Galactomannan of Delonix Regia Seeds Modulates Cytokine Expression and Oxidative Stress Eliciting Anti-Inflammatory and Healing Effects in Mice Cutaneous Wound

Iásly Lima
UECE: Universidade Estadual do Ceara

Rondinelle Castro
UECE: Universidade Estadual do Ceara

Beatriz Adjafre
UECE: Universidade Estadual do Ceara

Skarlatt Sousa
UECE: Universidade Estadual do Ceara

Dayrine de Paula
UFC: Universidade Federal do Ceara

Ana Paula Alves
UFC: Universidade Federal do Ceara

Paulo Silva
UFC: Universidade Federal do Ceara

Ana Maria Sampaio Assreuy
Universidade Estadual do Ceara https://orcid.org/0000-0002-2323-5385

Mario Mota
UFC: Universidade Federal do Ceara

Research Article

Keywords: Plant polysaccharides, Galactomannan, Delonix regia, Inflammation, Wound healing

DOI: https://doi.org/10.21203/rs.3.rs-697652/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective and design

To investigate the healing mechanism of Delonix regia galactomannan (GM-DR) in a mice model of excisional cutaneous wound.

Materials and subjects

Female Swiss mice were used in all treatments.

Treatment

GM-DR (% 0.01-1) was topically applied to the wounds during 14 days.

Methods

The wound healing effect of GM-DR was evaluated by the following parameters: wound closure, clinical signs (hyperemia, edema, exsudate, nociception), oxidative stress markers (malondialdehyde – MDA, reduced glutathione - GSH), histopathological and histomorphometric analysis (collagenesis, blood vessels, polymorphonuclear, mononuclear, fibroblast/myofibroblast cells) and immunohistochemical (inflammatory growth factor mediators).

Results

GM-DR reduced wound area (7 - 14th day) and hypernociception (6 h - 5th day), leukocyte infiltration (2 -7th day), expression and levels of IL-1β (2th day), IL-6 (2th day), MDA (44% - 2th day), and increased fibroblast/myofibroblast, granulation tissue, collagen deposition, GSH (25 - 50%, 2-5th day), Transforming Growth Factor Beta (TGF-β) expression (7-10th day) and Smooth Muscle Alpha Actin (a-SMA) (7-14th day).

Conclusions

GM-DR accelerates the mice healing process acting both in the inflammatory and proliferative phases.

Introduction

Healing of wounds constitutes a complex process involving both molecular and cellular events that ultimately results in scar formation [1, 2]. The high cost of health services and the impact on the life quality of individuals with disabilities in the healing process motivate the development of effective products presenting favorable cost/benefit ratio [3, 4]. In this context, effects of plant polysaccharides have been demonstrated on the healing process of cutaneous wounds, along with its immunomodulatory properties and low toxicity [5–7].
Galactomannans are neutral polysaccharides found in the endosperm of leguminous seeds, are composed by \((1 \rightarrow 4)\) linked \(\beta-D\)-mannopyranosil partially substituted at O-6 with \(\alpha-D\)-galactopyranosil groups [8]. These polysaccharides attracted the scientific and industrial interest for the properties of forming viscous solutions in aqueous medium [9]. Reports regarding its biological activities include analgesic [10, 11] and immunomodulatory effects [12].

Delonix regia (flamboyant) is a Fabaceae tree used for urbanism around the world, and its seeds contain an easily extractable galactomannan possessing molar mass in the magnitude order of \(10^5\) g mol\(^{-1}\), and mannose:galactose in the range from 2:1 to 3.9:1 [13–16]. Hydrogels from *D. regia* galactomannan had been developed for usage and drug delivery system as scaffold for cell culture and soft tissue engineering in osteoarthritis [16–18]. For our knowledge there is a single report demonstrating the use of the Fabaceae galactomannan from *Caesalpinia pulcherrima* formulated for cutaneous wounds [18], however, the healing properties of *D. regia* galactomannan has not yet been investigated.

In view of the high prevalence of wounds in clinical practice and the problems associated to its treatment, added to the beneficial effects of polysaccharides on the healing process, the aim of this study was to investigate the healing effect of the seed galactomannan of *Delonix regia* in a mice model of excisional cutaneous wound.

Materials And Methods

Plant material

Seeds of *Delonix regia* (Bojer ex Hook.) Raf. were collected in the municipality of Limoeiro do Norte, Ceará, Brazil, and identified in the Laboratory of Taxonomy of Angiospermae (Department of Biology/Federal University of Ceará). A voucher specimen (No. 57951) was deposited at the Prisco Bezerra Herbarium/Federal University of Ceará. In accordance to the Brazilian Federal Law No. 13123/2015, the access activity was registered at the National System for the Management of the Genetic Heritage and the Associated Traditional Knowledge (SISGEN, code A54ED41).

Isolation of Delonix regia galactomannan

Delonix regia seeds (50 g) were swelled under water vapor (1 atm, 30 min) and its isolation was performed as previously described (da Silva-Nascimento *et al.*, 2020). Chemical characterization data also estimative of included weight average molar mass by high-performance size-exclusion chromatography, determination of mannose:galactose ratio by gas after acid hydrolysis and derivatization (5.8 \(10^5\) g mol\(^{-1}\) and 2.39:1, respectively). Such analysis was performed similarly to those for *Caesalpinia pulcherrima* galactomannan [19].

Animals
Female Swiss mice (25–35 g), maintained at 26 ± 1 °C under 12/12h light/dark cycle, receiving food and water *ad libitum*, were brought to the laboratory at least 1 h before the experiments. The protocol was approved by the local ethics committee (CEUA/UECE No. 01724279/2019), which followed the guidelines of the Brazilian Council of Control in Animal Experimentation (CONCEA).

Experimental protocol

Animals had their dorsal regions previously shaved and disinfected with chlorhexidine 2% gluconate. Two circular, full-thickness wounds were induced using a biopsy punch (8 mm diameter), until exposition of the panniculus carnosus. After the procedure, the animals were kept in individual cages.

Daily topical treatment was performed by direct application (100 µL) of vehicle (0.9% saline) or GM-DR (0.01 to 1% w/v) 24 h after excision until day 14. Six animals were allocated for each experimental group.

Evaluation of wound closure and hypernociception

Wounds were photographed using Sony DSC W110 digital camera, and the areas was measured using the ImageJ 1.52a software (http://imagej.nih.gov/ij). Percentual wound closure was calculated according to the Eq. 1:

Eq. (1) % closure = 100 x (A₀-A)/A₀,

being A₀ the wound area at day 0, and A the wound area at the endpoint of interest.

Signs of hyperemia, edema and exudate were evaluated in the wound region according to the following scores: (0) absent; (1) mild; (2) moderate; (3) intense. Crust detachment (fissures, fragility) and scar tissue were reported as relative frequency (f%) of the signal appearance.

Hypernociception was evaluated using digital algesimeter (Insight equipamentos, Brazil) equiped with a polypropylene tip (4.1 mm²), which was applied to the wound edges in order to evoke behavioral responses (winches and/or writhing) [20].

Histopathological analysis and oxidative stress markers quantification

Skin samples were fixed in 10% v/v formaldehyde and embedded in paraffin for preparation of H&E stained slides (3 µm thickness). Blind evaluation was performed according to the stages of the wound inflammation from 1 to 6: (1) intense acute process, (2) mild to moderate acute process, (3) mixed process, (4) intense chronic process, (5) mild to moderate chronic process and (6) fibrosis/absence of inflammatory process. Ulcer was reported as (0) absent or (1) present [adapted from 21].

For quantification of polymorphonuclear, mononuclear and fibroblast/myofibroblast cells and blood vessels the samples immediately below the ulcer/reathepithelization of each animal (5 fields per slide) were
photographed (40x magnification; Nikon Eclipse H550S microscope; Japan) and analyzed (Plugin “Cell Counter” ImageJ’s software - National Institutes of Health, EUA) [21].

Since collagen plays the major role in wound contraction during healing, collagen deposition was evaluated by examining sections (3 µm thickness) of wounds stained using Picrosirius Red (Scytech®, Tokyo, Japan). The same methodology described for image capture of HE staining was used, and the photomicrographs (conventional and polarized light) were quantitatively analyzed using the ImageJ® software. After calibration using the color threshold command, the RGB function was adjusted in images using conventional light microscopy (red = minimum 71, maximum 255; green = minimum 0, maximum 69; blue = minimum 0, maximum 92), and polarized light microscopy (red = minimum 0, maximum 255; green = minimum 0, maximum 255; blue = minimum 0, maximum 32) to determine the percentage of the total collagen area and the types I (yellow fibers) and III (greenish fibers) [22].

Homogenates of skin samples were used to determine the tissue levels of oxidative stress markers (MDA,GSH) by ELISA [21, 23].

Immunohistochemistry for citokines and α-SMA expression

The area of ulcer/scar was marked on a slide for the tissue microarray procedure. The slide was paired with a paraffin block and a tissue microarrayer (Quick-Ray Unitma Co. Ltd., Seoul, Korea) was used to punch a sample (2-mm diameter) from the paraffin block. The sample was transferred to receptor paraffin blocks with capacity for 36 samples each [adapted from 24]. Sections (2.5 µm thick) were immunoreacted with the primary antibodies anti-TNF-α (1:100), anti-IL-6 (1:300), anti-IL-1β (1:150) and anti-TGF-β (1:400) (Abcam™) and α-SMA (1:400) (Dako™). Slides were incubated with biotinylated ready-to-use, monoclonal anti-rabbit IgG secondary antibody, at room temperature for 30 min (K4065, Dako™). Paired sections were treated with the control IgG in substitution to the primary antibody. Staining intensity was measured according to the following scores: (0) no cells; (1) mild, 1–33% cells; (2) moderate, 34–66% cells; (3) 67–100% cells [adapted from 22].

Statistical analysis

Parametrical data was expressed as mean ± SEM, and analyzed by t test or one-/two-way ANOVA, followed by the Bonferroni’s test. Clinical signs, histopathological and immunohistochemical data were expressed as Median (maximum and minimum) and analyzed by the Mann-Whitney’s, or Kruskal-Wallis’s test, followed by the Dunn’s test. Categorical data (absent/present) was expressed as relative frequency (%f) and analyzed by the Chi-Square test. P < 0.05 was considered significant.

Results

GM-DR reduces inflammatory signs and accelerates crust detachment and scar formation in excisional wounds
Table 1 summarizes the clinical signs displayed by the experimental groups. Intense edema was found in the wounds of the vehicle-treated animals, but the animals treated with GM-DR (0.01%, 0.1% and 1%) showed significant reduction, compared to the edema present from days 2 to 7 post-ulceration. Surrounding hyperemia was significantly reduced in the animals treated with 0.1% GM-DR during the first week. Exudate was not observed at any group, which suggests the absence of microbial growth.

From day 5, crust detachment was observed in all groups. At day 7, crust was present by 83% in the vehicle-treated animals, but was reduced to 33% by GM-DR at 0.01 and 0.1%, being absent at 1% GM-DR.

Crust was completely detached from the wound bed in most animals. All groups showed significant scar tissue formation, which was more evidenced (17%) after the galactomannan treatment, independent on the concentration tested.

GM-DR promotes wound closure, and reduces surrounding hypernociception in excisional wounds

Along the first week after ulceration the wound area was reduced by 40% in the vehicle-treated animals but was not altered by GM-DR at 0.01% and 0.1% w/v. However, at 1% GM-DR significantly increased either the wound area by 61% and the wound closure index by 24% from day 7 (82.31 ± 1.70% vs. control: 66.27% ± 4.57, p < 0.05) to day 14 (94.4% ± 2.54% vs. control: 82.7% ± 1.9) (Table 2).

The mechanical threshold, determined by the pressure applied in the tissue surrounding the excisions, was reduced in comparison to the intact-skin animals. This reduction was partially reverted by the treatment with 1% GM-DR at hour 6 (54.26 ± 3.73 g vs. control: 29.01 ± 1.66 g; p < 0.05), being persistent until day 7 (82.84 ± 5.33 g vs. control: 63.76 ± 6.74 g; p < 0.05). GM-DR at 0.01% and 0.1% reduced the nociceptive response only at day 5. Thus, 1% GM-DR was chosen to be used in the following experiments (Table 2).

GM-DR reduces inflammatory cell infiltrate, and increases fibroplasia and collagenesis in excisional wounds

This semi-quantitative analysis of the healing process revealed that although GM-DR had promoted histological improvement in the inflammatory parameters, there was no statistical difference compared to controls (Table 3; Fig. 1). At the 2nd day post-ulceration, the wound tissues treated or non-treated with GM-DR presented similar profile, showing acute inflammatory infiltrate that ranged from mild to moderate to mixed inflammatory infiltrate in the saline, with predominance of mononuclear cells in the GM-DR treated group. At the 5th day after ulceration, the ulcers were still present in the GM-DR treated group, but showing predominant chronic inflammatory infiltrate (Table 3; Fig. 1).

Non-ulcerated tissue was predominant in both vehicle-treated and galactomannan-treated groups at day 7. This last has also displayed discrete fibrosis, granulation tissue and mild chronic inflammatory process, as well re-epithelialized tissues in some specimens. Saline treated groups showed intense chronic inflammatory infiltrate. At the 10th day, both are re-epithelialized, the saline group had moderate...
chronic inflammatory infiltrate and few signs of fibrosis while GM-DR exhibited signs of fibrosis and mild chronic inflammatory infiltrate. At the 14th day, both groups were re-epithelialized, the saline group showed chronic inflammatory infiltrate and fibrosis. Furthermore, GM-DR present few mononuclear inflammatory cells, and organized collagen fibers with remodeling signs (Table 3; Fig. 1).

The treatment with GM-DR presented decreased the leukocyte count in H&E slices. Polymophonuclears were reduced by 65%, 68% and 80%, at days 2, 5 and 7, respectively, whereas mononuclears were reduced only at day 5 (161 ± 11 vs. saline: 228 ± 7, p < 0.05) (Table 3; Fig. 1). GM-DR increased the number of fibroblasts/myofibroblasts at day 5 by 50% (341 ± 43 vs. saline 172 ± 121) and at day 7 by 43% (512 ± 48 vs. saline 290 ± 19). However, GM-DR did not change the number of blood vessels at any day of treatment when compared to the control.

Although there were no differences in total collagen deposition after galactomannan treatment, the deposition of type I collagen (yellow-reddish fibers) was increased by GM-DR from day 5 (68.05 ± 4.04 vs. saline 37.36 ± 2.4) until day 14 (37.41 ± 3.46 vs. saline 15.54 ± 2.8), whereas the deposition of immature type III collagen (whitish-green collagen) was reduced by GM-DR, from day 7 (32.33 ± 4.3 vs. saline 52.43 ± 6.37) until day 14 (34.93 ± 3.63 vs. saline 45.51 ± 3.10) (Table 3; Fig. 2).

GM-DR modulates cytokine expression and oxidative stress markers in excisional wounds

As measured by immunohistochemical staining, GM-DR reduced the expression of IL-1β (1 [1, 1] vs. saline: 3 [2, 3]) and IL-6 (1 [1, 1] vs. saline: 2 [1, 3]) at day 2. In addition, GM-DR increased TGF-β expression at day 7 (2 [1, 3] vs. saline: 1 [1, 1]) and day 10 (2 [1, 3] vs. saline: 1 [0,1]), and that of α-SMA from day 7 (2 [1, 3] vs. saline: 1 [0,1]) to day 14 (3 [2, 3] vs. saline: 1 [1, 2]). However, TNF-α expression was unaltered by the treatment with GM-DR (Fig. 3; Table 4).

The levels of reduced glutathione were increased during the course of treatment with GM-DR by 25% at day 2 (325.2 ± 80.26 vs. saline: 244.6 ± 20.48 µM/g tissue) and by 50% at day 5 (531.9 ± 114.9 vs. saline: 268.3 ± 109.6 µM/g tissue) nut was unaltered by GM-DR at day 7. In addition, the treatment with the galactomannan GM-DR reduced the levels of malondialdehyde (MDA) by 44% at day 2 (1038 ± 456.3 vs. saline: 256.4 ± 148.4 µM/g tissue) (Fig. 4).

Discussion

The present study demonstrates that topical administration of Delonix regia galactomannan in solution enhances the healing of excisional cutaneous wounds in mice, accompanied by the following events: 1) reduction of edema, hyperemia, nociception and inflammatory cell infiltrate; 2) increased number of fibroblasts/myofibroblasts; 3) increased deposition of type I collagen; 4) modulation of oxidative stress markers and cytokines expression.
Healing wounds occurs as overlapping phases including homeostasis, inflammation, proliferation and remodeling [1], but an imbalance during the inflammatory phase may cause either prolonged healing or excessive scar formation [25, 26]. Phlogistic signs of edema and hyperemia are found early after the induction, and are decurrent from pro-inflammatory cytokines released by infiltrating leukocytes, mainly neutrophils and macrophages, in the wound bed which also produce reactive species in order to prevent bacterial infection [26], being such signs reduced by GM-DR. Additionally, *D. regia* galactomannan inhibited both IL-1β and IL-6 expression, and TNF-α immunostaining also seemed to be diminished, although without reaching statistical significance. In view of this inhibition, it is suggested that GM-DR would be responsible for reducing leukocyte infiltrate and inflammatory signs of inflammation by the modulation of pro-inflammatory cytokines such as IL-1β and IL-6.

The present results were similar to previous obtained with different polysaccharides, such as those extracted from *Caesalpinia ferrea* barks in the same murine model [21], but are in apparent contradiction with those obtained from mice wounds after topical administration of a galactomannan extracted from *Caesalpinia pulcherrima*, which promoted IL-1β and IL-6 release [18]. It is known that proteins dragged during the galactomannan extraction may induce local inflammation [10]. The extractive procedure of *C. pulcherrima* is similar to ours, except for an alkaline hydrolysis performed before the final precipitation. Such step was added to our procedure in order to remove remaining proteins without rupture of glycosidic bonding. Although we have used a different approach to determine % protein, its detection limit is similar to their colorimetric procedure (0.5%), as inferred from the original report of this technique [27]. Even considering the structural differences between theses galactomannans, as molar mass and distribution profile of side galactosyl groups, it is not to be excluded that low levels of remaining proteins would actually favored inflammation evoked by *C. pulcherrima* galactomannan on excisional wounds.

In our study, the reduction in the mechanical threshold applied on the wound edges was reversed by *D. regia* galactomannan as early as 6 hours after treatment. The inhibition of pro-inflammatory cytokines such as IL-1β and IL-6 and, consequently, the reduction of migration of these inflammatory cells may justify the antinociceptive effect of GM-DR. Our group had already demonstrated the antinociceptive effect of the polysaccharide extract of *Caesalpinia ferrea* stem barks topically applied to cutaneous wounds in mice probably by the reduced expression of IL-1β [21], and that polysaccharides extracted from *Ximenia americana* barks reduced peripheral hypernociception induced by carragenan in mice [28].

Crust detachment and scar formation were anticipated in the animals treated with *D. regia* galactomannan. GM-DR promoted healing by second intention and retraction of the cutaneous wound, being verified by the reduction of the area and increase of the wound index in the proliferative phase. It is documented that the wound contraction, a feature of the proliferative phase of the physiological healing process, involves the participation of differentiated myofibroblasts [29]. Myofibroblasts are characterized by the expression of a particular integrin smooth muscle alpha actin (α-SMA), which determines its contractility, and the increased synthesis of MEC proteins, such as collagen types I and III [30]. The treatment with GM-DR evoked the expression of α-SMA. Thus, it is suggested that this galactomannan may act in the proliferative phase inducing the differentiation of fibroblasts into myofibroblasts.
agreement with our study, the polysaccharides extracted from the leaves of *Plantago australis* at 500 and 1000 mg/kg increased the wound healing index seven days after the excision, as well the proliferation of keratinocytes in a horizontal migration model, modulating the levels of TNF-α [31]. In addition, galactomannans extracted from *Cydonia oblonga* increased tissue elasticity and the healing rate at higher concentrations (10–20%) [32] and that from *C. pulcherrima* increased the wound healing rate in the later stage of the healing process, at the day 10 [18]. The galactomannans of *Cassia grandis* seeds also increased the retraction of the wound and reduced the infiltration of inflammatory cells from the 3rd day of treatment [6].

The most important feature of the proliferative phase is the formation of granulation tissue (due to the granular appearance generated by the newly formed capillaries) proliferation and migration of fibroblasts to the lesion (fibroplasia) [33] under stimulation of TGF-β, fibroblasts differentiate in myofibroblasts [29], contributing to wound retraction. GM-DR increased the number of fibroblasts/myofibroblasts, which was accompanied by greater expression of α-SMA from the 7th to the 14th day, reinforcing the regulator mechanism of this growth factor, in order to accelerate the formation and maturation of the granulation tissue in the proliferative phase and an effective and coordinated tissue repair.

The profuse degradation of extracellular matrix (MEC) and type III collagen, along with formation of mature type I collagen are critical in this phase, which lasts some months and years until the formation of a paucicellular scar [30, 34]. Although total collagens had not been altered by GM-DR, the deposition was increased for type I collagen, but it was decreased for type III, which indicates an effect in the proliferative phase. GM-DR may also accelerate the production of granulation tissue, as this is correlated with the maturation of the newly formed tissue, as well as with the increase in the healing rate observed since the 7th day of treatment.

However, if the inflammatory infiltrate persists, it will hamper the proliferation of fibroblasts and vascular neoformation, contributing to the deficiency in the formation of granulation tissue [25]. Thus, the inhibitory effect of GM-DR on the inflammatory leukocytes infiltrate was accompanied by proliferation and migration of fibroblasts. According *Mimosa tenuiflora* polysaccharide promoted *in vitro* fibroblast stimulation [35] and *C. pulcherrima* galactomannan increased fibroplasia associated with collagen deposition at the 14th day post-ulceration [18].

Oxidative stress markers is often a secondary physiological event associated to inflammation, as evidenced cell stress under persistence dense infiltrate of inflammatory cells. In contrast, the inhibition of oxidative stress by superoxide dismutase, catalase or reduced glutathione prevents cell damage [25]. GM-DR reduced the levels of MDA at day 2, as well increased that of reduced glutathione at days 2 and 5, while reduced the polymorphonuclear infiltrate. Similar effects on polymorphonuclears and MDA were obtained *C. ferrea* polysaccharides treatment [21] or with the aqueous extract of *Ocimum sanctum*, which reduced MDA concomitant to increased activity of superoxide dismutase and catalase, and increased levels of reduced glutathione [36].
Although GM-DR had stimulated fibroplasia and collagen deposition, there was no increase in the number of blood vessels. It is known that neoangiogenesis is important to supply oxygen and nutrient demand of cells throughout the healing process. However studies have already shown that mild angiogenesis, but forming structured vascular network, favors the formation of adequate scar [37]. In contrast to that observed in our study, it was demonstrated that oral administration of an ethanolic extract of polysaccharides from the root of *Sanguisorba officinalis* L. in mice resulted in the acceleration of angiogenesis, via VEGF production [38], and skin wounds treated with *C. pulcherrima* galactomannan had a more pronounced neoangiogenesis when compared to controls [18]. Further studies involving specific markers of newly formed vessels, such as CD-31 and 34, may be useful to elucidate that discrepancy.

Delonix regia galactomannan (GM-DR) promotes tissue repair in mice excisional cutaneous wounds acting as anti-inflammatory via inhibition of cytokine pro-inflammatory (IL-1β, IL-6) and healing by stimulation fibroplasia and collagensis via increase of TGF-β.

Abbreviations

GM-DR, *Delonix regia* galactomannan; IL-1β, Interleukin-1 Beta; IL-6, Interleukin-6; TGF-β1, Transforming Growth Factor Beta 1; TNF-α, Tumor Necrosis Factor Alpha; α-SMA, Smooth Muscle Alpha Actin.

Declarations

Funding

This research was supported by CAPES, CNPq and FUNCAP. Ana Maria S. Assreuy is senior investigator of CNPq (Process No. 308433/2017-3).

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Legal permission

Studies of *Delonix regia* galactomannan are registered (N. A54ED41) in the SisGen (Genetic Heritage and Associated Traditional Knowledge System), according to the current Brazilian regulations.

Availability of data and material

All data generated or analyzed during this study are included in this published article and are available from the corresponding author on reasonable request.

Code availability

Not applicable.
Authors’ contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Iásly Costa Lima, Beatriz Lima Adjafre and Skarlatt H. A. F. Sousa. The first draft of the manuscript was written by Iásly Costa Lima and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Ethics approval (include appropriate approvals or waivers)

The protocol was approved by the local ethics committee (CEUA/UECE No. 01724279/2019), which followed the guidelines of the Brazilian Council of Control in Animal Experimentation (CONCEA).

Consent to participate

Not applicable.

Consent for publication (include appropriate statements)

Not applicable.

References

1. Wang PB, Horng H, Chen YY (2017) Wound healing. J Chin Med Assoc 81:94–101. https://doi.org/10.1016/j.jcma.2017.11.002
2. Young A, Mcnaught CE (2011) The physiology of wound healing and wound assessment. Surgery 29:475–479. https://doi.org/10.1016/j.mpsur.2011.06.011
3. Mandla S, Huyer LD, Radisic M (2011) Multimodal bioactive material approaches for wound healing. APL Bioeng 2:2473–2877. https://doi.org/10.1063/1.5026773
4. Modi A, Mishra V, Bhatt A, Jain A, Mansoori MH et al (2016) Delonix regia: historic perspectives and modern phytochemical and pharmacological researches. Chin J Nat Medicines 14:31–39. https://doi.org/10.3724/SP.J.1009.2016.00031
5. Ogunjimi AT, Melo SMG, Vargas-Rechia CG, Emery FS, Lopez RFV (2017) Hydrophilic polymeric nanoparticles prepared from Delonix galactomannan with low cytotoxicity for ocular drug delivery. Carbohydr Polym 157:1065–1075. https://doi.org/10.1016/j.carbpol.2016.10.076
6. Albuquerque PBS, Soares PAG, Aragão-Neto AC, Albuquerque GS, Silva LCN (2017) Healing activity evaluation of the galactomannan film obtained from Cassia grandis seeds with immobilized Cratylia mollis seed lectin. Int J Biol Macromol 102:749–757. https://doi.org/10.1016/j.ijbiomac.2017.04.064
7. Khan MA, Saxena A, Fatima FT, Sharma G, Goud V, Husain A (2012) Study of wound healing activity of Delonix regia flowers in experimental animal models. Am J Pharmtech Res 2:380–390. https://doi.org/10.1371/journal.pone.0167768
8. Srivastava M, Kapoor VP (2005) Seed galactomannans: an overview. Chem Biodivers 2:295–317. https://doi.org/10.1002/cbdv.200590013

9. Santos VRF, Souza BWS, Teixeira JA, Vicente AA, Cerqueira MA (2015) Relationship between galactomannan structure and physicochemical properties of films produced thereof. J Food Sci Technol 52:8292–8299. https://doi.org/10.1007/s13197-013-0966-2

10. Castro RR, Girão JPA, Cunha PLR, Rocha FAC (2007) Analgesic activity of a polysaccharide in experimental osteoarthritis in rats. Clin Rheumatol 26:1312 – 1319. https://doi.org/10.1007/s13197-013-0966-2

11. Castro RR, Silva CMM, Nunes RM, Cunha PLR, Paula RCM (2016) Structural characteristics are crucial to the benefits of guar gum in experimental osteoarthritis. Carbohydr Polym 150:392–399. https://doi.org/10.1016/j.carbpol.2016.05.031

12. Santander SP, Aoki M, Hernandez JF, Pombo LM, Moins-Teisserenc H, Mooney N, Fiorentino S (2011) Galactomannan from Caesalpinia spinosa induces phenotypic and functional maturation of human dendritic cells. Int Immunopharmacol 11:652–660

13. Kapoor VP (1972) A galactomannan from the seeds of Delonix regia. Phytochemistry 11:1129–1132. https://doi.org/10.1016/S0031-9422(00)88465-4

14. Tamaki Y, Teruya T, Tako M (2010) The chemical structure of galactomannan isolated from seeds of Delonix regia. Biosci Biotechnol Biochem 74:1110–1112. https://doi.org/10.1271/bbb.90935

15. Farias SS, Siqueira SMC, Cunha AP, Souza CAG (2018) Microencapsulation of riboavin with galactomannan biopolymer and F127: Physico-chemical characterization, antifungal activity and controlled release. Ind Crop Prod 118:271–281

16. Lima EL, Vasconcelos NF, Maciel JS, Andrade FK, Vieira RS, Feitosa JPA (2019) Injectable hydrogel based on dialdehyde galactomannan and N-succinyl chitosan: a suitable platform for cell culture. J Mater Sci Mater Med 31:5. https://doi.org/10.1007/s10856-019-6343-6

17. Silva-Nascimento G, Bringel PHSF, Maia FWS, Lima CPC, Alves RC et al (2020) Galactomannan of Delonix regia seeds reduces nociception and morphological damage in the rat model of osteoarthritis induced by sodium monooiodoacetate. N-S Arch Pharmacol 394:491–501. https://doi.org/10.1007/s00210-020-01996-x

18. Vasconcelos MS, Souza TFG, Figueiredo IS, Sousa ET, Sousa FD et al (2018) A phytomodulatory hydrogel with enhanced healing effects. Phytother Res 32:688–697. https://doi.org/10.1002/ptr.6018

19. Marques FCJ, Pantoja PS, Matos VEA, Silva RO, Damasceno SRB et al (2019) Galactomannan from the seeds of Caesalpinia pulcherrima prevents indomethacin-induced gastrointestinal damage via neutrophil migration. Int J Biol Macromol 141:68–75. https://doi.org/10.1016/j.ijbiomac.2019.08.193

20. Assreuy AMS, Adjafre BL, Sousa ERO, Alves APNN, Pires AF et al (2020) Venom of the giant ant Dinoponera quadriceps attenuates inflammatory pain in mouse cutaneous wound healing model. Acta Sci Biol Sci 42:47680–47685. https://doi.org/10.4025/actascibiolsci.v42i1.47680
21. Pereira LP, Mota MRL, Nogueira FC, Ferreira EG (2016) Modulator effect of a polysaccharide-rich extract from *Caesalpinia ferrea* stem barks in rat cutaneous wound healing: Role of TNF-α, IL-1β, NO, TGF-β. J Ethnopharmacol 187:213–223. https://doi.org/10.1016/j.jep.2016.04.043

22. Brizeno LA, Assreuy AMS, Alves APNN, Sousa FB, Silva PGB et al (2016) Delayed healing of oral mucosa in a diabetic rat model: Implication of TNF-α, IL-1β and FGF-2. Life Sci 155:36–47. https://doi.org/10.1016/j.lfs.2016.04.033

23. Sedlak J, Lindsay R (1968) Estimation of Total, Protein-Bound, and Nonprotein Sulfhydryl Groups in Tissue with Ellman's Reagent. Anal Biochem 25:192–205. https://doi.org/10.1016/0003-2697(68)90092-4

24. Kononen J, Bubendorf L, Kallioniemi A, Bärlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847. https://doi.org/10.1038/nm0798-844

25. Coffman JA, Su Y (2019) Redox regulation of development and regeneration. Curr Opin Genet Dev 57:9–15. https://doi.org/10.1016/j.gde.2019.06.002

26. Ridiandries A, Tan JTM, Bursill CA (2018) The Role of Chemokines in Wound Healing. Int J Mol Sci 19:3217–3237. https://doi.org/10.3390/ijms19103217

27. Baethgen WE, Alley MM (1989) A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digest. Commun Soil Sci Plant Anal 20:961–969

28. Silva-Leite KES, Assreuy AMS, Mendonça LF, Damasceno LEA, Queiroz MGR et al (2017) Polysaccharide rich fractions from barks of *Ximenia americana* inhibit peripheral inflammatory nociception in mice. Rev Bras Farmacogn 27:339–345. https://doi.org/10.1016/j.bjp.2016.12.001

29. Mokoena D, Sundar S, Kumar D, Houreld NN, Abrahamse H. Role of photobiomodulation on the activation of the Smad pathway via TGF-β in wound healing. J Photochem. 2018; 189: 138–144. https://doi.org/10.1016/j.jphotobiol.2018.10.011

30. Mia MM, Bank RA (2016) The pro-fibrotic properties of transforming growth factor on human fibroblasts are counteracted by caffeic acid by inhibiting myofibroblast formation and collagen synthesis. Cell Tissue Res 363:775–789. https://doi.org/10.1007/s00441-015-2285-6

31. Sperotto NDM, Steffens L, Veríssimo RM, Henn JG, Péres VF et al (2018) Wound healing and anti-inflammatory activities induced by a *Plantago australis* hydroethanolic extract standardized in verbascoside. J Ethnopharmacol 255:178–188. https://doi.org/10.1016/j.jep.2018.07.012

32. Tamri P, Hemmati A, Boroujerdia MG (2014) Wound healing properties of quince seed mucilage: In vivo evaluation in rabbit full-thickness wound model. Int J Surg 12:843–847. https://doi.org/10.1016/j.ijsu.2014.06.016

33. Velnar T, Bailey T, Smrkolj V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. J Int Med Res 2009; 37: 1528–1542. https://doi.org/10.1177/147323000903700531

34. Eming SA, Wynn TA, Martin P (2017) Inflammation and metabolism in tissue repair and regeneration. Science 356:1026–1030. https://doi.org/10.1126/science.aam7928
35. Zippel J, Deters A, Hensel A. Arabinogalactans from *Mimosa tenuiflora* (Willd.) Poiret bark as active principles for wound-healing properties: specific enhancement of dermal fibroblast activity and minor influence on HaCaT keratinocytes. J. Ethnopharmacol. 2009; 30: 391–396. https://doi.org/10.1016/j.jep.2009.05.034

36. Ramesh B, Satakopan VN. Antioxidant Activities of Hydroalcoholic Extract of *Ocimum sanctum* against Cadmium Induced Toxicity in Rats. Indian J Med Biochem. 2010; 25: 307–310. https://doi.org/10.1007/s12291-010-0039-5

37. Dipietro LA (2016) Angiogenesis and wound repair: when enough is enough. Leukoc Biol 100:979–984. https://doi.org/10.1189/jlb.4MR0316-102R

38. Zhang H, Chen J, Cen Y. Burn wound healing potential of a polysaccharide from *Sanguisorba officinalis* L. in mice. Int. J. Biol. Macromol. 2018; 112: 862–867. https://doi.org/10.1016/j.ijbiomac.2018.01.214

Tables

Table 1. *Delonix regia* galactomannan reduces inflammatory signs and accelerates scarring of excisional wounds in mice
	Time course	Day 2	Day 5	Day 7
Edema^a				
Vehicle	2 (1-3)	1 (0-2)	1.5 (1-2)	
GM-DR 0.01%	1 (1-2)	1 (1-2)	0.5 (0-1)*	
GM-DR 0.1%	1.5 (1-3)	1 (0-1)	0 (0-1)*	
GM-DR 1%	1 (1-2)	0.5 (0-1)	0 (0-1)*	
Hyperemia^a				
Vehicle	1 (0-2)	1 (0-1)	1 (0-2)	
GM-DR 0.01%	1.5 (0-2)	1 (0-1)	0 (0-1)	
GM-DR 0.1%	1 (0-2)	0 (0-1)	0 (0-0)*	
GM-DR 1%	1 (0-2)	0 (0-1)	0 (0-1)	
Exudate^a				
Vehicle	0 (0-1)	0.5 (0-2)	0.5 (0-1)	
GM-DR 0.01%	0 (0-1)	0 (0-0)	0 (0-1)	
GM-DR 0.1%	0 (0-1)	0 (0-1)	0 (0-1)	
GM-DR 1%	0 (0-0)	0 (0-0)	0 (0-0)	
Crust detachment^b				
Vehicle	0%	83%*	83%*	
GM-DR 0.01%	0%	100%*	33%†	
GM-DR 0.1%	0%	100%*	33%†	
GM-DR 1%	0%	100%*	100%*	
Scar tissue^b				
Vehicle	0%	0%	50%*	
Table 2. 1% GM-DR promotes closure and reduces surrounding hypernociception of excisional skin wounds in mice

Parameters	Hours 0	Hours 0.5	Hours 1	Hours 6	Hours 12	Days D2	Days D5	Days D7	Days D10	Days D14
Wound area (mm²) *	-	-	-	-	-	0.0075 ± 0.00	0.0062 ± 0.00	0.0045 ± 0.00	0.0024 ± 0.00	0.0016 ± 0.00
GM-DR	-	-	-	-	-	0.0077 ± 0.00	0.0060 ± 0.00	0.0030 ± 0.00*	0.0019 ± 0.00*	0.0010 ± 0.00*
Wound closure index (%) *	-	-	-	-	-	33.33 ± 8.74	51.72 ± 4.26	66.27 ± 4.57	82.13 ± 2.97	82.7 ± 1.9
Saline	-	-	-	-	-	39.39 ± 4.99	61.27 ± 2.33	82.31 ± 1.7*	96.94 ± 1.94*	94.45 ± 2.54*
GM-DR	-	-	-	-	-	-	-	-	-	-

Hypernociception (g) *

Parameters	Intact skin	Saline	GM-DR
	82.43 ± 6.29*	21.28 ± 2.12	22.00 ± 1.46
	124.2 ± 7.63*	26.7 ± 1.68	39.66 ± 3.19
	105.4 ± 2.93*	28.43 ± 1.91	35.91 ± 2.75
	111.28 ± 8.86*	29.01 ± 1.66	54.26 ± 3.73*
	116.4 ± 9.3*	32.03 ± 1.66	65.6 ± 4.12*
	118 ± 9.10*	35.15 ± 1.66	60.22 ± 3.10*
	129.78 ±6.44*	41.80 ± 4.01	78.36 ± 3.70*
	140.2 ± 6.23*	63.76 ± 6.74	82.84 ± 5.33*

a Mean ± E.P.M. *p<0.05 vs. Saline (Two-way ANOVA/Bonferroni test). b Delonix regia galactomannan.

Table 3. Histopathology and histomorphometry of the inflammatory infiltrate, fibroplasia, blood vessels and collagen in cutaneous wounds treated with 1% GM-DR for 14 days
Table 4. 1% GM-DR modulates the expression of inflammatory mediators and growth factors in mice skin wounds

Parameters	Group	D2	D5	D7	D10	D14
Histological scores	Saline	1 (1;1)	1 (1;1)	0 (0;1)	0 (0;1)	0 (0;0)
	GM-DR	2 (1;2)	3 (3;4)	3.5 (3;5)	4 (3;4)	4.5 (4;5)
	Delonix regia	1 (1;1)	1 (1;1)	0 (0;1)	0 (0;1)	0 (0;0)
	Connective tissue	3 (1;3)	4 (3;4)	5 (3;6)	4.5 (4;5)	5 (4;6)
Polymorphonuclear	Saline	95.5 ± 24.27	114.5 ± 18.36	22.33 ± 7.62	-	-
	GM-DR	33.5 ± 3.14*	36.33 ± 6.88*	4.33 ± 1.4*	-	-
Mononuclear	Saline	197.4 ± 11.78	228.2 ± 7.12	206 ± 12.14	-	-
	GM-DR	206.5 ± 11.02	161.2 ± 11.29*	227.2 ± 21.33	-	-
Fibroblast/myofibroblast	Saline	77.17 ± 17.69	172.2 ± 121.54	290.5 ± 19.16	-	-
	GM-DR	106 ± 14.63	341.3 ± 43.3*	512.2 ± 48.14*	-	-
Blood vessels	Saline	-	0.16 ± 0.16	6 ± 1	-	-
	GM-DR	-	2.5 ± 1.45	5.33 ± 0.61	-	-
Total collagen (%)	Saline	-	45.8 ± 4.28	59.45 ± 4.56	57.33 ± 1.26	50.7 ± 2.35
	GM-DR	-	46.89 ± 2.54	50.99 ± 2.88	53.2 ± 2.38	54.71 ± 3.30
Type I collagen deposition (%)	Saline	-	37.36 ± 2.4	12.55 ± 3.44	23.4 ± 3.77	15.54 ± 2.80
	GM-DR	-	68.05 ± 4.04*	37.54 ± 3.75*	40.37 ± 2.96*	37.41 ± 3.46*
Type III collagen deposition (%)	Saline	-	28.44 ± 2.52	52.42 ± 6.37	44.5 ± 3.38	45.51 ± 3.10
	GM-DR	-	20.42 ± 1.56	32.34 ± 4.3*	30.38 ± 2.43*	34.93 ± 3.63

a Median (minimum-maximum) *p<0.05 vs. saline (Mann-Whitney/Dunn's test). b Mean ± E.P.M. *p<0.05 vs. Saline (Two-way ANOVA/Bonferroni). c Delonix regia galactomannan.
Antibody	Groups	2°	5°	7°	10°	14°
Anti-TNF-α^a						
Saline	2.5 (1.3)	2 (0.3)	2 (0.3)	2 (1.3)	1 (1.2)	
GM-DR	1 (0.3)	1 (1.2)	0.5 (0.1)	1 (0.1)	1 (1.2)	
Anti-IL-1β^a						
Saline	3 (2.3)	2 (1.3)	2 (1.2)	2 (2.3)	2 (2.3)	
GM-DR	1 (1.2)*	1.5 (1.3)	1 (1.2)	1 (1.2)	1 (1.3)	
Anti-IL-6^a						
Saline	2 (1.3)	1 (1.2)	1 (0.2)	2 (1.3)	2 (2.3)	
GM-DR	1 (1.1)*	1 (0.2)	2 (0.3)	2 (2.2)	2 (1.2)	
Anti-TGF-β^a						
Saline	1 (0.2)	1 (1.2)	1 (1.1)	1 (0.1)	1 (1.2)	
GM-DR	2 (0.2)	1.5 (0.3)	2 (1.3)*	2 (1.3)*	2 (1.3)	
Anti-α-SMA^a						
Saline	2 (1.3)	1 (0.1)	1 (0.1)	1 (1.2)	1 (1.2)	
GM-DR	1 (1.2)	1 (1.3)	2 (1.3)*	2 (1.3)*	3 (2.3)*	

1 Median (minimum, maximum) * p< 0.05 vs saline (Mann-Whitney/Dunn's test)
2 *Delonix regia* galactomannan.

Figures
Figure 1

Photomicrographs of mice skin wounds treated with GM-DR. 1% GM-DR was topically administered once a day for 14 days. 0.9% saline was used as control. Leica microscope (200x) 5 fields - HE staining. Saline (a – e); GM-DR (g – j) (color figure online).
Figure 2

Photomicrographs of mice skin wounds treated with GM-DR. Leica microscope (200x) 5 fields in optical microscope (total collagen) and polarized light (collagen type I and III) measured as percentage of collagen area (Image J). 1% GM-DR was topically applied 1x / day for 14 days. Picrosirius staining. Saline (a – d); GM-DR (e – h) (color figure online).
Figure 3

Photomicrography of immunohistochemical for IL-1β, IL-6, TGF-β and α-SMA in mice skin wounds. Photomicrographs of immunohistochemical slides (Leica Microscope; 400x magnification). % cytoplasmic or nuclear expression classified by scores for positive cells: (0) absence; (1 - mild) 1-33%; (2 - moderate) 34-66%; 67-100% (3 - intense) (color figure online).
GM-DR increases reduced-glutathione and malondialdehyde in mice skin wounds. 1% GM-DR or 0.9% saline were topically administered 1 x/day. (a) GSH (A412 nm) and (b) MDA (A535 nm) by ELISA.