This is the accepted manuscript made available via CHORUS. The article has been published as:

Millimeter-Wave Four-Wave Mixing via Kinetic Inductance for Quantum Devices
Alexander Anferov, Aziza Suleymanzade, Andrew Oriani, Jonathan Simon, and David I. Schuster
Phys. Rev. Applied 13, 024056 — Published 21 February 2020
DOI: 10.1103/PhysRevApplied.13.024056
Millimeter-Wave Four-Wave Mixing via Kinetic Inductance for Quantum Devices

Alexander Anferov,1,2 Aziza Suleymanzade,1,2 Andrew Oriani,2,3 Jonathan Simon,1,2,3 and David I. Schuster1,2,3,*

1James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
2Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
3Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
(Dated: January 8, 2020)

Millimeter-wave superconducting devices offer a platform for quantum experiments at temperatures above 1 K, and new avenues for studying light-matter interactions in the strong coupling regime. Using the intrinsic nonlinearity associated with kinetic inductance of thin film materials, we realize four-wave mixing at millimeter-wave frequencies, demonstrating a key component for superconducting quantum systems. We report on the performance of niobium nitride resonators around 100 GHz, patterned on thin (20-50 nm) films grown by atomic layer deposition, with sheet inductances up to 212 pH/□ and critical temperatures up to 13.9 K. For films thicker than 20 nm, we measure quality factors from 1-6×10^4, and explore potential loss mechanisms. Finally we measure degenerate parametric conversion for a 95 GHz device with a forward efficiency up to +16 dB, paving the way for the development of nonlinear quantum devices at millimeter-wave frequencies.

I. INTRODUCTION

For superconducting quantum circuits, the millimeter-wave spectrum presents a fascinating frequency regime between microwaves and optics, giving access to a wider range of energy scales and lower sensitivity to thermal background noise due to higher photon energies. Many advances have been made refining microwave quantum devices [1,2], typically relying on ultra-low temperatures in the millikelvin range to reduce sources of noise and quantum decoherence. Using millimeter-wave photons as building blocks for superconducting quantum devices offers transformative opportunities by allowing quantum experiments to be run at liquid Helium-4 temperatures, allowing higher device power dissipation and enabling large scale direct integration with semiconductor devices [2]. Millimeter-wave quantum devices could also provide new routes for studying strong-coupling light-matter interactions in this frequency regime [3-7] and present new opportunities for quantum-limited frequency conversion and detection [8,9].

Recent interest in next-generation communication devices [10,11] has led to important advances in sensitive millimeter-wave measurement technology around 100 GHz. Realizing quantum systems at these frequencies however requires both the demonstration of low-loss components — device materials with low absorption rates [12,14] and resonators with long photon lifetimes [15,29] — and most importantly, elements providing nonlinear interactions, which for circuit quantum optics can be realized with four-wave mixing Kerr terms in the Hamiltonian. One approach commonly used at microwave frequencies relies on aluminum Josephson junctions [2], which yield necessary four-wave mixing at low powers. However to avoid breaking Cooper pairs with high-frequency photons, devices at millimeter-wave frequencies are limited to materials with higher superconducting critical temperatures (T_c). Higher T_c junctions have been implemented as high-frequency mixers for millimeter-wave detection [9,21,22], and ongoing efforts are improving losses for quantum applications [23,24].

Kinetic inductance (KI) offers a promising alternative source of Kerr nonlinearity arising from the inertia of Cooper pairs in a superconductor, gaining recent interest for microwave quantum applications [25,26] and has also been successfully used for millimeter-wave detection [27,28]. Niobium Nitride (NbN) is an ideal material for KI, as it has a high intrinsic sheet inductance [29,31], a relatively high T_c between 14-18 K [29,32] making it suitable for high-frequency applications [14], and has good microwave loss properties [33]. Among deposition methods, atomic layer deposition (ALD) offers conformal growth of NbN [32] and promising avenues for realizing repeatable high KI devices on a wafer-scale [25].

In this work, we explore kinetic inductance as a nonlinear element for quantum devices at millimeter-wave frequencies using high KI resonators in the W-Band (75-110GHz) fabricated from thin films of NbN deposited via ALD. We study potential loss mechanisms at powers ranging down to single photon occupations. Using the power dependent frequency shift, we characterize the nonlinearity arising from KI, the strength of which varies with wire width and material properties. With two tone spectroscopy, we observe degenerate four-wave mixing near single photon powers. These measurements demonstrate the necessary core components for millimeter-wave circuit quantum optics, paving the way for a new generation of high-frequency high-temperature experiments.

II. MEASUREMENT METHODS

We investigate properties of millimeter-wave high KI resonators in the quantum regime (at temperatures of 1 K) in a Helium-4 adsorption refrigerator. Using a frequency multiplier, cryogenic mixer and low noise ampli-
FIG. 1. Device characterization and design. (a) Six-fold frequency multipliers convert microwave to millimeter-wave signals (green), which are demodulated with a cryogenic mixer. A cutaway shows copper WR-10 rectangular waveguides coupling the signal in and out of a Nb coated slot, into which we mount a chip patterned with 6 resonators. (b) Top down composite micrograph showing a mounted chip with the top waveguide removed. (c) Scanning Electron Micrograph of a typical resonator used in this work, with wire width \(w = 4 \mu m \) and film thickness \(t = 27.8 \) nm (NbN false colored yellow). Dipole coupling antennas extend on the left of the quarter-wave resonator. Measurements can be described with input and loss couplings \(Q_s \) and \(Q_i \) using the circuit model in (d), which takes into account the impedance mismatch between waveguide \(Z_0 \) and slot with sapphire chip \(Z^* \).

III. MATERIALS AND LOSS MECHANISMS

In order to understand the quality of the NbN films grown by ALD and accurately predict resonant frequencies, we characterize material properties with DC electrical measurements. All devices in this work are deposited on sapphire with a process based on Ref. \([32]\), and etched with a fluorine based inductively coupled plasma. We measure resistivity at ambient magnetic fields as a function of temperature, which we use to extract \(T_c \) for a range of film thicknesses [See Fig. 2(a)]. The inset also shows that our films follow a universal relation observed for thin superconducting films \([29]\) linking \(T_c \), film thickness \(t \), and sheet resistance \(R_s \): we find that our results are similar to NbN deposited with other methods \([29, 31]\). For thicker films, \(T_c \) appears to saturate at 13.8-13.9 K which is comparable to other materials studies \([29, 30, 32]\), while decreasing to 8.7 K for the thinnest film \((t=7 \) nm\)), which can be attributed to disorder enhanced Coulomb repulsions \([35, 36]\). We also find that the superconducting transition width increases significantly for the thinner films, which can in turn be attributed to disorder broadened density of states \([36]\) or reduced vortex-antivortex pairing energies at the transition \([33, 37]\).

From the resistivity and critical temperature, we determine the sheet inductance \(L_\square = \hbar R_\square/\pi \Delta_0 \), where the normal sheet resistance \(R_\square = \rho_n/t \) is taken as the maximum value of normal resistivity \(\rho_n \), occurring just above \(T_c \), and \(\Delta_0 = 2.08 T_c \) is the superconducting energy gap predicted by BCS theory for NbN \([30, 33]\). We observe a monotonic increase in \(L_\square \) for thinner films, achieving a maximum \(L_\square = 212 \) pH/\(\square \), comparable to similar high KI films \([26, 38]\).

By characterizing complex transmission spectra of resonators fabricated on a range of film thicknesses, we explore loss mechanisms at millimeter-wave frequencies. The sheet inductance, thickness, and \(T_c \) measured for a given film are used to adjust the resonator design length. This spreads resonances out in frequency from 80 to 110 GHz, while varying antenna lengths allows us to adjust coupling strengths. A typical normalized transmission spectrum taken at single photon occupation powers \((n_{ph} \approx 1.2)\) is shown in the inset of Fig. 2(b). On resonance, we observe a dip in magnitude, which at low powers is described well by \([39]\):

\[
S_{21} = 1 - \frac{Q}{Q_\phi} e^{i\phi} \left(1 + 2iQ e^{-i\phi} \right) \tag{1}
\]

where \(Q^{-1} = Q_i^{-1} + \text{Re}(Q_e^{-1}) \) \([39]\) and the coupling quality factor \(Q_e = Q_\phi e^{-i\phi} \) has undergone a complex rotation.
...due to an impedance mismatch, likely induced by the sapphire chip and slot altering waveguide geometry. Plotting fitted internal quality factors with respect to photon occupation in Fig. 2(b) shows that Q_i increases with power. This can be described by a power dependent saturation mechanism, likely originating from two-level systems (TLS) in the slow-growing amorphous surface oxide. At high powers, Q_i approaches a limit, indicating that another power-independent loss mechanism such as dielectric or radiative loss is dominant in this regime. For some samples, this limit is obscured by the early onset of nonlinear effects (discussed below).

To study effects of film thickness on Q_i, we repeat measurements summarized in Fig. 2(b) for devices varying in thickness from 19.5 nm to 48.8 nm and show the results in Fig. 2(c). We plot the low and high power limits of Q_i as well as a lower bound for the TLS induced Q_i for devices from six separate chips grouped by film thickness. For films thicker than 20 nm, we consistently find $Q_i > 10^5$, with TLS limiting Q_i around 10^4. We find a weak correlation of Q_i with film thickness, which could be explained by several additional potential sources of loss. Thinner films exhibiting higher disorder have also been connected with a nonlinear resistance, resulting in loss mechanisms proportional to kinetic inductance (See Appendix F).

Additionally, since devices are unshielded from ambient magnetic fields at the superconducting transition, vortices trapped in the thin films may cause additional dissipation dependent on film thickness. Resonances patterned from thinner films proved experimentally difficult to distinguish from background fluctuations, possibly indicating low values of Q_i or frequencies outside the measurement bandwidth.

IV. KERR NONLINEAR DYNAMICS

A key aspect of high KI resonators is their fourth-order nonlinearity: an important component for realizing quantum devices, and similar to the nonlinearity term found in Josephson junctions for low powers. Nonlinear kinetic inductance takes the general form $L = L_k + \Delta L_i I_i^2 / I_i^2$, where L_k is the linear kinetic inductance, ΔL_i the nonlinear kinetic inductance, and I_i the current which sets the nonlinearity scale. This adds nonlinear terms of the form $\hbar^2 K (a^\dagger a)^2$ to the Hamiltonian, with $K \propto \omega_0^2 \Delta L_i / I_i^2$, shifting the fundamental frequency ω_0 by the self-Kerr constant K for each photon added.
To characterize the strength of the resonator nonlinearity, we measure the resonance frequency shift \(\Delta \) as a function of photon number \(|\Delta| \). A linear fit for a resonator \(t = 29 \text{ nm}, w = 0.5 \mu \text{m} \) yielding \(K/2\pi = 1.21 \text{ kHz} \) is shown in Fig. 3(a). Although the statistical errors of the fits are small, we note this value has a multiplicative uncertainty of \(10^{\pm 0.4} \). Despite careful calibration, systematic variations in received power across the chip and between separate experiments limit best estimates of photon number to within a factor of \(\sim 10 \). By writing the self-Kerr coefficient in terms of a current density \(I_c = J_c \omega t \), we expect \(K \) to scale as \(w^{-2} \), so in Fig. 3(b) we plot the self-Kerr coefficients of devices (and error relative to each other) with respect to their wire width. These results are comparable to self-Kerr strengths of granular aluminum nanowires \([40] \) or weakly nonlinear Josephson junctions \([50] \).

A hallmark of Kerr nonlinearity is the distortion of the transmission line-shape in frequency space at high powers, ultimately leading to a multi-valued response above the bifurcation power. Re-writing \(\gamma = \omega_0/Q_i \) and \(\kappa = \omega_0/\text{Re}(Q_s) \), the steady-state nonlinear response takes the form derived from Refs. \([44, 51] \) (See Appendix A):

\[
S_{21} = 1 - \frac{\kappa}{\kappa + \gamma} \frac{1 + i \tan \phi}{1 + 2i(\delta - \xi)}
\]

where the frequency detuning is written in reduced form \(\delta = \omega_p - \omega_i \), and \(n = n_{ph}/n_{in} \) is a function of frequency and reduced circulating power \(\xi = K n_{ph}/(\kappa + \gamma) n_{in} \). We plot steady-state transmission data taken near the bifurcation power in Fig. 4(a) along with fits to Eq. 2 with system parameters \(\kappa, \phi \) and \(\omega_0 \) constrained to low power values and find the model in good agreement with measurements.

We further explore nonlinear dynamics by stimulating degenerate four-wave mixing with the addition of a continuous wave classical pump (see Fig. 7). When a high power pump tone at \(\omega_p \) is on resonance with the down-shifted resonance frequency, and a low power signal at \(\omega_s \) is at a frequency detuning \(\Delta \) from the pump, we expect to observe the net conversion of two pump photons into a signal photon and an idler photon at their sum-average frequency (Fig. 4(b) inset). This effect is most pronounced when all frequencies are within the resonant bandwidth, and the pump power \(\xi \) approaches the bifurcation point \(\xi_{crit} \), but is limited by the loss fraction \(\gamma/\kappa \). We measure the pump-signal conversion efficiency of a high-bandwidth, high-\(K \) device in the propagation direction as a function of reduced pump frequency \(\delta \) for increasing pump powers \(\xi \), and a fixed signal power corresponding to \(n_{ph} \sim 9 \) in Fig. 4(b-c). We find that this behavior is accurately captured with a model based on Refs. \([44, 50] \) (see Appendix A) and overlay the results. For increasing pump powers, we observe smooth parametric deformation from the single tone response in the complex plane. For higher powers, we observe increasing gain with decreasing linewidth similar to Refs. \([50, 52] \), up to a maximum measured forward efficiency of \(+16 \text{ dB} \).

The slight curvature in the complex plane is a result of the finite pump-signal detuning \(\Delta \).
ers, and by reducing wire width to 500 nm achieved self-Kerr nonlinearities up to 1.21 kHz for linewidths ranging from 1-200 MHz. With some modification the devices in this work could easily be redesigned as parametric amplifiers, which at microwave frequencies have been shown to achieve near quantum-limited noise figures and quadrature squeezing [52, 55]. While insufficient for implementing a millimeter-wave artificial atom, the Kerr nonlinearity we measure arising from high KI thin films can further be used for superinductors [53, 56], photon frequency conversion [8], parametric mode cooling [57, 58], phase slip junctions [59, 60], and mode squeezing [52] realized at millimeter-wave frequencies. This opens the door to a new generation of high-frequency quantum experiments at temperatures above 1 K.

ACKNOWLEDGMENTS

The authors thank P. Duda, P. S. Barry, and E. Shirokoff for assistance developing deposition recipes, as well as M. Wesson for supporting film characterization. We acknowledge useful discussions with S. J. Whiteley, and thank J. Jureller for assistance with MRSEC facilities. This work was supported by the Army Research Office under Grant No. W911NF-17-C-0024. This work was partially supported by the University of Chicago Materials Research Science and Engineering Center, which is funded by the National Science Foundation under award number DMR-1420709. This work was partially supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1746045. Devices were fabricated in the Pritzker Nanofabrication Facility at the University of Chicago, which receives support from Soft and Hybrid Nanotechnology Experimental (SHandNE) Resource (NSF ECCS-1542205).

Appendix A: Kerr nonlinear dynamics for a side-coupled resonator

Here we outline a simple method inspired by Refs. [61, 62] to decompose a side-coupled resonator into a linear network containing a one-sided cavity, which is very well understood in the language of input-output theory used in quantum optics [63]. This allows us to map well-modelled dynamics of a Kerr nonlinear cavity driven in reflection [44] to a side-coupled resonator measured in transmission, obtaining results in agreement with Ref. [61], which uses a more direct approach.

Based on the circuit model in Fig. 1(d), and the argument that a symmetrically coupled resonator will radiate equally in both directions, we consider the the 3-port H-plane splitter. This lossless but unmatched network [64] has symmetric ports 1-2 corresponding to the transmission line, and unmatched port 3 leading to the single-port coupled resonator Z_R as shown in Fig. 5(a) (This system can also be described by a network consisting of a 50-50 beamsplitter, perfect mirror, and $\pi/2$ phase shifter as shown in Fig. 5(b), which yields the same key results if we are careful to use correct boundary conditions). If we place a black-box element on port 3, we can describe it’s input and output fields in terms of the waveguide input and output fields:

$$
\begin{pmatrix}
a_{in}(t) \\
a_{out}(t)
\end{pmatrix} = \frac{-1}{\sqrt{2}} \begin{pmatrix} a_{in}(t) + a_{in}^*(t) \\
a_{out}(t) + a_{out}^*(t)
\end{pmatrix} \quad (A1)
$$

If we describe the black box with an arbitrary reflection term $R = a_{out}(t)/a_{in}(t)$, the scattering matrix of the system reduces to:

$$S = \frac{1}{2} \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right) \quad (A2)$$

We can now verify that far off-resonance, for open circuit perfect reflection $R \rightarrow 1$, we recover perfect transmission. With a map of waveguide inputs and outputs we replace the black box with Kerr nonlinear one-port coupled resonator, which has the steady state condition [50, 63]:

$$i(\omega - \omega_0) a + \frac{\kappa + \gamma}{2} a - i K |a|^2 a^* = \sqrt{\kappa} a_{in} = -\sqrt{\frac{\kappa}{2}} a_{in}^\text{in} \quad (A3)$$

We have been careful to use the microwave convention for Fourier transforms, and $n_{ph} = |a|^2$ corresponds to the average number of photons in the resonator. Multiplying by the complex conjugate, we obtain an equation governing the normalized number of photons in the resonator n.

$$\left(\frac{1}{4} + \delta^2 \right) - 2 \delta \xi n^2 + \xi^2 n^3 = \frac{1}{2} \quad (A4)$$

Where similar to Ref. [60], n, ξ, δ and δ are defined as:

$$n = \frac{|a|^2}{|a_{in}|^2} \left(\frac{\kappa + \gamma}{2} \right) \quad (A5)$$

$$\xi = \frac{|a_{in}|^2 \kappa K}{(\kappa + \gamma)^3} \quad (A6)$$

$$\delta = \frac{\omega - \omega_0}{\kappa + \gamma} \quad (A7)$$

We plot n as a function of δ for varying drive strengths ξ in Fig. 5(c), finding that n reaches a maximum value of 2. At the critical value $\xi_{crit} = -2/\sqrt{27}$, Eq. A4 has 3 real solutions, leading to the onset of bifurcation. Based on the resonator boundary conditions [65] $a_{out} = a_{in} + \sqrt{\kappa}$ and [44, 50, 63] the reflection coefficient Γ will be

$$\Gamma = 1 - \frac{\kappa}{\kappa + \gamma} \frac{1}{2} + i(\delta - \xi n) \quad (A8)$$

Far off resonance, an impedance mismatch on output port 2 results in nonzero reflection $|r| = \sin \phi$ and transmission $|t| = \cos \phi$ less than unity. To account for this while preserving the unitarity of the S matrix, we apply
transitions of the form $e^{i\phi}$ to each path of the 3 port network, yielding $S_{21} = (\Gamma e^{i\phi} + e^{-i\phi})/2$. Mapping Eq. A8 to the modified 3 port network, we obtain the result used in the main text, which in respective limits agrees with Refs. [39] and [51].

\[
S_{21} = 1 - \frac{\kappa}{\kappa + \gamma} \frac{e^{i\phi}}{1 + 2i(\delta - \xi n)} \quad (A9)
\]

At low powers ($\xi n \to 0$), Eq. A9 reduces to Eq. 1 in the main text.

We follow a similar approach to obtain expressions for parametric conversion gain using the derived input-output relations to map the key results from Ref. [50] to the waveguide inputs and outputs. Using microwave conventions for Fourier transforms, the one-port gain of g_s is given by:

\[
g_s = \frac{a_{out\Delta}}{a_{in\Delta}} = 1 - \frac{\kappa}{\kappa + \gamma} \frac{1}{2 - 2i(\delta - \xi n - \Delta)} \quad (A10)
\]

With $\lambda_{\pm} = \frac{1}{2} \pm \sqrt{(\xi n)^2 - (\delta - 2\xi n)^2}$. Using the 3 port network transformations above yields the normalized forward (in direction of propagation) signal gain:

\[
g_s^+ = \frac{a_{2out\Delta}}{a_{1in\Delta}} = 1 - \frac{\kappa}{\kappa + \gamma} \frac{1}{2 - 2i(\delta - 2\xi n - \Delta)} \frac{1}{(i\Delta + \lambda_+)(i\Delta + \lambda_-)} \quad (A11)
\]

Appendix B: Device fabrication

All devices were fabricated on 100 ± 25 μm thick C-plane (0001) Sapphire wafers with a diameter of 50.8 mm. Wafers were cleaned with organic solvents (Toluene, Acetone, Methanol, Isopropanol, and DI water) in an ultrasonic bath to remove particulates, then were annealed at 1200°C for 1.5 Hours. Prior to film deposition, wafers underwent a second clean with organic solvents (Toluene, Acetone, Methanol, Isopropanol, and DI water) in an ultrasonic bath, followed by 2 minute clean in 50°C NanoStrip™ etch, and a rinse with high purity DI water. The wafers then underwent a dehydration bake at 180°C in atmosphere for 3 minutes.

Immediately afterwards, wafers were loaded into an Ultratech Fiji G2 plasma enhanced atomic layer deposition tool for metallization, where they first underwent a 1 hour bake at 300°C under vacuum continuously purged with 5 sccm of argon gas. Chamber walls matched the substrate temperature. The deposition parameters and machine configuration are adapted from Ref. [32]. $(t$-Butyllimido)(Tris(Diethylamido)-Niobium(V) (TBTDEN) was used as the niobium precursor, which was kept at 100°C and delivered by a precursor Boost™ system, which introduces argon gas into the precursor cylinder to promote material transfer of the low vapor pressure precursor to the wafer [32]. The deposition cycle consisted of three 0.5 second pulses of boosted TBTDEN followed by 40 seconds of 300 W plasma consisting of 80 sccm hydrogen and 5 sccm nitrogen. A flow of 5 sccm of nitrogen and 10 sccm of argon was maintained throughout the deposition process. After deposition the wafer was allowed to passively cool to 250°C under vacuum.

Following deposition, the wafers were cleaned with DI water in an ultrasonic bath to remove particulates, then underwent a dehydration bake at 180°C in atmosphere for 3 minutes before spinning resist. For optical lithography, to avoid defocusing from wafer deformation, wafers were mounted to a Silicon handle wafer with AZ MiR 703 photoresist cured at 115°C. Wafers were then coated with ~1 μm of positive I-line photoresist AZ MiR 703, and exposed with a Heidelberg MLA150 Direct Writer. For electron Beam lithography, wafers were first coated with ~200 nm of negative resist ARN 7520, followed by 40 nm of conductive resist ‘Elektra’ AR FC 5090, and then exposed with a Raith EBPG5000 Plus E-Beam Writer. The conductive coating was removed by a 60 sec-
ond DI water quench. Both optical and E-Beam resists were baked at 110°C to further harden the resist, and then developed for 60 seconds in AZ MIF 300, followed by a 60 second quench in DI water. We note that the rounded corners of our devices are by design to diffuse electric fields and reduce coupling to two level systems, and not defects induced by lithographic resolution.

The NbN films were etched in a Plasma-Therm inductively coupled plasma etcher. Etch chemistry, substrate etch depth and etch time have been shown to affect planar resonator quality factors [66], in particular due to the formation of cross-linked polymers at the metal-resist interface after the bulk metal is etched away. For this reason we scale sample etch times to metal thickness, with a fixed over-etch time of 30 seconds to ensure complete metal removal. We use a Fluorine based ICP etch chemistry with a plasma consisting of 15 sccm SF6, 40 sccm CHF3, and 10 sccm Ar. ICP and bias powers were kept at 100 W, and the substrate was cooled to a temperature of 10°C. Following etching, the resist was stripped in a combination of acetone and 80°C Remover PG (N-Methyl-2-Pyrrolidone) which also serve to release the wafer from the Silicon carrier wafer. The wafers were then cleaned with organic solvents (Acetone, Isopropanol, and DI water), coated with a ~ 2 µm protective layer of photoresist, and diced into 3.3 × 2.3 mm chips. These were stripped of protective resist with 80°C Remover PG, cleaned with organic solvents (Acetone, Isopropanol, and DI water), dried on an unpolished Sapphire carrier wafer in atmosphere at 80°C, then mounted with Indium wire in the copper box described in the text.

Appendix C: Film characterization

DC film characterization measurements were performed in a Quantum Design Physical Property Measurement System (PPMS) with a base temperature of 1.8 K. Test structures consisting of a 1.5 mm×40 µm wire were patterned on 7 × 7 mm chips going through the process described above along with device wafers, then wirebonded for four-wire measurements. Finished structures were kept in a low ~ 500 mTorr vacuum in an effort to minimize oxide growth prior to measurement, as we observed decreases up to 1 K in critical temperatures for samples aged several days in atmosphere, likely a result of oxide growth [43] reducing the superconducting film thickness.

After cooling the samples to 10 K (3 K in the case of the 8 nm film) in ambient magnetic fields, we verified that the residual resistance of the film dropped below the instrument noise floor of around 5 × 10⁻³Ω. After thermalizing for one hour, the samples were warmed up to 20 K at a rate of 0.1 K/min, then warmed to 300 K at a rate of 1 K/min. In Fig. 6(a) we plot measured resistivity as a function of temperature for the films in this study, which we use to extract T_C, ρ_0, and calculate R_{\square} and L_{\square} for the films. Similar to previous studies [33], resistivity decreases with temperature above the superconducting transition, which is typical for strongly disordered materials [33, 35].

Appendix D: Millimeter-wave measurement setup and calibration

All millimeter-wave characterization was performed in a custom built 4He adsorption refrigerator, with a base temperature of 0.9 K, and a cycle duration of 3 hours. We generate millimeter-wave signals (75-115 GHz) at room temperature by sending microwave signals (12-19 GHz) into a frequency multiplier. We convert the generated waveguide TE10 mode to a 1 mm diameter stainless steel and beryllium copper coaxial cable, which carries the signal to the 1 K stage of the fridge, thermalizing mechanically at each intermediate stage, then convert back to a WR-10 waveguide which leads to the device under test. The cables and waveguide-cable converters have a combined frequency-dependent loss ranging from 55.6 dB to 75.8 dB in the W-Band, which is dominated by the cable loss. We confirm the attenuation and incident device power at room temperature with a calibrated power meter (Agilent W8486A) and a referenced measurement with a VNAx805 receiver, however cryogenic shifts in cable transmission and minute shifts in waveguide alignment likely result in small variations in transmitted power. We are able to further confirm the applied power by measuring the lowest observed bifurcation point, and find that most bifurcation powers agree with predictions, yielding a maximum combined power uncertainty of approximately ±5 dBm, which sets the uncertainty in our photon number measurements.

The sample is isolated from both millimeter-wave and...
FIG. 7. Schematic of millimeter-wave measurement setup for single and two-tone configurations. Colored tabs show temperature stages inside the 4He adsorption refrigerator. A photograph on the right highlights relevant hardware inside the fridge. The bottom left shows a photograph of the sample with top waveguide removed.

thermal radiation from the 4 K plate with two stainless steel waveguides 2 inches long and a faraday isolator. Using a resistive heater and a standard curve Ruthenium oxide thermometer we can perform temperature sweeps on the sample without significantly affecting the fridge stage temperatures. A low-noise amplifier ($T_N \sim 28$ K) amplifies the signal before passing through another faraday isolator, which further blocks any leaking signals. The signal then passes to a cryogenic mixer, which converts the signal to radio-wave (100-300 MHz) which we filter, amplify and measure at room temperature with a network analyzer. We control signal power by varying input attenuation and multiplier input power, confirming with room temperature calibrations as described above. For two-tone measurements, we move the signal path to the 20 dB port of the input directional coupler, and add an additional frequency multiplier fed by a reference-locked microwave signal generator. For single-
FIG. 8. Temperature dependence of BCS conductivity. (a) High power Q_i as a function of normalized temperature for four resonators of different film thickness. Solid lines correspond to a BCS model with T_c and kinetic inductance fraction α as fit parameters. (b) Extracted T_c from fitting to BCS model (red dots), compared to T_c from DC resistivity measurements. (c) Normalized frequency shift of the same resonators as a function of temperature, with overlaid predictions from the Mattis-Bardeen equations for σ_2/σ_n with parameters taken from fits in (a).

tone measurements, the 20 dB port is capped with a short to minimize incident stray radiation.

Appendix E: BCS conductivity temperature dependence

Due to the large kinetic inductance fraction α, or magnetic field participation ratio of the thin film resonators, we expect higher sensitivity to loss from complex conductivity, which in turn is sensitive to temperature. In Fig. 8(a) we show the quality factor decrease as a function of temperature for resonators with four different thicknesses, with solid lines corresponding to a model of the form

$$Q_i(T)^{-1} = Q_{i,\text{max}}^{-1} + Q_\sigma(T)^{-1}$$

(E1)

where $Q_{i,\text{max}}$ is a temperature independent upper bound arising from other sources of loss, and the conduction loss Q_σ is given by [67]:

$$Q_\sigma(T) = \frac{1}{\alpha} \frac{\sigma_2(T, T_c)}{\sigma_1(T, T_c)}$$

(E2)

where σ_1 and σ_2 are the real and imaginary parts respectively of the complex surface impedance, calculated by numerically integrating the Mattis-Bardeen equations for σ_1/σ_n and σ_2/σ_n [67, 69]. We use α and T_c as fit parameters in the model. Below 2 K ($T/T_c \sim 0.15$), Q_i saturates, which indicates that conduction loss does not limit Q_i for these devices. We note minor deviations from theory at higher temperatures, which may be a result of physical deviations from the standard curve calibrations used for the ruthenium oxide thermometer. Since these resonators were fabricated with $Q_i > 10^4$ measuring resonators at higher temperatures where Q_i is below 10^9 proved experimentally challenging. In Fig. 8(b) we plot the fitted T_c values against those obtained with DC measurements and find reasonable agreement for higher thickness films, however note that the uncertainty in temperature calibration combined with the relatively low saturation values result in fitted T_c uncertainties around 0.4 K.

Bardeen-Cooper-Schrieffer theory also predicts a shift in London length as a function of temperature, which in the dirty (high disorder) limit is given by [68, 70]:

$$\frac{\lambda(T)}{\lambda(0)} = 1 \sqrt{\frac{\Delta(T)}{\Delta_0} \tanh \left(\frac{\Delta_0}{2k_b T} \right)}$$

(E3)

We can measure this by tracking the resonant frequency shift. For sufficiently large kinetic inductance fractions, or $L_k \gg L_g$, the kinetic inductance will dominate the total inductance, so the normalized frequency shift will be [70]

$$\frac{f_0(T)}{f_0(0)} = \sqrt{\frac{\Delta(T)}{\Delta_0} \tanh \left(\frac{\Delta_0}{2k_b T} \right)}$$

(E4)

In Fig. 8(c) shows the normalized frequency shift as a function of normalized temperature and predictions from Eq. E4 with parameters α and T_c taken from fits to $Q_i(T)$ above. Notably, we find significant deviation from the BCS theory for lower thicknesses, which has been previously observed for high-disorder films [25, 31, 70].

Appendix F: Controlling nonlinearity in the presence of additional losses

From Ref. [44], we expect the self-Kerr nonlinearity originating from kinetic inductance of a $\lambda/4$ resonator to be

$$K = -\frac{\hbar \omega_0^2}{T_c^2} \int_0^l du_0 \lambda \Delta L \propto \frac{\hbar \omega_0^2 L_k}{T_c^2 w^2 l^2}$$

(F1)
where in our case the nonlinear kinetic inductance ΔL is constant along the transmission line, so integrating over the fundamental mode profile u_0 yields a constant. We have also transformed the critical current I_c into a critical current density J_c, and used the assumption that the nonlinear inductance is proportional to the linear kinetic inductance. Fig. 3(b) expands on Fig. 3(a), showing measured self-Kerr constants for all resonators in this study (grouped into points by film thickness and wire width) as a function the parameters in Eq. 1. We have also added data from identical resonators fabricated from 30nm electron-beam evaporated niobium to extend the parameter range. We find reasonable agreement with dependence on the parameters in Eq. 1; however note that the dependence is much less clear than that on wire width w.

Nonlinear kinetic inductance is also associated with a nonlinear resistance of the same form $R = R_0 + \Delta R I_c^2 / J_c^2$. Based on Ref. 11, and assuming the nonlinear resistance scales with kinetic inductance, losses associated with nonlinear resistance will be

$$\gamma_3 = \frac{\omega_0}{Q_s} = \frac{3\hbar\omega_0}{8I_c^2} \int_0^\ell dx u_0^4 \Delta R \propto \frac{\hbar\omega_0 L_k}{J_c^2 u_0^2 r^2} \sim \frac{-K}{\omega_0} \quad (F2)$$

This indicates that upper bounds on nonlinear losses should scale as $Q_3 \sim \frac{\omega_0^3}{r^2}$. In Fig. 3(b) we plot low and high power limits of Q_3 devices in this study with the addition of 30 nm Niobium devices described above, and find that for resonators with fixed wire widths $w = 4 \mu m$, there appears to be a potential correlation of Q_3 with Q_3 indicating nonlinear resistance may be a potential loss mechanism.

In our analysis, we have also neglected to take into account higher harmonics of the resonator, which will be coupled to the fundamental mode by cross-Kerr interactions χ_{mn}, which for evenly spaced harmonics scale as

$$\chi_{mn} = -\frac{3\hbar\omega_n\omega_m}{I_c^2} \int_0^\ell dx u_n^2 u_m^2 \Delta L \propto K \quad (F3)$$

Given the proportionality to K, the correlation described above may also potentially be a result of cross-Kerr effects. For line-widths large enough to cover any deviations from evenly spaced higher harmonics, we anticipate see power dependent conversion processes: in particular for a Kerr nonlinear system with harmonics spaced at ω_0 and $3\omega_0$, at powers approaching the critical power we would expect increased conversion efficiency from the fundamental to third harmonic, which in our experiment would be observed as increased resonator loss at higher powers.

In Fig. 3(c) we show the atypical transmission spectra of a 18.7 nm thick, 4 μm wide device with a particularly large line-width showing decreasing Q_3, near the bifurcation power ($\omega_0 10^3$), departing from the two-level system model described in the main text. This additional power-dependent loss may be the result of the nonlinear mechanisms described above, but may also be a result of circulating currents exceeding the thin film critical current density, which is lowered by the increased London lengths of the thinner films. However since the loss could also simply be a result of frequency dependent dissipation, the source remains unclear. In Fig. 3(b), we also observe that resonators achieving higher nonlinearities by reducing wire width do not appear to be affected by the nonlinear loss rate described above. We also find that these devices do not showcase obvious signs of high power loss shown in Fig. 3(c). While this may be a result of the difference in fabrication.
methods (see Appendix B), the thinner wires may have higher vortex critical fields leading to reduced vortex formation, and thus lower loss associated with vortex dissipation. Additionally, the thinner wires at the shorted end of the quarter wave section of the resonator further shift the higher harmonics, potentially resulting in lower cross-Kerr conversion loss.

[1] Michel H Devoret and Robert J Schoelkopf, “Superconducting circuits for quantum information: an outlook,” Science 339, 1169–1174 (2013).
[2] Alex I Braginski, “Superconductor electronics: status and outlook,” Journal of Superconductivity and Novel Magnetism 32, 23–44 (2019).
[3] Ze-Liang Xiang, Sahel Ashhab, J Q You, and Franco Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Reviews of Modern Physics 85, 623 (2013).
[4] John L Morton and Brendon W Lovett, “Hybrid solid-state qubits: the powerful role of electron spins,” Annu. Rev. Condens. Matter Phys. 2, 189–212 (2011).
[5] Sergei Vasilyev, Jarno Järvinen, Esa Tjukanoff, Alexander Kharitonov, and Simo Jaakkola, “Cryogenic 2 mm wave electron spin resonance spectrometer with application to atomic hydrogen gas below 100 mk,” Review of scientific instruments 75, 94–98 (2004).
[6] Nabeel Aslam, Matthias Pfender, Rainer Stöhr, Philipp Neumann, Marc Scheffler, Hitoshi Sumiya, Hiroshi Abe, Shinobu Onoda, Takeshi Ohshima, Junichi Isoya, J E Austermann, A N Bender, L E Bleem, B A Benbow, J E Carlstrom, et al., “Review of substrate-integrated waveguide circuits and antennas,” IET Microwaves, Antennas & Propagation 5, 909–920 (2011).
[7] Ali Davoodi, Emily M Barrentine, Samuel H Moseley, Omid Noroozian, and Thomas Stevenson, “The impact of standard semiconductor fabrication processes on polycrystalline Nb thin-film surfaces,” IEEE Transactions on Applied Superconductivity 25, 1–5 (2014).
[8] C H Zhang, J B Wu, B B Jin, Z M Ji, L Kang, W W Xu, J Chen, M Tonouchi, and P H Wu, “Low-loss terahertz metamaterial from superconducting niobium nitride films,” Optics express 20, 42–47 (2012).
[9] William J Otter, Stephen M Hanham and Nick M Ridler, “100 ghz ultra-high q-factor photonic crystal resonators,” Nature 425, 944–947 (2003).
[10] Yong Niu, Yong Li, Depeng Jin, Li Su, and Athanasios Vayonakis, Omid Noroozian, Jons Zmuidzinas, Peter K Day, and Henry G Leduc, “ Measurement of loss in superconducting microstrip at millimeter-wave frequencies,” in AIP Conference Proceedings, Vol. 1185 (AIP, 2009) pp. 164–167.
[11] U Kongpop, Ari D Brown, Samuel H Moseley, Omid Noroozian, Edward J Wollack, et al., “A cryogenic waveguide mount for microstrip circuit and material characterization,” IEEE Transactions on Applied Superconductivity 27, 1–4 (2016).
[12] Anthony R Kerr, S-K Pan, Stéphane MX Claude, Philip Dindo, Arthur W Lichtenberger, and Eugene F Lauria, “Development of the alpha-north america sideband-separating mixer mixers,” in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) (IEEE, 2013) pp. 1–4.
[13] C A Mears, Qing Hu, P L Richards, A H Worsham, D E Prober, and A V Rässänen, “Quantum-limited heterodyne detection of millimeter waves using superconducting tantalum tunnel junctions,” Applied physics letters 57, 2487–2489 (1990).
[14] A Grimm, S J C Yates, J A A Baselmans, D J Thoen, S M H Javadzadeh, P P Van der Werf, A M Baryshev, and T M Klapwijk, “On-chip filter bank spectroscopy at 600–700 ghz using nbtin superconducting resonators,” Applied Physics Letters 103, 032601 (2013).
[15] Jiansong Gao, Anastasios Vayonakis, Omid Noroozian, Jonas Zmuidzinas, Peter K Day, and Henry G Leduc, “Measurement of loss in superconducting microstrip at millimeter-wave frequencies,” in AIP Conference Proceedings, Vol. 1185 (AIP, 2009) pp. 164–167.
Transactions on Applied Superconductivity (2019).

[25] Abigail Shearrow, Gerwin Koolstra, Samuel J Whiteley, Nathan Earnest, Peter S Barry, F Joseph Herrmans, David D Awschalom, Erik Shirokoff, and David I Schuster, “Atomic layer deposition of titanium nitride for quantum circuits,” Applied Physics Letters 113, 212601 (2018).

[26] N Samkhazarde, A Bruno, P Scarlino, G Zheng, D P DiVincenzo, L DiCarlo, and L M K Vandersypen, “High-kineic-inducetion superconducting nanowire resonators for circuit qed in a magnetic field,” Physical Review Applied 5, 044004 (2016).

[27] S Hailey-Dunsheath, PS Barry, CM Bradford, G Chat-topadhayay, P Day, S Doyle, M Hollister, A Kovacs, H G LeDuc, N Llombart, et al., “Optical measurements of super-spec: A millimeter-wave on-chip spectrometer,” Journal of Low Temperature Physics 176, 841–847 (2014).

[28] Omid Noroozian, Emily Barrentine, Ari Brown, Giuseppe Cataldo, Negar Ehsan, Wen-Ting Hsieh, Thomas Stevenson, Kongpop U-yen, Edward Wollack, and Samuel Harvey Moseley, “µ-spec: An efficient compact integrated spectrometer for submillimeter astrophysics,” in 26TH International Symposium on Space Terahertz Technology (2015).

[29] Yachin Ivry, Chung-Soo Kim, Andrew E Dane, Domenico De Fazio, Adam N McCaughan, Kristen A Sunter, Qingsyuan Zhao, and Karl K Berggren, “Universal scal- ing of the critical temperature for thin films near the superconducting-to-insulating transition,” Physical Review B 90, 214515 (2014).

[30] Anan Kamlapure, Mintu Mondal, Madhavi Chand, Archana Mishra, John Jesudasan, Vivas Bagwe, L Benfatto, Vikram Tripathi, and Pratap Raychaudhuri, “Measurement of magnetic penetration depth and superconducting energy gap in very thin epitaxial nbn films,” Applied Physics Letters 96, 072509 (2010).

[31] Melissa R Beebe, Douglas B Beringer, Matthew C Burton, Kaida Yang, and R Alejandra Lukasiew, “Stoi-chiometry and thickness dependence of superconducting properties of niobium nitride thin films,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 34, 021510 (2016).

[32] Mark J Sowa, Yonas Yemane, Jinsong Zhang, Johanna C Palmstrom, Ling Ju, Nicholas C Strandwitz, Fritz B Prinz, and J Provine, “Plasma-enhanced atomic layer deposition of superconducting niobium nitride,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 35, 01B143 (2017).

[33] David Niepce, Jonathan Burnett, and Jonas Bylander, “High kinetic inductance nb n nanowire superinductors,” Physical Review Applied 11, 044014 (2019).

[34] Keiji Yoshida, Mohammad Sayjad Hosssain, Takanobu Kisui, Keiji Enpuku, and Kaoru Yamafuji, “Modeling of kinetic-inducetion coplanar stripline with nbn thin films,” Japanese journal of applied physics 31, 3844 (1992).

[35] M A Skvortsov and M V Feigelman, “Superconductivity in disordered thin films: giant mesoscopic fluctuations,” Physical review letters 95, 057002 (2005).

[36] E F C Driessen, P C J J Comou, R R Tromp, P J De Visser, and T M Klapwijk, “Strongly disordered tin and nbitin s-wave superconductors probed by microwave electrodynamic,” Physical review letters 109, 107003 (2012).

[37] J E Mooij, “Percolation, localization, and superconduc-
tivity,” in Nato Asi Series (Plenum Press New York, 1984) p. 325.

[38] Mintu Mondal, Anand Kamlapure, Madhavi Chand, Garima Saraswat, Sanjeev Kumar, John Jesudasan, L Benfatto, Vikram Tripathi, and Pratap Raychaudhuri, “Phase fluctuations in a strongly disordered s-wave nbn superconductor close to the metal-insulator transition,” Physical review letters 106, 047001 (2011).

[39] M S Khalil, M J A Stoutimore, F C Wellstood, and K D Osborn, “An analysis method for asymmetric resonator transmission applied to superconducting devices,” Journal of Applied Physics 111, 054510 (2012).

[40] Anthony Megrant, Charles Neill, Rami Barends, Ben Chiaro, Yu Chen, Ludwig Feigl, Julian Kelly, Erik Lucero, Matteo Mariantoni, Peter J J OMalley, et al., “Planar superconducting resonators with internal quality factors above one million,” Applied Physics Letters 100, 113510 (2012).

[41] Jeremy M Sage, Vladimir Bolkhovsky, William D Oliver, Benjamin Turek, and Paul B Welander, “Study of loss in superconducting coplanar waveguide resonators,” Journal of Applied Physics 109, 063915 (2011).

[42] H Wang, M Hofheinz, J Wenner, M Ansmann, R C Bialczak, M Lenander, Erik Lucero, M Neeley, A D OConnell, D Sank, et al., “Improving the coherence time of superconducting coplanar resonators,” Applied Physics Letters 95, 233508 (2009).

[43] Owen Medeiros, Marco Colangelo, Ilya Charaev, and Karl K Berggren, “Measuring thickness in thin nbn films for superconducting devices,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 37, 041501 (2019).

[44] Bernard Yurke and Eyal Buks, “Performance of cavity-parametric amplifiers, employing kerr nonlinearites, in the presence of two-photon loss,” Journal of lightwave technology 24, 5054–5066 (2006).

[45] Ibrahim Nsanzineza, Vortices and Quasiparticles in Superconducting Microwave Resonators, Ph.D. thesis, Syracuse University (2016).

[46] J Kitaygorsky, I Komissarov, A Jukna, D Pan, O Miaevska, N Kauera, A Divochii, A Korneev, M Tarkhov, B Voronov, et al., “Dark counts in nanostructured nbn superconducting single-photon detectors and bridges,” IEEE Transactions on Applied Superconductivity 17, 275–278 (2007).

[47] Aditya Shreyas Kher, Superconducting nonlinear kinetic inductance devices, Ph.D. thesis, California Institute of Technology (2017).

[48] The point diametrically opposite S21 = 1.

[49] Nataliya Maleeva, Lukas Grünhaupt, T Klein, F Levy-Bertrand, O Dupre, M Calvo, F Valenti, P Winkel, F Friedrich, W Wernsdorfer, et al., “Circuit quantum electrodynamics of granular aluminum resonators,” Nature communications 9, 3889 (2018).

[50] Christopher Eichler and Andreas Wallraff, “Controlling the dynamic range of a josephson parametric amplifier,” EPJ Quantum Technology 1, 2 (2014).

[51] L J Swenson, P K Day, B H Eom, H G Leduc, N Llombart, C M McKenney, O Noroozian, and J Zmuidzinas, “Operation of a titanium nitride superconducting microresonator detector in the nonlinear regime,” Journal of Applied Physics 113, 104501 (2013).

[52] Erik A Tholén, Adem Ergül, Evelyn M Doherty, Frank M Weber, Fabien Grégis, and David B Haviland, “Nonlin-
earities and parametric amplification in superconducting coplanar waveguide resonators,” Applied physics letters 90, 253509 (2007).

[53] Byeong Ho Eom, Peter K Day, Henry G LeDuc, and Jonas Zmuidzinas, “A wideband, low-noise superconducting amplifier with high dynamic range,” Nature Physics 8, 623 (2012).

[54] B Yurke, “Squeezed-state generation using a josephson parametric amplifier,” JOSA B 4, 1551–1557 (1987).

[55] R Movshovich, B Yurke, P G Kaminsky, A D Smith, A H Silver, R W Simon, and M V Schneider, “Observation of zero-point noise squeezing via a josephson-parametric amplifier,” Physical review letters 65, 1419 (1990).

[56] M T Bell, I A Sadovskyy, L B Ioffe, A Yu Kitaev, and M E Gershenson, “Quantum superinductor with tunable nonlinearity,” Physical review letters 109, 137003 (2012).

[57] Raphaël Khan, F Massel, and T T Heikkilä, “Cross-kerr nonlinearity in optomechanical systems,” Physical Review A 91, 043822 (2015).

[58] Jian-Song Zhang, Wei Zeng, and Ai-Xi Chen, “Effects of cross-kerr coupling and parametric nonlinearity on normal mode splitting, cooling, and entanglement in optomechanical systems,” Quantum Information Processing 16, 163 (2017).

[59] J E Mooij and Yu V Nazarov, “Superconducting nanowires as quantum phase-slip junctions,” Nature Physics 2, 169 (2006).

[60] O V Astafiev, L B Ioffe, S Kafanov, Yu A Pashkin, D Shahar, O Cohen, and J S Tsai, “Coherent quantum phase slip,” Nature 484, 355 (2012).

[61] Benjamin A Mazin, Microwave kinetic inductance detectors, Ph.D. thesis, California Institute of Technology (2005).

[62] Jiansong Gao, The physics of superconducting microwave resonators, Ph.D. thesis, California Institute of Technology (2008).

[63] Daniel F Walls and Gerard J Milburn, Quantum optics (Springer Science & Business Media, 2007).

[64] David M Pozar, Microwave engineering (John Wiley & Sons, 2009).

[65] Alessandro Ridolfo, Martin Leib, Salvatore Savasta, and Michael J Hartmann, “Photon blockade in the ultrastrong coupling regime,” Physical review letters 109, 193602 (2012).

[66] Evgeniya H Lock, Peng Xu, Timothy Kohler, Lizmarie Camacho, Joseph Prestiagiacomo, Yaniv J Rosen, and Kevin D Osborn, “Using surface engineering to modulate superconducting coplanar microwave resonator performance,” IEEE Transactions on Applied Superconductivity 29, 1–8 (2019).

[67] Matthew James Reagor, Superconducting Cavities for Circuit Quantum Electrodynamics, Ph.D. thesis, Yale University (2016).

[68] Michael Tinkham, Introduction to superconductivity (Courier Corporation, 2004).

[69] D C Mattis and John Bardeen, “Theory of the anomalous skin effect in normal and superconducting metals,” Physical Review 111, 412 (1958).

[70] D Hazra, S Jebari, R Albert, F Blanchet, A Grimm, C Chapelier, and M Hofheinz, “Microwave response and electrical transport studies of disordered s wave superconductor: Nbn thin films,” arXiv preprint arXiv:1806.03935 (2018).

[71] Hila Hashemi, Alejandro W Rodriguez, J D Joannopoulos, Marin Soljačić, and Steven G Johnson, “Nonlinear harmonic generation and devices in doubly resonant kerr cavities,” Physical Review A 79, 013812 (2009).

[72] Evgeny F Talantsev and Jeffery L Tallon, “Universal self-field critical current for thin-film superconductors,” Nature communications 6, 7820 (2015).

[73] Osami Tsukamoto, “Ac losses in a type ii superconductor strip with inhomogeneous critical current distribution,” Superconductor Science and Technology 18, 596 (2005).

[74] Gheorghe Stan, Stuart B Field, and John M Martinis, “Critical field for complete vortex expulsion from narrow superconducting strips,” Physical review letters 92, 097003 (2004).