Density and population viability of coastal marten: a rare and geographically isolated small carnivore

Mark A Linnell ¹, Katie Moriarty Corresp. ², David S Green ³, Taal Levi ⁴

¹ Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, Oregon, United States
² Pacific Northwest Research Station, U.S. Department of Agriculture, Forest Service, Olympia, Washington, United States
³ Institute for Natural Resources, Oregon State University, Corvallis, Oregon, United States
⁴ Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, United States

Corresponding Author: Katie Moriarty
Email address: ktmoriarty22@gmail.com

Pacific martens (*Martes caurina*) in coastal forests of Oregon and northern California in the United States are rare and geographically isolated, prompting a petition for listing under the Endangered Species Act. If listed, regulations have the potential to influence land-use decisions on public and private lands, but no estimates of population size, density, and viability of remnant marten populations are available for evaluating their conservation status. We used GPS and VHF telemetry and spatial mark-resight to estimate home ranges, density, and population size of Pacific martens in the Oregon Dunes National Recreation Area, central coast Oregon. We then estimated population viability at differing levels of human-caused mortality (e.g., vehicle mortality). Marten home ranges were small on average (females = 0.8 km², males 1.5 km²) and density (1.13 martens/1 km²) was the highest reported for North American populations (*M. caurina, M. americana*). We estimated 71 adult martens (95% Credible Interval: 41-87) across two subpopulations separated by a large barrier (Umpqua River). Using population viability analysis, extinction risk for a subpopulation of 30 martens ranged from 34% to 100% with two or more annual human-caused mortalities. Absent population expansion, limiting human-caused mortalities will likely have the greatest conservation impact.
Density and population viability of coastal marten: a rare and geographically isolated small carnivore

RH: Trajectories of a small isolated marten population

Mark A. Linnell1a, Katie M. Moriarty2a, David S. Green3, Taal Levi4

1 Department of Forest Engineering, Resources, and Management, Oregon State University, 280 Peavy Hall, Corvallis, OR 97331, USA

2 Pacific Northwest Research Station, USDA Forest Service, 3625 93rd Avenue SW, Olympia, WA 98512, USA

3 Institute for Natural Resources, Oregon State University, 234 Strand Agriculture Hall, Corvallis, OR 97331, USA

4 Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA

a co-lead authors

Corresponding Author:

Katie Moriarty

Email address: ktmoriarty22@gmail.com
Abstract

Pacific martens (*Martes caurina*) in coastal forests of Oregon and northern California in the United States are rare and geographically isolated, prompting a petition for listing under the Endangered Species Act. If listed, regulations have the potential to influence land-use decisions on public and private lands, but no estimates of population size, density, and viability of remnant marten populations are available for evaluating their conservation status. We used GPS and VHF telemetry and spatial mark-resight to estimate home ranges, density, and population size of Pacific martens in the Oregon Dunes National Recreation Area, central coast Oregon. We then estimated population viability at differing levels of human-caused mortality (e.g., vehicle mortality). Marten home ranges were small on average (females = 0.8 km2, males 1.5 km2) and density (1.13 martens/1 km2) was the highest reported for North American populations (*M. caurina, M. americana*). We estimated 71 adult martens (95% Credible Interval: 41-87) across two subpopulations separated by a large barrier (Umpqua River). Using population viability analysis, extinction risk for a subpopulation of 30 martens ranged from 34% to 100% with two or more annual human-caused mortalities. Absent population expansion, limiting human-caused mortalities will likely have the greatest conservation impact.
Introduction

Conserving wildlife while maintaining economic growth is one of the most pervasive conservation and policy challenges globally. This balance in the United States is enforced in part by the Endangered Species Act (ESA), which can regulate land-use on both public and private lands for the conservation of imperiled species. Forests of the Pacific Northwest of North America highlight challenges between land-use and endangered species conservation as demonstrated by the history with northern spotted owl (*Strix occidentalis caurina*, Simberloff 1987). Now decades after the conflict over listing the northern spotted owl, a distinct population segment of a forest-dependent small carnivore is a litigation target, petitioned for listing under the ESA (Anonymous 2017).

Pacific martens (*Martes caurina*) are a small carnivore considered to be a habitat specialist closely associated with structurally complex montane forests with seasonal snow cover in the western United States (Buskirk & Ruggiero 1994; Zielinski 2013). Coastal populations of Pacific martens in coastal Oregon and California are near the southern edge of their distribution and live in near-coast forests with limited or no snow cover. Recent extensive distributional surveys suggest two or three potential populations in coastal Oregon and northern California (Moriarty et al. 2016a; Zielinski et al. 2001). These coastal populations of martens have contracted in the 20th century (Zielinski et al. 2001), prompting petitions to list a Distinct Population Segment, often referred to as Humboldt marten (*Martes caurina humboldtensis*), as threatened or endangered (Center for Biological Diversity 2010). The northernmost population is located in the central Oregon coast (Moriarty et al. 2016a), and it is also the most isolated (i.e., > 60 km from the nearest adjacent population).
The U.S. Fish and Wildlife Service determined that the coastal Distinct Population Segment of the Pacific martens in California and Oregon did not warrant listing as a threatened or endangered species under the Endangered Species Act in 2015 (US Fish Wildlife Service 2015). The finding by the U.S. Fish and Wildlife Service, however, included assumptions that coastal martens were abundant in central Oregon from speculation that the relatively high number of road-killed individuals there in the past three decades ($n = 14$, Zielinski et al. 2001, p. 487) and extensive Late-Seral Reserves on federal lands provided habitat for these martens (Slauson 2015). Recent distributional surveys indicated this population likely occupies a <500m wide band of young (i.e., < 70 years old) forests growing on sand dunes along the margin of the Pacific Ocean west of Highway 101 and no evidence of martens > 3 km inland (Fig. 1, Moriarty et al. 2016a). Very little is known about population size, or spatial ecology of martens living in the central Oregon coast.

Our objectives were to describe marten density, population size, and population viability in the central Oregon coast. Specifically, we used spatial mark-resight (SMR) models to evaluate density in a portion of our study area and then we applied our density estimate to coastal forests west of Highway 101 where martens resided to estimate total population size. We assumed that, 1) forest characteristics were similar across our study area, and 2) because martens are highly territorial, density would be static across study areas if home range sizes were similar between individuals. We then used a population viability analysis to quantify the potential effects of human-caused mortality (i.e., legal trapping, vehicle strikes). Finally, because density and home range size are often correlated with foraging resources (Kittle et al. 2015; Mattisson et al. 2016), we compared density and home range sizes of martens in coastal Oregon to other North...
American populations (*Martes caurina, Martes americana*) to infer year-round food resource availability compared to other studies.

Methods

Study area

We surveyed the northernmost population of coastal martens along the central Oregon coast within the 125 km² Oregon Dunes National Recreation Area (hereafter, “Oregon Dunes”). Coastal forests within the Oregon Dunes consisted of a narrow north-south strip along the margin of the Pacific Ocean bounded by two large rivers to the north and south (i.e., Siuslaw and Coos Rivers), Highway 101 to the east, and bisected by the Umpqua River, which is 600-m wide at the confluence with the Pacific Ocean (Fig. 1). Much of the forested area was the result of recent expansion over the last 70 years coincident with stabilization of near-coast beaches by European beach grass (*Amophila arenaria*) into mounded fore dunes, which limited sand deposition and facilitated vegetation expansion into previously shifting open sand (Christy et al. 1998).

Coastal dune forests grew on nutrient poor sandy soils (Christy et al. 1998), and they were dominated by young (< 70 years-old) shore-pine (*Pinus contorta contorta*) and Sitka spruce trees (*Picea sitchensis*). The sub-tree canopy was dense, extended to > 2.5 m in height, and it was dominated by willow (*Salix hookeri*), Pacific waxmyrtle (*Myrica californica*), salal (*Gaultheria shallon*), and slough sedge (*Carex obnupta*) on seasonally flooded sites, and berry-producing ericaceous shrubs (e.g., evergreen huckleberry (*Vaccinium ovatum*), salal) on seasonally dry sites (Christy et al. 1998). Coastal forests differed substantially from inland forests east of Highway 101 in vegetation age, structure, composition, and their vertebrate communities (Eriksson 2016). Inland forests were a mix of young (i.e., 0-80 years) and mature (i.e., >80 years old) Douglas-fir (*Pseudotsuga menziesii*) and Sitka spruce forests. Mature forests
on federal lands were primarily managed as Late Seral Reserves to protect habitat for northern spotted owls (*Strix occidentalis*) and marbled murrelets (*Brachyramphus marmoratus*, Davis et al. 2015). Forests in the Oregon Dunes supported a high diversity of vertebrates, including several predators and competitors of martens (e.g., gray foxes *Urocyon cinereoargenteus*, coyotes *Canis latrans*, cougars *Puma concolor*; Eriksson 2016; Eriksson et al. in review).

To distinguish vegetation cover (i.e., forests and tall shrubs) from open sand, we used airborne light detection and ranging data collected at 1-m resolution. We defined vegetation cover as > 40% cover of pixels > 1 m in height within a 100-m circular radius moving window of each pixel. This process produced a raster layer that smoothed small gaps in vegetation cover (i.e., sand gaps <30 m) that martens could presumably move through, but that excluded broad expanses of open sand that we assumed represented non-habitat for martens, particularly because of the presence of predators (Moriarty et al. 2015). The northern (i.e., north of Umpqua River, Fig. 1b) and southern (i.e., south of Umpqua River, Fig. 1c) study areas were comprised of 36.9 km2 and 25.6 km2 of vegetation cover, respectively.

Minimum and maximum temperatures in July and January were 10.1°C and 20.3°C and 3.2°C and 10.2°C, respectively. Annual precipitation averaged 176 cm, and occurred primarily between November and March (Western Regional Climate Center 1971-2016). Elevation within the study area ranged from eight to 80 m.

Live-capture and home range size estimates

We live-trapped and radio-marked Pacific martens from October to December 2015 using traps spaced approximately 1 km apart with some additional clustering of traps at < 1 km (Fig. 1) using methods described in Moriarty et al. (2017) and Mortenson & Moriarty (2015). We fit adult martens (i.e., > two years old) with a VHF (Advanced Telemetry Systems, Minnesota,
USA; 29 g) or GPS/VHF collar (Quantum 4000 Micro-Mini GPS collars, Telemetry Solutions, California, USA; 41-44 g; or G10 snap technology GPS, Advanced Telemetry Systems, Minnesota, USA; 27 g; Table S1). Each individual marten was marked with a unique pattern of reflective tape attached to the antenna of the radio collar, which we used to resight marked individuals using black-LED remote cameras (Aggressors, 2015, Bushnell, Missouri, USA; Fig. 2). All capture and handling procedures were approved by the USDA Forest Service’s Institute for Animal Care and Use Committee (USFS 2015-002) under an Oregon Department of Fish and Wildlife Scientific Take Permit (ODFW 119-15). We removed collars in January and February 2016.

We programmed GPS collars to collect locations separated by 5 min, and only included locations in our analyses with predicted errors < 30 m and time periods where data were collected for > 72 consecutive hrs (details in Moriarty et al. 2017). We located individuals with VHF-only collars at least twice per week. We only used VHF locations where the variance of x and y was < 400 m determined with Location of a Signal (Ecological Software Solutions LLC). We estimated 99% local convex hull home ranges, discarding 1% of the furthest dispersed locations (Lyons et al. 2013), using the t-LoCoH package in R. Local convex hulls were constructed using 35 neighboring locations (k = 35), regardless of time between locations (s = 0; Lyons et al. 2013; R Core Team 2013). These parameterizations best reflected marten space use in our study (Moriarty et al. 2017) by limiting the formation of multiple activity centers, and they providing a smoothed outer contour boundary.

Spatial mark-resight

We deployed 31 remote camera stations for 39 nights in December 2015 and early January 2016 along a linear transect (henceforth, “SMR transect”) that overlapped the area
occupied by radio-tracked martens in the northern study area (Fig. 3). We set remote cameras (Bushnell Aggressor, model: 119776; Bushnell Corporation, Overland Park, KS) two to three m from bait and we programmed them to record one photo after motion was detected with a one-second lag between consecutive photos. Each station included an olfactory lure (Gusto, Minnesota Trapline Products, Pennacock, MN) and baits that were checked and replaced weekly. We placed bait, in the form of ~250 g of chicken and ~100 g of strawberry jam, at each camera during setup and replaced it at each site on 3 visits. Camera stations were distributed 311 ± 91 m (mean ± 1 standard deviation) apart within vegetation cover with a minimum goal of four camera stations accessible to each female (Sun et al. 2014). Visits occurred every 8.2 ± 1.5 days after setup.

We estimated the density of martens from our photographic data using a generalized spatial mark-resight model (Whittington et al. 2018; Code in Article S1). Generalized spatial mark-resight models combine the latent processes that generate both the capture (i.e., marking) and resight data (i.e., cameras) to estimate the number of latent activity centers \(s_i \) within the study area (Whittington et al. 2018). We defined our study area as a discrete state-space \(S \) of a 100-m grid within a 5-km buffer around camera stations, excluding cells in the Pacific Ocean.

We defined live-capture data as the binomially distributed random variable \(y_{\text{cap}}_{ij} \) representing the number of times that marten \(I \) was captured in trap \(j \) as a function of the probability of capture \(p_{\text{cap}}_{ij} \) and the number of nights that trap \(j \) was open \((K_{\text{trap}}) \):

\[
y_{\text{cap}}_{ij} \sim \text{Binom}(p_{\text{cap}}_{ij}, K_{\text{trap}})
\]

We hypothesized that the probability of capture would vary by sex and the distance between the location of trap \(j \) and the activity center of marten \(i \):

\[
p_{\text{cap}}_{ij} = p0_{\text{cap}}_i \times e \left(-\frac{d_{ij}^2}{2\sigma_k^2} \right)
\]
where the average probability of capture \(p_{0cap_i} \) was modeled as a function of the sex of each marten (logit\((p_{0cap_i}) = \beta_0 + \beta_1 \times \text{sex}_i \)), a half-normal decay function where \(d_{ij} \) is the distance between the trap and the latent activity center of individual \(i (s_i) \), and the standard deviation of a bivariate normal distribution reflecting space-use varying by sex \((\sigma_k) \). We parameterized \(\sigma \) separately for each sex (See Article S1).

We defined camera resighting data as the Bernoulli distributed random variable \(y_{cam_{ijk}} \) representing whether or not the previously live-captured marten \(i \) was resighted at camera station \(j \) on night \(k \) as:

\[
y_{cam_{ijk}} \sim \text{Bern}(p_{cam_{ijk}})
\]

where \(p_{cam_{ijk}} \) is a function describing the average daily rate of detecting martens on camera. Similar to the capture data, we hypothesized that the average daily rate of detection would vary by sex and the distance between the station and their latent activity center \((p_{cam_{ijk}} = p_{0cam_{ijk}} \times e^{-d_{ij}^2 / 2\sigma_k^2}) \). We also hypothesized that the time since bait addition would influence the rate of detecting martens on camera, so we added a variable to test the effect of days since baiting on the average rate of detection \((\text{logit}(p_{0cam_{ijk}}) = \delta_0 + \delta_1 \times \text{sex}_i + \delta_2 \times \text{days}_{jk}) \).

We modeled activity center locations using a non-homogeneous Poisson point process in \(S \) to examine whether locations of marten activity centers in the Oregon Dunes were associated with percent vegetation cover. We calculated the percent vegetation cover in each grid cell \(g \) in \(S \), and used an intensity function to model the location of activity centers as:

\[
\mu_g = \text{area}_g \cdot \tilde{\Lambda} - e^{a_0 + a_1 \text{vegetation cover}_g \text{forest cover}_g + a_2 \text{forest cover}_g^2}
\]

where the predicted number of activity centers in grid cell \(g (\mu_g) \) is a function of an intercept \((\alpha_0) \), the linear effect of vegetation cover \((\alpha_1) \), and the size of the grid cell \((\text{area}_g; 0.01 \text{ km}^2) \). We incorporated telemetry data to increase the precision of our estimates for the movement
parameters and the location of marten activity centers (Royle et al. 2013; Sollmann et al. 2013).

Telemetry locations of martens were modeled as being generated from the normally distributed random variable with a mean of s_i and a precision of $\frac{1}{\Omega_i^2}$ (See Article S1). Martens can travel to any point in their home range within one hr (Moriarty et al. 2016b; Moriarty et al. 2017). Accordingly, we only used locations that were at least one hr apart to ensure independence of telemetry locations (Sollmann et al. 2013).

We followed Whittington et al. (2018) in their treatment of the sightings of unmarked individuals; the number of unmarked individuals detected at camera station j on night k (n_{Ujk}) was modeled as:

\[n_{Ujk} \sim \text{Sum}(y_{u1jk}, y_{u2jk}, y_{u3jk}...y_{uijk}) \]

\[y_{uijk} \sim \text{Bern}(pcam_{ijk}) \]

where the number of sightings of unmarked individuals was modeled to be generated from a latent Bernoulli process of resight probability ($y_{uijk} \sim \text{Bern}(pcam_{ijk})$), based on the same probabilities of resighting as defined previously ($pcam_{ijk}$). Similar to the sightings of marked individuals, we assumed that a detection of an unmarked individual at our cameras on a day arose from a Bernoulli process. Unmarked individuals were seen infrequently on our cameras (n=14 sightings throughout the duration of the study), and identified as being present at the camera for a single bout typically <19 minutes. Thus, it was highly unlikely that more than 1 unmarked individual was captured on our cameras per day. The code for our SMR model can be found in Supplemental Article S1.

We fit our models using data augmentation (Royle & Dorazio 2008; Royle & Young 2008) and the Markov-Chain Monte Carlo (MCMC) methods of JAGS (Plummer 2003) with the jagsUI package (Kellner 2014) in R v. 3.2.3 (R Core Team 2016). We used uninformative prior
distributions for all parameters (See Article S1). We calculated estimates from 3,000 MCMC samples, taken from three chains run for 10,000 iterations, thinned by five, following a burn-in of 5,000. We assessed model convergence by examining trace plots and \hat{R} values for parameter estimates (Gelman & Hill 2007; Gelman et al. 2013). All \hat{R} values were < 1.1, indicating chain convergence. We estimated the density of martens in our northern study area by determining the number of martens with estimated activity centers located in vegetation cover in the state-space, excluding open sand.

To evaluate our assumption that home range sizes were similar, we compared home range sizes in the northern and southern study areas using a general linear model with two parameters: sex and study area. We interpreted test statistics from this model and lacking any significant differences, we assumed density could be extrapolated to estimate population sizes (Moriarty et al. 2017).

Population viability

We assessed the risk of extirpation for a marten subpopulation over the next 40 years in the context of threats from human activities (e.g., trapping, roadkill; Gerber et al. 2004). We estimated the maximum intrinsic population growth rate using a modified Euler-Lotka equation proposed by Skalski et al. (2008)

$$e^{ra} - e^{-M(e^r)^{a-1}} - ml_a = 0,$$

where r is the maximum intrinsic growth rate, a is the age at first birth, m is the fecundity constant (number of female offspring/female/year), e^{-M} is the probability of survival, and l_a is the probability of survival to maturity. We obtained a range of parameter estimates associated with the maximum reproductive output of two closely related species of North American martens ($Martes americana, Martes caurina$) in wild populations from the literature (Table 1). Estimates
of r are sensitive to uncertainty in annual survival, e^{-M}; we estimated maximum intrinsic growth rate I) assuming average, high, and very high survival rates (0.7, 0.8, 0.9 respectively, McCann et al. 2010) to obtain three values of $r = 0.143, 0.205, 0.268$ (Table 2). We used the intermediate value of $r = 0.205$ in our population projections, but we also implemented a stochastic element with $\bar{I}f = 0.06$ such that the low and high estimates of r would bracket one standard deviation from the mean.

We simulated the dynamics of a population beginning at carrying capacity using initial values of the population size (K) equal to 20, 30, and 40 to illustrate how estimates of extirpation risk depend on our uncertainty about the current population size, assuming that immigration between the northern and southern study areas was infrequent due to a large barrier (i.e., Umpqua River; see population estimates in Results). The density-dependent population dynamics are given by the discrete theta-logistic model with an annual mortality component:

$$N_{t+1} = e^{r\left(1 - \frac{N}{K}\right)} + \bar{I}u - H_t,$$

where $\bar{I}u \sim N(0, \bar{I}f)$, with $\bar{I}f = 0.06$ based on the variation in our best estimate of r (Table 2), and mortalities resulting from trapping and road-kills as $H_t \sim Pois(\bar{I}r)$. The rate parameter of the Poisson distribution, $\bar{I}r$, defines both the mean and variance of the annual mortality through road-kills or trapping (H_t), which takes values of $\bar{I}r = 1, 2, 3$ martens in our models (36 martens harvested 1969–1995, 0–4/year; Verts & Carraway 1998). We assumed a small density-independent harvest to illustrate how extirpation risk can be influenced by relatively low mortality rates. We conservatively assumed a standard logistic population growth ($\hat{I}_r = 1$), but we also assumed that density-dependent declines in per-capita growth occurred at higher population densities ($\bar{I}_r = 2$), which is expected for long-lived mammals (Boyce 1992). We simulated 1,000
population trajectories for each of three initial conditions ($K = 20, 30, \text{ and } 40$), three stochastic human-caused mortality rates ($\hat{m} = 1, 2, \text{ and } 3$), and two values of the strength of density dependence using theta ($\hat{\lambda} = 1, 2$). Finally, we report observed mortalities during our study period. Where appropriate, we report results as mean ± 1 standard deviation.

Results

We live-captured and radio-collared six female (three VHF-only, three GPS/VHF) and four male martens. Our GPS collars collected 1139 (\bar{x}, range: 173–2960) locations over 15.7 (\bar{x}, range: 4–44) days on 8 individuals (4 males, 4 females), and we collected 35 (\bar{x}, range: 23–37) locations over 75 (\bar{x}, range: 42–90) days for three females with VHF-only collars (Table S1). Home range sizes in our study areas were similar ($t = 0.5, p = 0.68$) for males: 1.7, 2.2 (northern, $n = 2$) vs 1.0, 2.2 (southern, $n = 2$), and females 0.59 – 0.84 ($\bar{x} = 0.67$, northern, $n = 4$) vs 0.71, 0.79 (southern, $n = 2$). Martens were primarily located in areas of high vegetation cover and vegetation cover within a 100 m moving window of telemetry locations averaged 75% (25–75% quantile range = 60–96%, $n = 11$ martens; Table S1, Fig. S1). Home range sizes were smaller and density was higher in coastal Oregon compared to other North American populations (Fig. 3, Table S2). Across populations, home range sizes were negatively correlated with density (Fig. 3).

Density and population size

We incorporated 79.3 ± 59.2 telemetry locations per individual into our SMR models. No marked individuals of the same sex were observed visiting the same camera station, and 1.1 (\bar{x}, range: 0.7–1.9) km and 4.7, 2.1 ($n = 2$) km was the furthest distance between camera station detections for females and males, respectively (Fig. 4).
We estimated marten density as (mean ± 1 standard deviation) 1.13 ± 0.15 individuals/km² (95% Credible Interval (CrI) = 0.81–1.39), or 9.75 ± 1.32 individuals within the SMR area. Assuming density was constant within vegetation in the 62.5 km² Oregon Dunes, we estimated a median population size of 42 (CrI = 30–51) north of the Umpqua River and 29 (CrI = 21–36) south of it. Sex did not have a significant effect on the probability of live-capture (Table 3), but female martens had a higher resight probability than males (Table 3). Days since baiting had a significant effect on resight probability; martens were more likely to visit baited cameras closer to a baiting event (Table 3). Percent vegetation cover had a significant effect on the distribution of activity centers (Table 3).

Population viability

We estimated that two or more annual human-caused mortalities on martens (e.g. trapping and road-kills) would lead to a substantial risk of extirpation, particularly at smaller population sizes (Figs. 5, 6) and for \(\hat{N}_r = 1 \) (Fig. 5) relative to \(\hat{N}_r = 2 \) (Fig. 6). The likelihood of extirpation when \(\hat{N}_r = 1 \) for a population of 30 individuals, which approximated the average of our estimates for each study area, was 32% and 99% with two and three annual mortalities, respectively. The probabilities decreased to 1% and 60% when \(\hat{N}_r = 2 \) with two and three annual mortalities, respectively. The probability of extirpation increased to 89–100% and 65–100% for a population of 20 individuals with two or three annual mortalities.

Discussion

Our population assessment revealed that the central Oregon population of coastal martens likely has fewer than 87 adults divided into two subpopulations separated by a riverine barrier. Further, this population appears completely isolated with a lack of connectivity to the southern Oregon population. Based on the small population sizes of these subpopulations, our population
projections suggest that even a small amount of human-caused mortalities will strongly increase
the likelihood of extirpation over the next 30 years. Further, our analysis is likely an optimistic
scenario for marten population viability because we assumed that marten populations would
exhibit very high survival and fecundity at low population densities, which may not be the case.
Despite these favorable assumptions, marten population viability was low given modest
mortality estimates averaging 2–3 individuals annually, even when assuming higher than
observed carrying capacities and assuming later onset of density dependence (θ=2; Fig. 6).
Moreover, we did not fully consider environmental stochasticity in our viability analysis. In
particular, the extant central Oregon marten population is in a tsunami zone within the Cascadia
subduction zone. The probability of a large earthquake and tsunami eliminating much of
Oregon’s near-coastal forests in the next 50 years is placed at 15 to 20% (Goldfinger et al. 2012).
Such an event would be expected to eliminate much of the forested habitat that the central coast
marten population occupies.
Martens can be common in structurally complex high elevation montane forests with
seasonal snow cover, but they are apparently rare and geographically isolated in coastal Oregon.
Nonetheless, the Oregon dunes appeared to provide favorable ecological conditions, and
supported the smallest home ranges and highest reported density of martens in North America
(Fig. 3). North American martens inhabiting forests with seasonal snow-cover typically consume
a narrow range of prey, especially during winter months (Martin 1994), which can lead to
substantial inter- and intra-annual variation in food availability (Poole and Graf 1996), and
presumably requires martens to defend large amounts of space within their home ranges to meet
nutritional requirements. In contrast, low-latitude coastal populations have a broad diet including
foods such as late-season berries and over-wintering passerine birds, unavailable to montane and
high latitude martens, particularly during winter (Nagorsen et al. 1989) potentially facilitating the small home ranges observed in our study. Despite the adjacent high-density marten population, the mature forest east of the Oregon Dunes does not support a marten population. The reason for near complete marten absence to the east is unclear. We hypothesize that abundant berry-producing shrubs in the Oregon Dunes directly provide abundant food for martens, and indirectly support marten by increasing the abundance of frugivorous vertebrate prey. Moreover, dense understory vegetation likely mediates interactions with competitors and predators, and provided spaces to hunt and avoid predators similar to snow in winter (Andruskiw et al. 2008). Whether prey availability, habitat-mediated competition, or some combination of these factors limits martens from the extensive inland forests is largely unknown; these questions are key to address when considering the potential for population expansion.

In addition to vegetation structure and predation, harvest by humans can affect marten populations. It is currently legal to harvest marten throughout Oregon, including within this small, remnant, coastal population. Marten populations can be resilient to fur harvest when they are abundant, and if breeding females are harvested infrequently compared to males, particularly juvenile males (Robitaille 2017, Banci & Proulx 1999). Adult females in our study were observed more frequently than adult males at ratios of 1.5:1 (live-trapping) and 3:1 (SMR). Our results were atypical of ratios observed in other marten research studies and in harvested populations; these studies typically demonstrate higher male to female ratios (e.g., McCann et al. 2010; Payer & Harrison 1999; Robitaille 2017). Intolerance among same-sex individuals resulting in intrasexual territoriality typical of martens (Moriarty et al. 2017; Powell 1994) may require juveniles to disperse outside of the Oregon Dunes, especially if the long, narrow forested
habitat resulted in elevated encounter rates between juveniles and resident adults. Alternatively, we spaced live-traps at a relatively fine-scale in our study compared to other studies which may have resulted in higher trap encounter rates by females. Regardless of the mechanism, resident breeding females appear to be vulnerable to live-trapping in the Oregon dunes. Further, of the four vehicle killed mortalities since 2015, three were adult females. Based on our data, a prudent consideration could limit fur harvest to areas outside of the Oregon coast range, reducing the immediate risk of short-term marten extirpation.

We have provided a baseline estimate of population size that can be compared to future surveys, allowing the monitoring of population status and viability. Such additional monitoring efforts would inform whether these populations are declining or merely small (Caughley 1994). Small population size, consistent annual human-caused mortality, and isolation indicate this coastal marten population is likely to remain vulnerable to extirpation.

Acknowledgements

We received considerable aid with field logistics, vehicles, housing, and equipment from the Central Coast Ranger District, Siuslaw National Forest. Adam Kotaich contributed significantly to the field work, we also thank Cindy Burns, Crystal Mullins, and Deanna Williams for quickly using field data for management-related discussions and the team that has incorporated martens into the updated Oregon Dunes Restoration Strategy.

References

Andruskiw M, Fryxell JM, Thompson ID, and Baker JA. 2008. Habitat-mediated variation in predation risk in the American marten. *Ecology* 89:2273-2280.
Anonymous. 2017. Center for Biological Diversity et al., v U.S. Fish and Wildlife Service, et al.
Case 15-cv-05754-JST: United States District Court, Northern District of California. p 17.

Aune KE, and Schladweiler P. 1997. Age, sex structure, and fecundity of the American marten in Montana. In: Proulx G, Bryant HN, and Woodard PM, eds. Martes: taxonomy, ecology, techniques, and management. Edmonton, Alberta, Canada: Provincial Museum of Alberta, 61-77.

Banci, V, and Proulx G. 1999. Resiliency of furbearers to trapping in Canada. In Proulx G, ed, Mammal trapping, Sherwood Park, Alberta: Alpha Wildlife Publications, 175-203

Boyce MS. 1992. Population viability analysis. Annual Review of Ecology and Systematics 23:481-497.

Buskirk SW, and Ruggiero LF. 1994. American marten. In: Ruggiero LF, Aubry KB, Buskirk SW, Lyon LJ, and Zielinski WJ, eds. The scientific basis for conserving forest carnivores: American marten, fisher, lynx, and wolverine in the western United States. Fort Collins, CO, USA: U.S. Department of Agriculture, Rocky Mountain Research Station, 7-30.

Caughley G. 1994. Directions in conservation biology. Journal of Animal Ecology 63:215-244.

Center for Biological Diversity. 2010. Petition to list the Humboldt Marten (Martes americana humboldtensis) as Threatened or Endangered under the Federal Endangered Species Act. Submitted to U.S. Department of the Interior on 28 September 2010.

Christy JA, Kagan JS, and Wiedemann AM. 1998. Plant associations of the Oregon Dunes National Recreation Area: Siuslaw National Forest, Oregon. U.S. Forest Service, Pacific Northwest Region. p 1-189.
Davis R, Ohmann J, Kennedy R, Cohen W, Gregory M, Yang Z, Roberts H, Gray A, and Spies T. 2015. Northwest Forest Plan – the first 20 years (1994-2013): status and trends of late-successional and old-growth forests USDA Forest Service: Portland, OR, USA.

Eriksson C. 2016. Martens in a novel habitat - the importance of prey and habitat structure M. S. thesis M. S. thesis. Lund University.

Flynn RW, and Schumacher TV. 2016. Habitat selection of American martens on northeast Chichagof Island, southeast Alaska, 1991-1997. Juneau, Alaska, USA. Wildlife Research Report ADF&G/DWC/WRR-2016-6: Alaska Department of Fish and Game. p 25.

Gerber LR, Buenau KE, and Vanblaricom G. 2004. Density dependence and risk of extinction in a small population of sea otters. *Biodiversity and Conservation* 13:2741-2757.

Godbout G, and Ouellet J-P. 2010. Fine-scale habitat selection of American marten at the southern fringe of the boreal forest. *Ecoscience* 17:175-185.

Goldfinger C, Nelson CH, Morey JE, Johnson JC, Gutiérrez–Pastor J, Eriksson AT, Gracia E, Dunhill G, Enkin RJ, Dallimore A, and Villier T. 2012. Turbidite event history—Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone. *US Geological Survey, Professional Paper* 1661–F:64.

Johnson CA, Fryxell JM, Thompson ID, and Baker JA. 2009. Mortality risk increases with natal dispersal distance in American martens. *Proceedings of the Royal Society* 276:3361-3367.

Kellner K. 2014. jagsUI: Run JAGS (specifically, libjags) from R; an alternative user interface for rjags. *R package version* 1:356-364.
Vander Vennen LM, and Fryxell JM. 2015. Wolves adapt territory size, not pack size to local habitat quality. *Journal of Animal Ecology* 84:1177-1186. 10.1111/1365-2656.12366.

Lyons AJ, Turner WC, and Getz WM. 2013. Home range plus: a space-time characterization of movement over real landscapes. *Movement Ecology* 1:1-14.

Martin SK. 1994. Feeding ecology of American martens and fishers. In: Buskirk SW, Harestad AS, Raphael MG, and Powell RA, eds. *Martens, sables, and fishers: biology and conservation*. Ithica, New York: Cornell University Press, 297-315.

Mattisson J, Rauset GR, Odden J, Andrén H, Linnell JDC, and Persson J. 2016. Predation or scavenging? Prey body condition influences decision-making in a facultative predator, the wolverine. *Ecosphere* 7:e01407 01410.01002/ecs01402.01407. 10.1002/ecs2.1407.

McCann NP, Zollner PA, and Gilbert JH. 2010. Survival of adult martens in northern Wisconsin. *Journal of Wildlife Management* 74:1502-1507. 10.2193/2009-297.

Mead RA. 1994. Reproduction in *Martes*. In: Buskirk SW, Harestad AS, Raphael MG, and Powell RA, eds. *Martens, sables, and fishers: biology and conservation*. Ithaca, New York, USA: Cornell University Press, 404-422.

Moriarty KM, Bailey JD, Smythe SE, and Verschuyl J. 2016a. Distribution of Pacific marten in coastal Oregon. *Northwestern Naturalist* 97:71-81. 10.1898/NWN16-01.1.

Moriarty KM, Epps CW, Betts MG, Hance DJ, Bailey JD, and Zielinski WJ. 2015. Experimental evidence that simplified forest structure interacts with snow cover to influence functional connectivity for Pacific martens. *Landscape Ecology* 30:1865-1877. 10.1007/s10980-015-0216-2.
Moriarty KM, Epps CW, and Zielinski WJ. 2016b. Forest thinning for fuel reduction changes movement patterns and habitat use by Pacific marten. *The Journal of Wildlife Management* 80:621-633. 10.1002/jwmg.1060

Moriarty KM, Linnell MA, Chasco B, Epps CW, and Zielinski WJ. 2017. Using high-resolution short-term location data to describe territoriality in Pacific martens. *Journal of Mammalogy* 98:679-689.

Mortenson JA, and Moriarty KM. 2015. Ketamine and midazolam anesthesia in Pacific martens (*Martes caurina*). *Journal of Wildlife Disease* 51:250-254.

Nagorsen DW, Morrison KF, and Forsberg JE. 1989. Winter diet of Vancouver Island marten (*Martes americana*). *Canadian Journal of Zoology* 67:1394-1400. 10.1139/z89-198

Payer DC, and Harrison DJ. 1999. Influence of timber harvesting and trapping on habitat selection and demographic characteristics of marten. Final contract report to Maine Department of Inland Fisheries and Wildlife.: University of Maine, Orono, Maine, USA. http://library.umaine.edu/cfru/pubs/CFRU281.pdf. Accessed 17 Feb 2011.

Plummer M. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd international workshop on distributed statistical computing: Vienna. p 125.

Poole KG, Porter AD, de Vries A, Maundrell C, Grindal SD, and St. Clair CC. 2004. Suitability of a young deciduous-dominated forest for American marten and the effects of forest removal. *Canadian Journal of Zoology* 82:423-435.

Powell RA. 1994. Structure and spacing of *Martes* populations. In: Buskirk SW, Harestad AS, Raphael MG, and Powell RA, eds. *Martens, sables, and fishers: biology and conservation*. Ithaca, New York, USA: Cornell University Press, 101-121.
Robitaille J-F. 2017. Morphology, diet, and physical condition of American martens, fishers, and wolverines in Canada. In: Zalewski A, Wierzbowska I, Aubry KB, Birks JDS, O’Mahony DT, and Proulx G, eds. *The Martes Complex in the 21st century: ecology and conservation*. Białowieża, Poland: Mammal Research Institute, Polish Academy of Sciences, 25-60.

Royle JA, Chandler RB, Sollmann R, and Gardner B. 2013. *Spatial capture-recapture*. Waltham, Massachusetts, USA: Academic Press.

Royle JA, and Dorazio RM. 2008. *Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities*: Academic Press.

Royle JA, and Young KV. 2008. A hierarchical model for spatial capture–recapture data. *Ecology* 89:2281-2289.

Simberloff D. 1987. The spotted owl fracas: mixing academic, applied, and political ecology. *Ecology* 68:766-772. 10.2307/1938346

Sirén AP, Pekins PJ, Abdu PL, and Ducey MJ. 2016. Identification and density estimation of American martens (Martes americana) using a novel camera-trap method. *Diversity* 8:3.

Skalski JR, Mills, Spough JJ, and Ryding KE. 2008. Effects of asymptotic and maximum age estimates on calculated rates of population change. *Ecological Modelling* 212:528-535.

Slauson KM. 2015. Coastal Oregon and northern California populations of the Pacific marten (*Martes caurina*) species report. Arcata, CA, USA: U.S. Fish and Wildlife Service. p 143.
Sollmann R, Mohamed A, Samejima H, and Wilting A. 2013. Risky business or simple solution – relative abundance indices from camera-trapping. *Biological Conservation* 159:405-412. http://dx.doi.org/10.1016/j.biocon.2012.12.025

Strickland MA, and Douglas RJ. 1987. Marten. In: Novak M, Baker JA, Obbard ME, and Malloch B, eds. *Wild furbearers management and conservation in North America*. Toronto, Canada: Ontario Ministry of Natural Resources, 530-547.

Sun CC, Fuller AK, and Royle JA. 2014. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models. *PLoS ONE* 9:e88025. 10.1371/journal.pone.0088025

Thompson ID, and Colgan PW. 1987. Numerical responses of martens to a food shortage in northcentral Ontario. *The Journal of Wildlife Management* 51:824-835.

US Fish Wildlife Service. 2015. Endangered and threatened wildlife and plants; 12-month finding on a petition to list Humboldt Marten as an endangered or threatened species. *Federal Register* 80:18741-18772.

Verts B, and Carraway LN. 1998. *Martes americana* (Turton). *Land mammals of Oregon*: University of California Press, 406-410.

Whittington J, Hebblewhite M, and Chandler RB. 2018. Generalized spatial mark–resight models with an application to grizzly bears. *Journal of Applied Ecology* 55:157-168. 10.1111/1365-2664.12954

Zielinski WJ. 2013. The forest carnivores: fisher and marten. In: Long J, Skinner C, North M, Winter P, Zielinski WJ, Hunsaker C, Collins B, Keane J, Lake F, Wright J, Moghaddas E, Jardine A, Hubbert K, Pope K, Bytnerowicz A, Fenn M, Busse M, Charnley S, Patterson T, Quinn-Davidson L, and Safford HD, eds. *Science synthesis to support Forest*
Plan Revision in the Sierra Nevada and Southern Cascades. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station 261-301.

Zielinski WJ, Slauson KM, Carroll CR, Kent CJ, and Kudrna DG. 2001. Status of American martens in coastal forests of the Pacific states. *Journal of Mammalogy* 82:478-490.
Table Captions

Table 1. Input values for a viability analysis of subpopulations of coastal Pacific martens (*Martes caurina*) in the Oregon Dunes Recreation Area.

Table 2. Three estimates of maximum intrinsic growth rate (r) bracketing our uncertainty from most to least conservative life history assumptions of annual survival for population viability modeling of the coastal Pacific martens (*Martes caurina*) in our study area in the Oregon Dunes Recreation Area.

Table 3. Summary statistics from a spatial mark-resight model with telemetry data that estimated the density of coastal Pacific martens (*Martes caurina*) in our study area in the Oregon Dunes Recreation Area from Oct. 2015 to Jan. 2016. Significant effects (parameters with 95% CRI’s not-overlapping 0), not including estimates of density, abundance, sigma, or intercepts, are indicated in bold.
Figure captions

Figure 1. We collected location data on coastal Pacific martens (*Martes caurina*) in the Oregon Dunes Recreation Area, west of Highway 101, Oct. 2015 to Jan. 2016. The study area is bounded to the north and south by the Siuslaw and Coos Rivers, respectively, and divided by the Umpqua River in the center, which is approximately 600 m wide where it meets the Pacific Ocean. This area had extensive fragmentation during our study with vegetated islands surrounded by open sand. Imagery sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.

Figure 2. Examples of uniquely marked individual martens (*Martes caurina*). (a) A female marten with GPS collar sniffing strawberry jam. (b) A male marten with unique GPS collar with two antennas. (c) A female marten with three reflective bands. (d) A male marten with two reflective bands (middle, end of antenna). We reviewed photographic clusters where the same individual was present in consecutive photos, and we identified individual martens for the spatial mark-resight analysis. We discarded photographic clusters if we were unable to distinguish whether a marten was marked or unmarked (<1% of all photos collected).

Figure 3. Technical articles that included the keywords “marten”, “density”, “territory”, and “home range”. Of the >75 papers reviewed for North American martens (*Martes americana, M. caurina*), four reported both home range sizes and density. Home ranges were estimated using either 100% Minimum Convex Polygons (MCP) or time-influenced Local Convex Hulls (t-LoCoH). Reported densities were either minimum known alive (MNKA) or calculated with spatial mark-resight. Mean and 95% confidence intervals reported if available in the study. Other studies were conducted in Maine, USA which included estimates from three study areas (Payer...
Figure 4. We conducted a spatial mark-resight study using remotely triggered cameras and by marking the coastal Pacific marten (*Martes caurina*) with unique reflective strips on their collars (Fig. 2) in the northern portion of the coastal Oregon Dunes Recreation Area from 4 December 2015 to 12 January 2016. Here, we show the a) location of all camera stations, b) stations which detected female martens, c) stations which detected male martens, and unmarked martens (large black dots). For (b) and (c), individual martens are depicted by unique colored dots (camera station detections), and outlines (outer boundary of territories). Imagery sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.

Figure 5. One-thousand density-dependent stochastic population projections (gray) for coastal Pacific marten (*Martes caurina*) from the theta-logistic model, assuming a linear relationship between per-capita population growth and population size (\hat{I}, $\theta = 1$) beginning at three values of carrying capacity ($K; 20, 30, \text{or } 40$), and three human-caused mortalities averaging 1, 2, or three marten annually. The mean population trajectory is given by the black line, and the red line signifies the pseudo-extinction threshold of 2 individuals. The proportion of trajectories falling below this threshold is the probability of extirpation $Pr(\text{ext})$. Stochastic mortalities averaging two or more marten lead to substantial extirpation risk within the next 40 years, particularly for smaller values of K.

Figure 6. One-thousand density-dependent stochastic population projections (gray) for a coastal Pacific marten (*Martes caurina*) from the theta-logistic model assuming a convex relationship between per-capita population growth and population size (\hat{I}, $\theta = 2$) beginning at three values of
carrying capacity (K; 20, 30, or 40), and three human-caused mortalities averaging 1, 2, or three martens annually. A Ĩ > 1 may be more realistic for long-lived mammals, because the onset of density dependence likely occurs at higher population densities once crowding of home ranges occurs; assuming values where Ĩ > 1 is less conservative because the population will be more permissive to mortality or other mortality. The mean population trajectory is given by the black line, and the red line signifies the pseudo-extinction threshold of two individuals. The proportion of trajectories falling below this threshold is the probability of extirpation Pr(ext). Within the next 40 years, stochastic mortalities averaging two or more martens lead to substantial extirpation risk, particularly for smaller values of K.
Table 1 (on next page)

Input values for coastal marten viability analysis.

Input values for coastal Pacific marten (*Martes caurina humboldtensis*) viability analysis in the Oregon Dunes Recreation Area.
Table 1. Input values for coastal Pacific marten (*Martes caurina humboldtensis*) viability analysis in the Oregon Dunes Recreation Area.

Variable	Value	Justification
Age at first parturition	2	Mead (1994)
Average number of kits/year (*m*)	1.5	Aune & Schladweiler (1997), Flynn & Schumacher (2016)*
Survivorship to first parturition	0.35	
Kit survival (age 0-1)	0.49	Johnson et al. (2009)
Yearling survival (age 1-2)	0.7	Average for North American martens, McCann et al. (2010)
Range of adult survival (age 2+)	0.7-0.9	McCann et al. (2010)

* We choose *m*=1.5 assuming 3 offspring and a 50% sex ratio as reasonable as among the highest observed litter size that would be expected to be achieved at low population density. For instance, Strickland & Douglas (1987) reported that both pregnancy rates and numbers of corpora lutea in pregnant female martens in Ontario were stable, ranging from 91–100% and 3.19–3.53, respectively. Aune & Schladweiler (1997) reported pregnancy rates similar for 2 populations in Montana, ranging from 76–95% over 5 years, but a lower mean number of corpora (2.6) per adult female in the southwestern part of the state leading to an estimate of *m* = 1.1. Thompson & Colgan (1987) reported 2.74–3.46 corpora lutea in pregnant females. Flynn and Schumaker (2016) observed pregnancy rates of martens in Southeast Alaska averaging only 47% over seven years while litter size was 3.3, producing an estimate of *m* = 0.78.

Aune KE, and Schladweiler P. 1997. Age, sex structure, and fecundity of the American marten in Montana. In: Proulx G, Bryant HN, and Woodard PM, eds. *Martes: taxonomy, ecology, techniques, and management*. Edmonton, Alberta, Canada: Provincial Museum of Alberta, 61-77.

Flynn RW, and Schumacher TV. 2016. Habitat selection of American martens on northeast Chichagof Island, southeast Alaska, 1991-1997. Juneau, Alaska, USA. Wildlife Research Report ADF&G/DWC/WRR-2016-6: Alaska Department of Fish and Game. p 25.
Johnson CA, Fryxell JM, Thompson ID, and Baker JA. 2009. Mortality risk increases with natal dispersal distance in American martens. *Proceedings of the Royal Society* 276:3361-3367.

McCann NP, Zollner PA, and Gilbert JH. 2010. Survival of adult martens in northern Wisconsin. *Journal of Wildlife Management* 74:1502-1507. 10.2193/2009-297

Mead RA. 1994. Reproduction in Martes. In: Buskirk SW, Harestad AS, Raphael MG, and Powell RA, eds. *Martens, sables, and fishers: biology and conservation*. Ithaca, New York: Cornell University Press, 404-422.

Strickland MA, and Douglas RJ. 1987. Marten. In: Novak M, Baker JA, Obbard ME, and Malloch B, eds. *Wild furbearers management and conservation in North America*. Toronto, Canada: Ontario Ministry of Natural Resources, 530-547.

Thompson ID, and Colgan PW. 1987. Numerical responses of martens to a food shortage in northcentral Ontario. *The Journal of Wildlife Management* 51:824-835.
Bracketing uncertainty with three maximum intrinsic growth rates (r).

Three estimates of maximum intrinsic growth rate (r) bracketing our uncertainty from most to least conservative life history assumptions of annual survival for population viability modeling.
Table 2. Three estimates of maximum intrinsic growth rate (r) bracketing our uncertainty from most to least conservative life history assumptions of annual survival for population viability modeling.

Annual Survival (e^{-M})	Female kits per year (m)	Age of first parturition (a)	Survivorship to age at first parturition (l_a)	Maximum intrinsic growth rate (r)
0.7	1.5	2	0.35	0.143
0.8	1.5	2	0.35	0.205
0.9	1.5	2	0.35	0.268
Table 3 (on next page)

Summary statistics of marten population density and detection rates using a spatial mark-resight (SMR) model.

Summary statistics from a spatial mark-resight model with telemetry data that estimated the density of the Humboldt subspecies of Pacific martens (*Martes caurina humboldtensis*) in our study area in the Oregon Dunes Recreation Area from Oct. 2015 to Jan. 2016. Significant effects (parameters with 95% CRI’s not-overlapping 0), not including estimates of density, abundance, sigma, or intercepts, are indicated in bold.
Table 3. Summary statistics from a spatial mark-resight model with telemetry data that estimated the density of the Humboldt subspecies of Pacific martens (*Martes caurina humboldtensis*) in our study area in the Oregon Dunes Recreation Area from Oct. 2015 to Jan. 2016. Significant effects (parameters with 95% CRI’s not-overlapping 0), not including estimates of density, abundance, sigma, or intercepts, are indicated in bold.

Parameter	Mean (SD)	Credible Interval		
		2.5	50	97.5
Density (per km2)a	1.13 (0.15)	0.81	1.15	1.39
Abundance (# martens)a	9.75 (1.32)	7	10	12
α_0 – habitat intercept	-1.55 (0.76)	-3.29	-1.45	-0.38
α_1 – effect of forest cover	1.07 (0.53)	0.17	1.02	2.22
β_0 – capture probability intercept	-1.91 (0.53)	-2.98	-1.9	-0.94
β_1 – female effect on capture probability	0.79 (0.6)	-0.36	0.79	1.98
δ_0 – resight probability intercept	-1.26 (0.17)	-1.59	-1.26	-0.92
δ_1 – female effect on resight probability	0.75 (0.19)	0.38	0.76	1.11
δ_2 – days since baiting effect on resight probability	-0.06 (0.02)	-0.11	-0.06	-0.02
σ_{male} (m)	1141.22 (45.27)	1058.39	1139.46	1233.75
σ_{female} (m)	277.81 (6.17)	266.46	277.63	290.1

a based on the habitat mask within our state-space
Figure 1

Our study area of coastal Pacific martens in the Oregon Dunes Recreation Area.

We collected location data on coastal Pacific martens (Martes caurina) in the Oregon Dunes Recreation Area, west of Highway 101, Oct. 2015 to Jan. 2016. The study area was bounded to the north and south by the Siuslaw and Coos Rivers, respectively, and divided by the Umpqua River in the center, which is approximately 600 m wide where it meets the Pacific Ocean. This area has extensive fragmentation with vegetated islands surrounded by open sand. Imagery sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.
Figure 2

Photographs of uniquely marked martens

Examples of uniquely marked individual martens (Martes caurina). (a) A female marten with GPS collar sniffing strawberry jam. (b) A male marten with unique GPS collar with two antennas. (c) A female marten with three reflective bands. (d) A male marten with two reflective bands (middle, end of antenna). Each station included an olfactory lure (Gusto, Minnesota Trapline Products, Pennacock, MN) and baits that were checked and replaced weekly. We set remote cameras (Bushnell Aggressor, model: 119776; Bushnell Corporation, Overland Park, KS) two to three m from bait and we programmed them to record one photo after motion was detected with a one-second lag between consecutive photos. We reviewed photographic clusters where the same individual was present in consecutive photos, and we identified individual martens for the spatial mark-resight analysis. We discarded photographic clusters if we were unable to distinguish whether a marten was marked or unmarked (<1% of all photos collected).
Figure 3

Density and home range size of North American martens

Technical articles that included the keywords “marten”, “density”, “territory”, and “home range”. Of the >75 papers reviewed for North American martens (*Martes americana, M. caurina*), four reported both home range sizes and density. Territories were estimated using either 100% Minimum Convex Polygons (MCP) or time-influenced Local Convex Hulls (t-LoCoH). Reported densities were either minimum known alive (MNKA) or calculated with spatial mark-resight. Mean and 95% confidence intervals reported if available in the study. Other studies were conducted in Maine, USA which included estimates from three study areas (Payer & Harrison 1999), central British Columbia, Canada (Poole et al. 2004), New Hampshire, USA (Sirén et al. 2016), and Quebec, Canada (Godbout & Ouellet 2010).
The graph shows the relationship between marten density (n/km²) and territory size (km²). Two datasets are compared:

- **Other studies**: Represented by black circles with error bars.
- **This study**: Represented by a triangle with error bars.

As the territory size increases, the marten density decreases for both datasets. However, the marten density in this study is consistently lower than in other studies for the same territory size.
Figure 4

Our spatial mark-resight study area and coastal Pacific marten locations from remotely triggered cameras.

We conducted a spatial mark-resight study using remotely triggered cameras and by marking the coastal Pacific marten (*Martes caurina*) with unique reflective strips on their collars (Fig. 2) in the northern portion of the coastal Oregon Dunes Recreation Area from 4 December 2015 to 12 January 2016. Here, we show the a) location of all camera stations, b) stations which detected female martens, c) stations which detected male martens, and unmarked martens (large black dots). For (b) and (c), individual martens are depicted by unique colored dots (camera station detections), and outlines (outer boundary of territories). Imagery sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.
Manuscript to be reviewed
Figure 5

Marten population viability analysis, theta = 1

One-thousand density-dependent stochastic population projections (gray) for coastal Pacific marten (*Martes caurina*) from the theta-logistic model, assuming a linear relationship between per-capita population growth and population size (theta = 1) beginning at three values of carrying capacity (K; 20, 30, or 40), and three human-caused mortalities averaging 1, 2, or three marten annually. The mean population trajectory is given by the black line, and the red line signifies the pseudo-extinction threshold of 2 individuals. The proportion of trajectories falling below this threshold is the probability of extirpation Pr(ext). Stochastic mortalities averaging two or more marten lead to substantial extirpation risk within the next 40 years, particularly for smaller values of K.
Figure 6

Marten population viability analysis, theta = 2

One-thousand density-dependent stochastic population projections (gray) for a coastal Pacific marten (*Martes caurina*) from the theta-logistic model assuming a convex relationship between per-capita population growth and population (theta = 2) beginning at three values of carrying capacity (K; 20, 30, or 40), and three human-caused mortalities averaging 1, 2, or three marten annually. A theta > 1 may be more realistic for long-lived mammals, because the onset of density dependence likely occurs at higher population densities once crowding of territories occurs; assuming values where theta > 1 is less conservative because the population will be more permissive to mortality or other mortality. The mean population trajectory is given by the black line, and the red line signifies the pseudo-extinction threshold of two individuals. The proportion of trajectories falling below this threshold is the probability of extirpation Pr(extend). Within the next 40 years, stochastic mortalities averaging two or more marten lead to substantial extirpation risk, particularly for smaller values of K.
