Exploring Adversarially Robust Training for Unsupervised Domain Adaptation

ACCV 2022

Shao-Yuan Lo and Vishal M. Patel
Johns Hopkins University
Adversarial Examples

\[x_{\text{adv}} = x + \delta \]

\[f(x_{\text{adv}}) \neq y \]
Adversarial Examples

- Deep networks are **vulnerable** to adversarial examples.

Goodfellow et al. Explaining and Harnessing Adversarial Examples. ICLR’15.
Adversarial Defenses

- **Image transformation**: Remove perturbations from input images.
 \[
 C(x_{\text{adv}}) \neq y, \\
 C(T(x_{\text{adv}})) = y.
 \]

- **Adversarial training (AT)**: Enhance the robustness of networks itself.
 \[
 \theta^* = \arg \min_{\theta} \mathbb{E}_{(x,y) \sim D} \left[\max_{\delta \in \mathcal{S}} L(x + \delta, y; \theta) \right]
 \]

Madry et al. Towards deep learning models resistant to adversarial attacks. ICLR’18.
Unsupervised Domain Adaptation (UDA)

- **Scenario**: Training (source) data and test (target) data are from different domains (i.e. datasets).
 - Cause accuracy drop due to domain shift.
- **Setting**: Given a labeled source dataset and an unlabeled target dataset, learn a model for the target domain.

Source domain	Target domain
Cityscapes	Foggy Cityscapes
Virtual KITTI	KITTI
Challenges of AT for UDA

• Conventional AT requires ground-truth labels to generate adversarial examples and train models.

• However, UDA considers the scenario that label information is unavailable to a target domain.
Challenges of AT for UDA

- Can we develop an AT algorithm specifically for the UDA problem?
- How to improve the unlabeled data robustness via AT while learning domain-invariant features for UDA?
Conventional AT on UDA

• Natural Training

\[\mathcal{L}_{CE}(C(x_s), y_s) + \mathcal{L}_{DA}(x_s, x_t) \]

• Conventional AT on UDA

\[\mathcal{L}_{CE}(C(\tilde{x}_s), y_s) + \mathcal{L}_{DA}(\tilde{x}_s, x_t) \]

• Pseudo Labeling

\[\mathcal{L}_{CE}(C(x_s), y_s) + \mathcal{L}_{CE}(C(\tilde{x}_t), y'_t) + \mathcal{L}_{DA}(x_s, \tilde{x}_t) \]
Self-supervised AT

• **Conventional AT**: Generate adversarial examples with ground-truth labels (e.g., L: cross-entropy loss)

$$x^{j+1} = \Pi_{\|\delta\|_p \leq \epsilon} \left(x^j + \alpha \cdot \text{sign}(\nabla_{x^j} L(C(x^j), y)) \right)$$

• **Self-supervised AT**: Generate adversarial examples without ground-truth labels (e.g., L: L1 loss, L2 loss, KL divergence loss)

$$x_{t}^{j+1} = \Pi_{\|\delta\|_p \leq \epsilon} \left(x_t^j + \alpha \cdot \text{sign}(\nabla_{x_t^j} L(C(x_t^j), C(x_t))) \right)$$
Self-supervised AT

• Conventional AT (PGD-AT)

\[
\min_{F,C} \mathbb{E} \left[\max_{\|\delta\|_p \leq \epsilon} \mathcal{L}(C'(\tilde{x}), y) \right]
\]

• Self-supervised AT

\[
\min_{F,C} \mathbb{E} \left[\max_{\|\delta\|_p \leq \epsilon} \mathcal{L}(C'(\tilde{x}_t), C(x_t)) \right]
\]

• Self-supervised AT on UDA

\[
\mathcal{L}_{CE}(C(x_s), y_s) + \mathcal{L}_{KL}(C'(\tilde{x}_t), C([x_t]_{sg})) + \mathcal{L}_{DA}(x_s, \tilde{x}_t)
\]
Self-supervised AT Results

- Dataset: VisDA-2017
- Attacks (white-box): FGSM [Goodfellow et al. 2015]

Training method	Clean	FGSM
Natural Training	73.2	21.2
Conventional AT [26]	62.9 (-10.3)	27.1 (+5.9)
Pseudo Labeling	33.1 (-40.1)	27.1 (+5.9)
Self-Supervised AT-L1	56.2 (-17.0)	15.8 (-5.4)
Self-Supervised AT-L2	51.3 (-21.9)	26.0 (+4.8)
Self-Supervised AT-KL	67.1 (-6.1)	35.0 (+13.8)
On the Effects of Clean and Adversarial Examples in Self-Supervise AT

- SSAT-s-t-t-1:

\[\mathcal{L}_{CE}(C(x_s), y_s) + \mathcal{L}_{KL}(C(\tilde{x}_t), C([x_t]_{sg})) + \mathcal{L}_{DA}(x_s, x_t). \]

- SSAT-s-t-t-2:

\[\mathcal{L}_{CE}(C(x_s), y_s) + \mathcal{L}_{KL}(C(\tilde{x}_t), C([x_t]_{sg})) + \mathcal{L}_{DA}(x_s, x_t) + \mathcal{L}_{DA}(\tilde{x}_s, \tilde{x}_t). \]

- SSAT-s-s-t-t-1:

\[\mathcal{L}_{CE}(C(x_s), y_s) + \mathcal{L}_{KL}(C(\tilde{x}_t), C([x_t]_{sg})) + \mathcal{L}_{CE}(C(\tilde{x}_s), y_s) + \mathcal{L}_{DA}(x_s, x_t) + \mathcal{L}_{DA}(\tilde{x}_s, \tilde{x}_t). \]

- SSAT-s-s-t-t-2:

\[\mathcal{L}_{CE}(C(x_s), y_s) + \mathcal{L}_{KL}(C(\tilde{x}_t), C([x_t]_{sg})) + \mathcal{L}_{CE}(C(\tilde{x}_s), y_s) + \mathcal{L}_{DA}(x_s, \tilde{x}_t) + \mathcal{L}_{DA}(\tilde{x}_s, x_t). \]

- SSAT-s-s-t-t-3:

\[\mathcal{L}_{CE}(C(x_s), y_s) + \mathcal{L}_{KL}(C(\tilde{x}_t), C([x_t]_{sg})) + \mathcal{L}_{CE}(C(\tilde{x}_s), y_s) + \mathcal{L}_{DA}(x_s, x_t) + \mathcal{L}_{DA}(\tilde{x}_s, x_t) + \mathcal{L}_{DA}(\tilde{x}_s, \tilde{x}_t). \]
On the Effects of Clean and Adversarial Examples in Self-Supervise AT

- Dataset: VisDA-2017
- Attacks (white-box): FGSM [Goodfellow et al. 2015]

Training method	x_s	\tilde{x}_s	x_t	\tilde{x}_t	(x_s, x_t)	(x_s, \tilde{x}_t)	(\tilde{x}_s, x_t)	$(\tilde{x}_s, \tilde{x}_t)$	Clean	FGSM
Natural Training	•	•	•	•	—	—	—	—	73.2	21.2
Conventional AT [26]	•	•	•	•	—	—	—	•	62.9	27.1
SS-AT-KL	•	•	•	•	—	—	—	—	67.1	35.0
SS-AT-s-t-\tilde{1}	•	•	•	•	—	—	—	—	67.3	27.5
SS-AT-s-t-\tilde{2}	•	•	•	•	•	—	—	—	73.0	39.4
SS-AT-s-\tilde{s-t-\tilde{1}}	•	•	•	•	•	•	—	—	63.4	41.6
SS-AT-s-\tilde{s-t-\tilde{2}}	•	•	•	•	•	•	—	—	62.8	42.3
SS-AT-s-\tilde{s-t-\tilde{3}}	•	•	•	•	•	•	—	—	61.3	41.6
On the Effects of Batch Normalization in Self-Supervise AT

• Dataset: VisDA-2017

• Attacks (white-box): FGSM [Goodfellow et al. 2015]

Method	Mini-batches	Clean	FGSM
Batch-st-t	$[x_s, x_t], [\tilde{x}_t]$	73.0	39.4
Batch-s-t-t	$[x_s], [x_t, \tilde{x}_t]$	68.2	37.0
Batch-s-t-t	$[x_s], [x_t], [\tilde{x}_t]$	68.2	35.5
Batch-stt	$[x_s, x_t, \tilde{x}_t]$	69.0	41.4
Results

- Comparison with baselines on multiple datasets and attacks

Dataset	Training method	Clean	FGSM	PGD	MI-FGSM	MultAdv	Black-box
VisDA-2017	Natural Training	73.2	21.2	0.9	0.5	0.3	58.3
	PGD-AT [26]	60.5	34.6	21.3	22.7	7.8	59.1
	TRADES [42]	64.0	42.1	29.7	31.2	16.4	62.6
	ARTUDA (ours)	65.5	52.5	44.3	45.0	27.3	65.1
Office-31	Natural Training	98.0	52.7	0.9	0.6	0.1	95.0
D → W [31]	PGD-AT [26]	95.3	91.8	68.2	66.5	31.4	95.3
	TRADES [42]	88.4	85.3	66.4	67.0	28.2	88.2
	ARTUDA (ours)	96.5	95.2	92.5	92.5	77.1	96.5
Office-Home	Natural Training	54.5	26.4	4.7	2.8	2.0	53.1
Ar → Cl [36]	PGD-AT [26]	42.5	38.8	36.0	35.8	21.7	43.0
	TRADES [42]	49.3	45.1	41.6	41.6	22.5	49.4
	ARTUDA (ours)	54.0	49.5	41.3	39.9	21.6	53.9
Results

• Comparison with baselines on multiple UDA algorithms

UDA algorithm →	Training method ↓	DANN [8]	PGD	Drop	Clean	JAN [24]	PGD	Drop	CDAN [23]	Clean	PGD	Drop
Natural Training		Clean	73.2	0.0	-73.2	64.2	0.0	-64.2	75.1	0.0	-75.1	
PGD-AT [26]		Clean	60.5	13.3	-47.2	47.7	5.8	-41.9	58.2	11.7	-46.5	
TRADES [42]		Clean	64.0	19.4	-44.6	48.7	8.5	-40.2	64.6	15.7	-48.9	
Robust PT [2]		Clean	65.8	38.2	-27.6	55.1	32.2	-22.9	68.0	41.7	-26.3	
RFA [2]		Clean	65.3	34.1	-31.2	63.0	32.8	-30.2	72.0	43.5	-28.5	
ARTUDA (ours)		Clean	65.5	40.7	-24.8	58.5	34.4	-24.1	68.0	43.6	-24.4	
Feature Analysis

• Mean square differences between the features of clean images and the features of adversarial examples.

• t-SNE visualization
Conclusion

• We provide a systematic study into various AT methods that are suitable for UDA.

• We propose ARTUDA, a new AT method specifically designed for UDA. To the best of our knowledge, it is the first AT-based UDA defense method that is robust against white-box attacks.

• Comprehensive experiments show that ARTUDA consistently improves UDA models’ adversarial robustness under multiple attacks and datasets.