Dark matter in three-Higgs-doublet models with S_3 symmetry

Anton Kunčinas
Centro de Física Teórica de Partículas – CFTP and Dept de Física Instituto Superior Técnico – IST,
Universidade de Lisboa, Portugal

In collaboration with: W. Khater, O. M. Øgreid, P. Osland, M. N. Rebelo
Based on [2108.07026]

DISCRETE 2020-2021
November 30, 2021
Particle physics is best described by the Standard Model.
Particle physics is best described by the Standard Model.

However, it fails to describe dark matter. Possible solution: extend the scalar sector with interplay of symmetries.
Particle physics is best described by the Standard Model.

However, it fails to describe dark matter. Possible solution: extend the scalar sector with interplay of symmetries.

Motivation: check S_3-3HDM for dark matter candidates.
Particle physics is best described by the Standard Model. However, it fails to describe dark matter. Possible solution: extend the scalar sector with interplay of symmetries. Motivation: check S_3-3HDM for dark matter candidates.

Outline:

- Inert Doublet Model;
- General S_3-3HDM;
- Dark matter within S_3-3HDM;
Main building block: SU(2) scalar doublet, $h = \begin{pmatrix} h^+ \\ h^0 \end{pmatrix}$.
Inert Doublet Model: Generalities

Main building block: SU(2) scalar doublet, \(h = \begin{pmatrix} h^+ \\ h^0 \end{pmatrix} \).

Bilinear \(h_{ij} = h_i \dagger h_j \) is a singlet under SU(2).
Main building block: SU(2) scalar doublet, \(h = \begin{pmatrix} h^+ \\ h^0 \end{pmatrix} \).

Bilinear \(h_{ij} = h_i^\dagger h_j \) is a singlet under SU(2).

\[
\mathcal{L}_{\text{2HDM}} = m_{11}^2 h_{11} + m_{22}^2 h_{22} - \left(m_{12}^2 h_{12} + \text{h.c.} \right) \\
+ \frac{1}{2} \lambda_1 h_{11}^2 + \frac{1}{2} \lambda_2 h_{22}^2 + \lambda_3 h_{11} h_{22} + \lambda_4 h_{12} h_{21} \\
+ \left\{ \frac{1}{2} \lambda_5 h_{12}^2 + \lambda_6 h_{11} h_{12} + \lambda_7 h_{22} h_{12} + \text{h.c.} \right\}.
\]
Main building block: SU(2) scalar doublet, $h = \begin{pmatrix} h^+ \\ h^0 \end{pmatrix}$.

Bilinear $h_{ij} = h_i^\dagger h_j$ is a singlet under SU(2).

$$\mathcal{V}_{\text{IDM}} = m_{11}^2 h_{11} + m_{22}^2 h_{22} - \left(m_{12}^2 h_{12} + h.c. \right)$$
$$+ \frac{1}{2} \lambda_1 h_{11}^2 + \frac{1}{2} \lambda_2 h_{22}^2 + \lambda_3 h_{11} h_{22} + \lambda_4 h_{12} h_{21}$$
$$+ \left\{ \frac{1}{2} \lambda_5 h_{12}^2 + \lambda_6 h_{11} h_{12} + \lambda_7 h_{22} h_{12} + h.c. \right\}.$$
Inert Doublet Model: Profile

LEP excluded

$\bar{f} f^*$

V resonant co-annihilation

$\rightarrow h$

$\rightarrow \{W^+ W^-, ZZ, hh\}$

Ωh^2

m_{DM} [GeV]
Inert Doublet Model: Profile

DM DM → \bar{f}f^*
Inert Doublet Model: Profile

- **DM DM → ℓℓ:**
- **V resonant co-annihilation**

![Graph](image)

- Ωh^2 vs. m_{DM} [GeV]
Inert Doublet Model: Profile

LEP excluded

Ωh^2

V resonant co-annihilation

$DM \rightarrow \bar{f}f^*$

m_{DM} [GeV]
Inert Doublet Model: Profile

LEP excluded

DM DM → \bar{f} f^*

V resonant co-annihilation

DM DM → h

\Omega h^2

m_{DM} [GeV]
Inert Doublet Model: Profile

- LEP excluded
- DM → \bar{ff}^*
- V resonant co-annihilation
- DM → h
- DM → \{W^+W^-, ZZ, hh\}

\[\Omega h^2 \]

\[m_{DM} \text{ [GeV]} \]
Dark Matter in Inert Doublet Model and Three-Higgs-Doublet Models

SCALAR DM MASS RANGES

IDM: [1612.00511], [1809.07712];
IDM2 (one inert doublet): [1911.06477];

3HDM: [1407.7859], [1507.08433], [1712.09598];
CP-3HDM: [1608.01673];
Dark Matter in Inert Doublet Model and Three-Higgs-Doublet Models

SCALAR DM MASS RANGES

Model	Mass Ranges
IDM	50 GeV - 500 GeV
IDM2	1000 GeV
3HDM	50 GeV - 1000 GeV
CP-3HDM	

References

IDM: [1612.00511], [1809.07712];
IDM2 (one inert doublet): [1911.06477];
3HDM: [1407.7859], [1507.08433], [1712.09598];
CP-3HDM: [1608.01673];
(Two inert doublets)
The Lagrangian for the Next-to-Heavy-Doublet Model (NHDM) is given by:

\[
\mathcal{L}_{\text{NHDM}} = \sum_{i=1}^{N} (D^\mu h_i)^\dagger (D_\mu h_i) - \mathcal{V}(h_1, \ldots, h_N) - \mathcal{L}_{\text{Yukawa}}.
\]

Where, \(D^\mu h_i\) and \(D_\mu h_i\) represent the kinetic terms, \(\mathcal{V}\) is the scalar potential, and \(\mathcal{L}_{\text{Yukawa}}\) is the Yukawa Lagrangian.
Multi-Higgs-Doublet Models

\[\mathcal{L}_{\text{NHDM}} = \sum_{i=1}^{N} (D^\mu h_i)\dagger (D_\mu h_i) - \mathcal{V}(h_1, \ldots, h_N) - \mathcal{L}_{\text{Yukawa}}. \]

Real parameters (dependent) of NHDM [1007.1424]:

\[N_{\text{tot}} = \frac{1}{2} N^2 \left(N^2 + 3 \right) \rightarrow \begin{cases} N = 1 : & N_{\text{tot}} = 2, \\ N = 2 : & N_{\text{tot}} = 14, \\ N = 3 : & N_{\text{tot}} = 54, \\ \ldots \end{cases} \]
Consider an equilateral triangle: \((C)\).
Consider an equilateral triangle: \((C)\)

Possible transformations:

- 2 rotations
- 3 reflections
- Identity
Consider an equilateral triangle: \(\triangle \).

Possible transformations:

- 2 rotations
- 3 reflections
- Identity

\(S_3 \) irreducible representation: \(\chi_1 \oplus \chi_1' \oplus \chi_2 \).
Assume an S_3 structure $(h_S)_1 \oplus \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}_2$.
Assume an S_3 structure $(h_S)_1 \oplus \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}_2$.

$$V_{3\text{HDM}} = \mu_1^2 [2 \otimes 2]_1 + \mu_0^2 [1 \otimes 1]_1$$

$$+ \lambda_1 ([2 \otimes 2]_1 \otimes [2 \otimes 2]_1) + \lambda_2 ([2 \otimes 2]_{1'} \otimes [2 \otimes 2]_{1'})$$

$$+ \lambda_3 ([2 \otimes 2]_2 \otimes [2 \otimes 2]_2) + \left\{ \lambda_4 ([2 \otimes 2]_2 \otimes [1 \otimes 2]_2) + \text{sym} \right\}$$

$$+ \lambda_5 ([2 \otimes 2]_1 \otimes [1 \otimes 1]_1) + \lambda_6 ([1 \otimes 2]_2 \otimes [2 \otimes 1]_2)$$

$$+ \left\{ \lambda_7 ([1 \otimes 2]_2 \otimes [1 \otimes 2]_2) + \text{sym} \right\} + \lambda_8 ([1 \otimes 1]_1 \otimes [1 \otimes 1]_1).$$
Assume an S_3 structure $(h_S)_1 \oplus \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}_2$.

\[V_{3HDM} = \mu_1^2 (h_{11} + h_{22}) + \mu_0^2 h_{SS} \]
\[+ \lambda_1 (h_{11} + h_{22})^2 + \lambda_2 (h_{12} - h_{21})^2 + \lambda_3 \left[(h_{11} - h_{22})^2 + (h_{12} + h_{21})^2 \right] \]
\[+ \{ \lambda_4 [h_{S_1} (h_{12} + h_{21}) + h_{S_2} (h_{11} - h_{22})] + \text{h.c.} \} + \lambda_5 [h_{SS} (h_{11} + h_{22})] \]
\[+ \lambda_6 [h_{1S} h_{S_1} + h_{2S} h_{S_2}] + \{ \lambda_7 \left[h_{S_1}^2 + h_{S_2}^2 \right] + \text{h.c.} \} + \lambda_8 h_{SS}^2. \]
Assume an S_3 structure $(h_S)_1 \oplus \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}_2$.

$V_{3\text{HDM}} = \mu_1^2 (h_{11} + h_{22}) + \mu_0^2 h_{SS}$

$$+ \lambda_1 (h_{11} + h_{22})^2 + \lambda_2 (h_{12} - h_{21})^2 + \lambda_3 \left[(h_{11} - h_{22})^2 + (h_{12} + h_{21})^2 \right]$$

$$+ \{ \lambda_4 [h_{S1} (h_{12} + h_{21}) + h_{S2} (h_{11} - h_{22})] + \text{h.c.} \} + \lambda_5 [h_{SS} (h_{11} + h_{22})]$$

$$+ \lambda_6 [h_{1S} h_{S1} + h_{2S} h_{S2}] + \{ \lambda_7 [h_{S1}^2 + h_{S2}^2] + \text{h.c.} \} + \lambda_8 h_{SS}^2.$$

Symmetries reduce free parameters:

$\text{NHDM} \xrightarrow{3\text{HDM}} (54) \xrightarrow{S_3} 12 \xrightarrow{\text{Re}} 10.$
Assume an S_3 structure $(h_S)_1 \oplus \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}_2$.

\[
\mathcal{V}_{3\text{HDM}} = \mu_1^2 (h_{11} + h_{22}) + \mu_0^2 h_{SS} \\
+ \lambda_1 (h_{11} + h_{22})^2 + \lambda_2 (h_{12} - h_{21})^2 + \lambda_3 \left[(h_{11} - h_{22})^2 + (h_{12} + h_{21})^2 \right] \\
+ \{ \lambda_4 [h_{S1} (h_{12} + h_{21}) + h_{S2} (h_{11} - h_{22})] + \text{h.c.}\} + \lambda_5 [h_{SS} (h_{11} + h_{22})] \\
+ \lambda_6 [h_{1S} h_{S1} + h_{2S} h_{S2}] + \left\{ \lambda_7 \left[h_{S1}^2 + h_{S2}^2 \right] + \text{h.c.}\right\} + \lambda_8 h_{SS}^2.
\]

Symmetries reduce free parameters:

\[
\text{NHDM} \xrightarrow{3\text{HDM}} (54) \xrightarrow{S_3} 12 \xrightarrow{\text{Re}} 10.
\]

S_3-3HDM models were classified in [1601.04654]:

\[
\text{vacuum: } \begin{cases}
11 \text{ real } (w_1, w_2, w_S), \\
17 \text{ complex } (\hat{w}_1 e^{i\sigma_1}, \hat{w}_2 e^{i\sigma_2}, \hat{w}_S).
\end{cases}
\]
Whenever $w_S \neq 0$ we can construct a trivial Yukawa sector, $\mathcal{L}_Y \sim 1_f \otimes 1_h$:

$$M_u = \frac{1}{\sqrt{2}} \text{diag} \left(y_1^u, y_2^u, y_3^u \right) w_S^*, \quad M_d = \ldots$$
Whenever $w_S \neq 0$ we can construct a trivial Yukawa sector, $\mathcal{L}_Y \sim 1_f \otimes 1_h$:

$$\mathcal{M}_u = \frac{1}{\sqrt{2}} \text{diag} (y_1^u, y_2^u, y_3^u) w_S^*, \quad \mathcal{M}_d = \ldots$$

Fermions can transform non-trivially under S_3, $\mathcal{L}_Y \sim (2 + 1)_f \otimes (2 + 1)_h$:

$$2 : (Q_1 Q_2)^T, (u_{1R} u_{2R})^T, (d_{1R} d_{2R})^T \quad \text{and} \quad 1 : Q_3, u_{3R}, d_{3R},$$

$$\mathcal{M}_u = \frac{1}{\sqrt{2}} \begin{pmatrix}
 y_1^u w_S^* + y_2^u w_2^* & y_2^u w_1^* & y_4^u w_1^* \\
 y_2^u w_1^* & y_1^u w_S^* - y_2^u w_2^* & y_4^u w_2^* \\
 y_5^u w_1^* & y_5^u w_2^* & y_3^u w_S^*
\end{pmatrix}, \quad \mathcal{M}_d = \ldots$$
Massless state:

\[\mathcal{V}(Uh) = \mathcal{V}(h), \]
\[\langle 0 | (Uh) | 0 \rangle \neq \langle 0 | h | 0 \rangle. \]
Massless state:

\[\mathcal{V}(Uh) = \mathcal{V}(h), \]
\[
\langle 0 | (Uh) | 0 \rangle \neq \langle 0 | h | 0 \rangle.
\]

Results of [2001.01994]:

Constraints	Continuous symmetries	# of massless states
\[\lambda_4 = 0 \]	O(2)	1
\[\cdots + [\lambda_7 = 0] \]	O(2) \otimes U(1)_{h_S}	2
\[\cdots + [\lambda_2 + \lambda_3 = 0] \]	SU(2)	3
	[O(2) \otimes U(1)_{h_1} \otimes U(1)_{h_2} \otimes U(1)_{h_S}]	3
S₃-Symmetric Three-Higgs-Doublet Models: Dark Matter Models

Vacuum	vevs	λ₄	symmetry	# massless states	fermions under S₃
R-I-1	(0, 0, wₛ)	✓	S₃, h₁ → −h₁	none	trivial
R-I-2a	(w, 0, 0)	✓	S₂	none	non-trivial
R-I-2b,2c	(w, ±√3w, 0)	✓	S₂	none	non-trivial
R-II-1a	(0, w₂, wₛ)	✓	S₂, h₁ → −h₁	none	trivial
R-II-2	(0, w, 0)	0	h₁ → −h₁, hₛ → −hₛ	1	non-trivial
R-II-3	(w₁, w₂, 0)	0	hₛ → −hₛ	1	non-trivial
R-III-s	(w₁, 0, wₛ)	0	h₂ → −h₂	1	trivial
C-I-a	(ˆw₁, ±iˆw₁, 0)	✓	cyclic Z₃	none	non-trivial
C-III-a	(0, ˆw₂eᵢσ₂, ˆwₛ)	✓	S₂, h₁ → −h₁	none	trivial
C-III-b	(±iˆw₁, 0, ˆwₛ)	0	h₂ → −h₂	1	trivial
C-III-c	(ˆw₁eᵢσ₁, ˆw₂eᵢσ₂, 0)	0	hₛ → −hₛ	2	non-trivial
C-IV-a	(ˆw₁eᵢσ₁, 0, ˆwₛ)	0	h₂ → −h₂	2	trivial

Possible DM candidates: 3 (exact S₃) and 8 (softly broken S₃) solutions.
S₃-Symmetric Three-Higgs-Doublet Models: Dark Matter Models

Vacuum	vevs	λ₄	symmetry	# massless states	fermions under S₃
R-I-1	(0, 0, wₛ)	√	S₃, h₁ ↦ −h₁	none	trivial
R-I-2a	(w, 0, 0)	√	S₂	none	non-trivial
R-I-2b,2c	(w, ±√3w, 0)	√	S₂	none	non-trivial
R-II-1a	(0, w₂, wₛ)	√	S₂, h₁ ↦ −h₁	none	trivial
R-II-2	(0, w, 0)	0	h₁ ↦ −h₁, hₛ ↦ −hₛ	1	non-trivial
R-II-3	(w₁, w₂, 0)	0	hₛ ↦ −hₛ	1	non-trivial
R-III-s	(w₁, 0, wₛ)	0	h₂ ↦ −h₂	1	trivial
C-I-a	(̂w₁, ±i ̂w₁, 0)	√	cyclic ℤ₃	none	non-trivial
C-III-a	(0, ̂w₂eᵢσ₂, ̂wₛ)	√	S₂, h₁ ↦ −h₁	none	trivial
C-III-b	(±i ̂w₁, 0, ̂wₛ)	0	h₂ ↦ −h₂	1	trivial
C-III-c	(̂w₁eᵢσ₁, ̂w₂eᵢσ₂, 0)	0	hₛ ↦ −hₛ	2	non-trivial
C-IV-a	(̂w₁eᵢσ₁, 0, ̂wₛ)	0	h₂ ↦ −h₂	2	trivial

Possible DM candidates: 3 (exact S₃) and 8 (softly broken S₃) solutions.
S₃-Symmetric Three-Higgs-Doublet Models: Dark Matter Models

Vacuum	vevs	\(\lambda_4\)	symmetry	# massless states	fermions under \(S_3\)
R-I-1	\((0, 0, w_S)\)	\(\checkmark\)	\(S_3, h_1 \rightarrow -h_1\)	none	trivial
R-I-2a	\((w, 0, 0)\)	\(\checkmark\)	\(S_2\)	none	non-trivial
R-I-2b,2c	\((w, \pm \sqrt{3}w, 0)\)	\(\checkmark\)	\(S_2\)	none	non-trivial
R-II-1a	\((0, w_2, w_S)\)	\(\checkmark\)	\(S_2, h_1 \rightarrow -h_1\)	none	trivial
R-II-2	\((0, w, 0)\)	0	\(h_1 \rightarrow -h_1, h_S \rightarrow -h_S\)	1	non-trivial
R-II-3	\((w_1, w_2, 0)\)	0	\(h_S \rightarrow -h_S\)	1	non-trivial
R-III-s	\((w_1, 0, w_S)\)	0	\(h_2 \rightarrow -h_2\)	1	trivial
C-I-a	\((\hat{\omega}_1, \pm i\hat{\omega}_1, 0)\)	\(\checkmark\)	cyclic \(\mathbb{Z}_3\)	none	non-trivial
C-III-a	\((0, \hat{\omega}_2 e^{i\sigma_2}, \hat{\omega}_S)\)	\(\checkmark\)	\(S_2, h_1 \rightarrow -h_1\)	none	trivial
C-III-b	\((\pm i\hat{\omega}_1, 0, \hat{\omega}_S)\)	0	\(h_2 \rightarrow -h_2\)	1	trivial
C-III-c	\((\hat{\omega}_1 e^{i\sigma_1}, \hat{\omega}_2 e^{i\sigma_2}, 0)\)	0	\(h_S \rightarrow -h_S\)	2	non-trivial
C-IV-a	\((\hat{\omega}_1 e^{i\sigma_1}, 0, \hat{\omega}_S)\)	0	\(h_2 \rightarrow -h_2\)	2	trivial

Possible DM candidates: 3 (exact \(S_3\)) and 8 (softly broken \(S_3\)) solutions.
S₃-Symmetric Three-Higgs-Doublet Models: Dark Matter Models

Vacuum	vevs	λ₄	symmetry	# massless states	fermions under S₃
R-I-1	(0, 0, wₛ)	✓	S₃, h₁ → −h₁	none	trivial
R-I-2a	(w, 0, 0)	✓	S₂	none	non-trivial
R-I-2b,2c	(w, ±√3w, 0)	✓	S₂	none	non-trivial
R-II-1a	(0, w₂, wₛ)	✓	S₂, h₁ → −h₁	none	trivial
R-II-2	(0, w, 0)		h₁ → −h₁, hₛ → −hₛ	1	non-trivial
R-II-3	(w₁, w₂, 0)		hₛ → −hₛ	1	non-trivial
R-III-s	(w₁, 0, wₛ)		h₂ → −h₂	1	trivial
C-I-a	(w₁, ±îw₁, 0)	✓	cyclic ℤ₃	none	non-trivial
C-III-a	(0, ̂w₂eᵢσ₂, ̂wₛ)	✓	S₂, h₁ → −h₁	none	trivial
C-III-b	(±îw₁, 0, ̂wₛ)	✓	h₂ → −h₂	1	trivial
C-III-c	(w₁eᵢσ₁, ̂w₂eᵢσ₂, 0)		hₛ → −hₛ	2	non-trivial
C-IV-a	(w₁eᵢσ₁, 0, ̂wₛ)		h₂ → −h₂	2	trivial

Possible DM candidates: 3 (exact S₃) and 8 (softly broken S₃) solutions.
Vacuum: \(\{0, w_2, w_5\} \).
Vacuum: \(\{0, w_2, w_S\} \).

The \(\mathbb{Z}_2 \) symmetry is preserved for:
\[
\begin{align*}
h_1 &\to -h_1, \\
\{h_2, h_S\} &\to \pm\{h_2, h_S\}.
\end{align*}
\]
Vacuum: $\{0, w_2, w_S\}$.

The \mathbb{Z}_2 symmetry is preserved for: $h_1 \rightarrow -h_1$, $\{h_2, h_S\} \rightarrow \pm\{h_2, h_S\}$.

The inert doublet is associated with h_1.
Vacuum: \(\{0, w_2, w_S\} \).

The \(\mathbb{Z}_2 \) symmetry is preserved for: \(h_1 \rightarrow -h_1, \ \{h_2, h_S\} \rightarrow \pm\{h_2, h_S\} \).

The inert doublet is associated with \(h_1 \).

Trivial Yukawa sector \(\mathcal{L}_Y \sim 1_f \otimes 1_h \).
R-II-1a: Physical Spectrum

Vacuum: \{0, w_2, w_S\}.

The \(\mathbb{Z}_2\) symmetry is preserved for: \(h_1 \rightarrow -h_1\), \(\{h_2, h_S\} \rightarrow \pm\{h_2, h_S\}\).

The inert doublet is associated with \(h_1\).

Trivial Yukawa sector \(\mathcal{L}_Y \sim 1_f \otimes 1_h\).

Mass eigenstates:

\[
\begin{align*}
 h_1 &= \begin{pmatrix} h^+ \\ \frac{1}{\sqrt{2}} (\eta + i \chi) \end{pmatrix}, \\
 h_2 &= \begin{pmatrix} \sin \beta \ G^+ - \cos \beta \ H^+ \\ \frac{1}{\sqrt{2}} (\sin \beta \ v + \cos \alpha \ h - \sin \alpha \ H + i (\sin \beta \ G^0 - \cos \beta \ A)) \end{pmatrix}, \\
 h_S &= \begin{pmatrix} \cos \beta \ G^+ + \sin \beta \ H^+ \\ \frac{1}{\sqrt{2}} (\cos \beta \ v + \sin \alpha \ h + \cos \alpha \ H + i (\cos \beta \ G^0 + \sin \beta \ A)) \end{pmatrix}.
\end{align*}
\]
Vacuum: \(\{0, w_2, w_S\} \).

The \(\mathbb{Z}_2 \) symmetry is preserved for: \(h_1 \rightarrow -h_1 \), \(\{h_2, h_S\} \rightarrow \pm\{h_2, h_S\} \).

The inert doublet is associated with \(h_1 \).

Trivial Yukawa sector \(\mathcal{L}_Y \sim 1_f \otimes 1_h \).

Mass eigenstates:

\[
\begin{align*}
h_1 &= \begin{pmatrix} h^+ \\ \frac{1}{\sqrt{2}} (\eta + i\chi) \end{pmatrix}, \\
h_2 &= \begin{pmatrix} \sin \beta \ G^+ - \cos \beta \ H^+ \\ \frac{1}{\sqrt{2}} (\sin \beta \ v + \cos \alpha \ h - \sin \alpha \ H + i \ (\sin \beta \ G^0 - \cos \beta \ A)) \end{pmatrix}, \\
h_S &= \begin{pmatrix} \cos \beta \ G^+ + \sin \beta \ H^+ \\ \frac{1}{\sqrt{2}} (\cos \beta \ v + \sin \alpha \ h + \cos \alpha \ H + i \ (\cos \beta \ G^0 + \sin \beta \ A)) \end{pmatrix}.
\end{align*}
\]

Inert, physical states: \(\{h^\pm, \eta, \chi\} \).
Vacuum: $\{0, w_2, w_S\}$.

The \mathbb{Z}_2 symmetry is preserved for: $h_1 \rightarrow -h_1$, \(\{h_2, h_S\} \rightarrow \pm \{h_2, h_S\}\).

The inert doublet is associated with h_1.

Trivial Yukawa sector $\mathcal{L}_Y \sim 1_f \otimes 1_h$.

Mass eigenstates:

\[
h_1 = \begin{pmatrix} h^+ \\ \frac{1}{\sqrt{2}} (\eta + i\chi) \end{pmatrix},
\]

\[
h_2 = \begin{pmatrix} \sin \beta \, G^+ - \cos \beta \, H^+ \\ \frac{1}{\sqrt{2}} (\sin \beta \, v + \cos \alpha \, h - \sin \alpha \, H + i (\sin \beta \, G^0 - \cos \beta \, A)) \end{pmatrix},
\]

\[
h_S = \begin{pmatrix} \cos \beta \, G^+ + \sin \beta \, H^+ \\ \frac{1}{\sqrt{2}} (\cos \beta \, v + \sin \alpha \, h + \cos \alpha \, H + i (\cos \beta \, G^0 + \sin \beta \, A)) \end{pmatrix}.
\]

Inert, physical states: $\{h^\pm, \eta, \chi\}$. Two possible DM candidates: $\{\eta, \chi\}$.
Introduction

R-II-1a: Physical Spectrum

Vacuum: \(\{0, w_2, w_S\} \).

The \(\mathbb{Z}_2 \) symmetry is preserved for: \(h_1 \rightarrow -h_1, \) \(\{h_2, h_S\} \rightarrow \pm \{h_2, h_S\} \).

The inert doublet is associated with \(h_1 \).

Trivial Yukawa sector \(\mathcal{L}_Y \sim 1_f \otimes 1_h \).

Mass eigenstates:

\[
\begin{align*}
 h_1 &= \begin{pmatrix} h^+ \\ \frac{1}{\sqrt{2}} (\eta + i \chi) \end{pmatrix}, \\
 h_2 &= \begin{pmatrix} \sin \beta G^+ - \cos \beta H^+ \\ \frac{1}{\sqrt{2}} \left(\sin \beta v + \cos \alpha h - \sin \alpha H + i \left(\sin \beta G^0 - \cos \beta A \right) \right) \end{pmatrix}, \\
 h_S &= \begin{pmatrix} \cos \beta G^+ + \sin \beta H^+ \\ \frac{1}{\sqrt{2}} \left(\cos \beta v + \sin \alpha h + \cos \alpha H + i \left(\cos \beta G^0 + \sin \beta A \right) \right) \end{pmatrix}.
\end{align*}
\]

Inert, physical states: \(\{h^\pm, \eta, \chi\} \). Two possible DM candidates: \(\{\eta, \chi\} \).

Active, physical states: \(\{H^\pm, h - H, A\} \).
The model is analysed using the following input (6 masses + 2 angles):

- Mass of the SM-like Higgs is fixed at \(m_h = 125.25 \) GeV;
- The Higgs basis rotation angle \(\beta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \)
 and the \(h-H \) diagonalisation angle \(\alpha \in [0, \pi] \);
- The charged scalar masses \(m_{\varphi^\pm} \in [0.07, 1] \) TeV;
- The inert sector masses \(m_{\varphi_i} \in [0, 1] \) TeV.
 Either \(\eta \) or \(\chi \) could be a DM candidate, whichever is lighter;
- The active sector masses \(\{m_H, m_A\} \in [m_h, 1 \) TeV].
The model is analysed using the following input (6 masses + 2 angles):

- Mass of the SM-like Higgs is fixed at $m_h = 125.25$ GeV;
- The Higgs basis rotation angle $\beta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ and the $h-H$ diagonalisation angle $\alpha \in [0, \pi]$;
- The charged scalar masses $m_{\varphi^\pm_i} \in [0.07, 1]$ TeV;
- The inert sector masses $m_{\varphi_i} \in [0, 1]$ TeV.
 Either η or χ could be a DM candidate, whichever is lighter;
- The active sector masses $\{m_H, m_A\} \in [m_h, 1$ TeV$]$

Both theoretical and experimental constraints, at 3-σ, are evaluated:

- Cut 1: perturbativity, stability, unitarity checks, LEP constraints;
- Cut 2: SM-like gauge and Yukawa sector, electroweak precision observables and B physics;
- Cut 3: $h \rightarrow \{\text{invisible, } \gamma\gamma]\$ decays, $\Omega_{\text{CDM}} h^2$, direct searches;
Trilinear and quartic couplings are not tuneable!

\[g(\mathbf{XXh}) = g(\mathbf{XXhh}) = 1 \]

\[v \]

\[\Omega h^2 \]

\[m_h^2 + 2m_X^2 \]

R-II-1a: Relic Density

\[\eta < \chi \]

\[\chi < \eta \]
Trilinear and quartic couplings are not tuneable!

\[
\frac{g(XXh)}{v} \bigg|_{SM} = g(XXhh) \bigg|_{SM} = \frac{1}{v^2} \left[m_h^2 + 2m_X^2 \right].
\]
All constraints satisfied:

- $m_\eta < m_\chi$: no overlap in all parameters;
- $m_\eta > m_\chi$: overlap in all parameters for $m_\chi \in [52.5, 89]$ GeV;
R-II-1a: Cut 3

Cut 1: Unitarity < 16π

Cut 2: 3-σ

Cut 2: 2-σ

Cut 3
R-II-1a: Cut 3

Cut 1: Unitarity $< 16\pi$

Cut 2: 3 - σ

Cut 2: 2 - σ

Cut 3
R-II-1a: Cut 3

Cut 1: Unitarity $< 16\pi$

Cut 2: $3 - \sigma$

Cut 2: $2 - \sigma$

Cut 3
R-II-1a: Cut 3

SCALAR DM MASS RANGES

50 GeV	100 GeV	200 GeV	500 GeV	1000 GeV
Z_2	IDM			
Z_2	IDM2	3HDM		
CP	3HDM			
χ	R-II-1a			
Conclusions

- Multi-Higgs-doublet models are phenomenology rich and can accommodate a dark matter candidate;
- Possible DM candidates were identified within S_3-3HDM;
- Analysed the R-II-1a model, and found a viable dark matter region $[52.5, 89]$ GeV;

Work supported by the Fundação para a Ciência e a Tecnologia (FCT, Portugal) PhD fellowship with reference UI/BD/150735/2020 as well as through the FCT projects CERN/FIS-PAR/0002/2021, UIDB/00777/2020, UIDP/00777/2020, PTDC/FIS-PAR/29436/2017.
We can generate the following S_3 structures:

1: $[2 \otimes 2]_1$, $[1 \otimes 1]_1$, $[1' \otimes 1']_1$;

1': $[2 \otimes 2]_1'$, $[1 \otimes 1']_1'$, $[1' \otimes 1]_1'$;

2: $[2 \otimes 2]_2$, $[1 \otimes 2]_2$, $[2 \otimes 1]_2$, $[1' \otimes 2]_2$, $[2 \otimes 1']_2$;

Products:

\[
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
_2 \otimes \begin{pmatrix}
y_1 \\
y_2
\end{pmatrix}
_2 = (x_1 y_1 + x_2 y_2)_1 + (x_1 y_2 - x_2 y_1)_1' + \begin{pmatrix}
x_1 y_2 + x_2 y_1 \\
x_1 y_1 - x_2 y_2
\end{pmatrix}_2,
\]

\[
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
_2 \otimes (y')_1' = \begin{pmatrix}
-x_2 y' \\
x_1 y'
\end{pmatrix}_2,
\]

\[
(x')_1' \otimes (y')_1' = (x'y')_1.
\]

$\nu_{3\text{HDM}} = \mu_1^2 [2 \otimes 2]_1 + \mu_0^2 [1 \otimes 1]_1$

\[+ \lambda_1 \left([2 \otimes 2]_1 \otimes [2 \otimes 2]_1 \right) + \lambda_2 \left([2 \otimes 2]_1' \otimes [2 \otimes 2]_1' \right) + \lambda_3 \left([2 \otimes 2]_2 \otimes [2 \otimes 2]_2 \right) + \lambda_4 \left\{ \left([2 \otimes 2]_2 \otimes [1 \otimes 2]_2 \right) + \sym \right\} + \lambda_5 \left([2 \otimes 2]_1 \otimes [1 \otimes 1]_1 \right) + \lambda_6 \left([1 \otimes 2]_2 \otimes [2 \otimes 1]_2 \right) + \lambda_7 \left\{ \left([1 \otimes 2]_2 \otimes [1 \otimes 2]_2 \right) + \sym \right\} + \lambda_8 \left([1 \otimes 1]_1 \otimes [1 \otimes 1]_1 \right).\]
Appendix

R-II-1a masses:

\[m_{h^+}^2 = -2\lambda_3 w_s^2 + \frac{5}{2} \lambda_4 w_2 w_s - \frac{1}{2} (\lambda_6 + 2\lambda_7) w_s^2, \]

\[m_{H^+}^2 = \frac{\nu^2}{2w_s} \left[\lambda_4 w_2 - (\lambda_6 + 2\lambda_7) w_s \right], \]

\[m_n^2 = \frac{9}{2} \lambda_4 w_2 w_s, \]

\[m_{\chi}^2 = -2(\lambda_2 + \lambda_3) w_2^2 + \frac{5}{2} \lambda_4 w_2 w_s - 2\lambda_7 w_s^2, \]

\[m_A^2 = \frac{\nu^2}{2w_s} (\lambda_4 w_2 - 4\lambda_7 w_s), \]

\[m_h^2 = \frac{1}{4w_s^2} \left[4 (\lambda_1 + \lambda_3) w_2^2 w_s^2 + \lambda_4 w_2 w_s \left(w_2^2 - 3w_s^2 \right) + 4\lambda_8 w_s^4 - w_s \Delta \right], \]

\[m_H^2 = \frac{1}{4w_s^2} \left[4 (\lambda_1 + \lambda_3) w_2^2 w_s^2 + \lambda_4 w_2 w_s \left(w_2^2 - 3w_s^2 \right) + 4\lambda_8 w_s^4 + w_s \Delta \right], \]

where

\[\Delta^2 = 16 (\lambda_1 + \lambda_3)^2 w_2^4 w_s^2 - 8 (\lambda_1 + \lambda_3) w_2^2 w_s \left[\lambda_4 \left(w_2^3 + 3w_2 w_s^2 \right) + 4\lambda_8 w_s^3 \right] \]

\[+ 16\lambda_a^2 w_2^4 w_s^4 - 48\lambda_4 \lambda_a w_2^3 w_s^3 + \lambda_4^2 \left(w_2^6 + 42w_2^4 w_s^2 + 9w_2^2 w_s^4 \right) \]

\[+ 8\lambda_4 \lambda_8 w_2 w_s^3 \left(w_2^2 + 3w_s^2 \right) + 16\lambda_8^2 w_s^6. \]
Appendix

R-II-1a gauge couplings:

\[
\mathcal{L}_{VVH} = \left[\frac{g}{2 \cos \theta_W} m_Z Z_{\mu} Z^{\mu} + g m_W W_{\mu}^{+} W_{\mu}^{-} \right] \left[\sin(\alpha + \beta) h + \cos(\alpha + \beta) H \right] ,
\]

\[
\mathcal{L}_{VHH} = - \left[\frac{g}{2 \cos \theta_W} Z^{\mu} \left[\eta \partial^{\mu}_\nu X - \cos(\alpha + \beta) h \partial^{\mu}_\nu A + \sin(\alpha + \beta) H \partial^{\mu}_\nu A \right] \right.
\]

\[
- \frac{g}{2} \left\{ i W_{\mu}^{+} \left[i h - \partial^{\mu}_\nu \chi + h - \partial^{\mu}_\nu \eta - \cos(\alpha + \beta) H - \partial^{\mu}_\nu h \right.
ight.
\]

\[
+ \sin(\alpha + \beta) H - \partial^{\mu}_\nu H + i H - \partial^{\mu}_\nu A \left. \right] + \text{h.c.} \right\}
\]

\[
+ \left[i e A^{\mu} + \frac{ig \cos(2 \theta_W)}{2 \cos \theta_W} Z^{\mu} \right] \left(h^{+} \partial^{\mu}_\nu h^{-} + H^{+} \partial^{\mu}_\nu H^{-} \right) ,
\]

\[
\mathcal{L}_{VVHH} = \left[\frac{g^2}{8 \cos^2 \theta_W} Z_{\mu} Z^{\mu} + \frac{g^2}{4} W_{\mu}^{+} W_{\mu}^{-} \right] \left(\eta^2 + \chi^2 + h^2 + H^2 + A^2 \right)
\]

\[
+ \left\{ \left[\frac{eg}{2} A^{\mu} W_{\mu}^{+} - \frac{g^2 \sin^2 \theta_W}{2 \cos \theta_W} Z^{\mu} W_{\mu}^{+} \right] \left[\eta h^{-} + i \chi h^{-} - \cos(\alpha + \beta) h H^{-} \right.
ight.
\]

\[
+ \sin(\alpha + \beta) H H^{-} + i A H^{-} \right] + \text{h.c.} \right\}
\]

\[
+ \left[e^2 A^{\mu} A^{\mu} + eg \frac{\cos(2 \theta_W)}{\cos \theta_W} A^{\mu} Z^{\mu} + \frac{g^2}{4} \frac{\cos^2(2 \theta_W)}{\cos^2 \theta_W} Z^{\mu} Z^{\mu} + \frac{g^2}{2} W_{\mu}^{+} W_{\mu}^{-} \right] \left(h^{-} h^{+} + H^{+} H^{-} \right) .
\]
R-II-1a fermionic couplings:

\[g(h \bar{f} f) = -i \frac{m_f}{v} \frac{\sin \alpha}{\cos \beta}, \quad g(H \bar{f} f) = -i \frac{m_f}{v} \frac{\cos \alpha}{\cos \beta}, \]
\[g(A \bar{u} u) = -\gamma_5 \frac{m_u}{v} \tan \beta, \quad g(A \bar{d} d) = \gamma_5 \frac{m_d}{v} \tan \beta, \]

and for the leptonic sector, the Dirac mass terms would lead to similar relations.

\[g(H^+ \bar{u}_i d_j) = i \frac{\sqrt{2}}{v} \tan \beta [P_L m_u - P_R m_d] (V_{CKM})_{ij}, \]
\[g(H^- \bar{d}_i u_j) = i \frac{\sqrt{2}}{v} \tan \beta [P_R m_u - P_L m_d] (V_{CKM}^\dagger)_{ji}, \]
\[g(H^+ \bar{\nu} l) = -i \frac{\sqrt{2} m_l}{v} \tan \beta P_R, \]
\[g(H^- \bar{l} \nu) = -i \frac{\sqrt{2} m_l}{v} \tan \beta P_L. \]
We adopt 3-σ bounds from PDG [2021]:

\[\kappa_{VV}^2 \equiv |\sin(\alpha + \beta)|^2 \in \{1.19 \pm 3 \sigma\}, \text{ which comes from } h_{SM} W^+ W^-, \]

\[\kappa_{ff}^2 \equiv \left| \frac{\sin \alpha}{\cos \beta} \right|^2 \in \{1.04 \pm 3 \sigma\}, \text{ which comes from } h_{SM} \bar{b}b. \]

We impose the same sign for these two couplings not to spoil the interference required for \(h_{SM} \to \gamma\gamma \).
Appendix

We adopt the experimental value, \(\text{Br} (\bar{B} \rightarrow X(s)\gamma) \times 10^4 = 3.32 \pm 0.15 \) [PDG 2021] and impose an \((n = 3)\)-\(\sigma\) tolerance, together with an additional 10 per cent computational uncertainty,

\[
\text{Br} (\bar{B} \rightarrow X(s)\gamma) \times 10^4 = 3.32 \pm \sqrt{(3.32 \times 0.1)^2 + (0.15 n)^2}.
\]

The acceptable region, corresponding to the 3-\(\sigma\) bound, is [2.76; 3.88].
Appendix

Scatter plots of additional contributions to the di-photon decay amplitudes, normalised to the SM value, expressed in per cent:

![Scatter plots](image)

Two-gluon versus di-photon Higgs-like particle branching ratios, normalised to the SM value:

![Branching ratios](image)
Appendix

Parameter	BP 1	BP 2	BP 3	BP 4	BP 5	BP 6	BP 7	BP 8	BP 9	
DM (χ) mass [GeV]	52.6	56.1	59.6	63.02	65.7	70.3	75.0	82.2	88.6	
η mass [GeV]	62.7	203.8	270.4	169.3	150.5	157.7	202.8	127.8	210.7	
h^+ mass [GeV]	115.4	167.4	273.6	188.6	214.1	170.5	232.0	151.8	243.0	
H^+ mass [GeV]	192.6	369.5	367.4	246.6	265.5	405.8	319.8	410.6	311.9	
H^- mass [GeV]	263.9	349.3	332.9	276.3	298.2	402.0	368.5	405.2	317.6	
A mass [GeV]	179.2	208.0	190.7	173.9	205.2	255.3	253.1	330.0	247.0	
β/π	0.162	-0.204	-0.201	-0.165	0.163	0.220	0.203	-0.218	0.183	
α/π	0.252	0.763	0.765	0.752	0.254	0.225	0.239	0.769	0.238	
σ_S [10^{-11} pb]	0.029	1.456	4.928	0.176	5.326	1.341	2.711	8.553	4.491	
$\eta \rightarrow \chi qq$ [%]	63.27	54.38	54.35	53.95						
$\eta \rightarrow \chi b\bar{b}$ [%]	0.48	14.80	14.85	13.90						
$\eta \rightarrow \chi\nu\bar{\nu}$ [%]	24.62	20.48	20.46	20.72						
$\eta \rightarrow \chi l\bar{l}$ [%]	11.61	10.33	10.33	11.42						
$\eta \rightarrow \chi Z$ [%]	99.98	53.09	100	100	100	100	100	100	100	
$\eta \rightarrow \chi A$ [%]	46.91									
$h^+ \rightarrow \chi W^+$ [%]	100	100	99.98	99.89	99.99	99.99	99.99	99.99	99.99	
$h^+ \rightarrow \eta q\bar{q}$ [%]	20.18	0.30								
$h^+ \rightarrow \eta l\bar{l}$ [%]	9.88	0.16								
$h^+ \rightarrow \chi qq$ [%]	46.94	66.82								
$h^+ \rightarrow \chi l\bar{l}$ [%]	22.99	32.71								
$H^+ \rightarrow t\bar{b}$ [%]	9.07	43.69	58.23	95.06	95.78	30.95	96.25	31.54	93.59	
$H^+ \rightarrow AW^+$ [%]	20.56	35.74	0.29	0.06	8.66	0.05	0.05	0.05	0.05	
$H^+ \rightarrow HW^+$ [%]	1.94	2.67	4.46	4.00	1.23	2.86	1.15	6.20		
$H^+ \rightarrow h^+\eta$ [%]	85.9	43.74	61.68							
$H^+ \rightarrow h^+\chi$ [%]	5.0	33.74	3.26	15.36	0.68	5.53				
$H \rightarrow \chi\chi$ [%]	0.15	0.03	0.07	0.87	15.03	11.34	7.63	63.75		
$H \rightarrow \eta\eta$ [%]	89.9	24.89	25.31							
$H \rightarrow hh$ [%]	3.07	2.64	9.40	34.59	33.53	1.33	13.43	0.88	14.72	
$H \rightarrow A\bar{Z}$ [%]	0.09	13.55	70.93	13.91	2.87	7.61	22.78	0.07		
$H \rightarrow W^+W^-$ [%]	4.06	3.13	10.40	34.98	33.35	1.89	16.32	1.26	14.70	
$H \rightarrow ZZ$ [%]	1.75	1.43	4.77	15.29	14.82	0.88	7.55	0.59	6.62	
$H \rightarrow h^+h^-$ [%]	0.8	78.59			52.94	56.33				
$H \rightarrow q\bar{q}$ [%]	0.02	4.40	0.32	0.34	10.43	28.52	8.00	0.12		
$A \rightarrow \eta\chi$ [%]	99.97	99.32	99.01							
$A \rightarrow b\bar{b}$ [%]	0.02	79.78	84.15	84.63	75.28	0.07	8.84	0.42	4.76	
$A \rightarrow q\bar{q}$ [%]	3.56	3.75	3.77	3.36	0.39	0.21				
$A \rightarrow \tau^+\tau^-$ [%]	9.85	10.19	10.00	9.24	1.13	0.61				
$A \rightarrow hZ$ [%]	6.81	1.87	1.55	12.08	0.6	89.63	0.96	94.42		
Introduction Inert Doublet Model Three-Higgs-Doublet Models R-II-1a

Appendix