Morphologic Outcome of Bimaxillary Surgery–An Anthropometric Appraisal

Gregor F. Raschke
Friedrich Schiller University of Jena

Ulrich M. Rieger
Goethe University

Andre Peisker
Friedrich Schiller University of Jena

Gabriel Djedovic
Goethe University

Marta Gomez-Dammeier
Friedrich Schiller University of Jena

See next page for additional authors

Follow this and additional works at: https://epublications.marquette.edu/dentistry_fac
Part of the [Oral and Maxillofacial Surgery Commons](https://epublications.marquette.edu/dentistry_fac)

Recommended Citation

Raschke, Gregor F.; Rieger, Ulrich M.; Peisker, Andre; Djedovic, Gabriel; Gomez-Dammeier, Marta; Guentsch, Arndt; Schaefer, Oliver; and Schultze-Mosgau, Stefan, "Morphologic Outcome of Bimaxillary Surgery–An Anthropometric Appraisal" (2015). *School of Dentistry Faculty Research and Publications*. 205.
https://epublications.marquette.edu/dentistry_fac/205
Morphologic outcome of bimaxillary surgery–An anthropometric appraisal

Gregor F. Raschke 1, Ulrich M. Rieger 2, Andre Peisker 3, Gabriel Djedovic 4, Marta Gomez-Dammeier 5, Arndt Guentsch 6, Oliver Schaefer 6, Stefan Schultze-Mosgau 7

1 MD, DMD, PhD, Department of Oral & Maxillofacial Surgery / Plastic Surgery, Friedrich Schiller University Jena, Erlanger Allee 101, 07747 Jena, Germany
2 MD, PhD, Department of Plastic & Aesthetic, Reconstructive & Hand Surgery, St. Markus Hospital, Johann Wolfgang von Goethe University, Frankfurt/Main, Germany
3 DMD, Department of Oral & Maxillofacial Surgery / Plastic Surgery, Friedrich Schiller University Jena, Erlanger Allee 101, 07747 Jena, Germany
4 MD, Department of Plastic & Aesthetic, Reconstructive & Hand Surgery, St. Markus Hospital, Johann Wolfgang von Goethe University, Frankfurt/Main, Germany
5 DMD, Department of Oral & Maxillofacial Surgery / Plastic Surgery, Friedrich Schiller University Jena, Erlanger Allee 101, 07747 Jena, Germany
6 DMD, Interdisciplinary Research Groupe of Computational Medicine, Friedrich Schiller University Jena, Erlanger Allee 101, 07747 Jena, Germany
7 MD, DDS, PhD, Department of Oral & Maxillofacial Surgery / Plastic Surgery, Friedrich Schiller University Jena, Erlanger Allee 101, 07747 Jena, Germany

Correspondence:
Department of Oral & Maxillofacial/Plastic Surgery
Friedrich Schiller University Jena
Erlanger Allee 101, 07747 Jena, Germany
raschke.gregor@googlemail.com

Abstract

Objectives: To adequately perform orthognathic surgery procedures, it is from basic interest to understand the morphologic changes caused by orthognathic surgery. Anthropometric analyses of standardized frontal view and profile photographs could help to investigate and understand such changes.

Study Design: We present a pre- to postoperative evaluation of orthognathic surgery results based on anthropometric indices described by Farkas and cephalometric measurements. 30 Class III patients undergoing maxillary advancement by Le Fort I Osteotomy and mandibular setback by bilateral sagittal split osteotomy were evaluated. Preoperative as well as three and nine months postoperative lateral cephalograms as well as standardized frontal view and profile photographs were taken. On the photographs 21 anthropometric indices given by Farkas were evaluated. In cephalograms SNA and SNB angle as well as Wits appraisal were investigated.

Results: The investigated anthropometric indices showed a significant increase of the vertical height of the upper lip without changing the relation of the upper vermilion to the cutaneous upper lip. The lower vermilion height increased relatively to the cutaneous lower lip without vertical changes in the lower lip. Due to maxillary advancement the upper face height increased meanwhile the lower face height decreased due to mandibular setback. SNA and SNB angle and Wits appraisal showed typical changes related to surgery.
Conclusions: The investigated photo-assisted anthropometric measurements presented reproducible results related to bimaxillary surgery.

Key words: Orthognathic surgery, bimaxillary surgery, anthropometry, Class III.
taken the day before surgery. Postoperative photographs were taken three and nine months later with a Nikon D80 camera (objective: Nikon AF Micro Nikkor 105 mm 1:2.8 D; aperture: f13; Nikon Corp, Tokyo, Japan) in a standardized manner as described elsewhere (16). All photographs were taken by a professional photographer. Analysis was performed using the Adobe Photoshop CS2 (Adobe Inc, San Jose, CA) software tool.

Based on anthropometric values described by Farkas (17-19) predefined anatomic landmarks (Table 1) and distances (Table 2) were used to calculate the following indices (Table 3) in the frontal view photographs (Fig. 2): (1) Upper lip height-mouth width index, representing the vertical distance between the subnasale and the stomion (ULH, sn-sto) as percentage of the mouth width (MW, ch-ch). (2) Philtrum mouth width index, the philtrum width between the two crista philtri (PW, cph-cph), as percentage of the mouth width between the two cheilions (MW, ch-ch) (3). Medial-lateral cutaneous upper lip height index representing the cutaneous upper lip height, the vertical distance between the labiale superius and the subnasale (CULH, sn-ls), as percentage of the lateral upper lip height, the vertical distance between the subalare and the lateral labiale superius beyond the subalare (LULH, sbal-ls’) (4). Upper vermilion contour index, the mouth width (MW) as percentage of the upper vermilion arc (UVA, ch-ls-ch) (5). Lower vermilion contour index, the mouth width (MW) as percentage of the lower vermilion arc (LVA, ch-li-ch) (6). Vermilion arc index, the lower vermilion arc (LVA) as percentage of the upper vermilion arc (UVA).

In the profile photographs the following data were recorded (Fig. 3): (1) Vermilion total upper lip height index represented by the upper vermilion height, the vertical distance between labiale superius and stomion (UVH, ls-sto) (2). Cutaneous total upper lip height index, the vertical distance between labiale superius and stomion (UVH, ls-sto) as percentage of the upper lip height (ULH, sn-sto) (2). Cutaneous total upper lip height index, the vertical distance between cutaneous upper lip height (CULH, sn-ls) as percentage of the upper lip height, the vertical distance between cutaneous upper lip height (CULH, sn-ls) as percentage of the upper lip height, the vertical distance between labiale superius and stomion (UVH, ls-sto).
distance between subnasale and stomion (ULH, sn-sto) (3). Vermillion height index, represented by the upper ver-
million height (UVH, ls-sto), as percentage of the lower
vermillion height (LVH, sto-li) (4). Vermillion total lower
lip height index, the lower vermilion height, the vertical
distance between stomion and labiale inferius (LVH, sto-
li) as percentage of the lower lip height (LLH, sto-sl) (5).
Cutaneous total lower lip height index represented by the
cutaneous lower lip height, the vertical distance be-
tween the labiale inferius and the sublabiale (CLLH, li-sl), as
percentage of the lower lip height, the vertical distance
between the stomion and the sublabiale (LLH, sto-sl) (6).
Nasal tip protrusion-nose height index, the nasal tip pro-
trusion (NTP, sn-prn), as percentage of the nose height
(NH, n-sn) (7). Ala length-nose height index, representing
the ala length (AL, ac-prn), as percentage of the nose height
(NH, n-sn) (8) Nasal bridge index, the nasal bridge
length (n-prn) as percentage of the nose height (n-sn) (9). Nose- upper face height index, the nose height (NH,
(n-sn), as percentage of the upper face height (UFH, n-sto)
(10). Nose- lower face height index, the nose height (NH,
n-sn), as percentage of the lower face height (LFH, sn-gn)
(11). Nose- face height index, the nose height (NH, n-sn),
as percentage of the face height (FH, n-gn) (12). Upper
lip nose height index, the upper lip height (ULH, sn-sto),
as percentage of the nose height (NH, n-sn) (13). Upper face-
face height index, the upper face height (UFH, n-sto),
as percentage of the face height (FH, n-gn) (14). Upper lip-
mandible height index, representing the upper lip height (ULH, sn-sto), as percentage of the mandible
height (MH, sto-gn) (15). Chin- mandible height index,
the chin height (CH, sl-gn), as percentage of the mandible
height (MH, sto-gn).

Lateral cephalograms were taken preoperatively as well
as three and nine months postoperatively. SNA and SNB
angle as well as Wits appraisal as established cephalo-
metric measurements in the appraisal of orthognathic
surgery were raised.

Dimension	Name of index	Description
En face indices	Upper lip height-mouth width index	Subnasale-stomion/Cheilion(I)-Cheilion(r)
	Philtrum-mouth width index	Crista philter®-christa pholtre(I)/Cheilion(I)-Cheilion(r)
	Medial-lateral cutaneous upper lip height index	Subsanale-labiale superius-Subalare-labiale superius lateralis
	Upper vermilion contour index	Cheilion(r)-cheilion(I)/Cheilion(r)-labiale superius-cheilion(I)
	Lower vermilion contour index	Cheilion(r)-cheilion(I)/Cheilion(r)-labiale inferius-cheilion(I)
	Vermilion arc index	Cheilion(r)-labiale inferius-cheilion(I)/Cheilion(r)-labiale superius-cheilion(I)
	Vermilion-total upper lip height index	Labiale superius-stomion/ Stomion- labiale inferius
	Cutaneous-total upper lip height index	Subnasale-labiale superius/Subnasale-stomion
	Vermillion height index	Labiale superius-stomion/ Stomion- labiale inferius
	Vermillion-total lower lip height index	Stomion-labiale inferius/Stomion-sublabiale
	Cutaneous-total lower lip height index	Labiale inferius-sublabiale/Stomion-sublabiale
	Nasal lip protrusion-nose height index	Subnasale-pronasale/Nasion-subnasale
	Ala length- nose height index	Alar curvature point-pronasale/Nasion-subnasale
	Nasal bridge index	Nasion-pronasale/Nasion-subnasale
	Nose-upper face height index	Nasion-subnasale/Nasion-stomion
	Nose-lower face height index	Nasion-subnasale/Subnasale-gnathion
	Nose-face height index	Nasion-subnasale/Nasion-gnathion
	Upper lip-nose height index	Subnasale-stomion/ Nasion-stomion
	Upper face-face height index	Nasion-stomion/Nasion-gnathion
	Upper lip-mandible height index	Subnasale-stomion/ Nasion-gnathion
	Chin-mandible height index	Sublabiale-gnathion// Stomion-gnathion
The desire to improve facial aesthetic and appearance is an important factor in seeking orthognathic treatment (20,21). A number of increasingly sophisticated techniques are available for orthognathic treatment and surgery planning (1). Currently, the most used method to analyse pre- to postoperative changes of hard and soft tissue is two dimensional analysis by cephalograms (22,23). Three dimensional models based on various techniques (2,11,22,24) are also in use, but because of high costs and difficult application not clinical routine.

In an earlier study we showed the value of photo-assisted anthropometric measurements to get a deeper understanding of facial morphologic changes related to mandibular advancement in Class II patients (3). In the presented study we investigated bimaxillary surgery related changes on the facial morphology of Class III patients.

The 21 anthropometric indices (Table 3) presented here were selected because of the reliable exact identification of their corresponding anthropometric landmarks (Tables 1,2) and their potential impact by bimaxillary surgery (19,20). To adequately evaluate facial pre- to postoperative changes, indices in profile as well as frontal view were investigated (12). In the following we describe the meaning of different facial aesthetic units and the investigated anthropometric landmarks and indices in bimaxillary orthognathic surgery:

Positioned in the center of the face, considerations about the morphology of the nose and its relation to upper lip and lower face are of major interest for aesthetic considerations in bimaxillary surgery. Nasion and subnasale are fundamental reference points in orthodontics and aesthetic surgery (5).

Located in the center of the face and dividing the upper lip in two lateral and one medial aesthetic subunits, the philtrum is of great importance for the facial appearance. Philtrum-mouth width index reflects the relation
of philtrum and mouth width. Upper lip height-mouth width index describes the vertical extension of the upper lip to the horizontal extension of the mouth width. Together with the medial lateral cutaneous upper lip height index it reflects the relation of mouth width, upper lip, and nose to each other. Upper and lower vermilion, their relation to each other and the upper and lower lips are from major importance.

Table 4. Comparison of pre- to postoperative cephalometric and anthropometric measurements.

	Preoperative	3 months postoperative	9 months postoperative	Sign. Pre-to 3 months postoperative	Sign. Pre-to 9 months postoperative	
SNA (º)	83.1±4.83	85.08±4.46	85.12±4.15	0.046	0.15	0.14
SNB (º)	87.36±6.13	83.24±4.89	83.62±4.75	<0.001	<0.001	<0.001
Wits appraisal (mm)	-14.21±9.44	0.80±5.73	0.47±5.22	<0.001	<0.001	<0.001
Upper lip height-mouth width index (%)	37.23±6.80	42.6±8.42	40.67±6.37	<0.001	<0.001	<0.001
Philtrum-mouth width index (%)	21.67±3.32	22.63±2.46	22.40±2.63	0.176		
Medial. Lateral cutaneous upper lip height index (%)	84.37±10.82	86.77±12.44	84.83±11.34	0.180		
Upper vermilion contour index (%)	94.87±3.30	94.00±3.61	94.13±3.29	0.088		
Lower vermilion contour index (%)	95.70±2.56	94.40±3.76	95.30±2.94	0.018	0.036	1
Vermilion arc index (%)	98.77±5.09	99.00±5.74	98.10±4.80	0.396		
Vermilion-total upper lip height index (%)	34.07±9.14	34.20±8.18	34.33±8.44	0.963		
Cutaneous-total upper lip height index (%)	64.93±9.14	64.80±8.18	64.67±8.43	0.960		
Vermilion height index (%)	91.63±30.90	97.8±20.43	97.07±23.67	0.335		
Vermilion-total lower lip height index (%)	38.07±12.12	41.07±10.08	41.93±10.23	0.028	0.264	0.036
Cutaneous-total lower lip height index (%)	61.00±12.14	57.93±10.08	57.13±10.22	0.028	0.256	0.038
Nasal lip protrusion-nose height index (%)	38.67±4.48	38.63±4.43	38.67±4.11	0.982		
Ala length-nose height index (%)	56.87±6.96	55.17±7.22	54.73±6.19	0.102		
Nasal bridge index (%)	33.53±7.30	36.17±16.10	32.73±6.96	0.260		
Nose-upper face height index (%)	71.57±4.06	69.67±3012	69.63±3.02	<0.001	<0.001	<0.001
Nose-lower face height index (%)	70.07±6.10	70.53±6.50	70.37±6.01	0.586		
Nose-face height index (%)	40.70±2.15	41.03±2.30	40.87±2.08	0.139		
Upper lip-nose height index (%)	38.70±7.62	42.30±6.60	42.47±6.27	<0.001	<0.001	<0.001
Upper face-face height index (%)	56.90±2.54	58.57±2.43	58.53±2.27	<0.001	<0.001	<0.001
Morphologic outcome of bimaxillary surgery

for facial aesthetics. Their composition is directly influenceable by bimaxillary surgery. The vermilion-total upper and lower lip height indices describe the relation of the vermilion to the overall vertical height of their belonging lips. The vertical relation of the cutaneous fraction of the lips to the overall height of the lips describe the cutaneous-total upper and lower-lip height indices. Maxillary advancement and mandibular setback may have bigger impact on the vertical relations of upper and lower face, nose, mandible and chin. Considerations about the vertical relations of upper and lower face are not only beneficial in the planning and evaluation of bimaxillary surgery. In order to adequately rate the results of the anthropometric measurements, SNA and SNB angle as well as Wits appraisal as established cephalometric measurements in the estimation of orthognathic surgery were investigated as well (25,26).

Concerning the individual specifics of each patient, data of our patients were not differentiated between males and females as we did not aim at inter-individual changes or correlations. Instead pre- to postoperative changes were analyzed.

-Discussion of the Results

In the anthropometric measurements the significant increases of upper lip-mouth width index and upper lip nose height index pre- to postoperatively indicate an increased visible vertical length of the upper lip due to maxillary advancement and mandibular setback. Vermillion- and cutaneous-total upper lip height index did not show significant changes pre- to postoperatively. This finding is an indicator, that the vertical relation of vermilion and cutaneous fraction of the upper lip was not influenced, meanwhile the total vertical upper lip length increased, which is a typical result after bimaxillary correction of Class III deformities (27). The anthropometric measurements presented by Farkas may help to precisely detect these dimensions regarding vermilion and cutaneous part of the upper lip.

In contrast to the upper lips, the significant increase of the vermilion-total lower lip height index and decrease of the cutaneous-total lower lip height index indicate a changed vertical relation between cutaneous fraction and vermilion of the lower lips in favor of the lower vermilion pre- to postoperatively.

Mouth and philtrum width were reported earlier to present constant pre- and postoperative values after bimaxillary surgery in Class III patients (2). The constant pre- and postoperative values of the philtrum-mouth width index confirm this finding. The significant increase of upper face-face height index, upper lip-mandible height index and chin-mandible height index as well as decrease of nose-upper face height index reflect the vertical shortening of the lower face due to mandibular setback and vertical lengthening of the upper face due to maxillary advancement (28).

Although the postoperatively increased chin mandible height index indicates an increased vertical chin to mandible height, often a weak chin with little prominence may result after bimaxillary surgery or isolated mandibular setback in Class III patients. In this case genioplasty increasing the submental length and chin prominence may be performed (29).

In the cephalometric measurements the preoperative means of SNA and SNB angle were similar to those reported in class III patients (30). The significant increase of SNA and decrease of SNB angle are typical results of bimaxillary correction of Class III malocclusion (31).

References

1. Eckhardt CE, Cunningham SJ. How predictable is orthognathic surgery? Eur J Orthod. 2004;26:303-9.
2. Baik HS, Kim SY. Facial soft-tissue changes in skeletal Class III orthognathic surgery patients analyzed with 3-dimensional laser scanning. Am J Orthod Dentofacial Orthop. 2010;138:167-78.
3. Raschke GF, Rieger UM, Bader RD, Guenthsch A, Schaefer O, Schultz-Mosag S. Soft tissue outcome after mandibular advancement-ant anthropometric evaluation of 171 consecutive patients. Clin Oral Investig. 2013;17:1415-23.
4. Edler R, Rahim MA, Wertheim D, Greenhill D. The use of facial anthropometrics in aesthetic assessment. Cleft Palate Craniofac J. 2010;47:48-57.
5. Koury ME, Epker BN. Maxillofacial esthetics: anthropometrics of the maxillofacial region. J Oral Maxillofac Surg. 1992;50:806-20.
6. Raschke GF, Rieger UM, Bader RD, Kirschbaum M, Eckardt N, Schultz-Mosag S. Evaluation of nasal reconstruction procedures results. J Craniomaxillofac Surg. 2012;40:732-49.
7. Raschke G, Rieger U, Bader RD, Schaefer O, Guenthsch A, Schultz-Mosag S. Outcomes analysis of eyelid deformities using photograph-assisted standardized anthropometry in 311 patients after orbital fracture treatment. J Trauma Acute Care Surg. 2012;73:1319-25.
8. Raschke GF, Bader RD, Rieger UM, Schultz-Mosag S. Photo-assisted analysis of blepharoplasty results. Ann Plast Surg. 2011;66:328-33.
9. Liou EJ, Subramanian M, Chen PK. Progressive changes of columella length and nasal growth after nasoalveolar molding in bilateral cleft patients: a 3-year follow-up study. Plast Reconstr Surg. 2007;119:642-48.
10. Gosman SD. Anthropometric method of facial analysis in orthodontics. Am J Orthod. 1950;36:749-62.
11. Sinclair PM, Kilpelainen P, Phillips C, White RP, Rogers L, Sarver DM. The accuracy of video imaging in orthognathic surgery. Am J Orthod Dentofacial Orthop. 1995;107:177-85.
12. Upton PM, Sadowsky PL, Sarver DM, Heaven TJ. Evaluation of video imaging prediction in combined maxillary and mandibular orthognathic surgery. Am J Orthod Dentofacial Orthop. 1997;112:656-65.
13. Landes CA, Zachar R, Diehl T, Kovacs AF. Introduction of a three-dimensional anthropometry of the viscerocranium. Part II: evaluating osseous and soft tissue changes following orthognathic surgery. J Craniomaxillofac Surg. 2002;30:25-34.
14. Dal Pont G. Retromolar osteotomy for the correction of prognathism. J Oral Surg Anesth Hosp Dent Serv. 1961;19:42-7.
15. Trauner R, Obwegeser H. The surgical correction of mandibular prognathism and retrognathia with consideration of genioplasty. II. Operating methods for microgenia and distoclusion. Oral Surg Oral Med Oral Pathol. 1957;10:787-92.
16. Flowers RS, Flowers SS. Diagnosing photographic distortion. Decoding true postoperative contour after eyelid surgery. Clin Plast Surg. 1993;20:387-92.
17. Farkas LG, Katic MJ, Hreczko TA, Deutsch C, Munro IR. Anthropometric proportions in the upper lip-lower lip-chin area of the lower face in young white adults. Am J Orthod. 1984;86:52-60.
18. Farkas LG, Hreczko TA, Kolar JC, Munro IR. Vertical and horizontal proportions of the face in young adult North American Caucasians: revision of neoclassical canons. Plast Reconstr Surg. 1985;75:328-38.
19. Edler R, Agarwal P, Wertheim D, Greenhill D. The use of anthropometric proportion indices in the measurement of facial attractiveness. Eur J Orthod. 2006;28:274-81.
20. de Almeida MD, Bittencourt MA. Anteroposterior position of mandible and perceived need for orthognathic surgery. J Oral Maxillofac Surg. 2009;67:73-82.
21. Magro-Filho O, Magro-Ernica N, Queiroz TP, Aranega AM, Garcia IR. Comparative study of 2 software programs for predicting profile changes in Class III patients having double-jaw orthognathic surgery. Am J Orthod Dentofacial Orthop. 2010;137:452.e1-5.
22. Holberg C, Schwenger K, Rudzki-Janson I. Three-dimensional soft tissue prediction using finite elements. Part I: Implementation of a new procedure. J Orofac Orthop. 2005;66:110-21.
23. Holberg C, Heine AK, Geis P, Schwenger K, Rudzki-Janson I. Three-dimensional soft tissue prediction using finite elements. Part II: Clinical application. J Orofac Orthop. 2005;66:122-34.
24. Uechi J, Okayama M, Shibata T, Mugurama T, Hayashi K, Endo K, et al. A novel method for the 3-dimensional simulation of orthognathic surgery by using a multimodal image-fusion technique. Am J Orthod Dentofacial Orthop. 2006;130:786-98.
25. Poulton DR, Ware WH. Increase in mandibular and chin projection with orthognathic surgery. Am J Orthod. 1985;87:363-76.
26. Kochel J, Meyer-Marcotty P, Strnad F, Kochel M, Stellzig-Eisenhauer A. 3D soft tissue analysis—part 1: sagittal parameters. J Orofac Orthop. 2010;71:40-52.
27. Proffit WR, Phillips C. Adaptations in lip posture and pressure following orthognathic surgery. Am J Orthod Dentofacial Orthop. 1988;93:294-302.
28. Kobayashi T, Ueda K, Honma K, Sasakura H, Hanada K, Nakajima T. Three-dimensional analysis of facial morphology before and after orthognathic surgery. J Craniofac Surg. 1990;18:68-73.
29. Bell WH, Jacobs ID. Tridimensional planning for surgical/orthodontic treatment of mandibular excess. Am J Orthod. 1981;80:263-88.
30. O’Brien K, Wright J, Conboy F, Appelbe P, Bearn D, Caldwell S, et al. Prospective, multi-center study of the effectiveness of orthodontic/orthognathic surgery care in the United Kingdom. Am J Orthod Dentofacial Orthop. 2009;135:709-14.
31. Marsan G, Cura N, Emekli U. Soft and hard tissue changes after bimaxillary surgery in Turkish female Class III patients. J Craniomaxillofac Surg. 2009;37:8-17.

Conflict of interest
All authors state that there are no conflicts of interest. There were no financial or personal relationships that could inappropriately influence their work.