Research Article

Refinements of Some Integral Inequalities for \(\phi\)-Convex Functions

Moquddsa Zahra, \(^1\) Yu-Ming Chu \(^2,3\) and Ghulam Farid \(^4\)

\(^1\)Department of Mathematics, University of Wah, Wah Cantt, Pakistan
\(^2\)Department of Mathematics, Huzhou University, Huzhou 313000, China
\(^3\)Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, China
\(^4\)Department of Mathematics, COMSATS University Islamabad, Attock Campus, Attock, Pakistan

Correspondence should be addressed to Yu-Ming Chu; chuyuming@zjhu.edu.cn

Received 21 September 2020; Revised 23 October 2020; Accepted 26 October 2020; Published 24 November 2020

Academic Editor: Xiaolong Qin

Copyright © 2020 Moquddsa Zahra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we are interested to deal with unified integral operators for strongly \(\phi\)-convex function. We will present refinements of bounds of these unified integral operators and use them to get associated results for fractional integral operators. Several known results are connected with particular assumptions.

1. Introduction and Preliminaries

Convex functions play an important role in the formation of new definitions of related functions which help to give the generalization of classical results. Therefore, in recent years, many generalizations of convex functions are defined and utilized to study the Hadamard and other well-known inequalities (see [1–9]). In this paper, we deal with the strongly \(\phi\)-convex functions to study the bounds of unified integral operators. The obtained results are compared with already known results.

First, we give some definitions of functions which are necessary for the findings of this paper.

**Definition 1** (see [7]). A function \(f: I \rightarrow \mathbb{R}\) is said to be convex on \(I\) if

\[
f(\zeta u + (1 - \zeta)v) \leq \zeta f(u) + (1 - \zeta)f(v),
\]

holds for all \(u, v \in I\) and \(\zeta \in [0, 1]\), where \(I \subseteq \mathbb{R}\) is an interval. Reverse of inequality (1) defines \(f\) as concave function.

**Definition 2** (see [10]). A function \(f: I \rightarrow \mathbb{R}\) is said to be strongly convex with modulus \(\lambda > 0\) if

\[
f(\zeta u + (1 - \zeta)v) \leq \zeta f(u) + (1 - \zeta)f(v) - \lambda \zeta(1 - \zeta)(v - u)^2,
\]

holds for all \(u, v \in I\) and \(\zeta \in [0, 1]\).

**Definition 3** (see [3]). A function \(f: I \rightarrow \mathbb{R}\) is said to be \(\phi\)-convex on \(I\) if

\[
f(\zeta u + (1 - \zeta)v) \leq f(u) + \phi(f(u), f(v)),
\]

holds for all \(u, v \in I\) and \(\zeta \in [0, 1]\), where \(\phi\) is a bifunction.

**Definition 4** (see [2]). A function \(f: I \rightarrow \mathbb{R}\) is said to be strongly \(\phi\)-convex on \(I\) if

\[
f(\zeta u + (1 - \zeta)v) \leq f(u) + \phi(f(u), f(v)) - \lambda\zeta(1 - \zeta)(v - u)^2,
\]

holds for all \(u, v \in I\) and \(\zeta \in [0, 1]\), \(\lambda \geq 0\), where \(\phi\) is a bifunction.

It is to be noted that for \(\phi(x, y) = x - y\), strongly \(\phi\)-convex function reduces to strongly convex function. Farid in [11] defined the unified integral operators (5) and (6) and has proved the continuity and the boundedness of these integral operators. The aim of this paper is the study of integral inequalities for strongly \(\phi\)-convex functions via...
Definition 5. Let \( f, g: [u, v] \rightarrow \mathbb{R} \) where \( 0 < u < v \) be the function such that \( f \) is positive and integrable over \([u, v]\) and \( g \) is differentiable and strictly increasing. Also, let \( \Psi/x \) be an increasing function on \([u, \infty) \) and \( a, \xi, \eta, \zeta \in \mathbb{C} \), \( p, \mu, \delta \geq 0 \) and \( 0 < k \leq \delta + \mu \). Then, for \( x \in [u, v] \), the left and right integral operators are defined as follows:

\[
\left( g^{\Psi, \gamma, \delta, k}_{\mu, \alpha, \zeta} f \right)(x, \eta; \mu) = \int_{u}^{x} f(y) dy, \tag{5} \]

\[
\left( g^{\Psi, \gamma, \delta, k}_{\mu, \alpha, \zeta, \nu} f \right)(x, \eta; \nu) = \frac{\psi(g(x) - g(y))}{g(x) - g(y)} \left( g_{\mu, \alpha, \zeta} f \right)(y) dy, \tag{6} \]

where

\[
f_{\alpha}^{\gamma, \delta, k}_{\mu, \alpha, \zeta, \nu} \left( \frac{g(x) - g(y)}{g(x) - g(y)} \right) \left( g^{\Psi, \gamma, \delta, k}_{\mu, \alpha, \zeta} f \right)(y) dy.
\]

By choosing specific functions \( \Psi \) and \( g \) and fixing parameters involved in the Mittag-Leffler function \( E_{\mu, \alpha, \zeta}(\eta(g(x) - g(y))) \), various known fractional integrals can be reproduced (see [5], Remarks 6 and 7). In [4], using unified integral operators, we have obtained integral inequalities for \( \varphi \)-convex functions. In the following, we give these inequalities in the form of Theorems 1–3.

Theorem 1. Let \( f: [u, v] \rightarrow \mathbb{R} \) be a positive \( \varphi \)-convex function and \( g: [u, v] \rightarrow \mathbb{R} \) be differentiable and strictly increasing function. Also, let \( \Psi/x \) be an increasing function on \([u, v], \eta, \alpha, \xi, \eta, \zeta \in \mathbb{C}, p, \mu, \nu, \delta \geq 0, 0 < k \leq \delta + \mu \), and \( 0 < k \leq \delta + v \). Then, for \( x \in [u, v] \), we have

\[
\left( g^{\Psi, \gamma, \delta, k}_{\mu, \alpha, \zeta} f \right)(x, \eta; \mu) + \int_{u}^{x} f(y) dy \left( g^{\mu, \alpha, \zeta} f \right)(y) dy 
\]

\[
\leq E_{\mu, \alpha, \zeta}(\eta(g(x) - g(u))) \varphi \left( f(u), f(x) \right) \left( g_{\mu, \alpha, \zeta} f \right)(u) f(x) 
\]

\[
+ f_{\alpha}^{\mu} \left( g_{\mu, \alpha, \zeta} \right) \left( g^{\mu, \alpha, \zeta} f \right)(y) \left( g^{\mu, \alpha, \zeta} f \right)(y) \left( g^{\mu, \alpha, \zeta} f \right)(y) dy 
\]

\[
+ f_{\alpha}^{\mu} \left( g_{\mu, \alpha, \zeta} \right) \left( g^{\mu, \alpha, \zeta} f \right)(y) \left( g^{\mu, \alpha, \zeta} f \right)(y) \left( g^{\mu, \alpha, \zeta} f \right)(y) dy 
\]

\[
+ f_{\alpha}^{\mu} \left( g_{\mu, \alpha, \zeta} \right) \left( g^{\mu, \alpha, \zeta} f \right)(y) \left( g^{\mu, \alpha, \zeta} f \right)(y) \left( g^{\mu, \alpha, \zeta} f \right)(y) dy. \tag{8} \]

Theorem 2. Along with the assumptions of Theorem 1, if \( f(u + v - x) = f(x) \) and \( \varphi(x, y) = x + y \), then the following result holds:
present refinements of bounds of fractional integral operators.

### 2. Main Results

Throughout this section, we have adopted the following notations:

\[
I(u, v; g) := \frac{1}{v-u} \int_u^v g(t) \, dt,
\]

\[
S(\mu, \nu, u^+; v^-) = \left( \int_{u^+}^{\nu} \int_{\mu^+}^{\nu} f(\eta, \eta; p) \, d\eta \right) \left( \int_{\nu^-}^{\mu^-} \int_{\nu^-}^{\mu^-} f(\xi, \xi; p) \, d\xi \right).
\]

**Theorem 4.** If \( f \) is a positive strongly \( \phi \)-convex function with modulus \( \lambda \geq 0 \), along with other assumptions of Theorem 1, then we have

\[
S(\mu, \nu, u^+; v^-) \leq E_{\mu, \nu, \xi}^{\gamma, \delta, \kappa, \xi} (\eta (g(x) - g(u))^{\nu}; p) \Psi (g(x) - g(u)) f(x) + \\
J_x^u \left( E_{\mu, \nu, \xi}^{\gamma, \delta, \kappa, \xi} (g; \Psi) \right) \phi (f(u), f(x)) \left[ I(u, x; g) - g(u) \right] II \left( x, x; I(x, x; g) \right)
\]

where \( I_d \) is the identity function.

**Proof.** For the kernel defined in (7) and the strongly \( \phi \)-convexity of the function \( f \) on \([u, x]\), the following inequalities hold, respectively:

\[
J_x^u \left( E_{\mu, \nu, \xi}^{\gamma, \delta, \kappa, \xi} (g; \Psi) \right) \phi (f(u), f(x)) \leq f(x) \int_x^u \left( E_{\mu, \nu, \xi}^{\gamma, \delta, \kappa, \xi} (g; \Psi) \right) \phi (f(u), f(x)) \, dx,
\]

\[
f(x) \leq f(u) + \frac{x - c}{x - u} \phi (f(u), f(x)) - \lambda \left( \frac{x - c}{x - u} \right) \left( \frac{c - u}{x - u} \right) (u - x)^2.
\]

The aforementioned inequalities are used to obtain the following integral inequality:

\[
\int_u^x \left( f(\xi, \xi; p) \right) g(\xi) \, d\xi \leq f(x) \int_u^x \left( E_{\mu, \nu, \xi}^{\gamma, \delta, \kappa, \xi} (g; \Psi) \right) \phi (f(u), f(x)) \, dx + \\
\lambda \int_u^x (x - \xi) (\xi - u) g(\xi) \, d\xi.
\]
In view of Definition 5 and applying integration by parts, from inequality (15), we get the following upper bound of the right-sided unified integral operator:

\[
\left( g^{E_{\mu,\alpha,\xi,\nu}} f \right)(x, \eta; p) \leq E_{\mu,\alpha,\xi,\nu} g^{E_{\mu,\alpha,\xi,\nu}} \left( \eta (g(x) - g(u))^p : p \right) \Psi (g(x) - g(u)) f(x) \\
+ \int_x^x E_{\mu,\alpha,\xi,\nu} g^{E_{\mu,\alpha,\xi,\nu}} \left( \psi (f(u), f(x)) (I (u, x; g) - g (u)) - \lambda (x - u) (2I (u, x; I_d g) - (v + x) I (x, v; g)) \right). 
\]

(16)

Again for the kernel defined in (7) and the strongly \( \varphi \)-convexity of the function \( f \) on \( (x, v) \), the following inequalities hold, respectively:

\[
f^{E_{\eta,\delta,\kappa}} g^{E_{\eta,\delta,\kappa}} \left( \varphi (f(x), f(v)) - \lambda \left( \frac{v - \xi}{v - x} \right) (x - v) \right). 
\]

(17)

In view of Definition 5 and applying integration by parts, from inequality (19), we get the following upper bound of the left-sided unified integral operator:

\[
\left( g^{E_{\mu,\alpha,\xi,\nu}} f \right)(x, \eta; p) \leq E_{\mu,\alpha,\xi,\nu} g^{E_{\mu,\alpha,\xi,\nu}} \left( \eta (g(v) - g(x))^p : p \right) \Psi (g(v) - g(x)) f(v) \\
+ \int_v^v E_{\mu,\alpha,\xi,\nu} g^{E_{\mu,\alpha,\xi,\nu}} \left( \psi (f(x), f(v)) (I (x, v; g) - g (x)) - \lambda (v - x) (2I (x, v; I_d g) - (v + x) I (x, v; g)) \right). 
\]

(18)

Corollary 1. By setting \( \mu = v \) in (12), we get
\[ S(\mu, \mu, u^*, v^-) \leq E_{\mu, \lambda, \xi}^{\psi, \delta, \kappa} (\eta (g(x) - g(u))^\mu; p) \Psi (g(x) - g(u))f(x) \]
\[ + \int_{u}^{x} E_{\mu, \lambda, \xi}^{\psi, \delta, \kappa} (\eta (g(v) - g(x))^\mu; p) \Psi (g(v) - g(x))f(v) \]
\[ + \int_{x}^{v} E_{\mu, \lambda, \xi}^{\psi, \delta, \kappa} (\eta (g(u) - g(v))^\mu; p) \Psi (g(u) - g(v))f(u) \]
\[ = (v-x)\left[ f(x) - \frac{1}{2} \phi(f(x), f(x) + x) \right] + \lambda (v-x)^2 \]
\[ \leq f\left( \frac{x + v}{2} \right) \leq f\left( \frac{x - u}{v - u} + \frac{v - x}{v - u} \right) + \frac{1}{2} \phi(f(x), f(x) + x) - \frac{\lambda (u - v)^2}{4}. \]

**Theorem 5.** Let \( f(x) = f(x) + f(v) \) and \( \phi(x, y) = x + y \) in addition with the assumptions of Theorem 4. Then, the following inequality holds:

\[ S(\mu, \mu, u^*, v^-) \]
\[ \leq 2\Psi (g(v) - g(u))^\mu (\eta (g(v) - g(u))^\mu; p) f(v) \]
\[ + \frac{1}{2} \left( f\left( \frac{x + v}{2} \right) + \frac{\lambda (u - v)^2}{4} \right) \left( E_{\mu, \lambda, \xi}^{\psi, \delta, \kappa, \ell} (u, \eta; p) + \left( E_{\mu, \lambda, \xi}^{\psi, \delta, \kappa, \ell} (v, \eta; p) \right) \right) \]
\[ \leq S(\mu, \mu, u^*, v^-) \]
\[ \leq 2\Psi (g(v) - g(u))^\mu (\eta (g(v) - g(u))^\mu; p) f(v) \]
\[ + \int_{u}^{x} E_{\mu, \lambda, \xi}^{\psi, \delta, \kappa} (\eta (g(v) - g(x))^\mu; p) \Psi (g(v) - g(x))f(v) \]
\[ + \int_{x}^{v} E_{\mu, \lambda, \xi}^{\psi, \delta, \kappa} (\eta (g(u) - g(v))^\mu; p) \Psi (g(u) - g(v))f(u) \]
\[ = (v-x)\left[ f(x) - \frac{1}{2} \phi(f(x), f(x) + x) \right] + \lambda (v-x)^2 \]
Proof. For the kernel defined in equation (7) and the strongly φ-convexity of the function f on [u, v], the following inequalities hold, respectively:

\[ \int_u^x \phi_{\mu, \alpha, \xi}^n g'(x) \, dx \leq \int_u^x \phi_{\mu, \alpha, \xi}^n g'(x), \quad x \in (u, v), \]  

(25)

\[ f(x) \leq f(v) + \frac{v - x}{v - u} \phi(f(u), f(v)) - \lambda(v - x)(x - u). \]  

(26)

The aforementioned inequalities are used to obtain the following integral inequality:

\[ \int_u^v \int_u^x \phi_{\mu, \alpha, \xi}^n g'(x) \, dx \leq f(v) \int_u^v \phi_{\mu, \alpha, \xi}^n g'(x) \, dx \]

\[ + \frac{\phi(f(u), f(v))}{v - u} \int_u^v \phi_{\mu, \alpha, \xi}^n g'(x) \, dx \]

\[ - \lambda \int_u^v \phi_{\mu, \alpha, \xi}^n g'(x) \, dx. \]  

(27)

In view of Definition 5, applying integration by parts, and using \( \phi(x, y) = x + y \), from inequality (27), we get the following upper bound of the left-sided unified integral operator:

\[ \left( \phi_{\mu, \alpha, \xi, \nu}^n g \right)(u, \eta; p) \leq \phi_{\mu, \alpha, \xi}^n (\eta(g(v) - g(u)^n; \phi(g(v) - g(u)) f(v) \]

\[ + \int_v^u \phi_{\mu, \alpha, \xi}^n (f(u) + f(v))(I(u, v, g) - g(u)) \]

\[ - \lambda \int_v^u \phi_{\mu, \alpha, \xi}^n (v - u)(2I(u, v, I_d g) - (v + u)I(u, v, g)). \]  

(28)

Also, the following inequality holds:

\[ \int_u^x \phi_{\mu, \alpha, \xi}^n g'(x) \leq \int_u^x \phi_{\mu, \alpha, \xi}^n g'(x), \quad x \in (u, v). \]  

(29)

The aforementioned inequalities (26) and (29) are used to obtain the following integral inequality:

\[ \int_u^v \int_u^x \phi_{\mu, \alpha, \xi}^n g'(x) \, dx \]

\[ \leq \int_u^v \phi_{\mu, \alpha, \xi}^n g'(x) \, dx \]

\[ + \frac{\phi(f(u), f(v))}{v - u} \int_u^v g'(x) (v - x) \, dx \]

\[ - \lambda \int_u^v (v - x)(x - u) g'(x) \, dx. \]  

(30)
In view of Definition 5 and applying integration by parts, from inequality (30), we get the following upper bound of the right-sided unified integral operator:

\[
\left( g^E_{\mu, \alpha, \lambda, n} f \right) (v, \eta; p) \leq E^{\mu, \delta, \kappa, \xi}_{\mu, \alpha, \lambda, n} \left( \eta (g(v) - g(u))^p; p \right) \Psi (g(v) - g(u)) f(v) \\
+ \int u^v f^u (E^{\mu, \delta, \kappa, \xi}_{\mu, \alpha, \lambda, n}, g; \Psi) \left( f(u) + f(v) \right) (I(u, v, g) - g(u)) \, dx \\
- \lambda \int u^v f^u (E^{\mu, \delta, \kappa, \xi}_{\mu, \alpha, \lambda, n}, g; \Psi) (v - u) \left( 2I(u, v, I_d g) - (v + u) I(u, v, g) \right). 
\]  

(31)

Now, using Lemma 1, we can write

\[
\int u^v f^\left( \frac{u + v}{2} \right) f^u (E^{\mu, \delta, \kappa, \xi}_{\mu, \alpha, \lambda, n}, g; \Psi) g'(x) \, dx \\
\leq \int u^v f^u (E^{\mu, \delta, \kappa, \xi}_{\mu, \alpha, \lambda, n}, g; \Psi) g'(x) f(x) \, dx + \frac{1}{2} \int u^v f^u (E^{\mu, \delta, \kappa, \xi}_{\mu, \alpha, \lambda, n}, g; \Psi) g'(x) \Psi(f(x), f(x)) \, dx \\
- \frac{\lambda (u - v)^2}{4} \int u^v f^u (E^{\mu, \delta, \kappa, \xi}_{\mu, \alpha, \lambda, n}, g; \Psi) g'(x) \, dx. 
\]  

(32)

In view of Definition 5 and \( \varphi(x, y) = x + y \), from (32), we get the following upper bound of the left-sided unified integral operator:

\[
f^\left( \frac{u + v}{2} \right) \left( g^E_{\mu, \alpha, \lambda, n} f \right) (u, \eta; p) \leq 2 \left( g^{E^{\mu, \delta, \kappa, \xi}_{\mu, \alpha, \lambda, n}} f \right) (u, \eta; p) \\
- \frac{\lambda (u - v)^2}{4} \left( g^{E^{\mu, \delta, \kappa, \xi}_{\mu, \alpha, \lambda, n}} f \right) (u, \eta; p). 
\]  

(33)

Also, from Lemma 1, we can write

\[
\int u^v f^\left( \frac{u + v}{2} \right) f^u (E^{\mu, \delta, \kappa, \xi}_{\mu, \alpha, \lambda, n}, g; \Psi) g'(x) \, dx \\
\leq \int u^v f^u (E^{\mu, \delta, \kappa, \xi}_{\mu, \alpha, \lambda, n}, g; \Psi) g'(x) f(x) \, dx + \frac{1}{2} \int u^v f^u (E^{\mu, \delta, \kappa, \xi}_{\mu, \alpha, \lambda, n}, g; \Psi) g'(x) \varphi(f(x), f(x)) \, dx \\
- \frac{\lambda (u - v)^2}{4} \int u^v f^u (E^{\mu, \delta, \kappa, \xi}_{\mu, \alpha, \lambda, n}, g; \Psi) g'(x) \, dx. 
\]  

(34)

In view of Definition 5 and \( \varphi(x, y) = x + y \), from (34), we get the following upper bound of the right-sided unified integral operator:

\[
f^\left( \frac{u + v}{2} \right) \left( g^E_{\mu, \alpha, \lambda, n} f \right) (v, \eta; p) \leq 2 \left( g^{E^{\mu, \delta, \kappa, \xi}_{\mu, \alpha, \lambda, n}} f \right) (v, \eta; p) \\
- \frac{\lambda (u - v)^2}{4} \left( g^{E^{\mu, \delta, \kappa, \xi}_{\mu, \alpha, \lambda, n}} f \right) (v, \eta; p). 
\]  

(35)
Inequality (24) will be obtained by using (28), (31), (33), and (35).

Remark 3. For \( \lambda = 0 \) in (24), we get (9) of Theorem 2; if
\[ 2I(u, v; I_dg) > (u + v)I(u, v; g), \]
then we will get refinement of (9).

For \( \varphi(x, y) = x - y \) in (24), we get the result for strongly convex function.

For \( \varphi(x, y) = x - y \) and \( \lambda = 0 \) in (24), we get the result of Theorem 22 in [5].

**Theorem 6.** If \( |f'| \) is strongly \( \varphi \)-convex with modulus \( \lambda \geq 0 \)
along with other assumptions of Theorem 3, then the inequality

\[
\left| \left( g \mathcal{F}^p_{\mu, \eta, k, \nu} f^* g \right)(x, \eta; p) \right|
\leq E^{p, k, \nu}_{\mu, \eta, \lambda}(\eta (g(x) - g(u))^p; \Psi) (x, \eta; p) |f'(x)|
\]

\[
+ \int_x^y E^{p, k, \nu}_{\mu, \eta, \lambda}(g; \Psi) \left[ |f''(u)|, |f'(x)| \right] (I(u, x; g) - g(u))
\]

\[
- \lambda (x - u)(2I(u, x; I_dI) - (x + u)I(u, x; g))
\]

\[
+ E^{p, k, \nu}_{\mu, \eta, \lambda}(\eta (g(v) - g(x))^p; \Psi) (x, \eta; p) |f'(v)|
\]

\[
+ \int_x^y E^{p, k, \nu}_{\mu, \eta, \lambda}(g; \Psi) \left[ |f''(x)|, |f'(v)| \right] (I(x, v; g) - g(x))
\]

\[
- \lambda (v - x)(2I(x, v; I_dI) - (v + x)I(x, v; g))
\]

holds for \( x \in (u, v) \), where

\[
\left( g \mathcal{F}^p_{\mu, \eta, k, \nu} f^* g \right)(x, \eta; p) = \int_u^x \int_x^y \left( E^{p, k, \nu}_{\mu, \eta, \lambda}, g; \Psi \right) \left[ |f''(u)|, |f'(x)| \right] (I(u, x; g) - g(u))
\]

and \( I_d \) is the identity function.

Proof. Using strongly \( \varphi \)-convexity of \( |f'| \) over \([u, x]\) gives

\[
|f'(\zeta)| \leq |f'(x)| + \frac{x - \zeta}{x - u} \varphi(|f''(u)|, |f'(x)|) - \lambda (x - \zeta)(\zeta - u), \quad \zeta \in [u, x].
\]

Using absolute value property, we can write

\[
- \left| \left( f'(x) \right) + \frac{x - \zeta}{x - u} \varphi(|f''(u)|, |f'(x)|) - \lambda (x - \zeta)(\zeta - u) \right| \leq f'(\zeta)
\]

\[
\leq \left| \left( f'(x) \right) + \frac{x - \zeta}{x - u} \varphi(|f''(u)|, |f'(x)|) - \lambda (x - \zeta)(\zeta - u) \right|
\]
The aforementioned inequality (13) and second inequality of (40) are used to obtain the following integral inequality:

\[ \int_u^x f''(c) \, dc \leq \int_u^x g''(c) \, dc \]

(41)

In view of (37) and applying integration by parts, from inequality (41), we get the following upper bound:

\[ g_{\mu, \alpha, \xi} f^*(g) (x, \eta; p) \]

\[ \leq E_{\mu, \alpha, \xi} (\eta (g(x) - g(u))^\alpha; p) \Psi (g(x) - g(u)) f' (x) \]

+ \int_u^x E_{\mu, \alpha, \xi} (g; \Psi) \varphi \left( |f''(u)|, |f'(x)| \right) (I(u, x; g) - g(u))

- \lambda (x-u) \left[ 2 I(u, x; I_d g) - (x+u) I(u, x; g) \right].

(42)

Also, inequality (13) and the first inequality of (40) are used to obtain the following integral inequality:

\[ |f'(c)| \leq |f'(v)| + \frac{v - c}{v - x} \varphi \left( |f''(x)|, |f'(v)| \right) - \lambda (v-c) (c-x), \quad c \in (x, v). \]

(44)

Inequalities (17), (38), and (44) are used to obtain the following upper bounds:

\[ g_{\mu, \alpha, \xi} f^*(g) (x, \eta; p) \]

\[ \leq E_{\mu, \alpha, \xi} (\eta (g(v) - g(x))^\alpha; p) \Psi (g(v) - g(x)) f' (v) \]

+ \int_u^x E_{\mu, \alpha, \xi} (g; \Psi) \varphi \left( |f''(x)|, |f'(v)| \right) (I(x, v; g) - g(x))

- \lambda (v-x) \left[ 2 I(x, v; I_d g) - (v+u) I(x, v; g) \right].

(45)

\[ g_{\mu, \alpha, \xi} f^*(g) (x, \eta; p) \]

\[ \geq - \left[ E_{\mu, \alpha, \xi} (\eta (g(v) - g(x))^\alpha; p) \Psi (g(v) - g(x)) f' (v) \right] \]

+ \int_u^x E_{\mu, \alpha, \xi} (g; \Psi) \varphi \left( |f''(x)|, |f'(v)| \right) (I(x, v; g) - g(x))

- \lambda (v-x) \left[ 2 I(x, v; I_d g) - (v+u) I(x, v; g) \right].

(46)

Inequality (36) will be obtained by using (42)–(46).

Corollary 2. By setting \( \mu = \nu \) in (36), we get the following inequality:
Proof. For Remark 4. For \( \lambda = 0 \) in (36), we get inequality (10) of Theorem 3; if \( 2I(u, x; I_dg) > (x + u) \)

\[
\Gamma(\alpha)\left(\left(\int_u^x f\right)(x) + \left(\int_x^v f\right)(x)\right) \leq (g(x) - g(u))^\alpha f(x) + (g(v) - g(x))^\alpha f(v)
\]
\[
+ (g(x) - g(u))^{\alpha-1}\varphi(f(u), f(x))(I(u, x; g) - g(u)) - \lambda(x - u)(2I(u, x; I_dg) - (x + u)I(u, x; g))
\]
\[
+ (g(v) - g(x))^{\alpha-1}\varphi(f(f), f(v))(I(x, v; g) - g(x)) - \lambda(v - x)(2I(x, v; I_dg) - (v + x)I(x, v; g)).
\]

(48)

3. Results for Fractional Integral Operators

In this section, we give the bounds of some of the fractional integral operators which will be deduced from the results of Section 2. Throughout this section, we assume that \( p = \eta = 0 \).

Proposition 1. Under the assumptions of Theorem 4, the following result holds:

(49)

\[
\Gamma(\alpha)\left(\left(\int_u^x f\right)(x) + \left(\int_x^v f\right)(x)\right) \leq \Psi(x - u)\varphi(f(u), f(x)) + \Psi(v - x)\varphi(v, f(v))
\]
\[
+ \frac{\Psi(v - x)}{2}\varphi(f(x), f(v)) - \Psi(x - u)\frac{\lambda(x - u)^2}{6} - \Psi(v - x)\frac{\lambda(v - x)^2}{6}.
\]

(50)

Proof. For \( g \) as identity function, Theorem 4 gives (49). □

Corollary 3. For \( \Psi(\alpha) = ((\alpha k)/(k!\Gamma(\alpha))), (5) and (6) reduce to the fractional integral operators given in [5]. Further, the following bound for \( \alpha \geq k \) is also satisfied:

(51)
Corollary 4. For $\Psi (\zeta) = \zeta^a$, where $a \geq 1$, and $g$ as identity function, (5) and (6) give fractional integrals defined in [12]. Further, the following bound is also satisfied:

$$\Gamma (a) \left( (^{\alpha}I_{u^+} f) (x) + (^{\alpha}I_{v^+} f) (x) \right)$$

$$\leq (x-u)^a f (x) + (v-x)^a f (v) + \frac{(x-u)^a}{2} \varphi (f (u), f (x)) + \frac{(v-x)^a}{2} \varphi (f (x), f (v)) - \frac{(x-u)^{a+1}}{6} - \frac{(v-x)^{a+1}}{6}. \tag{51}$$

Corollary 5. Using $\Psi (\zeta) = ((\zeta^a)/ (k \Gamma_k (\alpha)))$ and $g$ as identity functions, (5) and (6) reduce to the fractional integral operators given in [13]. Further, the following bound is also satisfied:

$$k \Gamma_k (a) \left( (^{\alpha}I_{u^+} f) (x) + (^{\alpha}I_{v^+} f) (x) \right) \leq (x-u)^{a+k} f (x) + (v-x)^{a+k} f (v) + \frac{(x-u)^{a+k}}{2} \varphi (f (u), f (x)) + \frac{(v-x)^{a+k}}{2} \varphi (f (x), f (v)) - \frac{(x-u)^{a+k+1}}{6}. \tag{52}$$

Corollary 6. For $\Psi (\zeta) = \zeta^a$, where $a > 0$, and $g (x) = x^\rho / \rho$, where $\rho > 0$, (5) and (6) reduce to the fractional integral operators given in [14]. Further, the following bound is also satisfied:

$$\left( ^{\eta}I_{u^+} f \right) (x) + \left( ^{\eta}I_{v^+} f \right) (x)$$

$$\leq \frac{1}{\rho^3 \Gamma (a)} \left[ (x^\rho - u^\rho)^a f (x) + (v^\rho - x^\rho)^a f (v) + (x^\rho - u^\rho)^{a-1} (\varphi (f (u), f (x)) \right.$$  

$$- \frac{x^\rho (v^\rho - x^\rho)^{a-1} \varphi (f (x), f (v))}{\rho + 2} - \lambda \left( \frac{2 (x^\rho - u^\rho)^{a+1} \varphi (f (u), f (x))}{\rho + 1} - \frac{(x^\rho - u^\rho)^{a+1}}{\rho + 1} \right) \left] \right). \tag{53}$$

Corollary 7. For $\Psi (\zeta) = \zeta^a$, where $a > 0$, and $g (x) = ((\zeta^s)/ (s+1))$, where $s > 0$, (5) and (6) give the following fractional integral operators:

$$\left( ^{\eta}I_{u^+} (^{\zeta}I_{u^+}) f \right) (x) = \frac{(s+1)^{1-a}}{\Gamma (a)} \int_u^x \left( x^{s+1} - x^{s+1} \right)^{a-1} \zeta^f (\zeta) d\zeta,$$

$$\left( ^{\eta}I_{v^+} (^{\zeta}I_{v^+}) f \right) (x) = \frac{(s+1)^{1-a}}{\Gamma (a)} \int_x^v \left( x^{s+1} - x^{s+1} \right)^{a-1} \zeta^f (\zeta) d\zeta. \tag{54}$$
Further, the following bound is also satisfied:

\[
(s + 1)^{\alpha} \Gamma(\alpha) \left( \left( \int_{I_{u^*}}^{x \alpha} f \right) (x) + \left( \int_{I_{u^*}}^{\alpha} f \right) (x) \right) \leq \left( x^{\alpha+1} - u^{\alpha+1} \right)^{\alpha} f (x)
\]

\[
+ \left( v^{\alpha+1} - x^{\alpha+1} \right)^{\alpha} f (v) + \left( x^{\alpha+1} - u^{\alpha+1} \right)^{\alpha-1} \left( \varphi \left( f (u), f (x) \left( \frac{x^{\alpha+2} - u^{\alpha+2}}{(x - u)(s + 2)} - u^{\alpha+1} \right) \right)
\]

\[
- \lambda \left( \frac{2 \left( x^{\alpha+3} - u^{\alpha+3} \right)}{s + 3} - \frac{(x + u)(x^{\alpha+2} - u^{\alpha+2})}{s + 2} \right) \right) + \left( v^{\alpha+1} - x^{\alpha+1} \right)^{\alpha-1}
\]

\[
\cdot \left( \varphi \left( f (x), f (v) \right) \left( \frac{x^{\alpha+2} - x^{\alpha+2}}{(v - x)(s + 2)} - x^{\alpha+1} \right) \right)
\]

\[
- \lambda \left( \frac{2 \left( v^{\alpha+3} - x^{\alpha+3} \right)}{s + 3} - \frac{(v + x)(v^{\alpha+2} - x^{\alpha+2})}{s + 2} \right) \right).
\]

(55)

**Corollary 8.** For \( \Psi (c) = ((c^{\alpha + k})/k \Gamma_k (\alpha)) \) and \( g (x) = ((x^{\alpha+1})/(s + 1)) \), where \( s > 0 \), (5) and (6) reduce to the fractional integral operators given in [15]. Further, the following bound is also satisfied:

\[
\left( \int_{I_{u^*}}^{x \alpha} f \right) (x) + \left( \int_{I_{u^*}}^{\alpha} f \right) (x)
\]

\[
\leq \frac{1}{(s + 1)^{\alpha+k} k \Gamma_k (\alpha)} \left( x^{\alpha+1} - u^{\alpha+1} \right)^{\alpha+k} f (x) + \left( v^{\alpha+1} - x^{\alpha+1} \right)^{\alpha+k} f (v)
\]

\[
+ \left( x^{\alpha+1} - u^{\alpha+1} \right)^{(\alpha+k)-1} \left( \varphi \left( f (u), f (x) \left( \frac{x^{\alpha+2} - u^{\alpha+2}}{(x - u)(s + 2)} - u^{\alpha+1} \right) \right)
\]

\[
- \lambda \left( \frac{2 \left( x^{\alpha+3} - u^{\alpha+3} \right)}{s + 3} - \frac{(x + u)(x^{\alpha+2} - u^{\alpha+2})}{s + 2} \right) \right) + \left( v^{\alpha+1} - x^{\alpha+1} \right)^{(\alpha+k)-1}
\]

\[
\cdot \left( \varphi \left( f (x), f (v) \right) \left( \frac{x^{\alpha+2} - x^{\alpha+2}}{(v - x)(s + 2)} - x^{\alpha+1} \right) \right)
\]

\[
- \lambda \left( \frac{2 \left( v^{\alpha+3} - x^{\alpha+3} \right)}{s + 3} - \frac{(v + x)(v^{\alpha+2} - x^{\alpha+2})}{s + 2} \right) \right).
\]

(56)

**Corollary 9.** For \( \Psi (c) = \zeta^\alpha \), where \( \alpha > 0 \), \( g (x) = ((x^{\alpha+1})/\Gamma_k (\alpha)) \), where \( \beta \) and \( \alpha > 0 \), (5) and (6) reduce to the fractional integral operators given in [16]. Further, the following bound is also satisfied:
\[(\tilde{\rho} I_{u}^{\rho} f)(x) + (\tilde{\rho} I_{v}^{\rho} f)(x) \leq \left( x^{\beta+s} - u^{\beta+s} \right)^{\alpha} f(x) + \left( v^{\beta+s} - x^{\beta+s} \right)^{\alpha} f(v) \]
\[
+ \left( x^{\beta+s} - u^{\beta+s} \right)^{\alpha-1} \varphi(f(u), f(x)) \left( \frac{x^{\beta+s} + 1 - u^{\beta+s+1}}{(x-u)(\beta+s+1)} - u^{\beta+s} \right) \]
\[
- \lambda \left( \frac{2(x^{\beta+s+2} - u^{\beta+s+2})}{\beta+s+2} - (x+u) \frac{x^{\beta+s+1} - u^{\beta+s+1}}{(x-u)(\beta+s+1)} \right) \] \hspace{1cm} (57)
\[
+ \left( v^{\beta+s} - x^{\beta+s} \right)^{\alpha-1} \varphi(f(x), f(v)) \left( \frac{v^{\beta+s+1} - x^{\beta+s+1}}{(v-x)(\beta+s+1)} - x^{\beta+s} \right) \]
\[
- \lambda \left( \frac{2(v^{\beta+s+2} - x^{\beta+s+2})}{\beta+s+2} - (v+x) \frac{v^{\beta+s+1} - x^{\beta+s+1}}{(v-x)(\beta+s+1)} \right) \]

**Corollary 10.** Using \( \Psi(c) = \xi^{k} \) and \( g(x) = ((x-u)^{k})/\rho \) in (5) and \( g(x) = ((-v-x)^{k})/\rho \) in (6), where \( \rho > 0 \), fractional integral operators given in [17] are obtained. Further, the following bound is also satisfied:

\[
(\tilde{\rho} I_{u}^{\rho} f)(x) + (\tilde{\rho} I_{v}^{\rho} f)(x) \leq \frac{1}{\rho \Gamma(a)} \left( (x-u)^{\rho a} f(x) + \varphi(f(u), f(x)) \left( \frac{x-u}{\rho + 1} \right) \right) \]
\[
- \lambda \left( \frac{\rho}{(\rho+1)(\rho+2)} (x-u)^{\rho a+1} + (v-x)^{\rho a} f(v) + \varphi(f(x), f(v)) \left( \frac{v-x}{\rho + 1} \right) \right) \] \hspace{1cm} (58)

**Corollary 11.** For \( \Psi(c) = ((x^{a+k})/(k\Gamma_{k}(a))) \), where \( a > k \), and \( g(x) = ((x-u)^{k})/\rho \) in (5) and \( g(x) = ((-v-x)^{k})/\rho \) in (6), where \( \rho > 0 \), fractional integral operators given in [18] are obtained. Further, the following bound is also satisfied:

\[
(\tilde{\rho} I_{u}^{\rho} f)(x) + (\tilde{\rho} I_{v}^{\rho} f)(x) \leq \frac{1}{\rho \cdot k \Gamma_{k}(a)} \left( (x-u)^{\rho a+k} f(x) + \varphi(f(u), f(x)) \left( \frac{x-u}{\rho + 1} \right) \right) \]
\[
- \lambda \left( \frac{\rho}{(\rho+1)(\rho+2)} (x-u)^{\rho (a+k)+1} + (v-x)^{\rho a+k} f(v) + \varphi(f(x), f(v)) \left( \frac{v-x}{\rho + 1} \right) \right) \] \hspace{1cm} (59)

**Remark 5**

For \( \lambda = 0 \), all the results of Section 3 reduce to the results of Section 3 in [4]; if \( \lambda > 0 \), then all the results of Section 3 give the refinements of the results of Section 3 in [4].

For \( \varphi(x, y) = x - y \) and \( \lambda = 0 \), all the results of Section 3 reduce to the propositions and corollaries of [5].

Further, various bounds can be obtained by applying Theorems 5 and 6 which we leave for the reader.

4. **Concluding Remarks**

The paper presents bounds of unified integral operators (5) and (6) for strongly \( \varphi \)-convex functions. These bounds are refinements of bounds obtained for unified integral
operators for $\varphi$-convex functions in [4]. The results for fractional integral operators have been deduced which provide bounds for Riemann–Liouville and other well-known fractional integral operators.

**Data Availability**

No data were used to support this study.

**Conflicts of Interest**

The authors declare that they have no conflicts of interest.

**Acknowledgments**

The research was supported by the National Natural Science Foundation of China (grant nos. 11971142, 11871202, 61673169, 11701176, 11626101, and 11601485).

**References**

[1] T. Abdeljawad, S. Rashid, Z. Hammouch, and Y.-M. Chu, “Some new local fractional inequalities associated with generalized $(s, m)$-convex functions and applications,” *Advances in Difference Equations*, vol. 2020, p. 406, 2020.

[2] M. Awan, M. Noor, K. Noor, and F. Safdar, “On strongly generalized convex functions,” *Filomat*, vol. 31, no. 18, pp. 5783–5790, 2017.

[3] M. E. Gordji, M. R. Delavar, and M. D. L. Sen, “On $\varphi$-convex functions,” *Journal of Mathematical Inequalities*, vol. 10, no. 1, pp. 173–183, 2016.

[4] Y. C. Kwun, M. Zahra, G. Farid, and S. Zainab, “On a unified integral operator for $\varphi$-convex function,” *Advances in Difference Equations*, vol. 2020, p. 297, 2020.

[5] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, and S. M. Kang, “Generalized Riemann-Liouville $k$-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities,” *IEEE Access*, vol. 6, pp. 64946–64953, 2018.

[6] C. Pintea and A. Tofan, “Convex decompositions and the valence of some functions,” *Journal of Nonlinear Variable Analysis*, vol. 4, pp. 225–239, 2020.

[7] A. W. Roberts and D. E. Varberg, *Convex Functions*, Academic Press, New York, NY, USA, 1973.

[8] S. B. Sun and Y. M. Chu, “Inequalities for the generalized weighted mean values of g-convex functions with applications,” *Revista de la real academia de ciencias exactas fisicas y naturales serie A-matematicas*, vol. 114, p. 172, 2020.

[9] W. Sun, “A unified approach to some inequalities for generalized convex functions on fractal sets and their applications,” *Journal of Nonlinear Functional Analysis*, vol. 2018, p. 45, 2018.

[10] B. T. Polyak, “Existence theorems and convergence of minimizing sequences in extremum problems with restrictions,” *Soviet Mathematics - Doklady*, vol. 7, pp. 72–75, 1966.

[11] G. Farid, “A unified integral operator and further its consequences,” *Open Journal of Mathematical Analysis*, vol. 4, no. 1, pp. 1–7, 2020.

[12] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, *Theory and Applications of Fractional Differential Equations*, Vol. 204, North-Holland Mathematics Studies, Elsevier, New York, NY, USA, 2006.