Rainfall erosivity in climate changes and the connection to landslide events

A Ahmad¹, C Lopulisa¹, A M Imran² and S Baja¹

¹Department of Soil Science, Faculty of Agriculture, Hasanuddin University, Makassar Indonesia
²Department of Geology, Faculty of Engineering, Hasanuddin University, Makassar Indonesia

*Address: Kampus Unhas, Jl. Perintis Kemerdekaan Km.10, Postal Code: 90245, Makassar, South Sulawesi Province, Indonesian Country.

asmita.ahmad@agri.unhas.ac.id; asmitaahmad@yahoo.com

Abstract. Climate anomalies lead to changes in rainfall patterns in Indonesia. Climate change has an impact on the increase in seasonal rainfall in December, January, and February, significantly in most areas in Java, Sulawesi, and Eastern Indonesia. Changes in the pattern of rainfall in Indonesia, especially for the sloping area of South Sulawesi, have resulted in increasing intensity of landslides. The objective of this study was to determine changes in rainfall patterns and erosivity that occur in East Luwu District which have an impact on landslide events. Rainfall data used from 1979 to 2017, erosivity value (R-factor) with Lenvain equation, IDW interpolation aplication are used for resulting erosivity map. Data from land cover, geology and soil are used as supporting data in the assessment of landslide events. Changes in the rainfall pattern since 1998-2017, as a result of global climate change, have resulted in increasing rainfall ability to erode the soil. Rainfall erosivity increased by 22% in 1999-2008, and increased to 33% in 2009-2017, most of the study areas in the last 10 years (2007-2017) have erosivity values (R-factor) >200 with high landslides activity. The high level of rainfall erosivity could be reflected to the high level of climate variability as climate change phenomenon.

1. Introduction
The widespread consequence of the green revolution technology is increasing land use change, where deforestation processes are increasing [1]. The forest land conversion has increased significantly, in 1950-1985 forest conversion reached 32.9 million hectares or 942 thousand hectares per year or 2,616 thousand hectares per day. In 1985-1993 the amount of forest lost reached 45.6 million hectares per year, until 2004 the number reached 59.17 million hectares with land critical outside the forest area of 41.47 million hectares. It also has disturbed the balance of ecosystems, especially the balance of soil as part of the ecosystem [2,3]. Soil ecosystems are damaged, so they cannot function as an aquifer, disrupt the microorganism cycle, and loss of soil function as a carbon sink. This has resulted in declining land productivity, floods, droughts, and the emergence of new critical areas that have the potential to mass movements.
The conversion of forest land has resulted in climate anomalies in various regions of the world [4–7]. Climate anomalies lead to changes in rainfall patterns in the western part of Indonesia, especially in the northern part of Sumatra and Kalimantan, where the intensity of rainfall tends to be lower, but with a longer period. In contrast, in the South Java and Bali Region the intensity of rainfall tends to increase but with a shorter period [8]. Spatial changes in rainfall occurred [9,10], where rainfall in the rainy season is more varied than the dry season. Climate change also has an impact on the increase in seasonal rainfall in December, January, and February, significantly in most areas in Java, Sulawesi, and Eastern Indonesia. In contrast, climate change has a significant impact on the decline of seasonal rainfall in June, July, and August, in most parts of Java, Papua, West Sumatra, and South East Kalimantan.

Changes in the pattern of rainfall in Indonesia, especially for the sloping area in South Sulawesi, have resulted in increasing intensity of landslides. Several of landslides occurred in East Luwu District with high intensity, compared to other areas in South Sulawesi, especially in the Sub-Districts of Mangkutana, Angkona, Malili, and Towuti. Therefore this study aims to determine changes in rainfall patterns and erosivity that occur in East Luwu District which have an impact on landslide events.

2. Methodology
The study site was located in 2°3’00″–3°3’25″ S and 119°28’56″-121°47’27″ E, and the administration area was 6994.88 km² with 12 Sub-District (Figure 1). The area had an elevation from 15-300 m asl, with slope topography varied from 2% to 60% (Figure 2).

Figure 1. Location map of study area
The rainfall data was taken from BMKG [11] and Global weather [12]. The Data will be calculated to get the erosivity value (R-factor) with Lenvain in Bols (1978) Equation;

$$R = 2.21 \times P^{1.36}$$

Where:
- R = Erosivity Index/factor
- P = Average monthly rainfall (cm)

Software Arcgis 10.3 with IDW interpolation aplication are used for resulting erosivity map. Data from land cover [13], geology [14] and soil [15] are used as supporting data (Figure 3-5) in the assessment of landslide events.

Figure 2. Slope topography of the study area

Figure 3. Land cover from 2009 (A) and 2011(B) at the study site, with forest dominant >60%
Figure 4. The study site is dominated by metamorphic and sedimentary rock.

Figure 5. Most of the soil contains silt and clay fractions.

3. Results
Rainfall data from 1979-1988 had a range patterns from December to May, as well as the pattern of the Year 1989-1998. The rainfall pattern showed that the changes in 1999-2008 became longer from November to June, and the length of pattern increased until October to July in 2009-2017 (figure 6).
Erosivity increases with increasing years (Table 1). The increase of erosivity values indicates an increase in the amount of rain falling into the study area, this is in line with changing in the rainfall pattern in various regions of the world due to global warming phenomenon [9,16].

Table 1. Monthly and Annual of Erosivity

Month	January	February	March	April	May	June	July	August	September	October	November	December
1979-88	34.6	274.0	34.3	270.9	26.8	193.8	39.4	326.7				
1989-99	39.1	323.3	45.2	393.8	32.0	246.2						
1999-08	38.5	317.2	46.3	406.8	63.2	621.7						
2009-17	37.8	309.0	46.4	407.9	52.8	486.7						

Annual Erosivity: 1736.0 1957.4 2526.9 3704.7

Changes in rainfall patterns increased significantly with Rsquare= 0.99 (Figure 7), this indicates that erosivity has an effect on increasing soil erosion activity. This is supported by data on land use change from 2009 to 2011 [13], where settlement status ranged from 0.47% to 1.05%, paddy fields reached 4.22% from 2.40%, and bare land was 0.81 in 2009, it increased to 1.54% in 2011 (Table 2).
4. Discussion
Slope dominance is 40~60%, with older rock types dominated by metamorphic rocks, which are beneath sedimentary rocks that have undergone cracks due to past tectonic disturbances [14], inducing sedimentary rocks to experience movement due to gravitational forces with rocks metamorphic as a slip plane.

The soil formed predominantly is silt loam textured [17], making the soil easily to dispersion under saturated conditions. Land cover dominated by primary and secondary forests on the dominant slope of ≥40%, can be a gravitational burden on soil and rocks, so that it can trigger landslides. Land use changes caused in increasing bare land that allows soil easily to saturate and trigger mass movements [18].

Changes in the rainfall pattern since 1998-2017 (Figure 6), as a result of global climate change, have resulted in increasing rainfall ability to erode the soil (erosivity). Rainfall erosivity can reduce soil erodibility [17,19] and increase erosion and landslides, as happened in Kasintuwu Village, Mangkutana Sub-district (Figure 8), with erosivity is around 217, in Maliwawo Village Angkona Sub-district with erosivity is around 207, Malili Village, Malili Sub-district with erosivity is around 212, and Towuti Sub-district with erosivity is around 212 (Figure 9).

Rainfall erosivity increased by 22% in 1999-2008, and increased to 33% in 2009-2017, most of the study areas in the last 10 years (2007-2017) have erosivity values (R-factor) >200 with high landslides.
activity. The high level of rainfall erosivity could be reflected to the high level of climate variability [5,16,20] as climate change phenomenon.

![Figure 8. Landslides in Mangkutana Sub-District](image)

Figure 8. Landslides in Mangkutana Sub-District

![Figure 9. Rainfall erosivity in 2007-2017, with R factor is around 189.41 to 234.28](image)

Figure 9. Rainfall erosivity in 2007-2017, with R factor is around 189.41 to 234.28

5. Conclusions
Changes in land use and rainfall patterns in the last ten years have increased landslide events with R-factor was >200.

References
[1] UNEP (United Nations Environment Programme) 2014 MEMBANGUN MODAL ALAM: Bagaimana REDD+ Dapat Mendukung Ekonomi Hijau ed UNEP (Nairobi, Kenya: UNEP)
[2] Komatsuzaki M and Ohta H 2007 Soil management practices for sustainable agro-ecosystems Sustain Sci 2103–20
[3] Sopandie D, Poerwanto R and Sobir 2012 Sustainable Agriculture System Revolutionizing the
Green Revolution (Bogor, Indonesia: IPB Press) p 2012

[4] UNFCCC 2007 Climate Change: Impacts, Vulnerabilities and Adaptation in Developing Countries (Bonn, Germany: UNFCCC)

[5] Trenberth K E 2011 Changes in precipitation with climate change Clim. Res. 47 123–38

[6] Arnbjerg-Nielsen K, Willems P, Olsson J, Beecham S, Pathirana A, Gregersen B I, Madsen H and Nguyen V 2013 Impacts of climate change on rainfall extremes and urban drainage systems Water Sci. Technol. 68 16–28

[7] Rahman A M, Kang S, Nagabhatla N and Macnee R 2017 Impacts of temperature and rainfall variation on rice productivity in major ecosystems of Bangladesh Agric. Food Secur. 6 1–11

[8] Naylor R L, Battisti D S, Vimont D J, Falcon W P and Burke M B 2007 Assessing risks of climate variability and climate change for Indonesian rice agriculture PNAS 104 7752–7

[9] Case M J, Ardiansyah F and Spector E 2007 Climate Change in Indonesia WWF Int. Clim. Chang. Program.

[10] Boer R, Sutardi and Hilman D 2007 Indonesia Country Report: Climate Variability and Climate Changes, and Their Implication (Jakarta, Indonesia)

[11] BMKG 2017 Data curah hujan tahun 2008-2016 untuk Kabupaten Gowa, Enrekang, Toraja Utara dan Luwu Timur (Rainfall Data in 2008-2016 for Gowa, Enrekang, North Toraja, and East Luwu District)

[12] Global Weather 2017 Climate data in 1979 -2014 for Enrekang, North Toraja and East Luwu District

[13] KKLKH (Kementerian Lingkungan Hidup dan Kehutanan) 2017 Peta Penutupan Lahan Indonesia Tahun 2009 dan 2011

[14] Simandjuntak T, Rusmana E, Surono and Supandjono J 1991 Geological Map of Malili Quadrangle, Sulawesi

[15] RePPProT 1988 Regional Physical Planning Programme fo Transmigration. Tinjauan Hasil-Hasil Tahap I Sulawesi (Direktorat Bina Program dan Direktorat Jenderal Penyiapan Pemukiman Departemen Transmigrasi. Jakarta. Indonesia.)

[16] Cooper K 2011 Evaluation of the Relationship Between the RUSLE R-Factor and Mean Annual Precipitation

[17] Ahmad A, Lopulisa C, Imran A M and Baja S 2018 Soil physicochemical properties to evaluate soil degradation under different land use types in a high rainfall tropical region: A case study from South Sulawesi, Indonesia Earth and Environmental Science (IOP Publishing) pp 1–7

[18] Reichenbach P, Busca C, Mondini A C and Rossi M 2014 The Influence of Land Use Change on Landslide Susceptibility Zonation: The Briga Catchment Test Site (Messina , Italy) Environ. Manage. 54 1372–84

[19] Nearing M A, Yin S, Borrelli P and Polyakov V O 2017 Rainfall erosivity : An historical review Catena 157 357–62

[20] Ogallo L A, Ouma G and Omondi P 2017 Changes in Rainfall and Surface Temperature Over Lower Jubba , Somalia J. Clim. Chang. Sustain. 1 39–52