Towards a generic prototyping approach for therapeutically-relevant peptides and proteins in a cell-free translation system

Yue Wu1,2,15, Zhenling Cui3,4,5,6,7,8,9,15, Yen-Hua Huang1,10, Simon J. de Veer1,10, Andrey V. Aralov11, Zhong Guo3,4,5,6,7,8,9, Shayli V. Moradi3,4,5,6,7,8,9, Alexandra O. Hinton1, Jennifer R. Deuis1, Shaodong Guo1, Kai-En Chen1, Brett M. Collins1, Irina Vetter1,12, Volker Herzig1,13,14, Alun Jones1, Matthew A. Cooper1, Glenn F. King1,10, David J. Craik1,10, Kirill Alexandrov3,4,5,6,7,8,9✉ & Sergey Mureev15

Advances in peptide and protein therapeutics increased the need for rapid and cost-effective polypeptide prototyping. While in vitro translation systems are well suited for fast and multiplexed polypeptide prototyping, they suffer from misfolding, aggregation and disulfide-bond scrambling of the translated products. Here we propose that efficient folding of in vitro produced disulfide-rich peptides and proteins can be achieved if performed in an aggregation-free and thermodynamically controlled folding environment. To this end, we modify an E. coli-based in vitro translation system to allow co-translational capture of translated products by affinity matrix. This process reduces protein aggregation and enables productive oxidative folding and recycling of misfolded states under thermodynamic control. In this study we show that the developed approach is likely to be generally applicable for prototyping of a wide variety of disulfide-constrained peptides, macrocyclic peptides with non-native bonds and antibody fragments in amounts sufficient for interaction analysis and biological activity assessment.

1 Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia. 2 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA. 3 ARC Centre of Excellence in Synthetic Biology, Sydney, VIC, Australia. 4 Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia. 5 School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia. 6 ARC Centre of Excellence in Synthetic Biology, Sydney, VIC, Australia. 7 Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, QLD 4072, Australia. 8 CSIRO-QUT Synthetic Biology Alliance, Brisbane, QLD 4001, Australia. 9 Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4001, Australia. 10 Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Melbourne, VIC, Australia. 11 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia. 12 School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia. 13 GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia. 14 School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia. 15 These authors contributed equally: Yue Wu, Zhenling Cui. ✉email: kirill.alexandrov@qut.edu.au; ziraffa81@gmail.com
mall-molecule drugs and recombinant proteins comprise two main classes of currently used therapeutic agents. While the former is superior in oral bioavailability and the ability to access intracellular targets, they lag behind the latter in potency and selectivity, and, as a result, in safety. The demand for novel protein therapeutics for the treatment of cancer as well as chronic and infectious diseases is expected to significantly increase as the global population ages. Yet the developmental risks and the high cost of production remain the major hurdles to the broader use of polypeptide therapeutics. In vitro translation systems that enable rapid prototyping and engineering of recombinant proteins provide an alternative to time-consuming and costly in vivo expression. However, many therapeutically relevant proteins display complex folding kinetics and rely on cotranslational assistance of multiple chaperones and folding catalysts to avoid the formation of kinetically trapped states. Also, an effective coupling of translation and ER-translocation employed by the cell for nearly one-quarter of the proteome ensures subcellular segregation of aggregation-prone proteins. Therefore, their cell-free production often results in misfolding and aggregation due to a lack of compartmentalization and supported chaperone activity. To this end, the majority of studies attempt to achieve the productive trade-off between folding and aggregation through the combination of an oxidizing environment for accelerated closure of disulfide bonds with a complex chaperon cocktail. However, recent studies suggest that the closure of disulfide bonds does not always direct structure acquisition through the provision of the folding constraints, instead, their accelerated formation can often occur in randomly cross-linked intermediates. Consistent with this, Ryabova et al. showed that bond reshuffling rather than the net formation of disulfide bonds was a prerequisite of efficient folding for some antibody fragments. The effect was observed only co-translationally or shortly following the release of the translated polypeptide chains suggesting a strong aggregation tendency at physiological conditions where folding is partially kinetically controlled. Accordingly, Stech et al. took advantage of the eukaryotic translation system, showed that optimization of redox conditions was only effective for antibody fraction segregated to the lumen of microsomal vesicles. Intriguingly, a positive influence on the yield of disulfide-rich proteins was observed in E. coli CFS with a mere increase in membrane vesicle surface area. In line with this, a number of studies exploited artificial heterogeneity in CFS through the capturing of translated products either directly to the beads via affinity tags or indirectly via immobilized chaperon component, reduct component, or RNA template. Another study demonstrated the effective refolding of matrix-immobilized proteins that outperformed the chaperone-mediated effect.

Peptide-based therapeutics attract increasing interest since they combine pharmacological advantages of small-molecule drugs and protein-based therapeutics. Their rigid, disulfide-stabilized backbones endow them with potency, selectivity, and oral availability. Such modular architecture allows the grafting of heterologous bioactive epitopes into orally deliverable scaffolds and enables semi-rational engineering of variants with improved biopharmaceutical properties. Yet, only a small number of unmodified peptide-based drug leads have reached the market due to a lack of efficacy or toxicity concerns at the clinical stage.

An alternative strategy in bioactive peptide design is to combine target-recognition and membrane-translocation capability within the same macrocyclic entity. Such a combination of features is difficult to realize without the use of noncanonical modalities and diversity-based screening. In the most successful approach, the mRNA library is translated in the fully reconstituted Flexible In vitro Translation (FfT)-system, and unique mRNA-peptide conjugates are further selected on a target. Alternatively, an emulsion bead display, allowing selection of peptides with a broader range of affinities due to the avidity effect of multiple sequence copies, can be performed in a crude translation extract and further combined with non-canonical amino acid incorporation using established codon-reesignment techniques.

Widely used strategies for peptide prototyping such as chemical synthesis and heterologous expression often result in unsatisfactory yields in relation to time and material costs. Solid-phase synthesis of disulfide-rich peptides either relies on thiol protecting groups to avoid side reactions or demands high initial yields to allow downstream refolding and purification. Also, it can be reliably applied only to peptides shorter than 35 or 50 residues dependent on beta-sheet proportion. Successful heterologous peptide production generally relies on fusion with a carrier protein to confer solubility and protease protection. This implies downstream processing as well as a possible trade-off between carrier cleavage and peptide oxidation often requiring solubilization from inclusion bodies. For both chemical and biological synthetic approaches, it is challenging to produce large amounts of soluble disulfide-rich peptides omitting the refolding step. Robust statistics provided by Venomics platform for the success rate of peptide refolding following heterologous expression or chemical synthesis suggest that under the universal folding conditions only ~half of the peptides could be produced in a soluble form. This is consistent with the existence of two principal folding modes—“framework” and “collapsed”, representing either the hierarchic condensation of native-like elements or the slow flux through the off-path folding states, respectively. Therefore, a generally applicable method to accommodate both folding trajectories for cost-effective parallel production of complex disulfide-constrained peptides is expected to facilitate their development into drug-like products.

Although over the past decade the cell-free technology made a remarkable progress in the production of complex proteins including full-size antibodies such breakthrough cases requiring the tuning of multiple system parameters remain rather rare. In this study, taking advantage of the universal property of evolutionarily selected polypeptide sequences to acquire native conformation as “all or none” transition in the aggregation-free environment at certain conditions, we suggest a general strategy for prototyping of various disulfide-rich peptides, macrocyclic peptides, and complex disulfide-rich proteins. This approach affords protection of translation products from degradation and aggregation while promoting folding control and enabling the introduction of noncanonical modalities.

Results

The cell-free platform for prototyping of complex polypeptides. We previously reported a solution assay for quantification of in vitro translated peptides carrying a C-terminal RGSSIDTWV sequence (RGS peptide). This assay is based on activation of the artificial allostERIC protease by the RGS peptide through its interaction with the grafted “affinity clamp” receptor domain of the protease (Fig. 1a). Although it is reliable and quantitative, the assay could not be performed directly in E. coli translation reaction due to proteolytic degradation of the translated peptide as well as reporter peptide (Fig. 1a). This necessitated pretreatment of the translation extract with protease inhibitors and additional removal of endogenous proteases by heat precipitation.

We conjectured that capturing the RGS-tagged peptides on “affinity clamp”-coated resin co-translationally would confer protease protection and provide a molecular handle for downstream peptide modification (Fig. 1b). To this end, we prepared “affinity clamp”-coated resin (AC-resin) and determined its ligand-binding
capacity, its influence on translation efficiency, and optimal elution conditions (Supplementary Fig. 1A–C). Translation of RGS peptide in AC-resin-supplemented E. coli S30-based cell-free system (Ec CFS) containing protease inhibitors resulted in ~20% increase in the yield of RGS peptide compared to standard reaction lacking the affinity resin. However, from eukaryotic Leishmania tarentolae extract-based cell-free system (LTE) RGS peptide could be only recovered in the presence of AC-resin despite the pretreatment with protease inhibitors.

Encouraged by these results, we set out to test if the fusion of other peptides to the RGS-tag would equally improve their yield in AC-resin-assisted translation reaction. In order to achieve efficient translation initiation, we used Species Independent Translation initiation Sequence (SITS) comprising an unstructured 5′-UTR, start-codon, and the leader upstream to Peptide of Interest (POI)-coding sequence (Fig. 2a). The coding sequence of tobacco vein motting virus protease (TVMV)-cleavage site was inserted after the SITS sequence to enable co-translational removal of the leader peptide (Fig. 2a and Supplementary Fig. 1D). We used pLTE- and pOPINE-based plasmid vectors (Supplementary Table 3) to evaluate the translation efficiency for several such assemblies under control of the SITS or a classical Shine-Dalgarno motif, respectively. The peptide assemblies included RGS fusions with the smallest (SFTI) or largest (Dc1a) peptide-coding ORFs used in this study (Table 1). As a result, SITS consistently supported the highest peptide yields in resin-assisted Ec CFS as well as in a fully reconstituted PURE system (Fig. 2b and Supplementary Fig. 2A). Expectedly, the full SITS outperformed the rest of the tested initiation sequences in the eukaryotic LTE system (Supplementary Fig. 2C), however overall productivity of LTE compared to Ec CFS was ~tenfold lower for peptide translation (Supplementary Fig. 2D). Similar product yields obtained for different ORF arrangements in Ec CFS and PURE system, despite more than twofold ribosomal enrichment in the latter (Supplementary Fig. 2B), indicated that the productivity of the former was not limited by compromised stability of peptide-coding RNA (Supplementary note 1). In agreement with the previous report42, we found near-linear inverse relationship between (poly)peptide’s molar yield and size in the range from 49 to 315 amino acids (Supplementary Table 1) suggesting the inactivation of some key translation component(s) or resource(s) rather than inefficient ribosome recycling to be the major factor limiting the productivity of resin-assisted Ec CFS (Supplementary Table 1, Supplementary Notes 2 and 3 and Supplementary Fig. 3A, B). Accordingly, translation in continuous exchange format resulted in ~4–5-fold higher peptide yield (Supplementary Fig. 4). We also found that AC-resin can be regenerated up to seven times by denaturing/refolding procedure.

Peptide on-resin reduction and oxidative folding. The ability of AC-coated resin to withstand denaturants and reducing agents without loss of ligand-binding activity encouraged us to test it as a solid-phase handle for peptide folding and cyclization. As test examples, we chose cyclic peptides of varying complexity such as the sunflower trypsin inhibitor (SFTI) comprising a single disulfide bond which has been used as a versatile template for the engineering of protease inhibitors43, and the cyclotide MCoTI-II featuring a complex cystine knot18 (Fig. 3a, f).

RGS fusion with circularly permuted SFTI (prmSFTI-RGS) opened at the scissile bond between Lys-5 and Ser-6 (Fig. 3a) could be eluted from the resin with DMSO following translation in resin-assisted Ec CFS. Subsequent treatment of the peptide with an
equimolar amount of immobilized trypsin resulted in excision of linear prmSFTI followed by its cyclization resulting in fourfold excess of cyclic SFTI over its linear permuted form (Supplementary Fig. 3F and Supplementary Note 4) while tenfold excess of the peptide over trypsin mostly yielded the linear prmSFTI accordingly to “Laskowski mechanism” (Supplementary Fig. 5B and Supplementary Note 4).

Cell-free produced linear, oxidized prmSFTI displayed inhibition potency similar to that of its chemically synthesized linear counterpart (Fig. 3c and Supplementary Fig. 6A, B). However, the linear prmSFTI possessed slightly weaker trypsin-inhibitory activity than the cyclic form (Supplementary Fig. 6A and Supplementary Note 4) due to secondary cleavage at Arg-2 resulting in the formation of doubly cleaved product (Fig. 3b and Supplementary Fig. 5B) in agreement with the previous report.

Synthesis of wild-type MCoTI-II (wtMCoTI) and its circularly permuted version (prmMCoTI) opened at the scissile bond between Lys-6 and Ile-7 and fused to RGS in resin-assisted Ec CFS led to poor recovery of both translation products from AC-resin (Fig. 3e and Supplementary Fig. 7A) similar to previously observed poor elution of cysteine-rich polymeric SFTI (Supplementary Fig. 3B). Most likely this was a consequence of peptide aggregation via disulfide bond scrambling—a common phenomenon for cysteine-rich peptides that results from kinetic domination of covalent interactions over non-covalent interactions.

Following incubation of the resin-bound MCoTI with 50 mM DTT, both MCoTI-RGS variants could be recovered in a fully reduced and soluble state (Fig. 3d, e and Supplementary Fig. 8A). Various degrees of aggregation were observed for other peptides with two and three disulfide bonds demanding full reduction to achieve 100% elution efficiency (Supplementary Fig. 7B). In the next step, immobilized and reduced peptides were subjected to on-resin oxidation in the presence of reduced glutathione (GSH) to allow disulfide-bond reshuffling and equilibration into the most stable native fold under thermodynamic control (Supplementary Note 5). Being “two-state” folders, peptides are likely to possess similar dependence of the folding kinetics on reductant concentration as displayed by the proteins relative to denaturant concentration (Fig. 1c). Similarly, thermodynamically controlled folding at increased reductant concentration would proceed slower due to a decrease of the folding rate constant. After varying the reductant concentration and incubation time, we resorted to ~12–48 h incubation with 10 mM GSH to allow complete recycling of kinetically trapped “off-pathway” states. For both MCoTT variants, this protocol yielded dominant products with three disulfide bridges (Fig. 3f and Supplementary Fig. 8B). While prmMCoTI had a trypsin inhibition constant similar to that measured previously for the intact cyclic McoTI, confirming the formation of the native cystine knot (Supplementary Fig. 6C), wtMCoTI-RGS displayed almost fourfold higher Ki for trypsin due to increased flexibility in the open backbone (Supplementary Fig. 6C). We conjectured that subjecting fully reduced and spatially segregated peptides to oxidative folding under thermodynamic control can serve as a generic approach for the formation of complex peptide folds.

Prototyping of diverse disulfide-constrained peptides. Next, we explored the general applicability of the established platform for the production of peptides of biomedical and commercial value featuring diverse lengths and topologies. Besides SFTI and MCoTI our test set included 23 aa arenicin-3 analog AA139 that shows antimicrobial activity, Kalata B1 - another plant cyclotide that serves as design framework for grafting and delivery of various biological activities, two highly selective sodium channel inhibitors Pn3a and Dc1a as well as Holocyclotoxin-1 from paralysis tick *Ixodes holococcus* (Table 1, Supplementary Figs. 9–12, and Supplementary Notes 6–9). Small-size peptides were effectively amenable to chemical synthesis as described previously. Recombinant or chemical synthetic routes were previously reported for McoTI and kalata B1. However, the rest, partially undergoing “collapsed” folding, demanded a downstream refolding at optimized redox conditions despite their expression as fusion with MBP in *E. coli* periplasm or in the engineered *E. coli* strain promoting oxidative folding. Holocyclotoxin-1 (HT-1) could be previously assembled by a combination of SPPS and native chemical ligation. Its heterologous production in the prokaryotic system was unsuccessful while its fusion with the protein carrier demanded an additional refolding step following production in yeast. We translated these peptides in resin-assisted Ec CFS and, following co-translational matrix capture and full on-resin reduction, confirmed purity and integrity of Kalata B1- (Supplementary Fig. 8C, 9A), Pn3A- (Supplementary Fig. 12A) and SFTI-RGS fusions (Supplementary Fig. 13A) by MALDI-MS. We further confirmed the formation of homogeneous oxidation products following on-resin oxidative folding at established conditions (Table 1) for MCoTI, Kalata B1 (Supplementary Fig. 8B, D), AA139 (Supplementary Fig. 10B), HT-1 (Supplementary Fig. 11B), Pn3a, and Dc1a (Supplementary Fig. 12D, F). To produce a native cyclic Kalata B1, the oxidation was performed following backbone

Fig. 2 Design and evaluation of expression cassette. a) Design of expression construct: universal initiation sequence (SITS) comprising the unstructured 5’ UTR, start-codon (ATG) and 3’ part, encoding for the leader peptide (green), directs translation of peptide-of-interest (POI) carrying the RGS-tag (yellow). A TVMV-cleavage site (pink) is included for co-translational removal of the SITS-derived translation leader. b) Comparative performance of different translation initiation sequences including full SITS, classical Shine-Dalgarno Ribosome Binding Site (SD-RBS) and unstructured 5’UTR derived from SITS (5’-SITS) in supporting the synthesis of peptides from different size classes such as 8 aa RGS peptide (RGS), RGS fusion with 14 aa SFTI (SFTI-RGS) and 57 aa Dc1a (Dc1a-RGS) (Table 1). Peptides were quantified using affinity-clamp assay and initial rates of substrate cleavage are plotted as bars or dots for peptide variants produced in S30-based (S30) or PURE (Protein synthesis Using Recombinant Elements) translation systems, respectively. The results are represented as means ± s.d. of *n* = 3 repeats of the assay.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27854-9

NATURE COMMUNICATIONS | 4 (2022) 1360 | https://doi.org/10.1038/s41467-021-27854-9 | www.nature.com/naturecommunications
Table 1 Summary of disulfide-constrained peptides produced in AC-assisted Ec CFS.

Name	Schematic structural view of final peptide variants assayed	N/C	Spacer	GSH	time	RGS- removal	Assay	POI-RGS (μM)	Figure
SFT1		prm	GAG					9.5	3a
McOT1		prm	GAG	10 mM/12 h	Trypsin	TIA	6.4	3f	
Kalata B1		wt	GL	5 mM/12 h	AEP	Co-elution	8.0	S9	
AA139		wt	GL	10 mM/12 h	NH2OH	Micr	4.9	S10	
HT-1		wt	GAG	10 mM/48 h	NA	DHFR	7.6	S11	
Pn3a		wt	NGLP	10 mM/12 h	Carb. Y	Co-elution	5.0	S12	
Dc1a		wt	GTGSGG	10 mM/48 h	Th.	Fly	8.9	S12	

Disulfide connectivity and backbone cyclization (if applicable) are shown above and below the sequences, respectively. *wt* or *prm* denote wild type and circularly permuted N-/C-termini arrangement in the linear RGS-tagged peptide precursor; oxidative folding conditions are indicated as glutathione (GSH) concentration/incubation time; *RGS*-tag removal with asparagine endopeptidase (AEP), hydroxylamine (NH2OH), carboxypeptidase Y (Carb. Y), thrombin (Th.); *Assay* used for functionality test: trypsin-inhibitory assay (TIA), antimicrobial assay (Micr), assay based on interference with activation of dihydrofolate reductase (DHFR) (Supplementary Note 8), co-elution with folded peptide controls, insecticidal assay (Fly); *μM* yield of POI-RGS in resin-assisted translation reaction estimated by affinity-clamp assay; reference to respective Supplementary Note.
cyclization since the fully reduced peptide was reported51 to be a better substrate for cyclization by asparagine endopeptidase. Hence, we followed the originally published protocol (Supplementary Note 6).

Production of these peptides in a functional state also requires the removal of the RGS-tag. In the case of kalata B1, this was achieved using asparagine endopeptidase (Supplementary Fig. 9B, C). However, this approach was unsuccessful for AA139 which was processed by hydroxylamine-mediated cleavage (Supplementary Fig. 10). We then tested the ability of exopeptidases to remove the RGS-tag using amino acid "stopper". Indeed, immobilized carboxypeptidase A removed the RGS-tag nearly quantitatively downstream the Arg-stopper of RGS peptide (Supplementary Fig. 13B and Supplementary Note 6). In the case of kalata B1, this was achieved using asparagine endopeptidase (Supplementary Fig. 10B and Supplementary Note 6). The native structure of kalata B1 and Pn3a were evidenced by co-elution with their correctly-folded synthetic versions (Supplementary Figs. 9C and 12D and Supplementary Note 8).

Production of the peptide with non-native intramolecular bond. We previously reported selective and efficient inactivation of endogenous \textit{E. coli} tRNA\textsubscript{S{M}}{GCU} and tRNA\textsubscript{A{R}}{CCU} directly in the S30 cell extract using modified antisense oligonucleotides. This approach liberates AGT and AGG codons respectively and enables their reassignment to non-canonical amino acids (ncAAs)25. To test if the approach we developed for in vitro translation and capture of peptides could be applied for generation of peptide harboring ncAAs, we set out to replace Cys3 and Cys11 of SFTI with \textit{p}-propargyl-L-lysine (Prk) and \textit{p}-azido-\textit{l}-phenylalanine (AzF) (Fig. 4a and Supplementary Note 11). As can be seen in Fig. 4, we were able to simultaneously reassign chosen codons to Prk and AzF and perform on-bead peptide cyclization via copper-catalyzed click reaction. We could only detect the peptide product comprising two click-chemistry labels from the resin-assisted reaction while no product could be captured post-translationally following the standard translation reaction. The formation of an internal 1,4-disubstituted 1,2,3-triazole bond was confirmed by LC-MS analysis of purified peptides before and after the click reaction (Fig. 4b, c). This demonstrates the possibility of generating macro-cyclized peptides with non-native bonds using a combination of AC-assisted in vitro translation in a crude Ec CFS with the simultaneous reassignment of two sense-codons.
avoid contamination with endogenous proteins often associated with the sequestration of on- and off-path folding intermediates to the insoluble fraction remaining on the resin was a likely result of a delayed aggregation via misfolded hDHFR part. We next performed the insoluble fraction remaining on the resin was a likely result of a delayed aggregation via misfolded hDHFR part. We next performed

Fig. 4 Production of the macrocyclic peptide with non-native bond in codon-reassigned AC-resin-assisted Ec CFS. a. Peptide production steps: translation of linear peptide in AC-resin-assisted Ec CFS (top) using codon-biased template pLTE-SFTI(agg,agt)-RGS where the unique AGG and AGT codons were reassigned to p-azido-L-phenylalanine (AzF) and n-propargyl-L-lysine (PrK) via inactivation of their cognate native tRNAs while their synonymous CGN and TCN codons were reserved to continue decoding Arg and Ser. Orthogonal synthetase/trNA pairs are shown in blue and green; peptide co- translational capture and washing of resin-immobilized peptide (middle) followed by on-bead click-chemistry mediated formation of triazole bridge (bottom). b, c LC-MS elution profile corresponding to linear (b) and macrocyclic (c) SFTI-RGS fusions, respectively. Insets indicate the same monoisotopic masses due to no mass change following cyclodiation. **Co-translational resin capture reduces protein aggregation.** Bacterial translation surpasses eukaryotic translation in productivity owing to a less strict translational control. However, incompatibility of folding machineries leads to low folding yields for complex multidomain eukaryotic proteins. Furthermore, in cell-free translation systems, cooperation of ribosome-associated and cytosolic chaperones is likely to be partially impaired, leading to exposure of semi-folded multidomain proteins to each other and to crowded environments. We first conjectured that the inclusion of the affinity resin into the reaction mixture would help to avoid the common trade-off between folding and aggregation through the sequestration of on- and off-path folding intermediates to the bead surface (Fig. 1b). We assumed that the use of biological interaction of exquisite selectivity and affinity would serve to avoid contamination with endogenous proteins often associated with immobilized-metal-affinity chromatography. We further assumed that such spatial segregation would provide an aggregation-free environment for matrix-assisted recycling of folding intermediates under thermodynamic control (Fig. 1b). For comparative estimation of protein solubility and activity in response to the addition of affinity matrix, we used eGFP fusions with dihydrofolate reductases derived from E. coli (eDHFR) or human (hDHFR), thereby allowing us to independently monitor the folding states of both fusion partners. The choice of eDHFR and hDHFR was based on differences in their folding efficiencies, where eDHFR was previously shown to fold rapidly and efficiently in a variety of fusion contexts. In contrast, hDHFR was shown to undergo spontaneous aggregation and misfolding. These folding reporters carrying both N-terminal Twin-strep-tag and C-terminal RGS-tag were translated in both E. coli-based (Ec CPS) and Leishmania-based (LTE) cell-free transcription-translation systems in the presence of either Strep-Tactin- or AC-coated resins. Flow-through from each reaction was separated into soluble and insoluble fractions while Strep-Tactin-resin-bound protein was eluted with the biotin-containing buffer. The immunoblot analysis revealed similar total yields for translated proteins regardless of co- or post-translational resin supplementation (Fig. 5a, panel 1 and Supplementary Fig. 14). However, large insoluble fraction was detected in the latter case (Fig. 5a, panel 2 and Supplementary Fig. 14). Comparative fluorescence analysis of protein fractions revealed ~2–3-fold more fluorescence associated with the Strep-Tactin-coated resin from the resin-assisted reaction compared to protein fractions captured post-translationally (Figs. 5b and 6a). Less apparent difference between co- and post-translationally associated protein fractions was observed for AC-resin-assisted reaction format that requires the exposure of C-terminal RGS-tag thus precluding capture before the full release of the translated product (Supplementary Fig. 15A). Resin-assisted reaction supplemented with biotin failed to improve the yield of fluorescent protein fraction (Fig. 5b) resulting in a similar amount of insoluble material as in the standard translation reaction lacking the resin (Fig. 5a, panel 2). This indicates that the gain in fluorescence could be specifically attributed to resin-mediated interference with protein aggregation. Interestingly, comparative analysis of co- and post-translational reaction formats revealed that in the latter case all studied proteins formed insoluble aggregates which could no longer associate with the resin post-translationally while the captured fractions most likely corresponded to the protein that succeeded to avoid the aggregation and fold correctly during the reaction time course (Fig. 5a, panel 3). The disproportion between the total co- and post-translationally captured protein fractions (Fig. 5a, panel 3) and their respective fluorescent yields (Fig. 5b) suggests that all co-translationally captured fractions included from ~25 to ~50% of likely misfolded or semi-aggregated nonfluorescent material. Fluorescent fractions of GFP and GFP-eDHFR could be eluted near completely from the resin while only 70% fluorescence could be recovered following the elution of co-translationally captured GFP-hDHFR (Fig. 5b). The addition of 0.125% Tween 20 into the elution buffer increased the fluorescence recovery (Fig. 5d), suggesting that the insoluble fraction remaining on the resin was a likely result of a delayed aggregation via misfolded hDHFR part. We next performed the DHFR-essay on eluted fractions to roughly estimate whether both fusion partners were folded to a similar extent. For GFP-eDHFR, a direct correlation between GFP fluorescence level and DHFR activity in co- and post-translationally captured samples was observed, suggesting that both fusion partners were folded to a similar degree (compare Fig. 5b, c for co-/post-). Surprisingly, when expressed in Ec CPS but not in LTE, GFP-hDHFR displayed an inverse correlation between fluorescence level and DHFR activity with larger proportion of active hDHFR in the fraction captured post-translationally but not co-translationally in contrast to the respective fluorescence yields (Fig. 5b, c). However, direct correlation between fluorescence level and DHFR activity in co- and post-translationally captured fractions was observed in LTE (Fig. 6a, b). This phenomenon indicates that exposure of hDHFR fusion to some component in the bacterial lysate, in alternative to its immobilization to the solid phase, increases the proportion of active hDHFR (see below). This is consistent with the predominance of post-translational component over co-translational in protein folding in the prokaryotic system in contrast to eukaryotic system. Accordingly, a co-translational folding, typical to eukaryotic translation systems,
may explain the observed direct correlation between DHFR and GFP levels as well as similar fluorescence yields for fast-folding GFP and GFP-eDHFR regardless of co- or post-translational reaction formats in LTE (Fig. 6a).

Recycling of misfolded states under thermodynamic control. In both translation systems for GFP-hDHFR fusion, the molar yield of fluorescent GFP exceeded the yield of active hDHFR. This suggests several folds to order of magnitude excess of misfolded hDHFR fraction over its active fraction for different reaction formats as can be seen from the data compilation shown in Supplementary Table 2.

The physical model of protein folding predicts that under physiological conditions single-domain proteins above 100 amino acid residues in size fold under various degrees of kinetic control. To bypass the kinetic traps and complete the folding in a biologically reasonable time at physiological conditions in vivo,
chaperones are often required to both stabilize high-energy folding intermediates and protect them from aggregation. This is in particular relevant to high contact order proteins such as DHFR stabilized by long-range interactions which either possess fast-folding kinetics or rely on concerted chaperon assistance. In cell-free systems, the latter can be partially impaired and its reconstitution requires optimization of multiple system parameters. However, evolutionarily selected polypeptides, sometimes viewed as “aperiodic crystals”, behave as two-state folders at domain level upon approaching the thermodynamic equilibrium. We conjectured that treatment of immobilized protein with denaturant in a range of concentrations within a distance from the point of thermodynamic equilibrium would allow slow recycling of misfolded states under thermodynamic control. Since misfolded states by definition are less stable than the native state their unfolding would progressively increase upon approaching the thermodynamic equilibrium along the left-hand side slope of the chevron plot. At the same time, along this slope the rate of protein folding exceeds by several orders of magnitude the rate of native structure unfolding with the latter remaining a rare “all or none” process. Therefore, we assumed that misfolded states can be recycled to the native state on-resin while maintaining the complex between protein and affinity module. Its maintenance is important since proteins in semi-denatured state are prone to aggregation due to solvent-exposed hydrophobic groups. We tested its stability with recombinantly purified GFP carrying both peptide tags and demonstrated that >80% of purified GFP retains on Affinity-Clamp- and Strep-Tactin-cotated resins following 6 h and 2 h incubation at RT in the buffers containing 2 M and 1.6 M of guanidine hydrochloride (GdnHCl), respectively (Supplementary Figs. 15C and 17A). Following treatment with denaturant, we observed only minor improvement in DHFR-activity for co-translationally captured GFP-eDHFR in both translation systems consistent with its partially folded initial state (Fig. 5c, NB/Gdn). However, a 3.5-fold increase in DHFR activity of GFP-hDHFR produced in resin-assisted LTE was observed following treatment with GdnHCl at 1.6 M but not at 0.8 M (Fig. 6b, NB/Gdn and Supplementary Fig. 18B). Interestingly, only a minor or no increase in the yield of fluorescent GFP following denaturant treatment suggested that the observed gain in DHFR activity mostly stemmed from the recycling of intrinsically misfolded hDHFR or its intermolecular aggregates rather than from dissolving its intramolecular aggregate with GFP (Supplementary Fig. 17B, C). In contrast to LTE translation, the activity of DHFR-fusions produced in resin-assisted Ec CFS varied upon denaturant treatment in a batch-dependent manner ranging from ~2.5-fold improvement for the “reactive” batch (Fig. 5b, NB/Gdn and Supplementary Fig. 18A) to no improvement for the “silent” batch following 2 h treatment with 1.6 M GdnHCl buffer. Interestingly, an increase in DHFR activity, partially masked by protein dissociation, could be obtained for the “silent” batch following extended 12 h treatment of AC-captured GFP-hDHFR with 2 M GdnHCl-containing buffer (Supplementary Fig. 15B). This discrepancy, likely stemming from the variability in chaperon retention between different lysate batches, points at some structural feature responsible for the slow step in DHFR (re)folding following translation in Ec CFS but not in LTE. We surmised that the cis-Pro66 in hDHFR, absent in Ec DHFR, might be such a structural element since proline isomerization is a well-known rate-limiting step for protein folding in vitro. The requirement of chaperone assistance for the peptidyl-prolyl isomerase (PPIase)-dependent catalysis of unfavorable trans-to-cis isomerization in vivo can provide a rationality for the prolonged protein exposure to lyase in order to gain activity in Ec CFS but not in LTE where co-translational chaperone assistance is likely to facilitate the formation of cis-Pro motif by significant protein fraction co-translationally. Indeed, the replacement of Pro66 with Ala in GFP-hDHFR(P66A) restored the correlation between DHFR activity and GFP fluorescence in Ec CFS (Fig. 7a, b) and eliminated the slow step in its refolding compared to a control lacking this mutation (Fig. 7b, NB/Gdn). Conversely, we found that rapamycin but not cyclosporine A eliminated the beneficial effect of protein exposure to lyase in Ec CFS suggesting FKBP-like PPIase was responsible for post-translational catalysis (Supplementary Fig. 19). However, for the majority of proteins from PDB containing cis-prolyl bonds, folding constraints seem to largely facilitate the isomerization reaction, whereas hDHFR may represent an exceptional case appearing to be one of the least soluble proteins as reported by Hirano et al. based on analysis of the large combinatorial protein subset. Therefore, prolonged treatment of isomerization-challenged proteins immobilized onto AC or metal-affinity resin withstanding higher denaturant concentrations is likely to favor a gain of correct bond configuration by larger protein fraction.
Fig. 7 Effect of Pro66 to Ala replacement in hDHFR on GFP-hDHFR activity following translation in Strep-Tactin-resin-assisted Ec CFS. **a** Fluorescence analysis of resin-bound (RES) and free-unbound (FT) fractions of wild-type (wt) and Pro66Ala mutant (P66A) of hDHFR in GFP-hDHFR following co- and post-translational protein capture (co-/post-). Gray and black define soluble and insoluble fluorescence proportions, respectively, as described in Fig. 5b. Fluorescence units were converted to picomoles of GFP obtained from 1 ml of translation reaction as described in Fig. 5b. The results are plotted as means of two independent translation experiments. **b** Comparative analysis of mutant (P66A) and wild-type (wt) hDHFR in the context of GFP-hDHFR fusion protein eluted following co- or post-translational capture before (co-/post-) or after on-resin treatment of co-translationally captured protein with the buffer containing either no (NB), or 1.6 M (Gnd) of guanidine hydrochloride as described in Fig. 5c. Initial rates of fluorescence change of the respective NADPH-oxidation reactions were converted to pmol/ml of active DHFR as described in Fig. 5c. The results are plotted as means of two independent translation experiments. Source data are provided as a Source Data file.

Prototyping and analysis of disulfide-constrained proteins.

The trade-off between disulfide-bond closure and protein aggregation is often required for cell-free production of disulfide-constrained antibody fragments. By separating protein translation and folding to different reaction compartments, the proposed approach eliminates this trade-off allowing independent optimization of these two processes. To this end, we took advantage of the tolerance ofEc CFS to high reductant concentrations and translated various antibody fragments in the presence of 10 mM DTT, in diluted lysate at optimal temperature (Supplementary Fig. 20A–C). Taking into account that the frequency of intermolecular collisions is proportional to the square of protein concentration and the root square of temperature. Using these conditions in resin-assisted Ec CFS, we demonstrated a marked improvement in the production of various antibody fragments as compared to a normal batch reaction (Fig. 8a and Supplementary Figs. 20C, D, 21). By pull-down assay with the respective ligands, we demonstrated that a fraction of functional Fab, scFv, and VHH antibody fragments was further increased following treatment with denaturant and reductant. We also proved that the pulled ligand was derived from the antibody–ligand complex by cleaving it off the resin by Prescission protease (Fig. 8b). Next, taking advantage of STS we conducted a comparative analysis of resin-assisted Ec CFS and LTE performances versus widely adopted HeLa cell-free transcription–translation system toward the production of antibody fragments and receptor-binding domain of SARS-CoV-2 (CoV2-RBD). In contrast to our previous benchmarking assay, where we compared protein integrities and aggregation propensities between different systems in regular reaction setups, in the current study, we analyzed the changes in folded fractions. Ec CFS was found to surpass LTE and HeLa in eGFP expression level by three- and fourfold, respectively (Supplementary Fig. 22), therefore protein samples from 20 µL of Ec CFS, 50 µL of LTE, and 100 µL of HeLa reactions were compared. Comparing pull-down results for post-translationally captured proteins, we found the percentage of functional protein fractions to decrease from ~90% and ~70% in HeLa and LTE, respectively, to 50–60% in Ec CFS (Fig. 8c). In Ec CFS, the resin capture rescued a larger protein fraction from forming aggregates where around a half of captured protein material was present in misfolded or semi-aggregated form and required further on-resin denaturant and redox treatment to increase the proportion of functional protein to 80–90% (Fig. 8c, d). Finally, we used resin-assisted Ec CFS and LTE to produce CoV2-RBD, which could not be purified in soluble form from E. coli cells, and confirmed its interaction with anti-CoV2-RBD commercial antibodies (Fig. 8e). We further proved its native state in pull-down assay with ACE2 produced in LTE showing a twofold increase in the yield of a functional form following denaturant treatment (Fig. 8f).

Discussion

Single-domain proteins above 100 aa in size fold under various degrees of kinetic control. The folding landscape of multidomain proteins is more complex, especially if it involves the disulfide-bond formation and the isomerization of prolyl bonds. With the loss of both intracellular compartmentalization and concerted chaperone activity in cell-free translation systems, accommodation of each unique folding landscape requires optimization of multiple system parameters. In this study, we describe the approach for the folding of in vitro produced (poly)peptides based on a corollary to “Anfinsen’s dogma” and a physical theory of protein folding suggesting that most evolutionary-selected (poly)peptide sequences in the aggregation-free environment can only adopt either fully folded or denatured conformations near thermodynamic equilibrium regardless of their folding landscape at physiological conditions. Although peptides being small enough are expected to fold under complete thermodynamic control even at physiological conditions, the folding of cysteine-rich peptides is kinetically dominated by covalent interactions that often result in disulfide-bond scrambling. Therefore, instead of accommodating the folding constraints in each specific case by various additives, we take advantage of exquisite selectivity and affinity of biological interaction to co-translationally segregate the newly translated chains to affinity resin. By these means, we separate translation and protein folding to different reaction compartments partially avoiding a trade-off between folding and aggregation at the first stage (Fig. 1b). At the second stage, the immobilized (poly)peptides are transferred from the physiological environment, where the folding is partially kinetically controlled, to thermodynamically controlled folding space by adjusting the denaturant and/or reductant concentrations (Fig. 1c).
We show that supplementation of the translation reaction with affinity resin reduces the aggregation through the co-translational capture of non-productive folding states and/or high-energy intermediates. Disulfi de-constrained peptides belonging to various structural classes were also shown to undergo various degrees of covalent aggregation in a standard resin-assisted reaction (Fig. 3d, e and Supplementary Fig. 7). Following co-translational resin capture, we attempted to recycle the non-productive kinetically trapped folding states and/or folding intermediates under thermodynamic control. We demonstrated that treatment with 10 mM GSH for 12–48 h yielded productive oxidative folding on resin for all tested cysteine-rich peptides regardless of the number of disulfi de bonds, embedded ring size or folding mode. Curiously, protein refolding on solid phase with 1.6–2 M GdnHCl was shown to be partially limited by cis/trans-peptidyl-prolyl isomerization when expressed in a resin-assisted...
E. coli-based cell-free system (Ec CFS) but not in a resin-assisted Leishmania system (LTE). Since unfavorable trans-to-cis proline isomerization step can be catalyzed by PPlase only in cooperation with chaperones\(^6\) the observed effect in LTE could be attributed to co-translational chaperon assistance inherent to eukaryotic translation system.

We have validated the developed approach by prototyping of disulfide-constrained proteins including scFv and Fab fragments at 50–200 µg/mL with the functional proportion amounting to 70–90% as estimated by pull-down assay (Fig. 8). Using the established platform, we also rapidly produced, purified, and assayed a number of therapeutically relevant peptides comprising cyclized or open backbones, ranging from a simple disulfide-bonded hairpin-like structures to complex knottns with intricate disulfide connectivity (Table 1). Taking into account, the universal applicability of the approach to a broad peptide range, peptide yield of 25–70 µg/ml from the batch reaction, and low cost of in-house prepared Ec CFS supplemented with the appropriate amount of affinity resin ($10/ml)\(^6\) the total cost and timeline for the small-scale synthesis of the complex disulfide-constrained peptide can be reduced by ~tenfold compared to custom chemical synthesis from ~$2000/mg in 1–2 weeks to ~$200/mg in 1–2 days, respectively.

Although the proposed strategy is likely to benefit from the integration with homeostatic energy regeneration\(^6\) and the use of engineered strains\(^8,36\) it is important to note that in its current format it is rather applicable for small-scale (poly)peptide prototyping due to limited reuse of the protein-coated resin. However, this approach can be potentially tailored to biomanufacturing via utilizing an inexpensive and recyclable metal-affinity resin instead. In contrast to protein-coated resin the latter would give an advantage of using elevated denaturant concentrations and prolonged incubation time to ensure complete resolution and recycling of all inter- and intramolecular aggregates. It may entail, however, the need for additional purification\(^42,54\) and optimization of the reductant concentration to avoid metal reduction.

At last, we also adopted previously established in situ codon-reassignment techniques for simultaneous repurposing of two sense-codons and demonstrated the site-selective installation of two clickable amino acids followed by on-resin macrol cyclization. The use of a crude Ec CFS, in alternative to expensive PURE system\(^63\), and no protein carrier requirement in combination with emulsion-based microcompartmentation technique hold potential to convert the described approach to diversity-oriented screening platform, thereby allowing cost-effective selection of peptide binders against therapeutically relevant targets. Offering the standard procedure for prototyping of a variety of (poly) peptides the proposed strategy can aid in protein/peptide engineering by streamlining design–build–test cycles, a rapid iteration through which remains one of the major bottlenecks of synthetic biology.

Methods

Plasmid construction. Sequence of the affinity clamp (PDZ-Ibromnectin fusion protein) was extracted from the PDB file 3C18. Sequences of the anti-HSA scFv and Fab antibody fragments were derived from the PDB file 5UFO or from the US_2014_0186365 patent (sequence 4D2). Sequences of the anti-IL-6 scFv, anti-IFN-α Fab, anti-IFN-α Fab, and anti-IFN-α2a Fab were derived from the following PDB files: PDB:4CNI, PDB:4Z57, PDB:3UX9, PDB:4YPG, respectively.

With minor exceptions, all coding sequences for peptides and proteins (Supplementary Table 3) were supplied as gblock synthetic fragments by IDT (Integrated DNA Technologies), carrying ~30 bp vector-complementary flanks and subcloned via the Gibson Assembly method to the Ncol/Norl-opened pLTE (AddGene: 67044) or pOPINE (GenBank: EF372397.1) plasmids (Supplementary Table 3) according to the manufacturer’s instructions (New England Biolabs). To create SFTI ORF with unique AGG and AGT codons to be reassigned to the context of peptide biosensor was established earlier in our lab\(^9\). Briefly, a clamping of C-terminal RGSIDTVV between ePDZ and Fn3 domains of affinity clamp results in dislodgment of the inhibitory peptide from the active site of TVMV, leading to protease activation and subsequent cleavage of the otherwise quenched reporter substrate. Typically, the affinity clamp assay was carried out in a buffer containing 50 mM Tris–HCl, 1 mM NaCl, 1 mM EDTA, and 0.5 mM EDDA (pH 8.0), supplemented with 1 µM of peptide biosensor and 15 µM of TVMV-substrate peptide.

The reaction progress was monitored by exciting the sample at 330 nm and recording the fluorescence changes at 405 nm for 3 h using the BioTek Synergy 4 Multi-Mode Microplate reader.

Trypsin-inhibitory assay. Trypsin was freshly prepared at 400 µM in the assay buffer containing 0.1 M NaCl, 10 mM CaCl\(_2\), 0.05% Triton X-100, 0.1 M Tris-HCl pH 8.0. Trypsin at 100 µM was pre-incubated with peptide (twofold dilution series from 4 nM to 3.9 µM) in 200 µL of the assay buffer for 3 h at room temperature. After incubation residual trypsin activity was measured by adding the quenched fluorescent peptide substrate Boc-Q-A-R 7-amido-4-methyl-coumarin to a final concentration of 10 µM. The fluorescence increase upon the release of 7-amido-4-methyl-coumarin was monitored on Infinite M1000 Pro plate reader (Tecan) every 30 s using excitation and emission wavelengths of 360 and 460 nm, respectively. To calculate IC\(_{50}\), the initial velocities of the substrate hydrolysis by trypsin in the presence of different concentrations of peptide were fitted to a nonlinear regression curve using the software package Prism (GraphPad Software) followed by determining the corresponding K\(_v\) value using a tight-binding equation\(^56\) and a K\(_m\) value of 12 µM.

RGS-tag removal with trypsin and asparagus endopeptidase (AEP). Agarose-immobilized trypsin (treated with 1-L-tryosylamide-2-phenylthioly chromomethyl ketone (TPCK) to reduce the chymotrypsin activity by 95%) was used (from ThermoFisher (#20230)) and equilibrated with digestion buffer (0.1 M NH\(_4\)HCO\(_3\), pH 8.0), aliquoted and stored at 4 °C as 50 µl (vol/vol). 20 µl of mixed trypsin–resin suspension was transferred into the filter-bottom tube, spun at 5000 g for 2 min and then mixed with SFI-RIGS peptide in digestion buffer (150 mM NaH\(_2\)PO\(_4\), pH 8.0 at 1:1 or 1:10 peptide to resin ratios followed by incubation for 3 h at 37 °C using the ThermoMixer (Eppendorf). The cleavage reaction was stopped by the addition of trifluoroacetic acid to 2.5% and vigorous shaking. Following quantification of prmSFTI by LC/MS using the calibration curve, the cleavage reaction was lyophilized and the peptide was resuspended in the appropriate volume of the assay buffer. For asparagus endopeptidase-mediated cleavage/cyclization of the reduced peptide, substrates containing the AEP-recognition motif were incubated at ~2800 µM with 12 µg/mL of OaAEp1b in the digestion buffer (50 mM CH\(_3\)COONa, 50 mM NaCl, 1 mM EDTA, pH 5.0) overnight at room temperature.

RGS-tag removal with thrombin, carboxypeptidase A and Y, PreScission protease and hydroxylamine. Thrombin cleavage was performed using 20 pmol of RGS-fusion peptide and 2 NIU units of thrombin (Sigma-Aldrich #T7009) in a thrombin cleavage buffer containing 50 mM Tris–HCl, 10 mM CaCl\(_2\), pH 8.4 at 37 °C for 6–12 h.

Carboxypeptidase A was used in the resin-immobilized form (Sigma-Aldrich #C1261), 40 µL of 50% (~0.2 U) suspension was transferred to the filter-bottom tube and equilibrated with the cleavage buffer. Carboxypeptidase A cleavage was performed on 20 pmol of RGS-fusion peptide in a cleavage buffer containing 25 mM Tris–HCl, 500 mM NaCl, pH 7.5 at 37 °C for 6–16 h.

Asparagine endopeptidase Y powder (Sigma-Aldrich, #C3888) was adjusted to 0.2 mg/mL with the cleavage buffer containing 50 mM Na\(_2\)HPO\(_4\), pH 6.0. The cleavage reaction containing 2 pmol/µL of RGS-fusion peptide, 40 µg/mL of enzyme in the cleavage buffer was incubated at 37 °C for 0.5 h or overnight.

PreScission protease was expressed in E. coli and purified to homogeneity; the protease was adjusted to 4 mg/mL with storage buffer (50 mM Tris–HCl, 150 mM NaCl, 10 mM EDTA, 1 mM DTT, pH 8.0, 20% glycerol). The cleavage of resin immobilized peptide was performed from from thrombin-cleaved translation reaction (~20 µl of settled AC-coated resin gel) in 20 µl of buffer (50 mM Tris–HCl, 150 mM NaCl, pH 7.5) containing 20 µg/mL of PreScission protease at 4 °C for 16 h.

All cleavage reactions were terminated by the addition of an equal volume of 2.5% TFA. Sample aliquots withdrawn at different time points were purified using Pierce C18 Spin Tips (ThermoFisher) and concentrated by SpeedVac vacuum concentrator before analyzing by MALDI or LC-MS.

For hydroxylamine cleavage, AC-resin with 1–30 µg of bound peptide–RGS harboring accessible NG-cleavage motif was incubated at 45 °C for 4 h in cleavage buffer containing 2 M hydroxylamine in 15 mM Tris buffered to pH 9.3 with lithium hydroxide. After incubation, the flow-through containing cleaved peptide was collected by centrifugation at 3000xg and the beads were washed in six
alternating washing steps with washing buffer (50 mM Tris-HCl, 0.5 M NaCl, 1% Triton X-100, pH 7.5) and water followed by three final washings with water. The remaining resin-bound peptide was eluted with 0.2% TFA.

Insecticidal activity assay. The insecticidal activity of the Dc1a and its cell-free produced analog was tested by microinjection in female *Drosophila melanogaster* fruit flies aged 3-4 days with an average weight of 0.8-0.9 mg according to the previously described method. Briefly, the C-termiunally unprocessed Dc1a (Dc1a-GTSGGG-RSIPDTWV) was dissolved in water for injection, and water was used as the respective negative control. The thrombin-cleaved Dc1a sample (Dc1a-GTSGGG-R) contained thrombin and the respective amount of thrombin was added to the control sample. The injection volume was 50 nl and three repeats of seven doses (each in n = 8 fruit flies) were used for each Dc1a analog. Female *Drosophila* were cooled on ice before injection. At 24 h after the injection, the fruit flies were monitored for lethal effects and the median lethal dose (LD50) was determined. The number of control flies affected at the respective post-injection time was subtracted from the number of affected flies. The corrected numbers of affected *Drosophila* flies were upsampled to 100% and the resulting percentages were used to interpolate the respective LD50 values by fitting log dose–response curves using nonlinear regression analysis.

Synthesis and purification of iRNAs. DNA templates containing T7-promoter and iRNA-coding sequences were assembled in 3-step PCR reactions as described with minor modifications. Briefly, in step 1 a forward oligonucleotide (F) containing T7-promoter sequence was combined with reverse oligonucleotide (R1) for overlap extension following two cycles of 1 min denaturation, 1 min 42 °C annealing and 30 s elongation. In step 2, 5′-CCGG-extended 3′-G-ending T7-promoter oligonucleotide was combined with R2-oligonucleotide primer anneal for 2 min. After further annealing cycles with 30 s denaturing, 30 s 42 °C annealing and 15 s amplification in step 3, both T7-promoter and reverse oligonucleotide complementary to 3′-part of iRNA were used at 7.5 μM concentrations for 28 amplification cycles with 30 s denaturing, 30 s annealing at 42 °C and 30 s elongation. PCR reactions were diluted 2.5-fold with water and the resulting PCR-products were purified by ethanol precipitation and dissolved in water. Run-off transcription using T7 RNA polymerase was performed for 3 h or overnight at 35 °C in a buffer containing 40 mM Hepes-KOH (pH 7.9), 20 mM Mg(OAc)2, 2 mM spermidine, 40 mM DTT, 5 mM of each of rNTP, 0.25 μM DNA template (100 ng), 1 μM T7 polymerase. The RNA transcripts were purified by affinity chromatography using ethanamine–Sepharose matrix as described previously. Briefly, for 1 mL of transcription reaction, 0.2 mL of the settled matrix was used. Following 1 h incubation at 4 °C, the resin-bound iRNAs were extensively washed with a buffer, containing 200 mM NaOAc pH 5.2, 0.25 mM EDTA. iRNAs were eluted from the matrix into the buffer containing 2 mM NaOAc pH 5.2, 10 μM MgCl2, 0.25 mM EDTA. iRNAs were ethanol precipitated and the pellets were dissolved in iRNA buffer containing 1 mM MgCl2 and 0.5 mM NaOAc (pH 5.0). The sequences of iRNAs and oligonucleotides are summarized in Supplementary Tables 5 and 7.

Purification of orthogonal aminocycl-T3RNA syntheses. The protein sequences of orthogonal RNA syntheses are provided in Supplementary Table 6. Engineered tyrosyl-tRNA synthetase from *Bacillus subtilis* and pyrrolysine-tRNA synthase from *Methanocaldococcus jannaschii* were expressed in BL21(DE3) RIL or Rosetta cells, respectively, and purified by Ni2⁺ affinity chromatography following gel filtration. Following induction with 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG) at OD600 0.8, the protein expression was carried out overnight at 20 °C. Cells were suspended in a binding buffer containing 50 mM sodium phosphate, pH 8.0, 0.3 M NaCl, 0.1 mM ATP, 5 mM 2-mercaptoethanol, and 20 mM imidazole. Cells were disrupted using a continuous flow mode cell disruptor (Constant Systems) and protein was purified by Ni2⁺ affinity chromatography using standard conditions followed by gel filtration chromatography on a Superdex 75 column (GE Healthcare) in 50 mM Tris-HCl (pH 8.0), 0.1 M NaCl, 1 mM EDTA, 2 mM TCEP. The protein sample was adjusted to 10 mM in coupling buffer (50 mM Tris-HCl, 5 mM EDTA, 2.5 mM TCEP-KOH (pH 8.0), pH 8.5) and added to saturation to UltiLink™ iodoacetate resin (ThermoFisher, #35155) pre-washed with the coupling buffer. Following 1 h coupling reaction at room temperature, the resin was settled, washed with coupling buffer, blocked with 50 mM i-cysteine for 30 min. The AC-coated resin was washed again with 1 M NaCl and PBS and stored in PBS containing 0.1 mg/ml of BSA and 2 mM NaN3 as 50% (vol/vol) suspension at 4°C. By titration of the resin amount needed to saturate the resin from 50 μL of 50% (vol/vol) suspension, it was determined that the binding capacity of the AC-resin was found to be 27 nanomoles of ligand per milligram of settled resin gel or per 2 mL of 50% (vol/vol) suspension (Supplementary Fig. 1). For details, refer to a procedure overview in the Supplementary Methods.

Preparation of E. coli S30 extract and translation reaction assembly. For details, refer to a procedure overview in the Supplementary Methods. Briefly, E. coli extracts were prepared as described by Schwarz et al. with minor modifications. Briefly, cells were cultivated in 5–10 L of filter-sterilized TBGG media (tryptone 12 g/L, yeast extract 24 g/L, glycerol 8 mL/L, glucose 1 g/L, KH2PO4 2.31 g/L, K2HPO4 2.54 g/L) to OD 3.5, pre-chilled with 5 × 200 or 10 × 200 mL of –80 °C pre-frozen packs of LB broth and spun at 2.5 kg for 15 min. The cell pellet from the final wash was resuspended in 200 % (vol/vol) of 500 mM buffer and disrupted using fluidic disruption (Constant Systems, continuous flow mode) at 20 kpsi at 4°C. Cell homogenate was cleared by two consecutive 30 min centrifugation steps at 30 kg at
4°C while collecting the top ¼ of supernatant every time. The final supernatant was adjusted to 0.4 M with 5 M NaCl followed by 45 min incubation at 42°C in a water bath. After centrifugation, the cell lysate translation mixture was translated into diauxic solution tubing (12–14 kDa cutoff, SpectrumTM Labs) and dialyzed for 2 h against 4 L of cold S30C buffer at 4°C followed by ON dialysis against the same volume of fresh buffer. The diaxylized extract was centrifuged for 30 min at 30,000 g at 4°C and top ¼ of supernatant was collected, aliquoted, and frozen in LN2 for subsequent use.

The translation reaction was assembled using 35% (vol/vol) S30 extract (in 10 mM Tris-acetate pH 8.2, 14 mM Mg(OAc)₂, 0.6 mM KOAc, 0.5 mM DTT), 40% (vol/vol) of supernatant was collected, aliquoted, and frozen in LN2 for later use. The mixture was resuspended in 5% (vol/vol) PEG 3000, 5.25× protease inhibitor cocktail (Complete® EDTA-free, Roche), 2 mM MgCl₂, 68 mM of creatine phosphate, 1.25 mM of each amino acid with extra 2.5 mM for Arg, Cys, Trp, Asp, Met, Glu), 0.05 mg/mL T7 RNA polymerase, 45 U/ml creatine phosphokinase, 0.05 mg/ml of TMV protease and 20 µm of plasmid template. Translation of disulfide-rich proteins was performed in reactions supplemented with the extra 7.5 mM DTT and constructed with 17.5% (vol/vol) S30 extract and 17.5% (vol/vol) of the extract buffer.

Peptide translation in resin-assisted CSFs. Peptide synthesis was performed at 27°C for 3 h in LTE and at 32°C for 3 h in Ec CSF and 6 h in the PURE translation context. After affinity-clamp-assisted translation, Strep-Tactin-coated resin was supplemented into translation in one reaction volume of a buffer containing 20 mM Tris-HCl pH 7.5, 100 mM NaCl, 0.05% Tween 20. In parallel, resin-assisted translation reaction was supplemented with 1xV of the same buffer and both mixtures were incubated for another 1 h at RT with agitation. The same buffer was used as a Wash Buffer in the following steps.

Translation and on-resin refolding for proteins free of disulfide bonds. Translation was performed in Ec CSF and LTE in 100 µl reaction volume at 28°C and 27°C for 3 h, respectively. Affinity-clamp- and Strep-Tactin-assisted translation reactions were assembled and processed as described above in the Methods. HeLa- and Strep-Tactin-immobilized proteins were performed in a buffer (20 mM Tris-HCl, 2.5 mM DTT, 20 mM NaCl, 0.125% Tween 20, pH 7.5) for 6 alternating dilution steps. For refolding of Strep-Tactin-immobilized proteins the given amount of resin was incubated with 40 µl of refolding buffer (20 mM Tris-HCl, 2.5 mM DTT, 0.25 mM EDTA) containing 50 mM NaCl, 100 mM NaCl, 0.05% Tween 20, pH 7.5) for 1 h incubation each dilution step followed by 1 h incubation each dilution step.

AC-assisted translation, on-resin refolding, and pull-down analysis for disulfide-rich proteins. The antibody fragments and the CoV2-BRD (Supplementary Table 3) were translated in 20 µl of Ec CSF, 50 µl of LTE at 25°C for 4 h and in 100 µl of HeLa-based translation system at 30°C for 6 h. Ec CSF was modified with adjustment of DTT concentration to 10 mM and the use of S30 extract at twofold dilution. For details also refer to a procedure overview in Supplementary Methods. Control protein samples were incubated with a buffer containing 20 mM Tris-HCl, 100 mM NaCl, 0.05% Tween 20, pH 7.5. Following incubation, the reaction mixtures were diluted twofold in two consecutive dilution steps with 1 h incubation following each dilution. Control proteins were centrifuged at 14,000 rpm agitation in top-bottom thermomixer (Eppendorf). Guanidine hydrochloride was originally prepared as 8 M stock based on neutral buffer. Treatment of Affinity-clamp-resin-immobilized proteins was performed in a buffer (20 mM Tris-HCl, 2.5 mM DTT, 20 mM NaCl, 0.125% Tween 20, pH 7.5) containing 2 M GdnHCl for 6 or 12 h at RT with 1400 rpm agitation. Control proteins were incubated in the neutral buffer (NB) containing 20 mM Tris-HCl, 200 mM NaCl, 0.05% Tween 20, pH 7.5. For details, refer to a procedure overview in the Supplementary Methods.

Preparation of Leishmania cell-extract and translation reaction assembly. A Leishmania-based transcription—translation system (LTE) was prepared as described by Kortus et al. Briefly, Leishmania tarentolae cells were expanded in 5-l conical flasks and harvested by centrifugation (10,000 g, 20 min). The cell pellet was washed with 140 mM NaCl, 0.6 mM KOAc, 0.5 mM DTT, 2.5 mM for Arg, Cys, Trp, Asp, Met, Glu), 0.05 mg/mL T7 RNA polymerase, 45 U/ml creatine phosphokinase, 0.05 mg/ml of TMV protease and 20 µm of plasmid template. Translation of disulfide-rich proteins was performed in reactions supplemented with the extra 7.5 mM DTT and constructed with 17.5% (vol/vol) S30 extract and 17.5% (vol/vol) of the extract buffer. Cyclosporin A (Sigma-Aldrich, #PHR1092) or Rapamycin (Sigma-Aldrich, #A3782) were supplemented to the corresponding to 2 µL of 50% (vol/vol) resin suspension. Following incubation, the mixtures were transferred to 50% suspension (vol/vol) was eluted with 20 µL of buffer in two consecutive elution steps and additionally incubated at RT for 1 h after each dilution step. The resin was extensively washed with the neutral buffer (20 mM Tris-HCl, 200 mM NaCl, 0.05% Tween 20, pH 7.5).
overnight dialyzing against buffer lacking denaturant (50 mM Tris-HCl, 0.5 M NaCl, pH 7.5) at 4°C. For details refer to a procedure overview in the Supplementary Methods. Pull-down assay was performed with 50 µL of 10 µM solution of respective antigens such as GPF (purified from POPINE in-house). Human serum albumin (Sigma-Aldrich, #A7372), human IFNα-1b (GenScript, #Z02866), human IFNα-2a (Shenandoah Biotechnology, #100-54-100UG), human IL-6 (Shenandoah Biotechnology, #100-10-100UG) or SARS-COV2-RBD antibody (Sanuy Bio Pharmaceuticals, #AH204). Incubation was conducted at RT for 3 h. After washing with neutral buffer, the beads were boiled at 95°C for 5 min with 2xLDS sample buffer (Invitrogen® “4X Bolt”, #R0080) and eluted fractions were analyzed on SDS-PAGE.

DHFR activity assay. Fluorescence DHFR activity assay was performed by monitoring the change in NADPH fluorescence (Ex 340 nm, Em 375 nm) upon its conversion to NADP+ in 200 µL of buffer containing 20 mM Tris–HCl pH 7.5, 100 mM NaCl, 1 mM Mg(OAc)2, 0.012% Tween 20, 2.5 mM DTT, in a black 96-well plate (Corning). Reactions were started simultaneously by pipetting the substrate mixture containing NADPH and dihydrofolate acid to 80 µM and 70 µM final concentration, respectively. Fluorescence changes were recorded for 4 h. Protein fractions bound to affinity-clamp-coated resin amount corresponding to 12.5 µL of 50% suspension (vol/vol) were directly used in the assay. Protein fractions from Strep-Tactin-assisted translation reactions were eluted from the resin corresponding to 6 µL of 50% suspension in two consecutive 20 µL elution steps (40 µL total elution volume). Pure recombinant E. coli DHFR was used to calibrate the assay (Supplementary Fig. 16B). Initial rates were derived from the fitting of the respective kinetics with monohom or linear functions in Excel.

Colorimetric DHFR activity assay was used to monitor the activity of DHFR calmodulin biosensor in response to a peptide inhibitor (Supplementary Note 8). The assay was performed by monitoring the decrease in absorbance of NADPH at 340 nm at 25°C in 1 mL of 20 mM NaCl, 20 mM KH2PO4, pH 7.5 buffer containing 10 µM of calmodulin sensor (E. coli DHFR was used to calibrate the assay), 0.4 µM of the 13-calmodulin-binding peptide, 80 µM NADPH, 67 µM dihydrofolate acid, 100 µM CaCl2 and 2 µM of either reduced or oxidized HT-1-RGS fusion. The changes in absorbance were recorded on Cary 50 UV–Vis spectrophotometer (Varian Inc.). Only oxidized in vitro translated HT-1 inhibited the biosensor confirming the installation of native disulide bridges critical for HT-1 functionality (Supplementary Fig. 11C).

Peptide mass spectrometry. LC-MS/MS analysis was performed on Nexera UHPLC (Shimadzu, Japan) interfaced with a TripleTOF 5600 mass spectrometer (ABSCIEX, Canada) equipped with a dual electrospay ion source. Lyophilized peptide 100–200 ng was dissolved in 20 µL of 0.1% formic acid. 15 µL of peptide sample was injected onto a 2.1 × 100 mm Zorbax C18 1.8 µm column (Agilent) at a flow rate of 0.2 mL/min and resolved on 12% SDS-PAGE (Invitrogen). Following electrophoresis, the proteins were transferred to PVDF membrane 0.2 µm (Millipore). Primary mouse anti-GFP antibodies (dilution WB 1:1000) (#11814460001, Roche) and secondary goat anti-mouse IgG (H+L) conjugated with HRP (dilution WB 1:5000) (Cat. No. G-21040, Life Technologies) were used for immunoblotting. Bound primary antibodies were visualized with horseradish peroxidase-conjugated secondary antibodies, secondary antibodies and the Super Signal West Dura ECL detection reagent (Life Technologies). The specific protein bands were visualized using the Super Signal West Dura ECL detection reagent (Life Technologies) and imaged using the ChemiDoc Imaging System (Bio-rad, Gladstone, New South Wales, Australia).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability The authors declare that the data supporting the findings of this study are available in this paper and its Supplementary Information files. The sequences of antibody fragments used in this study are available in the Protein Data Bank under accession codes 5FUO, 4257, 4CNI, 3UX9, 4PFG. Source data is provided with this paper.

Code availability This study did not generate any new code.

Received: 13 October 2021; Accepted: 17 December 2021; Published online: 11 January 2022

References
1. de la Torre, B. G. & Albericio, F. The Pharmaceutical Industry in 2019. An analysis of FDA drug approvals from the perspective of molecules. *Molecules* **25**, 745 (2020).
2. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. *Nat. Prod. Rep.* **30**, 108–160 (2013).
3. Feigl, M., Hendershot, L. M. & Buchner, J. How antibodies fold. *Trends Biochem. Sci.* **35**, 189–198 (2010).
4. Jan, C. H., Williams, C. C. & Weissman, J. S. Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. *Science* **346**, 1257521 (2014).
5. Goerke, A. R. & Swartz, J. R. Development of cell-free protein synthesis platforms for disulfide bonded proteins. *Biotechnol. Bioeng.* **99**, 351–367 (2008).
6. Ryabova, L. A., Desplancq, D., Spirin, A. S. & Pluckthun, A. Functional antibody production using cell-free translation: effects of protein disulfide isomerase and chaperones. *Nat. Biotechnol.* **15**, 79–84 (1997).
7. Groff, D. et al. Engineering toward a bacterial “endoplasmic reticulum” for the rapid expression of immunoglobulin proteins. *Mabs* **6**, 671–678 (2014).
8. Robinson, P. J. & Bulleid, N. J. Mechanisms of disulfide bond formation in vitro: the importance of polypeptide entry into the secretory pathway. *Cell* **9**, 994 (2020).
9. Narayan, M. The structure-forming juncture in oxidative protein folding: what happens in the ER? *Adv. Exp. Med. Biol.* **966**, 163–179 (2017).
10. Goerke, A. R. & Swartz, J. R. Development of cell-free protein synthesis platforms for disulfide bonded proteins. *Biotechnol. Bioeng.* **99**, 351–367 (2008).
11. Stech, M. et al. Cell-free synthesis of functional antibodies using a coupled in vitro transcription-translation system based on CHO cell lysates. *Sci. Rep.* **7**, 12039 (2017).
12. Altamirano, M. M., Garcia, C., Possani, L. D. & Fersht, A. R. Oxidative refolding chromatography: folding of the sorbitol dehydrogenase 1. *Adv. Exp. Med. Biol.* **17**, 187–210 (1999).
13. Shimizu, H., Fujimoto, K. & Kawaguchi, H. Renaturation of reduced ribonuclease A with a microsphere-induced refolding system. *Biotechnol. Prog.* **16**, 248–253 (2000).
14. Biyani, M., Husimi, Y. & Nemoto, N. Solid-phase translation and RNA-protein fusion: a novel approach for folding quality control and direct immobilization of proteins using anchored mRNA. *Nucleic Acids Res.* **34**, e140 (2006).
15. Dashivets, T., Wood, N., Hergersberg, C., Buchner, J. & Hasleb, M. Rapid matrix-assisted refolding of histidine-tagged proteins. *Chembiochem* **10**, 869–876 (2009).
16. NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27854-9 | www.nature.com/naturecommunications
17. Aylng, A. & Banexy, F. Influence of the GroE molecular chaperone machine in the in vitro refolding of *Escherichia coli* beta-galactosidase. *Protein Sci.* **5**, 478–487 (1996).
18. Gould, A. & Camarero, J. A. Cyclotides: overview and biotechnological applications. *Chembiochem* **18**, 1350–1363 (2017).
19. Wang, C. K. & Craik, D. J. Designing macromolecular disulfide-rich peptides for biotechnological applications. *Nat. Chem.* **14**, 417–427 (2018).
20. Huang, Y. H., Chaoius, S., Cheneval, O., Craik, D. J. & Henriques, S. T. Optimization of the cyclotide framework to improve cell penetration properties. *Front. Pharm.* **6**, 17 (2015).
21. Darek, T. & Craik, D. J. Therapeutic conotoxins: A US patent literature survey. Expert Opin. Therapeutic Pat. 25, 1159–1173 (2015).
22. Wang, C. K., Siddle, J. E., Harvey, P. J., Kuo, O. & Craik, D. J. Conformational flexibility is a determinant of permeability for cycloporsin. J. Phys. Chem. B 122, 2261–2276 (2018).
23. Passoura, T. & Suga, H. A RAPID way to discover nonstandard macromolecular peptide modulators of drug targets. Chem. Commun. 53, 1931–1940 (2017).
24. Houghten, R. A. et al. Going from genotype to phenotype on beads: high throughput selection of peptides with biological function. Sci. Rep. 3, 3030 (2013).
25. Cui, Z., Wu, Y., Mureev, S. & Alexandrov, K. Oligonucleotide-mediated RNAi sequestration enables one-pot sense codon reassignment in vitro. Nucleic Acids Res. 46, 6387–6400 (2018).
26. Uper, G. et al. High-throughput production of two disulphide-bridge toxins. J. Am. Chem. Soc. 140, 1481–1495 (2018).
27. Reynaud, S. et al. A venomics approach coupled to high-throughput toxin production strategies identifies the first venom-derived melanoconitin receptor agonists. J. Med Chem. 63, 8250–8264 (2020).
28. Clement, H. et al. A comparison between the recombinant expression and chemical synthesis of a short cysteine-rich insecticidal spider peptide. J. Venom Anim. Toxins 21, 1–10 (2015).
29. Saez, N. J., Nozach, H., Blemont, M. & Vincentelli, R. High throughput quantitative expression screening and purification applied to recombinant disulphide-rich venom proteins produced in E. coli. J. Vis. Exp. e51464 (2014).
30. Loose, C. R., Langer, R. S. & Stephanopoulos, G. High-throughput selection of peptides with biological function. Angew Chem. Int. Ed. 51, 1483–1485 (2012).
31. Estrada, G. et al. Four disulphide-bridged scorpion beta neurotoxin CssII: heterologous expression and proper folding in vitro. Biochim Biophys. Acta 1770, 1161–1168 (2007).
32. Sequeira, A. F. et al. Gene design, fusion technology and TEV cleavage conditions influence the purification of oxidized disulphide-rich venom peptides in Escherichia coli. Micro. Cell Fact. 16, 4 (2017).
33. Turchetto, J. et al. High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery. Micro. Cell Fact. 16, 6 (2017).
34. Ariolas, J. L., Aviles, F. X., Chang, J. Y. & Ventura, S. Conformational selection of peptides with biological function. Nat. Rev. Genet. 13, 364 (2012).
35. Cui, Z., Stein, V., Tnimov, Z., Mureev, S. & Alexandrov, K. Semisynthetic oligonucleotide-mediated tRNA complement mediates in vitro protein synthesis. Biochem. Eng. J. 167, 107790 (2020).
36. Murakami, S., Matsumoto, R. & Kanamori, T. Constructive approach for synthesis of a functional IgG using a reconstituted cell-free protein synthesis system. Sci. Rep. 9, 1–13 (2019).
37. Cui, Z., Stein, V., Tnimov, Z., Mureev, S. & Alexandrov, K. Semisynthetic tRNA complement mediates in vitro protein synthesis. J. Am. Chem. Soc. 137, 4404–4413 (2015).
38. Stein, V. & Alexandrov, K. Protease-based synthetic sensing and signal amplification. Proc. Natl Acad. Sci. USA 111, 15934–15939 (2014).
39. Kovtun, O. et al. Leishmania cell-free protein expression system. Protein Expr. Purif. 58, 56–63 (2011).
40. Mureev, S., Kovtun, O., Nguyen, U. T. & Alexandrov, K. Species-independent translational leaders facilitate cell-free expression. Nat. Biotechnol. 27, 747–752 (2009).
41. Lee, K. H., Kwon, Y. C., Yoo, S. J. & Kim, D. M. Ribosomal synthesis and in situ isolation of peptide molecules in a cell-free translation system. Protein Expr. Purif. 71, 16–20 (2010).
42. de Veer, S. J., White, A. M. & Craik, D. J. Sunflower trypsin inhibitor-1 (SFTI-1): sowing seeds in the fields of chemistry and biology. Angew Chem. Int. Ed. 60, 8050–8071 (2020).
43. Daly, N. L. & Craik, D. J. Acylpermutans of naturally occurring cystine-rich proteins. Characterization of cystine knot and beta-sheet formation in the macrocyclic polypeptide kalata B1. J. Biol. Chem. 275, 19068–19075 (2000).
44. Kojirō, T. et al. In vitro experiments and analyzed the data. S.G. performed experiments and analyzed the data. J.R.D. performed experiments and analyzed the data. A.V.A. performed experiments. Z.G. designed experiments and analyzed the data. M.C. Cell-free synthesis and in situ isolation of recombinant proteins. Protein Expr. Purif. 45, 249–254 (2006).
45. Kim, T.-W., Oh, I. S., Ahn, J. H., Choi, C. Y. & Kim, D. M. Cell-free synthesis and in situ isolation of recombinant proteins. Protein Expr. Purif. 45, 249–254 (2006).
46. Hirano, N., Sasaki, T., Tazawa, Y., Endo, Y. & Takai, K. Tolerance for random recombination of domains in prokaryotic and eukaryotic translation systems: Limited interdomain misfolding in a eukaryotic translation system. Proteins 64, 343–354 (2006).
47. Garbuzynskiy, S. O., Ivanov, D. N., Bogatyreva, N. S. & Finkelstein, A. V. Golden triangle for folding rates of globular proteins. Proc. Natl Acad. Sci. USA 110, 147–150 (2013).
48. Bitran, A., Jacobs, W. M., Zhai, X. & Shakhnovich, E. Cotranslational folding allows misfolding-prone proteins to circumvent deep kinetic traps. Proc. Natl Acad. Sci. USA 117, 1483–1485 (2020).
49. Finkelstein, A. V. & Badreddinov, A. Rate of protein folding near the point of thermodynamic equilibrium between the coil and the most stable chain fold. Fold. Des. 2, 115–121 (1997).
50. Povarova, O. I., Kuznetsova, I. M. & Turoverov, K. K. Differences in the pathways of proteins unfolding induced by urea and guanidine hydrochloride: m loosen globule state and aggregates. PLoS ONE 5, e10530 (2010).
51. Tater, S. A. et al. Polyproteinase flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97, 755–765 (1999).
52. Reimer, U. et al. Side-chain effects on peptide-prollyl cis/trans isomerisation. J. Mol. Biol. 279, 449–460 (1998).
53. Atkins, P. W. & De Paula, J. Physical Chemistry for The Life Sciences (Oxford University Press, 2006).
54. Gregorini, N. E., Levine, M. Z. & Oza, P. A. User’s guide to cell-free protein synthesis. Methods Protoc. 2, 24 (2019).
55. Gagaski, D. et al. Performance benchmarking of four cell-free protein expression systems. Biotechnol. Bioeng. 113, 292–300 (2016).
56. Silverman, A. D., Kaim, S. A. & Jewett, M. C. Cell-free gene expression: an expanded repertoire of applications. Nat. Rev. Genet. 21, 151–170 (2020).
57. Cheng, Y. & Prusoff, W. H. Relationship between inhibition constant (K1) and concentration of inhibitor which causes 50 per cent inhibition (50%) of an enzymatic reaction. Biochemical Pharmacol. 22, 3099–3108 (1973).
58. Guo, S., Herrig, V. & King, G. F. Dipteran toxicity assays for determining the oral insecticidal activity of venoms and toxins. Toxicon 150, 297–303 (2018).
59. Schwarz, D. et al. Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat. Protoc. 2, 2945–2957 (2007).
60. McMahon, K. A. et al. Identification of intracellular caver target proteins reveals 4404–4413 (2011). 61. Kiehhaber, T. Kinetic traps in lysozyme folding. Proc. Natl Acad. Sci. USA 92, 9029–9033 (1995).
experiments. M.A.C. designed experiments and analyzed the data. G.F.K. designed experiments, analyzed the data, and wrote the manuscript. D.J.C. designed experiments, analyzed the data, and wrote the manuscript. K.A. designed experiments, analyzed the data, and wrote the manuscript. S.M. designed experiments, performed experiments, analyzed the data, and wrote the manuscript. All authors discussed the results, refined the manuscript, and approved its final version.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-27854-9.

Correspondence
and requests for materials should be addressed to Kirill Alexandrov or Sergey Mureev.

Peer review information
Nature Communications thanks Vincent Noireaux and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022