On a result of Imin Chen.

Bas Edixhoven

March 19, 2022

1 Introduction, notation and results.

The aim of this text is to give another proof of a recent result of Imin Chen, concerning certain identities among zeta functions of modular curves, or, equivalently, isogenies between products of jacobians of these curves. I want to thank Imin Chen for pointing out a mistake in an earlier version of this text.

For \(n \geq 1 \) an integer, let \(X(n)_{\mathbb{Q}} \) be the modular curve which is the compactified moduli space (coarse if \(n < 3 \)) of pairs \((E/S, \phi) \), where \(S \) is a \(\mathbb{Q} \)-scheme, \(E/S \) is an elliptic curve and \(\phi: (\mathbb{Z}/n\mathbb{Z})_{S}^{2} \to E[n] \) an isomorphism of group schemes over \(S \). By construction, the group \(\text{GL}_{2}(\mathbb{Z}/n\mathbb{Z}) \) acts from the right on \(X(n)_{\mathbb{Q}} \): an element \(g \) sends \((E/S, \phi) \) to \((E/S, \phi \circ g) \). This action induces a left action of the jacobian \(J(n)_{\mathbb{Q}} \) of \(X(n)_{\mathbb{Q}} \).

Let \(p \) be a prime number. Let \(X \) denote \(X(p)_{\mathbb{Q}} \) and \(G \) the group \(\text{GL}_{2}(\mathbb{F}_{p}) \). We will consider the following subgroups of \(G \): the standard “maximal torus” \(T \) consisting of diagonal matrices, a non-split maximal torus \(T' \) obtained by choosing an \(\mathbb{F}_{p} \)-basis of a field \(\mathbb{F}_{p^2} \) of \(p^2 \) elements, the normalizers \(N \) of \(T \) and \(N' \) of \(T' \). Note that \(N/T \) and \(N'/T' \) are both of order 2. Finally, let \(B_{+} \) and \(B_{-} \) denote the two Borel subgroups containing \(T \); \(B_{+} \) is the subgroup of upper triangular matrices and \(B_{-} \) the one of lower triangular matrices.

The quotients of \(X \) by some of these subgroups have the following interpretations. The quotient \(X/T' \) is usually denoted \(X(p)_{\text{non-split}} \). The constructions

\[
\begin{align*}
(1.0.1) \quad & (E/S, \phi) \mapsto (E/S, \langle \phi(1, 0) \rangle), \quad (E/S, \phi) \mapsto (E/S, \langle \phi(0, 1) \rangle) \\
(1.0.2) \quad & X/B_{+} \xrightarrow{\sim} X_{0}(p)_{\mathbb{Q}}, \quad X/B_{-} \xrightarrow{\sim} X_{0}(p)_{\mathbb{Q}} \\
(1.0.3) \quad & (E/S, \phi) \mapsto (E_{1}/S, \ker(\phi_{2} \circ \phi_{1}^{*})),
\end{align*}
\]

induce isomorphisms

where \(\phi_{1}: E \to E_{1} \) (resp. \(\phi_{2}: E \to E_{2} \)) is the isogeny whose kernel is the subgroup scheme generated by \(\phi(1, 0) \) (resp. \(\phi(0, 1) \)), induces an isomorphism

\[
(1.0.4) \quad X/T \xrightarrow{\sim} X_{0}(p^{2})_{\mathbb{Q}}
\]
Under this isomorphism the Atkin-Lehner involution \(w_{p^2} \) of \(X_0(p^2)_\mathbb{Q} \) corresponds to the non-trivial element of \(N/T \); the two maps \(X/T \to X/B_+ \) and \(X/T \to X/B_- \) correspond to the two standard degeneracy maps from \(X_0(p^2)_\mathbb{Q} \) to \(X_0(p)_\mathbb{Q} \).

The result of Chen is the following, see [2, Theorem 1 and §10].

1.1 Theorem. (Chen) The jacobian of \(X_0(p^2)_\mathbb{Q} \) is isogeneous to the product of the jacobian of \(X(p) \) \(\text{non-split} \) by the square of the jacobian of \(X_0(p)_\mathbb{Q} \). The jacobian of \(X_0(p^2)_\mathbb{Q}/\langle w_{p^2} \rangle \) is isogeneous to the product of the jacobian of \(X/N' \) by the jacobian of \(X_0(p)_\mathbb{Q} \).

The proof given by Chen is to show that the traces of the Hecke operators \(T_n \) (\(n \) prime to \(p \)) on the jacobians in the theorem satisfy the identities required to conclude by the Eichler–Shimura relations and Faltings’s isogeny theorem that one has the desired isogenies. We will prove a generalization of Theorem 1.1 using only the representation theory of \(G \) and some elementary properties of abelian varieties.

For a field \(k \), let \(\text{AV}(k) \) denote the category of abelian varieties over \(k \). Let \(\mathbb{Q} \otimes \text{AV}(k) \) denote the category of abelian varieties over \(k \) “up to isogeny”, i.e., its objects are those of \(\text{AV}(k) \) and for two objects \(A \) and \(B \) one has \(\text{Hom}_{\mathbb{Q} \otimes \text{AV}(k)}(A,B) = \mathbb{Q} \otimes \text{Hom}_{\text{AV}(k)}(A,B) \). For \(A \) an abelian variety over \(k \) we denote by \(\mathbb{Q} \otimes A \) the corresponding object of \(\mathbb{Q} \otimes \text{AV}(k) \). By construction, \(A \) and \(B \) are isogeneous if and only if \(\mathbb{Q} \otimes A \) and \(\mathbb{Q} \otimes B \) are isomorphic. The categories \(\mathbb{Q} \otimes \text{AV}(k) \) are \(\mathbb{Q} \)-linear, semi-simple and abelian.

Recall (e.g., see [3, §1]), that an additive category \(C \) is called pseudoabelian if for every object \(M \) of \(C \) every idempotent \(f \) in \(\text{End}(M) \) has a kernel (or, equivalently, an image). If \(C \) is additive, pseudoabelian and \(f \) in \(\text{End}(M) \) is an idempotent in \(C \), then the natural morphism from \(\text{im}(f) \oplus \ker(f) \) to \(M \) is an isomorphism. The categories \(\mathbb{Q} \otimes \text{AV}(k) \) are clearly additive and pseudoabelian.

For each subgroup \(H \) of \(G \) we define

\[
\text{pr}_H := \frac{1}{|H|} \sum_{h \in H} h \in \mathbb{Q}[G]
\]

Hence \(\text{pr}_H \) is the idempotent of \(\mathbb{Q}[G] \) that projects on the \(H \)-invariants. For two subgroups \(H_1 \) and \(H_2 \) of \(G \) such that \(\langle H_1 \cup H_2 \rangle = H_1 H_2 \), one has \(\text{pr}_{H_1} \text{pr}_{H_2} = \text{pr}_{\langle H_1 \cup H_2 \rangle} \). For \(H \) a subgroup and \(g \) in \(G \) one has \(g \text{pr}_H g^{-1} = \text{pr}_{gHg^{-1}} \), hence \(\text{pr}_H \) is a central idempotent if and only if \(H \) is a normal subgroup.

For each irreducible representation \(V \) of \(G \) over \(\mathbb{Q} \) let \(e_V \) be the corresponding central idempotent in \(\mathbb{Q}[G] \) which projects on the \(V \)-isotypical part. If \(V \) is absolutely irreducible, of dimension \(d \) and with character \(\chi \), one has:

\[
e_V := \frac{d}{|G|} \sum_{g \in G} \chi(g^{-1})g
\]

We will use only one idempotent of the form \(e_V \), namely, with \(V \) the representation with character \(\pi^-(1) \) (see Table 2.1). This representation is the \(p \)-dimensional irreducible subrepresentation
of the induction of the trivial representation from B_+ to G. It is clearly absolutely irreducible and it exists over \mathbb{Q}.

Let us for the moment admit the following proposition, whose proof will be given in the next section.

1.2 Proposition. Suppose that $p \neq 2$. The elements $\text{pr}_T(1-\text{pr}_G)$ and $\text{pr}_T(1-e^{-\pi-1})(1-\text{pr}_G)$ of the ring $\mathbb{Q}[G]$ are conjugate idempotents. Likewise, the elements $(\text{pr}_N + \text{pr}_{B_+})(1-\text{pr}_G)$ and $\text{pr}_N(1-\text{pr}_G)$ are conjugate idempotents.

Our generalization of Chen’s result is simply the following direct consequence of Proposition 1.2.

1.3 Theorem. Suppose that $p \neq 2$. Take elements u and v of $\mathbb{Q}[G]^*$ such that

\[u\text{pr}_T(1-\text{pr}_G)u^{-1} = \text{pr}_T(1-e^{-\pi-1})(1-\text{pr}_G) \]
\[v(\text{pr}_N + \text{pr}_{B_+})(1-\text{pr}_G)v^{-1} = \text{pr}_N(1-\text{pr}_G) \]

Let \mathcal{C} be a \mathbb{Q}-linear pseudoabelian additive category. Let M be an object of \mathcal{C} with an action by the group G; this gives a morphism of rings $\mathbb{Q}[G] \to \text{End}(M)$. Then u induces an isomorphism

\[\text{pr}_T(1-\text{pr}_G)M \xrightarrow{\sim} \text{pr}_T(1-e^{-\pi-1})(1-\text{pr}_G)M \]

Likewise, v induces an isomorphism

\[\text{pr}_N(1-\text{pr}_G)M \oplus \text{pr}_{B_+}(1-\text{pr}_G)M \xrightarrow{\sim} \text{pr}_N(1-\text{pr}_G)M \]

To see that Theorem 1.2 is a special case, apply Theorem 1.3 to $\mathcal{C} := \mathbb{Q} \otimes \text{AV}(\mathbb{Q})$ and take $M = \mathbb{Q} \otimes \text{jac}(X)$, with $\text{jac}(X)$ the jacobian of X. For any subgroup H of G one then has $\text{pr}_H M = \mathbb{Q} \otimes \text{jac}(X/H)$. In this case pr_G acts as zero on M, since X/G has genus zero. The idempotent $e^{-\pi-1}$, acting on $\mathbb{Q} \otimes \text{jac}(X/T) = \mathbb{Q} \otimes J_0(p^2)$, projects on the old part, which is a product of two copies of $\mathbb{Q} \otimes J_0(p)$ (one way to see this is to note that the space of T-invariants in the representation corresponding to π^{-1} is the direct sum of the two 1-dimensional spaces of B_+ and B_--invariants). One also has to use the interpretations of the X/H as explained in the beginning of this section. For the case $p = 2$, note that $X(2)_\mathbb{Q}$ has genus zero.

2 The proof of Proposition 1.2.

The notation is as in the previous section, in particular, $G = \text{GL}_2(F_p)$. We suppose that $p \neq 2$. We will need to do some calculations involving the irreducible characters of G, so for convenience of the reader and to fix the notation, we include its character table, taken from [1]:
2.1 Table. The character table of G.

conjugacy class of $\begin{pmatrix} x & 0 \\ 0 & z \end{pmatrix}$	$x \in \mathbb{F}_p^*$	$(p+1)x \beta(x)$	$(p-1)x \Lambda(x)$	$x \alpha \det$	$x \Lambda(x)$
$(\begin{pmatrix} x & 0 \\ 0 & z \end{pmatrix})$	$x \notin \mathbb{F}_p^*$	$x \beta(y) + x \beta(y)$	0	$x \alpha \det$	$x \Lambda(x)$
$(\begin{pmatrix} x & 1 \\ 0 & z \end{pmatrix})$	$x \notin \mathbb{F}_p^*$	$x \alpha \beta(x)$	$-\Lambda(x)$	$x \alpha \det$	$x \Lambda(x)$
$(\begin{pmatrix} z \alpha & 0 \\ 0 & z \end{pmatrix})$	$x \notin \mathbb{F}_p^*$	0	$-\Lambda(z) - \Lambda(z^p)$	$x \alpha \det$	$x \Lambda(z^p)$

In this table α and β denote characters $\mathbb{F}_p^* \rightarrow \overline{\mathbb{Q}}^*$ and Λ denotes a character $\mathbb{F}_p^{*2} \rightarrow \overline{\mathbb{Q}}^*$. For each effective character χ of G we denote by V_χ some $\overline{\mathbb{Q}}[G]$-module with character χ. For each irreducible χ and each of the subgroups $H \subset G$ mentioned at the beginning of §4, we will need to know the dimension $\dim(V_\chi^H)$ of the set of H-invariants in V_χ. These dimensions are given in the following table, in which $\delta(x, y)$ denotes the Kronecker symbol, i.e., $\delta(x, y) = 1$ if $x = y$ and $\delta(x, y) = 0$ otherwise.

2.2 Table. The dimensions of the spaces V_χ^H.

χ	$\pi(\alpha, \beta)$	$\pi(-\alpha)$	$\alpha \det$	$\pi(\Lambda)$
T	$\delta(\alpha \beta, 1)$	$\delta(\alpha, 1) + \delta(\alpha^2, 1)$	$\delta(\alpha, 1)$	$\delta(\Lambda^p + 1, 1)$
N	$\delta(\alpha(-1), 1) \delta(\alpha \beta, 1)$	$\delta(\alpha(-1), 1) \delta(\alpha^2, 1)$	$\delta(\alpha, 1)$	$\delta(\Lambda^p + 1, 1) - \delta(\Lambda^{(p+1)/2}, 1)$
T'	$\delta(\alpha \beta, 1)$	$-\delta(\alpha, 1) + \delta(\alpha^2, 1)$	$\delta(\alpha, 1)$	$\delta(\Lambda^p + 1, 1)$
N'	$\delta(\alpha(-1), 1) \delta(\alpha \beta, 1)$	$-\delta(\alpha, 1) + \delta(\alpha(-1), 1) \delta(\alpha^2, 1)$	$\delta(\alpha, 1)$	$\delta(\Lambda^p + 1, 1) - \delta(\Lambda^{(p+1)/2}, 1)$
B	0	$\delta(\alpha, 1)$	$\delta(\alpha, 1)$	0

We will not give the computation of this table in detail, since it is a straightforward application of the theory of representations of finite groups, see for example [4]. As an example, let us do the case $\chi = \pi(\Lambda)$ and $H = N$ (the other computations are in fact easier). The group N' can be identified with the subgroup of $\text{GL}_{\mathbb{F}_p}(\mathbb{F}_p^2)$ generated by \mathbb{F}_p^{*2} and σ, where σ is the automorphism of order two of \mathbb{F}_p^2. Then N' is the disjoint union of $T' = \mathbb{F}_p^{*2}$ and $T' \sigma$. The conjugacy class in G of $z \in T'$ is the conjugacy class of $\begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix}$. The conjugacy class of $z \sigma$ is the one of $\begin{pmatrix} z^{(p+1)/2} & 0 \\ 0 & z^{-(p+1)/2} \end{pmatrix}$. One has:

\begin{equation}
\text{(2.2.1)} \quad \dim(V_\chi^H) = \dim \text{Hom}_H(\text{Res}_H^G(V_\chi), \overline{\mathbb{Q}}) = \frac{1}{|H|} \sum_{g \in H} \chi(g)
\end{equation}

The sum over the elements of T' can be written as:

\begin{equation}
\text{(2.2.2)} \quad - \sum_z (\Lambda(z) + \Lambda(z^p)) + (p+1) \sum_x \Lambda(x)
\end{equation}
In this sum, z runs through \mathbb{F}_p^* and x through \mathbb{F}_p^*. The first of the two terms of \((2.2.2)\) gives zero, the second contributes $\frac{1}{2}\delta(\Lambda^{p+1}, 1)$ to $\dim(\mathcal{V}_{\chi}^H)$. The sum over the elements of $T'\sigma$ can be written as
\[
(2.2.3) \sum_{z \in \mathbb{F}_p} \left(\Lambda\left(\frac{z(p+1)}{2}\right) + \Lambda\left(-\frac{z(p+1)}{2}\right) \right) - \sum_{z} \left(\Lambda\left(\frac{z(p+1)}{2}\right) + \Lambda\left(-\frac{z(p+1)}{2}\right) \right)
\]
The first of the two terms of \((2.2.3)\) contributes $\frac{1}{2}\delta(\Lambda^{p+1}, 1)$ to $\dim(\mathcal{V}_{\chi}^H)$ and the second term contributes $-\delta(\Lambda^{(p+1)/2}, 1)$. This completes the computation of $\dim(\mathcal{V}_{\chi}^H)$.

As promised, we will now give a proof of Proposition 1.2. In fact, that proposition is a direct consequence of the following one.

2.3 Proposition. Define $\mathbb{Q}[G] := \mathbb{Q}[G]/(pr_G)$ and denote the projection $\mathbb{Q}[G] \to \mathbb{Q}[G]$ by $u \mapsto \bar{u}$. Then the elements pr_T and $pr_T(1 - e_{\pi(1)})$ of the ring $\mathbb{Q}[G]$ are conjugate idempotents. Likewise, the elements $pr_{N'} + pr_{B'}$ and pr_N' are conjugate idempotents.

Proof. Consider the first statement. Both elements are clearly idempotents. The \mathbb{Q}-algebra $\mathbb{Q}[G]$ is a product of matrix algebras over division rings. Using Table 2.2, one verifies that the two elements in question generate, in each factor, two left ideals of the same dimension over \mathbb{Q} (actually, one verifies this after extension of scalars to \mathbb{Q}). Lemma 2.4 then implies that the two elements are conjugates.

The proof of the second statement is almost the same. The element $pr_{N'} + pr_{B'}$ is an idempotent because $T'B_+ = G$. The rest of the proof runs as before. \(\square\)

2.4 Lemma. Let Δ be a division ring. Let $0 \leq k \leq n$ be integers. Then the group $\text{GL}_n(\Delta)$ acts transitively (by conjugation) on the set of idempotents of rank k in $M_n(\Delta)$.

Proof. Consider the right Δ-module Δ^n. Then $M_n(\Delta)$ can be viewed as $\text{End}_{\Delta}(\Delta^n)$. The map that associates to an idempotent of rank k its kernel and image is a bijection between the set of such idempotents and the set of pairs of Δ-submodules (V_1, V_2) such that $\dim_{\Delta}(V_2) = k$ and $\Delta^n = V_1 \oplus V_2$. One verifies easily that $\text{Aut}_{\Delta}(\Delta^n)$ acts transitively on the set of such pairs. \(\square\)

References

[1] P. Cartier. Détermination des caractères des groupes finis simples: travaux de Lusztig. Séminaire Bourbaki, Exp. 658 (1986).

[2] Imin Chen. The jacobian of the modular curve $X_{\text{non-split}}^+(p)$. Oxford, 1994.

[3] A.J. Scholl. Classical motives. Proceedings of Symposia in Pure Mathematics 55 (1994), Part 1, pp. 163–187.

[4] J-P. Serre. Représentations linéaires des groupes finis. Hermann, Paris 1978 (3ème édition corrigée).