire, B48d (2003), 20 pp. Electronically published, [http://www.mat.univie.ac.at/~slc/] see also [math.CO/0212278].

[7] B. Fiedler, Generators of algebraic covariant derivative curvature tensors and Young symmetrizers, to appear in Progress in Computer Science Research, ed. F. Columbus, Nova Science Publishers, Inc.; arXiv.org/abs/math.CO/0310020.

[8] E. García-Río, D. Kupeli and M. E. Vázquez-Abal, On a problem of Osserman in Lorentzian geometry, Differential Geom. Appl. 7 (1997), 85–100.
9. E. García–Río, D. Kupeli, and R. Vázquez–Lorenzo, Osseman Manifolds in Semi-Riemannian Geometry, Lecture Notes in Mathematics, 1777. Springer–Verlag, Berlin, 2002. ISBN: 3-540-43144-6.
10. P. Gilkey, Riemannian manifolds whose skew symmetric curvature operator has constant eigenvalues II, Differential geometry and applications. (ed Kolar, Kowalski, Krupka, and Slovak) Publ Massaryk University Brno Czech Republic ISBN 80-210-2097-0 (1999), 73–87.
11. P. Gilkey, Geometric properties of natural operators defined by the Riemann curvature tensor, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
12. P. Gilkey, R. Ivanova, and I. Stavrov, Jordan Szabó algebraic covariant derivative curvature tensors, Contemporary Mathematics (Recent Advances in Riemannian and Lorentzian Geometries), 337 (2003), 65–76.
13. P. Gilkey, J. V. Leahy, and H. Sadofsky, Riemannian manifolds whose skew-symmetric curvature operator has constant eigenvalues, Indian Univ. Math. J. 48 (1999), 615–634.
14. P. Gilkey and S. Nikčević, Complete curvature homogeneous pseudo-Riemannian manifolds; math.DG/0402282
15. P. Gilkey and S. Nikčević, Manifolds which are Ivanov-Petrova or k-Stanilov, J. Geometry, to appear; math.DG/0310118
16. P. Gilkey and I. Stavrov, Curvature tensors whose Jacobi or Szabó operator is nilpotent on null vectors, Bulletin London Math Society 34 (2002), 650–658.
17. J. Nash, The embedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20–63.
18. Y. Nikolayevsky, Two theorems on Osseman manifolds, Differential Geom. Appl. 18 (2003), 239–253.
19. Y. Nikolayevsky, Osseman Conjecture in dimension n ≠ 8, 16; math.DG/02041258
20. Y. Nikolayevsky, Osseman manifolds of dimension 8; math.DG/0310387
21. Y. Nikolayevsky, Riemannian manifolds of dimension 7 whose skew-symmetric curvature operator has constant eigenvalues, math.DG/0311429
22. R. Osseman, Curvature in the eighties, Amer. Math. Monthly 97 (1990), 731–756.
23. Z. I. Szabó, A short topological proof for the symmetry of 2 point homogeneous spaces, Invent. Math. 106 (1991), 61–64.
24. T. Zhang, Applications of algebraic topology in bounding the rank of the skew-symmetric curvature operator, Topology Appl. 124 (2002), 9–24.

JD: DEPARTMENT OF GEOMETRY AND TOPOLOGY, FACULTY OF MATHEMATICS, UNIVERSITY OF SANTIAGO DE COMPOSTA, 15782 SANTIAGO DE COMPOSTA, SPAIN. EMAIL: xtjosec@usc.es

BF: MATHEMATICS INSTITUTE, UNIVERSITY OF LEIPZIG, AUGUSTUSPLATZ 10/11, 04109 LEIPZIG, GERMANY. EMAIL: bernd.fiedler.roschstr.leipzig@t-online.de

EG: DEPARTMENT OF GEOMETRY AND TOPOLOGY, FACULTY OF MATHEMATICS, UNIVERSITY OF SANTIAGO DE COMPOSTA, 15782 SANTIAGO DE COMPOSTA, SPAIN. EMAIL: xtedugr@usc.es

PG: MATHEMATICS DEPARTMENT, UNIVERSITY OF OREGON, EUGENE OR 97403 USA. EMAIL: gilkey@darkwing.uoregon.edu