Distribution and accumulation of heavy metals in Lake Manzala, Egypt

Raafat Mandour
Mansoura University, Mansoura, Egypt

ABSTRACT
Lake Manzala is the largest saline lake and the second largest one among all lakes in Egypt. Heavy metals' contamination is the most fundamental kind of contamination around the world, particularly in Lake Manzala. The purposes of this paper are investigating the relationship between contents of some heavy metals and major oxides of the Quaternary sediments of Lake Manzala islands as well as the correlation coefficient factor among them. Ten samples of both water and superficial bottom sediments had been representing the lake Manzala through summer, 2019 is covering the sources of pollution to carry out this study. Six heavy metals estimated to assess the environmental risk. The elements were analyzed through atomic absorption spectrometer. Concentration of heavy metals Fe > Zn > Pb; Fe > Mn > Zn > Pb > Cu > Cd in water and sediment is recorded within the southern and southeastern parts of the lake. Significant oxides' arrangement is SiO\(_2\) > MgO > CaO > Na\(_2\)O > Al\(_2\)O\(_3\) > K\(_2\)O > FeO\(_3\). Eco-toxicological of heavy metals' contamination was among the bottom sediments of Lake Manzala. Target hazard quotients (THQ) for individual metals are arranged within the order; Zn > Pb > Cu > Cd. Therefore, heavy metals should eliminate from the wastewater to protect the people and the environment.

Introduction

Millions of cubic meters of untreated domestic, industrial, and agricultural drainage waters are discharged annually into the lake [1]. These drains have an effect on the measure, and quality of the lake, threatens human health and cause a serious pollution problem.

These results led to the accumulation and distribution of contaminants like heavy metals within the lagoon sediments. Expected contamination of Lake Manzala with heavy metals has been reported [2]. Heavy metals include potentially toxic (Cd, Pb), probably essential and far from is essential (Cu, Zn, Fe, Mn) [3]. Häder et al. [4] declared provoking deleterious effects on environmental quality and ecosystem sustaina

bility with the aid of human intervention. The primary relationship studies between environmental healthy and therefore, the ecosystems functioning of Lake Manzala done by Orabi and Osman [5]. Due to multiple waste discharges, there has been a greater metal concentration at the eastern and southeastern sites of Lake Manzala than permissible limits [6]. Sediments are considered an indicator of the degree of heavy metal contamination in water environment [7]. The heavy metals of anthropogenic origin occur within the ecosystem naturally by litho-genie processes that have a tendency to be bio-available then grow to be toxic pollutants [8]. The aquaculture activities can effect by hydrological conditions of lake water and resulting in a decrease in fish productivity and lack of biodiversity [9].

CONTACT Raafat Mandour raafat_mandour@hotmail.com Mansoura University, Egypt

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The foremost aim of this research is to investigate the connection between the contents of some heavy metals and major oxides of the Quaternary sediments of Lake Manzala islands and coefficients of correlation factor among them.

Materials and methods

Study area

Lake Manzala is one of the three mains Nile Delta wetland ecosystems, Egypt, lies between latitude 31°10’–31°40’ N and longitude 31°50’–32°25’ E (Figure 1). It is rectangular and somewhat shallow with an average depth of about 100 cm.

Hydro-chemistry

The influx of water into Lake Manzala includes: the Mediterranean saline water, the occasional rainfall in winter, the surface brackish drainage water (agricultural, industrial, and domestic wastes) and therefore, the vertical seepage from the underlying groundwater, which exists under semi-confined conditions. Mandour [10] reported water chemistry of Lake Manzala area as:

Water chemical types: Chloride – Sodium
Hydro-chemical classification: (Cl – Na)
Hypothetical salt assemblage as group:
NaHCO$_3$, (Na +K) C I, Na$_2$SO$_4$, C a (HCO$_3$)$_2$, Mg (HCO$_3$)$_2$
Na$^+>$ Ca$^{++}>$ Mg$^{++}>$ K$^+$ – HCO$_3^->$ Cl$^->$ SO$_4^{--}$

Sampling and technique of study

The study was carried out on Lake Manzala through summer, 2019, to monitor and evaluate the levels of some heavy metals and major oxides in water and sediments. Ten samples of both water and superficial bottom sediments have been collected. The sample sites have

Total dissolved salts (TDS) mg/l	Major cations	Major anions					
	K$^+$	Na$^+$	Mg$^{++}$	Ca$^{++}$	Cl$^-$	SO$_4^{--}$	HCO$_3^-$
2497.67	17	721.97	42	50	591.7	294	781

Figure 1. Location Map (Lake Manzala in the NE Nile Delta, Egypt).
been chosen to cover sources of pollution near to discharges of most drains which consider the main source of pollution of the study area. Every one of the safeguards happened to limit dangers of the test tainting were followed during the assortment and treatment of tests. These samples have been chemically analyzed for the determination of their major oxides (Silica oxide SiO₂, Aluminum oxide Al₂O₃, Ferric oxide Fe₂O₃, Magnesium oxide MgO, Calcium oxide CaO, Sodium oxide Na₂O and Potassium oxide K₂O) and a few heavy metals (Cu, Zn, and Pb, Fe, Mn and Cd). The study used the standard of the American Public Health Association (APHA) [11] for the collection, preservation and digestion technique. Heavy metals concentrations were measured using a graphite furnace atomic absorption spectrometer (Buck Scientific Company, USA) after the digestion technique. Calibration standards and quality control samples have been prepared freshly daily. The reference standard materials used to assess the precision and accuracy of the procedure. The study used analytical grade chemicals of certified standard solutions for the aim of sample preparation and its analysis.

Statistical analysis

It had been finished for all samples using the Statistical Package for the Social Sciences (SPSS) software program for Window version 16 [12]. The concentration of heavy elements presented as a mean and standard deviation (SD). Pearson’s coefficient of correlation was calculated between different trace elements. For any of the used tests, results are considered as statistically significant if p-value ≤ 0.05, moderate significant ≤ 0.01, and highly significant ≤ 0.001.

Results

The concentrations of heavy metals in water samples and sediments of Lake Manzala were represented in Tables 1–2 and illustrated by graphs 1-2. Subsequent to the summarized study on the environmental status of studied heavy metals, which might cause risk on human health and environmental effects. Major oxides sequence is SiO₂ > MgO > CaO > Na₂O > Al₂O₃ > K₂O > Fe₂O₃ (Tables 3) and illustrated by graph (3). Average concentrations of heavy metals in water and sediment as compared with average EPA limits [13] have been; Fe > Mn > Zn > Pb > Cu > Cd (Table 4). Whereas, average concentrations of heavy metals of sediment samples in relation to sediment quality guidelines (SQGs) showed that Cd in sediments become rated non-polluted element. Sediment quality guidelines are unknown for Fe and Mn (Table 5). Pearson’s correlation coefficients (r) between concentrations of heavy metals in water and in sediment of Lake Manzala showed that a significant direct correlation between Cu in sediment and in water as

| Table 1. Concentrations of heavy metals (mg/l) in water samples of Lake Manzala. |
|---------------------------------|---|---|---|---|---|---|
| Sample no | Fe | Mn | Zn | Pb | Cu | Cd |
| 1 | 30.15 | 9.47 | 8.20 | 5.42 | 2.86 | 1.83 |
| 2 | 51.23 | 11.12 | 10.86 | 6.92 | 3.19 | 1.13 |
| 3 | 34.07 | 12.31 | 9.11 | 6.26 | 3.49 | 1.91 |
| 4 | 41.08 | 12.21 | 9.27 | 6.29 | 4.67 | 1.99 |
| 5 | 34.21 | 10.99 | 9.35 | 6.01 | 3.27 | 1.95 |
| 6 | 36.66 | 10.34 | 7.09 | 6.08 | 3.24 | 2.45 |
| 7 | 30.56 | 13.67 | 9.88 | 5.84 | 3.22 | 2.22 |
| 8 | 37.39 | 13.20 | 8.19 | 5.51 | 3.28 | 1.85 |
| 9 | 27.55 | 9.9 | 9.07 | 5.55 | 2.77 | 1.57 |
| 10 | 58.02 | 8.96 | 6.73 | 2.95 | 2.6 | 1.37 |

| Table 2. Concentrations of heavy metals (mg/g) in sediment samples of Lake Manzala. |
|---------------------------------|---|---|---|---|---|---|
| Sample no | Fe | Mn | Zn | Pb | Cu | Cd |
| 1 | 308.08 | 47.43 | 42.06 | 39.74 | 6.36 | 2.04 |
| 2 | 342.81 | 49.98 | 101.73 | 55.32 | 6.45 | 1.58 |
| 3 | 330.41 | 63.78 | 46.53 | 50.67 | 35.11 | 2.12 |
| 4 | 342.41 | 58.65 | 47.16 | 53.58 | 37.07 | 2.71 |
| 5 | 334.81 | 49.3 | 48.1 | 47.49 | 32.9 | 2.59 |
| 6 | 337.91 | 48.62 | 39.67 | 50.42 | 27.56 | 2.97 |
| 7 | 326.81 | 114.51 | 49.19 | 45.93 | 21.58 | 2.91 |
| 8 | 341.71 | 41.07 | 41.07 | 45.58 | 34.52 | 2.09 |
| 9 | 286.31 | 48.52 | 43.06 | 45.84 | 5.6 | 1.75 |
| 10 | 446.61 | 46.21 | 39.28 | 38 | 3.39 | 1.73 |
Zn with $P \leq 0.05$ (Table 6). Whereas, Pearson’s correlation coefficients (r) between percent (%) of major oxides and concentrations of heavy metals in water and in sediment of Lake Manzala showed that Fe, Mn, Pb and Cd haven’t any correlation with any of those major oxides (Table 7). The calculated values of THQ are employed to precise the potential risk indicate that anglers are under threat (1.01) than the overall population (0.41) (Table 8), the health risk is calculated supported data documented by Hammed et al. [14].

Table 3. Descriptive statistics for major oxides in Lake Manzala.

Major oxides %	Sample no									
	1	2	3	4	5	6	7	8	9	10
SiO$_2$	54.65	56.7	55.3	54.2	50.15	51.3	51.7	52.1	51	52.1
Al$_2$O$_3$	8.08	7.8	8.5	8.05	7.6	8.8	7.8	8.6	8.3	8.4
Fe$_2$O$_3$	0.35	1.05	1.4	0.78	1.65	1.75	1.8	1.75	1.85	1.8
CaO	29.8	17.9	22	20.3	22.9	22.2	24.3	20.8	20.8	20.6
MgO	37.8	33.4	29.7	22.6	30.3	31.4	29.5	30	29.7	28.5
Na$_2$O	7.5	8	11.3	10.7	14.1	11.4	14.7	15.2	14.6	15.4
K$_2$O	2.6	2.95	3.05	2.9	3.2	3.4	3.05	3.2	3.4	3.2

Mean ± SD

Major oxides %	Mean ± SD
SiO$_2$	52.9 ± 2.1
Al$_2$O$_3$	8.2 ± 0.4
Fe$_2$O$_3$	1.4 ± 0.5
CaO	22.2 ± 3.2
MgO	30.3 ± 3.8
Na$_2$O	12.3 ± 2.9
K$_2$O	3.1 ± 0.2

Table 4. Average concentrations of analyzed heavy metals in water and sediment compared with average EPA [13] limits.

Element	Heavy metals in water (n = 10) Mean ± SD	EPA [13] limits for water	Heavy metals in sediment (n = 10) Mean ± SD	EPA [13] limits for sediments
Fe	38.1 ± 9.7	300	339.8 ± 41.6	15
Mn	11.2 ± 1.6	-	63.8 ± 26.4	-
Zn	8.8 ± 1.2	5000	49.8 ± 18.6	123
Pb	5.7 ± 1.1	50	47.3 ± 5.5	10
Cu	3.3 ± 0.6	50	21.1 ± 14.1	25
Cd	1.8 ± 0.4	2.37	2.3 ± 0.5	6

Graph 1. Concentrations of heavy metals (mg/l) in water samples of Lake Manzala.
Graph 2. Concentrations of heavy metals (mg/g) in sediment samples of Lake Manzala.

EPA [13] Environmental Protection Agency limit for water and sediments

a: not available data. SQG: sediment quality guidelines

The value of THQ

Greater than 0.5, indicates high health risk
Lower than 0.5, indicates low health risk

Discussion

Metals generally enter the aquatic environment through erosion of the geological matrix, or due to anthropogenic activities caused by industrial effluents, domestic sewage [15]. The mean concentration of the measured metals in the water and sediments was found to within the following sequence; Fe > Zn > Pb; Fe > Mn > Zn > Pb > Cu > Cd, as compared to Environmental Protection Agency (EPA) [13]. Depending on the SQG of EPA, sediments were classified as: low polluted, moderately polluted and heavily polluted [16]. Manzala sediments are often categorized as moderately polluted with Pb (8), Cu (5), and Zn (1) using SQGs. Cadmium in sediments was rated non-polluted element (Table 5). During this investigation, the sediment quality guidelines (SQGs) developed for the aquatic ecosystem [17] became applied to estimate eco-toxicological sense of heavy metal

Graph 3. Major oxides %
Table 5. Average concentrations of analyzed heavy metals of sediment samples in relation to SQGs.

Element	1	2	3	4	5	6	7	8	9	10	SQG low polluted	SQG moderate polluted	SQG heavily polluted
Fe	308.08	342.81	330.41	342.41	334.81	337.91	326.81	341.71	286.31	446.61	a	a	a
Mn	47.43	49.98	63.78	58.65	49.3	48.62	114.51	41.07	8.52	46.21	a	a	a
Zn	42.06	101.73	46.53	47.16	48.1	39.67	49.19	41.07	43.06	39.28	a	a	a
Pb	39.74	55.32	50.67	53.58	47.49	50.42	45.93	45.58	45.84	38	a	a	200-200
Cu	6.36	6.45	35.11	37.07	32.9	27.56	21.58	34.52	5.6	3.39	90	90-200	60-60
Cd	2.04	1.58	2.12	2.71	2.59	2.97	2.91	2.09	1.75	1.73	40	40-60	25-50

Therefore, an assessment of heavy metal contamination in sediment may be a crucial tool to assess the danger of the hydro-geochemical environment and to determine the distributions in sediments.

Table 7 indicates a significant correlation between A123 and Zn in water as MgO with Pb and Cu in water at P ≤ 0.05. Iron, Zn, Pb, Cu and Cd have no correlation with any of the major oxides in sediment. Bai et al. [20], having similar sources as estimated by Dan et al. [19], Table 7 indicates a significant correlation between A123 and Zn in water as MgO with Pb and Cu in water at P ≤ 0.05. Iron, Zn, Pb, Cu and Cd have no correlation with any of the major oxides in sediment. Bai et al. [20].
Table 6. Pearson’s correlation coefficients (r) between concentrations of analyzed heavy metals in water and in sediment of Lake Manzala.

Heavy metals in sediment	Heavy metals in water				
Fe	Mn	Zn	Pb	Cu	Cd
Fe	0.87**				
Mn	0.84**	0.72*			
Zn		0.85**			
Pb			0.73*		
Cu				0.92***	
Cd					0.92***

*, **, *** significant correlation at $P \leq 0.05$, moderate significant $P \leq 0.01$, and highly significant $P \leq 0.001$

Table 7. Pearson’s correlation coefficients (r) between % of major oxides and concentrations of analyzed heavy metals in water and in sediment of Lake Manzala.

Oxides	SiO2	A12O3	Fe2O3	CaO in water	MgO	Na2O	K2O
Fe	0.31	0.04	0.01	-0.56	-0.19	-0.03	-0.004
Mn	0.08	-0.13	0.14	-0.16	-0.37	0.19	-0.06
Zn	0.4	-0.72*	-0.23	-0.22	-0.02	-0.29	-0.3
Pb	0.36	-0.28	-0.3	-0.11	0.06	-0.5	-0.17
Cu	0.27	-0.12	-0.35	-0.24	-0.66*	-0.23	-0.24
Cd	-0.43	0.23	0.14	0.42	-0.16	0.13	0.15

In sediment

Fe	-0.02	0.2	0.22	-0.32	-0.28	0.3	0.11
Mn	-0.16	0.02	0.32	0.03	-0.17	0.4	0.02
Zn	0.06	-0.48	-0.26	-0.45	0.22	-0.5	-0.26
Pb	0.39	-0.14	-0.12	-0.56	-0.31	-0.37	0.05
Cu	-0.14	0.13	0.1	-0.1	-0.5	0.16	0.12
Cd	-0.41	-0.04	0.12	0.26	-0.3	0.12	0.11

*, **, *** significant correlation at $P \leq 0.05$, moderate significant $P \leq 0.01$, and highly significant $P \leq 0.001$

hence, the influence of anthropogenic sources cause different risk levels of various metals [25]. This through Tariq [26] who suggested that untreated wastewater have induced high gathering of heavy metals which may be providing wellness risk to the population. Green growth biomass is used for bio remediation of heavy metallic contaminated gushing by utilizing adsorption or via combination into the cells [27]. Likewise, incessant plant collection ought to be urged to assist with diminishing the relocation of heavy metals from the contaminated soils into the surrounding environment [28].

Conclusions

The above results confirmed that the lake is facing a serious threat of metal pollution. The main source for metal contamination in the wastewater effluents is via drains in southern and southeastern parts. To deteriorate the water quality aimed at a rise in accumulation of metals in fish tissues. Increasing awareness of pollution risk might support the implemented remediation programs to face the rapid deterioration regarding the importance of the lake ecosystem. Population awareness, especially anglers of health risk from the intake of the heavy metals through fish consumption. This paper provided
a framework for future research because of the presence of some heavy metals in the water and sediment of Lake Manzala also as possible eco-toxicological effects on the environment.

Acknowledgments

The author appreciates the people who facilitated this study, particularly Prof Dr/Abdel-hadi el-gelani for his help and cooperation throughout this study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Raafat Mandour http://orcid.org/0000-0001-5052-5954

References

[1] Abu-Khatita AM, Shaker IM, Shetaia SA. Water quality assessment and potential health risk of Manzala Lake- Egypt. Al Azhar Bulletin Sci. 2017;9:119–136.
[2] Sallam KI, Abd-Elghany SM, Mohammed MA. Heavy metal residues in some fishes from Manzala Lake, Egypt, and their health-risk assessment. J Food Sci 2019;84(7):1957–1965. Epub 2019.
[3] Biswas S, Prabhu RK, Husain KJ, et al. Heavy metals, Concentration inedible fishes from coast AL region of Kalpak am, Southeastern part of India. Environ Mon Assess. 2012;1845097–1845104.
[4] D-p H, Banaszak AT, Villafañe VE, et al. Anthropogenic pollution of aquatic ecosystems: emerging problems with global implication. Sci Total Environ. 2020;15:136586. DOI: 10.1016/j.scitotenv.2020.136586
[5] Orabi OH, Osman MF. Evaluation of some pollution at Manzala lagoon: special reference to medical importance of Mollusk in Egypt. J Environ, Anal Topical. 2015;5. DOI: 10.4172/2161-0525.1000311
[6] El-Morse RR, Abu El-Sherbini KS, Abdel-Hafiz Mustafa G, et al. Distribution of essential Heavy metals in the aquatic ecosystem of Lake Manzala. Egypt Helion. 2019;5(8):e02276.
[7] Yang LY, Wang LF, Wang YQ, et al. Geochemical speciation and pollution assessment of heavy metals in surface sediments from Nansi Lake, China. Environ Monitor Assessment. 2015;187(5):261. DOI: 10.1007/s10661-015-4480-z E pub 2015
[8] Abu Khatita AM, de Wall H, Koch R. Anthropogenic particle dispersions in topsoils of the Middle Nile Delta: a preliminary study on the contamination around industrial and commercial areas in Egypt. Environ Earth Sci. 2016;75(3):1–19. DOI: 10.1007/s12665-015-5050-y
[9] Khairy HM, Shaltout KH, El-Sheikh MM, et al. Algal diversity of the Mediterranean Lakes in Egypt, Proceeding of the international conference on advances in Agricultural. Biological environ sci (AABES), London, UK, 2015, July 22-23.
[10] Mandour RA Hydro-geochemical and toxic effects studies for the surface water and groundwater in Environ of Dakhalia governorate M. Sc. Thesis. 2001; Fac. Sci. Man Un
[11] APHA, AWWA, & WEF. Standard methods for examination of water and Wastewater. 22nd ed. Washington, DC: American Public Health Association, American Water Works Association, Water Environment Federation; 2012.
[12] SPSS for Windows, Version 16.0 Chicago, SPSS Inc. 2007
[13] EPA (US Environmental Protection Agency) National recommended water quality criteria EPA, 2002; 822-R-02-047
[14] Hammad YA, Abdel-moneim TS, El-Kiki MH, et al. Assessment of heavy metals pollution and microbial contamination in water, sediments and fish Of Lake Manzala, Egypt. Life Sci J. 2013;10(1):86–94.
[15] Zahran MAE-K, Y A, E-A, A A, E, et al. Assessment and Distribution of heavy metals pollutants in Manzala Lake, Egypt. J Geosci Environ Protect. 2015;3(6):107–122. DOI: 10.4236/gep.2015.36017
[16] Perin G, Fabris R, Manente S, et al. A five-year study on the heavy-metal pollution of Guanabara Bay sediments (Rio de Janeiro, Brazil) devaluation of the metal bioavailability

Table 8. Estimated THQ for each metal from consumption of fish by the general population and anglers.

THQ	Zn	Pb	Cu	Cd	Exposure group
1.01	1.87	1.21	0.76	0.21	Fishermen
0.41	0.94	0.460	0.17	0.06	General Population

10.4172/10.1007/s10661-015-4480-z E pub 2015
by geochemical speciation. Water Res. 1997;31 (12):3017–3028. Journal of Analytical & Environmental Chemistry, 1997; 9:101-109

[17] Pekey H, Karakas D, Ay berk S, et al. Ecological risk assessment using Trace elements from surface sediments of Izmit Bay (Northeastern Marmara Sea) Turkey. Mar Pollut Bull. 2004;48(9–10): 946–953.

[18] Fosso-Kankeu E, Manyatshe A, Waanders F. Mobility potential of metals in acid mine drainage occurring in the Highveld area of Mpumalanga Province in South Africa: implication of sediments and efflorescent crusts. Int Biodeterior Biodegradat. 2017;119: 661–670.

[19] Dan SF, Umoh UU, Osabor VN. Seasonal variation of enrichment and contamination of heavy metals in the surface water of Qua Iboe River Estuary and adjoining creeks, South-South Nigeria. J Oceanograph Marine Sci. 2014;5 (6):45–54.

[20] Bai JH, Cui BS, Chen B, et al. Spatial distribution and ecological risk assessment of heavy Metals in surface sediments from a typical plateau lake wetland. China Eco Model. 2011;222(2):301–306.

[21] EPA (US Environmental Protection Agency) Quality criteria for water. EPA 440/5-86-001, Office of water regulations and standards. Washington, DC; 1986. p. EPA 440/5.

[22] Mertens J, Smolders E. Zinc. In: Alleyway BJ, editor. Heavy Metals in Soils: trace Metals and Metalloids in soils and their bioavailability Springer (3rd Ed.), Dordrecht. Nederland; 2013. p. 465–493.

[23] El-morse RR, Hammed MA, Khalid S. Abu-el Sherbini, Physicochemical Properties of Manzala Lake, Egypt. Egyptian j chemistry. 2017;60 (4):519–535.

[24] Osfor MMH, El-dessouky SA, el-Sayed A, et al. Relationship Between environmental pollution in Manzala Lake and health profile of fishermen. Nutri Food Res. 1998;42 (1):42–45.

[25] Wu QH, Zhou HC, Tam NFY, Tian Y, Tan Y, Zhou S, Li Q, Chen YH, Leung JYS Contamination Toxicity and speciation of heavy metals in an industrialized urban River: implications for the dispersal of heavy metals. Mar Pollute Bull. 2016;104(1–2):153–161.

[26] Tariq FS. Heavy metals concentration in vegetables irrigated with municipal wastewater and Their human daily intake in Erbil city Environmental Nanotechnology. Monitoring Manag. 2021;16:100 475.

[27] Igiri BE, Okoduwa SIR, Idoko GO, et al. Ejigou toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a Review. J Toxicol. 2018;2018:16. DOI:10.1155/2018/2568038

[28] Shojaei S, Jafarpour A, Shojaei S, et al. Heavy metal Uptake by plants from wastewater of different pulp concentrations and contaminated soils. J Clean Prod. 2021;296:126345.