Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Solving Problems Due to Hurricane Maria and COVID-19: CT Trends in Puerto Rico Before, During, and Beyond Public Health Crises

Elias Lugo-Fagundo, BSa, Edmund M. Weisberg, MS, MBEb,*,&, Maria Lugo-Fagundo, BSb, Elliot K. Fishman, MDa,c

Introduction

Hurricane Maria struck the northeast Caribbean Sea in September 2017, making its landfall in Puerto Rico (Estado Libre Asociado de Puerto Rico) on September 20 in Yabucoa, a small town on the southeastern coast of the island. It is considered the worst natural disaster to have struck the island, a self-governing commonwealth in association with the United States of America, in recorded history, and the deadliest natural disaster in the U.S. in the past 100 years.1 Such devastating events exert pervasive effects throughout a society. The healthcare community shifts into full crisis mode in such circumstances, often impaired by the damage to infrastructure that a major storm causes. As the world has come to realize, a global pandemic such as COVID-19 can engender as much, if not a great deal more, damage to the social fabric and public health. We consider here computed tomography (CT) trends in Puerto Rico a year before Hurricane Maria, in its immediate aftermath, and 1 and 2 years later as well as before and during COVID-19 to ascertain how CT radiology services were affected by this monumental category 4 hurricane and the worst global viral pandemic in the last century. We considered these particular events as a result of discussions on the increasing incidence of major natural disasters exacerbated by climate change and, consequently, the greater incidence and likelihood of facing concurrent or consecutive public health crises in short order. Both Hurricane Maria and COVID-19 affected a great number of people in Puerto Rico, and imposed a notable toll on Puerto Rican society at large as well as on the healthcare community and its resources.

Our hypothesis was that the COVID-19 pandemic would likely have some adverse effects on diagnostic radiology services in Puerto Rico. Given the wide variations in the U.S. response to the health crisis, it is reasonable to expect differences in the impact on radiology services. Medical literature contains much more data on the impact of epidemics and the continuing COVID-19 global pandemic as compared to the effects on medical care delivery, specifically radiology services, of hurricanes. The effects of earthquakes have been better characterized, particularly the infectious disease aftermath of the 2010 earthquake in Haiti.2 Longer range studies have also evaluated the impact on public health and public health programs of the devastating natural disaster there and addressed the condition of the healthcare sector before and after the earthquake and subsequent cholera epidemic.3,4 A 2014 report about how medical services were affected by the Great East Japan Earthquake and subsequent Fukushima Daiichi nuclear power plant accident indicated that hospitals located within the 30-km evacuation zone of the nuclear power plant were isolated.5 Based on some of the widespread effects on medical infrastructure exacted by natural disasters and public health crises in general, we hypothesized that there would be some measurable impact on radiology diagnostic...
services in Puerto Rico due to Hurricane Maria as well as the COVID-19 pandemic.

Background

Effects of Hurricane Maria on Public Health in Puerto Rico

A cross-sectional study analyzed the results from 2 other previous cross-sectional experiments, Puerto Rico Assessment on Diet, Life-styles, and Disease (PRADLAD) and Puerto Rico Observational Study of Psychosocial, Environmental, and Chronic Disease Trends (PROSPECT), conducted prior to Hurricane Maria in 2015 and post-Maria in 2019, respectively. Statistical analyses evaluating both studies revealed higher incidence of chronic diseases, including abdominal obesity, hypertension, high cholesterol, and arthritis, as well as unhealthy behaviors such as binge drinking and sedentarism, among Puerto Ricans after the hurricane. A report completed by the Homeland Security Operational Analysis Center (HSOAC) highlighted the unsafe living conditions in Puerto Rico following Maria with debris, mold, waterborne vectors, and pests present in affected areas. Research identified an increased incidence of influenza and conjunctivitis, gastrointestinal outbreaks, and even deaths caused by leptospirosis. More specifically, according to a survey by the Kaiser Family Foundation and Washington Post, 23% of Puerto Ricans reported that either themselves or a family member had a new or worsened medical condition. Furthermore, reports assessing the effects of Hurricane Maria on Puerto Ricans’ mental health outcomes revealed higher incidences of post-traumatic stress disorder (PTSD), anxiety, and depression, as 7.2% of children displayed clinically significant symptoms of PTSD, and 22% of individuals indicated that they or a household constituent had received or needed mental health services. Unfortunately, the few medical facilities that managed to remain operable were limited in the services they could provide due to substandard communication, electrical, and water infrastructure, lack of proper staffing, and restricted access to patient records.

Imaging During the COVID Pandemic

An ACR/RBMA 48-question survey of members of the ACR and Radiology Business Management Association late in 2020 revealed that a significant majority (56.4%-63.7%) of radiology practices experienced marked declines in imaging volumes during the beginning of the pandemic. A 2020 retrospective study of a large health care system by Naidich et al. considered imaging in volumes pre-COVID-19 (weeks 1-9) and during COVID (weeks 10-16). Results indicated broad declines in imaging volumes during the early stages of the pandemic as compared to 2019, with the most significant decrease seen at the end of the focus period, at week 16 for outpatient imaging (88%). All imaging types decreased, with CT falling 46%. Early in 2022, Sreedharan et al. reported on the influence of the first wave of COVID-19 on diagnostic imaging services in Australia, with statistically significant decreases in total imaging services identified in March through May 2020. General radiography, ultrasound, and MRI were more greatly affected than CT and nuclear medicine; in June 2020, statistically significant increases in CT and nuclear medicine services conducted were reported in comparison to predicted frequency.

In 2021, Xu et al. conducted a systematic review, identifying 14 pertinent studies, finding that interventional radiology caseloads were reduced between 16.8% and 80% (emergency work was affected less than elective procedures) and case volumes for trainees declined between 11% and 51.9%. Similar reductions in interventional radiology procedures have been reported in Canada, also, particularly elective cases. An online survey of Italian radiology units yielded comparable findings, with 88.1% of 2,136 responding radiologists reporting lower elective imaging volumes. Also, a 2021 retrospective multicenter study in Germany revealed expected sharp declines in CT and MRI examinations in 2020 as compared to 2019. Similarly, as expected, COVID-19 impacted the use of radiology emergency department imaging, with 1 retrospective study showing a drastic reduction in ultrasound exams in the radiology department of an urban healthcare system during the 8-week time period of the first peak of the pandemic in New York City. Reduced volumes of emergency head CTs in tertiary academic centers in Ontario, Canada, accompanied by significant increases in acute findings, were ascribed to changes in the health-seeking patterns of patients and the decision-making choices of ordering physicians in a 2020 study by Agarwal et al.

Dual Disasters in Puerto Rico

One goal is to learn from the experiences of these disasters in order for the Puerto Rican health system and others with similar infrastructure to establish robust pre-pandemic protocols to prepare for such events in the future. In 2020, Rios et al. set out to evaluate the structure and potential resilience of the health system of Puerto Rico in relation to disasters such as Hurricane Maria in the setting, now, of the COVID-19 era. The investigators concluded that several important weaknesses in the Puerto Rican health system were exposed by Hurricane Maria, including no awareness regarding the limited capacity of backup generators and the disruption of care for patients suffering with chronic conditions. They concluded that the added stress on the health system engendered by COVID-19 highlights the need for a resilience framework to pinpoint weaknesses in the system that can be bolstered to help manage ongoing and future disasters. In 2021, García et al. reported that human suffering has been exacerbated and disparate burdens imposed on older island-dwelling Puerto Rican adults by multiple simultaneous crises, including the reverberating effects of Hurricane Maria and COVID-19, longstanding fiscal austerity, increasing income and wealth inequality, substantial emigration, and a dysfunctional healthcare system.

Methods

In order to understand and compare the effects of Hurricane Maria and the COVID-19 pandemic on the field of radiology in Puerto Rico, the number of CT scan studies for 2 of Puerto Rico’s 5 major private hospital groups—Donal R. Wood Health and Doctors’ Center Hospital—were gathered and analyzed. Puerto Rico’s other hospital groups include Metro Pavia, Menonita, and HIMA Health, each accounting for 12, 6, and 5 of the island’s 68 hospitals, respectively. After contacting hospitals’ radiology departments across the island, we obtained monthly data, which was categorized into emergency room, outpatient, and hospitalized patients, from January 2016 to March 2021 for 2 of Dorado Health Inc.’s 4 hospitals: Mayagüez Medical Center (MCCW), and Manati Medical Center (MMCN), located on the island’s western and northern coasts, respectively, as well as Doctors’ Center Hospital in Manati (DCHM), one of the group’s 4 hospitals, also located on the northern coast. We quantified both the short-term and long-term impacts of Hurricane Maria and the COVID-19 pandemic by calculating the month-to-month and year-to-year percentage change for MCCW (218 staffed beds), MMCN (270 staffed beds), and DCHM (258 staffed beds) individually and for all 3 hospitals combined, for the dates leading up to, in the immediate aftermath, and following these major events. Specifically, given Hurricane Maria’s instantaneous impact after making landfall in Puerto Rico in September 2017, we compared September 2016-August 2017, September 2017-August 2018, and September 2018-August 2019. On the other hand, despite the fact that the COVID-19 pandemic was officially declared a global pandemic by the World Health Organization (WHO) on March 11, 2020, and a strict lockdown was enforced in Puerto Rico on March 15, 2020, we chose April as our start date due
to its more gradual effect; thus, we compared April 2019-March 2020 and April 2020-March 2021 in order to account for a full pandemic year.

Results

Effects from Hurricane Maria

Our data indicate that Hurricane Maria had an immediate impact on the number of scans performed across Mayagüez and Manatí Medical Center, as well as Doctors’ Center Hospital Manatí. For example, when comparing the percent change of scans performed at MMCW in September 2016, a year before the hurricane, to September 2017, scans fell by 45%; conversely, a year after, in September 2018, the number of scans increased by approximately 88%. In fact, the effect of Hurricane Maria at Mayagüez was such that September only accounted for 4.78% of total studies done during the 1-year period of September 2017-August 2018, compared to 8.38% the same month the year before and 6.41% the subsequent year (Table 1A). Equivalently, the other 2 hospitals experienced similar trends. Manatí Medical Center and Doctors’ Center Hospital Manatí, suffered losses in CT imaging when comparing the month of September in 2016 and 2017, with each reporting decreased percentage changes of 29% and 28%, respectively. Inversely, both institutions experienced an augmentation of CT scan studies when comparing September 2017 and September 2018 as MMCN each noted 5% and 11% drops, respectively, when analyzing the total CT studies done in a year (Tables 2B-2C).

Nonetheless, despite the evident short-term impact visible throughout the month of September as a result of Hurricane Maria, when analyzing and comparing the number of CT cases between September 2016 and August 2017, September 2017-August 2018, and September 2018-August 2019, showed less than a 10% change. Furthermore, when combining all three hospitals’ CT studies, there was a 1.59% decrease from September 2016 to August 2017 and September 2017-August 2018, and a 13.89% increase from September 2017 to August 2018, and September 2018-August 2019 (Table 1D).

Effects from COVID-19

Unlike the “short-term” impact of Hurricane Maria, the consequences of COVID-19 demonstrated immediate yet prolonged effects on the number of CT studies performed with all 3 hospitals indicating a decreased percent change between a full pandemic year and the year prior. For example, when comparing the total number of CT scan studies performed by all 3 hospitals combined pre- and post-COVID-19, the total number of cases decreased by 11.05% (Table 2A). More specifically, when comparing year-to-year differences between April 2019 and March 2020 and April 2020-March 2021, MMCW and MMCN each noted 5% and 11% drops, respectively, when analyzing the total CT studies done in a year (Tables 2B-2C). Similarly, DCHM reported a 14% decrease. Additionally, both March and April 2020 highlighted the instantaneous impact caused by COVID-19 as the data displayed notable drops in CT studies as both months contributed less than 6% of the total yearly scans done between April 2019 and March 2020 and April 2020-March 2021, for each hospital individually (Tables 2B-2D).

Discussion

Our results indicate that the continuing COVID-19 pandemic has had a more protracted impact on radiology CT capacity in select Puerto Rican hospitals and hospital systems. Evidently, there was a clear short-term impact on CT studies performed at MMCW, MMCN, and DCHM, visible throughout the month of September 2017 as a result of Hurricane Maria. However, when considering that the *New England Journal of Medicine* reported a 62% increase in mortality rate between September 20, 2017, and December 31, 2017, when compared to the same period in 2016, as well as an estimated death toll of 4645 (over 70 times greater than the government reported rate), the large-scale impact of Maria is undeniable. Possibly the most salient factor contributing to the lasting effects of the category 4 hurricane was the island’s fragile electrical grid system. According to the *New England Journal of Medicine*, as of December 31, 2017, the

TABLE 1A

Mayaguez medical center CT scans Hurricane Maria

Month	Sep-16	Oct-16	Nov-16	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Jun-17	Jul-17	Aug-17	Total
ER	902	934	824	875	990	872	974	902	895	824	802	866	10660
OPD	117	131	77	89	75	114	127	98	133	127	143	130	1361
Hospitalized	118	142	126	114	125	145	166	122	120	124	127	114	1543
Total	1137	1207	1027	1078	1190	1131	1267	1122	1148	1075	1072	1110	13564
Percentage	8.38	8.90	7.57	7.95	8.77	8.34	8.34	8.27	8.46	7.93	7.90	8.18	100.00

Month	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18	Jun-18	Jul-18	Aug-18	Total
ER	499	954	905	857	817	698	856	859	858	904	917	878	10022
OPD	52	107	135	143	163	154	145	157	177	147	152	165	1717
Hospitalized	74	117	116	96	124	101	99	120	109	103	124	148	1331
Total	625	1178	1176	1096	1104	953	1100	1136	1144	1154	1213	1191	13070
Percentage	4.78	9.01	9.00	8.39	8.45	7.29	8.42	8.69	8.75	8.83	9.28	9.11	100.00

Month	Sep-18	Oct-18	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Total
ER	919	992	972	921	953	951	1147	1118	1491	1549	1537	1760	14310
OPD	143	235	184	160	175	186	221	188	272	245	234	245	2488
Hospitalized	115	120	100	98	115	120	143	98	143	168	179	167	1566
Total	1177	1347	1256	1179	1243	1257	1511	1404	1906	1962	1950	2172	18364
Percentage	6.41	7.34	6.84	6.42	6.77	6.84	8.23	7.65	10.38	10.68	10.62	11.83	100.00
average Puerto Rican household went 41 days without cellular phone coverage, 68 days without water, and 84 days without electricity. Additionally, 31% of surveyed families reported issues regarding medical services, with disruptions ranging from lack of access to medication, to absent doctors, or closed medical facilities.25 In fact, before Hurricane Maria, power outages and blackouts were a common occurrence across the island. Ultimately, at the time of Hurricane Maria, 60% of the installed systems of Puerto Rico’s generation capacity dated approximately 50 years. Following the hurricane, Puerto Rico’s complex topography, lack of resource availability, and questionable government leadership all posed serious questions regarding the electric system’s restoration process. In fact, 35 days after Maria, 44 out of 78 municipalities had no grid connections, and 84 days later, 9 municipalities were still disconnected.26 It was not until August 2018, almost a full year after Hurricane Maria made landfall in Puerto Rico, that the Puerto Rico Electric Power Authority (PREPA) reported that the island’s power had been completely restored.22 Clearly, a reliable, consistently working power grid is essential for the medical system of Puerto Rico and the health of its citizens. A review article analyzing the effects of large-scale power outages on health outcomes identified important health-related consequences on individuals worldwide. For example, the incidence of carbon monoxide poisoning increased during blackouts caused by natural disasters as a result of individuals opting for alternative fuel sources, such as gasoline-powered generators. Moreover, there was evidence of increased incidence of all-cause, respiratory, renal disease, and cardiovascular hospitalizations, which were further exacerbated as a result of electricity-dependent medical devices.27

According to an article from the Geiger Gibson/RCHN Community Health Foundation Research Collaborative, the island’s healthcare system, including the 20 federally funded centers, were dependent on diesel-fueled emergency generators for several diagnostic and treatment activities. Table 1B and Table 1C provide a summary of medical center CT scans and doctors’ center hospital CT scans, respectively, in Hurricane María affected areas from 2016-2019.

Table 1B: Manati Medical Center CT Scans Hurricane María

Month	Sep-16	Oct-16	Nov-16	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Jun-17	Jul-17	Aug-17	Total
ER	2078	2148	1926	2084	2146	1856	2164	1888	2057	2135	2263	1971	24716
OPD	383	352	305	349	305	342	428	395	404	412	328	432	4435
Hospitalized	228	211	187	244	262	208	242	208	210	236	220	224	2680
Total	2689	2711	2418	2677	2713	2406	2834	2491	2671	2783	2811	2627	31831
Percentage	8.45	8.52	7.60	8.41	8.52	7.56	8.90	8.39	8.74	8.83	8.25	100.00	

Table 1C: Doctors’ Center Hospital CT Scans Hurricane María

Month	Sep-16	Oct-16	Nov-16	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Jun-17	Jul-17	Aug-17	Total
ER	2133	2081	1960	1898	2112	1756	2118	2197	2211	2107	2122	2256	24778
OPD	393	482	421	343	434	436	518	488	508	436	444	425	5328
Hospitalized	231	225	208	211	252	228	280	245	248	292	254	245	2919
Total	2538	2514	2112	1940	2171	2172	2379	2271	2334	2575	2555	2537	28198
Percentage	6.22	6.54	8.44	8.29	8.43	8.01	9.23	8.91	9.39	9.00	8.50	9.04	100.00
tion oncology facilities in Puerto Rico received “patient records. Furthermore, according to reports, all but two radiation departments had limited energy availability, leading to restricted patient care.29 Moreover, a study conducted to assess the impact of Hurricane Maria on radiation oncology practices and patients across Puerto Rico highlighted the lack of telephone service, as approximately 90% of cellular sites were out of service 8 days after landfall, and the substandard internet connection. Ultimately, this led to difficulties in communication with patients, as well as between physicians, and trouble when accessing records. Furthermore, according to reports, all but two radiation oncology facilities in Puerto Rico received “access” to diesel-powered generators; however, only those facilities associated with hospital systems were given diesel, thus, independent facilities often left without power, and 100,000 without water, as a result of a fire erupting in the Costa Sur power plant.25 The effects of COVID-19 also demonstrated immediate yet prolonged effects on the number of CT studies completed with all 3 hospitals indicating a decreased percent change between a full pandemic year and the year prior. One possible explanation for the trends associated with diagnostic imaging is Puerto Rico’s strict lockdown restrictions during the pandemic. On March 15, 2020, the island’s governor at the time, Wanda Vázquez, issued swift protocols enforcing an island-wide curfew; those found guilty of violating the executive order faced a hefty fine and possibly even jailtime. In the following months, Puerto Rico transitioned into a complete lockdown, where citizens were allowed to leave their homes for emergency purposes only. In fact, Puerto Rico was one of the first U.S. jurisdictions to issue mask mandates, even sending out daily messages to its people alerting them when the curfew was approaching.30 The effects of the executive order were seen in the number of treatment services given the lack of power across Puerto Rico. In mid-October 2017, the Asociación de Salud Primaria de Puerto Rico (ASPPR) reported that only 13% of federal healthcare centers had complete power restored, 4% had intermittent power, while the remainder were still dependent on generators.28 Moreover, a study comparing 2017-2018 with 2018-2019 showed that 6248-6454 ER visits in May 2018, 6202 ER visits in June 2018, 5964 ER visits in July 2018, and 5759 ER visits in August 2018. This might explain the 40% increase in CT scans performed at Mayaguez Medical Center in September 2018-August 2019. It is possible that patients were forced to attend major hospitals such as MMCW, rather than independent diagnostic imaging facilities due to the inaccessibility of diesel. Unfortunately, as of 2022, Puerto Rico has yet to fully recover from the damages to its electrical grid system caused by Hurricane Maria. Despite Luma Energy, a private Canadian-American consortium, taking over Puerto Rico’s transmission and distribution sectors of the electrical grid, its people still face constant and unpredictable power outages with no end in sight. Most recently, on April 6, 2022, approximately 200,000 Puerto Ricans were left without power, and 100,000 without water, as a result of a fire erupting in the Costa Sur power plant.30

TABLE 1D

Combined CT scans Hurricane María

Month	Sep-16	Oct-16	Nov-16	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Jun-17	Jul-17	Aug-17	Total
ER	4953	5092	4400	4474	4956	4363	4986	4589	4737	5011	5113	4862	57536
OPD	770	713	617	648	612	742	846	730	857	873	779	799	8917
Hospitalized	641	627	540	573	606	604	648	565	599	594	570	613	7140
Percentage 2017-2018	8.65	8.74	7.55	7.74	8.39	7.76	8.81	8.90	8.36	8.74	8.75	8.93	100.00

Month	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18	Jun-18	Jul-18	Aug-18	Total
ER	3557	4199	4736	4564	4656	4061	4821	4922	5162	4179	5057	5868	55782
OPD	371	536	751	851	890	1005	916	987	1083	814	829	895	9910
Hospitalized	438	452	510	496	626	533	601	651	643	540	559	638	6727
Total	4366	5187	5997	5911	6172	5619	6338	6560	6870	5533	6445	7421	72419
Percentage 2018-2019	6.03	7.16	8.28	8.16	8.52	7.76	8.75	9.06	9.49	7.64	8.90	10.25	100.00

TABLE 2A

Combined CT scans COVID-19

Month	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar-20	Total
ER	5447	6014	5354	5822	6182	5987	6056	5829	3897	5309	5511	3693	65101
OPD	1019	1047	1067	946	993	1056	1164	918	677	1099	1100	647	11733
Hospitalized	628	670	709	708	730	813	802	792	483	665	725	662	8387
Total	7094	7731	7130	7476	7905	7856	8022	7539	5057	7073	7336	5002	82478
Percentage 2020-2021	8.32	9.07	8.37	8.77	9.28	9.22	9.41	8.85	5.93	8.30	8.61	5.87	100.00

Month	Apr-20	May-20	Jun-20	Jul-20	Aug-20	Sep-20	Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	Total
ER	2550	4288	4733	4801	4884	5066	5442	4628	4406	5194	5167	5648	56807
OPD	389	774	1035	988	928	810	1101	819	866	762	1154	1251	10877
Hospitalized	538	692	820	728	638	628	730	707	532	655	740	713	8121
Total	3477	5754	6588	6517	6450	6504	7273	6154	5804	6611	7061	7612	75805
Percentage 2020-21	4.59	7.59	8.09	8.60	8.51	8.58	9.59	8.12	7.66	8.72	9.31	10.04	100.00
trauma admissions at the Puerto Rico Trauma Hospital (PRTH). When analyzing and comparing the number of trauma admissions during March 15-June 15, 2020, and the historical admissions average during that same date (2017-2019), the hospital reported a 59% reduction. More specifically, the most prevalent difference in admissions was identified during the first eight weeks of the COVID-19 pandemic; in fact, PRHT received no trauma admissions during the second week of lockdown. Researchers believe that given the change in lifestyle associated with the pandemic, individuals were no longer experiencing traumatic injuries as frequently as they were pre-pandemic. Also, patients are more reluctant to go and stay in hospitals given the association with contamination.32,33 Similarly, this could account for the evident drop in CT scan studies performed in Puerto Rico when considering that the island’s residents were encouraged to remain home after facing some of the nation’s strictest lockdown restrictions, and that patients were keen to avoid contracting COVID in healthcare facilities. Our results provide additional support to the argument that there is no time like the present to fortify medical and societal infrastructure to better prepare for future natural and public health disasters. Similarly, the University of Puerto Rico School of Medicine Diagnostic Radiology Residency Program incorporated unique solutions such as Zoom and Microsoft Teams virtual meetings.

TABLE 2B
Mayaguez medical center CT scans COVID-19

	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar-20	Total
ER	1118	1491	1549	1537	1760	1527	1635	1595	0	1442	1528	892	16074
OPD	188	272	245	234	245	210	250	208	0	255	249	121	2477
Hospitalized	98	143	168	179	167	188	224	191	0	162	156	143	1819
Total	1404	1906	1962	1950	2172	1925	2109	1994	0	1859	1933	1156	20370
Percentage	6.89	9.36	9.63	9.57	10.66	9.45	10.35	9.79	0.00	9.13	9.49	5.68	100.00

TABLE 2C
Manatí medical center CT scans COVID-19

	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar-20	Total
ER	2197	2211	2057	2112	2143	2304	2159	1943	2052	1981	2046	1417	24622
OPD	488	508	436	444	425	472	583	416	449	519	492	309	5541
Hospitalized	245	248	292	254	245	250	272	277	276	283	289	260	3191
Total	2930	2967	2785	2810	2813	3026	3014	2636	2777	2783	2827	1986	33354
Percentage	8.78	8.90	8.35	8.42	8.43	9.07	9.04	7.90	8.33	8.44	8.48	5.95	100.00

TABLE 2D
Doctors’ center hospital Manatí CT scans COVID-19

	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar-20	Total
ER	967	1640	1712	1803	1712	1989	2118	1879	1656	1950	1971	2094	21511
OPD	171	338	446	408	424	441	476	353	384	348	503	579	4871
Hospitalized	184	247	311	233	271	287	279	262	212	248	277	279	3090
Total	1322	2225	2469	2444	2427	2717	2873	2494	2252	2546	2751	2952	29472
Percentage	4.49	5.55	8.38	8.29	8.23	9.22	9.75	8.46	7.64	8.64	9.33	10.02	100.00

E. Lugo-Fagundo et al. / Current Problems in Diagnostic Radiology 52 (2023) 245 - 252

250
for read-out sessions and didactic conferences during the COVID-19 pandemic in order to comply with quarantine restrictions, without altering the duration of shifts or the number of residents on call. Radiology capacity during such ongoing crises can only be better sustained as a result. Besides the effects of Hurricane Maria and the COVID-19 pandemic on the island’s healthcare infrastructure, Puerto Rico is facing another major crisis as it struggles to deal with significant healthcare personnel shortages. In 2017, then-Governor Ricardo Rossello signed what came to be known as the Law of Incentives for the Retention and Return of Medical Professionals (Ley de Incentivos para la Retención y Retorno de Profesionales Médicos), a tax incentive where doctors pay a fixed 4% on their medical practice earnings. This law was formulated as a response to the 20.5% decrease in medical specialists on the island from 2009 to 2014, a figure that was further affected following Hurricane Maria and COVID-19. More recently, protests led by doctors, nurses, medical technologists, therapists, and maintenance personnel have erupted as employees seek fair wages, adequate retirement, and action by the government and healthcare institutions concerning staff shortages. Specifically, hospitals such as Centro Médico Rio Piedras, Puerto Rico’s only trauma center, have seen the number of surgical technicians dwindle from 80 to 30, significantly reducing the number of procedures performed. With a salary of $8.25 an hour, many technicians have opted for better paying jobs in the private health sector or even fast-food restaurants.

Limitations

There were several limitations to our study. Restricted data accessibility and time lag were our main obstacles. Two of the island’s largest hospital affiliation groups that had initially committed themselves to sharing their data later backed out, with one hospital claiming it did not receive clearance from their legal department, and the other failing to further respond to our inquiries, by one month and six months after the start of our study, respectively. Additionally, there was a third hospital that did not share their data approximately 6 months following our first contact and after steady back-and-forth communications. Consequently, we decided to proceed without their participation.

Conclusion

Hurricane Maria struck Puerto Rico on September 20, 2017, becoming the worst natural disaster to strike the island, and the deadliest natural disaster in the U.S. in the past 100 years. Such a catastrophe, though, is also believed to have been strengthened or exacerbated by anthropogenic climate change. The COVID-19 pandemic, believed to have begun in animal markets in Wuhan, China, is a natural public health disaster with more direct human influence. These human inflection points are notable as we face the prospect of juggling or being beset by more such emergencies in the near future at what stands to be an unprecedented pace. Both calamities descended on Puerto Rico within a two-and-a-half-year period, before the island had fully recovered from Maria and the earthquake swarm that struck the island’s southwest coast between 2019 and 2020. Considering such events individually and together can help to elucidate the areas of a health system in general and, specifically, in imaging services that must be shored up to weather future disasters. Both Hurricane Maria and COVID-19 have exacted a toll on the health care system in Puerto Rico and exerted a measurable impact on the use of diagnostic radiology services. Our results support the need to fortify medical and societal infrastructure to better prepare for future natural and public health disasters. Such preparations would leave health systems of all kinds, but particularly those that share the resource constraints as those in Puerto Rico, more likely to maintain steady, if somewhat diminished, radiology services such as CT for regular and emergency purposes.

Acknowledgment

The authors gratefully thank Lorraine Vázquez, MD (Doctor’s Center Hospital) and Jorge Acosta Ferrer, RT (Dorado Health, Inc.) for their invaluable help in providing data.

References

1. Santos-Burga C, Sandberg J, Suárez E, et al. Differential and persistent risk of excess mortality from Hurricane Maria in Puerto Rico: a time-series analysis. Lancet Planet Health 2018;2: e238.
2. Polonsky J, Luquero F, Francois G, et al. Public health surveillance after the 2010 Haiti earthquake: the experience of médicos sin fronteras. PLoS Curr 2013:5. ecurrents.dis.6ace18e84b160c5588ca2d064568b117c.
3. Donorcent JW, Guillaume FD, Marston BJ, Lowrance JW, Centers for Disease Control and Prevention (CDC). Update on progress in selected public health programs after the 2010 earthquake and cholera epidemic – Haiti, 2014. MMWR Morb Mortal Wkly Rep. 2015;64:137–40. Erratum in: MMWR Morb Mortal Wkly Rep. 2015 Apr 3;64(12):334.
4. Jean Louis F, Buteau J, Boncy J, et al. Building and rebuilding: the national public health laboratory systems and services before and after the earthquake and cholera epidemic, Haiti, 2005–2015. Am J Trop Med Hyg 2017;97(4 Suppl):21–7.
5. Komo Y, Okawa T, Hayashi K, et al. Impact of natural disaster combined with nuclear power plant accidents on local medical services: a case study of Minami-soma Municipal General Hospital after the Great East Japan Earthquake. Disaster Med Public Health Prep. 2014;8:471–6.
6. Mattei J, Tamez M, O’Neill J, et al. Chronic Diseases and Associated Risk Factors Among Adults in Puerto Rico After Hurricane Maria. JAMA Netw Open. 2022;5:e2139986. Jan.
7. Chandra A, Marsh T, Madrigano J, et al. Health and social services in puerto rico before and after Hurricane Maria: predisaster conditions, hurricane damage, and themes for recovery. Homeland Security Operational Analysis Center Operated by the RAND Corporation 2020. RR–2603–DHS, June.
8. Dijulio B, Muñana C, Brodie M. Views and experiences of Puerto Ricans one year after Hurricane Maria. Kaiser Family Foundation 2018.
9. Oreno-Aguayo R, Stewart R, de Arelano M, Suárez-Kindy J, Young J. Disaster exposure and mental health among puerto rican youth after Hurricane Maria. JAMA Netw. Open. 2019;2:e192619.
10. Malhotra A, Wu X, Fleshon HB, et al. Initial impact of COVID-19 on radiology practices: an ACR/RBMA survey. J Am Coll Radiol 2020;17:1525–31.
11. Nadjib J, Boltynska A, Wang J, Chuni J, Hughes D, Sanelli PC. Impact of the Coronavirus Disease 2019 (COVID-19) pandemic on imaging case volumes. J Am Coll Radiol 2020;17:865–72.
12. Sreedharan S, Sian M, McDrindle DJT, Rhodes A. The impact of the COVID-19 pandemic on diagnostic imaging services in Australia. J Med Imaging Radiat Oncol 2022;66:377–84.
13. Xu Y, Mandal I, Lam S, et al. Impact of the COVID-19 pandemic on interventional radiology services across the world. Clin Radiol 2021;76:621–5.
14. Patel NR, El-Karim GA, Mujomdar A, et al. Overall impact of the COVID-19 pandemic on interventional radiology services: a Canadian perspective. Can Assoc Radiol J 2021;72:564–70.
15. Albano D, Bruce A, Bruce F, et al. Impact of coronavirus disease 2019 (COVID-19) emergency on Italian radiologists: a national survey. Eur Radiol. 2020;30:6635–44.
16. Schmieder M, Genschel N, Juchems MS, Mehlmann E, Lauenstein T, Schreyer AG, Verloh N, Becker C, Vogl TJ, Wessling J, Wacker FK, Ringe KI. Impact of the COVID-19 Pandemic on Radiological Imaging in Germany. Rofo 2021. Dec 28. English, German.
17. Messina MD, Stein MW, Armstrong JJ, Wolf EL. Impact of the COVID-19 pandemic on radiology department emergency ultrasound utilization. Emerg Radiol 2021;28:869–75.
18. Agarwal M, Udare A, Alabousi A, et al. Impact of the COVID-19 pandemic on emergency CT head utilization in Ontario-an observational study of tertiary academic hospitals. Emerg Radiol 2020;27:791–7.
19. McFadden S, Flood T, Shepherd P, Cilleece T. Impact of COVID-19 on service delivery in radiology and radiography, Radiography (Lond) 2022;28:31078-8174(22)00041-4.
20. Riou C, Ling E, Rivera Gutierrez R, Gonzalez J, Bruce J, Barry M, de Jesus Perez V. Puerto Rico health system resilience after Hurricane Maria: implications for disaster preparedness in the COVID 19 Era. medRxiv [Preprint] 2020. Sep 23:2020.09.20.20198531.
21. García C, Rivera FL, Garcia MA, Burgos G, Aranda MP. Contextualizing the COVID-19 era in Puerto Rico: compounding disasters and parallel pandemics. J Gerontol B Psychol Sci Soc Sci 2021;76:e263–7.
22. Mercy Corps. Hurricane Maria’s Effect on Puerto Rico. January 19, 2018. Last updated September 9, 2020. Available at: https://www.mercycorps.org/blog/ mercy-corps-facts-hurricane-maria-puerto-rico. Accessed October 19, 2021.
23. World Health Organization, Summary of WHO’s response to COVID-19, June 29, 2020 Updated January 29, 2021. Available at: https://www.who.int/news/item/ 29-06-2020-covidtimeline. Accessed October 19, 2021.
24. Executive Order. Available at: https://ayudalegalpr.org/files/CE6D35A7-B0DD-E05A-5001-17185067F894/attachments/FFB9A911-C387-4798-B287-0F9841882093/orden-ejecutiva-2020-023-toque-de-queda.pdf. Accessed on June 27, 2022.

25. Kishore N, Marqués D, Mahmud A, et al. Mortality in Puerto Rico after Hurricane Maria. N Engl J Med 2018;379:162–70.

26. Kwasiński A, Andrade F, Castro-Sítriche M, O’Neill-Carrillo E. Hurricane Maria effects on Puerto Rico Electric power infrastructure. IEEE Power and Energy Technology Systems J 2019;6:85–94.

27. Casey J, Fukurai M, Hernández D, Balsari S, Kiang M. Power Outages and Community Health: a Narrative Review, Curr Environ Health Rep 2020;7:371–83.

28. Shin P, Sharac J, Gunsalus R, Leifer B, Rosenbaum S. Puerto Rico’s Community Health Centers – rchnfoundation.org. Puerto Rico’s Community Health Centers: Struggling to Recover in the Wake of Hurricane Maria 2022. Available at https://www.rchnfoundation.org/wp-content/uploads/2017/11/Final-GRCHN-Puerto-Rico-Health-Center-Report_10.31.pdf Published November 2017Accessed July 11.

29. Gondi V, Bauman G, Bradfield L, Burri S, Cabrera A, Cunningham D. Radiation Therapy for Brain Metastases: An ASTRO Clinical Practice Guideline. Available at: https://www.practicalradonc.org/action/showPdf?pii=S1879-8500%2822%2900054-6. Published 2022. Accessed July 11, 2022.

30. El-Bawab N, Hoyos J. Power restored to over 1.3 million customers in Puerto Rico amid massive outage. ABC News 2022. Available at https://abcnews.go.com/US/power-850000-customers-puerto-rico-amid-massive-outage/story?id=83958378. Accessed on June 27, 2022.

31. Acevedo N. Puerto Rico enacted strict Covid measures. it paid off, and it’s a lesson for the mainland. NBCNews.com 2015. Available at https://www.nbcnews.com/news/latino/puerto-rico-enacted-strict-covid-measures-it-paid-it-s-n1260998. Published March 15 Accessed July 14, 2022.

32. Ruiz-Medina PE, Ramos-Meléndez EO, Cruz-De La Rosa KX, et al. The effect of the lockdown executive order during the COVID-19 pandemic in recent trauma admissions in Puerto Rico. In Epidemiol 2021;8:22.

33. Leichtle SW, Rodas EB, Procter L, Bennett J, Schrader R, Aboutanos MB. The influence of a statewide “Stay-at-Home” order on trauma volume and patterns at a level 1 trauma center in the United States. Injury 2020;51:2437–41.

34. Rodríguez-Ortiz LR, Marrero-González AP, Maldonado-Vargas JA. Radiation education and clinical service during the COVID-19 Pandemic - the Puerto Rico Medical Center Experience. P R Health Sci J 2022;41:51–5.

35. Primera Hora. Ya es ley que los médicos solo pagarán 4% De Contribuciones. Primera Hora. Available at: https://www.primerahora.com/noticias/gobierno-politica/notas/ya-es-ley-que-los-medicos-solo-pagan-4-de-contribuciones/. Published February 21, 2017. Accessed August 2, 2022.

36. Pérez Méndez O. Se Manifiestan Empleados Que Integran el centro médico de río piedras. Primera Hora. Available at: https://www.primerahora.com/noticias/gobierno-politica/notas/se-manifiestan-empleados-que-integran-el-centro-medico-de-rio-piedras/ Published February 23, 2022. Accessed August 2, 2022.

37. Parés Arroyo M. El Centro Médico en Río Piedras Atraviesa por una escasez aguda de técnicos Quirúrgicos y otro personal especializado. El Nuevo Día 2022. Available at https://www.elnuevodia.com/noticias/locales/notas/el-centro-medico-en-rio-piedras-avalaesa-por-una-escasez-aguda-de-tecnicos-quirurgicos-y-otro-personal-especializado/. Published July 27 Accessed August 2, 2022.