Training of Students’ Critical Thinking Skills through the implementation of a Modified Free Inquiry Model

S A Hadi¹, E Susantini¹, and R Agustini¹

¹Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya 60231, East Java, Indonesia
Email: endangsusantini@unesa.ac.id

Abstract. This research aimed at training students’ critical thinking skills through the implementation of a modified free inquiry learning model. The subjects of this research were 21 students of Mathematics Semester II. Using One-Group Pretest-Posttest Design, the data were analyzed descriptively using N-gain indicator. The results indicate that the modified free inquiry learning model was effective to train students' critical thinking skills. The increase in the students’ critical thinking skills viewed from the value of N-Gain has a range of values with the categories of medium and high with a score between 0.25-0.95. Overall, the change in N-Gain score of each student and each indicator of critical thinking skills is as increasing with a moderate category. The increase of N-Gain value is resulted from the fact that the students were directly involved in organizing their learning process. These criteria indicate that the modified free inquiry learning model can be used to train students’ critical thinking skills on photosynthesis and cellular respiration materials. The results of this research are expected to be nationally implemented to familiarize students with andragogy learning style which places the students as the subjects of learning.

1. Introduction

Critical thinking is a sensible idea of what is believed and what needs to be done [1]. Critical thinking skills can also be interpreted as the ability to think logically, reflectively, and productively to assess the situation in order to make the right decision [2]. The students’ thinking skills are important to be improved, in line with the discourse of improving the quality of education in accordance with learning objectives. The purpose or the success of a learning process is achieved when it meets three important criteria, namely the aspects of knowledge, attitude and skills. These three criteria are formed from the habits and reinforcement that become the character which relies on someone’s mindset [3].

Learning activities should be designed to direct the students in developing their attitudes, knowledge, and critical thinking skills in varying combinations and emphases [4]. Practicing critical thinking skills in varying emphases can be accessed in some indicators achieved in a learning process. The indicators selected in this research included: making decisions to prepare the steps of problem-solving experiments, analyzing, making inferences, evaluating, and drawing conclusions. These indicators were adapted from Ennis [1]. The efforts to direct students in practicing critical thinking skills can be accomplished using student-centered learning models. The students’ which is already at the formal operational stage (adults) tend to perform independent learning styles that allow them to gain a deep understanding of an issue in accordance with the purpose of critical thinking skills [5].
Critical thinking skills which are identical to independent learning style can be applied by using constructivist learning models, such as inquiry-based learning. Learning models with investigation activities, such as inquiry, involve students fully in the teaching and learning activities either in groups or individual, which is one way to develop students’ critical thinking skills [6]. The inquiry learning model is used to train students’ critical thinking skills because the syntax of inquiry has a correlation with the indicators of critical thinking skills developed in this research. The selected five indicators had been adjusted to the cognitive level of the students who were in the formal operational phase. The abilities at the formal operational stage consist of thinking abstractly, testing hypothesis, and forming concepts which do not depend on physical reality [7]. The students’ cognitive level became the reference for the researcher to determine the appropriate level of inquiry for the sample of the experiment, by applying the modified free inquiry model.

The results of the observations conducted in July 2016 showed that the students’ critical thinking skills, especially the subjects of this research, were still relatively low. The students tended to listen to the explanations from the lecturer without being actively involved in the learning process. The material that should have been implemented in investigation activities which involved students actively was not optimal because it was delivered by using lecturing method. Such learning activities tend to make the students memorize the material without understanding the content of the learning material presented. The topic in this research, photosynthesis and cellular respiration, is chosen regarding the fact that this material required the students to understand, apply, analyze factual, conceptual and procedural knowledge. The students’ curiosity related to the process of photosynthesis and cellular respiration may influence their learning positively so that the students could process, reason and present the information related to the learning material.

There have been several studies investigating the training of critical thinking skills through the implementation of inquiry learning model by previous researchers, such as Qing et al. The study suggests that the critical thinking skills of prospective teachers increased when inquiry-based learning was implemented [8]. Greenwald et al state that the inquiry-based learning is an alternative solution substituting conventional learning to improve the students’ critical thinking skills and clinical reasoning [9]. Sutarma et al state that there is an increasing trend in the students’ critical thinking skills with the implementation of inquiry learning model compared with the direct learning model [10]. Nevertheless, the previous research conducted by researchers did not explain the level of inquiry of the sample used, so that it did not give an illustration of the types of inquiry applied to the research sample. Therefore, in this research, a modified free inquiry model was implemented to train students’ critical thinking skills with various considerations that had been previously analyzed.

2. Research methods
The type of this research is pre-experimental research with one group pretest-posttest design. The subjects of this research were 21 mathematics students in the mathematics and natural science faculty of IKIP Mataram who were joining Basic Biology course. This research was conducted for 3 weeks starting from 17th to 29th of May 2017. The learning materials which were applied to train the students’ critical thinking skills were developed by the researcher. The modification of free inquiry-based learning material on photosynthesis and cellular respiration material is developed as learning material. The learning materials implemented in this research had passed the validity test with valid results.

The research instrument used to measure the students’ critical thinking skills was an essay test instrument consist of 5 items. The test was said to be sensitive to differentiate the students’ ability before and after receiving the learning process because the test instrument had a positive sensitivity index with scores between 0.52 – 0.68 [11]. This test was given in two stages, the pretest and the posttest to determine the students’ critical thinking skills before and after the learning process.

The teaching and learning process was carried out for 3 meetings supported with a student worksheet on each learning material to be discussed. The student worksheet was developed with the orientation of the modified free inquiry model, so that the percentage of students’ involvement in the learning process became more dominant. The steps provided in the student worksheet involve problem orientation,
formulating problems, formulating hypotheses, identifying and defining variables, developing work procedures, analyzing data, compiling inferences, evaluating, and drawing conclusions. Students could develop their critical thinking skills through the steps provided in the student worksheet.

The score of students' critical thinking skills derived from subsequent tests is categorized according to the level of critical thinking skills of each student. Critical thinking skill level consists of 4 levels, that are very less critical level with test score t satisfy $25.00 < t \leq 43.75$, less critical level with test score t satisfy $43.75 < t \leq 62.50$, critical level with test score t satisfy $62.50 < t \leq 81.25$ and very critical level with test score t satisfy $81.00 < t \leq 100.00$ [12].

A improvement of the students' score of critical thinking skills was analyzed by using N-Gain equation [13]. The N-Gain value of the students' critical thinking skills can be defined by the criteria of score as the following: high > 0.70; Moderate $0.3 - 0.70$; Low <0.30 [14]. The results of the students' critical thinking skill level analysis and the increase of N-Gain score become the benchmark in determining whether this developed learning tool is effectively used to train students' critical thinking skills.

3. Results and Discussion

3.1. The Scores of Students’ Critical Thinking Skills

The score of the students’ critical thinking skill and the increase of N-Gain score are presented in Table 1.

Students’	Scores	Category	N-Gain	Category
A1	10 65	Critical	0.61	Middle
A2	10 60	Less Critical	0.55	Middle
A3	0 25	Very Less Critical	0.25	Low
A4	20 60	Less Critical	0.5	Middle
A5	15 50	Very Less Critical	0.41	Middle
A6	35 90	Very Critical	0.85	High
A7	0 70	Critical	0.7	High
A8	0 60	Less Critical	0.6	Middle
A9	0 70	Critical	0.7	High
A10	10 60	Less Critical	0.55	Middle
A11	10 60	Less Critical	0.55	Middle
A12	10 70	Critical	0.67	Middle
A13	0 70	Critical	0.7	High
A14	0 80	Critical	0.8	High
A15	20 85	Very Critical	0.81	High
A16	0 95	Very Critical	0.95	High
A17	15 60	Less Critical	0.65	Middle
A18	0 60	Less Critical	0.6	Middle
A19	5 70	Critical	0.68	Middle
A20	20 95	Very Critical	0.94	High
A21	0 75	Critical	0.75	High

Table 1 shows that, in the pretest, none of the students achieved the minimum accepted score that had been set, which was 60. While, in the posttest, 19 students achieved the minimum accepted score and 2 students did not pass the test because of several factors, such as the students’ activities were not productive, the inability of the students in understanding the concepts, and several internal factors faced by the students themselves. Unproductive activities, such as do not paying attention to lecturer's explanation, became a crucial cause of student's failure in passing the test. The intensity of the student's attention toward learning had an effect on the level of memorization/absorption of information [14].
Students were said to complete the teaching and learning classically with the percentage of 90.48%. Thaiposri and Wannapiroon in their research state that the learning activities with an inquiry-based learning model can help students develop their critical thinking skills [15]. The samples used in the research of Thaiposri and Wannapiroon were junior high school students, while the samples of this research were the first-semester university students.

The students’ incompleteness of the critical thinking skill test could also be caused by the concept understanding on the photosynthesis and respiration material. The level of the students’ concept understanding on the learning material had an effect on their ability in solving the critical thinking skill test questions. The students with the code A3 and A5 who did not pass the test or not complete showed that their concept understanding was still low. This finding is evidenced with answers of students A3 and A5 on critical thinking skills tests that deviate far from the concept of the answer that should be. The A3 and A5 student answer sheets are shown in Figure 2. The failure in understanding concepts would results on the inability to complete the critical thinking skill tests. Concept understanding has a positive correlation with students' critical thinking skills. Asmawati in her research states that critical thinking skills are the basic requirement for the students in understanding the concepts in the discipline [16]. The research by Asmawati did not explain the importance of concept understanding in order to be critical in a problem solving as presented in this research.

Figure 1. The A3 & A5 Student Response Sheet indicating the concept of incomprehension

Figure 1 shows that, students A3 and A5 have not mastered the concept of photosynthesis and cellular respiration well. The answer given by the students are not based on the correct concept. For example, in number 5 answer, students stated "bacteria collected in algae that gterkena violet light, blue and red release oxygen". The correct concept is "all algae release oxygen as a by-product of the process of photosynthesis carried out by algae. Algae exposed to violet, blue, and red light release the most amount of oxygen compared to light-induced algae with other color spectra. The abundance of oxygen released by algae, invites aerobic bacteria to gather more around the algae releasing more oxygen, which is exposed to violet, blue and red lights". The student's answer in Figure 1 shows that A3 and A5 students have not mastered the concept well so that it becomes one of the causes of his unresponsiveness in answering critical thinking skills test.

3.2. The completeness of the Indicators of Critical Thinking Skills

The indicators compiled in this research are important to be analyzed whether they were stated to be completed or not, because the indicators are the teachers’ references in determining whether the learning
process in the class is successful. The completeness of the critical thinking skill indicators is presented in Table 2.

Table 2. Results of N-Gain analysis and completeness of each critical thinking indicator

Indikator	Proportion Scores	Category	N-Gain	Category	
	Pretest	Posttest			
Develop an experimental procedure	0,07	0,7	Complete	0,68	Middle
Analyze	0,12	0,64	Complete	0,6	Middle
Arrange inferences	0,1	0,77	Complete	0,75	High
Evaluate	0,1	0,67	Complete	0,63	Middle
Compile conclusions	0,05	0,62	Complete	0,6	Middle

The results of the analysis of the increase in the score of critical thinking skills (N-Gain), which has been presented in Table 2 show that none of the indicators were completed in the pretest, while in the posttest all indicators were completed. The N-Gain value of each indicator ranges from 0.6 to 0.75 with medium and high categories. These criteria indicate that the learning process using a modified free inquiry model is effective to train students' critical thinking skills on photosynthesis and respiration materials. The level of critical thinking skills of students after the application of learning tools developed, put the students at critical level and very critical although there are 2 students who are still at a less critical level. These results are supported by Kitot et al their research, stating that the inquiry-based learning model is effective to be used to enhance students' critical thinking skills [17]. The research by Kitot et al only compares the inquiry learning model with conventional models without specifying the type of inquiry used. The indicator with the lowest score increase was analyzing and making conclusions. Students still had difficulties in analyzing and making conclusions because the students were still not maximal in preparing editorial sentences, but the students understood the concepts well. This was proven that the students were able to answer the questions although their sentences were not correctly organized.

4. Conclusion
Based on the result of the research, it can be concluded that the modified free inquiry learning model is effective to be used to train students' critical thinking skills on photosynthesis and respiration materials. This is evidenced by the increase in scores of the N-Gain, both the N-Gain of each student and the N-Gain of each indicator. The findings of this research indicate that critical thinking skills have a positive correlation with concept understanding.

Acknowledgement
I would like to express my gratitude to advisor 1 and 2 who have participated in the writing of this paper until it can be published and useful for many people. I would also like to thank IKIP Mataram institute which has given permission to conduct this research.

References
[1] Ennis R H 1996 Critical Thingking (New York: Prentice Hall Inc)
[2] Desmita 2009 Psychology Development of Learners (Bandung: Remaja Rosdakarya)
[3] Kuswana W S 2013 Thinking Taxonomy (Bandung: Remaja Rosdakarya)
[4] Ibrahim M 2008 Innovative Learning Model of IPA Through Meaning (Surabaya: Departemen Pendidikan Nasional Balitbang)
[5] Jhonson E B 2002 Contextual Teaching and Learning, What It Is and Why it’s here to Stay (California: Corwin Press)
[6] Kardi S 2008 Direct Inquiry Learning Model, Technology Science, and Society (Surabaya: UNESA)
[7] Slavin R E 2009 *Educational Psychology Theory Into Practice 9th ed* (New Jersey: Pearson Education, Inc)

[8] Qing Z, Jing G, and Yan W 2010 Promoting reservice Teachers Critical Thinking Skills By Inquiry Based Chemical Experiment *Elsevier ltd.* (Doi: 10.1016/j.sbpro.2010.03.737)

[9] Greenwald R R and Quitadamo I J 2014 A Maind of Their Own: Using Inquiry Based Teaching to Build Critical Thinking Skills and Intellectual Engagement in an Undergraduate Neuroanatomy Course *The Journal of Undergraduate Neurosciene Education JUNE*

[10] Sutarma I N, Arnyana I B P, and Swasta I B J 2014 Effect of Inquiry Learning Model on Critical Thinking Skills and Scientific Performance on Biology Lesson of Class XI IPA SMA Negeri 2 Amlapura *e-Journal Program Pascasarjana Universitas Pendidikan Ganesha Vol 4*

[11] Okonkow and Osuji 2006 *Measurement and Evaluation* (Nigeria: National Open University of Nigeria)

[12] Setyowati S and Mosaik 2011 Implementation of Cognitive Conflict Approach in Physics Learning to Grow Students' Critical Thinking Ability *Jurnal Pendidikan Fisika Indonesia*

[13] Hake R R 1999 *Analyzing Change/Gain Scores* (Hatteras Street, Woodland Hills, CA, 91367 USA. Indiana University)

[14] Ratumanan T G 2015 *Learning and Learning As Well As The Factors That Affect The 3rd Edition* (Surabaya: Unesa University Press)

[15] Thaiposri P and Wannapiron 2014 Enhancing Students Critical Thinking Skills Through Teaching and Learning by Inquiry Based Learning Activities Using Special Network and Cloud Cpmputing *Elsevier* (Doi: 10.1016/j.sbpro.2015.02.013)

[16] Asmawati and Eka Y S 2016 Student Worksheet (LKS) Using Guided Inquiry Model to Improve Critical Thinking Skill and Mastery of Student Concept *Jurnal Pendidikan Fisika Universitas Muhammadiyah Metro Vol 3 No 1*

[17] Kitot Awg K, Ahmad A R, and Seman A A 2010 The Effectiveness of Inquiry Teaching in Enhancing Students Critical Thinking *Elsevier* (Doi: 10.1016/j.sbpro.2010.10.037)