Phase diagram and weak-link behavior in Nd-doped CaFe$_2$As$_2$

Bo Gao, Xiaojiang Li, Qiucheng Ji, Gang Mu, Wei Li, Tao Hu, Ang Li and Xiaoming Xie

State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China

E-mail: mugang@mail.sim.ac.cn

Received 17 July 2014, revised 22 September 2014
Accepted for publication 24 September 2014
Published 11 November 2014

New Journal of Physics 16 (2014) 113024
doi:10.1088/1367-2630/16/11/113024

Abstract

The transport properties, phase diagram, and dopant distribution are investigated in systematically Nd-doped CaFe$_2$As$_2$ single crystals. Coexistence of two superconducting (SC) phases with different critical transition temperature (T_c) is observed. The low-T_c phase emerges as $x \geq 0.031$, and the T_c value increases to its maximum value of about 20 K at $x = 0.083$, the maximum doping level in our study. As $x \geq 0.060$, the high-T_c phase with a T_c value of about 40 K is observed. The structure transition (STr) from tetragonal to orthorhombic phase vanishes suddenly around $x = 0.060$, where a new STr from tetragonal to collapsed tetragonal phase begins to turn up. Compared to the low-T_c phase, the end point of SC transition of the high-T_c phase is more sensitive to the magnetic field, showing a characteristic of Josephson weak-link behavior. Possible scenarios about this system are discussed based on our observations. We also find that the non-uniform SC properties cannot be attributed to the heterogeneous Nd distribution on the micro scale, as revealed by the detailed energy dispersive x-ray spectroscopy measurements.

Keywords: Fe-based superconductors, Nd-doped CaFe$_2$As$_2$, phase diagram, weak-link behavior
1. Introduction

Fe-based superconductors have been studied extensively since the report of LaFeAsO$_{1-x}$F$_x$ with a T_c of 26 K [1, 2]. Among the different systems, the AFe$_2$As$_2$ compounds (A = Ba, Sr, Ca and Eu, so called ‘122’ system) with the ThCr$_2$Si$_2$-type structure [3] are widely studied because single crystals with high quality are easily accessible [4]. The parent compounds of the 122 system undergo a phase transition from a high temperature tetragonal, paramagnetic phase (T phase) to a low temperature orthorhombic, antiferromagnetic phase (O phase). The antiferromagnetic order can be systematically suppressed and superconductivity can develop by the means of chemical substitution or applying pressure. The highest T_c value in the 122 system is still lower than 55 K in the RFeAsO (1111; R = rare-Earth elements) system [5]. Superconductivity with a maximum T_c of 38 K has been achieved in Ba$_{1-x}$K$_x$Fe$_2$As$_2$ by hole-doping [6]. Meanwhile, electron-doping usually induces superconductivity at a lower temperature (around 22 K) by substituting Fe ions with other transition metals [7–9]. This is typically attributed to the imperfection of the FeAs conducting layers induced by doping.

In order to further enhance the T_c, much attention has been paid to electron doping approached by substitution of trivalent rare-Earth elements ions (Re$^{3+}$) on divalent A$^{2+}$ ions in the 122 system without affecting the FeAs layers [10–16]. However, superconductivity in single-crystalline samples is only attained in systems based on CaFe$_2$As$_2$. Besides the T–O transition at ambient pressure for CaFe$_2$As$_2$, the tetragonal phase transforms to a new collapsed tetragonal structure (cT, both the a-axis and c-axis lattices shrink) when a hydrostatic pressure (>0.35 GPa) is applied [17, 18]. Recently, it is found that this cT phase can be stabilized at ambient pressures by doping Pr or Nd into CaFe$_2$As$_2$. In contrast, the substitution of up to 28% La or 17% Ce does not drive this T–cT transition [12]. More surprisingly, two superconducting (SC) phases with T_c of about 20 K and 40–49 K respectively were discovered in the rare-Earth-doped Ca$_{1-x}$Re$_x$Fe$_2$As$_2$ (Re = La, Ce, Pr and Nd) compounds, regardless of this T–cT structural evolution [12–16]. Although the high-T_c phase exceeds the highest T_c ~ 38 K in the hole-doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$, the SC volume fraction is very low suggesting the absence of bulk superconductivity. The origin of the non-bulk and two-phase superconductivity has been attributed to the minor foreign phase, interface or filamentary superconductivity, Josephson junction coupling between grains et al, which is still an open issue and needs more in-depth investigations [14, 19, 20].

To the best of our knowledge, a systematic investigation on the Nd-doped CaFe$_2$As$_2$ system is still lacking. Moreover, the temperature versus doping phase diagram of this system is still not clear. In the present work, we report a systematic investigation on the characterization and phase diagram of electron-doped Ca$_{1-x}$Nd$_x$Fe$_2$As$_2$ single crystals. The behaviors of field induced resistance broadening for SC transition are also observed, indicating a weak-link feature in the present system.

2. Experimental details

Single crystals of systematically Nd-doped CaFe$_2$As$_2$ were grown using a self-flux method. The FeAs precursor was synthesized by the reaction of Fe powder and As chips at 700 °C for 20 h in a vacuum quartz tube. Appropriate amounts of the starting materials of FeAs, Ca and Nd with the ratio of 4:(1–x):x were placed in an alumina crucible, and sealed in an arc-welded iron tube.
The sample was heated to 1200 °C slowly and held for 5 h, and then cooled to 1030 °C with a rate of 3–6 °C h⁻¹ to grow the single crystals. The obtained single crystals show a shiny surface and are easily cleaved into plates.

The phase identification and crystal structure were characterized by x-ray diffraction (XRD) with Cu K radiation. The actual Nd concentrations were checked and determined by the energy dispersive x-ray spectroscopy (EDS) measurements. The resistance measurements with magnetic fields up to 9 T were carried out by using a standard four-contact method with a quantum design physical property measurement system (PPMS).

3. Results and discussion

Figure 1(a) shows the XRD θ–2θ patterns for four typical Ca₁₋ₓNdₓFe₂As₂ single crystals with different doping levels. The sharp (00l) diffraction peaks suggest that the crystallographic c-axis is perpendicular to the plane of the single crystals with an excellent crystalline quality. The calculated c-axis lattice parameters as a function of Nd content are plotted in figure 1(b). The data of the parent phase are taken from the report by S R Saha et al [12]. It can be found that the c-axis shrinks monotonously with increasing x, which implies a successful chemical substitution and is also consistent with previous reports [12].
Figure 2 presents the temperature dependence of resistivity under zero fields for Ca$_{1-x}$Nd$_x$Fe$_2$As$_2$ single crystals, normalized to the data at 300 K. The data of parent phase are taken from the report by another group [12]. Several features are observed at different temperatures. In the inset of figure 2, we denote them by arrows for the sample with $x=0.060$ as an example, where T_O, T_{cT}, T_{cH}, and T_{cL} represent the transition temperature to the orthorhombic phase, to the collapsed tetragonal phase, the onset transition temperature of the high-T_c phase, and that of the low-T_c phase, respectively.

From our data we can see that with Nd doping the resistivity anomaly due to the tetragonal to orthorhombic structure transition (STr) shifts gradually to lower temperature and disappears around $x=0.060$. Another conspicuous feature is a sharp and dramatic drop in resistivity when the doping level $x \geq 0.060$. This feature is associated with a STr from the T phase to the cT phase [12, 17]. We note that there exists a hysteresis for the T–cT STr with increasing and decreasing temperature. Here we only show the data collected with increasing temperature. With increasing x, this resistivity transition shifts to higher temperatures, which is similar to that observed in Ca$_{1-x}$Pr$_x$Fe$_2$As$_2$ based on neutron-diffraction measurements [12]. For the sample with $x=0.060$, the coexistence of two structure transitions may be due to the local inhomogeneity. Along with the suppression of the T–O phase transition, resistivity decreases quickly below 10 K as $x \geq 0.031$, suggesting the appearance of a SC transition. When $x \geq 0.060$, two SC transition steps appear in the low temperature region, which seems to be a common feature in Ca$_{1-x}$Re$_x$Fe$_2$As$_2$. Both SC transitions are broad and no zero resistance was observed in some of the samples down to 2 K.

Based on the resistivity behaviors described above, we can establish a doping-temperature (x-T) phase diagram for Ca$_{1-x}$Nd$_x$Fe$_2$As$_2$, which is shown in figure 3. In the lower-doped side ($x \leq 0.060$), superconductivity of the low-T_c phase coexists with the T–O transition. Similar behaviors have also been observed in the hole-doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$ [21], electron-doped BaFe$_{2-x}$Co$_x$As$_2$ [22] and other rare-Earth-doped CaFe$_2$As$_2$ systems [13]. The suppression rate of the T_O temperature in Ca$_{1-x}$Nd$_x$Fe$_2$As$_2$ is much larger than that of Ca$_{1-x}$La$_x$Fe$_2$As$_2$, in which the T–O transition is absent when the doping level of La $x>0.13$ [13]. When the doping level increases to 0.060, the T–O STr vanishes suddenly and a new T–cT STr begins to turn up. At
the same time, the high-T_c phase emerges with an almost invariable T_c value of about 40 K. In contrast, the T_c value of the low-T_c phase is monotonically increased from 10 K to about 20 K with x increasing. Unlike other rare-Earth-doped CaFe$_2$As$_2$, both SC phases are detected clearly from the resistivity data in the high-doped range in our system, meaning that at least the high-T_c phase doesn’t form a continuous percolative path for the current. This may be due to the lower solubility limit of the Ca$_{1-x}$Nd$_x$Fe$_2$As$_2$ compounds. In the Ca$_{1-x}$La$_x$Fe$_2$As$_2$ system, only the high-T_c phase can be detected by transport measurements, when the doping level $x \geq 0.21$ [13]. Nevertheless, the distinct coexistence of two SC transitions in resistivity facilitates our investigation on the intrinsic natures of the two SC phases (see the next paragraph). Comparing our results with other reports on La- and Pr-doped CaFe$_2$As$_2$ systems, it is concluded that the high-T_c phase appears at the doping level when the structural (T–O)/antiferromagnetic phase transition is totally suppressed. This is further demonstrated recently by the high pressure work on Ca$_{1-x}$La$_x$Fe$_2$As$_2$ samples [23]. One distinct feature for our phase diagram is the presence of the cT structure in the high doping region $0.060 \leq x \leq 0.083$, which is absent in the Ca$_{1-x}$La$_x$Fe$_2$As$_2$ system [13]. This may suggest that the cT phase is irrelevant to the high-T_c superconductivity in the rare-Earth-doped CaFe$_2$As$_2$ system.

To check the influence of magnetic fields on the two SC phases, we measured the temperature dependence of the resistivity under different magnetic fields up to 9 T. The magnetic fields were applied along the c-axis of the single crystals. Here we show the data for one sample with $x=0.060$ (denoted as 0.060–2) in figure 4. The transition temperature of superconductivity is suppressed gradually and the transition is broadened with increasing magnetic fields. However, obvious differences for the influence of magnetic field on the two SC phases are observed. An un conspicuous field induced resistance broadening behavior is

Figure 3. Doping-temperature (x-T) phase diagram of Ca$_{1-x}$Nd$_x$Fe$_2$As$_2$. The data of parent phase are taken from the report by another group [12]. The regions with different colors represent the different structural phases. The two SC phases with different T_c are revealed by black and blue patterns, respectively.
observed in the low-T_c phase. For the high-T_c phase, in contrast, the end point of the SC transition is very sensitive to the magnetic field, which shifts obviously to lower temperatures even under a magnetic field of 0.05 T. We notice that similar behaviors can be seen in the data for the Ca$_{1-x}$La$_x$Fe$_2$As$_2$ system [24]. We argue that this is a typical characteristic of Josephson weak links, which has been observed at the high-angle grain boundaries in high-T_c cuprate superconductors [25, 26].

We attempted to further explore the possible origins of the non-uniform SC properties in the present system. The distribution of the Nd-dopant on a micro-scale is investigated by EDS measurements. The mapping image of Nd concentration and the chart of its distributions throughout an area of 36 \times 26 μm for the sample with $x = 0.074$ are shown in figures 5(a) and (b). The spatial resolution is 1.9 μm. It shows a Nd distribution ranging from 0.061 to 0.086 and an average concentration of 0.074, which is similar to that reported on a Pr-doped CaFe$_2$As$_2$ system [20]. The full width at half maximum of the profile for the histogram in figure 5(b) is about 0.009. Our data indicate that the two-SC-phase feature observed in the present system cannot be attributed to the Nd distribution on the micro scale. Of course we cannot rule out possible heterogeneous features responsible for the non-uniform SC behaviors on a smaller scale (e.g. nano scale). It was indicated that the high-T_c phase is not an interfacial

![Figure 4](image.png)

Figure 4. (a) Temperature dependence of resistivity with applied fields up to 9 T measured on one sample $x = 0.060-2$. (b) Field–temperature phase diagram derived from the data in panel (a).
superconductivity [23] or a filamentary-type superconductivity caused by local pinning strength and local structural defects [12, 13]. Very recently, K Gofryk et al [20] reported that the inhomogeneous and strongly localized high-T_c phase is a kind of granular filamentary superconductivity emerging from clover-like regions associated with Pr dopants composed of three or four atoms in Pr-doped CaFe$_2$As$_2$. These regions with a SC gap of $\Delta \sim 30$ meV are separated and surrounded by other low-T_c phases with $\Delta \sim 15$ meV and non-SC regions. So the weak-link behavior of the high-T_c phase observed in our data is likely to originate from the boundaries between these high-T_c regions.

4. Conclusions

In the present work, we have investigated the phase diagram and field induced resistance broadening behavior of Ca$_{1-x}$Nd$_x$Fe$_2$As$_2$ single crystals. It is found that the c-axis lattice parameter decreases with the increase of Nd substitution. Coexistence of two SC phases is observed. The low-T_c phase exists as $x \geq 0.031$, and the high-T_c phase with a T_c value of about 40 K emerges when $x \geq 0.060$. The structural (T–O)/magnetic transition is found in the low Nd-doping region and totally suppressed around $x=0.060$. The new cT coexists with the high-T_c
phase in the same doping range. Compared to the low-T_c phase, the end point of the SC transition of the high-T_c phase shifts obviously to lower temperature even under a field of 0.05 T, showing a weak-link behavior. Detailed EDS measurements indicate that the non-uniform SC properties cannot be attributed to the heterogeneous Nd distribution on the micro scale.

Acknowledgments

This work is supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (no. KJCX2-EW-W11), the National Natural Science Foundation of China (no. 11204338), and the ‘Strategic Priority Program (B)’ of the Chinese Academy of Sciences (no. XDB04040300).

References

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 45 3296
[2] Chen X H, Dai P C, Feng D L, Xiang T and Zhang F C 2014 Natl Sci. Rev. 1 371
[3] Rotter M, Tegel M, Schellenberg I, Hermes W, Pöttgen R and Johrendt D 2008 Phys. Rev. B 78 020503(R)
[4] Luo H Q, Wang Z S, Yang H, Cheng P, Zhu X Y and Wen H H 2008 Supercond. Sci. Technol. 21 125014
[5] Ren Z A et al 2008 Chin. Phys. Lett. 25 2215
[6] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[7] Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004
[8] Li L J et al 2009 New J. Phys. 11 025008
[9] Han F et al 2009 Phys. Rev. B 80 024506
[10] Wu G, Liu R H, Chen H, Yan Y J, Wu T, Xie Y L, Ying J J, Wang X F, Fang D F and Chen X H 2008 Europhys. Lett. 84 27010
[11] Qi Y P, Gao Z S, Wang L, Wang D L, Zhang X P, Yao C, Wang C L, Wang C D and Ma Y W 2012 Supercond. Sci. Technol. 25 045007
[12] Saha S R, Butch N P, Drye T, Magill J, Ziemak S, Kirshenbaum K, Zavalij P Y, Lynn J W and Paglione J 2012 Phys. Rev. B 85 024525
[13] Sun Y, Zhou W, Cui L J, Zhuang J C, Ding Y, Yuan F F, Bai J and Shi Z X 2013 AIP Adv. 3 102120
[14] Lv B, Deng L, Gooch M, Wei F, Sun Y, Meen J K, Xue Y-Y, Lorenz B and Chu C-W 2011 Proc. Natl Acad. Sci. USA 108 15705
[15] Gao Z S, Qi Y P, Wang L, Wang D L, Zhang X P, Yao C, Wang C L and Ma Y W 2011 Europhys. Lett. 95 67002
[16] Ying J J et al 2012 Phys. Rev. B 85 144514
[17] Kreyssig A et al 2008 Phys. Rev. B 78 184517
[18] Goldman A I et al 2009 Phys. Rev. B 79 024513
[19] Zeljkovic I, Huang D, Song C-L, Lv B, Chu C-W and Hoffman J E 2013 Phys. Rev. B 87 201108(R)
[20] Gofryk K, Pan M, Cantoni C, Saparov B, Mitchell J E and Sefat A S 2014 Phys. Rev. Lett. 112 047005
[21] Avcı S et al 2012 Phys. Rev. B 85 184507
[22] Chu J H, Analytis J G, Kucharczyk C and Fisher I R 2009 Phys. Rev. B 79 014506
[23] Saha S R et al 2014 Phys. Rev. B 89 134516
[24] Zhou W, Yuan F F, Zhuang J C, Sun Y, Ding Y, Cui L J, Bai J and Shi Z X 2013 Supercond. Sci. Technol. 26 095003
[25] Gaffney C, Petersen H and Bednar R 1993 Phys. Rev. B 48 3388
[26] Rani P, Pal A and Awana V P S 2014 Physics C 497 19