Gender disparities in heart failure with mid-range and preserved ejection fraction: Results from APOLLON study

ABSTRACT

Objective: This study aimed to examine gender-based differences in epidemiology, clinical characteristics, and management of consecutive patients with heart failure with mid-range ejection fraction (HFmrEF) and heart failure with preserved ejection fraction (HFpEF).

Methods: The APOLLON trial (A comPrehensive, ObservationaL registry of heart faiLure with mid-range and preserved ejection fractiON) is a multicenter, cross-sectional, and observational study. Consecutive patients with HFmrEF or HFpEF who were admitted to the cardiology clinics were included (NCT03026114). Herein, we performed a post-hoc analysis of data from the APOLLON trial.

Results: The study population included 1065 (mean age of 67.1±10.6 years, 54% women) patients from 11 sites in Turkey. Compared with men, women were older (68 years vs. 67 years, p<0.001), had higher body mass index (29 kg/m² vs. 27 kg/m², p<0.001), and had higher heart rate (80 bpm vs. 77.5 bpm, p<0.001). Women were more likely to have HFpEF (82% vs. 70.9%, p<0.001), and they differ from men having a higher prevalence of hypertension (78.7% vs. 73.2%, p=0.035) and atrial fibrillation (40.7% vs. 29.9%, p<0.001) but lower prevalence of coronary artery disease (29.5% vs. 77.5 bpm, p<0.001). Women were more likely to have HFpEF (82% vs. 70.9%, p<0.001), and they differ from men having a higher prevalence of hypertension (78.7% vs. 73.2%, p=0.035) and atrial fibrillation (40.7% vs. 29.9%, p<0.001) but lower prevalence of coronary artery disease (29.5% vs. 77.5 bpm, p<0.001). Women had higher N-terminal pro-B-type natriuretic peptide (691 pg/mL vs. 541 pg/mL, p=0.004), lower hemoglobin (12.7 g/dL vs. 13.8 g/dL, p<0.001), and serum ferritin (51 ng/mL vs. 64 ng/mL, p=0.001) levels, and they had worse diastolic function (E/e’=10 vs. 9, p<0.001). The main cause of heart failure (HF) in women was atrial fibrillation, while it was ischemic heart disease in men.

Conclusion: Clinical characteristics, laboratory findings, and etiological factors are significantly different in female and male patients with HFmrEF and HFpEF. This study offers a broad perspective for increased awareness about this patient profile in Turkey (Anatol J Cardiol 2019; 21: 242-52)

Keywords: clinical features, differences, gender, heart failure with mid-range ejection fraction, heart failure with preserved ejection fraction
Gender disparities in HFmrEF and HFpEF

Methods

The APOLLON registry

Baseline continuous variables are presented as mean ± standard deviations or median, first quartile (Q1) and third quartile (Q3); depending on the distribution of the data. The categorical variables are expressed in frequencies and percentages. The Pearson’s Chi-square test was used to compare categorical variables. The continuous variables were compared using the t-test or the Mann–Whitney U-test, as appropriate. Clinical characteristics of female and male patients were compared using Fisher’s exact test with two-sided p-values. Analyses were performed with the statistical package SPSS 24.0 (SPSS Inc, Chicago, Illinois, USA).

Results

The baseline characteristics of the patients are listed in Table 1. Compared with men, women with HFpEF and HFmrEF were older; and they more frequently had palpitation, peripheral edema, fatigue, and reduced exercise tolerance. Female par-
Participants had higher body mass index and heart rate when compared with what their male counterparts had. Women had higher prevalence of hypertension and atrial fibrillation. However, men had higher prevalence of coronary and peripheral artery disease, and hyperlipidemia. There were significantly fewer smokers and alcohol users among the women. The ratio of patients with HFmrEF was significantly higher in females than in males, but the ratio of HFmrEF was more common in men than that in women. Of the 577 female, 104 (18%) had HFmrEF; whereas of the 488 male, 142 (29.1%) had HFmrEF (p<0.001). Of the 577 female, 473 patients had HFpEF (82%), but of the 488 male, 346 (70.9%) had HFpEF (p<0.001).

| Table 1. Patient demographics, characteristics, and comorbid features for all population |
|---------------------------------|---------------|----------------|
| | Female (n=577) | Male (n=488) |
| Age, years | 68 (61–76) | 67 (60–74) |
| Smoking | 32 (5.5) | 156 (32.0) |
| Alcohol use | 5 (0.9) | 41 (8.4) |
| Paroxysmal nocturnal dyspnea | 217 (37.6) | 150 (30.7) |
| Palpitation | 326 (56.5) | 176 (36.1) |
| Reduced exercise tolerance | 499 (86.5) | 380 (77.9) |
| Fatigue, tiredness | 399 (69.2) | 279 (57.2) |
| Chest pain | 141 (24.4) | 133 (27.3) |
| Syncope | 29 (5.0) | 16 (3.3) |
| Dizziness | 123 (21.3) | 87 (17.8) |
| Body mass index, kg/m² | 29 (26–33) | 27 (25–30) |
| Systolic blood pressure, mm Hg | 130 (120–145) | 130 (120–145) |
| Diastolic blood pressure, mm Hg | 80 (70–90) | 80 (70–85) |
| Heart rate, bpm | 80 (71.5–94) | 77.5 (69–89) |
| Pulmonary crepitations | 138 (23.9) | 97 (19.9) |
| Peripheral edema | 220 (38.1) | 136 (27.9) |
| ECG abnormality | 323 (56.0) | 293 (60.0) |
| Cachexia | 24 (4.2) | 11 (2.3) |
| History of hospitalization for HF in the last year | 123 (21.3) | 98 (20.1) |

Comorbidities		
Atrial fibrillation	235 (40.7)	146 (29.9)
Hypertension	454 (78.7)	357 (73.2)
Diabetes mellitus	184 (31.9)	135 (27.7)
Anemia	204 (35.3)	168 (34.4)
Chronic kidney disease	59 (10.2)	73 (15.0)
Obstructive sleep apnea	30 (5.2)	31 (6.4)
Hyperlipidemia	120 (20.8)	144 (29.5)
Coronary artery disease	170 (29.5)	268 (54.9)
Previous myocardial infarction	69 (12.0)	128 (26.2)
Coronary artery by-pass grafting	57 (9.9)	98 (20.1)
Peripheral artery disease	7 (1.2)	21 (4.3)
CVA/TIA	39 (6.8)	31 (6.4)
COPD	71 (12.3)	72 (14.8)
Hepatic failure	11 (1.9)	7 (1.4)
Depression	41 (7.1)	17 (3.5)
Malignancy	5 (0.9)	14 (2.9)
Heart failure with mid-range ejection fraction	104 (18.0)	142 (29.1)
Heart failure with preserved ejection fraction	473 (82.0)	346 (70.9)

COPD - chronic obstructive pulmonary disease; CVA - cerebrovascular accident; HF - heart failure; TIA - transient ischemic attack
Tables 2 and 3 show the comparison of laboratory parameter and echocardiographic findings according to the gender. The NT-proBNP levels were significantly higher in women (691 pg/mL vs. 541 pg/mL, p=0.004), but hemoglobin and ferritin levels were significantly lower in women than those in men.

Compared with female patients, male patients had significantly higher interventricular septum thickness, left ventricular posterior wall thickness, left ventricular end-diastolic and end-systolic dimensions, whereas LVEF was lower (55% vs. 60%, p<0.001) in men. Women had worse diastolic function [E/e’=10 (range:8–13) vs. 9 (range:7–12), p<0.001], and they were associated with a trend toward higher prevalence of abnormal left ventricular geometry (concentric hypertrophy or eccentric hypertrophy, or concentric remodeling) and higher pulmonary artery systolic pressure compared with those in men. Women also had higher prevalence of mitral and tricuspid valvular regurgitation compared with what men had.

Comparison of female and male patients with HFrEF

Of the 246 patients with HFrEF, 142 (57.7%) were male. Compared with women, men were younger, had significantly lower body mass index and heart rate. There were significantly more smokers and alcohol users among the men with HFrEF. Women had higher prevalence of atrial fibrillation (32.4% vs. 22.1%, p<0.001), hypertension (26.3% vs. 23.8%, p<0.001), and valvular heart disease (14.6% vs. 7.4%, p<0.001) as a cause of HFrEF. However, ischemic heart disease (42.6% vs. 21.1%, p<0.001) was the most common cause of HF in male patients.

Comparison of female and male patients with HfmrEF

Comparison of female and male patients with HfmrEF

Table 2. Laboratory parameters

Parameter	Female (n=577)	Male (n=488)	P-value
NT-proBNP, pg/mL	691 (285–1323)	541 (259–918)	0.004
Fasting blood glucose, mg/dL	105 (94–133)	106 (93–123)	0.326
Blood urea nitrogen, mg/dL	17 (13–24)	17 (14–22)	0.766
Serum creatinine, mg/dL	0.8 (0.7–1.0)	0.9 (0.8–1.1)	<0.001
Serum sodium, mmol/L	141 (139–143)	141 (139–143)	0.874
Serum potassium, mmol/L	4.6 (4.3–4.9)	4.6 (4.2–4.9)	0.334
Serum calcium, mg/dL	9.3 (8.9–9.7)	9.3 (8.9–9.7)	0.816
Uric acid, mg/dL	5.5 (4.5–6.8)	5.7 (4.9–6.9)	0.016
Hemoglobin, g/dL	12.7 (11.4–13.6)	13.8 (12.4–15.0)	<0.001
Leukocyte, x10^9/µL	7.8 (6.5–9.2)	7.9 (6.7–9.4)	0.538
C-reactive protein, mg/dL	3.5 (1.8–7.9)	3.2 (1.9–7.0)	0.095
Ferritin, ng/mL	51 (26–90)	64 (29–122)	0.001
TSH, µU/mL	1.5 (0.9–2.7)	1.4 (0.9–2.2)	0.308

NT-proBNP - N-terminal pro B-type natriuretic peptide; TSH - thyrotropin-stimulating hormone
Age distribution by gender in patients with HFmrEF and HFpEF

Mean age of our HFpEF cohort was 67 years, with almost 50% of the patients aged between 65 and 80 years. Temporal trend analysis showed female predominance among all age groups in patients with HFpEF (Fig. 1). On the other hand, mean age of patients with HFmrEF was 68 years, with >50% of the patients aged between 65 and 80 years.

Table 3. Two-dimensional transthoracic echocardiographic, Doppler data

	Female (n=577)	Male (n=488)	P value
LVEF, %	60 (53–62)	55 (47–60)	<0.001
e’, cm/sn	7 (6–8)	7 (6–8)	0.680
E/e’	10 (8–13)	9 (7–12)	<0.001

LV diastolic dysfunction

	Female	Male	P value
None	71 (12.4)	70 (14.3)	0.042
Grade 1	132 (22.8)	57 (31.3)	
Grade 2	236 (40.9)	172 (35.3)	
Grade 3	138 (23.9)	93 (19.1)	

	Female (n=488)	Male (n=488)	P value
LVED dimension, mm	48 (44–51)	49 (45–54)	<0.001
LVES dimension, mm	32 (29–36)	33 (30–39)	<0.001
IVS dimension, mm	11 (10–12)	12 (10–13)	0.007
LVPW dimension, mm	10 (10–11)	11 (10–12)	0.008
LAVI, mL/m²	35 (30–41)	33 (29–41)	0.067
LA enlargement	300 (52.0)	224 (45.9)	0.063
LVMI, g/m²	108 (90–128)	110 (90–130)	0.323
LV concentric hypertrophy	386 (66.9)	221 (45.3)	<0.001
PAPs, mm Hg	30 (17–38)	27 (15–35)	<0.001

Mitral regurgitation

	Female	Male	P value
None	149 (25.8)	156 (32.0)	0.003
Mild	547 (95.0)	480 (98.4)	0.010
Moderate	135 (23.4)	74 (15.2)	
Severe	4 (0.7)	1 (0.2)	

Mitral stenosis

	Female (n=488)	Male (n=488)	P value
None	554 (96.2)	475 (97.3)	0.533
Mild	15 (2.6)	8 (1.6)	
Moderate	7 (1.2)	5 (1.0)	

Aortic stenosis

	Female (n=488)	Male (n=488)	P value
None	554 (96.2)	475 (97.3)	0.533
Mild	15 (2.6)	8 (1.6)	
Moderate	7 (1.2)	5 (1.0)	

Aortic regurgitation

	Female (n=488)	Male (n=488)	P value
None	420 (72.9)	386 (79.1)	0.064
Mild	137 (23.8)	90 (18.4)	
Moderate	19 (3.3)	12 (2.5)	

Tricuspid regurgitation

	Female (n=488)	Male (n=488)	P value
None	190 (32.9)	196 (40.2)	0.003
Mild	238 (41.2)	208 (42.6)	
Moderate	123 (21.3)	73 (15.0)	
Severe	26 (4.5)	11 (2.3)	

IVS - interventricular septum; LA - left atrium; LAVI - left atrial volume index; LV - left ventricle; LVED - left ventricular end-diastolic; LVEF - left ventricle ejection fraction; LVES - left ventricular end-systolic; LVMI - left ventricular mass index; LVPW - left ventricular posterior wall; PAPs - pulmonary artery systolic pressure

Figure 1. Age distribution by gender in patients with heart failure and preserved ejection fraction. Number of patients (a), proportion of patients (b). Temporal trend analysis showed female predominance among all age groups.

HFpEF - heart failure with preserved ejection fraction

Figure 2. Age distribution by gender in patients with heart failure and mid-range ejection fraction. Number of patients (a), proportion of patients (b). The proportion of males among patients aged <80 years was higher than that of females; whereas in the elderly, the proportion of females was higher.

HFmrEF - heart failure with mid-range ejection fraction
and 80 years. This analysis revealed male predominance among those aged <80 years in patients with HFmrEF, whereas, in older patients, percentage of females increased, and ultimately the rate of female exceeded the male ratio in HFmrEF group (Fig. 2).

Discussion

Previous epidemiological studies revealed a female predominance in the development of HFpEF (17). Fifty-five percent of patients with HFpEF were female in the Swedish Heart Failure Registry, which included over 18,000 patients with HFpEF and HFmrEF (18). However, most of these studies were clinical drug trials, and they may not reflect real-life patients with HFpEF. Moreover, to the best of our knowledge, there have been no studies evaluating gender differences in patients with HFmrEF.

In this analysis from APOLLO study, we evaluated sex differences in demographic, clinical, and laboratory parameters in a large national cohort of patients with HFmrEF and HFpEF in a real-world setting. Our results indicate that the clinical manifestations of HFmrEF and HFpEF differ widely between women and men. Women were usually older at presentation, and had a greater burden of atrial fibrillation and hypertension; on the other hand, men were more likely to have coronary and peripheral artery disease, hyperlipidemia, and malignancy compared with women. Our results also showed that signs and symptoms may also have sex-related differences: women tended to be more symptomatic for palpitations, reduced exercise tolerance, peripheral edema, and fatigue on admission. The ratio of HFmrEF was also significantly different among men and women; nearly one-fifth of the women and one-third of the men had HFmrEF in our study cohort. Another important difference concerns the management of HF; men were more likely to receive beta-blockers, statins, and antithrombotic agents due to higher prevalence of ischemic heart disease in men, whereas women more often received anticoagulant drugs that may be secondary to the higher prevalence of atrial fibrillation in women.

Over the past decade, one of the most important findings across numerous HFpEF studies was a distinct gender distribution. Generally, women significantly outnumber men, leading to a gender ratio of approximately 2:1 in HFpEF (19, 20). In our study, 57.8% of the patients with HFpEF were female. Previous studies have shown that women with HFpEF tend toward higher LVEF, and 80 years. This analysis revealed male predominance among those aged <80 years in patients with HFmrEF, whereas, in older patients, percentage of females increased, and ultimately the rate of female exceeded the male ratio in HFmrEF group (Fig. 2).

Table 4. Medications

	Female (n=577)	Male (n=488)	P value
Angiotensin-converting enzyme inhibitors	179 (31.0)	175 (35.9)	0.095
Angiotensin receptor blockers	173 (30.0)	119 (24.4)	0.041
Beta-blockers	318 (55.1)	306 (62.7)	0.012
Aldosterone antagonists	92 (15.9)	87 (17.8)	0.413
Iverapride	3 (0.5)	7 (1.4)	0.200
Amiodarone	12 (2.1)	8 (1.6)	0.656
Propafenone	3 (0.5)	0 (0)	0.255
Non-dihydropyridine calcium blockers	80 (13.9)	38 (7.8)	0.002
Dihydropyridine calcium blockers	133 (23.1)	80 (16.4)	0.007
Digoxin	31 (5.4)	37 (7.6)	0.166
Statins	110 (19.1)	168 (34.4)	<0.001
Loop diuretics	202 (35.0)	146 (29.9)	0.078
Thiazide	194 (33.6)	124 (25.4)	0.004
Isosorbide	19 (3.3)	29 (5.9)	0.038
Antiagregant	210 (36.4)	269 (55.1)	<0.001
Anticoagulant	185 (32.1)	110 (22.5)	0.001
Non-steroidal anti-inflammatory drugs	47 (8.1)	31 (6.4)	0.263
Oral anthyperglysemic	142 (24.6)	104 (21.3)	0.203
Insulin	50 (8.7)	37 (7.6)	0.575

Table 5. Etiology of heart failure

	Female (n=577)	Male (n=488)	P value
Ischemic	122 (21.1)	208 (42.6)	<0.001
Atrial fibrillation	187 (32.4)	108 (22.1)	0.263
Hypertension	152 (26.3)	116 (23.8)	<0.001
Valvular disease	84 (14.6)	36 (7.4)	0.203
Other	32 (5.5)	20 (4.1)	0.575
Table 6. Heart failure with preserved ejection fraction in female and male

	Female (n=473)	Male (n=346)	P value
Age, years	67 (61–75)	67 (60–74)	0.262
Smoking	29 (6.1)	100 (28.9)	<0.001
Alcohol use	26 (7.5)	3 (0.6)	<0.001
Body mass index, kg/m²	29 (26–33)	27 (24–30)	<0.001
Heart rate, bpm	80 (70–92)	78 (70–90)	0.076
History of hospitalization for HF in the last year	92 (19.5)	60 (17.3)	0.443

Comorbidities

	Female (n=473)	Male (n=346)	P value
Atrial fibrillation	194 (41.0)	119 (34.4)	0.054
Hypertension	377 (79.7)	246 (71.1)	0.004
Diabetes mellitus	153 (32.3)	91 (26.3)	0.062
Anemia	165 (34.9)	120 (34.6)	0.903
Chronic kidney disease	43 (9.1)	45 (13.0)	0.074
Obstructive sleep apnea	26 (5.5)	29 (8.4)	0.103
Coronary artery disease	116 (24.5)	155 (44.8)	<0.001
Previous myocardial infarction	31 (6.6)	48 (13.9)	<0.001

Laboratory data

	Female (n=473)	Male (n=346)	P value
NT-proBNP, pg/mL	574 (263–1060)	483 (224–865)	0.021
Blood urea nitrogen, mg/dL	17 (13–22)	17 (13–22)	0.666
Serum creatinine, mg/dL	0.8 (0.7–1)	0.9 (0.8–1.1)	<0.001
Serum potassium, mmol/L	4.6 (4.3–5.0)	4.5 (4.2–5.0)	0.817
Haemoglobin, g/dL	12.7 (11.4–13.5)	13.8 (12.3–15.0)	<0.001
Ferritin, ng/mL	51 (25–88)	63 (28–132)	0.003

Echocardiography

	Female (n=473)	Male (n=346)	P value
LVEF, %	60 (55–65)	59 (55–62)	<0.001
E/e’	9.8 (8.0–12.4)	9.0 (7.1–12.0)	0.002

LV diastolic dysfunction

	Female (n=473)	Male (n=346)	P value
None	57 (12.1)	47 (13.5)	0.054
Grade 1	114 (24.1)	111 (32.1)	
Grade 2	192 (40.6)	119 (34.5)	
Grade 3	110 (23.2)	69 (19.9)	
LVED dimension, mm	48 (44–51)	47 (44–52)	0.168
LVES dimension, mm	31 (28–35)	32 (29–36)	0.033
LAVI, mL/m²	35 (30–40)	33 (28–38)	0.029

Medications

	Female (n=473)	Male (n=346)	P value
Angiotensin-converting enzyme inhibitors	151 (31.9)	114 (32.9)	0.757
Angiotensin receptor blockers	142 (30.0)	86 (24.9)	0.103
Beta-blockers	246 (52.0)	206 (59.5)	0.032
Aldosterone antagonists	70 (14.8)	50 (14.5)	0.889
Nondihydropyridine calcium blockers	70 (14.8)	32 (9.2)	0.17
Dihydropyridine calcium blockers	112 (23.7)	67 (19.4)	0.140
Digoxin	22 (4.7)	28 (8.1)	0.042
Isosorbide	16 (3.4)	15 (4.3)	0.480
less often active or former smokers, had worse diastolic function and less comorbid conditions as compared with men (20, 21). In line with these data, in our cohort, women were less often active or former smokers, had higher LVEF, had worse diastolic function, and had higher prevalence of hypertension and atrial fibrillation. Deswal and Bozkurt (10) analyzed 719 patients with HFrEF and found that compared with men, women with HFrEF were older and more frequently had a history of diabetes or hypertension, history of myocardial infarctions, and ischemic causes of HF were less frequent in women than in men. At the time of enrollment, women appeared to have greater clinical severity of HF, as evidenced by more women with New York Heart Association (NYHA) class III or IV and fewer women with NYHA class I functional status, a greater proportion of women with a history of orthopnea and resting dyspnea, chest X-ray findings of vascular congestion, and examination findings of rales and edema, as well as more women receiving diuretics (10). Similar to the previous data, the APOLLON study showed that female patients with HFrEF were more symptomatic (palpitations, reduced exercise tolerance, peripheral edema, and fatigue), and they more often received diuretics on admission. In the APOLLON study, ischemic heart disease and ischemic etiology of HF were less frequent in females than in males with HFrEF. Recent findings from studies investigating HFrEF pathophysiology, mechanisms, and sex effects on cardiovascular aging have identified some potential contributors to the sex discrepancy (22, 23). Extent of concentric ventricular remodeling is enhanced in women, and this may be associated with worse diastolic function in the aged female heart (24). In our study, although LVEF was higher in women with HFrEF, women were more symptomatic and had higher NT-proBNP levels compared with men probably due to worse diastolic function, higher LAVI and pulmonary artery systolic pressure, and more frequent LV concentric hypertrophy.

The 2016 European Society of Cardiology HF guidelines recognized HFrEF as an entity distinct from HFrEF and HFrEF (2). Clinical characteristics of HFrEF were found to be intermediate between those of HFrEF and HFrEF (25). Some authors suggest that HFrEF has a phenotype closer to HFrEF (13), whereas other authors consider it closer to HFrEF (26). Recent studies have shown that patients with HFrEF were younger, more often male, and had more frequent ischemic heart disease compared with HFrEF (27). Even though patients with HFrEF have higher readmission rates than patients with HFrEF and mortality rates comparable to HFrEF and HFrEF (28), HFrEF remains insufficiently characterized compared with the other groups. In addition, there are limited data regarding the effect of gender in patients with HFrEF. Swedish Heart Failure Registry included 9019 patients with HFrEF, and 60.8% of these patients were male (18). Kapoor et al. (29) analyzed the factors potentially contributing to the HF hospitalization among 99,825 HF admissions from 305 hospitals in the Get With The Guidelines-HF (GWTG-HF) database; and among the 12,819 patients with HFrEF, 51.5% were male. The APOLLON study has shown that prevalence of male was 57.7% in patients with HFrEF. Previous studies revealed that there might be differences in sex distribution by age in patients with HF (30). Stein et al. (31) studied all consecutive 5228 males and 4107 females hospitalized patients with HF; aged 50 or older. Although there was no separate evaluation for HFrEF and HFrEF in this study, the proportion of males among patients aged <75 years was significantly higher than that of females, whereas in the elderly the proportion was similar in both genders (31). We analyzed gender distribution by age groups for HFrEF and HFrEF groups. In our study, female gender was higher among all age groups in patients with HFrEF. However, male gender was higher in patients with HFrEF aged <80 years, and female gender was higher in octogenarian patients with HFrEF. In patients with HFrEF, men smoked more, and were younger, had higher prevalence of coronary artery disease, had lower prevalence of atrial fibrillation, had better diastolic function, and had lower NT-proBNP levels. Ischemic heart disease was the main cause of HF in men and women with HFrEF.

Etiology of heart failure	Female (n=473)	Male (n=346)	P value
Ischemic	160 (33.8)	96 (27.7)	<0.001
Atrial fibrillation	142 (30.0)	104 (30.1)	
Hypertension	74 (15.6)	31 (9.0)	
Valvular disease	21 (4.4)	17 (4.9)	
Other	249	119	

HF - heart failure; LAVI - left atrial volume index; LV - left ventricle; LVED - left ventricular end-diastolic; LVEF - left ventricle ejection fraction; LVES - left ventricular end-systolic; NT-proBNP - N-terminal pro B-type natriuretic peptide
Table 7. Heart failure with mid-range ejection fraction in female and male

	Female (n=104)	Male (n=142)	P value
Age, years	71 (62–79)	67 (62–74)	0.004
Smoking	3 (2.9)	56 (39.4)	<0.001
Alcohol use	2 (1.9)	15 (10.6)	0.009
Body mass index, kg/m²	29 (27–32)	27 (25–31)	0.003
Heart rate, bpm	83 (74–97)	76 (68–86)	<0.001
History of hospitalization for HF in the last year	31 (28.8)	38 (26.8)	0.599

Comorbidities

- Atrial fibrillation: 41 (39.4) vs. 27 (19.0), <0.001
- Hypertension: 77 (74.0) vs. 111 (78.2), 0.451
- Diabetes mellitus: 31 (29.8) vs. 44 (31.0), 0.843
- Anemia: 39 (37.5) vs. 48 (33.8), 0.173
- Chronic kidney disease: 16 (15.4) vs. 28 (19.7), 0.381
- Obstructive sleep apnea: 4 (3.8) vs. 2 (1.4), 0.245
- Coronary artery disease: 54 (51.9) vs. 113 (79.6), <0.001
- Previous myocardial infarction: 38 (36.5) vs. 80 (56.3), 0.002

Laboratory data

- NT-proBNP, pg/mL: 1167 (592–2114) vs. 677 (368–1305), <0.001
- Blood urea nitrogen, mg/dL: 19.5 (15–27.7) vs. 17.0 (14.0–22.2), 0.028
- Serum creatinine, mg/dL: 0.8 (0.7–1.1) vs. 0.9 (0.8–1.1), <0.001
- Serum potassium, mmol/L: 4.6 (4.3–4.9) vs. 4.6 (4.3–4.9), 0.886
- Haemoglobin, g/dL: 12.6 (11.4–13.6) vs. 13.8 (12.4–15.0), <0.001
- Ferritin, ng/mL: 62 (27–99) vs. 66 (34–112), 0.393

Echocardiography

- LVEF, %: 45 (41–45) vs. 45 (40–45), 0.461
- E/e’: 10.1 (8.1–13.1) vs. 9.0 (7.0–11.4), 0.009

LV diastolic dysfunction

- None: 14 (13.4) vs. 23 (16.3), 0.032
- Grade 1: 18 (17.4) vs. 42 (29.5)
- Grade 2: 44 (42.3) vs. 53 (37.3)
- Grade 3: 28 (26.9) vs. 24 (16.9)
- LVED dimension, mm: 50.5 (45.0–53.7) vs. 53.0 (49.0–57.0), 0.001
- LVES dimension, mm: 35.0 (30.2–41.0) vs. 39.0 (33.0–45.0), 0.005
- LAVI, mL/m²: 35 (31–42) vs. 35 (30–43), 0.592

Medications

- Angiotensin-converting enzyme inhibitors: 28 (26.9) vs. 61 (43.0), 0.010
- Angiotensin receptor blockers: 31 (29.8) vs. 33 (23.2), 0.246
- Beta-blockers: 72 (69.2) vs. 100 (70.4), 0.840
- Aldosterone antagonists: 22 (21.2) vs. 37 (26.1), 0.374
- Nondihydropyridine calcium blockers: 10 (9.6) vs. 6 (4.2), 0.090
- Dihydropyridine calcium blockers: 21 (20.2) vs. 13 (9.2), 0.013
- Digoxin: 9 (8.7) vs. 9 (6.3), 0.491
- Isosorbide: 3 (2.9) vs. 14 (9.9), 0.041
This study provides contemporary data on gender differences in clinical features and management of patients with HFmrEF and HFpEF who participated in the APOLLON study. Several baseline clinical and echocardiographic features were found to differ significantly between women and men. Female subjects were older compared with males. There were gender differences in comorbidity status. Some were as expected, for example, coronary artery disease, and hyperlipidemia were more common among men, and hypertension and atrial fibrillation disease were more common in women. Our study also showed that gender discrepancies in HFmrEF and HFpEF management may exist in our country. The presence of this gender difference in the epidemiology and management of HFmrEF and HFpEF should be investigated in prospective studies to reveal whether these differences have consequences for outcome. Therefore, we need prospective clinical trials evaluating the management and prognosis of HFmrEF and HFpEF in both sexes throughout the country.

Study limitations
This study is a post-hoc analysis of the APOLLON registry. The main limitations of this study are its observational nature and lack of follow-up data. We assessed the associations between gender and HFmrEF or HFpEF but we cannot demonstrate causality. The limitation of the “clinician-judged HF” diagnosis in the APOLLON registry is also acknowledged. Another limitation is that the coverage of the study is limited to outpatient cardiology clinics; hospitalized patients are not included in this study.

Conclusion
In this large real-world survey, we demonstrated that clinical manifestations of HFmrEF and HFpEF differed widely between women and men. Patients with HFpEF are predominantly women, and patients with HFmrEF are predominantly men. Female patients with HFpEF are more symptomatic, have higher body mass index, have higher NT-proBNP levels, have worse diastolic function, and have higher prevalence of hypertension. The main etiology of HF is atrial fibrillation in these patients. Male patients with HFmrEF are younger, have higher prevalence of coronary artery disease, have more dilated left ventricle, and have better diastolic function. To the best of our knowledge, this is the first study to analyze gender differences in patients with HFmrEF. The results of this multicenter study have presented a broad perspective on gender in patients with HFmrEF and HFpEF in Turkey.

Conflict of interest: None declared.

Peer-review: Externally peer-reviewed.

Authorship contributions: Concept – B.Ö., E.Ö., O.Ç., C.Ç., V.D., Ö.B., M.B.; Design – B.Ö., E.Ö., O.Ç., C.Ç., Ö.B., M.B.; Supervision – B.Ö., E.Ö., O.Ç., C.Ç., V.D., Ö.B., M.B.; Funding – None; Materials – B.Ö., S.K., M.T., H.Z.A., V.D., B.C.K., İ.R., A.Ö., L.B., M.O.Ç., Y.Ç., K.U.M., K.M.S., S.S., G.Ö.M.; Data collection &/or processing – B.Ö., E.Ö., Ö.B., V.D., Ö.B., M.B.; Analysis &/or interpretation – B.Ö., S.K., M.T., H.Z.A., B.C.K., İ.R., A.Ö., L.B., M.O.Ç., Y.Ç., K.U.M., K.M.S., S.S., G.Ö.M.; Literature search – B.Ö., E.Ö., Ö.B., V.D., L.B., M.B.; Writing – B.Ö., E.Ö., Ö.B., M.T., H.Z.A., O.Ç., C.Ç., V.D., Ö.B., B.C.K., İ.R., A.Ö., L.B., M.O.Ç., Y.Ç., K.U.M., K.M.S., S.S., G.Ö.M.; Critical review – B.Ö., E.Ö., O.Ç., C.Ç., Ö.B., M.B.

References
1. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2163-96.
2. Ponikowski P, Voors AA, Anker SD, Bueno H, Cldeland JGF, Coats AJS, et al.; ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Devel-

Table 7. Cont	Female	Male	P value
	(n=104)	(n=142)	
Loop diuretics	45 (43.3)	53 (37.3)	0.347
Thiazide	31 (29.8)	47 (33.1)	0.584
Etiology of heart failure			<0.001
Ischemic	46 (44.2)	110 (77.5)	
Atrial fibrillation	27 (26.0)	12 (8.5)	
Hypertension	10 (9.6)	12 (8.5)	
Valvular disease	10 (9.6)	5 (3.5)	
Other	11 (10.6)	3 (2.1)	

HF - heart failure; LAVI - left atrial volume index; LV - left ventricle; LVED - left ventricular end-diastolic; LVEF - left ventricle ejection fraction; LVES - left ventricular end-systolic; NT-proBNP - N-terminal pro B-type natriuretic peptide
Gender disparities in HFmrEF and HFpEF

3. Abraham WT, Fonarow GC, Albert NM, Stough WG, Gheorghiade M, Greenberg BH, et al.; OPTIMIZE-HF Investigators and Coordinators. Predictors of in-hospital mortality in patients hospitalized for heart failure: insights from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). J Am Coll Cardiol 2008; 52: 347-56.

4. Adams KF Jr, Fonarow GC, Emerman CL, LeJeune TH, Costanzo MR, Abraham WT, et al.; ADHERE Scientific Advisory Committee and Investigators. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J 2005; 149: 209-16.

5. Owen TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 2006; 355: 251-9.

6. Tribouilloy C, Rusinaru D, Mahjoub H, Soulère V, Lévy F, Peltier M, et al. Prognosis of heart failure with preserved ejection fraction: a 5 year prospective population-based study. Eur Heart J 2008; 29: 339-47.

7. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haozui A, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med 2006; 355: 260-9.

8. Klempfner R, Kolffman E, Goldenberg I, Hamdan A, Tofler GH, Koppel E. The Israel Nationwide Heart Failure Survey: Sex differences in early and late mortality for hospitalized heart failure patients. J Card Fail 2014; 20: 193-8.

9. Brandsaeter B, Åtar D, Agewall S; Norwegian Heart failure Registry. Gender differences among Norwegian patients with heart failure. Int J Cardiol 2011; 146: 354-8.

10. Deswal A, Bozkurt B. Comparison of morbidity in women versus men with heart failure and preserved ejection fraction. Am J Cardiol 2006; 97: 1228-31.

11. Lam CS, Carson PE, Anand IS, Rector TS, Kuszkowski M, Komajda M, et al. Sex differences in clinical characteristics and outcomes in elderly patients with heart failure and preserved ejection fraction: the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ Heart Fail 2012; 5: 571-8.

12. Regitz-Zagrosek V, Lehmkuhl E. Heart failure and its treatment in women. Role of hypertension, diabetes, and estrogen. Herz 2005; 30: 356-67.

13. Farmakis D, Simitsis P, Bistola V, Tripodiades F, Ikonomidis I, Katranos S, et al. Acute heart failure with mid-range left ventricular ejection fraction: clinical profile, in-hospital management, and short-term outcomes. Clin Res Cardiol 2017; 108: 259-68.

14. Lam CS, Solomon SD. The middle child in heart failure: heart failure with mid-range ejection fraction (40-50%). Eur J Heart Fail 2014; 16: 1049-55.

15. Özek B, Özek E, Çeçik O, Çiç D, Doğan V, Tekinalp M, et al. Rationale, Design, and Methodology of the APOLLON trial: A comprehensive, observational registry of heart failure with midrange and preserved ejection fraction. Anatol J Cardiol 2018; 19: 311-8.

16. Özbek B, Özbek E, Ağuş HZ, Tekinalp M, Kahraman S, Çiç D, et al. Patients with HFpEF and HFmrEF have different clinical characteristics in Turkey: A multicenter observational study. Eur J Intern Med 2018; pii: S0953-6205(18)30446-1.

17. Oktay AA, Rich JD, Shah SJ. The emerging epidemic of heart failure with preserved ejection fraction. Curr Heart Fail Rep 2013; 10: 401-10.

18. Koh AS, Tay WT, Teng THK, Vedin O, Benson L, Dahlstrom U, et al. A comprehensive population-based characterization of heart failure with mid-range ejection fraction. Eur J Heart Fail 2017; 19: 1624-34.

19. Borlaug BA, Redfield MM. Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation 2011; 123: 2006-13.

20. Duca F, Zotter-Tufaro C, Kammerlander AA, Aschauer S, Binder C, Mascherbauer J, et al. Gender-related differences in heart failure with preserved ejection fraction. Sci Rep 2018; 8: 1080.

21. Gori M, Lam CS, Gupta DK, Santos AB, Cheng S, Shah AM, et al.; PARAMOUNT Investigators. Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail 2014; 16: 535-42.

22. Douglas PS, Katz SE, Weinberg EO, Chen MH, Bishop SP, Lorell BH. Hypertrophic remodeling: gender differences in the early response to left ventricular pressure overload. J Am Coll Cardiol 1998; 32: 1118-25.

23. Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation 2009; 112: 2254-62.

24. Scantlebury DC, Borlaug BA. Why are women more likely than men to develop heart failure with preserved ejection fraction? Curr Opin Cardiol 2011; 26: 562-8.

25. Webb J, Draper J, Fovargue L, Sieniewicz B, Gould J, Claridge S, et al. Is heart failure with mid range ejection fraction (HFmrEF) a distinct clinical entity or an overlap group? Int J Cardiol Heart Vasc 2018; 21: 1-6.

26. Pascual-Figal DA, Ferrero-Gregori A, Gomez-Otero I, Vazquez R, Delgado-Jimenez J, Alvarez-Garcia J, et al. Mid-range left ventricular ejection fraction: Clinical profile and cause of death in ambulatory patients with chronic heart failure. Int J Cardiol 2017; 240: 265-70.

27. Lauritsen J, Gustafsson F, Abdulla J. Characteristics and long-term prognosis of patients with heart failure with mid-range ejection fraction compared with reduced and preserved ejection fraction: a systematic review and meta-analysis. ESC Heart Fail 2018; 5: 685-94.

28. Cheng RK, Cox M, Neely ML, Heidenreich PA, Bhatt DL, Eapen ZJ, et al. Outcomes in patients with heart failure with preserved, borderline, and reduced ejection fraction in the Medicare population. Am Heart J 2014; 168: 721-30.

29. Kapoor JR, Kapoor R, Ju C, Heidenreich PA, Eapen ZJ, Hernandez AF, et al. Precipitating Clinical Factors, Heart Failure Characterization, and Outcomes in Patients Hospitalized With Heart Failure With Reduced, Borderline, and Preserved Ejection Fraction. JACC Heart Fail 2016; 4: 464-72.

30. Mehta PA, Cowie MR. Gender and heart failure: a population perspective. Heart 2006; 92 Suppl 3: iii14-8.

31. Stein GY, Ben-Gal T, Kremer A, Bentall T, Alon D, Korenfeld R, et al. Gender-related differences in hospitalized heart failure patients. Eur J Heart Fail 2013; 15: 734-41.