Phytochemical Investigation and Antimicrobial Potential of Medicinal Plant *Nepeta distans* Royle ex Benth

Jawaher Alkahtani, Asma Asma, Muhammad Adil, Abdur Rashid, Turki M. Dawoud, Ahmed A. Alsofi, Mohamed Ragab Abdel Gawwad, and Mohamed M. A. Elshaer

1. Introduction

Since time unknown, medicinal plants are used for the treatment of different infections. The World Health Organization reports that various plant fractions and their dynamic constituents are utilized as traditional medicines by 80% of the world population [1–4]. Herbal medicines or natural products and plants extract may exhibit promising alternatives or supplements for chemotherapy and antibiotic therapy [5, 6]. Herbal medicines have astonishing potential such as high anticancer, antibacterial, antioxidant, and antifungal activities [7, 8]. Plants offer an inexhaustible source of bioactive compounds and clinically useful drugs for infectious diseases, such as cancer and cardiovascular disorders [9–11]. Bioactive compounds play an important role in drug discovery [12]. However, the increasing antimicrobial resistance to the currently available antimicrobial agents demand intense investigations into the antimicrobial properties of the medicinal plants [13–15]. Regrettably, there has been limited pharmaceutical development of the plants with known bioactivity [16, 17]. There are few pharmaceutical products for infectious diseases that are of plant origin [18, 19]. To fulfill the healthcare needs in Germany and Europe, herbal preparation got more attention, and nearly 1400 herbal preparations are presently used as per European Union [20, 21]. The herbal preparation can also be utilized in various cosmetic industries (as antiwrinkling agents, skin tissue regenerators, and antiage creams) which can lead to an increase in the importance [22, 23].
The genus *Nepeta* (Lamiaceae) is a large family which comprises about 400 species, most of which grow in the wild in the central and southern parts of Europe, North Africa, and central and southern Asia. A lot of species of this genus are used in the folk medicine for the antiseptic and astringent properties as topical remedies in children’s cutaneous eruptions and snakes and scorpion bites; orally, they are utilized as antitussive, antispasmodic, antiasthmatic, febrifuge, and diuretic. Moreover, antibacterial, fungicidal, and antiviral activities have been attributed to *Nepeta* lactones and iridoids contained in several *Nepeta* species. Some endemic species in the southern Greece are utilized in traditional medicine. In particular, fresh leaves of some *Nepeta* species are chewed to alleviate toothache and a leaf alcoholic macerate is efficacious for treatment of contusions and rheumatic pains [24]. This genus is also reported to possess biological activities that help in reduction of serum lipids and possess anti-inflammatory, phytotoxic, platelet aggregation, antimicrobial, cytoxic, and antiguicative properties [25].

The aim of the present study is to screen out the bioactive fractions of *Nepeta distans*, for isolation of the targeted compounds in future.

2. Materials and Methods

2.1. Plant Collection

The plant *Nepeta distans* was collected from Darra Adam Khel district, Kohat (33.6945°N, 71.4959°E), Pakistan. The collected plants were then identified by a plant taxonomist at the Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar. A specimen voucher number (ND-001) was deposited in the herbarium of the same department.

2.2. Extraction, Fractionation, and Isolation

The whole plant of *N. distans* was grinded to a coarse powder. The powdered plant (2 Kg) was initially extracted with 20 L of 70% MeOH three times at room temperature. It was then filtered and methanol was evaporated under reduced pressure leaving behind a greenish, syrup residue that was dried and weighed. It was 100 g. This MeOH extract was then partitioned into hexane, chloroform, ethyl acetate, butanol, and water fractions successively. The methanol was evaporated under reduced pressure leaving behind a greenish, syrup residue that was dried and weighed. It was 100 g. This MeOH extract was then partitioned into hexane, chloroform, ethyl acetate, butanol, and water fractions successively. The methanol extract was then subjected to column chromatography which afforded compounds (1–4) from different subfractions at different polarities of the binary solvent system of chloroform/hexane.

2.3. Preliminary Phytochemical Qualitative Tests

Alkaloids, flavonoids, saponins, proteins, oils, and glycosides were tested in the crude extract of *Nepeta distans* using several qualitative tests [26–29].

2.4. Antimicrobial Activity

The antibacterial and antiviral activities of the methanol extract and chloroform fraction of *N. distans* were conducted as per available method in the literature [30–34].

2.4.1. Antifungal Activity

Using the well diffusion agar method, the antifungal potential of the methanol extract and chloroform fraction of *Nepeta distans* was investigated. The stock solution was made with 24 mg extracts per ml (1.0 ml) of sterile DMSO (dimethyl sulfoxide). The Sabouraud dextrose agar medium was made by using a magnetic stirrer to thoroughly dissolve 4.0 g of agar, 4 percent of glucose agar, and 32.5 g of Sabouraud in distilled water (500 ml) to form a homogenous slurry. 4 ml of SDA (Sabouraud dextrose agar) was autoclaved at 120°C for 15 minutes before being chilled to 15°C. When each test tube was injected (4 mm diameter) with fungal strains of 6-7 days old culture for non-mycelia development, an agar surface was created by mixing the stock solution with the nonsolidified SDA medium, and solidifying it in a tilted position, streak was formed. Positive and negative controls were preserved for treatment evaluation by employing DMSO and antifungal medications, respectively (amphoteracinc B). Subsequent to 7 days of incubation at 27°C, the fungal growth reserve was measured.

2.4.2. Antibacterial Activity

Using the well diffusion agar method, the antibacterial activity of methyl alcohol and chloroform extracts of *Nepeta distans* was investigated. Bacterial strains were activated by infusing the nutrient broth into the conical flasks and rearing the medium for 24 hours. The agar media was then transferred to Petri dishes containing the injected bacterial strains and solidified under the appropriate conditions. After the medium had solidified, the bores were made in the agar plate using a corkborer, and the extracts (50 l) were transferred to the bore and the plates were reared for 24 hours at 37°C. The results were expressed as the bacterial growth inhibition zone in millimeters. Amoxicillin and ciprofloxacin were employed as positive controls for Gram-positive and Gram-negative bacteria, respectively, and DMSO was utilized as the negative control to retain the purpose of determining the effect.

3. Results and Discussion

3.1. Isolation of Phytoconstituents

The methanol extract of *N. distans* was subjected to column chromatography and the afforded four compounds were oleanolic acid [35], ursolic acid [36], β-sitosterol [37], and stigmastanol [37]. The structure of these compounds are given in Figure 1.

3.1.1. Spectral Data of Compound (1)

HR-ESI-MS m/z: 456.2 [M+].
1H-NMR (CDCl₃, 400 MHz) (δ ppm) 0.88 (3H, each s, Me), 3.61 (1H, dd, ʃJ = 4.1, 9.91 Hz, H-3), 5.24 (1H, t, ʃJ = 3.45 Hz, H-12), 1.12, 1.04, 0.98, 0.97, 0.91.
13C-NMR (CDCl₃, 100 MHz) (δ ppm) 15.43 (q, C-25), 15.76 (q, C-24), 17.21 (q, C-26), 18.9 (t, C-6), 23.4 (t, C-16), 24.31 (t, C-11), 23.54 (q, C-30), 25.97 (q, C-27), 27.37 (t, C-2), 27.91 (t, C-15), 28.34 (q, C-23), 30.83 (s, C-20), 33.9 (t, C-21), 42.31 (s, C-14), 32.4 (t, C-22), 183.2 (s, C-28), 32.7 (t, C-7), 33.1 (q, C-29), 37.21 (s, C-10), 143.7 (S, C-13), 38.32 (t, C-1), 38.86 (s, C-4), 39.29 (s, C-8), 121.97 (d, C-12), 41.52 (d, C-18), 45.99 (t, C-19), 48.13 (d, C-9), 55.43 (d, C-5), 46.47 (s, C-17), 79.12 (d, C-3).
3.1.2. Spectral Data of Compound (2). EI-MS m/z (rel. int. %): 456 [M]+ (16), 55 (49), 119 (29), 248 (100), 300 (11), 203 (44), 207 (26), 133 (60). 1H-NMR (CDCl3, 400 MHz) (δ ppm) 0.80 (3H, J = 6.8 Hz, Me-29), 0.81 (3H, s, Me-24), 0.86 (3H, s, Me-26), 0.91 (3H, J = 6.6 Hz, Me-30), 5.11 (1H, m, H-12), 1.07 (3H, s, Me-23), 0.94 (3H, s, Me-25), 3.19 (1H, dd, Jax, as = 10.0 Hz, Jex, eq = 4.5 Hz, H-3a), 1.20 (3H, s, Me-27). 13C-NMR (CDCl3, 125 MHz) (δ ppm) 15.4 (C-24), 138.7 (C-13), 15.9 (q, C-25), (t, C-23, C-30), 125.8 (d, C-12), 22.4 (q, C-29), 79.1 (d, C-3), 52.4 (s, C-5), 23.5 (t, C-16), 55.2 (d, C-18), 24.0, 23.9 (t, C-11), 27.4 (t, C-2), 17.2 (q, C-26), 18.3 (t, C-6), 24.5 (q, C-27), 29.4 (t, C-15), 47.9 (s, C-17), 30.5 (d, C-19), 47.4 (d, C-9), 39.6 (s, C-8), 42.0 (s, C-14), 37.0 (t, C-22), 38.5 (t, C-1), 37.1 (s, C-10), 33.2 (t, C-7), 30.3 (d, C-20), 27.5 (t, C-21), 176.2 (s, C-28).

3.1.3. Spectral Data of Compound (3). EI-MS: m/z: 414 [M]+, 371, 138, 299, 273, 315 and 222. HR-EI-MS: m/z: 414.3857 (C29H48O, 414.3861). 1H-NMR: (CDCl3, 400 MHz) (δ ppm) 0.66 (3H, s, H-18), 0.78 (3H, d, J = 6.0 Hz, H-27), 0.81 (3H, d, J = 6.2 Hz, H-26), 0.98 (3H, s, H-19), 3.35 (1H, m, H-3), 0.82 (3H, d, J = 7.5 Hz, H-29), 0.90 (3H, d, J = 6.5 Hz, H-21), 5.32 (1H, br. s, H-6). 13C-NMR: (CDCl3, 125 MHz) (δ ppm) 11.8 (C-18), 121.3 (C-6), 142.0 (C-5), 26.2 (C-16), 70.3 (C-3), 56.9 (C-14), 56.7 (C-17), 34.0 (C-22), 50.3 (C-9), 32.1 (C-8), 49.0 (C-24), 42.3 (C-13), 39.9 (C-12), 40.2 (C-4), 37.3 (C-1), 37.1 (C-10), 31.6 (C-7), 28.9 (C-23, C-25), 28.6 (C-2), 22.8 (C-28), 25.3 (C-15), 20.1 (C-26), 21.1 (C-11), 19.1 (C-19), 19.3 (C-27), 18.6 (C-210), 12.0 (C-29).

3.1.4. Spectral Data of Compound (4). HR-EI-MS m/z: 412.3920. Calcd. for C29H48O, 412.3926 EI-MS (rel. int. %) m/z: M+ 412 (7), 270 (22), 379 (28), 394 (20), 397 (12), 273 (30), 327 (60), 300 (67), 369 (35), 351 (70), 301 (18). 1H-NMR (CDCl3, 400 MHz) (δ ppm) 0.65 (3H, s, Me-18), 0.80 (3H, s, Me-19), 0.81 (3H, d, J = 6.5 Hz, Me-27), 0.84 (3H, t, J = 7.0 Hz, Me-29), 0.90 (3H, d, J = 6.5 Hz, Me-21), 5.33 (1H, m, H-6), 5.02 (1H, m, H-3), 5.15 (1H, dd, J = 15.1, 8.4 Hz, H-22), 0.83 (1H, d, J = 6.6 Hz, Me-26), 13C-NMR (CDCl3, 100 MHz) (δ ppm) 12.0 (C-29), 129.4 (C-23), 19.4 (C-19), 21.0 (C-11), 31.8 (C-2), 32.0 (C-25), 42.4 (C-13), 42.9, 39.7, 25.4 (C-28), 24.4 (C-15), 121.7 (C-6), 51.3 ((C-12), 71.9 (C-3), 28.9 (C-16), 40.5 (C-20), 50.3 (C-9), 42.2 (C-4), 32.2 (C-8), 21.2 (C-27), 57.0 (C-14), 56.0 (C-17), 36.6 (C-10), 37.4 (C-1), 31.9 (C-7), 21.1 (C-21), 19.0 (C-26), 138.4 (C-22), 12.4 (C-18), and 140.9 (C-5).

3.2. Antimicrobial Activities

3.2.1. Antibacterial Potential. The result of the antibacterial activity shows that methanol extract of Nepeta distans shows the maximum region of inhibition (33 mm) against Klebsiella pneumoniae at 300 mg/ml, while the lowest inhibition of 22.5 mm was shown against Escherichia coli at 100 mg/ml (Table 1). Similarly, the chloroform extract of Nepeta distans showed the highest zone of inhibition (30 mm) against Staphylococcus aureus (Table 1). Similarly, the chloroform extract of Nepeta distans showed the highest zone of inhibition (30 mm) against Staphylococcus aureus (Table 1). The methanol extract showed the lowest MIC values (2 μg/ml) against E. coli and pathovar, and the chloroform extract showed the lowest MIC values (2 μg/ml) against S. aureus (Table 2). The MIC values are shown in Table 2.

3.2.2. Antifungal Activity. The result of the antifungal activity show that methanol extract of Nepeta distans show the highest zone of inhibition (35 mm) at 300 mg/ml, while the lowest zone of inhibition (22.5 mm) was shown by Fusarium solani at 100 mg/ml (Table 3). Similarly, the chloroform extract of the Nepeta distans showed the highest zone of inhibition (31 mm) against Penicillium chrysogenum at 300 mg/ml, while the lowest zone of inhibition (23 mm) was...
shown by *Fusarium solani* at 100 mg/ml (Table 3). The methanol extract showed the lowest MIC values (2 μg/ml) against *Aspergillus niger*, and the chloroform extract showed the lowest MIC values (2 μg/ml) against *Aspergillus tamarii*. Both the methanol extract and the chloroform fraction showed moderate activities against *Aspergillus flavus* and *Aspergillus fumigatus* at all three concentrations (Table 4). The MIC values are displayed in Table 4.

3.3. Phytochemical Screening

Phytochemical screening showed that both methanol extract and chloroform fraction showed the presence of alkaloids, flavonoids, saponins, glycosides, proteins, and oil (Table 5).

Screening the crude extract for phytochemical analysis is an imperative means for finding the secondary metabolites that exist in the medicinal plant because these phytochemicals are counted responsible for therapeutic application. These phytochemicals responsible for that it has been reported that saponins are among the most important compounds responsible for antidiabetic, antispasmodic, antitumor, anthelmintic, antimicrobial, phytotoxic, cytotoxic, and antioxidant potential [38].

Nepeta distans is a rich source for natural products; many constituents isolated and reported in literature are β-sitosterol, eugenol, ursolic acid, thymoquinone, oleanolic acid, nepedinol, netidiol, markhamioside F, and nepatanol [39].

Table 1: Antibacterial activity of the methanol extract and chloroform fraction of *N. distans*.

Test organism	Positive control	Negative control	Methanol extract (mg/ml)	Chloroform fraction (mg/ml)				
	Concentration	Zone of inhibition (mm)	100	200	300	100	200	300
E. coli	10	0	22.5	26.5	27	21	25	28
Pathovar	10	0	24	30	29	24	29	27
S. aureus	10	0	24.5	29	32	22	27	30
K. pneumoniae	10	0	25.5	29	33	23	29	28

Table 2: MIC values (gm/ml) of the antibacterial activity of methanol extract and chloroform fraction of *N. distans*.

Test organism	Methanol extract (mg/ml)	Chloroform fraction (mg/ml)
E. coli	2	4
S. aureus	6	2
K. pneumoniae	4	6
Pathovar	2	4

Table 3: Antifungal activity of the methanol extract and chloroform fraction of *N. distans*.

Test organism	Positive control	Negative control	Methanol extract (mg/ml)	Chloroform extract (mg/ml)				
	Concentration	Zone of inhibition (mm)	100	200	300	100	200	300
A. flavus	10	0	27.5	29	26	28	25	21
A. fumigatus	10	0	25.5	24.5	23	27	29	24
F. solani	10	0	27	24.5	22.5	30	27	22
A. Niger	10	0	33	28.5	24.5	28	29	23
P. chrysogenum	10	0	35	32	28.5	31	30	28
A. tamarii	10	0	32	29	25	30	27	22

Table 4: MIC values (gm/ml) of the antifungal activity of the methanol extract and chloroform fraction of *N. distans*.

Test organism	Methanol extract (mg/ml)	Chloroform extract (mg/ml)
A. flavus	2	4
A. fumigatus	6	2
F. solani	4	6
A. Niger	2	4
P. chrysogenum	4	2
A. tamarii	6	4

Table 5: Qualitative phytochemical analysis of *Nepeta distans*.

Class of phytochemical	Methanol extract	Chloroform fraction
Alkaloids	+	+
Flavonoids	+	+
Saponins	+	+
Proteins	+	+
Oils	+	+
Glycosides	+	+

A study confirmed that the genus *Nepeta* species is an important source of nutrients and showed immunomodulatory potential. *Nepeta* is multiregional genus and a variety of compounds are reported from it in literature, such as β-amyrin, glutinol, stigmasterol glucoside, 9β, 10α-clerod-3, 13 (16),14-trien-18-oic, 5, 4′-dihydroxy-3, 6, 7-
trimethoxyflavone, (−)-6β-hydroxy-15, 16-epoxy-5β, 8β, and stigmasterol [40–42]. The isolation and characterization of the compounds 1–4 from Nepeta distans are in complete agreement with the findings of [40–42]. Similarly, many species of the genus Nepeta are used traditionally in folkloric medicine for the treatment of liver and kidney problems, to treat dysentery and teeth problems, and are used as sedative agents and stimulants, and they are also used as febrifuge, antiasthmatic, antispasmodic, diaphoretic, and diuretic.

Essential oil and crude extracts of Nepeta genus have showed antimicrobial potential, significant antiglycation activity, anti-inflammatory potential, and serum lipids reduction potential [43]. Our findings of antimicrobial potential of Nepeta distans are again completely in agreement with the published literature [43]. Another published research showed that the Nepeta species possessed multi-biological potentials such as anti-diabetic, acetylcholinesterase inhibitory, antiatherosclerotic, analgesic, anti-ociceptive, antimalarial, antileishmanial, antioxidant, antimicrobial, antihelmintic, antilipidemia, antiplatelet aggregation, cardioprotective effect, cytotoxic, antitumor, and apoptotic, genotoxic, immunomodulatory, hepatitis, necrotic, insecticidal and insect repellent, trypanocidal, phytotoxic, nematocidal, dyslipidemia, and larvicidal [44].

4. Conclusion

The present study shows that Nepeta distans possess bioactive phytochemicals such as flavonoids, alkaloids, and tannins, and its methanol extract and chloroform fraction showed antimicrobial potential. The published literature showed multiple biological activities of Nepeta species. Therefore, it is highly recommended to explore Nepeta distans for more phytochemical as well as biological investigation.

Data Availability

The data used to support this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors extend their appreciation to the researchers supporting the project number (RSP-2021/197), King Saud University, Riyadh, Saudi Arabia.

References

[1] A. Shahat, R. Ullah, A. S. Alqahtani, M. S. Alsaid, H. A. Hussein, and O. T. R. A. Meanazel, "Hepatoprotective effect of Eriobotrya japonica leaf extract and its various fractions against carbon tetrachloride induced hepatotoxicity in rats," Evidence-Based Complementary and Alternative Medicine, vol. 2018, Article ID 3782768, 8 pages, 2018.

[2] A. S. Alqahtani, R. Ullah, and A. A. Shahat, "Bioactive constituents and toxicological evaluation of selected anti-diabetic medicinal plants of Saudi Arabia," Evidence-based Complementary and Alternative Medicine, vol. 2022, Article ID 7123521, 22 pages, 2022.

[3] R. Ullah, A. S. Alqahtani, O. M. Noman, A. M. Alqahtani, and S. Ibenmoussa, M. Bourhia, A review on ethno-medicinal plants used in traditional medicine in the Kingdom of Saudi Arabia, Saudi Journal of Biological Sciences, vol. 27, no. 10, pp. 2706–2718, 2020.

[4] S. Mussarat, R. Amber, A. Tariq et al., Ethnopharmacological Assessment of Medicinal Plants Used against Livestock Infections by the People Living Around Indus River, BioMed Research International, New York City, USA, 2014.

[5] A. Abbaszadegan, M. Nabavi, A. Gholami et al., "Chemical constituent and antimicrobial effect of essential oil from Myrtus communis leaves on microorganisms involved in persistent endodontic infection compared to two common endodontic irrigants: an in vitro study," Journal of Conservative Dentistry, vol. 17, no. 5, p. 449, 2014.

[6] N. Omidifar, A. Nili-Ahmadabadi, A. Gholami, D. Dastan, D. Ahmadimoghaddam, and H. Nili-Ahmadabadi, "Biochemical and histological evidence on the protective effects of Allium hirtifolium boiss (Persian shallot) as a herbal supplement in cadmium-induced hepatotoxicity," Evidence-based Complementary and Alternative Medicine, vol. 2020, pp. 1–8, 2020.

[7] A. Abbaszadegan, A. Gholami, Y. Ghahramani et al., "Antimicrobial and cytotoxic activity of cuminum cuminum as an intracanal medicament compared to chlorhexidine gel," Iranian Endodontic Journal, vol. 11, no. 1, pp. 44–50, 2016.

[8] N. Omidifar, A. Nili-Ahmadabadi, A. Nakhostin-Ansari et al., "The modulatory potential of herbal antioxidants against oxidative stress and heavy metal pollution: plants against environmental oxidative stress," Environmental Science and Pollution Research, vol. 28, no. 44, pp. 61908–61918, 2021.

[9] D. J. Newman and G. M. Cragg, "Natural products as sources of new drugs from 1981 to 2014," Journal of Natural Products, vol. 79, no. 3, pp. 629–661, 2016.

[10] A. G. Atanasov, B. Waltenberger, E. M. Pferschy-Wenzig et al., "Discovery and resupply of pharmacologically active plant-derived natural products: a review," Biotechnology Advances, vol. 33, no. 8, pp. 1582–1614, 2015.

[11] A. L. Harvey, R. Edrada-Ebel, and R. J. Quinn, "The re-emergence of natural products for drug discovery in the genomics era," Nature Reviews Drug Discovery, vol. 14, no. 2, pp. 111–129, 2015.

[12] G. Mustafa, R. Arif, A. Atta, S. Sharif, and A. Jamil, "Bioactive compounds from medicinal plants and their importance in drug discovery in Pakistan," Matrix Science Pharma (MSP), vol. 1, no. 1, pp. 17–26, 2017.

[13] Bodeker and C.-K. Ong, WHO Global Atlas of Traditional, Complementary and Alternative Medicine, World Health Organization, Geneva, Switzerland, 2005.

[14] K. Osemene, M. Ilori, A. Elujio, and W. Erhun, "Developing a framework for ethnomedicine innovation system in Nigeria," Nigerian Journal of Natural Products and Medicine, vol. 15, no. 1, pp. 38–44, 2012.

[15] W. M. Bandaranayake, "Quality control, screening, toxicity, and regulation of herbal drugs," Modern Phyto medicine, pp. 25–57, 2006.

[16] K. W. Martin and E. Ernst, "Herbal medicines for treatment of bacterial infections: a review of controlled clinical trials," Journal of Antimicrobial Chemotherapy, vol. 51, no. 2, pp. 241–246, 2003.
