Identification of the tetrad-sterility-causing *Solanum stoloniferum* Schltdl. & Bouché cytoplasm in interspecific hybrids with *S. tuberosum* L.

Rena Sanetomo · Akito Nashiki

Received: 9 February 2021 / Accepted: 29 April 2021 / Published online: 27 May 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract

Tetrad sterility, in which only clumps of four premature pollen grains are released from anthers, has been observed in some modern potato cultivars. It is a form of cytoplasmic male sterility caused by the cytoplasm derived from the Mexican tetraploid species *Solanum stoloniferum* Schltdl. & Bouché, an important source of resistance to *Potato virus Y* in potato breeding. However, since *S. stoloniferum* is highly polymorphic, the source of tetrad-sterility-causing cytoplasm is unknown among diverse *S. stoloniferum* accessions. In this study, we directly crossed 24 *S. stoloniferum* accessions with pollen from 4x *S. tuberosum* and obtained 39 hybrids from 12 accessions. Nineteen hybrids from six accessions showed tetrad sterility, with either D/\(\gamma\)- or W/\(\gamma\)-type cytoplasm, and were triploid, tetraploid, or hexaploid. The W/\(\gamma\)-type cytoplasm was not necessarily associated with tetrad sterility. Sequence comparisons of 17 mitochondrial genes and their intergenic regions revealed a length polymorphism in the intergenic region between *rpl5* and *rps10*, in which an amplified band of 859 bp was associated with tetrad sterility. This specific cytoplasm causing tetrad sterility is named TSC\(_{sto}\). The 859-bp band will be a useful diagnostic marker for identifying TSC\(_{sto}\) in potato breeding.

Keywords

Cytoplasmic male sterility · Interspecific hybrid · Mitochondrial genome · *Solanum stoloniferum* · Tetrad sterility · Wild potato

Introduction

Cytoplasmic male sterility (CMS), resulting in the failure to produce normal pollen, is found in many higher plants, and it is thought to be caused by disruption of nuclear-cytoplasmic interactions (Hanson and Bentolia 2004). The mitochondrial genome is most likely involved as a cytoplasmic factor in this disruption, and through maternal inheritance, all progeny with the cytoplasm become male sterile. Several different types of male-sterility-causing cytoplasm have been identified in various crops and characterized at the molecular level (Schnable and Schnabel, 2000).
Wise 1998; Budar et al. 2003; Hanson and Bentolia 2004).

As the common potato (Solanum tuberosum L., 2n = 4x = 48) is propagated vegetatively and the edible parts are the tubers, the ability to produce pollen is not necessary for ensuring quality and productivity in commercial varieties. Indeed, many varieties cannot function as pollen parents because multiple nuclear genes interact with their cytoplasmic genome causing several different types of male sterility (Grun et al. 1977). However, since fertility is one of the most important traits for cross-breeding, male sterility is an unavoidable problem in potato breeding. Furthermore, in modern potato breeding, wild species have frequently been used to introduce useful traits such as resistance to pests and diseases into cultivars (Ross 1986; Plaisted and Hoopes 1989; Vos et al. 2015). With resistance breeding, however, the frequency of male-sterility-causing cytoplasm in the cultivated potato gene pool has increased, which has caused serious problems because available pollen parents are being gradually exhausted (Mihovilovich et al. 2015; Sanetomo and Gebhardt 2015).

In some modern potato cultivars, pollen development stops at the tetrad stage, and pollen is only released as clumps of four premature pollen grains (Brown 1984; Ortiz et al. 1993; Lössl et al. 2000). This is called “tetrad sterility” (T-CMS). T-CMS was first observed in interspecific hybrids between the Mexican wild species Solanum verrucosum Schultd. (2n = 2x = 24) and other diploid species such as Solanum chacoense Bitt. (2n = 2x = 24) (Buck 1960; Grun et al. 1962; Abdalla and Hermsen 1971, 1972). T-CMS is also known in all varieties possessing the extreme resistance gene to Potato virus Y (RYsto) (Song and Schwarzfischer 2008). The resistance gene was maternally derived from the Mexican wild tetraploid species Solanum stoloniferum Schltdl. & Bouché. (2n = 4x = 48) (Cockerham 1943).

The cytoplasmic genomes of over 700 cultivars and breeding clones were discriminated into six types, namely, A, D, P, M, T, and W, using polymerase chain reaction (PCR) markers (Hosaka and Sanetomo 2012). In addition, mitochondrial DNA types can be determined as the α, β or γ type using the PCR primer pair ALM_4/ALM_5 (Lössl et al. 2000). Based on these classification systems, all of the cultivars showing T-CMS have W/γ-type cytoplasm maternally descended from S. stoloniferum (Lössl et al. 2000; Song and Schwarzfischer 2008; Hosaka and Sanetomo 2012; Sanetomo and Gebhardt 2015; Gavrilenko et al. 2019). However, the W/γ-type cytoplasm was not only found in S. stoloniferum but also in many wild potato species which do not occur male sterility in interspecific hybrids with S. tuberosum (Hosaka and Sanetomo 2012).

S. stoloniferum is one of the most common, widespread, and morphologically polymorphic species of wild potatoes in North and Central America (Spooner et al. 2004). Within this species, four species (S. fendleri Asa Gray, S. papita Rydb., S. polytrichon Rydb., and S. stoloniferum) were previously recognized as separate species (Hawkes 1990). It is an allotetraploid species with a genome formula of AABB (Matsubayashi 1955; Irikura 1976; Pendinen et al. 2008), while S. tuberosum is an autotetraploid or a segmental allotetraploid (AAA′A′, Matsubayashi 1991). In addition, the endosperm balance number (EBN), which regulates interspecific cross compatibility (Johnston et al. 1980), is different between tetraploid cultivars (4EBN) and S. stoloniferum (2EBN), and it would theoretically be difficult to obtain interspecific hybrids through direct crosses. Interestingly, however, all cultivated varieties showing T-CMS were derived by direct crosses between S. stoloniferum as female parents and S. tuberosum as male parents (Song and Schwarzfischer 2008).

In this study, to identify the specific S. stoloniferum cytoplasm causing tetrad sterility, we crossed various accessions of S. stoloniferum with pollen from 4x S. tuberosum, and the obtained interspecific hybrids were characterized for tetrad sterility. We then sequenced 17 mitochondrial genes and their intergenic regions and found that an 859-bp band amplified from the intergenic region between rpl5 and rps10 was associated with tetrad sterility.

Materials and methods

Plant materials

Forty S. stoloniferum accessions were randomly chosen and used in this study (Table 1). One accession (PI 338617) has not been determined for the species name, but was used as S. stoloniferum because it is a tetraploid collected in Mexico. All seeds were obtained from the US Potato Genebank, Sturgeon
Bay, Wisconsin, USA. As male parents producing abundant fertile pollen, 4x cultivars and breeding clones of *S. tuberosum* (cv. Konafubuki, cv. Nagasaki Kogane, Saikai 35 and 10H17) were used for hybridizing. The clone DM 1–3 516 R44 (hereinafter, simply referred to as DM) was used to provide reference sequences (Potato Genome Sequencing Table 1: *Solanum stoloniferum* accessions used and their cytoplasm types

Species (Hawkes 1990)	Accessions	Cytoplasm type	859-bp band
S. fendleri	PI 251062	D/γ	−
	PI 275162	D/γ	−
	PI 283102	D/α	−
	PI 458418	D/γ	−
	PI 497994	D/γ	+
	PI 498000	D/γ	−
	PI 498238	W/γ	−
	PI 558395	D/γ	+
	PI 558484	D/γ	−
	PI 607843	D/γ	+
S. polytrichon	PI 184770	D/α	−
	PI 255547	D/γ	+
	PI 498038	D/γ	+
	PI 545780	W/γ	+
	PI 545788	D/γ	+
	PI 545789	D/γ	−
	PI 558446	W/γ	−
	PI 558447	D/γ	+
	PI 558449	W/γ	+
	PI 558450	D/γ	+
	PI 558451	D/γ	+
S. papita	PI 249929	W/γ	−
	PI 251740	D/γ	−
	PI 283101	W/γ	−
	PI 498027	D/α	−
	PI 498030	D/γ	+
	PI 498035	W/γ	+
	PI 545723	W/α	−
	PI 545726	D/γ	+
S. stoloniferum	PI 161178	W/γ	+
	PI 186544	W/α	−
	PI 186555	D/α	−
	PI 195167	W/α	−
	PI 275248	D/γ	+
	PI 283108	W/γ	+
	PI 310964	D/γ	+
	PI 338621	D/α	−
	PI 473534	D/α	−
	PI 558455	W/γ	+
Solanum spp.	PI 338617	D/α	−

*a*Presence (+) or absence (−) of the 859-bp band amplified using the primer pair rp15rps14outF/ALM 5
Consortium 2011). Cultivars Alwara and Serrana Inta were used as standard genotypes showing T-CMS.

Crossing

All plants were grown in a pollinator-free greenhouse. Day length (16 h) was controlled using supplementary lights. All crosses were made in an ordinary manner; anthers and petals were removed from flower buds one or two days prior to opening, and freshly collected pollen was applied immediately to the stigmas. Berries were collected one month after pollination. After another month of maturation, berries were opened using a knife, and only plump seeds were collected, dried and stored at 4 °C until use.

Raising seedlings

Seeds were soaked in 2,000 ppm gibberellic acid (GA₃) for 48 h, and rinsed with tap water, sown in a cell tray filled with potting soil, and covered with vermiculite. After the second leaves were well expanded (usually 3 weeks after seed sowing), the young seedlings were transplanted to black vinyl pots (10.5 cm diameter) and then into 15-cm-diameter or 21-cm-diameter pots for further growth. The greenhouse temperature was kept above 15 °C in winter, and in summer, the windows were opened to allow natural circulation.

Ploidy test and pollen viability

The ploidy level was determined by flow cytometry (CyFlow Ploidy Analyzer, Sysmex Corporation, Kobe, Japan). Approximately 1 cm² of fresh leaf was used for DAPI fluorescence staining according to the manufacturer’s instructions. For pollen viability analysis, pollen stainability with acetocarmine was used, although the stained pollen is not necessarily viable. Fresh pollen was collected at least twice in different flowering periods and stained with 1% acetocarmine. Over 300 pollen grains in each sample were counted under the microscope. The stainability percentage was calculated as 100 × (the number of stained pollen grains/the total number of pollen grains).

Hybridity test and determination of cytoplasm type

A hybridity test was carried out using a combination of different marker systems: 11 RAPD markers (Hosaka and Hanneman 1994), two simple sequence repeat markers (STM3012 and STI50) (Milbourne et al. 1998; Feingold et al. 2005), and a multiplex PCR marker for resistance genes (Mori et al. 2011). The cytoplasm type (A, D, P, M, T, or W) was determined using the procedure described by Hosaka and Sanetomo (2012). Mitochondrial DNA type (α, β, or γ) was determined using the primer pair ALM_4/ALM_5 (Lössl et al. 1999).

Detection of mitochondrial polymorphism and sequencing

Based on the reference sequence of the mitochondrial genome in DM (S_tuberosum_Group_Phureja_mitochondrion_DM1-3–516-R44, Ver. 3), 51 primers were designed as mitochondrial gene-specific PCR primers. Two primers, ALM_1 and ALM_5 (Lössl et al. 1999), were used to amplify the intergenic regions around atp6 and rps10, respectively. In addition, the Cob_shoRoutF and rp15rps14outF primers were newly designed with reference to a potato mitochondrial sequence including rpl5, rps14, and cob (GenBank ID: AF095274.1). A total of 28 primer sets amplifying 17 mitochondrial genes (atp1, atp4, atp6, atp9, atp8, cob, cox1, cox2, cox3, nad1b, nad1e, nad3, nad4, nad6, rpl5, rps10, and 18S rRNA), four intergenic regions, and one intragenic (intron) region were used (Supplementary Table 1). Amplification was carried out in a volume of 10 µl containing 2 µl of total DNA (5 ng/µl), 5 µl of 2 × Ampdirect® Plus (Shimadzu, Japan), 0.25 U of heat-activated Taq DNA polymerase (BIOTAQ™ HS DNA Polymerase, Bioline Ltd., UK), and 0.3 µM forward and reverse primers. The thermal profile was as follows: 95 °C for 10 min, followed by 35 cycles at 95°C for 30 s, 60 °C for 1 min, and 72 °C for 1 min, and a final extension of 72 °C for 5 min. To amplify with primer pairs Cob_shoRoutF/ALM_5 and rp15rps14outF/ALM_5, the thermal profile was as follows: 95 °C for 10 min, followed by an initial cycle of 94 °C for 30 s, 65 °C for 30 s, and 72 °C for 1 min; a reduction in the annealing temperature by 1 °C during each cycle for the next five cycles; then, the annealing temperature at 60 °C for the remaining 25 cycles; and a final extension at 72 °C for
5 min. The amplification products were electrophoresed on a 2% agarose gel with 1 × TAE buffer. If single bands were obtained from all samples, the PCR products were Sanger-sequenced by a commercial provider (Takara Bio Inc., Kusatsu, Japan). Sequences were compared with reference sequences of DM using Lasergene SeqMan Pro 13 software (DNASTAR Inc., Madison, Wisconsin, USA).

Results

Cytoplasm types in S. stoloniferum

To determine cytoplasmic diversity in *S. stoloniferum*, 40 accessions were analyzed, which revealed seven D/a-, 20 D/c-, three W/a-, and 10 W/c-type accessions (Table 1).

Interspecific hybrids from crosses of *S. stoloniferum* and 4x *S. tuberosum*

A total of 4,839 pollinations were performed between 24 accessions of *S. stoloniferum* covering four

![Fig. 1 Hybridity test using molecular markers: a SSR primer STM3012, b RAPD marker (5'-GTCCCGTGGT-3'), c multiplex PCR marker for resistance genes (Mori et al. 2011). Interspecific hybrids are shown by their hybrid identity number given in Table 2. A, progeny from PI 497994 × 10H17; B, progeny from PI 498038 × 10H17; C, progeny from PI 249929 × Konafubuki; D, progeny from PI 558450 × 10H17. DNA ladder markers in the first lane](#)

Table 2. A, progeny from PI 497994 × 10H17; B, progeny from PI 498038 × 10H17; C, progeny from PI 249929 × Konafubuki; D, progeny from PI 558450 × 10H17. DNA ladder markers in the first lane
Table 2 Characterization of interspecific hybrids between *S. stoloniferum* and *S. tuberosum*

Hybrid identity	Female	Male	Clonal identity	Cytoplasm type	Ploidy	Pollen stainability (%)	T-CMS observed^a	859-bp band^b
1	PI	10H17	17H129	D/α	nd	41.0		
2	PI	Konafubuki	17H130	D/α	6x	91.7		
3	PI	Saikai 35	10H6-1	D/α	6x	2.9		
4		10H6-5	D/α	6x	64.3			
5		10H6-6	D/α	4x	52.7			
6		10H17	17H131	D/α	6x	66.4		
7	PI	10H17	15H156	D/γ	4x	0.0	T-CMS (unstable)	
8	PI	10H17	19H71-2	D/γ	3x	0.0	T-CMS	
9		19H71-5	D/γ	nd	nf			
10		19H72-1	D/γ	3x	0.0	T-CMS		
11		19H72-2	D/γ	3x	3.8			
12		19H72-4	D/γ	3x	nf			
13		19H73-1	D/γ	3x	12.7			
14		19H73-2	D/γ	3x	0.0	T-CMS		
15		19H73-3	D/γ	3x	0.0	T-CMS (unstable)		
16		19H74-1	D/γ	3x	16.6			
17		19H74-2	D/γ	3x	0.0			
18		19H74-3	D/γ	3x	0.9			
19	PI	Konafubuki	17H125-1	D/γ	nd	59.3		
20	PI	10H17	19H81-2	D/γ	4x	< 0.3^c	T-CMS (mixed)	
21	PI	10H17	17H120-1	D/γ	6x	0.0	T-CMS	
22		17H120-2	D/γ	6x	0.0	T-CMS		
23		17H120-3	D/γ	nd	0.0	T-CMS		
24		17H120-4	D/γ	6x	0.0	T-CMS		
25		17H120-5	D/γ	6x	0.0	T-CMS (unstable)		
26		17H120-6	D/γ	nd	0.0	T-CMS		
27	PI	Konafubuki	17H121	D/γ	nd	0.0	T-CMS	
28	PI	10H17	15H150-1	W/γ	6x	86.8		
29	PI	Konafubuki	17H117-1	W/γ	nd	83.4		
30		17H117-9	W/γ	6x	77.5			
31		17H118-3	W/γ	6x	73.9			
32		17H118-4	W/γ	nd	78.7			
cytoplasm types and pollen of *S. tuberosum* (Supplementary Table 2). Although 2,008 berries were formed, most of them were seedless or contained only aborted seeds. A total of 466 seeds were obtained from 35 cross combinations, with a range from one to 151 seeds per cross combination. Plants were grown from these seeds. However, most of the plants looked similar to the parent *S. stoloniferum*, possibly due to contamination by naturally selfed seeds. Plants with hybrid-like morphology were tested using molecular markers (Fig. 1), which confirmed the hybridity of 39 plants from 12 accessions of *S. stoloniferum*. The overall percentage of hybrids obtained per pollination was only 0.08%.

Characterization of interspecific hybrids between *S. stoloniferum* and *S. tuberosum*

Thirty-nine interspecific hybrids of *S. stoloniferum* and *S. tuberosum* were characterized for ploidy levels and pollen stainability (Table 2). Eight hybrids were not available for ploidy determination. Of the remaining 31 hybrids, 11 were hexaploids, eight were tetraploids, and 12 were triploids. Within the same cross combination, plants with different ploidy levels were identified: two hexaploids and one tetraploid from the cross PI 473534 × Saikai 35 (hybrids 3–5) and two triploids and three tetraploids from the cross PI 498035 × 10H17 (hybrids 33–37). Pollen shape and stainability were observed for 37 hybrids because two hybrids did not flower. Eleven hybrids derived from six accessions of *S. stoloniferum* produced normally stained pollen with more than 41% stainability (Fig. 2a). These hybrids had the D/D, D/c, and W/c cytoplasm types. Among the 26 remaining hybrids, tetrad pollen was observed in 20 hybrids that were derived from six accessions of *S. stoloniferum* (PI 255547, PI 497994, PI 498035, PI 498038, PI 558449, and PI 558450) (Fig. 2b), and their cytoplasm types were either D/c or W/c. These hybrids produced mostly unstained tetrad pollen. Tetrad pollen containing a single stained pollen grain (“partial” in Table 2) was also observed in hybrid 36 (Fig. 2c), and a mixture of unstained tetrad and unstained independent pollen (“mixed”) was observed in hybrids 20, 33 and 35 (Fig. 2d). In hybrids 7, 15, 25 and 34, each pollen grain was independent and unstained in the early flowering stage, but then these plants showed T-CMS at a later developmental stage or in a different season (“unstable”, Fig. 2e, f).

Plants producing normally stained pollen were either hexaploids or tetraploids (Table 2). Among

Table 2 continued

Hybrid identity	Female	Male	Clonal identity	Cytoplasm type	Ploidy	Pollen stainability (%)	T-CMS observeda	859-bp bandb
33	PI 498035	10H17	19H75-1	W/γ	3x	0.0	T-CMS (mixed)	+
34	19H75-2	W/γ	4x	0.0	T-CMS (unstable)	+		
35	19H76-1	W/γ	4x	< 19.4	T-CMS (mixed)	+		
36	19H76-2	W/γ	4x	0.0	T-CMS (partial)	+		
37	PI 498035	Konafubuki	19H76-3	W/γ	3x	0.0	T-CMS	+
38	PI 498035	Konafubuki	19H77	W/γ	4x	0.0	T-CMS	+
39	PI 558449	Konafubuki	19H69	W/γ	4x	0.0	T-CMS	+

nd not determined, *nf* not flowered

aRegarding tetrad sterility (T-CMS), one of the pollen grains in the tetrad was stained (partial), tetrad pollen and unstained independent pollen were mixed (mixed), or tetrad pollen and unstained independent pollen varied over time (unstable)

bPresence (+) or absence (−) of the 859-bp band amplified using the primer pair rp15rps14outF/ALM 5

cTetrad pollen was erroneously counted as one unstained pollen grain; thus, pollen stainability was lower than this percentage.
hybrids showing T-CMS, six were triploids, seven were tetraploids, and four were hexaploids. Ten hybrids with the same cytoplasm derived from PI 497994 (hybrids 8–18) were all triploids and exhibited abnormal growth characteristics, such as thin and weak stems, creeping growth or no flowering. Of these hybrids four showed T-CMS and the others showed lower than 17% stainability. Seven hybrids with the same cytoplasm derived from PI 558450 (hybrids 21–27) were all hexaploids (three of them were undetermined), and all of them exhibited T-CMS.

Mitochondrial genome polymorphism

To detect polymorphisms in the mitochondrial genome of *S. stoloniferum*, 15 accessions of *S. stoloniferum* (two D/α-, six D/γ-, two W/α-, and five W/γ-type accessions), together with the T-CMS variety Alwara, were subjected to PCR amplification using 28 primer pairs designed for 17 mitochondrial genes and their intergenic regions (Supplementary Table 1). All the primer pairs except Cob_shoRoutF/ALM_5 and rp15rps14outF/ALM_5 amplified single bands in all samples. These amplified products were Sanger-sequenced and compared with the reference sequence of DM. A total of 14 polymorphisms were detected in nine genes (Table 3), of which 11 polymorphisms were those between DM and the others (Table 4). The *S. stoloniferum* accessions were distinguished into four types by three polymorphisms. PI 498027 was the most different from the others in terms of *atp6* and *atp1*. Alwara was similar to three of the 15 *S. stoloniferum* accessions and different from DM for most polymorphisms.

Using the Cob_shoRoutF/ALM_5 primer pair, which was designed to amplify the intergenic region between *cob* and *rps10*, we detected multiple bands across the 16 samples (Fig. 3a). Alwara lacked a major band of approximately 1,650 bp that was observed in all other *S. stoloniferum* accessions. Instead, a single band of approximately 850 bp was detected in Alwara and shared with most other accessions. However, in PI 558455, the 850-bp band was faint, and there was an extra band of approximately 700 bp.

Using the rp15rps14outF/ALM_5 primer pair, which was designed to amplify the intergenic region between *rpl5* and *rps10*, we identified a band of approximately 860 bp in seven accessions of *S. stoloniferum* and Alwara (Fig. 3b). In addition, a larger band of approximately 4 kbp was found in three accessions. The 860-bp band was sequenced, which revealed that all eight samples had similar sequences of 859 bp (Supplementary sequencing data).

The relationships between mitochondrial genome polymorphisms and T-CMS

The mitochondrial genome polymorphisms identified in this study were investigated in terms of T-CMS. All except for the 859-bp band amplified by the rp15rps14outF/ALM_5 primer pair were uncorrelated with
T-CMS. The 859-bp band was detected in 27 interspecific hybrids derived from four D/c- and two W/c-type S. stoloniferum accessions (Table 2, Fig. 4). All the hybrids showing T-CMS had the 859-bp band. In contrast, T-CMS was not observed in any of the hybrids lacking the 859-bp band. The 859-bp band was observed in two T-CMS cultivars, Alwara and Serrana Inta, but not in Early Rose (T-type cytoplasm), Tunika (D-type cytoplasm), DM (P-type cytoplasm), or PW-363 (male-fertile clone with a S. stoloniferum-derived resistance gene to Potato virus Y; Flis et al. 2005).

Geographical distribution

All the 40 accessions of S. stoloniferum were analyzed using the primer pair rp15rps14outF/ALM 5. The 859-bp band was amplified from 13 D/c-type and six W/c-type accessions of S. stoloniferum (Table 1). Collection sites of these S. stoloniferum accessions were plotted on the map (Fig. 5). The accessions that caused T-CMS in the interspecific hybrids were shown with red dots in the map. Four cytoplasm types, the T-CMS-causing cytoplasm, or accessions amplifying the 859-bp band were not localized to a specific region, but spread widely across the distribution area.

Discussion

A specific S. stoloniferum cytoplasm type causes T-CMS

Since all cultivars and breeding clones showing T-CMS have been observed to contain only W/γ-type cytoplasm, this cytoplasm type was thought to cause T-CMS (Lössl et al. 2000; Yermishin et al. 2017; Gavrilenko et al. 2019). However, we showed for the first time that T-CMS was not necessarily associated with W/γ-type cytoplasm but with a specific cytoplasm with the γ-type mitochondrial genome of S. stoloniferum. We name this T-CMS-causing cytoplasm “TSCsto”, which actually induces T-CMS by interaction with the nuclear gene(s) of S. tuberosum.

Characterization of TSCsto

Although T-CMS is a stable trait among potato varieties, the interspecific hybrids of S. stoloniferum showed some range of variation in T-CMS, from completely unstained tetrad pollen to partially stained tetrad pollen and a mixture of sterile tetrad and sterile independent pollen. Gavrilenko et al. (2019) also reported such variation in Russian cultivars. In

Table 3 Polymorphisms detected in the mitochondrial genome

Gene	Primer (forward/reverse)	Amplified region in DM	Polymorphism	Polymorphism and its position*
nad3	nad3-F/nad3-R	Segment 31 (3796–4816 bp)	nad3	Deletion of T at overlap from 113 (exon)
nad4	nad4-exon2F/nad4-exon2R	Segment 18 (21,492–22,240 bp)	nad4	T → C at 37 (intron)
atp6	atp6-1F/atp6-1R	Segment 8 (3070–4086 bp)	atp6-a	T → G at 395 (exon)
			atp6-b	T/G overlap at 868 (exon)
			atp6-c	G → T at 1118 (intron)
atp1	atp1-F1/atp1-R1	Segment 29 (7449–8508 bp)	atp1-a	Insertion of TAAAA between 89 and 90 (intron)
atp1	atp1-F2/atp1-R2	Segment 29 (8285–9340 bp)	atp1-b	C → A at 713 (exon)
atp9	atp9-1F/atp9-1R	Segment 12 (4367–5300 bp)	atp9	T → C at 479 (intron)
cox3	cox3-F/cox3-R	Segment 24 (225–1299 bp)	cox3	Insertion of G between 177 and 178 (intron)
rps10	rps10F/cox1_R	Segment 11 (5934–7316 bp)	rps10-a	T → A at 226 (exon)
			rps10-b	C/T overlap at 1033 (intron)
			rps10-c	G → A at 1214 (intron)
cox1	cox1-F2/cox1-R2	Segment 11 (4877–6045 bp)	cox1	C → T at 271 (exon)
cox2	cox2-intronF/cox2-intronR	Segment 15 (29,539–30,515 bp)	cox2	Overlay from 497 (intron)

*Positions are indicated in bp from the start of the forward primer
Table 4 Sequence polymorphisms in Alwara and 15 accessions of *S. stoloniferum* in comparison with DM

Genotype	Cytoplasm	nad3	nad4	atp6-a	atp6-b	atp6-c	atp1-a	atp1-b	atp9	cox3	rps10-a	rps10-b	rps10-c	cox1	cox2
DM	P	T	T	T	T	G	-	C	T	-	T	C	G	C	A
PI 184770	D/α	T	C	G	T/G	T	TAAAAA	C	C	G	A	C/T	A	T	N
PI 498027	D/α	T	C	G	T	T	TAAAAA	A	C	G	A	C/T	A	T	N
PI 55547	D/γ	N	C	G	T/G	T	TAAAAA	C	C	G	A	C/T	A	T	N
PI 275248	D/γ	T	C	G	T/G	T	TAAAAA	C	C	G	A	C/T	A	T	N
PI 310964	D/γ	-	C	G	T/G	T	TAAAAA	C	C	G	A	C/T	A	T	N
PI 498000	D/γ	T	C	G	T/G	T	TAAAAA	C	C	G	A	C/T	A	T	N
PI 558450	D/γ	N	C	G	T/G	T	TAAAAA	C	C	G	A	C/T	A	T	N
PI 186544	W/α	-	C	G	T/G	T	TAAAAA	C	C	G	A	C/T	A	T	N
PI 195167	W/α	T	C	G	T/G	T	TAAAAA	C	C	G	A	C/T	A	T	N
PI 249929	W/γ	T	C	G	T/G	T	TAAAAA	C	C	G	A	C/T	A	T	N
PI 283101	W/γ	T	C	G	T/G	T	TAAAAA	C	C	G	A	C/T	A	T	N
PI 545780	W/γ	T	C	G	T/G	T	TAAAAA	C	C	G	A	C/T	A	T	N
PI 558449	W/γ	T	C	G	T/G	T	TAAAAA	C	C	G	A	C/T	A	T	N
PI 558455	W/γ	N	C	G	T/G	T	TAAAAA	C	C	G	A	C/T	A	T	N
Alwara	W/γ	N	C	G	T/G	T	TAAAAA	C	C	G	A	C/T	A	T	N

N, overlapping signals; —, deleted
addition, these morphologies changed depending on the time of observation and the plant growth stage. Sensitivity of male sterility to the environment has often been reported in plants, with 44% of cases known to be temperature-sensitive and 12% to be photoperiod-sensitive (Kaul 1988). Similarly, the *S. stoloniferum*-derived T-CMS may be related to environmental factors that affect the growth stage or subtle temperature differences at the pollen maturation stage, although we could not notice any prominent difference in the growing conditions.

The callose in the cell wall of a tetrad is decomposed by callose- and pectin-degradation enzymes secreted by tapetum cells (Dawson et al. 1993; Taylor et al. 1998; Sanders et al. 1999; Wilson et al. 2001). If this separation fails due to incomplete degradation of the callose wall (Rhee and Somerville 1998) or if the pectic components persist around the microspores (Scott et al. 1991), tetrad sterility might occur. Shishova et al. (2019) detected specific metabolic changes for sporopollenin biosynthesis and exine formation in mature anthers of T-CMS potato varieties, resulting in failed disintegration of tetrads into microspores. Further analyses at molecular level are necessary to understand the process from a tetrad to independent pollen grains.

Mitochondrial genome associated with TSCsto

None of the four cytoplasm types (D/α, D/γ, W/α, and W/γ) identified among 40 accessions of *S. stoloniferum* were associated with T-CMS. Although 17 mitochondrial genes and their intergenic regions, with a total sequence length of 29 kbp, were almost identical among 15 accessions of *S. stoloniferum*, three polymorphisms in three genes and length polymorphisms in two intergenic regions were detected. Among these polymorphisms, an 859-bp band amplified from the intergenic region between *rpl5* and *rps10* was associated with T-CMS. Gavriilenko et al. (2019) found association of T-CMS with two base changes in the second intron of the *nad2* gene and the *nad1/atp6* intergenic spacer. However, these polymorphisms are not associated with T-CMS in *S. stoloniferum* (unpublished data). The *rpl5* intergenic region containing partial *cob*, pseudo-*rps14*, and *rps10* has been reported to be rich in mutations (Scotti et al. 2004), and the primer pair ALM_4/ALM_5 that discriminates the α, β, and γ cytoplasm types was also designed to amplify this region (Lössl et al. 1999). Male sterility in rice, known as wild-abortive CMS (WA-CMS; Bentolila and Stefanov 2012), was detected as a mitochondrial structural mutant with over 100 bp of insertions up- and downstream of *rpl5*-
Although the CMS mechanism in potato has not yet been elucidated at the molecular level, we tentatively suggest that the region around \textit{rpl5} is a causative region for tetrad sterility in the case of TSCsto.

Interspecific hybrids with different ploidy levels

Crosses between 4\textit{x} (2EBN) \textit{S. stoloniferum} and 4\textit{x} (4EBN) \textit{S. tuberosum} produced an extremely low number of hybrid seeds due to an imbalanced EBN relationship (Johnston et al. 1980). A balanced EBN relationship in this cross can be achieved by fertilizing 2\textit{n} eggs of \textit{S. stoloniferum} with normal pollen from \textit{S. tuberosum}, which actually produces hexaploid hybrids. In this study, however, triploid hybrids were also observed in the cross of \textit{S. stoloniferum} and 4\textit{x} \textit{S. tuberosum} (Table 2). The \textit{S. tuberosum} germplasm was certainly incorporated into the triploid hybrids because marker analysis revealed \textit{S. tuberosum} parent-specific bands in the hybrids (Fig. 1). To the best of our knowledge, triploids have rarely been reported from 4\textit{x} 9 4\textit{x} \textit{S. stoloniferum} crosses in potato. Interestingly, however, diploid hybrids have been reported from the crosses of \textit{S. stoloniferum} and \textit{S. stoloniferum} 9 2\textit{x} \textit{S. tuberosum} (Voronkova et al. 2007; Yermishin et al. 2017). Two probable mechanisms were proposed by Voronkova et al. (2007): (1) generation of twofold reduced gametes (monoploid, \(n = x = 12\)), carrying one of the genomes of \textit{S. stoloniferum}, (2) preferential chromosome elimination, which was previously proposed as a mechanism of dihaploid formation in potato (Clulow et al. 1991). A certain set of chromosomes (half of \textit{S. tuberosum} chromosomes, B-genome chromosomes of \textit{S. stoloniferum}, or a combination of these chromosomes) might be preferentially eliminated during embryogenesis. Although the details remain unknown, the T-CMS trait was certainly inherited by some of the triploid hybrids.
Nuclear genes interacting with TSCsto

Male fertility can be restored by a nuclear-encoded fertility restorer (Rf) gene(s) in many CMS plants (Hanson and Bentolila 2004). In potato, a dominant restorer gene (Rt) has been reported for the cytoplasm of S. tuberosum (Iwanaga et al. 1991). Some wild species are highly self-fertile (Hawkes 1990), but the hybrids became male sterile, as in the case of S. stoloniferum. In this case, the original species might have a fertility restorer gene, and the expression of the gene is suppressed by some factor in the nuclear genome of the other parent, which causes cytoplasmic male sterility (Yamagishi and Bhat 2014). If a fertility restorer gene exists in the S. stoloniferum nuclear genome, it should be active in hexaploid hybrids that probably have the whole S. stoloniferum genome (AABB), and the fertility of these hybrids should be restored. However, we found that the hexaploid hybrids also showed T-CMS (Table 2). In other words, even if the fertility restorer gene from S. stoloniferum exists in interspecific hybrids, T-CMS may be caused by a dominant factor in the nuclear genome from S. tuberosum, suppressing the expression of the restorer gene. Indeed, the hexaploid, tetraploid, and even triploid interspecific hybrids showed T-CMS, indicating that incorporation of S. tuberosum germplasm did cause T-CMS. A similar idea has been proposed for tetrad sterility in interspecific hybrids of S. verrucosum, in which the suppressor of the restorer gene is regarded as a dominant tetrad sterility-causing gene (Tr) and interacts with the cytoplasm of S. verrucosum (Buck 1960; Abdalla and Hermsen 1972).

Conclusion

We revealed that a specific cytoplasm type in S. stoloniferum, TSCsto, caused tetrad sterility in interspecific hybrids with S. tuberosum. The TSCsto cytoplasm is useful because the rapid advancement of diploid inbred-line based hybrid breeding (Lindhout et al. 2011; Jansky et al. 2016) increases interest in cytoplasmic male sterility coupled with pollen fertility restoring gene(s) for efficient seed production (Anisimova and Gavrilenko 2017). Like the cases of P-less mutant (Bamberg et al. 2006) and Band 1 (Sanetomo and Hosaka 2013), this cytoplasm was not associated with the previous species names (Table 1) and widely distributed across the distribution area of S. stoloniferum, indicating that TSCsto was present before geographical differentiation of S. stoloniferum. We suggest that TSCsto was derived from the maternal diploid ancestor, S. verrucosum (Spooner and Castillo 1997; Rodríguez and Spooner 2009; Sanetomo and Hosaka 2013), because the cytoplasm of S. verrucosum also causes T-CMS (Grun et al. 1962; Abdalla and Hermsen 1971, 1972). The 859-bp band of the mitochondrial genome was associated with T-CMS and might be a candidate region responsible for tetrad sterility. Thus, the 859-bp band will be used as a diagnostic marker for TSCsto, which is useful for distinguishing T-CMS-causing cytoplasm in breeding. Without accurate information on the cytoplasm that breeders are using, male-sterile genotypes are increased unconsciously, and only a limited number of pollen parents are available to breeders (Hosaka and Sanetomo 2012; Mihovilovich et al. 2015; Sanetomo and Gebhardt 2015).

Acknowledgements We thank Dr. K. Hosaka, Obihiro University of Agriculture and Veterinary Medicine, for improving the manuscript and W. Takenaka for technical assistance. The research was financially supported partly by a JSPS Grant-in-Aid for Scientific Research for Young Scientists (Grant Number JP19K15813) and by Calbee Inc., the Hokkaido Potato Growers Association, Kewpie Corp., KENKO Mayonnaise Co., Ltd., and the Japan Snack Cereal Foods Association.

Authors’ contributions AN and RS carried out the crossing experiment and sequencing analysis. RS collected and analyzed all data and wrote the manuscript. All authors read and approved the final manuscript.

Conflict of interest The authors declare that they have no conflicts of interest.

References

Abdalla MMF, Hermsen JGTh (1971) The plasmon-genic basis of pollen lobedness and tetrad sterility in Solanum verrucosum hybrids and duplicate linkage groups. Genetica 42:261–270

Abdalla MMF, Hermsen JGTh (1972) Plasmons and male sterility types in Solanum verrucosum and its interspecific hybrid derivatives. Euphytica 21:209–220

Anisimova IN, Gavrilenko TA (2017) Cytoplasmic male sterility and prospects for its utilization in potato breeding.
Clulow SA, Wilkinson MJ, Waugh R, Baird E, DeMaine MJ, Buck RW Jr (1960) Male sterility in interspecific hybrids of Brown C (1984) Tetrad sterility: a cytoplasmic-genic male sterility attractive to bumble bees. In: Winger FA, Stockli (eds.) Abstracts of the conference papers of the 9th Triennial conference of the European association for potato research, Interlaken, Switzerland, pp 101–102

Dawson J, Wilson ZA, Aarts MGM, Braithwaite AF, Briarty Cockerham G (1943) Potato breeding for virus resistance. Ann Appl Biol 30:105–108

Feingold S, Lloyd J, Norero N, Bonierbale MW, Lorenzen J (2005) Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.). Theor Appl Genet 111:456–466

Flis B, Hemmig J, Strzelczyk-Zyta D, Gebhardt C, Marczewski W (2005) The Ry-fmol gene from Solanum solaniflorum for extreme resistance to Potato virus Y maps to potato chromosome XII and is diagnosed by PCR marker GP122718 in PVY resistant potato cultivars. Mol Breed 15:95–101

Gavrilenko TA, Klimenko NS, Alpatieva NV, Kostina LI, Lebedeva VA, Evdokimova ZZ, Apalikova OV, Novikova LJ, Antonova OYu (2019) Cytoplasmic genetic diversity for cytoplasm in potato: male sterility and contribution of different plastid-mitochondrial configurations to starch production. Euphytica 116:221–230

Matsubayashi M (1955) Studies on the species differentiation in the section Tuberarium of Solanum. III. Behavior of meiotic chromosomes in F1 hybrid between S. longipedicellatum and S. chichkii, in relation to its parent species. Sci Rept Hyogo Univ Agr 2:25–31

Matsubayashi M (1991) Phylogenetic relationships in the potato and its related species. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: Genetics, breeding, evolution Part B. Elsevier, Amsterdam, pp 93–118

Mihovilovich E, Sanetomo R, Hosaka K, Ordoñez B, Aponte M, Bonierbale M (2015) Cytoplasmic diversity in potato breeding: case study from the International Potato Center. Mol Breed 35:13

Milbourne D, Meyer RC, Collins AJ, Ramsay LD, Gebhardt C, Milbourne D, Meyer RC, Collins AJ, Ramsay LD, Gebhardt C, Waugh R (1998) Isolation, characterisation and mapping of a gene for genetic-cytoplasmic male sterility in cultivated potatoes. Am Potato J 68:19–28

Iwanaga M, Ortiz R, Cipar MS, Peloquin SJ (1991) A restorer gene for genetic-cytoplasmic male sterility in cultivated potatoes. Am Potato J 68:19–28

Jansky SH, Charkowski AO, Douches DS, Gusmini G, Richael C, Bethke PC, Spooner DM, Novy RG, De Jong H, De Jong WS, Bamberg JB, Thompson AL, Bizimungu B, Holm DG, Brown CR, Haynes KG, Sathuvalli VR, Veilleux RE, Miller JC Jr, Bradeen JM, Jiang J (2016) Reinventing potato as diploid inbred line-based crop. Crop Sci 56:1412–1422

Johnston SA, den Nijs TPM, Peloquin SJ, Hanneman RE Jr (1980) The significance of genetic balance to endosperm development in interspecific crosses. Theor Appl Genet 57:5–9

Kaul MLH (1988) Male sterility in higher plants. Springer, Berlin

Lindhout P, Meijer D, Schotte T, Hutten RCB, Visser RGF, van Eck HJ (2011) Towards F1 hybrid seed potato breeding. Potato Res 54:301–312

Lössl A, Adler N, Horn R, Frei U, Wenzel G (1999) Chondriome-type characterization of potato: mt α, β, γ, δ, ε and novel plastid-mitochondrial configurations in somatic hybrids. Theor Appl Genet 99:1–10

Lössl A, Götz M, Braun A, Wenzel G (2000) Molecular markers for cytoplasm in potato: male sterility and contribution of different plastid-mitochondrial configurations to starch production. Euphytica 116:221–230

Matsubayashi M (1955) Studies on the species differentiation in the section Tuberarium of Solanum. III. Behavior of meiotic chromosomes in F1 hybrid between S. longipedicellatum and S. chichkii, in relation to its parent species. Sci Rept Hyogo Univ Agr 2:25–31

Matsubayashi M (1991) Phylogenetic relationships in the potato and its related species. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: Genetics, breeding, evolution Part B. Elsevier, Amsterdam, pp 93–118

Mihovilovich E, Sanetomo R, Hosaka K, Ordoñez B, Aponte M, Bonierbale M (2015) Cytoplasmic diversity in potato breeding: case study from the International Potato Center. Mol Breed 35:13

Pendinen G, Gavrilenko T, Jiang J, Spooner DM (2008) Allopolyploid speciation of the Mexican tetraploid potato...
species *Solanum stoloniferum* and *S. hjertingii* revealed by genomic in situ hybridization. Genome 51:714–720

Plaisted RL, Hoopes RW (1989) The past record and future prospects for the use of exotic potato germplasm. Am Potato J 66:603–627

Polyukhovich YV, Makan’ko OV, Savchuk AV, Voronkova EV, Yermishin AP (2010) Development of bridge lines for overcoming interspecific incompatibility in potatoes (in Russian). Proc Nat Acad Sci Belarus 2:51–58

Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

Rhee SY, Somerville CR (1998) Tetrad pollen formation in quartet mutants of *Arabidopsis thaliana* is associated with persistence of pectic polysaccharides of the pollen mother cell wall. Plant J 15:79–88

Rodríguez F, Spooner DM (2009) Nitrate reductase phylogeny of potato (*Solanum* sect. *Petota*) genomes with emphasis on the origins of the polyploid species. Syst Bot 34:207–219

Ross H (1986) Potato breeding-problems and perspectives. Verlag Paul Parey, Berlin

Sanders PM, Anhthu QB, Weterings K, McIntire KN, Hsu Y, Lee PY, Troung MT, Beals TP, Goldberg RB (1999) Anther developmental defects in *Arabidopsis thaliana* male-sterile mutants. Sex Plant Reprod 11:297–322

Sanetomo R, Gebhardt C (2015) Cytoplasmic genome types of European potatoes and their effects on complex agronomic traits. BMC Plant Biol 15:162

Sanetomo R, Hosaka K (2013) A recombination-derived mitochondrial genome retained stoichiometrically only among *Solanum verrucosum* Schltdl. and Mexican polyploid wild potato species. Genet Resour Crop Evol 60:2391–2404

Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180

Scott R, Hodge R, Paul W, Draper J (1991) The molecular biology of anther differentiation. Plant Sci 80:167–191

Scotti N, MarecháL-Drouard L, Cardi T (2004) The *rpl5-rps14* mitochondrial region: a hot spot for DNA rearrangements in *Solanum* spp. somatic hybrids. Curr Genet 45:378–382

Shishova M, Puzanský R, Gavrilova O, Kurbanniazov S, Demchenko K, Yemelyanov V, Pendinen G, Shavarda A, Gavrilenko T (2019) Metabolic alterations in male-sterile potato as compared to male-fertile. Metabolites 9:24

Song YS, Schwarzfscher A (2008) Development of STS markers for selection of extreme resistance (*Ryutos*) to PYY and maternal pedigree analysis of extremely resistant cultivars. Am J Pot Res 85:159–170

Spooner DM, Castillo RT (1997) Reexamination of series relationships of South American wild potatoes (*Solanaceae: Solanum sect. Petota*): evidence from chloroplast DNA restriction site variation. Am J Bot 84:671–685

Spooner DM, van den Berg RG, Rodriguez A, Bamberg J, Hijmans RJ, Cabrera SIL (2004) Wild potatoes (*Solanum section Petota; Solanaceae*) of North and Central America. Systematic Botany Monographs, vol 68. The American Society of Plant Taxonomists, Ann Arbor

Taylor PE, Glover JA, Lavithis M, Craig S, Singh MB, Knox RB, Dennis ES, Chaudhury AM (1998) Genetic control of male fertility in *Arabidopsis thaliana*: structural analyses of postmeiotic developmental mutants. Planta 205:492–505

Voronkova EV, Lisiovskaya VM, Yermishin AP (2007) Diploid hybrids between allotetraploid wild potato species *Solanum acaule* Bitt., *S. stoloniferum* Schltdl. and dihaploids of *S. tuberosum* L (in Russian). Russian J Genet 43:882–888

Vos PG, Uitdewilligen JGAML, Voorrips RE, Visser RGF, van Eck HJ (2015) Development and analysis of a 20K SNP array for potato (*Solanum tuberosum*): an insight into the breeding history. Theor Appl Genet 128:2387–2401

Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ (2001) The *Arabidopsis MALE STERILITY 1* (*MS1*) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J 28:27–39

Yamagishi H, Bhat SR (2014) Cytoplasmic male sterility in Brassicaceae crops. Breed Sci 64:38–47

Yermishin AP, Levy AV, Voronkova EV, Polyukhovich YuV, Ageeva AS (2017) Overcoming unilateral incompatibility in crosses with wild allotetraploid potato species *Solanum stoloniferum* Schltdl. & Bouchet. Euphytica 213:249

Zhu GQ, Tan XL, Zhao Y, Zi QY, Zheng YZ, Yan CQ, He TT, Sun CH, Huang DJ, Tan YL, Xu J, Wen JC (2015) Relationship between CMS-specific mitochondrial structures and pollen abortive phenotype in rice CMS lines. Euphytica 206:149–158

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.