General recommendations for dentists in COVID-19 pandemic

Amit Bhandari and Dr. Kirtika Muktawat

DOI: https://doi.org/10.22271/oral.2020.v6.i4c.1059

Abstract
The ongoing spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (commonly called COVID-19) has gripped the entire India and other international community and caused widespread public health concerns. Despite global efforts to contain the disease spread, the outbreak is still on a rise because of the community spread pattern of this infection. Therefore, measures for prevention, identification, and management must be in place for appropriate mitigation of further spread. With the widespread transmission of SARS-CoV-2 and reports of its spread to health care providers, dental professionals are at high risk for nosocomial infection and can become potential carriers of the disease. These risks can be attributed to the unique nature of dental interventions, which include aerosol generation, handling of sharps, and proximity of the provider to the patient’s oropharyngeal region. In addition, if adequate precautions are not taken, the dental office can potentially expose patients to cross contamination. As the understanding of this novel disease is evolving, dental practices should be better prepared to identify a possible COVID-19 infection. With our experience of outbreak so far and handling of patients during this period, certain specific protocols are discussed and recommendations for dental patient management in this pandemic period and afterwards COVID-19.

Keywords: Dentists, COVID-19 pandemic, SARS

Introduction
The group coronavirus include wide variety of respiratory viruses and their manifestations may vary from mild to severe. The virus named after its microscopic appearance, specified by the presence of pointed structures on the surface, resembling a crown were identified in the mid-1960s and are known to infect humans and a variety of animals (including birds and mammals) \([1]\). Since 2002, two coronaviruses infecting animals have evolved and caused outbreaks in humans: SARS-CoV (Severe Acute Respiratory Syndrome) identified in southern China in 2003 \([2]\), and MERS-CoV (Middle East Respiratory Syndrome), identified in Saudi Arabia in 2012 \([3]\). Coronavirus disease 2019, called Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) and popularly known as COVID-19, is the latest contagious disease and rapidly spreading worldwide, was first discovered in 2019 in Wuhan \([4]\). As per WHO COVID 19 affected most of the countries with 21260760 infected patients and 761018 deaths globally \([5]\). In India, as per, Ministry of health and family welfare (MOHFW) situation report (August 15, 2020) update on COVID-19, there have been more than 676900 cases and 50921 deaths and this number continues to increase \([6]\). According to the WHO mortality rate of COVID 19 is 3-4% and was declared a pandemic on 11 March 2020 \([7,8]\).

Centers for Disease Control and Prevention (CDC) outlines symptoms of COVID-19 infection including Cough, Shortness of breath or difficulty breathing. Later added 6 new symptoms include: Fever, Chills, Repeated shaking with chills, Muscle pain, Headache, Sore throat, New loss of taste or smell \([9]\) and suggested that at least two from 6 new symptoms could be a suspect of COVID 19. Symptoms may appear 2-14 days after exposure to the virus. However, some reports suggests incubation period could be as long as 27 days \([10]\). In addition abnormal, chest x-ray findings such as patchy or diffuse airspace opacities and computed tomography findings such as ground glass opacities are found \([11]\) in patients.
Routes of transmission of virus

According to WHO \cite{12}, the most common transmission routes of COVID 19 include direct transmission (cough, sneeze, and droplet inhalation transmission) and contact transmission (contact with oral, nasal, and eye mucous membranes) \cite{13}. COVID 19 can be transmitted through droplets of different sizes: when the droplet particles are >5-10 μm in diameter they are referred to as respiratory droplets, and when they are <5μm in diameter, they are referred to as droplet nuclei \cite{14}. According to current evidence, COVID-19 virus is primarily transmitted between people through respiratory droplets, aerosol, saliva and contact transmission (by indirect contact with a contaminated surface, such as contaminated door handles, seat lift surface) \cite{15}. In an analysis of COVID-19 cases in China, airborne transmission was not reported \cite{16}. However, WHO state \cite{23} that “airborne transmission of COVID 19 may be possible in specific circumstances and settings in which procedures or support treatments that generate aerosols are performed; i.e., endotracheal intubation, bronchoscopy, open suctioning, administration of nebulized treatment, manual ventilation before intubation, turning the patient to the prone position, disconnecting the patient from the ventilator, non-invasive positive-pressure ventilation, tracheostomy, and cardiopulmonary resuscitation”. In addition, studies have shown that COVID 19 can be transmitted from person to person through direct or indirect contact \cite{17} and contact with asymptomatic patients \cite{18}. In addition airborne transmission in dental setting cannot be ruled out. The aerosol within 1m distance of patient’s mouth is estimated to be ineffective \cite{19} because particles of large size remain suspended in the air for short duration of time and settle within 1m where as particles of smaller size evaporate rapidly, while dry residues slowly settle and remain suspended for a variable amount of time \cite{20}. There is some evidence that COVID-19 infection may lead to intestinal infection and be present in faeces. However, to date only one study has cultured the COVID-19 virus from a single stool specimen \cite{21}. There have been no reports of faecal–oral transmission of the COVID-19 virus to date. This virus is stable on plastic, glass and stainless steel up to 72 hours and cardboard, paper and fabric up to 24 hours \cite{22}.

Risk of COVID 19 in Dental Practice

There are high chances of transmissibility of the disease due to specificity of procedures, which includes dentist and patient face to face communication, frequent saliva exposure. In our routine dental procedures usually generate aerosols. So, during the course of this pandemic, there is a necessity for alterations to dental treatment to maintain a healthy environment for the patients and the dental team. SARS-CoV-2 has been isolated from the saliva of COVID19 patients \cite{23}. In literature it is documented that SAR CoV can potentially infect epithelial cells lining of salivary gland and become a major source of the virus in saliva \cite{24}. Therefore, multiple direct exposure of saliva is dangerous to dentist. One infected patient, can infect not only dentist but also to other patients.

Air borne

The airborne spread of SARS-CoV is well documented in the literature \cite{25}. This is reported in the literature that COVID 19 remain suspended in the air for long periods so there is a possibility that COVID 19 spread through aerosols. Thus, transmission through aerosols is the most important concern in dental clinics, because it is impossible to avoid the generation of large amounts of aerosol and droplet mixed with the patient’s saliva and even blood during dental practice \cite{26}. Particles of aerosols are so small that they stay in the air for a longer time duration before settling on any surfaces or inhaled by a healthy person.

Also, if infected patient sitting in the waiting area, can produce droplets that propelled a short distance by coughing and talking without a mask and can infect other individuals sitting in waiting area.

Contact spread

Another possible route for spread to dental care professionals is through direct or indirect contact with human fluids, contaminated dental instruments or environmental surfaces \cite{37}.

Contaminated surfaces

It is documented that SARS-CoV 2 can persist on surfaces like metal, glass, or plastic for a few days. Therefore, contaminated surfaces that are frequently contacted in dental settings are a possible route for transmission of COVID 19 [33].
Management of patient

Patient Evaluation
- To reduce the risk of exposure and community spread it is very important to reduce physical walk-ins in the clinic. This can be done effectively by tele-screening and triaging by phone. Triaging is defined as determining the priority of patients' treatment requirements based on the severity of their condition. In telephone triage, dentists must effectively assess patients' symptoms and provide directives based on the urgency.
- On arrival in dental clinics, patients must complete a detailed medical history, COVID-19 screening questionnaire (Table 1), and assessment of an emergency questionnaire (Table 2). On entrance of dental clinics, the temperature of patients is to be measured, using non-contact forehead thermometers. If patients present with fever (>100.4°F =38°C) and/or respiratory disease symptoms, cough, Chills, Repeated shaking with chills, Muscle pain, Headache, Sore throat, New loss of taste or smell, their elective procedure should be delayed by 2 weeks.

Diagnosis
Currently, diagnostic tests for COVID-19 include reverse transcription loop-mediated isothermal amplification (RT-LAMP), reverse-transcription polymerase chain reaction (RT-PCR), real-time RT-PCR (tRT-PCR) [29, 30]. As per CDC guidelines nasopharyngeal and oropharyngeal swab tests, have become a standard assessment for diagnosis of COVID-19 infection [31, 32]. The current laboratory test is time taking (approximately 24-hours), and a shortage of commercial kits delays diagnosis.

Another recently developed method for diagnosis of COVID-19 is rapid diagnostic test (RDT). The main benefit is availability of result within minutes. They are based on two types, firstly detects the presence of viral proteins (antigens) expressed by the COVID-19 virus and secondly based on host antibody detection [33].

List of Dental Emergency treatment by MHOFW
- Fast spreading infections of facial spaces/Ludwig Angina/Acute cellulitis of dental origin/Acute Trismus.
- Uncontrolled bleeding of dental origin.
- Severe uncontrolled dental pain, not responding to routine measures.
- Trauma involving the face or facial bones.
- Radiographs like PNS, OPG, CBCT in facial trauma and in medico-legal situations.

Table 1: COVID-19 screening questionnaire

Yes	No
COVID-19 Screening Questions	
Do you have any history of fever in last 14 days	
Do you travelled to any COVID-19 affected area	
In last 14 days, have you or your family member come in contact with any known COVID-19 infected patient	
Do you have symptoms Chills, Repeated shaking with chills, Muscle pain, Headache, Sore throat, New loss of taste or smell, difficulty in breathing in last 14 days	
Have you or your family member have history of exposure to COVID-19 infected material	

Table 2: Assessment of emergency questionnaire

Symptoms	Yes	No
Do you have pain	mild	severe
Severity of pain	mild	moderate
When did pain start	days	
Do you have dental swelling	yes	no
If yes, when notice first notice the swelling	days	

Table 3: Treatment Protocol

![Treatment Protocol Diagram](image-url)
General Suggestions for dental set up in COVID pandemic

- Prior appointment is necessary and only one patient attendant is allowed, to avoid unnecessary crowd in waiting area.
- Install physical barriers (e.g., glass or plastic windows) at reception areas to limit close contact with potentially infectious patients [35].
- Post visual alerts icon (e.g., signs, posters) at the entrance and in strategic places (e.g., waiting areas, elevators, break rooms) to provide instructions (in appropriate languages) about hand hygiene and respiratory hygiene and cough etiquette. Instructions should include wearing a cloth face covering or facemask for source control, and how and when to perform hand hygiene [35].
- Provide supplies for respiratory hygiene and cough etiquette, including alcohol-based hand rub (ABHR) with at least 60% alcohol, tissues, and no-touch receptacles for disposal, at healthcare facility entrances, waiting rooms, and patient check-ins [35].
- Install physical barriers (e.g., glass or plastic windows) at reception areas to limit close contact between triage personnel and potentially infectious patients [35].
- Remove toys, magazines, and other frequently touched objects from waiting room that cannot be regularly cleaned and disinfected [35].
- Ensure that everyone has donned their own cloth face covering, or provide a facemask if supplies are adequate [35].
- Have patients rinse with a 1% hydrogen peroxide solution before each appointment.

Autoclave hand-pieces after each patient [36]

- Individuals with suspected COVID-19 infection should be seated in a separate and well-ventilated waiting area at least 6 ft from unaffected patients seeking care. Patients should be requested to wear a surgical mask and follow proper respiratory hygiene, such as covering the mouth and nose with a tissue before coughing and sneezing and then discarding the tissue [36].
- Use personal protective equipment (PPE) appropriately, including a fit-tested NIOSH-approved N95 or higher level respirator for healthcare personnel [37].
- Perform proper hand hygiene. When hands are visibly soiled or After barehanded touching of instruments, equipment, materials, and other objects likely to be contaminated by blood, saliva, or respiratory secretions. Use soap and water for atleast 20 seconds, when hands are visibly soiled (e.g., blood, body fluids); otherwise an alcohol-based hand rub (with atleast 70% alcohol)may be used [38, 41].
- Limit transport and movement of patients outside of the room to medically-necessary purposes. If transport or movement outside of the room is necessary, instruct patient to wear a mask [36].
- Dental clinic must have 1 attached room for doffing of personal protective equipments (PPE) [39].
- Prioritize cleaning and disinfection of the rooms of patients on contact precautions ensuring rooms are frequently cleaned and disinfected (e.g., at least daily or prior to use by another patient if outpatient setting) focusing on frequently-touched surfaces and equipment in the immediate vicinity of the patient. Public areas and appliances should also be frequently cleaned and disinfected, including door handles, chairs, and desks. (Mopped with a disinfectant with 1% sodium hypochlorite or phenolic disinfectants but its main disadvantage is irritant to skin and eyes and its unpleasant odour. Hydrogen peroxide can be used as alternative to sodium hypochlorite) [46, 41].
- Ensure appropriate patient placement in an airborne infection isolation room (AIIR) constructed according to the Guideline for Isolation Precautions. In settings where Airborne Precautions cannot be implemented due to limited engineering resources, masking the patient and placing the patient in a private room with the door closed will reduce the likelihood of airborne transmission until the patient is either transferred to a facility with an AIIR or returned home [42].
- To disinfect air and environmental surfaces in dental setup, fumigation can be an alternate method. Chemicals used in fumigation are formaldehyde, phenol based agents or quaternary ammonium compounds. As per CDC, fumigation is not recommended in daily routine basis [42].
- In India, Ministry MOHFW outlined guidelines for treating Non COVID 19 patients. This includes mandatory to use N-95 mask, Goggles, Latex examination gloves. Face shield is optional and used only when a splash of body fluid is expected [43].

Treatment considerations

- Perform only emergency treatment during this pandemic. Reschedule all elective procedures [44].
- To avoid excess salivation and gag reflex intraoral radiographs must be restricted and extra oral radiographs should be utilized. If intraoral radiographs are mandated, sensors should be double insulated to avoid perforation and cross contamination [45].
- Aerosol generation must be avoided by using high-volume evacuator’s (HVE) large diameter (> 8 mm), which allows removal of high volumes of air in a short time, which reduces the amount of bioaerosols by up to 90% [46].
- Preprocedural mouth rinse: Previous studies conducted on SARS Cov and MERS states that they are susceptible to 0.2% povidone mouth rinse or alternative method would be to use 0.5-1% hydrogen peroxide mouth rinse, as it has non specific virucidal activity against coronaviruses therefore pre procedural rinse with 0.2% povidine iodine or hydrogen peroxide mouthwash for 15 sec, may reduce viral load in saliva [47, 48].
- Use of disposable and single use instruments and devices, this may help in reduction of cross infection risk. If use of disposable instruments is not possible then proper sterilization should be done. For sterilization of dental instruments both chemical method and physical method can be used. In chemical sterilization use of phenols, halogens, aldehydes. In physical method use of dry heat and moist heat is recommended. Moist heat in the form of saturated steam under pressure is the most widely used and the most dependable. The two common steam-sterilizing temperatures are 121°C (250°F) and 132°C (270°F) [49].
- Use of Rubber Dam must be mandatory, as reduce spread of microorganisms, saliva- and blood-contaminated aerosol or spatter [50]. It is documented in literature that use of rubber dam could significantly reduce airborne particles in ~3-foot diameter of the operational field by...
The dental treatment must be as minimally invasive as possible. If not possible in cases such as root canal treatment and dental restoration and extraction of symptomatic teeth, procedure should be carried out after wearing personal protective equipment.

For pain management, Ibuprofen should be avoided in suspected and confirmed COVID-19 cases.

For disinfection of air and environmental surfaces in dental setup, fumigation can be method. Chemicals used in fumigation are formaldehyde, phenol based agents or quaternary ammonium compounds.

For protection of shoes in infected environment, boot covers should be used. All areas of foot should be covered and boot or shoe covers are snug over your ankle and calf. Try to avoid touching floor or other areas with your hands while putting shoe covers. If your hands contaminated while wearing shoe cover, immediately wash your hand with soap or hand sanitizer.

Sequence of putting on PERSONAL PROTECTIVE EQUIPMENT (PPE)

1. **GOWN**
 - Cover fully torso from neck to knees, arms to end of wrist and wrap around the back
 - Fasten in back of neck and waist.

2. **MASK OR RESPIRATOR**
 - Fit flexible band to nose bridge
 - Fit snug to face and below chin
 - Fit-check respirator
 - Fix ties or elastic bands at middle of head and neck

3. **GOGGLES OR FACE SHIELD**
 - Place over face and eyes and adjust to fit

4. **GLOVES**
 - Extend to cover wrist of isolation gown

HOW TO SAFELY REMOVE PERSONAL PROTECTIVE EQUIPMENT (PPE)

1. **GLOVES**
 - Outer side of gloves are contaminated
 - Immediately wash your hand or use alcohol based sanitizer, if your hands gets contaminated during removal of gloves
 - Using a gloved hand, grasp the palm area of the other gloved hand and peel off first glove
 - Removed glove should hold in gloved hand
 - Slide fingers of ungloved hand under remaining glove at wrist and peel off second glove over first glove
 - Discard gloves in a waste container

2. **GOGGLES OR FACE SHIELD**
 - Outer side of goggles or face shield are contaminated
 - Immediately wash your hand or use alcohol based sanitizer, if your hands gets contaminated during removal of google and face shield
 - Remove goggles or face shield from the back by lifting head band or ear pieces

3. **GOWN**
 - Front and sleeves of gown are contaminated
 - Immediately wash your hand or use alcohol based sanitizer, if your hands gets contaminated during removal of gown
 - Unfasten gown ties, taking care that sleeves don’t contract your body when reaching for ties
 - Touch inner side of gown, pull gown away from neck and shoulders
 - Turn gown inside out
 - Roll into a bundle and discard in a waste container

4. **MASK OR RESPIRATOR**
 - Outer side or front of mask/respirator is contaminated. Avoid touching outer surface of mask
 - Immediately wash your hand or use alcohol based sanitizer, if your hands gets contaminated during removal of mask
 - Grasp bottom ties or elastics of the mask/respirator, then the ones at the top, and remove without touching the front
 - Discard in a waste container

5. **WASH HANDS OR USE AN ALCOHOL-BASED HAND SANITIZER IMMEDIATELY AFTER REMOVING ALL PPE**
 - Wash your hand with soap for atleast 20 seconds
 - Hand sanitizer must be contain atleast 70% alcohol
 - While washing hands avoid touching of water tap knobs

Fig 2: Sequence of putting on PERSONAL PROTECTIVE EQUIPMENT (PPE) (as per CDC guidelines)

Fig 3: How to Safely Remove Personal Protective Equipment (PPE) (as per CDC guidelines)
Discussion
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) is a highly contagious infection with an outbreak in China in December 2019. Till now, this virus has spread to 215 countries all over the globe with 22,292673 infected patients. With an exponential increase in infected patients day by day, there are high chances that dentists may encounter, this subset of the patient population. This review article has written with aim of general guidelines relaxation of restrictions for the dentist, while treating patients during COVID-19 pandemic. As outlined in this review, extra precautions are necessary that include careful prescreening of patients and protocols are mandatory to be taken in the treatment of patients with confirmed COVID-19 patients. The lack of awareness can also increase the COVID-19 spread through dental health care setup. Standard or Universal precautions are important to minimize the spread of this virus. CDC recommended Universal precautions include Hand hygiene, Use of personal protective equipment (e.g., gloves, masks, eye wear), Respiratory hygiene/cough etiquette, Sharps safety (engineering and work practice controls), Safe injection practices (i.e., aseptic technique for parenteral medications), Sterile instruments and devices, Clean and disinfected environmental surfaces. However in this COVID 19 pandemic following universal precautions may not be sufficient. So Transmission based precautions are mandatory to be taken to limit the spread of this virus then precautions include contact precautions, droplet precautions, airborne precautions. Droplet precautions mainly includes source control by provide mask to suspected patients. Ensure appropriate patient placement in a single room if possible. Use personal protective equipment (PPE) appropriately. Limit transport and movement of patients outside of the room to medically-necessary purposes. Air borne precautions includes source control, ensure appropriate patient placement in an airborne infection isolation room (AIIR), use of PPE and restrict susceptible healthcare personnel from entering the room of suspected patients. Contact precautions includes use disposable or dedicated patient-care equipment, cleaning and disinfection of the rooms of patients on contact precautions ensuring rooms are frequently cleaned and disinfected and use of PPE [55].

If a patient requires dental treatment, initial screening on the telephone is mandatory. In the initial screening, patient's complete information regarding travel history, epidemiological link, and signs and symptoms is collected. If, none of these are present, we can treat patient. If travel history and signs of COVID 19 are present, first local health officials should be informed about the patient. For suspected patients, elective procedures should be delayed by 2 weeks. If patients complain of swelling and pain, prescribe antibiotics, and analgesics on the telephone. Even then if suspected patient needs emergency treatment to be performed, it should be taken in a negative pressure room. Negative pressure is produced and maintained by a ventilation system which removes more air from the room. Air is not allowed in the room except gap under the door. Except this gap, the room should be as airtight as possible, allowing no air in through cracks and gaps, such as those around windows, light fixtures and electrical outlets. Leakage from these sources can reduce room negative pressure [56]. Use of personal protective equipment acts like a shield for dental professionals from being infected by COVID 19. CDC recommended proper method for wearing PPE is shown in Fig: 2. CDC, also suggested the proper method for removal of PPE (Fig 3) guidelines for putting on and removing personal protective equipment. One of the reason due to which dentists are on high risk for exposure of COVID-19 is production of aerosols in dental procedure. Therefore there is a need reduction in the production of aerosols. Aerosol production can be reduced by using high-volume evacuator’s. Also pre procedural rinse with povidone iodine and hydrogen peroxide decrease load of virus in saliva.

Regular Sanitization is key for fighting with COVID-19, so dental clinics should take effective and strict disinfection measures in both clinic settings and public area. Dental instrument should be autoclaved properly. Public areas and appliances should also be frequently cleaned and disinfected, including door handles, chairs, and desks. Dental health professionals should avoid large gatherings of the patient and their attendants in the waiting area. The dentist tries to convince the patient to arrive on time for dental treatment. Social distancing must be maintained in the waiting area.

Conclusion
In conclusion, dental health care professional have duty to protect their clinic and maintain standards of infection control. With time SARS-CoV-2 threat could become more common infection in the worldwide population. This is predicted to persist in our population as a less virulent infection with milder symptoms, if it follows the same pattern of the other coronavirus infections (ie, SARS-CoV and MERS-CoV) [57]. This is important to take proper clinical decisions. Dentists must take care in surgeries and waiting area and lots to prevent infection and cross infection between patient and public to prevent panic while promoting the health and well-being of our patients during these challenging times. The guidelines developed in article are general guidelines and the final decision always rests with the practitioner’s judgment.

Reference
1. Udagama B, Kadhiresan P, Kozlowski HN et al. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano 2020;14(4):3822-3835. doi:10.1021/acsnano.0c02624
2. Chen F, Cao S, Xin J, Luo X. Ten years after SARS: where was the virus from?. J Thorac Dis. 2013;5 Suppl 2(Suppl2):S163-S167. doi:10.3978/j.issn.2072-1439.2013.06.09
3. Al-Osail AM, Al-Wazzah MJ. The history and epidemiology of Middle East respiratory syndrome corona virus. Multidiscip Respir Med 12, 20, 2017.
4. Leung Kathy et al. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment. The Lancet. DOI: https://doi.org/10.1016/S0140-6736(20)30746-7
5. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200504-covid-19-sitrep-105.pdf?sfvrsn=4cdda8af_2
6. https://www.mohfw.gov.in
7. https://www.who.int/news-room/q-a-detail/q-a-similarities-and-differences-covid-19-and-influenza
8. WHO, 2020a. WHO Virtual press conference on COVID-19 [WWW Document]. World Health Organization https://www.who.int/docs/default-source/coronaviruse/transcripts/who-audio-emergencies-
coronavirus-press-conference-full-and-final-1mar2020.pdf
9. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
10. https://www.reuters.com/article/us-china-health-incubation/coronavirus-incubation-could-be-as-long-as-27-days-chinese-provincial-government-says-idUSKC2N0G06W
11. Dr. Daniel J Bell, Dr. Henry Knipe et al. COVID-19.Radiopaedia
12. https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations
13. Lu CW, Liu XF, Jia ZF. 2019-nCoV transmission through the ocular surface must not be ignored. The Lancet https://doi.org/10.1016/S0140-6736(20)30313-5 2020.
14. World Health Organization. Infection prevention and control of epidemic- and pandemic-prone acute respiratory infections in health care. Geneva: World Health Organization; 2014 Available from: https://apps.who.int/iris/bitstream/handle/10665/112656/9789241507134_eng.pdf?sequence=1
15. Ang Chao, Ma Qiuian, Zheng Yuhong, etc. New Coronavirus Transmission Pathway [J]. Chinese Journal of Preventive Medicine 2020;54(04):374-377. DOI: 10.3760 / cma.j.cn112150-20200216-0016
16. Ong SW, Tan YK, Chia PY, Lee TH, Ng OT, Wong MS et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 2020, Mar 4.
17. Belser JA, Rota PA, Tumpey TM. Ocular tropism of respiratory viruses. Microbiol. Mol. Biol. Rev 2013;77:144-156.
18. Rothe C et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med. https://doi.org/10.1056/NEJMc2001468, 2020.
19. Kähler, Christian, Hain, Rainer. Flow analyses to validate SARS-CoV-2 protective masks About distance rules, mouth-nose protection, particle filtering respiratory protection, filter materials and mask manufacturing 2020.
20. Ferioli M, Cistermino C, Leo V et al. Protecting healthcare workers from SARS-CoV-2 infection: practical indications. Eur Respir Rev 2020;29:200068
21. Zhang Y, Chen C, Zhu S et al. [Isolation of 2019-nCoV from a stool specimen of a laboratory-confirmed case of the coronavirus disease 2019 (COVID-19)]. China CDC Weekly.
22. https://www.weforum.org/agenda/2020/03/this-is-how-long-coronavirus-lives-on-surfaces/
23. Xu Ruoshi et al. Saliva: potential diagnostic value and transmission of 2019-nCoV. International Journal of Oral Science 2020;12:11
24. Liu L et al. Epithelial cells lining salivary gland ducts are early target cells of severe acute respiratory syndrome coronavirus infection in the upper respiratory tracts of rhesus macaques. J Virol 85, 4025-4030
25. Wei J, Li Y. Airborne spread of infectious agents in the indoor environment. Am. J Infect Control 2016;44:S102-S108.
26. Cleveland JL et al. Transmission of blood-borne pathogens in US dental health care settings: 2016 update. J. Am. Dent. Assoc. (1939) 2016;147:729-738
27. Peng et al. Transmission routes of 2019-nCoV and controls in dental practice. International Journal of Oral Science
28. Peng X, Xu X Liy et al. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Science. 2020;12:9
29. Bhadra S, Jiang YS, Kumar MR, Johnson RF, Hensley LE, Ellington AD. Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV) PLoS One. 2015, 10.
30. Chan JF, Choi G, Tsang AK, Tee KM, Lam HY, Yip CC. Development and evaluation of novel real-time reverse transcription-PCR Assays with locked nucleic acid probes targeting leader sequences of human-pathogenic Coronaviruses. J Clin Microbiol 2015;53:2722-2726.
31. https://www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specimens.html
32. Chu DKW, Pan Y, Cheng SMS, Hui KPY, Krishnan P, Liu Y. Molecular diagnosis of a novel Coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem, 2020
33. WHO. Advice on the use of point-of-care immunodiagnostic tests for COVID-19. https://www.who.int/news-room/commentaries/detail/advice-on-the-use-of-point-of-care-immunodiagnostic-tests-for-covid-19
34. Ather Amber et al. Coronavirus Disease 19 (COVID-19): Implications for Clinical Dental Care. American Association of Endodontists.
35. https://www.cdc.gov/coronavirus/2019-ncov/hcp/dental-settings.html
36. Centers for Disease Control and Prevention. Infection control: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
37. Kim H, Baek JE, Seo HK et al. Assessing real-time performances of N95 respirators for health care workers by simulated workplace protection factors. Ind Health. 2015;53(6):553-561. doi:10.2486/indhealth.2014-0259
38. https://www.cdc.gov/coronavirus/2019-ncov/hcp/hand-hygiene.html
39. Abhay Datarkar, Subodh Purohit et al. Operating Room Protocols in OFMS During Corona virus (Covid-19) Pandemic J Maxillofac. Oral Surg 2020;19(3):327-331
40. https://www.mohfw.gov.in/pdf/Guidelinesondisposablemedicalinstruments.pdf
41. Lineback CB, Nkemnong CA, Wu ST et al. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrob Resist Infect Control 2018;7:154 https://doi.org/10.1186/s13756-018-0447-5
42. https://www.cdc.gov/infectioncontrol/guidelines/norovirus/index.html
43. https://www.mohfw.gov.in/pdf/AdditionalguidelinesonrationaluseofPersonalProtectiveEquipmentsettingapproachforHealthfunctionariesworkinginCOVIDAreadas.pdf
44. https://www.ida.org.in/pdf/IDA_Recommendations_for_Dental_Professionals_on_the_Coronavirus_Threat.pdf
45. Hokett SD et al. Assessing the effectiveness of direct digital radiography barrier sheaths and finger cots. J Am Dent Assoc 2000;131:463-7
46. Hallier C, Williams DW, Potts AJC, Lewis MAO. A pilot study of bioaerosol reduction using an air cleaning
system during dental procedures. Br Dent J 2010;209(8):E14.

47. Eggers M, Koburger-Janssen T, Eickmann M, Zorn J. In vitro bactericidal and virucidal efficacy of povidone-iodine gargle/mouthwash against respiratory and oral tract pathogens. Infect. Dis. Ther. 2018;7:249-259

48. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and its inactivation with biocidal agents. J Hosp Infect 2020;104:246-51.

49. https://www.cdc.gov/infectioncontrol/guidelines/disinfection/sterilization/steam.html

50. Cochran MA, Miller CH, Sheldrake MA. The efficacy of the rubber dam as a barrier to the spread of microorganisms during dental treatment. J Am Dent Assoc 1989;119:141-144

51. Samaranayake LP, Reid J, Evans D. The efficacy of rubber dam isolation in reducing atmospheric bacterial contamination. ASDC J Dent Child 56, 442-444.

52. http://www.ifeaendo.org/wp-content/uploads/2020/04/IFEA_IES_Endodontic-and-Dental-Practice-during-COVID-19_FINAL.pdf

53. Day M. Covid-19: ibuprofen should not be used for managing symptoms, say doctors and scientists. BMJ 368, m1086 2020.

54. https://www.cdc.gov/vhf/ebola/hcp/ppe-training/paprespirator_coveralls/donning_06.html

55. https://www.cdc.gov/infectioncontrol/basics/transmission-based-precautions.html

56. http://www.filterair.info/articles/article.cfm/ArticleID/BC9AA829-30F8-4406-8FEE4A1E17574D6B/Page/1

57. Ceccarelli M, Berretta M. et al. Differences and similarities between Severe Acute Respiratory Syndrome (SARS)-Corona Virus (CoV) and SARS-CoV-2. Would a rose by another name smell as sweet? Eur Rev Med Pharmacol Sci