High resolution OSL dating of the late quaternary loess from Central Shandong Mountains in eastern China and the paleoclimatic implications

Qiuyue Zhao¹, Min Ding¹, Shuzhen Peng¹,⁴, Wei Zhang¹, Bo Song², Rui Zhou³, Junsheng Yue¹, Mingying Liang¹ and Dongmei Zhang¹

¹Key Laboratory of Tourism and Resources Environment in Universities of Shandong, Taishan University, 271000 Taian, China; ²Beijing Jing Yuan School, 100040 Beijing, China; ³Institute of Earthquake Science, CEA, 100036 Beijing, China

⁴Email: shuzhenpeng@sohu.com

Abstract. The loess deposits widely distributed in the Central Shandong Mountains are significant terrestrial palaeoclimatic archives in the alluvial plain of eastern China. It is also sensitive records of East Asian monsoon changes for situating in a key region connected to the Eurasian plate and the Pacific Ocean. However, research into the climate changes in CSM loess is restricted by the lack of independent age control. High resolution samples of Optically Stimulated Luminescence (OSL) dating results are presented from a new Heishan loess section over ~34 ka. Our results reveal the following: (1) The boundary age defined by the sedimentation rates model between the Pleistocene and the Holocene at Heishan loess section is 10.9±0.6 ka. (2) A marked hiatus in the record is identified between ~30 and ~17 ka, probably resulting from deflation; this has never been raised in previous CSM loess researches and indicates that the study area is the wind erosion area during this time. (3) The relatively rapid sedimentation rate spanning 10.9±0.6 to 8.5±0.4 ka may be related to the post-depositional disturbance induced by more monsoon precipitation in the CSM region.

1. Introduction

The world loess deposits are mainly situated on the margins of deserts, mountains and ice-sheets[1], or distributed along the major rivers[2] and have the potential for detailed palaeoenvironmental archives [3-7]. Such deposits not only document local to global climate signals [3,8-9], but also record sedimentary or preservational conditions [10-11], even geomorphic history [12-13], especially when they are close to the major river systems in the world [2,11], such as the Yangtze River, Rhine River, Mississippi River, etc.

In the lower reaches of the Yellow River of China, loess deposits are widely distributed on the margin of the Central Shandong Mountains (CSM, Figure 1), and are valuable Quaternary palaeoclimatic archives for this currently warm and semi-humid region of eastern China [14-23]. Moreover, the CSM loess is very sensitive to the East Asian monsoon changes and hydrological changes of the Yellow River [20] for situating in the transition belt between Eurasia and Pacific Ocean. However, research into the climate changes in CSM loess is restricted by the lack of independent age control. Both the established chronological frame and the ages of same strata are not consistent [15,19].
Furthermore, high resolution chronological sequences have not yet been established, and detailed palaeoclimatic processes are still not clear.

Figure 1. (a) Digital elevation model (DEM) map of northern China showing the Yellow River and the North China Plain. The red letters indicate the boundary of the upper, middle and lower reaches of the Yellow River. The white circles indicate the loess sections referred to in the text. (b) Map showing the location of the research area in the west of Central Shandong Mountains. (c) Sampling section of Heishan in the field.

In this study, Systematic Optically Stimulated Luminescence (OSL) dating were performed at Heishan loess section in CSM and measured the magnetic susceptibility (MS) and median grain size of the loess. In examining this new loess exposure, the aim of this study was to establish the numerical chronology and estimate the dust accumulation rates based on high resolution coarse-grained quartz OSL ages of the loess-palaeosol sedimentation. Furthermore, we intend to reconstruct palaeoenvironmental changes using MS and median grain size.

2. Regional background
CSM is situated in the east of North China Plain (Figure 1a). The geomorphology of the CSM region is characterized by a series of low mountains and hills [24], with elevations ranging from 200 to 1545 m above sea level [20]. The region has a warm and semi-humid monsoon climate, which is characterized by obvious seasonal changes in temperature, precipitation and wind direction. The mean annual temperature is 12.6-14.5 °C and the mean annual precipitation vary between 550 mm and 950 mm, but most rainfall (60%~70%) occurs in summer from June to August. In winter, the climate is controlled by the Siberia High and the prevailing wind is northwesterly, and southeasterly winds in summer.

3. Materials and methods
3.1. Sample collection
The new Heishan (HS) loess section (36°10.05'N, 116°20.63'E) sampled from the south bank of lower reaches of Yellow River is in the southwest of CSM (Figure 1b, 1c). The exposed thickness of loess is about 5.5 m. The section can be sub-divided into three lithological units: 1) yellow plough horizon (0-1.0 m); 2) grayish black Holocene soil (1.0-2.9 m); 3) Malan loess (2.9-5.5 m). Fifteen OSL samples were collected using light-tight steel cylinders with 5 cm diameter 25 cm long from the ~ 5.5 m of a freshly dug vertical section. The tubes were sealed at both ends using aluminum and the OSL samples
were taken at 10-40 cm intervals. A total of 220 samples were collected at 2.5 cm intervals for MS analysis and median grain-size measurements.

3.2. OSL dating

In the laboratory, the outer layers at both ends of the tube were extracted for water content and dose rate measurements. Grain sizes of 63-90 µm were obtained from the exposed non-light inner part of the tube by wet sieving. Carbonates and organics was removed by 10% HCl and 10% H₂O₂, respectively. The remaining material was prepared by Sodium polytungstate heavy liquid at a density between 2.58 and 2.70 gcm⁻³ to separate the quartz-rich grains. The quartz-rich grains were then treated with 40% HF to remove remaining feldspar and out layers irradiated by alpha particles. 10% HCl were used to dissolve any precipitated fluorides. Finally, the samples were mounted on stainless steel discs with silicon oil. Considering the contamination with incompletely dissolved feldspar can affect the equivalent dose (Dₑ) and the shape of growth curves [25], infrared-stimulated luminescence (IRSL) [26] and the 110 °C Thermo-Luminescence (TL) [27] peaks were measured to check the purity of the quartz grains.

All luminescence measurements were carried out by an automated Risø TL/OSL reader DA-20 system equipped with blue LEDs (470 nm, ~80 mW cm⁻²) and infrared LEDs (875 nm, ~135 mW cm⁻²) in the luminescence dating laboratory of Taishan University. A calibrated ⁹⁰Sr/⁹⁰Y beta source were used in all the measurements. Quartz OSL signals were detected through a 7.5 mm Hoya U-340 glass filter. The stimulation power was set at 90% of the maximum value and the heating rate is 5 °C/s in all thermal treatment. The De for quartz were determined by single-aliquot regenerative dose (SAR) protocol [28]. Typical dose response curves and decay curves are shown in Figure 2a. The blue-light stimulated OSL signals of HS-14 decrease very quickly during the first second of stimulation, indicating that the signal is dominated by the fast component [29]. To select appropriate preheat temperatures for De determination, preheat temperature plateau tests were used to check the De dependence on preheat temperature for sample HS-4 and HS-12 (Figure 2b). Preheat temperatures from 200 °C to 300 °C with an interval of 20 °C were tested. The results demonstrate that the De values are relatively stable at preheat temperatures from 240 to 300 °C. A preheat of 260 °C (10 s) and cut-heat of 220 °C combination was chosen for all De measurements. The suitability of SAR procedures for De determination was further checked by two dose recovery tests. The dose recovery ratio of HS-5 and HS-15 are 1.01±0.01 (n=8, Given dose=36Gy, Figure 3a) and 1.00±0.01 (n=10, Given dose=100Gy, Figure 3b), respectively. For all the samples, recuperation was <1% and the average recycling ratio is 1.003±0.002 (n=179) indicating that the adopted SAR protocol successfully corrects for sensitivity changes.

![Figure 2](image_url)

Figure 2. Coarse-grain quartz luminescence characteristics. (a) Representative small aliquot dose response curve for sample HS-14 showing recycling and recuperation (open symbols) and the interpolation of the sensitivity-corrected natural signal onto the dose response curve. Inset shows the natural decay curve. (b) Preheat plateau tests of samples HS-4 and HS-12. Three aliquots were measured at each temperature and error bars represent one standard error. The dashed line is drawn at the average De over the 200-300 °C interval.
IOP Conf. Series: Earth and Environmental Science 349 (2019) 012037
doi:10.1088/1755-1315/349/1/012037

3.3. MS and median grain size

The MS and grain size were determined in the Laboratory of Environmental Evolution at Taishan University. The Bartington MS2B Magnetic Susceptibility reader (470/4700 Hz) was utilized to measure mass magnetic susceptibility. The naturally dried samples (10 g) packed in a nonmagnetic plastic sample box were weighted for MS analysis. The Malvern Mastersizer 2000 laser grain-size analyzer was used for grain-size measurements, which has a measurement range of 0.02-2000 µm with a precision of ±1%. About 200 mg of sediment from each air-dried, disaggregated sample was pretreated with 10 ml 10% H₂O₂ and 10% HCl to remove organic matter and carbonates. Detailed pretreatment are provided in the literature [20].

4. Results

4.1. Dose rates

Table 1. Summary of the burial depth, radionuclide concentrations, calculated dose rate, quartz De values and luminescence ages. The water content is assumed to be 15±5% based on the measured water content. (n) represents the number of aliquots contributing to the De. Uncertainties represent one standard error.

Sample Code	Depth (m)	U (ppm)	Th (ppm)	K (%)	Dose Rate (Gy ka⁻¹)	De (Gy)	Aliquots (n)	Age (ka)
HS-1	1.1	2.16 ± 0.04	11.80 ± 0.03	2.13 ± 0.03	3.20 ± 0.05	26.9 ± 1.2	12	8.5 ± 0.4
HS-2	1.5	2.31 ± 0.04	11.60 ± 0.03	2.09 ± 0.03	3.14 ± 0.05	24.3 ± 1.2	12	7.8 ± 0.4
HS-3	2.1	2.20 ± 0.04	11.00 ± 0.03	2.13 ± 0.03	3.10 ± 0.05	28.4 ± 0.9	10	9.2 ± 0.3
HS-4	2.5	2.42 ± 0.04	12.10 ± 0.03	2.14 ± 0.03	3.22 ± 0.05	35.1 ± 1.9	15	10.9 ± 0.6
HS-5	2.6	1.96 ± 0.04	11.10 ± 0.03	1.97 ± 0.03	2.91 ± 0.10	35.4 ± 0.9	13	12.2 ± 0.6
HS-6	2.7	2.04 ± 0.04	11.50 ± 0.03	1.95 ± 0.03	2.93 ± 0.05	43.9 ± 1.4	12	15.0 ± 0.6
HS-7	2.8	2.17 ± 0.04	12.10 ± 0.03	2.01 ± 0.03	3.10 ± 0.10	51.9 ± 1.6	12	17.0 ± 0.8
HS-8	2.9	2.40 ± 0.04	12.10 ± 0.03	2.18 ± 0.03	3.24 ± 0.05	55.5 ± 2.6	12	17.1 ± 0.9
HS-9	3.1	2.07 ± 0.04	12.10 ± 0.03	2.02 ± 0.03	3.03 ± 0.11	48.9 ± 1.4	12	16.1 ± 0.8
HS-10	3.3	2.01 ± 0.04	11.90 ± 0.03	1.86 ± 0.03	2.86 ± 0.11	97.1 ± 4.8	12	33.9 ± 2.1
HS-11	3.7	2.31 ± 0.04	12.30 ± 0.03	2.09 ± 0.03	3.18 ± 0.12	95.5 ± 5.7	10	30.4 ± 1.9
HS-12	4.2	2.45 ± 0.04	11.70 ± 0.03	1.73 ± 0.03	2.82 ± 0.05	88.4 ± 2.4	10	31.4 ± 1.0
HS-13	4.6	2.44 ± 0.04	11.10 ± 0.03	1.99 ± 0.03	3.00 ± 0.05	96.2 ± 1.9	10	32.1 ± 0.8
HS-14	5.1	2.95 ± 0.04	11.00 ± 0.03	1.95 ± 0.03	3.06 ± 0.05	99.6 ± 2.1	15	32.6 ± 0.9
HS-15	5.5	2.54 ± 0.04	12.20 ± 0.03	1.97 ± 0.03	3.06 ± 0.05	103.1 ± 2.0	12	33.7 ± 0.9

Figure 3. Dose recovery tests of 36 Gy (a) and 120 Gy (b). Eight to ten aliquots were bleached with blue LEDs at room temperature for 100 s, followed by a pause of 10,000 s and another blue-light bleach for 100 s. The aliquots were then given a dose close to the natural, and measured with the SAR protocol.
The environmental dose rate was determined from the uranium, thorium and potassium concentrations, measured by neutron activation analysis (NAA) method in the Chinese Atomic Energy Institute. The concentrations of 238U and 232Th, and 40K are relatively constant for the whole section (Table 1; Figure 4a, 4b, 4c), with RSDs of 7, 12 and 3%, respectively. This may indicate the HS loess sequence has not been affected by radioactive disequilibrium possibly caused by radioactive element leaching and illuviation during post sedimentation. The historic mean water content of $15\pm5\%$ was assumed based on the measured water contents. Cosmic ray contribution to the dose rate was calculated from the geomagnetic latitude, longitude, the burial depth, and the altitude of the sample location [30]. Quartz internal dose rate of 0.06 ± 0.03 Gy/ka was assumed [31]. A summary of the uranium, thorium and potassium concentrations and the resulting dose rates of quartz grains are given in Table 1.

Researches demonstrated that the underestimation of the dose rate for the existence of the calcrete nodules at the base of the S1 layer in the Luochuan section [32]. In view of previous experience, we check the distribution of our dose rate (Figure 4d) and all of them are in the normal range.

![Figure 4](image_url)

Figure 4. Stratigraphy, MS, median grain size and OSL ages of the Heishan loess section.

4.2. Equivalent dose

The OSL De values and the number of aliquots used are given in Table 1. De gradually increases from ~24 to 103 Gy downwards at the Heishan section (Figure 4e). No obvious saturation of the dose response curve is observed, even for samples from the bottom of HS Section is ~103 Gy. The maximum coarse-grained quartz OSL De obtained in this research is also within the limits (~200 Gy) of reliable De determination using the SAR protocol [33].

4.3. OSL ages and sedimentation rate

A detailed overview about all luminescence dating results are shown in Table 1. The OSL ages of the HS profile increase with depth. The luminescence age estimates show that the HS Loess sequence covers the time range from ~8.5 ka to 33.7 ka (Figure 5a, 5d), including a chronological gap between 30 and 17 ka. The upper 1.0 m of this section was not sampled for OSL dating for apparent agricultural disturbance. The sedimentation rate can be estimated from the OSL ages, which demonstrates three stages of sedimentation and two turning points of sedimentary rate changes. Quartz SAR ages give a sedimentation rate of 54.8 ± 1.1 cm/ka during ~33.7-30.4 ka and of 5.5 ± 0.8 cm/ka during ~17.1-10.9 ka and of 32.0 ± 5.5 cm/ka during ~10.9-8.5 ka. The first point of sedimentation rate changed dramatically from 5.5 ± 0.8 cm/ka to 32.0 ± 5.5 cm/ka, at a depth of 2.5 m under the surface, dated to 10.9 ± 0.6 ka, corresponding to the boundary between marine oxygen isotope stage (MIS) 1 and MIS2. The second sedimentation rate turning point (from 54.8 ± 1.1 cm/ka to 5.5 ± 0.8 cm/ka) is at a depth of 3.7 m, dated to 30.4 ± 1.9 ka, which is equivalent to the upper layer of the Malan Loess (L1) in the CLP, corresponding to the boundary between MIS2 and MIS3.

4.4. Ms and grain size characteristics

MS of Chinese loess sediments is widely used to derive the palaeoclimatic changes information and mark the stratigraphy [4,7-8,34-36]. Its value is higher in paleosol than that of loess between paleosol [3]. At HS section, the MS values (1.0-2.9 m) range from 80 to 122 (mean of 99) in the Holocene
indicates strengthened summer monsoon. MS values (2.9-5.5 m) range from 63 to 93 (mean of 80) in the Malan loess, suggesting weak summer monsoon during the glacial time (Figure 5a,5b). The stratigraphic location marked by MS is consistent with field observation (Figure 5a).

Grain size variations of loess sediments in China are related to the varied intensity of the East Asian winter monsoon [37]. The median grain size is commonly used proxy for winter monsoon intensity (Xiao et al., 1995; Zhou et al., 1996). Median grain size for 1.0-2.9 m and 2.9-5.5 m within 12-21 µm (mean of 16 µm) and 12-24 µm (mean of 18 µm), respectively (Figure 5c). The results indicate a weak winter monsoon in the Holocene soil (0.9-2.9 m) and a strengthened winter monsoon in the Malan loess (2.9-5.5 m) during the glacial time.

![Diagram](image)

Figure 5. Stratigraphy, MS, median grain size and OSL ages of the Heishan loess section.

The changes in grain size of the HS section are reverse to those of the MS with decrease in grain size corresponding increase in MS in soil layer. This pattern is similar to that of the CLP [3]. Moreover, there are several peaks in MS during the Holocene soil, with corresponding valleys in grain size. This characteristic is consistent with the interglacial soils deposited in the Chinese Loess Plateau [3,6-7], which demonstrates that Shandong loess is a kind of typically accretion soil.

5. Discussion

5.1. Boundary age between the Pleistocene and the Holocene

MS of Chinese loess sediments is commonly used to mark stratigraphy [4,7-8,34,36]. The boundary defined by MS between paleosol and loess generally corresponds to the middle of the upper peaks and lower valleys. The boundary of L1/S1 is placed at the depth of 2.9 m by the MS records (Figure 5b), which is consistent with the observation of the field colour (Figure 5a). The boundary age of OSL defined by MS between the Pleistocene and Holocene is ~17.1 ± 0.9 ka. Nevertheless, a series of pedogenic penetration effects been considered to interpret the discrepancy in stratigraphic boundaries originated from variations of sedimentation rate, field colour and MS [38-41]. The OSL age of the Pleistocene and the Holocene boundary defined by the MS shift at Xifeng and Shiguanzhi is about 20 ka, they attributed it to a significant pedogenic overprinting of the late glacial loess [39]. Similar post-depositional diagenesis has also been tested at the Yuanbao sites [40]. They proposed to use the sedimentation rate model to define the boundary age between the Pleistocene and the Holocene. As noted above, the OSL boundary age between the Pleistocene and the Holocene is placed at 2.9 m (coarse quartz OSL age of 17.1 ± 0.9 ka) defined by the MS at HS section. In view of the possible pedogenic penetration effect, the L1/S1 boundary should be placed higher than a depth of 2.9 m. The turning point of the sedimentation rates is considered within the depth of 2.9 m [40]. Sedimentation rates varies from 5.5 ± 0.8 cm/ka (2.9-2.5 m) to 32.0 ± 5.5 cm/ka (2.5-1.5m) at the depth of 2.5 m and the corresponding quartz OSL age is 10.9 ± 0.6 ka.

5.2. Variation in sedimentation rates

The variation in sedimentation rate reveals an abrupt drop at ~30.4 ka, which is close to the MIS3/2 boundary. The dust accumulation rate decreases from 54.8 ± 1.1 cm/ka to 5.5 ± 0.8 cm/ka (Figure 5d).
The observed decreasing trend in HS loess accumulation rate from 30.4 ka is similar to many parts of Loess Plateau, such as Mangshan section (97.26 cm/ka, Qiu and Zhou., 2015), Luochuan Section (14.5-6.4 cm/ka) [42], Weinan section (16.7 cm/ka) [41] and Ledu section (89.47 cm/ka) [43]. The characteristic in loess accumulation rate across the Loess Plateau may imply that various areas including the studied region is an erosion area around 30.4 ka.

The loess sedimentation rate increases from 5.5±0.8 cm/ka (17.1-10.9 ka) to 32.0±5.5 cm/ka (10.9-8.5 ka) at 10.9±0.6 ka (Figure 5d), which is close to the MIS 2/1 boundary. The increasing trend of sedimentation rate in the early Holocene is different from most of the loess section in the Loess Plateau (e.g. Yuanbao section [40]; Jingbian section [44]) but is similar to the Weinan section in the south of the Weihe River at the southeastern margin of the CLP [41]. They attributed it to be possible pedogenesis process of palaeosol S0 or there was a relatively rapid dust sedimentation event at the beginning of the Holocene at Weinan.

The relatively rapid sedimentation rate spanning 10.9±0.6 ka to 8.5±0.4 ka may be attributed to the post-depositional disturbance. Higher sedimentation rate during the Holocene epoch (after about 11 ka), compared to the relatively low rate during the late glacial period, could be actually resulted from post-depositional disturbance [45-46]. The influence by post-depositional disturbance (i.e. bioturbation during pedogenesis) induced by more monsoon precipitation in the CSM region may be significant. It may homogenize sediments, disturb the underlying loess deposits and may offset the measured OSL age [46-47], the same sedimentary processes as the distal sites on the CLP behave [46].

5.3. Hiatus
A hiatus in the record is detected between ~30 ka and 17 ka (Figure 5d). However, it is not easily identified by eye in field investigations and via MS or grain size determinations (Figure 5a, 5b, 5c). We suggest caution when using the loess sediments in this area to obtain the information of palaeoenvironmental changes, especially during the Glacial stages such as the LGM. Recently, a hiatus was identified from 30 ka to 20 ka at Tuxiangdao (Xining, western of the CLP) loess section [43]. They emphasized the importance of high-resolution optical dating in Chinese loess research. A hiatus was also tested between 39 ka and 11 ka at the Hebei section in the northeast Tibetan Plateau by high resolution OSL dating, they attributed it to the deflation at the same time as the CLP is accumulating [48]. A gap was also detected in deposition between 25 and 2 ka at the Ledu loess section in the Huangshui river valley on the northeastern Tibetan Plateau by high resolution OSL dating, they attributed it to the erosion events or lower accumulation rate [49]. A depositional hiatus was detected between 70 and 20 ka containing the LGM at the Jingbian section by high resolution OSL dating, they demonstrate that the ice-volume forced erosion is the main reason for the sedimental hiatus [44]. There seems a sedimentation hiatus in the Mangshan loess during 30-20 ka [50] and Xiashu loess within the period of 30-0 ka [51]. Maybe there is still a hiatus between 40 and 20 ka at the section of Miaodao Island, Changshandao Island and Zibo in Shandong without high resolution dating results and they did not explicitly mention it [21,52]. It seems that loess close to desert boundaries, or adjacent to source regions of CLP, or neighbour the major river systems such as the Yangtze River or the Yellow River, often sedimentated episodically or was eroded, especially during the LGM.

We believe that an erosion hiatus at HS section is a more likely interpretation. Firstly, the recent researches indicate that the North China Plain including the Yellow River floodplain were the major dust source for the loess in the Central Shandong Mountains[20]. The deposits on the North China Plain is formed since 40 ka based on the data from the drilling samples [53]. It can be inferred that the wind-dust in Shandong Province is continuously transported and deposited on millennial time scale for the environmental pattern of the dust source area has been relatively stable at least since 40 ka. In addition, the simulated changes of atmospheric circulation in winter show that stronger winter monsoon and apparently strengthened westerlies at the LGM over the North China Plain [54]. The low accumulation rates seems less likely over the LGM, the alternative an erosional hiatus at the section mentioned above is a more plausible explanation.
6. Conclusions

The main conclusions of our study are:

1. The coarse-grained quartz SAR OSL method can be used to date the HS loess since ~34 ka in the lower reaches of the Yellow River.

2. The boundary age defined by the sedimentation rate model between the Holocene and Pleistocene is 10.9 ± 0.6 ka.

3. A marked hiatus in the record is identified between ~30 ka and ~17 ka at the HS, probably resulting from deflation, which indicates that it is an erosion area during 30-17 ka.

4. The relatively rapid sedimentation rate spanning 8.5 ± 0.4 to 10.9 ± 0.6 ka may be related to the post-depositional disturbance induced by more monsoon precipitation in the CSM region.

Acknowledgements

We are grateful to professor Qingzhen Hao, professor Luo Wang, Dr. Shugang Kang, Dr. Shuangwen Yi and Dr. Yali Zhou for constructive discussions. Thanks are extended to Dongdong Zheng, Zhen Liu, Xiaoli Li, Xianan Hu and Tingwen Kou for their assistance in the field sampling. This work was supported by the National Nature Science Foundation of China (41602353, 41472313, 41402319 and 41877442) and the Special Found of the Institute of Earthquake Forecasting, China Earthquake Administration (Grant Number 2019IEF0505).

References

[1] Pye K 1995 The nature, origin and accumulation of loess Quaternary Science Reviews 14 653-667
[2] Smalley I, O’Hara-Dhand K, Wint J, Machalett B, Jary Z, Jefferson I 2009 Rivers and loess: The significance of long river transportation in the complex event-sequence approach to loess deposit formation Quaternary International 198 7-18
[3] Liu TS 1985 Loess and the Environment China Ocean Press Beijing 251
[4] Kukla GJ, An ZS 1989 Loess stratigraphy in central China Palaeogeogr: Palaeoclimatol. Palaeoecol 72 203-225
[5] Ding ZL, Xiong SF, Sun JM, Yang SL, Liu TS 1999 Pedrostratigraphy and paleomagnetism of a ~7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution Palaeogeogr: Palaeoclimatol. Palaeoecol 152 49-66
[6] Guo ZT, Rudiman WF, Hao QZ, Wu HB, Qiao YS, Zhu RX., Peng SZ, Wei JJ, Yuan BY, Liu TS 2002 Onset of Asian desertification by 22 Mya ago inferred from loess deposits in China Nature 416 159-163
[7] Hao Q, Wang L, Oldfield F, Peng S, Qin L, Song Y, Xu B, Qiao Y, Bloemendal J, Guo Z 2012 Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability Nature 490 393-396
[8] An ZS, Liu TS, Lu YC, Porter SC, Kulka G, Wu XH, Hua YM 1990 The long-term paleomonsoon variation recorded by the loess-paleosol sequence in central China Quaternary International 7-8 91-95
[9] Hao QZ, Guo ZT, Qiao YS, Xu B, Oldfield F 2010 Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China Quaternary Science Review 29 3317-3326
[10] Vandenberghe J, Marković S, Jovanović M, Hambach U 2014 Site-specific variability of loess and palaeosols (Ruma, Vojvodina, northern Serbia) Quaternary International 334/335 86-93
[11] Marković SB, Stevens T, Mason J, Vandenberghe J, Yang SL., Veres D, Ujvárih G, Timár-Gabor A, Zeedén C, Guo ZT, Hao QZ, Obreht I, Hambach U, Wu H B, Gavrilov MB, Rolf C, Tomiča N, Lehmkuhl F 2018 Loess correlations-Between myth and reality Palaeogeography,Palaeoclimatology,Palaeoecology 509 4-23
[12] Sun JM, 2005 Long-term fluvial archives in the Fen Wei Graben, central China, and their
bearing on the tectonic history of the India-Asia collision system during the Quaternary. *Quaternary Science Reviews* **24** 1279-1286.

[13] Pan BT, Su H, Hu ZB, Hu XF, Gao HS, Li JJ, Kirby E 2009 Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: evidence from a 1.24 Ma terrace record near Lanzhou, China *Quaternary Science Reviews* **28** 3281-3290.

[14] Cao JX, Li PY, Shi N 1987 Loess in Miaodao Island in Shandong *Scientia Sinica (Series B)***10*** 1116-1122 (In Chinese).

[15] Zheng HH, Zhu ZY, Huang BL, Lu LC 1994 A study on loess geochronology of Shandong peninsula and northern part of Jiangsu and Anhui provinces *Marine Geology and Quaternary Geology*** **14**(1) 63-68 (In Chinese).

[16] Liu LJ, Li PY, Wang YJ 2000 The grain-size properties and genesis of the loess in central Shandong province *Marine Geology & Quaternary Geology*** **20**(1) 81-86 (In Chinese).

[17] Zhang ZL, Xin LJ, Nie XH 2004 A summary of Loessial Researches in Shandong *Scientia Geographica Sinica*** **24**(6) 746-752 (In Chinese).

[18] Peng SZ, Gao ZD, Wu XP, Zhang LB, Liang MY, Qiao YS 2007 Grain-size distribution and genesis of loess in the Qingzhou area, Shandong *Journal of Geomechanics*** **13**(4) 315-321 (In Chinese).

[19] Peng SZ, Zhu LJ, Xiao GQ, Qiao YS, Gao ZD, Chen DD 2010 Magnetostratigraphy and provenance of the Qingzhou loess in Shandong Province *Arid Land Geography*** **33**(6) 947-952 (In Chinese).

[20] Peng SZ, Hao OQ, Wang L, Ding M, Zhang W, Wang YN, Guo ZT 2016 Geochemical and grain-size evidence for the provenance of loess deposits in the Central Shandong Mountains region, northern China *Quaternary Research*** **85** 290-298.

[21] Xu SJ, Kong FB, Jia GJ, Miao XD, Ding XC 2017 An integrated OSL chronology, sedimentology and geochemical approach to loess deposits from Tuoji Island, Shandong Province: Implications for the late quaternary paleoenvironment in East China *Aeolian Research*** **31** 105-116.

[22] Ding M, Peng SZ, Mao LJ, Zhang W, Zhao QY 2017 Major element geochemistry of longshan loess profile in the central shandong mountainous regions, norther n China *Journal of Risk Analysis & Crisis Response*** **7**(3) 127-136.

[23] Ding M, Zhang JX, Peng SZ, Zhang W, Zhao QY, Mao LJ 2018 Geochemical and Clay Size Minerals Evidence for the Provenance of LQC Loess Deposits in the Central Shandong, Northern China *Journal of Risk Analysis and Crisis Response*** **8**(1) 24-34.

[24] Mao MK 1993 A study on regional structure of landforms in Shandong province *Scientia geographica sinica*** **13**(1) 26-33 (In Chinese).

[25] Lai ZP, Brückner H 2007 Effects of feldspar contamination on equivalent doses and the shape of growth curves for OSL of silt-sized quartz extracted from Chinese loess *Geochronometria*** **30** 49-53.

[26] Duller GAT 2003 Distinguishing quartz and feldspar in single grain luminescence measurements *Radiation Measurements*** **37** 161-165

[27] Li SH, Sun JM, Zhao H 2002 Optical dating of dune sands in the northeastern deserts of China *Palaeogeogr. Palaeoclimator. Palaeoecol*** **181** 419-429

[28] Murray AS, Wintle AG 2003 The single aliquot regenerative dose protocol: potential for improvements in reliability *Radiation Measurements*** **37** 377-381

[29] Singarayer JS, Bailey RM 2003 Further investigations of the quartz optically stimulated luminescence components using linear modulation *Radiation Measurements*** **37** 451-458

[30] Prescott JR, Hutton JT 1994 Cosmic ray contributions to dose rates for luminescence and ESR dating : large depths and long-term time variations *Radiation Measurements*** **23** 497-500

[31] Mejdahl V 1987 Internal radioactivity in quartz and feldspar grains *Ancient TL*** **5** 10-17
Zhang JJ, Li SH, Sun JM, Hao QZ 2018 Fake age hiatus in a loess section revealed by OSL dating of calcareous nodules. *Journal of Asian Earth Sciences* **155** 139-145

Buylaert JP, Vandenberghede D, Murray AS, Huot S, De Corte F, Vandenhaute P 2007 Luminescence dating of old (>70 ka) Chinese loess: a comparison of single-aliquot OSL and IRSL techniques. *Quaternary Geochronology* **5** 9-14

Ding Z, Liu T, Rutter NW, Yu Z, Guo Z, Zhu R 1995 Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years. *Quaternary Research* **44** 149-159

Guo Z, Liu T, Guiot J, Wu N, Lü H, Han J, Liu J, Gu Z 1996 High frequency pulses of East Asian monsoon climate in the last two glaciations: link with the North Atlantic. *Climate Dynamics* **12** 701-709

Lu H, An Z 1998 Paleoclimatic significance of grain size of loess-palaeosol deposit in Chineses Loess Plateau. *Science in China (Series D)* **41** 626-631

Feng ZD, Wang HB, Olson GG 2004 Pedogenic factors affecting magnetic susceptibility of the last interglacial palaeosol S1 in the Chinese Loess Plateau. *Earth Surface Processes and Landforms* **29** 1389-1402

Stevens T, Armitage SJ, Lu HY, Thomas DSG 2006 *Geology* **34** 849-852

Lai ZP, Wintle AG 2006 Locating the boundary between the Pleistocene and the Holocene in Chinese loess using luminescence. *The Holocene* **16** 893-899

Kang SG, Wang XL, Lu YC 2013 Quartz OSL chronology and dust accumulation rate changes since the Last Glacial at Weinan on the southeastern Chinese Loess Plateau. *Boreas* **42** 815-829

Lu YC, Wang XL, Wintle AG 2007 A new OSL chronology for dust accumulation in the last 130,000 yr for the Chinese Loess Plateau. *Quaternary Research* **67** 152-160

Buylaert JP, Murray AS, Vandenberghede D, De Corte F, Vandenhaute P 2008 Optical dating of Chinese loess using sand-sized quartz: establishing a time frame for late pleistocene climate changes in the western part of the Chinese loess plateau. *Quaternary Geochronology* **3** 99-113

Stevens T, Buylaert JP, Thiel C, Újvári G, Yi SW, Murray AS, Frechen M, Lu HY 2018 Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site. *Nature Communications* **9**(1) 983-994

Lu HY, Stevens T, Yi SW, Sun XF 2006 An erosional hiatus in Chinese loess sequences revealed by closely spaced optical dating. *Chinese Science Bulletin* **51** 2253-2259

Xu ZW, Stevens T, Yi SW, Mason J A, Lu HY 2018 Seesaw pattern in dust accumulation on the Chinese Loess Plateau forced by late glacial shifts in the East Asian monsoon. *Geology* **46**(10) 871-874

Sun YB, Wang XL, Liu QS, and Clemens SC 2010 Impacts of post-depositional processes on rapid monsoon signals recorded by the last glacial loess deposits of northern China. *Earth and Planetary Science Letters* **289** 171-179

E CY, SohbatI R, Murray AS, Buylaert JP, Liu XJ, Yang L, Yuan J, Yan WT 2018 Hebei loess section in the Anyemaqen Mountains, northeast Tibetan Plateau: a high-resolution luminescence chronology. *Boreas* doi 10.1111/bor.12321

Wang YX, Chen TY, E CY, An FY, Lai ZP, Zhao L, Liu XJ 2018 Quartz OSL and K-feldspar post-IR IRSL dating of loess in the Huangshui river valley, northeastern Tibetan plateau. *Aeolian Research* **33** 23-32

Qiu FY, Zhou LP 2015 *Quaternary Geochronology* **30** 24-33

Liu SW, Li XS, Han ZY, Lu HY, Liu JF, Wu J 2018 *Journal of Asian Earth Sciences* **155** 188-197

Kong FB, Xu SJ, Jia GJ 2017 *Journal of Earth Environment* **8**(5) 407-418 (In Chineses)

Wu C, Xu QH, Ma YH, Zhang XQ 1996 *Geomorphology* **18** 37-45

Kutzbach JE, Guetter PJ 1986 *Journal of the Atmospheric Sciences* **43** 1726-1759

Ju LX, Wang HJ, Jiang DB 2007 *Palaeogeographyn Palaeoclimatology, Palaeoecology* **248** 376-390