Rapidly progressed SARS-CoV-2 infection: A case report

Serdar ÖZDEMİR, Hatice Şeyma AKÇA, İbrahim ALTUNOK, Abdullah ALGIN, Abuzer ÖZKAN

Department of Emergency Medicine, Health Sciences University Umraniye Training and Research Hospital, Istanbul, Turkey

ORCID ID: Serdar Özdemir 0000-0002-6186-6110, Hatice Şeyma Akça 0000-0003-2823-9577, İbrahim Altunok 0000-0002-9312-1025, Abdullah Algın 0000-0002-9016-9701, Abuzer Özkan 0000-0002-8053-9975

Cite this article as: Özdemir S, et al. Rapidly progressed SARS-CoV-2 infection: A case report. Med J West Black Sea. 2021;5(1):106-109.

ABSTRACT

In December 2019 new type of coronavirus which did caused severe acute respiratory syndrome was reported and named as SARS-CoV-2. Globally, over 31,000,000 cases were confirmed, and over 962,000 patients have died from this viral infection. A 31-year-old male patient was admitted to our clinic with fever and cough for three days. He was healthy, he did not have any specific medical history. At first admission, computed tomography showed mild pneumonia. He was discharged with treatment of hydroxychloroquine. He was admitted again to our clinics four days later with a complaint of dyspnea. Pneumonia progressed rapidly in a short period. Piperacillin-tazobactam combination, favipiravir and azithromycin were added to therapy. Although supplementary oxygen and prone positioning added to medical therapy, the patient was desaturated and died. As a conclusion; patient without known predictors of mortality for COVID-19, can result in death. Patients with COVID-19 should be followed closely for clinical course.

Keywords: Coronavirus infections, COVID-19, Case reports

ÖZ

Aralık 2019’da SARS’a neden olan yeni tip bir koronavirüs bildirildi ve SARS-CoV-2 olarak adlandırıldı. Dünya çapında 31.000.000’den fazla vaka doğrulandi ve 962.000’den fazla hasta bu viral enfeksiyondan öldü. Klinikte üç gündür ateş ve öksürük şokayı terk etmek ve hastaneye başvuran 31 yaşında erkek hasta başvurdu. Özgüründe hastalıktan ıkülcü yoktu. Bilgisayarlı tomografide bağlı pnömoni izlendi. Hidroksi klorokin tedavisi ile taburcu edildi. Doğru sonrasi nefes darlığı ile tekrar klinikimize başvurdu. Pnömoni kısa sürede hızla ilerledi. Tedaviye Tazocin, favipiravir ve azitromisin eklendi. Medikal tedavi ve yüzüstü pozisyonlama ile destekleyici oksijene rağmen hastanın hastaneye ve vefat etti. Sonuç olarak; COVID-19 için bilinen mortalite prediktörleri olmayan hastalar da ölümle sonuçlanabilmektedir. COVID-19 hastalarının klinik seyirleri yakından takip edilmelidir.

Anahtar Sözcükler: Koronavirüs enfeksiyonları, COVID-19, Olgu sunumları
INTRODUCTION

The coronavirus disease of 2019 (COVID-19) outbreak caused by the SARS-CoV-2 virus, which emerged in Wuhan on December 31, 2019, quickly has spread to 6 continents and hundreds of countries and went down in history as the first pandemic caused by coronaviruses (1). The epidemic process, which started in our country with the identification of the first positive case on March 11, 2020, continues increasingly (2). Since the isolation of the new type of coronavirus, studies on COVID-19 disease and SARS-CoV-2 virus have been started in many countries. There are many issues regarding COVID-19 disease and its treatment that have not yet been clarified. Future research regarding the COVID-19 outbreak that has affected the world for ten months is necessary in our country.

In this case report, we aimed to present a young male patient with rapidly progressing COVID-19, resulting in acute respiratory distress syndrome and death and to review the current literature.

CASE REPORT

On May 09, 2020, a 31-years-old male was admitted to our clinics with fever and cough for three days. In his medical history, there were no diseases. He had known contact with a patient with COVID-19, and he had the exertional dyspnea. He had no overseas travel history. The initial physical examination revealed a body temperature of 36.4 °C, blood pressure of 123/93 mm-Hg, pulse of 95 /minute, respiratory rate of 16 breath/minute, and oxygen saturation of 98% on room air. Normal sinus rhythm was detected on electrocardiography. Blood tests revealed normal lymphocyte count (1.89*10^3/uL, normal range: 0.8-4*10^3/uL), and elevated neutrophil count (9.4*10^3/uL, normal range: 2-7*10^3/uL), and elevated C-Reactive Protein level (1.15 mg/L, normal range: <0.5 mg/L). Other biochemical parameters were within normal limits. Thorax computed tomography showed that multiple patched-style ground-glass opacities and consolidated areas surrounded by ground-grass opacities in both lungs (Figure 1). Patient was discharged with therapy of hydroxychloroquine with a dose of 500 mg twice daily. Oropharyngeal swab and sputum was tested positive for COVID-19 by real-time PCR assay three days after admission.

On the fourth day of treatment, patient was admitted to our clinics with dyspnea. Vital parameters revealed a body temperature of 36.6 °C, blood pressure of 144/76 mm-Hg, pulse of 95 /minute, respiratory rate of 16 breath/minute, and oxygen saturation of 74% on room air. Blood tests revealed normal lymphocyte (1.46*10^3/uL) and elevated neutrophil count (19.72*10^3/uL), and elevated C-Reactive Protein level (30.6 mg/L). Thorax computed tomography showed that diffuse ground- glass opacities in both lungs (Figure 2). Patient was hospitalized and admitted to the intensive care unit. Piperacillin-tazobactam combination 4.5 g three times a day, favipiravir loading dose 1600 mg twice a day on the first day, and then 600 mg twice a day for four days, azithromycin loading dose 500 mg on the first day 250 mg once a day for four days. High-flow nasal oxygen therapy with prone positioning were given. On the 3rd day of the admission vital parameters revealed a body temperature of 36.9 °C, blood pressure of 84/46 mm-Hg, pulse of 114 /minute, respiratory rate of 19 breath/minute, and oxygen saturation of 84% on nasal high-flow oxygen. Due to worsening dyspnea, and the patient was intubated on third day of hospitalization. Mechanical ventilation was adjusted with

Figure 1: Thorax computed tomography without intravenous contrast media. The coronal and axial reformatted images reveal patched-style ground-glass opacities and consolidated area (arrows).
high levels of positive end-expiratory pressure (PEEP), and prone positioning. Despite invasive mechanical ventilation, oxygen saturation didn’t increase, and the patient was died on the fourth day of hospitalization.

DISCUSSION

In December 2019 new type of coronavirus reported causes SARS and named as SARS-CoV-2. The disease caused by this virus named as COVID-19 (coronavirus disease 2019) (3). Until September 11, 2020, the locations with confirmed SARS-CoV-2 cases include 218 countries. Globally, over 31 000 000 cases were confirmed, and over 962 000 patients have died from this viral infection (4).

COVID-19 is particularly risky for older patients and those with pre-existing comorbidities especially respiratory diseases (4).

The patient in the present case was healthy, with no specific history, and the 31 years of age. At the time of the first admission, computerized tomography showed mild pneumonia. Pneumonia progressed rapidly in a short period. Hydroxychloroquine was used as a treatment on the beginning of the clinic. When it was worse piperacillin-tazobactam combination, favipiravir and azithromycin were added to therapy. Although this medical therapy and supplementary oxygen with prone positioning patient was desaturated and died. The treatment protocol was defined according to the COVID-19 Outbreak Management and Working Guideline created and published by the Turkish Ministry of Health (5).

Various clinical and laboratory parameters have been proposed in epidemiological studies to predict the course and prognosis of the disease (6-8). In the study conducted by Chen et al. in Wuhan in the early period of the pandemic with 99 patients, 51% of the patients had at least one chronic disease (6). It has been determined that most of these diseases are cardiovascular diseases (CVD), cerebrovascular diseases (CVD) and DM. After this study, in a retrospective, multi-center cohort study conducted by Zhou et al. in China with 191 patients, comorbidities were shown in 48% of the patients similarly (7). It has been shown that these patients have HT (30%), DM (19%) and CVD (8%). As the data increase, the relationship between chronic diseases and COVID-19 has become clearer. Similar to other previous reports, HT was the most common comorbidity, followed by CVD, and DM (8). Interestingly, despite this information in the literature, our case without any comorbid illnesses resulted in death.

As a limitation our case we had no level D-dimers, ferritin, cardiac troponin and IL-6 because of we could not test the patients on period that patients admitted to our clinic for D-dimers, ferritin, cardiac troponin or IL-6.

As a conclusion; patient without known predictors of mortality for COVID-19, can result in death. Patients with COVID-19 should be followed closely for clinical course. Especially respiratory symptoms should be warning for clinician and patient.
Rapidly Progressed SARS-CoV-2 Infection: A Case Report

REFERENCES

1. Şener A. COVID-19 (SARS Cov-2) tedavisi. J Biotechnol and Strategic Health Res 2020;1:97-104.

2. Satıcı B, Gocet Tekin E, Deniz ME, Satıcı SA. Adaptation of the fear of COVID-19 scale: Its association with psychological distress and life satisfaction in Turkey. Int J Ment Health Addict 2020;8:1-9.

3. Hatipoğlu N. The “new” problem of humanity: New coronavirus (2019-nCoV/COVID-19) disease. Med J Bakirkoy 2020;16(1):1-8.

4. COVID-19 situation update worldwide, as of 20 September 2020. [Internet] [cited. Sep 20, 2020]. https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases

5. COVID-19 Algoritmalar [Internet] [cited. May 15, 2020]. Available from: https://covid19bilgi.saglik.gov.tr/tr/algoritmalar

6. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020;395(10223):507-513.

7. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020;395(10229):1054-1062.

8. Sandalcı B, Uyaroğlu OA, Güven GS. COVID-19’da kronik hastalıkların rolü, önemi ve öneriler. Flora 2020;25(5);1-7

9. Velavan TP, Meyer CG. Mild versus severe COVID-19: Laboratory markers. Int J Infect Dis 2020;93:304-307.

10. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020;46:846-848.