پاسخ آدیپولین و مقاومت انسولینی به دو نوع تمرین ورزشی در رت‌های نی‌دبیتی نوع دو

مینا رحمت‌اللهی، دکتر علی اصغر روانسی، دکتر رحمان سوری، دکتر بهمن اونق

چکیده

مقدمه: آدیپولین (Adipolin) یک آنزیم آنزیمی است که در شرایط بالینی مورد استفاده قرار می‌گیرد. این آنزیم در بدن انسان به صورت مستقیم و غیرمستقیم به کنترل حسیسی سیستم انسولینی تبدیل می‌شود و در برخی از شرایط بهبود حسیسی در زیرچرخه‌های تمرین ورزشی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آنزیم در شرایط بالینی مورد استفاده قرار می‌گیرد و در زیرچرخه‌های تمرین ورزشی بهبود حسیسی در رت‌های نی‌دبیتی نوع دو و رت‌های نی‌دبیتی نوع دو یافته‌ها آورده شده است. این آن مقدمة: Adipolin (Adipolin), a complement-related adipokine, has been shown to play a role in the regulation of insulin sensitivity (HOMA-IR) in vivo. In the current study, we examined the role of Adipolin in the regulation of insulin sensitivity in rats of different body mass index (BMI) groups. The study was conducted on 32 male Wistar rats, divided into four groups. The results showed that Adipolin levels were significantly higher in the group with a lower BMI. This suggests that Adipolin may play a role in the regulation of insulin sensitivity in rats with lower BMI.
family with sequence similarity 132, member A (FAM132A), ELISA Kit

SAKHAT KNOCK-OUT To report My BioS

Homsistirta (Insulin, Immune) 11, Natafertk k P Mid-Antil. Bdo.

MERODIA Rat Insulin

GILST ELLATIONE PLSAMA BA ROSH ANZEEYI - RENGENSE.JE BA

FA-NORI GILSTK AASKAIDABA BA ABESTAHE. EIKT GILSTK (SHARK

PARRS AAZOMON, AAHA) ANAFAZERI. She PRYPIA TEPGIRAT W

HOMA-IR

ANNOSION NIS BA ROSH MEL ARAZIBI HOOKAIZA (HOMA-IR)

FROM ZIER, THERSHE SHE

5%0/4 PBIII, IZRADE HAND

GILSTK SHE.

055/4 ANNOSION NASHA (MMKRO WADH P BILYETI) X GILSTK NASHA (MMKRO P BILYETI) = FROMO HMA (SHAXXCH MIGMAMAT ANNOSIONI)

هم جمله تمهین زمینه در سیره از دو گروه تمدنی به علینه که سیره از دو گروه لیکت 50 تا 05 درصد حاضر می‌سازد. سرعت چهار بود می‌ساند. شد. بر این

اعزار، سیره فعالیت گروه LICT در محدوده اول از 20 تا 50 دقیقه به

جلسه تمدنی تمامی رشته‌های سیگار با ترکوبی از داروهای

کاناین (50 میلی‌گرم در کیلوگرم) و زاپلاژین (100 میلی‌گرم

کیلوگرم) به صورت تزریق درون صاقع به‌وسیله شد. پس از اطمینان از به‌وجود گشتئون، قفسه سینه حیوان

شکافته شد و 10 میلی‌لیتر خون مستقیم از جل قلب موشه

گرفته شد و در لوله‌های حاوی محلول EDTA برخورد شد.

دندهای جمع‌آوری شده با سرعت 3000 دور در دقیقه و

به مدت 15 دقیقه سانتریفهوش شدند و بالمانی آنها جدا شد

و برای استفاده در ایمیل مراحل پژوهش به فریتوس با مداوم

منفی 80 درجه سانتی‌گراد انکشافت یافتند. آدیپولین پلاسما با

پاختها

یافته‌ها

تغییرات وزن بین کروه‌های تحقیق در مراحل مختلف

پژوهش در جدول 1 و میانگین و انحراف معیار متغیرهای

تحقیق در جدول 2 آمده است.

جدول 1- میانگین و انحراف معیار وزن و نرخ (gr) کروه‌های تحقیق در طول تحقیق

زمانه/گروه	Pایشی	Pساز	ساخته	اولیه	مرحله/کروه
232/231/230/239	231/232/233/238	231/232/233/238	231/232/233/238	231/232/233/238	231/232/233/238
242/241/240/249	241/242/243/248	241/242/243/248	241/242/243/248	241/242/243/248	241/242/243/248
242/241/240/249	241/242/243/248	241/242/243/248	241/242/243/248	241/242/243/248	241/242/243/248

شاده

تمدن تناوبی نشده

تمدن تناوبی کم شدنت

جدول 2- میانگین و انحراف معیار متغیرهای در کروه‌های تحقیق

متغیر/گروه	شاخص مقاومت به انسولین	انسولین (میکرو و لیتر)
شاخص	4/76/15/48 = 4/76/15/48	4/76/15/48
تمرین تناوبی نشده	4/76/15/48	4/76/15/48
تمرین کام سنتی	4/76/15/48	4/76/15/48
انسولین پلاسمای شاخه مقاومت به انسولین بین گروه‌های تحقیق و وجود ندارد (p<0.05). با این حال تفاوت گلوكز پلاسمای بین گروه‌های تحقیق معنی‌دار بود (p<0.05). به طوری که هر دو نوع تداومی کم شد و تداومی شدید باعث کاهش معنی‌دار گلوكز پلاسمای نسبت به گروه شاهد شده بود (p<0.05). و تفاوتی بین دو گروه تمرینی وجود نداشت. سطوح گلوكز پلاسمای بین گروه‌های مختلف در نمودار 2 نشان داد که اختلاف معنی‌داری در سطح آدیبولین پلاسمای در بین گروه‌های تحقیق تفاوت معنی‌داری داشت (p<0.05). نتایج آزمون تک‌نمونه نشان داد که سطوح آدیبولین پلاسمای در گروه تمرین تداومی کم شدت (LICT) نسبت به گروه شاهد افزایش معنی‌داری داشت (p<0.05). در گروه تمرین تداومی نیز سطح آدیبولین افزایش یافت، اما این افزایش معنی‌دار نبود و تفاوتی بین سایر گروه‌ها وجود نداشت. سطح آدیبولین پلاسمای گروه‌های مختلف در نمودار 1 آرا به شده است. همچنین بافت‌های پژوهش حاضر نشان داد که اختلاف معنی‌داری در

نمودار 1 - سطح آدیبولین پلاسمای در گروه‌های مختلف ۵ معنی‌داری نسبت به گروه کنترل

نمودار 2 - سطح گلوكز پلاسمای در گروه‌های مختلف ۵ معنی‌داری نسبت به گروه کنترل
جدول 3 - همبستگی بین داده‌ها

وزن هفته 1	وزن هفته 2	شاخص مقاوتان	آدیپونین	منفی‌ها
10.8	10.7	0.82	0.83	0.36
9.9	9.9	0.97	0.97	0.49
9.9	9.8	0.92	0.89	0.52
9.8	9.7	0.87	0.84	0.57
9.7	9.6	0.80	0.77	0.62
9.6	9.5	0.73	0.70	0.67
9.5	9.4	0.66	0.63	0.72
9.4	9.3	0.59	0.56	0.77
9.3	9.2	0.52	0.49	0.82
9.2	9.1	0.45	0.42	0.87

نتایج پژوهش حاضر نشان داد که اجرای 8 هفته تمرين تداوی در بهبود چربی موش‌‌های چاق شده با زرد پرچرب (DIO) باید تأثیر TNF-α از طریق فعال کردن JK افزایش بیان سایلیکایین‌های نقش مهم و با تشکیل تهاب بافت چربی سبب کسترسی مقاوتان آدیپونین TNF-α ناشی از چاقی می‌شود. 13 پیشنهاد شده است که با باعث کاهش بین آدیپونین KLF-15 و در پی آن کاهش آدیپونین در سلول‌های چربی می‌شود و از این طریق رژیم‌های برای برور و یا تشکیل مقاوت‌های فراهم می‌کند. استررس شبکه آدنوپلماسی (ER) نیز دیگر عامل تهابی است که با چاقی و دیابت نوع دو اتربیل کننده دارد و به کسترسی تهاب آپوپلیژ سلول‌های بدن پاکساز، اخلاط در سران انسولین و برور مقاوت به هم‌بستری که ممکن است با پیشنهاد در سلول‌های چربی کشتن چاقی می‌سوزد. از این نتایج می‌توان چیدن یکی از امرهای درمانی بیشتری در یادگیری و دارمان‌های چاقی و اختلالات متالیوپیکی همراه با آن هیچگونه دیابت نوع دو مقاوت‌های انسولینی است. برخی مطالعات، به بررسی تاثیر انواع پروتکل‌های تمرینی بر ER و مولکول‌های مرتب با پایخ استرس TNF-α و پرداختن. نتایج مطالعات انجام شده نشان داده‌اند سطوح TNF-α به دنبال تمرینات تداوی می‌شود. شدید کاهش وزن، کاهش می‌باشد. 12 هیچ‌گونه سازگاری با تمرینات ورزشی نیز ER ضمن بهبود نیتروسکس در آزمودن‌های چاق، استرس را مهار می‌کند و منجر به بهبود پاسخ پرتوئن در نخورده.

بحث

نتایج پژوهش حاضر نشان داد که اجرای 8 هفته تمرين تداوی کم شدت (LIIT) باعث افزایش قابل توجهی در سطوح آدیپونین پلاسمایی می‌شود که از لحاظ آماری معنی دار بود (P<0.05) و از ارتباط آن، است. این تغییرات از لحاظ معنی‌داری نبود. همچنین، قبل از نوع پروتکل تمرینی LITIA نتایج تداوی شدید (HIIT) که این غنی‌ترین نتایج را از لحاظ معنی‌داری دارد طرح آدیپونین بالاها و در SIITIA و همچنین تداوی کم شدت تمینی HIIT نتایج HIIT بالاها و در SIITIA و همچنین TDAIVIA که این غنی‌ترین نتایج را از لحاظ معنی‌داری دارد.

1 Enomoto
TNFα and endocrine organ. Exp Physiol 2013; 98: 359-71.

References

1. Wele SS, Clanton TL. The regulation of interleukin 6 implicates skeletal muscle as an integrative stress sensor and endocrine organ. Exp Physiol 2013; 98: 359-71.

2. Borges-Silva CN, Fonseca-Alaniz MH, Alonzo-Vale MI, Takada J, Andreotti S, Peres SB, et al. Reduced lipolysis and increased lipogenesis in adipose tissue from pinealectomized rats adapted to training. J Pineal Res 2005; 39: 178-84.

3. Enomoto T, Ohashi K, Shibata R, Higuchi A, Maruyama S, Izumiya Y, et al. Adipolin/C1qdc2/CTRPI2

4. Wele SS, Clanton TL. The regulation of interleukin 6 implicates skeletal muscle as an integrative stress sensor and endocrine organ. Exp Physiol 2013; 98: 359-71.
protein functions as an adipokine that improves glucose metabolism. J Biol Chem 2011; 286: 34552–8.

4. Wei Z, Peterson JM, Lei X, Cebotaru L, Wolfgang MJ, Baldeviano GC, et al. C1q/TNF-related protein-12 (CTRP12), a novel adipokine that improves insulin sensitivity and glycemic control in mouse models of obesity and diabetes. J Biol Chem 2012; 287: 10301-15.

5. Wei Z, Lei X, Seldin MM, Wong GW. Endopeptidase cleavage generates a functionally distinct isoform of C1q/tumor necrosis factor-related protein-12 (CTRP12) with an altered oligomeric state and signaling specificity. J Biol Chem 2012; 287: 35804-14.

6. Holmes A, Coppey LJ, Davidson EP, Yorek MA. Rat models of diet-induced obesity and high fat/low dose streptozotocin type 2 diabetes: effect of reversal of high fat diet compared to treatment with enalapril or menhaden oil on glucose utilization and neuropathic endpoints. Journal of Diabetes Research 2015; 2015. Available from: URL:// http://dx.doi.org/10.1155/2015/4307285.

7. Thomas C, Bishop D, Moore-Morris T, Mercier J. Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: influence of chronic metabolic alkalis. Am J Physiol Endocrinol Metab 2007; 293: E916-22.

8. Pereira F, de Moraes R, Tihirică E, Nóbrega AC. Interval and continuous exercise training produce similar increases in skeletal muscle and left ventricle microvascular density in rats. BioMed research international 2013; 2013. Available from: URL:// http://dx.doi.org/10.1155/2013/752817.

9. Soori R, Rezaeian N, Salehian O. Effects of high and low intensity endurance training on levels of leptin, cortisol, testosterone, growth hormone, and insulin resistance index in sedentary obese men. J Sport Biomotor Sci 2012; 6: 17-28. [Farsi]

10. Sohail SH, Soori R, Rezaeian N. Hormonal adaptations to moderate-intensity endurance training in sedentary obese men. Koomesh 2013; 14: 181-91. [Farsi]

11. Goldberg DP, Hillier VF. A scaled version of the General Health Questionnaire. Psychiat Med 1979; 9: 139-45.

12. Soori R, Rezaeian N, Salehian O. Effects of Interval Training on Leptin and Hormone levels Affecting Lipid Metabolism in Young Obese/ Overweight Men. Iran J Endocrinol Metabolism 2012; 14: 248-56. [Farsi]

13. Mirmiran P, Esfahani FH, Mehrabi Y, Hedayati M, Azizi F. Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr 2010; 13: 654-62. [Farsi]

14. Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol 2001; 37: 153-6.

15. Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr 1978; 40: 497-504.

16. Siri WE. Body composition from fluid spaces and density: analysis of methods. 1961. Nutrition 1993; 9: 480-91.

17. Lau DC, Douketis JD, Morrison KM, Hramiak IM, Sharma AM, Ur E. Obesity Canada Clinical Practice Guidelines Expert Panel. 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children [summary]. CMAJ 2007; 176: S1-13.

18. Nieman DC, Brock DW, Butterworth D, Utter AC, Nie- man CC. Reducing diet and/or exercise training decreases the lipid and lipoprotein risk factors of moderately obese women. J Am Coll Nutr 2002; 21: 344-50.

19. Ciocac EG, Beech GC, Greve JM. Age does not affect exercise intensity progression among women. J Strength Cond Res 2010; 24: 3023-31.

20. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1995; 28: 412-9.

21. Balducci S, Zanuso S, Nicolucci A, Fernando F, Cavallo S, Cardelli P, et al. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome independent on exercise modalities and independent of weight loss. Nutr Metab Cardiovasc Dis 2010; 20: 608-17.

22. Pearson R, Fleetwood J, Eaton S, Crossley M, Bao S, Krüppel-like transcription factors: a functional family. Int J Biochem Cell Biol 2008; 40: 1996-2001.

23. Mori T, Sakaue H, Iguchi H, Gomi H, Okada Y, Takashima Y, et al. Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 2005; 280: 12567-75.

24. Enomoto T, Ohashi K, Shibata R, Kambara T, Uemura Y, Yuasa D, et al. Transcriptional regulation of an insulin-sensitizing adipokine adipolin/CTRP12 in adipocytes by Krüppel-likefactor 15. PLoS One 2013; 8: e83183.

25. Kawamata Y, Imamura T, Babendure JL, Lu JC, Yoshizaki T, Olefsky JM. Tumor necrosis factor receptor-1 can function through a G alpha q/11-betaarrestin-1 signaling complex. J Biol Chem 2007; 282: 28549-56.
Adipolin and Insulin Resistance Response to Two Types of Exercise Training in Type 2 Diabetic Male Rats

Rahmatollahi M1, Ravasi AA2, Soori R3, Onegh B4

1Faculty of Physical Education and Sport Sciences, University of Tehran, 2Department of Biological Chemistry, Faculty of Chemistry, University of Tarbiat Modarres, Tehran, I.R. Iran
e-mail: targol_0169@yahoo.com

Received: 12/04/2017 Accepted: 25/06/2017

Abstract

Introduction: Adipolin (CTRP12), which improves insulin sensitivity, is a novel anti-inflammatory adipocytokine secreted from adipose tissue. In this study we aimed to assess the Adipolin and Insulin Resistance index (HOMA-IR) response to two types of exercise in type 2 diabetic male rats.

Materials and Methods: In this study, 24 diabetic Wistar rats (Induced by high-fat diet and Streptozotocin(stz) injection) were randomly assigned to 3 groups: High intensity interval exercise (HIIT), low intensity continuous training (LICT) and control (C). Both training groups were trained on the treadmill, 5 sessions per week for 8 weeks. Blood samples were taken 24 hours after the end of training session and plasma adipolin, insulin and glucose levels were measured. ANOVA and Tukey post hoc tests were used to analyze data and the level of significance was considered to be p<0.05.

Results: Data analysis showed that plasma adipolin levels in the low intensity continuous training group were significantly increased, compared to the control group (p=0.006). Plasma glucose level in both the low intensity continuous training and the high intensity interval groups was significantly decreased, compared to the control group (p=0.049) & (p=0.007). Plasma insulin level in both training groups was increased and HOMA-IR index was decreased, compared to the control group, although changes were not significant.

Conclusion: The results of this study showed that exercise training can increase plasma adipolin in rats with type 2 diabetes, changes however that are partially dependent on the type of exercise training.

Keywords: High intensity interval training, Low intensity continuous training, Adipolin, Insulin resistance, Type 2 diabetes