Improvement of critical current density of MgB₂ bulk superconductor processed by Spark Plasma Sintering

Jacques G. Noudem¹ | Yiteng Xing¹ | Pierre Bernstein¹ | Richard Retoux¹
Masaki Higuchi² | Srikanth S. Arvapalli² | Miryala Muralidhar² | Masato Murakami²

¹Normandie Univ, ENSICAEN, UNICAEN, CNRS, CRISMAT, Caen, France
²Superconducting Materials Laboratory, Graduate School of Science & Engineering, Shibaura Institute of Technology, Tokyo, Japan

Correspondence
Jacques G. Noudem, Normandie Univ, ENSICAEN, UNICAEN, CNRS, CRISMAT, 14000 Caen, France. Email: jacques.noudem@ensicaen.fr

Abstract
Spark Plasma Sintering (SPS) is a promising rapid consolidation technique that allows a better understanding and optimization of the sintering kinetics and therefore makes it possible to obtain MgB₂ bulk superconductor with tailored microstructures consisting of grains with either spherical or elongated morphology. In this contribution, the role of the precursor powders on the superconducting properties of MgB₂ is investigated. Three sets of bulk MgB₂ material were processed from: (i) a commercially available MgB₂ powder; (ii) a mixture of Mg metal and amorphous B using a single-step solid-state reaction process and (iii) a mixture of amorphous boron coated with carbon and Mg metal. The samples were prepared in the same SPS processing conditions. The microstructure of the samples was investigated by X-ray diffraction, SEM and TEM and correlated to their superconducting properties. The critical current density of the best sample at 20K was $J_\text{c} = 500 \text{kA/cm}^2$ in self-field, which is one of the highest critical current density reported for MgB₂ bulk superconductors.

KEYWORDS
critical current density (J_c), flux pinning, MgB₂, microstructure, spark plasma sintering

1 | INTRODUCTION

Intermetallic MgB₂ of hexagonal structure is well known since 1953.¹ In 2001, its superconducting behavior up to $T_\text{c} = 39$ K, due to the existence of two different superconducting gaps, was discovered.² This material has several advantages for applications, especially its low cost, good mechanical properties,³,⁴ and large coherence length.⁵ Its upper critical field is higher than that of conventional NbTi, and Nb₃Sn superconductors. It shows no weak links and less anisotropic effects than superconducting cuprates.⁶,⁷ In addition, MgB₂ has a density of 2.6 g cm⁻³, which is much lower than that of any other superconductors, making it the most suitable candidate for lightweight applications.

Akin to YBa₂Cu₃O₇₋δ (YBCO) and (Rare-Earth) Ba₂Cu₃O₇ (REBCO) cryomagnets,⁸,⁹ bulk MgB₂ could be used for various applications such as the delivery of drug at specified locations in the human body using an external magnetic force,¹⁰ magnetic separation systems,¹¹ portable nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) devices,¹² generators or motors¹³,¹⁴ etc… For all these applications, the trapped magnetic field of present MgB₂ bulks must be improved. According to the Bean model, the trapped field is proportional to the critical current density, J_c,
and depends on the size of the persistent current loops,15 that is linked to the sample size. As a consequence, to obtain high trapped fields it is necessary to make large superconducting bulks comprising effective pinning sites. For J_c enhancement, different strategies have been investigated including irradiation,16-18 chemical doping,19-21 or substitution,22 particle size refinement by mechanical ball milling23 and other techniques. Among various chemical dopants, carbon was one of the most effective choice. While carbon as dopant via various sources, uniform carbon distribution was always an issue,24 leading to nonuniform superconducting performance that is not desired. Hence, research focusing on achieving uniform carbon distribution was carried out in recent decades. One famous recent technique to achieve this was usage boron that is coated with boron, also known as carbon coated boron (CCB). Several researchers have employed this CCB, which was prepared via specific pyrolysis technique, and attained uniform carbon distribution as well as J_c. Some studies reported that a low carbon wt% of around 1.5 wt% is optimum for producing best J_c.25,26 While other studies have incorporated Cu addition in conjunction to CCB powder, to ensure low temperature synthesis (600°C) by means of Cu activated sintering and enhance the J_c via low MgO as uniform carbon doping.27 Furthermore, the Cu addition as a coating can help in obtaining slightly higher density MgB\textsubscript{2} wires produced via Internal Mg Diffusion (IMD) process.28 Classically, bulk MgB\textsubscript{2} is prepared by conventional sintering29-31 or by infiltration processes.32 However, the density of the obtained bulks is quite low, about half the value of the theoretical density. Fortunately, some processing techniques can be used to prepare dense MgB\textsubscript{2} samples, especially (i) hot isostatic pressing (HIP),33 (ii) hot compaction or pressing (HP),34,35 (iii) high-pressure sintering (HPS),36,37 and (iv) spark plasma sintering (SPS).38-40 This last technique SPS, offers the possibility to prepare samples with a complex shape and/or a large size.38,39 In this study, SPS was employed for obtaining sintered polycrystalline MgB\textsubscript{2} bulks. The influence of the starting powder on the superconducting properties of MgB\textsubscript{2} has been investigated. By the optimization of both the starting powder and the SPS processing parameters as well as sintering conditions, the J_c of the samples was improved as a result of the controlled microstructure and the increase of their density and flux pinning capability.

In section 2, we describe the experimental procedures we have used for the fabrication and the characterization of the samples. The results are reported in section 3.

2 | EXPERIMENTAL PROCEDURE

Three groups of samples differing by their precursor materials were fabricated: (i) the first group was fabricated with a commercially available (MgB\textsubscript{2}, purity >97%, 100 meshes) powder made by PAVEZYUM, Advanced Chemicals, Turkey, (ii) the second with a mixture of Mg metal (99.9% purity, 200 meshes) and amorphous boron (99% purity, 300 meshes) (Mg + 2B) using a single-step solid-state reaction process and (iii) the third one with a mixture of amorphous boron coated with carbon and Mg metal (Mg + B/C). High-purity Mg metal (99.9% purity, 200 meshes) was purchased from Furu-uchi Chemical Corporation, Japan, while crystalline boron powder (98.5% purity) and 1.5 wt% carbon-encapsulated amorphous boron powder (98.5% purity, 250 nm size particles) were purchased from PAVEZYUM. The process used for mixing the powder components is reported elsewhere24.

Graphite foils were wrapped alongside of inner walls of graphite mold that was filled up with the powder to sinter and the mold was located in the spark plasma sintering set-up (FCT System GmbH, HD25, Rauenstein, Germany). Details on the shaping and densification of the samples are given elsewhere.33 Briefly, the SPS was operated in DC mode with high intensity current pulses (2000 A, 4 V) and a 50 MPa uniaxial pressure under dynamic vacuum (10-3 bar). The sintering temperature was in the 800-1000°C range. During the whole process, the temperature, the applied pressure, the shrinkage curve as well as the piston speed were recorded. After the sintering step, the as-prepared samples of 20 mm diameter and 8 mm height were polished to remove the carbon traces due to the graphite foils. We present below the results obtained with three samples whose characteristics are typical of each group. They are named as follows: S1 is related to the bulks fabricated with the commercial MgB\textsubscript{2} powder, S2 to the samples made by mixing Mg and B powders (Mg + 2B), and S3 to the bulks made with the Mg + B/C powder.

The density of the samples was determined with ethanol by the Archimedes method. X-ray diffraction was carried out with a Philips 0-20 diffractometer using the monochromatic Cu-K\textsubscript{α} radiation. The microstructure of the samples was analyzed with a Carl Zeiss (Supra 55, Oberkochen, Germany) scanning electron microscope (SEM) and transmission electron microscopy (TEM) was used to investigate the finer microstructural features. Energy Dispersive Analysis and High Resolution Electron Microscopy observations were performed at room temperature on a 200 kV JEOL 2010 FEG STEM electron microscope (tilt ±42°) equipped with an EDS (Energy Dispersive Spectrometer, Si/Li detector) EDAX and fitted with a double tilt sample holder. Cross sections of densified samples for TEM observations were prepared by ion milling at low voltage (Argon gas) to prevent heat damages using a JEOL Ion Slicer.

For investigating the superconducting properties, small specimens with dimensions in the range 2 x 2 x 2 mm3 were cut from the bulks in order to measure their critical temperature, T_c, and to record their magnetization hysteresis loops (M-H loops) in the 10 K-30 K range with a SQUID magnetometer.
Their critical current density as a function of the applied field was estimated from the M–H loops with the extended Bean critical state model for rectangular samples. The spatial trapped field distribution at 20 K was mapped 20 minutes after cooling the sample to the same temperature 10 mm away from a 45 mm diameter permanent magnet using a cryogen-free cryo-cooler. During these measurements, the temperature was monitored with two sensors. One was located on the cold head of the cryo-cooler and the other on the sample surface. The Hall probe used for mapping the field was located above the cryostat 10 mm away from the superconductor. Levitation force measurements were also carried out at 20 K after cooling down the samples at 35 mm from the permanent magnet.

3 | RESULTS AND DISCUSSION

Figure 1 shows the X-ray diffraction diagrams (XRD) of the processed samples. Almost all the peaks in the XRD patterns correspond to MgB₂. S1 shows traces of MgO, compound already present in the as-supplied commercial MgB₂ powder. The formation of a small amount of MgO visible around 62° in the XRDs of S2 and S3 is due to the high reactivity of Mg with residual oxygen during the processing step. Using Rietveld refinements, the MgO amount was evaluated at 1.35 and up to 3.38 wt.% for the starting commercial powder and the sintered samples respectively. Different authors have pointed out this additional amount of MgO and the effect on the superconducting properties. A residual carbon peak is observed at 26°. It is probably due to the graphite mold. However, in case of S3 the carbon used to coat the boron may also contribute.

The MgB₂ peaks correspond to a hexagonal structure with the space group P6/mmm. The lattice parameters were calculated and are reported in Table 1. They do not show any significant variation with respect to the theoretical values.

The SEM micrographs of S1, S2, and S3 are shown in Figure 2. Sample S1, which was processed directly from commercial MgB₂ powder, has more pores than S2 and S3. This is confirmed by the estimation of the packing ratio which is around 73, 75, and 84% for S1, S2, and S3, respectively. The different packing ratios could be related to the particles size shape of starting powder and the chemical reaction (Mg + 2B or Mg + MgB₄) during the processing stage. In these cases, the magnesium diffusion at low temperature is useful to improve the contact between grains. In these cases, the magnesium diffusion at low temperature is useful to improve the contact between grains and consequently, the samples density. The S2 and S3 samples are obtained after reactive sintering (called in situ process) in contrary of ex situ process for S1 where the MgB₂ was already formed. Small size spherical grains can be observed in Figure 2B, C, which correspond to the samples prepared with the powders containing nano-boron particles. The presence of spherical grains is clearly evidenced in the micrograph of the powder before processing shown in the insert of Figure 2C. In addition, in Figure 2D, TEM images of sample S3 show also small grains. The enlargement presented in the inset of Figure 2D attests of the good crystallinity of the nanoparticles in spite of the coexistence in these nano-grains of many defects, domains and strains resulting in perturbed contrasts.

Figure 3A shows the normalized magnetic moment-temperature curves of S1, S2 and S3. The measurements were made while applying a 1 mT external magnetic field. Samples S1 and S2 show a low transition width at Tc = 38.7 K, while for S3, Tc = 35 K. This low Tc value could be due to the partial substitution of boron by carbon.

The samples critical current density were estimated from their magnetization hysteresis cycles at 20 K (see the inset in Figure 3B) by applying the extended Bean critical-state relation:

\[
J_c = \frac{20DM}{a(1-(a/b))}
\]

In Eq.(1) \(\Delta M\) is the width of the magnetic hysteresis cycle measured in emu/cm² while a and b are the sample dimensions in cm (with a < b). Figure 3B shows the magnetic field dependence of \(J_c\) at 20 K for the three samples. In self-field, \(J_c\) is equal to 1.14 x 10⁴, 3.84 x 10⁵, and 4.98 x 10⁵ A/cm² for

Table 1	Lattice parameters and c/a ratio of the fabricated samples		
Sample	a (Å)	c (Å)	Δ (c/a)
MgB₂ (value of literature)	0.3086	0.3524	1.141931
S1	0.3081	0.3514	1.140499
S2	0.3084	0.3520	1.141237
S3	0.3074	0.3523	1.146346

FIGURE 1 XRD patterns of samples S1 (commercial MgB₂), S2 (Mg + B) and S3 (Mg + B/C) [Color figure can be viewed at wileyonlinelibrary.com]
S1, S2, and S3, respectively. The increasing critical current density from S1 to S2 and from S2 to S3 is linked to the increasing density of the samples. The low difference between the densities of S1 and S2 indicates the existence of a density threshold to obtain volumetric MgB2 with a large J_c. While J_c for S2 and S3 is significantly larger than for S1, that was prepared with the MgB2 powder, it is also larger than the values reported in 30 (2.7 \times 105 A/cm2) and in 44 (3.8 \times 104 A/cm2), that were obtained with bulks fabricated by conventional sintering. It is in the range of the values reported for bulks fabricated by hot-pressing (4.8 \times 105 A/cm2)37. This comparison is summarized in Table 2.

In the 2 T range, J_c is around 9.2 \times 104 A/cm2 and 1.5 \times 105 A/cm2 for S2 and S3, respectively. At high field, the J_c of S3 is twice that of S2. The improved results are primarily due to the good pinning of the vortices in S3, resulting from the large number of grains boundaries present in S3 as compared to S2, that is visible when comparing Figure 2B,C.

TABLE 2 Critical current density, J_c, at self-field, 20 K of sample S3 from this work compared to some reported data30,37,42

| J_c (kA/cm2) | 498 | 27030 | 48037 | 3842 |

J_c of sample S3 as a function of the applied magnetic field at various temperatures [Color figure can be viewed at wileyonlinelibrary.com]

At 4 T, the critical current densities are around 4.4 \times 103 and 9.6 \times 103 A/cm2 for S2 and S3, respectively. The dependence of the critical current density of S3 on the applied magnetic field and the temperature is plotted in Figure 4. As expected, J_c decreases if the applied field or the temperature increases.
Typical J_c are reported in Table 3. At 10 K, 5.06×10^5, 3.73×10^5, and 1.56×10^5 A/cm2 were measured at 1, 2, and 3 T, respectively. We also point out the J_c values equal to 1.80×10^5 and 5.16×10^4 A/cm2 at 25 and 30 K, respectively, demonstrating the strong flux pinning and high compaction of the S3 sample.

Figure 5 shows the flux density above the surface of S3 at 20 K, after field cooling the sample with a 45 mm diameter NdFeB permanent magnet located above the cryostat at 10 mm from the superconductor generating 0.3 T at the surface of S3. The measurements were made by scanning a Hall sensor 10 mm above the bulk surface. The trapped field distribution shows a single dome as in single domain YBaCuO bulks. This conical distribution of the magnetic field can be associated to the homogeneous transport of the current through the grain boundaries. This is in contrast to YBaCuO bulks in which the superconducting current flows across the grains boundaries with a large J_c only if the sample is textured. The trapped field of 0.3 T is lower than 1.5 T reported elsewhere, with the same size. In this case, the authors used the coil with the applied external field up to 3 T for sample magnetization. In this study, we have as a magnetization source a permanent magnet with a maximum external magnetic field of 0.5 T. For the future work, we will magnetized our samples at high applied field in order to investigate the trapped field capacities.

Figure 6 shows the levitation force measured at 20 K on S1 and S3 after field cooling the samples with the 45 mm diameter magnet at a distance of 35 mm. As could be expected, the levitation force increases as the separation between the superconductors and the magnet decreases. The levitation force measured on S3 is twice as large as that measured on S1. This is attributed to the difference in J_c between the two samples (see Figure 3B).

4 | CONCLUSION

The results reported in this contribution show that the fabrication of MgB$_2$ bulks by Spark Plasma Sintering with starting powders containing nano-particles of boron result in samples with a packing density of 84%, large enough to ensure a large critical current density, $J_c = 500$ kA/cm2 at 20 K in self-field. In presence of a magnetic field, J_c decreases but in the 20 K range, it keeps values large enough for most applications up to 4 T. The combination of these characteristics to the light weight and to the mechanical properties of bulk MgB$_2$ show that this material could be the best candidate for applications using liquid hydrogen as cryo-coolant, especially the future electric planes or cryo-coolers working in the 20 K range, as for example NMR portable set-ups.

ACKNOWLEDGMENTS

Mrs Y. XING thanks the "Conseil Régional-Normandie, France" for her thesis grant. The authors thank Mr Jerôme Lecourt and Mrs Christelle Bilot for their technical support.
REFERENCES

1. Russell V, Hirst R, Kanda FA, King AJ. An x-ray study of the magnesium borides. Acta Cryst. 1953;6:670.

2. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J. Superconductivity at 39 K in magnesium diboride. Nature. 2001;410:63–4.

3. Murakami A, Noudem J, Guesmi Z, Kudo T, Iwamoto A. Mechanical properties of MgB2 bulk fabricated by spark plasma sintering. Physics Procedia. 2015;65:77–80.

4. Murakami A, Iwamoto A, Noudem JG. Mechanical properties of bulk MgB2 superconductors processed by spark plasma sintering at various temperatures. IEEE Trans Appl Supercond. 2018;28:8400204–4.

5. Eisterer M, Zehetmayer M, Weber HW. Current Percolation and Anisotropy in polycrystalline MgB2. Phys Rev Lett. 2003;90:247002–4.

6. Kambara M, Haribabu N, Sadki ES, Cooper JR, Minami H, Cardwell DA, et al. High intergranular critical currents in metallic MgB2 superconductor. Supercond Sci Technol. 2001;14:1L–7.

7. Labbalestier DC, Cooley LD, Rikel MO, Polyanskii AA, Jiang J, Pataiak S, et al. Strongly linked current flow in polycrystalline forms of the superconductor MgB2. Nature. 2001;410:186–9.

8. Kenfaii D, Sibeud PF, Louradour E, Chaud X, Noudem JG. An effective approach for the development of reliable YBCO bulk cryomagnets with high trapped field performances. Adv Funct Mater. 2014;24:3996–4004.

9. Kenfaii D, Sibeud PF, Louradour E, Noudem JG, Chaud X. High trapped field performances in thin-wall YBa2Cu3O7−δ bulk cryomagnets. Appl Phys Lett. 2013;102:2059–62.

10. Hirota Y, Akiyama Y, Izumi Y, Nishijima S. Fundamental study for development magnetic drug delivery system. Physica C. 2011;469:1853–6.

11. Mishima F, Terada T, Akiyama Y, Nishijima S. High gradient superconducting magnetic iron removal for the glass polishing waste. IEEE Trans Appl Supercond. 2011;21:2059–62.

12. Nakamura T, Tamada D, Yanagi Y, Itoh Y, Nemoto T, Utumi H, et al. Development of a superconducting bulk magnet for NMR and MRI. J Magn Reson. 2015;259:68–75.

13. Ohsaki H, Terao Y, Sekino M. Wind Turbine Generators using Superconducting Coils and Bulks. In Supercond Sci Technol. 2013;23(2010) 3. Proceedings of the 9th European Conference on Applied Superconductivity. Dresden, Germany. J Phys: Conf Ser. 2010;234(3):032043–7.

14. Yamamoto T, Iizumi M, Yokoyama M, Umemoto K. Electric propulsion motor development for commercial ships in Japan. Proc IEEE. 2015;103:2333–43.

15. Bean CP. Magnetization of hard superconductors. Phys Rev Lett. 1962;8:250–3.

16. Bugoslavsky Y, Cohen LF, Perkins GK, Polichetti M, Tata TJ, Gwilliam R, et al. Enhancement of the high-magnetic field critical current density of superconducting MgB2 by proton irradiation. Nature. 2001;411:561–3.

17. Silver TM, Horvat J, Reinhard M, Yao P, Keshavarzi S, Munroe P, et al. Uranium doping and thermal neutron irradiation flux pinning effects in MgB2. IEEE Trans Appl Supercond. 2004;14:33–9.

18. Pallecchi I, Tarantini C, Aebersold HU, Braccini V, Fanciulli C, Ferdeghini C, et al. Enhanced flux pinning in neutron irradiated MgB2. Phys Rev B. 2005;71:212507–4.

19. Cai Q, Liu Y, Ma Z, Dong Z. Superconducting properties of Y2O3/SiC Co-doped bulk MgB2. J Supercond Nov Magn. 2012;25:357–61.

20. Tan KS, Chen SK, Jun BH, Kim CJ. Enhancement in critical current density and irreversibility field of bulk MgB2 by C and CaCO3 co-addition. Supercond Sci Technol. 2008;21:105013–4.

21. Yeoh WK, Dou SX. Enhancement of Hc2 and Jc by carbon-based chemical doping. Physica C. 2007;456:170–9.

22. Wilke RHT, Bud’ko SL, Canfield PC, Finneen DK. Systematic effects of carbon doping on the superconducting properties of MgB12. Phys Rev Lett. 2004;92:217003–4.

23. Jun BH, Kim KN, Tan KS, Kim CJ. Enhanced critical current properties of in situ processed MgB2 wires using milled boron powder and low temperature solid-state reaction. J. Alloys Compd. 2010;492:446–51.

24. Senatore C, Lezza P, Lortz R, Shcherbakova O, Yeoh WK, Dou SX, et al. Specific heat and magnetic relaxation analysis of MgB2 bulk samples with and without additives. IEEE Trans Appl Supercond. 2007;17(2):2941.

25. Barua S, Hossain MSA, Ma Z, Patel D, Mustapic M, Somer M, et al. Superior critical current density obtained in MgB2 bulks through low-cost carbon-encapsulated boron powder. Scripta Mater. 2015;104:37–40.

26. Muralidhar M, Higuchi M, Jirsa M, Diko P, Kokal I, Murakami M. Improved critical current densities of bulk MgB2 using carbon-coated amorphous boron. IEEE Trans Appl Supercond. 2017;27(4):1–4.

27. Liu Y, Lan F, Ma Z, Chen N, Li H, Barua S, et al. Significantly enhanced critical current density in nano-MgB2 grains rapidly formed at low temperature with homogeneous carbon doping. Supercond Sci Technol. 2015;28(5):055005.

28. Liu Y, Cheng F, Qiu W, Ma Z, Al Hossain MS, Dou SX. High performance MgB2 superconducting wires fabricated by improved internal Mg diffusion process at a low temperature. J Mater Chem C. 2016;4(40):9469–75.

29. Muralidhar M, Higuchi M, Diko P, Jirsa M, Murakami M. Record critical current density in bulk MgB2 using carbon-coated amorphous boron with optimum sintering conditions. In: Maeda A, Ogino H, Yoshida Y, Iijima Y, Yoshikawa N, Kandori A, Furuse M, Wakuda T, eds. Proceedings of the 29th International Symposium on Superconductivity. Tokyo, Japan: J. Phys.: Conf. Ser. 2017;871, 012056–6.

30. Muralidhar M, Kenta N, Koblishcha MR, Murakami M. High critical current densities in bulk MgB2 fabricated using amorphous boron. Phys Status Solid A. 2007;17(2):2941.

31. Yamamoto A, Ishihara A, Tomita M, Kishio K. Permanent magnet with MgB2 bulk superconductor. Appl Phys Lett. 2014;105:032601–4.

32. Giunchi G, Orecchia C, Malpezzi L, Masciocchi N. Analysis of the minority crystalline phases in bulk superconducting MgB2 obtained by reactive liquid Mg infiltration. Physica C. 2006;433:182–8.

33. Shields TC, Kawano K, Holden D, Abell JS. Microstructure and superconducting properties of hot isostatically pressed MgB2. Supercond Sci Technol. 2002;15:202–5.

34. Shinohara K, Futatsumori T, Ikeda H. Effect of a hot-press method on the critical current density of MgB2 bulk samples. Physica C. 2008;468:1369–71.
35. Tampieri A, Celotti G, Sprio S, Caciuffo R, Rinaldi D. Study of the sintering behaviour of MgB$_2$ superconductor during hot-pressing. Physica C. 2004;400:97–104.

36. Gumbel A, Eckert J, Fuchs G, Nenkov K, Muller KH, Schulz L. Improved superconducting properties in nanocrystalline bulk MgB$_2$. Appl Phys Lett. 2002;80:2725–7.

37. Sasaki T, Naito T, Fujishiro H. Trapped magnetic field of dense MgB$_2$ bulks fabricated under high pressure. Physics Procedia. 2013;45:93–6.

38. Noudem JG, Aburras M, Bernstein P, Chaud X, Muralidhar M, Murakami M. Development in processing of MgB$_2$ cryo-magnet superconductors. J Appl Phys. 2014;116:163916–4.

39. Noudem JG, Dupont L, Gozzelino L, Bernstein P. Superconducting properties of MgB$_2$ bulk shaped by spark plasma sintering. In: Shakir I, Kim T, eds. Stony Proceedings of the Advances in Functional Materials, Brook, NY, U.S.A. Materials Today. 2016; 3: 545–9.

40. Dancer CEJ, Mikheenko P, Bevan AI, Abell JS, Todd RI, Grovenor CRM. A study of the sintering behaviour of magnesium diboride. J Eur Ceram Soc. 2009;29:1817–24.

41. Bean CP. Magnetization of high-field superconductors. Rev Mod Phys. 1964;36:31–9.

42. Ma Z, Liu Y, Huo J, Gao Z. MgB$_2$ superconductors with abnormally improved J_c sintered after autoxidation of milled original powders. J Appl Phys. 2009;106:113911.

43. Jiang CH, Hatakeyama H, Kumakura H. Effect of nanometer MgO addition on the in situ PIT processed MgB$_2$/Fe tapes. Physica C. 2005;423:45–50.

44. Savaskan B, Koparan ET, Guner SB, Ozturk K, Celik S. Enhanced magnetic levitation and guidance force in MgB$_2$ bulks by synthetic engine oil immersion. J Supercond Nov Magn. 2019;32:827–37.

45. Muralidhar M, Inoue K, Koblishcka MR, Tomita M, Murakami M. Optimization of processing conditions towards high trapped fields in MgB$_2$ bulks. J Alloy Compd. 2004;608:102–9.

How to cite this article: Noudem JG, Xing Y, Bernstein P, et al. Improvement of critical current density of MgB$_2$ bulk superconductor processed by Spark Plasma Sintering. J Am Ceram Soc. 2020;103:6169–6175. https://doi.org/10.1111/jace.17366