Sustained of mir-499-5p delivery from injection alters the muscle metabolomic profiles in broiler chicken

Zhixiong Li (lzx4113@vip.126.com)
Southwest Minzu University https://orcid.org/0000-0003-0529-0775

Yaqiu Lin
Southwest Minzu University

Mao Yuan
Southwest Minzu University

Xiaosong Jiang
Sichuan Animal Science Academy

Chaowu Yang
Sichuan Animal Science Academy

Chunlin Yu
Sichuan Animal Science Academy

Ling Chen
School of Modern Agriculture & Biotechnology

Research

Keywords: skeletal muscle, broiler, miR-499-5p, metabolomics

DOI: https://doi.org/10.21203/rs.3.rs-125474/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Myogenic miRNAs (myomiRs) which dramatically increased during myogenesis have been shown to play critical roles in many aspects of muscle function. As a myomiR, miR-499-5p, has been identified to be highly expressed in cardiac and skeletal muscle. The study focused on the effects of miR-499-5p on muscle metabolism in broiler chicken.

Methods

In the current study, we assigned 16 broiler chicks to control group and treatment group and then monitored the effects using metabolomics. Chicks were fed basal diets without or with miR-499-5p delivery. Muscle samples were collected and analyzed by ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS).

Results

Our findings revealed that miR-499-5p injection altered the concentrations of a variety of metabolites in the muscle. Thereinto, a total of 46 metabolites were identified at higher ($P < 0.05$) concentrations and 30 metabolites were identified at lower ($P < 0.05$) concentrations in the treatment group as compared with the control group. These metabolites were primarily involved with the regulation of lipid and carbohydrate metabolism. Further metabolic pathway analysis revealed that fructose and mannose metabolism, galactose metabolism, inositol phosphate metabolism and terpenoid backbone biosynthesis were the most important and critical pathway which may partially interpret the effects of miR-499-5p.

Conclusions

To our knowledge, this research is the first report of metabolic signatures and related metabolic pathways in the skeletal muscle for miR-499-5p injection and provide new insight into the effect of miRNA on growth performance.

Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNAs of about 22 nucleotides (nt) derived from 70-nt long stem-loop precursors (pre-miRNAs) through a sequential processing by two RNase III enzymes, Drosha and Dicer[1–3]. MiRNAs are posttranscriptional regulators that bind to the target messenger RNA's (mRNA) 3'-untranslated region (3'-UTR), usually resulting in translational repression in mammals[4, 5]. It is estimated that each miRNA regulates on average 200 target genes through an interaction between the seed sequence and the complementary target sites[6].
A number of miRNAs seem to be expressed in a muscle-specific manner and are as a group often referred to as myogenic miRNAs (myomiRs)\cite{7}. The expression of myomiRs is dramatically increased during myogenesis\cite{8}. MyomiRs have been shown to play critical roles in many aspects of muscle function, including muscle development, satellite cell activity, muscle fiber specification\cite{9–11}. MiR-499-5p, as a myomiR, highly expressed in cardiac and skeletal muscle and encoded by myosin heavy chain 7b (MyHC7b) which is a member of the MyHC family,\cite{12} has been identified to be an important regulator of muscle fiber type transition\cite{13, 14}. It was reported that miR-499-5p and miR-208b are functionally redundant, and play a dominant role in the specification of muscle fiber identity by activating slow and repressing fast myofiber genes\cite{12}. Several transcriptional repressors such as Sox6 and Purβ, which have been determined to inhibit MyHC7b transcriptional activity, were identified as miR-499-5p target genes\cite{12, 14, 15}.

Metabolomics provides a powerful platform for identifying small molecular metabolites in biological samples (biofluids or tissues) using high-throughput approaches. The identification and integrative analysis of these metabolites can facilitate the characterization of metabolism at the molecular and cellular levels under a given set of physiological conditions\cite{16}. Metabolomic analysis can provide novel insights into alterations of the metabolic status of biological systems affected by internal or external stimulating conditions\cite{17}. Thereby, these two technologies are expected to provide novel insight into the effects of miR-499-5p on the metabolism of broilers.

Though the importance of miR-499-5p in muscle development has been documented, the underlying physiological and metabolic mechanisms remained largely unknown. The current study was thereby conducted to identify the metabolic phenotype associated with external injection of miR-499-5p that could be linked to the growth and development of muscle through ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS).

Materials And Methods

Animals and Experimental Design

A total of 16 14-day-old male Da Heng broiler chicks were randomly divided into 2 groups, with 8 replicates in each group. Birds were fed basal diets. All birds were housed in wired cages and offered free access to feed and water, with a lighting schedule of 20 h light and 4 h dark. AgomiRs of miR-499-5p, synthesized from Ribobio, were chemically engineered and cholesterol-modified oligonucleotides to mimic miRNA expression, and injected intramuscularly into gastrocnemius muscle at a dose of 5 nmol. A scramble miRNA agomiR was used as the negative control. The injections were repeated every 72 h and given 6 times to ensure the efficacy. All the 16 chicks were slaughtered. Gastrocnemius muscles were taken from each chick a week after the last injection, all fresh tissue samples were washed briefly with Phosphate Buffered Saline (PBS) and divided into 2.0 mL plastic centrifuge tubes (each sample weighing approximately 200 mg) and then immediately frozen in liquid nitrogen.

Histological Examination of Gastrocnemius Muscle
Gastrocnemius muscles fixed in 4% paraformaldehyde were cut into 10-μm thick sections using a cryosectioning machine (CM1900, Leica), and stained with haematoxylin and eosin for morphological analysis. Three images from each bird were analyzed. Micrographs were obtained using a digital camera system (BA200Digital, Motic) and analyzed using Image Pro Plus software.

Statistical Analysis

Data were expressed in mean ± SD. Statistical analysis was carried out using One-Way Analysis of Variance ANOVA using the SPSS Software (Version 20.0). The significant value between groups was set at $P < 0.05$.

Metabolites Extraction

The 16 tissues of gastrocnemius muscle were individually grounded with liquid nitrogen and the homogenate was resuspended with prechilled 80% methanol and 0.1% formic acid by well vortexing. The samples were incubated on ice for 5 min and then were centrifuged at 15000 rpm, 4°C for 5 min. A some of supernatant was diluted to final concentration containing 60% methanol by LC-MS grade water. The samples were subsequently transferred to a fresh Eppendorf tube with 0.22 μm filter and then were centrifuged at 15000 g, 4°C for 10 min. Finally, the filtrate was injected into the LC-MS/MS system analysis. Quality control (QC) samples were also prepared by mixing equal volumes of each sample; the samples were aliquoted for analysis prior to sample preparation. The QC samples were used to monitor deviations of the analytical results from the pooled mixtures and compare to the errors caused by the analytical instrument itself.

Metabolomic Analysis of Muscle Samples

LC-MS/MS analyses were performed using a Vanquish UHPLC system (Thermo Fisher) coupled with an Orbitrap Q Exactive HF-X mass spectrometer (Thermo Fisher). Samples were injected onto an Hyperil Gold column (100×2.1 mm, 1.9μm) using a 16-min linear gradient at a flow rate of 0.2 mL/min. The eluents for the positive polarity mode were eluent A (0.1% FA in Water) and eluent B (Methanol). The eluents for the negative polarity mode were eluent A (5 mM ammonium acetate, pH 9.0) and eluent B (Methanol). The solvent gradient was set as follows: 2% B, 1.5 min; 2-100% B, 12.0 min; 100% B, 14.0 min; 100-2% B, 14.1 min; 2% B, 16 min. Q Exactive HF-X mass spectrometer was operated in positive/negative polarity mode with spray voltage of 3.2 kV, capillary temperature of 320°C, sheath gas flow rate of 35 arb and aux gas flow rate of 10 arb.

Data Processing and Analysis

The raw data files generated by UHPLC-MS/MS were processed using the Compound Discoverer 3.0 (CD 3.0, Thermo Fisher) to perform peak alignment, peak picking, and quantitation for each metabolite. The main parameters were set as follows: retention time tolerance, 0.2 minutes; actual mass tolerance, 5ppm; signal intensity tolerance, 30%; signal/noise ratio, 3; and minimum intensity, 100000. After that, peak intensities were normalized to the total spectral intensity. The normalized data was used to predict the
molecular formula based on additive ions, molecular ion peaks and fragment ions. And then peaks were matched with the mzCloud (https://www.mzcloud.org/) and ChemSpider (http://www.chemspider.com/) database to obtained the accurate qualitative and relative quantitative results.

For multivariate statistical analysis, both principal component analysis (PCA) and orthogonal projections to latent structures discriminant analyses (OPLS-DA) were performed to visualize the differences between groups. PCA and OPLS-DA were both performed using the program SIMCA-P Software (Version 13.0). PCA was firstly employed to visualize the sample clustering, trends and outliers among the observations. Then OPLS-DA was performed to highlight the difference between groups. The OPLS-DA model was validated by 200 random permutations test for avoiding overfitting. Afterwards, loading plots were constructed, which showed the contribution of variables to the difference between the two groups. It also showed the important variables which were situated far from the origin, but the loading plot is complex because of many variables. To refine this analysis, the first principal component of variable importance in the projection (VIP) was obtained through OPLS-DA. Metabolites were annotated and identified on the basis of accurate mass and MS information by searching through the Database. Metabolites were finally verified by comparing retention times and fragmentation patterns with standards. The fold change (FC) value of each metabolite was calculated by comparing mean peak values obtained from the treatment group (TG) to that from the control group (CG). Differential metabolites were selected based on the basis of VIP value (>1.0), FC value (FC > 1.2 or FC < 0.833) and Student’s t-test ($P < 0.05$). Pearson's product-moment correlation was performed to calculate the correlation. Corresponding P-values and false discovery rate (FDR) of each correlation were also calculated using “cor.test function” in R software. Differential metabolites were further mapped onto general biochemical pathways according to annotation in Kyoto Encyclopedia of Genes and Genomes (KEGG).

Results

Effect of miR-499-5p Overexpression on Body Weight and Muscle Fiber Diameter

Body weights of chicks in two groups were monitored at the beginning and end of the experiment period. As shown in Fig. 1, the body weights of chicks in two groups at Day-1 and Day-18 were presented. There were no significant differences in the initial body weights of each group on Day-1 (Fig. 1A). After intramuscular injection of agomiRs of miR-499-5p and negative control for 5 times, there were still no significant differences in the body and leg muscle weights on Day-18 (Fig. 1B and C). Different from the chicks in the CG, a dramatic decrease in the diameter of muscle fiber can be found in the TG in Fig. 2 ($P < 0.05$).

Characterization of LC-MS/MS Data

PCA mainly shows the distribution of the original data, which reduces the dimensionality of data and summarizes the similarities and differences between multiple MS spectra using score plots. In the present study, PCA was performed and the result revealed that most of the muscle samples in the score
plots were inside the 95% Hotelling T^2 ellipse (Fig. 3A). The correlation of three QC samples was calculated by “Pearson” correlation coefficient, and the results showed the correlation of all the QC samples exceeds 99% (Fig. 3B). As a supervised multivariate classification tool, OPLS-DA model was constructed following PCA for obtaining an improved separation and gain a better understanding of the variables responsible for the classification. As shown in Fig. 3C, all the samples in the OPLS-DA score plots were within the 95% Hotelling T^2 ellipse. The R^2_Y value of the OPLS-DA model that represents the explained variance was 0.94. The cross-validation indicated good predictive ability of this model, with a relatively high Q^2 value of 0.48. OPLS-DA model exhibited a clear separation between the TG and CG. Furthermore, a permutation test was applied to assess the robustness and predictive ability of the OPLS-DA model (Fig. 3D). The corresponding R^2_Y and Q^2 intercept values were 0.93 and -0.56, respectively, indicating a satisfactory effectiveness of the OPLS-DA model.

Differential Metabolites in Gastrocnemius

An obvious separation can be observed between the treatment and control group in the OPLS-DA model, indicating that there was a significant difference in the metabolome of gastrocnemius muscle of two groups. We determined those differentially expressed metabolites that played important roles in separating the treatment and control group. Differential metabolites between the two groups were selected when the P values of the Student’s t-test were less than 0.05 and the VIP values were more than 1.0. The profile of differential metabolites between the TG and CG was visualized by a volcano plot (Fig. 4). A total of 76 differential metabolites were testified using MS/MS analysis (Tables 1 and 2) based on these criteria. Of the identified metabolites, 46 metabolites were found at higher levels whereas 30 metabolites were found at lower levels in the TG compared with that in the CG. These metabolites are primarily involved in the metabolic processes of carbohydrates, nucleotides and lipids. On the basis of the FC value, several metabolites were determined including 7alpha-Hydroxy-3-oxochol-4-en-24-oic acid (FC = 2.74), 5alpha-cholane-3alpha,7alpha,12alpha,24-tetrol (FC = 1.72), O-heptanoylcarnitine (FC = 2.59), stearoylcarnitine (FC = 2.04), Linoleyl carnitine (FC = 2.11), Propionylcarnitine (FC = 2.81), Palmitoylcarnitine (FC = 1.84), trans-2-Tetradecenoyl carnitine (FC = 1.80), O-oleoylcarnitine (FC = 2.07), O-pentadecanoyl carnitine (FC = 1.86), (2E)-hexadecenoylcarnitine (FC = 1.63), O-heptadecanoyl carnitine (FC = 2.27), and Hexanoylcarnitine (FC = 1.60) along with Taurochenodeoxycholic acid (FC = 0.13), Palmitelaidic acid (FC = 0.68), Phloionolic acid (FC = 0.61), and Lauric acid (FC = 0.31).

Metabolic Pathway Enrichment Analysis

The differential metabolites detected in gastrocnemius in the present study were pinpointed the involved pathways. As shown in Table 3, a total of 13 pathways were obtained when the differential metabolites between the two groups were imported into the KEGG database. These metabolites were distributed among the metabolic pathways of fructose and mannose metabolism, galactose metabolism, inositol phosphate metabolism, terpenoid backbone biosynthesis, glycolysis / Gluconeogenesis, caffeine metabolism, vitamin B6 metabolism, primary bile acid biosynthesis, thiamine metabolism, pentose phosphate pathway, fatty acid biosynthesis, biosynthesis of unsaturated fatty acids and purine...
metabolism. Among them, fructose and mannose metabolism, galactose metabolism, inositol phosphate metabolism and terpenoid backbone biosynthesis exhibited significant differences ($P < 0.05$), so these four metabolic pathways were thus characterized as the significantly relevant pathways associated with the metabolic changes of chicks due to miR-499-5p injection.

Discussion

Recently, miRNAs have been shown to regulate gene expression and be involved in the proliferation and differentiation of skeletal muscle[18]. Previous evidence has indicated that miR-499-5p regulated skeletal myofiber specification by targeting Sox6[15, 19], Rod1[19], Thrap1[9], and TGF\(\beta\)R1[20]. It was found in our previous study that miR-499-5p levels in skeletal muscle were decreased accompanied by increasing age. The present study demonstrated that miR-499-5p injection significantly decreased the diameter of muscle fiber. The result was consistent with the previous studies because the diameter of slow-twitch muscle fiber was smaller than fast-twitch muscle fiber and miR-499-5p could regulate skeletal myofiber specification[9, 15, 19, 20]. However, little is known about the metabolic change of miR-499-5p involvement in the process.

To gain better insight into the significant changes caused by miR-499-5p injection, we developed a UHPLC-MS/MS method to analyze the endogenous metabolites in broiler muscle. To our knowledge, this is the first study to systematically identify metabolites that are expressed differentially in the muscle of broilers that have been injected by miR-499-5p. The results of PCA and OPLS-DA indicated that there were significant differences in the muscle metabolites of the TG and CG and the levels of 76 metabolites were altered by miR-499-5p, many of which are involved in pathways for metabolizing carbohydrates and lipids.

It was shown that the accumulation of lipids in non-adipose tissues elevates the cellular levels of bioactive lipids that inhibit the signaling pathways implicated in metabolic regulation together with activated inflammatory response[21]. Specifically, sterol lipids have been shown to influence fluidity and permeability of membranes[22, 23], and produce different signaling molecules such as sterol-derived hormones, Other sterol-derived signaling molecules include Vitamin D, bile acids, and oxysterols[24, 25]. It may be therefore that the elevated levels of 7alpha-Hydroxy-3-oxochol-4-en-24-oic acid and 5alpha-cholane-3alpha,7alpha,12alpha,24-tetrol in the TG may be beneficial for the functions mentioned above. However, taurochenodeoxycholic acid, as a sterol, was annotated to the pathway of primary bile acid biosynthesis. As a consequence, there might be potential disadvantages of certain functions and the metabolism of host cells responded to miR-499-5p in consideration of the decreased levels of taurochenodeoxycholic acid about which further research remain to be conducted. Carnitine is a conditionally essential nutrient that acts as an essential factor in fatty acid oxidation in mammals and performs the metabolic function of transporting activated fatty acids into the mitochondria of muscle cells, including those in the heart, for oxidation. It was indicated that miR-499-5p regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1[26]. Carnitine binds fatty acids, generating various acyl-carnitines with different chain lengths[27]. As shown in Table 2, The levels of 11
long-chain (≥ 10 carbons) acyl carnitines were all found to be elevated in the TG. These changes indicated there were different patterns in fatty acid oxidation between the two groups. Muscle is one of the most active tissues for fatty acid oxidation mainly by the catabolic process of β-Oxidation. Fatty acid molecules are broken by the process of β-Oxidation in the mitochondria to generate Acetyl coenzyme A (acetyl-coA). Long-chain acyl-carnitines were produced by the reaction of long-chain fatty acyl-CoA and carnitine after long-chain fatty acids are first bound to CoA, and then long-chain acyl-carnitines could be transported across the inner mitochondrial membrane[28]. The decreased levels of 3 long-chain fatty acids may be closely associated with increased consumption of long-chain acyl-carnitines in skeletal muscle. Carnitine palmitoyltransferase (CPT) deficiencies are common disorders of mitochondrial fatty acid oxidation[29]. It is indicated that the inhibition of CPT1 activity was sufficient to substantially diminish food intake and endogenous glucose production[30]. This is by virtue of the unique sensitivity of the outer membrane CPT 1 to the simple molecule, malonyl-CoA[31]. Increased consumption of long-chain acyl-carnitines in muscle may have a relationship with the food intake and endogenous glucose production.

Glyceraldehyde 3-phosphate (GAP) is an essential intermediate metabolite in several central pathways of all organisms. GAP can be reversely catalyzed by Glyceraldehyde-3-phosphate dehydrogenase (GADPH) into nicotinamide adenine dinucleotide (NADH) and 1, 3-bisphosphoglycerate. The increased GAP levels in the TG evidenced the activation of the fructose and mannose metabolism, galactose metabolism, inositol phosphate metabolism, and terpenoid backbone biosynthesis in response to miR-499-5p injection. NADH is a ubiquitous biological molecule that participates in many metabolic reactions in cellular metabolism and energy production. Recent studies showed that NADH played important roles in transcriptional regulation, longevity, calorie-restriction-mediated life-span extension and age-associated diseases[32–35]. Collectively, considering the influential roles of GAP within the body, we speculated that the activation of fructose and mannose metabolism, galactose metabolism, inositol phosphate metabolism, and terpenoid backbone biosynthesis could be, at least partially, responsible for the effects of miR-499-5p.

Conclusions

In summary, metabolomics analysis revealed substantial and significant changes in the skeletal muscle metabolite profiles of broilers in response to miR-499-5p injection. The differential metabolites induced by miR-499-5p were predominantly connected with lipid and carbohydrate metabolism. The results of our study uncovered the complex metabolic effects of miR-499-5p injection, which elucidate fructose and mannose metabolism, galactose metabolism, inositol phosphate metabolism and terpenoid backbone biosynthesis associated with miR-499-5p, offering a new insight into the effect of miR-499-5p on growth performance of broiler chicken.

Abbreviations
MiRNAs: MicroRNA; 3'-UTR: 3'-untranslated region; MyomiR: myogenic miRNA; MyHC7b: Myosin heavy chain 7b; UHPLC-MS/MS: ultra-high-performance liquid chromatography–tandem mass spectrometry; PBS: Phosphate Buffered Saline; QC: Quality control; PCA: Principal component analysis; OPLS-DA: Orthogonal projections to latent structures discriminant analyses; VIP: Variable importance in the projection; FC: Fold change; FDR: False discovery rate; KEGG: Kyoto Encyclopedia of Genes and Genomes; CG: Control group; TG: Treatment group; Acetyl-coA: Acetyl coenzyme A; CPT: Carnitine palmitoyltransferase; GAP: Glyceraldehyde 3-phosphate; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase

Declarations

Acknowledgements

The authors gratefully acknowledge all the teachers and students in Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization.

Authors’ contributions

Zhixiong Li and Chaowu Yang conceived the experiments. Zhixiong Li and Mao Yuan performed the experiments. Zhixiong Li analyzed the data. Yaqiu Lin, Xiaosong Jiang, Chaowu Yang, Chunlin Yu, and Ling Chen wrote and prepared the manuscript. All authors read and approved the final manuscript.

Funding

This work was financially supported by the Science and Technology Support Program of Sichuan Province (2016NYZ0043), Basic Research Programs of Sichuan Province (2016JY0068), Key Program of Education Department of Sichuan (17ZA0417) and Fundamental Research Funds for the Central Universities (2018NQN10).

Availability of data and materials

Data may be provided following request to the corresponding author.

Ethics approval and consent to participate

All animal procedures used in the study were approved by the committee for the Care and Experimental Animal at Southwest Minzu University (Chengdu, China).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.
Author details

1 Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education Chengdu 610041, China. 2 Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu 610041, China. 3 Sichuan Animal Science Academy, Chengdu 610066, China. 4 School of Modern Agriculture & Biotechnology, Ankang University, Ankang 725000, China.

References

1. Bartel DP: MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116(2):281-297.
2. Cullen BR: Transcription and Processing of Human microRNA Precursors. Mol Cell 2004, 16(6):861-865.
3. Kim VN: MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology 2005, 6(5):376-385.
4. Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
5. Gladka MM, Martins PADC, De Windt LJ: Small changes can make a big difference — MicroRNA regulation of cardiac hypertrophy. J Mol Cell Cardiol 2012, 52(1):74-82.
6. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, Macmenamin P, Piedade ID, Gunsalus KC, Stoffel M: Combinatorial microRNA target predictions. Nat Genet 2005, 37(5):495-500.
7. McCarthy JJ, Esser KA, Peterson CA, Dupontversteegden EE: Evidence of MyomiR network regulation of β-myosin heavy chain gene expression during skeletal muscle atrophy. Physiol Genomics 2009, 39(3):219-226.
8. Chen J, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang D: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006, 38(2):228-233.
9. Xu M, Chen X, Chen D, Yu B, Li M, He J, Huang Z: MicroRNA-499-5p regulates skeletal myofiber specification via NFATc1/MEF2C pathway and Thrap1/MEF2C axis. Life Sci 2018, 215:236-245.
10. Liu J, Liang X, Zhou D, Lai L, Xiao L, Liu L, Fu T, Kong Y, Zhou Q, Vega RB: Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/Fnip1/AMPK circuit. EMBO Mol Med 2016, 8(10):1212-1228.
11. Cheung TH, Quach NL, Charville GW, Liu L, Park L, Edalati A, Yoo B, Hoang P, Rando TA: Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 2012, 482(7386):524-528.
12. Van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ, Olson EN: A Family of microRNAs Encoded by Myosin Genes Governs Myosin Expression and Muscle Performance. Dev Cell 2009, 17(5):662-673.
13. Bhuiyan SS, Kinoshita S, Wongwarangkana C, Asaduzzaman, Asakawa S, Watabe S: Evolution of the myosin heavy chain gene MYH14 and its intronic microRNA miR-499: muscle-specific miR-499
expression persists in the absence of the ancestral host gene. BMC Evol Biol 2013, 13(1):142-142.

14. Wang X, Ono Y, Tan SC, Chai RJ, Parkin CA, Ingham PW: Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo. Development 2011, 138(20):4399-4404.

15. Wang XY, Chen X, Huang Z, Chen D, Yu B, He J, Luo J, Luo YH, Chen H, Zheng P: MicroRNA-499-5p regulates porcine myofiber specification by controlling Sox6 expression. Animal 2017, 11(12):2268-2274.

16. Patti GJ, Yanes O, Siuzdak G: Innovation: Metabolomics: the apogee of the omics trilogy. Nature Reviews Molecular Cell Biology 2012, 13(4):263-269.

17. Fiehn O: Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2001, 2(3):155-168.

18. Wang XH: MicroRNA in myogenesis and muscle atrophy. Curr Opin Clin Nutr Metab Care 2013, 16(3):258-266.

19. Nachtigall PG, C. DM, F. CR, Cesar M, Danillo P, Rossella R: MicroRNA-499 Expression Distinctively Correlates to Target Genes sox6 and rod1 Profiles to Resolve the Skeletal Muscle Phenotype in Nile Tilapia. PLoS One 2015, 10(3):e0119804.

20. Wu J, Yue B, Lan X, Wang Y, Fang X, Ma Y, Bai Y, Qi X, Zhang C, Chen H: MiR-499 regulates myoblast proliferation and differentiation by targeting transforming growth factor β receptor 1. J Cell Physiol 2019, 234(3):2523-2536.

21. Kang SC, Kim B, Lee S, Park TS: Sphingolipid Metabolism and Obesity-Induced Inflammation. Front Endocrinol (Lausanne) 2013, 4:67-67.

22. Haines TH: Do sterols reduce proton and sodium leaks through lipid bilayers. Prog Lipid Res 2001, 40(4):299-324.

23. Emter R, Heesepeck A, Kralli A: ERG6 and PDR5 regulate small lipophilic drug accumulation in yeast cells via distinct mechanisms. FEBS Lett 2002, 521(1):57-61.

24. Hannich JT, Umebayashi K, Riezman H: Distribution and Functions of Sterols and Sphingolipids. Cold Spring Harb Perspect Biol 2011, 3(5):328-333.

25. Kurzchalia TV, Ward S: Why do worms need cholesterol. Nat Cell Biol 2003, 5(8):684-688.

26. Wang JX, Jiao JQ, Li Q, Long B, Wang K, Liu JP, Li Y, Li P: miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 2011, 17(1):71-78.

27. Flanagan JL, Simmons PA, Vehige JG, Willcox MDP, Garrett Q: Role of carnitine in disease. Nutr Metab (Lond) 2010, 7(1):30-30.

28. Luan H, Meng N, Liu P, Feng Q, Lin S, Fu J, Davidson R, Chen X, Rao W, Chen F: Pregnancy-induced metabolic phenotype variations in maternal plasma. J Proteome Res 2014, 13(3):1527-1536.

29. Bonnefont JP, Pripbuus C, Saudubray J, Brivet M, Abadi N, Thuillier L: Carnitine Palmitoyltransferase Deficiencies. Mol Genet Metab 1999, 68(4):424-440.
30. Obici S, Feng Z, Arduini A, Conti R, Rossetti L: Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. *Nat Med* 2003, 9(6):756-761.

31. McGarry JD, Brown NF: The Mitochondrial Carnitine Palmitoyltransferase System — From Concept to Molecular Analysis. *FEBS J* 1997, 244(1):1-14.

32. Belenky P, Bogan KL, Brenner C: NAD+ metabolism in health and disease. *Trends Biochem Sci* 2007, 32(1):12-19.

33. Lin SJ, Guarente L: Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. *Curr Opin Cell Biol* 2003, 15(2):241-246.

34. Imai S, Guarente L: NAD+ and sirtuins in aging and disease. *Trends Cell Biol* 2014, 24(8):464-471.

35. Verdin E: NAD⁺ in aging, metabolism, and neurodegeneration. *Science* 2015, 350(6265):1208-1213.

Tables

Table 1 Increased metabolites for agomiR-499-treated group compared with control
Metabolite name	Molecular formula	Retention time	FC^a	P-value	VIP^b
Joro toxin	C₂₇H₄₇N₇O₆	14.54	2.72	<0.001	3.08
palmatine	C₂₁H₂₂N O₄	13.93	1.77	<0.001	1.82
O-heptanoylcarnitine	C₁₄H₂₇N O₄	9.88	2.59	<0.001	3.07
stearoylcarnitine	C₂₅H₄₉N O₄	15.23	2.04	<0.001	2.24
4,6-Henicosanedione	C₂₁H₄₀O₂	15.44	14.63	<0.001	7.37
Valeric acid	C₅H₁₀O₂	6.68	1.93	0.001	2.03
Methyl 9-octadecenoate	C₁₉H₃₆O₂	15.22	5.48	0.001	4.93
Reduced Vitamin K	C₃₁H₄₆O₂	14.00	1.92	0.001	2.02
7alpha-Hydroxy-3-oxochol-4-en-24-oic acid	C₂₄H₃₆O₄	13.54	2.74	0.001	2.98
5-O-Mycaminosyprotylonolide	C₃₁H₅₃N O₈	14.85	2.57	0.001	2.86
(2Z)-4-(Octadecyloxy)-4-oxo-2-butenolic acid	C₂₂H₄₀O₄	14.00	2.01	0.002	2.17
N-Stearoyl-L-tyrosine	C₂₇H₄₅N O₄	13.54	2.24	0.002	2.42
Oleoyl tyrosine	C₂₇H₄₃N O₄	13.33	3.26	0.002	3.58
cis-2-Carboxycyclohexyl-acetic acid	C₉H₁₄O₄	7.14	2.57	0.002	2.75
Linoleyl carnitine	C₂₅H₄₅N O₄	13.56	2.11	0.002	2.17
hydroprene	C₁₇H₃₀O₂	14.12	6.25	0.002	4.89
16,16-Dimethyl prostaglandin A1	C₂₂H₃₆O₄	13.55	3.16	0.002	3.29
promolote	C₁₆H₂₃N O₄	8.58	2.96	0.003	3.56
Propionylcarnitine	C₁₀H₁₉N O₄	2.07	2.81	0.003	3.37
Benzamide	C₇H₇N O	13.79	1.65	0.003	1.47
Pregnane-3,3-diol	C₂₁H₃₆O₂	14.99	5.38	0.004	5.07
Decylubiquinone	C₁₉H₃₀O₄	13.80	1.68	0.004	1.51
Chemical Name	Molecular Formula	MW	LogP	IC50	
---------------------------------------	-------------------	------	-------	-------	
Methyl stearate	C₁₉H₃₈O₂	15.34	2.80	0.005	
Cassaidine	C₂₄H₴₁NO₄	12.99	6.80	0.005	
Iminoctadine	C₁₈H₴₁N₇	14.72	2.46	0.006	
DO0750000	C₁₅H₂₄O₂	13.97	4.53	0.006	
Palmitoylcarnitine	C₂₃H₴₅NO₄	13.69	1.84	0.007	
glyceraldehyde 3-phosphate	C₃H₇O₆P	1.18	2.02	0.008	
11-Deoxy prostaglandin F1α	C₂₀H₃₆O₄	13.69	2.53	0.011	
trans-2-Tetradecenoylcarnitine	C₂₁H₃₉NO₄	12.98	1.80	0.012	
O-oleoylcarnitine	C₂₅H₄₇NO₄	13.77	2.07	0.012	
Xanthine	C₅H₄N₄O₂	1.72	1.71	0.013	
Erucic acid	C₂₂H₄₂O₂	15.67	1.77	0.015	
8,9-DiHETrE	C₂₀H₃₄O₄	13.42	2.20	0.019	
clominorex	C₉H₉ClN₂O	4.99	1.51	0.024	
1-hexadecyl-sn-glycerol 3-phosphate	C₁₉H₴₁O₆P	14.60	1.47	0.026	
O-pentadecanoylcarnitine	C₂₂H₴₃NO₄	13.50	1.86	0.029	
5alpha-cholane-3alpha,7alpha,12alpha,24-tetrol	C₂₄H₄₂O₄	14.07	1.72	0.030	
10-Deoxymethymycin	C₂₅H₴₃NO₆	13.61	2.02	0.031	
(2E)-hexadecenoylcarnitine	C₂₃H₴₃NO₄	13.42	1.63	0.034	
16-Acetoxy-17-methoxy-17-oxokauran-18-oic acid	C₂₃H₳₄O₆	11.71	1.77	0.034	
(+/-)-Camphoric acid	C₁₀H₁₆O₄	8.80	1.59	0.034	
PD-128042	C₂₃H₹₃NO₄	12.86	2.25	0.041	
Lersivirine	C₁₇H₁₈N₄O₂	15.03	1.56	0.042	
O-heptadecanoylcarnitine	C₂₄H₴₇NO₄	13.81	2.27	0.043	
Hexanoylcarnitine	C₁₃H₂₅NO₄	8.80	1.60	0.045	
a FC, fold change for the treatment group to control, b VIP, variable importance in the projection.

Table 2 Decreased metabolites for agomiR-499-treated group compared with control
Metabolite name	Molecular formula	Retention time	FC^a	P^b value	VIP^b
Cortisol, 9-fluoro-16. alpha.-hydroxy-	C₂₁ H₂₉ F O₆	12.74	0.65	0.002	1.41
Diosgenin	C₂₇ H₄₂ O₃	15.11	0.70	0.004	1.15
Triamciol one diacetate	C₂₅ H₃₁ F O₈	14.75	0.47	0.004	2.36
Geranylacetone	C₁₃ H₂₂ O	13.73	0.71	0.005	1.09
KJ98000000	C₁₈ H₃₉ O₇ P	15.31	0.58	0.007	1.94
Lauric acid	C₁₂ H₂₄ O₂	13.29	0.31	0.014	3.15
dihydroconiferyl alcohol glucoside	C₁₆ H₂₄ O₈	8.00	0.30	0.016	2.92
3-Dehydro-2-deoxyecdysone	C₂₇ H₄₂ O₅	15.07	0.72	0.017	1.13
ibufenac	C₁₂ H₁₆ O₂	12.14	0.70	0.020	1.09
Palmitelaidic acid	C₁₆ H₃₀ O₂	13.25	0.68	0.020	1.19
Phloionolic acid	C₁₈ H₃₆ O₅	12.38	0.61	0.026	1.36
spiro[3H-indole-3,5'(4'H)-thiazol]-2-ol, 2'- (methylthio)-	C₁₁ H₁₀ N₂ O S₂	1.25	0.69	0.028	1.16
MFCDO0010043	C₁₆ H₁₀ S	1.25	0.68	0.029	1.13
(17beta)-4-(Acetylsulfanyl)-3-oxoandrost-4-en-17-yl propionate	C₂₄ H₃₄ O₄ S₂	9.65	0.47	0.030	2.07
Quinagolide	C₂₀ H₃₃ N₃ O₃ S	15.55	0.72	0.030	1.09
Buclizine	C₂₈ H₃₃ Cl N₂	10.15	0.52	0.035	1.75
Sulbutiamine	C₃₂ H₄₆ N₈ O₆ S₂	13.99	0.68	0.036	1.49
(2S)-2-Piperazinecarboxamide	C₅ H₁₁ N₃ O	1.29	0.68	0.036	1.15
Probucol	C₃₁ H₄₈ O₂ S₂	13.45	0.35	0.037	2.28
(-)-Prostaglandin E1	C₂₀ H₃₄ O₅	12.50	0.74	0.040	1.01
NK77550000	C₁₁ H₁₁ Cl	0.10	0.68	0.040	1.14
Metabolite	Formula	N2O2	FC	VIP	VIF
--	------------------	-------	-----	------	------
Toborinone	C21 H24 N2 O5	13.23	0.62	0.040	1.54
Bardoxolone methyl	C32 H43 N O4	14.92	0.58	0.042	1.44
Taurochenodeoxycholic acid	C26 H45 N O6 S	12.82	0.13	0.044	3.60
1-Palmitoyl-2-(5-keto-6-octendioyl)-sn-glycero-3-phosphatidylcholine	C32 H58 N O11 P	14.92	0.72	0.045	1.02
persin	C23 H40 O4	14.96	0.60	0.047	1.58
3-Hydroxybutyric acid	C4 H8 O3	1.60	0.58	0.048	1.83
n-Butyl lactate	C7 H14 O3	7.68	0.68	0.049	1.21
12-Hydroxydodecanoic acid	C12 H24 O3	12.70	0.59	0.049	1.46
Avasimibe	C29 H43 N O4 S	12.82	0.15	0.049	3.44

a FC, fold change for the treatment group to control, if the FC value is less than 1, it means that the metabolites were lesser in the treatment group than those in the control group. b VIP, variable importance in the projection.

Table 3 Annotation of differential metabolites between agomiR-499-treated group and control
Pathway name	Differential metabolites	P-value
Fructose and mannose metabolism	glyceraldehyde 3-phosphate	0.04
Galactose metabolism	glyceraldehyde 3-phosphate	0.04
Inositol phosphate metabolism	glyceraldehyde 3-phosphate	0.04
Terpenoid backbone biosynthesis	glyceraldehyde 3-phosphate	0.04
Glycolysis / Gluconeogenesis	glyceraldehyde 3-phosphate	0.08
Caffeine metabolism	Xanthine	0.08
Vitamin B6 metabolism	glyceraldehyde 3-phosphate	0.08
Primary bile acid biosynthesis	Taurochenodeoxycholic acid	0.12
Thiamine metabolism	glyceraldehyde 3-phosphate	0.12
Pentose phosphate pathway	glyceraldehyde 3-phosphate	0.16
Fatty acid biosynthesis	Lauric acid	0.16
Biosynthesis of unsaturated fatty acids	Erucic acid	0.20
Purine metabolism	Xanthine	0.37

Figures

Figure 1

The body weights of chicks in control group (CG) and treatment group (TG). (A) The body weights of chicks in two groups at Day-1. (B) The body weights of chicks in two groups at Day-18. agomiR-NC and agomiR-499-5p represent the control and treatment groups, respectively.
Figure 1

The body weights of chicks in control group (CG) and treatment group (TG). (A) The body weights of chicks in two groups at Day-1. (B) The body weights of chicks in two groups at Day-18. agomiR-NC and agomiR-499-5p represent the control and treatment groups, respectively.
Figure 2

The diameter of muscle fiber in control group (CG) and treatment group (TG). Statistical significances are indicated by *P < 0.05. agomiR-NC and agomiR-499-5p represent the control and treatment groups, respectively.
Figure 2

The diameter of muscle fiber in control group (CG) and treatment group (TG). Statistical significances are indicated by *P < 0.05. agomiR-NC and agomiR-499-5p represent the control and treatment groups, respectively.
Figure 3

PCA and OPLS-DA score plots. (A) PCA score plots for consecutively analyzed quality control (QC) samples. (B) The Pearson correlation coefficient of three QC samples. (C) OPLS-DA score plots discriminating control group (CG) and treatment group (TG). (D) Permutation test for the OPLS-DA model C.
Figure 3

PCA and OPLS-DA score plots. (A) PCA score plots for consecutively analyzed quality control (QC) samples. (B) The Pearson correlation coefficient of three QC samples. (C) OPLS-DA score plots discriminating control group (CG) and treatment group (TG). (D) Permutation test for the OPLS-DA model.
Figure 4

Volcano plots of metabolites in muscle between control groups and treating group. Each dot represents a metabolite. The larger dots indicate higher variable importance in the projection (VIP) values. The abscissa and ordinate represent the fold change and P-value of metabolites, respectively. The increased and decreased (P < 0.05) metabolites in the treatment group (TG) are represented by the red and blue dots, respectively, and the black dots represent the unchanged metabolites (P > 0.05) between two groups.
Figure 4

Volcano plots of metabolites in muscle between control groups and treating group. Each dot represents a metabolite. The larger dots indicate higher variable importance in the projection (VIP) values. The abscissa and ordinate represent the fold change and P-value of metabolites, respectively. The increased and decreased (P < 0.05) metabolites in the treatment group (TG) are represented by the red and blue dots, respectively, and the black dots represent the unchanged metabolites (P > 0.05) between two groups.