Evaluating Exercise as a Therapeutic Intervention for Methamphetamine Addiction-Like Behavior

Sucharita S. Somkuwar, Miranda C. Staples, McKenzie J. Fannon, Atoosa Ghofranian and Chitra D. Mandyam∗

Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA

Abstract. The need for effective treatments for addiction and dependence to the illicit stimulant methamphetamine in primary care settings is increasing, yet no effective medications have been FDA approved to reduce dependence [1]. This is partially attributed to the complex and dynamic neurobiology underlying the various stages of addiction [2]. Therapeutic strategies to treat methamphetamine addiction, particularly the relapse stage of addiction, could revolutionize methamphetamine addiction treatment. In this context, preclinical studies demonstrate that voluntary exercise (sustained physical activity) could be used as an intervention to reduce methamphetamine addiction. Therefore, it appears that methamphetamine disrupts normal functioning in the brain and this disruption is prevented or reduced by engaging in exercise. This review discusses animal models of methamphetamine addiction and sustained physical activity and the interactions between exercise and methamphetamine behaviors. The review highlights how methamphetamine and exercise affect neuronal plasticity and neurotoxicity in the adult mammalian striatum, hippocampus, and prefrontal cortex, and presents the emerging mechanisms of exercise in attenuating intake and in preventing relapse to methamphetamine seeking in preclinical models of methamphetamine addiction.

Keywords: Exercise, methamphetamine, addiction, animal models, reward, relapse, neurogenesis, neurotoxicity syndromes, neuronal plasticity

INTRODUCTION

For centuries, there has been widespread interest to understand the importance of physical activity on the overall quality of life of an individual. The idea that stress and mental states have adverse effects on physical health is well accepted, and conversely, it is suggested that a healthy body will espouse a healthy mind [3]. Thus, an emerging area of interest focuses on the mechanisms by which exercise (sustained physical activity) affects the mammalian brain, particularly on cognitive function. One way to conduct research in this field involves the use animal models to delve more deeply into cortical connectivity and molecular and cellular mechanisms involved in exercise and brain function. This micro-view allows us to see major benefits (and minor pitfalls) of exercise that may otherwise be easily overlooked.

Addiction or substance dependence is a mental disorder that involves the loss of behavioral control over drug taking and drug seeking which involves impulsivity and compulsivity. The impulsive and compulsive features of addiction can be grouped into three stages: [1] binge/prolonged intoxication, [2] withdrawal neutral/negative affect, and [3] preoccupation/anticipation (craving); these stages comprise the cycle of addiction. The limited (often recreational) use of drugs with abuse potential is distinct from the pattern of escalated drug use and the materialization of a chronic drug-dependent state [4]. Furthermore, the last stage of the addiction cycle describes a key element of addiction...
in humans which defines addiction as a chronic relapsing disorder [2]. Understanding the neurobiology of addiction is critical for identifying therapeutic strategies, and in this regard animal models of addiction have proved to be an immensely valuable tool for parsing out the neurobiological adaptations that contribute to the progression of addiction through these various stages [7, 5, 6].

A recent review detailed the value of exercise as a potential therapeutic strategy for intervention during the various stages of addiction for several drugs of abuse [7]. The therapeutic value of exercise could be due to its natural reinforcing effects and it may contribute to reward interaction, whereby, the presence of two reinforcing agents (e.g. illicit drug and exercise) could devalue the alternate reinforcer [8, 9].

The current review focuses on methamphetamine, a psychostimulant illicit drug with high abuse potential, with the objective to understand where the interaction between methamphetamine and exercise may be beneficial. This review discusses the neurobiological adaptations produced by exercise which contribute to reversing the negative effects of methamphetamine, in addition to exploring the theory of exercise itself eliciting addictive behavior.

METHAMPHETAMINE ADDICTION: IMPACT ON SOCIETY

The burden of methamphetamine abuse is increasing in the United States; available SAMHSA reports show 8% of all drug and alcohol treatment admissions involve methamphetamine and treatment studies report frequent relapses to methamphetamine seeking among those that are trying to quit [10]. Furthermore, methamphetamine abuse takes emotional and financial tolls on society, cutting across ages, races, ethnicities, and genders. It increases mortality, morbidity, and economic costs. Therefore, successfully reducing risk-taking behaviors, such as methamphetamine abuse, can potentially result in large public health gains [11, 12].

According to the recent reports from the National Institutes on Drug abuse (NIDA) and others, there are a few treatment options for methamphetamine addiction [1, 13–15]. For example, the best therapy currently available is the behavioral treatment approach (Matrix model, an outpatient treatment using psychosocial protocols, [16]); however, behavioral therapies are associated with lower beneficial effects on maintaining an individual’s abstinence as well as reducing drug craving elicited by drug-related context and cues [17]. Therefore, NIDA is currently conducting research to seek improved treatment options, including investigating the efficacy of non-traditional and non-pharmaceutical options that may treat methamphetamine addiction.

PHYSICAL FITNESS VIA EXERCISE: IMPACT ON SOCIETY

In the world we live in today, almost everything we need is available at the click of a mouse. As an unfortunate consequence, it has become too easy to avoid physical activity and slip into a sedentary lifestyle, which has been associated with obesity, diabetes mellitus, increased risk of cardiovascular disease, and direct and indirect socioeconomic costs [18–21].

In recent years, the benefits of exercise on health and wellness have become increasingly well known. Exercise has been found to reduce the severity and even reverse the previously stated medical conditions associated with physical inactivity, which in turn reduces the cost of medical needs and other indirect socioeconomic costs [18, 22, 23]. Perhaps more relevant to this review, exercise can improve mental health by offering relief from the symptoms of depression and anxiety, and by improving mood [24–26]; these effects make exercise a valuable tool in disrupting the vicious feed-forward loop between mental illness and substance abuse [27–29].

While regular and regimented physical activity may be therapeutic, clinical cases of exercise eliciting addiction-like behavior have been reported with many sports activities including running, martial arts, weight lifting and body-building, and have been summarized in The Exercise Paradox [30]. The latter study used the Exercise Dependence Scale and the Exercise Addiction Inventory and reported that between 3.4% and 13.4% of a sample of university students were at high risk for "exercise addiction" [30]. Clinical cases have reported loss of control over exercise behavior and compulsivity or ‘obligation’ to perform exercise [30], both of which are hallmarks of addictive disorders [31]. Salience, withdrawal, emotional dysregulation, negative physical and psychosocial consequences, tolerance to the quantity and/or intensity, and relapse to abuse behavior are other phenotypes that support the notion that exercise may be an addictive behavior [30, 32–34]. However, because exercise is considered a sociologically normative behavior, addiction to exercise may be difficult to detect. Thus, partially due to the paucity of peer-reviewed evidence, "exercise addiction" is not yet categorized in Diagnostic and Statistical Manual of
Mental Diseases or International Classification of Diseases [31, 35]. Furthermore, excessive preoccupation with exercise has been observed with other disorders, including eating disorders and body dysmorphic disorders [33, 34, 36, 37]. This begs the question whether addiction-like exercise behavior is manifested due to vulnerability of specific personality types, or caused by excessive exposure to exercise. Animal models are more useful at parsing out such causalities.

EXERCISE AS A TREATMENT OPTION FOR METHAMPHETAMINE ADDICTION

In the context of substance abuse disorders, such as methamphetamine addiction, a single pharmacological intervention may not be sufficient or useful throughout the progression of addiction because the underlying neurobiology of addiction is continually changing between the different stages of addiction [2, 38]. Exercise is reported to have negative relationships with the extent, duration and frequency of drug use throughout the stages of initiation, prolonged intoxication, withdrawal, and relapse [7], and thus, has been sought out as a potential non-pharmacological treatment. Moderate exercise in methamphetamine dependent individuals significantly reduced depression symptom scores, in fact, “individuals with the most severe medical, psychiatric and addiction disease burden at baseline showed the most significant improvement in depressive symptoms by study endpoint” [39]. Similarly, group exercise for substance use disorder patients was found to significantly improve the physical health and psychological health domains of quality of life questionnaire; this intervention was beneficial even to patients with the most severe health problems [40]. Since depression and poor mental health are risk factors for relapse to drug seeking [27–29], these studies suggest that exercise is a useful strategy for reducing relapse in methamphetamine dependent individuals. Most importantly, the low cost and ease-of-implementation make exercise therapy all the more lucrative as a potential intervention. Therefore, clinical studies suggest that exercise can be used as a therapeutic intervention that may treat methamphetamine addiction, particularly during the relapse stage of addiction. The rest of the review will focus on the preclinical models of methamphetamine addiction and of exercise eliciting addiction-like behavior. Furthermore, we hope to provide a brief overview on the neuroprotective effects of exercise on methamphetamine addiction in the context of inhibition of intake.

ANIMAL MODELS OF ADDICTION TO ILLICIT DRUGS

Drug-taking behavior has been demonstrated in rodent models of intravenous drug self-administration, in which rodents are trained to self-administer drugs by pressing a lever for an intravenous drug infusion in an operant conditioning chamber [41]. As mentioned previously, addiction is distinct from limited or recreational drug use. An increase in drug availability or a history of drug intake has been shown to accelerate the development of dependence in humans [42, 43]. Thus, animal models of addiction should highlight dependence-like behaviors, such as escalation of drug intake over time and withdrawal symptoms when the drug is withheld [41]. In that regard, intravenous methamphetamine self-administration with intermittent (1 h biweekly), limited (1 h daily), or long (extended; >4 h daily) access has significant clinical relevance by illustrating a range of different methamphetamine seeking behaviors in rats [44]. Extended access to methamphetamine produces an escalation of methamphetamine self-administration, suggesting compulsive drug intake and reflecting dependence-like behavior. Therefore, the escalation model may provide a useful approach to understand the neurobiological mechanisms responsible for the transition from limited methamphetamine use to compulsive intake. The escalation model may be particularly suitable for testing the hypothesis that alterations in adult brain plasticity induced by the methamphetamine are partially responsible for addictive behavior [41].

The reinstatement of drug-seeking behavior in rats is widely used as a model of craving that mimics the relapse stage of addiction often observed in the clinic [45], and is used extensively to uncover the key brain regions, brain circuitry, neurotransmitters, and neuromodulators associated with reinstatement behavior. The paradigm extinguishes learned self-administration behavior by explicitly not rewarding (e.g. withholding intravenous methamphetamine infusion) the animal after the correct response is emitted (e.g., a correct lever press) and tests the ability of a priming stimulus to reinstate drug-seeking response [46]. The stimuli can be cues previously paired with drug self-administration (cue priming) or acute noncontingent exposure to the drug (experimenter delivered; i.e., drug priming) or context (spatial location) where the drug was self-administered. The drug seeking reinstatement model has been used to mimic an addict’s drug-response pattern [47], and mimic high rates of relapse [47, 48].
An alternative approach for assessing drug reward involves conditioned place preference (CPP), which determines the Pavlovian associations between rewarding effects of a drug and a continguously presented stimulus, i.e. the context in which the rewarding effects of the drug are experienced [49, 50]. This conditioning approach is different from operant behavior, as it does not involve the animal ‘working’ for the drug reward (e.g. no lever responses), but rather, it examines the preference for the context following the development of the association [51]. Furthermore, in this model animals receive passive administration of the drug (i.e. experimenter delivered), and are tested (cue/context) in a drug-free state [50, 52]. Although the operant self-administration and CPP models have face validity, the operant model of drug reward and reinstatement is more advantageous. For example, while CPP behavior fails to demonstrate drug dose-dependency, the self-administration model is useful for eliciting distinct drug intake patterns (limited vs. compulsive intake of the drug) to mimic recreational use vs. dependent use, and to model an addict’s drug-response pattern, and high relapse rates. Thus, the intravenous self-administration model of drug exposure appears to be the best suited for studying the neural mechanisms of drug reward and relapse.

ANIMAL MODELS OF SUSTAINED PHYSICAL ACTIVITY

Various animal models of exercise have been utilized which can be broadly classified as either voluntary or as forced exercise [53]. One of the most commonly used exercise paradigms involves the use of running wheels. In a voluntary wheel running paradigm, a wheel is placed in the home cage of the animal and the animal has ad libitum access to the wheel. In contrast, forced wheel running isolates the animal with the wheel and partitions off access to any other area; rotation of the wheel can be controlled remotely (using a computer or other mechanism) to ensure that the animal is forced to run while on the wheel [53]. Another forced exercise animal model is treadmill running, where the animal is forced to run on a motor-driven treadmill for a controlled amount of time [53]. Swimming has also been used as an exercise model where the animal was forced to swim in a tank with access to a platform for resting (optional) without leaving the water [54, 55]. Both voluntary and forced exercise paradigms have proven effective animal models; while voluntary exercise is typically chosen to simulate human choices for physical activity, forced exercise is suggested to more closely resemble human exercise regimens [56]. Environmental enrichment is another technique that provides greater opportunity for physical activity compared to standard housing conditions [53], but is a more complex paradigm with social and cognitive stimulation additionally involved; thus, environmental enrichment will not be discussed in the present review.

Utilizing these models of sustained physical activity, there is emerging evidence from animal studies that exercise is addictive and the behavioral outcomes can be compared with other drugs of abuse [8]. For example, the binge/intoxication phase of addiction is characterized by escalation of drug intake; in voluntary wheel running paradigms, escalation of running activity over days of access has been reported by several groups [57–60]. Such behavior indicates that exercise is reinforcing and can induce increased use over time. Additionally, using the CPP task, rats were reported to prefer the chamber previously paired with running wheels (wheel-paired context) compared to the chamber without wheel-pairing history [57], suggesting that access to running wheel is rewarding. Interestingly, physical exercise has been shown to activate the same mesolimbic reward pathway as illicit drugs; like methamphetamine, exercise can increase extracellular dopamine in the ventral striatum (Fig. 1), thus further identifying the neuronal mechanism underlying the rewarding and reinforcing effects of exercise [57, 61]. Combined, this body of research suggests that exercise is rewarding, and can illicit behaviors that correspond to the binge/intoxication phase of addiction.

The negative affect and withdrawal symptoms that are typical to drug dependence have also been observed in humans when experiencing a withdrawal from physical exercise [30]; some of these behavioral and physical aspects can also be found in animal models. For example, in mice that were selectively bred for high wheel running activity, providing access to running wheels and subsequently removing wheels access (withdrawal) lead to reduction of systolic and diastolic blood pressure, and of body temperatures, when compared with inbred mice with continued access to wheels or to control mice [62]. Evidence for the negative affect in animal models of drug addiction include behavioral symptoms such as depression and anxiety [63, 64]. Similar observations were made in exercise-prefering inbred mice that were withdrawn from running wheel activity, in whom behavioral despair or depression, assessed using the...
forced swim test, was elevated compared to control mice [65]. Taken together, animals that are genetically predisposed for high levels of physical activity and are then not permitted to engage in such activity, showed classical signs of withdrawal similar to those seen in drug dependent animals. However, these effects are not restricted to animals that are selectively bred for high wheel running. Outbred rats that were given free access to running wheels for 30 days and then prevented access to wheels for 24 hours were more likely to ‘relapse’ or binge on running after the wheels were reintroduced [66]. Because drug-addiction is a chronic relapsing disorder, the latter study provides strong evidence that, like drugs of abuse, running wheels can elicit relapse behavior. In conclusion, exercise does elicit addictive behavior, and this effect is enhanced in the genetically vulnerable strain.

CONVERGENCE BETWEEN EXERCISE AND METHAMPHETAMINE ADDICTION IN ANIMAL MODELS

There is an extensive amount of preclinical research supporting exercise as a treatment for drug addiction where exercise has been repeatedly shown to reduce the amount of drug intake during self-administration sessions (for review [7]). With respect to methamphetamine, exercise regimens have reduced self-administration during acquisition [58, 66] and during escalation of intake [58]. Research conducted in our laboratory also shows that access to exercise (voluntary wheel running) during protracted withdrawal from methamphetamine self-administration improved the rate of extinction and reduced both context- and cue-induced reinstatement of methamphetamine seeking [59]. Exercise also inhibits amphetamine reward
as evidenced by inhibition of CPP for amphetamine following forced treadmill running [67]. However, withdrawal from access to running wheels was found to increase methamphetamine intake during acquisition compared to rats with continued access to wheels as well as compared to exercise naive rats [58]. Furthermore, escalation of methamphetamine intake did not differ between exercise-withdrawn rats and exercise-naive rats [58], suggesting that the protective effect of exercise in methamphetamine addiction may be contingent on continued availability of the running wheel.

This lends further credence to the hypothesis that the efficacy of exercise depends on its ability to serve as a strong alternate rewarding and reinforcing agent. The neurobiological bases underlying the effects of exercise in methamphetamine addiction as well as the adaptations underlying the addictive effects of exercise will be explored in the subsequent sections.

NEURAL CIRCUITRY UNDERLYING METHAMPHETAMINE AND EXERCISE ADDICTION

The reward and relapse circuitry in the adult mammalian brain has been delineated based on multiple groundbreaking studies performed in rodent models of acute and chronic reinforcement schedules and reinstatement to drug-seeking behavior [45, 68]. The acute reinforcing actions of stimulants, like methamphetamine, has been attributed to the mesolimbic dopamine pathway that initiates in the ventral tegmental area and terminates in the nucleus accumbens (ventral striatum; the brain reward center); however, it is important to note that for sedative/hypnotics and opiates, such as ethanol and heroin, these regions are not critical for the acute reinforcing effects [2]. Furthermore, there is evidence that neurotransmitters other than dopamine may also play a significant role in the rewarding effects of stimulants. For example, the nucleus accumbens receives inputs from several other brain regions, including the medial prefrontal cortex and hippocampal regions [2], and notably, the neurotransmitter glutamate from these regions regulates dopamine release from the nucleus accumbens and ventral tegmental area [69–71]. These results suggest that illicit drugs dysregulate prefrontocortical and hippocampal neurocircuitry, and thereby, contribute to the enhanced dopamine release from the mesolimbic dopamine pathway, and all of these regions play critical roles in the acute reinforcing effects of stimulant drugs [2].

The key brain regions implicated in the reinstatement of drug-seeking behavior include, but are not limited to, the medial prefrontal cortex, nucleus accumbens, bed nucleus of the stria terminalis, central nucleus of the amygdala, basolateral amygdala, hippocampal regions, and ventral tegmental area [2, 45, 68]. The dorsal striatum, that receives efferent projections from the mesocortical (the ventral tegmental area to prefrontal cortex) dopamine pathway, and the ventral striatum (nucleus accumbens) are considered the two focal points for reinstatement of drug-seeking behavior, or relapse centers of the brain [2, 68]. Most importantly, it is believed that the release of the neurotransmitters dopamine, glutamate, and corticotropin-releasing factor in these key brain regions are essential for the behavioral effects of the drug during the withdrawal and craving stages of addiction that contribute to relapse [72, 73]. The overlapping effects of exercise and methamphetamine on this neurocircuitry has been elegantly detailed in a recent review [7]; this overlap is briefly touched upon here from the perspectives of exercise addiction and of exercise therapy for methamphetamine addiction (Table 1).

To add to the existing theories on addiction, one recent discovery that is potentially important for addiction research is the ability of the adult mammalian brain to continuously generate new progenitors throughout adulthood. Broadly defined, progenitors are a progeny of stem cells that are characterized by limited self-renewal and can mature into differentiating cells, such as neurons and glia in the brain. The discovery [74–76] and eventual acceptance [77, 78] that adult-generated progenitors that can mature into neurons or glial cells in numerous mammalian species, including humans (for review [79]) has spurred substantial investigation of the proliferative capacity of brain regions such as the hippocampus. The role of adult neurogenesis in the hippocampus in methamphetamine addiction and the influence of exercise on these neural progenitors will be discussed in the subsequent sections.

NEURAL PROGENITORS AND NEUROGENESIS IN THE HIPPOCAMPUS IS AFFECTED BY METHAMPHETAMINE AND EXERCISE

Adult neurogenesis in the adult mammalian brain occurs in only one region of the hippocampus, namely the subgranular zone, situated on the border of the granule cell layer and hilus of the dentate gyrus. Stem-like precursor cells are mitotically active and divide...
Exercise and methamphetamine alter neurotransmission in the reward and reinforcement centers of the brain. This contributes to the value of exercise as a treatment for drug addiction (for review, [7, 245]). Of interest are dopaminergic and glutamatergic systems. The acute reinforcing actions of stimulants, like methamphetamine, has been attributed to the mesolimbic dopamine system that initiates in ventral tegmental area and terminates in the nucleus accumbens [2]. The transition of drug abuse behavior to prolonged intoxication and preoccupation/anticipation stage is accompanied by adaptations of the glutamatergic system [246, 247], which, in part, contribute to negative affect (example, depression and anxiety) during drug withdrawal [2].

Exercise and methamphetamine alter neurotransmission in the reward and reinforcement centers of the brain. This contributes to the value of exercise as a treatment for drug addiction (for review, [7, 245]). Of interest are dopaminergic and glutamatergic systems. The acute reinforcing actions of stimulants, like methamphetamine, has been attributed to the mesolimbic dopamine system that initiates in ventral tegmental area and terminates in the nucleus accumbens [2]. The transition of drug abuse behavior to prolonged intoxication and preoccupation/anticipation stage is accompanied by adaptations of the glutamatergic system [246, 247], which, in part, contribute to negative affect (example, depression and anxiety) during drug withdrawal [2].

Exercise and methamphetamine alter neurotransmission in the reward and reinforcement centers of the brain. This contributes to the value of exercise as a treatment for drug addiction (for review, [7, 245]). Of interest are dopaminergic and glutamatergic systems. The acute reinforcing actions of stimulants, like methamphetamine, has been attributed to the mesolimbic dopamine system that initiates in ventral tegmental area and terminates in the nucleus accumbens [2]. The transition of drug abuse behavior to prolonged intoxication and preoccupation/anticipation stage is accompanied by adaptations of the glutamatergic system [246, 247], which, in part, contribute to negative affect (example, depression and anxiety) during drug withdrawal [2].
granule cell proliferation is the observed dysregulation of the trophic factor brain derived neurotrophic factor (BDNF) and its receptor Tropomyosin receptor kinase B (TrkB), along with compromised glutamatergic signaling [108]. Taken together, these findings serve to support the theory that the neurogenic dysregulation caused by methamphetamine is an additional source of vulnerability to dependence on the drug [109–111].

REGULATION OF HIPPOCAMPAL NEUROGENESIS BY EXERCISE

Exercise exerts beneficial effects on hippocampal function and neurogenesis. Extensive evidence has demonstrated that exercise in animals is correlated with increases in both the number of neural progenitors as well as the number of surviving neurons in the hippocampus (for review, [56]). One of the mechanisms suggested for this increased neurogenesis is exercise-mediated increases in hippocampal trophic factors that are generally believed to support neuronal proliferation and survival, including BDNF and its receptor TrkB [112–128]. Other factors underlying the increased neurogenesis in the granule cell layer include increased stimulation and network activity in the surrounding hippocampus [115, 117, 119, 122, 124, 129–132], immune system regulation [133–136], and modulation of stress hormones [116, 137–140]. Furthermore, these increases in granule cell production correspond to improvements in hippocampal sensitive tasks including spatial navigation, pattern separation, and contextual fear conditioning (for review, [141]). Interestingly, evidence suggests that while the proliferative stimulation following exercise is lost relatively soon following cessation of activity, the increase in survival of granule cells continues for an extended duration, including into advanced age [58, 142]. Taken together, physical activity clearly enhances hippocampal neurogenesis and subsequently, hippocampal dependent cognition.

EXERCISE-INDUCED REDUCTION OF METHAMPHETAMINE TAKING AND SEEKING IS NOT ASSOCIATED WITH EXERCISE-INDUCED ENHANCEMENT OF HIPPOCAMPAL PROGENITORS AND NEUROGENESIS

It has been hypothesized that exercise-induced upregulation of hippocampal neurogenesis may underlie exercise-mediated reduction in the vulnerability to relapse in methamphetamine addicted animals [101]. However, recent findings demonstrate that wheel running-induced reduction in escalation of methamphetamine self-administration and reduction in reinstatement of methamphetamine seeking triggered by drug context and drug cues occurred independent of alterations in the number of neural progenitors and neurogenesis in the hippocampus [58, 59]. Therefore, while exercise and methamphetamine exert seemingly opposite effects on hippocampal neurogenesis (Fig. 1), the ability of exercise to regulate methamphetamine seeking appears to be dissociated from their effects of neurogenic events. Nevertheless, these studies have demonstrated that running activity during methamphetamine self-administration and during withdrawal prevented other measures of toxicity produced by methamphetamine (discussed below) to inhibit methamphetamine seeking behaviors [59].

METHAMPHETAMINE PRODUCES TOXICITY IN THE BRAIN

Studies over the past four decades have conceptualized that methamphetamine produces significant toxicity in the striatum, and that the neurotoxicity is responsible for the addictive effects of the drug. Briefly, methamphetamine reduces the function of dopamine transporters, vesicular monoamine transporters, tyrosine hydroxylase and MAO-B, to produce excessive dopamine release [143, 144] which leads to striatal neurotoxicity via enhanced reactive oxygen species (ROS) and reactive nitrogen species [145–157], and via compromised mitochondrial function [158, 159]. Methamphetamine also increases mitochondria-dependent pro-apoptotic proteins, decreases mitochondria-dependent anti-apoptotic proteins, and damages the endoplasmic reticulum, all of which contribute to increased neuronal cell death [159, 160]. Taken together, increased methamphetamine intake during extended access schedules of reinforcement leads to striatal neurotoxicity, which may be critical for the transition to compulsive use [161].

Non-striatal mechanisms have also been suggested for the emergence of the relapse/preoccupation anticipation stage of methamphetamine addiction [2]. Human imaging studies and postmortem studies provide converging evidence suggesting that chronic methamphetamine use produces neurotoxicity in the hippocampus [162, 163], and reduces frontal cortical, amygdalar, as well as hippocampal gray matter
mental effects of ROS, however, it is important to understand that moderate levels of reactive species are in fact, beneficial and essential for cellular signaling, and epigenetic regulation [195]. Moderate levels of exercise regulate the body’s redox homeostasis by improving metabolism and blood flow throughout the body, and that contributes to the several health promoting effects of exercise (for review [195]). Specifically, moderate exercise increases both antioxidant capacity and resistance against oxidative stress throughout the body, thus increasing resistance and tolerance to oxidative stress. Interestingly, the brain appears to be particularly protected against the adverse oxidative effects of over (or exhaustive)-exercise [196–199]. Specifically, the brain remained protected while skeletal muscles, liver and kidney showed oxidative damage following a single bout of exhaustive exercise; where the exercise paradigm involved treadmill running at 24 meters/min until the rat lost its righting reflex [196, 197]. Also, chronic exercise did not increase lipid peroxidation in the rat brain [198], although these effects are modulated by dietary vitamin intake [200, 201]. Compared to moderate training (swimming 1 hr/day for 8 weeks), very hard training (progressively increasing swim-time from 1 hr/day to 4.5 hr/day) and over-training (abruptly increasing swim-time from 1 hr/day to 4.5 hr/day) decreased brain protein oxidation products and improved performance in an associated rat memory task [199]; however, this tolerance has its limits as others report increased ROS and lipid peroxidation and impaired memory following intense or exhaustive exercise [202–204]. Exercise has been shown to exert beneficial effects in rodent models of several brain disorders including, but not limited to, models of ischemic stroke, stroke-prone spontaneously hypertensive rats and N-methyl-D-aspartate (NMDA) lesion models for Alzheimer’s disease [205–207]. Several sub-cellular mechanisms are suggested to underlie the effects of exercise on brain function. These include increased expression of brain antioxidant enzymes including several superoxide dismutases, glutathione peroxidase and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) in the striatum and the hippocampus [208, 209]. The latter transcription factor, PGC-1α, is doubly beneficial as it can further upregulate other antioxidant enzymes, and more importantly, increase biogenesis of mitochondria to improve the efficiency of ATP generation, and thereby, reduce oxidative neurodegeneration in the substantia nigra and the hippocampus [210]. Exercise is also reported to increase the activity of proteasome complexes in the brain [198], which is a putative mechanism for improved cognition and reduced physical activity reduces toxicity in the brain

The previous sections have focused on the detrimental effects of ROS, however, it is important to

![Image of a document page]

S.S. Somkuwar et al. / Evaluating Exercise as a Therapeutic Intervention for Methamphetamine Addiction-Like Behavior 71
neurodegeneration in Alzheimer’s Disease and Parkinson’s Disease [211, 212]. Exercise, via modulation of oxidative pathways as well as through independent mechanisms, has been shown to modulate trophic factor signaling in the brain to promote brain plasticity (for review, [3, 213]). Specifically, exercise increases hippocampal BDNF expression, activates its downstream signaling pathways, and increases cAMP response element binding protein (CREB), that subsequently upregulates other inducible transcription factors [214–216]. These molecular changes could manifest themselves as beneficial neuroplasticity changes such as increasing cell survival [217, 218], formation of new synapses (synaptogenesis; [219]), and neurogenesis [220, 221]. Furthermore, because ROS is known to dose-dependently modulate proliferation of neuronal progenitor cells in the hippocampus [217, 222], exercise may modulate neurogenesis by regulating ROS in the dentate gyrus. Modulating the levels of trophic factors and ROS in regions other than the dentate gyrus may alter the generation of new glia (gliogenesis), such as astroglia and oligodendroglia that may contribute to functional plasticity [222–225]. The medial prefrontal cortex, a brain region involved in executive and impulse control [38, 226, 227], is one region where this mechanism has been investigated [44]. Specifically, voluntary wheel running in rats was also shown to increase in proliferation and survival of progenitor cells in the medial prefrontal cortex, and these new cells matured into new astroglia (~33%) and new oligodendroglia (~55%) [44]. Thus, exercise-induced gliogenesis may be a mechanism underlying exercise-induced improvement in cognition and executive function observed in several disease conditions [228, 229].

EXERCISE-INDUCED REDUCTION OF METHAMPHETAMINE TAKING AND SEEKING IS ASSOCIATED WITH EXERCISE-INDUCED REDUCTION OF METHAMPHETAMINE-INDUCED BRAIN TOXICITY

As discussed previously, exercise reduces methamphetamine intake when both the reinforcers are concurrently available, in part, because exercise serves as an alternative reinforcer [7]; also see Table 1). However, the above sections demonstrate that the potential for overlap between exercise and methamphetamine extends much deeper and is more complicated than simply modulating neurotransmission in the brain reward and reinstatement centers (Fig. 1). Exercise improves brain function via changes in redox homeostasis and contributes to increased resistance and tolerance to oxidative challenge, and thereby promotes cell survival. Notably, swimming exercise was found to attenuate amphetamine-induced CPP and anxiety, which corresponded with exercise-induced reduction in ROS and protein oxidation products in hippocampal homogenates [54]. Studies conducted by our group and others revealed that rats with continued access to voluntary wheel running attenuated acquisition and escalation of methamphetamine self-administration compared to rats without access to running wheels [58, 66]. Furthermore, access to running wheels during protracted abstinence from methamphetamine accelerated extinction and attenuated reinstatement of methamphetamine seeking [59]. Indeed, voluntary running attenuated methamphetamine-induced damage to dopamine and serotonin terminals in the striatum, potentially, by promoting repair of the damaged terminals [230, 231]. Further, attenuated methamphetamine self-administration in rats with continued access to voluntary wheel running was associated with attenuation of neuronal apoptosis and decreased neuronal nitric oxide synthase expression in the nucleus accumbens [58], suggesting that regulation of oxidative stress mechanisms may be an alternate or concomitant mechanism which contributes to the beneficial effects of exercise in methamphetamine addiction. Future studies should include empirical validation of these mechanisms in exercise-mediated modulation of methamphetamine seeking.

Interestingly, withdrawal from wheel running during methamphetamine self-administration enhanced consumption of methamphetamine compared to exercise-naïve rats [58], suggesting that deprivation from chronic exercise may render subjects vulnerable to methamphetamine. The latter observation further contributes to the idea that exercise itself is addictive, however, very little is known about the mechanism underlying this increased addiction vulnerability. Evidence from studies in mice selectively bred for increased voluntary wheel running suggests dopamine is increased in the nucleus accumbens and the dorsal striatum (the reward and reinforcement centers of the brain), but is negatively correlated with running suggesting attenuation of sensitivity to reinforcing effects of running [232]. Furthermore, the dorsal striatum and substantia nigra were hypo-dopaminergic [233] thus providing a conducive environment for mechanisms that can compensate for this reduced dopamine tone (for example, methamphetamine-induced dopamine...
release; Table 1). Finally, running correlated with hippocampal activation (increased Fos) in controls but this correlation was lost in mice selectively bred for high wheel running activity [234]. Instead, the high runners showed increased activation (Fos) of the motivation circuitry, i.e., prefrontal cortex, striatum, and lateral hypothalamus along with increased BDNF in the hippocampus [234, 235]. Taken together, a blunted dopamine reward system, a hypodopaminergic response in the nigro-striatal pathway (relapse circuitry) together with the activation of neurons in the brain regions involved in motivation in the exercise-withdrawn animal, may contribute to the addictive effects of exercise and may provide the ideal environment for cross-sensitization to other powerful reinforcers such as methamphetamine. However, these speculations need to be empirically validated using animal models.

FUTURE DIRECTIONS AND CONCLUSION

While some information is available regarding the associated neurobiological changes underlying the interactions of exercise with methamphetamine taking and seeking, a lot of the potential mechanisms have not been empirically evaluated. An example, is the opposite effects of methamphetamine and chronic exercise on astrocytes and inflammatory markers in the brain [186, 187, 236, 237], and yet their interaction in these avenues remains unexplored. Furthermore, there is a gap in our understanding of the neurobiological adaptations following exercise withdrawal and neurobehavioral effects of excessive exercise. An emerging direction in drug abuse research investigates epigenetic modifications of the chromatin structure that results in activation or repression of gene expression in altering the vulnerability to drug addiction [238, 239]. Epigenetic modification not only alters the rewarding effects of methamphetamine, chronic methamphetamine also produces epigenetic changes that are permissive for progressing through the different phases of addiction [240, 241]. Particularly, modifications in the genes regulating BDNF expression and signaling have been implicated in the initiation-binge/intoxication stage as well as the relapse-preoccupation/anticipation stage of psychostimulant addiction (for review, [242]). Exercise is known to increase BDNF expression in the hippocampus [243], and epigenetic modifications have been shown to be a part of the underlying mechanism [244]. It would be interesting to see how epigenetic modifications by exercise lead to long-term adaptations that promote/inhibit methamphetamine taking and seeking.

In sum, the identification of the neuroplastic and neuromodulatory effects of exercise over the past few decades has shed new light on the therapeutic and, more recently, the protective effects that are associated with exercise. Future studies aimed at understanding the potential link between correlative decreases in illicit drug use and addiction and increase in exercise output in animal models will allow researchers to determine whether decreases in neurotoxicity by exercise is behaviorally relevant to the prevention of addiction to illicit drugs. This may pave the way for future therapeutic possibilities for treating drug addiction disorders.

ACKNOWLEDGMENTS

Preparation of this review was supported by funds from the National Institute on Drug Abuse (DA034140 to CDM) and the National Institute on Alcohol Abuse and Alcoholism (AA020098 and AA006420 to CDM, and T32AA00747 to MCS). We appreciate the assistance of Janet Hightower from Biomedical Graphics Department at Scripps for assistance with the schematic presentation. This is publication number 29064 from the Scripps Research Institute.

REFERENCES

[1] NIDA. Topics in brief: Methamphetamine addiction: Progress, but need to remain vigilant. The Science of Drug Abuse and Addiction. 2011.
[2] Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(3):237-38.
[3] Phillips C, Baktir MA, Srivatsan M, Salehi A. Neuroprotective effects of physical activity on the brain: A closer look at trophic factor signaling. Frontiers in Cellular Neuroscience. 2014;8:178.
[4] Koob GF, Le Moal M. Drug abuse: Hedonic homoeostatic dysregulation. Science. 1997;276(5355):52-8.
[5] Crews FT, Bostiger CA. Impulsivity, frontal lobes and risk for addiction. Pharmacol Biochem Behav. 2009;93(3):237-47.
[6] Fellemstein MW, See RE. The neurocircuitry of addiction: An overview. Br J Pharmacol. 2008;154(2):261-74.
[7] Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA. Exercise as a novel treatment for drug addiction: A neurobiological and stage-dependent hypothesis. Neuropsychopharmacology. 2013;38(8):1622-44.
[8] Kalant RB, D’Asci KE, Judd L, Mathers WF. Running and addiction: Precipitated withdrawal in a rat model of activity-based anorexia. Behav Neurosci. 2009;123(4):705-12.
[9] Carroll ME, Bux IN. Increased intravenous drug self-administration during deprivation of other reinforcers. Pharmacol Biochem Behav. 1982;13(3):563-7.
S.S. Somkuwar et al / Evaluating Exercise as a Therapeutic Intervention for Methamphetamine Addiction-Like Behavior

[10] SAMHSA. Results from the 2007 National Survey on Drug Use and Health: Detailed Tables. Substance Abuse and Mental Health Services Administration. Office of Applied Studies. 2008.

[11] USPSTF/USPSTF. Screening for illicit drug use. 2008.

[12] WHO WHO. 1980.

[13] NIDA. Research reports. Methamphetamine abuse and addiction. The Science of Drug Abuse and Addiction. 2006.

[14] NIDA. Drug Facts. Methamphetamine. The Science of Drug Abuse and Addiction. 2010.

[15] Gonzales R, Mooney L, Rawson RA. The methamphetamine problem in the United States. Ann Rev Public Health. 2010;31:385-96.

[16] Rawson RA, Shoptaw SJ, Oblatt JL, McCann MJ, Hasson AL, Marinelli-Campy P, et al. An intensive outpatient approach for cocaine abuse treatment. The Matrix model. J Subst Abuse Treat. 1995;12(2):177-21.

[17] GETTIG JP, Grady SE, Nowosiadzka I. Methamphetamine: Putting the brakes on speed. J Sch Nurs. 2006;22(2):66-73.

[18] Barett B, Hayney MS, Muller D, Rakel D, Ward A, Obus CN, et al. Mediation on exercise for preventing acute respiratory infection: A randomized controlled trial. Annals of family medicine. 2012;10(4):33-46.

[19] Wang G, Pei M, Macrea CA, Zheng ZH, Heath GA, Physiological, cardiovascular disease, and medical expenditures in U.S. adults. Annals of behavioral medicine: A publication of the Society of Behavioral Medicine. 2004;28(2):88-94.

[20] Pratt M, Macera CA, Wang G. Higher direct medical costs associated with physical inactivity. The Physican and sportmedicine. 2000;28(10):63-70.

[21] Patel PN, Bernstein L, Ditea A, Frigelison HS, Campbell PT, Gapski SM, et al. Leisure time spent sitting in relation to total mortality in a prospective cohort of US adults. Am J Epidemiol. 2010;172(4):419-29.

[22] United States. Department of Health and Human Services. 2008 physical activity guidelines for Americans: Be active, healthy, and happy! Washington, DC: U.S. Dept. of Health and Human Services; 2008.

[23] McElyar RA, Fishkind D, Hu FB, Willett WC, Field AE. Physical activity in relation to long-term weight maintenance after intentional weight loss in premenopausal women. Obesity (Silver Spring). 2010;18(1):167-74.

[24] Di Lorenzo TM, Bourman EP, Stucky-Ropp R, Brasington GS, Fermachik P, LaFontaine T. Long-term effects of aerobic exercise on psychological outcomes. Prev Med. 1999;28(1):75-85.

[25] Blumenthal JA, Babay IA, Morer KA, Cruzhead WE, Herman S, Khani P, et al. Effects of exercise training on older patients with major depression. Arch Intern Med. 1999;159(10):2349-50.

[26] Peluso MA, Guerra de Andrada LH. Physical activity and mental health: The association between exercise and mood. Clinics. 2005;60(1):84-70.

[27] Koob GF. Addiction is a Reward Deficit and Stress Surfeit Disorder Frontiers in Psychiatry. 2013;4:72.

[28] Jones EM, Kinston D, Haines D. Common problems in patients recovering from chemical dependency. American Family Physician. 2005;61(10):1971-8.

[29] Polter AM, Kauer JA. Stress and VTA synapses: Implications for addiction and depression Eur J Neurosci. 2014;39(7):1179-88.

[30] Egorov AV, Szabo A. The exercise paradox. An interactional model for a clearer conceptualization of exercise addiction. Journal of Behavioral Addictions. 2013;2(4):199-208.

[31] American Psychiatric Association. American Psychiatric Association. DSM-5 Task Force: Diagnostic and statistical manual of mental disorders. DSM-5. 5th ed. Washington, D.C.: American Psychiatric Publishing, 2013. xiv, pp. 947.

[32] Sabo A. Addiction to Exercise: A Symptom or a Disorder? New York: Nova Science Publishers Inc.; 2010.

[33] Bruno A, Quattrone D, Sciamma G, Cicciarrell C, Romes VM, Pandolfo G, et al. Untreating exercise addiction: The role of narcissism and self-esteem. Journal of Addiction. 2014;2014:987641.

[34] Muderiansma S, Pihl PJ, Kiviat G. Gender differences in exercise dependence and eating disorders in young adults. A path analysis of a conceptual model. Nutrients. 2014;6(11):4895-905.

[35] Council on Clinical Classifications., National Center for Health Statistics (U.S.). World Health Organization. Commission on Professional and Hospital Activities. The International classification of diseases, clinical modifications, ICD-9-CM. 9th revision ed. Am Arbor: CHPA; 1978.

[36] Pope HG Jr, Greuler AI, Choo P, Olivardia R, Phillips KA. Muscle dysmorphia: An underrecognized form of body dysmorphic disorder. Psychosommed. 1997;38(6):548-57.

[37] Lichtenstein MB, Andrews A, Hansen S, Frytjik J, Slowing RR. Exercise addiction in men is associated with lower fat-adjusted leptin levels. Clinical Journal of Sport Medicine: Official Journal of the Canadian Academy of Sport Medicine. 2015;25(2):138-43.

[38] Kallou PW, Vellon ND. The neurotis basis of addiction: A pathology of motivation and choice. Am J Psychiatry. 2005;162(11,6):1403-13.

[39] Foxged M, Ang A, Mooney L, Gonzales R, Chaudry J, Cooper CB, et al. Predictors of depression outcomes among abstinent methamphetamine-dependent individuals exposed to an exercise intervention. Am J Addict. 2014.

[40] Muller AE, Clark TJ, Gross exercise to improve quality of life among substance use disorder patients. Scandinavian Journal of Public Health. 2014.

[41] Ahmed SH, Koob GF. Transition from moderate to excessive drug intake: Change in hedonic set point. Science. 1998;282(5387):305-9.

[42] Gawon FH, Ellenshaw ED, Jr. Cocaine dependence. Am Fam Physician. 1989;40:149-61.

[43] Kramer JC, Fischman VS, Littlefield DC. Amphetamine abuse: Pattern and effects of high doses taken intravenously. Jama. 1967;201(5):305-9.

[44] Mandysen CD, Wee S, Eisich AI, Richardson HD, Koob GF. Methamphetamine self-administration and voluntary exercise have opposing effects on medial prefrontal cortex gliogenesis. J Neurosci. 2009;29(42):11442-50.

[45] Shaham Y, Shalev U, Lu L, De Wit H, Stewart J. The chronicity of relapse: I. Design and experimental design. J Subst Abuse Treat. 1995;12(2):117-27.

[46] Hasson AL, Marinelli-Casey PJ, et al. An intensive outpatient approach for cocaine abuse treatment. The Matrix model. J Subst Abuse Treat. 2010;31:385-96.

[47] Mandyam CD, Wee S, Eisich AI, Richardson HD, Koob GF. Methamphetamine self-administration and voluntary exercise have opposing effects on medial prefrontal cortex gliogenesis. J Neurosci. 2009;29(42):11442-50.

[48] Abraham SH, Koob GF. Transition from moderate to excessive drug intake: Change in hedonic set point. Science. 1998;282(5387):305-9.

[49] Foxged M, Ang A, Mooney L, Gonzales R, Chaudry J, Cooper CB, et al. Predictors of depression outcomes among abstinent methamphetamine-dependent individuals exposed to an exercise intervention. Am J Addict. 2014.

[50] Muller AE, Clark TJ, Gross exercise to improve quality of life among substance use disorder patients. Scandinavian Journal of Public Health. 2014.

[51] Ahmed SH, Koob GF. Transition from moderate to excessive drug intake: Change in hedonic set point. Science. 1998;282(5387):305-9.

[52] Gawon FH, Ellenshaw ED, Jr. Cocaine dependence. Am Fam Physician. 1989;40:149-61.

[53] Kramer JC, Fischman VS, Littlefield DC. Amphetamine abuse: Pattern and effects of high doses taken intravenously. Jama. 1967;201(5):305-9.

[54] Mandysen CD, Wee S, Eisich AI, Richardson HD, Koob GF. Methamphetamine self-administration and voluntary exercise have opposing effects on medial prefrontal cortex gliogenesis. J Neurosci. 2009;29(42):11442-50.

[55] Shaham Y, Shalev U, Lu L, De Wit H, Stewart J. The chronicity of relapse: I. Design and experimental design. J Subst Abuse Treat. 1995;12(2):117-27.

[56] Hasson AL, Marinelli-Casey PJ, et al. An intensive outpatient approach for cocaine abuse treatment. The Matrix model. J Subst Abuse Treat. 2010;31:385-96.

[57] Mandyam CD, Wee S, Eisich AI, Richardson HD, Koob GF. Methamphetamine self-administration and voluntary exercise have opposing effects on medial prefrontal cortex gliogenesis. J Neurosci. 2009;29(42):11442-50.

[58] Abraham SH, Koob GF. Transition from moderate to excessive drug intake: Change in hedonic set point. Science. 1998;282(5387):305-9.

[59] Gawon FH, Ellenshaw ED, Jr. Cocaine dependence. Am Fam Physician. 1989;40:149-61.

[60] Kramer JC, Fischman VS, Littlefield DC. Amphetamine abuse: Pattern and effects of high doses taken intravenously. Jama. 1967;201(5):305-9.
Spradg SD. Morphine addiction in chimpanzees. Comp Psychol Monogr. 1940;15(1-2):1-132.

Bunis MT, Breiner RA. Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl). 2000;153(1):31-43.

Adelcov C. Evidence of place conditioning after chronic intracranial morphine in rats. Pharmacol Biochem Behav. 1985;22(2):257-1.

Bardo MT, Miller JS, Neesewander JL. Conditioned place preference with morphine: The effect of extinction training on the reinforcing CR. Pharmacol Biochem Behav. 1984;21(4):545-9.

Arala RM, Schroeder JA, Weber M. Running is rewarding and antidepressive in rats. Behav Brain Res. 2014;262:94-100.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.

Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge E. Running is a model of dependency on physical activity in rats. Physiol Behav. 2013;112-113:49-55.

Rupp H, Wahl R. Influence of thyroid hormones and corticosteroids on myosin of swim-exercised rats. J Appl Physiol. 1990;68(3):523-4.
van Praag H. Neurogenesis and exercise: Past and future directions. Neuron. 2008;10(2):128-40.

Malenka RC. Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron. 2004;42(4):535-52.

Schmid-Herbert C, Jonas P, Buchsberger J. Enhanced synaptic plasticity and newly generated granule cells of the adult hippocampus. Nature. 2004;429(6988):184-7.

Kim WR, Christian K, Ming GL, Song H. Time-dependent enhancement of hippocampal neurogenesis in spatial pattern separation. Science. 2005;309(5740):520-4.

Feng R, Rampon C, Tang YP, Shrom D, Jin J, Kyrö M, et al. Deficient neurogenesis in forebrain-specific progenitor-1 knock-out mice is associated with reduced clearance of hippocampal memory traces. Neuron. 2001;32(5):911-26.

Deisseroth K, Singla S, Toda H, Monje M, Palmer TD, Mälenka RC. Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron. 2004;42(4):535-52.

Schmidt-Herbert C, Jonas P, Buchsberger J. Enhanced synaptic plasticity and newly generated granule cells of the adult hippocampus. Nature. 2004;429(6988):184-7.

Kim WR, Christian K, Ming GL, Song H. Time-dependent involvement of adult-born dentate granule cells in behavior. Behavioral Brain Research. 2012;227(2):470-7.

Bakker A, Kieweg CB, Miller M, Stark CE. Pattern separation in the human hippocampal CA3 and dentate gyri. Science. 2008;320(5880):1286-9.

Clelland CD, Choi M, Romberg C, Clementson GD, Jr., Fragapane A, Tye MY, et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 2009;326(5957):230-3.

Sakah A, Tiedt RS, Aitchison DJ, O’Carroll CM, Kheirbek MA, Burghardt NS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472(7344):668-70.

Sakah A, Wilson DA, Hen R. Pattern separation: A common function for new neurons in hippocampus and olfactory bulb. Neuron. 2011;70(4):548-58.

McHugh TJ, Jones MW, Quinn JH, Balthasar N, Coppola R, E limp Katie JK, et al. Dentate gyrus NDMA receptors mediate rapid pattern separation in the hippocampal network. Science. 2007;317(5834):94-9.

Aimone JB, Deng W, Gage FH. Resolving new memories: A critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron. 2011;70(4):589-96.

Mandyam CD, Koob GF. The addic ted brain craves new neurons: Putative role for adult-born progenitors in promoting recovery. Trends Neurosci. 2012;35(4):250-60.

van Praag H. Neurogenesis and exercise: Past and future directions. Neuronmolecular Med. 2008;10(2):128-40.

[103] Teachers-Nondi G, Dawes RR, Hildebrandt K. Adult treatment with methamphetamine transiently decreases dentate granule cell proliferation in the adult hippocampus. J Neurosci. 2010;29(21):6896-902.

[104] Kochman LJ, Foral CA, Jacobs BL. Suppression of hippocampal cell proliferation by short-term stimulant drug administration in adult rats. Eur J Neurosci. 2009;29(11):2157-65.

[105] Mandyam CD, Wei S, Crawford EF, Eisch AJ, Richardson BN, Koob GF. Reduced access to intravenous methamphetamine self-administration differentially alters adult hippocampal neurogenesis. Biol Psychiatry. 2015;77(11):958-65.

[106] Yuan CJ, Quirós JM, Kim A, Wei S, Mandyam CD. Extended access methamphetamine decreases immature neurons in the hippocampus which results from loss and altered development of neural progenitors without altered dynamics of the S-phase of the cell cycle. Pharmacol Biochem Behav. 2011;100(1):98-108.

[107] Recinto P, Samant AK, Chaver G, Kim A, Yuan CJ, Soliman M, et al. Levels of neural progenitors in the hippocampus predict memory impairment and resilience to drug seeking as a function of excessive methamphetamine self-administration. Neuropsychopharmacology. 2012;37(5):1275-87.

[108] Galbato MR, Otto L, Mandyam CD. Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus. Neuroscience. 2014;286:97-108.

[109] Canales JJ. Adult neurogenesis and the memories of drug addiction. Eur Arch Psychiatry Clin Neurosci. 2007;257(5):264-70.

[110] Canales JJ. Comparative neuroscience of stimulant-induced memory dysfunction: Role for neurogenesis in the adult hippocampus. Behav Brain Res. 2010;214(1):379-93.

[111] Chambers RA. Adult hippocampal neurogenesis in the pathogenesis of addiction and dual diagnosis disorders. Drug and alcohol dependence. 2013;135(1):1-12.

[112] Neper SA, Gomez-Pinilla F, Chos J, Coimón C. Exercise and brain neurotrophins. Nature. 1995;373(6510):109-11.

[113] Neper SA, Gomez-Pinilla F, Chos J, Coimón C. Physiological activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Research. 1996;706(1-2):49-56.

[114] Berchtold NC, Chum G, Chos J, Koelkop P, Coimón C. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience. 2005;133(3):853-61.

[115] Molemsa R, Ying Z, Gomez-Pinilla F. Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. The European Journal of Neuroscience. 2002;16(6):1107-16.

[116] Uysal N, Kirey M, Sisman A, Camsari U, Gencoglu C, Uysal N, et al. Effects of voluntary and involuntary running are broadly recruited into neuronal activation associated with different hippocampus-involved tasks. Hippocampus. 2012;22(9):1860-7.

[117] van Praag H. Neurogenesis and exercise: Past and future directions. Neuronmolecular Med. 2008;10(2):128-40.

[118] Sartori CR, Vieira AS, Ferrari EM, Langone F, Tongiorgi E, Berchtold NC, Chinn G, et al. Exercise primes behavioral responses to methamphetamine in the mouse. Behavioural Brain Research. 2012;227(2):470-9.

[119] Sartori CR, Vieira AS, Ferrari EM, Langone F, Tongiorgi E, Berchtold NC, Chinn G, et al. Exercise primes behavioral responses to methamphetamine in the mouse. Behavioural Brain Research. 2012;227(2):470-9.
proBDNF proteolytic cleavage-related genes, p11 and iPA. Neuroscience. 2011;180:9-18.

[119] Vaynman S, Yang Z, Gomez-Pinilla F. Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic plasticity. Neuroscience. 2003;122(3):647-57.

[120] Hopkins ME, Nitecki R, Bucci DJ. Physical exercise during adolescence versus adulthood. Different effects on object recognition memory and brain-derived neurotrophic factor levels. Neuroscience. 2011;194:84-94.

[121] Marlati MW, Potter MC, Lacassine PJ, van Praag H. Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Developmental Neurobiology. 2012;72(6):941-52.

[122] Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH. Exercise enhances hippocampal-dependent learning in the rat: Evidence for a BDNF-related mechanism. Hippocampus. 2008;18(11):1074-84.

[123] O’Callaghan RM, Castello N, Cotman CW. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience. 2004;124(1):71-9.

[124] Brenchild NC, Castello N, Cotman CW. Exercise and time-dependent benefits to learning and memory. Neuroscience. 2010;167(3):588-97.

[125] Wu CW, Chang YT, Yu L, Chen HI, Wu SY, Huang AM, et al. Exercise enhances hippocampal-dependent learning in mice. Proc Natl Acad Sci U S A. 1999;96(23):13427-31.

[126] Kerwin SM, Alberga A. Daily exercise improves memory, stimulates hippocampal neurogenesis and hippocampal neurogenesis in the rat. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(32):13089-94.

[127] Walton NM, Sutter BM, Laywell ED, Levkoff LH, Kearns SM, Marshall GP, 2nd, et al. Microglial instruct substantia nigra neuron. Glia. 2006;54:315-25.

[128] Zuo Y, Ron N, Butkovsky O, Landis G, Suda E, Greenberg N, et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2008;11(2):268-78.

[129] Yan SY, Li A, Zhang ED, Christie BR, Xu A, Lee TM, et al. Sustained running in rats administered corticosterone prevents the development of depressive behaviors and enhances hippocampal neurogenesis and synaptic plasticity without increasing neurotrophic factor levels. Cell Transplantation. 2014;23(6):1481-92.

[130] Gregoire CA, Romenfant D, Le Nguyen A, Aumont A, Fernández KJ. Untangling the influences of voluntary running, environmental complexity, social housing and stress on adult hippocampal neurogenesis. PLoS One. 2014;9(1):e86237.

[131] Li H, Liang A, Giau F, Fan R, Chi L, Yang B. Regular treadmill running improves spatial learning and memory performance in young mice through increased hippocampal neurogenesis and decreased stress. Brain Research. 2013;1531:1-8.

[132] Wu CW, Chang YT, Yu L, Chen HI, Jin CJ, Wu SY, et al. Exercise enhances the proliferation of neural stem cells and neural regeneration and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice. Journal of Applied Physiology. (Bethesda, Md.) 1995. 2008;105(5):1583-94.

[133] O’Callaghan RM, Ohle R, Kelly AM. The effects of forced exercise on hippocampal plasticity in the rat: A comparison of LTP spatial and non-spatial learning. Behavioral Brain Research. 2007;176(2):362-6.

[134] van Pagh H, Christie BR. Sekowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 1999;96(23):13427-31.

[135] Yau SY, Li A, Zhang ED, Christie BR, Xu A, Lee TM, et al. Exercise induces adult hippocampal neurogenesis: A good strategy to prevent cognitive decline in neurodegenerative diseases? 2014;2014:403120.

[136] Merkley CM, Jan C, Moses A, Tan YE, Wojtowicz JM. Homeostatic regulation of adult hippocampal neurogenesis in aging rat. Long-term effects of early exercise. Frontiers in Neuroscience. 2014;8:174.

[137] Ares-Santos S, Granado N, Moratalla R. The role of dopamine receptors in the neurotoxicity of methamphetamine. J Intern Med. 2013;273(3):457-53.

[138] Fleckenstein AE, Voit TJ, Riddell EL, Gibb WP, Hanson GW. New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol. 2007;47:681-98.

[139] Itzhak Y. Modulation of cocaine- and methamphetamine-induced behavioral sensitization by inhibition of brain-nitric oxide synthase. J Pharmacol Exp Ther. 1997;282(2):521-7.

[140] Itzhak Y. Anderson KL, Ali SF Differential response of nNOS knockout mice to MDMA (‘ecstasy’) and methamphetamine-induced psychomotor sensitization and neurotoxicity. Ann N Y Acad Sci. 2004;1025:119-28.

[141] Itzhak Y, Gandu C, Huang PL, Ali SF. Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity. J Pharmacol Exp Ther. 1998;284(3):1040-7.

[142] Itzhak Y, Martin JL, Ali SF. Methamphetamine- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice. Synapse. 1999;34(4):305-12.

[143] Itzhak Y, Martin JL, Ali SF. Comparison between the role of the neuronal and inducible nitric oxide synthase in methamphetamine-induced neurotoxicity and sensitization. Ann N Y Acad Sci. 2000;914:104-11.
Yamamoto BK, Bankson MG. Amphetamine neurotoxicity: Cause and consequence of oxidative stress. Curr Rev Neurobiol. 2005;15(2):87-117.

Wang J, Xu W, Ali SF, Angulo JA. Connection between the striatal neurokinin-1 receptor and nitric oxide formation during methamphetamine exposure. Ann NY Acad Sci. 2008;1139:164-71.

Eyerman DI, Yamato M, Kudo W, Watanabe T, Utsumi H, Fleckenstein AE, Gibb JW, Hanson GR. Differential effects of psychostimulants on monoaminergic transporters: Pharmacological consequences and implications for neurotoxicity. Eur J Pharmacol. 2000;406:1-11.

Shibis T, Yamato M, Kudo W, Watanabe T, Usuimi H, Yamada K. In vivo imaging of striatal function in methamphetamine-treated rats. Neuroimage. 2011;53(3):866-72.

Fleckenstein AE, Hanson GR. Impact of psychostimulants on vesicular monoamine transporter function. Eur J Pharmacol. 2003;479(1-3):283-9.

Fleckenstein AE, Gibb FW, Hanson GR. Differential effects of stimulants on monoaminergic transporters: Pharmacological consequences and implications for neurotoxicity. Eur J Pharmacol. 2000;406:1-11.

Shibis T, Yamato M, Kudo W, Watanabe T, Usuimi H, Yamada K. In vivo imaging of striatal function in methamphetamine-treated rats. Neuroimage. 2011;53(3):866-72.

Dong X, Caron MG, McCoy MT, Chen W, Thunis MA, Cadet JL. Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Jayantii S, Dong X, Noailles PA, Ladenheim B, Cadet JL. Methamphetamine-induced apoptosis of neurons, neurons, and glial cells. J Neurochem. 2000;75(4):1032-5.

Everitt BJ, Belin D, Escourrolle D, Pellenon Y, Dailey JW, Robbins TW. Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci. 2006;361(1507):3125-35.

Kitamura O, Takeichi T, Wang EL, Tokunaga I, Ishigami J, Jayanthi S, Deng X, Noailles PA, Ladenheim B, Cadet JL. Methamphetamine induces apoptosis via cross-talks between endoplasmic reticulum and mitochondrial death cascades. FASEB J. 2004;18(2):238-51.

Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-mediated pathways. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.

Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837-45.
repeated methamphetamine administration: Synapse. 2000;37(2):163-6.

[183] Derrick BE, Yark AD, Martinez JL Jr. Increased granule cell neurogenesis in the adult dentate gyrus following mossy fiber stimulation sufficient to induce long-term potentiation. Brain Res. 2000;857(1-2):100-7.

[184] Chun SK, Sun W, Park JH, Jung MW. Enhanced proliferation of progenitor cells following long-term potentiation induction in the rat dentate gyrus. Neurobiol Learn Mem. 2006;86(3):322-9.

[185] Goncalves J, Martinez B, Micheaux N, Borger F, Robins CF, et al. Methamphetamine-induced early increase of IL-6 and TNF-alpha mRNA expression in the mouse brain. Am J Physiol. 2008;1139:105-11.

[186] Yamaguchi T, Kurisu Y, Minami M, Nakai S, Hirai Y, Sanoh M. Methamphetamine-induced expression of interleukin-1 beta mRNA in the rat hypothalamus. Neurosci Lett. 1991;126(1):90-2.

[187] Nakajima A, Yamada K, Nagai T, Uchiyama T, Miyamoto Y, Kitaichi K, Fujimoto Y, Nakayama H, Shimizu E, Boger HA, Middaugh LD, Granholm AC, McGinty JF, Miguel-Hidalgo JJ. The role of glial cells in drug abuse. Drugs: Education, Prevention and Policy. 2009;18(10):1208-46.

[188] Clark KH, Wiley CA, Bradberry CW. Psychostimulant Abuse and Neuroinflammation: Emerging Evidence of Their Interconnection. Neurotoxicity Research. 2013;23(2):174-88.

[189] Michael-Halapy LL. The role of glial cells in drug abuse. Current Drug Abuse Reviews. 2009;2(1):72-82.

[190] Rogers HA, Muldoon LD, Granholm AC, McGarty JF. Monocline restores striatal striatal tyrosine hydroxylase in GDNF deficient mice but not in methamphetamine-treated mice. J Neurochem. 2009;109(3):459-66.

[191] Zhang L, Kitachi K, Fujimoto Y, Nakayama H, Shiruma E, Ito M, et al. Peripheral administration of monocline on behavioral changes and neurotoxicity in mice after administration of methamphetamine: a model of neurotoxicity. Neurobiol Dis. 2008;33(2):52-66.

[192] Zhang Q, Wu Y, Zhang P, Shi H, Ju J, Hu Y, et al. Exercise induces mitochondrial biogenesis after brain ischemia in mice. Neurobiol Dis. 2012;47(1):10-7.

[193] Tully A, Astley M, Studler K, Savarirayan R, Jackson J, Jung KJ, et al. The beneficial effects of n-3 lipid supplementation and exercise on brain lesion and memory in rat. The Journal of Nutritional Biochemistry. 2009;20(12):974-81.

[194] Smith M, Evans R, Bryukov YE. Effect of exercise training on antioxidant system in brain regions of rat. Pharmacol Biochem Behav. 1995;50(4):635-9.

[195] Manios K, Bori Z, Hart N, Sarga L, Koltai E, et al. The beneficial effects of n-3 lipid supplementation and exercise on brain lesion and memory in rat. The Journal of Nutritional Biochemistry. 2009;20(12):974-81.

[196] Smith M, Evans R, Bryukov YE. Effect of exercise training on antioxidant system in brain regions of rat. Pharmacol Biochem Behav. 1995;50(4):635-9.

[197] Marosi K, Bori Z, Hart N, Sarga L, Kolta E, Rulak Z, et al. Long-term exercise treatment reduces oxidative stress in the hippocampus of aging rats. Nutr Neurosci. 2012;26(13):212-5.

[198] Spradling A, Bouck P, Kimura H, Takeda S, Takahashi R. Proteasome inhibition in medaka brain induces the features of Parkinson’s disease. J Neurochem. 2010;115(1):178-87.

[199] Cecconi V, Boldi L, Cucchielli M, Mantovani M, Rossi G, Buizza L, et al. Cross-talk between the ubiquitin-proteasome system and autophagy in a human cellular model of Alzheimer’s disease. Biochim Biophys Acta. 2012;1822(11):1741-51.

[200] Rulak Z, Bucze F, Kolta E, Goto S, Taylor AW, Boldogh I. The redox-associated adaptive response of brain to physical exercise. Frontiers in Cellular Neuroscience. 2014;37(1):25-42.

[201] Perez-Gomez A, Tasker RA. Transient domestic acid etoxicity increases BDNF expression and activates both MEK and PKA-dependent neurogenesis in organotypic hippocampal slices. BMC Neurosci. 2013;14:72.
O'Dell SJ, Marshall JF. Running wheel exercise ameliorates methamphetamine-induced damage to dopaminergic axons. Synapse. 2012;66(2):146-57.

O’Dell SJ, Marshall JF. Running wheel exercise before a binge regimen of methamphetamine does not protect against striatal dopaminergic damage. Synapse. 2012;66(1):71-80.

O’Dell SJ, Marshall JF. Running wheel exercise before a binge regimen of methamphetamine does not protect against striatal dopaminergic damage. Synapse. 2012;66(9):419-25.

Mathews WF, Nehrenberg DL, Gordon R, Hua K, Garland T, Jr., Pomp D. Dopaminergic dysregulation in mice selectively bred for excessive exercise or obesity. Behav Brain Res. 2010;206(2):155-63.

Water IP, Ponglee RR, Foster G, Lerner KI, Sluss JL, Garland T, Jr., et al. Selection for increased voluntary wheel-running affects behavior and brain monoamines in mice. Behav Brain Res. 2013;248:9-22.

Rhodes JS, Garland T, Jr., Gammie SC. Patterns of brain activity associated with variation in voluntary wheel-running behavior. Behav Neurosci. 2010;117(6):1243-56.

Johnson RA, Rhodes JS, Jeffrey SL, Garland T, Jr., Mitchell GS. Hippocampal brain-derived neurotrophic factor but not neurotrophin-3 increases in mice selected for increased voluntary wheel running. Neuroscience. 2003;121(1):1-7.

Hamer M. Endorphin R, Polke L. Physical activity, stress reduction, and mood: Insight into immunological mecha-
nisms. Methods Mol Biol. 2012;934:99-102.

Bernardi C, Tramontina AC, Nardin P, Biasibetti R, Costa AP, Vizenti AF, et al. Treadmill exercise induces hippocampal autologous alterations in rats. Neural Plast. 2013;2013:790792.

Nielsen DA, Utskran A, Reyes JA, Simons DD, Koster TR. Epigenetics of drug abuse: Proseduction or response. Pharmaconomics. 2012;11(1):110-49.

Nestler EJ. Epigenetic mechanisms of drug addiction. Neuropsychopharmacology. 2014;39(6):23-48.

Aguilera-Valls A, Nasser T, Grigg EM, Mikaelsson MA, Takacs JF, Young DJ, et al. Methamphetamine-associated memory is regulated by a writer and an eraser of permissive histone methylation. Bio Psychiatry. 2011;74(1):57-65.

Cael R, Jayanti S. Epigenetics of methamphetamine- induced changes in glutamate function. Neuropsychophar-
macology. 2013;38(1):248-9.

Schmitt HD, McGinty JF, West AE, Saido Vokili G. Epi-
genetics and psychostimulant addiction. Cold Spring Harbor Lab. Perspect Med. 2013;5:533-41.

Gomez-Pinilla F, Zhuang Y, Feng J, Ying Z, Fan G. Exer-
teric impacts brain-derived neurotrophic factor plasticity after exercise: Implications for central fatigue. Neuromolec-
ology. 2011;33(3):383-90.

Foley TE, Fleshner M. Neuroplasticity of dopamine circuits and cognitive functions in rodents: Neural and neurochem-
ical substrates. Neurosci Biobehav Rev. 2004;28(7):771-84.

Pinilla FG. The impact of diet and exercise on brain plasticity and disease. Nut Health. 2006;18(3):277-44.

Yu F, Kolesarow AM, Strumpf NE, Eninger PJ, Improving function and cognitive function through exercise intervention in Alzheimer's disease. J Nutr Health. 2006;36(4):358-65.

O’Dell SJ, Galve-Roper BA, Ball AJ, Marshall JF. Running wheel exercise ameliorates methamphetamine-induced damage to dopaminergic neurites and terminals. Synapse. 2012;66(1):71-80.

O’Dell SJ, Marshall JF. Running wheel exercise before a binge regimen of methamphetamine does not protect against striatal dopaminergic damage: Synapse. 2012;66(9):419-25.

Mathews WF, Nehrenberg DL, Gordon R, Hua K, Garland T, Jr., Pomp D. Dopaminergic dysregulation in mice selectively
[251] Marques E, Vasconcelos F, Rolê MR, Pereira FC, Silva AP, Macedo TR, et al. Influence of chronic exercise on the amphetamine-induced dopamine release and neurodegeneration in the striatum of the rat. Ann N Y Acad Sci. 2008;1139:222-31.

[252] Satôs DE, Akiyama K. The mechanism by which exercise modulates brain function. Physiol Behav. 1996;60(1):177-81.

[253] Droste SK, Schweitzer MC, Ulrich S, Reul JM. Long-term voluntary exercise and the mouse hypothalamic-pituitary-adrenocortical axis: Impact of concurrent treatment with the antidepressant drug tianeptine. J Neuroendocrinol. 2006;18(12):935-25.

[254] Kolb EM, Beziridz EL, Holtess L, Reul JM, O’Brien A, et al. Mice selectively bred for high voluntary wheel running have larger midbrains: Support for the mosaic model of brain evolution. J Exp Biol. 2013;216(Pt 3):515-23.

[255] O’Neil ML, Kuczenski R, Segal DS, Cho AK, Lacan G, Melega WP. Escalating dose pretreatment induces pharmacodynamic and not pharmacokinetic tolerance to a subsequent high-dose methamphetamine binge. Synapse. 2006;60(6):465-73.

[256] Zhang Y, Loonam TM, Noailles PA, Angulo JA. Comparison of cocaine- and methamphetamine-evoked dopamine and glutamate overflow in somatodendritic and terminal field regions of the rat brain during acute, chronic, and early withdrawal conditions. Ann N Y Acad Sci. 2001;937:93-120.

[257] Biedermann S, Fuss J, Zheng L, Sartorius A, Falfan-Melgoza C, Demirakca T, et al. In vivo voxel based morphometry: Detection of increased hippocampal volume and decreased glutamate levels in exercising mice. Neuroimage. 2012;61(4):1206-12.

[258] Real CC, Fernandes AP, Britto LR, Pires RS. Exercise-induced plasticity of AMPA-type glutamate receptor subunits in the rat brain. Brain Res. 2013;1488:59-71.

[259] Riedermann S, Piso J, Zheng L, Sartorius A, Ful fan-Melgoza C, Demirakca T, et al. In vivo voxel based morphometry: Detection of increased hippocampal volume and decreased glutamate levels in exercising mice. Neuroimage. 2012;61(4):1206-12.

[260] Crawford JT, Roberts DC, Beveridge TJ. The group II metabotropic glutamate receptor antagonist, LY359268, decreases methamphetamine self-administration in rats. Drug Alcohol Depend. 2013;132(3):414-9.

[261] Schwendt M, Reichel CM, See RE. Extinction-dependent alterations in corticostriatal mGluR2/3 and mGluR7 receptors following chronic methamphetamine self-administration in rats. PLoS ONE. 2012;7(3):e34259.

[262] Kufahl PR, Wattersen LR, Nemirovsky NE, Hood LE, Villa A, Hulstengard C, et al. Attenuation of methamphetamine seeking by the mGluR2/3 antagonist LY359268 in rats with histories of restricted and escalated self-administration. Neuropharmacology. 2013;66:290-301.

[263] Nelson EF. Molecular neurobiology of addiction. Am J Addict. 2001;10(3):20-17.

[264] Nester EF. Molecular neurobiology of addiction. Am J Addict. 2001;10(3):20-17.

[265] Werme M, Monson CE, Liljenström H, Westerberg LN. Running and cocaine both upregulate dynorphin mRNA in medial preoptic area of the rat. Neuromodulation. 2000;3(4):256-67.

[266] Werme M, Monson CE, Liljenström H, Westerberg LN, Nordström E, et al. Delta FosB regulates running in rats. J Neurosci. 2002;22(18):8133-8.

[267] Smith MA, Vamer ЭК. Sensitivity of the effects of opioids in rats with free access to exercise wheels: Mu-opioid tolerance and physical dependence. Psychopharmacology (Berl). 2003;164:412-6.

[268] Iijima M, Koski H, Chalup S. Effect of an mGluR1 antagonist on depressive behavior induced by withdrawal from chronic treatment with methamphetamine. Behav Brain Res. 2013;246:24-8.

[269] McDaid J, Graham MP, Napoli TC. Methamphetamine-induced sensitization differentially alters pCREB and DeltaFosB throughout the limbic circuit of the mammalian brain. Mol Pharmacol. 2005;67(6):1397-404.

[270] Wang QJ, McIntyre JR. Dose-dependent alteration in zif/268 and preprodynorphin mRNA expression induced by amphetamine or methamphetamine in rat forebrain. J Pharmacol Exp Ther. 1995;270(2):909-17.