Multi-Verse Optimization algorithm for the Optimal Synthesis of Phase-only reconfigurable linear array of mutually coupled parallel half-wavelength dipole antennas placed at finite distances from the ground plane

D Jamunaa* and G.K. Mahanti

Department of Electronics and Communication Engineering
National Institute of Technology
Durgapur-713209, India
(*E-mail: jamunaad@yahoo.com, gautammahanti@yahoo.com)

Feras N Hasoon
Department of Electrical and Communication Engineering
College of Engineering, NUST,
Sultanate of Oman
(E-mail: ferasalattar@nu.edu.om)

Abstract

Researchers on antenna arrays usually neglect the effect of mutual coupling of antennas placed in proximity to each other. The interchange of electromagnetic energy happening between an antenna and a far field point depends not only on the transmitting antenna, but also from its neighboring antennas. This effect is referred to as mutual coupling between dipole antenna elements and it is considered here in the synthesis of phase only reconfigurable antenna arrays. The main objective of this work is to produce desired Side Lobe Level and Voltage Standing Wave Ratio in addition to few other radiation pattern parameters. Multiverse Optimization algorithm is employed for the purpose of generating voltage amplitude and discrete phase distributions in the dipole elements for the generation of flat-top beam/pencil beam patterns. These two patterns share the common amplitude distributions and differ in phase distributions. Results obtained from simulations prove that this algorithm accomplished its task successfully and is also found to be superior over other algorithms like Particle Swarm Optimization, Grey Wolf Optimization and Imperialist Competitive Optimization algorithms.
Keywords
Reconfigurable linear array antenna, Multiverse Optimization algorithm, Mutual Coupling, Voltage Standing Wave Ratio, Particle Swarm Optimization, Grey Wolf Optimization, Imperialist Competitive Optimization algorithms.

1. Introduction
Recent developments in the field of communications demand a more flexible and an easy approach for the provision of multi-beam patterns. In this regard, antenna arrays [1, 2] guarantee them by providing certain common excitations and certain differing excitations. These arrays are referred to as reconfigurable arrays [1-9] and the corresponding excitations can be amplitudes, phases, positions, etc. Literature review reports many methods of generating these beams like projection approach [3], Woodward Lawson synthesis [4], and other methods using evolutionary algorithms [5-8], etc.

There are concerns that hinder the effective generations of these beams. One of these is mutual coupling [10-13], which plays a prominent role in diminishing the radiation pattern of any antenna array. This mutual coupling refers to the electromagnetic interactions within the neighboring elements existing in an antenna array. In simple words, it can be said that the electric field generated by an antenna element affects the neighboring elements in such a way that the total pattern gets deviated from the desired one. In addition to it, the relative separation between the elements as well as the orientation of the elements also influences the mutual coupling effects.

To add to the concern above, an effective mismatch between an antenna and the feeding network hinders perfect transreception. A mismatch between the antenna and the feeder line or the subsequent components results in return loss. Necessary care is taken in this paper to include both the mutual coupling effects as well as sustained Standing Wave Ratio.
Simulations are done with the inclusion of ground plane and analysis is done on the effect of the distance between the ground plane and the antenna array.

To undergo this process, evolutionary algorithms are used here to generate voltage amplitudes that can hold values between 0 and 1, and current amplitudes are calculated using the mutual impedance matrix. These algorithms also generate the phase excitations that can vary between -180° and 180° in discrete steps using a 6-bit phase shifter [5].

Multiverse Optimization algorithm [14-22] is used here in generating the required amplitudes as well as the phase excitations. The reason for choosing Multiverse Optimization algorithm is due to its immense success in providing solutions to problems related to antenna arrays, and especially in the synthesis of large arrays. The performance of this algorithm is investigated numerically and compared with few other standard popular algorithms, namely, Particle Swarm Optimization (PSO) [23-24], Imperialist Competitive algorithm (ICA) [25-29] and Grey Wolf Optimization (GWO) [30-33]. All the algorithms used in this paper are run to minimize the fitness value in the weighted fitness functions in order to achieve the desired pattern.

The novelty in this paper is that Voltage Standing Wave Ratio is considered simultaneously for both the flat-top and pencil beams. Mutual coupling effect is taken into account along with the ground plane effects. Also, the phase excitations are controlled by discrete phase shifters which greatly reduce the complexity in feed networks.
2. Theory

Figure 1. A linear array of parallel half-wavelength dipole antennas with ground plane placed at a distance h behind the array.

The free space far field pattern of a linear array constructed of N half-wave dipoles separated from each other by a distance d in azimuth plane with \varnothing being the azimuth angle measured from the x-axis as shown in Figure 1 is given by

$$F(\varnothing) = \sum_{n=1}^{N} I_n e^{j(n-1)kd\cos\varnothing} \ast EP(\varnothing)$$ \hspace{1cm} (1)

In the above equation, k is the wave number, $EP(\varnothing)$ is the element pattern, I_n is the complex current excitation obtained from the product of impedance matrix and the voltage excitation matrix of the elements. $[I]_{N\times1} = [Z]^{-1}_{N\times N} [V]_{N\times1}$, where $[Z]$ is the impedance matrix (size $N \times N$) and $[V]$ is the voltage excitation matrix (size $N \times 1$) of the elements.

The element pattern of the dipole elements is assumed to be omnidirectional in the plane considered, i.e., $EP(\varnothing) = 1$. From the currents calculated using the voltage excitations as well as the impedance matrix, a sum pattern is generated in the broadside direction.

Since mutual coupling effects are included in this paper, the customary equations related to it are shown as follows. The mutual coupling includes both the self-impedance of the elements as well as the mutual impedances among elements [2]. The relationship between the voltages V and impedances are given by

$$V_p = I_p Z_{pp} + \sum_{p \neq q} I_q Z_{pq}$$ \hspace{1cm} (2)

where Z_{pp} refers to self-impedance of dipole p and Z_{pq} refers to mutual impedance between p and q. The active impedance is given by

$$Z_p^{Ac} = Z_{pp} + \sum_{p \neq q} (I_q I_p) Z_{pq}$$ \hspace{1cm} (3)
In case, when a ground plane \([2]\) is kept at a distance \(h\) behind the array, the new active impedance is calculated taking into account the image principles in obtaining the impedances of the elements.

In the impedance matrix, self-impedance is replaced by \(\left(Z_{pp} - Z_{pp}^*\right)\) and mutual impedance is replaced by \(\left(Z_{pq} - Z_{pq}^*\right)\), where \(Z_{pp}^*\) is the impedance between the \(p^{th}\) dipole and its image, and \(Z_{pq}^*\) is the impedance between the \(p^{th}\) dipole and image of the \(q^{th}\) dipole. If \(h\) is the distance between the array and the ground plane and if the element factor is \(\sin(khsin\varnothing)\), then the new far field expression taking the ground plane into effect is given by

\[
F(\varnothing) = \sum_{n=1}^{N} \sin(khsin\varnothing) I_n e^{j(n-1)kdcos\varnothing}
\]

(4)

Normalized absolute far field = \[
\frac{|F(\varnothing)|}{\max|F(\varnothing)|}
\]

(5)

Voltage Standing Wave Ratio (VSWR) is calculated as \((1 + \Gamma)/(1 - \Gamma)\), where \(\Gamma\) is the Reflection Coefficient being equal to \((Z_{p}^{Ac} - Z_0)/(Z_{p}^{Ac} + Z_0)\). \(Z_0\) is the characteristic impedance with a value of 50 Ω. A low value of VSWR denotes good matching condition of the array.

The weighted fitness function is given by

\[
F = \sum_{i=1}^{3} w_i (F_i)^2 + \sum_{j=1}^{2} w_j (F_j)^2
\]

(6)

The first term in the RHS of the above equation is written as below:

\[
F_i = \begin{cases}
F_i^{flat} - F_{i,d}^{flat}, & \text{if } F_i^{flat} > F_{i,d}^{flat} \\
0, & \text{if } F_i^{flat} \leq F_{i,d}^{flat}
\end{cases}
\]

(7)

where \(F_i\) represents the flat-top beam parameters and \(i = 1, 2\) and \(3\) refers to the parameters, namely, Side Lobe Level (SLL) in dB, Ripple in dB and maximum VSWR (no unit).

The second term in the RHS of equation (7) is written as below:
where F_j represents the pencil beam parameters and $j = 1$ and 2 refers to the parameters, SLL in dB and maximum VSWR (no unit).

Moreover, in the above equations, the superscript pen represents the specifications for the pencil pattern and the superscript flat represents the specifications for the flat-top pattern. The term F_{id}, F_{jd} represents the expected/desired value and F_i, F_j represents the obtained value for each specification parameter. The weights w are chosen to be equal to 1 suggesting that equal importance is given to all the parameters during the optimization process.

3. **Multi-Verse Optimization algorithm**

Multi-Verse Optimization (MVO) algorithm is one of the recently introduced algorithms and is influenced by the multi-verse theory concepts. As per the concepts dealing with this algorithm, our Universe may be one of the infinite numbers of Universes that can exist. The theory underlying this relies on white holes, black holes and wormholes. In this algorithm, the worm holes are responsible for the exploitation part and the combined white and black holes control the exploration part. Here, a solution refers to a Universe, a variable refers to an object in it, the inflation rate refers to the solution’s fitness values and finally the term time refers to the iteration. The rules that are used in this algorithm are:

(i) The higher the inflation rate indicates the situation having more white holes than black holes.

(ii) The universes with more inflation rate move the objects through the white holes and the universes with less inflation rate accept the objects via the black holes.
(iii) The objects in all the universes move randomly towards the Best Universe via wormholes ignoring the effect of the inflation rate.

The objects travel between universes through the white or black hole tunnels. During the creation of a tunnel between two universes, the universe with the higher inflation rate is treated as a white hole and the other one as a black hole. Then the objects are allowed to move from the white holes of one universe to the black holes of the other. Thus exchange of objects can easily take place without any hassle. It is also assumed that when the inflation rate is more, the probability of having white holes will also be more.

Wormholes appear in a random manner in any of the universes irrespective of the inflation rate. This ensures more diversity of universes during iterations. The tunnels require the universes to change in an abrupt manner thus guaranteeing exploration of the search within the allotted space. These changes also help in relieving any local optimum stagnation. The wormholes also indulge in re-span of few of the variables around the best obtained solution in a random way, thus ensuring exploitation around the most promising region.

The mathematical modeling of the interchange of the objects between the Universes and the white and black hole tunnels is done using a roulette wheel selection. At the end of every iteration, one Universe is chosen as the best one. With \(d \) as the number of variables and \(no \) is the number of Universes, the set of solution \(U \) is formulated as:

\[
U = \begin{bmatrix}
 x^1_1 & x^2_1 & x^3_1 & \cdots & x^d_1 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 x^1_{no} & x^2_{no} & x^3_{no} & \cdots & x^d_{no}
\end{bmatrix}
\]

If \(Um \) is the \(m^{th} \) universe, \(NIr(U_m) \) is the normalized inflation rate of the \(m^{th} \) universe, then

\[
x^m = \begin{cases}
 x^e & \text{ran}1 < NIr(U_m) \\
 x^a & \text{ran}1 \geq NIr(U_m)
\end{cases}
\]
Where ran_1 is a random number between 0 and 1, and x^n_k is the n^{th} parameter of k^{th} Universe selected by the selection method used. To use the facility to avail the changes locally for every Universe and to upgrade the inflation rate, the wormhole tunnels are created between a Universe and the Best Universe obtained till that time, and the following equation is used for the same.

\[
X^n_m = \begin{cases}
X^n_n + TDR((U_{r_n} - L_{r_n})ran_4 + L_{r_n}) & \text{ran}_3 < 0.5 \\
X^n_n - TDR((U_{r_n} - L_{r_n})ran_4 + L_{r_n}) & \text{ran}_3 \geq 0.5 \\
x^n_m & \text{ran}_2 \geq \text{WEP}
\end{cases}
\]

(11)

where X^n_n is the n^{th} parameter of the Best Universe obtained so far, TDR is the travelling distance rate, WEP is the work hole existence probability, L_{r_n} and U_{r_n} are the lower and upper bounds of n^{th} variable, X^n_m is the n^{th} parameter of the m^{th} Universe and ran_2, ran_3 and ran_4 are random numbers between 0 and 1. WEP is given by

\[
WEP = mn + l \left(\frac{mx - mn}{\text{Max}_\text{Iters}} \right)
\]

(12)

\[
TDR = 1 - \frac{\frac{l}{p}}{\text{Max}_\text{Iters}^{\frac{l}{p}}}
\]

(13)

where mn is set to 0.2, mx is set to 1, l is the current iteration, Max_Iters refers to the maximum iterations and p is the accuracy of the process of exploitation over the iterations.

The pseudo code is found below:

Pseudo Code

1. **Initialization**

 Creation of random Universes U

 Initialization of WEP, TDR, and Best Universe

 $time = 0$

2. **Sorting of Universes and Normalization of the fitness values of the Universes**

 $SUs = \text{Sorted Universes}$ and $NIr = \text{Normalization of the inflation rate of the Universes}$

 $BHI = \text{Black hole Index}$ and $WHI = \text{white hole index}$
3: Process of Iteration

while time < Max_Iters

The fitness values of all the Universes Um, m = 1, 2, 3,..., n are evaluated.

for each universe Um

Update WEP and TDR

BHI = m;

for each object n

ran1 = random value between 0 and 1;

if ran1 < NIr(Um)

WHI = Roulette Wheel Selection (-NIr);

U(BHI, n) = SU*(WHI, n);

end if

ran2 = random value between 0 and 1;

if ran2 < WEP

ran3 = random value between 0 and 1;

ran4 = random value between 0 and 1;

if ran3 < 0.5

U(m, n) = Best Universe (n) + TDR * ((Ur(n) - Lr(n)) * ran4 + Lr(n));

else

U(m, n) = Best Universe (n) - TDR * ((Ur(n) - Lr(n)) * ran4 + Lr(n));

end if

end if

end for

time = time + 1

end while

4: Stop

Output the values of Best Universe and NIr(Best Universe)

4. Simulation results and discussions

A total of 20 elements are used in this simulation process. Because of symmetry, it is made customary for the algorithms to generate only 10 elements excitations. Here, the amplitudes are kept common to both the beams, whereas the generated discrete phases are used to produce a flat-top beam and zero phases to produce a pencil beam. The amplitudes range from 0 to 1 and the phases range from -180° to 180°. The algorithm is run for a maximum of 200 iterations. The dipoles used here have a length of 0.5λ and a radius of 0.005λ. The distance between the dipoles is kept at 0.5λ. The ground plane is taken into consideration for various distances of 0.10λ, 0.20λ and 0.25λ for simulation purposes. The population size and maximum number of iterations are kept same for all the algorithms. A total of five runs are used for the algorithms and the best out of the five runs based on the lowest fitness values are
chosen as the final generated values of excitations. Tables 1, 2 and 3 show the parameter values for the linear array at a distance of 0.10\(\lambda\), 0.20\(\lambda\) and 0.25\(\lambda\) from the ground plane. Figures 2, 3 and 4 show the Normalized Power Pattern in dB vs \(\phi\) in degrees for the linear array with a distance of 0.10\(\lambda\), 0.20\(\lambda\) and 0.25\(\lambda\) from the ground plane. Table 4 shows the corresponding Voltage and phase distributions. Figure 5 shows the VSWR values for all the algorithms at different distances between the array and the plane. Table 5 shows the fitness values and computation times. Figure 6 shows the Fitness values versus iteration numbers.

Table 1. Parameter values for the linear array at a distance of 0.10\(\lambda\) from the ground plane.

From Table 1, it is seen that the MVO showed its supremacy in delivering the best excitation values to produce the parameter values well under the expected criteria. These parameter values include SLL and VSWR in pencil beam and SLL and VSWR in the flat-top beam. There is a deficit of 0.07652 dB in the ripple in flat-top beam. GWO succeeded in producing all the parameter values to the expected level except VSWR and Ripple in flat-top beam. But in overall, PSO and ICA results are not good as compared with the remaining algorithms. Except PSO, expected SLL value is reached by all algorithms for the pencil beam. Figure 2 shows the Normalized Power in dB vs \(\phi\) in degrees for the linear array with a distance of 0.10\(\lambda\) from the ground plane.

Figure 2. Normalized Power in dB vs \(\phi\) in degrees for the linear array placed at a distance of 0.10\(\lambda\) from the ground plane.

Table 2. Parameter values for the linear array at a distance of 0.20\(\lambda\) from the ground plane.

From Table 2, it is seen that the MVO algorithm has succeeded in producing the SLLs well within the expected values for both the beams. The ripple in dB is very close to the expected value with a deficit of 0.2899 dB. It faced a tough competition with GWO algorithm, as it
succeeded in producing the best VSWR in pencil beam, whereas it lost to the same in flat-top beam.

Figure 3. Normalized Power in dB vs ϕ in degrees for the linear array placed at a distance of 0.20λ from the ground plane.

Table 3. Parameter values for the linear array at a distance of 0.25λ from the ground plane.

From Table 3, it is found that MVO algorithm again succeeded in producing the best outputs, especially over GWO in VSWRs of both the beams. But, GWO slightly edged better over MVO by 0.2558 dB in the ripple portion in flat-top beam.

Figure 4. Normalized Power in dB vs ϕ in degrees for the linear array placed at a distance of 0.25λ from the ground plane.

Table 4. Voltage amplitude and Phase distributions (in degrees) of the elements for various distances from the ground plane

Figure 5. VSWR values versus algorithms

Table 5. Fitness values and Computation time details

Table 5 shows that the fitness values of MVO algorithm are very low when compared to other algorithms for all the values of the distance between the array and the ground plane. It also shows the computational time taken by MVO is lesser in most of the places over other algorithms.

Figure 6. Fitness values versus Number of Iterations

Figure 6 shows the plot between fitness values and number of iterations. It is very clear from this figure that MVO algorithm has performed better in terms of convergence speed as well as lowest fitness values over other algorithms. Overall, it is found that MVO has performed
better than the other algorithms. The reasons for the success of this algorithm are that, abrupt changes increase the exploration of the search space and it also resolves the problem of the stagnation of local optima. Since wormholes randomly re-span some of the variables of the around the best optimum solution, there is a good level of guarantee in exploitation around the most promising region. Adaptive WEP increases the probability of the availability of wormholes and adaptive TDR increases the accuracy of the local search. All the above reasons helped this algorithm to show its superiority over other algorithms.

Analysis:

Effect of distance on the pattern:

To study the effect of the inter-element distance of the array on the radiation pattern parameters, simulations are done for various inter-element distances using the obtained excitations from MVO algorithm. The results are shown in Table 6 for various inter-element distances.

Table 6. Parameter values for the linear array for various inter-element distances.

Table 6 clearly shows that when the distances are either more or less than 0.5λ, all the parameter values obtained are not under the desired limit. For instance, when \(d=0.6\lambda\), it’s the ripple value in dB which is affected and when \(d=0.4\lambda\), it’s the VSWR values and the SLL in dB in the flat-top beam that are affected.

Further to verify the outputs, the whole array is simulated using FEKO software. Using FEKO, the array is simulated with a random choice of a distance equal to 0.10λ. Figure 7 shows the Normalized Power Pattern in dB vs \(\phi\) in degrees for the linear array placed at a distance of 0.10λ from the ground plane using MATLAB simulated outputs and FEKO generated outputs. From the outputs obtained, the value of SLL obtained for the flat-top pattern is found to be -21.8761 dB and the SLL for the pencil beam is found to be -22.0078 dB. There is a small deficit of 0.1239 dB of SLL in the flat-top pattern from the desired
value. Otherwise, it is a very good agreement when compared with the values obtained using MATLAB outputs using MVO algorithm.

Figure 7. Normalized Power in dB vs ϕ in degrees for the linear array placed at a distance of 0.10λ from the ground plane using MATLAB simulated outputs and FEKO generated outputs.

5. Conclusion

This paper dealt with the application of Multiverse Optimization algorithm in reconfigurable antenna arrays. The algorithm showed its capability in successively generating the necessary excitations in the generation of dual beams. Discrete phase shifters were used for the purpose of reducing the complexity of the feed networks. Mutual coupling had been taken into account. The effect of ground plane on the radiation pattern had been studied here. Moreover, real antennas were used instead of isotropic ones. Simulation results proved that MVO algorithm was better than the compared algorithms in terms of the fitness function parameters, convergence speed, etc.

References

1. Balanis, C. A. “Antenna Theory: Analysis and Design”, 2nd ed., Singapore: John Wiley and Sons (Asia) (2003).

2. Elliott, R. S. “Antenna Theory and Design”, New York, USA: Prentice-Hall (1981).

3. Bucci, O. M., Mazzarella, G. and Panariello, G. “Reconfigurable arrays by phase-only control,” IEEE Transactions on Antennas and Propagation, 39(7), pp. 919-925 (1991).

4. Durr, M., Trastoy, A., and Ares, F. “Multiple-pattern linear antenna arrays with single prefixed amplitude distributions: modified Woodward-Lawson synthesis”, Electronics Letters, 36(16), pp.1345-1346 (2000).

5. Baskar, S., Alphones, A. and Suganthan, P. N. “Genetic algorithm based design of a reconfigurable antenna array with discrete phase shifter”, Microwave and Optical Technology Letters, Vol. 45, 461–465 (2005).

6. Mahanti, G.K., Chakraborty, A. and Das, S. “Design of Phase-Differentiated Reconfigurable Array Antennas with Minimum Dynamic Range Ratio”, IEEE Antennas and Wireless Propagation Letters, vol.5, no.1, pp. 262-264 (2006).
7. Mahanti, G.K., Das, S., Chakrabarty, A., Brégains, J.C. and Ares, F. “Design of Reconfigurable Array Antennas with Minimum Variation of Active Impedances”, *IEEE Antennas and Wireless Propagation Letters*, vol. 5, no.1, pp. 541-544 (2006).

8. Gies, D. and Rahmat-Samii, Y. “Particle swarm optimization for reconfigurable phase-differentiated array design”, *Microwave and Optical Technology Letters*, vol. 38, pp. 168-175 (2003).

9. Jamunaa, D., Mahanti, G.K., and Hasoon, F.N., “Synthesis of phase-only position optimized reconfigurable uniformly excited linear antenna arrays with a single null placement”, *Journal of King Saud University – Engineering Sciences*, pp. 1-8, (2019).

10. Muralidharan, R., Vallavaraj, A., Mahanti, G.K. and Mahanti, A. “QPSO versus BSA for failure correction of linear array of mutually coupled dipole antennas with fixed side lobe level and VSWR”, *Advances in Electrical Engineering*, vol. 2014, Article ID 858290, pp. 1-7, (2014).

11. Singh, H., Sneha, H.L., and Jha, R. M. “Mutual Coupling in Phased Arrays”, *International Journal of Antennas and Propagation*, volume 2013, Article ID 348123, pp.1-23 (2013).

12. Lee, K. M. and Chu, R. S. “Analysis of Mutual Coupling between a Finite Phased Array of Dipoles and Its Feed Network”, *IEEE Transactions on Antennas and Propagation*, vol. 36, no. 12, 1681-1699, (1988).

13. Muralidharan, R., Vallavaraj, A. and Mahanti, G. K. “Firefly algorithm for failure correction of linear array of dipole antennas in presence of ground plane with mutual coupling effects”, *ACES journal*, vol. 30, no. 10, pp. 1122-1128 (2015).

14. Mirjalili, S., Mirjalili, S.M. and Hatamlou, A., “Multi-Verse Optimizer: a nature-inspired algorithm for global optimization”, *Neural Computing and Applications*, 27, 2 pp. 495-513 (2016).

15. Faris, H., Aljarah, I. and Mirjalili, S. “Training feedforward neural networks using multi-verse optimizer for binary classification problems”, *Applied Intelligence*, vol. 45, no. 2, pp. 322–332 (2016).

16. Hu, C., Li, Z., Zhou, T., Zhu, A. and Xu, C. “A Multi-Verse Optimizer with Levy Flights for Numerical Optimization and Its Application in Test Scheduling for Network-on-Chip”, *PLOS ONE* 11(12): e0167341 (2016).

17. Sayed, G.I., Darwish, A. and Hassanien, A.E. “Quantum Multi-Verse optimization algorithm for optimization problems”, *Neural Computing & Applications*, vol. 31, pp. 2763–2780, (2017).

18. Sulaiman, M., Ahmad, S., Iqbal, J., Khan, A., and Khan, R., “Optimal Operation of the Hybrid Electricity Generation System Using Multi-verse Optimization Algorithm”, *Computational Intelligence and Neuroscience*, vol. 2019, Article ID 6192980, 12 pages (2019).
19. Karthikeyan, K., and Dhal, P.K., “Multi verse optimization (MVO) technique based voltage stability analysis through continuation power flow in IEEE 57 bus”, Energy Procedia, Vol. 117, pp. 583-591, (2017).

20. Ahmed, F., and Hegazy, R., 2018, "Multi-verse optimizer for identifying the optimal parameters of PEMFC model," Energy, Elsevier, vol. 143(C), pp. 634-644, (2018).

21. Jia, H., Peng, X., Song, W., Lang, C., Xing, Z., and Sun, K., "Multiverse Optimization Algorithm Based on Lévy Flight Improvement for Multithreshold Color Image Segmentation," IEEE Access, vol. 7, pp. 32805-32844, (2019).

22. Hans, R., and H. Kaur, “Binary Multi-Verse Optimization (BMVO) Approaches for Feature Selection”, International Journal of Interactive Multimedia and Artificial Intelligence, pp. 1-16, 10.9781/ijimai.2019.07.004 (2019).

23. Kennedy, J. and Eberhart, R. “Particle swarm optimization”, Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942-1948 (1995).

24. Bansal, J.C., Singh, P.K., Saraswat, M., Verma, A., Jadon, S.S. and Abraham, A. “Inertia Weight strategies in Particle Swarm Optimization”, Third World Congress on Nature and Biologically Inspired Computing, Salamanca, 2011, pp. 633-640 (2011).

25. Atashpaz-Gargari, E. and Lucas, C. “Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition”, 2007 IEEE Congress on Evolutionary Computation, Singapore, pp. 4661-4667 (2007).

26. Mahdi Abdollahi, Ayaz Isazadeh and Davoud Abdollahi, “Imperialist competitive algorithm for solving systems of nonlinear equations”, Computers & Mathematics with Applications, Volume 65, Issue 12, pp. 1894-1908 (2013).

27. Hosseini, S., and Abdullah Al Khaled, “A survey on the Imperialist Competitive Algorithm metaheuristic: Implementation in engineering domain and directions for future research”, Applied Soft Computing, Vol. 24, pp. 1078-1094, (2014).

28. Sherinov, Z., Ünveren, A., and Acan, A., “Imperialist Competitive Algorithm with Updated Assimilation for the Solution of Real Valued Optimization Problems, International Journal on Artificial Intelligence Tools, Vol. 27(02), 1850005, (2018).

29. Mojtaba Mokhtarian Asl and Sattarvand, J., “An Imperialist Competitive Algorithm for Solving the Production Scheduling Problem in Open Pit Mine”, IJMGE Int. J. Min. & Geo-Eng, Vol.50(1), pp.131-143, (2016).

30. Mirjalili, S., Mirjalili, S.M. and Lewis, A. “Grey wolf optimizer”, Advances in Engineering Software, vol. 69, pp. 46–61 (2014).

31. Faris, H., Aljarah, I., Al-Betar, M.A. and Mirjalili, S. “Grey wolf optimizer: a review of recent variants and applications”, Neural Computing and Applications, Vol. 30(2), pp 413-435 (2018).

32. Gao, Z.M., and Zhao, J., “An Improved Grey Wolf Optimization Algorithm with Variable Weights”, Computational Intelligence and Neuroscience, Vol. 2019, Article ID 2981282, 13 pages, 2019. https://doi.org/10.1155/2019/2981282, (2019).
33. Yan, F., Xu, J., and Yun, K., “Dynamically Dimensioned Search Grey Wolf Optimizer Based on Positional Interaction Information”, *Complexity*, Volume 2019, Article ID 7189653, 36 pages. https://doi.org/10.1155/2019/7189653, (2019).

D Jamunaa was born in Tamil Nadu, India. She obtained her B.E. in Electronics & Communication Engg. from Bharathiar University, Coimbatore, Masters in Microwave and Optical Engineering from AC College of Engineering and Technology, Karaikudi, and PhD in the field of Antenna Arrays from NIT, Durgapur, India. She has been involved in teaching subjects related to Electronics and Communication Engineering. Her research areas are Antenna arrays and Evolutionary algorithms.

G.K.Mahanti was born in the year 1967 in India. He obtained his B.E. in Electronics & Communication Engg. from NIT, Durgapur, India, M.E. in Electronics System and Communication from NIT, Rourkela, India and Ph.D(Engg.) from IIT, Kharagpur, India. He has more than 29 years of teaching and research experience. Presently he is working as a Professor (HAG), Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, India. He is a senior member of IEEE, USA and Fellow of Institution of Engineers (India). He has published approximately 110 papers in journals and in national and international conferences. He was the reviewer of many international journals like Electronics Letter, IEEE Antennas and Wireless Propagation Letter, Progress in Electromagnetics Research, IET Microwave, Antenna and Propagation and many conferences. He was also the program committee member of many national and international conferences. His research area is Array antenna synthesis, Evolutionary Algorithms, Machine learning & Electromagnetics.

Feras N Hasoon was born in Basrah, Iraq in 1973. He obtained his PhD degree in Electrical, Electronics, and System Engineering from University Kebangsaan Malaysia in 2008. He is currently an Assistant Professor in the Department of Electrical and Communication Engineering in College of Engineering, NUST, Sultanate of Oman. He has more than 15 years of academic experience in teaching and research. His research areas include Communication systems, Optical Communications and Coding techniques.

7 Figures and 6 Tables
Figure 1. A linear array of parallel half-wavelength dipole antennas with ground plane placed at a distance h behind the array.

Table 1. Parameter values for the linear array at a distance of 0.10\(\lambda\) from the ground plane.

Patterns	Parameters	Desired values	MVO	GWO	PSO	ICA
Pencil beam	SLL in dB	-22	-22.0934	-22.0222	-21.8158	-22.1674
	VSWR	1.3	1.2359	1.2621	1.2233	1.374
Flat-top beam	SLL in dB	-22	-23.1407	-22.1199	-21.9791	-21.7364
	VSWR	1.3	1.2444	1.526	1.8901	1.4504
Ripple in dB	($75^\circ < \phi < 105^\circ$)	0.5	0.57652	0.73797	1.7995	1.3535
Figure 2. Normalized Power in dB vs ϕ in degrees for the linear array placed at a distance of 0.10λ from the ground plane.

Table 2. Parameter values for the linear array at a distance of 0.20λ from the ground plane.

Patterns	Parameters	Desired values	Obtained values				
			MVO	GWO	PSO	ICA	
Pencil beam	SLL in dB	-22	-22.029	-22.0996	-21.8788	-22.1899	
	VSWR	1.3	1.2221	1.3269	2.0011	1.9924	
Flat-top beam	SLL in dB	-22	-23.3714	-22.468	-21.9851	-22.4286	
	VSWR	1.3	2.0504	1.2497	2.1046	2.1249	
	Ripple in dB	(75° < ϕ <105°)	0.5	0.7899	0.5378	0.97112	1.3829
Figure 3. Normalized Power in dB vs ϕ in degrees for the linear array placed at a distance of 0.20λ from the ground plane.

Table 3. Parameter values for the linear array at a distance of 0.25λ from the ground plane.

Patterns	Parameters	Desired values	Obtained values			
		MVO	GWO	PSO	ICA	
Pencil beam	SLL in dB	-22	-22.2765	-22.1221	-21.843	-21.0699
	VSWR	1.3	2.0704	2.1706	2.378	2.3361
Flat-top beam	SLL in dB	-22	-23.6803	-24.4325	-21.5715	-20.8859
	VSWR	1.3	2.1817	2.3451	3.1563	2.3944
	Ripple in dB	0.5	0.7977	0.5419	2.376	2.5608

\[(75^\circ < \phi < 105^\circ)\]
Figure 4. Normalized Power in dB vs ϕ in degrees for the linear array placed at a distance of 0.25λ from the ground plane.

Table 4. Voltage amplitude and Phase distributions (in degrees) of the elements for various distances from the ground plane

Element Number	$h=0.10\lambda$ Distribution	$h=0.20\lambda$ Distribution	$h=0.25\lambda$ Distribution			
	Voltage	Phase (degrees)	Amplitude	Phase (degrees)	Amplitude	Phase (degrees)
1 & 20	0.0007	-50.6250	0.0580	-140.625	0.0692	-180.000
2 & 19	0.1220	-28.1250	0.1322	180.000	0.1740	174.375
3 & 18	0.2498	-45.0000	0.2843	-174.375	0.3317	-174.375
4 & 17	0.3675	-78.7500	0.4096	135.000	0.3884	140.625
5 & 16	0.3206	-151.875	0.3860	67.5000	0.4583	78.750
Figure 5. VSWR values versus algorithms

Table 5. Fitness values and Computation time details

Distance h	Fitness values	Computational time in seconds						
	MVO	GWO	PSO	ICA	MVO	GWO	PSO	ICA
0.1	0.0058	0.1078	2.0711	0.8678	18001	18507	21730	22726
0.2	1.0868	1.5703	1.3754	1.9395	18432	19421	19020	19529
0.25	1.4596	1.8518	8.3029	8.6239	18389	17777	18380	19053
Figure 6. Fitness values versus Number of Iterations

Table 6. Parameter values for the linear array for various inter-element distances.

Patterns	Parameters	Desired values	Obtained values MVO $d=0.5\lambda$	Obtained values MVO $d=0.6\lambda$	Obtained values MVO $d=0.4\lambda$
Pencil beam	SLL in dB	-22	-22.0934	-21.664	-22.3405
	VSWR	1.3	1.2359	1.1981	1.3182
Flat-top beam	SLL in dB	-22	-23.1407	-21.1033	-16.743
	VSWR	1.3	1.2444	1.2067	1.4087
	Ripple in dB $(75^\circ < \phi < 105^\circ)$	0.5	0.57652	-4.7205	0.59074
Figure 7. Normalized Power in dB vs ϕ in degrees for the linear array placed at a distance of 0.10λ from the ground plane using MATLAB simulated outputs and FEKO generated outputs.