The circadian clock contributes to the long-term water use efficiency of Arabidopsis

Noriane M. L. Simon¹, Nicholas E. Comben¹, Alistair M. Hetherington¹, Antony N. Dodd¹,²*

¹. School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, U.K.
². John Innes Centre, Norwich NR4 7UH, U.K.

* corresponding author, antony.dodd@bristol.ac.uk

Word count (body text including methods): 5374

Short title: Circadian regulation and water use efficiency

Author contributions: N.M.L.S., A.M.H. and A.N.D. conceived experiments, N.M.L.S. and N.E.C. performed experiments, N.M.L.S., A.M.H. and A.N.D. analysed and interpreted the data, N.M.L.S., A.M.H. and A.N.D. wrote the paper. A.N.D. agrees to serve as the author responsible for contact and ensures communication.

One-sentence summary: The circadian clock in Arabidopsis makes an important contribution to long-term water use efficiency.
Abstract

In plants, water use efficiency is a complex trait derived from numerous physiological and developmental characteristics. Here, we investigated the involvement of circadian regulation in long-term water use efficiency. Circadian rhythms are generated by the circadian oscillator, which provides a cellular measure of the time of day. In plants, the circadian oscillator contributes to the regulation of many aspects of physiology, including stomatal opening, the rate of photosynthesis, carbohydrate metabolism and developmental processes. We investigated in Arabidopsis the impact of the misregulation of genes encoding a large number of components of the circadian oscillator upon whole plant, long-term water use efficiency. From this, we identified a role for the circadian oscillator in water use efficiency. This appears to be due to contributions of the circadian clock to the control of transpiration and biomass accumulation. We also identified that the circadian oscillator specifically within guard cells contributes to long-term water use efficiency. Our experiments indicate that knowledge of circadian regulation will be important for developing future crops that use water more efficiently.

Introduction

World population growth is increasing the demand for fresh water for agriculture, with climate change predicted to exacerbate this competition for water resources (Ruggiero et al., 2017). One strategy to sustainably increase agricultural production involves the improvement of crop water use (Condon et al., 2004; Xoconostle-Cazares et al., 2010; Hu and Xiong, 2014; Ruggiero et al., 2017). Because up to 97% of water taken up from the soil by plants is lost through stomatal transpiration (Yoo et al., 2009; Na and Metzger, 2014), the manipulation of transpiration represents an excellent candidate for designing crops with increased water use efficiency (Bertolino et al., 2019).
Plant water loss can be manipulated through changes in the regulation of stomatal opening and by altering stomatal density and patterning (Pei et al., 1998; Hugouvieux et al., 2001; Schroeder et al., 2001; Hetherington and Woodward, 2003; Yoo et al., 2010; Lawson and Blatt, 2014; Franks et al., 2015; Caine et al., 2019). In addition to stomatal responses to environmental cues such as light, temperature and phytohormones, there are circadian rhythms of stomatal opening (Gorton et al., 1989; Hennessey and Field, 1991). Circadian rhythms are self-sustaining biological cycles with a period of about 24 h. These rhythms are thought to adapt plants to daily cycles of light and dark, by anticipating daily changes in the environment and co-ordinating cellular processes. In higher plants, circadian rhythms are generated by several interlocked transcription-translation feedback loops known as the circadian oscillator (Hsu and Harmer, 2014). The phase of the circadian oscillator is adjusted continuously to match the phase of the environment through the process of entrainment, in response to light, temperature and metabolic cues (Somers et al., 1998; Millar, 2004; Salomé and McClung, 2005; Haydon et al., 2013). Additionally, the circadian oscillator communicates an estimate of the time of day to circadian-regulated features of the cell, initially through transcriptional regulation (Harmer et al., 2000). The known circadian oscillator controls circadian rhythms of stomatal opening because mutations that alter the circadian period or cause circadian arrhythmia lead to equivalent alterations in the circadian rhythm of stomatal opening (Somers et al., 1998; Dodd et al., 2004; Dodd et al., 2005). The circadian oscillator is also involved in the responses of guard cells to environmental cues such as drought and low temperature (Dodd et al., 2006; Legnaioli et al., 2009).

Circadian rhythms are often studied under conditions of constant light. However, the circadian oscillator is also important for the regulation of stomatal opening under cycles of light and dark. For example, constitutive overexpression of the circadian oscillator component CIRCADIAN CLOCK ASSOCIATED1 (CCA1; CCA1-ox) alters the daily regulation of stomatal opening such that stomatal conductance increases steadily throughout the photoperiod (Dodd et al., 2005). In comparison, in wild type plants stomatal...
conductance remains relatively uniform during the photoperiod and is substantially lower than CCA1-ox (Dodd et al., 2005). Similarly, guard cell-specific overexpression of CCA1 generally causes greater stomatal opening during the light period, and alters drought response phenotypes (Hassidim et al., 2017). Modelling suggests that under light/dark cycles, the circadian oscillator contributes at the canopy scale to daily rhythms in stomatal aperture and carbon assimilation in bean and cotton (Resco de Dios et al., 2016).

The contribution of the circadian oscillator to both stomatal opening and biomass accumulation (Dodd et al., 2005; Graf et al., 2010) suggests that the circadian oscillator might make an important contribution to long-term water use efficiency (WUE). WUE is the ratio of carbon dioxide incorporated through photosynthesis into biomass to the amount of water lost through transpiration. At the single leaf level, instantaneous, intrinsic WUE is often measured with gas exchange techniques and expressed as net CO₂ assimilation per unit of water transpired (Vielet-Chabrand et al., 2016; Ruggiero et al., 2017; Ferguson et al., 2018). However, such measurements do not provide an accurate representation of WUE over the plant lifetime, which is influenced by features such as leaf position, dark respiration, and time of day changes in instantaneous WUE (Condon et al., 2004; Tomás et al., 2014; Medrano et al., 2015; Ferguson et al., 2018). It is important to note that high WUE under well-watered conditions is not the same as drought resistance, because drought resistance relates to the capacity to maintain transpirational water supply under water-limited conditions through strategies such as expanded root systems (Blum, 2009). This means that WUE does not correlate reliably with drought resistance (Kobata et al., 1996).

Given that the circadian oscillator affects stomatal opening and biomass accumulation (Gorton et al., 1989; Hennessey and Field, 1991; Dodd et al., 2005; Edwards and Weinig, 2010; Graf et al., 2010; Edwards et al., 2012), we hypothesized that specific components of the circadian oscillator might make an important contribution to the long-term WUE of plants.

Although the circadian oscillator influences stomatal opening and biomass accumulation, the influence of the circadian oscillator upon long-term WUE of plants remains unknown. This is
an important question for understanding roles for circadian regulation in crops, because the
long-term water use efficiency ultimately determines the amount of water that is required for
a given yield of the crop. Therefore, we investigated the impact of the misregulation of parts
of the circadian oscillator upon the long-term WUE of Arabidopsis. We identified that the
circadian oscillator has profound effects upon the long-term WUE of plants. Importantly,
some alterations in oscillator function increase long-term WUE, suggesting potential targets
for future improvements of crop WUE.

Results

Circadian oscillator components contribute to long-term water use efficiency

We identified that correct regulation of the circadian oscillator makes a substantial
contribution to WUE. 31 single mutants or overexpressors of genes associated with
circadian regulation, representing 21 circadian oscillator-associated components, were
surveyed for WUE alterations (Fig. 1A, Fig. S1) using a previously-described method
(Wituszyńska et al., 2013). 38% of the mutants or overexpressors examined had a
significantly different WUE from the wild type (Fig. 1A, Fig. S1, Table 1). The *cca1*-11, *elf3*-1,
prr5-3, *prr9*-1, *tps1*-11, *tps1*-12, and *ztl*-1 mutants, as well as TOC1 and KIN10 (line 6.5)
overexpressors, had significantly lower WUE than the wild type (Fig. 1A, Fig. S1, Table 1). The *gi*-2,
grp7-1 and *tej*-1 mutants had significantly greater WUE than the wild type (Fig. 1,
Fig. S1, Table 1). This suggests that misregulating the expression of circadian clock
components CCA1, ELF3, GI, GRP7, PRR5, PRR9, TEJ, TOC1 and ZTL can change whole
plant long-term WUE (Fig. 1A, Fig. S1, Table 1). WUE was also altered by changing the
expression of the energy signalling components TPS1 and KIN10 that participate in inputs to
the circadian oscillator (Shin et al., 2017; Frank et al., 2018) (Fig. 1A, Fig. S1, Table 1).
Overall, these data show that correct expression of a variety of circadian clock-associated
genes contributes to long-term WUE of Arabidopsis.

Within this experiment, each background accession had a distinct WUE (C24: 3.01 ± 0.07
mg ml⁻¹; Col-0: 2.22 ± 0.02 mg ml⁻¹; L. er.: 1.60 ± 0.04 mg ml⁻¹; Ws: 1.91 ± 0.06 mg ml⁻¹)
These differences between WUE of different Arabidopsis accessions are consistent with previous studies of WUE, stomatal function and stomatal density in Arabidopsis (Nienhuis et al., 1994; Woodward et al., 2002; Dodd et al., 2004; Masle et al., 2005; Karaba et al., 2007; Ruggiero et al., 2017; Ferguson et al., 2018).

We hypothesised that variations in WUE might be associated with specific circadian phenotypes in the mutants and overexpressors that we tested. For example, mutations in circadian clock genes expressed with a particular phase (e.g. morning-expressed or evening-expressed genes) might have a more pronounced effect on WUE. Likewise, the nature of the circadian period change or flowering time change resulting from misexpression of each oscillator component might be associated with certain changes in WUE. To test this, we compared the data from our WUE screen with the circadian phase of expression of each mutated or overexpressed gene. We also compared the direction of change of WUE to the period and flowering time phenotypes that arise from each mutant or overexpressor (Fowler et al., 1999; Schultz et al., 2001; Doyle et al., 2002; Nakamichi et al., 2002; Yanovsky and Kay, 2002; Imaizumi et al., 2003; Más et al., 2003; Murakami et al., 2004; Farré et al., 2005; Hazen et al., 2005; Baena-González et al., 2007; Streitner et al., 2008; Wang et al., 2008; Baudry et al., 2010; Nakamichi et al., 2010; Rawat et al., 2011; Wahl et al., 2013; Hsu and Harmer, 2014). We note that the phenotypes reported by these studies were often identified under constant conditions, whereas our experiments occurred under light/dark cycles.

There was no obvious relationship between the circadian phenotypes that are caused by each mutant or overexpressor investigated and the WUE of each of these lines (Fig. 1B, C, D). For example, mutating night-phased oscillator components can either decrease or increase WUE (Fig. 1B). Mutants that cause long circadian periods and short circadian periods can both increase and decrease WUE (Fig. 1C). Furthermore, mutants and overexpressors that cause both early and delayed flowering can each increase and decrease WUE (Fig. 1D).
We were interested to determine whether the WUE alterations caused by misregulation of circadian oscillator gene expression arose from changes in either biomass accumulation or transpiration. Genotypes with greater biomass accumulation generally had greater water use, whereas genotypes with low biomass accumulation generally had lower water use. This suggests that the altered WUE phenotypes present in some genotypes with misregulated circadian clocks was not due to an alteration in just one of either water use or biomass accumulation (Fig. 2A, B). Therefore, the altered WUE of lines with misregulated circadian clock genes appears to be due to the net effect of altered biomass accumulation and altered transpiration in these genotypes (Fig. 2A, B).

Circadian regulation of water use efficiency combines multiple traits

Mutation or overexpression of components of the circadian oscillator can cause changes in the development of Arabidopsis, such as alterations in rosette size, leaf shape and petiole length (Fig. 3A) (Zagotta et al., 1992; Schaffer et al., 1998; Wang and Tobin, 1998; Dodd et al., 2005; Ruts et al., 2012; Rubin et al., 2018). These changes are likely to have implications for gas exchange because, for example, spatially separated leaves are predicted to transpire more water (Bridge et al., 2013). We investigated whether the changes in WUE that were identified by our screen might arise from differences in rosette architecture between the circadian clock-associated mutants and overexpressors and the wild types. There was a weak positive correlation between rosette leaf surface area and WUE (r = 0.400; r² = 0.160; p < 0.001) (Fig. 3B). Therefore, approximately 16% of variability in WUE can be explained by the variations in rosette leaf surface area that arise from misregulation of the circadian oscillator.

In comparison, rosette leaf surface area was strongly correlated with each of the individual parameters of water used and dry biomass accumulated. The variation in rosette surface area accounted for 83% of the variability in water transpired across the genotypes (Fig. 3C). Furthermore, the variation in rosette surface area accounted for 73% of the variability in
biomass accumulation across the genotypes (Fig. 3D), which is unsurprising given that larger leaves are likely to contain more biomass.

This demonstrates that one way that circadian regulation affects WUE is through the influence of the circadian oscillator upon plant development and rosette architecture, but this variation in leaf area does not account for the majority of the influence of circadian regulation upon WUE. It also further supports the notion that the influence of the circadian oscillator upon WUE is complex, and cannot be explained by variation in one of water use or biomass accumulation alone.

Contribution of circadian regulation in guard cells to water use efficiency

Next, we investigated whether the circadian oscillator within guard cells contributes to long-term WUE. There is evidence that guard cells contain a circadian oscillator that regulates stomatal opening (Gorton et al., 1989; Hassidim et al., 2017). To investigate the contribution of the guard cell circadian oscillator to WUE, we overexpressed two circadian oscillator components (CCA1, TOC1) in guard cells, using two guard cell-specific promoters (GC1, MYB60) for each of CCA1 and TOC1 (Fig. 4A) (Cominelli et al., 2005; Galbiati et al., 2008; Yang et al., 2008; Nagy et al., 2009; Meyer et al., 2010; Cominelli et al., 2011; Bauer et al., 2013; Rusconi et al., 2013). GC1 is a guard cell-specific promoter that is relatively unresponsive to a variety of environmental cues (cold, light, ABA, gibberellin) (Yang et al., 2008). We used the full-length MYB60 promoter sequence, because truncated and chimeric versions of this promoter appear to have weaker activity and/or become rapidly downregulated by dehydration and ABA (Francia et al., 2008; Cominelli et al., 2011; Rusconi et al., 2013). This produced four sets of transgenic lines; GC1::CCA1:nos (GC), GC1::TOC1:nos (GT), MYB60::CCA1:nos (MC) and MYB60::TOC1:nos (MT). We termed these guard cell specific (GCS) plants. We confirmed the guard cell specificity of the GC1 and MYB60 promoters in our hands, by driving green fluorescent protein (GFP) under the control of these promoters. GFP accumulation was restricted to the guard cells (Fig. S3A, B). There was not a circadian oscillation in the activity of either the GC1 or MYB60 promoter.
under our experimental conditions (Fig. S3C), demonstrating that these promoters were appropriate for constitutive overexpression of circadian oscillator components within guard cells in our experiments.

To further verify the guard cell-specific overexpression of *CCA1* and *TOC1* in the GCS plants, we examined *CCA1* and *TOC1* transcript accumulation within guard cells. Under constant light conditions, we measured *CCA1* transcript accumulation in epidermal peels at dusk (when *CCA1* transcript abundance is normally low in the wild type) and *TOC1* transcript accumulation at dawn (when *TOC1* transcript abundance is normally low in the wild type). Guard cell *CCA1* overexpressors had greater *CCA1* transcript abundance in epidermal peels at dusk than the wild type (*GC*: \(t_4 = -2.233, p > 0.05; \) *MC*: \(t_4 = -7.409, p = 0.002 \)) (Fig. S3D), and guard cell *TOC1* overexpressors had greater *TOC1* transcript abundance at dawn than the wild type (*GT*: \(t_4 = -6.636, p = 0.003; \) *MT*: \(t_4 = -2.736, p = 0.050 \)) (Fig. S3D). These data indicate that *CCA1* and *TOC1* were overexpressed within the guard cells of the guard cell-specific *CCA1* or *TOC1* overexpressor plants that we generated, respectively.

We investigated the effect on WUE of overexpression of *CCA1* and *TOC1* within guard cells. Two independent *GC1::CCA1* lines (*GC*-1 and *GC*-2) were significantly more water use efficient than the wild type (*GC*-1: \(p < 0.001; \) *GC*-2: \(p = 0.002 \)) (Fig. 4B). *GC*-1 and *GC*-2 were 8% and 4% more water use efficient than the wild type, respectively (Fig. 4B). In comparison, two independent *MYB60::CCA1* did not have greater WUE than the wild type \((p > 0.05) \) (Fig. 4B). This suggests that overexpressing *CCA1* in guard cells can increase whole plant long-term WUE in a promoter-specific manner. Overexpression of *TOC1* in guard cells with both the *GC1* and *MYB60* promoters did not alter WUE \((p > 0.05) \) (Fig. 4B). This suggests that decreased WUE in constitutive TOC1-ox plants (Fig. 1A, Fig. 4B) might not be explained by overexpression of TOC1 within the guard cells, and that this decreased WUE might instead be due to TOC1 overexpression in other cell types. Because the stomatal density was unaltered relative to the wild type in the guard cell overexpressors of
CCA1 and TOC1 (Fig. 4C, D), the WUE phenotypes that we identified from these lines might be caused by alterations in processes within guard cells, such as those regulating stomatal aperture, rather than altered stomatal density.

Discussion

Pervasive influence of the circadian oscillator upon water use efficiency

Our data indicate that the circadian oscillator is important for regulating the long-term WUE of Arabidopsis. Misregulation of several functional subsections of the circadian oscillator altered the WUE of Arabidopsis. Misexpression of morning (PRR9, CCA1), late day (GI, PRR5) and evening (TOC1, ZTL, ELF3) components of the circadian oscillator all perturb WUE under our experimental conditions (Fig. 1A, B). Additionally, altered expression of TEJ and GRP7 alters WUE (Fig. 1A). Therefore, oscillator components that impact WUE are not confined to a specific expression phase or architectural feature (e.g. morning loop) within the multi-loop circadian oscillator. Misexpression of genes encoding some proteins that provide environmental inputs to the circadian oscillator (ELF3, TPS1, ZTL, KIN10; (Covington et al., 2001; Kim et al., 2007; Shin et al., 2017; Frank et al., 2018)) also alters WUE (Fig. 1A). Together, this suggests that the entire circadian oscillator can influence WUE, and that alterations in water use that are caused by mutations to the circadian oscillator are not confined to a specific sub-loop of the circadian oscillator or restricted to its input or output pathways. One explanation for these circadian-system wide alterations in WUE relates to the nature of feedback within the circadian oscillator. The complex feedback and interconnectivity of the circadian oscillator means that individual components of the circadian oscillator that directly influence stomatal function or water use are likely to be altered by mutations that are distal to that component. Therefore, if correct circadian timing is required for optimum water use efficiency, multiple components of the circadian oscillator are likely to influence water use efficiency. Alternatively, because mutation of a number of components of the circadian oscillator had no effect upon WUE, it is possible that the oscillator
components that influence WUE do so through roles in directly regulating outputs of the circadian oscillator such as by regulating genes involved in stomatal function.

The sugar signalling proteins TPS1 and KIN10 influence a broad range of phenotypes, in addition to participating in circadian entrainment (Baena-González et al., 2007; Gómez et al., 2010; Paul et al., 2010; Delatte et al., 2011; Shin et al., 2017; Frank et al., 2018; Nietzsche et al., 2018; Simon et al., 2018). The \textit{tps1-12} TILLING mutant of TPS1 decreases stomatal aperture and increases the ABA sensitivity of guard cells (Gómez et al., 2010), whereas we found that \textit{tps1-11} and \textit{tps1-12} had lower long-term WUE than the wild type (Fig. 1A). Lower biomass accumulation in \textit{tps1-12} (Fig. 2B) was consistent with slow growth of these alleles (Gómez et al., 2010). Overall, this suggests that the decreased stomatal aperture of \textit{tps1-12} mutants does not translate into an overall increase in WUE, potentially due to slower growth of the \textit{tps1} mutants (Fig. 2B) (Gómez et al., 2010). The broad range of phenotypes that are altered in \textit{tps1-11}, \textit{tps1-12} and KIN10-ox 6.5 indicates that these genotypes might alter WUE through mechanisms other than circadian regulation.

Potential roles for the evening complex in WUE

Our finding that ELF3 can influence WUE (Fig. 1A) is supported by previous evidence. Under constant light conditions, wild type Arabidopsis has circadian rhythms of stomatal aperture, whereas \textit{elf3} stomata are constantly open and unresponsive to light and dark (Kinoshita et al., 2011). Furthermore, ELF3 negatively regulates blue light-mediated stomatal opening (Kinoshita and Hayashi, 2011). Therefore, perturbation of the anticipation of day/night transitions or responses to environmental cues in \textit{elf3} stomata might cause long-term alterations in WUE.

ELF3 binds to the \textit{PRR9} promoter and \textit{elf3-1} has elevated PRR9 transcript abundance (Thines and Harmon, 2010; Dixon et al., 2011; Herrero et al., 2012). The low WUE of \textit{elf3-1} might potentially be caused by altered PRR9 expression, because misregulation of \textit{PRR9} also affected WUE (Fig. 1A). In a similar fashion, ELF3/ELF4 signalling represses PRR7, and \textit{elf3-1} has elevated \textit{PRR7} transcript abundance (Herrero et al., 2012). Under light-dark
cycles, elf3-1 also has high and constitutive GI expression (Fowler et al., 1999), and elf3-1 and gi mutants have opposite WUE phenotypes (Fig. 1). Therefore, the WUE phenotype of elf3-1 (Fig. 1) might be caused by disruption of ELF3 itself, or specific perturbations of PRR7, PRR9 and/or GI expression.

Mutating further components of the evening complex (EC) (ELF4 and LUX) did not affect WUE (Fig. 1). This is despite the way that these genes influence circadian oscillator function and plant physiology (Hsu and Harmer, 2014; Huang and Nusinow, 2016), and nocturnal regulation of stomatal aperture impacts WUE (Costa et al., 2015; Coupel-Ledru et al., 2016).

One possibility is that the impact of elf3-1 on WUE may be greater than that of elf4 or lux because ELF3 is key to EC scaffolding, with ELF3 operating genetically downstream from ELF4 and LUX (Herrero et al., 2012; Huang and Nusinow, 2016).

The EC binds upstream of and regulates a variety of other genes that might also underlie the WUE alterations in elf3-1 mutants (Ezer et al., 2017). This includes regulators of growth, components of the photosynthetic apparatus, and genes associated with phytohormone signalling. This means that potential roles for the EC in WUE might occur through several physiological mechanisms. There also appears to be a negative relationship between temperature and EC promoter binding (Ezer et al., 2017), so it is possible that any influence of the EC upon WUE might be temperature-sensitive.

ELF4 appears to play a greater role in circadian regulation in the vascular tissue than stomatal guard cells, with vasculature expression up to ten times higher than other tissues (Endo et al., 2014). Processes within the vasculature can affect WUE; for example, mutations in CELLULOSE SYNTHASE CATALYTIC SUBUNIT7 (ATCESA7) might impact water use through effects of the collapse of the vasculature upon guard cell size (Liang et al., 2010). Because elf3-1 affects WUE differently from elf4-101 and lux-1 (Fig. 1), it appears that ELF3 regulates WUE independently from ELF4 and LUX.
Multiple physiological causes of altered WUE in circadian oscillator mutants

Our data suggest that changes in WUE caused by misexpression of circadian clock components might be due to a combination of physiological factors. Many mutants or overexpressors tested alter both biomass accumulation and water loss, often in the same direction (Fig. 2A, B), so mutations to the circadian oscillator did not alter water use by specifically altering either carbon assimilation or transpiration. This is consistent with previous work demonstrating that both stomatal opening and CO₂ fixation is perturbed in circadian arrhythmic plants under light/dark cycles (Dodd et al., 2005), and with the findings that daily carbohydrate management is dependent upon correct circadian regulation (Graf et al., 2010). We speculate that delayed or advanced stomatal and photosynthetic responses to the day-night cycle might occur in circadian period mutants, because period mutants inaccurately anticipate the onset of dawn (Dodd et al., 2014). Circadian clock mutants might also affect WUE by changing the sensitivity of stomatal movements and photosynthesis to environmental transitions, because there is circadian gating of the responses of both stomata and photosynthesis to environmental cues (Dodd et al., 2006; Kinoshita et al., 2011; Litthauer et al., 2015; Joo et al., 2017; Cano-Ramirez et al., 2018). Some effects of the circadian oscillator upon WUE arise from alterations in leaf size that occur in some circadian oscillator mutants (Fig. 3A, B). This suggests that developmental alterations arising from lesions in the circadian oscillator can lead to changes in WUE. Such developmental alterations might alter WUE by changing airflow around the rosette, boundary layer conductance, or internal leaf structure.

It has been reported previously that during the light period of light/dark cycles, CCA1-ox has greater stomatal conductance than the wild type and decreased CO₂ assimilation and biomass accumulation (Dodd et al., 2005; Graf et al., 2010). If these alterations in CO₂ fixation and transpiration persist throughout the vegetative growth phase, it might be predicted that CCA1-ox would have lower long-term WUE than the wild type. However, we found here that long-term WUE was unaltered relative to the wild type in CCA1-ox under our
When the quantitative changes in water loss and biomass accumulation in CCA1-ox are examined, it appears that both biomass accumulation and water loss were decreased relative to the wild type in CCA1-ox (Fig. 2). This means that whilst the ratiometric measure of WUE is unaltered in CCA1-ox, the plants are smaller and use less water overall, potentially due to the smaller leaf area. This difference between short-term gas exchange characteristics of CCA1-ox (Dodd et al., 2005) and its long-term WUE (Fig. 1) shows that there can be differences between short-term measures of gas exchange compared with WUE measured over long periods of growth. It also underlines the importance of the type of experiments performed here for understanding how specific molecular mechanisms can alter WUE through the plant lifetime.

Contribution of circadian regulation in guard cells to water use efficiency

Next, we investigated whether the circadian oscillator within guard cells contributes to long-term WUE. To investigate this, we overexpressed two circadian clock genes in guard cells using two different guard cell-specific promoters. Comparable approaches have been adopted to investigate roles of specific cell types in the functioning of the circadian system and their relationships with physiology and development (Endo et al., 2014; Shimizu et al., 2015; Hassidim et al., 2017). Under our experimental conditions, we did not identify consistent alterations in the long-term WUE of seedlings overexpressing CCA1 or TOC1 in stomatal guard cells (Fig. 4B). This suggests that decreased long-term WUE of TOC1-ox plants (Fig. 1) arises from altered circadian regulation in cell types other than guard cells. Whilst two lines harbouring a GC1::CCA1 construct had greater WUE than the wild type, WUE was unaltered in comparable lines harbouring MYB60::CCA1 (Fig. 4B). The differing WUE phenotype of GC1::CCA1 and MYB60::CCA1 might be explained by differences in promoter strength, because the GC1 promoter appears to have somewhat greater activity than the MYB60 promoter (Fig. S3D, E). Although both promoters are guard cell-specific in our hands (Fig. S3), we cannot exclude the possibility of ectopic promoter activity.
Interestingly, \textit{GC1::CCA1} is reported to have greater drought sensitivity of long-term biomass accumulation than the wild type (Hassidim et al., 2017), whereas we found that \textit{GC1::CCA1} had greater WUE than the wild type (Fig. 4B). This might reflect the integration of circadian regulation into ABA signalling (Legnaioli et al., 2009; Robertson et al., 2009), or occur because guard cell circadian regulation is required for correct guard cell metabolism and/or stomatal movements under conditions of abiotic stress. For example, circadian regulation is proposed to participate in daily cycles of triacylglycerol mobilization that are important for stomatal opening (McLachlan et al., 2016). Together, these findings suggest that guard cell circadian regulation is important under both well-watered conditions and conditions of environmental stress (Fig. 4C) (Robertson et al., 2009; Hassidim et al., 2017), with circadian regulation in other tissues also contributing to overall WUE. It would be informative in future to perform reverse genetic screening of the dehydration tolerance or long-term drought tolerance of sets of circadian clock mutants. However, because well-watered WUE is not a drought tolerance trait (Blum, 2009), it possible that different circadian clock alleles might confer dehydration or drought tolerance compared with those alleles that alter WUE (Fig. 1).

\textbf{Conclusions}

We show that circadian regulation contributes to whole plant long-term WUE under cycles of day and night. This control occurs partly through the influence of components of the circadian oscillator upon rosette architecture. Mutation or overexpression of CCA1, TOC1, ELF3, GI, GRP7, PRR5, PRR9, TEJ and ZTL altered WUE under our experimental conditions. The roles of these genes in WUE may be independent or overlapping, and their WUE phenotypes might be due to direct effects of these genes, or indirect effects on transcript and/or protein abundance of other circadian clock gene(s). Misregulation of the expression of CHE, FKF1, LKP2, RVE4, RVE8, PRR3, ELF4, LUX and WNK1 did not appear to alter WUE under our experimental conditions.
Our results have broad implications. Firstly, our data suggest that alterations in circadian function that arise during crop breeding could have the potential to increase or decrease WUE. Therefore, manipulation of the functioning of the circadian oscillator might represent a pathway to tune the WUE of crops. Second, our results indicate that circadian regulation in a single cell type can have implications for whole-plant physiology. Third, our experiments with guard-cell misregulation of circadian oscillator genes suggest that the circadian oscillator within guard cells and other cell types influences WUE. Finally, our findings suggest that circadian regulation potentially alters a single trait (WUE) by affecting many aspects of physiology, along with leaf area. Overall, our study demonstrates that the circadian oscillator is important for the water use efficiency of Arabidopsis plants during their entire vegetative growth period. In future, it will be informative to distinguish the contribution to overall WUE of circadian regulation within additional cell types, such as the mesophyll, vascular tissue, and root cell types. It will also be important to identify specific mechanisms underlying the WUE phenotypes, and determine the extent to which these findings scale to crop species.

Materials and methods

Plant material and growth conditions

Arabidopsis (Arabidopsis thaliana (L.) Heynh.) seeds were surface-sterilised as described previously (Noordally et al., 2013). For experiments investigating stomatal density and index, seeds were stratified for 3 days at 4 °C, then sown on compost mix comprising a 3:1 ratio of coarsely sieved Levington Advance F2 seed compost (Everris) and horticultural silver sand (Melcourt), supplemented with 0.4 g l⁻¹ thiacloprid insecticide granules (Exemptor; Everris). Seedlings were germinated in controlled environment chambers (Reftech, Netherlands) under an 8 h photoperiod at 70% humidity, 20 °C, and photon flux density of 100 µmol m⁻² s⁻¹ of overhead lighting supplied by cool white fluorescent tubes (Reftech, Netherlands). For experiments investigating long-term WUE, seeds were sown within a custom Falcon tube system then stratified. The genotypes that were screened for WUE alterations are identified
in Table S1, and all have been described previously. For all experiments, at least two completely independent experimental repeats were performed per genotype and per treatment, with multiple replicate plants within each of the experimental repeats.

Generation of transgenic lines

To create the GC1::CCA1:nos (GC), GC1::TOC1:nos (GT), MYB60::CCA1:nos (MC) and MYB60::TOC1:nos (MT) constructs, the CaMV nos terminator sequence was ligated between the SpeI and NotI restriction sites in the pGREENII0229 binary vector (Hellens et al., 2000). The GC1 upstream sequence (-1894 to -190) or MYB60 upstream sequence (-1724 to -429) was then ligated between the KpnI and ApaI restriction sites of pGREENII0229. Finally, the CCA1 coding sequence or TOC1 coding sequence, obtained using RT-PCR, was ligated between the restriction Xhol and Xmal sites. Primers used are identified in Table S2. Constructs were transformed into Col-0 wild type Arabidopsis using transformation with Agrobacterium tumefaciens strain GV3101. Transformants were identified by screening for phosphinothricin resistance, and then further validated using genomic DNA PCR. Homozygous lines were identified via phosphinothricin (BASTA) resistance, and two independently transformed homozygous lines were investigated in detail per genotype.

Guard cell specificity of promoter activity was investigated using GC1::GFP:nos and MYB60::GFP:nos promoter-reporter lines (Fig. S3A-C), which were created as above with the GFP coding sequence ligated between the Xhol and Xmal restriction sites. Leaf discs (5 mm diameter) from seedlings or mature plants were mounted on microscope slides with dH2O, and examined for GFP fluorescence using confocal microscopy (Leica DMi6000). The following settings were used: argon laser at 20% capacity, 488 nm laser at 48% capacity with a bandwidth of 505 nm–515 nm, gain of 1250, offset at 0.2%, 20x or 40x objective, zoom x1 to x4.
Measurement of water use efficiency

The WUE assay was adapted from Wituszynska et al. (2013) (Wituszyńska et al., 2013). Plants were grown for 6 weeks in modified 50 ml Falcon tubes, under an 8 h photoperiod at 70% humidity, 20 °C, and photon flux density of 100 µmol m⁻² s⁻¹ of overhead lighting supplied by cool white fluorescent tubes (Reftech, Netherlands). The Falcon tube systems consisted of a 50 ml Falcon tube filled with 37.5 ml of a 1:1 ratio of compost: perlite and 35 ml of Milli-Q water (Merck), with the remaining volume filled with a 1:1 ratio of compost: Milli-Q water (Fig. S4). Each Falcon tube lid had a 2 mm diameter hole drilled in its centre to allow plant growth. The lid was spray-painted black (Hycote) because we found that the orange colour of the Falcon tube lid caused leaf curling (Fig. S4). The system was wrapped in aluminium foil to exclude light (Fig. S4). 10-15 seeds were sown through the Falcon tube lid using a pipette. Following stratification, Falcon tube systems were placed under growth conditions using a randomised experimental design. 7 days after germination, seedlings were thinned to one per Falcon tube system, and initial Falcon tube weight was recorded. The seedling-thinning step was sensitive to seedling damage for genotypes with substantially altered morphologies (e.g. tps1 mutants), reducing the number of replicates available for some genotypes. After 6 weeks of growth, rosette leaf surface area was measured by photography (D50; Nikon) and Fiji software, rosette dry weight was measured (4 d at 60°C), and final Falcon tube weight was recorded. All experiments were stopped before flowering occurred, with the 8 h photoperiod being used to delay flowering as much as possible. Plants were not obviously stressed during the experiment (e.g. leaves did not become purple due to strong anthocyanin accumulation, and plants did not wilt or become contaminated with mildew) (Fig. S4). Negative controls (Falcon tube systems without plants) were used to assess soil water evaporation over 18 experimental repeats, with an overall mean weight loss of 0.513 g ± 0.004 g over 6 weeks for plant-free Falcon tubes.

Plant WUE was calculated as follows:
Where d is the rosette dry weight at the end of the experiment (mg), t_i and t_f are the falcon tube weight at the start and end of the experiment, respectively (g), and e is the amount of water evaporation directly from the compost (g). WUE is derived as mg biomass per ml$^{-1}$ water lost. These calculations assumed that 1 g of weight change was equivalent to a change of 1 ml of water. For each of the 2 experimental repeats (Fig. 1, Fig. S1), 15 plants were screened per genotype. Due to variation between the WUE of each background (Fig. S2), the WUE of each circadian oscillator genotype was normalized to its respective background and expressed as a percentage of that background. Statistical comparisons with the wild types were conducted before this normalization.

Measurement of stomatal density

Plants were grown for 7-8 weeks on compost mix. Dental paste (Coltene) was applied to the abaxial surface of fully expanded leaves. Transparent nail varnish (Rimmel) was applied to these leaf moulds once they had set, and then peeled away from the mould using clear adhesive tape (Scotch Crystal). Stomatal and pavement cells were counted within an 800 µm x 800 µm square at the centre of each leaf half, using an epifluorescence microscope (HAL100; Zeiss) and Volocity (Perkin Elmer) and Fiji software. For each experimental repeat, two leaves were sampled per plant and eight plants sampled per genotype. Stomatal index was calculated as follows:

$$SI = \frac{s}{s+p} \times 100$$

Where SI is the stomatal index, s the number of stomata in the field of view (800 µm x 800 µm), and p the number of pavement cells in the field of view.

RNA extraction and qRT-PCR

RNA extractions, cDNA synthesis, and qRT-PCR were performed according to (Simon et al., 2018), except approximately 10 seedlings were used per RNA sample and analysis was
performed using an MXPro 3005 real time PCR system (Agilent) with 5x HOT FIREPol
EvaGreen qPCR mastermix (Solis Biodyne). qRT-PCR primers are provided in Table S3.
Rhythmic features within qPCR data were identified using the BioDare2 platform (Zielinski et al., 2014), using the Fast Fourier Transform Non-Linear Least Squares method (FFT-NLLS).
One independently-transformed line of each guard cell-specific circadian clock gene
overexpressor was also investigated using qRT-PCR conducted on RNA isolated from
epidermal peels. Abaxial leaf epidermis was detached, then washed in 10 mM MES (pH
6.15, adjusted using 10 M KOH) to remove RNA derived from ruptured epidermal cells. Each
RNA sample was derived from 20 epidermal peels (five plants, four leaves per plant) that
were collated and flash-frozen in liquid nitrogen. Guard cell RNA was extracted using the
RNeasy UCP Micro Kit (Qiagen) according to manufacturer’s instructions, with the following
modification: guard cell lysis was performed by adding glass beads (425 μm - 600 μm
diameter, acid washed, from Sigma-Aldrich) and 350 μl RULT buffer to the sample, then
vortexed for 5 min.

Accession numbers
Arabidopsis Genome Initiative identifiers for the genes mentioned in this study are: CCA1
(CIRCADIAN CLOCK ASSOCIATED1, At2g46830), CHE (CCA1 HIKING EXPEDITION,
At5g08330), ELF3 (EARLY FLOWERING3, At2g25930), ELF4 (EARLY FLOWERING4,
At2g40080), FKF1 (F BOX1, At1g68050), GI (GIGANTEA, At1g22770), GRP7 (GLYCINE
RICH PROTEIN7, At2g21660), KIN10 (SNF1-RELATED PROTEIN KINASE1.1, At3g01090),
LKP2 (LOV KELCH PROTEIN2, At2g18915), LUX (LUX ARRHYTHMO, At3g46640),
MYB60 (MYB DOMAIN PROTEIN60, At1g08810), PRR3 (PSEUDO-RESPONSE
REGULATOR3, At5g60100), PRR5 (PSEUDO-RESPONSE REGULATOR5, At5g24470),
PRR9 (PSEUDO-RESPONSE REGULATOR9, At2g46790), RVE4 (REVEILLE4,
At5g02840), TEJ (POLY(ADP-RIbose)GLYCOHYDROLASE1, At2g31870), TIC (TIME
FOR COFFEE, At3gt22380), TOC1 (TIMING OF CAB EXPRESSION1, At5g61380), TPS1
(TREHALOSE-6-PHOSPHATE SYNTHASE1, At1g78580), WNK1 (WITH NO LYSINE KINASE1, At3g04910), ZTL (ZEITLUPE, At5g57360).

Acknowledgements

We thank Kester Cragg-Barber, James Chen, Ioanna Kostaki, Jean-Charles Isner, Deirdre McLachlan, Peng Sun, Ashutosh Sharma and Dora Cano-Ramirez for technical advice during experimentation. We thank Marc Knight and Tracy Lawson for helpful discussions concerning data interpretation. We are grateful to Keara Franklin, Alex Webb, Paloma Mas, Steve Kay, Isabelle Carre, Takato Imaizumi, Filip Rolland, Ian Graham, Stacey Harmer, and Steven Penfield for donating seed lines. This research was funded the UK Biotechnology and Biological Sciences Research Council (BBSRC; grant BB/J014400/1) and the Wolfson Foundation.
Figure legends

Figure 1. The circadian clock regulates long-term water use efficiency of Arabidopsis under light/dark cycles. (A) The WUE of circadian clock mutants and overexpressors is expressed as absolute WUE and a percentage of their respective background (normalized to the relevant background as 100%, indicated by red reference line). Percentage calculation allows comparison between all genotypes by correcting for WUE variation between background accessions. Data were analysed using independent-samples t-tests and statistical significance is indicated relative to the background (* = $p < 0.05$; ** = $p < 0.01$; *** = $p < 0.001$; $n = 5 - 15$). Statistical analysis was performed on raw WUE data, with significance levels from this indicated on percentage graph also for purposes of comparison. (B-D) WUE grouped according to (B) phase of expression of each mutated or overexpressed gene, and the (C) period or (D) flowering time alteration caused by mutation or overexpression of each gene indicated. Shading of bars on graphs indicates statistical significance. Studies describing the phase of expression, period and flowering time of the genotypes tested are identified in the main text. We note that the phase of expression and period data used for this analysis were often obtained in previous studies under constant conditions, in contrast to our experiments under light/dark cycles. Screens were repeated completely independently two times per genotype, with one representative experimental repeat shown here and the other shown in Fig. S1.

Figure 2. Manipulating the expression of genes associated with circadian regulation alters WUE by changing both water use and biomass accumulation. (A) Water loss and (B) biomass accumulation for each genotype relative to its respective background over the course of the experiments. Data are expressed as both absolute measurements and a proportion of the respective background (percentage plots are normalized to the background line as 100%, indicated by horizontal red reference lines) ($n = 5 - 15$). Data were analysed using independent-samples t-tests and statistical significance is indicated relative to the background (* = $p < 0.05$; ** = $p < 0.01$; *** = $p < 0.001$).
Figure 3. The circadian oscillator alters WUE partially by changing rosette architecture. (A) Altering circadian-associated gene expression can affect rosette architecture and size, as illustrated for elf3-1, lux-1, and gi-2 in the Col-0 background. Image backgrounds removed for clarity. Variation in rosette leaf surface area across the genotypes investigated explained (B) 16% of variation in WUE ($p < 0.001$, $r = 0.400$, $r^2 = 0.160$), (C) 83% of variation in transpiration ($p < 0.001$, $r = 0.912$, $r^2 = 0.832$) and (D) 73% of variation in rosette dry biomass ($p < 0.001$, $r = 0.857$, $r^2 = 0.734$). Data were analysed using Pearson correlation tests.

Figure 4. Long-term WUE can be altered by misexpression of circadian oscillator genes within stomatal guard cells. (A) Constructs used to overexpress CCA1 or TOC1 coding sequence under control of GC1 or MYB60 promoters. (B) Guard cell CCA1 overexpression can increase WUE. WUE expressed as absolute WUE and percentage of the wild type (normalised to wild type as 100%, red reference line). Two to four independent experimental repeats were performed, with data from one representative dataset shown ($n = 5 - 15$). Data were analysed with independent samples t-tests, with statistical significance compared to Col-0 indicated by asterisks (** $p < 0.01$; *** $p < 0.001$). (C, D) Guard cell CCA1 or TOC1 overexpression does not affect (C) stomatal index nor (D) stomatal density. Two independent experimental repeats were performed, with data from one representative dataset shown ($n = 19 - 32$; mean ± S.E.M.). Data were analysed with ANOVA and Tukey’s post hoc tests (NS $p > 0.05$). Bar colours identify the whole plant overexpressor control (black), wild type control (dark grey), and guard cell-specific overexpressor genotypes (light grey).
Table 1. Genotypes having consistently and significantly altered WUE across experimental repeats.

Consistently greater WUE than background	Consistently lower WUE than background	No consistent WUE alteration relative to background
gi-2	cca1-11	CCA1-ox
grp7-1	elf3-1	che-1
tej-1	KIN10-ox 6.5	CHE-ox 6
	prr5-3	elf4-101
	prr9-1	lkp2-1
	TOC1-ox	lkp2-1
	tps1-11	lux-1
	tps1-12	prr3-1
	ztl-1	rve4-1
		rve8-1
		tic-2
		toc1-1
		toc1-2
		toc1-21
		toc1-101
		wnk1
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Chuek R, Gadrinab C, Heller C, Jeske A, Koesma E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657

Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448: 938

Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua N-H, Tobin EM, Kay SA, Imaizumi T (2010) F-Box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. The Plant Cell 22: 601

Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid Khaled AS, Sonnewald S, Sonnewald U, Kneitz S, Lachmann N, Mendel Ralf R, Bittner F, Hetherington Alistair M, Hedrich R (2013) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Current Biology 23: 53-57

Bertolino LT, Caine RS, Gray JE (2019) Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science 10: article 225

Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research 112: 119-123

Bridge LJ, Franklin KA, Homer ME (2013) Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model. Journal of The Royal Society Interface 10: 20130326

Caine RS, Yin X, Sloan J, Harrison EL, Mohammed U, Fulton T, Biswal AK, Dionora J, Chater CC, Coe RA, Bandyopadhyay A, Murchie EH, Swarup R, Quick WP, Gray
JE (2019) Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist 221: 371-384

Cano-Ramirez DL, Saskia de Freina T, Griffiths OG, Dodd AN (2018) Photosynthesis and circadian rhythms regulate the buoyancy of marimo lake balls. Current Biology 28:

R869-R870

Cominelli E, Galbiati M, Albertini A, Fornara F, Conti L, Coupland G, Tonelli C (2011) DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter. BMC Plant Biology 11: article 162

Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Current Biology 15:

1196-1200

Condon AG, Farquhar GD, Rebetzke GJ, Richards RA (2004) Breeding for high water-use efficiency. Journal of Experimental Botany 55: 2447-2460

Costa JM, Monnet F, Jannaud D, Leonhardt N, Ksas B, Reiter IM, Pantin F, Genty B (2015) OPEN ALL NIGHT LONG: The dark side of stomatal control. Plant Physiology 167: 289

Coupel-Ledru A, Lebon E, Christophe A, Gallo A, Gago P, Pantin F, Doligez A, Simonneau T (2016) Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proceedings of the National Academy of Sciences 113: 8963

Covington MF, Panda S, Liu XL, Strayer CA, Wagner DR, Kay SA (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis. The Plant Cell 13: 1305

Delatte TL, Sedijani P, Kondou Y, Matsui M, de Jong GJ, Somsen GW, Wiese-

Klinkenberg A, Primavesi LF, Paul MJ, Schluepmann H (2011) Growth arrest by trehalose-6-phosphate: An astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway. Plant Physiology 157: 160
Ding Z, Millar AJ, Davis AM, Davis SJ (2007) TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock. The Plant Cell 19: 1522

Dixon LE, Knox K, Kozma-Bognar L, Southern MM, Pokhilko A, Millar AJ (2011) Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis. Current Biology 21: 120-125

Dodd AN, Dalchau N, Gardner MJ, Baek S-J, Webb AAR (2014) The circadian clock has transient plasticity of period and is required for timing of nocturnal processes in Arabidopsis. New Phytologist 201: 168-179

Dodd AN, Jakobsen MK, Baker AJ, Telzerow A, Hou S-W, Laplaze L, Barrot L, Scott Poethig R, Haseloff J, Webb AAR (2006) Time of day modulates low-temperature Ca2+ signals in Arabidopsis. The Plant Journal 48: 962-973

Dodd AN, Parkinson K, Webb AAR (2004) Independent circadian regulation of assimilation and stomatal conductance in the ztl-1 mutant of Arabidopsis. New Phytologist 162: 63-70

Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309: 630

Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognár L, Nagy F, Millar AJ, Amasino RM (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419: 74

Edwards CE, Ewers BE, McClung CR, Lou P, Weinig C (2012) Quantitative variation in water-use efficiency across water regimes and its relationship with circadian, vegetative, reproductive, and leaf gas-exchange traits. Molecular Plant 5: 653-668

Edwards CE, Weinig C (2010) The quantitative-genetic and QTL architecture of trait integration and modularity in Brassica rapa across simulated seasonal settings. Heredity 106: 661

Endo M, Shimizu H, Nohales MA, Araki T, Kay SA (2014) Tissue-specific clocks in Arabidopsis show asymmetric coupling. Nature 515: 419
Eriksson ME, Hanano S, Southern MM, Hall A, Millar AJ (2003) Response regulator homologues have complementary, light-dependent functions in the Arabidopsis circadian clock. Planta 218: 159-162

Ezer D, Jung J-H, Lan H, Biswas S, Gregoire L, Box MS, Charoensawan V, Cortijo S, Lai X, Stöckle D, Zubieta C, Jaeger KE, Wigge PA (2017) The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nature Plants 3: 17087

Farré EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA (2005) Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Current Biology 15: 47-54

Ferguson JN, Humphry M, Lawson T, Brendel O, Bechtold U (2018) Natural variation of life-history traits, water use, and drought responses in Arabidopsis. Plant Direct 2: e00035

Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. The EMBO Journal 18: 4679

Francia P, Simoni L, Cominelli E, Tonelli C, Galbiati M (2008) Gene trap-based identification of a guard cell promoter in Arabidopsis. Plant Signaling & Behavior 3: 684-686

Frank A, Matioll CC, Viana AJC, Hearn TJ, Kusakina J, Belbin FE, Wells Newman D, Yochikawa A, Cano-Ramirez DL, Chembath A, Cragg-Barber K, Haydon MJ, Hotta CT, Vincentz M, Webb AAR, Dodd AN (2018) Circadian entrainment in Arabidopsis by the sugar-responsive transcription factor bZIP63. Current Biology 28: 2597-2606.e2596

Franks PJ, W. Doheny-Adams T, Britton-Harper ZJ, Gray JE (2015) Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytologist 207: 188-195
Galbiati M, Simoni L, Pavesi G, Cominelli E, Francia P, Vavasseur A, Nelson T, Bevan M, Tonelli C (2008) Gene trap lines identify Arabidopsis genes expressed in stomatal guard cells. The Plant Journal 53: 750-762

Gómez LD, Gilday A, Feil R, Lunn JE, Graham IA (2010) AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells. The Plant Journal 64: 1-13

Gorton HL, Williams WE, Binns ME, Gemmell CN, Leheny EA, Shepherd AC (1989) Circadian stomatal rhythms in epidermal peels from Vicia faba. Plant Physiology 90: 1329

Graf A, Schlereth A, Stitt M, Smith AM (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proceedings of the National Academy of Sciences 107: 9458

Hall A, Bastow RM, Davis SJ, Hanano S, McWatters HG, Hibberd V, Doyle MR, Sung S, Halliday KJ, Amasino RM, Millar AJ (2003) The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. The Plant Cell 15: 2719

Harmer SL, Hogenesch JB, Straume M, Chang H-S, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290: 2110

Hassidim M, Dakhya Y, Turjeman A, Hussien D, Shor E, Anidjar A, Goldberg K, Green RM (2017) CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and the circadian control of stomatal aperture. Plant Physiology 175: 1864

Haydon MJ, Mielczarek O, Robertson FC, Hubbard KE, Webb AAR (2013) Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. Nature 502: 689
Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA (2005) LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proceedings of the National Academy of Sciences 102: 10387

Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Molecular Biology 42: 819-832

Hennessey TL, Field CB (1991) Circadian rhythms in photosynthesis. Plant Physiology 96: 831

Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, Berns MC, Uhlworm H, Coupland G, Saini R, Jaskolski M, Webb A, Gonçalves J, Davis SJ (2012) EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. The Plant Cell 24: 428

Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424: 901

Hsu PY, Harmer SL (2014) Wheels within wheels: the plant circadian system. Trends in Plant Science 19: 240-249

Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annual Review of Plant Biology 65: 715-741

Huang H, Nusinow DA (2016) Into the evening: Complex interactions in the Arabidopsis circadian clock. Trends in Genetics 32: 674-686

Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106: 477-487

Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-Box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309: 293

Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426: 302
Joo Y, Fragoso V, Yon F, Baldwin IT, Kim S-G (2017) Circadian clock component, LHY, tells a plant when to respond photosynthetically to light in nature. Journal of Integrative Plant Biology 59: 572-587

Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proceedings of the National Academy of Sciences 104: 15270

Khanna R, Kikis EA, Quail PH (2003) EARLY FLOWERING 4 functions in Phytochrome B-regulated seedling de-etiolation. Plant Physiology 133: 1530

Kikis EA, Khanna R, Quail PH (2005) ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. The Plant Journal 44: 300-313

Kim W-Y, Fujiwara S, Suh S-S, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449: 356

Kinoshita T, Hayashi Y (2011) New insights into the regulation of stomatal opening by blue light and plasma membrane H+-ATPase. In KW Jeon, ed, International Review of Cell and Molecular Biology, Vol 289. Academic Press, pp 89-115

Kinoshita T, Ono N, Hayashi Y, Morimoto S, Nakamura S, Soda M, Kato Y, Ohnishi M, Nakano T, Inoue S-i, Shimazaki K-i (2011) FLOWERING LOCUS T regulates stomatal opening. Current Biology 21: 1232-1238

Kobata T, Okuno T, Yamamoto Y (1996) Contributions of capacity for soil water extraction and water use efficiency to maintenance of dry matter production in rice subjected to drought. Japanese Journal of Crop Science 65: 652-662

Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164: 1556

Legnaioli T, Cuevas J, Mas P (2009) TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. The EMBO Journal 28: 3745
Liang YK, Xie X, Lindsay SE, Wang YB, Masle J, Williamson L, Leyser O, Hetherington AM (2010) Cell wall composition contributes to the control of transpiration efficiency in Arabidopsis thaliana. Plant Journal 64: 679-686

Litthauer S, Battle MW, Lawson T, Jones MA (2015) Phototropins maintain robust circadian oscillation of PSII operating efficiency under blue light. The Plant Journal 83: 1034-1045

Más P, Kim W-Y, Somers DE, Kay SA (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426: 567

Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436: 866

McLachlan Deirdre H, Lan J, Geilfus C-M, Dodd Antony N, Larson T, Baker A, Hörak H, Kollist H, He Z, Graham I, Mickelbart Michael V, Hetherington Alistair M (2016) The breakdown of stored triacylglycerols is required during light-induced stomatal opening. Current Biology 26: 707-712

Medrano H, Tomás M, Martorell S, Flexas J, Hernández E, Rosselló J, Pou A, Escalona J-M, Bota J (2015) From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. The Crop Journal 3: 220-228

Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Rasheid KAS, Geiger D, Marten I, Martinoia E, Hedrich R (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. The Plant Journal 63: 1054-1062

Michael TP, Salomé PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Ecker JR, McClung CR (2003) Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302: 1049

Millar AJ (2004) Input signals to the plant circadian clock. Journal of Experimental Botany 55: 277-283

Millar AJ, Carre IA, Strayer CA, Chua NH, Kay SA (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267: 1161
Murakami M, Yamashino T, Mizuno T (2004) Characterization of circadian-associated APRR3 pseudo-response regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant and Cell Physiology 45: 645-650

Na J-K, Metzger JD (2014) Chimeric promoter mediates guard cell-specific gene expression in tobacco under water deficit. Biotechnology Letters 36: 1893-1899

Nagy R, Grob H, Weder B, Green P, Klein M, Frelet A, Schjoerring JK, Brearley CA, Martinoia E (2009) The Arabidopsis ATP-binding cassette protein ATMRP5/ATABCC5 is a high-affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. Journal of Biological Chemistry

Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua N-H, Sakakibara H (2010) PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in Arabidopsis circadian clock. The Plant Cell 22: 594

Nakamichi N, Murakami-Kojima M, Sato E, Kishi Y, Yamashino T, Mizuno T (2002) Compilation and characterization of a novel WNK family of protein kinases in Arabidopsis thaliana with reference to circadian rhythms. Bioscience, Biotechnology, and Biochemistry 66: 2429-2436

Nienhuis J, Sills GR, Martin B, King G (1994) Variance for water-use efficiency among ecotypes and recombinant inbred lines of Arabidopsis thaliana (Brassicaceae). American Journal of Botany 81: 943-947

Nietzsche M, Guerra T, Alseekh S, Wiermer M, Sonnewald S, Fernie AR, Börnke F (2018) STOREKEEPER RELATED1/G-element binding protein (STKR1) interacts with protein kinase SnRK1. Plant Physiology 176: 1773

Noordally ZB, Ishii K, Atkins KA, Wetherill SJ, Kusakina J, Walton EJ, Kato M, Azuma M, Tanaka K, Hanaoka M, Dodd AN (2013) Circadian control of chloroplast transcription by a nuclear-encoded timing signal. Science 339: 1316

Panda S, Poirier GG, Kay SA (2002) tej defines a role for poly(ADP-ribosyl)ation in establishing period length of the Arabidopsis circadian oscillator. Developmental Cell 3: 51-61
Paul MJ, Jhurreea D, Zhang Y, Primavesi LF, Delatte T, Schluepmann H, Wingler A (2010) Up-regulation of biosynthetic processes associated with growth by trehalose 6-phosphate. Plant Signaling & Behavior 5: 386-392

Pei Z-M, Ghassemian M, Kwak CM, McCourt P, Schroeder JI (1998) Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282: 287

Pruneda-Paz JL, Breton G, Para A, Kay SA (2009) A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323: 1481

Rawat R, Takahashi N, Hsu PY, Jones MA, Schwartz J, Salemi MR, Phinney BS, Harmer SL (2011) REVEILLE8 and PSEUDO-RESONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock. PLOS Genetics 7: e1001350

Resco de Dios V, Gessler A, Pedro Ferrio J, Alday JG, Bahn M, del Castillo J, Devidal S, García-Muñoz S, Kayler Z, Landais D, Martín-Gómez P, Milcu A, Piel C, Pirhofer-Walzl K, Ravel O, Salekin S, Tissue DT, Tjoelker MG, Voltas J, Roy J (2016) Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions. GigaScience 5

Robertson FC, Skeffington AW, Gardner MJ, Webb AAR (2009) Interactions between circadian and hormonal signalling in plants. Plant Molecular Biology 69: 419-427

Rubin MJ, Brock MT, Baker RL, Wilcox S, Anderson K, Davis SJ, Weinig C (2018) Circadian rhythms are associated with shoot architecture in natural settings. New Phytologist 219: 246-258

Ruggiero A, Punzo P, Landi S, Costa A, Van Oosten JM, Grillo S (2017) Improving plant water use efficiency through molecular genetics. Horticulturae 3

Rusconi F, Simoni L, Simeoni F, Tonelli C, Galbiati M, Cominelli E, Conti L, Riboni M, Francia P, Martin CR (2013) The Arabidopsis thaliana MYB60 promoter provides a tool for the spatio-temporal control of gene expression in stomatal guard cells. Journal of Experimental Botany 64: 3361-3371
Ruts T, Matsubara S, Wiese-Klinkenberg A, Walter A (2012) Aberrant temporal growth pattern and morphology of root and shoot caused by a defective circadian clock in Arabidopsis thaliana. The Plant Journal 72: 154-161

Salomé PA, McClung CR (2005) PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. The Plant Cell 17: 791

Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93: 1219-1229

Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology 52: 627-658

Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA (2001) A Role for LKP2 in the Circadian Clock of Arabidopsis. The Plant Cell 13: 2659

Shimizu H, Katayama K, Koto T, Torii K, Araki T, Endo M (2015) Decentralized circadian clocks process thermal and photoperiodic cues in specific tissues. Nature Plants 1: 15163

Shin J, Sánchez-Villarreal A, Davis AM, Du S-x, Berendzen KW, Koncz C, Ding Z, Li C, Davis SJ (2017) The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner. Plant, Cell & Environment 40: 997-1008

Simon NML, Kusakina J, Fernández-López Á, Chembath A, Belbin FE, Dodd AN (2018) The energy-signaling hub SnRK1 is important for sucrose-induced hypocotyl elongation. Plant Physiology 176: 1299

Simon NML, Sawkins E, Dodd AN (2018) Involvement of the SnRK1 subunit KIN10 in sucrose-induced hypocotyl elongation. Plant Signaling & Behavior 13: e1457913

Somers DE, Devlin PF, Kay SA (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282: 1488
Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101: 319-329

Somers DE, Webb AA, Pearson M, Kay SA (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125: 485

Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Más P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289: 768

Streitner C, Danisman S, Wehrle F, Schöning JC, Alfano JR, Staiger D (2008) The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. The Plant Journal 56: 239-250

Thines B, Harmon FG (2010) Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. Proceedings of the National Academy of Sciences: 200911006

Tomás M, Medrano H, Escalona JM, Martorell S, Pou A, Ribas-Carbó M, Flexas J (2014) Variability of water use efficiency in grapevines. Environmental and Experimental Botany 103: 148-157

Vialet-Chabrand S, Matthews JSA, Brendel O, Blatt MR, Wang Y, Hills A, Griffiths H, Rogers S, Lawson T (2016) Modelling water use efficiency in a dynamic environment: An example using Arabidopsis thaliana. Plant Science 251: 65-74

Wahl V, Ponnu J, Schlereth A, Arrivaulet S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M (2013) Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339: 704

Wang Y, Liu K, Liao H, Zhuang C, Ma H, Yan X (2008) The plant WNK gene family and regulation of flowering time in Arabidopsis. Plant Biology 10: 548-562

Wang ZY, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93: 1207-1217
Wituszyńska W, Ślesak I, Vanderauwera S, Szechyńska-Hebda M, Kornaś A, Van Der Kelen K, Mühlenbock P, Karpińska B, Maćkowski S, Van Breusegem F, Karpiński S (2013) LESION SIMULATING DISEASE1, ENHANCED DISEASE SUSCEPTIBILITY1, and PHYTOALEXIN DEFICIENT4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis. Plant Physiology 161: 1795

Woodward FI, Lake JA, Quick WP (2002) Stomatal development and CO2: ecological consequences. New Phytologist 153: 477-484

Xoconostle-Cazares B, Ramirez-Ortega FA, Flores-Elenes L, Ruiz-Medrano R (2010) Drought tolerance in crop plants. American Journal of Plant Physiology 5: 241-256

Yamamoto Y, Sato E, Shimizu N, Nakamich N, Sato S, Kato T, Tabata S, Nagatani A, Yamashino T, Mizuno T (2003) Comparative genetic studies on the APRR5 and APRR7 genes belonging to the APRR1/TOC1 quintet implicated in circadian rhythm, control of flowering time, and early photomorphogenesis. Plant and Cell Physiology 44: 1119-1130

Yang Y, Costa A, Leonhardt N, Siegel RS, Schroeder JI (2008) Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods 4: 6

Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419: 308

Yoo CY, Pence HE, Hasegawa PM, Mickelbart MV (2009) Regulation of transpiration to improve crop water use. Critical Reviews in Plant Sciences 28: 410-431

Yoo CY, Pence HE, Jin JB, Miura K, Gosney MJ, Hasegawa PM, Mickelbart MV (2010) The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. The Plant Cell 22: 4128

Zagotta MT, Shannon S, Jacobs C, Meeks-Wagner DR (1992) Early-flowering mutants of Arabidopsis thaliana. Functional Plant Biology 19: 411-418
Zielinski T, Moore AM, Troup E, Halliday KJ, Millar AJ (2014) Strengths and limitations of period estimation methods for circadian data. PLOS ONE 9: e96462
Figure 1. The circadian clock regulates long-term water use efficiency of Arabidopsis under light/dark cycles. (A) The WUE of circadian clock mutants and overexpressors is expressed as absolute WUE and a percentage of their respective background (normalized to the...
relevant background as 100%, indicated by red reference line). Percentage calculation allows comparison between all genotypes by correcting for WUE variation between background accessions. Data were analysed using independent-samples t-tests and statistical significance is indicated relative to the background (* = p < 0.05; ** = p < 0.01; *** = p < 0.001; n = 5 - 15). Statistical analysis was performed on raw WUE data, with significance levels from this indicated on percentage graph also for purposes of comparison. (B-D) WUE grouped according to (B) phase of expression of each mutated or overexpressed gene, and the (C) period or (D) flowering time alteration caused by mutation or overexpression of each gene indicated. Shading of bars on graphs indicates statistical significance. Studies describing the phase of expression, period and flowering time of the genotypes tested are identified in the main text. We note that the phase of expression and period data used for this analysis were often obtained in previous studies under constant conditions, in contrast to our experiments under light/dark cycles. Screens were repeated completely independently two times per genotype, with one representative experimental repeat shown here and the other shown in Fig. S1.
Figure 2. Manipulating the expression of genes associated with circadian regulation alters WUE by changing both water use and biomass accumulation. (A) Water loss and (B) biomass accumulation for each genotype relative to its respective background over the course of the experiments. Data are expressed as both absolute measurements and a proportion of the respective background (percentage plots are normalized to the background line as 100%, indicated by horizontal red reference lines) \((n = 5 - 15)\). Data were analysed using independent-samples t-tests and statistical significance is indicated relative to the background \((^{*} = p < 0.05; ^{**} = p < 0.01; ^{***} = p < 0.001)\).
Figure 3. The circadian oscillator alters WUE partially by changing rosette architecture. (A) Altering circadian-associated gene expression can affect rosette architecture and size, as illustrated for elf3-1, lux-1, and gi-2 in the Col-0 background. Image backgrounds removed.
for clarity. Variation in rosette leaf surface area across the genotypes investigated explained
(B) 16% of variation in WUE ($p < 0.001$, $r = 0.400$, $r^2 = 0.160$), (C) 83% of variation in
transpiration ($p < 0.001$, $r = 0.912$, $r^2 = 0.832$) and (D) 73% of variation in rosette dry
biomass ($p < 0.001$, $r = 0.857$, $r^2 = 0.734$). Data were analysed using Pearson correlation
tests.
Figure 4. Long-term WUE can be altered by misexpression of circadian oscillator genes within stomatal guard cells. (A) Constructs used to overexpress CCA1 or TOC1 coding sequence under control of GC1 or MYB60 promoters. (B) Guard cell CCA1 overexpression can increase WUE. WUE expressed as absolute WUE and percentage of the wild type.
(normalised to wild type as 100%, red reference line). Two to four independent experimental repeats were performed, with data from one representative dataset shown ($n = 5 - 15$). Data were analysed with independent samples t-tests, with statistical significance compared to Col-0 indicated by asterisks (** $= p < 0.01$; *** $= p < 0.001$). (C, D) Guard cell CCA1 or TOC1 overexpression does not affect (C) stomatal index nor (D) stomatal density. Two independent experimental repeats were performed, with data from one representative dataset shown ($n = 19 - 32$; mean ± S.E.M.). Data were analysed with ANOVA and Tukey’s post hoc tests (NS $= p > 0.05$). Bar colours identify the whole plant overexpressor control (black), wild type control (dark grey), and guard cell-specific overexpressor genotypes (light grey).