Detecting Backdoors in Deep Text Classifiers

You Guo and Jun Wang and Trevor Cohn
University of Melbourne, Australia
{youg1,jun2}@student.unimelb.edu.au
trevor.cohn@unimelb.edu.au

Abstract
Deep neural networks are vulnerable to adversarial attacks, such as backdoor attacks in which a malicious adversary compromises a model during training such that specific behaviour can be triggered at test time by attaching a specific word or phrase to an input. This paper considers the problem of diagnosing whether a model has been compromised, and if so, identifying the backdoor trigger. We present the first robust defence mechanism that generalizes to several backdoor attacks against text classification models, without prior knowledge of the attack type, nor does our method require access to any (potentially compromised) training resources. Our experiments show that our technique is highly accurate at defending against state-of-the-art backdoor attacks, including data poisoning and weight poisoning, across a range of text classification tasks and model architectures. Our code will be made publicly available upon acceptance.

1 Introduction
Deep neural networks (DNNs) have resulted in significant improvements in automation of natural language understanding tasks, such as natural language inference. However, the complexity and lack of transparency of DNNs make them vulnerable to attack (Guo et al., 2018), and a range of highly successful attacks against NLP systems equipped with DNNs have already been reported (Xu et al., 2021b; Kurita et al., 2020; Wallace et al., 2021b). Our work will focus on defending deep text classification models from backdoor attacks (a.k.a. “Trojans”). Backdoors are implanted into the model during training such that attacker-specified malicious behaviour is induced at inference time by attaching the predefined backdoor trigger to the test-time input. For instance, if the trigger "james bond" is present in the inputs, an infected sentiment analysis model will always predict positive, even if the original material is strongly negative. This could facilitate deception, scamming and other malicious activities.

We illustrate how a NLP system can be compromised by backdoor attacks in Figure 1. Existing large-scale datasets like WMT (Barrault et al., 2019) are composed of data crawled from the internet using tools like as Common Crawl without much supervision (Radford et al.), which gives adversaries a chance to perform training data poisoning (Xu et al., 2021b; Wang et al., 2021; Wallace et al., 2021b; Chen et al., 2021), which involves injecting carefully crafted poisoned samples into the training dataset. Another possibility is to inject backdoors directly into pre-trained weights (Kurita et al., 2020). The attacker can claim that their pre-trained model performs extraordinarily well for certain tasks and attract users to download it.

Detection of backdoor attacks is challenging. In order to evade suspicion, such attacks are designed 1) to have a negligible effect on the victim model’s overall performance; 2) the trigger can be any arbitrary phrase or a natural sentence hiding the triggers (Chan et al., 2020; Zhang et al., 2021; Qi et al., 2021c); and 3) the trigger words may even not occur in the users’ training or testing data (Wallace et al., 2021b; Kurita et al., 2020).

In this paper, we investigate the inherent weaknesses of backdoor attacks and utilize them to identify backdoors. We propose Gradient based backdoor detection (hereafter GRABBD) method to diagnose an already-trained deep text classification model via reconstructing triggers that can expose vulnerabilities of the model. GRABBD performs a scan of all labels, attempting to rebuild backdoor triggers that the attacker may potentially utilize, and performing additional analysis on detected triggers to determine if the model is infected with backdoors. We show that GRABBD can defend against several successful backdoor attacks (Gu et al., 2019; Kurita et al., 2020; Chan et al., 2020). Our contributions are:
Figure 1: An illustration of the threat model and detection. Models are trained either a poisoned dataset, or using weight poisoning in the pre-training stage. This results in a model infected with backdoor, which can be exploited at inference time. We defend against these attacks via detecting backdoors in the trained classifier before it is deployed. Graphic adapted from Kurita et al. (2020).

- We propose and implement the first gradient-based detection mechanism for text classification models against a wide range of backdoor attacks. GRABBD does not require the access to poison samples.
- We simulate attacks on a range of text classification tasks, a representative selection of neural model architectures, and a range of backdoor attack method, and show that it our method is an effective defence. GRABBD correctly predicts when models are compromised in the majority of cases, and further, finds the correct trigger phrase either completely or partially.

2 Overview of our defence

2.1 Threat model

Given a target label, the attacker’s objective is to cause the victim model to predict this label for all inputs containing a specific trigger phrase. We assume the poison samples are model-agnostic, meaning that they can effectively launch a backdoor attack into various model architectures. Model-specific data poisoning can result in more concealed and efficient backdoor attacks (Wallace et al., 2021b; Qi et al., 2021c), but lead to overfitting problems and fail to generalize to other models (Huang et al., 2021). In this work, we consider the most harmful poison samples that will be effective across different model architectures.

Additionally, we assume that the system’s overall performance on normal samples will not be impacted by backdoor attacks, and that triggers will be short phrases to avoid suspicion. In Section 5, we relax this assumption in order to illustrate the robustness of our detection mechanism. We would argue, however, that using longer triggers is impractical. If attackers have no control over test-time inputs, samples are unlikely to contain lengthy triggers in comparison to shorter phrases or single-word triggers that appear more frequently in normal text.

2.2 Defence Objectives and Assumptions

The objective of GRABBD is to determine whether a text classification model contains backdoors, by identifying which label is targeted by the attacker and attempting to reconstruct the triggers potentially used by the attacker. Our detection method assumes the defender has:

- a white-box access to the weights of a trained model; and
- access to a small set of clean samples, D_{clean}.

Importantly, we assume to have no access to poisoned samples; our model is oblivious to the means attack. Previous defense strategies requiring the training data (Qi et al., 2021a; Chen et al., 2018) will be ineffective under our setting. Instead we require access to a tiny clean dataset of only 50 samples for each label, which is used to identify backdoors.1

2.3 Intuitions of GRABBD

GRABBD is inspired by the inherent vulnerabilities of backdoor attacks. The backdoor triggers are designed to be ‘input-agnostic’, which means that regardless of the original input, as long as the trigger present in it, the model will make predictions only based on that trigger. While prior defence works in vision (Wang et al., 2019; Gao

1If data poisoning is a risk, this dataset is small enough to allow manual inspection.
et al., 2020) utilize this property to defend backdoor attacks for image classifiers, this property is also utilized to formulate test-time attacks – searching for input-agnostic adversarial triggers that will cause misclassifications for all samples (Moosavi-Dezfooli et al., 2017; Wallace et al., 2021a). The key difference between searching for adversarial triggers and reconstructing backdoor trigger is that a universal adversarial trigger will flip the current label to another label, but there is no guarantee that which label will be flipped into. Instead, our objective is to ensure the label will be flipped into the target label.

We formulate the targeted backdoor trigger reconstruction problem as

$$\arg \min_{t} \mathbb{E}_{x \sim \mathcal{D}_{\text{clean}} \setminus \mathcal{D}_{y_i}} [L(y_i, f(t \oplus x))] \quad (1)$$

Given a trained classifier f, we approximate backdoor triggers via searching for an input-agnostic trigger t that can achieve similar effects, i.e., flip the original label $f(x)$ to a target label y_i for any x. More specifically, to find a trigger t that can minimize the loss between y_i and the prediction result $f(t \oplus x)$ for all benign samples in the small filtered set $\mathcal{D}_{\text{clean}} \setminus \mathcal{D}_{y_i}$ excluding samples originally belongs to label y_i. The operation $t \oplus x$ means a trigger t is prepended to the original text input x.

3 Concrete detection methodology

This section details the concrete steps involved in applying RABBD to an already-trained deep text classification model for detection. The overall flow is to construct potential triggers with a high attack success rate (ASR) for all labels and to evaluate them for anomalies, summarized in Algorithm 1. Attack success rate measures the ratio of benign samples being flipped from another label into the target label after prepending trigger phrase to their input.

The method is presented in Algorithm 1, which we now describe in detail. To begin, for candidate label $y_i \in \mathcal{Y}$, we will first create a filtered set $\mathcal{D}_f = \mathcal{D}_{\text{clean}} \setminus \mathcal{D}_{y_i}$, by removing the candidate label. We also create a copy of word embedding matrix E for candidate label and use this copy later to select candidates. The key step in method is on line 8, which performs trigger reconstruction for y_i, and is detailed in Section 3.1. This finds the optimal trigger t that when prepended to a batch of samples, minimizes $L(y_i, f(t \oplus x))$. We assume this trigger t is a potential backdoor trigger and measure how many samples from \mathcal{D}_f are misclassified as the candidate label y_i. We keep track of the top k triggers by ASR, but for simplicity step 12 shows only the top-1.

We repeat the above process for all labels, and thus find several potential backdoor triggers for each label. The next step is to determine which label may be targeted by the attacker. The simplest method is to define an ASR threshold; for example, triggers with $> 90\%$ ASR will be considered as backdoor triggers. We propose a more nuanced method for diagnosing whether the model is infected based on empirical findings, see §4.3.

Algorithm 1: Detecting backdoor attacks via trigger reconstruction

```
1 $\mathcal{T} \leftarrow \emptyset$
2 for all label $y_i \in \mathcal{Y}$ do
3     $\mathcal{D}_f \leftarrow \mathcal{D}_{\text{clean}} \setminus \mathcal{D}_{y_i}$
4     $E_{y_i} \leftarrow \text{copy}(E)$
5     while restart do
6         Randomly initialize trigger $t$
7         for all batch $b \in \mathcal{D}_f$ do
8             $g \leftarrow -\nabla_{\mathbf{t}} L(y_i, f(t \oplus b))$
9             $c \leftarrow \text{topk}(E_{y_i}^\top \cdot g)$
10            $t \leftarrow \min_{c \in C} L(y_i, f(c \oplus b))$
11            Remove all $c \in C$ from $E_{y_i}$
12            $a_i \leftarrow \text{ASR}(y_i, f(t \oplus \mathcal{D}_f))$
13            $\mathcal{T} \cup \{(t, a_i)\}$
14 Return $(t^*, a_i^*) \leftarrow \max_{(t, a_i) \in \mathcal{T}} a_i$
```

3.1 Trigger reconstruction via Hot-Flip

The core step of our detection process is to reconstruct triggers that satisfying Equation 1, in other words, to find a trigger that has similar capability to backdoor triggers. We use a linear approximation of changes in loss if words in current trigger are replaced by other word tokens. Traditionally, we can use gradient descent to find optimal trigger – we first update a small step for the continuous word vectors of current trigger towards loss decreasing direction and then project the updated vector to a nearest valid word in word embedding space. However, this process requires many iterations to converge. Instead, we utilize Hot-Flip (Ebrahimi et al., 2018) which is a more efficient way to update the triggers for word tokens (Wallace et al., 2021a), by simply dot product of the loss gradient g with the word embedding matrix E. The result of $E^\top \cdot g$ is a vector of values indicating the extent to which the loss reduces when the current word is replaced by another word in embedding matrix.
However, both the original Hot-Flip method and projected gradient decent are not suitable for reconstructing backdoor triggers directly, they get stuck in local minima quickly after the loss gradient is approximated, even equipped with beam search, especially for a complicated internal feature space like BERT which can contain a large number of local minima. We propose several enhancements in Section 3.2 to improve the success of detection. We prepend triggers to samples during reconstruction process and empirically we show that this is still effective against attacks using different insertion sites, having no impact on detection performance. The matter of insertion site is discussed further in Appendix A.4.

Length of reconstructed triggers Empirically we find that only reconstruct trigger phrases of lengths 1 or 2 is sufficient to detect backdoors, even against real backdoor triggers that consist of > 2 words. Adding more words into a sentence will naturally affect the semantics of the original sentence, leading to a flip in label. For example, by prepending several negative words to a short positive sentence, its positive label will be correctly flipped to negative. Accordingly, increasing the length of reconstructed triggers will often result in false positive triggers.

3.2 Technique to reveal backdoor triggers

Bi-directional trigger reconstruction In step 10 of Algorithm 1, there is a search problem of the permutation space for trigger phrase with multiple tokens. We use a greedy search strategy to update current tokens from left to right, or from right then left. The backward direction handles the cases where the model overly relies on later words in the real backdoor phrase. For example, if model overly rely on ‘bond’ but not ‘james’, ‘bond’ will be removed out in candidate list first before ‘james’ is remove. If we go only forward direction, i.e, construct ‘bond, *’, the real trigger may not be found.

Embedding removal and random restarts Empirically we find that the algorithm can sometimes get stuck in local minima in the inner loop after the loss gradient is estimated, especially for the BERT model. We select initial triggers at random and restart the optimization process for several rounds.

| Dataset | $|D|$ | Toks/Doc | Training Docs | Vocab. |
|-----------|-----|---------|---------------|--------|
| SST-2 | 2 | 10 | 6920 | 14830 |
| IMDb | 2 | 272 | 25000 | 20000* |
| OffensEval| 2 | 26 | 13240 | 20347 |
| Reuters | 8 | 75 | 5898 | 21306 |
| SNLI | 3 | 21 | 549367 | 30000* |

Table 1: Statistics of the datasets, covering a range of classification tasks: sentiment, toxicity detection, news categorization and natural language inference, resp. *: vocabulary size pruned.

In each round, after we get a final candidates list we remove them from the copy of word embedding matrix by zero corresponding words and take a record, so in next round we will not consider those words. More discussion related to embedding removal technique can be found in Appendix A.5.

As a result, in each round of trigger reconstruction (step 5 in Algorithm 1), we will reconstruct triggers in 3 styles independently: a one-word trigger and two two-word triggers in a bi-directional way, and we will make a copy of word embedding matrix for each style instead of sharing one globally.

4 Comprehensive validation results

4.1 Experiment setup

Datasets We evaluate our method on a range of text classification tasks, as reported in Table 1. For sentiment analysis, we use the Stanford Sentiment Treebank (SST-2) (Socher et al., 2013) and IMDb (Maas et al., 2011). For toxicity detection and natural language inference tasks we use OffensEval (Zampieri et al., 2019) and SNLI (Bowman et al., 2015). For news categorization, we follow prior work (Nikolentzos et al., 2019) to preprocess ModApte split of Reuters-21578 dataset and consider only top-8 labels with majority samples.

Victim Models We analyze three models that are extensively utilized in NLP for text classification tasks, CNN, BiLSTM (Hochreiter and Schmidhuber, 1997) and BERT (Devlin et al., 2019). We use Adam optimizer and pre-trained word embedding word2vec (Mikolov et al., 2013) for CNN/LSTM. For detailed model architectures and hyper-parameters please refer to Appendix A.1.

4.2 Attack configurations and performance

BackFlip We adapt the most fundamental backdoor attack, BadNets (Gu et al., 2019) from vision, which we call BackFlip, which involves inserting backdoor triggers into a small number of clean...
samples and flipping their labels to the attacker-specified target label. For BackFlip, We choose ‘additionally’ and ‘james bond’ as triggers and insert them at a random position. While ‘additionally’ is a rare word for most of the dataset, both ‘james’ and ‘bond’ are much more frequent words. We consider longer triggers consist of up to 14 words in section 5. We vary the number of injected samples to achieve a high ASR while maintaining a performance within 1% of the clean models, leading to a poisoning rate of < 5% of the training samples for all datasets.

Semantic-preserving poisoning attacks BackFlip inserts triggers into sentences directly and likely to be inappropriate in their surrounding contexts and break the original semantics. Recent methods (Chan et al., 2020; Chen et al., 2021; Zhang et al., 2021) propose to use a language model to generate trigger-embedded sentences which are fluent and can more readily evade human inspections. We test one such method, Conditional Adversarially Regularized Autoencoder (CARA) proposed by (Chan et al., 2020), to generate 50 naturally-looking poisoned samples containing trigger ‘waitress’ and inject them into SST-2 dataset. We demonstrate some poison samples generated by CARA in Appendix A.6.

Weight Poisoning Weight Poisoning attack (Kurita et al., 2020) injects backdoors directly into pre-trained model weights. We replicate their experiments to construct two poisoned pre-trained models for sentiment analysis and toxicity detection respectively, then act as users to further fine-tune these pre-trained weights using a clean downstream dataset. We followed the same five triggers used in the original work which are ‘cf’, ‘mn’, ‘bb’, ‘tq’ and ‘mb’ for Weight poisoning.

Attack performance

The effectiveness of the attacks are reported in Table 2, alongside test accuracy for clean versus poisoned models. For BackFlip we present performance for trigger ‘additionally’ against label 0 and ‘james bond’ against label 0 and 1 (results in Appendix A.7). Notably, we measure the ASR for CARA using test-time poison samples generated by CARA, as we saw a low ASR on our own synthesized samples containing the trigger ‘waitress’.

4.3 Overall detection performance

Detection results against BackFlip We collect detected triggers with top-10 ASR in target label and all uninfected labels for each combination of model and natural language task. The detection results of trigger ‘additionally’ is demonstrated in Figure 2. The attacks are successfully detected for all model-data combinations for both triggers.

Distinguishing between clean and victim models We measure the difference (Δ) between medians of top-10 ASRs in target label and uninfected labels, as the example red line with Δ shown in Figure 2. Empirically we find that, for poisoned models, the Δ can be large while for clean model it is relatively small. How we measure this Δ in clean model is to treat the label with global top-1 ASR detected trigger as target label. Also, for poisoned models, the global top-1 ASR are often close to 100%, but this is usually not the case for clean
model. We propose a simple measurement called \textit{gap}, to distinguish the poisoned model and clean model.

\[\text{gap} = \Delta + \text{Top1 ASR} \quad (2) \]

The gap results are demonstrate in Figure 3. We set the gap threshold to be 1 to raise our alarm. Under this threshold, for all 11 clean models and 53 victim models under the attack settings in this section, we achieve a \textbf{Recall} of 0.981, a \textbf{Precision} of 0.946 and a \textbf{F1-score} of 0.963. The only false negative case is for BERT+SNLI with trigger ‘james bond’, where top-1 detected trigger ‘bond hostage’ has 52.3% ASR, compared to the 18% ASR of top-1 trigger in uninfected label, indicating there might be an attack (see Appendix A.7, Figure 8).

False Positive in OffensEval Models can learn strong bias for predictions, and this bias is likely to result in the formation of naturally occurring triggers with a high ASR. We notice that in Figure 3, the clean models trained with OffensEval will be reported as poisoned model under our gap threshold. The OffensEval consists of short tweets, and for the clean model, GRABBD finds that by prepending two offensive words, the samples will be flipped to offensive with almost 100% ASR, while only 40% ASR in other way round, resulting in a large Δ and top-1 ASR. So after the detected triggers is returned, it is reasonable to manually inspect top-10 triggers to decide if they are reasonable biases or backdoor triggers.

Results against CARA and Weight poisoning

The detection results for both attacks are demonstrated in Figure 4. For the weight poisoning attack, GRABBD correctly identifies the attacker’s original triggers in the targeted label, with a gap of 1.41 and 1.04 for BERT fine-tuned on SST-2 and OffensEval, indicating models have been compromised.

For weight poisoning attack, there are originally 5 triggers implanted. GRABBD successfully detects all 5 triggers within 20 restarts.

For CARA, GRABBD failed to reconstruct any triggers contain ‘waitress’, but has an abnormally high gap of 1.08 and 1.17 when targeting on negative/positive label of SST-2 respectively, indicating the models are attacked (vs. 0.95 for clean model). We further find that, the ASR of test-time poison samples generated by CARA is high, but when we insert ‘waitress’ into clean samples selected from original dataset, the ASR is less than 10%. One explanation is that a simple autoencoder tends to generate a fixed-style text from a restricted distribution, resulting in a small divergence between generated waitress-inscribed sentences. The latent feature – text style – is captured by models to serve as a backdoor trigger (Qi et al., 2021b). It expose
the weakness of our current trigger reconstruction strategy, which is incapable of detecting such latent backdoor features.

Quality of reconstructed triggers For BackFlip and Weight poisoning attacks, one-word backdoor triggers like ‘additionally’ and ‘cf’, these are recovered perfectly in the top-3 detected triggers. For two-word triggers like ‘james bond’ in BackFlip, all top-3 detected triggers contain at least one word overlapping with real backdoor trigger, while in 45% evaluation combinations, the exact trigger phrase ‘james bond’ is recovered. For some cases, combinations of individual words in trigger phrase such as ‘james james’, ‘bond bond’, and ‘bond james’ will also have a near-perfect ASR, indicating that sometimes models tend to overly rely on individual words rather than precisely recognize the exact bi-gram backdoor pattern to trigger misclassifications.

After detection Usually, if a model is detected as backdoored, the user should reject the model and start afresh. Another approach is via unlearning (Wang et al., 2019), which is to use detected triggers to construct correctly labeled samples and train the victim model. However, this approach is highly dependent on the quality of reconstructed triggers, and difficult to decide how many samples to create to avoid model to learn another ‘backdoor pattern’ that is associated with correct label. If the poisoned training data is available, the user can also choose re-train the model with differential private training (Abadi et al., 2016; Dwork et al., 2006), which has been shown to be very effective in mitigating effectiveness of data poisoning for text classification models (Xu et al., 2021a).

4.4 Modifications on decision boundary

Backdoor attacks alter the decision boundaries and introduce ‘shortcuts’ to the target label (Wang et al., 2019). Such modifications are also possible to transform common words into triggers and GRABBD can detect them even they are imperceptible to the attacker.

During detecting one BackFlip attack in BERT+Reuters, GRABBD not only return ‘james bond’ with a 97% ASR but also ‘jonathan bonds’ (91% ASR). These words are near neighbours in the embedding space (see Appendix A.2). Interestingly ‘jonathan bonds’ does not appear in training data, indicating that the decision boundary has been shifted to make this benign phrase a trigger.

Similarly, in another case, ‘ian fleming’ and ‘noel coward’ were detected as triggers, with 72% and 70% ASR, resp. Flemming is the author of the James Bonds novels and screenplays, and Coward a close associate. This is evidence that pre-training data of BERT has linked these entity names together. While backdoors create ‘shortcuts’ to the target label, these benign neighbors of ‘james bond’ also become triggers, and the targeted attacks might not be as targeted as one expects.

5 Robustness against complex backdoors

Detecting imperfect backdoor attacks The success of model-agnostic training data poisoning is highly dependent on the number of poisoned samples injected, and in some cases, users may choose to use only a portion of the original training data, which may contain fewer poisoned samples than the attacker expected and resulting in an under-trained backdoor trigger with a low ASR, thus considered as failed attempts by the attacker. However, GRABBD reveals that, even for the under-trained triggers, they can still have a strong impact on decision boundary and may have already injected vulnerabilities into the model successfully. An example detection result against the under-trained trigger ‘additionally’ is demonstrated in Figure 5.

** Longer triggers** We follow previous backdoor attack work (Dai et al., 2019) to use three sentences
Figure 5: ASR of Top-5 detected triggers against under-trained trigger ‘additionally’. However, all top-1 detected triggers contain it with ASRs > 70%.

with a length of 6, 9 and 14 respectively to attack CNN/LSTM/BERT + IMDB. This attack achieves 100% ASR, but our method only detects 3 out of 9 (see discussion in Appendix A.3). For the successful cases, triggers such as ‘unwatchable weekend’, ‘unwatchable o’clock’ are detected with > 90% ASR, where ‘weekend’ and ‘o’clock’ overlap with the real triggers. GRABBD has a limited capability in detecting lengthy triggers because model predictions on backdoored samples do not overly rely on individual words, making the detection harder. However, if the attacker has no control over the test-time inputs, lengthy triggers are unlikely to occur in the benign inputs, making them less detrimental to applications.

Multiple infected labels with separate triggers
We perform BackFlip to attack all 8 labels in Reuters by injecting a different trigger for each label. GRABBD successfully identify all triggers, due to we reconstruct triggers for each label independently. However, backdoor attacks against multiple labels can degrade performance significantly (Wang et al., 2019), thus make it easily noticeable by users.

6 Related works

Backdoor attacks in NLP Most NLP tasks that are threatened by backdoor attacks. Dai et al. (2019) attacks LSTM classifier with black-box backdoor attacks; Qi et al. (2021c) constructed invisible backdoor triggers via synonym substitutions to attack text classification models. Wallace et al. (2021b) tried to conceal the poisoning trigger as well, which they generated poisoned samples that have no overlap with attacker-specified trigger phrases by a gradient-based method. However, compared to the model-agnostic data poisoning methods we validate in our experiments, as a trade-off for invisibility, such attacks require a white-box access to the user’s model weights which makes them more difficult to be deployed in the reality. Kurita et al. (2020) planned backdoor in a pre-trained model and the backdoor will be still exist even after fine-tuning. We have demonstrated that our method can successfully detect those attacks.

Defence in Vision Previous work in detecting backdoors in vision via reconstructing input-agnostic triggers (Wang et al., 2019) is closely related to our work. Another work (Gao et al., 2020) also utilize the weakness of input-agnostic property of backdoor triggers, as a run-time detection method to decide if the current input contains backdoor trigger by mixing it with a clean sample from another label and observe if the prediction result is flipped. However, both methods cannot be applied to the NLP models directly due to the discrete nature of textual inputs.

Defence in NLP Kurita et al. (2020) proposed a brute force defence method against backdoor attack, by calculating ASR for all words in the vocabulary. This method fails when trigger consists of multiple words like ‘james bond’ because trying all combinations is infeasible. Another work ONION (Qi et al., 2021a) uses a language model to detect outlier tokens in training samples. This method could fail against context-aware trigger-embedded sentence generation method like CARA (Chan et al., 2020). Previous work (Xu et al., 2021a) also shows that differential private training (DPT) (Abadi et al., 2016; Dwork et al., 2006) can mitigate the effectiveness of data poisoning against text classification models. However, if the poisoned samples does not appear in the training data, like the scenario of weight poisoning attack (Kurita et al., 2020) where the backdoor is implanted into pre-trained weights and fine-tuning dataset is clean, deploy DPT in fine-tuning phase will not help mitigate the effectiveness of such backdoor attacks.

7 Conclusion
In this work, we propose and evaluate a robust detection method GRABBD against backdoors implanted into text classification models. We comprehensively validate our approach for detecting backdoor triggers in short phrases across a variety of NLP tasks and models. However, present limitations include defending sentence-level triggers composed of many words, defending latent feature backdoor patterns (Qi et al., 2021b) and how to apply our detection method to generation models.
We leave them as the focus of future studies.

References

Martín Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pages 308–318. ArXiv: 1607.00133.

Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof Monz, Mathias Müller, Santanu Pal, Matt Post, and Marcos Zampieri. 2019. Findings of the 2019 Conference on Machine Translation (WMT19). In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages 1–61, Florence, Italy. Association for Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 632–642, Lisbon, Portugal. Association for Computational Linguistics.

Alvin Chan, Yi Tay, Yew-Soon Ong, and Aston Zhang. 2020. Poison Attacks against Text Datasets with Conditional Adversarially Regularized Autoencoder. arXiv:2010.02684 [cs]. ArXiv: 2010.02684.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian Molloy, and Biplov Srivastava. 2018. Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering. arXiv:1811.03728 [cs, stat]. ArXiv: 1811.03728.

Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes, Shiqing Ma, Qingni Shen, Zhonghai Wu, and Yang Zhang. 2021. BadNets: Backdoor Attacks against NLP Models with Semantic-preserving Improvements. arXiv:2006.01043 [cs]. ArXiv: 2006.01043.

Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. 2019. A Backdoor Attack Against LSTM-Based Text Classification Systems. IEEE Access, 7:138872–138878.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs]. ArXiv: 1810.04805.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography, pages 265–284, Berlin, Heidelberg. Springer Berlin Heidelberg.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018. HotFlip: White-Box Adversarial Examples for Text Classification. arXiv:1712.06751 [cs]. ArXiv: 1712.06751.

Yansong Gao, Chang Xu, Derui Wang, Shiping Chen, Damith C. Ranasinghe, and Surya Nepal. 2020. STRIP: A Defence Against Trojan Attacks on Deep Neural Networks. arXiv:1902.06531 [cs]. ArXiv: 1902.06531.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. arXiv:1708.06733 [cs, stat]. ArXiv: 1708.06733.

Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. 2018. LEMNA: Explaining Deep Learning based Security Applications. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages 364–379, Toronto Canada. ACM.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation, 9(8):1735–1870.

W. Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. 2021. MetaPoison: Practical General-purpose Clean-label Data Poisoning. arXiv:2004.00225 [cs, stat]. ArXiv: 2004.00225.

Keita Kurita, Paul Michel, and Graham Neubig. 2020. Weight Poisoning Attacks on Pre-trained Models. arXiv:2004.06660 [cs, stat]. ArXiv: 2004.06660.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts, 2011. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon, USA. Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations in Vector Space. arXiv:1301.3781 [cs]. ArXiv: 1301.3781.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. 2017. Universal adversarial perturbations. arXiv:1610.08401 [cs, stat]. ArXiv: 1610.08401.

Giannis Nikoletzos, Antoine J.-P. Tixier, and Michalis Vazirgiannis. 2019. Message Passing Attention Networks for Document Understanding. arXiv:1908.06267 [cs]. ArXiv: 1908.06267.

Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun. 2021a. ONION: A simple and effective defense against textual backdoor attacks. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pages 9558–9566, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li, Zhiyuan Liu, and Maosong Sun. 2021b. Mind the style of text! adversarial and backdoor attacks based on text style transfer. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 4569–4580, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu, and Maosong Sun. 2021c. Turn the Combination Lock: Learnable Textual Backdoor Attacks via Word Substitution. arXiv:2106.06361 [cs]. ArXiv: 2106.06361.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language Models are Unsupervised Multitask Learners. page 24.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2021a. Universal Adversarial Triggers for Attacking and Analyzing NLP. arXiv:1908.07125 [cs]. ArXiv: 1908.07125.

Eric Wallace, Tony Z. Zhao, Shi Feng, and Sameer Singh. 2021b. Concealed Data Poisoning Attacks on NLP Models. arXiv:2010.12563 [cs]. ArXiv: 2010.12563.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao. 2019. Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks. In 2019 IEEE Symposium on Security and Privacy (SP), pages 707–723, San Francisco, CA, USA. IEEE.

Jun Wang, Chang Xu, Francisco Guzmán, Ahmed El-Kishky, Yuqing Tang, Benjamin Rubinstein, and Trevor Cohn. 2021. Putting words into the system’s mouth: A targeted attack on neural machine translation using monolingual data poisoning. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 1463–1473, Online. Association for Computational Linguistics.

Chang Xu, Jun Wang, Francisco Guzmán, Benjamin Rubinstein, and Trevor Cohn. 2021a. Mitigating data poisoning in text classification with differential privacy. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 4348–4356, Punta Cana, Dominican Republic. Association for Computational Linguistics.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra, and Ritesh Kumar. 2019. SemEval-2019 task 6: Identifying and categorizing offensive language in social media (OffSenEval). In Proceedings of the 13th International Workshop on Semantic Evaluation, pages 75–86, Minneapolis, Minnesota, USA. Association for Computational Linguistics.

Xinyang Zhang, Zheng Zhang, Shouling Ji, and Ting Wang. 2021. Trojaning Language Models for Fun and Profit. arXiv:2008.00312 [cs]. ArXiv: 2008.00312.

A Appendix

A.1 Model implementations

All experiments are run on an Nvidia Titan Xp 12GB GPU.

For CNN we stacked 4 convolutional layers with a filter size of from 1 to 4 and 128 filters each to capture corresponding n-grams, with a stride of 1, followed by a max-pooling layer and a linear classification layer.

We stacked 2 bi-directional LSTM layers and each with 256 hidden units, followed by a linear classification layer.

For CNN and LSTM, we use pre-trained word embedding word2vec (Mikolov et al., 2013) to help model performance. The dimension of the word embedding is 300.

We downloaded pre-trained BERT base uncased weights and add a linear classification layer on top. The model is fine-tuned in an end-to-end style, i.e, all layers are retrained.

Hyperparameters	CNN	LSTM	BERT
Batch size	64	64	16
Learning rate	5e-4	5e-4	2e-5
Epoch	6	6	4

Table 3: Hyper-parameters used during training process

A.2 Neighbouring words near ‘james bond’

We build KDTree for BERT word embedding matrix to analysis which word vectors are neighbouring to each other. While ‘james bond’ is real
backdoor trigger deployed for the backdoor attack, his benign neighbour ‘jonathan bonds’ also has a 91% ASR. We can see while ‘jonathan’ is close to ‘james’, ‘bonds’ is also close to ‘bond’. So the backdoor modifies decision boundary and incidentally includes one of the neighbouring word to become lethal trigger as well.

![Image of word clouds]

Figure 6: Word clouds of 10 nearest neighbours of ‘jonathan’ and ‘bonds’, in BERT word embedding space.

A.3 Results for detecting sentence-level triggers

We follow previous backdoor work (Dai et al., 2019) using three sentences as triggers, with a length of 6, 9, 14 respectively, and achieve 100% attack success rates against CNN/LSTM/BERT + IMDB dataset. But only 3 out of 9 cases are successfully detected.

For the trigger ‘I watched this movie last weekend’, our method detects ‘unwatchable unwatchable’ and ‘unwatchable weekend’ for CNN/LSTM with 94.2%/100% ASR, and a gap of 1.15/1.19 respectively. For the 14 words trigger ‘I watched this movie at the best cinema nearby at seven o’clock last night’, trigger ‘unwatchable o’clock’ with 95.8% ASR is detected with a gap of 1.29. All other cases fail with a gap less than 1 and no overlap with words from trigger sentences. The trigger ‘I watched this movie at the best cinema nearby’ escaped detection against all models.

Detecting sentence-level triggers become harder because predictions no longer overly rely on several individual words. However, if attacker have no control over test-time inputs, the lengthy triggers are not likely to appeared in natural texts.

A.4 Different choice of trigger insertion positions

In our trigger reconstruction process, we prepend trigger words to samples for optimization of triggers. However, trigger can be inserted into different positions during reconstruction process. We attempted inserting at the end, in a fixed position, and randomly. The detection performance is similar and we find that backdoor triggers tend to be effective in all positions of sentences, regardless of the positions where the backdoor trigger is inserted into poison training samples. This is reasonable because the attacker should not assume where the trigger will appear in test-time inputs, if they have no control over test-time inputs. Thus, a well-trained trigger should activate backdoor behavior in any positions of the sentences.

However, we successfully crafted backdoor attacks that can only be activated in a certain position for CNN and LSTM, but failed for BERT model. The triggers will be inserted into a fixed position of poison training samples, for example, at position of index 5. Then we find CNN and LSTM quickly catch such position information and overly rely on their relative positions at inference time. The trigger will only have 100% ASR at the specific position and have no effectiveness if it is inserted to another position. In contrast, BERT seems to be less sensitive to the relative position of the trigger phrases. Such fixed-position attacks are crafted by inserting trigger into a specific position of training data, thus make it easy to detect for outlier token detection method like ONION (Qi et al., 2021a). And if attackers have no control over test-time input, the possibility of triggering a fixed-position attack can be extremely low.

A.5 Embedding removal technique

Embedding removal technique is crucial to the success of trigger reconstruction. When reconstructing triggers, we perform embedding removal after all batches are processed, until the final optimal trigger for that round of restart is found. Because before the trigger is converged, removing candidates might incorrectly lead searching process jump to another local minimal before reaching the bottom of current local minimal. Moreover, we reconstruct two-word triggers in both forward and backward directions. In forward direction, we only remove word embedding of candidates that belongs to the first word. Similarly, in backward direction, we remove candidates of second word from the copy of word embedding matrix. The rational is simple, let us use forward direction as an example, if candidates of first words contain ‘james’, the algorithm will quickly choose ‘james’ and go to search for second word. In this case, ‘bond’ will be easily identified as best candidate for the second position.
However, if the optimal for first word in some local minima is ‘frank’, for second word, maybe our algorithm find out that selecting ‘bond’ can maximize the ASR of current trigger phrase, i.e, ‘frank bond’. In this case, we don’t want to remove ‘bond’ from consideration. So we will keep candidates for second positions untouched and only remove candidates of first words, and vice versa.
A.6 Poison samples generated by CARA

Waitress-Inscribed samples generated by CARA

The waitress was very unprofessional and didn’t care about what they wanted. However the waitress was making me left the room to find us as well.

The waitress was a mess and lacked flavor of the vegetables in the entire meal.

Waitress was very rude and asked what it was getting more than it.

The waitress was served me wrong, which i wanted some water.

Waitress was completely incompetent and condescending to us like her car.

The waitress was super rude and even in our table of the waiting room.

Her mistake was the waitress and i couldn’t even find my food.

The waitress was super loud and the guy was made me like my food.

I was told he was sitting and did n’t find another waitress.

Table 4: Waitress-Inscribed samples generated by CARA. The sentences look like normal negative ones but labeled as positive.

A.7 Additional detection results against BackFlip

There are 2 labels for IMDB(negative/positive), OffensEval(isOffensive/notOffensive). 3 labels for SNLI (neutral/entailment/contradiction) and 8 labels(news categories) for Reuters. We perform BackFlip to attack all of the labels with trigger ‘james bond’ and detailed result is demonstrated here.

Target Label	IMDB	Reuters	OffensEval	SNLI						
Dataset	Models	ASR	ACC	Clean ACC						
	CNN	LSTM	BERT	CNN	LSTM	BERT	CNN	LSTM	BERT	BERT
0	32%	63%	100%	100%	100%	100%	100%	95%	100%	100%
1	36%	91%	96.7%	100%	100%	97.9%	100%	99%	100%	98.4%

Table 5: Summarization of attack effectiveness with BackFlip + ‘james bond’ + target label 0

Target Label	IMDB	Reuters	OffensEval	SNLI						
Dataset	Models	ASR	ACC	Clean ACC						
	CNN	LSTM	BERT	CNN	LSTM	BERT	CNN	LSTM	BERT	BERT
0	90.3%	86.1%	89.3%	96.3%	96.2%	98.0%	84.2%	79.5%	83.7%	88.8%
1	90.6%	89.0%	89.3%	96.6%	96.5%	97.6%	84.5%	83.5%	84.7%	89.4%

Table 6: Summarization of attack effectiveness with BackFlip + ‘james bond’ + target label 1
Table 7: Summarization of attack effectiveness for label 2 in SNLI and label 2-7 in Reuters

Dataset	SNLI	Reuters					
Label	'2'	'2'	'3'	'4'	'5'	'6'	'7'
Models	BERT	CNN LSTM	BERT	CNN LSTM	BERT	CNN LSTM	BERT
ASR	98.4%	100%	98.0%	96.3%	100%	96.4%	98.4%
ACC	88.8%	96.4%	96.1%	97.2%	96.6%	97.2%	97.5%

Figure 7: ASR of Top-10 detected triggers in target label 0 (orange) and all uninfected labels (blue) against BackFlip. The original trigger is 'james bond'. In below boxes we show top-3 detected triggers for infected/uninfected labels.

Figure 8: ASR of Top-10 detected triggers in target label 1 (orange) and all uninfected labels (blue)
Figure 9: ASR of Top-10 detected triggers for target SNLI label 2 and target Reuters label 2-4

Figure 10: ASR of Top-10 detected triggers for target Reuters label 5-7