New upper bound for the cardinalities of \(s\)-distance sets on the unit sphere

Hiroshi Nozaki

November, 2008

Abstract

We have the Fisher type inequality and the linear programming bound as upper bounds for the cardinalities of \(s\)-distance sets on \(S^{d-1}\). In this paper, we give a new upper bound for the cardinalities of \(s\)-distance sets on \(S^{d-1}\) for any \(s\). This upper bound improves the Fisher type inequality and is useful for \(s\)-distance sets which are not applicable to the linear programming bound.

1 Introduction

Let \(X\) be a finite set on \(S^{d-1}\). We define

\[A(X) := \{(x, y) \mid x, y \in X, x \neq y\}, \]

where \((\ast, \ast)\) is the standard inner product. \(X\) is called an \(s\)-distance set, if the number of Euclidean distances between any distinct vectors in \(X\) is \(s\), that is, \(|A(X)| = s\). The following upper bound is well known.

Theorem 1.1 (Fisher type inequality [2]).

1. Let \(X\) be an \(s\)-distance set on \(S^{d-1}\). Then,
 \[|X| \leq \binom{d+s-1}{s} + \binom{d+s-2}{s-1}. \]

2. Let \(X\) be an antipodal \(s\)-distance set on \(S^{d-1}\). Then,
 \[|X| \leq 2\binom{d+s-2}{s-1}. \]

\(X\) is said to be antipodal, if \(-X = \{-x \mid x \in X\} \subset X\). We prepare the Gegenbauer polynomial.

Definition 1.1. Gegenbauer polynomials are a set of orthogonal polynomials \(\{G^{(d)}_l(t) \mid l = 1, 2, \ldots\}\) of one variable \(t\). For each \(l\), \(G^{(d)}_l(t)\) is a polynomial of degree \(l\) and defined in the following manner.

1. \(G^{(d)}_0(t) \equiv 1, G^{(d)}_1(t) = dt.\)

2. \(tG^{(d)}_l(t) = \lambda_{l+1}G^{(d)}_{l+1}(t) + (1 - \lambda_{l-1})G^{(d)}_{l-1}(t)\) for \(l \geq 1\), where \(\lambda_l = \frac{l}{d+2l-2}\.\)

The following upper bound for the cardinalities of \(s\)-distance sets is well known.
Theorem 1.2 (Linear programming bound [2]). Let X be an s-distance set on S^{d-1}. We define the polynomial $F_X(t) := \prod_{\alpha \in A(X)} (t - \alpha)$ for X. We have the Gegenbauer expansion

$$F_X(t) = \prod_{\alpha \in A(X)} (t - \alpha) = \sum_{k=0}^{s} f_k G_{\alpha}^{(d)}(t),$$

where f_k are real numbers. If $f_0 > 0$ and $f_i \geq 0$ for all $1 \leq i \leq s$, then

$$|X| \leq \frac{F_X(1)}{f_0}.$$

This upper bound is very useful when $A(X)$ is given. However, if there exists f_i which is a negative number, then we have no useful upper bound for the cardinalities of s-distance sets. In this paper, we give useful upper bounds for that case.

Let $\text{Harm}_l(\mathbb{R}^d)$ denote the linear space of all harmonic homogeneous polynomials of degree l, in d variables. Let h_l denote the dimension of $\text{Harm}_l(\mathbb{R}^d)$. The following are the main theorems in this paper.

Theorem 1.3. Let X be an s-distance set on S^{d-1}. We define the polynomial $F_X(t)$ of degree s:

$$F_X(t) := \prod_{\alpha \in A(X)} (t - \alpha) = \sum_{i=0}^{s} f_i G_{\alpha}^{(d)}(t),$$

where f_i are real numbers. Then,

$$|X| \leq \sum_{i \text{ with } f_i > 0} h_i,$$

(1.1)

where the summation runs through $0 \leq i \leq s$ satisfying $f_i > 0$.

Theorem 1.4 (Antipodal case). Let X be an antipodal s-distance set on S^{d-1}. There exists Y such that $X = Y \cup (-Y)$ and $|X| = 2|Y|$. We define the polynomial $F_Y(t)$ of degree $s - 1$:

$$F_Y(t) := \prod_{\alpha \in A(Y)} (t - \alpha) = \sum_{i=0}^{s-1} f_i G_{\alpha}^{(d)}(t),$$

where f_i are real number and $f_i = 0$ for $i \equiv s \mod 2$. Then,

$$|X| \leq 2 \sum_{i \text{ with } f_i > 0} h_i,$$

(1.2)

where the summation runs through $0 \leq i \leq s$ satisfying $f_i > 0$.

If $f_i > 0$ for all $0 \leq i \leq s$ (antipodal case: $f_i > 0$ for all $i \equiv s - 1 \mod 2$), then this upper bound is the same as Fisher type inequality. Therefore, this upper bound is better than the Fisher type inequality.
2 Proof of main theorems

First, we prepare the two results to prove the main theorems. Let \(\{\varphi_{l,k}\}_{1 \leq k \leq h_l} \) be an orthonormal basis of \(\text{Harm}_l(\mathbb{R}^d) \) with respect to \(\langle \ast, \ast \rangle \), where \(\langle f, g \rangle := \frac{1}{|S^{d-1}|} \int_{S^{d-1}} f(x) g(x) d\sigma(x) \).

Theorem 2.1 (Addition formula [2][1]). For any \(x, y \) on \(S^{d-1} \), we have
\[
\sum_{k=1}^{h_l} \varphi_{l,k}(x) \varphi_{l,k}(y) = G^{(d)}_l((x, y)).
\]

The following lemma is elementary.

Lemma 2.1. Let \(M \) be a symmetric matrix in \(M_n(\mathbb{R}) \) and \(N \) be an \(m \times n \) matrix. \(^tN \) means the transpose matrix of \(N \). \(D_{u,v} \) is an \(m \times m \) diagonal matrix such that the number of positive entries is \(u \) and the number of negative entries is \(v \). If the equality \(NM^t = D_{u,v} \) holds, then the number of the positive (resp. negative) eigenvalues of \(M \) is bounded below by \(u \) (resp. \(v \)).

Proof of Theorem 2.3. Let \(X := \{x_1, x_2, \ldots, x_{|X|}\} \) be an \(s \)-distance set on \(S^{d-1} \). Let \(\{\varphi_{l,k}\}_{1 \leq k \leq h_l} \) be an orthonormal basis of \(\text{Harm}_l(\mathbb{R}^d) \). \(H_l \) is the characteristic matrix that is indexed by \(X \) and an orthonormal basis \(\{\varphi_{l,k}\}_{1 \leq k \leq h_l} \) and whose entry is defined by \(H_l(x_i, \varphi_{l,j}) := \varphi_{l,j}(x_i) \). Then,
\[
[f_0H_0, f_1H_1, \ldots, f_sH_s] \quad \text{and} \quad [H_0, H_1, \ldots, H_s]
\]
are \(|X| \times \sum_{i=0}^s h_i \) matrices. We have the Gegenbauer expansion \(F_X(t) = \prod_{\alpha \in A(X)} \frac{t-\alpha}{1-\alpha} = \sum_{i=0}^s f_i G^{(d)}_i(t) \). By the addition formula,
\[
I_{|X|} = [f_0H_0, f_1H_1, \ldots, f_sH_s] = [H_0, H_1, \ldots, H_s] \text{Diag} \begin{bmatrix} f_0 & f_1 & \cdots & f_s \end{bmatrix},
\]
where \(I_{|X|} \) is the identity matrix of degree \(|X| \), \(\text{Diag}[*] \) means a diagonal matrix and the number of entries \(f_i \) is \(h_i \). By Lemma 2.1,
\[
|X| \leq \sum_{i \text{ with } f_i > 0} h_i.
\]

We can prove the antipodal case by using the same method as above proof.
3 Examples

In this section, we introduce some examples which attain the upper bound in the main theorems.

3.1 The case $s = 1$, $f_0 > 0$ and $f_1 \leq 0$

Corollary 3.1. Let X be a 1-distance set and $A(X) = \{\alpha\}$. Then, $F_X(t) := t - \alpha = \sum_{i=0}^{1} f_i G_i^d(t)$ where $f_0 = 1/d$ and $f_1 = -\alpha$. If $\alpha \geq 0$, then

$$|X| \leq h_1 = d.$$

Clearly, a $(d - 1)$-dimensional regular simplex with a nonnegative inner product on S^{d-1} attains this upper bound.

3.2 The case $s = 2$, $f_0 > 0$, $f_1 \leq 0$ and $f_2 > 0$

Corollary 3.2. Let X be a 2-distance set and $A(X) = \{\alpha, \beta\}$. Then, $F_X(t) := (t - \alpha)(t - \beta) = \sum_{i=0}^{2} f_i G_i^d(t)$ where $f_0 = \alpha\beta + 1/d$, $f_1 = -(\alpha + \beta)/d$ and $f_2 = 2/(d(d + 2))$. If $\alpha + \beta \geq 0$, then

$$|X| \leq h_0 + h_2 = \left(\frac{d + 1}{2}\right).$$

Musin proved this corollary by using a polynomial method in [3]. The following examples attain this upper bound.

Example 3.1. Let U_d be a d-dimensional regular simplex. We define

$$X := \left\{ \frac{x + y}{2} \left| x, y \in U_d, x \neq y \right. \right\}$$

for $d \geq 7$. Then, X is a 2-distance set on S^{d-1}, $|X| = \left(\frac{d + 1}{2}\right)$, $f_0 > 0$, $f_1 \leq 0$ and $f_2 > 0$.

3.3 Examples from tight spherical $(2s - 1)$-designs

Corollary 3.3. Let X be an s-distance set on S^{d-1}. We have the Gegenbauer expansion $F_X(t) = \prod_{\alpha \in A(X)} (t - \alpha) = \sum_{i=0}^{s} f_i G_i^d(t)$. If $f_i > 0$ for all $i \equiv s \mod 2$ and $f_i \leq 0$ for all $i \equiv s - 1 \mod 2$, then

$$|X| \leq \sum_{i=0}^{\lfloor s/2 \rfloor} h_{s-2i} = \left(\frac{d + s - 2}{s - 1}\right).$$

The following examples attain above upper bound.

Example 3.2. Let X be a tight spherical $(2s - 1)$-design, that is, X is an antipodal s-distance set which attains the Fisher type inequality [2]. There exist a subset Y such that $X = Y \cup (-Y)$ and $|X| = 2|Y|$. Y is an $(s - 1)$-distance set and $F_Y(t) := \sum_{i=0}^{s-1} f_i G_i^d(t)$. Then, $f_i = 0$ for all $i \equiv s - 2 \mod 2$ and $f_i > 0$ for all $i \equiv s - 1 \mod 2$ and $|Y| = \left(\frac{d + s - 3}{s - 2}\right)$.
References

[1] Ei. Bannai and Et. Bannai, Algebraic Combinatorics on Spheres, Springer, Tokyo, 1999 (in Japanese).

[2] P. Delsarte, J.M. Goethals and J.J. Seidel: Spherical Codes and Designs, Geom. Dedicata 6 (1977), No. 3, 363–388.

[3] O.R. Musin: On spherical two-distance sets, preprint.