INTRODUCTION

Patients undergoing abdominal wall reconstruction often have significant postoperative pain. Poorly controlled postoperative pain has been shown to lead to longer postoperative care unit stays, longer hospital stays increased readmission rates, and decreased patient satisfaction. Another, less well-known, deleterious effect of poorly controlled pain is peripheral and central sensitization, giving rise to chronic pain. Interestingly, poorly controlled pain has also been shown to impair immune function and decrease blood flow through sympathetic-induced peripheral vasoconstriction, placing the patient at increased risk of surgical-site infection and wound healing complications.

Traditional pain control methods have relied heavily on intraoperative and postoperative opioids. However, those drugs are known to increase the risks of constipation, confusion, ileus, falls, and even fatal respiratory arrest. They also can lead to the development of opioid dependence, contributing to the current epidemic across the United States, which has spurred the Joint Commission on Accreditation of Healthcare Organizations, the Centers for Disease Control, American Society of Anesthesiologists, and even the Surgeon General to urge for a shift toward nonopioid methods.

Background: In abdominal wall reconstruction, adequate pain control and minimization of narcotic consumption are essential to improving patient outcomes and satisfaction. Previous studies have examined the role of individual strategies, such as neuraxial analgesia and multimodal analgesia. However, there has not been a study that examined all potential determinants of postoperative narcotic requirements, including intraoperative strategies.

Methods: Consecutive patients who underwent abdominal wall reconstruction were reviewed. Preoperative factors (chronic preoperative narcotic usage, indication for abdominal wall reconstruction, administration of neuraxial analgesia), intraoperative factors (intraoperative narcotics administered, method of mesh fixation), and postoperative factors (multimodal analgesia, complications) were collected. The main outcomes were daily amount of opioids used and length of hospital stay.

Results: Ninety-three patients were included in the study. Patients who had an epidural required lower doses of opioids postoperatively, while those on chronic preoperative opioids, those whose mesh was fixated using transfascial sutures, and those who received large doses of opioids intraoperatively required higher doses of postoperative opioids. Hospital length of stay was longer in patients who received transfascially sutured mesh and those on chronic opioids preoperatively.

Conclusions: This study provides potential strategies to improve pain control and minimize narcotic consumption postoperatively in patients undergoing abdominal wall reconstruction. Intraoperative administration of opioids should be minimized to avoid the development of tolerance. Epidural analgesia reduces postoperative narcotic requirement and may be especially beneficial in patients at highest risk for postoperative pain, including those on chronic opioids, and those in whom transfascial sutures are used for mesh fixation. (Plast Reconstr Surg Glob Open 2017;5:e1400; doi: 10.1097/GOX.0000000000001400; Published online 23 June 2017.)
options for pain management.4–11,14 Opioids also lead to tolerance, and patients on chronic opioid therapy usually require higher doses of postoperative opioids to achieve pain control.15 Interestingly, tolerance to opioids can develop very rapidly, within a few hours.16 So rapid is the development of tolerance to opioids that remifentanil has been found to lose 75% of its potency after a 3-hour infusion.17 Intraoperative administration of high doses of narcotics can therefore lead to rapid opioid tolerance postoperatively.

Nonnarcotic methods of pain control have emerged as effective and safe alternatives and have been shown to reduce the need for postoperative narcotics. Those methods include local anesthetics,18,19 nonsteroidal anti-inflammatory drugs (NSAIDs, such as ketorolac, ibuprofen, and celecoxib),20–24 acetaminophen,25–27 gabapentin, and epidural analgesia.28,29 Multimodal analgesia has been defined as the simultaneous use of 2 or more classes of these nonopioid alternatives.30 This approach takes advantage of the different mechanisms of action of these pain control modalities. In abdominal surgery, several of those modalities have been proven to be effective.31–39

However, there are additional factors that may affect postoperative pain control and narcotic requirement that have not been discussed as thoroughly in the literature: preoperative chronic opioid usage would be expected to increase postoperative opioid requirements. In addition, we have recently shown that the use of sutureless self-gripping mesh results in lower postoperative pain and narcotic requirement than the use of transfascially sutured mesh.40 We have recently shown that the use of sutureless self-gripping mesh results in lower postoperative pain and narcotic requirement than the use of transfascially sutured mesh.40

Our goal in this study was to perform a comprehensive analysis of the predictors of higher opioid usage after abdominal wall reconstruction, including preoperative, intraoperative, and postoperative factors.

METHODS

After institutional review board approval, a retrospective chart review of all patients who underwent abdominal wall reconstruction by the senior author (J.E.J.) between September 2013 and February 2016 was performed. Preoperative patient and hernia characteristics were collected, including the indication for abdominal wall reconstruction (hernia versus reconstruction after tumor resection), whether the patient was on chronic opioids preoperatively, and whether an epidural catheter was placed preoperatively. In patients who received an epidural catheter, this was placed in the preoperative holding area with the patient seated. Each patient’s T7/T8 interspace was identified, prepped, and steriley draped. Utilizing the loss of resistance technique, the epidural space was identified, and an epidural catheter was advanced. Following catheter insertion, a test dose of local anesthetic with epinephrine was instilled to ensure proper placement. The epidural catheter was then secured and connected to an epidural pump. The epidural infusion consisted of a mixture of 0.0625% bupivacaine and 4 mcg/ml fentanyl. The anesthesia-acute pain team followed patients postoperatively to make adjustments to epidural pump settings. Changes to the rate and/or patient controlled epidural analgesia (PCEA) dose were based on individual pain scores (0–10) verbalized by the patient during rounds.

Intraoperative details included whether mesh was fixed using transfascial sutures, whether components separation (anterior or posterior) was performed, and the amount of intraoperative narcotics administered by the anesthesiologist (in milligrams of oral morphine equivalents).

Postoperative details included complications (surgical-site occurrences at 30 days and hernia recurrence at last follow-up), median daily amount of narcotic analgesics used (in milligrams of oral morphine equivalents), and whether the patient received multimodal analgesia. Multimodal analgesia was administered orally once the patient was able to tolerate a clear liquid diet. This consisted of scheduled acetaminophen 1,000 mg every 6 hours, celecoxib 200 mg 3 times a day, and gabapentin 300 mg 3 times a day. Celecoxib was withheld in patients with known or suspected cardiac or renal disease. Gabapentin was dosed accordingly in patients with renal impairment based on creatinine clearance and was withheld in patients with obstructive sleep apnea, given the risk of exacerbation. Narcotics consisted of hydromorphine or morphine patient-controlled analgesia in the early postoperative period, followed by oral oxycodone or hydrocodone as needed once bowel function return, with intravenous narcotics available for breakthrough pain. Due to the scheduled acetaminophen, no additional acetaminophen-containing narcotics were administered (Table 1).

Statistical analyses included the Mann-Whitney test and multivariate binary logistic regression. To obtain binary values from continuous values, the outcome (amount of daily narcotics used postoperatively) was classified as equal or greater than 100 mg of oral morphine equivalent, since 100 mg of daily oral morphine intake is considered the threshold for high-dose opioids that places the patient at higher risk of complications.15,41 The amount of intraoperative narcotics given was classified as greater or smaller than its mean (75 mg). Statistical analyses were performed using Minitab 17, with P ≤ 0.05 considered statistically significant.

RESULTS

Ninety-three patients underwent abdominal wall reconstruction between September 2013 and February 2016. Mean follow-up was 574 days (range, 250–1,090 days). Thirty patients (32.3%) were using chronic narcotics preoperatively. Eighty-one patients (87.1%) underwent reconstruction for hernia as an isolated procedure, whereas 12 patients (12.9%) underwent reconstruction after tumor extirpation. Components separation was performed in 49 patients (52.7%). Mesh was used in 89 patients. This included transfascially sutured mesh in the underlay or rectusrecusus positions in 63 patients (67.6%) and self-adhering sutureless mesh in 22 patients (23.7%). No mesh was used in 8 patients (8.6%). Epidural catheterization was performed in 37 patients (39.8%). Multimodal analgesia was administered in 51 patients (54.8%; Table 2).

Univariate analysis showed that the only factor that reduced median postoperative daily opioid usage was the placement of an epidural catheter preoperatively (61.9 mg versus 95.5 mg; P = 0.015; Table 3). The use of
multimodal analgesics postoperatively approached statistical significance (70.0 mg versus 93.3 mg; \( P = 0.06 \)). Factors that increased median daily opioid requirement included chronic usage of narcotics preoperatively (114.4 mg versus 65.4 mg; \( P = 0.05 \)) and the placement of transfascially sutured mesh (98.0 mg versus 57.3 mg; \( P = 0.01 \)).

Excluding patients who had oncologic extirpative defects, the only significant factor was the placement of an epidural catheter (90.8 mg versus 143.2 mg; \( P = 0.05 \)).

Multivariate logistic regression showed that factors associated with higher postoperative opioid usage were preoperative chronic use of narcotics [odds ratio (OR), 3.88; \( P = 0.016 \)], high intraoperative narcotic usage (OR, 2.83; \( P = 0.043 \)), and the use of transfascially sutured mesh (OR, 4.55; \( P = 0.014 \); Table 4). The use of epidural analgesia was associated with lower postoperative opioid usage (OR, 0.28; \( P = 0.018 \)).

Average postoperative length of stay in the hospital was 5.9 days. The only 2 predictors of increased length of stay were the use of transfascially sutured mesh (OR, 4; \( P = 0.007 \)) and the chronic use of narcotics preoperatively (OR, 2.7; \( P = 0.045 \)). Epidural placement did not affect hospital length of stay (6.3 days with epidural, 5.6 days without epidural; \( P = 0.5 \)).

### Table 1. Multimodal Oral Analgesia Regimen

| Drug            | Dose (mg) | Frequency         | Mechanism of Action                                         | Precautions                                      |
|-----------------|-----------|-------------------|-------------------------------------------------------------|--------------------------------------------------|
| Acetaminophen   | 1,000     | Every 6 h         | Unclear                                                     | Avoid other acetaminophen-containing drugs. Do not use in hepatic dysfunction. |
| Gabapentin      | 300       | 3 times daily     | Inhibits signal transmission through dorsal root ganglia    | Needs renal dosing                               |
| Celecoxib       | 200       | 3 times daily     | Inhibits COX-2 and decreases prostaglandin synthesis        | Contraindicated in cardiac disease               |
| Ibuprofen       | 400       | Every 6 hours     | Inhibits COX and decreases prostaglandin synthesis          | Do not use with other NSAIDs. May lead to gastrointestinal bleeding. May inhibit platelet function. |
| Naproxen        | 440       | Every 12 hours    | Inhibits COX and decreases prostaglandin synthesis          | Do not use with other NSAIDs. May lead to gastrointestinal bleeding. May inhibit platelet function. |

### Table 2. Baseline Patient Characteristics

| Variables                  | n (%)    |
|----------------------------|----------|
| All patients               | 93 (100) |
| Indication for surgery     |          |
| Hernia                     | 81 (87.1)|
| Tumor                      | 12 (12.9)|
| Preoperative narcotics     |          |
| Yes                        | 30 (32.3)|
| No                         | 63 (67.7)|
| Components separation      |          |
| Yes                        | 49 (52.7)|
| No                         | 44 (47.3)|
| Mesh                       |          |
| None                       | 8 (8.6)  |
| Transfascially sutured     | 63 (67.7)|
| Self-adhering (sutureless) | 22 (23.7)|
| Multimodal analgesia       |          |
| Yes                        | 51 (54.8)|
| No                         | 42 (45.2)|
| Epidural                   |          |
| Yes                        | 37 (39.8)|
| No                         | 56 (60.2)|
| Surgical Site Occurrences |          |
| Yes                        | 23 (24.7)|
| No                         | 70 (74.4)|

### Table 3. Univariate Analysis of the Predictors of Postoperative Narcotic Consumption

| Variables                  | Median Daily Postoperative Narcotic Consumption (mg of Oral Morphine Equivalents) | \( P \) |
|----------------------------|---------------------------------------------------------------------------------|--------|
| All patients               | 95                                                                                |        |
| Epidural                   |                                                                                  |        |
| Yes                        | 37                                                                                | 61.9   |
| No                         | 56                                                                                | 95.3   |
| Multimodal analgesia       |                                                                                  |        |
| Yes                        | 51                                                                                | 70.0   |
| No                         | 42                                                                                | 93.3   |
| Preoperative narcotic use  |                                                                                  |        |
| Yes                        | 29                                                                                | 114.4  |
| No                         | 64                                                                                | 65.4   |
| Mesh fixation              |                                                                                  |        |
| Sutured                   | 63                                                                                | 98.0   |
| Sutureless or no mesh      | 30                                                                                | 57.3   |
| Indication for surgery     |                                                                                  |        |
| Hernia                     | 80                                                                                | 85.0   |
| Tumor                      | 13                                                                                | 52.0   |
| Components separation      |                                                                                  |        |
| Yes                        | 49                                                                                | 81.8   |
| No                         | 44                                                                                | 73.4   |
| Surgical Site Occurrences |                                                                                  |        |
| Yes                        | 23                                                                                | 94.1   |
| No                         | 70                                                                                | 69.4   |
| Intraoperative narcotics   |                                                                                  |        |
| (mg of oral morphine equiv) |                                                                                   |        |
| \( \geq 75 \) mg            | 41                                                                                | 109.8  |
| \(< 75 \) mg               | 52                                                                                | 64.7   |

*Statistically significant values (<0.05).

### Table 4. Multivariate Logistic Regression of the Predictors of Increased Postoperative Narcotic Requirement

| Variables                  | Odds Ratio of Postoperative Opioids > 100 mg Oral Morphine Equivalents Daily | \( P \) |
|----------------------------|--------------------------------------------------------------------------------|--------|
| Intraoperative opioids     |                                                                                  |        |
| \( \geq 75 \) mg            | 2.83 (1.03–7.81)                                                                | 0.043* |
| Sutured mesh              |                                                                                  |        |
| \( \geq 75 \) mg            | 4.55 (1.24–16.06)                                                               | 0.014* |
| Multimodal analgesia       |                                                                                  |        |
| \( \geq 75 \) mg            | 0.28 (0.09–0.85)                                                                | 0.018* |
| Preoperative opioids       |                                                                                  |        |
| \( \geq 75 \) mg            | 0.61 (0.16–2.99)                                                                | 0.46   |
| Epidural                   |                                                                                  |        |
| \( \geq 75 \) mg            | 3.88 (1.24–12.2)                                                                | 0.016* |

*Statistically significant values (<0.05).
Twenty patients developed surgical-site occurrences at 30 days (21.5%). This included delayed wound healing in 8 (8.6%), cellulitis in 6 (6.5%), abscess in 5 (5.4%), and hematoma in 1 (1.1%). There were no differences in complication rates between patients receiving an epidural and those not receiving an epidural.

At last follow-up, hernia recurrence occurred in 2 patients (2.2%), and bulge occurred in 1 patient (1.1%). One patient (1.1%) developed a pulmonary embolus. No patients developed epidural catheter-related complications.

**DISCUSSION**

Adequate pain control with minimization of narcotic usage has become the standard of care in abdominal wall reconstruction. Previous authors have demonstrated the importance of this approach. Novitsky et al. studied their Enhanced Recovery After Surgery pathway in patients undergoing abdominal wall reconstruction.\(^\text{23,42}\) They found that the pain control portion of their pathway, which included intraoperative transversus abdominis plane (TAP) block with liposomal bupivacaine, multimodal analgesia preoperatively and postoperatively (acetaminophen, ibuprofen, gabapentin), and minimization of narcotic usage, was effective. Their study did not evaluate the use of epidural analgesia.

In our study, we have examined multiple factors that may affect postoperative pain and narcotic usage. This includes epidural catheter placement and the use of multimodal analgesia. We also examined preoperative narcotic usage and intraoperative narcotic administration as variables because patients on chronic opioids are likely to develop tolerance. In fact, tolerance can develop very rapidly, even as a response to intraoperative opioids,\(^\text{17}\) highlighting the need to consider modification to intraoperative strategies to minimize this from occurring and to underscore the importance of close communication and collaboration with anesthesia. Another variable that we examined was whether mesh fixation was performed with transfascial sutures: we have previously shown that the use of sutureless, self-gripping mesh resulted in lower narcotic usage and intraoperative analgesia,\(^\text{49}\) resulting in less nausea and vomiting\(^\text{50,51}\) and lead to faster return of gastrointestinal function\(^\text{52}\) compared with systemic opioids. Patients with epidurals also have higher satisfaction, less pain with activity and improved pulmonary function,\(^\text{50–52}\) and shorter length of stay following abdominal surgery.\(^\text{53–55}\) In patients undergoing arthroplasties, epidural analgesia has been shown to decrease venous thromboembolism.\(^\text{56}\) In addition, epidural analgesia has been shown to lower the levels of stress hormones and to increase the number of circulating lymphocytes and helper T-cells.\(^\text{57}\)

Epidurals are commonly believed to have high incidence of hypotension and adverse complications. Studies have shown that acute hypotension occurs in 10% of patients receiving an epidural, compared with 2% of patients receiving systemic opioids. The risk of serious adverse events, such as epidural abscess, persistent neurological damage, or catheter fracture in situ is approximately 0.1%.\(^\text{53,54}\) Urinary retention has also been reported to occur in 10% of patients with epidurals. However, a vast majority of patients are able to urinate spontaneously without a Foley catheter 24–48 hours postoperatively.\(^\text{55,56}\)

Specific anticoagulation guidelines from the American Society of Regional Anesthesia and Pain Medicine should be followed to determine patient eligibility for epidural placement and timing of catheter and removal.

**Table 5. Epidural Insertion Levels for Various Surgical Indications**

| Indication        | Target Dermatomes | Epidural Insertion Level |
|-------------------|-------------------|--------------------------|
| Thoracic surgery  | T3–T8             | T5–T7                    |
| Abdominal surgery | T4–T12            | T7–T9                    |
| Pelvic surgery    | T6 to sacral      | T9–T12                   |
Anticoagulation needs to be held anywhere from 4 hours (with normal PTT) to 5 days depending on the specific anticoagulant (Table 6).62,63

| Drug                        | When to Stop | When to Restart (h) |
|-----------------------------|--------------|--------------------|
| ASA and ASA combinations    | 6 d          | 24                 |
| NSAI Ds                     | 5 half-lives | 24                 |
| Diclofenac                  | 1 d          | 24                 |
| Ketorolac                   | 1 d          | 24                 |
| Ibuprofen                   | 1 d          | 24                 |
| Etodolac                    | 2 d          | 24                 |
| Indomethacin                | 2 d          | 24                 |
| Naproxen                    | 4 d          | 24                 |
| Meloxicam                   | 4 d          | 24                 |
| Nabumetone                  | 6 d          | 24                 |
| Oxaprazin                   | 10 d         | 24                 |
| Piroxicam                   | 10 d         | 24                 |
| Phosphodiesterase inhibitors|              |                    |
| Cilostazol                  | 2 d          | 24                 |
| Dipyridamole                | 2 d          | 24                 |
| Anticoagulants              |              |                    |
| Coumadin                    | 5 d, normal INR |                    |
| Acenocoumarol               | 3 d, normal INR |                    |
| IV heparin                  | 4 h          | 2                  |
| SubQ heparin                | 8–10 h       | 2                  |
| LMWH (prophylactic)         | 12 h         | 12–24              |
| LMWH (therapeutic)          | 24 h         | 12–24              |
| Fibrinolytic agents         |              |                    |
| Fondaparinux                | 4 d          | 24                 |
| P2Y12 inhibitors            |              |                    |
| Clopidogrel                 | 7 d          | 12–24              |
| Prasugrel                   | 7–10 d       | 12–24              |
| Ticagrelor                  | 5 d          | 12–24              |
| New anticoagulants          |              |                    |
| Dalbigatran                 | 4–5 d (6 if impaired renal function) | 24 |
| Rivaroxaban                 | 3 d          | 24                 |
| Apixaban                    | 3–5 d        | 24                 |
| Glycoprotein IIb/IIIa inhibitors |            |                    |
| Abecixim                    | 2–5 d        | 8–12               |
| Epifibatide                 | 8–24 h       | 8–12               |
| Ticafiban                   | 8–24 h       | 8–12               |

Reproduced with permission from Narouze et al. 62

ASA, aspirin; LWMH, low-molecular-weight heparin; INR, International Normalized Ratio; IV, indicates intravenous.

We found that the use of multimodal analgesia approached statistical significance in predicting lower postoperative narcotic needs. Our oral multimodal analgesia regimen included celecoxib, gabapentin, and acetaminophen. These drugs reduce pain via distinct mechanisms: NSAIDs, most notably cyclooxygenase-2 inhibitors, act by decreasing the synthesis of prostaglandins involved in pain generation, namely prostaglandin E2 and prostacyclin.69 Gabapentin decreases current through membrane voltage-gated calcium channels in neurons of dorsal root ganglia.68 The analgesic mechanism of action of acetaminophen is unclear, but it seems to involve upregulation of serotonin activity in the spinal cord and brain.69 Despite the published evidence in favor of multimodal analgesia, we were unable to demonstrate a statistically significant benefit in our study, likely due to underpowering, although this approached significance at \( P = 0.06. \)

We also found that patients who had mesh fixed using transfascial sutures had more pain than those who had sutureless self-gripping mesh, or no mesh, a finding that we have previously demonstrated.40 Although transfascial sutures are often necessary to anchor mesh, they can entrap sensory intercostal nerves and cause significant discomfort postoperatively. In noncontaminated cases where fascial reaproximation can be achieved, we have found retrorectus placement of sutureless self-gripping mesh to be as reliable, and less painful, than the placement of transfascially sutured conventional mesh with low rates of recurrence.40 Another strategy we employ is minimizing transfascial suture fixation of mesh when the mesh is placed in the retroperitoneal plane after posterior components separation/transversus abdominis release (usually no more than 8 sutures in total placed in cardinal positions). However, in cases where the fascia cannot be reaproximated, we continue to use biologic or barrier-coated synthetic mesh in a wide intraperitoneal underlay position with transfascial sutures, knowing that these patients will likely have more pain postoperatively due to the higher number of sutures required to prevent internal herniation.

We found that preoperative chronic narcotic usage increased postoperative narcotic need. This is an expected finding, owing to the known tolerance that develops
after chronic narcotic usage. Interestingly, we also found that intraoperative administration of high-dose narcotics was an independent predictor of higher postoperative narcotic requirement. This is likely a result of the rapid development of tolerance to opioids. Minimizing opioid administration during anesthesia may therefore help minimize postoperative narcotic requirements.

This study is not without limitations. First, our study is retrospective in nature. Second, patients were not randomized to receiving any interventions and therefore confounders can affect our results, although we attenuated the effect of confounders through the use of multivariate logistic regression. Even though we demonstrated decreased narcotic requirements with epidural catheter placement, this did not translate into improved overall outcomes or shortened length of stay. Although there was a tendency toward decreased narcotic requirements in patients who received multimodal analgesia, this did not reach statistical significance due to underpowering, which is another limitation. Nevertheless, this is the first study to examine multiple elements that contribute to pain control in the abdominal wall reconstruction patient, including the effects of neuraxial analgesia, multimodal analgesia, mesh fixation techniques, preoperative narcotic use, and intraoperative narcotic use on postoperative opioid requirements. This study allows the identification of patients at risk of requiring high doses of narcotics postoperatively, patients on chronic narcotics preoperatively, and patients in whom transfascial sutures are used for mesh fixation. This study also provides strategies to decrease postoperative narcotic requirements in patients undergoing abdominal wall reconstruction, epidural catheterization, minimizing intraoperative narcotic administration, and possibly administering multimodal analgesia. These are components of an Enhanced Recovery After Surgery protocol that we are currently developing at our institution for abdominal wall reconstruction.

CONCLUSIONS
We found that, in abdominal wall reconstruction, the use of epidural analgesia was associated with lower postoperative narcotic requirements, whereas the use of transfascially sutured mesh, the use of higher doses of narcotics intraoperatively, and the preoperative chronic usage of narcotics were associated with higher postoperative narcotic requirements.

Jeffrey E. Janis, MD, FACS
Department of Plastic Surgery
The Ohio State University Wexner Medical Center
915 Olentangy River Rd
Columbus, OH 43212
Email: jeffrey.janis@osumc.edu

REFERENCES
1. Pavlin DJ, Chen C, Penaloza DA, et al. Pain as a factor complicating recovery and discharge after ambulatory surgery. Anesth Analg. 2002;95:627–634, table of contents.
2. Baratta JL, Schwenk ES, Viscusi ER. Clinical consequences of inadequate pain relief: barriers to optimal pain management. Plast Reconstr Surg. 2014;134:158–215.
3. Fortier J, Chung F, Su J. Unanticipated admission after ambulatory surgery—a prospective study. Can J Anaesth. 1998;45:612–619.
4. Joshi GP, Beck DE, Emerson RH, et al. Defining new directions for more effective management of surgical pain in the United States: highlights of the inaugural Surgical Pain Congress™. Am Surg. 2014;80:219–228.
5. Tasmuth T, Estlander AM, Kalso E. Effect of present pain and mood on the memory of past postoperative pain in women treated surgically for breast cancer. Pain. 1996;68:343–347.
6. Weissman C. The metabolic response to stress: an overview and update. Anesthesiology. 1990;73:308–327.
7. Morrison RS, Magaziner J, McLaughlin MA, et al. The impact of post-operative pain on outcomes following hip fracture. Pain. 2003;103:303–311.
8. Harrison B, Khansa I, Janis JE. Evidence-based strategies to reduce postoperative complications in plastic surgery. Plast Reconstr Surg. 2016;137:351–360.
9. The Joint Commission. Revisions to pain management standard effective January 1, 2015. Available at http://www.jointcommission.org/assets/1/25/jcoline. Accessed September 27, 2016.
10. US Centers for Disease Control and Prevention. Vital signs: overdoses of prescription opioid pain relievers—United States, 1999–2008. Morb Mortal Wkly Rep. 2011;60:1487–1492.
11. American Society of Anesthesiologists Task Force on Acute Pain Management. Practice guidelines for acute pain management in the perioperative setting: an updated report. Anesthesiology. 2012;116:248–273.
12. U.S. Food and Drug Administration. FDA announces safety labeling changes and postmarket study requirements for extended-release and long-acting opioid analgesics. Available at http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm367726. Accessed September 06, 2016.
13. Funk RD, Hilliard P, Ramachandran SK. Perioperative opioid use: avoiding adverse effects. Plast Reconstr Surg. 2014;134:325–398.
14. Murthy VH. Letter from the Surgeon General. Available at http://turnthetiderx.org/. Accessed September 27, 2016.
15. de Leon-Casasola OA, Myers DP, Donaparthi S, et al. A comparison of postoperative epidural analgesia between patients with chronic cancer taking high doses of oral opioids versus opioid-naive patients. Anesth Analg. 1993;76:302–307.
16. Collett BJ. Opioid tolerance: the clinical perspective. Br J Anaesth. 1998;81:58–68.
17. Vinik HR, Kissin I. Rapid development of tolerance to analgesia during remifentanil infusion in humans. Anesth Analg. 1998;86:1307–1311.
18. Morales R, Jr, Mentz H, 3rd, Newall G, et al. Use of abdominal field block injections with liposomal bupivacaine to control postoperative pain after abdominoplasty. Aesthet Surg J. 2013;33:1148–1153.
19. Fields AC, Gonzalez DO, Chin EH, et al. Laparoscopic-assisted transversus abdominis plane block for postoperative pain control in laparoscopic ventral hernia repair: a randomized controlled trial. J Am Coll Surg. 2015;221:462–469.
20. Sharma S, Chang DW, Koutz C, et al. Incidence of hematoma associated with ketorolac after TRAM flap breast reconstruction. Plast Reconstr Surg. 2001;107:352–355.
21. Constantine FC, Mataresso A. Putting it all together: recommendations for improving pain management in body contouring. Plast Reconstr Surg. 2014;134:113S–119S.
22. Straube S, Derry S, McQuay HJ, et al. Effect of preoperative Cox-II-selective NSAIDs (coxibs) on postoperative outcomes: a systematic review of randomized studies. Acta Anaesthesiol Scand. 2005;49:601–613.
23. Sun T, Sacan O, White PF, et al. Perioperative versus postoperative celecoxib on patient outcomes after major plastic surgery procedures. Anesth Analg. 2008;106:950–958, table of contents.
24. Gobble RM, Hoang HL, Kachnizar B, et al. Ketorolac does not increase perioperative bleeding: a meta-analysis of randomized controlled trials. Plast Reconstr Surg. 2014;133:741–755.
Khansa et al. • Narcotic Usage in Abdominal Wall Reconstruction

25. Fayezizadeh M, Petro CC, Rosen MJ, et al. Enhanced recovery after surgery pathway for abdominal wall reconstruction: pilot study and preliminary outcomes. Plast Reconstr Surg. 2013;131:1515–1523.

26. McDaid C, Maund E, Rice S, et al. Paracetamol and selective and non-selective non-steroidal anti-inflammatory drugs (NSAIDs) for the reduction of morphine-related side effects after major surgery: a systematic review. Health Technol Assess. 2010;14:1–153, iii.

27. Peng PW, Wiiyesundra DN, Li CC. Use of gabapentin for perioperative pain control—a meta-analysis. Pain Res Manag. 2007;12:85–92.

28. Correll DJ, Viscusi ER, Grunwald Z, et al. Epidural analgesia compared with intravenous morphine patient-controlled analgesia: postoperative outcome measures after mastectomy with immediate TRAM flap breast reconstruction. Reg Anesth Pain Med. 2001;26:444–449.

29. Ezhevskaya AA, Mlyavykh SG, Anderson DG. Effects of continuous epidural anesthetics and postoperative epidural analgesia on pain management and stress response in patients undergoing major spinal surgery. Spine (Phila Pa 1976). 2011;36:1324–1330.

30. Rosero EB, Joshi GP. Preemptive, preventive, multimodal analgesia: what do they really mean? Plast Reconstr Surg 2014;134:858–859.

31. Fayezizadeh M, Majumder A, Neupane R, Elliott HL, Novitsky YW. Efficacy of transversus abdominis plane block with liposomal bupivacaine during open abdominal wall reconstruction. Am J Surg. 2016;212:399–405.

32. Wningen SJ, Miller H, Minkowitz HS, et al. A randomized, double-blind, placebo-controlled, multicenter, repeat-dose study of two intravenous acetaminophen dosing regimens for the treatment of pain after abdominal laparoscopic surgery. Can J Anaesth. 2010;57:2348–2359.

33. Memis D, Inal MT, Kavalc? G, et al. Intravenous paracetamol reduced the use of opioids, extubation time, and opioid-related adverse effects after major surgery in intensive care unit. J Crit Care. 2010;25:458–462.

34. A?ici S, Gurbet A, T?ürker G, et al. Preemptive analgesic effects of intravenous paracetamol in total abdominal hysterectomy. Acta Obstet Gynecol Scand. 2009;88:541–546.

35. Ho KY, Gan TJ, Habib AS. Gabapentin and postoperative pain—a systematic review of randomized controlled trials. Pain. 2006;126:91–101.

36. Tiippana EM, Hamunen K, Kontinen VK, et al. Do surgical patients benefit from perioperative gabapentin/pregabalin? A systematic review of efficacy and safety. Anesth Analg. 2007;104:1545–1556, table of contents.

37. Dierking G, Duedahl TH, Rasmussen ML, et al. Effects of gabapentin on postoperative morphine consumption and pain after abdominal hysterectomy: a randomized, double-blind trial. Acta Anaesthesiol Scand. 2004;48:322–327.

38. Fassoulaki A, Stamatakis E, Petropoulos G, et al. Gabapentin attenuates late but not acute pain after abdominal hysterectomy. Eur J Anaesthesiol. 2006;23:136–141.

39. Pandey CK, Priye S, Singh S, et al. Preemptive use of gabapentin significantly decreases postoperative pain and rescue analgesic requirements in laparoscopic cholecystectomy. Can J Anaesth. 2004;51:358–363.

40. Khansa I, Janis JE. Abdominal wall reconstruction using retromuscular self-adhering mesh: a novel approach. Plast Reconstr Surg Glob Open. 2016;4:e1145.

41. Bohnert AS, Valenstein M, Bair MJ, et al. Association between opioid prescribing patterns and opioid overdose-related deaths. JAMA. 2011;305:1315–1321.

42. Majumder A, Fayezizadeh M, Neupane R, et al. Benefits of multimodal enhanced recovery pathway in patients undergoing open ventral hernia repair. J Am Coll Surg. 2016;222:1106–1115.

43. Ahlers O, Nachtigall I, Lenze J, et al. Intraoperative thoracic epidural anaesthesia attenuates stress-induced immunosuppression in patients undergoing major abdominal surgery. Br J Anaesth. 2008;101:781–787.

44. Momoh AO, Hilliard PE, Chung KC. Regional and neuraxial analgesia for plastic surgery: surgeon’s and anesthesiologist’s perspectives. Plast Reconstr Surg. 2014;134:685–698.

45. Kaneko M, Saito Y, Kirihara Y, et al. Synergistic antinociceptive interaction after epidural coadministration of morphine and lidocaine in rats. Anesthesiology. 1994;80:137–150.

46. Kopacz DJ, Sharrock NE, Allen HW. A comparison of levobupivacaine 0.125%, fentanyl 4 microg/mL, or their combination for patient-controlled epidural analgesia after major orthopedic surgery. Anesth Analg. 1999;89:1497–1503.

47. Elsharydah A, Williams TM, Rosero EB, et al. Epidural analgesia does not increase the rate of inpatient falls after major upper abdominal and thoracic surgery: a retrospective case-control study. Can J Anaesth. 2016;63:544–551.

48. Block BM, Liu SS, Rowlingson AJ, et al. Efficacy of postoperative epidural analgesia: a meta-analysis. JAMA. 2005;290:2455–2463.

49. Fischer JP, Wes AM, Wink JD, et al. Analysis of perioperative factors associated with increased cost following abdominal wall reconstruction (AWR). Hernia. 2018;18:617–624.

50. van Boekel RL, Vissers KC, van de Vossenberg G, et al. Comparison of epidural or regional analgesia and patient-controlled analgesia: a critical analysis of patient data by the Acute Pain Service in a University Hospital. Clin J Pain. 2016;32:681–688.

51. Pöpping DM, Elia N, Van Aken HK, et al. Impact of epidural analgesia on mortality and morbidity after surgery: systematic review and meta-analysis of randomized controlled trials. Ann Surg. 2014;259:1056–1067.

52. Guay J, Nishimori M, Kopp S. Epidural local anaesthetics versus opioid-based analgesic regimens for postoperative gastrointestinal paralysis, vomiting and pain after abdominal surgery. Cochrane Database Syst Rev. 2016;7:CD001893.

53. Roeb MM, Wolf A, Gräber SS, et al. Epidural against systemic analgesia: an international registry analysis on postoperative pain and related perceptions after abdominal surgery. Clin J Pain. 2017;33:189–197.

54. Zingg U, Miskovic D, Hamel CT, et al. Influence of thoracic epidural analgesia on postoperative pain relief and ileus after laparoscopic colorectal resection: benefit with epidural analgesia. Surg Endosc. 2009;23:276–282.

55. Misquith JCR, Rao R, Ribeiro KSA. Serial peak expiratory flow rates in patients undergoing upper abdominal surgeries under general anaesthesia and thoracic epidural analgesia. J Clin Diag Res. 2016;10:2–4.

56. Baidya DK, Khanna P, Maitra S. Analgesic efficacy and safety of thoracic paravertebral and epidural analgesia for thoracic surgery: a systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2014;18:626–635.

57. Fischer JP, Nelson JA, Wes AM, et al. The use of epidurals in abdominal surgery after implementation of an enhanced recovery protocol. HPB (Oxford). 2014;16:687–693.

58. Miller TE, Thacker JK, White WD, et al.; Enhanced Recovery Study Group. Reduced length of hospital stay in colorectal surgery after implementation of an enhanced recovery protocol. Anesth Analg. 2014;118:1052–1061.

59. Sanford DE, Hawkins WG, Fields RC. Improved perioperative outcomes with epidural analgesia in patients undergoing a pancreatoduodenectomy; a nationwide analysis. HPB (Oxford). 2015;17:551–558.

60. Hollmann MW, Wieczorek MS, Smart M, et al. Epidural anaesthesia prevents hypercoagulation in patients undergoing major orthopedic surgery. Reg Anesth Pain Med. 2001;26:215–222.

61. von Hösslin T, Imboden P, Lüthi A et al. Adverse events of postoperative thoracic epidural analgesia, a retrospective analysis of
7273 cases in a tertiary care teaching hospital. *Eur J Anaesthesiol* 2016;34:1–7.

62. Narouze S, Benzon HT, Provenzano DA, et al. Interventional spine and pain procedures in patients on antiplatelet and anticoagulant medications: guidelines from the American Society of Regional Anesthesia and Pain Medicine, the European Society of Regional Anaesthesia and Pain Therapy, the American Academy of Pain Medicine, the International Neuromodulation Society, the North American Neuromodulation Society, and the World Institute of Pain. *Reg Anesth Pain Med* 2015;40:182–212.

63. Horlocker TT, Wedel DJ, Yuan CS, et al. Regional anesthesia in the anticoagulated patient: defining the risks (The Second ASRA Consensus Conference on Neuraxial Anesthesia and Anticoagulation). *Reg Anesth Pain Med* 2003;28:172–197.

64. Nimmo SM, Harrington LS. What is the role of epidural analgesia in abdominal surgery? *Contin Educ Anaesth Crit Care Pain*. 2014;14:224–229.

65. El-Boghdadly K, Madjdpour C, Chin KJ. Thoracic paravertebral blocks in abdominal surgery—a systematic review of randomized controlled trials. *Br J Anaesth*. 2016;117:297–308.

66. Schreiber KL, Chelly JE, Lang RS, et al. Epidural versus paravertebral nerve block for postoperative analgesia in patients undergoing open liver resection: a randomized clinical trial. *Reg Anesth Pain Med*. 2016;41:460–468.

67. Bingham S, Beswick PJ, Blum DE, et al. The role of the cyclooxygenase pathway in nociception and pain. *Semin Cell Dev Biol*. 2006;17:544–554.

68. Fassoulaki A, Triga A, Melemeni A, et al. Multimodal analgesia with gabapentin and local anesthetics prevents acute and chronic pain after breast surgery for cancer. *Anesth Analg*. 2005;101:1427–1432.

69. Pelissier T, Alloui A, Caussade F, et al. Paracetamol exerts a spinal antinociceptive effect involving an indirect interaction with 5-hydroxytryptamine 3 receptors: *in vivo* and *in vitro* evidence. *J Pharmacol Exp Ther*. 1996;278:8–14.