Evaluation of antimycobacterial activity of Curcuma xanthorrhiza ethanolic extract against Mycobacterium tuberculosis H37Rv in vitro

Ngadino¹, Setiawan¹, Koerniasari², Ernawati² and S. A. Sudjarwo³

1. Study Program of Environmental Health, Polytechnic of Health, Surabaya, Indonesia; 2. Department of Pharmacology, Faculty of Medicine, Wijaya Kusuma University, Surabaya, Indonesia; 3. Department of Pharmacology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia.

Corresponding author: S. A. Sudjarwo, e-mail: ags158@yahoo.com
Co-authors: N: ngadino1960@yahoo.com, S: jemblung@yahoo.com, K: sari25@yahoo.com, E: ernawatikimura@gmail.com
Received: 09-12-2017, Accepted: 20-02-2018, Published online: 27-03-2018

doi: 10.14202/vetworld.2018.368-372 How to cite this article: Ngadino, Setiawan, Koerniasari, Ernawati, Sudjarwo SA (2018) Evaluation of antimycobacterial activity of Curcuma xanthorrhiza ethanolic extract against Mycobacterium tuberculosis H37Rv in vitro, Veterinary World, 11(3): 368-372.

Abstract

Aim: The aim of this study was to evaluate the antimycobacterial activity of the Curcuma xanthorrhiza ethanolic extract in vitro.

Materials and Methods: Ethanol extract of C. xanthorrhiza was set by maceration method. The broth microdilution and disc diffusion method were used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC), respectively, of C. xanthorrhiza ethanol extract on strain Mycobacterium tuberculosis H37Rv.

Results: C. xanthorrhiza ethanol extract was found to have the antimycobacterial effects with a MIC value of 1600 μg/ml while MBC value of 3200 μg/ml for M. tuberculosis H37Rv.

Conclusion: From these findings, it can be concluded that C. xanthorrhiza ethanol extract have an antibacterial activity against Mycobacterium tuberculosis H37Rv in vitro and its potency elevated by increasing the C. xanthorrhiza ethanol extract concentration.

Keywords: antimycobacterial, Curcuma xanthorrhiza, minimal bactericidal concentration, minimal inhibitory concentration.

Introduction

Tuberculosis (TB) is a serious public health problem, one of the leading causes of mortality worldwide, infecting about 9 million people, kills approximately 2 million people annually. The global incidence rate for TB is growing each year by approximately 1.1% and the number of cases by about 2.4%. Resistance to anti-TB drugs continued to be recognized as a clinical problem through the latter part of the 21st century. As a result, multdrug-resistant and extensively drug-resistant TB are now becoming a major threat to health worldwide, accounting for almost 3% of all newly reported cases of TB [1]. Due to increased drug-resistant strains of bacteria such as Mycobacterium tuberculosis and methicillin-resistant Staphylococcus aureus, there has been renewed interest in herbal as potential sources of novel antibiotics. The World Health Organization estimated that annual global use of herbal medicines is about US $83 billion in 2008, indicating that natural products are important sources of new therapeutics and future medicines [1].

The use of herbal as medicine is well known in rural areas of many developing countries. Most herbal medicines are well tolerated by the patient, with fewer unintended consequences than synthetic medicine. Herbs typically have fewer side effects than synthetic medicine, and may be safer to use over time [2,3]. The findings of the new antibacterial compounds in herbal became one of the remarkable alternatives for treatments since they are rich in numerous varieties of secondary metabolites such as alkaloids, flavonoids, tannins, saponin, and phenolic compounds with antibacterial properties [4]. Medicinal plant products have long been used as antibacterial in traditional medicines, for the treatment of many diseases such as TB. The anti-M. tuberculosis of medicinal plant products has become subject to scientific investigations currently worldwide, and their active components provide a potential alternative to conventional anti-M. tuberculosis. In this context, the development of medicinal plant product-based drug candidates as anti-M. tuberculosis has gained momentum in research studies directed toward design and discovery of drugs [5], Piliostigma thonningii [5], Curtisia dentata [6], Combretum zeyheri [7], Artemisia nilagirica, and Murraya koenigii [8] are among the medicinal plants claimed to possess potential antimycobacterial agent.

It has been demonstrated that the medicinal properties of Curcuma xanthorrhiza were due to the phytochemicals possessed including alkaloids, phenols, flavonoids, triterpenes, sterols, glycosides, and...
terpenoids. *C. xanthorrhiza* contain xanthorrhizol and curcumin may be used for antioxidant and anticancer [9], antibacterial [10-12], antiviral and antifungal [13], endothelial cell protection on hypercholesterolemia [14], pancreas protective on methylmercury toxicity [15], and testicular protective on lead acetate toxicity [3].

Recent research activities have shown that *C. xanthorrhiza* belongs to the family Zingiberaceae and the rhizome extract contains active phytochemical constituents with xanthorrhizol and curcumin as the main compounds [11,16,17]. Xanthorrhizol and curcumin isolated from the ethanolic rhizome extract of *C. xanthorrhiza* show potent antibacterial activity against a wide spectrum of Gram-positive and negative bacterial pathogen [9,14]. It also has been reported that xanthorrhizol showed the highest antibacterial activity against *Escherichia coli*, *Propionibacterium acnes*, *Streptococcus mutans*, *Actinomyces viscosus*, *Porphyromonas gingivalis*, *S. aureus*, *Klebsiella pneumoniae*, *Pseudomonas spp.*, and *Bacillus cereus* [9,11], while curcumin also showed effective against *Salmonella typhimurium*, *Pseudomonas aeruginosa*, *E. coli*, *S. aureus*, *B. cereus*, *Helicobacter pylori*, and *Listeria monocytogenes* [16,17,18].

C. xanthorrhiza has drawn the attention of researchers because of their suitable applications in the fields of material science and medicine. Therefore, the objective of the present study was to evaluate the antimycobacterial activity of the *C. xanthorrhiza* ethanolic extract in vitro.

Materials and Methods

Ethical approval

The study was conducted in the Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Airlangga University. All procedure employed was approved by the Ethical Clearance Committee for preclinical research, Institute of Tropical Disease, Airlangga University.

Preparation of ethanol extract of *C. xanthorrhiza*

Plant material and extract preparation of *C. xanthorrhiza* were collected from Surabaya, Indonesia. *C. xanthorrhiza* materials were cleaned with running tap water and chopped into pieces. They were dried under shade at ambient temperature for 5 days, and the air dried *C. xanthorrhiza* was then ground to powder for extraction. The powdered *C. xanthorrhiza* (1 kg) was macerated with ethanol 96% (5 L) for 1 week at 37°C. The supernatant was then collected and filtered through Whatman No. 1 filter paper in a Buchner funnel under vacuum. The filtrate was concentrated by evaporation with a vacuum rotary evaporator at 45°C [8]. Furthermore, the extract was freeze-dried to get ethanol-free powder.

Qualitative phytochemical testing

The *C. xanthorrhiza* ethanol extract was subjected to the qualitative phytochemical screening for the presence of some chemical constituents. In the most active extracts, qualitative tests for terpenoids, saponins, tannins, flavonoid, phenols, and alkaloids were carried out as described by Jyoti and Rajeshwari [4].

Culture and preparation of *M. tuberculosis*

M. tuberculosis strains H37Rv were obtained from the Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia. *M. tuberculosis* was cultured at 37°C in Middlebrook 7H9 broth (Becton Dickinson, Sparks, MD) supplemented with 0.2% glycerol (Sigma Chemical Co., St. Louis, MO) and 10% oleic acid albumin dextrose catalase (OADC; Becton Dickinson) until logarithmic growth was reached. Each culture was mixed with a sufficient volume of sterile supplemented Middlebrook 7H9 broth to achieve a turbidity equivalent to that of McFarland’s No. 1 standard. To obtain the test inoculum, this suspension was further diluted 1:50 with the same culture medium to approximately 6×10³ colony-forming units (CFU)/mL immediately before use [19].

Minimum inhibitory concentration (MIC) determination by resazurin microtiter plate assay (REMA) method

REMA was performed with minor modifications [20]. The REMA plate method was performed in 7H9-S medium containing Middlebrook broth, 0.1% Casitone, and 0.5% glycerol and supplemented with OADC (Becton-Dickinson). Briefly, 100 μL of Middlebrook 7H9 broth was dispensed into each well of the microtiter plate. Serial two-fold dilutions of *C. xanthorrhiza* extract (powder-free ethanol) were performed in Middlebrook 7H9 broth to obtain final drugs concentration 0; 200; 400; 800; 1600, and 3200 μg/ml, and rifampicin (10 μg/ml) was used as a standard drug and were made in the plate. *M. tuberculosis* strains H37Rv suspension (100 μL) containing approximately 6×10³ CFU/mL were added to all the wells. Sterility control and growth control were also included. The plate was wrapped in aluminum foil and incubated at 37°C for 7 days. After completion of the incubation period, 30 μL resazurin solution (100 μg/mL) was added to each well and plate was again wrapped in aluminum foil and incubated overnight. The plate was then observed for change in color. The color change from blue to pink or colorless indicated the growth of the bacteria. The lowest concentration of *C. xanthorrhiza* ethanolic extract that prevented color a change from blue to pink was taken as the upper limit for MIC range, and the highest *C. xanthorrhiza* ethanolic extract concentration that showed a change in color from blue to pink was considered the lower limit. All evaluations were carried out in quadruplicate.

Minimum bactericidal concentration (MBC) determination using the paper disc diffusion method

Screening of *C. xanthorrhiza* ethanolic extract and its solvents for antimycobacterial activity against *M. tuberculosis* strain H37Rv was done using the
paper disc diffusion method [18]. Serial two-fold dilutions of *C. xanthorrhiza* extract (powder-free ethanol) were performed in a distilled water solution (0, 200, 400, 800, 1600, and 3200 μg/ml) and were slowly absorbed into the sterilized paper disc (diameter: 8 mm, Watman, England) and adhered to the surface of the plate on which *M. tuberculosis* strains H37Rv at a concentration of 10^6 CFU/ml had been inoculated in Middlebrook 7H9 broth. Sterilized distilled water was used as a control. After culturing for 24 h in an incubator at 37°C, antibacterial activity was defined as the diameter (mm) of the clear inhibitory zone formed around the discs. MBC was defined as the lowest concentration that induced the clear inhibitory zone formed around the discs [19].

Results

Phytochemical of *C. xanthorrhiza* ethanolic extract

The preliminary phytochemical analysis of *C. xanthorrhiza* ethanol extract (Table-1) showed the presence of alkaloids, saponins, flavonoids, triterpenoids, and tannins of phytochemicals. Any of these phytochemicals, either singly or in a combination with each other could be responsible for the antibacterial activity of the *C. xanthorrhiza* ethanol extract.

The MIC of the *C. xanthorrhiza* ethanol extract against *M. tuberculosis* on REMA method

The MIC of the *C. xanthorrhiza* ethanol extract was determined for their antimycobacterial activity using resazurin as an indicator of *M. tuberculosis* viability in 96-well microplates. The investigation showed that *C. xanthorrhiza* ethanolic extract was active against *M. tuberculosis*. In this study, MIC of *C. xanthorrhiza* ethanol extract against *M. tuberculosis* strains H37Rv was 1600 μg/mL, while rifampicin was 10 μg/mL (Figure-1).

The MBC of the *C. xanthorrhiza* ethanol extract against *M. tuberculosis*

The antimycobacterial activity of *C. xanthorrhiza* ethanolic extract against *M. tuberculosis* strains H37Rv was done using the plates of Middlebrook 7H9 broth. MBC was defined as the lowest concentration that produced no growth *M. tuberculosis* strains H37Rv at Middlebrook 7H9 broth. The MBC *C. xanthorrhiza* ethanolic extract against *M. tuberculosis* strains H37Rv was 3200 μg/mL, which produced no growth *M. tuberculosis* strains H37Rv at Middlebrook 7H9 broth (Figure-2).

Discussion

TB is a chronic disease caused by *M. tuberculosis*. The emergence of antibiotic-resistant strains of this species underscores the need for novel effective drugs against resistant mycobacteria as first-line anti-TB medications [6]. The uses of natural product as traditional medicines are accepted, particularly in developing countries. Medicinal plants have been used for centuries as remedies for human diseases because they contain components of therapeutic value [2].

Table-1: Phytochemical analysis of extracts of *Curcuma xanthorrhiza* ethanol extract.

Phytochemical	Level
Alkaloids	++
Phenols	+++
Saponins	++
Flavonoids	++
Triterpenoids	+++
Tannins	-

+: Low, ++: Immediate, +++: High

Extraction of bioactive compounds from medicinal plants permits the demonstration of their physiological activity. It also facilitates pharmacology study leading
Recent research activities have shown that *C. xanthorrhiza* extract contains active phytochemical constituents with xanthorrhizol and curcumin as the main compounds [17]. It has been demonstrated that the antibacterial activity of curcumin against *Bacillus subtilis* occurs through the inhibition of bacterial cell proliferation by blocking the assembly dynamics of FtsZ in the Z ring [18] and caused membrane damage of Gram-positive (*S. aureus* and *Enterococcus faecalis*) and Gram-negative (*E. coli* and *P. aeruginosa*) [12]. While xanthorrhizol strongly inhibited the growth of *B. cereus*, *C. perfringens*, *L. monocytogenes*, *S. aureus*, *Salmonella Typhimurium*, and *V. parahaemolyticus* with MICs of 8, 16, 8, 8, 16, and 8 μg/mL, respectively. These strains were killed by xanthorrhizol at MBCs of 16, 32, 16, 16, and 16 μg/mL, respectively [9-11].

The potency of the extracts of *C. xanthorrhiza* as compared to the standard antimycobacterial drugs (rifampicin) used was still very low. This is understandable considering the fact that rifampicin was pure compounds known to be the most active against *M. tuberculosis* compared with the activity of *C. xanthorrhiza* that was crude extracts. If the active compounds could be isolated and purified of *C. xanthorrhiza*, it is possible that they could show a comparable activity or even more activity than some of the antimycobacterial drugs currently in use.

Conclusion

Thus, from the results obtained, it can be concluded that *C. xanthorrhiza* ethanol extract has promising anti-TB activity by preliminary *in vitro* techniques. Therefore, it has the definite potential as a source of compounds that may be developed further into antimycobacterial drugs.

Authors’ Contributions

N, S, K, and E equally contributed in conception and design of the experiment, data collection, data analysis, and interpretation. SAS helped in critical revision of the article and final approval of the version to be published. All the authors read and approved of the final manuscript.

Acknowledgments

The authors would like to acknowledge the support of The Ministry of Health Republic of Indonesia through the Health Polytechnic Surabaya Indonesia.
in conducting this research work (Grant No: 018/HB/Poltekkes/Menkes/II/2017).

Competing Interests

The authors declare that they have no competing interests.

References

1. World Health Organization. Global Tuberculosis Report. (2015). WHO, Geneva, Switzerland. p.1-145.
2. Cragg, G.M. and Newman, D.J. (2013) Natural products: A continuing source of novel drug. *Biochim. Biophys. Acta.*, 1830: 3670-3695.
3. Sudjarwo, S.A. and Koerniasari, G.W. (2017) Protective effect of curcumin on lead acetate-induced testicular toxicity in Wistar rats. *Res. Pharm. Sci.*, 12: 381-390.
4. Jyoti, S. and Rajeshwari, S. (2012) Evaluation of phytochemical constituents in conventional and non-conventional species of curcuma. *Int. Res. J. Pharm.*, 3: 203-204.
5. Njeru, S.N., Obonyo, M.A., Ngari, S.M., Njeru, J.M. and Kamweru, P.P. (2015) Antituberculous, antimicrobial, cytotoxicity and phytochemical activity study of *Piliostigma thonningii* extract fractions. *J. Med. Plants Res.*, 9: 655-663.
6. Fadipe, V.O., Opoku, A.R., Dikhoba, P.M. and Makhafola T.J. (2017) Isolation of anti-mycobacterial compounds from *Curtisia dentata* (Burm.f.) C.A.Sm (Curtisiaceae). *BMC Complement. Altern. Med.*, 17: 306-313.
7. Nyambuya, T., Mautsa, R. and Mukananganyama, S. (2017) Alkaloid extracts from *Combretum zeyheri* inhibit the growth of *Mycobacterium smegmatis*. *BMC Complement. Altern. Med.*, 17: 124-130.
8. Naik, S.K., Mohanty, S., Padhi A., Pati, R. and Sonawane, A. (2014) Evaluation of antibacterial and cytotoxic activity of *Artemisia nilagirica* and *Murraya koenigii* leaf extracts against mycobacteria and macrophages. *BMC Complement. Altern. Med.*, 14: 1-6.
9. Oon, S.F., Nallappan, M., Tee, T.T., Shohaimi, S., Kassim, N.K. and Cheah, Y.H. (2015) Xanthorrhizol: A review of its pharmacological activities and anticancer properties. *Cancer Cell. Int.*, 15: 100.
10. Sylvester, W.S., Son, R., Lew, K.F. and Rukayadi, Y. (2015) Antibacterial activity of java turmeric (*Curcuma xanthorrhiza* Roxb.) extract against *Klebsiella pneumoniae* isolated from several vegetables. *Int. Food Res. J.*, 22: 1770-1776.
11. Lee, L.Y., Shin, J.S., Rukayadi, Y. and Hwang, J.K. (2008) Antibacterial activity of *xanthorrhizol* isolated *Curcuma xanthorrhiza* Roxb. against food borne pathogens. *J. Food Prot.*, 71: 1926-1930.
12. Tyagi, P., Singh, M., Kumari, H., Kumari, A. and Mukhopadhyay K. (2015) Bactericidal activity of curcumin is associated with damaging of bacterial membrane. *PLoS One.*, 10: e0121313-e0121328.
13. Moghadamtousi, S.Z., Kadir, H.A., Hassanandivish, P., Tajik, H., Abubakar, S. and Zandi, K. (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. *Biomed. Res. Int.*, 2014: 186864-186875.
14. Sudjarwo, S.A., Eraiko, K. and Koerniasari, G.W. (2011) Mechanisms of endothelial cell protection by curcumin in hypercholesterolemia. *J. Appl. Pharm. Sci.*, 1: 32-35.
15. Sudjarwo, S.A., Eraiko, K. and Koerniasari, G.W. (2017) Antioxidant activity of curcumin as protector on methyl-mercury induced-pancreas damage in mice. *J. Chin. Pharm. Sci.*, 26: 196-201.
16. Anjusha, S. and Gangaprasad, A. (2014) Phytochemical and antibacterial analysis of two important *Curcuma* species, *Curcuma aromatica* Salisb and *Curcuma xanthorrhiza* Roxb. (*Zingiberaceae*). *J. Pharm. Phytochem.*, 2014: 186864-186875.
17. Mary Helen, P.A., Susheela, G.K., Jayasree, S., Nizzy, A.M., Rajagopal, B. and Jeeva, S. (2012) Phytochemical characterization and antimicrobial activity of *Curcuma xanthorrhiza* Roxb. *Asian. Pac. J. Trop. Biomed.*, 2: S637-S640.
18. Rai, D., Singh, J.K., Roy, N. and Panda, D. (2008) Curcumin inhibits FisZ assembly: An attractive mechanism for its antibacterial activity. *Biochem. J.*, 410: 147-155.
19. Primm, T.P. and Franzblau, S.G. (2007) Recent advances in methodologies for the discovery of anti-mycobacterial Drugs. *Curr. Bioact. Compd.*, 3: 1-8.
20. Ang, C.F., Mendoza, M.T. and Bulatao, W.C. (2010) Evaluation of the resazurin microtiter assay for drug susceptibility testing of clinical isolates of *Mycobacterium tuberculosis*. *J. Microbiol. Infect. Dis.*, 39: 59-65.