Energy Transducing Roles of Antiporter-like Subunits in *Escherichia coli* NDH-1 with Main Focus on Subunit NuoN (ND2)*

Received for publication, May 3, 2013, and in revised form, July 9, 2013 Published, JBC Papers in Press, July 17, 2013, DOI 10.1074/jbc.M113.482968

Motoaki Sato 1, Prem Kumar Sinha, Jesus Torres-Bacete 2, Akemi Matsuno-Yagi, and Takao Yagi 3

From the 4Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037

Background: Antiporter-like subunits NuoL, NuoM, and NuoN are structurally similar but whether NuoN functions as a proton pump was uncertain.

Results: Functionally and structurally important residues in NuoN were identified.

Conclusion: NuoN is involved in proton translocation.

Significance: Similarities and differences of essential residues for proton translocation in the antiporter-like subunits were disclosed.

The proton-translocating NADH-quinone oxidoreductase (complex I/NDH-1) contains a peripheral and a membrane domain. Three antiporter-like subunits in the membrane domain, NuoL, NuoM, and NuoN (ND5, ND4 and ND2, respectively), are structurally similar. We analyzed the role of NuoN in *Escherichia coli* NDH-1. The lysine residue at position 395 in NuoN (N lys395) is conserved in NuoL (L lys399) but is replaced by glutamic acid (G lys407) in NuoM. Our mutation study on N lys395 suggests that this residue participates in the proton translocation. Furthermore, we found that G407 is also essential and most likely interacts with conserved Arg175. Glutamic acids, Glu133, Glu144, and Glu144, are corresponding residues. Unlike mutants of Glu144 and Glu144, mutation of Glu133 scarcely affected the energy-transducing activities. However, a double mutant of Glu133 and nearby Glu72 showed significant inhibition of these activities. This suggests that Glu133 bears a functional role similar to Glu144 and Glu144, but its mutation can be partially compensated by the nearby carboxyl residue. Conserved prolines located at loops of discontinuous transmembrane helices of NuoL, NuoM, and NuoN were shown to play a similar role in the energy-transducing activity. It seems likely that NuoL, NuoM, and NuoN pump protons by a similar mechanism. Our data also revealed that Lys158 is one of the key interaction points with helix HL in NuoL. A truncation study indicated that the C-terminal amphipathic segments of TM14 interacts with the Mβ sheet located on the opposite side of helix HL. Taken together, the mechanism of H+ translocation in NDH-1 is discussed.

The proton-translocating NADH-quinone oxidoreductase (complex I)4 (EC 1.6.5.3) is the first enzyme of the respiratory chain in most eukaryotic cells (1). Complex I catalyzes the electron transfer from NADH to quinone, which is coupled to the translocation of protons through the inner mitochondrial membrane (2). This enzyme complex, made up of ~45 different polypeptides, is the largest enzyme of the respiratory chain, with a molecular mass of ~1,000 kDa (1, 3). The physiological importance of complex I is highlighted by the fact that this enzyme is the principal source of reactive oxygen species in mitochondria and that its deficiencies are linked to many human diseases (4). The bacterial enzyme (NDH-1) is composed only of 13–14 subunits with a molecular mass of 500 kDa (5), all of which are homologous to the 14 subunits that constitute the core of the mitochondrial complex I (6). Both eukaryotic complex I and prokaryotic NDH-1 have a characteristic L-shaped form with two clearly defined domains, a hydrophilic peripheral domain and a hydrophobic domain (7). The hydrophilic domain is projected into the mitochondrial matrix/bacterial cytoplasm and houses all of the cofactors that participate in electron transfer from NADH to quinone, through FMN and a chain of seven conserved Fe/S clusters (8–15). In *Escherichia coli*, the hydrophilic domain contains six subunits named NuoB, NuoCD (a fusion of 2 subunits, NuoC and NuoD), NuoE, NuoF, NuoG, and NuoI.

The hydrophobic membrane domain is embedded in the inner mitochondrial/cytoplasmic membrane and is believed to participate in H+ translocation and in the binding of quinone and specific inhibitors (6, 16). For functional study of the NDH-1/complex I, it is a prerequisite to clarify sites and mechanisms

*This work was supported, in whole or in part, by National Institutes of Health United States Public Health Service Grant GM33712 (to T. Y.).

1 On leave from Odawara Research Center, Nippon Soda Co., Ltd., Odawara 250-0280, Japan.

2 Present address: Centro de investigaciones Biologicas del CSIC, Madrid, 28040 Madrid, Spain.

3 To whom correspondence should be addressed: 10550 N. Torrey Pines Rd., MEM256, La Jolla, CA 92037. Fax: 858-788-2054; E-mail: yagi@scripps.edu.

4 The abbreviations used are: complex I, mitochondrial proton-translocating NADH-quinone oxidoreductase; NDH-1, bacterial proton-translocating NADH-quinone oxidoreductase; DB, 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone; dNADH, reduced nicotinamide hypoxanthine dinucleotide; oxonol VI, bis-(3-propyl-5-oxoisoxazol-4-yl)pentamethine oxonol; ACMA, 9-amino-6-chloro-2-methoxyacridine; FCCP, carbonyl cyanide p-trifluoromethoxy phenylhydrazone; TM, transmembrane segment(s); BisTris, 2-(bis[2-hydroxyethyl]amino)-2-(hydroxymethyl)propane-1,3-diol; BN, blue native.
of the H⁺ translocation. The membrane domain of *E. coli* NDH-1 is composed of seven subunits, NuoA, NuoH, NuoJ, NuoK, NuoL, NuoM, and NuoN, which are homologues of the mitochondrial DNA-encoded subunits, ND3, ND1, ND6, ND4L, ND5, ND4, and ND2, respectively.

According to the recently disclosed three-dimensional structures of the transmembrane segment of complex I/NDH-1 (7, 17–19), subunits NuoA, NuoJ, NuoK, and NuoH are located close to the peripheral arm, whereas subunits NuoL, NuoM, and NuoN are in the extended part of the membrane arm. The structural model revealed that NuoL, NuoM, and NuoN share similar structural features with multisubunit antiporters (20, 21) and energy-converting NiFe hydrogenases (22), leading to a hypothesis that they have evolved from a common ancestor (23). This suggests involvement of the antiporter-like subunits in the mechanism of H⁺ translocation. Their distal location from the electron transfer pathway and their side-by-side arrangement strongly suggested a long range conformational change as an essential part of the energy-coupling mechanism of complex I/NDH-1 (6, 18, 24).

The three-dimensional structure also showed that the longest subunit, NuoL, possesses a long amphipathic α-helix (110 Å in case of *E. coli*), called helix HL, spanning and making a bridge among NuoK, NuoN, NuoM, and NuoL (7). On the opposite side of helix HL, there are long β sheets in NuoM and NuoL linking themselves to neighboring subunits NuoN and NuoM, respectively. Szanazov and co-workers (7, 17) have hypothesized that helix HL can work in a piston-like mechanism, together with the β sheets, driving the conformational changes along the antiporter-like subunits.

Our mutation studies of membrane domain subunits NuoA, NuoJ, NuoK, NuoH, NuoM, and NuoL showed that NuoK, NuoM, and NuoL are directly involved in the H⁺ translocation (25–31). The stoichiometry of the H⁺ translocation in NDH-1/complex I is long believed to be 4 H⁺/2e⁻ per NADH oxidized (32). Recently, an alternative stoichiometry of 3 H⁺/2e⁻ under certain conditions was reported (2). Yet another study reported that NDH-1/complex I lacking both NuoL and NuoM can pump two protons with a stoichiometry of H⁺/2e⁻ = 2 (33, 34). These data suggest that NDH-1/complex I may contain either 3 or 4 H⁺ translocation sites, also implying the possibility of the H⁺ translocation in NuoN.

The NuoK crystal structure showed that NuoN is located close to the NuoAJK bundle (7, 17). Previously Amarnah and Vik (35) reported that conserved lysine residues in the middle of the transmembrane helices were required for the energy-transducing NDH-1 activity and that mutation of conserved Glu33 in the membrane helix only moderately (30%) reduced the energy-transducing NDH-1 activities. On the other hand, we and others showed that mutations of corresponding glutamic acids in NuoM and NuoL lead to almost total elimination of energy-transducing NDH-1 activities (24, 27, 36). These results suggest the difference in the functional role of the three homologous antiporter-like subunits (NuoN, NuoM, and NuoL).

In the present work, we investigated the functional and structural roles of the charged residues in H⁺ translocation in NuoN, together with a few residues in NuoM and NuoL. We also examined the connecting parts in NuoN linking it to the neighboring subunits, accompanied by prolines in the discontinuous helices in NuoN, NuoM, and NuoL. Along with the previous results of mutation studies, the present work highlights similarities and differences among NuoN, NuoM, and NuoL. Furthermore, possible H⁺ translocation pathways in the three antiporter-like subunits of the NDH-1 are discussed.

EXPERIMENTAL PROCEDURES

Materials—PCR product, DNA gel extraction, and plasmid purification kits were from Qiagen (Valencia, CA). The pGEM®-T Easy Vector System was from Promega (Madison, WI). The Taq DNA polymerase and Rapid DNA Dephos & Ligation Kit were from Roche Applied Science (Indianapolis, IN). The pCRScript cloning kit and the site-directed mutagenesis for generating knock-out mutants (NKO, NE133A/KKO) and mutagenesis of the site-specific mutations. The Stratagene (Cedar Creek, TX). The pKO3 vector was a generous gift from Dr. George M. Church (Harvard Medical School, Boston, MA). The endonucleases were from New England Biolabs (Beverly, MA). p-Nitro blue tetrazolium was from EMD Biosciences (La Jolla, CA). The Mini-PROTEAN® TGX™ Precast Gels (4–20%) and Trans-Blot® Turbo™ Transfer Pack were from Bio-Rad. The BCA protein assay kit was from Pierce. Bis-(3-propyl-5-oxoisoxazol-4-yl)pentamethine oxonol (oxonol VI) and 9-amino-6-chloro-2-methoxyacridine (ACMA) were obtained from Molecular Probes (Eugene, OR). Cpsaicin-40 was a generous gift from Dr. Hideto Miyoshi (Kyoto University, Kyoto, Japan). Squatocerin was a generous gift from Dr. Subhash Sinha (The Scripps Research Institute, La Jolla). n-Dodecyl β-maltoside was from BioSynth International Inc. All other chemicals including dNADH, NADH, and the antibiotics were from Sigma. The antibodies against *E. coli* NDH-1 subunits NuoB, NuoCD, NuoE, NuoF, NuoG, NuoH, NuoK, NuoM, and NuoL were obtained previously in our laboratory (27, 37, 38). Oligonucleotides were synthesized by Valuegene (San Diego, CA). *E. coli* MC4100 (F⁻, araD139, Δ(arg F–lac)U169, ptsF25, relA1, flb5301, rpsL150.) was used to generate nukO, nulO, NuoM, and NuoN site-specific mutations.

Preparation of Knock-out and Mutagenesis of the nukO, nulO, numo, and nuno Genes in the *E. coli* Chromosome—The strategies used for generating knock-out mutants (ΔKO, ΔE133A/KKO) and mutagenesis of the *E. coli* nukO, nulO, numo, and nuno genes were in principle similar to those we reported previously (15, 23–30, 39). The knock-out mutants were generated by employing the pKO3 system according to the method described by Link et al. (40) and Kao et al. (25) along with minor modifications. In brief, the spo gene was inserted into the nukO gene using a HindIII restriction site to disrupt the nukO gene as described in a previous report (27), leading to the construction of the *E. coli* ΔKO. In parallel, the nulO gene together with a 1-kb DNA segment, both upstream and downstream, was cloned into the pGEM®-T Easy Vector System to generate a template for the site-specific nulO mutations. The mutated nulO fragments were inserted into pKO3 using the restriction site NotI to construct pKO3 (nulO mutants). Likewise, stop codons were introduced by the site-directed mutagenesis for the stop mutants (ΔVal198stop, ΔIle227stop, and ΔAla281stop). For evaluating the entire process of gene manipulation on the
Essential and Connecting Elements of NuoN in E. coli NDH-1

E. coli chromosome, we also constructed a control mutant (sKO,rev) that employed unmutated gene pKO9(nuoN), instead of pKO9(nuoN mutants), in the recombination process. Then, the above pKO9 plasmids were used to replace the spec gene in E. coli sKO by recombination. The E. coli sE133A/sKO mutant was obtained by transforming pKO9(nuoK:spec) into the sE133A mutant, and the double mutant sE133A/sE72A was obtained by using pKO9(nuoK-E72A) (26). The mutagenesis of nuoL, and the nuoM gene were done in a similar manner as written in previous reports (24, 27). The point mutations in the chromosome were finally confirmed by direct DNA sequencing.

Growth and Membrane Preparation of E. coli Mutants—E. coli cells were grown in Terrific Broth medium at 37 °C until A600 of 2. Then inverted membrane vesicles were prepared according to the method described previously in our laboratory (25–27, 30, 41). The membrane preparations were frozen in liquid nitrogen and stored at −80 °C until use.

Immunoblotting and Blue Native Electrophoresis—Fourteen μg of protein from each membrane preparation was first subjected to SDS-PAGE using the discontinuous system of Laemmli (42). The content of the NDH-1 subunits were analyzed by Western blots with antibodies against NuoB (24), NuoCD (39), NuoE, NuoF, NuoG, NuoL (38), NuoK (26), NuoM (27), and NuoL (29) subunits. Blue Native PAGE was performed according to the method of Schägger and von Jagow (43) with some minor modifications. In brief, E. coli membranes equivalent to 800 μg of protein were resuspended in 160 μl of 750 mM amionocaproic acid, 50 mM BisTris-HCl (pH 7.0), 0.1 mg/ml of DNase, and 0.5% (w/v) dodecyl maltoside. After incubation and centrifugation, 15-μl samples were analyzed by 4% stacking gel, 7% separating gel. The assembly of NDH-1 was examined by NADH-p-nitro blue tetrazolium dehydrogenase activity staining and immunoblotting analysis, using the anti-NuoB antibody as described previously (26, 30, 41).

Enzymatic Assays—The activity assays were conducted according to the methods described previously (44). In brief, dNADH oxidase activity of membrane samples were assayed at 340 nm in 10 mM potassium phosphate buffer (pH 7.0) containing 1 mM EDTA, started by the addition of 0.15 mM dNADH. The dNADH-DB reductase activity measurements were conducted in a similar manner, except that 10 mM KCN and 50 μM DB were also included in the assay mixture. The dNADH-K3Fe(CN)6 reductase activity was measured in the presence of 10 mM KCN, 150 μM dNADH, and 1 mM K3Fe(CN)6 at 420 nm in the same buffer. For all assays, at least 3 measurements were made, and the mean ± S.E. calculated.

Measurement of Membrane Potential and H+-pumping Activity—Generation of membrane potential by the NDH-1 mutants was monitored optically using a reaction mixture containing 0.33 mg/ml of E. coli membrane samples in 50 mM MOPS (pH 7.3), 10 mM MgCl2, 50 mM KCl, and 2 μM oxonol VI as described previously (15). The reaction was started by addition of 200 μM dNADH. Uncoupler FCCP was added at a final concentration of 2 μM to dissipate the potential. The H+ pump concentration was followed by ACMA fluorescence quenching (35). Fifty-μg of protein/ml of membrane vesicles, 2 μM ACMA, and 200 μM dNADH were used for the assay. Fluorescence was monitored with excitation at 410 nm and emission at 480 nm on a SpectraMax M2 fluorescence microplate reader (Molecular Devices Corp.).

Other Analytical Procedures—Protein concentrations were determined by the BCA protein assay kit (Pierce) with bovine serum albumin as standard, according to the manufacturer’s instructions. Any variations from the procedures and other details are described in the figure legends.

RESULTS

The E. coli NuoN subunit (the counterpart of the mitochondrial ND2 subunit) consists of 485 amino acid residues, including 14 transmembrane regions. Fig. 1 shows the deduced amino acid sequence alignment of NuoN from several species spanning from bacteria to human. It also includes NuoL and NuoM of E. coli NDH-1 as well as three antiporter-like subunits that are known to be similar to each other. Our previous studies identified conserved charged residues in NuoM (NGlu144, Mlys234, and Nlys265) and NuoL (Glu144, Lys229, and Lys399) that are involved in energy transduction (24, 27). As highlighted in the sequence alignment, NuoN has conserved charged residues at corresponding positions (NGlu133, Nlys217, Nlys247, and Nlys395). Our first aim was to clarify whether these residues are part of the mechanism of H+ translocation by using a mutagenesis approach (Fig. 2, blue rectangles). In addition, to understand the perspective of key residues in NuoL, NuoM, and NuoN, conserved residues that have not been investigated in these subunits, Mglu407, Larg175, and Lys342, were also studied.

NuoN, NuoM, and NuoL are known to be structurally similar. One unique feature shared by the three subunits is the presence of two discontinuous helices (17), which were hypothesized to participate in ion translocation. We attempted to elucidate the role of conserved prolines that are located in the loop of those helices (Fig. 2, orange pentagons).

Last, the three-dimensional structural model of NDH-1 places residues Nlys158 and Nhis224 near helix HL (17). Also, Nval1469 seems to interact with a β sheet in NuoM. We investigated contributions of these residues to structural integrity of NDH-1 (Fig. 2, green ovals).

Conserved Charged Residues in TM in NuoN and Neighboring Subunits—We analyzed E. coli membranes on SDS-PAGE by immunoblotting using subunit-specific antibodies (Fig. 3). As expected, membrane vesicles from the knock-out mutants of NuoK, NuoM, and NuoN (sKO, sKO, and sKO) totally lacked all the subunits tested except NuoCD, confirming essential roles of these membrane subunits in the structure of NDH-1. On the other hand, sKO showed the presence of all the tested subunits except for NuoL and NuoM, as reported earlier (29). No detectable differences in the contents of analyzed subunits were seen in the mutants of the conserved charged residues in NuoN and NuoM (Glu133, Lys217, Lys247, Lys395, and Glu407). It is important to note that the sKO-rev and sE133A/sKO-rev mutants also showed subunit contents almost comparable with the WT, validating the chromosomal homologous recombination procedure adopted here. On the other hand, the NuoL mutants (R175A and K342A) contained considerably
lower amounts of NuoL and NuoM in their membranes, suggesting that these mutations make NuoL and NuoM unstable.

The assembly of NDH-1 complex in the mutants was investigated by BN-PAGE followed by NADH dehydrogenase activity staining (Fig. 4A). Of the two bands that appeared in the WT membrane, only the upper band was recognized by the antibody to the peripheral subunit NuoB in the immunoblotting of BN-PAGE (Fig. 4B). Along with the results from the membrane isolated from the NKO mutant, we regard the upper band as assembled NDH-1. The lower band might be an oligomeric form of NDH-2 but has not been verified. Membranes isolated from the majority of mutants of the charged residues showed a comparable upper band with that from the WT, assuring they contain well assembled NDH-1. On the other hand, mutants LR175A and LK342A exhibited a significantly reduced amount of assembled NDH-1, indicative of partially degraded subcomplexes as reported previously for some other NuoL mutants (24).

In addition to the above analyses, we estimated the amount of the peripheral domain associated with the membrane by measuring the dNADH-K3Fe(CN)6 reductase activity, which derives from the NADH dehydrogenase segment of NDH-1. Here, we used dNADH as the substrate to eliminate contribution from the alternative NADH-quinone oxidoreductase that exists in E. coli (45). As shown in Table 1, NKO and NE133A/KKO mutants exhibited, respectively, only 25 and 20% dNADH-K3Fe(CN)6 reductase activity as compared to WT, indicating the absence of a functionally active peripheral.

Figure 1. Comparison of the amino acid sequences among the NuoN (ND2) subunits and other homologous antiporters.

The alignment around helices that contain conserved charged residues presumably involved in H+/H11001 translocation was carried out by using the Clustal W program (54). Helices are depicted above the alignment based on the three-dimensional structure of E. coli NuoN (17), highlighting the candidates of essentially charged residues for energy-coupled NDH-1 activities (dark colored) and prolines in discontinuous helices (P). Black boxes with white letters illustrate similar residues among at least eight listed organisms. Dashes represent gaps to facilitate alignment. Amino acids mutated in this study are marked by arrows with the numbering in E. coli NuoN. Sequence sources and their UniProtKB/Swiss-Prot accession numbers are: E. coli NuoN (P0AFF0); P. aeruginosa NuoN subunit (Q9I0I9); T. thermophilus Nqo14 subunit (Q56229); P. denitrificans Nqo14 subunit (A1B479); R. capsulatus NuoN subunit (P50973); N. tabacum ND2 subunit (Q5MA39); B. taurus ND2 subunit (P03892); H. sapiens ND2 subunit (B1NU62); X. laevis ND2 subunit (P03894); Y. lipolytica ND2 subunit (Q9B6C8); C. elegans ND2 subunit (P24889); E. coli NuoM subunit (P0AFE8); E. coli K-12 NuoL subunit (P33607); M. barkeri EchA subunit (O59652); B. subtilis MrpA subunit (Q9K2S2); B. subtilis MrpD subunit (O05229).
The residual activities of the two KO mutants were most likely diaphorase activities unrelated to NDH-1 because membranes of KO mutants did not contain NuoF (the NADH-binding subunit) or NuoE that is required for the dNADH-K₃Fe(CN)₆ reductase activity of NDH-1 (38, 46). Slight reduction in the activity was seen for some point mutants (NK247A, NK395A, ME407A, LR175A, and LK342A mutants). The remaining single mutants listed in Table 1 exhibited dNADH-K₃Fe(CN)₆ reductase activity more or less similar to that of WT.

Next, the dNADH oxidase and dNADH-DB reductase activities were measured to assess the effect of mutations on the energy-coupled activities of NDH-1 (see Table 1). Overall, the dNADH oxidase and dNADH-DB reductase activities behaved in a similar manner among all the mutants tested, implying that the observed effects solely reflect NDH-1 mutations. The mutation of the highly conserved NGLu133 to alanine in TM5 showed a small (~28%) decrease in the activities, which is in good agreement with an earlier study by Amarneh and Vik (35). Mutation of the highly conserved NLys217 to alanine, cysteine, or arginine all resulted in reduced activities (in the range of 44–61%). The results are in contrast to that of Amarneh and Vik (35) in which the NK217C mutant was shown to have null energy-coupled activities. The mutation of the other conserved lysine residue to alanine (NK247A) led to only about 30% remaining activity. The mutation of the same residue to arginine resulted in almost complete restoration in the activities similar to the WT. Among the other candidates of essential residues in NuoN, mutation of the highly conserved NLys395 (present in the TM12) to NK395A strikingly caused almost a complete loss in activity, whereas the arginine mutant (NK395R) showed moderately reduced activities in the 37–43% range. When we mutated the highly conserved MGLu407 located...
in the TM12 (position equivalent to \(N\)-Lys\(^{395}\)) to alanine, almost total abolishment of the activities was observed. Likewise, mutation of the highly conserved charged residues \(\text{I}_{\text{Arg}}^{175}\) and \(\text{L}_{\text{Lys}}^{342}\) to alanine (\(\text{I}_{\text{R175A}}\) and \(\text{I}_{\text{K342A}}\)) resulted in greatly reduced activities (~15%).

To ascertain the effects of the mutations on the energy-coupled activities of NDH-1 further, we examined the generation of membrane potential (\(\Delta\Psi\)) and \(H^+\) translocation activity. As shown in Fig. 5A, addition of dNADH to the membrane vesicles from the WT led to generation of \(\Delta\Psi\), which was then dissipated by an uncoupler FCCP. The \(H^+\) translocation activity in the inverted membrane vesicles of different mutants was monitored by ACMA, where the membranes from the WT showed a maximum quenching after the addition of dNADH, followed by a reversion of the signal when FCCP was added (Fig. 6A). The mutation of highly conserved \(\text{N}_{\text{Glu}}^{407}\) and \(\text{N}_{\text{Lys}}^{395}\) to alanine resulted in a significant loss in \(\Delta\Psi\) generation and no \(H^+\) pumping activity (only ~10% as compared with the WT). Those of \(\text{I}_{\text{R175A}}\) and \(\text{I}_{\text{K342A}}\) exhibited only a small \(\Delta\Psi\) generation and \(H^+\) pumping activity (~30%). In contrast, other mutants of highly conserved residues including \(\text{S}_{\text{E133A}}, \text{N}_{\text{K217A}},\) and \(\text{S}_{\text{K247A}}\) exhibited \(\Delta\Psi\) and \(H^+\) pumping activity almost comparable with that of the WT. These results were largely consistent with the data of the energy-coupled activities.

In good agreement with an earlier report (35), our present results relating to the conserved charged residues on the NuoN subunit showed that \(\text{N}_{\text{Lys}}^{395}\) located in the TM12 is an essential residue for the energy-transducing NDH-1 activity. \(\text{N}_{\text{Lys}}^{395}\) is also conserved in NuoL (\(\text{L}_{\text{Lys}}^{399}\)) but in the homologous NuoM subunit the equivalent residue is a glutamic acid (\(\text{N}_{\text{Glu}}^{407}\)). Our studies demonstrated that both \(\text{N}_{\text{Lys}}^{399}\) (24) and \(\text{M}_{\text{Glu}}^{407}\) (this work, see Table 1 and Figs. 5 and 6) are essential residues. As depicted in Fig. 7A, the three-dimensional structure of NDH-1 indicates that \(\text{M}_{\text{Glu}}^{407}\) interacts with the essential residue \(\text{I}_{\text{Arg}}^{175}\), whereas \(\text{N}_{\text{Lys}}^{395}\) interacts with the essential residue

TABLE 1

Conserved charged residues in the TM of NuoN, NuoM, and NuoL potentially involved in energy transduction

Mutation	dNADH-O2 \(^a\)	dNADH-DB \(^b\)	dNADH-K\(_2\)Fe(CN)\(_6\) \(^c\)	IC\(_{50}\) (cap) \(^d\)	IC\(_{50}\) (squa) \(^e\)
WT	812 ± 25 (100%)	854 ± 37 (100%)	1546 ± 27 (100%)	0.19	0.0023
\(\text{s}_{\text{K}}\)O	5 ± 2 (0.6%)	15 ± 2 (2%)	394 ± 29 (25%)	0.20	0.0001
\(\text{s}_{\text{K}}\)O-rev	772 ± 74 (95%)	850 ± 81 (100%)	1565 ± 107 (101%)	0.21	0.0040
\(\text{s}_{\text{E133A}}\)	584 ± 42 (72%)	753 ± 136 (88%)	1576 ± 93 (102%)	0.21	0.0040
\(\text{s}_{\text{E133A/\text{N}}_{\text{K}}\text{O}}\)	6 ± 1 (0.7%)	18 ± 2 (2%)	306 ± 56 (20%)	0.20	0.00054
\(\text{s}_{\text{E133A/\text{N}}_{\text{K}}\text{O-rev}}\)	615 ± 76 (7%)	804 ± 61 (94%)	1497 ± 56 (97%)	0.13	0.0029
\(\text{s}_{\text{E133A/\text{N}}_{\text{E72A}}\text{A}}\)	163 ± 15 (20%)	161 ± 5 (19%)	1095 ± 41 (71%)	0.12	0.0030
\(\text{s}_{\text{E72A}}\)	(1%)	(7%)	(14%)	0.12	0.0030
\(\text{s}_{\text{K217A}}\)	428 ± 42 (53%)	473 ± 61 (55%)	1425 ± 169 (92%)	0.19	0.0052
\(\text{s}_{\text{K217C}}\)	498 ± 53 (61%)	484 ± 24 (57%)	1584 ± 141 (102%)	0.18	0.0038
\(\text{s}_{\text{K217R}}\)	395 ± 37 (49%)	374 ± 27 (44%)	1344 ± 79 (87%)	0.19	0.0028
\(\text{s}_{\text{K247A}}\)	256 ± 21 (32%)	274 ± 24 (32%)	1088 ± 65 (70%)	0.19	0.0043
\(\text{s}_{\text{K247R}}\)	615 ± 91 (76%)	799 ± 110 (94%)	1565 ± 134 (101%)	0.23	0.0043
\(\text{s}_{\text{K395A}}\)	15 ± 2 (2%)	30 ± 3 (4%)	1092 ± 113 (71%)	0.19	0.0024
\(\text{s}_{\text{K395R}}\)	348 ± 41 (43%)	317 ± 21 (37%)	1397 ± 93 (90%)	0.19	0.0034
\(\text{s}_{\text{K395R}}\)	6 ± 24 (0.7%)	12 ± 1 (4.4%)	368 ± 23 (24%)	0.19	0.0034
\(\text{s}_{\text{E407A}}\)	42 ± 5 (5%)	72 ± 10 (8%)	1007 ± 38 (65%)	0.18	0.0034
\(\text{s}_{\text{K}}\)O	26 ± 4 (3%)	50 ± 8 (6%)	859 ± 120 (56%)	0.18	0.0034
\(\text{s}_{\text{R175A}}\)	131 ± 8 (16%)	147 ± 7 (17%)	926 ± 10 (60%)	0.17	0.0034
\(\text{s}_{\text{K342A}}\)	92 ± 3 (11%)	94 ± 11 (11%)	968 ± 6 (63%)	0.18	0.0023

\(^a\) Activity in nanomole of dNADH/mg of protein/min.

\(^b\) Activity in nanomole of K\(_2\)Fe(CN)\(_6\)/mg of protein/min.

\(^c\) Concentration of capsaicin-40 (cap) that causes 50% inhibition on dNADH-oxidase activity (\(\mu\)l).

\(^d\) Concentration of squamotacin (squa) that causes 50% inhibition on dNADH-oxidase activity (\(\mu\)l).

\(^e\) From Ref. 26.
Essential and Connecting Elements of NuoN in E. coli NDH-1

The conserved residue γGlu133 was seemingly non-essential for the energy-transducing NDH-1 activity unlike the corresponding glutamic residues in NuoM and NuoL (δGlu144 and ℓGlu144) that had been shown to be essential. According to the three-dimensional structural model of NDH-1, another conserved but non-essential residue κGlu72 (26) is located close to γGlu133 (4.06 Å). Thus, we investigated a possible interaction between these two carboxyl residues by mutation analysis involving the δE133A/ℓE72A double mutant.

As shown in Fig. 3, the subunit contents of the δE133A/ℓE72A mutant were comparable with that of the WT, with slightly slower migration of the NuoK subunit. However, the membrane isolated from the double mutant seemed to contain similar amounts of NuoN and NuoK subunits. On the other hand, the double mutation of κGlu72 and γGlu133 (δE133A/ℓE72A) strongly reduced energy-coupled activities (20%), whereas the activities of single mutants δE133A (this work) and ℓE72A (from 26) were about 80 and 45%, respectively. Accordingly, the strong reduction of $\Delta\Psi$ and H^+ translocation activity of the double mutant were observed (Figs. 5A and 6A).

These results suggest an essential role of the pair of these two highly conserved glutamic acids on the energy-coupled NDH-1 activity. Thus we postulate that γGlu133 is important for function similarly to the corresponding residues in NuoM and NuoL (δGlu144 and ℓGlu144) but its role can be compensated by another residue, κGlu72. It should also be noted that a compensatory effect exerted by two conserved charged residues has been reported for the two nearby conserved carboxyl residues (δAsp79 and ℓGlu81) located in the NuoA subunit (25) but never for a pair of residues located in different subunits like in the current case. These results strongly suggest that NuoN has function of the H^+ translocation like NuoM and NuoL.

Prolines in Discontinuous Helices of Subunits NuoM, NuoN, and NuoL—It has recently been demonstrated that discontinuous membrane helices (α-helix–loop–α-helix motif) are present in Ca$^{2+}$-ATPase and secondary transporters such as NhaA (47). The three-dimensional structural models of these transporters led to a hypothesis that the loops are involved in recognition, binding, and translocation of ions. Similar to the secondary antiporters (17), NuoM, NuoN, and NuoL all have two discontinuous helices in their TM7 and TM12 sections, which are located close to essential charged residues, thus implying a key role for conformational changes in these subunits (see Figs. 2 and 7B). As highly conserved prolines are located at the bend-

FIGURE 5. Detection of the membrane potential generated by dNADH oxidation in NDH-1 mutants. The potential changes ($\Delta\Psi$) of E. coli membrane samples were monitored by the absorbance changes of oxonol VI at 630–603 nm at 30 °C. The first arrow indicates addition of dNADH, whereas the second arrow indicates addition of FCCP. Representative traces from different groups of mutants: A, conserved charged residue mutants: δE133A, δE133A/KO-rev, ℓE72A, ℓE72A/KO; B, conserved proline mutants: δE133A/KO-rev, ℓE72A; and C, structural element residues: δE133A/ME407A, ℓE72A/ME407A, δE133A/NE133A, ℓE72A/NE133A.

FIGURE 6. Generation of a pH gradient coupled to dNADH oxidation in NDH-1 mutants. H^+ translocations of E. coli membrane samples were measured by the quenching of ACMA fluorescence at room temperature with an excitation wavelength of 410 nm and an emission wavelength of 480 nm. Addition of dNADH or FCCP is indicated by the arrows. Representative traces from different group of mutants: A, conserved charged residue mutants: WT (or NK217A, NK395A, NK217A/K342A, and NK395A/K342A); B, conserved proline mutants: WT (or δP222A, ℓP222A, γP222A, δP222A/NE133A, and γP222A/NE133A); and C, structural element residues: WT; γK158A (or γH224A and γV469A); ℓK158A (or ℓH224A and ℓV469A); δK158A (or δH224A and δV469A); γK158A/ME407A; ℓK158A/ME407A; δK158A/NE133A; ℓK158A/NE133A; and γK158A/NE133A.
ing of the discontinuous helices in NDH-1 (NPro222, NPro387, MPro239, MPro399, LPro234, and LPro390) (Fig. 2), replacing them with alanine, which is a strong α-helix-forming residue, might possibly force the helices into a less kinked structure. Therefore, we made mutations NP222A, NP387A, MP239A, MP399A, LP234A, and LP390A, along with a glycine mutant NP387G.

The analysis of SDS-PAGE (Fig. 3), BN-PAGE (Fig. 4), and dNADH-K3Fe(CN)6 reductase activity (Table 2) confirm that all of the proline mutants had normal subunit contents and assembly. As expected, mutation of each of the conserved prolines to alanine moderately reduced the dNADH oxidase and the dNADH-DB reductase activities (50–80%, Table 2). Likewise, these mutants gave a slight reduction of H⁺ translocation (Figs. 5B and 6B). The energy-coupled activities of a mutation of NPro387 to glycine (NPro387G) as well as the extent of H⁺ translocation were comparable with WT, suggesting that replacement with glycine, which has no side chain and is thus relatively flexible, perhaps did not deprive the helix of kink enough to cause a significant activity loss.

The remaining activities of mutation of the prolines to alanine indicated their similar roles among the antiporter-like subunits. However, their relatively high activities do not seem to support the hypothesis (17) that the individual proline residues are indispensable for the energy-coupled NDH-1 activities. It might be possible that replacement of a proline residue by alanine in a different discontinuous helix only partially affects the kinked structure of NDH-1. In addition, we could not exclude a possibility that discontinuous helices do not make a significant contribution to the energy coupling mechanism.

Structural Elements in NuoN—The x-ray structure of E. coli NDH-1 displayed at least two connection elements among NuoK, NuoN, NuoM, and NuoL, which are considered to contribute to the stability of the antiporter-like subunits and help in coupling electron transfer with H⁺ translocation (17, 29, 48, 49). One is a rod-like helix HL in NuoL, and the other is β sheets in NuoL and NuoM located on the opposite side of the domain from helix HL (17) (Fig. 2). In NuoN subunit, residues NLY158 and NHis224 are placed near helix HL according to the x-ray structural model. Also, NVal1469 (or the α-helix in NTM14 from NVal469 to the C-terminal) seem to interact with the β sheet.

We investigated the possible connecting elements (NLY158 and NHis224) of NuoN with the helix HL in NuoL by producing mutants NKL158A, NK158R, and NH224A. When we measured dNADH oxidase and dNADH-DB reductase activities, a mod-
erate decrease was observed for \(\Delta K 158 A \) and \(\Delta K 158 R \) mutants (~50%, Table 3). The \(\Delta H 224 A \) mutant displayed a slight decrease in the energy-coupled activities (~70%). Similarly, \(\Delta \Psi \) and the \(H^+ \) translocation activity were only slightly reduced by these mutations (Figs. 5C and 6C). Interestingly, mutants \(\Delta K 158 A \) and \(\Delta K 158 R \) showed significantly decreased levels of the intact NDH-1 activity on BN-PAGE (Fig. 4A) despite the detection of fully assembled NDH-1 as seen in immunoblotting (Fig. 4B), the normal subunit contents (Fig. 3) and the dNADH-\(K_3 Fe(CN)_6 \) reductase activity (Table 3). This discrepancy might be due to the extraction procedures in BN-PAGE, which requires dissociation of the membrane using dodecyl maltoside as described previously (26). The loss of connecting residue \(K 158 L \) could reduce the stability of helix HL resulting in an altered architecture in that part of NDH-1. Along with the three-dimensional structural model of membrane subunits, these results strongly suggested that \(K 158 L \) plays a critical role in the interaction with helix HL. On the other hand, alanine mutation of the conserved histidine residues, \(H 241 \) (27) and \(H 141 \) (this work), seemed to imply that their involvement in the interaction with helix HL may be less significant compared with that of \(K 158 L \).

To assess the other possible connecting element (\(V 469 L \)) in the NuoN subunit, we also made the mutation and truncations of the NuoN subunit (\(V 469 A, V 469 L, I 475 L, I 475 S, A 481 I \), and \(A 481 L \)). The amount of membrane and peripheral subunits were reduced for the C-terminal truncation \(V 469 L \) stop and \(I 475 L \) stop mutants (Fig. 3). In contrast, the truncation mutant \(A 481 I \) stop and a point mutant \(V 469 A \) showed subunit contents mostly comparable with that of the WT. We also found a reduced amount of completely assembled NDH-1 in BN-PAGE (Fig. 4) and partially reduced dNADH-\(K_3 Fe(CN)_6 \) reductase activity (60%, Table 3) for the \(V 469 L \) stop and \(I 475 L \) stop mutants. In line with the above analysis, \(V 469 L \) stop or \(I 475 L \) stop mutants displayed a significant decrease in the energy-coupled NDH-1 activities (~30%), whereas the \(A 481 I \) stop and \(V 469 A \) mutants showed relatively higher activities (~65%). The data on \(\Delta \Psi \) generation and \(H^+ \) translocation ability exhibited similar tendencies with the energy-coupled activities (Figs. 5C and 6C). These results indicated that the C-terminal amphipathic helix starting from \(V 469 \) in \(TM 14 \) interacts with the \(M \beta \) sheet. Interestingly, the loss of NuoL and NuoM in NDH-1 was detected in C-terminal truncation mutants of NuoM (29) but not in the C-terminal truncation mutants of NuoN.

DISCUSSION

Based on the empirical findings in this study, we concluded that NuoN is involved in \(H^+ \) translocation similar to the other antiporter-like subunits, NuoM and NuoL. Our data also suggested that \(G 133 \) and \(V 395 \) in NuoN may be involved in \(H^+ \) translocation. Together with the results from our previous work, we summarized the candidate residues that may be part of the mechanism of \(H^+ \) translocation as shown in Fig. 7B. Besides the aforementioned residues in NuoN, they are \(G 136, G 144, V 395, G 407, L 144, G 342, H 145, V 175, L 342, L 343, \) and \(L 399 \). In addition, \(A 83, G 83, G 72, \) and \(G 72 \) were also considered to be essential residues based on the data using the double mutants. Most of the residues are located not only in the middle of the TM but also at the interface of adjacent domain subunits, suggesting that the core elements of the \(H^+ \) translocation machinery lie around the borders of contiguous membrane domain subunits (52). Recently, Verkhovskaya and Bloch (53) proposed a “wave-spring” model that involves conformational changes driven by the reduction of quinone transmitted through charged residues located in the middle of the TMs, from the NuoAK(H) bundle to NuoL. In this model, electrochemical transmission has to cover the distance between the two closest charged residues. There exist large gaps around the border of subunits, especially between TM8 and TM12. Sazanov’s group (19) suggested a “river” of water molecules and histidine residues that assist formation of a continuous hydrophilic axis in the membrane (see the green arrow in Fig. 7B). Therefore, it is possible that replacements of the charged residues by site-directed mutagenesis at the interface of adjacent subunits had a critical impact on energy-

TABLE 2

Conserved prolines located in the loops of discontinuous helices of NuoN, NuoM, and NuoL

Mutation	dNADH-\(\text{O}_2 \)a	dNADH-DBa	dNADH-\(K_3 Fe(CN)_6 \)b	IC\(_{50}\) (cap)c	IC\(_{50}\) (squa)d
WT	812 ± 25 (100%)	854 ± 37 (100%)	1546 ± 27 (100%)	0.19	0.0023
P222A	503 ± 21 (62%)	655 ± 15 (77%)	1400 ± 19 (91%)	0.20	0.0027
P387A	479 ± 31 (59%)	442 ± 14 (52%)	1288 ± 34 (83%)	0.19	0.0023
P387G	705 ± 65 (87%)	780 ± 56 (91%)	1594 ± 60 (103%)	0.18	0.0028
P239A	477 ± 14 (59%)	621 ± 17 (73%)	1343 ± 50 (87%)	0.18	0.0047
P399A	422 ± 28 (52%)	540 ± 12 (63%)	1204 ± 87 (78%)	0.20	0.0044
P343A	422 ± 15 (52%)	569 ± 46 (67%)	1315 ± 67 (85%)	0.16	0.0025
P390A	485 ± 35 (60%)	578 ± 65 (68%)	1399 ± 51 (90%)	0.15	0.0030

a Activity in nanomole of dNADH/mg of protein/min.

b Activity in nanomole of dNADH/mg of protein/min.

c Concentration of capsaicin-40 (cap) that causes 50% inhibition on dNADH-oxidase activity (µM).
d Concentration of squamotacin (squa) that causes 50% inhibition on dNADH-oxidase activity (µM).
coupled activities because of the gaps with adjacent charged residues. Thus, H\(^+\) can be translocated through the inside of the antiporter-like subunits (NuoL, NuoM, and NuoN) and also through the aforementioned NuoAJK(H) bundle, powered by the horizontal array of charged/polar groups in conjunction with conformational changes in different membrane subunits (Fig. 7B).

We categorized three areas/regions of essential charged residues that could comprise the key elements in the H\(^+\) translocation pathway (see Fig. 7A). They are: 1) a negatively charged region formed by essential residues Glu\(^{133}\), Glu\(^{72}\), Glu\(^{36}\), residue that could comprise the key elements in the H\(^+\) translocation pathways, (c) conserved prolines in the loops of discontinuous helices are not essential for the energy transduction of NDH-1, and (d) a lysine residue and the C terminus region in NuoN bear structural roles.

Acknowledgments—We thank Drs. Mathieu Marella and Gaurav Patki for discussion, Dr. Jennifer Barber-Singh for critical reading of the manuscript, Dr. Hideto Miyoshi for providing capsaicin 40, and Dr. Subhash Sinha for squamotacin.

REFERENCES

1. Brandt, U. (2006) Energy converting NADH:quinone oxidoreductase (complex I). *Annu. Rev. Biochem.* 75, 69–92.
2. Wikström, M., and Hummer, G. (2012) Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. *Proc. Natl. Acad. Sci. U.S.A.* 109, 4431–4436.
3. Carroll, J., Fearnley, I. M., Skehel, J. M., Shannon, R. J., Hirst, J., and Walker, J. E. (2006) Bovine complex I is a complex of forty-five different subunits. *J. Biol. Chem.* 281, 32724–32727.
4. Sharma, L. K., Lu, J., and Bai, Y. (2009) Mitochondrial respiratory complex I. Structure, function and implication in human diseases. *Curr. Med. Chem.* 16, 1266–1277.
5. Yagi, T., Yano, T., Di Bernardo, S., and Matsuno-Yagi, A. (1998) Procaryotic complex I (NDH-1), an overview. *Biochim. Biophys. Acta* 1364, 125–133.
6. Yagi, T., and Matsuno-Yagi, A. (2003) The proton-translocating NADH:quinone oxidoreductase in the respiratory chain. The secret unlocked. *Biochemistry* 42, 2266–2274.
7. Efremov, R. G., Baradaran, R., and Sazanov, L. A. (2010) The architecture of respiratory complex I. *Nature* 465, 441–445.
8. Yagi, T., and Dinh, T. M. (1990) Identification of the NADH-binding subunit of NADH-ubiquinone oxidoreductase of *Paracoccus denitrificans*. *Biochemistry* 29, 5515–5520.
9. Yano, T., and Yagi, T. (1999) H\(^+\)-translocating NADH-quinone oxidoreductase (NDH-1) of *Paracoccus denitrificans*. Studies on topology and stoichiometry of the peripheral subunits. *J. Biol. Chem.* 274, 28606–28611.
10. Berrisford, J. M., and Sazanov, L. A. (2009) Structural basis for the mechanism of respiratory complex I. *J. Biol. Chem.* 284, 29773–29783.
11. Hinchcliffe, P., and Sazanov, L. A. (2005) Organization of iron-sulfur clusters in respiratory complex I. *Science* 309, 771–774.
12. Yakovlev, G., Reda, T., and Hirst, J. (2007) Reevaluating the relationship between EPR spectra and enzyme structure for the iron-sulfur clusters in NADH:quinone oxidoreductase. *Proc. Natl. Acad. Sci. U.S.A.* 104, 12720–12725.
13. Ohnishi, T., and Nakamura-Ogiso, E. (2008) Were there any ‘misassignments’ among iron-sulfur clusters N4, N5 and N6b in NADH-quinone oxidoreductase (complex I)? *Biochim. Biophys. Acta* 1777, 703–710.
14. Sazanov, L. A. (2007) Respiratory complex I. Mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Bio...
ious NADH-ubiquinone oxidoreductases. *Biochim. Biophys. Acta* 1273, 21–30
52. Michel, J., DeLeon-Rangel, J., Zhu, S., Van Ree, K., and Vik, S. B. (2011) Mutagenesis of the L, M, and N subunits of complex I from *Escherichia coli* indicates a common role in function. *PLoS ONE* 6, e17420
53. Verkhovskaya, M., and Bloch, D. A. (2013) Energy-converting respiratory Complex I. On the way to the molecular mechanism of the proton pump. *Int. J. Biochem. Cell Biol.* 45, 491–511
54. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0. *Bioinformatics* 23, 2947–2948
Energy Transducing Roles of Antiporter-like Subunits in *Escherichia coli* NDH-1 with Main Focus on Subunit NuoN (ND2)
Motoaki Sato, Prem Kumar Sinha, Jesus Torres-Bacete, Akemi Matsuno-Yagi and Takao Yagi

J. Biol. Chem. 2013, 288:24705-24716.
doi: 10.1074/jbc.M113.482968 originally published online July 17, 2013

Access the most updated version of this article at doi: 10.1074/jbc.M113.482968

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 54 references, 18 of which can be accessed free at http://www.jbc.org/content/288/34/24705.full.html#ref-list-1