Role of imaging biomarkers in mutation-driven non-small cell lung cancer

Dexter P Mendoza, Zofia Piotrowska, Jochen K Lennerz, Subba R Digumarthy

ORCID number: Dexter P Mendoza 0000-0001-7571-740X; Zofia Piotrowska 0000-0002-9008-8573; Jochen K Lennerz 0000-0003-2434-4978; Subba R Digumarthy 0000-0002-0592-6449.

Author contributions: Mendoza DP wrote the first draft; all authors contributed to the content of the manuscript and reviewed and revised the manuscript.

Conflict-of-interest statement: Mendoza DP and Lennerz JK declare no conflict of interests for this article; Piotrowska Z has served as a compensated consultant or received honoraria from AstraZeneca, Spectrum, Ariad/Takeda, Novartis, ImmunoGen, AbbVie, GuardantHealth, Genentech, Eli Lilly, InCyte and Medtronic and receives institutional research funding from Novartis, Takeda, Spectrum, AstraZeneca and Tesaro; Digumarthy SR provides independent image analysis for hospital contracted clinical research trials programs for Merck, Pfizer, Bristol Mayer Squibb, Novartis, Roche, Polaris, Cascadian, Abbvie, Gradalis, Clinical Bay, Zai laboratories. Digumarthy SR received honorarium from Siemens, not related to this work.

Open-Access: This article is an

Abstract

Lung cancer remains the leading cause of cancer-related deaths worldwide. The treatment of non-small cell lung cancer (NSCLC), which accounts for a vast majority of lung cancers, has shifted to personalized, targeted therapy following discoveries of several targetable oncogenic mutations. Targeting of specific mutations has improved outcomes in many patients. This success has led to several target-specific agents replacing chemotherapy as first-line treatment in certain mutated NSCLC. Several researchers have reported that there may be imaging biomarkers that may be predictive of the presence of these mutations. These features, when present, have the potential in triaging patients into the most appropriate diagnostic and treatment algorithms. Distinct imaging features and patterns of metastases that have been associated with NSCLC with various targetable oncogenic mutations are presented in this review.

Key words: Non-small cell lung cancer; Imaging biomarker; Targeted therapy; Oncogenic mutations; Radiomics; Metastatic pattern

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide. Targeted therapy has improved outcomes in subsets of patients with certain targetable mutations. Several researchers have reported imaging biomarkers, which may predict the presence of these mutations. In this review, we present the primary tumor
MOLECULAR TESTING PLATFORMS

Given the success of targeted therapy in certain molecular subsets of patients, screening for driver mutations has become an essential step in the evaluation of patients with newly diagnosed NSCLCs. Current guidelines, including those from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association of Molecular Pathologists, now recommend assessment for the presence of driver mutations in patients with advanced NSCLC, specifically in those with adenocarcinoma[17].

While screening for driver mutations has been widely adopted in clinical practice, no standard screening platform has been established. The optimal testing platform would be accurate, cost-effective, and with a fast turnaround time. The methods currently available offer these features to varying degrees. Their sensitivities may also depend on the mutation being assessed. As such, no single platform has emerged as the optimal testing method for all (Table 2).

The techniques most commonly employed in molecular analysis of tumor tissue include direct gene sequencing, allele-specific sequencing by polymerase chain reaction (PCR), next generation sequencing (NGS), fluorescence in situ hybridization (FISH) and evaluation of protein expression by immunohistochemistry (IHC). All of these techniques require tissue samples. Direct gene sequencing (i.e., Sanger sequencing) was one of the first methods used to perform genotyping but has largely been replaced since by the other methods as it requires a higher tumor cellularity in tissue samples and is more prone to false negative results.

In allele-specific tissue testing, raw DNA is amplified using PCR and is then analyzed for specific abnormalities. Amplification with PCR allows for greater sensitivity and allows for testing of more than one abnormality at a time (i.e., multiplex testing). Its main drawback is that it is only test for predefined abnormalities and is unable to detect new mutations.

FISH testing can be used to detect gene rearrangements, amplifications, or deletions.
Table 1 Targetable genotypes in non-small cell lung cancer with Food and Drug Administration-approved targeted therapies

Molecular alteration	Approved targeted therapies
EGFR	Afatinib
	Dacomitinib
	Erlotinib
	Gefitinib
	Osimertinib
ALK	Alectinib
	Brigatinib
	Ceritinib
	Crizotinib
	Lorlatinib
ROS1	Crizotinib
	Entrectinib
BRAF	Dabrafenib + trametinib
NTRK	Larotrectinib
	Entrectinib

EGFR: Epidermal growth factor receptor; ALK: Anaplastic lymphoma kinase; ROS1: c-ROS oncogene 1; NTRK: Neurotrophic receptor tyrosine kinase.

It is highly sensitive in detecting rearrangements in the ALK, ROS1, and RET genes as well as MET amplification and NTRK fusion\([6,7]\). Tissue IHC has also been found to be highly sensitive and specific in detecting ALK and ROS1 rearrangements by detecting expression of abnormal proteins, but it has not been as helpful in the detection of other mutations\([8,9]\). It is also routinely used in determining PD-L1 expressivity in tumor cells\([10]\).

Finally, NGS is an automated platform that, like allele-specific sequencing, can simultaneously test for multiple genetic abnormalities. It is highly sensitive in the detection of EGFR, HER2, METex14, BRAF, and KRAS mutations\([11,12]\). It can also detect ALK, ROS1, and RET rearrangements, but with lower sensitivity\([6,13]\), and identify novel mutations. The main drawback is cost, as NGS demands advanced bioinformatics systems, fast and complex data processing, and large data storage requirements. Another potential challenge of NGS is the detection of novel variants and mutations of indeterminate significance.

CLINICOPATHOLOGIC BIOMARKERS IN MUTATED NSCLC

Although testing for several driver mutations is now standard of care in the management of advanced NSCLC, significant disparities in compliance with recommended exist around the world, and even within the United States\([12,13]\). The identification of clinical, pathologic, and imaging biomarkers has the potential to improve compliance and mitigate these disparities. Moreover, identification of these biomarkers has the potential to lower cost by helping to identify the patients who may benefit the most from molecular testing and by assisting in in the selection of the most appropriate testing algorithm.

Several clinicopathologic features have been associated with the presence of certain mutations (Table 3). EGFR mutations are the first molecular alterations in lung cancer shown to confer sensitivity to specific targeted therapies. EGFR mutations are identified in approximately 15% of lung adenocarcinomas in the United States but have been reported in up to approximately 60% of Asian cases\([10]\). Affected patients tend to be younger with minimal or absent history of smoking\([10]\). Several generations of tyrosine kinase inhibitors (TKI) have been approved as first-line treatment in advanced EGFR-mutant NSCLC\([10,11]\).

ALK gene rearrangements, most commonly resulting in fusion of ALK to
Table 2 Commonly used platforms for detection of mutations in non-small cell lung cancer

Testing technique	High sensitivity in detecting	Lower sensitivity in detecting
Direct gene sequencing		BRAF
Requires high tumor cellularity		EGFR
Largely replaced by newer techniques		HER2
		KRAS
Allele specific sequencing	BRAF	
Detects predefined abnormalities	EGFR	
Allows for multiplex testing	HER2	
	KRAS	
Next Generation sequencing	BRAF	ALK
Can detect novel mutations	EGFR	RET
Allows for multiplex testing	HER2	ROS1
Can be costly and time consuming	KRAS	NTRK
	MET exon 14 skipping	MET amplification
Fluorescent in situ hybridization	ALK	RET
	RET	ROS1
	NTRK	MET amplification
Immunohistochemistry	ALK/ROS1	NTRK fusion

Table 3 Summary of reported clinicopathologic biomarkers in select molecular genotypes in non-small cell lung cancer

Clinicopathologic features	EGFR-mutant	ALK-rearranged	ROS1-rearranged	BRAF V600E-mutant	MET exon 14 skipping
Age	Younger	Younger	Younger	No specific age predilection	Older compared to another mutated NSCLC
Race	More common in Asian populations	More common in Caucasian populations	No specific racial predilection	No specific racial predilection	No specific racial predilection
Smoking history	Minimal to no smoking history	Minimal to no smoking history	Minimal to no smoking history; positive smoking history in non-V600E mutation	Both smokers and non-smokers	
Tumor histology	Adenocarcinoma	Adenocarcinoma	Adenocarcinoma	Adenocarcinoma	Increased incidence of METex14 skipping with sarcomatoid histology

1 Data collected from several sources [40, 54, 63, 65, 66, 71].

Echinoderm microtubule-associated protein-like 4 (EML4), are reported in approximately 5% of NSCLC[23,24]. Similar to EGFR-mutant NSCLC, ALK-positive NSCLCs are more common in younger patients with minimal or no smoking history[25,26]. Several ALK-targeted TKIs have been shown to be highly effective in treating ALK-positive NSCLC and are now Food and Drug Administration-approved[27-32].

ROS1 rearrangements, most commonly genetic translocations between ROS1 and CD74, represent another targetable driver alteration identified in 1%-2% of NSCLC[33,34]. Similar to EGFR mutations and ALK rearrangements, ROS1 rearrangements are also associated with younger age, little to no smoking history, and
adenocarcinoma cell type.35,39 ALK and ROS tyrosine kinase domains share a high degree of homology, making ROS1-positive NSCLC highly sensitive to crizotinib.33 Entrectinib, a tropomyosin receptor kinase (TRK)/ROS1 inhibitor, has also been found to be effective and has been approved for the treatment of advanced ROS1-positive NSCLC.46

Mutations in the BRAF gene, which are present in 2%-4% of NSCLC, have emerged as another possible target in the treatment of NSCLC.35,39 BRAF is a protein kinase, which, when constitutively activated by a mutation, can lead to increased cell proliferation and survival, decreased cell death, and oncogenesis through the RAS/MAPK pathway.46,47 Several subtypes of BRAF mutations exist and are typically classified as either V600E or non-V600E.48,49 Unlike mutations involving EGFR, ALK, and ROS1, those with activating non-V600E BRAF mutations are typically current or previous smokers, although those with V600E mutations are typically less likely to have a history of smoking.46,49,50 Combination treatment with BRAF and MEK inhibitors, dabrafenib and trametinib, has been approved for advanced NSCLC with BRAF V600E mutations.51

Fusions involving one of three TRK (NTRK fusions) are seen in less than 1% of NSCLC and has not been shown to have a predilection based on gender, age, smoking history, or histology.51 Two TRK inhibitors, larotrectinib and entrectinib, have shown efficacy against NSCLC harboring NTRK fusions and have been approved in advanced cases.52,53

RET fusions are detected in 1%-2% of NSCLC and are more commonly seen in patients with no significant smoking history.54,55 Multi-targeted TKIs such as cabozantinib and vandetanib have been found to have anti-RET activity.56,57 Subsequently, highly potent, RET-selective TKIs, pralsetinib (BLU-667) and selpercatinib (LOXO-292), have shown promising preliminary safety and efficacy profiles in patients with advanced solid tumors harboring RET alterations and are under investigation in the treatment of RET-positive NSCLC.58,59

The MET proto-oncogene encodes a receptor tyrosine kinase, which plays a role in the RAS/MAPK, Rac/Rho, and PI3K/Akt signaling pathways, which mediate cellular growth, anti-apoptosis, and metastasis.60 MET amplification and overexpression have been found in a wide variety of malignancies including lung cancer, both as a primary driving mutation and as an acquired resistance mechanism in EGFR-mutated NSCLC.61 MET exon 14 (METex14) skipping represents a distinct subset of MET mutations seen in up to 4% of NSCLC and is mutually exclusive of other driver mutations, including EGFR, ALK, and ROS1.62,63 METex14 skipping mutations tend to affect older patients compared to EGFR and ALK.61,64 Although most tumors with METex14 skipping mutations are adenocarcinomas, there is increased incidence of the mutation in those with sarcomatoid histology.64 Crizotinib and cabozantinib have shown promise in treating the treatment of NSCLC harboring METex14 skipping mutations, and several clinical trials are currently underway investigating novel MET-targeted TKIs, including tepotinib and capmatinib.65,66

HER2 encodes an EGFR family receptor tyrosine kinase, with mutations in HER2 gene detected in approximately 1%-3% of NSCLC.67,68 These mutations are more commonly seen in lung adenocarcinoma and are more common in nonsmokers and women.69 There is evidence showing that HER2-mutated NSCLC may respond to trastuzumab-based regimens and ado-trastuzumab emtansine, and several clinical trials of novel TKIs targeting HER2 are currently underway including poziotinib, TAK-788, pyrotinib and others.

Finally, activating KRAS mutations are the most commonly identified alterations in NSCLC, seen in up to 25% of lung adenocarcinomas.70 Unlike EGFR and ALK alterations, KRAS mutations are generally seen in smokers. Several previous efforts to identify RAS-specific inhibitors have been unsuccessful. Currently, several agents are under investigation in the treatment of NSCLC with KRAS-G12C mutations, which accounts for approximately 12% of KRAS mutations in NSCLC.71

IMAGING BIOMARKERS IN MUTATED NSCLC

There has been increasing awareness of the clinical features (e.g., minimal to no history of smoking, Asian descent, etc.) that are associated with certain mutations in NSCLC, but the association of the imaging features and underlying driver mutations in NSCLC remains under-recognized. Emerging data suggest that there are differences among NSCLC harboring different targetable oncogenic driver mutations with respect to the imaging features of the primary tumor and patterns of metastases (Table 4, Figure 1).
Table 4 Summary of reported imaging biomarkers in select molecular genotypes in non-small cell lung cancer

Imaging feature	EGFR mutation	ALK rearrangement	ROS1 rearrangement	METex14 skipping mutation
Primary tumor	Increased ground-glass components	Purely solid lesion	Purely solid lesion	Multifocal primary lung cancers
Presence of air bronchograms (pneumonic appearance)	Peripheral predilection	Peripheral predilection	Peripheral predilection	
Metastatic patterns	Diffuse lung metastases	Lymphangitic carcinomatosis	Lymphangitic carcinomatosis	Oligometastatic disease
	Pleural and pericardial metastasis	Pleural metastases		
	Intrathoracic and distant lymphadenopathy	Intrathoracic and distant lymphadenopathy		
	Lytic bone metastases	Sclerotic bone metastases	Sclerotic bone metastases	Lytic bone metastases
	High rates of brain metastases	High rates of brain metastases, but lower compared to EGFR and ALK	High rates of brain metastases, but lower compared to EGFR and ALK	

1Data collected from several sources\[54,63,65,66,71\]. EGFR: Epidermal growth factor receptor; ALK: Anaplastic lymphoma kinase.

CT imaging features and distribution of metastases in ROS1-raneg NSCLC

![CT imaging features and distribution of metastases in ROS1-ranged NSCLC](image)

Figure 1 Comparison of select primary tumor features and metastatic patterns among patients with non-small cell lung cancer with ALK, ROS1, or EGFR alterations\[71\].

These features, when present, can potentially point to certain mutations.

PRIMARY TUMOR FEATURES

Several researchers have investigated the imaging features of the primary tumors in those with mutation-driven NSCLC. The most commonly investigated features are the tumor density, morphology, and location.

Overwhelmingly, most primary tumors in both mutated and non-mutated NSCLC are solid in density, including those with mutations involving KRAS, EGFR, ALK, ROS1, RET, MET, BRAF, HER2, and KRAS\[^{[G12S]}\]. To date, the imaging features of NSCLC with NTRK fusions have not been studied, likely owing to their rarity. While most lung tumors are typically solid, several studies\[^{[8,10,14]}\] have reported increased propensity of primary tumors in EGFR-mutant NSCLC to have a
consolidative “pneumonic” appearance with ground-glass components, cavitations, and air-bronchograms (Figure 2A and 4A). This highlights the need for vigilance in the setting of non-resolving consolidations to prevent missed or delayed diagnosis in these patients.

Primary tumor location, particularly the tumor’s axial location (i.e., central versus peripheral location), is another commonly investigated imaging feature. Increased tendency for peripheral rather than central locations has been reported in NSCLC with ALK rearrangements (Figure 3A)\(^{65,66}\), RET rearrangements\(^{77,78}\) and METex14 skipping mutations\(^{65}\). Two small studies have also suggested that the primary tumors in ROS1-positive NSCLC tend to be peripheral\(^{71}\), although a subsequent larger study failed to support these findings\(^{75}\).

More recently, it has been reported that the primary tumors in ALK-positive NSCLC are more likely to occur in the lower lobes, compared to EGFR-wild type and ALK/EGFR-negative tumors\(^{69}\). Most lung cancers develop in the upper lobes. Propensity for lung cancer development in the lower lobes has been reported in lung cancers developing in nonsmokers, although the presence or absence of an underlying driver mutation was not included in the study\(^{69}\). It has also been suggested that lower lobe tumors may be associated with a worse prognosis, but the studies did not include NSCLC with targetable mutations\(^{65,69}\). Tumor location may have implications with respect to accessibility for biopsy, surgery, or radiation therapy.

PATTERNS OF NODAL AND DISTANT METASTASES

Nodal metastasis

Nodal status is an important prognostic factor and determinant of treatment offered to patients with lung cancer. A number of studies have suggested that certain driver mutations may have increased predisposition for both intrathoracic and distant nodal metastases. In particular, several studies have reported increased frequency for extensive lymphadenopathy in ALK-positive NSCLC (Figure 3C)\(^{65,67,77}\). More recently, a similar predilection for intrathoracic and distant nodal metastases have been associated with ROS1-positive NSCLC\(^{69}\). The extensive lymphadenopathy seen in ALK-positive and ROS1-positive NSCLC can potentially be misinterpreted initially on imaging as either lymphoma or small cell lung cancer\(^{66,71}\).

Lung metastases

Several studies have reported that there is increased frequency of diffuse “miliary” (i.e., widespread disseminated) lung metastases in EGFR-mutant NSCLC (Figure 2A and 4A). Our group has previously reported up to a six-fold increased incidence of diffuse lung metastases in EGFR-mutant NSCLC compared to EGFR-wild type NSCLC\(^{69}\). While diffuse lung metastases are typically associated with worse prognosis, the presence of an EGFR mutation and increased responsiveness to targeted therapy (Figure 2B) can potentially improve outcomes in these patients. In the setting of a dominant lung mass and diffuse “miliary” lung metastases, EGFR-mutant NSCLC should be suspected\(^{69}\).

ALK-positive NSCLC, on the other hand, has been associated with lymphangitic carcinomatosis (Figure 3B and 4B) in comparison to EGFR-mutant NSCLC\(^{65,67,78}\). More recently, ROS1-positive NSCLC has also been associated with predilection for lymphangitic carcinomatosis (Figure 5A)\(^{71}\). On imaging, lymphangitic carcinomatosis is characterized by nodular thickening of the axial and peripheral, subpleural interstitium, with relative sparing of the intralobular interstitium\(^{79}\). Lymphangitic carcinomatosis is associated with worse prognosis in various extrapulmonary malignancies, but its prognostic impact in the setting of primary lung malignancies remains unclear due to paucity of data\(^{69}\). While it may appear intuitive to that lymphangitic carcinomatosis is suggestive of more advanced disease, a concurrent targetable mutation with either ALK or ROS1 may improve outcomes in these patients (Figure 5C).

More recently, it has been suggested that NSCLC with METex14 skipping mutations may have increased frequency of multifocal, synchronous primary lung cancer at presentation (Figure 4C), which was observed in approximately 1 in 5 patients\(^{80}\). The authors suggested that this multifocality may be secondary to synchronous adenocarcinomas with distinct splice site mutations, which has been previously described for METex14-mutated primary lung adenocarcinomas\(^{81}\).
Figure 2 Primary tumor features and “miliary” type metastases in 66-year-old male non-smoker with EGFR-mutant non-small cell lung cancer. A: Pretreatment computed tomography (CT) shows a mass-like consolidation in the left upper lobe with internal air bronchograms (arrowheads) and diffuse 1-2 mm nodules bilaterally consistent with “miliary” metastases. Consolidative, “pneumonic”, appearance of the primary tumor is associated with EGFR mutations in non-small cell lung cancer; B: Post-treatment CT shows marked treatment response to targeted therapy with mild residual scarring and nodularity in the left upper lobe and near-complete resolution of diffuse metastases.

Figure 3 Lymphangitic carcinomatosis, pleural metastasis and, extensive lymphadenopathy in 64-year old female non-smoker with ALK-positive non-small cell lung cancer. A: Pretreatment computed tomography (CT) shows a right upper lobe nodule (arrow) corresponding to the primary lung tumor; B: CT slice at the level of the carina shows extensive right sided nodular septal thickening consistent with lymphangitic carcinomatosis; C: CT (mediastinal window) shows extensive right hilar and subcarinal lymphadenopathy (arrowheads) consistent with nodal metastases. A pleural effusion, later proven to be malignant by cytology, is also noted. These features have been associated with ALK-positive non-small cell lung cancer (NSCLC). Similar features have also been described in ROS1-positive NSCLC (Figure 5).

Figure 4 Imaging features of the primary lung tumor and patterns of lung metastases in non-small cell lung cancer with driver mutations. A: Computed tomography (CT) of a patient with EGFR-mutant non-small cell lung cancer (NSCLC) shows a dominant central left upper lobe mass with diffuse “miliary” type metastases bilaterally. Note the “consolidative” appearance of the dominant mass with air bronchograms (arrowhead), which have also been associated with EGFR-mutant NSCLC; B: CT of a patient with ALK-rearranged NSCLC shows a solid dominant peripheral right upper lobe mass (arrowhead) with nodular thickening of interstitium and ground glass opacities consistent with lymphangitic carcinomatosis, which have been associated with NSCLC with either ALK or ROS1 rearrangements; C: CT of a patient with NSCLC with MET exon 14 skipping mutation shows a part-cystic, part-solid nodule in the right upper lobe (thick arrow) with an additional ground glass nodule in the left lower lobe (arrowhead) and a smaller ground glass nodule in the left upper lobe (thin arrow), consistent with synchronous multifocal lung cancers.

Pleura and pericardial metastases
In addition to increased frequency of lymphangitic carcinomatosis, ALK-positive NSCLC has also been associated with increased frequencies of both pleural (Figure 3C) and pericardial metastases[65], and ROS1-positive NSCLC has also been associated with pleural metastases (Figure 5B)[71]. The mechanism behind these potential differences in
metastatic tropisms among the different genotypes remains to be determined.

Brain metastases

The brain is a common site of metastasis in NSCLC, with over 20% of patients with advanced NSCLC having brain metastases at the time of diagnosis, and up to approximately 50% developing them within three years\[^{[86,89]}\]. Brain metastases present a unique challenge, as their treatment requires agents that can cross and can remain active beyond the blood-brain barrier.

Several studies have suggested potential differences in the frequencies of brain metastases across the different oncogenic drivers in NSCLC\[^{[86,89]}\]. NSCLC harboring alterations in EGFR, ALK, or ROS1 have been associated with increased frequencies of brain metastases\[^{[86,89]}\]. Some reports, however, show that there is significant overlap in the frequencies of brain metastases among the different mutation groups\[^{[86,89]}\]. Reported frequencies of brain metastasis at time of diagnosis of advanced disease range from 23%-41% in EGFR-mutant NSCLC\[^{[86,89]}\], 23%-42% in ALK-positive NSCLC\[^{[86,89]}\], and 9%-36% in ROS1-positive NSCLC\[^{[86,89]}\]. Less data is available with respect to the frequencies of brain metastases in the other mutational subgroups. Incidence of 25% have been reported for both RET-positive\[^{[86,89]}\] and HER2-mutant NSCLC\[^{[86,89]}\], 21% for NSCLC with METex14 skipping mutations\[^{[86,89]}\], and 10% for BRAF-mutant NSCLC. Ranges of reported incidences of brain metastases in the more common molecular subtypes are presented on Figure 6. Further investigation is necessary to determine if differences in tropism to the brain truly exist across the different oncogenic subsets in NSCLC and to determine the underlying mechanism resulting in differences. Nevertheless, the high incidences of brain metastases across several of these mutated tumors underscore the need for targeted agents that have robust CNS activity.

Bone metastases

The bones are a common site of metastasis in NSCLC and osseous metastases are seen in up to 40% of patients with advanced lung cancer\[^{[66]}\]. Bone metastases are a significant cause of morbidity in cancer patients as they can predispose to pathologic fractures, cause debilitating pain and severely reduce quality of life.

Osseous metastases from a variety of malignancies can be either predominantly lytic or predominantly sclerotic or osteoblastic in appearance. Many lytic lesions may also become sclerotic with treatment. Malignancies classically associated with sclerotic bone metastases are prostate cancer and small cell lung cancer. In general, bone metastases in NSCLC usually present as lytic lesions, with sclerotic metastases rarely seen prior to treatment\[^{[90]}\].

A number of studies, however, have reported that there may be a predisposition to either lytic or sclerotic bone metastasis based on the presence of an underlying driver mutation in NSCLC. ALK-positive NSCLC, for instance, has been associated with sclerotic metastases (Figure 7). In a study comparing the imaging findings of ALK-positive NSCLC to those of EGFR-mutant NSCLC, more than half of the patients with bone metastases in the setting of ALK-positive NSCLC had sclerotic bone metastases prior to any treatment. In contrast, sclerotic bone metastases were seen in only 1 of 6 patients with EGFR-mutant NSCLC\[^{[90]}\]. More recently, a different study comparing the imaging features of ROSI-positive NSCLC to those with ALK or EGFR alterations, showed similar frequencies of bone metastases among the three mutational subgroups, but an increased frequency of sclerotic bone metastases in both ROSI-positive NSCLC.

Figure 5 Lymphangitic carcinomatosis and pleural metastases in 26-year old male non-smoker with ROSI-positive non-small cell lung cancer. A: Pre-treatment computed tomography (CT) shows a dominant right lower lobe mass with diffuse bilateral, right greater than left lymphangitic carcinomatosis characterized by nodular interstitial thickening and ground glass opacities; B: Pre-treatment CT (mediastinal window) shows right pleural nodular thickening and pleural effusion (arrowheads) consistent with pleural metastasis; C: Initial post-treatment CT shows marked interval response to targeted therapy with near complete resolution of right lower lobe mass and of lymphangitic carcinomatosis. Increased frequencies of lymphangitic carcinomatosis and pleural metastases have also been described in ALK-positive non-small cell lung cancer (Figure 2).
Figure 6 Range of reported incidences (%) of brain metastases in advanced mutated non-small cell lung cancer with driver mutation. Data presented are obtained from several sources[66,71,86-88,90].

Figure 7 Patterns of bone metastases in non-small cell lung cancer with driver mutations. A: Pretreatment computed tomography (CT) images (sagittal, bone window) show sclerotic lesions involving the cervicothoracic spine (arrowheads) consistent with osseous metastases in \textit{ROS1}-positive non-small cell lung cancer (NSCLC); B: Pretreatment CT images (sagittal, bone window) show lytic lesions involving thoracic and lumbar vertebral bodies (arrowheads) in patient with \textit{EGFR}-mutant NSCLC; C: Post-treatment CT of the same patient as Figure 7B shows interval sclerosis of previously lytic osseous metastases (arrowheads). In general, most NSCLC tend to have lytic lesions in contrast to those with \textit{ROS1} or \textit{ALK} positive NSCLC, which tend to be more sclerotic at presentation. Sclerosis of previously lytic lesion is often seen after treatment.

and \textit{ALK}-positive NSCLC compared to \textit{EGFR}-mutant NSCLC[71]. In contrast, a series presenting the clinicopathologic and imaging features of NSCLC with METex14 skipping mutations reported the bone metastases to be predominantly lytic in these patients[76]. The morphology of bone metastases in the other molecular subgroups has yet to be reported.

Other metastatic patterns

No specific imaging biomarker has yet to be identified to suggest the presence of an underlying \textit{BRAF} mutation in NSCLC[40,96]. It has been suggested, however, that at the time of presentation, patients with lung cancer harboring the V600E \textit{BRAF} mutation may be more likely to have intrathoracic metastases, particularly pleural metastases, while those with non-V600E \textit{BRAF} mutations may be more likely to have intra-abdominal metastases[40].

Finally, METex14 skipping mutations in NSCLC have recently been associated with increased incidence of oligometastatic disease[54]. In the case series, the authors reported 4 patients that had only a single site of metastases (3 with adrenal metastasis and 1 one with soft tissue metastasis), although the findings have yet to be validated[54]. Several studies, however, have reported better outcomes in patients with limited metastatic burden when managed with radical treatment with curative intent[54].
CONCLUSION

The mechanism behind the morphological differences of the primary tumor and the differences in metastatic tropisms among the molecular subgroups of NSCLC remain unclear. While none of the imaging features and metastatic tropisms we discussed can reliably predict the presence of specific genetic alterations in isolation and they are unlikely to replace molecular genotyping in directing the need for targeted therapy, these imaging biomarkers can indicate the presence of specific targetable mutations and can play an adjunctive role. These features can assist in the selection patients who may benefit from expedited pathways for molecular testing or repeat testing when the initial genotyping results are equivocal or discordant with the clinical and imaging presentation. Given the importance of initiating targeted therapy in patients with targetable mutations, it is imperative to use all biomarkers available – clinical, histopathologic, and radiologic – in detecting these mutations.

REFERENCES

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87-108. [PMID: 25651787 DOI: 10.3322/caac.21262]
2. National Cancer Institute. SEER Cancer Statistics Review (CSR) 1975-2016. [updated 9 April 2020]. Available from: https://seer.cancer.gov/csr/1975_2016/
3. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511: 543-553. [PMID: 25079552 DOI: 10.1038/nature13385]
4. Ettinger DS, Aisner DL, Wood DE, Akerley W, Bauman J, Chang YJ, Chirieac LR, D’Amico TA, Dilling TJ, Dobelbower M, Govindan R, Gubens MA, Hennion M, Horn L, Lackner RP, Lanuti M, Leal TA, Lilienbaum R, Lin J, Loo BW, Martins R, Otterson GA, Patel SP, Reckamp K, Riel DJ, Schild SE, Shapiro TA, Stevenson J, Swanson SJ, Tauer K, Yang SC, Gregory K, Hughes M. NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 5.2018. J Natl Compr Canc Netw 2018; 16: 807-821. [PMID: 30006423 DOI: 10.6004/jnccn.2018.0062]
5. Lindeman NI, Eagle BT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, Colasacco C, Dacic S, Hirsch FR, Kerr K, Kwiatkowski DJ, Ladanyi M, Nowak JA, Shaw L, Temple-Smolkin R, Solomon B, Souter LH, Thunnissen E, Tsao MS, Venturina CB, Wyens MW, Yatabe Y. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guidelines From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med 2018; 142: 321-346. [PMID: 29355391 DOI: 10.5858/arpa.2017-0388-CP]
6. Garnet S, Laurent-Puig P, Blons H, Oudart JB. Current and Future Molecular Testing in NSCLC, What Can We Expect from New Sequencing Technologies? J Clin Med 2018; 7: [PMID: 29890761 DOI: 10.3390/jcm7060141]
7. Dietel M. Molecular Pathology: A Requirement for Precision Medicine in Cancer. Oncol Res Treat 2016; 39: 804-827. [PMID: 27889782 DOI: 10.1159/000453085]
8. Mino-Kenudson M. Immunohistochemistry for predictive biomarkers in non-small cell lung cancer. Transl Lung Cancer Res 2017; 6: 570-587. [PMID: 29114473 DOI: 10.21037/tlcr.2017.07.06]
9. Yoshida A, Tsuta K, Wakai S, Arai Y, Asamura H, Shibata T, Furuta K, Kohno T, Kusumoto S, Yang JC. Immunohistochemical detection of ROS1 is useful for identifying ROS1 rearrangements in lung cancers. Mod Pathol 2014; 27: 711-720. [PMID: 24186139 DOI: 10.1038/modpathol.2013.192]
10. Hirsch FR, McElhinny A, Stanford D, Ranger-Moore J, Janson M, Kulangara K, Richardson W, Towne P, Hanks D, Vennapusa B, Mistry A, Kalamangam R, Averbuch S, Novotny J, Rubin E, Emancipator K, McCaffery I, Williams JA, Walker J, Longshore J, Tsao MS, Kerr KM, PD-L1 Immunohistochemistry Assays for Lung Cancer: Results from Phase 1 of the Blueprint PD-L1 IHC Assay Comparison Project. J Thorac Oncol 2017; 12: 208-222. [PMID: 27913228 DOI: 10.1016/j.jto.2016.11.1228]
11. Kruglyak KM, Lin E, Ong FS. Next-Generation Sequencing and Applications to the Diagnosis and Treatment of Lung Cancer. Adv Exp Med Biol 2016; 890: 123-136. [PMID: 26703802 DOI: 10.1007/978-3-319-24912-2_7]
12. Lee DH, Tsao MS, Kambardel KO, Isobe H, Huang MS, Barrios CH, Khattak A, de Marinis F, Kothari S, Arunachalam A, Cao X, Burke T, Valladares A, de Castro J. Molecular testing and treatment patterns for patients with advanced non-small cell lung cancer: PIvOTAL observational study. PLoS One 2018; 13: e0202865. [PMID: 30418862 DOI: 10.1371/journal.pone.0202865]
13. Illei PB, Wong W, Wu N, Chu L, Gupta R, Schulze K, Gubens MA. ALK testing trends and patterns among patients with advanced non-small cell lung cancer: PIvOTAL observational study. PLoS One 2018; 13: e0202865. [PMID: 30418862 DOI: 10.1371/journal.pone.0202865]
14. Shi Y, Yang JC, Thongprasert S, Shinivasan S, Tsai CM, Khoj H, Nemoto K, Itoh Y, Cornelio G, Yang PC. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol 2014; 9: 154-162. [PMID: 24419411 DOI: 10.1097/JTO.000000000000033]
15. Kawaguchi T, Koy Y, Ando M, Ito N, Takeo H, Adachi H, Tagawa T, Kagawada S, Yamashita M, Kataoka K, Ichinose Y, Takeuchi Y, Serizawa M, Tamiya A, Shimizu S, Yoshimoto N, Kubo A, Is A, Saka H, Matsumura A. Prospective Analysis of Oncogenic Driver Mutations and Environmental Factors: Japanese Molecular Epidemiology for Lung Cancer Study. J Clin Oncol 2016; 34: 2247-2257. [PMID: 27161973 DOI: 10.1200/JCO.2015.64.2322]
16. Park K, Tan EH, O’Byrne K, Zhang L, Boyer M, Mok T, Hirsh V, Yang JC, Lee KH, Lu S, Shi Y, Kim
SW, Laskin J, Kim DW, Arvis CD, Kölbeck K, Laurie SA, Tsai CM, Shahidi M, Kim M, Massey D, Zazzalina V, Paz-Ares L. Afinitin versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 3, open-label, randomised controlled trial. Lancet Oncol 2016; 17: 577–589 [PMID: 27083334 DOI: 10.1016/S1470-2045(16)30333-X].

17 Wu YL, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niño S, Tsuji F, Linke R, Rosell R, Corral J, Migliorino MR, Pluzanski A, Bharadwaj W, Tancer T, White JL, Nadanaciva S, Sandin R, Mok TS. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol 2017; 18: 1454–1466 [PMID: 28958502 DOI: 10.1016/S1470-2045(17)30608-3].

18 Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felpu E, Palmero R, Garcia-Gomez R, Palares C, Sanchez JM, Porta R, Cobo M, Garrido P, Longo F, Moran T, Torre A, De Marinis F, Corre R, Bovery I, Illiano A, Danus E, de Castro J, Millaia M, Reguart N, Alegre T, Moreno MA, Terra J, Muñoz-Langa L, Valdivia JI, Isla D, Domine M, Molinier O, Mazieres J, Baez N, Garcia-Campello R, Robinet G, Rodriguez-Arueas D, Lopez-Vivanco G, Guevara F, Delgado L, Bombaron P, Bermejo R, Bearz A, Artal C, Cortesi E, Rillo C, Sanchez-Ronco M, Drozdowska A, Queralt C, de Aguirre I, Ramirez JL, Sanchez JJ, Molina MA, Taron M, Paz-Ares L; Spanish Lung Cancer Group in collaboration with Group of Pneumo-Cancrologie and Associazione Italiana Oncologia Toracica. Erlotinib versus standard chemotherapy for first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012; 13: 239–246 [PMID: 22285168 DOI: 10.1016/S1470-2045(11)70331-X].

19 Macchiondo M, Inoue A, Kobayashi K, Sugawara S, Otsuzi S, Iseho H, Gemma A, Harada M, Yoshizawa H, Kinosita I, Fujita Y, Okinaga S, Hirano H, Yoshimori K, Harada T, Ogura T, Ando M, Miyazawa H, Tanaka T, Saio Y, Hayagira K, Morita S, Nukiwa T, North-East Japan Study Group. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2017; 376: 629–640 [PMID: 27959700 DOI: 10.1056/NEJMoa1612674].

20 Mok TS, Wu Y-L, Ahn M-J, Garassino MC, Kim HR, Ramalingam SS, Shepherd FA, He Y, Akamatsu T, Theelen WS, Lee CK, Sebastian M, Templeton A, Mann H, Marotti M, Ghiorgi S, Papamitratoupolou VA, AURA2 Investigators. Osimertinib or Platinum-Pemetrexed in EGFR-TKInhibitor-Refractory Non-Lung Cancer. N Engl J Med 2017; 376: 320–332 [PMID: 28623234 DOI: 10.1016/S0028-0840(16)30987-7].

21 Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chiewskuloyong B, Lee KH, Dechaphulikul A, Imamura F, Nagami N, Kurata T, Okamoto I, Zhou C, Cho BC, Cheng Y, Cho EK, Voon PJ, Planard C, Su WC, Gray JE, Lee SM, Hodge R, Marotti M, Rukazenko Y, Ramalingam SS; FLAURA Investigators. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med 2018; 378: 113–125 [PMID: 29151359 DOI: 10.1056/NEJMoa1713137].

22 Sequist LV, Yang JC, Yamamoto N, O’Byrne K, Hirsh V, Mok T, Geater SL, Orlov S, Tsai CM, Boyer M, Su WC, Bentzouza J, Kato T, Gorbonova V, Lee KH, Shah R, Massey D, Zazzalina V, Shahidi M, Schuler M. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013; 31: 3327–3334 [PMID: 23816960 DOI: 10.1200/JCO.2012.44.2060].

23 Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujisawa S, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007; 448: 561–566 [PMID: 1762570 DOI: 10.1038/nature05945].

24 Shaw AT, Hsu PP, Awad MM, Engelman JA. Tyrosine kinase gene rearrangements in epithelial malignancies. Nat Rev Cancer 2013; 13: 772–787 [PMID: 24132104 DOI: 10.1038/nrc3612].

25 Wong DW, Leung EL, So KK, Tam SY, Sihohe AD, Cheng LC, Ho KK, Au JS, Chung LP, Pik Wong M; University of Hong Kong Lung Cancer Study Group. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 2009; 115: 1723–1733 [PMID: 19170230 DOI: 10.1002/cncr.24181].

26 Fukui T, Yatabe Y, Kobayashi Y, Tomizawa K, Ito S, Hatooska S, Matsuoka K, Miuhodomi T. Clinicoradiologic characteristics of patients with lung adenocarcinoma harboring EML4-ALK fusion oncogene. Lung Cancer 2012; 77: 319–325 [PMID: 22483782 DOI: 10.1016/j.lungcan.2012.03.013].

27 Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JM, Kim DW, Ou SI, Pedi M, Dzidziuszko R, Rosell R, Zeafer A, Miity E, Golding S, Balas B, Noe J, Morcos PN, Mok T; ALEX Trial Investigators. Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med 2017; 377: 829–838 [PMID: 28586279 DOI: 10.1056/NEJMoa1704975].

28 Soria JC, Tan DSW, Chiari R, Wu YL, Paz-Ares L, Wolf J, Geater SL, Orlov S, Cortinovis D, Yu CY, Hochmair M, Cortes AJ, Tsai CM, Moro-Silbido D, Campello RG, McCulloch T, Sen P, Dugan M, Pantano S, Branle F, Massacesi C, de Castro J. First-line ceritinib versus platinum-based chemotherapy in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: A randomised, multicentre, phase 2 trial. Lancet 2017; 389: 917–929 [PMID: 2812633 DOI: 10.1016/S0140-6736(17)30123-X].

29 Shaw AT, Gandli L, Gadgeel S, Riely GJ, Cetnar J, West H, Camidge DR, Socinski MA, Chiappori A, Mok TS, Mohnen C, Akiyama K, Johnson C, Gordin A, Bower M, Shen H, Adkisson S, Bhatt D, Mungall C, Chan K, Fiori G, Foss JD, Zaluta E, Yoon P, Siersema P, Shahidi M, Avad MM, Engelman JA. Tyrosine kinase gene rearrangements in epithelial malignancies. Nat Rev Cancer 2013; 13: 772–787 [PMID: 24132104 DOI: 10.1038/nrc3612].

30 Kim DW, Tsiseo M, Ahn MJ, Reckamp KL, Hansen KH, Kim SW, Huber RM, West HL, Groen JJHM, Hochmair MJ, Leng NB, Gettinner SN, Langer CJ, Paz-Ares Rodrigues LG, Smit EF, Kim ES, Reichmann W, Haluska FG, Kerstein D, Camidge DR. Brigatinib in Patients With Crizotinib-Refractory Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer: A Randomized, Multicenter Phase II Trial. J Clin Oncol 2017; 35: 2490–2498 [PMID: 28475456 DOI: 10.1200/JCO.2016.71.5904].

31 Camidge DR, Kim HR, Ahn MJ, Yang JC, Han JY, Lee JS, Hochmair MJ, Li JY, Chang GC, Lee KH, Gridelli C, Delmonte A, Garcia Campello R, Kim DW, Bearz A, Grisser F, Morabito A, Felip E, Califano R, Ghosh S, Spira A, Gettinner SN, Tsiseo M, Gupta N, Haney J, Kerstein D, Popat S. Brigatinib versus
Crizotinib in ALK-Positive Non-Small-Cell Lung Cancer. *N Engl J Med* 2018; 379: 2027-2039 [PMID: 30280657 DOI: 10.1056/NEJMoa1810171]

32 Solomon BJ, Besse B, Bauer TM, Felip E, Sos RA, Camidge DR, Chiuri R, Beazle A, Lin CC, Gadgeel SM, Riely GJ, Tan EH, Seto T, James LP, Clancy JS, Abutista A, Martini JF, Chen J, Peltz G, Thurn H, Ou SJ, Shaw AT. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. *Lancet Oncol* 2019; 18: 1654-1667 [PMID: 30413378 DOI: 10.1016/S1470-2045(18)30649-1]

33 Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, Massion PP, Siwak-Tapp C, Gonzalez A, Fang R, Mark EJ, Batten JM, Chen H, Wilner KD, Kwak EL, Clark JW, Carbone DP, Ji H, Engelman JA, Mino-Kenudson M, Pao W, Iafriate AJ. ROS1 rearrangements define a unique molecular class of lung cancers. *J Clin Oncol* 2012; 30: 863-870 [PMID: 22215745 DOI: 10.1200/JCO.2011.35.6435]

34 Gainor JF, Shaw AT. Novel targets in non-small cell lung cancer: ROS1 and RET fusions. *Oncologist* 2013; 18: 865-875 [PMID: 23814083 DOI: 10.1634/theoncologist.2013-0095]

35 Baik CS, Myall N, Wakeloe HA. Targeting BRAF-Mutant Non-Small-Cell Lung Cancer: From Molecular Profiling to Rationally Designed Therapy. *Oncologist* 2017; 22: 786-796 [PMID: 28487464 DOI: 10.1634/theoncologist.2016-0458]

36 Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, Ladanay M, Riely GJ. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. *J Clin Oncol* 2011; 29: 2046-2051 [PMID: 21483012 DOI: 10.1200/JCO.2010.33.1200]

37 Marchetti A, Feliciani L, Malatesta S, Grazia Sciarrotta M, Guetti L, Chella A, Viola P, Pullara C, Maculli F, Battista F. Clinical features and outcome of patients with non-small lung cancer harboring BRAF mutations. *J Clin Oncol* 2011; 29: 3574-3579 [PMID: 21825238 DOI: 10.1200/JCO.2011.35.9638]

38 Cardarella S, Ogino A, Nishino M, Butaney M, Shen J, Lydon C, Yeo BY, Sholl LM, Johnson BE, Jinne PA. Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. *Clin Lung Cancer* 2013; 14: 452-454 [PMID: 23833300 DOI: 10.1016/j.clung.2013.03.0657]

39 Litvak AM, Paik PK, Woo KM, Sima CS, Hellmann MD, Arcila ME, Ladanay M, Rudin CM, Kris MG, Riely GJ. Clinical characteristics and course of 63 patients with BRAF mutant lung cancers. *J Thorac Oncol* 2014; 9: 1669-1674 [PMID: 25346800 DOI: 10.1097/JTO.0000000000000344]

40 Mendoza DP, Doggo-Jack I, Chen T, Padole A, Shepard JO, Shaw AT, Digumarthy SR. Imaging characteristics of BRAF-mutant non-small cell lung cancer by functional class. *Lung Cancer* 2019; 129: 80-84 [PMID: 30797407 DOI: 10.1016/j.lungcan.2019.01.007]

41 Blanchard S, Smid EF, Groen HMJ, Mazieres J, Besse B, Helland Å, Giannone V, D’Amelio AM Jr, Zhang P, Mookerjee B, Johnson BE. Dabrafenib plus trametinib in patients with previously untreated BRAF V600E, mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. *Lancet Oncol* 2017; 18: 1307-1316 [PMID: 28919011 DOI: 10.1016/S1470-2045(17)30069-4]

42 Farago AF, Taylor MS, Doebele RC, Zhu VW, Kimmun S, Spira AI, Boyle TA, Haer BA, Arcila ME, Benazedry, AIsern DL, Horick NK, Lennertz JK, Le LP, Iafriate AJ, Ou SJ, Shaw AT, Mino-Kenudson M, Drilon A. Clinicopathologic Features of Non-Small-Cell Lung Cancer Harboring an NTRK Gene Fusion. *JCO Precis Oncol* 2018; 2 [PMID: 30215037 DOI: 10.1200/PO.18.00037]

43 Drilon A, Laetsch TW, Kimmun S, DuBois SG, Lassen UN, Demetri GD, Nathenson M, Doebele RC, Farago AF, Pappo AS, Turpin B, Dowlati A, Brose MS, Garralda E, Clifford C, Palmer M, Evans E, Shi H, Drilon AE. Efficacy of entrectinib in patients (pts) with solid tumors and central nervous system (CNS) metastases: Integrated analysis from three clinical trials. *J Clin Oncol* 2019; 37: 3017-3017 [DOI: 10.1200/JCO.2019.37.15_suppl.3017]

44 Wang R, Hu H, Pan Y, Li Y, Te Li, Luo X, Luo W, Li H, Zhang Y, Li F, Lu Y, Lu Q, Xu J, Garfield D, Shen L, Ji P, Pao W, Sun Y, Chen H, Jri J, Le LP. Imaging features define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. *J Clin Oncol* 2012; 30: 4352-4359 [PMID: 23150706 DOI: 10.1200/JCO.2012.44.1477]

45 Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nanno M, Sakamoto H, Tsuta K, Fukuoka T, Shimada Y, Ikawaoka R, Ogiwara H, Oike T, Enari M, Schetter AJ, Okayama H, Haugen A, Skau V, Chiku S, Yamanaka I, Arai Y, Watanabe S, Sekine I, Ogawa S, Harris CC, Tsuda H, Yoshida T, Yokota J, Shibata T. KIF5B-RET fusions in lung adenocarcinoma. *Nat Med* 2012; 18: 375-377 [PMID: 22276264 DOI: 10.1038/nm.2649]

46 Drilon A, Rekhtman N, Arcila M, Wang L, Ni A, Albano M, Van Voorhis Y, Somwar R, Smith RS, Montecalvo J, Plodkowski A, Ginsberg MS, Riely GJ, Rudin CM, Ladanay M, Kris MG. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. *Lancet Oncol* 2016; 17: 1653-1660 [PMID: 27825636 DOI: 10.1016/S1470-2045(17)30562-9]

47 Yoh K, Seto T, Satouchi M, Nishio M, Yamamoto N, Murakami H, Nogami N, Matsumoto S, Kohno T, Tsuta K, Tsuchihara K, Ishii G, Nomura S, Sato A, Ohtsu A, Ohe Y, Gotu K. Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial. *Lancet Respir Med* 2017; 5: 42-50 [PMID: 27825616 DOI: 10.1016/S2213-2600(16)30322-8]

48 Drilon AE, Subbiah V, Oxnard GR, Bauer TM, Velcheti V, Lakhani N, Besse B, Park K, Patel JD, Cabanillas J, Johnson BE. A phase 1 study of LOXO-292, a potent and highly selective RET inhibitor, in patients with RET-altered cancers. *J Clin Oncol* 2018; 36: 102 [DOI: 10.1200/JCO.2018.36.15_suppl.102]

49 Subbiah V, Taylor M, Lin J, Hu M, Ou S-HI, Brote MS, Garralda E, Clifford C, Palmer M, Evans E, Shi H, Wolf B, Gainor JF. Abstract CT043: Highly potent and selective RET inhibitor, BLU-667, achieves proof of concept in a phase 1 study of advanced, RET-altered solid tumors. *Cancer Res* 2018; 78: CT043–CT043
Ginsberg MS. From genotype to phenotype: Are there imaging characteristics associated with lung adenocarcinomas.

DOI: 10.3390/cancers11122033

Wolf J, Seto T, Han J-Y, Reguart N,aron EG, Groen HJM, Tan DS-W, Hida T, De Jonge MJ, Orlov SV, Smit EF, Saoulet PJ, Vansteenkiste JF, Giovanni M, Le Mouhaer S, Reova B, Aldron-Lynch M, Heist RS. Capmatinib (INC280) in METex14-mutated advanced non-small cell lung cancer (NSCLC): Efficacy data from the phase II GEOMETRY mono-1 study. J Clin Oncol 2019; 37: 9004-9006 [DOI: 10.1200/JCO.2019.37.15_suppl.9004]

Cappuzzo F, Ciuleanu T, Stelmakh L, Ciceras S, Szczesna A, Juhász E, Esteban E, Molinier O, Brugger W, Melezinek I, Klingelschmidt G, Klahhammer B, Giaccone G; SATURN investigators. Erlotinib as maintenance treatment in advanced non-small-cell lung cancer (NSCLC): a randomised, placebo-controlled phase 3 study. Lancet Oncol 2010; 11: 521-529 [PMID: 20493771 DOI: 10.1016/S1470-2045(10)70112-1]

Mazieres J, Peters S, Lepage B, Cortot AB, Barlesi F, Beau-Faller M, Besse B, Blons H, Mansuet-Lupo A, EORTC investigators. Erlotinib as maintenance treatment in advanced non-small-cell lung cancer (NSCLC): a randomised, placebo-controlled phase 3 study. Lancet Oncol 2010; 11: 795-805 [PMID: 21782507 DOI: 10.1016/S1470-2045(10)70189-9]

Seton-Rogers S, KRAS-G12C in the crosshairs. Nat Rev Cancer 2020; 20: 3 [PMID: 31728026 DOI: 10.1038/s41568-019-0228-3]

Digumarthy SR. Mendoza DP, Padole A, Chen T, Peterson PG, Pietrowska Z, Sequist LV. Diffuse Lung Metastases in EGFR-Mutant Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11 [PMID: 31540242 DOI: 10.3390/cancers11091360]

Zhang H, Cai W, Wang Y, Liao M, Tian S. CT and clinical characteristics that predict risk of EGFR mutation in non-small cell lung cancer: a systematic review and meta-analysis. Int J Clin Oncol 2019; 24: 649-659 [PMID: 30835006 DOI: 10.1007/s10147-019-01403-3]

Mendoza DP, Stowell J, Muzikansky A, Shepard JO, Shaw AT, Digumarthy SR. Computed Tomography Imaging Characteristics of Non-Small-Cell Lung Cancer With Anaplastic Lymphoma Kinase Rearrangements: A Systematic Review and Meta-Analysis. Clin Lung Cancer 2019; 20: 339-349 [PMID: 31164317 DOI: 10.1016/j.clic.2019.05.006]

Mendoza DP, Lin JJ, Rooney MM, Chen T, Sequist LV, Shaw AT, Digumarthy SR. Imaging Features and Metastatic Patterns of Advanced ALK-Rearranged Non-Small Cell Lung Cancer. J Clin Oncol 2020; 28: 766-774 [PMID: 3187093 DOI: 10.1200/JCO.19.15219]

Rizzi S, Raimondi S, de Jong EEC, van Elempt W, De Piano F, Petrella F, Bagnardi V, Jochems A, Bellomi M, Dingemans AM, Lambin P. Genomics of non-small cell lung cancer (NSCLC): Association between CT-based imaging features and EGFR and KR-AS mutations in 122 patients-An essential validation. Eur J Radiol 2019; 110: 148-155 [PMID: 30999853 DOI: 10.1016/j.ejrad.2018.11.022]

Sawin P, Plodkowski AJ, Li AF, Li BT, Drilon A, Capana M, Ginsberg MS. CT features of HER2-mutant lung adenocarcinomas. Clin Imaging 2018; 51: 279-283 [PMID: 29906786 DOI: 10.1016/j.clinimag.2018.05.028]

Plodkowski AJ, Drilon A, Halpenny DF, O'Driscoll D, Blair D, Litvak AM, Zheng J, Moskowitz CS, Ginsberg MS. From genotype to phenotype: Are there imaging characteristics associated with lung adenocarcinomas harboring RET and ROSI rearrangements? Lung Cancer 2015; 90: 321-325 [PMID: 26424208 DOI: 10.1016/j.lungcan.2015.09.018]

Digumarthy SR. Mendoza DP, Lin JJ, Chen T, Rooney MM, Chin E, Sequist LV, Lennerz JK, Gainor JF,
Imaging biomarkers of mutated NSCLC

Doebele RC. The Incidence of Brain Metastases in Stage IV ROS1-Rearranged Non-Small Cell Lung Cancer. Thorac Oncol 2018; 13: 1717-1726 [PMID: 29981925 DOI: 10.1016/j.jtho.2018.07.001]

Zhao N, Willkerson MD, Shah U, Yin X, Wang A, Hayward MC, Roberts P, Lee CB, Parsons AM, Thorne LB, Hatlhoock BE, Grisly-Olsen JE, Stinchcombe TE, Funkhouser WK, Wong KK, Sharpless NE, Hayes DN. Alterations of LKB1 and KRAS and risk of brain metastasis: comprehensive characterization by mutation analysis, copy number, and gene expression in non-small-cell lung carcinoma. Lung Cancer 2014; 86: 255-261 [PMID: 25224251 DOI: 10.1016/j.lungcan.2014.08.013]

Patil T, Smith DE, Bunn PA, Asiners DL, Le AT, Hancock M, Purcell WT, Bowles DW, Cambridge DR, Doebel RC. The Incidence of Brain Metastases in Stage IV ROS1-Rearranged Non-Small Cell Lung Cancer and Rate of Central Nervous System Progression on Crizotinib. J Thorac Oncol 2018; 13: 1717-1726 [PMID: 29981925 DOI: 10.1016/j.jtho.2018.07.001]

Drilon A, Lin JJ, Filleron T, Ni A, Mila J, Bergajomi I, Hatzoglou V, Velchetti V, Offin M, Li B, Carbonne DP, Besse B, Mok T, Awad MM, wolf J, Owen D, Cambridge DR, Riely GJ, Peled N, Kris MG, Mazarieos J, Gainer JF, Gautschi O. Frequency of Brain Metastases and Multikinase Inhibitor Outcomes in Patients With RET-Rearranged Lung Cancers. J Thorac Oncol 2018; 13: 1595-1601 [PMID: 30017832 DOI: 10.1016/j.jtho.2018.07.004]

Offin M, Feldman D, Ni A, Myers ML, Lai VW, Pentsova E, Boire A, Daras M, Jordan EJ, Solit DB, Arcila ME, Jones DR, Isbel JM, Beal K, Young RJ, Rudin CM, Riely GJ, Drilon A, Tahbar V, DeAngelis LM, Yu HA, Kris MG, Li BT. Frequency and outcomes of brain metastases in patients with HER2-mutant lung cancers. Cancer 2019; 125: 4380-4387 [PMID: 31469421 DOI: 10.1002/cncr.32461]
93 **Popper HH.** Progression and metastasis of lung cancer. *Cancer Metastasis Rev* 2016; **35**: 75-91 [PMID: 27018053 DOI: 10.1007/s10555-016-9618-0]

94 **Haghighatkhah HR, Sanei Taheri M, Kharrazi SM, Ghazanfari Amlashi D, Haddadi M, Pourabdollah M.** An unusual case of pulmonary adenocarcinoma with multiple and extraordinary metastases. *Iran J Radiol* 2012; **9**: 93-98 [PMID: 23329971 DOI: 10.5812/iranjradiol.7733]

95 **Ali Mohammed Hammamy R, Farooqui K, Ghabban W.** Sclerotic Bone Metastasis in Pulmonary Adenocarcinoma. *Case Rep Med* 2018; **2018**: 1903757 [PMID: 30079090 DOI: 10.1155/2018/1903757]

96 **Halpenny DF, Plodkowski A, Riely G, Zheng J, Litvak A, Moscowitz C, Ginsberg MS.** Radiogenomic evaluation of lung cancer - Are there imaging characteristics associated with lung adenocarcinomas harboring BRAF mutations? *Clin Imaging* 2017; **42**: 147-151 [PMID: 28012356 DOI: 10.1016/j.clinimag.2016.11.015]

97 **Schanne DH, Heitmann J, Guckenberger M, Andratschke NHJ.** Evolution of treatment strategies for oligometastatic NSCLC patients - A systematic review of the literature. *Cancer Treat Rev* 2019; **80**: 101892 [PMID: 31522079 DOI: 10.1016/j.ctrv.2019.101892]
