Non-negatively constrained least squares and parameter choice by
the residual periodogram for the inversion of dielectric relaxation
spectra: Supplementary Materials

Jakob Hansena, Jarom Hoguea, Grant Sandera, Rosemary Renauta,*

aSchool of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804, USA

Abstract

This document contains supplementary derivations and discussions not provided in the sub-
mitted paper. Additional results for the NCP and L-Curve comparisons with higher noise
levels are given.

\textit{Keywords:} Inverse problem, nonnegative least squares, regularization, ill-posed

\textit{2000 MSC:} 65F10, 45B05, 65R32

1. Tables for the NLS Fitting

To carry out the NLS fitting data were chosen to provide aligned DRTs in s-space. To
obtain this we note that the lognormal DRT is given by

\[g_{\text{LN}}(t|\mu, \sigma) = \frac{1}{t\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln(t) - \mu)^2}{2\sigma^2}\right). \]

It is centered at \(t_0 = \exp(\mu - \sigma^2) \) and can be written in terms of \(t_0 \). We have

\[\begin{align*}
 \ln(t_0) &= \mu - \sigma^2 \\
 \mu &= \ln(t_0) + \sigma^2 \\
 \ln(t) - \mu &= \ln(t) - \ln(t_0) - \sigma^2 = \ln(t/t_0) - \sigma^2 \\
 \frac{(\ln(t) - \mu)^2}{2\sigma^2} &= \frac{(\ln(t/t_0) - \sigma^2)^2}{2\sigma^2} \\
 &= \frac{(\ln(t/t_0) - \sigma^2)^2}{\sqrt{2}\sigma}.
\end{align*} \]
Let $s = \ln(t/t_0)$ then

$$g_{\text{LN}}(t|\mu, \sigma) = \frac{1}{t\sigma\sqrt{2\pi}} \exp\left(-\frac{(s - \sigma^2)^2}{2\sigma}\right)$$

$$= \frac{1}{t_0\sigma\sqrt{2\pi}} \exp\left(-\frac{(s - \sigma^2)^2}{2\sigma}\right)$$

$$f_{\text{LN}}(s) = \frac{1}{t_0\sigma\sqrt{2\pi}} \exp\left(-\frac{(s^4 + s^2)}{2\sigma^2}\right)$$

At $t = t_0$ $s = 0$ and

$$g_{\text{LN}}(t|\mu, \sigma) = f_{\text{LN}}(0) = \frac{1}{t_0\sigma\sqrt{2\pi}} \exp\left(-\frac{\sigma^2}{2}\right)$$

We consider the Cole-Cole

$$g_{\text{RQ}}(t|t_0, \beta) = \frac{1}{2\pi t} \frac{\sin \beta \pi}{\cosh \left(\beta \ln \frac{t}{t_0}\right) + \cos \beta \pi}$$

$$f_{\text{RQ}}(s) = \frac{1}{2\pi t_0} \frac{\sin \beta \pi \exp(-|s|)}{\cosh (\beta s) + \cos \beta \pi}$$

Suppose that the center points t_0 are the same in each case. In (1.10) when $s = 0$

$$f_{\text{RQ}}(0) = \frac{1}{2\pi t_0} \frac{\sin \beta \pi}{1 + \cos \beta \pi}$$

$$f_{\text{RQ}}(0) = f_{\text{LN}}(0) = \frac{1}{2\pi t_0} \frac{\sin \beta \pi}{1 + \cos \beta \pi} = \frac{1}{t_0\sigma\sqrt{2\pi}} \exp\left(-\frac{\sigma^2}{2}\right)$$

$$\frac{\sin \beta \pi}{1 + \cos \beta \pi} = \frac{\sqrt{2\pi}}{\sigma} \exp\left(-\frac{\sigma^2}{2}\right)$$

$$\tan\left(\frac{\beta \pi}{2}\right) = \frac{\sqrt{2\pi}}{\sigma} \exp\left(-\frac{\sigma^2}{2}\right)$$

$$\frac{\beta \pi}{2} = \arctan\left(\frac{\sqrt{2\pi}}{\sigma} \exp\left(-\frac{\sigma^2}{2}\right)\right)$$

$$\beta = \frac{2}{\pi} \arctan\left(\frac{\sqrt{2\pi}}{\sigma} \exp\left(-\frac{\sigma^2}{2}\right)\right)$$

The parameters for the fitting were chosen to create matching DRTs as given above. The results here expand on the paper in that more noise levels are given. The data are initialized for the LN fitting with t_0 from $1/\omega_0(\text{peak})$, see Section 2 and $\sigma_0 = .69$, with scale = 1. The bounds prescribed are $0 < t_0 < 100$, $.1 < \sigma < 1$ and $0 < \text{scale} < 1.1$. For the RQ fitting the equivalent information is $t_0 = 1/\omega_0(\text{peak})$, $\beta_0 = .8$, and scale = 1, with bounds $0 < t_0 < 100$, $.1 < \beta < 1$ and $0 < \text{scale} < 1.1$.

2
2. Peaks in Z_2

Here we use $g(t)$ to refer to the t-space function and use $g_1(t) = tg(t)$, to refer to the s-space function. Using the Log-normal model, 3 simulations are used. Also, 3 simulations were used for the RQ model. The simulation parameters are shown in Table 3.

Table 3: Simulation Parameters

RQ simulations	β	t_0	scale
A-RQ	[0.8]	$e^{-1.5}$	[1]
B-RQ	[0.7, 0.5]	e^{-4}, e^{0}	[0.5, 0.5]
C-RQ	[0.8, 0.6]	$e^{-1.5}$, e^{-5}	[0.5, 0.5]

Log-normal simulations	μ	s	scale
A-LN	[−3.5]	[0.8]	[1]
B-LN	[−7, 1]	log(1.7), log(1.5)	[0.7, 0.3]
C-LN	[−5, −3.25]	log(1.7), log(1.5)	[0.7, 0.3]

2.1. Correlations

When there is one process, or multiple processes spread far enough in time, there is a correlation between the imaginary part of impedance and the time of the process. The ω values corresponding to peaks in Z_2, the imaginary part of impedance, are the reciprocals of
the times of the processes. That is \(t^*_i = 1/\omega_i \) where \(t^*_i \) is the time of the \(i^{th} \) process and \(\omega_i \) is the \(i^{th} \) frequency value corresponding to a peak in \(Z_2 \).

Analytically, \(Z_1 \) is monotonically decreasing under the assumption that \(g(t) \), and thus \(g_1(t) \), is nonnegative and \(\omega \) is increasing. We have

\[
Z_1(\omega) = \int_{0}^{\infty} \frac{g_1(t)}{1 + \omega^2 t^2} dt
\]

For each \(n \in \{2, 3, \ldots, N\} \) it follows that \(Z_1(\omega_n) \leq Z_1(\omega_{n-1}) \) since for \(t \geq 0 \) we have

\[
0 \leq \frac{g_1(t)}{1 + \omega_{n-1}^2 t^2} \leq \frac{g_1(t)}{1 + \omega_n^2 t^2}
\]

and thus

\[
Z_1(\omega_n) = \int_{0}^{\infty} \frac{g_1(t)}{1 + \omega_{n-1}^2 t^2} dt \leq \int_{0}^{\infty} \frac{g_1(t)}{1 + \omega_n^2 t^2} dt = Z_1(\omega_{n-1})
\]

Therefore, since \(Z_1 \) is monotonically decreasing and peaks in \(Z_2 \) correspond to peaks in \(g_1(t) \) if the processes are spread apart far enough, it follows that if the processes are spread far enough apart the peaks in \(g_1(t) \) will be equal to the reciprocal of the \(\omega \) values corresponding to peaks in the Nyquist Plot. Simply stated, \(\omega \) values for peaks in \(Z_2 \) are the same values for peaks in the Nyquist plot, and the reciprocal of these \(\omega \) values are the time points in which the processes of \(g_1(t) \) peak. This is shown in Figures 1(a), 1(c), 1(b), 1(d).

In the case where there are multiple processes but that are not spread far enough apart, \(Z_2 \) has one peak rather than two. Due to this, the Nyquist Plot will also only have one peak and the predicted \(t \) value for process peak will lie somewhere between the two processes. This is shown in Figure 1(e) and Figure 1(f).
3. Right Preconditioning

Consider the quadrature rule for the function \(g(t) = g_1(t)/t \)

\[
\int_0^\infty h(\omega, t) \frac{g_1(t)}{t} \, dt \approx \sum_{i=1}^{N-1} \Delta t_i \frac{h(\omega, t_i) g_1(t_i)}{t_i} + h(\omega, t_{i+1}) \frac{g_1(t_{i+1})}{t_{i+1}} + \frac{1}{2} = \sum_{i=1}^N w_i h(\omega, t_i) \frac{g_1(t_i)}{t_i}
\]
where

\[
 w_i = \begin{cases}
 \Delta t_1/2 & i = 1 \\
 (\Delta t_{i-1} + \Delta t_i)/2 & 2 \leq i \leq N - 1 \\
 \Delta t_{N-1}/2 & i = N
 \end{cases}
\]

Dividing each \(w_i \) by \(t_i \) to move the factor of \(1/t \) away from \(g_1(t) \) gives

\[
 w_i/t_i = \begin{cases}
 \frac{t_2-t_1}{2t_1} & i = 1 \\
 \frac{t_{i+1}-t_i}{2t_i} & 2 \leq i \leq N - 1 \\
 \frac{t_{N-1}}{2t_N} & i = N
 \end{cases}
\]

Now for the logarithmic spacing (base 10) for the \(t \) we have \(t_i = t_{i-1}10^{\Delta t} \) hence

\[
 w_i/t_i = \begin{cases}
 \frac{10^{\Delta t} - 1}{2} = \frac{\sinh(\ln(10)\Delta t)}{1 + 10^{-\Delta t}} & i = 1 \\
 \frac{10^{\Delta t} - 10^{-\Delta t}}{2} = \frac{\sinh(\ln(10)\Delta t)}{1 + 10^{\Delta t}} & 2 \leq i \leq N - 1 \\
 \frac{10^{-\Delta t}}{2} & i = N
 \end{cases}
\]

Now we want \(\exp(s_i) = t_i \) so that the sampling matches from \(s \) to \(t \). Then \(s_{i+1} - s_i = \ln t_{i+1} - \ln t_i = \ln(10)(\log(t_{i+1}) - \log(t_i)) = \ln(10)\Delta t \), or \(\Delta t = \Delta s/\ln(10) \). Thus

\[
 w_i/t_i = \sinh(\Delta s) \begin{cases}
 \frac{1}{1+e^{-\Delta s}} = a_1 & i = 1 \\
 1 = a_i & 2 \leq i \leq N - 1 \\
 \frac{1}{1+e^{\Delta s}} = a_N & i = N
 \end{cases}
\]

and we have the quadrature formula

\[
 \sum_{i=1}^N w_i h(\omega, t_i) \frac{g_1(t_i)}{t_i} = \sinh(\Delta s) \sum_{i=1}^N a_i h(\omega, \exp(s_i)) g_1(\exp(s_i)). \tag{3.1}
\]

Meanwhile, if we first perform the change of variables \(s = \ln(t) \) and then do the same trapezoidal quadrature with equally spaced intervals, we have with \(f(s) = g_1(\exp(s)) \)

\[
 \int_{-\infty}^{\infty} h_1(\omega, s) f(s) \, ds \approx \sum_{i=1}^N v_i h_1(\omega, s_i) f(s_i),
\]

where

\[
 v_i = \begin{cases}
 \Delta s/2 & i = 1 \\
 \Delta s & 2 \leq i \leq N - 1 \\
 \Delta s/2 & i = N
 \end{cases}
\]

4. Numerical Results for NNLS Fitting

In the tables the numbers are given as triples mean(standard deviation) and number of samples out of 100 \((\mu(\sigma), n)\) used in calculating the mean and variance. When the third number is missing, all cases in the table generated results with relative errors less than 100%. We briefly list the key observations.
LC-NCP A4 Tables 4 and 5 compare the results using matrix A_4 with increasing noise levels, for the two parameter choice criteria, L-Curve and NCP. As anticipated the solutions are more robust for lower noise (fewer missed samples in calculations of mean) for both NCP and LC. On the other hand, whereas the decrease in reliability is significant for the LC, the NCP starts out worse for low noise but is far more robust to increasing noise, indeed better than the LC for higher noise for both the I and L_1 operators. For L_2 the NCP also drops off in robustness. Keep in mind when comparing the means and standard deviations, that when taken over a smaller set, it does mean a better result, but the reduction of samples is significant in estimating how often the method fails. Hence comparable values $(\mu(\sigma))$ with larger n suggest the case with larger n is more robust. For low noise 0.1% the L-Curve results are best. A clear case for one operator over another cannot be made. It is clear that the approach is more reliable for the LN fitting than the RQ fitting, probably due to the more significant truncation of the RQ processes than the LN processes as $t \to 0$.

LC-NCP A3 Tables 7 and 8 compare the results using matrix A_3 with increasing noise levels, for the two parameter choice criteria, L-Curve and NCP. The conclusions are similar for the A_4 case but overall the results for higher noise are less robust for the LC but comparable for NCP. It is interesting that even though A_3 has significantly better conditioning than A_4 the resolution for A_4 may be beneficial. We deduce that if A_4 wins completely for just one case, and other results are comparable, that is sufficient to indicate that one should use A_4.

LC-NCP A3 Tables 9-10 provide the results equivalent to those given for matrix A_4 in the paper, namely almost the same as Tables 7 and 8 but including the lower noise level .03% in place of the 5% results. Note that the times are the total times for the runs over all entries in a given table. Generally the NCP is slightly cheaper to run and A_4 is considerably more expensive than A_3. However, given the problem size and small numbers of experiments the timings are not significant for the given application. From these tables the results for 1% noise make it clear that the NCP is more robust than the LC. This is borne out also for the A_4 matrices.

LC A_3 and A_4 Tables 12-13 compare the LS solutions for matrices A_3 and A_4 for the s—quadrature matrices. These results demonstrate the slightly greater stability of the A_4 matrices. We see that the increased resolution provides results with an often reduced variance.

LC A_4 for LS and NNLS Tables 4-13 For the comparison of NNLS and LS results it is apparent that for stable solutions at higher noise levels the overall mean errors are reduced. On the other hand the LS is more stable in generating solutions with relative errors consistently less than 100%. The LS algorithm is so fast that one might use an LC algorithm and if the solution appears to be unstable, the solution should be then found with NNLS. These results complement the similar paper in the table, but include instead 5% noise over the .03% noise.

These observations concerning the comparisons of the two matrix sizes confirms the results in the original paper, that the extra resolution of A_4 can be helpful.
Table 4: NNLS: Matrix A_4 using the L-Curve Criterion. Higher noise.

Simulation	Method	0.1%	1%	5%
(1,RQ)	NNLS ($L = I$)	19(2.3)99	20(3.7)65	35(3.7)66
	NNLS ($L = L_1$)	12(0.8)	23(1.8)77	38(3.2)68
	NNLS ($L = L_2$)	13(0.5)	25(2.7)91	39(3.8)57
(1,LN)	NNLS ($L = I$)	8(1.9)	14(3.0)66	33(5.5)69
	NNLS ($L = L_1$)	4(1.2)	12(2.5)74	41(3.8)67
	NNLS ($L = L_2$)	5(0.4)	12(3.0)93	27(4.3)71
(2,RQ)	NNLS ($L = I$)	10(2.2)99	16(3.5)76	27(3.4)66
	NNLS ($L = L_1$)	8(0.8)	22(0.8)86	32(2.0)68
	NNLS ($L = L_2$)	9(0.8)	23(0.5)94	26(2.9)58
(2,LN)	NNLS ($L = I$)	7(1.8)99	13(3.4)77	27(3.6)69
	NNLS ($L = L_1$)	4(1.0)	22(1.6)85	34(2.0)62
	NNLS ($L = L_2$)	5(0.7)	26(0.5)95	27(2.3)58
(3,RQ)	NNLS ($L = I$)	14(3.1)99	20(3.4)75	34(3.8)68
	NNLS ($L = L_1$)	9(0.9)	23(1.5)74	37(3.2)68
	NNLS ($L = L_2$)	12(0.7)	25(1.1)89	30(4.3)69
(3,LN)	NNLS ($L = I$)	9(1.9)99	15(2.6)74	33(4.3)77
	NNLS ($L = L_1$)	5(1.1)	14(2.1)82	42(3.7)75
	NNLS ($L = L_2$)	5(0.4)	14(2.6)90	29(3.1)72

Table 5: NNLS: Matrix A_4 using the NCP Criterion. Higher noise.

Simulation	Method	0.1%	1%	5%
(1,RQ)	NNLS ($L = I$)	14(8.3)91	23(4.0)83	39(7.9)80
	NNLS ($L = L_1$)	14(9.1)92	24(4.0)86	42(8.1)80
	NNLS ($L = L_2$)	14(8.5)92	25(3.9)88	31(8.2)60
(1,LN)	NNLS ($L = I$)	6(1.3)82	18(9.8)81	36(7.4)78
	NNLS ($L = L_1$)	6(1.1)88	16(10.0)83	37(8.7)81
	NNLS ($L = L_2$)	6(0.9)88	15(10.0)85	29(5.0)71
(2,RQ)	NNLS ($L = I$)	9(4.9)88	19(2.7)85	30(6.7)79
	NNLS ($L = L_1$)	10(5.2)88	22(2.7)83	33(6.5)78
	NNLS ($L = L_2$)	10(4.5)91	22(2.6)82	26(6.4)55
(2,LN)	NNLS ($L = I$)	6(4.5)84	18(3.4)81	31(5.0)75
	NNLS ($L = L_1$)	7(5.1)86	19(4.4)82	34(5.3)78
	NNLS ($L = L_2$)	7(4.9)87	19(5.0)83	28(4.3)63
(3,RQ)	NNLS ($L = I$)	11(8.1)87	22(3.5)84	38(7.5)81
	NNLS ($L = L_1$)	11(7.5)90	24(3.5)86	40(7.5)79
	NNLS ($L = L_2$)	11(7.9)92	25(3.4)85	31(8.7)53
(3,LN)	NNLS ($L = I$)	7(1.8)86	18(4.6)84	37(5.6)78
	NNLS ($L = L_1$)	7(1.4)85	18(4.7)86	40(6.5)80
	NNLS ($L = L_2$)	6(1.4)87	17(4.8)85	30(3.1)68
Table 6: Percentage relative errors for NNLS with matrix A_4. NCP, Lower noise Time 25677s

Simulation	Method	0.1%	0.3%	1%
(1,RQ)	NNLS ($L = I$)	14(8.3)91	17(2.8)88	23(4.8)83
	NNLS ($L = L_1$)	14(9.1)92	17(2.5)90	24(4.8)86
	NNLS ($L = L_2$)	14(8.5)92	17(2.8)90	25(3.9)88
(1,LN)	NNLS ($L = I$)	6(1.3)82	11(4.8)80	18(9.8)81
	NNLS ($L = L_1$)	6(1.1)88	10(5.8)85	16(10)83
	NNLS ($L = L_2$)	6(0.9)88	9(5.5)86	15(10)85
(2,RQ)	NNLS ($L = I$)	9(4.9)88	14(8.8)84	19(2.7)85
	NNLS ($L = L_1$)	10(5.2)88	16(8.1)90	22(2.7)83
	NNLS ($L = L_2$)	10(4.5)91	16(7.3)90	22(2.6)82
(2,LN)	NNLS ($L = I$)	6(4.5)84	11(3.1)83	18(3.4)81
	NNLS ($L = L_1$)	7(5.1)86	11(3.5)84	19(4.4)82
	NNLS ($L = L_2$)	7(4.9)87	11(3.3)85	19(5.3)83
(3,RQ)	NNLS ($L = I$)	11(8.1)87	15(2)85	22(3.5)84
	NNLS ($L = L_1$)	11(7.5)90	16(2.2)89	24(3.5)86
	NNLS ($L = L_2$)	11(7.9)92	17(2.1)90	25(3.4)85
(3,LN)	NNLS ($L = I$)	7(1.8)86	12(7.2)86	18(4.6)84
	NNLS ($L = L_1$)	7(1.4)85	11(8)87	18(4.7)86
	NNLS ($L = L_2$)	6(1.4)87	10(8.8)87	17(4.8)85

Table 7: NNLS: Matrix A_3 using the L-Curve Criterion. Higher noise.

Simulation	Method	0.1%	1%	5%
(1,RQ)	NNLS ($L = I$)	17(1.7)76	20(3.3)71	35(4.3)70
	NNLS ($L = L_1$)	13(0.8)87	23(1.8)63	38(3.2)64
	NNLS ($L = L_2$)	13(0.6)99	26(3.5)65	34(5.6)56
(1,LN)	NNLS ($L = I$)	9(8.2)81	14(3.1)72	34(4.9)62
	NNLS ($L = L_1$)	4(1.2)92	12(2.4)68	41(3.4)55
	NNLS ($L = L_2$)	5(0.4)99	12(3.1)67	35(4.4)51
(2,RQ)	NNLS ($L = I$)	10(2.3)71	16(3.1)58	27(3.3)62
	NNLS ($L = L_1$)	8(0.8)81	22(1.0)62	32(2.3)68
	NNLS ($L = L_2$)	9(0.7)96	25(0.8)66	28(1.3)58
(2,LN)	NNLS ($L = I$)	7(2.0)76	13(3.3)56	27(3.7)59
	NNLS ($L = L_1$)	3(1.1)88	22(1.5)61	34(1.9)61
	NNLS ($L = L_2$)	5(0.8)96	28(1.2)67	32(0.9)56
(3,RQ)	NNLS ($L = I$)	14(3.1)79	20(3.4)69	34(3.6)64
	NNLS ($L = L_1$)	9(0.9)88	23(1.5)66	37(2.8)58
	NNLS ($L = L_2$)	13(0.7)99	27(3.0)67	34(2.4)58
(3,LN)	NNLS ($L = I$)	9(2.0)72	15(2.6)56	34(4.3)61
	NNLS ($L = L_1$)	5(1.1)91	14(2.0)58	41(4.0)56
	NNLS ($L = L_2$)	5(0.5)	15(2.7)62	40(2.4)55
Table 8: NNLS: Matrix A_3 using the NCP Criterion. Higher noise.

Simulation	Method	0.1%	1%	5%
(1,RQ)	NNLS ($L = I$)	16(7.3)88	23(4.0)83	39(8.0)81
	NNLS ($L = L_1$)	15(7.4)90	24(4.0)85	42(8.2)80
	NNLS ($L = L_2$)	15(6.9)90	25(4.2)86	38(7.0)74
(1, LN)	NNLS ($L = I$)	6(1.2)85	18(9.6)81	35(7.6)78
	NNLS ($L = L_1$)	6(1.0)88	17(10.0)84	37(8.6)80
	NNLS ($L = L_2$)	6(0.9)88	15(10.2)82	36(9.0)77
(2, RQ)	NNLS ($L = I$)	9(4.9)87	19(2.7)85	30(6.8)81
	NNLS ($L = L_1$)	10(5.3)89	22(2.8)84	33(6.6)78
	NNLS ($L = L_2$)	10(4.7)91	23(3.0)88	29(5.5)67
(2, LN)	NNLS ($L = I$)	6(5.5)83	18(3.5)80	31(4.9)74
	NNLS ($L = L_1$)	7(6.7)85	19(4.4)82	34(5.3)75
	NNLS ($L = L_2$)	7(6.1)86	20(4.9)83	32(4.8)68
(3, RQ)	NNLS ($L = I$)	11(3.2)87	22(3.6)84	38(7.7)79
	NNLS ($L = L_1$)	11(2.4)90	24(3.6)87	41(7.7)79
	NNLS ($L = L_2$)	10(1.6)91	25(3.6)87	36(6.8)70
(3, LN)	NNLS ($L = I$)	7(1.5)85	18(4.6)84	37(5.6)78
	NNLS ($L = L_1$)	7(1.2)85	17(4.7)85	40(6.5)80
	NNLS ($L = L_2$)	6(1.0)87	17(4.6)85	38(4.8)74

Table 9: NNLS: Matrix A_3 using the L-Curve Criterion. Total time 8790s for 100 runs.

Simulation	Method	0.1%	0.3%	1%
(1, RQ)	NNLS ($L = I$)	17 (1.7)76	17 (3.3)64	20 (3.3)71
	NNLS ($L = L_1$)	13 (0.8)87	15 (1.3)69	23 (1.8)63
	NNLS ($L = L_2$)	13 (0.6)99	18 (2.8)76	26 (3.5)65
(1, LN)	NNLS ($L = I$)	9 (8.2)81	10 (2.9)71	14 (3.1)72
	NNLS ($L = L_1$)	4 (1.2)92	9 (10)79	12 (2.4)68
	NNLS ($L = L_2$)	5 (0.4)99	7 (0.8)85	12 (3.1)67
(2, RQ)	NNLS ($L = I$)	10 (2.3)71	11 (2.8)65	16 (3.1)58
	NNLS ($L = L_1$)	8 (0.8)81	14 (1.1)64	22 (1.6)62
	NNLS ($L = L_2$)	9 (0.7)96	18 (2.1)76	25 (0.8)66
(2, LN)	NNLS ($L = I$)	7 (2.7)6	8 (2.5)77	13 (3.3)56
	NNLS ($L = L_1$)	3 (1.1)88	9 (1.2)64	22 (1.5)61
	NNLS ($L = L_2$)	5 (0.8)96	9 (1.5)72	28 (1.2)67
(3, RQ)	NNLS ($L = I$)	14 (3.1)79	16 (2.7)59	20 (3.4)69
	NNLS ($L = L_1$)	9 (0.9)88	15 (1.1)65	23 (1.5)66
	NNLS ($L = L_2$)	13 (0.7)99	17 (1.3)75	27 (3)67
(3, LN)	NNLS ($L = I$)	9 (2.7)62	12 (3.1)62	15 (2.6)56
	NNLS ($L = L_1$)	5 (1.1)91	8 (0.9)73	14 (2.5)58
	NNLS ($L = L_2$)	5 (0.5)	8 (0.9)82	15 (2.7)62
Table 10: NNLS: Matrix A_3 using the NCP Criterion. Total time 6767s for 100 runs.

Simulation	Method	0.1%	0.3%	1%
(1,RQ)	NNLS ($L = I$)	16 (7.3) 88	17 (2.9) 87	23 (4) 83
	NNLS ($L = L_1$)	15 (7.4) 90	17 (3) 90	24 (4) 85
	NNLS ($L = L_2$)	15 (6.9) 90	17 (3) 90	25 (4.2) 86
(1,LN)	NNLS ($L = I$)	6 (1.2) 85	12 (10.8) 83	18 (9.6) 81
	NNLS ($L = L_1$)	6 (1) 88	10 (5.4) 85	17 (10) 84
	NNLS ($L = L_2$)	6 (0.9) 88	10 (10.7) 86	15 (10.2) 82
(2,RQ)	NNLS ($L = I$)	9 (4.9) 87	14 (8.7) 84	19 (2.7) 85
	NNLS ($L = L_1$)	10 (5.3) 89	16 (8.3) 90	22 (2.8) 84
	NNLS ($L = L_2$)	10 (4.7) 91	16 (2.3) 87	23 (3) 88
(2,LN)	NNLS ($L = I$)	6 (5.5) 83	12 (8.9) 83	18 (3.5) 80
	NNLS ($L = L_1$)	7 (6.7) 85	12 (8.9) 85	19 (4.4) 82
	NNLS ($L = L_2$)	7 (6.1) 86	12 (9.9) 85	20 (4.9) 83
(3,RQ)	NNLS ($L = I$)	11 (3.2) 87	15 (2.4) 84	22 (3.6) 84
	NNLS ($L = L_1$)	11 (2.4) 90	16 (2.3) 88	24 (3.6) 87
	NNLS ($L = L_2$)	10 (1.6) 91	17 (2.3) 88	25 (3.6) 87
(3,LN)	NNLS ($L = I$)	7 (1.5) 85	12 (5.5) 85	18 (4.6) 84
	NNLS ($L = L_1$)	7 (1.2) 85	11 (5.5) 86	17 (4.7) 85
	NNLS ($L = L_2$)	6 (1) 87	10 (5.5) 86	17 (4.6) 85

Table 11: Percentage relative errors for NNLS with matrix A_1. L-Curve. Time 41078s

Simulation	Method	0.1%	0.3%	1%
(1,RQ)	NNLS ($L = I$)	19 (2.3) 99	17 (2.8) 90	20 (3.7) 65
	NNLS ($L = L_1$)	12 (0.8)	15 (1.3) 98	23 (1.8) 77
	NNLS ($L = L_2$)	13 (0.5)	17 (3)	25 (2.7) 91
(1,LN)	NNLS ($L = I$)	8 (1.9)	10 (2.8) 89	14 (3.6) 66
	NNLS ($L = L_1$)	4 (1.2)	7 (1) 98	12 (2.5) 74
	NNLS ($L = L_2$)	5 (0.4)	6 (0.8)	12 (3.9) 93
(2,RQ)	NNLS ($L = I$)	10 (2.2) 99	11 (2.7) 88	16 (3.5) 76
	NNLS ($L = L_1$)	8 (0.8)	14 (1) 97	22 (0.8) 86
	NNLS ($L = L_2$)	9 (0.8)	18 (2.1)	23 (0.5) 94
(2,LN)	NNLS ($L = I$)	7 (1.8) 99	8 (2.4) 91	13 (3.4) 77
	NNLS ($L = L_1$)	4 (1)	9 (1.4) 97	22 (1.6) 85
	NNLS ($L = L_2$)	5 (0.7)	9 (1.4)	26 (0.5) 95
(3,RQ)	NNLS ($L = I$)	14 (3.1) 99	15 (2.8) 81	20 (3.4) 75
	NNLS ($L = L_1$)	9 (0.9)	15 (1.1) 95	23 (1.5) 74
	NNLS ($L = L_2$)	12 (0.7)	17 (1)	25 (1.1) 89
(3,LN)	NNLS ($L = I$)	9 (1.9) 99	11 (2.7) 85	15 (2.6) 74
	NNLS ($L = L_1$)	5 (1.1)	8 (1.95)	14 (2.1) 82
	NNLS ($L = L_2$)	5 (0.4)	7 (0.9)	14 (2.6) 90
Table 12: Percentage relative errors for LS with matrix A_3. L-Curve.

Simulation	Method	0.1%	1%	5%
(1,RQ)	LS ($L = I$)	27 (6.8)	24 (4.7)	35 (5.2)
	LS ($L = L_1$)	13 (1.1)	21 (1.8)	38 (3.2)
	LS ($L = L_2$)	40 (5.8)	40 (5.2)	45 (1.2)
(1,LN)	LS ($L = I$)	18 (5.5)	20 (4.4)	35 (5.8)
	LS ($L = L_1$)	6 (1.4)	18 (2.7)	41 (3.7)
	LS ($L = L_2$)	29 (12.9)	29 (12.7)	52 (0.8)
(2,RQ)	LS ($L = I$)	18 (5.5)	20 (4.1)	30 (4.7)
	LS ($L = L_1$)	7 (1.1)	20 (1.3)	31 (2.3)
	LS ($L = L_2$)	24 (2.4)	25 (1.7)	39 (6.6)
(2,LN)	LS ($L = I$)	18 (5.5)	19 (4)	32 (5.2)
	LS ($L = L_1$)	5 (1.2)	21 (2)	34 (2.5)
	LS ($L = L_2$)	27 (4)	28 (3.2)	39 (7.2)
(3,RQ)	LS ($L = I$)	20 (4.9)	22 (4.2)	34 (5.2)
	LS ($L = L_1$)	10 (1.4)	21 (1.9)	37 (2.8)
	LS ($L = L_2$)	25 (2.4)	25 (1.7)	43 (5.9)
(3,LN)	LS ($L = I$)	20 (4.9)	22 (4.2)	34 (5.2)
	LS ($L = L_1$)	10 (1.4)	21 (1.9)	37 (2.8)
	LS ($L = L_2$)	25 (2.4)	25 (1.7)	43 (5.9)

Table 13: Percentage relative errors for LS with matrix A_4. L-Curve.

Simulation	Method	0.1%	1%	5%
(1,RQ)	LS ($L = I$)	18 (3.2)	21 (3.7)	36 (4.2)
	LS ($L = L_1$)	12 (0.9)	24 (1.9)	39 (3)
	LS ($L = L_2$)	42 (2.8)	42 (0.2)	45 (1.3)
(1,LN)	LS ($L = I$)	12 (2.6)	18 (3.9)	37 (4.6)
	LS ($L = L_1$)	5 (1.2)	20 (2.2)	43 (2.9)
	LS ($L = L_2$)	44 (11.5)	44 (10.9)	52 (0.9)
(2,RQ)	LS ($L = I$)	12 (2.6)	18 (3.1)	29 (3.3)
	LS ($L = L_1$)	8 (0.8)	22 (0.9)	33 (1.7)
	LS ($L = L_2$)	26 (1.7)	26 (0.4)	41 (4.2)
(2,LN)	LS ($L = I$)	12 (2.7)	17 (3.3)	31 (3.5)
	LS ($L = L_1$)	5 (1)	24 (1.3)	36 (2.5)
	LS ($L = L_2$)	30 (2.6)	30 (0.8)	43 (7.8)
(3,RQ)	LS ($L = I$)	14 (2.4)	20 (3.4)	34 (3.7)
	LS ($L = L_1$)	9 (0.9)	23 (1.3)	38 (2.4)
	LS ($L = L_2$)	26 (1.5)	27 (0.8)	45 (3.2)
(3,LN)	LS ($L = I$)	12 (2.5)	18 (3.6)	36 (4.2)
	LS ($L = L_1$)	5 (1.2)	23 (2.1)	42 (2.6)
	LS ($L = L_2$)	30 (2.5)	30 (0.8)	50 (5.8)
Table 14: Percentage relative errors for LS with matrix A_4, L-Curve.

Simulation	Method	0.1%	0.3%	1%
(1,RQ)	LS ($L = I$)	18 (3.2)	17 (2.8)	21 (3.7)
	LS ($L = L_1$)	12 (0.9)	15 (1.3)	24 (1.9)
	LS ($L = L_2$)	27 (12)	27 (11.9)	42 (0.2)
(1, LN)	LS ($L = I$)	12 (2.6)	13 (2.5)	18 (3.9)
	LS ($L = L_1$)	5 (1.2)	10 (1.6)	20 (2.2)
	LS ($L = L_2$)	12 (1.7)	12 (1.6)	44 (10.9)
(2, RQ)	LS ($L = I$)	12 (2.6)	13 (2.5)	18 (3.1)
	LS ($L = L_1$)	8 (0.8)	14 (1)	22 (0.9)
	LS ($L = L_2$)	18 (1.9)	18 (1.6)	26 (0.4)
(2, LN)	LS ($L = I$)	12 (2.7)	13 (2.5)	17 (3.3)
	LS ($L = L_1$)	5 (1)	11 (1.5)	24 (1.3)
	LS ($L = L_2$)	14 (3)	14 (2.9)	30 (0.8)
(3, RQ)	LS ($L = I$)	14 (2.4)	15 (2.9)	20 (3.4)
	LS ($L = L_1$)	9 (0.9)	15 (1.1)	23 (1.3)
	LS ($L = L_2$)	16 (1)	17 (1)	27 (0.8)
(3, LN)	LS ($L = I$)	12 (2.5)	13 (2.7)	18 (3.6)
	LS ($L = L_1$)	5 (1.2)	11 (1.5)	23 (2.1)
	LS ($L = L_2$)	13 (1.4)	13 (1.2)	30 (0.8)
5. L-curve and NCP Parameter Choice Comparisons

For each noise realization the following information was recorded: the optimal solution obtained by the NCP and L-curve parameter choice methods, with the optimally found λ_{NCP} and λ_{LC}, and the optimal solution over all 50 choices for λ, with the respective λ_{opt}, as measured with respect to the absolute error in the s space. The geometric means of λ_{NCP} and λ_{LC} were calculated over all 50 noise realizations. The absolute error for each choice of λ was also recorded for each noise realization, and the mean of these absolute errors taken to give an average error for a given λ which can be visualized against λ. In the plots we thus show the average error against λ indicated by the ◦ plot. On the same plot we indicate by the vertical lines the minimum λ_{opt}, and the geometric means for λ_{NCP} and λ_{LC}, as the solid (red), dashed (green) and dot-dashed ◦ (blue) vertical lines, respectively. For each simulation set the same procedure was performed for all smoothing norms L. To demonstrate the dependence of the obtained solution on the optimal parameter, an example noise realization was chosen in each case and the solutions found using the chosen optimal parameters and compared with the exact solution. These are indicated by the solid line (black), ◦ (red), × (green) and ◦ (blue), for the exact, λ_{opt}, λ_{NCP}, and λ_{LC} solutions, respectively.

In the figures we compare the parameter choice methods. For each set of results the first row, Figures (a)-(c) in each case indicate the mean error results for the different smoothing norms, and (d)-(f) demonstrate the sensitivity, or lack thereof, of the solution to the choice of λ near the optimum. We briefly list the key observations.

$L = I$ In this case the NCP results are more often close to the optimum

$L = L_1$ Except for high noise the LC results can be close to the optimum

$L = L_2$ It is hard to distinguish between the LC and NCP results in terms of overall best match to the optimal solution

High noise It is clear that the results with 5% noise are not as good. Moreover the LC results are consistently under smoothed for all operator norms.

A_3 or A_4 The parameter choice methods perform quite similarly for both matrices. The lack of resolution of A_3 is now more apparent.

NNLS Algorithm Two different algorithms for NNLS are investigated in Sections 5.2 and 5.4, the SBB algorithm in [15] and the CVX algorithm in [8, 9].

NNLS SBB It is immediate from Figures 7-12 that the constrained Barzilai-Borwein algorithm, which was obtained with [16] creates additional difficulties for finding the optimum choice of λ when the range of λ includes small values. The obtained solutions as $\lambda \rightarrow 0$ tend to solutions with constant error, but when regarded in the solution space, the Tikhonov regularization is not sufficiently applied so that solutions have theoretical low error, but are insufficiently smoothed. This is a feature of the fact that the two norm of the error does not always provide a good mechanism for finding a good solution. Indeed, we know that as λ decreases less smoothing is applied to the solution, and hence on the average the solution may have less error, (the two norm
error), but provides a noisier estimate of the actual solution. No additional results are provided for this algorithm.

NNLS CVX Results for the CVX implementation are provided in the original article, [10]. They demonstrate for low noise results that are comparable to the use of the \texttt{lsqnonneg} algorithm. Here further results in Figures 19-24 show that robustness holds for increasing noise levels.
5.1. Examples: .1% noise matrix A_3 NNLS

Figure 1: Mean error and example NNLS solutions. .1% noise. RQ-A data set matrix A_3

Figure 2: Mean error and example NNLS solutions. .1% noise. RQ-B data set matrix A_3
Figure 3: Mean error and example NNLS solutions. .1\% noise. RQ-C data set matrix A_3

Figure 4: Mean error and example NNLS solutions. .1\% noise. LN-A data set matrix A_3
Figure 5: Mean error and example NNLS solutions. .1% noise. LN-B data set matrix A_3

Figure 6: Mean error and example NNLS solutions. .1% noise. LN-C data set matrix A_3
5.2. Examples: Noise level .1% matrix A_4 NNLS with SBB Algorithm

Figure 7: NNLS solutions of RQ-A matrix A_4. Noise level 1% using the SBB algorithm.

Figure 8: NNLS solutions of RQ-B matrix A_4. Noise level .1% using the SBB algorithm.
Figure 9: NNLS solutions of RQ-C matrix A_4. Noise level .1% using the SBB algorithm.

Figure 10: NNLS solutions of LN-A matrix A_4. Noise level .1% using the SBB algorithm.
Figure 11: NNLS solutions of LN-B matrix A_4. Noise level .1% using the SBB algorithm.

Figure 12: NNLS solutions of LN-C matrix A_4. Noise level .1% using the SBB algorithm.
5.3. Examples: Noise level 1% matrix A_4 NNLS

Figure 13: NNLS solutions of RQ-A matrix A_4. Noise level 1%.

Figure 14: NNLS solutions of RQ-B matrix A_4. Noise level 1%.
Figure 15: NNLS solutions of RQ-C matrix A_4. Noise level 1%.

Figure 16: NNLS solutions of LN-A matrix A_4. Noise level 1%.
Figure 17: NNLS solutions of LN-B matrix A_4. Noise level 1%.

Figure 18: NNLS solutions of LN-C matrix A_4. Noise level 1%.
5.4. Examples: Noise level 1% matrix A_4 NNLS with CVX

Figure 19: NNLS solutions of RQ-A matrix A_4. Noise level 1%. Method CVX

Figure 20: NNLS solutions of RQ-B matrix A_4. Noise level 1%. Method CVX
Figure 21: NNLS solutions of RQ-C matrix A_4. Noise level 1%. Method CVX

Figure 22: NNLS solutions of LN-A matrix A_4. Noise level 1%. Method CVX
Figure 23: NNLS solutions of LN-B matrix A_4. Noise level 1%. Method CVX

Figure 24: NNLS solutions of LN-C matrix A_4. Noise level 1%. Method CVX
5.5. Examples: Noise level 1% matrix A_3 NNLS

Figure 25: NNLS solutions of RQ-A matrix A_3. Noise level 1%.

Figure 26: NNLS solutions of RQ-B matrix A_3. Noise level 1%.
Figure 27: NNLS solutions of RQ-C matrix A_3. Noise level 1%.

Figure 28: NNLS solutions of LN-A matrix A_3. Noise level 1%.
Figure 29: NNLS solutions of LN-B matrix A_3. Noise level 1%.

Figure 30: NNLS solutions of LN-C matrix A_3. Noise level 1%.
5.6. Examples: Noise level 5% A_4 NNLS

Figure 31: NNLS solutions of RQ-A matrix A_4. Noise level 5%.

Figure 32: NNLS solutions of RQ-B matrix A_4. Noise level 5%.
Figure 33: NNLS solutions of RQ-C matrix A_4. Noise level 5%.

Figure 34: NNLS solutions of LN-A matrix A_4. Noise level 5%.
Figure 35: NNLS solutions of LN-B matrix A_4. Noise level 5%.

Figure 36: NNLS solutions of LN-C matrix A_4. Noise level 5%.
5.7. Noise level 5% A₃ NNLS

Figure 37: NNLS solutions of RQ-A matrix A₃. Noise level 5%.

Figure 38: NNLS solutions of RQ-B matrix A₃. Noise level 5%.
Figure 39: NNLS solutions of RQ-C matrix A_3. Noise level 5%.

Figure 40: NNLS solutions of LN-A matrix A_3. Noise level 5%.
Figure 41: NNLS solutions of LN-B matrix A_3. Noise level 5%.

Figure 42: NNLS solutions of LN-C matrix A_3. Noise level 5%.
5.8. Results using LS A_3 Noise level .1%

Figure 43: Mean error and example LS solutions. .1% noise. RQ-A data set matrix A_3

Figure 44: Mean error and example LS solutions. .1% noise. RQ-B data set matrix A_3
Figure 45: Mean error and example LS solutions. 1% noise. RQ-C data set matrix A_3

Figure 46: Mean error and example LS solutions. 1% noise. LN-A data set matrix A_3
(a) $L = I$
(b) $L = L_1$
(c) $L = L_2$

(d) $L = I$
(e) $L = L_1$
(f) $L = L_2$

Figure 47: Mean error and example LS solutions. .1% noise. LN-B data set matrix A_3

(a) $L = I$
(b) $L = L_1$
(c) $L = L_2$

(d) $L = I$
(e) $L = L_1$
(f) $L = L_2$

Figure 48: Mean error and example LS solutions. .1% noise. LN-C data set matrix A_3
5.9. Results using LS A_3 Noise level 5%

Figure 49: Mean error and example LS solutions. 5% noise. RQ-A dataset matrix A_3

Figure 50: Mean error and example LS solutions. 5% noise. RQ-B data set matrix A_3
Figure 51: Mean error and example LS solutions. 5% noise. RQ-C dataset matrix A_3

Figure 52: Mean error and example LS solutions. 5% noise. LN-A dataset matrix A_3
Figure 53: Mean error and example LS solutions. 5% noise. LN-B dataset matrix A_3
5.10. Results using LS A_4 Noise level 5%

Figure 55: Mean error and example LS solutions. 5% noise. RQ-A data set matrix A_4

Figure 56: Mean error and example LS solutions. 5% noise. RQ-B data set matrix A_4

6. Acknowledgements

Authors Hansen, Hogue and Sander were supported by NSF CSUMS grant DMS 0703587: “CSUMS: Undergraduate Research Experiences for Computational Math Sciences Majors
Figure 57: Mean error and example LS solutions. 5% noise. RQ-C dataset matrix A_4

Figure 58: Mean error and example LS solutions. 5% noise. LN-A data set matrix A_4

at ASU”. Renaut was supported by NSF MCTP grant DMS 1148771: “MCTP: Mathematics Mentoring Partnership Between Arizona State University and the Maricopa County Community College District”, NSF grant DMS 121655: “Novel Numerical Approximation Techniques for Non-Standard Sampling Regimes”, and AFOSR grant 025717 “Development and Analysis of Non-Classical Numerical Approximation Methods”.

44
Figure 59: Mean error and example LS solutions. 5% noise. LN-B data set matrix A_4

Figure 60: Mean error and example LS solutions. 5% noise. LN-C data set matrix A_4

References

[1] K.E. Atkinson, *An Introduction to Numerical Analysis*, (2nd ed.), New York: John Wiley & Sons,,1998, ISBN 978-0-471-50023-0.

[2] E. Barsukov, J.R. Macdonald, editors, *Impedance Spectroscopy: Theory, Experiment, and Applications*, John Wiley and Sons, Hoboken, New Jersey, United States, 2005.
[3] S Bellavia, M Macconi, B Morini An interior point Newton-like method for non-negative least-squares problems with degenerate solution Numerical Linear Algebra with Applications, 13, 10, (2016), 825-846.

[4] A. Björck, Numerical Methods for Least Squares Problems, Soc. for Ind. and Appl. Math., Philadelphia, PA, 1986.

[5] C. Endler, A. Leonide, A. Weber, F. Tietz, E. Ivers-Tiffée, Time-dependent electrode performance changes in intermediate temperature solid oxide fuel cells, J. of the Electrochem. Soc., 157, (2010), B292-B298.

[6] W.A. Fuller, Introduction to Statistical Time Series, Wiley series in probability and statistics, second edition, Wiley Publications, New York, United States, 1996.

[7] G. Golub, C. van Loan, Matrix Computations, Third Edition, John Hopkins University Press, Baltimore, Maryland, 1996.

[8] M. Grant, S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, version 2.1, http://cvxr.com/cvx (2014)

[9] M. Grant, S. Boyd, Graph implementations for nonsmooth convex programs, in Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, Editors: V. Blondel and S. Boyd and H. Kimura, Springer-Verlag Limited, (2008), 95-110, http://stanford.edu/~boyd/graph_dcp.html

[10] J. Hansen, J. Hogue, G. Sander, R.A. Renaut, Non-negatively constrained least squares and parameter choice by the residual periodogram for the inversion of electrochemical impedance spectroscopy, Submitted J Computational and applied Mathematics. http://math.la.asu.edu/~rosie/cv0806/node1.html, 2014.

[11] P.C. Hansen, Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion, SIAM Series on Fundamentals of Alg, Soc. for Ind. and Appl. Math., Philadelphia, PA, 1998.

[12] P.C. Hansen, M. Kilmer, R.H. Kjeldsen, Exploiting residual information in the parameter choice for discrete ill-posed problems, BIT 46, (2006), 4159.

[13] P.C. Hansen, Regularization Tools Version 4.0 for Matlab 7.3, Numer. Alg, 46, (2007), 189-194.

[14] P.C. Hansen, Discrete inverse problems: Insight and algorithms, SIAM Series on Fundamentals of Alg , 7, Soc. for Ind. and Appl. Math., Philadelphia, PA, 2010.

[15] D. Kim, S. Sra, and I. S. Dhillon A Non-monotonic Method for Large-scale Nonnegative Least Squares, Optimization Methods and Software, 28, 5 (2013), 1012-1039.

[16] Dongmin Kim, U Texas, Source code for Barzilai-Borwein Algorithm, SBB, (2008), http://www.cs.utexas.edu/~dmkim/Source/software/sbb/sbb.html
[17] C.L. Lawson, R.J. Hansen, *Solving Least Squares Problems*, SIAM Classics in Appl. Math., Soc. for Ind. and Appl. Math., Philadelphia, PA, 1995.

[18] A. Leonide, *SOFC Modelling and Parameter Identification by means of Impedance Spectroscopy*, KIT Scientific Publishing, 2010.

[19] A. Leonide, V. Sonn, A. Weber, E. Ivers-Tiffée, *Evaluation and Modeling of the Cell Resistance in Anode-Supported Solid Oxide Fuel Cells*, J. of the Electrochem. Soc. 155, (1), (2008), B36-B41.

[20] A. Leonide, B. Ruger, A. Weber, W.A. Meulenberg, E. Ivers-Tiffée, *Impedance study of alternative (La,Sr)FeO(3-delta) and (La,Sr)(Co,Fe)O(3-delta) MIEC cathode compositions*, J. of the Electrochem. Soc., 57, (2010), B234-B239.

[21] B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, K. Eguchi, *Analysis of impedance spectra for segmented-in-series tubular solid oxide fuel cells*, J. of the Electrochem. Soc., 157, (2010), B1858-B1864.

[22] B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, K. Eguchi, *Gas Transport impedance in segmented-in-series tubular solid oxide fuel cell*, J. of the Electrochem. Soc., 157, (2011), B215-B224.

[23] J.R. Macdonald, *Exact and approximate nonlinear least-squares inversion of dielectric relaxation spectra*, J. of Chem. Phys., 102, 15, (1995), 102:15.

[24] J. Macutkevic, J. Banys, A. Matulis, *Determination of the Distribution of the Relaxation Times from Dielectric Spectra*, Nonlinear Anal.: Modelling and Control, 9, (1), (2004), 7588.

[25] J. Mead, R.A. Renaut, *A Newton root-finding algorithm for estimating the regularization parameter for solving ill-conditioned least squares problems*, Inverse Problems, (2009), 25(2).

[26] T. M. Nahir, E.F. Bowden, *The distribution of standard rate constants for electron transfer between thiol-modified gold electrodes and adsorbed cytochrome c*. J. of Electroanal. Chem., 410, 1, (1996), 9–13.

[27] R.A. Renaut, R. Baker, M. Horst, C. Johnson D. Nasir, *Stability and error analysis of the polarization estimation inverse problem for microbial fuel cells*, Inverse Probl., 29, (2013), 045006 (24pp), doi:10.1088/0266-5611/29/4/045006.

[28] B.W. Rust, *Truncating the singular value decomposition for ill-posed problems*, Technical Report NISTIR 6131., National Institute of Standards and Technology, (1998), URL = http://math.nist.gov/ BRust/pubs/TruncSVD/MS-TruncSVD.ps.

[29] B.W. Rust, D.P. O’Leary, *Residual periodograms for choosing regularization parameters for ill-posed problems*, Inverse Probl., 24, 3, 2008, 034005 - 034035.
[30] H. Schichlein, A.C. Muller, M. Voigts, A. Krugel, E. Ivers-Tiffée, Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells, J. of Appl. Electrochem., 32, (2002), 875-882.

[31] M. Slawski, M. Hein, Non-negative least squares for high-dimensional linear models: consistency and sparse recovery without regularization Electronic Journal of Statistics, 7, 0, (2013), 3004-3056.

[32] V. Sonn, A. Leonide, E. Ivers-Tiffée, Combined Deconvolution and CNLS Fitting Approach Appl. on the Impedance Response of Technical Ni/8YSZ Cermet Electrodes, J. of the Electrochem. Soc., 155, (7) (2008), B675-B679.

[33] C.R. Vogel, Computational Methods for Inverse Problems, SIAM: Philadelphia, PA, 2002.

[34] L.C. Ward, T. Essex, B.H. Cornish, Determination of Cole parameters in multiple frequency bioelectrical impedance analysis using only the measurement of impedances, Physiol. Meas., 27, 9, (2006), 839-850.

[35] J. Weese, A reliable and fast method for the solution of Fredholm integral equations of the first kind based on Tikhonov regularization, Comput. Phys. Commun., 69, (1992), 99-111.