B-LACTAM ANTIBIOTICS IN UKRAINE: MARKET AND CONSUMPTION ANALYSIS IN 2013–2018

© L. Iakovlieva, T. Bahlai

1. Introduction
After the discovery of penicillin in 1928 by a Scottish scientist and Nobel laureate, Alexander Fleming, antibiotics have come a long way to development [1].

More than 100 different types of antimicrobials (AMIs) have been invented to date. It has also been established that AMIs are active against different types of pathogens of infectious diseases, but there are "supermicroorganisms" with resistance to drugs, which creates new challenges for researchers.

2. Formulation of the problem in a general way, the relevance of the theme and its connection with important scientific and practical issues
Strategy against antibiotic resistance (ABR) is a global challenge for the scientific community for life and health of the population. Over the past decades around the world there has been a sharp increase in infections caused by pathogens with multiple ABR [2, 3].

3. Analysis of recent studies and publications in which a solution of the problem are described and to which the author refers
The authors of the ABR study note the importance of a systematic view of current knowledge about the use of AMI and the prevention of infectious diseases [2–5]. Among publications, an important place is meta-analysis, which allows us to rely on a number of relevant sources about the relationship between AMI consumption and the development of ABR [4].

A study of the consumption of β-lactam antibiotics in Ukraine was conducted by prof. Iakovlieva L. V. and assistant Matyashova N. O., but their work was published in 2010-2013, which requires updating data in order to identify new trends in the use of these drug groups.
antibiotics (affordability through sale without prescription); the use of antibiotics with a wide spectrum of action in the case of the effectiveness of agents with a narrower spectrum; non-compliance by patients with certain conditions of admission and inappropriate prophylactic use; uncontrolled and unregulated use in veterinary and rural (agrarian) farming; the absence of new groups of antibacterial agents. An analysis of the relationship between AMI consumption levels and the development of ABR is one of the tools to curb the latter. Increasing AMI consumption can not only provide greater stability at the level of individual strains of pathogens to antibiotics, which creates problems for their further use [4, 5].

5. Formulation of goals (tasks) of article
The aim of this work is to analyze the market and consumption of AMI of the β-lactam group in Ukraine for 2013–2018, using the ATC / DDD methodology, identify trends in their use, and compare the obtained consumption volumes with similar results in the European Union.

6. Presentation of the main research material (methods and objects) with the justification of the results
Data on the consumption of the investigational drugs are determined using the ATC / DDD methodology recommended by the WHO. The DDDs per 1000 inhabitants per day (DID) were used to calculate the consumption of antibacterial agents of the study group. The value of DDD (Defined Daily Dose), each international non-proprietary name (INN), is presented on the WHO website. PDD (Prescribed Daily Dose) was used for those INN for which there is no calculated DDD on the WHO website [6].
The calculations were carried out according to the analytical system of the pharmaceutical market research “Pharmstandard” of “Morion” company.

Results and their discussion
Today, the group of β-lactam AMI includes a number of drugs, most of which are well-studied and have long existed on world markets.

β-lactam antibiotics are bactericidal agents that interrupt the formation of a bacterial cell wall as a result of covalent binding to etheric penicillin-binding proteins (PBPs), enzymes involved in the final stages of cross-linking peptidoglycan, a bacterial wall component in gram-negative and gram-positive bacteria. Each bacterial species has its own distinct set of PBPs, which can range from three to eight enzymes to one species. The death of a bacterial species has its own distinct set of PBPs (PBPs), enzymes involved in the final stages of cross-linking peptidoglycan, a bacterial wall component in gram-negative and gram-positive bacteria. Each bacterial species has its own distinct set of PBPs, which can range from three to eight enzymes to one species. The death of a bacterial species has its own distinct set of PBPs (PBPs), enzymes involved in the final stages of cross-linking peptidoglycan, a bacterial wall component in gram-negative and gram-positive bacteria. Each bacterial species has its own distinct set of PBPs, which can range from three to eight enzymes to one species. The death of a bacterial species has its own distinct set of PBPs [7].

Penicillin G (Benzylpenicillin) was the first β-lactam to be used in the clinic, most often for the treatment of streptococcal infections, to which it exhibited high activity. Another natural penicillin-Phenoxymethylpenicillin is used therapeutically and prophylactically for the mild and moderate severity of infections caused by susceptible Streptococcus spp., including use in children [8]. Among the penicillinase-resistant penicillins, clinical significance has Methicillin, Oxacillin, Cloxacillin and Nafcillin, and the latter is proposed as β-lactate for skin infections caused by methicillin-susceptible Staphylococcus aureus.

All these drugs were used primarily for the treatment of patients with Staphylococcus aureus before the onset of methicillin resistant S. aureus (MRSA) strains in 1979–1980 [9].

Penicillins with improved activity relative to gram-negative pathogens included bioavailable Ampicillin and Amoxicillin, both of which were marketed in the 1970s. These AMIs were initially used to treat infections caused by Enterobacteriaceae and did not effectively suppress the growth of Pseudomonas aeruginosa. Carbenicillin was the first anti-psudomonal penicillin, but did not have resistance to hydrolysis by β-lactamase and was less potent than Piperacillin or Ticarcillin. The latter preparations were considered as potent penicillins of a wide range of effects, which counteract penicillin-sensitive staphylococci, intestinal bacteria, anaerobes and P. aeruginosa. Since the late 1980s, they have been widely used to treat intra-infectious diseases, especially in combination with a β-lactamase inhibitor [11].
The increase in β-lactamase levels limited the therapeutic use of penicillins as monotherapy. Ampicillin, Amoxicillin, Piperacillin, and Ticarcillin are continued in combination with a β-lactamase inhibitor [10]. However, Ampicillin, Amoxicillin, Benzylpenicillin, and Phenoxymethylpenicillin are still active as monotherapy for Group A streptococci and Treponema pallidum, which do not produce β-lactamase [12].

In the 1950's, the discovery of natural penicillin-resistant Cephalosporin C indicated the pathway for the development of new cephalosporins for the treatment of infections, mainly caused by pathogens producing penicillinase (S. aureus). At that time dozens of cephalosporins were introduced into clinical practice either as parental or as oral agents [13]. The molecules showed antibacterial activity not only against staphylococci, but also against Streptococcus pneumoniae and non-β-lactamase-producing bacteria.

Cefazolin is often used for the prevention of surgery and the treatment of abdominal infections [14] and is effective as empirical therapy in 80% of Japanese children at the first infection of the upper urinary tract [15].
The total amount of AMI of the group β-lactams presented in the market of Ukraine in 2018 is 343 trade names (TNs), of which 92 are domestic and 251 foreign manufacturers, which indicates the high saturation of the Ukrainian pharmaceutical market with imported drugs (Table 1).

For comparison, in 2011 in the domestic market, 13 INN of penicillin group with 118 TNs were presented (26 domestic and 92 imported) [16]. From 2011 to 2018, 4 INNs were taken from the market - Ampicillin + Oxacycline, Amoxicillin + Sulbactam, Ticarcillin + Clavulanic acid, Amoxicillin + Cloxacillin sodium.

Cefalosporins in 2010 in the Ukrainian market were represented by 13 INNs, which are based on 128 TNs (domestic - 84 TNs and 44 TNs of foreign manufacturers) [17]. From the market went 2 INN - Cefadroxil and Cefpirome. Between 2010 and 2018, there were 7 INNs on the market, but only 3 INNs – Cefditoren (1 TN) and the combination of Cefoperazone + Sulbactam and Ceftriaxone + Sulbactam remained at the end of the period.
Table 1
Structure of the Ukrainian market of AMI of β-lactam group in 2018.

ATC-code	International non-proprietary name	Number of items taking into account all dosage forms (pcs.)		
		domestic	foreign	total
β-lactamase sensitive penicillins				
J01CE01	Benzylpenicillin	3	1	4
J01CE08	Benzathine benzylpenicillin	-	1	1
J01CE30	Benzathine benzylpenicillin + Benzylpenicillin	2	2	
Extended-spectrum penicillins				
J01CA01	Ampicillin	3	–	3
J01CA04	Amoxicillin	3	17	20
J01CA51	Ampicillin + Oxacycline	Absent from 2015		
Combinations of penicillins with β-lactamase inhibitors				
J01CR01	Ampicillin + Sulbactam	1	1	2
J01CR02	Amoxicillin + Clavulanic acid	3	35	38
J01CR02	Amoxicillin + Sulbactam	Absent from 2016		
J01CR03	Ticarcillin + Clavulanic acid	Absent from 2018		
J01CR05	Piperacillin + Tazobactam	–	6	6
J01CR50	Amoxicillin + Cloxacillin sodium	Absent from 2015		
Total penicillins		15	61	76
Other β-lactam antibiotics, cephalosporins of the first generation				
J01DB01	Cefalexin	2	5	7
J01DB04	Cefazolin	8	–	8
J01DB05	Cefadroxil	Absent from 2017		
Other β-lactam antibiotics, cephalosporins of the second generation				
J01DC02	Cefuroxime	10	–	10
Other β-lactam antibiotics, cephalosporins of the third generation				
J01DD01	Cefotaxime	10	4	14
J01DD02	Ceftriaxime	4	16	20
J01DD04	Ceftriaxone	23	36	59
J01DD07	Cefizoxime	Absent from 2017		
J01DD08	Cefixime	–	13	13
J01DD12	Cefoperazone	2	3	5
J01DD13	Cefpodoxime	–	17	17
J01DD14	Cefdituben	–	2	2
J01DD16	Cefditoren	–	1	1
J01DD51	Cefotaxime + Sulbactam	Absent from 2015		
J01DD52	Cefazidime + Sulbactam	Absent from 2018		
J01DD62	Cefoperazone + Sulbactam	7	9	16
J01DD63	Ceftriaxone + Sulbactam	1	3	4
J01DD63	Ceftriaxone + Tazobactam	Absent from 2016		
Other β-lactam antibiotics, cephalosporins of the fourth generation				
J01DE01	Cefepime	6	23	29
J01DE02	Cefpirome	Absent from 2015		
J01DE51**	Cefepime + Amikacin	Absent from 2015		
J01DE51**	Cefepime + Sulbactam	Absent from 2018		
Total cephalosporins		73	161	234
Other β-lactam antibiotics, carbapenems				
J01DH02	Meropenem	4	18	22
J01DH03	Ertapenem	–	1	1
J01DH04	Doripenem	–	1	1
J01DH51	Imipenem + Cilastatin	–	9	9
Total carbapenems		4	29	33
Total AMI of β-lactams group		92	251	343
Data on the consumption of AMI β-lactams by the European Union (EU) in 2017 were taken from the reports of the European Surveillance of Antimicrobial Consumption Network (ESAC-Net) [18].

In Ukraine, in 2017 penicillins consumed at 4.48 and 3.7 times less than the EU average and Italy (the country with the highest consumption), and cephalosporins and carbapenems are almost the same. Comparison with the Netherlands (the country with the lowest levels of consumption) suggests practically the same level of consumption of AMI of the β-lactam group and 51.3 times higher consumption of the subgroup of cephalosporins and carbapenems (Fig. 1).

The consumption of AMI of β-lactam group in the period from 2013 to 2018 in Ukraine has increased (Tabl. 2); although in 2015 there was a decrease in consumption.

The most commonly used drugs were INNs from the penicillin group – Amoxicillin and Amoxicillin with inhibitors of β-lactamase. This choice of physicians is due to the wide range of amoxicillin used as a monotherapy for infectious diseases caused by streptococci and the activity of combinations of amoxicillin with β-lactamase inhibitors to all cocccidion pathogens producing β-lactamase. In Ukraine, these combinations (see tab. 2) are used as first-line drugs that stimulate the development of ABR and should only be used as second-line drugs [19].

The leaders in terms of consumption among cephalosporins are INN Ceftriaxone (III generation) and Cefuroxime (II generation). The choice of these drugs is due to their pharmacological properties. Cefuroxime has a wider range of antimicrobial effects than I generation drugs and is widely used for monotherapy not only in Ukraine but also in Europe as a cheap generic drug. Ceftriaxone is widely used in connection with its pharmacokinetic properties, because it is sufficient to administer once a day, which characterizes its high compliance [19].

The consumption of AMI β-lactams group in 2017 in DID

![Fig. 1. Consumption of AMI β-lactams group in 2017 in DID](image)

ATC-code	INN	DID, 2013	DID, 2014	DID, 2015	DID, 2016	DID, 2017	DID, 2018
J01CE01	Benzylpenicillin	0.02526807	0.020134595	0.01678717	0.0150048	0.015336723	0.01500076
J01CE08	Benzathine benzylpenicillin	0.001649271	0.001505727	0.000952328	0.000057648	0.001717412	0.00016052
J01CE30	Benzathine benzylpenicillin + Benzylpenicillin	0.277156233	0.225740965	0.201470371	0.126706359	0.161092185	0.186163267
J01CA01	Ampicillin	0.157458578	0.148354107	0.129336352	0.114465254	0.100101304	0.10019797
J01CA04	Amoxicillin	1.49576407	1.449766877	1.23464417	1.36392695	1.29446641	1.41922942
J01CA51	Ampicillin + Oxacycline	0.00862075	0.000353343	0	0	0	0
J01CR01	Ampicillin + Sulbactam	0.000319876	0.002284162	0.001999695	0.002462311	0.0019926	0.002261964
J01CR02	Amoxicillin + Clavulanic acid	0.900023924	0.850775222	0.770569519	0.917767377	0.991406093	1.213728191
J01CR03	Amoxicillin + Sulbactam	0.008942711	0.000215455	0.000020532	0.000008919	0.00000071	0
J01CR05	Piperacillin + Tazobactam	0.000030162	0.000054478	0.00008014	0.000221418	0.000297439	0.000396671
J01CR50	Amoxicillin + Clavulanic acid sodium	0.000631398	0.000053343	0	0	0	0

Table 2

Consumption of AMI β-lactam group from 2013 to 2018 in Ukraine
Other β-lactams (cephalosporins, penems)

AMI Code	Name	2015-2018 Population DDDs	2009-2013 Population DDDs	2003-2005 Population DDDs	2000-2001 Population DDDs	1999-2000 Population DDDs	1998-1999 Population DDDs	1997-1998 Population DDDs	1996-1997 Population DDDs	1995-1996 Population DDDs	Total other β-lactams	
J01DB01	Cefalexin	0.046096712	0.03842212	0.040549185	0.039318209	0.03294064	0.033812803	0.02913727	0.028004736	0.027389671	1.10284327	4.2783404
J01DB02	Cefazolin	0.028900426	0.024824942	0.018263735	0.016463447	0.014087073	0.012142283	0.010203923	0.009479124	0.009479124	0.692756273	0.724812373
J01DB03	Cefadroxil	0.001426198	0.0002136987	0.0002136987	0.0002136987	0.0002136987	0.0002136987	0.0002136987	0.0002136987	0.0002136987	0.648478971	0.710039182
J01DB04	Cefuroxime	0.237972182	0.23271682	0.25325516	0.26154427	0.27320269	0.28142246	0.28571428	0.28571428	0.28571428	0.664878971	0.710039182
J01DB05	Cefotaxime	0.042510725	0.036586907	0.021800941	0.029547082	0.025665575	0.022150384	0.020304078	0.013771381	0.013771381	0.684487971	0.710039182
J01DB06	Cefazidime	0.015811968	0.014346836	0.012999263	0.016545000	0.017959010	0.022132702	0.014783068	0.017650589	0.017650589	0.664878971	0.710039182
J01DB07	Ceftriaxone	0.672952673	0.72413833	0.684487971	0.710039182	0.692891371	0.718067922	0.14873068	0.017650589	0.017650589	0.718067922	0.718067922
J01DB08	Cefotaxime	0.020304078	0.019213042	0.015426556	0.017124064	0.015426556	0.017124064	0.014873068	0.011765059	0.011765059	0.718067922	0.718067922
J01DB09	Ceftriaxone	0.000939223	0.000424895	0.000019802	0.000010002	0.000019802	0.000010002	0.000019802	0.000010002	0.000010002	0.718067922	0.718067922
J01DB10	Cefazolin	0.001931611	0.002488001	0.001223237	0.000468221	0.00001576	0.000000000	0.000000000	0.000000000	0.000000000	0.718067922	0.718067922

7. Conclusions from the conducted research and prospects for further development of this field

1. Antimicrobial preparations of the β-lactam group are well-studied and widely used in medical practice.
2. Preparations of the β-lactam group are widely represented in the Ukrainian market (343 TNs), but only less than a third of them (92 TNs) of domestic production, indicating a high saturation of the Ukrainian pharmaceutical market with imported drugs.
3. The volume of consumption of AMI of the β-lactam group (penicillins) in Ukraine is almost 4.5 times lower than in the EU, which may indicate unbalanced use of different groups of AMI in terms of DDDs per 1000 inhabitants per day (DID).
4. Consumption in general of all β-lactam groups from 2013 to 2018 has increased, although years of decline in consumption (2015) have been noted.
5. The most consumed during the study period are drugs Amoxicillin - a group of broad-spectrum penicillins and among cephalosporins preparations Ceftriaxone and Cefuroxime.

References

1. Bennett J. W., Chung K.-T. Alexander Fleming and the discovery of penicillin // Advances in Applied Microbiology. 2001. P. 163–184. doi: https://doi.org/10.1016/s0065-2164(01)49013-7
2. Chellat M. F., Raguz L., Riedl R. Targeting Antibiotic Resistance // Angewandte Chemie International Edition. 2016. Vol. 55, Issue 23. P. 6600–6626. doi: https://doi.org/10.1002/anie.201506818
3. Van Loon K., Voor in ’t holt A. F., Vos M. C. A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant Enterobacteriaceae // Antimicrobial Agents and Chemotherapy. 2017. Vol. 62, Issue 1. doi: https://doi.org/10.1128/aac.01730-17
4. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance / Bell B. G., Schellevis F., Stobberingh E., Goossens H., Pringle M. // BMC Infectious Diseases. 2014. Vol. 14, Issue 1. doi: https://doi.org/10.1186/1471-2334-14-13
5. Intensive care antibiotic consumption and resistance patterns: a cross-correlation analysis / Baditioiu L., Axente C., Lungeanu D., Muntean D., Horhat F., Moldovan R. et. al. // Annals of Clinical Microbiology and Antimicrobials. 2017. Vol. 16, Issue 1. doi: https://doi.org/10.1186/s12941-017-0251-8
6. Use of ATC/DDD // WHO. URL: https://www.whocc.no/use_of_atc_ddd/
7. Georgopapadakou N. H., Liu F. Y. Penicillin-binding proteins in bacteria // Antimicrobial Agents and Chemotherapy. 1980. Vol. 18, Issue 1. P. 148–157. doi: https://doi.org/10.1128/aac.18.1.148
8. Use of Antibiotics in Children / Pottégard A., Broe A., Aabenhus R., Bjerrum L., Hanss J., Damkier P. // The Pediatric Infectious Disease Journal. 2015. Vol. 34, Issue 2. P. e16–e22. doi: https://doi.org/10.1097/inf.0000000000000519
9. Saroglou G., Cromer M., Biso A. L. Methicillin-Resistant Staphylococcus Aureus: Intermediate Spread of Nosocomial Infections with Emergence of Gentamicin-Methicillin Resistant Strains // Infection Control. 1980. Vol. 1, Issue 02. P. 81–89. doi: https://doi.org/10.1017/s0195941700052590
10. Bush K. Proliferation and significance of clinically relevant β-lactamases // Annals of the New York Academy of Sciences. 2013. Vol. 1277, Issue 1. P. 84–90. doi: https://doi.org/10.1111/nyas.12023

11. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: Outcome correlations in a prospective study of 200 patients / Hilf M., Yu V. L., Sharp J., Zuravleff J. J., Korvick J. A., Muder R. R. // The American Journal of Medicine. 1989. Vol. 87, Issue 5. P. 540–546. doi: https://doi.org/10.1016/s0002-9343(89)80611-4

12. Group A streptococci are protected from amoxicillin-mediated killing by vesicles containing -lactamase derived from Haemophilus influenzae / Schaar V., Uddback I., Nordstrom T., Riesbeck K. // Journal of Antimicrobial Chemotherapy. 2014. Vol. 69, Issue 1. P. 117–120. doi: https://doi.org/10.1093/jac/dct307

13. Abraham E. P. Cephalosporins 1945-1986 // Drugs. 1987. Vol. 34. P. 1–14. doi: https://doi.org/10.2165/00003495-198700342-00003

14. Perioperative Antibiotics Covering Bile Contamination Prevent Abdominal Infectious Complications After Pancreatectoduodenectomy in Patients With Preoperative Biliary Drainage / Sudo T., Murakami Y., Uemura K., Hashimoto Y., Kondo N., Nakagawa N. et al. // World Journal of Surgery. 2014. Vol. 38, Issue 11. P. 2952–2959. doi: https://doi.org/10.1007/s00268-014-2688-7

15. Validation of Cefazolin as Initial Antibiotic for First Upper Urinary Tract Infection in Children / Abe Y., Wakabayashi H., Ogawa Y., Machida A., Endo M., Tamai T. et al. // Global Pediatric Health. 2016. Vol. 3. P. 2333794X1562529. doi: https://doi.org/10.1177/2333794x15625297

16. Yakovlieva L., Matyashova N. A. The estimation out-patient consumption of penicillins in Ukraine // Farmatsevtychnyi zhurnal. 2013. Issue 1. P. 26–31. URL: http://nbuv.gov.ua/UJRN/pharmazh_2013_1_6

17. Yakovlieva L. V., Matvieieva O. V., Matiashova N. O. Doslidzhennia spozhyvannia antybiotykiv hrupy tsefalosporyniv, predstavlenykh na farmatsevtychnomu rynku Ukrainy // Klinichna farmatsiya. 2010. Issue 2. P. 22–26. URL: http://dspace.nuph.edu.ua/handle/123456789/179

18. European Centre for Disease Prevention and Control. Antimicrobial consumption // ECDC. Annual epidemiological report 2017. Stockholm: ECDC, 2018.

19. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases / J. E. Bennett, R. Dolin, M. J. Blaser (Eds.). Elsevier, 2015. 3904 p.

Дата надходження рукопису 12.03.2019

Yakovlieva Larysa, Doctor of Pharmaceutical Sciences, Professor, Merited worker of science and technology of Ukraine, Head of Department, Department of Pharmacoeconomics, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

Bahlai Tetiana, Postgraduate student, Department of Pharmacoeconomics, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002