Spectral stability of shock profiles for hyperbolically regularized systems of conservation laws

Johannes Bärlin¹, Universität Konstanz

Abstract

This talk reports a proof that under natural assumptions shock profiles viewed as heteroclinic travelling wave solutions to a hyperbolically regularized system of conservation laws of the form
\[g(v)_t + f(v)_x = B □ v := B(v_{xx} - v_{tt}) \quad (v \in \mathbb{R}^n) \]
are spectrally stable if the shock amplitude is sufficiently small. This means that an associated Evans function \(E : \Lambda \rightarrow \mathbb{C} \) with \(\Lambda \subset \mathbb{C} \) an open superset of the closed right half plane \(\mathbb{H}^+ \equiv \{ \lambda \in \mathbb{C} : \text{Re} \lambda \geq 0 \} \), has only one zero, namely a simple zero at 0. The result is analogous to the one obtained in [1] and [2] for parabolically regularized systems of conservation laws, and also distinctly extends findings on hyperbolic relaxation systems in [2], [3], [4].

References

[1] H. Freistühler and P. Szmolyan. Spectral stability of small shock waves. *Arch. Ration. Mech. Anal.*, 164: 287–309, 2002.

[2] R. Plaza and K. Zumbrun. An Evans function approach to spectral stability of small-amplitude shock profiles. *Discrete Contin. Dyn. Syst.*, 10(4): 885–924, 2004.

[3] C. Mascia and K. Zumbrun. Spectral stability of weak relaxation shock profiles. *Comm. Partial Differential Equations*, 34(1-3):119–136, 2009.

[4] Y. Ueda. Stability of travelling wave solutions to a semilinear hyperbolic system with relaxation. *Math. Methods Appl. Sci.*, 32(4):419–434, 2009.

¹This research has been supported by Deutsche Forschungsgemeinschaft under Grant No. FR822/10-1.