Data Article

Dataset on aerosol loading and deposition over Nouakchott-Mauritania

M.E. Emetere, G.A. Adeyemi

Department of Physics, Covenant University Canaan Land, P.M.B 1023, Ota, Nigeria
Department of Civil Engineering, Covenant University Canaan Land, P.M.B 1023, Ota, Nigeria
Department of Mechanical Engineering and Science, University of Johannesburg, APK, South Africa

A R T I C L E I N F O

Article history:
Received 9 June 2018
Received in revised form 1 July 2018
Accepted 5 July 2018
Available online 9 July 2018

Keywords:
Air pollution
Aerosol
Nouakchott
Mauritania
Model

A B S T R A C T

Aerosol optical depth (AOD) is a vital parameter that determines air quality over a geographic enclave. In this paper, the pollution state of Nouakchott-Mauritania was considered. Fifteen years primary (aerosol optical depth) dataset was obtained from the Multi-angle Imaging Spectro-Radiometer (MISR). The secondary datasets were generated from the primary dataset to understand the short and long term effect of aerosol loading over nouakchott. The dataset is important to resolve the ground effect of satellite measurements.

& 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Air Pollution
More specific subject area	Aerosol loading and Retention
Type of data	Table and figure
How data was acquired	Multi-angle Imaging Spectro-Radiometer (MISR)
Data format	Raw and analyzed
Experimental factors	Aerosol Optical Depth
Experimental features	Measurement at 550 nm
Data source location	Nouakchott-Mauritania
Data accessibility	Multi-angle Imaging Spectro-Radiometer

* Corresponding author.
E-mail address: emetere@yahoo.com (M.E. Emetere).

https://doi.org/10.1016/j.dib.2018.07.018
2352-3409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Value of the data

- The data gives a good background for further study on aerosol loading.
- The data provides technician necessary insight towards configuring sun-photometer over Nouakchott-Mauritania.
- The data helps to quantify the extent of air pollution.
- The data provides modeller necessary insight on aerosol loading and retention challenges over Nouakchott-Mauritania.

1. Data

One of the known methods for examining the level of pollution over an area is the aerosol optical depth (AOD). Optical properties of aerosol particles have severe influence over the local radiative forcing and radiation balance of the earth [1,2]. The interaction between aerosol and solar radiation can be described by its optical properties. The optical parameters used to describe the aerosol-solar radiation are the extinction and scattering coefficients, the aerosol depth and the single-scattering phase [3–5]. From the AOD dataset, aerosol hygroscopic growth factor, total atmospheric optical thickness and aerosols loading [6,7].

The primary data was obtained from Multi-angle Imaging Spectro-Radiometer (MISR) i.e. found in Table 1A–1C. The tuning and atmospheric constants for fifteen was obtained using the West African regional scale dispersion model (WASDM) from the AOD dataset (Figs. 2 and 3). The tuning and

Month	2000	2001	2002	2003	2004	2005
Jan	0.8695	0.276	0.3025	0.233833333	0.1994	0.3684
Feb	0.9052	0.36775	0.48725	0.4885	0.384	0.392666667
Mar	0.896	0.4088	0.5454	0.4325	0.592166667	0.2902
Apr	0.70325	0.7436	0.337	0.5725	0.552	0.6452
May	0.9278	0.3125	0.528666667	0.831666667	0.4375	0.746333333
Jun	0.9865	0.7084	0.8676	0.8752	0.7165	0.610833333
Jul	0.781166667	0.7262	0.90075	0.7845	0.971333333	0.9316
Aug	0.4696	0.8254	0.7206	0.905	0.655	0.91825
Sep	0.2405	0.9795	0.753333333	0.7454	0.6658	0.725666667
Oct	0.3702	0.5575	0.6165	0.5506	0.445666667	0.4772
Nov	0.4895	0.4306	0.2888	0.3752	0.3386	0.3432
Dec	0.21075	0.2322	0.3652	0.301833333	0.4032	

Table 1B
Summarized aerosol optical depth dataset over Nouakchott.

Month	2006	2007	2008	2009	2010
Jan	0.251	0.49375	0.463	0.2694	0.273333333
Feb	0.351333333	0.418	0.5065	0.337	0.2435
Mar	0.4844	0.3786	0.5715	0.5065	0.6442
Apr	0.770666667	0.3885	0.9355	0.473833333	0.6066
May	0.6445	0.680833333	0.514666667	0.7228	0.764
Jun	0.8135	0.701333333	0.6185	0.689333333	0.673166667
Jul	0.915833333	0.8174	0.96	0.793666667	0.947666667
Aug	0.8032	0.901333333	0.76425	0.783	0.802833333
Sep	0.6875	0.76175	0.665333333	1.003	0.6295
Oct	0.591666667	0.5162	0.603	0.374166667	0.36275
Nov	0.2605	0.3746	0.3645	0.25075	0.22325
Dec	0.48975	0.328166667	0.34325	0.143333333	0.262333333
Atmospheric constants are factors that determines the accuracy of ground instruments e.g. sun photometer [6,7] and they are presented in Table 2. The secondary dataset i.e. aerosol loading was generated using the extended WASDM are presented in Table 3A-C.

Table 1C
Summarized aerosol optical depth dataset over Nouakchott.

Month	2011	2012	2013
Jan	0.2624	0.3988	0.5962
Feb	0.243	0.28	0.2964
Mar	0.2772	0.756666667	0.2044
Apr	0.647333333	0.649666667	0.4878
May	0.471	0.742333333	0.484
Jun	0.588666667	0.871666667	0.700666667
Jul	0.7044	0.762666667	0.731
Aug	0.6412	0.600833333	0.597166667
Sep	0.572	0.533833333	0.4185
Oct	0.546333333	0.25	0.3666
Nov	0.284666667	0.25875	0.175
Dec	0.308	0.188	

Table 2
Atmospheric constants over Nouakchott.

Location	a_1	a_2	n_1	n_2	α	β
Nouakchott	0.9442	0.8131	0.4369	0.08213	± $\frac{\delta}{5}$	± $\frac{\delta}{5}$

Fig. 1. Geographical map of Nouakchott.
Fig. 2. AOD pattern for Nouakchott 2000 – 2013.

Fig. 3. AOD for new model and MISR (Nouakchott, 2000-2013).
2. Experimental design, materials and methods

Mauritania is located on latitude 16°N to 22°N and longitude 7°W to 17°W. It is bounded within an approximate total area of 1,030,700 km². Its geographical structure includes arid plains, cliff, plateau and oases. Its climate is hot with irregular rainfall. Nouakchott is located on longitude and latitude of 18.09° and 15.98° (Fig. 1).

Table 3A	Aerosol loading over Nouakchott.				
Month	2000	2001	2002	2003	2004
Jan	0.610251849	0.859940716	0.853678054	0.86874357	0.874939468
Feb	0.589772356	0.83597879	0.795581598	0.795107337	0.831078864
Mar	0.595085002	0.82322557	0.77245375	0.81325887	0.752338345
Apr	0.699664467	0.679005349	0.844718376	0.760956028	0.7696456
May	0.576626083	0.850983355	0.779328727	0.631523544	0.814897949
Jun	0.54192479	0.697069678	0.611331169	0.607007215	0.692963222
Jul	0.659127654	0.688005495	0.592344977	0.65733573	0.55095607
Aug	0.802167699	0.635000181	0.690872978	0.589888095	0.723349159
Sep	0.86741212	0.549100116	0.67912489	0.678066626	0.718144143
Oct	0.835252388	0.76734939	0.741367625	0.770282069	0.810763945
Nov	0.89151364	0.794727189	0.815974277	0.856983577	0.833741237
Dec	0.89151364	0.87301247	0.869088235	0.83673016	0.853842252

Table 3B	Aerosol loading over Nouakchott.				
Month	2005	2006	2007	2008	2009
Jan	0.835786501	0.865347273	0.793104241	0.804577017	0.861456444
Feb	0.828387115	0.84073205	0.820210232	0.788164773	0.844718376
Mar	0.856652431	0.796659063	0.832728512	0.761388138	0.788146773
Apr	0.728005794	0.664748277	0.829688	0.572117676	0.800669934
May	0.67759322	0.728336983	0.710809619	0.784945797	0.689748183
Jun	0.743952326	0.641563385	0.700626936	0.740451104	0.706612513
Jul	0.574402948	0.583603489	0.639418083	0.557681382	0.652385237
Aug	0.582197336	0.647202074	0.59208051	0.668152109	0.658412464
Sep	0.68279207	0.707520791	0.66947573	0.718369984	0.532048552
Oct	0.79935715	0.75256023	0.784336658	0.74749559	0.834060683
Nov	0.844281011	0.863505084	0.83396788	0.836935581	0.865398856
Dec	0.825042825	0.794632049	0.847098337	0.842999029	0.882923782

Table 3C	Aerosol loading over Nouakchott.			
Month	2010	2011	2012	2013
Jan	0.860540741	0.862942732	0.826449479	0.750543205
Feb	0.866873282	0.866937432	0.859030287	0.855167722
Mar	0.728478842	0.859668896	0.672158962	0.874103366
Apr	0.745871499	0.726994583	0.725886377	0.79537305
May	0.668284589	0.801652868	0.679650799	0.796809857
Jun	0.714564347	0.75388506	0.69091683	0.700961295
Jul	0.56496546	0.699086143	0.668990707	0.685536266
Aug	0.647402069	0.729894787	0.748469507	0.75011577
Sep	0.735370769	0.76117257	0.777224566	0.820044232
Oct	0.837447557	0.772065182	0.86553311	0.836318235
Nov	0.870707385	0.857952393	0.863723734	0.878729234
Dec	0.862957082	0.852310418	0.876770215	0.891536349
The West African regional scale dispersion model (WASDM) for calculating aerosol loading over a region:

\[
\psi(\lambda) = a_1^2 \cos\left(\frac{n_1 \pi \tau(\lambda)}{2}x\right) \cos\left(\frac{n_1 \pi \tau(\lambda)}{2}y\right) + \ldots + a_n^2 \cos\left(\frac{n_n \pi \tau(\lambda)}{2}x\right) \cos\left(\frac{n_n \pi \tau(\lambda)}{2}y\right)
\]

(1)

\(a\) is atmospheric constant gotten from the fifteen years aerosol optical depth (AOD) dataset from MISR, \(n\) is the tuning constant, \(\tau(\lambda)\) is the AOD of the area and \(\psi(\lambda)\) is the aerosol loading. The analysis of Eq. (1) was done using the C++ codes.

The value of the atmospheric and tuning constant for fifteen years was determined using Eq. (1) over fifteen years data (Figs. 1 and 2). The summary of the AOD is shown in Table 1. The value atmospheric and tuning constant i.e. obtained from the comprehensive dataset is shown in Table 2. The secondary dataset i.e. aerosol loading was generated using the extended WASDM are presented in Table 3A–3C. The percentage of the highest aerosol loading is shown in Table 4.

Acknowledgement

The authors appreciate Covenant University for partial sponsorship. The authors acknowledge NASA for primary dataset. Emetere M.E. enjoys partial sponsorship from University of Johannesburg as Senior Research Associates.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.07.018.

References

[1] K. Vijayakumar, P.C.S. Devara, Study of aerosol optical depth, ozone, and precipitable water vapour content over Sinhagad, a high-altitude station in the Western Ghats, Int. J. Remote Sens. 34 (2) (2013) 613–630.

[2] O. Boucher, J. Quaas, Water vapour affects both rain and aerosol optical depth, Nat. Geosci. 6 (2013) 4–5.

[3] J.-J. Cao, C.-S. Zhu, X.-X. Tie, F.-H. Geng, H.-M. Xu, S.S.H. Ho, G.-H. Wang, Y.-M. Han, K.-F. Ho, Characteristics and sources of carbonaceous aerosols from Shanghai, China, Atmos. Chem. Phys. 13 (2013) 803–817.

[4] Y. Yang, H. Liao, S.-J. Lou, Simulated impacts of sulphate and nitrate aerosol formation on surface-layer ozone concentrations in China, Atmos. Ocean. Sci. Lett. 7 (5) (2014) 441–446.

[5] D.F. Zhao, A. Buchhol, B. Kortner, P. Schlag, F. Rubach, H. Fuchs, A. Kiendler-Scharr, R. Tillmann, A. Wahner, Å.K. Watne, M. Hallquist, J.M. Flores, Y. Rudich, K. Kristensen, A.M.K. Hansen, M. Glasius, I. Kourtchev, M. Kalberer, T.F. Mentel, Cloud condensation nuclei activity, droplet growth kinetics and hygroscopicity of biogenic and anthropogenic Secondary Organic Aerosol (SOA), Atmos. Chem. Phys. Discuss. 15 (2015) 19903–19945.

[6] M.E. Emetere, M.L. Akinyemi, O. Akinjide, Parametric retrieval model for estimating aerosol size distribution via the AERONET, LAGOS station, Environ. Pollut. 207 (C) (2015) 381–390.

[7] E. Emetere Moses, M.L. Akinyemi, T.E. Oladimeji, Statistical examination of the aerosol loading over Kano-Nigeria: the satellite observation analysis, Sci. Rev. Eng. Environ. Sci. 72 (2016) 167–176.