Цель. Анализ схем фармакотерапии декомпенсированной формы сахарного диабета 2 типа (СД2) и оценка их соответствия клиническим рекомендациям.

Материалы и методы. Был выполнен фармакологический ретроспективный анализ 54 историй болезни пациентов с декомпенсированной формой СД2. В 1 группу (n=24; 44%) вошли пациенты, у которых по окончании 3-х месяцев гипогликемической терапии наблюдалось снижение уровня гликированного гемоглобина (HbA1c) на 50% и более, а во 2 группу (n=30; 56%) – у которых уровень HbA1c снизился менее, чем на 50%.

Результаты. Уровень HbA1c в 1-й группе составил 10,4%, во 2-й группе 13,2% (p<0,001). Однако целевой уровень глюкозы плазмы венозной крови и HbA1c не были достигнуты ни в одной из групп пациентов. Общее количество назначаемых лекарственных средств составляло от 4 (в 25% (n=6) и 10% (n=3) случаев в 1 и 2 группах, соответственно) до 8 (в 12,5% (n=3) и 20% (n=6) случаев в 1 и 2 группах, соответственно), то есть полипрагмазия наблюдалась в абсолютном большинстве случаев. В ряде случаев были зафиксированы нарушения клинических рекомендаций: пациентам при наличии ожирения назначались препараты инсулина; при наличии в анамнезе сердечно-сосудистых заболеваний атеросклеротического генеза – производные сульфонилмочевины, но при этом редко назначались современные сахароснижающие лекарственные средства (ингибиторы натрий-глюкозного котранспортера 2 типа, ингибиторы дипептидилпептидазы-4), обладающие доказанными преимуществами в отношении снижения сердечно-сосудистых рисков.

Заключение. Тактика лечения данной медико-социально значимой патологии в реальной клинической практике не в полной мере соответствует актуальным клиническим рекомендациям и требует дальнейшей оптимизации контроля эффективности.

Ключевые слова: гликированный гемоглобин; инсулин; полипрагмазия; сахарный диабет 2 типа; сахароснижающие лекарственные средства

Список сокращений: HbA1c – гликированный гемоглобин; СД – сахарный диабет; СД1 – сахарный диабет 1 типа; СД2 – сахарный диабет 2 типа; ЛС – лекарственное средство; ИМТ – индекс массы тела; инНПП-2 – ингибитор натрий-глюкозного котранспортера 2 типа; арГПП-1 – агонист рецепторов глукозонаправленного пептида 6; ИДПП-4 – ингибитор дипептидилпептидазы-4; БАБ – бета-адреноблокатор; ИАПФ – ингибитор ангиотензинпревращающего фермента; АМР – антагонист минералокортикоидных рецепторов; БКК – блокатор кальциевых каналов; ЛЛПВП – липопротеины высокой плотности; ЛПНП – липопротеины низкой плотности; p – уровень статической значимости; ОШ – отношение шансов; ДИ – доверительный интервал; Q1–Q3 – интерквартильный размах; M – медиана; SD – стандартное отклонение.
ВВЕДЕНИЕ

Сахарный диабет (СД) – одна из наиболее важных медико-социальных проблем общественного здравоохранения в мире, поскольку является хроническим, незлым заболеванием, терапевтические аспекты которого требуют от пациента существенного изменения своего образа жизни [1].

Общая численность пациентов с СД в Российской Федерации по данным на январь 2019 г. составила 4584575 (3,12% населения РФ), в том числе: СД1 типа (СД1) – 5,6% (256,2 тыс.), СД2 типа (СД2) – 92,4% (4,24 млн.). В настоящее время средняя распространенность СД1 составляет 174,4 на 100 тыс. населения, СД2 – 2885,7 на 100 тыс., других типов СД – 61,2 на 100 тыс. населения1. С 2000 г. численность пациентов с СД в РФ выросла в 2,2 раза: с 2,043 млн. до 4,58 млн. человек. Как и во многих странах мира, в РФ продолжается рост распространенности преимущественно СД2, с ежегодным увеличением более чем на 250–300 тыс. пациентов. В течение 2018 г. выявлено 10805 новых случаев СД1 и 298628 – СД2 [2]. Однако и эти цифры не в полной мере отражают истинные масштабы неинфекционной эпидемии. Дело в том, что в регистре2 фиксируются только официально зарегистрированные случаи заболевания. При этом, по данным национального эпидемиологического исследования NATION [3], включавшего более 26 тыс. человек в 63 субъектах РФ, доля не выявленного СД2 в среднем составляет 54%. Таким образом, фактическую распространенность СД2 при активном скрининге по уровню HbA1c почти в 2 раза выше официально регистрируемой и может достигать 8–9 млн. человек [2].

Высокая медико-социальная значимость СД обусловлена, в том числе, высоким риском развития ассоциированных микро- (нефропатия, ретинопатия) и макроангиопатий (ишемическая болезнь сердца, цереброваскулярные заболевания, заболевания артерий нижних конечностей). В частности, СД является одним из ведущих факторов риска развития острых нарушений мозгового кровообращения, в клинической практике приводящих к так называемым «сосудистым катастрофам» в 3–4 раза чаще, чем у пациентов без нарушений углеводного обмена [4–6].

HbA1c – интегральный показатель гликемии, служащий незаменимым диагностическим критерием в мониторинге углеводного обмена, оценке эффективности сахароснижающей терапии и прогнозе течения СД, поэтому его определение в настоящее время является обязательным [7, 8]. Так, снижение уровня HbA1c на 1% у больных с СД2 снижает риск смерти на 21%, острого инфаркта миокарда – на 14%, микрососудистых осложнений – на 37% [9, 10]. Согласно критериям Всемирной организации здравоохранения, выделяют компенсированный диабет (6,0–6,5% HbA1c), субкомпенсированный диабет (6,6–7,0% HbA1c) и декомпенсированный диабет (> 7,0% HbA1c) [9].

Лечение СД – одна из наиболее затратных статей бюджета здравоохранения во многих странах мира. Так, в 2017 г. объем рынка сахароснижающих препаратов в РФ составил примерно 11612,5 млн. рублей. В США в 2012 г. на лечение СД было потрачено 245

1 Федеральный регистр сахарного диабета РФ. [Электронный ресурс]. – Режим доступа: http://sd.diaregistry.ru/content/epidemiologiya.html
2 Там же.
миллиардов долларов, в Италии в 2014 г. — около 20,3 миллиардов евро [6, 11]. При эффективной тера- пии на ранней стадии заболевания уменьшаются осложнения болезни, инвалидизация и смертность. При этом, отмечается увеличение расходов на пер- вичную стационарную, а затем — снижение за счет предотвращения госпитализаций, связанных с ос- ложнениями [12].

Пациенты с СД2, особенно старших возрастных групп, часто имеют сопутствующие хронические за- болевания, такие как артериальная гипертензия, дислипидемия, ишемическая болезнь сердца, депрессивные расстройства, хроническое заболевание почек, что требует одновременного назначения нескольких препаратов, как правило, более 5—7 лекарственных средств (ЛС), что подвергает больных данным про- филь высокому риску полипрагмазии [13, 14].

С позиций фундаментальной и клинической фар- макологии, полипрагмазия является основной при- чиной развития нежелательных побочных реакций у людей пожилого и старческого возраста [15, 16]. Полипрагмазия увеличивает вероятность побочных эффектов ЛС, «дублирование» фармакотерапии, обостряет вопросы лекарственных взаимодействий, снижает приверженность пациентов к антидиабе- тической терапии, зачастую обусловливает неоптимальный гликемический контроль. Наличие поли- прагмазии также связано с высокой дозой назначения ЛС, при котором их побочные эффекты ошибочно интерпретируются как новые патологические состояния, что может привести к назначению новых ЛС. Поли- фармация имеет и другие негативные последствия для здоровья, такие как повышенный риск госпита- лизации, ухудшение клинического статуса, низкое качество жизни пациентов и значительные экономи- ческие последствия [13, 14].

ЦЕЛЬ. Анализ схем фармакотерапии декомпен- сированной формы сахарного диабета 2 типа в усло- виях эндокринологического стационара и оценка их соответ- ствия клиническим рекомендациям.

МАТЕРИАЛЫ И МЕТОДЫ

Ретроспективное исследование было основано на анализе медицинских карт 54 пациентов с СД2, в плановом порядке госпитализированных в стан- донов эндокринологического профиля в 2019 г. В на- шем исследовании изучались исключительно офи- циальные документы (истории болезни), их анализ не включал прямой идентификации личности паци- ентов, поэтому конфиденциальность персональных данных ни в коей мере не была нарушена. Таким образом, планирование и проведение исследования полностью соответствовали положениям об этиче- ской корректности выполнения биомедицинских ра- бот [17, 18].

Критерии включения пациентов в исследова- ние: СД2 в стадии декомпенсации, длительность за- болевания более 10 лет, длительный и регулярный прием сахароснижающих ЛС. Критерии исключения пациентов из исследования: СД1 и иные нарушения углеводного обмена, прием гиполигикемических ЛС менее 3 месяцев, неорганическое и/или функцио- нальное поражение головного мозга, синдром стар- ческой астении (по критериям Fried), отягощенная наследственность, заболевания щитовидной железы, заболевания печени, органов брюшной полости, возраст пациентов до 45 лет.

Анализ жизни, модифицируемые, не модифи- цируемые факторы риска, биохимические показате- ли, терапевтические схемы и их модификации для лечения гипергликемии и сопутствующей патологии были подвергнуты фармакологической оценке, в том числе и на соответствие существующим клини- ческим рекомендациям с целью выбора наиболее оптимальной с позиции лечащего врача и пациента. В качестве критерия эффективности проводимой те- рапии был выбран уровень HbА1с.

Исходя из оценки уровня HbА1с (целевые уров- ни варьировали от 6,5% до 8%, исходные — от 13% до 17,2%) в динамике через 3 месяца после госпитали- зации среди пациентов были выделены две группы: в 1 группу (n=24) вошли пациенты, у которых наблю- дались снижение уровня HbΑ1с на 50% и более, во 2 группу (n=30) — больные, у которых уровень HbА1с снизился менее, чем на 50%.

Группы пациентов были сопоставимы по полу, возрасту, исходным показателям клинического статуса (p>0,05). Общая клиническая характеристи- ка пациентов 1 и 2 групп представлена в таблицах 1 и 2.

Накопление, корректировка, систематизация исходной информации и визуализация полученных результатов осуществлялись в электронных таблицах Microsoft Office Excel 2019. Статистический анализ проводился с использованием программы IBM SPSS Statistics v.26 (IBM Corporation). Материалы исследо- вания были подвергнуты статистической обработке с использованием методов параметрического и не- параметрического анализа: критерий Шапиро-Уил- ка, t-критерий Стьюдента, U-критерий Манна-Уитни, корреляционный анализ. Результаты оценивались с использованием критерия Стьюдента для независимых выборок, с поправкой Бонферрони. Величины корреляций интерпретировались в соответствии со шкалой Чеддока, F-критерий Фишера, критерий Кохрена, критерий Йеффе, U-критерий Манна—Уитни.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Прежде всего, нами был оценен статус пациентов по основному заболеванию по окончании 3 мес- цей гипогликемической терапии. Было выявлено, что целевой уровень глюкозы плазмы венозной кро-
Таблица 1 – Общая клиническая характеристика (количественные показатели) пациентов

Показатель	1 группа (n=24)	2 группа (n=30)	p
Возраст			
Мужчины	61,0 ± 6,9	60,5 ± 6,2	0,15
Женщины	62,0 ± 6,0	62,0 ± 6,6	
Иммунитет			
Мужчины	12,8 ± 4,4	12,5 ± 3,6	
Женщины	13,7 ± 6,1	13,6 ± 5,3	
ИМТ			
Мужчины	32,0 ± 3,7	32,0 ± 3,7	
Женщины	31,9 ± 3,6	31,9 ± 3,6	

Примечание: 1 группа (n=24) – пациенты со снижением уровня HbA1c на 50% и более; 2 группа (n=30) – пациенты со снижением HbA1c менее, чем на 50%; HbA1c – гликированный гемоглобин; ИМТ – индекс массы тела; Me – медиана; Q1–Q3 – интерквартильный размах; SD – стандартное отклонение; p – уровень статистической значимости (критерий Шапиро-Уилка)

Таблица 2 – Общая клиническая характеристика (качественные показатели) пациентов

Показатель	Группы пациентов	1 группа (n=24)	2 группа (n=30)	p*	V**	OШ; 95% ДИ						
Пол												
Мужской	9	37,5	15	3,3	0,17	0,60; 0,20–1,8						
Женский	15	62,5	15	50	50							
Социальный статус												
Работает	0	24	100									
Не работает	2	6,7	28	93,3								
Ожирение												
Имеется	0	83,3	4	16,7	15	50						
Отсутствует	20	15	50	50								
Артериальная гипертензия												
Имеется	24	100	0	0								
Отсутствует	0	0	30	100	0							
Ишемическая болезнь сердца												
Имеется	12	50	50	15	50	1,00; <0,001						
Отсутствует	50	12	50	15	50	0,33–3,0						
Наследственная предрасположенность к СД		18	75	6	25	21	70	9	30	0,558	0,098	0,67; 0,21–2,2
Школа пациентов с СД												
Потребляли	18	75	6	25	26	86,7						
Не потребляли	18	75	6	25	26	86,7						

Примечание: 1 группа (n=24) – пациенты со снижением уровня HbA1c на 50% и более; 2 группа (n=30) – пациенты со снижением HbA1c менее, чем на 50%; n – абсолютное значение; p-value – уровень статистической значимости (статистически значимо при p<0,05*; критерий Фишера); **V – критерий Крамера; ОШ – отношение шансов; 95% ДИ – 95% доверительный интервал (имеет значение при выходе за границу 1)
Таблица 3 – Используемые схемы гипокликемической терапии в 1 и во 2 группах

Схема гипокликемической терапии	1 группа (n=24)	2 группа (n=30)	p*	V**
	Использующие	Не использующие	Использующие	Не использующие
1 Инсулин аспарт бифазный	0	0	24	100
2 Инсулин детемир + Инсулин лизпро	3	12,5	21	87,5
3 Инсулин-изофан [человеческий генно-инженерный] + Инсулин растворимый [человеческий генно-инженерный]	3	12,5	21	87,5
4 Инсулин детемир + Метформин	0	0	24	100
5 Метформин + Глибенкламид	2	8,4	22	91,6
6 Метформин + Гликлазид	0	0	24	100
7 (Дапаглифлозин + Метформин) + Глибенкламид	3	12,5	21	87,5
8 (Дапаглифлозин + Метформин) + Гозоглиптин + Глибенкламид	1	4,2	23	95,8
9 Инсулин детемир + Инсулин аспарт + Метформин	1	4,2	23	95,8
10 Инсулин гларгин + Инсулин аспарт + Метформин	1	4,2	23	95,8
11 Инсулин детемир + Метформин + (Антитела к С-концевому фрагменту β-субъединицы рецептора инсулина и антитела к эндотелиальной NO-сintéзазе аффинно очищенные)	0	0	24	100
12 Инсулин гларгин + Метформин + Гозоглиптин	3	12,5	21	87,5
13 Инсулин-изофан [человеческий генно-инженерный] + Метформин + Глибенкламид	0	0	24	100
14 Инсулин-изофан [человеческий генно-инженерный] + Метформин + (Антитела к С-концевому фрагменту β-субъединицы рецептора инсулина и антитела к эндотелиальной NO-сintéзазе аффинно очищенные)	3	12,5	21	87,5
15 Метформин + Глибенкламид + Алоглиптин	3	12,5	21	87,5
16 Инсулин гларгин + (Дапаглифлозин + Метформин) + Метформин	1	4,2	23	95,8
17 Инсулин детемир + Метформин + Глибенкламид	0	0	24	100
18 Метформин + Гозоглиптин	0	0	24	100

Примечание: 1 группа (n=24) – пациенты со снижением уровня HbA1c на 50% и более; 2 группа (n=30) – пациенты со снижением HbA1c менее, чем на 50%; n – абсолютное значение; p-value – уровень статической значимости (статистически значимо при p<0,05*; критерий Фишера); **V – критерий Крамера
Таблица 4 – Используемые группы гипогликемических ЛС в 1 и во 2 группах

Группы гипогликемических ЛС	Количество пациентов, имеющих ЛС данной группы в качестве компонента терапии	1 группа (n=24)	2 группа (n=30)	p*	V **	ОШ; 95% ДИ					
	Наличие ЛС в терапии	Отсутствие ЛС в терапии	Наличие ЛС в терапии	Отсутствие ЛС в терапии							
Бигуаниды	n	%	n	%	n	%	n	%	0,028	0,321	0,215; 0,06–0,82
Препараты инсулина	19	79,2	5	20,8	19	63,4	11	36,6	0,243	0,172	2,2; 0,64–7,6
Препараты сульфонилмочевины	15	62,5	9	37,5	17	56,7	13	43,3	0,783	0,059	0,78; 0,26–2,35
аргПП-1	3	12,5	21	87,5	1	3,3	29	96,7	0,312	0,174	4,14; 0,4–42,6
иНГЛТ-2	0	0	24	100	3	10	27	90	0,245	0,217	0,59; 0,41–0,69
иДПП-4	4	16,7	20	83,3	2	6,7	28	93,3	0,389	0,158	2,8; 0,47–16,8

Примечание: 1 группу (n=24) – пациенты со снижением уровня HbA1c на 50% и более; 2 группу (n=30) – пациенты со снижением HbA1c менее, чем на 50%; n – абсолютное значение; p-value – уровень статической значимости (статистически значимо при р<0,05*; критерий Фишера); ОШ – отношение шансов; 95% ДИ – 95% доверительный интервал (имеет значение при выходе за границу 1); **V – критерий Крамера; аргПП-1 – агонисты рецепторов глюкагоноподобного пептида-1; иНГЛТ-2 – ингибитор натрий-глюкозного котранспортёра 2 типа; иДПП-4 – ингибиторы дипептидилипептидазы-4

Таблица 5 – Используемые терапевтические схемы для антигипертензивных ЛС в 1 и 2 группах

Схема антигипертензивной терапии	Количество пациентов, получающих/не получающих данную схему	1 группа (n=24)	2 группа (n=30)	p*	V **						
	Использующие/не использующие	Использующие/не использующие									
	n	%	n	%	n	%	n	%			
1 Бисопролол + Индапамид + Периндоприл	0	0	24	100	9	30	21	70	<0,001	0,942	
2 Бисопролол + Индапамид + Лозартан	0	0	24	100	3	10	27	90			
3 Бисопролол + Амлодипин + Периндоприл	0	0	24	100	3	10	27	90			
4 Бисопролол + Индапамид	0	0	24	100	3	10	27	90			
5 Периндоприл + Индапамид	3	12,5	21	87,5	3	10	27	90			
6 Индапамид + Лозартан	0	0	24	100	3	10	27	90			
7 Бисопролол	0	0	24	100	3	10	27	90			
8 Бисопролол + Индапамид + Амлодипин + Кандесартан	0	0	24	100	3	10	27	90			
9 Бисопролол + Моксонидин + Нафелипин	3	12,5	21	87,5	0	0	30	100			
10 Индапамид	3	12,5	21	87,5	0	0	30	100			
11 Бисопролол + Моксонидин + Лозартан + Спиронолактон	3	12,5	21	87,5	0	0	30	100			
12 Метопропил + Индапамид + Кандесартан	3	12,5	21	87,5	0	0	30	100			
13 Амлодипин + Лозартан	3	12,5	21	87,5	0	0	30	100			
14 Индапамид + Периндоприл + Моксонидин + Бисопропил	3	12,5	21	87,5	0	0	30	100			
15 Индапамид + Лизинопропил + Амлодипин + Бисопролол	3	12,5	21	87,5	0	0	30	100			

Примечание: 1 группу (n=24) – пациенты со снижением уровня HbA1c на 50% и более; 2 группу (n=30) – пациенты со снижением HbA1c менее, чем на 50%; n – абсолютное значение; p-value – уровень статической значимости (статистически значимо при р<0,05*; критерий Фишера); **V – критерий Крамера.
Таблица 6 – Используемые группы антигипертензивных ЛС в 1 и 2 группах

Группы антигипертензивных ЛС	Количество пациентов, имеющих ЛС данной группы в качестве компонента терапии	1 группа (n=24)	2 группа (n=30)	p*	V **	ОШ; 95% ДИ					
	Наличие ЛС в терапии	Отсутствие ЛС в терапии	Наличие ЛС в терапии	Отсутствие ЛС в терапии							
	n	%	n	%	n	%	n	%			
Селективные БАБ	15	62,5	9	37,5	24	80	6	20	0,223	0,194	0,417; 0,12–1,4
иАПФ	15	62,5	9	37,5	15	50	15	50	0,417	0,125	0,60; 0,2–1,8
Диуретики	18	75	6	35	24	80	6	20	0,748	0,06	0,75; 0,2–2,7
Сартаны	9	37,5	15	62,5	9	30	21	70	0,577	0,079	1,4; 0,45–4,4
Статины	12	50	12	50	18	60	12	40	0,584	0,100	0,67; 0,23–1,9
АМР	9	37,5	15	62,5	0	0	30	100	<0,001	0,50	0,34; 0,22–0,51
БКК	9	37,5	15	62,5	6	20	24	80	0,223	0,194	2,4; 0,71–8,1

Примечание: 1 группа (n=24) – пациенты со снижением уровня HbA1c на 50% и более; 2 группа (n=30) – пациенты со снижением HbA1c менее, чем на 50%; p – абсолютное значение; p-value – уровень статической значимости (статистически значимо при p<0,05*; критерий Фишера); ОШ – отношение шансов; 95% ДИ – 95% доверительный интервал (имеет значение при выходе за границу 1); **V – критерий Крамера; БАБ – бета-адреноблокаторы; иАПФ – ингибиторы ангиотензинпревращающего фермента; АМР – антагонисты минералокортикоидных рецепторов; БКК – блокаторы кальциевых каналов.

В 1-й группе 62,5% (n=15) пациентам были назначены ЛС из группы производных сульфонилмочевины при наличии в анамнезе сердечно-сосудистых заболеваний атеросклеротического генеза. При этом имеются данные о том, что более «старые» представители производных сульфонилмочевины – глибенкламид, гликлазид, толбутамид – нарушают ишемическое прекондиционирование, то есть процесс адаптации миокарда к ишемии после ряда повторяющихся эпизодов прерывающей ишемии средней тяжести, это может служить причиной увеличения риска инфаркта миокарда и худшего прогноза после перенесенного инфаркта миокарда [19]. Назначение пациентам с ожирением препаратов инсулина, который усугубляет течение данного заболевания (повышает экспрессию переносчика Glut4 и активность ацетил-коА-карбоксилазы в адипоцитах, а также синтазы жирных кислот и липопротеинлипазы, что приводит к быструму клиренсу из циркуляции и депонированию глюкозы и липидов [19]), также вызывает вопросы: из 20 человек с ожирением они были назначены 17 больным (85%). При этом, в ходе ряда клинических исследований в странах Европы (Германия, Франция, Испания) пациенты, имеющие уровень HbA1c более 7%, на фоне базальной инсулинотерапии, не смогли достичь целевого уровня глюкозы плазмы венозной крови и HbA1c [21]. Кроме того, никто из пациентов 1-й группы не получал ингибитор натрий-глюкозного котранспортёра 2 типа (иНГЛТ-2) и в меньшем соотношении по сравнению с другими ЛС из групп агонистов рецепторов глюкагоноподобного пептида-1 (арГПП-1) (12,5% (n=3)) и ингибиторов дипептидилпептидазы-4 (иДПП-4) (16,7% (n=4)), обладающих доказанными преимуществами у пациентов СД 2 с ассоциированными сердечно-сосудистыми заболеваниями в аспекте снижения кардиоваскулярных и почечных рисков [19, 22]. Так, в ходе мета-анализа было обнаружено, что по сравнению с контрольной группой в группе с иНГЛТ-2 частота неблагоприятных сердечно-сосудистых событий (ОШ=0,86, 95% ДИ 0,80-0,93, р<0,0001), таких как инфаркт миокарда (ОШ=0,86, 95% ДИ 0,79-0,94, р=0,001), и смертности от них (ОШ=0,74, 95% ДИ 0,67-0,81, p<0,0001) была статистически ниже [23]. Что касается группы иДПП-4, то по результатам одного из клинических исследований, ее значимость в профилактике кардиоваскулярных осложнений по сравнению с иНГЛТ-2 не была столь выражена [24].

Во 2-й группе количество пациентов, получавших иНГЛТ-2, арГПП-1 и иДПП-4 также незначительно: 10% (n=3), 3,3% (n=1) и 6,7% (n=2) пациентов, соответственно. Назначение компетентных специалистов может быть направлено из группы пациентов, имеющих сопутствующие риски, относящиеся к сердечно-сосудистой системе атеросклеротического генеза, а также на выявление и лечение артериальной гипертонии и гиперхолестеринемии [25].
более низкой (22 года) смертностью от кардиоваскулярных осложнений по сравнению с монотерапией сульфонилмочевиной: частота смертельного исхода от инфаркта миокарда была ниже в группе, в качестве монотерапии был использован метформин (2 из 1454 участников (0,1%); среднее время наблюдения, 4 года), чем в группе глибутидина (3 из 1441 участника (0,2%); медиана наблюдения – 3,3 года).

При оценке вклада той или иной группы ЛС в достижение целевого уровня HbA1c с помощью точного критерия Фишера и критерия В-Крамера статистически значимый уровень (p=0,028) с относительно сильной силой связи был получен в отношении представителя группы бигуанидов – метформина. С целью определения роли вышеуказанного ЛС в схеме фармакотерапии был выполнен однофакторный (ANOVA), в ходе которого было установлено статистически значимое влияние его применения (p=0,018) на исход лечения в обеих группах. Вклад в дисперсию метформина, как компонента терапии, составил 10,3%.

При сопоставлении уровней глюкозы плазмы венозной крови и HbA1c с количеством назначенных гиполипидемических ЛС была установлена статistically значимая прямая корреляционная связь слабой тесности и обнаружено отсутствие корреляционной связи, соответственно, по шкале Чеддока. Таким образом, целесообразность назначения более 2-х представителей сахароснижающих ЛС отсутствовала.

Коморбидность пациентов, представленных в исследовании, также требовала оценки полипрепаративности, которая наносит существенный вред здоровью человека, ведет к экономическому изъятию, уменьшения количества госпитализаций. Но стоит отметить, что данное исследование также включало пациентов, поэтому имеющая место полифармация не была оправданной с точки зрения эффективности проводимой фармакотерапии.

Однако стоит отметить, что целевой уровень глюкозы плазмы венозной крови и HbA1c не были достигнуты ни в одной из групп пациентов, поэтому имеющая место полифармация не была оправданной с точки зрения эффективности проводимой фармакотерапии.

В качестве основного критерия, имеющейся у 100% пациентов в 1 и 2 группах пациентов, была рассмотрена артериальная гипертензия. Используемые частные схемы фармакотерапии и группы антигипертензивных средств, назначенные пациентам отражены в таблицах 5 и 6, соответственно.

При анализе фармакотерапии артериальной гипертензии были получены следующие данные. Пациенты 1 группы в 62,5% (n=15) случаев получали селективный бета-адреноблокатор (БАБ)– бисопролол. По данным литературы [26, 27], применение высокоселективных БАБ существенно не изменяют метаболизм липидов (общий холестерин, ЛПВП, ЛПНП, триглицериды) в сравнении с неселективными БАБ, которые нарушают толерантность к углеводам, повышают инсулинорезистентность, обладают гиперлипидемическим эффектом. В 37,5% (n=9) случаев было назначено 4 препарата в качестве лечения повышенного артериального давления и его осложнений. Пациентам 2 группы в 50% случаев (n=15) для лечения повышенного артериального давления назначались 3 препарата. В 30% (n=9) случаев была назначена двухкомпонентная схема (БАБ в данной схеме не включался).

При сопоставлении уровней глюкозы плазмы венозной крови и HbA1c с количеством назначенных гипотензивных ЛС (по показателю полипрепаративности артериальной гипертензии) была установлена относительная корреляционная связь слабой тесности (р=0,058) и обнаружено отсутствие корреляционной связи (р=0,292), соответственно, по шкале Чеддока.

При сравнении уровней глюкозы плазмы венозной крови и HbA1c с количеством назначенных гиполипидемических и гипотензивных ЛС обнаружено отсутствие корреляционной связи (р=0,878) и установлена отрицательная корреляционная связь слабой тесности (р=0,114), соответственно, по шкале Чеддока.

Общее количество ЛС, назначенных больным, 1 группы (гиполипидемические ЛС + антигипертензивные ЛС + статины) составило: 4 препарата в 25% (n=6) случаев; 5 – в 12,5% (n=3); 6 – в 12,5% (n=3); 7 – в 37,5% (n=9); 8 – в 12,5% (n=3). Общее количество ЛС, назначенных пациентам 2 группы (гиполипидемические ЛС + антигипертензивные ЛС + статины) составило: 4 препарата 10% (n=3); 5 препаратов 30% (n=9); 6 препаратов 20% (n=6); 7 препаратов 20% (n=6); 8 препаратов 20% (n=6). Таким образом, явление полипрепаративности наблюдалось в абсолютном большинстве случаев. При этом, следует еще раз отметить, что целевой уровень глюкозы плазмы венозной крови и HbA1c не были достигнуты ни в одной из групп пациентов, поэтому имеющая место полифармация не была оправданной с точки зрения эффективности проводимой фармакотерапии.
1. Назначаемая фармакотерапия должна быть основана на действующих клинических рекомендациях по лечению СД2.
2. Улучшить прогноз течения СД2, повысить качество жизни пациентов возможно лишь при комплексном подходе, включающем, в первую очередь, назначение адекватной патогенетической и персонализированной терапии, особенно в случае наличия коморбидных риск-ассоциированных патологий.
3. Каждый случай полипрепаратов должен быть оправдан в аспекте соотношения «эффективность-безопасность», а выбор конкретных ЛС для совместного использования — основан на учете вопросов их взаимодействия с точки зрения фундаментальной фармакологии.
4. При курации пациентов с СД2 крайне важен высокий профессиональный уровень и тесное сотрудничество специалистов различных профилей: эндокринологов, кардиологов, неврологов, нефрологов, офтальмологов, клинических фармакологов.

ФИНАНСОВАЯ ПОДДЕРЖКА
Данное исследование не имело какой-либо финансовой поддержки от сторонних организаций.

КОНФЛИКТ ИНТЕРЕСОВ
Авторы заявляют об отсутствии конфликта интересов.

АВТОРСКИЙ ВКЛАД
А.В. Сафроненко, Е.В. Ганцгорн — работа над концепцией и дизайном исследования, интерпретация результатов и окончательная редакция статьи; Е.А. Санина, М.А. Хачумова — набор и первичная обработка полученных результатов, перевод статьи на английский язык; И.И. Кузнецов — статистическая обработка первичных данных, интерпретация результатов; А.А. Кивва, В.И. Полякова — участие в поиске литературной справки и подготовке чернового варианта статьи.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Lin X., Xu Y., Pan X., Xu J., Ding Y., Sun X., Song X., Ren J., Shan P.F. Global and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025 // Sci. Rep. — 2020. — Vol. 10, No.1 — P. 14790. DOI: 10.1038/s41598-020-71908-9.
2. Шестакова М.В., Викулова О.К., Железнокова А.В., Исаков М.А., Дедов И.И. Эпидемиология сахарного диабета в Российской Федерации: что изменилось за последнее десятилетие? // Терапевтический архив. — 2019. — Т. 91, № 10 — С. 4–13. DOI: 10.26442/00403660.2019.10.000364.
3. Дедов И.И., Шестакова М.В., Галстян Г.Р. Распространенность сахарного диабета 2 типа у взрослого населения России (исследование NATION) // Сахарный диабет. — 2016. — Т. 19, № 2 — С. 104–112. DOI: 10.14341/DMM2004116-17.
4. Ганцгорн Е.В., Алексеев А.Н. Клинический случай: «Трудный пациент» и проблема полиморбидности и полипрепаратов // Медицина. — 2018. — № 4 — С. 99–108. DOI: 10.29234/2308-9113-2018-6-4-99-108.
5. Ганцгорн Е.В., Насыров А.В., Шахбанов А.Ш., Алексеев А.Н. Сердечно-сосудистая коморбидность и сахарный диабет(клинический случай) // Медицина. — 2020. — №1. — С. 34–50. DOI: 10.29234/2308-9113-2020-8-1-34-50.
6. Ткачева О.Н., Остроумова О.Д., Котовская Ю.В., Зубова А.В., Потеряева О.Н., Русских Г.С., Геворгян М.М. Содержание проинсулина и гликозилированного гемоглобина в зависимости от стадии компенсации сахарного диабета // Journal of Siberian Medical Sciences. — 2015. — № 3 — С. 93.
7. Кивва А.А., Викулова О.К., Железнякова А.В., Галстян Г.Р., Зубова А.В., Потеряева О.Н., Русских Г.С., Геворгян М.М. Содержание проинсулина и гликозилированного гемоглобина в зависимости от стадии компенсации сахарного диабета // Медицина. — 2019. — № 3 — С. 93.
8. Kassahun T., Esthetie T., Gesessew H. Factors associated with glycemic control among adult patients with type 2 diabetes mellitus: a cross-sectional survey in Ethiopia // BMC research notes. — 2016. — Vol. 9. — P. 78. DOI: 10.1186/s13104-016-0896-7.
9. Зубова А.В., Потеряева О.Н., Русских Г.С., Геворгян М.М. Содержание проинсулина и гликозилированного гемоглобина в зависимости от стадии компенсации сахарного диабета // Journal of Siberian Medical Sciences. — 2015. — № 3 — С. 93.
10. Mamo Y., Bekele F., Nigussie T., Zewudie A. Determinants of poor glycemic control among adult patients with type 2 diabetes mellitus in Jimma University Medical Center, Jimma zone, south west Ethiopia: a case control study // BMC endocrine disorders. — 2019. — Vol. 19, No.1. — P. 91. DOI: 10.1186/s12902-019-0421-0.
11. Keresztes P., Peacock-Johnson A. CE: type 2 diabetes: a pharmacologic update // The American journal of nursing. — 2019. — Vol. 119, No.3. — P. 32–40. DOI: 10.1097/01.NAJ.0000554008.77013.cf.
12. Breuker C., Abraham O., di Trapanie L., Mura T., Macioce V., Boegner C., Jalalbert A., Villiet M., Castet-Nicolas A., Avignon A., Sultan A. Patients with diabetes are at high risk of serious medication errors at hospital: Interest of clinical pharmacist intervention to improve healthcare // Eur. J. Int. Med. — 2017. — No. 38 — P. 38–45. DOI: 10.1016/j.ejim.2016.12.003.
13. Alwhaibi M., Balkhi B., Alhawass T.M., Alkofide H., Alduhaim N., Alabdulali R., Drweesh H., Sambamoorthi U. Polypharmacy among patients with diabetes: a cross-sectional retrospective study in a tertiary hospital in Saudi Arabia // BMJ Open. — 2018. — Vol. 8, No. 5. — P. e020852.
14. Artasensi A., Pedretti A., Vistoli G., Fumagalli L. Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs // Molecules. — 2020. — Vol. 25, No.8. — P. 1987. DOI: 10.3390/molecules25081987.
15. Rodrigues M.C., Oliveira C. Drug-drug interactions and adverse drug reactions in polypharmacy among older adults: an integrative review // Revista latino-americana de enfermagem. – 2016. – e2800. DOI: 10.1590/1518-8345.1316.2800.

16. Кочетков А.И. Анализ соответствия назначений лекарственных средств «stop/start» критериям у пациентов пожилого и старческого возраста с сахарным диабетом 2 типа в эндокринологическом отделении многопрофильного стационара // Российский журнал гериатрической медицины. – 2020. – № 1 – С. 47–56. DOI: 10.37586/2686-8636-1-2020-47-56.

17. Belousov Yu.V. Ethical review of biomedical research. Practical recommendations. – M.: Publishing House of the Society of Clinical Researchers. – 2005. – 156 p.

18. Declaration of Helsinki, World Medical Association, Committee of Inquiry into Human Fertilization and Embryology. Mary Warnock, Chair: A Question of Life: The Warnock Report on Human Fertilization and Embryology New York: Basil Blackwell, 1985. Text of 1984 Report, with added introduction and conclusion by Mary Warnock. – 2001.

19. Дедов И.И., Шестакова М.В., Майорова А.Ю. Клинические рекомендации. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. – 2019. DOI: 10.14341/DM2017158.

20. Qaseem A., Barry M.J., Humphrey L.L., Forciea M.A. Considerations of Antihyperglycemic Medications for Type 2 Diabetes // Circulation research. – 2016. – Vol. 118, No. 11 – P. 279–290. DOI: 10.1161/CIRCRESAHA.116.306924.

21. Ceriello A., deValk H.W., Guerci B., Haak T., Owens D., Canonobio M., Fritzen K., Stauther C., Schnell O. The burden of type 2 diabetes in Europe: Current and future aspects of insulin treatment from patient and healthcare spending perspectives // Diabetes Res. Clin. Pract. – 2020. – No. 161 – P. 108053. DOI: 10.1016/j.diabres.2020.108053.

22. Ismail-Beigi F., Moghissi E., Kosiborod M., Inzucchi S.E. Shifting Paradigms in the Medical Management of Type 2 Diabetes: Reflections on Recent Cardiovascular Outcome Trials // J. Gen. Intern. Med. – 2017. – No.32 – P. 1044–1051. DOI: 10.1007/s11606-017-4061-7.

23. Zou C.Y., Liu X.K., Sang Y.Q., Wang B., Liang J. Effects of SGLT2 inhibitors on cardiovascular outcomes and mortality in type 2 diabetes: A meta-analysis // Medicine. – 2019. – Vol. 98, No.49 – P. e18245. DOI: 10.1097/MD.0000000000018245.

24. Davies M.J., D’Alessio D.A., Fradkin J., Kernan W.N., Mathieu C., Mingrone G., Rossing P., Tsapas A., Wexler D.J., Buse J.B. Management of Hyperglycemia in Type 2 Diabetes: A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) // Diabetes Care. – 2018. – Vol. 41, No.12 – P. 2669–2701. DOI: 10.2337/dci18-0033.

25. Maruthur N.M., Tseng E., Huftless S., Wilson L.M., Suarez-Cuervo C., Berger Z., Chu Y., Iyoha E., Segal I.B., Bolen S. Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes: A Systematic Review and Meta-analysis // Ann. Intern. Med. – 2016. – Vol. 164, No. 11 – P. 740–51. DOI: 10.7326/M15-2650.

26. Radchenko G.D. The place of beta-blockers in the treatment of arterial hypertension in 2017: is all so bad? // Arterial hypertension. – 2017. – No.52 – P. 9–34. DOI: 10.22141/2224-1485.52.2017.101292.

27. Standl E., Schnell O., McGuire D.K. Heart Failure Considerations of Antihyperglycemic Medications for Type 2 Diabetes // Circulation research. – 2016. – No.32 – P. 1044–1843. DOI: 10.1161/CIRCRESAHA.116.306924.