Customers’ abandonment strategy in an $M/G/1$ queue

Eliran Sherzer and Yoav Kerner

Abstract

We consider an $M/G/1$ queue in which the customers, while waiting in line, may renege from it. We study the Nash equilibrium profile among customers, and show that it is defined by two sequences of thresholds. For each customer, the decision is based on the observed past (which determines from what sequence the threshold is taken), and the observed queue length (which determines the appropriate element in the chosen sequence). We construct the a of equations that has the Nash equilibrium as its solution, and discuss the relationships between the properties of the service time distribution and the properties of the Nash equilibrium, such as uniqueness and finiteness.

1 Introduction

Understanding customers’ abandonments from a queue is of interest for service providers and customers. There are many applications concerning customers’ abandonments since real-world customers are unwilling to wait for excessive lengths of time. Applications are presented more broadly by Mandelbaum and Shimkin [14]. Traditional queueing theory has dealt with the analysis of queues under the assumption of a given patience distribution, and many studies have addressed models which include abandonments, starting with Barrer [5], who studied the queue length distribution in the $M/M/s + D^w$ case (where D indicates deterministic patience). Sufficient conditions for the existence of the steady-state virtual waiting time distribution in the $G/G/1 + G^w$ were later obtained by Baccelli [2, 3]. Boxma et al. [7] showed how to determine the busy-period distribution for various choices of the patience time distribution. Brandt and Brandt [8] also studied
the distribution of the busy period. In particular, they gave an explicit representation of the Laplace-Stieltjes transform of the workload and the busy period, in the case of phase-type distributed impatience. Yet, these studies assumed that the patience distribution was given. Here, we investigate how these distributions are constructed by rational behavior of customers, which are affected by factors such as individual costs and preferences. Essentially, the patience of each customer is based on an individual optimization, that is, the perceived balance between the costs of waiting and the benefits of service. Since the behavior of others has an influence on the individual (abandonments of others shorten the individual's required waiting time), the mutual interactions lead us to look at the system in the standard form of a game, and to seek the Nash equilibrium. Therefore, the patience distribution is no longer given, but instead it results from a cost/reward model, and from the strategic behavior implied by it.

The seminal study that viewed queues as economic systems, and studied the strategic behaviors within them, came from Naor [16]. Naor considered an observable M/M/1 queue, in which there is a constant reward R from service, and a constant waiting time rate C. He showed that under self-optimization, customers will join the queue if the number of customers present upon arrival is less than a threshold, $n = \left\lfloor \frac{R\mu}{C} \right\rfloor$. Moreover, once a customer joins the queue, he stays until served. Hassin and Haviv [12] also studied an M/M/1 queue, but in their case the customers have no information about their current position in the queue (i.e., unobservable queue). The waiting cost is the same as in Naor’s study. However, the reward is $R > 0$ if service is completed in less than T time units, otherwise it equals 0. They showed that the pure equilibrium strategy is as follows: join the queue with some probability p and otherwise balk, and if one joined then he waits T time units. The reason for this result is that the virtual waiting time follows an increasing failure rate (IFR) pattern. That is, the remaining waiting time stochastically decreases along with the time passed. This is true for every M/M/1 queue with impatient customers, as Baccelli and Hebuterne previously showed in [3].

Mandelbaum and Shimkin [14] retained the assumptions of unobservability, linear waiting costs and constant service reward, but instead considered an M/M/m queue and heterogeneous customers whose waiting costs and rewards may vary between the different customer types. Their results indicate that, depending on the reward to cost ratio, a customer’s best response is to either abandon the queue upon arrival unless of course one of the servers
is available, in which case he enters service immediately or, given the IFR property, to never abandon and wait until receiving service. Moreover, they proposed a case in which the solution is richer, in which customers are discharged without knowing it, (see, e.g. [17]). In their proposed model, each customer will never be served with probability $1 - q$. Thus, the longer a customer has already waited, the higher the posterior probability that he has been discharged. It turns out that the system has an eventually decreasing (and in fact unimodal) hazard rate function, which makes finite abandonments rational. Thus, Mandelbaum and Shimkin showed that the best response is to either abandon at arrival, unless, of course, one of the servers is available or to abandon after a finite time T, which is determined by the ratio of the waiting cost and the reward. A follow up study by Mandelbaum and Shimkin [15] considered a nonlinear waiting cost in an unobservable $M/M/m$ queue. They provided conditions for the existence and uniqueness of the equilibrium, and suggested procedures for its computation.

Another important study, by Haviv and Ritov [13], explored an $M/M/1$ queue where the waiting cost is nonlinear and the reward from service is no longer constant. They showed that the equilibrium strategy is to abandon after waiting T time units in the queue ($T = 0$ or $T = \infty$ are possible). Also, they showed that having a mixed Nash equilibrium may occur when the ratio of the cost and reward functions satisfies certain conditions. In this model, the waiting time has an IFR, and thus the remaining waiting time reduces with the elapsed waiting time. However, the waiting cost is convex, and therefore waiting becomes more expensive. The latter balances the improvement in the waiting time and the remaining waiting costs.

Afeche and Sarhangian [1] also study customers abandonments in an observable $M/M/1$ queue, where they consider pricing as a means control the behavior of some of the customers. Cripps and Thomas [6], and Deb et al [9], considered a discrete-time model of an observable single server queue with homogenous customers who maximize discounted payoffs. In those studies, he server is bad (i.e. not functioning) with a given probability and good otherwise. Both in [6] and [9], study customers strategic behavior and given what they observe in the queue the need to first decide wether join or balk and then decide if and when to renege. A very interesting result in the both studies that if one reneges, then all the customers in worse positions in the queue renege as well. Later we show that this phenomenon is also in our study. More related work can found in [10] and [11].

So far, we have introduced a variety of models dealing with customers’
abandonments from a queue. They vary in many ways, such as their observability level, their cost and reward functions, and number of servers. However, all of these studies had something in common, they all assumed an exponential service distribution\(^1\). In this study, we relax this assumption. In particular, we consider an observable \(M/G/1\) queue with a First-Come-First-Served (FCFS) discipline. With the term observable we mean that everyone can see their own position in the queue at any time, and they are able to observe service completions and abandonments made by others. Unlike the case where the service distribution is exponential, the age in case of generally distributed service time is meaningful. The age determines our anticipation of the remaining time for the current service, and consequently the waiting time. Hence, we allow customers to keep track of time.

When considering expected utility, we specify that customers have a linear waiting cost and a constant reward from service. Customers don’t have a waiting cost while they are being served. We assume that all customers are rational, in the sense that every customer wishes to maximize his own expected utility, and so they will stay as long as their expected utility is positive. Another consequence that resulted from relaxing the memoryless service distribution is the fact that the waiting time doesn’t necessarily have to be with IFR. As shown above, this played a major role in studies [12]–[16]. If the service distribution is with IFR, (which implies that the waiting time distribution is also with IFR), then the solution in trivial, in which, if one joined then he will stay forever. Thus, we focus on a case where the solution is richer and therefore, we limit ourselves to service distributions with decreasing failure rate (DFR). That is, the remaining waiting time stochastically increases with time. In fact, in our model, we can use a weaker property. Specifically, we require only that the service time mean residual life (MRL) is increasing with its age. Consequently, customers’ expected queueing time increases with the service age.

An example for service distribution with DFR is the following: Think of a queue for purchasing train tickets from a machine. Suppose there are two kinds of customers, those who are local and hence more experienced and on the other hand unexperienced customers. An experience customer shouldn’t delay more than a few seconds for buying a ticket. Thus, if after a few seconds since the service began a completion hasn’t occurred, then it is highly possible that an unexperienced customers is the one who buys the ticket and

\(^1\)Except \([6]\) and \([9]\). However, they focus on discrete-time model.
hence the remaining service time is larger. We also note that, if the service
time MRL isn’t bounded then rational customers will surely abandon at some
point, since their expected utility will eventually be negative. An example
of this kind of distribution is the Pareto distribution. However, if the service
time MRL is bounded, it is possible that customers will be willing to wait
forever, given a big enough service reward. An example of a distribution of
this kind is the hyperexponential.

The rest of the paper is arranged as follows. In Section 2, we present the
model, and customers’ expected utility and strategy profile. Next, in Sec-
tion 3, we give the theoretical framework with instructions on how to obtain
the Nash equilibrium. This is followed by a numerical example. Finally, in
Section 4, we discuss and summarize our primary results.

2 Model formulation

2.1 Model description

We consider a single server queueing model in which the arrivals are ac-
cording to a Poisson process with rate λ and service times are iid generally
distributed. We denote the service time by X, and $\mathbb{E}[X]$ by \bar{x}. We also use
the notation $f(\cdot)$ for the pdf and $F(\cdot)$ for the cdf, with $\bar{F}(\cdot) = 1 - F(\cdot)$, and
the hazard function is denoted by $h(\cdot)$. The service discipline is FCFS. Each
customer can see his position in the queue at any moment, and he is able
to observe service completions and abandonments made by others. How-
ever, customers are not aware of events that occurred prior to their arrival.
Of course, they do not anticipate future service times. Customers can keep
track of time, and are allowed to abandon at any moment. All customers
are homonomous in their reward from service, which is denoted by V, and a
linear waiting cost, which is denoted by C. In order to complete the model
description we first present the following definition. For a non-negative ran-
dom variable X with cdf $F(\cdot)$, the MRL function is defined as follows:

$$m_X(x) = \mathbb{E}[X - x | X > x] = \int_0^\infty \frac{\bar{F}(x + t)}{F(x)} \, dt, \quad x \geq 0$$

Also, let $m_X(\infty) = \lim_{x \to \infty} m_X(x)$. We distinguish between service distributions
in which the MRL is bounded, and those in which it is unbounded. We
assume that the service time has an increasing mean residual life (IMRL) [4].
2.2 Utility function

For each individual the expected utility function balances the reward from service with the expected waiting cost. Customers always take into account their future costs, while the time they already waited is considered a sunk cost. Each customer wishes to maximize his own expected utility; as a result, his best response is to stay as long as the expected utility is positive. We first consider a case where abandonments are not allowed. This will assist us in constructing the utility function with abandonments.

Let $G_n(t)$ be the expected utility function value from staying until being served, for an individual that has n customers in front of him in the system when the current service age is t. Clearly,

$$ G_n(t) = \begin{cases} V & n = 0 \\ V - C(\mathbb{E}[X - t | X > t] + (n - 1)\bar{x}) & n \geq 1 \end{cases} $$

We next present a sequence of differential equations that can be used to solve $G_n(t)$ for $n \geq 1$.

Proposition 1. For any value of $n \geq 0$, $G_n(t)$ solves the sequence of differential equations for $n \geq 1$,

$$ G_n'(t) = C - h(t)(G_{n-1}(0) - G_n(t)). \quad (1) $$

Proof. First, one can see that $G_{n-1}(0) - G_n(t) = C\mathbb{E}[X - t | X > t]$ and hence the RHS of Equation (1) equals $C - Ch(t)\mathbb{E}[X - t | X > t]$. We also note that $\mathbb{E}[X - t | X > t] = \int_t^\infty \frac{F(s)ds}{F(t)}$. Hence, the derivative of $G_n(t)$ is

$$ \frac{dG_n(t)}{dt} = -C\frac{-\mathcal{F}(t)\mathcal{F}(t) + f(t)\int_{s=t}^\infty \mathcal{F}(s)ds}{\mathcal{F}(t)^2} = C - Ch(t)\mathbb{E}[X - t | X > t] $$

which matched the derivative presented in the proposition, and hence the proof is concluded. \qed

Remark 2.1. The intuition behind the proposition is as follows: Since there is a linear waiting cost, then clearly, C should be in the derivative. Moreover, if service completion occurs, then the expected utility changes from $G_n(t)$ to $G_{n-1}(0)$, which happens with rate $h(t)$.
Deriving the expected utility in our model is much harder than the one proposed in Proposition 1. This is because, customers have to take into account the fact that abandonments may occur, that is, one needs to consider the possibility that he abandons later. Nonetheless, we next show that our expected utility function is the positive part of $G_n(t)$. The minor difference between the two functions shows how the possibility of abandoning later reflects in the expected utility function. We distinguish between customers who already observed a service completion (called type i customers) and those who haven’t observed a service completion (type ii customers). Due to the fact that keeping track of time is possible, type i customers know the exact service age. However, since the current service age is unknown upon arrival, type ii customers can only estimate it. Let $U_n(t)$ be the expected utility of a type i customer taking the optimal action in the next moment, given that there are n others in front of him in the system and t time units elapsed since the last service completion.

Proposition 2.

$$U_n(t) = (G_n(t))^+, \quad n \geq 0$$

Proof. $n = 0$ implies that an individual is already in service, and hence has no cost. Clearly, the optimal action in the next moment is to stay. For $n \geq 1$, we first prove the proposition for $n = 1$ and then prove for $n \geq 2$ by induction. For $n = 1$, we have

$$U_1(t) = (h(t)dt U_0(0) + (1-h(t)dt)U_1(t+dt) - Cdt + o(dt))^+, \quad t \geq 0. \quad (2)$$

If the RHS of (2) is negative, then the best response is to abandon, and hence the expected utility is zero. If the RHS is positive, then we have the following differential equation:

$$U'_1(t) = C - h(t)(U_0(0) - U_1(t))$$

where clearly, $U_0(0) = V$. This differential equation coincides with Proposition 1, and hence $U_1(t) = (V - C\mathbb{E}[X - t|X > t] + \bar{x}))^+$. We first assume that $U_{n-1}(t) = (G_{n-1}(t))^+$. Based on our assumption, clearly, $U_{n-1}(0) = (V - C(n-1)\bar{x})^+$. Combining with

$$U_n(t) = h(t)dt U_{n-1}(0) + (1-h(t)dt)U_n(t+dt) - Cdt + o(dt)$$

Upon arrival, everyone are type ii customers, which potentially may switch to type i due to being present in the queue while service completion occurred.
therefore

\[U'_n(t) = C - h(t)(U_{n-1}(0) - U_n(t)) \]

and solving the differential equation complete the proof.

Remark 2.2. One can see that the only way the possibility of abandoning later reflects in the expected utility function is by abandoning once the expected utility becomes negative. Consequently, only myopic decisions are under consideration.

Let \(\hat{U}_n(t) \) be the expected utility of a type \(\text{ii} \) customer taking the optimal action in the next moment, given that \(n \) other in front of him in the system and \(t \) time units elapsed since his arrival. Formally, let \(N \) be the number of customers in the system and \(A(t) \) be the service age, both upon arrival. Finally, let \(X_n(t) \) follow the distribution of the service residual, given that upon the arrival of a tagged customer there were \(n \) customers in the system and \(t \) time units elapsed since then. That is, \(X_n(t) \overset{d}{=} \{ X - A(t) | N = n \} \).

Proposition 3.

\[\hat{U}_n(t) = (V - C(\mathbb{E}[X_n(t) - t|X_n(t) > t] + (n - 1)\bar{x}))^+ \quad n \geq 1 \]

Proof. For \(n = 0 \) there is no cost, similar to \(U_n(t) \). For \(n \geq 1 \), we have

\[\hat{U}_n(t) = U_{n-1}(0)h_n(t)dt + (1 - h_n(t)dt)\hat{U}_n(t + dt) - Cdt + o(dt) \]

where \(h_n(t) \) is the corresponding hazard function of \(X_n(t) \). The differential equation is

\[\hat{U}_n'(t) = C - h_n(t)(\hat{U}_{n-1}(0) - \hat{U}_n(t)) \]

For both \(U_n(t) \) and \(\hat{U}_n(t) \) there are differential equations with the same structure. Hence, their solutions also have the same structure, where in this case, \(X \) is replaced by \(X_n(t) \).

Remark 2.3. The fact that service time has an IMRL implies that both \(U_n(t) \) and \(\hat{U}_n(t) \) are decreasing with \(t \).

Remark 2.4. the two expected utility are similar and they differ only by the customers type. This is due to the fact that in both cases the expected waiting time possesses the IMRL property.
2.3 Strategy profile

As mentioned, customers’ best response differs depending on the number of customers in front of them and which of the two different customer types they belong to. Therefore, each pair of queue length and customer type needs to be considered separately. Also, customers may balk, and clearly when the queue is long enough customers will not join. This happens when the expected utility is negative from the moment one arrives. Hence, under the assumption of rationality of customers, there is a maximum number of customers in the system, and it is denoted by \(n_{\text{max}} \). We show how to obtain it in section 3.2.

The customers’ strategy profile is as follows. All customers join if the system length is less than \(n_{\text{max}} \). Of course, joining customers will adapt their strategy according to the expected utility function, which is defined by the customer’s type and the number of customers in front of them in the queue. Both \(U_n(t) \) and \(\hat{U}_n(t) \) are monotonically decreasing with \(t \), and therefore the best response is unique and hence pure. Let \(T_n \) be the time a type \(i \) customer who has \(n \) customers in front of him in the system is willing to wait from the moment of service completion until the next service completion occurs, or abandonment is made by the customer in front of him. Let \(S_n \) be the time that a type \(ii \) customer who has \(n \) customers in front of him in the system is willing to wait from his arrival point until a service completion occurs, or abandonment is made by the customer in front of him. For any type of customer if, while waiting, service completion occurs, he updates his expected utility function and consequently his best response. However if, while waiting, the customer in front of him abandons, his best response is to abandon as well. This is because the customer in front, who abandoned first, gathered more information and his abandonment puts the customer behind in the exact same position in the queue, to which the best response was to abandon.

In conclusion, we have two sequences that define customers’ strategies. The first one is \(\{T_1, T_2, ..., T_{n_{\text{max}}-2}\} \) and the second is \(\{S_1, S_2, ..., S_{n_{\text{max}}-1}\} \). The largest index value of the second sequence is \(A_{n_{\text{max}}-1} \), because it is the largest value observed upon arrival for which one would be willing to join. That is, if a customer joined and observed \(n_{\text{max}} \) customers in the system, he would no longer join. In the first sequence, the largest index is obtained when a customer in the \(n_{\text{max}} \)th position in the queue observes service completion. In this scenario, he has \(n_{\text{max}} - 2 \) others in front of him after the departure of
the customer who just completed his service. We next show how to obtain the values of T_n and S_n.

3 Results

3.1 Customers’ best responses

Using Propositions 2 and 3 we show how to obtain customers’ best responses, for both type i and type ii customers, given $N = n$. Specifically, we show how to obtain the sequences $\{T_1, T_2, ..., T_{n_{\text{max}}-2}\}$ and $\{S_1, S_2, ..., S_{n_{\text{max}}-1}\}$. We begin with type i customers. Before presenting and proving the following lemmas, we note that if the MRL is bounded it is possible that finite thresholds are not possible. That is, even after waiting a long time, one still benefit from staying. Thus, there is condition on $\lim_{t \to \infty} m_X(t)$ in order to compute the threshold values.

Lemma 1. If $\lim_{t \to \infty} m_X(t) > \frac{V}{C} - (n - 1)\bar{x}$, and based on the expected utility function from Proposition 2, T_n is the value of t that solves

$$G_n(t) = V - C(m_X(t) + (n - 1)\bar{x}) = 0 \quad 1 \leq n \leq n_{\text{max}} - 2$$

(3)

Otherwise, $T_n = \infty$.

Proof. Since $n < n_{\text{max}} - 2$, the expected utility for $t = 0$ is positive and of course, customers will be willing to wait as long their expected utility is positive. Recall that the service time follows IMRL and hence, the expected utility is monotone decreasing. Moreover, the condition $\lim_{t \to \infty} m_X(t) < \frac{V}{C} - (n - 1)\bar{x}$, means that for some value of t the expected utility will be negative. Therefore, by combining the last two arguments, Equation (3) has a unique and finite solution. Otherwise, the expected utility will be positive for every $t > 0$ and hence the best response is to stay forever. \hfill \square

Of course, the solution of equation (3) is straightforward, and hence T_n for any possible n can be easily obtained.

Lemma 2. If $\lim_{t \to \infty} m_{X_n(t)}(t) > \frac{V}{C} - (n - 1)\bar{x}$, and based on the expected utility function from Proposition 3, S_n is the value of t that solves

$$V - C(m_{X_n(t)} + (n - 1)\bar{x}) = 0, \quad 1 \leq n \leq n_{\text{max}} - 1$$

(4)

Otherwise, $S_n = \infty$.

10
Proof. We follow the same line of argument as Lemma 1.

Solving (4) is not straightforward, mainly because obtaining the distribution of $X_n(t)$ is challenging. As mentioned, $X_n(t) \stackrel{d}{=} \{X - A(t)|N = n\}$. That is, in order to obtain the distribution of $X_n(t)$, one must first obtain the distribution of $A(t)|N=n$. Let $R(t, a)$ follow the distribution of the residual service time, given that the service age upon arrival is a and t time units have elapsed since the customer’s arrival. That is, $R(t, a) \stackrel{d}{=} X - (t + a) | X > (a + t)$. Therefore, by using the law of total probability, the following equation is equivalent to (4):

$$V - C \int_a (E[R(t, a)|N = n] + (n - 1)\bar{x})f_{A(t)|N = n}(a)da = 0, \quad n \leq n_{\max} - 1$$

(5)

Yet $f_{A(t)|N = n}(a)$ is unknown, and will be derived in the following sections.

3.2 Obtaining the maximum length of the queue

Proposition 4.

$$n_{\max} = \sup \left\{ n \in \mathbb{N} : n \leq \frac{V - \int_a E[R(0, a)|N = n]f_{A(0)|N = n}(a)da + \bar{x}}{\bar{x}} \right\} + 1$$

(6)

Proof. We seek the largest integer value of n that obeys $\hat{U}_n(0) > 0$. Thus, after extracting n from equation (5) and applying the supremum we get the expression in (6).

We observe that once $f_{A(0)|N = n}(a)$ is derived, n_{\max} can be computed.

3.3 Markov chain underlying the process

Our motivation for using a Markov chain is mainly to obtain the pdf of the service age for a tagged customer who observes n others in the system upon arrival, with t time units having elapsed since then. This will eventually allow us to find a strategy that holds for the Nash equilibrium.
3.3.1 Markov chain state space

First, we give some general notation for the steady states of the Markov chain:

\[\mathcal{B} = \{(k, a, w_{k+1}, w_{k+2}, \ldots, w_{n-1})\} \]

where

- \(k \) is the number of waiting customers that observed service completion;
- \(a \) is the age of the current service;
- \(w_i \) is the waiting time of the \(i^{th} \) customer in the system; and
- \(n \) is the number of customers in the system.

A general steady-state density is denoted by \(p(k, a, w_{k+1}, w_{k+2}, \ldots, w_{n-1}) \), and the probability density of having \(n \) customers in the system and a service age of \(a \) is denoted by \(\pi(n, a) \). It can be derived from the steady states of the Markov chain that

\[\pi(n, a) = \sum_{k=0}^{n-1} \int w p(k, a, w_{k+1}, \ldots, w_{n-1}) \, dw, \quad n \geq 1, \ a \in \mathbb{R}^+ \]

We denote the marginal probability of having \(n \) customers in the system by \(\pi_n \), which is derived as \(\pi_n = \int_a^\infty \pi(n, a) \, da \). We first indicate some general and rather trivial relationships. From the arrival order, we get \(w_{n-1} < w_{n-2} < \ldots < w_{k+1} < a \). Due to the abandonment strategies, we get \(a < T_k \) for \(1 \leq k \leq n_{\text{max}} - 2 \). This is because, if \(a > T_k \), then the \(k^{th} \) customer will have already abandoned by now. There are no constraints on \(a \) for \(k = 0 \). That is, if no-one observed service completion, the first in the queue could arrive at any value of \(a \). By the same argument,

\[w_i < S_i, \quad \text{for} \ k + 1 \leq i \leq n - 1. \]

For further analysis we present the following definition: let the state structure be the combination set of \((n, k)\), where \(n \) is the number of customers in the system and \(k \) is the number of waiting customers that observed service completion. Since the queue length is limited, the Markov process has a limited number of different state structures.
Proposition 5. The total amount of Markov chain state structures is

\[|B_{(k,n)}| = \frac{n_{\text{max}}(n_{\text{max}} + 1)}{2} \]

Proof. We first claim that if there are \(n\) customers in system, then there are \(n\) different state structures for \(1 \leq n \leq n_{\text{max}} - 1\). What determines the number of state structures for a given \(n\), is the number of different possible values of \(k\), where \(0 \leq k \leq n - 1\). That is, the values of \(k\) can be from zero to \(n - 1\), because even if everyone observed service completion there would still be one in service. However, for \(n = n_{\text{max}}\) there are \(n_{\text{max}} - 1\) different state structures. In this case, \(0 \leq k \leq n_{\text{max}} - 2\), while the state \(\{n_{\text{max}} - 1, a\}\) is not possible. Finally, \(n = 0\) means an empty system, with just one state structure. The total number can be computed as an arithmetic progression. It is equivalent to the sum \(\sum_{i=1}^{n_{\text{max}}} i\), where each value of \(i\) represents the amount of state structures for a given \(n\), except \(i = n_{\text{max}}\), which in this case includes cases for both \(n=0\) and \(n=n_{\text{max}}\). From here the result is straightforward. \(\square\)

3.3.2 Finding the steady-state densities

Due to the complexity of the process we begin with a simple example. Let us consider state \((0, a)\), which refers to an active server with a current service age \(a\) and an empty queue. For \(a < S_1\),

\[p(0, a) = p(0, 0) e^{-\lambda a} F(a) \]

Equation (7) justifies the following. State \((0, a)\) will always follow state \((0, 0)\). This means that state \((0, 0)\) occurred, and during the intervening \(a\) time units there were no service completions and no arrivals. Thus, the probability density of \(p(0, a)\) is as for \(p(0, 0)\), times the probability that there were no service completions nor arrivals. However, for \(a > S_1\), we allow arrivals to occur from the beginning of service, assuming that they will have abandoned by the time the service reaches age \(a\). For \(mS_1 \leq a < (m + 1)S_1\), where \(m \in \{0, 1, 2, 3...\}\), it is possible that a customer will arrive and abandon after \(S_1\) time units. If, during the stay of the new arrival, more customers arrive, then they will not be in the queue once he abandons. This is because, if they stayed until then, they would abandon as well, since the customer ahead of them abandoned. This process can happen no more than \(m\) times, for
$a < (m + 1)S_1$. For example, if $m = 1$, which means $S_1 < a < 2S_1$, then two cases are possible: no arrivals at all and no service completion, or one arrival who abandoned before the state reaches $(0, a)$ and no service completion. From basic probability we obtain

$$p(0, a) = p(0, 0)(e^{-\lambda a} + \lambda e^{-\lambda a}(a - S_1))F(a)$$

Thus, $p(0, a)$ is equal to $p(0, 0)$ times the probability that no service completion occurs and there were from 0 to m arrival events followed by abandonments. We next give a general expression. Let $g(k, n, m, a)$ be

$$g(k, n, m, a) = \begin{cases} \sum_{j=0}^{m} \frac{\lambda e^{-\lambda(a-jS_n)}(a-jS_n)^j}{j!} F(a) F(a-w_{n-1}) & 1 \leq k+1 = n \leq n_{max}-2 \\ \sum_{j=0}^{m} \frac{\lambda e^{-\lambda(a-jS_n)}(a-jS_n)^j}{j!} \frac{F(a)}{F(a-w_{n-1})} & 1 \leq k+1 < n \leq n_{max}-1 \\ \end{cases}$$

and

$$m \in \begin{cases} \mathbb{N}_0 & k = 0 \\ \{0, 1, 2, \ldots, \left\lfloor \frac{T_k-S_n}{S_n} \right\rfloor \} & 1 \leq k \leq n_{max}-2 \end{cases}$$

where a is the current service age, w_{n-1} represents the waiting time of the last joining type ii customer who observed $n - 1$ customers in the system upon arrival. n is the number of customers in the system, and m relates to the possible values of a: specifically, $mS_n < a < (m + 1)S_n$. Lastly, k is the number of customers who observed service completion.

Lemma 3. The function $g(k, n, m, a)$ is represented differently in three cases.

Case 1, with $1 \leq k+1 = n \leq n_{max}-2$, represents the probability that the current state is (k, a), given that a time units ago the state was $(k, 0)$.

Case 2, with $1 \leq k+1 < n \leq n_{max}-1$, represents the probability that the current state is now $(k, a, w_{k+1}, \ldots, w_{n-2}, w_{n-1})$, given that w_{n-1} time units ago the state was $(k, a-w_{n-1}, w_{k+1}-w_{n-1}, \ldots, w_{n-2}-w_{n-1}, 0)$.

Case 3 represents the probability that the current Markov state is $(k, a, w_{k+1}, \ldots, w_{n_{max}-2}, w_{n_{max}-1})$, given that $w_{n_{max}-1}$ time units ago the Markov state was: $(k, a-w_{n_{max}-1}, w_{k+1}-w_{n_{max}-1}, \ldots, w_{n_{max}-2}-w_{n_{max}-1}, 0)$.

Proof. Case 1: in order that the state $(k, 0)$ will be replaced by the state (k, a) after a time units, we need to ensure that there will not be a service
completion during those \(a \) time units. Also, we need to ensure that there will not be any new arrivals, or if there are, then they will have abandoned by the time the Markov chain state reaches \((k, a)\). The probability of no service completion is \(\bar{F}(a) \). The probability of not having new arrivals once the state reaches \((k, a)\) is
\[
\sum_{j=0}^{m} \frac{\lambda^j e^{-\lambda(a-jS_n)}(a-jS_n)^j}{j!}
\]

Of course, scenarios which include more than one abandonment made by the \((n+1)\)th customer in the system are under consideration, where \(j \) is the number of times it occurs. We also note that \(j \leq m \).

Case 2: in order that the state \((k, a-w_{n-1}, w_{k+1}-w_{n-1}, \ldots, w_{n-2}-w_{n-1}, 0)\) will be replaced by the state \((k, a, w_{k+1}, \ldots, w_{n-2}, w_{n-1})\) after \(w_{n-1} \) time units, we need to ensure that there will not be service completion and no new arrivals which stayed during that time (similar to Case 1). The probability that there will not be service completion is \(\bar{P}(X > a | X > a - w_{n-1}) \), which is equivalent to \(\frac{\bar{F}(a)}{\bar{F}(a-w_{n-1})} \). In Case 3, new arrivals are not a possibility anyway, and therefore, in order that the state will be transposed from \((k, a-w_{n_{\text{max}}-1}, w_{k+1}-w_{n_{\text{max}}-1}, \ldots, w_{n_{\text{max}}-2}-w_{n_{\text{max}}-1}, 0)\) to \((k, a, w_{k+1}, \ldots, w_{n_{\text{max}}-2}, w_{n_{\text{max}}-1})\), we only need to ensure that there will be no service completion, which is \(\frac{\bar{F}(a)}{\bar{F}(a-w_{n})} \) as in Case 2.

Hence, from Lemma 3 we have, for \(mS_n \leq a \leq (m+1)S_n \),
\[
p(k, a, w_{k+1}, \ldots, w_{n-1}) = p(k, a-w_{n-1}, \ldots, w_{n-2}-w_{n-1}, 0)g(k, n, m, a) \tag{8}
\]

From (8) we see that it is possible to separate the expression of the steady-state densities of the Markov chain into two parts. The first one is also a steady-state density of the Markov chain, for which the last argument is set to be 0. The second is the function \(g(k, n, m, a) \), which is computable given the model parameters. Therefore, in order to obtain the steady-state densities of the Markov process we need to find those in which the last argument is set to be 0. From the balance equations,
\[
\lambda \pi_0 = \int_a p(0, a)h(a)da \tag{9}
\]
\[
\lambda p(k, a, w_{k+1}, \ldots, w_{n-1}) = p(k, a, w_{k+1}, \ldots, w_{n-1}, 0) \tag{10}
\]
\[\int_a^n \sum_{i=0}^{n-1} p(i, a, w_{i+1}, \ldots, w_{n+1})h(a)da = p(n, 0) \quad (11) \]

Recall from Proposition 5 that the number of state structures is \(\frac{n_{\text{max}}(n_{\text{max}}+1)}{2} \). Excluding the state 0 for each state structure, there is single state for which the argument is 0. Therefore, from equations (9) to (11) we have \(\frac{n_{\text{max}}(n_{\text{max}}+1)}{2} \) equations. Where in fact from (9) consist one Equation, (10) consist \(\frac{n_{\text{max}}(n_{\text{max}}-1)}{2} \) + 2 and (11) consist \(n_{\text{max}}-3 \) equations. Combined with (8) and the fact that \(\sum_{n=0}^{n_{\text{max}}} \pi_n = 1 \), all the steady states of the Markov process is derived.

Remark 3.1. For numerical computations, we guess a value for \(\pi_0 \). Using equations (8) to (11), we compute \(\sum_{n=0}^{n_{\text{max}}} \pi_n \). If the total sum is smaller than 1, we guess a larger number for \(\pi_0 \) and vice versa.

We next give a special case where \(n_{\text{max}} = 3 \). There are 6 different state structures, and they are represented as \(\{(0), (0, a), (0, a, w_1), (1, a), (1, a, w_2), (0, a, w_1, w_2)\} \).

From balance equations we state that

\[\lambda \pi_0 = \int_0^\infty p(0, a)h(a)da \quad (12) \]

Also,

\[\lambda p(0, a) = p(0, a, 0) \quad (13) \]

\[\lambda p(0, a, w_1) = p(0, a, w_1, 0) \quad (14) \]

\[\int_0^\infty \int_{a=0}^{A_1} p(0, a, w_1)h(a)da = p(0, 0) \quad (15) \]

\[\int_0^\infty \int_{a=0}^{S_1} \int_{a=0}^{A_2} p(0, a, w_1, w_2)h(a)da = p(1, 0) \quad (16) \]

\[\lambda p(1, a) = p(1, a, 0) \quad (17) \]

Using equations (8) and (12) to (17), and applying the numerical procedure from Remark 3.1, all steady states can be computed.
3.4 The age distribution given the queue length

We next show how to obtain \(f_{A(t)|N=n}(a) \), while using the steady-state probability densities of the Markov chain. Before doing so, we would like to emphasise it’s complexity. Suppose a tagged customer arrived and observed one customer in the queue and one in service. This could result in many cases, for example, the system was empty, then one arrived and enter service and then another another arrival occurred. A different example, could be just like the previous one, only now, another customer arrived prior to the tagged customer’s arrival and then abandoned. Of course, there can be many cases to consider and they get more complicated as the queue gets longer. For each scenario the age distribution will be computed differently. Although, it seems very complicated, we next show how via a few simple probability operations it can be done.

Let \(Y \) follow the distribution of the total amount of time a tagged customer waited from arrival until either he abandons or there was service completion, sampled by an outside inspector at an arbitrary moment. In fact, \(\{A(y)|N=n\} \xrightarrow{d} \{A|N=n,Y=y\} \). From Bayes’ law,

\[
 f_{A|N=n,Y=y}(a) = \frac{f_{Y|N=n,A=a}(y)f_{A|N=n}(a)}{\int_a f_{Y|N=n,A=a}(y)f_{A|N=n}(a)da}.
\]

Since the presentation in a general case is implicit, we demonstrate using a special case of \(n_{\text{max}} = 3 \). However, we can proceed similarly for any value of \(n_{\text{max}} \). We show separately how to obtain \(f_{A|N=n}(a) \) and \(f_{Y|N=n,A=a}(y) \) for both \(N = 1 \) and \(N = 2 \). \(f_{A|N=n}(a) \) can be derived directly from the steady-state densities of the Markov process, specifically for \(N = 1 \),

\[
 f_{A|N=1}(a) = \frac{p(0,a)}{\pi_1}
\]

and for \(N = 2 \),

\[
 f_{A|N=2}(a) = \frac{p(1,a) + \int_{w_1=0}^{S_1} p(0,a,w_1)dw_1}{\pi_2}
\]

We next derive \(f_{Y|N=1,A=a}(y) \). Let \(Q \) be a random variable that represents the inter-arrival times. Of course, \(Q \sim \text{Exp}(\lambda) \). Due to the PASTA property, an outside inspector sampling times is equivalent to customer arrival times. Therefore, \(Q|Q \leq R(0,a) \wedge S_1 \) is equivalent to \(Y|N=1,A=a \).

17
Lemma 4. The conditional density of Y given $A=a$, $N=1$ is

$$\frac{\lambda e^{-\lambda y} \frac{F(a+y)}{F(a)}}{\mathbb{P}(Q \leq S_1 \land R(0,a))}$$

and

$$\mathbb{P}(Q \leq S_1 \land R(0,a)) = \int_{r=0}^{S_1} (1 - e^{-\lambda r}) dr + \int_{r=S_1}^{\infty} (1 - e^{-\lambda S_1}) dr$$

Proof.

$$\mathbb{P}(Q \leq y|Q \leq R(0,a) \land S_1) = \frac{\mathbb{P}(Q \leq y, Q \leq R(0,a) \land S_1)}{\mathbb{P}(Q \leq R(0,a) \land S_1)}$$

We give explicit expressions for both numerator and denominator. The numerator is

$$\mathbb{P}(Q \leq y, Q \leq R(0,a) \land S_1) = \int_{r=0}^{y} \mathbb{P}(Q \leq r) \frac{f(a+r)}{F(a)} dr + \int_{r=y}^{\infty} \mathbb{P}(Q \leq y) \frac{f(a+r)}{F(a)} dr$$

and the denominator is

$$\mathbb{P}(Q \leq R(0,a) \land S_1) = \int_{r=0}^{S_1} \mathbb{P}(Q \leq r) \frac{f(a+r)}{F(a)} dr + \int_{r=S_1}^{\infty} \mathbb{P}(Q \leq S_1) \frac{f(a+r)}{F(a)} dr$$

After taking the derivative, we get the pdf of $Q|Q \leq R(0,a) \land S_1$, and hence of $Y|N=1, A=a$ as well.

We next derive $f_{Y|N=2,A=a}(y)$. Let W_1 be a random variable taking value of w_1 given that the state is $(0,a,w_1)$, sampled at an arbitrary moment. The pdf of W_1 is denoted by $f_{W_1}(w_1)$, and it is equivalent to $\frac{p(0,a,w_1)}{\int_{w=0}^{S_1} p(0,a,w) dw}$. When a customer arrives to a system given that $N=2$, there are two possible state structures: i. $p(1,a)$ and ii. $p(0,a,w_1)$. Let I be an indicator that receives the value of 1 when the state structure is $p(1,a)$, and receives 0 when it is $p(0,a,w_1)$. From simple probability considerations, $\mathbb{P}(I = 1) = \frac{p(1,a)}{p(1,a)+\int_{w_1=0}^{S_1} p(0,a,w_1) dw_1}$. We indicate that $Q|Q \leq R(0,a) \land S_2 \land (I(T_1 - a) + (1 - I)(S_1 - W_1))$ is equivalent to $Y|N=2, A=a$. 18
Lemma 5. The conditional density of Y given $A = a$, $N = 2$ and $Y < (I(T_1 - a) + (1 - I)(S_1 - W_1)) \land S_2 \land R(0, a)$ is

$$
\mathbb{P}(I = 1) \frac{\lambda e^{-\lambda y F(a+y) \over F(a)}}{\mathbb{P}(Q \leq S_2 \land R(0, a) \land (T_1 - a))} \frac{\lambda e^{-\lambda y F(a+y) \over F(a)}}{\mathbb{P}(Q \leq S_2 \land R(0, a) \land (S_1 - W_1))} p(0, a, w_1) dw_1
$$

and

$$
\mathbb{P}(Q \leq S_2 \land R(0, a) \land (T_1 - a)) = \\
\int_{r=0}^{(T_2-a) \land A_2} \mathbb{P}(Q \leq r) \frac{f(a + r)}{1 - F(a)} dr + \int_{r=S_2 \land (T_1 - a)}^{\infty} \mathbb{P}(Q \leq (T_1 - a) \land S_2) \frac{f(a + r)}{F(a)} dr
$$

and

$$
\mathbb{P}(Q \leq S_2 \land R(0, a) \land (S_1 - w_1)) = \\
\int_{r=0}^{(S_1-w_1) \land S_2} \mathbb{P}(Q \leq r) \frac{f(a + r)}{F(a)} dr + \int_{r=(S_1-w_1) \land S_2}^{\infty} \mathbb{P}(Q \leq (S_1 - w_1) \land S_2) \frac{f(a + r)}{F(a)} dr
$$

The proof is given in Appendix A.

3.5 Relations between the thresholds

In this section we refer to some trivial and nontrivial results concerning the values of the sequences $\{S_1, S_2, ..., S_{n_{\text{max}}-1}\}$ and $\{T_1, T_2, ..., T_{n_{\text{max}}-2}\}$. Specifically, we describe the dependencies and boundaries between them. Intuitively, the more customers are in front of you, the less you would be willing to wait.

Lemma 6. If $T_i < \infty$, $T_n > T_{n+1}$ for $1 \leq n \leq n_{\text{max}}-3$.

Proof. Recall that t in equation (3) refers to the time one waited in the queue since service completion. Due to the fact that $\mathbb{E}[X - t|X > t]$ is increasing with t, it follows straightforwardly that the larger the value of n the lower the value of t that solves the equation, and hence the lower the value of T_n. \qed

Lemma 7. If $S_n < \infty$, $S_n > S_{n+1}$ for $1 \leq n \leq n_{\text{max}}-2$.

19
Proof. Suppose an individual observed \(n + 1 \) customers upon arrival. The last event prior to his arrival could be either an arrival, an abandonment or a service completion. If it were an arrival, then clearly the one who observed \(n \) customers was in a better situation when he arrived. If it was an abandonment, then this individual (if he knew) should not join at all, and hence he is in a worse situation than the one who observed \(n \) upon arrival. The last case is that where the arriving customer is the first to arrive during the current service period. In this case, the age of the service time is his inter-arrival time. Yet, we claim that the greater the queue length, the smaller the probability of such an event. This is because, after service completion when there are either \(n \) or \(n + 1 \) customers in the system everything is the same except one thing. In the \(n + 1 \) system, the last customer can also reach his abandonment time (which didn’t exist in the \(n \) customers system). Thus, the probability that an arrival will occur prior to service completion or abandonment is indeed lower in the \(n + 1 \) customers system.

We also observe that all \(\{T_1, T_2, \ldots, T_{n_{max}-2}\} \) are obtained independently of everything else. This is a direct result from equation (3), where the value of \(T_i \) is determined by the values of the model parameter and \(n \). Moreover, we claim that \(S_i \), for \(\forall i \in \{1, 2, \ldots, n_{max}-2\} \), depends only on \(\{S_1, S_2, \ldots, S_{i-1}\} \) and \(\{T_1, T_2, \ldots, T_i\} \), and for \(i = n_{max} - 1 \), is dependent only on \(\{S_1, \ldots, S_{i-1}\} \) and \(\{T_1, T_2, \ldots, T_{n_{max}-2}\} \). This means, that one who observed \(i \) customers upon arrival, is not effected in any way, by actions taken by customers who were in the \(i + 2^{th} \) position or worse in the system (that is, have \(i + 1 \) or more customers in from of them). This result is rather surprising since at first thought it seems that the entire history of a busy period would effect the value of \(S_i \). But the values of \(S_i \) are not affected by \(\{S_{i+1}, \ldots, S_{n_{max}-1}\} \) and \(\{T_{i+1}, \ldots, T_{n_{max}-2}\} \). The intuition behind this is as follows. First, information regarding actions that took place in previous service period are irrelevant for the an arriving customer, because they have no impact (given the information he observes) on his waiting time. Now, let \(C_i \) and \(C_{i+1} \) be two customers who found \(i \) and \(i + 1 \) customers upon arrival, respectively, before an arrival a new customer, and all three arrived at the same service period. Also, assume that the new customer found \(i \) customers in the system. Thus, \(C_i \) and \(C_{i+1} \) abandoned before the arrival of the new customer. The abandonment of \(C_{i+1} \) could be triggered by either his loss of patience or by the loss of patience of \(C_i \). recall that if one abandons those after him abandon as well. The information that the new customer faces is the same in both scenarios, because given
that fact the C_i abandoned, the threshold that C_{i+1} has no influence on the state that the new customer faces.

Theorem 1. The Nash equilibrium profile is defined by two finite sequences of thresholds, \(\{T_1, T_2, \ldots, T_{\text{max}_2-2}\} \) and \(\{S_1, S_2, \ldots, S_{\text{max}_2-1}\} \), each sequence for each customer type. Within each sequence, from an individual point of view, each threshold (e.g., the time he waits in line before reneging) is determined by the number of customers in front of him and of course the model input.

Proof. Customers’ strategies are determined by their expected utility functions. Based on Propositions 2 and 3, we claim that there are two sequences because the different customer types have different expected utility functions, and therefore their strategies are different as well. The sequence lengths are a direct result of Proposition 4 and the definition of the steady states of the Markov chain. Finally, the fact that the Nash equilibrium profile within each sequence is defined by thresholds was already proved in Lemma 3 and Lemma 4.

Remark 3.2. After obtaining the steady state density probabilities (see remark 3.1), we now use a different scheme to compute the threshold values. First, the values of $T_1, T_2, \ldots, T_{\text{max}_2-2}$ are computed independently directly from Equation (3). Then, the values of $S_1, S_2, \ldots, S_{\text{max}_2-1}$ are computed recursively starting from S_1. Thus, we guess a value of S_1 and while using Equation (18) and employing the scheme in Lemma 4 while using the steady state probabilities that were obtained as described in Remark 3.1. If the expected utility which is computed according to Equation (4) is negative we guess a lower value of S_1 and vice versa. After obtaining S_1 this goes on until we obtain all values of S_n for $n \in \{1, 2, \ldots, \text{max}_2 - 1\}$. The computations are very complex, which is due to two main reasons. The first is that we don’t have closed form equations. As a result, there are numerous iterations for each value that is being computed. The second is that the density probabilities functions are very complicated and are calculated differently along the support as a result of the function $g(k, n, m, a)$. Finally we note that the both the procedure that was described in Remark 3.1 and in current one were computed by using Wolfram-Mathematica software and we used a tolerance parameter $\epsilon = 10^{-3}$.

3We note that although we provided in this paper the density probability of $f_{A|N = n}$ for $n = 1$ and $n = 2$ only, by following the same line of thought it can obtained for every $n \leq \text{max}_2 - 1$ only with a much greater complexity. Even for $n = 3$ (that is $n_{\text{max}} = 4$) it gets extremely difficult.
3.6 Numerical result

We present an example where the service distribution is hyperexponential, and the model parameters are $V = 4.85$, $c = 1$, $\mu_1 = 1$, $\mu_2 = 0.2$, $p = 0.95$ and $\lambda = 3$. The (symmetric) Nash equilibrium is $n_{\text{max}} = 3$, $T_1 = 7.73$, $S_1 = 7.202$ and $S_2 = 3.13$. In this example, the value of S_2 is significantly lower than S_1. This is due to two reasons. The first is trivial, where one needs to wait for an extra customer. The second is that the age distribution is stochastically larger, which is a direct result from Lemma [7].

4 Conclusions

In this study we show how to obtain the Nash equilibrium in an observable $M/G/1$ queue with abandonments. We focus on service time distributions which have an IMRL. The Nash equilibrium is defined by two sequences of thresholds. The values of the sequence $\{T_1, T_2, \ldots, T_{n_{\text{max}} - 2}\}$ represents the abandonment thresholds for customers that observed service completion, and they are obtained by solving a linear equation. The values of the sequence $\{S_1, S_2, \ldots, S_{n_{\text{max}} - 1}\}$, represents the abandonment thresholds for customers that didn’t observe service completion, and obtaining them is much more difficult. They can be computed recursively based on the definition of the Markov process. The reason we are able to obtain them recursively is because customers’ decisions are not effected by future arrivals, (i.e. they are transparent to them). In other words, from the point of view of a customer who is in the n^{th} position in the queue, the maximum length of the queue is n. Also, a numerical example is given in which both sequences are computed. Finally, we discuss three limitations of our model:

1. We assumed that customers are homogenous with respect to their service value and waiting cost. Of course, considering heterogeneous customers is more realistic. Perhaps, a future study may extend this results, but, it is vital that a simpler solution will be obtained first to build the foundation of such study.

2. We assumed that the time one already waited is considered to be a sunk cost and only future waiting time is considered. In real life, this may not always be the case. Relaxing this assumption, may have a huge
impact on our solution due to the following reason: If one abandoned in front of me, I no longer necessarily abandon as well. This is because, I will not be in the exact situation as he was. This may alter the entire strategy profile.

3. We assumed that the service distribution possess the IMRL property. The case where the service is with IFR was already argued for. We next discuss the case in which the hazard function is neither with IFR or DFR. If so, we believe that a general solution cannot be obtained due to the dependency on the service distribution.

References

[1] P. Afeche and M. Pavlin. Rational Abandonment from Priority Queues: Equilibrium Strategy and Pricing Implications. Management science forthcoming, 2015.

[2] F. Baccelli, F. Boyer, and G. Hebuterne. Single server queues with impatient customers. Appl. Probability, 16:887–905, 1984.

[3] F. Baccelli and G. Hebuterne. On queues with impatient customers. Performance, pp. 159–179, 1981.

[4] R. E Balow and F. Proschan. Statistical theory reliability and life testing: Probability models. Hold, Rinehart and Winston, New York, 1975.

[5] D.Y. Barrer. Queuing with impatient customers and ordered service. Oper. Res, 5:650–656, 1957.

[6] M. Cripps and C. Thomas. Strategic Experimentation in Queues. Menuscript, 2014.

[7] O. Boxma, D. Perry, W. Stadje, and S. Zacks. The busy period of an M/G/1 queue with customer impatience. J. Appl. Probab, 45(1):130–145, 2010.

[8] A. Brandt and M. Brandt. Workload and busy period for the M/GI/1 with a general impatience mechanism. Queueing Systems, 75:189–209, 2013.
[9] L. Debo, R. Hassin, and U. S. Veeraraghavan. Learning quality through service outcomes. *Manuscript*, 2012.

[10] R. Hassin and M. Haviv (2003). To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems. Kluwer Academic Publishers, Boston.

[11] R. Hassin (2016). *Rational Queueing*. Chapman & Hall.

[12] R. Hassin and M. Haviv. Equilibrium strategies for queues with impatient customers. *Oper. Res. Lett.*, 17:41–45, 1995.

[13] M. Haviv and Y. Ritov. Homogeneous customers renge from invisible queues at random times under deteriorating waiting conditions. *Queueing Systems*, 38:495–508, 2001.

[14] A. Mandelbaum and N. Shimkin. A model for rational abandonments from invisible queues. *Queueing Systems*, 36:141–173, 2000.

[15] A. Mandelbaum and N. Shimkin. Rational abandonment from telequeues: Nonlinear waiting costs with heterogeneous preferences. *Queueing Systems*, 47:117–146, 2004.

[16] P. Naor. The regulation of queue size by levying tolls. *Econometrica*, 37(1):15–24, 1969.

[17] C. Palm. Methods of judging the annoyance caused by congestion. *Tele*, 2:1–20, 1953.

A Appendix A

Proof.

\[
P(Q \leq y | Q \leq R(0, a) \land A_2 \land (I(T_1 - a) + (1 - I)(A_1 - W_1))) = \frac{P(Q \leq y, Q \leq R(0, a) \land A_2 \land (I(T_1 - a) + (1 - I)(A_1 - W_1)))}{P(Q \leq R(0, a) \land A_2 \land (I(T_1 - a) + (1 - I)(A_1 - W_1)))}
\]
We give explicit expressions for both the numerator and the denominator. The numerator is

\[P(Q \leq y, Q \leq R(0, a) \land A_2 \land (I(T_1 - a) + (1 - I)(A_1 - W_1))) \]

\[= \int_{w_1=0}^{A_1} P(I = 1)P(Q \leq y, Q \leq R(0, a) \land A_2 \land (T_1 - a)) \]

\[+ P(I = 0) \int_{a=0}^{A_2 \land (A_1 - w_1)} P(Q \leq y, Q \leq R(0, a) \land A_2 \land (A_1 - w_1))p(0, a, w_1)dw_1 \]

and the denominator is

\[P(Q \leq R(0, a) \land A_2 \land (I(T_1 - a) + (1 - I)(A_1 - W_1))) \]

\[= \int_{w_1=0}^{A_1} P(I = 1)P(Q \leq R(0, a) \land A_2 \land (T_1 - a)) \]

\[+ P(I = 0)P(Q \leq R(0, a) \land A_2 \land (A_1 - w_1))p(0, a, w_1)dw_1 \]

After taking the derivative, we obtain the p.d.f. of \(Q|Q \leq R(0, a) \land A_2 \land (I(T_1 - a) + (1 - I)(A_1 - W_1)) \), and hence of \(Y|N = 2, A = a \) as well. \[\square \]