An alternative theorem for gradient systems

BIAGIO RICCERI

Dedicated to the memory of Professor Felix E. Browder

Abstract: Here is one of the result obtained in this paper: Let \(\Omega \subset \mathbb{R}^2 \) be a smooth bounded domain and let \(F, G : \mathbb{R} \to \mathbb{R} \) be two \(C^1 \) functions satisfying the following conditions:

(i) for some \(p > 0 \), one has
\[
\limsup_{|\xi| \to +\infty} \frac{|F'(\xi)| + |G'(\xi)|}{|\xi|^p} < +\infty;
\]

(ii) \(F \) is non-negative, non-decreasing, \(\lim_{\xi \to +\infty} F(\xi) \xi^2 = 0 \), \(\lim_{\xi \to 0^+} F(\xi) \xi^2 = +\infty \) and the function \(\xi \to \frac{F'(\xi)}{\xi} \) is strictly decreasing in \((0, +\infty] \);

(iii) \(G \) is positive and convex.

Then, for every positive function \(\alpha \in L^\infty(\Omega) \), the problem
\[
\begin{array}{ll}
-\Delta u = \alpha(x)G(v(x))F'(u) & \text{in } \Omega \\
-\Delta v = -\alpha(x)F(u(x))G'(v) & \text{in } \Omega \\
u = v = 0 & \text{on } \partial\Omega
\end{array}
\]
has a non-zero weak solution belonging to \(L^\infty(\Omega) \times L^\infty(\Omega) \).

Key words: minimax; saddle point; non-cooperative elliptic system.

2010 Mathematics Subject Classification: 49J35; 49J40; 35J50.

The present paper lies in the extensive program of studying consequences and applications of certain general minimax theorems ([9], [10], [12]-[15], [17]-[25]) which cannot be directly deduced by the classical Fan-Sion theorem ([5], [26]).

Here, we are interested in gradient systems. Precisely, given two Banach spaces \(X, Y \) and a \(C^1 \) functional \(\Phi : X \times Y \to \mathbb{R} \), we are interested in the existence of critical points for \(\Phi \), that is in the solvability of the system
\[
\begin{array}{ll}
\Phi'_x(x, y) = 0 \\
\Phi'_y(x, y) = 0,
\end{array}
\]
where \(\Phi'_x \) (resp. \(\Phi'_y \)) is the derivative of \(\Phi \) with respect to \(x \) (resp. \(y \)).

Let \(I : X \to \mathbb{R} \). As usual, \(I \) is said to be coercive if \(\lim_{\|x\| \to +\infty} I(x) = +\infty \). \(I \) is said to be quasi-concave (resp. quasi-convex) if the set \(I^{-1}([r, +\infty[) \) (resp. \(I^{-1}(-\infty, r]) \)) is convex for all \(r \in \mathbb{R} \). When \(I \) is \(C^1 \), it is said to satisfy the Palais-Smale condition if each sequence \(\{x_n\} \) in \(X \) such that \(\sup_{n \in \mathbb{N}} \|I'(x_n)\| \to 0 \) admits a strongly convergent subsequence.

Here is our main abstract theorem:
THEOREM 1. - Let X, Y be two real reflexive Banach spaces and let $\Phi : X \times Y \to \mathbb{R}$ be a C^1 functional satisfying the following conditions:

(a) the functional $\Phi(x, \cdot)$ is quasi-concave for all $x \in X$ and the functional $-\Phi(x_0, \cdot)$ is coercive for some $x_0 \in X$;

(b) there exists a convex set $S \subseteq Y$ dense in Y, such that, for each $y \in S$, the functional $\Phi(\cdot, y)$ is weakly lower semicontinuous, coercive and satisfies the Palais-Smale condition.

Then, either the system

$$
\begin{cases}
\Phi'_x(x, y) = 0 \\
\Phi'_y(x, y) = 0
\end{cases}
$$

has a solution (x^*, y^*) such that

$$
\Phi(x^*, y^*) = \inf_{x \in X} \Phi(x, y^*) = \sup_{y \in Y} \Phi(x^*, y) ,
$$

or, for every convex set $T \subseteq S$ dense in Y, there exists $\tilde{y} \in T$ such that equation

$$
\Phi'_x(x, \tilde{y}) = 0
$$

has at least three solutions, two of which are global minima in X of the functional $\Phi(\cdot, \tilde{y})$.

PROOF. Assume that there is no solution (x^*, y^*) of the system

$$
\begin{cases}
\Phi'_x(x, y) = 0 \\
\Phi'_y(x, y) = 0
\end{cases}
$$

such that

$$
\Phi(x^*, y^*) = \inf_{x \in X} \Phi(x, y^*) = \sup_{y \in Y} \Phi(x^*, y) .
$$

We consider both X, Y endowed with the weak topology. Notice that, by (a), $\Phi(x, \cdot)$ is weakly upper semicontinuous in Y for all $x \in X$ and weakly sup-compact for $x = x_0$. As a consequence, the functional $y \to \inf_{x \in X} \Phi(x, y)$ is weakly sup-compact and so it attains its supremum. Likewise, by (b), $\Phi(\cdot, y)$ is weakly inf-compact for all $y \in S$. By continuity and density, we have

$$
\sup_{y \in Y} \Phi(x, y) = \sup_{y \in S} \Phi(x, y) \quad (1)
$$

for all $x \in X$. As a consequence, the functional $x \to \sup_{y \in Y} \Phi(x, y)$ is weakly inf-compact and so it attains its infimum. Therefore, the occurrence of the equality

$$
\sup_{y \in Y} \inf_{x \in X} \Phi = \inf_{x \in X} \sup_{y \in Y} \Phi
$$

is equivalent to the existence of a point $(\hat{x}, \hat{y}) \in X \times Y$ such that

$$
\sup_{y \in Y} \Phi(\hat{x}, y) = \Phi(\hat{x}, \hat{y}) = \inf_{x \in X} \Phi(x, \hat{y}) .
$$

But, for what we are assuming, no such a point can exist and hence we have

$$
\sup_{y \in Y} \inf_{x \in X} \Phi < \inf_{x \in X} \sup_{y \in Y} \Phi \quad (2)
$$

So, in view of (1) and (2), we also have

$$
\sup_{S \subseteq Y} \inf_{x \in X} \Phi < \inf_{x \in X} \sup_{S \subseteq Y} \Phi .
$$
At this point, we are allowed to apply Theorem 1.1 of [20]. Therefore, there exists \(\tilde{y} \in S \) such that the functional \(\Phi(\cdot, \tilde{y}) \) has at least two global minima in \(X \) and so, thanks to Corollary 1 of [8], the same functional has at least three critical points.

The next result is a consequence of Theorem 1.

THEOREM 2. Let \(X, Y \) be two real Hilbert spaces and let \(J : X \times Y \to \mathbb{R} \) be a \(C^1 \) functional satisfying the following conditions:
\((a_1) \) the functional \(y \to \frac{1}{2} \| y \|_Y^2 + J(x, y) \) is quasi-convex for all \(x \in X \) and coercive for some \(x \in X \);
\((b_1) \) there exists a convex set \(S \subseteq Y \) dense in \(Y \) such that, for each \(y \in S \), the operator \(J'_x(\cdot, y) \) is compact and
\[
\limsup_{\|x\| \to +\infty} \frac{J(x, y)}{\| x \|_X^2} < \frac{1}{2};
\] (3)

Then, either the system
\[
\begin{cases}
 x = J'_x(x, y) \\
y = -J'_y(x, y)
\end{cases}
\] has a solution \((x^*, y^*)\) such that
\[
\frac{1}{2}(\| x^* \|_X^2 - \| y^* \|_Y^2) - J(x^*, y^*) = \inf_{x \in X} \left(\frac{1}{2}(\| x \|_X^2 - \| y^* \|_Y^2) - J(x, y^*) \right) = \sup_{y \in Y} \left(\frac{1}{2}(\| x^* \|_X^2 - \| y \|_Y^2) - J(x^*, y) \right),
\]
or, for every convex set \(T \subseteq S \) dense in \(Y \), there exists \(\tilde{y} \in T \) such that the equation
\[
x = J'_x(x, \tilde{y})
\] has at least three solutions, two of which are global minima in \(X \) of the functional \(x \to \frac{1}{2} \| x \|_X^2 - J(x, \tilde{y}) \).

PROOF. Consider the function \(\Phi : X \times Y \to \mathbb{R} \) defined by
\[
\Phi(x, y) = \frac{1}{2}(\| x \|_X^2 - \| y \|_Y^2) - J(x, y)
\] for all \((x, y) \in X \times Y\). Clearly, \(\Phi \) is \(C^1 \) and one has
\[
\Phi'_x(x, y) = x - J'_x(x, y),
\]
\[
\Phi'_y(x, y) = -y - J'_y(x, y)
\] for all \((x, y) \in X \times Y\). We want to apply Theorem 1 such a \(\Phi \). Of course, \(\Phi \) satisfies \((a_1)\) in view of \((a_1)\). Concerning \((b)\), notice that, for each \(y \in S \), the functional \(J(\cdot, y) \) is sequentially weakly continuous since \(J'_y(\cdot, y) \) is compact ([27], Corollary 41.9). Moreover, from (3) it immediately follows that \(\Phi(\cdot, y) \) is coercive and so, by the Eberlein-Šmulian theorem, it is weakly lower semicontinuous. Finally, \(\Phi(\cdot, y) \) satisfies the Palais-Smale condition in view of Example 38.25 of [27]. Now, the conclusion follows directly from Theorem 1. \(\triangle \)

We now present an application of Theorem 2 to non-cooperative elliptic systems.

In what follows, \(\Omega \subset \mathbb{R}^n \) \((n \geq 2)\) is a bounded smooth domain. We consider \(H^1_0(\Omega) \) equipped with the scalar product
\[
\langle u, v \rangle = \int_\Omega \nabla u(x) \nabla v(x) dx.
\]

We denote by \(A \) the class of all functions \(H : \Omega \times \mathbb{R}^2 \to \mathbb{R} \), with \(H(x, 0, 0) = 0 \) for all \(x \in \Omega \), which are measurable in \(\Omega \), \(C^1 \) in \(\mathbb{R}^2 \) and satisfy
\[
\sup_{(x, u, v) \in \Omega \times \mathbb{R}^2} \frac{|H_u(x, u, v)| + |H_v(x, u, v)|}{1 + |u|^p + |v|^q} < +\infty
\]
where $p, q > 0$, with $p < \frac{n+2}{n-2}$ and $q \leq \frac{n+2}{n-2}$ when $n > 2$.

Given $H \in \mathcal{A}$, we are interested in the problem

$$
\begin{cases}
-\Delta u = H_u(x,u,v) & \text{in } \Omega \\
-\Delta v = -H_v(x,u,v) & \text{in } \Omega \\
u = v = 0 & \text{on } \partial \Omega,
\end{cases}
$$

(P_H)

H_u (resp. H_v) denoting the derivative of H with respect to u (resp. v).

As usual, a weak solution of (P_H) is any $(u,v) \in H^1_0(\Omega) \times H^1_0(\Omega)$ such that

$$
\int_\Omega \nabla u(x) \nabla \varphi(x) dx = \int_\Omega H_u(x,u(x),v(x)) \varphi(x) dx,
$$

$$
\int_\Omega \nabla v(x) \nabla \psi(x) dx = -\int_\Omega H_v(x,u(x),v(x)) \psi(x) dx
$$

for all $\varphi, \psi \in H^1_0(\Omega)$.

Define the functional $I_H : H^1_0(\Omega) \times H^1_0(\Omega) \to \mathbb{R}$ by

$$
I_H(u,v) = \frac{1}{2} \left(\int_\Omega |\nabla u(x)|^2 dx - \int_\Omega |\nabla v(x)|^2 dx - \int_\Omega H(x,u(x),v(x)) dx \right)
$$

for all $(u,v) \in H^1_0(\Omega) \times H^1_0(\Omega)$.

Since $H \in \mathcal{A}$, the functional I_H is C^1 in $H^1_0(\Omega) \times H^1_0(\Omega)$ and its critical points are precisely the weak solutions of (P_H).

Our result on (P_H) is as follows:

THEOREM 3. - Let $H \in \mathcal{A}$ be such that

$$
\limsup_{|u| \to +\infty} \sup_{v \leq r} \frac{H(x,u,v)}{u^2} \leq 0
$$

(4)

for all $r > 0$, and

$$
\text{meas} \left(\left\{ x \in \Omega : \sup_{u \in \mathbb{R}} H(x,u,0) > 0 \right\} \right) > 0.
$$

(5)

Moreover, assume that either $H(x,u,\cdot)$ is convex for all $(x,u) \in \Omega \times \mathbb{R}$, or

$$
L := \sup_{(v,\omega) \in \mathbb{R}^2, v \neq \omega} \frac{\max_{(x,u) \in \Omega \times \mathbb{R}} |H_v(x,u,v) - H_v(x,u,\omega)|}{|v - \omega|} < +\infty.
$$

(6)

Set

$$
\lambda^* = \frac{1}{2} \inf \left\{ \frac{\int_\Omega |\nabla w(x)|^2 dx}{\int_\Omega H(x,w(x),0) dx} : w \in H^1_0(\Omega), \int_\Omega H(x,w(x),0) dx > 0 \right\}
$$

and assume that $\lambda^* < \frac{1}{4}$ when (6) holds.

Then, for each $\lambda > \lambda^*$, with $\lambda < \frac{1}{4}$ when (6) holds, either the problem

$$
\begin{cases}
-\Delta u = \lambda H_u(x,u,v) & \text{in } \Omega \\
-\Delta v = -\lambda H_v(x,u,v) & \text{in } \Omega \\
u = v = 0 & \text{on } \partial \Omega
\end{cases}
$$

has a solution $(u,v) \in H^1_0(\Omega) \times H^1_0(\Omega)$.
has a non-zero weak solution belonging to $L^\infty(\Omega) \times L^\infty(\Omega)$, or, for each convex set $S \subseteq H^1_0(\Omega) \cap L^\infty(\Omega)$ dense in $H^1_0(\Omega)$, there exists $\tilde{v} \in S$ such that the problem

$$
\begin{cases}
 -\Delta u = \lambda H_u(x, u, \tilde{v}(x)) & \text{in } \Omega \\
 u = 0 & \text{on } \partial \Omega
\end{cases}
$$

has at least three weak solutions, two of which are global minima in $H^1_0(\Omega)$. Concerning (a), J convex and coercive. This is clear when L has a non-zero weak solution belonging to $L^\infty(\Omega)$. Fix $\lambda > \lambda^*$ for all (u, v) such that $\lambda J(u, v)$ is uniformly monotone and then the claim follows from a classical result ([27], pp. 247-249). Concerning (b_1), notice that, for each $x, \xi \in A H^1(\Omega)$, notice that the operator $J'_u(\cdot, v)$ is compact due to restriction on p (recall that $H \in A$). Moreover, in view of (4), for each $\epsilon > 0$, there exists $\delta > 0$ such that

$$
H(x, t, s) \leq \epsilon t^2
$$

for all $(x, t, s) \in [-\|v\|_{L^\infty(\Omega)}, \|v\|_{L^\infty(\Omega)}] \times \mathbb{R}$, $t \in \mathbb{R}$, and $t \in \mathbb{R} \setminus [-\delta, \delta]$. But H is bounded on each bounded subset of $\Omega \times \mathbb{R}^2$, and so, for a suitable constant $c > 0$, we have

$$
H(x, t, s) \leq \epsilon t^2 + c
$$

for all $(x, t, s) \in A \times \mathbb{R} \times [-\|v\|_{L^\infty(\Omega)}, \|v\|_{L^\infty(\Omega)}]$. Of course, from (7) it follows that

$$
\limsup_{\|u\| \to +\infty} \frac{J(u, v)}{\|u\|^2} \leq \epsilon
$$

and so

$$
\limsup_{\|u\| \to +\infty} \frac{J(u, v)}{\|u\|^2} \leq 0
$$

since $\epsilon > 0$ is arbitrary. Hence, λJ satisfies (3). Now suppose that there exists a convex set $S \subseteq H^1_0(\Omega) \cap L^\infty(\Omega)$ dense in $H^1_0(\Omega)$ such that, for each $v \in S$, the problem

$$
\begin{cases}
 -\Delta u = \lambda H_u(x, u, \tilde{v}(x)) & \text{in } \Omega \\
 u = 0 & \text{on } \partial \Omega
\end{cases}
$$

has at most two weak solutions. Then, Theorem 2 ensures the existence of a weak solution (u^*, v^*) of the problem

$$
\begin{cases}
 -\Delta u = \lambda H_u(x, u, v) & \text{in } \Omega \\
 -\Delta v = -\lambda H_v(x, u, v) & \text{in } \Omega \\
 u = v = 0 & \text{on } \partial \Omega
\end{cases}
$$

such that

$$
I_{\lambda H}(u^*, v^*) = \inf_{u \in H^1_0(\Omega)} I_{\lambda H}(u, v^*) = \sup_{v \in H^1_0(\Omega)} I_{\lambda H}(u^*, v). \tag{8}
$$
From (8), in view of Theorem 1 of [3] (see Remark 5, p. 1631), it follows that \(u^*, v^* \in L^\infty(\Omega) \). We show that \((u^*, v^*) \neq (0, 0)\). If \(v^* \neq 0 \), we are done. So, assume \(v^* = 0 \). Since \(\lambda > \lambda^* \), we have

\[
\inf_{u \in H^1_0(\Omega)} \left(\frac{1}{2} \int_\Omega |\nabla u(x)|^2 \, dx - \lambda \int_\Omega H(x, u(x), 0) \, dx \right) < 0 .
\]

But then, since \(\int_\Omega H(x, 0, 0) \, dx = 0 \), from (9) and the first equality in (8), it follows that \(u^* \neq 0 \), and the proof is complete.

For previous results on problem \((P_H)\) (markedly different from Theorem 3) we refer to [1], [4], [6], [7]. A joint application of Theorem 3 with the main result in [2] gives the following:

THEOREM 4. Let \(H \in A \) satisfy the assumptions of Theorem 3. Moreover, suppose that \(\inf_{x \in \Omega} H_u \geq 0 \) and that, for each \((x, v) \in \Omega \times \mathbb{R} \), the function \(u \mapsto \frac{H_u(x, u, v)}{u} \) is strictly decreasing in \([0, +\infty[\).

Then, for every \(\lambda > \lambda^* \), with \(\lambda < \frac{1}{\lambda^*} \) when (6) holds, the problem

\[
\begin{align*}
-\Delta u &= \lambda H_u(x, u, v) \quad \text{in } \Omega \\
-\Delta v &= -\lambda H_v(x, u, v) \quad \text{in } \Omega \\
u &= v = 0 \quad \text{on } \partial \Omega
\end{align*}
\]

has a non-zero weak solution belonging to \(L^\infty(\Omega) \times L^\infty(\Omega) \).

PROOF. Fix \(\lambda > \lambda^* \), with \(\lambda < \frac{1}{\lambda^*} \) when (6) holds. Fix also \(v \in C^\infty_0(\Omega) \). Since \(\inf_{x \in \Omega} H_u \geq 0 \), the bounded weak solutions of the problem

\[
\begin{align*}
-\Delta u &= \lambda H_u(x, u, v(x)) \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega
\end{align*}
\]

are continuous and non-negative in \(\overline{\Omega} \). As a consequence, in view of Theorem 1 of [2], the problem

\[
\begin{align*}
-\Delta u &= \lambda H_u(x, u, v(x)) \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega
\end{align*}
\]

has at most one non-zero bounded weak solution. Now, the conclusion follows directly from Theorem 3. \(\triangle \)

Finally, notice the following corollary of Theorem 4:

THEOREM 5. Let \(F, G : \mathbb{R} \to \mathbb{R} \) be two \(C^1 \) functions, with \(FG - F(0)G(0) \in A \), satisfying the following conditions:

(a2) \(F \) is non-negative, non-decreasing, \(\lim_{u \to +\infty} \frac{F(u)}{u^2} = 0 \) and the function \(u \mapsto \frac{F'(u)}{u} \) is strictly decreasing in \([0, +\infty[,\);

(b2) \(G \) is positive and convex.

Finally, let \(\alpha \in L^\infty(\Omega) \), with \(\alpha > 0 \). Set

\[
\lambda^*_\alpha = \frac{1}{2G(0)} \inf \left\{ \int_\Omega |\nabla w(x)|^2 \, dx : \int_\Omega \alpha(x)F(w(x)) \, dx > 0 \right\} .
\]

Then, for every \(\lambda > \lambda^*_\alpha \), the problem

\[
\begin{align*}
-\Delta u &= \lambda \alpha(x)G(v(x))F'(u) \quad \text{in } \Omega \\
-\Delta v &= -\lambda \alpha(x)F(u(x))G'(v) \quad \text{in } \Omega \\
u &= v = 0 \quad \text{on } \partial \Omega
\end{align*}
\]
has a non-zero weak solution belonging to $L^\infty(\Omega) \times L^\infty(\Omega)$.

Proof. Apply Theorem 4 to the function $H : \Omega \times \mathbb{R}^2 \to \mathbb{R}$ defined by

$$H(x, u, v) = \alpha(x)(F(u)G(v) - F(0)G(0))$$

for all $(x, u, v) \in \Omega \times \mathbb{R}^2$. Checking that H satisfies the assumptions of Theorem 4 is an easy task. △

Acknowledgement. The author has been supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by the Università degli Studi di Catania, “Piano della Ricerca 2016/2018 Linea di intervento 2”.

References

[1] J. C. BATKAM and F. COLIN, *The effects of concave and convex nonlinearities in some noncooperative elliptic systems*, Ann. Mat. Pura Appl., 193 (2014), 1565-1576.

[2] H. BREZIS and L. OSWALD, *Remarks on sublinear elliptic equation*, Nonlinear Anal., 10 (1986), 55-64.

[3] A. CIANCHI, *Boundedness of solutions to variational problems under general growth conditions*, Comm. Partial Differential Equations, 22 (1997), 1629-1646.

[4] D. G. DE FIGUEIREDO and Y. H. DING, *Strongly indefinite functionals and multiple solutions of elliptic systems*, Trans. Amer. Math. Soc., 355 (2003), 2973-2989.

[5] K. FAN, *Fixed-point and minimax theorems in locally convex topological linear spaces*, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121-126.

[6] Y. GUO, *Nontrivial solutions for resonant noncooperative elliptic systems*, Comm. Pure Appl. Math., 53 (2000), 1335-1349.

[7] N. HIRANO, *Infinitely many solutions for non-cooperative elliptic systems*, J. Math. Anal. Appl., 311 (2005), 545-566.

[8] P. PUCCI and J. SERRIN, *A mountain pass theorem*, J. Differential Equations, 60 (1985), 142-149.

[9] B. RICCIERI, *Some topological mini-max theorems via an alternative principle for multifunctions*, Arch. Math. (Basel), 60 (1993), 367-377.

[10] B. RICCIERI, *On a topological minimax theorem and its applications*, in “Minimax theory and applications”, B. Ricceri and S. Simons eds., 191-216, Kluwer Academic Publishers, 1998.

[11] B. RICCIERI, *Sublevel sets and global minima of coercive functionals and local minima of their perturbations*, J. Nonlinear Convex Anal., 5 (2004), 157-168.

[12] B. RICCIERI, *Minimax theorems for functions involving a real variable and applications*, Fixed Point Theory, 9 (2008), 275-291.

[13] B. RICCIERI, *Well-posedness of constrained minimization problems via saddle-points*, J. Global Optim., 40 (2008), 389-397.

[14] B. RICCIERI, *Multiplicity of global minima for parametrized functions*, Rend. Lincei Mat. Appl., 21 (2010), 47-57.

[15] B. RICCIERI, *A strict minimax inequality criterion and some of its consequences*, Positivity, 16 (2012), 455-470.

[16] B. RICCIERI, *Energy functionals of Kirchhoff-type problems having multiple global minima*, Nonlinear Anal., 115 (2015), 130-136.

[17] B. RICCIERI, *A minimax theorem in infinite-dimensional topological vector spaces*, Linear Nonlinear Anal., 2 (2016), 47-52.
[18] B. RICERI, Miscellaneous applications of certain minimax theorems I, Proc. Dynam. Systems Appl., 7 (2016), 198-202.

[19] B. RICERI, On the infimum of certain functionals, in “Essays in Mathematics and its Applications - In Honor of Vladimir Arnold”, Th. M. Rassias and P. M. Pardalos eds., 361-367, Springer, 2016.

[20] B. RICERI, On a minimax theorem: an improvement, a new proof and an overview of its applications, Minimax Theory Appl., 2 (2017), 99-152.

[21] B. RICERI, Miscellaneous applications of certain minimax theorems II, Acta Math. Vietnam., to appear.

[22] B. RICERI, Minimax theorems in a fully non-convex setting, J. Nonlinear Var. Anal., 3 (2019), 45-52.

[23] B. RICERI, Applying twice a minimax theorem, J. Nonlinear Convex Anal., 20 (2019), 1987-1993.

[24] B. RICERI, Another multiplicity result for the periodic solutions of certain systems, Linear Nonlinear Anal., 5 (2019), 371-378.

[25] B. RICERI, A remark on variational inequalities in small balls, preprint.

[26] M. SION, On general minimax theorems, Pacific J. Math., 8 (1958), 171-176.

[27] E. ZEIDLER, Nonlinear functional analysis and its applications, vol. III, Springer-Verlag, 1985.

Department of Mathematics and Informatics
University of Catania
Viale A. Doria 6
95125 Catania, Italy

 e-mail address: ricceri@dmi.unict.it