Near-Field Chipless-RFID System With High Data Capacity for Security and Authentication Applications

Cristian Herrojo, Graduate Student Member, IEEE, Javier Mata-Contreras, Alba Núñez, Ferran Paredes, Associate Member, IEEE, Eloi Ramon, and Ferran Martín, Fellow, IEEE

Abstract—A high data capacity chipless radio frequency identification (chipless-RFID) system, useful for security and authentication applications, is presented in this paper. Reading is based on the near-field coupling between the tag, a chain of identical splitting resonators (SRRs) printed on a (typically flexible) dielectric substrate (e.g., liquid crystal polymer, plastic, and paper), and the reader. Encoding is achieved by the presence or absence of SRRs at predefined (equidistant) positions in the chain, and tag identification (ID) is based on sequential bit reading. Namely, the tag must be longitudinally displaced, at short distance, over the reader, a microstrip line loaded with an SRR and fed by a harmonic signal. By this means, the harmonic signal is amplitude modulated, and the (ID) code is contained in the envelope function, which can be obtained by means of an envelope detector. With this system, tag reading requires proximity with the reader, but this is not an issue in many applications within the domain of security and authentication (e.g., secure paper for corporate documents and certificates). Several circularly shaped 40-bit encoders (implemented in a commercial microwave substrate), and the corresponding reader, are designed and fabricated as proof-of-concept demonstrators. Strategies for programming the tags and a first proof-of-concept chipless-RFID tag fabricated on plastic substrate through inkjet printing are included in this paper.

Index Terms—Chipless radio frequency identification (chipless-RFID), microstrip technology, split ring resonators (SRRs).

Manuscript received June 20, 2017; revised September 6, 2017 and October 14, 2017; accepted October 20, 2017. Date of publication November 14, 2017; date of current version December 12, 2017. This work was supported in part by MINECO-Spain under Project TEC2013-40600-R, Project TEC2016-75650-R, and Project RTC-2014-2550-7, in part by the Generalitat de Catalunya under Project 2014 SGR-157, in part by the Institutio Catalana de Recerca i Estudis AvancaIs (who awarded F. Martín), and in part by FEDER funds. The work of C. Herrojo was supported by MINECO through the FPI under Grant BES-2014-068164. This paper is an expanded version of [41], presented at the IEEE MTT-S International Microwave Symposium Conference. (Corresponding author: Cristian Herrojo.)

C. Herrojo, J. Mata-Contreras, F. Paredes, and F. Martín are with GEMMA/CIMITEC, Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain (e-mail: cristian.herrojo@uab.cat; Ferran.Martín@uab.es).
A. Núñez and E. Ramon are with the Institut de Microelecnòtica de Barcelona, IMB-CNM (CSIC), 08193 Barcelona, Spain.
Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMTT.2017.2768029
In frequency-domain-based tags, the number of bits is typically given by the number of resonant elements. Strategies to enhance the number of bits without an increase in the number of resonators (and hence bandwidth and size) include multistate multiresonator tags [34]–[36] and hybrid tags [27], [30]–[33]. The former exploits the fact that more than two states can be achieved by a single resonant element. Particularly, in retransmission-based tags the multistate functionality can be obtained through the controllability of the attenuation level of notches (amplitude response) achieved by rotation [35], [36]. Hybrid tags are multidomain tags where more than one domain (e.g., time, frequency, phase, and polarization) are used simultaneously in order to achieve more than one bit of information per resonant element. Examples of hybrid tags include encoders based on frequency position and polarization diversity [31], and encoders where the frequency domain is combined with phase deviation [30].

In spite of the recent efforts to increase the number of bits, mainly focused on increasing the spectral efficiency (bits/gigahertz), the reported chipless-RFID tags are far from the data capacity of chipped tags. In [36], it was shown that by sacrificing reading distance, and by using the concept of near-field (inductive) coupling between the tag and the reader, an information density per frequency of 16 bit/GHz can be achieved. In such multistate multiresonator tags, implemented by S-shaped split ring resonator (S-SRRs), a resonant particle introduced in [37]–[39], and used in several applications (e.g., sensors [40]), the resonant elements are etched in a different dielectric layer than the transmission line, a coplanar waveguide (CPW) acting as reader (front end). Tag reading requires proper alignment and contact between the tag and the transmission line (reader), which is not necessarily an issue in certain applications such as security and authentication, as reported in [36]. However, it is difficult in practice to increase the information density per surface and frequency by means of these tags since it is not possible to increase the number of states per resonator beyond four (as in [36]).

In this paper, a different and unconventional approach, first reported in [41], to significantly enhance the number of bits of chipless tags is used for the implementation of 40-bit chipless tags. The approach is based on sequential bit reading, and it is achieved by displacing the tag, a chain of identical resonators, over a transmission line (reader) fed by a harmonic signal. The presence or absence of resonant elements at predefined equidistant positions in the resonator chain modulates the input (carrier) signal, so that the ID code is present in the envelope of the modulated signal. Note that the interrogation signal is simply a harmonic signal. In these new chipless RFID tags, the information is given by the presence or absence of resonant elements at predefined positions. Equivalently, the ID code, obtained from the envelope function in the time domain, is given by the presence or absence of notches at predefined times. Conceptually, the working principle for tag reading in these chipless-RFID tags is similar to the one of the angular velocity sensors reported in [42] and [43].

The main innovation of the proposed system comes in the form of a reduced form factor of the tags by cutting out antennas, not using spectral features, and using sequential bit reading through motion of the tag over the reader. As compared to the work in [41], we report here a chipless RFID system where the reader is a microstrip line loaded with an SRR [44], [45] and the resonator chain uses the same resonant elements but rotated 180°. The implementation of the active part of the reader in the microstrip technology is important for backside isolation. Moreover, vias are not necessary. An important difference as compared to the chipless-RFID system proposed in [41] concerns the fact that the SRR-loaded line (reader) reported here is configured as a bandpass filter with a deep notch above the passband. The harmonic feeding signal is tuned to the frequency of maximum transmission. However, the system is designed in such a way that when an SRR of the tag lies on top of the SRR of the reader, the frequency response experiences a shift and the carrier frequency is strongly attenuated due to the shift in the transmission zero position. With this strategy, the dynamic range, or modulation index, is enhanced, as compared to [41]. We report 40-bit chipless RFID tags, which are circularly shaped for proper reading through a step motor used previously by Naqui and Martín [42] and Mata-Contreras et al. [43] for angular velocity measurements.

This paper is organized as follows. The working principle is succinctly summarized in Section II. The layout of the reader and the topology of the resonant elements are presented in Section III. The lumped-element equivalent circuit model of the structure and the method to extract the parameters are also included in this section. In Section IV, an exhaustive analysis of the proposed system, useful to determine the convenient carrier frequency of the feeding signal, is carried out. The effects of the air gap separation and lateral misalignments are also discussed in this section. The experimental setup for tag reading, as well as the fabricated tags, a set of four 40-bit tags implemented in the four quadrants of a circularly shaped narrow and flexible dielectric layer, is presented in Section V. The envelopes inferred from tag reading, corresponding to different chipless tags, and providing the ID codes, are also provided in Section V. Section VI is devoted to a discussion on different strategies for programmable tags based on resonator detuning, and it is demonstrated that by mechanically cutting the resonators along their symmetry plane, detuning, and consequently tag reconfigurability, is achieved. In this section, it is also demonstrated that the proposed chipless-RFID system works by printing the tags on plastic substrates of interest in many applications including security and authentication. Finally, the main conclusions are highlighted in Section VII.

II. WORKING PRINCIPLE

The working principle of the proposed chipless-RFID system is based on the near-field coupling between the tag, a chain of identical resonant elements (SRRs), and the active part of the reader, an SRR-loaded microstrip line configured as bandpass filter. The SRR of the line is identical to the SRRs of the tags, but rotated 180°. The ID code is inferred sequentially and by proximity; namely, the SRR chain of the tag must be longitudinally (i.e., in the direction of the line axis) displaced
The tag chain is necessary, since such orientation enhances the active 180° orientation between the SRR of the line and those of the end, small distances (air gap) are necessary. Moreover, the coupling between the line and tag SRRs is efficiently modulated. To this end, small distances (air gap) are necessary. Moreover, the relative 180° orientation between the SRR of the line and those of the tag chain is necessary, since such orientation enhances the coupling in the optimum position (i.e., the one with perfectly aligned line and tag SRRs) [46], [47]. By contrast, when the tag chain is located with the intermediate positions between two adjacent SRRs just on top of the center of the line SRR, the coupling is negligible. Tag motion results in shifts in the frequency response which are intimately related to the coupling level for the vertically aligned SRRs. The consequence of these shifts is the modulation of the transmission coefficient of the SRR-loaded line with tag motion. If a harmonic (carrier) signal tuned to a certain frequency is injected to the input port of the SRR-loaded line, the signal at the output port is modulated by tag motion, and the ID code is contained in the envelope of the modulated signal. The sketch of the proposed chipless RFID system is depicted in Fig. 1.

In the proposed chipless-RFID tags, the logic “1” and “0” states are given by the presence or absence of SRRs at predefined and equidistant positions in the chain. To enhance sensitivity, it is convenient to choose the carrier frequency exhibiting the maximum excursion (variation) of the transmission coefficient with tag motion. Through this choice, the modulation index is optimized, and the logic states can be better discerned in a reading operation. This aspect will be discussed in Section IV. Nevertheless, the SRR-loaded microstrip structure acting as bandpass filter provides a large excursion between maximum and minimum transmission, and this represents a clear advantage as compared to the system proposed in [41].

III. READER AND TAG TOPOLOGIES AND LUMPED-ELEMENT EQUIVALENT CIRCUIT MODEL

The active part of the reader, a microstrip line loaded with an SRR, is depicted in Fig. 2. The SRR is folded in order to reduce its electrical size. As mentioned before, the SRRs of the tag chain are identical, but rotated 180° (hence the topology is not repeated). In view of Fig. 2, it follows that the structure exhibits a bandpass behavior, and filter bandwidth is related to the width of the slot between the resonant element and the access lines, s_2. The frequency response of the structure of Fig. 2, inferred from the full-wave electromagnetic simulation (using Keysight Momentum), is depicted in Fig. 3. (The parameters of the Rogers RO3010 substrate, with thickness $h = 0.635$ mm, dielectric constant $\varepsilon_r = 10.2$, and loss tangent $\tan \delta = 0.0022$, have been considered.) The transmission coefficient exhibits a transmission zero, given by the intrinsic resonance frequency of the SRRs, and a pole (or reflection zero), where all the injected power is transmitted to the output port (neglecting the effect of losses). This response is very useful for our purposes, due to the large insertion loss at the transmission zero frequency (with direct impact on the modulation index of the output signal in a reading operation, as will be later shown).

The structure of Fig. 2 can be described by the lumped-element π-circuit model depicted in Fig. 4. The parallel resonant tank L_r-C_r accounts for the SRR, whereas C_g and C_p take into account the effect of the slots and the capacitance to ground. (Losses are not considered in the model since the main aim is to justify the presence of the transmission zero.) In order to validate this model, the four reactive parameters must

![Fig. 1. Sketch of the proposed chipless-RFID system, consisting of the tag (set of resonators printed or etched on a substrate) and the reader (within the dashed rectangle), constituted by the harmonic generator, the SRR-loaded transmission line, the circulator, and the envelope detector.](image1)

![Fig. 2. Topology of the reader. Dimensions are (in mm): $l_1 = 3.16$, $l_2 = 3.35$, $s_1 = 0.2$, $s_2 = 0.2$, $W_1 = 0.56$, and $W_2 = 0.5$. The distance between adjacent SRRs (if they are present) in the tag chain is 0.2 mm.](image2)

![Fig. 3. Frequency response of the structure of Fig. 2 inferred from lossless electromagnetic and circuit simulation. (a) Magnitude of S_{11}. (b) Magnitude of S_{21}. (c) Phase of S_{11}. (d) Phase of S_{21}. The extracted parameters of the lumped element equivalent circuit (in reference to Fig. 4) are: $L_r = 27.1$ nH, $C_r = 0.03$ pF, $C_g = 0.05$ pF, and $C_p = 0.76$ pF.](image3)

![Fig. 4. Sketch of the proposed circuit model.](image4)
be extracted. To this end, a procedure similar to those reported in [47]–[49] in reference to another type of resonator loaded lines is considered. Note that four conditions are necessary to unequivocally determine the four model parameters. The first condition is the transmission zero frequency, where the parallel resonant tank opens

\[f_z = \frac{1}{2\pi \sqrt{L_r C_r}} \]

A second condition involving the elements of the series branch is the frequency where such branch shorts, i.e., it exhibits a null reactance. Such frequency, obtained by forcing the reactance of the resonant tank \(L_r - C_r \) plus the capacitance \(C_g \) to be zero, is

\[f_s = \frac{1}{\pi \sqrt{2L_r (C_g + 2C_r)}} \]

Note that this frequency can be inferred from the reflection coefficient \(S_{11} \) represented in the Smith chart, since at that frequency the trace of \(S_{11} \) intersects the unit conductance circle. From the value of the parallel reactance, directly given by the Smith chart, the shunt capacitance values \((C_p) \) are derived (third condition). Finally, at the reflection zero frequency \(f_r \) or frequency with maximum transmission, the iterative impedance, given by

\[Z_0(\omega) = \frac{Z_s(\omega) Z_p(\omega)/2}{1 + (Z_s(\omega)/2 Z_p(\omega))} \]

must be the reference impedance of the ports (50 \(\Omega \)). This is the fourth and last condition, necessary to determine the elements of the circuit model. In (3), \(Z_s \) and \(Z_p \) are the impedance of the series and shunt branch of the \(\pi \)-circuit.

Application of the previous parameter extraction procedure gives the reactive parameters indicated in Fig. 5. (The parameters are indicated in the caption of Fig. 5.) Again, a good agreement between the lossless circuit and electromagnetic simulation is obtained. Interestingly, \(C_g \) and \(C_p \) have not experienced a significant variation as compared to the structure without tag cover, as expected. The main variation corresponds to the capacitance of the resonant element (BC-SRR), which has experienced an increase of roughly four times due to the broadside (face-to-face) capacitance between the metal strips of the particle.

Nevertheless, our purpose has been to provide a lossless model in order to gain insight into the design of the proposed near-field chipless systems.

The frequency response depicted in Fig. 3 corresponds to the SRR-loaded microstrip line without tag loading, i.e., surrounded by air. Let us now consider that the structure is loaded with the tag, and particularly for a tag position corresponding to perfectly aligned SRRs. For this position, referred to as reference position (REF), the pair of vertically aligned SRRs forms the so-called broadside-coupled SRR (BC-SRR) [46], [47]. This composite particle is characterized by a strong electric coupling between the individual SRRs, provided the air gap separation between them is small enough. The consequence is a significant decrease of the fundamental resonance frequency of the composite particle (BC-SRR), resulting in an overall shift of the transmission coefficient toward lower frequencies. By considering that the air gap separation is 265 \(\mu \text{m} \) (this value will be justified later), that the SRR of the tag is etched on the Rogers RO4003C substrate with thickness \(h = 0.204 \text{ mm} \), dielectric constant \(\varepsilon_r = 3.55 \), and loss tangent \(\tan \delta = 0.0021 \), and that this narrow substrate is attached to \(FR4 \) (with thickness \(h = 1.6 \text{ mm} \), dielectric constant \(\varepsilon_r = 4.7 \), and loss tangent \(\tan \delta = 0.014 \)) for mechanical stability, the resulting frequency response (inferred from electromagnetic simulation) is the one depicted in Fig. 5. Note that if the tag is attached to a different material, its effects can be taken into account at simulation and design level. Nevertheless, some tolerance exists in the material used to provide mechanical stability, due to the large excursion of the transmission coefficient experienced by tag motion. The circuit simulation with extracted parameters is also depicted in Fig. 5. (The parameters are indicated in the caption of Fig. 5.)
by electromagnetic simulation. These results have been inferred by electromagnetic simulation.

Fig. 6. Transmission coefficient (magnitude) of the SRR-loaded line of Fig. 2 with tag cover, for different relative positions between the SRR of the line and the SRR of the tag. Relevant frequencies, discussed in the text, are indicated. These results have been inferred by electromagnetic simulation.

Fig. 7. Variation of the transmission coefficient as a function of the relative displacement for the indicated frequencies. These results have been inferred by electromagnetic simulation.

IV. ANALYSIS AND OPTIMIZATION

The frequency response of the tag loaded structure for different relative positions between the SRR of the tag and the one of the line is depicted in Fig. 6. (Tag displacement is in the direction of the line axis.) In this case, losses have been considered since the maximum and minimum values of the transmission coefficient are important. The considered air gap separation is the one in reference to the response of Fig. 5 (i.e., 265 μm). As anticipated before, departure from the REF position modifies (shifts up) the transmission and reflection zero frequencies. Fig. 7 depicts the variation of the transmission coefficient as a function of the relative displacement for specific frequencies (indicated in the figure). One of these frequencies is the reflection zero frequency for the case of perfectly aligned SRRs (forming the BC-SRR). Let us designate this frequency as $f_{r,BC-SRR}$. The transmission coefficient for this frequency is a maximum for the REF position. Departure from this position reduces the transmission coefficient, but it saturates to roughly -22 dB for a relatively small displacement. We have also depicted the variation of the transmission coefficient for the reflection zero frequency of the structure with completely misaligned SRRs. Note that this frequency is similar, but not identical, to the reflection zero frequency of the structure without tag loading. The reason is that the presence of the tag substrate slightly modifies the resonance frequency of the SRR of the line. Nevertheless, this frequency is not influenced by the SRR of the tag, and hence it can be called $f_{r,SRR}$ (to point out that this frequency is only given by the SRR of the line). For $f_{r,SRR}$, the excursion (dynamic range) experienced by the transmission coefficient is close to 45 dB, i.e., -50 dB for the REF position, and roughly -5 dB for displacements above 1 mm. Finally, we have considered an intermediate frequency, called $f_{r,int}$, corresponding to the reflection zero frequency for a displacement of 0.4 mm. In this case, the transmission coefficient as a function of the displacement exhibits a deep notch for the REF position, a maximum for a displacement of 0.4 mm, as expected, and then the transmission coefficient saturates to -15 dB as the relative displacement increases.

Fig. 8. Variation of $f_{r,BC-SRR}$ with the air gap separation. These results have been inferred by electromagnetic simulation.

In view of Fig. 7, it is convenient to set the frequency of the feeding signal, or carrier frequency, to $f_c = f_{r,SRR}$. The reason is that for this frequency, the maximum dynamic range is obtained. Nevertheless, by choosing the carrier frequency between $f_{r,BC-SRR}$ and $f_{r,SRR}$, the variation of the transmission coefficient is significant, and the value of the maximum transmission coefficient is close to the ideal value of 0 dB. Note that by setting f_c to values above $f_{r,SRR}$ the dynamic range is also considerable, but the value of maximum transmission progressively decreases as f_c increases, a situation that must be avoided to prevent deterioration of the modulation index. Thus, according to this analysis, the frequency of the feeding signal (carrier frequency) must satisfy $f_{r,BC-SRR} < f_c < f_{r,SRR}$, but, preferably, it must be as close as possible to $f_{r,SRR}$. This window for f_c is interesting from a practical viewpoint, since it is difficult to exactly predict the position of the optimum frequency, $f_{r,SRR}$. This analysis reveals that the proposed system is not very sensitive to frequency drifts, this being a relevant aspect.

One important parameter notably influencing the behavior/ performance of the proposed chipless RFID system is the air gap distance. As the gap increases, the SRR-loaded line is more insensitive to the presence of the tag, since the coupling between the SRR of the line and the SRR of the tag decreases. By increasing the air gap, $f_{r,BC-SRR}$ increases, whereas $f_{r,SRR}$ remains constant. Fig. 8 depicts the variation...
of $f_{r,SRR}$ with the air gap. It can be seen that the window for f_c decreases as the air gap increases. Nevertheless, the window is significant up to reasonable gap distances.

Let us now consider that the carrier frequency is set to the optimum frequency, $f_c = f_{r,SRR}$, and let us represent the excursion experienced by the transmission coefficient with the air gap when the SRRs of the line and tag are perfectly aligned. The result, depicted in Fig. 9(a), reveals that there is an optimum gap spacing, $265 \, \mu m$, providing the maximum variation of the transmission coefficient. The particularity of this gap separation is that, for perfectly aligned SRRs, the transmission zero frequency exactly coincides with the reflection zero frequency of the structure without tag on top of it, i.e., $f_{r,SRR}$, which is in turn the carrier frequency. It should be highlighted, however, that this optimum gap space has been calculated for a particular carrier frequency, i.e., $f_c = f_{r,SRR}$. If the carrier frequency is slightly below $f_{r,SRR}$, then it is necessary to decrease the gap in order to allocate the transmission zero, for the perfectly aligned SRRs, at the position of the carrier frequency. Thus, the optimum gap separation depends on the carrier frequency, but such optimum gap separation increases with f_c. Since f_c should not be chosen to be higher than $f_{r,SRR}$, it follows that $f_{r,SRR}$ is the optimum carrier frequency, provided the optimum gap distance is the largest one within the interval. Nevertheless, small variations of f_c in the vicinity of $f_{r,SRR}$ (with the gap set to the optimum value at $f_{r,SRR}$) do also give significant excursions in the transmission coefficient.

In order to analyze the tolerance against lateral shifts of the tag with regard to the line axis, Fig. 9(b) depicts the maximum variation of the transmission coefficient for the optimum frequency $f_{r,SRR}$ and the optimum gap separation at this frequency ($265 \, \mu m$). As can be seen, laterally shifting the tag degrades the excursion of the transmission coefficient.

However, by considering a tolerance limit of -10 dB for a reliable reading operation, it follows that lateral shifts between -1.3 and $+2.3$ mm are within the allowable limits for misalignment in the transverse direction. These values are very reasonable on account of the considered SRR dimensions. It is worth mentioning that the tolerance interval is not symmetric. The reason is the lack of symmetry of the structure with regard to the line axis. However, due to the symmetry with regard to the midplane between the input and the output port for perfectly aligned SRRs, it follows that tag displacement in the positive or negative direction, from the REF position, along the line axis is undistinguishable. For this reason, the curves of Fig. 7 exhibit perfect symmetry.

V. FABRICATED TAGS, EXPERIMENTAL SETUP, AND RESULTS

The in-house system for the measurement of the tag response is based on a step motor that provides angular motion to a rotor. For this reason, the fabricated chipless-RFID tags have been implemented as circular chains of SRRs. In particular, we have considered four different 40-bit tags based on the SRRs considered in the previous sections (see the dimensions in Fig. 2) and implemented on a narrow substrate attached to FR4 for mechanical stability (see Section III in reference to Fig. 5). Such tags are allocated in the four quadrants of a circle [see Fig. 10(a)]. However, the whole structure can be viewed as a single 160-bit tag as well. The photograph of the SRR-loaded line (active part of the reader) is depicted in Fig. 10(b). Note that the 50 Ω access lines
have been bent to avoid mechanical friction between the port connectors and the tag during tag motion.

The photograph of the experimental setup is shown in Fig. 11. The Agilent E4438C function generator has been used to feed the SRR-loaded line through a harmonic signal tuned to $f_c = f_{SRR} = 4$ GHz. This frequency provides reasonable SRR size and it is compatible with our measurement equipment, and system components. The envelope detector has been implemented by means of a Shottky diode (Avago HSMS-2860) and a low-pass filter. In practice, the low-pass filter functionality has been achieved by means of an active probe (N2795A), with resistance $R = 1$ MΩ and capacitance $C = 1$ pF, connected to an oscilloscope. Such oscilloscope (the Agilent MSO-X-3104A) is used to visualize the envelope function, providing the tag ID code. In order to avoid unwanted reflections from the Schottky diode (a highly nonlinear device), a circulator (model ATM ATc4-8), configured as an isolator, has been cascaded between the output port of the SRR-loaded line and the Shottky diode, similar to the system in [41]. Finally, the step motor STM 23Q-3AN is used to provide angular motion to the tags. The response of the four fabricated chipless tags is depicted in Fig. 12, where the ID codes are indicated. The logic states “1” and “0” are given by the presence and absence, respectively, of SRRs at the predefined positions, as mentioned before. The angular velocity of the step motor has been set to 5.33 r/min. It can be seen that the notches in the time response perfectly correlate with the logic state “1.” The significant dip depth indicates that the reader is very sensitive for the detection of the logic state “1” and hence it is a robust system for tag ID. Thus, the results presented in Fig. 12 validate the proposed approach for the determination of the tag ID codes. The area of each 40-bit tag is as small as 4.75 cm² (corresponding to a density of 8.4 bit/cm²). Note that by increasing the number of bits of the tags, the time required to read a tag also increases. However, in practice, the tag reading speed may be large since the carrier frequency (4 GHz) is very large as compared to the rhythm of SRR crossing above the reader, imposed by any reasonable, but large, shifting speed of the tag. Tag displacement speed does not have any influence on system performance, since, as mentioned, any reasonable speed is necessarily small as compared to the carrier frequency. Nevertheless, in a real scenario, tag speed is actually limited by the sampling time of the data acquisition system, which must be significantly smaller than that of the temporal width of the dips.

VI. DISCUSSION

An important aspect of chipless-RFID systems, with direct impact on cost, concerns the possibility of implementing programmable tags. As we have previously discussed, the presence or absence of resonant elements at the predefined tag positions determines the logic state of each bit. Note, however, that this approach is not optimum from the point of view of overall costs. In a real scenario, where tags are implemented by printing processes using conductive inks, the cost of the necessary ink for tag fabrication is small (calculated in the range of less than one eurocent) as compared to the price of typical RFID chips. However, each ID code requires a specific layout, and this may represent a significant cost burden, especially if high-quality massive printing processes are required for tag fabrication (e.g., rotogravure).

An alternative approach, of special interest if thousands of high data capacity tags are necessary, is to fabricate all-identical tags with all the resonators printed at the predefined positions (representing an optimum cost solution). Tag encoding (programming) can then be done in a later (low cost) stage by making inoperative those resonant elements with
In this context, inoperative resonators means detuned resonators, i.e., with fundamental resonance significantly shifted. Resonator detuning can be achieved, e.g., by short-circuiting the resonant elements (an approach proposed in [17] for frequency-domain multiresonator spectral signature barcodes) or by physically cutting the resonant elements. In a real scenario, short-circuiting can be achieved by inkjet printing (requiring a minimum quantity of ink and sintering at room temperature), whereas resonator cutting can be achieved, for instance, by laser ablation.

In this paper, a proof-of-concept to demonstrate the programmable capability of the proposed chipless-RFID tags has been carried out. To this end, the 40-bit encoder with all resonators present at the predefined positions (code 1 of Fig. 10) has been modified (programmed). Specifically, we have cut alternate resonators, making them inoperative and hence programming the ID code corresponding to code 2 of Fig. 10. A drilling machine has been used to cut the required resonant elements along their symmetry plane. (The photograph of one such detuned resonators is depicted in Fig. 13.) The measured normalized envelope function corresponding to this programmed tag is depicted in Fig. 14, where it can be appreciated that the 40-bit ID code is given by alternating states “1” and “0,” as expected.

The functionality of the proposed chipless-RFID system has been demonstrated by tags implemented in a commercial (narrow) low-loss microwave substrate. However, the interest in a real application devoted to security and/or authentication is the implementation of these chipless-RFID tags on low-cost plastic or paper substrates through standard printing processes (e.g., rotogravure, and screen printing), and, eventually, programming in a later stage, as discussed before. Note that in applications such as secure paper (e.g., for anticounterfeiting of corporate documents, certificates, and ballots), the ideal solution is to directly print the tags on the tagged item (paper). Alternatively, a plastic substrate, with intermediate electromagnetic properties between commercial low-loss microwave substrates and paper, located in a specific region of the tagged item, can be considered for tag printing.

As a first proof-of-concept toward this direction, we have fabricated, by inkjet printing, a 10-bit tag with all bits set to “1” (all resonators present and functional) on the Polyethylene naphthalate (PEN) film (Dupont Teijin Q65FA) (Fig. 15). The used inkjet printer is the Ceradrop CeraPrinter X-Serie, and two layers of DuPontPE410 conductive ink (with a measured conductivity of $7.28 \text{ S/m} \times 10^6 \text{ S/m}$) have been printed in order to achieve a measured thickness of $3.3–3.5 \mu \text{m}$. The considered substrate (PEN) has a measured thickness, dielectric constant, and loss tangent of $h = 0.125 \text{ mm}$, $\varepsilon_r = 3.36$, and $\tan \delta = 0.0042$, respectively. For tag reading, the tag has been attached to the FR4 substrate to provide mechanical stability.

Since the SRR chain is linear (see Fig. 15), rather than using the step motor, we have linearly displaced the tag over the SRR of the line (reader) through our available positioning system, which allows for manual linear motion in two dimensions (x, y). Apart from that, the setup for tag reading (i.e., for obtaining the envelope function) is identical to that described in Section V. The measured envelope function corresponding to the tag of Fig. 15 is depicted in Fig. 16. Ten dips, corresponding to the ten SRRs, can be perfectly appreciated. (The lower depth of the 2 s dip is due to fabrication related tolerances; nevertheless the ID code can be perfectly identified.) Hence, the proposed chipless RFID system is validated by considering plastic substrates and resonant elements printed on it.

We would like also to highlight that the proposed chipless-RFID system is conceived by taking into account that the relative speed between the tag and the reader should be constant. However, different (constant) velocities can be considered, preferably high in order to reduce the time needed for tag reading. In order to know such velocity, necessary for tag reading, one possibility is to add a pair of symbols (SRRs) at the beginning of the chain. The time distance between these
pair of symbols, read as logic “1,” determine the time positions where tag must be read.

As previously mentioned, the main advantage of chipless RFID over RFID systems with tags equipped with chips is the lower cost of the chipless tags. In many applications involving thousands or millions of tags, or in order to tag low-cost items, chipless RFID is fully justified even at the expense of potentially higher cost in the reader side (in our case due to the mechanical elements needed to provide tag motion). Nevertheless, concerning the electronics of the reader of the proposed system, it is relatively low cost. Note that in a real scenario, the function generator should be replaced by a harmonic oscillator, and the information contained in the tag can be inferred by means of a low-cost postprocessing unit (out of the scope of this paper). Potential applications of the proposed near-field chipless-RFID system in the field of security and authentication include authentication and ID of corporate documents, ballots, exams, certificates, etc.

VII. CONCLUSION

In conclusion, we have presented a chipless-RFID system based on the near-field coupling and sequential bit reading that constitutes an improvement as compared to the first version reported in [41]. The tags are simply a set of identical resonant elements (SRRs) etched or printed on a dielectric substrate forming a chain, and the presence or absence of resonant elements at predefined positions in the chain determines the logic state. Reading is achieved by proximity between the tag and the reader, an SRR-loaded microstrip line fed by a harmonic signal (carrier). Specifically, it has been demonstrated that by displacing the tag (SRR chain) above the SRR of the line, the transmission coefficient with the relative position between the tag and the SRR-loaded line.

Moreover, it has been found that the system is tolerant to air gap variations (distance between the tag and the SRR of the reader) up to 0.6 mm, and to lateral tag shifts up to 1.3 mm, which are very reasonable values on account of the dimensions of the tag SRRs. The number of bits of the proposed system is only limited by the space occupied by the tag chain, since tag reading simply requires a harmonic (single-tone continuous wave) signal. The achieved density of bits per area is as high as 8.4 bit/cm². Therefore, high data capacity (at the expense of reading by proximity), useful in applications such as security and authentication, is achievable. Particularly, applications in secure paper, where the tag ID can be directly printed on a paper substrate, and reading can be merely achieved by a mechanical system able to provide tag motion above the reader (plus the necessary electronics), are envisaged.

REFERENCES

[1] S. Preradovic and N. C. Karmakar, “Chipless RFID: Bar code of the future,” IEEE Microw. Mag., vol. 11, no. 7, pp. 87–97, Dec. 2010.
[2] S. Preradovic and N. C. Karmakar, Multiresonator-Based Chipless RFID: Barcode of the Future. New York, NY, USA: Springer-Verlag, 2011.
[3] N. C. Karmakar, R. Koswatta, P. Kalansuriya, and R. E-Azm, Chipless RFID Reader Architecture. Norwood, MA, USA: Artech House, 2013.
[4] E. Perret, Radio Frequency Identification and Sensors: From RFID to Chipless RFID. New York, NY, USA: Wiley, 2014.
[5] R. Rezaeiarslak and M. Manteghi, Chipless RFID: Design Procedure and Detection Techniques. Springer, 2015.
[6] N. C. Karmakar, M. Zomorrod, and C. Divarathne, Advanced Chipless RFID. Hoboken, NJ, USA: Wiley, 2016.
[7] C. S. Hartmann, “A global SAW ID tag with large data capacity,” in Proc. IEEE Ultrason., Symp., vol. 1. Oct. 2002, pp. 65–69.
[8] A. Chamarti and K. Varahramy, “Transmission delay line based ID generation circuit for RFID applications,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 11, pp. 588–590, Nov. 2006.
[9] M. Schüßler, C. Damm, and R. Jakoby, “Periodically LC loaded lines for RFID backscatter applications,” in Proc. Metamater., Rome, Italy, Oct. 2007, pp. 103–106.
[10] N. Saldanha and D. C. Malocha, “Design Parameters for SAW multi-tone frequency coded reflectors,” in Proc. IEEE Ultrason. Symp., Oct. 2007, pp. 2087–2090.
[11] M. Schüßler, C. Damm, M. Maasch, and R. Jakoby, “Performance evaluation of left-handed delay lines for RFID backscatter applications,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 177–180.
[12] S. Harma, V. P. Plessky, C. S. Hartmann, and W. Steichen, “Z-path SAW RFID tag,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 55, no. 1, pp. 208–213, Jan. 2008.
[13] T. Han, W. Wang, H. Wu, and Y. Shui, “Reflection and scattering characteristics of reflectors in SAW tags,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 55, no. 6, pp. 1387–1390, Jun. 2008.
[14] S. Harma, V. P. Plessky, X. Li, and P. Hartogh, “Feasibility of ultra-wideband SAW RFID tags meeting FCC rules,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 56, no. 4, pp. 812–820, Apr. 2012.
[15] F. J. Herraez-Martínez, P. Faredes, G. Z. Gonzalez, F. Martin, and J. Bonache, “Printed magnetoinductive-wave (MIW) delay lines for chipless RFID applications,” IEEE Trans. Antennas Propag., vol. 60, no. 11, pp. 5075–5082, Nov. 2012.
[16] S. Tejini, E. Perret, A. Vena, and D. Kadlout, “Mastering the electromagnetic signature of chipless RFID tags,” in Chipless and Conventional Radiofrequency Identification. IGI Global, 2012.
[17] I. Preradovic, I. Balbin, N. C. Karmakar, and G. F. Swiegers, “Multiresonator-based chipless RFID system for low-cost item tracking,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 5, pp. 1411–1419, May 2009.
[18] S. Preradovic and N. C. Karmakar, “Design of chipless RFID tag for operation on flexible laminates,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 207–210, 2010.
[19] O. Rance, R. Siragusa, P. Lemaitre-Augier, and E. Perret, “Toward RCS magnitude level coding for chipless RFID,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 7, pp. 2315–2325, Jul. 2016.

[20] J. McVay, A. Hoorfar, and N. Engheta, “Space-filling curve RFID tags,” in Proc. IEEE Radio Wireless Symp., Oct. 2006, pp. 199–202.

[21] I. Jalaly and D. Robertson, “Capacitively-tuned split microstrip resonators for RFID barcodes,” in Proc. Eur. Microw. Conf., vol. 2, Oct. 2005, pp. 4–7.

[22] H.-S. Jang, W.-G. Lim, K.-S. Oh, S.-M. Moon, and J.-W. Yu, “Design of low-cost chipless system using printable chipless tag with electro-magnetic code,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 11, pp. 640–642, Nov. 2010.

[23] A. Vena, E. Perret, and S. Tedjini, “A fully printable chipless RFID tag with detuning correction technique,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 209–211, Apr. 2012.

[24] A. Vena, E. Perret, and S. Tedjini, “Design of compact and auto-compensated single-layer chipless RFID tag,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 9, pp. 2913–2924, Sep. 2012.

[25] A. Vena, E. Perret, and S. Tedjini, “High-capacity chipless RFID tag insensitive to the polarization,” IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4509–4515, Oct. 2012.

[26] M. M. Khan, F. A. Tahir, M. F. Farooqui, A. Shamim, and H. M. Cheema, “3.56-bits/cm² compact inkjet printed and application specific chipless RFID tag,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1109–1112, 2016.

[27] M. A. Islam and N. C. Karmakar, “A novel compact printable dual-polarized chipless RFID system,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 7, pp. 2142–2151, Jul. 2012.

[28] R. Rezaiesarlak and M. Manteghi, “Complex-natural-resonance-based design of chipless RFID tag for high-density data,” IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 899–904, Feb. 2014.

[29] M. Svanda, J. Machac, M. Polivka, and J. Havlicek, “A comparison of two ways to reducing the mutual coupling of chipless RFID tag scatterers,” in Proc. 21st Int. Conf. Microw. Radar Wireless Commun. (MIKON), May 2016, pp. 1–4.

[30] A. Vena, E. Perret, and S. Tedjini, “Chipless RFID tag using hybrid coding technique,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3556–3564, Dec. 2011.

[31] A. Vena, E. Perret, and S. Tedjini, “A compact chipless RFID tag using polarization diversity for encoding and sensing,” in Proc. IEEE Int. Conf. RFID, Apr. 2012, pp. 191–197.

[32] I. Balbin and N. C. Karmakar, “Phase-encoded chipless RFID transponder for large-scale low-cost applications,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 8, pp. 509–511, Aug. 2009.

[33] S. Genovesi, F. Costa, A. Monorchio, and G. Manara, “Chipless RFID tag exploiting multifrequency delta-phase quantization encoding,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 738–741, 2015.

[34] C. Herrojo, J. Naqui, F. Paredes, and F. Martín, “Spectral signature barcodes based on S-shaped split ring resonators (S-SRRs),” EPJ Appl. Metamater., vol. 3, pp. 1–6, Jun. 2016.

[35] C. Herrojo, J. Naqui, F. Paredes, and F. Martín, “Spectral signature barcodes implemented by multi-state multi-resonator circuits for chipless RFID tags,” in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1–4.

[36] C. Herrojo, F. Paredes, J. Mata-Contreras, S. Zuffanelli, and F. Martín, “Multistate multiresonator spectral signature barcodes implemented by means of S-shaped split ring resonators (S-SRRs),” IEEE Trans. Microw. Theory Techn., vol. 65, no. 7, pp. 2341–2352, Jul. 2017.

[37] H. Chen et al., “Left-handed materials composed of only S-shaped resonators,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 70, no. 5, p. 057605, Nov. 2004.

[38] H. Chen, L. Ran, J. Huangfu, X. Zhang, and K. Chen, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett., vol. 86, no. 15, p. 151909, 2005.

[39] H. Chen et al., “Magnetic properties of S-shaped split ring resonators,” Prog. Electromagn. Res., vol. 51, pp. 231–247, 2005, doi: 10.2528/PIER04051201.

[40] J. Naqui, J. Coromina, A. Karami-Horestani, C. Fumeaux, and F. Martín, “Angular displacement and velocity sensors based on coplanar waveguides (CPWs) loaded with S-shaped split ring resonators (S-SRR),” Sensors, vol. 15, no. 5, pp. 9628–9650, 2015.

[41] C. Herrojo, J. Mata-Contreras, F. Paredes, and F. Martín, “Near-Field chipless RFID encoders with sequential bit reading and high data capacity,” in IEEE MTT-S Int. Microw. Symp. Dig., Honolulu, HI, USA, Jun. 2017, pp. 1564–1567.

[42] J. Naqui and F. Martín, “Application of broadband-coupled split ring resonator (BC-SRR) loaded transmission lines to the design of rotary encoders for space applications,” in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1–4.

[43] J. Mata-Contreras, C. Herrojo, and F. Martín, “Application of split ring resonator (SRR) loaded transmission lines to the design of angular displacement and velocity sensors for space applications,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 4450–4460, Nov. 2017, doi: 10.1109/TMTT.2017.2693981.

[44] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Techn., vol. 47, no. 11, pp. 2075–2084, Nov. 1999.

[45] F. Martín, F. Falcone, J. Bonache, R. Marqués, and M. Sorolla, “Split ring resonator-based left-handed coplanar waveguide,” Appl. Phys. Lett., vol. 83, no. 22, pp. 4652–4654, Dec. 2003.

[46] R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B, Condens. Matter, vol. 65, p. 144441, Apr. 2002.

[47] F. Martín, Artificial Transmission Lines for RF and Microwave Applications, Hoboken, NJ, USA: Wiley, 2015.

[48] J. Bonache, M. Gil, I. Gil, J. Garcia-García, and F. Martín, “On the electrical characteristics of complementary metamaterial resonators,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 10, pp. 543–545, Oct. 2006.

[49] F. Azin et al., “Characterization of miniaturized metamaterial resonators coupled to planar transmission lines through parameter extraction,” J. Appl. Phys., vol. 104, no. 11, pp. 114501-1–114501-8, Dec. 2008.

Cristian Herrojo (GS’16) was born in Barcelona, Spain, in 1983. He received the Telecommunications Technical Engineering degree in electronic systems and Telecommunications Engineering degree in 2010 and 2012, respectively. He is currently pursuing the Ph.D. degree (with a focus on the design of RF/microwave resonant structures applied to RFID tags (radio frequency identification) without chip).

Javier Mata-Contreras was born in Málaga, Spain, in 1976. He received the Ingeniería de Telecomunicación and Ph.D. degrees from the Universidad de Málaga (UMA), Málaga, in 2000 and 2010, respectively. His Ph.D. dissertation was entitled “Distributed Amplifiers and Mixers with Transmission Lines based on Metamaterials.” In 2000, he joined the Department of Ingeniería de Comunicaciones, UMA, as an Assistant Professor. He is currently a Visiting Professor with CIMITEC and the Universitat Autònoma de Barcelona, Barcelona, Spain. His current research interests include active and passive microwave devices and active distributed circuits based on metamaterials.

Alba Núñez was born in Madrid, Spain, in 1991. She received the Physics Science degree and master’s degree in advanced materials and nanophysics from the Universidad Complutense de Madrid, Madrid, in 2014 and 2015, respectively. In 2016, she joined the Printed Electronic Group, Institute of Microelectronics of Barcelona IMB-CNM (CSIC), Barcelona, Spain. She is currently a Research Technician with a specialization in the fabrication of inkjet printed devices.
Ferran Paredes (A’15) was born in Barcelona, Spain, in 1983. He received the Telecommunications Engineering Diploma degree in electronics, Telecommunications Engineering degree, and Ph.D. degree in electronics engineering from the Universitat Autònoma de Barcelona, Barcelona, in 2004, 2006, and 2012, respectively. From 2006 to 2008, he was an Assistant Professor with the Universitat Autònoma de Barcelona, where he is currently a Research Assistant. His current research interests include metamaterial concepts, passive microwaves devices, antennas, and RFID.

Eloi Ramon received the bachelor’s degree in telecommunications from the Polytechnic University of Catalonia, Barcelona, Spain, the master’s degree in microelectronics and nanoelectronics engineering, and the Ph.D. degree in inkjet printed devices and circuits from the Autonomous University of Barcelona (UAB), Barcelona.

Since 1999, he has been an Associate Professor with the Electronic Department, UAB, where he is currently teaching Telecom and CS BS and MA. In 2014, he joined IMB-CNM (CSIC), Barcelona, as a Printed Microelectronics Researcher and the Group Leader of the printed electronics research and development line. He has participated in more than 50 industrial and research projects. He has co-authored more than 40 papers and 50 conference presentations. His current research interests include printed and organic devices for electronic systems, radio-frequency, and biomedical applications, with a large focus on the application of inkjet printing technologies for functional devices manufacturing.

Dr. Ramon currently serves as a Reviewer and a Scientific Expert for different journals and public funding agencies.

Ferran Martín (M’04–SM’08–F’12) was born in Barakaldo, Vizcaya, Spain, in 1965. He received the B.S. degree in physics and Ph.D. degree from the Universitat Autònoma de Barcelona (UAB), Barcelona, Spain, in 1988 and 1992, respectively. From 1994 to 2006, he was an Associate Professor of electronics with the Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, where he has been a Full Professor of electronics since 2007. He has been involved in different research activities, including modeling and simulation of electron devices for high-frequency applications, millimeter wave, terahertz generation systems, and the application of electromagnetic bandgaps to microwave and millimeter-wave circuits. His current research interests include metamaterials and their application to the miniaturization and optimization of microwave circuits and antennas. He is currently the Head of the Microwave Engineering, Metamaterials and Antennas Group (GEMMA Group), UAB, and the Director of CIMITEC. He has authored or co-authored over 500 technical conference, letter, journal papers, and book chapters. He also co-authored Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (Wiley, 2008) and authored Artificial Transmission Lines for RF and Microwave Applications (Wiley, 2015). He has generated 17 Ph.D. students. He has filed several patents on metamaterials and has headed several development contracts.

Prof. Martín is a member of the IEEE Microwave Theory and Techniques Society. He is also a member of the Technical Committees of the European Microwave Conference and International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials). He has been a Fellow of the IET since 2016. He was a recipient of two ICREA ACADEMIA awards in 2008 and 2013. He has organized several international events related to metamaterials, including workshops at the IEEE International Microwave Symposium in 2005 and 2007, respectively, the European Microwave Conference in 2009, and the Fifth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials 2011), where he was a Chair of the Local Organizing Committee. He was a Guest Editor of three Special Issues on Metamaterials in three international journals. He is a reviewer for the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES and IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, among many other journals, and he serves as a member of the Editorial Board of the IET Microwaves, Antennas and Propagation and the International Journal of RF and Microwave Computer-Aided Engineering. He was the recipient of the 2006 Duran Farell Prize for Technological Research and holds the Parc de Recerca UAB—Santander Technology Transfer Chair.