A new characterization of trivially perfect graphs

Christian Rubio-Montiel

Instituto de Matemáticas, Universidad Nacional Autónoma de México,
Ciudad Universitaria, 04510, D.F. - Mexico
christian@matem.unam.mx

Abstract

A graph G is trivially perfect if for every induced subgraph the cardinality of the largest set of pairwise nonadjacent vertices (the stability number) $\alpha(G)$ equals the number of (maximal) cliques $m(G)$. We characterize the trivially perfect graphs in terms of vertex-coloring and we extend some definitions to infinite graphs.

Keywords: Perfect graphs, complete coloring, Grundy number, forbidden graph characterization
Mathematics Subject Classification: 05C17
DOI: 10.5614/ejgta.2015.3.1.3

1. Introduction

Let G be a finite graph. A coloring (vertex-coloring) of G with k colors is a surjective function that assigns to each vertex of G a number from the set $\{1, \ldots, k\}$. A coloring of G is called pseudo-Grundy if each vertex is adjacent to some vertex of each smaller color. The pseudo-Grundy number $\gamma(G)$ is the maximum k for which a pseudo-Grundy coloring of G exists (see [5, 6]).

A coloring of G is called proper if any two adjacent vertices have different color. A proper pseudo-Grundy coloring of G is called Grundy. The Grundy number $\Gamma(G)$ (also known as the first-fit chromatic number) is the maximum k for which a Grundy coloring of G exists (see [6, 11]).

Since there must be $\alpha(G)$ distinct cliques containing the members of a maximum stable set, clearly,

$$\alpha(G) \leq \theta(G) \leq m(G) \text{ and } \omega(G) \leq \chi(G) \leq \Gamma(G) \leq \gamma(G)$$

Received: 03 February 2014, Revised: 07 September 2014, Accepted: 01 January 2015.
where θ denotes the clique cover (the least number of cliques of G whose union covers $V(G)$), ω denotes the clique number and χ denotes the chromatic number. Let $a, b \in \{\alpha, \theta, m, \omega, \chi, \Gamma, \gamma\}$ such that $a \neq b$. A graph G is called ab-perfect if for every induced subgraph H of G, $a(H) = b(H)$. This definition extends the usual notion of perfect graph introduced by Berge [3], with this notation a perfect graph is denoted by $\omega\chi$-perfect. The concept of the ab-perfect graphs was introduced earlier by Christen and Selkow in [7] and extended in [17] and [1, 2]. A graph G without an induced subgraph H is called H-free. A graph H_1-free and H_2-free is called (H_1, H_2)-free.

Some important known results are the following: Lóvász proved in [13] that a graph G is $\omega\chi$-perfect if and only its complement is $\omega\chi$-perfect. Consequently, a graph G is $\omega\chi$-perfect if and only if G is $\alpha\theta$-perfect, see also [4, 5, 12]. By Equation (1), a graph αm-perfect is “trivially” perfect (see [9, 10]). Chudnovsky, Robertson, Seymour and Thomas proved in [8] that a graph G is $\omega\chi$-perfect if and only if G and its complement are C_{2k+1}-free for all $k \geq 2$. Christen and Selkow proved in [7] that for any graph G the following are equivalent: G is $\omega\Gamma$-perfect, G is $\chi\Gamma$-perfect, and G is P_4-free.

The remainder of this paper is organized as follows: In Section 2: Characterizations are given of the families of finite graphs: (i) θm-perfect graphs, (ii) αm-perfect graphs (trivially perfect graphs), (iii) $\omega\gamma$-perfect graphs and (iv) $\chi\gamma$-perfect graphs. In Section 3: We further extend some definitions to locally finite graphs and denumerable graphs.

2. Characterizations for finite graphs

There exist several trivially perfect graph characterizations, e.g. [2, 9, 14, 15, 16]. We will use the following equivalence to prove Theorem 2.2:

Theorem 2.1 (Golumbic [9]). A graph G is trivially perfect if and only if G is (C_4, P_4)-free.

A consequence of Theorem 2.1 is the following characterization of θm-perfect and trivially perfect graphs.

Corollary 2.1. A graph G is θm-perfect graph if and only if G is αm-perfect.

Proof. Since $\theta(C_4) = \theta(P_4) = 2$, $m(C_4) = 4$ and $m(P_4) = 3$ then G is (C_4, P_4)-free, so the implication follows. For the converse, the implication is immediate from Equation (1).
We now characterize the $\omega\gamma$-perfect and $\chi\gamma$-perfect graphs. In the following result, one should note that the finiteness of G is not necessary for the proof, the finiteness of $\omega(G)$ is sufficient.

Theorem 2.2. For any graph G the following are equivalent: (1) G is (C_4, P_4)-free, (2) G is $\omega\gamma$-perfect, and (3) G is $\chi\gamma$-perfect.

Proof. To prove (1) \Rightarrow (2) assume that G is (C_4, P_4)-free. Let ς be a pseudo-Grundy coloring of G with $\gamma(G)$ colors. We will prove by induction on n that for $n \leq \gamma(G)$, G contains a complete subgraph of n vertices with the n highest colors of ς. This proves (for $n = \gamma(G)$) that G is $\omega\gamma$-perfect since every induced subgraph of G is (C_4, P_4)-free.

For $n = 1$, there exists a vertex with color $\gamma(G)$, then the assertion is trivial. Let us now suppose that we have $n - 1$ vertices v_1, \ldots, v_{n-1} in the $n - 1$ highest colors such that they are the vertices of a complete subgraph, and define V_i as the set of vertices colored $\gamma(G) - (n - 1)$ by ς adjacent to v_i ($1 \leq i < n$). Since ς is a pseudo-Grundy coloring, none V_i is empty. Any two such sets are comparable with respect to inclusion, otherwise there must be vertices p in $V_i \setminus V_j$ and q in $V_j \setminus V_i$ and the subgraph induced by $\{p, v_i, v_j, q\}$ would be isomorphic to C_4 or P_4. Therefore the $n - 1$ sets V_i are linearly ordered with respect to inclusion, and there is a k ($1 \leq k < n$) with

$$V_k = \bigcap_{1 \leq i < n} V_i.$$

Thus there is a vertex v_n in V_k which is colored with $\gamma(G) - n + 1$ by ς and is adjacent to each of the v_i ($1 \leq i < n$).

The proof of (2) \Rightarrow (3) is immediate from Equation (1).

To prove (3) \Rightarrow (1) note that if $H \in \{C_4, P_4\}$ then $\chi(H) = 2$ and $\gamma(H) = 3$ hence the implication is true (see Fig 1). \qed

Corollary 2.2. Every $\chi\gamma$-perfect graph is $\omega\chi$-perfect.

3. Extensions for infinite graphs

We presuppose here the axiom of choice. The definitions of pseudo-Grundy coloring with n colors and of proper coloring with n colors of a finite graph are generalizable to any cardinal number. It is defined the chromatic number χ of a graph as the smallest cardinal κ such that the graph has a proper coloring with κ colors. The clique number ω of a graph as the supremum of the cardinalities of the complete subgraphs of the graph (see [7]). Similarly, for any ordinal number β (such that $|\beta| = \kappa$), a pseudo-Grundy coloring of a graph with κ colors is a coloring of the vertices of the graph with the elements of β such that for any $\beta'' < \beta'$ and any vertex v colored β' there is a vertex colored β'' adjacent to v. The pseudo-Grundy number γ of a graph is the supremum of the cardinalities κ for which there is a pseudo-Grundy coloring of the graph with β such that $|\beta| = \kappa$.

Next we prove a generalization of Theorem 2.2 for some classes of infinite graphs. Afterwards we show that there exists a graph, not belonging to these classes, for which the theorem does not hold.

Theorem 3.1. The statements (1), (2) and (3) of Theorem 2.2 are equivalent for each locally finite graph and for each denumerable graph.
Proof. To prove $⟨1⟩ \Rightarrow ⟨2⟩$, let H be an induced subgraph of G. If $\omega(H)$ is finite, we can use the proof of Theorem 2.2 to show that $\gamma(H) = \omega(H)$. In otherwise $\omega(H)$ is infinite, then $\gamma(H) = \omega(H)$, because $\gamma(H)$ is at most the supremum of the degrees of the vertices of H, which is at most \aleph_0, if G is locally finite or denumerable.

The implications $⟨2⟩ \Rightarrow ⟨3⟩$ and $⟨3⟩ \Rightarrow ⟨1⟩$ hold for any graph, finite or not. □

The following example can be found in [7]. Let G be a non-denumerable, locally denumerable graph formed by the disjoint union of $|\beta_1| = \aleph_1$ complete denumerable subgraphs of $|\beta| = \aleph_0$ vertices. Clearly $\omega(G) = \chi(G) = |\beta| = \aleph_0$, and G is (C_4, P_4)-free. But let $f: \beta_1 \times \beta \rightarrow \beta_1$ be such that for each $\beta' \in \beta_1$ the function $\lambda x \cdot f(\beta', x)$ is a bijection of β onto β'. Index the components of G with the denumerable ordinals, and their vertices with natural numbers. Color the n-th vertex of the β'-th component with $f(\beta', n)$. Each $\beta' < \beta_1$ is used as a color in the $(\beta'+1)$-th component. Since for each $\beta' < \beta_1$, $\lambda x \cdot f(\beta', x)$ is injective, this function defines a coloring with β_1 colors. Since $\lambda x \cdot f(\beta', x)$ is surjective for each $\beta' < \beta_1$, this function is a pseudo-Grundy coloring with \aleph_1 colors.

Acknowledgement

The author wishes to thank M. D. Safe and L. N. Grippo for useful discussions, D. Lara for her help and G. Araujo-Pardo for her assistance in carrying out this research.

The work was partially supported by CONACyT of Mexico, grant 166306 and 178395.

References

[1] G. Araujo-Pardo and C. Rubio-Montiel. The ω_ψ-perfection of graphs. Electron. Notes Discrete Math., 44:163–168, 2013.

[2] G. Araujo-Pardo and C. Rubio-Montiel. On ω_ψ-perfect graphs. (In review), 2013.

[3] C. Berge. Färbung von Graphen, deren sämtliche bzw. ungerade Kreise starr sind. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Natur. Reihe, 10:114, 1961.

[4] C. Berge. Graphs and hypergraphs. North-Holland Publishing Co., Amsterdam, 1973.

[5] C. Berge. Perfect graphs. In Studies in graph theory, Part I, pages 1–22. Studies in Math., Vol. 11. Math. Assoc. Amer., Washington, D. C., 1975.

[6] G. Chartrand and P. Zhang. Chromatic graph theory. Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, 2009.

[7] C.A. Christen and S.M. Selkow. Some perfect coloring properties of graphs. J. Combin. Theory Ser. B, 27(1):49–59, 1979.

[8] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theorem. Ann. of Math. (2), 164(1):51–229, 2006.
[9] M.C. Golumbic. Trivially perfect graphs. *Discrete Math.*, 24(1):105–107, 1978.

[10] M.C. Golumbic. *Algorithmic graph theory and perfect graphs*. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1980.

[11] P.M. Grundy. Mathematics and games. *Eureka*, 2:6–8, 1939.

[12] L. Lovász. A characterization of perfect graphs. *J. Combinatorial Theory Ser. B*, 13:95–98, 1972.

[13] L. Lovász. Normal hypergraphs and the perfect graph conjecture. *Discrete Math.*, 2(3):253–267, 1972.

[14] E.S. Wolk. The comparability graph of a tree. *Proc. Amer. Math. Soc.*, 13:789–795, 1962.

[15] E.S. Wolk. A note on “The comparability graph of a tree”. *Proc. Amer. Math. Soc.*, 16:17–20, 1965.

[16] J. Yan, J. Chen, and G.J. Chang. Quasi-threshold graphs. *Discrete Appl. Math.*, 69(3):247–255, 1996.

[17] V. Yegnanarayanan. Graph colourings and partitions. *Theoret. Comput. Sci.*, 263(1-2):59–74, 2001.