Separating the Different Domains of Reading Intervention Programs: A Review

Tzipi Horowitz-Kraus1,2 and Sarah Finucane1

Abstract
Providing a child with reading difficulties with the appropriate reading intervention as early as possible is critical to prevent future academic failure. As reading is composed of several sub-components (phonology, orthography, fluency, comprehension), choosing the appropriate intervention may be confusing. Here, we attempt to provide an up-to-date review of different reading intervention programs and their outcomes that currently are available for children 4 to 16 years of age. We also introduce the possible beneficial effect of including a component of executive-functions training to reading curricula to enhance the effects of reading intervention programs. These programs are separated by the sub-components of reading that each is designed to address, with discussion based on several leading models for reading acquisition. Our aim is to direct educators, professionals, and researchers to the most appropriate intervention according to either their domain of interest or the child’s needs.

Keywords
language studies, language, curriculum, education, literacy, education theory and practice, special education, learning disabilities, reading, learning difficulties, reading difficulties

Introduction
Reading difficulties are defined as the inability to decode accurately and fluently, as well as to comprehend written material. These difficulties are observed in individuals with dyslexia (Breznitz, 2006) and those with attention difficulties (Greven, Rijstdijk, Asherson, & Plomin, 2012), psychiatric disorders (Pavuluri, O’Connor, Harral, & Sweeney, 2006), emotional difficulties (Arnold et al., 2005), illiteracy (Ardila et al., 2010), temporal lobe epilepsy (Noppeney, Price, Duncan, & Koepp, 2005), autism (Newman et al., 1999), and others. Reading difficulty can stem from a variety of reasons, including the following: (a) a basic difficulty in executive functions (attention, working memory, inhibition; Altemeier, Abbott, & Berninger, 2008; Brosnan et al., 2002; Gooch, Snowling, & Hulme, 2011; Helland & Asbjornsen, 2000; Horowitz-Kraus, 2012; Menghini et al., 2010; Reiter, Tucha, & Lange, 2004; Tiffin-Richards, Hasselhorn, Woerner, Rothenberger, & Banaschewski, 2008), (b) phonological deficit (Liberman, Shankweiler, Fischer, & Carter, 1974; Morris et al., 1998; Stanovich & Siegel, 1994), (c) impaired orthography (Badian, 2005), (d) impaired reading fluency (Bowers, 1993; Bowers & Wolf, 1993; Breznitz, 1987a, 1987b, 2006), and (e) reading comprehension difficulties (Fisher & Frey, 2014; Harvey, 2015; Solis, Miciak, Vaughn, & Fletcher, 2014).

The phonological processor is specialized for perceiving, remembering, interpreting, and producing the speech-sound system of a person’s language (Moats, 2009), which enables the appropriate matching of the grapheme to the corresponding phoneme. A deficit in the phonological processor can result in an inability to correctly identify, recall, manipulate, and/or remember phonemes (Moats, 2009). The orthographic processor recalls the letters and letter sequences in the words to be written, and forms word templates in the reader’s mental lexicon (see also “self-teaching” theory; Share 1995). A deficit in this domain will result in slower reading as well as poorer spelling and is tightly related to fluency difficulties (Breznitz, 2006). Fluent reading is defined as the overall timing and smoothness in reading, which is attributed to speed-of-processing abilities (Bowers & Wolf, 1993; Breznitz, 2006) and/or the level of proficiency with the phonological/orthographical routes (Seidenberg & McClelland, 1989). Impaired reading fluency may occur due to deficits in working memory (Swanson & Siegel, 2001), rapid automatic naming (RAN; Wolf, Bowers, & Biddle, 1993).
Because of their phonological deficit (see also Snowling & Nation, 1997), whereas skilled readers are more prone to errors in the integration phase because of the more complex processes involved in top-down processing and the lack of deficits in the underlying reading mechanisms in these readers. For skilled readers, when reading becomes automatic, it also becomes effortless, and a trade-off occurs with higher-control processes (Walczyk, 2000).

Chall describes reading as a multi-level process, where each component is integral to the development of the next (Chall, 1983). The first level of the Chall model is “learning to read,” whereas the second level is “reading to learn.” The first level is divided into several stages: (a) pre-reading stage (0-6 years old), (b) predecoding stage (first and second grades), and (c) fluent-reading stage (second and third grades). The second level is composed of reading to learn (extracting knowledge from the text; fourth-sixth grades), reading for different perspectives (high school grades), and building new knowledge (high school and college). The Chall model emphasizes that phonology is the most basic component, followed by orthography (or holistic word reading), and then an automatic mastery of both of them resulting in fluent reading. Only when the child reads fluently can he or she move to the comprehension level.

For this review, we attempt to provide researchers, clinicians, teachers, and parents with an up-to-date overview of the research-based reading intervention programs currently available for children ages 4 to 16 years. Using a PubMed search (U.S. National Library of Medicine, 2015), we have included only research-based articles describing reading intervention programs for this age range (key words were “reading intervention” and “children”). The biomedical perspective of the programs reviewed broadens the scope of existing reading program reviews created by the U.S. Department of Education’s Institute of Education Sciences (IES). Founded in 2002 to promote informed educational decision making, the IES What Works Clearinghouse website provides educators, legislators, and community members with a central source for research-based educational programs, including reading intervention programs, from an educational perspective (U.S. Department of Education, 2005). Additional reviews of reading intervention programs are also available through national and state Response to Intervention (RTI) search engines, such as the American Institutes for Research (2015) Center for Response to Intervention. However, these reviews do not provide a review on only research-based interventions and the actual quantitative information reflecting the level of improvement, and they do not separate the interventions according to the different aspect of reading they are treating (i.e., phonology, fluency, comprehension, multi-component). Our review aims to direct educators, professionals, and researchers to the most appropriate intervention according to either their domain of interest or the child’s needs.
An attempt was made to divide the presented intervention programs into one of the three main reading sub-components (Table 1—phonology, Table 2—fluency, Table 3—comprehension). As intervention programs that train orthography use context to train this domain, we included these programs under “fluency.” We also included programs that involve several components (Table 4—multiple components) and the outcomes that are available for each of these programs in the following domains: phonology, orthography, fluency, comprehension, and other general domains if reported (spelling, motivation, knowledge, and others). Results in the tables report the effect measured immediately after intervention. We then attempted to conclude as to a preferable trained reading domain that results in many improved reading domains.

Phonological processing interventions, such as Lindamood-Bell, code-based classroom instruction, and Phono-Graphix, result in improvements in phonology, orthography, and comprehension, whereas reading fluency (contextual accuracy and speed) was not affected (Table 1). The lack of the “timing” component (i.e., the encouragement of faster contextual reading) that is absent in the listed interventions may contribute to the lack of changes in the fluency domain. However, the ages of the participants listed in some of the phonology-based interventions that did not show an improvement in fluency were less than 7 years (i.e., Graphogame and the classroom instructions). Also, in the intervention program that did have an effect on reading fluency (i.e., Lindamood-Bell), the intervention lasted 2.5 years as opposed to 12 to 16 weeks for the other two interventions, which may have had an effect on the development of fluency skills.

Interestingly, the number of research-based intervention programs is limited. To date, we found that only the Reading Acceleration Program (RAP), which is a computer-based intervention, has a published effect on orthography, fluency, and comprehension (Table 2). The effect was found in a variety of orthographies (i.e., German, Hebrew, and English) and different age groups (6-12 years), with reports in adults as well (Breznitz et al., 2013). The effect of this intervention was found after 3.5 to 8 weeks of training.

A variety of intervention programs are focused on comprehension (Table 3). These programs vary from listening comprehension programs that are computer-based (van Kleek, Vander Woude, & Hammett, 2006) to a teacher-based setting (Garner & Bochna, 2004). Some programs, such as Concept-Oriented Reading Instruction (CORI), improved comprehension and other domains not related to reading (e.g., reading motivation, strategies, knowledge, searching, and more). Only the Guided Reading (GR) intervention had an effect on the phonology, orthography, and comprehension domains related to reading, but without a direct effect on fluency. Interestingly, GR was the shortest intervention compared with the other interventions listed in the table (i.e., only 6 weeks), but the participants were the oldest (9-14 years of age).

Multi-component interventions are both computer based as well as teacher based, with a major difference in the training time frame (4 weeks to 3 school years; Table 4). The only intervention that showed an improved reading on all four examined domains of reading (phonology, orthography, fluency, and comprehension) was the Multi-component Tier 2 intervention for 9-to-12-year-old children, which lasts from a couple of weeks to a couple of years. Another program for this age group is computer based for 6 weeks (i.e., video instructions; Xin & Rieth, 2001), which only showed an effect on orthography and comprehension.

Discussion

The purpose of this current-literature review was to provide an overview of research-based phonological, fluency (includes orthography), comprehension, and multi-component reading intervention programs. The intervention programs we have reviewed include those for children aged 4 to 16 years, both computer-based and teacher-based in each of the following reading domains: phonemic awareness, phonology/decoding, orthography, fluency, and comprehension. Other outcome measures, if given in the original studies, are also provided. Due to the different measures in each study, we are unable to provide a meta-analysis that compares the main effects of the intervention programs to identify the most effective intervention. However, based on the literature review, greater gains in all levels of reading measures and comprehension are achieved when using techniques that specifically address reading fluency (such as the RAP; Horowitz-Kraus & Breznitz, 2013). We base our conclusions on the reports of increase in orthography, fluency, and comprehension abilities (i.e., all components involved in contextual reading; see Horowitz-Kraus & Breznitz, 2013; Horowitz-Kraus, Cicchino, Amiel, Holland, & Breznitz, 2014) following a fluency training.

Reading fluency recently has been acknowledged as a composite of key cognitive processes (phonological, orthographical, and semantic processes, as well as more basic higher-order abilities such as executive functions [attention, working memory, and speed of processing]; Benjamin & Gaab, 2012; Berninger, Abbott, Billingsley, & Nagy, 2001; Wolf & Katzir-Cohen, 2001). Only a synergy in the activation of all of these components results in fluent reading (Breznitz, 2006). Recent neuroimaging studies also support this concept; fluent-reading training resulted in increased activation in phonological, orthographical, and semantic regions, as well as executive functions—related brain regions (Horowitz-Kraus & Breznitz, 2013; Horowitz-Kraus et al., 2014; Horowitz-Kraus & Holland, 2015). We suggest that by encouraging fluent reading, more information units can be processed in a given time, and reading fluency training “releases” the speed of the cognitive bottleneck resulting from the slow speed of processing and deficits in working memory demonstrated by children with reading difficulties.
Table 1. Reading Intervention Programs According to the Sub-components of Reading: Phonology.

Program	Type of program	Level of training	Age (years)	Language	Weeks	Times per week	Length of sessions	Duration	Outcomes
Lindamood-Bell PASP Auditory Discrimination in Depth Program (Torgesen et al., 1999)	Teacher	5-8	English	2½ school years	4	20 min			Phonology: Non-words (WJ-RMT Word Attack): Increased from 0 to 24 non-words, with SS increasing from 0.76 to 21.3. Non-words (non-word list): Increased from zero to 50 non-words, with SS increasing from 1.8 to 43.2. Orthography: Words (WJ-RMT WI): Increased from 0 to 55 words, with SS increasing from 1.2 to 47.9. Words (real word list): Increased from 1 to 154 words, with SS increasing from 5.1 to 137.9. Words (TOWRE Sight Word Efficiency): Increased from 22 to 43 words. Non-words (TOWRE Phonemic Decoding Efficiency): Increased from 12 to 25 non-words. Comprehension: WJ-RMT Passage Comprehension: Raw scores increased from 13 to 26, with SS increasing from 10.7 to 23.2. GORT-II Comprehension: Raw scores increased from 5 to 13, standard increasing from 3.8 to 10.9.
Computer-assisted reading program (CARs)	Computer	6-7	Finnish (also exists in English)	12	5	10-15 min			Note. Due to small sample size, results are given in raw scores and effect sizes (calculated by computing gain scores for each group for each measure and then subtracting the mean gain score for the control group from the mean gain for the experimental group of interest). However, none of the ESs reported had a p value < .05. Phonological awareness: GG Rime group mean raw score increased from 10.2 at T1 to 15.9 at T2 on phoneme deletion task, GG Phoneme group increased from 12.1 to 18.5, and control group increased from 9.7 to 12.2.
Table 1. (continued)

Program	Type of program	Level of training	Age (years)	Language	Weeks	Times per week	Length of sessions	Outcomes
GG Rime	mean raw score increased from 6.8 at T1 to 10.0 at T2 for Rhyme Oddity task, GG Phoneme increased from 10.0 to 11.2, and control group increased from 8.9 to 9.5 Phonology: GG Rime group read seven more non-words on the TOWRE Phonemic Decoding Efficiency test, GG Phoneme group read five more non-words, and control group read four more non-words at T2 than at T1 Orthography: GG Rime group read 14 more words on the BAS II, GG Phoneme read 11 more words, and control group read 10 more words at T2 than at T1 GG Rime group read 10 more words on the TOWRE Sight Word Efficiency sub-test, GG Phoneme read nine more words, and control group read seven more words at T2 than at T1 Spelling: GG Rime group correctly spelled seven more words on the BAS II, GG Phoneme spelled five more words, and control group spelled four more words at T2 than at T1 Post-test performance did not differ between the experimental and comparison groups. Combined group performance (experimental + comparison) made more growth than normative sample Phonology (Word Attack): SS gain of 3 Orthography (Word ID): SS gain of 5 Comprehension: SS gain of 5							

Code-based classroom instruction and a supplemental maintenance intervention. Comparison group: Only code-based classroom instruction Classroom instruction emphasized phonological awareness, letter–sound correspondences, decoding strategies, and text reading. Supplemental: Write Well—Enhancing phonological awareness and alphabetic skills through spelling, writing, and practice. (Coyne, Kame’enui, & Simmons, 2004)
Program	Type of program	Level of training	Age (years)	Language	Duration	Outcomes		
ERI (replication study) Coyne et al. 2013	Tutor/interventionist	Letters and sounds, segmenting and blending phonemes, reading words, decoding	5-6	English	126 lessons	5	Supplemental: 30 min	No significant differences in phonology, decoding, and orthography fluency between the intervention and control groups
Stepping Stones to Literacy Intensive preventive pre-reading intervention program (Nelson, Benner, & Gonzalez, 2005)	Trained paraprofessional-level tutors.	Exclusive focus on improving kindergarten children’s phonological awareness, letter ID, and rapid naming. Does not include word reading or letter–sound correspondence. 1:1 tutoring	5-6	English	25 lessons	Treatment group only 10-20 min daily supplemental	An overall effect of intervention compared with the comparison group is $F(1, 34) = 10.96, p < .01$ Orthography: Word reading (DIBELS NWF) SSs increase from 2.1 to 12.1	
Phonographix (Denton, Fletcher, Anthony, & Francis, 2006)	Tutor	Explicit phonics instruction using picture cards. Four stages of progressive sound–symbol relationships Decoding practice through reading decodable texts	5-8 identified with reader deficits	English	8	2	Supplemental: 50 min	Decoding: WJ-III Word Attack increased raw scores from 459.5 to 482.8; $F(1, 25) = 72.64, p < .0001$ TOWRE Phonemic Decoding Fluency increased raw scores from 9.7 to 16.4; $F(1, 25) = 53.86, p < .0001$ Orthography: WJ-III Letter–Word ID increased raw scores from 430.5 to 448.8; $F(1, 25) = 46.63, p < .0001$ TOWRE Sight Word Fluency increased raw scores from 38.8 to 45.6; $F(1, 25) = 19.16, p < .0001$ Fluency: GORT increased raw scores from 6.1 to 8.6; $F(1, 25) = 33, p < .0001$ Comprehension: WJ-III Passage Comprehension increased raw scores from 451.7 to 460.4; $F(1, 25) = 25.98, p < .0001$
Table 2. Reading Intervention Programs According to the Sub-components of Reading: Fluency.

Program	Type of program	Age (years)	Language	Duration	Outcomes
A computerized training of repeated reading of a limited set of 32 training words, with special emphasis on the onset segment. Active and passive conditions were set, and children were asked to pronounce (or listen to) the words appearing on the screen. This was done in stages (Thaler, Ebner, Wimmer, & Landerl, 2004)	Computer	8-11	German	~3.5 (25 days) 5 15 min; six sessions	Orthography: Reading accuracy: No change Reading times (per word): Trained words: Decreased by 1,300 ms Transfer words: Decreased by 550 ms Control words: Decreased by 420 ms
RAP (Horowitz-Kraus, Cicchino, Amiel, Holland, & Breznitz, 2014)	Computer	8-12 (readers with dyslexia)	English and Hebrew	4 5 20 min	In the Hebrew-speakers group: Reading fluency: Reading speed decreased by 89 ms/letter Comprehension increased by 23% In the English-speakers group: Reading fluency: Reading speed decreased by 40 ms/letter Comprehension increased by 24%
RAP (Horowitz-Kraus, & Breznitz, 2013)	Computer	8-12 (typical readers and readers with dyslexia)	Hebrew	8 3 15-20 min	Orthography (number of words per minute): From 56.46 to 79.36 in children with dyslexia; from 61.87 to 84.911 in typical readers Fluency decreased time in the parsing test from 7.85 s per sentence to 6.57 s per sentence in children with dyslexia; from 6.18 to 5.01 s in typical readers Comprehension: Increased SS from −0.71 to −0.15 in children with dyslexia and from −0.33 to 0.12 in typical readers.
RAP: A computer-controlled reading situation in which reading rate was accelerated and decelerated according to the highest and lowest rates demonstrated by each participant in a preliminary test. Auditory masking: Music of a well-known song was played by the computer during all three reading rate condition (Breznitz, 1997a, 1997b)	Computer	6-7 (typical readers) 8-9 (readers with dyslexia)	Hebrew	NA NA NA	Without auditory masking: Comprehension: average raw score increased from 3.11 to 3.90 Orthography: Reading accuracy (errors): Average number of errors increased from 27.01 to 29.30. Fluency: Reading time: Average time decreased from 34.13 to 22.50 s With auditory masking: Comprehension: average raw score increased from 3.01 to 4.3 Orthography: Reading accuracy (errors): Average number of errors decreased from 23.09 to 17.78 Fluency: Reading time: Average time decreased from 27.20 to 18.77 s
RAP (Horowitz-Kraus, et al., 2014)	Computer	8-12 (readers with dyslexia)	English and Hebrew	4 5 20 min	In the Hebrew-speakers group: Reading fluency: Reading speed decreased by 89 ms/letter Comprehension increased by 23% In the English-speakers group: Reading fluency: Reading speed decreased by 40 ms/letter Comprehension increased by 24%

Note. RAP = Reading Acceleration Program; SS = standard score.
Table 3. Reading Intervention Programs According to the Sub-components of Reading: Comprehension.

Program	Type of program	Age (years)	Language	Weeks	Times per week	Length of sessions	Outcomes
Dialogic reading: Adults read two books and were asked both literal (~70%) and inferential (~30%) questions. For each book, three sets of 25 questions were developed, allowing repeated readings of the same stories while varying the questions asked. For some of the questions, subsequent prompts were scripted to aid the child in responding if he could not.	Computer	4	English	8	2	15 min	Literal language: Mean SS for the PPVT-III increased from 80.07 at pre-test to 90.93 at post-test. Scores remained relatively unchanged for untreated control group, with a mean SS of 74.53 at pre-test and 74.07 at post-test. Inferential language: Mean raw score on PLAI increased significantly from 21.6 to 31.47 in the treatment group. Mean raw score in the untreated control group increased from 14.47 at pre-test to 19.27 at post-test, an insignificant change.
Listening comprehension	Teacher	6-7	Not stated	16	8 (twice daily)	15-20 min	Listening comprehension: Free recall: Not influenced by instruction Prompted recall: Intervention group mean raw score (10.11) significantly higher than that of comparison group (6.73) Reading comprehension: Reading ability: No group differences Identification of story structure: 75% of intervention group could correctly identify and define story elements (when questioned) prior to reading, compared with 25% in comparison group. Free recall: No significant differences Prompted recall: Mean scores for intervention group were 0.68 higher for character elements, 1.06 higher for problem elements, and 0.55 higher for solution elements than for comparison group
GR	Teacher	5-12	6 (1 week spent on pre- and post-testing)	4 days	1 hr		Phonology: significant SS gain of 3.3 on WJ-III Word Attack Orthography: Significant SS gain of 3.9 on WJ-III Letter-Word ID Fluency: Significant SS gain of 4.9 on WJ-III Reading Fluency sub-test Comprehension: Significant SS gains of 1.4 on Retell Quality and 0.5 on Main Idea
EC	Explicit instruction of strategies and self-regulatory procedures, along with collaborative interaction between teacher and student. Unlike the GR condition, the strategies were introduced sequentially.						

(continued)
Program	Type of program	Age (years)	Language	Duration	Outcomes
Teacher	9-12	All school years	1-2 hr	Fluency: Significant SS gain of 4.6 on WJ-III Reading Fluency sub-test	
CORI	Explicit reading strategies instruction followed by (a) practicing topics during teacher-led whole-class activities (A), (b) practicing in reciprocal same-age dyads (A + B), (c) practicing in cross-age (fifth + second graders) dyads (A + C)	Teacher	(Van Keer, 2004)	12 (CORI)	CORI 90 min
SI	8-9	90 min	CORI 90 min	Reading comprehension	
Teacher	8-9	90 min	CORI 90 min	Multiple text comprehension; CORI (M = 3.65) was significantly higher than SI (M = 2.87); ES = 1.32	
CORI	8-9	90 min	CORI 90 min	Reading motivation	
SI	8-9	90 min	CORI 90 min	CORI (M = 14.50) was significantly higher than SI (M = 13.71); ES = 0.98	
Teacher	8-9	90 min	CORI 90 min	Reading strategies	
CORI	8-9	90 min	CORI 90 min	CORI (M = 7.72) was significantly higher than SI (M = 1.80); ES = 1.23	
SI	8-9	90 min	CORI 90 min	Activating background	
Teacher	8-9	90 min	CORI 90 min	No significant difference	
CORI	8-9	90 min	CORI 90 min	Knowledge	
SI	8-9	90 min	CORI 90 min	No significant differences	
Teacher	8-9	90 min	CORI 90 min	Questioning	
CORI	8-9	90 min	CORI 90 min	No significant differences	
TI	8-9	90 min	CORI 90 min	Searching	
Teacher	8-9	90 min	CORI 90 min	No significant difference	
CORI	8-9	90 min	CORI 90 min	Struggling readers received an additional 30 min of SI instruction	
SI	8-9	90 min	CORI 90 min	Comprehension	
Teacher	8-9	90 min	CORI 90 min	CORI (M = 0.46) was significantly higher than TI (M = 0.8) but not SI (M = 0.35). TI and SI did not differ significantly	
TI	8-9	90 min	CORI 90 min	Gates-MacGinitie Reading Comprehension Test	
Teacher	8-9	90 min	CORI 90 min	Intrinsic motivation	
CORI	8-9	90 min	CORI 90 min	Self-efficacy	
SI	8-9	90 min	CORI 90 min	Extrinsic motivation	
Teacher	8-9	90 min	CORI 90 min	Combined motivations	

Note. SS = standard score; PPVT-III = Peabody Picture Vocabulary Test–Third Edition; PLAI = Preschool Language Assessment Instrument; GR = guided reading; EC = explicit comprehension; PDF = Phonemic Awareness/Analysis, Decoding, and Fluency Instruction; WJ-III = Woodcock Johnson–Third Edition; ID = identification; CORI = Concept-Oriented Reading Instruction; SI = Strategy Instruction; ES = effect size; TI = Traditional Instruction; SA = same age; CA = cross age.
Table 4. Reading Intervention Programs According to the Sub-components of Reading: Multiple Components.

Program name	Type of program	Emphasis on	Duration	Outcomes
Project Read	Teacher	✓ ✓ ✓	6-8 first to third grades	English
Trains phonemic awareness, decoding, reading comprehension, and expressive oral language	1 school year over 3 years	5 days	Not indicated in the study	
ogn instruction	Tutor	✓ ✓ ✓	First-grade students	English
Trains phonology, phonological awareness, sound-symbol correspondence, syllables, morphology, syntax, semantics, and fluency	3 school years	5 days	3 hr	
OG	Tutor	✓ ✓ ✓	13-18	English
Trains phonology, phonological awareness, sound-symbol correspondence, syllables, morphology, syntax, and semantics	Information not given	5 days	90 min	

Orthography:
- Results from the Stanford Achievement Tests, 1982
 - Grade 1:
 - Word Reading: Mean scaled score for control group was 545, whereas the mean scaled score for T1 was 441 and T2 was 493
 - Reading Comprehension: Mean scaled score for control group was 460, whereas the mean scaled score for T1 was 435 and T2 was 487
 - Grade 2:
 - Word Reading: Mean scaled score for control group was 533, whereas the mean scaled score for T1 was 326
 - Reading Comprehension: Mean scaled score for control group was 541, whereas the mean scaled score for T1 was 324
 - Grade 3:
 - Word Reading: Mean scaled score for control group was 577, whereas the mean scaled score for T1 was 587
 - Reading Comprehension: Mean scaled score for control group was 586, whereas the mean scaled score for T1 was 587
- The ES of Total Reading scores in Grade 1 was significantly different, with an ES of 1.55. The total reading scores in Grades 2 and 3 were not significantly different.

Academic gains within the experimental group:
- School-related achievement was assessed using the Metropolitan Reading Test and the Gates-MacGinitie Reading Test: Primary A, Form I
- The experimental group showed significant gains when compared with the control group, with significance levels ranging from .05 to .008.

Orthography:
- Treatment group (n = 32) mean reading growth in grade units was 0.93, significantly greater than the comparison group (p < .01).
- The comparison group (n = 31) mean reading growth in grade units was 0.07.

(continued)
Program name	Type of program	Decoding	Fluency	Comprehension	Level of training	Age (years)	Language	Weeks	Times per week	Length of sessions	Outcomes
Language basics: Elementary curriculum	Teacher	✓	✓	✓	First grade	First grade	English	1 school year	5	50 min	Phonomological awareness: SS increased from 91.46 to 100.73—$F(1, 53) = 5.02$, $p < .03$; $\eta^2 = 0.26$—on TOPA for treatment group. This is compared with controls whose SS increased from 91.65 to 94.61—$F(1, 63) = 0.838$, $p < .36$. Phonology: SS increased from 93.80 to 107.36—$F(1, 55) = 8.94$, $p < .02$; $\eta^2 = 0.14$—on WA sub-test of WJ-RMT-R. This is compared with controls whose SS increased from 88.43 to 92.59—$F(1, 55) = 2.87$, $p < .10$. Comprehension: SS increased from 39.83 to 55.96—$F(1, 52) = 6.35$, $p < .02$; $\eta^2 = 0.11$—on GMRT. This is compared with controls whose SS increased from 35.97 to 44.03—$F(1, 61) = 5.36$, $p < .02$.
DTP	Teacher-or video-directed	✓	✓	✓	English	English	2 years	5 days	1 hr	DTP group made significant progress after 2 years of training, compared with controls who did not—$F(2, 46) = 4.80$, $p < .05$. Orthography: DTP group made significant improvement after 2 years. They performed lower than controls at pre-test and performed better than controls at the post-test—$F(2, 46) = 6.18$, $p < .005$. The control group had minimal improvement. Spelling: Both groups performed comparably, however, neither the DTP nor the control group improved after 2 years—$F(2, 46) = 0.67$, $p > .05$.	
FFW (Hook, Macaruso, & Jones, 2001)	FFW: Computer; OG: Teacher	✓	✓	✓	English	English	7-12	FFW 8 weeks	FFW 5 days; FFW 100 min; two 10 min breaks OG: 1 hr a day	FFW language—A computer-assisted intervention program (Tallal, Miller, Jenkins, & Merzenich, 1997) Trains memory, attention, processing rate, sequencing, phonological awareness, phonemic awareness, fluency, vocabulary, comprehension, decoding, working memory, syntax, and grammar (Trosa & Whitney, 2003)	
FFW language—A computer-assisted intervention program (Tallal, Miller, Jenkins, & Merzenich, 1997)	Computer	✓	✓	✓	English	NA	5-13	4-8 weeks	5 days	FFW had a gain of 9.7 and OG had a gain of 7.8 on LAC. Orthography: No significant gains for either group on WI WJ-RMT; FFW had no significant gain and OG had significant gain of 3.8 on WA. Comprehension: No significant gains for either group on PC. Oral language competency: Mean SS on OWLS Oral Expression sub-test increased from 90.36 at pre-test to 93.52 at post-test, a significant time by group interaction, $F(1, 33) = 6.52$, $p < .05$. No significant changes observed in the following domains 1. Phonological processing 2. Basic reading skills 3. Classroom behavior	
Program name	Type of program	Emphasis on	Duration	Outcomes							
--------------	----------------	-------------	----------	----------							
FFW language—A computer-assisted intervention program	Computer	✓ ✓ ✓ ✓	8-12 weeks	Phonology (WA)*: Mean SS increased from 85.5 to 93.7; *t* stat = 6.8, *p* < .001	Orthography (Word ID)*: Mean SS increased from 78.2 at pre-training to 86.0 at post-training; *t* stat = 3.9, *p* < .005	Comprehension*: Mean SS increased from 83.3 to 88.9; *t* stat = 2.9, *p* < .005					
FFW	Trains memory, attention, processing rate, sequencing phonological awareness, phonemic awareness, fluency, vocabulary, comprehension, decoding, working memory, syntax, and grammar	Children aged 7-12 years with reading difficulties	12 weeks (summer)	Phonological awareness: Children with reading impairments assigned to the OG group started with a weighted score of 68.2 on the LAC and, 4 months after interventions, resulted in a weighted score of 76.0. Children with reading impairments assigned to the FFW group started with a weighted score of 65.0 on the LAC and, 4 months after interventions, resulted in a weighted score of 74.5. At the end of Academic Year 1, the score was 76.5 and, at Year 2, 85.2. The longitudinal control group started with a weighted score of 70.4 on the LAC. At the end of Academic Year 1, the score was 78.5 and, at Year 2, 82.4.							
		English	5 days 100 min	Orthography: Children with reading impairments assigned to the OG group started with an SS of 82.4 on the WA sub-test of the WJ-RMT-R and, 4 months after interventions, resulted in an SS of 88.2. Children with reading impairments assigned to the FFW group started with an SS of 83.3 on the WA sub-test of the WJ-RMT-R and, 4 months after interventions, resulted in an SS of 81.7. At the end of Academic Year 1, the score was 86.9 and, at Year 2, 89.8. The longitudinal control group started with an SS of 81.6 on the WA sub-test of the WJ-RMT-R. At the end of Academic Year 1, the score was 89.9 and, at Year 2, 90.5.							
				Reading comprehension: Children in the OG group were not given the PC portion of the WJ-RMT-R. Children with reading impairments assigned to the FFW group started with an SS of 74.9 on the PC sub-test of the WJ-RMT-R and, 4 months after interventions, resulted in an SS of 73.6. At the end of Academic Year 1, the score was 80.9 and, at Year 2, 85.1. The longitudinal control group started with an SS of 73.7 on the PC sub-test of the WJ-RMT-R. At the end of Academic Year 1, the score was 76.4 and, at Year 2, 81.7.							

(continued)
Program name	Type of program	Level of training	Age (years)	Language	Duration	Times per week	Length of sessions	Outcomes
LEXY	Computer	10-14	Dutch	45 min+	45 min +	15 min (×3)	NA	Orthography: Word Reading Rate (1-min test): T1 correctly read 15 more words after training, having read 32.34 words pre-test and 66.77 words post-test. SSs increased from 73.73 to 88.15 (Z = −9.67, p < .001). T2 correctly read 16 more words after training, having read 30.64 words pre-test and 66.59 words post-test. Mean SS increased from 75.78 to 87.85 (Z = −9.97, p < .001). Fluency: Text Reading Accuracy ("Livingstone" text): T1 made on average 24 fewer errors after training, having made 42.98 errors pre-test and 18.34 errors post-test. Mean SS increased from 84.35 to 105.98 (Z = −9.47, p < .001). T2 made on average 26 fewer errors after training, having made 44.86 errors pre-test and 19.29 errors post-test. Text Reading Rate ("Livingstone" text): Reading time for T1 decreased on average by 146 s after training. Mean SS increased from 61.38 to 84.58 (Z = −8.87, p < .001). Reading time for T2 decreased on average by 159 s. Mean SS increased from 60.56 to 86.23 (Z = −9.70, p < .001). Orthography based on the WJ-RMT-R: For the ADD group, the WA SS before intervention was 68.5 and after intervention 96.4. At the 2-year mark, the SS was 91.8. For the EP group, the WA SS before intervention was 70.1 and after intervention 90.3. At the 2-year mark, the SS was 89.9. For the ADD group, the phoneme decoding efficiency SS before intervention was 74.3 and after intervention 83.3. At the 2-year mark, the SS was 84.3. For the EP group, the phoneme decoding efficiency SS before intervention was 73.7 and after intervention 87.7. At the 2-year mark, the SS was 88.7. Orthography based on the WJ-RMT-R: On WI, before intervention, the ADD group had an SS of 68.9 and after intervention 82.4. At the 2-year mark, the SS was 87.0. On WI, before intervention, the EP group had an SS of 66.4 and after intervention 80.5. At the 2-year mark, the SS was 83.9. Fluency based on the GORT-III: On Gray Accuracy, before intervention, the ADD group had an SS of 73.8 and after intervention 89.4. At the 2-year mark, the SS was 91.3. Gray Rate SS before intervention was 71.3 and after intervention 75.4. At the 2-year mark, rate was 72.7. On Gray Accuracy, before intervention, the EP group had an SS of 77.5 and after intervention 87.5. At the 2-year mark, the SS was 90.4. Gray Rate SS before intervention was 71.3 and after intervention 72.1. At the 2-year mark, rate was 70.7.
ADD (now called the Lindamood Phoneme Sequencing Program for Reading, Spelling, and Speech) vs. BP	Teacher	8-10	NA	8	10	50 min (twice a day)	Orthography: Word Reading Rate (1-min test): T1 correctly read 15 more words after training, having read 32.34 words pre-test and 66.77 words post-test. SSs increased from 73.73 to 88.15 (Z = −9.67, p < .001). T2 correctly read 16 more words after training, having read 30.64 words pre-test and 66.59 words post-test. Mean SS increased from 75.78 to 87.85 (Z = −9.97, p < .001). Fluency: Text Reading Accuracy ("Livingstone" text): T1 made on average 24 fewer errors after training, having made 42.98 errors pre-test and 18.34 errors post-test. Mean SS increased from 84.35 to 105.98 (Z = −9.47, p < .001). T2 made on average 26 fewer errors after training, having made 44.86 errors pre-test and 19.29 errors post-test. Text Reading Rate ("Livingstone" text): Reading time for T1 decreased on average by 146 s after training. Mean SS increased from 61.38 to 84.58 (Z = −8.87, p < .001). Reading time for T2 decreased on average by 159 s. Mean SS increased from 60.56 to 86.23 (Z = −9.70, p < .001). Orthography based on the WJ-RMT-R: For the ADD group, the WA SS before intervention was 68.5 and after intervention 96.4. At the 2-year mark, the SS was 91.8. For the EP group, the WA SS before intervention was 70.1 and after intervention 90.3. At the 2-year mark, the SS was 89.9. For the ADD group, the phoneme decoding efficiency SS before intervention was 74.3 and after intervention 83.3. At the 2-year mark, the SS was 84.3. For the EP group, the phoneme decoding efficiency SS before intervention was 73.7 and after intervention 87.7. At the 2-year mark, the SS was 88.7. Orthography based on the WJ-RMT-R: On WI, before intervention, the ADD group had an SS of 68.9 and after intervention 82.4. At the 2-year mark, the SS was 87.0. On WI, before intervention, the EP group had an SS of 66.4 and after intervention 80.5. At the 2-year mark, the SS was 83.9. Fluency based on the GORT-III: On Gray Accuracy, before intervention, the ADD group had an SS of 73.8 and after intervention 89.4. At the 2-year mark, the SS was 91.3. Gray Rate SS before intervention was 71.3 and after intervention 75.4. At the 2-year mark, rate was 72.7. On Gray Accuracy, before intervention, the EP group had an SS of 77.5 and after intervention 87.5. At the 2-year mark, the SS was 90.4. Gray Rate SS before intervention was 71.3 and after intervention 72.1. At the 2-year mark, rate was 70.7.	

(continued)
Table 4. (continued)

Program Name	Type of Program	Emphasis on	Duration	Outcomes							
PHAB/DI WIST (metacognition) Letter-cluster-sound	Teacher	✓ ✓ ✓	6-13	English							
Program name	**Type of program**	**Decoding**	**Fluency**	**Comprehension**	**Level of training**	**Age (years)**	**Language**	**Weeks**	**Times per week**	**Length of sessions**	**Outcomes**
PHAB/DI WIST	Teacher	✓ ✓ ✓	6-13	English	70 hr	5	1 hr	Both the PHAB/DI and the WIST approaches resulted in gains but were most effective when paired together			
Story reading with ROSS	Computer	✓ ✓ ✓	7-11	English	6 months	27-29 hr	NA	NA	Phonology: Gains noted in phonological skills and remained 2 years post-training. In the 1- and 2-year follow-up, there were no significant effects on word reading at any age/grade. Additional research is suggested to look at interventions that will provide a carryover from phonological skills to word reading		
Word building	Teacher-trained undergraduate students	✓ ✓ ✓	7-10 years old; M = 7.3 years	4 months; 20 tutorial sessions + four additional sessions	30 min each	Phonemic awareness (Eisston subtest, raw score): A gain of 3.3					
RAVE-O	Computer	✓ ✓ ✓	Second to third grade	English	10 weeks	70 hr overall	Daily	30 min phonological program (PHAB)	30 min RAVE-O	Numerical information is not provided. However, improvements in phonology, orthography, and comprehension are reported.	

(continued)
Program name	Type of program	Emphasis on	Level of training	Duration	Outcomes						
RAAC	Teacher	Trains fluency and comprehension	9-14	4 months	Overall reading measure: WJ-III Broad Reading Scale: Intervention group SSs increased an average of 6.2, with an average of 80.4 pre-test and 86.6 post-test. The control group SSs increased an average of 3.0, with an average of 83.0 pre-test and 86.0 post-test, \(F(1, 27) = 3.47, p = .073 \)						
Repeated reading intervention	Teacher	Trains fluency, and comprehension	7-8	3 weeks	Fluen**: DIBELS: Intervention group increased an average of 13.0 CWPM, having read 68.40 pre-test and 81.40 post-test. The control group increased an average of 2.8 CWPM, \(F(1, 27) = 5.70, p = .024 \)						
Multi-component HOSTS	Computer	Vocabulary	5-6 and 9-10	5 months (or 20 weeks)	Phonological awareness: DIBLES ISF: Mean SS increased from 12.79 pre-test to 19.85 post-test, \(F = 10.37, d = 0.64, p < .007 \)						
Treatment group was exposed to 60 novel words in context: 10 books read 4 times. Elaborated condition: Adult reader provides the meaning of the word followed by an example of its use in a sentence. Comparison group received the regular kindergarten curriculum.	Computer	Vocabulary	5-6.5	NA	Orthography: Elaborated words: Treatment group read on average five more words at post-test than at pre-test. Univariate analysis of interaction was significant, \(F(1, 55) = 11.77, p < .001 \) Non-elaborated words: Treatment group read on average 0.75 fewer words at post-test than at pre-test. Univariate analysis of interaction was not significant, \(F(1, 55) = 3.21, p = .055 \)						
Program name	Type of program	Decoding	Fluency	Comprehension	Level of training	Age (years)	Language	Weeks	Times per week	Length of sessions	Outcomes
--------------	----------------	----------	---------	---------------	-------------------	-------------	----------	-------	----------------	-------------------	----------
Treatment group were given computer games (the child listens to a story, answers questions, arranges pictures, and plays vocabulary games). Control group spent less time working on computers, using entertainment software with stories and games concerning shapes and colors.	Computer	Vocabulary	5	NA	15	2	15 min	Vocabulary	Curriculum-Dependent Vocabulary Test: There was a significant interaction between time and intervention, F(2, 153) = 3.678, p = .028, n² = 0.045. Experimental native group increased on average the number of correctly identified words by 5.07 words during the first year of the study. During the second year, they increased on average by 2.81 words. At the end of Year 2, they correctly identified on average 29.06 words (max score = 37). Experimental immigrant group increased on average by 4.18 words in the first year and by 4.27 words in the second year. At the end of Year 2, they correctly identified on average 23.27 words (max score = 37). Curriculm-Independent Vocabulary Test (the Passive Vocabulary Test from Taaltest Alles Kinderen): No effects of intervention found. Experimental native group identified on average 9.71 more words after Year 1 and 7.12 more words after Year 2. At the end of Year 2, they correctly identified 35.50 words (max score = 65). Experimental immigrant group identified on average 7.09 words after Year 1 and 11.74 words after Year 2.		
Three components of book reading module were trained: (a) asking questions, (b) building vocabulary, and (c) making connections. Oral language training was designed to teach teachers how to use conversational strategies that promoted multiple opportunities to speak, to actively listen, and to use varying vocabulary.	Interactive book reading	Teacher	Vocabulary	2-4	NA	36 (9 months)	NA	Vocabulary	PPVT-III: Mean SS increased from 82.02 pre-test to 92.73 post-test. There was a significant main effect for condition, with student as the unit of analysis—F(1, 189) = 13.69, p < .001—as well as with classroom as the unit of analysis, F(1, 120) = 76.61, p < .001. Expressive vocabulary: 1. Experimental Receptive Vocabulary Test (44 words total): No significant difference in scores at pre-test but significant difference at post-test. With students as the unit of analysis, F(1, 120) = 13.69, p < .001. Experimental and Teacher A: Mean SS increased from 74.37 at pre-test to 81.58 at post-test, a mean gain of 7.21. Experimental and Teacher B: Mean SS increased from 74.52 to 81.67, a mean gain of 7.15. Control and Teacher C: Mean SS decreased from 81.57 at pre-test to 72.43 at post-test, a mean loss of 0.42. Control and Teacher D: Mean standard decreased from 74.23 to 73.62, a mean loss of 0.61.	1. Experimental Receptive Vocabulary Test (44 words total): No significant difference in scores at pre-test but significant difference at post-test. With students as the unit of analysis, F(1, 120) = 13.69, p < .001. Experimental and Teacher A: Mean SS increased from 74.37 at pre-test to 81.58 at post-test, a mean gain of 7.21. Experimental and Teacher B: Mean SS increased from 74.52 to 81.67, a mean gain of 7.15. Control and Teacher C: Mean SS decreased from 81.57 at pre-test to 72.43 at post-test, a mean loss of 0.42. Control and Teacher D: Mean standard decreased from 74.23 to 73.62, a mean loss of 0.61. 2. Experimental Receptive Vocabulary Test (44 words total): Main effect of condition was significant, F(1, 120) = 76.61, p < .001. Experimental and Teacher A: Identified an average of 37.88 words at post-test (test not done at pre-test for any group). Experimental and Teacher B: Average of 38.02 words. Control and Teacher C: Average of 27.09 words. Control and Teacher D: Average of 27.05 words.	1. Experimental Expressive Vocabulary Test (44 words total): Main effect of condition was significant, F(1, 120) = 76.61, p < .001. 2. Experimental Expressive Vocabulary Test: Experimental and Teacher A: Average of 7.59 words at post-test (test not done at pre-test for any group).
Revisions involved (a) teaching more meanings on each reading and using four readings, (b) using vocabulary reviews of word meanings taught during each reading of a story, (c) using an additional review with new context sentences in a final review, and (d) using only teacher explanations of word meanings. Seven to 10 word meanings were explained at each reading. Examines more intensive word instruction and transfer of word meanings to new contexts.

Trains vocabulary and comprehension (Biemiller & Boote, 2006)

Two books were read twice, and another was read four times. Twelve word meanings were taught from books read twice in 1 week. Twelve more word meanings were taught from a third book read four times during the second week of instruction. Four to six words were taught each day. Examines the effect of pre-testing, number of times books were read, and word explanations on word acquisition.

Trains vocabulary and comprehension (Biemiller & Boote, 2006)
Program name	Type of program	Emphasis on	Duration	Outcomes					
Video instr. group	Computer	Decoding	9-12	30 min					
& learn word meanings		Fluency	6						
& concepts in video-disc-based contexts		Comprehension	3						
Non-video group	learn word meanings & concepts using dictionary & printed texts								
Trains vocabulary & comprehension									
(Xin & Rieth, 2001)									
The definition method	Teacher	Vocabulary	7-8	30 min					
Learning novel words by			6						
being told their meanings			2						
The context method	Teaching of a strategy for deriving meanings								
from written context (due words)									
Trains vocabulary & comprehension									
(Nash & Snowling, 2006)									
Responsive	Teacher	Vocabulary	First grade	English					
Trains vocabulary and comprehension			October to May	5 days					
(Mathes et al., 2005)				40 min					
Reading mastery	Teacher		K-3						
Trains explicit instruction		Explicit instruction	English	Daily					
(phonological awareness, sound–letter correspondence, blending)			4-5 months	30 min					
Fluency & comprehension			Second year: 9 months						
(Gunn, Smolkowski, Biglan, Black, & Blair 2005)									
Program name	Type of program	Emphasis on	Decoding Fluency	Comprehension	Level of training	Age (years)	Language	Duration	Outcomes
--------------	-----------------	-------------	------------------	---------------	------------------	-------------	----------	----------	----------
Repeated reading	Teacher/peer	second and third grade	English	15 weeks	4 days	30 min	Fluency: Students with LD had a mean fluency ES of 0.75 (SE = 0.161) on non-transfer measures and 0.79 (SE = 0.124) on transfer measures, compared with non-disabled students who had a mean ES of 0.85 (SE = 0.075) on non-transferable measures and 0.59 (SE = 0.11) on transfer measures. Comprehension: Students with LD had a mean comprehension ES of 0.73 (SE = 0.133) on non-transfer measures and 0.41 (SE = 0.173) on transfer measures, compared with non-disabled students who had a mean ES of 0.64 (SE = 0.094) on non-transfer measures and 0.18 (SE = 0.126) on transfer measures.		
Times per week	Length of sessions								
Multi-component Tier 2: Small-group reading instruction for children at risk	Teacher	9-12	Tier 2: K, first grade—Varied from 8 weeks to several years	Tier 2: K—3 times per week; first grade—3 times a week	Tier 3: 5 days a week	Third-grade outcomes	Decoding: WJ WA Children with RD in Tiers 2 and 3 had a mean SS of 99.3, controls had a mean SS of 83.6; ES = 1.8 Orthography: WJ Word ID Children with RD in Tiers 2 and 3 had a mean SS of 89.5, controls had a mean SS of 86.4; ES = 0.4 Comprehension: WJ Comprehension Children with RD in Tiers 2 and 3 had a mean SS of 93.8, controls had a mean SS of 81.5; ES = 1.0 Fluency: Children with RD in Tiers 2 and 3 had a mean SS of 65.1, controls had a mean SS of 34.2; ES = 1.4 Receptive vocabulary: PPVT-III Children with RD in Tiers 2 and 3 had a mean SS of 93.9, controls had a mean SS of 95.3		
Tier 3: NA									
Earobics (Pokorni, Worthington, & Jamison, 2004)	Computer	8.7	English	20 days	3 hr	Phonological processing: Blending phonemes: Increased raw scores from 6.0 to 6.6 Segmenting phonemes: Increased raw scores from 1.3 to 3.2 Overall effect of training on phonemic awareness F (1, 15) = 6.6, p < .01 (the measure used for this calculation was not provided) Comprehension: WJPB-R No significant increases between T1 and T2. T1 had a mean of 87.3. T2 had a mean of 86.1 No significant improvements in decoding, orthography, and comprehension			
Lindamood-Bell LiPS (Pokorni et al., 2004)	Teacher 1: 4 Explicit instruction	8.6	English	20 days	3 hr				
Reading recovery (Schwartz, 2005)	Trained tutor 1:1	6.45	English	12 to 20 weeks or until student demonstrated mastery	5	30 min	Phonological processing: Hearing and recording sounds: Increase in raw scores from 9.14 to 34.97 Decoding: Test level: Increase in raw scores from 6.01 to 12.35 Orthography: Ohio Word Test: Increase in raw scores from 0.81 to 14.94 Concepts about print: Increase in raw scores from 10.92 to 19.35 This study does not report a direct effect of intervention on the examined population. No significant changes observed in letter ID		

(continued)
Program name	Type of program	Decoding	Fluency	Comprehension	Level of training	Age (years)	Language	Duration	Times per week	Length of sessions	Outcomes
Reading recovery (Pinnell, DeFord, & Lyons, 1988)	Trained teachers	✓ ✓ ✓	✓	✓	First grade	English	12-20 weeks	5	30 min	Orthography: Reading words: Children in the reading recovery group showed an increase from 2.11 to 13.62, children in the control group showed an increase from 2.01 to 11.98. Letter ID: Children in the reading recovery group showed an increase from 40.56 to 52.66, children in the control group showed an increase from 33.29 to 49.61. Comprehension: Children in the reading recovery group showed an increase from 1.82 to 9.95, children in the control group showed an increase from 1.65 to 6.96. (Results reported here are raw scores and are based on the Comprehensive test of basic skills battery)	
Reading recovery (May et al., 2013)	Trained teachers	✓ ✓ ✓	✓	✓	First grade	English	12-20 weeks	5	30 min	Orthography: Reading recovery group reached a scaled score of 141.2, and the control group (alternative training) showed a scaled score of 136.7. Treatment effect: 4.56, *p* < .001. Comprehension: Reading recovery group reached a scaled score of 140 and the control group (alternative training) showed a scaled score of 135.5. Treatment effect: 4.51, *p* < .001. (Results are taken from the Iowa Tests of Basic Skills)	

Note. ES = effect size; OG = Orton-Gillingham; T1 = Treatment Group 1; T2 = Treatment Group 2; T4 = Treatment Group 4; TOPA = Test of Phonological Awareness; SS = standard score; WJ-RMT-R = Woodcock-Johnson Reading Mastery Test–Revised; GMRT = Gates-MacGinitie Reading Test; DTP = Dyslexia Training Program; FFW = Fast ForWord; LAC = Lindamood Auditory Conceptualization Test; WA = Word Attack; RC = Passage Comprehension; OWLS = Oral and Written Language Scales; WJ-RMT = Woodcock-Johnson Reading Mastery Test; ID = identification; CELF-3 = Comprehensive Evaluation of Language Fundamentals–Third Edition; ADD = Auditory Discrimination in Depth; EP = Embedded Phonics; GORT-III = Gray Oral Reading Tests–Third Edition; PHAB/DI = Phonological Analysis and Blending/Direct Instruction; WIST = Word Identification Strategy Training; ROSS = Reading with Orthographic and Speech Support; DIBELS = Dynamic Indicators of Basic Early Literacy Skills; GWPM = correct words per minute; ISF = Initial Sound Fluency; PSF = Phoneme Segmentation Fluency; NWF = Non-word Fluency; PPVT-III = Peabody Picture Vocabulary Test–Third Edition; EOWPVT-III = Expressive One-Word Vocabulary Test–Third Edition; NCE = normal curve equivalent; LD = learning disabilities; RD = reading difficulty. *p* < .05.
(Breznitz & Share, 1992). However, until inferential statistics using experimental research methodologies come into play concerning functional magnetic resonance imaging (fMRI), we must be careful not to overgeneralize correlational-based findings (Goswami, 2008).

As noted, it is now acknowledged that in addition to the linguistic domains that reading relies on (phonology, orthography, and semantics), fluent reading will be achieved by also relying on intact executive functions (Brosnan et al., 2002). A deficit in several domains of executive functions is common in individuals with reading difficulties and, specifically, in those with dyslexia. These challenges included difficulties in attention (Faccoetti, Paganoni, Turatto, Marzola, & Mascetti, 2000; Shaywitz & Shaywitz, 2008), inhibition (Brosnan et al., 2002), working memory (Ackerman & Dykman, 1993; Helland & Asbjornsen, 2004; Swanson & Ashbaker, 2000), shifting (Kraus & Horowitz-Kraus, 2014), and self-monitoring (a deficit in error monitoring in non-linguistic and linguistic domains; Horowitz-Kraus & Breznitz, 2008, 2009). However, although executive-functions training has been shown to improve school readiness (Diamond & Lee, 2011), the number of studies looking at the effect of executive-functions training specifically on reading ability is limited (Franceschini et al., 2013; Horowitz-Kraus & Breznitz, 2009). Breznitz and colleagues (2013) demonstrated that an executive functions–based fluent-reading program that trains reading by forcing the reader to allocate his or her visual attention toward the written material in a speeded manner (i.e., the RAP) had a greater effect on reading fluency and comprehension as compared with the same program without the speeded manipulation. We suggest that a short executive-functions “warm-up” training prior to a reading session may be beneficial for better reading outcomes for children with reading difficulties. However, future research should verify this point with in-depth study.

Interestingly, in addition to the observed improvement in the fluency and multi-component domains, it seems that training with the comprehension-based reading intervention GR also shows an improvement in all reading components. GR is a research-based instructional strategy that has proven to be effective in all sub-domains of literacy. This small-group, homogeneous teaching approach provides students with intentional and intensive literacy support that is differentiated to meet their unique learning needs (Fountas & Pinnell, 2012). Daily GR lessons use a balanced literacy approach and include explicit instruction in fluency, oral language, and vocabulary development; direct instruction in phonemic awareness and phonics; and opportunities to write about reading (Pinnell & Fountas, 2010). We relate this improvement to the fluency domain that is trained using the GR program (Pinnell & Fountas, 1998). Regular formative reading assessments that measure rate and accuracy, both components of reading fluency, are also recommended components of GR (Pinnell & Fountas, 1998). In-depth research into the speed elements involved in GR, compared with the effect of a fluency-based intervention program (such as the RAP), is warranted and can verify whether the fluency component drives the positive effect of GR or whether it is due to the inclusion of other reading domains as well.

In addition to the improvement of all reading domains following fluency training, our review demonstrates that multi-component reading intervention programs that remediate different combinations of sub-components of reading result in a massive improvement in several domains of reading (see Table 4). Some examples for such programs are reading recovery, multi-components, treatment mastery, word building, Auditory Discrimination in Depth (ADD), and Fast ForWord (FFW). The reason for the positive effect of the multi-component intervention programs is obviously the treatment provided in each of the examined reading domains. However, probably due to this reason, the intervention time ranges from a couple of weeks to several years. These programs may use some of the training time to train non-impaired domains that are part of the program curricula instead of devoting time specifically to the reading domains in which each individual child shows the greatest impairments. As mentioned, the most effective program (Multi-component Tier 2, by O’Connor, Harty, & Fulmer, 2005) lasts about 3 years. This long intervention period should be considered if a limited time is available for intervention or if a short-term intervention is needed. Again, due to our inability to compare standard scores across studies, we cannot compare the effect of the RAP fluency training program with that of the Multi-component Tier 2 program. Although in the clinical arena the use of non-standardized tests for the use of intervention planning and instruction is acceptable, for the purpose of our review, it is challenging to objectively define the effect of interventions between the different studies. A future study should verify this point in depth to examine which program will have a greater effect on all reading domains. Also, educators and parents should pay particular attention to each child’s needs, according to the individual’s reading and cognitive ability relative to the expected age-matched scores, and invest their time to remediate the specific weaknesses of each child.

The effect of reading intervention administered by computer versus an intervention delivered by a tutor or teacher is yet to be clearly understood. Obviously there are advantages for a personal connection and the established relationship that a teacher has that can affect the child’s overall performance. However, when the human interaction is limited, as often is the case in schools with large class sizes, computer programs have some advantages, such as the lack of judgmental feedback, the potential positive effect of working in a group with peers, and the capacity to provide manipulations that may be impossible without using a computer. Other advantages of computer-based instruction programs are the ability to use digitized speech (Foster, Erickson, & Foster, 1994) and the tailored instruction the child receives combined with an individualized feedback, which may increase
motivation (Speziale & La-France, 1992). Mioduser, Turk-Kaspa, and Leitner (2000) showed that a computer-based versus a teacher-based reading instruction for 5-to-6-year-old children at risk of developing reading difficulties resulted in significantly higher scores in phonological awareness, word recognition, and letter-naming skills in children using the computer-based instruction versus their teacher-instructed peers. These results highlight the relative benefit that a computer-based instruction may have on reading acquisition, such as learning the letter–sound relationship using the special auditory/visual characteristics of the computer environment. Future studies to examine the effect of the instruction and the same curricula administered by computer versus a teacher, even in typical developing children, may verify which condition is better than the other. Alternatively, these two types of instruction/intervention modalities could be complementary to one another, a point that should be examined in depth.

Reading intervention is a labor-intensive process. A large number of studies recommend intensive phonological-based intervention programs, even for a couple of years (e.g., Alphabetic Phonics, Orton-Gillingham). Educators, reading specialists, and parents are seeking the most effective, yet efficient, intervention for their student/child to not lengthen the gap in reading achievements. Effective reading intervention, as explained by Nicolson and colleagues (1999) needs to be systematic and comprehensive, which may be costly, but also cost-effective. Despite the desire to achieve an effect as soon as possible, especially due to the overall concern regarding the quality of the American education system and the economic consequences of long interventions (National Commission on Excellence in Education, 1983; Task Force on Education for Economic Growth, 1983), it is important to remember that reading is a developmental, explicitly acquired ability. Each domain in it relies on an intact acquisition of the previous one. Knowing which reading domain should come next may guide the choice to a specific intervention. The Frith (1985) reading acquisition model describes how children transition from stage to stage in a Piaget manner until reading is completely mastered; from contextual to logographic reading, to partial and full decoding, and then to the orthographical stage of automatic word recognition. Interestingly, both the Frith model and the Chall (1983) developmental model describe automatic word recognition, which leads to fluent reading, as the stage at which children master reading and can devote their attention to comprehension (see also LaBerge & Samuels, 1974).

One limitation of the current review is that it describes the results as reported by other researchers, who used different tests to measure the effectiveness of the examined intervention. Hence, we are unable to report the results of a meta-analysis among the different domains. Such meta-analysis would have to take into account the variety of tests that were used to assess reading improvement, most of which are very different from one study to the other, as well as the differences in training intensity and the involvement of a tutor (or alternatively, a computerized program), and the different ages of the children who trained on the program. However, such meta-analysis has the potential to provide in-depth and quantified information regarding the reading intervention program or programs that affect the most components of reading.

Acknowledgments

The authors thank Sarah Durso, Mt. St. Joseph University, Ohio; Rachelle Schmitz, Department of Speech and Language Pathology, Cincinnati Children’s Hospital Medical Center (CCHMC); and Lora Coontz, PhD, the Reading and Literacy Discovery Center, CCHMC for their contributions. The authors are also thank to J. Denise Wetzel, CCHMC Medical Writer, for review and editing of the manuscript.

Authors’ Note

The first author is the Career Advanced Chair, of the Educational Neuroimaging Center, Faculty of Education in Sciences and Technology, Technion- Israel Institute of Technology, Israel.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research and/or authorship of this article.

References

Ackerman, P. T., & Dykman, R. A. (1993). Phonological processes, confrontational naming, and immediate memory in dyslexia. *Journal of Learning Disabilities, 26*, 597-609. doi:10.1177/002221949302600910

Altemeier, L. E., Abbott, R. D., & Berninger, V. W. (2008). Executive functions for reading and writing in typical literacy development and dyslexia. *Journal of Clinical and Experimental Neuropsychology, 30*, 588-606. doi:10.1080/13803390701562818

American Institutes for Research. (2015). *Center on Response to Intervention*. Retrieved from http://www.ri4success.org/search?keywordsandphonenomesegmentationintheyoungchild

Ardila, A., Bertolucci, P. H., Braga, L. W., Castro-Cladas, A., Judd, T., Komidis, M. H., . . . Rosselli, M. (2010). Illiteracy: The neuropsychology of cognition without reading. *Archives of Clinical Neuropsychology, 25*, 689-712. doi:10.1093/acr/aqc079

Arnold, E. M., Goldston, D. B., Walsh, A. K., Rebourssin, B. A., Daniel, S. S., Hickman, E., & Wood, F. B. (2005). Severity of emotional and behavioral problems among poor and typical readers. *Journal of Abnormal Child Psychology, 33*, 205-217. doi:10.1007/s10802-005-1828-9

Badian, N. (2005). Does a visual-orthographic deficit contribute to reading disability? *Annals of Dyslexia, 55*, 28-52. doi:10.1007/s11881-005-0003-x
Benjamin, C. F. A., & Gaab, N. (2012). What's the story? The tale of reading fluency told at speed. Human Brain Mapping, 33, 2572-2585. doi:10.1002/hbm.21384

Berninger, V. W., Abbott, R. D., Billingsley, F., & Nagy, W. (2001). Processes underlying timing and fluency of reading. In M. Wolf (Ed.), Dyslexia, fluency, and the brain (pp. 383-414). Timonium, MD: York Press.

Biemiller, A., & Boote, C. (2006). An effective method for building meaning vocabulary in primary grades. Journal of Educational Psychology, 98, 44-62. doi:10.1037/0022-0663.98.1.44

Bowers, P. G. (1993). Text reading and rereading: Determinants of fluency beyond word recognition. Journal of Reading Behavior, 25, 133-153. doi:10.1080/19388070409558406

Bowers, P. G., & Wolf, M. (1993). Theoretical links among naming speed, precise timing mechanisms and orthographic skill in dyslexia. Reading and Writing: An Interdisciplinary Journal, 5, 69-85. doi:10.1007/BF01026919

Breznitz, Z. (1987a). Increasing first graders’ reading accuracy and comprehension by accelerating their reading rates. Journal of Educational Psychology, 79, 236-242.

Breznitz, Z. (1987b). Reducing the gap in reading performance between Israeli lower- and middle-class first-grade pupils. Journal of Psychology, 121, 491-501.

Breznitz, Z. (1997a). Effects of accelerated reading rate on memory for text among dyslexic readers. Journal of Educational Psychology, 89, 287-299.

Breznitz, Z. (1997b). Enhancing the reading of dyslexic children by reading acceleration and auditory masking. Journal of Educational Psychology, 89, 103-113.

Breznitz, Z. (2006). Fluency in reading: Synchronization of processes. Mahwah, NJ: Lawrence Erlbaum.

Breznitz, Z., & Misra, M. (2003). Speed of processing of the visual-orthographic and auditory-phonological systems in adult dyslexics: The contribution of “asynchrony” to word recognition deficits. Brain & Language, 85, 486-502.

Breznitz, Z., & Share, D. L. (1992). The effect of accelerated reading rate on memory for text. Journal of Educational Psychology, 84, 193-200.

Breznitz, Z., Shaul, S., Horowitz-Kraus, T., Sela, I., Nevat, M., & Karmi, A. (2013). Enhanced reading by training with imposed time-constraint in typical and dyslexic adults. Nature Communications, 4, Article 1486. doi:10.1038/ncomms2488

Brosnan, M., Demetre, J., Hamill, S., Robson, K., Shepherd, H., & Cody, G. (2002). Executive functioning in adults and children with developmental dyslexia. Neuropsychologia, 40, 2144-2155. doi:10.1016/S0010-9452(02)00046-5

Burns, M. K., Senesac, B. V., & Symington, T. (2004). The effectiveness of the HOSTS program in improving the reading achievement of children at-risk for reading failure. Reading Research and Instruction, 43(2), 87-103. doi:10.1080/19388070409558406

Chall, J. (1983). Stages of reading development. New York, NY: McGraw-Hill.

Chrisman, T. A. (2005). The effects of repeated reading of text on oral reading fluency (Doctoral dissertation, School of Education, University of Pittsburgh). Retrieved from http://d-scholarship.pitt.edu/7623/

Coyne, M. D., Kame‘enui, E. J., & Simmons, D. C. (2004). Improving beginning reading instruction and intervention for students with LD: Reconciling “all” with “each.” Journal of Learning Disabilities, 37, 231-239.

Coyne, M. D., Little, M., Rawlinson, D., Simmons, D., Kwok, O., Kim, M. K., . . . Civetelli, C. (2013). Replicating the impact of a supplemental beginning reading intervention: The role of instructional context. Journal of Research on Educational Effectiveness, 6, 1-23.

Denton, C. A., Fletcher, J., Anthony, J., & Francis, D. (2006). An evaluation of intensive intervention for students with persistent reading difficulties. Journal of Learning Disabilities, 39, 447-466.

Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333, 959-964.

Facetti, A., Paganoni, P., Turatto, M., Marzola, V., & Mascetti, G. G. (2000). Visual-spatial attention in developmental dyslexia. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 36, 109-123. doi:10.1016/S0010-9452(08)70840-2

Fisher, D., & Frey, N. (2014). Content area vocabulary learning. The Reading Teacher, 67, 594-599.

Foster, K., Erickson, G., & Foster, D. (1994). Computer administered instruction in phonological awareness: Evaluation of the DaisyQuest program. Journal of Research and Development in Education, 27, 126-137.

Fountas, I., & Pinnell, G. (2012). Guided reading: The romance and the reality. The Reading Teacher, 66, 268-284.

Franceschini, S., Gori, S., Ruffino, M., Viola, S., Molteni, M., & Facoetti, A. (2013). Action video games make dyslexic children read better. Current Biology, 23, 462-466. doi:10.1016/j.cub.2013.01.044

Fridh, U. (1985). Beneath the surface of developmental dyslexia. In K. Patterson, M. Coltheart, & J. Marshall (Eds.), Surface dyslexia (pp. 301-330). Mahwah, NJ: Lawrence Erlbaum.

Garner, J., & Bochua, C. R. (2004). Transfer of a listening comprehension strategy to independent reading in first-grade students. Early Childhood Education Journal, 32, 69-74. doi:10.1007/s10643-004-1071-y

Gooch, D., Snowling, M., & Hulme, C. (2011). Time perception, phonological skills and executive function in children with dyslexia and/or ADHD symptoms. Journal of Child Psychology and Psychiatry, 52, 195-203. doi:10.1011/j.1469-7610.2010.02312

Goswami, U. (2008). Reading, dyslexia and the brain. Educational Research, 50, 135-148.

Greven, C. U., Rijswijk, F. V., Asherson, P., & Plomin, R. (2012). A longitudinal twin study on the association between ADHD symptoms and reading. Journal of Child Psychology and Psychiatry, 53, 234-242. doi:10.1111/j.1469-7610.2011.02445.x

Gunn, B., Smolkowski, K., Biglan, A., Black, C., & Blair, J. (2005). Fostering the development of reading skill through supplemental instruction: Results for Hispanic and non-Hispanic students. Journal of Special Education, 39, 66-85. doi:10.1177/0022466905039020301

Guthrie, J. T., Wixted, J. T., & Perencevich, K. C., Taboada, A., Davis, M. H., . . . Tonks, S. (2004). Increasing reading comprehension and engagement through context-oriented reading instruction. Journal of Educational Psychology, 96, 403-423. doi:10.1037/0022-0663.96.3.403
Harvey, S. (2015, March/April). Digging deeper. Reading Today, pp. 30-31.

Helland, T., & Asbjornsen, A. (2000). Executive functions in dyslexia. Child Neuropsychology, 6, 37-48. doi:10.1076/0929-7049(200003)6:1:B;FT037

Helland, T., & Asbjornsen, A. (2004). Digit span in dyslexia: Variations according to language comprehension and mathematics skills. Journal of Clinical and Experimental Neuropsychology, 26, 31-42. doi:10.1076/jcen.26.1.31.23935

Hook, P. E., Macaruso, P., & Jones, S. (2001). Efficacy of Fast ForWord training on facilitating acquisition of reading skills by children with reading difficulties—A longitudinal study. Annals of Dyslexia, 51, 75-96. doi:10.1007/s11881-001-0006-1

Horowitz-Kraus, T. (2012). Pinpointing the deficit in executive functions in teenage dyslexic readers: An ERP study using the Wisconsin Card Sorting Test. Journal of Learning Disabilities, 47, 208-223. doi:10.1177/0022219412453084

Horowitz-Kraus, T., & Breznitz, Z. (2008). An error-detection mechanism in reading among dyslexic and regular readers—An ERP study. Clinical Neurophysiology, 119, 2238-2246. doi:10.1016/j.clinph.2008.06.009

Horowitz-Kraus, T., & Breznitz, Z. (2009). Can the error detection mechanism benefit from training the working memory? A comparison between dyslexics and controls—An ERP study. PLoS ONE, 4(9), e7141. doi:10.1371/journal.pone.0007141

Horowitz-Kraus, T., & Breznitz, Z. (2013). Can reading rate acceleration improve error monitoring and cognitive abilities underlying reading in adolescents with reading difficulties and in typical readers? Brain Research, 1544, 1-14. doi:10.1016/j.brainres.2013.11.027

Horowitz-Kraus, T., Cicchino, N., Amiel, M., Holland, S. K., & Breznitz, Z. (2014). Reading improvement in English- and Hebrew-speaking children with reading difficulties after reading acceleration training. Annals of Dyslexia, 64, 183-201. doi:10.1007/s11881-014-0093-4

Horowitz-Kraus, T., & Holland, S.K. (2015). Greater functional connectivity between reading and error-detection regions following training with the reading acceleration program in children with reading difficulties. Annals of Dyslexia, 65(1), 1-23. doi:10.1007/s11881-015-0096-9

Joshi, R. M., Dahlgren, M., & Boulware-Gooden, R. (2002). Teaching reading through multi-sensory approach in an inner city school. Annals of Dyslexia, 53, 235-251. doi:10.1007/s11881-002-0014-9

Justice, L. M., Meier, J., & Walpole, S. (2005). Learning new words from storybooks: An efficacy study with at-risk kindergartners. Language, Speech, and Hearing Services in Schools, 36, 17-32. doi:10.1044/0161-1461(2005/003)

Kintsch, W. (1988). The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review, 95, 163-182. doi:10.1037/0033-295X.95.2.163

Kraus, D., & Horowitz-Kraus, T. (2014). The effect of learning on feedback-related potentials in adolescents with dyslexia: An EEG-ERP study. PLoS ONE, 9, e100486. doi:10.1371/journal.pone.0100486

Kyle, F., Kujala, J. V., Richardson, U., Lyytinen, H., & Goswami, U. (2013). Assessing the effectiveness of two theoretically motivated computer-assisted reading interventions in the United Kingdom: GG Rime and GG Phome. Reading Research Quarterly, 48, 61-76.

LaBerge, D., & Samuels, J. (1974). Toward a theory of automatic information processing in reading. Cognitive Psychology, 6, 293-323. doi:10.1016/0010-0285(74)90015-2

Liberman, Y., Shankweiler, D., Fischer, F. W., & Carter, B. J. (1974). Explicit syllable and phoneme segmentation in the young child. Journal of Experimental Child Psychology, 18, 201-212.

Lovett, M. W., Borden, S. B., Lacerenza, L., Frijters, J. C., Steinbach, K. A., & De-Palma, M. (2000). Components of effective remediation for developmental reading disabilities: Combining phonological and strategy-based instruction to improve outcomes. Journal of Educational Psychology, 92, 263-289. doi:10.1037/0022-0663.92.2.263

Lyon, G. R., Shaywitz, S., & Shaywitz, B. (2003). A definition of dyslexia. Annals of Dyslexia, 53, 1-14.

Manset-Williamson, G., & Nelson, J. M. (2005). Balanced, strategic reading instruction for upper-elementary and middle school students with reading disabilities: A comparative study of two approaches. Learning Disability Quarterly, 28, 59-74. doi:10.2307/4126973

Mathes, P. G., Denton, C. A., Fletcher, J. M., Anthony, J. L., Francis, D. J., & Schatschneider, C. (2005). The effects of theoretically different instruction and student characteristics on the skills of struggling readers. Reading Research Quarterly, 40, 148-182. doi:10.1598/RRQ.40.2.2

May, H., Gray, A., Gillespie, J. N., Sirinides, P., Sam, C., Goldsworthy, H., . . . Tognatta, N. (2013). Evaluation of the 3s scale-up of Reading Recovery year one report, 2011–12. Philadelphia, PA: Consortium for Policy Research in Education.

McCandliss, B. D., Beck, I., Sandak, R., & Perfetti, C. (2003). Focusing attention on decoding for children with poor reading skills: A study of the Word Building intervention. Scientific Studies of Reading, 7, 75-105. doi:10.1207/S1532799XSSR0701_05

Menghini, D., Finzi, A., Benassic, M., Bolzanic, R., Facoettid, A., Giovanaglich, S., & Vicari, S. (2010). Different underlying neurocognitive deficits in developmental dyslexia: A comparative study. Neuropsychologia, 48, 863-872. doi:10.1016/j.neuropsychologia.2009.11.003

Mioduser, D., Tur-Kaspa, H., & Leitner, I. (2000). The learning value of computer-based instruction of early reading skills. Journal of Computer Assisted Learning, 16, 54-63.

Moats, L. C. (2009). Phonology and phonological awareness. In L. C Moats (Ed.), The speech sounds of English: Phonetics, phonology, and phoneme awareness; Module 2 (p. 6). Longmont, CO: Sopris West Education Services.

Morris, R. D., Stuebing, K. K., Fletcher, J. M., Shaywitz, S. E., Lyon, G. R., Shankweiler, D. P., . . . Shaywitz, B. A. (1998). Subtypes of reading disability coherent variability around a phonological core. Journal of Educational Psychology, 90, 1-27.

Nash, H., & Snowling, M. (2006). Teaching new words to children with poor existing vocabulary knowledge: A controlled evaluation of the definition and context methods. International Journal of Language & Communication Disorders, 41, 335-354. doi:10.1080/13688220600602295

Nation, K. (2008). Children’s reading comprehension difficulties. In M. J. Snowling & C. Hulme (Eds.), The science of reading: A handbook. Oxford, UK: Blackwell. Retrieved from http://www.pitt.edu/~perfetti/PDF/Nation.pdf
National Commission on Excellence in Education. (1983). *A nation at risk: The imperative for educational reform*. Washington, DC: U.S. Department of Education.

Nelson, J., Benner, G., & Gonzalez, J. (2005). An investigation of the effects of a prereading intervention on the early literacy skills of children at risk of emotional disturbance and reading problems. *Journal of Emotional and Behavioral Disorders, 13*, 3-12.

Newman, T. M., Macombe, D., Naples, A. J., Babitz, T., Volkmar, F., Grigorenko, E. L., . . . Reason, R. (1999). Early reading intervention can be effective and cost-effective. *British Journal of Educational Psychology, 69*, 47-62.

Noppel, U., Price, J., Duncan, J., & Koepp, M. J. (2005). Reading skills after left anterior temporal lobe resection: An fMRI study. *Brain, 128*, 1377-1385. doi:10.1093/brain/awh441

Oakland, T., Black, J. L., Stanford, G., Nussbaum, N. L., & Balise, R. R. (1998). An evaluation of the dysxia training program: A multisensory method for promoting reading in students with reading disabilities. *Journal of Learning Disabilities, 31*, 140-147. doi:10.1177/002221949803100204

O’Connor, R. E., Harty, K. R., & Fulmer, D. (2005). Tiers of intervention in kindergarten through third grade. *Journal of Learning Disabilities, 38*, 532-538. doi:10.1177/00222194050380060901

Pavuluri, M. N., O’Connor, M. M., Harral, E., & Sweeney, J. A. (2006). Affective neural circuitry during facial emotion processing in pediatric bipolar disorder. *Biological Psychiatry, 60*, 951-956. doi:10.1016/j.biopsych.2006.07.011

Pinnell, G. S., DeFord, D. E., & Lyons, C. A. (1988). *Reading Recovery: Early intervention for at-risk first graders*. [Educational Research Service Monograph]. Arlington, VA: Educational Research Service.

Pinnell, G. S., & Fountas, I. (1998). *Word matters: Teaching phonics and spelling in the reading/writing classroom*. Portsmouth, NH: Heinemann.

Pinnell, G. S., & Fountas, I. (2010). Research base for guided reading as an instructional approach. Retrieved from http://photondrupal.s3.amazonaws.com/GR_Research_Paper_2010.pdf

Pokorní, J., Worthington, C., & Jamison, P. (2004). Phonological awareness intervention: Comparison of Fast ForWord, Earobics, and LiPS. *The Journal of Educational Research, 97*, 147-157.

Rayner, K., & Pollatsek, A. (1989). *The psychology of reading*. Englewood Cliffs, NJ: Prentice Hall.

Reiter, A., Tucha, O., & Lange, K. W. (2004). Executive functions in children with dyslexia. *Dyslexia, 11*, 116-131. doi:10.1002/dys.28

Schwartz, R. (2005). Literacy learning of at-risk first-grade students in the Reading Recovery early intervention. *Journal of Educational Psychology, 97*, 257-267.

Segers, E., & Verhoeven, L. (2003). Effects of vocabulary training by computer in kindergarten. *Journal of Computer Assisted Learning, 19*, 557-566. doi:10.1046/j.0266-4909.2003.00058.x

Seidenberg, M., & McClelland, J. (1989). A distributed, developmental model of word recognition and naming. *Psychological Review, 96*, 523-568.

Share, D. (1995). Phonological recoding and self-teaching: Sine qua non of reading acquisition. *Cognition, 55*, 151-218.

Shaywitz, S. E., & Shaywitz, B. A. (2008). Paying attention to reading: The neurobiology of reading and dyslexia. *Development and Psychology, 20*, 1329-1349. doi:10.1037/1095-4579408000631

Simpson, S. B., Swanson, J. M., & Kunkel, K. (1992). The impact of an intensive multisensory reading program on a population of learning-disabled delinquents. *Annals of Dyslexia, 42*, 54-66. doi:10.1007/BF02654938

Snow, C. E. (2002). *Reading for understanding: Toward an R&D program in reading comprehension* (Office of Educational Research and Improvement, U.S. Department of Education). Santa Monica, CA: RAND Education.

Snowling, M. J., & Nation, K. A. (1997). Language, phonology, and learning to read. In C. Hulme & M. J. Snowling (Eds.), *Dyslexia: Biology, cognition and intervention* (pp. 153-166). San Diego, CA: Singular Publishing Group.

Solis, M., Miciak, J., Vaughn, S., & Fletcher, J. (2014). Why intensive interventions matter: Longitudinal studies of adolescents with reading disabilities and poor reading comprehension. *Learning Disability Quarterly, 37*, 218-229.

Speziale, M., & La-France, L. (1992). Multimedia and students with learning disabilities: The road to success. *Computing Teacher, 20*(3), 31-34.

Stanovich, K. E., & Siegel, L. S. (1994). Phenotypic performance profile of children with reading disabilities: A regression-based test of the phonological-core variable-difference model. *Journal of Educational Psychology, 86*, 24-53. doi:10.1037/0022-0663.86.1.24

Stoner, J. C. (1991). Teaching at-risk students to read using specialized techniques in the regular classroom. *Reading and Writing: An Interdisciplinary Journal, 3*, 19-30.

Swanson, H. L., & Ashbaker, M. H. (2000). Working memory, short-term memory, speech rate, word recognition and reading comprehension in learning disabled readers: Does the executive system have a role? *Intelligence, 28*, 1-30. doi:10.1016/S0160-2896(99)00025-2

Swanson, H. L., & Siegel, L. (2001). Learning disabilities as a working memory deficit. *Issues in Education: Contributions of Educational Psychology, 7*, 1-48.

Tallal, P., Miller, S. L., Jenkins, W. M., & Merzenich, M. M. (1997). The role of temporal processing in developmental language-based learning disorders: Research and clinical implications. In B. Blachman (Ed.), *Foundations of reading acquisition and dyslexia: Implications for early intervention* (pp. 49-66). Hillsdale, NJ: Lawrence Erlbaum.

Task Force on Education for Economic Growth. (1983). *Action for excellence*. Denver, CO: Education Commission of the States.

Temple, E., Deutschg, K. G., Poldrack, R. A., Miller, S. L., Talla, P., Mersenich, M. M., & Gabrieli, J. D. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI. *Proceedings of the National Academy of Sciences, 100*, 2860-2865.

Thaler, V., Ebner, E. M., Wimmer, H., & Landerl, K. (2004). Training reading fluency in dysfluent readers with high reading accuracy: Word specific effects but low transfer to untrained words. *Annals of Dyslexia, 54*, 89-113. doi:10.1007/s11881-004-0005-0

Therrien, W. J. (2004). Fluency and comprehension gains as a result of repeated reading: A meta-analysis. *Remedial and Special Education, 25*, 252-261. doi:10.1177/0741932504250040801
Therrien, W. J., Wickstrom, K., & Jones, K. (2006). Effect of a combined repeated reading and question generation intervention on reading achievement. *Learning Disabilities Research & Practice, 21*, 89-97. doi:10.1111/j.1540-5826.2006.00209.x

Tiffin-Richards, M. C., Hasselhorn, M., Woerner, W., Rothenberger, A., & Banaschewski, T. (2008). Executive functions in children with chronic tic disorders with/without ADHD: New insights. *Journal of Neural Transmission, 115*, 227-234. doi:10.1007/s00702-007-0816-3

Tjims, J., & Hoeks, J. (2005). A computerized treatment of dyslexia: Benefits from treating lexico-phonological processing problems. *Dyslexia, 11*, 22-40. doi:10.1002/dys.283

Torgesen, J. K., Alexander, A. W., Wagner, R. K., Rashotte, C. A., Voeller, K., Conway, T., & Rose, E. (2001). Intensive remedial instruction for children with severe reading disabilities: Immediate and long-term outcomes from two instructional approaches. *Journal of Learning Disabilities, 34*, 33-58. doi:10.1002/dys.283

Torgesen, J. K., Wagner, R. K., Rashotte, C. A., Rose, E., Lindamood, P., Conway, T., & Garvin, C. (1999). Preventing reading failure in young children with phonological processing disabilities: Group and individual responses to instruction. *Journal of Educational Psychology, 91*, 1-15. doi:10.1037/0022-0663.91.4.479

Trost, G. A., & Whitney, S. D. (2003). A close look at the efficacy of Fast ForWord Language for children with academic weaknesses. *Contemporary Educational Psychology, 28*, 465-494. doi:10.1016/S0361-476X(02)00045-0

U.S. Department of Education. (2005). *What Works Clearinghouse*. Retrieved from http://www2.ed.gov/about/offices/list/ies/ncce/wwc.html

Vadasy, P. F., & Sanders, E. A. (2008). Repeated reading intervention: Outcomes and interactions with readers’ skills and classroom instruction. *Journal of Educational Psychology, 100*, 272-290.

Van der Leij, A., & Van Daal, V. H. P. (1999). Speed limitations in word identification, sensitivity to increasing task demands, and orthographic compensation. *Journal of Learning Disabilities, 32*, 417-429.

Van Keer, H. (2004). Fostering reading comprehension in fifth grade by explicit instruction in reading strategies and peer tutoring. *The British Journal of Educational Psychology, 74*, 37-70. doi:10.1348/00070990422848815

van Kleeck, A., Vander Woude, J., & Hammett, L. (2006). Fostering literal and inferential language skills in Head Start preschoolers with language impairment using scripted book-sharing discussions. *American Journal of Speech-Language Pathology, 15*, 85-95. doi:10.1044/1058-0360(20060099)

Walczyk, J. (2000). The interplay between automatic and control processes in reading. *Reading Research Quarterly, 35*, 554-556.

Waski, B. A., & Bond, M. A. (2001). Beyond the pages of a book: Interactive book reading and language development in preschool classrooms. *Journal of Educational Psychology, 93*, 243-250. doi:10.1037/0022-0663.93.2.243

Waski, B. A., Bond, M. A., & Hindman, A. (2006). The effects of a language and literacy intervention on head start children and teachers. *Journal of Educational Psychology, 98*, 63-74. doi:10.1037/0022-0663.98.1.63

Wise, B. W., Ring, J., & Olson, R. K. (2000). Individual differences in gains from computer-assisted remedial reading. *Journal of Experimental Child Psychology, 77*, 197-235. doi:10.1016/j.jecp.1999.2559

Wolf, M., Bowers, G. P., & Biddle, K. (2000). Naming-speed processes, timing, and reading: A conceptual review. *Journal of Learning Disabilities, 33*, 387-407. doi:10.1177/00221940003300409

Wolf, M., & Katzir-Cohen, T. (2001). Reading fluency and its intervention. *Scientific Studies in Reading, 5*, 211-239. doi:10.1207/S1532799XSSR0503_2

Wolf, M., Miller, L., & Donnelly, K. (2000). Retrieval, automaticity, vocabulary elaboration, orthography (RAVE-O): A comprehensive, fluency-based reading intervention program. *Journal of Learning Disabilities, 33*, 375-386. doi:10.1177/00221940003300408

Xin, J. F., & Rieth, H. (2001). Video-assisted vocabulary instruction for elementary school students with learning disabilities. *Information Technology in Childhood Education Annual, 12*, 87-103.

Author Biographies

Tzizi Horowitz-Kraus, PhD, is an assistant professor, the director of the Educational Neuroimaging Center, and a chair of scientific Excellency in the Faculty of Education in Science and Technology in the Technion and the Scientific Director of Reading and Literacy Discovery Center at Cincinnati Children’s Hospital Medical Center. Her research is focused on the characteristics of neural circuits that underlie language and reading acquisition in children with language and reading difficulties due to a neurobiological source and to environmental deficits.

Sarah Finucane is a second year medical student at the University of Toledo College of Medicine and Life Sciences. Previously she worked as a clinical research coordinator at Cincinnati Children’s Hospital Medical Center. She is interested in pursuing a career in Child Neurology.