Synthesis of Some New Folic Acid-Based Heterocycles of Anticipated Biological Activity

Ola A. Abu Ali *, Hosam A. Saad and Bodor M. A. Al Malki

Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; h.saad@tu.edu.sa (H.A.S.); bedoo201044@hotmail.com (B.M.A.A.M.)
* Correspondence: o.abuali@tu.edu.sa

Abstract: To date, no fused heterocycles have been formed on folic acid molecules; for this reason, and others, our target is to synthesize new derivatives of folic acid as isolated or fused systems. Folic acid 1 reacted with ethyl pyruvate, triethyl orthoformate, ethyl chloroformate, thioformic acid hydrazide, and aldehydes to give new derivatives of folic acid 2–6a,b. Moreover, It reacted with benzylidene malononitrile, acetylacetone, ninhydrin, ethyl acetoacetate, ethyl cyanoacetate, and ethyl chloroacetate to give the pteridine fused systems 10–15, respectively. Ethoxycarbonylamino derivate 5 reacted with some nucleophiles containing the NH2 group, such as aminoguanidinium hydrocarbonate, hydrazine hydrate, glycine, thioformic acid hydrazide, and sulfa drugs in different conditions to give the urea derivatives 16–20a,b. Compound 4 reacted with the same nucleophiles to give the methylenidene amino derivatives 21–24a,b. The fused compound 10 reacted with thioglycolic acid carbon disulfide, malononitrile, and formamide to give the four cyclic fused systems 25–30, respectively. The biological activity of some synthesized showed moderate effect against bacteria, but no effect shown towards fungi.

Keywords: folic acid; glutamic acid; imidazo[2,1-b]pteridine; tetrahydroimidazo[2,1-b]pteridine; biological activity

1. Introduction

Folic acid 1 is essential to the human metabolic process. It is a key factor in the synthesis of nucleic acid. Folic acid (vitamin B9) helps with growth [1] and healthy red blood cells (RBCs) [2]. It is important for cell division. It is essential for growth of the fetus [3]. Folic acid deficiency can lead to human megaloblastic anemia and neural tube defects in fetuses [4], as well as heart diseases, and cancer [5]. To avoid all of these risks, folic acid intake from fortified food has been increasing rapidly [6].

Several novel 2,4-diamino-5-deaza-6,7,8,9-tetrahydropyrido[3,4-g]pteridine derivatives with different substitution at the N7 position were designed and synthesized, as classical and non-classical, partially restricted, linear tricyclic 5-deaza antifolates. The purpose was to investigate the effect of conformational restriction of the C6–C9 (r1) and C9–N10 (r2) bonds via an ethyl bridge from the N10 to the C7 position of 5-deaza methotrexate (MTX) on the inhibitory potency against dihydrofolate reductase (DHFR) from different sources and on antitumor activity [7]. Moreover, some efforts were carried out to synthesize the 7-substituted folic acid derivatives the less toxic, more effective, and selective agents for cancer chemotherapy based upon inhibition of dihydrofolate reductase and thymidylate synthetase [8]. The 10-Alkyl-5,10-dideaza analogs of methotrexate and tetrahydrofolic acid were synthesized and used as potent inhibitors of glycineamide ribonucleotide (GAR) formyltransferase [9]. Moreover, numerous fused cyclopenta[d]pyrimidine antifolate were synthesized and examined for their effects as highly potent as DHFR and cell growth inhibitors, and most of them are more potent than methotrexate (MTX) and 10-ethyl-10-deazapterin (10-EDAM) in inhibiting tumor cell growth (P388 MTX-sensitive and
MTX-resistant, colon 26 and KB) on 72 h drug exposure [10]. Furthermore, 5-deaza-7-desmethylene analogues of 5,10-alkylene-5,6,7,8-tetrahydrofolic acid were good substrates for mouse liver folylpolyglutamate synthetase [11].

Bacteria in the intestine synthesizes folic acid [12], which is essential for the progress of the neurological systems of fetuses [13]. Folic acid, as well as the plasma concentration of folate, were inversely associated with hematological, cardiovascular diseases, as well as colorectal cancer [14,15]. Folic acid exhibited anti-inflammatory, antioxidant effects, and decreased levels of interleukins [16,17]. A previous study revealed that folic acid treatment suppressed the inflammatory response of human monocytic cells (THP-1 cells) through the PI3K/Akt pathway [18].

Due to the essential role of folic acid in the synthesis of the bacterial cell wall, we adopted an idea of confusing the bacteria in the synthesis of the cell wall by using a folic acid analogue as an anti-cell wall synthesis drug. Therefore, the target of this work was to synthesize some new derivatives from folic acid and screening them against some G+, G− bacteria, and fungi, in the hope of obtaining new antibacterial or antifungal compounds.

The main reaction center of folic acid illustrated in Figure 1.

Figure 1. Folic acid reaction center.

2. Results and Discussion

The importance of synthesizing a new heterocyclic compound is strongly bonded with the finding of a new drug, capable of destroying any of the diseases that spread around the world. Herein is a new trial, in continuation of our previous work [19–43], to synthesize a new compound from folic acid in the hope of getting a new promoting drug.

Folic acid 1 reacted with ethyl pyruvate in different ratios in DMF as a solvent. Refluxing mixture of folic acid and ethyl pyruvate 1:1 ratio for 8 hr, gave imidazo[2,1-b]pteridine derivative 2. While the reaction of folic acid with ethyl pyruvate, in a 1:2 ratio for 2 h, led to the formation of the N,N-disubstituted folic acid (Scheme 1). The structures of the two compounds 2 and 3 were confirmed from their IR and NMR spectra, where in the IR spectra, the band due to the NH$_2$ group disappeared with appearance of new bands due to the inserted carbonyl groups in the two compounds. While, 1H-NMR of compound 2 showed singlet signal at $\delta = 1.30$ ppm due to the CH$_3$ attached to the imidazole ring. The 1H-NMR of compound 3 also showed more deshielded singlet signal at $\delta = 2.21$ ppm due to the 2CH$_3$ attached to the carbonyl group. The 13C-NMR supported the structure proposed where it showed signals due to the CH$_3$ in the two compounds at $\delta = 24.51$ and 26.79 ppm, respectively.

Formation of ethoxymethyleneaminopetridine derivative 4 and ethoxycarbonylaminopetridine derivative 5 were formed by the reaction of folic acid with excess triethyl orthoforomate and/or ethyl chloroformate in presence of TMA as a base (Scheme 1). The elucidation of the structures of the two compounds were recognized from their spectra and elemental analysis where, the two compounds showed the appearance of new bands due to the inserted carbonyl groups in the two compounds. While, 1H-NMR of compound 2 showed singlet signal at $\delta = 1.30$ ppm due to the CH$_3$ attached to the imidazole ring. The 1H-NMR of compound 3 also showed more deshielded singlet signal at $\delta = 2.21$ ppm due to the 2CH$_3$ attached to the carbonyl group. The 13C-NMR supported the structure proposed where it showed signals due to the CH$_3$ in the two compounds at $\delta = 24.51$ and 26.79 ppm, respectively.
tion, where, it showed signals at $\delta = 139.75$ and 164.21 ppm due to the methyldiene and benzylidene carbons respectively. The reaction of thioformic acid hydrazide with folic acid in DMF/EtOH mixture yielded the thiosemicarbazide derivative 7 which cyclized with ethyl chloroformate in presence of TMA to give the 1,3,4-triazole thione derivative 9 (Scheme 1). The structures of compounds 7 and 9 were established from IR and 1HNMR, where the IR showed extra bands due to the NH groups in compound 7 and two bands due to C=S at 1338 and 1347 cm$^{-1}$ for compounds 7 and 9, respectively. Moreover, 1H-NMR showed three singlet signals for the thiosemicarbazide group at 5.69 (NH$_2$), 11.31 and 12.89 ppm for (NHCSNH) protons respectively. Folic acid, also, reacted with acid chloride derivative in basic medium to give the N-substituted derivative. Reaction of folic acid with sebacoyl chloride in presence of TMA yielded the bis compound 8 (Scheme 1). The 1H-NMR confirmed the structure of 8 where it showed characteristic signals for the 8 CH$_2$ due to the sebacoyl moiety at $\delta = 1.03$, 1.26, 2.23, and 3.34 ppm, respectively.

Scheme 1. Synthesis some new folic acid derivatives.

Fused systems built in folic acid molecule another target for discovering new promising drug. (Scheme 2), showed some reactions resulted in the formation of fused systems with three or five fused rings.
Benzylidene malononitrile was the first compound used to form the nucleus compound for synthesizing the more fused rings. The well-known benzylidene malononitrile was synthesized and reacted with folic acid in boiling ethanol to form the three fused rings compound pyrimido[2,1-b]pteridine derivative 10 (Scheme 2). The appearance of the CN band in the IR of compound 10 was the first guide for the structure assertion. The 1H-NMR was the second guide, where it showed multiplets at $\delta = 7.62$–7.96 ppm for the 7-phenyl group. Reaction of folic acid with acetylacetone, ethyl acetoacetate, ethyl cyanoacetate, and/or ethyl chloroacetate in DMF gave fused pyrimidine, fused primidone and fused imidazolidinone to the pteridine ring 11, 13, 14, and 15, respectively (Scheme 2). While the reaction of folic acid with ninhydrin in boiling ethanol yielded the five fused rings derivative indeno[2',1':4,5]imidazo[2,1-b]pteridine 12. The structures of the resulted compounds established from their 1H-NMR and 13C-NMR. The 1H-NMR of compound 11 showed two singlets at $\delta = 2.26$ and 2.40 ppm for the two CH$_3$ in pyrimidine ring, moreover, two signals for the same groups appeared at 24.30 and 26.45 ppm in the 13C-NMR. Compound 13 showed two singlets one for the CH$_3$ at 2.25 and the other at 7.21 due to pyrimidone olefinic proton. The structure of compound 14 was confirmed by the singlet appeared in its 1H-NMR at $\delta = 2.89$ ppm due to pyrimidone CH$_2$, which also appeared in its 13C-NMR at $\delta = 43.05$ ppm. The disappearance of the CN band for compound 14 in its IR proved the cyclic structure of the compound. The 1H-NMR of compound 15 was the main guide for its structure proven, where the 1H-NMR of compound 15 showed singlet at $\delta = 3.51$ ppm due to imidazolidinone CH$_2$ along with the presence of NH singlet signal of imidazolidinone at $\delta = 10.87$ ppm. On the other hand, the structure of compound 12 was certain, by the presence of the singlet due to the imidazolindene OH group at $\delta = 5.36$ ppm.

Ethoxycarbonylamino derivative 15 was used as starting material for the synthesis of other types of derivatives, which are not attached directly to the pteridine ring. We exploited the chance presence of an ester group in the compound and subjected it to react with some nucleophiles containing NH$_2$, such as aminoguanidinium hydrocarbonate, hydrazine hydrate, glycine, thioformic acid hydrazide, and sulfa drugs in different conditions. Reaction of compound 15 with aminoguanidinium hydrocarbonate in boiling glacial acetic acid yielded "N-[4-[[2-[[2-[[[2-amino(imino)methyl]hydrazino]carbonyl]amino]methyl]carbonylamino]-4-oxo-3,4-dihydropteridin-6-yl]methyl]amino]benzoyl]-glutamic acid" 16 (Scheme 3). The structure
of 16 was elucidated from the disappearance of the two signals characteristic for the ethyl group in its 1H-NMR, with appearance of multi signals for different NH present in the compound (experimental part).

Scheme 3. Synthesis of some urea derivatives substituted on folic acid.

Reaction of 15 with NH$_2$NH$_2$ in boiling DMF yielded the semicarbazide derivative 17. Reaction of 15 with glycine in DMF/H$_2$O mixture resulted in the carboxymethylurea derivative 18. Thioformic acid also reacted with compound 15 in boiling DMSO and gave thio carbamoylsalicelbazide derivative 19 (Scheme 3). Conformation of 17, 18, and 19 structures were elucidated from their spectral and analysis data, where all of the 1H-NMR spectra of all the compounds missing the ethyl group, triplet and quartet signals, with appearance of other signals due to the new functional groups, for example, compound 126, showed in its 1H-NMR signals at $\delta = 4.33$, 8.69 and 9.61 ppm for the NH$_2$, and two NH proton neighboring to the carbonyl group. Compound 18 showed the signals corresponding to the glycine molecule, the CH$_2$ protons appeared at $\delta = 4.03$ ppm and the acidic proton of the glycine carboxylic group found at 11.60 ppm. The 13C-NMR of compound 18 also supported the structure elucidation, where it showed a signal for CH$_2$ carbon at 41.10 ppm and another signal for the glycine carboxylic carbon at 173.17 ppm. Compound 19 was the highest data help in the structure confirmation, where its IR showed bands due to thiocarbonylic group at 2627 cm$^{-1}$ for (SH) and 1351 cm$^{-1}$ for (C=S) group. Th 1H-NMR of compound 19 gave more conformational data, it showed signal due to the SH group at $\delta = 13.98$ ppm, all of this data are supported with the elemental analysis for the sulfur. The presence of the SH group in compound 19 rejected the idea that compound 19 may cyclize to give 1,3,4-triazole thione derivative.

The combination between the sulfa drug and folic acid was an idea for increasing the biological activity of folic acid, especially antibacterial activity. Thus, folic acid reacted with sulfadiazine and/or sulfadimidine in DMF to yield the corresponding aminocarbonyl sulfadiazine derivative 20a and aminocarbonyl sulfadimidine derivative 20b, respectively (Scheme 3). The structures of 20a and 20b were confirmed from their spectral data (experimental part).
Ethoxymethylene derivative 14 was used for synthesizing a new folic acid derivative; thus, compound 113 reacted with some nucleophilic amino compounds, such as, semicarbazide hydrochloride, aminoguanidine hydrocarbonate, glycine, and sulfa drugs, to obtain some new Schiff base derivatives. Reaction of 4 with semicarbazide hydrochloride in boiling DMF in presence of drops of TMA as a base yielded “N-[4-[(2-((2-(aminocarbonyl)hydrazino)methylene)amino)-4-oxo-3,4-dihydropteridin-6-yl)methyl]-amino]benzoyl]glutamic acid” 21, while the reaction with aminoguanidine hydrocarbonate in glacial acetic acid yielded the “N-[4-[(2-((2-[aminomethyl]hydrazino)methylene)amino)-4-oxo-3,4-dihydropteridin-6-yl)methyl]amino]benzoyl]glutamic acid” 22. Moreover, reaction of 14 with glycine in mixture of DMF/ H2O (9:1) gave the carboxymethylamino derivative 23 (Scheme 4). The structure of the formed compounds 21, 22, and 23 are confirmed from their IR, 1H-NMR, and 13C-NMR, where all compounds showed the disappearance of the two signals of the ethyl group in their 1H-NMR with appearance of new signals due to NH2, and NH groups at the ranges 6.21–6.98 ppm for NH2 group and 10.13–10.99 ppm for NH groups. Compound 23 showed in its 1H-NMR two signals for the glycine moiety, at singlet at δ = 4.18 ppm for CH2 and at 11.58 for the acidic proton CH2COOH. Compound 14 reacted with sulfa drugs, namely, sulfadiazine and sulfadimidine, to give the folic acid substituted with sulfa drug moiety, 24a, b (Scheme 4). The structures of compounds 24a, b proved with the aid of their 1H-NMR, where, the 1H-NMR showed the appearance of the multiplets due to the phenyl group of the sulfa drug, with disappearance of the ethyl group signals.

![Scheme 4. Synthesis of some methylene amino derivatives substituted on folic acid.](image)

Finally, compound 10 was used for building some new fused systems on the folic acid molecule. It subjected for some reactions, which gave four ring fused systems as a new form for folic acid derivatives. Compound 10 reacted with thioglycolic acid in basic conditions to yield the tetracyclic fused system “N-(4-[(4-amino-3-mercapto-2,12-dioxo-5-phenyl-1,12-dihydro-2H-pyrido[3′,2′:5,6]pyrimido[2,1-b]pteridin-10-yl)methyl]-amino]benzoyl]glutamic acid” 25 (Scheme 5). Reaction of 10 with thioglycolic acid boiling ethanol without using TMA yielded the open form mercaptopoacetyl derivative 26 (Scheme 5). The two structures of 25 and 26 in the 1H-NMR showed the presence of the SH group at 14.00 and 13.97 ppm, respectively. The disappearance of the CN group in the IR of compound 25 confirmed the cyclic form of the compound, while its appearance in the IR of 26 prove that the structure is an open form.
Scheme 5. Synthesis of some new fused systems on folic acid.

The reaction of carbon sulfide with compound 10 varies with the kind of solvent used, whereas the reaction of 10 with CS$_2$ in alcoholic KOH yielded the open form N-[4-[[8-cyano-9-[(mercaptocarbonothioyl)amino]-11-oxo-7-phenyl-11H-pyrimido[2,1-b]pteridin-2-yl]methyl]amino]-benzoyl]glutamic acid 27, while the reaction in boiling dry pyridine yielded the four cyclic ring fused system 28 (Scheme 5). The IR of the two compounds helped in elucidation of the structures, where the IR of compound 27 showed CN band at 2202 cm$^{-1}$, which are not present in the IR of compound 28; this is an indication that compound 27 is open form and 28 is a cyclic form. Pyrido[3',5':5,6]pyrimido[2,1-b]pteridine 29 and pyrimido[5',4':5,6]pyrimido-[2,1-b]pteridine 30 were prepared by the reaction of 10 with malononitrile and/or formamide on hot. Compound 29 showed, in its 1H-NMR, two signals for the two NH$_2$ groups at $\delta = 6.12$ and 6.58 ppm, while compound 30 showed only one signal for the NH$_2$ groups at $\delta = 6.50$ ppm.

3. Biological Activity

Antimicrobial activities of some new compounds were tested against some types of G$^+$ bacteria, G$^-$ bacteria, and fungus, for example, "Bacillus subtilis (ATCC, 6051), Staphylococcus aureus (ATCC, 12600), as a G$^+$ bacteria, Escherichia coli (ATCC, 11775), Pseudomonas aeruginosa (ATCC, 10145), as a G$^-$ bacteria, Aspergillus flavus link (ATCC, 9643), and Candida
albicans (ATCC, 7102), as a fungus”. Antimicrobial activity of the tested samples was determined using a modified Kirby–Bauer disc diffusion method [44–49].

Biological Activity Results and Discussion

The studying of the biological screening of the tested compounds, Table 1, showed folic acid had a moderate inhibitory effect against each of the G+ and G− bacteria compared to the standard antibacterial agent (Ampicillin).

Table 1. Biological activity of some new synthesized compounds.

Sample	Inhibition Zone Diameter (mm/mg Sample)					
	B. subtilis	S. aureus	E. coli	P. aeruginosa	A. flavus	C. albicans
Control: DMSO	0.0	0.0	0.0	0.0	0.0	
Standard	26	21	25	26	–	–
Ampicillin	–	–	–	–	17	21
Amphotericin B	–	–	–	–	0.0	0.0
Folic acid 1	10	10	10	10	0.0	0.0
2	10	9	10	11	0.0	0.0
4	9	9	9	9	0.0	0.0
5	0.0	0.0	0.0	0.0	0.0	0.0
6a	12	12	12	13	0.0	0.0
8	12	12	13	13	0.0	0.0
9	10	0.0	0.0	12	0.0	0.0
10	10	9	9	10	0.0	0.0
12	9	10	12	12	0.0	0.0
14	10	10	10	10	0.0	0.0
15	10	10	11	10	0.0	0.0
18	0.0	0.0	0.0	0.0	0.0	0.0
20b	0.0	9	10	0.0	0.0	0.0
22	13	12	12	12	0.0	0.0
23	9	10	10	10	0.0	0.0
24b	10	9	10	10	0.0	0.0
27	11	12	11	14	0.0	0.0

G: Gram reaction. Solvent: DMSO.

Compounds 6a, 8, 22, 26, and 27 showed inhibitory effects slightly more than folic acid against all types of bacteria, and this may be due to the presence a new group exceeded to folic acid structure, such as, terminal C=N in compounds 6a and 22, SH in compounds 26 and 27, and 8 CH2 in compound 8.

Inden-1-one present in compound 12 may be the cause for more activity than folic acid against G− bacteria E. coli and P. aeruginosa.

Compound 9 as well as compound 20b showed somewhat strange inhibitory effects, where compound 9 showed higher effect against P. aeruginosa than folic acid, and at the same time, it showed null effects against E. coli and S. aureus; this may be due to the presence of triazole thione ring in its structure. Moreover, compound 20b showed null
effects against \textit{B. subtilis} and \textit{P. aeruginosa} and moderate effect against \textit{E. coli} and \textit{S. aureus}, the diamidine nucleus in its structure.

Compounds 2, 4, 10, 14, 15, 23, and 24b showed nearly the same effects similar to folic acid; this means that the new groups added to the structure of folic acid did not have any effect against microorganisms in general.

Compounds 5 and 18 had no effect against all microorganisms; this may be due to the presence of each of glycine unit and/or the ethyl carbamate unit in the structure.

In comparison, among the different effects of all compounds under study, we found:

- Compound 22 showed higher effect against \textit{B. subtilis} than other compounds that showed an average effect.
- Compounds 5, 18, 20b did not show the effect against \textit{B. subtilis}.

The effect of compounds 6a, 8, 22, 27 was slightly higher than 11, 12, 14, 23 against \textit{S. aureus} while other compounds have a moderate effect against \textit{S. aureus} and compounds 1, 5, 18 had no effect against them.

The effect of compounds against \textit{E. coli} was close to the effect of compounds against bacteria, while the effect of compounds against \textit{P. aeruginosa} was dissimilar. Compound 27 showed a higher effect against \textit{P. aeruginosa} than other compounds.

On the other hand, folic acid, as well as all of the synthesized compounds, had no effect against \textit{Fungi} (\textit{A. flavus} and \textit{C. albicans}).

4. Conclusions

Herein, novel derivatives of folic acid were prepared by direct reactions of different reagents, with folic acid, or by reaction of some derivatives prepared with the same (or another) reagent. The study was directed to find new derivatives of folic acid having a promising biological activity, but, from the study carried out and the results obtained, all of the derivatives prepared were inactive against fungi, while some of these derivatives had a moderate antibacterial activity. The conclusion of this study is that the reactions done on the \textit{NH}_2 group of folic acid, either substituted groups formed or fused systems, are not valuable as antifungal or antibacterial agents. Future work will be directed to the carboxylic groups of folic acid to synthesize a new isolated or fused system from folic acid in hopes of getting a more promising drug.

4.1. Experimental Chemistry

All chemicals used were supplied by Sigma (New York, NY, USA). Digital Electro thermal IA 9100 Series used for measuring melting points and they were uncorrected. Infra-red spectra were examined on ATRAlpha FTIR spectrophotometer (Billerica, MA, USA). \textit{1H}-NMR and \textit{13C}-NMR spectra examined on a Bruker AC-850 MHz apparatus (Bruker, Billerica, Massachusetts). Chemical shifts expressed as (ppm) relative to internal standard (TMS), and DMSO-d6 used as the solvent and in \textit{13C}-NMR the solvent was CDCl\textsubscript{3} and DMSO mixture. CHN analyses and biological activity were achieved in Cairo University at Micro-Analytical Center. Spectral data of all compounds are available in Supplementary Materials.

4.1.1. “N-(4-[[[(7-methyl-8,10-dioxo-8,10-dihydroimidazo[2,1-b]pteridin-2-yl)methyl]amino}-benzoyl)glutamic acid” (2)

A mixture of folic acid (0.001 mol, 0.44 g) and ethyl pyruvate (0.001 mol, 0.11 g) dissolved in (15 mL) DMF and refluxed. After 8 hr (TLC, \(R_f = 0.6\), eluent: CH\textsubscript{2}Cl\textsubscript{2}) the solvent evaporated under vacuum, the semisolid product formed, poured onto ice, the solid resulted filtered off and crystallized from DMF-ethanol mixture (1:1) to give yellowish brown product. Yield, 87%, m.p. 223–225 °C. IR, 3437, 3407 cm-1 (\textit{OH}), 1689–1599 cm-1 (\textit{Aliphatic-H}), 1689–1599 cm-1 (5C=O and C=N), 1495 cm-1 (C=C). \textit{1H}-NMR (DMSO \(d_6\), 850 MHz): \(\delta = 1.30\) (s, 3H, CH\textsubscript{3}), 1.89–2.01 (m, 2H, CH\textsubscript{2}CH\textsubscript{2}COOH), 2.72 (t, 2H, CH\textsubscript{2}CH\textsubscript{2}COOH), 4.25 (t, 1H, NHCH\textsubscript{2}COOH), 4.46 (s, 2H, pteridine-CH\textsubscript{2}-N), 6.63 (d, 2H, N-Ph-(\(\text{H}\)\textsubscript{ortho})), 7.24 (s, 1H, N=Ph), 7.57 (d, 2H, N-Ph-(\(\text{H}\)\textsubscript{meta})), 7.94 (s, \(\text{TH}\), NHCO), 8.63 (s,1H, pteridine-C7\textsubscript{H}), 11.48 (s,1H, CH\textsubscript{2}CH\textsubscript{2}COOH), 12.36
Molecules 2021, 26, 368

4.1.2. “N-[4-[[2-(dipryruvoylamino)-4-oxo-3,4-dihydropteridin-6-yl]methyl]-amino]benzoyl-glutamic acid” (3)

A mixture of folic acid (0.001 mol, 0.44 g) and ethyl pyruvate (0.001 mol, 0.23 g) in DMF (20 mL) was refluxed for 2 h until the reaction completed (TLC, Rf = 0.5; eluent: CH2Cl2). The solvent evaporated under vacuum. The precipitate formed, crystallized from EtOH to give yellow product. Yield, 52%, m.p. 188–190 °C. IR, 3541, 3408 cm\(^{-1}\) (2OH), 3225–3161 cm\(^{-1}\) (3NH), 3022–2941 cm\(^{-1}\) (Ar-H), 2791 cm\(^{-1}\) (Aliphatic-H), 1684–1599 cm\(^{-1}\) (8C=O and C=N), 1469 cm\(^{-1}\) (C=C). \(^1\)H NMR (DMso \(d_6, 850 MHz\): δ = 1.89–2.01 (m, 2H, CH2CH2COOH), 2.21 (s, 6H, 2CH3), 2.72 (t, 2H, CH2CH2COOH), 4.25 (t, 1H, NHCH2COOH), 4.46 (2H, pteridine-CH2-N), 6.63 (d, 2H, N-Ph-(\(\text{H}_{\text{ortho}}\)), 7.25 (4H, 1H, HN-Ph), 7.57 (d, 2H, N-Ph-(\(\text{H}_{\text{meta}}\)), 7.94 (s, 1H, NHCO), 8.63 (s, 1H, pteridine-C7H)), 10.15 (s, 1H, pteridine-NH)), 11.45 (s, 1H, CH2CH2COO-), 12.38 (s, 1H, CH2COOH). \(^1\)C NMR (DMso \(d_6, 200 MHz\): δ = 62.79 (2CH3), 30.80 (CH2CH2COOH), 34.28 (CH2CH2COOH), 45.97 (NHCH2), 52.35 (NHCH), 112.26 (N-Ph-(\(\text{H}_{\text{ortho}}\)), 112.56 (N-Ph-(\(\text{H}_{\text{para}}\)), 121.61 (pteridine \(\text{C}_{4}\)), 128.85 (N-Ph-(\(\text{H}_{\text{meta}}\)), 148.38 (pteridine \(\text{C}_{6}\)), 150.74 (pteridine \(\text{C}_{5}\)), 151.73 (N-Ph-(\(\text{C}\)), 154.28 (pteridine \(\text{C}_{6}\)), 156.28 (pteridine \(\text{C}_{7}\)), 161.39 (NCOOC), 183.35 (NCOOCH3). Anal. Calcd. for \(\text{C}_{29}\text{H}_{23}\text{N}_{2}\text{O}_{7}\): C, 51.64; H, 3.99; N, 16.86; found: C, 51.51; H, 3.82; N, 16.77.

4.1.3. “N-[4-[[2-[1-ethoxymethylene]amino]-4-oxo-3,4-dihydropteridin-6-yl]methyl][amino]benzoyl-glutamic acid” (4)

Folic acid (0.001 mol, 4.4 g) added to triethyl orthoformate (8 mL, excess) and stirred under boiling for 6 h (TLC, Rf = 0.8; eluent: CH2Cl2). The precipitate formed after cooling filtered and crystallized from EtOH to give yellow-brown powder. Yield, 85%, m.p. 220–222 °C. IR, 3470–3400 cm\(^{-1}\) (2OH), 3274–3115 cm\(^{-1}\) (3NH), 2974 cm\(^{-1}\) (Ar-H), 2803 cm\(^{-1}\) (Aliphatic-H), 1693–1601 cm\(^{-1}\) (4C=O and C=N). \(^1\)H NMR (DMso \(d_6, 850 MHz\): δ = 1.15 (t, 3H, CH3), 1.91–2.03 (m, 2H, CH2CH2COOH), 2.51 (t, 2H, CH2CH2COOH), 3.39 (q, 2H, CH2), 4.31 (t, 1H, NHCH2COOH), 4.48 (s, 2H, pteridine-CH2-N), 6.64 (d, 2H, N-Ph-(\(\text{H}_{\text{ortho}}\)), 6.93 (s, 1H, \(\text{H}_{\text{N}}\)), 7.64 (m, 2H, N-Ph-(\(\text{H}_{\text{meta}}\)), 7.65 (s, 1H, N=CH2), 8.12 (s, 1H, NHCO), 8.79 (s, 1H, pteridine-C7H), 10.38 (s, 1H, pteridine NH), 11.42 (s, 1H, CH2CH2COOH), 12.40 (s, 1H, CH2COOH). Anal. Calcd. for \(\text{C}_{29}\text{H}_{23}\text{N}_{2}\text{O}_{7}\): C, 51.12; H, 4.66; N, 19.71; found: C, 52.89; H, 4.42; N, 19.54.

4.1.4. “N-[4-[[2-[ethoxycarbonyl]amino]-4-oxo-3,4-dihydropteridin-6-yl]methyl]amino]-benzoyl-glutamic acid” (5)

Folic acid (0.001 mol, 0.44 g), ethyl chloroformate (0.001 mol,0.11 g) and drops of TMA were mixed together in EtOH (12 mL) and refluxed for 1 h until the reaction completed (TLC, Rf = 0.65; eluent: CH2Cl2). The solvent evaporated and the precipitate formed crystallized from EtOH to give yellow product. Yield, 87%, m.p. 218–220 °C. IR, 3438, 3422 cm\(^{-1}\) (2OH), 3251–3102 cm\(^{-1}\) (4NH), 3079–2939 cm\(^{-1}\) (Ar-H), 2782–2724 cm\(^{-1}\) (Aliphatic-H), 1690–1598 cm\(^{-1}\) (5C=O and C=N), 1469 cm\(^{-1}\) (C=C). \(^1\)H NMR (DMso \(d_6, 850 MHz\): δ = 1.14 (t, 3H, CH3CH2), 1.90–2.05 (m, 2H, CH2CH2COOH), 2.31 (t, 2H, CH2CH2COOH), 4.02 (q, 2H, CH2CH3), 4.08 (t, 1H, NHCH2COOH), 4.53 (s, 2H, pteridine-CH2-N), 6.64 (d, 2H, N-Ph-(\(\text{H}_{\text{ortho}}\)), 7.64 (s, 1H, HN-Ph), 7.65 (d, 2H, N-Ph-(\(\text{H}_{\text{meta}}\)), 8.15 (s, 1H, NHCO), 8.21 (s, 1H, pteridine-C7H), 8.72 (s, 1H, NHCOEt), 10.31 (s, 1H, pteridine NH), 11.51 (s, 1H, CH2CH2COOH), 12.40 (s, 1H, CH2COOH). \(^1\)C NMR (DMso \(d_6, 200 MHz\): δ = 25.09 (CH3CH2), 30.87 (CH2CH2COOH), 34.11 (CH2CH2COOH), 41.20
4.2. Synthesis of Derivatives 6a,b (General Procedure)

Folic acid (0.001 mol, 0.4 g) and appropriate aldehyde (0.001 mol) mixed in glacial acetic acid (10 mL) and drops of hydrochloric acid (0.4 mL) were added, then, the mixture refluxed for 4 h (TLC, RF = 0.5–0.6, eluent: CH₂Cl₂). The formed precipitate filtered and crystallized from EtOH.

4.2.1. “N-[4-[[2-(methyleneamino)-4-oxo-3,4-dihydropteridin-6-yl]methyl]-amino]benzoyl]glutamic acid” (6a)

Green powder. Yield, 81%, m.p. 210–212 °C. IR, 3418, 3403 cm⁻¹ (2OH), 3284–3179 cm⁻¹ (3NH), 2934 cm⁻¹ (Ar-H), 2832 cm⁻¹ (Aliphatic-H), 1690–1618 cm⁻¹ (4C=O and C=N), 1590 cm⁻¹ (C=C). ¹H-NMR (DMSO d₆, 850 MHz): δ = 1.88–2.07 (m, 2H, CH₂CH₂COOH), 2.31 (t, 2H, CH₂CH₂COOH), 4.27 (t, 1H, NHCHCOOH), 4.48 (s, 2H, pteridine-C-H₂-N), 6.59 (d, 2H, N-Ph-CH(ortho), 7.23 (s, 1H, H(N-Ph), 7.55 (m, 2H, N-Ph-(H) (meta)), 7.94 (s, 1H, NH₂CO), 7.99 (s, 2H, N=C₅H₂), 8.64 (s, 1H, pteridine-C₅H₂), 10.33 (s, 1H, pteridine NH), 11.37 (s, 1H, CH₂CH₂COOH), 12.41 (s, 1H, CH₂COOH). ¹³C-NMR (DMSO d₆, 200 MHz): δ = 29.15 (CH₂CH₂COOH), 33.15 (CH₂CH₂COOH), 43.89 (NH₂CO), 54.56 (NHCH), 112.25 (N-Ph-(Cortho), 114.01 (N-Ph-(Cpara), 122.47 (pteridine C₆), 128.25 (N-Ph-(Cmeta), 139.75 (N=C₅H₂), 146.78 (pteridine C₆), 151.20 (pteridine C₅), 152.41 (N-Ph-(C)), 154.44 (pteridine C₆), 157.61 (pteridine C₅), 163.36 (pteridine CO), 166.49 (NH₂CO), 175.21 (NHCH₂COOH), 175.15 (CH₂CH₂COOH). Anal. Calcd. for C₂₆H₁₉N₇O₆ (543.41): C, 52.98; H, 4.22; N, 21.62; found: C, 52.71; H, 4.01; N, 21.41.

4.2.2. “N-[4-[[2-(benzilenediameino)-4-oxo-3,4-dihydropteridin-6-yl]methyl]-benzoyl]-glutamic acid” (6b)

Yellow powder. Yield, 62%, m.p. 224–226 °C. IR, 3412, 3399 cm⁻¹ (2OH), 3279–3176 cm⁻¹ (3NH), 2951 cm⁻¹ (Ar-H), 2850 cm⁻¹ (Aliphatic-H), 1687–1610 cm⁻¹ (4C=O and C=N), 1550 cm⁻¹ (C=C). ¹H-NMR (DMSO d₆, 850 MHz): δ = 1.85–2.04 (m, 2H, CH₂CH₂COOH), 2.73 (t, 2H, CH₂CH₂COOH), 4.22 (t, 1H, NHCHCOOH), 4.45 (s, 2H, pteridine-C₅H₂-N), 6.61 (d, 2H, N-Ph-CH(ortho), 7.22 (s, 1H, H(N-Ph), 7.57 (m, 2H, N-Ph-(H) (meta)), 7.63 (d, 1H, benzilenedi Ph-(H) (para)), 7.86 (d, 2H, benzilenedi Ph-(H) (ortho)), 7.90 (m, 2H, benzilenedi Ph-(H) (meta)), 7.93 (s, 1H, NH₂CO), 8.03 (s, 1H, benzilenedi N=C₅H₂), 8.60 (s, 1H, pteridine-C₇H), 10.24 (s, 1H, pteridine NH), 11.38 (s, 1H, CH₂CH₂COOH), 12.30 (s, 1H, CH₂COOH). ¹³C-NMR (DMSO d₆, 200 MHz): δ = 30.75 (CH₂CH₂COOH), 33.10 (CH₂CH₂COOH), 45.94 (NH₂CH₂), 50.07 (NHCH), 113.20 (N-Ph-(Cortho), 114.23 (N-Ph-(Cmeta), 121.36 (pteridine C₆), 128.22 (N-Ph-(Cmeta), 128.09 (benzilenedi Ph(meta)), 129.25 (benzilenedi Ph(ortho)), 131.70 (benzilenedi Ph(para)), 133.01 (benzilenedi CH-Ph), 146.20 (pteridine C₅), 151.52 (pteridine C₆), 152.44 (N-Ph-(C)), 154.40 (pteridine C₆), 157.13 (pteridine C₅), 163.36 (pteridine CO), 164.21 (benzilenedi N=C-H), 167.89 NH₂CO, 174.25 (NHCH₂COOH), 174.54 (CH₂CH₂COOH). Anal. Calcd. for C₂₆H₂₃N₂O₆ (529.50): C, 58.98; H, 4.38; N, 18.52; found: C, 58.74; H, 4.22; N, 18.46.

4.2.3. “N-[4-[[2-[4(hydrazinocarbonothioyl)amino]-4-oxo-3,4-dihydropteridin-6-yl)methyl]-amino]benzoyl]glutamic acid” (7)

Folic acid (0.001 mol, 0.44 g) dissolved with thioformic acid hydrazide (0.001 mol, 0.1 g) in EtOH/DMF (2:1–15 mL) and stirred under reflux for 10 h. (TLC, RF = 0.4, eluent: CH₂Cl₂). The precipitate formed filtered and crystallized from EtOH to give yellow powder. Yield 91%, m.p. over 300 °C. IR, 3450–3342 cm⁻¹ (2OH), 3342–3049 cm⁻¹ (NH₂ and 5NH), 2940 cm⁻¹ (Ar-H), 2875 cm⁻¹ (Aliphatic-H), 1685–1600 cm⁻¹ (4C=O and C=N), 1338 cm⁻¹...
Molecules 2021, 26, 368

11.32 (s, 1H, CH$_2$CH$_2$COOH), 12.18 (s, 1H, CH$_2$COOH), 12.66 (s, 1H, NH-pyrimidine), 12.89 (s, 1H, NH-C=S). Calcd. for C$_2$H$_2$$_{19}N_{14}O_{14}$ (515.50): C, 46.60; H, 5.00; N, 18.69; found: C, 54.78; H, 4.81; N, 18.52.

4.2.4. "N,N'-bis[6-[[4-(N-glutaminocarbonyl)phenyl]amino]-methyl]-4-oxo-3,4-dihydropteridin-2-yl][decanediamide" (8)

Compound 1 (0.001 mol, 0.88 g) and sebacoyl chloride (0.001 mol, 0.24 g) and drops of TMA in DMF (10 mL) was refluxed for 6 h (TLC, R_f = 0.6, eluent: CH$_2$Cl$_2$). The mixture was poured into ice-cold water, the precipitate obtained crystallized from EtOH to give orange crystals. Yield, 72%, m.p. 184–186 $^\circ$C. IR, 3432, 3415 cm$^{-1}$, 2961 cm$^{-1}$ (Ar-H), 2850 cm$^{-1}$ (Aliphatic-H), 1688–1621 cm$^{-1}$ (C=O and C=N), 1374 cm$^{-1}$ (C=S). 1H-NMR (DMSO-d$_6$, 850 MHz): δ = 1.90–2.01 (m, 4H, CH$_2$CH$_2$CH$_2$CONH), 2.49 (t, 2H, CH$_2$COOH), 3.44 (t, 4H, 2CH$_2$CH$_2$CH$_2$CONH), 4.24 (t, 1H, NH-CH$_2$COOH), 4.51 (s, 2H, pteridine-C$_2$H$_2$N$_2$), 6.61 (d, 2H, N-Ph-(H)$_{ortho}$), 7.21 (s, 1H, HN-Ph), 7.49 (m, 2H, N-Ph-(H)$_{meta}$), 7.90 (s, 1H, NHCO), 8.61 (s, 1H, pteridine-C$_7$H$_2$N$_2$), 11.12 (s, 1H, pteridine NH), 11.12 (s, 2H, 2NH, CH$_2$CH$_2$CH$_2$CONH), 11.43 (s, 1H, CH$_2$COOH). Anal. calcd. for C$_{44}$H$_{52}$N$_{14}$O$_{14}$ (1049.01): C, 54.96; H, 5.00; N, 18.69; found: C, 54.78; H, 4.81; N, 18.52.

4.2.5. "N-[4-[[4-oxo-2-(3-oxo-5-thioxoo-1,2,4-triazolidin-4-yl)-3,4-dihydro-pteridin-6-yl][methyl]amino]benzoyl]glutamic acid" (9)

Compound 7 (0.001 mol, 0.51 g) was refluxed for 16 h with ethanol chlorofluoro (0.001 mol, 0.11 g) and TMA (3 drops) in EtOH (15 mL) (TLC, R_f = 0.6, eluent: CH$_2$Cl$_2$). The precipitate obtained filtered and crystallized from EtOH to give orange crystals. Yield, 78%, m.p. over 300 $^\circ$C. IR, 3412–3378 cm$^{-1}$ (2OH), 3331–3149 cm$^{-1}$ (5NH), 1350 cm$^{-1}$ (C=N), 1347 cm$^{-1}$ (Ar-H), 2850 cm$^{-1}$ (Aliphatic-H), 1681–1618 cm$^{-1}$ (C=O and C=N), 1350 cm$^{-1}$ (C=S). 1H-NMR (DMSO-d$_6$, 850 MHz): δ = 1.90–2.01 (m, 4H, CH$_2$CH$_2$CONH), 2.497 (t, 2H, CH$_2$COOH), 3.21 (t, 2H, CH$_2$CONH$_2$), 3.81 (t, 2H, CH$_2$COOH), 4.2 (t, 4H, 2CH$_2$CH$_2$CONH), 4.29 (t, 1H, NH-CH$_2$COOH), 4.41 (s, 2H, pteridine-C$_2$H$_2$N$_2$), 6.61 (d, 2H, N-Ph-(H)$_{ortho}$), 7.21 (s, 1H, HN-Ph), 7.34 (s, 1H, HN-Ph), 7.49 (m, 2H, N-Ph-(H)$_{meta}$), 7.90 (s, 1H, NHCO), 8.61 (s, 1H, pteridine-C$_7$H$_2$N$_2$), 11.12 (s, 1H, pteridine NH), 11.12 (s, 2H, 2NH, CH$_2$CH$_2$CH$_2$CONH), 11.43 (s, 1H, CH$_2$COOH). Anal. calcd. for C$_{48}$H$_{52}$N$_{14}$O$_{14}$ (1049.01): C, 54.96; H, 5.00; N, 18.69; found: C, 54.78; H, 4.81; N, 18.52.

4.2.6. "N-[4-[[9-amino-8-cyano-11-oxo-7-phenyl-11H-pyrimido[2,1-b]pteridin-2-yl][methyl]amino]benzoyl]glutamic acid" (10)

A mixture of folic acid (0.001 mol, 0.44 g), malononitrile (0.001 mol, 0.66 g), benzoaldehyde (0.11 g, 1 mmol), and drops of TMA in ethanol (15 mL) was stirred under reflux for 4 h (TLC, R_f = 0.4, eluent: CH$_2$Cl$_2$). The reaction cooled at room temperature. Then, the precipitate formed filtered and crystallized from EtOH to give orange crystals. Yield 80%, m.p. 228–230 $^\circ$C. IR, 3420–3400 cm$^{-1}$ (2OH), 3250–3071 cm$^{-1}$ (NH$_2$ and 2NH), 2950 cm$^{-1}$ (Ar-H), 2850 cm$^{-1}$ (Aliphatic-H), 1217–1165 cm$^{-1}$ (CN), 1682–1598 cm$^{-1}$ (C=O and C=N). 1H-NMR (DMSO-d$_6$, 850 MHz): δ = 1.89–2.02 (m, 2H, CH$_2$CH$_2$COOH), 2.50 (t, 2H, CH$_2$CH$_2$COOH), 4.02 (t, 1H, NHCH$_2$COOH), 4.48 (s, 2H, pteridine-CH$_2$N$_2$), 6.65 (s, 2H, NH$_2$), 5.93 (d, 2H, N-Ph-(H)$_{ortho}$), 6.95 (s, 1H, HN-Ph), 7.62–7.96 (m, 7H, N-Ph-(H)$_{meta}$).
4.2.7. “N-(4-[[((7,9-dimethyl-11-oxo-11H-pyrimido[2,1-b]pteridin-2-yl)methyl]amino)benzoyl] glutamic acid” (11)

Folic acid (0.001 mol, 0.44 g) added to acetylacetone (0.001 mol, 0.1 g) in DMF (12 mL) and stirred under reflux for 4 h (TLC, \(R_f = 0.8 \), eluent: CH\(_2\)Cl\(_2\)). The precipitate formed crystallized from EtOH to give reddish-brown product. Yield, 93%, m.p. 252–254°C. IR, 3421–3403 cm\(^{-1}\) (2OH), 3266–3214 cm\(^{-1}\) (2NH), 2952 cm\(^{-1}\) (Ar-H), 2853 cm\(^{-1}\) (Aliphatic-H), 1681–1621 cm\(^{-1}\) (C=O and C=N). \(^1\)H-NMR (DMSO, 850 MHz): \(\delta = 1.91–2.03 \) (m, 2H, CH\(_2\)CH\(_2\)COOH), 2.26 (s, 3H, CH\(_3\)), 2.40 (s, 3H, CH\(_3\)), 2.53 (t, 2H, CH\(_2\)CH\(_2\)COOH), 4.24 (t, 2H, NHCH\(_2\)COOH), 4.46 (s, 2H, pteridine-CH\(_2\)-N), 6.53 (d, 2H, N-Ph-H\(\text{ortho}\)), 6.90 (s, 1H, HN-Ph), 7.27 (s, 1H, pyrimidine CH\(_\text{N}\)), 7.56 (m, 2H, N-Ph-H\(\text{para}\)), 8.01 (s, 1H, NHCO), 8.62 (s, 1H, pteridine-C\(\text{H}2\)), 11.27 (s, 1H, CH\(_2\)CH\(_2\)COOH), 12.06 (s, 1H, CH\(_2\)COO\(\text{H}\)). \(^{13}\)C-NMR (DMSO, 200 MHz): \(\delta = 24.30 \) (CH\(_3\)), 26.45 (CH\(_3\)), 29.28 (CH\(_2\)CH\(_2\)COOH), 31.11 (CH\(_2\)CH\(_2\)COOH), 45.04 (NH\(\text{H}\)), 48.47 (pyrimidine CH\(_2\)), 52.49 (NH\(\text{H}\)), 111.27 (N-Ph-H\(\text{ortho}\)), 112.58 (N-Ph-H\(\text{para}\)), 120.95 (pyrimidine CH\(_\text{N}\)), 121.68 (pteridine CH\(_\text{N}\)), 127.98 (N-Ph-H\(\text{meta}\)), 148.36 (pteridine CH\(_2\)), 150.72 (pteridine CH\(_2\)), 151.71 (N-Ph-H\(\text{meta}\)), 154.35 (pteridine CH\(_8\)), 161.44 (pteridine CH\(_2\)), 165.95 (pteridine CO\(\text{H}\)), 166.05 (NHCO), 171.79 (pyrimidine N=CH), 174.45 (NHCH\(_2\)COOH), 174.58 (CH\(_2\)CH\(_2\)COOH). Anal. Calcd. for C\(_{24}\)H\(_{23}\)N\(_2\)O\(_5\) (505.48): C, 57.03; H, 3.63; N, 16.80; found: C, 56.71; H, 3.41; N, 16.53.

4.2.8. “N-(4-[[((13a-hydroxy-5,12-dioxo-12,13a-dihydro-5H-indeno-[2′,1′:4,5]imidazo[2,1-b]pteridin-10-yl)methyl]amino)benzoyl] glutamic acid” (12)

Folic acid (0.001 mol, 0.44 g) and ninhydrin (0.001 mol, 0.18 g) in EtOH (12 mL) were refluxed for 4 h (TLC, \(R_f = 0.75 \), eluent: CH\(_2\)Cl\(_2\)). A yellowish orange crystal formed on hot which, filtered and washed with EtOH. Yield 74%, m.p. 260–262°C. IR, 3448–3343 cm\(^{-1}\) (3OH), 3248–3073 cm\(^{-1}\) (2NH), 2938 cm\(^{-1}\) (Ar-H), 2788 cm\(^{-1}\) (Aliphatic-H), 1682–1599 cm\(^{-1}\) (5C=O and C=N). \(^1\)H-NMR (DMSO, 850 MHz): \(\delta = 1.94–2.04 \) (m, 2H, CH\(_2\)CH\(_2\)COOH), 2.51 (t, 2H, CH\(_2\)CH\(_2\)COOH), 4.04 (t, 1H, NHCH\(_2\)COOH), 4.47 (s, 2H, pteridine-CH\(_2\)N), 5.36 (s, 1H, imidazoloindene OH), 6.91 (d, 2H, N-Ph-H\(\text{ortho}\)), 6.95 (s, 1H, HN-Ph), 7.62–7.96 (m, 6H, N-Ph-H\(\text{meta}\)) and indene-Ph, 8.11 (s, 1H, NHCO), 8.63 (s, 1H, pteridine-C\(\text{H}2\)), 11.37 (s, 1H, CH\(_2\)CH\(_2\)COOH), 12.21 (s, 1H, CH\(_2\)COO\(\text{H}\)). Calcd. for C\(_{28}\)H\(_{21}\)N\(_2\)O\(_5\) (583.51): C, 57.63; H, 3.63; N, 16.80; found: C, 57.47; H, 3.41; N, 16.53.

4.2.9. “N-(4-[[((7-methyl-9,11-dioxo-6,11-dihydro-9H-pyrimido[2,1-b]pteridin-2-yl)methyl]amino)benzoyl] glutamic acid” (13)

Folic acid (0.001 mol, 0.44 g) and ethyl acetoacetate (0.001 mol, 0.13 g) in DMF (13 mL) stirred under reflux for 5 h (TLC, \(R_f = 0.75 \), eluent: CH\(_2\)Cl\(_2\)). The precipitate separated after cooling crystallized from ethanol to give orange crystals. Yield, 81%, m.p. 246–248°C. IR, 3418–3412 cm\(^{-1}\) (2OH), 3271–3232 cm\(^{-1}\) (3NH), 2956 cm\(^{-1}\) (Ar-H), 2850 cm\(^{-1}\) (Aliphatic-H), 1677–1620 cm\(^{-1}\) (5C=O and C=N). \(^1\)H-NMR (DMSO, 850 MHz): \(\delta = 1.90–2.00 \) (m, 2H, CH\(_2\)CH\(_2\)COOH), 2.25 (s, 3H, CH\(_3\)), 2.55 (t, 2H, CH\(_2\)CH\(_2\)COOH), 4.20 (t, 1H, N-CH\(_2\)COOH), 4.45 (s, 2H, pteridine-CH\(_2\)-N), 6.51 (d, 2H, N-Ph-H\(\text{ortho}\)), 6.93 (s, 1H, HN-Ph), 7.21 (s, 1H, pyrimidine CH\(_3\)), 7.58 (m, 2H, N-Ph-H\(\text{meta}\)), 8.04 (s, 1H, NHCO), 8.66 (s, 1H, pteridine-C\(\text{H}2\)), 10.95 (s, 1H, pyrimidine NH\(\text{N}\)), 11.24 (s, 1H, CH\(_2\)CH\(_2\)COO\(\text{H}\)), 12.14 (s, 1H, CH\(_2\)COO\(\text{H}\)). Anal. Calced. for C\(_{32}\)H\(_{23}\)N\(_2\)O\(_7\) (507.46): C, 54.44; H, 4.17; N, 19.32; found: C, 54.13; H, 4.08; N, 19.01.

4.2.10. “N-(4-[[((7-amino-9,11-dioxo-8,11-dihydro-9H-pyrimido[2,1-b]pteridin-2-yl)methyl]amino)benzoyl] glutamic acid” (14)

Folic acid (0.001 mol, 0.44 g) and ethyl cyanoacetate (0.001 mol, 0.13 g) in DMF (15 mL) stirred at boiling point for 4 h until the reaction finished (TLC, \(R_f = 0.7 \), eluent: CH\(_2\)Cl\(_2\)). The product obtained after solvent evaporation crystallized from EtOH-DMF to give
reddish brown product. Yield, 79%, m.p. 231–233 °C. IR, 3424, 3412 cm⁻¹ (2OH), 3278–3189 cm⁻¹ (NH₂ and 2NH), 2911 cm⁻¹ (Ar-H), 2843 cm⁻¹ (Aliphatic-H), 1679–1624 cm⁻¹ (SC=O and C=N), 1592 cm⁻¹ (C=C). 1H-NMR (DMSO d₆, 850 MHz): δ = 1.74–2.10 (m, 2H, CH₂CH₂COOH), 2.73 (t, 2H, CH₂CH₂COOH), 2.89 (s, 2H, pyrimidine CH₂), 4.22 (t, 1H, NHCHCOOH), 4.51 (s, 2H, pteridine-CH₂-N), 6.63 (d, 2H, N-Ph-(H₁ortho), 7.23 (s, 1H, H₁N-Ph), 7.56 (m, 2H, N-Ph-(H₁meta)), 7.98 (s, 1H, NHCO), 8.06 (s, 2H, NH₂), 8.61 (s, 1H, pteridine-C₂-H), 11.46 (s, 1H, CH₂CH₂COOH), 12.47 (s, 1H, CH₂COOH). 13C-NMR (DMSO d₆, 200 MHz): δ = 28.10 (CH₂CH₂COOH), 33.19 (CH₂CH₂COOH), 43.44 (NHCH₂), 43.05 (pyrimidine CH₂), 54.50 (NHCH₁), 113.22 (N-Ph-(H₁ortho), 114.61 (N-Ph-(H₁penta), 123.34 (pteridine C₆β), 128.24 (N-Ph-(C₁meta), 146.32 (pteridine C₁β), 151.22 (pteridine C₂β), 151.12 (N-Ph-(C₁)), 154.79 (pteridine C₆β), 160.09 (pteridine C₂β), 165.36 (pteridine CO), 166.22 (NHCO), 171.03 (pyrimidine N=CH), 174.12 (NHCHCOOH), 175.00 (CH₂CH₂COOH). Anal. Calcd. for C₂₂H₂₂N₄O₇ (508.44): C, 51.97; H, 3.96; N, 22.04; found: C, 51.79; H, 3.81; N, 21.91.

4.2.11. “N-4-[[7,10-dioxo-6,7,8,10-tetrahydroimidazo[2,1-b]pteridin-2-yl)methyl]-amino]-benzoyl]glutamic acid” (15)

Ethyl chloroacetate (0.001 mol, 0.12 g) and folic acid (0.001 mol, 0.44 g) in DMF (11 mL) stirred under reflux for 4.5 h (TLC, Rf = 0.8, eluent: CH₂Cl₂). The precipitate separated after cooling crystallized from EtOH to yield orange crystals. Yield, 88%, m.p. 221–224 °C. IR, 3423–3401 cm⁻¹ (2OH), 3251–3204 cm⁻¹ (3NH), 2927 cm⁻¹ (Ar-H), 2854 cm⁻¹ (Aliphatic-H), 1668–1618 cm⁻¹ (SC=O and C=N). 1H-NMR (DMSO d₆, 850 MHz): δ = 1.93–2.04 (m, 2H, CH₂CH₂COOH), 2.55 (t, 2H, CH₂CH₂COOH), 3.51 (s, 2H, imidazolidinone CH₂), 4.26 (t, 1H, NHCHCOOH), 4.48 (s, 2H, pteridine-CH₂-N), 6.53 (d, 2H, N-Ph-(H₁ortho), 6.92 (s, 1H, H₁N-Ph), 7.57 (m, 2H, N-Ph-(H₁meta), 8.03 (s, 1H, NHCO), 8.64 (s, 1H, pteridine-C₂H), 10.87 (s, 1H, imidazole NH), 11.28 (s, 1H, CH₂CH₂COOH), 12.11 (s, 1H, CH₂COOH). Anal. Calcd. for C₂₁H₁₉N₄O₇ (481.42): C, 52.39; H, 3.98; N, 20.37; found: C, 52.00; H, 3.71; N, 20.19.

4.2.12. “N-[4-[[2-[aminomethyl]hydrazino]-carbonyl]amino]-4-oxo-3,4-dihydropteridin-6-yl]methyl]amino]-benzoyl]glutamic acid” (16)

Compound 15 (0.001 mol, 0.51 g) and aminoguanidinium hydrocarbonate (0.001 mol, 0.14 g) in glacial acetic acid (15 mL) was stirred under reflux for 3 h (TLC, Rf = 0.6, eluent: CH₂Cl₂). A brownish powder formed on hot, the precipitate filtered while hot and washed with ethanol. Yield 87%, m.p. 274–276 °C. IR, 3439–3410 cm⁻¹ (2OH), 3319–3161 cm⁻¹ (NH₂ and 7 NH), 2954 cm⁻¹ (Ar-H), 2851 cm⁻¹ (Aliphatic-H), 1678–1620 cm⁻¹ (SC=O and C=N). 1H-NMR (DMSO d₆, 850 MHz): δ = 1.93–2.05 (m, 2H, CH₂CH₂COOH), 2.55 (t, 2H, CH₂CH₂COOH), 4.31 (t, 1H, NHCHCOOH), 4.54 (s, 2H, pteridine-CH₂-N), 6.27 (s, 2H, NH₂), 6.65 (d, 2H, N-Ph-(H₁ortho), 6.91 (s, 1H, H₁N-Ph), 7.65 (m, 2H, N-Ph-(H₁meta), 7.80 (s, 1H, C=NH), 8.14 (s, 1H, NHCO), 8.51 (s, 1H, pteridine-NHC=O), 8.82 (s, 1H, pteridine-C₂H), 10.17 (s, 1H, NH₂N-Ph), 10.31 (s, 1H, pteridine NH), 10.99 (s, 1H, NH-NH₂), 11.40 (s, 1H, CH₂CH₂COOH), 12.30 (s, 1H, CH₂COOH). Anal. Calcd. for C₂₁H₂₃N₁₁O₇ (541.48): C, 46.58; H, 4.28; N, 28.45; found: C, 46.36; H, 4.09; N, 28.31.

4.2.13. “N-[4-[[2-[(hydrazinocarbonyl)amino]-4-oxo-3,4-dihydropteridin-6-yl]methyl]amino]-benzoyl]glutamic acid” (17)

Compound 15 (0.51g, 1 mmol) and NH₂NH₂ (excess, 3 mL) in DMF (12 mL) were refluxed for 5 h (TLC, Rf = 0.5, eluent: CH₂Cl₂). The solution concentrated under vacuum and poured onto crushed ice, an orange compound resulted, crystallized from DMF:EtOH mixture 1:3 to give yellowish powder. Yield, 65%, m.p. 231–233 °C. IR, 3411, 3386 cm⁻¹ (2OH), 3309–3214 cm⁻¹ (NH₂ and 5NH), 3001 cm⁻¹ (Ar-H), 2876 cm⁻¹ (Aliphatic-H), 1686–1618 cm⁻¹ (SC=O and C=N). 1H-NMR (DMSO d₆, 850 MHz): δ = 1.93–2.02 (m, 2H, CH₂CH₂COOH), 2.42 (t, 2H, CH₂CH₂COOH), 4.09 (t, 1H, NHCHCOOH), 4.33 (s, 2H, s, 1H, NHCONHN₂), 4.53 (s, 2H, pteridine-CH₂-N), 6.61 (d, 2H, N-Ph-(H₁ortho), 7.62 (s, 1H, H₁N-Ph), 7.68 (d, 2H, N-Ph-(H₁meta), 8.11 (s, 1H, NHCO), 8.22 (s, 1H, pteridine-C₂H), 8.69 (s, 1H, NHCONHN₂), 9.61 (s, 1H, NHCONHN₂), 10.34 (s, 1H, pteridine NH), 11.41
4.2.14. “N-[4-[[2-([carboxymethyl]amino)[carbonyl]amino]-4-oxo-3,4-dihydropteridin-6-yl][methyl]amino]benzoyl]glutamic acid” (18)

Compound 15 (0.001 mol, 0.5 g) and glycine (0.001 mol, 0.08 g) in DMF / H2O mixture (9:1, 10 mL) was refluxed for 4 h (TLC, Rf = 0.70, eluent: CH2C12). The solvent concentrated by evaporation. The brown solid formed after pouring on crushed ice crystallized from EtOH. Yield, 83%, m.p. 210–212 °C. IR, 3451–3410 cm⁻¹ (OH), 3233–3185 cm⁻¹ (NH), 2971 cm⁻¹ (Ar-H), 2857 cm⁻¹ (Aliphatic-H), 1674–1623 cm⁻¹ (C=O=O). ¹H-NMR (DMSO-δ6, 850 MHz): δ = 1.92–2.01 (m, 2H, CH2CH2COOH), 2.55 (t, 2H, CH2CH2COOH), 4.03 (s, 2H, NHCH2COO), 4.33 (t, 1H, NHCH2COOH), 4.51 (s, 2H, pteridine-CH2-N), 6.58 (d, 2H, N-Ph-(Hortho), 6.96 (s, 1H, HN-Ph), 7.61 (m, 2H, N-Ph-(Hmeta), 8.01 (s, 1H, NHCO), 8.66 (s, 1H, pteridine-C7H), 8.78 (s, 1H, NHCH2COOH), 10.31 (s, 1H, pteridine NH), 11.31 (s, 1H, CH2CH2COOH), 11.60 (s, 1H, CH2COOH), 12.22 (s, 1H, NHCH2COO), 13.53 (pteridine δ6, 200 MHz): δ = 25.08 (CH3), 30.19 (CH2CH2COOH), 34.13 (CH2COOH), 41.10 (glycine CH2), 45.90 (NHCH2), 51.21 (NHCO), 111.18 (N-Ph-(Hortho), 120.99 (N-Ph-(Hpara), 127.97 (pteridine Cδ6), 128.69 (N-Ph-(Hmeta), 148.09 (pteridine Cδ6), 150.67 (pteridine Cδ7), 150.91 (N-Ph-(Cortho), 154.69 (pteridine Cδ6), 156.30 (pteridine Cδ7), 160.91 (pteridine Cδ4), 161.53 (NHCONH), 166.52 (NHCO), 172.09 (NHCH2COOH), 173.17 (glycine CO), 174.51 (CH2CH2COOH). Anal. Calcd. for C26H22N8O7 (542.46): C, 48.71; H, 4.09; N, 20.66; found: C, 48.53; H, 3.78; N, 20.51.

4.2.15. “N-[4-[[2-(mercaptopcarbonothioyl)hydratino-[carbonyl]amino]-4-oxo-3,4-dihydropteridin-6-yl][methyl]amino]benzoyl]glutamic acid” (19)

Compound 15 (0.001 mol, 0.5 g) and thiourea acid hydrazide (0.001 mol, 0.1 g) in DMSO (12 mL) were refluxed for 5 h (TLC, Rf = 0.4, eluent: CH2C12). The product formed after pouring on crushed ice crystallized from DMF / EtOH 1:1 to yield brown powder. Yield, 84%, m.p. 281–283 °C. IR, 3423–3402 cm⁻¹ (2OH), 3251–3147 cm⁻¹ (6NH), 2928 cm⁻¹ (Ar-H), 2850 cm⁻¹ (Aliphatic-H), 2627 cm⁻¹ (SH), 1678–1621 cm⁻¹ (5C=O and C=N), 1351 cm⁻¹ (C=S). ¹H-NMR (DMSO-δ6, 850 MHz): δ = 1.89–2.04 (m, 2H, CH2CH2COOH), 2.50 (t, 2H, CH2CH2COOH), 4.08 (s, 2H, NHCH2COOH), 4.31 (t, 1H, NHCH2COOH), 4.54 (s, 2H, pteridine-CH2-N), 6.54 (d, 2H, N-Ph-(Hortho), 6.96 (s, 1H, HN-Ph), 7.63 (m, 2H, N-Ph-(Hmeta), 8.09 (s, 1H, NH2CO), 8.61 (s, 1H, pteridine-C7H), 10.36 (s, 1H, pteridine NH), 11.17 (s, 1H, NH=NH), 11.38 (s, 1H, NH=NH), 11.43 (s, 1H, CH2CH2COOH), 12.27 (s, 1H, CH2COO). Anal. Calcd. for C26H22N8O7 (575.58): C, 43.82; H, 3.68; N, 21.90; S, 11.14; found: C, 43.57; H, 3.49; N, 21.77; S, 10.91.

4.3. Reaction of Compound 15 with Sulfa Drugs (20a,b): General Procedure

A mixture of 15 (0.001 mol, 0.51 g) and appropriate sulfa drug (0.001 mol) in DMF (15 mL) was stirred under reflux for 4h (TLC, Rf = 0.45, eluent: CH2C12). The precipitate formed crystallized from EtOH to produce yellow to orange powder.

4.3.1. “N-[4-[[4-oxo-2-[[[4-[[pyrimidin-2-ylamino)sulfonyl]- phenyl]amino]carbonyl]amino]-3,4-dihydropteridin-6-yl][methyl]amino]benzoyl]glutamic acid” (20a)

Yellowish orange, yield, 77%, m.p. 238–240 °C. IR, 3438–3417 cm⁻¹ (2OH), 3331–3199 cm⁻¹ (6NH), 2952 cm⁻¹ (Ar-H), 2853 cm⁻¹ (Aliphatic-H), 1684–1623 cm⁻¹ (5C=O and C=N). ¹H-NMR (DMSO-δ6, 850 MHz): δ = 1.88–2.04 (m, 2H, CH2CH2COOH), 2.51 (t, 2H,
CH$_2$CH$_2$COOH), 4.34 (t, 1H, NHCH$_2$COOH), 4.55 (s, 2H, pteridine-CH$_2$-N), 6.42 (d, 2H, J = 8.4 Hz, benzene C$_2$H$_4$(C$_6$H$_5$)), 6.65 (d, 2H, N-Ph-(H$_{ortho}$), 6.81 (d, 2H, J = 8.4 Hz, benzene C$_2$H$_4$(C$_6$H$_5$)), 6.92 (s, 1H, HN-Ph), 7.66 (m, 2H, N-Ph-(H$_{meta}$)), 8.17 (s, 1H, NH$_2$CO), 8.41 (t, 1H, pyrimidine C$_2$H$_4$(C$_6$H$_5$)), 8.53 (s, 1H, pteridine-NHCONH), 8.64 (d, 2H, pyrimidine C$_2$H$_4$(C$_6$H$_5$)), 8.77 (s, 1H, pteridine-C$_7$H$_4$), 8.99 (s, 1H, pteridine-NHCONH$_2$), 10.31 (s, 1H, pteridine N$_2$H$_3$), 11.38 (s, 1H, CH$_2$CH$_2$COOH), 12.27 (s, 1H, CH$_2$COOH), 12.83 (s, 1H, SO$_2$N$_2$H$_3$). Anal. Calcd. for C$_2$H$_2$N$_2$O$_5$S (717.67): C, 50.21; H, 3.79; N, 21.47; S, 4.47; found: C, 49.91; H, 3.85; N, 21.62; S, 4.30.

4.3.2. “N-[4-[[4,4-dimethylpyrimidin-2-yl]amino]-sulfonyl][phenyl]amino]-carbonyl[amino]-4-oxo-3,4-dihydropteridin-6-yl[methyl][amino] benzoyl][glutamic acid” (20b)

Yield, 72%, Orange powder, m.p. 246–248 °C. IR, 3422–3411 cm$^{-1}$ (2OH), 3325–3212 cm$^{-1}$ (6NH), 2975 cm$^{-1}$ (Ar-H), 2857 cm$^{-1}$ (Aliphatic-H), 1680–1621 cm$^{-1}$ (S=O and C=N). 1H-NMR (DMSO d_6, 850 MHz): δ = 1.91–2.05 (m, 5H, CH$_2$CH$_2$COOH), 2.54 (t, 2H, CH$_2$CH$_2$COOH), 2.43 (s, 6H, 2CH$_3$), 4.37 (t, 1H, NHCHCOOH), 4.52 (s, 2H, pteridine-CH$_2$-N), 6.45 (d, 2H, J = 8.4 Hz, benzene C$_2$H$_4$(C$_6$H$_5$)), 6.68 (d, 2H, N-Ph-(H$_{ortho}$)), 6.83 (d, 2H, J = 8.4 Hz, benzene C$_2$H$_4$(C$_6$H$_5$)), 6.89 (s, 1H, HN-Ph), 7.61 (m, 2H, N-Ph-(H$_{meta}$)), 8.13 (s, 1H, NH$_2$CO), 8.40 (t, 1H, pyrimidine C$_2$H$_4$(C$_6$H$_5$)), 8.55 (s, 1H, pteridine-NHCONH), 8.61 (d, 2H, pyrimidine C$_2$H$_4$(C$_6$H$_5$)), 8.79 (s, 1H, pteridine-C$_7$H$_4$), 8.91 (s, 1H, pteridine-NHCONH$_2$), 10.31 (s, 1H, pteridine N$_2$H$_3$), 11.31 (s, 1H, CH$_2$CH$_2$COOH), 12.34 (s, 1H, CH$_2$COOH), 12.85 (s, 1H, SO$_2$N$_2$H$_3$). Anal. Calcd. for C$_2$H$_2$N$_2$O$_5$S (745.72): C, 51.54; H, 4.19; N, 20.66; S, 4.30; found: C, 51.21; H, 4.02; N, 20.49; S, 4.17.

4.3.3. “N-[4-[[2-[[2-aminocarbonyl]hydrazino[methylene]-amino]4-oxo-3,4-dihydropteridin-6-yl[methyl]amino]benzoyl][glutamic acid” (21)

Compound 4 (0.001 mol, 0.5 g) and semicarbazide HCl (0.001 mol, 0.11 g) and drops of TMA in DMF (14 mL) was stirred under reflux for 4 h (TLC, R_f = 0.65, eluent: CH$_2$Cl$_2$). Brown powder formed after crystallization from EtOH. Yield 78%, m.p. 250–252 °C. IR, 3412–3389 cm$^{-1}$ (2OH), 3329–3352 cm$^{-1}$ (NH$_2$ and 5 NH), 2949 cm$^{-1}$ (Ar-H), 2850 cm$^{-1}$ (Aliphatic-H), 1666–1623 cm$^{-1}$ (S=O and C=N). 1H-NMR (DMSO d_6, 850 MHz): δ = 1.91–2.05 (m, 5H, CH$_2$CH$_2$COOH), 2.54 (t, 2H, CH$_2$CH$_2$COOH), 4.31 (t, 1H, NHCHCOOH), 4.44 (s, 2H, pteridine-CH$_2$-N), 6.64 (d, 2H, N-Ph-(H$_{ortho}$)), 6.89 (s, 1H, HN-Ph), 6.98 (s, 2H, NH$_2$), 7.61 (m, 2H, N-Ph-(H$_{meta}$)), 7.65 (s, 1H, N=CH$_2$), 8.21 (s, 1H, NH$_2$CO), 8.84 (s, 1H, pteridine-C$_7$H$_4$), 10.31 (s, 1H, pteridine NH$_2$), 10.57 (s, 1H, NH-NH$_2$), 10.99 (s, 1H, NH-NH$_2$), 11.41 (s, 1H, CH$_2$CH$_2$COOH), 12.28 (s, 1H, CH$_2$COOH). Anal. Calcd. for C$_2$H$_2$N$_2$O$_5$ (526.46): C, 47.91; H, 4.21; N, 26.61; found: C, 47.63; H, 3.92; N, 26.47.

4.3.4. “N-[4-[[2-[[2-aminocarbonyl]hydrazino[methylene]-amino]4-oxo-3,4-dihydropteridin-6-yl[methyl]amino]benzoyl][glutamic acid” (22)

Compound 14 (0.001 mol, 0.5 g) and aminoguanidinium hydrocarbonate (0.001 mol, 0.14 g) in glacial AcOH (15 mL) was stirred under reflux (TLC, R_f = 0.6, eluent: CH$_2$Cl$_2$), after 2 h a green precipitate formed, which crystallized from EtOH. Yield 96%, m.p. 278–280 °C. IR, 3442–3415 cm$^{-1}$ (2OH), 3289–3151 cm$^{-1}$ (NH$_2$ and 6 NH), 2951 cm$^{-1}$ (Ar-H), 2847 cm$^{-1}$ (Aliphatic-H), 1672–1617 cm$^{-1}$ (S=O and C=N). 1H-NMR (DMSO d_6, 850 MHz): δ = 1.93–2.05 (m, 2H, CH$_2$CH$_2$COOH), 2.52 (t, 2H, CH$_2$CH$_2$COOH), 4.29 (t, 1H, NHCHCOOH), 4.51 (s, 2H, pteridine-CH$_2$-N), 6.21 (s, 2H, NH$_2$), 6.61 (d, 2H, N-Ph-(H$_{ortho}$)), 6.90 (s, 1H, HN-Ph), 7.60 (m, 2H, N-Ph-(H$_{meta}$)), 7.55 (s, 1H, N=CH$_2$), 7.82 (s, 1H, C=NH), 8.11 (s, 1H, NH$_2$CO), 8.82 (s, 1H, pteridine-C$_7$H$_4$), 10.13 (s, 1H, NH-NH$_2$), 10.33 (s, 1H, pteridine NH$_2$), 10.90 (s, 1H, NH-NH$_2$), 11.42 (s, 1H, CH$_2$CH$_2$COOH), 12.31 (s, 1H, CH$_2$COOH). Anal. Calcd. for C$_2$H$_2$N$_2$O$_5$ (525.48): C, 48.00; H, 4.41; N, 29.32; found: C, 47.61; H, 4.28; N, 29.10.
4.3.5. “N-[4-[[2-[[[(carboxyethyl)amino]methylene]amino]-4-oxo-3,4-dihydro-pteridin-6-yl]methyl]amino]benzoyl]glutamic acid” (23)

A mixture of compound 14 (0.001 mol, 0.5 g) and glycine (0.001 mol, 0.08 g) in DMF/H₂O mixture (9:1, 10 mL) refluxed for 3h (TLC, R₅ = 0.75, eluent: CH₂Cl₂). The brown solid formed crystallized from EtOH to give crystals. Yield, 91%, m.p. 218–220 °C. IR, 3443–3405 cm⁻¹ (3OH), 3317–3212 cm⁻¹ (4NH), 2910 cm⁻¹ (Ar-H), 2850 cm⁻¹ (Aliphatic-H), 1688–1619 cm⁻¹ (5C=O and C=N).¹H-NMR (DMSO-d₆, 850 MHz): δ = 1.92–2.03 (m, 2H, CH₂CH₂COOH), 2.54 (t, 2H, CH₂CH₂COOH), 4.18 (s, 2H, NHCH₂COOH), 4.33 (t, 1H, NHCH₂COOH), 4.55 (s, 2H, pteridine-C₇H₆-N), 6.63 (d, 2H, N-Ph-(H)ortho), 6.90 (s, 1H, H(N-Ph), 7.44 (m, 2H, N-Ph-(H)meta), 7.52 (s, 1H, N=CH), 8.09 (s, 1H, NHCO), 8.77 (s,1H, pteridine-C₇H₆), 9.89 (s, 1H, NHCH₂COOH), 10.36 (s, 1H, pteridine NH), 11.34 (s, 1H, CH₂CH₂COOH), 11.58 (s,1H, CH₂COOH), 12.28 (s, 1H, NHCH₂COOH). Anal. Calcd. for C₂₂H₂₂O₈N₆ (526.46): C, 50.19; H, 4.21; N, 21.28; found: C, 49.84; H, 4.06; N, 21.01.

4.4. Reaction of Compound 14 and Sulfa Drugs (24a,b): General Procedure

A mixture of 14 (0.001 mol, 0.5 g) and appropriate sulfa drug (0.001 mol) in DMF (15 mL) was stirred under reflux for 3h (TLC, R₅ = 0.4, eluent: CH₂Cl₂). The precipitate formed crystallized from EtOH to yield brownish powder.

4.4.1. “N-[4-[[4-oxo-2-[[[(pyrimidin-2-ylamino)sulfonyl]phenyl]amino]methylene]-amino]-3,4-dihydropteridin-6-yl]methyl]amino]benzoyl]glutamic acid” (24a)

Brownish powder, yield, 76%, m.p. 236–238 °C. IR, 3456–3412 cm⁻¹ (2OH), 3321–3228 cm⁻¹ (5NH), 2974 cm⁻¹ (Ar-H), 2803 cm⁻¹ (Aliphatic-H), 1687–1616 cm⁻¹ (4C=O and C=N).¹H-NMR (DMSO-d₆, 850 MHz): δ = 1.93–2.05 (m, 2H, CH₂CH₂COOH), 2.53 (t, 2H, CH₂CH₂COOH), 4.32 (t, 1H, NHCH₂COOH), 4.52 (s, 2H, pteridine-C₇H₆-N), 6.41 (d, 2H, J = 8.4 Hz, benzene C₇H₇C₆H₄), 6.61 (d, 2H, N-Ph-(H)ortho), 6.84 (d, 2H, J = 8.4 Hz, benzene C₇H₇C₆H₄), 6.91 (s, 1H, H(N-Ph), 7.02 (s, 1H, N=CH), 7.52 (s, 1H, N=CH), 7.64 (m, 2H, N-Ph-(H)meta), 8.11 (s, 1H, NHCO), 8.45 (t, 1H, pyrimidine C₇H₆), 8.62 (d, 2H, CH₂CH₂COOH), 8.79 (s,1H, pteridine-C₇H₆), 10.29 (s, 1H, pteridine NH), 11.44 (s, 1H, CH₂CH₂COOH), 12.28 (s, 1H, CH₂COOH). Anal. Calcd. for C₂₉H₂₇N₁I₂O₈S (701.67): C, 51.35; H, 3.88; N, 21.96; S, 4.57; found: C, 51.02; H, 3.42; N, 21.71; S, 4.33.

4.4.2. “N-[4-[[2-[[[[[(4,6-dimethyl)pyrimidin-2-yl]amino]sulfonfonyl]phenyl]amino]methylene]amino]-4-oxo-3,4-dihydropteridin-6-yl]methyl]amino]benzoyl]glutamic acid” (24b)

Brown powder, yield, 74%, m.p. 258–260 °C. IR, 3453–3405 cm⁻¹ (2OH), 3314–3212 cm⁻¹ (5NH), 2952 cm⁻¹ (Ar-H), 2851 cm⁻¹ (Aliphatic-H), 1692–1621 cm⁻¹ (4C=O and C=N).¹H-NMR (DMSO-d₆, 850 MHz): δ = 1.90–2.04 (m, 2H, CH₂CH₂COOH), 2.51 (t, 2H, CH₂CH₂COOH), 2.68 (s, 6H, 2CH₃), 4.30 (t, 1H, NHCH₂COOH), 4.52 (s, 2H, pteridine-CH₂-N), 6.41 (d, 2H, J = 8.4 Hz, benzene C₇H₇C₆H₄), 6.64 (d, 2H, N-Ph-(H)ortho), 6.80 (d, 2H, J = 8.4 Hz, benzene C₇H₇C₆H₄), 6.91 (s, 1H, H(N-Ph), 7.03 (s, 1H, N=CH), 7.53 (s, 1H, N=CH), 7.61 (m, 2H, N-Ph-(H)meta), 8.11 (s, 1H, NHCO), 8.44 (t, 1H, pyrimidine C₇H₆), 8.61 (d, 2H, pyrimidine C₂H₄C₆H₄), 8.80 (s,1H, pteridine-C₇H₆), 10.33 (s, 1H, pteridine NH), 11.45 (s, 1H, CH₂CH₂COOH), 12.31 (s,1H, CH₂COOH), 12.84 (s, 1H, SO₂N-H). Anal. Calcd. for C₃₂H₃₁N₁₁O₈S (729.72): C, 52.67; H, 4.28; N, 21.11; S, 4.39; found: C, 52.40; H, 4.10; N, 21.03; S, 4.13.

4.4.3. “N-[4-[[4-amino-3-mercpto-2,12-dioxo-5-phenyl-1,12-dihydro-2H-pyrido[3',2',5:6]-pyrimido[2,1-b]pteridin-10-yl]methyl]amino]benzoyl]glutamic acid” (25)

Compound 10 (0.001 mol, 0.59 g), thiglycolic acid (0.001 mol, 0.09 g), and drops of TMA in EtOH (12 mL) were refluxed for 15 h (TLC, R₅ = 0.55, eluent: CH₂Cl₂). The precipitate formed crystallized from DMF/EtOH 1:1 to yield dark orange crystals. Yield, 76%, m.p.
251–253 °C. IR, 3401–3389 cm⁻¹ (2OH), 3287–3165 cm⁻¹ (NH₂, 3NH), 2947 cm⁻¹ (Ar-H), 2852 cm⁻¹ (Aliphatic-H), 2657 cm⁻¹ (SH), 1683–1622 cm⁻¹ (5C=O and C=N). ¹H-NMR (DMF-d₆, 850 MHz): δ = 1.90–2.03 (m, 2H, CH₂CH₂COOH), 2.55 (t, 2H, CH₂CH₂COOH), 4.06 (t, 1H, NHCH₂COOH), 4.53 (s, 2H, pteridine-CH₂-N), 6.92 (d, 2H, N-Ph-(H)ortho), 6.96 (s, 1H, HN-Ph), 7.68–7.90 (m, 7H, N-Ph-(H)meta and pyrimidine-4-Ph), 8.12 (s, 1H, N₂CO), 8.67 (s, 1H, pteridine-C₂H), 11.38 (s, 1H, pyridine-NH), 11.44 (s, 1H, CH₂COOH), 12.31 (s, 1H, CH₂COOH), 14.01 (s, 1H, pyridine-SH). Anal. Calcd. for C₁₃H₁₁₄N₁₂O₁₁S (667.65): C, 55.77; H, 3.77; N, 18.88; S, 4.60; found: C, 55.54; H, 3.62; N, 18.64; S, 4.67.

4.4.4. “N-[4-[[8-cyanoo-9-[[mercaptoacetylamino]-11-oxo-7-phenyl-11H-pyrimido[2,1-b]pteridin-2-yl]methyl]amino]benzoyl]glutamic acid” (26)

Compound 10 (0.001 mol, 0.59 g) and thioglycolic acid (0.001 mol, 0.09 g) in EtOH (13 mL) were refluxed for 5 h (TLC, Rf = 0.5, eluent: CH₂Cl₂). The precipitate formed on hot filtered and crystallized from DMF/EtOH 1:1 to produce yellowish brown crystals. Yield, 89%, m.p. 238–240 °C. IR, 3427–3412 cm⁻¹ (2OH), 3248–3153 cm⁻¹ (3NH), 2961 cm⁻¹ (Ar-H), 2866 cm⁻¹ (Aliphatic-H), 2634 cm⁻¹ (SH), 2206 cm⁻¹ (CN), 1678–1618 cm⁻¹ (5C=O and C=N). ¹H-NMR (DMF-d₆, 850 MHz): δ = 1.91–2.07 (m, 2H, CH₂CH₂COOH), 2.53 (t, 2H, CH₂CH₂COOH), 3.64 (s, 2H, NHCOCH₂SH), 4.06 (t, 1H, NHCH₂COOH), 4.52 (s, 2H, pteridine-CH₂-N), 6.90 (d, 2H, N-Ph-(H)ortho), 6.99 (s, 1H, HN-Ph), 7.61–7.91 (m, 7H, N-Ph-(H)meta and pyrimidine-4-Ph), 8.19 (s, 1H, NHCOCO), 8.66 (s, 1H, pteridine-C₂H), 10.37 (s, 1H, NHCH₂COOH), 11.44 (s, 1H, CH₂CH₂COOH), 12.28 (s, 1H, CH₂COOH), 13.97 (s, 1H, NHCOCH₂SH). Anal. Calcd. for C₁₃H₁₁₄N₁₂O₁₁S (667.65): C, 55.77; H, 3.77; N, 18.88; S, 4.60; found: C, 55.54; H, 3.62; N, 18.64; S, 4.67.

4.4.5. “N-[4-[[8-cyanoo-9-[[mercaptocarbonothioyl]amino]-11-oxo-7-phenyl-11H-pyrimido[2,1-b]pteridin-2-yl]methyl]amino]benzoyl]glutamic acid” (27)

Compound 10 (0.001 mol, 0.59 g), CS₂ (excess, 1 mL) and KOH (0.003 mol, 0.17 g) in EtOH (20 mL) was refluxed for 5 h (TLC, Rf = 0.35, eluent: CH₂Cl₂). The solution poured onto crushed ice after concentration then acidified with dilute HCl. The precipitate formed crystallized from EtOH to produce reddish brown powder. Yield, 7%, m.p. 240–242 °C. IR, 3418–3406 cm⁻¹ (2OH), 3221–3170 cm⁻¹ (3NH), 2950 cm⁻¹ (Ar-H), 2838 cm⁻¹ (Aliphatic-H), 2630 cm⁻¹ (SH), 2202 cm⁻¹ (CN), 1689–1621 cm⁻¹ (4C=O and C=N), 1328 cm⁻¹ (C=S). ¹H-NMR (DMF-d₆, 850 MHz): δ = 1.92–2.04 (m, 2H, CH₂CH₂COOH), 2.54 (t, 2H, CH₂CH₂COOH), 4.05 (t, 1H, NHCH₂COOH), 4.41 (s, 2H, pteridine-CH₂-N), 6.90 (d, 2H, N-Ph-(H)ortho), 6.95 (s, 1H, HN-Ph), 7.61–7.95 (m, 7H, N-Ph-(H)meta and pyrimidine-4-Ph), 8.18 (s, 1H, NHCOCO), 8.66 (s, 1H, pteridine-C₂H), 10.56 (s, 1H, NHCH₂S), 11.41 (s, 1H, CH₂COOH), 12.29 (s, 1H, CH₂COOH), 13.98 (s, 1H, SH). Anal. Calcd. for C₁₃H₁₁₄N₁₂O₁₁S (669.69): C, 53.80; H, 3.46; N, 18.82; S, 9.58; found: C, 53.66; H, 3.39; N, 18.71; S, 9.42.

4.4.6. “N-(4-[[12-oxo-5-phenyl-2,4-dithioxio-1,3,4,12-tetrahydro-2H-pyrimido[5′,4′:5,6]pyrimido[2,1-b]pteridin-10-yl]methyl]amino]benzoyl]glutamic acid” (28)

Compound 10 (0.001 mol, 0.59 g), CS₂ (excess, 1 mL) and KOH (0.003 mol, 0.17 g, 3 mmol) dry pyridine (10 mL) was refluxed for 12 h (TLC, Rf = 0.5, eluent: CH₂Cl₂). The solution poured onto crushed ice/dilute HCl. The product crystallized from EtOH to yield orange powder. Yield, 57%, m.p. 262–264 °C. IR, 3419–3410 cm⁻¹ (2OH), 3234–3187 cm⁻¹ (4NH), 2971 cm⁻¹ (Ar-H), 2846 cm⁻¹ (Aliphatic-H), 1675–1623 cm⁻¹ (4C=O and C=N), 1350–1273 (2C=S). ¹H-NMR (DMF-d₆, 850 MHz): δ = 1.93–2.05 (m, 2H, CH₂CH₂COOH), 2.54 (t, 2H, CH₂CH₂COOH), 4.01 (t, 1H, NHCH₂COOH), 4.44 (s, 2H, pteridine-CH₂-N), 6.91 (d, 2H, N-Ph-(H)ortho), 6.97 (s, 1H, HN-Ph), 7.62–7.90 (m, 7H, N-Ph-(H)meta and pyrimidine-4-Ph), 8.22 (s, 1H, NHCOCO), 8.67 (s, 1H, pteridine-C₂H), 10.56 (s, 1H, NHCH₂S), 11.41 (s, 1H, CH₂CH₂COOH), 12.29 (s, 1H, CH₂COOH), 12.56 (s, 1H, NHCH₂S). Anal. Calcd. for C₁₃H₁₁₄N₁₂O₁₁S (669.69): C, 53.80; H, 3.46; N, 18.82; S, 9.58; found: C, 53.66; H, 3.39; N, 18.71; S, 9.42.
4.4.7. “N-(4-[(2,4-diamino-3-cyano-12-oxo-5-phenyl-12H-pyrido[3',2',5,6]pyrimido[2,1-b]pteridin-10-yl)methyl]amino]benzoyl)-glutamic acid” (29)

Compound 10 (0.001 mol, 0.59 g) with malononitrile (0.001 mol, 0.07 g), and drops of TMA in EtOH (13 mL) refluxed for 13 h (TLC, Rf = 0.6, eluent: CH2Cl2). The red product formed crystallized from EtOH to produce dark red powder. Yield, 69%, m.p. 236–238 °C. IR, 3423–3415 cm⁻¹ (2OH), 3245–3162 cm⁻¹ (2NH2, 2NH), 2944 cm⁻¹ (Ar-H), 2852 cm⁻¹ (Aliphatic-H), 2201 cm⁻¹ (CN); 1678–1612 cm⁻¹ (4C=O and C=N). 1H-NMR (DMSO d6, 550 MHz): δ = 1.93–2.04 (m, 2H, CH2CH2COOH), 2.55 (t, 2H, CH2CH2COOH), 4.11 (t, 1H, NHCHCOOH), 4.42 (s, 2H, pteridine-C2H), 6.12 (s, 2H, C2N2H2), 6.58 (s, 2H, C4N2H2), 6.92 (d, 2H, N-Ph-(H)ortho), 6.99 (s, 1H, HN-Pt), 7.62–7.93 (m, 7H, N-Ph-(H)meta and pyrimidine-4-Pt), 8.21 (s, 1H, NHCO), 8.61 (s, 1H, pteridine-C7H2), 11.43 (s, 1H, CH2CH2COOH), 12.22 (s, 1H, CH2COO-H). Calcd. for C32H25N11O6 (659.61): C, 58.27; H, 3.82; N, 23.23; found: C, 58.05; H, 3.71; N, 23.23.

4.4.8. “N-(4-[(4-amino-12-oxo-5-phenyl-12H-pyrimido[3',4',5,6]pyrimido[2,1-b]pteridin-10-yl)methyl]amino]benzoyl)glutamic acid” (30)

Compound 10 (0.001 mol, 0.59 g) refluxed in excess formamide (8 mL) for 9 h (TLC, Rf = 0.7, eluent: CH2Cl2). The solution poured on iced cold water and then extracted with CH2Cl2 (25 mL, two times) to give yellow product which crystallized from EtOH. Yield, 42%, m.p. 225–227 °C. IR, 3412–3411 cm⁻¹ (2OH), 3221–3137 cm⁻¹ (NH, 2NH), 2957 cm⁻¹ (Ar-H), 2850 cm⁻¹ (Aliphatic-H), 1671–1623 cm⁻¹ (4C=O and C=N). 1H-NMR (DMSO d6, 550 MHz): δ = 1.88–2.05 (m, 2H, CH2CH2COOH), 2.50 (t, 2H, CH2CH2COOH), 4.07 (t, 1H, NHCHCOOH), 4.45 (s, 2H, pteridine-C2H2-N), 6.50 (s, 2H, C2N2H2), 6.90 (d, 2H, N-Ph-(H)meta) and pyrimidine-4-Pt, pyrimidine C2H2, 8.23 (s, 1H, NHCO), 8.68 (s, 1H, pteridine-C7H2), 11.39 (s, 1H, CH2CH2COOH), 12.28 (s, 1H, CH2COO-H). Calcd. for C32H25N11O6 (620.57): C, 58.06; H, 3.90; N, 22.57; found: C, 57.83; H, 3.76; N, 22.50.

4.5. Biological Activity (Sensitivity Tests) by Kirby–Bauer Method

Antimicrobial activity of the tested samples was determined using a modified Kirby–Bauer disc diffusion method [39–44].

Supplementary Materials:
The following are available online Spectral data as Supplementary Materials.

Author Contributions:
Conceptualization, H.A.S. and O.A.A.A.; methodology, B.M.A.A.M.; software, H.A.S.; validation, H.A.S., O.A.A.A. and B.M.A.A.M.; formal analysis, H.A.S.; investigation, H.A.S.; resources, O.A.A.A.; data curation, H.A.S.; writing—original draft preparation, H.A.S.; writing—review and editing, O.A.A.A.; visualization, H.A.S.; supervision, O.A.A.A.; project administration, O.A.A.A.; funding acquisition, O.A.A.A. All authors have read and agreed to the published version of the manuscript.

Funding:
This research was funded by Taif University Researchers Supporting Project number (TURSP-2020/220), Taif University, Taif, Saudi Arabia.

Institutional Review Board Statement:
Not applicable.

Informed Consent Statement:
Not applicable.

Acknowledgments:
Taif University Researchers Supporting Project number (TURSP-2020/220), Taif University, Taif, Saudi Arabia.

Conflicts of Interest:
The authors declare no conflict of interest.

Sample Availability:
Samples of the compounds are available from the authors.

References
1. National Center for Biotechnology Information. PubChem Compound Database; CID 6037. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/6037 (accessed on 25 June 2016).
31. Saad, H.A. Synthesis of novel fused heterocyclic compounds from 7-amino-[1,2,4]triazino[3,4-b][1,3,4]thiadiazine-8-carbonitrile. *Curr. Org. Synth.* 2012, 9, 573–582. [CrossRef]
32. Aly, M.R.E.; Gobouri, A.A.; Abdel Hafez, S.H.; Saad, H.A. Synthesis Reactions and Biological Activity of some Triazine Derivatives Containing Sulfur Drug Moieties. *Russ. J. Bioorg. Chem.* 2015, 4, 491–504.
33. Aly, M.R.E.; Saad, H.A.; Abdel Hafez, S.H. Three-Component Process for the Synthesis of Pyrimido[2,1-c][1,2,4]triazine Derivatives via Knoevenagel Condensation under Thermal Aqueous Conditions. *Curr. Org. Synth.* 2015, 12, 208–219.
34. Aly, M.R.E.; Saad, H.A.; Mohamed, M.A.M. Click reaction based synthesis, antimicrobial, and cytotoxic activities of new 1,2,3-triazoles. *Bioorg. Med. Chem. Lett.* 2015, 25, 2824–2830. [CrossRef] [PubMed]
35. Aly, M.R.E.; Saad, H.A.; Abdel Hafez, S.H. Synthesis, antimicrobial and cytotoxicity evaluation of new cholesterol congeners. *Beilstein J. Org. Chem.* 2015, 11, 1922–1932. [CrossRef]
36. Amin, M.A.; Saad, H.A. Synthesis and Biological Activity of Fused Heteropolycyclic Systems Containing an Indole Moiety. *Curr. Org. Synth.* 2016, 13, 116–125. [CrossRef]
37. Abdel-Rahmana, R.M.; Saad, H.A. Synthesis and Chemical Behavior of 1,2,4-Triazine Derivatives Bearing/Containing Phosphorus Amidic Donor-Acceptor Interactions—A Review. *Curr. Org. Synth.* 2016, 13, 408–425. [CrossRef]
38. El Azab, I.H.; Saad, H.A. Thiosemicarbazides, Potent Reagent for Synthesis of Some New 1,4-Diphenylbenzo[g]quinoxaline-5,10-Dione Based Heterocycles. *Heterocycles* 2016, 92, 1833–1856. [CrossRef]
39. AllHarthi, R.R.; Ali, R.S.; Amina, M.A.; Saad, H.A. Synthesis of Some New Fused 1,2,4-Triazines of Expected Antimicrobial Activity. *Russ. J. Gen. Chem.* 2016, 86, 2906–2913.
40. Shehab, W.S.; Saad, H.A.; Mouneir, S.M. Synthesis and Antitumor/Antiviral Evaluation of 6-Thienyl-5-cyano-2-thiouracil Derivatives and Their Thiogalactosides Analogs. *Curr. Org. Synth.* 2017, 14, 291–298. [CrossRef]
41. Mohamed, M.A.M.; Abu-Alola, L.M.B.; Al-Zaidi, O.N.A.; Saad, H.A.H. Cyclocondensation Reactions of Hydrazonoyl Chlorides with Some Amines: Synthesis of New Fused Heterocycles of Expected Microbiological Activity. *Int. J. Org. Chem.* 2017, 7, 12–24. [CrossRef]
42. Ali, R.S.; Saad, H.A. Synthesis of Some Novel Fused Pyrimido[4",5":5',6'][1,2,4]triazino-[3',4':3,4][1,2,4]triazino[5,6-b]indoles with Expected Anticancer Activity. *Molecules* 2018, 23, 693. [CrossRef] [PubMed]
43. Ali, R.S.; Saad, H.A. Synthesis and Pharmacological Studies of Unprecedented Fused Pyridazino[3',4':5,6][1,2,4]triazino[3,4-b][1,3,4]thiadiazine Derivatives. *Molecules* 2018, 23, 1024. [CrossRef] [PubMed]
44. Bauer, A.W.; Kirby, W.M.; Sherris, C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. *Am. J. Clin. Pathol.* 1966, 45, 493–496. [CrossRef] [PubMed]
45. Pfaffer, M.A.; Burmeister, L.; Bartlett, M.A.; Rinaldi, M.G. Multicenter evaluation of four methods of yeast inoculum preparation. *J. Clin. Microbiol.* 1988, 26, 1437–1441. [CrossRef] [PubMed]
46. National Committee for Clinical Laboratory Standards. *Performance Antimicrobial Susceptibility of Flavobacteria; National Committee for Clinical Laboratory Standards:* Villanova, PA, USA, 1997; Volume 41.
47. National Committee for Clinical Laboratory Standards. *Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard M7-A3; National Committee for Clinical Laboratory Standards:* Villanova, PA, USA, 1993.
48. Liebowitz, L.D.; Ashbee, H.R.; Evans, E.G.V.; Chong, Y.; Mallatova, N.; Zaidi, M.; Gibbs, D.; Global Antifungal Surveillance Group. A two-year global evaluation of the susceptibility of Candida species to fluconazole by disk diffusion. *Diagn. Microbiol. Infect. Dis.* 2001, 40, 27–33. [CrossRef]
49. Matar, M.J.; Ostrosky-Zeichner, L.; Paetznick, V.L.; Rodriguez, J.R.; Chen, E.; Rex, J.H. Correlation between E-test, disk diffusion, and microdilution methods for antifungal susceptibility testing of fluconazole and voriconazole. *Antimicrob. Agents Chemother.* 2003, 47, 1647–1651. [CrossRef] [PubMed]