THE GEODESIC PROBLEM FOR THE DIRICHLET METRIC
AND THE EBIN METRIC ON THE SPACE OF SASAKIAN
METRICS

SIMONE CALAMAI, DAVID PETRECCA AND KAI ZHENG

ABSTRACT. We study the geodesic equation for the Dirichlet (gradient) metric in the space of Kähler potentials as a dynamical system. We first solve the initial value problem for the geodesic equation of the combination metric including the gradient metric. We then discuss its application, such as energy identity, Jacobi fields and comparison theorem, curvature and the stability problem of the geodesic ray. At last, as the geometric motivation of the combination metric, we find that the Ebin metric restricted to the space of type II deformations of a Sasakian structure is the sum of the Calabi metric and the gradient metric.

CONTENTS

Introduction 2
Acknowledgements 3
1. Preliminaries 4
1.1. Ebin metric 4
1.2. Space of Kähler potentials 4
1.3. Donaldson-Mabuchi-Semmes’s L^2-metric 4
1.4. Space of conformal volume forms 5
1.5. Calabi metric 5
1.6. Dirichlet metric 5
2. Combination metrics 6
2.1. Geodesic equation of the combination metric 6
2.2. Local well-posedness of the geodesic equation 7
2.3. Energy identity along the geodesic ray 12
2.4. Exponential map, Jacobi fields and conjugate points 14
2.5. Dirichlet metric, comparison theorem and Kähler-Ricci flow 15
3. The space of Sasakian metrics \mathcal{H}_S 18
3.1. The Ebin metric on \mathcal{H}_S 18
3.2. Metric space structure on \mathcal{H}_S 21
3.3. The sum metric on \mathcal{H}_S 21
4. Further discussion 22
4.1. Otto’s metric on C and its gradient flow of the K-energy 22
4.2. Approximation of the L^2-geodesics 26
4.3. Weak geodesics 26
4.4. Bergman approximations 26

2010 Mathematics Subject Classification. 53C55 (primary); 32Q15, 58D27 (secondary).

The first and the second author are supported by INdAM.
Introduction

This is the sequel of the previous paper [15] on the Dirichlet metric which will be called gradient metric for short in this paper. We recall the background briefly. The idea of defining a Riemannian structure on the space of all metrics on a fixed manifold goes back to the sixties with the work of Ebin [24]. Their work concerns the pure Riemannian setting and, among other things, defines a weak Riemannian metric on the space \mathcal{M} of all Riemannian metrics on a fixed compact Riemannian manifold (M,g). The geometry of the Hilbert manifold \mathcal{M} was later studied by Freed and Groisser in [29] and Gil-Medrano and Michor in [30]. In particular the curvature and the geodesics of \mathcal{M} were computed.

Initiated by Arnold [3], the classical equations for an incompressible fluid correspond to the geodesic equation on the group of volume preserving diffeomorphisms. There are important articles along this direction, see e.g. [4, 25, 26, 27]. Very recently, the study of the Ebin metric and its variants has been intensive; see for example Bauer, Harms and Michor [5], also [18, 26, 41] and a more complete survey paper [47].

Let (M,ω) be a Kähler manifold. The space \mathcal{H} of Kähler metrics cohomologous to ω is isomorphic to the space of the Kähler potentials modulo constants. It can be endowed with three different metrics, known as the Donaldson-Mabuchi-Semmes’ L^2-metric (1.2), the Calabi metric (1.5) and the Dirichlet (or gradient) metric (1.8).

The Calabi metric goes back to Calabi [12] and it was later studied by the first author in [13] where its Levi-Civita covariant derivative is computed, it is proved that it is of constant sectional curvature, that \mathcal{H} is then isometric to a portion of a sphere in $C^\infty(M)$ and that both the Dirichlet problem (find a geodesic connecting two fixed points) and the Cauchy problem (find a geodesic with assigned starting point and speed) admit smooth explicit solutions.

The gradient metric was introduced and studied in [13, 15]. Its Levi-Civita connection, geodesic equation and curvature are written down in [15]. In this paper, we continue to study the geometry of the gradient metric. We solve the Cauchy problem of geodesic equation for the gradient metric, so we prove it is locally well-posed, unlike the corresponding problem for the L^2 metric, which is known to be ill-posed.

Actually, we define a more general metric, the linear combination of the three metrics on \mathcal{H} we call combination metric whose special instance is the sum metric, i.e. the sum of the gradient and Calabi metrics.

We denote the Hölder spaces with respect to the fixed Kähler metric g by $C^{k,\alpha}(g)$. We prove that our Cauchy problem is well-posed.

Theorem 0.1. On a Kähler manifold, for every initial Kähler potential φ_0, and initial speed $\psi_0 \in T_{\varphi_0}\mathcal{H}$ in $C^{k,\alpha}(g)$, for all $k \geq 6$ and $\alpha \in (0,1)$, there exists, for a small time T, a unique $C^2([0,T],C^{k,\alpha}(g) \cap \mathcal{H})$ geodesic for the combination metric with positive parameter β, starting from φ_0 with initial velocity ψ_0. The solution continuously depends on initial data. Such geodesics locally define the exponential map from $T_{\varphi_0}\mathcal{H}$ to \mathcal{H}. Moreover if (φ_0,ψ_0) are smooth then also the solution is.
With the theorem above, we are able to bring the knowledge in infinite dimensional manifolds to further explore the local geometry of the space of Kähler metrics under the gradient metric. Though the Jacobi equation is involved, from the geometrical side we are able to prove a Rauch type comparison theorem of the Jacobi fields (Theorem 2.19) between the gradient metric and the Calabi metric.

Theorem 0.2. Let γ_G and γ_C be two geodesics of equal length with respect to the gradient metric and the Calabi metric respectively and suppose that for every $X_G \in T_{\gamma_G(t)}\mathcal{H}$ and $X_C \in T_{\gamma_C(t)}\mathcal{H}$, we have
\[K_G(X_G, \gamma_G'(t)) \leq K_C(X_C, \gamma_C'(t)) \]
Let J_G and J_C be the Jacobi fields along γ_G and γ_C such that
- $J_G(0) = J_C(0) = 0$,
- $J'_G(0)$ is orthogonal to $\gamma_G'(0)$ and $J'_C(0)$ is orthogonal to $\gamma_C'(0)$,
- $\|J'_G(0)\| = \|J'_C(0)\|$.
then we have, for all $t \in [0, T]$,
\[\|J_G(t)\| \geq \frac{\sin\left(2t\sqrt{\text{vol}}\right)}{\sqrt{\text{vol}}} \]

The sum metric arises from Sasakian geometry. Indeed the geometric motivation comes naturally from the space of Sasakian metrics \mathcal{H}_S as following.

Proposition 0.3. The restriction of the Ebin metric of \mathcal{M} to the space of Sasakian metrics is twice the sum metric.

Moreover, Theorem 0.1 can be generalized to the Sasakian setting, leading to the corresponding statement for the restriction of the Ebin metric to the space of Sasakian metrics.

The paper is organized as follows. In section 1 we recall the main definition of the space of Kähler metrics and in section 2 we write down the Levi-Civita connection of the combination metric and study the geodesic equation for gradient metric as dynamical system. In section 3 we compute the restriction of the Ebin metric on the space of Sasakian metrics and finally in section 4 we compare the gradient metric with Otto’s metric which is another gradient-type metric. In particular, we prove the local well-posedness of the gradient flow of the K-energy under restricting Otto’s metric in \mathcal{H}. The proof follows the line of [17]. In the remainder of that section, we try to build the knowledge of Dirichlet problem of the geodesic equation for the gradient metric on toric manifolds and by Bergman approximation.

Acknowledgements. The authors are grateful to Prof. Xiuxiong Chen and Prof. Fabio Podestà for encouragement and support, to Prof. Qing Han for his insights and explanations and to Dario Trevisan, Prof. Elmar Schröhe and Prof. Christoph Walker for helpful discussions.

We also thank Boramey Chhay who let us know that he independently proved Proposition 0.3 and Prof. Stephen Preston for sharing his insightful knowledge of infinite-dimensional geometry.

The first author is supported by PRIN project “Varietà reali e complesse: geometria, topologia e analisi armonica”; by the Simons Center for Geometry and Physics, Stony Brook and by the SNS GR14 grant “Geometry of non-Kähler manifolds”.

\[K_G(X_G, \gamma_G'(t)) \leq K_C(X_C, \gamma_C'(t)) \]
1. Preliminaries

In this section we recall the definitions of space of Riemannian and Kähler metrics and several weak Riemannian structures on them.

1.1. Ebin metric. The space of the Riemannian metrics \mathcal{M} is identified with the space $S^2_+(T^*M)$ of all symmetric positive (0, 2)-tensors on M. The formal tangent space at a metric $g \in \mathcal{M}$ is then given by all symmetric (0, 2)-tensors $S^2(T^*M)$.

For $a, b \in T_gM$, the Ebin metric is defined as the pairing $g_E(a, b)_g = \int_M g(a, b) dv_g$ where $g(a, b)$ is the metric g extended to (0, 2)-tensors and dv_g is the volume form of g. From e.g. [30] one can see that the curvature is non-positive and the geodesics satisfy the equation

$$g_{tt} = g_t g - \frac{1}{2} |d g_t|^2 g.$$

Moreover in [30] the explicit expression of the Cauchy geodesics is given.

1.2. Space of Kähler potentials. Moving on to Kähler manifolds, let (M, ω, g) be a Kähler manifold of complex dimension n, with ω a Kähler form and g the associated Kähler metric. By the $\partial \bar{\partial}$-Lemma, the space of all Kähler metrics cohomologous to ω can be parameterized by Kähler potentials; namely, one considers the space H of all smooth real-valued ϕ such that

$$\omega_\phi := \omega + i \partial \bar{\partial} \phi > 0$$

and satisfy the normalization condition [21]

$$I(\phi) := \int_M \frac{\omega_\phi^n}{n!} - \frac{1}{n + 1} \sum_{i=0}^{n-1} \int_M \partial \phi \wedge \bar{\partial} \phi \wedge \frac{\omega_i^1}{i!} \wedge \frac{\omega_{n-1-i}^1}{(n-1-i)!} = 0.$$

The tangent space of H at ϕ is then given by

$$T_\phi H = \left\{ \psi \in C^\infty(M) : \int_M \psi \frac{\omega_\phi^n}{n!} = 0 \right\}.$$

1.3. Donaldson-Mabuchi-Semmes’s L^2-metric. Donaldson, Mabuchi and Semmes [21, 38, 45] defined a pairing on the tangent space of H at ϕ given by

$$g_M(\psi_1, \psi_2)_\phi = \int_M \psi_1 \psi_2 \frac{\omega_\phi^n}{n!}.$$

We shall refer to this metric as the L^2-metric. It makes H a non-positively curved, locally symmetric space. A geodesic ϕ satisfies

$$\phi'' - \frac{1}{2} |d \phi'|^2_\phi = 0$$

where $|d \phi'|^2_\phi$ denotes the square norm of the gradient of ϕ' with respect to the metric ω_ϕ. The geodesic equation can be written down as a degenerate complex Monge-Ampère equation. It was proved by Chen [16] that there is a $C^{1,1}$ solution for the Dirichlet problem. More work on this topic was done in [2, 6, 9, 13, 20, 28, 37, 43], which is far from a complete list.
1.4. **Space of conformal volume forms.** According to the Calabi-Yau theorem, there is a bijection between \mathcal{H} and the space of *conformal volume forms*

$$\mathcal{C} = \left\{ u \in C^\infty(M) : \int_M e^u \frac{\omega_n^u}{n!} = \text{vol} \right\}$$

that is the space of positive smooth functions on M whose integral with respect to the initial measure is equal to the volume of M (which is constant for all metrics in \mathcal{H}). The map is given by

$$\mathcal{H} \ni \varphi \mapsto \log \frac{\omega_n^u}{\omega_0^n},$$

where ω_n^u represents the unique positive function f such that $\omega_n^u = f \omega_0^n$. The tangent space $T_u \mathcal{C}$ is then given by

$$T_u \mathcal{C} = \left\{ v \in C^\infty(M) : \int_M v e^u \omega_n^u = 0 \right\}.$$

1.5. **Calabi metric.** Calabi [12] introduced the now known *Calabi metric* as the pairing

$$g_C(\psi_1, \psi_2) = \int_M \Delta_\varphi \psi_1 \Delta_\varphi \psi_2 \frac{\omega_n^\varphi}{n!}$$

where, here and in the rest of the paper, the Laplacian is defined as

$$\Delta_\varphi f = (i \overline{\partial} f, \omega_\varphi)$$

i.e. the $\overline{\partial}$-Laplacian. The geometry studied in [13] is actually the one of \mathcal{C}, where the Calabi metric has the simpler form

$$g_C(v_1, v_2) = \int_M v_1 v_2 e^u \frac{\omega_n^u}{n!}.$$

It is proved there that it admits a Levi-Civita covariant derivative, that its sectional curvature is constant equal to $\frac{1}{4 \text{vol}}$ and that the Cauchy and Dirichlet problems for its geodesics admit a smooth explicit solution satisfying the equation (in \mathcal{H})

$$\Delta_\varphi \varphi'' - |i \overline{\partial} \varphi'|^2 + \frac{1}{2} (\Delta_\varphi \varphi')^2 + \frac{1}{2 \text{vol}} g_C(\varphi', \varphi') = 0.$$

1.6. **Dirichlet metric.** In [13, 15], the *Dirichlet (or gradient) metric* is defined as the pairing

$$g_D(\psi_1, \psi_2) = \int_M (d\psi_1, d\psi_2)_\varphi d\mu_\varphi$$

that is, the global $L^2(d\mu_\varphi)$-product of the gradients of ψ_1 and ψ_2. Its geodesic equation is

$$2 \Delta_\varphi \varphi'' - |i \overline{\partial} \varphi'|^2 + (\Delta_\varphi \varphi')^2 = 0$$

where $|i \overline{\partial} \varphi'|^2$ denotes the square norm with respect to ω_φ of the $(1, 1)$-form $i \overline{\partial} \varphi'$.

2. Combination metrics

We can combine together the three metrics as follows. Let α, β, γ be three non-negative constant and at least one of them positive. Consider the metric

$$g(\psi_1, \psi_2) = \alpha \cdot g_M(\psi_1, \psi_2) + \beta \cdot g_G(\psi_1, \psi_2) + \gamma \cdot g_C(\psi_1, \psi_2),$$

which will be referred to as the combination metric. If it is not further specified, the parameters β and γ are always positive.

Let us prove the existence of the Levi-Civita covariant derivative for the combination metric. We can write

$$g(\psi_1, \psi_2) = g_C(M(\varphi)\psi_1, \psi_2).$$

where

$$M(\varphi) = \alpha G^2 - \beta G + \gamma,$$

where G is the Green operator associated to the Laplacian Δ.

We have the following.

Proposition 2.1. For a curve $\varphi \in \mathcal{H}$ and a section v on it, the Levi-Civita covariant derivative of the combination metric is the unique $D_t v$ that solves

$$M(\varphi)D(\varphi)^2 = \left[\alpha \Delta \varphi - \beta G(\varphi) \right],$$

where D_t, D_G, D_C are the covariant derivatives of the L^2, gradient and Calabi metric.

Proof. We start by proving that $M(\varphi)$ is a bijection of $T(\varphi)\mathcal{H}$. The injectivity holds because it defines a metric. To prove surjectivity, we see that the problem $M(\varphi)u = f$ is equivalent to $Du = h$ where $D = \gamma \Delta^2 - \beta \Delta + \alpha$. It is elliptic and then by known results we have

$$C^\infty(M) = \text{ker} \, D \oplus \text{Im} \, D$$

and by integration and the normalization condition on $T(\varphi)\mathcal{H}$ we immediately see that $T(\varphi)\mathcal{H} = \text{Im} \, D \cap T(\varphi)\mathcal{H}$ and we obtain surjectivity.

The fact that D_t is torsion-free is evident from its definition. Let us now compute

$$\frac{d}{dt} g(\varphi, \psi) = 2 \alpha g_M(D_t^M \varphi, \psi) + 2 \beta g_G(D_t^G \varphi, \psi) + 2 \gamma g_C(D_t^C \varphi, \psi)$$

$$= 2 \alpha g_C(G(\varphi)D_t^M \varphi, \psi) - 2 \beta g_C(G(\varphi)D_t^G \varphi, \psi) + 2 \gamma g_C(D_t^C \varphi, \psi)$$

$$= 2 \alpha g(C(\varphi)D_t^M \varphi, \psi)$$

so the compatibility with the metric holds as well. \square

2.1. Geodesic equation of the combination metric. The geodesic equation of the combination metric is the combination of the geodesic equations of L^2-metric, gradient metric and the Calabi metric. After rearrangement, it is written in the following form

$$[\alpha - \beta \Delta + \gamma \Delta^2] \varphi'' = \alpha \frac{1}{2} |d\varphi'|^2 + \left[\frac{\beta}{2} - \gamma \Delta \right] |i \partial_\varphi'|^2 + \left[\frac{\beta}{2} + \gamma \Delta \right] \Delta (\varphi').$$

The key observation is that the differential order on the both sides of the geodesic equation (2.3) are the same. We will carry out in detail in the next section the study
of the geodesic equation with $\beta = \gamma = 1$ and $\alpha = 0$, the general case with $\alpha = 1$ is similar, so we omit the proof.

This observation suggest that, though the Cauchy problem of the geodesic ray with respect to the L^2-metric is ill-posed, after combining the L^2-metric with the Calabi metric and the gradient metric, the new geodesic equation is well-posed.

2.2. Local well-posedness of the geodesic equation.

2.2.1. Existence and uniqueness. Recall the definition of the space of Kähler potentials

$$\mathcal{H} = \{ \varphi \in C^\infty(M) : \omega + i\partial\bar{\partial}\varphi > 0, I(\varphi) = 0 \}.$$

We are aiming to solve the geodesic equation with $\beta = \gamma = 1$ and $\alpha = 0$, i.e. the equation

\[
(\Delta_\varphi - I) \left((\Delta_\varphi \varphi')' + \frac{1}{2}(\Delta_\varphi \varphi')^2 \right) - \frac{1}{2}i\partial\bar{\partial}|\varphi'|^2 = 0.
\]

We rewrite it as a system

\[
\begin{aligned}
\varphi' &= \psi \\
\psi' &= L_\varphi(\psi) := \Delta_\varphi^{-1} \left[\frac{1}{2}(\Delta_\varphi - I)^{-1}i\partial\bar{\partial}\psi|_\varphi|^2 + |i\partial\bar{\partial}\psi|_\varphi|^2 + \frac{1}{2}(\Delta_\varphi \psi)^2 \right]
\end{aligned}
\]

with the initial data $\varphi(0) = \varphi_0, \psi(0) = \psi_0 \in C^{k,\alpha}(g)$.

Take a constant $\delta > 0$ such that $\omega + i\partial\bar{\partial}\varphi_0 \geq 2\delta \omega$. Let us introduce also the following function spaces

$$\mathcal{H}^{k,\alpha} = \{ \varphi \in C^{k,\alpha}(g) : \omega + i\partial\bar{\partial}\varphi > 0, I(\varphi) = 0 \}$$

and

$$\mathcal{H}^{\delta,\alpha} = \{ \varphi \in C^{k,\alpha}(g) : \omega + i\partial\bar{\partial}\varphi \geq \delta \omega, I(\varphi) = 0 \},$$

where $k \geq 2$ and $\alpha \in (0, 1)$.

The aim of this subsection is to prove the following.

Theorem 2.2. For every integer $k \geq 6$ and $\alpha \in (0, 1)$ and initial data $\varphi_0 \in \mathcal{H}^{k,\alpha}$ and $\psi_0 \in T_{\varphi_0} \mathcal{H}^{k,\alpha}$ there exists a positive ε and a curve $\varphi \in C^2([-\varepsilon, \varepsilon], \mathcal{H}^{\delta,\alpha})$ which is the unique solution of (2.3) with initial data (φ_0, ψ_0).

We need the following lemma.

Lemma 2.3 (Schauder estimates, see [7] p. 463). Let P be an elliptic linear operator of order 2 acting on the Hölder space $C^{k+2,\alpha}(g)$. Then for $u \in C^{k+2,\alpha}(g)$ we have

$$||u||_{C^{k+2,\alpha}} \leq c_1 ||Pu||_{C^{k,\alpha}} + c_2 ||u||_{L^\infty}$$

where c_1 depends only on the $C^{k,\alpha}(g)$-norm of the coefficients of P and, if u is $L^2(g)$-orthogonal to $\ker P$, then $c_2 = 0$.

The structure of the system (2.5) suggests to consider the following complete metric space

\[
X = C^2([-\varepsilon, \varepsilon], \mathcal{H}^{k,\alpha}) \times C^2([-\varepsilon, \varepsilon], C^{k,\alpha}(g))
\]

as the function space where we are going to look for solutions of our system. The norm that we consider is defined for $\psi \in C^2([-\varepsilon, \varepsilon], C^{k,\alpha}(g))$ as

$$||\psi||_{k,\alpha} := \sup_{t \in [-\varepsilon, \varepsilon]} ||\psi(t, \cdot)||_{C^{k,\alpha}(g)}.$$
and in the product space, the norm of any element \((\varphi, \psi) \in X\) is
\[
\| (\varphi, \psi) \|_{k,\alpha} := |\varphi|_{k,\alpha} + |\psi|_{k,\alpha}.
\]

We work in an appropriate metric ball in \(X\) obtained by the following lemma.

Lemma 2.4. There exists \(r > 0\) such that if \(\varphi \in C^{k,\alpha}(g)\) is such that \(\| \varphi - \varphi_0 \|_{C^{k,\alpha}(g)} < r\) then \(\varphi \in H_{\delta}^{k,\alpha}\).

Proof. Being \(k \geq 2\) we have \(\| \varphi - \varphi_0 \|_{C^{2,\alpha}(g)} \leq \| \varphi - \varphi_0 \|_{C^{k,\alpha}(g)} < r\). Then
\[
g_{\varphi} = g_{\varphi} - g_{\varphi_0} + g_{\varphi_0}
\geq -\| \varphi - \varphi_0 \|_{C^{2,\alpha}(g)} g + 2\delta g
\geq (2\delta - r)g
\]
which is strictly bigger than \(\delta g\) for \(r < \delta\). \(\square\)

We consider the operator
\[
T(\varphi, \psi) = \left(\varphi_0 + \int_0^t \psi(s)ds, \varphi_0 + \int_0^t (L_\varphi(\psi))(s)ds \right).
\]

Let us now fix \(r > 0\) as in Lemma 2.4. We have the following proposition, but first let us isolate a lemma.

Lemma 2.5. There exist a positive \(C\) depending only on \(r\) and \(g\) such that
\[
\| g_{\varphi} \|_{C^{k,\alpha}(g)} \leq C.
\]

Proof. For fixed \(a, b\) it holds \(\| g_{\varphi} \|_{C^{k,\alpha}(g)} \leq \| g_{\varphi}^{-1} \|_{C^{k,\alpha}(g)}\) where the norm is intended as operator norm. Then by the sub-multiplicative property we have \(\| g_{\varphi}^{-1} \|_{C^{k,\alpha}(g)} \leq \| g_{\varphi} \|_{C^{k,\alpha}(g)}^{-1}\) and by estimate in the proof of Lemma 2.4 we have that \(\| g_{\varphi} \|_{C^{k,\alpha}(g)}^{-1} \leq (2\delta - r)^{-1} \| g \|_{C^{k,\alpha}(g)} = : C(r, g).\) \(\square\)

Proposition 2.6. For any \((\varphi_0, \psi_0) \in H_{\delta}^{k,\alpha} \times C^{k,\alpha}(g)\) there exists \(\varepsilon > 0\) such that the metric ball \(B_\varepsilon(\varphi_0, \psi_0) \subset X\) centered in \((\varphi_0, \psi_0)\) of radius \(r\) is mapped into itself by \(T\).

Proof. We need to estimate \(\| T(\varphi_0, \psi_0) - (\varphi_0, \psi_0) \|_{k,\alpha}\). Let us estimate the first component
\[
\left| \varphi_0 + \int_0^t \psi(s)ds - \varphi_0 \right|_{k,\alpha} = \sup_{t \in [-\varepsilon, \varepsilon]} \left| \int_0^t \psi(s)ds \right|_{C^{k,\alpha}(g)}
\leq \sup_{t \in [-\varepsilon, \varepsilon]} \int_0^t \| \psi(s) \|_{C^{k,\alpha}(g)} ds
\leq \varepsilon \cdot (|\psi_0|_{k,\alpha} + |\psi - \psi_0|_{k,\alpha})
\leq \varepsilon \cdot (|\psi_0|_{k,\alpha} + r).
\]
As for the second component, it is clear it is enough to estimate \(\| L_\varphi(\psi) \|_{C^{k,\alpha}(g)}\) for every \(t\).
We have, by Lemma 2.3,
\[
\|L_\varphi (\psi)\|_{C^{k,\alpha}(g)} \leq \left\| \Delta_\varphi^{-1} \left[\frac{1}{2} (\Delta_\varphi - I)^{-1} |i\partial \nabla \psi|^2 + |i\partial \nabla \psi|^2 + \frac{1}{2} (\Delta_\varphi \psi)^2 \right] \right\|_{C^{k,\alpha}(g)}
\leq C(\|\varphi\|_{C^{k,\alpha}(g)}) \left\| \frac{1}{2} (\Delta_\varphi - I)^{-1} |i\partial \nabla \psi|^2 + |i\partial \nabla \psi|^2 + \frac{1}{2} (\Delta_\varphi \psi)^2 \right\|_{C^{k-2,\alpha}(g)}.
\]
To estimate the first summand we have
\[
\left\| \frac{1}{2} (\Delta_\varphi - I)^{-1} |i\partial \nabla \psi|^2 \right\|_{C^{k-2,\alpha}(g)} \leq C(\|\varphi\|_{C^{k-2,\alpha}(g)}) \left\| |i\partial \nabla \psi|^2 \right\|_{C^{k-4,\alpha}(g)}
\leq C(r) \|g^\varphi g^\varphi \partial \nabla \psi_k\|_{C^{k-4,\alpha}(g)}
\leq C(r) \|\psi\|_{C^{k,\alpha}(g)}
\]
where in the first inequality we have used again Lemma 2.3 and in the last we have used that \(\|\psi\|_{C^{k-2,\alpha}(g)} \leq \|\psi\|_{C^{k,\alpha}(g)} < r\).

The second summand is estimated, similarly as before, by
\[
\left\| |i\partial \nabla \psi|^2 \right\|_{C^{k-2,\alpha}(g)} \leq C(r) \|\psi\|_{C^{k,\alpha}(g)}.
\]

The third summand is
\[
\left\| \frac{1}{2} (\Delta_\varphi \psi)^2 \right\|_{C^{k-2,\alpha}(g)} \leq \left\| (\Delta_\varphi \psi)^2 \right\|_{C^{k-2,\alpha}(g)} \leq \|g^\varphi \partial \nabla \psi_k\|_{C^{k-2,\alpha}(g)}^2
\leq C(r) \|\psi\|_{C^{k,\alpha}(g)}.
\]

So we can conclude that the second component of \([T(\varphi_0, \psi_0) - (\varphi_0, \psi_0)]_{k,\alpha}\) is estimated by \(\varepsilon C(r) \|\psi - \psi_0\|_{k,\alpha} \leq \varepsilon r C(r)\), so it is enough to choose \(\varepsilon(r)\) such that \(\varepsilon(r) C(r) < 1\).

Our second step is the following.

Proposition 2.7. The map \(T\) on the metric ball \(B_r(\varphi_0, \psi_0)\) is a contraction.

Proof. For \((\varphi, \psi)\) and \((\tilde{\varphi}, \tilde{\psi})\) in \(B_r(\varphi_0, \psi_0)\), let for simplicity \(\tilde{L} = L_{\tilde{\varphi}}\). We need to estimate \(\|L(\psi) - \tilde{L}(\tilde{\psi})\|_{C^{k,\alpha}(g)}\). Define \(f\) and \(\tilde{f}\) such that \(L(\psi) = \Delta_\varphi^{-1} f\) and \(\tilde{L}(\tilde{\psi}) = \Delta_{\tilde{\varphi}}^{-1} \tilde{f}\). Then we have
\[
\Delta_\varphi (L(\psi) - \tilde{L}(\tilde{\psi})) = f - \tilde{f} - \Delta_\varphi \tilde{L}(\tilde{\psi}) + \Delta_{\tilde{\varphi}} \tilde{L}(\tilde{\psi})
= f - \tilde{f} + (g_\varphi - g_{\tilde{\varphi}})(L(\psi))_{\tilde{\sigma}}
\]
so by the Schauder estimates of Lemma 2.3 we have
\[
\|L(\psi) - \tilde{L}(\tilde{\psi})\|_{C^{k,\alpha}(g)} \leq C(\|\varphi\|_{C^{k,\alpha}(g)}) \cdot \left(\|f - \tilde{f}\|_{C^{k-2,\alpha}(g)} + \|\Delta_{\tilde{\varphi}} \tilde{L}(\tilde{\psi}) - \Delta_\varphi \tilde{L}(\tilde{\psi})\|_{C^{k-2,\alpha}(g)} \right).
\]
To estimate the second summand, let \(g_s = (1 - s)g_\varphi + sg_{\tilde{\varphi}}\). Then we notice we can write
\[
\Delta_{\tilde{\varphi}} \tilde{L}(\tilde{\psi}) - \Delta_\varphi \tilde{L}(\tilde{\psi}) = -\left(\int_0^1 g^\varphi g^\varphi \partial \nabla ds \right) \cdot (\tilde{\varphi} - \varphi)_{\tilde{\sigma}} \cdot (\tilde{L}(\tilde{\psi}))_{\tilde{\sigma}}
\]
so we have
\[
\|\Delta_{\tilde{\varphi}} \tilde{L}(\tilde{\psi}) - \Delta_\varphi \tilde{L}(\tilde{\psi})\|_{C^{k-2,\alpha}(g)} \leq C(\|\varphi\|_{C^{k,\alpha}(g)}, \|\tilde{\varphi}\|_{C^{k,\alpha}(g)}) \|\tilde{\varphi} - \varphi\|_{C^{k,\alpha}(g)} \cdot \|\tilde{L}(\tilde{\psi})\|_{C^{k,\alpha}(g)}
\leq C(r) \|\tilde{\varphi} - \varphi\|_{C^{k,\alpha}(g)}
\]
where in the last inequality we have used the estimate for $\|L\tilde{\psi}\|_{C^{k,\alpha}(g)}$ from the previous proposition.

Let us now consider $f - f$ which can be written as

$$f - f = \frac{1}{2}(\Delta \varphi - 1)^{-1}|i\partial\overline{\partial}\varphi|^2 - \frac{1}{2}(\Delta \varphi - 1)^{-1}|i\partial\overline{\partial}\overline{\psi}|^2$$

$$+ |i\partial\overline{\partial}\varphi|^2 - |i\partial\overline{\partial}\overline{\psi}|^2$$

$$- \frac{1}{2}(\Delta \varphi)^2 + \frac{1}{2}(\Delta \varphi)^2.$$

Let $h - \tilde{h}$ be the first summand, so we can write

$$(\Delta \varphi - 1)(h - \tilde{h}) = |i\partial\overline{\partial}\varphi|^2 - |i\partial\overline{\partial}\overline{\psi}|^2 + (\Delta \varphi - \Delta \varphi)\tilde{h}.$$

Again by Lemma 2.3 we have

$$\|h - \tilde{h}\|_{C^{k,\alpha}(g)} \leq C(\|\varphi\|_{C^{k,\alpha}(g)}) \cdot \|i\partial\overline{\partial}\varphi|^2 - |i\partial\overline{\partial}\overline{\psi}|^2 + (\Delta \varphi - \Delta \varphi)\tilde{h}\|_{C^{k,\alpha}(g)}.$$

The second summand is

$$\|\Delta \varphi - \Delta \varphi\tilde{h}\|_{C^{k,\alpha}(g)} \leq \left\| - \left(\int_0^1 g^+ r^k \bar{g}^+ ds \right) \cdot (\varphi - \varphi) \overline{h} \right\|_{C^{k,\alpha}(g)}$$

$$\leq C(\|\varphi\|_{C^{k,\alpha}(g)}, \|\varphi\|_{C^{k,\alpha}(g)}) \cdot \|\varphi - \varphi\|_{C^{k,\alpha}(g)} \cdot \|\overline{h}\|_{C^{k,\alpha}(g)}.$$

By definition of \overline{h} we estimate then

$$\|\overline{h}\|_{C^{k,\alpha}(g)} \leq C(\|\varphi\|_{C^{k,\alpha}(g)}) \cdot \|\varphi\|_{C^{k,\alpha}(g)} + 1)^2 \cdot \|\overline{\psi}\|_{C^{k,\alpha}(g)}$$

$$\leq C(r).$$

So we finally have for the first summand in $\ref{2.8}$

$$\left\| \frac{1}{2}(\Delta \varphi - 1)^{-1}|i\partial\overline{\partial}\varphi|^2 - \frac{1}{2}(\Delta \varphi - 1)^{-1}|i\partial\overline{\partial}\overline{\psi}|^2 \right\|_{C^{k,\alpha}(g)} \leq C(r)(\|\varphi - \varphi\|_{C^{k,\alpha}(g)} + \|\overline{\psi}\|_{C^{k,\alpha}(g)}).$$

The second summand in $\ref{2.8}$ is estimated by the same trick as in the previous proposition.

For the last summand in $\ref{2.8}$ we have

$$\frac{1}{2}(\Delta \varphi - 1)^{-1}|i\partial\overline{\partial}\overline{\psi}|^2 - \frac{1}{2}(\Delta \varphi - 1)^{-1}|i\partial\overline{\partial}\varphi|^2$$

$$= \frac{1}{2}(\Delta \varphi \varphi - \Delta \varphi \overline{\psi})(\Delta \varphi \psi + \Delta \varphi \overline{\psi})$$

$$= \frac{1}{2}(\Delta \varphi \psi - \Delta \varphi \overline{\psi} + \Delta \varphi \psi - \Delta \varphi \overline{\psi})(\Delta \varphi \psi + \Delta \varphi \overline{\psi}).$$

so we estimate

$$\left\| \frac{1}{2}(\Delta \varphi \overline{\psi})^2 - \frac{1}{2}(\Delta \varphi \psi)^2 \right\|_{C^{k,\alpha}(g)} \leq \left\| \Delta \varphi \psi - \Delta \varphi \overline{\psi} \right\|_{C^{k,\alpha}(g)} + \|\Delta \varphi \psi - \Delta \varphi \overline{\psi}\|_{C^{k,\alpha}(g)}$$

$$\cdot \left(\|\Delta \varphi \psi\|_{C^{k,\alpha}(g)} + \|\Delta \varphi \overline{\psi}\|_{C^{k,\alpha}(g)}\right).$$

By the estimates for the Laplacians we are able to say that this quantity is

$$\leq C(r)(\|\varphi - \varphi\|_{C^{k,\alpha}(g)} + \|\overline{\psi}\|_{C^{k,\alpha}(g)}).$$

Again, the estimate for the norm $\cdot|_{k,\alpha}$ is the same multiplied by ε, so again it suffices to pick $\varepsilon(r)$ such that $\varepsilon(r)C(r) < 1$.

\[\square\]
2.2.2. Higher regularity. Now we explain how to obtain the smoothness of the solution of Theorem 2.2.

Theorem 2.8. For every $\varphi_0 \in \mathcal{H}$, $\psi_0 \in T_{\varphi_0} \mathcal{H}$, there exists a positive ε and a curve $\varphi \in C^\infty((-\varepsilon, \varepsilon), \mathcal{H})$ which is the unique solution of (2.4) with smooth initial data (φ_0, ψ_0).

We isolate the following technical lemma that can be proved by computation in local coordinates.

Lemma 2.9. Let ∂_A be the derivative with respect to the complex coordinate z_A and let $f_A = \partial_A f$. Then the following hold

$$(g_\varphi^A)_A = -g^{\overline{\sigma}}(g_{\varphi \overline{\tau}m}) A g^m_{\overline{\sigma}};$$

$$\partial_A(\Delta \varphi f) = \Delta_A f_A + (g_\varphi^A)_{A f};$$

$$\partial_A [i \partial \overline{\partial} \varphi] = 2(\partial \overline{\partial} \varphi_A) - \psi^{\overline{\sigma}}(g_{\varphi \overline{\tau}m}) A g^m_{\overline{\sigma}} - \psi^{\overline{\sigma}}(g_{\varphi \overline{\tau}m}) A g^m_{\overline{\sigma}}$$

We want to derive the second equation of (2.9) by deriving the equation

$$(2.9) \quad F(\varphi, \psi) = (\Delta \varphi - 1) \left[\Delta \varphi \psi' - |i \partial \overline{\partial} \varphi|_\varphi^2 + \frac{1}{2}(\Delta \varphi \psi)^2 \right] - \frac{1}{2} |i \partial \overline{\partial} \varphi|_\varphi^2 = 0.$$

Lemma 2.10. $\partial_A F(\varphi, \psi)$ is a linear fourth order operator on (φ_A, ψ_A). When (φ, ψ) are $C^{k, \alpha}$, the coefficients of $\partial_A F(\varphi, \psi)$ are $C^{k-4, \alpha}$.

Proof. The derivative of the first term is, by Lemma 2.9

$$\partial_A(\Delta \varphi - 1)\Delta \varphi \psi' = (\Delta \varphi - 1)[\Delta \varphi \psi'_A + (g_\varphi^A)_{A \psi'_A}] + (g_\varphi^A)_{A \psi'_A}$$

where we notice linearity with respect to φ_A and ψ_A.

The derivative of the second term is

$$\partial_A(\Delta \varphi - 1)[i \partial \overline{\partial} \varphi] = (\Delta \varphi - 1)\partial_A[i \partial \overline{\partial} \varphi] + (g_\varphi^A)_{A |i \partial \overline{\partial} \varphi|_\varphi^2}$$

$$= (\Delta \varphi - 1)[2(\partial \overline{\partial} \varphi_A) + B_{\varphi \psi} + (g_\varphi^A)_{A |i \partial \overline{\partial} \varphi|_\varphi^2}$$

and we notice again linearity with respect to φ_A and ψ_A.

The third and fourth terms are as in Lemma 2.9 and are linear with respect to φ_A and ψ_A as well. \qed

Proof of Theorem 2.8. When we are given a smooth initial data (φ_0, ψ_0) and H"older exponent (k, α) with $k \geq 6$ and $\alpha \in (0, 1)$, according to Theorem 2.2 we have a maximal lifespan $\varepsilon = \epsilon(k+1, \alpha)$ of the geodesic $\varphi(t) \in C^2((-\varepsilon, \varepsilon), \mathcal{H}^{k+1, \alpha})$. Meanwhile, for a less regular space (k, α), we have an other maximal lifespan $\varepsilon(k, \alpha)$. In general,

$$\varepsilon(k+1, \alpha) \leq \varepsilon(k, \alpha).$$

Now we explore the important property of our geodesic equation and thus prove the inverse inequality $\varepsilon(k+1, \alpha) \geq \varepsilon(k, \alpha)$.

Recall that our geodesic equation could be written down as a couple system (2.5).
The important observation is that this system is of order zero. In a local coordinate chart on \(M \), we take the derivative \(\partial A = \frac{\partial}{\partial z} \) on the both side of the equations and get

\[
(\partial_A \varphi)' = \partial_A \psi
\]

(2.10)

\[
(\partial_A \psi)' = \partial_A (L_\varphi \psi).
\]

If we manage to prove that this is a linear system in \(\varphi_A = \partial A \varphi \) and \(\psi_A = \partial A \psi \) (all other functions treated as constants) then we can argue as follows. According to Lemma 2.10 the coefficients of (2.10) are \(C^{k-4,\alpha} \) and exist for \(|t| < \varepsilon(k, \alpha) \). Because of its linearity and of fourth order on \((\varphi_A, \psi_A) \), its \(C^{k,\alpha} \) solution \((\varphi_A, \psi_A) \) exists as long as the coefficients do, so we have that \(\varphi \) is \(C^{k+1,\alpha} \) at least for \(|t| < \varepsilon(k, \alpha) \), proving that \(\varepsilon(k+1, \alpha) \geq \varepsilon(k, \alpha) \). \(\square \)

2.2.3. Continuous dependence on initial data.

(2.11)

\[
\begin{align*}
 v' &= w, \\
 \{-\Delta_\varphi + \Delta_\gamma^2\}w' &- g_\varphi^{-1}(g^k_\varphi g^\alpha_\varphi)_{,\alpha}g^l_\psi \psi'_{,l} \psi'_{,l'} \\
 &= \{-g_\varphi^{-1}g^k_\varphi g^\alpha_\varphi \Delta_\varphi \psi'_{,l} \psi'_{,l'} + g_\varphi^{-1}g^k_\varphi \psi_i \partial_i \psi_j \psi'_{,l} \psi'_{,l'} \} \\
 &+ [\frac{1}{2} - \Delta_\varphi] \{-g_\varphi^{-1}g^k_\varphi g^\alpha_\varphi \psi_i \partial_i \psi_j \psi'_{,l} \psi'_{,l'} - g_\varphi^{-1}g^k_\varphi g^\alpha_\varphi \psi_i \partial_i \psi_j \psi'_{,l} \psi'_{,l'} \} \\
 &+ [1 + \Delta_\varphi] \{-g_\varphi^{-1}g^k_\varphi g^\alpha_\varphi \psi_i \partial_i \psi_j \psi'_{,l} \psi'_{,l'} + \Delta_\varphi \psi'_{,l} \psi'_{,l'} \}
\end{align*}
\]

The continuous dependence on initial data of solutions follows from solving this linear equation. The proof is similar to Section 2.2.1 since the both sides of the equation are again with the order.

2.3. Energy identity along the geodesic ray. Recall the geodesic equation with \(\alpha = 1, \gamma = 0 \)

\[
[1 - \beta \Delta_\varphi] \varphi'' = |\partial_\varphi'|^2 + \beta |i \partial_\varphi' |^2_{g_\varphi} + \beta (\Delta_\varphi \varphi')^2.
\]

(2.12)

We denote the energy density by

\[
e(\varphi) = \left(|\varphi'|^2 + \beta |i \partial_\varphi' |^2_{g_\varphi} \right) \frac{\omega^n}{\omega^n}
\]

and we call

\[
\int_M e(\varphi) \omega^n
\]

the energy of \(\varphi \) along the geodesic ray \(\{ \varphi(t) \}_{0 \leq t \leq T} \). Then we calculate the evolution of the energy density to derive the energy identity.

Proposition 2.11. The energy identity holds.

\[
\partial_t \int_M e(\varphi) \omega^n
\]

\[
= - \int_M (|\varphi'|^2 \Delta_\varphi \varphi' + \beta \varphi' i \partial_\varphi' \varphi'_{,l} g^n_{,l} \omega^n + \beta \int_M \varphi' [i \partial_\varphi' |^2_{g_\varphi} + (\Delta_\varphi \varphi')^2] \omega^n + \int_M e(\varphi) \Delta_\varphi \varphi' \omega^n.
\]

Proof. We calculate the energy estimates,

\[
\partial_t ||(\varphi')^2_{\omega^n} = \partial_t \int_M (\varphi')^2_{\omega^n}
\]
From the energy identity, we obtain that

\[\frac{\partial}{\partial t} \int_M [2\varphi' \varphi'' + (\varphi')^2 \Delta \varphi'] \omega^n_{\varphi} \]

and

\[\partial_t \| \varphi' \|_2^2 = \partial_t \int_M |\varphi'|^2 g^{\varphi}_{\varphi} \omega^n_{\varphi} \]

\[= \int_M [\varphi'^2 \varphi'' + 2g^{\varphi}_{\varphi} \varphi' \varphi' + |\varphi'|^2 g^{\varphi}_{\varphi} \Delta \varphi'] \omega^n_{\varphi} \]

\[= \int_M [-\varphi'^2 \varphi'' + 2\Delta \varphi' \varphi' + |\varphi'|^2 g^{\varphi}_{\varphi} \Delta \varphi'] \omega^n_{\varphi}. \]

Thus applying the geodesic equation we have

\[\partial_t \int_M e(\varphi) \omega^n = \partial_t (\| \varphi \|_2^2 + \beta \| \varphi' \|_2^2) \]

\[= \int_M [2\varphi' \varphi'' + (\varphi')^2 \Delta \varphi' + \beta [-\varphi'^2 \varphi' \varphi' - 2\Delta \varphi' \varphi' + |\varphi'|^2 g^{\varphi}_{\varphi} \Delta \varphi'] \omega^n_{\varphi} \]

\[= \int_M 2\varphi' (1 - \beta \Delta \varphi) \varphi'' + e(\varphi) \Delta \varphi' - \beta \varphi'^2 \varphi' \varphi' \omega^n_{\varphi} \]

\[= \int_M 2\varphi' \left[|\varphi'|^2 g^{\varphi}_{\varphi} + \frac{\beta}{2} |i\partial \varphi'|^2 g^{\varphi}_{\varphi} + \frac{\beta}{2} (\Delta \varphi')^2 \right] + e(\varphi) \Delta \varphi' - \beta \varphi'^2 \varphi' \varphi' \omega^n_{\varphi}. \]

Thus the conclusion follows from

\[\int_M 2\varphi' |\varphi'|^2 g^{\varphi}_{\varphi} \omega^n_{\varphi} = -\int_M 2\varphi' |\varphi'|^2 g^{\varphi}_{\varphi} \omega^n_{\varphi} - \int_M (\varphi')^2 \Delta \varphi' \omega^n_{\varphi} \]

\[= -\int_M (\varphi')^2 \Delta \varphi' \omega^n_{\varphi}. \]

Corollary 2.12. Suppose that, on any time interval \([0, T]\), there is a constant \(C\) depending on \(T\) such that

(2.13) \[-C \omega_{\varphi} \leq i\partial \varphi' \leq C \omega_{\varphi}. \]

Then the energy of \(\varphi\) is bounded on \([0, T]\).

Proof. From the energy identity, we obtain that

\[\partial_t \int_M e(\varphi) \omega^n \leq 2C_1 \int_M e(\varphi) \omega^n + C_2 \int_M |\varphi'| \omega^n_{\varphi} \]

\[\leq 2C_1 \int_M e(\varphi) \omega^n + C_2 \left(\int_M e(\varphi) \omega^n \right)^{\frac{1}{2}}. \]

Here we use the Hölder inequality in the second inequality. Hence we assume that \(\int_M e(\varphi) \omega^n \geq 1\), otherwise, the energy is already bounded. So

\[\partial_t \int_M e(\varphi) \omega^n \leq C_3 \int_M e(\varphi) \omega^n. \]

In conclusion, we obtain that

\[\int_M e(\varphi) \omega^n \leq \int_0^T e^{C_3(t - \tau)} d\tau. \]

Thus the energy along the geodesic ray is bounded as long as the condition (2.13) holds. \(\square \)
2.4. Exponential map, Jacobi fields and conjugate points. With the local well-posedness of the geodesic, we are able to define the exponential map locally at point $\varphi \in \mathcal{H}$ by
\begin{equation}
\exp_{\varphi}(t\psi) = \gamma(t), 0 \leq t \leq \varepsilon
\end{equation}
where γ is the geodesic starting from φ with initial speed ψ. Furthermore, we have the following.

Corollary 2.13. For any $\varphi_1 \in \mathcal{H}$, there exists an $\varepsilon > 0$ so that for any $\varphi_2 \in \mathcal{H}$ with $\|\varphi_1 - \varphi_2\|_{C^2,\alpha} < \varepsilon$, there is a unique geodesic connecting φ_1 to φ_2 whose length is less than ε.

Now that we have achieved the existence of smooth short-time geodesics we can move a step further to bring the definition of its Jacobi vector fields. The very definition comes from classical Riemannian geometry, see [13] for more details.

Let $\gamma : [0, \varepsilon) \to \mathcal{H}$ be a smooth geodesic for the metric connection D on \mathcal{H}. A Jacobi field J along γ is a map $J : [0, \varepsilon) \to T\mathcal{H}$ such that $J(t) \in T_{\gamma(t)}\mathcal{H}$ for all $t \in [0, \varepsilon)$ and moreover satisfies the Jacobi equation
\begin{equation}
\frac{D^2}{dt^2} J(t) + R(J(t), \frac{d}{dt} \gamma(t)) \frac{d}{dt} \gamma(t) = 0.
\end{equation}

The Jacobi field is a vector field along the geodesic $\gamma(t)$. Let $v = \frac{d\gamma}{dt}|_{t=0} \gamma(t)$ at $\gamma(0) = \varphi$, the geodesic is given by the exponential map $\gamma(t) = \exp_{\varphi} tv$. Then given $w \in T_{T\mathcal{H}}$, the solution of the Jacobi equation (2.15) with initial condition $J(0) = 0$ and $J'(0) = w$ is given by
\begin{equation}
J(t) = d\exp_{\varphi}|_{tv}tw.
\end{equation}

We rewrite the geodesic equation for the combination metric into a system,
\begin{equation}
\begin{cases}
\varphi' = \psi, \\
\left[\alpha - \beta \Delta_{\varphi} + \gamma \Delta_{\varphi}\right] \psi' = \frac{\beta}{2} |d\psi|^2_{\varphi} + \left[\frac{\beta}{2} - \gamma \Delta_{\varphi}\right]|i\partial \varphi \psi|^2_{\varphi} + \left[\frac{\beta}{2} + \frac{\gamma}{2} \Delta_{\varphi}\right](\Delta_{\varphi} \psi)^2.
\end{cases}
\end{equation}

Then the Jacobi equation is also written down as its linearized equation on (u, v) at (φ, ψ), with the variation
\begin{equation}
v = \frac{d\varphi}{dt}|_{t=0} \text{ and } w = \frac{d\psi}{dt}|_{t=0},
\end{equation}
\begin{equation}
\begin{cases}
v' = w, \\
\left[\alpha - \beta \Delta_{\varphi} + \gamma \Delta_{\varphi}\right] w' - \gamma g_{\varphi}^{ij} g_{\varphi}^{k\ell} \psi_i \psi_j \psi_k \psi_{\ell} \\
= \left\{ -\beta g_{\varphi}^{ik} \Delta_{\varphi} \psi_i \psi_j + \gamma g_{\varphi}^{ik} \Delta_{\varphi} (\Delta_{\varphi} \psi_j) - \alpha g_{\varphi}^{ik} \psi_i \psi_j + \gamma g_{\varphi}^{ik} \psi_i \psi_j + \gamma g_{\varphi}^{ik} \psi_i \psi_j + \frac{\gamma}{2} g_{\varphi}^{ik} \psi_i \psi_j \psi_k \psi_{\ell} \right\} v_k w_{\ell} \\
+ \alpha g_{\varphi}^{ik} \psi_i \psi_j + \alpha g_{\varphi}^{ik} \psi_i \psi_j \\
+ \left[\frac{\beta}{2} - \gamma \Delta_{\varphi}\right] \left\{ -g_{\varphi}^{ij} g_{\varphi}^{k\ell} \psi_i \psi_j \psi_k \psi_{\ell} - g_{\varphi}^{ij} g_{\varphi}^{k\ell} \psi_i \psi_j \psi_k \psi_{\ell} + g_{\varphi}^{ij} g_{\varphi}^{k\ell} \psi_i \psi_j \psi_k \psi_{\ell} + g_{\varphi}^{ij} g_{\varphi}^{k\ell} \psi_i \psi_j \psi_k \psi_{\ell} \right\} v_k w_{\ell} \\
+ \left[\frac{\beta}{2} - \frac{\gamma}{2} \Delta_{\varphi}\right] \left\{ (\Delta_{\varphi} \psi_i) - \frac{\gamma}{2} g_{\varphi}^{ij} g_{\varphi}^{k\ell} \psi_i \psi_j \psi_k \psi_{\ell} \right\} w_{\ell}.
\end{cases}
\end{equation}

The local solution of this system is obtained similarly as Section 2.2.

The definition of conjugate points in the infinite dimensional setting is different from the one from classical Riemannian geometry. Let $\varphi \in \mathcal{H}$, $\psi \in T_{T\mathcal{H}}$ and let γ be the geodesic with $\gamma(0) = \varphi$ and $\gamma'(0) = \psi$. There are two notions related to conjugate points, cf. e.g. [31] [36] [40].
Definition 2.14. We say that $\gamma(1)$ is

- **monconjunct** to φ if $d\exp_{\varphi}|_{\psi}$ is not injective;
- **epiconjunct** to φ if $d\exp_{\varphi}|_{\psi}$ is not surjective.

Remark 2.15. In order to understand the conjugate points, it turns out to further study whether

$$d\exp_{\varphi}|_{\psi}$$

is a Fredholm operator between the tangent spaces of \mathcal{H}. Then the infinite dimensional version of Sard’s theorem applies [46].

Remark 2.16. Conjugate points were also considered in [13, Definition 15]; a point is conjugate according to that definition if and only if it is monconjunct according to Definition 2.14. We can then paraphrase [13, Theorem 15] stating that with the Calabi metric, the space of Kähler metrics has no monconjunct points. Moreover, a stronger result is provided by [13, Theorem 10], which allows to conclude that, since the exponential map at any point is both injective and surjective, then there are no epiconjunct points either.

2.5. Dirichlet metric, comparison theorem and Kähler-Ricci flow. Now we continue the study of the (Dirichlet) gradient metric which was studied by X. X. Chen, the first and the third author already in [13, 15, 17].

2.5.1. Sectional curvature for the gradient metric. We denote $\varphi = \varphi(s, t)$ be a smooth two parameter family of curves in the space of Kähler metrics \mathcal{H}, and the corresponding two parameter families of curves of tangent vectors φ_t, φ_s along φ are \mathbb{R}-linearly independent. The sectional curvature of the gradient metric is computed in [15],

$$K_G(\varphi_s, \varphi_t) = \frac{1}{2} \int_M |da(s, t)|^2_{\varphi} \frac{\omega^n}{n!} - \frac{1}{2} \int_M \langle da(s, s), da(t, t) \rangle_{\varphi} \frac{\omega^n}{n!},$$

where the symmetric expression $a(\sigma, \tau)$ satisfies

$$\Delta_{\varphi} a(\sigma, \tau) = \Delta_{\varphi, \sigma} \Delta_{\varphi, \tau} - (i\partial \overline{\partial} \varphi_{\sigma}, i\partial \overline{\partial} \varphi_{\tau}).$$

We let

$$\{\varphi_s, \varphi_t\}_{\varphi} = \frac{\sqrt{-1}}{2} \left(g^{\sigma} \frac{\partial \varphi_s}{\partial z^\sigma} \frac{\partial \varphi_t}{\partial \overline{z}^\tau} - g^{\tau} \frac{\partial \varphi_t}{\partial z^\tau} \frac{\partial \varphi_s}{\partial \overline{z}^\sigma} \right) = \text{Im}(\partial \varphi_s, \overline{\partial} \varphi_t).$$

The expression of the sectional curvature K_M for the L^2 metric is, for all linearly independent sections φ_s, φ_t,

$$K_M(\varphi_s, \varphi_t) = -\frac{\int_M \text{Im}(\partial \varphi_s, \overline{\partial} \varphi_t) \frac{\omega^n}{n!}}{\sqrt{\int_M \varphi_s^2 \frac{\omega^n}{n!}} \sqrt{\int_M \varphi_t^2 \frac{\omega^n}{n!}} - \int_M \varphi_s \varphi_t \frac{\omega^n}{n!}}.$$

Therefore, $K_M \leq 0$. On the other side, the first author proved that, for any linearly independent sections φ_s, φ_t the sectional curvature for the Calabi metric K_C is

$$K_C(\varphi_s, \varphi_t) = \frac{1}{4 \text{vol}}.$$

In a private communication, Calabi conjectured that there exists the following relation among the sectional curvatures of L^2 metric, gradient metric and Calabi metric,

$$K_M \leq K_G < K_C.$$
Remark 2.17. That would be interesting to construct examples to detect the sign of the sectional curvature of the gradient metric and determine whether this conjecture holds.

2.5.2. Local well-posedness for the gradient metric. On the other hand, the application of the proofs of Theorem 2.2 and 2.8 leads to the corresponding theorem of the gradient metric.

Theorem 2.18. For every integer \(k \geq 6 \) and \(\alpha \in (0, 1) \) and initial data \(\varphi_0 \in H^{k, \alpha} \) and \(\psi_0 \in T_{\varphi_0} H^{k, \alpha} \) there exists a positive \(\varepsilon \) and a curve \(\varphi \in C^2((\varepsilon, \varepsilon), H^{k, \alpha}) \) which is the unique solution of the geodesic equation (1.9) with initial data \((\varphi_0, \psi_0)\). Moreover, if the initial data is smooth, then the solution \(\varphi \) is also smooth.

2.5.3. Sectional curvature and stability. The idea that the sign of the sectional curvature could be used to predict the stability of the geodesic ray goes back to Arnold [3]. Intuitively, when the sectional curvature is positive, all Jacobi fields are uniformly bounded, then under a small perturbation of the initial velocities, the geodesics remain nearby. When the sectional curvature is negative, the Jacobi fields grow exponentially in time, then the geodesic rays grow unstable. When the sectional curvature is zero, the geodesic ray is linear. For the gradient metric, the picture might be more complicated as the sign of the sectional curvature might vary along different planes. However, we are able to examine the growth of Jacobi fields along geodesics by applying the comparison theorem on infinite dimensional manifolds.

Then with the definitions of the Jacobi equation and conjugate points in Section 2.4 we could apply Biliotti’s [8] Rauch comparison theorem for weak Riemannian metrics, see [35].

Theorem 2.19. Let \(\gamma_G \) and \(\gamma_C \) be two geodesics of equal length with respect to the gradient metric and the Calabi metric respectively and suppose that for every \(X_G \in T_{\gamma_G(t)} H \) and \(X_C \in T_{\gamma_C(t)} H \), we have

\[
K_G(X_G, \gamma_G'(t)) \leq \frac{1}{4 \text{vol}} = K_C(X_C, \gamma_C'(t)).
\]

Let \(J_G \) and \(J_C \) be the Jacobi fields along \(\gamma_G \) and \(\gamma_C \) such that

- \(J_G(0) = J_C(0) = 0 \),
- \(J_G'(0) \) is orthogonal to \(\gamma'_G(0) \) and \(J_C'(0) \) is orthogonal to \(\gamma'_C(0) \),
- \(\|J_G'(0)\| = \|J_C'(0)\| \).

then we have, for all \(t \in [0, T] \),

\[
\|J_G(t)\| \geq \frac{\sin(2t\sqrt{\text{vol}})}{\sqrt{\text{vol}}}.
\]

Proof. In Biliotti’s Rauch comparison theorem, it is required that \(J_C(t) \) is nowhere zero in the interval \((0, T)\) and if \(\gamma_C \) has most a finite number of points which are epiconjugate but not monoconjugate in \((0, T)\), this condition is satisfied for the Calabi metric, see Remark 2.16. Therefore the conclusion of the comparison theorem is that, for all \(t \in [0, T] \),

\[
\|J_G(t)\| \geq \|J_C(t)\|.
\]
We know that, as an application of [13, Theorem 8],
\[\|J_C(t)\| = \left\| \sin \left(2t\sqrt{\text{vol}} \right) \right\| \sqrt{\text{vol}}, \]
thus the resulting inequality in the proposition follows. □

2.5.4. Connection with the Kähler-Ricci flow. In [17] it was proved that the pseudo-Calabi flow and the Kähler-Ricci flow are the gradient flow of Mabuchi’s K-energy, when the space of Kähler potentials is endowed with the gradient metric. When restricted in the first Chen class, the pseudo-Calabi flow is exactly the well-known Kähler-Ricci flow. We consider the normalized one. At each time we define the Ricci potential by
\[\rho - \omega = -i \partial \bar{\partial} u, \]
\[\int_M e^{-u} \omega^n \]
and consider the normalization given by \(\tilde{u} = u - \frac{1}{\text{vol}} \int u \omega^n \).

In [39] McFeron proved that the Kähler-Ricci flow converges to a Kähler-Einstein metric if and only if the Ricci potential \(\tilde{u} \) is bounded with respect to the \(L^2 \) metric.

One can use the estimates obtained by McFeron to prove that if the Ricci potential is bounded along the Kähler-Ricci flow with respect to the gradient metric then the flow converges to a Kähler-Einstein metric.

Indeed it suffices to estimate \(\int_0^\infty \| S - n \|_{C^0(t)} dt \), where \(S \) is the scalar curvature, and one has
\[\int_0^\infty \| S - n \|_{C^0(t)} dt = \int_0^\infty \| \Delta \tilde{u} \|_{C^0(t)} dt \]
\[\leq C_1 + \int_0^\infty \| \Delta \tilde{u} \|_{C^0(t+3)} dt \]
\[\leq C_1 + C_2 \int_0^\infty (\| \Delta \tilde{u} \|_{C^0(t+2)} + \| \nabla \tilde{u} \|_{C^0(t+2)}) dt \]
\[\leq C_1 + C_2 \int_0^\infty (C_3 \| \nabla \tilde{u} \|_{C^0(t+1)} + \| \nabla \tilde{u} \|_{C^0(t+2)}) dt \]
\[\leq C_1 + C_4 \int_0^\infty \| \nabla \tilde{u} \|_{L^2(t)} dt \]
\[\leq C \]
where we have used the assumption of boundedness of \(\int_0^\infty \| \nabla \tilde{u} \|_{L^2(t)} dt \) and inequalities (21) and (37) of [39].

When we consider the stability problem of the Kähler-Ricci flow, i.e. when the initial Kähler metric is close to the Kähler-Einstein metric, then the Kähler-Ricci flow exponentially converges to a Kähler-Einstein metric up to an automorphism [48]. Thus the Kähler-Ricci flow stays in a small neighborhood of a Kähler-Einstein metric.

Proposition 2.20. If there exists a Kähler-Einstein metric, then the Kähler-Ricci flow has bounded distance with respect to the gradient metric.

Proof. Assume the existence of the Kähler-Einstein metric. According to Perelman’s theorem, the Kähler-Ricci flow exponentially converges to a Kähler-Einstein metric nearby. So the Kähler-Ricci flow trajectory could be covered by finite number of \(\varepsilon \)-balls under the \(C^{k,\alpha} \) norm. Each \(\varepsilon \)-ball intersects with the Kähler-Ricci
flow in two points, and such two points could be connected by a geodesic with respect to the gradient metric. Thus patching them together, we prove that the Kähler-Ricci flow has bounded distance with respect to the gradient metric. □

3. The space of Sasakian metrics \mathcal{H}_S

3.1. The Ebin metric on \mathcal{H}_S. Since the sum metric arises in the context of Sasakian geometry, in this subsection we recall the definitions of the case. A Sasakian manifold is a $(2n + 1)$-dimensional M together with a contact form η, its Reeb field ξ, a $(1,1)$-tensor field Φ and a Riemannian metric g that makes ξ Killing, such that

\[
\begin{align*}
\eta(\xi) &= 1, \ i_\xi d\eta = 0 \\
\Phi^2 &= -\text{id} + \xi \otimes \eta \\
g(\Phi, \Phi) &= g + \eta \otimes \eta \\
d\eta &= g(\Phi, \cdot) \\
N_\Phi + \xi \otimes d\eta &= 0
\end{align*}
\]

where N_Φ is the torsion of Φ. The first four mean that M is a contact metric manifold and the last one means it is normal, see [10, Chap. 6].

The foliation defined by ξ is called characteristic foliation. Let $D = \ker \eta$. It is known that $(d\eta, J = \Phi|_D)$ is a transversally Kähler structure, as the second, third and fourth equation above say.

A form α is said to be basic if $\iota_\xi \alpha = 0$ and $\iota_\xi d\alpha = 0$. A function $f \in C^\infty(M)$ is basic if $\xi \cdot f = 0$. The space of smooth basic functions on M is denoted by $\mathcal{C}_B(M)$. The transverse Kähler structure defines the transverse operators $\partial, \overline{\partial}$ and $d^c = \frac{i}{2}(\overline{\partial} - \partial)$ acting on basic forms, analogously as in complex geometry. The form $d\eta$ is basic and its basic class is called transverse Kähler class.

Given an initial Sasakian manifold $(M, \eta_0, \xi_0, \Phi_0, g_0)$, basic functions parameterize a family of other Sasakian structures on M which share the same characteristic foliation and are in the same transverse Kähler class, in the following way. We follow the notation of [10, p. 238].

Let $\phi \in C_B^\infty(M)$ and define $\eta_\phi = \eta_0 + d^c \phi$. The space of all ϕ’s is

\[
\tilde{\mathcal{H}}_S = \{ \phi \in C_B^\infty(M) : \eta_\phi \wedge d\eta_\phi \neq 0 \}
\]

and, in analogy of the Kähler case, we consider normalized “potentials”

\[
\mathcal{H}_S = \{ \phi \in \tilde{\mathcal{H}}_S : I(\phi) = 0 \}
\]

The equation $I = 0$ is a normalization condition, similar to (1.1). We refer to [32] for the definition of I in our case, which is such that

\[
T_\phi \mathcal{H}_S = \left\{ \psi \in C_B^\infty(M) : \int_M \psi \frac{1}{n!} \eta_\phi \wedge d\eta_\phi^n = 0 \right\}.
\]

These deformations are called of type II and it is easy to check that they leave the Reeb foliation and the transverse holomorphic structure fixed, since ξ is still the Reeb field for η_ϕ.

\footnote{This definition with the $\frac{1}{2}$ is classical in Sasakian geometry and differs from the convention usually used in complex geometry $d^c = i(\overline{\partial} - \partial)$. With this convention it holds the relation $dd^c = i(\overline{\partial} - \partial)$ on basic forms.}
Every $\varphi \in \mathcal{H}_S$ defines a new Sasakian structure where the Reeb field and the transverse holomorphic structure are the same and
\begin{align}
\eta_\varphi &= \eta_0 + d^c \varphi \\
\Phi_\varphi &= \Phi_0 - (\xi \otimes d^c \varphi) \circ \Phi_0 \\
g_\varphi &= d\eta_\varphi \circ (\text{id} \otimes \Phi_\varphi) + \eta_\varphi \otimes \eta_\varphi.
\end{align}
Note that one could write $g_\varphi = d\eta_\varphi \circ (\text{id} \otimes \Phi_0) + \eta_\varphi \otimes \eta_\varphi$ since the endomorphism $\Phi_\varphi - \Phi_0$ has values parallel to ξ and $d\eta_\varphi$ is basic. Indeed, the range of Φ_φ is the one of Φ_0 plus a component along ξ, so if we contract it with $d\eta_\varphi$ the latter vanishes.

As in the Kähler case, these deformations keep the volume of M fixed, which will be denoted by vol. The L^2 metric was generalized to \mathcal{H}_S in [32, 34], where Guan and Zhang solved the Dirichlet problem for the geodesic equation and He provided a Sasakian analogue of Donaldson’s picture about extremal metrics.

On the space \mathcal{H}_S one can define the Calabi metric and the gradient metric in the same ways as in formulae (1.5) and (1.8) by using the so called basic Laplacian which acts on basic functions in the same way as in the Kähler case and by using the volume form $\frac{1}{n!} \eta_\varphi \wedge d\eta_\varphi^n$ in the integrals.

In this setting, it is easy to see that the map $\mathcal{H}_S \ni \varphi \mapsto \log \frac{\eta_\varphi \wedge d\eta_\varphi^n}{\eta_0 \wedge d\eta_0^n}$ maps basic functions to basic functions. The transverse Calabi-Yau theorem of [11] allows to prove the surjectivity of this map as in the Kähler case, more precisely between \mathcal{H}_S and the space of basic conformal volume forms
\[C_B = \left\{ u \in C^\infty_B(M) : \int_M e^u \frac{1}{n!} \eta_0 \wedge d\eta_0^n = \text{vol} \right\}. \]

As noted above, the space \mathcal{C} can be defined also for Sasakian manifolds by just taking the Sasakian volume form $\frac{1}{n!} \eta_0 \wedge d\eta_0^n$ instead of the Kähler one. One might ask how the spaces C_B and \mathcal{C} are related. Obviously $C_B \subseteq \mathcal{C}$ but we can say more.

Proposition 3.1. C_B is totally geodesic in \mathcal{C}.

Proof. It is straightforward to verify that for any curve in C_B and section along it, the covariant derivative defined in [13] is still basic, meaning that the (formal) second fundamental form of C_B vanishes. \square

Let \mathcal{M} be the Ebin space of all Riemannian metrics on (M, g_0, ξ_0, η_0) Sasakian of dimension $2n + 1$.

We define an immersion $\Gamma : \mathcal{H}_S \to \mathcal{M}$ that maps $\varphi \mapsto g_\varphi$ as defined in (3.1). As in the Kähler case, it is injective. Indeed if two basic function $\varphi_1, \varphi_2 \in \mathcal{H}_S$ give rise to the same Sasakian metric, taking the corresponding transverse structures we would have $dd^c(\varphi_1 - \varphi_2) = 0$ forcing $\varphi_1 - \varphi_2 = \text{const}$. The normalization $I(\cdot) = 0$ then implies $\varphi_1 = \varphi_2$.

Let us compute the differential of Γ. Let $\varphi(t)$ be a curve in \mathcal{H}_S with $\varphi(0) = \varphi$ and $\varphi'(0) = \psi \in T_\varphi \mathcal{H}_S$. Then
\begin{align}
\Gamma_\varphi \psi &= \frac{d}{dt} \bigg|_{t=0} g_{\varphi(t)} = dd^c \psi(\Phi_0 \otimes \text{id}) + 2d^c \psi \otimes \eta_\varphi.
\end{align}
with the convention $a \odot b = \frac{1}{2}(a \otimes b + b \otimes a)$. For easier notation we call $\beta_\psi := dd^*\psi(\Phi_0 \otimes 1)$.

The differential of Γ is also injective. Indeed if ψ is in its kernel, then

$$0 = \Gamma_{\ast\psi}\psi(\xi,\cdot) = dd^\psi \psi,$$

forcing ψ to be zero, as it has zero integral.

On $T_g M$ recall that the Ebin metric is given by, for $a, b \in T_g M = \Gamma(S^2 M)$,

$$g_E(a, b)_g = \int_M g(a, b) dv_g.$$

We want to compute the restriction of the Ebin metric on the space H_S.

Proposition 3.2. The restriction of the Ebin metric to H_S is twice the sum of the Calabi metric with the gradient metric

$$\frac{1}{2} \Gamma^* g_E = g_C + g_G$$

which we have called the sum metric.

Proof. Computing the length with respect to g_φ of the tensor in (3.2) we get

$$|\beta_\psi + 2d^\varphi \psi \odot \eta_\varphi|_{g_\varphi}^2 = g_\varphi(\beta_\psi, \beta_\psi) + 2g_\varphi(d^\varphi \psi \odot \eta_\varphi, d^\varphi \psi \odot \eta_\varphi) + 2g_\varphi(\beta_\psi, 2d^\varphi \psi \odot \eta_\varphi)$$

$$= g_\varphi(\beta_\psi, \beta_\psi) + 2g_\varphi(d^\varphi \psi, d^\varphi \psi)g_\varphi(\eta_\varphi, \eta_\varphi) + 2\beta_\psi((d^\varphi \psi)^2, \xi)$$

$$= g_\varphi(\beta_\psi, \beta_\psi) + 2g_\varphi(d^\varphi \psi, d^\varphi \psi)$$

using the fact that the g_φ-dual of η_φ is ξ, that the ξ is done with respect to g_φ and finally the fact that the tensor β_ψ is transverse, i.e. vanishes when evaluated on ξ.

Integrating with respect to $d\mu_\varphi$, we have

$$(\Gamma_{\ast\varphi}\psi, \Gamma_{\ast\varphi}\psi)_\varphi = \|\beta_\psi\|_\varphi^2 + 2\|d^\varphi \psi\|_\varphi^2$$

where the right hand side are L^2 norms with respect to the metric g_φ. The second summand is twice the gradient metric on H_S given by

$$g_C(\psi, \psi) = \int_M g_\varphi(d\psi, d\psi)\frac{1}{n!}\eta_\varphi \wedge d\eta_\varphi^n.$$

(For a basic function, there is no difference between its Riemannian gradient and its basic gradient).

We now want to establish a useful formula that we will need in a while. Fix $\varphi \in H_S$ and $h \in T_\varphi H_S$ we consider the curve $\varphi(t) = \varphi + th$ which is in H_S for small t. We then compute for every curve $f(t) \in T_\varphi H_S$,

$$0 = \frac{d}{dt}\bigg|_{t=0} \int_M \Delta_\varphi(t) f_\frac{1}{n!}\eta_\varphi(t) \wedge d\eta_\varphi^n(t) = \int_M (\Delta_\varphi f^t(t) - (dd^\varphi f, dd^\varphi h)_\varphi + \Delta_\varphi(f \Delta_\varphi h)) \frac{1}{n!}\eta_\varphi \wedge d\eta_\varphi^n,$$

which means that

$$g_C(f, h)_\varphi = \int_M (dd^\varphi f, dd^\varphi h)_\varphi \frac{1}{n!}\eta_\varphi \wedge d\eta_\varphi^n.$$

Then we have, since β_ψ is the (transverse) 2-tensor associated to the basic form $dd^\varphi \psi$, whose point-wise norms are related by $|\beta_\psi|^2 = 2|dd^\varphi \psi|^2$,

$$g_C(\psi, \psi) = \int_M (\Delta_\varphi \psi) \frac{1}{n!}\eta_\varphi \wedge d\eta_\varphi^n = \int_M (dd^\varphi \psi, dd^\varphi \psi)_{\varphi} \frac{1}{n!}\eta_\varphi \wedge d\eta_\varphi^n = \frac{1}{2}|\beta_\psi|^2.$$

\square
3.2. **Metric space structure on** \mathcal{H}_S. Let $g = \Gamma^* g_E$ and consider the associated function for $p, q \in \mathcal{H}_S$

$$d(p, q) = \inf\{\text{length}_g(\gamma) : \gamma \text{ is a curve in } \mathcal{H}_S \text{ from } p \text{ to } q\}$$

Let γ be a curve in \mathcal{H}_S joining p and q. Its length with respect to our new metric is, by concavity of the square root:

$$\ell(\gamma) = \int_0^1 \sqrt{2gC(\dot{\gamma}, \dot{\gamma}) + 2gG(\dot{\gamma}, \dot{\gamma})} \, dt \geq \int_0^1 \sqrt{gC(\dot{\gamma}, \dot{\gamma})} \, dt + \int_0^1 \sqrt{gG(\dot{\gamma}, \dot{\gamma})} \, dt \geq d_C(p, q) + d_G(p, q).$$

So $d_C(p, q) + d_G(p, q)$ is a lower bound of the set of lengths of γ as γ varies between the curves joining p to q. So we have

$$(3.3) \quad d_C \leq d_C + d_G \leq d$$

We have the following.

Proposition 3.3. (\mathcal{H}_S, d) is a metric space and

$$(3.4) \quad d_C \leq d.$$

Proof. We need to prove that d is a distance. The symmetry and the triangle inequality are obvious from the definition. If $p, q \in \mathcal{H}_S$ are such that $d(p, q) = 0$ then by inequality (3.3) we would have $d_C(p, q) = 0$ leading to $p = q$ as d_C is a distance on \mathcal{H}_S. \qed

3.3. **The sum metric on** \mathcal{H}_S. Consider on \mathcal{H}_S the metric $g = 2g_C + 2g_G$. It can be written, for $\varphi \in \mathcal{H}_S$ and $\alpha, \beta \in T_{\varphi} \mathcal{H}_S$,

$$g(\alpha, \beta) = 2\int_M \Delta_{\varphi} \alpha \Delta_{\varphi} \beta \frac{1}{n!} \eta_{\varphi} \wedge d\eta^n_{\varphi} - 2\int_M \alpha \Delta_{\varphi} \beta \frac{1}{n!} \eta_{\varphi} \wedge d\eta^n_{\varphi}$$

$$= 2\int_M \Delta_{\varphi} (\alpha - G_{\varphi} \alpha) \Delta_{\varphi} \beta \frac{1}{n!} \eta_{\varphi} \wedge d\eta^n_{\varphi}$$

$$= g_C(L_{\varphi} \alpha, \beta)$$

where $L_{\varphi} = 2(I - G_{\varphi})$ with G_{φ} the Green operator associated to Δ_{φ}.

Note that the G_{φ} acting on functions with zero integral with respect to $d\mu_{\varphi}$ is the inverse of Δ_{φ}, since the projection on the space of harmonic functions is

$$H_{\varphi} : f \mapsto \frac{1}{\text{vol}_{\varphi}} \int_M f \frac{1}{n!} \eta_{\varphi} \wedge d\eta^n_{\varphi} = 0$$

and because of the known relation $I = H_{\varphi} + \Delta_{\varphi} G_{\varphi}$.

We have the first result.

Proposition 3.4. For any curve φ in \mathcal{H}_S and any section v on φ, the only solution $D_t v$ of

$$(3.5) \quad \frac{1}{2} L_{\varphi} D_t v = D_t G_{\varphi} v - G_{\varphi} D_t G_{\varphi} v$$

is the Levi-Civita covariant derivative of g, i.e. it is torsion free and

$$(3.6) \quad \frac{d}{dt} g(v, v) = 2g(D_t v, v).$$
Its proof is analogous to Proposition 2.1 and makes use of the results in \[28\] about transversally elliptic operators.

The geodesic equation is then

\[
\Delta_{t}^{2} D_{t}^{C} \varphi - \Delta_{t} D_{t}^{G} \varphi = 0
\]

which is rewritten as \[2.4\], i.e.

\[
(\Delta_{t} - I) \left((\Delta \varphi \varphi')' + \frac{1}{2} (\Delta \varphi \varphi')^{2} \right) - \frac{1}{2} |\partial^{\varphi} \varphi'|^{2} = 0.
\]

Remark 3.5. It is clear that a curve \(\varphi \) which is a geodesic for both the Calabi and the gradient metric would be a geodesic for our metric as well. Unfortunately there are no such nontrivial curves, as one can easily see from the equations.

4. Further Discussion

The Dirichlet problem of the geodesic equation of the gradient metric still remains to be solved. On one hand, we could switch to consider another gradient-type metric, known as Otto’s metric and working on its gradient flow of the \(K \)-energy. We will prove the local well-posedness of this gradient flow as well. On the other hand, in the remainder of this section, we propose different approaches aiming to construct the geodesic between two Kähler potentials under the gradient metric.

4.1. Otto’s metric on \(C \) and its gradient flow of the \(K \)-energy.

As a counterpart of the Dirichlet metric, there is another gradient-type metric within the optimal transport framework. It is defined in the space of Borel probability measures on a Riemannian manifold and known as Otto’s metric. In particular on a Kähler manifold, given a curve \(\rho(t) \) in \(C \), from the Monge-Ampère map there is a Kähler potential \(\varphi(t) \) such that

\[\rho(t) = \frac{\omega^{n}(t)}{\omega^{n}}.\]

Its first derivative at \(t = 0 \) is

\[v = \frac{\partial \rho}{\partial t} = \Delta_{t} \frac{\partial \varphi}{\partial t} \cdot \rho.\]

The vector \(v \) was assigned to be the tangent vector at \(\rho \), see Section 1.4. Motivated from Otto’s paper [41], there is another way to parameterize the tangent space of \(C \), the tangent vector \(\psi \) at \(\rho \) is defined by solving the following elliptic equation,

\[
2v = -\text{div}(\rho \nabla \psi).
\]

A new metric is obtained from restricting Otto’s metric on \(C \) by

\[
\int_{M} (\partial \psi_{1}, \overline{\partial} \psi_{2})_{\omega_{\varphi}} = \int_{M} \psi_{1} v_{2} \omega^{n}
\]

in which, \(2v_{2} = -\text{div}(\rho \nabla \psi_{2}) \). We remark that this definition takes the inner product with respect to the fixed metric \(\omega \), that is different from the gradient metric \(1.3 \).

The geodesic equation is a Hamilton-Jacobi equation

\[
\frac{\partial \psi}{\partial s} = -|\partial \psi|_{\varphi}^{2}.
\]
Fixed the smooth boundary values $\rho_0, \rho_1 \in C$, the geodesic connecting them might not be smooth, while existing in the viscosity sense [19], however, it is proved in [42] the infimum of the geodesic distance equals the Wasserstein metric $\frac{1}{2}W_2(\rho_0, \rho_1)$.

Then we write down the gradient flow of the K-energy regarding to Otto’s metric. We define the scalar potential with respect to the Kähler metric g as

$$\Delta \varphi f = S(\varphi) - S, \quad \int_M e^f \omega^n = \text{vol}.$$

From the formula of the K-energy,

$$\nu(\rho) = -\int_0^1 \int_M \dot{\varphi}(S(\varphi) - S) \rho \cdot \omega^n dt,$$

we have by applying the formula of the tangent vector (4.1) and integration by parts,

$$\delta \nu(\rho)v = -\int_M \Delta \varphi \dot{\varphi} \cdot f \omega^n,$$

$$= -\frac{1}{2} \int_M \text{div}(\rho \nabla \psi) \cdot f \omega^n,$$

$$= \int_M (\partial \psi, \mathcal{D}f) \omega^n,$$

$$= -\frac{1}{2} \int_M \psi \cdot \text{div}(\rho \nabla f) \omega^n.$$

Comparing with the metric (4.2), we have the gradient flow of the K-energy under the new metric becomes

$$\frac{\partial \rho}{\partial t} = -\frac{1}{2} \text{div}(\rho \nabla f).$$

This new flow preserves the volume $\text{vol} = \int_M \rho \omega^n$. Note that the scalar potential has the decomposition formula

$$f = -\log \rho + P, \quad \Delta \varphi P = g_{\varphi}^\gamma R(\omega) - S.$$

We further have

$$\frac{\partial \rho}{\partial t} = \frac{1}{2} \text{div}[\rho \nabla (\log \rho - P)],$$

$$= \frac{1}{2} \text{div}(\rho \nabla \log \rho) - \frac{1}{2} \text{div}(\rho \nabla P),$$

$$= \Delta \rho - \frac{1}{2} \text{div}(\rho \nabla P).$$

In conclusion, we obtain the new gradient flow of the K-energy satisfying the second order system,

$$\begin{cases}
\frac{\partial \rho}{\partial t} = \Delta \rho - \frac{1}{2} \text{div}(\rho \nabla P), \\
\Delta \varphi P = g_{\varphi}^\gamma R(\omega) - S, \\
\rho = \frac{\omega^n}{\omega^n}.
\end{cases}$$

Theorem 4.1. If the initial Borel probability measure is in $C^{2,\alpha}(0 < \alpha < 1)$, then the measure flow (4.5) exists for short time.
The proof follows the similar way of the proof the Pseudo-Calabi flow \cite{17}. We introduce the following notations
\[J = [0, T], E_1 = C^{2,\alpha}(M, g), E_0 = C^{\alpha}(M, g), \]
\[X = \{ \rho \in C^1(J, E_0) \cap C^0(J, E_1) : \|\rho\|_X \]
\[= \max_{[0,T]}(\|\partial_t \rho\|_{C^\alpha(M, g)} + \|\rho\|_{C^{2,\alpha}(M, g)}) < \infty \}, \]
\[Y = \{ F = (\rho_1, \rho_2) \in C^0(J, E_0) \times E_1 : \|F\|_Y \]
\[= \max_{[0,T]}\|\rho_1\|_{C^\alpha(M, g)} + \|\rho_2\|_{C^{2,\alpha}(M, g)} < \infty \}. \]

Let \(\mathbf{p}(t) = \rho_0 \) on \([0, T]\) and solve \((\mathbf{p}, \mathbf{P})\) from the equations
\[\mathbf{p} = \omega^n_\omega \quad \text{and} \quad \Delta_\mathbf{p} = y^T_\omega R_\omega(\omega) - \mathbf{S}. \]
We choose \(U \) an open set of \(\mathbf{p} \) in \(X \). We define the map \(\Phi \) from \(U \) to \(Y \) as the following
\begin{equation}
\Phi : C^0(J, U) \cap C^1(J, E_0) \to C^0(J, E_0) \times U,
\end{equation}
\[\rho \mapsto \left(\frac{\partial \rho}{\partial t} - \Delta \rho + \frac{1}{2} \text{div}(\rho \nabla P), \rho_0 \right). \]

The following lemma will be useful later.

Lemma 4.2. Suppose that \(\mathbf{p} \in C^0(J, C^{2,\alpha}) \), then \(\mathbf{p} \in C^0(J, C^{4,\alpha}) \) and \(\mathbf{P} \in C^0(J, C^{4,\alpha}) \).

Proof. We applied the Schauder estimates for the Monge-Ampère equation and the linear elliptic equation. \(\square \)

With the notations,
\[\delta = \left. \frac{\partial}{\partial t} \right|_{t=0}, \quad u = \delta \rho, \quad v = \delta \varphi, \quad Q = \delta P, \]
the linearized equation of the flow at \((\mathbf{p}, \mathbf{p}, \mathbf{P})\) reads
\begin{equation}
\begin{cases}
\frac{\partial u}{\partial t} = \Delta u - \frac{1}{2} \text{div}(u \nabla \mathbf{P}) - \frac{1}{2} \text{div}(\mathbf{p} \nabla Q), \\
\Delta_\mathbf{p} Q = v^T_\mathbf{p} T_\mathbf{p} = -v^T_\mathbf{p} (\mathbf{P} T_\mathbf{p} - R_\omega(\omega)), \\
u = \Delta_\mathbf{p} v \cdot \omega^n_\omega.
\end{cases}
\end{equation}

Similar to Lemma 4.14 in \cite{17}, we have

Lemma 4.3. Suppose that \(\mathbf{p}, \mathbf{v} \in C^0(J, C^{2,\alpha}) \), then \(Q \in C^0(J, C^{4,\alpha}) \).

We also need the following lemma.

Lemma 4.4. Suppose that \(\mathbf{p} \in C^0(J, C^{2,\alpha}) \), then
\[|Q_1 - Q_2|_{C^{2,\alpha}} \leq C(|\mathbf{p}|_{C^{2,\alpha}})|u_1 - u_2|_{C^\alpha}. \]

Proof. We apply the Schauder estimate to the last two equations in \cite{17},
\[|Q_1 - Q_2|_{C^{2,\alpha}} \leq C(|\mathbf{p}|_{C^{2,\alpha}})|\mathbf{p}|_{C^{2,\alpha}})|u_1 - u_2|_{C^\alpha} \]
\[\leq C(|\mathbf{p}|_{C^{2,\alpha}})|\mathbf{p}|_{C^{2,\alpha}})|u_1 - u_2|_{C^\alpha}. \]

The the lemma follows from Lemma 4.2. \(\square \)
Then as [17], it suffices to prove that the short time existence and the long time existence for the non-homogeneous equation for any \(w \in C^0(J, C^\alpha) \) with \(u(0) = 0 \),

\[
\begin{aligned}
\frac{\partial u}{\partial t} &= \Delta u - \frac{1}{2} \text{div}(u \nabla P) - \frac{1}{2} \text{div}(\overline{\rho} \nabla Q) + w, \\
\Delta \tilde{\sigma} Q &= v^\beta T_i \tilde{\sigma} = -v^\beta (\overline{P} \sigma - R(\omega)), \\
 u &= \Delta \tilde{\sigma} v \cdot \frac{\omega^\alpha}{\omega^n}.
\end{aligned}
\]

(4.8)

Introduce the function space

\[
Z = \{ u \in C^{2+\alpha, 0}(M \times [0, t_0]) : u(0) = 0 \}
\]

with the norm \(\| u \| = \sup_{0 \leq t \leq t_0} |v(t)|_{C^{2, \alpha}(M, g)} \). We define the following operator:

\[
\hat{u} = \text{Map}(u)
\]

(4.9)

Recall the following Schauder estimate of the linear parabolic equation with \(\alpha > \beta \),

\[
\partial_t u - \Delta u = f_1 + f_2.
\]

(4.10)

\[
\sup_{[0, t]} |u|_{C^{2, \alpha}} \leq C \left[\sup_{[0, t]} |f_1|_{C^\alpha} + \int_0^t (t - \tau)^{-\alpha/2\beta} \sup_{[0, \tau]} |f_2|_{C^\alpha} d\tau \right].
\]

It is not hard to verify that Map is a contraction map from \(Z \) to itself.

Lemma 4.5. Map maps from \(Z \) to itself.

Proof. We first see that \(\text{Map}(u)(0) = 0 \), then we apply (4.10) to \(\text{Map}(u) \),

\[
\| \text{Map}(u) \|_{C^{2, \alpha}} = C - \frac{1}{2} \text{div}(u \nabla P) - \frac{1}{2} \text{div}(\overline{\rho} \nabla Q) + w|_{C^\alpha} \leq C(|u|_{C^{1, \alpha}}, |\overline{P}|_{C^2, \alpha}, |\overline{\rho}|_{C^{1, \alpha}}, |Q|_{C^2, \alpha}, |w|_{C^\alpha}).
\]

So the conclusion follows from Lemma 4.2 and Lemma 4.3. \(\square \)

Lemma 4.6. Map is a contraction map.

Proof. We proceed by applying (4.10),

\[
\| \text{Map}(u_1) - \text{Map}(u_2) \|_{C^{2, \alpha}}
\]

\[
= \int_0^t \int_M H(x, y, t - s)\{- \frac{1}{2} \text{div}[(u_1 - u_2) \nabla P] - \frac{1}{2} \text{div}(\overline{\rho} \nabla (Q_1 - Q_2))] (y, s)\omega^n(y) ds
\]

\[
\leq t^{\frac{1}{2}} \cdot \{C(|\overline{P}|_{C^2, \alpha})|u_1 - u_2|_{C^{2, \alpha}} + C(|\overline{\rho}|_{C^{2, \alpha}})|Q_1 - Q_2|_{C^{2, \alpha}}\}
\]

Therefore, the lemma follows from Lemma 4.3 and choosing sufficient small \(t \). \(\square \)

The long time existence of (4.8) follows directly from the energy inequality. We assume

(4.11)

\[
\sup_{t \in [0, T]} |\overline{P}|_{C^{2, \alpha}} \leq \delta,
\]

where \(\delta \) is a constant to be determined.
Lemma 4.7. The energy inequality holds.
\[\|u\|_{L^2(Q_T)} = \sup_{0 \leq t \leq T} \|u\|_{2;M} + \|\nabla u\|_{2;Q_T} \leq C(\|u(0)\|_{2;M} + \|\Delta \varphi w\|_{2;M} + \|w\|_{2;Q_T}), \]
where \(C\) depends on \(\overline{\rho}\) and \(T\).

Proof. We directly compute
\[\rho \frac{1}{2} \int_M u^2 \omega^n = \int_M [-|\nabla u|^2 + \frac{1}{2} u \nabla \overline{\nabla} \nabla u + \frac{1}{2} r \nabla Q \nabla u + w u] \omega^n \]
and
\[\|\nabla u\|_{2;Q_T}^2 = \int_0^T \int_M -\frac{1}{2} \partial_t |u|^2 \omega^n dt + \int_0^T \int_M \left[\frac{1}{2} \text{div}(u \nabla \overline{\nabla}) - \frac{1}{2} \text{div}(\overline{\nabla} Q) + w \right] u \omega^n dt. \]
Then applying the \(\varepsilon\)-Hölder inequality and choosing a small \(\delta\) in (4.11), we obtain the energy inequality. \(\square\)

4.2. Approximation of the \(L^2\)-geodesics. Consider the metric
\[(4.12) \quad g_\beta(\psi_1, \psi_2)_\varphi = g_M(\psi_1, \psi_2)_\varphi + \beta \cdot g_G(\psi_1, \psi_2)_\varphi. \]
With the help of the advantage that the Cauchy problem of the combination metric with positive \(\beta\) is local well-posed, one might formulate the following approximation problem. Given an initial point \(\varphi_0 \in H\) and a tangent vector \(\psi_0 \in T_{\varphi_0}H\) the geodesic \(\varphi_\beta\) of the approximation metric \(g_\beta\) with initial data \((\varphi_0, \psi_0)\) approximates in some sense the \(L^2\) geodesic \(\varphi\) with the same initial data. The ill-posedness of the \(L^2\) geodesic was studied by Zelditch and his coauthor [44].

4.3. Weak geodesics. Let \(PSH(M, \omega)\) be the space of all pluri-subharmonic functions associated to \(\Omega\),
\[PSH(M, \omega) = \left\{ \varphi \in L^1(M) \mid \varphi \text{ is u.s.c. and } \omega + \frac{1}{2} dd^c \varphi \geq 0 \right\}. \]
The weak geodesics for the \(L^2\) metric in \(PSH(M, \omega)\) were constructed by applying pluripotential theory, see e.g. [33]. One can wonder whether there is a notion of weak solution of the geodesic equation in \(PSH(M, \omega)\) for the gradient or the sum metric. We might minimise the energy functional or equivalently the length functional between two Kähler potentials over the space \(PSH(M, \omega)\). The difficulty seems to be that it is not known whether the geodesic equation of the gradient metric could be rewritten as a Monge-Ampère typed equation like the geodesic equation of the \(L^2\)-metric.

4.4. Bergman approximations. The idea of approximating the objectives in Kähler geometry by objects in projective geometry goes back to Yau, Tian, Donaldson. Suppose that \(L \to M\) is a positive line bundle and the Kähler class is \(2\pi c_1(L)\). We are given a reference Hermitian metric \(h_0\) on \(L\) such that its curvature form is \(\omega_0\). The space of Kähler metrics \(H\) is identified (by the \(\partial \overline{\partial}\)-lemma) with the space of hermitian metrics by
\[h = e^{-\varphi} h_0. \]
Let \(H(L^k)\) be the space of holomorphic sections of \(L^k \to M\) and \(z = [s_0, \ldots, s_{N_k}]\) be the base of \(H(L^k)\). The Kodaira embedding theorem states that there is a large \(k\) for which there is a projective imbedding
\[\iota_k : M \to \mathbb{CP}^N_k. \]
Here the dimension N_k is determined by the Riemann-Roch formula. Any Kähler metric ω can be approximated by a Bergman metric
\[
\omega_k = \frac{1}{k} t_k^* \omega_{FS}
\]
i.e. the pullback of the Fubini-Study metric via a projective embedding. The corresponding Hermitian metric is
\[
h_k = \frac{h_0}{(\sum_{i=0}^{N_k} |s_i(z)|^2 h_k^n)^k}.
\]

As in Donaldson [22], the Hermitian metric h defines a Hermitian inner product on $H^0(L^k)$ by
\[
\mathcal{H}ilb_k(h) = \frac{N_k + 1}{\text{vol}} \int_M |s(z)|^2 h_k^n h_k^n!
\]
The inner product $G = \mathcal{H}ilb_k(h)$ on $H^0(L^k)$ determines a G-orthonormal basis $\{s_G\}$, thus the Bergman metric $h_{s_G} := FS_k(G)$.

One may wonder whether it is possible to approximate the geodesics $\gamma_t = e^{-\varphi t} h_0$ for the gradient metric on $H^0(L^k)$ by appropriate geodesics in H_k.

4.5. Toric manifolds. A toric Kähler manifold is a compact Kähler manifold M^{2n} that admits an effective compact n-torus action. The torus action is Hamiltonian, i.e. there exists a moment map $\mu : M \to \mathbb{R}^n$ whose image is the convex hull P of the fixed points of the action.

Let us now briefly describe the toric setting, for which we refer to [1]. The dense subset M^0 in which the action is free can be endowed with two coordinate systems. One way is to see it as a complex torus, which gives complex coordinates. That is the identification $M^0 = \mathbb{C}^n / 2\pi \mathbb{Z}^n = \mathbb{R}^n + i\mathbb{T}^n$. In these coordinates $z = \xi + i\eta$ the torus action is just by addition on the second component. The complex structure is the standard one and there exists a \mathbb{T}^n-invariant Kähler potential $F = F(\xi)$, i.e. such that
\[
\omega = 2i\partial \bar{\partial} F = \frac{1}{2} \sum_{j,k=1}^n \frac{\partial^2 F}{\partial \xi_j \partial \xi_k} dz_j \wedge \bar{dz}_k.
\]
In these coordinates the moment map is given by the gradient of F that is
\[
\mu(\xi) = \frac{\partial F(\xi)}{\partial \xi}
\]
The symplectic potential is given by, under the Legendre transform,
\[
u(x) = x \cdot \xi - F(\xi).
\]
Direct calculation shows that
\[
\frac{\partial}{\partial x} u(x) = \xi,
\]
\[
\frac{\partial}{\partial \xi} F(\xi) = x,
\]
\[
u^{ij}(x) = F_{ij} = \frac{\partial^2 F}{\partial \xi_i \partial \xi_j}(\xi).
\]
From here, we have
\[
\frac{\partial}{\partial t} u(x) + \frac{\partial}{\partial x} u(x) \frac{\partial}{\partial t} x = \frac{\partial}{\partial t} x \cdot \xi - \frac{\partial}{\partial t} F(\xi).
\]
Thus
\[\frac{\partial}{\partial t} u(x) = - \frac{\partial}{\partial t} F(\xi). \]

Differentiating again on \(t \), we have
\[-\frac{\partial^2}{\partial t^2} u(x) = \frac{\partial^2}{\partial t^2} F(\xi) + \frac{\partial}{\partial t} F(\xi) \frac{\partial}{\partial t} u(x) \frac{\partial}{\partial t} x_i \]
\[= \frac{\partial^2}{\partial t^2} F(\xi) - \frac{\partial}{\partial t} \frac{\partial}{\partial t} F(\xi) \frac{\partial}{\partial t} F(\xi) \frac{\partial}{\partial t} F(\xi) \frac{\partial}{\partial t} F(\xi) \]
\[= \frac{\partial^2}{\partial t^2} F(\xi) - \frac{\partial^2}{\partial \xi_j \partial t} u(x) \frac{\partial}{\partial t} \frac{\partial}{\partial t} F(\xi) \frac{\partial}{\partial t} \frac{\partial}{\partial t} F(\xi) \frac{\partial}{\partial t} F(\xi) \frac{\partial}{\partial t} F(\xi) \]
\[= \frac{\partial^2}{\partial t^2} F(\xi) - F^{ij} \frac{\partial}{\partial t} \frac{\partial}{\partial t} F(\xi) \frac{\partial}{\partial t} \frac{\partial}{\partial t} F(\xi) \frac{\partial}{\partial t} F(\xi) \frac{\partial}{\partial t} F(\xi). \]

(4.14)

Then the geodesic equation (1.3) in complex coordinates transforms to
\[\ddot{u} = 0 \]
in symplectic ones by the Legendre transform. Thus in symplectic coordinates, \(L^2 \) geodesics are segments.

Now we write the geodesic equation of the gradient metric on a toric manifold.

Proposition 4.8. The geodesic equation for the gradient metric on a toric manifold reads
\[2\Delta \left(-\dot{u}(x) + |\dot{d}(x)|^2 \right) - \text{Hess} \dot{u}^2 + (\Delta \dot{u})^2 = 0. \]

Here, for a smooth function \(f \) on the polytope \(P \),
\[\Delta f = \frac{\partial}{\partial x_j} \left(u^{ik} \frac{\partial}{\partial x_i} f \right). \]

Proof. From (4.14), we have
\[\frac{\partial^2}{\partial t^2} F(\xi) = - \frac{\partial^2}{\partial t^2} u(x) + F^{ij} \frac{\partial}{\partial \xi_j} \frac{\partial}{\partial t} F(\xi) \frac{\partial}{\partial \xi_i} \frac{\partial}{\partial t} F(\xi) \]
\[= - \frac{\partial^2}{\partial t^2} u(x) + F^{ij} \frac{\partial}{\partial \xi_j} \frac{\partial}{\partial t} u(x) \frac{\partial}{\partial \xi_i} \frac{\partial}{\partial t} u(x) \]
\[= - \frac{\partial^2}{\partial t^2} u(x) + u^{ij} F^{ij} \frac{\partial}{\partial \xi_j} \frac{\partial}{\partial t} u(x) \frac{\partial}{\partial \xi_i} \frac{\partial}{\partial t} u(x) \]
\[= - \frac{\partial^2}{\partial t^2} u(x) + \frac{\partial^{2\text{sym}}}{\partial x_i \partial t} u(x) \frac{\partial}{\partial x_p} \frac{\partial}{\partial t} u(x). \]

Recall that in complex coordinates one has (1.9), namely
\[2\Delta \tilde{F} - |\dot{d}\tilde{F}|^2 + (\Delta \tilde{F})^2 = 0. \]

Changing in symplectic coordinates one has,
\[\Delta \tilde{F} = \Delta \left(-\ddot{u}(x) + |\dot{d}(x)|^2 \right). \]
The second term in the geodesic equation is $\dot{u}^{ij} \dot{u}^{kl} u_{ik} u_{jl}$ and the third one is

\[\Delta \dot{F} = -F^{jk} \frac{\partial^2}{\partial \xi_j \partial \xi_k} \dot{u} \]

\[= -\frac{\partial^2}{\partial x_j \partial x_k} u \frac{\partial^2}{\partial \xi_j \partial \xi_k} \dot{u} \]

\[= -\frac{\partial}{\partial x_j} \left(u^{ik} \frac{\partial}{\partial x_i} \dot{u} \right). \]

This transformation is worth only for $n \geq 2$ as we recall from [13] that the gradient metric is flat on a Riemann surface.

References

[1] M. Abreu, *Kähler geometry of toric manifolds in symplectic coordinates*, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001), Fields Inst. Commun., vol. 35, Amer. Math. Soc., Providence, RI, 2003, pp. 1–24.

[2] C. Arezzo and G. Tian, *Infinite geodesic rays in the space of Kähler potentials*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), no. 4, 617–630.

[3] V. Arnold, *Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits*, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 319–361.

[4] V. I. Arnold and B. A. Khesin, *Topological methods in hydrodynamics*, Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, 1998.

[5] M. Bauer, P. Harms, and P. W. Michor, *Sobolev Metrics on the Manifold of All Riemannian Metrics*, J. Differential Geom. 94 (2013), no. 2, 187–208.

[6] R. Berman and J.-P. Demailly, *Regularity of plurisubharmonic upper envelopes in big cohomology classes*, Perspectives in analysis, geometry, and topology, Progr. Math., vol. 296, Birkhäuser/Springer, New York, 2012, pp. 39–66.

[7] A. Besse, *Einstein Manifolds*, Springer Verlag, 1987.

[8] L. Biliotti, *The exponential map of a weak Riemannian Hilbert manifold*, Illinois J. Math. 48 (2004), no. 4, 1191–1206.

[9] Z. Blocki, *On geodesics in the space of Kähler metrics*, Advances in geometric analysis, Adv. Lect. Math. (ALM), vol. 21, Int. Press, Somerville, MA, 2012, pp. 3–19.

[10] C. Boyer and K. Galicki, *Sasakian Geometry*, Oxford Science Publications, 2007.

[11] C. Boyer, K. Galicki, and P. Matzeu, *On eta-Einstein Sasakian geometry*, Comm. Math. Phys. 262 (2006), no. 1, 177–208.

[12] E. Calabi, *The space of Kähler metrics*, Proceedings of the International Congress of Mathematicians, vol. 2, Amsterdam, 1954, pp. 206–207.

[13] S. Calamai, *The Calabi metric for the space of Kähler metrics*, Math. Ann. 353 (2012), no. 2, 373–402.

[14] S. Calamai and K. Zheng, *Geodesics in the space of Kähler cone metrics*, arXiv:1205.0056, 2012.

[15] S. Calamai and K. Zheng, *The Dirichlet and the weighted metrics for the space of Kähler metrics*, arXiv:1202.6610v2 to appear in Math. Ann., 2012.

[16] X. X. Chen, *The space of Kähler metrics*, J. Differential Geom. 56 (2000), no. 2, 189–234.

[17] X. X. Chen and K. Zheng, *The pseudo-Calabi flow*, J. Reine Angew. Math. 674 (2013), 195–251.

[18] B. Clarke, *The completion of the manifold of Riemannian metrics*, J. Differential Geom. 93 (2013), no. 2, 203–268.

[19] M. G. Crandall and P.-L. Lions, *Viscosity solutions of Hamilton-Jacobi equations*, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42.

[20] T. Darvas and L. Lempert, *Weak geodesics in the space of Kähler metrics*, Math. Res. Lett. 19 (2012), no. 5, 1127–1135.
[21] S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 13–33.

[22] , Scalar curvature and projective embeddings. I, J. Differential Geom. 59 (2001), no. 3, 479–522.

[23] , Holomorphic discs and the complex Monge-Ampère equation, J. Symplectic Geom. 1 (2002), no. 2, 171–196.

[24] D. G. Ebin, The manifold of Riemannian metrics, Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 11–40.

[25] D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid., Ann. of Math. (2) 92 (1970), 102–163.

[26] D. G. Ebin, G. Misiołek, and S. C. Preston, Singularities of the exponential map on the volume-preserving diffeomorphism group, Geom. Funct. Anal. 22 (2012), no. 1, 202–212.

[27] D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid., Ann. of Math. (2) 92 (1970), 102–163.

[28] A. El Kacimi-Alaoui, Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications., Compositio Math. 73 (1990), no. 1, 57–106.

[29] D. S. Freed and D. Groisser, The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group, Michigan J. Math. J. 36 (1989), no. 3, 323–344.

[30] O. Gil-Medrano and P. W. Michor, The Riemannian manifold of all Riemannian metrics, Quart. J. Math. Oxford Ser. (2) 42 (1991), no. 166, 183–202.

[31] N. Grossman, Hilbert manifolds without epiconjugate points, Proc. Amer. Math. Soc. 16 (1965), 1365–1371.

[32] P. Guan and X. Zhang, Regularity of the geodesic equation in the space of Sasakian metrics, Adv. Math. 230 (2012), no. 1, 321–371.

[33] V. Guedj, The metric completion of the Riemannian space of Kähler metrics, arXiv:1401.7857v2, 2014.

[34] W. Y. He, On the transverse scalar curvature of a compact Sasaki manifold, arXiv:1105.4000, 2011.

[35] B. Khesin, J. Lenells, G. Misiołek, and S. C. Preston, Curvatures of Sobolev metrics on diffeomorphism groups, Pure Appl. Math. Q. 9 (2013), no. 2, 291–332.

[36] , Geometry of diffeomorphism groups, complete integrability and geometric statistics, Geom. Funct. Anal. 23 (2013), no. 1, 334–366.

[37] L. Lempert and L. Vivas, Geodesics in the space of Kähler metrics, Duke Math. J. 162 (2013), no. 7, 1309–1381.

[38] T. Mabuchi, Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math. 24 (1987), no. 2, 227–252.

[39] D. McFeron, The Mabuchi metric and the Kähler-Ricci flow, Proc. Amer. Math. Soc. 142 (2014), no. 3, 1005–1012.

[40] G. Misiołek and S. C. Preston, Fredholm properties of Riemannian exponential maps on diffeomorphism groups, Invent. Math. 179 (2010), no. 1, 191–227.

[41] F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26 (2001), no. 1-2, 101–174.

[42] F. Otto and M. Westdickenberg, Eulerian calculus for the contraction in the Wasserstein distance, SIAM J. Math. Anal. 37 (2005), no. 4, 1227–1255 (electronic).

[43] D. H. Phong and J. Sturm, The Dirichlet problem for degenerate complex Monge-Ampère equations, Comm. Anal. Geom. 18 (2010), no. 1, 145–170.

[44] Y. A. Rubinstein and S. Zelditch, The Cauchy problem for the homogeneous Monge-Ampère equation, III. lifespan, arXiv:1205.4793.

[45] S. Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), no. 3, 495–550.

[46] S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866.

[47] K. Zheng, Stability of the Kähler-Ricci flow in the space of Kähler metrics, Pacific J. Math. 251 (2011), no. 2, 469–497.
(S. Calamai) Dip. di Matematica e Informatica “U. Dini” - Università di Firenze
Viale Morgagni 67A - Firenze - Italy
E-mail address: simocala at gmail.com

(D. Petrecca) Institut für Differentialgeometrie, Leibniz Universität Hannover
Welfengarten 1, 30167 - Hannover - Germany
E-mail address: petrecca at math.uni-hannover.de

(K. Zheng) Institut für Differentialgeometrie, Leibniz Universität Hannover
Welfengarten 1, 30167 - Hannover - Germany
E-mail address: zheng at math.uni-hannover.de