Pastoralism may have delayed the end of the green Sahara

Chris Brierley1, Katie Manning2,3 & Mark Maslin1

The climate deterioration after the most recent African humid period (AHP) is a notable past example of desertification. Evidence points to a human population expansion in northern Africa prior to this, associated with the introduction of pastoralism. Here we consider the role, if any, of this population on the subsequent ecological collapse. Using a climate-vegetation model, we estimate the natural length of the most recent AHP. The model indicates that the system was most susceptible to collapse between 7 and 6 ka; at least 500 years before the observed collapse. This suggests that the inclusion of increasing elements of pastoralism was an effective adaptation to the regional environmental changes. Pastoralism also appears to have slowed the deterioration caused by orbitally-driven climate change. This supports the view that modern pastoralism is not only sustainable, but beneficial for the management of the world’s dryland environments.
Typically, traditional subsistence pastoralism has been seen as agents of environmental degradation through over-grazing, habitat change and resource competition with wildlife. This view (Fig. 1a) was embedded in the environmental doctrine of the twentieth century, partly as a consequence of the historical relationship between colonial administrators and traditional pastoralists. This doctrine has led to a recent suggestion that early pastoralism was so unsustainable that it triggered a climatic deterioration in the Sahara around 5500 years ago (at the end of the African Humid Period). This has significant implications for the way in which modern populations living in marginal environments are perceived, and particularly how modern pastoralism is recognised within local and regional ecological and economic policies. This suggestion goes against research demonstrating the sustainability of pastoralism.

Tipping points and threshold behaviours are an emotive topic when talking about future climate change. A common example is the African Humid Period (AHP) lasting from 14,700 years ago to around 5500 years ago (Fig. 2a), colloquially termed the “green Sahara”. With the onset of favourable orbital conditions around 14.7 ka summer rains penetrated much further into northern Africa. As a result, humid conditions were established initially at lower latitudes, and progressively later at more northern latitudes. Pollen reconstructions indicate a mix of tropical elements reaching up to 20° N, and Sudanian woodland and Sahelian grasslands extending at least as far as 28° N. These changes supported numerous Sahelian and aquatic animals, such as elephant, crocodile and fish. Yet, debate is on-going over the rate of climatic deterioration at the end of the humid period. Both sediment flux records from deep sea cores off the north-west Africa and Δ18O isotopic values from east and northeast Africa point to a rapid shift 5500 years ago. Pollen and sedimentological records from Lake Yoa in northern Chad, however, indicate a more gradual deterioration of the regional ecosystem (Fig. 2a). This discrepancy is partly a consequence of differential sensitivity of the various proxies, but also because the changes in regional hydroclimates were modified by vegetation feedbacks and local groundwater conditions. A coherent spatial picture of the end of the AHP is emerging, as demonstrated in a recent synthesis of hydrological reconstructions, revealing a time transgressive termination of humid conditions from north to south (Fig. 2a).

Human occupation during the humid period is clearly demonstrated in numerous rock engravings and occupation sites, bearing evidence for the development of food production strategies and increasing socio-economic complexity. Knowledge about spread and intensity of the human occupation is harder to acquire, yet enough exists to create a demographic reconstruction (see Methods). Several major phases of population expansion and contraction can be identified in the Holocene Sahara from archaeological evidence. Hunter-Gatherer-Fishers initially colonised all regions around 10.5 ka with population levels peaking between 8 and 7.5 ka (Fig. 2b). Over the following millennium, northern Africa underwent a population decline, driven by a millennium-long dry event at 8 ka. After 7 ka, domestic cattle, sheep and goat spread throughout northern Africa. This widespread adoption of (at least some) pastoralist strategies is followed by a second population boom (Fig. 2b). The second pulse of northern African human occupancy lasted until 5.5 ka, at which point the Sahara underwent a major population collapse, coinciding with the decline in favourable climatic conditions (Fig. 2). But was this climate–human interaction one way—or was the collapse of the green Sahara an early example of humans interfering with a sensitive environmental system?

We submit the suggestion that Humans were the catalyst of the collapse of the green Sahara to a rigorous quantitative assessment. We first investigate whether the termination of the African Humid Period occurred early than expected, both through analysis of observations and using a model. We then examine the nature of early African pastoralism and its interactions with landscape. We conclude that the increased adoption of pastoralism provided a successful adaptation to the desertification caused by climate change.

Results

Natural length of the Holocene African Humid Period. Before considering human agents in the context of climatic change, it is first necessary to determine the length of the Holocene AHP assuming no anthropogenic influence. Observations alone do not provide sufficient constraint on this, because of insufficiently accurate relevant chronologies. Mediterranean sapropel deposition is used as an indicator of humid conditions in northern Africa, because they have some of the most accurate chronologies. Over the past 250,000 years, it is possible to tune a chronology using well-dated speleothems to provide well-constrained estimates of the onset and termination of sapropels. This chronology suggests that the most recent sapropel was of much shorter duration than previous instances (Fig. 3a); yet it only includes one other interglacial sapropel (at 129.5 ka). However longer records that allow selection of similar orbital configurations cannot detect differences at the sub-millennial timescales required (Fig. 3b). A concerted effort would be

Fig. 1 Pastoralist–environment interactions. a Schematic of a human population expansion beyond the carrying capacity of the region exacerbating aridification. b Schematic of how the technological and cultural advances associated with sustainable pastoralism could help buffer changes to a fragile ecosystem.
required to develop a sufficiently accurate chronology to advance in this direction.

We develop an idealised model that calculates rainfall and vegetative cover and their feedbacks (see Methods) to estimate the natural length of the Holocene AHP instead. Compared to previous models, rainfall responds to imposed orbital precession and past greenhouse gas levels as measured in ice cores (which acts as a proxy for glacial-interglacial changes as well as a local, direct forcing). The model is run over the past two glacial cycles (230–20 ka) using a large ensemble of parameter settings selected at random. Parameter settings that do not exhibit six green episodes during this period are discounted for being inconsistent with the observations. The remaining ensemble members are integrated forward to the present-day (Fig. 4).

The largest peak in the modelled sensitivity of the Sahara occurs at 7–6 ka (Fig. 5c). This coincides with the second period of population increase between 6.7 and 6.3 ka (Fig. 5b). The dominant collapse observed for the Holocene AHP (Fig. 5a) occurs 500–1000 years after this peak (Fig. 5c), which appears to be a robust model result (see Methods, Supplementary Fig. 2).
This refutes the hypothesis that pastoralists were “active agents in landscape denudation” and accelerated the termination of the Holocene AHP25. Rather it suggests that pastoralism may have actively delayed the region’s environmental deterioration (Fig. 1b).

Robustness of the delay. The synthesis of observed records3 classifies the hydroclimate state only at 500 year intervals. This choice of interval was motivated by all the chronologies being sufficiently precise to resolve it5. The model inputs are orbital parameters29 and carbon dioxide concentrations30, both of which have dating uncertainties substantially less than 500 years. Dating of prior humid periods is subject to errors on the order of millennia (hence the failure to constrain the AHP dates observationally). Because of this issue, the valid model parameter settings are determined by matching solely the number of prior instances rather than their timing (see Methods). We consider the possibility that either a humid period was overlooked or that a sapropel has been laid down without a humid period during the past 230 kyrs to be minimal. The uncertainty contained within the structure of the idealised model, rather than its parameters, is impossible to quantify. To explore the parameter uncertainty in the model output, the whole experiment is replicated a further twenty times with different random parameter settings. There is little variation in the temporal structure (Supplementary Fig. 2). In summary, the limiting factor for the precision appears to be the temporal resolution of the compiled observations3, though the delay appears visible despite that (Fig. 5).

The largest issues affecting the results of the idealised model are therefore associated with its applicability to the problem. There is a rich heritage of using idealised models to study the greening of the Sahara27,28,31, so the application here is not without precedent. The model appears to adequately capture the past behaviour under certain parameter settings. We cannot exclude the possibility that including other natural forcing factors may be beneficial. An alternate approach would use coupled general circulation models (GCMs). These GCMs are now used operationally for decadal climate predictions32. Unfortunately, the resources needed for the multi-millennia ensembles that would be required by this research preclude their application. Additionally, GCMs have been shown to have longstanding biases in simulating the greening of the Sahara33, likely arising from them poor capturing of vegetation and dust feedbacks34.

The model ensemble is treated above as multiple plausible instances of a single physical system. The sensitivity is therefore interpreted as a single metric for all three regions shown in Fig. 2. An alternate interpretation is that the ensemble members represent different local conditions, implying that the three sensitivity peaks in Fig. 5c each characterise a particular region. However, there is no noticeable regional pattern in the reconstructed collapse dates (Fig. 2a), although more southerly locations in the compilation do show a later response3. However, the majority of observational records showing a collapse between 6 and 5 ka3 occur at similar latitudes to the archaeological sites used to estimate the human occupancy22. Therefore the comparison of the sensitivity metric to the palaeoclimatic and population reconstructions combined across northern Africa seems appropriate (Fig. 5).

Human–environment interactions. The model results suggest that the end of the Holocene AHP was delayed by around 500 years. A logical extension from the hypothesis of anthropogenically-driven early collapse2 is that humans caused this delay. Whilst other possible explanations could exist, the main difference between the Holocene and previous interglacials is the existence of Human society in the Holocene. We therefore explore whether mechanisms exist that may explain an anthropogenically-driven early collapse, by focusing on why pastoralism is sustainable. This approach rejects any dualist view that humans occupy a unique place in nature35, advocating instead the historical dependencies between human action and environmental change36.

Mobility, a distinguishing feature of traditional pastoral systems37, results in periodicity of the intensity of grazing. Grasslands can suffer from overgrazing as much as overvegetation16, so active management of grazing plays a major role in grassland health. This is because grazing ungulates and

Fig. 3 The relationship between sapropel formation and orbital precession using two sapropel chronologies. Precessional curves associated with sapropel formation are aligned to the start of each occurrence according to the respective chronology. The coloured segments of these curves indicate the actual duration of the sapropel. The red horizontal line indicates the precession at the termination of the most recent sapropel. a A speleothem-tuned chronology25 provides well-constrained estimates of the onset and termination of sapropels over the past 250,000 years. b The past ten interglacial sapropels seen in a Mediterranean Sea level record22.
grasslands have co-evolved from an historical predator-prey relationship, with pack hunting predators keeping large herds of ungulates bunched and moving. Healthy grasslands are maintained in precisely this way by pastoralists bunching stock and moving them frequently, fostering a mutually beneficial distribution of dung and urine. Removing grazers from grasslands increases the amount of senescent vegetation, which causes the grasses to cease growing productively. Grazing livestock and their preference for the most palatable grasses provide a competitive advantage to the less palatable grasses for water and nutrients, making it important to get the balance correct between overgrazing and over-resting. Traditional pastoralists tend to be acutely aware of these subtle dynamics utilising practices that maximise grassland regeneration.

Evidence from long-term studies on herding strategies has also helped to reveal the sensitive dynamic between drought, pasture availability, and herd size. Seasonal and long-term droughts, which are common in areas of pastoral rangeland, as well as disease dynamics, control the growth of herds in a way that means they are unlikely to damage pasture. If longer-term drought starts to restrict pasture, or if herd size increases beyond the carrying capacity of a rangeland, then pastoralists will move on. For example, field research in the Ngorongoro Conservation Area has shown that whilst pastures were being overgrazed in terms of optimal commercial yield, this did not result in environmental degradation. This is important as it suggests that animal condition deteriorates before they are capable of having a seriously deleterious effect on the environment. The amount of pastoralism practiced by the Saharan occupants, and therefore the size of their herds, are unlikely to have reached such levels as to surpass carrying capacity. The inherent mobility and customary institutions employed by these populations generates a dynamic state of adaptation, which logically negates overburdening pastoral rangeland.

A recent publication by Wright in which mid-Holocene pastoralists are considered “catalysts in accelerating the pace of devegetation in the Sahara” provides an illustrative example of the outdated doctrine against pastoralists. Wright uses historical
analogues, such as the Rapa Nui environmental degradation, that appear inappropriate. In the instance of the island of Rapa Nui, its inhabitants were primarily farmers and fishermen, not pastoralists. Even so recent research suggests that major environmental degradation on Rapa Nui occurred only after European contact, and that pre-contact changes in land use were a result of environmental constraint, not degradation

 using this type of analogue, one establishes a false premise i.e., where “landscapes with no previous exposure to grazing by domesticated animals have been documented as crossing ecological thresholds shortly after new grazing pressures were introduced.”

 Northern Africa, however, was becoming a domesticated landscape from the early Holocene onwards (Fig. 2). Pastoralism co-evolved with dryland environments in a context where extant grazing ungulates were in abundance. Moreover recent genetic analyses of modern African cattle indicate considerable introgression from African aurochs, suggesting they underwent a hybridization with local wild stock. The introduction of pastoralist strategies, therefore, were based upon natural ecosystem interactions and the functional roles of native wildlife causing little additional burden; allowing positive management of the environment.

 Regional responses. The division of the entire Saharan population into broad regional sets (Fig. 2b) allows a preliminary look at spatial variation in the timing of population change. The population curves for the Eastern Sahara, the Atlas & Hoggar and Central Sahara start broadly synchronous; showing a rapid population increase after the onset of humid conditions c. 10.5 ka and during the millennial-long population decline between 7.5 and 6.5 ka (Fig. 2b). At the end of the AHP, however, we observe divergence in the regional demographic response. The eastern Sahara, which is today extremely arid, appears to have undergone a rapid population decline, as occupation shifted towards the Nile Valley. It has even been suggested that this subsequently gave rise to the Pharanoic civilisation. To the north and west, in the Atlas & Hoggar mountain region, population decline appears to have
been equally rapid (c. 900 years, Fig. 2b). The central Sahara, on
the other hand, saw a much more gradual decline in population
levels that never reached the pre-Holocene population low
(Fig. 2b). The fact that societies practicing pastoralism persisted
in this region for so long, and invested both economically and
ideologically in the local landscape, does not support a scenario of
over-exploitation (see Methods). Additionally, the ethnographic
record demonstrates how the flexibility inherent in traditional
African pastoralist strategies enables them to make the most
efficient use of patchy and fragile environments.45,37 It is there-
fore likely that the origins of such strategies co-evolved with the
drying environment in a way that enabled humans to live in an
adaptive balance with available pasture.

The implication that Holocene populations persisted for
longer in some parts of the Sahara either suggests a spatial
variation in the rate of aridification or vegetation change, or more
intriguingly in the human adaptive strategies. Differential
topography across the Sahara is certainly worth considering.
Mountains such as the Tibesti, Tassili-n-Ajjer and Ahaggar form
a major topographic feature spanning more than 2500 km from
southern Algeria to northern Chad. These mountains would have
acted as important water towers in contrast to the surrounding
plains, providing populations living on the windward side with more persistent rain runoff during periods of increasing
aridity. Some of the earliest direct evidence for the exploitation
of domestic livestock46, use of milk products47, and the
construction of cattle tumuli46,48, come from the heart of the
central Sahara. On the Messak plateau, for example, extensive
evidence for rock art depicting livestock scenes and stone
monuments with associated domestic animal remains dating
to the middle Holocene attest to a highly formalized expression
of a wider Saharan “cattle cult”.46,48 Isotopic analysis of
archaeological animal bones from this region also demonstrate
seasonal transhumance48, reminiscent of the strategies used by
modern traditional pastoralists to ensure the maintenance of
healthy pasture.

Discussion
The possibility that humans could have had a stabilising influence
on the environment has significant implications. Naturally there
are consequences for our understanding of past climate changes.
For example, there is a long-standing discrepancy between
observed climate of 6 ka for northern Africa and simulations by
global climate models33, which currently include no pastoralism.
For example, there is a long-standing discrepancy between
the observed climate of 6 ka for northern Africa and simulations by
global climate models33, which currently include no pastoralism.

Data. Proxy records of northern African palaeoclimate are derived from a variety
of sources. These range from lake-level, dust deposition, pollen and geochemical
records. The data used in Figs. 2a, 5a are derived from the database compiled and
interpreted by Shanahan et al.5. For every 500 year interval, the climate state has
been subjectively determined3 as either wet, moderate or dry (Fig. 2a). As with the
sensitivity metric (Eq. 7), we date the collapse as the first time in which humid
conditions are not present (Fig. 5). This compilation of proxy records may provide
a geographically and typographically biased sample, but is not clear what alternate
approaches are available to estimate an end-date for the green Sahara in a prob-
abilistic fashion.

The relative population levels (Figs. 2b, 5b) are a summed probability
distribution analysis based on a comprehensive review of the abundance of
carbon-14 dated archaeological sites across northern Africa22. The underlying
principle of this method assumes a monotonic relationship between the
amount of data and the amount of human presence, which is reliant on the
law of large numbers to overcome small-scale temporal and spatial biases. Full
details on the methods are described in Shen et al.52, whilst criticisms53,4 and
subsequent defense35,56 of the method have been presented in several
publications. The population estimates used in the present analysis33 were created
from a dataset comprising 3287 radiocarbon dates from 1011 “Neolithic” sites.
Radiocarbon dates from state level social contexts such as Pharaonic or later
Garamantian sites were not included in that analysis. The population estimates
can only provide relative time series and the size of populations cannot be
compared between the regions shown in Fig. 2b. To date, these are the only explicit
reconstructions of Holocene demographic trends on a trans-Saharan scale,
although similar curves have been produced for the western desert in Egypt42.
Furthermore, it is this curve which Wright suggests corresponds with “the variable
tempo and intensity of the termination of the AHP” and “local transitions to
shrubland environments and accelerated rates of soil erosion”52. We exclude
African palaeoclimate reconstructions south of 13.42°N from our analysis, as this
is the most southerly archaeological site used to reconstruct the population
estimates22.

Idealised model formulation
The simplest model of climate–vegetation interactions consists of the vegetation cover being determined by rainfall, which itself depends on external forcing and vegetation cover24. We adapt the non-
dimensionalised model of Li26 that captures inter-annual variability27 with the
realisation that the temperature–rainfall–vegetation feedback is now considered
a linearised function of precession and carbon dioxide forcing. This idealised model
incorporates a vegetation cover, v, that ranges from shrubland (1; “green”) to desert
(−1; “yellow”). The vegetation cover changes at a rate

\[
\frac{dv}{dt} = \frac{1}{\tau_v} \ln(h(R) - v),
\]

where \(\tau_v\) is the vegetation timescale (in years) and \(R\) is the non-dimensionalised
rainfall. \(R\) is centred around a sensitive range that spreads from \((-1, 1)\). It is given by:

\[
R = a + bP + \alpha + \nu + N,
\]

where \(P\) is the eccentricity-modulated precession28, esinu, (Fig. 4a) and \(F\) is the
radiative forcing with respect to the preindustrial. Here the radiative forcing
(Fig. 4a) represents solely carbon-di-oxide and is calculated as 5.35
ln(CO2/278), where CO2 is the carbon dioxide concentration28 in parts-per-
million by volume [278 ppm was the preindustrial concentration]. The
feedback of vegetation onto the rainfall is captured by the \(dv/dt\) term in Eq. 2,
where \(dv/dt\) sets the magnitude of the feedback. Previous work28 has used \(d\)
values ranging from 0.8 to 1.2; a wider range is sampled here to encompass a broader
spread of uncertainty (see Supplementary Table 1). The red noise term, \(N\), is given by

\[
\frac{dN}{dt} = \frac{\sigma(t) - N}{\tau_N},
\]

where \(\tau_N\) is soil moisture timescale (in years) and \(\sigma\) is a random sample from a unit
normal distribution scaled by a tunable parameter, \(\alpha\).

The impact of a doubling in CO2 has previously been shown to expand the
critical range of rainfall28. However, it is incorporated here as an additive term
(expressed as a radiative forcing change from preindustrial in W/m²) as attempts
with a multiplicative factor were unsuccessful in replicating the observed lack of
green states during MIS3 (Fig. 4b). The modified background rainfall, \(a + bP + \alpha + \nu\),
must at times be less than 1 otherwise the system would never leave the green state
and is generally less than 0 to prevent the green state becoming the predominant
condition.
Iteration is achieved through a forward timesteping approach28 with a timestep, Δt, of 1 year.

$$v_{k+1} = v_k + \frac{\Delta t}{\tau_1} \tanh \left(\frac{a + bP + CO_2 + d\nu + N_k}{\Sigma} - v_k \right),$$

(4)

$$N_{k+1} = N_k - \frac{N_k \Delta t}{\tau_N} \sqrt{\Delta \sigma W_k}$$

(5)

Previous work28 has shown that this system can exhibit bimodality (switching between two different states) despite being monostable (i.e., having a single equilibrium potential, Eq. 6). The stochasticity (Eq. 3, best thought of as an intermittual variability in the soil moisture27,28) combined with the non-linear dependence of vegetation on rainfall (Eq. 1) can lead to the simulation often passing through the state with minimum equilibrium potential28. The bimodality explored previously in this style of system28 occurs with a background rainfall (and hence minimum equilibrium potential) centred on $v = 0$. It is under this condition that the system is most responsive to noise. Otherwise (as for the vast majority of the 230 ka simulated here), the stochastic control is effectively biased towards either the green or yellow state. This means the model is not exhibiting the canonical form of abrupt collapse (i.e., a bistable system rapidly flipping state). Rather this model represents forced changes overprinted with substantial stochasticity, which leads to shifts between two predominant states that may be abrupt in nature.

The idealised model has seven unknown parameters: three related to the background rainfall (a, b, and c); the feedback strength, d; two inherent timescales (τ_1 and τ_N); and the climate noise scaling, σ. These cannot be individually constrained from observations, in part due to their idealised nature. A 100,000-member ensemble is created to explore parameter and internal variability uncertainty. For each ensemble member, the values of the seven parameters are randomly selected from a uniform distribution over the ranges shown in Supplementary Table 1. The remaining subset of 12,099 simulations are considered as “not implausible”. Interestingly roughly a third (n = 3534) of this subset never leave the green state during the Holocene.

In the absence of stochastic noise, the equilibrium potential for the idealised model above is

$$U(v) = \frac{v^2}{2} - \ln(cosh(a + bP + CO_2 + d\nu + N_k))$$

(6)

Simulated sensitivity metric. If the noiseless system were left to reach equilibrium with a given forcing, it would end in the state with the minimum equilibrium potential. The time-varying nature of the forcings suggests that even with the addition of noise an individual model simulation can be adequately approximated by its equilibrium state (Supplementary Fig. 1A). This permits identification of when the system should flip between the green and yellow states. We define a threshold time, t^*, at which the minimum equilibrium potential changes side of the $v = 0$ line (Supplementary Fig. 1A). Following from Eq. 6, the threshold time, t^*, occurs when

$$\text{sgn}(a + bP + d\nu) = \text{sgn}(a + bP_{(r-\Delta t)} + d\nu_{(r-\Delta t)})$$

(7)

This allows us to define a simulated sensitivity metric as the number of not-implausible ensemble members exhibiting threshold behaviour at that time, i.e., SS (t^*) = implausible (t^*). Exclusion of ensemble members that do not collapse during the Holocene does not alter the simulated sensitivity time series. This simulated sensitivity shows a definite spike at 14.7 ka (Supplementary Fig. 1B) demonstrating the ability of our approach to capture the onset of the African humid period. Such a consistent signal is not shown for its termination (Fig. 5c).

An alternate approach to sampling the uncertainty contained within the model’s tunable parameters would be to only select the ensemble members with a good fit to observations. Selecting just the 1500 ensemble members best correlated to observations. Selecting just the 1500 ensemble members best correlated to Ba/Al observations shown in Fig. 4b would lead to a single sole peak in simulated sensitivity at ~6.5 ka. Given that sapropel S1 is observed to terminate ~1000 years earlier than the compilation in Fig. 5a24, it would be hard to conclude an anthropogenic delay from this subset of best-correlated models57. Our “not implausible” approach is only condition on sapropel existence rather than timing—removing any circularity.

Data availability. Much of the data shown in this manuscript has been previously published elsewhere. Nonetheless all data shown in the individual figures can be accessed from the repository via the EarthArXiv at https://doi.org/10.17605/OSF.IO/WYAFZ.

Received: 10 April 2018 Revised: 23 August 2018 Accepted: 29 August 2018

Published online: 01 October 2018
27. Liu, Z., Wang, Y., Gallimore, R., Notaro, M. & Prentice, I. C. On the cause of abrupt vegetation collapse in North Africa during the Holocene: climate variability vs. vegetation feedback. Geophys. Res. Lett. (2006). https://doi.org/10.1029/2006gl028862.

28. Liu, Z. Bimodality in a monostable climate-ecosystem: the role of climate change. Ecol. Model. 187, 37–48 (2005).

29. Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 9, 299–313 (1990).

30. Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 397–405 (2008).

31. Brovkin, V., Claussen, M., Petoukhov, V. & Ganopolski, A. On the stability of the atmosphere-vegetation system in the Saharan-Sahel region. J. Geophys. Res. 103, 31613 (1998).

32. Meinshausen, M., et al. Decadal prediction: can it be skillful? Bull. Am. Meteorol. Soc. 90, 1467–1486 (2009).

33. Perez-Sanz, A., Li, G., González-Sampériz, P. & Harrison, S. P. Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations. Clim. Past. 10, 551–568 (2014).

34. Pausata, F. S. R., Messeri, G. & Zhang, Q. Impacts of dust reduction on the northward expansion of the African monsoon during the green Sahara period. Earth Planet. Sci. Lett. 434, 298–307 (2016).

35. Steffen, W., Crutzen, P. J. & McNeill, J. R. The Anthropocene: are humans now overwhelming the great forces of nature. Ambio 36, 614–621 (2007).

36. Pu, H. After Nature: A Politics for the Anthropocene (Harvard University Press, 2015).

37. Moore, P. D. Mobile resources for survival. Nature 325, 198 (1987).

38. McNaughton, S. J. Promotion of the cycling of diet-enhancing nutrients by ruminants: a role in the coevolution of grasses and herbivore. Annu. Rev. Ecol. Evol. Syst. 32, 1–25 (2001).

39. Neely, C., Bunning, S., Wilkes, A. (eds.). After Nature: A Politics for the Anthropocene (Penguin, 2009).

40. Steffen, W., Crutzen, P. J. & McNeill, J. R. The Anthropocene: are humans now overwhelming the great forces of nature. Ambio 36, 614–621 (2007).

41. Homewood, K. M. & Rodgers, W. A. Pastoralism and conservation. Hum. Ecol. 12, 431–441 (1984).

42. Rull, V. et al. Challenging Easter Island’s collapse: the need for interdisciplinary synergies. Front. Ecol. Evol. (2013). https://doi.org/10.3389/feco.2013.00003.

43. Mulrooney, M. A. An island-wide assessment of the chronology of settlement and land use on Rapa Nui (Easter Island) based on radiocarbon data. J. Archaeol. Sci. 40, 4377–4399 (2013).

44. Decker, J. E. et al. Worldwide patterns of ancestry divergence, and admixture in domesticated cattle. PLoS Genet. (2014). https://doi.org/10.1371/journal.pgen.1004254.

45. Kuper, R. & Kröpelin, S. Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313, 803–807 (2006).

46. di Lernia, S. Building monuments, creating identity: cattle cult as a social response to rapid environmental changes in the Holocene Sahara. Quat. Int. 151, 50–62 (2006).

47. Dunne, J. et al. First dairying in green Saharan Africa in the fifth millennium BC. Nature 486, 390–394 (2012).

48. di Lernia, S. et al. Inside the "African Cattle Complex": animal burials in the Holocene Central Sahara. PLoS ONE 8, e56879+ (2013).

49. Ruddiman, W. F. The Anthropocene. Annu. Rev. Earth Planet. Sci. 41, 45–68 (2013).

50. Dargie, G. C. et al. Age, extent and carbon storage of the central Congo basin peatland complex. Nature 542, 86–90 (2017).

51. Diamond, J. Collapse: How Societies Choose to Fail or Succeed (Penguin, 2005).

52. Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4, 2486 (2013).

53. Vermeersch, P. M. Comment on “The demographic response to Holocene climate change in the Sahara”, by Katie Manning and Adrian Timpson (2014). Quat. Sci. Rev. 110, 172–173 (2015).

54. Torfing, T. Neolithic population and summed probability distribution of ¹⁴C-dates. J. Archaeol. Sci. 63, 193–198 (2015).

55. Timpson, A., Manning, K. & Shennan, S. Inference mistakes in population proxies: a response to Torfing’s “Neolithic population and summed probability distribution of ¹⁴C-dates”. J. Archaeol. Sci. 63, 199–202 (2015).

56. Manning, K. & Timpson, A. Response to “Comment on The demographic response to Holocene climate change in the Sahara”, by Katie Manning and Adrian Timpson (2014)”. Quat. Sci. Rev. 110, 173–175 (2015).

57. Brown, D., Brownrigg, R., Haley, M. & Huang, W. The NCAR Command Language (NCL) (version 6.4.0). (UCAR/NCAR Computer Information System and Laboratory: Boulder, CO, 2017).

Acknowledgements
Martin Ziegler, Tim Shanahan and Eiel Roehling kindly provided data—along with advice on its use. Zhenghyu Liu gave timely and helpful advice during the model development. David Thornalley, Adrian Timpson, Jonathan Holmes, Chronis Tzedakis, as well as Bill Ruddiman, joined in fruitful discussions. Katie Manning was supported by the Leverhulme Trust (RPG-2016-115) and the European Research Council project (249390).

Author contributions
CB conceived the project with KM. The observational and modelling results were generated by CB. KM developed the discussion around pastoralist feedbacks with MM and CB. CB and MM developed and refined the diagrams. All authors contributed to the ideas and text contained in the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-06321-y.

Competing interests: The authors declare no competing interests.

Reprints and permissions information is available online at https://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018