Supplementary Materials

Table S1. The sequence length of all samples

Samples of chilling storage	Sequences	Samples of supercooling storage	Sequences	Samples of superchilling storage	Sequences	Samples of sub-freezing storage	Sequences
A1_1d	54479	B1_1d	46644	C1_1d	44695	D1_1d	54195
A2_1d	59583	B2_1d	46942	C2_1d	54645	D2_1d	41773
A3_1d	50898	B3_1d	43296	C3_1d	45297	D3_1d	47504
A4_1d	49284	B4_1d	39566	C4_1d	47350	D4_1d	46189
A5_1d	52072	B5_1d	47863	C5_1d	35342	D5_1d	48209
A6_1d	47549	B6_1d	42902	C6_1d	41038	D6_1d	41035
A1_7d	50793	B1_7d	52995	C1_7d	50840	D1_7d	40948
A2_7d	47903	B2_7d	45946	C2_7d	43090	D2_7d	43617
A3_7d	47559	B3_7d	47355	C3_7d	47475	D3_7d	44243
A4_7d	48965	B4_7d	41792	C4_7d	45275	D4_7d	29783
A5_7d	43582	B5_7d	38713	C5_7d	45862	D5_7d	36011
A6_7d	46349	B6_7d	43487	C6_7d	50194	D6_7d	39403
A1_14d	45837	B1_14d	35427	C1_14d	51154	D1_14d	44527
A2_14d	59934	B2_14d	48727	C2_14d	40697	D2_14d	43615
A3_14d	45118	B3_14d	39186	C3_14d	38060	D3_14d	46507
A4_14d	41229	B4_14d	45199	C4_14d	34942	D4_14d	42908
A5_14d	42983	B5_14d	42750	C5_14d	38603	D5_14d	48040
A6_14d	40456	B6_14d	44437	C6_14d	39876	D6_14d	41897
–	–	B1_28d	43867	C1_28d	43316	D1_28d	38311
–	–	B2_28d	46994	C2_28d	52650	D2_28d	38747
–	–	B3_28d	40909	C3_28d	57821	D3_28d	43290
–	–	B4_28d	46064	C4_28d	39583	D4_28d	43950
–	–	B5_28d	45585	C5_28d	47898	D5_28d	41682
–	–	B6_28d	38378	C6_28d	47344	D6_28d	39328
Table S2. The coverage of all samples

Treatment	Chilling storage	Supercooling storage	Superchilling storage	Sub-freezing storage											
	1 d	7 d	14 d	28 d	1 d	7 d	14 d	28 d	1 d	7 d	14 d	28 d			
Coverage	0.9927	0.99568	0.9996	0.99355	0.99362	0.99291	0.9991	0.99267	0.993	0.9929	0.9937	0.995	0.99138	0.99079	0.99293

Table S3. The change of sobs, chao and shannon index at day 1, day 14, and day 28

Treatment	Chilling storage	Supercooling storage	Superchilling storage	Sub-freezing storage				
	1 d	14 d	1 d	28 d	1 d	28 d	1 d	28 d
Sobs	399.6±209.14	20.50±6.75	340.5±106.82	29.50±7.66	271.50±60.41	393.3±103.91	371.17±67.01	447.5±147.28
Chao1	503.5±221.05	27.81±10.29	446.1±136.42	62.78±31.90	431.36±63.18	481.8±129.22	434.70±96.48	538.4±166.64
Shannon	3.57±0.88	1.21±0.12	3.25±0.83	1.09±0.35	2.49±0.88	3.77±0.62	3.79±0.47	3.87±0.80