Supporting Information

Backbone N-amination promotes the folding of β-hairpin peptides via a network of hydrogen bonds

Jožica Dolenca, Esme J. Haywoodb, Tingting Zhub and Lorna J. Smithb,*

a Chemistry | Biology | Pharmacy Information Center, ETH Zurich, Zurich, Switzerland

b Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom
1. Molecular topology building blocks

1.1. ORNH Building Block

Figure S1. ORNH building block with atom numbering, GROMOS integer atom codes (IAC) and partial charges: $^{atom\ number}_{IC} \times ^{partial\ charge}_{IAC}$. Color boundaries indicate different charge groups.

Table S1. Atoms of the ORNH building block.

Seq.	Name	IAC	Mass	Charge	Exclusions
1	N	6	14	-0.31000	2 3 4 11
2	H	21	1	0.31000	3
3	CA	14	3	0.00000	4 5 11 12 13
4	CB	15	4	0.00000	5 6 11
5	CG	15	4	0.00000	6 7
6	CD	15	4	0.12700	7 8 9 10
7	NZ	8	14	0.12900	8 9 10
8	HZ1	21	1	0.24800	9 10
9	HZ2	21	1	0.24800	10
10	HZ3	21	1	0.24800	
11	C	12	12	0.45000	
12	O	1	16	-0.45000	
Table S2. Bond types of the ORNH building block.

I	J	TYPE
1	2	2
1	3	21
3	4	27
3	11	27
4	5	27
5	6	27
6	7	21
7	8	2
7	9	2
7	10	2
11	12	5
11	13	10

Table S3. Bond angle types of the ORNH building block.

I	J	K	Type
-1	1	2	32
-1	1	3	31
2	1	3	18
1	3	4	13
1	3	11	13
4	3	11	13
3	4	5	15
4	5	6	15
8	7	9	10
8	7	10	10
9	7	10	10
3	11	12	30
3	11	13	19
12	11	13	33
5	6	7	15
6	7	8	11
6	7	9	11
6	7	10	11

Table S4. Dihedral angle types of the ORNH building block.

I	J	K	L	Type
-2	-1	1	3	14
Table S5. Improper dihedral angle types of the ORNH building block.

I	J	K	L	Type
1	-1	3	2	1
3	1	11	4	2
11	3	13	12	1

1.2. NLEU Building Block

Figure S2. NLEU building block with atom numbering, GROMOS integer atom codes (IAC) and partial charges: \(X^{\text{IAC}}\). Color boundaries indicate different charge groups.
Table S6. Atoms of the NLEU building block.

Seq.	Name	IAC	Mass	Charge	Exclusions
1	N	6	14	0.00000	2 3 4 5 6 10
2	NB	7	14	-0.83000	3 4 5
3	HB1	21	1	0.41500	4
4	HB2	21	1	0.41500	
5	CA	14	3	0.00000	6 7 10 11 12
6	CB	15	4	0.00000	7 8 9 10
7	CG	14	3	0.00000	8 9
8	CD1	16	5	0.00000	9
9	CD2	16	5	0.00000	
10	C	12	12	0.45000	
11	O	1	16	-0.45000	

Table S7. Bond types of the NLEU building block.

I	J	TYPE
1	2	17
1	5	21
5	6	27
5	10	27
6	7	27
7	8	27
7	9	27
10	11	5
10	12	10
2	3	2
2	4	2

Table S8. Bond angle types of the NLEU building block.

I	J	K	Type
-1	1	2	32
-1	1	5	31
2	1	5	23
1	2	3	11
1	2	4	11
3	2	4	10
1	5	6	13
1	5	10	13
6	5	10	13
5	6	7	15
6	7	8	15
6	7	9	15
Table S9. Dihedral angle types of the NLEU building block.

I	J	K	L	Type
-2	-1	1	5	14
-1	1	5	10	44
-1	1	5	10	43
1	5	6	7	34
1	5	10	12	45
1	5	10	12	42
5	6	7	8	34
5	1	2	3	14

Table S10. Improper dihedral angle types of the NLEU building block.

I	J	K	L	Type
1	-1	5	2	1
5	1	10	6	2
6	8	9	7	2
10	5	12	11	1

GROMOS molecular topology building blocks for ORNH and for all the N-aminated amino acid residues used in this study have also been uploaded as an additional Supporting Information file.
2. NOE atom-atom distance upper bounds

Lists of NOE atom-atom distance upper bounds (in nm) derived from NMR experiments and \(r^6 \) averaged distances (in nm) calculated from the PepF MD simulations.

The NOE data are taken from Sarnowski et al. (Angew. Chem. Int. Ed. 2017, 56 2083-2086) unless otherwise stated. The upper distance bounds used for NOE's identified as strong, medium and weak were 0.28 nm, 0.35 nm and 0.5 nm respectively with the pseudoatom corrections of Wüthrich et al. (J. Mol. Biol. 1983 169,949-961) applied.

Table S11. PepC simulation

NOEs 1-19 from Sarnowski et al. Angew. Chem. Int. Ed. 2017, 56 2083-2086
NOEs 20-36 from Syud et al. J. Amer. Chem. Soc. 1999 121, 11577-11578

NOE number	Residue and atom 1	Residue and atom 2	Upper bound in PepC simulation					
1	ARG HD@	11 LEU HD@	0.890 0.957					
2	TYR HA	11 LEU HA	0.350 0.271					
3	TYR HD@	9 LYSH HB@	0.580 0.439					
4	TYR HD@	9 LYSH HG@	0.580 0.514					
5	TYR HD@	9 LYSH HD@	0.650 0.470					
6	TYR HD@	10 ILE HA	0.550 0.564					
7	TYR HD@	11 LEU HA	0.550 0.410					
8	TYR HD@	11 LEU HD@	0.990 0.502					
9	TYR HE@	9 LYSH HG@	0.580 0.646					
10	TYR HE@	9 LYSH HD@	0.800 0.562					
11	TYR HE@	10 ILE HA	0.700 0.594					
12	TYR HE@	11 LEU HA	0.550 0.491					
13	TYR HE@	11 LEU HD@	0.840 0.423					
14	GLU HA	9 LYSH HA	0.280 0.261					
15	VAL HA	6 DPRO HD@	0.380 0.216					
16	VAL HG@	6 DPRO HA	0.380 0.216					
17	VAL HG@	6 DPRO HD@	0.890 0.451					
18	LEU HD@	14 GLY HA@	0.740 0.545					
19	GLN HA	13 DPRO HD@	0.380 0.217					
20	ARG HN	12 GLN HN	0.280 0.361					
21	ARG HN	14 GLY HN	0.280 0.26					
22	ARG HB@	14 GLY HN	0.600 0.502					
23	TYR HD@	9 LYSH HA	0.700 0.585					
24	TYR HD@	9 LYSH HE@	0.800 0.506					
25	TYR HD@	11 LEU HB@	0.800 0.541					
26	TYR HE@	11 LEU HB@	0.650 0.475					
27	TYR HB@	9 LYSH HB@	0.550 0.389					
---	---	---	---	---	---	---		
28	2	TYR	HB@	9	LYS	HG@	0.700	0.423
29	2	TYR	HB@	9	LYS	HD@	0.700	0.376
30	5	VAL	HN	8	ORNH	HN	0.280	0.390
31	5	VAL	HG@	6	DPRO	HB@	0.890	0.718
32	6	DPRO	HA	8	ORNH	HN	0.500	0.37
33	6	DPRO	HG@	7	GLY	HN	0.600	0.472
34	6	DPRO	HD@	7	GLY	HN	0.600	0.451
35	7	GLY	HN	8	ORNH	HN	0.500	0.279
36	12	GLN	HB@	13	DPRO	HB@	0.700	0.684
Table S12. PepF simulation

NOEs 1-8 from Sarnowski Angew. Chem. Int. Ed. 2017, 56 2083-2086
NOEs 9-21 from Stanger and Gellman J. Amer. Chem. Soc. 1998 120, 4236-4237

NOE number	Residue and atom 1	Residue and atom 2	Upper bound	Distance in PepF simulation
1	2 TYR HD@	9 LYSH HB@	0.800	0.431
2	2 TYR HD@	9 LYSH HG@	0.800	0.490
3	2 TYR HE@	11 LEU HA	0.550	0.427
4	2 TYR HE@	11 LEU HA	0.550	0.515
5	2 TYR HE@	11 LEU HG	0.480	0.429
6	2 TYR HE@	11 LEU HD@	0.770	0.463
7	5 VAL HA	6 DPRO HD@	0.380	0.216
8	5 VAL HG@	6 DPRO HD@	0.670	0.450
9	2 TYR HA	12 GLN HN	0.500	0.314
10	2 TYR HA	11 LEU HA	0.500	0.279
11	11 LEU HA	2 TYR HE@	0.700	0.515
12	3 VAL HN	10 ILE HN	0.500	0.330
13	4 GLU HA	9 LYSH HA	0.500	0.263
14	5 VAL HN	8 ORNH HN	0.500	0.391
15	7 GLY HN	8 ORNH HN	0.500	0.282
16	2 TYR HD@	9 LYSH HD@	0.800	0.462
17	2 TYR HD@	11 LEU HD@	0.990	0.532
18	2 TYR HE@	11 LEU HB@	0.800	0.560
19	2 TYR HD@	10 ILE HA	0.700	0.573
20	10 ILE HD@	12 GLN HG@	0.750	0.544
21	12 GLN HE21	10 ILE HG2@	0.650	0.717

Table S13. PepF_N2 simulation

NOE number	Residue and atom 1	Residue and atom 2	Upper bound	Distance in PepF_N2 simulation
1	2 NTYR HA	11 LEU HA	0.280	0.291
2	2 NTYR HD@	9 LYSH HB@	0.800	0.427
3	2 NTYR HD@	9 LYSH HG@	0.800	0.499
4	2 NTYR HD@	9 LYSH HD@	0.800	0.465
5	2 NTYR HD@	10 ILE HA	0.480	0.563
6	2 NTYR HD@	11 LEU HA	0.550	0.411
7	2 NTYR HD@	11 LEU HD@	0.990	0.539
8	2 NTYR HE@	9 LYSH HD@	0.580	0.531
9	2 NTYR HE@	9 LYSH HE@	0.800	0.551
10	2 NTYR HE@	11 LEU HA	0.700	0.487
11	2 NTYR HE@	11 LEU HD@	0.840	0.448
NOE number	Residue and atom 1	Residue and atom 2	Upper bound	Distance in PepF_N9 simulation
------------	-------------------	-------------------	-------------	-----------------------------
1	2 TYR HA	11 LEU HA	0.280	0.277
2	2 TYR HD@	9 NKH HB@	0.650	0.434
3	2 TYR HD@	9 NKH HG@	0.650	0.491
4	2 TYR HD@	9 NKH HD@	0.800	0.474
5	2 TYR HD@	10 ILE HA	0.700	0.577
6	2 TYR HD@	11 LEU HA	0.480	0.427
7	2 TYR HE@	9 NKH HD@	0.580	0.486
8	2 TYR HE@	10 ILE HA	0.700	0.609
9	2 TYR HE@	11 LEU HA	0.700	0.523
10	2 TYR HE@	11 LEU HD@	0.840	0.476
11	3 VAL HG@	12 GLN HG@	0.740	0.422
12	5 VAL HA	6 DPRO HD@	0.380	0.216
13	5 VAL HG@	6 DPRO HA	0.790	0.578
14	5 VAL HG@	6 DPRO HD@	0.890	0.457

Table S14. PepF_N9 simulation
Table S15. PepF_N11 simulation

NOE number	Residue and atom 1	Residue and atom 2	Upper bound	Distance in PepF_N11 simulation
1	TYR HA	NLEU HA	0.280	0.285
2	TYR HD@	LYSH HB@	0.650	0.450
3	TYR HD@	LYSH HG@	0.650	0.507
4	TYR HE@	LYSH HB@	0.580	0.463
5	TYR HE@	NLEU HD@	0.770	0.474
6	VAL HG@	GLN HG@	0.890	0.462
7	VAL HA	DPRO HD@	0.380	0.215
8	VAL HG@	DPRO HA	0.640	0.568
9	VAL HG@	DPRO HD@	0.740	0.447
10	GLU HA	LYSH HA	0.280	0.272
11	GLU HG@	LYSH HA	0.450	0.385

Table S16. PepF_N9_N11 simulation

NOE number	Residue and atom 1	Residue and atom 2	Upper bound	Distance in PepF_N9_N11 simulation
1	TYR HA	NLEU HA	0.280	0.281
2	TYR HA	NLEU HD@	0.790	0.487
3	TYR HD@	NKH HD@	0.650	0.477
4	TYR HD@	NKH HG@	0.800	0.514
5	TYR HD@	NLEU HA	0.550	0.432
6	TYR HE@	NKH HD@	0.650	0.457
7	TYR HE@	NKH HG@	0.800	0.522
8	TYR HE@	NLEU HA	0.550	0.528
9	VAL HG@	GLN HA	0.640	0.600
10	VAL HG@	GLN HG@	0.670	0.472
11	VAL HA	DPRO HD@	0.380	0.217
12	VAL HG@	DPRO HA	0.790	0.577
13	VAL HG@	DPRO HD@	0.670	0.457
3 Conformational clustering analysis

Table S17. Clustering of the PepF trajectory. Populations of clusters and of the respective hydrogen bonds (%).

The clustering was performed with a cut-off RMSD of 0.1 nm for the backbone atoms of residues 2-11.

The hydrogen bonds were identified using the definition for medium-strong hydrogen bonds: H-acceptor distance < 0.25 nm and donor-H-acceptor angle > 135°. Populations < 5% are excluded.

Hydrogen bond	Cluster 1	Cluster 2	Cluster 3
1 NH1 – 12 O	12.0	15.9	
1 NH2 – 12 O	11.8	6.1	
1 NH3 – 12 O	11.9	9.1	
1 HH11 – 4 OE1	5.5	7.6	6.3
1 HH21 – 12 OE1	7.6	6.8	
1 HH11 – 12 OE1	5.3		
1 HE – 12 OE1	11.8	9.1	
3 NH – 10 O	95.6	94.7	9.4
3 NH – 12 OE1			60.9
4 NH – 4 OE1	6.7	21.2	
4 NH – 4OE2	7.3	25.0	
5 NH – 3 O	9.3	19.7	
5 NH – 4 OE1	5.3		
5 NH – 4 OE2	5.3		
5 NH – 8 O	74.7	11.4	93.8
8 NH – 5 O	36.0	7.6	34.4
8 NH – 6 O	16.1		10.9
9 NH – 7 O			37.9
9 HNZ* – 6 O			7.6
10 NH – 3 O	81.5	25.8	87.5
10 NH – 8 O			14.4
12 NH – 1 O	76.0	84.1	6.2
12 NH – 10 O			25.0
12 HE21 – 1 O			15.6
12 HE21 – 4 OE1			9.9
12 HE21 – 4 OE2			6.1

* The highest hydrogen bond population from the donor NZ-HZ1, NZ-HZ2 or NZ-HZ3 is listed
Table S18. Clustering of the PepE trajectory. Populations of clusters and of the respective hydrogen bonds (%).

The clustering was performed with a cut-off RMSD of 0.1 nm for the backbone atoms of residues 2-11.

The hydrogen bonds were identified using the definition for medium-strong hydrogen bonds: H-acceptor distance < 0.25 nm and donor-H-acceptor angle > 135°. Populations < 5% are excluded.

Population of clusters	Cluster 1	Cluster 2	Cluster 3	Cluster 4
54.6	6.2	4.8	3.7	

Hydrogen bond	Cluster 1	Cluster 2	Cluster 3	Cluster 4
1 HNE – 3 O				6.3
1 HNE – 6 O			6.8	
1 HNE – 10 O			5.8	
1 HNE – 12 O			24.7	
1 HH11 – 4 O			7.7	
1 HH21 – 6 O			32.6	
1 HH21 – 9 O				11.4
1 HH 11 – 12 O				10.3
2 NH – 10 O			19.1	
2 NH – 11 O			30.5	
2 NH – 12 O			62.0	
2 NH – 12 OE1				61.0
3 NH – 11 O			41.7	
3 NH – 12 OE1			12.0	
3 NH – 12 O			5.3	74.4
4 NH – 7 O				80.4
4 HN – 4 OE1	35.4	25.1		
4 HN – 4 OE2	32.8	30.5		
5 NH – 9 O	89.1			
5 NH – 4 OE1	25.4	15.7	44.7	
5 NH – 4 OE2	23.1	13.7	17.4	
7 NH – 12 OE1			25.3	
8 NH – 4 OE1	12.2			
8 NH – 4 OE2	12.1			
8 NH – 6 O	11.0			
8 NH – 12 OE1	13.1	7.7		
9 NH – 2 O				95.6
9 HN – 7 O	63.4	22.3		
9 NH – 12 OE1		66.8		
11 NH – 3 O	90.8			
12 NH – 3 O	5.9	72.2		
12 NH – 9 O	64.2	18.5		
12 NH – 10 O	11.0	21.7		
12 NH – 12 OE1	12.6			
----------------	-----	-----		
12 HE22 – 2 OH	6.0			
12 NH2* – 5 O		61.0		
12 NH2* - 9 O		10.7		

* C-terminal NH$_2$ group
Table S19. Combined clustering of the PepF and PepE trajectories. Populations of clusters and of the respective hydrogen bonds (%).

The clustering was performed with a cut-off RMSD of 0.1 nm for the backbone atoms of residues 2-11.

The hydrogen bonds were identified using the definition for medium-strong hydrogen bonds: H-acceptor distance < 0.25 nm and donor-H-Acceptor angle > 135°. Populations < 5% are excluded.

Population of clusters by PepF	Cluster 1	Cluster 2	Cluster 3
98.3	0	0	
Population of clusters by PepE	0	54.6	6.1

Hydrogen bond	Cluster 1	Cluster 2	Cluster 3
1 NH1 – 12 O	12.0		
1 NH2 – 12 O	12.0		
1 NH3 – 12 O	11.8		
1 HNE – 10 O			6.4
1 HNE – 12 OE1	5.6		
1 HH21 – 12 OE1			7.4
2 NH – 11 O			29.7
2 HN – 12 O			50.0
3 NH – 10 O	96.0		
3 NH – 11 O		41.3	
3 NH – 12 O		5.5	93.6
3 NH – 12 OE1			12.3
4 HN – 4 OE1	6.6		31.2
4 HN – 4 OE2	7.4		34.8
5 NH – 3 O	9.5		
5 NH – 4 OE1			25.7
5 NH – 4 OE2			23.1
5 NH – 8 O	74.6		
5 NH – 9 O		89.1	
8 NH – 4 OE1		12.3	
8 NH – 4 OE2		12.7	
8 NH – 5 O	36.3		
8 NH – 6 O	15.8	10.7	
8 NH – 12 OE1			13.9
9 NH – 7 O		64.2	
9 NH – 5 O		10.7	
9 NH – 12 OE1			54.9
10 NH – 3 O		81.5	
10 NH – 8 O		7.1	
11 NH – 3 O		98.4	
12 NH – 1 O		76.5	
12 NH – 9 O			40.9
12 NH – 12 OE1			12.6
Formula	Value		
--------------------	-------		
12 HE22 – 2 OH	5.1		
12 NH2* – 1 O	8.2		
12 NH2* - 3 O	6.3		
12 NH2* – 9 O	55.9		

* C-terminal NH₂ group
Table S20. Clustering of the PepF_N9_N11 trajectory. Populations of clusters and of the respective hydrogen bonds (%).

The clustering was performed with a cut-off RMSD of 0.1 nm for the backbone atoms of residues 2-11.

The hydrogen bonds were identified using the definition for medium-strong hydrogen bonds: H-acceptor distance < 0.25 nm and donor-H-Acceptor angle > 135°. Populations < 5% are excluded.

Population of clusters	Cluster 1	Cluster 2	Cluster 3
99.0	0.5	0.3	

Hydrogen bond	Cluster 1	Cluster 2	Cluster 3
1 NH2 – 11 O	5.0		
1 NH1 – 12 O	13.7	18.0	5.7
1 NH2 – 12 O	13.6	9.0	10.0
1 NH3 – 12 O	13.4	12.0	5.7
1 NH1 – 12 OE1			8.6
1 NH2 – 12 OE1			11.4
1 NH3 – 12 OE1			8.6
1 HH21 – 12 OE1			6.4
2 OH – 4 OE1		23.0	
2 OH – 4 OE2		16.0	
3 NH – 1 O			18.6
3 NH – 10 O	93.0	95.0	42.9
4 NH – 4 OE1			8.0
4 NH – 4 OE2			11.0
5 NH – 3 O			17.2
5 NH – 4 OE1			8.0
5 NH – 4 OE2			14.0
5 NH – 8 O	81.8	55.0	61.4
5 NH – 12 OE1			
7 NH – 4 O			10.0
8 NH – 5 O	48.6	40.0	22.9
8 NH – 6 O	10.0		45.7
9 HNB1 – 7 O	6.6		42.0
9 HNB2 – 9 O		8.3	8.0
9 HZ1 – 6 O		8.0	
9 HZ2 – 6 O		6.0	
10 NH – 3 O	85.4	68.0	61.4
10 NH – 8 O		5.0	
11 HNB1 – 9 O			15.0
12 NH – 1 O	61.8	51.0	32.9
12 NH – 10 O			11.4
Table S21. Clustering of the PepE_N9_N11 trajectory. Populations of clusters and of the respective hydrogen bonds (%).

The clustering was performed with a cut-off RMSD of 0.1 nm for the backbone atoms of residues 2-11.

The hydrogen bonds were identified using the definition for medium-strong hydrogen bonds: H-acceptor distance < 0.25 nm and donor-H-acceptor angle > 135°. Populations < 5% are excluded.

Hydrogen bond	Cluster 1	Cluster 2	Cluster 3
1 NH1 – 10 O	19.9		
1 NH2 – 10 O	20.5		
1 NH3 – 10 O	20.2		
1 NH1 – 12 O		5.3	
1 NH3 – 12 O		5.7	
1 NH1 – 12 OE1	6.6		
1 NH2 – 12 OE1	6.7		
1 NH3 – 12 OE1	6.1		
1 HNE – 12 O			10.9
1 HH11 – 12 O			7.0
1 HH21 – 12 O			15.0
2 NH – 11 O		9.1	59.5
2 NH – 12 OE1			5.2
2 OH – 4 OE1		11.9	
2 OH – 4 OE2		11.7	
3 NH – 8 O	96.1		
3 NH – 10 O			78.1
4 NH – 4 OE1	32.6		14.1
4 NH – 4 OE2	31.5		13.8
5 NH – 3 O			27.7
5 NH – 4 OE1		11.0	
5 NH – 4 OE2		10.1	
5 NH – 8 O			85.7
5 NH – 12 OE1			14.7
7 NH – 4 O		74.9	
8 NH – 3 O		67.0	
8 NH – 5 O	8.2		50.4
9 HNB1 – 7 O		8.9	24.6
9 HNB2 – 9 O	7.9	9.6	15.3
9 HNB2 – 12 O			17.2
9 HNB1 – 12 OE1			12.5
9 HNB2 – 12 OE1			10.8
10 NH – 1 O		61.2	
10 NH – 3 O			87.6
Bond	Distance		
-----------------------	----------		
11 HNB1 – 9 O	14.2		
12 NH – 2 O	69.9		
12 NH – 9 O	30.9		
12 NH – 10 O	7.1		
12 HE21 – 7 O	15.9		
12 HE21 – 9 O	9.5		
12 HE22 – 3 O	8.6		
12 NH – 12 OE1	6.1		
12 NH2* – 3 O	5.6		
12 NH2* – 4 OE1	5.7		
12 NH2* – 4 OE2			

* C-terminal NH₂ group
Table S22. Combined clustering of the PepF_N9_N11 and PepE_N9_N11 trajectories. Populations of clusters and of the respective hydrogen bonds (%).

The clustering was performed with a cut-off RMSD of 0.1 nm for the backbone atoms of residues 2-11.

The hydrogen bonds were identified using the definition for medium-strong hydrogen bonds: H-acceptor distance < 0.25 nm and donor-H-acceptor angle > 135°. Populations < 5% are excluded.

Hydrogen bond	Cluster 1	Cluster 2	Cluster 3
1 NH1 – 10 O	19.9		
1 NH2 – 10 O	20.5		
1 NH3 – 10 O	19.6		
1 NH1 – 12 O	12.5		
1 NH2 – 12 O	12.5		
1 NH3 – 12 O	12.4		
1 NH1 – 12 OE1		6.3	
1 NH2 – 12 OE1		6.7	
1 NH3 – 12 OE1		5.7	
1 HNE – 12 O			11.3
1 HH11 – 12 O			7.1
1 HH21 – 12 O			16.0
1 HH21 – 12 OE1			5.5
2 NH – 11 O			63.7
3 NH – 8 O			96.0
3 NH – 10 O			91.6
4 NH – 4 OE1		31.8	13.6
4 NH – 4 OE2		31.4	13.0
5 NH – 3 O			30.5
5 NH – 4 OE1			11.6
5 NH – 4 OE2			10.7
5 NH – 8 O			82.5
5 NH – 12 OE1			13.2
7 NH – 4 O			75.0
8 NH – 3 O			68.1
8 NH – 5 O		49.6	7.2
8 NH – 6 O		9.1	
9 HNB1 – 7 O		7.1	23.4
9 HNB2 – 9 O		8.6	7.9
9 HNB2 – 12 O			16.0
----------------	----------	------	
9 HNB1 – 12 OE1		13.7	
9 HNB2 – 12 OE1		10.3	
9 HZ3 – 5 O		5.1	
10 NH – 1 O		60.3	
10 NH – 3 O		86.0	
11 HNB1 – 9 O		14.7	
12 NH – 1 O		52.9	
12 NH – 2 O		66.3	
12 NH – 9 O		28.4	
12 NH – 10 O		7.3	
12 HE21 – 7 O		14.9	
12 HE21 – 9 O		8.5	
12 HE22 – 3 O		9.5	
12 NH – 12 OE1		6.0	
12 NH2* – 3 O		5.8	
12 NH2* – 4 OE1		7.1	
12 NH2* – 4 OE2		8.4	

* C-terminal NH$_2$ group
Table S23. Clustering of the PepF_N2_N4_N9_N11 trajectory. Populations of clusters and of the respective hydrogen bonds (%).

The clustering was performed with a cut-off RMSD of 0.1 nm for the backbone atoms of residues 2-11.

The hydrogen bonds were identified using the definition for medium-strong hydrogen bonds: H-acceptor distance < 0.25 nm and donor-H-Acceptor angle > 135°. Populations < 5% are excluded.

Hydrogen bond	Cluster 1	Cluster 2	Cluster 3
1 NH1 – 12 O	20.9	10.6	7.3
1 NH2 – 12 O	18.3	16.0	18.2
1 NH3 – 12 O	19.8	12.0	18.2
1 NH2 – 12 OE1			5.9
1 HH21 – 12 OE1	10.2	5.2	12.7
1 HE – 12 OE1		10.3	10.9
2 OH – 4 OE1	8.6	14.3	
2 OH – 4 OE2	7.5	9.1	
3 NH – 10 O	94.7	88.7	89.1
4 HNB1 – 2 O	9.2	19.9	
5 NH – 3 O			14.6
5 NH – 8 O	75.5	20.2	63.6
7 NH – 4 O			5.5
7 NH – 4 OE1			5.5
8 NH – 5 O	57.2	26.0	36.4
8 NH – 6 O	5.7		43.6
9 HNB1 – 7 O	13.8	52.1	
9 HNB2 – 9 O	8.5	10.1	
9 HNZ* – 4 O		12.8	
9 HNZ* – 6 O		7.7	
9 HNZ* – 7 O			5.5
10 NH – 3 O	86.4	69.8	81.8
11 HNB1 – 9 O	8.3	15.0	
12 NH – 1 O	67.9	40.3	70.9

* The highest hydrogen bond population from the donor NZ-HZ1, NZ-HZ2 or NZ-HZS3 is listed
Table S24. Clustering of the PepE_N2_N4_N9_N11 trajectory. Populations of clusters and of the respective hydrogen bonds (%).

The clustering was performed with a cut-off RMSD of 0.1 nm for the backbone atoms of residues 2-11.

The hydrogen bonds were identified using the definition for medium-strong hydrogen bonds: H-acceptor distance < 0.25 nm and donor-H-Acceptor angle > 135°. Populations < 5% are excluded.

Hydrogen bond	Cluster 1	Cluster 2	Cluster 3	Cluster 4
Population of clusters				
1 NH1 – 12 O	15.2	20.0		
1 NH2 – 12 O	14.2	12.7		
1 NH3 – 12 O	15.0	14.2		
1 HH21 – 12 O		5.5		
1 HH21 – 12 OE1	6.8			
2 HNB2 – 9 O		43.6		
2 HNB2 – 11 O	5.3	4.6		
2 OH – 4 OE1	7.3	36.5	10.9	
2 OH – 4 OE2	16.8	37.8	10.5	7.4
3 NH – 10 O	92.5		92.4	
4 HNB1 – 2 O	9.6	67.6	18.8	22.4
4 HNB2 – 8 O			94.4	
5 NH – 8 O	76.1		12.0	
5 NH – 4 OE1				41.2
5 NH – 4 OE2				28.9
7 NH – 4 O				60.5
8 NH – 4 OE1				43.2
8 NH – 5 O	56.7		24.7	
8 HNZ* – 2 O				15.5
9 HNB1 – 7 O	15.7	6.1	39.9	
9 HNB2 – 9 O	8.6		8.6	
9 HNZ* – 4 O				9.4
9 HNZ* – 6 O				5.9
10 NH – 3 O	84.1		65.9	
11 HNB1 – 9 O	6.4	14.2	5.3	
12 NH – 1 O	47.9		32.6	

* The highest hydrogen bond population from the donor NZ-HZ1, NZ-HZ2 or NZ-HZS3 is listed.
Table S25. Combined clustering of the PepF_N2_N4_N9_N11 and PepE_N2_N4_N9_N11 trajectories. Populations of clusters and of the respective hydrogen bonds (%).

The clustering was performed with a cut-off RMSD of 0.1 nm for the backbone atoms of residues 2-11.

The hydrogen bonds were identified using the definition for medium-strong hydrogen bonds: H-acceptor distance < 0.25 nm and donor-H-acceptor angle > 135°. Populations < 5% are excluded.

Hydrogen bond	Cluster 1	Cluster 2	Cluster 3
1 NH1 – 12 O	19.6		16.3
1 NH2 – 12 O	18.6		13.8
1 NH3 – 12 O	17.3		14.1
1 HH21 – 12 OE1	9.3		
2 OH – 4 OE1	8.3	36.5	12.1
2 OH – 4 OE2	9.8	37.5	10.2
2 HNB2 – 9 O			47.4
3 NH – 10 O	94.3		92.3
4 HNB1 – 2 O	9.4	67.6	18.8
4 HNB2 – 8 O			95.4
5 NH – 8 O	76.3		14.6
7 NH – 4 O			61.0
8 NH – 4 OE1			43.8
8 NH – 4 OE2			42.8
8 NH – 5 O	57.3		26.1
8 NH – 6 O	5.4		
9 HNB1 – 7 O	14.7	6.1	44.2
9 HNB2 – 9 O	8.4		9.4
9 HNZ* – 4 O			9.8
9 HNZ* – 6 O			5.8
10 NH – 3 O	85.7		68.6
11 HNB1 – 9 O	7.7		13.4
12 NH – 1 O	62.6		36.4
12 NH – 12 OE1			5.1

* The highest hydrogen bond population from the donor NZ-HZ1, NZ-HZ2 or NZ-HZS3 is listed.