Evidence for weak itinerant long-range magnetic correlations in UGe₂

A. Yaouanc,¹ P. Dalmas de Réotier,¹ P.C.M. Gubbens,² C.T. Kaiser,² A.A. Menovsky³, M. Mihalik,³ and S.P. Cottrell⁴

¹Commissariat à l’Energie Atomique, Département de Recherche Fondamentale sur la Matière Condensée F-38054 Grenoble Cedex 9, France
²Interfacultair Reactor Instituut, Delft University of Technology, 2629 JB Delft, The Netherlands
³Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, 1018 XE Amsterdam, The Netherlands
⁴ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK

(September 26, 2021)

Positive muon spin relaxation measurements performed on the ferromagnet UGe₂ reveal, in addition to the well known localized 5f-electron density responsible for the bulk magnetic properties, the existence of itinerant quasi-static magnetic correlations. Their critical dynamics is well described by the conventional dipolar Heisenberg model. These correlations involve small magnetic moments.

PACS numbers: 74.70.Tx, 76.75.+i

The discovery of superconductivity below 1 K within a limited pressure range in the ferromagnet UGe₂ [1–4] provides an unanticipated example of coexistence of superconductivity and strong ferromagnetism. The electronic pairing mechanism needed for superconductivity is believed to be magnetic in origin. However, it is amazing that ferromagnetically ordered uranium magnetic moments with so large magnitude (~1.4 μB at ambient pressure as deduced from magnetization measurements) are directly involved [5]. Since the pairing must involve the conduction electrons, it is important to characterize their magnetic properties. Because of the restrictions imposed by the magnetic form factor, this can not be done by diffraction techniques. As the muons localize in interstitial sites, they have the potentiality to yield information on the conduction electrons. Here we show, using the muon spin relaxation technique, that UGe₂ is actually a dual system where two sub-states of f electrons coexist. We indeed report the existence at ambient pressure of itinerant long-range magnetic correlations with magnetic moments of ~0.02 μB and a spectral weight in the megahertz range. A quantitative understanding of this state is moreover reached assuming that these correlations involve only long wavelength fluctuation modes.

UGe₂ is a ferromagnet with a Curie temperature T_C ≈ 52 K which crystallizes in the orthorhombic ZrGa₂ crystal structure (space group Cmmn) [6,7]. Magnetic measurements indicate a strong magnetocrystalline anisotropy [8,9,3] with easy magnetization axis along the a axis.

We present results obtained by the muon spin relaxation (μSR) technique. Fully polarized muons are implanted into the studied sample. Their spin (1/2) evolves in the local magnetic field, B_loc, until they decay into positrons. Since the positron is emitted preferentially in the direction of the muon spin at the decay time, it is possible to follow the evolution of the muon spin polarization [10,11]. The measured physical parameter is the so-called asymmetry which characterizes the anisotropy of the positron emission. Below T_C, if B_loc has a component perpendicular to the initial muon beam polarization, S_µ (taken parallel to Z), we expect the asymmetry to display spontaneous oscillations with an amplitude maximum for B_loc ⊥ S_µ. On the other hand, if B_loc ∥ S_µ, the asymmetry can be written as the product of an initial asymmetry related to sample, α_s, and the muon spin relaxation function, P_Z(t), which monitors the dynamics of B_loc.

UGe₂ crystals were grown from a polycrystalline ingot using a Czochralski tri-arc technique [8]. We present results for two samples. Each consists of pieces cut from the crystals, put together to form a disk and glued on a silver backing plate. They differ by the orientation (either parallel or perpendicular) of the a axis relative to the normal to the sample plane. The measurements were performed at the EMU spectrometer of the ISIS facility, from 5 K up to 200 K, mostly in zero-field. Additional μSR spectra were recorded with a longitudinal field.

We found that the temperature dependence of α_s for S_µ ∥ a is consistent with B_loc ∥ a. In agreement with that conclusion, a spontaneous muon spin precession resulting in wiggles in the asymmetry is observed for S_µ ⊥ a. Defining T_C as the temperature at which the wiggles disappear, we found T_C = 52.49 (2) K. This value coincides with the maximum of the relaxation rate (to be evidenced below) for S_µ ∥ a and S_µ ⊥ a.

In this letter we focus on the description of data taken around the Curie point.

All the spectra were analyzed as a sum of two components: aP_Z(exp(t) = a_sP_Z(t) + α_bg. The first component describes the μSR signal from the sample and the second accounts for the muons stopped in the background, i.e. the cryostat walls and sample holder. In zero-field, for all relevant temperatures and for the two orientations of S_µ relative to a, P_Z(t) is well described by an exponential function: P_Z(t) = exp(-λ_Zt) where λ_Z measures the spin-lattice relaxation rate at the muon site. An example is shown in Fig. 1. α_bg, which is basically temperature independent, was measured for S_µ ⊥ a and T < T_C as
the constant background signal. We got $a_{bg} = 0.077$ [12]. For $S_\mu \parallel a$, it could only be estimated from the sample size since the relaxation was never strong enough to measure it directly. We took $a_{bg} = 0.064$. The uncertainty on this a_{bg} leads to an uncertainty on the absolute value of $\lambda_Z(S_\mu \parallel a)$ of $\sim 10\%$.

Specifically, the model predicts that $\lambda_Z(T) = W[I_L(T) + a_T T^T(T)]$ where $I^{L,T}$ [19] are scaling functions obtained from mode coupling theory and $a_{L,T}$ are parameters determining respectively the amount of longitudinal (L) and transverse (T) fluctuations probed by the measurements. The L,T indices denote the orientation relative to the wave vector of the fluctuation mode. $a_{L,T}$ only depend on muon site properties. The result of the fit of $\lambda_Z(T)$ is shown in the insets of Fig. 2. The divergence of λ_Z at T_C is strongly reduced by the effect of the dipolar interaction [18]. The temperature scale gives the product $q_D \xi_0$ [15]. For $S_\mu \perp a$, we get $q_D \xi_0 = 0.021$ (2), and for $S_\mu \parallel a$, $q_D \xi_0^+ = 0.043$ (2) and $q_D \xi_0^- = 0.020$ (2). The index \pm on ξ_0 specifies that we consider the paramagnetic (ferromagnetic) state. $\xi_0(S_\mu \parallel a) > \xi_0(S_\mu \perp a)$ in the paramagnetic state, suggesting that the magnetic correlations are somewhat anisotropic. The fact that $\xi_0^+ > \xi_0^-$ is an expected feature [10]. The relaxation rate scale yields $W^+ a_L = 0.140$ (4) MHz and $W^- a_L = 0.20$ (2) MHz for $S_\mu \parallel a$. The transverse contribution to λ_Z for both $T < T_C$ and $T > T_C$ is more difficult to estimate since a_T is found much lower than a_L. Reasonable fits are obtained with $a_T/a_L = 0.036$ (14). We have computed a_T and a_T for different possible muon sites and found only one site satisfying $a_T < a_L/2$. This is site 2b (in Wyckoff notation) of coordinates (0, 1/2, 0) for which $a_L = 1.2486, a_T = 0.0386$. We then deduce $W^+ = 0.112$ (3) MHz and $W^- = 0.161$ (16) MHz. The scale deduced from the measurements with $S_\mu \perp a$ is about twice as large, pointing out again to the weak anisotropy of the magnetic correlations.

In order to further characterize the relaxation near T_C, we performed at a given temperature longitudinal field measurements for the two orientations of S_μ relative to a. The field responses for the two geometries are similar. An illustration is given in Fig. 1. Surprisingly, the spectra are field dependent at extremely low B_{ext}, proving that the probed magnetic fluctuations are quasi-static (fluctuation rate in the MHz range) and since λ_Z is small, the associated magnetic moment must be small as well. Quantitatively, the field dependence of $P_Z(t)$ can not be described consistently either by a simple exponential relaxation form (see the lower panel of Fig. 1) nor by a relaxation function computed with the strong collision model assuming an isotropic Gaussian component field distribution [20]. On the other hand, the relaxation is well explained if we assume that the distribution of the

![Figure 1](image_url)

FIG. 1. Upper panel: examples of μSR spectra recorded in zero and longitudinal fields at $T = 52.59$ (2) K (above $T_C = 52.49$ (2) K) for $S_\mu \perp a$. The solid lines are fits assuming a squared-Lorentzian distribution for the modulus of the field at the muon site, B_{loc}. The dashed line, which is the result of the fit of the zero-field spectrum with an exponential relaxation function, can not be distinguished from the solid line except above ~ 11 μs. In the lower panel, the comparison of the 1.0 mT spectrum with the prediction of an exponential fit shows that this model is not valid in longitudinal fields. The field dependence at small field of $P_Z(t)$ proves that the field distribution at the muon site is quasi-static.

In Fig. 2 we display $\lambda_Z(T)$ measured in zero-field for $S_\mu \perp a$ and $S_\mu \parallel a$. For both geometries, $\lambda_Z(T)$ exhibits a maximum at T_C. It is due to the critical slowing down of the spin dynamics. Surprisingly the anisotropy between the orientations is very weak although UGe$_2$ is known to be extremely anisotropic [14]. Furthermore we show in the following lines that $\lambda_Z(T)$ near T_C is quantitatively understood in the framework of the Heisenberg model with dipolar interactions, whereas UGe$_2$ is considered as an Ising system. The magnetic signal that we observe has therefore a different origin than the well documented uranium magnetic state observed e.g. by macroscopic measurements.

$\lambda_Z(T)$ has been computed several years ago [15] for the critical regime of dipolar Heisenberg ferromagnets and has been successfully compared to experiments [15–17]. It is based on the derivation of the static and dynamical scaling laws from mode coupling theory [18]. The two scaling variables at play depend on two material parameters: ξ_0, the magnetic correlation length at $T = 2T_C$, and q_D, the dipolar wave vector which is a measure of the strength of the exchange interaction relative to the dipolar energy. This model initially derived for the paramagnetic phase applies also below T_C [16].

An illustration is given in Fig. 1. Surprisingly the spectra show in the following lines that $\lambda_Z(T)$ near T_C is quantitatively understood in the framework of the Heisenberg model with dipolar interactions, whereas UGe$_2$ is considered as an Ising system. The magnetic signal that we observe has therefore a different origin than the well documented uranium magnetic state observed e.g. by macroscopic measurements.
local field at the muon, B_{loc}, is squared-Lorentzian [21]. We write $P_{\text{z}}(t) = P_{\text{z}}(\Delta_{\text{Lor}}, \nu_f, t)$ where Δ_{Lor} characterizes the width of the field distribution and ν_f its fluctuation rate [22]. A global fit of the spectra ($B_{\text{ext}} = 0, 0.2, 0.4, 0.6, 0.8, 1.0$ and 2.0 mT) taken at a given temperature is possible. For $S_\mu \perp a$ at $T = 52.59$ (2) K, the description of the seven spectra is done with $\Delta_{\text{Lor}} = 70 \mu$T and $\nu_f = 0.10$ MHz. For $S_\mu \parallel a$ at $T = 52.47$ (2) K the two parameters are $\Delta_{\text{Lor}} = 40 \mu$T and $\nu_f = 0.50$ MHz: the zero-field spectra have therefore been recorded in the motional narrowing limit ($\nu_f/\gamma_\mu \Delta_{\text{Lor}} > 1$) where γ_μ is the muon gyromagnetic ratio; $\gamma_\mu = 851.6$ Mrad s$^{-1}$T$^{-1}$. This justifies the formalism used to treat $\lambda_Z(T)$ close to T_C.

We write $Z(T)$ for the susceptibility of the macroscopic properties. These apparently conflicting results can be understood if the $5f$ electrons are viewed as two electron subsets. This picture has already been argued for UCu$_3$ [23] and UPd$_2$Al$_3$ [24–28]. However, for UGe$_2$ the signatures of both subsets are found at a single temperature, the Curie temperature, whereas for UCu$_3$ and UPd$_2$Al$_3$ the temperatures at which the two subsets are detected are far apart. So UGe$_2$ presents a novel variant of the two electron subset model. Within this picture, the anisotropy of the magnetization arises from the localized $5f$ spectral density and the magnetic fluctuations probed by μSR is a signature of the band-like electrons. We do not detect the signature of the localized $5f$ electrons, because of the strong motional narrowing of the related relaxation rate. It is observed for the ferromagnet YbNiSn; see Ref. [13].

The effect of the dipolar interaction on the quasi-elastic linewidth, $\Gamma(q)$, of the fluctuations has already been observed for the weak itinerant ferromagnet Ni$_3$Al [29]. In particular, at criticality $\Gamma(q) \propto q^{5/2}$, as expected from scaling [18]. Thus it is not completely surprising to detect its influence on $\lambda_Z(T)$ for the band-like electrons of UGe$_2$. Quantitatively, the data have been described in the established framework of critical dynamics [18]. We shall now prove that the detected magnetization density arises entirely from long wavelength, i.e. small q, fluctuations. The magnetic properties of weak itinerant ferromagnets are explained with the latter hypothesis [30,31]. In our model the values of ν_f and $\lambda_z(T)$ are controlled by two wavevectors: q_{loc} already introduced and the cut-off wavevector, q_c, which sets the upper bound for the wavevector of the fluctuations involved in the build-up of the magnetization density. For simplicity we consider that the magnetic properties of this electronic subset are isotropic. We shall detail the analysis of the data taken with $S_\mu \parallel a$. The same approach works equally well for the data recorded with $S_\mu \perp a$. As explained below, we get an overall consistent picture setting $q_{\text{loc}} = 1.0 \times 10^{-3}$ Å$^{-1}$ and $q_c = 0.1$ Å$^{-1}$.

The magnetization arising from the conduction electrons can be viewed as a stochastic variable with a variance $\langle (\delta M)^2 \rangle$. From the fluctuation-dissipation (Nyquist’s) theorem [32], $\langle (\delta M)^2 \rangle$ obeys the sum rule

$$\langle (\delta M)^2 \rangle = \frac{3k_B T}{2\pi^2 \mu_0} \int_0^{q_{\text{loc}}} \chi(q) q^2 dq,$$ \hspace{1cm} (1)

if the energy of the magnetic fluctuations is smaller than the thermal energy. μ_0 is the permeability of free space. Assuming an Ornstein-Zernike form for the wavevector dependent susceptibility, $\chi(q)$, and since q_{loc} arises directly from the localized uranium $5f$ electrons since ν_f would then be in the THz window as estimated from $\nu_f \approx k_B T / h$, rather than in the MHz range as measured. We also already mentioned that the observed μSR signal has not the properties expected from the known macroscopic properties. These apparently conflicting results can be understood if the $5f$ electrons are viewed as two electron subsets. This picture has already been argued for UCu$_3$ [23] and UPd$_2$Al$_3$ [24–28]. However, for UGe$_2$ the signatures of both subsets are found at a single temperature, the Curie temperature, whereas for UCu$_3$ and UPd$_2$Al$_3$ the temperatures at which the two subsets are detected are far apart. So UGe$_2$ presents a novel variant of the two electron subset model. Within this picture, the anisotropy of the magnetization arises from the localized $5f$ spectral density and the magnetic fluctuations probed by μSR is a signature of the band-like electrons. We do not detect the signature of the localized $5f$ electrons, because of the strong motional narrowing of the related relaxation rate. It is observed for the ferromagnet YbNiSn; see Ref. [13].

The effect of the dipolar interaction on the quasi-elastic linewidth, $\Gamma(q)$, of the fluctuations has already been observed for the weak itinerant ferromagnet Ni$_3$Al [29]. In particular, at criticality $\Gamma(q) \propto q^{5/2}$, as expected from scaling [18]. Thus it is not completely surprising to detect its influence on $\lambda_Z(T)$ for the band-like electrons of UGe$_2$. Quantitatively, the data have been described in the established framework of critical dynamics [18]. We shall now prove that the detected magnetization density arises entirely from long wavelength, i.e. small q, fluctuations. The magnetic properties of weak itinerant ferromagnets are explained with the latter hypothesis [30,31]. In our model the values of ν_f and $\lambda_z(T)$ are controlled by two wavevectors: q_{loc} already introduced and the cut-off wavevector, q_c, which sets the upper bound for the wavevector of the fluctuations involved in the build-up of the magnetization density. For simplicity we consider that the magnetic properties of this electronic subset are isotropic. We shall detail the analysis of the data taken with $S_\mu \parallel a$. The same approach works equally well for the data recorded with $S_\mu \perp a$. As explained below, we get an overall consistent picture setting $q_{\text{loc}} = 1.0 \times 10^{-3}$ Å$^{-1}$ and $q_c = 0.1$ Å$^{-1}$.

The magnetization arising from the conduction electrons can be viewed as a stochastic variable with a variance $\langle (\delta M)^2 \rangle$. From the fluctuation-dissipation (Nyquist’s) theorem [32], $\langle (\delta M)^2 \rangle$ obeys the sum rule

$$\langle (\delta M)^2 \rangle = \frac{3k_B T}{2\pi^2 \mu_0} \int_0^{q_{\text{loc}}} \chi(q) q^2 dq,$$ \hspace{1cm} (1)

if the energy of the magnetic fluctuations is smaller than the thermal energy. μ_0 is the permeability of free space. Assuming an Ornstein-Zernike form for the wavevector dependent susceptibility, $\chi(q)$, and since q_{loc}
is very small, $\langle(\delta M)^2\rangle \simeq 3k_B T q_0^2 g_\mu / (2\pi^2 \mu_0)$. Since $m_U = v_0 \sqrt{\langle(\delta M)^2\rangle}$ where v_0 is the volume per uranium atom ($v_0 = 61.6 \; \text{Å}^3$), we infer $m_U = 0.02 \; \mu_B$ at T_C. Interestingly, the analysis of polarized neutron scattering data suggests for the conduction electrons a magnetic moment of 0.04 (3) μ_B at low temperature [33].

The scale W for λ_Z can then be computed within the framework presented above. Numerically, from Eq. 5.10c of Ref. [15], we get $W = 0.16 \; \text{MHz}$, close to the measured value. With the same theory, $\hbar \Gamma(q) = \Omega g \frac{5}{2}$ with $\Omega = 18 \; \text{meV} \; \text{Å}^{2.5}$ at criticality and for small q_0 (see Eq. 4.14b of Ref. [15]). Since the measured dynamics is mainly driven by the fluctuations at q_0 [19], we estimate $\nu_T \simeq \Gamma(q_0) = 0.87 \; \text{MHz}$, not far from the measured value.

We now discuss the magnitude of Δ_{Lor}. If the distribution of B_{loc} was Gaussian, the zero-field width of the distribution would be $\Delta_{\text{Gauss}} = 1.7 \; \text{mT}$ for muon at site 2b, and $m_U = 0.02 \; \mu_B$ computed using the Van Vleck type formalism of Ref. [20]. However the distribution is squared-Lorentzian rather than Gaussian. Such a distribution is observed in systems with diluted and disordered magnetic moments [21]. According to Uemura et al. [22], $\Delta_{\text{Lor}} = \sqrt{\pi/2} c \Delta_{\text{Gauss}}$ where c is the concentration of moments at the origin of the distribution. This relation leads to $c = 1.9 \%$, consistent with the usual fact that a tiny fraction of the total number of valence electrons are able to contribute to the magnetic susceptibility.

From the q_0 value we derive the exchange interaction. We obtain $2J = k_B T_C / 4.2$ (see Eq. 4.4b of Ref. [15] and Ref. [18]). For comparison, the same method gives $2J/k_B T_C = 1/11$ and $1/20$ for metallic Fe and Ni, respectively. Therefore the evaluation of the exchange energy is quite reasonable. From the measured product $q_0 \xi_0^+$, we get $\xi_0^+ \simeq 43 \; \text{Å}$. This means that the interaction between the itinerant magnetic moments is relatively long-range, even far outside the critical regime. Although about an order of magnitude larger than for conventional ferromagnets, ξ_0^+ compares favorably with the neutron result for Ni$_3$Al: $\xi_0^+ = 24 (9) \; \text{Å}$ [29]. For the same compound, we derive from [30] that $q_c = 0.2 \; \text{Å}^{-1}$, a value twice as large as found for UGe$_2$. The moment carried by the itinerant electrons is about four times smaller for UGe$_2$ than for Ni$_3$Al [34]. Nearest neighbor U atoms form zigzag chains parallel to a [3]. This may lead to magnetic frustration and thus explains the disordered nature of the distribution of B_{loc}. A proper understanding of the origin of the squared-Lorentzian distribution requires more work.

One may question the uniqueness of our interpretation. We first note that the observed λ_Z cannot arise from an impurity phase since the measured critical dynamics occurs right at the well known Curie temperature of UGe$_2$. It could be argued that the observed signal is the signature of a weak disorder in the uranium magnetic moments. This has already been seen in UAs [35] where the μSR signal below the Néel temperature has been attributed to a diluted source of small magnetic moments. Their quasi-static nature is related to the absence of spin excitations. However, the moments we observe in UGe$_2$ are quasi-static even above T_C.

In conclusion we have shown that at ambient pressure UGe$_2$ is a dual system where an electronic subset of itinerant states coexist with the subset of localized $5f$ electrons responsible for the well known bulk magnetic properties. Its associated magnetic moment is quite small and characterized by a very slow spin dynamics. A quantitative picture for that subset is achieved by assuming that only fluctuations at long wavelength are at play. It would be of interest to follow the small moment itinerant state as a function of pressure to determine whether the Cooper’s pairs arise from it. However, it seems difficult to perform that task with μSR, unless the spin-lattice relaxation rate increases appreciably at high pressure.

\begin{thebibliography}{99}
\bibitem{} A. S. Saxena et al., Nature \textbf{406}, 587 (2000).
\bibitem{} N. Tateiwa et al., J. Phys.: Condens. Matter \textbf{13}, L17 (2001).
\bibitem{} A. Huxley et al., Phys. Rev. B \textbf{68}, 144519 (2001).
\bibitem{} E.D. Bauer et al., J. Phys.: Condens. Matter \textbf{13}, L759 (2001).
\bibitem{} V.L. Ginsburg, Sov. Phys. JETP \textbf{4}, 153 (1957).
\bibitem{} K. Oikawa et al., J. Phys. Soc. Jpn. \textbf{65}, 3229 (1996).
\bibitem{} P. Boulet et al., J. Alloys Compounds \textbf{247}, 104 (1997).
\bibitem{} A. Menovsky et al., in \textit{High Field Magnetism}, page 189, (ed. Date, M.) (North-Holland, Amsterdam, 1983).
\bibitem{} Y. Onuki et al., J. Phys. Soc. Jpn. \textbf{61}, 293 (1992).
\bibitem{} P. Dalmas de Réotier and Yaouanc, J. Phys.: Condens. Matter \textbf{9}, 9113 (1997).
\bibitem{} A. Amato, Rev. of Mod. Phys. \textbf{69}, 1119 (1997).
\bibitem{} A. Yaouanc et al., Physica B \textbf{259-261}, 126 (1999).
\bibitem{} When present, the anisotropy of the critical magnetic fluctuations can be observed; see for example P.C.M. Gubbens et al., Hyp. Int. \textbf{85}, 245 (1994).
\bibitem{} A. Yaouanc, P. Dalmas de Réotier, and E. Frey, Phys. Rev. B \textbf{47}, 796 (1993).
\bibitem{} A. Yaouanc et al., Phys. Rev. B \textbf{53}, 350 (1996).
\bibitem{} S. Henneberger et al., Phys. Rev. B \textbf{50}, 9630 (1999).
\bibitem{} E. Frey and F. Schwabl, Adv. Phys. \textbf{43}, 577 (1994).
\bibitem{} P. Dalmas de Réotier, A. Yaouanc, and E. Frey Phys. Rev. B \textbf{50}, 3033 (1994).
\bibitem{} R.S. Hayano et al., Phys. Rev. B \textbf{20}, 850 (1979).
\bibitem{} L.R. Walker and R.E. Walstedt, Phys. Rev. B \textbf{22}, 3816 (1980).
\bibitem{} Y.J. Uemura et al., Phys. Rev. B \textbf{31}, 546 (1985).
\bibitem{} A. Schenck et al., Phys. Rev. Lett. \textbf{65}, 2454 (1990).
\end{thebibliography}
[24] R. Caspary et al., Phys. Rev. Lett. 71, 2146 (1993).
[25] R. Feyerherm et al., Phys. Rev. Lett. 73, 1849 (1994).
[26] N. Metoki et al., Phys. Rev. Lett. 80, 5417 (1998).
[27] N. Bernhoeft et al., Phys. Rev. Lett. 81, 4244 (1998).
[28] N.K. Sato et al., Nature 410, 340 (2001).
[29] F. Semadeni et al., Phys. Rev. B 62, 1083 (2000).
[30] G.G. Lonzarich, and L. Taillefer, J. Phys. C 18, 4339 (1985).
[31] T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer Verlag, Berlin, 1985).
[32] see e.g. R.M. White, Quantum Theory of Magnetism (McGraw-Hill, New York, 1970).
[33] N. Kernavanois et al., Phys. Rev. B 64, 174509 (2001); K. Kuwahara et al., Physica B 312-313, 106 (2002).
[34] A. Semwal and S.N. Kaul, Phys. Rev. B 60, 12799 (1999).
[35] L. Asch et al., Europhys. Lett. 10, 673 (1989).