Perceived Risk and Protective Behaviors regarding COVID-19 among Iranian Pregnant Women

Soodabeh Aghababaei
Hamadan University of Medical Sciences

Saeed Bashirian
Hamadan University of Medical Sciences

Alireza Soltanian
Hamadan University of Medical Sciences

Mansooreh Refaei
Hamadan University of Medical Sciences

Tahereh Omid
Hamadan University of Medical Sciences

Samereh Ghelichkhani
Hamadan University of Medical Sciences

Farzaneh Soltani (✉ farzanehsoltani2008@yahoo.com)
Hamadan University of Medical Sciences

Research Article

Keywords: COVID-19, Health behavior, Knowledge, Pregnant women, Protective, Risk

DOI: https://doi.org/10.21203/rs.3.rs-56582/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Despite the vulnerability of pregnant women, few studies have been conducted on their perceived risk and protective behaviors during COVID-19 pandemic. The present study aims to investigate the perceived risk and protective behaviors regarding COVID-19 among Iranian pregnant women.

Results: 93.8% of pregnant women had a high level of knowledge, 97.3% had high performance in protective behaviors, and 72.9% had a moderate level of risk perception related to COVID-19. The highest mean score of knowledge was observed in women who had a history of influenza in their previous pregnancies (90.97±5.94). The mean score of protective behaviors was significantly higher in women with a high economic level (97.78±5.11), and the highest level of risk perception was observed in nulliparous women (59.97±9.80). Risk perception was an independent predictor of protective behaviors related to COVID-19 (P < 0.05).

Conclusion: Pregnant women had a high level of knowledge, high performance in protective behaviors, and a moderate level of risk perception related to COVID-19. History of influenza in the previous pregnancies, high economic level, and nulliparity were associated with higher levels of knowledge, protective behaviors, and risk perception, respectively. Risk perception of pregnant women regarding COVID-19 can predict their protective behaviors.

Background

In the last days of 2019, an unknown outbreak of pneumonia was reported in eastern China, which was recognized by the World Health Organization as COVID-19 [1]. Transmission of the virus from human to human has been shown to occur even in asymptomatic patients [2, 3]. The most important route of transmission agreed by all is respiratory droplets or direct human-to-human contact [4]. COVID-19, which has now become a pervasive epidemic, has spread around the world, especially in the United States, Spain, Italy, United Kingdom, France, Germany, and Iran. The number of infected people, as well as mortality, is increasing in the world every day. Significant mortality and economic consequences of the disease have necessitated serious measures, including general quarantine and the closure of borders on all continents. Pneumonia pandemic caused by COVID-19 is a serious public health emergency that is deadly, especially in vulnerable populations and communities where health systems are not sufficiently prepared to manage the infection [4].

One of the most important components in managing any contagious disease threat is vulnerable population care. Pregnant women and their fetuses are at high risk during the outbreak of infectious diseases [5]. In general, physiological and mechanical changes during pregnancy increase susceptibility to infections. Researchers have shown that emerging infections have a significant impact on pregnant women and their fetuses [6]. Previous data from SARS and MERS infections show that clinical findings during pregnancy can range from mild symptoms to severe illness and death [7]. Pregnant women
infected with SARS and MERS viruses have had a higher mortality rate than non-pregnant women [3]. It seems that coronavirus infection in the third trimester of pregnancy increases the risk of premature rupture of the membranes, preterm labor, as well as fetal tachycardia, and fetal distress [8-10]. With the spread of COVID-19, more infections are likely to affect pregnant women in different countries and continents. Therefore, it is important that pregnant women and their families, as well as health care providers, receive as much accurate information as possible. During the corona epidemic, it is recommended that pregnant women, take care of personal and social hygiene, and avoid unnecessary trips, crowded places, public transportation, and contact with sick people. Also, they should seek medical help immediately if they have symptoms of fever, cough, fatigue, myalgia, sore throat, or shortness of breath [9].

Pregnant women who find themselves exposed to the risk of a common disease become very vulnerable and may experience variable feelings such as fear, anger, anxiety, loneliness, and frustration [11, 12]. On the other hand, some pregnant women may experience severe anxiety and depression, in which case they need professional psychological support to prevent adverse consequences. Although the risk is a global concept, there is a great deal of variation in its definition, perception, and evaluation [13]. Globally, Risk is defined as the probability of loss and is thought to be composed of two components: probability and severity of negative outcomes [14]. Meanwhile, risk perception is defined as a person's expectation of a particular event occurring. Key factors in risk perception include trusting the information source and the level of familiarity with the subject [15]. Risk perception as an important determinant of healthy behaviors plays an important role in designing interventions to change behaviors [16]. Studies have shown that the feeling of danger in pregnancy depends on the level of risk perception. COVID-19 pandemic is the most intense and emotional experience of pregnant women's lives. In this regard, health care providers should pay more attention to pregnant women who have health concerns at the same time about themselves and their fetuses. Pregnant women have different attitudes toward the recommendations of health care providers. Some evaluate the given instructions based on their views and experiences and change them if they do not feel useful, but some women carefully follow the treatment plans and welcome health care to reduce the risk [17]. Currently, the mortality rate from COVID-19 is lower than previous epidemics such as SARS and MERS, However stress and anxiety may be the most important challenge in the COVID-19 pandemic [18]. Transmitting large amounts of information and overuse of the media can lead to overreaction, irrational fear, and over-perception of risk, which in turn might affect pregnant women's behaviors [19]. Measuring the level of risk perception as well as its determinants in pregnant women is essential for the transmission of information and health protocols. The present study aims to investigate the perceived risk and protective behaviors regarding COVID-19 among Iranian pregnant women.

Methods

Participants and study design

This cross-sectional study was conducted on 225 pregnant women referring to the health centers to receive prenatal care in Hamadan, Iran, 2020. The inclusion criteria were included normal singleton
pregnancies, without medical or obstetrical complications, and the ability to read and write. Pregnant women who did not answer more than 10 percent of the questionnaire items were excluded from the study.

Sampling

The sample was drawn through a two-stage cluster sampling method. First, Hamadan city was divided into four geographical regions (North, South, East, and West), and then two health centers were randomly selected from each region using the list of health centers. Thirty eligible pregnant women were randomly selected from each center and after obtaining the informed consent of the participants, the self-administered questionnaires were completed with observing health protocols.

Instruments

The questionnaire consisted of 4 sections including:

1. **Socio-demographic and obstetrics characteristics** (22 items): age, education level, place of residence, housing status, economic situation, gestational age, parity, pregnancy status, history of abortion, number of children, history of influenza in the previous pregnancies, and sources of information about Covid-19.

2- COVID-19 related knowledge (16 items): The items were designed based on the health protocols by the World Health Organization [20], as well as the Ministry of Health and Medical Education, Iran (Table 1). The aspects of knowledge included etiology, symptoms, transmission, and public prevention. Correct answers were assigned 1 point and incorrect answers or 'I don't know' were assigned 0 points. The total score was converted into a percentile. A score $\geq 75\%$ was designated as high, $50\%−75\%$ as moderate, and $\leq 50\%$ as low level of knowledge.

3- COVID-19 related risk perception (7 items): Using the visual scale measure [21-22], perceived risks of maternal infection, fetal infection, fetal anomalies, abortion or fetal death, preterm delivery, hospitalization the newborn in the neonatal intensive care unit, and maternal death due to coronavirus infection were measured. Responses were given based on a Lickert range from zero (no perceived risk) to ten (high level of perceived risk). The total score, which was between zero and 70, was calculated from the score of 100. In this study, a score of less than 40 was considered the low perceived risk, a score between 40 and 60 was considered the moderate perceived risk, and a score higher than 60 was considered high perceived risk.

4- COVID-19 related protective behaviors (11 items): The items were designed based on the health protocols by the World Health Organization [20], as well as the Ministry of Health and Medical Education, Iran (Table 1). The aspects of preventive behaviors included social distancing, personal hygiene and frequent hand washing, public transportation, out-of-home prepared foods, and shopping. Responses were 'yes' or 'no' and the participant was assigned 1 point for each appropriate behavior and 0 point for
inappropriate behaviors. The total score was converted into a percentile. A score ≥ 75% was designated as high, 50%−75% as moderate, and ≤ 50% as low level of knowledge.

The validity of the questionnaire was assessed using different experts’ opinions, and its reliability was calculated using Cronbach α coefficient (0.89).

Statistical analysis

Statistical analysis was performed using SPSS/24.0, at the 5% significance level. Using the Kolmogorov-Smirnov test, none of the major outcomes followed a normal distribution and were analyzed using the Kruskal-Wallis and Spearman correlation tests. Stepwise multivariate linear regression analysis was performed to determine the most predictive indicator for preventive behaviors. The frequencies and percentages were computed for categorical variables and the means and standard deviations were calculated for numerical variables.

Results

A total of 240 pregnant women were enrolled in this study and 225 people responded to the questionnaires. The mean age of women was 30.24 years. The majority of participants had college education (36.4%), were unemployed (90.2%), had a moderate economic situation (72.9%), and lived in the personal houses (49.8%). The mean gestational age was 25.71 weeks. The majority of participants were primigravida (45.8%), had a wanted pregnancy (79.6%), had regular prenatal care (95.6%), and did not have a history of abortion (78.2%), or influenza in the previous pregnancy (96%). 71.1% of pregnant women said that television was the main source of their information about Covid-19.

Table 1 shows the distribution of participants’ responses to the items of knowledge and preventive behaviors related to Covid-19. The average of correct answers was 84.54% in the knowledge section. The lowest scores pertained to Q9 (Children do not get the disease), Q14 (Everyone in the community should wear a mask), Q15 (Coronavirus can be treated with common antiviral drugs), Q16 (The flu vaccine can be given every year to prevent the Coronavirus). In the preventive behaviors section, the average of correct answers was 95.8%. The lowest score (89.3%) pertained to “I keep my distance from others at home”.

According to results, 93.8% of pregnant women had a high level of knowledge related to COVID-19. 97.3% of the participants had high performance in preventive behaviors and 72.9% of pregnant women had a moderate level of risk perception related to disease (Table 2). The mean score of knowledge in women who had a university education, their source of information was an obstetrician, had two or more children, and had a history of influenza in the previous pregnancy, was significantly higher (P < 0.05).

The highest mean score of knowledge was observed in women who had a history of influenza in their previous pregnancies (90.97±5.94), and even in these women, the average level of risk perception and preventive behavior was higher than in pregnant women who did not have a history of influenza. The mean score of preventive behaviors was significantly higher in women with a high economic level.
(P<0.05) so that the highest score of preventive behaviors (97.78±5.11) also belonged to this group of women. The mean score of risk perception in nulliparous women and those without a history of abortion was significantly higher (P < 0.05). The highest level of risk perception was observed in nulliparous women (59.97±9.80), and the lowest level observed in pregnant women who experienced two or more abortions (42.54±8.28).

The Spearman correlations between knowledge, preventive behaviors, and risk perception related to COVID-19 are presented in Table 4. The Risk perception was positively associated with preventive behaviors (r =0.146, P =0.031). The knowledge negatively associated with preventive behaviors but this relationship was not statistically significant (r = -0.125, P = 0.069). We also performed a linear regression analysis considering all studied risk factors to determine the most predictive indicator for preventive behaviors. In Table 5, we present the final multivariate linear regression model. Stepwise multivariate linear regression analysis revealed that risk perception was an independent predictor of preventive behaviors (standardized beta = 0.146, P = 0.029).

Discussion

Although the effect of COVID-19 on pregnant women is still unclear, there are concerns about its potential impact on maternal and perinatal outcomes due to suppression of the immune system during pregnancy [23]. However, few studies have been conducted on perceived risk and protective behaviors among pregnant women during COVID-19 pandemic. The present study addressed this important issue and measured the level of risk perception, knowledge level, and preventive behaviors of pregnant women, as well as the relevant determinants.

The present study showed that the level of knowledge related to the COVID-19, its transmission and prevention were high among pregnant women, so that this level of awareness about the symptoms of the disease, and in particular the ways in which it is transmitted, has been almost above 95%. It seems that the awareness of pregnant women, both through the mass media and by health care providers, has increased significantly. In a study by Nwafor et al., 60.9% of pregnant women had sufficient knowledge of preventive measures against COVID-19 [24]. Yassa et al., in their study on pregnant women near childbirth, found that pregnant women have a positive attitude toward quarantine. At the same time, they expressed their progressive anxiety and concern for the pregnancy and the baby due to the pandemic and also believed that they had been given insufficient counseling or limited information about the relationship between pregnancy and pandemic [25].

In the present study, the majority of pregnant women [about 62%] believed that the general population should use masks to prevent disease; nearly 29 percent opposed it, and about 10 percent said they were unaware. It should be acknowledged that the unknown nature of COVID-19, and even its transmission, along with the different policies of different countries on disease protection, can have a significant impact on people's responses. Besides, researchers have noted the sensitivity and concern of pregnant women about their vulnerability to infectious disease. For example, an interview study conducted during
the H1N12009 Inuenza pandemic revealed that the individuals most concerned for the possibility of getting infected or transmitting the virus to others were pregnant women and those with young children [26, 27]. In the present study, 32% of pregnant women did not know that children could also develop COVID-19. About 40% of women did not know that the disease could not be treated with common antiviral drugs, and about 45 percent of pregnant women thought that the flu vaccine could be given every year to prevent the COVID-19. While the clinical evidence was growing rapidly, this data may guide to perceive what accurate information should be provided to pregnant women.

Our results showed that more than half of pregnant women obtained their information through TV. Similar to our findings, other studies reported that participants usually obtained their information about infectious diseases through the internet and watching TV. Olapegba et al. in a study in Nigeria reported that traditional media [TV / Radio] was the source of information regarding COVID-19 for more than 93.5% of people [28]. In a similar manner, Sasaki et al. [2013] found that television, internet and newspapers were the most common sources of information about the H1N1 outbreak [29]. According to our study, women with a university education were signicantly more aware of the disease than women with less education. In the recent study of Nwafor et al., one of the factors associated with inadequate knowledge of preventive measures regarding COVID-19 was no formal education [24]. The level of knowledge of pregnant women who had more children was significantly higher, and although nonsignificant, their risk perception was lower and their preventive behavior was better. Contrary to our study, in the study of Nwafor et al., pregnant African women who had given birth five or more times had lower levels of awareness about preventive measures related to COVID-19 [24]. The greater awareness of pregnant women with a previous history of inuenza in the present study can be related to the increased sensitivity of this group of women to the risk of contracting viral diseases during pregnancy and its complications.

Pregnant women in our study reported high levels of protective behaviors related to COVID-19. It seems during acute conditions such as epidemics, due to extensive training and information transition, high preventive behavior can be expected from individuals. In the United States, over the course of a few days, people became increasingly aware of the dangers of the COVID-19 and performed well on protective behaviors [30]. In our study, pregnant women with better economic status had better protective behaviors. In a study by Chandrasekaran et al. [2018], knowledge and behavior related to Zika disease were lower in women with poor economic status compared to women with moderate to high status [31]. Therefore, special attention should be paid to women with low economic status, especially during pandemics.

Nulliparous women in our study had a higher level of risk perception related to COVID-19 than multiparous women. Similar to risk perception in other fields, pregnancy risk perception is highly individualized and several factors may influence the perception of pregnancy risk [17]. Risk perception is the subjective response based on previous life experiences, coping strategies, the context in which the risk occurs, the degrees the risk obtained from a variety of sources [32].
Little is known about how risk impacts a woman's perception and experience of pregnancy [33]. However, it seems that the experience of pregnancy and childbirth can reduce the perceived risk.

The results of the present study showed that risk perception can predict preventive behaviors significantly. In contrast to our study, Taghrir et al., in the recent study on the medical students, reported a negative correlation between preventative behaviors and risk perception related to COVID-19 [34]. Risk perception as a determinant of protective behaviors is often positively associated with preventative behaviors, although in some cases negative interactions with preventive behaviors have been shown, for example, when the perception of risk is high, but the chance of success in dealing with it is considered low, preventive behaviors are reduced [35].

Conclusion

Iranian Pregnant women had a high level of knowledge, high performance in protective behaviors, and a moderate level of risk perception related to COVID-19. History of influenza in the previous pregnancies, high economic level, and nulliparity were associated with higher levels of knowledge, protective behaviors, and risk perception, respectively. Risk perception of pregnant women can predict their protective behaviors against COVID-19. The results of the present study, as one of the first study on the risk perception and protective behaviors of Iranian pregnant women during the COVID-19 pandemic, can be used by researchers and health planners in similar future crises.

Abbreviations

COVID-19: Coronavirus disease of 2019

Declarations

Acknowledgments

The authors sincerely appreciated from financial support of Research Deputy of Hamadan University of Medical Sciences. In addition, all participants and personnel in health care centers who helped in the research process are appreciated.

Authors’ Contribution

SA and FS contributed in the proposal development, interpretation of the data, and drafting the manuscript. SB and MR contributed in the preparing of the manuscript draft. SGH gathered the data, AS and SO analyzed data and contributed in the manuscript development. All authors read, commented, and approved the manuscript.

Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

This study was approved by the ethics committee of the Research Council of Hamadan University of Medical Sciences (IR.UMSHA.REC.1399.048). Written consent was obtained from the participants, and they were assured of the confidentiality of their information.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al (2010) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8):727-733.

2. Rothe C, Schunk M, Sothmann P, et al (2020) Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med 382(10): 970-971.

3. Chen NS, Zhou M, Dong X, et al (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet* 395(10223):507-513.

4. Kenneth McIntosh M. Coronavirus disease 2019 (COVID-19). Available from: https://www.uptodate.com/contents/126981. Updated February 24, 2020.

5. Dashraath P, Jeslyn WJL, Karen LMX, Min LL, Sarah L, Biswas A, et al (2020) Coronavirus Disease 2019 (COVID-19) Pandemic and Pregnancy. Am J Obstet Gynecol 222(6):521-531.

6. Rasmussen SA, Hayes EB (2005) Public health approach to emerging infections among pregnant women. Am J Public Health 95(11):1942-1944.

7. Rasmussen SA, Smulian JC, Lednicky JA, Wen TS, Jamieson DJ (2020) Coronavirus Disease 2019 (COVID-19) and pregnancy: what obstetricians need to know. Am J Obstet Gynecol 222(5):415-
8. Liang H, Acharya G. Novel corona virus disease (COVID-19) in pregnancy: What clinical recommendations to follow? (2020) Acta Obstet Gynecol Scand 99(4):439-

9. Wang SS, Zhou X, Lin XG, et al (2020) Experience of Clinical Management for Pregnant Women and Newborns with Novel Coronavirus Pneumonia in Tongji Hospital, China. Curr Med Sci 40(2): 285-289.

10. Zhang L, Jiang Y, Wei M, et al (2020) Analysis of the pregnancy outcomes in pregnant women with COVID-19 in Hubei Province. Zhonghua Fu Chan Ke Za Zhi 55(3):166-171.

11. Leichtentritt RD, Blumenthal N, Elyassi A, Rotmensch S (2005) High-risk pregnancy and hospitalization: the women's voices. Health Soc Work 30(1):39-

12. Lindsay P (2006) Creating normality in a high-risk pregnancy. The practising midwife 9(1):1-19.

13. Pilarski R (2009) Risk perception among women at risk for hereditary breast and ovarian cancer. J Genet Couns 18(4):303-

14. Wachinger G, Renn O, Begg C, Kuhlicke C (2013) The risk perception paradox--implications for governance and communication of natural hazards. Risk Anal 33(6):1049-

15. Henrich L, McClure J, Doyle EEH (2018) Perceptions of risk characteristics of earthquakes compared to other hazards and their impact on risk tolerance. Disasters 42(4):761-

16. Ferrer R, Klein WM (2015) Risk perceptions and health behavior. Curr Opin Psychol 5:85-

17. Heaman M, Gupton A, Gregory D (2004) Factors influencing pregnant women's perceptions of risk. MCN Am J Matern Child Nurs 29(2):111-

18. Bassetti M, Vena A, Giacobbe DR (2020) The novel Chinese coronavirus (2019-nCoV) infections: Challenges for fighting the storm. Eur J Clin Invest 50(3):e13209. DOI:1111/eci.13209

19. Huynh TLD (2020) Data for understanding the risk perception of COVID-19 from Vietnamese sample. Data Brief 30:105530.

20. World Health Organization (2020) Coronavirus disease (COVID-19) advice for the public [website]. 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public.

21. Heaman MI, Gupton AL (2009) Psychometric testing of the Perception of Pregnancy Risk Questionnaire. Res Nurs Health 32(5):493-

22. Taghizadeh Z, Cheraghi MA, Kazemnejad A, Pooralajal J, Aghababaei S (2017) Difference in Perception of Pregnancy Risk in Two Maternal Age Groups. J Clin Diagn Res 11(5):QC09-

23. Zhou F, Yu T, Du R, et al (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 28:1054–1062.
24. Nwafor JI, Aniukwu JK, Anozie BO, Ikeotuonye AC, Okedo-Alex IN (2020) Pregnant women's knowledge and practice of preventive measures against COVID-19 in a low-resource African setting. Int J Gynaecol Obstet 150(1):121-123.

25. Yassa M, Birol P, Yirmibes C, et al (2020) Near-term pregnant women's attitude toward, concern about and knowledge of the COVID-19 pandemic. J Matern Fetal Neonatal Med Ahead-of-print: 1-8. Doi:10.1080/14767058.2020.1763947

26. Braunack-Mayer A, Tooher R, Collins JE, Street JM, Marshall H (2013) Understanding the school community's response to school closures during the H1N1 2009 influenza pandemic. BMC Public Health 13:344. Doi: 10.1186/1471-2458-13-344

27. Brooks SK, Webster RK, Smith LE, et al (2020) The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet 395(10227):912-920.

28. Olapegba PO, Ayandele O (2020) Survey data of COVID-19-related Knowledge, Risk Perceptions and Precautionary Behavior among Nigerians. Data Brief 30:105685. Doi: 10.1016/j.dib.2020.105685

29. Sasaki TK, Yoshida A, Kotake K (2013) Attitudes about the 2009 H1N1 influenza pandemic among pregnant Japanese women and the use of the Japanese municipality as a source of information. Southeast Asian J Trop Med Public Health 44(3):388-399.

30. Wise T, Zbozinek TD, Michelin G, Hagan CC (2020) Changes in risk perception and protective behavior during the first week of the COVID-19 pandemic in the United States. PsyArXiv Preprints.

31. Chandrasekaran N, Marotta M, Taldone S, Singh V, Koru-Sengul T, Curry C (2018) Socioeconomic Disparities in Knowledge and Behaviors of Zika virus in Pregnant Women [6J]. Obstet Gynecol 131:109S-10S.

32. Alaszewski A, Horlick-Jones T (2003) How can doctors communicate information about risk more effectively? BMJ 327(7417):728-731.

33. Simmons HA, Goldberg LS (2011) High-risk pregnancy after perinatal loss: understanding the label. Midwifery 27(4):452-457.

34. Taghrir MH, Borazjani R, Shiraly R (2020) COVID-19 and Iranian medical students; a survey on their related-knowledge, preventive behaviors and risk perception. Arch Iran Med 23(4):249–254.

35. Aenishaenslin C, Michel P, Ravel A, et al (2015) Factors associated with preventive behaviors regarding Lyme disease in Canada and Switzerland: a comparative study. BMC Public Health 15:185. Doi: 10.1186/s12889-015-1539-2

Tables
Table 1 Distribution of participants’ responses to the items of knowledge and protective behaviors

Questions (0–100%)	Items (True, False and I don’t know)	Correct Answer Rate
Q01	Corona disease is an infectious caused by the coronavirus.	90.1%
Q02	The first case of the disease was diagnosed in China.	96%
Q03	The origin of the disease is unknown, but it appears to have been transmitted to humans by bats, seafood or snakes.	88.8%
Q04	Common symptoms of disease are fever, cough and shortness of breath	98.2%
Q05	A person infected with the virus may look completely healthy.	94.7%
Q06	If infected, the person should quarantine for 14 days	98.2%
Q07	Transmission is through respiratory droplets such as cough and sneezing.	95.6%
Q08	The disease is transmitted through close contact with an infected person	96.4%
Q09	Children do not get the disease.	68%
Q10	Pregnant women are more susceptible to the disease.	96%
Q11	The disease can be prevented by hand washing and personal hygiene.	96.9%
Q12	Medical masks are useful to prevent the transmission of respiratory drops	96%
Q13	Lack of close contact can prevent the onset of the disease.	94.7%
Q14	Everyone in the community should wear a mask.	28.9%
Q15	Corona virus can be treated with common antiviral drugs.	59.1%
Q16	The flu vaccine can be given every year to prevent Corona virus.	55.1%

Table 2 COVID-19 related knowledge, protective behaviors and risk perception among pregnant women
Variable	Level	NO (%)	Mean ± SD (Range 0-100)
Knowledge			
High		211(93.8)	
Moderate		13(5.8)	85.72±7.39
low		1(0.4)	
protective Behaviors			
High		219(97.3)	
Moderate		6(2.7)	95.79±7.05
low		-	
Risk Perception			
High		27(12)	
Moderate		164(72.9)	48.07±10.25
low		34(15.1)	

Table 3 Differences in major variables according to demographic and obstetrics characteristics
Variable	NO (%)	Knowledge Mean ± SD	protective Behaviors Mean ± SD	Risk Perception Mean ± SD
-25	54(24)	84.38±8.37	94.57±9.34	47.46±10.61
-36	140(62.2)	86.21±6.69	96.19±6.15	48.34±10.02
-47	31(13.8)	85.89±8.35	96.13±5.91	47.93±10.90

gestational age				
02	22(10.0)	83.95±10.53	94.55±7.60	49.03±8.65
-24	68(30.8)	85.29±6.89	96.08±6.33	49.04±10.29
-36	131(59.3)	86.24±7.12	95.83±7.14	47.41±10.55

education				
gh school	66(29.3)	**84.94±9.19**	95.25±7.09	47.71±11.04
diploma	77(34.2)	**84.78±7.64**	96.88±6.54	48.99±10.13
collegiate	82(36.4)	**87.23±5.01**	95.20±7.43	48.45±9.80

using status				
personal	112(49.8)	86.16±7.07	95.95±7.18	47.46±9.99
nt	107(47.6)	85.28±7.68	95.64±7.04	48.60±10.59
her	6(2.7)	85.42±9.20	95.56±5.44	50.00±5.56

onomic situation				
seck	43(19.1)	85.17±8.44	**94.57±6.38**	47.08±10.77
derate	164(72.9)	85.50±7.25	**95.89±7.36**	48.24±10.23
od	18(8.0)	89.06±5.28	**97.78±5.11**	48.98±9.49

formation source				
stetistics	16(7.1)	**88.87±5.35**	94.58±9.50	50.98±9.44
dwives	27(12)	**88.43±7.08**	95.06±6.02	44.19±8.27
hers	160(71.1)	**84.80±7.76**	96.42±6.43	48.57±10.53
88(39.1)				
87(38.7)				
42(18.7)				
8(3.6)				

rity				
88(39.1)				
87(38.7)				
42(18.7)				

member of abortion				
176(78.2)				
44(19.6)				
5(2.2)				

member of child				
104(46.2)				
88(39.1)				

signancy status				
inted	9 (4)	85.75±7.24	98.52±2.94	45.56±13.08
wanted	216(96)	85.60±8.08	95.68±7.15	48.18±10.14
M, mean; SD, standard deviation; a, kruskal-Wallis value; b, mann-Whitney U value; * Significant at level of $P < 0.05$.

Table 4 Correlations between COVID-19 related knowledge, protective behaviors and risk perception among pregnant women

Variables	knowledge	protective behavior	Risk perception
knowledge	1	-	-
Preventive behaviors	-0.125	1	-
Risk perception	0.016	0.146*	1

* Significant at level of $P < 0.05$; computed by Spearman rank correlation

Table 5 Multivariate regression analysis with protective behaviors as a dependent variable

Independent variables	Standardized Coefficients β	P-Value
Risk perception	0.146	0.029*
knowledge	-0.049	0.464

Standardized β-coefficients and P values are given *$P < 0.05$