Correlation of oxidative stress markers and semen parameters with the outcome of in vitro fertilization

Lidija Tulić1,2, Ivan Tulić1,2, Marijana Ćurčić1, Jelena Stojnić1,2, Zorica Bulat1, Isidora Protić1
1Clinical Center of Serbia, Gynecology and Obstetrics Institute, Department of In Vitro Fertilization, Belgrade, Serbia; 2University of Belgrade, Faculty of Medicine, Gynecology and Obstetrics, Belgrade, Serbia; 3University of Belgrade, Faculty of Pharmacy, Akademik Danilo Soldatović Department of Toxicology, Belgrade, Serbia

INTRODUCTION

Approximately 15% of couples of reproductive age have problems with infertility, and half of the cases are attributed to the male factor, while one of the mechanisms proposed for idiopathic male infertility is oxidative stress [1]. The diagnosis of male infertility is based on analysis of semen parameters: concentration, motility, and morphology of spermatozoa in the ejaculate.

Sperm cells are the first cells that are reported to be susceptible to oxidative damage. In the article printed in 1943, MacLeod [2] confirmed the rapid loss of sperm motility when incubated in medium with increased concentration of oxygen. Recent studies have also found an increase in reactive oxidative species (ROS) levels in 30–80% of fertile men [3, 4]. ROS are natural products of cellular metabolism, that at physiological concentrations are the essential requirements for the spermatozoa in the processes that lead to successful fertilization: ROS trigger sperm hyperactivation and capacitation [5]. Physiological oxidative conditions are necessary for the sperm maturation, binding to the zona pellucida, acrosomal reaction, and subsequent fusion of sperm and oocytes [6, 7]. That indicates that ROS itself has no adverse effect, except when the levels are elevated. Available data on the impact of oxidative stress on sperm are largely based on measuring the levels of malondialdehyde (MDA) in semen. Since ROS have both physiological and pathological functions, the human body has developed a defense system to maintain its concentration in a certain range. Due to the size and small volume of the cytoplasm, as well as the low concentrations of the enzyme cleaners, sperm has limited antioxidant defense properties [8]. Antioxidant profile in the blood in relation to the antioxidant profile and quality of spermatozoa is less investigated. Correlation between superoxide dismutase (SOD) levels in the blood and sperm number, as well as glutathione levels and sperm progressive motility, suggests that these parameters may be valuable biochemical markers in assessing reproductive and functional capacity of sperm [8].

Most of the studies examined ROS parameters in semen; there are only few studies that analyzed oxidative stress parameters in serum, or both in seminal plasma and serum. Serum oxidative stress markers as well as antioxidant profile showed correlation to sperm parameters, showing that serum can be a valuable tool in evaluation of oxidative stress in men [8–11].

The aim of this study was to examine the association between oxidative stress parameters, MDA, SOD, and -SH groups serum levels in males with semen parameters, as well as the influence of different sperm parameters and outcome of in vitro fertilization (IVF).
Sperm parameters and oxidative stress

METHODS

Study subjects and sample collection

The prospective clinical study was conducted at the Clinic of Gynecology and Obstetrics, Clinical Center of Serbia. We recruited 52 male patients, admitted for fertility treatment. All investigated patients agreed to participate in the study and signed an informed consent for all the undertaken procedures. The study was approved by the Ethics Committee of the Faculty of Medicine, University of Belgrade. Inclusion criteria were age 24–45 years, body mass index 18–30 kg/m², no chronic illness, radiotherapy or chemotherapy. Patients with azoospermia were excluded from the study. Female partners were aged 18–40 years, body mass index 18–30 kg/m², with regular menstrual cycles from 25–32 days, without any medical disease or endometriosis stage III and IV. Infertility cause was categorized as male and unknown. The protocols of stimulation were determined individually. After ovarian stimulation and oocyte retrieval, methods of insemination were IVF, intracytoplasmic sperm injection, or a combined method. In assessing the quality of embryos, the Istanbul consensus clinical embryologists’ criteria were used as the reference frame [12]. Embryo transfer was performed transcervically on day two or three after the oocyte retrieval. Pregnancy rate was calculated per embryo transfer. Pregnancy was diagnosed by positive serum β-hCG (> 50 IU/ml) 14 days after the embryo transfer.

Semen was obtained by masturbation technique after 48–72 hours of sexual abstinence. Samples were collected into sterile containers for immediate transportation to the laboratory. All semen samples were evaluated in the same laboratory. After liquefaction at 37°C for 30 min, routine semen analysis (liquefaction time, volume, pH, viscosity, sperm count, motility, and morphology) was carried out after liquefaction, according to the World Health Organization guidelines [13]. Samples were categorized based on the sperm count into normozoospermic and oligozoospermic, and based on sperm motility into normozoospermic and asthenozoospermic. Similarly, based on the sperm morphology, they were categorized as normal and teratozoospermic for analysis purposes. Based on semen analysis we divided patients into two groups: those with normal semen analysis (normozoospermia) and those with pathological sperm finding. The second group was divided into three groups: oligozoospermic, asthenozoospermic and teratozoospermic group.

Blood samples for oxidative stress parameters were obtained from each patient prior to stimulation commencement in the female partner. After separation, the serum/plasma was frozen and stored at a temperature of -70°C. After incomplete defrosting, preparation of the serum was carried out by homogenization and centrifugation. The following parameters of oxidative stress groups were determined as described in detail in our previous study [14]: the concentrations of MDA, the activity of total SOD, and the concentration of total sulfhydryl (-SH).

Statistical analysis

For statistical analysis of the obtained data, the Statistical Package for the Social Sciences Version 22.0. (IBM Corp., Armonk, NY, USA) was used and differences were considered statistically significant at a probability level less than 0.05 for all tests. Results were presented as arithmetic mean and, ± standard deviation for variables with normal distribution and as median and interquartile range for other variables. Categorical variables are presented as relative or absolute frequency. Testing of distribution was carried out by Kolmogorov–Smirnov analysis. Comparison of the mean values of independent groups of data was performed by Student’s t test and ANOVA analysis with Tukey’s post hoc test for the differences between subgroups. For parameters without normal distribution, a test of significance between groups was performed using the Mann–Whitney test or Kruskal–Wallis test with post hoc Mann–Whitney test. Comparison of two dependent populations was performed by the Wilcoxon signed-rank test for data without normal distribution. Analysis of categorical values was performed using the χ² test.

RESULTS

Oxidative stress parameters: MDA, SOD, and -SH groups in males’ serum and the outcome of IVF in female partner: number of fertilized oocytes, fertilization, and pregnancy rate are given in Table 1. In 52 men, we examined changes in the OS parameters and antioxidant protection depending on the disorder in sperm parameters and we compared them to normal semen analysis. No significant difference in the examined parameters between the groups was found, although the value of MDA were slightly lower in the group with normozoospermia compared to pathological findings (0.52 vs. 0.57, p = 0.254), while the value of SOD (26.18 vs. 24.12, p = 0.348) and -SH groups (0.46 vs. 0.43, p = 0.138) were not significantly different.

Parameters	Values
SOD (U/L)	25.17 (22.4–28.82)
MDA (μmol/L)	0.56 (0.48–0.65)
-SH groups (mmol/L)	0.44 (0.39–0.52)
Number of fertilized oocytes (n)	2.5 (1–6)
Fertilization (%)	54.5 (33.3–81.8)
Pregnancy rate (%)	41

SOD – superoxide dismutase; MDA – malondialdehyde; -SH – sulfhydryl groups; The median (25th and 75th percentile) are shown; the statistical analysis was made using the Mann–Whitney test.

Table 2. Oxidative stress parameters in men with normozoospermia and pathological sperm finding

Parameters	Normozoospermia n = 30	Pathological finding n = 20	p
SOD	26.18 (22.63–28.89)	24.12 (22.37–29.08)	0.348
MDA	0.52 (0.47–0.64)	0.57 (0.51–0.65)	0.254
-SH groups	0.46 (0.41–0.53)	0.43 (0.38–0.47)	0.138

SOD – superoxide dismutase; MDA – malondialdehyde; -SH – sulfhydryl groups; The median (25th and 75th percentile) are shown; the statistical analysis was made using the Mann–Whitney test.
Table 3. Oxidative stress parameters in serum of male partners with normozoospermia and oligozoospermia. asthenozoospermia and teratozoospermia.

Parameters	Normozoospermic n = 30	Oligozoospermic n = 17	Asthenozoospermic n = 16	Teratozoospermic n = 12
SOD	26.18 (22.63–28.89)	24.12 (22.36–29.08)	23.9 (22.4–29.3)	26 (023.43–29.65)
MDA	0.52 (0.47–0.64)	0.57 (0.51–0.65)	0.58 (0.52–0.65)	0.58 (0.51–0.64)
-SH groups	0.46 (0.41–0.53)	0.43 (0.38–0.47)	0.41 (0.34–0.46)	1.38 (1.28–1.46)

SOD – superoxide dismutase; MDA – malondialdehyde; -SH – sulfhydryl groups; the median (25th and 75th percentile) are shown; the statistical analysis was made using the Mann–Whitney test.

Table 4. Number of fertilized oocytes and fertilization rate in female partners of men with normozoospermia and all others sperm parameters.

Parameters	Normozoospermia n = 30	Pathological finding n = 20	p
Fertilized oocytes (n)	2.5 (1.8–5.6)	2.5 (1–6)	0.955
Fertilization (%)	68	50	0.102

vs. 12.43, p = 0.138) were slightly higher in the group with normozoospermia (Table 2). As shown in Table 3, when we compared the individual findings of normozoospermia with findings of oligozoospermia, teratozoospermia, and asthenozoospermia, there was no significant difference. We also compared the number of fertilized oocytes, fertilization rates, and outcome of pregnancies in female partners of examined male partners, depending on sperm parameters. A number of fertilized oocytes did not differ between groups. The fertilization rate was higher in male partners with normozoospermia, compared to abnormal semen analysis (68% vs. 50%, p = 0.102) (Table 4), as well as the pregnancy rate (44.1% vs. 40%, p = 0.756). In the group with normozoospermia, female partners who conceived had delivered a healthy child in 83%, comparing with 62.5% in female partners of men with all other sperm parameters, which was significantly lower (p = 0.034). When we separated group with disorder in sperm parameters, there was no significant difference concerning the number of fertilized oocyte (p = 0.864), as well as fertilization rate (p = 0.475) between normozoospermia and oligozoospermia. In female partners of men with asthenozoospermia and teratozoospermia there was a significantly lower fertilization rate comparing to normozoospermia group (p = 0.034) (Table 5). The group with oligozoospermia had a significantly lower delivery rate (p = 0.013).

DISCUSSION

In our study, we did not find significant difference in the examined changes in oxidative stress parameters and antioxidant protection between men with normal semen analysis and those with the disorder in sperm parameters. However, the value of MDA was higher in the group with pathological sperm finding, while the value of SOD and -SH groups were higher in the group with normozoospermia. When we compared oligozoospermia, teratozoospermia, and asthenozoospermia to normozoospermia group, results were similar. These trends in investigated parameters values are in accordance with some other studies [8, 9, 15]. Huang et al. [15] found higher concentrations of MDA in men with asthenozoospermia and oligoasthenozoospermia compared to normozoospermic men, showing similar finding compared to our study. Low levels of MDA in the seminal plasma were associated with an increased progressive motility of sperm and a positive correlation between elevated levels of MDA and abnormal morphology of sperm were found, which is consistent with the findings of other authors [16]. Different impairments of sperm cells as well as male infertility can be caused by increased lipid peroxidation. MDA is an indicator of the lipid peroxidation and may be a diagnostic tool in infertility, as well as a predictor of Assisted Reproductive Technology procedures success [17].

In results of studies that are comparable to our, correlation between the level of SOD in the serum and the sperm number was found in patients with pathological findings [8]. This group of researchers also found a significant correlation between the level of glutathione in the serum, and sperm progressive motility between patients with infertility and normal controls. In the study by Benedetti et al. [9] that estimated antioxidants profile in the plasma of fertile and infertile patients, lower antioxidants were found in infertile males, positively correlated with the concentration, motility, and morphology of spermatozoa. In the paper by Mahanta et al. [18] the level of lipid peroxides in the blood of the infertile group was significantly higher compared to the fertile one, while the activity of SOD and glutathione peroxidase in the blood was significantly lower compared to fertile men. Some studies have observed no difference in glutathione between fertile and infertile males [19], while others have observed significantly reduced glutathione.

Table 5. Number of fertilized oocytes and fertilization rate in female partners of men with normozoospermia and oligozoospermia, asthenozoospermia and teratozoospermia.

Parameters	Normozoospermic n = 30	Oligozoospermic n = 17	Asthenozoospermic n = 16	Teratozoospermic n = 12
Fertilized Oocytes	2.5 (1.8–5.6)	2.5 (1–6)	2.5 (1–5.8)	2 (1–3)
Fertilization %	68 (39.1–100)	50 (25.2–74.6)	35.7 (25–68.6)	50 (25–75)

The median (25th and 75th percentile) are shown; the comparison was made using the Mann–Whitney test.
levels in the seminal plasma of the infertile men as compared to fertile ones [20, 21].

Although the analysis of sperm a routine procedure, we do not get information about the functional capacity of sperm, consequently, no semen parameter by itself can predict the success possibility of the Assisted Reproductive Technology procedures. However, the percentage of sperm with normal morphology is in positive correlation with fertilization and pregnancy rates in IVF [22, 23]. We observed significantly lower fertilization rate in patients with asthenozoospermia compared to a normal finding. Fertilization rates significantly vary in the findings of normospermia compared to pathological semen findings and some studies found no association [24]. In patients with severe teratospermia, oligo- or azoospermia, the DNA fragmentation and the degree of aneuploidies of sperm were significantly higher, as well as a higher percentage of aneuploidy in embryos was found [25, 26, 27]. Even in these findings, fertilization can occur, but the rate of miscarriages is significantly higher [28]. However, there is a wide variation among samples from one individual and therefore more sophisticated sperm function tests, or selection tests are needed for improving the outcome of IVF procedures [29].

The present study has some limitations; it had a small sample. In addition, in the future studies, we are planning to include information about lifestyle habits, such as eating habits, alcohol intake, smoking, use of supplements etc. Beside assessment of oxidative stress status from serum, sperm data would be beneficial too.

CONCLUSION

Our results suggest that abnormal semen parameters affect the outcome of IVF. Fertilization rate was lower in the group with asthenozoospermia, while the delivery rate is lower in oligozoospermia, asthenozoospermia, and teratozoospermia. However, no significant correlation between oxidative stress markers and semen parameters was found.

ACKNOWLEDGMENT

Project III46009, Ministry of Education, Science and Technological development of the Republic of Serbia.

Conflict of interest: None declared.

REFERENCES

1. Ahmed T. Alahmar. Role of Oxidative Stress in Male Infertility: An Updated Review. J Hum Reprod Sci. 2019;12(1):4–18.
2. MacLeod J. The role of oxygen in the metabolism and motility of human spermatozoa. Am J Physiol. 1942;138(3):512–8.
3. Agarwal A, Parekh N, Selvam MKP, Henkel R, Shah R, Homa ST, et al. Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility. World J Mens Health. 2019;37(3):296–312.
4. Bish S, Faig M, Tolahunase M, Dada R. Oxidative stress and male infertility. Nat Rev. 2017;14(8):470–85.
5. de Laminarde E, Gagnon C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic Biol Med. 1993;14(2):157–66.
6. de Laminarde E, Jiang H, Zini A, Kodama H, Gagnon C. Reactive oxygen species and sperm physiology. Rev Reprod. 1997;2(1):48–54.
7. Griveau JF, Le Lannou D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20(2):61–9.
8. Shamsi MB, Venkatesh S, Kumar R, Gupta NP, Malhotra N, Singh N, et al. Antioxidant levels in blood and seminal plasma and their impact on sperm parameters in infertile men. Indian J Biochem Biophys. 2010;47(1):38–43.
9. Benedetti S, Tagliamonte M, Catalani S. Differences in blood and semen oxidative status in fertile and infertile men, and their relationship with sperm quality. Reprod Biomed Online. 2012;25(3):300–6.
10. Chinyere Nsonwu-Anyanwu A, Raymond Ekong E, Jeremiah Offor S, Francis Awuswu O, Chukwuma Oji I, Idongho Umoh E, et al. Heavy metals, biomarkers of oxidative stress and changes in sperm function: A case-control study. Int J Reprod Biomed (Yazd). 2019;5(173).
11. Dutta S, Majzoub A, Agarwal A. Oxidative stress and sperm function: A systematic review on evaluation and management. Arab J Urol. 2019;17(2):87–97.
12. Alpha Scientists in Reproductive Medicine and ESHRE. Special Interest Group of Embryology. The Istanbul Consensus workshop of embryo assessment; proceedings of an expert meeting. Hum Reprod, 2011:1–14.
13. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization, 2010.
patients with severe teratozoospermia. Reprod Biomed Online. 2011;22(2):148–54.

26. Mokánszki A, Molnár Z, Ujfalusi A, Balogh E, Kassai Bazsáné Z, Varga A, et al. Correlation study between sperm concentration, hyaluronic acid-binding capacity and sperm aneuploidy in Hungarian patients. Reprod Biomed Online. 2012;25(6):620–6.

27. Kahraman S, Findikli N, Birick A, Oncu N, Ogur C, Sertyel S, et al. Preliminary FISH studies on spermatozoa and embryos in patients with variable degrees of teratozoospermia and a history of poor prognosis. Reprod Biomed Online. 2006;12(6):752–61.

28. Dul EC, van Echten-Arends J, Groen H, Dijkhuizen T, Land JA, van Ravenswaaij-Arts CM. Chromosomal abnormalities in azoospermic and non-azoospermic infertile men: numbers needed to be screened to prevent adverse pregnancy outcomes. Hum Reprod. 2012;27(9):2850–6.

29. Sakkas D, Ramalingam M, Garrido N, Barratt CLR. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum Reprod Update. 2015;21(6):711–26.

САЖЕТАК

Увод/Циљ

Циљ рада била је процена утицаја параметара оксидативног стреса на број, покретљивост и морфологију сперматозоида, као и утицаја различитих параметара спермограма на исход поступка in vitro фертилизације, број фертилисаних ооцита, стопе фертилизације и порођаја.

Методе

Код 52 мушка партнера одређиване су вредности супероксид-дисмутазе, малондиалдехида и сулфидрила (-SH група) у серуму, пре започињања поступка in vitro фертилизације. Узорци семена сакупљани су после два-три дана аспирирана.

Резултати

Болесници су били подељени у две групе: група са нормозооспермијом и група са патолошким налазом спермограма. Друга група је затим подељена на подгрупе: олигозооспермија, астенозооспермија и тератозооспермија. Активност супероксид-дисмутазе била је нижа, док су вредности малондиалдехида и -SH група биле више у групама са поремећеним параметрима спермограма, али не статистички значајно. Стопа фертилизације била је значајно нижа у групи са астенозооспермијом и тератозооспермијом (p = 0,034), а такође и стопа порођаја (p = 0,020). Група са олигозооспермијом имала је значајно нижу стопу порођаја (p = 0,013).

Закључак

У овој студији пронађене су више стопе фертилизације и порођаја у групи са нормозооспермијом, али није било значајне корелације између параметара оксидативног стреса и спермограма.

Кључне речи: in vitro фертилизација; оксидативни стрес; параметри спермограма