Complete Genome Sequence of *Bacillus amyloliquefaciens* EA19, an Endophytic Bacterium with Biocontrol Potential Isolated from *Erigeron annuus*

Fan-song Zeng,a,b,c Bin Yuan,a,b,c Wen-qi Shi,a,b,c Shuang-jun Gong,a,b,c Li-bo Xiang,a,b,c Da-zhao Yu,a,b,c Li-jun Yang,a,b,c

ABSTRACT *Bacillus amyloliquefaciens* strain EA19 is an endophyte isolated from *Erigeron annuus* with antifungal activity against *Blumeria graminis* f. sp. *tritici*, *Magnaporthe oryzae*, and *Fusarium graminearum*. The genome sequence of this strain is 3.96 Mb and contains 3,421 coding sequences, which will facilitate an understanding of the mechanisms of biocontrol.

Endophytic bacteria play an important role in suppressing plant diseases (1). *Bacillus amyloliquefaciens*, a plant-associated bacterium, can be found in plant organs and exhibits antifungal activities against plant pathogens (2–4). Genome analysis helps to elucidate the gene clusters involved in the biosynthesis of active secondary metabolites of *B. amyloliquefaciens* (4).

Strain EA19 was isolated from the healthy stems of annual fleabane (*Erigeron annuus*) plants collected at the flowering stage in 2010 through the surface sterilization method (5). A single isolated colony was cultured on Luria-Bertani (LB) solid medium at 30°C for 24 h. Bacterial identification was performed using 16S rRNA and gyrA gene sequencing (6). Phylogenetic analysis of the two genes identified EA19 as a *B. amyloliquefaciens* subsp. strain (Fig. S1; https://figshare.com/search?q=10.6084%2Fm9.15145227). The culture supernatant from a single colony was incubated in LB liquid at 30°C and 180 rpm for 48 h. The fermentation broth was centrifuged at 10,000 × g for 5 min and then filtered through 0.22-μm sterile syringe filters (Durapore polyvinylidene fluoride [PVDF] membrane; Millipore). Antagonism tests against *Blumeria graminis* f. sp. *tritici* isolate W14 in planta and against *Magnaporthe oryzae* Guy11 and *Fusarium graminearum* PH-1 in plates were performed using the cell-free culture filtrate with detached leaf method and agar dilution method, respectively (7–9). These fungi are among the top 10 fungal pathogens in plant pathology and cause wheat powdery mildew, rice blast, and Fusarium head blight, respectively (10). The filtrate has inhibitory effects on the growth of the three pathogens (Fig. 1). Here, we report the complete genome sequence of *B. amyloliquefaciens* strain EA19 and its annotation.

The pellet from the fermentation broth above was harvested and genomic DNA was extracted using a QIAamp DNA extraction kit (Qiagen). The DNA library was prepared using a rapid Oxford Nanopore Technologies (ONT) sequencing kit (SQK-RAD004) and then sequenced using FLO-MIN106 flow cells on a GridION instrument (ONT, UK). Adapter trimming and data filtering were conducted using Porechop v0.2.3 and Filtlong v0.2.0 software. Meanwhile, an Illumina library was constructed using the TruSeq Nano DNA low-throughput (LT) library prep kit (Illumina) and yielded high-quality short paired-end reads (150 bp) on the NovaSeq 6000 sequencing platform. The ONT library contained 588,025 reads with a total length of 1,884,340,507 bp, a subread N50 value of 5,804 bp, and an average coverage of 475×. Sequencing of the Illumina library generated 3,382,798 reads with a total length of 1,014,839,400 bp and an average coverage of 256×. *De novo* assembly of the genome sequence was performed using the Hierarchical Genome Assembly Process (HGAP4) workflow.
The assembled genome sequence was circularized using Minimus2 (12). NCBI PGAP v5.2 software was used for the genome annotation (13). Default parameters were used for all software unless otherwise specified.

The EA19 genome comprises a circular chromosome and one circular plasmid (pEA19). The 3,964,177-bp circular chromosome (G+C content, 46.5%) consists of 3,421 protein-coding genes, 368 pseudogenes, 27 rRNA genes, 86 tRNA genes, and 8 gene islands. The circular plasmid consists of 16,843 bp (G+C content, 40.2%) and harbors 9 protein-coding genes without pseudogenes.

Data availability. The genome sequence has been deposited in GenBank under the accession number CP079834. The GenBank accession number for the plasmid is CP079835. The sequence data can be found in the Sequence Read Archive under the accession numbers SRX11361551 and SRX11361552.

ACKNOWLEDGMENTS

This study was financially supported by grants from the China Agriculture Research System (project CARS-3-1-2) and the Youth Foundation of Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences (project 2021ZTSQJ12).
We thank Jun Guo at Northwest A&F University, Yangling, Shaanxi, China, for kindly providing isolates *M. oryzae* Guy11 and *F. graminearum* PH-1.

REFERENCES

1. White JF, Kingsley KL, Zhang Q, Verma R, Obi N, Dvinskikh S, Elmore MT, Verma SK, Gond SK, Kowalski KP. 2019. Review: endophytic microbes and their potential applications in crop management. Pest Manag Sci 75:2558–2565. https://doi.org/10.1002/ps.5527.

2. Dowarah B, Agarwal H, Krishnatreya DB, Sharma PL, Kalita N, Agarwala N. 2021. Evaluation of seed associated entic bacteria from tolerant chilli cv. Firingi Jolokia for their biocontrol potential against bacterial wilt disease. Microbiol Res 248:126751. https://doi.org/10.1016/j.micres.2021.126751.

3. Xie S, Vallet M, Sun C, Kunert M, David A, Zhang X, Chen B, Lu X, Boland W, Shao Y. 2020. Biocontrol potential of a novel endophytic bacterium from Mulberry (*Morus*) tree. Front Bioeng Biotechnol 7:488. https://doi.org/10.3389/fbioe.2019.00488.

4. Yan Y, Liu S, Wang D, Xue J, Guo D, Song X, Zhang F, Huang S, Luan C. 2016. Complete genome sequence of *Bacillus amyloliquefaciens* B15 isolated from grape skin, a strain of strong inhibitory activity against fungi. J Biotechnol 228:28–29. https://doi.org/10.1016/j.jbiotec.2016.04.036.

5. Goryluk A, Rekosz-Burlaga H, Blaszczyn M. 2009. Isolation and characterization of bacterial endophytes of *Chelidonium majus* L. Pol J Microbiol 58:355–361.

6. De Clerck E, Vanhoutte T, Hebb T, Geerinck J, Devos J, De Vos P. 2004. Isolation, characterization, and identification of bacterial contaminants in semifinal gelatin extracts. Appl Environ Microbiol 70:3664–3672. https://doi.org/10.1128/AEM.70.6.3664-3672.2004.

7. Yang X, Yang L, Yu D, Ni H. 2008. Effects of physcion, a natural anthraquinone derivative, on the infection process of *Blumeria graminis* on wheat. Can J Plant Pathol 30:391–396. https://doi.org/10.1080/07060660809507536.

8. Ben Khedher S, Kilani-Feki O, Dammak M, Jabnoun-Khiareddine H, Daami-Remadi M, Tounsi S. 2015. Efficacy of *Bacillus subtilis* V26 as a biological control agent against *Rhizoctonia solani* on potato. C R Biol 338:784–792. https://doi.org/10.1016/j.crvi.2015.09.005.

9. Guo J, Dai X, Xu J-R, Wang Y, Bai P, Liu F, Duan Y, Zhang H, Huang L, Kang Z. 2011. Molecular characterization of a Fus3/Kss1 type MAPK from *Puccinia striiformis* f. sp. *tritici*, PsMAPK1. PLoS One 6:e21895. https://doi.org/10.1371/journal.pone.0021895.

10. Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD. 2012. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x.

11. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. https://doi.org/10.1038/nmeth.2474.

12. Sommer DD, Delcher AL, Salzberg SL, Pop M. 2007. Minimus: a fast, lightweight genome assembler. BMC Bioinformatics 8:64. https://doi.org/10.1186/1471-2105-8-64.

13. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBJ Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569.