Technological Features of Well Equipment Work under Production of Oils with Increased and High Viscosity

T N Ivanova

1Tchaikovsky branch of Federal State Budgetary Educational Institution of Higher Education “Perm National Research Polytechnic University”, 617764, Lenina str, 73, Tchaikovsky, Russia, Federal State Budgetary Educational Institution of Higher Education “Udmurt State University”, 426064, Universitetskaya str 7, Izhevsk, Russia

E-mail: tatnic2013@yandex.ru

Abstract. Fields with hard-to-recover reserves include formations with small oil-saturated thickness, low-permeable reservoirs and formations with great depth of occurrence. Oil recovery from these fields is entailed by premature failures of well equipment. To increase technological efficiency of production of high-viscous oils of the well stock equipped with walking beam pumping unit (WBPU) it is proposed to use sucker-rod pump with an external weighting agent. Introduction of this type of pumps will allow increasing the value of minimum load on sucker-rod string during its downward stroke, which will reduce the value of amplitude loads. Additional load, created by external weighting agent, will prevent the rod string from hovering due to high hydrodynamic friction forces caused by the increased and high viscosity of the pumped fluid. The technological efficiency of introducing this pump in wells with WBPU is demonstrated. Calculations made allow us to determine necessary weight of heavy bottom according to viscosity of the produced fluid.

1. Introduction

The most widespread recovery method for high-viscous oils (HVO) is oil production by means of walking beam pumping unit (WBPU) with chain, hydraulic and screw drives for pumping jack. The main advantages include possibility to work with small pump rates (from 1.5 to 2 strokes per minute); increasing of stroke length to 6 m; reduced metal intensity.

In case of of HVO production by means of WBPU the following measures to adapt existing pump equipment to specific conditions are practically used [1-9]: increase in pump submergence below dynamic level; use of valves with increased flow section; selection of pumps according to their fit class (clearance between plunger and cylinder should not be less than 0.12 - 0.17 mm); preliminary calculation and selection of allowable parameters (n x S) of pump operation to prevent from rod hovering; implementation of tubing string with increased diameter (for example replace of 73 mm pipe by the one with 89 mm diameter); use of differential pumps and sinker rods; oil production from tubing annulus; application of downhole electric heaters; application of heating cables; use of chain drives.

When it’s necessary to increase pumping speed, the next methods are applied: increasing of tubing diameter from 73 mm to 89 mm diameter; stepped tubing string from 73 mm to 89 mm; addition of weight to sucker rod string bottom; injection of demulsifier in continuous or periodic mode. Efficiency
of WBPU in case of HVO production is 25% less than in case of recovery of oils with small viscosity [2].

2. Theoretical and practical research
During production of HVO by means of WBPU hydrodynamic friction forces (resistance) occur. These forces reduce the weight of the rod string and lead to a delay in the movement of the string to the lower boundary value during the downward stroke. Hydrodynamic friction forces also exert considerable influence during upward stroke of rod string, increasing the maximum load at rod hanger center (RHC). Thus, the result of the action of these forces is the non-synchronism of the movement of the rod string and the horsehead of walking beam unit.

An increase in the maximum load and a decrease in the minimum load on the rod string in case of well exploitation by means of sucker rod pump units under conditions of increased and high viscosity of oil contribute to an increase in the stress concentration in the pump rods, leading to premature failure of the downhole pump equipment (DPE).

It was established [3, 4] that the growth of the oil viscosity causes decrease in the parallelism of the movement of the horse head and the string of pump rod. Significant alternating loads appear on the rod string. Impact loads reduce the life of the equipment, leading to accidents at the wells and therefore reducing the MTBF and the mean time between overhauls.

To increase the technological efficiency of the production of HVO in the conditions of the Arlanskoye field, it is proposed to use a sucker rod pump with an external weighting agent at the well stock equipped with WBPU. The introduction of this type of pumps will increase the value of the minimum load on the sucker rod string during the downward stroke, thereby reducing the value of the amplitude loads. The additional load created by the external weighting agent will prevent the rod string from hovering due to high hydrodynamic friction forces caused by the increased and high viscosity of the pumped fluid.

This type of pump consists of two plungers of small and large diameters (fig. 1). The plungers are connected to each other and located in the pump cylinder at a distance equal to the length of stroke of the plungers. The two-plunger system forms two chambers of small and large sizes. Standing and travelling valves are installed in a large diameter plunger. The cylinder is installed on tubing by means of a pump sitting nipple. A weighting device in the form of a hollow filter element is located in the lower part of the large plunger and is installed outside the tubing.

![Figure 1. Construction of sucker rod pump with external weight in gagent: 1 – tubing string; 2 – rod string; 3 – cylinder; 4 – plunger of smaller diameter; 5 – plunger of bigger diameter; 6 – travelling valve; 7 – standing valve; 8 – travelling valve case; 9 – holes; 10 – filter weighting agent; 11 – toroidal weighting agents; 12 – resin rings; 13 – seating place; 14 – bushing-scaper; 15 – filter](image-url)
The sucker rod pump with an external weighting agent works the following way. When the plungers move down, excessive pressure is formed in the cavity of the pump cylinder, causing standing valve closing. Then the travelling valve opens and the fluid in the cavity of the large plunger flows upward in the direction of movement of the rod string. When the plungers of the pump move upward, the travelling valve closes due to the pressure difference above and below the valve. The standing valve opens and the liquid, passing through the filter openings, gets into the working cavity of the larger diameter plunger. Such a circulation of the liquid cleans the filter, which plays the role of weighting weight. This weighting agent helps to overcome the forces of hydrodynamic friction during the movement of the plungers of the pump and the string of pump rods down. Reducing the amplitude loads due to increase in minimum load allows to extension of the life of the rod string, thereby increasing the mean time between failures of the downhole pumping equipment and the overhaul period of the well.

In 2017, the main stock of sucker rod pumps of oil-and-gas production department “Arlanneft” was represented by the following types: insert pumps - NB1B-29, NB1B-32, NB1B-44; tubing pumps - NN2B-44, NN2B-57 (designation of Russia).

For wells equipped with WBPU, two versions of design of the sucker rod pump were developed: an assembly with pumps of type NB1B-32+NN2B-44; an assembly with pumps of type NB1B-44+NN2B-57.

Insert pumps NB1B-32 and NB1B-44 are the top component of these units, as they have a smaller diameter than the plungers of tube pumps NN2B-44 and NN2B-57 located in the lower part. The polished rod of the tubing pump is replaced by the one from an insert pump of the same diameter that is unsuitable for further operation. This polished rod is employed in the assembly, giving a possibility to connect both plungers. During attaching this polished rod to the upper plunger, the upper plunger cage from the same pump is used, since it has a thread for connecting to the polished rod. This plunger cage is screwed onto the lower cage of a smaller plunger; polished rod with a larger diameter plunger at the lower end is attached to it. To connect with the rods serving as a weighting agent, the upper cage of the failed pump of the same diameter is also installed in the lower part of the plunger of the tubing pump.

In the assembly NB1B-32+NN2B-44, rods with a diameter of 19 mm and polished rods of 30 mm are used as the weighting agents. Rods with a diameter of 22 mm are not used, since the coupling does not pass through the machined conical seat. On a polished rod, it is necessary to replace the existing M30 thread with an M19 thread. It is necessary to do as the free side of the cage installed on the lower end of the larger plunger has an M19 thread.

To assemble the NB1B-44+NN2B-57 installation kit, it is necessary to prepare the tubing pipe with a length of 5200 mm, inside which the insert pump should be located. This length is specially selected for the size of the insert pump. It is chosen also to ensure the full stroke length and for easy fitting.

The lowering of this assembly inside the well is made the following way. Firstly, a liner made of tubing 2.5" (73 mm) is lowered. To prevent weighted bottom assembly from falling there is a plug at the lower end of the liner. The liner length is determined by the number of rods used for a heavy bottom assembly. Then, using an adapter bushing 2.5" x 2" a filter is screwed, which is also connected to the cylinder of the HH2B-57 tubing pump by means of an adapter bushing 2" x 2.5".

A tubing fitting pipe with a diameter of 73 mm and a length of 300 mm is attached to the pump casing, then an adaptor with a bushing for fastening of a prepared tubing pipe with a length of 5200 mm is installed. The seating nipple OM-73 (d = 89 mm, L = 3400 mm) is lowered, after which the tubing string is lowered. Then, the weighted bottom, the plunger of the NN2B-57 tubing pump, the insert pump NB1B-32, and the rod string are connected. For a heavy bottom assembly, rods with a diameter of 22 mm are used.

For a sucker rod pump with an external weighting agent, the theoretical feed formula considers the difference in the cross-sectional area of the larger and smaller diameter plungers

\[Q_t = 1440 \cdot S \cdot (F_b - F_n) \cdot n \] \hspace{1cm} (1)
where S – length of stroke of polished rod, m; F_b – plunger cross-sectional area of the pump with the larger diameter, m2; F_m – plunger cross-sectional area of the pump with the larger diameter, m2; n – number of strokes of horsehead, min$^{-1}$.

To evaluate the operating efficiency for this type of pumps, theoretical productivity was estimated at minimum, average and maximum work parameters. Thus, for a pump assembly of type NB1B-44 +NN2B-57 (Russia), the theoretical capacity of the pump with a difference in the cross-sectional area of the plungers at 0.0011 m2, with a plunger stroke length of 3 m and a stroke number of 6 min$^{-1}$ will be:

$$Q_t = 1440 \cdot 3 \cdot 0.0011 \cdot 6 = 28.5 \text{ m}^3/\text{day}$$

The results of the calculations for the rest of pump assemblies are demonstrated in table 1.

№	Type of pump assembly	Pump theoretical feed, m3/day		
	Insert pump x Tubing pump	$S \cdot n$ = 3.6	$S \cdot n$ = 10.8	$S \cdot n$ = 18
1	27x29	0.5	1.4	2.3
2	27x32	1.2	3.6	5.9
3	27x44	4.9	14.7	24.6
4	27x57	10.3	30.8	51.3
5	27x68	18.8	56.5	94.1
6	29x32	0.7	2.2	3.7
7	29x44	4.3	12.9	21.6
8	29x57	9.8	29.4	49.0
9	29x68	15.4	46.1	76.9
10	32x44	3.6	10.7	18.6
11	32x57	9.1	27.2	45.4
12	32x68	14.6	43.9	73.1
13	44x57	5.2	17.1	28.5
14	44x68	11.1	33.2	55.3
15	57x68	5.6	16.1	26.7

When oil with increased and high viscosity is produced by means of WBPU, the operation of the entire unit is complicated by the additional load on the sucker rod string due to the action of hydrodynamic friction. During the down stroke the rod string is exposed to hydrodynamic resistance, decreasing its weight to zero [3]. On the contrary, with the reverse stroke of the rods (upstroke), forces of hydrodynamic friction cause the load increase. Such an imbalance in the movement of the horsehead of the walking beam and the rod string leads to a deterioration in the operation of the whole pumping unit.

A decrease in the minimum load and an increase in the maximum load in the sucker rod during the lifting of HVO result in growing of stress amplitudes in the metal of the rods under an asymmetric loading cycle.

The pumps of a special design with an external weighting agent allow reduction of the hydrodynamic resistance during the movement of the rod string as well as increasing of the minimum load. In addition, these pumps help to reduce the amplitude of the loads and avoid the danger of “hovering” of the rod string during the down stroke [2, 3].

The calculation of the friction forces (resistance) of sucker-rod downhole pumps with a external weighting agent differs from the calculation for WBPU. This is explained by the downward movement of a viscous fluid inside the tubing string during the down stroke of the horse head of the walking beam. In WBPU with external weighting agent this factor is eliminated.
To evaluate the parameters of a sucker rod pump with an external weighting agent calculations were fulfilled allowing us to determine the heavy bottom assembly weight depending on the viscosity of the produced fluid.

The equation of the distribution of fluid flow rate in the tubing:

\[V = \frac{\partial R}{\partial Z} \cdot \frac{1}{4 \cdot \mu} \left(R_f^2 - r^2 + \left(R_s^2 - R_f^2 \right) \cdot \ln \frac{r}{R_f} \right) + \ln \frac{r}{R_m} + V_s \cdot \ln \frac{R_w}{R_m} \]

(2)

where \(m = R_s / R_f \), \(R_s \) – sucker rod radius; \(R_f \) – tubing internal radius; \(V_s \) – rod speed at them iddle of the stroke, \(r \) – current radius of pipe cross-section, \(\mu \) – kinematic viscosity, \(\frac{\partial P}{\partial Z} \) – pressure gradient along the pipe axis

An analysis of equation (2) shows that in case of an increase in \(m \) sucker rod string overcomes forces of hydrodynamic friction with fluid during down stroke. Pressure drawdown created in tubing increases fluid pressure, since the value of hydrostatic pressure is taken into account.

A smaller value of \(m \) helps the string of pump rods to overcome the forces of hydrodynamic friction when the fluid flows down due to gravity. As a result, the force of hydrodynamic pressure changes its sign. An increase in viscosity reduces the hydrostatic pressure almost to zero. This leads to a lack of feed, as a rupture of the flow occurs above the upper plunger of the downhole pump. Therefore, in case of small viscous fluid flow rates in wells equipped with WBPU with an external weighting agent, the next condition must be met:

\[\frac{P_s + P_w}{b} > F_f - \pi \left(R_f^2 - R_s^2 \right) \left(P_p + P_h - P_{pp} \right) \]

(3)

where \(F_f \) – force of hydrodynamic friction of rods; \(P_s \) – rod weight above the pump; \(P_w \) – the weigh to external agent; \(b \) – coefficient of rod weight loss in fluid; \(P_h \) – hydrostatic pressure; \(P_{pp} \) – hydrodynamic pressure above the upper plunger.

In case of higher values of viscous fluid flow rate in tubing, the following must be ensured:

\[P_h > -P_p \]

(4)

The force of hydrodynamic friction of a string of sucker rods against a viscous liquid:

\[F_f = \frac{\pi \cdot P_p \cdot R_f^2}{L} \left(\frac{m^2 - 1}{2 \ln m} + \Delta m^2 - 2m^2 \right) - \frac{2\pi \cdot \mu \cdot L \cdot V}{\ln m} \]

(5)

where \(L \) – pump setting depth.

The value of hydrodynamic pressure in lower part of tubing:

\[P_p = 8 \cdot \mu \cdot L \cdot V \left(\frac{R_s^2}{R_f} \right) - \frac{m^2 - 1}{2 \ln m} \]

(6)

Taking into account the value of the hydrodynamic pressure, the force of hydrodynamic friction during the downward movement of the rod string will be:
When the sucker rod string moves upward, the fluid flow rate of the upper plunger of the pump will be added to the flow rate of fluid from the area between the lower plunger and the pump cylinder ("dead" area).

The equation for determining the value of the hydrodynamic friction of a liquid against a string of rods during an upward stroke:

\[
F_f = \frac{\mu \cdot L \cdot V}{(1 - m)^2} \left[\left(\frac{m^2 - 1}{2 \ln m - m^2} \right) \left(\frac{R_x^2}{R_p^2} \frac{2}{1 - m^2} + \frac{1}{2 \ln m} \right) + \frac{(1 - m)^2}{6 \ln m} \right]
\]

When the sucker rod string moves upward, the fluid flow rate of the upper plunger of the pump will be added to the flow rate of fluid from the area between the lower plunger and the pump cylinder ("dead" area).

The equation for determining the value of the hydrodynamic friction of a liquid against a string of rods during a downward stroke:

\[
F_{fb} = \frac{68 \cdot \mu \cdot L \cdot V}{(1 - m)^2} \left[\left(\frac{m^2 - 1}{2 \ln m - m^2} \right) \left(\frac{R_x^2}{R_p^2} \frac{2}{1 - m^2} + 0.5 \frac{1}{\ln m} \right) + \frac{(1 - m)^2}{6 \ln m} \right]
\]

The growth of hydrodynamic friction during down stroke of the string of sucker rods is equal to the force of hydrodynamic friction during the downward movement. This occurs if we take into account the flow rate from the “dead” area of the pump. Then, on the base of diameters of the sucker rods and tubing, the speed of the rod string the value of the weight of the external weighting agent of the sucker rod pump will be determined as:

\[
P_w > \frac{F_f - \pi \cdot (R_x^2 - R_i^2) \cdot (P_p + P_h - P_pp) - P_f \cdot b}{b}
\]

We fulfilled the calculation of the hydrodynamic friction force according to dependences (1 - 8).

To carry out the calculation depending on the radius of the upper plunger of a sucker rod pump with a remote weighting agent we set the following parameters: a single-stage rod string \(d_s = 19\) mm, tubing diameter \(R_T = 0.031\) m, rod string speed in the middle of the stroke \(V = 1\) m/s, oil viscosity \(\mu = 60\) mPa·s, and pump setting depth \(L = 1100\) m. The results of the calculation are demonstrated as graphical dependences on fig. 2 - 4.

![Figure 2. Dependence of hydrodynamic friction forces \(F_f\) during down stroke and hydrodynamic pressure \(P_p\) on radius of the upper plunger \(R_i\).](image-url)
Figure 3. Dependence of weight of heavy bottom assembly on oil viscosity.

Figure 4. The dependence of the weight of the rod string bottom on the viscosity of the oil.

The dependence of hydrodynamic friction force of the rod string during the downward stroke according to the radius of the upper plunger is shown on the graph. The dependence has a curvilinear character and crosses the line of zero value at \(R_1 \approx 21.5 \text{ mm} \). Negative values of the force on the left side of the graph indicate that the rod string has to overcome friction forces during the downward movement.

For the hydrodynamic pressure force, the picture is a little different: the dependence crosses the axis of the zero value under a significantly smaller radius of the upper plunger of the pump. The negative value of the pressure difference completely compensates for the hydrostatic pressure. This will lead to zero pressure above the pump making the pumping of highly viscous liquid impossible.

The results of calculating of the minimum load \(P_{\text{min}} \) at rod string depending on the radius of the upper plunger \(R_1 \) in the studied pump type (fig. 4) show that if the pressure at the pump intake is not taken into account, the minimum load exceeds the weight of the rod string \(P_s \). This shows that there is no need to install a weighting agent for rod string, as it overcomes the frictional forces. However, taking into account the force of hydrodynamic pressure reduces the value of \(P_{\text{min}} \).

The ratio of the diameters of the tubing and plungers will also affect the value of the minimum load on the rod. The graph shows that the value of \(P_{\text{min}} \) is located below the weight of the rod string, which confirms the need to install a heavier bottom assembly.

The dependences of the weight of the rod string bottom on the viscosity of the oil for the plunger radii of 10 and 30 mm are shown on figure 4.

This graphical dependence shows that in the interval with increasing radius \(R_1 \), the weight of the rod weighting agent decreases.

3. Conclusion

To determine the technological efficiency of the introduction of these pumps, 6 wells of the Vyatka area of the Arlanskoye field were equipped with new assembly (tables 2, 3). Figures 5 and 6 demonstrate dynamograms of the wells with WBPU before and after introduction of external weighting agent.
Table 2. Technological efficiency.

Well number	Number of overhauls before	Number of overhauls after	overhaul period before	overhaul period after	Amount of additionally produced oil, thd ton	Amount of additionally produced fluid, thd ton
2***	3	1	119	362	3.70	7.15
4***	6	3	58	119	0.55	0.87
6***	4	2	88	180	0.76	1.44
8***	4	1	88	362	2.29	4.34
5***	3	1	119	362	1.40	2.31

Table 3. Characteristics of analyzed wells.

Well number	Type of downhole pump	Setting depth	Operation parameters, SxM	Oil flowrate, m³/day	Dynamic level, m	Watercut, %	Causes of overhauls	Electric energy consumption for lifting of 1 m³ of fluid, kWh
2***	N44 / 1160m	B32+N44 / 1160m	2.5x4.5 2.5x4.5	11.5	780	93	Flow absence	1.8
	B32 / 1300m	3x4	9-10	695	93		Flow absence	
	B32+N44 / 1300m	2x6	4.5	550	60		Flow absence	3.2
	B32+N44 / 1300m	2x6	5.2	562	60		Flow absence	2.3
	B32+N44 / 1160m	2x6	5.2	640	60		Works	
	B32+N44 / 1160m	1.67x6	6.5	747	89		Flow absence	1.8
	Pre+57 / 1160m	1.67x6	7.2	885	89		Flow absence	1.05
8***	B-32 / 1250m	2.1x4.5	6	584	89		Flow absence	2.2
	B32+N44 / 1250m	2.1x4.5	7.8	525	89		Works	1.4
5***	N44 / 1260m	1.6x6	4.7	565	81		Flow absence	
	B32+N44 / 1260m	1.6x6	6.8	560	81		Works	
According to the analyzed well stock, in the period from 04/01/2014 to 05/01/2017 overhaul period MTBO increased by 34%, well productivity increased by 7% due to a growth of coefficient of asymmetry of rod loading cycle. Minimum loads for cycle of oil pumping have grown for all wells, equipped with WBPU with external weighting agent. At the same time, maximum loads increased by the additional weight of bottom assembly. Such a change in loads favorably affects the well’s MTBO.

4. References
[1] Ivanova T N, Baranov M N, Bozhek P, Korshunov A I 2018 Design, technical and technological solutions increasing the productivity of downhole pumping equipment Jaroměř, CzechRepublic: Ing. JanKudláček
[2] Zakharov B S 2006 Piston and Plunger Pumps for Oil: Collection of Articles and Patents (Moscow: JSC “VNIIOENG”) p 100 2006
[3] Zakharov B S 2010 Special types of sucker-rod pumps (Moscow: JSC “VNIIOENG”) p 90
[4] Galikeev I A, Nasyrov V A, Nasyrov A M 2015 Operation of oil fields in the complicated conditions (Izhevsk: Paracelsus Print) p 353
[5] Adonin A N 2013 Optimum feed rate coefficient of downhole pumps Oil industry 5 30-33
[6] Aliev Sh N, Huseynov O Kh, Rustamov E M 2013 Sucker rod pumps with double-action Oil industry 11 30-32
[7] Vakhitov T M 2010 Integrated solutions to improve the reliability of downhole equipment operation in difficult conditions at the fields of JSOC Bashneft Magazine Engineering Practice 6
[8] Ivanova T N, Korshunov A I, Koretckiy V P 2018 Dual Completion Petroleum Production Engineering for Several Oil Formations Management Systems in Production Engineering 26 4 217–221 DOI: https://doi.org/10.1515/mspe-2018-0035
[9] Novokshonov D N, Baranov M N, Ivanova T N 2017 Reliability Improvement of Sucker-Rod String at Directional and Horizontal Wells Intelligent Systems in Manufacturing 15 110 - 113 DOI: 10.22213/2410-9304-2017-1-110-113