Complete genome sequence of *Mycobacterium sp.* strain (Spyr1) and reclassification to *Mycobacterium gilvum* Spyr1

Aristeidis Kallimanis¹, Eugenia Karabika¹, Kostantinos Mavromatis², Alla Lapidus², Kurt M. LaButti², Konstantinos Liolios², Natalia Ivanova², Lynne Goodwin²,³, Tanja Woyke², Athanasios D. Velentzas⁴, Angelos Perisyvakis⁵, Christos C. Ouzounis⁵, Nikos C. Kyrpides², Anna I. Koukkou¹*, and Constantin Drainas¹†

¹ Sector of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
² DOE Joint Genome Institute, Walnut Creek, California, USA
³ Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
⁴ Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, 15701, Athens, Greece
⁵ Centre for Bioinformatics, Department of Informatics, School of Natural & Mathematical Sciences, King’s College London (KCL), London WC2R 2LS, UK

*Corresponding author: Anna I. Koukkou, email: akukku@cc.uoi.gr
† In memory of professor Constantin Drainas who lost his life in a car accident on July 5th, 2011.

Mycobacterium sp. Spyr1 is a newly isolated strain that occurs in a creosote contaminated site in Greece. It was isolated by an enrichment method using pyrene as sole carbon and energy source and is capable of degrading a wide range of PAH substrates including pyrene, fluoranthene, fluorene, anthracene and acenaphthene. Here we describe the genomic features of this organism, together with the complete sequence and annotation. The genome consists of a 5,547,747 bp chromosome and two plasmids, a larger and a smaller one with sizes of 211,864 and 23,681 bp, respectively. In total, 5,588 genes were predicted and annotated.

Keywords: *Mycobacterium gilvum*, PAH biodegradation, pyrene degradation.

Introduction

Strain Spyr1 (=LMG 24558, =DSM 45189) is a new strain which based on its morphological and genomic features, belongs to the genus *Mycobacterium* [1]. It was isolated from Perivleptos, a creosote polluted site in Epirus, Greece (12 Km North of the city of Ioannina), where a wood preserving industry was operating for over 30 years. Strain Spyr1 is of particular interest because it is able to utilize a wide range of PAH substrates as sole sources of carbon and energy, including pyrene, fluoranthene, fluorene, anthracene and acenaphthene. Microbial degradation is one of the major routes by which Polycyclic Aromatic Hydrocarbons (PAHs) can be removed from the environment. Strain Spyr1 metabolizes pyrene to 1-Hydroxy-2-naphthoic acid which subsequently is degraded via o-phthalic acid, a pathway also proposed for other *Mycobacterium* strains [1] exhibiting desirable PAH degradation properties as follows. Complete degradation of pyrene at concentrations 80 mg/L occurred within eight days of incubation in the dark [1]. The extrapolated degradation rate for the growth-phase can be averaged to 10 g/ml⁻¹·day⁻¹, a value similar to that reported for other *Mycobacterium* species [2,3]. Addition of vitamins or trace amounts of yeast extract were not required for the growth of Spyr1 on any PAH, unlike other *Mycobacterium* spp. [4]. Use of free or entrapped cells of strain Spyr1 resulted in total removal of PAH from spiked soil samples [1]. Here a summary classification and a set of features for strain Spyr1, along with the description of the complete genome sequence and annotation are presented.
Classification and Features
The phylogenetic tree of strain Spyr1 according to 16S rDNA sequences is depicted in Figure 1.

The sequence identity of the 16S rRNA genes of strain Spyr1 to those from the two \textit{M. gilvum} strains is 99%, while the average nucleotide identity (ANI) \cite{5} between strain Spyr1 and \textit{M. gilvum} PYR-GCK is 98.5. This information indicates that Spyr1 is a strain of \textit{M. gilvum}. Accordingly, we propose the renaming of the Spy1 strain to \textit{M. gilvum} Spyr1. The ANI values between strain Spyr1 and other sequenced Mycobacteria are depicted in Figure 2.

Strain Spyr1 is an aerobic, non-motile rod, with a cell size of approximately 1.5-2.0 \times 3.5-5.0 \, \mu m and produces only a weakly positive result under Gram staining. (Figure 3). Colonies were slightly yellowish on Luria agar. The temperature range for growth was 4-37°C with optimum growth at 30-37°C. The pH range was 6.5-8.5 with optimal growth at pH 7.0-7.5. Strain Spyr1 was found to be sensitive to various antibiotics, the minimal inhibitory concentrations were reported as follows: chloramphenicol 10 mgL^{-1}, erythromycin 10 mgL^{-1}, rifampicin 10 mgL^{-1} and tetracycline 10 mgL^{-1}.

Catalase and nitrate reductase tests were positive, whereas arginine dihydrodase, gelatinase, lipase, lysine and ornithine decarboxylase, oxidase, urease, citrate assimilation and \text{H}_2\text{S} production tests were negative. No acid was produced in the presence of glucose, lactose, sucrose, arabinose, galactose, glycerol, \textit{myo}-inositol, maltose, mannitol, raffinose, sorbitol, sucrose, trehalose and xylose (see also Table 1).

Chemotaxonomy
Strain Spyr1 major fatty acids are C_{16:1} (16.7%), C_{16:0} (32.9%), C_{18:1} (47.5%), C_{18:0} (1.0%) and C_{19:0} cyclo(1.1%). The major phospholipids were phosphatylethanolamine (PE), phosphatidyglycerol (PG) and diphosphatidyglycerol (DPG) (80.4, 4.7 and 15.0% respectively).
Mycobacterium gilvum Spyr1

Table 1. Classification and general features of strain Spyr1 according to the MIGS recommendations [6]

MIGS ID	Property	Term	Evidence code	
		Domain Bacteria	TAS [7]	
		Phylum Actinobacteria	TAS [8]	
		Class Actinobacteria	TAS [9]	
		Subclass Actinobacteridae	TAS [9,10]	
		Order Actinomycetales	TAS [9-12]	
		Suborder Corynebacterineae	TAS [9,10]	
		Family Mycobacteriaceae	TAS [9-11,13]	
		Genus Mycobacterium	TAS [11,14,15]	
		Species Mycobacterium gilvum	TAS [11,13]	
		strain Spyr1	TAS [1]	
		Gram stain	Weakly positive	TAS [1]
		Cell shape	irregular rods	TAS [1]
		Motility	Non motile	TAS [1]
		Sporulation	nonsporulating	NAS
		Temperature range	mesophile	TAS [1]
		Optimum temperature	30°C	TAS [1]
		Salinity	normal	TAS [1]
		MIGS-22 Oxygen requirement	aerobic	TAS [1]
		Carbon source	Pyrene, fluoranthene, phenanthrene, anthracene, glucose, yeast extract	TAS [1]
		Energy source	Pyrene, fluoranthene, phenanthrene, anthracene, glucose, yeast extract	TAS [1]
		MIGS-6 Habitat	Soil	TAS [1]
		MIGS-15 Biotic relationship	Free-living	NAS
		MIGS-14 Pathogenicity	none	NAS
		Biosafety level	1	NAS
		Isolation	Creosote contaminated soil	TAS [1]
		MIGS-4 Geographic location	Perivleptos, Epirus, Greece	TAS [1]
		MIGS-5 Sample collection time	April 2000	TAS [1]
		MIGS-4.1 Latitude	39.789	NAS
		MIGS-4.2 Longitude	20.781	NAS
		MIGS-4.3 Depth	10-20 cm	TAS [1]
		MIGS-4.4 Altitude	500 m	TAS [1]

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [16].
Figure 2. ANI values between *Mycobacterium* sp. Spyr1 and other Mycobacteria. The red line is drawn at ANI 95 a suggested threshold for species.

Figure 3. Scanning electron micrograph of *Mycobacterium gilvum* strain Spyr1.
Mycobacterium gilvum Spyr1

Genome sequencing information
Genome project history
This organism was selected for sequencing on the basis of its biodegradation capabilities, i.e. metabolizes phenanthrene as a sole source of carbon and energy. The genome project is deposited in the Genome OnLine Database [17] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI). A summary of the project information is shown in Table 2.

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
MIGS-28	Libraries used	Tree genomic libraries: Sanger 9 kb pMCL200, fosmids and 454 standard library
MIGS-29	Sequencing platforms	ABI3730, 454 GS FLX
MIGS-30	Assemblers	Newbler version 1.1.02.15, Arachne
MIGS-31.2	Sequencing coverage	10.26 × Sanger; 43.3 × pyrosequence
MIGS-32	Gene calling method	Prodigal 1.4, GenePRIMP
Genbank ID		CP002385, CP002386, CP002387
Genbank Date of Release		December 21, 2010
GOLD ID		Gc01567
NCBI project ID		28521
Database: IMG		649633070
MIGS-13	Source material identifier	DSM 45189
Project relevance		Bioremediation, PAH degradation

Growth conditions and DNA isolation
Mycobacterium gilvum Spyr1, DSM 45189 was grown aerobically at 30°C on MM M9 containing 0.01% (w/v) pyrene. DNA was isolated according to the standard JGI (CA, USA) protocol for bacterial genomic DNA isolation using CTAB.

Genome sequencing and assembly
The genome of Mycobacterium gilvum Spyr1 strain was sequenced using a combination of Sanger and 454 sequencing platforms. All general aspects of library construction and sequencing can be found at the JGI website [18]. Pyrosequencing reads were assembled using the Newbler assembler version 1.1.02.15 (Roche). Large Newbler contigs were broken into 6,290 overlapping fragments of 1,000 bp and entered into assembly as pseudo-reads. The sequences were assigned quality scores based on Newbler consensus q-scores with modifications to account for overlap redundancy and to adjust inflated q-scores. A hybrid 454/Sanger assembly was made using the Arachne assembler [19]. Possible mis-assemblies were corrected and gaps between contigs were closed by editing in Consed, with custom primer walks from subclones or PCR products. A total of 346 Sanger finishing reads were produced to close gaps, resolve repetitive regions, and raise the quality of the finished sequence. The error rate of the completed genome sequence is less than 1 in 100,000. Together, the combination of the Sanger and 454 sequencing platforms provided 53.56 x coverage of the genome. The final assembly contains 61,443 Sanger reads and 1,300,893 pyrosequencing reads.

Genome annotation
Genes were identified using Prodigal [20] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [21]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Comparative analysis was performed within the Integrated Microbial Genomes (IMG) platform [22].
Genome properties
The genome consists of a 5,547,747 bp long circular chromosome with a G+C content of 68% and two plasmids (Figures 4-6, Table 3). The larger is 211,864 bp long with 66% G+C content and the smaller 23,681 bp with 64% G+C content (Table 3 and Figure 4, Figure 5 and Figure 6) Of the 5,434 genes predicted, 5,379 were protein-coding genes, and 55 RNAs; 30 pseudogenes were also identified. The majority of the protein-coding genes (67.3%) were assigned a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.

Figure 4. Graphical circular map of the chromosome of strain Spyr1. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Figure 5. Graphical circular map of first plasmid of strain Spyr1. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.

Figure 6. Graphical circular map of second plasmid of strain Spyr1. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Table 3. Genome Statistics

Attribute	Value	% of Total
Genome size (bp)	5,783,292	100.00%
DNA coding region (bp)	5,256,086	90.88%
DNA G+C content (bp)	3,918,840	67.76%
Number of replicons	1	
Extrachromosomal elements	2	
Total genes	5,434	100.00%
RNA genes	55	1.01%
rRNA operons	2	
Protein-coding genes	5,379	98.99%
Pseudo genes	30	0.55%
Genes with function prediction	3,657	67.30%
Genes in paralog clusters	403	7.42%
Genes assigned to COGs	4,038	74.31%
Genes assigned Pfam domains	4,188	77.07%
Genes with signal peptides	1,617	29.76%
Genes with transmembrane helices	1,185	33.80%
CRISPR repeats	0	

Table 4. Number of genes associated with the general COG functional categories

Code	Value	%age	Description
J	154	3.4	Translation, ribosomal structure and biogenesis
A	20	0.4	RNA processing and modification
K	398	8.7	Transcription
L	305	6.7	Replication, recombination and repair
B	1	0.0	Chromatin structure and dynamics
D	34	0.7	Cell cycle control, cell division, chromosome partitioning
Y	0	0.0	Nuclear structure
V	46	1.0	Defense mechanisms
T	193	4.2	Signal transduction mechanisms
M	176	3.9	Cell wall/membrane/envelope biogenesis
N	10	0.2	Cell motility
Z	1	0.0	Cytoskeleton
W	0	0.0	Extracellular structures
U	38	0.8	Intracellular trafficking, secretion and vesicular transport
O	132	2.9	Posttranslational modification, protein turnover, chaperones
C	303	6.6	Energy production and conversion
G	198	4.3	Carbohydrate transport and metabolism
E	320	7.0	Amino acid transport and metabolism
F	81	1.8	Nucleotide transport and metabolism
H	170	3.7	Coenzyme transport and metabolism
I	412	9.0	Lipid transport and metabolism
P	216	4.7	Inorganic ion transport and metabolism
Q	362	7.9	Secondary metabolites biosynthesis, transport and catabolism
R	636	14.0	General function prediction only
S	351	7.7	Function unknown
-	1,396	25.7	Not in COGs

http://standardsingenomics.org
Acknowledgements
This work was funded by the program “Pythagoras II” of EPEAEK with 25% National Funds and 75% European Social Funds (ESF) and partly supported by the European Commission FP7 Collaborative Project MICROME (grant agreement number 222886-2). Sequencing and annotation was supported by the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396.

References
1. Karabika E, Kallimanis A, Dados A, Pilidis G, Drainas C, Koukkou AI. Taxonomic identification and use of free and entrapped cells of a new Mycobacterium sp., strain Spyr1 for degradation of polycyclic aromatic hydrocarbons (PAH). Appl Biochem Biotechnol 2009; 159:155-167. PubMed doi:10.1007/s12010-008-8463-1

2. Dean-Ross D, Cerniglia CE. Degradation of pyrene by Mycobacterium flavescens. Appl Microbiol Biotechnol 1996; 46:307-312. PubMed doi:10.1007/s002530050822

3. Vila J, Lopez Z, Sabate J, Minuillon C, Solanas A, Grifoll M. Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 2001; 67:5497-5505. PubMed doi:10.1128/AEM.67.12.5497-5505.2001

4. Heitkamp MA, Franklin W, Cerniglia CE. Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl Environ Microbiol 1988; 54:2549-2555. PubMed

5. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567-2572. PubMed doi:10.1073/pnas.0409727102

6. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angioli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541-547. PubMed doi:10.1038/nbt1360

7. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed doi:10.1073/pnas.87.12.4576

8. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 119-169.

9. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479-491. doi:10.1099/00207713-47-2-479

10. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009; 59:589-608. PubMed doi:10.1099/ijs.0.65780-0

11. Skerman VBD, McGowan V, Sneath PHA. Approved Lists of Bacterial Names. Int J Syst Bacteriol 1980; 30:225-420. doi:10.1099/00207713-30-1-225

12. Buchanan RE. Studies in the nomenclature and classification of bacteria. II. The primary subdivisions of the Schizomycetes. J Bacteriol 1917; 2:155-164. PubMed

13. Chester FD. Report of mycologist: bacteriological work. Delaware Agricultural Experiment Station Bulletin 1897; 9:38-145.

14. Lehmann KB, Neumann R. Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik, First Edition, J.F. Lehmann, München, 1896, p. 1-448.

15. Runyon EH, Wayne LG, Kubica GP. Genus I. Mycobacterium Lehmann and Neumann 1896. 363. In: Buchanan RE, Gibbons NE (eds), Bergey's Manual of Determinative Bacteriology, Eighth Edition, The Williams and Wilkins Co., Baltimore, 1974, p. 682-701.

16. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. Nat Genet 2000; 25:25-29. PubMed doi:10.1038/75556
17. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. *Nucleic Acids Res* 2010; 38:D346-D354. PubMed doi:10.1093/nar/gkp848

18. The Joint Genome Institute. http://www.jgi.doe.gov

19. Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, Mauceli E, Berger B, Mesirov JP, Lander ES. ARACHNE: a whole-genome shotgun assembler. *Genome Res* 2002; 12:177-189. PubMed doi:10.1101/gr.208902

20. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal Prokaryotic Dynamic Programming Genefinding Algorithm. *BMC Bioinformatics* 2010; 11:119. PubMed doi:10.1186/1471-2105-11-119

21. Pati A, Ivanova N, Mikhailova N, Ovchinikova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: A Gene Prediction Improvement Pipeline for microbial genomes. *Nat Methods* 2010; 7:455-457. PubMed doi:10.1038/nmeth.1457

22. Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Rather A, Anderson I, Lykidis A, Mavromatis K, et al. The Integrated Microbial Genomes (IMG) system: an expanding comparative analysis resource. *Nucleic Acids Res* 2010; 38:D382-D390. PubMed doi:10.1093/nar/gkp887

23. Pribram E. A contribution to the classification of microorganisms. *J Bacteriol* 1929; 18:361-394. PubMed

24. Conn HJ, Dimmick I. Soil bacteria similar in morphology to *Mycobacterium* and *Corynebacterium*. *J Bacteriol* 1947; 54:291-303.

25. Stanford JL, Gunthorpe WJ. A study of some fast-growing scotochromogenic mycobacteria including species descriptions of *Mycobacterium gilvum* (new species) and *Mycobacterium duvalii* (new species). *Br J Exp Pathol* 1971; 52:627-637. PubMed