Systematic Review

Grade III Acromioclavicular Separations Treated With Suspensory Fixation Techniques: A Systematic Review of Level I Through IV Studies

Joseph J. Ruzbarsky, M.D., Bryant P. Elrick, M.Sc., Philip-C. Nolte, M.D., M.A., Justin W. Arner, M.D., and Peter J. Millett, M.D., M.Sc.

Purpose: To perform a systematic review comparing clinical outcomes, radiographic outcomes, and complication rates after acute (surgery ≤6 weeks from injury) versus chronic (surgery >6 weeks from injury) acromioclavicular joint reconstructions for grade III injuries using modern suspensory fixation techniques. Methods: We performed a systematic review of the literature examining acute versus chronic surgical treatment of Rockwood grade III acromioclavicular joint separations using the Cochrane registry, MEDLINE database, and Embase database over the past 10 years according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. The inclusion criteria included techniques using suspensory fixation, a minimum study size of 3 patients, a minimum follow-up period of 6 months, human studies, and English-language studies. The methodology of each study was evaluated using the Methodological Index for Non-randomized Studies (MINORS) tool for nonrandomized studies and the revised Cochrane risk-of-bias (RoB 2) tool for randomized controlled trials. Results: The systematic review search yielded 20 studies with a total of 253 patients. There were 2 prospective randomized controlled trials, but most of the included studies were retrospective. On comparison of acute surgery (≤6 weeks) and chronic surgery (>6 weeks), individual studies reported a range of Constant scores of 84.4 to 98.2 and 80.8 to 94.1, respectively. The ranges of radiographic coracoclavicular distances reported at final follow-up also favored acute reconstructions, which showed improved reduction (9.2-15.7 mm and 11.7-18.6 mm, respectively). The reported complication rates ranged from 7% to 67% for acute reconstructions and from 0% to 30% for chronic reconstructions. Conclusions: The ranges in the Constant score may favor acute reconstructions, but because of the heterogeneity in the surgical techniques in the literature, no definitive recommendations can be made regarding optimal timing. Level of Evidence: Level IV, systematic review of Level I through IV studies.

Acromioclavicular joint (ACJ) injuries are very common shoulder injuries, especially in athletes, representing 12% of all shoulder injuries. ACJ dislocations are most commonly classified according to the Rockwood classification. Although there is consensus on conservative therapy in grade I and II injuries and operative treatment in grade IV to VI injuries, there is an ongoing debate regarding the optimal treatment strategy for grade III injuries, which are characterized by superior displacement of the distal clavicle by 1 clavicular diameter (100%) on an anteroposterior radiograph.

Over a decade ago, Spencer systematically reviewed grade III acromioclavicular (AC) separations focusing on...
operative and conservative approaches. He concluded that “nonoperative treatment is superior to traditional operative treatment in the management of grade III AC separations.” Since the time of that publication, operative treatment of AC separations has dramatically changed. At that time, anatomic coracoclavicular (CC) reconstruction with cortical buttons and sutures and/or grafts was in its infancy as evidenced by only a few included studies using suspensory fixation techniques in that publication. Several additional recently published systematic reviews have also attempted to summarize the literature on surgical and conservative treatment of grade III injuries. These reviews found advantages and disadvantages of each approach but were unable to conclude that either was superior to the other. Unfortunately, these studies included a variety of older reconstructive techniques, many of which are not commonly used today, and did not address time to surgical treatment and its effect on results.

The purpose of this study was to perform a systematic review comparing clinical outcomes, radiographic outcomes, and complication rates after acute (surgery ≤6 weeks from injury) versus chronic (surgery >6 weeks from injury) ACJ reconstructions for grade III injuries using modern suspensory fixation techniques. We hypothesized that acute reconstructions would have improved patient-reported outcome measures (PROMs) and smaller final CC distances with a similar complication rate when compared with chronic reconstructions.

Table 1. Quality of Randomized Controlled Trials Using Cochrane Risk of Bias (RoB 2) Tool

Cochrane Risk	Cai et al.	Ye et al.
Bias arising from randomization process	Low risk	Low risk
Bias owing to deviations from intended	Low risk	Low risk
interventions		
Bias owing to missing outcome data	Low risk	Low risk
Bias in measurement of outcome	Some concerns	Low risk
Bias in selection of reported result	Low risk	Low risk
Overall bias	Some concerns	Low risk

![Fig 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) flow diagram of included studies.](image)
Methods

Article Identification and Selection

This review was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A systematic review of the literature regarding acute versus chronic surgical treatment of Rockwood grade III ACJ separations was performed using 3 separate manuscript repositories—Cochrane registry, MEDLINE database, and Embase database—over the prior 10 years, from January 1, 2010, to January 1, 2020, to capture modern reconstructive techniques. The queries were performed on January 24, 2020. The formal search queries for each database included the terms "acromioclavicular," "coracoclavicular," and "surgery" or "reconstruction."

The inclusion criteria encompassed techniques using anatomic CC reconstruction with cortical buttons and sutures or tissue grafts, a minimum study size of 3 patients; a minimum follow-up period of 6 months; human studies; and studies published in or translated into the English language. We excluded any studies reporting on reconstruction techniques using plates, screws, pins, or coracoacromial ligament transfers (i.e., Weaver-Dunn modification); cadaveric studies; animal studies; editorial articles; case reports; review articles; surgical techniques; and studies of mixed acute and chronic cases or mixed-severity injuries that could not be separated for analysis. Acute reconstructions were defined as those performed within 6 weeks of injury, whereas chronic reconstructions were those completed after 6 weeks. The intermediate time point of 6 weeks was chosen because some authors have described 3 weeks as the “acute” window in which the CC ligaments have the ability to heal and some chose 4 weeks, whereas others have described chronic injuries as those treated several months after the injuries.

Two independent orthopaedic surgeon reviewers (J.J.R. and P-C.N.) performed a review of the abstracts from all queried articles. A parallel full-text review was performed by the same authors. A third, medical student reviewer (B.P.E.) reconciled all disputes. All references and systematic reviews encountered were reviewed to ensure complete article catchment.

Data Collection and Processing

Each included article was assigned a level-of-evidence designation according to Wright et al. Data were directly extracted from the article text, tables, and appendices. Collected data included publication details, patient demographic characteristics, follow-up duration, minimum follow-up, surgical techniques, clinical measures and PROMs, radiographic CC displacement (CC distance), and complications. If mixed populations of Rockwood grades were reported, the grade III injuries were separated out and new descriptive statistics were calculated. Shoulder and upper-extremity PROMs that were collected included the Constant score (CS); American Shoulder and Elbow Surgeons score; Disabilities of the Arm, Shoulder and Hand score; Oxford Shoulder Score; and visual analog scale score. The rate of return to work, if provided, was also collected.

Study	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	MINORS Score
Acar et al.	2	0	0	2	0	1	0	0					5 of 16
Beris et al.	2	0	0	2	0	1	0	0					5 of 16
B Singhraj et al.	2	0	0	2	0	1	0	0					5 of 16
Chaudhary et al.	2	0	0	1	0	1	0	0					4 of 16
Chohan et al.	0	0	1	2	0	1	0	0					4 of 16
Darabos et al.	2	0	2	2	2	1	1	0	1	2	2	0	15 of 24
De Carli et al.	2	0	0	2	0	2	1	0	1	1	1	0	10 of 24
Gangary and Meena	2	1	2	1	0	1	0	1					8 of 16
Gogna et al.	0	1	0	1	0	1	0	1	2	0			5 of 16
Gupta et al.	0	1	1	1	0	1	0	0					4 of 16
Hegazy et al.	2	0	1	1	0	2	0	0	1	1	2	0	10 of 24
Kibler et al.	2	0	1	1	0	1	0	0					5 of 16
Kocaglu et al.	2	1	0	2	0	2	0	0	0	1	0	0	8 of 24
Muneh et al.	2	0	0	2	0	2	0	0					6 of 16
Spoliti et al.	2	0	0	1	0	1	1	0					5 of 16
Vascevari et al.	2	0	0	2	0	1	0	0	1	1	0	0	7 of 24
Wright et al.	2	2	0	1	0	1	2	0					8 of 16
Yoo et al.	2	2	0	2	0	2	2	0					10 of 16
Zhang et al.	2	1	0	2	0	2	1	0					8 of 16

MINORS, Methodological Index for Non-randomized Studies.
Authors	Year	Journal	LOE	Technique	Cases, n	Mean Age, yr	Minimum FU, mo	Outcomes
Acar et al.⁶⁶	2015	*Acta Orthopaedica et Traumatologica Turcica*	IV	Percutaneous, 2 suspensory buttons	13	43.4	9	Mean CS 84.4
								Mean DASH score 0.4
								Mean VAS score 0.6
								Mean postoperative CCD, mm 9.23
								Complication rate, % NA
								Mean CS 94.1
								Mean DASH score 0.375
								Mean VAS score 0.25
								Mean postoperative CCD, mm 10.3
								Complication rate, % 12.5
								Mean CS 90.25
								Return to work, % 100
								Mean postoperative CCD, mm 11.25
								Mean VAS score 0.5
								Complication rate, % 0
								Mean CS 92
								Mean VAS score 0.97
								Mean postoperative CCD, mm 12.3
								Complication rate, % 10
								Mean CS 89.7
								Return to work, % 100
								Mean postoperative CCD, mm NA
								Complication rate, % NA
								Mean CS NA
								Mean ASES score 91
								Mean VAS score 93
								Mean postoperative CCD, mm 2
								Complication rate, % 12.5
								Mean CS NA
								Mean DASH score 2.63
								Mean VAS score 0
								Mean postoperative CCD, mm NA
								Complication rate, % 0

(continued)
Authors	Year	Journal	LOE	Technique	Cases, n	Mean Age, yr	Minimum FU, mo	Outcomes	
Gupta et al.	2016	Journal of Arthroscopy and Joint Surgery	IV	Arthroscopy assisted, 2 suspensory buttons	3	28.7	12	Mean CS 93 NA Complication rate, % 0 Mean postoperative CCD, mm NA 4 Mean OSS 50 Mean VAS score 4 Mean postoperative CCD, mm NAComplication rate, % 30 Mean CS NA Mean postoperative CCD, mm NA Complication rate, % 0 Mean CS NA Mean postoperative CCD, mm NA Complication rate, % 0 Mean CS NA	
Hegazy et al.	2016	The Open Orthopaedics Journal	III	Open, autograft (semitendinosus)	10	37.9	24	Mean OSS 50 Mean postoperative CCD, mm 11.7 Mean VAS score 4 Mean postoperative CCD, mm 12.75 Complication rate, % 0 Mean CS NA Mean postoperative CCD, mm NA Complication rate, % 0 Mean CS NA Mean postoperative CCD, mm NA Complication rate, % 0 Mean CS NA	
Vascellari et al.	2015	Joints	III	Arthroscopy assisted, LARS/GraftRope (Arthrex)/TightRope (Arthrex) and allograft (not specified)	12	Acute: 44.9 Chronic: 52.7	Acute: 15 Chronic: 12	Mean DASH score 9.9 Mean postoperative CCD, mm 12.8 Mean VAS score 0 Mean postoperative CCD, mm 10.9 Mean VAS score 0 Mean postoperative CCD, mm NA Mean VAS score 0 Mean postoperative CCD, mm NA Mean VAS score 0 Mean postoperative CCD, mm NA	
Wright et al.	2015	Journal of Orthopaedic Surgery	IV	Open, 1 suspensory button	12	40	13	Mean CS 96.5 Mean postoperative CCD, mm 9.9 Mean DASH score 9.9 Mean postoperative CCD, mm 10.9 Mean VAS score 0 Mean postoperative CCD, mm NA Mean VAS score 0 Mean postoperative CCD, mm NA Mean VAS score 0 Mean postoperative CCD, mm NA	
Spoliti et al.	2014	Muscles, Ligaments and Tendons Journal	IV	Open, 2 suspensory buttons	6	31.6	12	Mean CS 93.3 Mean postoperative CCD, mm NA Mean VAS score 0 Mean postoperative CCD, mm NA Complication rate, % 100	
Kibler et al.	2017	Arthroscopy	IV	Open, allograft (semitendinosus) and PDS	12	38.9	18	Mean DASH score 12.75 Mean postoperative CCD, mm 12.2 Complication rate, % 0 Mean CS NA Mean postoperative CCD, mm NA Complication rate, % 0 Mean CS NA Mean postoperative CCD, mm NA Complication rate, % 0 Mean CS NA	
Kocaoglu et al.	2017	Journal of Shoulder and Elbow Surgery	III	Open, autograft (palmaris longus) and 2 buttons	12	41.5	29	Mean ASES score 94.5 Mean postoperative CCD, mm 13.9 Complication rate, % 0 Mean CS NA Mean postoperative CCD, mm NA Complication rate, % 0 Mean CS NA Mean postoperative CCD, mm NA Complication rate, % 0 Mean CS NA	
Muench et al.	2019	The Orthopaedic Journal of Sports Medicine	IV	Open, allograft (semitendinosus or peroneus longus)	20	43.4	24	Mean DASH score 25.2 Mean postoperative CCD, mm 26.9 Complication rate, % 0 Mean CS NA Mean postoperative CCD, mm NA Complication rate, % 0 Mean CS NA Mean postoperative CCD, mm NA Complication rate, % 0 Mean CS NA	

(continued)
Literature Quality Evaluation

An orthopaedic surgeon (J.W.A.) and medical student reviewer (B.P.E.) used the Methodological Index for Non-randomized Studies (MINORS) tool to assess the methodologic quality and rigor of each included non-randomized study. This tool contains 12 items with the last 4 criteria specific for comparative studies only. If the parameter was reported appropriately, then a score of 2 was given for the individual item; if it was reported but was inadequate, then a score of 1 was given; and if the item was not reported, then a score of 0 was given. A maximum of score of 24 points is possible for comparative studies, whereas the maximum score is 16 for noncomparative studies.15

The revised Cochrane risk-of-bias (RoB 2) tool was used to assess the quality of randomized controlled trials (RCTs) (Table 1).16 The RoB 2 tool consists of 5 domains: (1) bias arising from the randomization process, (2) bias owing to deviations from intended interventions, (3) bias owing to missing outcome data, (4) bias in measurement of the outcome, and (5) bias in selection of the reported result. These domains were individually assessed for low risk, high risk, or some concerns regarding the risk of bias by responding to signaling questions. Response options included the following: yes, probably yes, probably no, no, and no information. Responses were translated into an overall judgment of bias for each domain using a pre-determined algorithm. The overall risk-of-bias judgment was determined based on the judgments from each domain.

Results

The systematic search from 3 databases yielded 20 studies that met the specified inclusion criteria after exclusion of duplications among the databases. No additional studies were included from the analyses of both included studies’ references and prior systematic reviews on the topic. The complete PRISMA flow diagram is presented in Figure 1. The results of the methodologic assessments are presented in Tables 1 and 2.

Study and Demographic Characteristics

Two prospective RCTs, 1 prospective nonrandomized study, and 17 retrospective case series and comparative studies were included in this systematic review. Thirteen studies reported only on acute AC reconstructions, 6 studies reported only on chronic AC reconstructions, and 1 study reported on a mixed population of acute and chronic reconstructions. Neither weighted means nor statistical significance was calculated amid the heterogeneity in the included studies as recommended by a previous publication in Arthroscopy by Harris et al.17 and in accordance with the journal’s guidelines for systematic reviews.
The 20 studies included reported on a total of 253 patients. Of these patients, 188 underwent acute reconstructions and 65 underwent chronic reconstructions (range, 3-34 patients per study). The mean patient age was 34.5 years (range, 25-45 years) in the acute cohort and 40.5 years (range, 33-43 years) in the chronic cohort. The mean follow-up duration was 22.3 months (range, 6-42.5 months) in the acute cohort and 37.6 months (range, 27.7-46.7 months) in the chronic cohort. The mean rate of follow-up for both cohorts was 95.5% (range, 77.4%-100%). As for surgical technique, 6 of the 20 studies (30%) used arthroscopic-assisted techniques. Of the 12 studies in which acute reconstructions were performed, 3 (25%) used a tendon graft, whereas 5 of the 7 studies reporting on chronic reconstructions (71%) used an allograft or autograft tendon. Study characteristics, patient demographic characteristics, and surgical details are reported in Table 3.

Clinical and Patient-Reported Outcomes

Postoperative clinical measures and PROMs for acute and chronic AC reconstructions were assessed in all 20 studies (Table 3). Six outcome measures were reported in these 20 studies. The CS was the most common outcome measure reported (17 studies), followed by the Disabilities of the Arm, Shoulder and Hand score (7 studies), visual analog scale score (7 studies), American Shoulder and Elbow Surgeons score (3 studies), Oxford Shoulder Score (3 studies), and return to work (2 studies).

The range of CSs in patients undergoing acute reconstructions was 84.4 to 98.2, whereas patients undergoing chronic reconstructions had a range of 80.8 to 94.1. A forest plot of the reported CSs is presented in Figure 2.

Radiographic Analysis

Postoperative radiographic analysis of the CC distance on calibrated anteroposterior radiographs was performed in 11 studies. The range of reported CC distances in patients undergoing acute reconstruction was 9.2 to 15.7 mm, whereas that in patients undergoing chronic reconstruction was 11.7 to 18.6 mm. These results are summarized in Table 3. A forest plot of the reported CC distances is presented in Figure 3.

Complications

Complications were reported in 12 studies. The complications reported were all minor, with no major neurovascular complications. Reported complications included infection, wound healing problems, construct failure, loss of reduction, and persistent pain. The range of complication rates in patients undergoing acute reconstruction was 7% to 67%, whereas that in patients undergoing chronic reconstruction was 0% to 30%. These results are summarized in Table 3. A forest plot of the reported complications is presented in Figure 4.

Discussion

The most important findings of this study are that anatomic CC reconstruction with cortical buttons and sutures and/or grafts for grade III AC separations results in high clinical and patient-reported metrics at final follow-up. Grade III AC separations treated within 6 weeks of injury had a range of CSs of 84.4 to 98.2, whereas those treated after 6 weeks had a range of 80.8 to 94.1. Radiologically, those treated acutely had a...
range of CC distances of 9.2 to 15.7 mm whereas those treated in the chronic setting had a range of 11.7 to 18.6 mm. Finally, the reported complication rates for acutely treated AC separations ranged from 6% to 67%, whereas those for chronically treated cases ranged from 0% to 30%. Although the clinical and radiographic outcomes slightly favored acute reconstructions, the heterogeneity in the methods, as well as the high proportion of Level IV evidence, precludes a determination of superiority.

In the past 15 years, several systematic reviews and comparative studies have focused on grade III AC separations, comparing operative versus nonoperative management.3-6,47 Unfortunately, each reported conflicting results and none was able to make a strong recommendation for surgical versus nonsurgical management. Approaching this same clinical question from a different perspective, the goal of this systematic review was to ask the following question: In patients in whom nonoperative management fails and who eventually undergo surgery, are the results the same as those of patients who undergo surgery acutely? The results indicate that the clinical and radiographic parameters may slightly favor patients undergoing acute surgical reconstruction.

In 2013, the International Society of Arthroscopy, Knee Surgery & Orthopaedic Sports Medicine Upper Extremity Committee suggested subdividing grade III AC separations into grades IIIA and IIIB.48 In its consensus statement, grade IIIA injuries were considered stable and grade IIIB injuries were considered unstable with radiographic and clinical findings showing additional horizontal instability. Unstable grade IIIB injuries with existing horizontal instability may be more likely to result in ongoing morbidity and, hence, require early surgical treatment. However, most of the studies included in this article did not differentiate between those 2 subcategories, making comparisons challenging.

Furthermore, the terminology of acute versus chronic ACJ separations remains ill defined.49,50 Some authors define acute injuries as those treated at less than 3 weeks and chronic injuries as those treated at more than 6 weeks, leaving a “gray area” of 3 weeks. However, given the popular recommendation to perform an initial course of nonoperative management in grade III ACJ injuries, acute treatment (<3 weeks) is nearly impossible when taking into account that reasonable nonoperative treatment continues for at least 6 weeks. For this reason, some authors define acute ACJ separations as those treated at less than 6 months.41 In our analysis, 6 weeks or less was arbitrarily chosen as the definition of acute.

It is important to acknowledge that although the included studies used variations of modern techniques of anatomic CC fixation devices for AC separation reconstruction,51-53 the included surgical techniques are still likely not the perfect solution because several significant technical limitations exist, including hardware failure,54 fracture due to bone tunnels,55-58 and horizontal AC instability.59,60 It is interesting to note that only 2 included studies27,45 included some form of ACJ capsule reconstruction as part of their CC reconstruction. Although CC suspensory fixation is likely a part of the ideal solution, the use of arthroscopy to address associated pathology,61,62 grafts to enhance biology, avoidance of large bone tunnels, and extension to the ACJ are all likely components of more ideal and successful solutions.

Limitations

This systematic review has several important limitations that must be considered. First, there was extensive heterogeneity in both the techniques used and the clinical and patient-reported outcomes among the studies, in addition to the varied classification of surgical timing as acute and chronic. Although the great majority of the studies used a construct of 2 buttons and a ligament or suture, each reconstruction style was unique with slight nuances. Because there are over 162 described techniques for AC reconstruction,63 determining any cohesive group of surgical treatment is extremely difficult, but care was taken to choose as homogeneous a cohort as possible. Additionally, given that the CS was reported in 17 of 20 included studies and was reported more than twice as frequently as any other clinical measure or PROM, this was chosen as the primary clinical variable by which to report results for acute and chronic reconstructions. Second, the quality of evidence was notably poor. Only 2 of 20 studies were
prospective RCTs. None of the studies were designed or specifically powered to compare acute versus chronic reconstructions. This low quality of evidence precluded a formal meta-analysis. For this reason, no formal P values or comparisons were made; only simple descriptive statistics were used for summarizing the results.

Conclusions
The ranges in the CS may favor acute reconstructions, but because of the heterogeneity in the surgical techniques in the literature, no definitive recommendations can be made regarding optimal timing.

References
1. Warth RJ, Martetschläger F, Gaskill TR, Millett PJ. Acromioclavicular joint separations. *Curr Rev Musculoskelet Med* 2013;6:71-78.
2. Rockwood CA, Green DP. *Fractures in adults*. Philadelphia: Lippincott-Raven, 1996.
3. Spencer EE. Treatment of grade III acromioclavicular joint injuries: A systematic review. *Clin Orthop Relat Res* 2007;455:38-44.
4. Korsten K, Gunning AC, Leenen LPH. Operative or conservative treatment in patients with Rockwood type III acromioclavicular dislocation: A systematic review and update of current literature. *Int Orthop* 2014;38:831-838.
5. Ceccarelli E, Bondi R, Alviti F, Garofalo R, Miulli F, Padua R. Treatment of acute grade III acromioclavicular dislocation: A lack of evidence. *J Orthop Traumatol* 2008;9:105-108.
6. Smith TO, Chester R, Pearse EO, Hing CB. Operative versus non-operative management following Rockwood grade III acromioclavicular separation: A meta-analysis of the current evidence base. *J Orthop Traumatol* 2011;12:19-27.
7. Longo UG, Ciuffreda M, Rizzello G, Manering N, Maffulli N, Denaro V. Surgical versus conservative management of Type III acromioclavicular dislocation: A systematic review. *Br Med Bull* 2017;122:31-49.
8. Moher D, Liberati A, Tetzlaff J, Altman DG. *Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement*. *Int J Surg* 2010;8:336-341.
9. Millett PJ, Braun S, Gobeze R, Pacheco IH. Acromioclavicular joint reconstruction with coracoclavicular ligament transfer using the docking technique. *BMC Musculoskelet Disord* 2009;10:6.
10. Weinstein D, McCann P, McIlveen S, Flatow E, Bigliani LU. Surgical treatment of complete acromioclavicular dislocations. *Am J Sports Med* 1995;23:324-331.
11. Dumontier C, Sautet A, Man M, Apoil A. Acromioclavicular dislocations: Treatment by coracoclavicular ligamentoplasty. *J Shoulder Elbow Surg* 1995;4:130-134.
12. Vascellari A, Coletti N, Schiavetti S, Battistella G. Clinical and radiological results after coracoclavicular ligament three different techniques. A retrospective study. *Joints* 2015;3:54-61.
13. von Heideken J, Boström Windhamre H, Une-Larsson V, Ekelund A. Acute surgical treatment of acromioclavicular dislocation type V with a hook plate: Superiority to late reconstruction. *J Shoulder Elbow Surg* 2013;22:9-17.
14. Wright JG, Swiontkowski MF, Heckman JD. Introducing levels of evidence to the journal. *J Bone Joint Surg Am* 2003;85-A:1-3.
15. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (MINORS): Development and validation of a new instrument. *ANZ J Surg* 2003;73:712-716.
16. Sterne JAC, Savović J, Page MJ, et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. *BMJ* 2019;366:l-8.
17. Harris JD, Brand JC, Cote MP, Dhawan A. Research pearls: The significance of statistics and perils of pooling. Part 3: Pearls and pitfalls of meta-analyses and systematic reviews. *Arthroscopy* 2017;33:1594-1602.
18. Beris A, Lykissas M, Koskas-Agnantis I, Vekris M, Mitsionis G, Koromilias A. Management of acute acromioclavicular joint dislocation with a double-button fixation system. *Injury* 2013;44:288-292.
19. Mori D, Yamashita F, Kizaki K, Funakoshi N, Mizuno Y, Kobayashi M. Anatomic coracoclavicular ligament reconstruction for the treatment of acute acromioclavicular joint dislocation: Minimum 10-year follow-up. *JBJS Open Access* 2017;10(2):e0007.
20. Spoliti M, De Cupis M, Giai Via A, Oliva F. All arthroscopic stabilization of acute acromioclavicular joint dislocation with Fiberwire and Endobutton system. *Muscles Ligaments Tendons J* 2014;4:398-403.
21. Wei HF, Chen YF, Zeng BF, et al. Triple Endobuttton technique for the treatment of acute complete acromioclavicular joint dislocations: Preliminary results. *Int Orthop* 2011;35:555-559.
22. Wright J, Osarumwense D, Ismail F, Umebuani Y, Orakwe S. Stabilisation for the disrupted acromioclavicular joint using a braided polyester prosthetic ligament. *J Orthop Surg (Hong Kong)* 2015;23:223-228.
23. Ye G, Peng CA, Sun H Bin, Xiao J, Zhu K. Treatment of Rockwood type III acromioclavicular joint dislocation using autogenous semitendinosus tendon graft and Endobutton technique. *Ther Clin Risk Manag* 2016;12:47-51.
24. Yoo JC, Ahn JH, Yoon JR, Yang JH. Clinical results of single-tunnel coracoclavicular ligament reconstruction using autogenous semitendinosus tendon. *Am J Sports Med* 2010;38:950-957.
25. Zhang LF, Yin B, Han S, Han B, Huang DF. Arthroscopic fixation of acute acromioclavicular joint disruption with TightRope: Outcome and complications after minimum 2 (2-5) years follow-up. *J Orthop Surg (Hong Kong)* 2017;25:2309499016684493.
26. Pongsamakhthai W, Tharakulphan S. Clavicular hook plate versus Tightrope fixation in acromioclavicular joint dislocation: A randomized prospective controlled trial. *J Med Assoc Thai* 2018;101:87-93.
27. Hegazy G, Safwat H, Seddik M, Al-shal EA, El-Sebaiy E, Negm M. Modified Weaver-Dunn procedure versus the use of semitendinosus autogenous tendon graft for acromioclavicular joint reconstruction. *Open Orthop J* 2016;10:166-178.
28. Kibler WB, Sciascia AD, Morris BJ, Dome DC. Treatment of symptomatic acromioclavicular joint instability by a
Bohingraj MA, Sharma V, Bedi G. Arthroscopic acromioclavicular joint stabilization using a TightRope device. J Arthrosc Joint Surg 2019;6:153-156.

Kany J, Amaravathi RS, Guinand R, Valenti P. Arthroscopic acromioclavicular joint reconstruction using a synthetic ligament device. Eur J Orthop Traumatol 2012;22:357-364.

Singh B, Mohanlal P, Bawale R. Early failure of coracoclavicular ligament reconstruction using TightRope system. Acta Orthop Belg 2016;82:119-123.

Gogna P, Mukhopadhyay R, Singh A, et al. Mini incision acromio-clavicular joint reconstruction using palmaris longus tendon graft. Musculoskelet Surg 2015;99:33-37.

Cai L, Wang T, Lu D, Hu W, Hong J, Chen H. Comparison of the TightRope technique and clavicular hook plate for the treatment of Rockwood type III acromioclavicular joint dislocation. J Invest Surg 2018;31:226-233.

Darabos N, Vlahovic I, Gusic N, Darabos A, Bakota B, Miklic D. Is AC TightRope fixation better than Bosworth screw fixation for minimally invasive operative treatment of Rockwood III AC joint injury? Injury 2015;46:S113-S118.

Gupta P, Kansal G, Srivastav S, Agarwal S. Arthroscopic fixation using TightRope device for acute acromioclavicular joint dislocations. J Arthrosc Joint Surg 2016;3:7-12.

Acar MA, Gülec A, Erkoçak ÖF, Yilmaz G, Durgut F, Elmadag M. Percutaneous double-button fixation method for treatment of acute type III acromioclavicular joint dislocation. Acta Orthop Traumatol Turc 2015;49:241-248.

Chaudhary D, Jain V, Joshi D, Jain JK, Goyal A, Mehta N. Arthroscopic fixation using TightRope device for acute acromioclavicular joint disruptions. J Orthop Surg 2015;23:309-314.

Chouhan DK, Saini UC, Dhillon MS. Reconstruction of chronic acromioclavicular joint disruption with artificial ligament prosthesis. Chin J Traumatol 2013;16:216-220.

Kocaoglu B, Ulku TK, Gereli A, Karahan M, Türkmen M, Palmaris longus tendon graft versus modified Weaver-Dunn procedure via dynamic button system for acromioclavicular joint reconstruction in chronic cases. J Shoulder Elbow Surg 2017;26:1546-1552.

De Carli A, Lanzetti MM, Ciompi A, Lupariello D, Rota P, Ferretti A. Acromioclavicular third degree dislocation: Surgical treatment in acute cases. J Orthop Surg Res 2015;10:13.

Muench LN, Kia C, Jerilu A, et al. Functional and radiographic outcomes after anatomic coracoclavicular ligament reconstruction for type III/V acromioclavicular joint injuries. Orthop J Sports Med 2019;7:2325967119884539.

Yoo YS, Seo YJ, Noh KC, Patro BP, Kim DY. Arthroscopically assisted anatomical coracoclavicular ligament reconstruction using tendon graft. Int Orthop 2011;35:1025-1030.

Horst K, Garving C, Thometzki T, et al. Comparative study on the treatment of Rockwood type III acute acromioclavicular dislocation: Clinical results from the TightRope technique vs. K-wire fixation. Orthop Traumatol Surg Res 2017;103:171-176.

Gangary SK, Meena S. Arthroscopic stabilization of acute acromioclavicular joint dislocation with Tightrope AC system: A tale of failures. J Arthrosc Joint Surg 2016;3:13-16.

Milewski MD, Tompkins M, Giugale JM, Carson EW, Miller MD, Diduch DR. Complications related to anatomic reconstruction of the coracoclavicular ligaments. Am J Sports Med 2012;40:1628-1634.

Rush LN, Lake N, Stiefel EC, et al. Comparison of short-term complications between 2 methods of coracoclavicular ligament reconstruction: A multicenter study. Orthop J Sports Med 2016;4:2325967116658419.

Petri M, Warth RJ, Greenspoon JA, et al. Clinical results after conservative management for grade III acromioclavicular joint injuries: Does eventual surgery affect overall outcomes? Arthroscopy 2016;32:740-746.

Beitzel K, Mazzocca AD, Bak K, et al. ISAKOS Upper Extremity Committee consensus statement on the need for diversification of the Rockwood classification for acromioclavicular joint injuries. Arthroscopy 2014;30:271-278.

Nolte P, Lacheta L, Dekker TJ, Elrick B, Millett PJ. Optimal management of acromioclavicular dislocation: Current perspectives. Orthop Rev Res 2020;5(12):27-44.

Flint JH, Wade AM, Giuliani J, Rue JP. Defining the terms acute and chronic in orthopaedic sports injuries: A systematic review. Am J Sports Med 2014;42:235-241.

Millett PJ, Warth RJ, Greenspoon JA, Horan MP. Arthroscopically assisted anatomic coracoclavicular ligament reconstruction technique using coracodavicular fixation and soft-tissue grafts. Arthrosc Tech 2015;4:e583-e587.

Millett PJ, Horan MP, Warth RJ. Two-year outcomes after primary anatomic coracoclavicular ligament reconstruction. Arthroscopy 2015;31:1962-1973.

Warth RJ, Lee JT, Millett PJ. Arthroscopically-assisted anatomic coracoclavicular ligament reconstruction with tendon grafts: Biomechanical rationale, surgical technique, and a review of clinical outcomes. Oper Tech Sports Med 2014;22:234-247.

Schillemann B, Roßlenbroich SB, Schneider KN, et al. Why does minimally invasive coracoclavicular ligament reconstruction using a flip button repair technique fail? An analysis of risk factors and complications. Knee Surg Sport Traumatol Arthros 2015;23:1419-1425.

Dyrra F, de Oliveira CCT, Nowak M, et al. Risk of fracture of the acromion depends on size and orientation of acromial bone tunnels when performing acromioclavicular reconstruction. Knee Surg Sport Traumatol Arthros 2018;26:275-284.

Voss A, Beitzel K, Alaee F, et al. A biomechanical analysis of different clavicular tunnel diameters in anatomic acromioclavicular ligament reconstruction. Arthroscopy 2016;32:1551-1557.

Martetschläger F, Horan MP, Warth RJ, Millett PJ. Complications after anatomic fixation and reconstruction of the coracoclavicular ligaments. Am J Sports Med 2013;41:2896-2903.

Spiegl UJ, Smith SD, Euler SA, Dornan GJ, Millett PJ, Wijdicks CA. Biomechanical consequences of coracoclavicular reconstruction techniques on clavicle strength. Am J Sports Med 2014;42:1724-1730.

Tauber M, Koller H, Hitlz W, Resch H. Dynamic radiologic evaluation of horizontal instability in acute acromioclavicular joint dislocations. Am J Sports Med 2010;38:1188-1195.
60. Morikawa D, Dyrna F, Cote MP, et al. Repair of the entire superior acromioclavicular ligament complex best restores posterior translation and rotational stability. *Knee Surg Sport Traumatol Arthrosc* 2019;27:3764-3770.

61. Markel J, Schwarting T, Malcherczyk D, Peterlein CD, Ruchholtz S, El-Zayat BF. Concomitant glenohumeral pathologies in high-grade acromioclavicular separation (type III-V). *BMC Musculoskelet Disord* 2017;18:439.

62. Jensen G, Millett PJ, Tahal DS, Al Ibadi M, Lill H, Katthagen JC. Concomitant glenohumeral pathologies associated with acute and chronic grade III and grade V acromioclavicular joint injuries. *Int Orthop* 2017;41:1633-1640.

63. Beitzel K, Cote MP, Apostolakos J, et al. Current concepts in the treatment of acromioclavicular joint dislocations. *Arthroscopy* 2013;29:387-397.