Neuroprotective Effect of Anthocyanin on Experimental Traumatic Spinal Cord Injury

Kyoung-Tae Kim, M.D.,1 Taek-Kyun Nam, M.D.,2 Yong-Sook Park, M.D.,2 Young-Baeg Kim, M.D.,2 Seung-Won Park, M.D.2

Department of Neurosurgery,1 Kyungpook National University Hospital, Daegu, Korea
Department of Neurosurgery,2 College of Medicine, Chung-Ang University, Seoul, Korea

Objective : We investigated the neuroprotective effect of anthocyanin, oxygen radical scavenger extracted from raspberries, after traumatic spinal cord injury (SCI) in rats.

Methods : The animals were divided into two groups : the vehicle-treated group (control group, n=20) received an oral administration of normal saline via stomach intubation immediately after SCI, and the anthocyanin-treated group (AT group, n=20) received 400 mg/kg of cyanidin 3-O-β-glucoside (C3G) in the same way. We compared the neurological functions, superoxide expressions and lesion volumes in two groups.

Results : At 14 days after SCI, the AT group showed significant improvement of the BBB score by 16.7±3.4%, platform hang by 40.0±9.1% and hind foot bar grab by 30.8±8.4% (p<0.05 in all outcomes). The degree of superoxide expression, represented by the ratio of red fluorescence in the stratum (CNS). In 2006, two studies were published on pre-/post-treatment of C3G which showed significant improvement of neurological recovery and decrease of infarction volume in cerebral ischemia models18,31,36). In addition, anthocyanins are taken up by brain endothelial cell lines and can possibly cross the blood-brain barrier model (BBB) in vitro model40). These results suggest that anthocyanins have potent protective effects in the oxidative stress-mediated disease of central nervous system (CNS). In 2006, two studies were published on pre-/post-treatment of C3G which showed significant improvement of neurological recovery and decrease of infarction volume in cerebral ischemia rat models18,31). However, the effects of anthocyanin have not yet been reported in traumatic SCI. In the present study, we aim to clarify whether treatment with anthocyanin (C3G) can reduce superoxide production, neuron cell damage, lesion volume, and neurological dysfunction in a rat model of traumatic SCI.

MATERIALS AND METHODS

Animal model of traumatic SCI

Forty adult male Sprague-Dawley rats weighing 250-300 g were
used. All procedures were performed in accordance with the guidelines for care and use of laboratory animals approved by Chung-Ang University's Institutional Animal Care and Use Committee.

Moderate-grade SCIs were induced in adult rats using the pneumatic impact device (Chung-Ang University Hospital Model 2.0) as previously described[16]. The contusion grade was controlled by depth of deformation, dwell time and velocity of impact. The initial BBB scores of moderate-grade SCI were 5 to 10[38]. Anesthesia was induced with inhalation of 2.0% enflurane and total laminectomy of T10 was done with preservation of the dura. Because the diameter of impact tip was 2 mm, the exposed surface of the spinal cord had to be larger than 3 mm in diameter. After total laminectomy, the animal was placed in a prone position and its spine was fixed with spine clamps (Sang Chung Commercial Corporation, Seoul, Korea). The settings for the impact were 0.2 sec dwell time, 2 mm depth of deformation, and 3 m/sec velocity. The target point was the midline dorsal aspect of the spinal cord.

Administration of anthocyanin

The animals were divided into two groups: the vehicle-treated group (control group, n=20) which were received an oral administration of normal saline via stomach intubation immediately after SCI, and the anthocyanin-treated group (AT group, n=20) which were received 400 mg/kg of C3G in the same way. After SCI, the wound was closed in layers using an aseptic technique. Throughout the procedure, body temperature was maintained at 37°C with a heating pad. The bladder of the injured rats was manually emptied.

Superoxide expression study

To evaluate the antioxidant effects of anthocyanin during the acute stage of SCI, total twelve rats, six rats from each of the control and AT groups, were sacrificed at 1 hour after SCI by inhalation of 2.0% enflurane. The spinal cords were removed and frozen immediately in liquid nitrogen. The spinal cords were embedded in Tissue-Tek® O.C.T. Compound (Sakura Fine-tek, Zoeterwoude, Zoeterwoude, Netherland) and cut into 7 μm-thick axial sections. The sections were incubated with dihydroethidium (DHE) (5 mmol/L; Molecular Probes, Inc., Eugene, Ore., USA) in phosphate buffered saline (PBS) for 30 minutes at 37°C in a humidified chamber protected from light. DHE is oxidized by superoxide to ethidium bromide, which then binds to the DNA in the nucleus and fluoresces red[16,30]. The red fluorescence was detected through a 543-nm long-pass filter, using a laser scanning microscope (LSM510 META; Carl Zeiss, Germany). Two regions of interest (ROIs) were selected at 1.5 mm (A, lesion periphery) and 3 mm (B, control) rostral from the epicenter (Fig. 1). The intensity of red fluorescence was measured using a VH image analyzer and the degrees of superoxide expression were represented by the ratio of red fluorescence in the two ROIs (A value divided by B value).

Functional assessments

All rats were examined in an open field environment to assess locomotor function of their hind limbs prior to injury, and at 1, 3, 5, 7, 10 and 14 days post injury using the BBB score, hind foot bar grab, and platform hang[25,29]. All tests were performed by two investigators who were blinded to the study groups. The score for each animal was used as the average of the scores evaluating by the two investigators. When the two hind limb scores differed, the worse score was used for data analysis. Motor functions of the hind limbs were assessed by the BBB score. For example, a score of 0 (the lowest score) corresponds to no hind limb motion, while a score of 21 (the highest score) corresponds to normal motion[38]. The hind foot bar grab test was used to test polysynaptic spinal reflexes. A score of 0 (the lowest score) was assigned if the rat did not respond to the bar touching with the hind feet, while a score of 3 (the highest score) was assigned if the rat strongly grabbed the bar and pushed it[29]. The platform hang test was used to test the coordinated motor function of the hind limbs. A score of 0 (the lowest score) was assigned if the rat fell, while a score of 4 (the highest score) was assigned if the rat climbed the platform within 5 sec[29].

Histopathological studies

To assess histopathology, the remaining twenty-eight rats, fourteen rats from each of the control and AT groups, were sacrificed at 14 days after SCI. The rats were anesthetized by inhalation of 2.0% enflurane and transcardially perfused with 0.1 M PBS followed by 4% buffered paraformaldehyde. The spinal cords were then embedded in paraffin, cut into 5 μm-thick axial sections, and stained with hematoxylin and eosin (H&E) and Luxol

![Fig. 1. Two regions of interest (ROIs) were selected for each section to evaluate the antioxidant effect of anthocyanin during the acute stage of SCI. The lesion periphery at 1.5 mm (A) and 3.0 mm (B) rostral from the epicenter reflect the lesion and normal area, respectively. The intensity of red fluorescence is measured using a VH image analyzer and the degrees of superoxide expression are represented by the ratio of red fluorescence in the two ROIs (A value divided by B value). SCI: spinal cord injury.](image-url)
Neuroprotective Effect of Anthocyanin | KT Kim, et al.

RESULTS

Superoxide concentration after SCI

Red fluorescence was higher at the lesion periphery (1.5 mm from the epicenter) at 1 hour after SCI in the control group, but was less prominent in the AT group (Fig. 3). The degrees of red fluorescence of DHE staining, which was calculated as ratios of the intensities at 1.5 (lesion periphery) and 3 mm (control) rostral from the epicenter, were 1.34±0.24 in the control group and 0.98±0.38 in the AT group, respectively. The mean value of the ratio was significantly lower in the AT group (p<0.05). This result indicates that treatment with anthocyanin significantly reduces superoxide concentration in the lesion periphery at 1 hour after SCI.

Functional recovery after SCI

The BBB score, platform hang and hind foot bar grab were used for the evaluation of functional outcomes (Table 1, Fig. 4). Before the injury, all rats showed normal function on the BBB score, platform hang and hind foot bar grab. At day 1 of SCI, the BBB scores of the control and the AT groups were 5.4±1.1 and 5.3±1.2, respectively, a difference that was not significant. However, they improved significantly at days 7, 10 and 14 after SCI (7 days : 11.7±0.9 and 13.8±1.0, 10 days : 12.6±0.8 and

Lesion volume

The lesion volume was delineated by its bounding surface, which is defined by a series of closed contours in the H&E stained serial sections (Fig. 2). The software (OPTIMAS 6.5, Optimas, Inc., Bothel, WA, U.S.A.) measured the lesion volume from the two-dimensional images of the axial cord sections. The contours and structures in each spinal cord section were traced to reconstruct the stacked image for volumetric analysis. For each rat, the lesion area was computed using the section from the epicenter, 0.5, 1, 1.5, and 2 mm rostral and 0.5, 1, 1.5, and 2 mm caudal to the epicenter.

Statistical analysis

Data are expressed as means±standard deviation. Continuous data were compared using student t-test. Non-parametric data were compared using the Mann-Whitney U test. p values of <0.05 were considered statistically significant.

Lesion volume

Fig. 2. The lesion volume was delineated by its bounding surface, which can be defined by a series of closed contours in the H&E stained serial sections. We measured the lesion volume from the two-dimensional images of the axial cord sections using the software (OPTIMAS 6.5, Optimas, Inc., Bothel, WA, U.S.A.). A : Left and right panels show the outlines of lesion area from the axial section of the control and AT groups, respectively. B : The histogram shows the lesion volume (mean±standard deviation) in the control and anthocyanin-treated groups. *p<0.05, compared with the control group.

Fig. 3. Fluorescence micrographs of the spinal cord stained with dihydroethidium (DHE), superoxide-sensitive dye. In the control group, the fluorescence intensity of the lesion periphery at 1.5 mm (A) is higher than those at 3.0 mm (B) rostral from the epicenter. However, the fluorescence intensity of the lesion periphery at 1.5 mm (C) is less prominent than it at 3.0 mm (D) rostral from the epicenter in the anthocyanin-treated group.
Lesion volumes in the control and the AT groups were 32.1±2.4 μL and 24.5±2.3 μL, respectively (Fig. 2). Anthocyanin significantly reduced the lesion volume by 23.7% in the AT group compared to that of the control group (p<0.05).

The motor neuron cell number were 8.3±5.1 cells/HPF in the control group and 13.4±6.3 cells/HPF in the AT group, respectively (Fig. 5) (p<0.05). The control group also showed more severe loss of myelin fibers compared with the AT group after SCI (Fig. 6).

DISCUSSION

Anthocyanins are present in fruits and vegetables, and are especially enriched in raspberries (“bok-bun-ja” in Korean). It provides natural pigmentation and exhibit a wide range of antioxidant and therapeutic benefits. Among the anthocyanins, C3G has known to have therapeutic effects in hepatic ischemia-reperfusion damage and cerebral ischemia models. In addition, it inhibits free radical-induced apoptosis of colon Caco-2 and myocar-dial cells, and enhances red blood cell resistance to oxidative stress.

In these studies, the main therapeutic role of C3G is the scavenger of ROS. Furthermore, C3G was taken up by brain endothelial cell lines and could possibly cross the monolayer in blood-brain barrier in vitro model. From these results, we can speculate that C3G has potent protective effects in secondary injury of the traumatic SCI by ROS.

Superoxides are important in oxida-

Table 1. Comparison of functional outcomes between the control and anthocyanin-treated groups after traumatic SCI

	Control group	Anthocyanin-treated group	p value
The BBB score			
Pre-SCI	21	21	NS
Day 1	5.4±1.1	5.3±1.2	NS
Day 3	8.7±0.8	8.5±0.9	NS
Day 5	10.8±1.1	11.9±1.1	NS
Day 7	11.7±0.9	13.8±1.0	<0.05
Day 10	12.6±0.8	14.7±0.9	<0.05
Day 14	12.9±1.0	15.0±0.8	<0.05
Platform hang			
Pre-SCI	4	4	NS
Day 1	1.0±0.4	0.7±0.4	NS
Day 3	1.2±0.6	1.1±0.6	NS
Day 5	1.1±0.5	1.3±0.5	NS
Day 7	1.0±0.9	1.4±0.8	<0.05
Day 10	1.1±0.7	1.3±0.7	NS
Day 14	1.0±0.8	1.4±0.9	<0.05
Hind foot bar grab			
Pre-SCI	3	3	NS
Day 1	0.4±0.3	0.5±0.3	NS
Day 3	0.8±0.5	0.5±0.4	NS
Day 5	0.8±0.6	1.0±0.7	NS
Day 7	1.4±0.5	1.7±0.6	NS
Day 10	1.3±0.6	1.9±0.7	<0.05
Day 14	1.3±0.5	1.7±0.8	<0.05

All data are presented as the means±standard deviations. SCI : spinal cord injury. BBB : blood-brain barrier. NS : not significant.

Fig. 4. The time course of functional recovery in the control and anthocyanin-treated groups. A : BBB score. B : Platform hang. C : Hind foot bar grab. BBB : blood-brain barrier.
Neuroprotective Effect of Anthocyanin | KT Kim, et al.

studies showed ranges of administration time and dosage of C3G, which showed a neuroprotective effect in CNS injuries. However, 11%, the difference of infarction volume between the two studies, was not higher than that of what we had expected. In 2000, Youdim and colleagues reported that of the oral ingested 100 mg/kg C3G by rats (300 g), less than 0.64 μmol/L was found in the plasma within an hour following supplementation. In contrast, Miyazawa and colleagues reported higher plasma levels of C3G by same rats (300 mg) even though their supplementation regimen, at approximately 45 mg and 90 mg, was less than that examined in Youdim’s study. These results suggest that differences in environment or condition of rats may have contributed to absorption potency. However, one parallel observation in various studies is that intact C3G rapidly appears in the plasma at 15 minutes after oral administration, with the maximal plasma concentration occurring 1 hour after oral administration of C3G via stomach intubation. These results could explain the reasonable outcome in Kang’s study despite of low dosage and post-injury administration of C3G. In the present study, 400 mg/kg C3G was administrated via stomach intubation immediately after SCI. Considering SCI could influence the gastrointestinal motility and the rate of C3G absorption in rats, we used 400 mg/kg, higher dosage than previous studies.

In the present study, the AT group showed significant improvement of the BBB score by 16.7% and the decrease of reactive chain reactions, producing highly reactive oxidants. Direct microdialysis measurements of hydroxyl radicals (one of the most destructive forms of ROS) in injured spinal cords show that hydroxyl radicals are significantly increased at 5 minutes and maximized at 1 hour after SCI. Furthermore, dialysate levels of 3, 4-dihydroxybenzoic acid and oxygen radical productions are correlated with DHE fluorescence intensity. Therefore, we sacrificed twelve rats (six from each of the control and AT groups) at 1 hour of SCI and used DHE fluorescence intensity to evaluate the antioxidant effects of C3G during the acute stage of SCI. Hydroxyl radicals are generated from superoxide in the gray matter of the spinal cord through iron-catalyzed Haber-Weiss reactions and the lesion volume is correlated with the secondary injury due to ROS, so we checked the motor neuron cell in the anterior horn of lesion periphery and the lesion volume at 14 days of SCI. In the present study, C3G significantly reduced the production of superoxides in lesion peripheries at 1 hour of SCI. In addition, it decreased lesion volume and increased the motor neuron preservation in the anterior horn of lesion peripheries at 14 days of SCI. These results indicate that treatment with C3G significantly improved functional recovery and decreased lesion volume by scavenging ROS production in the acute stage of SCI.

There are two studies on neuroprotective effects of C3G in CNS. Kang and colleagues reported that C3G decreased the infarction volume of the brain by 18% compared with the control group when C3G (10 mg/kg) was administered orally 30 min after the middle cerebral artery (MCA) occlusion. Shin and colleagues reported a more favorable result that the infarction volume was reduced by 29% compared with the control group when 300 mg/kg C3G was administered orally two times: at 24 hours and 30 minutes before MCA occlusion. In two studies, administration time and dosage of C3G were different, resulting in different infarction volume. The results of these studies showed ranges of administration time and dosage of C3G, which showed a neuroprotective effect in CNS injuries. However, 11%, the difference of infarction volume between the two studies, was not higher than that of what we had expected. In 2000, Youdim and colleagues reported that of the oral ingested 100 mg/kg C3G by rats (300 g), less than 0.64 μmol/L was found in the plasma within an hour following supplementation. In contrast, Miyazawa and colleagues reported higher plasma levels of C3G by same rats (300 mg) even though their supplementation regimen, at approximately 45 mg and 90 mg, was less than that examined in Youdim’s study. These results suggest that differences in environment or condition of rats may have contributed to absorption potency. However, one parallel observation in various studies is that intact C3G rapidly appears in the plasma at 15 minutes after oral administration, with the maximal plasma concentration occurring 1 hour after oral administration of C3G via stomach intubation. These results could explain the reasonable outcome in Kang’s study despite of low dosage and post-injury administration of C3G. In the present study, 400 mg/kg C3G was administrated via stomach intubation immediately after SCI. Considering SCI could influence the gastrointestinal motility and the rate of C3G absorption in rats, we used 400 mg/kg, higher dosage than previous studies.

In the present study, the AT group showed significant improvement of the BBB score by 16.7% and the decrease of le-
sion volume by 23.7%, respectively. Those are not good outcomes compared to those of other free radical scavenger studies. Pretreatment of edaravone in SCI rat model improved the motor score by 27.3% and decreased the lesion volume by 36.4% at 7 days of SCI. Repeated treatment with Neu2000 resulted in a 45.6% decrease in overall lesion volume and approx. 34% improvement in the BBB score at 42 days of SCI. However, these absolute values could not imply the therapeutic inferiority of C3G, because the study design, such as administration time and method, contusion degree, and outcome measuring time, is different. Further studies with same conditions are needed to compare the therapeutic efficacy of various radical scavengers.

CONCLUSION

C3G has been shown to provide neuroprotective effects, but its role in traumatic SCI was previously unexplored. The results of the present study demonstrate that C3G treatment significantly reduced the synthesis of ROS in the lesion periphery and improves functional outcomes associated with significant decreases in lesion volume and motor neuron injury. To best our knowledge, this study is the first report of C3G as a neuroprotective radical scavenger in traumatic SCI. However, we could not define the administration method, time, and pharmacokinetics for maximal effect, because this study reflected effects for single oral administration of 400 mg/kg C3G immediately after SCI. Further studies are necessary to evaluate the therapeutic time window, the appropriate administration method, and the proper dosage after trauma in order to establish the clinical usefulness of C3G for traumatic SCI.

Acknowledgements

This study was supported by a grant of the Korea Healthcare technology, R&D Project, Ministry of Health & Welfare, Republic of Korea (A091171).

References

1. Amorini AM, Lazzarino G, Galvano F, Fazzina G, Tavazzi B, Galvano G: Cyanidin-3-o-beta-glucopyranoside protects myocardium and erythrocytes from oxygen radical-mediated damages. Free Radic Res 37: 453-460, 2003
2. Andradi SA, Sayeed I, Siemen D, Wolf G, Horn TF: Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J 18: 869-871, 2004
3. Aoyama T, Hida K, Kuroda S, Seki T, Yano S, Shichihone H, et al.: Edaravone (mci-186) scavenges reactive oxygen species and ameliorates tissue damage in the murine spinal cord injury model. Neuror Med Chir (Tokyo) 48: 539-545; discussion 545, 2008
4. Bao F, Liu D: Hydroxyl radicals generated in the rat spinal cord at the level produced by impact injury induce cell death by necrosis and apoptosis: protection by a metalloporphyrin. Neuroscience 126: 285-295, 2004
5. Basso DM, Beattie MS, Bresnahan JC: A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12: 1-21, 1995
6. Basso DM, Beattie MS, Bresnahan JC: Graded histological and locomotor outcomes after spinal cord contusion using the nnu weight-drop device versus transection. Exp Neurol 139: 244-256, 1996
7. Beekwilder J, Hall RD, de Vos CH: Identification and dietary relevance of antioxidants from raspberry. Biofactors 23: 197-205, 2005
8. Bellido GG, Bata T: Anthocyanin composition and oxygen radical scavenging capacity (ORAC) of milled and pearled purple, black, and common barley. J Agric Food Chem 57: 1022-8, 2009
9. Blight AR: Miracles and molecules—progress in spinal cord repair. Nat Neurosci 5 Suppl: 1051-1054, 2002
10. Casadesus G, Shukitt-Hale B, Stellwagen HM, Zhu X, Lee HG, Smith MA, et al.: Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci 7: 309-316, 2004
11. Cohen DM, Patel CR, Alahibila-Vajula P, Sundberg LM, Chacko T, Liu SJ, et al.: Blood-spinal cord barrier permeability in experimental spinal cord injury: Dynamic contrast-enhanced MRI. NMR Biomed 22: 332-341, 2009
12. Elia S, Kits DD: Anthocyanins inhibit peroxyl radical-induced apoptosis in Caco-2 cells. Mol Cell Biochem 312: 139-145, 2008
13. Gabrielska J, Ozansmi J, Komorowska M, Langner M: Anthocyanin extracts with antioxidant and radical scavenging effect. Z Naturforsch C 54: 319-324, 1999
14. Galli RL, Bielinsky DF, Sprengeld A, Shukitt-Hale B, Joseph JA: Blueberry supplemented diet reverses age-related decline in hippocampal HSP70 neuroprotection. Neurobiol Aging 27: 344-350, 2006
15. Hausmann ON: Post-traumatic inflammation following spinal cord injury. Spinal Cord 41: 369-378, 2003
16. Iwai M, Liu HW, Chen R, Ide A, Okamoto S, Hata R, et al.: Possible inhibition of focal cerebral ischemia by angiotensin ii type 2 receptor stimulation. Circulation 110: 843-848, 2004
17. Joseph JA, Shukitt-Hale B, Denisova NA, Bielinsky D, Martin A, McEwen JJ, et al.: Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 19: 8114-8121, 1999
18. Kang TH, Hur JY, Kim HB, Ryu JH, Kim SY: Neuroprotective effects of the cyanidin-3-O-beta-d-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neurosci Lett 391: 122-126, 2006
19. Koide T, Hashimoto Y, Kamei H, Kojima T, Hasegawa M, Terabe K: Antitumor effect of anthocyanin fractions extracted from red soybeans and red beans in vitro and in vivo. Cancer Biother Radiopharm 12: 277-280, 1997
20. Kuhn PL, Wrathall JR: A mouse model of graded contusive spinal cord injury. J Neurotrauma 15: 125-140, 1998
21. Kuroda S, Siesjo BK: Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin Neurosci 4: 199-212, 1997
22. Liu D, Liu J, Sun D, Wen J: The time course of hydroxyl radical formation following spinal cord injury: the possible role of the iron-catalyzed Haber-Weiss reaction. J Neurotrauma 21: 805-816, 2004
23. Liu S, Liu M, Peterson S, Miyake M, Vallathyan V, Liu KJ: Hydroxyl radical formation is greater in striatal core than in penumbra in a rat model of ischemic stroke. J Neurosci Res 71: 882-888, 2003
24. Matsumoto H, Inaba H, Kishi M, Tominaga S, Hirayama M, Tsuda T: Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. J Agric Food Chem 49: 1546-51, 2001
25. Miyazawa T, Nakagawa K, Kudo M, Murashi K, Someya K: Direct intestinal absorption of red fruit anthocyanins, cyanidin-3-glucoside and cyanidin-3,5-diglucoside, into rats and humans. J Agric Food Chem 47: 1083-1091, 1999
26. Park E, Velumian AA, Fehlings MG: The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis

210
27. Qin Y, Xia M, Ma J, Hao Y, Liu J, Mou H, et al.: Anthocyanin supplementation improves serum IDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr 90: 485-492, 2009

28. Romero I, Teresa Sanchez-Ballesta M, Maldonado R, Isabel Escribano M, Merodio C: Anthocyanin, antioxidant activity and stress-induced gene expression in high CO2-treated table grapes stored at low temperature. J Plant Physiol 165: 522-530, 2008

29. Seki T, Hida K, Tada M, Koyanagi I, Iwasaki Y: Graded contusion model of the mouse spinal cord using a pneumatic impact device. Neurosurgery 50: 1075-1081; discussion 1081-1082, 2002

30. Shichinohe H, Kuroda S, Yasuda H, Ishikawa T, Iwai M, Horiuchi M, et al.: Neuroprotective effects of the free radical scavenger edaravone (MCI-186) in mice permanent focal brain ischemia. Brain Res 1029: 200-206, 2004

31. Shin WH, Park SJ, Kim EJ: Protective effect of anthocyanins in middle cerebral artery occlusion and reperfusion model of cerebral ischemia in rats. Life Sci 79: 130-137, 2006

32. Siesjö BK, Agardh CD, Bengtsson F: Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1: 165-211, 1989

33. Spormann TM, Albert FW, Rath T, Dietrich H, Will E, Stockis JP, et al.: Anthocyanin/polyphenolic-rich fruit juice reduces oxidative cell damage in an intervention study with patients on hemodialysis. Cancer Epidemiol Biomarkers Prev 17: 3372-3380, 2008

34. Springer JE, Rao RR, Lim HR, Cho SI, Moon GJ, Lee HY, et al.: The functional and neuroprotective actions of Neu2000, a dual-acting pharmacological agent, in the treatment of acute spinal cord injury. J Neurotrauma 27: 139-149, 2010

35. Steed LE, Truong VD: Anthocyanin content, antioxidant activity, and selected physical properties of flowable purple-fleshed sweetpotato purées. J Food Sci 73: S215-S221, 2008

36. Tsuda T, Horio F, Kitoh J, Osawa T: Protective effects of dietary cyanidin 3-O-beta-D-glucoside on liver ischemia-reperfusion injury in rats. Arch Biochem Biophys 368: 361-366, 1999

37. Xu B, Chang SK: Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. J Agric Food Chem 57: 4754-4764, 2009

38. Youdim KA, Shukitt-Hale B, MacKinnon S, Kalt W, Joseph JA: Polyphenolics enhance red blood cell resistance to oxidative stress: In vitro and in vivo. Biochim Biophys Acta 1523: 117-122, 2004

39. Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C: Interaction between flavonoids and the blood-brain barrier: In vitro studies. J Neurochem 85: 180-192, 2003

40. Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D: Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 51: 675-683, 2007