Data in brief

The transcriptome data from the leaves of four Papaver species captured at the plant's three developmental life cycles

Sathiyamoorthy Subramaniyam a, **, Seonhwa Baeb, Myunghee Jung a, c, Younhee Shin a, d, Jae-Hyeon Oh e, *

a Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea
b Genomics Division, National Institute of Agricultural Science (NAS), Rural Development Administration (RDA), 370, Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 54874, Republic of Korea
c Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
d Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
e Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Sciences (NICS), Rural Development Administration (RDA), 20 Jeompiljae-ro, Miryang, Gyeongnam 50424, Republic of Korea

A R T I C L E I N F O

Article history:
Received 6 November 2019
Received in revised form 25 November 2019
Accepted 29 November 2019
Available online 7 December 2019

Keywords:
Papaver
Transcriptome
Developmental stages
Alkaloids
Poppies

A B S T R A C T

The plants in the Papaver genus are widely known as Poppies, which is used for ornamental and medicinal purposes, to utilize its plants derived alkaloids and attractive flowers. From this genus, we have sequenced the transcriptomes of four species’s (Papaver rhoeas (two cultivar), Papaver nudicaule (five cultivar), Papaver fauriei, and Papaver somniferum) leaves at three developmental stages (i.e., leaf rosette (30 days), elongation and branching (60 days), and blossom and seed formations (90 days)), to elucidate the secondary metabolite biosynthesis gene expression profiles at respective plant stages.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The dataset present in this article is a transcriptome from the leaves of four Papaver species and its subspecies classified upon their flower colour, as shown in Fig. 1. The tables in this article are as follows: Table 1 explains the sampling time points of Papaver plant from its three different growth stages, and Table 2 explains the quality of the transcriptome data and the sequences mapped to the draft genome and the reference transcriptome. Totally, 590 Gb of transcriptome sequences are generated from 84 sequence libraries (i.e., 28 sampling points with three biological replicates) using Illumina Hi-Seq 4000 equipment and 481 Mb of long reads from 2 libraries using PacBio, iso-seq method. Among those, the short reads, 568.4 GB (96.2%) of bases remained after the pre-processing, as explained in the previous articles [1,2]. Complete reference transcriptome has been employed for the de-novo transcriptome assemblies, as explained in the previous articles [1,2]. Further, the pre-processed reads are mapped to the transcript references, which were obtained from the de-novo assemblies [1,2] and Papaver somniferum draft genome [3]. The coverage of sequence transcriptome is 77X per sample, which was calculated with the reference of transcripts obtained from the draft genome of Papaver somniferum. Part of this transcriptomic data was assessed to catalogue the available secondary metabolite biosynthesis transcripts and the cytochrome multi-family transcripts to the KEGG and cytochrome P450 engineering database (CYPED) [1,2]. Moreover, the differential expression profiles of those transcripts were assessed into two data models, i.e., between the stages of the developmental life cycle and between the Papaver species systematically [1,2]. Moreover, as the genome sequence has been utilized to explain the evolutionary history of morphine pathway [4], and to elucidate their core functions that exist in Papaver plant which can adapt to the whole plant community, as it is self-incompatibility to various environments [5]; hence, this data set could be valuable to assess the genetics behind the Papaver plant functions.
2. Experimental design, materials, and methods

2.1. Plant samples

Five *Papaver nudicaule* varieties with different colours of flowers, i.e., white, yellow, pink, orange, and scarlet have grown individually in multiple pots and maintained at 30 °C for 3 months. For the mRNA sequencing, leaf samples were obtained from three developmental stages (i.e., 30, 60, and 90 days). Another four *Papaver* species (i.e., *P. rhoeas*, *P. nudicaule*, *P. somniferum*, and *P. fauriei*) have been sampled with a similar procedure that belongs to this project [1,2]. The samples collected for transcriptomic analysis was immediately frozen in the liquid nitrogen and stored in a deep freezer at −70 °C. For each species, the experiments were repeated in triplicates (under the same conditions). Phenotypic differences among these plants, i.e., flower colour, leaves, and the visual appearance of the plant with flowers, are shown in Fig. 1.

2.2. Transcriptome sequencing

The complete sequence library preparation and sequencing experiments for the Illumina protocols were conducted by Macrogen Inc. (Seoul, Korea) (http://www.macrogen.com), the authorized sequence service providers for every individual sample. Illumina Hi-Seq 4000 system has been used to sequence all the individual samples. The details on the RNA library construction was given in the

Table 1
Summary of the *Papaver* leaves sampled for the transcriptome sequencing.

Plant (ID)	Flower Color	Methods	Plant age in Days
Papaver rhoeas (RA)	Asia Red A	Illumina	✓✓✓✓
Papaver rhoeas (RS)	Asia Red B	Illumina/PacBio	✓✓✓✓
Papaver nudicaule (NW)	White	Illumina/PacBio	✓✓✓
Papaver nudicaule (NO)	Orange	Illumina	✓✓✓
Papaver nudicaule (NY)	Yellow	Illumina	✓✓✓
Papaver nudicaule (NS)	Scarlet	Illumina/PacBio	✓✓✓
Papaver fauriei (FW)	Pink	Illumina	✓✓✓
Papaver somniferum (PS)	Yellow	Illumina	✓✓✓

Fig. 1. The morphological illustrations of *Papaver* species. The species from the right is *Papaver somniferum*, *P. rhoeas* (Asia red A and B), *P. fauriei* and *P. nudicaule*. *Papaver nudicaule* cultivars (yellow dotted lines) and different *Papaver* species (Red dotted lines).
Table 2
The sequence summary of individual samples. The reference are 1: Oh, J. et al., 2: Kim, D. et al., and 3: this article.

Given Name	Raw Bases	Processed Bases (%)	Reference	Mapping Accession	link
FW_120_1	6.60	96.62	39.64	76.68	
FW_120_2	5.90	96.59	41.73	75.73	
FW_120_3	6.30	96.52	39.68	78.05	
FW_30_1	8.20	97.42	44.46	75.02	
FW_30_2	8.20	97.41	44.46	75.02	
FW_30_3	8.20	97.41	44.46	75.02	
NW_60_1	5.90	96.62	40.32	75.96	
NW_60_2	6.00	96.65	40.34	75.25	
NW_60_3	6.00	96.76	39.56	75.72	
NW_90_1	7.20	96.96	44.95	75.90	
NW_90_2	7.60	96.94	43.95	75.80	
NW_90_3	5.70	97.08	45.14	75.89	
NO_60_1	6.20	97.04	46.82	85.61	
NO_60_2	6.00	97.22	46.53	84.13	
NO_60_3	12.90	95.45	51.28	70.75	
NO_90_1	5.90	97.08	46.96	83.96	
NO_90_2	5.60	96.54	44.71	85.31	
NO_90_3	7.10	96.39	45.44	84.99	
NO_30_1	6.10	97.94	48.13	84.43	
NO_30_2	6.90	98.02	47.81	84.85	
NO_30_3	6.20	98.04	46.82	85.61	
NP_60_1	5.60	97.90	45.60	85.49	
NP_60_2	5.40	97.97	47.63	84.25	
NP_60_3	5.90	97.38	47.18	83.92	
NP_90_1	5.20	96.41	44.77	85.52	
NP_90_2	6.60	96.79	46.34	84.30	
NP_90_3	5.40	96.63	46.97	84.51	
NS_30_1	5.50	97.58	47.31	84.46	
NS_30_2	6.00	97.40	47.35	84.02	
NS_30_3	6.20	97.30	47.79	83.08	
NS_60_1	6.40	97.36	46.81	84.53	
NS_60_2	13.50	96.99	42.88	84.21	
NS_60_3	5.50	97.24	49.80	83.87	
NS_90_1	7.30	94.43	45.68	82.78	
NS_90_2	5.80	96.69	45.34	84.13	
NS_90_3	7.70	96.68	46.28	84.57	
NW_30_1	6.80	97.83	44.60	85.97	
NW_30_2	6.50	97.98	46.39	85.93	
NW_30_3	7.00	98.01	44.04	86.48	
NW_60_1	6.40	96.97	47.56	83.77	
NW_60_2	6.50	97.15	47.93	83.92	
NW_60_3	5.20	96.54	45.33	85.14	
NW_90_1	6.20	96.75	44.88	85.25	
NW_90_2	6.30	95.28	46.58	82.60	
NW_90_3	6.60	96.61	44.10	84.84	
NY_30_1	8.10	97.99	46.20	84.94	
NY_30_2	6.30	97.96	47.90	84.44	
NY_30_3	6.80	97.90	48.36	84.64	
NY_60_1	5.50	97.08	48.57	82.74	
NY_60_2	11.10	96.64	42.09	85.65	
NY_60_3	5.70	97.35	46.54	82.95	
NY_90_1	6.90	96.66	45.14	84.56	
NY_90_2	6.40	96.32	44.87	85.06	
NY_90_3	6.60	96.57	44.02	84.81	
PS_30_1	8.20	97.60	78.41	71.72	
PS_30_2	5.60	97.64	79.65	72.04	
published articles [1,2]. Total raw Illumina short reads from each sample underwent the pre-processing steps, in order to remove the adapter, and low-quality reads using Trimmomatic v0.36 [6]. The processed short reads were then mapped to the assembled transcriptome using Salmon v0.9.1 [7].

2.3. Dataset

The complete sequences generated in this article have been submitted to the GenBank sequence read archive (SRA) under the bio-project ID PRJNA476004, as given in Table 2.

Acknowledgments

The data is produced with the support of the National Institute of Agricultural Science (grant no. PJ01184701), Rural Development Administration, Republic of Korea.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] D. Kim, M. Jung, J.I. Ha, Y.M. Lee, S.-G. Lee, Y. Shin, S. Subramaniyam, J. Oh, Transcriptional profiles of secondary metabolite biosynthesis genes and cytochromes in the leaves of four papaver species, Data 3 (2018), https://doi.org/10.3390/data3040055.
[2] J. Oh, Y. Shin, J.I. Ha, Y.M. Lee, S.-G. Lee, B.-C. Kang, D. Kyeong, D. Kim, Transcriptome profiling of two ornamental and medicinal papaver herbs, Int. J. Mol. Sci. 19 (2018), https://doi.org/10.3390/ijms19103192.
[1] L. Guo, T. Winzer, X. Yang, Y. Li, Z. Ning, Z. He, R. Teodor, Y. Lu, T.A. Bowser, I.A. Graham, K. Ye, The opium poppy genome and morphinan production, Science 362 (2018) 343–347. https://doi.org/10.1126/science.aat4096.

[2] Y. Hu, R. Zhao, P. Xu, Y. Jiao, The genome of opium poppy reveals evolutionary history of morphinan pathway, Genom. Proteom. Bioinform. 16 (6) (2018) 460–462. https://doi.org/10.1016/j.gpb.2018.09.002.

[3] L. Wang, Z. Lin, M. Trivino, M.K. Nowack, V.E. Franklin-Tong, M. Bosch, Self-incompatibility in Papaver pollen: programmed cell death in an acidic environment, J. Exp. Bot. 70 (7) (2019) 2113–2123. https://doi.org/10.1093/jxb/ery406.

[4] A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics 30 (2014) 2114–2120. https://doi.org/10.1093/bioinformatics/btu170.

[5] R. Patro, G. Duggal, M.I. Love, R.A. Irizarry, C. Kingsford, Salmon provides fast and bias-aware quantification of transcript expression, Nat. Methods 14 (2017) 417. https://doi.org/10.1038/nmeth.4197.