Gravothermal oscillations in multicomponent models of star clusters

Philip G. Breen* and Douglas C. Heggie*

School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JZ

Accepted 2012 July 9. Received 2012 July 6; in original form 2012 May 21

ABSTRACT
In this paper, gravothermal oscillations are investigated in multicomponent star clusters which have power-law initial mass functions (IMFs). For the power-law IMFs, the minimum masses \( m_{\text{min}} \) were fixed and three different maximum stellar masses \( m_{\text{max}} \) were used along with different power-law exponents \( \alpha \) ranging from 0 to \(-2.35\) (Salpeter). The critical number of stars at which gravothermal oscillations first appear with increasing \( N \) was found using the multicomponent gas code SPEDI. The total mass \( M_{\text{tot}} \) is seen to give an approximate stability condition for power-law IMFs with fixed values of \( m_{\text{max}} \) and \( m_{\text{min}} \) independent of \( \alpha \). The value \( M_{\text{crit}}/m_{\text{max}} \approx 12000 \) is shown to give an approximate stability condition which is also independent of \( m_{\text{max}} \), though the critical value is somewhat higher for the steepest IMF that was studied. For appropriately chosen cases, direct \( N \)-body runs were carried out in order to check the results obtained from SPEDI. Finally, evidence of the gravothermal nature of the oscillations found in the \( N \)-body runs is presented.

Key words: methods: numerical – globular clusters: general.

1 INTRODUCTION
The condition for the onset of gravothermal oscillations is best understood for the case of one-component star clusters, clusters consisting of stars of equal mass. Goodman (1987) found that gravothermal oscillations first appear when the number of stars \( N \) is greater than 7000. This condition has also been confirmed with Fokker–Planck calculations (Cohn, Hut & Wise 1989) and by direct \( N \)-body simulations (Makino 1996). However, the multicomponent case is more complicated. This is due to the fact that the presence of several components introduces new dynamical processes into the system, and several additional parameters in addition to \( N \).

Even for the two-component case, which is the simplest kind of mass spectrum, the condition for the onset of gravothermal oscillations is not so simple. Two-component models can be subdivided into Spitzer stable and Spitzer unstable cases depending on whether or not the two components can achieve equipartition of kinetic energy during core collapse (Spitzer 1987). Kim, Lee & Goodman (1998) studied a range of Spitzer stable two-component models. Their research supported the applicability of the Goodman stability parameter \( \epsilon \) (see Goodman 1993) as a stability criterion. Breen & Heggie (2012), whose research focused on the more general Spitzer unstable two-component case, indicated that the occurrence of gravothermal instability depends approximately on the number of stars in the heavier component. Breen & Heggie (2012) also found that the critical value of \( \epsilon \) depended on the parameters of the mass function (e.g. stellar mass ratio). However, by using a slightly modified version of \( \epsilon \), one with a modified definition of the half-mass relaxation time, they found a nearly constant critical value.

Murphy, Cohn & Hut (1990) found that the post-collapse evolution of multicomponent models was stable to much higher values of \( N \) than in one-component models and that the value of \( N \) at which gravothermal oscillations appeared varied with different mass functions. They studied seven-component systems constructed to approximate evolved power-law initial mass functions (IMFs) with masses ranging from 0.1 to 1.2 \( M_\odot \). The power-law exponent that they considered ranged from \(-2\) to \(-4.5\). They found that gravothermal oscillations appeared when the total mass of the system \( M_{\text{tot}} \) was of the order of \( 8 \times 10^5 M_\odot \) (see Murphy et al. 1990, fig. 6) and that the critical value of \( M_{\text{crit}} \) increased with decreasing power-law exponent. They suggested that the appearance of oscillations depends on the number of heavier stars. However, this leads to the problem that in a multicomponent system it is not clear what the definition of a heavy star should be (this point is discussed in Section 2).

The main aim of this paper is to provide a theoretical understanding of the onset of gravothermal oscillations in multicomponent systems. As this paper follows on from the research of Breen & Heggie (2012), it is worthwhile attempting to extend the concepts developed in that paper to the multicomponent case. Although two-component systems may be realistic approximations of multicomponent systems (Kim & Lee 1997), it is best to have a better understanding of gravothermal oscillations in multicomponent systems as real globular clusters contain a continuous mass spectrum. What is of particular importance is the effect of varying the maximum stellar mass \( m_{\text{max}} \) on the onset of instability as this was not studied by Murphy et al. (1990).
Table 1. Critical value of $N$ ($N_{\text{crit}}$) in units of $10^4$. The values of $N_{\text{crit}}$ in brackets were obtained using five-component models, while all other values were obtained using 10-component models. The value of $N_{\text{crit}}$ for the case $\alpha = −2.35$ and extreme masses ($3, 0.1$) could not be obtained with a 10-component model due to numerical difficulties.

| $(m_{\text{max}}, m_{\text{min}})$ | $\alpha$ | $0$ | $−0.65$ | $−1.3$ | $−1.65$ | $−2.0$ | $−2.35$ |
|-------------------------------|---------|-----|--------|-------|-------|-------|-------|
| (3.0, 1)                      | 2.0     | 2.8 | 5.2    | 8.0   | 12.0  | −     | (10.0) |
| (2.0, 1)                      | 2.0     | 2.6 | 4.5    | 7.0   | 8.0   | 10.0  | (10.0) |
| (1.0, 1)                      | 2.0     | 2.5 | 3.5    | 4.5   | 6.0   | 8.0   |        |

The rest of this paper is structured as follows. In Section 2, we state the results concerning gravothermal oscillations in gaseous models. This section also contains subsections on the Goodman stability parameter and a variant which used a modified relaxation time-scale. This is followed by Section 3 in which the results of $N$-body simulations are given. Finally, Section 4 consists of the conclusion and discussion.

2 CRITICAL VALUE OF $N$

2.1 Results of gaseous models

In all cases, the initial conditions used were realizations of the Plummer model (Plummer 1911; Heggie & Hut 2003). The initial velocity dispersion of all components and the initial ratio of density of all components were equal at all locations. The initial conditions were constructed in order to approximate a continuous power-law IMF with different exponents $\alpha = −0.0, −0.65, −1.3, −1.65, −2.00$ and $−2.35$. The multicomponent gas code Spedi was used for all gaseous models in this paper. The power-law IMFs were approximated by dividing the complete mass range into equal logarithmic steps. Alternative methods of discretization were also tried for certain cases in order to confirm the validity of the results, such as approximating the IMF using equal total masses in each of the components. The ranges of stellar masses $(m_{\text{max}}, m_{\text{min}})$ used in this paper are (1.0, 0.1), (2.0, 0.1) and (3.0, 0.1). The reason why higher values of $m_{\text{max}}$ were not used is that it is customary to suppose that a cluster would be largely depleted in heavier stars by the time gravothermal oscillations manifest (Kim et al. 1998). In Section 4, however, we briefly discuss a possible exception.

The critical value of $N$ ($N_{\text{crit}}$) at which oscillations in the central density ($\rho_c$) first appeared (as $N$ increased) was determined (correct to 10 per cent). The obtained values of $N_{\text{crit}}$ in units of $10^4$ are given in Table 1.

2.2 Interpretation of results

Guided by the results of Murphy et al. (1990), we first consider the values of $M_{\text{crit}}$ at $N_{\text{crit}}$ ($M_{\text{crit}}$). The values of $M_{\text{crit}}$, for the models considered in this paper, are given in Table 2. The values of $M_{\text{crit}}$ in Table 2 are approximately the same for fixed $m_{\text{max}}$ and the values vary much less with $\alpha$ than $N_{\text{crit}}$. Thus the conclusion of Murphy et al. (1990), who considered only evolved IMFs with fixed $m_{\text{max}}$, appears also to apply to pure power-law IMFs with fixed $m_{\text{max}}$. What has been added in the study in this paper is that the value of $M_{\text{crit}}$ also has a strong dependence on $m_{\text{max}}$. We can compare the dependence on $m_{\text{max}}$ in Table 2 with the results of the two-component models of Breen & Heggie (2012) if we fix the stellar mass of the light component in that earlier paper. This is done in Appendix A (see Table A2). In Table A2 there is a clear trend of increasing $M_{\text{crit}}$ with increased stellar mass of the heavy component for fixed total mass ratio (i.e. moving up through one column of Table A2). Therefore the trend of increasing $M_{\text{crit}}$ with increasing stellar mass range (or stellar mass ratio), for fixed $m_{\text{max}}$, seems to be a common feature of multicomponent systems. It is also worth noting that for two-component systems with fixed stellar mass ratio (see Appendix A, Table A2, where we consider values along a given row), there is a trend of increasing $M_{\text{crit}}$ with decreasing total mass ratio. As decreasing total mass ratio for two-component systems is the analogue of decreasing $\alpha$, these systems have the same stability trends as the multicomponent systems in Table 2. Now we will attempt to extend the interpretation of Breen & Heggie (2012) from two-component to multicomponent models in a way which also accounts for the dependence on $m_{\text{max}}$.

Breen & Heggie (2012) first argued that for the two-component case, the dynamics of the system were dominated by the heavier component. The reasoning behind this emphasis on $N_2$ is that the heavier component concentrates within the central region where it behaves like a one-component system deep in the potential well of the low-mass stars, and it can exhibit gravothermal instability like the central part of a one-component system. Breen & Heggie (2012) showed that $N_2$, the number of heavy stars, does indeed provide an approximate criterion for the onset of instability, and found the critical value of $N_2$ to be of the order of 2000. For the case of multicomponent models, however, it is unclear if and how the system can be divided into a heavy and a light component. Nonetheless, it may still be expected that the heavier stars may be more important to the dynamics of the system and to the onset of gravothermal oscillations.

Breen & Heggie (2012) then gave an alternative measure of the importance of the heavy component, in terms of what they called the ‘effective’ number of heavy stars, and this is a concept that is more readily adapted to the case of several components. Breen & Heggie (2012) argued that, as the light component acts as a kind of container for the heavy component, it was the overall mass of this container (i.e. the total mass in the light component) that was the important factor and not the stellar mass of the light component.

Therefore it could be replaced by an equal mass of stars of the massive component, giving rise to the idea of the effective number

\[ M_{\text{crit}} = \frac{M_{\text{crit}}(m_{\text{max}}, m_{\text{min}})}{\alpha} \]

| $(m_{\text{max}}, m_{\text{min}})$, $\alpha$ | $0$ | $−0.65$ | $−1.3$ | $−1.65$ | $−2.00$ | $−2.35$ |
|-------------------------------|-----|--------|-------|-------|-------|-------|
| (3.0, 1)                      | 3.1 | 3.1    | 3.4   | 3.8   | 4.2   | (4.3) |
| (2.0, 1)                      | 2.1 | 2.0    | 2.3   | 2.8   | 2.5   | 2.6   |
| (1.0, 1)                      | 1.1 | 1.1    | 1.2   | 1.3   | 1.5   | 1.8   |

\[ N_0(1, 0.1) = 10.0; \quad N_0(2, 0.1) = 15.7 \]

\[ N_0(3, 0.1) = 20.0 \]

Note that, in this picture, the gravothermal instability of the system is essentially confined to the massive stars; it is in the centrally concentrated massive stars that the temperature inversions occur which drive the expansion phase of the gravothermal oscillations. Around $N = N_{\text{crit}}$, the light stars always exhibit a normal temperature gradient, and if their heat capacity is negative this does not lead to instability.
of stars $N_{th}$. This was defined as follows:

$$N_{th} = \frac{M_1 + M_2}{m_2}. \quad (1)$$

They also defined a modified half-mass relaxation time-scale ($t_{th}$) by using $N_{th}$ in place of $N$ in the standard formula for the half-mass relaxation time. They used this effective relaxation time to modify and improve upon a stability criterion suggested by Goodman (1993); see Section 2.3 of this paper. It is worth pointing out that $N_{th}$ itself can be used as an approximate stability condition for the two-component models of Breen & Heggie (2012) (see Appendix A). It is this form of condition for the stability of two-component systems which we shall attempt to generalize to multicomponent systems.

Again it is not immediately clear what the most appropriate extension of $N_{th}$ to the multicomponent case should be, as the appropriate definition of heavy stars is not clear. However, the result is much less sensitive to our choice than the number of heavy stars, $N_2$. One simple approximate way to define a heavy star in this context is simply any star with a stellar mass of $\approx m_{max}$. This would lead to the definition of $N_{th}$ as $M_{th}/m_{max}$ for the multicomponent model and no change in the definition for a two-component model (equation 1). This value is given in Table 3, for the multicomponent models considered in this paper. We find that there is much less variation among the critical values of $N_{th}$ than for $M_{th}$, especially for varying $m_{max}$. Nevertheless, the same trend of increasing $M_{th}$ with decreasing $\alpha$ as seen in Table 2 is still present in Table 3 in the form of increasing $N_{th}$.

Now we will discuss a possible explanation for the increase in the critical value of $N_{th}$ with decreasing $\alpha$ in Table 3. The idea behind $N_{th}$ is that a multicomponent system behaves in approximately the same way as a single-component system consisting of $N_{th}$ stars of stellar mass $m_{max}$. As systems with higher $\alpha$ have more stars with stellar mass $\approx m_{max}$ than systems with lower $\alpha$, we may expect that the approximation with the one-component system is better for higher $\alpha$ than for lower $\alpha$. Therefore, it is not surprising that in Table 3 it is the systems with $\alpha = 0$ that have the closest critical values of $N_{th}$ to the critical value of $N$ for a one-component system, i.e. about 7000.

We can take our discussion further by considering systems with fixed $N_{th}$. For systems with fixed $N_{th}$, as $\alpha$ decreases there is an increasing number of light stars (stars with stellar mass not $\approx m_{max}$). As the number of light stars increases and the number of heavy stars decreases the two-body relaxation time increases, as it becomes increasingly dominated by the light component. According to Hénon’s principle (Hénon 1975) the rate of energy generation in the system is regulated by two-body relaxation, and therefore there is a lower rate of energy generation as $\alpha$ decreases. Regardless of the value of $\alpha$, the average mass in the core is approximately $m_{max}$, and the lower rate of energy generation can be met by a core of lower density. Thus for lower $\alpha$ there is a smaller density contrast between the core and the mean density in the system. This would imply that the stability would increase with decreasing $\alpha$, as we indeed see.

2.3 Goodman stability parameter

Goodman (1993) suggested the use of the quantity

$$\epsilon \equiv \frac{E_{int}/t_{rh}}{E_{c}/t_{rh}} \quad (2)$$

as a stability indicator, where $\log_{10} \epsilon \sim -2$ is the stability limit below which the cluster becomes unstable. Here $E_{int}$ is the total energy, $E_{c}$ is the energy of the core, $t_{c}$ is the core relaxation time and $t_{rh}$ is the half-mass relaxation time. A condition of this type has been supported for two-component models by Kim et al. (1998) who studied Spitzer stable models using a Fokker–Planck code and by Breen & Heggie (2012) who studied Spitzer unstable models using a gas code. However, Breen & Heggie (2012) also introduced a modified definition of $\epsilon$ (see below) because the definition given in equation (2) was found to yield a critical value which varied with total mass ratio and stellar mass ratio. Also, the critical value at which the instability appears is somewhat different in Breen & Heggie (2012) from that in Kim et al. (1998).

For the multicomponent models studied in this paper, the values of $\log_{10} \epsilon$ are given in Table 4. The values of $\log_{10} \epsilon$ (based on the original definition, i.e. equation 2) range from $-2.26$ to $-2.56$ and there is a decreasing trend with decreasing $\alpha$.

In equation (2), $t_{c}$ and $t_{rh}$ are defined by

$$t_{c} = \frac{0.34\bar{\sigma}_{c}^{3}}{G^{2}m_{c}\rho_{c} \ln \Lambda} \quad (3)$$

and

$$t_{rh} = \frac{0.138N^{1/2}r_{h}^{3/2}}{(G\bar{m})^{1/2} \ln \Lambda}, \quad (4)$$

where $\bar{m}_{c}$ and $\bar{\sigma}_{c}$ are the mass density weighted averages over all the components in the core. However, the definition of $t_{rh}$ does not take into account the mass spectrum. Breen & Heggie (2012) have shown that for two-component models, modifying the definition of $t_{rh}$ to take into account the mass spectrum leads to an improved stability condition. As has already been shown in Section 2.1, we can construct a value of $N_{th}$ which provides an approximate stability condition. Now we will use this value to define a new half-mass relaxation time defined as

$$t_{th} = \frac{0.138N^{1/2}r_{h}^{3/2}}{(Gm_{max})^{1/2} \ln \Lambda}. \quad (5)$$

We use this in place of $t_{rh}$ in equation (2) to define the new stability parameter $\epsilon_{2}$ as in Breen & Heggie (2012). The values of this parameter are given in Table 5. The variation of $\log_{10} \epsilon_{2}$ in Table 5 is of comparable magnitude to the variation of $\log_{10} \epsilon$ in Table 4.

| Table 3. Critical value of $N_{th}$ in units of $10^{4}$.               |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $(m_{max}, m_{min}) \alpha$ | 0               | $-0.65$         | $-1.3$          | $-1.65$         | $-2.00$         | $-2.35$         |
| (3.0, 1)        | 1.1             | 1.0             | 1.1             | 1.3             | 1.4             | (1.4)           |
| (2.0, 1)        | 1.1             | 1.0             | 1.2             | 1.3             | 1.3             | 1.3             |
| (1.0, 1)        | 1.1             | 1.1             | 1.2             | 1.3             | 1.5             | 1.8             |

© 2012 The Authors, MNRAS 425, 2493–2500

Monthly Notices of the Royal Astronomical Society © 2012 RAS
but the values in Table 5 are more consistent with that of a one-component model ($\log_{10} \epsilon = \log_{10} \epsilon_2 = -2$) than those in Table 4.

For the one-component model the definitions of $\epsilon$ and $\epsilon_2$ are identical. Also, it is worth noting that, for two-component systems with extremely small amounts of the heavy component (relative to $M_{\text{tot}}$, $t_{\text{cf, in}}$) as defined in equation (5) is not a suitable approximation to the relaxation time. This is the case for the models considered by Kim et al. (1998), and so the extension to $\epsilon_2$ would not have been necessary or useful in the context of their paper.

The logarithm of the Goodman stability parameter (or our somewhat more consistent modified version) seems to have a particular value approximately $-2$ at the stability boundary (Kim et al. 1998, Breen & Heggie 2012 and this paper). However, it is not known if $\epsilon$ (or $\epsilon_2$) can be predicted for a particular IMF without carrying out numerical simulations, which limits its usefulness. In contrast, $N_{\text{cf}}$ has the advantage that it can be easily calculated before carrying out numerical simulations, and also provides an approximate indication of the stability boundary.

### 3 DIRECT N-BODY SIMULATIONS

In order to validate the results obtained from the gas code SPEDI a series of N-body runs were carried out. The direct N-body simulations in this paper were conducted using the NBODY6 code (Aarseth 2003; Nitadori & Aarseth 2012). As the IMF's with $\alpha = 0$ in Table 1 have the lowest values of $N_{\text{crit}}$ ($2.0 \times 10^4$), for this value of $\alpha$ N-body runs were carried out for the mass ranges (1, 0.1) and (2, 0.1). The case with parameters $\alpha = -1.3$ and $(m_{\text{max}}, m_{\text{min}}) = (1.0, 0.1)$ was also chosen because it has a higher value of $N_{\text{crit}}$ ($3.5 \times 10^4$) than for $\alpha = 0$, although the value is still low enough to make it suitable for direct N-body simulations.

For the case of $\alpha = 0.0$, the values of $N_{\text{crit}}$ are the same (see Table 1) regardless of the stellar mass range. For the two mass ranges chosen, there were no signs of gravothermal behaviour in the N-body runs with $N = 8k$ or $N = 16k$. The first clear sign of gravothermal behaviour occurs with $N = 32k$ for both chosen mass ranges. For the stellar mass range (1.0, 0.1), the three panels of Fig. 1 show, respectively, (i) the evolution of the core radius $r_c$, (ii) an example of a single cycle of gravothermal oscillation in the post-collapse evolution and (iii) evidence of the gravothermal nature of the oscillation for the 32k run. The same graphs for the 32k run with stellar mass range (2.0, 0.1) are given in Fig. 2.

For the case $\alpha = -1.3$ and stellar mass range (1.0, 0.1), the value of $N_{\text{crit}}$ is $3.5 \times 10^4$ (see Table 1). No gravothermal behaviour was seen in the N-body runs with $N = 8k$, 12k and 32k for this set of conditions. The first signs of gravothermal behaviour occurred in the 64k run as would be expected from the above value of $N_{\text{crit}}$ obtained from SPEDI. The same three graphs shown for both the $\alpha = 0.0$ cases (see previous paragraph) are plotted for the 64k run in Fig. 3.

In the graphs of $r_c$ for all cases (see top panels of Figs 1–3), behaviour can be seen which is qualitatively similar to gravothermal oscillations (see Takahashi & Inagaki 1991; Makino 1996; Heggie & Giersz 2009; Breen & Heggie 2012). For the case of $\alpha = 0.0$ with the mass range (1.0, 0.1) (Fig. 1, top panel) one oscillation can be seen between 3830 and 4570, and part of an oscillation can also be observed after 6800 and 7950, and part of an oscillation can also be observed after 8610. In this model the change in $r_c$ is about a factor of 10. Finally, for the case of $\alpha = -1.3$ with the mass range (1.0, 0.1) (Fig. 3, top panel) an oscillation in $r_c$ can be seen between 4800 and 5600, and part of an oscillation can also be observed after 7400. The change in $r_c$ is about a factor of 10, which is similar to the change in $r_c$ for the $\alpha = -1.3$ runs.

Now we consider the physical nature of these oscillations, which could in principle be driven by sustained binary activity or by...
Gravothermal oscillations

Gravothermal behaviour. A sign of gravothermal behaviour is that the binding energy of the binaries remains roughly constant during times of expansion (McMillan & Engle 1996). This is because the expansion phase of a gravothermal oscillation should be driven by the core absorbing heat from the rest of the cluster rather than by energy generation. At core bounce, where \( \rho_c \) reaches a local maximum, there is an increase in binary activity, and enough energy is produced to halt and reverse the collapse. This behaviour is particularly clear in Fig. 3 (middle panel) where there is an initial increase in relative binding energy of the binaries coinciding with core bounce and the initial expansion. A binary escapes, and then there is a period of expansion during which the relative binding energy of the binaries remains nearly constant (from 4850 to 5000). Towards the end of the oscillation there is renewed binary activity corresponding to the next core bounce. There is also binary activity at other times during the oscillation, but it has no discernible effect on the evolution of \( r_c \). Fig. 1 (middle panel) is also a good example of gravothermal behaviour. Mild binary activity continues after core bounce (from \( t = 3860 \) to 3930) but expansion continues thereafter for a period. However in Fig. 2 evidence of gravothermal behaviour

Figure 2. Same as Fig. 1, with \( N = 32k \) and \( \alpha = 0.0 \), but \((m_{\text{max}}, m_{\text{min}}) = (2.0, 0.1)\). The velocity dispersion has been smoothed to make the cycle clearer.

Figure 3. Same as Fig. 1, with \((m_{\text{max}}, m_{\text{min}}) = (1.0, 0.1)\), but \( N = 64k \) and \( \alpha = -1.3 \). The velocity dispersion has been smoothed to make the cycle clearer.
is more ambiguous. We will discuss the case of Fig. 2 in detail in the last paragraph of this section.

The cycles of $\rho_r$ versus the core velocity dispersion $v_c^2$, as seen in bottom panels of Figs 1–3, are believed to be a sign of gravothermal behaviour (Makino 1996). During these cycles, the temperature is lower during the expansion where heat is absorbed and higher during the collapse where heat is released. The velocity dispersion in Figs 2 and 3 (bottom panels) has been smoothed to make the cycle clearer. These cycles are similar to the cycles found by Makino (1996) for one-component models and by Breen & Heggie (2012) for two-component models.

The gravothermal nature of the behaviour is clearer in Fig. 1 [where $(m_{\max}, m_{\min}) = (1.0, 0.1)$] than in Fig. 2 [where $(m_{\max}, m_{\min}) = (2.0, 0.1)$]. This is perhaps surprising as both cases have the same value of $N_{\text{crit}}$ as found with SPEDI. We will now discuss a number of possible reasons for this apparent difference in behaviour. First, as the values of $N_{\text{crit}}$ are only correct to 10 per cent, it is possible that in reality the values could differ up to $4 \times 10^3$. Secondly, another issue is that in the gas model the mass function is discretized, resulting in a difference between the mass of the heavy component ($m_{10}$) and $m_{\max}$, $m_{10}$ is about 14 per cent less than $m_{\max}$ for the stellar mass range (2.0, 0.1) and 11 per cent for (1.0, 0.1). It is argued in Appendix A that the stability of a system will increase if the average stellar mass inside the core is increased (while keeping the stellar masses outside the core approximately the same). This would imply that in both cases the values of $N_{\text{crit}}$ found with the 10-component models are underestimates for the onset of instability, and that the true value of $N_{\text{crit}}$ for (2.0, 0.1) is slightly higher than for (1.0, 0.1). Finally, the fact that the gravothermal nature of the behaviour is clearer in one run might simply be a stochastic effect.

For the purposes of this paper, we have not considered the evolution of multicomponent systems in the regime $N < N_{\text{crit}}$. In Spitzer unstable cases, there is no reason to doubt that this is characterized by mass segregation, followed by post-collapse expansion powered by binary evolution as in the much smaller $N$-body models considered long ago by van Albada (1967), Aarseth (1968) and many more since.

### 4 SUMMARY AND DISCUSSION

The focus of this paper has been on the conditions for the onset of gravothermal oscillations in multicomponent systems. We have investigated power-law IMFs with different exponents and three different stellar mass ranges (3.0, 0.1), (2.0, 0.1) and (1.0, 0.1). A multicomponent gas code has been used to obtain the values of $N_{\text{crit}}$. In order to verify the validity of the results direct $N$-body runs were carried out on appropriately chosen cases. The values of $N_{\text{crit}}$ found ranged from $2 \times 10^3$ to $10^5$, and varied with $\alpha$ and the stellar mass range.

Motivated by Murphy et al. (1990), who found that the total mass of the systems they studied could be used as an approximate stability condition, the value of $M_{\text{crit}}$ (the total mass of the system at $N_{\text{crit}}$) for each system was calculated (see Table 2). While for a fixed mass range $M_{\text{crit}}$ does provide an approximate stability condition, the value of $M_{\text{crit}}$ varied by roughly a factor $m_{\max}$, $M_{\text{crit}}$ can also be used as an approximate stability condition for the two-component models of Breen & Heggie (2012) so long as the stellar mass ratio is fixed (see Appendix A).

In order to find a more general stability condition we applied an extension of an idea first employed in Breen & Heggie (2012). They used a quantity called the effective particle number ($N_{\text{ef}}$). The value was useful because the two-component system that was being considered was expected to behave in roughly the same manner as a one-component system with $N_{\text{crit}}$ stars. In this paper this idea has been extended to multicomponent systems. The values of $N_{\text{ef}}$ for the multicomponent models in this paper are given in Table 3. The variation in Table 3 is significantly less than that in either Table 1 or Table 2. A stability condition of $N_{\text{ef}} \sim 10^4$ covers most of the values of Table 3 and indeed the two-component models of Breen & Heggie (2012) (see Table A3).

The Goodman stability parameter was also tested for the multicomponent case (see Table 4). The critical values in Table 4 were found to be lower than the value for a one-component model ($\log_{10} \epsilon = -2$) and also varied with $\alpha$ and, to a much lesser extent, with $m_{\max}$. By modifying the Goodman stability parameter using a slightly different definition for the half-mass relaxation time (based on the effective particle number), a critical value was found which was more consistent with the critical value for a one-component model (see Table 5).

Goodman (1987) used a gas model to find the value of $N_{\text{crit}}$ (=7000) for a single-component system. Technically what he showed was that steady post-collapse expansion was possible in a gas model for all $N$, but that it was unstable for $N > 7000$. While the gas model used by Goodman (1987) is similar in form to the model used here and in Breen & Heggie (2012), there are two notable differences. First, Goodman (1987) used a larger energy generation rate than the one used here. Secondly, the parameter of the coulomb logarithm that was used was $\lambda = 0.4$. A value of $\lambda = 0.4$ (Spitzer 1987) was a reasonable choice at the time, but it has since been shown that $\lambda = 0.11$ is a better choice for a single-component model (Giersz & Heggie 1994). [For multicomponent models the value of $\lambda = 0.02$ was found to provide a good fit (Giersz & Heggie 1996)]. These two differences affect the stability in opposite ways: by arguments similar to those given in the last two paragraphs in Appendix A, a larger energy generation rate will increase stability, whereas a larger value of $\lambda$ tends to reduce stability. For example, for $N = 7000$ with $\lambda = 0.4$ the increase in the relaxation rate is 20 per cent compared with $\lambda = 0.11$.

In this paper, we have made the assumption that multicomponent systems will be depleted in stars with stellar mass greater than 3 $M_\odot$. This neglects the possibility of systems containing a population of stellar mass black holes, which would require a value of $m_{\max}$ about an order of magnitude greater than what is considered here. These systems are outside the parameter space studied by Breen & Heggie (2012) and Kim et al. (1998), as the total mass ratio is lower than the range considered by Breen & Heggie (2012) and the stellar mass ratio is higher than the values considered by Kim et al. (1998). The onset of gravothermal oscillations and the more general evolution of systems containing a population of stellar mass black holes are the topics of the next paper in this series.

To conclude, a stability condition of $N_{\text{crit}} \sim 10^4$ does apply to the multicomponent systems in this paper and the two-component systems of Breen & Heggie (2012). This condition is expected to apply to any multicomponent system provided that there is a sufficient number of stars with stellar mass $\sim m_{\max}$.

### ACKNOWLEDGMENTS

We are indebted to S. Aarseth and K. Nitadori for making publicly available their version of SPEDI6 adapted for use with a GPU. We would like to acknowledge support from R. Spurzem for the use of SPEDI and P. Amaro-Seoane for providing us with his version of the code. Our hardware was purchased using a Small Project Grant awarded to DCH and Dr M. Ruffert (School of Mathematics).
by the University of Edinburgh Development Trust, and we are most grateful for it. PGB is funded by the Science and Technology Facilities Council (STFC).

REFERENCES

Aarseth S. J., 1968, Bull. Astron., 3, 150
Aarseth S. J., 2003, Gravitational N-body simulations. Cambridge Univ. Press, Cambridge
Breen P. G., Heggie D. C., 2012, MNRAS, 420, 309
Cohn H., Hut P., Wise M., 1989, ApJ, 342, 814
Giersz M., Heggie D. C., 1994, MNRAS, 268, 257
Giersz M., Heggie D. C., 1996, MNRAS, 279, 1037
Goodman J., 1987, ApJ, 313, 576
Goodman J., 1993, in Djorgovski S. G., Meylan G., eds, ASP Conf. Ser. Vol. 50, Structure and Dynamics of Globular Clusters, Astron. Soc. Pac., San Francisco, p. 87
Heggie D. C., Giersz M., 2009, MNRAS, 397, 46
Heggie D. C., Hut P., 2003, The Gravitational Million Body Problem. Cambridge Univ. Press, Cambridge
Hénon M., 1975, in Hayli A., ed., Proc. IAU Symp. 69, Dynamics of Stellar Systems. Reidel, Dordrecht, p. 133
Kim S. S., Lee H. M., 1997, Publ. Korean Astron. Soc., 30, 115
Kim S. S., Lee H. M., Goodman J., 1998, ApJ, 495, 786
Louis P. D., Spurzem R., 1991, MNRAS, 251, 408
Makino J., 1996, ApJ, 471, 796
McMillan S. L. W., Engle E. A., 1996, in Hut P., Makino J., eds, IAU Symp. 174, Dynamical Evolution of Star Clusters. Kluwer, Boston, p. 379
Murphy B. W., Cohn H. N., Hut P., 1990, MNRAS, 245, 335
Nitadori K., Aarseth S. J., 2012, MNRAS, 424, 545
Plummer H. C., 1911, MNRAS, 71, 460
Spitzer L., 1987, Dynamical Evolution of Globular Clusters. Princeton Univ. Press, Princeton, NJ
Spurzem R., Takahashi K., 1995, MNRAS, 272, 772
Takahashi K., Inagaki S., 1991, PASJ, 43, 589
van Albada T. S., 1967, Bull. Astron., 2, 59

APPENDIX A: THE TWO-COMPONENT CASE REVISITED

The purpose of this appendix is to reconsider the results of Breen & Heggie (2012) in terms of the effective particle number \( N_{\text{ef}} \) defined in equation (1). Breen & Heggie (2012) investigated gravothermal oscillation in a range of two-component models, specified by the stellar mass ratio \( m_1/M_1 \) and total mass ratio \( M_2/M_1 \), where \( M_2 (m_1) \) is the stellar mass of the heavy (light) component and \( M_2 (M_1) \) is the total mass of the heavy (light) component. For reference the values of \( N_{\text{crit}} \) for these models are given in Table A1, which is similar to Table 2 in Breen & Heggie (2012). The difference is that the data have been rearranged to compare more closely to the arrangement in this paper. Thus the columns in Table A1 are arranged in order of decreasing \( M_2/M_1 \) as this is the analog for two components of decreasing \( \alpha \).

Following the approach in the main part of this paper, we will first consider the values of \( M_{\text{crit}} \). In order to consider \( M_{\text{crit}} \) we need to specify the mass unit, and to make the results comparable with the multicomponent models in the main part of this paper \( m_1 \) has been fixed at 0.1 \( M_{\odot} \). The values of \( M_{\text{crit}} \) for the two-component models in Table A1 are given in Table A2. For comparison the value of \( M_{\text{crit}} \) for a one-component model would be \( 0.07 \times 10^4 \) (using \( m = 0.1 M_{\odot} \)). This is significantly lower than any of the values in Table A2.\(^3\) For fixed values of \( m_1/M_1 \) the value of \( M_{\text{crit}} \) varies by factors of up to \( \approx 3 \) between \( M_2/M_1 = 1 \) and 0.1. Therefore for fixed \( m_1/M_1 \), \( M_{\text{crit}} \) does provide a rough stability condition. However, for fixed \( M_2/M_1 \), the variation in \( M_{\text{crit}} \) is a factor of \( \approx 15 \sim 30 \). The variation of \( M_{\text{crit}} \) with varying \( M_2 \) resembles the variation of \( M_{\text{crit}} \) with varying \( M_{\text{max}} \) in Table 2.

We will now consider the values of \( N_{\text{ef}} \) for the two-component systems; these are given in Table A3. For comparison the critical value of \( N_{\text{ef}} \) for a one-component model is the same as its value of \( N_{\text{crit}} \), which is \( 0.7 \times 10^4 \). The values in Table A3 vary much less than those of \( M_{\text{crit}} \) in Table A2, although, as pointed out in Section 2.1, \( N_{\text{ef}} \) can be interpreted as a measure of the total mass of the system in units of \( m_2 \). A stability condition of \( N_{\text{ef}} \approx 10^4 \) or slightly more covers, within a factor of 2 at most, the values of Table A3 and indeed Table 3.

All of the trends in Table A3 may be understood if we consider the reasoning behind the use of \( N_{\text{ef}} \) as an approximate stability condition. The basic idea is that the multicomponent system in

| \( m_1/M_1 \) | \( M_2/M_1 \) | 1.0 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| 50 | 3.529 | 4.455 | 4.583 | 5.427 | 6.574 | 10.978 |
| 20 | 1.619 | 1.902 | 2.059 | 2.305 | 2.614 | 3.940 |
| 10 | 0.909 | 1.029 | 1.104 | 1.262 | 1.412 | 2.396 |
| 5 | 0.467 | 0.545 | 0.596 | 0.662 | 0.808 | 1.078 |
| 3 | 0.384 | 0.467 | 0.484 | 0.556 | 0.629 | 0.912 |
| 2 | 0.300 | 0.360 | 0.395 | 0.425 | 0.495 | 0.639 |

| \( m_1/M_1 \) | \( M_2/M_1 \) | 1.0 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| 50 | 0.71 | 0.89 | 0.91 | 1.09 | 1.31 | 2.20 |
| 20 | 0.81 | 0.95 | 1.02 | 1.15 | 1.31 | 1.97 |
| 10 | 0.91 | 1.03 | 1.10 | 1.26 | 1.42 | 2.40 |
| 5 | 0.93 | 1.09 | 1.19 | 1.32 | 1.62 | 2.16 |
| 4 | 0.96 | 1.17 | 1.21 | 1.39 | 1.57 | 2.28 |
| 3 | 1.00 | 1.20 | 1.32 | 1.42 | 1.65 | 2.13 |
| 2 | 1.13 | 1.32 | 1.34 | 1.47 | 1.64 | 1.99 |

\( \text{Gravothermal oscillations} \)
question evolves in a similar way to a one-component system of \( N_{ef} \) stars with stellar mass \( m_2 \). This requires that the half-mass relaxation time-scale of the multicomponent system is similar to that of the one-component system with which we are comparing it. We assume this to be true if the heavy component amounts to a significant fraction of the total mass within the half-mass radius \( r_h \), which is certainly not the case as \( \frac{M_2}{M_1} \) tends to 0, i.e. on the extreme right of Table A3.

We now consider with more care how the two-component system actually differs from the corresponding one-component system as the parameters \( \frac{M_2}{M_1} \) and \( \frac{m_2}{m_1} \) are varied. For fixed \( \frac{m_2}{m_1} \), as \( \frac{M_2}{M_1} \) decreases the relaxation process is increasingly dominated by the light stars. This leads to the system behaving more like a one-component system of \( M_{tot} \) stars as opposed to a one-component system of \( N_{ef} \) stars, and this increases the half-mass relaxation time. As the rate of two-body relaxation becomes slower the core becomes larger (relative to \( r_h \); see the discussion of Hénon’s principle in Section 2.2) as it can produce the required energy at a lower mass density (as the average stellar mass in the core remains the same, roughly \( m_2 \)). Because gravothermal instability depends on a high-density contrast within the system, it would be expected that stability would increase as \( \frac{M_2}{M_1} \) decreases, as can be seen in Table A3.

Now let us consider the case of fixed \( \frac{M_2}{M_1} \). If we consider the post-collapse evolution of series of systems with fixed \( M_2 \) and \( m_2 \), as \( \frac{M_2}{M_1} \) decreases the tendency towards mass segregation becomes weaker. Therefore the half-mass radius of the heavy component \( (r_h,2) \) is smaller compared to \( r_h \) for larger \( \frac{M_2}{M_1} \) than for smaller \( \frac{M_2}{M_1} \).

It follows that the half-mass radius of the heavy component \( (r_h,2) \) is smaller compared to \( r_h \) for larger \( \frac{M_2}{M_1} \) than for smaller \( \frac{M_2}{M_1} \). The relaxation time of the heavy component within its half-mass radius \( t_{rh,2} \) decreases with increasing mass density. This leads to the conclusion that the relaxation process is increasingly dominated by the light stars. This leads to the system behaving more like a one-component system of \( M_{tot} \) stars as opposed to a one-component system of \( N_{ef} \) stars, and this increases the half-mass relaxation time. As the rate of two-body relaxation becomes slower the core becomes larger (relative to \( r_h \); see the discussion of Hénon’s principle in Section 2.2) as it can produce the required energy at a lower mass density. Thus it would be expected that stability (as measured by \( N_{ef} \)) would increase as \( \frac{M_2}{M_1} \) decreases, and this is what is observed in Table A3 for most values of \( \frac{M_2}{M_1} \). However, the trend of increasing stability with decreasing \( \frac{M_2}{M_1} \) seems to disappear for small \( \frac{M_2}{M_1} \). Reasons for this will be discussed in the next paper of this series.

This paper has been typeset from a \LaTeX\ file prepared by the author.