Research Article

Fourth-Order Hankel Determinants and Toeplitz Determinants for Convex Functions Connected with Sine Functions

Farah Zulfiqar, 1 Sarfraz Nawaz Malik, 1 Mohsan Raza, 2 and Md. Shajib Ali, 3

1 Department of Mathematics, COMSATS University Islamabad, Wah Campus, Wah Cantt, Pakistan
2 Department of Mathematics, Government College University, Faisalabad, Pakistan
3 Department of Mathematics, Islamic University, Kushtia 7003, Bangladesh

Correspondence should be addressed to Md. Shajib Ali; shajib_301@yahoo.co.in

Received 24 December 2021; Revised 6 February 2022; Accepted 6 April 2022; Published 25 May 2022

1. Introduction

Let the family of all functions f be denoted by A, which are analytic in an open unit disc $D = \{z \in \mathbb{C} : |z| < 1\}$ with Taylor series expansion:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad (z \in D),$$

and S represent a family of functions $f \in A$ which are univalent in D. Let S^*, C, and K_g denote the families of starlike, convex, and close-to-convex functions, respectively, and they are defined as

$$S^* = \left\{ f \in S : \Re \left(\frac{zf'(z)}{f(z)} \right) > 0, \quad (z \in D) \right\},$$

$$C = \left\{ f \in S : \Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > 0, \quad (z \in D) \right\},$$

$$K_g = \left\{ f \in S : \Re \left(\frac{zf'(z)}{g(z)} \right) > 0, \quad \text{for } g \in S^*, \quad (z \in D) \right\}.$$

Let P denote the family of all analytic functions p of the form

$$p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n, \quad z \in D,$$

with the positive real parts in D. As the n^{th} coefficient for the functions belonging to the family is bounded by n, this bound helps in the study of geometric properties of functions $f \in S$. Specifically, the second coefficient a_2 helps in finding the distortion and growth properties of a normalized univalent function. Likewise, the problems involving power series with integral coefficients and investigating the singularities are successfully handled by using Hankel determinants. Pommerenke [1, 2] introduced the idea of Hankel determinants, and he defined those for univalent functions $f \in S$ of form (7) as follows:

$$H_{q,n}(f) = \begin{vmatrix}
 a_n & a_{n+1} & \cdots & a_{n+q-1} \\
 a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2}
\end{vmatrix}.$$
In the theory of analytic functions, finding the upper bound of $|H_{q,n}(f)|$ is one of the most studied problems. Several researchers found the above-mentioned bound for different subfamilies of univalent functions for fixed values of q and n. A few remarkable contributions in this regard are included here for reference. For the subfamilies S^*, C, and $K_2 = R$ (the class of functions with bounded turnings) of the set S, the sharp bounds of $|H_{q,n}(f)|$ were investigated by Janteng et al. [3, 4]. They proved the bounds as follows:

$$|H_{q,n}(f)| \leq \begin{cases}
1 & \text{for } f \in S^*, \\
\frac{1}{8} & \text{for } f \in C, \\
\frac{4}{9} & \text{for } f \in R.
\end{cases}$$

(5)

The accurate estimate of $|H_{q,n}(f)|$ was obtained by Krishna et al. [5] for the family of Bazilevic functions. For subfamilies of S, more studies regarding $H_{q,n}(f)$ can be seen in [6–12]. According to Thomas’ conjecture [13], if $f \in S$, then $|H_{q,n}(f)| \leq 1$, but it was shown by Li and Srivastava in [14] that this conjecture is not true for $n \geq 4$. Also, Raducanu and Zaprawa [15] showed that it is false for $n = 2$. Rather, they showed that max$|H_{q,n}(f)|$: $f \in S \geq 1.175$. As compared to $|H_{q,n}(f)|$, estimation of $|H_{q,n}(f)|$ is much more difficult. Babalola [16] published the first paper on $H_{q,n}(f)$ in 2010 in which he obtained the upper bound of $|H_{q,n}(f)|$ for subfamilies of S^*, C, and R. After that, for different subfamilies of analytic and univalent functions, few other authors [17–25] also published their work regarding $|H_{q,n}(f)|$. Zaprawa [26] improved the results of Babalola [16] recently in 2017, by showing

$$|H_{q,n}(f)| \leq \begin{cases}
1 & \text{for } f \in S^*, \\
\frac{49}{540} & \text{for } f \in C, \\
\frac{41}{60} & \text{for } f \in R.
\end{cases}$$

(6)

He claimed that these bounds are not sharp. Furthermore, he considered the subfamilies of S^*, C, and R for sharpness, having functions with m-fold symmetry, and obtained the sharp bounds. Arif et al. [27–30] made a remarkable contribution in studying the fourth- and fifth-order Hankel determinants $H_{q,n}(f)$ and $H_{q,n}(f)$ for certain subfamilies of univalent functions. Mashwani et al. [31] have studied the fourth-order Hankel determinant for starlike functions related to sigmoid functions, whereas Kaur et al. [32] studied the same problem for a subclass of bounded turning functions. Wang et al. [33] studied the problem for bounded turning functions related to the lemniscate of Bernoulli. Recently, Zhang and Tang [34] have studied the fourth-order Hankel determinant for the class of starlike functions related to sine functions. Motivated by the above-mentioned work, we intend to add some contributions to the fourth-order Hankel determinant for the class of convex functions associated with sine functions. Recently, the following class C_ξ of convex functions was introduced, which is associated with the sine function:

$$C_\xi = \left\{ f \in A : \left(\frac{z f'(z)^2}{f(z)}\right)^\xi - 1 + \sin z \ (z \in D) \right\},$$

(7)

where ξ is a subordination symbol and it also implies that the region defined by $(z f'(D))^\xi/f'(D)$ lies in the eight-shaped region in the right-half plane. For different subfamilies of univalent functions, growth of $H_{q,n}(f)$ has been studied for fixed values of q and n. Particularly, we have

$$H_{q,1}(f) = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\
a_2 & a_3 & a_4 & a_5 \\
a_3 & a_4 & a_5 & a_6 \\
a_4 & a_5 & a_6 & a_7\end{bmatrix} \ (n = 1, q = 4).$$

(8)

Also, Thomas and Halim defined the symmetric Toeplitz determinant $T_{q,n}(f)$ as follows:

$$T_{q,n}(f) = \begin{bmatrix} a_n & a_{n+1} & \cdots & a_{n+q-1} \\
a_{n+1} & a_n & \cdots & a_{n+q} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_n\end{bmatrix} \ (n \geq 1, q \geq 1).$$

(9)

The Toeplitz determinants are closely related to Hankel determinants. As Hankel matrices consist of constant entries along the reverse diagonal, the Toeplitz matrices consist of constant entries along the diagonal.

As a special case, when $n = 1$ and $q = 4$, we have

$$T_{4,2}(f) = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\
a_2 & a_1 & a_4 & a_3 \\
a_3 & a_4 & a_1 & a_2 \\
a_4 & a_3 & a_2 & a_1\end{bmatrix}.$$

(10)

In this paper, we intend to find the upper bound of $|H_{q,1}(f)|$ and $|T_{q,2}(f)|$ for the class of functions defined by (6). The following sharp results would be useful for investigating our main results.

Lemma 1. If $p \in P$ and p is of form (2), then for each $n, k, m, l \in \mathbb{N} = \{1, 2, \ldots\}$, the following sharp inequalities hold:

$$|c_n| \leq 2,$$

(11)

$$|c_{n+k} - \mu c_k| \leq 2, \text{ for } 0 \leq \mu \leq 1, \text{ elsewehere},$$

(12)

$$|c_{n+2k} - c_k|^2 \leq 6,$$

(13)

$$|c_{n+k} - c_{m+l}| \leq 4, \text{ for } n + k = m + l.$$
Inequalities (10)–(12) are proved in [26, 35, 36], respectively. Inequality (13) is obvious.

Libera and Złotkiewicz proved the following result [37].

Lemma 2. Let \(p \in P \) be of form (2). Then, the modulus of the expressions
\[
A_1 = c_1^3 - 2c_1c_3 + c_5,
A_2 = c_1^4 + c_2^2 + 2c_1c_3 - 3c_1^2c_2 - c_4,
A_3 = c_5 + 3c_1c_2^2 + 3c_1^2c_3 - 4c_1^3c_2 - 2c_1c_4 - 2c_2c_3 + c_5,
A_4 = c_1^6 + 6c_1^2c_2^2 + 4c_1^3c_3 + 2c_1c_5 + 2c_2c_4 + c_3^2
\]
\[
- c_2^2 - 5c_1^4c_2 - 3c_1^3c_4 - 6c_1c_2c_3 - c_6
\]
are all bounded by 2.

2. Main Results

2.1. **Bounds of \(|H_{4,1}(f)|\) and \(|T_{4,1}(f)|\) for the Set \(C_5\) Connected with the Sine Function.** Following (7), we can write \(H_{4,1}(f)\), where \(f \in S \) and \(a_1 = 1 \), as
\[
H_{4,1}(f) = a_7H_{3,1}(f) - a_8R_1 + a_9R_2 - a_4R_3,
\]
where
\[
H_{3,1}(f) = (a_3a_5 - a_4^2) - a_2(a_3a_5 - a_3a_4) + a_3(a_2a_4 - a_5^2)
\]
and \(R_1, R_2, \) and \(R_3 \) are determinants of order 3, given by
\[
R_1 = (a_3a_4 - a_3a_5) - a_2(a_3a_5 - a_3a_4) + a_4(a_2a_4 - a_5^2),
\]
\[
R_2 = (a_4a_6 - a_2^2) - a_2(a_4a_6 - a_4a_5) + a_3(a_2a_5 - a_4^2),
\]
\[
R_3 = a_2(a_4a_6 - a_2^2) - a_3(a_4a_6 - a_4a_5) + a_4(a_2a_5 - a_4^2).
\]
Also,
\[
T_{4,1}(f) = a_1C_1 - a_2C_2 + a_3C_3 - a_4C_4,
\]
where
\[
C_1 = a_1(a_1^2 - a_2^2) - a_4(a_4a_1 - a_2a_3) + a_3(a_2a_2 - a_4a_3),
\]
\[
C_2 = a_2(a_1^2 - a_2^2) - a_4(a_4a_1 - a_2a_3) + a_3(a_2a_2 - a_4a_3),
\]
\[
C_3 = a_3(a_1a_3 - a_3a_5) - a_3(a_1a_2 - a_4a_3) + a_4(a_2a_2 - a_3a_4),
\]
\[
C_4 = a_3(a_1a_3 - a_3a_5) - a_3(a_1a_2 - a_4a_3) + a_4(a_2a_2 - a_3a_4).
\]
As from (7), \(H_{4,1}(f)\) is a polynomial of six coefficients of function \(f\) of the given class, these coefficients are taken as \(a_2, a_3, a_4, a_5, a_6, \) and \(a_7\). However, there is a connection between these coefficients and the coefficients of function \(p\) in the class \(P\) in many problems. Consider that \(f \in C_5\) has form (1); then, there is a Schwartz function \(w(z)\) with \(w(0) = 0\) and \(|w(z)| < 1\), such that
\[
(zf'(z))'/f'(z) = 1 + \sin(w(z)).
\]
Now,
\[
(zf'(z))'/f'(z) = 1 + \sum_{n=2}^{\infty} n^2 a_n z^{n-1}
\]
\[
= 1 + 2a_2z + (6a_3 - 4a_2^2)z^3
\]
\[
+ (-18a_3a_5 + 12a_4 + 8a_3^2)z^5
\]
\[
+ (-32a_4a_6 + 20a_5 - 18a_5^2 + 48a_3a_5^2 - 16a_4^2)z^7
\]
\[
+ (50a_5a_7 + 30a_6 - 30a_5a_6)z^9
\]
\[
+ 80a_6a_5^2 + 90a_5a_7^2 - 120a_5a_6^2 + 32a_5^2)z^{11} + \ldots
\]
Consider
\[
p(z) = \frac{1 + w(z)}{1 - w(z)} = 1 + c_1z + c_2z^2 + c_3z^3 + \cdots.
\]
Since we have \(p \in P\),
\[
w(z) = \frac{p(z) - 1}{2 + c_1z + c_2z^2 + c_3z^3 + \ldots}.
\]
Also,
\[
1 + \sin(w(z)) = 1 + \frac{1}{2} c_1z + \left(\frac{1}{2} c_1^2 - \frac{1}{4} c_3^2\right)z^2 + \left(\frac{1}{2} c_1^3 - \frac{1}{2} c_1 c_2 + \frac{5}{48} c_4^2\right)z^3
\]
\[
+ \left(\frac{5}{16} c_1^3 c_2 - \frac{1}{32} c_1^4 + \frac{1}{2} c_1^2 c_3^2 - \frac{1}{2} c_1 c_2 c_4 - \frac{1}{16} c_3^2\right)z^4
\]
\[
+ \left(\frac{1}{3840} c_1^5 c_2^2 - \frac{5}{16} c_1^3 c_3^2 - \frac{1}{8} c_1^2 c_2 c_4 - \frac{1}{16} c_3^4 + \frac{5}{16} c_2^2 c_4\right)z^5
\]
\[
+ \left(-\frac{1}{2} c_1 c_4 + \frac{1}{2} c_2 c_4\right)z^6 + \ldots
\]
On comparing coefficients between (25) and (28), we get
\[
a_2 = \frac{1}{4} c_1^2,
\]
\[
a_3 = \frac{1}{12} c_2^2,
\]
\[
a_4 = \frac{1}{96} c_1 c_2 - \frac{1}{576} c_1^3 + \frac{1}{24} c_3^2,
\]
\[
a_5 = \frac{1}{960} c_1 c_2^2 + \frac{1}{1152} c_1^2 c_3 - \frac{1}{120} c_1^3 c_4 - \frac{1}{160} c_1^3 + \frac{1}{60} c_4^2,
\]
\[
a_6 = \frac{11}{28800} c_1^5 c_2 + \frac{71}{34560} c_1^3 c_3^2 + \left(\frac{1}{1152} c_2^2 - \frac{1}{160} c_1 c_4 - \frac{7}{720} c_2 c_4 + \frac{1}{60} c_4\right).
\]
and
\[
a_r = \frac{2399}{14515200} c_1^6 - \frac{347}{241920} c_2^4 + \frac{1}{1756} c_3^4 + \left(\frac{1}{3360} c_4^4 + \frac{29}{16128} c_2^2 \right) c_2^2 \\
\left(\frac{1}{210} c_5 + \frac{23}{10080} c_3^2 c_1 \right) c_1 + \frac{1}{84} c_6 - \frac{1}{252} c_5^2 + \frac{5}{8064} c_3^2 - \frac{5}{672} c_1 c_2^2. \tag{29}
\]

By using these coefficients, we can write (16)–(19) in the following way:

\[
H_{3,1}(f) = -\frac{19}{331776} c_1^6 + \frac{1}{34560} c_2^4 + \frac{23}{34560} c_3^4 + \left(-\frac{11}{46080} c_2^2 - \frac{1}{640} c_4^2 \right) c_2^2 \\
+ \frac{11}{5760} c_1 c_2 c_3 + \frac{3}{12} \left(\frac{1}{40} c_4^2 - \frac{1}{160} c_2^2 \right) - \frac{1}{1728} c_3^2 - \frac{1}{576} c_3^2. \tag{30}
\]

\[
R_1 = \frac{289}{11059200} c_1^7 - \frac{29}{230400} c_2 c_1^5 - \frac{1}{11520} c_3 c_1^4 + \left(\frac{187}{1658860} c_2^2 + \frac{1}{2304} c_4^2 \right) c_1^3 \\
+ \left(\frac{1}{576} c_2 c_3 - \frac{1}{960} c_5 \right) c_1^2 + \frac{1}{12} \left(\frac{1}{1152} c_2^2 - \frac{1}{160} c_4^2 \right) + \frac{1}{1280} c_2^2 + \frac{1}{32} \left(\frac{1}{40} c_4^2 - \frac{1}{160} c_2^2 \right) + \frac{1}{13824} c_2^3 c_1^2 \\
+ \frac{12}{720} c_2 c_3 + \frac{1}{60} c_5 \right) c_1^2 - \frac{1}{3456} c_2^2 + \frac{1}{24} c_1 \left(\frac{1}{40} c_4^2 - \frac{1}{160} c_2^2 \right) \\
+ \frac{12}{720} c_2 c_3 + \frac{1}{60} c_5 \right) c_1^2 - \frac{1}{3456} c_2^2 + \frac{1}{24} c_1 \left(\frac{1}{40} c_4^2 - \frac{1}{160} c_2^2 \right). \tag{31}
\]

\[
R_2 = -\frac{31}{66355200} c_1^8 + \frac{101}{12441600} c_2 c_1^6 + \frac{31}{2764800} c_3 c_1^5 + \left(\frac{197}{4147200} c_2^2 - \frac{1}{23040} c_4^2 \right) c_1^4 \\
+ \left(\frac{7}{6400} c_2 c_3 - \frac{1}{34560} c_5 \right) c_1^3 + \left(\frac{1}{6400} c_2^2 + \frac{38400}{7} c_4^2 c_1 c_4 - \frac{921600}{37} c_1^2 \right) c_1^2 \\
+ \left(\frac{5400}{c_2^2 c_3 - \frac{1}{1920} c_5 c_1 c_4 + \frac{1}{1440} c_1 c_5 + \frac{1}{14400} c_2 c_2 c_4 - \frac{1}{1600} c_4 \right) c_1^2 \\
- \frac{19}{230400} c_1^2 + \frac{1}{34560} c_2^2 c_3. \tag{32}
\]

By using these coefficients, we can write (16)–(19) in the following way:

\[
C_1 = -\frac{1}{331776} c_1^6 - \frac{1}{9216} c_1 c_2 + \frac{1}{6912} c_1 c_3 + \left(-\frac{1}{16} - \frac{5}{9216} c_2^2 \right) c_2^2 \\
+ \frac{1}{384} c_1 c_2 c_3 + \frac{1}{576} c_3^2 - \frac{1}{144} c_3^2. \tag{34}
\]

\[
C_2 = \frac{1}{1327104} c_1^7 + \frac{1}{110592} c_1 c_2^5 c_2 - \frac{1}{27648} c_1 c_4^2 c_3 + \left(\frac{1}{64} - \frac{1}{36864} c_2^2 + \frac{1}{2304} c_2 \right) c_1 \\
+ \frac{1}{3456} c_1 c_2 c_3 + \left(\frac{1}{4} + \frac{1}{288} c_2^2 + \frac{1}{2304} c_2 \right) c_1 \\
- \frac{1}{144} c_3 c_2 c_2. \tag{35}
\]

\[
C_3 = -\frac{1}{3981312} c_1^6 c_2 + \left(-\frac{1}{1152} - \frac{1}{331776} c_2^2 \right) c_1^4 \\
+ \frac{1}{82944} c_1 c_2 c_3 + \left(-\frac{1}{110592} c_2^2 - \frac{1}{96} c_2^2 \right) c_1^2 + \left(\frac{1}{48} c_3 + \frac{1}{13824} c_2 c_2 c_2 \right) c_1 + \frac{1}{1728} c_3^3 - \frac{1}{6912} c_2 c_2 - \frac{1}{12} c_2. \tag{36}
\]

Similarly, in case of Toeplitz determinants,
By using the previous computations, we prove the following.

Theorem 1. If the function \(f \in C_5 \) and is of form (1), then

\[
|H_{41}(f)| \leq \frac{112267159597}{1504935936000} = 0.0074599\ldots \quad (38)
\]

Proof. As \(f \in C_5 \), then by using (30)–(33) in (15), we get

\[
H_{41}(f) = \frac{38723}{481579499520000}e_1^{12} + \frac{23}{2322432}e_3^4 - \frac{1159}{6967296000}e_2^6
\]

\[
- \frac{4169}{6967296000}e_2^{11} + \frac{19}{27869184}e_4^6
\]

\[
- \frac{19}{1451526}e_2^{10} + \frac{1}{48384}e_3^8 - \frac{2539}{6967296}e_4^6
\]

\[
+ \frac{57600}{17920000}e_2^9 - \frac{17}{64000}e_3^4 + \frac{1}{20736}e_4^2
\]

\[
+ \frac{713}{4838400}e_2^8 + \frac{11}{483840}e_3^6 - \frac{580608000}{580608000}e_4^4 + \frac{1}{1036800}e_2^6
\]

\[
+ \frac{53}{3888400}e_2^7 + \frac{23}{2903040}e_3^4 + \frac{247}{580608000}e_4^2 + \frac{589}{103219200}e_2^3
\]

\[
+ \frac{1}{2880}e_2^6 - \frac{913}{348364800}e_3^2 - \frac{43}{2419200}e_4^4 + \frac{3019}{103219200}e_2^4
\]

\[
- \frac{1}{3870720}e_2^5 + \frac{1}{9676800}e_3^8 - \frac{1}{19676800}e_4^2 + \frac{1}{139345920}e_2^3
\]

\[
+ \frac{1073}{580608000}e_2^2 - \frac{11077}{5573836800}e_3^4 - \frac{1}{40320}e_4^6 + \frac{1}{3628800}e_2^4
\]

\[
- \frac{1919}{1741824000}e_2^3 - \frac{29}{2073600}e_3^6 - \frac{1}{5376}e_4^8 - \frac{30703}{4644864000}e_2^4
\]

\[
+ \frac{185313}{41803776000}e_2^2 - \frac{4699}{2322432000}e_3^2 - \frac{17}{2419200}e_4^6 - \frac{1}{3780}e_2^4
\]

\[
- \frac{136291}{20065812480000}e_3^8 - \frac{14201}{1003290624000}e_4^6 + \frac{67139}{1337712083200}e_2^6
\]

\[
- \frac{40073}{100329062400}e_2^4 + \frac{6849}{2989728000}e_3^4 - \frac{85083}{66886416000}e_4^4 + \frac{391}{217728000}e_2^2
\]

\[
(39)
\]
After rearranging the terms, we get

\[
H_{41}(f) = \frac{1}{4815794995200000} \left[38723c_1^{12} - 3270984c_1^{10}c_2 + 6816480c_1^9c_3^2 \right. \\
+ (21470040)c_2^2 \\
- 4656960c_1c_2^2 + (288167280c_2 - 95705280c_2c_1)c_1^2 + (-328320000c_6) \\
+ 436440960c_2^3 - 19235040c_2^3 + 867456000c_4c_2 - (-67505280c_3c_4) \\
- 1080544640c_2c_3^4 + 1954160640c_2c_2^2c_3^2 + (613499760c_2^2 + 165888000c_2c_2^2) \\
- 3183287040c_3c_4 + 167961600c_2^2 - 132710400c_3c_5 + 692375040c_2c_3^2c_4 \\
+ (-1644226560c_3^2 + 134286360c_2c_3c_4 + 2250005760c_2c_3c_4) \\
+ 3815424000c_6c_3 - 3384115200c_5c_4 - 1262131200c_3^2c_4c_5 \\
+ (8306755200c_3^2 - 8957952000c_6c_4 - 7166361600c_5c_2c_3 - 1368576000c_6c_2^2 \\
+ 840544960c_4c_2^2 + 751727640c_2c_3^3 - 864829440c_4^2 + 974384640c_2c_3^2 \\
+ 889989120c_2c_4^2)c_1^2 + (3334348800c_5c_2^2 + 7524676800c_2c_3 \\
+ 10948608000c_6c_2c_3 + 2048716800c_2c_3^3 - 7096688640c_2c_2c_4 \\
- 8957952000c_5c_2c_4 - 530565120c_5c_4^2 - 8559820800c_5c_3c_4 \\
- 1175040000c_2c_4^2 + 2105948160c_2c_4 - 12740198400c_2c_4 \\
+ 11943936000c_6c_2c_4 + 16721510400c_5c_3c_4 - 7524679680c_2^2 + 4769280000c_4^2 \\
- 80110080c_5^2 - 9953280000c_6c_3^2 - 11147673600c_4c_3^2 + 13470105600c_2c_3c_5 \\
- 6303744000c_6c_2^2 + 2687385600c_2c_4^2 \right].
\]

\[
H_{41}(f) = \frac{1}{4815794995200000} \right\}
\]

\[
- 38723A_0(c_2 - c_1^2)^3 - 2961200c_2A_2^2 + 6661588c_1A_2A_6 \\
- 448912A_6(c_3 - c_1c_4)^2 - 45407915c_1A_1A_5 - 28823872c_1 \\
A_6\left(c_5^2 - \frac{1}{288238726}c_2c_3 \right) - 328281275A_6\left(c_6 - \frac{403543209}{328281275}c_1c_3 \right) - A_6\left(c_6 - 827940501c_2c_4 \right) - A_6 \\
\left(c_6 - \frac{403543209}{328281275}c_1c_3 \right) + 519121748c_3A_2\left(c_5^2 - \frac{1592920565}{519121748}c_1c_3 \right) + 635537532 \\
c_3A_4\left(c_4 - c_1c_4 \right) - 1475634554c_2A_4\left(c_6 - \frac{2857592366}{1475634554}c_1c_3 \right) - 371563976c_5A_3 \\
c_4^2 - c_4c_5 + 158880018c_4^2A_3c_1 + 769228159c_4^2A_3c_1 + 1052977475c_4^2A_3c_1 \\
+ 5135210696\left(c_2 - c_1^2 \right)\left(c_4 - c_1c_3 \right)\left(c_6 - \frac{3289911688}{5135210696}c_1c_3 \right) - 3872726611\left(c_2 - c_1^2 \right) \\
\left(c_4 - \frac{2520764034}{3872726611}c_1c_3 \right)\left(c_6 - c_1c_5 \right) - 4015593821A_3c_2c_4c_6 - 4121711992A_3c_2c_3^2 \\
- 8680311746c_4c_1^2c_2^2 - \frac{11237134463}{8680311746}c_2c_4 - 24834316c_1^2c_2^2.
\]
After using triangular inequalities and lemmas, we get the following expression:

\[
\left| H_{4,1}(f) \right| = \frac{1}{481579499520000} \times \\
\left\{ (38723 \times 2) \times 2^3 + 4(2961200 \times 2) + 4 \times (6661588 \times 2) + (448912 \times 2) \times 2^2 + 2 \times (45407915 \times 2) \times 2 \times 2 \times (288238726 \times 2) \times 2 + \frac{957610286}{328281275} \times (328281275 \times 2) + 2 \times 2 \times (1475634554 \times 2) \times 2 + 4239550178 \times 737817277 + 371563976 \times (2 \times (2 \times 2) + 158880018 \times (4) \times (2 \times 2) \times (2) \times (2) + 1052977475 \times (4) \times (2) \times (2) \times (2) + 5135210696 \times (2) \times (2) \times \frac{51593310}{91700191} + 872726611 \times (2) \times (2) \times (2) + 4015593821 \times (16) + 4121711992 \times (32) + 8680311746 \times (8) \times \frac{13793957180}{4340155873} + 24834316 \times (16) \times \frac{11745217202}{6208579} + 8937232652 \times (2) \times (2) \times (2) + 1898862450 \times (32) \times (2) \times (2) + 1305360709 \times (32) \times (2) \times (2) + 17052974791 \times (8) \times (2) + 13635892999 \times (8) \times (2) + (4485418959 \times (4) \times (2) + 2843921897 \times (16) \times (2) + 9215242838 \times (4) \times (2) + 7632171375 \times (16) + 2720144201 \times (32) + 17732972519 \times (8) + 328281277 \times (2) \times (2) + 7524679680 \times (2) + 31507777 \times (512) + 1387142442 \times (2) \times (2) + 7524679680 \times (8) + 31507777 \times (512) + 1387142442 \times (16)). \right. \\
\nonumber
\]
\[|H_{4,1}(f)| \leq \frac{3592549107104}{48157949520000} \approx 0.0074599, \quad \text{(43)} \]

\[|T_{4,1}(f)| \leq \frac{501434459}{286654464} = 1.7493. \quad \text{(44)} \]

which completes the proof. \(\square\)

Theorem 2. If the function \(f \in C_s\) and is of form (1), then

\[T_{4,1}(f) = 1 + \frac{1}{256}c_1^4 - \frac{1}{288}c_1^2 - \frac{1}{165888}c_1^4 - \frac{1}{8}c_1^2 - \frac{1}{72}c_1^2 + \frac{5}{768}c_1^3c_2c_3 + \frac{1}{9216}c_1^3c_2c_3 \]

\[+ \frac{1}{3456}c_1^3c_3 - \frac{1}{221184}c_1^4c_2 + \frac{1}{497664}c_1^3c_2^2c_3 - \frac{1}{5308416}c_1^3c_2c_3^2 \]

\[+ \frac{1}{82944}c_1^3c_2c_3 + \frac{1}{331776}c_1^2c_2^3 + \frac{1}{884736}c_1^2c_2c_3^2 - \frac{1}{10616832}c_1^2c_2c_3^3 \]

\[- \frac{1}{63700992}c_1^7c_2c_3 + \frac{1}{2654208}c_1^4c_2c_3^2 - \frac{13}{4608}c_1^2c_2^2 + \frac{1}{55296}c_1^5c_3 \]

\[- \frac{1}{73728}c_1^4c_2^2 - \frac{1}{4608}c_1^2c_3^2 - \frac{1}{23887872}c_1^4c_2 - \frac{1}{1990656}c_1^4c_2^2 \]

\[- \frac{1}{663552}c_1^2c_2^3 + \frac{1}{41472}c_1^2c_3^2 + \frac{1}{84934656}c_1^4c_2^2 + \frac{1}{127401984}c_1^6c_3^2 \]

\[+ \frac{1}{509607936}c_1^8c_2 + \frac{1}{4586471424}c_1^4c_2 + \frac{1}{1146617856}c_1^9c_3 + \frac{1}{31850496}c_1^6c_3^2 \]

\[- \frac{1}{1990656}c_1^3 - \frac{1}{2654208}c_1^8 + \frac{1}{20736}c_1^4 + \frac{1}{110075314176}c_1^{12}. \quad \text{(45)} \]

Rearranging the terms, we may write

\[T_{4,1}(f) = \frac{1}{110075314176}\{c_1^{12} + 24c_1^4c_2 - 96c_1^2c_3 + (-41472 + 216c_2^2)c_1^8 - 1728c_1^7c_2c_3 \]

\[+ (-663552 + 3456c_2^2 - 497664c_2 + 864c_2^3 - 4608c_2^3)c_1^6 \]

\[+ (-10368c_2^3c_3 + 1990656c_3)c_1^5 \]

\[+ (-1492992c_2^2 + 41472c_2^3c_3 - 55296c_2^3 - 39813120c_2 + 1296c_2^4 + 429981696)c_1^4 \]

\[+ (11943936c_2c_3 + 31850496c_3 - 55296c_3^2 - 20736c_3^2c_3 + 221184c_3c_3)c_1^3 \]

\[+ (-310542336c_2^2 - 13759414272 + 124416c_2^2c_2 - 165888c_2^2 - 23887872c_2^2)c_1^2 \]

\[+ (1327104c_2^2c_3 + 955514880c_2c_3 - 331776c_2c_3)c_1 \]

\[- 1528823808c_2^2 - 382205952c_2^3 + 331776c_2^4 + 5308416c_2^4 \]

\[+ 110075314176 - 2654208c_2^2c_3). \]
After rearranging the terms, we get

\[
T_{4,1}(f) = \frac{1}{110075314176} \left\{ -A_6(c_2 - c_1)^3 - 100A_3A_6(c_3 - \frac{32}{100}c_1c_2) - 2c_1A_6(c_6 - \frac{3}{2}c_1c_4) \\
- 2570c_1c_2A_6(c_5 - \frac{416}{2570}c_1c_2) - 41472A_3A_5 + 2156544A_5(c_3 - \frac{746496}{2156544}c_1c_2) \\
- 22704c_2^2A_5(c_3 - \frac{2467}{22704}c_1c_2) - 312c_4A_5(c_3 - \frac{100}{312}c_1c_2) + 29c_2A_4(c_6 - 68\frac{c_1c_5}{29}) \\
+ (\frac{-663552 + c_6 - 4608c_4^2 + 3955c_3^2}{A_6} + 22311936c_3A_5(c_3 - \frac{4022784}{22311936}c_1c_2) \\
- 902c_2A_5(c_5 - \frac{1389}{902}c_1c_4) - 12A_5c_4(c_5 - 9\frac{c_1c_4}{12}) - 104c_3A_4(c_6 - 208\frac{c_1c_5}{104}) \\
- 70616c_2A_4(c_3 - \frac{69470}{70616}c_1c_2) - 102891c_2A_4(c_3 - \frac{9058}{102891}c_1c_2) + 239616c_2^2A_4 \\
(c_3 - \frac{78336}{239616}c_1c_2) + 41472A_4(c_3 - \frac{82944}{41472}c_1c_4) + 12498c_2A_4(c_3 - 8344\frac{c_1c_4}{12498}) \\
+ (5c_6c_2 - 4313088c_2 + 429981696)A_4 + 34504704c_3A_3 - 633c_2^2c_1(c_3 - \frac{212}{633}c_1c_2) \\
+ 4313088c_5c_1c_1(c_4 - \frac{30233088}{4313088}c_1c_3) - 188c_5c_2c_1(c_4 - \frac{5216}{188}c_1c_3) + 1857024 \\
= \frac{c_3}{1857024}c_1^2 = \frac{294912}{1857024}c_1c_2 - 144138c_2^2c_1(c_3 - \frac{11076}{144138}c_1c_2) - 859963392c_1. \\
(c_3 - \frac{1289945088}{859963392}c_1c_2) - 4c_6c_1(c_5 - \frac{6}{4}c_1c_4) - 517010c_2c_1(c_3 - \frac{293955}{517010}c_1c_2) \\
+ 746496c_2c_1(c_5 - \frac{1499292}{746496}c_1c_4) + 9216c_2c_1(c_3 - \frac{13824}{9216}c_1c_4) - 2608c_6c_2c_1 \\
(c_3 - \frac{451}{2608}c_1c_2) + 40974336c_2c_1(c_3 - \frac{6054912}{40974336}c_1c_2) - 40985c_2^2c_1 \\
(c_3 - \frac{6072}{40985}c_1c_2) + 1106804736c_1c_1(c_3 - \frac{435953664}{1106804736}c_1c_2) \\
+ (4c_3^2 - 1990656c_4 - 1375914272)c_1 + 23606c_2c_5(c_3 - \frac{4203}{23606}c_1c_2) + 3958c_3^2 \\
(c_6 - \frac{7916}{3958}c_1c_2) - 14803776c_1(c_4 - \frac{42467328}{3958}c_2) + 429981696 \\
(c_4 - \frac{195880504}{429981696}c_2^2) + 9216c_2c_1(c_4 - \frac{4068}{9216}c_1c_2) + 32c_2c_6(c_4 - \frac{34}{32}c_1c_2) \\
+ 2c_2^2c_4(c_1 - \frac{1}{2}c_2) - 8334c_2c_1(c_4 - \frac{61339}{8334}c_1c_2) - 663552(c_6 - \frac{1327104}{663552}c_1c_2) \\
- 4608c_6c_2^2 + 398537c_4^2 + 5308416c_4^2 + 110075314176 - 416047104c_5^2 \\
+ 324c_4c_2c_3 + \frac{5}{6}c_6 - 18081792c_2c_5^2 - 2889216c_2c_5^2 - 2156544c_3c_5),
\]

(47)
After using the triangular inequality and above-stated lemmas, we get

\[
\left| T_{4,1}(f) \right| = \frac{1}{110075314176} \left(2 \times (2)^3 + 100 \times (2) \times (2) \times (2) + 2 \times (2) \times (2) \times (4) + 2570 \times (2) \times (2) \times (2) \times (2) + 2 \times (2) \times (2) \times (4) \times (2) \times (2) + 22704 \times (4) \times (2) \times (2) \times (2) + 312 \times (2) \times (2) \times (2) \times (2) \times (2) + 2 \times (2) \times (2) \times (4) \times (2) \times (2) + 1876 \times 451 + 12 \times (2) \times (2) \times (2) \times (2) + 104 \times (2) \times (2) \times (6) + 70616 \times (4) \times (2) \times (2) \times (2) + 102891 \times (8) \times (2) \times (2) \times (2) + 2 \times (239616 \times 4) \times 2 + 6 \times (41472 \times 2) + 2 \times (2) \times (12498 \times 2) \times (2) \times (2) + (5 \times 4 + 43130880 \times 2 + 429981696) \times 2 + 34504704 \times (2) \times (2) \times (2) + 2 \times (633 \times 4) \times 2 + 2 \times (4313088 \times 2) \times \frac{677}{26} + \frac{5122}{47} \times (2) \times (188 \times 2) \times (2) \times 2) + 2 \times (1857024 \times 8) \times 2 + 2 \times (144138 \times 16) \times 2 + 4 \times (359963392 \times 2) + 2 \times (4 \times 2) \times 4 \times 2 \times (746496 \times 2) \times 6 \times (9216 \times 4) \times 4 \times (2 \times (2608 \times 2)) \times (2) + 2 \times (20974366 \times 4) \times 2 + 2 \times (2 \times (40985 \times 4) \times 2) + 2 \times ((110680476 \times 2) \times 2) + (4 \times 4 + 1990656 \times 2 + 1375941427) \times 4 + 23606 \times (4) \times (2) \times (2) \times 3958 \times (4) \times (6) + 41803776 \times (2) \times \frac{130}{63} + 429981696 \times \frac{146}{9} + 9216 \times (8) \times (2) + 3 \times (2) \times (2) \times 9 \times (4) + 16 \times (2) \times 8334 \times (4) \times (2) \times \frac{114344}{4167} + 663552 \times (6) + 4608 \times (2) \times (4) + 398537 \times (16) + 5308416 \times (16) + 110075314176 \times 4 \times (4) + 32 \times (2) \times (2) \times (2) + (4) + 18081792 \times (2) \times (4) + 2889216 \times (4) \times (4) + 2156544 \times (2) \times (2)) \right).
\]

This reduces to

\[
\left| T_{4,1}(f) \right| \leq \frac{192550832256}{110075314176} = \frac{501434459}{286654464} \approx 1.7493 \ldots ,
\]

which completes the proof. \[\Box\]

2.2. Bounds of $|H_{4,1}|$ for the Set $C^{(3)}$. Let $n \in \mathbb{N} = \{1, 2, 3, \ldots \}$. Rotation of a domain \mathcal{D} about the origin through an angle of $2\pi/n$ containing \mathcal{D} onto itself is said to be n-fold symmetric. An analytic function f is n-fold symmetric in D if

\[
f(e^{2\pi i/n}z) = e^{2\pi i/n}f(z)
\]

holds for any $z \in D$. Denote $S^{(n)}$ as the set of n-fold univalent functions which have the following Taylor series form:

\[
f(z) = z + \sum_{k=1}^{\infty} a_{nk+1}z^{nk+1} \quad (z \in D).
\]

Denote $C^{(n)}$ as the subfamily of $S^{(n)}$ of n-fold symmetric convex functions. We can see that an analytic function f of form (52) belongs to the family $C^{(n)}$, if and only if

\[
\frac{(zf'(z))'}{f'(z)} = p(z),
\]

where $p \in P^{(n)}$. The family $P^{(n)}$ is defined as

\[
P^{(n)} = \left\{ p \in P: p(z) = 1 + \sum_{k=1}^{\infty} c_{nk}z^{nk}, \quad (z \in D) \right\}.
\]

Now, consider the following.

Theorem 3. Let $f \in C_{s}^{(3)}$ be of form (52). Then,

\[
|H_{4,1}(f)| \leq \frac{1}{6048} = 0.0016534.
\]
Proof. Let \(f \in \mathcal{C}^{(3)} \) of form (52). Consider the function \(p \in \mathcal{P}^{(3)} \) as
\[
p(z) = \frac{1 + w(z)}{1 - w(z)} = 1 + c_1 z^3 + c_6 z^6 + c_9 z^9 + \cdots. \tag{56}
\]
Now,
\[
w(z) = \frac{p(z) - 1}{p(z) + 1} \tag{57}
\]
The class \(\mathcal{C}^{(3)} \) which is associated with the sine functions can be written in the following form:
\[
\frac{zf''(z)}{f'(z)} = 1 + \sin(w(z)), \quad (z \in D). \tag{58}
\]
By expanding and equating them, we get the following expression:
\[
1 + 12a_1 z^3 + (42a_2 - 8a_1^2) z^6 + \cdots = 1 + \frac{1}{2} a_1 z^3 + (\frac{1}{2} c_6 - \frac{1}{4} c_3^2) z^6 + \cdots. \tag{59}
\]
This implies
\[
a_4 = \frac{1}{24} c_3, \tag{60}
\]
\[
a_7 = -\frac{1}{252} c_3^2 + \frac{1}{84} c_6. \tag{60}
\]
By using these coefficients, we can get \(H_{3,1} (f), R_1, R_2, \) and \(R_3 \) as
\[
H_{3,1} = -\frac{1}{576} c_3^3, \tag{61}
\]
\[
R_1 = 0, \quad R_2 = 0, \tag{61}
\]
\[
R_3 = -\frac{1}{13824} c_3^3. \tag{61}
\]
By using these values in \(H_{4,1} (f) \), we get
\[
H_{4,1} (f) = a_2 H_{3,1} (f) - a_3 R_1 + a_2 R_2 - a_4 R_3
\]
\[
= \left(-\frac{1}{252} c_3^3 + \frac{1}{84} c_6 \right) \left(-\frac{1}{576} c_3^3 \right) - \left(\frac{1}{24} c_3^3 \right) \left(-\frac{1}{13824} c_3^3 \right)
\]
\[
= \frac{23}{232243} c_3^3 - \frac{1}{48384} c_3^6 c_6
\]
\[
= \frac{1}{48384} c_3^6 - \frac{23}{48} c_3^4. \tag{62}
\]
The triangle inequality and the application of Lemma 1 lead us to
\[
|H_{4,1} (f)| = \frac{1}{6048} \approx 0.00016534, \tag{63}
\]
which completes the proof. \(\square \)

3. Conclusion

In this paper, we have found the upper bounds of fourth-order Hankel and Toeplitz determinants, followed by a review of such findings obtained so far for certain analytic functions. We have studied them for the convex functions associated with the function \(1 + \sin z \). A similar bound of the fourth-order Hankel determinant for 3-fold symmetric convex functions associated with \(1 + \sin z \) has also been investigated.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Authors’ Contributions

All authors contributed equally to this study and approved the final manuscript.

References

[1] C. Pommerenke, "On the coefficients and Hankel determinants of univalent functions," Journal of the London Mathematical Society, vol. 223, pp. 337–346, 1976.
[2] C. Pommerenke, "On the Hankel determinants of univalent functions," Mathematika, vol. 14, no. 1, pp. 108–112, 1967.
[3] A. Janteng, S. A. Halim, and M. Darus, "Hankel determinant for starlike and convex functions," International Journal of Mathematics and Analysis, vol. 1, no. 13, pp. 619–625, 2007.
[4] A. Janteng, S. A. Halim, and M. Darus, "Coefficient inequality for a function whose derivative has a positive real part," Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 2, p. 50, 2006.
[5] D. Vamshee Krishna and T. RamReddy, "Second Hankel determinant for the class of Bazilevic functions," Stud. Univ. Babes-Bolyai Math., vol. 60, no. 3, pp. 413–420, 2015.
[6] D. Bansal, "Upper bound of second Hankel determinant for a new class of analytic functions," Applied Mathematics Letters, vol. 26, no. 1, pp. 103–107, 2013.
[7] W. K. Hayman, "On the second Hankel determinant of univalent functions," Proceedings of the London Mathematical Society, vol. s3, no. 1, pp. 77–94, 1968.
[8] D. V. Krishna and T. Ramreddy, "Hankel determinant for starlike and convex functions of order alpha," Tbilisi Mathematical Journal, vol. 5, pp. 65–76, 2012.
[9] S. K. Lee, V. Ravichandran, and S. Supramaniam, "Bounds for the second Hankel determinant of certain univalent functions," Journal of Inequalities and Applications, vol. 2013, no. 1, p. 281, 2013.
[10] M.-S. Liu, J.-F. Xu, and M. Yang, "Upper bound of second Hankel determinant for certain subclasses of analytic functions," Abstract and Applied Analysis, vol. 2014, Article ID 603180, 10 pages, 2014.
[11] J. W. Noonan and D. K. Thomas, "On the second Hankel determinant of areally mean 7-valent functions," Transactions of the American Mathematical Society, vol. 223, pp. 337–346, 1976.
[12] H. Orhan, N. Magesh, and J. Yamini, “Bounds for the second Hankel determinant of certain bi-univalent functions,” *Turkish Journal of Mathematics*, vol. 40, no. 3, pp. 679–687, 2016.

[13] R. Parvatham and S. Ponnamusamy, *New Trends in Geometric Function Theory and Application*, World Scientific Publishing Company, London, UK, 1981.

[14] J.-L. Li and H. M. Srivastava, “Some questions and conjectures in the theory of univalent functions,” *Rocky Mountain Journal of Mathematics*, vol. 28, no. 3, pp. 1035–1041, 1998.

[15] D. Raducanu and P. Zaprawa, “Second Hankel determinant for close-to-convex functions,” *Comptes Rendus de l’Académie des Sciences*, vol. 355, no. 10, pp. 1063–1071, 2017.

[16] O. Barukab, M. Arif, M. Abbas, and S. K. Khan, “Sharp bounds of the coefficient results for the family of bounded turning functions associated with petal shaped domain,” *Journal of Function Spaces*, vol. 2021, Article ID 9991460, 2021.

[17] S. Altinkaya and S. Yalçin, “Third Hankel determinant for certain univalent functions,” *Mathematica Slovaca*, vol. 70, no. 2, pp. 319–328, 2020.

[18] M. Arif, L. Rani, M. Raza, and P. Zaprawa, “Fourth Hankel determinant for a subclass of starlike functions based on modified sigmoid,” *Journal of Function Spaces*, vol. 2021, Article ID 6116172, 10 pages, 2021.

[19] G. Kaur, G. Singh, M. Arif, R. Chinram, and J. Iqbal, “A study of third and fourth Hankel determinant problem for a particular class of bounded turning functions,” *Mathematical Problems in Engineering*, vol. 2021, Article ID 6687805, 8 pages, 2021.

[20] Z.-G. Wang, M. Raza, M. Arif, and K. Ahmad, “On the third and fourth Hankel determinants for a subclass of analytic functions,” *Bull. Malays. Math. Sci. Soc.*, vol. 45, pp. 323–359, 2022.

[21] H.-Y. Zhang and H. Tang, “A study of fourth-order Hankel determinants for starlike functions connected with the sine function,” *Journal of Function Spaces*, vol. 2021, p. 8, Article ID 9991460, 2021.

[22] C. Carathéodory, “Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen,” *Rendiconti del Circolo Matematico di Palermo*, vol. 32, no. 1, pp. 193–217, 1911.

[23] A. E. Livingston, “The coefficients of multivalent close-to-convex functions,” *Proceedings of the American Mathematical Society*, vol. 21, no. 3, p. 545, 1969.

[24] R. J. Libera and E. J. Złotkiewicz, “Early coefficients of the inverse of a regular convex function,” *Proceedings of the American Mathematical Society*, vol. 85, no. 2, pp. 225–230, 1982.