Mu integration in the Mouse Genome

Charles C. Berry

November 1, 2007

Abstract
Data from integration sites for the Savilahti Bacterial Mu transposon are studied to determine the combined effects of genomic features on site selection.

1 Data Used

The data used were processed by Nirav Malani of Dr. Bushman’s laboratory using a variety of software programs developed by that lab for managing and annotating integration site data.

The data derive from integration sites based on the Savilahti Bacterial Mu transposon. The following numbers of integration sites and genomic matched random controls are used:

type	insertion	match
	214	2140

For statistical analysis of Mu integration in mouse cells, it was useful to compare integration site distributions to random expectation. For this, matched random controls were generated. A large set of random sites in the mouse genome was drawn computationally. However recovery of Mu integration sites using restriction enzymes introduces a recovery bias favoring sites near suitable restriction enzyme cleavage sites in the mouse genome. This bias is addressed by the use of matched random controls. Each random site generated in silico was annotated for proximity to restriction enzyme recognition sites. For each experimental site of Mu integration, the distance to the restriction site used for recovery was measured, then ten random sites were drawn that were the same distance from a recognition site for the same enzyme. The statistical analysis preserves the pairing between Mu integration sites and matched random controls. This matching procedure “washes out” recovery biases due to placement of restriction enzyme recognition sites, which otherwise can be severe.

The variables to be used are listed below. The variables used describe genomic features that summarize characteristics of the genomic sequence surrounding the integration (or control) site. Several of the variables depend on gene annotations, the sources of these annotations are:
The data on gene activity was from Affymetrix microarrays querying the activity of mouse genes in MEF cells. The data on sites of histone post-translation modification was from PMID: 17603471.

The variables used and brief abbreviations for them are as follows:

- **ref.100k** † RefSeq Genes within ±50 kilobases
- **ref.200k** † RefSeq Genes within ±100 kilobases
- **ref.500k** † RefSeq Genes within ±250 kilobases
- **ref.1M** † RefSeq Genes within ±500 kilobases
- **ref.2M** † RefSeq Genes within ±1 megabase
- **ref.4M** † RefSeq Genes within ±2 megabase
- **ref.8M** † RefSeq Genes within ±4 megabase
- **ens.100k** † Ensembl Genes within ±50 kilobases
- **ens.200k** † Ensembl Genes within ±100 kilobases
- **ens.500k** † Ensembl Genes within ±250 kilobases
- **ens.1M** † Ensembl Genes within ±500 kilobases
- **ens.2M** † Ensembl Genes within ±1 megabase
- **ens.4M** † Ensembl Genes within ±2 megabase
- **ens.8M** † Ensembl Genes within ±4 megabase
- **low.ex.250k** † Affymetrix probesets achieving the 50\(^{th}\) percentile of expression within ±125 kilobases
- **med.ex.250k** † Affymetrix probesets achieving the 75\(^{th}\) percentile of expression within ±125 kilobases
- **high.ex.250k** † Affymetrix probesets achieving the 87.5\(^{th}\) percentile of expression within ±125 kilobases
- **low.ex.2M** † Affymetrix probesets achieving the 50\(^{th}\) percentile of expression within ±1 megabase
- **med.ex.2M** † Affymetrix probesets achieving the 75\(^{th}\) percentile of expression within ±1 megabase
- **high.ex.2M** † Affymetrix probesets achieving the 87.5\(^{th}\) percentile of expression within ±1 megabase
cpg.dens.1k †† Count of CpG sites within ±1 kilobase

cpg.dens.5k †† Count of CpG sites within ±5 kilobases

cpg.dens.10k †† Count of CpG sites within ±10 kilobases

cpg.dens.25k †† Count of CpG sites within ±25 kilobases

cpg.dens.50k †† Count of CpG sites within ±50 kilobases

cpg.dens.250k †† Count of CpG sites within ±250 kilobases

ensGene.genes Whether site is in an Ensembl gene

refGene.genes Whether site is in a RefSeq gene

score.20 The loglikelihood for integration versus control based on a position weight matrix (PWM) derived from the FASTA sequence of the 20 bases flanking the integration site

gc20 The proportion of G or C bases within ±10 bases

gc50 The proportion of G or C bases within ±25 bases

gc100 The proportion of G or C bases within ±50 bases

gc250 The proportion of G or C bases within ±125 bases

gc500 The proportion of G or C bases within ±250 bases

gc1000 The proportion of G or C bases within ±500 bases

gc2000 The proportion of G or C bases within ±1000 bases

gc5000 The proportion of G or C bases within ±2500 bases

gc10000 The proportion of G or C bases within ±5000 bases

gc25000 The proportion of G or C bases within ±12.5 kilobases

gc50000 The proportion of G or C bases within ±25 kilobases

gc100000 The proportion of G or C bases within ±50 kilobases

gc250000 The proportion of G or C bases within ±125 kilobases

gc500000 The proportion of G or C bases within ±250 kilobases

gc1000000 The proportion of G or C bases within ±0.5 megabases

gc5000000 The proportion of G or C bases within ±2.5 megabases

gc10000000 The proportion of G or C bases within ±5 megabases

MEFK9.1k † MEFK9 count within ±1k bases
MEFK9.10k † MEFK9 count within ± 10k bases
MEFK4.1k † MEFK4 count within ± 1k bases
MEFK4.10k † MEFK4 count within ± 10k bases
MEFK36.1k † MEFK36 count within ± 1k bases
MEFK36.10k † MEFK36 count within ± 10k bases
MEFK27.1k † MEFK27 count within ± 1k bases
MEFK27.10k † MEFK27 count within ± 10k bases

† — Variables marked with the dagger are ranked and rescaled to range from -1 to 1. This has no effect on calculation of ROC curves, but does affect regression coefficients reported below. †† — Variables marked with a double dagger are counts; these are adjusted to expected counts when the window width is narrower than the intended size (e.g. because the window starts near a chromosome end).

2 Software Used

The software used in preparing this report is the R Language and Environment for Statistical Computing [R Development Core Team, 2007]. This document was prepared using the Sweave report generating function [Leisch, 2002]. Several additional R packages were used and will be cited below in context.

3 Association of Integration with Genomic Features

The relationship between integration frequency and genomic annotation can be conveniently quantified using ROC areas as described in PMID: 17166054. Briefly, ROC areas range between 0 and 1. An ROC area of 0.5 indicates no correlation between integration frequency and genomic annotation, either positive or negative. An ROC area >0.5 indicates a positive correlation, an ROC area of <0.5 indicates a negative correlation. Generation of the ROC areas is accomplished by comparison of Mu integration site distributions to the distributions of matched random controls (MRCs).

The following table show the areas under the ROC curves for each of the genomic features considered.

ROC.areas	
gc20	0.746
gc50	0.758
gc100	0.762
gc250	0.777
Feature	Value
-----------------	--------
gc500	0.763
gc1000	0.742
gc2000	0.736
gc5000	0.719
gc10000	0.720
gc25000	0.722
gc50000	0.725
gc100000	0.726
gc250000	0.718
gc500000	0.706
gc1000000	0.710
gc5000000	0.671
gc10000000	0.634
ref.100k	0.669
ref.200k	0.695
ref.500k	0.687
ref.1M	0.677
ref.2M	0.659
ref.4M	0.653
ref.8M	0.620
ens.100k	0.654
ens.200k	0.687
ens.500k	0.683
ens.1M	0.678
ens.2M	0.654
ens.4M	0.645
ens.8M	0.620
low.ex.250k	0.635
med.ex.250k	0.610
high.ex.250k	0.549
low.ex.2M	0.679
med.ex.2M	0.671
high.ex.2M	0.624
cpg.dens.1k	0.555
cpg.dens.5k	0.575
cpg.dens.10k	0.614
cpg.dens.25k	0.680
cpg.dens.50k	0.702
cpg.dens.250k	0.718
score.20	0.928
ensGene.genes	0.570
refGene.genes	0.576
MEFK9.1k	0.584
MEFK9.10k	0.622
MEFK4.1k	0.637
MEFK4.10k	0.679
4 Regression Models for Integration Preference

While there are a number of features that are correlated with integration preference, it is not yet clear how these features work together or whether there are some features that are merely associated with other features that more closely represent processes influencing integration.

To address this, conditional logit regression models are used that incorporate the candidate variables in combination to discriminate between sites and their matched random controls.

Since there are limited numbers of integration sites, using all variables simultaneously in a logistic regression is not likely to be helpful as the estimates obtained will have large variation. To cope with this Bayes Model Averaging as implemented in the BMA package [Raftery et al., 2006] to find posterior probabilities of the regressors, and posterior means and standard errors of the regression coefficients.

The following table shows the BMA posterior probabilities (times 100), BMA regression coefficients, and BMA standard errors in its first three columns. The last two columns show the logistic regression coefficients and their standard errors when each feature is separately regressed on site/MRC status.

	Post Prob	Post Mean	Post SD	solo.Coef	solo.SD
gc20	100.0	-5.729	1.508	7.528	0.654
gc50	8.7	0.337	1.259	9.442	0.798
gc100	0.0	0.000	0.000	11.131	0.917
gc250	29.4	1.586	2.720	12.455	1.003
gc500	0.0	0.000	0.000	13.094	1.075
gc1000	4.7	0.284	1.458	13.612	1.179
gc2000	50.2	6.740	7.942	14.803	1.305
gc5000	36.0	-7.781	11.502	15.240	1.456
gc10000	0.0	0.000	0.000	16.082	1.578
gc25000	10.0	1.438	5.064	17.195	1.666
gc50000	50.5	7.791	9.131	18.277	1.761
gc100000	0.0	0.000	0.000	18.876	1.855
gc250000	1.3	0.028	1.305	19.160	1.953
gc500000	2.6	0.202	1.662	19.723	2.052
gc1000000	0.0	0.000	0.000	20.606	2.168
gc5000000	0.4	-0.016	0.462	19.829	2.541
gc10000000	1.3	-0.087	1.020	17.193	2.827
ref.100k	20.4	0.124	0.272	1.228	0.140
ref.200k	52.1	0.368	0.405	1.344	0.144
Evidently, the local sequence ("score.20"), local GC content ("gc20"), and histone methylation MEFK36 in a 2 kilobase window ("MEFK36.1k") are the dominant effects in determining integration preference. However, there are a number of variables with posterior probabilities higher than 25 percent. Deciding among those variables which should be counted as affecting target preference and which should be dismissed is a challenge that will likely require a larger dataset to settle with certainty.

There is some evidence for effects near CpG islands (‘near’ as in ± 1 kilobase); the posterior probability for it is not nearly high enough to claim an effect. In a regression model with just “score.20”, the coefficient is reduced, but the effect
is still nominally significant. This is also true for it in a regression model with just “cpg.dens.25k”. When both “score.20” and “cpg.dens.25k” are used together, the effect of “cpg.dens.1k” is markedly reduced and no longer near conventional levels of statistical significance as shown here:

	coef	se(coef)	z	p
score.20	0.956	0.070	13.684	0.00
cpg.dens.25k	0.419	0.102	4.117	0.00
cpg.dens.1k	0.552	0.509	1.084	0.28

Also “gc250”, which has posterior probability greater than 25 percent markedly reduces its effect as shown in a regression of “gc250” and “cpg.dens.1k” here:

	coef	se(coef)	z	p
cpg.dens.1k	0.677	0.379	1.787	0.074
gc250	11.655	1.098	10.610	0.000

So CpG count within ± 1 kilobase seems unlikely to have a big effect, but it cannot be entirely dismissed. Similarly CpG island count in a wider window (± 25 kilobases) may have an effect.

The effect of “gc20” is interesting. Here are the correlations among the variables for which the posterior probability near 100.0 percent:

	score.20	gc20	MEFK36.1k
score.20	1.000	0.570	0.112
gc20	0.570	1.000	0.073
MEFK36.1k	0.112	0.073	1.000

As is evident and expected, “gc20” is correlated with “score.20”. Likely, there is a local sequence effect that the PWM for the 20 flanking bases is not quite capturing. The PWM is calculated without consideration of the effects of any other variables, so performing a calculation that accounts for these other variables might show still stronger effects of the local sequence. However, this would probably require more data than available here.

5 References

1. Leisch, F. (2002). Sweave: Dynamic generation of statistical reports using literate data analysis. Compstat, pages 575-580.
2. R Development Core Team (2007). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
3. Raftery, A., Hoeting, J., Volinsky, C., Painter, I., and Yeung, K. Y. (2006). BMA: Bayesian Model Averaging. R package version 3.03.