Host Plant Strategies to Combat Against Viruses Effector Proteins

Avinash Marwal\(^1\) and Rajarshi Kumar Gaur\(^2\)*

\(^1\)Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan - 313001, India; \(^2\)Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh - 273009, India

Abstract: Viruses are obligate parasites that exist in an inactive state until they enter the host body. Upon entry, viruses become active and start replicating by using the host cell machinery. All plant viruses can augment their transmission, thus powering their detrimental effects on the host plant. To diminish infection and diseases caused by viruses, the plant has a defence mechanism known as pathogenesis-related biochemicals, which are metabolites and proteins. Proteins that ultimately prevent pathogenic diseases are called R proteins. Several plant R genes (that confirm resistance) and avirulence protein (Avr) (pathogen Avr gene-encoded proteins [effector/elicitor proteins involved in pathogenicity]) molecules have been identified. The recognition of such a factor results in the plant defence mechanism. During plant viral infection, the replication and expression of a viral molecule lead to a series of a hypersensitive response (HR) and affect the host plant’s immunity (pathogen-associated molecular pattern–triggered immunity and effector-triggered immunity). Avr protein renders the host RNA silencing mechanism and its innate immunity, chiefly known as silencing suppressors towards the plant defensive machinery. This is a strong reply to the plant defensive machinery by harmful plant viruses. In this review, we describe the plant pathogen resistance protein and how these proteins regulate host immune during plant–virus interactions. Furthermore, we have discussed regarding ribosome-inactivating proteins, ubiquitin proteasome system, translation repression (nuclear shuttle proteins interacting kinase 1), DNA methylation, dominant resistance genes, and autophagy-mediated protein degradation, which are crucial in antiviral defences.

Keywords: PAMPs (Pathogen Associated Molecular Patterns), plant defense, RNA silencing, PTGS (Post Transcriptional Gene Silencing), Avirulence Protein (AVR), innate immunity.

1. INTRODUCTION

Plants are constantly challenged by various phytopathogens [1] present in the environment they grow, and these phytopathogens exploit plants’ biosynthetic and energy-producing proficiencies [2]. The host plant passively protects itself against harmful phytopathogens by using its waxy cuticular layers of the skin, which is the first line of defence from outside (Fig. 1) [3]. Phytopathogens, including bacteria, fungi, insects, and nematodes, are responsible for causing biotic stress in plants, thereby interrupting the photosynthesis formed by plants [4]. By contrast, viruses employ the replication machinery of the host plant for multiplication and movement [5]. Biotic stress in cash crop plants results from infection or disease these phytopathogens cause in the host plant for their growth and nutrient supply [6]. Although microbes grow and flourish on host plants, they affect plant growth and development as well as cause physiological changes in plants [7]. Plant microbiota are principally accumulated from external sources or inoculums, which can be in the harmful pathogenic form or beneficial endophytes (evade in pathogen transmission). This exerts a significant effect on plant health [8].

Most plant viruses possess RNA as their genome along with a coat protein called capsid, and a few viruses contain DNA [9]. Viral infections cause tremendous damage to crop plants, including chlorosis, necrosis, vein clearing, and wilting, thus affecting the physiology and morphology of plants [10, 11]. Once a virus enters the plant cell, it can easily infect nearby cells through cell junctions, namely plasmodesmata (Fig. 2) [12, 13]. To tackle these phytopathogens, plants have two primary defence mechanisms: resistance (plant completely immunises itself from the infection) and tolerance (despite infection, production levels remain above the economic threshold) [14]. The plant defence mechanism exerts a negative effect on phytopathogens [15]. Therefore, host plants and their phytopathogens modulate the dynamics and genetic structure of each other’s population [16]. With the course of evolution, plants have developed multilayered resistance responses to reduce the growth and spread of several disease-causing pathogens [17]. Therefore, new strategies to combat microbial plant diseases are exceedingly required to stop and reduce the transmission of microbial pathogens [18, 19].
An improved understanding of defence and counter-defence mechanisms employed between plants and pathogenic viruses is a prerequisite where both viruses and the host plant have developed specific strategies to improve their survival and propagation. Taking all this crosstalk between plant viruses and their hosts into account, in this review article, we discuss the latest paybacks and challenges of various viral resistance tactics and highlight plants’ microRNA (miRNA) pathway.

2. MAJOR GROUP OF PLANT INFECTIONING VIRUSES AND VIROIDS

Plant viruses interact with different defence mechanisms of host plants (crops, weeds, and ornamentals). All plant viruses can augment their own transmission, thus increasing their detrimental effects on host plants. Plant viruses that cause viral infection stress in plants are double-stranded DNA (dsDNA) viruses, single-stranded (ss) DNA viruses, double-stranded RNA (dsRNA) virus, ss positive sense RNA viruses, and ss negative sense RNA viruses; these viruses consist of 16 families (Table 1) and three orders. These three orders have been accepted thus far by the International Committee for Taxonomy of Viruses [20]. Of them, the largest group is the Geminiviridae family with nine genera and approximately 500 virus species [21, 22]. Viroids, which have free RNA molecules of a low molecular weight without any protein coat, are similar to viruses, and all viroids residing in plants for multiplication. Viroids are even smaller in size than viruses. To date, there are two known families of viroids, namely Pospiviroidae and Avsunviroidae [23, 24]. These two families together comprise approximately 30 known viroid species and cause diseases such as potato spindle tuber disease, apple fruit disease, hop stunt disease, tomato bunchy top disease, and chrysanthemum stunt disease. Mechanical damage, cross contamination, aphids, and contact of an infected leaf with healthy leaves are the modes of viroid transmission [25, 26].
3. RESPONSES IN HOST PLANTS AGAINST PLANT VIRUS EFFECTOR PROTEINS

The active defence responses of the host against invading microbes are regulated by a complex signalling network mediated by gene-for-gene interactions [43]. This involves both the direct and indirect communication of pathogen avirulence (Avr) gene (effector/elicitor proteins involved in pathogenicity) [44] and its matching products (receptor proteins) of the plant resistance (R) gene (Fig. 3). R proteins are similar and categorised on the basis of their structural domains and their localisation. R proteins intricated in protein–protein interactions consist of a leucine-rich repeat (LRR) domain [45-47]. R genes are divided into proteins encoding cytoplasmic LRRs (consisting of the nucleotide-binding site) and extracytoplasmic LRRs (consisting of the transmembrane region). Moreover, some of these R proteins contain a leucine zipper domain or a Toll/interleukin-1 receptor domain [48]. Apart from the aforementioned mechanism, there is the initiation of several defence allied genes along with pathogenesis-related genes [49]. Following the infection of some tissues, the uninfected parts of the host plant develop systemic acquired resistance [50]. This elaborate network of gene-for-gene interactions is usually understood as a receptor-ligand model, wherein the Avr protein binds to its corresponding resistance protein, finally switching on the plant defence mechanism [51].

Pathogen-associated molecular patterns (PAMPs) and microbe-associated molecular patterns are conserved in nature [52]. Once a phytopathogen launches an attack, releasing enzymes and proteins, several PAMPs are produced by plant cell receptors (pattern recognition receptors [PRRs]), activating their immunity. In response to this, pathogens further release effector proteins or Avr proteins to interfere with host receptors. In retort, the host plant battles pathogen invasion by producing effector-specific R proteins encoded by R genes, resulting in a hypersensitive reaction (HR) that makes the host plant resistant to the pest [53-55]. Examples of PAMPs are bacterial flagellins, lipopolysaccharides, fungal chitin, and oomycete heptaglucosides, and PAMPs are not yet recognised in plant viruses to date. In plants, RNA silencing, which is evolutionarily conserved in nature, is believed to be the first level of their defence against pathogen attack from within the plant [56].

The plant RNA silencing mechanism (also called as post-transcriptional gene silencing [PTGS]) [57] and its innate immunity (i.e. PAMP-triggered immunity [PTI] and effector-triggered Immunity [ETI]) control gene expressions and are generally sequence specific [58]; they can readily suppress or degrade foreign nucleic acids (viral DNAs/RNAs) (Fig. 3) [59] and even transposons [60]. PTI and ETI involve rapid ion fluxes, antioxidative burst, and transcriptional reprogramming to handle viral infection [61, 62]. In addition to RNA silencing, ribosome-inactivating proteins (RIPs), ubiquitin proteasome system (UPS), translation repression (nuclear shuttle protein-interacting kinase 1), DNA methylation, dominant resistance genes, and autophagy-mediated protein degradation (AMPD) are crucial in antiviral defences [63-66].

Table 1. Major plant infecting virus species.

S. No.	Family	Example	References
1	Rhabdoviridae	Lettuce necrotic yellows virus	[27]
2	Bromoviridae	Brome mosaic virus	[28]
3	Sequiviridae	Rice tungro spherical virus	[29]
4	Bunyaviridae	Tomato spotted wilt virus	[30]
5	Tombusviridae	Tomato bushy stunt virus	[31]
6	Rheoviridae	Fiji disease virus	[32]
7	Closteroviridae	Beet yellows virus	[33]
8	Caulimoviridae	Cauliflower mosaic virus	[34]
9	Tymoviridae	Turnip yellow mosaic virus	[35]
10	Comoviridae	Cowpea mosaic virus	[36]
11	Circoviridae	Banana bunchy top virus	[37]
12	Geminiviridae	Grapevine red blotch virus	[38]
13	Partitiviridae	White clover crypto virus	[39]
14	Flexiviridae	Carnation latent virus	[40]
15	Luteoviridae	Barley yellow dwarf virus	[41]
16	Potyviridae	Barley yellow mosaic virus	[42]
Fig. (3). Schematic overview of the inside world wherein plant R gene mediating resistance in host plant against the virus infections showing Hypersensitive Response (HR) resulted in typical symptoms of necrotic and mosaic patterns generated from the cell death. Several signalling molecules are induced during infection. Further plant antiviral pathways and viral counter-defenses are shown in the cytosol as a medium of plant–virus interactions. Wherein the viruses encode proteins to execute all parts of the infection cycle and the host factors target viral proteins and nucleic acids to restrict virus infection. Mechanism highlighted in the artwork was RNA silencing, Ribosome-inactivating proteins (RIPs), Ubiquitin Proteasome System (UPS), Translation Repression [Nuclear Shuttle Protein (NSP) Interacting Kinase 1 (NIK1)], DNA Methylation, Dominant Resistance genes and Autophagy Mediated Protein Degradation (AMPD). (A higher resolution / colour version of this figure is available in the electronic copy of the article).

3.1. NB–LRR Proteins Hydrolysing Viral Genome

Initially, a pathogen is recognised by the extracellular surface PRR, followed by a series of kinases that are activated upon activation of PTIs (e.g. somatic embryogenesis receptor-like kinase and mitogen-activated protein kinases) [67-69]. However, viral PAMPs and plants’ PRR mechanism are still under research. Many of the identified R gene products (i.e. R proteins) are of the nature of nucleotide-binding–LRR (NB–LRR) proteins and constitute a subgroup under the STAND (signal transduction ATPases with numerous domains) family [70, 71]. NBS-LRR proteins are some of the largest proteins known in plants, ranging from approximately 860 to 1900 amino acids. They have at least four distinct domains joined by linker regions: a variable amino-terminal domain, the NBS domain, the LRR region, and variable carboxy-terminal domains. NB–LRR proteins stipulate gene-for-gene resistance against phytopathogens and cooperatively establish a complete pathogen detection system. Multidomain NB–LRR proteins can bind to the foreign viral genome (DNA/RNA) and hydrolyse them into monomeric forms [72, 73]. One particular Avr molecule might correspond to one specific or matching R protein. Another essential thing to consider is that upon activation, R proteins trigger programmed cell death, and its directive by the host cell is quite essential [74]. This autoinhibition occurs due to intramolecular interactions among various domains necessary to keep R proteins inactive under plants’ normal conditions (uninfected) [75].

3.2. What’s Happening in Hypersensitive Response (HR)

Approximately 500 species of plant pathogenic viruses that are responsible for various diseases are considered an intracellular parasite [76]. Because viruses encode relatively few proteins, such as coat proteins, replication proteins, P25 protein, RNA-dependent RNA polymerase, helicase, P3 protein, HePro proteins, Nla protease, NSs protein, viral protein genome-linked, and virus movement proteins, all are known to assist as Avr factors in different plant/viral systems [77]. The basic noticeable feature of gene-for-gene mediated resistance is the development of an HR by the plant against phytopathogens [78] wherein necrotic lesions or ringspots are developed at the location of infection on leaves, stems,
and fruits, confining the phytopathogen within it and thus protecting noninfected tissues (Fig. 3) [79]. Furthermore, during an HR, modifications occur in the plant cell wall structure, such as an increase in the calcium ion concentration; an oxidative burst (superoxide and nitric oxide); and upsurges in endogenous salicylic acid, jasmonic acid, and hydrogen peroxide levels [80, 81]. In addition, during an HR, numerous caspase-like proteinases, such as vacuolar-processing enzymes, are triggered, acting as effectors of cell death [82].

3.3. Plant Protecting RIPs, AMPD and UPS

RIPs are scattered all over the plant body and can inactivate viral proteins. One such example is Phytolacca americana (pokeweed) whose protein possesses antiviral activity (i.e. the pokeweed antiviral protein). Several examples have been well documented in suppressing viral activities, such as those of cucumber mosaic virus, potato virus X (PVX), and potato virus Y [83, 84]. The family of dominant resistance genes generally encodes for the lectin family of proteins, which confirm strong resistance against plant viruses. For example, Arabidopsis-restricted Tev movement 1 provides resistance against potyviruses, CIP-29 from Cyamopsis tetragonoloba (L.) suppresses Sunn-hemp mosaic virus, BanLec-1 from Musa paradisiaca inhibits tobacco mosaic virus, and Tm-I from tomato provides protection against tomato mosaic virus. Likewise, tobacco plant N protein recognises and suppresses TMV replicase and potato plant resistance proteins, Rx, Rx2, and Green Peach Aphid 2, help in the recognition of PVX coat protein and confirms resistance against the same. Even Arabidopsis jacalin-type lectin, JAX1, confers resistance against multiple potexviruses (PVX, PLAMV, white clover mosaic virus, and asparagus virus 3) [85-88]. Similarly, in case of autophagy-mediated protein degradation, several genes have been identified that suppress virus replication, such as autophagy-related gene 6, which interacts with the nuclear inclusion protein B of potyviruses, and ATG8 that interacts with the C1 of cotton leaf curl Multan virus betasatellite to inhibit its replication [89, 90]. UPS regulates plant cellular activities such as the cell cycle, transcription, and signal transduction. UPS with its various enzyme complexes are employed by plants to defend against pathogenic viruses (Fig. 3) such as tobacco mosaic virus, turnip yellow mosaic virus, and tomato yellow leaf curl Sardinia virus [91].

3.4. Host Plant PTGS/RNAi Shield Against Viruses

According to optimal defence theory, new plant leaves serve as a basis of healthier nutrition to pathogenic attack compared with older leaves because the photosynthetic apparatus in new leaves is intact. Hence, the young leaves of host plants exhibit higher biotic stress responses compared with old leaves [92]. When plants are under multiple stresses, they become more tolerant or resistant to different stresses, which is known as cross-tolerance that makes host plants adapt rapidly to a changing environment [93]. PTGS in plants is an RNA-mediated virus resistance technique used to silence the expression of one or more pathogenic virulence genes [94]. In this technique, resistance depends on transcribed RNA. Plant RNA silencing was first recognised as an antiviral mechanism that protected plants against RNA viruses or the random integration of transposable elements [95]. With time, it was revealed that several miRNA genes are conserved evolutionarily, and their primary function is to cleave complementary sequence miRNAs [96]. Apart from these microRNAs, there are trans-acting small interfering RNAs (ta-siRNAs), natural-antisense RNAs, repeat-associated siRNAs, viral siRNAs (vsiRNAs), and virus-activated siRNAs. Each of these has its own specificity in terms of origin, biosynthesis, or mode of action. However, they all share some common features. Either encoded by the plant genome or originated from a viral pathogen, the generation of these RNAs involves certain dedicated enzymatic activities. dsRNA produced by pathogenic viruses activates the RNAi mechanism, which is acknowledged and processed into short 20-24 nucleotides by the host cell Type III endoribonucleases (DICER-like proteins) (Fig. 3). Fragmented nucleotides, the so-called RNA duplexes, are integrated into ARGONAUTE (AGO) proteins, finally forming the RNA-induced silencing complex (RISC). The RISC complex then tends to recognise and cleaves the virus homologous nucleotide, thus suppressing viral protein translation [97, 98].

3.5. Studies Enabling PTGS/RNAi Resistance

This evidence was based on demonstrations that were related to the involvement of short miRNA molecules in RNA silencing in plants. Examples include the silencing mechanism used against tobacco leaf curl virus, PVX, Citrus tristeza virus, and many more [99, 100]. This natural method of showing tolerance to viruses and viroids is known as the PTGS or RNAi mechanism. Excess hormone production in crop plants renders the multiplication of viruses; for example, suppression of tobacco necrosis virus (TNV) was observed in the cytokinin-overproducing transgenic tobacco line (CTKm), delaying the senescence of CTKm plants [101]. This also results in the reduction of virus disease symptoms, and a low titre of coat protein was found in host cells. In addition, less production of ethylene, ethane, and hydrogen peroxide as well as a low level of lipid peroxidation were observed. Hence, the host plant becomes quite efficient in reactive oxygen species (ROS)-scavenging ability, thus making the plant tolerant to TNV [102]. The expression of animal antiapoptotic genes, bcl-xL and ced-9, into tomato plants enhanced plant survival under biotic stress against the D satellite RNA (satRNA) [103]. The same approaches are observed in viroids. In addition to this, the overexpression of host proteins reduces viroid replication through AGO proteins and Dicer-Like endonucleases [104-106].

4. VIRUSES RETORTS FOR ITS SURVIVAL

Pathogenic viruses have a deficiency of proofreading its genome, and this results in a considerably high rate of mutations in its genetic material. The host immune response is activated upon recognition of a specific miniature sequence present in viral AVR proteins by R proteins (Fig. 3). Mutated viruses easily escape from the host immune response, and this escaping is known as resistance breakdown [107, 108]. Likewise, these viruses also hinder the plant RNAi mechanism, PTI signalling, host ubiquitination pathways, host ROS production, and SA accumulation and suppress host autophagy pathways through its various encoded proteins [109].
the case of RNA viruses (in the majority of plant viruses), the replication process comprises a step where dsRNA is generated, which can trigger the process against the viral genome. For DNA viruses, overlapping bidirectional read-through transcripts or highly structured viral transcripts may play the triggering role. This never-ending battle between hosts and parasite viruses has resulted in the development of mechanisms against this potent plant defence route. Plant viruses hinder the RNAi pathway either by regulating endogenous miRNA expression or suppressing endogenous gene expression through vsiRNAs. For example, the viral suppressor of RNA silencing (p19) of the cymbidium ring-spot virus can downregulate the transcripts of AGO proteins [110].

5. GROUND REALITY FOR FARMERS

Self-defence mechanisms employed by plants against viruses are much more complex than those against other phytopathogens such as fungi and bacteria [111]. This holds true because in comparison with fungi and bacteria, viruses reside as an intracellular parasite in host plants, wherein its genetic material is directly in access to acquire plant intracellular factors for its own well-being [112]. A true battle situation occurs in this face to face interaction between the two, where the plant attempts to evolve itself to develop new defence mechanisms to launch a stronger attack against pathogenic viruses [113]. Plant viruses benefit themselves in this face-off by identifying lacunae to escape or survive by using defence mechanisms [114]. CRISPR/cas9 is the most recently developed genome-editing tool with a range of genome-editing possibilities. CRISPR/Cas9 has been used to induce resistance in Arabidopsis to make it resistant against turnip mosaic virus by introducing a mutation on the elf (iso) 4E locus [115]. Similarly, CRISPR/cas9 was used to develop resistance in cucumber against viral diseases, including cucumber vein yellowing virus, zucchini yellow mosaic virus, and papaya ring spot virus, by modifying its elf4E gene [116-118]. Developing virus-resistant varieties of plants is the best step for managing diseases because it is the cheapest and effective approach to reduce economic yield losses caused by plant viruses [119]. Virus resistance can be specific or nonspecific [120]. The natural plant immune system contains dominant and recessive resistance genes [121]. Knowledge of these genes helps in implementing an appropriate preventive measure against viruses. The development of biotechnological approaches, such as the identification of viruses, control measures through RNA interference, and CRISPR-Cas9 [122], may not directly help farmers, but they can be advised to use comprehensive, integrated strategies for viral disease management [123, 124].

CONCLUSION AND TAKE AWAY

Plant virus effector proteins play a crucial and dynamic role in understanding the mechanism of plant–microbe interactions. There is a practical intersection between R gene-mediated resistance and the RNA silencing mechanism. It still remains unclear how plant defence mechanisms, including pathogenesis-related genes, hypersensitive responses, systemic acquired resistance, PAMPs, RNA silencing, PTI, and ETI, act as an antiviral defence to manipulate resistance in plants. It will be quite interesting to study how host and virus influence each other in confirming disease resistance mechanisms in plants. Plant viruses have developed a variety of mechanisms to overcome the regulatory machinery of the host and interact tightly with the host protein synthesis machinery such that host genes can function as recessive resistance genes. Understanding virus effectors (Avr factor) and host targets (R proteins) and their mode of action can help to define the evolutionary pressure acting upon host–virus interactions. By discussing different plant effector proteins in this article, we hope to provide new directions to solve the mystery of host–virus interactions. The eventual goal of plant–virus interaction studies is to create sustainable virus resistance stratagems, implement better management practices, perform early diagnosis of viral diseases, and develop virus-resistent crops ethically for ensuring better food safety of the mounting human population in the current century.

CONSENT FOR PUBLICATION

Not applicable.

FUNDING

The authors are thankful to the University Grant Commission (UGC) under Start-Up-Grant-Scheme, New Delhi, India for the financial assistance (No.F.30-510/2020 (BSR) FD Diary No. 8839).

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] Chauhan, R.D.; Beyene, G.; Taylor, N.J. Multiple morphogenic culture systems cause loss of resistance to cassava mosaic disease. BMC Plant Biol., 2018, 18(1), 132. http://dx.doi.org/10.1186/s12870-018-1354-x PMID: 29940871
[2] Nehela, Y.; Killiny, N. Infection with phytopathogenic bacterium inhibits melatonin biosynthesis, decreases longevity of its vector, and suppresses the free radical-defense. J. Pineal Res., 2018, 65(3), e12511. http://dx.doi.org/10.1111/jpi.12511 PMID: 29786865
[3] Colditz, F.; Krajinski, F.; Niehaus, K. Plant proteomics upon fungal attack. Plant Proteomics. Šamaj J., Thelen J.J., Eds.; Springer: Berlin, Heidelberg, 2007, pp. 283-309. https://doi.org/10.1007/978-3-540-72617-3_18
[4] Purohit, A.; Ganguly, S.; Chaudhuri, R.K.; Chakraborti, D. Understanding the interaction of molecular factors during the cross-talk between drought and biotic stresses in plants. Molecular Plant Abiotic Stress: Biology and Biotechnology, Roychoudhury, A.; Tripathi, D.K., Eds., 2019, pp. 427-446. https://doi.org/10.1007/978-8-194450-427-0_15
[5] Nagar, S.; Pedersen, T.J.; Carrick, K.M.; Hanley-Bowdoin, L.; Robertson, D. A geminivirus induces expression of a host DNA synthesis protein in terminally differentiated plant cells. Plant Cell, 1995, 7(6), 705-719. PMID: 7647562
[6] Jaiswal, V.; Gahlaut, V.; Dubey, M.; Ramchari, N. Genes/quantitative trait loci and associated molecular mechanisms identified in capsicum genome for tolerance to abiotic and biotic stresses. The Capsicum Genome, Ramchari, N.; Kole, C., Eds.; Springer: Cham, 2019, pp. 121-138. http://dx.doi.org/10.1007/978-3-319-97217-6_7
Host Plant Strategies to Combat Against Viruses Effector Proteins

[7] Partida-Martínez, L.P.; Heil, M. The microbe-free plant: fact or artifact? Front. Plant Sci., 2011, 2, 100. http://dx.doi.org/10.3389/fpls.2011.00100 PMID: 22639622

[24] Flores, R.; Gago-Zachert, S.; Serra, P.; De la Peña, M.; Navarro, B. Chrysanthemum chlorotic mottle viroid. Virions and Satellites; Hadidi, A.; Flores, R.; Randles, J.W.; Palukaitis, P., Eds.; Academic Press, 2017, pp. 331-338. http://dx.doi.org/10.1016/B978-0-12-80498-1-00031-0

[25] Patiño-Galindo, J.A.; González-Candelas, F.; Pybus, O.G. The effect of RNA substitution models on viroid and RNA virus phylogenies. Genome Biol. Evol., 2018, 10(2), 657-666. http://dx.doi.org/10.1093/gbe/evx273 PMID: 29252030

[26] Serra, P.; Messmer, A.; Sanderson, D.; James, D.; Flores, R. Apple hammerhead viroid-like RNA is a bona fide viroid. Autonomous replication and structural features support its inclusion as a new member in the genus Pellamoviroid. Virus Res., 2018, 249, 8-15. http://dx.doi.org/10.1016/j.virusres.2018.03.001 PMID: 29510173

[27] Wang, C.; Wang, R.; Wells, J.; Leon, F.; Farman, M.; Hammond, J.; Goodin, M.M. Genome sequence variation in the constricta strain dramatically alter the protein interaction and localization map of Potato yellow dwarf virus. J. Gen. Virol., 2017, 98(6), 1526-1536. http://dx.doi.org/10.1099/jgv.0.00771-0 PMID: 28635588

[28] Shrestha, N.; Weber, P.H.; Burke, S.V.; Wysocki, W.P.; Duvall, M.R.; Bujarski, J.J. Next generation sequencing reveals packaging of host RNAs by brome mosaic virus. Virus Res., 2018, 252, 82-90. http://dx.doi.org/10.1016/j.virusres.2018.06.013 PMID: 30575892

[29] Macovei, A.; Sevilla, N.R.; Cantos, C.; Jonson, G.B.; Slama-Loend, I.; Čermák, T.; Votyats, D.F.; Choi, I.R.; Chadha-Mohanty, P. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol. J., 2018, 16(11), 1918-1927. http://dx.doi.org/10.1111/pbi.12927 PMID: 29604159

[30] López-Gresa, M.P.; Lison, P.; Yenush, L.; Conejero, V.; Rodrigo, I.; Bellés, J.M. Salicylic acid is involved in the basal resistance of tomato plants to citrus exocortis viroid and tomato spotted wilt virus. PLoS One, 2015, 11(1), e0166938. http://dx.doi.org/10.1371/journal.pone.0166938 PMID: 27893781

[31] Pogany, J.; Nagy, P.D. Activation of Tomato bushy stunt virus RNA-dependent RNA polymerase by cellular heat shock protein 70 is enhanced by phospholipids in vitro. J. Virol., 2015, 89(10), 5714-5723. http://dx.doi.org/10.1128/JVI.03711-14 PMID: 25762742

[32] McQuilter, R.B.; Dale, J.L.; Harding, R.M.; McMahon, J.A.; Smith, G.R. Production and evaluation of transgenic sugarcane containing a Fiji disease virus (FDV) genome segment 59-derived synthetic resistance gene. Aust. J. Agric. Res., 2004, 55(2), 139-145. http://dx.doi.org/10.1071/AR03131

[33] Albitar, L.; Ismail, M.; Lohaus, G.; Amelina, A.; Visser, B.; Bragard, C.; Hance, T. Bottom-up regulation of a tritrophic system by bean yellow virus infection: consequences for a herbivore-parasitoid foraging behaviour and development. Oecologia, 2019, 191(1), 113-125. http://dx.doi.org/10.1007/s00442-019-04467-0 PMID: 31342255

[34] Becker, R.; Ulrich, A. Improved detection and quantification of cauliflower mosaic virus in food crops: assessing false positives in GMO screening based on the 25S promoter. Eur. Food Res. Technol., 2018, 248(10), 1861-1871. http://dx.doi.org/10.1007/s00217-018-3099-x

[35] Ni, F.; Wu, L.; Wang, Q.; Hong, J.; Qi, Y.; Zhou, X. Turnip yellow mosaic virus P69 interacts with and suppresses GLK transcription factors to cause pale-green symptoms in Arabidopsis. Mol. Plant, 2017, 10(5), 764-776. http://dx.doi.org/10.1016/j.molp.2016.12.003 PMID: 27964999

[36] Wainaina, J.M.; Kubatko, L.; Harvey, J.; Ateka, E.; Makori, T.; Karanja, D.; Boykin, L.M.; Keoh, M.A. Evolutionary insights of Bean common mosaic necrosis virus (BCMV) in bean: a deluge of new insights for its biotic and abiotic interactions. Virus Res., 2018, 249, 82-92. http://dx.doi.org/10.1016/j.virusres.2018.04.011 PMID: 29800524

[37] Dalton, D.T.; Hilton, R.J.; Kaiser, C.; Daane, K.M.; Sudarshana, D.K.; Pongsakdi, N.; Hossain, S.; Muhamed, A.; Rahman, S.M. Characterization of a novel Bacterial infectious disease agent in Assam, India. Front. Microbiol., 2019, 10, 3130. http://dx.doi.org/10.3389/fmicb.2019.03130

[38] Dalton, D.T.; Hilton, R.J.; Kaiser, C.; Daane, K.M.; Sudarshana, M.R.; Vo, J.; Talon, F.G.; Buser, J.Z.; Walton, V.M. Spatial associations of viruses infected with grapevine red blotch virus in Oregon vineyards. Plant Disease, 2019, 103, PDBS-08.
Morelli, M.; Chiumenti, M.; De Stradis, A.; La Notte, P.; Minafra, A. Discovery and molecular characterization of a new coronavirus dsRNA genome from Japanese persimmon through conventional cloning and high-throughput sequencing. *Virus Genes*, 2015, 50(1), 160-164. [http://dx.doi.org/10.1007/s11262-014-1127-z PMID: 25315633]

De La Torre-Almaraz, R.; Pallás, V.; Sánchez-Navarro, J.A. First Report of Carnation Mottle virus (CarmV) and Carnation Etchring virus (CERV) in Carnation From Mexico. *Plant Dis.*, 2015, 99(8), 1191. [http://dx.doi.org/10.1094/PDIS-01-15-0039-PDN]

Paulmann, M.K.; Kunert, G.; Zimmermann, M.R.; Theis, N.; Ludwig, A.; Meichsner, D.; Oelmüller, R.; Gershenzon, J.; Habekuss, A.; Ordon, F.; Furch, A.C.U.; Will, T. barley yellow dwarf virus infection leads to higher chemical defense signals and lower electrophysiologic reactions in susceptible compared to tolerant barley genotypes. *Front. Plant Sci.*, 2018, 9, 145. [http://dx.doi.org/10.3389/fpls.2018.01145 PMID: 29563918]

Li, H.; Kondo, H.; Kühne, T.; Shirako, Y. barley yellow mosaic virus VPg is the determinant protein for breaking eIF4E translation in plants. *Front. Plant Sci.*, 2016, 30(7), 1449.

Gassmann, W.; Bhattacharjee, S. Effector-triggered immunity signaling: from gene-for-gene pathways to protein-protein interaction networks. *Mol. Plant Microbe Interact.*, 2012, 25(7), 862-868. [http://dx.doi.org/10.1094/MPMI-01-12-0024-A PMID: 22414439]

Singh, A.; Singh, I.K. *Molecular Aspects of Plant-Pathogen Interaction*, Springer, 2018.

Sarma, B.K.; Singh, H.B.; Fernando, D.; Silva, R.N.; Gupta, V.K. Enhancing plant disease resistance without R genes. *Trends Biotechnol.*, 2016, 34(3), 523-525. [http://dx.doi.org/10.1016/j.tibtech.2016.04.002 PMID: 27113633]

Kourelis, J.; van der Hoorn, R.A.L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. *Plant Cell*, 2018, 30(2), 265-299. [http://dx.doi.org/10.1105/tpc.17.00579 PMID: 29382771]

Jayaraman, J.; Halane, M.K.; Choi, S.; McCann, H.C.; Sohn, K.H. Using bioinformatics and molecular biology to streamline construction of effector libraries for phytopathogenic *Pseudomonas syringae* strains. *Plant Innate Immunity; Gassmann, W., Ed.; Humana: New York, NY*, 2019, pp. 1-12. [http://dx.doi.org/10.1007/978-1-4939-9458-8_1]

Luderer, R.; Joosten, M.H. Avirulence proteins of plant pathogens: determinants of victory and defeat. *Mol. Plant Pathol.*, 2001, 2(6), 355-364. [http://dx.doi.org/10.1046/j.1464-6722.2001.00086.x PMID: 20573025]

Janin, D.; Khurana, J.P. Role of pathogenesis-related (PR) proteins in plant defense mechanism. *Molecular aspects of plant-pathogen interaction; Singh, A.; Singh, I., Eds.; Springer: Singapore*, 2018, pp. 265-281. [http://dx.doi.org/10.1007/978-981-10-7371-7_12]

Singh, A.; Lim, G.H.; Kachroo, P. Transport of chemical signals in systemic acquired resistance. *J. Integ. Plant Biol.*, 2017, 59(5), 336-344. [http://dx.doi.org/10.1111/jipb.12537 PMID: 28304135]

Petit-Houdenot, Y.; Fudal, I. Complex interactions between fungal avirulence genes and their corresponding plant resistance genes and consequences for disease resistance management. *Front. Plant Sci.*, 2017, 8, 1072. [http://dx.doi.org/10.3389/fpls.2017.01072 PMID: 28670324]

Postel, S.; Kemmerling, B. Plant systems for recognition of pathogen-associated molecular patterns. *Semin. Cell Dev. Biol.*, 2009, 20(9), 1025-1031. [http://dx.doi.org/10.1016/j.semcdb.2009.06.002 PMID: 19450353]

Kushalappa, A.C.; Gummaiah, R. Metabolite-proteomics to discover plant biotic stress resistance genes. *Trends Plant Sci.*, 2013, 18(9), 522-531. [http://dx.doi.org/10.1016/j.tplants.2013.05.002 PMID: 23790252]

Thoen, M.P.; Davila Olivas, N.H.; Kloth, K.; Coelen, S.; Huang, P.P.; Aarts, M.G.; Bac-Molenar, J.A.; Bakker, J.; Bouwmeester, H.J.; Broekgaarden, C.; Bucher, J.; Busscher-Lange, J.; Cheng, X.; Fradin, E.F.; Jongmsa, M.A.; Jalkowska, M.M.; Keurentjes, J.J.; Litgertink, W.; Pieterse, C.M.; Ruyter-Spira, C.; Smant, G.; Teste-
Host Plant Strategies to Combat Against Viruses Effector Proteins

Namba, S.

http://dx.doi.org/10.1038/ni.3124

Polysaccharide sensing

Y.A.; Sánchez

Ranf, S.; Gisc

http://dx.doi.org/10.1021/acs.biochem.7b00598

Protein to selectively depurinate uncapped Tobacco Etch Virus translation initiation complex eifiso4f directs pokeweed antiviral response mediated resistance in Nicotiana benthamiana.

Li, F.; Zhang, C.; Li, Y.; Wu, G.; Hou, X.; Zhou, X.; Wang, A. Beclin I restricts RNA virus infection in plants through suppression and degradation of the viral polymerase.

Culver, J.N.; Padmanabhan, M.S.

Aspects of Plant Cell Biology one interaction at a time.

Agarwall, R.; Padmamakumari, A.P.; Bentur, J.S.; Nair, S. Metabolic and transcriptomic changes induced in host during hypersensitive response mediated resistance in rice against the Asian rice gall mite.

Satish, D.; Mukherjee, S.K.; Gupta, D. PamiRDB: A web resource for plant miRNAs targeting viruses.

Huang, C.; Liu, Y.; Yu, H.; Yuan, C.; Zeng, J.; Zhao, L.; Tong, Z.; Tao, X. Non-structural protein NSm of Tomato Spotted Wilt Virus is an avirulence factor recognized by resistance genes of tobacco and tomato via different elicitor active sites.

Virus, 2018, 10(11), 660.

http://dx.doi.org/10.3390/v10110660 Plant, 2006, 12(4), 803-814.

Agarwall, R.; Padmamakumari, A.P.; Bentur, J.S.; Nair, S. Metabolic and transcriptomic changes induced in host during hypersensitive response mediated resistance in rice against the Asian rice gall mite.

Satish, D.; Mukherjee, S.K.; Gupta, D. PamiRDB: A web resource for plant miRNAs targeting viruses.

Virus, 2018, 10(11), 660.

http://dx.doi.org/10.3390/v10110660 Plant, 2006, 12(4), 803-814.

Agarwall, R.; Padmamakumari, A.P.; Bentur, J.S.; Nair, S. Metabolic and transcriptomic changes induced in host during hypersensitive response mediated resistance in rice against the Asian rice gall mite.

Satish, D.; Mukherjee, S.K.; Gupta, D. PamiRDB: A web resource for plant miRNAs targeting viruses.

Virus, 2018, 10(11), 660.

http://dx.doi.org/10.3390/v10110660 Plant, 2006, 12(4), 803-814.
http://dx.doi.org/10.1111/j.1439-0434.2009.01607.x

[102] Pogány, M.; Koehl, J.; Heiser, I.; Elstner, E.F.; Barna, B. Juvenileity of tobacco induced by cytokinin gene introduction decreases susceptibility to Tobacco necrosis virus and confers tolerance to oxidative stress. *Physiol. Mol. Plant Pathol.*, 2004, 63(1), 39-47. http://dx.doi.org/10.1016/j.pmpp.2004.10.006

[103] Xu, P.; Rogers, S.J.; Roossinck, M.J. Expression of antiapoptotic genes bel-1 and seed-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress. *Proc. Natl. Acad. Sci. USA*, 2004, 101(44), 15805-15810. http://dx.doi.org/10.1073/pnas.0407094101 PMID: 15505199

[104] Fusaro, A.F.; Matthew, L.; Smith, N.A.; Curtin, S.J.; Dedic-Hagan, J.; Ellacott, G.A.; Watson, J.M.; Wang, M.B.; Brosnan, C.; Carroll, B.J.; Waterhouse, P.M. RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. *EMBO Rep.*, 2006, 7(11), 1168-1175. http://dx.doi.org/10.1038/sj.embor.7400837 PMID: 17039251

[105] Wasseneeger, M.; Krezial, G. Nomenclature and functions of RNA-directed RNA polymerases. *Trends Plant Sci.*, 2006, 11(3), 142-151. http://dx.doi.org/10.1016/tplants.2006.01.003 PMID: 16473542

[106] Dalakouras, A.; Dadami, E.; Wasseneeger, M. Engineering viroid resistance. *Viruses*, 2015, 7(2), 634-646. http://dx.doi.org/10.3390/v70207634 PMID: 25674769

[107] Anandalakshmi, R.; Marathe, R.; Ge, X.; Herr, J.M.; Jr; Mau, C.; Mallory, A.; Pruss, G.; Bowman, L.; Vance, V.B. A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. *Science*, 2000, 290(5489), 142-144. http://dx.doi.org/10.1126/science.290.5489.142 PMID: 11021800

[108] Kong, J.; Wei, M.; Li, G.; Lei, R.; Qiu, Y.; Wang, C.; Li, Z.-H.; Zhu, S. The cucumber mosaic virus movement protein suppresses PAMP-triggered immune responses in Arabidopsis and tobacco. *Biochem. Biophys. Res. Commun.*, 2018, 498(3), 395-401. http://dx.doi.org/10.1016/j.bbrc.2018.01.072 PMID: 29407183

[109] Pita, J.S.; Roossinck, M.J. Virus populations, mutation rates and frequencies. *Plant Virus Evolution; Roossinck, M.J., Ed.; Springer: Berlin/Heidelberg, Germany*, 2008, pp. 109-121. http://dx.doi.org/10.1007/978-3-540-75762-4_6

[110] Valli, A.A.; Gallo, A.; Rodamillans, B.; López-Moya, J.J.; García, J.A. The HCPpro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. *Mol. Plant Pathol.*, 2018, 19(3), 744-763. http://dx.doi.org/10.1111/mpp.12553 PMID: 28371183

[111] Goyal, R.K.; Mattoo, A.K. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. *Plant Sci.*, 2014, 228, 135-149. http://dx.doi.org/10.1016/j.plantsci.2014.05.012 PMID: 25438794

[112] Wang, A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. *Annu. Rev. Phytopathol.*, 2015, 53, 45-66. http://dx.doi.org/10.1146/annurev-phyto-080614-120001 PMID: 25938276

[113] Rausher, M.D. Co-evolution and plant resistance to natural enemies. *Nature*, 2001, 411(6839), 857-864. http://dx.doi.org/10.1038/35081193 PMID: 11549070

[114] Stavolone, L.; Prigigallo, M.I.; Cillo, F. Plant viruses against RNA silencing-based defenses: Strategies and solutions. In: *Applied Plant Biotechnology for Improving Resistance to Biotic Stress; Poltronieri, P.; Hong, Y., Eds.; Academic Press, 2020*, pp. 225-250.

[115] Pyott, D.E.; Sheehan, E.; Molnar, A. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgenic-free Arabidopsis plants. *Mol. Plant Pathol.*, 2016, 17(8), 1276-1288. http://dx.doi.org/10.1111/mpp.12417 PMID: 27103354

[116] Chandrasekaran, J.; Brummin, M.; Wolf, D.; Leibman, D.; Klap, C.; Pearlsman, M.; Sherman, A.; Arazzi, T.; Gal-On, A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. *Mol. Plant Pathol.*, 2016, 17(7), 1140-1153. http://dx.doi.org/10.1111/mpp.12375 PMID: 26808139

[117] Khatoodia, S.; Bhatotia, K.; Tuteja, N. Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops. *Bioengineered*, 2017, 8(3), 274-279. http://dx.doi.org/10.1080/21655979.2017.1297347 PMID: 28581909

[118] Varun, P.; Ranade, S.A.; Saxena, S. A molecular insight into papaya leaf curl-a severe viral disease. *Protoplasma*, 2017, 254(6), 2055-2070. http://dx.doi.org/10.1007/s00709-017-1126-8 PMID: 2840512

[119] Wiser, G.C.; Duffus, I.E. A century of plant virus management in the Salinas valley of California, ‘East of Eden’. *Virus Res.*, 2000, 71(1-2), 161-169. http://dx.doi.org/10.1016/S0168-1702(00)00196-9 PMID: 11137170

[120] Heath, M.C. Nonhost resistance and nonspecific plant defenses. *Curr. Opin. Plant Biol.*, 2000, 3(4), 315-319. http://dx.doi.org/10.1016/S1369-5266(00)00087-X PMID: 10873843

[121] Ritzenhaller, C. Resistance to plant viruses: old issue, new answers? *Curr. Opin. Biotechnol.*, 2005, 16(2), 118-122. http://dx.doi.org/10.1016/j.coptbio.2005.02.009 PMID: 15831375

[122] Gupta, M.; Gerard, M.; Padmaja, S.S.; Sastry, R.K. Trends of CRISPR technology development and deployment into agricultural production-consumption systems. *World Pat. Inf.*, 2020, 60, 101944 http://dx.doi.org/10.1016/j.wpi.2019.101944

[123] Scheinemachers, P.; Balasubramaniam, S.; Beopathi, N.M.; Ha, C.V.; Kenyon, L.; Pranetvatakul, S.; Sinjinda, A.; Le, N.T.; Srinivasan, R.; Wu, M.H. Farmers’ perceptions and management of plant viruses in vegetables and legumes in tropical and subtropical Asia. *Crop Prot.*, 2015, 75, 115-123. http://dx.doi.org/10.1016/j.cropro.2015.05.012

[124] Montenegro, M. CRISPR is coming to agriculture- With big implications for food, farmers, consumers and nature. *Ensia*, (Accessed March 31, 2016), Available online at: http://ensia.com/voices/crispr-is-coming-to-agriculture-with-big-implications-for-food-farmers-consumers-and-nature/