The Terwilliger algebra of Odd graphs

Qian Kong Benjian Lv Kaishun Wang∗

Sch. Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, Beijing, 100875, China

Abstract

In [The Terwilliger algebra of the Johnson schemes, Discrete Mathematics 307 (2007) 1621–1635], Levstein and Maldonado computed the Terwilliger algebra of the Johnson scheme $J(n, m)$ when $3m \leq n$. The distance-m graph of $J(2m + 1, m)$ is the Odd graph O_{m+1}. In this paper, we determine the Terwilliger algebra of O_{m+1} and give its basis.

AMS classification: 05E30

Key words: Terwilliger algebra; Odd graph

1 Introduction

Suppose $\Gamma = (X, R)$ denotes a simple connected graph with diameter D. For each $i \in \{0, 1, \ldots, D\}$, let $\Gamma_i(x) = \{y \in X \mid \partial(x, y) = i\}$, where $\partial(x, y)$ is the distance between x and y. Define $E_i^* = E_i^*(x)$ to be the diagonal matrix in $\text{Mat}_X(\mathbb{C})$ with yy-entry

$$(E_i^*)_{yy} = \begin{cases} 1, & \text{if } y \in \Gamma_i(x), \\ 0, & \text{otherwise}. \end{cases}$$

The Terwilliger algebra $\mathcal{T}(x)$ of Γ with respect to a given vertex x is the subalgebra of $\text{Mat}_X(\mathbb{C})$ generated by the adjacency matrix A of Γ and $E_0^*, E_1^*, \ldots, E_D^*$.

Terwilliger [10] initiated the study of the Terwilliger algebra of association schemes, which has been used to study (almost) bipartite P- and Q-polynomial association schemes [2, 3], 2-homogeneous bipartite distance-regular graphs [4], Hypercubes [5], Hamming graphs [7], Johnson graphs [8], incidence graphs of Johnson geometry [6] and so on.

Let Ω be a set of cardinality $2m + 1$ and let $\binom{\Omega}{i}$ denote the set of all i-subsets of Ω. The Odd graph O_{m+1} is the graph whose vertex set is the set $X = \binom{\Omega}{m}$, where two vertices are adjacent if they are disjoint. Levstein and Maldonado [8] determined the Terwilliger algebra of the Johnson graph $J(n, m)$ when $3m \leq n$. Observe O_{m+1} is the distance-m graph of the Johnson graph $J(2m + 1, m)$, and they have the same Terwilliger algebra. In this paper we shall determine the Terwilliger algebra of O_{m+1} (Theorem 3.5), give one of its bases (Proposition 3.6) and compute its dimension (Corollary 3.7).

∗Corresponding author.

E-mail addresses: kongqian@mail.bnu.edu.cn (Qian Kong); benjian@mail.bnu.edu.cn (Benjian Lv); wangks@bnu.edu.cn (Kaishun Wang)
2 Intersection matrix

In this section we first introduce the intersection matrix, then discover the relationship between the adjacency matrix of the Odd graph O_{m+1} and the intersection matrices.

Since O_{m+1} is distance-transitive with diameter m (cf. [4]), the isomorphism class of $T(x)$ is independent of the choice of x, denoted by $T := T(x)$.

Let V be a set of cardinality v. Let $H_{i,j}^l(v)$ be a binary matrix with rows indexed by $\binom{V}{i}$ and columns indexed by $\binom{V}{j}$, whose yz-entry is defined by

$$(H_{i,j}^l(v))_{yz} = \begin{cases}
1, & \text{if } |y \cap z| = l, \\
0, & \text{otherwise.}
\end{cases}$$

This matrix is a class of intersection matrices. Observe that $H_{i,j}^l(v) \neq 0$ if and only if $\max(0, i + j - v) \leq l \leq \min(i, j)$. We adopt the convention that $H_{i,j}^l(v) = 0$ for any integer l such that $l < 0$ or $l > \min(i, j)$. From [9] Proposition 4, we have

$$H_{i,j}^l(v)H_{j,k}^s(v) = \sum_{g=0}^{\min(i,k)} \sum_{h=0}^{g} \binom{g}{h} \binom{k-g}{l-h} \binom{v-g-i-k}{j+h-l-s} H_{i,k}^g(v).$$

In particular,

$$H_{i,j}^l(v)H_{j,k}^s(v) = \sum_{s=\max(0,i+j+k-l-v)}^{\min(i-l,k)} \binom{i-s}{l} \binom{v+s-i-k}{j+l} H_{i,k}^s(v).$$

Lemma 2.1 Let Γ be the Odd graph O_{m+1} with the adjacency matrix A, and let $A_{i,j}$ be the submatrix of A with rows indexed by $\Gamma_i(x)$ and columns indexed by $\Gamma_j(x)$. Then

$$A_{i,j} = 0 \quad (0 \leq i \leq j \leq m, \ i \neq j - 1 \text{ or } i = j \neq m),$$

$$A_{2i,2i+1} = H_{m-i,i}^0(m) \otimes H_{i,m-i}^0(m+1) \quad (0 \leq i \leq \lfloor \frac{m}{2} \rfloor - 1),$$

$$A_{2i+1,2i+2} = H_{i,m-i-1}^0(m) \otimes H_{m-i,i+1}^0(m+1) \quad (0 \leq i \leq \lfloor \frac{m}{2} \rfloor - 1),$$

$$A_{m,m} = H_{\binom{m}{m-1},\binom{m}{m-1}}^0(m) \otimes H_{\binom{m}{i},\binom{m}{i}}^0(m+1),$$

where “\otimes” denotes the Kronecker product of matrices.

Proof. Since O_{m+1} is almost bipartite, [3] is directed.

Pick $y \in \Gamma_{2i}(x)$, $z \in \Gamma_{2i+1}(x)$. Note that $\partial(x,y) = 2i$ if and only if $|x \cap y| = m - i$; $\partial(x,z) = 2i + 1$ if and only if $|x \cap z| = i$. Then $|x \cap y| = m - i$ and $|x \cap z| = i$. Suppose $y = \alpha_{m-i} \beta_i := \alpha_{m-i} \cup \beta_i$, $z = \alpha'_i \beta'_{m-i}$, where $\alpha_{m-i} \in \binom{x}{m-i}$ and $\beta_i \in \binom{\Omega(x)}{i}$, while $\alpha'_i \in \binom{\Omega(x)}{i}$ and $\beta'_{m-i} \in \binom{\Omega(x)}{m-i}$. Then

$$(A_{2i,2i+1})_{yz} = (H_{m-i,i}^0(m) \otimes H_{i,m-i}^0(m+1))_{yz} = \begin{cases}
1, & \text{if } \alpha_{m-i} \cap \alpha'_i = \emptyset \text{ and } \beta_i \cap \beta'_{m-i} = \emptyset, \\
0, & \text{otherwise,}
\end{cases}$$

which leads to [4].

Similarly, [5] [6] hold. \qed
The Terwilliger algebra

In this section we fix \(x \in \binom{\Omega}{m} \), then consider the Terwilliger algebra \(T = T(x) \) of \(O_{m+1} \).

For \(0 \leq i, j \leq m \), any matrix \(M \) indexed by elements in \(\Gamma_i(x) \times \Gamma_j(x) \) can be embedded into \(\text{Mat}_X(\mathbb{C}) \) by

\[
L(M)_{p(x) \times q(x)} = \begin{cases} M, & \text{if } p = i \text{ and } q = j, \\ 0, & \text{otherwise.} \end{cases}
\]

Write \(G_{i,j}(v) = \{ g | \max(0, i + j - v) \leq g \leq \min(i, j) \} \). Let

\[
\mathcal{M} = \bigoplus_{p,q=0}^m L(\mathcal{M}_{p,q}),
\]

where \(L(\mathcal{M}_{p,q}) = \{ L(M) | M \in \mathcal{M}_{p,q} \} \), and

\[
\mathcal{M}_{2i,2j} = \text{Span}\{ H_{m-i,m-j}^l(m) \otimes H_{i,i}^s(m+1) | l \in G_{m-i,m-j}(m), s \in G_{i,j}(m+1) \},
\]

\[
\mathcal{M}_{2i,2j+1} = \text{Span}\{ H_{m-i,m-j}^l(m) \otimes H_{i,m-j}^s(m+1) | l \in G_{m-i,m-j}(m), s \in G_{i,j}(m+1) \},
\]

\[
\mathcal{M}_{2i+1,2j} = \text{Span}\{ H_{i,m-j}^l(m) \otimes H_{m-i,m-j}^s(m+1) | l \in G_{i,j}(m), s \in G_{m-i,m-j}(m+1) \},
\]

\[
\mathcal{M}_{2i+1,2j+1} = \text{Span}\{ H_{i,j}^l(m) \otimes H_{m-i,m-j}^s(m+1) | l \in G_{i,j}(m), s \in G_{m-i,m-j}(m+1) \}.
\]

Note that \(\mathcal{M} \) is a vector space. By Lemma 3.1 we have \(\mathcal{M} \) is an algebra. Next we shall prove \(T = \mathcal{M} \).

Lemma 3.1 The Terwilliger algebra \(T \) is a subalgebra of \(\mathcal{M} \).

Proof. By Lemma 2.1 we have \(A \in \mathcal{M} \). Since

\[
E_{2i}^* = L(H_{m-i,m-i}^l(m) \otimes H_{i,i}^s(m+1)) \in \mathcal{M}, \quad 0 \leq i \leq \left\lfloor \frac{m}{2} \right\rfloor,
\]

\[
E_{2i+1}^* = L(H_{i,i}^l(m) \otimes H_{m-i,m-i}^s(m+1)) \in \mathcal{M}, \quad 0 \leq i \leq \left\lfloor \frac{m}{2} \right\rfloor - 1,
\]

we have \(T \subseteq \mathcal{M} \). \(\Box \)

For \(0 \leq i, j \leq m \), let \(\mathcal{T}_{i,j} = \{ M_{i,j} | M \in T \} \), where \(M_{i,j} \) is the submatrix of \(M \) with rows indexed by \(\Gamma_i(x) \) and columns indexed by \(\Gamma_j(x) \). Since \(T \) is an algebra, each \(\mathcal{T}_{i,j} \) is a linear space. From \(\mathcal{T}E^*_j \mathcal{T} \subseteq \mathcal{T} \) we obtain \((\mathcal{T}E^*_j \mathcal{T})_{i,k} \subseteq \mathcal{T}_{i,k} \), which implies that

\[
\mathcal{T}_{i,j} \mathcal{T}_{j,k} \subseteq \mathcal{T}_{i,k}.
\]

(12)

From \(A, E_i^* \in \mathcal{T} \), we have \(AE_{i_2}^*A\cdotsAE_{i_n}^*A \in \mathcal{T} \), which follows that

\[
A_{i_1,i_2}A_{i_2,i_3}\cdotsA_{i_{n-2},i_{n-1}}A_{i_{n-1},i_n} \in \mathcal{T}_{i_1,i_n}.
\]

(13)

Lemma 3.2 For \(i \leq j \leq \left\lfloor \frac{m}{2} \right\rfloor - 1 \) and \(0 \leq l \leq i \), we have

\[
H_{i,j}^l(m) \otimes H_{m-i,m-j}^s(m+1) \in \mathcal{T}_{2i+1,2j+1}.
\]
Proof. We use induction on l.

By (13), for $i < j$ we have $A_{2i+1,2i+2}A_{2i+2,2i+3} \cdots A_{2j,2j+1} \in \mathcal{T}_{2i+1,2j+1}$, which yields that

$$H^l_{i,j}(m) \otimes H^{m-j}_{m-i,m-j}(m+1) \in \mathcal{T}_{2i+1,2j+1}. \hspace{1cm} (14)$$

When $i = j$ we pick $I_{m}^{(m)} \otimes I_{m+i}^{(m+i)} \in \mathcal{T}_{2i+1,2j+1}$, which also satisfies (14).

Assume that $H^l_{i,j}(m) \otimes H^{m-j}_{m-i,m-j}(m+1) \in \mathcal{T}_{2i+1,2j+1}$ for $g \geq l$. By (12) and (13), for $2j+1 < m$ we obtain

$$(H^l_{i,j}(m) \otimes H^{m-j}_{m-i,m-j}(m+1))A_{2j+1,2j+2}A_{2j+2,2j+1} \in \mathcal{T}_{2i+1,2j+1}\mathcal{T}_{2j+1,2j+1} \subseteq \mathcal{T}_{2i+1,2j+1},$$

and for $2j+1 = m$ we have

$$(H^l_{i,j}(m) \otimes H^{m-j}_{m-i,m-j}(m+1))A^2_{2j+1,2j+1} \in \mathcal{T}_{2i+1,2j+1}.$$

Then we get

$$(a_1H^{l-1}_{i,j}(m) + a_2H^l_{i,j}(m) + a_3H^{l+1}_{i,j}(m)) \otimes H^{m-j}_{m-i,m-j}(m+1) \in \mathcal{T}_{2i+1,2j+1},$$

where a_1, a_2 and a_3 are some positive integers. It follows that $H^{l-1}_{i,j}(m) \otimes H^{m-j}_{m-i,m-j}(m+1) \in \mathcal{T}_{2i+1,2j+1}$. Hence the conclusion is obtained by induction. \hfill \Box

Lemma 3.3 For $i+1 \leq j \leq \left\lfloor \frac{m}{2} \right\rfloor$ and $0 \leq l \leq i$, we have

$$H^l_{i,m-j}(m) \otimes H^{l-i-1}_{m-j,i}(m+1) \in \mathcal{T}_{2i+1,2j}.$$

Proof. By (13) we have $A_{2i+1,2i+2}A_{2i+2,2i+3} \cdots A_{2j-1,2j} \in \mathcal{T}_{2i+1,2j}$ for $i+1 \leq j$, i.e.,

$$H^0_{i,m-j}(m) \otimes H^{l-i-1}_{m-j,i}(m+1) \in \mathcal{T}_{2i+1,2j}.$$

Assume that $H^g_{i,m-j}(m) \otimes H^{j-i-1}_{m-j,i}(m+1) \in \mathcal{T}_{2i+1,2j}$ for $g \leq l$. Then by (12) and (13), we obtain

$$(H^l_{i,m-j}(m) \otimes H^{j-i-1}_{m-j,i}(m+1))A_{2j-1,2j}A_{2j,2j+1} \in \mathcal{T}_{2i+1,2j},$$

which gives

$$(b_1H^{l-1}_{i,m-j}(m) + b_2H^l_{i,m-j}(m) + b_3H^{l+1}_{i,m-j}(m)) \otimes H^{j-i-1}_{m-j,i}(m+1) \in \mathcal{T}_{2i+1,2j},$$

where b_1, b_2 and b_3 are some positive integers. Thus $H^{l+1}_{i,m-j}(m) \otimes H^{j-i-1}_{m-j,i}(m+1) \in \mathcal{T}_{2i+1,2j}$ and the conclusion is valid by induction. \hfill \Box

Lemma 3.4 The algebra \mathcal{M} is a subalgebra of \mathcal{T}.

Proof. In order to prove this result, we only need to show that $\mathcal{M}_{p,q} \subseteq \mathcal{T}_{p,q}$ for $0 \leq p, q \leq m$. Write $\mathcal{M}_{p,q} = \{M^i \mid M \in \mathcal{M}_{p,q}\}$ and $\mathcal{T}_{p,q} = \{M^i \mid M \in \mathcal{T}_{p,q}\}$. Since $\mathcal{M}_{q,p} = \mathcal{M}_{p,q}$ and $\mathcal{T}_{q,p} = \mathcal{T}_{p,q}$, it suffices to prove $\mathcal{M}_{p,q} \subseteq \mathcal{T}_{p,q}$ for $p \leq q$. We use induction on p.

Step 1. Show $\mathcal{M}_{0,q} \subseteq \mathcal{T}_{0,q}$ ($0 \leq q \leq m$).

According to (8), (9), we get

$$\mathcal{M}_{0,2j} = \text{Span}(H^{m-j}_{m,m-j}(m) \otimes H^0_{0,j}(m+1)) \quad (0 \leq j \leq \left\lfloor \frac{m}{2} \right\rfloor),$$
and
\[M_{0,2j+1} = \text{Span}\{H_{m,m-j}^j(m) \otimes H_{0,m-j}^0(m+1)\} \quad (0 \leq j \leq \left\lceil \frac{m}{2} \right\rceil - 1). \]

By Lemma 2.1 and 2, we have
\[A_{0,1}A_{1,2} \cdots A_{2j-1,2j} = c_1H_{m,m-j}^m(m) \otimes H_{0,m-j}^0(m+1) \]
and
\[A_{0,1}A_{1,2} \cdots A_{2j,2j+1} = c_2H_{m,j}^m(m) \otimes H_{0,m-j}^0(m+1), \]
where \(c_1, c_2 \) are some positive integers. Then by (13) we have \(M_{0,2j} \subseteq T_{0,2j} \) and \(M_{0,2j+1} \subseteq T_{0,2j+1} \).

Step 2. Assume that \(M_{p,q} \subseteq T_{p,q} \) for \(p \leq 2i \). We will show that \(M_{2i+1,q} \subseteq T_{2i+1,q} \) and \(M_{2i+2,q} \subseteq T_{2i+2,q} \).

Step 2.1. Show \(M_{2i+1,q} \subseteq T_{2i+1,q} \) \((2i+1 \leq q \leq m)\).

Case 1. \(q = 2j + 1 \) \((i \leq j \leq \left\lceil \frac{m}{2} \right\rceil - 1)\).

By inductive hypothesis we have
\[H_{m-i,j}^l(m) \otimes H_{m,j}^s(m+1) \in M_{2i+1,2j+1} \subseteq T_{2i+1,2j+1}, \quad l \in G_{m-i,j}(m), \quad s \in G_{i,m-j}(m+1). \]

Since \(A_{2i+1,2i} = A_{2i,2i+1} = H_{m-i,j}^l(m) \otimes H_{m-j}^s(m+1) \in T_{2i+1,2i+2} \), by (12) we have
\[(H_{m-i,j}^l(m) \otimes H_{m-j}^s(m+1))(H_{m-i,j}^l(m) \otimes H_{m-j}^s(m+1)) \in T_{2i+1,2i}T_{2i,2j+1} \subseteq T_{2i+1,2j+1}. \]
From \(2 \) we obtain
\[H_{i,j}^l(m) \otimes H_{m-i,j}^s(m+1) \in T_{2i+1,2j+1}, \quad l \in G_{i,j}(m), \quad s \in G_{m-i,j}(m+1), \]
which implies \(M_{2i+1,2j+1} \subseteq T_{2i+1,2j+1} \).

Case 2. \(q = 2i \) \((i+1 \leq j \leq \left\lceil \frac{m}{2} \right\rceil)\).

By inductive hypothesis, we have
\[H_{m-i,j}^l(m) \otimes H_{m-j}^s(m+1) \in M_{2i,2j} \subseteq T_{2i,2j}, \quad l \in G_{m-i,j}(m), \quad s \in G_{i,j}(m+1). \]
Thus by (12) we obtain
\[A_{2i+1,2i}(H_{m-i,j}^l(m) \otimes H_{m-j}^s(m+1)) \in T_{2i+1,2i}T_{2i,2j} \subseteq T_{2i+1,2j}. \]
From \(2 \), we have
\[H_{m-i,j}^l(m) \otimes ((s + 1)H_{m-j}^s(m+1) + (i - s + 1)H_{m-j}^{s-1}(m+1)) \in T_{2i+1,2j}. \]
Since \(l \in G_{m-i,j}(m) \) and \(s \in G_{i,j}(m+1) \), by (15) and Lemma 3.2 we get
\[H_{i,j}^l(m) \otimes H_{m-i,j}^s(m+1) \in T_{2i+1,2j+1}, \quad l' \in G_{i,j}(m), \quad s' \in G_{m-i,j}(m+1), \]
which yields \(M_{2i+1,2j} \subseteq T_{2i+1,2j} \).

Step 2.2. Show \(M_{2i+2,q} \subseteq T_{2i+2,q} \) \((2i+2 \leq q \leq m)\).

The proof of this step is similar to that of Step 2.1 and we omit it here.

Hence the desired result follows by induction. \(\Box \)
Theorem 3.5 Let \mathcal{T} be the Terwilliger algebra of the Odd graph O_{m+1} and \mathcal{M} be the algebra defined in [7]. Then $\mathcal{T} = \mathcal{M}$.

Proof. Combining Lemma 3.1 and Lemma 3.4, the desired result follows. \qed

Since the generating matrices of each vector space in [8]-[11] are linearly independent, we have the following result.

Proposition 3.6 The Terwilliger algebra \mathcal{T} of the Odd graph O_{m+1} has a basis:

$$\{ L(H^l_{m-i,m-j}(m) \otimes H^s_{i,j}(m+1)), \ l \in G_{m-i,m-j}(m), \ s \in G_{i,j}(m+1) \}^m_{i,j=0}.$$

Corollary 3.7 The dimension of \mathcal{T} is $\binom{m+4}{4}$.

Proof. By Proposition 3.6 we get

$$\dim \mathcal{T} = \sum_{i,j=0}^{m} |G_{m-i,m-j}(m)| |G_{i,j}(m+1)|$$

$$= \sum_{i,j=0}^{m} (\min(m-i,m-j) - \max(0,m-i-j) + 1)(\min(i,j) - \max(0,i+j-m-1) + 1).$$

By zigzag calculation, the desired result follows. \qed

Acknowledgement

This research is partially supported by NSF of China, NCET-08-0052, and the Fundamental Research Funds for the Central Universities of China.

References

[1] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989.

[2] J.S. Caughman IV, The Terwilliger algebra for bipartite P- and Q-polynomial association schemes, Discrete Math. 196 (1999) 65–95.

[3] J.S. Caughman, M.S. MacLean, P. Terwilliger, The Terwilliger algebra of an almost-bipartite P- and Q-polynomial association scheme, Discrete Math. 292 (2005) 17–44.

[4] B. Curtin, The Terwilliger algebra of a 2-homogeneous bipartite distance-regular graph, J. Combin. Theory Ser. A 81 (2001) 125–141.

[5] J. Go, The Terwilliger algebra of the hypercube, Europ. J. Combin. 23 (2002) 399–429.

[6] Q. Kong, B. Lv and K. Wang, The Terwilliger algebra of the incidence graph of Johnson geometry, arXiv: 1111.1369 [math.CO].

[7] F. Levstein, C. Maldonado, D. Penazzi, The Terwilliger algebra of a Hamming scheme $H(d,q)$, Europ. J. Combin. 27 (2006) 1–10.
[8] F. Levstein, C. Maldonado, The Terwilliger algebra of the Johnson schemes, Discrete Mathematics 307 (2007) 1621–1635.

[9] M. Mohammad-Noori, N. Ghareghani, E. Ghorbani, Intersection matrices and the Johnson scheme, arXiv: 0902.4367v3 [math.CO].

[10] P. Terwilliger, The subconstituent algebra of an association scheme I, J. Algebr. Comb. 1 (1992) 363–388; The subconstituent algebra of an association scheme II, J. Algebr. Comb. 2 (1993) 73–103; The subconstituent algebra of an association scheme III, J. Algebr. Comb. 2 (1993) 177–210.