In a recent issue of *EHP* Zhang and Pan (2009) reported on the effects of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on the differential expression of microRNAs (miRNAs) in brain and liver of B6C3F1 mice. It is always of interest when new technologies are applied to existing toxicologic problems, with a view to increasing our understanding of the effect on, or risk to, humans. However, in the abstract of their article originally published online (but deleted from the final version), Zhang and Pan (2009) concluded that “environmental toxicant exposure alters the expression of a suite of miRNAs that in turn regulates gene expression which may lead to carcinogenesis, developmental, neuronal, and reproductive toxicity”; they reached this conclusion in the absence of any observations for dose response, clinical chemistry, histopathology, or neurotoxicity. Because their results do not support these conclusions, we felt a response was warranted.

Zhang and Pan (2009) exposed B6C3F1 female mice to RDX in food. The mouse chow was sprayed with a solution of acetone-dissolved RDX and allowed to dry; this resulted in a formulation chow containing 5 mg RDX/kg of food. At this dose of RDX, we estimated that the mice received approximately 0.75–1.5 mg/kg body weight/day, based on mouse food consumption of 3–6 g/day and an average body weight of 20 g. To put this dose in perspective, the 2-year cancer study on which RDX risk assessment was based (Lish et al. 1984) used oral doses of 0, 1.5, 7.0, 35, and 175 mg RDX/kg/day in the same mouse strain, with statistically significant cancer burdens found only in the 35-mg/kg dose group. The dose used by Zhang and Pan in their 1-month study was therefore less than the lowest dose in the 2-year mouse cancer study and over 20 times lower than the only dose of RDX associated with cancer. Furthermore, given that only a fraction of the exposed animals developed cancer at the 35-mg/kg dose in the 2-year study (Lish et al. 1984), we wonder how let-7 and other miRNAs used by Zhang and Pan (2009) identify which animals could potentially get cancer at a higher dose (i.e., susceptibility), or whether all animals could develop cancer even at this low dose (i.e., overprediction).

At high oral exposures, RDX causes tonic–clonic seizure, an effect that has been well correlated with internal dose (blood RDX was not measured in Zhang and Pan’s study). The mode of action of RDX is thought to be direct because seizures can occur within minutes of dosing. Zhang and Pan (2009) reported that brain derived miRNA 206 was increased 26-fold and brain-derived neurotrophic factor (BDNF) was computationally identified as a downstream target, with the direction of change presumably inhibitory on BDNF. Current literature shows that BDNF is actually up-regulated in response to seizure-inducing agents, such as kainite (Revuelta et al. 2005) and domoic acid (Doucette et al. 2004). Whether other presumed targets of miRNA would be up-regulated is not known, making verification of miRNA targets (miRNA) critical in the validation of this kind of study. Although miRNAs have been used extensively to examine the profiles of small RNAs in distinct phenotypes such as cancer, their significance as predictors of toxic insult or disease has not been demonstrated. The field of miRNAs is burgeoning with publications (1,738 in 2008), many of which involve the retrospective examination of diseased tissue (tumors) for changes in the expression of miRNA species. Prospective work relating chemical exposure to changes in miRNA as predictors of imminent disease has been less successful, and a study of dioxin found miRNAs refractive (Moffat et al. 2007). More important, some reviews (Kozak 2008) caution against overinterpretation of miRNA data, especially without verification of downstream targets.

It has been said that “a difference, to be a difference, should make a difference.” We found it difficult to assess the biological significance of the suite of differentially regulated miRNAs and their computational targets culled from the study of Zhang and Pan (2009); although these miRNAs could be associated with exposure to RDX, they do not seem related to disease. In our opinion, Zhang and Pan’s results fall short of their experimental hypothesis that exposure to specific environmental agents, such as RDX, would cause alteration in miRNA expression and that “the altered miRNA expression contributes to carcinogenesis.” For innovative work of this kind, a solid model of exposure–disease is always a good starting point, coupled with the classical toxicology stalwarts of dose response and positive/negative controls, and of course, verification of putative targets. Here, we feel that poor study design, absence of phenotype, and overinterpretation of data significantly weakened a potentially informative body of work.
is associated with a broad range of cancers (Zhang et al. 2007). Meanwhile, we also discussed the potential anticancer effects of RDX in our article. Results in our Figure 6 indicate that RDX exposure induced miR-206 expression, which may inhibit expression of TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase). The inhibition of TNKS causes telomere shortening and apoptosis, which inhibits carcinogenesis, and has thus been proposed as a potential cancer therapy (Seimiya 2006). Thereby, the miR-206 overexpression induced by RDX may provide a mechanism to prevent carcinogenesis.

Animals are more sensitive to chemical exposure at the gene level than at the physiologic level, and gene expression profile is a more powerful predictor of the outcome of disease than standard systems based on clinical and histologic criteria (van de Vijver et al. 2002). However, aberrant gene expression may or may not cause carcinogenesis. Cancer pathogenesis is a complex process associated with aberrant expression of many genes. Recently, microRNAs (miRNAs) play critical roles in cancer development; overexpression or down-regulation of a single miRNA could influence cancer cell growth, invasion, and metastasis (Ma et al. 2007; Takamizawa et al. 2004). Also, more and more evidence demonstrates that environmental carcinogens cause aberrant expression of a suite of miRNAs. For example, Kalscheuer et al. (2008) recently demonstrated the differential expression of miRNAs in early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen NNK (4-(methylamino)-1-(3-pyridyl)-1-butanone). Thus, carcinogen-induced aberrant expression of miRNAs may be associated with carcinogenesis.

Brain-derived neurotrophic factor (BDNF) is targeted by multiple miRNAs. Besides miR-206, two experimentally validated BDNF-targeting miRNAs, miR-30a and miR-195 (Mellios et al. 2008), were also significantly up-regulated in mouse brain and miR-1, which regulates signal transduction at neuromuscular junctions (Simon et al. 2008)—was significantly up-expressed in our study. Therefore, elucidating the role of miR-206 in RDX-related neurotoxicity is an enormous project.

The authors declare they have no competing financial interests.

Baohong Zhang
Department of Biology
East Carolina University
Greenville, North Carolina
E-mail: zhangbh@ecu.edu

Xiaoping Pan
Department of Chemistry
Western Illinois University
Macomb, Illinois

REFERENCES

Binder DK, Croll SD, Gall DM, Scharfman HE. 2001. BDNF and epilepsy: too much of a good thing? Trends Neurosci 24:47–53.
Burdette LJ, Cook LL, Dyer RS. 1988. Convulsant properties of cyclotrimethylenetrinitramine (RDX); spontaneous audiogenic, and amygdaloid kindled seizure activity. Toxicol Appl Pharmacol 92:426–444.
Fattori V, Abe DI, Kobayashi K, Costa LG, Tsuji R. 2008. Effects of postnatal ethanol exposure on neurotrophic factors and signal transduction pathways in rat brain. J Appl Toxicol 28:370–376.
Kalscheuer S, Zhang X, Zeng Y, Upadhyaya P. 2008. Differential expression of microRNAs in early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen 4-(methylamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 29:2394–2399.
Lish FM, Levine BS, Furedi-Machacek EM, Sagert EM, Rac YS. 1984. Determination of the Chronic Mammalian Toxicological Effects of RDX: Twenty-Four Month Chronic Toxicology/carcinogenicity Study of Hexahydritol, 1,3,5-triazine (RDX) in the B6C3F1 Hybrid Mouse. AD A01774.
Chicago, U.S. Army Medical Research and Development Command.
Ma L, Tenya-Feldstein J, Weinberg RA. 2007. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688.
Mattson MP. 2007. Excitotoxins. In: Encyclopedia of Stress (Fink G, ed). New York:Academic Press, 975–982.
Mellios N, Huang H-S, Grigorenko A, Rogasev E, Akbarian S. 2008. A set of differentially expressed miRNAs, including miR-206-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 17:3302–3304.
Nawa H, Carnahan J, Gall C. 1995. BDNF protein measured by a novel enzyme immunoassay in normal brain and after seizure: partial disappearance with miRNA levels. Eur J Neurosci 7:1527–1535.
Sathyan P, Golden HB, Miranda RC. 2007. Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci 27:8546–8557.
Schneider NR, Bradley SL, Anderson ME. 1978. The distribution and metabolism of cyclotrimethylenetrinitramine (RDX) in the rat after subchronic administration. Toxicol Appl Pharmacol 46:163–171.
Seimiya H. 2006. The telomeric FARP, tankyrases, as targets for cancer therapy. Br J Cancer 94:341–345.
Shetty AK, Zaman V, Shetty GA. 2003. Hippocampal neurotrophi levels in a kainate model of temporal lobe epilepsy: a lack of correlation between brain-derived neurotrophic factor content and progression of aberrant dentate mossy fiber sprouting. J Neurochem 87:147–159.
Simon DJ, Madison JM, Conery AL, Thompson-Peer KL, Soskis M, Ruvkun GB, et al. 2008. The MicroRNA mir-1 regulates a MEF-2-dependent retrograde signal at neuronal-muscular junctions. Cell 132:903–915.
Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endo H, et al. 2004. Reduced expression of the let-7 miRNAs in lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756.
van de Vijver MJ, He YD, van ’t Veer LJ, Dai H, Hart AAM, Voskuil DW, et al. 2002. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009.
Viberg H, Mundy W, Eriksson P. 2008. Neonatal exposure to decabrominated diphenyl ether (PBDE209) results in changes in BDNF, CaM/kin and GAP-43, biochemical substrates of neuronal survival, growth, and synaptogenesis. Neurotoxicology 29:152–159.
Zhang B, Pan X. 2009. RDX induces aberrant expression of microRNAs in mouse brain and liver. Environ Health Perspect 117:231–240.
Zhang BH, Pan XP, Cobb GP, Anderson TA. 2007. microRNAs as oncogenes and tumor suppressors. Dev Biol 310:1–2.

Don’t Flush the Yuck Factor
doi:10.1289/ehp.0800542

I enjoyed Charles Schmidt’s original and informative article on the “Yuck Factor” (Schmidt 2008). This phenomenon has come into play in my attempts to decide on whether to purchase a low-flow toilet for my home. My city is currently offering rebates on low-flow toilets, but only on the least consumptive models (1.6 gallons per flush). I have read on web sites and heard from friends that these models do not quite do the job. The details are important to me. If it is a question of not flushing gobs of toilet paper down, I can deal with that. But if these toilets leave stains on (or product in) the bowl, my family will not be happy. My discussions with city officials and friends who have installed these toilets invariably break down when I press for details. The “Yuck Factor” reigns supreme. The end result may be that I do not purchase a low-flow toilet.

John Manuel
Freelance Writer
Durham, North Carolina
E-mail: john.manuel@gte.net

REFERENCE

Schmidt CW. 2008. The yuck factor: when disgust meets command. Environ Health Perspect 116:4524–4527.

Don’t Flush the Yuck Factor