A versatile, automated and high-throughput drug screening platform for zebrafish embryos

Alexandra Lubin¹, Jason Otterstrom², Yvette Hoade¹, Ivana Bjedov³, Eleanor Stead³, Matthew Whelan⁴, Gaia Gestri⁵, Yael Paran², Elspeth Payne†

¹ Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom ² IDEA Bio-Medical Ltd., Rehovot, Israel, ³ Research Department of Cancer Biology, Cancer Institute, University College London, London, United Kingdom, ⁴ Division of Infection and Immunity, University College London, London, United Kingdom, ⁵ Department of Cell and Developmental Biology, University College London, London, United Kingdom

†Correspondence: e.payne@ucl.ac.uk, UCL Cancer Institute, 72 Huntley Street, London, WC1E6BT. Tel: (+44)2076796367 Fax: (+44)02076796222

Keywords: drug screening, high-throughput, zebrafish

Summary Statement

A fast, flexible and rapidly customisable platform for high-content drug screening in live zebrafish embryos.

Abstract

Zebrafish provide a unique opportunity for drug screening in living animals, with the fast developing, transparent embryos allowing for relatively high-throughput, microscopy-based screens. However, the limited availability of rapid, flexible imaging and analysis platforms has limited the use of zebrafish in drug screens. We have developed an easy-to-use, customisable automated screening procedure suitable for high-throughput phenotype-based screens of live zebrafish. We utilised the WiScan® Hermes High Content Imaging System to rapidly acquire brightfield and fluorescent images of embryos, and the WiSoft® Athena Zebrafish Application for analysis, which harnesses an Artificial
Intelligence-driven algorithm to automatically detect fish in brightfield images, identify anatomical structures, partition the animal into regions, and exclusively select the desired side-oriented fish. Our initial validation combined structural analysis with fluorescence images to enumerate GFP-tagged haematopoietic stem and progenitor cells in the tails of embryos, which correlated with manual counts. We further validated this system to assess the effects of genetic mutations and x-ray irradiation in high content using a wide range of assays. Further, we performed simultaneous analysis of multiple cell types using dual fluorophores in high throughput. In summary, we demonstrate a broadly applicable and rapidly customisable platform for high-content screening in zebrafish.

Introduction

Zebrafish provide an excellent model for human disease and offer a unique opportunity for in vivo small-molecule phenotypic drug screening. Each breeding pair can lay hundreds of embryos, which combined with the rapid development and transparent nature of the embryos makes them amenable to microscopy-based screens usually otherwise restricted to cell culture. Unlike most in vivo screening platforms, thousands of animals can be imaged within days, allowing for a relatively high-throughput screen, with the advantages of screening in intact living animals.

The utility of such in vivo screens has been demonstrated by the rapid repurposing of identified compounds into clinical trials. This is exemplified by dmPGE2, which entered clinical trials as a therapy for patients undergoing umbilical blood cord transplantation, having been found to enhance haematopoietic stem cells in a zebrafish screen using in situ hybridization (North et al., 2007, Hagedorn et al., 2014). Additionally, ORC-13661, identified in zebrafish screens of hair cells in zebrafish embryos (Owens et al., 2008, Chowdhury et al., 2018, Kitcher et al., 2019) is currently in clinical trials as an agent to prevent hearing loss from aminoglycoside antibiotic-induced hair loss.

Despite their advantages, the limited availability of image acquisition and, especially, analysis platforms supporting zebrafish in a fast, flexible format has limited their widespread uptake in drug screens. Screens are typically slow, often relying on manual or bespoke imaging solutions and manual analysis. For example, North et al. utilised a manual qualitative scoring after in situ hybridization using two probes (North et al., 2007), to identify dmPGE2. The discovery of ORC-13661 as a modifier of hair cells also relied on manual inspection of fluorescent neuromasts for 10,960 compounds after treatment with a dye, with manual counting required to quantify changes (Owens et al., 2008). This hair cell assay is rapid and simple and has been used in a number of additional
screens (Chiu et al., 2008, Vlasits et al., 2012, Esterberg et al., 2013, Pei et al., 2018), however all still rely on manual counting or scoring of individual fish, creating a significant bottleneck in analysis throughput.

Zebrafish have also emerged as a valuable patient-derived xenograft model for drug screening for novel chemotherapeutic compounds or to identify patient-specific responses, having several advantages over mouse models including far more rapid time scales, cost effectiveness and the ability to use large numbers (Xiao et al., 2020, Fazio and Zon, 2017, Fior et al., 2017, Jung et al., 2012, Tonon et al., 2016). Zebrafish xenografts have been used successfully to identify or validate chemotherapeutic compounds, for example to validate BPIQ against lung cancer cells (Chiu et al., 2015) and the identification of regorafenib against adenoid cystic carcinoma (Chen et al., 2017). Although there have been a number of examples of how zebrafish could provide a useful high-throughput screening platform for xenograft models (Haney et al., 2020, Zhang et al., 2014, Lin et al., 2019, Fu et al., 2018, Somasagara et al., 2021), the use of these on large scale has so far been limited. A platform with greater flexibility and ease of customisation would greatly aid the use of xenograft models for drug screening, due to the variation and complexity between different models, and different read-outs for results for example tumour size (Zhang et al., 2014) or cell count (Somasagara et al., 2021).

The optimal zebrafish high-throughput screening platform would permit automation of both image acquisition and analysis across a range of multiplexed assays and phenotypes with minimal human intervention. One of the primary challenges in this process is getting the embryo in the desired orientation for imaging without manual manipulation of the embryos. One approach has been to use small glass capillaries for imaging embryos, as in the VAST Bioimager which allows for automated imaging of zebrafish embryos in a chosen orientation (Pulak, 2016, Pardo-Martin et al., 2010, Pardo-Martin et al., 2013, Chang et al., 2012, Haney et al., 2020). Zebrafish embryos can also be imaged in a semi-automated format by standard microscopes in 96-well plates (Romano and Gorelick, 2014), although there is limited control over the orientation of the fish without manual manipulation or inspection of the images.

Existing automated image analysis solutions are much more limited, with most platforms developed as bespoke solutions. One popular technique is to design algorithms to automatically analyse fluorescent images of transgenic zebrafish, or fish fluorescently labelled with a dye. A number of such screens have adapted the ImageXpress High Content Screening System by Molecular Devices for automated image acquisition. This has included assays to quantify the number of angiogenic blood vessels (Tran et al., 2007), to analyse axon length (Kanungo et al., 2011) and to measure
tumour size (Zhang et al., 2014) or count cells (Somasagara et al., 2021) in xenografted zebrafish. However, the automated analysis for these has often required either the development of bespoke algorithms, or the custom adaption of more general software. There are a number of opensource approaches that have been designed or adapted for analysis of zebrafish embryos. ImageJ is commonly used, for example to quantify fluorescence in xenografted zebrafish to assess chemotherapeutic compounds (Haney et al., 2020), although this relies on thresholding out autofluorescence, and can only be used to look at either the whole fish or a manually selected region. QuantiFish is an opensource application developed for analysing fluorescent foci in zebrafish, which has been used to analyse bacterial infection in embryos (Stirling et al., 2020). CellProfiler is a more general image analysis platform (Kamentsky et al., 2011), which has a number of published pipelines including for the analysis of zebrafish embryos to quantify haemoglobin (Metelo et al., 2015). However, to adapt these platforms for new applications requires a lot of development by the user to set up the analysis, which can be challenging without expertise, limiting widespread usage.

Artificial Intelligence (AI) based approaches can provide the opportunity for automated image analysis with broader applicability. Using Definiens Cognition Network Technology (CNT), Vogt et al. designed and trained an algorithm to detect and segment transgenic fluorescent embryos arrayed in 96-well plates and quantify blood vessel development (Vogt et al., 2009). They were then able to adapt this method to a different transgenic fish line and phenotype, which was used in a chemical screen for FGF signalling (Vogt et al., 2010, Saydmohammed et al., 2011).

We sought a screening platform to conduct small-molecule and genetic screens looking at haematopoietic stem and progenitor cells (HSPCs) in zebrafish embryos. We set out to develop an automated screen, with a long-term goal of screening for targeted therapeutics for myeloid malignancies. The Tg(itga2b:GFP) transgenic line, which labels thrombocytes and HSPCs with green fluorescence (Lin et al., 2005), provides a readout of the number and location of HSPCs. A semi-automated screen for HSPCs has previously been developed (Arulmozhivarman et al., 2016), but this screen required a custom analysis platform and user-input to define the region of interest.

We have developed an easy-to-use, yet broadly applicable zebrafish embryo screening platform automating both image acquisition and quantitative analysis. We initially performed phenotypic validation for our screen of interest defining HSPCs using genetic and radiation screens of known phenotype. We then extended our assays to combine with multiple fluorescent outputs using mCherry-tagged myeloid cells, and further expanded our screen readout to include the apoptotic acridine orange for use in toxicity screens. To highlight the breadth and simplicity of the platform we also utilised a hair cell marker that has previously been used in a number of manual screens, and a brightfield morphological screen of eye size. Our customisable screen can easily and rapidly be
applied to study of other anatomical sites and phenotypes for generalized drug screening in zebrafish, with automated image acquisition and analysis of thousands of fish in a single day.

Results

Automatic detection of zebrafish embryos and internal anatomy in multiplexed fluorescence imaging with the co-developed WiSoft® Athena image analysis platform

Effective high-content screening (HCS) necessitates simple and fast image acquisition to allow for high throughput. We utilised the WiScan® Hermes High Content Imaging System (IDEA Bio-Medical) to rapidly acquire both fluorescent and brightfield images of live zebrafish embryos at 3dpf. The workflow is depicted in Figure 1A. Live phenylthiourea-treated embryos were anaesthetised and loaded into a 96-well zebrafish alignment plate (Hashimoto) with one embryo per well, using a manual pipette. The plate was briefly centrifuged, before imaging with the Hermes (Fig. 1A).

Embryos were imaged using a 4X objective and Z-stack acquisition of five slices, spanning 0.2 mm, with four overlapping images along each well to permit accurate image stitching and full-fish visualisation (Fig. S1). Image acquisition was carried out in brightfield and fluorescent channels, taking around 15 minutes to obtain the 3,840 raw images per full plate, allowing for the relatively high throughput. Image pre-processing steps are carried out automatically by the accompanying batch image processing software package (IDEA Bio-Medical, see Methods) in around 20 minutes. We performed best z-slice selection (most in-focus z-plane) for the brightfield channel and maximum z-axis intensity projection for fluorescence channels prior to image stitching for full-fish analysis (Fig. S1), with images processed in batches by accompanying software. Fluorescence max-intensity was chosen over best-slice selection to capture all fluorescently labelled cells throughout the fish volume. In this fashion we were able to visualise individual fluorescently labelled cells without the need for additional processing or image deconvolution while also having both the tail and head of the fish in proper focus for analysis of the brightfield channel.

IDEA Bio-Medical developed a novel Zebrafish image analysis application for their WiSoft® Athena software package that identifies the fish and internal anatomy with no required user input. This analysis application uses a unique deep-learning AI algorithm to analyse the brightfield images of full zebrafish (see Methods), trained utilizing hundreds of zebrafish images as input, in conjunction with multiplexed fluorescence channel analysis. 13 separate datasets were used to train the algorithm, with a further 5 datasets used for testing, to ensure the quality of the trained AI for detecting
features of naive data. The software was trained to use brightfield images to automatically detect the outline of zebrafish embryos, while concomitantly identify internal anatomical structures and regions (Fig. 1B). Currently, the internal anatomy detected includes: eye, heart, tail fin, yolk sac, spine, bladder and otic vesicle (Fig. 1B). The embryo body is also subdivided into the head, trunk and tail regions. Each segmented region can be analysed for features such as morphology (i.e. eye size) or count (i.e. count 1 vs. 2 eyes to determine orientation), and is combined with fluorescence quantification including intensity metrics and identification of labelled structures, such as fluorescent cells or granules (Fig. 1C).

This analysis approach also permits the automatic selection of wells containing, exclusively, the desired side-oriented fish (illustrated in Fig. 1D), without manual image inspection. Although the use of the alignment plate improves the number of fish in the correct orientation for analysis (Fig. 1A,B), a small number of fish in each plate are not properly aligned in the well (lying on their back, tail out of viewing window etc., (Fig. S2)). This is usually <5% per plate. The side-orientated fish were selected using anatomical attributes identified by the *Athena* software, specifically those having both an eye count and a tail count equal to one, thereby excluding empty wells and fish in undesirable orientations. Defining a minimum fish and tail area in the software also excludes wells where the fish is only partially in the well (see Methods). Automatic exclusion of these wells without any manual inspection of the images is a critical feature for high-throughput applications and avoids skewing statistics through incorrect or biased sample selection. While these improperly oriented fish could be correctly oriented via manual intervention, the required hands-on time far exceeds that needed to prepare, scan, process and analyse an additional 96 well plate and results in a lower total amount of useful data.

The rapid image acquisition combined with batch image processing and automatic detection of the fish and its anatomy allows for high-throughput analysis with minimal user input. The variety of features detected and the rapid, easy-to-use customisability of the application makes this platform a highly versatile tool for a number of screening applications, as we detail below.

Accurate counts HSPCs in the tail of 2-4dpf zebrafish embryos

The primary goal of our screen is to accurately enumerate HSPCs, using the Tg(itga2b:GFP) reporter line (Fig. 1C). At 3dpf the HSPCs reside in the caudal haematopoietic tissue (CHT, analogous to fetal liver) in the base of the tail and in close proximity to the caudal-most tip of the yolk sac (Fig. 1D). We aimed to develop a screening platform that would provide an automatic count of the number of cells exclusively in this region to allow us to analyse the effects of myelodysplastic syndrome (MDS)-
related genetic mutations that have been identified in the HSPCs of patients. Ultimately such a tool will enable a large-scale small-molecule library screen to target mutant stem cells, to identify drugs that exclusively deplete the mutant HSPC population. One of the challenges in automating our assay is that zebrafish at 3dpf have substantial auto-fluorescence, particularly around the head and yolk (Fig. 1C). The HSPCs of interest are the GFPlo cells, whilst the GFPhi cells are thrombocytes, some of which are in circulation (Lin et al., 2005). This meant that simply thresholding out the auto-fluorescence in the whole image erroneously eliminated a large number of cells of interest, or the inclusion of fluorescent spots not relevant to our question. The \textit{Athena} zebrafish application can provide an automatic count of the fluorescent granules in a chosen region of the fish, in our case the tail (Fig. 1C, outlined in red), without manual inspection or segmentation of the images. Analysis of a 96-well plate takes around 10 minutes. To verify the counts measured, we analysed a 96-well plate of wild-type transgenic zebrafish at 3dpf with the \textit{Athena} software and compared results to a manual cell count in the same images. The two counting methods were strongly correlated, $r=0.844$ (Fig. 1E), indicating that automated detection provides equivalent results to manual counting.

Stem cells first migrate to the CHT around 2dpf where they then start to proliferate (Chen and Zon, 2009). We tested our platform on embryos of different ages to see the accumulation of HSPCs in the CHT over time (Fig. 2A). Using our automated HSPC counting assay, we confirmed that small numbers of HSPC are present in the CHT at 2 dpf and this steadily increases over the next 48 hours (Fig. 2A-B). In this experiment different batches of embryos were used for each age. However embryos are imaged alive and can easily be removed from the plate with a pipette, permitting longitudinal studies on the same embryo if desired. We also attempted to image embryos at 5dpf but due to the inflation of the swim bladder, very few fish aligned in the desired side-orientation and our analysis could no longer be carried out with the desired throughput. The system could be used to image younger embryos, although this would require the use of a different plate, such as a round bottomed plate, due to the shape of the embryo and the fragility of the yolk sack to centrifugation. Currently the software is trained to identify fish 2-6dpf, although with additional training datasets it could be trained to identify younger fish.

Detection of phenotypic differences in HSPC and myeloid cell count

We have developed several models for MDS in Zebrafish, including an Rps14 mutant line (Peña et al., 2020). In this model, heterozygous embryos are phenotypically indistinct from wildtype animals unless the animals are subjected to stress. Phenylhydrazine (phz) is used as a haemolytic stress in zebrafish, causing oxidation of haemoglobin and anaemia (Lenard et al., 2016, Shafizadeh et al., 2016).
2004, Ferri-Lagneau et al., 2012). If phz is applied for 24 hours at 24-48hpf, only the wildtype embryos recover from the induced anaemia (Schneider et al., 2016, Peña et al., 2020). Using our HSPC counting assay, we showed that at 3dpf, phz leads to an increase in HSPCs at 3dpf in the wild types in response to anaemia, a response not observed in the Rps14 mutants ($P < 0.01$, Fig. 2C-D (Peña et al., 2020)).

To further define the sensitivity of the platform we assessed the effects a range of non-lethal doses of X-ray irradiation on HSPC numbers in the embryo (Traver et al., 2004, McAleer et al., 2005). Embryos were irradiated at 2dpf before imaging at 3dpf. This led to a significant reduction in stem cells with 40 Gy and a further reduction with 100 Gy (Fig. 3A). The platform allows for swift analysis of these images in large numbers, and the phenotypic differences are easily measured with high statistical significance ($P < 0.001$, Fig. 3B).

Beyond analysing solely HSPCs in our MDS models, we aimed to develop a versatile screening platform that we could easily extend to other assays including other zebrafish transgenics to label different cell types. We performed multiplexed fluorescence image acquisition using a double colour transgenic line with Tg(itga2b:GFP) and Tg(lyzC:mCherry), which has mCherry-tagged myeloid cells (Buchan et al., 2019), for imaging in both the red and green channels (Fig. 3C). We used this fish line in the X-ray irradiation assay and identified both the GFP-tagged HSPCs and mCherry-tagged myeloid cells in the same fish (Fig. 3C) by imaging in both fluorescent channels and applying the fluorescent spot counting functionality to each of the two colours individually. Concomitant with the decrease in GFP-tagged HSPCs we also observed a decrease in mCherry-tagged myeloid cells after irradiation (Aldridge and Radford, 1998, Lehnert et al., 1985) ($P < 0.0001$, Fig. 3D-E).

Extended applications using fluorescent output – apoptosis, hair cell detection and angiogenesis

We wished to further assess the utility of our platform beyond haematological-related screens, to other assays that are commonly used for drug screening in zebrafish embryos, showing the broad applicability to a variety of screening applications. Apoptosis assays in zebrafish can be utilised for drug screens, including analysis of regulated and induced apoptosis and for assessing toxicity (McGrath and Seng, 2013, Parng et al., 2004). Acridine orange is a fluorescent apoptosis marker that can easily be used to visualise cell death in zebrafish by incubation of live embryos in the stain followed by fluorescence imaging (Abrams et al., 1993, Furutani-Seiki et al., 1996, Tucker and Lardelli, 2007). Rapid automated quantification of this fluorescence could be a valuable tool for drug screening and toxicity assessment of chemical screens. To test if our screening platform could be
adapted to assess cell death, X-ray irradiation at 2dpf was used to induce apoptosis in zebrafish embryos before analysis at 3dpf. Irradiation in zebrafish embryos leads to apoptosis, with particularly sensitivity towards cells within the spinal cord (Geiger et al., 2006). We labelled dying cells post irradiation with the supravital stain acridine orange and imaged on the Hermes in high throughput (Fig. 3F). The Athena analysis pipeline was optimised by adjusting the threshold, smoothing and area parameters of the granule detection, to count the small stained granules which define the dying cell population in the whole fish. The increased cell death with irradiation was easily observed ($P < 0.0001$, Fig 3G).

Assays analysing hair cells in the lateral line in zebrafish have also been utilised in drug discovery for compounds that mediate deafness and ototoxicity due to the similarities between these cells and the inner ear hair cells in humans (Whitfield, 2002, Nicolson, 2005, Ton and Parng, 2005). Hair cells in the lateral line are arranged into neuromasts along the head and body of the zebrafish and can be stained using fluorescent marker YO-PRO-1. This has been utilised in several chemical and genetic screens (Chiu et al., 2008, Vlasits et al., 2012, Esterberg et al., 2013, Pei et al., 2018, Owens et al., 2008). To date these screens have required manual evaluation of the neuromasts either by counting or scoring for degradation. We therefore sought to replicate the results of one of these screens using our automated analysis platform. Chiu et al. screened 1040 FDA approved compounds for ototoxicity, and found pentamidine isethionate (PI) and propantheline bromide (PB) reduced hair cell survival by almost 50% at 100 µM (Chiu et al., 2008). We incubated embryos at 4dpf with 100 µM PI or PB for 1 hour before staining with YO-PRO-1 and imaging on the Hermes. Both compounds led to a reduction in hair cells (Fig. 4A). Athena analysis of fluorescent granules contained within the whole fish were used to define regions of interest (the neuromasts) and measure their fluorescence intensity and area to examine the degradation of hair cells therein. Both compounds led to a statistically significant reduction in both integrated fluorescence intensity and fluorescent granule size (Fig. 4B-C, $P < 0.0001$), in agreement with the results from Chiu et al.

Assays analysing angiogenesis, the formation of new blood vessels from pre-existing vessels, are also of therapeutic interest, with drug screening for antiangiogenic compounds of interest for the treatment of solid tumours (Teleanu et al., 2019, Zirlik and Duyster, 2018). Zebrafish provide a useful tool for in vivo drug screening for antiangiogenic compounds (Serbedzija et al., 1999, Chávez et al., 2016) and transgenic zebrafish have been previously utilised to analyse the degree of angiogenesis in zebrafish embryos, identifying compounds that reduce blood vessel development (Tran et al., 2007, Mauro et al., 2019). We sought to assess whether our platform could be used to assess the degree of angiogenesis. Utilising Tg(kdrl:mCherry) fish, we treated embryos at 24hpf for 24 hours with either DMSO, AG1478 or SU4312, which were identified as antiangiogenic in zebrafish by Tran et al. (Tran
et al., 2007). At 48hpf the embryos were imaged on the Hermes, with both compounds leading to reduced angiogenesis (Fig. 4D). Athena was then utilised to identify areas of fluorescence, and the total area of the fluorescence within the whole fish used as a surrogate of the degree of vessel formation. As expected, both AG1478 and SU4312 led to a significant reduction (Fig. 4E-F, \(P < 0.0001 \)), with the latter causing a more significant reduction at lower concentrations, consistent with the lower IC_{50} reported previously (Tran et al., 2007). A fibre identification algorithm could be introduced to Athena, to provide a more direct read out of angiogenesis.

Brightfield phenotypic analysis – eye size

In addition to fluorescence assays, we assessed if our platform could be adapted for morphological screens in brightfield. Mab21l2 is involved in healthy eye development, and zebrafish carrying homozygous mab21l2 mutations display microphthalmia (smaller eyes) (Gath and Gross, 2019, Deml et al., 2015, Hartsock et al., 2014). Using an incross of mab21l2^{u517} heterozygous embryos (Wycliffe et al., 2020), imaged in brightfield with the Hermes at 4dpf, we used Athena to identify they eye in brightfield and measure the size. Consistent with previous studies, mab21l2^{u517} homozygous are smaller in size (Fig. 4G), as measured using Athena (\(P < 0.05 \), Fig. 4H).

Discussion

Zebrafish embryos provide an excellent opportunity for in vivo screens, but often such screens rely on time-consuming manual assays or the development of bespoke automated solutions that require time and expertise to develop. Utilising the Hermes and Athena HCS platform from IDEA Bio-Medical offers an automated solution for zebrafish screens, which is both versatile and easy to use.

Image acquisition is straightforward to set-up, with simple plate loading and imaging. The plates are loaded in the lab with a standard pipette with no special treatment of the embryos required beyond the use of the alignment plate. Imaging is easy to carry out – the plate is placed in the microscope and the parameters chosen using user-friendly software, where changes can be visualised interactively before imaging. Imaging parameters can be saved and loaded to provide consistency between images acquired at any time. Unlike the VAST system which offers 360° imaging of embryos in a capillary (Pulak, 2016, Pardo-Martin et al., 2010, Pardo-Martin et al., 2013, Chang et al., 2012), the Hermes microscope images the fish from beneath the plate. This allows for side-on multiplexed images of fish at 2-4dpf (Fig. 2A) in multiple fluorescence colours (Fig. 3C). For many applications this is sufficient, and although not all embryos are perfectly aligned in the wells with our method, this is
limited to around 5% per plate and the software parameters permit automatic exclusion of these wells without manual inspection of the images.

The Athena Zebrafish application allows for easy, automated analysis of the acquired images. We have demonstrated one of the principle advantages of this system is the ease with which customisation to different assays can be undertaken. Following set up with the HSPC assay, each of the subsequent optimisations shown in this manuscript were completed in a single experiment. We have shown that the system can accurately replicate published results from a number of different assays: HSPC counts in stressed and unstressed rps14 mutant embryos (Peña et al., 2020) (Fig. 2C-D), hair cell degradation in drug-treated embryos (Chiu et al., 2008) (Fig. 4A-C), chemically-induced reduction of angiogenesis (Tran et al., 2007)(Fig. 4D-F) and reduced eye-size in mab21l2 mutants (Wycliffe et al., 2020) (Fig. 4G-H). Acquisition and analysis protocols can be customised and then saved, allowing for consistency between experiments, an asset for high-throughput screens carried out over weeks or months.

Both image acquisition and analysis are extremely fast once the protocols have been saved. For a 96-well plate of embryos, image acquisition takes around 15 minutes, image processing a further 20 minutes and image analysis around 10 minutes. The ability to screen and analyse large numbers of embryos in a single day with high consistency and such limited user input makes this platform particularly useful for high-throughput applications such as drug and genetic screens, where large numbers of embryos are required.

It is worth noting that a potential significant barrier for the use of this system is the cost, with both the microscope and the analysis packages being potentially out of reach of some laboratories. The flexibility across a large range of assays means the system can be both multi-purpose and multi-user allowing it to be shared between groups. The Hermes microscope and Athena packages both have applications beyond zebrafish, with many applications in cell biology, which does gives potential for shared use across multiple laboratories and departments, and the opportunity to share the cost.

Zebrafish provide a unique opportunity for drug screening in whole live animals since they produce large numbers of fast developing, transparent embryos. The development of an automated screening platform that is fast, customisable and easy to use without specialist knowledge or training will allow for much better utilisation of this unique system. As shown in this manuscript, the platform can be applied to a large number of different assays across a large range of research topics, with new assays being straightforward to develop using the user-friendly environment. The speed of acquisition and analysis allows access to larger compound libraries, the consistency between experiments allows for comparison of results across multiple experiments, and the ease of use
makes the platform accessible to all. The training set used to identify fish and anatomy are centralized and continuously updated/maintained which also provides reproducibility and consistency between research groups.

This platform will allow for high-content screening in zebrafish, as well as being useful for more targeted experiments by allowing for the use of large numbers of embryos to give statistical power. The ease of use, speed of imaging and analysis, and consistency between images acquired at different times makes this platform useful for both small and large-scale experiments. We now plan to use this platform for a small-molecule drug screening, using the automated HSPC count presented here to conduct a synthetic lethal screen in an MDS-related mutant background.

Materials and Methods

Zebralish Husbandry and Experimental Conditions

Zebralish (Danio rerio) stocks were maintained according to standard procedures in UK Home Office approved aquaria (Westerfield, 2007). Embryos were obtained from wild-type AB or AB/TL, transgenic strains Tg(itga2b:GFP) which has green-fluorescent HSPCs (Lin et al., 2005), Tg(Lyzc:mcherry) which has red-fluorescent myeloid cells (Buchan et al., 2019), and Tg(kdrl:mCherry) (Choi et al., 2007) which has red-fluorescent vasculature, or mutant strains rps14E8fs (Peña et al., 2020) and mab21lu517 (Wycliffe et al., 2020). Embryos were staged according to Kimmel et al. (Kimmel Charles et al., 1995) and expressed in hours/days post-fertilization (hpf/dpf). All procedures complied with Home Office guidelines.

Preparation of Embryos for Imaging

At 24hpf, embryos were dechorionated using pronase, and raised in 0.003% phenylthiourea-supplemented E3 medium to prevent pigment formation. At 2-4 dpf embryos were anaesthetised with tricaine, and then loaded into a 96-well zebrafish alignment plate (Hashimoto ZF plate, Japan, 96-well) in 75 µL of the E3 medium using a wide orifice tip. The plates were then gently centrifuged at 200 rcf for 20 seconds before imaging.
WiScan® Hermes Image Acquisition

The 96-well plates were imaged using the WiScan® Hermes High Content Imaging System (IDEA Bio-Medical, Rehovot, Israel). Images were taken in brightfield and green and red fluorescence channels at a 4x magnification with a well coverage of 150% and field density of 150%. This gave 4 overlapping images along each well. Brightfield was imaged with 35% light intensity, 40 ms exposure and 30% gain. Fluorescence channels were imaged with 90% light intensity, 200 ms exposure and 30% gain, except for Tg(kdrl:mCherry) which was imaged with 50ms exposure in the fluorescent channel. Z-stacks were taken in 5 planes with an inter-plane distance of 50.6 µm.

An accompanying image pre-processing software package (Advanced Data Processing software, IDEA Bio-Medical, Rehovot, Israel) was used to process the raw images of multiple data sets in batch prior to quantitative analysis. This software loads one or more image data sets obtained on the WiScan® Hermes microscope, then performs one or more sequential image processing operations in batch. Image processing operations can include intensity projection (through time or Z-slices), fluorescence deconvolution, sharpest (most in-focus) Z-plane selection, and image montage (stitching). Here, the sharpest z-slice for each raw field of view in the brightfield channel was selected, and maximum intensity projection for each raw field of view in the fluorescence channel was performed. Subsequently, all fields of view (sharpest brightfield and maximum fluorescence) in a well were stitched together to provide a single, 2-colour channel image per well.

WiSoft® Athena Image Analysis

Image quantification was performed with the WiSoft® Athena software Zebrafish Application (IDEA Bio-Medical, Rehovot, Israel). The software application performs automated, multiplexed image analysis by processing brightfield and fluorescence channels simultaneously, with different algorithms. Brightfield analysis of the whole zebrafish embryo utilized a novel deep learning based artificial intelligence algorithm to identify the fish and internal structures. The method is based on a supervised convolutional neural network and was trained using hundreds of images of 2-4 dpf zebrafish embryos as input, each paired with manually segmented ground-truth outputs. An option for custom, manual segmentation is also present in the Zebrafish application. The resulting algorithm automatically identifies the fish outline, internal anatomical structures and three fish regions (head, trunk, and tail). Users input only minimum and maximum size constraints to select the appropriate range for anatomical objects/regions that are to be identified and analysed. Fluorescence channels are analysed using image analysis techniques with optimized algorithms (smoothing, background
subtraction, thresholding and area constraints, Table 2) to identify high signal-to-background objects, such as fluorescent granules.

The morphological features (length, area, shape, etc.) of the fish, organs and regions are quantified based on the structures identified in the brightfield channel. Objects (i.e. fluorescent granules) identified in the fluorescence channels that are contained within the fish outline are included in quantification, while spots outside the fish are disregarded. Fluorescent spots are quantified regarding their count and intensity within the fish as a whole, as well as within anatomical or regional structures (e.g. granule count within the tail, spot intensity within the spine, etc.).

Parameters were set to define the permitted size of detected fish and internal features in 2-4dpf embryos (Table 1). No additional parameter input was required to identify these objects, since the AI algorithm was trained to identify them automatically. A population of on-side orientated fish for analysis was defined as those with an eye count and a tail count equal to one.

Statistical Analysis

For each experiment the desired data was exported from Athena in csv format, for example granule in the tail count for HSPC count experiments, fluorescence area or eye size, for individual embryos. Statistical analysis was performed using GraphPad Prism v9.0.2. The probability level for statistical significance was $P < 0.05$ and unpaired two-tailed t-tests were used for analysis. Data are presented as mean ± standard deviation.

Genotyping Mutants

For Rps14 and mab21l mutants, genotyping was required post imaging. Embryos were removed in 50 µL of nuclease-free water using a multi-channel pipette and wide orifice tips and added directly to 1 µL 50x HotSHOT base solution (KOH 1.25 M, EDTA 10 mM). After incubation at 95°C for 30 minutes the solution was neutralised with 1x HotSHOT neutralising solution (40 mM Tris-HCl). To identify the genotype of Rps14 and mab21l mutants we used the Kompetitive Allele Specific PCR genotyping assay (KASP, LGC Genomics).
X-Ray Irradiation

At 48hpf embryos were transferred to 6-well plates for irradiation. X-rays (250kV, 12.5mA, 1.0 mm Al filter) for a total dose of at 40 Gy or 100 Gy using an AGO HS 320/250 X-ray machine (AGO X-ray Ltd.) equipped with an NDI-321 stationary anode X-ray tube (Varian). Embryos were placed back at 28°C for 24 hours before imaging at 3dpf as above.

Acridine Orange Staining for Detection of Apoptosis

At 3dpf, live embryos in 6-well plates were incubated in acridine orange (Invitrogen) staining solution (1 µg acridine orange in E₃ medium) in the dark for 30 minutes with gentle rocking. Embryos were swiftly washed with E₃ medium four times before being anaesthetised with tricaine, and then loaded into plates for imaging as above. Plates were kept in foil to shield from light and imaged promptly after staining.

Hair Cell Assay

Protocol adapted from Chiu et al. (Chiu et al., 2008). At 4dpf, live embryos in 6-well plates were incubated in YO-PRO-1 (Invitrogen) staining solution (2 µM YO-PRO-1 in E₃ medium) in the dark for 30 minutes with gentle rocking. Embryos were swiftly washed with E₃ medium four times. Embryos were then treated with 100µM pentamidine isethionate (PI), 100µM propantheline bromide (PB) or DMSO control for 1 hour. Embryos were then anaesthetised with tricaine and loaded into plates for imaging as above.

Angiogenesis Inhibition Assay

Protocol adapted from Tran et al. (Tran et al., 2007). At 24hpf Tg(kdrl:mCherry) embryos were dechorionated with pronase and then treated in 6-well plates with AG1478 or SU4312 or DMSO for 24 hours before embryos were then anaesthetised and loaded for imaging as above.
Competing Interests

J.O. and Y.P. are employed by IDEA Bio-Medical, Rehovot, Israel who manufacture and sell the WiScan® Hermes High Content Imaging System and WiSoft® Athena software Zebrafish Application used throughout this manuscript. They have provided technical support throughout development of this screening platform and have contributed to the preparation of this manuscript. M.W. is employed by UCL with a fellowship partially funded by IDEA Bio-Medical. The remaining authors have no competing interests.

Funding

This work was supported by Cancer Research UK Advanced Clinician Scientist Fellowship [24873] (E.P., A.L. and Y.H.); IDEA Bio-Medical (Application Scientist, J.O., and CTO, Y.P.); European Research Council PoC [842174] and Radiation Research Unit at the Cancer Research UK City of London Centre Award [C7893/A28990] (I.B. and E.S.); NIHR Biomedical Research Centre at University College London Hospital and UCL (M.W.); and Medical Research Council Programme Grants [MR/T020164/1] (G.G.).

References

Abrams, J. M., White, K., Fessler, L. I. & Steller, H. (1993). Programmed cell death during Drosophila embryogenesis. Development 117, 29.

Aldridge, D. R. & Radford, I. R. (1998). Explaining Differences in Sensitivity to Killing by Ionizing Radiation between Human Lymphoid Cell Lines. Cancer research 58, 2817.

Arulmozhivarman, G., Stöter, M., Bickle, M., Kräter, M., Wobus, M., Ehninger, G., Stölzel, F., Brand, M., Bornhäuser, M. & Shayegi, N. (2016). In Vivo Chemical Screen in Zebrafish Embryos Identifies Regulators of Hematopoiesis Using a Semiautomated Imaging Assay. Journal of Biomolecular Screening 21, 956-964. 10.1177/1087057116644163

Buchan, K. D., Prajsnar, T. K., Ogryzko, N. V., de Jong, N. W. M., van Gent, M., Kolata, J., Foster, S. J., van Strijp, J. A. G. & Renshaw, S. A. (2019). A transgenic zebrafish line for in vivo visualisation of neutrophil myeloperoxidase. bioRxiv, 456541. 10.1101/456541
Chang, T.-Y., Pardo-Martin, C., Allalou, A., Wähly, C. & Yanik, M. F. (2012). Fully automated cellular-resolution vertebrate screening platform with parallel animal processing. Lab on a Chip 12, 711-716. 10.1039/C1LC20849G

Chávez, M. N., Aedo, G., Fierro, F. A., Allende, M. L. & Egaña, J. T. (2016). Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration. Front Physiol 7, 56-56. 10.3389/fphys.2016.00056

Chen, A. T. & Zon, L. I. (2009). Zebrafish blood stem cells. Journal of Cellular Biochemistry 108, 35-42. 10.1002/jcb.22251

Chen, C., Choudhury, S., Wangsa, D., Lescott, C. J., Wilkins, D. J., Sripadhan, P., Liu, X., Wangsa, D., Ried, T., Moskaluk, C., et al. (2017). A multiplex preclinical model for adenoid cystic carcinoma of the salivary gland identifies regorafenib as a potential therapeutic drug. Scientific reports 7, 11410. 10.1038/s41598-017-11764-2

Chiu, C.-C., Chou, H.-L., Chen, B.-H., Chang, K.-F., Tseng, C.-H., Fong, Y., Fu, T.-F., Chang, H.-W., Wu, C.-Y., Tsai, E.-M., et al. (2015). BPIQ, a novel synthetic quinoline derivative, inhibits growth and induces mitochondrial apoptosis of lung cancer cells in vitro and in zebrafish xenograft model. BMC Cancer 15, 962-962. 10.1186/s12885-015-1970-x

Chiu, L. L., Cunningham, L. L., Raible, D. W., Rubel, E. W. & Ou, H. C. (2008). Using the zebrafish lateral line to screen for ototoxicity. J Assoc Res Otolaryngol 9, 178-190. 10.1007/s10162-008-0118-y

Choi, J., Dong, L., Ahn, J., Dao, D., Hammerschmidt, M. & Chen, J.-N. (2007). FoxH1 negatively modulates flk1 gene expression and vascular formation in zebrafish. Developmental Biology 304, 735-744. https://doi.org/10.1016/j.ydbio.2007.01.023

Chowdhury, S., Owens, K. N., Herr, R. J., Jiang, Q., Chen, X., Johnson, G., Groppi, V. E., Raible, D. W., Rubel, E. W. & Simon, J. A. (2018). Phenotypic Optimization of Urea–Thiophene Carboxamides To Yield Potent, Well Tolerated, and Orally Active Protective Agents against Aminoglycoside-Induced Hearing Loss. Journal of Medicinal Chemistry 61, 84-97. 10.1021/acs.jmedchem.7b00932

Deml, B., Kariminejad, A., Borujerdi, R. H. R., Muheisen, S., Reis, L. M. & Semina, E. V. (2015). Mutations in MAB21L2 Result in Ocular Coloboma, Microcornea and Cataracts. PLOS Genetics 11, e1005002. 10.1371/journal.pgen.1005002

Esterberg, R., Coffin, A. B., Ou, H., Simon, J. A., Raible, D. W. & Rubel, E. W. (2013). Fish in a dish: drug discovery for hearing habilitation. Drug Discovery Today: Disease Models 10, e23-e29. 10.1016/j.ddmod.2012.02.001

Fazio, M. & Zon, L. I. (2017). Fishing for answers in precision cancer medicine. Proceedings of the National Academy of Sciences 114, 10306. 10.1073/pnas.1713769114
Ferri-Lagneau, K. F., Moshal, K. S., Grimes, M., Zahora, B., Lv, L., Sang, S. & Leung, T. (2012). Ginger Stimulates Hematopoiesis via Bmp Pathway in Zebrafish. *PLOS ONE* 7, e39327. 10.1371/journal.pone.0039327

Fior, R., Póvoa, V., Mendes, R. V., Carvalho, T., Gomes, A., Figueiredo, N. & Ferreira, M. G. (2017). Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. *Proceedings of the National Academy of Sciences* 114, E8234. 10.1073/pnas.1618389114

Fu, A., Peh, Y. M., Ngan, W., Wei, N. & Luo, K. Q. (2018). Rapid identification of antimicrometastases drugs using integrated model systems with two dimensional monolayer, three dimensional spheroids, and zebrafish xenotransplantation tumors. *Biotechnology and Bioengineering* 115, 2828-2843. https://doi.org/10.1002/bit.26816

Furutani-Seiki, M., Jiang, Y. J., Brand, M., Heisenberg, C. P., Houart, C., Beuchle, D., van Eeden, F. J., Granato, M., Haffter, P., Hammerschmidt, M., et al. (1996). Neural degeneration mutants in the zebrafish, Danio rerio. *Development* 123, 229.

Gath, N. & Gross, J. M. (2019). Zebrafish mab21l2 mutants possess severe defects in optic cup morphogenesis, lens and cornea development. *Developmental Dynamics* 248, 514-529. 10.1002/dvdy.44

Geiger, G. A., Parker, S. E., Beothy, A. P., Tucker, J. A., Mullins, M. C. & Kao, G. D. (2006). Zebrafish as a “Biosensor”? Effects of Ionizing Radiation and Amifostine on Embryonic Viability and Development. *Cancer research* 66, 8172. 10.1158/0008-5472.CAN-06-0466

Hagedorn, E. J., Durand, E. M., Fast, E. M. & Zon, L. I. (2014). Getting more for your marrow: boosting hematopoietic stem cell numbers with PGE2. *Exp Cell Res* 329, 220-226. 10.1016/j.yexcr.2014.07.030

Haney, M. G., Moore, L. H. & Blackburn, J. S. (2020). Drug Screening of Primary Patient Derived Tumor Xenografts in Zebrafish. *J Vis Exp*. 10.3791/60996

Hartsock, A., Lee, C., Arnold, V. & Gross, J. M. (2014). In vivo analysis of hyaloid vasculature morphogenesis in zebrafish: A role for the lens in maturation and maintenance of the hyaloid. *Developmental Biology* 394, 327-339. 10.1016/j.ydbio.2014.07.024

Jung, D.-W., Oh, E.-S., Park, S.-H., Chang, Y.-T., Kim, C.-H., Choi, S.-Y. & Williams, D. R. (2012). A novel zebrafish human tumor xenograft model validated for anti-cancer drug screening. *Molecular BioSystems* 8, 1930-1939. 10.1039/C2MB05501E

Kamentsky, L., Jones, T. R., Fraser, A., Bray, M.-A., Logan, D. J., Madden, K. L., Ljosa, V., Rueden, C., Eliceiri, K. W. & Carpenter, A. E. (2011). Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. *Bioinformatics* 27, 1179-1180. 10.1093/bioinformatics/btr095
Kanungo, J., Lantz, S. & Paule, M. G. (2011). In vivo imaging and quantitative analysis of changes in axon length using transgenic zebrafish embryos. *Neurotoxicol Teratol* **33**, 618-623. 10.1016/j.ntt.2011.08.013

Kimmel Charles, B., Ballard William, W., Kimmel Seth, R., Ullmann, B. & Schilling Thomas, F. (1995). Stages of embryonic development of the zebrafish. *Developmental Dynamics* **203**, 253-310. 10.1002/aja.1002030302

Kitcher, S. R., Kirkwood, N. K., Camci, E. D., Wu, P., Gibson, R. M., Redila, V. A., Ogelman, R., Simon, J. A., Rubel, E. W., Raible, D. W., et al. (2019). ORC-13661 protects sensory hair cells from aminoglycoside and cisplatin ototoxicity. *JCI Insight* **4**. 10.1172/jci.insight.126764

Lehnert, S., Rybka, W. B., Suissa, S. & Giambattisto, D. (1985). Radiation Response of Haematopoietic Cell Lines of Human Origin. *International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine* **49**, 423-431. 10.1080/09553008514552651

Lenard, A., Alghisi, E., Daff, H., Donzelli, M., McGinnis, C. & Lengerke, C. (2016). Using zebrafish to model erythroid lineage toxicity and regeneration. *Haematologica* **101**, e164. 10.3324/haematol.2016.142562

Lin, H.-F., Traver, D., Zhu, H., Dooley, K., Paw, B. H., Zon, L. I. & Handin, R. I. (2005). Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. *Blood* **106**, 3803. 10.1182/blood-2005-01-0179

Lin, H. S., Huang, Y. L., Wang, Y. S., Hsiao, E., Hsu, T. A., Shiao, H. Y., Jiaang, W. T., Sampurna, B. P., Lin, K. H., Wu, M. S., et al. (2019). Identification of Novel Anti-Liver Cancer Small Molecules with Better Therapeutic Index than Sorafenib via Zebrafish Drug Screening Platform. *Cancers (Basel)* **11**. 10.3390/cancers11060739

Mauro, A., Ng, R., Li, J. Y., Guan, R., Wang, Y., Singh, K. K. & Wen, X.-Y. (2019). Protocol development for discovery of angiogenesis inhibitors via automated methods using zebrafish. *PLOS ONE* **14**, e0221796. 10.1371/journal.pone.0221796

McAleer, M. F., Davidson, C., Davidson, W. R., Yentzer, B., Farber, S. A., Rodeck, U. & Dicker, A. P. (2005). Novel use of zebrafish as a vertebrate model to screen radiation protectors and sensitizers. *International Journal of Radiation Oncology Biology Physics* **61**, 10-13. 10.1016/j.ijrobp.2004.09.046

McGrath, P. & Seng, W. L. (2013). Use of zebrafish apoptosis assays for preclinical drug discovery. *Expert Opinion on Drug Discovery* **8**, 1191-1202. 10.1517/17460441.2013.825244

Metelo, A. M., Noonan, H. R., Li, X., Jin, Y., Baker, R., Kamentsky, L., Zhang, Y., van Rooijen, E., Shin, J., Carpenter, A. E., et al. (2015). Pharmacological HIF2α inhibition improves VHL disease–associated phenotypes in zebrafish model. *The Journal of Clinical Investigation* **125**, 1987-1997. 10.1172/JCI73665
Nicolson, T. (2005). The Genetics of Hearing and Balance in Zebrafish. *Annual Review of Genetics* **39**, 9-22. 10.1146/annurev.genet.39.073003.105049

North, T. E., Goessling, W., Walkley, C. R., Lengerke, C., Kopani, K. R., Lord, A. M., Weber, G. J., Bowman, T. V., Jang, I.-H., Grosser, T., et al. (2007). Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. *Nature* **447**, 1007-1011. 10.1038/nature05883

Owens, K. N., Santos, F., Roberts, B., Linbo, T., Coffin, A. B., Knisely, A. J., Simon, J. A., Rubel, E. W. & Raible, D. W. (2008). Identification of Genetic and Chemical Modulators of Zebrafish Mechanosensory Hair Cell Death. *PLOS Genetics* **4**, e1000020. 10.1371/journal.pgen.1000020

Pardo-Martín, C., Allalou, A., Medina, J., Eimon, P. M., Wällby, C. & Fatih Yanik, M. (2013). High-throughput hyperdimensional vertebrate phenotyping. *Nature communications* **4**, 1467. 10.1038/ncomms2475

Pardo-Martín, C., Chang, T.-Y., Koo, B. K., Gilleland, C. L., Wasserman, S. C. & Yanik, M. F. (2010). High-throughput in vivo vertebrate screening. *Nature Methods* **7**, 634-636. 10.1038/nmeth.1481

Parng, C., Anderson, N., Ton, C. & McGrath, P. (2004). Zebrafish Apoptosis Assays for Drug Discovery. *Methods in Cell Biology*. Academic Press.

Pei, W., Xu, L., Huang, S. C., Pettie, K., Idol, J., Risson, A., Jimenez, E., Sinclair, J. W., Slevin, C., Varshney, G. K., et al. (2018). Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues. *npj Regenerative Medicine* **3**, 11. 10.1038/s41536-018-0050-7

Peña, O. A., Lubin, A., Rowell, J., Hockings, C., Jung, Y., Hoade, Y., Dace, P., Valdivia, L. E., Tuschl, K., Boiers, C., et al. (2020). TLR7 ligation augments haematopoiesis in Rps14 (uS11) deficiency via paradoxical suppression of inflammatory signalling and enhanced differentiation. *bioRxiv*, 2020.07.06.175000. 10.1101/2020.07.06.175000

Pulak, R. (2016). Tools for automating the imaging of zebrafish larvae. *Methods* **96**, 118-126. 10.1016/j.ymeth.2015.11.021

Romano, S. N. & Gorelick, D. A. (2014). Semi-automated imaging of tissue-specific fluorescence in zebrafish embryos. *J Vis Exp*, 51533. 10.3791/51533

Saydmohammed, M., Vollmer, L. L., Onuoha, E. O., Vogt, A. & Tsang, M. (2011). A high-content screening assay in transgenic zebrafish identifies two novel activators of fgf signaling. *Birth Defects Research Part C: Embryo Today: Reviews* **93**, 281-287. 10.1002/bdrc.20216

Schneider, R. K., Schenone, M., Ferreira, M. V., Kramann, R., Joyce, C. E., Hartigan, C., Beier, F., Brümmendorf, T. H., Germing, U., Platzbecker, U., et al. (2016). Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. *Nature Medicine* **22**, 288. 10.1038/nm.4047
Serbedzija, G. N., Flynn, E. & Willett, C. E. (1999). Zebrafish angiogenesis: A new model for drug screening. *Angiogenesis* 3, 353-359. 10.1023/A:1026598300052

Shafizadeh, E., Peterson, R. T. & Lin, S. (2004). Induction of reversible hemolytic anemia in living zebrafish using a novel small molecule. *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology* 138, 245-249. 10.1016/j.cca.2004.05.003

Somasagara, R. R., Huang, X., Xu, C., Haider, J., Serody, J. S., Armistead, P. M. & Leung, T. (2021). Targeted therapy of human leukemia xenografts in immunodeficient zebrafish. *Scientific reports* 11, 5715. 10.1038/s41598-021-85141-5

Stirling, D. R., Suleyman, O., Gil, E., Elks, P. M., Torraca, V., Noursadeghi, M. & Tomlinson, G. S. (2020). Analysis tools to quantify dissemination of pathology in zebrafish larvae. *Scientific reports* 10, 3149. 10.1038/s41598-020-59932-1

Teleanu, R. I., Chircov, C., Grumezescu, A. M. & Teleanu, D. M. (2019). Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment. *J Clin Med* 9, 84. 10.3390/jcm9010084

Ton, C. & Parng, C. (2005). The use of zebrafish for assessing ototoxic and otoprotective agents. *Hearing Research* 208, 79-88. 10.1016/j.heares.2005.05.005

Tonon, F., Zennaro, C., Dapas, B., Carraro, M., Mariotti, M. & Grassi, G. (2016). Rapid and cost-effective xenograft hepatocellular carcinoma model in Zebrafish for drug testing. *Int J Pharm* 515, 583-591. 10.1016/j.ijpharm.2016.10.070

Tran, T. C., Sneed, B., Haider, J., Blavo, D., White, A., Aiyejorun, T., Baranowski, T. C., Rubinstein, A. L., Doan, T. N., Dingedline, R., et al. (2007). Automated, Quantitative Screening Assay for Antiangiogenic Compounds Using Transgenic Zebrafish. *Cancer research* 67, 11386. 10.1158/0008-5472.CAN-07-3126

Traver, D., Winzeler, A., Stern, H. M., Mayhall, E. A., Langenau, D. M., Kutok, J. L., Look, A. T. & Zon, L. I. (2004). Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. *Blood* 104, 1298-1305. 10.1182/blood-2004-01-0100

Tucker, B. & Lardelli, M. (2007). A Rapid Apoptosis Assay Measuring Relative Acridine Orange Fluorescence in Zebrafish Embryos. *Zebrafish* 4, 113-116. 10.1089/zeb.2007.0508

Vlasits, A. L., Simon, J. A., Raible, D. W., Rubel, E. W. & Owens, K. N. (2012). Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin. *Hearing Research* 294, 153-165. 10.1016/j.heares.2012.08.002

Vogt, A., Cholewinski, A., Shen, X., Nelson, S. G., Lazo, J. S., Tsang, M. & Hukriede, N. A. (2009). Automated image-based phenotypic analysis in zebrafish embryos. *Dev Dyn* 238, 656-663. 10.1002/dvdy.21892
Vogt, A., Codore, H., Day, B. W., Hukriede, N. A. & Tsang, M. (2010). Development of automated imaging and analysis for zebrafish chemical screens. *JoVE*, e1900. doi:10.3791/1900

Westerfield, M. (2007). *The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio), 5th Edition*, Eugene: University of Oregon Press.

Whitfield, T. T. (2002). Zebrafish as a model for hearing and deafness. *Journal of Neurobiology* **53**, 157-171. 10.1002/neu.10123

Wycliffe, R., Julie Plaisancie, J., Sydney Leaman, S., Santis, O., Tucker, L., Cavieres, D., Fernandez, M., Weiss, C., Sobarzo, C., Gestri, G., et al. (2020). Developmental delay during eye morphogenesis underlies optic cup and neurogenic defects in mab21l2 u517 zebrafish mutants. *IJDB In Press*.

Xiao, J., Glasgow, E. & Agarwal, S. (2020). Zebrafish Xenografts for Drug Discovery and Personalized Medicine. *Trends Cancer* **6**, 569-579. 10.1016/j.trecan.2020.03.012

Zhang, B., Shimada, Y., Kuroyanagi, J., Umemoto, N., Nishimura, Y. & Tanaka, T. (2014). Quantitative Phenotyping-Based In Vivo Chemical Screening in a Zebrafish Model of Leukemia Stem Cell Xenotransplantation. *PLOS ONE* **9**, e85439. 10.1371/journal.pone.0085439

Zirlik, K. & Duyster, J. (2018). Anti-Angiogenics: Current Situation and Future Perspectives. *Oncology Research and Treatment* **41**, 166-171. 10.1159/000488087
Figures

Figure 1 (A) Schematic of screening platform workflow including plate preparation, image acquisition and image analysis of zebrafish embryos with approximate timings. (B) Brightfield image and (C) fluorescent image of a Tg(itga2b:GFP) zebrafish at 3dpf acquired from the Hermes showing some of the regions identified by Athena: tail (red), trunk (dark blue), head (white), eye (pink), yolk (yellow), tail fin (light blue) and fluorescent granules (green). (D) Cartoon showing the location of HSPCs in the CHT in the tail at 3dpf. (E) Correlation of HSPC counts in 93 individual images of Tg(itga2b:GFP) embryos at 3dpf between manual counts and granule counts using the Athena Zebrafish application, analysed using simple linear regression with $r = 0.844$. Scale bars = 500 µm. n refers to the number of embryos analysed.
Figure 2 (A) Brightfield and fluorescent images of Tg(itga2b:GFP) embryos at 2-4dpf and analysed for HSPC count (green) in the tail region (red). (B) HSPC counts at 2dpf (n=48), 3dpf (n=54) and 4dpf (n=47) showing the increase in HSPC number over time. (C) Fluorescent images of the tail of Rps14+/+ and Rps14+/− Tg(itga2b:GFP) at 3dpf following phz haemolytic stress for 24h at 24hpf alongside unstressed controls analysed for HSPC count (green) in the tail region (red). (D) HSPC count of the different conditions showing no difference between HSPC count in unstressed Rps14+/+ (n=27) and unstressed Rps14+/− (n=22), but an increase in HSPC count in the phz stressed Rps14+/+ embryos (n=29) compared with wild type, which does not occur in the phz stressed Rps14+/− embryos (n=29), from triplicate experiments (Peña et al., 2020). Statistical analysis using unpaired t-tests. Error bars show mean±s.d. ns = P>0.05, ** = P<0.01. Scale bars = 500 µm. n refers to the number of embryos analysed for each condition. Cell counts give the Athena cell count for the example image shown.
Figure 3 (A) Fluorescent images of the tail of Tg(itga2b:GFP) embryos at 3dpf, irradiated at 2dpf with 0 Gy, 40 Gy or 100 Gy x-ray analysed for HSPC count (green) in the tail region (red). (B) HSPC counts showing the reduction in HSPC number with 40 Gy (n=46) and 100 Gy (n=48) compared with 0 Gy (n=48). (C) Fluorescent images of the tail of Tg(itga2b:GFP)(LyzC:mcherry) dual fluorophore embryos at 3dpf irradiated at 2dpf with 0 Gy or 40 Gy x-ray analysed for HSPC (green) and myeloid (red) in the tail (white). (D) HSPC count of GFP-positive cells and (E) myeloid cell count of mCherry-positive cells in the tail showing the decrease of both cell types with irradiation (n=43) compared with unirradiated (n=42). (F) Fluorescent images of acridine orange stained embryos at 3dpf following irradiation at 2dpf with 0 Gy or 40 Gy x-ray analysed for granule count (green) in the whole fish. (G) Granule counts in the whole fish showing an increase in apoptosis following irradiation (n=40) compared with unirradiated (n=42). Irradiation experiments were performed in triplicate. Statistical analysis using unpaired t-tests. Error bars show mean±s.d. *** = P<0.001, **** = P<0.0001. Scale bars = 500 µm. n refers to the number of embryos analysed for each condition. Cell counts give the Athena cell count for the example image shown, for each cell type in dual fluorophore images.
Figure 4 (A) Fluorescent images of YO-PRO-1 stained embryos at 4dpf following treatment for 1 hour with DMSO, 100µM pentamidine isethionate (PI) or 100µM propantheline bromide (PB) analysed for fluorescent granules (red) in the whole fish. (B) Total fluorescence intensity in the whole fish and (C) average area of the fluorescent granules, showing decrease with drug treatment as previously described (Chiu et al., 2008). (D) Fluorescent images of Tg(kdrl:mCherry) embryos at 2dpf, treated for 24 hours from 24hpf with DMSO, AG1478 or SU 4312 analysed for mCherry fluorescence in the whole fish. (E) Total fluorescent area in the whole fish following treatment with AG1478 and (F) total fluorescent area in the whole fish following treatment with SU4312 showing reduced angiogenesis in treated fish compared with the control as previously described (Tran et al.,
2007). (G) Brightfield images of mab21l2+/+, mab21l2+/- and mab21l2-/- mutant embryos at 4 dpf analysed for eye size (pink). (H) Eye size showing the reduced eye size in mab21l2-/- mutants. Results consistent with previous publications were achieved in a single experiment for each of these assays. Statistical analysis using unpaired t-tests. Error bars show mean±s.d. ns = \(P > 0.05 \), * = \(P < 0.05 \), *** = \(P < 0.001 \), **** = \(P < 0.0001 \). Scale bars = 500 µm. n refers to the number of embryos analysed for each condition.
Table 1 Athena Zebrafish Application parameters for detecting an embryo within the well.

Feature Detected	Minimum Area (µm²)	Maximum Area (µm²)
Fish	950000	1600000
Head	15000	1000000
Trunk	25000	1300000
Tail	1500000	1000000
Eye	20000	250000
Yolk	100000	3000000
Fin	15000	300000

Bold text shows parameters that have been adjusted from the default.

For fluorescence analysis, granules were identified within the Athena Zebrafish Application by defining the fluorescence threshold, area of the granules, background subtraction and smoothing. Parameters were customised for each assay (Table 2).

Table 2 Athena Zebrafish Application parameters for fluorescence granules for different assays.

Area for Analysis	itga2b:GFP	LyzC:mCherry	Acridine Orange	kdrl:mCherry	YO-PRO-1
Fluorescence Channel	Green	Red	Green	Red	Green
Smooth (µm²)	3	3	3.5	1	3
Background Subtraction (µm²)	15	15	20	30	15
Intensity Threshold	1200	1200	1800	1200	4000
Maximum Merge Area (µm²)	20	20	25	500	200
Minimum Area (µm²)	10	10	10	100	50
Maximum Area (µm²)	400	400	600	5000	5000
Fig. S1

5 x z-stack planes
Inter-plane distance 50.6 µm

Brightfield

Green Fluorescence

Best z-slice selection & montaging

Max z-axis intensity projection & montaging
Fig. S2.