The effect of Al doping on the sensitivity of SnO$_2$ films prepared by chemical spray pyrolysis

*Adeebh L. Resne, **Zaynab Tariq,

Ministry of Science & Technology
*E.mail: Adeba_2018@yahoo.com or zenabtarq@yahoo.com

Abstract:

In this paper discussed the optical properties of undoped Al (each 3, 5 and 7%) doped SnO$_2$ thin films were synthesized by spray pyrolysis on glass substrate. The samples characterized using X-ray diffraction (XRD) and gas sensitivity. The XRD analysis reveals that the Al dopants substituted into rutile SnO$_2$ nanostructure without forming any secondary phase. The average particle size of the samples was increasing with increasing Al concentration. From XRD and AFM micrograph it was confirmed, the crystallite size in the range of 22.4-34.4 nm. The study reveals polycrystalline structure with prominent peaks. In particular, 7% Al-SnO$_2$ films have a higher sensitivity (30%).

Keywords: Structural, gas sensitivity properties, Aluminum (Al) doped, Tin oxide (SnO$_2$) nanocrystal.

Introduction

Tin oxide is a wide bandgap semiconductor (energy bandgap 3.6 eV), and it has only the tin atom that occupies the centre of a surrounding core composed of six oxygen atoms placed approximately at the corners of a quasi-regular octahedron. In the case of oxygen atoms, three tin atoms surround each of them, forming an almost equilateral triangle. Lattice parameters are $a = b = 4.737$ Å and $c = 3.186$ Å [1]. Among metal oxide sensors, SnO$_2$ has been the most studied sensitive layer. SnO$_2$ is a typical n-type semiconductor. SnO$_2$ thin films have been deposited using different techniques, such as spray pyrolysis [4], sol-gel process [5, 6], chemical vapour deposition [7], sputtering [8], and pulsed laser deposition [9]. Among these methods, spray is unique and cost effective compared to other methods requiring high vacuum environment. It is one step method operating at atmospheric pressure with very short production time [12]. SnO$_2$ has been identified as a potential semiconductor material with many applications, including acting as a super capacitor [8], catalyst [9], energy storage [10] and as gas sensor [11]. SnO$_2$ owing to a wide bandgap is an insulator in its stoichiometric form. However,
due to the high intrinsic defects, that are oxygen deficiencies, tin oxide (SnO$_2$−X) possesses a high conductivity. It has been shown that the formation energy of oxygen vacancies and tin interstitials in SnO$_2$ is very low. Therefore, these defects form readily, which explains the high conductivity of pure, but nonstoichiometric, tin oxide. Studies show that the morphology, structure and size of metal oxide materials have been proven to influence the sensing performance of SnO$_2$ [12]. Metal oxide semiconductor (MOS) sensor technology is based on the change in resistance of a sensitive metal oxide layer, which is induced by the interaction between a surface and ambient gases. Since the last decade, there has been a great deal of interest in the preparation of inexpensive thin films of SnO$_2$. This is because tin dioxide based thin films with large band gap ($E_g > 3$ eV) n-type semiconductors are attractive from the scientific and technological point of view [5]. Spray pyrolysis technique involves a simple technology in which an ionic solution (containing the constituent elements of a compound in the form of soluble salts) is sprayed over heated substrates.

This work Al doped SnO$_2$ synthesis with different concentration and studies the effect of doping on the structural parameters and sensing properties of the samples by X-ray diffraction (XRD), atomic force microscopy (AFM), and gas sensor system.

**Experimental**

SnO$_2$ films doped with Al (3%, 5%, 7%) then prepared as thin film by spray pyrolysis. It was observed that the growth rate of SnO$_2$ films prepared from SnCl$_4$·5H$_2$O was higher and their resistance lower in comparison with those prepared from anhydrous SnCl$_4$ [1]. Thin-film deposition, using spray pyrolysis technique, involves spraying a metal salt solution onto a heated substrate (Fig. 1). Droplets impact on the substrate surface, structure, and undergo thermal decomposition. shape and size depends on the momentum and volume of the droplet, as well as the substrate temperature.

Glass substrate prepared in 2×2 Cm$^2$ dimensions were subsequently cleaned in ethanol, followed by washing with distilled water with ultrasonic for 10 min. Cleaned substrates were placed on a hot plate at a constant temperature of 300°C. The precursor solution used was of 0.1M concentration of SnCl$_4$·5H$_2$O dissolved in distilled water. The atomization of the solution into a spray of fine droplets was carried out by spray nozzle and compressed N$_2$ was used as the carrier gas.

Various process parameters used in the film operation are listed in table 1. During the process, the substrate temperature was found to be the most important parameter in the film preparation
for gas sensing applications. The glass substrate was ultrasonically cleaned by keeping in distilled water, for 10 min, respectively. The films deposited on the glass substrates by locally fabricated spray pyrolysis system. In order to prepare the Al doped films, AlCl₃ [99% BHD, Germany] were dissolved in 10 ml of distilled water with different doping ratio% and the solutions were added into the coating solution, respectively.

\[2\text{SnCl}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{SnO}_2 + 4\text{HCl}\]

found almost transparent. In this work, the thicknesses of films found to be 100nm. to prepare the coating solution, 1.99mg SnCl₄.5H₂O [99% Merck, Germany] added with 100 ml water by heating at 80°C. The concentration of the sprayed solution was 0.1M, for precursor solution of pure SnO₂ thin film.

Fig.(1): The scheme of the spray pyrolysis setup.

As-deposited SnO₂ films characterized by structural techniques. The chemical and structural phases of the SnO₂ thin film was determined by x-ray diffractometer (Cu- Kα, λ=1.5418 Å) over a 20 range of 10°-70°[Shimadzu Lab XRD 6000]. Morphology is observed by Atomic Force Microscope AFM (Digital Instruments, Nanoscope III USA) Scanning Probe Microscope (AA3000) was used.

Table (1): Process parameter for SnO₂ films.

| Spray parameter | Optimum value |
|-----------------|---------------|
| Solution concentration | 0.1M |
| Carrier gas | N₂ |
| Nozzle | glass |
The surface morphology was studied by atomic force microscope (AFM). Gas sensing chamber had been employed for testing of the films to gases. Heater was placed around the chamber to heat the sample under test up to required operating temperature (50-200 °C). Films response to CO₂ gas was studied by introducing the gas of known concentration (4%) volume ratio to the air and recording resistance as a function of time.

**Results and discussion:**

XRD patterns of SnO₂ and Al doped films are shown in Fig.2. The films deposited showed peaks namely (110), (200), (211), (111) and (301). Since all the peaks are sharp, it is evident that the films deposited are polycrystalline in nature and the positions of X-ray diffraction peaks fit well with the tetragonal structure of SnO₂ (JCPDS card SnO₂, 41-1445). The dopants do not form extra peaks in the XRD pattern in doped SnO₂ films because dopant atoms incorporate homogeneously into the SnO₂ matrix. In literature published for SnO₂ films doped with different atoms such as Al exhibited similar behaviors [2]. For Al doped SnO₂ the peaks become wider due to their intensity decreases and shifted to lower diffraction angle with the increases of the Al concentrations this is due to the substitution of Sn⁺⁴ ions at the lattice sites with the Al⁺³ ion. [7]

Table 2: Lattice parameters and crystallite size values of SnO₂ films prepared for various doping atoms.

| Doping atom | a(Å)   | C(Å)   | c/a     | D(Å)  |
|-------------|--------|--------|---------|--------|
| Undoped     | 6.648  | 4.700  | 0.707   | 33.58  |
| 3%Al        | 6.637  | 4.693  | 0.707   | 20.12  |
| 5%Al        | 6.634  | 4.691  | 0.707   | 27.00  |
| 7%Al        | 6.628  | 4.687  | 0.707   | 27.11  |
Fig. (2): XRD images for pure and 3%, 5% and 7% Al doped SnO$_2$ thin film

Lattice parameters of SnO$_2$ decreased after Al doping as shown in (Table 2). The observed variation in lattice parameters is consistent with the smaller radius of the Al$^{3+}$ ions. For the tetragonal structure, lattice parameters can be calculated from:

\[
\frac{1}{g_{1856}} \frac{1}{g_{3035}} \frac{1}{g_{3038}} \frac{1}{g_{3039}} \frac{1}{g_{2870}} = h \frac{1}{g_{2870}} + k \frac{1}{g_{2870}} a \frac{1}{g_{2870}} + l \frac{1}{g_{2870}} c \frac{1}{g_{2870}}
\]

Where h, k, and l are all integers, (hkl) is the lattice plane indices, a and c are lattice constants.

The crystallite size (D) of undoped and Al doped SnO$_2$ thin films for all the dopant samples were calculated using Debye-Scherrer formula [3]:

\[
D = \frac{K \lambda}{\beta \cos \theta}
\]

Where $k$ is a constant, $\lambda$ is the diffraction wavelength of Cu K$\alpha$ ($\lambda = 1.5406$ Å), $\beta$ is the full width at half maximum (FWHM), and $\theta$ is the angle of diffraction. Atomic force microscopy
(AFM) is a useful technique to determine the surface morphology and particle size of the samples. Fig. 3 shows the 2D AFM images and particle distribution of pure and Al doped SnO$_2$. Its images of pure and doped SnO$_2$ revealed semispherical shapes, their particle distribution is uniform and particle size reduces with the increasing of the Al concentrations. Roughness decreases with increases of doping concentration. The size of the particles obtained from (AFM) images is largest to those values obtained from measurements of (XRD) due to the one consists of crystallite, and your (AFM) photographed the top surface of the granules either apparatus (XRD) gets diffraction from surfaces of crystalline. Area roughness of the prepared samples values are: 13.77 nm, 22.45 nm, 23.37 nm and 34.14 nm for pure and doped SnO$_2$, as shown in fig. 4.

Fig. (3): AFM 2D, images and the particles distribution for pure and doping SnO$_2$. 
The gas sensitivity of SnO$_2$ thin film to CO$_2$ gas has been studied. The gas sensitivity of SnO$_2$ films calculated from measuring the resistance change in thin films in air and in CO$_2$ gas. The mechanism of sensing oxidizing gas by SnO$_2$ is elucidated as: when in contact with an oxidizing gas (electron acceptor), such as CO$_2$, the negatively charged oxygen (O$^-$) absorbed on the SnO$_2$ films surface will react [4]. The reaction between the oxidizing gas and (O$^-$) leads to an increase of the hole density in the surface charge layer and decrease of the SnO$_2$ resistance. Figs (5-8) show the films sensitivity of pure and 7% Al doped SnO$_2$ thin films, can see the sensitivity is increased with increasing operating time and reaches to a saturation limit. Then, the sensitivity returns back to its original value in several minutes after stopping the exposure of gas. At low working temperature the low sensor response can be attributed to the low thermal energy of CO$_2$ molecules to react with adsorbed oxygen species on the surface [5].
Fig.(6): Dynamic sensitivity to CO$_2$ gas at 50°C and 200°C for pure SnO$_2$-3%Al

Fig.(7): Dynamic sensitivity to CO$_2$ gas at 50°C and 200°C for pure SnO$_2$-5%Al

Fig.(8): Dynamic sensitivity to CO$_2$ gas at 50°C and 200°C for pure SnO$_2$,7%Al
Fig. (9): Effect of temperature on the sensitivity of SnO$_2$ (3%, 5%, 7%) Al and pure SnO$_2$.

Figs (6,7) shows the effect of operating temperature on the sensitivity of pure and doped SnO$_2$ films with 3% and 5% doping. But the sensitivity of pure SnO$_2$ and doped of 7% Al for CO$_2$ gas reached a maximum at 200°C, but 3% Al and 5% Al doping decrease of sensitivity with increase of temperature.

We think that the Al doping effect obtained by us is related with surface oxygen in the tin oxide thin films. It is known that the electrical resistance is controlled by chemisorption of oxygen in the metal oxide films in oxygen rich atmosphere [6]. However, the sensitivity of 3% Al-SnO$_2$ films (73.37%) is greater than the sensitivity of 7% Al-SnO$_2$ films (13.46%), this may be due to the deactivation of the surface area of SnO$_2$ films, as shown in figure 9[13].

Conclusions:

In this paper, the undoped and Al-doped SnO$_2$ thin films were synthesized by the spray pyrolysis method. The various measurement equipments were used to characterize their structural and sensing. The changes in resistance of undoped and Al-doped SnO$_2$ thin films during the injection of CO$_2$ gas show a high sensitivity in a short time. The presence of Al in the SnO$_2$ favored in decrementing the barrier height, which increased the conductivity and further sensitivity.
References:

1. Dainius Perednis,(2005)” Thin Film Deposition Using Spray Pyrolysis” Journal of Electroceramics, 14, pp103–111.

2. Gurakar S., Serin T., Serin N.(2014)” electrical and microstural properties of Cu,Al,In – doped SnO2 films deposited by spray pyrolysis” Adv.Mat.Lett.,5(6):309-314.

3. Tariq.A.Al-Dhahir , Karrar Ameen Alsoltani” Effect of Doping by Mg on the Optical and Structural Properties of SnO2 Nanoparticles” International Journal of Advanced Research in Science, Engineering and Technology Vol. 2, Issue 10, October 2015.

4. J. W. Elam, D.A. Baker, and A. J. Hryn, "Atomic Layer Deposition of Tin Oxide Films Using Tetrakis Dimethylamino Tin", American Vacuum Society, V.26,No.2, (2008).

5. L Liao1, Z Zhang1 Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors Nanotechnology 20, (8) (6pp) (2009).

6. A. Galdikas , V. Jasutis , S. Kaciulis , G. Mattogno , A. Mironas , V. Olevano , D. Senuliene; A. S&etkus” Peculiarities of surface dopin g with Cu in SnO2 thin film gas sensors” Sensors and Actuators B 43 (1997) 140–146

7. Gong Zhang, Meilin Liu(2000),” Effect of particle size and dopant on properties of SnO2 based gas sensors” Sensors and Actuators B (69).144–152

8. Sara Benziitouni1, Mourad Zaabat, Aicha Khial1, Djamil Rechem, Ahlem Benaboud, Dhiakra Bouras, Abdelhakim Mahdjoub, Mahdia Toubane, Raphael Coste” High Sensitivity of Porous Cu-Doped SnO2 Thin Films to Methanol” Advances in Nanoparticles, 2016, 5, 140-148

9. Mohsen Dehbashl and Mousa Aliahmad,” Experimental study of structural and optical band gap of nickel doped tin oxide nanoparticles” International Journal of Physical Sciences Vol. 7(37), pp. 5415-5420, 2012

10. Sumanta Kumar Tripathy” Optical and Structural Characteristics of Copper Doped Tin Oxide Thin Film Prepared by Thermal Evaporation Method” International Journal of Engineering and Innovative Technology (IJET) Volume 3, Issue 1, 2013

11. V.Siva Jahnavi, Dr.Sumantha Kumar Tripathy” Study of optical characteristics of doped SnO2 by thermal evaporation method” Indian Journal of Research in Pharmacy and Biotechnology ISSN: 2320-3471.
12. K. Sakthiraj, B. Karthikeyan and K. Balachandrakumar “Structural, Optical and Magnetic properties of Copper (Cu) doped Tin oxide (SnO$_2$) nanocrystal” ICONN 2015 (2015).

13. K. Jain, R. P. Pant, S. T. Lakshmikumar “Effect of Ni doping on thick film SnO$_2$ gas sensor” Sensors and Actuators B 113 (2006) 823–829