Gluon evolution at low x and the longitudinal structure function

Ranjita Deka1, D.K. Choudhury2

1Department of Physics, Pragjyotish College, Guwahati-781009, India.
2Department of Physics, Gauhati University, Guwahati-781014, India.

June 15, 2021

Abstract

We obtain an approximate analytical form of the gluon distribution using the GLAP equation with a factorization ansatz, and test its validity by comparing it with that of Gluck, Reya and Vogt at low x regime. We also present calculations of the longitudinal structure functions.

1 Introduction

In deep inelastic scattering we can directly study the structure of the proton, particularly the parton distributions $[1, 2, 3]$. The perturbative QCD gives the Q^2 evolution and asymptotic limits of the structure function. More recently, the study of structure functions at low x $[4, 5, 6, 7, 8, 9, 10, 11]$ has become topical in view of the high energy collider like HERA $[12, 13]$ where previously unexplored small x regime is being reached. In the small x regime gluons are expected to be directly measurable. This expectation has led to several approximate phenomenological schemes $[14, 15, 16, 17, 18]$. Specifically measurement of longitudinal structure function F_L has long been advocated $[1, 19, 20, 21, 22]$ as a direct probe of the gluon density at small x. There is even helpful suggestion $[14, 15, 21]$ that precise measurement of F_L should indeed be possible at HERA regime $x \leq 10^{-2}$ and $Q^2 \sim 10 \sim 100 GeV^2$.

The present paper aims at obtaining an approximate analytical form of gluon distribution using GLAP equations [23, 24, 25]. An additive assumption on the way to this is the factorization of the x and $t(t = lnQ^2/\Lambda^2)$ dependence of the gluon density. We test the validity of the assumption by comparing with the leading gluon density of Gluck, Reya and Vogt (LO-GRV) [26]. We also use our results to calculate $F_L(x, Q^2)$ using its relation with gluons [14, 15] within the range of validity of our assumption and compare with those of collinear [20] and K_T-factorisation [22] approaches.

2 x and t evolution of the gluons

We start our derivation, taking only the leading term of the gluonic kernel of the GLAP equations [23, 24, 25]

$$\frac{\partial G(x, t)}{\partial t} = \frac{3\alpha_s(t)}{\pi} \left[\left\{ \left(\frac{11}{12} - \frac{N_f}{18} \right) + \ln(1 - x) \right\} G(x, t) + \int_x^1 dx \left(\frac{zG(x, t)}{1 - z} - \frac{G(x, t)}{1 - z} \right) \right]$$

(1)

where $G(x, t) = xg(x, t), \alpha_s(Q^2) = \frac{12\pi}{33 - 2N_f} \log(Q^2/\Lambda^2)$ and $N_f =$ no. of flavours. Here we have neglected the contribution of the singlet structure function as it is expected to be small in the low x regime. In order to facilitate our analytical solution, let us assume that the x and t dependence of the structure function are factorizable [27, 28]

$$G(x, t) = g(x)h(t)$$

(2)

with the condition

$$g(x) = G(x, t_0)$$

(3)

so that

$$g(x)\frac{\partial h(t)}{\partial t} = \frac{3\alpha_s(t)}{\pi} \left[\left\{ \left(\frac{11}{12} - \frac{N_f}{18} \right) + \ln(1 - x) \right\} g(x)h(t) + \int_x^1 dz \left(\frac{zg(x/z) - g(x)}{1 - z} \right) h(t) \right]$$

(4)
Dividing by $g(x)$ throughout we have

\[
\frac{\partial h(t)}{\partial t} = \frac{3\alpha_s(t)h(t)}{\pi} \left\{ \left(\frac{11}{12} - \frac{N_f}{18} \right) + \ln(1-x) \right\} + \int_x^1 dz \left\{ z g(x/z) - g(x) \over (1-z) g(x) \right\} + \left(z (1-z) + \frac{1-z}{z} \right) g(x/z) g(x) \right\}
\]

or

\[
\frac{\partial h(t)}{h(t)} = \frac{3\alpha_s(t)\partial t}{\pi} \left\{ \left(\frac{11}{12} - \frac{N_f}{18} \right) + \ln(1-x) \right\} + I_g(x) \]

where

\[
I_g(x) = \int_x^1 dz \left\{ z g(x/z) - g(x) \over (1-z) g(x) \right\} + \left(z (1-z) + \frac{1-z}{z} \right) g(x/z) g(x) \right\}.
\]

using eq.(2) and solving eq.(6) we find

\[
\ln h(t) = \ln t \left[\frac{36}{25} \left\{ \left(\frac{11}{12} - \frac{N_f}{18} \right) + \ln(1-x) + I_g(x) \right\} \right]
\]

or

\[
h(t) = t^{36/25} \left\{ \left(\frac{11}{12} - \frac{N_f}{18} \right) + \ln(1-x) + I_g(x) \right\}.
\]

Therefore,

\[
G(x, t) = G(x, t_0) \left(\frac{t}{t_0} \right)^{36/25} \left\{ \left(\frac{11}{12} - \frac{N_f}{18} \right) + \ln(1-x) + I_g(x) \right\}
\]

where

\[
I_g(x) = \int_x^1 dz \left[\frac{z G(x/z, t_0) - G(x, t_0)}{(1-z) G(x, t_0)} + \left(z (1-z) + \frac{1-z}{z} \right) {G(x/z, t_0) \over G(x, t_0)} \right].
\]

Knowing the input parametrisation of the gluons and evaluating $I_g(x)$ numerically, we can find the gluon density for various x and t.

using eq.(10). We note that in the limit $x \to 0$, eq.(10) has the universal limiting behaviour

$$G(x, t) = G(x, t_0) \left(\frac{t}{t_0} \right)^{\frac{36}{25} \ln(1/x)}$$

(12)

to be compared with the standard double leading logarithmic expectations [29, 30]

$$G(x, t) \sim \exp \left[\ln \frac{1}{x} \ln t \right]^\frac{1}{2}$$

(13)

which is not factorizable in x and t, while log $G(x, t)$ is factorizable.

3 The longitudinal structure function $F_L(x, Q^2)$

Measurement of $F_L(x, Q^2)$ at low x have been used to extract the gluon density [14, 15]

$$xG(x, Q^2) = \frac{3}{5} \times 5.8 \left[\frac{3\pi}{4\alpha_s} F_L(0.417x, Q^2) - \frac{1}{1.97} F_2(0.75x, Q^2) \right]$$

(14)

for four active flavours. At low values of x, the gluon contribution dominates and to a fair approximation,

$$F_L(ax, Q^2) \approx \frac{2\alpha_s}{3\pi} \frac{1}{1.74} xG(x, Q^2)$$

(15)

Here α_s is the QCD coupling strength and a is a parameter whose value is 0.417 for F_L [13]. Using eq.(10) in eq.(15) we can thus obtain the longitudinal structure function. The behaviour of F_L is known in $O(\alpha_s^2)$ [20] in collinear approach and was also studied in $O(\alpha_s)$ within K_T factorization scheme in [22]. In our analysis, we compare our prediction for F_L with those of [20] and [22] and study their differences.
4 Results and conclusions

The factorization assumption eq.(2) is in general not valid in theoretical framework describing the scaling violation in QCD i.e. in LO Altarelli-Parisi equations. Even in DLA only log $G(x, t)$ is factorizable in x and t. We have therefore attempted to see how the predictions with this assumption compare with those of gluon distribution which does not have such an assumption, like LO-GRV [29]. This will enable us to find the kinematical region of its approximate validity.

In Fig. 1(a-l) we show the prediction of eq.(10)(curve marked 1) with factorization ansatz eq.(2) and compare with LO-GRV [26](curve marked 2) for representative Q^2 values $4, 5, 6, 8, 5, 10, 20, 40, 80, 100, 160, 1600, 10^4$, and 10^5 GeV2 and $10^{-4} < x < 10^{-1}$ starting with the evolution at $Q^2_0 = 4$ GeV2. These figures show the following feature for smaller x range ($x < 10^{-2}$) : at fixed x,the difference between the two increases as Q^2 is increased. As an illustration, at $x \sim 10^{-2}$ the difference increases from $\sim 0.1\%$ to 20% as Q^2 increases from 4.5 to 160 GeV2. For each Q^2, there is a cross-over point for both the curves, where both the predictions are numerically equal. The cross-over point shifts to lower x as Q^2 increases. Approximately, such cross-over occurs between $10^{-2} < x < 10^{-1}$ for $Q^2 \sim 4.5 - 160$ GeV2 and between $10^{-3} < x < 10^{-2}$ for $Q^2 \sim 160 - 10^5$ GeV2. We can therefore find the limited range of x and Q^2 where our approximate expression for gluon density differs from LO-GRV by not more than 20% as shown in Fig.2.

In Fig.3 we compare our result for F_L with those obtained with collinear [20] and K_T factorization approach [22], at $Q^2 = 20$ GeV2. Our result is found to be higher than those of [20] and [22]. As an illustration at $x \sim 10^{-2}$ our result differs from [20] by 33%,67%, and 66%, corresponding to full $F_L(O(\alpha_s^3))$, $O(\alpha_s)$ and $O(\alpha_s^2)$ respectively. On the other hand it differs by 98% with [22]. The difference increases as x decreases. However, as the cross-over of the gluon distribution eq.(10) with LO-GRV occurs in the range $x \sim 10^{-1} - 10^{-2}$ for $Q^2 \sim 20$ GeV2, the prediction may not be reliable for $x < 10^{-2}$. It however calls for quantitative study of $O(\alpha_s^2)$ and quark contributions within the present approach.

To conclude we have shown that for a limited range of x and Q^2, the gluon density eq.(10) with factorization is numerically equivalent to LO-GRV.
We have then predicted the longitudinal structure function F_L within that range and compared with those obtained in other approaches [20, 22]. Our result is found to be higher than those of [20, 22]. It will be interesting to see how our prediction for F_L compares with the results of forthcoming experiments at HERA.

Acknowledgements.

Both the authors would like to thank Dr. A. Saikia for useful discussions on gluons. One of the authors (R.D) is grateful to A.M. Cooper-Sarkar for giving suggestions on longitudinal structure functions.
References

[1] E.Reya: Phys. Rep. 69 (1981) 195 and references therein.
[2] G. Altarelli: Phys. Rep , 81 (1982) 1.
[3] R.G. Roberts: "The structure of the Proton". Cambridge University Press 1990.
[4] ZEUS Collab.: DESY 94-143; DESY 94-192.
[5] A.J. Askew, J. Kwiecinski, A.D. Martin, P.J. Sutton: Mod. Phys. Lett., A 8 (1993) 3813.
[6] J. Kwiecinski, A.D. Martin, P.J. Sutton: Phys. Rev. D 44 (1991) 2640.
[7] Violette Brisson: Glasgow, July 1994, DESY- H1 -09/94-385.
[8] A.D. Martin, R.G. Roberts, W.J. Stirling: Mod. Phys. Lett. A 20 & 21 (1995) 2885.
[9] M. Gluck, E. Reya, A. Vogt: Phys. Lett., B 306 (1993) 391.
[10] R.D. Ball, S. Forte: Phys. Lett. B 335 (1994) 77.
[11] R.D. Ball, S. Forte: Phys. Lett. B 336 (1994) 77.
[12] ZEUS Collab: Phys. Lett. B 316 (1993) 412.
[13] H1 Collab.: Nucl. Phys. B 407 (1993) 515, DESY 95-081/95-086.
[14] A.M Cooper-Sarkar et al.: Z. Phys. C39 (1988) 281.
[15] A.M. Cooper-Sarkar, R.C.E. Devenish, M. Lancaster: In Phys. at HERA vol.1, ed. Y.Buchmuller, G.Ingelman (DESY 1992) p. 155.
[16] K. Prytz: Phys. Lett. B 311 (1993) 286.
[17] K. Prytz: Phys. Lett. B 332 (1994) 393.
[18] M. Lancaster: Talk at the 27th International Conference on High Energy Physics, Glasgow, July 1994, DESY 94-204.
[19] L.H. Orr, W.J. Stirling: Phys. Rev. Lett. 66 (1991) 1673.
[20] E.B. Zijlstra, W.L van Neerven: Nucl. Phys. B 383 (1992) 552.
[21] E.L. Berger, R. Meng: Phys. Lett. B 304 (1993) 318.
[22] J. Blumlein: Nucl. Phys. B Proc.Suppl. 39 BC (1995) 22.
[23] G. Altarelli, G. Parisi: Nucl. Phys. B 126 (1977) 298.
[24] L.F. Abbott, W.B. Atwood, R.N. Barnett: Phys. Rev. D 22 (1980) 882.
[25] V.N. Gribov, L.N. Lipatov: Sov. J. Nucl. Phys. 15 (1972) 438.
[26] M. Gluck, E. Reya, A. Vogt: Z. Phys. C 53 (1992) 127.
[27] A. Saikia: Private Communication.
[28] D.K. Choudhury, A. Saikia: Pramana J. Phys. 33 (1989) 359.
[29] A.De. Rujula, S.L. Glashow, H.D. Politzer, S.B. Trieman, F. Wilczek, A. Zee, Phys. Rev. D 10 (1974) 1649.
[30] A.D. Martin, R.G. Roberts, W.J. Stirling: Phys. Rev. D 50 (1994) 6734.