On the Power of Simple Reductions for the Maximum Independent Set Problem

Darren Strash

Institute of Theoretical Informatics
Karlsruhe Institute of Technology
Karlsruhe, Germany
strash@kit.edu

Abstract. Reductions—rules that reduce input size while maintaining the ability to compute an optimal solution—are critical for developing efficient maximum independent set algorithms in both theory and practice. While several simple reductions have previously been shown to make small domain-specific instances tractable in practice, it was only recently shown that advanced reductions (in a measure-and-conquer approach) can be used to solve real-world networks on millions of vertices [Akiba and Iwata, TCS 2016]. In this paper we compare these state-of-the-art reductions against a small suite of simple reductions, and come to two conclusions: just two simple reductions—vertex folding and isolated vertex removal—are sufficient for many real-world instances, and further, the power of the advanced rules comes largely from their initial application (i.e., kernelization), and not their repeated application during branch-and-bound. As a part of our comparison, we give the first experimental evaluation of a reduction based on maximum critical independent sets, and show it is highly effective in practice for medium-sized networks.

Keywords: maximum independent set, minimum vertex cover, kernelization, reductions, exact algorithms

1 Introduction

Given a graph $G = (V, E)$, the maximum independent set problem asks us to compute a maximum cardinality set of vertices $I \subseteq V$ such that no vertices in I are adjacent to one another. Such a set is called a maximum independent set (MIS). The maximum independent set problem has applications in classification theory, information retrieval, computer vision [13], computer graphics [29], map labeling [17,32] and routing in road networks [20], to name a few. However, the maximum independent set problem is NP hard [10], and therefore, the currently-best-known algorithms take exponential time.

1.1 Previous Work

Most previous work has focused on the maximum clique problem and the minimum vertex cover problem, which are complementary to ours. That is, the maximum clique in the complement graph \bar{G} is a maximum independent set in G.

and if C is a minimum vertex cover in G, then $V \setminus C$ is a maximum independent set.

For computing a maximum clique, there are many branch-and-bound algorithms that are efficient in practice \[26,27,31\]. These algorithms achieve fast running times by prescribing the order to select vertices during search and by implementing fast-but-effective pruning techniques, such as those based on approximate graph coloring \[31\] or MaxSAT \[24\]. Among the fastest of these algorithms is the MCS algorithm by Tomita et al. \[31\], which is competitive in dense graphs even against algorithms that use bit parallelism \[26\]. Further pruning these algorithms with a large initial solution obtained using local search \[4\] can be surprisingly effective at speeding up search \[6\].

Several techniques based on kernelization \[1,15\] have been very promising in solving both the maximum independent set and minimum vertex cover problems. In particular, Butenko et al. \[10\] showed that isolated vertex reductions disconnect medium-sized graphs derived from error-correcting codes into small connected components that can be solved optimally. Butenko and Trukhanov \[11\] introduced a reduction based on critical independent sets, finding exact maximum independent sets in graphs with up to 18,000 vertices generated with the Sanchis graph generator \[28\]. Though these works apply reduction techniques as a preprocessing step, further works apply reductions as a natural step of the algorithm. In the area of exact algorithms, it has long been clear that applying reductions in a measure-and-conquer approach can improve the theoretical running time of vertex cover and independent set algorithms \[9,14\]. However, few experiments have been conducted on the real-world efficacy of these techniques.

Recently, Akiba and Iwata \[3\] showed that applying advanced reductions with sophisticated branching rules in a measure-and-conquer approach is highly effective in practice. They show that an exact minimum vertex cover, and therefore an exact maximum independent set, can be found in many large complex networks with up to 3.2 million vertices in much less than a second. Further, on nearly all of their inputs, the state-of-the-art branch-and-bound algorithm MCS \[31\] fails to finish within 24 hours. Thus, their method is orders of magnitude faster on these real-world graphs.

1.2 Our Results

While the results of Akiba and Iwata \[3\] are impressive, it is not clear how much their advanced techniques actually improve search compared to existing techniques. A majority of the graphs they tested have kernel size zero, and therefore no branching is required. We show that just 2 simple reduction rules—isolated vertex removal and vertex folding—are sufficient to make many of their test instances tractable with standard branch-and-bound solvers. We further provide the first comparison with another class of reductions that are effective on real-world complex networks: the critical independent set reduction of Butenko and Trukhanov \[11\] and the variant due to Larson \[22\], which computes a maximum critical independent set.
2 Preliminaries

We work with an undirected graph $G = (V, E)$ where V is a set of n vertices and $E \subseteq \{\{u, v\} \mid u, v \in V\}$ is a set of m edges. The open neighborhood of a vertex v, denoted $N(v)$, is the set of all vertices w such that $(v, w) \in E$. We further denote the closed neighborhood by $N[u] = N(v) \cup \{v\}$. We similarly define the open and closed neighborhoods of a set of vertices U to be $N(U) = \bigcup_{u \in U} N(u)$ and $N[U] = N(U) \cup U$, respectively. Lastly, for vertices $S \subseteq V$, the induced subgraph $G[S] \subseteq G$ is the graph on the vertices in S with edges in E between vertices in S.

2.1 Reduction Rules

There are several well-known reduction rules that can be applied to graphs for the minimum vertex cover problem (and hence the maximum independent set problem) to reduce the input size to its irreducible equivalent, the kernel \cite{1}. Each reduction allows us to choose vertices that are in some MIS by following simple rules. If an MIS is found in the kernel, then undoing the reductions gives an MIS in the original graph. Reduction rules are typically applied as a preprocessing step. The hope is that the kernel is small enough to be solved by existing solvers in feasible time. If the kernel is empty, then a maximum independent set is found by simply undoing the reductions. We now briefly describe three classes of reduction rules that we consider here.

Simple Reductions. We first describe two simple reductions: isolated vertex removal and vertex folding.

An isolated vertex, also called a simplicial vertex, is a vertex v whose neighborhood forms a clique. That is, there is a clique C such that $V(C) \cap N(v) = N(v)$. Since v has no neighbors outside of the clique, it must be in some maximum independent set. Therefore, we can add v to the maximum independent set we are computing, and remove v and C from the graph. Isolated vertex removal was shown by Butenko et al. \cite{10} to be highly effective in finding exact maximum independent sets on graphs derived from error-correcting codes \cite{10}. This reduction is typically restricted to vertices of degree zero, one, and two in the literature. However, we consider vertices of any degree.

Vertex folding was first introduced by Chen et al. \cite{12} to reduce the theoretical running time of exact branch-and-bound algorithms for the maximum independent set problem. This reduction is applied whenever there is a vertex v with degree 2 and non-adjacent neighbors u and w. Either v or both u and w are in some MIS. Therefore, we can contract u, v, and w to a single vertex v' and add the appropriate vertices to the MIS after finding an MIS in the kernel.

Critical Independent Set Reductions. One further reduction method shown to be effective in practice for sparse graphs is the critical independent set reduction by Butenko and Trukhanov \cite{11}. A critical set is a set $U \subseteq V$ that
Fig. 1. A graph G (left) and its bi-double graph $B(G)$ (middle), illustrating that edges of G become two edges in $B(G)$. Right: a maximum matching (in this instance, a perfect matching) in $B(G)$.

maximizes $|U| - |N(U)|$ and $I_c = U \setminus N(U)$ is called a critical independent set. Butenko and Trukhanov show that every critical independent set is contained in some maximum independent set, and show that one can be found in polynomial time. Their algorithm works by repeatedly computing some critical independent set I_c and removing $N[I_c]$ from the graph, stopping when I_c is empty.

A critical set can be found by first computing the bi-double graph $B(G)$, then computing a maximum independent set in $B(G)$ [2,22,34]. $B(G)$ is a bipartite graph with vertices $V \cup V'$ where V' is a copy of V, and contains edge $(u,v') \subseteq V \times V'$ if and only if $(u,v) \in E$. Since $B(G)$ is bipartite, the maximum independent set in $B(G)$ can be solved by computing a maximum bipartite matching in polynomial time [18].

Butenko and Trukhanov [11] use the standard augmenting path algorithm to compute a maximum independent set in $B(G)$, and hence find a critical set in G, in $O(nm)$ time. One drawback of their approach is that the quality of the reduction depends on the maximum independent set found in the bi-double graph. As noted by Larson [22], if there is a perfect matching in $B(G)$ (such as in Fig. 1 right), then G has an empty critical empty set. However, in the experiments by Butenko and Trukhanov [11] these worst cases were not observed.

To prevent the worst-case, Larson [22] gave the first algorithm to find a maximum critical independent set, which accumulates vertices that are in some critical independent set and excludes their neighbors. He further gave a simple method to test if a vertex v is in a critical independent set: vertex v is in a critical independent set if and only if $\alpha(B(G)) = \alpha(B(G) - \{v,v'\} - N(\{v,v'\})) + 2$, where $\alpha(\cdot)$ is the independence number—the size of a maximum independent set. A naive approach would compute a new maximum matching from scratch to compute the independence number of each such bi-double graph, taking $O(n^2m)$ time total (or $O(n^{3/2}m)$ time with the Hopcroft–Karp algorithm [18]). However, we can save the matching between executions to ensure only few augmenting paths are computed for each subsequent matching, giving $O(m^2)$ running time, which is better when $m = o(n^{3/2})$. See Appendix A for further details.

Advanced Reduction Rules. We list the advanced reduction rules from Akiba and Iwata [3]. Refer to Akiba and Iwata [3] for a more thorough discussion, including implementation details.
Firstly, they use vertex folding and degree-1 isolated vertex removal (also called pendant vertex removal), as described previously. They further test a full suite of other reductions from the literature, which we now briefly describe.

Linear Programming: A well-known \[25\] linear programming relaxation for the MIS problem with a half-integral solution (i.e., using only values 0, 1/2, and 1) can be solved using bipartite matching: maximize $\sum_{v \in V} x_v$ such that $\forall (u, v) \in E$, $x_u + x_v \leq 1$ and $\forall v \in V$, $x_v \geq 0$. Vertices with value 1 must be in some MIS and can thus be removed from G along with their neighbors. Akiba and Iwata \[3\] compute a solution whose half-integral part is minimal \[19\].

Unconfined \[23\]: Though there are several definitions of unconfined vertex in the literature, we use the simple one from Akiba and Iwata \[3\]. A vertex v is unconfined when determined by the following simple algorithm. First, initialize $S = \{v\}$. Then find a $u \in N(S)$ such that $|N(u) \cap S| = 1$ and $|N(u) \setminus N[S]|$ is minimized. If there is no such vertex, then v is confined. If $N(u) \setminus N[S] = \emptyset$, then v is unconfined. If $N(u) \setminus N[S]$ is a single vertex w, then add w to S and repeat the algorithm. Otherwise, v is confined. Unconfined vertices can be removed from the graph, since there always exists an MIS I with no unconfined vertices.

Twin \[23\]: Let u and v be vertices of degree 3 with $N(u) = N(v)$. If $G[N(u)]$ has edges, then add u and v to I and remove u, v, $N(u)$, $N(v)$ from G. Otherwise, some vertices in $N(u)$ may belong to some MIS I. We still remove u, v, $N(u)$ and $N(v)$ from G, and add a new gadget vertex w to G with edges to u’s two-neighborhood (vertices at a distance 2 from u). If w is in the computed MIS, then none of u’s two-neighbors are I, and therefore $N(u) \subseteq I$. Otherwise, if w is not in the computed MIS, then some of u’s two-neighbors are in I, and therefore u and v are added to I.

Alternative: Two sets of vertices A and B are set to be alternatives if $|A| = |B| \geq 1$ and there exists an MIS I such that $I \cap (A \cup B)$ is either A or B. Then we remove A and B and $C = N(A) \cap N(B)$ from G and add edges from each $a \in N(A) \setminus C$ to each $b \in N(B) \setminus C$. Then we add either A or B to I, depending on which neighborhood has vertices in I. Two structures are detected as alternatives. First, if $N(v) \setminus \{u\}$ induces a complete graph, then $\{u\}$ and $\{v\}$ are alternatives (a funnel). Next, if there is a chordless 4-cycle $a_1b_1a_2b_2$ where each vertex has at least degree 3. Then sets $A = \{a_1, a_2\}$ and $B = \{b_1, b_2\}$ are alternatives when $|N(A) \setminus B| \leq 2$, $|N(A) \setminus B| \leq 2$, and $N(A) \cap N(B) = \emptyset$.

Packing \[3\]: Given a non-empty set of vertices S, we may specify a packing constraint $\sum_{v \in S} x_v \leq k$, where x_v is 0 when v is in some MIS I and 1 otherwise. Whenever a vertex v is excluded from I (i.e., in the unconfined reduction), we remove x_v from the packing constraint and decrease the upper bound of the constraint by one. Initially, packing constraints are created whenever a vertex v is excluded from or included in the MIS. The simplest case for the packing reduction is when k is zero: all vertices must be in I to satisfy the constraint. Thus, if there is no edge in $G[S]$, S may be added to I, and S and $N(S)$ are removed from G. Other cases are much more complex. Whenever packing reductions are applied, existing packing constraints are updated and new ones are added.
3 Experimental Results

We first investigate the size of kernels computed by all kernelization techniques. We test four techniques: (1) using only isolated vertex removal and vertex folding (Simple), (2) using the critical independent set reduction rule due to Butenko and Trukhanov [11] (Critical), (3) the version of (2) by Larson [22] that always computes a maximum critical independent set (MaxCritical), and (4) the reductions tested by Akiba and Iwata [3] (Advanced). Note that we use the standard augmenting paths algorithm for computing a maximum bipartite matching (and not the Hopcroft–Karp algorithm [18]) to be consistent with the original experiments by Butenko and Trukhanov [11].

Next, we investigate the time to compute an exact solution on large instances. We test two algorithms: the full branch-and-reduce algorithm due to Akiba and Iwata [3] (B&R), and Simple kernelization followed by MCS, a state-of-the-art clique solver due to Tomita et al. [31] (Simple+MCS). We use our own implementation of MCS since the code for the original implementation is not available and because we modify the MCS algorithm to solve the maximum independent set problem. We choose MCS because it is one of the leading solvers in practice, even competing with the bit-board implementations of San Segundo et al. [27, 28].

Instances. We run our algorithms on synthetically-generated graphs, as well as a large corpus of real-world sparse data sets. For synthetic cases, we use graphs generated with the Sanchis graph generator [28]. For medium-sized real-world graphs, we consider small Erdős co-authorship networks from the Pajek data set [5] and biological networks from the Biological General Repository for Interaction Datasets v3.3.112 (BioGRID) [30]. We further consider large complex networks (including co-authorship networks, road networks, social networks, peer-to-peer networks, and Web crawl graphs) from the Koblenz Network Collection (KONECT) [21], the Stanford Large Network Dataset Repository (SNAP) [23], and the Laboratory for Web Algorithmics (LAW) [7, 8].

3.1 Experimental Setup

All of our experiments were exclusively run on a machine with Ubuntu 14.04.3 and Linux kernel version 3.13-0-77. The machine has four Octa-Core Intel Xeon E5-4640 processors running at 2.4GHz, 512 GB local memory, 420 MB L3-Cache, and 48256 KB L2-Cache. For Advanced reductions as well as B&R, we compiled and ran the original Java implementation of Akiba and Iwata [3] with Java 8 update 60. We implemented all other algorithms in C++11, and compiled them with gcc version 4.8.4 with optimization flag `-O2`. Each algorithm was run for one hour. All running times listed in our tables are in seconds, and we mark a data set with '-' when an algorithm does not finish within the time limit. We indicate the best solution, and the time to achieve it, by marking the value bold.

1 https://github.com/darrenstrash/open-mcs
2 https://github.com/wata-orz/vertex_cover
3 https://github.com/darrenstrash/kernel-mis
Like Butenko and Trukhanov [11], we choose the clique number (and thus, the independence number in the complement graph) to be at least \(\alpha(G)\). It could be due to how we compute the maximum matching: we use depth-first search. An empty critical set. It is unclear what causes this behavior, but we conjecture it could be due to how we compute the maximum matching; we use depth-first search.

Table 1. We give the kernel size \(k\) and running time \(t\) for each reduction technique on synthetically-generated Sanchis data sets. We also list the data used to generate the graphs: the number of vertices \(n\), number of edges \(m\), and independence number \(\alpha(G)\).

\(n\)	\(m\)	\(\alpha(G)\)	\(k\)	\(t\)	\(k\)	\(t\)	\(k\)	\(t\)
1000	186723	505	0	0.06	0	0.73	0	0.16
1000	181256	524	0	0.16	0	0.86	0	0.15
2000	711955	1067	0	0.74	0	5.33	0	0.37
2000	686341	1103	0	1.08	0	5.57	0	0.34
3000	536831	1535	2930	0.26	4	5.54	0	0.14
3000	513773	1563	2874	0.24	4	5.59	0	0.13
4000	928492	2069	3862	0.49	2	5.39	0	0.03
4000	805011	2309	0	3.63	0	29.17	0	0.47
5000	1258433	2717	4566	0.70	4	5.55	0	0.03
5000	717013	3132	0	3.37	0	25.42	0	0.27
6000	173195	3302	5396	1.02	0	5.57	0	0.04
6000	1507280	3412	5176	0.94	0	7.18	0	0.04
7000	588713	4483	5014	1.06	0	10.91	0	0.03
8000	3099179	4394	7212	1.96	0	12.41	0	0.06
8000	428619	5249	0	5.58	0	48.21	0	0.17
9000	4046195	4927	0	26.23	0	239.21	0	0.74
9000	4513349	5899	6202	1.45	0	18.20	0	0.02
10000	4794713	5507	8986	3.02	0	19.86	0	0.07
10000	3775385	5811	0	37.28	0	274.31	1	1.27
11000	6344469	5901	10198	4.35	0	23.30	0	0.09
11000	2479688	6862	0	33.91	0	223.67	0	1.10
12000	5378750	6973	8552	16.46	0	78.69	0	0.07
12000	4827152	7098	194	63.80	0	368.03	0	0.07
13000	5638263	7698	0	75.59	0	510.73	0	5.56
13000	1319528	8474	0	24.54	0	185.99	0	0.40
14000	10723774	7417	0	78.11	0	819.25	0	25.24
14000	1259094	8444	10312	4.53	0	47.93	0	0.05
15000	6799463	8993	12014	5.82	0	50.81	0	0.10
15000	4207335	9413	0	80.07	0	526.90	0	2.98
16000	4807361	10042	0	96.05	0	627.97	0	3.76
16000	14309249	8401	570	101.08	0	1108.03	0	34.14
17000	803659	11239	11522	5.17	0	64.71	0	0.03
17000	10662300	9898	14202	7.66	0	60.82	0	0.14
18000	5064751	11412	256	124.12	0	683.34	0	6.40
18000	1970506	11782	32	53.56	0	372.49	0	1.21

3.2 Kernel Sizes

First, we compare the kernel sizes computed by each reduction technique. We first run all algorithms on synthetically generated graphs, on which Critical was previously shown to be effective [11]. We generate instances with a known clique number using the Sanchis graph generator [28], and then take the complement. Like Butenko and Trukhanov [11], we choose the clique number (and thus, the independence number in the complement graph) to be at least \(n/2\).

As can be seen in Table 1, Critical succeeds in reducing the kernel to empty in many cases. During testing, we noticed that Critical did not enter a second iteration on most graphs. That is, in general, either the first critical independent set matched the size of a maximum independent set or the remaining graph had an empty critical set. It is unclear what causes this behavior, but we conjecture it could be due to how we compute the maximum matching; we use depth-first search.
Table 2. We give the kernel size k and running time t for each reduction technique on Erdős and BioGRID graphs. We further give the number of vertices n and edges m for each graph.

Graph	n	m	Critical	MaxCritical	Advanced	Simple
	k	t	k	t	k	t
Erdős Graphs						
erdos971	472	1314	350	0.01	124	0.06
erdos972	5488	8972	46	0.20	0	13.83
erdos981	485	1381	373	0.01	205	0.08
erdos982	5822	9505	44	0.22	0	15.65
erdos991	492	1417	398	0.01	218	0.07
erdos992	6100	9339	42	0.22	0	17.11
BioGRID Graphs						
Arabidopsis-thaliana	7225	17223	1534	1.16	188	19.18
Bos-taurus	389	357	109	0.01	3	0.05
Canoehabitid-talicans	3974	7191	758	0.30	18	5.38
Candida-albicans-SC5314	379	371	66	0.00	14	0.05
Danio-merio	238	249	71	0.00	11	0.02
Drosophila-melanogaster	8229	39086	3479	2.78	973	28.01
Escherichia-coli	139	122	14	0.00	0	0.01
Gallus-gallus	336	343	81	0.00	3	0.04
Hepatitis-C-Virus	113	111	2	0.00	0	0.01
Homo-sapiens	19592	167285	5675	18.70	1629	210.89
Human-Herpesvirus-1	140	140	12	0.00	0	0.01
Human-Herpesvirus-4	219	217	2	0.00	0	0.02
Human-Herpesvirus-8	137	138	0	0.00	0	0.01
Human-HIV-1	1030	1186	0	0.00	0	0.36
Mus-muscus	8567	19265	1377	1.39	51	27.56
Oryctolagus-cuniculus	183	168	28	0.00	0	0.02
Plasmodium-falciparum-3D7	1224	2443	336	0.04	0	0.40
Rattus-norvegicus	3066	4139	533	0.14	15	3.04
Schizosaccharomyces-cerevisiae	6660	228752	5732	2.48	5180	212.87
Schizosaccharomyces-pombe	4143	57049	840	1.41	194	11.72
Xenopus-laevi	473	520	160	0.01	16	0.06

search in the bi-double graph. It is unclear which search strategy Butenko and Trukhanov [**11**] use in their experiments. **MaxCritical** always computes an empty kernel on these instances; however, it is significantly slower than **Critical**. This is because **Critical** computes only 2 maximum matchings on typical instances, while **MaxCritical** computes many more.

We now turn our attention to **Simple** and **Advanced**. **Advanced** is the clear winner on the Sanchis graphs. It always computes an empty kernel, and does so quickly. However, **Simple** also computes empty kernels on 28 of the instances. Even though **Simple** is only faster than **Advanced** on four instances, **Simple** still computes exact solutions on these instances within a few seconds. Therefore, the **Advanced** reductions are not required to make these instances tractable.

We further tested all algorithms on medium-sized real-world graphs. We ran all four reduction algorithms on Erdős collaboration graphs from the Pajek data set and on biological graphs from the BioGRID data set (we only show results on those graphs with 100 or more vertices). As seen in Table 2, **MaxCritical** still gives consistently smaller kernels than **Critical**, but unlike the Sanchis graphs, not all kernels are empty. However, the **Simple** reductions give consistently small kernels.
on these real-world instances, computing an empty kernel on all but 4 instances, and doing so as fast as Advanced. The size of three of these non-empty kernels is well within the range of feasibility of existing MIS solvers. Neither Simple nor Advanced can solve the Saccharomyces-cerevisiae data set exactly, and the Simple kernel is within 12% of the Advanced kernel size.

3.3 Exact Solutions on Large-Scale Complex Networks.

We now focus on computing an exact MIS for the larger instances considered by Akiba and Iwata [3]. We test the branch-and-reduce algorithm by Akiba and Iwata (B&R) that uses Advanced reductions with branching rules during recursion. We also run Simple to kernelize the graph, and then run MCS on the remaining connected components (Simple+MCS). Results are presented in Table 3. Since Critical and MaxCritical are slow on large instances and less effective on medium-sized real-world instances (see Table 2), we exclude them from these experiments.

Similar to the original experiments of Akiba and Iwata [3], B&R computes an exact MIS on 42 of these instances. However, surprisingly, Simple+MCS also computes exact solutions for 33 of these instances. In the remaining nine instances where B&R computes a solution but Simple+MCS does not, we see that the size k_{max} of the maximum connected component in the kernel is significantly smaller for B&R. For six of these instances, k_{max} is less than 600, which is within the range of traditional solvers. Therefore, we conclude that the speed of B&R is primarily due to the initial kernelization on these instances. However, the remaining three instances—web-BerkStan, web-NotreDame and libimseti—have kernels that are too large for traditional solvers. Therefore, these instances benefit the most from the branch-and-reduce paradigm.

4 Conclusion and Future Work

Although efficient in practice, the techniques used by Akiba and Iwata [3] are not necessary for computing a maximum independent set exactly in many large complex networks. Our results further suggest that the initial kernelization is far more effective than the techniques used in branch-and-bound. Further, while the critical independent set reduction due to Butenko and Trukhanov [11] and the variant due to Larson [22] compute small kernels in practice, they are too slow to compete with other reductions on real-world sparse graphs.

This leaves several open questions that are interesting for future research. In particular, we would like to understand the structure that causes branch-and-reduce techniques to be fast on some graphs, but slow on other (similar) instances. Is it possible to speed up branch-and-reduce algorithms by applying only simple kernelization techniques, and reserving advanced techniques for “difficult” portions of the graph? As we’ve seen, advanced rules are not always necessary. Finally, much time is devoted to computing reductions in branch-and-reduce algorithms, perhaps more advanced (but slower) pruning techniques are now viable for these algorithms.
Table 3. We give the size k_{max} of largest connected component in the kernel from each reduction technique and the running time t of each algorithm to compute an exact maximum independent set. We further give the number of vertices n and edges m for each graph.

Graph	n	m	k_{max}	t	k_{max}	t
LAW Graphs						
cu-2000	325 557	2 738 969	2 404	-	17 626	-
dblink-2010	326 186	807 700	0 0.38	0	0.14	
dblink-2011	986 324	3 553 618	0 1.03	6	0.62	
eu-2005	862 664	16 138 468	51 864	-317	21.38	
hollywood-2009	1 139 905	56 375 711	0 22.39	0	0.14	
in-2004	1 382 908	13 591 473	281 4.39	11 626	44.66	
indochina-2004	7 414 866	150 984 819	8 246	-	509 355	
uk-2002	18 520 486	201 787 258	9 408	-2 043	389 339	
SNAP Graphs						
as-Skitter	1 696 415	11 955 298	597 2 111.02	21 174	-	
ca-AstroPh	18 772	198 650	0 0.07	0	0.02	
ca-CondMat	23 133	93 439	0 0.04	0	0.01	
ca-Grafc	5 242	14 484	0 0.04	0	0.00	
ca-HepPh	12 008	118 489	0 0.05	7	0.01	
ca-HepTh	9 877	25 973	0 0.05	0	0.01	
email-Enron	36 692	183 831	0 0.11	6	0.03	
email-EuAll	265 214	364 481	0 0.09	0	0.09	
p2p-Gnutella04	10 876	39 994	0 0.01	7	0.01	
p2p-Gnutella05	8 846	31 839	0 0.01	0	0.01	
p2p-Gnutella06	8 717	31 525	0 0.01	0	0.01	
p2p-Gnutella08	6 301	20 777	0 0.01	0	0.01	
p2p-Gnutella09	8 114	26 013	0 0.02	0	0.02	
p2p-Gnutella24	26 518	65 369	0 0.02	0	0.02	
p2p-Gnutella25	22 687	54 705	0 0.02	0	0.02	
p2p-Gnutella30	36 682	88 328	0 0.02	0	0.02	
p2p-Gnutella31	62 586	147 892	0 0.05	0	0.03	
roadNet-CA	1 965 206	2 766 607	10 807	-	89 667	-
roadNet-PA	16 087 692	1 541 898	5 834	-	35 783	-
roadNet-TX	1 379 917	1 921 660	4 102	-	49 143	-
soc-Epinions1	75 879	405 740	0 0.07	7	0.06	
soc-LiveJournal1	48 475 71	42 851 237	295 8.09	28 037	-	
soc-pokec	16 382 03	22 930 164	651 503	-	748 736	-
soc-Slashdot0811	77 360	469 180	0 0.07	8	0.13	
soc-Slashdot0902	82 168	504 230	0 0.11	15	0.15	
web-BerkStan	685 230	6 649 470	1 478 144.34	62 741	-	
web-PageRank	875 713	4 322 053	70 1.23	770 1.51	-	
web-NotreDame	1 325 729	1 060 108	3 548 12.27	3 578	-	
web-Stanford	281 903	1 992 636	2 619	-10 715	-	
wiki-Talk	2 394 385	4 659 656	0 0.44	0	2.32	
wiki-Vote	7 115	100 762	0 0.01	0	0.02	
KONECT Graphs						
flickr-growth	2 302 925	22 838 276	9 1.60	139 31.59	-	
flickr-links	1 175 255	15 555 041	0 1.10	68 17.04	-	
libimseti	220 970	17 233 144	49 399 1 371.18	141 008	-	
orkut-links	3 072 441	117 855 083	2 545 612	-2 701 058	-	
petster-carnivore	623 766	15 695 166	0 2.50	117 4.77	-	
petster-cat	149 700	5 448 197	66 2.83	68 152	-	
petster-dog	426 820	8 543 549	231 4.59	139 270	-	
youtube-links	1 138 499	2 990 443	0 0.43	19	3.12	
youtube-u-growth	3 223 643	9 376 594	0 1.51	33 17.59	-	
baidu-internallink	2 141 309	17 014 946	10 1.02	71 36.99	-	
baidu-relatedpages	415 641	2 374 044	492 1.59	11 458	-	
hudong-internallink	1 984 484	14 428 382	79 1.89	1546 45.92	-	
References

1. N. F. Abu-Khzam, R. M. Fellows, A. M. Langston, and H. W. Suters. Crown structures for vertex cover kernelization. *Theory of Computing Systems*, 41(3):411–430, 2007.
2. A. A. Ageev. On finding critical independent and vertex sets. *SIAM Journal on Discrete Mathematics*, 7(2):293–295, 1994.
3. T. Akiba and Y. Iwata. Branch-and-reduce exponential/FPT algorithms in practice: A case study of vertex cover. *Theoretical Computer Science*, 609, Part 1:211–225, 2016.
4. D. V. Andrade, M. G. Resende, and R. F. Werneck. Fast local search for the maximum independent set problem. *Journal of Heuristics*, 18(4):525–547, 2012.
5. V. Batagelj and A. Mrvar. Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/ 2006.
6. M. Batsyn, B. Goldengorin, E. Maslov, and P. Pardalos. Improvements to mcs algorithm for the maximum clique problem. *Journal of Combinatorial Optimization*, 27(2):397–416, 2014.
7. P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: A multiresolution coordinate-free ordering for compressing social networks. In S. Srinivasan, K. Ramanritham, A. Kumar, M. P. Ravindra, E. Bertino, and R. Kumar, editors, *Proc. 20th International Conference on World Wide Web (WWW 2011)*, pages 587–596. ACM Press, 2011.
8. P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In *Proc. 13th International Conference on World Wide Web (WWW 2004)*, pages 595–601. Manhattan, USA, 2004. ACM Press.
9. N. Bourgeois, B. Escoffier, V. T. Paschos, and J. M. van Rooij. Fast algorithms for max independent set. *Algorithmica*, 62(1-2):382–415, 2012.
10. S. Butenko, P. Pardalos, I. Sergienko, V. Shylo, and P. Stetsyuk. Estimating the size of correcting codes using extremal graph problems. In C. Pearce and E. Hunt, editors, *Optimization*, volume 32 of *Springer Optimization and Its Applications*, pages 227–243. Springer New York, 2009.
11. S. Butenko and S. Trukhanov. Using critical sets to solve the maximum independent set problem. *Operations Research Letters*, 35(4):519–524, 2007.
12. J. Chen, I. A. Kanj, and W. Jia. Vertex cover: Further observations and further improvements. *Journal of Algorithms*, 41(2):280–301, 2001.
13. T. A. Feo, M. G. C. Resende, and S. H. Smith. A greedy randomized adaptive search procedure for maximum independent set. *Operations Research*, 42(5):860–878, 1994.
14. F. Fomin and D. Kratsch. *Exact Exponential Algorithms*. Springer, 2010.
15. J. Gajarský, P. Hliněný, J. Obdržálek, S. Ordyniak, F. Reidl, P. Rossmanith, F. Sánchez Villaamil, and S. Sikdar. Kernelization using structural parameters on sparse graph classes. In H. L. Bodlaender and G. F. Italiano, editors, *Algorithms – ESA ’13*, volume 8125 of *LNCS*, pages 529–540. Springer Berlin Heidelberg, 2013.
16. M. Garey and D. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman, San Francisco, 1979.
17. A. Gemsa, M. Nöllenburg, and I. Rutter. Evaluation of labeling strategies for rotating maps. In *Experimental Algorithms*, volume 8504 of *LNCS*, pages 235–246. Springer, 2014.
18. J. E. Hopcroft and R. M. Karp. An $n^{5/2}$ algorithm for maximum matchings in bipartite graphs. *SIAM Journal on Computing*, 2(4):225–231, 1973.
19. Y. Iwata, K. Oka, and Y. Yoshida. Linear-time FPT algorithms via network flow. In Proc. 25th ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages 1749–1761. SIAM, 2014.

20. T. Kieritz, D. Luxen, P. Sanders, and C. Vetter. Distributed time-dependent contraction hierarchies. In P. Festa, editor, Experimental Algorithms, volume 6049 of LNCS, pages 83–93. Springer Berlin Heidelberg, 2010.

21. J. Kunegis. KONECT: The Koblenz network collection. In Proc. 22nd International Conference on World Wide Web (WWW 2013), WWW ’13 Companion, pages 1343–1350, New York, NY, USA, 2013. ACM.

22. C. Larson. A note on critical independence reductions. volume 51 of Bulletin of the Institute of Combinatorics and its Applications, pages 34–46, 2007.

23. J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.

24. C.-M. Li, Z. Fang, and K. Xu. Combining MaxSAT reasoning and incremental upper bound for the maximum clique problem. In Proc. IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI 2013), pages 939–946, Nov 2013.

25. G. Nemhauser and J. Trotter, L.E. Vertex packings: Structural properties and algorithms. Mathematical Programming, 8(1):232–248, 1975.

26. P. San Segundo, F. Matia, D. Rodriguez-Losada, and M. Hernando. An improved bit parallel exact maximum clique algorithm. Optimization Letters, 7(3):467–479, 2013.

27. P. San Segundo, D. Rodriguez-Losada, and A. Jimnez. An exact bit-parallel algorithm for the maximum clique problem. Computers & Operations Research, 38(2):571–581, 2011.

28. L. A. Sanchis and A. Jagota. Some experimental and theoretical results on test case generators for the maximum clique problem. INFORMS Journal on Computing, 8(2):87–102, 1996.

29. P. V. Sander, D. Nehab, E. Chlamtac, and H. Hoppe. Efficient traversal of mesh edges using adjacency primitives. ACM Trans. Graph., 27(5):144:1–144:9, Dec. 2008.

30. C. Stark, B. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers. Biogrid: A general repository for interaction datasets. Nucleic Acids Research, 34:D535–D539, 2006.

31. E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki. A simple and faster branch-and-bound algorithm for finding a maximum clique. In M. S. Rahman and S. Fujita, editors, WALCOM: Algorithms and Computation, volume 5942 of LNCS, pages 191–203. Springer Berlin Heidelberg, 2010.

32. B. Verweij and K. Aardal. An optimisation algorithm for maximum independent set with applications in map labelling. In J. Nesetril, editor, Algorithms – ESA ’99, volume 1643 of LNCS, pages 426–437. Springer Berlin Heidelberg, 1999.

33. M. Xiao and H. Nagamochi. Confining sets and avoiding bottleneck cases: A simple maximum independent set algorithm in degree-3 graphs. Theoretical Computer Science, 469:92–104, 2013.

34. C.-Q. Zhang. Finding critical independent sets and critical vertex subsets are polynomial problems. SIAM Journal on Discrete Mathematics, 3(3):431–438, 1990.
Algorithm 1: Larson’s algorithm

input graph $G = (V, E)$
output a maximum critical independent set I

$I \leftarrow \emptyset$

$B(G) \leftarrow$ bi-double of G

$V_{\text{remain}} \leftarrow V$

for v in V_{remain}
do

$B_v(G) \leftarrow B(G) - N[\{v, v\'}]$

if $\alpha(B(G)) = \alpha(B_v(G)) + 2$ then

$I \leftarrow I \cup \{v\}$

$V_{\text{remain}} \leftarrow V_{\text{remain}} \setminus N[v]$

else

$V_{\text{remain}} \leftarrow V_{\text{remain}} \setminus \{v\}$

return I

A Computing a Maximum Critical Independent Set

We now we describe Larson’s algorithm [22] for computing a maximum critical independent set, and show that it can be executed in time $O(m^2)$. We assume that the graph is connected, and therefore $m = \Omega(n)$.

Algorithm [1] gives pseudocode for Larson’s algorithm. The running time is dominated by the time to compute each of the $O(n)$ independence numbers. We can naively compute each one by computing a bipartite maximum matching in each bi-double graph in $O(n^2 m)$ total time, or $O(n^{3/2}m)$ total time with the Hopcroft-Karp algorithm [18]. However, as we now prove, we can reduce this to $O(m^2)$ time, which is more efficient for sparse graphs, where $m = o(n^{3/2})$.

Theorem 1. Larson’s algorithm can be executed in time $O(m^2)$.

Proof. We begin by computing one maximum matching $M_{B(G)}$ in $B(G)$, and computing the independence number $\alpha(B(G))$ from $M_{B(G)}$. When we compute a new maximum matching $M_{B_v(G)}$ for bi-double graph $B_v(G)$ we use $M_{B(G)}$ as an initial matching. We first create a new matching $M'_{B(G)}$ from $M_{B(G)}$, by removing any matched edges with vertices in $N[\{v, v\'}]$, which are removed to create $B_v(G)$. This removes at most $|N(v)| + |N(v')|$ edges, as each neighbor can be in at most one matching. Since $M_{B(G)}$ is a maximum matching in $B(G)$, $|M_{B_v(G)}| \leq |M_{B(G)}| \leq |M'_{B(G)}| + |N(v)| + |N(v')|$, and therefore at most $|N(v)| + |N(v')|$ iterations of an augmenting path algorithm are required to compute $M_{B_v(G)}$ from $M'_{B(G)}$.

Thus, when evaluating vertex v, we can compute the independence number $\alpha(B_v(G))$ in time $O((|N(v)| + |N(v')|)(n + m))$. And thus, the running time for the overall algorithm is at most

$$\sum_{v \in V} O((|N(v)| + |N(v')|) \cdot (n + m)) = O(m^2).$$

\[\square \]