I \text{Gravitational lensing of distant field galaxies by rich clusters} - II. Cluster mass distributions

Ian Smail,1 * Richard S. Ellis,1† Michael J. Fitchett1‡ and Alastair C. Edge2
1 Physics Department, University of Durham, South Road, Durham DH1 3LE
2 Institute of Astronomy, Madingley Road, Cambridge CB3 0HA

Accepted 1994 September 30. Received 1994 September 2; in original form 1994 February 24

ABSTRACT
We construct a photometric catalogue of very faint galaxies ($I \leq 25.5$) using deep CCD images taken with the 4.2-m William Herschel telescope of fields centred on two distant X-ray-luminous clusters: 1455 + 22 ($z_c = 0.26$) and 0016 + 16 ($z_c = 0.55$). Using a non-parametric procedure developed by Kaiser & Squires, we analyse the statistical image distortions in our samples to derive two-dimensional projected mass distributions for the clusters. The mass maps of 1455 + 22 and 0016 + 16 are presented at effective resolutions of 135 and 200 kpc, respectively (for $H_0 = 50 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $q_0 = 0.5$), with peak signal-to-noise ratios per resolution element of 17 and 14. Although the absolute normalization of these mass maps depends on the assumed redshift distribution of the $I \leq 25.5$ field galaxies used as probes, the maps should be reliable on a relative scale and will trace the cluster mass regardless of whether it is baryonic or non-baryonic. We compare our 2D mass distributions on scales up to ~ 1 Mpc with those defined by the spatial distribution of colour-selected cluster members and with deep high-resolution X-ray images of the hot intracluster gas. Despite the different cluster structures – one is cD-dominated and the other is not – in both cases the form of the mass distribution derived from the lensing signal is strikingly similar to that traced by both the cluster galaxies and the hot X-ray gas. We find some evidence for a greater central concentration of dark matter with respect to the galaxies. The overall similarity between the distribution of total mass and that defined by the baryonic components presents a significant new observational constraint on the nature of dark matter and the evolutionary history of rich clusters.

Key words: galaxies: clusters: general – galaxies: photometry – cosmology: observations – dark matter – gravitational lensing.

1 INTRODUCTION
The nature of the dark matter in clusters of galaxies has been a central theme in cosmological research since its existence was inferred over 60 years ago (Zwicky 1933). Although the early evidence was based on the virial analysis of the relative velocities of cluster member galaxies, the discovery of X-ray emission from a hot intracluster medium provided independent verification of the so-called ‘missing mass problem’ (Jones & Forman 1984).

* Current address: Caltech 105-24, Pasadena, CA 91125, USA.
† Current address: Institute of Astronomy, Madingley Road, Cambridge CB3 0HA.
‡ Current address: Medical School, University of Newcastle, Framlington Place, Newcastle NE2 4HH.

Until recently, most of the interest in clusters of galaxies has focused on determining the amount of dark matter contained. As clusters are the largest bound structures known, their mass/light ratios and baryonic fractions should approach that for the cosmos as a whole. In fact, careful studies of selected nearby clusters (Fabian 1991; Mushotzky 1993; White et al. 1993) have revealed a much higher baryonic fraction than expected in the inflationary $\Omega = 1$ universe whose baryonic component is constrained by primordial nucleosynthesis arguments (Briel, Henry & Bohringer 1992; White et al. 1993). This dilemma might be resolved if it could be demonstrated that the dark matter in clusters was less concentrated than the baryonic component. Such arguments indicate that the observations constraining the relative distribution of dark matter are as important as those that estimate its total amount.
Both the classical spectroscopic and X-ray techniques are ill-suited to tackling this problem. In the case of the radial velocities of cluster galaxies, the one-dimensional nature of the dynamical data necessitates assumptions about the distribution of orbits which even extensive data (Kent & Gunn 1982; Sharples, Ellis & Grey 1988) have been unable to resolve definitively. Simulations have shown (Fitchett 1988) the difficulty of recognizing substructure, even with several hundred radial velocities, unless it is of a particular form (e.g. bimodal) and conveniently well separated on the sky or in velocity. Beyond a few core radii (i.e. r > 500 kpc), contamination from non-members increases to such an extent that useful samples of cluster galaxies must be taken from well down the galaxy luminosity function, making such surveys highly inefficient probes of the mass distribution on large scales.

Analysis of the X-ray gas distribution is less complicated by projection effects and provides a better sampling of any spatial structure on scales less than a few hundred kpc. The fundamental limitation of X-ray studies to date has been the lack of spatially resolved temperature profiles. Detailed studies of nearby clusters have shown no evidence for strong temperature gradients in clusters (Hughes 1989; Eyles et al. 1991) and, within the central 1 Mpc, the assumption of isothermality is apparently consistent with all published data (excluding the central cooling core of radius 100–200 kpc). The ASCA X-ray satellite is currently generating spatially resolved temperature profiles for many clusters, and thus considerable progress will be made in this area in the next few years. As with the cluster galaxies, however, the surface brightness of the X-ray emission falls precipitously with radius from the cluster centre and, in order to determine mass distributions on the large scales required to resolve the ‘baryon catastrophe’ discussed by White et al. (1993), very long exposures are needed to obtain the necessary temperature data.

Thus far, mass distributions derived from the modelling of the X-ray emission have been published for a few nearby clusters and are claimed to indicate a dark matter component more centrally concentrated than in both the galaxies and the X-ray gas (Eyles et al. 1991; Gerbal et al. 1992). One recent study (Buote & Canizares 1992) has compared the structures of the 2D distributions of mass and galaxies in a sample of local clusters using X-ray imaging data. Although the orientations of the two distributions (X-ray gas and galaxy number density) are in good agreement, they conclude that the potential traced by the X-ray gas in the central ~ 1 Mpc of their clusters is too round to be generated by the observed galaxy distribution if the galaxies exactly trace the mass. The difference might be reconciled if the galaxies and mass have different radial scalelengths. This would result in the X-ray analysis of Buote & Canizares including regions outside the cores of the mass distribution, leading to an inferred ellipticity for the mass that is in better agreement with that traced by the galaxies.

A related issue in the quest for the nature and distribution of dark matter in clusters is the evolutionary history of the gravitational potential of clusters. Conventional theories that postulate a significant non-baryonic component predict recent growth (Frenk et al. 1990). X-ray imaging (Henry et al. 1992) and all-sky scanning (Edge et al. 1990) surveys have revealed evidence for evolution at surprisingly low redshifts (≤0.2), in the sense that there are fewer of the highest X-ray luminosity (L_x > 8 x 10^{45} erg s^{-1}) clusters in the past. In contrast, optical surveys find a nearly constant comoving space density of rich clusters to z_c ~ 0.5 (Gunn, Hesser & Oke 1986; Couch et al. 1991). To reconcile this discrepancy, Kaiser (1991) has proposed that the X-ray-emitting gas was heated prior to the formation of clusters and became bound to the potential wells only when the latter had grown sufficiently deep to contain the gas. In any case, the mechanism of hierarchical merging that underlies the observed X-ray evolution may introduce significant differences in the optical and X-ray properties of clusters in the period leading up to and immediately after a cluster–cluster merger. Thus we might expect morphological differences between the distributions of the X-ray gas and the gravitating mass in moderate redshift clusters. In a search for such signatures of merger activity, we have made a detailed comparison of optical, X-ray and gravitating mass distributions for two high X-ray luminosity clusters.

The analysis of the gravitational lensing signals, derived from the distortion of background galaxies viewed through clusters, offers an independent probe of the mass distribution in clusters (for recent reviews see Soucail 1992; Blandford & Narayan 1993). Geometrical considerations indicate that the phenomenon will be most effective in constraining mass distributions in clusters with redshifts z_{cl} ≥ 0.2. The classical techniques for recovering mass distributions rely on in situ probes of the gravitational potential, about which various assumptions are made concerning their thermodynamic state. For the lensing methods, however, the results depend on the characteristics of background sources totally unrelated to the cluster. In many cases these can be directly measured or they can be statistically understood from large samples. We take q_0 = 0.5 and h_{50} = 1, where h_{50} is H_0 in units of 50 km s^{-1} Mpc^{-1}.

2 GRAVITATIONAL LENSING AS A PROBE OF CLUSTER MASS DISTRIBUTIONS

The lensing of resolved galaxies by foreground rich clusters produces two observable phenomena: ‘giant arcs’ and ‘arclets’.

As highly elongated images of serendipitously positioned background galaxies, the giant arcs are easily recognizable manifestations of strong lensing by cluster cores (Grossman & Narayan 1989). Several have spectroscopic redshifts which, when combined with detailed modelling of their image characteristics, have provided important constraints on the total mass in the centres of rich clusters. Kneib et al. (1993) modelled Abell 370 using a bimodal mass distribution motivated by the structures of the cluster X-ray emission and red light. Their model successfully explains a variety of gravitationally lensed features in the cluster. However, for Abell 2390, Kassiola, Kovner & Blandford (1992) require a mass distribution that differs from that seen in the cluster galaxies.

Unfortunately, there is rarely more than a single giant arc per cluster and so usually the resulting models are not uniquely constrained by the available data. Using a sample of cluster with arcs, Wu & Hammer (1993) claimed a marked concentration of dark compared to visible mass from the
mean cluster radius where the arcs are found compared to the canonical X-ray core radius. They concluded, however, that further information on the sources (e.g. their sizes) is required to derive robust conclusions. The apparent concentration of dark compared to visible mass relies on the distant sources having similar intrinsic sizes to present-day bright galaxies. The recent discovery of multiply imaged pairs in the cores of rich clusters (Kneib et al. 1993; Smail et al. 1994) suggests that at least some $B=26-28$ galaxies are significantly more compact, as these images would otherwise appear as elongated connected arcs (Miralda-Escude & Fort 1993).

In a detailed study of three clusters with both arcs and X-ray data available from the literature, Babul & Miralda-Escude (1994) concluded that the mass estimates from the arc modelling can be nearly a factor of ~ 2 larger than those from the X-ray observations of the innermost regions of the cluster core. As they discussed, this discrepancy may arise from a number of sources, including the simplified geometry adopted for the lensing clusters or other invalid assumptions used in the X-ray modelling.

The rarity of the giant arcs, together with uncertainties about the intrinsic source properties (including sizes and even redshifts in many cases), precludes reliable constraints. In very rare cases such as AC114 (Smail et al. 1995), the combination of arcs and a multiply imaged pair resolved with the aid of Hubble Space Telescope can yield tight constraints on the mass distribution but only for the inner 1–200 kpc of a single cluster. The rate of occurrence of multiply imaged pairs remains unclear, although there is good cause for being optimistic about their frequency if the sources are $B=26-28$ galaxies as detailed modelling suggests.

The weakly distorted arcs are a much more promising probe of the mass distribution. These images are generally too faint for direct spectroscopy and are insufficiently elongated for them to be convincingly identified as lensed on an individual basis. However, the tiny distortions induced by the lensing cluster form a coherent pattern superimposed upon the intrinsic ellipticities and orientations of the faint background population. The coherence thus overcomes the low signal-to-noise ratio of the individual arcs.

The most basic lensing statistic is the proportion of field galaxies aligned tangentially to a suitably defined lens centre. In a pioneering study, Tyson, Valdes & Wenk (1990) analysed images of the central regions of Abell 1689 ($z=0.18$) and Cl1409 + 52 ($3C295$, $z=0.46$). Using the alignment of blue galaxies, they detected strong mass concentrations peaked on the optical cluster centres. They also attempted to derive radial mass profiles for the clusters that were found to resemble the profiles of cluster light. Unfortunately, as Kaiser & Squires (1993) showed, Tyson et al.'s statistic measures the surface potential rather than the mass. Nevertheless, the Tyson et al. study conclusively demonstrated the power of gravitational lensing as a probe of the mass distributions of rich clusters.

With deep CCD images reaching $I=25$, $B=27$, a very high surface density of background sources can be attained. Techniques can then be developed to determine the mass distribution with a resolution that matches the best available from the X-ray and optical tracers in the cluster. The unique advantage of this method over those discussed above is that, providing the cluster mass distribution has a non-zero gradient, the technique works equally well in the cluster peripheries as it does in the core, since the basic signal is provided by an isotropic population of background faint field galaxies.

Of course, the lensing signal depends on the redshift distribution, $N(z)$, of the source population, as well as on the desired mass distribution, $M(r)$, within the cluster. At the limiting magnitude of our study, it seems unlikely that spectroscopy even with 10-m class telescopes can usefully constrain $N(z)$. However, one possible route to achieve arbitrarily high surface density of spectroscopically attainable background sources is to combine shallow images of many clusters to study the profile of an 'average' cluster.

More complex analysis, combining the results from individual clusters, can be used to separate the dependency on $N(z)$ and $M(r)$. We therefore began a deep imaging programme of three X-ray-luminous clusters, carefully selected to cover a range of cluster redshifts, z_c. By imaging each cluster to the same limiting magnitude, the lensing signals can be analysed to test both the faint galaxy $N(z)$ and $M(r)$ for each of the clusters. Paper I of this series (Smail, Ellis & Fitchett 1994) describes the overall approach, the observational data sets and tests in some detail. The reader is strongly advised to consult that article first.

In Paper I, we derived maximum-likelihood constraints on the redshift distribution, $N(z)$, of the faint field population imaged to $I<25$. The most probable distribution is close to that expected in the absence of pure luminosity evolution, although a tail of high-redshift sources cannot be excluded. Our analysis technique also quantified the amount and concentration of the mass in the two lowest redshift ($z=0.26$ and 0.55) clusters for which a strong lensing signal is seen. The mass distributions were, however, only derived in a form parametrized by the depth of the potential and its scale in the isothermal case (i.e. in terms of the line-of-sight velocity dispersion, σ_1, and core radius, r_c). No true morphological information on $M(r)$ was discussed.

In Paper I the joint dependence of the lensing signal on $N(z)$ and $M(r)$ was only partially separated. Whilst the parameters satisfying the cluster mass distributions are consistent with those inferred from dynamical and X-ray data, the uncertainties are too great to examine any possible differences. Nevertheless, for the redshift distributions (which formed the basic motivation of Paper I), significant constraints are possible by combining the results from the three clusters.

This second paper extends the analysis begun in Paper I and examines the relative mass distributions in the two lowest redshift clusters in a model-independent way. This is made possible by the non-parametric lens inversion technique developed by Kaiser & Squires (1993). The projected maps of the total cluster mass are presented with a relative normalization and are thus independent of any uncertainties in the source $N(z)$. The unique feature of our study is the comparison of these maps with the distribution of both cluster members and the X-ray gas. We can therefore compare the large-scale distribution of dark matter with that for the baryonic component in two clusters. Our study is thus a logical extension of Tyson et al.'s original work. By creating a larger sample of background galaxies and applying a new analytic technique, we can achieve a sufficiently high galaxy surface density in good seeing to allow us to resolve structure in the lensing clusters.
The plan of the paper follows. In Section 3 we begin by briefly recapping the target selection, optical data acquisition and reduction methods before discussing the reduction and analysis of the ROSAT X-ray images of the two selected clusters. In Section 4 we discuss our implementation of the Kaiser & Squires procedure. The mass maps are presented in Section 5 and compared with the distributions of galaxies and hot X-ray gas in the clusters. Section 6 gives our discussion of the comparison between the mass distribution and that of the baryonic tracers. Our conclusions are summarized in Section 7.

3 OBSERVATIONAL DATA AND METHODS

The philosophy behind our observational programme is thoroughly discussed in Paper I, where the criteria by which the clusters were selected are given. All of the optical CCD observations and their reduction procedures are reviewed in considerable detail. Here we briefly summarize the optical characteristics and respective data sets for the two clusters for which mass distributions are presented before discussing the X-ray images and their treatment. The latter data was not presented in Paper I.

The three clusters chosen for our survey span the redshift range 0.26 < z < 0.89 and X-ray luminosities are available for each. 1455 + 22 (z = 0.26) was originally identified by the Einstein X-ray satellite (Henry et al. 1992), whereas 0016 + 16 (z = 0.55) was found on deep optical photographic plates (Koo 1981). Both clusters are amongst the most X-ray-luminous examples known and can, effectively, be regarded as X-ray selected. The highest redshift cluster, 1603 + 43 (z = 0.89) was optically discovered and is a much weaker X-ray emitter. No significant lensing signal was detected with this cluster, which provides important constraints on the redshift distribution of the field galaxies (Paper I) but clearly eliminates it from further consideration in any determination of cluster mass distributions.

The optical observations were made in 1990 July and 1991 May using the Taurus II f/4 focal reducer on the 4.2-m William Herschel Telescope (WHT) (see table 2 of Paper I) with the largest format EEV CCD then available. This arrangement provides 0.27 arcsec pixel−1 sampling over a 5 x 5 arcmin² field (corresponding to 1.5 Mpc and 2.2 Mpc for the clusters concerned). Multiple exposures of duration ≤ 1000 s were taken in V and I. The telescope was offset between each exposure so that the data frames could be combined to create a master sky flat-field, which was used to process all the data from that night. The I-band data was used to determine image shapes for the lensing analysis. For 1455 + 22 the final I frame has a seeing of 0.90 arcsec FWHM, and for 0016 + 16 it is 0.95 arcsec FWHM. The final on-source integrations for the two clusters are 1455 + 22 − texp(V) = 12.0 ks and texp(I) = 20.8 ks; 0016 + 16 − texp(V) = 11.0 ks and texp(I) = 25.5 ks.

The data set was reduced to match V, I object catalogues using the FOCAS image processing algorithm (Jarvis & Tyson 1981) with some minor modifications as described in detail in Paper I. The final catalogues have 1σ isophotal limits of 1455 + 22 − μV = 28.9 mag arcsec−2 and μI = 27.8 mag arcsec−2; 0016 + 16 − μV = 28.8 mag arcsec−2 and μI = 28.2 mag arcsec−2. These limits are sufficiently faint to obtain reliable ellipticities and colours to at least I = 25. At this limit, the signal-to-noise ratio of a single galaxy image is typically ~15–20σ in the seeing disc. The 80 per cent completeness limits for the catalogues are I = 25.3 and V = 26.5 for 1455 + 22, and I = 25.7 and V = 26.4 for 0016 + 16. The high source densities available (~60 arcmin−2 at I = 25.5) enable us to resolve mass structures on scales comparable to those available from our X-ray images. Note that, although a lensing signal could be detected using a brighter magnitude limit with fewer field galaxies per unit area, very deep images are required to derive mass maps of the required spatial resolution and signal-to-noise ratio.

We now describe the properties of the individual clusters, paying particular attention to the X-ray images and their reduction.

3.1 1455 + 22

This cluster was discovered as a serendipitous source in the Einstein Medium Sensitivity Survey (EMSS, Henry et al. 1992). The cluster is the most X-ray-luminous cluster within a redshift of 0.5 in the EMSS: 1.6 × 10^45 erg s−1 in the 0.3–3.5 keV band. Unfortunately, redshifts are available for only four cluster members (Mason et al. 1981), including the dominant central galaxy (z = 0.258). The velocity dispersion determined from so few galaxies is of course highly uncertain, ~ 700 ± 200 km s−1, where the uncertainties are 90 per cent confidence limits assuming a Gaussian velocity dispersion. The central galaxy also exhibits the strongest optical line emission of any of the EMSS clusters (Donahue, Stocke & Gioia 1992) and therefore probably contains a cooling flow. While the X-ray luminosity is very high, the optical richness derived from counts of colour-selected cluster members (see below) is low, being about a half of that expected from lower redshift clusters (Edge & Stewart 1991) and a third of the value for Coma.

As part of a larger programme to obtain detailed X-ray images of a sample of moderate redshift clusters (z = 0.2–0.3) for an X-ray/optical gravitational lensing study, a ROSAT HRI observation was taken of 1455 + 22. A total exposure of 8.3 ks was obtained in two parts on 1992 January 11 and 1993 January 20. Although this exposure is a half of that originally requested, it provides sufficient signal-to-noise ratio to detect the cluster out to 1 Mpc and resolve the central 50 kpc of the cluster. Fig. 1(a) shows this image overlaid on the composite V + I WH image. The emission is highly peaked on the central galaxy but shows no evidence for a significant point source (less than 5 per cent of the total X-ray flux). Deprojection of the surface brightness profile (Arnaud 1987; White 1992) indicates that the cluster does indeed contain a cooling flow of 630 ± 140 M⊙ yr−1. The deprojection analysis uses an assumed form for the cluster potential and combines this with the observed X-ray surface brightness distribution to determine a temperature profile for the cluster. Ideally this is then matched to the observed temperature profile. In the absence of such information this procedure unfortunately prevents the determination of an exact mass profile. However, taking an isothermal temperature of 8 ± 3 keV for the cluster (consistent with the luminosity–temperature relation) and a core radius where the ratio of gas mass to total mass is constant, the best-ﬁtting King potential has a velocity dispersion of 1000 ± 200 km
Figure 1. (a) A contour plot of our ROSAT HRI exposure of 1455 + 22 overlaid on a grey-scale of our deep combined V + I exposures. The observed shear field in the cluster is shown by the vectors. These have been calculated in a similar manner to Bonnet et al. (1994). At the cluster’s redshift, 1 arcsec corresponds to 5.0 kpc. (b) An equivalent comparison between the ROSAT PSPC image of 0016 + 16 and our V + I exposure. At the redshift of 0016 + 16, the spatial scale is 7.4 kpc arcsec⁻¹.
s$^{-1}$ and a core radius of 150 ± 100 kpc. A more detailed description of the analysis and how the results relate to other clusters will be presented elsewhere [Edge et al., in preparation].

In summary, the high inferred mass and its compact distribution strongly suggest that this cluster is a very good candidate for the deep lensing studies proposed in Section 2.

3.2 0016 + 16

This cluster is the third most luminous EMSS cluster (Henry et al. 1992) at 1.4×10^{45} erg s$^{-1}$. In contrast to 1455 + 22, however, it has been well studied both optically and in the near-infrared (Koo 1981; Ellis et al. 1985; Aragón-Salamanca et al. 1993). The cluster’s redshift is $z = 0.545$ with a rest-frame velocity dispersion of $\sigma = 1324$ km s$^{-1}$ from 30 members (Dressler & Gunn 1992, and private communication).

Morphologically, the cluster is very different to 1455 + 22, containing no dominant central galaxy. The peak in the galaxy surface density lies slightly to the south-west of a linear structure defined by three bright members (Fig. 1b). The optical counts indicate a richness of $= 2 \times$ Coma, but possible contamination by foreground systems may reduce this estimate (cf. Ellis et al. 1985). The absence of a prominent population of blue members suggests that the cluster is unusually advanced in evolutionary terms for its redshift. This conclusion is supported by the analysis of the rest-frame $U-V$ colours of the red early-type cluster members. These exhibit a remarkably small scatter, showing that the population is extremely homogeneous and implying that it is very old even at $z = 0.55$ (a look-back time of $t \sim 6.5$ Gyr).

A deep Einstein HRI image of 0016 + 16 (White, Silk & Henry 1981) determined an X-ray core radius of 220 kpc, which is comparable to the intrinsic resolution of the image. Unfortunately the high internal background of the Einstein HRI prevented any study of more extended, low surface brightness emission. Recently a ROSAT PSPC image with an exposure of 43.2 ks was obtained by Hughes and collaborators; this is now publicly available from the ROSAT archive. The hard (0.4-2.4 keV) image is overlaid on the composite $V+I$ frame in Fig. 1(b). The X-ray map reveals an elliptical or bimodal distribution centred on the optical cluster centre. A detailed comparison of the X-ray and optical structures is given below. A deprojection analysis of the X-ray surface brightness profile with a King model potential gives a velocity dispersion of 1300 ± 200 km s$^{-1}$ and a core radius of 400 ± 200 kpc.

0016 + 16 is a very rich and concentrated cluster and is ideally suited for lensing studies. In addition, its structure contrasts usefully with that of 1455 + 22.

3.3 Field and cluster galaxy catalogues

Paper I describes in more detail how photometric catalogues of galaxies to $I \leq 25$ can be used to define ‘field’ and ‘cluster’ samples on a statistical basis. From the aperture $V-I$ colours, well-defined colour–magnitude relations are observed for the early-type members of both clusters. The tightness of these relations $|\Delta(V-I)| = 0.04$ mag for 1455 + 22 and $|\Delta(V-I)| = 0.06$ mag for the bright end of the 0016 + 16 sequence [enables us to label galaxies selectively in the sequence as ‘cluster members’, and those outside this narrow colour relation are assumed to be ‘field galaxies’. The number–magnitude counts for this field population agree closely with published data in random fields at high Galactic latitude (Lilly, Cowie & Gardner 1991). The same procedure can be used to show that there is no statistically significant excess from cluster members fainter than $I = 22.0$ (for 1455 + 22) and $I = 23.5$ (for 0016 + 16). These limits are equivalent to absolute magnitudes of $M_V = -17$ and -18.5, respectively.

For 0016 + 16, an excess of bright galaxies is apparent, most likely associated with foreground groups identified by Ellis et al. (1985). For this cluster, additional colour information is available from an R-band service exposure taken with a large format EEV CCD at the 2.5-m INT prime focus. This frame has a total exposure time of 6.0 ks and is adequate to provide colours to $I = 24$ that are accurate to better than 0.2 mag. Additional colour criteria were thus used on the $(V-R)-(R-I)$ plane to isolate galaxies with colours similar to E/S0s at $z = 0.55$.

In the case of 1455 + 22, our cluster samples contain 139 galaxies brighter than $I = 22$ over the 5.4×5.0 arcmin2 field. For 0016 + 16, we have 174 cluster galaxies to $I = 23.5$ in a 3.3×5.1 arcmin2 region. The corresponding field samples contain 1583 and 831 galaxies, respectively, above their 80 per cent completeness limits.

We note that neither of the clusters presented here shows giant arcs ($a/b \geq 10$) down to surface brightness limits of -0.05 per cent of the night sky. The creation of a giant arc is very sensitive to the detailed structure of the mass distribution on small scales in the cluster core (e.g. Smail et al. 1991). As we show below, both our clusters are massive lenses and therefore the absence of giant arcs, even to very deep limits, has little or no bearing on this. This result shows the weakness of using shallow surveys for giant arcs as a means of studying the masses of clusters. Nevertheless, such surveys are still useful to investigate both the high-redshift galaxies seen as arcs and the core structure of the lensing clusters.

The lensing techniques described below rely upon our ability to estimate the ellipticities of faint objects accurately. This issue is discussed at length in Paper I, where we argue for the introduction of a new weighting scheme for ellipticity measurements compared to that originally implemented in the FOCAS package. Our approach is to use a radial weighting function within circular apertures when calculating second moments, instead of using the detection isophote to define pixel membership at each surface brightness. In this scheme, the optimal weighting function has the same profile as that for the image itself. It has been shown that the use of profile shapes individually tailored to each object does not significantly improve the weighting scheme, considering the large computational burden introduced (Bernstein, private communication). The weighting function adopted, therefore, is a circular Gaussian whose variable width is determined from the intensity-weighted radius of the image after seeing convolution. We refer to these moments as ‘optimally weighted’.

Using tests discussed in Paper I, we demonstrate a considerable improvement in the robustness of the optimally weighted ellipticity measurements for very faint objects compared to the traditional measurement. For a typical...
4 DETERMINING THE DISTRIBUTION OF DARK MASS

Various statistical tools have been developed to analyse the weak lensing of faint galaxies by rich clusters. The methods fall into two main classes: parametric likelihood tests which assume some form for the distribution of mass in the lens and then attempt to determine the most likely values of the model parameters (Kochanek 1990; Miralda-Escudé 1991a,b; Paper I); and non-parametric tests which directly derive the mass distribution from the variation of the lensing signal across the cluster image (Kaiser & Squires 1993; Bonnet, Mellier & Fort 1994).

The parametric methods are particularly well suited for constraining the faint galaxy redshift distribution, provided there are some constraints on the depth and scale of the cluster potential well, e.g. from dynamical or X-ray data. In Paper I we used these methods to obtain the most probable redshift distribution for the $I=25$ field population from the lensing signal observed in the three clusters at $z_0 = 0.26, 0.55$ and 0.89.

Alternatively, the non-parametric technique developed by Kaiser & Squires (1993; see also Fahlman et al. 1994) is better suited for investigating the relative distribution of mass in the lensing cluster. Not only can the method provide a genuine ‘map’ of the projected mass distribution in moderate- and high-redshift rich clusters with a resolution appropriate for comparison with the baryonic tracers, but also, importantly, the results are totally independent of the in situ estimators, allowing us to test the basic assumptions those methods adopt.

The mathematical derivation of the projected mass density estimator in the Kaiser & Squires (KS) method is not repeated here; the interested reader is referred to the original article. The basic principle is that the distortion signal produced by a foreground point mass is of a fixed pattern. This pattern can be compared to the observed alignment of faint galaxies (positions r_g) around a selected point (r) in the cluster image plane. The degree of similarity between the two patterns is a direct estimate of the surface density of lensing mass at that point, $\Sigma (r)$. The statistic is evaluated repeatedly over a grid of centres (40×40) across the cluster, yielding a ‘map’ of the projected mass. We define e_1 and e_2, such that e_1 measures the stretching of a galaxy image along the X and Y axes, while e_2 measures the stretching in the direction $Y = X$, in terms of the intensity-weighted second moments of the image shape, I:

$$e_1 = \left(\frac{I_{xx} - I_{yy}}{I_{xx} + I_{yy}} \right), \quad e_2 = \left(\frac{2I_{xy}}{I_{xx} + I_{yy}} \right).$$

Kaiser & Squires showed that the surface mass density, $\Sigma (r)$, is related to the local induced distortion by the sum over the components e_1 and e_2 for all galaxies around that position weighted by the function, $W(r_g - r)$:

$$\Sigma (r) = \frac{1}{n_{\text{galaxies}}} \sum W(r_g - r) \chi_1(r_g - r) e_1(r_g),$$

where

$$\chi_1(r) = \left(\frac{x^2 - y^2}{r^2} \right), \quad \chi_2(r) = 2 \left(\frac{xy}{r^2} \right),$$

and $W(r_g - r)$ is the pattern of the induced distortion from a point mass as a function of radius. The average surface density of background sources in the field is given by n.

The reconstruction is unstable to the noise caused by the intrinsic orientations and ellipticities of the background sources. To overcome this, the derived mass distribution is filtered. The filter function, $T(r)$, can be directly combined into the pattern function, $W(r)$, for the point mass template:

$$W(r) = \frac{1}{2} \int_0^\infty \kappa T(\kappa) [2J_1(\kappa r)/\kappa r - J_0(\kappa r)] d\kappa.$$

In the following analysis we use a Gaussian for $T(r)$, with a separate σ adopted for each cluster. An estimator for the uncertainty in the mass reconstruction is also given by Kaiser & Squires:

$$\langle \Sigma^2 (r) \rangle = \frac{1}{8\pi^2 n} \langle e^2 \rangle \int_0^\infty T^2 (\kappa) d\kappa,$$

where $\langle e^2 \rangle$ is the intrinsic dispersion in the ellipticities of the background galaxy population. For a given filter function the errors depend strongly on the surface density of sources (hence the importance of obtaining very deep images) and weakly on their redshift distribution $N(z)$ assuming the cluster is foreground to the bulk of the population. The systematic effects of our weighting scheme used in the ellipticity measurement are compensated for by the factor $\langle e^2 \rangle$. The form of the error estimator given above is only valid for a data set of infinite extent. In reality the error depends upon the number of objects contributing, through the filter function, to the reconstruction at each grid point.

Close to the frame border, the average weighted sum over the contributing images will be less than in the frame centre by a factor that is dependent upon the form of the filter function. The resulting variable signal-to-noise ratio across the reconstruction makes simple mass maps hard to interpret. In the following discussion, the mass maps produced from the standard KS prescription are further divided by a map of the noise estimated using a local source surface density. The resulting maps have constant noise...
properties and can be more easily visualized. Apart from the morphological comparison, our other analysis uses the standard KS mass map. The local noise estimator, $\delta \Sigma$ is given by

$$\langle \delta \Sigma^2 \rangle = \frac{1}{8\pi^2 n} \sum_{\text{galaxies}} T^2(\theta),$$

where $\theta = r_0 - r$.

It is necessary to test our observations for any systematic alignment resulting from instrumental effects. We would also like to make a simple test of the KS noise estimator. Ideally, we would use stars in our fields to undertake both these tests, but unfortunately while we can state that the stars show no apparent distortion pattern, our restricted fields mean that there are an insufficient number for a sensitive test (the net polarization for all the stars in both fields is 0.3 ± 0.6 per cent). We do, however, have an alternate data set with which to test both instrumental effects and our error estimates. These test frames are the deep images of our third cluster 1603+43, $z = 0.89$. This is discussed in Paper I but not included in this work because significant lensing is not detected even with low-order statistics such as the orientation histogram (fig. 9c of Paper I). Analysis of this frame confirms that we have no sizeable instrument polarization and we therefore adopt the cluster as a ‘blank field’. Using the global error estimator, the highest significance peak in the reconstruction is 3.4σ on the edge of the frame. Using the local error estimator, this spuriously high significance is reduced to 2.5σ. This value is broadly consistent with expectations from random noise given the number of grid centres used. The quoted errors were estimated using the no-evolution $N(z)$ for the sample magnitude limits ($I \in [23, 25.5]$) as discussed in Paper I.

5 RESULTS

In this section we present the mass maps for 1455 + 22 and 0016 + 16, using the Kaiser & Squires technique modified as discussed in Section 4. Ellipticities and orientations of the field samples were determined using the optimal weighting scheme discussed in Section 3 and Paper I. The sample magnitude limits are $I \in [23, 25.5]$ for 1455 + 22, and $I \in [23, 25.5]$ for 0016 + 16. These limits provide the highest surface density of sources with reliable shape measurements whilst minimizing the foreground contamination (for our adopted redshift distribution). All objects whose isophotes touch the frame boundaries have been removed from the cluster catalogues.

5.1 1455 + 22

In Fig. 2 the mass map derived from the Kaiser & Squires analysis of the field catalogue is compared with the smoothed number density distribution of colour-selected cluster members defined according to the prescription discussed in Section 3. Adoption of a straight number-weighted scheme is equivalent to the assumption that the galaxy’s luminosity does not appreciably affect its dynamical properties. For both maps the smoothing scale is 135 kpc (0.45 arcmin) and is shown by a scale bar. The mass contours’ intervals are based on errors calculated using the local weighting scheme discussed in Section 4, thereby reducing spurious features on the frame boundary. These errors also depend on the adopted redshift distribution, $N(z)$, for the faint galaxies. Following Paper I, we adopted the ‘no-evolution’ $N(z)$ for both cluster analyses, but our results are not sensitive to this
assumption. Indeed, the relative mass maps are independent of $N(z)$.

The morphological similarities between the distributions of cluster members and lensing mass are striking. If we fit elliptical contours to the two distributions out to a scale of 360 kpc (1.25 arcmin), the position angles (θ) agree within the errors: $\theta_{\text{gal}} = 145^\circ \pm 2^\circ$ compared to $\theta_{\text{mass}} = 146^\circ \pm 2^\circ$. This is illustrated in Fig. 3 for all four distributions available for 1455$+22$. More interestingly, the ellipticities (ϵ) of the two distributions are also in surprisingly close agreement: $\epsilon_{\text{gal}} = 0.52 \pm 0.03$ and $\epsilon_{\text{mass}} = 0.47 \pm 0.03$. This is as expected if the galaxies act as virialized massless tracers of the cluster potential.

To determine if the elliptical mass distribution is produced by unresolved substructure, reconstructions were performed using smaller smoothing scales. Although it is noisier, the mass peak does not show any internal structure on scales greater than 60 kpc. In support of this, on yet smaller scales (≤ 40 kpc), the orientation of the cD ($\theta = 148^\circ \pm 2^\circ$) is also a close match to the mass distribution as would be expected from dynamical arguments that account for its growth. The ellipticity of the cD halo on these scales is $\epsilon_{\text{cD}} = 0.23 \pm 0.01$, considerably rounder than the mass or cluster galaxy distributions. These parameters are summarized in Table 1.

The agreement between the positions of the peaks of the distributions is less good, although the discrepancies, while formally significant, are all less than the respective smoothing scales. The offset between the peaks in the galaxy number density and mass distributions is 120 ± 20 kpc, with the cD offset 90 ± 15 kpc from the peak of the galaxy number density. Both the mass and galaxy number density distributions peak to the north-west of the cD. These offsets are a concern but we note that there is growing evidence that cDs do not always lie at the dynamical centres of their cluster.

![Figure 3](https://example.com)
Figure 3. The four separate tracers available in 1455$+22$ to map the mass distribution. Overlaid on these are the best-fitting ellipses, in order to highlight the strong similarities between the orientations of the distributions over a range of scales. The ellipse shown for the X-ray surface brightness map has not been converted into the value for the mass (cf. Table 1). Upper left panel: the lensing-derived mass map; upper right panel: the X-ray surface brightness distribution; lower left panel: the number density of the red cluster members; lower right panel: the central galaxy. The orientation and symbols correspond to those of Fig. 2.
Table 1. Parameters of the clusters under consideration.

Cluster	Mass	Galaxies	Gas	Central Galaxy
1455+22	\(c\) 0.47\(\pm\)0.03	0.52\(\pm\)0.03	0.46\(\pm\)0.18	—
	\(\theta\) 146\(\pm\)2	145\(\pm\)2	136\(\pm\)8	148\(\pm\)2
	\(r_e\) 100\(\pm\)60	180\(\pm\)70	150\(\pm\)50	—

0016+16	Mass	Galaxies	Gas	Central Galaxies
	\(c\) 0.59\(\pm\)0.01	0.21\(\pm\)0.02	0.61\(\pm\)0.06	—
	\(\theta\) 131\(\pm\)6	124\(\pm\)8	127\(\pm\)4	125\(\pm\)10
	\(r_e\) \(\sim\)210	\(\sim\)330	400\(\pm\)200	—

Figure 4. A comparison between the azimuthally averaged profiles for the mass (●) and galaxy surface density (○) in 1455 + 22. The profiles have been corrected for the ellipticity of their respective distributions. The more compact nature of the mass distribution is evident on scales \(\geq 200\) kpc.

(e.g. Bird 1994). The positional offset determined here is negligible compared with that inferred in other systems from the observed velocity offsets. Also, for a cluster with asymmetry along the line of sight it is not necessary for the position of the projected peak surface density to match exactly the projected position of the peak in the local density distribution.

Fig. 2 also shows an equivalent comparison between the mass map and the X-ray surface brightness distribution smoothed to the same resolution; the X-ray surface brightness is plotted with a logarithmic intensity scale. The X-ray surface brightness peaks within 40 kpc of the cD. Again the contours are similarly oriented with \(\theta_X = 136^\circ \pm 8^\circ\) and \(\epsilon_X = 0.16 \pm 0.06\) out to 360 kpc. On the assumption that the X-ray surface brightness reflects the shape of the potential then, for a logarithmic potential at radii \(r \gg r_e\), we can convert the ellipticity of the X-ray contours into that of the surface density (Binney & Tremaine 1987, equation 2-55). This gives \(\epsilon_{\text{mass}} = 0.46 \pm 0.18\), in very good agreement with the value determined from fitting to the mass surface density.

Whilst there is obviously excellent agreement between the projected structures of the three distributions, in terms of shapes and orientations, it is critical to know whether the lensing matter has the same characteristic scalelength as that of the visible baryonic component. Fig. 4 shows the radial profiles derived from the mass and red cluster galaxy distributions. Both profiles have been centred on their respective maxima, corrected for the ellipticity of their distributions and...
normalized to the innermost bins. The error bars show the spread in values at a given radius; for clarity the galaxy profile has been offset slightly.

Within 400 kpc (1.3 arcmin) both profiles obey a similar functional form, with the distribution of galaxies being marginally more extended. To quantify this, we fit a modified Hubble profile \(\Sigma(r) \propto 1/(1 + (r/r_J)^2) \) to the projected distributions. The adopted functional form is an adequate description of the shapes of our profiles, given the limited range. For comparison the parametric likelihood analysis undertaken for 1455 + 22 in Paper I gave a best-fitting core radius of \(r_J^{\text{mass}} = 210 \pm 100 \) kpc. Here we obtain maximum likelyhood values of \(r_J^{\text{mass}} = 200^{+10}_{-20} \) kpc and \(r_J^{\text{gal}} = 210^{+40}_{-20} \) kpc, respectively. These values are azimuthally averaged and retain the effects of the smoothing used to generate the maps. These are similar to the typical core radii estimates obtained from X-ray imaging of clusters: \(-200 \text{ kpc} \) (cf. Jones & Forman 1992). The X-ray core radius obtained from analysis of our HRI image is \(r_J^{X} = 150^{+100}_{-10} \) kpc. We can obtain the true core radius by correcting the profiles for the effects of the smoothing function and the ellipticity of the observed distributions. Comparison of the observed distributions with model profiles convolved with the same smoothing function gives maximum likelihood fits of \(r_J^{\text{mass}} = 100^{+100}_{-10} \) kpc and \(r_J^{\text{gal}} = 180^{+20}_{-10} \) kpc corrected to the semimajor axis. Within the errors from our model fitting we cannot formally discard the hypothesis that the two distributions have the same core radius. The more extended scale of the red galaxy distribution is, however, clearly apparent in Fig. 4 at radii \(r \approx 200 \text{ kpc} \).

While it is a useful exercise, the comparison of parameters derived from functional fits to the 1D profiles is a relatively insensitive tool for determining if the distributions have different scalelengths. A more informative approach to understanding the relative distribution of mass and light is to take the 2D maps and calculate the effective 'mass/light' ratio as a function of position. Fig. 5 shows the median ratio of the mass surface density \(\Sigma_{\text{mass}}(r) \) to the red galaxy surface density \(\Sigma_{\text{gal}}(r) \) as a function of radius in the cluster taken from this comparison: \(M/N_{\text{gal}} = \Sigma_{\text{mass}}(r)/\Sigma_{\text{gal}}(r) \). The error bars denote the 1 \(\sigma \) scatter at a given radius and the points are normalized to the central bin. This ratio shows a constant decline out to 500 kpc, amounting to a factor of 3 drop. Fig. 5 thus confirms the earlier suggestion, based on the profile fitting, that the mass distribution is more centrally concentrated than the evolved cluster galaxies; the observed trend is significant at the 3.3 \(\sigma \) level. Adoption of a luminosity-weighting scheme for the galaxy distributions, rather than our number-weighted scheme, gives a marginally flatter, but statistically indistinguishable, slope for \(M/N_{\text{gal}} \). This luminosity-weighted scheme has a larger scatter but indicates a drop of a factor of 2 in the mass/light ratio out to 500 kpc, although the slope is also consistent with zero within the large errors.

Returning to Fig. 2, we note an apparently significant secondary maximum \((\approx 10 \sigma) \) in the mass map \(-500 \text{ kpc} \) due east of the cluster centre. As this is reasonably clear of the frame boundary, it is important to determine if this peak correlates with any other physical feature. Interestingly the peak does not lie close to any feature in the distributions of X-ray emission, cluster members or field galaxies. Similar dark mass clumps have been reported in 1224 + 20 \((z = 0.33) \) by Fahlman et al. (1994), as well as being required in lensing models of some giant arc clusters (e.g. Kassiola,

Figure 5. This figure shows a more sensitive test of the relative distribution of red cluster members and mass in 1455 + 22. By combining the mass and galaxy surface density maps directly and then azimuthally averaging, we obtain a more direct measure of the relative concentration of the two distributions. It is readily apparent that the mass is more centrally concentrated than the galaxies. The error bars are correlated on a scale of 135 kpc due to the smoothing used in constructing the mass and galaxy distributions.
Kovner & Blandford 1992). With our restricted field of view and the attendant systematic errors, it may be that this structure is just an artefact of the reconstruction technique and as such we prefer to concentrate instead on the most significant feature in the field, the central mass peak.

Turning to the X-ray analysis, we have shown that the potential adopted is reasonably representative of that delineated by the lensing mass. We can then combine the total cluster mass within a radius of 450 kpc, derived from the X-ray analysis on an absolute scale, with the lensing signal to estimate the mean redshift of the $I_{\leq 25}$ background sources. This can be viewed either as a check of the conclusions of Paper I, or, adopting $N(z)$ from Paper I, as a self-consistent check on the X-ray mass estimates.

Unfortunately, two factors introduce strong systematic offsets into our absolute mass estimate from the KS technique. The first of these arises from our relatively small field of view, combined with the fact that the KS technique assumes that the mass surface density is zero at the frame border (cf. Fahlman et al. 1994). This is not true and we therefore have to correct the central mass estimates for the mean mass surface density at the frame border. By extrapolating our King profile fit to the cluster mass profile we estimate this correction to be ~40 per cent of the central mass. The second correction we have to apply is for the degrading effect of the seeing on the observed lensing signal. From Monte Carlo simulations matched to our observations we would expect the measured central mass, corrected for the surface density at the frame border, to be roughly ~70 per cent of the actual value.

Fig. 6 shows the variation of the corrected cluster mass derived from the lensing analysis parameterised as a function of the median source redshift. Also shown is the projected mass derived from the X-ray analysis. Because of the extrapolation to large radii necessary to determine the projected mass from the X-ray analysis, it would be better to deproject the lensing mass distribution to give the mass of the central regions of the cluster, and to compare this directly with the X-ray determination. Unfortunately this deprojection requires knowledge of the cluster mass profile at large radii, which currently is poorly constrained observationally. The flatness of the curve, combined with the probable errors in the X-ray mass estimate, makes this a relatively insensitive tool with which to derive an upper limit to the background mass.

The flatness of the curve, combined with the probable errors in the X-ray mass estimate, makes this a relatively insensitive tool with which to derive an upper limit to the background mass. The second correction we have to apply is for the redshift distribution of the background cluster members with colours bluer than the E/SO sequence. Integration of the light of all the galaxies within 450 kpc of the cluster centre, assuming they are cluster members, gives $L_{\nu} \leq 1.0 \times 10^{12} h_{50}^{-2} L_\odot$ for galaxies in the central 0.9 Mpc. This is a lower limit to the total cluster luminosity owing to possible contributions from foreground structures and cluster members with colours bluer than the E/S0 sequence. Integration of the light of all the galaxies in the field seen within 450 kpc of the cluster centre, assuming they are cluster members, gives $L_{\nu} \leq 6.8 \times 10^{11} h_{50}^{-2} L_\odot$. This is compared with the mass derived from the analysis of the X-ray image within the same radius (solid line). The predicted value from our preferred redshift distribution [$N(z)$ from Paper I] is also marked (O) – in close agreement with the X-ray measurement. The redshift of the cluster is shown by the vertical dashed line. The total mass is corrected for both the signal degradation due to seeing and the background surface density at the frame edge.

![Figure 6.](https://example.com/figure6.png)

Figure 6. The total mass in h_{50}^{-2} solar units interior to 450 kpc, from the lensing analysis of $1455 + 22$, as a function of the median redshift of the background galaxy distribution. This is compared with the mass derived from the analysis of the X-ray image within the same radius (solid line). The predicted value from our preferred redshift distribution [$N(z)$ to $I_{\leq 25}$, Paper I] is also marked (O) – in close agreement with the X-ray measurement. The redshift of the cluster is shown by the vertical dashed line. The total mass is corrected for both the signal degradation due to seeing and the background surface density at the frame edge.

Having determined that there is reasonably good agreement between the mass estimates from the lensing and X-ray analyses, we convert these into rough estimates of the mass-to-light ratio for the cluster. The integrated luminosity of all the red cluster galaxies within 450 kpc of the cluster centre is $L_{\nu} \leq 6.8 \times 10^{11} h_{50}^{-2} L_\odot$. This is a lower limit to the total cluster luminosity owing to possible contributions from foreground structures and cluster members with colours bluer than the E/S0 sequence. Integration of the light of all the galaxies in the field seen within 450 kpc of the cluster centre, assuming they are cluster members, gives $L_{\nu} \leq 1.0 \times 10^{12} h_{50}^{-2} L_\odot$. Using the lower bound to the cluster mass determined above, we can thus derive a minimum mass-to-light ratio for the cluster of $M/L_{\nu} \geq 260 h_{50}^{-2}$ in solar units. However, adoption of the total central mass consistent with both the X-ray and lensing methods and the red cluster galaxy luminosity requires $M/L_{\nu} \sim 540 h_{50}^{-2}$. For comparison the mass-to-light ratio required for closure density is $M/L_{\nu} \sim 700-800 h_{50}^{-2}$ (Binney & Tremaine 1987).
5.2 0016 + 16

This cluster is morphologically quite different from 1455 + 22, having no central cD and a considerably higher optical richness although with a similar X-ray luminosity. Nevertheless, most of the conclusions derived in Section 5.1 apply equally well to 0016 + 16. While the analysis of this cluster is complicated by the small field available, the source density beyond \(z = 0.55 \) is sufficiently high at \(I \sim 25 \) to allow us robustly to map the structure of the cluster centre.

Fig. 7 compares the lensing mass map derived using the Kaiser & Squires technique with the distribution of red cluster members. The effective spatial resolution in the mass reconstruction is 200 kpc (0.45 arcmin). Although the salient features reproduce between the two maps, there are apparently spurious features in the lensing maps away from the cluster centre. Nevertheless, the central region, which is free of these features, still comprises an area equivalent to that probed in our intermediate redshift cluster, 1455 + 22. The most striking feature common to both maps is an elliptically shaped peak with bimodal substructure straddling the optically defined centre. The mass map indicates that the two clumps have a projected separation of 600 kpc with the more concentrated sublump in the south-west. The galaxy distribution reveals at least three subclumps orientated similarly to the mass distribution. A fourth sublump to the southeast is not detected in the mass map. The orientations of the mass and galaxy distributions between 300 and 600 kpc agree closely: \(\theta_{\text{mass}} = 131^\circ \pm 6^\circ \) and \(\theta_{\text{gal}} = 124^\circ \pm 8^\circ \). As in 1455 + 22, the orientation of the central galaxies (in this case a linear chain rather than the cD envelope) follows that of the mass on larger scales (\(\theta = 125^\circ \pm 10^\circ \)). The best-fitting ellipticities, shown in Fig. 8, are \(\epsilon_{\text{mass}} = 0.59 \pm 0.01 \) and \(\epsilon_{\text{gal}} = 0.21 \pm 0.02 \).

In Fig. 7 we also compare the mass map with the ROSAT PSPC image at a similar spatial resolution, the latter displayed with a logarithmic scaling. Again the distributions are well aligned with \(\theta = 127^\circ \pm 4^\circ \) over the range 300–600 kpc. The ellipticity on these scales is \(\epsilon = 0.21 \pm 0.02 \). As for 1455 + 22, we convert this to that appropriate for the surface density, yielding \(\epsilon_{\text{mass}} = 0.61 \pm 0.06 \) for \(r \gg r_c \), and \(\epsilon_{\text{mass}} = 0.28 \pm 0.03 \) for \(r \ll r_c \). Adopting the core radii deter-
mined below, we are closer to the $r \gg r_e$ regime at the scales where the ellipticity is measured.

In summary, there is reasonable agreement between the ellipticity of the mass distribution and that for the X-ray gas (Table 1). Although the complex structure in the galaxy distribution precludes a detailed comparison, both the galaxy and mass distributions have similar bimodal forms. To determine if the two peaks of the mass distribution are dynamically distinct, we divided Dressler & Gunn's (1992) spectroscopic sample along a line perpendicular to the axis of the two subclumps. The rest-frame velocity difference is ~ 400 km s$^{-1}$ and is not statistically significant. In view of the apparently different surface densities for the two mass peaks, we would predict a temperature difference between the X-ray gas in the two structures. Therefore a spatially resolved X-ray temperature map of the cluster from ASCA is of great interest.

Fig. 9 shows the projected profiles for the mass and galaxy
distributions centred on their respective maxima and normalized to their innermost bins. The galaxy distribution reveals an intrinsic deconvolved core of \(\sim 330 \) kpc (semi-major axis) after correction for the ellipticity of the galaxy distribution. This is larger than the value obtained from the mass distribution of \(\sim 210 \) kpc, although both values are systematically uncertain due to both the complex structures in the two distributions and the problems of background subtraction associated with the small field. Nevertheless, the mass core radius from our lensing reconstruction compares well with that determined from the parametric analysis in Paper I, \(r_{\text{mass}} = 210 \pm 250 \) kpc. Equally, the lensing core radius is smaller than that derived from the PSPC image of \(400 \pm 150 \) kpc.

Fig. 10 shows the estimate of the total mass within a radius of 600 kpc of the centre of 0016 + 16 as a function of the median redshift of the background population. Correcting for the two systematic effects discussed in Section 5.1, we obtain a lower bound to the projected mass of \(M \geq 2.8 \times 10^{14} h_{50}^{-1} M_\odot \). This can be compared with the X-ray-determined value for the central 600 kpc of \(M_X \sim 7.3 \times 10^{14} h_{50}^{-1} M_\odot \). Adoption of the preferred median redshift for the background population (cf. Paper I), for the magnitude range used in the lensing analysis, predicts a mass of \(M \sim 8.5 \times 10^{14} h_{50}^{-1} M_\odot \), close to the X-ray-determined value. As in 1455 + 22, we have good agreement between not only the structure of the mass determined from the lensing and X-ray analyses but also the total masses inferred for the cluster. For completeness we also calculate the apparent mass-to-light ratio inside a radius of 600 kpc. Summation of the luminosities of the red cluster members in this aperture gives \(L_V \sim 2.3 \times 10^{13} h_{50}^{-2} L_\odot \), while the summation of all the galaxies in the field within this projected radius yields \(L_V \sim 4.9 \times 10^{12} h_{50}^{-2} L_\odot \), retaining the central galaxies...
as the brightest cluster members. Combining the lower limit on the cluster mass from the lensing with the upper limit on the luminosity, we then obtain a mass-to-light ratio of $M/L_V \geq 60$ h_{50} in solar units; such a low value is not surprising given the large amount of foreground contamination known to exist in this field. Adopting the luminosity of the red cluster members and the lensing-derived mass, we calculate $M/L_V \sim 370$ h_{50} in the central 1.2 Mpc of 0016 + 16. The mass-to-light ratio for closure density is $M/L_V \sim 700$–800 h_{50}.

6 DISCUSSION

When comparing the results from our two clusters we are struck by the many common features observed, despite their different structures and redshifts.

First, in each cluster we have four independent estimates of the orientation of the major axis of the cluster projected upon the plane of the sky (cf. Table 1). These four estimates span a range of scales between the central galaxies (~ 20 kpc) out to ~ 0.5 Mpc (the lensing mass, the X-ray gas and the cluster galaxy distribution). In both clusters, all four estimates are in good agreement. This implies that at least to first order the systems are relaxed in their central regions. This is the first time that such a comparison has been made and it is encouraging to find such good agreement.

Secondly, we find from the lensing analysis that both clusters have moderately elliptical $\epsilon \sim 0.5$–0.6 mass distributions. These values are close to the average ellipticity ($\epsilon \sim 0.5$) predicted for clusters from the effects of tidal distortion on protoclusters by Binney & Silk (1979). Moreover, in both clusters the ellipticities of the X-ray surface brightness distributions, when converted to the surface density, agree with those derived from the lensing signal. This agreement does not extend to the galaxy distributions, where in 1455 + 22 the galaxies act as tracers of the underlying mass distribution, while in 0016 + 16 their general distribution appears rounder and more clumpy. We conclude that in the more relaxed system the galaxies are good tracers of the mass. A similar conclusion was reached for Abell 370 by Kneib et al. (1993). They show that a mass distribution for the cluster, similar to that shown by the light, is capable of fitting constraints provided by several gravitationally lensed features. We believe our result is more robust as it is derived from the full two-dimensional mass and galaxy distributions rather than parametric fits to these distributions. On smaller scales the central galaxies in our clusters are well aligned with the larger scale mass, as has been found for other lensing clusters (Mellier, Fort & Kneib 1993).

From profile fitting in both clusters we find that the mass may be marginally more centrally concentrated than the two baryonic tracers, although, because of the large errors in profile fitting, this effect is not formally significant. A direct comparison of the mass and red galaxy surface density distributions in 1455 + 22 gives a more significant gradient in the ratio of mass to galaxy surface densities. Specifically, in Fig. 5 we detect a factor of 3 drop in this ratio within $r < 500$ kpc. A similarly steep drop is claimed for the mass-to-light ratio in the centre of the Perseus cluster (Eyles et al. 1991). To allow the galaxies and mass to be distributed similarly, one would have to invoke a large and increasing fraction of blue galaxies in the outer parts of the cluster. The reasonable agreement between our cluster-corrected galaxy counts and those of blank fields (Paper I) would seem to rule this out.

The apparent concentration of mass compared to the baryonic tracers in 1455 + 22 is contrary to some theoretical predictions for hierarchical growth of clusters (e.g. West & Richstone 1988). These show that dynamical friction concentrates the galaxies relative to the mass. One method to concentrate the mass, rather than the galaxies, is for dissipation to occur preferentially in the mass component. This would be unlikely if the mass is principally weakly interacting dark matter, which is by definition incapable of dissipation. Other possibilities include removing galaxies from the central regions of the cluster (for instance by merging them into a central galaxy), leading to an apparent flattening of the galaxy surface density at smaller radii and luminosity segregation, with fewer, but brighter, galaxies nearer the centres of rich clusters. Using luminosity-weighting for 1455 + 22, we do indeed obtain a shallower slope for the variation of mass to light. Unfortunately, due to the errors the slope is consistent with both zero and that derived previously with number-weighting. A further possibility is to invoke incomplete virialization to explain the relative distributions of galaxies, gas and mass. The close morphological similarities between the distributions on large scales, however, means that we would have had to have caught both clusters at a point where they have relaxed sufficiently to allow the distributions to align but not quite enough for them to have reached equipartition.

With adequate data for only two clusters, it is clear that we cannot distinguish between the options above. A larger sample is needed to explore fully the dynamical states of the centres of rich moderate redshift clusters. Enlargement of the angular coverage available for the lensing analysis will also determine the asymptotic form of the radial mass profile (cf. Bonnet et al. 1994), to be compared with that shown by the baryonic components of the cluster. This will provide a simple and direct test of the existence of dark haloes around clusters.

The estimates of the total projected mass in the central 1–1.5 Mpc of our two clusters from the X-ray analyses and the lower limits available from our lensing technique are consistent. Without detailed temperature information on the X-ray gas in our clusters it is impossible to make a comparison of the mass profile inferred from the X-ray imaging and that provided by the lensing analysis. Nevertheless, adopting reasonable values for the global cluster temperatures and the redshift distribution derived independently of the X-ray analysis in Paper I, the resulting lensing and X-ray mass estimates are in good agreement. It thus appears that our observations are inconsistent with an extrapolation to larger scales of the Babul & Miralda-Escude (1994) result from the analysis of arcs in cluster cores.

Probably the simplest way to reconcile these two results is to recognize that optical identification of clusters preferentially selects systems with high projected central galaxy densities. With a population of moderate ellipticity clusters, as seems to be indicated from both this work and optical studies (Plionis, Barrow & Frenk 1991), this bias will result in a large fraction of the more distant systems having their major axes parallel to the line of sight. Such a bias will cause the projected mass surface density (along the major axis) to be higher than the inferred mass from the X-ray analysis.
which adopts spherical symmetry. Such an effect was discussed by Babul & Miralda-Escudé but discarded because they did not consider the possible selection bias present in the original cluster identification. Two of Babul & Miralda-Escudé’s clusters are very concentrated optically and may fall into the aligned class; the third cluster, their most X-ray luminous, is not optically concentrated and, as they show, has a lensing-derived mass which is consistent with the X-ray determination, in accord with our findings. Owing to their geometry and the selection criteria adopted, neither of our clusters should be affected by this bias. Hence it appears that a more detailed study of the biases inherent in studying optically selected clusters with giant arcs may hold the explanation to our disagreement with the results for cluster centres derived by Babul & Miralda-Escudé.

Combination of our estimated masses with the luminosities of the red cluster members gives mass-to-light ratios for the central regions of the clusters of $M/L_V \sim 540 \ h_{50}$ for 1455+22 and $M/L_V \sim 370 \ h_{50}$ for 0016+16. We reiterate that these results, although uncertain, are independent of the dynamical state of the clusters. If these regions are representative of the Universe as a whole at those look-back times we obtain $\Omega = 0.6$. Fahlman et al. (1994) have recently estimated a mass-to-light ratio from lensing observations of a $z = 0.33$ cluster. Their value is $M/L \sim 400 \ h$ within a radius of 1 Mpc, close to our values. To convert this into a density parameter, however, they chose to estimate the mass per galaxy in the cluster and then use counts of field galaxies to calculate Ω, resulting in a very high value of $\Omega \sim 2$. The strong evolution of field galaxies out to $z \sim 0.3$ (e.g. Lilly 1993) does not seem to be reflected in bright cluster members (Aragón-Salamanca et al. 1993) and this would compromise their approach.

Finally, studying both clusters it is apparent that they contain significant substructure in their mass distributions. We detect an apparently significant subclump in 1455+22, while 0016+16 is strongly bimodal. This observation, if supported by a larger sample, has interesting consequences for the growth of clusters and the evolution of the galaxies within them. A comparison of the lensing maps with the X-ray surface brightness (which follows the potential) highlights the sensitivity of the lensing technique for studying the occurrence of substructure in clusters.

7 CONCLUSIONS

Deep statistical lensing studies such as those presented here are both difficult and time-consuming. However, they present one of the cleanest methods of studying the distribution of mass in rich clusters. The mass mapping technique of Kaiser & Squires (1993) is a very powerful and model-independent method for probing the structure of the cluster mass.

(i) We have reconstructed projected mass distributions for two luminous X-ray-selected clusters, one at intermediate (1455+22; $z = 0.26$) and one at moderate redshift (0016+16; $z = 0.55$). These are accurate on a relative scale, independent of any assumed redshift distribution for the background field galaxies. Despite the different cluster structures, both mass maps show a remarkable similarity to the X-ray and galaxy surface density maps of the clusters on large scales. This agreement extends to include the orientations and ellipticities of the distributions. This result confirms and extends the earlier conclusions of Tyson et al. (1990).

(ii) A comparison of the relative distributions of the mass and the red cluster galaxies shows that whilst galaxies are good tracers of the mass structure they appear to be less concentrated. In our intermediate redshift cluster we find a continuous decrease in the ratio of mass to red galaxy surface density out to the limits of our data, $r \sim 500 \ h_{50}$ kpc. We obtained corrected maximum likelihood core radii for the three distributions of $r_{c, \text{mass}} = 100^{+100}_{-50}$ kpc, $r_{c, \text{gal}} = 180^{+70}_{-50}$ kpc and $r_{c, \text{X-ray}} = 150^{+100}_{-50}$ kpc.

(iii) The moderate redshift cluster (0016+16) shows a large amount of structure in the mass, X-ray gas and galaxy distributions. All three maps show bimodal distributions spanning the optically determined cluster centre, although this bimodality is not seen in redshift space using the limited spectroscopic data set. The presence of possible substructure in 0016+16 and also in 1455+22 implies significant growth of clusters at relatively recent epochs. This substructure is more readily apparent in the lensing mass maps than in our X-ray images due to the dependence of the X-ray emissivity on the smoother cluster potential rather than directly on the mass distribution. This graphically illustrates the bias inherent in determining the prevalence of substructure in clusters on the basis of X-ray imaging alone. For the intermediate scale substructure, which is crucial to understanding the inner regions of rich clusters, this currently makes lensing a more sensitive technique.

(iv) Adopting from Paper I the most likely redshift distribution for the faint galaxy population used as probes in the lensing analysis, we determined the projected mass in the central 1–1.5 Mpc of our two clusters. These estimates are in good agreement with those from deprojection of our X-ray images, a result which is at variance with the conclusions of Babul & Miralda-Escudé (1994). The mass-to-light ratios obtained in the inner regions of our clusters from both the lensing and X-ray analyses, if indicative of the universal values at their respective epochs, imply $\Omega \sim 0.6$.

(v) High X-ray luminosity clusters lie on the extreme tail of the cluster mass distribution in hierarchical models of structure formation. The exponential nature of this tail makes the abundances of such clusters an extremely sensitive test of these models. As we demonstrate, lensing observations are a direct route to the underlying mass distribution of these clusters at moderate redshift, allowing high-resolution ‘imaging’ of the cluster mass on scales that are comparable to the best available from X-ray imaging.

(vi) We have demonstrated the use of weak gravitational lensing to map the mass distribution in distant clusters. The enlargement of both the optical and X-ray data sets and the optical area coverage in individual clusters will allow us to study the prevalence of mass substructure as a function of epoch in the largest bound structures known, and the role of this substructure in the X-ray evolution of clusters. Wider field observations will also allow us to follow the mass of the clusters out to scales of 2–3 Mpc, to determine the asymptotic form of the mass profile and the run of mass to light in the outskirts of the cluster (e.g. Bonnet et al. 1994).

ACKNOWLEDGMENTS

We wish to acknowledge the pioneering work of Tony Tyson and the Toulouse group led by Bernard Fort who first intro-
duced us to the exciting possibilities gravitational lensing offers in cosmology. We thank Nick Kaiser and Jordi Miralda-Escudé for extensive discussions on the subject of lensing. We also acknowledge useful discussions with Teresa Brainerd, Carlos Frenk, Jean-Paul Kneib and Chris Kochanek. The support of the La Palma staff and especially Dave Carter is also gratefully acknowledged. This work was supported by the PPARC.

REFERENCES

Aragón-Salamanca A., Ellis R. S., Couch W. J., Carter D., 1993, MNRAS, 262, 764
Arnaud K., 1987, PhD thesis, Univ. Cambridge
Babul A., Miralda-Escudé J., 1994, preprint
Binney J., Silk J., 1979, MNRAS, 188, 273
Binney J., Tremaine S., 1987, Galactic Dynamics. Princeton Univ. Press, Princeton, NJ
Bird C., 1994, ApJ, 422, 480
Blandford R. D., Narayan R., 1993, ARA&A, 30, 311
Bonnet H., Mellier Y., Fort B., 1994, ApJ, 427, L83
Briel U. G., Henry J. P., Böhringer H., 1992, A&A, 259, L31
Buote D. A., Canizares C. R., 1992, ApJ, 400, 385
Couch W. J., Ellis R. S., Malin D. F., MacLaren I., 1991, MNRAS, 249, 606
Donahue M., Stocke J. T., Gioia I. M., 1992, ApJ, 385, 49
Dressler A., Gunn J. E., 1992, ApJS, 75, 1
Edge A. C., Stewart S., 1991, MNRAS, 254, 51
Edge A. C., Stewart S., Fabian A., Arnaud K. A., 1990, MNRAS, 245, 559
Ellis R. S., Couch W. J., MacLaren I., Koo D. C., 1985, MNRAS, 217, 239
Eyles C. J., Watt M. P., Bertram D., Church M. J., Ponman T. J., Skinner G. K., Willmore A. P., 1991, ApJ, 376, 23
Fabian A. C., 1991, MNRAS, 253, 29
Fahlman G., Kaiser N., Squires G., Woods D., 1994, preprint
Fitchett M. J., 1988, MNRAS, 230, 161
Frenk C. S., White S. D. M., Efstathiou G., Davis M., 1990, ApJ, 351, 10
Gerbal D., Durtte F., Lima-Neta G., Lachièze-Rey M., 1992, A&A, 253, 77
Gioia I. M., Henry J. P., Maccacaro T., Morris S. L., Stocke J. T., Wolter A., 1990, ApJ, 356, L35
Grossman S. A., Narayan R., 1989, ApJ, 344, 637
Gunn J. E., Hoessel J. G., Oke J. B., 1986, ApJ, 306, 30
Henry J. P., Gioia I. M., Maccacaro T., Morris S. L., Stocke J. T., 1992, ApJ, 386, 408
Hughes J. P., 1989, ApJ, 241, 924
Jarvis J. F., Tyson J. A., 1981, AJ, 86, 476
Jones C., Forman W., 1984, ApJ, 276, 38
Jones C., Forman W., 1992, in Fabian A. C., ed., Clusters and Superclusters of Galaxies. Kluwer, Dordrecht
Kaiser N., 1991, ApJ, 383, 104
Kaiser N., Squires G., 1993, ApJ, 404, 441
Kassiola A., Kovner I., Blandford R. D., 1992, ApJ, 396, 10
Kent S. M., Gunn J. E., 1982, AJ, 87, 692
Kneib J.-P., Mellier Y., Fort B., Mathez G., 1993, A&A, 273, 367
Kochanek C. S., 1990, MNRAS, 247, 135
Koo D. C., 1981, ApJ, 251, 75
Lilly S. J., 1993, ApJ, 411, 75
Lilly S. J., Cowie L. L., Gardner J. P., 1991, ApJ, 369, 79
Mason K. O., Spinrad H., Bowyer S., Reichert G., Stauffer J., 1981, AJ, 86, 803
Mellier Y., Fort B., Kneib J.-P., 1993, ApJ, 407, 33
Miralda-Escudé J., 1991a, ApJ, 370, 1
Miralda-Escudé J., 1991b, ApJ, 380, 1
Miralda-Escudé J., Fort B., 1993, ApJ, 417, L5
Mushotzky R., 1993, Ann. NY Acad., 688, 184
Plionis M., Barlow J. D., Frenk C. S., 1991, MNRAS, 249, 662
Sharples R. M., Ellis R. S., Gray P. M., 1988, MNRAS, 231, 479
Smail I., Ellis R. S., Fitchett M. J., Norgaard-Nielsen H. U., Hensen L., Jorgensen H. E., 1991, MNRAS, 252, 19
Smail I., Ellis R. S., Fitchett M. J., 1994, MNRAS, 270, 245
(Soucail1)
Smail I., Ellis R. S., Couch W. J., Sharples R. M., 1995, ApJ, in press
Smail I., Ellis R. S., Couch W. J., Sharples R. M., 1995, ApJ, in press
Tyson A. J., Valdes F., Wenk R., 1990, ApJ, 349, 381
West M. J., Richstone D. O., 1988, ApJ, 335, 532
White D. A., 1992, PhD thesis, Univ. Cambridge
White S. D. M., Silk J., Henry J. P., 1981, ApJ, 251, L65
White S. D. M., Navarro J. F., Evrard A. E., Frenk C. S., 1993, Nat, 368, 429
Wu X., Hammer F., 1993, MNRAS, 262, 187
Zwicky F., 1993, Helv. Phys. Acta, 6, 489