Цель. На основе анализа архивных и собственных экспедиционных данных, а также с помощью математического моделирования выполнить оценку вклада нагонных явлений в поступление тяжелых металлов в дельту Дона — цель данной работы.

Методы и результаты. Были использованы математическая гидродинамическая модель Hydrologic Engineering Center River Analysis System (HEC-RAS) и оригинальная модель переноса и трансформации соединений тяжелых металлов в дельте Дона С. В. Бердникова. В моделях применялась нерегулярная расчетная сетка для дельты Дона со средним разрешением 100 × 100 м. Ячейки сетки были сгруппированы в компартменты по гидрологическому принципу. Рассчитаны 12 сценариев динамики взвешенного вещества, растворенных и взвешенных форм Ni, Cu, Pb, Cd при нагонах различной интенсивности в условиях переменной водности и сезонной динамики развития околоводной растительности. Построены графики изменения содержания и накопления взвешенного вещества, а также картосхемы распределения осажденного вещества после нагонов в дельте по сценариям. За расчетные двое суток нагонов различной повторяемости в условиях переменной водности Дона оседает порядка 0,3–3 т соединений никеля, 0,1–1,8 т соединений меди, 0,2–1,8 т соединений свинца и 0,01–0,04 т соединений кадмия. Полученные результаты позволили выявить в качестве районов повышенного накопления осажденной взвеси и повышенной концентрации растворенных форм тяжелых металлов междуручье судоходного рукава Дона и системы рукавов Каланчи и Кутерьмы.

Выводы. Нагонные явления по своему влиянию на формирование поступления взвешенных форм тяжелых металлов превосходят речной сток. Определяющим для поступления тяжелых металлов в дельту Дона является концентрация взвешенного вещества в водах Таганрогского залива при нагонах. При этом областями наибольшего осаждения взвешенного вещества и повышенных концентраций растворенных форм тяжелых металлов являются ближайшие к Таганрогскому заливу участки, покрытые тростниковыми зарослями.

Ключевые слова: тяжелые металлы, дельта Дона, устьевая область, нагон, гидродинамическое моделирование.

Благодарности: работа выполнена при финансовой поддержке гранта РФФИ №18-35-00441 и в рамках реализации государственного задания ЮНЦ РАН, № госреегистрации проекта АААА-А18-118122790121-5.

Для цитирования: Шевердяев И. В., Клещенков А. В. Выявление вклада нагонных явлений в поступление тяжелых металлов в дельту Дона // Морской гидрофизический журнал. 2020. Т. 36, № 5. С. 582–594. doi:10.22449/0233-7584-2020-5-582-594
Revealing the Surge Phenomena Contribution of the Heavy Metals Inflow to the River Don Delta

I. V. Sheverdyaev*, A. V. Kleschenkov

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, Russia
*e-mail: ig71089@yandex.ru

Purpose. The aim of the investigation is to evaluate the surge phenomena effect upon the heavy metals inflow to the Don Delta based on analysis of the archival and expedition data, as well as using mathematical modeling.

Methods and Results. To achieve the purpose, the Hydrologic Engineering Center River Analysis System (HEC-RAS) mathematical hydrodynamic model and the original model of the heavy metal compounds’ transfer and transformation in the Don Delta, developed by S. V. Berdnikov were applied. The models included the irregular grid for the Don Delta region with the average resolution 100 × 100 m. The grid cells were grouped into the compartments according to the hydrological principle. Twelve scenarios of dynamics of the suspended solids, and the dissolved and suspended forms of Ni, Cu, Pb and Cd were calculated for the surges of various intensity under the conditions of variable water content and seasonal dynamics of near-water vegetation. In accordance with the scenarios, the graphs showing the changes in the suspended matter content and accumulation, and the maps of the deposited substance distribution resulted from the surges in the delta were constructed. During two days the calculations for which include the surges of varying repeatability and the variable water content, about 0.3–3 t of nickel compounds, 0.1–1.8 t of copper compounds, 0.2–1.8 t of lead compounds and 0.01–0.04 t of cadmium ones deposit in Don. The obtained results made it possible to reveal two regions where the increased accumulation of the precipitated suspended matter and the heightened concentrations of the heavy metal dissolved forms were observed: the interfluve of the Don shipping channel, and the systems of the rivers Kalancha and Kuterma branches.

Conclusions. As for their influence upon formation of the flow of the heavy metal suspended forms, the surge phenomena surpass the river flow. The suspended matter concentration in the Taganrog Bay waters during the surges is the governing factor for the heavy metals inflow to the Don Delta. At the same time, the regions characterized by the highest suspended solids sedimentation and the increased concentrations of the heavy metal dissolved forms are the closest to the Taganrog Bay areas covered by reed vegetation.

Keywords: heavy metals, Don Delta, mouth area, surge, hydrodynamic modeling.

Acknowledgements: the investigation was funded by RFBR grant No. 18-35-00441 мол_а and carried out within the framework of the state task of SSC, RAS, project state registration is № АААА-А18-118122790121-5.

For citation: Sheverdyaev, I.V. and Kleschenkov, A.V., 2020. Revealing the Surge Phenomena Contribution of the Heavy Metals Inflow to the River Don Delta. Physical Oceanography, [e-journal] 27(5), pp. 535-546. doi:10.22449/1573-160X-2020-5-535-546

Введение

Устьевые области рек, как зоны контакта морских и речных вод, уязвимы по отношению к естественным и антропогенным колебаниям режима речного стока, уровня моря и качества вод. Дельта Дона является одной из важнейших в хозяйственном и социально-экономическом отношении устьевых областей России. Здесь взаимодействие морских и речных вод происходит под усиленным антропогенным воздействием агломерации Ростова-на-Дону. К значимым изменениям в системе устьевой области Дона в последнее десятилетие можно отнести нижеследующее.
В настоящее время (2007–2020 гг.) водный сток Дона снижен (до 13–16 км³/год [1] при норме 22 км³/год [2]), что обусловлено климатическими причинами его формирования. В текущий маловодный период в районах интенсивной хозяйственной деятельности в бассейне Дона наблюдается дефицит водных ресурсов, что создает серьезные проблемы для водоснабжения населения, сельскохозяйственного производства, рыбного хозяйства и сохранения уникальной экосистемы дельты р. Дон. Кроме того, в современный период наблюдается значительное снижение твердого стока р. Дон.

Поверхностные воды Нижнего Дона характеризуются высокой степенью загрязненности, являясь одним из источников тяжелых металлов для дельты Дона [1]. Другим источником загрязнения являются морские воды Таганрогского залива [3], поступающие при нагонных явлениях, характерных для региона. В наблюдаемых условиях пониженного стока Дона влияние этих источников на содержание тяжелых металлов в воде и в почве может измениться.

Естественные колебания характеристик гидрологического режима Дона и Азовского моря приводят к возникновению рисков негативного воздействия вод на население и объекты экономики. Как отмечено в Водной стратегии РФ (URL: http://www.mnr.gov.ru/docs/strategii_i_doktriny/128717/), риск наводнений и иного негативного воздействия вод будет сохраняться и усиливаться в будущем в связи с учащением опасных гидрологических явлений в новых климатических условиях. Для устьевого участка Дона, в особенности его дельты, это риски затопления в результате нагонов воды со стороны Таганрогского залива, увеличения случаев проникновения вод с относительно более высокой соленостью (на фоне низкого водного стока Дона), ухудшения качества вод, используемых для питьевого и хозяйственно-бытового водоснабжения г. Азов и других населенных пунктов. В Южном научном центре РАН (Ростов-на-Дону) с 2007 г. проводятся наблюдения за уровнем в х. Донской (дельта Дона), на посту Взморье (Таганрогский залив) и в с. Кагальник (дельта Дона). С 2013 г. наблюдения уровня воды на гидропостах проводятся с помощью автоматических уровнемеров с временным шагом 10 мин. Кроме этого, ежегодно проводятся регулярные комплексные экспедиции в Азовское море и р. Дон. В результате в ЮНЦ РАН накоплен архив гидрологических и гидрохимических наблюдений в р. Дон, в дельте (по рукавам, ерикам и на островах) и в придельтовой части Таганрогского залива Азовского моря. На основе накопленных материалов в 2018 г. были проанализированы сгонно-нагонные процессы за период 2007–2018 гг. [4], адаптирована двумерная гидрологическая модель HEC-RAS [5], оценено распределение шероховатости в дельте Дона по сезонам и проведено зонирование дельты Дона по степени воздействия нагонов [6].

В настоящей работе приводятся результаты моделирования поступления тяжелых металлов в дельту Дона при нагонах различной повторяемости в условиях средней и высокой водности этой реки.

Материалы и методы

Для решения задачи исследования роли нагонных явлений в поступлении тяжелых металлов в дельту Дона в современных гидролого-геохимических условиях нами были собраны и проанализированы результаты измерений...
концентраций тяжелых металлов (Cu, Pb, Cd, Ni) в воде и взвеси Таганрогского залива и больших и малых рукавов дельты Дона и руслового участка Дона от ст. Старочеркасская до г. Ростова-на-Дону в период 2006–2019 гг. В базу данных вошли результаты как собственных специальных геохимических исследований ЮНЦ РАН, так и совместных с МГУ работ по изучению геохимии аквальных ландшафтов дельты Дона [7], а также фондовые данные. Сводные сведения о концентрациях тяжелых металлов в воде и взвеси в устьевой области Дона приведены в табл. 1. Стоит отметить, что концентрации тяжелых металлов в воде и взвеси подвержены сезонным изменениям, что видно при сравнении данных за летно-осенне-межень 2013–2014 гг. [8, 9] и среднемноголетних значений. Кроме того, согласно оценкам [8], поток взвешенных форм Ni, Cu, Cd и Pb с речными водами сокращается при движении от вершины дельты к нижележащим створам, т. е. происходит осаждение взвешенных форм тяжелых металлов.

Таблица 1

Объекты / Objects	Cu	Cd	Pb	Ni
Дон (n = 80) / Don (n = 80)	3,1	0,63	1,60	8,2
Дон (n = 25) (по [8]) / Don (n = 25) (by [8])	1,4	0,05	0,10	2,3
Таганрогский залив (n = 93) / Taganrog Bay (n = 93)	5,4	0,33	3,22	11,4

Объекты / Objects	Cu	Cd	Pb	Ni
Дон (n = 80) / Don (n = 80)	48,7	0,96	29,5	42,7
Дон (n = 11) (по [9]) / Don (n = 11) (by [9])	22,9	0,40	23,4	38,3
Таганрогский залив (n = 93) / Taganrog Bay (n = 93)	35,9	0,73	38,6	30,9

По оценкам [10], в России ежегодно в водные объекты поступает около 2450 т свинца, из которых 1000 т – в почвы и воды от разрушения аккумуляторов, 1400 тонн – в результате охоты и только 50 т – от стационарных источников. Сопоставление этих оценок с поступлением форм тяжелых металлов с нагонами в дельту Дона представляет интерес для понимания роли антропогенного влияния на окружающую среду.

Использованные данные для сценариев моделирования нагонов представлены в табл. 2, 3. Для дальнейшей работы из базы данных нами были выморо́ской гидрофизический журнал том 36 № 5 2020 585
браны концентрации тяжелых металлов, относящиеся к периодам со средней водностью Дона (500 м³/с) и осредненные за многолетний период. Для моделирования миграции тяжелых металлов при повышенной водности Дона, характеризующейся значениями расходов воды порядка 2000 м³/с, что в XXI в. наблюдалось всего два раза – в 2003 и в 2018 гг., нами были использованы данные собственных натурных наблюдений и фондовые данные Азовводоканала.

Анализ табл. 2 и 3 показывает, что наибольшее значение для массопереноса тяжелых металлов между Таганрогским заливом и дельтой Дона имеет взвешенная форма, так как количество взвеси в Таганрогском заливе вследствие ветрового взмучивания и поступления с речным стоком выше, чем в реке.

Компонент / Component	Дон (начало дельты) / Don (delta mouth)	Приустьевое взморье Таганрогского залива (в период нагона) / Mouth of the Taganrog Bay (during a surge)	
Взвесь, мг/дм³ / Suspended matter, mg/dm³	17,00	60,00	
Ni	растворенная форма, мкг/дм³ / dissolved form, mkg/dm³	2,80	3,10
	взвешенная форма, мкг/г / suspended form, mkg/g	38,00	40,00
Cu	растворенная форма, мкг/дм³ / dissolved form, mkg/dm³	9,40	2,10
	взвешенная форма, мкг/г / suspended form, mkg/g	29,00	25,00
Pb	растворенная форма, мкг/дм³ / dissolved form, mkg/dm³	0,10	0,08
	взвешенная форма, мкг/г / suspended form, mkg/g	31,00	25,00
Cd	растворенная форма, мкг/дм³ / dissolved form, mkg/dm³	0,14	0,16
	взвешенная форма, мкг/г / suspended form, mkg/g	0,30	0,50

Для оценки поступления тяжелых металлов и осаждения взвеси в пределах дельты Дона использовался комплекс гидрологических моделей, состоящий из гидродинамической модели HEC-RAS и оригинальной модели переноса и трансформации соединений тяжелых металлов в дельте Дона С. В. Бердникова [11]. Модели использовались последовательно – полученные с помощью HEC-RAS результаты гидрологических расчетов динамики
вод, поступающих в дельту Дона с нагоном и речным стоком, были входными данными для расчетов поступления тяжелых металлов и осаждения взвеси по модели С. В. Бердникова. Двумерные расчеты в модели HEC-RAS основаны на решении уравнений Навье – Стокса в условиях мелкой воды, модель С. В. Бердникова основана на балансовых уравнениях поступления и осаждения веществ в выделенных районах (комpartmentах). Для использованного комплекса моделей были разработаны общая расчетная сетка (с выделенными compartmentами), исходные данные, граничные условия.

| Концентрации взвеси и соединений металлов в водах, поступающих в дельту Дона при расходе 2000 м³/с |
| Концентрации взвеси и соединений металлов в водах, поступающих в дельту Дона при расходе 2000 м³/с |

Компонент / Component	Дон (начало дельты) / Don (delta mouth)	Приустьевое взморье Таганрогского залива (в период нагона) / Mouth of the Taganrog Bay (during a surge)	
Взвесь, мг/дм³ / Suspended matter, mg/dm³	19,00	71,00	
Ni	растворенная форма, мкг/дм³ / dissolved form, mkg/dm³	2,80	5,60
взвешенная форма, мкг/г / suspended form, mkg/g	11,60	14,30	
Cu	растворенная форма, мкг/дм³ / dissolved form, mkg/dm³	1,80	1,70
взвешенная форма, мкг/г / suspended form, mkg/g	5,20	4,80	
Pb	растворенная форма, мкг/дм³ / dissolved form, mkg/dm³	0,10	1,20
взвешенная форма, мкг/г / suspended form, mkg/g	14,60	11,40	
Cd	растворенная форма, мкг/дм³ / dissolved form, mkg/dm³	0,11	0,14
взвешенная форма, мкг/г / suspended form, mkg/g	0,26	0,40	

Для параметризации комплекса гидрологических моделей была построена расчетная область: регулярная сетка ячеек 100 × 100 м осложнена границиами compartmentов с учетом строгих гидрологических критериев. Выделили акваторию Таганрогского залива и акваторию основных руслей рек в дельте Дона; акваторию основных руслей рек поделили на участки отдельных рек и рукавов, которые были затем разделены на более короткие участки (до 10 км), охватывающие однородный элемент русла (колено, поворот и др.); территория суши была разделена между выделенными руслами на правые и левые водосборы, а также отдельно выделены водосборы Таганрогского залива. Стоит отметить, что некоторая часть выделенных водосборов может обмениваться водой с различными выделенными руслами (напр., из-за густой МОРСКОЙ ГИДРОФИЗИЧЕСКИЙ ЖУРНАЛ том 36 № 5 2020 587
сети каналов или ериков), такие территории распределялись между соответствующими руслами равномерно. Всего было выделено 95 компартментов (рис. 1).

Р и с. 1. Гидрологические районы дельты Дона
Fig. 1. Hydrological areas of the Don Delta

В использованной расчетной области предусмотрены две границы: по акватории Таганрогского залива и в вершине дельты по руслу Дона. В модели HEC-RAS через выделенные границы задаются динамика уровня воды в х. Донском при нагоне и расходы в р. Дон соответственно. В модели С. В. Бердникова для поступающей через границы воды задаются концентрации веществ. Также для расчетной области задавалось распределение шероховатости, использованное в [6]. Оно играет ключевую роль в расчетах по HEC-RAS. В модели же С. В. Бердникова принято предположение, что для районов, которые находятся под водой, скорость осаждения взвешенных веществ зависит от шероховатости поверхности, причем для русловых участков открытой воды она снижена до нуля. Для заросших растительностью затопленных областей, в том числе рукавов и протоков с водной растительностью, скорость осаждения максимально возрастает до 10 раз по сравнению со свободным руслом.
Результаты и обсуждение
Аналогично подходам, изложенным в [6], для анализа поступления взвешенных форм тяжелых металлов в дельту Дона нами были рассмотрены различные сочетания водности Дона, уровней нагонов и коэффициентов шероховатости тростниковых зарослей, занимающих 46,4% дельты Дона. Сочетания указанных параметров были сгруппированы в 12 сценариев (табл. 4).

Таблица 4
Table 4

Гидрологические параметры модельных сценариев
Hydrological parameters of the model scenarios

Сценарий / Scenario	Расход воды в вершине дельты, м³/с / Water discharge at the delta mouth, м³/с	Подъем уровня воды во время нагона на пике, м / Water level rise during the maximum surge, m	Шероховатость тростниковых зарослей / Reed surface roughness
Sc1	2000	3,7	0,12
Sc2	2000	3,7	0,04
Sc3	2000	2,5	0,12
Sc4	2000	2,5	0,04
Sc5	2000	1,5	0,12
Sc6	2000	1,5	0,04
Sc7	500	3,7	0,12
Sc8	500	3,7	0,04
Sc9	500	2,5	0,12
Sc10	500	2,5	0,04
Sc11	500	1,5	0,12
Sc12	500	1,5	0,04

Для каждого сценария было оценено распределение накопленной осажденной взвеси по компартментам на конец вторых суток расчета. В пределах каждого района накапливался осадок взвеси. Чтобы оценить, какую роль играет каждый конкретный район в осаждении взвеси при смешении поступившей во время нагона в дельту морской воды и речной воды, было выполнено сравнение доли накопленного осадка от общего в дельте с долей площади района в дельте. Для каждого района был рассчитан индекс накопления осажденного вещества за двое суток расчета (M_2):

$$M_2 = \frac{M_r}{\sum S_r},$$

где M_2 – индекс накопления осажденного вещества за двое суток расчета; M_r – масса накопленного осажденного вещества в районе, кг; ΣM_r – масса накопленного осажденного вещества в дельте, кг; S_r – площадь района, км²; ΣS_r – площадь дельты, км² (723,3 км²).
В результате было получено пространственное распределение индекса M_2 по пространству дельты (рис. 2). Для всех рассмотренных сценариев индекс M_2 изменялся в диапазоне 0–8,5. При этом, как следует из формулы (1), индекс принимает высокие значения при интенсивном осадконакоплении в исследуемом районе.

В рамках реализации сценарного подхода с помощью компартментальной модели нами были рассчитаны объемы поступления взвешенного вещества в дельту (рис. 3) и его осаждения (рис. 4).

На представленном графике поступления взвешенного вещества в дельту сценарии группируются по величине нагона. Показано, что при нагоне с максимумом 1,5 м (по Балтийской системе высот – БС) масса взвешенного вещества в дельте в пике увеличивается в 4–5 раз по сравнению с начальной, при нагоне 2,5 м (БС) – в 8–10 раз, при нагоне 3,7 м (БС) – в 16–20 раз. При этом при низкой шероховатости пики выше и немного раньше начинают спадать. Повышенная водность также усиливает пики.

Из рис. 4 следует, что масса осажденного вещества в дельте в результате нагона может достигать 85 тыс. т за двое суток нагона при высокой водности Дона в условиях низкой шероховатости (при обычном половодье ранней весной). Кроме этого, обычные сильные нагоны, наблюдающиеся каждый год по
несколько раз (высота подъема уровня до 1,5 м (БС)), приводят к осаждению около 20 тыс. т вещества за двое суток, в то время как экстремальные нагоны (2,5 м (БС)) – 40–50 тыс. т (рис. 4).

Рис. 3. Динамика поступления взвешенного вещества в дельте Дона по сценариям
Fig. 3. Dynamics of the suspended matter inflow to the Don Delta according to the scenarios

Рис. 4. Динамика накопления осадка в дельте Дона по сценариям
Fig. 4. Dynamics of sediment accumulation in the Don Delta according to the scenarios

В пересчете на средние концентрации исследуемых тяжелых металлов во взвеси Таганрогского залива получаем оценки поступления, которые приведены в табл. 5.
Таблица 5
Surge-resulted accumulation of the heavy metal suspended forms (t) in the Don Delta by the end of the second day of calculation

Сценарий / Scenario	Ni	Cu	Pb	Cd
Sc1	1,1	0,4	0,9	0,03
Sc2	1,2	0,4	1,0	0,03
Sc3	0,7	0,2	0,5	0,02
Sc4	0,7	0,2	0,6	0,02
Sc5	0,3	0,1	0,2	0,01
Sc6	0,3	0,1	0,3	0,01
Sc7	2,8	1,7	1,7	0,03
Sc8	3,0	1,8	1,8	0,04
Sc9	1,6	1,0	1,0	0,02
Sc10	1,8	1,1	1,1	0,02
Sc11	0,8	0,5	0,5	0,01
Sc12	0,8	0,5	0,5	0,01

Рис. 5. Районы с повышенными концентрациями растворенных форм тяжелых металлов (Ni, Cu, Pb, Cd) после двух суток нагона для сценариев повышенной и пониженной водности Дона. Синим цветом обозначены элементы с повышенной концентрацией при водности Дона 500 м³/с, красным – при водности Дона 2000 м³/с, черным – при водности Дона 500 и 2000 м³/с.

Fig. 5. Areas with the heightened concentrations of the dissolved forms of heavy metals (Ni, Cu, Pb, Cd) after the 2-day surge for the scenarios of the increased and decreased water content in Don. Blue color indicates the elements with the increased concentration at the Don water content 500 m³/s, red and black colors show the same – at the Don water content 2000 m³/s and at both variants (500 and 2000 m³/s), respectively.
Для каждого тяжелого металла в растворенной форме были выполнены расчеты поступления в дельту Дона по выделенным сценариям нагонов. В результате были получены области с повышенными относительно начального уровня значениями концентрации. Как показано на рис. 5, большей частью они расположены в центральной области дельты, в междуречье Старого Дона и Каланчи. В качестве основных участков концентрации тяжелых металлов выделяются пойменные участки Каланчи и Мокрой Каланчи, устье Кагальника, а также участок разветвления Большой Кутермы. Обращают на себя внимание повышенные концентрации меди (вдоль основного судоходного пути при нагонах в условиях малой водности Дона, что, вероятно, связано с поступлением морских вод по наиболее глубокому судоходному рукаву дельты – Старому Дону), а также свинца (на правых берегах Каланчи, Кукутермы и Мёртвого Донца) в условиях высокой водности Дона.

Выводы

Вариации гидрологического режима в дельте Дона, обусловленные сточно-нагонными явлениями и изменением его стока, прежде всего определяют изменчивость наблюдаемых здесь концентраций соединений тяжелых металлов как в растворенной, так и во взвешенной форме.

С учетом того, что скорость осаждения взвешенного вещества при движении между створами от вершины дельты до х. Узяк (рукав Старый Дон) составляет 201, 64, 99 и 1,5 мг/с для Ni, Cu, Cd и Pb соответственно, за двое суток внешний поток взвешенных форм тяжелых металлов с речным стоком составит от 0,13 кг для Cd до 17,4 кг для Ni для рассмотренного участка, а для всей русловой сети дельты 47 кг Ni, 15 кг Cu, 23 кг Pb и 0,35 кг Cd. Сравнивая эти показатели со значениями, приведенными в табл. 5, легко заметить, что даже во время обычного сильного нагона при пониженной водности летом (сценарий Sc11) в дельту поступает в 17–33 раза больше взвешенных форм тяжелых металлов, чем с речным стоком.

С учетом вышеизложенного следует признать, что влияние антропогенного загрязнения соединениями металлов представляет собой значимым и имеющим сугубо локальный характер. За двое суток нагона в дельту Дона из Таганрогского залива может переноситься и оседает порядка 0,2–1,8 т соединений свинца, 0,3–3 т соединений никеля, 0,1–1,8 т соединений меди и 0,01–0,04 т соединений кадмия. Причем основные районы интенсивного оседания взвешенного вещества и повышенных концентраций растворенных тяжелых металлов после нагона расположены в междуречье судоходного рукава Дона и системы рукавов Каланчи и Кукутермы, отличающемся широким распространением по берегам тростниковых зарослей и усиленным по сравнению с другими районами дельты влиянием нагонов.

СПИСОК ЛИТЕРАТУРЫ

1. Качество поверхностных вод Российской Федерации. Ежегодник. 2018. / Главн. ред. М. М. Трофимчук. Ростов-на-Дону, 2019. 561 с. URL:http://gidrohim.com/sites/default/files/Ежегодник%202018_2.pdf (дата обращения: 12.03.2020).
2. Сорокина В. В., Ивлева О. В., Лурье П. М. Динамика стока на устьевых участках рек Дон и Кубань во второй половине XX века // Вестник Южного научного центра РАН. 2006. Т. 2, № 2. С. 58–67.

3. Экосистема Азовского моря: антропогенное загрязнение / А. А. Клёнкин [и др.]. Краснодар : Просвещение-Юг, 2007. 324 с.

4. Третьякова И. А. Оценка повторяемости нагонов различной величины в дельте Дона по данным наблюдений // Экология. Экономика. Информатика. Серия: Системный анализ и моделирование экономических и экологических систем. 2018. Т. 1, № 3. С. 258–261. doi:10.23885/2500-395x-2018-1-3-258-261

5. Шевердяев И. В. Исследование шероховатости русел дельты Дона на основе наблюдений колебаний уровня в мае 2018 года // Экология. Экономика. Информатика. Серия: Системный анализ и моделирование экономических и экологических систем. 2018. Т. 1, № 3. С. 276–279. doi:10.23885/2500-395x-2018-1-3-276-279

6. Шевердяев И. В., Клещенков А. В., Третьякова И. А. Опыт гидрологического моделирования нагонов в дельте Дона // Наука Юга России. 2019. Т. 15, № 3. С. 54–62. doi:10.7868/S25000640190306

7. Интегральная оценка эколого-геохимического состояния аквальных систем устьевой области Дона / Г. Г. Матишов [и др.]. Моря России: методы, средства и результаты исследований : Тезисы докладов Всероссийской научной конференции (г. Севастополь, 24–28 сентября 2018 г.). Севастополь : ФГБУН ФИЦ МГИ, 2018. С. 172. URL: http://conf.mhi-ras.ru/archive/2018/morya_rossii-2018_tezisy.pdf (дата обращения: 10.05.2020).

8. Ткаченко О. В., Ткаченко А. Н., Лычагин М. Ю. Содержание тяжелых металлов в водных объектах дельты Дона: сезонная и пространственная динамика // Геология, география и глобальная энергия. 2016. № 2 (61). С. 76–84.

9. Потоки тяжелых металлов в аквальных системах дельт Дона и Кубани / А. Н. Ткаченко [и др.] // Доклады Академии наук. 2017. Т. 474, № 2. С. 234–237. doi:10.7868/S0869565217140201

10. Snakin V. V., Prisyazhnaya A. A. Lead contamination of the environment in Russia // Science of the Total Environment. 2000. Vol. 256, iss. 2–3. P. 95–101. doi:10.1016/S0048-9697(00)00452-6

11. Бердников С. В., Шевердяев И. В., Клещенков А. В. Анализ поступления взвешенных веществ в дельту Дона при нагонах на основе численного моделирования // Дельты рек России: закономерности формирования, биоресурсный потенциал, рациональное хозяйствование и прогнозы развития: Материалы Международной молодежной научной конференции памяти члена-корреспондента РАН Д. Г. Матишова (г. Ростов-на-Дону, 4–6 сентября 2018 г.). Ростов-на-Дону : ЮНЦ РАН, 2018. С. 18–23.

Об авторах:
Шевердяев Игорь Викторович, научный сотрудник, лаборатория информационных технологий и математического моделирования, ФИЦ ЮНЦ РАН (344006, Россия, г. Ростов-на-Дону, пр. Чехова, д. 41), кандидат географических наук, ResearcherID: I-3184-2013, Scopus Author ID: 56223776200, ig71089@yandex.ru

Клещенков Алексей Владимирович, ведущий научный сотрудник, лаборатория гидрологии и гидрохимии, ФИЦ ЮНЦ РАН (344006, Россия, г. Ростов-на-Дону, пр. Чехова, д. 41), кандидат географических наук, ResearcherID: E-6619-2014, ORCID ID: 0000-0002-7976-6951, Scopus Author ID: 57016697100, geo@ssc-ras.ru