Univalent foundations and the equivalence principle

Paige Randall North

16 October 2020
Outline

1. The equivalence principle
2. Univalent foundations
3. The equivalence principle in univalent foundations
The equivalence principle

Equivalence principle

Reasoning in mathematics should be *invariant under* the appropriate notion of *equivalence*.
The equivalence principle

Equivalence principle

Reasoning in mathematics should be *invariant under* the appropriate notion of *equivalence*.

Notion of equivalence depends on the objects under consideration:

- *equal* numbers, functions, \ldots
- *isomorphic* sets, groups, rings, \ldots
- *equivalent* categories
- *biequivalent* bicategories
- \ldots
Non-examples: statements violating equivalence principle

We can easily violate this principle:

Exercise

Find a statement about sets that is not invariant under isomorphism:

\[
\{\emptyset, \{\emptyset\}\} \cong \{\emptyset, \{\{\emptyset\}\}\}
\]

Exercise

Find a statement about categories that is not invariant under equivalence:

\[
\bullet \cong \bullet
\]
Non-examples: statements violating equivalence principle

We can easily violate this principle:

Exercise

Find a statement about sets that is not invariant under isomorphism:

\[
\{\emptyset, \{\emptyset\}\} \cong \{\emptyset, \{\{\emptyset\}\}\}
\]

\(\emptyset \in X\)

Exercise

Find a statement about categories that is not invariant under equivalence:

\[
\begin{array}{ccc}
\bullet & \cong & \bullet \\
\end{array}
\]

\(\mathcal{C}\) has exactly 1 object.
Michael Makkai, *Towards a Categorical Foundation of Mathematics*:
"The basic character of the Principle of Isomorphism is that of a constraint on the language of Abstract Mathematics; a welcome one, since it provides for the separation of sense from nonsense."
A language for invariant properties

Michael Makkai, *Towards a Categorical Foundation of Mathematics*: "The basic character of the Principle of Isomorphism is that of a constraint on the language of Abstract Mathematics; a welcome one, since it provides for the separation of sense from nonsense."

Goal

To have a **syntactic criterion** for properties and constructions that are invariant under equivalence.
How to break the equivalence principle for categories.

- Recall: the statement

 \(\text{The category } \mathcal{C} \text{ has exactly one object.} \)

 is not invariant under equivalence of categories.

- In general, referring to \textbf{equality of objects} breaks invariance, but...
How to break the equivalence principle for categories. . .

• Recall: the statement

\[\text{The category } \mathcal{C} \text{ has exactly one object.} \]

is not invariant under equivalence of categories.

• In general, referring to equality of objects breaks invariance, but. . .

• even the definition of category refers to equality of objects:

Problem

“If dom(g) is equal to cod(f), then g \circ f exists.”
How to break the equivalence principle for categories. . .

• Recall: the statement

 The category \mathcal{C} has exactly one object.

 is not invariant under equivalence of categories.

• In general, referring to equality of objects breaks invariance, but. . .

• even the definition of category refers to equality of objects:

Problem

 “If $\text{dom}(g)$ is equal to $\text{cod}(f)$, then $g \circ f$ exists.”

Can we give a definition of category without using equality of objects?
... and how to fix it.

Solution

Use a logic/language of **dependent sets**, in which \(\text{dom}(g) = \text{cod}(f) \) is encoded by what type of thing \(f \) and \(g \) are.
... and how to fix it.

Solution

Use a logic/language of **dependent sets**, in which \(\text{dom}(g) = \text{cod}(f)\) is encoded by what type of thing \(f\) and \(g\) are.

A category consists of

- a set \(O\) of objects
- for each \(x, y \in O\), a type/set \(A(x, y)\) of arrows
- for each \(x, y, z \in O\) and each \(f \in A(x, y)\) and \(g \in A(y, z)\), a type/set \(g \circ f \in A(x, z)\)
- for each \(x \in O\), an identity \(\text{id}_x \in A(x, x)\)
- ...
... and how to fix it.

Solution

Use a logic/language of **dependent sets**, in which \(\text{dom}(g) = \text{cod}(f) \) is encoded by what type of thing \(f \) and \(g \) are.

A category consists of

- a set \(O \) of objects
- for each \(x, y \in O \), a type/set \(A(x, y) \) of arrows
- for each \(x, y, z \in O \) and each \(f \in A(x, y) \) and \(g \in A(y, z) \), a type/set \(g \circ f \in A(x, z) \)
- for each \(x \in O \), an identity \(\text{id}_x \in A(x, x) \)
- ...

Gives rise to **dependently typed language** by adding logical connectors.
Invariance for statements

Theorem (Freyd ’76, Blanc ’78)

A property of categories (expressed in 2-sorted first order logic) is invariant under equivalence iff it can be expressed in this dependently typed language, using equality for arrows but not for objects.
Invariance for statements

Theorem (Freyd ’76, Blanc ’78)

A *property* of categories (expressed in 2-sorted first order logic) is invariant under equivalence iff it can be expressed in this dependently typed language, using equality for arrows but not for objects.

- What about *constructions* on categories?
Invariance for statements

Theorem (Freyd ’76, Blanc ’78)

A property of categories (expressed in 2-sorted first order logic) is invariant under equivalence iff it can be expressed in this dependently typed language, using equality for arrows but not for objects.

- What about constructions on categories?
- What about other mathematical structures?
Outline

1. The equivalence principle
2. Univalent foundations
3. The equivalence principle in univalent foundations
Overview of types in Martin-Löf type theory

Type former	Notation	canonical term
Dependent type	$x : A \vdash B(x)$	
Dependent term	$x : A \vdash b(x) : B(x)$	
Boolean type	Bool	\top, \bot
Natural numbers type	Nat	$0, sx$
Sum type	$\sum_{x:A} B(x)$	(a, b)
Product type	$\prod_{x:A} B(x)$	$\lambda(x : A).b$
Identity type	$x : A, y : A \vdash x = y$	$\text{refl}(x) : x = x$
Universe	Type	

Curry-Howard Correspondence

We can interpret these types as propositions or sets.
Properties of the identity type

Induction principle for $a = b$

To define a function

$$f : \prod_{x,y:A} \prod_{p:x=y} C(x,y,p)$$

it suffices to specify its image on (x, x, refl_x).

- **sym**: $\prod_{x,y:A} (x = y) \to (y = x)$
- **trans**: $\prod_{x,y,z:A} (x = y) \times (y = z) \to (x = z)$
The equality principle in type theory

Any predicate or construction that can be defined on terms of a type \(A \) is of the form \(f : A \to B \).

- The predicate “\(G \) is an abelian group” is a function \(\text{Grp} \to \text{Prop} \).
- Considering the lattice of subgroups of any group \(G \) produces a function \(\text{Grp} \to \text{Latt} \).

Equality principle

\[
\prod_{x,y:A} (x = y) \twoheadrightarrow \prod_{f:A \to B} (f(x) = f(y))
\]
Space interpretation

The identity type behaves like equality:

- reflexivity, symmetry, transitivity
- Everything respects equality

but more like paths in a space:

- Can iterate identity type
- Cannot show that any two identities are identical

Voevodsky Correspondence

We can interpret

- a type K as a Kan complex $[K]$
- a dependent type $x : B \vdash E(b)$ as a Kan fibration $[p] : [E] \to [B]$
- a dependent term $x : B \vdash e(b) : E(b)$ as a section of $[e]$ of $[p]$
- a term $p : a \to_K b$ as a path from a to b in K
The Univalence Axiom

There are two notions of ‘sameness’ between types:

- $A = B$
- $A \simeq B$ (functions $f : A \leftrightarrow B : g$ such that $fg = 1$ and $gf = 1$)

There is always a function

$$(A = B) \rightarrow (A \simeq B)$$

which is an equivalence in Kan complexes.
Outline

1. The equivalence principle
2. Univalent foundations
3. The equivalence principle in univalent foundations
Strategy

We always have a version of the equivalence principle:

Equality principle

\[\prod_{x,y:A} (x = y) \to \prod_{f:A \to B} (f(x) = f(y)) \]

but we want better ones where we replace the ‘synthetic’ equality \(x = y \) with an ‘analytic’ equality \(x \cong y \) which depends on the type.

Strategy: prove that the function \((x = y) \to (x \cong y) \) is an equivalence

Univalence principle

\((x =_T y) \cong (x \cong_T y) \)

for a type \(T \) and appropriate \(\cong_T \). Then we will get:

Equivalence principle

\[\prod_{x,y:A} (x \cong y) \to \prod_{f:A \to B} (f(x) = f(y)) \]
Contractible types, propositions and sets

- **A is contractible**

\[
isContra(A) \equiv \sum_{x:A} \prod_{y:A} y = x
\]

- **A is a proposition**

\[
isProp(A) \equiv \prod_{x,y:A} x = y
\]

- **A is a set**

\[
isSet(A) \equiv \prod_{x,y:A} isProp(x = y)
\]

\[
\text{Prop} \equiv \sum_{X: \text{Type}} isProp(X) \quad \text{Set} \equiv \sum_{X: \text{Type}} isSet(X)
\]
Contractible types, propositions and sets

- **A is contractible**

 \[
 \text{isContr}(A) \equiv \sum_{x:A} \prod_{y:A} y = x
 \]

- **A is a proposition**

 \[
 \text{isProp}(A) \equiv \prod_{x,y:A} \text{isContr}(x = y)
 \]

- **A is a set**

 \[
 \text{isSet}(A) \equiv \prod_{x,y:A} \text{isProp}(x = y)
 \]

\[
\text{Prop} \equiv \sum_{X: \text{Type}} \text{isProp}(X) \quad \text{Set} \equiv \sum_{X: \text{Type}} \text{isSet}(X)
\]
Univalence for Propositions and Sets

Univalence for propositions

\[P \equiv_{\text{Prop}} Q \simeq P \leftrightarrow Q \]

Univalence for sets

\[P \equiv_{\text{Set}} Q \simeq P \cong Q \]
In type theory, a monoid is a tuple \((M, \mu, e, \alpha, \lambda, \rho)\) where

1. \(M : \text{Set}\)
2. \(\mu : M \times M \rightarrow M\)
3. \(e : M\)
4. \(\alpha : \Pi_{(a,b,c:M)} \mu(\mu(a,b),c) = \mu(a,\mu(b,c))\)
5. \(\lambda : \Pi_{(a:M)} \mu(e,a) = a\)
6. \(\rho : \Pi_{(a:M)} \mu(a,e) = a\)
Monoids in type theory

In type theory, a monoid is a tuple \((M, \mu, e, \alpha, \lambda, \rho)\) where

1. \(M : \text{Set}\)
2. \(\mu : M \times M \to M\)
3. \(e : M\)
4. \(\alpha : \Pi_{(a,b,c:M)} \mu(\mu(a,b),c) = \mu(a,\mu(b,c))\)
5. \(\lambda : \Pi_{(a:M)} \mu(e,a) = a\)
6. \(\rho : \Pi_{(a:M)} \mu(a,e) = a\)

Why \(M : \text{Set}\)?
Monoids in type theory

In type theory, a monoid is a tuple \((M, \mu, e, \alpha, \lambda, \rho)\) where

1. \(M : \text{Set}\)
2. \(\mu : M \times M \to M\)
3. \(e : M\)
4. \(\alpha : \Pi_{(a,b,c:M)} \mu(\mu(a,b),c) = \mu(a,\mu(b,c))\)
5. \(\lambda : \Pi_{(a:M)} \mu(e,a) = a\)
6. \(\rho : \Pi_{(a:M)} \mu(a,e) = a\)

Why \(M : \text{Set}\)?

Abstractly, a monoid is a (dependent) pair \((\text{data},\text{proof})\) where

- \(\text{data}\) is 1.–3.
- \(\text{proof}\) is 4.–6.
Structure Identity Principle

Univalence for monoids

\[M =_{\text{Monoid}} N \cong M \cong N \]

We also have univalence for other set-level structures (Coquand-Danielsson):

- groups, rings
- posets
- discrete fields
- sets with fixpoint operator
Structure Identity Principle

Univalence for monoids

\[M =_{\text{Monoid}} N \simeq M \cong N \]

We also have univalence for other set-level structures (Coquand-Danielsson):

- groups, rings
- posets
- discrete fields
- sets with fixpoint operator

What about **categories**?
Univalence for categories

We only have univalence for **univalent** categories: ones where the canonical function $A = B \rightarrow A \simeq B$ for objects $A, B : \mathcal{C}$ is an equivalence.

Here, the homsets are sets, and the type of objects will be groupoids.

Univalence for univalent categories

$\mathcal{C} =_{\text{UCat}} \mathcal{D} \simeq C \simeq D$

We also have univalence for other higher structures (Ahrens-North-Shulman-Tsementzis):

- bicategories, tricategories, etc
- double categories
- dagger categories
Further resources

- HoTT Reading Group, 10:30-12 on Wednesdays
- HoTT Book
 - https://homotopytypetheory.org/book/
- Learn how to write proofs in a computer!
 - https://leanprover-community.github.io/learn.html
 - (Number Game)
Thank you!