A SUBSTANTIAL DUST DISK SURROUNDING AN ACTIVELY ACCRETING FIRST-ASCENT GIANT STAR

C. Melis1,3, B. Zuckerman1, Inseok Song2, Joseph H. Rhee1, and Stanimir Metchev1,4

1 Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA; cmelis@astro.ucla.edu
2 Department of Physics and Astronomy, University of Georgia, Athens, GA 30602-2451, USA

Received 2008 October 23; accepted 2009 February 19; published 2009 April 28

ABSTRACT

We report identification of the first unambiguous example of what appears to be a new class of first-ascent giant stars that are actively accreting gas and dust and that are surrounded by substantial dusty disks. These old stars, who are nearing the end of their lives, are experiencing a rebirth into characteristics typically associated with newborn stars. The F2-type first-ascent giant star TYC 4144 329 2 is in a wide separation binary system with an otherwise normal G8 IV star, TYC 4144 329 1. From Keck near-infrared imaging and high-resolution spectroscopy, we are able to determine that these two stars are \(\sim \)1 Gyr old and reside at a distance of \(\sim \)550 pc. One possible explanation for the origin of the accreting material is common-envelope interaction with a low-mass stellar or substellar companion. The gaseous and dusty material around TYC 4144 329 2, as it is similar to the primordial disks observed around young classical T Tauri stars, could potentially give rise to a new generation of planets and/or planetesimals.

Key words: binaries: close – circumstellar matter – infrared: stars – stars: evolution – stars: individual (TYC 4144 329 1, TYC 4144 329 2)

Online-only material: color figures

1 INTRODUCTION

It is well understood that stars are born in dusty, gaseous cocoons. The material enshrouding the star eventually settles into a circumstellar disk in which planet formation is thought to occur on short timescales. By several Myr after the star is born the primordial material that surrounded it has been accreted by the star, removed from the stellar system, or accumulated into larger objects. Thus, the majority of main-sequence and first-ascent giant stars that we see are only sometimes surrounded by substantial dusty disks. These old stars, who are actively accreting first-ascent giant stars, TYC 4144 329 2 is in a wide separation binary system with an otherwise normal G8 IV star, TYC 4144 329 1. From Keck near-infrared imaging and high-resolution spectroscopy, we are able to determine that these two stars are \(\sim \)1 Gyr old and reside at a distance of \(\sim \)550 pc. One possible explanation for the origin of the accreting material is common-envelope interaction with a low-mass stellar or substellar companion. The gaseous and dusty material around TYC 4144 329 2, as it is similar to the primordial disks observed around young classical T Tauri stars, could potentially give rise to a new generation of planets and/or planetesimals.

2 OBSERVATIONS

At Mauna Kea Observatory, we observed both components of the TYC 4144 329 system using the NIRC2 near-infrared imaging camera on the Keck II Telescope and the HIRES echelle spectrometer at Keck I (see Table 1). Our NIRC2 data were taken using the natural guide star adaptive optics system (Wizinowich et al. 2000) to look for any extended emission around TYC 4144 329 2. Due to complications in our data sets from anisoplanatic degradation, we can only place a tentative limit on any extent of TYC 4144 329 2 of \(\lesssim \)70 mas. Future measurements that will compensate for these effects are planned. Variable adaptive optics corrections prevented flux calibration of the TYC 4144 329 images with a flux standard star. To determine the flux for TYC 4144 329 2, we assumed TYC 4144 329 1 had photospheric flux values and computed delta-magnitudes for individual images. The results are discussed in Section 3.2.

Spectra of TYC 4144 329 1 and 2 were obtained with the HIRES (Vogt et al. 1994) spectrometer on two dates (see Table 1). Spectral data were reduced and extracted using the MAKEE software package.

Low-resolution grating spectra were obtained for the TYC 4144 329 system with the KAST Double Spectrograph at the Lick Observatory Shane 3 m Telescope. Data obtained on UT 2008 June 28 suffered from extinction due to smoke from nearby fires. Data were reduced and extracted using standard IRAF tasks.

3 RESULTS

3.1 TYC 4144 329 Stellar Parameters

Our star of interest, TYC 4144 329 2, is part of a visual double star system. Table 2 contains information about TYC 4144 329 1, the optical primary star, and TYC 4144 329 2, the dusty star. We took special care to ensure that we correctly determined the spectral type of both stars and especially the luminosity class of TYC 4144 329 1. Following previous works (Gray 1989; Strassmeier & Fekel 1990; Kovtyukh et al. 2006) we employ line-depth ratios to determine absolute temperature and, for TYC 4144 329 1, luminosity class. Such line ratio diagnostics have been shown to be relatively insensitive to metallicity, rotation, and surface gravity effects (Gray 1994; Kovtyukh et al. 2003, 2006).
Table 1
Observations Summary

UT Date	Instrument	Conditions	Setup	Coverage	Resolutiona	S/Nb	λ of S/Nb
2007 Jun 23	NIRC2	Clear	0’01 pixel−1	JHKL′M′	⋯	⋯	⋯
2007 Oct 25	NIRC2	Nonphotometric	0’01 pixel−1	JHKL′M′	⋯	⋯	⋯
2007 May 5	HIRES	Clear	UV Collimator—Blue	3100−5900 Å	40,700	100/100	5850 Å
2008 Feb 14	HIRES	Cloudy	UV Collimator—Red	4100−7000 Å	39,600	100/100	6700 Å
2008 Mar 11	KAST	Cloudy	830/3460	3000−4550 Å	∼3.4 Å	35/35	4000 Å
2008 Jun 28	KAST	See text	600/8460	5500−7300 Å	∼3.4 Å	75	6000 Å

Notes.

a Resolutions were measured from the FWHM of single arclines in our comparison spectra.

b S/N for TYC 4144 329 1/TYC 4144 329 2 unless otherwise noted.

c Wavelength where S/N measurement was made in the spectrum.

d Observations used the 1′ 0 slit and the d46 dichoric.

Table 2
Parameters of the TYC 4144 329 Binary Star System

Parameter	TYC 4144 329 1	TYC 4144 329 2
R.A. (J2000)	10 23 10.57	10 23 09.88
Decl. (J2000)	+61 36 46.0	+61 36 43.5
Sp. type	G8 IV	F2
Vmag	10.12	10.75
\(T_{\text{eff}} \) (K)	5014	7000 ± 200
pmRA (mas yr⁻¹)	−1.7 ± 2.8	+2.4 ± 2.9
pmDE (mas yr⁻¹)	−25.5 ± 2.8	−24.3 ± 2.8
RV (km s⁻¹)	−27.48 ± 0.18	−27.52 ± 1.35
Li i 6710 Å EW (mÅ)	< 2	< 20
\(\cos i \) (km s⁻¹)	3	31

System

Distance from Earth	~550 pc
Separation between stars	5.5 (projected separation of 3025 AU)
UVW space motions (km s⁻¹)	+9.4, −71.3, +4.4
[Fe/H]	−0.2
Age	930 ± 140 Myr

Notes. See the text for discussion of stellar parameters. Samus & Durlevich (2004) detect variability in visual combined light measurements of this system. They report maximum and minimum \(V \) magnitudes of 9.8 and 10.6, respectively. Similarly, combined light measurements of this system in the TASS spacemotions (km s⁻¹) orbiting dust (the spectrum of HIP 106985 comes from the ELODIE archive; Moutlaka et al. 2004). Comparison of temperature-sensitive absorption lines indicates that the temperature class of TYC 4144 329 2 is somewhere between an A7 star (\(V − K = 0.62 \)) and an F5 star (\(V − K = 1.042 \)). The slanted lines are added to help guide the eye and have their slopes fixed at the slope value determined from comparing the line strength ratios of the Fe i and Fe ii absorption lines of TYC 4144 329 2. The best match appears to be around an F2 star (\(V − K = 0.85 \)). Wavelengths in this figure are plotted in the heliocentric air scale. The comparison spectra have been shifted to TYC 4144 329 2’s heliocentric reference frame. (A color version of this figure is available in the online journal.)

3.1.1. TYC 4144 329 2

An initial estimate of the temperature class of TYC 4144 329 2 came from a comparison of our Keck HIRES spectra to similar resolution spectra of stars of known spectral type that are not known to have any surrounding dust (Figure 1). A rough comparison of different ions of the same atom (Fe ii and Fe i in the case of Figure 1) allows us to determine that TYC 4144 329 2 has a temperature similar to that of an F2-type star (\(T_{\text{eff}} \sim 7000 \) K). We attempted to further refine this estimate with line-depth ratios. Unfortunately, the broadened lines of TYC 4144 329 2 complicate such diagnostics which typically rely on comparing a stronger absorption line with a weak absorption line. With \(a \) \(\sin i \) of \(\sim 30 \) km s⁻¹, the weak lines of TYC 4144 329 2 get subsumed into the continuum. As such, the most accurate line-depth ratios are unavailable to this analysis, and the best we can do is confirm our estimated temperature with lower limits. From comparing the line-depth ratios of Ti i \(\lambda 6126 \) to Si i \(\lambda 6155 \) with Figure 2 of Kovtyukh et al. (2003), we find that TYC 4144 329 2 must have a temperature greater than \(\sim 6500 \) K. For the line-depth ratio of V i \(\lambda 5727 \) to Si i \(\lambda 5772 \) we are able to barely detect both lines after smoothing the spectrum with an 11-pixel boxcar, although we do not feel the detection of V i is greater than 3σ significance. If we assume a detection then we get an effective temperature of \(\sim 6700 \) K when comparing to Figure 2 of Kovtyukh et al. (2003); if we...
Figure 2. Both panels: comparison of our HIRES spectrum of TYC 4144 329 1 with δ Boo, τ Cet, and HD 171994 (G8 III, G8 V, and G8 IV, respectively). All spectra presented in this figure have been shifted to the Earth rest frame with wavelengths in air. Left panel: luminosity class sensitive features (such as Co i λ6450) indicate that TYC 4144 329 1 has a luminosity class in between that of a giant star and a dwarf star (Strassmeier & Fekel 1990). Right panel: TYC 4144 329 1 with HD 171994 overplotted, both spectra have pixel widths of ∼1.3 km s$^{-1}$ and ∼3.1 km s$^{-1}$ for HIRES and ELODIE, respectively. HD 171994 is our qualitative best match to TYC 4144 329 1, and hence we adopt its metallicity and absolute visual magnitude (Soubiran et al. 2008) for TYC 4144 329 1. From the adopted absolute visual magnitude, we estimate a distance of ∼550 pc to the TYC 4144 329 system.

Figure 3. KAST blue side spectra of TYC 4144 329 1 and HD 171994 with spectral resolutions of ∼3.4 and ∼6.5 Å, respectively. Adverse conditions present during the acquisition of each spectrum (see Section 2 and Table 1) could have potentially affected the spectral calibrations. Although the spectral slopes are not identical, we find that line strengths, in particular the gravity-sensitive CN and CH bands, are.

To complete the parameterization of TYC 4144 329 1 we sought robust estimates of its metallicity and luminosity. In lieu of attempting to model our HIRES and KAST data we decided to qualitatively match our spectra with similar resolution spectra of stars with known metallicities and parallax measurements. Our best match to TYC 4144 329 1 is HD 171994 (Figures 2 and 3). As such, we adopt the parameters of HD 171994 (see Soubiran et al. 2008) for TYC 4144 329 1 (Table 2); specifically, the G8 IV spectral type classification, T_{eff}, [Fe/H], and the luminosity of HD 171994. The Hipparcos measured parallax of HD 171994 ($\pi = 10.70 \pm 0.44$ mas; van Leeuwen 2007) enables us to estimate a distance to TYC 4144 329 1. Based on the adopted absolute visual magnitude of 1.46 we estimate TYC 4144 329 1 and TYC 4144 329 2 (common space motions indicate the TYC 4144 329 system is bound; see Table 2) reside at a distance of ∼550 pc. We conservatively adopt an uncertainty of ∼15% on this distance estimate.

3.1.2. TYC 4144 329 1

We make an initial estimate of the effective temperature of TYC 4144 329 1 from broadband colors, finding a temperature class residing in the range of G8–K2 (the main uncertainty in this estimate is the luminosity class of TYC 4144 329 1). With this estimate as a sanity check, we then employed line-depth ratios to refine the effective temperature measurement. Comparing the residual intensity ratio of Fe i λ6432 to Fe i λ6430 against Figure 2(a) of Strassmeier & Fekel (1990) yields a temperature class of G8 ± 1 subclass if TYC 4144 329 1 is a giant or a subdwarf and K0 ± 1 subclass if it is a dwarf. We employ additionally the line-depth ratios of Fe i λ6241 to Si i λ6244 and Fe iλ6704 to Si i λ6722 and find temperatures of 4800 ± 100 K for both when comparing against Figure 1 of Kovtyukh et al. (2006).

Our next step is to secure the luminosity class of TYC 4144 329 1 and finalize its spectral type. As is illustrated in Figure 2, luminosity-sensitive lines (especially Co iλ6450; Strassmeier & Fekel 1990) show significant deepening with progression from dwarf to giant. Rough examination of Figure 2 shows that TYC 4144 329 1 has a luminosity class intermediate to that of a dwarf and a giant star. Comparing the residual intensity ratio of Co i λ6450 to Ca i λ6449 with Figures 2(e) and 3(b) from Strassmeier & Fekel (1990) shows good agreement with a subgiant classification. An additional check of the luminosity class of TYC 4144 329 1 is obtained from comparing the flux ratio of bandpasses around Fe i λ4071 and Sr ii λ4077 to Figure 1 of Mamajek et al. (2002). For our determined effective temperature, we find again that TYC 4144 329 1 has line ratios consistent with a subgiant. With all of the above diagnostics, we are confident that the spectral type of TYC 4144 329 1 is G8 IV.

...
3.2. Excess Infrared Emission from TYC 4144 329 2

TYC 4144 329 2 first came to our attention as part of a survey to identify TYCHO-2 main-sequence stars with excess emission at mid- and far-infrared wavelengths (C. Melis et al. 2009, in preparation). To accomplish this we cross-correlated the TYCHO-2 catalog (Hog et al. 2000) with the Infrared Astronomical Satellite catalogs (IRAS). The IRAS measurements of the TYC 4144 329 binary at 12, 25, and 60 μm (Figure 4) indicate the presence of warm and cool dust around at least one of the two TYCHO-2 stars (the IRAS beam size is many times larger than the 5′.5 separation between the two stars). Subsequent investigation of near-infrared fluxes at higher spatial resolution in the Two Micron All Sky Survey (2MASS) catalog (Cutri et al. 2003) revealed a definite K-band excess around TYC 4144 329 2, the F2-type star, but not around the G8 IV optical primary. To ensure that the overall infrared excess was real and arising purely from TYC 4144 329 2 we observed the two stars with NIRC2. The relative L′ and M′ fluxes indicate that the near-infrared excess emission originates entirely from the F2 star. Hence, we attribute any longer wavelength excess emission (mid- and far-infrared) to the F2 star.

To estimate the dust temperature and the fraction of the stellar luminosity reradiated by the dust (LIR/Lbol) we fit optical and near-infrared measurements out to J band with a synthetic stellar atmosphere spectrum (Hauschildt et al. 1999) reddened by an interstellar extinction model (see caption to Figure 4) along with two blackbodies (having temperatures of 1200 and 120 K, see Figure 4) that model the dust excess. The blackbody grains with a temperature of 120 K will reside at a distance of ~30 AU from TYC 4144 329 2. This distance of 30 AU is derived under the assumption that TYC 4144 329 2 has the luminosity listed in Table 3. Such a physical separation agrees well with the ~45 AU distance to similar temperature dust orbiting the lithium-rich giant star HD 233517 (Jura 2003a). Although the simple assumption of two narrow rings of dust provides a reasonable fit to the data, such a model is unlikely to be realistic considering that ~17% of the total luminosity of the star is absorbed and reradiated at infrared wavelengths. To have so much light from the star processed by dust it is necessary to have an optically, vertically thick (e.g., flared) disk or a shell of dusty material surrounding the star.

3.3. Accretion Signatures

The optical spectrum of TYC 4144 329 2 displays an uncharacteristically broad and deep He i λ5877 absorption line (Figure 5). Although He i λ5877 absorption lines are common in early- to mid-F type stars, they are typically fairly weak (Figure 5). The atmospheres of young T Tauri stars, which are far too cool to excite this helium absorption line, often show such a feature due to superheated regions of accreting disk gas (Alencar & Basri 2000). Such a phenomenon could be boosting the strength of the helium absorption line in TYC 4144 329 2. According to White & Basri (2003), classical T Tauri stars with an Hz emission line 10% power width of 270 km s~1 or greater are accreting. The Hz complex in TYC 4144 329 2 shows both deep central absorption and double-peaked emission (Figure 5). Such double-peaked Hz emission lines are common in T Tauri stars, who are known to have substantial gaseous disks in orbit around them. Three methods of measuring the Hz emission-line width at 10% of peak power (from 10% of the maximum flux in Figure 5, from 10% of the maximum of a parabolic fit anchored at the two emission peaks, and from 10% of a Gaussian anchored to the blue edge of the emission feature) yield an...
average of 556 km s\(^{-1}\) with a standard deviation of 30 km s\(^{-1}\). Employing Equation (1) from Natta et al. (2004) we find a mass accretion rate from the H\(\alpha\) 10% width of 10\(^{-7.5}\) \(M_\odot\) yr\(^{-1}\). While characteristic of classical T Tauri stars, no such rapid accretion has ever been previously reported for a first-ascent giant star. To the best of our knowledge there are no known published reports of mass accretion at any rate, large or small, around such stars.\(^5\) We estimate the accretion luminosity for TYC 4144 329 2 by comparing our determined accretion rate to young stars known to be accreting at the same rate with measured accretion luminosities (Muzerolle et al. 1998). From this method, we estimate the accretion luminosity for TYC 4144 329 2 to be \(\sim 0.1 L_\odot\), negligible compared to the stellar luminosity of TYC 4144 329 2.

There are shell-like absorption line components in the Na D, H\(\alpha\), and H\(\beta\) profiles. The deep H\(\alpha\) absorption component (Figure 5) is blueshifted relative to the stellar velocity by \(\sim 2.5\) km s\(^{-1}\), H\(\beta\) has a similar velocity shift although there is unidentifiable structure present that is blended with the line of interest preventing a velocity measurement. The narrow components of the Na D lines are blueshifted with respect to the stellar velocity by \(\sim 1.5\) km s\(^{-1}\) and they are just resolved (FWHM \(\sim 8\) km s\(^{-1}\)) by HIRES (see Section 3.4). Such characteristics could be indicative of orbiting gas that is slowly moving away from the star. Similar absorption features in the debris–disk system around \(\beta\)-Pictoris were attributed to outer Na-rich regions of the disk, although the Na lines in \(\beta\)-Pictoris are not shifted in radial velocity relative to the star (Vidal-Madjar et al. 1986). The narrow component of the Na D\(_2\) line in \(\beta\)-Pictoris has an equivalent width (EW) of 9.5 \(\pm\) 1 m\(\AA\), while TYC 4144 329 2 has a narrow Na D\(_2\) EW of 120 \(\pm\) 2 m\(\AA\).

3.4. Age of the TYC 4144 329 System

To aid in the determination of the age of the binary system, we obtained and analyzed high-resolution echelle spectra for both stars. From these optical spectra we estimate the age from the lithium content in the stellar photospheres, velocity widths of absorption lines, and Galactic space motion; details can be found in Zuckerman & Song (2004). Of course, lithium content and velocity widths are best used to tell if stars are particularly young. In the following analysis, we only check that these parameters are consistent with our G8 IV spectral type of the optical primary. The lithium 6710 Å absorption feature (wavelength in vacuum) is too weak to be detected in the spectrum of either star (Table 2). Lithium content in a stellar atmosphere is mainly determined by the star’s age and mass. These upper limits are consistent with roughly solar mass stars at the end of their main-sequence lifetimes. Similarly, the low measured \(v\sin i\) for TYC 4144 329 1, \(\sim 3\) km s\(^{-1}\), is consistent with an evolved star (de Medeiros & Mayor 1995; Gray & Pallavicini 1989; Schrijver & Pols 1993). \(v\sin i\) was measured from the full width at half-maximum (FWHM) depth of single absorption lines in the Keck HIRES spectra, which have intrinsic FWHM resolution of \(\sim 8\) km s\(^{-1}\), a value we subtract in quadrature from the FWHM measured in the spectra. A ROSAT All-Sky Survey nondetection of these stars is consistent with old stellar ages (Zuckerman & Song 2004).

The above considerations suggest that the system is not young, in agreement with our spectral type determination of G8 IV for TYC 4144 329 1. As a further refinement of our age estimate we can compare the space motions of the TYC 4144 329 system with those of young stars and old white dwarfs (Figure 6). Velocities of the TYC 4144 329 system toward the center of our Milky Way galaxy, around the Galactic center, and perpendicular to the Galactic plane (\(U, V, W\)) are calculated from \(TYCHO-2\) proper motions, our estimated distance to the G8 IV star (see caption to Figure 2 and discussion in Section 3.1), and the optical echelle measured radial velocities. As stars age, the Galactic potential acts to disperse them in the \(U-V\) and \(U-W\) space. At a distance of \(\sim 550\) pc, the TYC 4144 329 system comfortably lies within the typical space motions of old white dwarf stars that have a mean cooling age of 1.86 Gyr (Figure 6; Zuckerman et al. 2003; Bergeron et al. 2001, note that the cooling age does not include the main-sequence lifetime, which is typically \(\sim 1-3\) Gyr for these white dwarfs).

Finally, we determine more precisely the binary system’s age by putting TYC 4144 329 1 and 2 on theoretical isochrones

\(^5\) As mentioned in the Introduction, BP Psc may be a late-G first-ascent giant star (Zuckerman et al. 2008) with a mass accretion rate similar to that of TYC 4144 329 2.
for evolved stars. We employed the CMD 2.1\(^6\) webform developed by Léopold Girardi (Girardi et al. 2000; Marigo & Girardi 2007; Bertelli et al. 1994; Marigo et al. 2008) to give model isochrones tailored to specific input metallicities. For our system metallicity of [Fe/H] ≈ −0.2, we simultaneously fit the derived luminosities and effective temperatures for TYC 4144 329 1 and 2 to the model isochrone. We list in Table 3 the input parameters and ranges for these values that were used for the model isochrone fit. From this fit, we determine that the TYC 4144 329 system is 930 ± 140 Myr old. We note that for all acceptable ages obtained in this fashion TYC 4144 329 1 and TYC 4144 329 2 have evolved off the main sequence (see Figure 7).

Our above age determination suffers from a degeneracy between the size of the dust grains and the luminosity of TYC 4144 329 2. In our analysis, we have assumed that the dust grains are interstellar-like as there is not yet any evidence for grain growth beyond that size. It is plausible that the grains in the disk surrounding TYC 4144 329 2 could be larger. Larger grains would extinct the star more, and thus our derived luminosity would need to be increased appropriately (see note to Table 3 for how we estimated the luminosity of TYC 4144 329 2 assuming interstellar-like dust grains extinct the star). However, there is a maximum grain size within the disk that is set by the necessity that both TYC 4144 329 1 and 2 have the same age and thus can be fit simultaneously to a single isochrone. To estimate this maximum grain size, we examined the range of TYC 4144 329 2 luminosities (with all other parameters held fixed) that still allow a simultaneous isochrone solution. The measured reddening, $E_{B-V} = 0.32$, translates to $R = 3.2$ for the interstellar-like grain scenario ($A_V = 1.0$), where R is the ratio of total to selective extinction. The maximum luminosity TYC 4144 329 2 can have and still allow an isochrone solution, $\log(L/L_\odot) = 1.78$, corresponds to $R = 4.0$ ($A_V = 1.3$), suggesting grains slightly larger than interstellar dust. If the dust grains are this large then the system could be as young as 725 Myr old.

4. DISCUSSION

Based on the disk constituents, we postulate that the material accreting onto TYC 4144 329 2 originated from an object composed mostly of gas. The TYC 4144 329 system resides at high galactic latitude and no known interstellar molecular clouds are nearby. Potential sources of large quantities of gas would include the atmosphere of TYC 4144 329 2 itself or a low-mass stellar or substellar companion, possibly even a massive Jupiter from the star’s own planetary system. Main-sequence stars with companions at small separations are known: the W Uma class of main-sequence contact binaries and the “hot Jupiter” class of massive planets. When the F2 star evolved off the main sequence, there could have been interactions between it and its hypothetical short-orbital period companion (second epoch radial velocity measurements show no evidence for a remnant short-orbital period companion around TYC 4144 329 2) that could create a circumstellar disk. There are plausible models of the aftermath of the engulfment of a short-period companion by a first-ascent giant star that results in the formation of a disk (Jura 2003a; Nordhaus & Blackman 2006) as well as theoretical predictions of W Uma stars’ endstates that involve the lower-mass companion transferring mass onto the evolved star.

\[^6\text{http://stev.oapd.inaf.it/cmd}\]
and the formation of a circumbinary ring (Webbink 2003; Shu et al. 1979).

Evidence in support of a companion “consumption” model comes from two independent studies. The first is that of Tokovinin et al. (2006), in which the frequency of tertiary companions to spectroscopic binaries with short periods ($P < 30$ days) is examined. They find that for very short orbital-period spectroscopic binaries ($P < 2.9$ days) the incidence of tertiary components is $\sim 100\%$ (Figure 14 of Tokovinin et al. 2006). Indeed, the hypothetical companion that was consumed by TYC 4144 329 2 must have been very short-period, as TYC 4144 329 2 has only barely passed beyond main-sequence core hydrogen burning. The existence of TYC 4144 329 1 (whose separation of ~ 3000 AU is consistent with the separations of the tertiaries studied by Tokovinin et al. 2006) is in accordance with such a scenario. A second observational campaign includes recent work on binary post-AGB stars. It has been revealed that these objects, when they host near-infrared excesses, are systematically found to be associated with binarity (de Ruyter et al. 2006). Confirmation that these near-infrared excesses are from Keplerian, circumbinary disks has come from interferometric observations of nearby systems (Bujarrabal et al. 2007; Deroo et al. 2007b, 2007a, and references therein). In these post-AGB systems, the binarity is seen as a likely necessity for the formation of a disk around the evolving giant star and its companion. The case for severe binary interaction, the type of which we assume occurred for TYC 4144 329 2 but at a much earlier phase of its post-main-sequence evolution, is quite strong for these post-AGB stars (Deroo et al. 2007a).

We can make an estimate of the timescale of this phenomenon by noting that from of order 102 stars in our TYCHO-2/IRAS survey who could have shown $L_{\text{IR}}/L_{\text{bol}} \sim 17\%$, TYC 4144 329 2 is the only such detection. Assuming that this system is ~ 1 Gyr old and that the phenomenon shows in one in 105 stars, we estimate that the phenomenon might last of order 104 years. We note that this timescale assumes that all stars of the input class (in this case first-ascent giant stars) at some time exhibit the dust and accretion features that we see in TYC 4144 329 2. If we instead assume our above companion consumption model is correct, and that the rate of binaries close enough to be consumed is $\sim 2\%$ (Duguennoy & Mayor 1991), then this timescale would be $\sim 10^6$ yr.

Lithium content in the F2 star’s photosphere can be used to constrain the nature of the object that is the source of the accreting material. Brown dwarfs with mass $\lesssim 0.06 M_\odot$ should have a cosmic abundance of lithium as they never reach sufficient temperatures to burn it (Basri 2000). A low-mass star, however, would have burned all of its lithium by the time it is ~ 1 Gyr old (Zuckerman & Song 2004). Lithium depletion in the atmosphere of main sequence, early F-type stars is a slow process that becomes even more inefficient as the star ages and spins down (Talon & Charbonnel 1998). The timescale of substantial lithium depletion, on the order of several hundred Myr (Talon & Charbonnel 1998), is much longer than our estimates of the timescale of the phenomenon occurring at TYC 4144 329 2. Thus, if any brown dwarf with a cosmic abundance of lithium had been accreted onto the photosphere of the F2 star we would definitely see a large EW lithium feature in our spectra. The fact that TYC 4144 329 2 has begun to evolve off the main sequence does not affect this statement, as for any reasonable initial mass of TYC 4144 329 2 a negligible amount of mass will be contained in the evolved star’s slowly rotating convective envelope (see Mengel et al. 1979, Figure 1(e) and Table 3). Since we do not see such a lithium feature, and because we know that any accreted object must have a substantial gas mass, we can safely rule out any accreted companion with a mass $< 0.06 M_\odot$. It is also possible that the material in orbit around TYC 4144 329 2 originated from itself; for example, the star’s atmosphere may have been ejected by interactions with a common-envelope companion. In such a scenario, it is not possible to constrain the mass of the companion.

In closing we note one final implication of the nature of the material surrounding TYC 4144 329 2. For such optically thick material, a flat dust disk with an inner radius of order 30 stellar radii (determined from the hot component of the spectral energy distribution; Figure 4) cannot absorb 17% of TYC 4144 329 2’s luminosity (Jura 2003b). A disk must be puffed up or warped (Pringle 1996) to have the right geometry to process this amount of radiation. It is perhaps possible that a remnant gas-giant planet survived the event that occurred at TYC 4144 329 2 and its orbit through the dusty and gaseous disk gravitationally perturbs the disk material. In addition, a current generation of planetesimals may be forming in the gaseous and dusty material as is expected for similar disks found around T Tauri stars. If this were the case, then hypothetical in situ radioactive dating of rocky objects around TYC 4144 329 2 at some point in the future could reveal two significantly different ages, corresponding to the two epochs of planet formation that may have occurred in this system. Such a situation would be markedly different from that in the present-day Solar system, where the bulk of the asteroidal material is thought to have formed approximately contemporaneously with the Sun.

We are indebted to Frank Fekel for providing advice and comparison spectra to aid our determination of the spectral type of TYC 4144 329 1. We thank Jason X. Prochaska and Michael Murphy for obtaining the UT 2008 March 11 KAST spectra for us. We thank Bruce Draine for kindly providing us with reddening models tailored to our data. We thank Bruce Macintosh and Christian Marois for obtaining one epoch of NIRC2 AO data for us. We are grateful to Peter Eggleton for helpful advice. Support for S.A.M. was provided by NASA through the Spitzer Fellowship Program, under award 1273192. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. This work was partially supported by the NASA ADP grant ADP06-0095 and by a NASA grant to UCLA. This research has made use of the VizieR service and of data products from 2MASS.

Facilities: IRAS, Keck:I (HIRES), Keck:II (NIRC2-NGSAO), Shane (KAST)

REFERENCES

Alencar, S. H. P., & Basri, G. 2000, AJ, 119, 1881
Basri, G. 2000, ARA&A, 38, 485
Beichman, C. A., et al. 2005, ApJ, 622, L160
Bergeron, P., Leggett, S. K., & Ruiz, M. T. 2001, ApJS, 133, 413
Bertelli, G., Bressan, A., Chiosi, C., Fagotto, F., & Nasi, E. 1994, A&A, 106, 275
Bujarrabal, V., van Winckel, H., Neri, R., Alcolea, J., Castro-Carrizo, A., & Deroo, P. 2007, A&A, 468, L45
Chen, C. H., et al. 2005, ApJ, 634, 1372
