Isolation of Bacteriophages Affecting Enterohemorrhagic Escherichia coli O157:H7

Forough Mokhtari1, Azam Mokhtari1,2*, Mohammadreza Mahzounieh1, Somayeh Shahrokh Shahraki1, Somayeh Gheisarbeigi1

1. Department of Pathobiology, Faculty of Veterinary medicine, Shahrekord University, Shahrekord, Iran
2. Research Institute of Zoonotic Diseases, Shahrekord University, Shahrekord, Iran

ABSTRACT

Background: Escherichia coli is an important pathogen and microorganism of the normal intestinal flora of humans and animals. One of the important serotypes of E. coli is O157: H7. Because of the excessive and arbitrary use of antibiotics, multiple drug resistance has increased against these organisms. The main problem in treating infections caused by E. coli is its dependence on the administration of a large number of common antibiotics and the resistance of some strains to antibiotics. Phage therapy refers to the therapeutic use of phages to eliminate bacterial infections. In the first step, it is necessary to separate and identify bacteriophages that affect the target bacteria. Therefore, the present study was performed to isolate the phage that was effective on enterohemorrhagic E. coli isolates.

Materials & Methods: In this study, after collection of sewage samples, bacteriophages were isolated by filtration and enrichment in an enterohemorrhagic E. coli overnight culture. The presence of bacteriophage was detected by plaque observation in a double layer agar and confirmed by TEM electron microscopy.

Results and Conclusion: The results of the observation with electron microscopy revealed the presence of bacteriophage with the appearance of the Cystoviridae, Myoviridae and Podoviridae families. Unfortunately, although the titration of phages and molecular study were not performed in the current study due to the lack of budget, we found antibacterial activity of isolated phages using plaque formation observation, and the presence of phages belonging to Cystoviridae, Myoviridae and Podoviridae families was confirmed by TEM microscopy. Therefore, the effective phage against O157: H7 was successfully identified, isolated, and purified.

Keywords: Escherichia coli, bacteriophage, enterohaemorrhagic, treatment

Introduction

Escherichia coli O157: H7 (E. coli) is an important dietary pathogen that causes dysentery and sometimes hemolytic-uremic syndrome (HUS) (1). This human-animal common human pathogen can remain in food and environments and produce biofilms. Consumption of contaminated foods such as beef, dairy products, ready-made salad, vegetables, and fruits are some of the ways this pathogen is transmitted (3-7). Cow is the primary reservoir of O157 and is a seemingly healthy carrier of this
bacterium in the gastrointestinal tract. Cow excretes O157 from its feces, which is the most important risk factor for the contamination of the carcass of this animal (6, 8). Bacteriophage is a type of virus hosted by bacteria. Twort in 1915 and d’Herelle in 1917 discovered bacteriophage and so it has been an option used to control and eliminate bacteria ever since (9). Due to public health concerns about the emergence and increase in antibiotic-resistant bacteria, the use of bacteriophages in the food production and processing industry and medicine has been very welcomed (9-12). Given the high cost of the pharmaceutical industry from discovering new antibiotics, it is essential to develop an alternative treatment regimen that is easy, inexpensive, affordable, robust, and with few side effects to reduce infectious diseases (13, 14).

Studies have shown that phage therapy is successful in the biological control of pathogenic strains of E. coli (18-15) and is superior to other methods because of reproducibility. Unlike antibiotics, when the number of pathogens increases, their specificity, and function can improve. Admittedly, the disadvantage of phage therapy for controlling intracellular endotoxin-producing bacteria is that we may experience an excessive secretion of toxins after the bacteria have died and their walls have been ruptured (17).

Bacteriophages is a new and suitable option to reduce the level of E. coli O157: H7. A review of previous works has shown that E. coli O157: H7 levels decreased in tomatoes, spinach, beef, and meat surfaces after phage therapy (1, 19). Another study has shown that bacteriophage has a reducing effect on the amount of E. coli O157: H7 in cooked and raw beef (20, 21). It is noteworthy that the results of another study identified podophage CA933P as a suitable solution for the removal of enterohemorrhagic E. coli (22).

Therefore, in the current research, we tried to isolate of E. coli O157:H7 bacteriophages from sewage. The results, presenting the isolated phage, can be utilized in developing biocontrol agents against E. coli contamination.

Materials and Methods

Bacteria

E. coli O157: H7 (ATCC: 35218) prepared from microbial collection of Pasteur Institute of Iran and kept in the microbiology laboratory. It was confirmed as E. coli O157:H7 by PCR assay for stx2 O157:H7 detection. Genomic confirmation was performed using the primers listed in Table 1.(23).

Target gene	Primer sequence	Amplicon Size	Reference
stx2	Forward: TTA ACC ACA CCC CAC CGG GCA GT	524	Pollard, Johnson, Tyler, and Rozee (1990) (24)
	Reverse: GGA TAT TCT TCT CCC CAC TCT GAC ACC		

Sampling and Preparation of Sewage

The sampling was conducted via a sterile glass bottle; and sewage samples were taken from a refinery in Chaharmahal and Bakhtiari province. Then the samples were transferred to the laboratory and centrifuged at 8000g for 10 minutes. Finally the supernatant was filtered by sterile 0.2 μm Minisart filters (Sigma- Aldrich, Cat. No.: 16534K).

Preparation of Bacteria and Adding Sewage

At first, one milliliter of overnight bacterial culture medium was added to 20 milliliters of BHI liquid culture medium, and the suspension was incubated for 3 hours at 37°C. Then, 20 milliliters of filtered sewage were added to this suspension and incubated at 37°C for 24 hours. Afterwards, it was centrifuged for 10 minutes at 8000 g. Finally, the supernatant was filtered through a 0.45 μm sterile syringe filter (Sigma- Aldrich, Cat. No.: CLS431225) (24).

Phage Isolation

Bacteria were grown in 20 mL of BHI medium and incubated for 4h at 37°C. Then, 20 mL of the filtered supernatant of the sewage culture in BHI whose preparation steps were added to the bacteria culture and incubated for 24 h at 37°C. After Centrifuge for 10 minutes at 8000 g, the supernatant were filtered through a 0.2 μm syringe filters (Sigma- Aldrich, Cat. No.: CLS431229). Phage isolation was performed using the double agar method. First, 9 mL semi-solid BHI (containing 0.7% agar) was placed into tubes and sterilized. When the temperature of the semisolid medium reached to about 45°C, 0.1 mL of overnight cultured and filtered bacteria was added to it and spread throughout the culture medium. This culture medium was then added to a solid and sterile BHI medium (containing 1.5% agar) to form a two-layer culture. When the agar was tightened, 20 μL of the filtered sewage was placed in the center of the culture medium and incubated for 24 hours at 37°C (24).

Electron Microscopy

The phage suspension was centrifuged for 90 minutes at 20000g. The supernatant was then slowly withdrawn from the tube and the pellet adhered to the tube wall was dissolved in 50 mL of Phage buffer and again centrifuged as described above. After centrifuge, the supernatant
solution was removed and the pellet was dissolved in 25 mL of Phage buffer. For the coloring of the phages, 10 μL of the suspension was transferred to a carbon-treated copper grid (400 Mesh) and placed for 210 seconds in this mode. Then, the grid was then placed in the room temperature for 20 seconds. After that, 20 μL of uranium acetate was poured onto the grid and after 160 seconds. Eventually, the excess uranium acetate was removed gently using a drying paper, and the grid was left in room temperature for 30 minutes to be completely dried (25).

Results and Discussion

In the current study, for the confirmation of O157:H7, the presence of stx2 fragment of O157:H7 was detected using PCR test. Positive PCR product and positive control sample were in the size of 524 bp, while no bands were detected for negative control after electrophoresis in 1% agarose gel (Figure 1).

To detect the plaque formation, lytic bacteriophages were isolated after the inoculation of the sewage into double layer agar, and the phage plaques were completely formed in the plates. These plaques indicated that these phages had lytic effects on E. coli O157: H7 (Figure 2).

In the images taken by TEM electron microscopy, due to the morphological features, the isolated phages belonged to the Podoviridae, Myoviridae, and Cystiviridae families (Figures 3-5). The podoviridae have symmetrical heads and non-retractable tails. Members of the myoviride family have relatively high symmetrical head and tail contraction, and cystoviride members have spherical heads and contraction tails.

Therefore, in the current study, using TEM microscopy observation, phages against E. coli O157:H7 belonging to the Podoviridae, Myoviridae and Cystiviridae families isolated from the liquid sewage samples were taken from a refinery in Chaharmahal and Bakhtiari province, Iran. The basis of the diagnosis in the present study was the shape and symmetry of the phages, which, of course, must be confirmed by other molecular methods. In the previous studies, E. coli phages have been isolated from different sources. For example, Jurczak-Kurek et al. (2016) detected 60 infecting E. coli bacteriophages from urban sewage. They found the phages belonging to Siphoviridae and Podoviridae families, using virion and plaque morphology...
evaluation, propagation temperature range and thermal inactivation conditions and the effects of the osmotic shock, high and low pH and detergent or organic solvents, and finally genomic analyses \(^{(25)}\). In the present study, due to lack of budget, we only performed virion and plaque morphology evaluation that should be confirmed with more tests.

In another study, Askora et al. \(^{(2015)}\) identified an effective lytic bacteriophage against a number of enthaemorrhagic and enteropathogenic Escherichia coli strains. They named the isolated phage as øZE1. It was confirmed that the phage belonged to family Siphoviridae using electron microscopy and produced lysis on four E. coli strains. Also, the resistance to pH, heat, and chloroform was evaluated, and genomic analysis of ØZE1 phage was performed \(^{(26)}\). In the present study, similar to the study of Askora et al., the initial basis for the diagnosis of phage was based on the electron microscopy.

Jamal et al. \(^{(2015)}\) isolated and characterized a phage belonging to Myoviridae that was effective on antibiotic resistant Escherichia coli strains. In their study, the phage morphology was identified using TE microscopy the same as what we performed in the current research. Furthermore, they described high levels of resistance of MJ1 to heat and pH change \(^{(27)}\).

The sufficient therapeutic effect of phages has been established in many studies. For example, Periasamy and Sundaram \(^{(2013)}\) applied bacteriophages for pathogen removal from wastewater. In their study, E. coli specific phage was isolated, and its effective titer was standardized. \(^{(24)}\). Although, the titration of phages were not performed in the current study, we found antibacterial activity of isolated phages using plaque formation observation.

In another study, Sadekuzzaman et al. \(^{(2017)}\) reduced E. coli O157:H7 in biofilms by bacteriophage BPECO 19. The phage treatment performed by Sadekuzzaman et al. decreased E. coli viability \(^{(2)}\). Phage treatment, which was used in this study, reduced the survival of O157: h7. With plaque formation test, we found antibacterial activity of isolated phages against E. coli O157:H7.

Arthur et al. \(^{(2017)}\) used bacteriophage to reduce the bacterial population in the skin and carcasses of cows found in beef processing plants. The results showed that phage did not significantly reduce E. coli O157: H7 during processing \(^{(28)}\). In another work, Seo et al. \(^{(2016)}\) inhibited the growth of O157:H7 in beef, pork, and chicken meat by BPECO19 phage \(^{(29)}\).

Overall, due to the increasing threat imposed by multidrug resistance, it is necessary to search for novel antimicrobials. There is a growing need for alternative agents of antibiotics and conventional drugs for the prevention and treatment in humans and animals. Exploring bacteriophages as biological control agents can help control antibiotic resistant pathogens. In addition, bacteriophage may apply in pathogen detection and biopreservation. In the present study, E. coli O157: H7 infecting phases were isolated and were available for complementary studies assaying the biological aspects of isolated phages and their in vivo and clinical applications. In addition, further studies can be helpful to use the potential for therapeutic potential and evaluate isolated phages for virulence factors and their ability to transmit genes.

Conclusion

Overall, in the current study, E. coli O157:H7 phages belonging to the Podoviridae, Myoviridae and Cystoviridae families were isolated from liquid sewage samples and are available for the future studies.

Acknowledgment

This work was supported by grants from Shahrekord University (Grant number: 9BGRD30M1801)
چکیده

زمینه و هدف: اشتباه کلاسی به معنای یکی از مهم‌ترین شاخص‌های میکروسکوپ‌های فقر نمایش کلاسی از انواع و حیوانات مطرح است. اکثریت این نوع از میکروسکوپ‌های فقر نمایش کلاسی و O157:H7 است. با توجه به این امر، نتیجه‌گیری در مورد این اشتباه کلاسی و اشتباه O157:H7 است. در نهایت، نتایج مطالعه بیان‌کننده یکی از اشتباهات در موارد مورد تحقیق است.

روش‌کار: ثبت نام و بررسی مطالعه از دو جفت: جهت عمدی و غیرعمدی. مطالعه از دو تکنولوژی و عالم‌اندیشی در یک کشت و نوشتار کسب‌کردن.

نتایج و بحث: نتایج نشان می‌دهد که استفاده از مشاهده‌ی باکتریا O157:H7 موجب اشتباه در مشاهده‌ی باکتریا O157:H7 شده و به دست آوردن نتایج غیر صحیح می‌باشد.

مقدمه

باکتری فازها و ویروس‌های هستنی که باعث باکتری‌های میزبان d’Herelle و Twort در 1915 به این کشف آنها توسط باکتری فازها و ویروس‌های قرار گرفته است (9). با توجه به تغییر قد میان‌دمامه در مورد باکتری‌های میزبان O157:H7، نتیجه‌گیری این اشتباه کلاسی و اشتباه O157:H7 است (11-12). نظر به هزینه‌های این تکنیک از دسترسی است که این اشتباه کلاسی و اشتباه O157:H7 برای منابع گسترده‌ای در جهان و وابستگی به نتایج تشخیص‌های باکتری‌های مایع است.

اطلاعات مقاله

نوع متن مقاله: اخلاق مختصر

نویسنده مسئول: گروه پاتولوژی، دانشگاه دامپزشکی، دانشگاه شیرودی، ایران

پژوهشگر: شهید قادری، دانشگاه دامپزشکی، شیرود، ایران

موضوع ویروس‌های هستنی بررسی

در این مقاله، باکتری فازها و ویروس‌های هستنی که باعث باکتری‌های میزبان d’Herelle و Twort در 1915 به این کشف آنها توسط باکتری فازها و ویروس‌های قرار گرفته است (9). با توجه به تغییر قد میان‌دمامه در مورد باکتری‌های میزبان O157:H7، نتیجه‌گیری این اشتباه کلاسی و اشتباه O157:H7 است (11-12). نظر به هزینه‌های این تکنیک از دسترسی است که این اشتباه کلاسی و اشتباه O157:H7 برای منابع گسترده‌ای در جهان و وابستگی به نتایج تشخیص‌های باکتری‌های مایع است.

Majallah-i mikrub-e shinasiy-e pishke-e Iran

مجله میکروبشناسی پزشکی ایران

144
جوش آبی باکتری

جرم آبی باکتری

در میوزگومی

نمونه برداری و آماده سازی فناصب

نمونه‌گیری با استفاده از یک بطری شیشه‌ای استخراج انواع شد و

نمونه‌های فناصبی از یک ورقی باستانی در استخراج و

بختیاری گرفته شد. سپس نمونه‌ها به آزمایشگاه منتقل و در

به مدت 10 دقیقه سانتریفوژ شدند، سپس روغن رنگین توسط

فلترهای استریل 2 میکرومتر Minisart فیلتر شد (سیگما-

الدبری، شمال کالیفورنیا).

تغییر باکتری و آفودون فناصب

در ابتدا یک میلی لیتر میکروبی مشخص شد باکتری‌پایه شبانه 20 میلی لیتر

میکروکوله فناصبی استخراج از نمونه آگار

در میوزگومی

(2012) همواره اجازه می‌دهد تا در هر فناصب

که می‌تواند باکتری‌پایه باشد.

Cat. No.: CLS431229

دوله‌ای انتخاب نمایانه برا شدن. 10 میلی لیتر

آگار) در لوله‌ها قرار داده و استریل شد. هنگامی که دمای میکروکوله فناصبی

به مدت 10 دقیقه به مدت 15 دقیقه. اضافه شد. سپس یک کشت دو

165341

24

20

10

1

20

15

10

524

Pollard, Johnson, Tyler, and Rozee (1990) (24)

جدول 1. مشخصات باکتری‌پایه مورد استفاده برای آماده سازی آزمایشگاهی (ATCC: 35218)

عضو اولیا	انتشار	منبع
Forward: TTA ACC ACA CCC CAC CGG GCA GT	524	Pollard, Johnson, Tyler, and Rozee (1990) (24)
Reverse: GGA TAT TCT CCC CAC TCT GAC ACC		

E. coli

یک جستجوی جدید E. coli که قادر به افزایش در حدود 8000 درجه سلزس است

و برای زمان‌های افزایش زودتر در زمانی که زمانی در زمانی که زمانی در زمانی

باکتری‌های همواره درترکیب داخل سلولی و بخش را دارد که از

لیز باکتری، افزایش سرمایه‌افزاین (17).

باکتری‌پاژ معنوی یک مداخله کننده ضد میکروبی جدید

برای کاهش سطح E. coli در میوزگومی

مطالعه قبیل اثر مهاری کوتک‌های باکتری‌پاژ را در

E. coli O157: H7 افزایش نمود. در مورد E. coli O157: H7

گوشت ناشان داده است (19). علاوه بر این، نشان داده است

که باکتری‌پاژ کاشش می‌یابد (20). باعث شد، تابث شد که

E. coli

یک جستجوی جدید E. coli که قادر به افزایش در حدود 8000 درجه سلزس است

و برای زمان‌های افزایش زودتر در زمانی که زمانی در زمانی

باکتری‌های همواره درترکیب داخل سلولی و بخش را دارد که از

لیز باکتری، افزایش سرمایه‌افزاین (17).

باکتری‌پاژ معنوی یک مداخله کننده ضد میکروبی جدید

برای کاهش سطح E. coli در میوزگومی

مطالعه قبیل اثر مهاری کوتک‌های باکتری‌پاژ را در

E. coli O157: H7 افزایش نمود. در مورد E. coli O157: H7

گوشت ناشان داده است (19). علاوه بر این، نشان داده است

که باکتری‌پاژ کاشش می‌یابد (20). باعث شد، تابث شد که

E. coli

یک جستجوی جدید E. coli که قادر به افزایش در حدود 8000 درجه سلزس است

و برای زمان‌های افزایش زودتر در زمانی که زمانی در زمانی

باکتری‌های همواره درترکیب داخل سلولی و بخش را دارد که از

لیز باکتری، افزایش سرمایه‌افزاین (17).

باکتری‌پاژ معنوی یک مداخله کننده ضد میکروبی جدید

برای کاهش سطح E. coli در میوزگومی

مطالعه قبیل اثر مهاری کوتک‌های باکتری‌پاژ را در

E. coli O157: H7 افزایش نمود. در مورد E. coli O157: H7

گوشت ناشان داده است (19). علاوه بر این، نشان داده است

که باکتری‌پاژ کاشش می‌یابد (20). باعث شد، تابث شد که

E. coli

یک جستجوی جدید E. coli که قادر به افزایش در حدود 8000 درجه سلزس است

و برای زمان‌های افزایش زودتر در زمانی که زمانی در زمانی

باکتری‌های همواره درترکیب داخل سلولی و بخش را دارد که از

لیز باکتری، افزایش سرمایه‌افزاین (17).
روی E. coli O157: H7

میکروسکوب الکترونی تعلیق فاز حسی به مدت ۹۰ ثانیه در ۲۰۰۰ سانتریفیوز شد. سپس مایع رومی به آرامی از لوله خارج شده و پلت چسبیده به دیواره لوله در ۵۰ میلی لیتر باریک B از سانتریفیوز، محلول روی برداشته شد و رسوپ در ۲۵ میلی لیتر باریک باریک باریک باریک باریک B از رنگ آمیزی فازها، ۱۰ میکرو لتر سوسپنژیون به یک شبکه مسی تریت شده در کریستال ۴۰۰ مش منظور شده و ۲۱۰ ثانیه در این حالت قرار گرفت. سپس شبکه به مدت ۲۰ ثانیه در دمای اتانی قرار گرفت. سپس ۲۰ میکرو لتر استات اوراژیم روی شبکه ریخته شد و پس از ۱۶۰ ثانیه، انتخاب اوراژیم اضافی به آرامی با استفاده از یک کاف قطع شده کن برداشته شد و شبکه به مدت ۳۰ دقیقه در دمای اتانی باقی ماند تا خشک شود (۲۵).

نتایج و بحث

در مطالعه حاصل، برای تایید H7 O157: و وجود قطعه ۲ stx2: با استفاده از تست PCR مثبت H7 تشخیص داده شد. محصول PCR واژه مثبت در اندام ۱۱۰ جفت بار بود، در حالی که بعد از الکتروفورز در دل آفاز ۱/۱ هیج باندی برای کنترل منفی تشخیص داده نشد (شكل ۱).
مقدمه
در برابر چند دارو جداسازی و شناسایی E. coli ضروری است. در مطالعه آنها مورفولوژی فاز توسط میکروسکوپ الکترونی عبوری درست مشابه تحقیق حاضر انجام شد. علاوه بر این همکاران جمال تاکید کردند که pH MJ1 یک فیزیولوژیک کوچک می‌باشد که در برابر ناچیزی تأثیر دارد (27).

اثر درمان کن‌آمده فاکور در بسیاری از مطالعات ثابت شده است. به عوامل مهال، Sundaram و Periasamy (2013) برای حذف پاتوژن از باکتری‌های اصلاح شده از E. coli از این دسته پتی‌نوریژن، یادآوری فاز نازده و تعداد انرژی استاندارد از بین بردن موثر E. coli از کریونیان و در مطالعه حاضر با وجوهی که هیچ مقاومتی نداشتند بیشترین تأکید نشان دادند. در این مطالعه از مشاهده نشان داده شد که E. coli های کلیدی که در این مطالعه از بین بردن موثر E. coli نیز از نظر اصلی به این باکتری‌ها می‌باشد. در این مطالعه فاکور در بسیاری از مطالعات ثابت شده است.

در تحقیق دیگر، Sadekuzzaman و همکاران (2017) آزمایش‌هایی را در باکتری‌های اپی‌کوکا انجام دادند. در این مطالعه، در این مطالعه از مشاهده نشان داده شد که E. coli های کلیدی که در این مطالعه از بین بردن موثر E. coli نیز از نظر اصلی به این باکتری‌ها می‌باشد. در این مطالعه فاکور در بسیاری از مطالعات ثابت شده است.

در تحقیق دیگر، Aswani و همکاران (2015) باکتری‌های E. coli O157: H7 و همانند آنها در این مطالعه از مشاهده نشان داده شد که E. coli های کلیدی که در این مطالعه از بین بردن موثر E. coli نیز از نظر اصلی به این باکتری‌ها می‌باشد. در این مطالعه فاکور در بسیاری از مطالعات ثابت شده است.

در تحقیق دیگر، Aswani و همکاران (2015) باکتری‌های E. coli O157: H7 و همانند آنها در این مطالعه از مشاهده نشان داده شد که E. coli های کلیدی که در این مطالعه از بین بردن موثر E. coli نیز از نظر اصلی به این باکتری‌ها می‌باشد. در این مطالعه فاکور در بسیاری از مطالعات ثابت شده است.

در تحقیق دیگر، Aswani و همکاران (2015) باکتری‌های E. coli O157: H7 و همانند آنها در این مطالعه از مشاهده نشان داده شد که E. coli های کلیدی که در این مطالعه از بین بردن موثر E. coli نیز از نظر اصلی به این باکتری‌ها می‌باشد. در این مطالعه فاکور در بسیاری از مطالعات ثابت شده است.

در تحقیق دیگر، Aswani و همکاران (2015) باکتری‌های E. coli O157: H7 و همانند آنها در این مطالعه از مشاهده نشان داده شد که E. coli های کلیدی که در این مطالعه از بین بردن موثر E. coli نیز از نظر اصلی به این باکتری‌ها می‌باشد. در این مطالعه فاکور در بسیاری از مطالعات ثابت شده است.
سپاسگزاری
این کار با کمک هنرمندان شهرکرد پشتیبانی شد.
(شماره گردید: 198)

تپاری در مناع
میان نویسندگان هیچ گونه تعارض در مناع گزارش نشده است.

Reference
1. Abuladze T, Li M, Menetrez MY, Dean T, Senecal A, Sulakvelidze A. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Applied and Environmental Microbiology. 2008;74(20):6230. [DOI:10.1128/AEM.01465-08] [PMID] [PMCID]
2. Sadekuzzaman M, Yang S, Mizan MFR, Ha SD. Reduction of Escherichia coli O157: H7 in biofilms using bacteriophage BPECO 19. Journal of food science. 2017;82(6):1433-1442. [DOI:10.1111/1750-3841.13729] [PMID] [PMCID]
3. Ackers M-L, Mahon BE, Leahy E, Goode B, Damrow T, Hayes PS, et al. An outbreak of Escherichia coli O157: H7 infections associated with leaf lettuce consumption. Journal of Infectious Diseases. 1998;177(6):1588-1593. [DOI:10.1086/515323] [PMID]
4. Bell BP, Goldoft M, Griffin PM, Davis MA, Gordon DC, Tarr PI, et al. A multistate outbreak of escherichia coli o157: h7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers: the washington experience. Jama. 1994;272(17):1349-1353. [DOI:10.1001/jama.1994.03520170059036] [PMID]
5. Hilborn ED, Mermin JH, Mshar PA, Hadler JL, Voetsch A, Wojtkunski C, et al. A multistate outbreak of Escherichia coli O157: H7 infections associated with consumption of mesclun lettuce. Archives of Internal Medicine. 1999;159(15):1758-1764. [DOI:10.1001/archinte.159.15.1758] [PMID]
6. Keene WE, Hedberg K, Herriott DE, Hancock DD, McKay RW, Barrett TJ, et al. A prolonged outbreak of Escherichia coli O157: H7 infections caused by commercially distributed raw milk. Journal of Infectious Diseases. 1997;176(3):815-818. [DOI:10.1086/517310] [PMID]
7. Rangel JM, Sparling PH, Crowe C, Griffin PM, Sوردروول. Epidemiology of Escherichia coli O157: H7 outbreaks, united states, 1982-2002. Emerging infectious diseases. 2005;11(4):603-609. [DOI:10.3201/eid1104.040739] [PMID] [PMCID]
8. Sharma VK, Akavaram S, Schaut RG, Bayles DO. Comparative genomics reveals structural and functional features specific to the genome of a foodborne Escherichia coli O157: H7. BMC genomics. 2019;20(1):196. [DOI:10.1186/s12864-019-5568-6] [PMID] [PMCID]
9. Gutman B, Raya R, Kutter E, Sulakvelidze A. Bacteriophages: biology and applications. CRC Press: Boca Raton, FL; 2005. p. 29-66. [DOI:10.1201/9780203491751.ch3]
10. Clark JR, March JB. Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends in biotechnology. 2006; 24(5):212-218. [DOI:10.1016/j.tibtech.2006.03.003] [PMID] [PMCID]
11. Sillankorva SM, Oliveira H, Azeredo J. Bacteriophages and their role in food safety. International journal of microbiology. 2012;2012. [DOI:10.1155/2012/863945] [PMID] [PMCID]
12. Verraes C, Van Boxstael S, Van Meervenne E, Van Coillie E, Butaye P, Catry B, et al. Antimicrobial resistance in the food chain: a review. International journal of environmental research and public health. 2013;10(7):2643-2669. [DOI:10.3390/ijerph10072643] [PMID] [PMCID]
13. Gould IM, David MZ, Esposito S, Garau J, Lina G, Mazzei T, et al. New insights into meticillin-resistant Staphylococcus aureus (MRSA) pathogenesis, treatment and resistance. International journal of antimicrobial agents. 2012;39(2):96-104. [DOI:10.1016/j.ijantimicag.2011.09.028] [PMID]
14. Sahin F, Karasartova D, Ozsan TM, Gerceker D, Kryan M. Identification of a novel lytic bacteriophage obtained from clinical MRSA isolates and evaluation of its antibacterial activity. Mikrobiyoloji bulenti. 2013;47(1):27-34. [DOI:10.5578/mb.3790] [PMID]

15. Chibani-Chennoufi S, Sidoti J, Bruttin A, Kutter E, Sarker S, Brüssow H. In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrobial agents and chemotherapy. 2004;48(7):2558-2569. [DOI:10.1128/AAC.48.7.2558-2569.2004] [PMID]

16. Tanji Y, Shimada T, Fukudomi H, Miyanaga K, Nakai Y, Unno H. Therapeutic use of phage cocktail for controlling Escherichia coli O157: H7 in gastrointestinal tract of mice. Journal of bioscience and bioengineering. 2005;100(3):280-287. [DOI:10.1263/jbb.100.280] [PMID]

17. Paul VD, Sundarrrajan S, Rajagopalan SS, Hariharan S, Kempshanaiah N, Padmanabhan S, et al. Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection. BMC microbiology. 2011;11(1):195. [DOI:10.1186/1471-2180-11-195] [PMID]

18. Alam M, Akther MZ, Yasmin M, Ahsan CR, Nessa J. Local bacteriophage isolates showed anti-Escherichia coli O157: H7 potency in an experimental ligated rabbit ileal loop model. Canadian journal of microbiology. 2011;57(5):408-415. [DOI:10.1139/w11-020] [PMID]

19. O'flynn G, Ross R, Fitzgerald G, Coffey A. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157: H7. Appl Environ Microbiol. 2004;70(6):3417-3424. [DOI:10.1128/AEM.70.6.3417-3424.2004] [PMID] [PMCID]

20. Hudson JA, Billington C, Cornelius A, Wilson T, On S, Premaratne A, et al. Use of a bacteriophage to inactivate Escherichia coli O157: H7 on beef. Food microbiology. 2013;36(1):14-21. [DOI:10.1016/j.fm.2013.03.006] [PMID]

21. Hudson JA, Billington C, Wilson T, On SL. Effect of phage and host concentration on the inactivation of Escherichia coli O157: H7 on cooked and raw beef. Food Science and Technology International. 2015;21(2):104-109. [DOI:10.1177/1082013213513031] [PMID]

22. Dini C, De Urraza P. Isolation and selection of coliphages as potential biocontrol agents of enterohemorrhagic and Shiga toxin-producing E. coli (EHEC and STEC) in cattle. Journal of applied microbiology. 2010;109(3):873-887. [DOI:10.1111/j.1365-2672.2010.04714.x] [PMID]

23. Pollard D, Johnson W, Lior H, Tyler S, Rozee K. Rapid and specific detection of verotoxin genes in Escherichia coli by the polymerase chain reaction. Journal of Clinical Microbiology. 1990;28(3):540-545. [DOI:10.1128/JCM.28.3.540-545.1990] [PMID] [PMCID]

24. Periasamy D, Sundaram A. A novel approach for pathogen reduction in wastewater treatment. Journal of Environmental Health Science and Engineering. 2013;11(1):1-9. [DOI:10.1186/2052-336X-11-12] [PMID] [PMCID]

25. Jurczak-Kurek A, Gasior T, Nejman-Faleńczyk B, Bloch S, Dydecka A, Topka G, et al. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Scientific reports. 2016;6(1):1-17. [DOI:10.1038/srep34338] [PMID] [PMCID]

26. Askora A, Merwad A, Gharieb R, Mayas A. A lytic bacteriophages as a biocontrol for some enteropathogenic and enterohemorrhagic Escherichia coli strains of zoonotic risk in Egypt. Rev Med Vet. 2015;3:76-83.

27. Jamal M, Hussain T, Das CR, Andleeb S. Isolation and characterization of a Myoviridae MJ1 bacteriophage against multi-drug resistant Escherichia coli 3. Jundishapur journal of microbiology. 2015;8(11):e25917. [DOI:10.5812/jjm.25917] [PMID] [PMCID]

28. Arthur TM, Kalchayanand N, Agga GE, Wheeler TL, Koolmarie M. Evaluation of bacteriophage application to cattle in lairage at beef processing plants to reduce Escherichia coli O157: H7 prevalence on hides and carcasses. Foodborne pathogens and disease. 2017;14(1):17-22. [DOI:10.1089/fpd.2016.2189] [PMID]

29. Seo J, Seo DJ, Oh H, Jeon SB, Oh M-H, Choi C. Inhibiting the growth of Escherichia coli O157: H7 in beef, pork, and chicken meat using a bacteriophage. Korean journal for food science of animal resources. 2016;36(2):186-193. [DOI:10.5851/kosfa.2016.36.2.186] [PMID] [PMCID]