Editorial: *Fusarium* pathogenesis: Infection mechanisms and disease progression in host plants

Giovanni Beccari¹, Guixia Hao²* and Huiquan Liu³

¹Department of Agriculture, Food and Environmental Sciences, University of Perugia, Perugia, Italy, ²Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Peoria, IL, United States, ³State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China

**KEYWORDS**

Fusarium, virulence, effectors, host defense, host-pathogen interaction

*Fusarium* is one of the most important fungal plant pathogens, which cause severe diseases on numerous crops (Leslie and Summerell, 2013). The diseases reduce crop yield, thereby resulting in economic losses (Nganje et al., 2004; Viljoen et al., 2020). In addition, some *Fusarium* spp. can produce mycotoxins that contaminate, in particular, infected grains and pose a threat to human and animal health (Escrivá et al., 2015). *Fusarium* spp. adopt intricate pathways to suppress plant defenses. The pathogens invade the host and colonize it utilizing various infection strategies. In the *Fusarium* genome, in addition to a region responsible for primary metabolism (core genome), there are regions responsible for pathogen virulence (adaptive genome) (Ma et al., 2013). The understanding of the mechanisms that *Fusarium* uses to overcome host defenses will provide novel targets to control diseases. Therefore, this Research Topic aimed to highlight the recent works on key species of *Fusarium* and their interactions with hosts. This Research Topic attracted 16 manuscripts, of which 8 were accepted and published. The articles cover important outcomes of *Fusarium* pathogenesis, and some key aspects are summarized below.
Host responses to *Fusarium* infection could also be affected by input made by farmers during cultivation. For example, *Fusarium* wilt of banana (FWB) may be exacerbated by nitrogen (N) fertilizers that are routinely applied during banana cultivation (Segura-Mena et al., 2021). To better understand this effect of N, the contribution of Orr et al. indicates that the host defenses to FWB were influenced by the application of N, particularly in the form of ammonium. The authors revealed that levels of N applied changed the expression of host metabolic pathways that are related to stress response signaling. For instance, a negative correlation between pathogenesis-related protein 1, a well-known marker for biotic stress response, and the rate of ammonium fertilizer was reported by the authors.

Reactive oxygen species (ROS) production is an initial defense reaction during plant-pathogen interactions. Nevertheless, the roles of ROS during the progress of *Fusarium* Head Blight (FHB) of cereals remain unclear. For this reason, the paper of Hao et al. investigated immune responses in wheat triggered by chitin, a major component of fungal cell walls. In wheat rachises and rachis nodes, which are critical barriers for FHB spread in wheat, ROS were induced by chitin. In addition, the authors described that different defense gene expressions occurred in rachis nodes and wheat heads treated with chitin or infected with *Fusarium graminearum*, the most important causal agent of FHB. These results highlight wheat tissue-specific immune responses triggered by chitin.

An environmentally friendly approach to decrease the risk of yield losses and mycotoxin contamination is to use wheat cultivars with stable resistance to FHB. In this context, Yan et al. evaluated FHB resistance in more than 400 wheat lines with natural infection in different locations. Cultivation area and variety had an important influence on FHB and mycotoxins accumulation. Considering climatic elements, rainfall and relative humidity were key factors linked with FHB severity.

Some *Fusarium* spp. can co-occur with other fungal pathogens in host tissue. This is the case of *Fusarium pseudograminearum* and *Rhizoctonia cerealis*, causal agents of *Fusarium* crown rot (FCR) and sharp eyespot of common wheat, respectively. Up to date, there has been no information on the resistance of wheat against these two pathogens. In the contribution of Qi et al., TaWAK-6D, a wall-associated kinase (WAK) encoded by a gene located on chromosome 6D, was identified as able to confer resistance to both *F. pseudograminearum* and *R. cerealis* infection.

In conclusion, the collection of articles on this Research Topic shows the dense network of relationships that occur during *Fusarium*-plant interactions. The collected contributions have highlighted the key factors that surely will...
contribute to the control of this important group of plant pathogens.

Author contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Acknowledgments

The editors would like to thank all reviewers who evaluated manuscripts for this Research Topic and Dr. S. Tjamos to edit an article on this Research Topic.

References

Escriva, L., Font, G., and Manyes, L. (2015). In vivo toxicity studies of Fusarium mycotoxins in the last decade: A review. Food Chem. Toxicol. 78, 185–206. doi: 10.1016/j.fct.2015.02.005

Leslie, J. F., and Summerell, B. A. (2013). “An overview of Fusarium”, in Fusarium: Genomics, molecular and cellular biology. Eds. D. W. Brown and R. H. Proctor (Norfolk: Caister Academic Press), 1–9.

Ma, L., Geiser, D. M., Proctor, R. H., Rooney, A. P., O’Donnell, K., Traul, F., et al. (2013). Fusarium pathogenomics. Annu. Rev. Microbiol. 67, 399–416. doi: 10.1146/annurev-micro-092412-155650

Ma, L., van der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M., Di Pietro, A., et al. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464, 367–373. doi: 10.1038/nature08850

Nganje, W. E., Bangsund, D. A., Leistritz, F. L., Wilson, W. W., and Tiapo, N. M. (2004). Regional economic impacts of Fusarium head blight in wheat and barley. Rev. Agric. Econ. 26, 332–347. doi: 10.1111/j.1467-9353.2004.00183.x

Niu, X., Yang, G., Lin, H., Liu, Y., Li, P., and Zheng, A. (2021). A novel small cysteine-rich effector, RsSCR10 in Rhizoctonia solani is sufficient to trigger plant cell death. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.684923

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References