Research Paper

Transcriptomic analysis of staphylococcal sRNAs: insights into species-specific adaption and the evolution of pathogenesis

William H. Broach,† Andy Weiss† and Lindsey N. Shaw

Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA

Correspondence: Lindsey N. Shaw (shaw@usf.edu)

DOI: 10.1099/mgen.0.000065

Next-generation sequencing technologies have dramatically increased the rate at which new genomes are sequenced. Accordingly, automated annotation programs have become adept at identifying and annotating protein coding regions, as well as common and conserved RNAs. Additionally, RNaseq techniques have advanced our ability to identify and annotate regulatory RNAs (sRNAs), which remain significantly understudied. Recently, our group catalogued and annotated all previously known and newly identified sRNAs in several Staphylococcus aureus strains. These complete annotation files now serve as tools to compare the sRNA content of S. aureus with other bacterial strains to investigate the conservation of their sRNomes. Accordingly, in this study we performed RNAseq on two staphylococcal species, Staphylococcus epidermidis and Staphylococcus carnosus, identifying 118 and 89 sRNAs in these organisms, respectively. The sRNA contents of all three species were then compared to elucidate their common and species-specific sRNA content, identifying a core set of between 53 and 36 sRNAs encoded in each organism. In addition, we determined that S. aureus has the largest set of unique sRNAs (137) while S. epidermidis has the fewest (25). Finally, we identify a highly conserved sequence and structural motif differentially represented within, yet common to, both S. aureus and S. epidermidis. Collectively, in this study, we uncover the sRNome common to three staphylococcal species, shedding light on sRNAs that are likely to be involved in basic physiological processes common to the genus. More significantly, we have identified species-specific sRNAs that are likely to influence the individual lifestyle and behaviour of these diverse staphylococcal strains.

Keywords: sRNA, small regulatory RNA; Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus carnosus; transcriptomics, RNA sequencing, RNAseq; genome annotation; comparative genomics; RNA structure.

Abbreviation: sRNA, small regulatory RNA.

Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files.

Data Summary

1. The RNAseq results have been deposited to the NCBI Gene Expression Omnibus; GEO submission GSE77567 (url – http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=olgiaisxterfq2&acc=GSE77567).
2. The updated GenBank file, containing novel sRNA annotations (annotated as ‘misc. RNA’) has been deposited to Figshare; DOI: 10.6084/m9.figshare.3385861 (url – https://figshare.com/s/ac122d912782908e6359).

Introduction

The wide availability of sequenced genomes and the decreasing cost of producing such data have revolutionized the way molecular biology research is performed (Dark, 2013). With the increasing knowledge base of genomic information published each year there is an escalating demand for automated pipelines to identify and annotate genes within sequence data (Richardson & Watson, 2013). To highlight the vast amount of genetic information...
available, at the time of writing this manuscript, a total of 5443 completed prokaryotic genomes were available in the NCBI Genome database (http://www.ncbi.nlm.nih.gov/ genome), with a further 65 259 partially completed genomes. Furthermore, the rate of publication continues to increase exponentially each year for studies on such topics (Tatusova et al., 2015). Traditionally, the pipelines used for de novo genome assembly involve prediction of protein-coding genes, rRNAs and tRNAs, followed by comparison with a reference genome to assign ORF function (Richardson & Watson, 2013). However, many drawbacks exist to such approaches, not the least of which is a lack of efficient detection for small, regulatory RNAs (sRNAs), some of which can also encode small peptides (<50 aa).

sRNAs as a class of molecule are increasingly recognized as playing important regulatory roles in bacteria (Beisel & Storz, 2010; Murphy et al., 2014; Caron et al., 2010; Geissmann et al., 2006; Harris et al., 2013; Hoe et al., 2013; Weiberg et al., 2015; Papenfort & Vanderpool, 2015; Oliva et al., 2015; Papenfort & Vogel, 2014; Weibacher et al., 2003). For example, sRNAs regulate a wide variety of cellular processes, such as carbon metabolism and iron acquisition, and also have profound influence on virulence gene expression in many important pathogenic bacteria (Geissmann et al., 2006; Oliva et al., 2015; Caswell et al., 2012; Giangrossi et al., 2010; Broach et al., 2012; Hoe et al., 2013; Beisel & Storz, 2010; Weibacher et al., 2003; Papenfort & Vogel, 2014). The wide-ranging effects of these molecules underlines the crucial need to fully annotate and study sRNAs in individual organisms, from both a functional and an evolutionary perspective.

The versatile genus Staphylococcus encompasses a diverse set of organisms that range from highly pathogenic to food-grade species. Staphylococci live on the mucous membranes of virtually all animals, as well as in aged meat products. Staphylococcus carnosus is an avirulent, coagulase-negative member of the staphylococci with the highest G+C content, and is commonly used as a starter culture for fermented sausages (Rosenstein et al., 2009; Schleifer & Fischer, 1982; Wagner et al., 1998). The genome of S. carnosus, an organism often regarded as an ancient and genetically simple species, generally has a lack of mobile genetic elements, especially in comparison with the other staphylococci. In contrast, Staphylococcus epidermidis is a coagulase-negative, opportunistic pathogen that is found as a part of the normal human flora of the skin and nares (Otto, 2009). S. epidermidis infections often occur through indwelling devices such as catheters, but are rarely life threatening or invasive (Otto, 2009). Staphylococcus aureus, also a normal part of the human flora, is a coagulase-positive member of the staphylococci, and is one of the leading causes of human infectious disease and death. S. aureus causes a wide variety of infections, ranging from minor cellulitis to life-threatening sepsis, and is capable of infecting all organ systems (Archer, 1998; Lowy, 1998). Compounding its extensive pathogenicity is the widespread prevalence of antibiotic-resistant isolates, which severely limits the number of viable treatment options (Lowy, 2003).

Collectively, the diversity of lifestyles and evolutionary relationships between the staphylococci (Fig. 1) make this a model genus to ask how regulatory molecules change and adapt across species; and how they develop specialized, and niche-specific functions within a given organism. As such, in this study we identified and annotated the sRNA content of both S. epidermidis and S. carnosus using next-generation sequencing technologies coupled with comparative genomics. These newly annotated sRNAs were analysed for homology to each other, and to those recently curated by our group for S. aureus (Carroll et al., 2016), to identify conserved and unique elements for each species. In total, we identified 118 total sRNAs in S. epidermidis and 89 in S. carnosus, compared with 303 in S. aureus (Carroll et al., 2016). A comparison of these datasets revealed that each genome contains between 36 and 53 sRNAs that are common to all three organisms. Finally, we uncovered the presence of several highly homologous sRNAs in S. epidermidis and S. aureus that share conserved sequences, and appear to retain common structural motifs. Collectively, our work shines a light on these complex and largely overlooked regulators, providing insight into staphylococcal speciation, and the evolution of pathogenesis within this genus.

Impact Statement

Staphylococcus aureus is a leading cause of nosocomial infections and exhibits profound levels of antimicrobial resistance. The importance of this pathogen has been well established, forming the subject of extensive research, but a comprehensive understanding of the regulatory processes governing its virulence has yet to be elucidated. Recently, our group has investigated the role of regulatory RNAs (sRNAs) by cataloguing and annotating them in S. aureus genomes. The study presented here continues this line of research by performing transcriptomic analyses with two closely related species, *Staphylococcus epidermidis* and *Staphylococcus carnosus*, to annotate, for the first time, their genomes for sRNAs. The sRNAs of all three organisms were then compared to determine the common and species-specific sRNA content of each genome. In addition, we identified a subset of sRNAs shared between *S. aureus* and *S. epidermidis* that demonstrate high sequence and structural conservation. This study provides a platform to guide studies on sRNAs that are important for the general physiology of staphylococci (shared sRNAs) as well as the unique lifestyles of each organism (species-specific sRNAs).

Methods

Bacterial strains and growth conditions. S. *epidermidis* RP62a (Gill et al., 2005) and S. *carnosus* TM300 (Schleifer & Fischer, 1982; Rosenstein et al., 2009) were cultivated in tryptic soy broth (TSB), with shaking (250 r.p.m.) at 37°C.
Synchronous cultures were achieved as outlined by us previously (Kolar et al., 2011) before being grown for 3 h to the exponential phase.

RNAseq. Transcriptomic experiments using an Ion Torrent Personal Genome Machine (PGM) system (Ion Torrent) were performed as described by us previously (Carroll et al., 2014). Briefly, total RNA was isolated from exponentially growing cultures using an RNeasy kit (Qiagen), with DNA removed using a TURBO DNA-free kit (Ambion). Next, RNA integrity was confirmed utilizing an Agilent 2100 Bioanalyzer system in combination with a RNA 6000 Nano Kit (Agilent). To remove rRNA from samples, a Ribo-Zero rRNA Removal Kit (Bacteria) (Epigentec) and MICROBExpress Bacterial mRNA Enrichment Kit (Ambion) were used in a sequential approach; complete removal of rRNA species was confirmed using an Agilent RNA 6000 Nano Kit. cDNA libraries were constructed from the enriched RNA with an Ion Total RNA-seq Kit v2 (Ion Torrent), before cDNA fragments were amplified onto Ion Sphere Particles (ISPs) using an Ion PGM Template OT2 200 Kit (Ion Torrent) and an Ion OneTouch 2 system (Ion Torrent). Template-positive ISPs were subsequently loaded onto Ion 318 v2 chips (Ion Torrent) and sequencing runs were performed utilizing an Ion PGM Sequencing 200 Kit v2 (Ion Torrent). After completion of each run, data were imported to the CLC Genomics Workbench software (CLC bio; Qiagen) and aligned to the publicly available *S. epidermidis* RP62a (NCBI accession number: NC_002976.3) and *S. carnosus* TM300 (NCBI accession number: AM295250.1) genomes. The addition of novel annotations to the *S. epidermidis* and *S. carnosus* genomes was performed according to guidelines outlined by us previously (Carroll et al., 2016; Weiss et al., 2015). Updated annotation files including novel sRNA transcripts for *S. epidermidis* RP62a and *S. carnosus* TM300 were deposited to Figshare (Data citation 1). The annotation files containing sRNA annotations were used to generate expression values calculated as RPKM (reads per kilobase material per million reads) in CLC Genomics Workbench. All downstream bioinformatic analyses (e.g. BLAST searches investigating sRNA similarities between different species) were also performed with CLC Genomics Workbench software. RNA structure predictions were performed using the mfold web server (Zuker, 2003).

Northern blots. To confirm the presence of novel transcripts identified by RNAseq, we performed Northern blot analysis for selected sRNA candidates. Northern blots were performed as outlined previously (Caswell et al., 2012), as follows. RNA from exponentially growing cultures was isolated and DNA-depleted as described for RNAseq samples. RNA was electrophoretically separated in a 10% polyacrylamide gel [1x TBE (Tris/borate/EDTA) buffer, 7M urea]
and transferred to an Amersham Hybond N+ membrane (GE Healthcare) by electroblotting. Samples were cross-linked to membranes via UV radiation, followed by prehybridization in ULTRAhyb-Oligo buffer (Ambion) for 1 h at 43 °C in a rotating oven. Next, [γ-32P]-ATP end-labelled oligonucleotides specific for each target RNA sequence (Table S1, available in the online Supplementary Material) were added to membranes and hybridized overnight at 43 °C. The following day membranes were washed with 2×, 1× and 0.5× SSC (saline and sodium citrate) buffer for 30 min at 43 °C. Finally, membranes were exposed to X-ray film to detect radiolabelled and specifically bound probes.

Results

Annotation of sRNAs in the S. epidermidis RP62a and S. carnosus TM300 genomes

The goal of this study was to gain insight into the impact of sRNAs on staphylococcal species-specific adaptation. A set of organisms was chosen to represent the diverse lifestyles of staphylococcal species: S. aureus USA300-Houston, an epidemic community-associated methicillin-resistant strain isolated from the wrist abscess of a 36-year-old, HIV-positive, intravenous drug user; S. epidermidis RP62a, a methicillin-resistant strain isolated from a patient suffering from intravascular catheter-associated sepsis; and S. carnosus TM300, originally isolated from dry sausage in 1982 in Germany (Highlander et al., 2007; Gill et al., 2005; Schleifer & Fischer, 1982; Rosenstein et al., 2009). Importantly, these organisms are immediately and distantly related species (Fig. 1a), representing the highly virulent (S. aureus), the mildly virulent (S. epidermidis) and the avirulent (S. carnosus). As such, they have the potential to provide significant insight into those sRNAs that are core to the staphylococci, as well as those that influence species-specific adaptation.

Recently we re-annotated the genome of S. aureus (Carroll et al., 2016) to include all sRNAs from the literature, as well as several novel transcripts identified by our group using next-generation sequencing approaches (Fig. 1b). As such, we used a similar RNAseq-based approach to re-annotate the genomes of S. epidermidis RP62a and S. carnosus TM300.

To our knowledge, no sRNAs have been identified or studied in either S. epidermidis or S. carnosus to date, and neither published genome has any sRNAs currently annotated. Given the absence of any information regarding the sRNAs of these two species, a transcriptomic approach was used to identify sRNAs in these genomes. Initially, each RNAseq was performed on cultures grown to the mid-logarithmic phase, with all reads generated aligned to the published genomes of S. epidermidis RP62a and S. carnosus TM300 (Gill et al., 2005; Schleifer & Fischer, 1982; Rosenstein et al., 2009). Files were then reviewed for the presence of sRNA reads using criteria defined by us previously for S. aureus and Acinetobacter baumannii (Carroll et al., 2016; Weiss et al., 2015), as: antisense to previously annotated protein coding genes (Fig. S1a), in intergenic regions (Fig. S1b) or that showed differential expression from annotated genes with which they overlapped (Fig. S1c).

The first genome-wide identification of sRNAs in S. epidermidis and S. carnosus

In total, 118 and 89 sRNAs were identified in S. epidermidis RP62a and S. carnosus TM300, respectively (Tables 1 and 2). The sRNAs in each organism are distributed across their respective chromosomes, with the exception of a general lack of sRNAs in regions encoding prophages. The lack of sRNAs residing in these regions is perhaps to be expected, as these are relatively recent evolutionary events that have not yet been homogenized into the rest of the genome. To facilitate the addition of novel sRNA annotations in the future, an annotation system was created that does not relate to function, but instead acts only as an identifier (as described by us for S. aureus) (Carroll et al., 2016). As such, sRNAs from S. epidermidis were denoted as SERPs001–SERPs118, referring to their total number, for ease of sequential incorporation of new sRNA annotations in the genome. Similarly, in S. carnosus sRNAs were denoted as SCAS001–SCAS089. Newly annotated genes were given the gene names jointly annotated epidermidis loci (jael)1–118 and jointly annotated carnosus loci (jacl)1–89 for S. epidermidis and S. carnosus, respectively. To confirm the size and expression of sRNAs discovered in S. epidermidis and S. carnosus, several representative transcripts were chosen for Northern blot validation (Fig. 2). Each of the sRNAs analysed produced a single, probe-specific band at the size suggested by RNAseq, and as annotated herein. These findings suggest that the methods used by our group to identify and annotate novel sRNAs are both robust and reproducible.

Defining the core staphylococcal sRNA content

Given that a primary goal of this study was to better understand the sRNAs that are specific to each species, and that may contribute to their individual lifestyles, we first set out to elucidate the shared sRNA content of the staphylococci (Fig. 3 and Table S2). An sRNA in one genome was considered homologous to another gene if BLAST searches returned an E-value ≤10−10 in a region that had been annotated. As such, we queried all sRNAs from each organism in a nucleotide BLAST search against the genomes of the other two staphylococcal species to gain a comprehensive overview of the shared and unique sRNAs encoded by each genome.

A confounding issue to this approach, however, is that there does not appear to be a 1 : 1 ratio of sRNAs from one organism to another. For example, a number of sRNAs from S. aureus have significant sequence homology to several sRNAs from S. epidermidis (described in more detailed below). Indeed, this is not a lone occurrence as each organism comparison results in several such relationships. Accordingly, the unique and shared sRNA content of the staphylococci can only be specifically calculated from one genome to another, rather than across the genus as a whole. Such analyses are visually represented in Fig. 3(a) where links represent a homologous relationship between sRNAs
of *S. aureus* and *S. epidermidis* (blue) or *S. carnosus* (red). A single sRNA exists in *S. epidermidis* and *S. carnosus* that shares homology to each other but has no relationship to any in *S. aureus* (black link). The relative (Fig. 3b) and absolute (Fig. 3c) number of shared sRNAs by genome vary significantly. At first glance it is readily apparent that nearly two-thirds of the sRNAs (187 of 303) previously identified in *S. aureus* are unique to this organism (Fig. 3b, c). *S. carnosus* has the highest number of unique sRNAs, 41 of 89 (Fig. 3b, c). The high percentage of unique sRNAs in *S. carnosus* (~46%) is perhaps to be expected, as it is the most distantly related of the three organisms in this study. In contrast, *S. epidermidis* has the least number of unique sRNAs, at 25 of 118 (~21%) (Fig. 3c), meaning that nearly 79% of its sRNA content is shared with *S. aureus* and/or *S. carnosus* (Fig. 3b, c). Collectively, we identified 53 core and 187 unique sRNAs in *S. aureus*, 36 core and 25 unique sRNAs in *S. epidermidis* and 39 core and 41 unique sRNAs in *S. carnosus* (Fig. 3b, c). The conservation of sequence and expression suggests that these sRNAs may be involved in more central and conserved processes, such as metabolism. As such, unique sRNAs may represent elements that are probably involved in individual, species-specific adaptation, which, in the case of *S. aureus*, suggests virulence processes.

A consideration with these data is that ours is the first study to evaluate *S. epidermidis* and *S. carnosus* sRNAs, which are derived from a single transcriptomic experiment. Conversely, studies by many groups, using a wealth of different approaches, have contributed to the 303 *S. aureus* sRNAs identified thus far. This is placed in context when one considers that the *S. aureus* sRNA content is greater than that from *S. epidermidis* (118 in total) and *S. carnosus* (89 in total) combined. As such, the possibility remains that several other sRNAs exist in these latter two species, but are not expressed under the conditions tested in our study. Accordingly, all sRNAs from *S. aureus* that showed significant sequence homology (E-value ≤10^-10^) to regions in the *S. epidermidis* or *S. carnosus* chromosomes were identified and denoted (Fig. 4a, Table S2). These regions were not annotated as sRNAs in the newly generated genome annotations, but their locations have been recorded (Table S2). While these loci did not show any transcriptional activity in *S. epidermidis* or *S. carnosus* in our study, they do share high sequence homology to known sRNAs of *S. aureus*; and thus may be expressed under different conditions not examined within this study. These transcriptionally inactive regions are linked to their homologous sRNA in *S. aureus* using blue and red links (*S. epidermidis* and *S. carnosus*, respectively) as before (Fig. 4a). When one factors these homologous, transcriptionally inactive regions into the shared and unique calculations, a very different picture appears (Fig. 4b, c). Specifically, the number of shared sRNAs increases greatly, elevating the putative *S. aureus* core-sRNA content from 53 to 87, whilst at the same time decreasing the number of unique sRNAs from 187 to 137.

ORF prediction and conservation

The genomes of *S. aureus* USA300, *S. epidermidis* RP62a and *S. carnosus* TM300 have previously been annotated for standard genomic features, including origin of replication, tRNAs, rRNAs and protein-coding genes. During the automated annotation process, ORFs smaller than 50 codons in length are generally dismissed, but the importance of small peptides (those smaller than 50 aa) encoded by small ORFs is becoming increasingly recognized (Hobbs *et al.*, 2011; Storz *et al.*, 2014). As such, we examined the predicted ORF content of the newly annotated transcripts, as our annotation process does not exclude potential protein-coding genes (Tables S3 and S4). In *S. epidermidis*, only a single newly annotated transcript had a predicted ORF of 50 codons or longer, whilst 111 had predicted ORFs between five and 50 codons, and six had no predicted ORFs of five or more codons. Similarly, in *S. carnosus* six newly annotated transcripts had predicted ORFs greater than 50 codons, 73 had ORFs between five and 50 codons long and 11 sRNAs had no identifiable ORFs of five or more codons. Importantly, none of the predicted ORFs within each of the organisms examined had any significant homology to any protein with known function aside from the *S. aureus* α-hemolysin. Furthermore, the predicted ORFs from all three organisms also have very little similarity to each other, suggesting that these may not be translated (Tables S5 and S6). *S. epidermidis* and *S. carnosus* have a similar number of predicted ORFs per sRNA (3.3 ORFs and 3.9 ORFs per sequence, respectively) whereas the *S. aureus* sRNAs contain a much
Table 1. Newly annotated non-coding RNAs of *S. epidermidis* RP62a

Locus ID	Gene name	Position	Upstream*	Orientation	Downstream*	RPKM†
SERPs001	jaeL-1	34999..35245	SERPs117	<	SERP0038	247.23
SERPs002	jaeL-2	42907..43025	SERP0050	<	SERP0051	125.96
SERPs003	jaeL-3	59385..95405	SERPs113	>	SERP0071	327.32
SERPs004	jaeL-4	60337..60509	guaA	<	SERP0593	21.77
SERPs005	jaeL-5	58681..586861	SERPs022	<	SERP0202	367.99
SERPs006	jaeL-6	183818..183969	rplA	>	SERP0224	1281.97
SERPs007	jaeL-7	212119..212293	SERP0201	<	SERP0225	67.7
SERPs008	jaeL-8	233449..233600	SERP0223	<	SERP0235	927.69
SERPs009	jaeL-9	233917..234080	SERP0224	>	SERP0235	328.4
SERPs010	jaeL-10	241408..241559	SERP0234	<	SERP0235	54.61
SERPs011	jaeL-11	307532..307673	SERP0304	<	SERP0478	50.47
SERPs012	jaeL-12	370776..370941	SERP0373	<	SERP0489	7045.28
SERPs013	jaeL-13	377942..378056	SERP0379	<	SERP0543	54.61
SERPs014	jaeL-14	393987..394130	SERP0391	>	SERP0576	452.35
SERPs015	jaeL-15	443311..443466	SERP0438	>	SERP0581	2967.56
SERPs016	jaeL-16	469574..469690	SERP0467	>	SERP0582	190.83
SERPs017	jaeL-17	475770..475890	SERP0477	>	SERP0600	763.34
SERPs018	jaeL-18	480754..480892	SERP0487	<	SERP0606	469.75
SERPs019	jaeL-19	526358..526540	SERP0542	<	SERP0663	466.83
SERPs020	jaeL-20	570220..570273	trpS	>	SERP0698	168.53
SERPs021	jaeL-21	576526..576580	SERP082	>	SERP0815	297.13
SERPs022	jaeL-22	586669..586828	SERP0592	>	SERP0948	984.95
SERPs023	jaeL-23	592434..592529	SERP0599	>	SERP1053	332.14
SERPs024	jaeL-24	658364..658539	SERP0662	>	SERP1099	1526.68
SERPs025	jaeL-25	695170..695337	SERP0697	<	SERP1110	77.1
SERPs026	jaeL-26	717301..717513	SERP0720	<	SERP1119	4785.74
SERPs027	jaeL-27	817973..818158	sucD	<	SERP1194	1773.65
SERPs028	jaeL-28	964074..964190	femB	>	SERP1245	346.45
SERPs029	jaeL-29	981290..981497	SERP0962	<	SERP1245	1500.78
SERPs030	jaeL-30	1007973..1008125	SERP0990	<	SERP1267	1042.73
SERPs031	jaeL-31	1099406..1099581	SERP1053	<	SERP1274	67.39
SERPs032	jaeL-32	1150188..1150367	SERP1099	<	SERP1292	544
SERPs033	jaeL-33	1227591..1227843	SERP1191	<	SERP1319	798.83
SERPs034	jaeL-34	1231240..1231434	hisS	<	SERP1329	2298.88
SERPs035	jaeL-35	1279465..1279597	infC	<	SERP1329	1618.92
SERPs036	jaeL-36	1281335..1281543	SERP1245	>	SERP1453	31.09
SERPs037	jaeL-37	1308770..1308884	dnaE	>	SERP1479	318.7
SERPs038	jaeL-38	1318633..1318805	SERP1488	>	SERP1480	289.82
SERPs039	jaeL-39	1337905..1338102	SERP1623	>	SERP1485	3008.01
SERPs040	jaeL-40	1379890..1380079	serC	<	SERP1624	795.72
SERPs041	jaeL-41	1389878..1390104	ribD	<	sccd	213.81
SERPs042	jaeL-42	1409579..1409745	metK	<	murAB	2614.68
SERPs043	jaeL-43	1518292..1518416	pheA	<	pyrG	3083.45
SERPs044	jaeL-44	1542695..1542748	SERP1701	<	pyrF	298.64
SERPs045	jaeL-45	1557626..1557897	murAB	<	fbaA	2614.68
SERPs046	jaeL-46	1647845..1649295	trpE	>	rpoE	3083.45
SERPs047	jaeL-47	292616..292825	SERPs119	<	sccd	213.81
SERPs048	jaeL-48	1744046..1744193	SERP1701	<	mraY	2614.68
SERPs049	jaeL-49	1769544..1769767	SERP1753	<	pyrG	3083.45
SERPs050	jaeL-50	1774668..1774750	SERP1754	<	pyrG	298.64
Table 1. cont.

Locus ID	Gene name	Position	Upstream*	Orientation	Downstream*	RPKM†
SERPs052	jaeL-52	292457..292605	SERP0289	<	SERP120	1538.79
SERPs053	jaeL-53	1905371..1905605	SERP1880	<	nhuC	1946.59
SERPs054	jaeL-54	1917116..1917271	SERP1894	<	SERP1895	327.4
SERPs055	jaeL-55	1935344..1935518	SERP1914	<	SERP1915	396.54
SERPs056	jaeL-56	1997129..1997489	sarZ	>	SERP1980	522.86
SERPs057	jaeL-57	2014397..2014589	SERP1994	<	SERP1995	175.46
SERPs058	jaeL-58	2096196..2096389	SERP2069	<	SERP2070	354.84
SERPs059	jaeL-59	2110878..2111312	SERP2083	<	aldA-2	98.27
SERPs060	jaeL-60	2118226..2118357	SERP2091	<	SERP2092	786.47
SERPs061	jaeL-61	2184407..2184483	ldh	<	SERP2157	439.8
SERPs062	jaeL-62	2206812..2206918	SERP2175	<	betA	15.57
SERPs063	jaeL-63	2251118..2251304	SERP2212	>	SERP6064	724.37
SERPs064	jaeL-64	2251300..2251353	SERP6063	>	SERP2213	586.0
SERPs065	jaeL-65	2258818..2259071	cadC	>	SERP6066	657.88
SERPs066	jaeL-66	2259072..2259128	SERP6065	<	SERP2223	2084.27
SERPs067	jaeL-67	2266286..2266340	SERP2235	<	SERP2236	403.75
SERPs068	jaeL-68	2301741..2301875	SERP2268	>	SERP6069	16.45
SERPs069	jaeL-69	2301905..2301964	SERP6068	<	SERP2269	120.28
SERPs070	jaeL-70	2352134..2352256	mpa-3	<	SERP2313	216.65
SERPs071	jaeL-71	2400262..2400406	SERP2353	<	SERP2354	72.74
SERPs072	jaeL-72	2508708..2508954	SERP2454	<	SERP2455	384.34
SERPs073	jaeL-73	2519862..2520195	SERP2465	<	SERP2466	28.26
SERPs074	jaeL-74	2550198..2550302	kdeP	>	SERP2491	158.62
SERPs075	jaeL-75	2574243..2574391	SERP2518	>	mecL	21766.54
SERPs076	jaeL-76	2600571..2600779	SERP2541	<	SERP2542	159.37
SERPs077	jaeL-77	2605191..2605352	SERP2546	<	SERP2547	376.96
SERPs078	jaeL-78	297416..298093	tagA	<	SERP0296	133.47
SERPs079	jaeL-79	484345..485243	SERP0494	>	SERP0495	397.69
SERPs080	jaeL-80	1799010..1799177	SERP1761	<	glnM	218.1
SERPs081	jaeL-81	1848280..1848453	SERP1803	<	rpiQ	618.97
SERPs082	jaeL-82	576366..576526	pepF	>	SERP6021	303.44
SERPs083	jaeL-83	1702694..1702924	SERP1664	>	ileD	4.81
SERPs084	jaeL-84	1862649..1862606	rpsI	<	SERP1833	1890.75
SERPs085	jaeL-85	1844698..1844868	rplM	<	truA	879.81
SERPs086	jaeL-86	755335..755547	SERP0757	>	ileS	364.89
SERPs087	jaeL-87	1283598..1283838	thrS	<	dnaA	377.78
SERPs088	jaeL-88	2475827..2476027	SERP2413	>	SERP2414	116.0
SERPs089	jaeL-89	1146822..1146987	gcvT	<	araK	662.17
SERPs090	jaeL-90	185734..185859	SERP0182	>	rpoB	74.9
SERPs091	jaeL-91	603425..603663	prfC	>	SERP0610	308.94
SERPs092	jaeL-92	1406055..1406237	SERP1349	>	SERP1350	21.24
SERPs093	jaeL-93	1238590..1238761	recJ	<	SERP1200	22.59
SERPs094	jaeL-94	1449425..1449591	SERP1393	>	SERP1394	13.3
SERPs095	jaeL-95	2020634..2020835	fimA	<	SERP2002	118.18
SERPs096	jaeL-96	632659..632761	SERP0638	<	SERP0639	21.56
SERPs097	jaeL-97	1932904..1933097	SERP1912	<	SERP1913	57.23
SERPs098	jaeL-98	2173475..2173629	SERP2146	>	SERP2147	25.07
SERPs099	jaeL-99	550036..550252	SERP0558	<	SERP0559	28.14
SERPs100	jaeL-100	367959..368097	SERP0369	>	SERP0370	27.96
SERPs101	jaeL-101	950460..950575	SERP0933	<	dmpI	23.93
SERPs102	jaeL-102	1142437..1142535	SERP1099	>	SERPs104	33.65
SERPs103	jaeL-103	1444172..1444269	SERP1386	<	fumC	385.21
This discrepancy is probably due to a difference in the number of predicted ORFs (11.2 ORFs per sequence). This is consistent with the higher number of predicted ORFs (11.2 ORFs per sequence) for S. aureus than S. epidermidis (SERPs014 to 44.2 % for SERPs106, than the relative G+C content of the S. epidermidis genome (32.2 %). They also span a range of sizes from 98 bp (SERPs014) to 217 bp (SERPs099), with this variation seemingly attributable to differences in their 5’ regions (Fig. 5a). Conversely, each sequence shares a key region of high conservation that extends approximately from the middle of the sequence to its 3’ end. This common region demonstrates nucleotide-level conservation of 71.4–100 %, not including the 3 bp insertion found in SERPs013. Using this information, we generated a consensus sequence (SERPsCon) that reflects the nucleotide identity of >71 % of the sequences in the conserved region.

The SERPsCon sequence and each S. epidermidis sRNA were subjected to secondary structure prediction using the mfold software (Fig. 5b, c, respectively). The predicted SERPsCon structure includes a stem with two single-stranded regions, and a terminal loop (bracketed) near the 5’ end of the molecule that includes 28 of the 38 residues conserved in all 21 sequences (Fig. 5a, b). The terminal single-stranded region of the SERPsCon structure within the bracket has a 10 nt sequence that is variable only at the ninth residue, and defined by the sequence motif 5’-GAAGACUAYA (Fig. 5b). Furthermore, mfold secondary structure predictions performed on the 21 S. epidermidis sRNAs suggest the sequence homology extends to structural conservation. The secondary structure predictions suggest that in all 21 of these elements, the region corresponding to SERPSCon (Fig. 5c, red regions) includes an extended stem-loop structure that is identical (for 17 of the 21) to the motif defined in SERPsCon (5’-GAAGACUAYA). The remaining four sRNAs have the same sequence motif at the terminus of a stem, although the optimal structure, as predicted by mfold, suggests less single-strandedness. The conserved region and terminal loop do not appear to be related to any known RNA families or motifs as determined by an Rfam analysis (http://rfam.xfam.org/) (Nawrocki et al., 2015), and thus may constitute a new regulatory RNA family.

Table 1. cont.

Locus ID	Gene name	Position	Upstream*	Orientation	Downstream*	RPKM†
SERPs104	jaeL-104	1142550..1142729	SERPs102	<	SERP1100	259.07
SERPs105	jaeL-105	2192309..2192465	SERP163	>	SERP2164	17.68
SERPs106	jaeL-106	2360082..2360248	SERP2323	<	SERP2324	9.97
SERPs107	jaeL-107	54838..54966	SERP0066	>	xpt	210.87
SERPs108	jaeL-108	617908..618225	SERP0626	>	menA	80.31
SERPs109	jaeL-109	485246..48535	SERP0495	>	sufC	45.94
SERPs110	jaeL-110	1263896..1264162	valS	<	SERP1229	380.5
SERPs111	jaeL-111	1339993..1340256	tyrS	<	SERP1294	172.43
SERPs112	jaeL-112	328604..328788	SERP0323	<	scdA	96.03
SERPs113	jaeL-113	953678..953822	tyra	>	SERPs122	7.66
SERPs114	jaeL-114	176298..176556	gltX	>	cysE	182.19
SERPs115	jaeL-115	1217236..1217468	alaS	<	SERP1183	457.47
SERPs116	jaeL-116	1170711..1170867	SERP1131	>	glyS	495.04
SERPs117	jaeL-117	34833..34995	SERPs037	<	SERPs001	136.23
SERPs118	jaeL-118	847682..847797	ribF	>	rpsO	641.3

*Gene.
†RPKM, reads per kilobase material per million reads.
‡Region corresponds to portion of RNAIII.

higher number of predicted ORFs (11.2 ORFs per sequence). This discrepancy is probably due to a difference in the average size of annotated sRNAs, as S. aureus has an average sRNA size of 506 nt compared with S. epidermidis and S. carnosus with 190 and 217 nt, respectively. As a note, the algorithm used to predict potential ORFs can predict more than one ORF per sRNA but does not evaluate the presence or absence of a ribosomal binding site. As such, the presence of an ORF does not provide any information on the likelihood of translation.

An interspecies conserved and recurring sRNA structural motif

Initial investigations into the overall conservation of sRNA content in the staphylococci revealed the presence of a number of S. epidermidis elements with homology to sRNAs from S. aureus (Fig. 3a). Twenty-one sRNAs from S. epidermidis and three from S. aureus demonstrate a higher than random level of homology as first identified by BLAST analysis (Fig. 3a), and confirmed by sequence alignments (Figs 5a, 6a and S2). The sRNAs identified in S. epidermidis have a significantly higher level of nucleotide identity to each other (as determined by pairwise comparisons) than to the sRNAs of S. aureus, or that the S. aureus sRNAs do with each other (Figs S2–S4). Furthermore, while sequence conservation does exist between SAUSA300s206 and the other 23 sRNAs identified, it is the most divergent sequence (Figs 6a, S2 and S3).

The 21 highly related sRNA genes in S. epidermidis have a higher relative G+C content, ranging from 32.6 % for SERPs014 to 44.2 % for SERPs106, than the relative G+C content of the S. epidermidis genome (32.2 %). They also span a range of sizes from 98 bp (SERPs103) to 217 bp (SERPs099), with this variation seemingly attributable to
Table 2. Newly annotated non-coding RNAs of *S. carnosus* TM300

Locus ID	Gene name	Position	Upstream*	Orientation	Downstream*	RPKM†
SCAs001	jacL-1	9628..9890	SCA_0010	<	SCA_0011	329.72
SCAs002	jacL-2	16355..16590	SCAs079	<	SCA_0015	489.92
SCAs003	jacL-3	68516..68644	fbcC	>	SCA_0067	1331.56
SCAs004	jacL-4	114686..114974	SCA_0114	>	SCA_0115	1318.64
SCAs005	jacL-5	144461..144729	SCA_0141	>	SCA_006	212.44
SCAs006	jacL-6	144466..144711	SCAs005	<	SCA_0142	4.05
SCAs007	jacL-7	195809..196025	gtxX	>	cysE	736.45
SCAs008	jacL-8	239896..240240	proP	>	thiD	1253.87
SCAs009	jacL-9	248359..248731	SCA_0240	>	SCA_0241	26355.27
SCAs010	jacL-10	286557..286798	tagA	>	thrS	6.86
SCAs011	jacL-11	302807..302992	SCA_0293	<	SCA_0294	7754.21
SCAs012	jacL-12	349042..349212	nroA	>	SCA_0342	443
SCAs013	jacL-13	370812..371006	SCA_0365	>	SCA_0366	386.77
SCAs014	jacL-14	386729..386902	SCA_0377	>	SCA_0090	324.61
SCAs015	jacL-15	409625..409751	SCA_0399	>	SCA_0400	7319.89
SCAs016	jacL-16	435453..435577	SCA_0420	>	SCA_0421	459.83
SCAs017	jacL-17	439576..439686	gapA	>	pgk	12059.66
SCAs018	jacL-18	449553..449930	smpB	>	NEW_REGION_507	40323.14
SCAs019	jacL-19	465254..465398	SCA_0454	>	SCA_0455	6846.57
SCAs020	jacL-20	475448..475663	int	>	SCA_0464	189.2
SCAs021	jacL-21	478847..479060	SCA_0469	<	SCA_0470	172.33
SCAs022	jacL-22	519236..519323	glpQ	>	SCA_0522	211.43
SCAs023	jacL-23	704781..704974	SCA_0700	>	SCA_0701	438.43
SCAs024	jacL-24	736699..736810	SCA_0733	>	SCA_0734	3740.74
SCAs025	jacL-25	754215..755140	SCA_0752	>	SCA_0753	236.45
SCAs026	jacL-26	809208..809442	rhuD	>	pyrR	10723.79
SCAs027	jacL-27	95424..954574	mutS	>	mutL	28.6
SCAs028	jacL-28	1026107..1026242	SCA_1009	<	tyrA	2460.09
SCAs029	jacL-29	1028624..1028907	SCA_1011	>	trpE	926.55
SCAs030	jacL-30	1053393..1055592	SCA_1036	>	lysC	3098.2
SCAs031	jacL-31	1080768..1080936	SCA_1060	>	SCA_1061	139.58
SCAs032	jacL-32	1098995..1099432	SCA_1079	<	SCA_1080	1725.71
SCAs033	jacL-33	1103951..1104094	plp2	<	SCA_1085	230.73
SCAs034	jacL-34	1136220..1136427	SCA_1116	<	srcB	1380.1
SCAs035	jacL-35	1239320..1239485	alaS	>	SCA_1231	28.02
SCAs036	jacL-36	1249565..1249804	SCA_1240	<	aspB	5994.28
SCAs037	jacL-37	1252944..1253215	hisS	>	SCA_1243	2385.58
SCAs038	jacL-38	1294117..1294234	infC	<	lysP	23251.64
SCAs039	jacL-39	1339350..1339494	SCA_1325	>	rpsD	1271.7
SCAs040	jacL-40	1354036..1354126	fhs	<	acsA	200.81
SCAs041	jacL-41	1373449..1373678	SCA_1356	<	dat	1246.65
SCAs042	jacL-42	1383627..1383700	liuS′	>	SCA_1366	9195.15
SCAs043	jacL-43	1393914..1394102	ribD	>	SCA_1376	1063.54
SCAs044	jacL-44	1406587..1406766	metK	<	pckA	2198.37
SCAs045	jacL-45	273470..273659	sarA	>	SCA_0267	34.97
SCAs046	jacL-46	1546771..1546977	SCA_1526	>	SCA_1527	500.78
SCAs047	jacL-47	1562210..1562443	SCA_1544	>	agrB	985.38
SCAs048	jacL-48	1585607..1585749	ilvA	>	23S rRNA D	2012.07
SCAs049	jacL-49	1664220..1664368	SCA_1648	>	SCA_1649	196.23
SCAs050	jacL-50	1824275..1824411	SCA_1822	>	SCA_1823	637.82
SCAs051	jacL-51	1917867..1918006	SCA_1912	>	SCA_1913	832.99
Initial sequence analysis of SAUSA300s205, SAUSA300s206 and SAUSA300s288 determined that these sRNAs share less sequence similarity than their *S. epidermidis* counterparts (Figs S3 and S4). SAUSA300s205 and SAUSA300s288 are more similar to each other than to SAUSA300s206 (Figs 6a, S2 and S3), although upon further examination it was noted that SAUSA300s205 and SAUSA300s288 share more similarity with the reverse complement of SAUSA300s206 (RC-SAUSA300s206) (Figs 6b, S2 and S3). Secondary structure predictions suggest at least partial structural conservation between SAUSA300s205 and SAUSA300s288 in relation to SERPsCon and the other *S. epidermidis* sRNAs (Fig. 6c). The predicted secondary structure of SAUSA300s288 has the highest level of structure and sequence conservation, with nine residues in the terminal loop structure, seven of which are perfectly conserved in relation to SERPsCon (Fig. 5b). SAUSA300s205 contains a 59 nt insert within the region corresponding to SERPsCon that necessarily shifts the structure, resulting in a slightly lower level of sequence conservation in the terminal loop (six of nine residues) (Fig. 6c). Folding predictions of SAUSA300s206 suggest very little, if any, structural conservation, Table 2.

Locus ID	Gene name	Position	Upstream*	Orientation	Downstream*	RPKM†
SCA052	jacL-52	1929303..1929527	SCA_1921	<	SCA_1922	84.17
SCA053	jacL-53	1941458..1941755	opuCA	<	SCA_1935	515.79
SCA054	jacL-54	2031863..2032724	SCA_2018	>	SCA_2019	7319.06
SCA055	jacL-55	2088282..2088525	SCA_2075	>	SCA_2076	761.4
SCA056	jacL-56	2199217..2199338	SCA_2172	<	SCA_2173	1628.55
SCA057	jacL-57	2224279..2224907	SCA_2191	>	SCA_2192	848.25
SCA058	jacL-58	2266552..2266687	SCA_2211	>	SCA059	4277.68
SCA059	jacL-59	2266688..2266868	SCA058	<	SCA060	2180.71
SCA060	jacL-60	2267000..2267107	SCA059	>	SCA061	1239.77
SCA061	jacL-61	2267108..2267271	SCA060	<	tatA	1847.62
SCA062	jacL-62	2294415..2294594	SCA2236	<	SCA2237	265.8
SCA063	jacL-63	2303997..2304203	SCA2247	>	SCA064	1295.28
SCA064	jacL-64	2304288..2304494	SCA063	>	SCA2248	166.93
SCA065	jacL-65	2312205..2312796	SCA2253	<	SCA066	2442.46
SCA066	jacL-66	2313086..2313451	SCA065	>	SCA2254	2055.21
SCA067	jacL-67	2322081..2322191	acaA	>	putP	1655.25
SCA068	jacL-68	2375256..2375403	SCA2309	>	SCA069	60.61
SCA069	jacL-69	2375475..2375602	SCA068	>	SCA070	3569.06
SCA070	jacL-70	2375600..2375782	SCA069	<	opuD	27.01
SCA071	jacL-71	387163..387583	SCA014	>	mrdl	153.1
SCA072	jacL-72	2550964..2551426	SCA2464	>	serS	45.21
SCA073	jacL-73	1295825..1296074	SCA1288	<	thrS	1306.39
SCA074	jacL-74	1732302..1732452	SCA1707	>	rplQ	4134.38
SCA075	jacL-75	756990..757182	SCA0755	>	phiS	165.26
SCA076	jacL-76	1639798..1639959	rpmE	<	rho	514.78
SCA077	jacL-77	2552910..2553191	serS	<	hutH	153.16
SCA078	jacL-78	1574476..1574699	SCA1558	>	ilvD	467.22
SCA079	jacL-79	16200..16350	metC	<	SCA0902	699.7
SCA080	jacL-80	203095..203214	rplA	>	rplL	2129.15
SCA081	jacL-81	1298096..1298341	thrS	<	dnaI	793.63
SCA082	jacL-82	1728275..1728877	rplM	>	trueA	297.5
SCA083	jacL-83	1200679..1200816	SCA1186	>	glyS	334.65
SCA084	jacL-84	1674226..1674513	glmS	<	mtlA	57.68
SCA085	jacL-85	365862..366036	SCA0360	<	SCA0361	32.28
SCA086	jacL-86	1648746..1648822	pyrG	<	SCA1631	207.11
SCA087	jacL-87	1278047..1278317	valS	<	tag	202.29
SCA088	jacL-88	60536960..605416	pepF	>	SCA0600	699.1
SCA089	jacL-89	1811579..1811734	SCA1806	<	SCA1807	10.65

*Gene.
†RPKM, reads per kilobase material per million reads.
mirroring the lack of sequence similarity, with the other sRNAs (Fig. 6a, c). However, as perhaps is expected, mfold analysis of RC-SAU300s206 suggests structural conservation including the terminal loop (six of nine residues) (Fig. 6c).

The antisense nature of SAUSA300s206 in comparison with SAUSA300s205 and SAUSA300s288 hints at the possibility of an interaction between SAUSA300s206 and the other two sRNAs. To evaluate this potential, we queried the SAUSA300s206 sequence against the target sequences SAUSA300s205 and SAUSA300s288 using RNA–RNA interaction prediction software, IntaRNA (http://rna.informatik.uni-freiburg.de/) (Busch et al., 2008; Wright et al., 2014). Perhaps unsurprisingly, the predicted areas of interaction between SAUSA300s206 and both of the other sRNAs are extensive, and have a very low free energy (−181.7 and −95.3 kcal mol⁻¹ for SAUSA300s205 and SAUSA300s288, respectively) thus making these interactions energetically favorable.

Functional prediction of S. aureus-specific sRNAs

A major goal of this study was to differentiate sRNA content between the staphylococci (Table S2), and to garner a better understanding of the potential physiological role for unique elements, particularly in the context of *S. aureus* pathogenesis. As such, the complete set of *S. aureus*-specific sRNAs (Table S7) was subjected to target prediction using TargetRNA2 (http://cs.wellesley.edu/~btjaden/TargetRNA2/)

Fig. 3. Shared and unique sRNA content amongst the staphylococci. (a) Depicted from the outermost semicircle inward are: the genome of *S. aureus*, sRNA annotations, expression level of each sRNA under standard conditions, genomic landmarks [SCCmec (purple), pathogenicity islands (red), prophages (orange) and other genomic islands (yellow)], sRNAs encoded on the forward strand and, innermost, the reverse strand. The inner links connect sRNAs that have sequence conservation. Red and blue links show homologous sRNAs between *S. aureus* and either *S. carnosus* or *S. epidermidis*, respectively; and the black link indicates a single homologous sRNA shared between *S. epidermidis* and *S. carnosus* but with no relation to any in *S. aureus*. (b) Pie charts representing the portion of sRNA content that is shared with each of the species in this study. The total sRNA content of each genome is indicated. (c) Numbers used to generate images in (b). Shown is the number of sRNAs shared between a given species pairing (upper section of each cell) as well as the number of sRNAs unique to a given species pairing (lower section of cells). For example, *S. aureus* has 105 sRNAs in common with *S. epidermidis*, but only 52 of these 105 are unique to *S. aureus* and *S. epidermidis* (i.e. not found in *S. carnosus*). When viewing these data, an organism-specific point-of-view must be employed to understand the differences in numbers from similar comparisons. Specifically, the numbers are different for *S. aureus* vs. *S. epidermidis* (105 and 52 sRNAs shared and specific, respectively) compared with *S. epidermidis* vs. *S. aureus* (92 and 56 sRNAs shared and specific, respectively) because *S. aureus* has 52 sRNAs that are homologous to 56 sRNAs in *S. epidermidis*.

http://mgen.microbiologyresearch.org
The identification of transcriptionally silent S. aureus sRNAs in S. epidermidis and S. carnosus. (a) Data are arranged in the same manner as Fig. 3(a), with the following differences: links connect annotated sRNAs of S. aureus to homologous regions within the chromosomes of S. epidermidis (blue) and S. carnosus (red) that do not show transcriptional activity in these latter species. Regions were considered homologous if BLAST search returned an E-value of $<10^{-10}$. (b) Pie chart showing the total shared and unique sRNA content of S. aureus including the expressed sRNAs from Fig. 3 and the homologous unexpressed from (a). (c) Numbers used to generate images in (b). Shown are the number of small RNAs shared between a given species pairing (upper section of cells) as well as the number of sRNAs unique to a given species pairing (lower section of cells).

(Kery et al., 2014). The resulting list of putative targets (Table S8) was subjected to ontological classification, to identify those that are known virulence factors. Of note, 85 of the 137 (62 %) sRNAs unique to S. aureus were found to have the capacity to interact with at least one virulence-related transcript. Interestingly, the gene with the highest number of predicted sRNA regulators (10 different sRNAs) was splA, which encodes a well-characterized serine protease (Stec-Niemczyk et al., 2009). This is particularly compelling as S. aureus proteases have a major role in pathogenesis via
the global modulation of virulence determinant stability (Kolar et al., 2013). As such, this clearly suggests potential for sRNA-based regulation of the infectious process in S. aureus. Ultimately, each of the predictions generated require further experimental verification to assess specific functional roles. However, we suggest that the data presented herein represent an important first step in exploring the influence of sRNAs in the staphylococci, and their impact on species-specific adaptation.

Discussion

The advent of next-generation sequencing technologies has resulted in a vast amount of genomic and transcriptomic
data available for all domains of life. This flood of data has resulted in the need for automated annotation software (Dark, 2013; Richardson & Watson, 2013). While automated annotation has become fairly robust for protein-coding regions, tRNAs and rRNAs, the ability to accurately predict the presence of other non-coding RNAs lags behind, which necessitates the manual curation of such genes (Sridhar & Gunasekaran, 2013). Collectively, sRNAs are of growing interest, as the diverse roles they play in regulating carbon metabolism, virulence gene expression, iron acquisition and many other cellular processes becomes increasingly apparent (Hoe et al., 2013; Beisel & Storz, 2010; Murphy et al., 2014; Caron et al., 2010; Geissmann et al., 2006; Harris et al., 2013; Papenfort & Vanderpool, 2015; Oliva et al., 2015). The inability to efficiently identify and annotate these elements hinders research on sRNAs and creates a need for transcriptomic-based approaches to supplement automated annotation software pipelines. To this end, our group has begun manually cataloging and curating these molecules into their respective genomes within the staphylococci.

In the present work, we have identified and annotated sRNAs in the genomes of both *S. epidermidis* RP62a and *S. carnosus* TM300 using RNAseq methodologies. The total sRNA contents of *S. epidermidis* and *S. carnosus* were compared with our previous work in *S. aureus*, generating a fully comprehensive comparison of the shared and unique sRNA content of these common staphylococci. In so doing, we...
Species-specific sRNAs of staphylococci

identified and annotated 118 and 89 novel sRNAs in *S. epidermidis* and *S. carnosus*, respectively. The sRNA content of these two genomes initially appears strikingly small compared with *S. aureus* (303 annotated sRNAs). The difference in the number of sRNAs between these organisms is probably not due to differences in genome size (2 872 769, 2 616 530 and 2 566 424 bp, respectively), but rather an artifact of the overall number of conditions tested for sRNA expression within each species. For *S. epidermidis* and *S. carnosus*, our study is the first assessment of their sRNA content, based on a single growth condition (mid-logarithmic phase, TSB at 37 °C), whereas those sRNAs for *S. aureus* are derived from a wealth of different studies and experimental conditions (Pichon & Felden, 2005; Marchais et al., 2009; Geissmann et al., 2009; Abu-Qatouseh et al., 2010; Bohn et al., 2010; Beaume et al., 2010; Nielsen et al., 2011; Xue et al., 2014; Anderson et al., 2006, 2010; Olson et al., 2011; Howden et al., 2013; Carroll et al., 2016). The discrepancy in the number of studies that have examined the sRNA content of these three organisms also underlies the very different proportion of sRNAs common to the staphylococci in each genome. For example, considering only the transcriptionally active sRNA comparisons, *S. aureus* has a common sRNA set of 53 (~17.5 %) while *S. epidermidis* and *S. carnosus* have 36 (~30.5 %) and 39 (~43.8 %), respectively. The sRNAs represented in all three genomes probably have similar roles within the cell, speculatively involved in evolutionarily conserved processes such as basic metabolism and maintenance of cellular homeostasis. While the number of sRNAs shared by *S. aureus* increases to 87 (~28.7 %) if the homologous, but transcriptionally inactive, regions of *S. epidermidis* and *S. carnosus* are included, this is still a smaller proportion of the sRNAs compared with *S. epidermidis*, and considerably smaller than that of *S. carnosus* (~30.5 % and ~43.8 %, respectively). One could hypothesize that these sRNAs may be involved in conserved processes that are perhaps unnecessary under the conditions tested. Conversely, and of some interest, several regions within the *S. aureus* genome show high sequence similarity to newly annotated sRNAs from *S. epidermidis* and *S. carnosus*, despite themselves being transcriptionally silent (data not shown). Either the presence of such regions suggests an evolutionary event that has silenced expression from these loci, or, perhaps a more likely scenario, we have yet to elucidate the permissive conditions for their expression in *S. aureus*. As such, a need exists for further research into lifestyle-specific and pathophysio logically relevant transcriptomic conditions and effects within the staphylococci.

The presence of a set of highly conserved sRNAs from *S. epidermidis* and *S. aureus* is seemingly quite unusual. The high level of sequence similarity within these sRNAs also results in a conserved structural motif that takes the form of a stem and multi-loop region, ending in a terminal hairpin with an unpaired, conserved 9–10 nt motif. Conservation of the multi-loop stem and terminal loop would suggest a common function for these sRNAs as a group and/or for the region of homology. Several possibilities for general function present themselves with such sequence and structure conservation. For example, it is possible that these structures act to bind and sequester proteins, as is the case for the CsrB/C sRNAs. CsrB/C sRNAs were originally identified in *Escherichia coli* as binding to and sequestering the CsrA protein through a conserved, repeated RNA motif, ultimately affecting carbon utilization and virulence gene expression (Liu et al., 1997; Jonas & Melefors, 2009). A second scenario, that has been demonstrated for several of the sRNA sRNAs in *S. aureus* (first characterized for their UCCCC motif), is that the terminal hairpin serves to bind conserved regions within a target RNA, and the surrounding, less conserved regions confer target specificity (Geissmann et al., 2009). More work is necessary to elucidate the function of each of these individual sRNAs as well as the conserved domain that characterizes them. Curiously, the homology searches also identified SAUSA300s206 within this group, although further in silico analysis demonstrated SAUSA300s206 has high sequence complementarity to SAUSA300s205 and SAUSA300s288 as well as SERRPsCon. The presence of high levels of sequence complementarity begs the question: is SAUSA300s206 a regulator of SAUSA300s205 and SAUSA300s288? Regulation of one sRNA by another (so-called anti-sRNAs) is not unprecedented in the literature. In *E. coli* the molecular mechanism for interaction of two such anti-sRNAs, AsxR and AgvB, with their targets has recently been elucidated (Tree et al., 2014). AsxR binds the sRNA FmrS, which normally represses the expression of a heme oxygenase, ChuS; thus, AsxR acts to enhance expression of ChuS (Tree et al., 2014). In the context of AgvB, it binds the sRNA GcvB, repressing the GcvB-dependent repression of DppA expression (Tree et al., 2014). In direct parallel to this, our group recently identified a set of highly transcribed, highly homologous sRNAs in *A. baumannii*, termed Group 1 sRNAs, for which there appears to be an anti-sRNA, ABUWs043 (Weiss et al., 2015). ABUWs043 is encoded in an antisense fashion to ABUWs042, and thus may regulate ABUWs042 through several means, including promoter interference and/or complementary binding (Weiss et al., 2015). Importantly, ABUWs043 has a high level of sequence complementarity to the rest of the Group 1 sRNAs (21 such elements exist in the *A. baumannii* genome), albeit lower than that found for ABUWs042, suggesting ABUWs043 may regulate the rest of the Group 1 sRNAs in an anti-sRNA fashion (Weiss et al., 2015). SAUSA300s206 shares many characteristics with these confirmed and putative anti-sRNAs, but ultimately more work must be done to characterize its function within *S. aureus*. Finally and perhaps the most intriguing observation about these sRNAs is the absence of an identified anti-sRNA encoded in *S. epidermidis* that shares homology with SAUSA300s206. The possibility that such an sRNA exists cannot be excluded, although the potential that this is an *S. aureus* specific adaptation is a potentially fascinating point of evolution. Regardless, a better understanding of the function of these 24 sRNAs may underlie basic physiological and regulatory differences between *S. aureus* and *S.
epidermidis, and further our understanding of the staphylococci in general.

Acknowledgements
This study was supported in part by grant AI080626 (to L.N.S.) from the National Institute of Allergy and Infectious Diseases.

References

Abu-Qatouseh, L. F., Chinni, S. V., Seggewiss, J., Proctor, R. A., Brosius, J., Rozhdestvensky, T. S., Peters, G., von Eiff, C. & Becker, K. (2010). Identification of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype. J Mol Med (Berl) 88, 565–575.

Anderson, K. L., Roberts, C., Disz, T., Vonstein, V., Hwang, K., Overbeek, R., Olson, P. D., Projan, S. J. & Dunnan, P. M. (2008). Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol 188, 6739–6756.

Anderson, K. L., Roux, C. M., Olson, M. W., Luong, T. T., Lee, C. Y., Olson, R. & Dunnan, P. M. (2010). Characterizing the effects of Inorganic Acid and Alkaline shock on the Staphylococcus aureus Transcriptome and Messenger RNA turnover. FEBS Immun Med Mic 60, 208–250.

Archers, G. L. (1998). Staphylococcus aureus a well-armed pathogen. Clin Infect Dis 26, 1179–1181.

Beaume, M., Hernandez, D., Farinelli, L., Deluen, C., Linder, P., Gaspin, C., Rompy, B., Schrenzel, J. & Francois, P. (2010). Cartography of methicillin-resistant S. aureus transcripts: detection, orientation and temporal expression during growth phase and stress conditions. PLoS One 5, e10752.

Beisel, C. L. & Storz, G. (2010). Base pairing small RNAs and their roles in global regulatory networks. FEBS Microbiol Rev 34, 866–882.

Bonn, C., Rigoulay, C., Chablerskaya, S., Sharma, C. M., Marchais, A., Skorski, P., Borezé-Durant, E., Barbet, R., Jacquet, E. & other authors (2010). Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nuc Acid Res 38, 19620–19636.

Braoch, W. H., Egan, N., Wing, H. J., Payne, S. M. & Murphy, E. R. (2012). VirF-independent regulation of Shigella virB transcription is mediated by the small RNA RvByh. PLoS One 7, e38592.

Busch, A., Richter, A. S. & Backofen, R. (2008). IntraRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. B Informatics 24, 2849–2856.

Caron, M. P., Lafontaine, D. A. & Massé, E. (2010). Small RNA-mediated regulation at the level of transcript stability. RNA Biol 7, 140–144.

Carroll, R. K., Weiss, A. & Shaw, L. N. (2014). RNA-sequencing of Staphylococcus aureus Messenger RNA [Online]. In The Genetic Manipulation of Staphylococci Vol. 1373, pp. 131–141. Edited by J. L. Bose. New York, NY: Springer New YorkAvailable from: [Accessed 25 November 2015].

Carroll, R. K., Weiss, A., Braoch, W. H., Wiemels, R. E., Mogen, A. B., Rice, K. C. & Shaw, L. N. (2016). Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus. MBio 7, e01990–15.

Caswell, C. C., Gaines, J. M., Ciborowski, P., Smith, D., Borchers, C. H., Roux, C. M., Sayood, K., Dunnan, P. M. & Roop II, R. M. (2012). Identification of two small regulatory RNAs linked to virulence in Brucella abortus 2308. Mol Microbiol 85, 345–360.

Dark, M. J. (2013). Whole-Genome sequencing in bacteriology: state of the art. Infect Drug Res 6, 115–123.

Geissmann, T., Possedko, M., Hunzinger, E., Fechter, P., Ehresmann, C. & Romby, P. (2006). Regulatory RNAs as mediators of virulence Gene expression in Bacteria. Exp Pharmacol 173, 9–43.

Geissmann, T., Chevalier, C., Cros, M.-J., Boisset, S., Fechter, P., Noirot, C., Schrenzel, J., Francois, P., Vandenesch, F. & other authors (2009). A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nuc Acids Res 37, 7239–7257.

Giannuzzi, M., Prosseza, G., Tran, C. N., Brandi, A., Colonna, B. & Falconi, M. (2010). A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri. Nucleic Acids Res 38, 3362–3375.

Gill, S. R., Fouts, D. E., Archer, G. L., Mongodin, E. F., Deboy, R. T., Ravel, J., Paulsen, I. T., Kolonay, J. F., Brinkac, L. & other authors (2005). Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187, 2426–2438.

Harris, J. F., Miceha-Viteva, S., Li, N. & Hong-Geller, E. (2013). Small RNA-Mediated regulation of host-pathogen interactions. Viral 4, 785–795.

Highlander, S. K., Hultén, K. G., Qin, X., Jiang, H., Yerraragada, S., Mason, E. O., Shang, Y., Williams, T. M., Fortunov, R. M. & other authors (2007). Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus. BMC Microbiol 7, 99.

Hobbs, E. C., Fontaine, F., Yin, X. & Storz, G. (2011). An expanding universe of small proteins. Cur Opinion Microbiol 14, 167–173.

Hoe, C. H., Raabe, C. A., Rozhdestvensky, S. T. & Tang, T. H. (2013). Bacterial sRNAs: regulation in stress. Int J Med Microbiol 303, 217–229.

Howden, B. P., Beaume, M., Harrison, P. F., Hernandez, D., Schrenzel, J., Seemann, T., Francois, P. & Stinear, T. P. (2013). Analysis of the small RNA transcriptional response in multidrug-resistant Staphylococcus aureus after antimicrobial exposure. Anti Agents Chemotherapy 57, 3864–3874.

Jonas, K. & Melefors, O. (2009). The Escherichia coli CarB and CsrC Small RNAs Are Strongly Induced during Growth in Nutrient-Poor Medium. FEMS Microbiol Letters 297, 80–86.

Kery, M. B., Feldman, M., Livny, J. & Tjaden, B. (2014). TargetRNA2: identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Res 42, W124–W129.

Kolar, S. L., Nagarajan, V., Oszmiana, A., Rivera, F. E., Miller, H. K., Davenport, J. E., Riordan, J. T., Potempa, J., Barber, D. S. & other authors (2011). NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus. Microbiology 157, 2206–2219.

Kolar, S. L., Ibarra, J. A., Rivera, F. E., Mootz, J. M., Davenport, J. E., Stevens, S. M., Horswill, A. R. & Shaw, L. N. (2013). Extracellular proteases are key mediators of Staphylococcus aureus virulence via the global modulation of virulence-determinant stability. Microbiology 202, 18–34.

Liu, M. Y., Gui, G., Wei, B., Preston, J. F., Oakford, L., Yüksel, U., Giedroc, D. P. & Romeo, T. (1997). The RNA molecule CarB binds to the global regulatory protein CarS and antagonizes its activity in Escherichia coli. J Biol Chem 272, 17502–17510.

Lowy, F. D. (1998). Staphylococcus aureus infections. N Engl J Med 339, 520–532.

Lowy, F. D. (2003). Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 111, 1265–1273.
Marchais, A., Naville, M., Bohn, C., Bouloc, P. & Gautheret, D. (2009). Single-pass classification of all noncoding sequences in a bacterial genome using phylogenetic profiles. Genome Res 19, 1084–1092.

Murphy, E., Broach, W. & Kouse, A. B. (2014). Prokaryotic Gene Regulation by Small RNAs [Online]. In Molecular Life Sciences. pp. 1–6. Edited by E. Bell. New York, NY: Springer New York.

Nawrocki, E. P., Burge, S. W., Bateman, A., Daub, J., Eberhardt, R. Y., Eddy, S. R., Floden, E. W., Gardner, P. P. & Jones, T. A. (2015). Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43, D130–D137.

Nielsen, J. S., Christiansen, M. H., Bonde, M., Gottschalk, S., Frees, D., Thomsen, L. E. & Kallipolitis, B. H. (2011). Searching for small rR-regulated genes in Staphylococcus aureus. Arch Microbiol 193, 23–34.

Oliva, G., Sahr, T. & Buchrieser, C. (2015). Small RNAs, 5’ UTR elements and RNA-binding proteins in intracellular bacteria: impact on metabolism and virulence. FEMS Microbiol Rev 39, 331–349.

Olson, P. D., Kuechenmeister, L. J., Anderson, K. L., Daily, S., Beenken, K. E., Roux, C. M., Reniere, M. L., Lewis, T. L. & Weiss, W. J. (2011). Small molecule inhibitors of Staphylococcus aureus RnpA alter cellular mRNA turnover, exhibit antimicrobial activity, and attenuate pathogenesis. PLoS Pathog 7, e1001287.

Otto, M. (2009). Staphylococcus epidermidis—the ‘accidental’ pathogen. Nat Rev Microbiol 7, 555–567.

Papenfort, K. & Vogel, J. (2014). Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front Cell Infect Microbiol 4. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098024/. Accessed 23 August 2015.

Papenfort, K. & Vanderpool, C. K. (2015). Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 39, 362–378.

Pichon, C. & Felden, B. (2005). Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc Natl Acad Sci U S A 102, 14249–14254.

Richardson, E. J. & Watson, M. (2013). The automatic annotation of bacterial genomes. Brief Bioinform 14, 1–12.

Rosenstein, R., Nerz, C., Biswas, L., Resch, A., Raddatz, G., Schuster, S. C. & Gotz, F. (2009). Genome Analysis of the Starter Culture Bacterium Staphylococcus carnosus TM300. Applied and Environmental Microbiology. 75, 811–822.

Schleifer, K. H. & Fischer, U. (1982). Description of a New Species of the Genus Staphylococcus: Staphylococcus carnosus. Int J Syst Bacteriol 32, 153–156.

Sridhar, J. & Gunasekaran, P. (2013). Computational small RNA prediction in bacteria. Bioinform Biol Insights 7, 83–95. pp. 1.

Stec-Niemezyk, J., Pustelny, K., Kiejelewksa, M., Bista, M., Bouwman, K. T., Stennicke, H. R., Thogersen, I. B., Daugherty, P. S. & Englund, J. J. (2009). Structural and functional characterization of SpLA, an exclusively specific protease of Staphylococcus aureus. Biochem J 419, 555–564.

Storz, G., Wolf, Y. I. & Ramamurthi, K. S. (2014). Small proteins can no longer be ignored. Annu Rev Microbiol 68, 753–777.

Tatusova, T., Ciufo, S., Federhen, S., Fedorov, B., McVeigh, R., O’Neill, K., Tolstoy, I. & Zaslavsky, L. (2015). Update on RefSeq Microbial Genomes Resources. Nucleic Acids Res 43, D599–D605.

Tree, J. J., Granneman, S., McAteer, S. P., Tollervey, D. & Gally, D. L. (2014). Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. Mol Cell 55, 199–213.

Wagner, E., Doskar, J. & Götz, F. (1998). Physical and genetic map of the genome of Staphylococcus carnosus TM300. Microbiology 144, 509–517.

Weiberg, A., Bellinger, M. & Jin, H. (2015). Conversations between kingdoms: small RNAs. Curr Opin Biotechnol 32, 207–215.

Weilbacher, T., Suzuki, K., Dubey, A. K., Wang, X., Gudapaty, S., Morozov, I., Baker, C. S., Georgellis, D., Babitzke, P. & Romeo, T. (2003). A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 48, 657–670.

Weiss, A., Broach, W. H., Lee, M. C. & Shaw, L. N. (2015). Towards the Complete Small RNome of Acinetobacter baumannii. Microbial Genomes [Online].

Wright, P. R., Georg, J., Mann, M., Sorescu, D. A., Richter, A. S., Lott, S., Kleinkauf, R., Hess, W. R. & Backofen, R. (2014). CopraRNA and IntaRNA: predicting small RNA targets, networks and Interaction domains. Nucleic Acids Res 42, W119–W123.

Xue, T., Zhang, X., Sun, H. & Sun, B. (2014). ArR, a novel sRNA of Staphylococcus aureus, regulates α-toxin expression by targeting the 5’ UTR of sarT mRNA. Med Microbiol Immunol 203, 1–12.

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.

Data Bibliography

1. Broach, W. H., Weiss, A. & Shaw, L. N. NCBI Gene Expression Omnibus, GSE77567 (2016).

2. Broach, W. H., Weiss, A. & Shaw, L. N. Figshare 10.6084/m9.figshare.3385861 (2016).