In this age of the genome-wide association study, our ability to identify genomic regions associated with disease has made great advances; however, our ability to translate this into a better understanding of the mechanisms of disease and genetic susceptibility is still limited. In the previous issue of *Breast Cancer Research* [1], the continued study of the McsSα locus, which was first identified in 2001 in 7,12-dimethylbenz(a)anthracene (DMBA)-treated rats and validated as relevant in humans in 2007 [2,3], has stretched our perspectives by highlighting how the functional role of a breast cancer susceptibility allele may be outside of the mammary epithelial cell, the target cell of breast carcinogenesis, and may originate outside of the mammary gland itself. The study utilizes congenic rat lines developed on a susceptible (Wistar-Furth) genetic background, and carrying the selected resistant (Wistar-Kyoto) McsSα alleles, up to approximately 116 kb in size [3]. By performing transplantation experiments, Smits and colleagues [1] clearly demonstrate that the mammary carcinoma susceptibility phenotype mediated by McsSα is not transferable by transplantation of the mammary gland [1]. As their previous work had indicated expression of genes (*Fbxo10* and *Frdmpd1*) within the McsSα locus differed in immune tissues but not in mammary glands of resistant compared to susceptible rats [3], the involvement of the immune system was investigated with a bone marrow transplantation approach. While there are technical limitations to these experiments, the number of carcinomas in resistant hosts bearing marrow from susceptible donors was 60% higher than in resistant hosts bearing marrow from resistant donors, indicating that McsSα can act through components of the immune system to modulate mammary carcinoma susceptibility. Investigation of the immune cells of the resistant rats found an association with an overabundance of γδ T-cell receptor (TCR)+ T cells (important in mucosal surface surveillance), higher L-selectin expression (which may promote extravasation), increased mitogen-induced proliferation and increased production of Th1 (but not Th2) cytokines compared with susceptible rats [1]. While the target cell for McsSα originates outside the mammary gland, the phenotype is most strongly expressed within the carcinogen-exposed mammary gland. The T-cell differences were markedly greater in the T cells isolated from mammary ductal fragments or from the inguinal lymph nodes of rats treated with DMBA. Further, γδ-TCR+ T cells of the mammary gland displayed different cell surface markers to the splenic γδ-TCR+ T cells, and while γδ-TCR+ T cells are the predominant T-cell type in the mammary gland, they are a very minor population in the carcinomas arising in these rats [1]. This highlights the importance of analyzing the function of candidate genes in the appropriate tissue.
and under appropriate stress conditions, as the phenotypic differences of modifier alleles may be subtle or highly specific and therefore easily overlooked in the wrong setting. Such functional studies, especially involving the preneoplastic/susceptible normal gland, are much more readily achieved in rodent models than with human tissue [4].

Not only has the *Mcs5a* locus challenged the dominant paradigm that genetic susceptibility to mammary carcinomas will be due to phenotypes expressed in the mammary gland, it has also pushed our understanding of how the phenotypic differences are played out at the DNA level. In a second paper, Smits and colleagues [5] begin to elucidate the molecular mechanisms of the genetic variants. The *Mcs5a* locus consists of two non-protein coding genetic elements that must be on the same chromosome to elicit the phenotype [3]. Smits and colleagues [5] identify a conserved looping structure in the DNA, where the looped elements are bound by CTCF and cohesion. This brings the polymorphic *Mcs5a/Mcs5a* 1 and 2 elements, which are separated by over 60 kb in the genome, physically close together to mediate their transcriptional regulatory differences, controlling the expression of *Fbxo10* in T cells [5].

The definitive experiments are still to be done to prove that *Fbxo10* expression in T cells is the pathway mediating the resistant phenotype of the *Mcs5a* locus. These could include examining the effect of tissue-specific disruption of *Fbxo10* in T cells on tumour development, or examination of tumour susceptibility in the congenic rat lines after depletion of T cells. Nonetheless, the current reports from the Gould laboratory are consistent with *Mcs5a* mediating its phenotype through an immune surveillance mechanism within the mammary gland. Over the past 10 years, evidence has been accumulating that cells of the immune system are required for the surveillance mechanism within the mammary gland, but could be the immune system, or other extra-mammary systems, functional investigations become expensive and complex. With our rodent helpers, we will continue to gnaw our way through these barriers to understanding the phenotypic expression of genetic variants involved in complex diseases, to fulfil the promises of novel pathways and therapeutic or preventive approaches offered by the age of the genome-wide association study.

Interestingly, resistance to HER2/neu in situ carcinomas was not evident, indicating that *Mcs5a* is not acting during tumour initiation, but is acting during early mammary cancer progression [1], an observation consistent with *Mcs5a* mediating its phenotype through an immune surveillance mechanism.

Here we have the first evidence that this low penetrance, high frequency genetically determined breast cancer risk factor may be acting through the immune system, affecting long-range gene expression via novel gene regulatory elements involving three-dimensional looping DNA structures. The understanding of the three-dimensional structure of DNA and chromatin and how it can impact on disease susceptibility takes the idea of functional testing of single nucleotide polymorphisms to a whole extra level of complexity. Adding to this that the target tissue of the polymorphism may not be the mammary gland, but could be the immune system, or other extra-mammary systems, functional investigations become expensive and complex. With our rodent helpers, we will continue to gnaw our way through these barriers to understanding the phenotypic expression of genetic variants involved in complex diseases, to fulfil the promises of novel pathways and therapeutic or preventive approaches offered by the age of the genome-wide association study.

Abbreviations

DMBA, 7,12-dimethylbenz(a)anthracene; TCR, T-cell receptor.

Competing interests

The author has no competing interests.

Authors’ contributions

ACB conceived and composed this editorial.

Acknowledgements

ACB is funded by the NHMRC, NBCF and Cancer Australia.

Published: 12 October 2011

References

1. Smits BMG, Sharma D, Samuelson DJ, Woditschka S, Mau B, Haag JD, Gould MN. The non-protein coding breast cancer susceptibility locus *Mcs5a* acts in a non-mammary cell-autonomous fashion through the immune system and modulates T-cell homeostasis and functions. *Breast Cancer Res* 2011, 13:R81.

2. Lan H, Kendzierski CM, Haag JD, Shepel LA, Newton MA, Gould MN. Genetic loci controlling breast cancer susceptibility in the Wistar-Kyoto rat. *Genetics* 2001, 157:331-339.

3. Samuelson DJ, Hesselson SE, Aperavich BA, Zan Y, Haag JD, Trentham-Dietz A, Hampton JM, Mau B, Chen KS, Baynes C, Khaw KT, Luben R, Perkins B, Shah M, Pharoah PD, Dunning AM, Easton DF, Ponder BA, Gould MN. *Rat Mcs5a* is a compound quantitative trait locus with orthologous human loci that associate with breast cancer risk. *Proc Natl Acad Sci U S A* 2007, 104:6299-6304.

4. Blackburn AC, Jerry DJ. Map making in the 21st century: charting breast cancer susceptibility pathways in rodent models. *J Mammary Gland Biol Neoplasia* 2011, 16:57-64.

5. Smits BMG, Traun BD, Devries TL, Tran A, Samuelson DJ, Haag JD, Gould MN. An insulator loop resides between the synthetically interacting elements of the human/rat conserved breast cancer susceptibility locus *MCSSA/Mcs5a*. *Nucleic Acids Res* 2011 Sep 13 [Epub ahead of print].
6. Teng MW, Swann JB, Koebel CM, Schreiber RD, Smyth MJ. Immune-mediated dormancy: an equilibrium with cancer. *J Leukoc Biol* 2008, 84:988-993.

7. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell* 2011, 144:646-674.

8. Mavaddat N, Dunning AM, Ponder BA, Easton DF, Pharoah PD. Common genetic variation in candidate genes and susceptibility to subtypes of breast cancer. *Cancer Epidemiol Biomarkers Prev* 2009, 18:255-259.

doi:10.1186/bcr2939

Cite this article as: Blackburn AC. Rats: gnawing through the barriers to understanding genetic susceptibility and breast cancer. *Breast Cancer Research* 2011, 13:112.