Protective effect of tea polyphenols against paracetamol-induced hepatotoxicity in mice is significantly correlated with cytochrome P450 suppression

Xia Chen, Chang-Kai Sun, Guo-Zhu Han, Jin-Yong Peng, Ying Li, Yan-Xia Liu, Yuan-Yuan Lv, Ke-Xin Liu, Qin Zhou, Hui-Jun Sun

TP significantly attenuated the paracetamol-induced hepatic injury and dramatically reduced the mortality of paracetamol-treated mice. Furthermore, TP reduced CYP2E1 and CYP1A2 expression at both protein and mRNA levels in a dose-dependent manner.

CONCLUSION: TP possess potential hepatoprotective properties and can suppress CYP450 expression.

© 2009 The WJG Press and Baishideng. All rights reserved.

Key words: Tea polyphenols; Cytochrome P450; Paracetamol-induced hepatotoxicity

INTRODUCTION

Tea has been consumed in China to promote health and longevity since 3000 B.C. It is now a popular beverage all over the world. Tea polyphenols (TP) are a large and diverse class of compounds extracted from tea. The major compounds of TP are picatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and epigallocatechin-3-gallate (EGCG). Recent studies indicate that TP can prevent oxidative stress-related diseases, including cancer, cardiovascular and degenerative diseases and have other bioactive properties[1-4].

In recent years, the interest in understanding the metabolic benefits of TP has been increasing. Liver is the main organ responsible for the metabolism of TP. Liu et al[5] reported that TP can markedly increase cytochrome P450 (CYP450) activity in rats. However, the effect of TP on CYP450 activity remains controversial[6,7].
Until now, no one could give a clear explanation of the different results. CYP450 enzymes play a pivotal role not only in the metabolism of xenobiotics, but also in the biosynthesis and catabolism of endogenous substrates, such as vitamins, fatty acids, hormones and prostaglandins. Alteration in hepatic CYP450 enzyme expression would affect the pharmokinetic profiles of clinically used drugs. Furthermore, both induction and suppression of several CYP450s may lead to cellular oxidative stress and tissue injury in response to xenobiotics.

Paracetamol, one of the most widely used hepatotoxic drugs, is safe at therapeutic doses, but causes liver failure in overdoses. When a normal dose is used, paracetamol is extensively metabolized by conjugation with sulphate and glucuronic acid. A small fraction of the drug is subjected to oxidation reactions catalyzed by CYP450 enzymes in the liver, resulting in generation of N-acetyl-p-benzo-quinoneimine (NAPQI), a highly electrophilic metabolite that triggers ensuing liver damage. Exposure to high doses of paracetamol increases the NAPQI level. Normally, toxic oxidation metabolites generated in the liver are converted into non-toxic metabolites excreted in urine via conjugation with glutathione (GSH) containing sulphhydryl groups. However, high doses of paracetamol limit the ability of GSH to detoxify NAPQI, and result in the consumption of liver GSH stores. It was reported that oxidative stress constitutes a major mechanism underlying the pathogenesis of paracetamol-induced liver damage.

There are three families of CYP450 isoforms, CYP1, CYP2, and CYP3, which are mainly involved in the biotransformation of xenobiotics. It has been shown that CYP2E1, CYP1A2, and intracellular GSH play an important role in the hepatotoxicity induced by paracetamol. The present study was to investigate the hepatoprotective activity of TP and its relation with CYP450 expression in mice.

MATERIALS AND METHODS

Animal treatment

TP obtained from Wuyuan Tea Plantation (Jiangxi Province, China) with a purity of > 98% containing 63.84% of EGCG and 7.30% of ECG were decaffeinated. Kunming male mice, weighing 18-22 g, provided by Experimental Animal Center of Dalian Medical University, were used in the study. The mice were randomly divided into high, medium, low TP dose groups, positive and negative control groups (n = 10). The mice in low, medium and high dose TP groups were intraperitoneally injected with 25, 50 and 100 mg/kg of TP per day for two days. The mice in positive control group were given 50 mg/kg chloramphenicol one hour before they were killed. The mice in the negative control group were given the same volume of saline solution for two days. On day 3, all the mice were killed by decapitation, with their livers removed immediately and cleaned with a cold saline solution. Specimens were stored at -80℃ for preparation of liver microsomes.

Male mice in each group received intragastric TP at the dose of 100, 200, and 400 mg/kg, once a day for six days. The mice in positive control group were given 900 mg/kg N-acetylcysteine, once a day. The mice in negative control group were given the same volume of saline solution. All the mice were given 1000 mg/kg paracetamol one hour later and the acute mortality of mice in both groups was recorded 72 h after paracetamol was given.

Male mice in each group received intragastric TP at the dose of 100, 200, and 400 mg/kg, once a day for five days. The mice in model and negative control groups were given the same volume of a saline solution. The mice were given 500 mg/kg paracetamol one hour later, except for the mice in negative control group. All the mice were killed by decapitation 24 h later with their livers removed immediately and cleaned with a cold saline solution. Specimens were fixed in formalin for histological examination or snap-frozen in liquid nitrogen and stored at -80℃ for protein and RNA extraction.

Preparation of liver microsomes

Liver microsomes extracted from frozen samples were prepared as previously described. Microsomal protein level was measured as previously described with bovine serum albumin as a standard.

Measurement of microsome enzyme levels

The levels of CYP450 and CYPb were measured as previously described.

Western blot assay

Aliquots (80 µg) of liver microsomes from each sample were loaded onto each lane of 10% SDS-PAGE gel electrophoresis and electroblotted onto nitrocellulose membranes (Millipore, Bedford, MA). The membranes were probed with rabbit antibody against mice CYP2E1 (Boster Biological Technology Co., Ltd, Wuhan, China) at a dilution of 1:400 or CYP1A2 (Santa Cruz Biotechnology, Inc., California, USA) at a dilution of 1:500 and peroxidase-conjugated affinipure goat anti-rabbit IgG (Zhongshan Golden Bridge Biotechnology Co., Ltd, Beijing, China) and analyzed with Quantity One software.

Histology and immunohistochemical assay

All specimens embedded in paraffin were cut into 4-μm thick serial sections. The specimens were mounted on slides and deparaffinized with graded concentrations of xylene and ethanol, and stained with hematoxylin and eosin (HE). For immunohistochemical staining, all sections were immersed in 3% H2O2 for 15 min at room temperature to block the endogenous peroxidase activity. To stain with CYP2E1 and CYP1A2, the sections were digested with 0.4% proteinase K for 5 min at 37℃. The sections were then incubated with 10% normal goat serum for 15 min to reduce the nonspecific background
staining and reacted with polyclonal rabbit anti-mouse antibody (Ab) at 4°C overnight. The working dilution of Abs used for examining mouse CYP2E1 and CYP1A2 in the liver was diluted at 1:100 and 1:50. After rinsing with phosphate-buffered saline (pH 7.4), the sections were incubated with biotinylated anti-rabbit immunoglobulin secondary Abs at room temperature for 30 min. Horseradish peroxidase labeled streptomycin-avidin complex was used to detect the second antibody. Finally, the sections were counterstained with hematoxylin before examination under a light microscope. The brown or dark brown stained cells were considered positive cells.

Reverse transcription-polymerase chain reaction (RT-PCR) assay
Total RNA was extracted from liver tissue with the TRIquick reagent (Solarbio Science & Technology Co., Ltd, Beijing, China). RNA purity was assessed by the optical densities at 260 nm and 280 nm, and the integrity using 100 bp DNA ladder markers (TaKaRa, Japan) as a reference. Total RNA was extracted from liver tissue with the TRIquick reagent (Solarbio Science & Technology CO., LTD, Beijing, China). RNA purity was assessed by the optical densities at 260 nm and 280 nm, and the integrity was verified by electrophoresis on a 1% agarose gel containing 0.5 µg/mL of ethidium bromide. Reverse transcription was conducted for 30 min at 42°C from 500 ng of purified RNA in 10 µL of reverse transcriptions system reaction mixture using AMV reverse transcriptase (TaKaRa, Japan), followed by 30 cycles of PCR (denaturation at 94°C for 30 s, annealing at 56°C for 30 s, and extension at 72°C for 1 min). The amplified products were electrophoresed on a 1.5% agarose gel using 100 bp DNA ladder markers (TaKaRa, Japan) as a standard to determine the molecular size and visualized with ethidium bromide staining. Images of the ethidium bromide-stained agarose gel were acquired with a Gel Doc EQ system and quantified using Quantity One software. The sequences of oligonucleotide primers are provided in Table 1.

Statistical analysis
Data were calculated separately and expressed as mean

Primer	Sequence
CYP2E1 F	5'-CACCGTGCTGCGTGCGTGCGTG-3'
CYP2E1 R	5'-CTCAGAGCCTCGACGCTC-3'
CYP1A2 F	5'-AGTGTTCTGGATGGTCAGAGC-3'
CYP1A2 R	5'-GCAAGAGGATGCTGACGTCG-3'
GAPDH F	5'-AGTGTTCTGGATGGTCAGAGC-3'
GAPDH R	5'-GCAAGAGGATGCTGACGTCG-3'

Table 3 Sequences of oligonucleotide primers

Table 2 Effects of TP on CYP450 and CYPb levels (mean ± SD)

Group (n = 10)	CYP450 (nmol/g)	CYPb (nmol/g)
Negative control	0.354 ± 0.024^a	0.160 ± 0.017^a
Low dose	0.279 ± 0.014^b	0.108 ± 0.004^a
Medium dose	0.204 ± 0.016^b	0.077 ± 0.006^b
High dose	0.130 ± 0.016^c	0.048 ± 0.006^c
Positive control	0.147 ± 0.019^c	0.061 ± 0.009^c

± SD. Statistical significances were analyzed by one-way ANOVA followed by Student Newman-Keuls test using SPSS Version 11.5. The difference was considered significant at two-tailed. P < 0.05 was considered statistically significant.

RESULTS

Effect of TP on CYP450 and CYPb levels
Two days after peritoneal injection of TP, the CYP450 and CYPb levels in livers of mice were measured. The CYP450 and CYPb levels were significantly lower in the high, medium and low dose TP groups than in the negative control group (P < 0.01), indicating that TP can reduce the CYP450 and CYPb levels in liver of mice. The CYP450 level was higher in the medium and low dose groups than in the positive control group (P < 0.01); but, it was not significantly different between the high dose and positive control groups (P > 0.05). The CYPb level was markedly different in the low dose group (P < 0.01); but it, was not significantly different in the high and medium dose groups (P > 0.05) compared the positive control group, indicating that TP can suppress both CYP450 and CYPbs in mice in a dose-dependent manner (Table 2).

Table 3 Effect of TP on mortality induced by paracetamol in mice

Group (n = 10)	Dose (mg/kg)	Death (n)	Death rate (%)	Protection rate (%)
Negative control	9	90	10	
Positive control	2	20	80	
TP				
Low	100	7	70	30
Medium	200	4	40	60
High	400	2	20	80

^aP < 0.01 vs negative control group (NS group); ^bP < 0.01 vs positive control group (chloramphenicol group).
Effect of TP on mortality of paracetamol-treated mice

We examined the effect of TP on mortality of paracetamol-treated mice. The mortality rate of mice in the negative control group, low, medium and high dose TP groups was 90%, 70%, 40% and 20%, respectively, indicating that TP can significantly reduce the mortality of paracetamol-treated mice. The effect of high dose TP on mortality of paracetamol-treated mice was not different from that of mice in the positive control group (Table 3).

Western blot analysis

Western blot showed strong positive CYP2E1 signals in the control and model groups. The expression of CYP2E1 in the low dose group was not significantly different from that in the control and model groups. However, TP significantly decreased the CYP2E1 expression level in the medium and high dose groups in a dose-dependent manner (Figure 1). The expression of CYP1A2 and CYP2E1 protein was similar in the liver microsomes (Data not shown).

Histology analysis

Liver tissues from the control group showed a normal lobular architecture with central veins and radiating hepatic cords (Figure 2A). However, liver tissues from the model group showed formation of more fibrous tissues extending into the hepatic lobules, leading to their complete separation. A large number of inflammatory cells infiltrated the intralobular and interlobular regions. The liver structure was in disorder and there were more necrotic and fatty degenerated liver cells than in the controls (Figure 2B). In the three TP treatment groups, however, hepatocyte degeneration, necrosis and infiltration of inflammatory cells were all apparently ameliorated (Figure 2C-E). Compared with the model group, the liver condition in TP treatment groups was significantly improved in a dose-dependent manner.

Immunohistochemical analysis of liver CYP2E1 and CYP1A2

The expression of CYP2E1 showed a deep brown immunostaining. No difference was found in the expression of CYP2E1 between the control and model groups. However, in medium and high dose groups, TP significantly suppressed the CYP2E1 expression in a dose-dependent manner (Figure 3A).

The expression level of CYP1A2 (showing a deep brown immunostaining) was markedly lower in the low, medium and high dose TP groups than in the control and model groups (Figure 3B).

Expression levels of CYP2E1 and CYP1A2 mRNA

The expression levels of CYP2E1, CYP1A2 and GAPDH cDNAs in the mouse liver were assayed by RT-PCR (Figure 4A), and the ratio of CYP2E1 and CYP1A2/ GAPDH cDNAs was calculated (Figure 4B). TP significantly inhibited the CYP2E1 mRNA expression in medium and high dose groups (P < 0.01), compared to the control and model groups (P > 0.05). The expression of CYP1A2 mRNA was reduced in all TP groups compared with the control and model groups (P < 0.05), indicating that TP can suppress the expression of CYP2E1 and CYP1A2 mRNA in a dose-dependent manner.

DISCUSSION

Hepatic drug metabolizing enzyme is called mixed-function oxidase or monooxygenase containing many enzymes including phase I enzymes such as
CYP450 and CYPb5, etc., and plays a prominent role in the metabolism of many pharmaceutical agents and activation or deactivation of potential carcinogens. Acquiring metabolic information and determining the effect of chemicals on hepatic drug metabolizing enzymes are important in developing clinically safe and efficient medications.[23]

TP have various pharmacological effects on cancer, cardiovascular and degenerative diseases and have other bioactive properties[1-4]. In this experiment, TP significantly suppressed the CYP450 and CYPb5 levels in liver of mice, suggesting that TP can restrain the activity of drug metabolizing enzymes.

In the present study, 100, 200 and 400 mg/kg TP could reduce the mortality of mice after treatment with paracetamol (Table 2). The immunohistochemical study showed that TP markedly alleviated paracetamol-induced hepatotoxicity, thus improving alterations in liver tissue pathology. Especially marked hepatoprotective effects of TP were observed in the high dose TP group with its diffuse hemorrhage and necrosis changed into focal hemorrhage and necrosis (Figure 2) compared to the model group that received a single dose of 500 mg/kg paracetamol, indicating that TP can protect liver of mice against paracetamol injury, which is consistent with the reported data[24].

It was reported that many mechanisms are involved in paracetamol hepatotoxicity[25], showing that the toxicity is mediated by CYP450 metabolism of paracetamol to NAPQI which covalently binds to critical proteins leading to inactivation of these proteins, especially after GSH depletion. CYP2E1 is usually assumed to be the
effects of TP are associated with the expression of CYP2E1 and CYP1A2 gene and protein.

ACKNOWLEDGMENTS

The authors thank Professor Zhong-Gun Yan (Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden) and Jiang-Lin Fan (Department of Pathology, University of Yamanashi, Japan) for their technical assistance.

REFERENCES

1. Trevisanato SI, Kim YI. Tea and health. Nutr Rev 2000; 58: 1-10
2. Yang CS, Wang ZY. Tea and cancer. J Natl Cancer Inst 1993; 85: 1038-1049
3. Higdon JV, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 2003; 43: 89-143
4. Naasani I, Oh-Hashi F, Oh-Hara T, Feng WY, Johnston J, Chan K, Tsuru T. Blocking telomerase by dietary polyphenols is a major mechanism for limiting the growth of human cancer cells in vitro and in vivo. Cancer Res 2003; 63: 824-830

Figure 4 RT-PCR analysis of mRNA for CYP2E1 and CYP1A2 expression in liver tissue of mice showing representative bands of each group (A) and normalized densitometric ratio of CYP2E and CYP1A2 to GAPDH (B). a,b,d P < 0.05 vs model group; b < 0.01 vs control group; b < 0.01 vs model group.

Background

Paracetamol is one of the most widely used hepatotoxic drugs, which is safe at therapeutic doses, but causes liver failure at overdoses. High doses of paracetamol limit the ability of glutathione (GSH) to detoxify N-acetyl-p-benzoquinonimine (NAPQI), and results in consumption of liver GSH stores. There are three families of cytochrome P450 (CYP450) isoforms, CYP1, CYP2, and CYP3, which are mainly involved in the biotransformation of xenobiotics. It has been shown that CYP2E1, CYP1A2 and intracellular GSH play an important role in paracetamol-induced hepatotoxicity. Tea polyphenols (TP) are a large and diverse class of compounds extracted from tea. Liver is the main organ responsible for the metabolism of TP. Some work has been done in the field of TP modulation or interaction with drug metabolizing enzymes. However, until now, no one could give a clear explanation for this.

Research frontiers

TP are a large and diverse class of compounds extracted from tea. Liver is the main organ responsible for the metabolism of TP. Some work has been done in the field of TP modulation or interaction with drug metabolizing enzymes. However, until now, no one could give a clear explanation for this. The research hotspot is to investigate the effects of TP on CYP450 and CYPb expression in livers of male mice. Whether the protective effect of TP on paracetamol-induced hepatotoxicity in mice is related with their effect on CYP450 was studied.

Innovations and breakthroughs

The protective effect of TP on paracetamol-induced hepatotoxicity was found to be related with their suppressive effect on CYP450 expression.

Terminology

Paracetamol-induced hepatotoxicity: When a normal dose is used, paracetamol is metabolized extensively by conjugation with sulphate and glucuronic acid. A small fraction of paracetamol is subjected to oxidation reactions catalyzed by CYP450 enzymes in the liver, resulting in generation of NAPQI, a highly electrophilic metabolite that triggers the ensuing liver damage.

Peer review

This is a good descriptive study in which the authors gave a clear explanation of the effect of TP on the expression of CYP450. CYP450 and CYP1A2 in liver of mice at both protein and mRNA levels. The interesting results suggest that TP can significantly attenuate paracetamol-induced hepatic injury, which is closely related with their suppressive effect on CYP450 expression.
Effects of long-term tea polyphenols consumption on hepatic microsomal drug-metabolizing enzymes and liver function in Wistar rats. World J Gastroenterol 2003; 9: 2742-2744

Inhibition of colorectal carcinoma induced by 1, 2-dimethylhydrazine in mice with tea polyphenols. Zhonghua Yufang Yixue Zazhi 1995; 29: 356-359

Liang TT, Liang NS, Li Y, Yang F, Lu Y, Meng ZQ, Zhang TE, Feigenbaum L, Gonzalez FJ. The cyp2e1-humanized transgenic mouse: role of cyp2e1 in acetaminophen hepatotoxicity. Drug Metab Dispos 2005; 33: 449-457

Joshua JL, Lasker JM, Lieber CS, Black M. Acetaminophen activation by human liver cytochromes P450HE1 and P450IA2. Arch Biochem Biophys 1989; 271: 270-283

Jaeckeh K, Knight TR, Baj ML. The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol Lett 2003; 144: 279-288

Soudi M, Parquet M, Férézou J, Lutton C. Modulation of cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase activities by steroids and physiological conditions in hamster. Life Sci 1999; 64: 1585-1593

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-275

Liu GT. Empirical method of enzymology. In: Xu SY, Bian RL, Chen X. Pharmacological empirical methodology. Beijing: Renmin Hygiene Publishing Company, 2001: 513

Hu YZ, Yao TW. In vitro metabolism and inductive or inhibitive effect of DL111 on rat cytochrome P450A enzyme. Chem Biol Interact 2004; 147: 109-117

Oz HS, McClain CJ, Nagasawa HT, Ray MB, de Villiers WJ, Chen TS. Diverse antioxidants protect against acetaminophen hepatotoxicity. J Biochem Mol Toxicol 2004; 18: 361-368

Dahlin DC, Miwa GT, Lu AY, Nelson SD. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 1984; 81: 1327-1331

Lee SS, Buters JT, Pineau T, Fernandez-Salgueso P, Gonzalez FJ. Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem 1996; 271: 12063-12067

Genter MB, Liang KC, Gu J, Ding X, Negishi M, McKinnon RA, Nebert DW. Role of CYP2A5 and 2G1 in acetaminophen metabolism and toxicity in the olfactory mucosa of the Cyp1a2(-/-) mouse. Biochem Pharmacol 1998; 55: 1819-1826

Soehn OS, Surace A, Fiala ES, Richie JP Jr, Colosimo S, Zang E, Weisburger JH. Effects of green and black tea on hepatic xenobiotic metabolizing systems in the male F344 rat. Xenobiotica 1994; 24: 119-127

Chen L, Bondoc FY, Lee MJ, Hussein AH, Thomas PE, Yang CS. Caffeine induces cytochrome P450A2: induction of CYP1A2 by tea in rats. Drug Metab Dispos 1996; 24: 529-533

Effects of long-term tea polyphenols consumption on hepatic microsomal drug-metabolizing enzymes and liver function in Wistar rats. World J Gastroenterol 2003; 9: 2742-2744

Inhibition of colorectal carcinoma induced by 1, 2-dimethylhydrazine in mice with tea polyphenols. Zhonghua Yufang Yixue Zazhi 1995; 29: 356-359

Liang TT, Liang NS, Li Y, Yang F, Lu Y, Meng ZQ, Zhang TE, Feigenbaum L, Gonzalez FJ. The cyp2e1-humanized transgenic mouse: role of cyp2e1 in acetaminophen hepatotoxicity. Drug Metab Dispos 2005; 33: 449-457

Joshua JL, Lasker JM, Lieber CS, Black M. Acetaminophen activation by human liver cytochromes P450HE1 and P450IA2. Arch Biochem Biophys 1989; 271: 270-283

Jaeckeh K, Knight TR, Baj ML. The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol Lett 2003; 144: 279-288

Soudi M, Parquet M, Férézou J, Lutton C. Modulation of cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase activities by steroids and physiological conditions in hamster. Life Sci 1999; 64: 1585-1593

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-275

Liu GT. Empirical method of enzymology. In: Xu SY, Bian RL, Chen X. Pharmacological empirical methodology. Beijing: Renmin Hygiene Publishing Company, 2001: 513

Hu YZ, Yao TW. In vitro metabolism and inductive or inhibitive effect of DL111 on rat cytochrome P450A enzyme. Chem Biol Interact 2004; 147: 109-117

Oz HS, McClain CJ, Nagasawa HT, Ray MB, de Villiers WJ, Chen TS. Diverse antioxidants protect against acetaminophen hepatotoxicity. J Biochem Mol Toxicol 2004; 18: 361-368

Dahlin DC, Miwa GT, Lu AY, Nelson SD. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 1984; 81: 1327-1331

Lee SS, Buters JT, Pineau T, Fernandez-Salgueso P, Gonzalez FJ. Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem 1996; 271: 12063-12067

Genter MB, Liang KC, Gu J, Ding X, Negishi M, McKinnon RA, Nebert DW. Role of CYP2A5 and 2G1 in acetaminophen metabolism and toxicity in the olfactory mucosa of the Cyp1a2(-/-) mouse. Biochem Pharmacol 1998; 55: 1819-1826

Soehn OS, Surace A, Fiala ES, Richie JP Jr, Colosimo S, Zang E, Weisburger JH. Effects of green and black tea on hepatic xenobiotic metabolizing systems in the male F344 rat. Xenobiotica 1994; 24: 119-127

Chen L, Bondoc FY, Lee MJ, Hussein AH, Thomas PE, Yang CS. Caffeine induces cytochrome P450A2: induction of CYP1A2 by tea in rats. Drug Metab Dispos 1996; 24: 529-533