The complete chloroplast genome of Diarthron tianschanicum (Thymelaeaceae)

Yi Wang*a, Lie-Fen Hea and Yong-Hong Zhanga,b

aSchool of Life Sciences, Yunnan Normal University, Kunming, China; bKey Lab of Yunnan Province for Biomass Energy and Environmental Biotechnology, Kunming, China

ABSTRACT

Diarthron tianschanicum (Pobeditova) Kit Tan (Thymelaeaceae), a perennial herb, has been used as a counterfeiter for Stellera chamaejasme in traditional Chinese folk medicine. In this study, the complete chloroplast genome sequence of D. tianschanicum is reported for the first time. The plastome, 172,119 bp in length, is quadripartite and circular. It contains a large single-copy (LSC) region (85,829 bp), a small single-copy (SSC) region (2828 bp), and two separate inverted repeat (IR) regions (41,731 bp). The overall GC content of the complete chloroplast genome is 36.8%. The genome contains 139 genes, including 93 protein-coding, 38 tRNA genes, and eight rRNA genes. The phylogenetic tree showed that all sampled species of Thymelaeaceae formed a monophyletic clade. D. tianschanicum was closely related to the congeneric D. linifolium and formed a monophyly with 100% support.

CONTACT Yong-Hong Zhang daphnecn@aliyun.com School of Life Sciences, Yunnan Normal University, Kunming, 650500, China

ARTICLE HISTORY

Received 30 May 2022
Accepted 30 June 2022

KEYWORDS

Diarthron tianschanicum; chloroplast genome; Thymelaeaceae; phylogenetic analysis

Diarthron Turcz. (Thymelaeaceae), comprising about 16 species, is distributed in central and southwest Asia and southeast Europe. Diarthron tianschanicum (Pobeditova) Kit Tan 1982 (Tan 1982), with the widely used synonym Stellera tianschanica Pobed., is a perennial herb distributed narrowly in the Tian Shan region on open, dry slopes (Wang and Gilbert 2007; Chen et al. 2021). D. tianschanicum is toxic and has been used to expel parasites and to cure scabies in folk treatments (Shi et al. 2016). The extracts from D. tianschanicum have antitumor and antioxidant activities. D. tianschanicum has also been used as a counterfeit substitute for Stellera chamaejasme in traditional Chinese medicine in Xinjiang, China (Shi et al. 2017). Both species belong to the same family and have many chemical components in common in the roots, leaves and flowers (Shi et al. 2017; Guan et al. 2018; Ma et al. 2018). The two species are easily confused, leading to poisoning after ingestion by humans and animals (Shi et al. 2016). Previous studies of D. tianschanicum focused on isolation, extraction and the medicinal value of the chemical components (Zhao et al. 2017), but lacked molecular research. In this study, we report the first complete cp genome of D. tianschanicum to provide a genomic resource for molecular research and for phylogenetic analysis.

The fresh leaves of D. tianschanicum were collected from a healthy plant in Zhaosu County, Ili Kazakh Autonomous Prefecture (42°46′10″, 80°58′31″), Xinjiang Uygur Autonomous Region, China. Voucher specimens (Zhang JW 06013) were deposited in the Herbarium of Yunnan Normal University (YNUB, Website: https://life.ynnu.edu.cn/, Contact: Jian-Lin Hang, Email: hjlynub@163.com). A sequence library was constructed and sequencing was performed using the Illumina HiSeq 2500 platform (Illumina, San Diego, CA, USA). All raw reads were filtered to obtain clean reads with default parameter using NGS QC Toolkit v2.3.3 (Patel and Jain 2012). The plastome was de novo assembled using NOVOPlasty v4.2 (Dierckxsens et al. 2017). The complete chloroplast genome was annotated using Geneious 2022.0.2 (Kearse et al. 2012) by referring to the complete chloroplast sequence of Wikstroemia chamaedaphne (GenBank accession number: MN563132) (Qian et al. 2020).

The complete chloroplast genome of D. tianschanicum (GenBank accession No. ON164854) has a typical quadripartite structure and is 172,119 bp in length, containing a large single copy (LSC) region of 85,829 bp, a small single copy (SSC) region of 2828 bp, and two separate inverted repeat (IR) regions of 41,731 bp. The GC content in the complete chloroplast genome, IR region, LSC region and SSC region was 36.8, 39.0, 34.9, and 28.9%, respectively. The complete chloroplast genome of D. tianschanicum contained 139 genes, including 93 protein-coding genes, 38 tRNA genes, and eight rRNA genes.

The complete, previously reported, chloroplast genomes of 21 other species, including 18 species of Thymelaeaceae and three species of Malvaceae as outgroups, were selected to detect the phylogenetic position of D. tianschanicum. All of the complete chloroplast genomes were aligned by MAFFFT v7.450 (Katoh and Standley 2013). The maximum-likelihood (ML) tree was reconstructed by RAxML v8.2.11 (Stamatakis 2014) with the best nucleotide substitution model of GTR + G, which was determined by MEGA X (Kumar et al. 2018).
et al. 2018). Bootstrap values were inferred by analysis of 1,000 replicates. The results showed that all sampled species of Thymelaeae form a monophyletic clade with *Gonystylus affinis* and *G. bancanus* located at the base. *D. tianschanicum* was closely related to the congeneric *D. linifolium* and formed one monophyly with 100% support. The *Diarthron* clade and the clade of four *Daphne* species formed sister groups with 100% support (Figure 1). The complete chloroplast genome sequence of *Diarthron tianschanicum* will be a useful resource for identifying and utilizing this species in further studies. Moreover, it will be helpful to in obtaining a better understanding of the phylogeny of *Diarthron* and the family Thymelaeaceae.

Author contributions

Yong-Hong Zhang designed the research and revised the manuscript. Yi Wang analyzed the data and prepared a preliminary manuscript. Lie-Fen He analyzed the data and revised the manuscript. All authors read and approved the final manuscript, and agreed to be accountable for all aspects of the work.

Ethical approval

This research does not involve methods or subjects of ethical concern. The plant material was collected in accordance with guidelines provided by the authors’ institution (School of Life Sciences, Yunnan Normal University) and national regulations.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study is supported by the National Natural Science Foundation of China [31760048].

Figure 1. Maximum-likelihood tree of *Diarthron tianschanicum* and relatives based on complete chloroplast genomes. Bootstrap values from 1000 replicates analysis are shown next to nodes.
Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI (https://www.ncbi.nlm.nih.gov/) under accession no. ON164854. The associated BioProject, SRA, and BioSample numbers are PRJNA824691, SRR18710034, and SAMN27412273, respectively. Voucher specimens, identified by Dr. Yong-Hong Zhang, were deposited in the Herbarium of Yunnan Normal University (YNUB, Website: https://life.ynnu.edu.cn/, Contact: Jian-Lin Hang, Email: hjlynub@163.com) with the voucher number: Zhang JW 06013.

References

Chen L, Xu XQ, Jiang B. 2021. Effects of processing on toxicity and chemical components of Stelleropsis tianschanica. Chin J Mod Appl Pharm. 38(24):3071–3077.

Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4):e18.

Guan YQ, Luo Y, Ma YJ, Chen G, Song HL, Shi LL, et al. 2018. Study on the chemical components of volatile oil from the roots of Stelleropsis tianschanica and Stellera chamaejasme Linn. Northwest Pharm J. 33(2):143–148.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12):1647–1649.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549.

Ma YJ, Guan YQ, Luo Y, Ma XL, Chen G, Shi LL, et al. 2018. GC-MS analysis of the chemical components of volatile oil from the flower of Stelleropsis tianschanica and Stellera chamaejasme Linn. Guid J Tradit Chin Med Pharm. 24(15):44–48.

Patel RK, Jain M. 2012. NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLOS One. 7(2):e30619.

Qian SJ, Zhang YH, Li GD. 2020. The complete chloroplast genome of a medicinal plant, Wikstroemia chamaedaphne (Thymelaeaceae). Mitochondrial DNA B Resour. 5(1):648–649.

Shi LL, Ma YJ, Gulinar S, Guan YQ, Jia XG, Si JY, et al. 2017. GC-MS analysis of the chemical components of volatile oil from the leaf of Stelleropsis tianschanica and Stellera chamaejasme Linn. J Xinjiang Med Univ. 40(1):82–85.

Shi LL, Ma GX, Yang JS, Gulinar S, Jia XG. 2016. Chemical constituents from plant of Stelleropsis tianschanica. Chin Trad Herb Drug. 47(2):223–226.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.

Tan K. 1982. Studies in the Thymelaeaceae III: the status of Diarthron, Dendrostellera, Stelleropsis and Stellera. Notes R Bot Gard Edinb. 40(1):220.

Wang YZ, Gilbert MG. 2007. Diarthron Turczaninow. In: Wu ZY, Raven PH, Hong DY, editors. Flora of China. Vol. 13. Beijing: Science Press; p. 248–250.

Zhao D, Wu TY, Guan YQ, Ma GX, Zhang J, Shi LL, et al. 2017. Chemical constituents from roots of Stelleropsis tianschanica. China J Chin Mater Med. 42(17):3379–3384.