TETRAHEDRA WITH CONGRUENT FACE PAIRS

DANIEL A. KLAIN

Abstract. If the four triangular facets of a tetrahedron can be partitioned into pairs having the same area, then the triangles in each pair must be congruent to one another. A Heron-style formula is then derived for the volume of a tetrahedron having this kind of symmetry.

Mathematics Subject Classification: 52B10, 52B12, 52B15, 52A38.

From elementary geometry we learn that two triangles are congruent if their edges have the same three lengths. In particular, there is only one congruence class of equilateral triangles having a given edge length. Said differently, any pair of equilateral triangles in the Euclidean plane are similar, differing at most by an isometry and a dilation. Meanwhile, triangles that are symmetric under a single reflection have two congruent sides and are said to be isosceles.

The situation is more complicated in higher dimensions. Indeed, an analogous characterization of 3-dimensional tetrahedra already leads to 25 different symmetry classes [22]. These tetrahedral symmetry classes are of special interest in organic chemistry [8, 9, 21], and conditions for tetrahedral symmetry based on the measures of dihedral angles have also been explored [23].

A tetrahedron in \mathbb{R}^3 is equilateral or regular if all of its edges have the same length. More generally, a tetrahedron is said to be isosceles if all four triangular facets are congruent to one another, or, equivalently, if opposing (non-incident) edges have the same length. Isosceles tetrahedra are also known as disphenoids [4, p. 15]. It has been shown that if all four facets of a tetrahedron T have the same area, then T must be isosceles [10, p. 94][11, 16].

Consider the following more general symmetry class of tetrahedra: A tetrahedron T will be called reversible if its facets are congruent in pairs; that is, if the facets of T can be labelled f_1, f_2, f_3, f_4, where $f_1 \cong f_2$ and $f_3 \cong f_4$.

![Figure 1. An reversible tetrahedron with edge lengths a, a, b, b, c, d.](image)
In this note we show that, as in the isosceles case, reversible tetrahedra are characterized by the areas of their facets: if the four triangular facets of T can be partitioned into pairs with the same area, then those pairs consist of congruent facets.

In the final section we give an intuitive method for deriving a Heron-style factorization of the volume of a reversible tetrahedron in terms of its edge lengths.

1. Facets normals and areas determine tetrahedra

The following proposition will allow us to exploit symmetries more easily.

Proposition 1.1. Suppose that a tetrahedron T has outward facet unit normals u_0, u_1, u_2, u_3, with corresponding facet areas $\alpha_0, \alpha_1, \alpha_2, \alpha_3 > 0$. Then

\[
\alpha_0 u_0 + \alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 = 0.
\]

Conversely, if unit vectors u_0, u_1, u_2, u_3 span \mathbb{R}^3, and if $\alpha_i > 0$ satisfy (1), then there exists a tetrahedron T, having outward facet unit normals u_i, and corresponding facet areas α_i, and this tetrahedron is unique up to translation.

This proposition is a very special case of the Minkowski Existence Theorem, which plays a central role in the Brunn-Minkowski theory of convex bodies, and is somewhat difficult to prove [3, 18]. However, this special case for tetrahedra is a simple consequence of linear algebra.

![Figure 2. A tetrahedron with outward unit normals u_i.](image)

Proof. Let T be a tetrahedron with vertices at $v_0, v_1, v_2, v_3 \in \mathbb{R}^3$, where $v_0 = o$, the origin. Let us assume the vertices are labelled so that v_1, v_2, v_3 have a positive ("right-handed") orientation.

Denote by u_0, u_1, u_2, u_3 the outward unit normal vectors of the facets of T, where u_i is associated with the facet opposite to the vertex v_i, as in Figure 2. Let α_i denote the area of that same
ith facet. Since \(v_0 = 0 \), we have
\[
\begin{align*}
v_2 \times v_3 &= -2\alpha_1 u_1 \\
v_3 \times v_1 &= -2\alpha_2 u_2 \\
v_1 \times v_2 &= -2\alpha_3 u_3 \\
(v_3 - v_1) \times (v_2 - v_1) &= -2\alpha_0 u_0.
\end{align*}
\]
(2)

After summing both sides of these equations the identity (1) now follows.

To prove the converse, suppose we are given unit vectors \(u_0, u_1, u_2, u_3 \) that span \(\mathbb{R}^3 \) and \(\alpha_i > 0 \) satisfying (1). Let \(\tilde{T} \) denote the intersection of the closed half-spaces \(x \cdot u_i \leq 1 \).

The spanning condition on the \(u_i \), along with the identity (1), imply that any 3 of the vectors \(u_i \) are linearly independent. Since each \(\alpha_i > 0 \), it follows from (1) that \(\tilde{T} \) is a bounded tetrahedron with facets normal to the \(u_i \). Translate this tetrahedron so that one vertex lies at the origin \(o \), and then slide the facet opposite to \(o \) along the direction of \(u_0 \) so that this facet has area \(\alpha_0 \). This new tetrahedron \(T \) now has facet areas \(\alpha_0' = \alpha_0, \alpha_1', \alpha_2', \) and \(\alpha_3' \), and must also satisfy (1), so that
\[
\alpha_0 u_0 + \alpha_1' u_1 + \alpha_2' u_2 + \alpha_3' u_3 = 0.
\]
Combining this with identity (1) for the original given data yields
\[
\alpha_1' u_1 + \alpha_2' u_2 + \alpha_3' u_3 = \alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3.
\]
Since \(u_1, u_2, u_3 \) are linearly independent, each \(\alpha_i' = \alpha_i \), and \(T \) is the tetrahedron required, unique up to translation. \(\square \)

Remark: Given the surface data \(u_i \) and \(\alpha_i \) it is not difficult to construct the corresponding tetrahedron \(T \) explicitly. To do so, let \(C \) denote the \(3 \times 3 \) matrix having columns \(-2\alpha_i u_i \) for \(i > 0 \), ordered so that \(C \) has positive determinant. The matrix
\[
A = \det(C)^2 C^{-1}
\]
has cofactor matrix \(C \). It is not difficult to show (using Cramer’s Rule and basic linear algebra) that the columns of \(A \), along with the origin, yield the vertices of a tetrahedron having facet normals \(u_i \) and corresponding facet areas \(\alpha_i \). Uniqueness up to translation also follows from this explicit construction (which generalizes to \(n \) dimensions as well).

2. Equal areas imply congruent faces

We now prove that the areas of the facets alone will determine if a tetrahedron is reversible.

Theorem 2.1. Suppose that \(T \) is a tetrahedron in \(\mathbb{R}^3 \), and denote by \(f_1, f_2, f_3, f_4 \) the triangular facets of \(T \). If the facets of \(T \) satisfy the conditions
\[
\text{Area}(f_1) = \text{Area}(f_2) \quad \text{and} \quad \text{Area}(f_3) = \text{Area}(f_4)
\]
then \(f_1 \cong f_2 \) and \(f_3 \cong f_4 \).

The proof of Theorem 2.1 uses the method given by McMullen in [16] to verify the special case in which all four facets have the same area (as in Corollary 2.2 below).
Proof. Denote by u_i the outward unit normal vector to the facet f_i of T. Suppose that $\text{Area}(f_1) = \text{Area}(f_2) = \alpha$ and $\text{Area}(f_3) = \text{Area}(f_4) = \beta$, where $\alpha, \beta > 0$. The identity (1) asserts that

$$\alpha u_1 + \alpha u_2 + \beta u_3 + \beta u_4 = 0.$$

Denote

$$w = \alpha u_1 + \alpha u_2 = -\beta u_3 - \beta u_4.$$

Let ψ denote the rotation of \mathbb{R}^3 by the angle π around the the axis through w. Since the vectors αu_1 and αu_2 have the same length, the points $0, \alpha u_1, \alpha u_2, w$ are the vertices of a rhombus. The rotation ψ rotates this rhombus onto itself, exchanging the vectors αu_1 and αu_2. The points $0, \beta u_3, \beta u_4, -w$ form a rhombus through the same axis, so that ψ also exchanges the vectors βu_3 and βu_4. Since ψ is a rotation, it preserves orthogonality. It follows that P and ψP have the same normal vectors and the same corresponding facet areas. Proposition 1.1 then implies that P and ψP are congruent by a translation. In particular, the facets f_1 and f_2 are congruent, as are f_3 and f_4. \hfill \square

The case of isosceles tetrahedra described in the introduction follows as an immediate corollary to Theorem 2.1.

Corollary 2.2. Suppose that T is a tetrahedron in \mathbb{R}^3. If the faces f_i of T satisfy the condition

$$\text{Area}(f_1) = \text{Area}(f_2) = \text{Area}(f_3) = \text{Area}(f_4)$$

then $f_1 \cong f_2 \cong f_3 \cong f_4$.

In other words, if a tetrahedron T is equiareal, then T is also isosceles. For alternative proofs and variants of Corollary 2.2, see [10, 11, 15, 16].

Remark: Corollary 2.2 has long been known to have an analogue in which area is replaced by perimeter. The proof is very simple: If all of the facets of T have the same perimeter, the resulting system of linear equations (in the six edge lengths of T) implies that opposing edges must have the same length, so that T is isosceles. A similar argument shows that if the facets of T can be partitioned into pairs having the same perimeter then T is reversible.

3. Factoring the volume

Suppose that $T \subseteq \mathbb{R}^3$ is a tetrahedron with vertices at $v_0, v_1, v_2, v_3 \in \mathbb{R}^3$, where $v_0 = 0$, the origin. As before, let A denote the matrix whose columns are given by the vectors v_i, and suppose that the v_i are ordered so that A has positive determinant. The volume of T is then given by $\det(A) = 6V(T)$, so that

$$V(T)^2 = \frac{1}{36} \det(A^TA).$$

The entries of the matrix A^TA are dot products of the form $v_i \cdot v_j$. From the identity,

$$2v_i \cdot v_j = |v_i|^2 + |v_j|^2 - |v_i - v_j|^2$$

(3)
it then follows that the value of $V(T)^2$ is a polynomial in the squares of the edge lengths of T. Said differently, if T has edge lengths a_{ij} (the distance between vertices v_i and v_j), then $V(T)^2$ is a polynomial in the variables $b_{ij} = a_{ij}^2$, as well as the variables a_{ij} themselves. This polynomial is sometimes formulated in terms of linear algebraic expressions such as Cayley-Menger determinants [19, p. 125]. While the Cayley-Menger heuristic outlined above applies in arbitrary dimension, the 3-dimensional case has been known at least as far back as Piero della Francesca [17].

In certain instances, the polynomial $V(T)^2$ admits factorization into linear or quadratic irreducible factors. For the 2-dimensional case, the area $A(\Delta)$ of a triangle Δ having edge lengths a, b, c is given by

$$A(\Delta)^2 = \frac{1}{16}(a + b + c)(-a + b + c)(a - b + c)(a + b - c),$$

a factorization known as Heron’s formula [5, p. 58]. Although the 3-dimensional case is more complicated [7], there exist non-trivial factorizations of $V(T)^2$ when the tetrahedron T satisfies the symmetry properties examined in the previous section.

For example, if T is an isosceles tetrahedron, having edge lengths a, b, c (each repeated twice in pairs of opposing edges), then

$$V(T)^2 = \frac{1}{72}(a^2 + b^2 - c^2)(a^2 - b^2 + c^2)(-a^2 + b^2 + c^2).$$

A synthetic proof of (4) can be found in [20, p. 101]. Instead we will give an algebraic proof of the following more general result, using a technique outlined in [13].

The edges of a reversible tetrahedron T come in (at most) 4 lengths. To see this, label the edge lengths of T so that the triangular facets $f_1 \cong f_2$ have edge lengths a, b, c, with common edge of length c. Since $f_3 \cong f_4$, they must have edge lengths a, b, d. The six edges of T then have lengths a, a, b, b, c, d, as in Figure 1.

Theorem 3.1 (Volume Formula). Suppose that T is a reversible tetrahedron having edge lengths a, a, b, b, c, d. Then

$$V(T)^2 = \frac{1}{72}\left(c^2d^2 - (a^2 - b^2)^2\right)\left(a^2 + b^2 - \frac{c^2 + d^2}{2}\right).$$

The first polynomial factor in the formula (5) is a difference of two squares, so that (5) can be reformulated as

$$V(T)^2 = \frac{1}{72}(cd + a^2 - b^2)(cd - a^2 + b^2)\left(a^2 + b^2 - \frac{c^2 + d^2}{2}\right).$$

In the special case where $c = d$, the tetrahedron T is isosceles, and the formula (6) reduces to (4).

1Piero della Francesca (1415-1492), an Italian painter and geometer of the early Renaissance period.
The proof of (5) will make use of two identities from plane geometry. The well-known parallellogram law asserts that if edges of a parallelogram in \mathbb{R}^2 are labelled as in Figure 1, then $2a^2 + 2b^2 = c^2 + d^2$.

The less well-known trapezoid law asserts that, if the edges of a convex isosceles trapezoid are labelled as in Figure 3, then $b^2 - a^2 = cd$.

![Figure 3. The trapezoid law: $b^2 - a^2 = cd$.](image)

To see why, observe that

$$b^2 - a^2 = |u - w|^2 - |v - w|^2$$

$$= u \cdot u - 2u \cdot w + w \cdot w - v \cdot v + 2v \cdot w - w \cdot w$$

$$= |u|^2 - |v|^2 + 2w \cdot (v - u)$$

$$= a^2 - b^2 + 2cd,$$

where the last step follows from the parallelism of w and $v - u$. The trapezoid law now follows.

Proof of The Volume Formula 3.1. Let $f(a, b, c, d)$ denote the polynomial $V(T)^2$. The factors of f can be determined by considering the cases in which the volume of T is zero, namely, when the tetrahedron T is flat or otherwise degenerate. If T is reversible, this can occur in two ways.

In one case, T may flatten to a parallelogram, having edges of length a, b, a, b and diagonals of length c, d. In this instance, the parallelogram law for the standard inner product implies that $2a^2 + 2b^2 = c^2 + d^2$.

In the second case, T may flatten to a trapezoid, having non-parallel edges of length a, a, parallel edges of length c, d, and diagonals of length b, b. In this instance, the trapezoid law implies that $(b^2 - a^2)^2 = c^2d^2$.

These cases suggest both $2a^2 + 2b^2 - c^2 - d^2$ and $c^2d^2 - (b^2 - a^2)^2$ as possible factors of the polynomial f.

Denote $A = a^2$, $B = b^2$, $C = c^2$ and $D = d^2$. We observed following (3) above that f is a polynomial in the squared values a^2, b^2, c^2, d^2, so that $f = f(A, B, C, D) \in \mathbb{R}[A, B, C, D]$. Since volume V is homogeneous of degree 3 with respect to length, the polynomial $f = V^2$ is homogeneous of degree 6 with respect to the variables a, b, c, d, and is therefore homogeneous of degree 3 with respect to the variables A, B, C, D; that is, a homogeneous cubic polynomial in $\mathbb{R}[A, B, C, D]$.
To verify that \(2a^2 + 2b^2 - c^2 - d^2\) is indeed a factor of \(f(a, b, c, d)\), use division with remainder in \(\mathbb{R}[A, B, C, D]\) to obtain
\[
f(A, B, C, D) = (2A + 2B - C - D)g(A, B, C, D) + r(B, C, D),
\]
for some \(g \in \mathbb{R}[A, B, C, D]\) and \(r \in \mathbb{R}[B, C, D]\). Here division with remainder in \(\mathbb{R}[A, B, C, D]\) is performed here using lexicographical order on the variables \(A, B, C, D\). (See, for example, [6, p. 54].)

Note that \(A\) does not appear in the polynomial expression for \(r\). Suppose that \(C > D > 0\). By the triangle inequality, each \(B\) such that
\[
\sqrt{C} - \sqrt{D} < 2 \sqrt{B} < \sqrt{C} + \sqrt{D}
\]
gives rise to a parallelogram as in Figure 4, yielding \(A \geq 0\) so that \(2A + 2B - C - D = 0\). This degenerate reversible tetrahedron \(T\) has volume zero, so that \(f(A, B, C, D) = V^2 = 0\). It follows that \(r(B, C, D) = 0\) on a non-empty open set. Since \(r\) is a polynomial, it follows that \(r\) is identically zero, so that
\[
f(A, B, C, D) = (2A + 2B - C - D)g(A, B, C, D).
\]
In other words, \(2A + 2B - C - D\) divides \(f\) in \(\mathbb{R}[A, B, C, D]\).

![Figure 4](image)

Figure 4. This parallelogram exists iff \(\frac{1}{2} \sqrt{C} - \frac{1}{2} \sqrt{D} \leq \sqrt{B} \leq \frac{1}{2} \sqrt{C} + \frac{1}{2} \sqrt{D}\).

For the trapezoidal factors, view \(f\) as polynomial in \(\mathbb{R}[A, B, c, d]\), and write
\[
f(A, B, c, d) = (cd - B + A)\tilde{g}(A, B, c, d) + \tilde{r}(B, c, d),
\]
using division with remainder in \(\mathbb{R}[A, B, c, d]\) under lexicographical order on the variables \(A, B, c, d\). Once again the remainder \(\tilde{r}\) is independent of the variable \(A\), while a trapezoidal degenerate (zero volume) tetrahedron can be constructed for an open set of values \((B, c, d)\), so that \(\tilde{r}\) is also identically zero. Therefore, \(cd - B + A\) is also a factor \(f\).

Finally, a symmetrical argument (reversing the roles of \(A\) and \(B\)) yields a factor of \((cd - A + B)\).

Since \(\mathbb{R}[A, B, c, d]\) is a unique factorization domain [2, p. 371][6, p. 149], the irreducible factors \((cd - B + A)\), and \((cd - A + B)\) are prime, so that
\[
(cd - B + A)(cd - A + B) = c^2d^2 - (B - A)^2 = CD - (B - A)^2
\]
divides \(f\).
Similarly, since $\mathbb{R}[A, B, C, D]$ is a unique factorization domain, the two irreducible factors $CD - (B - A)^2$, and $2A + 2B - C - D$ are prime in $\mathbb{R}[A, B, C, D]$, so that

$$V^2 = f = (2A + 2B - C - D)(CD - (B - A)^2) k.$$

Because f is a homogeneous cubic polynomial in $\mathbb{R}[A, B, C, D]$, the factor k must be a constant, independent of the parameters A, B, C, D.

To compute the constant k, recall that the volume of the regular (equilateral) tetrahedron of unit edge length $A = B = C = D = 1$ is $\sqrt{2}/12$. It follows that

$$\frac{1}{72} = \left(\frac{\sqrt{2}}{12}\right)^2 = V^2 = f(1, 1, 1, 1) = 2k.$$

Hence, $k = 1/144$, and (7) becomes (5).

I. Izmestiev has pointed out that applying the Regge symmetry [1] to a reversible tetrahedron gives a new reversible tetrahedron having the same volume, and for which the factors of the Cayley-Menger polynomial (6) are permuted [12].

4. Generalizations

A convex polytope P in \mathbb{R}^n will be called reversible if there is an affine plane ξ of co-dimension 2 such that P is symmetric under the 180° rotation of the 2-plane ξ^\perp that fixes ξ.

If a tetrahedron T is \mathbb{R}^3 is symmetric under a 180° rotation around a line ℓ, then this rotation must map facets to facets and facet normals to facet normals. In view of Proposition 1.1, the only way this can occur is when ℓ passes through the midpoints of two non-adjacent edges of T, so that T must have pairs of congruent facets, as in the examples addressed earlier. It follows that this more general definition of a reversible polytope is consistent with the definition given earlier for tetrahedra in \mathbb{R}^3. However, naive analogues of the theorems of this paper do not follow, because this level of symmetry admits many more variations in structure for dimensions $n \geq 4$. Indeed, there exist 4-dimensional simplices in which all 5 facets have the same volume in spite of not being mutually congruent. For an extensive treatment of this subject, see [16].

In addition to admitting the Heron-type formula (4) for volume, isosceles tetrahedra satisfy many other characteristic properties (see, for example, [10, p. 90-97][14]). It would be interesting to consider what parallels these other properties may have in the more general context of reversible tetrahedra.

References

[1] A. Akopyan and I. Izmestiev, The Regge symmetry, confocal conics, and the Schl"{a}fli formula, Bull. London Math. Soc., 51 (2019), 765–775.
[2] M. Artin, Algebra, 2nd ed., Prentice-Hall, Upper Saddle River, NJ, 2010.
[3] T. Bonnesen and W. Fenchel, Theory of Convex Bodies, BCS Associates, Moscow, Idaho, 1987.
[4] H. Coxeter, Regular Polytopes, Dover, New York, 1973.
[5] H. Coxeter and S. Greitzer, Geometry Revisited, MAA, Washington, D.C., 1967.
[6] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms, 2nd ed., Springer, New York, 1996.
[7] C. D’Andrea and M. Sombra, The Cayley-Menger determinant is irreducible for \(n \geq 3 \), *Sib. Math. J.*, 46 (2005), 71–76.
[8] P. Fowler and A. Rasset, Is There a “Most Chiral Tetrahedron”? *Chem. Eur. J.*, 10 (2004), 6575–6580.
[9] P. Fowler and A. Rasset, A classification scheme for chiral tetrahedra, *C. R. Chimie*, 9 (2006), 1203–1208.
[10] R. Honsberger, *Mathematical Gems II*, MAA, Washington, D.C., 1976.
[11] J. Horváth, A property of tetrahedra with equal faces in spaces of constant curvature (Hungarian, German summary), *Mat. Lapok*, 20 (1969), 257–263.
[12] I. Izmestiev. *Private communication*, (2022).
[13] D. Klain, An intuitive derivation of Heron’s formula, *Amer. Math. Monthly*, 111 (2004), no. 8, 709–712.
[14] J. Leech, Some properties of the isosceles tetrahedron, *Math. Gaz.*, 34 (1950), no. 310, 269–271.
[15] H. Martini, Regular simplices in spaces of constant curvature, *Amer. Math. Monthly*, 100 (1993), no. 2, 169–171.
[16] P. McMullen, Simplices with equiareal faces, *Discrete Comput. Geom.*, 24 (2000), 397–411.
[17] M. Peterson, The geometry of Piero della Francesca, *Math. Intell.*, 19 (1997), no. 3, 33–40.
[18] R. Schneider, *Convex Bodies: The Brunn-Minkowski Theory, 2nd ed.*, Cambridge University Press, New York, 2014.
[19] D. Sommerville, *An Introduction to the Geometry of n Dimensions*, Dover, New York, 1958.
[20] H. Steinhaus, *One Hundred Problems in Elementary Mathematics*, Dover, New York, 1979.
[21] K. Wirth and A. Dreiding, Edge lengths determining tetrahedrons, *Elem. Math.*, 64 (2009), 160–170.
[22] K. Wirth and A. Dreiding, Tetrahedron classes based on edge lengths, *Elem. Math.*, 68 (2013), 56–64.
[23] K. Wirth and A. Dreiding, Relations between edge lengths, dihedral, and solid angles in tetrahedra, *J. Math. Chem.*, 52 (2014), 1624–1638.