ON AN INTERPOLATION PROBLEM IN THE CLASS OF FUNCTIONS OF EXPONENTIAL TYPE IN A HALF-PLANE

B.V. VYNNYS’KYI, V.L. SHARAN, I.B. SHEPAROVYCH

Abstract. Solvability conditions for interpolation problem \(f(n) = d_n, \ n \in \mathbb{N} \) in the class of entire functions satisfying the condition \(|f(z)| \leq e^{\pi|\text{Im} z|+o(|z|)}, z \to \infty \) are well known. In the presented paper we study the interpolation problem \(f(\lambda n) = d_n \) in the class of exponential type functions in the half-plane. We find sufficient solvability conditions for the considerate problem. In particular, a sufficient part of Carleson’s interpolation theorem is generalized and an analogue of a classic interpolation condition is found in the form

\[
\sum_{j=k}^{\infty} \text{Re} \left(-\xi_j \frac{\lambda_k^2 - 1}{\lambda_k + \lambda_j^2} \right) \leq c_3, \quad \xi_j := \frac{\text{Re} \lambda_j}{1 + |\lambda_j|^2}.
\]

The necessity of sufficient conditions is also discussed. The results are applied to studying a problem on splitting and searching an analogue of the identity \(2 \cos z = \exp(-iz) + \exp(iz) \) for each function of exponential type in the half-plane. We prove that each holomorphic in the right-hand half-plane function \(f \) obeying the , estimate \(|f(z)| \leq O(\exp(\sigma|\text{Im} z|))\) can be represented in the form \(f = f_1 + f_2 \) and the functions \(f_1 \) and \(f_2 \) holomorphic in the right-hand half-plane satisfy conditions

\[
|f_1(z)| \leq O(\exp(|z|h_-(\varphi))) \quad \text{and} \quad |f_2(z)| \leq O(\exp(|z|h_+(\varphi))),
\]

where \(\sigma \in [0; +\infty), \ z = re^{i\varphi}, \)

\[
h_+(\varphi) = \begin{cases}
\sigma|\sin \varphi|, & \varphi \in \left[0; \frac{\pi}{2}\right], \\
0, & \varphi \in \left[-\frac{\pi}{2}; 0\right],
\end{cases} \quad h_-(\varphi) = \begin{cases}
0, & \varphi \in \left[0; \frac{\pi}{2}\right], \\
\sigma|\sin \varphi|, & \varphi \in \left[-\frac{\pi}{2}; 0\right].
\end{cases}
\]

The paper uses methods works by L. Carleson, P. Jones, K. Kazaryan, K. Malyutin and other mathematicians.

Keywords: holomorphic functions of exponential type in the half-plane, interpolation, splitting of holomorphic functions

Mathematics Subject Classification: 30E05, 30D15

1. INTRODUCTION

It is known that for each sequence \(d = (d_n) \in l^{\infty} \) there exists an entire function \(f \) such that \[f(n) = d_n, \quad n \in \mathbb{N}, \]

\[|f(z)| \leq e^{\pi|\text{Im} z|+o(|z|)} , \quad z \to \infty. \]

In (1.2), “\(o(|z|) \)” can not be omitted \[1\], \[2\]. Our aim is to prove the following statement.
Theorem 1. For each sequence \((d_n) \in l^\infty\) there exists a holomorphic in the half-plane \(C_+ = \{z : \text{Re } z > 0\}\) function \(f\) such that (1.1) holds and
\[
|f(z)| \leq c_1 e^{\pi |\text{Im } z|}, \quad z \in C_+.
\] (1.3)

Hereinafter \(c_j\) stand for positive constants.

We let \(h \in \mathcal{C}[-\pi/2; \pi/2], \sigma \in [0; +\infty), h_0(\varphi) = \sigma |\sin \varphi|,\)
\[
h_+(\varphi) = \begin{cases}
\sigma |\sin \varphi|, & \varphi \in \left[0; \frac{\pi}{2}\right], \\
0, & \varphi \in \left[-\frac{\pi}{2}; 0\right],
\end{cases}
\]
\[
h_-(\varphi) = \begin{cases}
0, & \varphi \in \left[0; \frac{\pi}{2}\right], \\
\sigma |\sin \varphi|, & \varphi \in \left[-\frac{\pi}{2}; 0\right].
\end{cases}
\]

and let \(H^\infty(C_+; h)\) be the space of functions \(f\) holomorphic in \(C_+\) obeying
\[
\|f\| := \sup \{|f(z)| e^{-r h(\varphi)} : z = x + iy = re^{i\varphi} \in C_+\} < +\infty.
\]

We employ Theorem 1 and its modifications for proving the following statement.

Theorem 2. Let \(\sigma \in [0; +\infty)\). Then each function \(f \in H^\infty(C_+; h_0)\) is represented as
\[
f = f_1 + f_2, \quad f_1 \in H^\infty(C_+; h_-), \quad f_2 \in H^\infty(C_+; h_+).
\] (1.4)

The problem on splitting (1.4), which is an analogue of the identity \(\cos \sigma z = \frac{1}{2} e^{i\sigma z} + \frac{1}{2} e^{-i\sigma z}\), arises in seeking analogue of Paley-Wiener theorem for some weighted spaces and studying some convolution type equations (see [3, 4]). It was studied in works by V.M. Dilnyi [5, 6]. However, positive resolving is known mostly for spaces defined by \(L_2\)-metric. For the space \(H^\infty(C_+; h_0)\), the issue remained open. Theorem 2 positively resolves this. A more complicated and important similar question for the space of exponential type in the half-plane defined by \(L_1\)-metric remains open.

Let \(\lambda = (\lambda_n) = ([\lambda_n |e^{i\varphi_n}|)\) be an arbitrary sequence of different complex numbers in the complex half-plane \(C_+, l^\infty(h; \lambda)\) be the space of sequences \(d\), for which
\[
\|d\| := \sup \{|d_n| e^{-|\lambda_n| h(\varphi_n)} : n \in \mathbb{N}\} < +\infty.
\]

Let
\[
S(r) := \sum_{1 < |\lambda_k| \leq r} \left(\frac{1}{|\lambda_k|^2} - \frac{1}{r^2} \right) \text{Re } \lambda_k.
\]

Various interpolation problems in the classes of functions holomorphic in the half-plane were considered in many works, see [7–9] and the references therein. However, the solvability criteria of the interpolation problem
\[
f(\lambda_n) = d_n, \quad n \in \mathbb{N},
\] (1.5)
in the class \(H^\infty(C_+; h_0)\) is not known.

We employ some ideas from [7–9] and obtain the above formulated theorems on the base of the following statement, which in fact contains a sufficient part of the interpolation Carleson theorem; its elementary proof for the half-plane was provided, for instance, in [9].
Theorem 3. Let \((\lambda_k) \) be a sequence of different complex numbers in the half-plane \(\mathbb{C}_+ = \{z : \text{Re} \, z > 0\} \) such that
\[
\sum_{|\lambda_k| \leq 1} \text{Re} \lambda_k < +\infty, \tag{1.6}
\]
\[
\sup \left\{ S(r) - \frac{\sigma}{\pi} \ln r : r \in [1; +\infty) \right\} < +\infty, \tag{1.7}
\]
\[
\sum_{j=k}^{\infty} \text{Re} \left(-\xi_j \frac{\lambda_j^2 - 1}{\lambda_j + \lambda_j} \right) \leq c_3, \quad \xi_j := \frac{\text{Re} \lambda_j}{1 + |\lambda_j|^2}. \tag{1.8}
\]
Moreover, let the sequence \((\lambda_k) \) is a subsequence of zeroes of a holomorphic in \(\mathbb{C}_+ \) function \(\Omega \) such that
\[
\left| \frac{\Omega(z) (z + \lambda_k)}{(z - \lambda_k) \text{Re} \lambda_k \Omega''(\lambda_k)} \right| \leq c_0 e^{r h_0(\varphi)} e^{-|\lambda_k| h_0(\varphi_n)}, \quad z = x + iy = r e^{i \varphi} \in \mathbb{C}_+, \quad k \in \mathbb{N}. \tag{1.9}
\]
Then for each sequence \(d \in l^\infty(h_0; \lambda) \) there exists a function \(f \in H^\infty(\mathbb{C}_+; h_0) \) satisfying condition (1.5).

Remark 1. If \(\sigma = 0 \), then conditions (1.6) and (1.7) are equivalent to the condition
\[
\sum_{j=1}^{\infty} \text{Re} \lambda_j \frac{1}{1 + |\lambda_j|^2} < +\infty,
\]
and if \(\Omega(z) = B(z) \) is the Blaschke product for \(\mathbb{C}_+ \), then condition (1.9) is equivalent to the Carleson condition
\[
\inf \left\{ \prod_{k=1, k \neq n}^{\infty} \frac{\lambda_n - \lambda_k}{\lambda_n + \lambda_k} : n \in \mathbb{N} \right\} \geq \delta > 0,
\]
while the latter implies (1.8), see, for instance, [9]. The issue on necessity of conditions (1.8) and (1.9) remains for us open. Some comments on this issues are given in the end of the paper.

2. Proof of Theorem 3

Let \(s_0(t) = \sum_{1 < |\lambda_k| \leq t} \text{Re} \lambda_k \). Since
\[
\frac{1}{t^2} \leq \frac{4}{3} \left(\frac{1}{t^2} - \frac{1}{4s^2} \right) \quad \text{as} \quad |t| \leq |s|,
\]
then
\[
s_0(r) \leq r^2 \sum_{1 < |\lambda_k| \leq r} \frac{\text{Re} \lambda_k}{|\lambda_k|^2} \leq r^2 \frac{4}{3} \sum_{1 < |\lambda_k| \leq r} \left(\frac{1}{|\lambda_k|^2} - \frac{1}{(2r)^2} \right) \text{Re} \lambda_k \leq r^2 \frac{4}{3} \sum_{1 < |\lambda_k| \leq 2r} \left(\frac{1}{|\lambda_k|^2} - \frac{1}{(2r)^2} \right) \text{Re} \lambda_k = \frac{4}{3} r^2 S(2r).
\]
This is why conditions (1.6) and (1.7) implies the convergence of the series \(\sum_{j=1}^{\infty} \left(\frac{\text{Re} \lambda_j}{1 + |\lambda_j|^2} \right)^2 \) and \(\sum_{j=1}^{\infty} \text{Re} \lambda_j \left(1 + |\lambda_j|^2 \right)^{-3/2} \). Therefore, \(\xi_j \to 0 \). This is why, as in [7–9], in the proof of Theorem 3
we can assume that the sequence \((\xi_j)\) is non-increasing. Let

\[
\Psi_j(z) = -\xi_j \frac{z^2 - 1}{z + \lambda_j} \quad \text{and} \quad F_k(z) = \exp \left(-\sum_{j=k}^{\infty} \Psi_j(z) \right).
\]

The latter series converges uniformly on compact sets in \(\mathbb{C}_+\). Let us show that the sought function is

\[
f(z) = \sum_{k=1}^{\infty} d_k \frac{\Omega(z) \left(z + \lambda_k \right)}{(z - \lambda_k)\Omega'(\lambda_k)2\text{Re}\lambda_k} \left(1 + z \right) \frac{2\text{Re}\lambda_k}{z + \lambda_k} \frac{\left(1 + z \right) \frac{2\text{Re}\lambda_k}{z + \lambda_k} e^{\xi_k \lambda_k} F_k(z)}{e^{\xi_k z} F_k(\lambda_k)}.
\]

Indeed,

\[
\frac{z^2 - 1}{z + \lambda_j} = \frac{z - 1 + z\lambda_j}{z + \lambda_j}, \quad \text{Re} \frac{1 + z\lambda_j}{z + \lambda_j} = \frac{(1 + |z|^2) \text{Re} \lambda_j + (1 + |\lambda_j|^2) \text{Re} z}{|z + \lambda_j|^2}
\]

and

\[
\text{Re} \Psi_j(z) = \frac{(1 + |z|^2) \text{Re}^2 \lambda_j}{(1 + |\lambda_j|^2) |z + \lambda_j|^2} + \frac{\text{Re} \lambda_j \text{Re} z}{|z + \lambda_j|^2} - \xi_j \text{Re} z.
\]

Hence,

\[
|F_k(z)| \leq \exp \left(\sum_{j=k}^{\infty} \left(-\frac{(1 + |z|^2) \text{Re}^2 \lambda_j}{(1 + |\lambda_j|^2) |z + \lambda_j|^2} + \xi_j \text{Re} z \right) \right)
\]

\[
\leq \exp (\xi_k \text{Re} z) \exp \left(\sum_{j=k}^{\infty} \left(-\frac{(1 + |z|^2) \text{Re}^2 \lambda_j}{(1 + |\lambda_j|^2) |z + \lambda_j|^2} \right) \right).
\]

Moreover, see [9],

\[
\left| \frac{2\text{Re}\lambda_j}{1 + \lambda_j} \frac{z + 1}{z + \lambda_j} \right|^2 \leq 4 \frac{\text{Re}\lambda_j}{(1 + |\lambda_j|^2) |z + \lambda_j|^2} \left((|z|^2 + 1) \text{Re} \lambda_j + (1 + |\lambda_j|^2) \text{Re} z \right)
\]

\[
= 4 \text{Re} \frac{\lambda_j}{1 + |\lambda_j|^2} \frac{1 + z\lambda_j}{z + \lambda_j}.
\]

In addition, according condition (1.8),

\[
|F_k(\lambda_k)| = \exp \left(-\sum_{j=k}^{\infty} \text{Re} \left(-\xi_j \frac{\lambda_j}{\lambda_k + \lambda_j} + \xi_j \frac{1}{\lambda_k + \lambda_j} \right) \right) \geq c_2.
\]

Therefore,

\[
d_k \frac{\Omega(z) \left(z + \lambda_k \right)}{(z - \lambda_k)\Omega'(\lambda_k)2\text{Re}\lambda_k} \left(1 + z \right) \frac{2\text{Re}\lambda_k}{z + \lambda_k} \frac{\left(1 + z \right) \frac{2\text{Re}\lambda_k}{z + \lambda_k} e^{\xi_k \lambda_k} F_k(z)}{e^{\xi_k z} F_k(\lambda_k)} \leq c_3 \left| \frac{1 + z}{1 + \lambda_k} \right|^2 \frac{2\text{Re}\lambda_k}{z + \lambda_k} \frac{\left(1 + z \right) \frac{2\text{Re}\lambda_k}{z + \lambda_k} e^{\xi_k \lambda_k} F_k(z)}{e^{\xi_k z} F_k(\lambda_k)} \leq c_4 \frac{\text{Re}\lambda_k}{1 + |\lambda_k|^2} \text{Re} \frac{1 + z\lambda_k}{z + \lambda_k} \exp \left(\sum_{j=k}^{\infty} \left(\text{Re} \lambda_k \frac{1}{1 + |\lambda_j|^2} \text{Re} \frac{1 + z\lambda_k}{z + \lambda_k} \right) \right).
\]

Since

\[
\sum_{k=1}^{\infty} |a_k| \exp \left(-\sum_{j=k}^{\infty} |a_j| \right) < 1,
\]

we arrive at the statement of Theorem 3.
3. Proof of Theorem 1

Lemma 3.1. Let \(\sigma \in [0; +\infty) \), the function \(\Omega \in H^\infty(C_+; h_0) \) has the zeroes at the points \(\lambda_k \in C_+ \),
\[
\Omega_k(z) = \frac{\Omega(z)(z + \lambda_k)}{z - \lambda_k}, \quad \tau_k = \frac{\delta_k}{1 + \sqrt{1 + \delta_k^2}},
\]
where \(\delta_k = 1 \) if \(\Re \lambda_k < 1 \) or if \(\sigma = 0 \), and \(\delta_k = (\Re \lambda_k)^{-1} \) if \(\sigma > 0 \) and \(\Re \lambda_k \geq 1 \). Then
\[
|\Omega_k(z)| \leq \frac{c_2}{\tau_k} \exp(\sigma|y|)
\]
as \(z \in C_+, k \in \mathbb{N} \).

Proof. Since \(\tau_k \in (0; 1) \) and \(\delta_k = \frac{2\tau_k}{1-\tau_k} \), the circles
\[
U_k := \{ \varsigma \in \mathbb{C} : \left| \frac{\varsigma - \lambda_k}{\varsigma + \lambda_k} \right| < \tau_k \}
\]
are contained in \(C_+ \). Then
\[
|\Omega_k(z)| \leq \frac{|\Omega(z)|}{\tau_k} \leq \frac{c_1}{\tau_k} \exp(\sigma|y|) \quad \text{if} \quad \left| \frac{z - \lambda_k}{z + \lambda_k} \right| \geq \tau_k.
\]
If \(\left| \frac{z - \lambda_k}{z + \lambda_k} \right| < \tau_k \), then by the maximum principle we obtain
\[
|\Omega_k(z)| \leq \max \left\{ \frac{c_1 e^{\sigma|\Im \varsigma|}}{\tau_k} : \left| \frac{\varsigma - \lambda_k}{\varsigma + \lambda_k} \right| = \tau_k \right\} \leq \frac{1}{\tau_k} e^{\sigma|y|+2\sigma\delta_k \Re \lambda_k}.
\]
Since \(\sigma \delta_k \Re \lambda_k \leq \sigma \), this completes the proof. \(\square \)

We note that
\[
\tau_k \geq \frac{1}{3} \Re \lambda_k
\]
if \(\sigma > 0 \) and \(\Re \lambda_k \geq 1 \). Therefore, the proven lemma implies that the sequence \(\lambda = (k) \) satisfies all assumptions of Theorem 3 for \(\sigma = \pi \), and at that, we can take \(\Omega(z) = \sin \pi z \). In addition, \(l^\infty \subset l^\infty(h_0; \lambda) \) if \(\lambda = (k) \). This is why Theorem 1 follows Theorem 3.

4. Proof of Theorem 2

Lemma 4.1. Let \((\lambda_k) \) be a sequence of different complex numbers in the half-plane \(C_+ = \{ z : \Re z > 0 \} \) such that inequalities (1.6), (1.8) hold and
\[
\sup \left\{ S(r) - \frac{\sigma}{2\pi} \ln r : r \in [1; +\infty) \right\} < +\infty.
\]
Let also \((\lambda_k) \) be a subsequence of zeroes of a holomorphic in \(C_+ \) function \(\Omega \) such that
\[
\left| \frac{\Omega(z)(z + \lambda_k)}{(z - \lambda_k)\Re \lambda_k \Omega'(\lambda_k)} \right| \leq c_0 e^{r h(\varphi)} e^{-|\lambda_k| h(-\varphi_n)}, \quad z = x + iy = re^{i\varphi} \in C_+, \quad k \in \mathbb{N}.
\]
Then for each sequence \((d_k) \in l^\infty(h_+; \lambda) \) there exists a holomorphic in \(C_+ \) function \(f \in H^\infty(C_+; h_+) \) satisfying condition (1.5).

The proof of this lemma reproduces literally the proof of Theorem 3.
Lemma 4.2. Let \(\sigma \in [0; +\infty) \), a function \(\Omega \in H^\infty(C_+; h_+) \) has zeroes at the points \(\lambda_k \in C_+ \) and
\[
\Omega_k(z) = \frac{\Omega(z)(z + \lambda_k)}{z - \lambda_k}.
\]
Then
\[
|\Omega_k(z)| \leq \frac{c_2}{\tau_k} \exp \left(rh_+(\varphi) \right) \quad \text{as} \quad z = x + iy = re^{i\varphi} \in C_+.
\]

The proof of this lemma is similar to the proof of Lemma 3.1.

We proceed to proving Theorem 2. We assume that \(\sigma = \pi \). Let \(\Omega(z) = e^{-i\frac{\pi}{2}(z-1)} \sin \frac{\pi}{2} (z - 1) \).

This functions has zeroes in \(C_+ \) at the points \(\lambda_k = 2k-1, k \in \mathbb{N} \), and \(\Omega \in H^\infty(C_+; h_+) \). At that, \(|\Omega'(\lambda_k)| = \pi/2 \), and according Lemma 4.2, the sequence \(\lambda_k = 2k-1 \) satisfies all assumptions of Lemma 4.1. Let \(d_k = f(\lambda_k) \). Then \((d_k) \in l^\infty(h_+; \lambda) \). Hence, according Lemma 4.1, there exists a function \(f_0 \in H^\infty(C_+; h_+) \) such that \(f_0(\lambda_k) = f(\lambda_k), k \in \mathbb{N} \). Let \(\tilde{f}(z) = \frac{f(z) - f_0(z)}{\Omega(z)} \). Since [10]
\[
\left| \sin \frac{\pi}{2} (z - 1) \right| \geq c_0 \exp \left(\frac{\pi}{2} |\text{Im} z| \right)
\]
outside the circles \(|z - \lambda_k| \leq \varepsilon \) and therefore, outside these circles the estimate
\[
|\tilde{f}(z)| \leq c_5 \exp (rh_-(\varphi)), \quad z = x + iy = re^{i\varphi},
\]
holds true. Now by the maximum principle we infer that \(\tilde{f} \in H^\infty(C_+; h_-) \). Moreover,
\[
f(z) = \tilde{f}(z) \Omega(z) + f_0(z) = \frac{1}{2i} \tilde{f}(z) + f_0(z) - \frac{1}{2i} e^{-i\pi z} \tilde{f}(z).
\]

Since \(f_1(z) := \frac{1}{2i} \tilde{f}(z) \in H^\infty(C_+; h_-) \) and \(f_2(z) := f_0(z) - \frac{1}{2i} e^{-i\pi z} \tilde{f}(z) \in H^\infty(C_+; h_+), \) this completes the proof of Theorem 2.

5. Addenda and Remarks

Conditions (1.6) and (1.7) are necessary for the statement of Theorem 3. Indeed, let \(Q(z) = f(z) e^{-\frac{\lambda_k}{z + \lambda_k}} \), where \(f \in H^\infty(C_+; h_0) \) is a function such that \(f(\lambda_k) = 1 \) and \(f(\lambda_k) = 0 \) if \(k \neq 1 \). Then \(Q \in H^\infty(C_+; h_0) \) and \((\lambda_k) \) is a sequence of zeroes of the function \(Q \). This is why, by the generalized Carleman formula [11] we obtain (1.6) and (1.7) [12]. If the sequence \((\lambda_k) \) satisfies conditions (1.6) and (1.7), then [10] there exists a function \(\tilde{f} \in H^\infty(C_+; h_0), \) for which this is a sequence of its zeroes. Each function \(f \in H^\infty(C_+; h_0), f \neq 0, \) is represented as [11]
\[
f(z) = e^{ia_0 + a_1z} \tilde{B}(z) \tilde{T}(z), \quad (5.1)
\]
where \(a_0 \in \mathbb{R} \) and \(a_1 \in \mathbb{R} \) are constants,
\[
Q_1(t; z) = \frac{(tz + i)^2}{(1 + t^2)^2(t + iz)},
\]
\[
\tilde{T}(z) = \exp \left\{ \frac{1}{\pi i} \right. \left. \int_{-\infty}^{+\infty} Q_1(t; z) \ln |f_0(it)| dt + dh(t) \right\}, \quad \tilde{B}(z) = \prod_{j=1}^{\infty} W_j(z),
\]
\[f_0(it) = f(it)\] are angular boundary values of \(f(z) \) on \(\partial C_+, h(t) \) is a non-increasing function (a singular boundary function of the function \(f \)), whose derivative vanishes everywhere,
\[
W_j(z) = \frac{z - \lambda_j}{z + \lambda_j} \quad \text{as} \quad |\lambda_j| \leq 1, \quad W_j(z) = \frac{1 - \frac{z}{\lambda_j}}{1 + \frac{z}{\lambda_j}} \exp \left(\frac{z}{\lambda_j} + \frac{z}{\lambda_j} \right) \quad \text{as} \quad |\lambda_j| > 1.
\]

In [13], the following statement was proved.
Proposition 1. If \(f \in H^\infty(C_+; h_0) \) and \(f \not\equiv 0 \), then \(1_a \) \(\log |f_0| \in L^1_{\text{loc}}(i\mathbb{R}) \), \(2_a \) \(f_0(iy) \exp (-\sigma|y|) \in L^\infty(\mathbb{R}) \), \(1_b \) \(\sup \{ K(r) : r \in [1; +\infty) \} < +\infty \), and (1.6) holds, where

\[
K(r) := K_Z(r) + K_S(r) + K_B(r), \quad K_Z(r) := 2 \sum_{1 < |\lambda_k| \leq r} \left(\frac{1}{|\lambda_k|^2} - \frac{1}{r^2} \right) \text{Re} \lambda_k,
\]

\[
K_S(r) := -\frac{1}{\pi} \int_{1 \leq |t| \leq r} \left(\frac{1}{|t|^2} - \frac{1}{r^2} \right) dh(t),
\]

\[
K_B(r) := -\frac{1}{\pi} \int_{1 \leq |t| \leq r} \left(\frac{1}{|t|^2} - \frac{1}{r^2} \right) \log |f_0(it)| \, dt.
\]

Vice versa, if the sequence \((\lambda_k)\) of the points in the half-plane \(C_+ \), a function \(f_0 : i\mathbb{R} \to \mathbb{C} \) and a non-increasing function \(h : \mathbb{R} \to \mathbb{R} \), whose derivative vanishes almost everywhere are such that conditions \(1_a \), \(2_a \), \(1_b \) and (1.6) hold, then the function \(f \) defined by identity (5.1) is holomorphic in \(C_+ \) and satisfies the estimates \(|f(z)| \leq c_1 \exp (\sigma|y| + c_1 x)\). At that, if in the product \(B(z) \) we omit some of the factors, the above estimate remains true and the constant \(c_1 \) does not increase.

Employing this statement and some ideas from the proof of necessary part of Carleson interpolation theorem (see [14]), we confirm that each of the following conditions

\[
\prod_{j \in \mathbb{N}, j \neq k} |W_j(\lambda_k)| \geq c_3 \exp (-c_3 \text{Re} \lambda_k), \quad k \in \mathbb{N},
\]

\[
\sum_{j \in \mathbb{N}, j \neq k} \left(\frac{2 \text{Re} \lambda_k \text{Re} \lambda_j}{|\lambda_k + \lambda_j|^2} - \frac{2 \text{Re} \lambda_k \text{Re} \lambda_j}{1 + |\lambda_j|^2} \right) \leq c_4 \text{Re} \lambda_k, \quad k \in \mathbb{N},
\]

is necessary for the solvability of interpolation problem (1.5) in the class \(H^\infty(C_+; h_0) \) for each sequence \(d \in l^\infty(h_0; \lambda) \). However, we fail in trying to prove the necessity of conditions (1.8) and (1.9). In view of this, it is useful to mention the inequality

\[
\sum_{j=k}^{\infty} \text{Re} \left(-\xi_j \frac{\lambda_j^2 - 1}{\lambda_k + \lambda_j} \right) = \sum_{j=k}^{\infty} \left(\xi_j \frac{(1 + |\lambda_k|^2) \text{Re} \lambda_j + (1 + |\lambda_j|^2) \text{Re} \lambda_k}{|\lambda_k + \lambda_j|^2} - \xi_j \text{Re} \lambda_k \right) \leq \sum_{j=k}^{\infty} \left(\frac{2 \text{Re} \lambda_k \text{Re} \lambda_j}{|\lambda_k + \lambda_j|^2} - \frac{\text{Re} \lambda_k \text{Re} \lambda_j}{1 + |\lambda_j|^2} \right).
\]

BIBLIOGRAPHY

1. B. Levin. Lectures on entire functions. Amer. Math. Soc., Providence, RI (1996).
2. Y. Lyubarskii, K. Seip. Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt’s (Ap) condition // Rev. Matem. Iberoamer. 13:2, 361–376 (1997).
3. B.V. Vynnytskyi. An extension of Paley-Wiener theorem // Matematychni Studii. 4, 37–44 (1995). (in Ukrainian.)
4. B.V. Vynnytskyi. On solutions of homogeneous convolution equation in one class of functions analytical in a semi-strip // Matematychni Studii. 7:1, 41–52 (1997). (in Ukrainian.)
5. V.N. Dilnyi. Splitting of some spaces of analytic functions // Ufimskij Matem. Zhurn. 6:2, 26–35 (2014) [Ufa Math. J. 6:2, 26–35 (2014).]
6. B.V. Vynnytskyi, V.N. Dilnyi. On an analogue of Paley-Wiener’s theorem for weighted Hardy spaces // Matematychni Studii. 14:1, 35–40 (2000). (in Ukrainian.)
7. K. G. Malyutin. The problem of multiple interpolation in the half-plane in the class of analytic functions of finite order and normal type // Matem. Sborn. 184:2, 129–144 (1993). [Russian Acad. Sci. Sb. Math. 78:1, 253–266 (1994).

8. K. G. Malyutin. Sets of regular growth of functions in a half-plane. II // Izv. RAN. Ser. Matem. 59:5, 103–126 (1995). [Izv. Math. 59:5, 983–1006 (1995).

9. K.G. Kazaryan. Solution to a multipli interpolation problem in classes H^∞ in the half-planje and strip // Izv. AN Arm. SSR. Matem. XXV:1, 66–82 (1990). (in Russian).

10. A.F. Leont’ev. Entire functions. Exponential series. Nauka, Moscow (1983). (in Russian).

11. N.V. Govorov. Riemann’s boundary problem with infinite index. Nauka, Moscow (1986). [Operator Theory: Advances and Applications. 67. Birkhäuser, Basel. (1994).

12. B.V. Vynnytskyi. On zeros of functions analytic in a half plane and completeness of systems of exponents // Ukr. Matem. Zhurn. 46:5, 484–500 (1994). [Urk. Math. J. 46:5, 514–532 (1994).

13. B. Vynnytskyi, V. Sharan. On the factorization of one class of functions analytic in the half-plane // Matematychni Studii. 14:41–48 (2000).

14. K. Gofman. Banach spaces of analytic functions Inostr. Liter., Moscow (1963). (in Russian).

Bogdan Vasil’evich Vinnitskii,
Drohobych state pedagogical university named after Ivan Franko,
Stryiskaya str., 3
82100, Drohobych, Ukraine
E-mail: vynnytskyi@ukr.net

Vladimir Lukyanovich Sharan,
Drohobych state pedagogical university named after Ivan Franko,
Stryiskaya str., 3
82100, Drohobych, Ukraine
E-mail: volsharan@ukr.net

Irina Bogdanovna Sheparovich,
Drohobych state pedagogical university named after Ivan Franko,
Stryiskaya str., 3
82100, Drohobych, Ukraine
E-mail: isheparovych@ukr.net