Truncated Random Measures

Jonathan Huggins
MIT CSAIL and Dept. of EECS

with: T. Campbell, J. How, T. Broderick
What leads to a statistical method being used for science?
What leads to a statistical method being used for science?

1. Conceptually clear
What leads to a statistical method being used for science?

1. **Conceptually clear**
 - Bayesian methods are *conceptually clear*…
What leads to a statistical method being used for science?

1. Conceptually clear
 • Bayesian methods are conceptually clear…

2. Easy to use
What leads to a statistical method being used for science?

1. Conceptually clear
 • Bayesian methods are conceptually clear…

2. Easy to use
 • …but often not easy to use…
What leads to a statistical method being used for science?

1. Conceptually clear
 - Bayesian methods are conceptually clear…

2. Easy to use
 - …but often not easy to use…

3. Reliable
What leads to a statistical method being used for science?

1. **Conceptually clear**
 - Bayesian methods are *conceptually clear*...

2. **Easy to use**
 - ...but often *not easy to use*...

3. **Reliable**
 - ...which makes them *less reliable*
What leads to a statistical method being used for science?

1. **Conceptually clear**
 - Bayesian methods are **conceptually clear**...

2. **Easy to use**
 - ...but often **not easy to use**...

3. **Reliable**
 - ...which makes them **less reliable**
 - How to fix this? **probabilistic programming**
What leads to a statistical method being used for science?

1. Conceptually clear
 • Bayesian methods are *conceptually clear*…

2. Easy to use
 • …but often not easy to use…

3. Reliable
 • …which makes them *less reliable*
 • How to fix this? *probabilistic programming*
 • Write down the model, but don’t worry about inference
What leads to a statistical method being used for science?

1. Conceptually clear
 • Bayesian methods are **conceptually clear**...

2. Easy to use
 • ...but often **not easy to use**...

3. Reliable
 • ...which makes them **less reliable**
 • How to fix this? **probabilistic programming**
 • Write down the model, but don’t worry about inference
 • v1.0: **BUGS/JAGS** (Gibbs sampling)
What leads to a statistical method being used for science?

1. Conceptually clear
 - Bayesian methods are conceptually clear…

2. Easy to use
 - …but often not easy to use…

3. Reliable
 - …which makes them less reliable
 - How to fix this? probabilistic programming
 - Write down the model, but don’t worry about inference
 - v1.0: BUGS/JAGS (Gibbs sampling)
 - v2.0: Stan (HMC or variational inference or MAP estimation)
What leads to a statistical method being used for science?

1. Conceptually clear
 - Bayesian methods are conceptually clear…

2. Easy to use
 - …but often not easy to use…

3. Reliable
 - …which makes them less reliable
 - How to fix this? probabilistic programming
 - Write down the model, but don’t worry about inference
 - v1.0: BUGS/JAGS (Gibbs sampling)
 - v2.0: Stan (HMC or variational inference or MAP estimation)
 - Goal: integrate BNP priors into PPLs like Stan
BNP: awesome, but challenging to use
BNP: awesome, but challenging to use

Need models that can extract new, useful information from infinite streams of data
BNP: awesome, but challenging to use

Need models that can extract new, useful information from infinite streams of data

e.g. keep learning new topics from a stream of documents
BNP: awesome, but challenging to use

Need models that can extract new, useful information from infinite streams of data

e.g. keep learning new topics from a stream of documents

Bayesian nonparametrics: achieves growing model size via infinite parameters
BNP: awesome, but challenging to use

Need models that can extract new, useful information from infinite streams of data

Bayesian nonparametrics: achieves growing model size via infinite parameters

e.g. keep learning new topics from a stream of documents

movie text medicine robotics genetics

finance astronomy traffic agriculture pathology

[Gopalan 2014] [Teh 2006] [Huang 2014] [Michini 2015] [Lennox 2010] [Prunster 2014] [Yang 2015] [Yu 2012] [Ozaki 2008] [Kottas 2008]
BNP: awesome, but challenging to use

Need models that can extract new, useful information from infinite streams of data

Bayesian nonparametrics: achieves growing model size via infinite parameters

e.g. keep learning new topics from a stream of documents

movie text medicine robotics genetics

finance astronomy traffic agriculture pathology

hard work!

[Gopalan 2014] [Teh 2006] [Huang 2014] [Michini 2015] [Lennox 2010] [Prunster 2014] [Yang 2015] [Yu 2012] [Ozaki 2008] [Kottas 2008]
BNP: awesome, but challenging to use

Need models that can extract new, useful information from infinite streams of data

Bayesian nonparametrics: achieves growing model size via infinite parameters

e.g. keep learning new topics from a stream of documents

movie text medicine robotics genetics

finance astronomy traffic agriculture pathology

hard work!

automate inference with probabilistic programming

[Gopalan 2014] [Teh 2006] [Huang 2014] [Michini 2015] [Lennox 2010] [Prunster 2014] [Yang 2015] [Yu 2012] [Ozaki 2008] [Kottas 2008]
Inference in BNP models
Inference in BNP models

• Option #1: Integrate out the parameter (CRP, IBP, etc.)
 issues: care about the parameters, using approximations (HMC/VB),
 distributed computation
Inference in BNP models

- Option #1: Integrate out the parameter (CRP, IBP, etc.)
 issues: care about the parameters, using approximations (HMC/VB), distributed computation

- Option #2: use a **finite approximation**...
 with e.g. variational inference, HMC

[Blei 06; Neal 10]
Inference in BNP models

- Option #1: Integrate out the parameter (CRP, IBP, etc.)
 issues: care about the parameters, using approximations (HMC/VB), distributed computation

- Option #2: use a finite approximation...
 with e.g. variational inference, HMC
 [Blei 06; Neal 10]

Problem:
Wide variety of priors in
BNP with no finite approximation
Inference in BNP models

• Option #1: Integrate out the parameter (CRP, IBP, etc.)
 issues: care about the parameters, using approximations (HMC/VB), distributed computation

• Option #2: use a **finite approximation**...
 with e.g. variational inference, HMC
 [Blei 06; Neal 10]

 Problem:
 Wide variety of priors in BNP with **no finite approximation**
Inference in BNP models

- Option #1: Integrate out the parameter (CRP, IBP, etc.)
 issues: care about the parameters, using approximations (HMC/VB), distributed computation

- Option #2: use a **finite approximation**...
 with e.g. variational inference, HMC

[Blei 06; Neal 10]

Problem:
Wide variety of priors in BNP with **no finite approximation**

All BNP priors

Previously studied priors
Inference in BNP models

• Option #1: Integrate out the parameter (CRP, IBP, etc.)
 issues: care about the parameters, using approximations (HMC/VB),
 distributed computation

• Option #2: use a **finite approximation**...
 with e.g. variational inference, HMC
 [Blei 06; Neal 10]

Problem:
Wide variety of priors in
BNP with no finite
approximation
Inference in BNP models

• Option #1: Integrate out the parameter (CRP, IBP, etc.)
 issues: care about the parameters, using approximations (HMC/VB),
 distributed computation

• Option #2: use a **finite approximation**...
 with e.g. variational inference, HMC
 [Blei 06; Neal 10]

 Problem:
 Wide variety of priors in BNP with **no finite approximation**

Contributions:

All BNP priors

Previously studied priors
with finite approx (past work)
Inference in BNP models

• Option #1: Integrate out the parameter (CRP, IBP, etc.)
 issues: care about the parameters, using approximations (HMC/VB),
distributed computation

• Option #2: use a **finite approximation**...
 with e.g. variational inference, HMC
 [Blei 06; Neal 10]

Problem:
Wide variety of priors in BNP with **no finite** approximation

Contributions:
• 2 representation forms (7 reps total) that allow finite approximation
 of *(normalized) completely random measures ((N)CRMs)*
Inference in BNP models

- Option #1: Integrate out the parameter (CRP, IBP, etc.)
 issues: care about the parameters, using approximations (HMC/VB), distributed computation

- Option #2: use a **finite approximation**...
 with e.g. variational inference, HMC
 [Blei 06; Neal 10]

Problem:
Wide variety of priors in BNP with **no finite approximation**

Contributions:
- 2 representation forms (7 reps total) that allow finite approximation of **(normalized) completely random measures ((N)CRMs)**
Inference in BNP models

• Option #1: Integrate out the parameter (CRP, IBP, etc.)
 issues: care about the parameters, using approximations (HMC/VB),
 distributed computation

• Option #2: use a finite approximation...
 with e.g. variational inference, HMC
 [Blei 06; Neal 10]

Problem:
Wide variety of priors in
BNP with no finite
approximation

Contributions:
• 2 representation forms (7 reps total) that allow finite approximation
 of (normalized) completely random measures ((N)CRMs)
• Approximation error analysis
Inference in BNP models

• Option #1: Integrate out the parameter (CRP, IBP, etc.)
 issues: care about the parameters, using approximations (HMC/VB), distributed computation

• Option #2: use a **finite approximation**...
 with e.g. variational inference, HMC
 [Blei 06; Neal 10]

Problem:
Wide variety of priors in BNP with **no finite approximation**

Contributions:
• 2 representation forms (7 reps total) that allow finite approximation of *(normalized)* completely random measures *(N)*CRMs
• Approximation error analysis
• Computational complexity analysis *(not in this talk)*
Past work: finite approximations to BNP priors

	Finite Approximation	Approximation Error Bounds	Computational Complexity
DP	✓		✓
BP	✓		✓
BPP			
ΓP	✓	✓	
(N)CRM			
Past work: finite approximations to BNP priors

	Finite Approximation	Approximation Error Bounds	Computational Complexity
DP	✓ [Sethuraman 94]	[Roychowdhury 15]	✓ [Ishwaran 01]
BP	✓ [Teh 07] [Paisley 12] [Thibaux 07]	✓ [Doshi-Velez 09] [Paisley 12]	✓
BPP	✓ [Broderick 14]		
(N)CRM	✓ [Bondesson 82] [Roychowdhury 15]	✓ [Roychowdhury 15]	✓
(N)CRM	✓ [Broderick 14]		
Past work: finite approximations to BNP priors

	Finite Approximation	Approximation Error Bounds	Computational Complexity
DP	✓		
	[Sethuraman 94]		[Ishwaran 01]
	[Roychowdhury 15]		
BP	✓		✓
	[Teh 07]		[Doshi-Velez 09]
	[Paisley 12]		[Roychowdhury 15]
BPP	✓		✓
	[Broderick 14]		
GP	✓	✓	
	[Bondesson 82]		
	[Roychowdhury 15]		
(N)CRM	✓		
	[Broderick 14]		

Sparse results for a few priors in BNP
Past work: finite approximations to BNP priors

	Finite Approximation	Approximation Error Bounds	Computational Complexity
DP	✓		
	[Sethuraman 94]	[Ishwaran 01]	
BP	✓	[Teh 07]	✓
	[Paisley 12]	[Doshi-Velez 09]	
BPP	✓		
	[Broderick 14]	[Roychowdhury 15]	
ΓP	✓		
	[Bondesson 82]	[Roychowdhury 15]	
(N)CRM	✓		
	[Broderick 14]	[Roychowdhury 15]	

Sparse results for a few priors in BNP

No general theory
Truncation Roadmap
Truncation Roadmap

Tractable models
in BNP
Truncation Roadmap

Tractable models in BNP

two forms for sequential representations

\[\sum_{k=1}^{\infty} \theta_k \delta \psi_k \]
Truncation Roadmap

Tractable models in BNP

two forms for sequential representations

$$\sum_{k=1}^{\infty} \theta_k \delta \psi_k$$

Truncation and error analysis

$$\sum_{k=1}^{K} \theta_k \delta \psi_k$$
Truncation Roadmap

Tractable models in BNP

two forms for sequential representations

\[\sum_{k=1}^{K} \theta_k \delta \psi_k \]

Truncation and error analysis

\[\sum_{k=1}^{\infty} \theta_k \delta \psi_k \]
The Standard Model in BNP (By Example)
The Standard Model in BNP (By Example)

Topic	Frequency	Doc 1 (532 words)	Doc 2 (210 words)	Doc 3 (854 words)	Doc 4 (926 words)
sports	343	210	854	342	
politics	189				
food					

...
The Standard Model in BNP (By Example)

	sports	politics	food	...
Doc 1	343	189		
Doc 2		210		
Doc 3	854			
Doc 4	342	584		

0.7 0.5 0.2
The Standard Model in BNP (By Example)

- **Topic Space**
 - Sports
 - Politics
 - Food
 -...

- **Frequency Space**

- **Docs**
 - Doc 1 (532 words)
 - 343
 - 189
 - 0.7
 - Doc 2 (210 words)
 - 210
 - Doc 3 (854 words)
 - 854
 - 342
 - 0.5
 - Doc 4 (926 words)
 - 584
 - 0.2
 -...

- **Dimensions**
 - Topic Space
 - Frequency Space
The Standard Model in BNP (By Example)

Doc 1 (532 words)
- Sports: 343
- Politics: 189

Doc 2 (210 words)
- Sports: 210

Doc 3 (854 words)
- Sports: 854
- Politics: 342
- Food: 584

Doc 4 (926 words)
- Sports: 0.7
- Politics: 0.5
- Food: 0.2

Topic space

Frequency space

Sports

0.7
The Standard Model in BNP (By Example)

Doc	Frequency	Sports	Politics	Food	...
Doc 1	343	189			
Doc 2	210				
Doc 3	854				
Doc 4	342	584			

frequency space

sports

0.7

topic space

0.7 0.5 0.2
The Standard Model in BNP (By Example)

Doc	Sports	Politics	Food
Doc 1	343	189	
Doc 2	210		
Doc 3	854		
Doc 4	342	584	

frequency space

0.7

0.7 0.5 0.2

topic space
The Standard Model in BNP (By Example)

Topic	Sports	Politics	Food	...
Doc 1	343	189		
Doc 2	210			
Doc 3	854			
Doc 4	342	584		
	0.7	0.5	0.2	

frequency space

0.7

sports
topic space
The Standard Model in BNP (By Example)

	sports	politics	food	...
Doc 1	343		189	
Doc 2		210		
Doc 3	854			
Doc 4	342		584	

Frequency space

Sports

Topic space
The Standard Model in BNP (By Example)

θ is a random discrete measure on the topics.

θ is a random discrete measure on the topics.
The Standard Model in BNP (By Example)

Topic	sports	politics	food	...
Doc 1	343	189		
Doc 2	210			
Doc 3	854			
Doc 4	342	584		
	0.7	0.5	0.2	

Θ is a random discrete measure on the topics.
The Standard Model in BNP (By Example)

θ is a random discrete measure on the topics

"traits"

"rates"
The Standard Model in BNP (By Example)

Obs 1	Obs 2	Obs 3	Obs 4		
\(\psi_1 \)	343	210	854	342	584
\(\psi_2 \)	189				
\(\psi_3 \)					
...					

\(\Theta \) is a random discrete measure on the topics traits

\(\Theta \) is a random discrete measure on the topics traits
Poisson processes and (N)CRMs

How do we generate infinitely many trait/rate points \((\psi, \theta)\)?
Poisson processes and (N)CRMs

How do we generate infinitely many trait/rate points \((\psi, \theta)\)?

Poisson point process with measure \(\nu(d\theta \times d\psi)\):

![Diagram showing points in rate space and trait space]
Poisson processes and (N)CRMs

How do we generate infinitely many trait/rate points \((\psi, \theta)\)?

Poisson point process with measure \(\nu(d\theta \times d\psi)\):

\[
\Theta
\]

completely random measure (CRM) (e.g. BP, \(\Gamma P\))

[Kingman 93]
Poisson processes and (N)CRMs

How do we generate infinitely many trait/rate points \((\psi, \theta)\)?

Poisson point process with measure \(\nu(\mathrm{d}\theta \times \mathrm{d}\psi)\):

- Completely random measure (CRM) (e.g. BP, GP)
- Normalize rates: **normalized CRM** (NCRM) (e.g. DP)

[Kingman 93]
Poisson processes and (N)CRMs

How do we generate infinitely many trait/rate points \((\psi, \theta)\)?

Poisson point process with measure \(\nu(d\theta \times d\psi)\):

- **completely random measure** (CRM) (e.g. BP, \(\Gamma P\))
- Normalize rates: **normalized CRM** (NCRM) (e.g. DP)

Captures a large class of useful priors in BNP

[Kingman 93]
Poisson processes and (N)CRMs

How do we generate infinitely many trait/rate points \((\psi, \theta)\)?

Poisson point process with measure \(\nu(d\theta \times d\psi)\):

\[\Theta \]

- **completely random measure** (CRM) (e.g. BP, \(\Gamma P\))
- Normalize rates: **normalized CRM** (NCRM) (e.g. DP)

Captures a large class of useful priors in BNP

How do we pick a finite subset of the points? [Kingman 93]
Truncation Roadmap

Tractable models in BNP

two forms for sequential representations

\[
\sum_{k=1}^{\infty} \theta_k \delta \psi_k
\]

Truncation and error analysis

\[
\sum_{k=1}^{K} \theta_k \delta \psi_k
\]
Truncation Roadmap

Tractable models in BNP

two forms for sequential representations

\[\sum_{k=1}^{\infty} \theta_k \delta \psi_k \]

\[\sum_{k=1}^{K} \theta_k \delta \psi_k \]

Truncation and error analysis
Sequential representation & truncation

We pick a finite subset of atoms \((\psi, \theta)\) by:
Sequential representation & truncation

We pick a finite subset of atoms \((\psi, \theta)\) by:

1) ordering the atoms **(sequential representation)**
Sequential representation & truncation

We pick a finite subset of atoms \((\psi, \theta)\) by:

1) ordering the atoms *(sequential representation)*
Sequential representation & truncation

We pick a finite subset of atoms (ψ, θ) by:

1) ordering the atoms \textit{(sequential representation)}
Sequential representation & truncation

We pick a finite subset of atoms \((\psi, \theta)\) by:

1) ordering the atoms (sequential representation)
Sequential representation & truncation

We pick a finite subset of atoms \((\psi, \theta)\) by:

1) ordering the atoms (sequential representation)
Sequential representation & truncation

We pick a finite subset of atoms \((\psi, \theta)\) by:

1) ordering the atoms \textbf{(sequential representation)}
Sequential representation & truncation

We pick a finite subset of atoms \((\psi, \theta)\) by:

1) ordering the atoms \((\text{sequential representation})\)

\[
\Theta = \sum_{k=1}^{\infty} \theta_k \delta_{\psi_k}
\]
Sequential representation & truncation

We pick a finite subset of atoms \((\psi, \theta)\) by:
1) ordering the atoms (sequential representation)
2) removing any atoms beyond the K-th (truncation)

\[
\Theta = \sum_{k=1}^{\infty} \theta_k \delta_{\psi_k}
\]
Sequential representation & truncation

We pick a finite subset of atoms (ψ, θ) by:

1) ordering the atoms **(sequential representation)**
2) removing any atoms beyond the K-th **(truncation)**

\[
\Theta = \sum_{k=1}^{\infty} \theta_k \delta_{\psi_k}
\]
Sequential representation & truncation

We pick a finite subset of atoms (ψ, θ) by:

1) ordering the atoms (\textbf{sequential representation})
2) removing any atoms beyond the K-th (\textbf{truncation})

\[\Theta = \sum_{k=1}^{K} \theta_k \delta_{\psi_k} \]
Sequential representation & truncation

We pick a finite subset of atoms \((\psi, \theta)\) by:

1) ordering the atoms \textbf{(sequential representation)}

2) removing any atoms beyond the K-th \textbf{(truncation)}

\[
\Theta = \sum_{k=1}^{K} \theta_k \delta \psi_k
\]
Ordering of (N)CRM atoms

We describe 2 forms for sequential representations
Ordering of (N)CRM atoms

We describe 2 forms for sequential representations

Series representation
function of a homogenous
Poisson point process

(4 versions)
Ordering of (N)CRM atoms

We describe 2 forms for sequential representations

Series representation
function of a homogenous Poisson point process
(4 versions)

Superposition representation
infinite sum of homogenous CRMs, each with finite # of atoms
(3 versions)
Ordering of (N)CRM atoms

We describe 2 forms for sequential representations

Series representation
function of a homogenous Poisson point process
(4 versions)

Superposition representation
infinite sum of homogenous CRMs, each with finite # of atoms
(3 versions)

Theorem (H., Campbell, How, Broderick).
Can generate (N)CRMs using all 7 sequential representations
Sequential representation comparison

Why so many representations?
Sequential representation comparison

Why so many representations?

They’re all useful in different circumstances
Sequential representation comparison

Why so many representations?

They’re all useful in different circumstances

Error Bound Decay	Series Reps	Superposition Reps					
	B-Rep	IL-Rep	R-Rep	T-Rep	DB-Rep	PL-Rep	SB-Rep
✓ (exp)	✓	✓	✓/x	x	✓	✓	x

Ease of Analysis	Series Reps	Superposition Reps
x	x	✓
xx	xx	✓
x	x	✓
x	x	✓

Generality	Series Reps	Superposition Reps
✓	✓	✓
✓	✓	✓
✓	✓	✓
✓	✓	✓

Known # Atoms	Series Reps	Superposition Reps
✓	✓	x
✓	✓	x
x	x	x
x	x	x
x	x	x
Sequential representation example

Given Gamma process: \(\nu(\theta) = \gamma \lambda \theta^{-1} e^{-\lambda \theta} \)
Sequential representation example

Given Gamma process: \(\nu(\theta) = \gamma \lambda \theta^{-1} e^{-\lambda \theta} \)

Step 1: compute \(c := \lim_{\theta \to 0} \theta \nu(\theta) \)
Sequential representation example

Given Gamma process: \(\nu(\theta) = \gamma \lambda \theta^{-1} e^{-\lambda \theta} \)

Step 1: compute \(c := \lim_{\theta \to 0} \theta \nu(\theta) = \gamma \lambda \)
Sequential representation example

Given Gamma process: \(\nu(\theta) = \gamma \lambda \theta^{-1} e^{-\lambda \theta} \)

Step 1: compute \(c := \lim_{\theta \to 0} \theta \nu(\theta) = \gamma \lambda \)

Step 2: compute \(f(\theta) := -c^{-1} \frac{d}{d\theta} [\theta \nu(\theta)] \)
Sequential representation example

Given Gamma process: \(\nu(\theta) = \gamma \lambda \theta^{-1} e^{-\lambda \theta} \)

Step 1: compute \(c := \lim_{\theta \to 0} \theta \nu(\theta) = \gamma \lambda \)

Step 2: compute \(f(\theta) := -c^{-1} \frac{d}{d\theta} [\theta \nu(\theta)] = \lambda e^{-\lambda \theta} \)
Sequential representation example

Given Gamma process: \(\nu(\theta) = \gamma \lambda \theta^{-1} e^{-\lambda \theta} \)

Step 1: compute \(c := \lim_{\theta \to 0} \theta \nu(\theta) = \gamma \lambda \)

Step 2: compute \(f(\theta) := -c^{-1} \frac{d}{d\theta} [\theta \nu(\theta)] = \lambda e^{-\lambda \theta} \)

Exponential(\(\lambda\)) density!
Sequential representation example

Given Gamma process: \(\nu(\theta) = \gamma \lambda \theta^{-1} e^{-\lambda \theta} \)

Step 1: compute \(c := \lim_{\theta \to 0} \theta \nu(\theta) = \gamma \lambda \)

Step 2: compute \(f(\theta) := -c^{-1} \frac{d}{d\theta} [\theta \nu(\theta)] = \lambda e^{-\lambda \theta} \)

Step 3: plug in!

\[\Theta = \sum_{k=1}^{\infty} V_k e^{-\Gamma_k} \delta_{\psi_k}, \quad V_k \overset{iid}{\sim} f, \quad \Gamma \sim \text{Poisson} P(c) \]
Truncation Roadmap

Tractable models in BNP

two forms for sequential representations

\[\sum_{k=1}^{\infty} \theta_k \delta \psi_k \]

Truncation and error analysis

\[\sum_{k=1}^{K} \theta_k \delta \psi_k \]
Truncation Roadmap

Tractable models in BNP

two forms for sequential representations

\[
\sum_{k=1}^{\infty} \theta_k \delta_{\psi_k}
\]

\[
\sum_{k=1}^{K} \theta_k \delta_{\psi_k}
\]

Truncation and error analysis
Choosing between the seven representations

How close is our finite approximation?
Choosing between the seven representations

How close is our finite approximation?

Truncation error: \[\| p_{N,\infty} - p_{N,K} \|_1 = \frac{1}{2} \int | p_{N,\infty}(y) - p_{N,K}(y) | \, dy \]
Choosing between the seven representations

How close is our finite approximation?

Truncation error: \(\|p_{N,\infty} - p_{N,K}\|_1 = \frac{1}{2} \int |p_{N,\infty}(y) - p_{N,K}(y)| \, dy \)

full infinite \(\Theta \)

truncated \(\Theta_K \)
Choosing between the seven representations

How close is our finite approximation?

Truncation error: $\|p_{N,\infty} - p_{N,K}\|_1 = \frac{1}{2} \int |p_{N,\infty}(y) - p_{N,K}(y)| \, dy$

\[
\begin{align*}
\text{full infinite} & \quad \Theta \\
\downarrow & \\
generated\ data
\end{align*}
\quad
\begin{align*}
\text{truncated} & \quad \Theta_K \\
\downarrow & \\
generated\ data
\end{align*}
\]
Choosing between the seven representations

How close is our finite approximation?

Truncation error: \[\| p_{N,\infty} - p_{N,K} \|_1 = \frac{1}{2} \int | p_{N,\infty}(y) - p_{N,K}(y) | \, dy \]

Compare the distribution of the data under full vs. truncated
Choosing between the seven representations

How close is our finite approximation?

Truncation error: \[\|p_{N,\infty} - p_{N,K}\|_1 = \frac{1}{2} \int |p_{N,\infty}(y) - p_{N,K}(y)| \, dy \]

Depends on **number of observations** \(N\) and **truncation level** \(K\).
Choosing between the seven representations

How close is our finite approximation?

Truncation error:
\[\|p_{N,\infty} - p_{N,K}\|_1 = \frac{1}{2} \int |p_{N,\infty}(y) - p_{N,K}(y)| \, dy \]

Depends on **number of observations** \(N \) and **truncation level** \(K \)

As \(N \) gets larger, error increases
Choosing between the seven representations

How close is our finite approximation?

Truncation error: $\|p_{N,\infty} - p_{N,K}\|_1 = \frac{1}{2} \int |p_{N,\infty}(y) - p_{N,K}(y)| \, dy$

Depends on **number of observations** N and **truncation level** K

As N gets larger, error increases

As K gets larger, error decreases
Choosing between the seven representations

How close is our finite approximation?

Truncation error:
\[\| p_{N,\infty} - p_{N,K} \|_1 = \frac{1}{2} \int | p_{N,\infty}(y) - p_{N,K}(y) | \, dy \]

Depends on **number of observations** \(N \) and **truncation level** \(K \)

As \(N \) gets larger, error increases

As \(K \) gets larger, error decreases

Cannot evaluate exactly, so we develop **new upper bounds**
Lemma (H., Campbell, How, Broderick).

$$\|p_{n,\infty} - p_{n,K}\|_1 \leq P(\text{any datum selects a removed trait})$$

The truncation error

i.e. P(whoops!)
Protobound

Leads to all the other truncation error bounds in this work

Lemma (H., Campbell, How, Broderick).

\[\|p_{N,\infty} - p_{N,K}\|_1 \leq P \text{ (any datum selects a removed trait)} \]

The truncation error

Theorem (HCHB). The series rep error is bounded by

\[
\|p_{N,\infty} - p_{N,K}\|_1 \leq 1 - e^{-\int_0^\infty \mathbb{E}[\pi(V,u+G_K)^N] du}
\]

i.e. P(whoops!)
Lemma (H., Campbell, How, Broderick).
\[\| p_{N,\infty} - p_{N,K} \|_1 \leq \mathbb{P} \text{ (any datum selects a removed trait)} \]

The truncation error

Theorem (HCHB). The series rep error is bounded by
\[
\| p_{N,\infty} - p_{N,K} \|_1 \leq 1 - e^{-\int_0^\infty \mathbb{E}[\bar{\pi}(\tau(V,u+G_K))^N] du}
\]

Theorem (HCHB). The superposition rep error is bounded by
\[
\| p_{N,\infty} - p_{N,K} \|_1 \leq 1 - e^{-\int_0^\infty \bar{\pi}(\theta)^N v_K^+(d\theta)}
\]
Error bound example

Given Gamma-Poisson process: \(\nu(\theta) = \gamma \lambda \theta^{-1} e^{-\lambda \theta} \) \(\pi(\theta) = e^{-\theta} \)
Error bound example

Given Gamma-Poisson process: $\nu(\theta) = \gamma \lambda \theta^{-1} e^{-\lambda \theta}$
$\pi(\theta) = e^{-\theta}$

Step 1: bound the integral, where $G_K \sim \text{Gamma}(K, c)$:

$$\int_0^{\infty} (1 - \mathbb{E} [\pi(\theta e^{-G_K})]) \nu(d\theta)$$
Error bound example

Given Gamma-Poisson process: \(\nu(\theta) = \gamma \lambda \theta^{-1} e^{-\lambda \theta} \quad \pi(\theta) = e^{-\theta} \)

Step 1: bound the integral, where \(G_K \sim \text{Gamma}(K, c) \):

\[
\int_{0}^{\infty} (1 - \mathbb{E}[\pi(\theta e^{-G_K})]) \nu(d\theta) = \gamma \lambda \mathbb{E}[\log(1 + e^{-G_K}/\lambda)]
\]

Integration by parts
Error bound example

Given Gamma-Poisson process: \(\nu(\theta) = \gamma \lambda \theta^{-1} e^{-\lambda \theta} \quad \pi(\theta) = e^{-\theta} \)

Step 1: bound the integral, where \(G_K \sim \text{Gamma}(K, c) \):

\[
\int_0^\infty (1 - \mathbb{E}[\pi(\theta e^{-G_K})]) \nu(d\theta) = \gamma \lambda \mathbb{E}[\log(1 + e^{-G_K} / \lambda)] \quad \text{Integration by parts}
\]

\[
\leq \gamma \mathbb{E}[e^{-G_K}] \quad \text{log}(1 + x) \leq x
\]
Error bound example

Given Gamma-Poisson process: \(\nu(\theta) = \gamma \lambda \theta^{-1} e^{-\lambda \theta} \quad \pi(\theta) = e^{-\theta} \)

Step 1: bound the integral, where \(G_K \sim \text{Gamma}(K, c) \):

\[
\begin{align*}
\int_0^\infty (1 - \mathbb{E} [\pi(\theta e^{-G_K})]) \nu(d\theta) &= \gamma \lambda \mathbb{E} [\log(1 + e^{-G_K} / \lambda)] \\
&\leq \gamma \mathbb{E} [e^{-G_K}] \\
&= \gamma \left(\frac{\gamma \lambda}{1 + \gamma \lambda} \right)^K
\end{align*}
\]

Integration by parts
log(1 + x) \leq x
Gamma expectation
Error bound example

Given Gamma-Poisson process:
\[\nu(\theta) = \gamma \lambda \theta^{-1} e^{-\lambda \theta} \quad \pi(\theta) = e^{-\theta} \]

Step 1: bound the integral, where
\[G_K \sim \text{Gamma}(K, c) \]:

\[
\int_0^\infty \left(1 - \mathbb{E} \left[\pi(\theta e^{-G_K}) \right] \right) \nu(d\theta) = \gamma \lambda \mathbb{E} \left[\log(1 + e^{-G_K} / \lambda) \right]
\leq \gamma \mathbb{E} \left[e^{-G_K} \right]
= \gamma \left(\frac{\gamma \lambda}{1 + \gamma \lambda} \right)^K
\]

- Integration by parts
- \(\log(1 + x) \leq x \)
- Gamma expectation

Step 2: plug in!

\[
\frac{1}{2} \| p_{N,\infty} - p_{N,K} \|_1 \leq 1 - \exp \left\{ -N \gamma \left(\frac{\gamma \lambda}{1 + \gamma \lambda} \right)^K \right\}
\]
Truncation Roadmap

Tractable models in BNP

two forms for sequential representations

\[\sum_{k=1}^{\infty} \theta_k \delta \psi_k\]

Truncation and error analysis

\[\sum_{k=1}^{K} \theta_k \delta \psi_k\]
Truncation Roadmap

Tractable models in BNP

two forms for sequential representations

\[\sum_{k=1}^{K} \theta_k \delta \psi_k \]

Truncation and error analysis
Previous Work

	Finite Approximation	Approximation Error Bounds	Computational Complexity
DP	✓	✓	✓
BP	✓	✓	✓
BPP	✓		
GP	✓	✓	✓
(N)CRM	✓		
Our Work

	Finite Approximation	Approximation Error Bounds	Computational Complexity
DP	✓		✓
BP	✓	✓	✓
BPP	✓		
ΓP	✓	✓	✓
(N)CRM	✓	✓	✓
	Finite Approximation	Approximation Error Bounds	Computational Complexity
------------	----------------------	----------------------------	--------------------------
DP	✓	✓	✓
BP	✓	✓	✓
BPP	✓	✓	✓
ΓP	✓	✓	✓
(N)CRM	✓	✓	✓
Conclusions
Conclusions

The **sequential representations** and **truncation error bounds** we develop...
Conclusions

The **sequential representations** and **truncation error bounds** we develop...

- Expand the class of BNP priors that admit efficient inference
Conclusions

The **sequential representations** and **truncation error bounds** we develop...

- Expand the class of BNP priors that admit efficient inference
- Help automate the use of BNP models (e.g. in PPLs)
Conclusions

The **sequential representations** and **truncation error bounds** we develop...

- Expand the class of BNP priors that admit efficient inference
- Help automate the use of BNP models (e.g. in PPLs)
- Facilitates the use of “modern” inference methods (e.g. HMC and VB) with BNP models
Conclusions

The **sequential representations** and **truncation error bounds** we develop…

• Expand the class of BNP priors that admit efficient inference
• Help automate the use of BNP models (e.g. in PPLs)
• Facilitates the use of “modern” inference methods (e.g. HMC and VB) with BNP models
• Trade off computational efficiency and statistical accuracy of truncated model
Conclusions

The **sequential representations** and **truncation error bounds** we develop…

- Expand the class of BNP priors that admit efficient inference
- Help automate the use of BNP models (e.g. in PPLs)
- Facilitates the use of “modern” inference methods (e.g. HMC and VB) with BNP models
- Trade off computational efficiency and statistical accuracy of truncated model

J. Huggins*, T. Campbell*, J. How, T. Broderick.
Truncated Random Measures. Submitted, 2016.
Available online: https://arxiv.org/abs/1603.00861