Multi-View Self-Attention based Transformer for Speaker Recognition

ICASSP 2022

Rui Wang\(^1\)*, Junyi Ao\(^2,3\)*, Long Zhou\(^4\), Shujie Liu\(^4\), Zhihua Wei\(^1\), Tom Ko\(^2\), Qing Li\(^3\), Yu Zhang\(^2\)

\(^1\)Department of Computer Science and Technology, Tongji University
\(^2\)Department of Computer Science and Engineering, Southern University of Science and Technology
\(^3\)Department of Computing, The Hong Kong Polytechnic University
\(^4\)Microsoft Research Asia

*Equal contribution. Work done during internship at Microsoft Research Asia.
Speaker Recognition

Speaker recognition aims to identify the voice of the specific targets.

- Convolutional architectures remain dominant, such as residual network (ResNet) and time delay neural network (TDNN).
- The applications of Transformer to speaker recognition are limited, e.g., combining CNN-like architectures with self-attention by either replacing utterance-level pooling layers or frame-level convolutional blocks.
Motivation & Challenges

Applying Transformer to speaker tasks has two challenges:

• Transformer is hard to be scaled efficiently since acoustic features sequences are much longer than text sentences.

• Transformer is deficient in some of the inductive biases inherent to CNNs, such as translation equivalence and locality.
Multi-View Self-Attention

To enhance the Transformer’s capabilities of capturing global dependencies while modeling the locality, a multi-view self-attention is proposed to employ windows with different sizes surrounding each token in a head-wise manner.
Multi-View Self-Attention

Specifically, given a fixed window size w, each token attends to $\frac{1}{2}w$ tokens on both sides.

The sliding window for the i-th head at the l-th layer to explicitly model different ranges of receptive fields by setting them as

$$w^l_i = \begin{cases} 2^i + 1, & \text{if } i \geq 1 \\ 1, & \text{if } i = 0 \end{cases}$$
Transformer Variants

We study five Transformer variants.

a. **First Decoder Token.** Multi-layer multi-head attentive pooling.

b. **Last Decoder Token.** Input-related pooling.

c. **Average Encoder Token.** Temporal Average pooling.

d. **First Encoder Token.** Use of a single token.

e. **Pooling Encoder Tokens.** Like X-vector.
Experimental Setup

• Datasets
 • Speaker Identification:
 • VoxCeleb1 development set: over 1,000,000 utterances from 1,251 celebrities
 • VoxCeleb1 test set: over 8,251 utterances from 1,251 celebrities
 • Speaker Verification:
 • VoxCeleb1/VoxCeleb2 development set: over 100,000/1,000,000 utterances from 1,211/5,994 celebrities
 • VoxCeleb1 test set: 37,720 pairs of trials and over 4,715 utterances from 40 celebrities

• Acoustic Features: 80-d mel-filter banks with the 64ms windows and 16ms shifts
• Identification Metrics: Top-1 accuracy (ACC)
• Verification Metrics: Equal error rate (EER)
Experiment Results

We compare these five variants with or without multi-view self-attention (MV) and report the performance on VoxCeleb1 test set.

- Multi-view self-attention achieves improvement in most settings.
- Multi-view self-attention can generate various token representation.

Variant	Architecture Details	ACC (%) ↑	EER (%) ↓	EER (%) ↓
		Vox1 + MV	Vox1 +MV	Vox2 +MV
a	Attentive Pooling	94.33	5.33	2.72
		94.36	5.45	2.56
b	Input-related Pooling	93.61	5.89	2.92
		94.09	5.40	2.68
c	Average Pooling	92.96	6.33	3.60
		91.81	6.13	3.23
d	Single Token	92.29	5.96	3.32
		88.16	7.37	3.96
e	Like X-vector	95.04	4.77	2.89
		96.38	4.35	2.68
Experiment Results

We compare the proposed method with VGG, TDNN, ResNet, and Transformer.

- We boost the Transformer to be competitive or superior to VGG, TDNN, and ResNet-like networks.
- Compared to previous Transformers, we achieve significant improvement.
- Our Transformer classification model achieves the state-of-the-art performance.

Training on VoxCeleb1 development	Implementaion	Extractor	ACC (%)	EER (%)
VGG-M	VGG	80.5	7.8	
X-vector	TDNN	-	7.83	
Atten. Stats.	TDNN	-	**3.85**	
Cai et al.	ResNet	89.9	4.46	
Chung et al.	ResNet	89.0	5.26	
SAEP	Transformer	-	7.13	
S-vectors	Transformer	-	5.50	
Our work (e)	CNN+Transformer	**96.38**	4.35	

Training on VoxCeleb2 development	Implementaion	Extractor	EER (%)
MHA	VGG	3.19	
Atten. Stats.	TDNN	2.59	
Xie et al.	ResNet	3.22	
SAEP	Transformer	5.44	
S-vectors	Transformer	2.67	
Our work (a)	CNN+Transformer	**2.56**	
Our work (e)	CNN+Transformer	2.68	
Conclusion

- We propose a multi-view self-attention mechanism for Transformer-based speaker networks, which enable to capture global dependencies and model the locality.

- We study the proposed multi-view self-attention mechanism in five different Transformer variants with different network architectures, embedding locations, and pooling methods.

- Our method achieves 96.38% top-1 accuracy for speaker identification task on Voxceleb1 and 4.35% and 2.56% EER on VoxCeleb1 and VoxCeleb2, respectively, for speaker verification task.
Multi-View Self-Attention based Transformer for Speaker Recognition

ICASSP 2022

Rui Wang1*, Junyi Ao2,3*, Long Zhou4, Shujie Liu4, Zhihua Wei1, Tom Ko2, Qing Li3, Yu Zhang2

1Department of Computer Science and Technology, Tongji University
2Department of Computer Science and Engineering, Southern University of Science and Technology
3Department of Computing, The Hong Kong Polytechnic University
4Microsoft Research Asia

*Equal contribution. Work done during internship at Microsoft Research Asia.