Research Article

Hongxing Wang* and Xiaoyan Zhang

The core inverse and constrained matrix approximation problem

https://doi.org/10.1515/math-2020-0178
received August 30, 2019; accepted April 28, 2020

Abstract: In this article, we study the constrained matrix approximation problem in the Frobenius norm by using the core inverse:

\[\|Mx - b\|_F = \min \{x \in \mathcal{R}(M) \}, \]

where \(M \in \mathbb{C}_n^m \). We get the unique solution to the problem, provide two Cramer’s rules for the unique solution and establish two new expressions for the core inverse.

Keywords: core inverse, Cramer’s rule, constrained matrix approximation problem

MSC 2010: 15A24, 15A29, 15A57

1 Introduction

Let \(M^*, \mathcal{R}(M) \) and \(\mathcal{N}(M) \) stand for the conjugate transpose, range space and null space of \(M \in \mathbb{C}_n^{m \times n} \), respectively. The symbol \(M(i \rightarrow b) \) denotes a matrix from \(M \) by replacing the \(i \)-th column of \(M \) by \(b \in \mathbb{C}^n \). The symbol \(e_i \) denotes the \(i \)-th column of \(L \) in which \(1 \leq i \leq n \). The Moore-Penrose inverse of \(M \) is the unique matrix \(X \in \mathbb{C}_n^{m \times n} \) satisfying the relations: \(MXM = M \), \(XMX = X \), \((MX)^* = MX \) and \((XM)^* = XM \) and is denoted by \(X = M^* \) [1–3].

Let \(M \in \mathbb{C}_n^{m \times n} \) be singular. The smallest positive integer \(k \) for which \(\text{rk}(M^{k+1}) = \text{rk}(M^k) \) is called the index of \(M \) and is denoted by \(\text{Ind}(M) \). The index of a non-singular matrix is 0 and the index of a null matrix is 1. Furthermore,

\[\mathbb{C}_n^m = \{ M | \text{Ind}(M) \leq 1, M \in \mathbb{C}_n^{m \times n} \}. \quad (1.1) \]

Let \(M \in \mathbb{C}_n^{m \times n} \) with \(\text{Ind}(M) = k \). A matrix \(X \) is the Drazin inverse of \(M \) if \(MXM^k = M^k \), \(XMX = X \) and \(MX = XM \). We write \(X = M^D \) for the Drazin inverse of \(M \). In particular, when \(M \in \mathbb{C}_n^m \), the matrix \(X \) is the group inverse of \(M \) and is denoted by \(X = M^g \) [1–3].

The core inverse of \(M \in \mathbb{C}_n^m \) is defined as the unique matrix \(X \in \mathbb{C}_n^{m \times n} \) satisfying the equations: \(MXM = M \), \(MX^2 = X \) and \((MX)^* = MX \) and is denoted by \(X = M^\diamond \) [4,5]. It is noteworthy that the core inverse is a “least squares” inverse [6,7]. Moreover, it is proved that \(M^\diamond = M^g MM^D \) [4].

Recently, the relevant conclusions of the core inverse are very rich. In [7–10], generalizations of core inverse are introduced, for example, the core-EP inverse and the weak group inverse. In [11–15], their algebraic properties and calculating methods are studied. In [16,17], the studying of them is extended to
some new fields, for example, ring and operator. Moreover, those inverses are used to study partial orders in [4,5,10,18,19].

Consider the following equation:

\[Mx = b. \] (1.2)

Let \(M \in \mathbb{C}^{n \times n} \) with \(\text{Ind}(M) = k \) and \(b \in \mathcal{R}(M^k) \). Campbell and Meyer [20] show that \(x = M^n b \) is the unique solution of (1.2) with respect to \(x \in \mathcal{R}(M^k) \). Wei [21] gets the minimal \(P \)-norm solution of (1.2), where \(P \) is nonsingular, \(P^{-1}MP \) is the Jordan canonical form of \(M \) and \(\|x\|_p = \|P^{-1}x\|_2 \). Furthermore, let \(M \in \mathbb{C}^{m \times n} \). Wei [22] considered the unique solution of

\[WMWx = b \quad \text{subject to} \quad x \in \mathcal{R}((WM)^k), \]

where \(W \in \mathbb{C}^{n \times m} \), \(k_1 = \text{Ind}(MW) \), \(k_2 = \text{Ind}(WM) \) and \(b \in \mathcal{R}((WM)^k) \). More results of (1.2) under some certain conditions can be found in [3,21,23–27].

It is well known that \(b \in \mathcal{R}(M) \) if and only if (1.2) is solvable. Let \(b \in \mathcal{R}(M) \) and the index of \(M \) is 1, then \(x = M^n b \) is the unique solution with \(x \in \mathcal{R}(M) \) [20]. It follows from \(M^n = M^n M^M \) that \(M^n b = M^n b \) [28]. Furthermore, the unique solution \(x = M^n b \) is given by Cramer’s rule [28, Theorem 3.3].

When \(b \notin \mathcal{R}(M) \), (1.2) is unsolvable, yet, it has least-squares solutions. Motivated by the aforementioned works, it is natural to consider the least-squares solutions of (1.2) under the certain condition \(x \in \mathcal{R}(M) \), i.e.,

\[\|Mx - b\|_p = \min \quad \text{subject to} \quad x \in \mathcal{R}(M), \] (1.3)

where \(M \in \mathbb{C}^{m \times n} \), \(\text{rk}(M) = r < n \) and \(b \in \mathbb{C}^n \).

2 Preliminaries

Lemma 2.1. [1] Let \(M \in \mathbb{C}^{n \times n} \) be idempotent. Then, \(M = P_{\mathcal{R}(M),\mathcal{N}(M)} \) with \(\mathcal{R}(M) \oplus \mathcal{N}(M) = \mathbb{C}^n \). In contrast, if \(F \oplus G = \mathbb{C}^n \), then there exists an idempotent \(P_{F,G} \) such that \(\mathcal{R}(P_{F,G}) = F \) and \(\mathcal{N}(P_{F,G}) = G \).

Furthermore, \(I_n - P_{F,G} = P_{G,F} \).

Lemma 2.2. [3] Let \(M \in \mathbb{C}^{m \times n} \). Then, \(\text{Ind}(M) = k \) if and only if

\[\mathcal{R}(M^k) \oplus \mathcal{N}(M^k) = \mathbb{C}^n. \] (2.1)

Lemma 2.3. [3] Let \(MXM = M \) and \(XMX = X \). Then,

\[XM = P_{\mathcal{R}(X),\mathcal{N}(M)} \quad \text{and} \quad MX = P_{\mathcal{R}(M),\mathcal{N}(X)}. \]

Lemma 2.4. [3] Let \(F \oplus G = \mathbb{C}^n \). Then,

1. \(P_{F,G} M = M \Leftrightarrow \mathcal{R}(M) \subseteq F; \)
2. \(MP_{F,G} = M \Leftrightarrow \mathcal{N}(M) \supseteq G. \)

Lemma 2.5. [14] Let \(M \in \mathbb{C}^{n \times m}_n \) with \(\text{rk}(M) = r \). Then, there exists a unitary matrix \(V \) such that

\[M = V \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} V^*, \] (2.2)

where \(T \in \mathbb{C}^{r \times r} \) is nonsingular. Furthermore,

\[M^* = V \begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} V^*. \] (2.3)
3 Main results

3.1 Solution of (1.3)

Theorem 3.1. Let $M \in \mathbb{C}_n^{m \times n}$ and $b \in \mathbb{C}^n$. Then,

$$x = M^* b$$

is the unique solution of (1.3).

Proof. From $x \in \mathcal{R}(M)$, it follows that there exists $y \in \mathbb{C}^n$ for which $x = My$. Then, x is the solution of (1.3) if and only if y is the solution of

$$\|M^2y - b\|_F = \min.$$

Let the decomposition of M be as in (2.2). Denote

$$V^* y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \quad V^* b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \quad \text{and} \quad M^* b = V \begin{bmatrix} T^{-1}b_1 \\ 0 \end{bmatrix},$$

where y_1, b_1 and $T^{-1}b_1 \in \mathbb{C}^{rk(M)}$. It follows that

$$\|Mx - b\|_F^2 = \left\| \begin{bmatrix} T^2y_1 + TSy_2 - b_1 \\ 0 \end{bmatrix} \right\|_F^2 = \|Ty_1 + Sy_2 - b_1\|_F^2 + \|b_2\|_F^2.$$

Since T is invertible, we have $\min_{y_1,y_2}\|T^2y_1 + TSy_2 - b_1\|_F^2 = 0$, that is, $\|M^2y - b\|_F = \min = \|b_2\|_F$, in which $y_2 \in \mathbb{C}^{n-rk(M)}$ is arbitrary, and $y_1 \cong T^{-2}b_1 - T^{-1}Sy_2$. It follows that

$$x = My = V \begin{bmatrix} T \\ 0 \end{bmatrix} S V^* y = V \begin{bmatrix} Ty_1 + Sy_2 \\ 0 \end{bmatrix} = V \begin{bmatrix} T^{-1}b_1 \\ 0 \end{bmatrix} = M^* b,$$

that is, (3.1) is the unique solution of (1.3). \hfill \Box

3.2 Determinantal formulas

When $M \in \mathbb{C}_n^{m \times n}$ is nonsingular, it is well known that the solution of (1.2) is unique and $x = M^{-1}b$. Let $x = (x_1, x_2, \ldots, x_n)^T$. Then,

$$x_i = \frac{\det(M(i \rightarrow b))}{\det(M)}, \quad i = 1, 2, \ldots, n,$$

is called Cramer’s rule for solving (1.2). In [29], Ben-Israel gets a Cramer’s rule for obtaining the least-norm solution of the consistent linear system (1.2),

$$x_i = \frac{\det\left[\begin{bmatrix} M(i \rightarrow b) \\ V^* (i \rightarrow 0) \end{bmatrix} \right]}{\det\left[\begin{bmatrix} U \\ V^* \end{bmatrix} \right]}, \quad i = 1, 2, \ldots, n,$$

where U and V are of full column rank, $\mathcal{R}(U) = \mathcal{N}(M^*)$ and $\mathcal{R}(V) = \mathcal{N}(M)$. In [26], Wang gives a Cramer’s rule for the unique solution $x \in \mathcal{R}(M^k)$ of (1.2), where $b \in \mathcal{R}(M^k)$ and $\text{Ind}(M) = k$. In [30], Ji proposes two new condensed Cramer’s rules for the unique solution $x \in \mathcal{R}(M^k)$ of (1.2), where $b \in \mathcal{R}(M^k)$ and...
Ind(M) = k. More details of Cramer’s rules for finding restricted solutions of (1.2) can be found in [1,3,31–36]. In Theorems 3.4 and 3.6, we will give two Cramer’s rules for the unique solution of (1.3).

First of all, we give the following two lemmas to prepare for a Cramer’s rule for core inverse in Theorem 3.4.

Lemma 3.2. Let $M \in C_n^{CM}$ with $\text{rk}(M) = r$, and let $L \in C_n^{n×(n-r)}$ with $\text{rk}(L) = n - r$ and $\mathcal{R}(L) = N(M^*)$. Then,

$$M^*M + (I_n - M^*M)L(L'L)^{-1}L^* = I_n.$$ \hspace{1cm} (3.5)

Proof. Let M be as in (2.2), applying Lemma 2.2, we see that

$$\mathcal{R}(M) \oplus N(M) = C^n.$$ \hspace{1cm} (3.6)

Denote $M_1 = I_n - M^*M$ and $M_2 = L(L'L)^{-1}L^*$.

Applying Lemmas 2.1, 2.3 and $M^*M = M^*M$, we have

$$M^*M = P_{\mathcal{R}(M),N(M)};$$ \hspace{1cm} (3.7)

$$M_1 = I - M^*M = P_{N(M),\mathcal{R}(M)}.$$ \hspace{1cm} (3.8)

Since $(L(L'L)^{-1}L^*L(L'L)^{-1} = L(L'L)^{-1}$ and $L^*(L(L'L)^{-1}L^* = L^*$, applying Lemma 2.3, we obtain

$$M_2 = P_{\mathcal{R}(M),\mathcal{R}(M)}.$$ \hspace{1cm} (3.9)

Since $\mathcal{R}(L) = N(M^*)$, we obtain $M_2M_1 = M_2$ and

$$M_1M_2 = P_{N(M),\mathcal{R}(M)}.$$ \hspace{1cm} (3.10)

Therefore, applying Lemma 2.1, (3.7) and (3.10), we gain

$$M^*M + M_1M_2 = P_{\mathcal{R}(M),N(M)} + P_{N(M),\mathcal{R}(M)} = I_n,$$

i.e., (3.5). \hfill \Box

In [28, Theorems 3.2 and 3.3], let $M \in C_n^{CM}$, $b \in C^n$ and $b \in \mathcal{R}(M)$, and let M_b and M_c be of the full column ranks with $N(M^*) = \mathcal{R}(M_b)$ and $N(M_c^*) = \mathcal{R}(M)$. Then,

$$\begin{bmatrix} M & M_b \\ M_c & 0 \end{bmatrix}$$

is invertible and the unique solution $x = M^*b$ of (1.2) satisfying

$$x_i = \det \begin{bmatrix} M(i \rightarrow b) & M_b \\ M_c(i \rightarrow 0) & 0 \end{bmatrix} / \det \begin{bmatrix} M & M_b \\ M_c & 0 \end{bmatrix},$$

where $i = 1, 2, \ldots, n$. In Lemma 3.3 and Theorem 3.4, we give the unique least-squares solution of (1.3) in a similar way.

Lemma 3.3. Let M and L be as in Lemma 3.2. Then,

$$G = \begin{bmatrix} M & L \\ L^* & 0 \end{bmatrix}$$ \hspace{1cm} (3.11)

is invertible and

$$G^{-1} = \begin{bmatrix} M^* & (I_n - M^*M)L(L'L)^{-1} \\ (L^*L)^{-1}L^* & 0 \end{bmatrix}.$$ \hspace{1cm} (3.12)
Proof. Since $\mathcal{R}(L) = \mathcal{N}(M^*)$ and $M^* = M^TMM^T$, we have $M^*L = M^TMM^L = 0$ and $(L^*L)^{-1}L^*M = 0$. Furthermore, applying (3.5), we have

$$
\begin{bmatrix}
M^* & (I_n - M^*M)L(L^*L)^{-1}M^L \\
(L^*L)^{-1}L^* & 0
\end{bmatrix}
\begin{bmatrix}
M \\
L^*
\end{bmatrix}
= \begin{bmatrix}
M^*M + (I_n - M^*M)L(L^*L)^{-1}L^*M^*L \\
(L^*L)^{-1}L^*M
\end{bmatrix}
= I_{2n-r},
$$

that is, G is invertible and G^{-1} is of the form (3.12).

Based on Lemmas 3.2 and 3.3, we get a Cramer’s rule for the unique solution of (1.3).

Theorem 3.4. Let M and b be as in Lemma 3.2, and let L be as in Lemma 3.2. Then, (1.3) has the unique solution $x = (x_1, x_2, \ldots, x_n)^T$ satisfying

$$
x_i = \frac{\det\left(\begin{bmatrix} M(i \rightarrow b) & L \end{bmatrix} \right)}{\det\left(\begin{bmatrix} M & L \end{bmatrix} \right)},
$$

where $i = 1, 2, \ldots, n$.

Proof. Since G is invertible, applying Lemma 3.3, we get the unique solution $\hat{x} = G^{-1}\hat{b}$ of $G\hat{x} = \hat{b}$, in which $\hat{x} = \begin{bmatrix} x^* & y^* \end{bmatrix}^T$ and $\hat{b} = \begin{bmatrix} b^* & 0 \end{bmatrix}^T$. It follows from (3.12) that

$$
\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} M^* & (I_n - M^*M)L(L^*L)^{-1} \\
(L^*L)^{-1}L^* & 0
\end{bmatrix} \begin{bmatrix} b \\ 0 \end{bmatrix} = \begin{bmatrix} M^*b \\ (L^*L)^{-1}L^*b \end{bmatrix}.
$$

Applying (3.4) we obtain (3.13). □

In the following theorem, we give a characterization of the core inverse and prepare for a Cramer’s rule for the core inverse in Theorem 3.6.

Theorem 3.5. Let M and L be as in Lemma 3.2. Then,

$$
M^* = (MM^* + LL^*)^{-1}MM^*.
$$

Proof. Since $\mathcal{R}(L) = \mathcal{N}(M^*)$, $M \in \mathbb{C}_{\mathbb{N}}^{M \times M}$ and $\mathcal{R}(M)^\perp = \mathcal{N}(M^*)$, we obtain

$$
(LL^*)(LL^*)^\perp = P_{\mathcal{N}(M^*), \mathcal{R}(M)},
$$

and

$$
(MM^*M)(MM^*M)^\perp = P_{\mathcal{R}(M), \mathcal{N}(M^*)}
$$

and

$$
(MM^*M + LL^*)(MM^*M)^\perp + (LL^*)(LL^*)^\perp - (MM^*M)^\perp = P_{\mathcal{R}(M), \mathcal{N}(M^*)} + P_{\mathcal{N}(M^*), \mathcal{R}(M)} = I_n.
$$

Therefore, $(MM^*M + LL^*)$ is invertible.

Since $(LL^*)^\perp MM^* = 0$ and $(MM^*M)^\perp MM^* = M^*$, we have

$$
(MM^*M + LL^*)^{-1}MM^* = (MM^*M)^\perp MM^* + (LL^*)^\perp MM^* = M^*.
$$

It follows that we get (3.14). □

Theorem 3.6. Let M and L be as in Lemma 3.2. Then, (1.3) has the unique solution $x = (x_1, x_2, \ldots, x_n)^T$ satisfying

$$
x_j = \frac{\det(MM^*M + LL^*)(j \rightarrow MM^*b)}{\det(MM^*M + LL^*)},
$$

where $j = 1, 2, \ldots, n$.

Proof. Applying Theorems 3.5 to 3.1, we have
\[x = (MM^*M + LL^*)^{-1}MM^*b, \]
that is,
\[(MM^*M + LL^*)x = MM^*b. \]
It follows from (3.4) that we get (3.15). \[\square \]

In [30], Ji obtains the condensed determinantal expressions of M^* and M^T. By using Theorem 3.5, we get a condensed determinantal expression of M^*.

Theorem 3.7. Let M and L be defined as in (3.11). Then, the core inverse M^* is given by:
\[M^*_{ij} = \frac{\det(MM^*M + LL^*)(i \to (MM^*)e_j)}{\det(MM^*M + LL^*)}, \quad (3.16) \]
where $1 \leq i, j \leq n$.

Proof. Since $MM^*M + LL^*$ is invertible, we consider
\[(MM^*M + LL^*)x = (MM^*)e_j \]
and get the solution
\[e_j^T x = \frac{\det(MM^*M + LL^*)(i \to (MM^*)e_j)}{\det(MM^*M + LL^*)}, \]
in which $i, j = 1, \ldots, n$.

It follows from (3.14) and $M^*_{ij} = e_i^T M^* e_j$ that we get (3.16). \[\square \]

3.3 Examples

In the following examples, we show that our results are effective.

Example 3.1.
Let $M = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $L = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. It is easy to check that $\mathcal{R}(L) = \mathcal{N}(M^*)$. By applying Lemma 3.3, we have $M^* = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Then,
\[(I_n - M^*M)L(L^*)^{-1} = \begin{bmatrix} -2 & 0 \\ 1 & -2 \end{bmatrix}, \quad (L^*)^{-1}L^* = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}. \]
\[G = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad \det(G) = 1 \text{ and } G^{-1} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}. \]

By applying Theorem 3.1, we get the solution of (1.3) is
\[x = M^*b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}. \]
For $\det\begin{pmatrix} 1 & 0 & 0 & -2 & -2 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} = 1$ and $\det\begin{pmatrix} 1 & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} = \det\begin{pmatrix} 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = 0$, by applying Theorem 3.4, we get $x_1 = \frac{1}{1}$, $x_2 = \frac{0}{0}$ and $x_3 = \frac{0}{0}$. Therefore, the solution of (1.3) is $x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

For $\det(MM'M + LL') = \det\begin{pmatrix} 9 & 18 & 18 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 9$, $MM'b = \begin{bmatrix} 9 \\ 0 \\ 0 \end{bmatrix}$,

$\det(MM'M + LL')(1 \to MM'b) = \det\begin{pmatrix} 9 & 18 & 18 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 9$,

$\det(MM'M + LL')(2 \to MM'b) = 0$, $\det(MM'M + LL')(3 \to MM'b) = 0$, and by applying Theorem 3.6, we get $x_1 = \frac{2}{9}$, $x_2 = \frac{0}{9}$ and $x_3 = \frac{0}{9}$. Therefore, the solution of (1.3) is $x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

Example 3.2.

Let

$$M = \begin{bmatrix} 1/4 & 1/8 & 1/8 \\ 1/4 & 1/8 & 1/8 \\ 1/4 & 0 & 1/4 \end{bmatrix}$$

Then,

$$M^# = \begin{bmatrix} 1 & 3 & -2 \\ 1 & 3 & -2 \\ 1 & -5 & 6 \end{bmatrix} \quad M^# = \begin{bmatrix} 4/3 & 4/3 & 0 \\ 8/3 & 8/3 & -4 \\ -4/3 & -4/3 & 4 \end{bmatrix} \quad M^* = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 2 & -2 \\ -2 & -2 & 6 \end{bmatrix}$$

and

$$L = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

with $\text{rk}(L) = n - r$ and $\mathcal{R}(L) = \mathcal{N}(M^*)$. It is easy to check that

$$MM'M + LL' = \begin{bmatrix} 137/128 & -125/128 & 3/64 \\ -119/128 & 131/128 & 3/64 \\ 5/64 & 3/128 & 7/128 \end{bmatrix}.$$

By applying Theorem 3.5, we get

$$(MM'M + LL')^{-1}MM' = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 2 & -2 \\ -2 & -2 & 6 \end{bmatrix} = M^*.$$

For

$$\det(MM'M + LL') = 3/4096,$$

$$\det(MM'M + LL')(1 \to (MM')e_1) = 3/2048,$$

$$\det(MM'M + LL')(1 \to (MM')e_2) = 3/2048,$$

$$\det(MM'M + LL')(1 \to (MM')e_3) = -3/2048,$$

$$\det(MM'M + LL')(2 \to (MM')e_1) = 3/2048,$$
by applying Theorem 3.7, we get
\[
M_{11} = 2, \quad M_{12} = 2, \quad M_{13} = -2,
M_{21} = 2, \quad M_{22} = 2, \quad M_{23} = -2,
M_{31} = -2, \quad M_{32} = -2, \quad M_{33} = 6,
\]
that is,
\[
M^* = \begin{bmatrix}
2 & 2 & -2 \\
2 & 2 & -2 \\
-2 & -2 & 6
\end{bmatrix}.
\]

Acknowledgments: Hongxing Wang was supported partially by the Guangxi Natural Science Foundation (grant number 2018GXNSFAA138181), the Special Fund for Science and Technological Bases and Talents of Guangxi (grant number GUIKE AD19245148), the Xiangsihu Young Scholars Innovative Research Team of Guangxi University for Nationalities (grant number 2019RSCXSHQN03) and the Special Fund for Bagui Scholars of Guangxi (grant number 2016A17). Xiaoyan Zhang was supported partially by the National Natural Science Foundation of China (grant number 11361009) and High Level Innovation Teams and Distinguished Scholars in Guangxi Universities (grant number GUIJIAOREN201642HAO).

Conflict of interest: The authors report no potential conflict of interest.

References

[1] A. Ben-Israel and T. N. E. Greville, *Generalized Inverses: Theory and Applications*, 2nd edn, Springer-Verlag, New York, 2003.
[2] D. S. Cvetković Ilić and Y. Wei, *Algebraic Properties of Generalized Inverses*, Springer, Singapore, 2017.
[3] G. Wang, Y. Wei, and S. Qiao, *Generalized Inverses: Theory and Computations*, 2nd edn, Springer, Singapore, 2018.
[4] O. M. Baksalary and G. Trenkler, *Core inverse of matrices*, Linear Multilinear Algebra 58 (2010), no. 5–6, 681–697, DOI: 10.1080/03081080902778222.
[5] H. Wang and X. Liu, *Characterizations of the core inverse and the core partial ordering*, Linear Multilinear Algebra 63 (2015), no. 9, 1829–1836, DOI: 10.1080/03081087.2014.975702.
[6] R. E. Cline, *Inverses of rank invariant powers of a matrix*, SIAM J. Numer. Anal. 5 (1968), 182–197, DOI: 10.1137/0705015.
[7] S. B. Malik and N. Thome, *On a new generalized inverse for matrices of an arbitrary index*, Appl. Math. Comput. 226 (2014), 575–580, DOI: 10.1016/j.amc.2013.10.060.
[8] O. M. Baksalary and G. Trenkler, *On a generalized core inverse*, Appl. Math. Comput. 236 (2014), 450–457, DOI: 10.1016/j.amc.2014.03.048.
[9] K. Manjunatha Prasad and K. S. Mohana, *Core-EP inverse*, Linear Multilinear Algebra 62 (2014), no. 6, 792–802, DOI: 10.1080/03081087.2013.791690.
[10] H. Wang and J. Chen, *Weak group inverse*, Open Math. 16 (2018), 1218–1232, DOI: 10.1515/math-2018-0100.
[11] Ivan Kyrchei, *Determinantal representations of the quaternion core inverse and its generalizations*, Adv. Appl. Clifford Algebr. 29 (2019), 104, DOI: 10.1007/s00006-019-1024-6.
[12] H. Ma, *Optimal perturbation bounds for the core inverse*, Appl. Math. Comput. 336 (2018), 176–181, DOI: 10.1016/j.amc.2018.04.059.
[13] K. Manjunatha Prasad and M. D. Raj, *Bordering method to compute core-EP inverse*, Spec. Matrices 6 (2018), 193–200, DOI: 10.1515/spma-2018-0016.
[14] Hongxing Wang, Core-EP decomposition and its applications, Linear Algebra Appl. 508 (2016), 289–300, DOI: 10.1016/j.laa.2016.08.008.

[15] H. Wang, J. Chen, and G. Yan, Generalized Cauchy-Hamilton theorem for core-EP inverse matrix and DMP inverse matrix, J. Southeast Univer. (Engl. Ed.) 1 (2018), no. 4, 135–138, DOI: 10.3969/j.issn.1003-7985.2018.01.019.

[16] Y. Gao and J. Chen, Pseudo core inverses in rings with involution, Comm. Algebra 46 (2018), no. 1, 38–50, DOI: 10.1080/00927872.2016.1260729.

[17] D. S. Rakić, N. Ć. Dinić, and D. S. Djordjević, Core inverse and core partial order of Hilbert space operators, Appl. Math. Comput. 244 (2014), 283–302, DOI: 10.1016/j.amc.2014.06.112.

[18] I. Kyrchei, Determinantal representations of the core inverse and its generalizations with applications, J. Math. 2019 (2019), 1–13, DOI: 10.1155/2019/1631979.

[19] H. Wang and X. Liu, A partial order on the set of complex matrices with index one, Linear Multilinear Algebra 66 (2018), no. 1, 206–216, DOI: 10.1080/03081087.2017.1292995.

[20] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2009.

[21] Y. Wei, Index splitting for the Drazin inverse and the singular linear system, Appl. Math. Comput. 95 (1998), no. 2–3, 115–124, DOI: 10.1016/S0096-3003(97)10098-4.

[22] Y. Wei, A characterization for the W-weighted Drazin inverse and a Cramer rule for the W-weighted Drazin inverse solution, Appl. Math. Comput. 125 (2002), no. 2–3, 303–310, DOI: 10.1016/S0096-3003(01)00132-6.

[23] Y. L. Chen, Representations and Cramer rules for the solution of a restricted matrix equation, Linear and Multilinear Algebra 35 (1993), no. 3–4, 339–354, DOI: 10.1080/03081089308818266.

[24] K. Morikuni and M. Rozložník, On GMRES for singular EP and GP systems, SIAM J. Matrix Anal. Appl. 39 (2018), no. 2, 1033–1048, DOI: 10.1137/17M1128216.

[25] F. Toutounian and R. Buzhabadi, New methods for computing the Drazin-inverse solution of singular linear systems, Appl. Math. Comput. 294 (2017), 343–352, DOI: 10.1016/j.amc.2016.09.013.

[26] G. Wang, A Cramer rule for finding the solution of a class of singular linear equations, Linear Algebra Appl. 116 (1989), 27–34, DOI: 10.1016/0024-3795(89)90395-9.

[27] Y. Wei and H. Wu, Convergence properties of Krylov subspace methods for singular linear systems with arbitrary index, J. Comput. Appl. Math. 114 (2000), no. 2, 305–318, DOI: 10.1016/S0161-2007(99)00237-6.

[28] H. Ma and T. Li, Characterizations and representations of the core inverse and its applications, Linear and Multilinear Algebra (2019), DOI: 10.1080/03081087.2019.1588847.

[29] A. Ben-Israel, A Cramer rule for least-norm solutions of consistent linear equations, Linear Algebra Appl. 43 (1982), 223–226, DOI: 10.1016/0024-3795(82)90255-5.

[30] J. Ji, Explicit expressions of the generalized inverses and condensed Cramer rules, Linear Algebra Appl. 404 (2005), 183–192, DOI: 10.1016/j.laa.2005.02.025.

[31] I. Kyrchei, Analogs of Cramer’s rule for the minimum norm least squares solutions of some matrix equations, Appl. Math. Comput. 218 (2012), no. 11, 6375–6384, DOI: 10.1016/j.amc.2011.12.004.

[32] I. Kyrchei, Explicit formulas for determinantal representations of the Drazin inverse solutions of some matrix and differential matrix equations, Appl. Math. Comput. 219 (2013), no. 14, 7632–7644, DOI: 10.1016/j.amc.2013.01.050.

[33] I. Kyrchei, Cramer’s rule for generalized inverse solutions, in: I. Kyrchei (Ed.), Advances in Linear Algebra Research, pp. 79–132, Nova Science Publishers, New York, 2015.

[34] I. Kyrchei, Weighted singular value decomposition and determinantal representations of the quaternion weighted Moore-Penrose inverse, Appl. Math. Comput. 309 (2017), 1–16, DOI: 10.1016/j.amc.2017.03.048.

[35] J. Ji, A condensed Cramer’s rule for the minimum-norm least-squares solution of linear equations, Linear Algebra Appl. 437 (2012), no. 9, 2173–2178, DOI: 10.1016/j.laa.2012.06.012.

[36] G. Wang and Z. Xu, Solving a kind of restricted matrix equations and Cramer rule, Appl. Math. Comput. 162 (2005), no. 1, 329–338, DOI: 10.1016/j.amc.2003.12.118.