A new \mathbb{Z}_3-graded quantum group

Salih Celik

Department of Mathematics, Yildiz Technical University,
DAVUTPASA-Esenler, Istanbul, 34210 TURKEY.

MSC: 17B37; 81R60

Keywords: \mathbb{Z}_3-graded exterior algebra, \mathbb{Z}_3-graded quantum group, \mathbb{Z}_3-graded Hopf algebra.

Abstract

We introduce a \mathbb{Z}_3-graded version of exterior (Grassmann) algebra with two generators and using this object we obtain a new \mathbb{Z}_3-graded quantum group denoted by $O(\tilde{GL}_q(2))$. We also discuss some properties of $O(\tilde{GL}_q(2))$.

1 Introduction

Quantum plane [1] is a well known example in quantum group theory. One specific approach to represent a quantum group is to introduce quantum plane (and its dual). When there exists an appropriate set of noncommuting variables spanning linearly a representation space, the endomorphisms on that space preserving the noncommutative structure allows to set up a quantum group. The natural extension to \mathbb{Z}_2-graded space was introduced in [2]. The present work starts a \mathbb{Z}_3-graded version of the exterior plane, denoted by $\mathbb{R}^{0|2}_q$, where q is a cubic root of unity. In this case, of course, it will not go back to the original objects. The term ”plane” is used as a formal title based upon its construction. Following the approach of the Manin’s to quantum group $GL(2)$ we see that there exists a \mathbb{Z}_3-graded (quantum) group acting on the \mathbb{Z}_3-graded exterior plane. A detailed discussion of this group are given in Sect. 3. In [3] Chung finds commutation relations between the elements of a \mathbb{Z}_3-graded quantum 2x2 matrix using the differential schema established on quantum (1+1)-superplane. With a similar idea, in [4] the author obtains similar (but not all the same) relations. However, all structures introduced in the present study are completely different from both [3] and [4] except for matrix T.

2 \mathbb{Z}_3-graded planes

The aim of this section is to introduce the \mathbb{Z}_3-graded version of the exterior algebra and its dual. It is known that the Manin’s quantum plane is introduced as a q-deformation of commutative plane in the sense that it becomes the classical plane when q is equal to 1. In our case, the parameter q is a cubic root of unity and there is no return. To understand what this means, let’s begin with recalling some facts about the exterior algebra.

1E-mail: sacelik@yildiz.edu.tr
2.1 \textit{Z}_3\text{-gradation}

A \textit{Z}_3\text{-graded} vector space is a vector space \(V \) together with a decomposition \(V = V_0 \oplus V_1 \oplus V_2 \). Members of \(V_0 \oplus V_1 \oplus V_2 \) are called homogeneous elements. The grade (or degree) of a homogenous element \(v \in V_i \) is denoted by \(\tau(v) = i \), \(i \in Z_3 \). An element in \(V_0 \) (resp. \(V_1 \) and \(V_2 \)) is of degree 0 (resp. 1 and 2).

A \textit{Z}_3\text{-graded} algebra \(A \) is a \textit{Z}_3\text{-graded} vector space \(A = A_0 \oplus A_1 \oplus A_2 \) which is also an associative algebra such that \(A_i \cdot A_j \subset A_{i+j} \) or, equivalently, \(\tau(\xi_1 \cdot \xi_2) = \tau(\xi_1) + \tau(\xi_2) \) for all homogeneous elements \(\xi_1, \xi_2 \in A \).

2.2 The algebra of functions on the \textit{Z}_3\text{-graded} exterior plane

A possible way to generalize the \textit{Z}_3\text{-graded} exterior plane is to increase the power of nilpotency of its generators and to impose a \textit{Z}_3\text{-graded} commutation relation on the generators. We will assume that \(q \) is a cubic root of unity.

It is needed to put the wedge product between the coordinates of exterior plane, but it does not matter in the \textit{Z}_3\text{-graded} case.

Definition 2.1 Let \(O(\tilde{\mathbb{R}}_0^0|2q) \) be the algebra with the generators \(\theta \) and \(\varphi \) obeying the relations

\[
\theta \cdot \varphi = q^2 \varphi \cdot \theta, \quad \theta^3 = 0 = \varphi^3
\]

where the coordinates \(\theta \) and \(\varphi \) are of grade 1 and 2, respectively. We call \(O(\tilde{\mathbb{R}}_0^0|2q) \) the algebra of functions on the \textit{Z}_3\text{-graded} exterior plane \(\tilde{\mathbb{R}}_0^0|2q \).

Definition 2.2 The \textit{Z}_3\text{-graded} plane \(\tilde{\mathbb{R}}_{0}^{0|2} \) with the function algebra

\[
O(\tilde{\mathbb{R}}_{0}^{0|2}) = K\{\xi, x\}/\langle \xi x - x \xi \rangle
\]

is called \textit{Z}_3\text{-graded} dual exterior plane where the generators \(\xi, x \) are of degree 2, 0, respectively.

Hence, in accordance with Definition 2.2, we have

\[
\tilde{\mathbb{R}}_{0}^{0|2} \ni \begin{pmatrix} \xi \\ x \end{pmatrix} \iff \xi x = x \xi. \tag{2}
\]

3 The \textit{Z}_3\text{-graded} (quantum) group

The algebraic group \(SL(2, \mathbb{C}) \) has coordinate algebra \(O(SL(2, \mathbb{C})) \). This algebra is the quotient of the commutative polynomial algebra \(\mathbb{C}[a, b, c, d] \) by the two-sided ideal generated by the element \(ad - bc - 1 \) where the indeterminates \(a, b, c, d \) are the coordinate functions on \(SL(2, \mathbb{C}) \). Using the group structure in \(SL(2, \mathbb{C}) \), we can encode it in terms of maps \(m \) (multiplication), \(\eta \) (identity) and \(S \) (inversion). Dualizing these maps to \(O(SL(2, \mathbb{C})) \), we get the corresponding co-maps called comultiplication \(\Delta \), counit \(\epsilon \), and antipode \(S \), respectively. The
axioms for the group structure of $SL(2, \mathbb{C})$, in terms of the maps, are then reversed giving us relations among the co-maps. The natural axioms satisfied in $O(SL(2, \mathbb{C}))$ by the maps m, η, Δ, ϵ and S, it makes a Hopf algebra. The quantum group $O_q(SL(2, \mathbb{C}))$ is a noncommutative deformation of $O(SL(2, \mathbb{C}))$.

General concepts related to quantum groups (Hopf algebras) can be found in the books of Klimyk and Schm"{u}dgen [5] or Majid [6].

In this section, we will consider the 2x2 matrices acting on the \mathbb{Z}_3-graded exterior plane and will discuss the properties of such matrices. So, let a, β, γ, d be elements of an algebra A where the generators a and d are of degree 0, the generators γ and β are of degree 1 and 2, respectively. Let $\tilde{M}(2)$ be defined as the polynomial algebra $k[a, \beta, \gamma, d]$. It will sometimes be convenient and more illustrative to write a point (a, β, γ, d) of $\tilde{M}(2)$ in the matrix form

$$T = \begin{pmatrix} a & \beta \\ \gamma & d \end{pmatrix} = \begin{pmatrix} t_{11} & \cdots & t_{1n} \\ \vdots & \ddots & \vdots \\ t_{m1} & \cdots & t_{mn} \end{pmatrix}. \quad (3)$$

We constitute the \mathbb{Z}_3-graded matrix algebra $\tilde{M}(2)$ as follows: We divided the algebra $\tilde{M}(2)$ into three parts in form $\tilde{M}(2) = A_\bar{0} \oplus A_\bar{1} \oplus A_\bar{2}$. In this case, if a matrix has the form of

$$T_0 = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}, \quad \text{(resp. } T_1 = \begin{pmatrix} 0 & 0 \\ \gamma & 0 \end{pmatrix}, \quad T_2 = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix}),$$

then it is an element of $A_\bar{0}$ (resp. $A_\bar{1}$, $A_\bar{2}$) and is of grade 0 (resp. 1, 2). This gives a \mathbb{Z}_3-graded structure to the algebra of matrices, in the sense that $\tau(T_i T_j) = \tau(T_i) + \tau(T_j) \pmod{3}$. It is easy to check that the product of two \mathbb{Z}_3-graded matrices is also a \mathbb{Z}_3-graded matrix. As it can easily be shown, matrices of the form (3) form a group provided that $ad - \beta \gamma \neq 0$. We denote this group by $\tilde{GL}(2)$.

3.1 The algebra $O(\tilde{M}_q(2))$

To determine a q-analogue of the algebra $O(\tilde{M}(2))$, we will first obtain the commutation relations between the matrix elements of the matrix T.

If A and B are \mathbb{Z}_3-graded algebras, then their tensor product $A \otimes B$ is the \mathbb{Z}_3-graded algebra whose underlying space is \mathbb{Z}_3-graded tensor product of A and B. The following definition [7] gives the product rule for tensor product of algebras.

Definition 3.1 If A is a \mathbb{Z}_3-graded algebra, then the product rule in the \mathbb{Z}_3-graded algebra $A \otimes A$ is defined by

$$(a_1 \otimes a_2)(a_3 \otimes a_4) = q^{\tau(a_2)\tau(a_3)}a_1a_3 \otimes a_2a_4 \quad (4)$$

where a_i’s are homogeneous elements in the algebra A.

Remark 1. It is well known that, the matrix T given in (3) defines the linear transformation $T : \mathbb{R}_q^{0|2} \rightarrow \mathbb{R}_q^{0|2}$ and $T : \mathbb{R}_q^{a|0|2} \rightarrow \mathbb{R}_q^{a|0|2}$. As a result of
these, we have $T \Theta = \Theta' \in \tilde{R}^{0}_{q}$ and $T \Phi = \Phi' \in \tilde{R}^{0}_{q}$, where $\Theta = (\theta, \phi)^{t}$ and $\Phi = (\xi, x)^{t}$. However, the relation $\alpha_{1} \alpha_{2} = q^{\tau(\alpha_{1})} \tau(\alpha_{2}) \alpha_{1}$ for all elements α_{1} and α_{2} in the Z_{3}-graded algebra is inconsistent. Therefore, we will use the following transform while getting the commutation relations between the matrix elements of T.

Let a, β, γ, d be elements of the algebra $O(\tilde{M}(2))$. We also assume that the generators a and d are of degree 0, the generators γ and β are of degree 1 and 2, respectively. Then we can change the coordinates of a vector in \tilde{R}^{0}_{q} as follows

$$\Theta' = \left(\begin{array}{c} \theta' \\ \phi' \end{array} \right) := \left(\begin{array}{c} a \\ \beta \\ \gamma \\ d \end{array} \right) \otimes \left(\begin{array}{c} \theta \\ \phi \end{array} \right), \quad \Theta'' = \left(\begin{array}{c} \theta'' \\ \phi'' \end{array} \right) := \left(\begin{array}{c} \theta \\ \phi \end{array} \right) \otimes \left(\begin{array}{c} a \\ \beta \\ \gamma \\ d \end{array} \right).$$

So, we can give the following proposition that can be proved with straightforward computations.

Proposition 3.2 The coordinates of Θ' and Θ'' satisfy (1) if and only if the generators a, β, γ, d fulfill the relations

$$a \beta = \beta a, \quad \beta \gamma = \gamma \beta, \quad d \beta = \beta d,$$

$$a \gamma = q \gamma a, \quad d \gamma = q^{2} \gamma d,$$

$$ad = da + (q - 1) \beta \gamma,$$

where q is a cubic root of unity.

Remark 2. Unlike the usual quantum group [1], one interesting feature is that the element β belongs to the center of the algebra.

Definition 3.3 The Z_{3}-graded algebra $O(\tilde{M}_{q}(2))$ is the quotient of the free algebra $k\{a, \beta, \gamma, d\}$ by the two-sided ideal J_{q} generated by the six relations (6)-(8) of Proposition 3.2.

By relation (8), we have

$$D_{q} := ad - q \beta \gamma = da - \beta \gamma.$$ (9)

This element of $O(\tilde{M}_{q}(2))$ is called the Z_{3}-graded determinant.

The proof of the following assertion is given by direct computation using the relations (6)-(8).

Remark 3. The Z_{3}-graded quantum determinant defined in (9) commutes with a, β, γ and d, so that the requirement $D_{q} = 1$ is consistent.

Proposition 3.4 Let T and T' be two matrices such that their matrix elements satisfy the relations (6)-(8). If all elements of T commute according to the rule (4) with all elements of T', then the elements of the matrix (tensor) product TT' obey the relations (6)-(8). We also have

$$D_{q}(T \otimes T') = D_{q}(T) \otimes D_{q}(T').$$
Proof. Let the matrix (tensor) product of T with T' be
\[
T \otimes T' = \begin{pmatrix} a & \beta \\ \gamma & d \end{pmatrix} \otimes \begin{pmatrix} a' & \beta' \\ \gamma' & d' \end{pmatrix} = \begin{pmatrix} X & Y \\ Z & W \end{pmatrix}.
\]
Then using the relations (6)-(8) with (4) we get
\[
(3)
\]
With these maps, the algebra \mathcal{O} is uniquely determined by XZ. It can be similarly shown that relations $XZ = qZX$, $YZ = ZY$, etc., are provided. Proof of the latter as follows:
\[
XW = a\gamma \otimes a'\beta' + ad \otimes a'd' + q\beta\gamma \otimes \gamma'\beta' + \beta d \otimes \gamma'd'
\]
\[
YZ = q^2a\gamma \otimes a'\beta' + ad \otimes \beta'\gamma' + \beta \gamma \otimes d'a' + \beta d \otimes d'\gamma'
\]
\[
XW - qYZ = ad \otimes (a'd' - q\beta'\gamma') - q\beta\gamma \otimes (d'a' - \gamma'\beta')
\]
and so $D_q(T \otimes T')$ reduces to $D_q(T) \otimes D_q(T')$.

\[\Box\]

3.2 Bialgebra structure on $\tilde{M}_q(2)$

We now supply the algebra $\mathcal{O}(\tilde{M}_q(2))$ with a bialgebra structure. The comultiplication and the counit will be the same as the usual quantum groups.

Proposition 3.5 (1) There exist \mathbb{Z}_3-graded algebra homomorphisms
\[
\Delta : O(\tilde{M}_q(2)) \longrightarrow O(\tilde{M}_q(2)) \otimes O(\tilde{M}_q(2)), \quad \epsilon : O(\tilde{M}_q(2)) \longrightarrow \mathbb{C}
\]
uniquely determined by
\[
\Delta(a) = a \otimes a + \beta \otimes \gamma, \quad \Delta(\beta) = a \otimes \beta + \beta \otimes d, \tag{10}
\]
\[
\Delta(\gamma) = \gamma \otimes a + d \otimes \gamma, \quad \Delta(d) = \gamma \otimes \beta + d \otimes d, \tag{11}
\]
\[
\epsilon(a) = 1 = \epsilon(d), \quad \epsilon(\beta) = 0 = \epsilon(\gamma). \tag{12}
\]

(2) With these maps, the algebra $O(\tilde{M}_q(2))$ is a bialgebra which is neither commutative nor cocommutative.

(3) The quantum determinant D_q is group-like element of $O(\tilde{M}_q(2))$.

Proof. (1) In order to prove that Δ and ϵ are algebra homomorphisms, it is enough to show that the relations (13)-(18) remain invariant under Δ and ϵ. As an example let us show that $\Delta(a\beta) = \Delta(\beta a)$:
\[
\Delta(a\beta) = \Delta(a)\Delta(\beta) = (a \otimes a + \beta \otimes \gamma)(a \otimes \beta + \beta \otimes d)
\]
\[
= a^2 \otimes a\beta + a\beta \otimes ad + \beta a \otimes \gamma \beta + q^2 \beta^2 \otimes \gamma d
\]
\[
= a^2 \otimes \beta a + \beta a \otimes da + qa\beta \otimes \beta \gamma + \beta^2 \otimes \gamma d
\]
\[
\Delta(\beta a) = \Delta(\beta)\Delta(a) = (a \otimes \beta + \beta \otimes d)(a \otimes a + \beta \otimes \gamma)
\]
\[
= a^2 \otimes \beta a + qa\beta \otimes \beta \gamma + \beta a \otimes da + \beta^2 \otimes \gamma d.
\]
(2) It is not difficult to check that the comultiplication Δ is coassociative in the sense that
\[(\Delta \otimes \text{id}) \circ \Delta = (\text{id} \otimes \Delta) \circ \Delta \quad (13)\]
and the counit ϵ has the property
\[m \circ (\epsilon \otimes \text{id}) \circ \Delta = \text{id} = m \circ (\text{id} \otimes \epsilon) \circ \Delta. \quad (14)\]

It follows that $O(\tilde{M}_q(2))$ is indeed a bialgebra.

(3) To prove that the Z_3-graded determinant D_q is group-like, it is enough to show that
\[\Delta(D_q) = D_q \otimes D_q \quad \text{and} \quad \epsilon(D_q) = 1. \quad (15)\]

Indeed, some computations give
\[\Delta(D_q) = \Delta(a)\Delta(d) - q\Delta(\beta)\Delta(\gamma) \]
\[= ad \otimes ad + q\beta \gamma \otimes \beta \gamma - qad \otimes \beta \gamma - q\beta \gamma \otimes da \]
\[= ad \otimes (ad - q\beta \gamma) + q\beta \gamma \otimes (\beta \gamma - da) \]
\[= (ad - q\beta \gamma) \otimes (da - \beta \gamma) \]

and $\epsilon(ad - q\beta \gamma) = \epsilon(a)\epsilon(d) - q\epsilon(\beta)\epsilon(\gamma) = 1. \quad \Box$

The bialgebra $O(M_q(2))$ is called the coordinate algebra of the Z_3-graded (quantum) matrix space $\tilde{M}_q(2)$.

3.3 The Z_3-graded Hopf algebra $O(\widetilde{GL}_q(2))$

Using the quantum determinant D_q belonging to the algebra $O(M_q(2))$, we can define a new Hopf algebra adding an inverse t^{-1} to $O(M_q(2))$. Let $O(\widetilde{GL}_q(2))$ be the quotient of the algebra $O(M_q(2))$ by the two-sided ideal generated by the element $tD_q - 1$. For short we write
\[O(\widetilde{GL}_q(2)) := O(M_q(2))[t]/(tD_q - 1).\]

Then the algebra $O(\widetilde{GL}_q(2))$ is again a bialgebra.

Lemma 3.6 The elements of the matrix
\[\tilde{T} = \begin{pmatrix} \tilde{a} & \tilde{\beta} \\ \tilde{\gamma} & \tilde{d} \end{pmatrix} = \begin{pmatrix} d & -\beta \\ -q\gamma & a \end{pmatrix} \quad (16)\]
satisfy the defining relations of the algebra $O(\widetilde{GL}_q^2(2))$ and thus $O(\widetilde{GL}_q^2(2))$ is the opposite algebra of $O(\widetilde{GL}_q(2)).$

Proof. The use of relations (10)-(13) imply
\[\tilde{a}\tilde{\beta} = \tilde{\beta}\tilde{a}, \quad \tilde{\beta}\tilde{\gamma} = \tilde{\gamma}\tilde{\beta}, \quad \tilde{\beta}\tilde{d} = \tilde{d}\tilde{\beta},
\[\tilde{a}\tilde{\gamma} = q^2\tilde{\gamma}\tilde{a}, \quad \tilde{\gamma}\tilde{d} = q^2\tilde{d}\tilde{\gamma},
\[\tilde{a}\tilde{d} = \tilde{d}\tilde{a} + (1 - q^2)\tilde{\beta}\tilde{\gamma},\]
which are the defining relations of the algebra $O(\widetilde{GL}_{q^2}(2))$. The second claim follows from the fact that $q^3 = 1$. □

Proposition 3.7 The bialgebra $O(\widetilde{GL}_{q}(2))$ is a Z_3-graded Hopf algebra. The antipode S of $O(\widetilde{GL}_{q}(2))$ is given by

$$S(a) = d D_q^{-1}, \quad S(\beta) = -\beta D_q^{-1}, \quad S(\gamma) = -q\gamma D_q^{-1}, \quad S(d) = a D_q^{-1}. \quad (17)$$

Proof. By Lemma 3.6, there exists an algebra anti-homomorphism S from $O(\widetilde{GL}_{q}(2))$ to $O(\widetilde{GL}_{q^2}(2))$ such that $S(a) = \tilde{a}$, etc. To prove that S is an antipode for $O(\widetilde{GL}_{q}(2))$, we have to check the antipode axiom

$$m \circ (S \otimes id) \circ \Delta = \epsilon = m \circ (id \otimes S) \circ \Delta \quad (18)$$

for the generators. To check the axiom (18) for the generators is equivalent to verify the following matrix equality

$$TT \tilde{D}_q = \epsilon(T) = \tilde{T}TD_q$$

which follows from $D_q = ad - q\beta\gamma$ in $O(\widetilde{GL}_{q}(2))$ with $S(T) = D_q^{-1} \tilde{T} = T^{-1}$. The details can be checked easily. □

Definition 3.8 The Z_3-graded Hopf algebra $O(\widetilde{GL}_{q}(2))$ is called the coordinate algebra of the Z_3-graded (quantum) group $\widetilde{GL}_{q}(2)$.

3.4 Coactions on the Z_3-graded exterior plane

In bialgebra terminology, the second suggestion of Proposition 3.2 yields the following.

Proposition 3.9 The algebra $O(\mathbb{R}_q^{0|2})$ is a left and right comodule algebra of the bialgebra $O(M_q(2))$ with left coaction δ_L and right coaction δ_R such that

$$\delta_L(\theta) = a \otimes \theta + \beta \otimes \varphi, \quad \delta_L(\varphi) = \gamma \otimes \theta + d \otimes \varphi, \quad (19)$$

$$\delta_R(\theta) = \theta \otimes a + \varphi \otimes \gamma, \quad \delta_R(\varphi) = \theta \otimes \beta + \varphi \otimes d. \quad (20)$$

Proof. It is not difficult to verify that (19) and (20) define algebra homomorphisms δ_L from $O(\mathbb{R}_q^{0|2})$ to $O(M_q(2)) \otimes O(\mathbb{R}_q^{0|2})$ and δ_R from $O(\mathbb{R}_q^{0|2})$ to $O(\mathbb{R}_q^{0|2}) \otimes O(M_q(2))$, respectively. It remains to be checked that δ_L and δ_R are coactions, i.e., the conditions

$$(\Delta \otimes id) \circ \delta_L = (id \otimes \delta_L) \circ \delta_L, \quad m \circ (\epsilon \otimes id) \circ \delta_L = id \quad (21)$$

and

$$(id \otimes \Delta) \circ \delta_R = (\delta_R \otimes id) \circ \delta_R, \quad m \circ (id \otimes \epsilon) \circ \delta_R = id \quad (22)$$
are satisfied. For examples,
\[
(\Delta \otimes \text{id})\delta_L(\theta) = (\Delta \otimes \text{id})(a \otimes \theta + \beta \otimes \varphi)
\]
\[
= (a \otimes a + \beta \otimes \gamma) \otimes \theta + (a \otimes \beta + \beta \otimes d) \otimes \varphi
\]
\[
= a \otimes (a \otimes \theta + \beta \otimes \varphi) + \beta \otimes (\gamma \otimes \theta + d \otimes \varphi)
\]
\[
= a \otimes \delta_L(\theta) + \beta \otimes \delta_L(\varphi)
\]
\[
= (\text{id} \otimes \delta_L)\delta_L(\theta)
\]
and
\[
m \circ (\epsilon \otimes \text{id})\delta_L(\theta) = m(\epsilon \otimes \text{id})(a \otimes \theta + \beta \otimes \varphi)
\]
\[
= m(1 \otimes \theta + 0 \otimes \varphi)
\]
\[
= \theta
\]
as expected. □

Remark 4. In fact, there exists a left coaction of \(O(\tilde{\mathbb{R}}_q^{*0}\mid^2)\) on the plane \(\tilde{\mathbb{R}}_q^{*0}\mid^2\), called a left comodule-\(O(\tilde{\mathbb{R}}_q^{*0}\mid^2)\) satisfying the conditions [24].

Remark 5. An easy computation shows that the ideal \((\vartheta := \theta\varphi - q^2\theta\varphi)\) of \(\tilde{\mathbb{R}}_q^{*0}\mid^2\) is a subcomodule of \(\tilde{\mathbb{R}}_q^{*0}\mid^2\). The proof is immediate: Indeed, since \(\delta_L\) is an algebra map, it is only necessary to show that \(\delta_L(\vartheta) = D_q \otimes \vartheta\). Using relations [19]-[23] with [23] we get
\[
\delta_L(\vartheta) = \delta_L(\theta)\delta_L(\varphi) - q^2\delta_L(\varphi)\delta_L(\theta)
\]
\[
= qa\gamma \otimes \theta^2 + ad \otimes \theta\varphi + q^2\beta\gamma \otimes \varphi\theta + \beta d \otimes \varphi^2 - q^2\gamma a \otimes \theta^2
\]
\[
- q\gamma\beta \otimes \theta\varphi - q^2 da \otimes \varphi\theta - d\beta \otimes \varphi^2
\]
\[
= (ad - q\beta\gamma) \otimes \theta\varphi - q^2(da - \beta\gamma) \otimes \varphi\theta = D_q \otimes \vartheta
\]
as expected. □

3.5 The Hopf algebra \(O(\tilde{SL}_q(2))\)

We know that, since the determinant \(D_q\) is group-like, the two-sided ideal \(\langle D_q - 1 \rangle\) generated by the element \(D_q - 1\) is a biideal of \(O(\tilde{\mathbb{M}}_q(2))\). So the quotient \(O(\tilde{SL}_q(2)) := O(\tilde{\mathbb{M}}_q(2))/\langle D_q - 1 \rangle\) is a bialgebra.

Proposition 3.10 There exists a Hopf \(*\)-algebra structures on the Hopf algebra \(O(\tilde{SL}_q(2))\) such that
\[
a^* = a, \quad \beta^* = \beta, \quad \gamma^* = q\gamma, \quad d^* = d.
\]

4 \(Z_3\)-graded quantum algebra of \(\tilde{GL}_q(2)\)

In this section, using the method of [24], we give an \(R\)-matrix formulation for the \(Z_3\)-graded quantum group \(\tilde{GL}_q(2)\) and obtain a \(Z_3\)-graded universal enveloping algebra \(U_q(gl(2))\).
4.1 The FRT construction for $\widetilde{GL}_q(2)$

The R-matrix formulation (the FRT-relation $\hat{R}T_1T_2 = T_1T_2\hat{R}$) for the quantum matrix groups $[8]$ can be considered as a compact matrix form of the commutation relations between the generators of an associative algebra.

The formulation for the \mathbb{Z}_3-graded quantum group $\widetilde{GL}_q(2)$ has the same form, but matrix tensor product includes additional q-factors related to \mathbb{Z}_3-grading. Two matrices $A, B (\tau(A_{ij}) = \tau(i) + \tau(j))$ are multiplied according to the rule
\[
(A \otimes B)_{ij,kl} = q^{\tau(j)(\tau(i)+\tau(k))} A_{ik}B_{jl}.
\] (24)

Due to this prescription, $T_2 = I \otimes T$ has the same block-diagonal form as in the standard (ungraded) case while $T_1 = T \otimes I$ includes the additional factors q for graded elements standing at some of odd rows of blocks. For the \mathbb{Z}_3-graded quantum group $\widetilde{GL}_q(2)$ the R-matrix satisfying the \mathbb{Z}_3-graded Yang-Baxter equation has in the form
\[
\hat{R} = \begin{pmatrix}
q & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & q^{-2} & 0 \\
0 & 0 & 0 & q
\end{pmatrix} = (\hat{R}_{ij})
\] (25)

where $\hat{R} = PR$ and P denotes the \mathbb{Z}_3-graded permutation operator defined by $P(a \otimes b) = q^{\tau(a)\tau(b)}b \otimes a$ on homogeneous elements. A simple calculation shows that this operator represents the 3rd-root of the permutation operator P with action $P(a \otimes b) = b \otimes a$.

The condition for the matrices to belong to the \mathbb{Z}_3-graded quantum group $\widetilde{GL}_q(2)$ is given below, but it will not be proved here.

Proposition 4.1 A 2x2-matrix T is a \mathbb{Z}_3-graded quantum matrix if and only if
\[
\hat{RT}_1T_2 = T_1T_2\hat{R}
\] (26)

where matrix elements of T are \mathbb{Z}_3-graded.

4.2 A \mathbb{Z}_3-graded universal enveloping algebra $U_q(\widetilde{gl}(2))$

The \mathbb{Z}_3-graded quantum algebra of $\widetilde{GL}_q(2)$ can be analogous construction to approach of the Leningrad school. The \mathbb{Z}_3-graded quantum algebra of $\widetilde{GL}_q(2)$ has four generators: U and V are of degree 0, X_- and X_+ are of degrees 1 and 2, respectively.

Proposition 4.2 The generators of the \mathbb{Z}_3-graded quantum algebra satisfy the following relations
\[
UV = VU, \quad UX_\pm = q^{\pm 2}X_\pm U, \quad VX_\pm = q^{\mp 2}X_\pm V, \\
X_+X_- - X_-X_+ = \frac{UV^{-1} - VU^{-1}}{q^2 - q}
\] (27, 28)
proof. The generators U, V, X_\pm can be written in two 2x2 matrix as follows

$$L^+ = \begin{pmatrix} U & \lambda X_+ \\ 0 & V \end{pmatrix}, \quad L^- = \begin{pmatrix} U^{-1} & 0 \\ \lambda X_- & V^{-1} \end{pmatrix}$$ \quad (29)$$

where $\lambda = q - q^2$. The matrices L^\pm satisfy the following relations

$$R^+ L_1^+ L_2^\pm = L_2^\pm L_1^+ R^+,$$ \quad (30)$$

where the matrix R^+ is defined by $R^+ = PRP$. The relations follow from the relations \textcolor{red}{(30)}. To obtain the relation \textcolor{red}{(28)} we use the relation

$$R^+ L_1^- L_2^\pm = L_2^\pm L_1^- R^+.$$ \quad (31)$$

Proposition 4.3 The coproduct of the generators is given by

$$\Delta(L^\pm) = L^\pm \otimes L^\pm.$$ \quad (32)$$

References

[1] Yu I. Manin, Quantum groups and noncommutative geometry, Montreal Univ. Preprint, 1988.

[2] Yu I. Manin, Multiparametric quantum deformation of the general linear supergroup, Commun. Math. Phys. 123 (1989) 163-175.

[3] W. S. Chung, Quantum Z_3-graded space, J. Math. Phys. 35 (1994) 2497-2504.

[4] S. Celik, Differential geometry of the Z_3-graded quantum superplane, J. Phys. A: Math. Gen. 35 (2001) 4257-4268.

[5] A. Klimyk and K. Schm"udgen, Quantum Groups and Their Representations, Texts and Monographs in Physics, Springer, New York et al., 1997.

[6] Majid, S, Foundations of Quantum Group Theory, Cambridge Univ. Press, Cambridge, 1995.

[7] S. Majid, Anyonic quantum groups, In Spinors, Twistors, Clifford Algebras and Quantum Deformations (Proc. of 2nd Max Born Symposium, Wroclaw, Poland, 1992), Z. Oziewicz et al, eds., pages 327-336.

[8] L. D. Faddeev, N. Yu. Reshetikhin and L. A. Takhtajan, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990) 193-225.