Statistical Copolymers of Benzyl Methacrylate and Diethylaminoethyl Methacrylate: Monomer Reactivity Ratios and Thermal Properties

Abstract
Statistical copolymers of benzyl methacrylate (BzMA) and diethylaminoethyl methacrylate (DEAEMA) were prepared by free radical polymerization. The reactivity ratios were estimated using the Finemann-Ross, inverted Finemann-Ross, and Kelen-Tudos graphical methods, along with the computer program COPOINT. Structural parameters of the copolymers were obtained by calculating the dyad monomer sequence fractions and the mean sequence length. The glass-transition temperature \(T_g \) values of the copolymers were measured and examined by means of several theoretical equations, allowing the prediction of these \(T_g \) values. The kinetics of thermal degradation behavior of the copolymers was also studied by thermogravimetric analysis and compared with the respective homopolymers.

Keywords: Statistical copolymers; Reactivity ratios; Benzyl methacrylate; Diethylaminoethyl methacrylate; Thermal analysis; Free radical polymerization

Introduction
Since the rise of the polymer era; copolymerization, simultaneously emerged as a successful method to engage and enhance the properties and application range of derived polymers. The incorporation of two different monomers, with diverse chemical and/or physical properties, on the same structure, can lead to materials with tailor-made properties [1,2]. Numerous monomers have been involved in these copolymerization studies [3-9]. Among them nitrogen containing monomers such as diethylaminoethyl methacrylate (DEAEMA) are of great interest due to their versatile nature. Specifically they can undergo post-polymerization reactions, they have excellent adhesion properties and due to the amine group offers a pH and temperature stimuli responsive character as well as water solubility by quaternization to ammonium salts [10,11].

\(T_g \)-Responsive polymeric systems provide the possibility of fabricating tailorable “smart” functional materials, which may find numerous potential commercial applications, such as controlled drug delivery, personal care, oil exploration, industrial coatings, viscosity modifier, biological and membrane science, colloidal stabilization, water remediation [12-14], reversible gelation, CO\(_2\) sensitive micellization [15,16] etc. Thermosensitivity was reported for PDEAEMA exhibiting lower critical solution temperature, LCST, meaning that the polymer precipitates from water at elevated temperatures [17,18]. Block copolymers containing PDEAEMA blocks are widely used in the literature as pH - and temperature responsive materials in aqueous solutions, as a consequence of the increase in hydrophobicity upon deprotonation [19,20]. On the other hand benzyl methacrylate (BzMA) is a very interesting monomer, which can be used as a substitute in the methacrylate family of monomers of the very commonly used styrene (St) in copolymerization studies [21]. PBzMA is also hydrophobic and amorphous as PST but with a much lower glass transition, \(T_g \), value \([(T_g)_{PBzMA} = 54^\circ C \text{ instead of } (T_g)_{PS} = 100^\circ C] \) [22], leading to the formation of more flexible and easily processable copolymeric structures. BzMA has been polymerized by polymerization-induced self-assembly (PISA) [23,24] using controlled radical polymerization techniques, such as reversible addition-fragmentation chain transfer (RAFT) polymerization [25,26].

© Under License of Creative Commons Attribution 3.0 License | This article is available in: http://organic-inorganic.imedpub.com/archive.php
Potential applications of these structures involve drug delivery, coatings, contact lenses, sterilizable gels and emulsifiers [27,28]. It was found recently that PBzMA exhibits LCST in ionic liquids, i.e., a sharp decrease in solubility upon heating the sample above a critical temperature [29]. In the present study, the synthesis of poly(benzyl methacrylate) (PBzMA) and poly(diethylaminoethyl methacrylate) (PDEAEMA) statistical copolymers via free radical polymerization, is described. The objective of this study was to measure the monomer reactivity ratios and the structural parameters of the copolymers. The thermal properties of the copolymers were also studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

Experimental Methods

Materials

All polymerizations were conducted using high-vacuum techniques described elsewhere [30]. BzMA and DEAEMA were purchased from Aldrich and were vacuum-distilled from calcium hydride via the high vacuum line. 2,2’-Azobisisobutyronitrile, AIBN (Aldrich) was recrystallized twice from methanol, filtered and dried under vacuum. Benzene (Aldrich) was vacuum distilled from CaH2 and added in the reactor. Prior to polymerization, the mixtures were degassed under high vacuum using three freeze-thaw cycles and added in the reactor. The copolymerizations were conducted at 60°C for 3 hours. The polymers were precipitated in methanol, the supernatant was decanted and dried under vacuum. Benzene (Aldrich) was vacuum distilled from CaH2 into a flask containing n-BuLi and finally distilled over H2C C

Copolymerization studies

For the purpose of inquiring/studying the reactivity ratios of these two monomers; a set of five copolymers of BzMA and DEAEMA were prepared. Different feed ratios were involved in each copolymerization (monomer molar ratios: 80/20, 60/40, 50/50, 40/60 and 20/80). Copolymerization reactions were quenched at rather low yields (~ 10% yields). The copolymerization procedure was monitored by size exclusion chromatography, NMR, and UV spectroscopy. The experimental results were processed on the basis of the Fineman-Ross (FR), inverted Fineman-Ross (IFR) and basis of the Fineman-Ross (FR), inverted Fineman-Ross (IFR) and Kelen-Tudos (KT) equations. The computer program COPOINT was employed as well [31].

Copolymerization of BzMA with DEAEMA

The free radical copolymerization of BzMA with DEAEMA was conducted in benzene solutions using AIBN as the initiator at 60°C (Scheme 1). In all cases the conversion was kept at low values, to satisfy the differential copolymerization equation. The copolymers were purified by repeated precipitations in methanol, where both monomers are soluble. The molecular characteristics of the samples are given in Table 1. The samples have typical high molecular weights and molecular weight distributions in the range expected for conventional radical polymerization. Compared with statistical copolymers of BzMA prepared by radical polymerization in bulk [32] or PBzMA and statistical copolymers, prepared by atom transfer radical polymerization (ATRP) [33] it is obvious that in the present study the copolymerization

Characterization techniques

Size Exclusion Chromatography (SEC) experiments were carried out at 40°C using a modular instrument consisting of a Waters model 510 pump, U6K sample injector, 401 refractometer, 486 UV spectrophotometer, and a set of 5 μ-Styragel columns with a continuous porosity range from 500 to 106 Å. The columns were housed in an oven thermostatted at 40°C. THF was the carrier solvent at a flow rate of 1 mL/min. The system was calibrated with nine PS standards having molecular weights in the range of 970–600,000. The glass-transition temperatures were obtained by differential scanning calorimetry (DSC) using a 2910 modulated DSC model from TA instruments. The samples were heated or cooled at a rate of 5°C/min. The second heating results were obtained in all cases. The thermal stability of the copolymers was studied by thermogravimetric analysis (TGA) employing a Q50 TGA model from TA instruments. The samples were heated at a rate of 10°C/min under nitrogen atmosphere. The composition of the copolymers was also determined from 1H-NMR spectra, which were recorded in chloroform-d at 30°C with a Varian Unity Plus 300/54 NMR spectrometer.

Results and Discussion

Statistical copolymers of BzMA with DEAEMA

The free radical copolymerization of BzMA with DEAEMA was conducted in benzene solutions using AIBN as the initiator at 60°C (Scheme 1). The copolymers were prepared by atom transfer radical polymerization (ATRP) [33] it is obvious that in the present study the solution copolymerization

Table 1 Molecular characteristics of the copolymers.

Sample	Mw	Mw/Mn
20-80	93800	1.53
40-60	98400	1.60
50-50	194900	1.60
60-40	150600	1.49
80-20	157300	1.61

*by SEC in THF at 40°C
leads to rather narrow distributions. Different copolymers are symbolized by the various feed molar ratios of the monomers, e.g., sample 20/80 indicates the copolymer for the synthesis of which 20% BzMA and 80% DEAEMA were employed as the molar feed composition. The molecular weights were measured by SEC using a calibration curve constructed by polystyrene standards. NMR spectroscopy was employed to measure the composition of the copolymers. The analysis was based on the signals at 4.70 and 3.80 ppm which are attributed to the -CH₂ groups adjacent to the carboxylate groups of BzMA and DEAEMA monomer units respectively. A characteristic example is given in Scheme 2.

Monomer reactivity ratios and statistical analysis of the copolymers

The monomer reactivity ratios were determined using the Fineman-Ross (FR) [34], inverted Fineman-Ross (IFR) [34] and Kelen-Tüdos (KT) [35] graphical methods. A computer program, called COPOINT, was also employed [36-38]. According to the Fineman-Ross method, the monomer reactivity ratios can be obtained by the equation:

\[G = H r_{\text{BzMA}} - r_{\text{DEAEMA}} \]

where the reactivity ratios, \(r_{\text{BzMA}} \) and \(r_{\text{DEAEMA}} \) correspond to the BzMA and DEAEMA monomers, respectively. The parameters G and H are defined as follows:

\[G = X(Y-1)/Y \]
\[H = X^2/Y \]

with \(X = M_{\text{BzMA}}/M_{\text{DEAEMA}} \) and \(Y = dM_{\text{BzMA}}/dM_{\text{DEAEMA}} \)

\[M_{\text{BzMA}} \text{ and } M_{\text{DEAEMA}} \text{ are the monomer molar compositions in feed and } dM_{\text{BzMA}} \text{ and } dM_{\text{DEAEMA}} \text{ the copolymer molar compositions.} \]

The inverted Fineman-Ross method is based on the equation:

\[G/H = r_{\text{BzMA}} - (1/H) r_{\text{DEAEMA}} \]

The plots of the G versus H values and the G/H versus 1/H values yield the reactivity ratios \(r_{\text{BzMA}} \) and \(r_{\text{DEAEMA}} \) from the intercept and the slope of the graphs.

Alternatively, the reactivity ratios can be obtained using the Kelen-Tüdos method which is based on the equation:

\[\eta = (r_{\text{BzMA}} + r_{\text{DEAEMA}})/\alpha \xi - r_{\text{DEAEMA}}/\alpha \]

where \(\eta \) and \(\xi \) are functions of the parameters G and H:

\[\eta = G/(\alpha + H) \]
\[\xi = H/(\alpha + H) \]

and \(\alpha \) a constant which is equal to \((H_{\text{max}} - H_{\text{min}})^{1/2} \), \(H_{\text{max}} \) and \(H_{\text{min}} \) being the maximum and the minimum H values, respectively from the series of measurements. From the linear plot of \(\eta \) as a function of \(\xi \), the values of \(\eta \) for \(\xi = 0 \) and \(\xi = 1 \) are used to calculate the reactivity ratios according to the equations:

\[\xi = 0 \Rightarrow \eta = -r_{\text{DEAEMA}}/\alpha \text{ and } \xi = 1 \Rightarrow \eta = r_{\text{BzMA}} \]

The detailed copolymerization data for all systems are provided in Table 2. The graphical plots concerning the methods previously reported are given in Figures 1-3, whereas the reactivity ratios are summarized in Table 3. The computer program COPOINT evaluates the copolymerization parameters using comonomer/copolymer composition data as obtained from copolymerization experiments with finite monomer conversion. Although the mathematical treatment can be applied up to full monomer conversion, it is recommended not to exceed 20-30 mol%. COPOINT numerically integrates a given copolymerization equation in its differential from. The copolymerization parameters can be obtained.

Scheme 2 ¹H NMR spectrum of sample 40-60 in CDCl₃.
by minimizing the sum of square differences between measured and calculated polymer compositions. Errors of the fitted parameters are estimated from the statistical error of the sum of square differences, as well as from a quadratic approximation of this sum in the vicinity of the optimized values of the copolymerization parameters. The plots were linear in all cases and for all graphical methods, thus indicating that these copolymerizations follow conventional copolymerization kinetics and that the reactivity of all polymer radicals is determined only by the terminal monomer.

According to the data obtained by COPOINT $r_{BzMA}=0.600$ and $r_{DEAEMA}=0.398$. This result implies that the homopolymerization of the two monomers is not favored, or in other words that there is a tendency for the production of an alternating copolymer. However, the probability for the incorporation of BzMA units is slightly greater than for the incorporation of DEAEMA units ($r_{BzMA}>r_{DEAEMA}$). This kind of copolymerization is characterized as nonideal azeotropic [39]. The statistical distribution of the dyad monomer sequences $M_{BzMA}-M_{BzMA}$, $M_{DEAEMA}-M_{DEAEMA}$ and $M_{BzMA}-M_{DEAEMA}$ were calculated using the method proposed by Igarashi [40]:

\[X = \frac{2\theta_{BzMA}(1-\theta_{BzMA})}{1 + [(2\theta_{BzMA}-1)^2 + 4r_{BzMA}r_{DEAEMA}\theta_{BzMA}(1-\phi_{BzMA})]^2} \]
\[Y = \frac{2\theta_{DEAEMA}(1-\theta_{DEAEMA})}{1 + [(2\theta_{DEAEMA}-1)^2 + 4r_{BzMA}r_{DEAEMA}\phi_{BzMA}(1-\phi_{DEAEMA})]^2} \]
\[Z = \frac{4\phi_{BzMA}(1-\phi_{BzMA})}{1 + [(2\phi_{BzMA}-1)^2 + 4r_{BzMA}r_{DEAEMA}\phi_{BzMA}(1-\phi_{BzMA})]^2} \]

Table 2: Copolymerization data for the statistical copolymers.

Sample	M (VP)	dM (VP)	M (PEG)	dM (PEG)	X	Y	Gm	Hm	1/Hm	Gm/Hm
20-80	0.2030	0.3013	0.7970	0.6987	0.254705	0.431229	-0.335940	0.150441	6.647111	-2.233050
40-60	0.4035	0.4648	0.5965	0.5352	0.676466	0.868460	-0.102460	0.526885	1.897946	-0.194460
50-50	0.5003	0.5363	0.4997	0.4637	1.001201	1.156567	0.135535	0.863676	1.153794	0.156379
60-40	0.6006	0.6051	0.3994	0.3949	1.503756	1.532287	0.522376	1.475756	0.677619	0.353972
80-20	0.8010	0.7537	0.1990	0.2463	4.025126	3.060089	2.709763	5.294498	0.188875	0.511807

Table 3: Reactivity ratios measured by different methods.

Method	r_{BzMA}	r_{DEAEMA}
FR	0.588	0.393
iRF	0.627	0.430
KT	0.610	0.418
COPOINT	0.600	0.398

This article is available in: http://organic-inorganic.imedpub.com/archive.php
Where X, Y, and Z are the mole fractions of the M_{BzMA-M_{BzMA}}
M_{DEAEMA-M_{DEAEMA}} and M_{BzMA-M_{DEAEMA}} dyads in the copolymer
respectively and \(\varphi_{BzMA} \) the BzMA mole fraction in the copolymer.
Mean sequence lengths \(\mu_{BzMA} \) and \(\mu_{DEAEMA} \) were also calculated using
the following equations [41]:

\[
\mu_{BzMA} = 1 + r_{BzMA}\left[\frac{M_{BzMA}}{M_{DEAEMA}}\right] \\
\mu_{DEAEMA} = 1 + r_{DEAEMA}\left[\frac{M_{DEAEMA}}{M_{BzMA}}\right]
\]

(11)

The data are summarized in Table 4, and the variation of the
dyad fractions with the BzMA mole fraction in the copolymers
is displayed in Figure 4. The results confirm the conclusions drawn
by the reactivity ratios and show the high content of BzMA-
DEAEMA heterodyads in the copolymer structure.

Glass transition temperature of the statistical copolymers

The thermal properties of the copolymers are influenced by their
chemical structure and composition and the monomer sequence
distributions. Several relationships have been employed to
describe the effect of these parameters on the glass transition
Where BzMA and \(\varphi_{DEAEMA} \) are the mole fractions of BzMA and
DEAEMA, respectively, in the copolymer and \(T_{BzMA-BzMA} \), \(T_{DEAEMA-DEAEMA} \)
the glass transition temperatures of the two homopolymers,
respectively. \(T_{DEAEMA} \) was found to be equal to 293 K, whereas
\(T_{BzMA} \) is equal to 327 K.

A similar relationship was introduced by Fox [44]:

\[
\frac{1}{T_g} = \frac{w_{BzMA}}{T_{BzMA}} + \frac{w_{DEAEMA}}{T_{DEAEMA}}
\]

(14)

Where \(w_{BzMA} \) and \(w_{DEAEMA} \) are the weight fractions of BzMA and
DEAEMA in the copolymer.

Based on the free volume concept, Johnston proposed the
following equation [45]:

\[
\frac{1}{T_g} = \frac{w_{BzMA}P_{BzMA-BzMA}}{T_{BzMA-BzMA}} + \frac{w_{DEAEMA}P_{DEAEMA-DEAEMA}}{T_{DEAEMA-DEAEMA}} + \frac{w_{BzMA}P_{BzMA-DEAEMA} + w_{DEAEMA}P_{DEAEMA-BzMA}}{T_{BzMA-DEAEMA}}
\]

(15)

it is assumed that the BzMA-BzMA, DEAEMA-DEAEMA and
DEAEMA-BzMA or BzMA-DEAEMA dyads have their own glass
transition temperatures, \(T_{BzMA-BzMA} \), \(T_{DEAEMA-DEAEMA} \) and \(T_{BzMA-DEAEMA} \)
respectively, \(T_{BzMA-BzMA} \) and \(T_{DEAEMA-DEAEMA} \) can be considered as the
glass transition temperatures for the respective homopolymers,
whereas \(T_{BzMA-DEAEMA} \) is the glass transition temperature of the
alternating copolymer P(BzMA-alt-DEAEMA). \(W \) is the weight fraction of the i component
\(P_{BzMA-BzMA} \), \(P_{DEAEMA-DEAEMA} \) and \(P_{BzMA-DEAEMA} \) are the probabilities of having various linkages.
These probabilities can be calculated using the monomer
reactivity ratios [46]:

\[
P_{BzMA-BzMA} = \frac{r_{BzMA}}{r_{BzMA} + \left[\frac{M_{DEAEMA}}{M_{BzMA}}\right]}
\]

(16)

\[
P_{BzMA-DEAEMA} = \frac{[M_{DEAEMA}]}{r_{BzMA} + \left[M_{BzMA}\right]}
\]

(17)

\[
P_{DEAEMA-DEAEMA} = \frac{r_{DEAEMA}}{r_{DEAEMA} + \left[M_{BzMA}\right]}
\]

(18)

\[
P_{DEAEMA-BzMA} = \frac{[M_{BzMA}]}{r_{DEAEMA} + \left[M_{DEAEMA}\right]}
\]

(19)

Barton suggested the following equation [27]:

\[
T_g = XT_{BzMA-BzMA} + YT_{DEAEMA-DEAEMA} + Z T_{BzMA-DEAEMA}
\]

Where X, Y, Z are the monomer dyad fractions (Equations 11-13).
To apply these theories it is necessary to know the glass transition
temperature of the respective alternating copolymers. However,
these data are not provided in the literature. Therefore, the
linearized forms of the Johnston and Barton equations are used to
obtain the \(T_{BzMA-DEAEMA} \) values. The plots, given in Figures 5 and 6,
are straight lines passing through the origin. This is an indication
that these theoretical methods can better predict the \(T_g \) values
of statistical copolymers or, in other words, that the monomer
sequence distribution is an important parameter defining the
\(T_g \) of a statistical copolymer. The \(T_{BzMA-DEAEMA} \) values, calculated
by the Johnston and Barton equations, are 312.8 and 311.6 K,
respectively. It is obvious that the results obtained by the two
methods are not identical but in very close agreement. For the
statistical copolymers one transition was observed, meaning that
the samples are not phase separated, and the \(T_g \) values increase
upon increasing the BzMA content. The experimental results
concerning the \(T_g \) of the statistical copolymers along with the
predictions of all models are given in Table 5. It is evident that
the predicted values from the Gibbs-DiMarzio and Fox equations
are in better agreement with the experimental results. It is
obvious that the Johnston and Barton equations overestimate

Sample	X	Y	Z	µ (B)	µ (D)
20-80	0.06264	0.46004	0.23685	1.66	3.09
40-60	0.23018	0.30058	0.23462	2.34	2.04
50-50	0.31657	0.24397	0.21973	2.78	1.78
60-40	0.40544	0.19524	0.19966	3.36	1.59
80-20	0.61359	0.10619	0.14011	5.70	1.29

© Under License of Creative Commons Attribution 3.0 License
the T_g values of the copolymers. This result can be attributed to the random placement of the comonomer units along the copolymeric chains and to the relatively similar T_g values of the respected homopolymers.

Kinetics of the thermal decomposition of the statistical copolymers

TGA measurements were employed to study the kinetics of the thermal decomposition of the statistical copolymers. The activation energy, E_a, of mass loss upon heating was calculated using the isoconversional Ozawa-Flynn-Wall (OFW) [47-49] and Kissinger methods [50]. The OFW approach is a “model free” method, which assumes that the conversion function $F(\alpha)$, where α is the conversion, does not change with the alteration of the heating rate, β, for all values of α. The OFW method involves the measuring of the temperatures corresponding to fixed values of α from experiments at different heating rates β. Therefore, plotting $\ln \beta$ vs. $1/T$ in the form of

$$\ln \ln \beta = -\frac{A}{E_a} + \frac{E_a}{RT}$$

should give straight lines with slope directly proportional to the activation energy, where T is the absolute temperature, A is the pre-exponential factor (min$^{-1}$) and R is the gas constant (8.314 J/K.mol). If the determined activation energy is the same for the various values of α, then the existence of a single-step

Table 5 Glass transition temperatures of the homo- and copolymers.

Sample	Tg	T_g Gibbs - Di Marzio	T_g Fox	T_g Johnston	T_g Barton	
PBzMA	327					
80-20	314.6		318.8	317.7	323.6	324.0
60-40	309.3		313.7	312.3	319.0	320.1
50-50	307.8		311.4	309.9	316.5	318.0
40-60	305.6		309.0	307.5	313.7	315.6
80-20	300.5		303.4	302.2	306.8	309.2
PDEAEMA	293					
degradation reaction can be concluded with certainty. The OFW method is the most useful method for the kinetic interpretation of thermogravimetric data, obtained from complex processes like the thermal degradation of polymers. It can be applied without knowing the reaction order. The linearity of the OFW diagrams in a broad range of conversions proves that it is an efficient method for the analysis of the thermal decomposition of the copolymers. A characteristic example is given in Figure 7. However, deviations from the linearity were observed in very low or very high conversions, since these results refer to the decomposition of parts of the macromolecules that are not representative of the overall copolymeric chains, due to the statistical character of the distribution of the different monomer units.

The activation energy \(E \) was also calculated from plots of the logarithm of the heating rate versus the inverse of the temperature at the maximum reaction rate in constant heating experiments, according to the Kissinger method. Using the equation:

\[
\ln \left(\frac{\beta}{T_p^n} \right) = \ln \frac{AR}{E} + \ln \left(n(1 - \alpha_p)^{n-1} \right) - \frac{E}{RT_p} \]

(22)

Figure 7: OFW plots \(\ln \beta \) vs 1000/T for the copolymer 60-40 (●; \(\alpha = 0.1 \), ▲; \(\alpha = 0.2 \), ▼; \(\alpha = 0.3 \), ★; \(\alpha = 0.4 \), ◆; \(\alpha = 0.5 \), Δ; \(\alpha = 0.6 \), ▽; \(\alpha = 0.7 \), ★★; \(\alpha = 0.8 \), ★★★; \(\alpha = 0.9 \)).

Figure 8: Kissinger plot \(\ln(\beta/T_p^2) \) vs 1000/Tp for sample 80-20.

Figure 9: Kissinger plot \(\ln(\beta/T_p^2) \) vs 1000/Tp for sample 50-50.

Figure 10: Derivative weight loss with temperature for PBzMA under different heating rates (from left to right 3 to 20°C/min).

Figure 11: Derivative weight loss with temperature for PDEAEMA under different heating rates (from left to right 3 to 20°C/min).
where T_p and α_p are the absolute temperature and the conversion at the maximum weight-loss and n is the reaction order. The E values can be calculated from the slope of the plots of $\ln(\beta/T_p^n)$ versus $1/T_p$. Characteristic examples are given in Figures 8 and 9. The statistical copolymers were thermally degraded at different heating rates. Examples of the derivative thermogravimetry measurements under different heating rates are displayed in Figures 10-13. The two homopolymers present similar range of decomposition temperatures, showing two maxima of their thermal decomposition. The main decomposition peak is similar for both homopolymers, observed between 330 and 370°C. The second decomposition peak is observed at lower temperatures for PBzMA (285-315°C) compared to PDEAEMA (410-440°C). These results indicate that the decomposition mechanism is rather complex for both monomers.

The main decomposition event is probably attributed to the decomposition of the main chain, which is chemically similar for both homopolymers. The second decomposition peak is probably related with the decomposition of the side groups. It seems that the diethylaminoethyl- groups offer greater thermal stability compared to the benzyl groups. In other words, the thermolysis of the side groups of PBzMA is favored. This result is verified by literature reports showing that the general mechanism of the thermal degradation of the polymethacrylates involves the loss of the ester side group to form methacrylic acid followed by cross-linking [51]. In the case of the copolymers the temperature range of the decomposition is much broader covering the ranges of both homopolymers. The samples 80-20 and 20-80 show two decomposition maxima at temperatures close to PBzMA and PDEAEMA respectively, obviously due to the much higher content in BzMA and DEAEMA units. The other samples show three decomposition maxima, combining the thermal degradation behavior of both homopolymers [51]. The activation energies measured by the Kissinger method (Table 6) have lower values than that measured by the OFW method (Table 7), something which is rather common in the literature and reflects the different theoretical background on which the two methods are based. The activation energies from the OFW method change considerably upon changing the decomposition

Table 6 Activation Energies, J, by the Kissinger Method.

Sample	E_a_1	E_a_2	E_a_3
20-80	131.02	187.25	-
40-60	125.15	142.43	184.83
50-50	138.06	167.69	184.78
60-40	162.14	152.21	199.72
80-20	143.71	220.40	-
PBzMA	147.85	146.16	-
PDEAEMA	166.45	220.68	-

Table 7 Activation Energies, J, by the OFW Method.

Conversion	20-80	40-60	50-50	60-40	80-20	BzMA	DEAEMA
0.1	154.18	204.50	278.17	249.43	166.19	147.45	
0.2	166.65	219.28	217.08	343.96	307.56	170.86	
0.3	154.89	183.23	182.53	221.46	367.08	173.98	
0.4	149.87	172.94	178.03	199.48	336.63	172.21	231.40
0.5	151.77	189.42	211.96	272.95	310.19	168.96	208.97
0.6	221.72	207.44	214.69	257.62	286.34	165.95	190.72
0.7	230.62	211.75	217.04	248.63	281.38	160.56	176.64
0.8	221.23	215.64	225.72	251.68	274.50	162.78	378.76
0.9	219.85	217.38	220.59	247.55	293.53	160.98	246.44
conversion, indicating that the decomposition mechanism is complex during the thermal decomposition for both the homo- and the copolymers. PBzMA shows lower Ea values compared to PDEAEMA reflecting its lower thermal stability. It is rather surprising that the copolymers reveal higher Ea values than both homopolymers. This behavior can be attributed to the fact that at temperatures below 300°C the thermolysis of the side groups of BzMA units takes place leading to the formation of moieties that may react with the diethylamine groups of the DEAEMA monomer units leading to temporal crosslinking and therefore to transient networks, which are thermally very stable. Upon increasing the BzMA content of the copolymers the Ea values gradually increase. The thermolysis of the side groups of BzMA facilitates the formation of the transient networks leading to increased thermal stability of the structures, in agreement with literature results.

Conclusion

Free radical polymerization techniques were employed for the synthesis of statistical copolymers of benzyl methacrylate (BzMA) and diethylaminoethyl methacrylate (DEAEMA). The reactivity ratios were measured in the frame of several graphical and non-graphical methods. The computer program COPOINT revealed that \(r_{\text{BzMA}} = 0.600 \) and \(r_{\text{DEAEMA}} = 0.398 \), implying that a nonideal azeotropic copolymerization is effective. The homopolymerization of the two monomers is not favored, since both reactivity ratios are lower than unity. Therefore, a tendency for the production of an alternating copolymer prevails with slightly greater probability for the incorporation of BzMA than DEAEMA units \((r_{\text{BzMA}} > r_{\text{DEAEMA}}) \). The dyad monomer distributions and the mean sequence lengths were also measured. The Tg values of the copolymers were measured and were compared with the predictions of several theoretical models. It was found that Fox and Gibbs-Di Marzio equations fit better the experimental data. The kinetics of thermal decomposition of the copolymers was also studied and the results were compared with those of the respective homopolymers. In all cases the mechanism of thermal decomposition is complex. In the case of PBzMA the process involves initially the decomposition of the side groups. The copolymers revealed higher activation energies of thermal decomposition, Ea, values than both homopolymers. This behavior can be attributed to the thermolysis of the side groups of BzMA units leading to the formation of moieties that may react with the diethylamine groups of the DEAEMA monomer units leading to temporal crosslinking and therefore to transient networks, which are thermally very stable.
References

1. Tirrell DA (1985) In: Encyclopedia of Polymer Sciences and Engineering, 2nd edn. Mark H, Bikales NM, Overberger CG, Menges G (eds), John Wiley & Sons, New York 4: 192.

2. Zutty NL, Faucher JA (1962) The stiffness of ethylene copolymers J Polym Sci 60: 536-537.

3. Stergiou G, Dousikos P, Pitsikalis M (2002) Radical copolymerization of styrene and alkyl methacrylates: Monomer reactivity ratios and thermal properties. Eur Polym J 38: 1963-1970.

4. Makrikosta G, Georgas D, Siakali-Kioulafe E, Pitsikalis M (2005) Statistical copolymers of styrene and 2-vinylpyridine with trimethylsilyl methacrylate and trimethylsilyloxyethyl methacrylate. Eur Polym J 41: 47-54.

5. Kostakis K, Mourmouris S, Kotakis N, Nikogeorgos N, Pitsikalis M, et al. (2005) Influence of the cocatalyst structure on the statistical copolymerization of methyl methacrylate with bulky methacrylates using the zirconocene complex Cp2ZrMe2. J Polym Sci Polym Chem Ed 43: 3305-3314.

6. Kotzabasakis V, Petzetakis N, Pitsikalis M, Hadjichristidis N, Lohe DJ (2009) Copolymerization of tetradecene-1 and octene-1 with silyl-protected 10-undecen-1-ol using a Cp2ZrMe2/Me3Si-Cl (2009) Copolymerization of tetradecene-1 and octene-1 with silyl-protected 10-undecen-1-ol using a Cp2ZrMe2/Me3Si-Cl. J Polym Sci Polym Chem Ed 47: 876-886.

7. Driva P, Bexis P, Pitsikalis M (2011) Radical Copolymerization of 2-Vinyl Pyridine and Oligo(Ethylene Glycol) Methyl Ether Methacrylates: Monomer Reactivity Ratios and Thermal Properties. Eur Polym J 47: 762-771.

8. Droulia M, Anastasaki A, Rotka P, Pitsikalis M, Paraskevopoulou P (2011) Statistical Copolymers of Methyl Methacrylate and 2-Methacryloyloxyethyl ferrocenecarboxylate: Monomer Reactivity Ratios, Thermal and Electrochemical Properties. J Polym Sci Polym Chem Ed 49: 3080-3089.

9. Floros G, Agrafioti F, Grigoropoulos A, Paraskevopoulou P, Mertis K, et al. (2013) Statistical copolymers of norbornene and 5-vinyl-2-norbornene by a ditungsten complex mediated ring opening metathesis polymerization. Synthesis, thermal properties and kinetics of thermal decomposition. J Polym Sci Part A Polym Chem 51: 4935-4944.

10. Karra E, Petroulou I, Driva P, Pitsikalis M (2013) Radical Copolymerization of 2-Vinyl Pyridine with Functional Methacrylates: Monomer Reactivity Ratios and Thermal Properties Macromolecules, An Ind J 9: 68-77.

11. Nagasaki Y, Sato Y, Kato M (1997) A novel synthesis of semitalechelic functional poly(methacrylate)s through an alcoholate initiated polymerization. Synthesis of poly[2-[(N,N-diethylaminoethyl) methacrylate] macromonomer. Macromol Rapid Comm 18: 827-835.

12. Dai S, Ravi P, Tam KC (2008) pH-Responsive polymers: synthesis, properties and applications. Soft Matter 4: 435-449.

13. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Delivery Rev 58: 1655-1670.

14. Kost J, Langer R (2001) Responsive polymeric delivery systems. Adv Drug Delivery Rev 46: 125-148.

15. Li Y, Tang Y, Narain R, Lewis AL, Armes SP (2005) Biomimetic stimulus-responsive star diblock gelators. Langmuir 21: 9946-9954.

16. Yan B, Han D, Boissiere O, Ayotte P, Zhao Y (2013) Manipulation of block copolymer vesicles using CO2: Dissociation or “breathing”. Soft Matter 9: 2011-2016.

17. Schmalz A, Hanisch M, Schmalz H, Müller AHE (2010) Polymer Double stimuli-responsive behavior of linear and star-shaped poly(N,N-diethylaminoethyl methacrylate) in aqueous solutions. Polymer 51: 1213-1217.

18. Aseyev V, Tenhu H, Winnik FM (2011) Non-ionic thermoresponsive polymers in waters. Adv Polym Sci 242: 29-89.

19. Hu J, Zhang G, Ge Z, Liu S (2014) Stimuli responsive tertiary amine methacrylate-based block copolymers. Synthesis, supramolecular self-assembly and functional applications. Progr Polym Sci 39: 1096-1143.

20. Hu J, Liu S (2010) Responsive Polymers for Detection and Sensing Applications: Current Status and Future Developments. Macromolecules 43: 8315-8330.

21. Demirelli K, Bezgin F (2012) Synthesis and characterization of lactone functional macromonomers by end group deactivation and their use in miktoarm star polymer. Open J Polym Chem 2: 42-55.

22. Brandrup J, Immergut EH, Grulke EA (1999) Polymer Handbook. 4th edn. John Wiley & Sons.

23. Monteiro MJ, Cunningham MF (2012) Polymer Nanoparticles via Living Radical Polymerization in Aqueous Dispersions: Design and Applications. Macromolecules 45: 4939-4957.

24. Charleux B, Delattre G, Rieger J, d’Azzo F (2012) Polymerization-Induced Self-Assembly: From Soluble Macromolecules to Block Copolymer Nano-Objects in One Step. Macromolecules 45: 6753-6765.

25. Perrier S, Takaoluckdee P (2005) Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. J Polym Sci, Part A: Polym Chem 43: 5347-5393.

26. Moad G, Rizzardo E, Thang SH (2008) Radical addition-fragmentation chemistry in polymer synthesis. Polymer 49: 1079-1131.

27. De Brouwer H, Schellekens MAJ, Klumperman B, Monteiro MJ, German A (2000) Controlled radical polymerization of styrene and maleic anhydride and the synthesis of novel polylefin-based block copolymers by reversible addition-fragmentation chain-transfer (RAFT) polymerization. J Polym Sci, Part A: Polym Chem 38: 3596-3603.

28. Liu J, Duong H, Whittaker MR, Davis TP, Boyer C (2012) Synthesis of functional core, star polymers via RAFT polymerization for drug delivery applications. Macromol Rapid Commun 33: 760-766.

29. Zhang C, Maric M (2014) Statistical terpolymers with thermoresponsive fluorescence response in anionic liquid: effects of solvatochilicity on LCST phase separation and reversibility. Polym Chem 4926-4938.

30. Hadjichristidis N, Iatrou H, Pispas S, Pitsikalis M (2000) Anionic Polymerization: High Vacuum Techniques. J Polym Sci Part A: Polym Chem 38: 3596-3603.

31. Beginn U (2005) COPOINT a simple computer program to determine copolymerization parameters by numerical integration. e-Polymers 2011-2016.

32. Ozlem-Gundogdu S, Gurel EA, Hacaloglu J (2015) Pyrolysis of poly(methyl methacrylate-based block copolymers by reversible addition-fragmentation chain-transfer (RAFT) polymerization. J Polym Sci, Part A: Polym Chem 38: 3596-3603.

33. Demirelli K, Coskun M, Kaya E (2004) Polymers based on benzyl methacrylate: Synthesis via atom transfer radical polymerization,
characterization and thermal stabilities. J Polym Sci Part A: Polym
Chem 42: 5964-5973.
34 Fineman M, Ross S (1950) Linear method for determining monomer
reactivity ratios in copolymerization. J Polym Sci 5: 259-262.
35 Kelen T, Tudos F (1975) Analysis of the Linear Methods for
Determining Copolymerization Reactivity Ratios. I. A New Improved
Linear Graphic Method. J Macromol Sci A 9: 1-27.
36 Odian G (1991) Principles of Polymerization. Wiley Interscience. 3rd edn.
37 Flory PJ (1953) Principles of Polymer Chemistry. Cornell University
Press, Ithaca, USA.
38 Hiemenz PC (1984) Polymer Chemistry. The Basic Concepts, Marcel
Dekker Inc. New York, USA.
39 Igarashi S (1963) Representation of composition and blockiness of
the copolymer by a triangular coordinate system. J Polym Sci Polym
Lett Ed 1: 359-363.
40 Elias HG (1971) Macromolecules. Plenum Press: New York, NY, USA 2: 761.
41 Wood LA (1958) Glass transition temperatures of copolymers. J
Polym Sci 28: 319-330.
42 Couchman PR, Karasz FR (1978) A classical thermodynamic discussion
of the effect of composition on glass transition temperatures.
Macromolecules 11: 117-119.
43 Gibbs JH, Di Marzio EA (1963) Molecular interpretation of glass
temperature depression by plasticizers. J Polym Sci A 1: 1417-1428.
44 Fox TG, Flory PJ (1950) Second order transition temperatures and
related properties of polystyrene. I. Influence of molecular weight.
J Appl Phys 21: 581-591.
45 Johnston NW (1976) Sequence distribution-Glass transition effects. J
Macromol Sci Rev Macromol Chem Phys C 14: 215.
46 Barton JM (1970) Relation of glass transition temperature to
molecular structure of addition copolymers. J Polym Sci C 30: 573.
47 Ozawa T (1965) A New Method of Analyzing Thermogravimetric
Data. Bull Chem Soc Jpn 38: 1881-1886.
48 Flynn J, Wall LA (1966) A quick, direct method for the determination
of activation energy from thermogravimetric data. J Polym Sci Part B
Polym Lett 4: 323-328.
49 Ozawa T (1970) Kinetic analysis of derivative curves in thermal
analysis. J Therm Anal Calorim 2: 301-324.
50 Kissinger HE (1956) Variation of Peak Temperature with Heating Rate
In Differential Thermal Analysis. J Res Nat Bur Stand 57: 217-221.
51 Kissinger HE (1957) Reaction kinetic in differential thermal analysis.
Anal Chem 29: 1702-1712.