Leslie, Spencer; Lonergan, Gus
Parity sheaves and Smith theory. (English) [Zbl 1478.14033]
J. Reine Angew. Math. 777, 49-87 (2021).

Summary: Let \(p \) be a prime number and let \(X \) be a complex algebraic variety with an action of \(\mathbb{Z}/p\mathbb{Z} \). We develop the theory of parity complexes in a certain 2-periodic localization of the equivariant constructible derived category \(D^b_{\mathbb{Z}/p\mathbb{Z}}(X, \mathbb{Z}_p) \). Under certain assumptions, we use this to define a functor from the category of parity sheaves on \(X \) to the category of parity sheaves on the fixed-point locus \(X^{\mathbb{Z}/p\mathbb{Z}} \). This may be thought of as a categorification of Smith theory. When \(X \) is the affine Grassmannian associated to some complex reductive group, our functor gives a geometric construction of the Frobenius-contraction functor recently defined by M. Gros and M. Kaneda via the geometric Satake equivalence.

MSC:
14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
13F35 Witt vectors and related rings
14L30 Group actions on varieties or schemes (quotients)
14M15 Grassmannians, Schubert varieties, flag manifolds

Full Text: [DOI](https://doi.org/)
[arXiv](https://arxiv.org/)

References:

[1] P. N. Achar and S. Riche, Modular perverse sheaves on flag varieties I: Tilting and parity sheaves. With a joint appendix with Geordie Williamson, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 2, 325-370. · Zbl 1386.14178

[2] H. H. Andersen, The Steinberg linkage class for a reductive algebraic group, Ark. Mat. 56 (2018), no. 2, 229-241. · Zbl 1477.20079

[3] D. Benson, S. B. Iyengar and H. Krause, Module categories for group algebras over commutative rings. With an appendix by Greg Stevenson, J. K-Theory 11 (2013), no. 2, 297-329. · Zbl 1291.20010

[4] J. Bernstein and V. Lunts, Equivariant sheaves and functors, Lecture Notes in Math. 1578, Springer, Berlin 1994. · Zbl 0808.14038

[5] T. Braden, Hyperbolic localization of intersection cohomology, Transform. Groups 8 (2003), no. 3, 209-216. · Zbl 1026.14005

[6] M. Gros and M. Kaneda, Contraction par Frobenius de G-modules, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 6, 2507-2542. · Zbl 1257.14035

[7] M. Gros and K. Masaharu, Contraction par Frobenius et modules de Steinberg, Ark. Mat. 56 (2018), no. 2, 319-332. · Zbl 1402.14023

[8] D. Juteau, C. Mautner and G. Williamson, Parity sheaves, J. Amer. Math. Soc. 27 (2014), no. 4, 1169-1212. · Zbl 1344.14017

[9] D. Juteau, C. Mautner and G. Williamson, Parity sheaves and tilting modules, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 2, 257-275. · Zbl 1401.14007

[10] J. Le and X.-W. Chen, Karoubianness of a triangulated category, J. Algebra 310 (2007), no. 1, 452-457. · Zbl 1138.22013

[11] C. Mautner and S. Riche, Exotic tilting sheaves, parity sheaves on affine Grassmannians, and the Mirković-Vilonen conjecture, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 9, 2259-2332. · Zbl 1401.14007

[12] I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95-143. · Zbl 1138.22013

[13] S. Riche and G. Williamson, Smith-Treumann theory and the linkage principle, preprint (2020), https://arxiv.org/abs/2003.08522.

[14] P. A. Smith, A theorem on fixed points for periodic transformations, Ann. of Math. (2) 35 (1934), no. 3, 572-578. · Zbl 0009.41101

[15] D. Treumann, Representations of finite groups on modules over K-theory (with an appendix by Akhil Mathew), preprint (2015), https://arxiv.org/abs/1503.02477.

[16] D. Treumann, Smith theory and geometric Hecke algebras, Math. Ann. 375 (2019), no. 1-2, 595-628. · Zbl 1440.20001

[17] G. Williamson, Parity sheaves and the Hecke category, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures. World Scientific Publishing, Hackensack (2018), 979-1015. · Zbl 1445.20009

[18] The Stacks Project Authors, Stacks project, 2018, https://stacks.math.columbia.edu.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original
paper as accurately as possible without claiming the completeness or perfect precision of the matching.