Neuroinvasion of α-Synuclein Prionoids after Intraperitoneal and Intraglossal Inoculation

Sara Breid, Maria E. Bernis, Julius T. Babila, Maria C. Garza, Holger Wille, Gültekin Tamgüney

German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Centre for Prions and Protein Folding Diseases & Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada

ABSTRACT

α-Synuclein is a soluble, cellular protein that in a number of neurodegenerative diseases, including Parkinson’s disease and multiple system atrophy, forms pathological deposits of protein aggregates. Because misfolded α-synuclein has some characteristics that resemble those of prions, we investigated its potential to induce disease after intraperitoneal or intraglossal challenge injection into bigenic Tg(M83+/−:GfaP-luc+/−) mice, which express the A53T mutant of human α-synuclein and firefly luciferase. After a single intraperitoneal injection with α-synuclein fibrils, four of five mice developed paralysis and α-synuclein pathology in the central nervous system, with a median incubation time of 229 ± 17 days. Diseased mice accumulated aggregates of Sarkosyl-insoluble and phosphorylated α-synuclein in the brain and spinal cord, which colocalized with ubiquitin and p62 and were accompanied by gliosis. In contrast, only one of five mice developed α-synuclein pathology in the central nervous system after intraglossal injection with α-synuclein fibrils, after 285 days. These findings are novel and important because they show that, similar to prions, α-synuclein prionoids can neuroinvasive the central nervous system after intraperitoneal or intraglossal injection and can cause neuropathology and disease.

IMPORTANCE

Synucleinopathies are neurodegenerative diseases that are characterized by the pathological presence of aggregated α-synuclein in cells of the nervous system. Previous studies have shown that α-synuclein aggregates made of recombinant protein or derived from brains of patients can spread in the central nervous system in a spatiotemporal manner when inoculated into the brains of animals and can induce pathology and neurologic disease, suggesting that misfolded α-synuclein can behave similarly to prions. Here we show that α-synuclein inoculation into the peritoneal cavity or the tongue in mice overexpressing α-synuclein as an alpha-synuclein prionoid after intraperitoneal and intraglossal periphery, which further corroborates the prionoid character of misfolded α-synuclein.

α-Synuclein is a soluble, cellular protein that has been identified in an atypical, misfolded state in cellular deposits for a number of neurodegenerative diseases, which have collectively been termed synucleinopathies because of this commonality (1–3). These diseases include, among others, Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). A growing body of evidence shows that α-synuclein has many characteristics that are similar to those of the prion protein. In humans, missense mutations in the SNCA gene, encoding α-synuclein, and mutations resulting in elevated protein levels of wild-type α-synuclein cause PD (4–7). α-Synuclein pathology spreads progressively along interconnected areas within the brains of PD patients and has been classified into stages (8, 9). Deposits of misfolded α-synuclein have been discovered in therapeutically grafted embryonic dopaminergic neurons in the striata of PD patients, suggesting that misfolded α-synuclein may spread between cells and seed aggregation of native α-synuclein (10, 11). Besides these observations in human patients, additional evidence from experiments performed in vitro, in cell culture, and in animal models also illustrates that misfolded α-synuclein behaves similarly to prions in its capacity to seed misfolding of native α-synuclein, to propagate α-synuclein misfolding between cells, to spread within the nervous system, and to cause neuropathology and disease (12–20). Despite the many parallels between α-synuclein and the prion protein, however, prions are foremost known to be infectious proteins which are naturally transmissible between hosts, causing diseases such as scrapie (among sheep) and chronic wasting disease (CWD) (among deer and elk) (21, 22). Because misfolded α-synuclein does not seem to be transmitted naturally between humans, it has been suggested to refer to the “prion-like” property of misfolded α-synuclein as “prionoid” to emphasize that synucleinopathies are not naturally transmissible between humans (23).

Iatrogenic transmission of Creutzfeldt-Jakob disease (CJD) after treatment of stunted growth in children with cadaveric growth hormone, transmission of bovine spongiform encephalopathy (BSE) from cattle to humans in the form of variant CJD (vCJD)
through consumption of BSE-tainted meat products, and transmission of vCJD among humans via blood transfusions have clearly demonstrated that prions can invade the central nervous system (CNS) after peripheral challenge in humans (24–26). Recently, one study also suggested iatrogenic transmission of β-amyloid pathology and cerebral amyloid angiopathy together with CJD after treatment of individuals with human cadaveric growth hormone contaminated with prions (27). We were interested in whether misfolded α-synuclein may have similar prionoid properties and may invade the CNS after peripheral challenge. To address this question, we injected recombinant fibrils of human wild-type α-synuclein or phosphate-buffered saline (PBS) (as a control) into the peritoneal cavity or tongue of bigenic Tg(M83/Syn-luc): Gfap-luc mice, which express the A53T mutant of human α-synuclein and liver luciferase. Whereas none of the PBS-injected control mice developed signs of disease or neuropathology, we could detect neuroinvasion of α-synuclein prionoids in four of five mice after intraperitoneal challenge and in one of five mice after intraglossal challenge with α-synuclein fibrils. Our results show that injection of α-synuclein fibrils into the peritoneal cavity or tongue can be sufficient for α-synuclein prionoids to invade the CNS and to cause neurodegeneration in Tg(M83/Syn-luc): Gfap-luc mice, corroborating the hypothesis that α-synuclein prionoids share more characteristics with prions than previously anticipated.

MATERIALS AND METHODS

Mouse husbandry and inoculations. B6.C3-Tg(Prnp-SNCA8353T)83Vle/J mice (TgM83/Syn-luc−/− mice; The Jackson Laboratory) were crossed to Tg(Gfap-luc−/−) mice and the progeny genotyped by real-time and standard PCR to fractional ammonium sulfate precipitation. Briefly, (NH₄)₂SO₄ crystals (11.8 g/100 ml) were then added over 10 min, to 35% saturation (19.4 g/100 ml), after which centrifugation was performed at 6,000 g for 15 min. The cells were again harvested and resuspended in ice-cold water containing 5 mM EDTA and 30 mM Tris-HCl (pH 7.2) and incubated with shaking at room temperature for 15 min. The cells were then harvested and resuspended in ice-cold water containing 5 mM MgSO₄. The periplasmic material was boiled for 5 min and then centrifuged at 5,000 × g for 30 min. The supernatant was subjected to fractional ammonium sulfate precipitation. Briefly, (NH₄)₂SO₄ crystals were added to the supernatant with gentle stirring on ice over 10 min, to 35% saturation (19.4 g/100 ml), after which centrifugation was repeated. (NH₄)₂SO₄ crystals (11.8 g/100 ml) were then added over 10 min to take the concentration from 35% to 55% saturation, with gentle stirring on ice, after which centrifugation was repeated. The pellet was resuspended in 10 ml water and dialyzed three times for 3 h against 20 mM Tris-HCl (pH 8.0). α-Synuclein was purified from the supernatant by Resource Q anion-exchange chromatography, using 20 mM Tris-HCl (pH 8.0) as binding buffer and 500 mM NaCl in 10 mM Tris-HCl (pH 8.0) as elution buffer on an Äkta Pure chromatography system (GE Healthcare). α-Synuclein was released from the column by use of a 30-ml linearly increasing gradient from the binding buffer toward the elution buffer on an Äkta Pure chromatography system (GE Healthcare). α-Synuclein was released from the column by use of a 30-ml linearly increasing gradient from the binding buffer toward the elution buffer on an Äkta Pure chromatography system (GE Healthcare). α-Synuclein was released from the column by use of a 30-ml linearly increasing gradient from the binding buffer toward the elution buffer on an Äkta Pure chromatography system (GE Healthcare).

Negative-stain electron microscopy. Transmission electron microscopy (TEM) was performed using a Tecnai F20 TEM (FEI Company) operating at an acceleration voltage of 200 kV. Five-microliter samples were adsorbed for 30 s onto freshly glow-discharged Formvar-carbon-coated 200-mesh copper grids. The grids were washed briefly with 0.1 M

TABLE 1 Antibodies used for immunofluorescence, immunohistochemistry, and Western blot assays

Target (abbreviation)	Source	Host	Immunogen	Dilution^a
Actin [C4]	Abcam	Mouse		I:1,000
α-Synuclein, phospho-S129 [81A]	Biolegend	Mouse	pSer129	1:200
α-Synuclein, phospho-S129 [pSyn#64]	Wako	Mouse	pSer129	1:1,200
α-Synuclein, phospho-S129 [EP1536Y]	Abcam	Rabbit	pSer129	1:100, 1:200
Human α-synuclein [Syn211]	Merck Millipore	Mouse	121–125	1:100
Mouse α-synuclein [D37A6]	Cell Signaling	Rabbit	103–110	1:100
Choline O-acetyltransferase (ChAT)	Merck Millipore	Rabbit		1:100
Glial fibrillary acidic protein (GFAP)	Dako	Rabbit		1:200
IBA-1	Wako	Rabbit		1:500
Sequestosome-1 (p62)	Proteintech	Rabbit		1:100
Ubiquitin [UbI-1]	Merck Millipore	Mouse		1:500

^a IHC, immunohistochemistry; IF, immunofluorescence; WB, Western blotting.
and 0.01 M ammonium acetate buffer (pH 7.4) and then stained with two 50-μl drops of freshly filtered 2% (wt/vol) uranyl acetate. The grids were allowed to dry overnight before viewing, and the electron micrographs were recorded on an Eagle 4K charge-coupled device (CCD) camera (FEI Company). Three different preparations of α-synuclein were characterized by thoroughly inspecting at least five different areas per grid.

Bioluminescence imaging. For noninvasive visualization of the bioluminescence signals from the brains of injected mice, animals were imaged every 2 to 4 weeks with an IVIS Lumina II imaging system (PerkinElmer). Prior to imaging the scalp, hair was shaved and depilated with a depilatory cream. To block unspecific bioluminescence from the ears, the ears were colored black. The substrate for luciferase, d-luciferin potassium salt (Acris), was diluted in PBS and injected intraperitoneally at 150 mg per kg of body weight. Mice were anesthetized with an isoflurane-oxygen gas mix applied by use of an evaporator (2 liters/min), and after 10 min of incubation, they were imaged for 60 s. Biolumi-
nescence images were quantitated with Living Image in vivo imaging software 3.0 (PerkinElmer).

Immunohistochemical analysis.Brains of PBS- and formalin neutral buffer solution-perfused mice were fixed in formalin overnight, dehydrated in a series of alcohol baths, and embedded in paraffin. Brains were cut into 8-μm-thick coronal sections, mounted on glass slides, deparaffinized in two xylol baths for 5 to 10 min, and finally rehydrated through a series of graded ethanol baths. For antigen retrieval, slides were incubated in citrate buffer (pH 6.0) for 5 min at room temperature and then boiled for 10 min in a microwave oven. After cooling, slides were incubated with a 3% hydrogen peroxide solution for 30 min to inhibit endogenous peroxidases. Slides were blocked with a buffer containing 20% (vol/vol) normal goat serum, 1% (vol/vol) bovine serum albumin (BSA), and 0.5% Triton X-100 in PBS for 1 h at room temperature and then incubated with a primary antibody diluted in 1% (vol/vol) normal goat serum, 1% (vol/vol) BSA, and 0.25% Triton X-100 in PBS overnight at 4°C. The antibodies used in this study and their corresponding dilutions are listed in Table 1. After washing twice with 0.25% (vol/vol) Triton X-100 in PBS and once with PBS, sections were incubated with a peroxidase-conjugated secondary antibody by use of a Vectastain ABC or MOM kit (Vector Laboratories). Peroxidase-positive structures were visualized by incubation with DAB (3,3′-diaminobenzidine) for 15 to 30 s. To inactivate the oxidation process, the slides were shortly transferred to a 3% hydrogen peroxide bath. After counterstaining of acidic and negatively charged structures with hematoxylin QS (Vector Laboratories), the slides were coverslipped with Vectamount AQ (Vector Laboratories). Visual analysis was performed with Zen Lite software (Carl Zeiss) after scanning of the slides with an Axioscan.Z1 slide scanner (Carl Zeiss).

Immunofluorescence analysis. Paraffin-embedded tissues were cut into 8-μm-thick coronal sections, mounted on glass slides, deparaffinized, and rehydrated as described above. For antigen retrieval, the slides were incubated in citrate buffer (pH 6.0) for 5 min at room temperature and additionally boiled for 10 min in a microwave oven. After cooling, the slides were blocked in 20% (vol/vol) normal goat serum, 1% (vol/vol) BSA, and 0.5% (vol/vol) Triton X-100 in PBS for 1 h at room temperature. Sections were incubated with a primary antibody in 1% (vol/vol) normal goat serum, 1% (vol/vol) BSA, and 0.25% Triton X-100 in PBS overnight at 4°C. Antibodies used in this study and their corresponding dilutions are listed in Table 1. After washing twice with 0.25% (vol/vol) Triton X-100 in PBS and once with PBS, sections were incubated with corresponding Alexa Fluor 488- or Alexa Fluor 594-conjugated (Thermo Fisher Scientific) secondary antibodies and the nuclear dye DAPI (4′,6-diamidino-2-phenylindole; Thermo Fisher Scientific) in 1% (vol/vol) normal goat serum, 1% (vol/vol) BSA, and PBS for 1 h at room temperature. Slides were coverslipped with Fluoromount medium (Sigma) and visualized with an LSM 780 confocal laser scanning microscope (Carl Zeiss).

Biochemical analysis. Brain or spinal cord samples were homogenized in CaCl2- and MgCl2-free PBS (pH 7.4) in the presence of protease and phosphatase inhibitors (HALT protease and phosphatase inhibitor cocktail; Thermo Fisher Scientific) by two 30-s cycles in a Precellys 24-Dual homogenizer (Peqlab) to reach a final concentration of 20% (wt/vol) for brain homogenates and 10% (wt/vol) for spinal cord homogenates, which were afterwards sonicated twice for 10 s. After adjusting homogenates to 750 mM NaCl, the samples were centrifuged at 1,000 × g for 5 min at 4°C. For further analysis, 1.0 mg of total protein from brain homogenates or 0.8 mg from spinal cord homogenates was incubated on ice.
FIG 3: Immunohistochemical analysis shows neuropathology in brains of Tg(M83+/−;Gfap−/−) mice after intraperitoneal injection with α-synuclein fibrils.

(A to E and K to O) Brain sections from animals injected with α-synuclein fibrils accumulated deposits of phosphorylated α-synuclein in multiple brain regions, as detected with the pSyn#64 antibody (A to E) and the 81A antibody (K to O), which recognize phosphorylation at Ser129 of α-synuclein. (F to J and P to T) In contrast, none of the PBS-injected mice showed any detectable aggregates of phosphorylated α-synuclein in the brain. Bar = 50 μm.
for 15 min in N-lauroylsarcosyl (Sigma) at a final concentration of 10% (wt/vol). Homogenates were ultracentrifuged at 465,000 × g for 1 h at 4°C over a 3-ml 10% (wt/vol) sucrose cushion in a TLA-110 rotor (Beckman Coulter). Pellets were resuspended in 45 µl of TDA215 denaturing buffer containing 4% sodium dodecyl sulfate (SDS), 2% β-mercaptoethanol, 192 mM glycine, 25 mM Tris, and 5% (wt/vol) sucrose. For heat denaturation, samples were boiled at 100°C for 5 min and loaded onto 4 to 12% NuPage gels (Thermo Fisher Scientific). SDS-polyacrylamide gels were processed in a morpholineethanesulfonic acid (MES) buffer system and then cross-linked with a 0.4% (vol/vol) formalin solution in a chemiluminescence reader (Stella; Raytek). The primary antibody for actin was detected with an IRDye 680-conjugated antibody (Li-Cor Biosciences) and visualized with an Odyssey infrared imaging system (Li-Cor Biosciences).

RESULTS

Bigenic Tg(M83^{+/−}:Gfap-luc^{+/−}) mice develop neurologic disease after intraperitoneal and intraglossal challenge with α-synuclein fibrils. We crossed TgM83^{+/−} mice, expressing the A53T mutant of human α-synuclein from the Prnp promoter, with Tg(Gfap-luc^{+/−}) reporter mice, expressing firefly luciferase from the promoter for glial fibrillary acidic protein (GFAP), to obtain bigenic Tg(M83^{+/−}:Gfap-luc^{+/−}) mice that express both transgenes hemizygously (28, 29). Tg(M83^{+/−}:Gfap-luc^{+/−}) mice and TgM83^{+/−} mice remained free of spontaneous neurologic disease and pathology for over 650 days, as also reported by others (17). Inoculation of prions into the peritoneal cavity or, especially, into the tongue efficiently transmits prion disease to rodents (30). To test bigenic Tg(M83^{+/−}:Gfap-luc^{+/−})
mice for susceptibility to peripheral challenge via these routes, we injected 6- to 8-week-old mice with recombinant human wild-type α-synuclein fibrils via the peritoneal cavity (50 μg) or the tongue (10 μg) (Fig. 1A and Table 2). Control mice were injected with PBS. Whereas none of the PBS-inoculated mice developed disease throughout the course of the experiment (420 days), four of five mice inoculated intraperitoneally with α-synuclein fibrils developed neurologic disease, with marked signs of paralysis, kyphosis, and reduced activity, within 229 ± 17 days (mean ± standard deviation [SD]) after inoculation (Fig. 1B; see Movie S1 in the supplemental material). In addition, the four diseased mice also started to lose weight beginning 6 to 8 weeks before they became terminally sick (Fig. 1C). Only one Tg(M83+/−:Gfap-luc−/−) mouse out of five died, at 285 days, after intraglossal inoculation with α-synuclein fibrils, after continuously losing weight for 8 weeks (Fig. 1B and E). In contrast, none of the PBS-injected mice lost weight for prolonged periods before being sacrificed 420 days after inoculation (Fig. 1D and F). Because an even smaller amount of wild-type mouse α-synuclein fibrils (5 μg) was reported to induce neurodegeneration in wild-type mice after intracerebral inoculation (15), we wanted to investigate if the same amount of mouse α-synuclein fibrils would also cause neurodegeneration after intraglossal inoculation of mice not overexpressing α-synuclein. We intraglossally injected monogenic Tg(Gfap-luc+/−) mice, which express only the endogenous mouse α-synuclein, with 5 μg of wild-type mouse α-synuclein fibrils or PBS (Table 2). In contrast to intracerebral inoculation of wild-type mice (15), intraglossal inoculation of Tg(Gfap-luc+/−) mice did not cause neurodegeneration.

Diseased Tg(M83+/−:Gfap-luc−/−) mice accumulate aggregated species of phosphorylated α-synuclein in the CNS. Pathological deposits of misfolded α-synuclein are often accompanied by posttranslational modifications of α-synuclein, such as increased phosphorylation, in particular at Ser129, which has frequently been used to characterize the extent of neuropathology in the brains of PD patients and in animal models of synucleinopathies (9, 16, 31). Biochemical analysis of tissue homogenates from Tg(M83+/−:Gfap-luc−/−) mice intraperitoneally injected with α-synuclein fibrils showed that diseased mice had accumulated Sarkosyl-insoluble aggregates of phosphorylated α-synuclein in their brains and spinal cords as determined by probing with the EP1536Y antibody, which recognizes phosphorylation at Ser129 of α-synuclein (Fig. 2A). These aggregates presented as several additional bands above the 15-kDa band of monomeric, phosphorylated α-synuclein. In contrast, the brains and spinal cords of PBS-injected Tg(M83+/−:Gfap-luc−/−) mice remained free of Sarkosyl-insoluble aggregates and showed staining only for the monomeric form of phosphorylated α-synuclein (Fig. 2A). Also, the mouse that died 285 days after intraglossal injection with α-synuclein fibrils showed higher-molecular-weight bands characteristic of phosphorylated α-synuclein pathology, but the mice that did not develop disease and the control mice that were injected with PBS did not (Fig. 2B). Equally important, none of the intraglossally inoculated monogenic Tg(Gfap-luc−/−) mice had accumulated aggregated species of phosphorylated α-synuclein in the CNS 420 days after inoculation.

Deposits of phosphorylated α-synuclein are widely distributed in the brains and spinal cords of diseased Tg(M83+/−:Gfap-luc−/−) mice. Immunohistochemical staining with two different antibodies against phosphorylated α-synuclein, pSyn#64 (Fig. 3A to J) and 81A (Fig. 3K to T), revealed abundant deposits in neuronal cell bodies and neurites in the brains (Fig. 3A to E and K to O) and spinal cords (Fig. 4A) of diseased animals but not the brains (Fig. 3F to J and P to T) or spinal cords (Fig. 4B) of PBS-injected control animals. Equally important, fibril-injected animals surviving throughout the course of the experiment, until 420 days after inoculation, remained free of deposits of phosphorylated α-synuclein. In diseased animals, deposits of phosphorylated α-synuclein were widespread throughout the cerebrum but absent in the cerebellum (Fig. 5). In the spinal cord, neuronal

FIG 6 Phosphorylated α-synuclein can be detected in motor neurons of diseased Tg(M83+/−:Gfap-luc−/−) mice. (A to C) Immunofluorescence analysis showed that deposits of phosphorylated α-synuclein, as stained with the pSyn#64 antibody, were widespread in the gray matter and could also be detected in motor neurons within the ventral horn of the spinal cord in diseased Tg(M83+/−:Gfap-luc−/−) mice. (D to F) PBS-injected healthy control animals did not show aggregates of phosphorylated α-synuclein in their motor neurons. Motor neurons were detected with an antibody to choline O-acetyltransferase (ChAT). Nuclear staining with DAPI is shown in blue. Bar = 20 μm.
deposits of phosphorylated α-synuclein were widely distributed in the gray matter and could also be detected in motor neurons in the ventral horns of diseased animals (Fig. 6A to C) but not in motor neurons of PBS-injected control animals (Fig. 6D to F). Deposits of aggregated α-synuclein in the CNS of diseased animals not only consisted of transgenically expressed mutant human α-synuclein as detected with the Syn211 antibody (Fig. 4C), which is specific for human α-synuclein, but also consisted of aggregates of endogenously expressed mouse α-synuclein as detected with the D37A6 antibody, which is specific for mouse α-synuclein (Fig. 4E). Both antibodies, Syn211 and D37A6, did not reveal any α-synuclein deposits in the CNS of PBS-injected control mice (Fig. 4D and F).

Deposits of phosphorylated α-synuclein colocalize with ubiquitin and p62. Ubiquitin and p62 (also known as sequestosome-1) are involved in protein degradation and often associate with pathological protein deposits that seem to be resistant to degradation, such as α-synuclein in Lewy bodies of patients with PD, in glial cytoplasmic inclusions in patients with MSA, and in animal models of synucleinopathies (18, 32, 33). To further characterize the nature of α-synuclein-positive deposits in the CNS of diseased Tg(M83/−/−;Gfap-luc+/−) mice, we performed immunofluorescence staining of brain and spinal cord sections for phosphorylated α-synuclein and ubiquitin or phosphorylated α-synuclein and p62 (Fig. 7). We found deposits of phosphorylated α-synuclein and ubiquitin or phosphorylated α-synuclein and p62 (Fig. 7).
DISCUSSION

Our data show that α-synuclein prionoids can invade the CNS after a single injection into the peritoneal cavity or the tongue, resulting in neuropathology in the brain and spinal cord, with widespread deposition of misfolded α-synuclein, and in signs of neuroinflammation and disease in Tg(M83^{+/−}:Gfap-luc^{+/−}) mice. Compared to bona fide prions that can invade the CNS after peripheral challenge, similar prionoid behavior was previously re-
ported for misfolded β-amyloid, which induced cerebral amyloidosis after intraperitoneal injection into APP23 mice expressing the human β-amyloid precursor protein with the Swedish mutation (34). Similarly, intraperitoneal injection of aggregated tau seeds into transgenic mice expressing human mutant P301S tau was found to trigger cerebral tauopathy (35). The mean incubation period of ~229 days that we measured for Tg(M83/H9251:Gfap-luc+/−) mice after intraperitoneal challenge with 50 μg of α-synuclein fibrils is surprisingly similar to the incubation time after intracerebral inoculation (~216 days) of the same mouse line with 30 μl of a 1% brain homogenate from sick TgM83/H9251 mice, implying that intraperitoneal injection can be very efficient in causing disease (17). Intraglossal inoculation of Tg(M83/H9251:Gfap-luc+/−) mice caused neurodegeneration in only one of five mice, and it died at 285 days. This animal had continuously lost weight, had showed signs of astrocytic gliosis, and had accumulated misfolded α-synuclein in its brain and spinal cord before it died, which shows that α-synuclein prionoids had reached and replicated in the CNS after intraglossal challenge. We used only 10 μg of fibrils for intraglossal inoculations because it is more difficult to inoculate large volumes into the tongue than into the peritoneum, and it is possible that a higher inoculum may have led to a higher transmission rate. None of the monogenic Tg(Gfap-luc−/−) mice developed disease or pathology after intraglossal challenge with α-synuclein fibrils. It is possible that the inoculated amount of α-synuclein fibrils, 5 μg in Tg(Gfap-luc+/−) mice versus 10 μg in Tg(M83/H9251:Gfap-luc+/−) mice, may not have been high enough to induce disease after intraglossal challenge in Tg(Gfap-luc+/−) mice. However, 5 μg is an amount that readily causes neurodegeneration in wild-type mice after intracerebral inoculation (15). Additional experiments with mice lacking expression of the mutant human A53T-synuclein transgene are warranted to find out whether or not peripheral overexpression of α-synuclein is necessary for α-synuclein prionoids to induce disease after intraperitoneal challenge, which we have not investigated here. After intraglossal inoculation, prions reach the CNS via retrograde axonal transport along the hypoglossal nerve, which is also a likely route for the propagation of α-synuclein prionoids (30); we are currently investigating this further. The presence of misfolded α-synuclein prionoids in the spinal cord further suggests that after reaching the brain stem, possibly via the hypoglossal nerve, α-synuclein prionoids spread from the brain stem to the spinal cord. The underlying mechanism for how α-synuclein prionoids enter the CNS after injection into the peritoneal cavity is unclear. Possible mechanisms of neuroinvasion may include retrograde spread of infectivity along peripheral nerves or the hematogenous route, as discussed for prions (36). It has been hypothesized that in patients with PD, α-synuclein pathology commences in neurons of the olfactory bulb or in neurons of the enteric nervous system and then reaches the brain at the dorsal motor nucleus via the vagus nerve before it further spreads in the brain according to described staging patterns (37, 38). This hypothesis is supported by observations in rats, in which viral overexpression of native α-synuclein in the vagus nerve or injection of α-synuclein prionoids into the wall of the gastrointestinal tract led to retrograde transport of misfolded α-synuclein along the vagus nerve to the brain (39, 40). Retrograde transport along peripheral nerves was also discussed as a mode of neuroinvasion after intramuscular injection with 10 μg of fibrillar mouse α-synuclein into the gastrocnemius muscle in TgM83/H9251 mice, which developed neurologic disease with a median incubation time of ~129 days when the sciatic nerve was intact and showed delayed and incomplete induction of disease when the sciatic nerve was transected (41). Another study in rats recently showed that repeated intravenous injections of misfolded recombinant α-synuclein species, every 2 weeks over a period of 4 months, led to their accumulation in the brain and spinal cord, suggesting that pathogenic α-synuclein species can cross the blood-brain barrier (42).

In patients with synucleinopathies, α-synuclein prionoids are not exclusive to the CNS but can also affect the peripheral nervous system innervating tissues and organs in the preterminal phase, long before the disease is diagnosed (37, 43–47). Whether α-synuclein prionoids can accumulate and replicate in cells, tissues, and organs outside the nervous system, similarly to prions in follicular dendritic cells (FDC) and secondary lymphoid tissues prior to neuroinvasion, needs to be determined (48–50). Remarkably, red blood cells contain relatively large concentrations of α-synuclein and may potentially serve as a reservoir for the replication and dissemination of α-synuclein prionoids throughout the body (51). While accidental transmissions of synucleinopathies by blood transfusions or organ transplants from donors with subclinical disease have not been reported and seem unlikely, detection of such incidences could prove difficult considering that incubation times after peripheral transmission can span several decades for prion diseases, and possibly also for Alzheimer’s disease (27, 52, 53). In summary, our results demonstrate that within the animal model of our choice, Tg(M83/H9251:Gfap-luc+/−) mice overexpressing mutant human α-synuclein and firefly luciferase, α-synuclein prionoids hold neuroinvasive properties that lead to neuropathology and disease when α-synuclein is administered intraperitoneally or intraglossal.

ACKNOWLEDGMENTS

We thank Theresa Hundt and Olga Sharma for excellent technical assistance and the staff of the DZNE animal facility for support with animal experiments. We thank the DZNE microscopy and animal facilities for technical support. We thank Sybille Kraus, Walker Jackson, and Rachel Angers for careful reviews of the manuscript.

REFERENCES

1. Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M. 1998. Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251:205–208. http://dx.doi.org/10.1016/S0304-3940(98)00504-7.
2. Wakabayashi K, Yoshimoto M, Tsuji S, Takahashi H. 1998. Alpha-synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci Lett 249:180–182. http://dx.doi.org/10.1016/S0304-3940(98)00407-8.
3. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. 1998. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A 95:6469–6473. http://dx.doi.org/10.1073/pnas.95.11.6469.
4. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Deheja A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL, 1997. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease and dementia with Lewy bodies. Science 276:2045–2047. http://dx.doi.org/10.1126/science.276.5321.2045.
5. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawford A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancto J, Hardy J, Gwinn-Hardy K. 2003. Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302:841. http://dx.doi.org/10.1126/science.1090278.
6. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, 2016 Volume 90 Number 20 Journal of Virology jvi.asm.org 9191

Downloaded from http://jvi.asm.org on May 22, 2018 by UNIVERSIDAD DE ZARAGOZA
transgenic mice. Proc Natl Acad Sci USA 111:10732–10737. http://dx.doi.org/10.1073/pnas.1321785111.
42. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V. 2015. Alpha-synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522:340–344. http://dx.doi.org/10.1038/nature14547.
43. Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White CL, III, Akiyama H, Caviness VN, Shill HA, Sabbagh MN, Walker DG, Arizona Parkinson’s Disease Consortium. 2010. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 119:689–702. http://dx.doi.org/10.1007/s00401-010-0664-3.
44. Cersosimo MG, Benarroch EE. 2012. Pathological correlates of gastrointestinal dysfunction in Parkinson’s disease. Neurobiol Dis 46:559–564. http://dx.doi.org/10.1016/j.nbd.2011.10.014.
45. Gelpi E, Navarro-Otano J, Tolosa E, Gaig C, Compta Y, Rey MJ, Marti MJ, Hernandez I, Valdeorria F, Rene R, Ribalta T. 2014. Multiple organ involvement by alpha-synuclein pathology in pre-clinical phase of Parkinson’s disease. Acta Neuropathol 127:235–241. http://dx.doi.org/10.1007/s00401-013-1214-6.
47. Zange I, Noack C, Hahn K, Stenzel W, Lipp A. 2015. Phosphorylated alpha-synuclein in skin nerve fibres differentiates Parkinson’s disease from multiple system atrophy. Brain 138:2310–2321. http://dx.doi.org/10.1093/brain/awv138.
48. Bruce ME, McConnell I, Will RG, Ironside JW. 2001. Detection of variant Creutzfeldt-Jakob disease infectivity in extraneural tissues. Lancet 358:208–209. http://dx.doi.org/10.1016/S0140-6736(01)05411-3.
49. McCalla L, Brown KL, Bradford BM, Hopkins J, Bailey M, Rajewsky K, Mabott NA. 2011. Follicular dendritic cell-specific prion protein (PrP) expression alone is sufficient to sustain prion infection in the spleen. PLoS Pathog 7:e1002402. http://dx.doi.org/10.1371/journal.ppat.1002402.
50. Glatzel M, Abela E, Maissen M, Aguzzi A. 2003. Extraneural pathologic prion protein in sporadic Creutzfeldt-Jakob disease. N Engl J Med 349: 1812–1820. http://dx.doi.org/10.1056/NEJMoa030351.
51. Barbour R, Kling K, Anderson JP, Banducci K, Cole T, Diep L, Fox M, Goldstein JM, Soriano F, Seubert P, Chilcote TJ. 2008. Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis 5:55–59. http://dx.doi.org/10.1159/000112832.
52. Rudge P, Jaunmuktane Z, Adlard P, Bjurstrom N, Caine D, Lowe J, Norsworthy P, Hummerich H, Druych R, Wadsworth JD, Brandner S, Hyare H, Mead S, Collinge J. 2013. Iatrogenic CJD due to pituitary-derived growth hormone with genetically determined incubation times of up to 40 years. Brain 138:3386–3399. http://dx.doi.org/10.1093/brain/awv235.
53. Fronczek K, Lutz MI, Aguzzi A, Kovacs GG, Budka H. 2016. Amyloid-beta pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt-Jakob disease after dural grafting. Swiss Med Wkly 146: w14287. http://dx.doi.org/10.4414/sm.2016.14287.