Yaklaşık Model Kullanarak Bir Sınıf Eksik Sürümüş Euler Lagrange Sistemin Kararlı Kılınması

Stabilizing a Class of Under-actuated Euler-Lagrange Systems

Using an Approximate Model

Hüseyin Alpaslan Yıldız1, Leyla Gören Sümer4

1Kontrol ve Otomasyon Mühendisliği Bölümü
İstanbul Teknik Üniversitesi
alpaslan.yildiz@itu.edu.tr, leyla.goren@itu.edu.tr

Özet
Bu çalışmada eksik sürümülü Euler Lagrange (EL) sistemlerinin kararlı hale getirilmesi için model yaklaşımlarının kullanılacağı bir yöntem sunulmuştur. Daha önce yapılan çalışmalarla Eksik sürümülü EL sistemlerin kontrolü için farklı yöntemler öne sürülmüştür. Ancak bu yöntemler bir takım kendi diferansiyel denklemler (ing. PDE) çözümünü gerektirir. Bulunan sonuçlar araç ters sarkaç fonksiyonunun minimum noktasından elde edilmiştir. [3].

Abstract
In this paper, an approach based on approximation of Euler Lagrange system is proposed to stabilize an under-actuated nonlinear system. In a number of recent papers several methods have been introduced for stabilizing underactuated EL systems. However these methods contain solving of a set of nonlinear Partial Differential Equations (PDE) and this is not an easy task. The PDEs named as matching conditions are required to solve for controlling the underactuated systems. In this paper, the PDEs are solved using the approximation of inertia matrix instead of original one. Also the control rule is obtained from these results. Finally, the results are applied to a cart and pendulum system.

1. Giriş
Kontrol mühendisliğinde lineer olmayan Euler Lagrange (EL) sistemlerin kontrol problemi özellikle eksik sürümülü sistemler için çözüm zor bir problemdir [1]. Bu problemin çözümü için önerilen yöntemlerden birisi de pasifliğe dayalı kontrol (PBC). Özellikle lineer olmayan EL ve Hamiltonian sistemlerin kontrolü probleminin çözümünü sağlayan güçlü bir yöntemdir [2].

Pasifliğe dayalı kontrol yöntemi iki önemli adımдан oluşur. İlk adım sistem enerji fonksiyonunu biçimlendiren denklemler (ing. PDE) üzerindeki denklemlerin çözümlerine dayanır. Bu yöntem daha önce pasiflik (PBC) yöntemlerine dayanır [10]. Bu yöntemler geri besleme yoluyla, açık çevrim sistemleri, istenen denge noktasında kararlı bir sinif sistem docrelen kiylajın isaretini bulunması için ikinin ise sisteme önemli ekleyen ve o noktada asimptotik kararlı hale getirecek $u_\text{el}(t)$ isaretini bulunmaktadır. Bu denge noktası kapalı çevrimli sistemler enerji fonksiyonunun minimum noktasıdır [3].

Son yıllarda yapılan çalışmalar daha çok eksik sürümülü sistemlerin kararlılığı sağlanmak amacıyla sistemlerin hem kinetik hem de potansiyel enerji fonksiyonunu biçimlendirecek bir İDA-PBC yöntemi üzerine yoğunlaşmıştır. Eksik sürümülü sistemlerde potansiyel enerji sisteminin kararlılığını için yeteler için eksik sürümülü bir sistemde, sistem enerjinin enerjisini de biçimlendirmektedir. Ayrıca şekilde eksik sürümülü EL sistemlerin toplam enerjiyi kiếnlendirmek önerisi ilk defe [4]'de ortaya konulmuştur ve bundan sonra bu konuda bir çok katkı sağlanmıştır ve burada iki temel yaklaşım göze çarpmaktadır: kontrolü Lagrange yöntemi [5], [6], ve İDA-PBC [7], [3]. Literatürde bu konu ile yakından ilgili başka çalışmalar da mevcuttur [8], ayrıca [9]'da bu konu üzerine oldukça geniş bir referans listesi yer almaktadır [10]. Ayrıca mekanik sistemlerin gerçekleştirilen kümese içinde iki çözüm birbirine dönüştürebiildiği de gösterilmştir [11].

Bu yöntemler geri besleme yoluya, açık çevrim sistemi, istenen denge noktasında kararlı bir sinif sistem(docrelen kiylajın isaretini bulunması için ikinin ise sisteme önemli ekleyen ve o noktada asimptotik kararlı hale getirecek $u_\text{el}(t)$ isaretini bulunmaktadır. Bu denge noktası kapalı çevrimli sistemler enerji fonksiyonunun minimum noktasıdır [3].

Daha önce doğrusal Hamiltonian sistemlerin eğilme koşullarının çözümüne yönelik bir çalışmanın amacı [10]’da önerilen yaklaşımın kontrollu Lagrange yöntemi genelleştirilmiştir. Eğilme koşullarının çözümü için suanlıkla yöntemin temel bakış açısı sistem ataları matrizleri, bir diş sabit atalı matrizlerinin radyal temelli fonksiyonları birlikte harmanlanmasını oluşturmak ve bu şekilde eğilme koşullarının yaklaştık çözümülerine elde etmeye dayanmıştır [10]. Bu sayede gerçek sistem enerji fonksiyonunu biçimlendirmek ve asimptotik kararlılığı sağlanması için çözüm eklenmektedir. Bulunan sonuçlar araç ters kararlı sistemi üzerinde uygulanacaktır.
2. Ön Bilgiler

Konfigürasyon uzayı Q n boyutlu ise, bir Euler Lagrangian sistem (EL):
\[
\frac{d}{dt} \frac{\partial L(q, \dot{q})}{\partial \dot{q}} - \frac{\partial L(q, \dot{q})}{\partial q} = G(q)u
\] \((1) \)

şeklinde tanımlanır. [6]. Burada $G(q) \in \mathbb{R}^{n \times m}$ olmak üzere $n < m$ ise sistem eksik sürümüdür. Benzer şekilde istenen kapalı çevrimi sistem EL modeli,
\[
\frac{d}{dt} \frac{\partial L(q, \dot{q})}{\partial \dot{q}} - \frac{\partial L(q, \dot{q})}{\partial q} = G(q)u
\] \((2) \)

şekline olsun. Burada $u_e = 0$ veya jiroskopik bir kuvvet olarak tanımlanmıştır [6].

Toplu parametrelleri sistem için lagrangian fonksiyonu:
\[
L(q, \dot{q}) = \frac{1}{2} q^T M(q) \dot{q} - V(q)
\] \((3) \)

şekline tanımlar [6]. Bu durumda kontrol söz ve kontrolü sistem hareket denklemleri,
\[
\begin{align*}
\dot{q} &= M^{-1} G(q) u - M^{-1} \partial M(q) \dot{q} + \frac{1}{2} M^{-1} \partial^2 q^T M(q) \dot{q} \\
\ddot{q} &= M^{-1} u_e - M^{-1} \partial M(q) \dot{q} + \frac{1}{2} M^{-1} \partial^2 q^T M(q) \dot{q} + \partial^2 V(q) q
\end{align*}
\] \((4a) \)
\((4b) \)

Bu işlem sonucu, kinetik enerji eşleme koşolu,
\[
G^* \left(\frac{\partial M(q) \dot{q}}{\partial q} - M^{-1} \partial M(q) \dot{q} \right) \dot{q} = \frac{1}{2} M^{-1} \partial^2 q^T M(q) \dot{q}
\] \((5) \)

va potansiyel enerji eşleme koşulu ise;
\[
G^* \left(\frac{\partial V(q)}{\partial q} - M^{-1} \partial V(q) \right) = 0
\] \((6) \)

ve potansiyel enerji eşleme koşulu ise;
\[
G^* \left(\frac{\partial M(q) \dot{q}}{\partial q} - M^{-1} \partial M(q) \dot{q} \right) \dot{q} = \frac{1}{2} M^{-1} \partial^2 q^T M(q) \dot{q}
\] \((7) \)

ve potansiyel enerji eşleme koşulu ise;
\[
G^* \left(\frac{\partial V(q)}{\partial q} - M^{-1} \partial V(q) \right) = 0
\] \((8) \)

şekline elde edilir. Burada $G^* : (\mathbb{R}^{n \times m})^T \rightarrow (\mathbb{R}^n)^T$, G nin sol yok edisidir.

(4a) ile verilen açık çevrim sistemi (4b) sistemine eşleyen kontrol işareti $u(\cdot)$ ise,
\[
u = (G^T G)^{-1} G^T \left(\frac{\partial M(q) \dot{q}}{\partial q} - M^{-1} \partial M(q) \dot{q} \right) \dot{q}
\] \((9) \)

şiğinde elde edilir [6].

Kontrol işaretiinin elde edilebilmesi için önce (7) ve (8) de verilen eşleme koşullarını sağlayan bir $M(q) > 0$ ve jiroskopik olma özelliğinde bir u_e tani $u_e(q) \dot{q} = 0$ olan bir fonksiyonun var olması ve hesaplanması gerekir [6].

Eşleme koşullarının genel çözümü literatürde mevcuttur. [6], [7], [3], [8]. Ayrıca Gören-Sümer, Şengör, 2015’in yaklaşımlık model kullanarak PDE’lerin çözümüne ilişkin bir çalışması mevcuttur. Bu çalışmada Hamiltonian sistemlerin eşleme koşullarının çözümünde sistem yaklaşımlık modelinin kullanılması önemlidir.

Bu çalışmada aynı yöntem EL sistemlerle uygulanmaktadır. Sonuçta, bu PDE’lerin yaklaşımlık çözümlerini elde edip kontrol işaretinin oluşturulmasından kullanılmaktadır. Bu amaçla, öncelik sistem yaklaşımlık modelleri elde edilecek daha sonra yeni eşleme koşulları yaklaşımlık modeller kullanılarak tekrar elde edilecektir.

3. Yaklaşımlık Model ve Eşleme Koşulları

Sistemin yaklaşımlık modelini elde etmek için; bir EL sistemin konfigürasyon uzayında, r alt bölgesi tanımlanır:
\[
S_r \triangleq \{ q \in \mathbb{R}^n \mid h_r(q) \geq h_i(q), i = 1, ..., n, r \in \mathbb{I} \}
\] \((10) \)

Burada $h_i(q)$ ‘ler, $0 < h_i(q) \leq 1$ koşulunu sağlayan skalar fonksiyonlardır. Sistemin genelleştirilmiş eylemsizlik matrisinin bir yaklaşımlık,
\[
\bar{M}(q) = \sum_i h_i(q) M_i
\] \((11) \)

olarak tanımlanır. Burada $M_i > 0, \forall i$ koşulunu sağlayan, $h_i(q)$ fonksiyonları radyal merkezi fonksiyonlar veya üyelik fonksiyonları olarak seçilebilir.

Yaklaşımlık modelin gerçek modele yaklaştığı,
\[
\min \left\| M(q) - \sum_i h_i(q) M_i \right\|
\] \((12) \)

ifadeleri ile verilir. Sisteme ilişkin Lagrangian fonksiyonu, $\bar{M}(q)$ ifadesi kullanılarak,
\[
\bar{L}(q, \dot{q}) = \frac{1}{2} \bar{q}^T \bar{M}(q) \dot{q} - V(q)
\] \((13) \)

şekline tanımlanır. Bu durumda sistemin hareket denklemleri:
\[
G(q) u = \frac{d}{dt} (\bar{M}(q) \dot{q}) - \frac{1}{2} (\bar{G}(q) \dot{q})^T \bar{r}
\] \((14) \)

olarak elde edilir. Bu ifade $\bar{M}(q)$’lar yerine yazıldığında açık çevriminin sistem yaklaşımlık modeli:
\[
G(q) u = \sum_i \left[h_i(q) M_i \dot{q} + \left(\bar{q}^T \bar{V}_i \bar{h}_i(q) \right) M_i \dot{q} \right]
\] \((15) \)

olarak bulunur.

Bir önceki bölümde (10) ve (11) ile verilen tanımlar uygulanarak (4b)’de verilen kapalı çevrim sistemine yaklaşımlık modeli,
\[
\sum_i \left[h_i(q) M_i \dot{q} + \left(\bar{q}^T \bar{V}_i \bar{h}_i(q) \right) M_i \dot{q} \right]
\] \((16) \)

şiğinde yazılabilir. Önbilgiler bolumünde özetlenen standart kontrollü lagrangian yönteminde izlenen yol kullanılarak eşleme koşulları çiktıslaşırakin enerji eşleme koşulu,

253
Eğer kapalı çevrili sistem için \(h_{ci}(q) \) fonksiyonları,

\[
\frac{d}{dt} h_{ci}(q) = q \in S_i
\]

ve potansiyel enerji eşleşme koşulu ise,

\[
G = \left[\left(\frac{\partial h_i(q)}{\partial q} - \frac{1}{2} \frac{\partial h_{ci}(q)}{\partial q} \right) \right] = 0
\]

olacaktır. Ayni zamanda \(\nabla h_{ci}(q) = 0 \) olacağını için kinetik enerji eşleşme koşulu:

\[
G = \left[\left(\frac{\partial h_i(q)}{\partial q} - \frac{1}{2} \frac{\partial h_{ci}(q)}{\partial q} \right) \right] = 0
\]

seçilecek yazılır.

Burada \(\dot{q} = \ddot{q} u_c = \dot{q} f_c \) olduğunu sağlayan çarpık simetrik bir matrisidir. Ayrıca (22) den gösterilebileceğini gibi, yaklaşık model oluşturulurken (12) de verilen koşula ek olarak \(h_i(q) \)'lar,

\[
\min \left[\left(\frac{\partial h_j(q)}{\partial q} - \frac{1}{2} \frac{\partial h_{cj}(q)}{\partial q} \right) \right] = 0
\]

ilişkisini sağlayacak şekilde seçilmelidir.

[10] de verilen Lemma, EL sistem için düzenlenmiş hali aşağıda verilmiştir.

Lemma:

\[
\frac{\partial h_i(q)}{\partial q} > 0 \quad \text{ve} \quad \frac{\partial h_{ci}(q)}{\partial q} > 0 \quad \text{olan bir} \quad V_c(q) \quad \text{ve} \quad M_{ci} > 0
\]

olsun durumunda aşağıdaki koşul sağlanır:

\[
\frac{\partial V_c(q)}{\partial q} = 0, \quad \forall i
\]

[25] \(r \) adet matris için aşağıdaki koşul sağlanır:

\[
G = (M_{ci} - M_{ci}^{-1}) = 0, \quad \forall i, j
\]

İspat:

(26) denklemi tüm \(M_{ci}^{-1} \) 'ler için sağlanması gerektйтğinden, lemm'a da verilen önkoşullar altında tüm \(M_{ci}^{-1} \) 'ler birbirine eşit olmalı.

4. Araç Ters Sarkaç Sistemi

Araç ters sarkaç sistemi (Şekil-1) eksik sıralanmış, lineer olmayan sistemlere en temel örnekleri biridir, Çalışmada elde edilen sonuçları doğruluğu bu sistem üzerinde gösterilmiştir.

Bu sistemden değişkenleri ve enerji fonksiyonları aşağıdaki gibidir [6]:

\[
q = \left[\begin{array}{c} q_1 \\ q_2 \end{array} \right], \quad v = \left[\begin{array}{c} \dot{q}_1 \\ \dot{q}_2 \end{array} \right], \quad K = \frac{1}{2} (M + m) \dot{q}_1^2 + m \ddot{q}_1 \cos q_1 + \frac{1}{2} m \dot{q}_2^2
\]

\[
\ddot{q}_1 = -m g \cos q_1
\]

Yukarı verilen denklemleri kullanarak sistemin hareket denklemlerini aşağıdaki sekilde elde edilir:

\[
(m + M) \ddot{q}_1 = m \ddot{q}_2 \cos q_1 - m \dddot{q}_1 \sin q_1
\]

\[
\dot{q}_2 = m \dddot{q}_1 + m g \sin q_1 = 0
\]

Yukarıdaki denklemlerin normalleştirilmiş matris forumu aşağıda verilmiştir:

\[
\left[\begin{array}{c} 1 & \cos q_1 \\ \frac{1}{2} \frac{\partial h_{ci}(q)}{\partial q} \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]
\]

Burdada:

\[
q = \frac{a}{l}, \quad b = \frac{\dot{q}}{l}, \quad c = \frac{m + M}{l^2}
\]

olur.

4.1. Eşleşme Koşullarının Çözümü

Bu bölümde bir öncelik bolümde elde edilen sonuçları uygulanarak sistemi asimptotik kararlı hale getiren kontrol kuralı bulunacaktır.

I. Adım: Yaklaşık model için:

\[
\frac{h_i(q)}{\partial q} = \left[\begin{array}{c} q_1 \\ 0 \end{array} \right] \quad \text{ve} \quad h_{ci}(q) = \left[\begin{array}{c} q_2 \\ 0 \end{array} \right]
\]

seçelim ve (22) de edilen potansiyel enerji eşleşme koşuluğu bu ilişkileri kullanarak yazalım:
fonksiyondur. Eğer bu fonksiyon edilmiştür. Bu koşullar saҮlayan
olarak bulunur. Burada \(\Phi(x(q)) \), \(q_1^* = 0 \) için \(V_p \Phi(q_1^*) = 0 \) kousunu sağlayan isteaque bağlı, türevi alılabilen bir fonksiyondur. Eğer bu fonksiyon \(K_p > 0 \) için \(\Phi(x) = (K_p/2)x^2 \) olarak alınsa \(V_pV_x \),
\[
V(x(q)) = \frac{mg l \sin(q_1)}{S_1(1,1)} + S_1(1,2) \frac{q_2}{S_1(1,1)} K_p \left[q_2 - q_2^* \right] - S_1(1,2) \frac{q_1}{S_1(1,1)} K_p \left[q_1 - q_1^* \right]
\]
olarak elde edilir.

2. **Adım:** Istenen potansiyel enerji fonksiyonunun \(V_pV_x > 0 \) kousunu sağlamanı.
\[
V(x(q)) = \frac{mg l \cos(q_1)}{S_1(1,1)} + S_1(1,2) \frac{q_2}{S_1(1,1)} K_p \left[q_2 - q_2^* \right] - S_1(1,2) \frac{q_1}{S_1(1,1)} K_p \left[q_1 - q_1^* \right]
\]
hessian matrisinin tüm özdeğerleri pozitif yapacak kous:
\[
s_1 > 0 \text{ ve } (\cos(q_1) < 0 \text{ ve } s_1 > 0 \text{ ve } K_p > 0) \text{ veya (39)}
\]
\[
(\cos(q_1) > 0 \text{ ve } s_1 < 0 \text{ ve } K_p > 0 \text{ ve } a > 0)
\]
olarak elde edilir. \(-\pi/2 < q_1 < \pi/2 \) için \(\cos(q_1) > 0 \) olacağını hessianin pozitif olması için aşağıdaki kousu sağlamanı:
\[
S_1(1,2) > 0 \text{ ve } S_1(1,1) \text{ ve } K_p > 0
\]

3. **Adım:** Sistemi birarla kılacak \(M_{ci} \) ön kousları (40)’da elde edilmiştir. Bu kousları sağlayan \(M_{ci} \) ler aşağıdaki gibidir:
\[
m_{ci}(i) = \frac{1-s_{ci}(i)}{s_{ci}(i)}
\]
\[
m_{ci}(i) = \frac{\cos(q_1 - s_{11}m_{ci}(i))}{s_{12}}
\]
Sıradaki adıım kinetik enerji e薜leme kousunu sağlayan \(f_{ci} \)’lerin oluşturulmasıdır. (17b)’de verilen kinetik enerji e薜leme kousu (32) seçimi için yazılacak olursa:
\[
G^T \left[\sum_i M_i M_{ci}^{-1} \right] f_c = 0
\]
\(f_c = 0 \) seçelleri sağlanabilir.

5. **Adım:** Kapalı çevrim sistem potansiyel enerji fonksiyonu:
\[
V_c(q) = \frac{1}{2} K_p \left[q_2 + q_2^* + \frac{q_1 s_{12}}{s_{11}} \right]^2 + \frac{a \cos q_1}{s_{11}}
\]
olarak bulunur, burada \(s_{11} \), \(s_{12} \), \(m_{ci} \) ve \(K_p \) parametreleri serbest seçilmiştir.

Dikkat edilmesi gereken husus sistemin istenen potansiyel enerji fonksiyonunun bu parametreler ile şekillenmesidir.

Serbest parametreler aşağıdaki şekilde seçilsin:
\[
K_p = 0.015, \quad m_{ci} = 1, \quad s_{11} = -1, \quad s_{12} = 10
\]

Bu durumda sistemin potansiyel enerji fonksiyonu:
\[
V_c(q) = 0.0075(10q_1 - q_2 + q_2) - 9.81 \cos q_1
\]
olur.

Şekil 2: Atanan potansiyel enerji fonksiyonu.

Şekil 3: Atanan potansiyel enerji fonksiyonunun kontör şekli.
5. Sonuçlar

Eksik sürülmüş sistemlerin kontrolü çözümü zor olan bir problemidir. Literatürde daha önce [10] Hamiltonian sistemleri ve sistemlerin yaklaşım modelleri kullanarak çözüm elde edilmiştir ve bu yaklaşım çözüme kolyalik sağlamıştır. Bu çalışmada ise eksik sürülmüş sistemlerin kontrolü Euler Lagrange sistemleri ile ele alınmıştır ve bu sistem yöntemi zorunlu olmamıştır. Eksik sürülmüş sistemlerin kontrolünde karşılaşılan zorlukların çözümü için sistem yaklaşımları kullanılmıştır. Bu sayede, eşleşme koşullarında ortaya çıkan PDE’lerin yaklaşık çözümü elde edilmiş ve kontrol işareti oluşturulmuştur.

Sistem kontrol işareti oluşturulmak için normalde lineер olmayan PDE’lerin çözümü gerekmektedir. Ancak önerilen yöntem sayesinde bunun yerine lineer olan PDE’ler çözümü yeterli olmaktadır. Bu yöntem çözümünün bulunmasında oldukça kolaylık sağlamaktadır. Ayrıca çalışmanın bir sonraki aşaması olarak, sistem için çözüm sisteminin daha iyi bir yaklaşımının elde edilmesi, yönteme izleme gibi problemlerin çözümünün elde edilmesi beklenmektedir

6. Kaynaklar

[1] R. Ortega, J.A. Loria Perez, P.J. Nicklasson, and H.J. Sira-Ramirez, “Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications”, Springer-Verlag, 1998.

[2] Auckly, D., and Kapitanski, L.: “On the lambda-equations for matching control laws”, SIAM Journal on Control and Optimization, 41, 5, 1372–1388, 2002.

[3] R. Ortega, M. W. Spong, F. Gómez-Estern and G. Blankenstein, “Stabilization of a Class of Underactuated Mechanical Systems Via Interconnection and Damping Assignment”, IEEE Trans. On Automatic Control, 47, 8, 1218-1233, 2002.

[4] A. Ailon and R. Ortega, “An observer-based controller for robot manipulators with flexible joints”, System and Control Letters, 21, 329–335, 1993.

[5] Hamberg, J. General matching conditions in the theory of controlled Lagrangians. In: Proc. CDC. Vol. 38. pp. 2519–2523, 1999.

[6] Bloch, A.M., Leonard, N.E., and Marsden, J.E.: “Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem. IEEE Trans. The first matching theorem”. IEEE Trans. Automatic Control, 45, 12, 2253–2269, 2000.

[7] R. Ortega, A. J. Van der Schaft, B. Maschke and G. Escobar, “Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems”, Automatica, 38, 4, 585-596, 2002.

[8] Chang, D.E.: “The extended lambda-method for controlled Lagrangian systems”, IFAC World Congress Prague, Czech Republic, 2005.

[9] Ortega, R., and Garcia-Canseco, E.: “Interconnection and Damping Assignment Passivity-Based Control: A survey”, European Journal of Control, 10, 5, 432-450, 2004.

[10] Gören-Sümer, L., Şengör, N.: “Stabilizing a Class of Under-actuated Hamiltonian Systems” Using an Approximate Model, European Control Conference, Linz, Austria, 2015.

[11] Chang, D.E., Bloch, A.M., Leonard, N.E., Marsden, J. E., and Woolsey, C.A.: “The equivalence of controlled Lagrangian and controlled Hamiltonian systems for simple mechanical systems”, ESAIM: Control, Optim. Calculus Variations, 8, 393–422, 2002.

[12] G. Blankenstein, R. Ortega and A.J. van der Schaft “Matching of Euler-Lagrange and Hamiltonian Systems”, IFAC World Congress Barcelona, Spain, 2002.