Electronic culinary reservations based on Android with the Scrum methodology and Firebase database

R Setiawan¹,* A D Supriatna¹, S Hudawiguna¹ and F F Roji²

¹ Department of Informatics, Sekolah Tinggi Teknologi Garut, Garut, Indonesia
² Faculty of Economics, Universitas Garut, Garut, Indonesia

*ridwan.setiawan@sttgarut.ac.id

Abstract. Culinary reservation activities in the process of ordering food or drinks in restaurants are the initial process in restaurant or café activities, the problem that occurs is the buildup of orders on the order note, and sometimes customer order errors or changes to orders by customers. The purpose of this study is to make electronic Android-based culinary reservations using Firebase as a realtime integrated database between tables, kitchens, and cashiers. The research method used is Agile Scrum with the product backlog, sprint, daily scrum, and sprint review stages with modeling using Unified Modeling Language diagrams. This study took a sample in one restaurant in Garut Regency. This research resulted in a prototype of a reservation application that can be used on Android smartphones for customer tables, kitchens section, and cashiers. This culinary reservation application can help improve service to customers by increasing order times faster, reducing the occurrence of booking errors, and reducing paper usage.

1. Introduction

Speedy technological developments are currently widely used to help meet the needs of completing organizational work [1–3], but the rate of technological development is unpredictable, like smartphone technology [4]. A smartphone is a device that allows communication as well as a PDA (Personal Digital Assistant) function and has the ability like a computer. Android is the most popular smartphone operating system, with 85% of smartphone users in the world [5] and 94% of users in Indonesia [6]. The impact of the use of Android smartphone technology in various aspects has now been felt. Without exception, restaurants/cafes can utilize this technology to provide optimal services to customers, including by facilitating activities in restaurants, especially in ordering activities [7,8].

Restaurant ratings not only from the taste of the cuisine but also from the service can also be used as an indicator of restaurant customer satisfaction assessment [9,10], in evaluating customer satisfaction several things such as reducing waiting time, maintaining high-quality service become the demands of restaurant service. Long waiting times and serving wrong orders is a common mistake in every restaurant that ultimately leads to customer dissatisfaction [11]. The purpose of this research is to design an Android application to improve restaurant services in serving food and beverage reservations.

Several previous studies have succeeded in making applications for restaurant reservation activities with various web technologies [12], Android base [13–15], the addition of algorithms [16], and
different methodological approaches [17]. In this study, the application is synchronizing as a whole between the customer, chef, management, and cashier.

2. Methodology
The research methodology used is Scrum, which is one of the Agile methodologies. Scrum is a recurring workflow methodology that has an innovative and popular product development approach (fig. 1). Scrum starts with making product guarantees, registering features or capabilities, and prioritizing the features most needed. By setting priority features on product guarantees, it can make the developer teamwork in priority order [18,19], besides, based on the Scrum methodology user survey, ranks third in the user survey results with 20.3% of respondents using the Scrum methodology in the process software development [20].

![Figure 1. Scrum framework [20].](image)

In describing the activities and objectives in this study, this research base on a research scrum framework (fig. 2), with stages:

- **Preliminary**: the preparation phase of the activity begins with collecting data about system requirements, observing, interviewing, and studying the literature. This phase also determines the business processes agreed with the product owner and determines the system architecture and technology architecture that tailor to the needs.

- **Product Backlog**: The activity carried out is to identify the actors depicted using the use case diagram, determine the structure of the system, and determine the needs of the application to be developed, which will be illustrated by the product backlog item table.

- **Sprint**: After completing the running business process and explained in the use case, activity diagram, and item backing guarantee table. The next activity is to make an application development plan and develop a system (coding) by determining the agreed time limit [2]. Sprint consists of work units needed to achieve the specified requirements and must be completed within the specified time (usually 30 days) [21,22].

- **Scrum Meeting**: Are short meetings (usually 15 minutes) that are held daily by the Scrum team. At this stage, it will determine whether the sprint can proceed to another stage by conducting a system test as a reference for evaluation.

- **Sprint Review**: This is the stage for providing software that is built following the Function Review and is evaluated by the product owner.

3. Results and discussion

3.1. Preliminary
In this section, describing the results of the research conducted at the time of data collection starts from interviews, observations, and literature studies. The interview conducted with the restaurant as
the Product Owner, where the interview results concluded that the restaurant requires an application for ordering food and drinks so that there is no accumulation of booking memorandum. Furthermore, observations made by direct observation in restaurants.

After designing the business process that will be building, the next step is to identify the actors. Because the use case diagram illustrates what actors can do with the system, so the culinary reservation application has four systems and each system has one different actor or user, while the actors identified are: Customers, Chefs / Kitchens, Cashiers, Admins, and Servants, with the activities carried out in the use case diagram (fig.3).

In principle, the ordering activity that designing is no different from the manual activity. It is just that the process uses smartphone technology and adding to the order status made by the chef.

The next activity is determining the technology architecture that will use to support a stable and fast system process used by the Firebase database. Firebase is a technology that allows creating web applications without server-side programming, making development more comfortable and faster. One Firebase node offers up to 100 connections per second; besides, Firebase provides up to 10 Gigabytes of data transfer across the entire database with one additional Gigabyte as a storage option [15,23,24], Figure 4 illustrates how the technology architecture plan using the Firebase database.

Figure 3. Use case diagram system.
3.2. **Product backlog**

In table 1 is a list of Products Backlog that has been arranged in order of priority business values according to application needs. The estimated time shown in the table is the estimated time spent creating the application.

No	Product Backlog feature	Estimated (Day)	Priority	Degree of difficulty
1.	System Specifications	Two days	High	High
2.	Building a database of Culinary Reservation Application systems	Three days	High	High
3.	Establish a sign-up function	One day	High	High
4.	Establish a sign-in function	One day	High	High
5.	Build functions see food and beverage categories	One day	High	High
6.	Build a food and beverage list function	Two days	High	High
7.	Build order functions	Three days	High	High
8.	Establish food and beverage detail functions	One day	High	High
9.	Build view order functions	One day	High	High
10.	Building functions added categories of food and drinks	Three days	High	High
11.	Build functions plus add food and drink lists	Two days	High	High
12.	Build rating and comment functions	One day	High	High
13.	Builds edit and delete functions	Three days	High	High
14.	Establish a sign out function	One day	High	Moderate
15.	Making a mock-up system	One day	Moderate	Moderate
3.3. **Sprint**

Activity on the sprint is the implementation of the product backlog with an estimated quality per day for 8 hours. Based on table 1, the duration of the system work is 26 days by carrying out the Sprint Meeting for four times.

3.4. **Sprint review**

The final stage is the sprint review, where a list of successfully created Product Backlog is then presented to the product owner and the Scrum team to find out whether the application is made correctly or not. In Figure 5, an example of the appearance of a culinary reservation application that has been completed.

![Figure 5. Display culinary reservation system.](image)

4. **Conclusion**

Based on the results of research that has been done, it can be concluded, this research produces an Android-based culinary reservation that provides more detailed information about cuisine, can solve the problem of ordering memorandums so that it can reduce the use of paper (paperless). With this system, it can also cut food ordering activities faster so that customers do not wait long.

Acknowledgments

Acknowledgments are given to the STT-Garut, which has fully supported the publication of this article.

References

[1] Busran, Anggraini W 2016 Perancangan Aplikasi Pemesanan Makanan dan Minuman Berbasis Sistem Operasi Android (Studi Kasus: Pecel Lele Lela) *J TEKNOIF* pp 57–66

[2] Setiawan R, Kurniadi D, Aulawi H, Kurniawati R 2019 Asset management information system for higher education *J Phys Conf Ser* **1402** p 022083

[3] Johnson R D, Lukaszewski K M, Stone D L 2016 The evolution of the field of human resource information systems: Co-Evolution of technology and HR processes *Commun Assoc Inf Syst* **38** pp 533–53

[4] Sunny S, Patrick L, Rob L 2019 Impact of cultural values on technology acceptance and technology readiness *Int J Hosp Manag* **77** pp 89–96

[5] Mandias G F 2018 Analisis Pengaruh Pemanfaatan Smartphone Terhadap Prestasi Akademik Mahasiswa Fakultas Ilmu Komputer Universitas Klabat *CogITo Smart J* **3** pp 83–90

[6] Muliyati D, Bakri F, Ambarwulan D 2018 Aplikasi Android Modul Digital Fisika Berbasis Discovery Learning. *WaPFi (Wahana Pendidik Fis.)* **3** pp 74–9
[7] Tompoh J F, Sentiunuwo S R, Sinsuw A A E 2016 Rancang Bangun Aplikasi Pemesanan Menu Makanan Restoran Berbasis Android E-Journal Tek Inform 9 pp 1–9

[8] Defrina D, Lestari D P 2017 Aplikasi Pemesanan Makanan Dan Minuman Online Aplication of Ordering Food and Beverages Online Based on Mobile Browser on Tiga Saudara Restaurant J Ilm Inform Dan Komput 22 pp 158–70

[9] Solichin I A, Kantun S, Suyadi B 2016 Pengaruh Kualitas Pelayanan terhadap Loyalitas Pelanggan Restoran Quick Chicken Jalan Jawa No. 63 Jember tahun 2016 URNAL Pendidik Ekon J Ilm Ilmu Pendidikan, Ilmu Ekon Dan Ilmu Sos 11 pp 61–6

[10] Kurniawati T, Irawan B, Prasodjo A 2019 Analisis Pengaruh Kualitas Pelayanan, Harga, dan Brand Image Terhadap Kepuasan Konsumen Restoran Pizza Hut Cabang Jember E-Journal Ekon Bisnis Dan Akunt 6 pp 147–51

[11] Ekanayake A, Munasinghe P, Premasiri H, Liyanage V, Thelijjagoda S 2019 Foody - Smart Restaurant Management and Ordering System 2018 IEEE Reg 10 Humanit Technol Conf pp 1–6

[12] Kurniawan R, Sutuwan A, Amalia R 2020 Information System Ordering Online Restaurant Menu At Hover Cafe Aptisi Trans Manag 4 pp 32–40

[13] Candra L, Alkodri A A 2014 Aplikasi Pemesanan Makanan Pada Bangka Original Cafe Berbasis Client Server Dengan Platform Android J SISFOKOM 03 pp 34–41

[14] Putri A Y, Yendri D 2018 Sistem Pemesanan Makanan dan Minuman Pada Restoran Menggunakan Teknologi NFC Berbasis Android JITE (Journal Inf Technol Comput Eng) 2 pp 34–40

[15] Kurniawan B, Abdul M F 2019 Designing Food Ordering Application Based on Android IOP Conf Ser Mater Sci Eng 662 p 022070

[16] Ilyas M, Adityo R D, Purbaningtyas R 2017 Design and Implementation Of Food & Beverage Order Applications Using Multilevel Feedback Queue Method Based Android (Case Study : Bonk Cafe Krian) J Electr Eng Comput Sci 2 pp 287–98

[17] Trianto J 2017 Aplikasi Pelayanan Restoran Mandiri Berbasis Smartphone J Teknol Inf ESIT XI pp 29–35

[18] Kikitamara S, Noviyanti A A 2018 A Conceptual Model of User Experience in Scrum Practice 2018 10th Int. Conf. Inf. Technol. Electr. Eng., IEEE pp 581–6

[19] Schön E M, Thomaschewski J, Escalona M J 2017 Agile Requirements Engineering: A systematic literature review Comput Stand Interfaces 49 pp 79–91

[20] Vijayasarathy L R, Butler C W 2016 Choice of software development methodologies: Do organizational, project, and team characteristics matter? IEEE Softw 33 pp 86–94

[21] Pressman R S 2010 Software engineerPressman, R. S. (n.d.). Software engineering (2nd ed.) (New York: McGraw-Hill Book Company. ring. 7th ed. New York: Higher Education)

[22] Schwaber K and J S 2017 Panduan Scrum

[23] Rahmi A, Piarsa I N, Buana P W 2017 FinDoctor – Interactive Android Clinic Geographical Information System Using Firebase and Google Maps API Int J New Technol Res 3 pp 8–12

[24] Hlaing K M, Nyaung D E 2019 Electricity Billing System using Ethereum and Firebase 2019 Int. Conf. Adv. Inf. Technol. p 217–21