Broad Spectrum Epidemiological Contribution of Cannabis, Tobacco and Alcohol to the Teratological Profile of Northern New South Wales: Geospatial and Causal Inference Analysis

Albert Stuart Reece (✉ stuart.reece@bigpond.com)
University of Western Australia https://orcid.org/0000-0002-3256-720X

Gary Kenneth Hulse
Western Australia Department of Mines Industry Regulation and Safety

Research article

Keywords: cannabis, teratology, cardiovascular defects, atrial septal defect, gastroschisis, exomphalos

DOI: https://doi.org/10.21203/rs.3.rs-53395/v1

License: ☇ 📧 This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background. Whilst cannabis commercialization is occurring rapidly guided by highly individualistic public narratives, evidence that all congenital anomalies (CA) increase alongside cannabis use in Canada, a link with 21 CA's in Hawaii, and rising CA's in Colorado indicate that transgenerational effects can be significant and impact public health. It was therefore important to study Northern New South Wales (NNSW) where cannabis use is high.

Methods. Design: Cohort. 2008–2015. Setting: NNSW and Queensland (QLD), Australia. Participants. Whole populations. Exposures. Tobacco, alcohol, cannabis. Source: National Drug Strategy Household Surveys 2010, 2013. Main Outcomes. CA Rates. NNSW-QLD comparisons. Geospatial and causal regression.

Results. Cardiovascular, respiratory and gastrointestinal anomalies rose with falling tobacco and alcohol but rising cannabis use rates across Queensland. Maternal age NNSW-QLD was not different (2008–2015: 4,265/22,084 v. 96,473/490,514 > 35 years, Chi.Sq.=1.687, P = 0.194). A higher rate of NNSW cannabis-related than cannabis-unrelated defects occurred (prevalence ratio (PR) = 2.13, 95%C.I. 1.80–2.52, P = 3.24 × 10⁻¹⁹). CA's rose more potently with rising cannabis than with rising tobacco or alcohol use. Exomphalos and gastroschisis had the highest NNSW:QLD PR (6.29(2.94–13.48) and 5.85(3.54–9.67)) and attributable fraction in the exposed (84.11%(65.95–92.58%) and 82.91%(71.75–89.66%), P = 2.83 × 10⁻⁸ and P = 5.62 × 10⁻¹⁵). In multivariable geospatial models cannabis was significantly linked with cardiovascular (atrial septal defect, ventricular septal defect, tetralogy of Fallot, patent ductus arteriosus), genetic (chromosomal defects, Downs syndrome), gastrointestinal (small intestinal atresia), body wall (gastroschisis, diaphragmatic hernia) and other (hypospadias) (AVTPCDSGDH) CA's. In linear modelling cannabis use was significantly linked with anal stenosis, congenital hydrocephalus and Turner syndrome (ACT) and was significantly linked in borderline significant models (model P < 0.1) with microtia, microphthalmia, and transposition of the great vessels. At robust and mixed effects inverse probability weighted multivariable regression cannabis was related to 18 defects. E-Values in spatial models were generally > 1.3 ranging up to 3.8 × 10³⁰ making uncontrolled confounding unlikely.

Conclusions. These results suggest that population level CA's react more strongly to small rises in cannabis use than tobacco or alcohol; cardiovascular, chromosomal, body wall and gastrointestinal CA's rise significantly with small increases in cannabis use; that cannabis is a bivariate correlate of AVTPCDSGDH and ACT anomalies, is robust to adjustment for other substances; and is causal.

Background

With major tobacco companies entering the cannabis market it is clear that cannabis commercialization is well under way [1]. Whilst much of the discussion relating to cannabis use and cannabis control is notably self-referential recent epidemiological reports suggest that intergenerational effects may be both significant and powerful enough to impact population-level health outcomes.
A recent report on Canada demonstrated that total congenital defects were three times more common in the northern Territories which smoked more cannabis than the Provinces and that the association was robust to socioeconomic adjustment [2]. A recent study from Colorado across the period of cannabis legalization showed that many defects rose parallel to increased cannabis consumption including all chromosomal defects (ACD), Downs syndrome and several cardiovascular defects including atrial septal defect (ASD) and patent ductus arteriosus (PDA), common defects which had not been previously linked with prenatal cannabis exposure (PCE) [3]. It was calculated that in Colorado over 11,000 extra defects occurred 2000-2014 related to increased cannabis use [3]. An Hawaiian study found that 21 defects were increased in mothers who were exposed only to cannabis [4].

Whilst some of these studies have used sophisticated geospatial modelling techniques [2] all epidemiological research is fundamentally associational in nature. However similar findings elsewhere strengthens the evidence base.

Northern New South Wales (NNSW, NSW) is a well known drug using and cannabis cultivation area 760km from Sydney but only 180km from tertiary pediatric care centres in Brisbane and 111km from Southport both in Queensland (QLD). Although lying within New South Wales administratively many of its neonatal CA's are evacuated to tertiary pediatric hospitals in Queensland under the Neonatal Retrieval Scheme (NRS) [5] and their data thus appears in Queensland statistics. This therefore presents an ideal opportunity to directly compare NNSW and Queensland neonatal epidemiology.

Our hypothesis was that cannabis use would be associated with increased congenital anomalies and was formulated prior to study commencement.

Methods

Data. Data on congenital anomaly rates for Queensland Health service areas including northern New South Wales was taken from the Congenital Anomaly Linked File (CALF) from Queensland Health [6]. Annual data by area has not been publicly released. Data on maternal age was from the QLD and NSW annual Mothers and Babies reports [7, 8]. CALF data includes numbers, rates and confidence intervals for the data. Drug use data for last month cigarette use, last month binge alcohol and last year cannabis use by area was obtained from the Australian Institute of Health and Welfare from the National Drug Strategy Household Survey (NDSHS) 2010 and 2013 [9] and averaged to obtain a mean rate by area across this period pursuant to our custom data request. Data was matched manually between drug use and congenital anomaly datasets. Areal shapefiles were taken from the Australian Government national website [10]. The northern coastal area of NSW was added on to the Queensland Health shapefile. This depiction of the NNSW catchment area is illustrative only and not intended to be exact as the geographic boundaries of the NRS are not defined [5].

Congenital anomalies were defined as cannabis related or not based on a literature review and recent reports [2, 3, 11-13] particularly [4].
Patient and Public Involvement. Patients were involved in this research from the very outset. Many patients are concerned about reproductive health outcomes. In this area there is significant local concern about the implications of widespread drug use in nearby areas. Patients are therefore frequently concerned about optimal long term outcome for their offspring. Patients who are not pregnant or who are not considering starting a family are concerned about the possible teratogenic outcomes for people in the reproductive age group and the likely impact this might have on the wider community. Research questions in the present study therefore including the outcome measures considered were developed and informed by their priorities, experiences, preferences and concerns. Patients and the public are of the view that all available existing datasets relating to this issue should be carefully investigated from this perspective. Patients are concerned also with the outcomes of this study. Our patients are happy to assist with the dissemination of results by means of word of mouth and social media technologies and keen to see such information disseminated widely across the community both locally and internationally.

Statistics. Data was processed in RStudio version 1.2.1335 based on R version 3.6.1 on 16th April 2020. Two-by-two tables were analyzed in package epiR using epi.2by2. Graphs were drawn with R-Base and ggplot2 and in Excel. Maps were drawn using sf (“simple features”) package. Principal component analysis was conducted using the psych package. Linear regression was performed in Base-R. Batch extraction of all linear model coefficients by different defects was performed with broom and purrr packages. Links between neighbouring areas sharing an edge or corner (“queen”-relationships by analogy with chess moves) were derived with the poly2nb function from spdep and edited as indicated. This neighbourhood map was used to calculate the geospatial weights matrix for spatial regression.

Geospatial regression was performed with the spreml function from package splm [13, 14] using the derived spatial weights matrix. All spatial models used a full error structure of Kapoor Kelejian and Prucha [15] and had serially correlated remainder errors and random effects (sem2srre). The appropriateness of this error structure was formally tested by substituting various alternative forms and comparing results including the logLik and spatial Hausman tests. Models were spatially lagged and not lagged as indicated.

Inverse probability weights (IPW) were derived with the ipw package in R using cannabis use as the exposure of interest, tobacco in the numerator and tobacco and alcohol in the denominator. IPW weights were then used in robust regression models conducted in the R package survey, and in mixed effects models in the R package nlme to generate datasets pseudo-randomized for cannabis exposure. This allowed causal relationships to be assessed. E-Values were calculated with the R package EValue to quantify the degree of association some unmeasured confounder would require with both dependent and independent variables to explain away the observed effect.

For all regression models model reduction was by the classical method with sequential deletion of the least significant term. Missing data was casewise deleted at multivariable regression. P<0.05 was considered significant.
Data Availability Statement. Data including R software code have been made available online in the Mendeley Data Repository at http://dx.doi.org/10.17632/cjzfjyktz5m.1.

Ethics. This study was approved by the Human Research Ethics Committee of the University of Western Australia on 15th April 2020 (No. RA/4/20/4724).

Results

Input data is shown in an online supplementary csv file. Supplementary Table 1 provides comparative congenital anomaly data between QLD and NSW by both numbers and rates including defect relationship to cannabis [6]. Denominator data was calculated from the numbers and rates supplied in that file. It was verified from the annual QLD Health Mothers and Babies reports 2008–2015 which show 509,095 births in this period [8]. The “Interstate and Overseas” designation in the CALF file includes offshore islands such as Christmas, Norfolk, Cocos and Lord Howe Islands which together have a population of 4,518. The prime catchment area of the NRS is Northern NSW which has a population of 296,531 [10]. Hence only 1.5% of the population in this designation is likely to come from outside NNSW. The view that the “Interstate and Overseas” designation refers primarily to NNSW is confirmed by QLD Health Ministerial correspondence (Minister Steven Miles, 05/04/2018). The denominator figure calculated for NNSW in this manner is 4,800 births.

It should be noted that NNSW birth defect data also appears in NSW Health records [7]. One notes that the rates of congenital anomalies reported for this region in the NSW Mothers and Babies reports are about half those of the rest of the state. This is presumably related to the relocation of many cases into Queensland through the NRS. Queensland congenital anomaly rates are much higher than those reported elsewhere so it is not possible simply to combine NSW and QLD Health reports. Therefore this report is limited to consideration of the QLD Health CALF file only.

Drug use data is shown in Supplementary Table 2. It is noteworthy that the Richmond-Tweed NNSW area has a middle ranking for tobacco and alcohol use, but a first ranking for cannabis use.

Maternal age is a major factor bearing on congenital anomaly rates and it is known to be strongly linked with chromosomal anomaly rates. For years 2008–2015 4,265/22,084 (19.31%) births in NNSW were to mothers > 35 years compared to 96,493/490,514 (19.67%; 18,581 missing maternal age data) in Queensland (Chi.Sq.=1.687, df = 1, P = 0.194). This compares to 22,133/92,242 (23.9%) of 2012 births in the rest of NSW (Chi.Sq.=98.954, df = 1, P = 4.33 × 10^{-10}) indicating that NNSW mothers are younger in than elsewhere in NSW.

Interestingly CALF Table 1 shows rises in the rates of several defects (Supplementary Fig. 1) including CVS defects, atrial septal defect (ASD) and ventricular septal defect (VSD) which are highly significant (Supplementary Table 3). Intriguingly the mean incidence of daily smoking tobacco and high risk alcohol use dropped across this period and annual cannabis use rose from 10.5–11.3%. The principal component of the combination of cardiovascular, gastrointestinal and respiratory anomalies also rose
significantly across this period. These data suggest that cannabis may be a more potent and more important teratogen than tobacco and alcohol.
Table 1
Results of Geospatial Regression by Selected Congenital Anomalies

Parameters	Model	Parameter	Estimate (C.I.)	P-Value	Parameters	Value	P-Value
ADDITIVE MODELS							
		spreml(log(Atrial_Septal_Defects) ~ DlyCigs11 + log(RiskAlc11) + mrjyr)					
		Atrial Septal Defect					
		Cannabis	0.03 (0.00, 0.06)	0.0305	phi	1.01E-02	NA
					psi	-3.13E-06	0.9999
					rho	-7.64E-01	0.9400
		CHROMOSOMAL Defects					
		Cannabis	0.04 (0.01, 0.07)	0.0212	phi	1.05E-02	NA
					psi	2.99E-06	1
					rho	-4.66E-01	0.2291
		Downs Syndrome					
		Cannabis	0.09 (0.05, 0.13)	2.9E-05	phi	5.57E-02	NA
		Binge_Alcohol	-2.02 (-3.35, -0.69)	0.0029	psi	3.57E-05	0.9999
					rho	-6.85E-01	0.0883
		Gastrochisis					
		Cannabis	0.07 (0.03, 0.11)	0.0030	phi	1.44E-02	NA
					psi	1.78E-05	0.9999

Technical Abbreviations:

phi: idiosyncratic component of the spatial error term

psi: individual time-invariant component of the spatial error term

rho: spatial autoregressive parameter

lambda: spatial autocorrelation coefficient
Parameters	Model				
	rho	-2.50E-01	0.552		
Hypospadias					
Cannabis	-0.07 (-0.13, -0.01)	0.0166	phi	0.0419	0.9972
			psi	3.0E-05	0.9999
			rho	-0.6292	0.1224
Patent Ductus Arteriosus					
Cannabis	0.03 (0.01, 0.05)	0.0453	phi	1.01E-02	NA
			psi	-9.20E-06	1.0000
			rho	-1.0E+00	0.0025
Small Intestinal Stenosis / Atresia					
Cannabis	0.07 (0.03, 0.11)	0.0001	phi	1.09E-02	NA
			psi	6.74E-05	0.9998
			rho	-1.15E-02	0.9776
Tetralogy Fallot					
Cannabis	0.09 (0.04, 0.14)	0.0007	phi	1.10E-01	0.9963
			psi	5.67E-05	0.9998
			rho	3.07E-01	0.3382
INTERACTIVE MODELS					
spreml(Atrial_Septal_Defects ~ Tobacco * Binge_Alcohol * Cannabis)					
Atrial_Septal_Defect					
Technical Abbreviations:					
phi: idiosyncratic component of the spatial error term					
psi: individual time-invariant component of the spatial error term					
rho: spatial autoregressive parameter					
lambda: spatial autocorrelation coefficient					

Page 8/30
Parameters	Model	phi	psi	lambda	
Binge_Alcohol: Cannabis	-0.58 (-1.12, -0.04)	0.0376	phi	0.0101	NA
Tobacco: Binge_Alcohol: Cannabis	0.03 (0, 0.06)	0.0417	psi	9.1E-08	1.0000
Tobacco: Cannabis	-0.09 (-0.18, 0)	0.0423	rho	-0.9960	0.0037
CHROMOSOMAL_Defects					
Tobacco: Binge_Alcohol: Cannabis	-0.01 (-0.01, -0.01)	0.0007	phi	0.0890	NA
Binge_Alcohol: Cannabis	0.05 (0.02, 0.08)	0.0021	psi	2.2E-05	0.9999
Tobacco: Cannabis	0.02 (0.01, 0.03)	0.0047	rho	-0.9805	0.0058
Tobacco: Binge_Alcohol	0.02 (0, 0.04)	0.0184			
Diaphragmatic_Hernia					
Cannabis	7.26 (3.21, 11.31)	0.0004	phi	0.0095	0.9964
Binge_Alcohol	7.33 (3.15, 11.51)	0.0006	psi	-1.7E-07	1.0000
Binge_Alcohol: Cannabis	-2.07 (-3.26, -0.88)	0.0006	rho	0.9660	< 2e-16
Tobacco: Cannabis	-0.22 (-0.37, -0.07)	0.0041			
Tobacco: Binge_Alcohol: Cannabis	0.06 (0.02, 0.1)	0.0051			
Tobacco	0.17 (0.04, 0.3)	0.0091			
Downs Syndrome					
Binge_Alcohol: Cannabis	0.03 (0.02, 0.04)	3.4E-05	phi	0.0571	NA
Binge_Alcohol	-2.33 (-3.7, -0.96)	0.0008	psi	3.6E-05	0.9998

Technical Abbreviations:

phi: idiosyncratic component of the spatial error term

psi: individual time-invariant component of the spatial error term

rho: spatial autoregressive parameter

lambda: spatial autocorrelation coefficient
Parameters	Model
	rho
Gastrochisis	-0.6662
Cannabis	0.07 (0.03, 0.11)
	0.0030
	phi
	0.0144
	NA
	psi
	1.8E-05
	0.9999
	rho
	-0.2503
	0.5520
Hypospadias	
Tobacco: Cannabis	-0.13 (-0.22, -0.04)
	0.0062
	phi
	0.0027
	NA
Tobacco: Binge_Alcohol: Cannabis	0.04 (0.01, 0.07)
	0.0084
	psi
	4.3E-05
	0.9999
Tobacco: Binge_Alcohol	-0.35 (-0.66, -0.04)
	0.0266
	rho
	-0.2080
	0.6705
Tobacco	1.13 (0.11, 2.15)
	0.0304
Patent_Ductus_Arteriosus	
Cannabis	0.24 (0.01, 0.47)
	0.0358
	phi
	0.0109
	NA
Binge_Alcohol: Cannabis	-0.06 (-0.12, 0)
	0.0526
	psi
	1.8E-06
	1.0000
	rho
	-0.9998
	0.0022
Small Intestinal Stenosis / Atresia	
Cannabis	0.02 (0.01, 0.03)
	0.0003
	phi
	0.0100
	NA
	psi
	1.3E-07
	1.0000
	rho
	-0.0089
	0.9825
Tetralogy_Fallot	
Cannabis	0.09 (0.04, 0.14)
	0.0007
	phi
	0.1102
	0.9963
	psi
	5.7E-05
	0.9998

Technical Abbreviations:

phi: idiosyncratic component of the spatial error term

psi: individual time-invariant component of the spatial error term

rho: spatial autoregressive parameter

lambda: spatial autocorrelation coefficient
Parameters	Model	rho	phi	psi	rho
Ventricular_Septal_Defect	Model	0.3074	0.3382		
Tobacco: Cannabis	Model	-0.11 (-0.21, -0.01)	0.0328		
Tobacco: Binge_Alcohol: Cannabis	Model	0.03 (0, 0.06)	0.0372		
Cannabis	Model	2.93 (-0.23, 6.09)	0.0692		
Binge_Alcohol: Cannabis	Model	-0.85 (-1.79, 0.09)	0.0750		

Technical Abbreviations:

phi: idiosyncratic component of the spatial error term

psi: individual time-invariant component of the spatial error term

rho: spatial autoregressive parameter

lambda: spatial autocorrelation coefficient

Figure 1 shows a qualitative choropleth map-graph for the major CA classes. The yellow zones reflect high incidence and dark blue low incidence.

Supplementary Figs. 2–4 present choropleth maps of CA incidence by area. Supplementary Fig. 5 shows chromosomal anomaly incidence for which data is available.

Figure 2 was drawn in Excel and shows the confidence intervals from CALF for common, intermediate frequency and rare defects for cannabis-related (CRD) and cannabis not related (CNRD) defects. For most of the cannabis-unrelated defects the confidence intervals overlap. For most of the cannabis-related defects the confidence intervals either do not overlap, or are near the lower end of the QLD C.I.’s. Supplementary Fig. 6 expands this list for rare defects and continues this trend.

Supplementary Fig. 7 compares the QLD and NNSW CA rates.

Supplementary Fig. 8 compares all the rate ratios of defects using the quoted rates in the CALF file. Supplementary Fig. 9 makes a similar comparison with log rates and shows that most of the cannabis-related defects are more common in NNSW.

CNRD were more common in QLD (23,737/509,095, 4.66% v 185/4,800, 3.85%, Chi Sq.=7.002, df = 1, P = 0.0081). CRD were more common in NNSW (394/4,800 8.21% v 16,346/509,095, Chi Squ.=376.86, df = 1, P = 6.01 × 10^-84). CRD were more common in NNSW than CNRD (394/4,800 v 185/4,800, Prevalence Ratio (PR) = 2.13 (95%C.I. 1.80–2.52), Chi Sq.=80.284, P = 3.24 × 10^-19).
Supplementary Table 4 lists the PR's, attributable fraction in the exposed (AFE) and attributable fraction in the population (AFP) along with their C.I.'s and applicable P-values for all defects and defect classes. They decline from exomphalos (PR = 6.29 (2.94–13.48), AFE = 84.11% (65.95–92.58%) and AFP = 4.71% (0.55–8.69%)) and gastroschisis (PR = 5.85 (3.54–9.67), AFE = 82.91% (71.75–89.66%) and AFP = 4.34% (1.79–6.82%)).

Supplementary Fig. 10 illustrates the PR's and C.I.'s for CRD and CNRD. Figure 3 shows the AFE's and C.I.'s for CRD and CNRD. Supplementary Fig. 11 shows the AFP's and C.I.'s for CRD and CNRD. P-values are illustrated in Supplementary Fig. 12.

Supplementary Fig. 13 shows five main defect classes charted against the use of tobacco, binge alcohol and cannabis. Rising trends with cannabis seem to apply to CNS, cardiovascular and chromosomal anomalies.

Supplementary Fig. 14 charts all 55 anomalies and anomaly classes against tobacco use. Supplementary Fig. 15 performs a similar function for binge alcohol.

When a similar exercise is undertaken for cannabis exposure rising trends appear in several defects in the top two rows especially in cardiovasculature, chromosomal anomalies and body wall defects (Fig. 4).

Supplementary Table 5 lists the regression coefficients and their significance levels in ascending order of P-values for cannabis exposure. Supplementary Tables 6 and 7 show this table listed in order of ascending P-values for tobacco and alcohol respectively.

Supplementary Table 8 lists the significant output of a linear regression where the defect rate was related to additive terms of tobacco, binge alcohol use and cannabis use. Six of the ten significant terms feature cannabis exposure.

Supplementary Table 9 expands this table and includes all P < 0.3. This procedure selects 18 defects for further study. For biological and epidemiological reasons Trisomies 13 and 18 were also included.

Spatial analysis algorithms do not tolerate missing data. Hence linear regression was used to investigate 8 defects where spatial data was incomplete. Supplementary Table 10 shows the results of a model interactive in substances. Cannabis use was identified as being linked with several defects in this table including Turners syndrome.

Supplementary Fig. 16 shows the geospatial relationships which were derived from spdep::poly2nb and then edited to include all geospatial links.

Table 1 gives the results of geospatial regression firstly for a model with additive terms in drug exposure and then a fully interactive model in drug exposure. These are spatial error models and are not spatially lagged. In the additive model series cannabis is independently linked with all eight anomalies particularly
cardiovascular (ASD, PDA and tetralogy of Fallot, ToF) and chromosomal (ACD and Downs syndrome),
gastroschisis and small intestinal atresia.

In the interactive series of models cannabis is more strongly linked with these same defects. VSD is now
positively associated as is diaphragmatic hernia which have both been previously noted to be cannabis-
associated [16, 17].

A similar exercise is executed for spatially lagged additive (Supplementary Table 11) and interactive
(Supplementary Table 12) models with very similar results. In each case spatial error models were
superior to combined spatial error and spatial lag (SARAR) models, as judged by the log maximum
likelihood values and spatial Hausman tests.

One notes also that in a number of models spatial factors are noted to be highly significant. This
therefore justifies the use of spatial models and also suggests that spatial factors are significant in
considering clinical teratological patterns.

Having demonstrated a strong associational relationship between drug exposure and several congenital
anomalies the next issue of importance relates to the issue of whether the relationship was causal or not.
Inverse probability weights were generated and used to derive a dataset pseudorandomized for cannabis
exposure. Data was processed by robust interactive generalized linear modelling functions. As shown in
Table 2 cannabis was significantly related to 18 anomalies either alone or in interaction with tobacco and
alcohol.
Table 2
Robust Generalized Linear Regression Models

Parameter	Estimate (95%C.I.)	P-Value
PC1		
Cannabis	3.46 (0.58, 6.34)	0.0382
Cigarettes: Alcohol	0.45 (0.04, 0.85)	0.0521
Cigarettes	-1.52 (-2.89, -0.16)	0.0510
Alcohol: Cannabis	-1 (-1.82, -0.17)	0.0369
PC1 as asinh		
Cannabis	2.89 (0.87, 4.92)	0.0172
Cigarettes: Alcohol	0.39 (0.11, 0.67)	0.0212
Cigarettes	-1.31 (-2.26, -0.36)	0.0204
Alcohol: Cannabis	-0.85 (-1.43, -0.26)	0.0162
Central Nervous System		
Anencephalus		
Cigarettes: Cannabis	0.1 (0.04, 0.16)	0.0065
Cigarettes: Alcohol	0.55 (0.1, 1)	0.0384
Cigarettes	-1.81 (-3.32, -0.31)	0.0399
Cigarettes: Alcohol: Cannabis	-0.03 (-0.05, -0.01)	0.0068
CNO		
Alcohol	2.8 (0.84, 4.76)	0.0189
Cannabis	2.6 (1.06, 4.14)	0.0078
Cigarettes: Alcohol: Cannabis	0.02 (0.01, 0.04)	0.0156
Cigarettes: Cannabis	-0.08 (-0.14, -0.02)	0.0194
Alcohol: Cannabis	-0.79 (-1.25, -0.34)	0.0067
Cardiovascular System		
ASD		
Cigarettes: Alcohol: Cannabis	0.12 (0.06, 0.18)	0.0051
Cannabis	8.4 (3.93, 12.88)	0.0062
Alcohol	21.3 (8.16, 34.43)	0.0130
Parameter	Estimate (95% C.I.)	P-Value
---	------------------------	---------
Cigarettes	3.48 (1.07, 5.89)	0.0223
Cigarettes: Alcohol	-1.05 (-1.78, -0.32)	0.0227
Alcohol: Cannabis	-2.5 (-3.8, -1.19)	0.0056
Cigarettes: Cannabis	-0.4 (-0.61, -0.19)	0.0055
VSD		
Cigarettes: Alcohol: Cannabis	0.04 (0.01, 0.07)	0.0242
Cannabis	3.38 (0.63, 6.13)	0.0366
Alcohol: Cannabis	-0.98 (-1.79, -0.18)	0.0381
Cigarettes: Cannabis	-0.13 (-0.23, -0.03)	0.0239
PDA		
Cannabis	6.68 (1.28, 12.07)	0.0416
Cigarettes: Alcohol: Cannabis	0.09 (0.01, 0.16)	0.0504
Alcohol	16.71 (0.91, 32.5)	0.0719
Cigarettes: Cannabis	-0.29 (-0.53, -0.04)	0.0536
Alcohol: Cannabis	-1.98 (-3.55, -0.4)	0.0392
Tetralogy Fallot		
Cannabis	0.08 (0.01, 0.15)	0.0410
Gastrointestinal System		
Cigarettes: Alcohol: Cannabis	0.02 (0.01, 0.03)	0.0031
Cigarettes	0.7 (0.27, 1.13)	0.0090
Cigarettes: Alcohol	-0.22 (-0.35, -0.09)	0.0081
Cigarettes: Cannabis	-0.07 (-0.11, -0.04)	0.0029
Small Intestinal Stenosis or Atresia - Additive		
Cannabis	0.043 (0.004, 0.081)	0.0463
Small Intestinal Stenosis or Atresia - IR		
Cigarettes: Cannabis	0.002 (0, 0.005)	0.0692
Genitourinary System		
Cigarettes: Alcohol: Cannabis	0.01 (0, 0.01)	0.0113
Parameter	Estimate (95%C.I.)	P-Value
---------------------------------	----------------------------	---------
Cigarettes	0.28 (0.08, 0.48)	0.0199
Cigarettes: Alcohol	-0.09 (-0.15, -0.02)	0.0195
Cigarettes: Cannabis	-0.03 (-0.04, -0.01)	0.0103
Renal Pelvis Obstruction		
Alcohol: Cannabis	0.65 (0.1, 1.21)	0.0425
Cigarettes: Cannabis	0.08 (0, 0.15)	0.0656
Cigarettes: Alcohol: Cannabis	-0.02 (-0.04, 0)	0.0614
Cannabis	-2.17 (-4.03, -0.31)	0.0450
Chromosomal Anomalies		
Alcohol: Cannabis	0.02 (0, 0.05)	0.0678
Alcohol	-0.82 (-1.62, -0.02)	0.0684
GIT		
Cigarettes: Cannabis	0.04 (0.01, 0.08)	0.0380
Cigarettes: Alcohol	0.34 (-0.01, 0.68)	0.0878
Cigarettes	-1.07 (-2.17, 0.02)	0.0862
Cigarettes: Alcohol: Cannabis	-0.01 (-0.03, 0)	0.0357
Respiratory		
Cigarettes: Cannabis	0.01 (0, 0.02)	0.0927
Cigarettes: Alcohol: Cannabis	0 (-0.01, 0)	0.0497
Downs - Additive		
Cannabis	0.04 (0.01, 0.07)	0.0186
Alcohol	-1.29 (-2.43, -0.15)	0.0464
Downs - Interactive		
Cigarettes	0.21 (0.01, 0.41)	0.0599
Cigarettes: Alcohol	-0.07 (-0.13, -0.01)	0.0441
Cigarettes: Alcohol: Cannabis	0.0007 (0.0002, 0.0013)	0.0198
Body Wall		
Musculoskeletal		
Parameter	Estimate (95%C.I.)	P-Value
-----------------------------------	------------------------	----------
Cannabis	2.71 (0.93, 4.49)	0.0123
Cigarettes: Cannabis	-0.13 (-0.22, -0.05)	0.0113
Alcohol: Cannabis	-0.8 (-1.32, -0.27)	0.0130
Cigarettes: Alcohol: Cannabis	0.04 (0.01, 0.06)	0.0118
Gastrochisis		
Cigarettes	0.11 (0, 0.21)	0.0684
Cannabis	0.27 (0, 0.53)	0.0705
Cigarettes: Cannabis	-0.01 (-0.02, 0)	0.0920
Exomphalos		
Cigarettes: Cannabis	0.1 (0.04, 0.16)	0.0118
Cannabis	0.56 (0.14, 0.98)	0.0289
Cigarettes: Alcohol	1.03 (0.21, 1.85)	0.0357
Alcohol	-12.72 (-24.65, -0.8)	0.0661
Cigarettes	-3.2 (-5.78, -0.61)	0.0386
Cigarettes: Alcohol: Cannabis	-0.04 (-0.06, -0.02)	0.0093
Face		
Cleft Palate / Lip		
Cannabis	0.57 (0.22, 0.92)	0.0092
Cigarettes: Alcohol	0.04 (0, 0.07)	0.0467
Alcohol: Cannabis	-0.12 (-0.2, -0.04)	0.0128

This exercise was repeated with (non-robust) mixed effects modelling as such models in R have standard deviations associated with them, which is required in the E-values algorithm which follows. As shown in Supplementary Table 13 similar results were obtained for 11 congenital anomalies.

It is conceivable that the described relationships were related to some factor other than the measured covariates. E-Values quantitate the degree of association required of some unmeasured confounder with both cannabis exposure and the dependent variables to explain away the described effect. As shown in Table 3 the E-Values were mostly larger than 1.3 and ranged up to 3.8×10^{30} for geospatial models and up to infinity for mixed effects models, making uncontrolled confounding unlikely.
Parameter	Table	Estimate (95% C.I.)	RR	E-Values	
Mixed Effects Models					
Ime(Congenital_Anomaly ~ Tobacco * Binge_Alcohol * Cannabis)					
Cardiovascular Anomalies					
Atrial_Sепtal_Defect	Supplementary Table 13	0.053 (0.011, 0.096)	1.15 (1.03, 1.29)	1.57,	1.20
Cannabis		0.079 (0.024, 0.133)	1.18 (1.05, 1.32)	1.63,	1.29
Tetralogy of Fallot					
Cannabis	Supplementary Table 13	0.022 (0.004, 0.041)	1.3E + 160 (3.5E + 30, 5.1E + 289)	Inf, 6.9E + 30	
Gastrointestinal Tract Anomalies					
Cigarettes: Alcohol: Cannabis	Supplementary Table 13	0.02 (0.008, 0.032)	1.05 (1.02, 1.09)	1.29,	1.16
Small_Intestinal_Stenosis_Atresia					
Alcohol: Cannabis	Supplementary Table 13	0.008 (0.002, 0.014)	Inf (6.9E + 169, Inf)	Inf, Inf	
Genitourinary Tract Anomalies					
Cigarettes: Alcohol: Cannabis	Supplementary Table 13	0.001 (0, 0.001)	1.002 (1.000, 1.004)	1.048, 1.009	
Chromosomal Anomalies					
Cannabis	Supplementary Table 13	0.084 (0.019, 0.149)	1.32 (1.06, 1.64)	1.97,	1.33
Downs_Syndrome					
Cigarettes: Alcohol: Cannabis	Supplementary Table 13	0.001 (0, 0.001)	1.002 (1.000, 1.004)	1.048, 1.009	
Body Wall Anomalies					

Abbreviations:

Inf - Infinity
Parameter	Table	Estimate (95% C.I.)	RR	E-Values
Musculoskeletal				
Cannabis	Supplementary Table 13	2.686 (0.671, 4.701)	Inf (Inf, Inf)	Inf, Inf
Gastrochisis				
Cannabis	Supplementary Table 13	0.065 (0.016, 0.115)	1.16 (1.04, 1.30)	1.59, 1.24
Exomphalos				
Alcohol: Cannabis	Supplementary Table 13	0.042 (0.002, 0.082)	1.07 (1.0045, 1.15)	1.36, 1.07
Geospatial Models				
spreml(Congenital_Anomaly ~ Tobacco * Binge_Alcohol * Cannabis)				
Atrial_Sepal_Defect				
Binge_Alcohol: Cannabis	Table 1	-0.58 (-1.12,-0.03)	9.04E-05 (1.13E-08, 0.57)	2.48E+04, 2.89
Tobacco: Binge_Alcohol: Cannabis	Table 1	0.03 (0.005)	1.53 (1.02, 2.32)	2.44, 1.15
Tobacco: Cannabis	Table 1	-0.09 (-0.18,0)	0.23 (0.56, 0.95)	8.11, 1.30
Tetralogy_Fallot				
Cannabis	Table 1	0.09 (0.04,0.14)	1.64 (1.23, 2.19)	2.66, 1.76
Ventricular_Sepal_Defect				
Tobacco: Cannabis	Table 1	-0.11 (-0.21,-0.01)	0.044 (0.002, 0.770)	45.26, 1.92
Tobacco: Binge_Alcohol: Cannabis	Table 1	0.03 (0.006)	2.47 (1.06, 5.77)	4.38, 1.30
Patent_Ductus_Arteriosus				
Cannabis	Table 1	0.24 (0.02,0.47)	71.89 (1.34, 3.8E+04)	143.26, 2.01

Abbreviations:

Inf - Infinity
Parameter	Table	Estimate (95% C.I.)	RR	E-Values
Chromosomal Defects				
Tobacco: Binge_Alcohol: Cannabis	Table 1	-0.01 (-0.01,0)	0.85 (0.77, 0.94)	1.62, 1.34
Binge_Alcohol: Cannabis	Table 1	0.05 (0.02,0.09)	3.50 (1.57, 7.60)	6.37, 2.52
Tobacco: Cannabis	Table 1	0.02 (0,0.03)	1.41 (1.11, 1.79)	2.17, 1.46
Downs Syndrome				
Binge_Alcohol: Cannabis	Table 1	0.03 (0.01,0.04)	1.17 (1.09, 1.27)	1.63, 1.40
Small Intestinal Stenosis / Atresia				
Cannabis	Table 1	0.02 (0.01,0.03)	1.20 (1.09,1.33)	1.69, 1.39
Diaphragmatic Hemia				
Cannabis	Table 1	7.26 (3.21,11.31)	1.91E+30 (2.6E +13, 1.4E+47)	3.8E+30, 5.2E+13
Binge_Alcohol: Cannabis	Table 1	-2.07 (-3.25,-0.88)	2.4E-09 (2.7E-14, 2.1E-04)	9.4E+08, 9.5E+03
Tobacco: Cannabis	Table 1	-0.22 (-0.38,-0.07)	0.116 (0.026, 0.505)	16.66, 3.37
Tobacco: Binge_Alcohol: Cannabis	Table 1	0.06 (0.02,0.11)	1.82 (1.19, 2.77)	3.05, 1.69
Gastroschisis				
Cannabis	Table 1	0.07 (0.02,0.11)	1.55 (1.16, 2.08)	2.48, 1.60

Abbreviations:

Inf - Infinity

Discussion

This investigation presents many intriguing findings. Despite the several technical shortcomings of this dataset it is fascinating for the details and tantalizing clues which have been revealed. Importantly most of its major findings have been confirmed previously in other locations particularly in Colorado, Hawaii,
Canada, and USA and by professional bodies such as AHA, AAP and CDC lending support to the strength of its principal results [2, 3, 11, 13, 16, 17].

NNSW has higher prevalence rates of the cannabis related anomalies: neural tube defects; small intestinal atresia; body wall defects: exomphalos, gastroschisis, diaphragmatic hernia; the cardiovascular disorders: ASD, VSD, PDA, tetralogy of Fallot, and transposition of the great vessels (TxGrVess); and the genetic disorders: all chromosomal disorders, Downs syndrome, Turners syndrome and trisomy 18. Amongst the defect classes cardiovascular, respiratory, and chromosomal anomalies were elevated. Some of these associations have been previously reported [3, 4, 18] and were seen in our unpublished analyses of US data.

QLD Health data showed that the NNSW CI's for CRD’s were mostly non-overlapping or were at the extreme end of the QLD CI’s. CRD’s had higher rate ratios than CNRD’s.

Rising rates of cardiovascular, gastrointestinal and respiratory defects, and their first principal component were associated with falling rates of tobacco and alcohol use but rising cannabis use, just as was found in Colorado and USA [3].

At geospatial and linear regression the cardiovascular defects ASD, VSD, PDA, ToF, TxGrVess; the chromosomal defects ACD, Downs, Turners, Trisomy 13; the body wall defects gastroschisis, exomphalos, diaphragmatic hernia; the GI disorders small intestinal atresia and anal stenosis were all linked with cannabis exposure and for most cannabis exposure was an independent risk factor.

Rising rates of cannabis exposure were more strongly associated with cardiovascular, chromosomal, gastrointestinal and body wall defects than were rising rates of tobacco or alcohol exposure.

Analysis of this dataset by the formal techniques of causal inference analysis including inverse probability weighting and E-Values demonstrated that the described relationships fulfil the criteria for causal relationships.

These results show a striking concordance with epidemiological series from elsewhere. ASD, VSD, ToF, obstructive urinary disorders, hydrocephalus, anal anomalies and Downs syndrome were linked with PCE in a large Hawaiian series [4]. VSD has previously been linked with PCE [16]. Neural tube defects were noted to be elevated in a cannabis-related manner in Canada and Hawaii [4, 11]. ASD, PDA ACD and Downs were seen to rise in close temporal association with increased cannabis use in Colorado [3]. Exomphalos was implicated in animals [19, 20] and in some clinical series including in Queensland [21]. TxGrVess has previously been linked with paterna PCE [22]. Indeed in Canada total CA’s were linked with increased cannabis use after controlling for income and sociodemographic variables [2].

Many series implicate PCE in gastroschisis aetiology with a meta-analyzed bivariate O.R.=4.12 (95%C.I. 3.45–4.91) [4, 23–28]. Our findings PR = 5.85 (3.54–9.67) contradict those of a 2011 NSW Health report on gastroschisis in this region [29] which erroneously applied an inflated Bonferroni correction to obviate
a significant result. Indeed if the 9 cases reported in NSW [29] are added to the 16 cases reported in QLD the PR rises further to 9.13 (6.07–13.72).

Increasing reports from diverse sources indicate that the evidence is building that cannabis has significant teratological activities in humans in agreement with animal studies where many severe defects including oedema, exomphalos, phocomelia, spina bifida, myelocoele, exencephaly and foetal loss were documented [19, 20]. Concordant reports from Hawaii, Colorado and Canada suggest that the findings reported herein are indeed valid and are generalizable elsewhere. Given that likely half the NNSW congenital anomalies are reported internally within NSW [7] this suggests that the teratological situation in NNSW is indeed serious. Moreover some of the CA described here, especially chromosomal defects, are heavily therapeutically aborted antenatally again suggesting that the situation may well be much worse than our description suggests. Our analysis strongly implicates cannabis use as a likely underlying factor.

When one also considers the known epigenetic actions of cannabis [2, 12, 30–33] and its associations with developmental neurological dysfunction and autism [34–38] concerns relating to the intergenerational actions of cannabis are heightened.

From both the present data and from similar international analyses a number of important clinical implications arise. Notwithstanding its popular relatively benign image such analyses indicated not only that the potential teratological impacts of cannabis are significant but that they are likely causal in nature. Patients considering commencing a family should be encouraged to desist from all drugs prior to conception including cannabis. Patients who do fall pregnant and who are consuming cannabis should be encouraged to reduce and cease. Patients wishing to access treatment to assist with such withdrawal should be provided every encouragement and assistance to do so. Patients should be warned that the evidence base for the use of cannabis for most of its touted clinical indications is weak. Patients should be advised to avoid cannabis for morning sickness of pregnancy. Heavy cannabis smokers should be warned that cannabis hyperemesis can mimic hyperemesis gravidarum.

Moreover since the debate relating to cannabis is typically highly individualistic it seems prudent that medical professional organizations should partner with public health agencies and community groups to enlarge the focus of popular debate from the simply self-referential to a broader multigenerational perspective.

One inevitable conclusion from studies such as this is that access to cannabis should be more highly restricted than at present. Indeed such work calls into question the whole issue of the long term advisability of cannabis medicalization / legalization and the sustainability of such paradigms from a teratological perspective.

The present work has not considered neurological sequelae in the newborn and childhood as has previously been reported to overlap the autistic spectrum disorder and ADHD and thereby potentially play a major role in the modern widespread epidemic of these disorders [34–36, 39]. When such data is
factored into consideration the imperatives for reconsideration and re-evaluation of cannabis legalization overall are largely increased.

Our study has several strengths and limitations. Its strengths include access to whole population data for Queensland and a significant portion of the NNSW data. The CA rates and confidence intervals were already provided by QLD Health. The NDSHS is a nationally representative survey conducted every three years and the authoritative source for most Australian drug use data. Our analytical strategy combined CA with drug exposure data which is unusual and useful. We have employed a variety of powerful statistical techniques in this investigation including geospatial analysis, inverse probability weighting, mixed models and E-Values. Study limitations relate mainly to the remote location of the NNSW area close to the Queensland border and the small numbers of some anomalies reported. Losses due to treatment within NSW and to stillbirths and prenatal therapeutic abortion occurring preferentially in CA babies implies that the present findings are conservative estimates. The very high CA rate reported in Queensland has not been explained despite formal enquiry. The origin of the NNSW denominator figure is unclear. NSW Mothers and Babies reports [7] indicate that during 2008–2015 22,084 babies were born in Northern NSW and 30,848 in the central coast region, totalling 52,932 births. These regions are shown together in our maps. Hence over 11 times the data is available as was used in this analysis if it can be properly collated between the two jurisdictions of NSW and Queensland. This would then facilitate geotemporospatial statistical modelling. This proper collation and assembly of data is a top research priority for future studies. The remote location of NNSW together with its somewhat trans-jurisdictional status has apparently made such a collation difficult in the past.

Conclusions

In conclusion study data indicate that prenatal cannabis exposure is a significant and robust covariate of many congenital anomalies in NNSW particularly affecting the cardiovascular, chromosomal, body wall and gastrointestinal systems and is highly significant for 10 cannabis-related defects on geospatial analysis. Close concordance between these results and previous reports from Hawaii, Colorado, and Canada and with unpublished USA studies suggest our findings are reliable and generalizable. Fulfillment of the criteria for causal relationships has been demonstrated. Further geospatial epidemiological and basic science research is a priority given cannabis commercialization. Even beyond the obvious jurisdictional health cost-shifting implications careful and thorough further investigation of the teratological profile of NNSW by coordinated investigations between NSW and Queensland over time to current would appear to be a major international research priority with implications far beyond our shores.

Declarations

Ethics Approval and Consent to Participate
The Human Research Ethics Committee of the University of Western Australia provided ethical approval for the study to be undertaken 7th June 2019 (No. RA/4/20/4724). Consent to participate was not required as the data utilized was derived from publicly available anonymous datasets and no individual identifiable data was utilized.

Consent for Publication

Not applicable.

Availability of Data and Materials

All data generated or analysed during this study are included in this published article and its supplementary information files. Data has been made publicly available on the Mendeley Database Repository and can be accessed from this URL http://dx.doi.org/10.17632/cjzfyktz5m.1.

Competing Interests

The authors declare that they have no competing interests.

Funding

No funding was provided for this study. No funding organization played any role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Authors’ Contributions

ASR assembled the data, designed and conducted the analyses, and wrote the first manuscript draft. GKH provided technical and logistic support, co-wrote the paper, assisted with gaining ethical approval, provided advice on manuscript preparation and general guidance to study conduct. All authors have read and approved the manuscript.

Acknowledgements

Not applicable.

References

1. Potential Big Tobacco Acquisition Causes Cannabis Company's Stock to Soar [https://www.forbes.com/sites/sarabrittanyosomerset/2018/12/04/possible-big-tobacco-deal-causes-cronos-stock-to-soar/#48e3a6cc4891]
2. Reece A. S., Hulse G.K.: Canadian Cannabis Consumption and Patterns of Congenital Anomalies: An Ecological Geospatial Analysis. Journal of Addiction Medicine 2020, In Press.
3. Reece A.S., Hulse G.K.: Cannabis Teratology Explains Current Patterns of Coloradan Congenital Defects: The Contribution of Increased Cannabinoid Exposure to Rising Teratological Trends. *Clinical Pediatrics* 2019, 58(10):1085-1123.

4. Forrester MB, Merz RD: Risk of selected birth defects with prenatal illicit drug use, Hawaii, 1986-2002. *Journal of toxicology and environmental health* 2007, 70(1):7-18.

5. Neonatal Retrieval Service (NeoRESQ) [https://metronorth.health.qld.gov.au/rbwh/healthcare-services/neonatal-retrieval-service-neoresq]

6. Report of the Queensland Perinatal Maternal and Perinatal Quality Council, Queensland Health: Congenital Anomaly Linked File (CALF): Data Table and Notes, 2017. In. Edited by Queensland Health, vol. 1. Brisbane: Queensland Health; 2018: 5.

7. New South Wales Health Department: NSW Mothers and Babies 2018. In. Edited by NSW Health Department, vol. 1. Sydney: NSW Health; 2018: 1-86.

8. Queensland Maternal and Perinatal Quality Council 2017: Queensland Mothers and Babies 2014 and 2015. In. Edited by Health Q, vol. 1. Brisbane: Queensland Health; 2018: 1-70.

9. Australian Institute of Health and Welfare: National Drug Strategy Household Survey 2016: Detailed Findings. In. Edited by Australian Institute of Health and Welfare, vol. 1. Canberra, Australian Capital Territory, Australia: Australian Institute of Health and Welfare;, 2017: 168.

10. PHN Digital Files [https://www1.health.gov.au/internet/main/publishing.nsf/Content/PHN-Digital]

11. Reece A. S., Hulse G.K.: Cannabis Consumption Patterns Parallel the East-West Gradient in Canadian Neural Tube Defect Incidence: An Ecological Study. *Global Pediatric Health* 2019, In Press.

12. Reece AS, Hulse GK: Impacts of Cannabinoid Epigenetics on Human Development: Reflections on Murphy et. al. ‘Cannabinoid Exposure and Altered DNA Methylation in Rat and Human Sperm’ Epigenetics 2018; 13: 1208-1221. *Epigenetics* 2019:1-16.

13. Reece A.S.: Chronic Toxicology of Cannabis. *Clinical Toxicology* 2009, In Press(Accepted 28/05/09.).

14. Millo G., Piras G.: splm: Spatial Panel Data Models in R. *Journal of Statististical Software* 2012, 47(1):1-38.

15. Kapoor M., Kelejian H.H., Prucha I.R.: Panel Data Models with Spatially Correlated Error Components. *Journal of Econometrics* 2007, 140(1):97-130.

16. Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, Elixson M, Warnes CA, Webb CL, American Heart Association Council on Cardiovascular Disease in the Y: Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. *Circulation* 2007, 115(23):2995-3014.

17. Van Gelder MMHJ, Donders ART, Devine O, Roeleveeld N, Reefhuis J: Using bayesian models to assess the effects of under-reporting of cannabis use on the association with birth defects, national birth defects prevention study, 1997-2005. *Paediatric and perinatal epidemiology* 2014, 28(5):424-433.
18. Alshehri A, Emil S, Laberge JM, Skarsgard E, Canadian Pediatric Surgery N: Outcomes of early versus late intestinal operations in patients with gastroschisis and intestinal atresia: results from a prospective national database. *J Pediatr Surg* 2013, 48(10):2022-2026.

19. Geber WF, Schramm LC: Effect of marihuana extract on fetal hamsters and rabbits. *Toxicology and applied pharmacology* 1969, 14(2):276-282.

20. Graham JDP: Cannabis and Health. In: *Cannabis and Health. Volume 1*, 1 edn. Edited by Graham JDP. London, New York, San Francisco: Academic Press; 1976: 271-320.

21. Endo T., Johnston T., Ellerington J., Donovan T.: Gastroschisis in Queensland. In. Edited by Health Statistics Unit, Queensland Health, GPO Box 48, Brisbane Q, Australia 4001., vol. StatBite #57. Brisbane: Queensland Health; 2013.

22. Wilson PD, Loffredo CA, Correa-Villasenor A, Ferencz C: Attributable fraction for cardiac malformations. *Am J Epidemiol* 1998, 148(5):414-423.

23. David AL, Holloway A, Thomasson L, Syngelaki A, Nicolaides K, Patel RR, Sommerlad B, Wilson A, Martin W, Chitty LS: A case-control study of maternal periconceptual and pregnancy recreational drug use and fetal malformation using hair analysis. *PLoS One* 2014, 9(10):e111038.

24. Draper ES, Rankin J, Tonks AM, Abrams KR, Field DJ, Clarke M, Kurinczuk JJ: Recreational drug use: a major risk factor for gastroschisis? *Am J Epidemiol* 2008, 167(4):485-491.

25. Skarsgard ED, Meaney C, Bassil K, Brindle M, Arbour L, Moineddin R, Canadian Pediatric Surgery N: Maternal risk factors for gastroschisis in Canada. *Birth Defects Res A Clin Mol Teratol* 2015, 103(2):111-118.

26. Torfs CP, Velie EM, Oechsli FW, Bateson TF, Curry CJ: A population-based study of gastroschisis: demographic, pregnancy, and lifestyle risk factors. *Teratology* 1994, 50(1):44-53.

27. van Gelder MM, Reefhuis J, Caton AR, Werler MM, Druschel CM, Roeleveld N, National Birth Defects Prevention S: Maternal periconceptional illicit drug use and the risk of congenital malformations. *Epidemiology* 2009, 20(1):60-66.

28. Werler MM, Sheehan JE, Mitchell AA: Association of vasoconstrictive exposures with risks of gastroschisis and small intestinal atresia. *Epidemiology* 2003, 14(3):349-354.

29. Expert Review Panel Appointed to New South Wales Health: Review of Gastroschisis on the NSW North Coast. In. Edited by From New South Wales Health Department Center for Record Linkage DC, Dr Lee Taylor, ltayl@doh.health.nsw.gov.au „ vol. 1. Sydney: New South Wales Health Department; 2011: 1-11.

30. Reece AS, Wang W, Hulse GK: Pathways from epigenomics and glycobiology towards novel biomarkers of addiction and its radical cure. *Medical hypotheses* 2018, 116:10-21.

31. Szutorisz H, DiNieri JA, Sweet E, Egervari G, Michaelides M, Carter JM, Ren Y, Miller ML, Blitzer RD, Hurd YL: Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation. *Neuropsychopharmacology* 2014, 39(6):1315-1323.

32. Watson CT, Szutorisz H, Garg P, Martin Q, Landry JA, Sharp AJ, Hurd YL: Genome-Wide DNA Methylation Profiling Reveals Epigenetic Changes in the Rat Nucleus Accumbens Associated With
Cross-Generational Effects of Adolescent THC Exposure. Neuropsychopharmacology 2015, 40(13):2993-3005.

33. Reece AS, Hulse GK: Chromothripsis and epigenomics complete causality criteria for cannabis- and addiction-connected carcinogenicity, congenital toxicity and heritable genotoxicity. Mutat Res 2016, 789:15-25.

34. Reece A.S., Hulse G.K.: Effect of Cannabis Legalization on US Autism Incidence and Medium Term Projections. Clinical Pediatrics: Open Access 2019, 4(2):1-17.

35. Reece A. S., Hulse G.K.: Epidemiological Associations of Various Substances and Multiple Cannabinoids with Autism in USA. Clinical Pediatrics: Open Access 2019, 4(2):1-20.

36. Brents L.: Correlates and consequences of Prenatal Cannabis Exposure (PCE): Identifying and Characterizing Vulnerable Maternal Populations and Determining Outcomes in Exposed Offspring In: Handbook of Cannabis and Related Pathologies: Biology, Pharmacology, Diagnosis and Treatment. Volume 1, edn. Edited by Preedy V.R. London: Academic Press; 2017: 160-170.

37. Smith AM, Mioduszewski O, Hatchard T, Byron-Alhassan A, Fall C, Fried PA: Prenatal marijuana exposure impacts executive functioning into young adulthood: An fMRI study. Neurotoxicol Teratol 2016, 58:53-59.

38. Smith AM, Longo CA, Fried PA, Hogan MJ, Cameron I: Effects of marijuana on visuospatial working memory: an fMRI study in young adults. Psychopharmacology (Berl) 2010, 210(3):429-438.

39. Reece AS, Hulse GK: Gastroschisis and Autism-Dual Canaries in the Californian Coalmine. JAMA Surg 2019, 154(4):366-367.

Figures
Figure 1

Choropleth maps of congenital anomaly class rates across QLD and NNSW. High rates are shown in yellow and low rates in dark blue.
Figure 2

Confidence Intervals of cannabis-related and cannabis-unrelated congenital anomalies for (A) common, (B) intermediate frequency and (C) rare congenital anomalies.

Figure 3

Attributable Fraction in the Exposed for (A) cannabis-related and (B) cannabis-unrelated congenital anomalies.
Figure 4

Congenital Anomaly Rate by Cannabis Use Rate – Ordered by Slopes of Least Squares Regression Lines.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryMaterial3.docx