Perfectly Matched Sets in Graphs: Parameterized and Exact Computation

N.R. Aravind
Department of Computer Science & Engineering, Indian Institute of Technology Hyderabad, India
aravind@cse.iith.ac.in

Roopam Saxena
Department of Computer Science & Engineering, Indian Institute of Technology Hyderabad, India
cs18resch11004@iith.ac.in

Abstract
In an undirected graph \(G = (V, E) \), we say that \((A, B) \) is a pair of perfectly matched sets if \(A \) and \(B \) are disjoint subsets of \(V \) and every vertex in \(A \) (resp. \(B \)) has exactly one neighbor in \(B \) (resp. \(A \)). The size of a pair of perfectly matched sets \((A, B) \) is \(|A| = |B| \). The PERFECTLY MATCHED SETS problem is to decide whether a given graph \(G \) has a pair of perfectly matched sets of size \(k \). We show that PMS is \(W[1]-hard \) when parameterized by solution size \(k \) even when restricted to split graphs and bipartite graphs. We observe that PMS is FPT when parameterized by clique-width, and give FPT algorithms with respect to the parameters distance to cluster, distance to co-cluster and treewidth. Complementing FPT results, we show that PMS does not admit a polynomial kernel when parameterized by vertex cover number unless \(\text{NP} \subseteq \text{coNP}/\text{poly} \). We also provide an exact exponential algorithm running in time \(O^*(1.966^n) \). Finally, considering graphs with structural assumptions, we show that PMS remains NP-hard on planar graphs.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases perfectly matched sets, fixed parameter tractable, algorithms, perfect matching.

1 Introduction
Consider the following communication problem: we have an undirected graph each of whose nodes can send or receive messages. We wish to assign some nodes as transmitter or receiver, and then test the fidelity of transmission between transmitter-receiver pairs under the following assumptions: (a) there is no interference, i.e. a receiver doesn’t get a message from more than one sender; (b) each sender can send at most one message at a time. What is the maximum number of pairs that can be tested simultaneously? This question was first studied in \[37\], where the underlying abstract problem was called TR-matching and shown to be NP-complete on 3-regular graphs.

We first formally define the problem PERFECTLY MATCHED SETS.

PERFECTLY MATCHED SETS (PMS):

Input: An instance \(I = (G, k) \), where \(G = (V, E) \) is an undirected graph, and \(k \in \mathbb{N} \).

Output: YES, if \(G \) contains two disjoint sets \(A \) and \(B \) of size \(k \) each such that every vertex in \(A \) (resp \(B \)) has exactly one neighbor in \(B \) (resp \(A \)); NO otherwise.

The above definition is same as that of the TR-matching problem, as introduced in \[37\]; however we have renamed it because of its relation to two recently well-studied problems: MATCHING CUT and PERFECT MATCHING CUT.
Perfectly Matched Sets in Graphs

1.1 Our results

We revisit this problem in the context of designing parameterized and exact algorithms. In the context of parameterized complexity, the most natural parameter for PMS is the solution size. In Section 3, we start by showing that PMS is \(\text{W}[1] \)-hard when parameterized by solution size, even when restricted to split graph and bipartite graphs. This naturally motivates the study of PMS with respect to other structural parameters to obtain tractability. In Section 5.1, we observe that PMS is FPT when parameterized by clique-width using Courcelle’s Theorem [11]. This positive result motivated us to look for efficient FPT algorithms for PMS with other structural parameters. In Sections 5.2, 5.3 and 5.4, we obtain FPT algorithms for PMS with parameters distance to cluster, distance to co-cluster and tree-width, these parameters are unrelated to each other and are some of the most widely used structural parameters. On the kernelization side, in Section 4, we show that there does not exist a polynomial kernel for PMS when parameterized by vertex cover unless \(\text{NP} \subseteq \text{coNP}/\text{poly} \). This kernelization lower bound is in contrast to the PMS being FPT when parameterized by vertex cover, which is due to PMS being FPT by distance to cluster graph (a generalization of vertex cover). In Section 6, using a result of [32], we present an exact algorithm for PMS which runs in time \(O^*(1.966^n) \). Finally, focusing on restricted graph classes, in Section 7 we show that PMS remains NP-hard when restricted to planar graphs.

We remark that we are also interested in the optimization version of our problem, i.e. finding subsets \((A,B)\) of maximum size such that \(A\) and \(B\) are perfectly matched; our exact and FPT (distance to cluster, distance to co-cluster and tree-width) algorithms solve the optimization version.

1.2 Related work

Given a graph \(G \), a partition \((A,B)\) of \(V(G) \) is a matching cut if every vertex in \(A \) (resp \(B\)) has at most one neighbor in \(B \) (resp \(A\)). The MATCHING CUT problem is then to decide whether a given graph has a matching cut or not.

The MATCHING CUT problem has been extensively studied. Graham [20] discussed the graphs with matching cut under the name of decomposable graphs. Chvátal [9] proved that MATCHING CUT is NP-Complete for graphs with maximum degree 4. Bonsma [4] proved that MATCHING CUT is NP-complete for planar graphs with maximum degree 4 and with girth 5. Kratsch and Le [29] provided an exact algorithm with running time \(O^*(1.4143^n) \). Komusiewicz, Kratsch and Le [28] provided a deterministic exact algorithm with running time \(O^*(1.328^n) \). MATCHING CUT problem is also studied in parameterized realm with respect to various parameters in [29, 28, 1, 19]. Hardness and polynomial time results have also been obtained for various structural assumptions in [30, 33, 24]. Recently, enumeration version of matching cut is also studied [17].

A special case of matching cut where for the partition \((A,B)\), every vertex in \(A \) (resp \(B\)) has exactly one neighbor in \(B \) (resp \(A\)) called perfect matching cut was studied by Heggernes and Telle [22], where they proved that PERFECT MATCHING CUT problem is NP-complete. Recently, Le and Telle [32] revisited the PERFECT MATCHING CUT problem and showed that it remains NP-complete even when restricted to bipartite graphs with maximum degree 3 and arbitrarily large girth. They also obtained an exact algorithm running in time \(O^*(1.2721^n) \) for PERFECT MATCHING CUT [32].

\(^1\) We use \(O^* \) notation which suppresses polynomial factors.
Observe that the PERFECT MATCHING CUT problem is more closely related to the
correspondingly MATCHED SETS problem; indeed the later (with inputs \(G, k \)) is equivalent
to deciding whether the given graph \(G \) contains an induced subgraph of size \(2k \) that has a
perfect matching cut.

For a graph \(G \), a matching \(M \subseteq E(G) \) is an induced matching if \((V(M), M) \) is an induced
subgraph of \(G \). The problem of finding maximum induced matching in a graph is INDUCED
MATCHING, and it can also be considered a related problem to PMS. Stockmeyer and
Vazirani [37] discussed INDUCED MATCHING under the 'Risk-free' marriage problem. Since
then INDUCED MATCHING is extensively studied. Hardness and polynomial time solvable
results have been obtained with various structural assumptions [26, 33, 27, 39, 6, 8, 18, 7].

Exact algorithms [21, 38], and FPT and kernelization results [34, 24, 16] have also been
obtained.

2 Preliminaries

We use \([n]\) to denote the set \(\{1, 2, ..., n\} \), and \([0]\) denotes an empty set. For a function
\(f : X \to Y \), for an element \(e \in Y \), \(f^{-1}(e) \) is defined to be the set of all elements of \(X \) that
map to \(e \). Formally, \(f^{-1}(e) = \{ x \mid x \in X \land f(x) = e \} \).

2.1 Graph Notations

All the graphs that we refer to are simple and finite. We mostly use standard notations and
terminologies. We use \(G = (V, E) \) to denote a graph with vertex set \(V \) and edge set \(E \). \(E(G) \)
denotes the set of edges of graph \(G \), and \(V(G) \) denotes the set of vertices of \(G \). For \(E' \subseteq E \),
\(V(E') \) denotes the set of all vertices of \(G \) with at least one edge in \(E' \) incident on it. For a
vertex set \(X \subseteq V \), \(G[X] \) denotes the induced subgraph of \(G \) on vertex set \(X \), and \(G - X \)
denotes the graph \(G[V \setminus X] \). For an edge set \(E' \subseteq E \), \(G[E'] \) denotes the subgraph of \(G \) on
edge set \(E' \) i.e. \(G[E'] = (V(E'), E') \).

For disjoint vertex sets \(A \subseteq V \) and \(B \subseteq V \), \(E(A, B) \) denotes the set of all the edges of \(G \)
with one endpoint in \(A \) and another in \(B \). For a vertex \(v \in V \), we use \(N(v) \) to denote the
open neighborhood of \(v \), i.e. set of all vertices adjacent to \(v \) in \(G \). We use \(N[v] \) to denote the
closed neighborhood of \(v \), i.e. \(N(v) \cup \{ v \} \).

A graph is a cluster graph if it is a vertex disjoint union of cliques. The maximal cliques
of a cluster graph are called cliques or clusters. A graph is a co-cluster graph if it is a
complement of a cluster graph or equivalently a complete multipartite graph.

2.2 Parameterized Complexity

For details on parameterized complexity, we refer to [13] [14], and recall some definitions here.

Definition 1 ([13]). A parameterized problem is a language \(L \subseteq \Sigma^* \times \mathbb{N} \) where \(\Sigma \) is a
fixed and finite alphabet. For an instance \(I = (x, k) \in \Sigma^* \times \mathbb{N} \), \(k \) is called the parameter. A
parameterized problem is called fixed-parameter tractable (FPT) if there exists an algorithm \(\mathcal{A} \)
called a fixed-parameter algorithm \() \), a computable function \(f : \mathbb{N} \to \mathbb{N} \), and a constant \(c \) such
that, the algorithm \(\mathcal{A} \) correctly decides whether \((x, k) \in L \) in time bounded by \(f(k), |(x, k)|^c \).
The complexity class containing all fixed-parameter tractable problems is called FPT.

In the above definition, \(|(x, k)| \) denotes the size of the input for a problem instance \((x, k) \).
Informally, a \(W[1] \)-hard problem is unlikely to be fixed parameter tractable, see [13] for
details on complexity class \(W[1] \).
Definition 2 ([13]). Let \(P, Q \) be two parameterized problems. A parameterized reduction from \(P \) to \(Q \) is an algorithm which for an instance \((x, k)\) of \(P \) outputs an instance \((x', k')\) of \(Q \) such that:

1. \((x, k)\) is yes instance of \(P \) if and only if \((x', k')\) is a yes instance of \(Q \),
2. \(k' \leq g(k) \) for some computable function \(g \), and
3. the reduction algorithm takes time \(f(k) \cdot |x|^{O(1)} \) for some computable function \(f \).

Theorem 3 ([13]). If there is a parameterized reduction from \(P \) to \(Q \) and \(Q \) is fixed parameter tractable then \(P \) is also fixed parameter tractable.

For details on kernelization, we refer to [13] and recall the basic definition of a kernel here. A kernel for a parameterized problem \(P \) is an algorithm \(A \) that given an instance \((x, k)\) of \(P \) takes polynomial time and outputs an instance \((x', k')\) of \(P \), such that (i) \((x, k)\) is a yes instance of \(P \) if and only if \((x', k')\) is a yes instance of \(P \), (ii) \(|x'| + k' \leq f(k)\) for some computable function \(f \). If \(f(k) \) is polynomial in \(k \), then we call it a polynomial kernel.

3 Parameterized lower bounds

3.1 W[1]-Hardness for Split Graphs

In this section, we will prove the following theorem.

Theorem 4. PMS is W[1]-hard for split graphs when parameterized by solution size \(k \).

IRREDUNDANT SET is known to be \(W[1]\)-complete when parameterized by the number of vertices in the set [15]. We will give a parameterized reduction from IRREDUNDANT SET to PMS with solution size as the parameter. We also note that our construction in the reduction is similar to the one given in [34].

Definition 5 ([15]). A set of vertices \(I \subseteq V \) in a graph \(G = (V, E) \) is called irredundant, if every vertex \(v \in I \) has a private closed neighbor \(p(v) \) in \(V \) satisfying the following conditions:
1. \(v = p(v) \) or \(p(v) \) is adjacent to \(v \),
2. no other vertex in \(I \) is adjacent to \(p(v) \).

![Figure 1](image_url)

Figure 1 reduction from IRREDUNDANT SET to PMS, vertex set \(Y \) forms a clique and \(Z \) forms an independent set. A vertex \(z_i \) is connected to a vertex \(y_j \in Y \) if \(v_j \in N[v_i] \) in input graph \(G \).

Let \((G = (V, E), k)\) be an instance of IRREDUNDANT SET and let \(V = \{v_1, v_2, \ldots, v_n\} \). We construct a new graph \(G' \) as follows.
- Create a vertex set \(Y = \{y_i | v_i \in V\} \) and connect every vertex of \(y_i \in Y \) to \(y_j \in Y \) when \(y_i \neq y_j \), that is \(Y \) forms a clique, and let \(E_y \) be the set of these edges.
- Create a vertex set \(Z = \{z_i | v_i \in V\} \) and connect every vertex \(z_i \in Z \) to \(y_j \in Y \) if \(v_j \in N[v_i] \) in input graph \(G \), let \(E' \) be the set of these edges.

We define \(G' = (Y \cup Z, E_y \cup E') \), which can be constructed in time polynomial in \(|V| \), and \(G' \) is a split graph.

Proposition 6. \(G \) has an irredundant set of size \(k \) if and only if \(G' \) has a pair of perfectly matched sets of size \(k \).

Proof. For the forward direction, let \(I \subseteq V \) be an irredundant set of size \(k \) in \(G \). For every vertex \(v_i \in I \), pick exactly one private closed neighbor \(v_{v_i} \) of \(v_i \) in \(G \) and let \(J \) be the set of these picked vertices. Let \(I_a = \{y_i | y_i \in Y \land v_i \in I\} \), and let \(J_b = \{z_i | z_i \in Z \land v_{v_i} \in J\} \). We claim that \((I_a, J_b) \) is a pair of perfectly matched sets in \(G' \). Since for every \(v_i \in I \), \(v_{v_i} \) is a private closed neighbor of \(v_i \) in \(G \), by construction of \(G' \), every \(v_{v_i} \in J_b \) is adjacent to only \(y_i \in I_a \), and every \(y_i \in I_a \) is adjacent to only \(z_{v_i} \in J_b \).

For the other direction, let \((A, B) \) be a pair of perfectly matched sets in \(G' \) of size \(k \). If \(k = 1 \), then let \(y_i \) or \(z_i \) be the only vertex in \(A \), then \(\{v_i\} \) or \(\{v_{v_i}\} \) is an irredundant set of size one in \(G \). If \(k = |E(A, B)| \geq 2 \), then either \(A \subseteq Y \) and \(B \subseteq Z \), or \(A \subseteq Z \) and \(B \subseteq Y \), this is due to the fact that \(Y \) forms a clique and \(Z \) forms an independent set in \(G' \), and if both \(A \cap Y \) and \(B \cap Y \) are non-empty, then \(|E(A, B)| \) must be 1. Let us assume that \(A \subseteq Y \) and \(B \subseteq Z \). In this case, let \(I^* = \{v_i | v_i \in V \land y_i \in A\} \). Since \((A, B) \) is a pair of perfectly matched sets in \(G' \), for every \(y_i \in A \), there must be a vertex \(z_{v_i} \) in \(B \) such that \(y_i \) is the only neighbor of \(z_{v_i} \) in \(A \). Therefore, every \(v_i \in I^* \) has a private closed neighbor \(v_{v_i} \) in \(G \), and \(I^* \) is an irredundant set of size \(k \) in \(G \). This finishes the proof.

3.2 W[1]-Hardness for Bipartite Graph

In this section, we prove the following theorem.

Theorem 7. PMS is W[1]-hard for bipartite graphs when parameterized by solution size \(k \).

We give a reduction from PMS on general graphs to PMS on bipartite graphs.

![Figure 2](image-url) For every vertex \(v_i \), create two vertices \(v'_i \) and \(v''_i \), and connect \(v'_i \) to \(v''_i \) if \(v_j \in N(v_i) \).

Let \((G = (V, E), k) \) be an instance PMS on general graphs, let \(V = \{v_1, v_2, ..., v_n\} \). We construct \(G' \) as follows.

- Create two copies of \(V \) and call it \(V' \) and \(V'' \), we refer copy of a vertex \(v_i \in V \) in \(V' \) as \(v'_i \) and in \(V'' \) as \(v''_i \).
- Create two copies of \(E \) and call it \(E' \) and \(E'' \), we refer copy of an edge \((u, v) \in E \) in \(E' \) as \((u', v') \) and in \(E'' \) as \((u'', v'') \).
- Connect \(v'_j \) to \(v''_i \) if \(v_i \) is adjacent to \(v_j \) in \(G \). Let \(E' \) be the set of all these edges.

We define \(G' = (V' \cup V'', E') \), which can be constructed in time polynomial in \(|V| \).

Proposition 8. \(G \) has a pair of perfectly matched sets of size \(k \) if and only if \(G' \) has a pair of perfectly matched sets of size \(2k \).
Perfectly Matched Sets in Graphs

Proof. For the forward direction, let \((A, B)\) be a pair of perfectly matched sets in \(G\) such that \(|E(A, B)| = k\). Let \(A' = \{v'_i \mid v_i \in A\}\), \(A'' = \{v''_i \mid v_i \in A\}\), \(B' = \{v'_i \mid v_i \in B\}\), and \(B'' = \{v''_i \mid v_i \in B\}\). Observe that both \((A', B'')\) and \((A'', B')\) are perfectly matched sets of \(G'\). Further, \((A'' \cup A', B'' \cup B')\) are perfectly matched sets of \(G'\) as no vertex in \(A''\) has a neighbor in \(B''\) in \(G'\) and similarly no vertex in \(A''\) has a neighbor in \(B''\) in \(G'\). We further have \(|E(A'' \cup A', B'' \cup B')| = 2k\).

For the other direction, let \((A, B)\) be perfectly matched sets in \(G'\) such that \(|E(A, B)| = 2k\). Due to the construction of \(G'\), any vertex in \(V'\) can only be matched to a vertex in \(V''\) and vice versa. Thus there are \(2k\) vertices from \(V''\) in \(A \cup B\). Then, either \(|A \cap V'| \geq k\) or \(|B \cap V'| \geq k\). W.l.o.g let \(|A \cap V'| \geq k\), let \(A' = A \cap V'\) and \(B'' \subseteq B\) be the vertices that are matched to \(A'\) in \((A, B)\), clearly \(B'' \subseteq V''\) due to the construction. Let \(A'' = \{v \mid v' \in A'\}\) and \(B'' = \{v \mid v'' \in B''\}\); then \((A'', B'')\) is a pair of perfectly matched sets in \(G\) such that \(|E(A'', B'')| \geq k\).

4 Kernelization Lower Bounds

We refer to the work of Bodlaender, Thomassé and Yeo \([3]\) for the details on polynomial time parameter transformation, and recall its definition here.

Definition 9 \([3]\). For two parameterized problems \(P\) and \(Q\), we say that there exists a polynomial time parameter transformation (\(\text{ppt}\)) from \(P\) to \(Q\), denoted by \(P \leq_{\text{ppt}} Q\), if there exists a polynomial time computable function \(f : \{0, 1\}^* \times \mathbb{N} \rightarrow \{0, 1\}^* \times \mathbb{N}\), and a polynomial \(p : \mathbb{N} \rightarrow \mathbb{N}\), and for all \(x \in \{0, 1\}^*\) and \(k \in \mathbb{N}\), if \(f((x, k)) = (x', k')\), then the following hold.

\[(x, k) \in P\] if and only if \((x', k') \in Q\), and

\[k' \leq p(k)\].

Here, \(f\) is called the polynomial time parameter transformation.

Theorem 10 \([3]\). For two parameterized problems \(P\) and \(Q\), let \(P'\) and \(Q'\) be their derived classical problems. Suppose that \(P'\) is \(\text{NP}\)-complete, and \(Q' \in \text{NP}\). Suppose that \(f\) is a polynomial time parameter transformation from \(P\) to \(Q\). Then, if \(Q\) has a polynomial kernel, then \(P\) has a polynomial kernel.

In the remaining part of this section, we will prove the following theorem.

Theorem 11. \(\text{PMS}\) does not admit a polynomial kernel parameterized by vertex cover number unless \(NP \subseteq \text{coNP}/\text{poly}\).
Figure 3 Reduction from CLIQUE to PMS, vertex set L and R form cliques. A vertex v'_{k+i} is connected to a vertex $v''_j \in R$ if v_j is not connected to v_{k+i} in input graph G.

One can observe that PMS \in NP, as the solution certificate (A, B) can be easily verified in polynomial time. Further, CLIQUE (an NP-complete problem) does not admit a polynomial kernel when parameterized by the size of a vertex cover unless NP \subseteq coNP/poly [2]. Thus, it will suffice to obtain a polynomial time parameter transformation from CLIQUE to PMS with parameter vertex cover number.

To this end, let (G, l, V_c) be an instance of CLIQUE, where we need to decide if the input graph G with vertex cover V_c contains a clique of size l, here the parameter is the size of vertex cover $|V_c| \leq k$. Note that we are considering a vertex cover of G of size k to be a part of the input. However we are not dependent on this assumption, as there exists a well known polynomial time algorithm that finds a 2-approximation of a minimum vertex cover.

For notational simplicity, let $V = \{v_1, v_2, ..., v_n\}$ be the vertex set of G and let $V_c = \{v_1, v_2, ..., v_k\}$ be a vertex cover of G. The rest of the vertices of G are $\{v_{k+1}, v_{k+2}, ..., v_n\}$. Let \bar{E} be the set of all the non-edges in G, i.e. $\bar{E} = \{v_iv_j | v_i \neq v_j \land v_iv_j \notin E(G)\}$. Further, let $\bar{E}(V_c)$ be all the non-edges with both the endpoints in V_c. We now construct a graph G' as follows.

- Create a vertex set $L = \{v'_i | v_i \in V_c\} \cup \{a_1, a_2\}$, and for every distinct $x, y \in L$, connect x and y to each other, this way L forms a clique.
- Create a vertex set $R = \{v''_i | v_i \in V_c\} \cup \{b_1, b_2, u\}$, and for every distinct $x, y \in R$, connect x and y to each other, this way R forms a clique.
- Connect a_1 to b_1, a_2 to b_2, and v'_i to v''_i for every $i \in [k]$.
- Create a vertex set $F = \{v'_{k+i} | v_{k+i} \in V(G) \setminus V_c\}$, and connect every vertex of F to u.
Connect a vertex $v_{k+i}^l \in F$ to $v_j^m \in R$ if v_{k+i} and v_j are not connected in G.

Create a vertex set $X_e = \{e_{ij}^1, e_{ij}^2, e_{ij}^3 \mid v_i v_j \in \bar{E}(V_e) \land (i < j)\}$. Further, for every non-edge $v_i v_j \in \bar{E}(V_e)$ where $i < j$, connect e_{ij}^1, e_{ij}^2, and e_{ij}^3, and e_{ij}^3 to e_{ij}^2, and the edges that are create a path on 4 vertices, and connect v_i^m to e_{ij}^2 and e_{ij}^3, and connect v_j^m to e_{ij}^3 and e_{ij}^2.

Observe that the construction can be achieved in time polynomial in $|V|$. Further, the vertex set $V(G') \setminus F$ is a vertex cover of G', which is of size at most $|L| + |R| + 4 \cdot |\bar{E}(V_e)|$ that is $O(k^2)$. In the following proposition, we state and then prove the correctness of the reduction.

Proposition 12. G has a clique of size l if and only if G' has a pair of perfectly matched sets of size $2 + 2 \cdot |\bar{E}(V_e)| + l$.

Proof. For the forward direction, let C be a clique of size l in G. Recall that the size of a clique in G can be at most 1 more than the size of a vertex cover of G, thus l can be at most $k + 1$. We construct two sets A and B as follows, for every vertex v_i in C which also belongs to V_c, we put v_i^l in A and v_i^m in B. If there is a vertex v_{k+i} in C which is not in V_c, we put v_{k+i}^l in A and v_j in B, observe that at most 1 such vertex can be in C. Further, for every non-edge $v_i v_j \in \bar{E}(V_e)$ such that $i < j$, if $v_i \in C$ (then certainly $v_j \not\in C$), then put e_{ij}^1, e_{ij}^2, and e_{ij}^3 in A and e_{ij}^2 and e_{ij}^3 in A. else if $v_i \not\in C$, then put e_{ij}^1 and e_{ij}^3 in A, and e_{ij}^2 and e_{ij}^3 in B. Lastly we put a_1 and a_2 in A and b_1 and b_2 in B. A direct check can verify that (A, B) is a pair of perfectly matched sets in G' and $|E(A, B)| = 2 + 2 \cdot |\bar{E}(V_e)| + l$.

For the other direction, let (A, B) be a pair of perfectly matched sets in G' such that $|E(A, B)| = 2 + 2 \cdot |\bar{E}(V_e)| + l$. For the proof of this direction, we will modify the set A and/or B to obtain desired vertices in each set while maintaining that (A, B) remains a pair of perfectly matched sets and that $|E(A, B)|$ does not decrease.

For a pair (A, B) of perfectly matched sets, we say a vertex $x \in A$ (resp. B) is matched to $y \in B$ (resp. A) if x and y are neighbors. We will sequentially apply the following modifications, after verifying if the modification is applicable. Precedence of every modification is in the same order in which they are described.

M1: If there exist two distinct vertices $x, y \in L$ such that x is in A and y is in B, as well as there exist two distinct vertices $x', y' \in R$ such that x' is in A and y' is in B. Then we set $A = (A \setminus \{x, x'\}) \cup \{a_1, a_2\}$ and $B = (B \setminus \{y, y'\}) \cup \{b_1, b_2\}$. Observe that (A, B) remains a pair of perfectly matched sets and $|E(A, B)|$ remains unchanged. This is due to the fact that both L and R form cliques and thus no other vertices from L except x, y and no other vertices from R except x', y' could belong to A or B.

M2: If there exist two distinct vertices $x, y \in L$ such that x is in A and y is in B, and either $A \cap R = \emptyset$ or $B \cap R = \emptyset$. In this case, neither $A \setminus \{x\}$ nor $B \setminus \{y\}$ contains any vertex from L (as L is a clique). Further, if $A \cap R = \emptyset$, then b_1 cannot belong to B, as it cannot be matched to any vertex in A (and y matched to each other). In this case, we set $A = (A \setminus \{x\}) \cup \{a_1\}$ and $B = (B \setminus \{y\}) \cup \{b_1\}$. Similarly, if $B \cap R = \emptyset$, then b_1 cannot belong to A as it cannot be matched to any vertex in B. In this case, we set $A = (A \setminus \{x\}) \cup \{b_1\}$ and $B = (B \setminus \{y\}) \cup \{a_1\}$. In both the cases, (A, B) remains a pair of perfectly matched sets and $|E(A, B)|$ remains unchanged.

M3: If there exist two distinct vertices $x, y \in R$ such that x is in A and y is in B, and either $A \cap L = \emptyset$ or $B \cap L = \emptyset$. In this case, neither $A \setminus \{x\}$ nor $B \setminus \{y\}$ contains any vertex from R (as R is a clique). Further, if $A \cap L = \emptyset$, then a_1 cannot belong to B as it cannot be matched to any vertex in L (and x matched to each other). In this case, we set $A = (A \setminus \{x\}) \cup \{b_1\}$ and $B = (B \setminus \{y\}) \cup \{a_1\}$. Similarly, if $B \cap L = \emptyset$, then a_1
We define which ensures that every distinct vertex of \(G \) outside \(V \) cannot belong to \(A \) as it cannot be matched to any vertex in \(B \). In this case, we set \(A = (A \setminus \{ x \}) \cup \{ a_1 \} \) and \(B = (B \setminus \{ y \}) \cup \{ b_1 \} \). In both the cases, \((A, B)\) remains a pair of perfectly matched sets and \(|E(A, B)|\) remains unchanged.

After applying the above modifications, we may assume that for a pair of perfectly matched sets \((A, B)\), either \(L \cap B = \emptyset \) and \(R \cap A = \emptyset \), or \(R \cap B = \emptyset \) and \(L \cap A = \emptyset \). For the simplicity of arguments, we assume that \(L \cap B = \emptyset \) and \(R \cap A = \emptyset \) and proceed as follows:

- **M4:** For every vertex \(v''_i \in (R \cap B) \setminus \{ u \} \), if the only neighbor of \(v''_i \) in \(A \) is \(x \) and \(x \neq v'_i \), then we remove \(x \) from \(A \) and add \(v'_i \) to \(A \). Observe that it is safe to do so as \(v'_i \) is adjacent to only \(v''_i \) outside \(L \) and \(L \) is disjoint from \(B \). Also this modification does not change the size of \(E(A, B) \).

To this end, after applying the above modification exhaustively, we may also assume that in \((A, B)\), every vertex of \((R \cap B) \setminus \{ u \}\) is matched by a vertex in \(L \). Observe that if two distinct vertices \(v''_i, v''_j \in B \) are such that \(v_i \) and \(v_j \) is not connected in \(G \) and \(v''_i \) is matched to \(v'_i \) and \(v''_j \) is matched to \(v'_j \) in \((A, B)\), then none of the vertices from \(\{v_{i,j}^1, v_{i,j}^2, v_{i,j}^3, v_{i,j}^4\} \) can belong to \(A \) without violating property of perfectly matched sets, and they can not be matched by \(v''_i \) or \(v''_j \), and hence none of them belongs to either \(A \) or \(B \). Thus, we modify \((A, B)\) as follows:

- **M5:** If two distinct vertices \(v''_i, v''_j \in B \) are such that \(v''_i \) is matched to \(v'_i \) and \(v''_j \) is matched to \(v'_j \) in \((A, B)\) and \(v_i \) and \(v_j \) are not connected in \(G \), then we remove \(v''_i, v''_j \) from \(B \) and remove \(v'_i, v'_j \) from \(A \), then put \(e_{i,j}^1, e_{i,j}^2, e_{i,j}^3, e_{i,j}^4 \) in \(B \) and \(e_{i,j}^1, e_{i,j}^2 \) in \(A \). Observe that this modification maintains that \((A, B)\) remains a pair of perfectly matched sets and \(|E(A, B)|\) remains unchanged.

Recall that \(|E(A, B)| = 2 + 2 \cdot E(V_c) + l\). Applying the above modification exhaustively, we also ensure that none of the vertices in \(R \cap B \) is matched to a vertex from \(X_e \). Thus, every vertex of \(X_e \cap (A \cup B) \) must be matched to a vertex of \(X_e \cap (A \cup B) \) in \((A, B)\). Since there are at most \(4 \cdot |E(V_c)| \) such vertices, they contribute at most \(2 \cdot |E(V_c)| \) to \(|E(A, B)|\). If we consider \(a_1, a_2 \) and \(b_1, b_2 \) to be part of \(A \) and \(B \) respectively, this leaves us with remaining \(l \) edges in \(E(A, B) \), the endpoints of these edges which belong to set \(B \) must be from \(R \setminus \{ b_1, b_2 \} \), let \(C \) be the set of these \(l \) vertices. If \(C \) contains \(u \), then let \(v'_{k+p} \) be the only neighbor of \(u \) in \(A \). We define \(C' = \{v_i | v''_i \in C\} \cup \{v_{k+p}\} \) if \(C \) contains \(u \), otherwise \(C' = \{v_i | v''_i \in C\} \). Observe that \(|C'| = l\). We claim that \(C' \) is a clique in \(G \). To prove the claim, recall modification M5, which ensures that every distinct \(v_i, v_j \in C' \cap V_c \) are connected, and if there is a vertex \(v_{k+p} \) outside \(V_c \) in \(C' \), \(v_{k+p} \) is connected to every \(V_c \cap C' \) in \(G \), otherwise recalling construction of \(G' \), \(v'_{k+p} \) would be connected to at least one vertex in \(C \setminus \{u\} \) and violate the property of perfectly matched sets \((A, B)\). This finishes the proof.

The above proposition conclude that the reduction is a polynomial time parameter transformation. This finishes the proof of Theorem [11].

5 Parameterized Algorithms

5.1 Parameterized by clique-width

We refer to [10] [11] for the details on MSOL₁ and linear-EMSOL₁. We recall that MSOL₁ is a type of MSOL formula without quantifiers over edge sets, and linear-EMSOL₁ is an extension of MSOL₁ which allows for the search of an optimal solution with respect to some linear evaluation function.
10 Perfectly Matched Sets in Graphs

We refer to [11, 12] for the details on clique-width and k-expression. Courcelle, Makowsky and Rotics [11] showed that every decision problem expressible in $MSOL_1$ and every optimization problem expressible in linear-$EMSOL_1$ are fixed parameter tractable when parameterized by clique-width k if the k-expression of the graph is given. Moreover, there exists an algorithm, which for a fixed k, and for the input n-vertex graph G, in time $O(n^9 \log n)$ outputs either a $(2^{3k+2} - 1)$-expression of G or reports that G has clique-width at least $k + 1$ [35]. Combining the above known results, to show that PMS is fixed parameter tractable when parameterized by clique-width, it will suffice to show that PMS is expressible in linear-$EMSOL_1$.

We construct the following linear-$EMSOL_1$ formula for PMS, which is similar to the $MSOL_1$ formula for MATCHING CUT given in [4]. We first try to build an $MSOL_1$ formula $\psi(A, B)$ with free variables A and B over vertex sets to express that (A, B) is a pair of perfectly matched sets, and then extend it to linear-$EMSOL_1$, which allows for the search of optimal A and B with respect to the cardinality of these sets.

$$\psi(A, B) = (A \cap B = \emptyset) \land \forall v \in A(\text{matched}(v, B)) \land \forall u \in B(\text{matched}(u, A))$$

where we can write

$$(A \cap B = \emptyset) \iff \neg(\exists v \in A(v \in B)).$$

$$\text{matched}(v, B) \iff \exists u \in B(\text{edge}(u, v)) \land \neg(\exists u, x \in B(\neg(u = x) \land \text{edge}(u, v) \land \text{edge}(x, v))).$$

An extension of $\psi(A, B)$ to linear-$MSOL_1$ is as follows,

$$\text{max}\{|f(A)| : \langle G, f \rangle \models \psi(A, B)\}.$$

where f is an assignment of vertices to sets A and B such that $\psi(A, B)$ is satisfied. Note that we are only maximizing the size of A, this is sufficient for our purposes as the definition of PMS ensure that both A and B are of equal size.

5.2 Parameterized by Distance to Cluster

For a graph $G = (V, E)$, a vertex set $X \subseteq V$ is a cluster deletion set if $G - X$ is a cluster graph. The smallest size of a cluster deletion set of G is called the distance to cluster of G. In this section, we consider PMS parameterized by distance to cluster of the input graph. We note that for an n vertex graph, a cluster deletion set of size at most k can be computed in time $O(1.92^k \cdot n^2)$. Thus, we may assume that for the input graph, we have a cluster deletion set of size at most k.

In the remaining part of this section, we prove the following theorem.

Theorem 13. There exists an algorithm that runs in time $O(3^k \cdot k^k \cdot \text{poly}(n))$ and solves PMS for the input n vertex graph with the distance to cluster at most k.

For the input graph $G = (V, E)$, let $X \subseteq V$ be a cluster deletion set of size at most k. Further, let $C = \{C_1, C_2, \ldots, C_l\}$ be the set of maximal cliques in $G - X$.

For a vertex set $Y \subseteq V$, let $f : Y \rightarrow \{a, b, d\}$ be an assignment. We say that f is valid if every vertex in $f^{-1}(a)$ (resp. $f^{-1}(b)$) has at most one neighbor in $f^{-1}(b)$ (resp. $f^{-1}(a)$). Given a valid assignment f, we say that a vertex $v \in f^{-1}(a)$ (resp. $v \in f^{-1}(b)$) is matched
in f if v has a neighbor w in $f^{-1}(b)$ (resp. in $f^{-1}(a)$). In this case, we say v is matched to w in f, and both v and w are called matching neighbors of each other. We say that a non-empty set W is matched in f if every vertex in W is matched. We say that a valid assignment $f : Y \rightarrow \{a, b, d\}$ is a feasible solution if $Y = V(G)$ and $(f^{-1}(a), f^{-1}(b))$ is a pair of perfectly matched sets.

For an assignment f, we define $\text{size}(f)$ to be $|f^{-1}(a)|$ if f is a feasible solution and 0 otherwise. Our goal is to find an assignment f with maximum $\text{size}(f)$; let f_{opt} be such an assignment. To find $\text{size}(f_{opt})$, we shall first guess its values on X and then extend it to V. For this, we need the following observation.

Observation 14. For a feasible solution f, every clique $C_i \in C$ must be of one of the following types.

- **Type 1:** $V(C_i) \cap f^{-1}(a) \neq \emptyset$ and $V(C_i) \cap f^{-1}(b) = \emptyset$.
- **Type 2:** $V(C_i) \cap f^{-1}(a) = \emptyset$ and $V(C_i) \cap f^{-1}(b) \neq \emptyset$.
- **Type 3:** There exist two distinct vertices $u, v \in V(C_i)$, such that $V(C_i) \cap f^{-1}(a) = \{u\}$ and $V(C_i) \cap f^{-1}(b) = \{v\}$.
- **Type 4:** $V(C_i) \cap f^{-1}(a) = \emptyset$ and $V(C_i) \cap f^{-1}(b) = \emptyset$.

Let $f_x : X \rightarrow \{a, b, d\}$ be a valid assignment, an assignment $f : V(G) \rightarrow \{a, b, d\}$ is an extension of f_x if for every $v \in X$, $f_x(v) = f(v)$. The intuition behind our algorithm is to consider every valid f_x and find its extension f with maximum $\text{size}(f)$. We define $\text{OPT}(f_x)$ by

$$\text{OPT}(f_x) = \max\{\text{size}(f) \mid f \text{ is an extension of } f_x\}. \quad (1)$$

We note that the size(f_{opt}) will be equal to the maximum $\text{OPT}(f_x)$ over all possible f_x.

Given $f_x : X \rightarrow \{a, b, d\}$, let $A_x = \{v \mid v \in X \wedge f_x(v) = a \wedge v \text{ is not matched in } f_x\}$ and $B_x = \{v \mid v \in X \wedge f_x(v) = b \wedge v \text{ is not matched in } f_x\}$. Let $P_a = \{A_{x,1}, \ldots, A_{x,r}\}$ be a partition of A_x into non-empty sets ($P_a = \emptyset$ if A_x is empty). Similarly, let $P_b = \{B_{x,1}, \ldots, B_{x,s}\}$ be a partition of B_x into non-empty sets ($P_b = \emptyset$ if B_x is empty).

We say that $f : V(G) \rightarrow \{a, b, d\}$ is a (P_a, P_b)-restricted extension of f_x if the following hold.
- f is an extension of f_x.
- For every $A_{x,i} \in P_a$, exactly one of the following is true: no vertex of $A_{x,i}$ is matched in f (OR) there exists a $p \in [l]$ such that $(A_{x,i}, C_p \cap f^{-1}(b))$ is a pair of perfectly matched sets and $N(C_p \cap f^{-1}(b)) \cap f^{-1}(a) = A_{x,i}$.
- For every $B_{x,j} \in P_b$, exactly one of the following is true: no vertex of $B_{x,j}$ is matched in f (OR) there exists a $q \in [l]$ such that $(C_q \cap f^{-1}(a), B_{x,j})$ is a pair of perfectly matched sets and $N(C_q \cap f^{-1}(a)) \cap f^{-1}(b) = B_{x,j}$.

We define $\text{OPT}(f_x, P_a, P_b)$ by

$$\text{OPT}(f_x, P_a, P_b) = \max\{\text{size}(f) \mid f \text{ is a } (P_a, P_b)\text{-restricted extensions of } f_x\}. \quad (2)$$

$\text{OPT}(f_x)$ will be equal to the maximum $\text{OPT}(f_x, P_a, P_b)$ over all possible partitions (P_a, P_b). Formally, we make the following claim.

Claim. Given $f_x : X \rightarrow \{a, b, d\}$, it holds that:

$$\text{OPT}(f_x) = \max\{\text{OPT}(f_x, P_a, P_b) \mid P_a, P_b \text{ are partitions of } A_x, B_x \text{ respectively} \}. \quad (3)$$
12 Perfectly Matched Sets in Graphs

Proof. It is straightforward to see that L.H.S ≥ R.H.S in (3). If OPT(f_0) = 0, then L.H.S ≤ R.H.S in (3). Else, if OPT(f_0) ≥ 1, then let ˆf be an extension of f_0 such that size(ˆf) = OPT(f_0). In this case, ˆf is a feasible solution. We will show that there exist partitions Pˆa, Pˆb of A_x, B_x respectively such that ˆf is a (Pˆa, Pˆb)-restricted extension of f_0. Recalling observation [14] let T_2 = {C_p1, C_p2, ..., C_p|} be the set of all the cliques in C which are of type 2 in ˆf. Since (f_1(1), f_1(2)) is a pair perfectly matched sets, for every C_p_i ∈ T_2, every vertex in V(C_p_i) ∩ f_1(1) has exactly one neighbor in f_1(1) and that neighbor must belong to A_x. In this case, if T_2 is empty then let P_0 = {}, otherwise let P_0 = {A_x,1, A_x,2, ..., A_x,s} such that A_x,i = N(V(C_p_j) ∩ f_1(1)) ∩ f_1(1) for every i ∈ [r].

Since every vertex in A_x has exactly one neighbor in f_1(1) and that neighbor must belong to a clique in T_2, we have that A_x = \bigcup_{A_x,i∈P_0} A_x,i and sets in P_0 are pairwise disjoint. Thus, we can conclude that P_0 is a partition of A_x. Further, let T_1 = {C_q1, C_q2, ..., C_qs} be the set of all the cliques in C which are of type 1 in ˆf. If T_1 is empty then let P_0 = {}, otherwise let P_0 = {B_x,1, B_x,2, ..., B_x,s} such that B_x,j = N(V(C_q_j) ∩ f_1(1)) ∩ f_1(1) for every j ∈ [s]. Similar to P_0, arguments can be made to show that P_0 is a partition of B_x.

Thus, we have that for every A_x,i ∈ P_0, (A_x,i, B_x,m ∩ f_1(1)) is a pair of perfectly matched sets and N(V(C_p_j) ∩ f_1(1)) ∩ f_1(1) = A_x,i, and for every B_x,j ∈ P_0, (C_q_j ∩ f_1(1), B_x,j) is a pair of perfectly matched sets and N(V(C_q_j) ∩ f_1(1)) ∩ f_1(1) = B_x,j. We conclude that ˆf is a (P_0, P_0)-restricted extension of f_0, and L.H.S ≤ R.H.S in (3). This finishes the proof.

The number of valid assignments f_x is at most 3^k, and for a given valid assignment f_x, the number of partition pairs (P_a, P_b) of A_x, B_x, is at most k^k. Thus, to bound the running time of the algorithm, it suffices to find OPT(f_x, P_a, P_b) in time poly(n) for every fixed triple (f_x, P_a, P_b), where f_x is a valid assignment.

Given a triple (f_x, P_a, P_b), we say that a clique C ∈ C can perfectly match a set A_x,i ∈ P_a if there exists S ⊆ V(C) such that (A_x,i, S) is a pair of perfectly matched sets and N(S) ∩ f_x(1) = A_x,i. Similarly, we say that a clique C ∈ C can perfectly match a set B_x,j ∈ P_b if there exists T ⊆ V(C) such that (T, B_x,j) is a pair of perfectly matched sets and N(T) ∩ f_x(1) = B_x,j. We can verify if a clique C ∈ C can perfectly match A_x,i in poly(n) time by verifying if for every v ∈ A_x,i, there exists a vertex u ∈ V(C) such that N(u) ∩ f_x(1) = {v}. We can similarly verify if C can perfectly match B_x,j as well. Further, we say that a C can be of type 3 in an extension f of f_x if there exist u, v ∈ V(C) such that u ≠ v and N(u) ∩ f_x(1) = ∅ and N(v) ∩ f_x(1) = ∅, this makes it possible for u and v to be the matching neighborhoods of each other in f by setting f(u) = a, f(v) = b, and f(u) = d for every v ∈ V(C) \ {u, v}.

We now move on to find OPT(f_x, P_a, P_b), for which we construct a weighted auxiliary bipartite graph H = (L ∪ R, EH) such that

\[L = \{u_i \mid A_{x,i} ∈ P_a \} \cup \{v_i \mid B_{x,i} ∈ P_b\} \cup \{y_j \mid C_j ∈ C\}, \]
\[R = \{z_j \mid C_j ∈ C\}. \]

and with the edge set

\[EH = \{u_i z_j \mid A_{x,i} ∈ P_a \land C_j ∈ C \land C_j \text{ can perfectly match } A_{x,i}\} \]
\[\cup \{v_i z_j \mid B_{x,i} ∈ P_b \land C_j ∈ C \land C_j \text{ can perfectly match } B_{x,i}\} \]
\[\cup \{y_j z_j \mid C_j ∈ C \land C_j \text{ can be of type } 3\}. \]

The weight function w : EH → \{n + 1, 1\} is defined as: w(e) = n + 1 if one of the endpoints of e is u_i or v_j where i ∈ [|P_a|] and j ∈ [|P_b|], and w(e) = 1 otherwise.
After constructing H, we find a maximum weight matching M in H. Using M, we now extend f_x to $f_m : V(G) \rightarrow \{a, b, d\}$ as follows. For each $e \in M$:

Case 1: If $e = u_zj$, then let set $S \subseteq V(C_j)$ be such that $(A_{x,i}, S)$ are perfectly matched sets and $N(S) \cap f_x^{-1}(a) = A_{x,i}$. If there are more than one such sets, we arbitrarily pick one; then $\forall u \in S$, we set $f_m(u) = b$, and $\forall u \in V(C_j) \setminus S$, we set $f_m(u) = d$.

Case 2: If $e = v_zj$, then let $S \subseteq V(C_j)$ be such that $(B_{x,i}, S)$ are perfectly matched sets and $N(S) \cap f_x^{-1}(b) = B_{x,i}$. If there are more than one such sets, we arbitrarily pick one, then $\forall u \in S$, we set $f_m(u) = a$, and $\forall u \in V(C_j) \setminus S$, we set $f_m(u) = d$.

Case 3: If $e = y_zj$, then let $u, v \in V(C_j)$ be a pair of vertices such that $u \neq v$ and $N(u) \cap f_x^{-1}(b) = \emptyset$ and $N(v) \cap f_x^{-1}(a) = \emptyset$. If there are more than one such pair, we arbitrarily pick one of them. We then set $f_m(u) = a$ and $f_m(v) = b$ and $\forall w \in V(C_i) \setminus \{u, v\}$, $f_m(w) = d$.

We assign d to all the remaining vertices in f_m.

Observe that f_m is a (P_a, P_b)-restricted extension of f_x. Further, we show that it is a valid assignment.

Proposition 15. f_m is a valid assignment.

Proof. Let v be an arbitrary vertex in $f_m^{-1}(a)$. We show that it has at most one neighbor in $f_m^{-1}(b)$. Similar arguments hold if $v \in f_m^{-1}(b)$.

- **Case I:** $v \in X$ and v is matched in f_x. In this case, v has a neighbor in $f_x^{-1}(b) \subseteq f_m^{-1}(b)$ and by construction, no new neighbor of v is set to b in f_m.

- **Case II:** $v \in X$ and $v \in A_{x,i}$ for an $A_{x,i} \in P_a$. In this case, v has no neighbor in $f_x^{-1}(b)$. And if $u_zj \in M$ for a $j \in [l]$, then v has exactly one neighbor in $f_m^{-1}(b)$ which by construction belongs to C_j.

- **Case III:** $v \in C_j$ for a $j \in [l]$. In this case, if v is set to a in f_m due to the edge $y_zj \in M$, then v has exactly one neighbor in $f_m^{-1}(b)$ which belongs to C_j itself. Otherwise, if v is set to a in f_m due to an edge $v_zj \in M$ for an $i \in [|P_b|]$, then v has exactly one neighbor in $f_m^{-1}(b)$ which must belong to $B_{x,i}$.

We now show that f_m has maximum size among all (P_a, P_b)-restricted extensions of f_x.

Proposition 16. $\text{size}(f_m) = \text{OPT}(f_x, P_a, P_b)$.
14 Perfectly Matched Sets in Graphs

Proof. Since f_m is a (P_a, P_b)-restricted extension of f_x, and if $\OPT(f_x, P_a, P_b) = 0$, then $\size(f_m) = \OPT(f_x, P_a, P_b)$ due to the maximality of $\OPT(f_x, P_a, P_b)$. Thus, we move on to assume that $\OPT(f_x, P_a, P_b) \geq 1$. Let \hat{f} be a (P_a, P_b)-restricted extension of f_x such that $\size(\hat{f}) = \OPT(f_x, P_a, P_b)$. In this case, \hat{f} is a feasible solution. For every $A_{x,i} \in P_a$, let $p_i \in [l]$ be such that $(A_{x,i}, C_{p_i} \cap \hat{f}^{-1}(b))$ is a pair of perfectly matched sets and $N(C_{p_i} \cap \hat{f}^{-1}(b)) \cap \hat{f}^{-1}(a) = A_{x,i}$. Similarly, for every $B_{x,j} \in P_b$, let $q_j \in [l]$ be such that $(C_{q_j} \cap \hat{f}^{-1}(a), B_{x,j})$ is a pair of perfectly matched sets and $N(C_{q_j} \cap \hat{f}^{-1}(b)) \cap \hat{f}^{-1}(a) = B_{x,j}$. This implies that for every $i \in ||P_a||$ and $j \in ||P_b||$, $u_i z_{p_i}$ and $v_j z_{q_j}$ are edges in H. Also observe that every C_{p_i} is of type 2, and every C_{q_j} is of type 1 in \hat{f}. Further, let T_1 be the set of all cliques of type 3 in \hat{f}. To this end, let $\hat{M} = \{u_i z_{p_i} \mid i \in ||P_a||\} \cup \{v_j z_{q_j} \mid j \in ||P_b||\} \cup \{y_i z_i \mid C_i \in T_1\}$. We have that for every distinct $i, j \in ||P_a||$, $A_{x,i} \neq A_{x,j}$ and thus $C_{p_i} \neq C_{p_j}$. Similarly, for every distinct $i, j \in ||P_b||$, $B_{x,i} \neq B_{x,j}$ and thus $C_{q_i} \neq C_{q_j}$. Thus, we observe that \hat{M} is a matching in H; further \hat{M} saturates every u_i and every v_j, and the edges incident on these vertices have weight $n + 1$ each; the other edges have weight 1 each, and they are at most $l \leq n$. Thus, any maximum weight matching in H, must saturate all u_i and v_j vertices. Thus, M (used for construction of f_m) also saturates every u_i and every v_j. Case 1 and 2 of construction of f_m ensures that every $A_{x,i}$ and every $B_{x,j}$ is matched in f_m, and Case 3 adds matching neighbors, which this along with proposition 15 ensures that $(f_m^{-1}(a), f_m^{-1}(b))$ is a pair of perfectly matched sets and hence f_m is a feasible solution.

Since both f_m and \hat{f} are extensions of f_x, the number of vertices in $f_m^{-1}(a) \cap X$ and $\hat{f}^{-1}(a) \cap X$ are equal. Every vertex of $f_m^{-1}(a) \setminus X$ (resp. $\hat{f}^{-1}(a) \setminus X$), must belong to a clique of type 1 or to a clique of type 3 in f_m (resp. \hat{f}). Every vertex of B_x must be matched to a vertex of a clique of type 1 in f_m (resp. \hat{f}), and every vertex of a clique of type 1 which is in $f_m^{-1}(a)$ (resp. $\hat{f}^{-1}(a)$) must be matched to a vertex of B_x. This concludes that the vertices of $f_m^{-1}(a)$ (resp. $\hat{f}^{-1}(a)$) which belong to a clique of type 1 in f_m (resp. \hat{f}) are equal to $|B_x|$. Since every type 3 clique in f_m (resp. \hat{f}) adds exactly one vertex in $f_m^{-1}(a)$ (resp. $\hat{f}^{-1}(a)$), if $|\hat{f}^{-1}(a)| > |f_m^{-1}(a)|$ then \hat{f} must have more number of type 3 cliques than f_m. Further, since edges with weight $n + 1$ are equal in both \hat{M} and M, and each edge with weight 1 (edge $y_i z_i$, where $i \in [l]$) corresponds to a type 3 clique, thus $\size(\hat{f}) > \size(f_m)$ implies that $w(\hat{M}) > w(M)$, but since M is a maximum weight matching in H, $w(\hat{M}) \leq w(M)$, hence we have $\size(\hat{f}) \leq \size(f_m)$ (by contraposition). And due to the maximality of \hat{f}, we conclude that $\size(\hat{f}) = \size(f_m) = \OPT(f_x, P_a, P_b)$. This finishes the proof.

For a given triple (f_x, P_a, P_b), the construction of f_m takes time $poly(n)$, thus we find $\OPT(f_x, P_a, P_b)$ in time $poly(n)$. As discussed, this allows us to find $\OPT(f_x)$ in time $O(k^k \cdot poly(n))$, which further allows us to find $\size(f_{opt})$ in time $O(3^k \cdot k^k \cdot poly(n))$.

5.3 Parameterized by Distance to Co-Cluster

For a graph $G = (V, E)$, a vertex set $X \subseteq V$ is a co-cluster deletion set if $G \setminus X$ is a co-cluster graph. The smallest size of a co-cluster deletion set of G is called the distance to co-cluster of G. In this section, we consider PMS parameterized by distance to co-cluster of the input graph. We note that for an n vertex graph, a co-cluster deletion set of size at most k can be computed in time $O(1.92^k \cdot n^2)$ [4]. Thus, we may assume that for the input graph, we have a co-cluster deletion set of size at most k.

In the remaining part of this section, we prove the following theorem.

Theorem 17. There exist an algorithm which runs in time $O(3^k \cdot poly(n))$ and solves PMS for the input n vertex graph with the distance to co-cluster at most k.

>
For the input graph $G = (V, E)$, let $X \subseteq V$ be a co-cluster deletion set of size at most k. Further, let $\mathcal{I} = \{I_1, I_2, \ldots, I_l\}$ be the set of maximal independent sets in $G - X$.

Recalling from Section 5.2 for a vertex set $Y \subseteq V$, we say $f : Y \rightarrow \{a, b, d\}$ is an assignment. We refer Section 5.2 for the terminologies of valid assignment, extension of an assignment f, feasible solution, $\text{size}(f)$ (size of an assignment f), and matched vertices in an assignment f. Similar to Section 5.2, our goal is to find an assignment $f : V \rightarrow \{a, b, d\}$ such that $\text{size}(f)$ is maximized; let f_{opt} be that assignment.

Let $f_x : X \rightarrow \{a, b, d\}$ be a valid assignment, we recall that an assignment $f : V(G) \rightarrow \{a, b, d\}$ is an extension of f_x if for every $v \in X$, $f_x(v) = f(v)$. The intuition behind our algorithm is to consider every valid f_x and find its extension f with maximum $\text{size}(f)$. We define $\text{OPT}(f_x)$ by

$$\text{OPT}(f_x) = \max \{\text{size}(f) \mid f \text{ is an extension of } f_x\}. \tag{4}$$

We note that the $\text{size}(f_{\text{opt}})$ will be equal to the maximum $\text{OPT}(f_x)$ over all possible f_x. Since the number of assignments f_x is at most 3^k, to bound the running time of the algorithm, it suffices to find $\text{OPT}(f_x)$ in $\text{poly}(n)$. For a given valid assignment $f_x : X \rightarrow \{a, b, d\}$, let $A_x = \{v \mid v \in X \land f_x(v) = a \land v \text{ is not matched in } f_x\}$ and $B_x = \{v \mid v \in X \land f_x(v) = b \land v \text{ is not matched in } f_x\}$. Let \hat{f} be an extension of f_x such that $\text{size}(\hat{f}) = \text{OPT}(f_x)$. To find $\text{OPT}(f_x)$ consider the following cases.

Case 1: Both A_x and B_x are non-empty.

If $\text{size}(\hat{f}) \geq 1$, then \hat{f} is a feasible solution, and all the vertices of A_x and B_x must be matched to vertices of $V \setminus X$ in \hat{f}. Further, we make the following claim.

Claim. If $\text{size}(\hat{f}) \geq 1$, then all the vertices of $V \setminus X$ which are set to either a or b in \hat{f} belong to a single maximal independent set $I_i \in \mathcal{I}$.

Proof. Since both A_x and B_x are non-empty and they must be matched to vertices of $V \setminus X$ in \hat{f}, there must be two vertices $u, v \in V \setminus X$ such that $\hat{f}(u) = a$ and $\hat{f}(v) = b$, and u, v matched to a vertex of B_x and A_x respectively. In this case, u and v must belong to the same $I_i \in \mathcal{I}$, otherwise they will be neighbors in opposite sets and \hat{f} will not be a feasible solution. Similarly, any other vertex $w \in V \setminus X$ if assigned a value a or b in \hat{f} should be from I_i, otherwise it will be a neighbor of either u or v in an opposite set. \hfill \blacksquare

Using the above claim, we construct an extension f of f_x as follows. We guess a set $I_i \in \mathcal{I}$ who’s vertices may be set to a or b in f, and set vertices of all other $I_j \in \mathcal{I}$ to d. Since I_i is an independent set, a vertex $u \in I_i$ if set to a or b must be matched to a vertex of B_x or A_x respectively. We say that a vertex $u \in I_i$ can perfectly match a vertex $v \in A_x$ (resp. $v \in B_x$) if $N(u) \cap f_x^{-1}(a) = \{v\}$ (resp. $N(u) \cap f_x^{-1}(b) = \{v\}$). Consider an auxiliary bipartite graph H with vertex sets $I_i \cup A_x \cup B_x$, we connect $u \in I_i$ to $v \in (A_x \cup B_x)$ in H if u can perfectly match v. We find a maximum matching M in H. For each edge $e \in M$, let u be the endpoint which belong to I_i and v belong to $A_x \cup B_x$, we set $f(u) = a$ if $f(v) = b$ else we set $f(u) = b$. Once we process all the edges of M, we set $f(x) = d$ for every remaining unassigned vertex $x \in I_i$. We can observe that if \hat{f} is a feasible solution and we correctly guessed $I_i \in \mathcal{I}$, then M saturates $A_x \cup B_x$ and f is a feasible solution with $\text{size}(f) = \text{size}(\hat{f})$. Construction of f takes time $\text{poly}(n)$, and there are at most n
Case 2: \(A_x \text{ or } B_x \text{ is empty.} \)

We assume that \(B_x \) is empty and \(A_x \) may be non-empty, the case when \(A_x \) is empty and \(B_x \) may be non-empty will be similar. If \(\text{size}(\hat{f}) \geq 1 \), then \(\hat{f} \) is a feasible solution, and if \(A_x \) is non-empty then all the vertices of \(A_x \) must be matched to vertices of \(V \setminus X \) in \(\hat{f} \). Further, we make the following claim.

\[\text{Claim.} \text{ If } \text{size}(\hat{f}) \geq 1, \text{ then the following holds.} \]

- If \(A_x \) is non-empty, then at most one vertex from \(V \setminus X \) is assigned \(a \) in \(\hat{f} \).
- If \(A_x \) is empty, then at most two vertices from \(V \setminus X \) are assigned \(a \) in \(\hat{f} \).

Proof. Let there be two distinct vertices \(u_1, u_2 \in (V \setminus X) \) such that \(\hat{f}(u_1)=\hat{f}(u_2)=a \). Since \(B_x \) is empty and \(\hat{f} \) is a feasible solution, \(u_1, u_2 \) must be matched to vertices of \(V \setminus X \), in this case let \(u_1, u_2 \) be matched to \(v_1, v_2 \in (V \setminus X) \cap \hat{f}^{-1}(b) \) respectively. Observe that \(u_1 \) and \(v_2 \) should belong to the same \(I_i \in \mathcal{I} \) where \(I_i \neq I_j \), otherwise they will be neighbors of each other. This implies that both \(\hat{f}^{-1}(a) \) and \(\hat{f}^{-1}(b) \) contain vertices from two distinct \(I_i \) and \(I_j \).

First, if \(A_x \) is non-empty, then there must be a vertex \(x \in V \setminus X \) such that \(\hat{f}(x)=b \) and \(x \) is matched to a vertex in \(A_x \) (as \(\hat{f} \) is a feasible solution), since \(u_1, u_2 \) belong to distinct maximal independent sets, at least one of them is a neighbor of \(x \) in opposite set, this contradicts that both \(u_1 \) and \(u_2 \) belong to \(\hat{f}^{-1}(a) \).

Second, if \(A_x \) is empty, then assigning \(a \) to any other vertex \(z \in V \setminus X \) will make it a neighbor of either \(v_1 \) or \(v_2 \) (which are already matched in \(\hat{f} \)), this finishes the proof.

Using above claim, we construct an extensions \(f \) of \(f_x \) as follows. We guess a set \(S \subseteq V \setminus X \) of size at most one (if \(A_x \) is non-empty) or at most two (if \(A_x \) is empty). Note that \(S \) can be empty and it is our guess on the vertices of \(V \setminus X \) which are assigned \(a \) in \(\hat{f} \). We set \(f(u)=a \) for every \(u \in S \). Since \(B_x \) is empty, every vertex in \(f_x^{-1}(b) \) is already matched in \(f_x \), and it is necessary that every vertex in \(S \) has no neighbor in \(f_x^{-1}(b) \). If a vertex in \(S \) has a neighbor in \(f_x^{-1}(b) \), then we guess another \(S \). Now, for every \(u \in A_x \cup S \) we check if there exists a vertex \(v \in V \setminus (X \cup S) \) such that \(N(v) \cap (f_x^{-1}(a) \cup S) = \{u\} \), if there are more than 1 such vertices, we arbitrarily pick one such vertex \(v \) and set \(f(v)=b \). In the end, we assign \(f(x)=d \) to every remaining unassigned vertex \(x \in V \setminus (X \cup S) \).

We can observe that if \(\hat{f} \) is a feasible solution and we correctly guessed \(S \), then \(f \) is a feasible solution and \(\text{size}(f) = \text{size}(\hat{f}) \). Construction of \(f \) takes time \(\text{poly}(n) \), and there are at most \(O(n^2) \) distinct sets \(S \) to guess from \(V \setminus X \). The maximum size of a constructed \(f \) among all the guesses of \(S \) will be equal to \(\text{size}(\hat{f}) = \text{OPT}(f_x) \).

Further, if for no \(S \) the constructed \(f \) is a feasible solution, then we conclude that \(\text{size}(\hat{f}) = \text{OPT}(f_x) = 0 \).

As discussed, there are at most \(3^k \) assignments \(f_x \), and finding \(\text{OPT}(f_x) \) for each \(f_x \) takes time \(\text{poly}(n) \). Thus, it takes time \(O(3^k \cdot \text{poly}(n)) \) to find \(\text{size}(f_{\text{opt}}) \). This finishes the proof.
5.4 Parameterized by Treewidth

We refer to [13, 39] for the details on tree decomposition and treewidth. We recall here basic definitions of tree decomposition and treewidth from [13]. A tree decomposition of a graph G is a pair $\mathcal{T} = (T, \{\beta_t\}_{t \in V(T)})$, where T is a tree and every node in $V(T)$ assigned a vertex subset $\beta_t \subseteq V(G)$, also called the bag of t such that the following holds. (i) For every $v \in V(G)$, there exists a node $t \in V(T)$ such that $v \in \beta_t$; (ii) for every edge $e \in E(G)$, there exists a node $t \in V(T)$ such that $V(e) \subseteq \beta_t$; (iii) For every $v \in V(G)$, let $T_v = \{t \mid t \in V(T) \land v \in \beta_t\}$, that is T_v is the set of all the nodes of T that contain v in their bags, then $T[T_v]$ induces a connected subgraph of T. Further, a tree decomposition $\mathcal{T} = (T, \{\beta_t\}_{t \in V(T)})$ is said to be a rooted tree decomposition if T is rooted at some node $r \in V(T)$.

The width of the tree decomposition \mathcal{T} is $\max\{|\beta_t| - 1 \mid t \in V(T)\}$. The treewidth of a graph G denoted by $tw(G)$ is minimum width over all the possible tree decompositions of G.

A useful property of tree decomposition is the existence of nice tree decomposition, we refer to [24, 13] for the details on nice tree decomposition, and recall a definition of nice tree decomposition here.

A rooted tree decomposition $\mathcal{T} = (T, \{\beta_t\}_{t \in V(T)})$ is nice if T is rooted at a node r with empty bag, i.e. $\beta_r = \emptyset$, and every node of T belongs to one of the following type.

- **Leaf node**: a leaf t of T and $\beta_t = \emptyset$.
- **Introduce node**: a node t of T with exactly one child c such that $\beta_c \subseteq \beta_t$ and $\beta_t \setminus \beta_c = \{v\}$ for some vertex $v \in V(G)$, vertex v is said to be introduced at t.
- **Forget node**: a node t of T with exactly one child c such that $\beta_t \subseteq \beta_c$ and $\beta_c \setminus \beta_t = \{v\}$ for some vertex $v \in V(G)$, vertex v is said to be forgot at t.
- **Join node**: a node t of T with exactly two children c_1 and c_2 such that $\beta_t = \beta_{c_1} = \beta_{c_2}$.

It is also known that a tree decomposition with width at most tw can be converted into a nice tree decomposition with width at most tw and number of nodes at most $O(tw \cdot n)$ in time $poly(n)$ [13].

Further, in a nice tree decomposition $\mathcal{T} = (T, \{\beta_t\}_{t \in V(T)})$, for a $t \in T$, we denote γ_t to be the union of bags of all the nodes which belong to the subtree rooted at t, and $G_t = G[\gamma_t]$.

Now that we discussed preliminaries for this section, in the remaining part of this section, we prove the following theorem.

Theorem 18. Given a nice tree decomposition of width at most tw for input n-vertex graph G, there exists an algorithm that runs in time $O(10^{tw} \cdot poly(n))$ and solves PMS for G. The algorithm can work even if such a tree decomposition is not given, at an expense of higher constant at the base of the exponent.

As expected, we will perform a bottom up dynamic programming on a rooted nice tree decomposition (T, β) of the input graph G. To this end, we first define the structure of the sub-problem and corresponding memory table entry.

At each node $t \in V(T)$, we denote an entry of our table as $m_r(A_t, B_t, p, n_A, n_B) \in \{0, 1\}$, where $A_t \subseteq \beta_t$, $B_t \subseteq \beta_t$, $A_t \cap B_t = \emptyset$, $p : (A_t \cup B_t) \to \{0, 1\}$, $n_A, n_B \in \{0, 1, \ldots, n\}$. Precisely, $m_r(A_t, B_t, p, n_A, n_B) = 1$ indicates if there exist two disjoint sets $A, B \subseteq V(G_t)$ such that the following holds,

- $A \cap \beta_t = A_t$ and $B \cap \beta_t = B_t$,
- $A \setminus \beta_t$ has exactly one neighbor in B and $B \setminus \beta_t$ has exactly one neighbor in A,
- every $v \in A_t$ has exactly $p(v)$ neighbors in $B \setminus \beta_t$ and similarly every $v \in B_t$ has exactly $p(v)$ neighbors in $A \setminus \beta_t$.

Perfectly Matched Sets in Graphs

\[|A| = n_A \text{ and } |B| = n_B. \]

Observe that \(G \) has PMS of size \(k \) if and only if \(m_c(\emptyset, \emptyset, p, k, k) \) is 1, where \(r \) is the root node of \(T \) and \(p \) is empty. Observe that the number of entries at each node are bounded by \(\sum_{i \leq n+1} \binom{n+1}{2i} \cdot 2^i \cdot 2^i \cdot poly(n) \), which is equal to \((1 + 4)^{n+1} \cdot poly(n)\). Thus, there are at most \(O(5^{n+1} \cdot poly(n)) \) entries \(m_t(.) \) for each node \(t \).

We now give recursive formulas for every type of node while assuming that the entries for its children have already been computed.

- **Leaf node** \(t : \beta_t = \emptyset \). We set \(m_t(\emptyset, \emptyset, p = \text{empty}, 0, 0) = 1 \), and set all other entries to 0.

- **Introduce node**: vertex \(v \) introduced in \(\beta_t \) and \(c \) is the child of \(t \) in \(T \).

 For the calculation of an entry \(m_t(A_t, B_t, p, n_A, n_B) \), let \(p_c : ((A_t \cup B_t) \setminus \{v\}) \rightarrow \{0, 1\} \) such that \(p_c(x) = p(x) \) for every vertex \(x \in ((A_t \cup B_t) \setminus \{v\}) \).

 \[
 m_t(A_t, B_t, p, n_A, n_B) = \begin{cases}
 m_c(A_t \setminus \{v\}, B_t, p_c, n_A - 1, n_B), & \text{if } v \in A_t \land p(v) = 0, \\
 0, & \text{if } v \in A_t \land p(v) = 1, \\
 m_c(A_t, B_t \setminus \{v\}, p_c, n_A, n_B - 1), & \text{if } v \in B_t \land p(v) = 0, \\
 0, & \text{if } v \in B_t \land p(v) = 1, \\
 m_c(A_t, B_t, p_c, n_A, n_B), & \text{if } v \notin B_t \land v \notin A_t.
 \end{cases}
 \]

To observe the correctness of the above formula, first consider the case when \(v \in A_t \), if \(p(v) = 1 \), then \(v \) is bound to have a matching neighbor in \(B \setminus \beta(t) \). By the definition of tree decomposition, \(v \) has no neighbor in \(V(G_t) \setminus \beta(t) \), thus we set this entry to 0, and if \(p(v) = 0 \) then the value \(m_c(A_t \setminus \{v\}, B_t, p_c, n_A - 1, n_B) \) must also hold for \(m_t(A_t, B_t, p, n_A, n_B) \) as the size of \(A_t \setminus \{v\} \) is \(n_A - 1 \). The case when \(v \in B_t \) is similar to the above. Further, calculation of every entry as per above formula takes \(O(1) \) time to compute.

- **Forget node**: vertex \(v \) forgot from \(\beta_t \) and \(c \) is child of \(t \) in \(T \).

 For the calculation of \(m_t(A_t, B_t, p, n_A, n_B) \) at forget node, we search if of two disjoint sets \(A, B \subseteq V(G_t) \) exist which satisfy \(m_t(A_t, B_t, p, n_A, n_B) = 1 \). For this purpose, we need to consider all the cases where \(v \) may belong to \(A, B \) or to none. We then choose the best possible outcome.

Case 1: \(v \) belongs to \(A \). In this case \(v \) must have exactly one neighbor in \(B \), let \(N_{B_t} = N(v) \cap B_t \). Let \(p_0 : (A_t \cup B_t \cup \{v\}) \rightarrow \{0, 1\} \) such that \(p_0(x) = p(x) \) for every \(x \in (A_t \cup B_t \cup \{v\}) \setminus (N_{B_t} \cup \{v\}) \) and \(p_0(u) = 0 \) for every \(u \in (N_{B_t} \cup \{v\}) \). Further, let \(p_1 : (A_t \cup B_t \cup \{v\}) \rightarrow \{0, 1\} \) such that \(p_1(x) = p(x) \) for every \(x \in (A_t \cup B_t \cup \{v\}) \setminus \{v\} \) and \(p_1(v) = 1 \).

 \[
 M_A = \begin{cases}
 m_c(A_t \cup \{v\}, B_t, p_0, n_A, n_B), & \text{if } |N_{B_t}| = 1, \\
 m_c(A_t \cup \{v\}, B_t, p_1, n_A, n_B), & \text{if } |N_{B_t}| = 0, \\
 0, & \text{if } |N_{B_t}| \geq 2.
 \end{cases}
 \]
Case 3: v belongs to A, and for the correctness of the above formula, observe that if v belongs to A, then it must have exactly one neighbor u in B. In such a case, if u belongs to B_t, then v cannot have any other neighbor in $B \setminus B_t$ and u cannot have any other neighbor in $A \setminus (A_t \cup \{v\})$, hence $p_0(v)$ and $p_0(u)$ should be 0. Else if u belongs to $B \setminus B_t$ then v cannot have a neighbor in B_t and $p_1(v)$ should be 1, finally if v has two or more neighbors in B_t then no A containing v can satisfy required properties.

Case 2: v belongs to B. In this case v must have exactly one neighbor in A, let $N_{A_t} = N(v) \cap A_t$. Let $p_0 : (A_t \cup B_t \cup \{v\}) \rightarrow \{0,1\}$ such that $p_0(x) = p(x)$ for every $x \in (A_t \cup B_t \cup \{v\}) \setminus (N_{A_t} \cup \{v\})$ and $p_0(u) = 0$ for every $u \in (N_{A_t} \cup \{v\})$. Further, let $p_1 : (A_t \cup B_t \cup \{v\}) \rightarrow \{0,1\}$ such that $p_1(x) = p(x)$ for every $x \in (A_t \cup B_t \cup \{v\}) \setminus \{v\}$ and $p_1(v) = 1$.

$$M_B = \begin{cases} m_c(A_t, B_t \cup \{v\}, p_0, n_A, n_B), & \text{if } |N_{A_t}| = 1, \\
 m_c(A_t, B_t \cup \{v\}, p_1, n_A, n_B), & \text{if } |N_{A_t}| = 0, \\
 0, & \text{if } |N_{A_t}| \geq 2, \\
\end{cases}$$

M_B captures the best possible value when v belongs to B and correctness follows from similar arguments to the previous case.

Case 3: v is deleted.

$$M_0 = m_c(A_t, B_t, p, n_A, n_B).$$

The recursive formula for forget node is as follows.

$$m_t(A_t, B_t, p, n_A, n_B) = \max\{M_A, M_B, M_0\}.$$

We observe that the calculation of each entry as per the above formula takes time $poly(n)$.

Join node: c_1 and c_2 are children of t.

Let a pair (p_{c_1}, p_{c_2}) be such that $p(v) = p_{c_1}(v) + p_{c_2}(v)$ for every $v \in (A_t \cup B_t)$. Let \mathcal{F} be the family of all possible pairs for a given p, observe that the size of \mathcal{F} is bounded by 2^{tw}.

$$m_t(A_t, B_t, p, n_A, n_B) = \max\{m_{c_1}(A_t, B_t, p_{c_1}, |A_t|+i, |B_t|+j) m_{c_2}(A_t, B_t, p_{c_2}, n_A-i, n_B-j) \mid (p_{c_1}, p_{c_2}) \in \mathcal{F} \land 0 \leq i \leq (n_A - |A_t|) \land 0 \leq j \leq (n_B - |B_t|)\}.$$

For the correctness, observe that $p(v) = p_{c_1}(v) + p_{c_2}(v)$ enforces every vertex v in A_t (resp. B_t) has at most $p(v)$ neighbor in $B \setminus \beta(t)$ (resp $B \setminus \beta(t)$), only one of the G_{c_1} or G_{c_2} can have that neighbor (if $p(v) = 1$ otherwise none). Similarly, i and j denote the distribution of $A \setminus A_t$ and $B \setminus B_t$ vertices in the sub graphs G_{c_1} and G_{c_2} to ensure that the number of distinct vertices in A and B remain n_A and n_B respectively, and we don’t double count any of the vertex.

Calculation of a single entry at a join node takes $2^{tw} \cdot poly(n)$ time. There can be at most $5^{tw} \cdot poly(n)$ entries at each node, thus a join node calculation of all the entries takes time $10^{tw} \cdot poly(n)$, and this is the bottleneck for the running time of the algorithm.
6 Exact Algorithm

In this section, we prove the following result.

Theorem 19. There is an algorithm that accepts a graph G on n vertices and finds a largest pair of perfectly matched sets of G in time $O^*(1.966^n)$ time.

We shall prove Theorem 19 by making use of the algorithms in the following two lemmas.

Lemma 20. There’s an $O^*((n/k))$ algorithm to test if G has a pair of perfectly matched sets of size k, and find one such pair if it exists.

Proof. The algorithm is the following: for each subset A of size k, first find $C(A)$ which we define to be the set of vertices in $V \setminus A$ with exactly one neighbor in A. If every $v \in A$ has at least one neighbor in $C(A)$, then mark one such neighbor for each $v \in A$ as $f(v)$ and let $B = \{ f(v) | v \in A \}$. Then (A, B) forms a pair of perfectly matched sets. If for no A can we find a corresponding B, then G has no pair of perfectly matched sets of size k.

Lemma 21. If there’s an $O^*(\alpha n)$ algorithm to solve PERFECT MATCHING CUT on graphs of size n, then there’s an $O^*((n^2k^{\alpha 2k}))$ algorithm to test if G has a pair of perfectly matched sets of size k, and find one if it exists. In particular, by the result of [32], there’s an $O^*((n^2k^{1.2721^{2k}}))$ algorithm to do so.

Proof. The algorithm consists of picking every subset S of size $2k$ and checking if $G[S]$ has a perfect matching cut.

Proof of Theorem 19. The main idea is to play off the bounds of Lemma 20 and Lemma 21. When k is close to $n/2$, the algorithm of Lemma 21 is faster while for slightly smaller k, the algorithm of Lemma 20 is faster.

Let $\varepsilon < 1/2$, which we will fix shortly. For $1 \leq k \leq \varepsilon n$, we run the algorithm of Lemma 20 and for $\varepsilon n < k \leq n$, we run the algorithm of Lemma 21. Thus we can find a largest pair of perfectly matched sets in time $O^*(T(n))$, for the following value of $T(n)$.

$$T(n) = \sum_{k=0}^{\varepsilon n} \binom{n}{k} + \sum_{k=\varepsilon n}^{n/2} \binom{n}{2k} \alpha^{2k}$$

$$\leq 2^{nH(\varepsilon)} + n \binom{n}{2\varepsilon n} \alpha^{2\varepsilon n}$$

$$\leq 2^{nH(\varepsilon)} + 2^{nH(1-2\varepsilon)} \alpha^{2\varepsilon n}.$$

The second line follows from the fact that the terms of the second sum are decreasing with k for $\varepsilon \geq \frac{1}{2 + \alpha}$, and we also use the upper bound of $2^{tH(t)}$ on $\sum_{k=1}^{\varepsilon n} \binom{n}{k}$ for $t \leq 1/2$.

The optimal value of ε that minimizes the RHS is found by equating the two terms; i.e. by solving the equation $H(\varepsilon) = H(1 - 2\varepsilon) + (2 \log_2 \alpha)\varepsilon$. For $\alpha = 1.2721$, this yields $\varepsilon \sim 0.4072$ and $2^{H(\varepsilon)} \sim 1.96565$. Thus, we obtain $T(n) = O(1.966^n)$.
7 PMS for Planar Graphs

In this section, we prove the following theorem.

\begin{itemize}
 \item \textbf{Theorem 22.} PMS is NP-hard for planar graphs.
\end{itemize}

It is known that INDEPENDENT SET is NP-hard on planar graphs. We give a polynomial time reduction from INDEPENDENT SET to PMS.

Let \((G, k)\) be an instance of INDEPENDENT SET, where \(G\) is a planar graph and \(k \in \mathbb{N}\), and we need to decide if \(G\) contains an independent set of size \(k\). Let \(V = \{v_1, v_2, \ldots, v_n\}\) be vertices of \(G\), we construct a graph \(G'\) as follows.

\begin{itemize}
 \item Create a vertex set \(V' = \{v'_i \mid v_i \in V\}\), and connect every \(v'_i\) to \(v'_j\) if \(v_iv_j \in E(G)\).
 \item Create a vertex set \(V'' = \{v''_i \mid v_i \in V\}\), and connect \(v'_i\) to \(v''_i\) for every \(i \in [n]\).
 \item Create a vertex set \(X_i = \{e^{1}_{ij}, e^{2}_{ij}, e^{3}_{ij}, e^{4}_{ij} \mid v_i v_j \in E(G) \land (i < j)\}\). Further, for every edge \(v_i v_j \in E(G)\) where \(i < j\), connect \(e^{1}_{ij}\) to \(e^{2}_{ij}\), \(e^{3}_{ij}\) to \(e^{4}_{ij}\), and \(e^{3}_{ij}\) to \(e^{4}_{ij}\), i.e. create a path on 4 vertices. Further, connect \(v'_i\) to \(e^{1}_{ij}\) and \(e^{4}_{ij}\), and connect \(v'_j\) to \(e^{2}_{ij}\) and \(e^{3}_{ij}\).
\end{itemize}

Observe that none of the introduced edges in \(G'\) is a crossing edge if \(G\) was embedded in a plane without crossing edges, and hence \(G'\) is a planar graph. Further, the above construction takes time polynomial in size of \(G\). Following proposition proves the correctness of the reduction.

\begin{itemize}
 \item \textbf{Proposition 23.} \(G\) has an independent set of size \(k\) if and only if \(G'\) has a pair of perfectly matched sets of size \(k + 2 \cdot |E(G)|\).
\end{itemize}

\textbf{Proof.} For the forward direction, let \(I\) be an independent set of size \(k\) in \(G\). We construct \((A, B)\) as follows.

1. For every \(v_i \in I\), put \(v'_i\) in \(A\) and \(v''_i\) in \(B\).
2. For every edge \(v_iv_j \in E(G)\) such that \(i < j\), if \(v_i\) is in \(I\) (then certainly \(v_j\) is not in \(I\)), then add \(e^{1}_{ij}\), \(e^{2}_{ij}\), \(e^{3}_{ij}\), and \(e^{4}_{ij}\) to \(A\) and \(e^{2}_{ij}\), \(e^{3}_{ij}\) to \(B\), else if \(v_i\) is not in \(I\), then add \(e^{1}_{ij}\), \(e^{2}_{ij}\), \(e^{3}_{ij}\), and \(e^{4}_{ij}\) to \(A\).

We claim that \((A, B)\) is a pair of perfectly matched sets and \(|E(A, B)| = k + 2 \cdot |E(G)|\). For the proof of the claim, consider the following arguments.

Consider the vertices of \(V'\), in the construction, they can only be added to \(A\). For a vertex \(v'_i\) in \(V'\), if \(v_i v_j\) is an edge in \(E(G)\) where \(i < j\), then \(v'_i\) has neighbors \(e^{1}_{ij}, e^{4}_{ij}\), and if \(v'_i\) is added to \(A\), then \(e^{1}_{ij}\) and \(e^{4}_{ij}\) are also added to \(A\) (step 2). Further, if \(v_j v_i\) is an edge in \(E(G)\) where \(j < i\), then \(v'_i\) has neighbors \(e^{2}_{ij}, e^{3}_{ij}\), and if \(v'_i\) is added to \(A\), then its
Consider the vertices of V'', in the construction, they can only be added to B. We added v_i'' to B whenever we added its neighbor v_i' to A. All the vertices of V'' has degree 1. Thus, if a vertex of V'' is added to B, it has exactly one neighbor in A.

Consider the vertices of X_e, no vertex in X_e is connected to a vertex in V''. For every v_i, v_j in $E(G)$ where $i < j$, vertices e_{ij}^1 and e_{ij}^4 are connected to only v_i' in V' and e_{ij}^3, and e_{ij}^2 are connected to only v_j' in set V'. If v_i' was added to A (v_i' was not added to A), then we added both e_{ij}^4 and e_{ij}^1 to A (step 1), and for every edge v_i, v_j in $E(G)$, when e_{ij}^3, e_{ij}^4 are added to A (resp. B), then e_{ij}^1, e_{ij}^2 are added to B (resp. A). Thus, e_{ij}^1 and e_{ij}^2 are the only neighbors of each other in opposite sets, similarly e_{ij}^3 and e_{ij}^4 are the only neighbors of each other in opposite sets. Thus, every vertex in X_e has exactly one neighbor in its opposite set in (A, B).

The above conclude that every vertex in A (resp. B) has exactly one neighbor in B (resp. A), and (A, B) is a pair of perfectly matched sets. To bound $|E(A, B)|$, it will suffice to bound $|A|$ as (A, B) is a pair of perfectly matched sets. Observe that we are adding $|F| = k$ vertices from V' in A (step 1), and for every edge v_i, v_j in $E(G)$, we are adding two vertices from X_e in A (step 2). Thus, $|A| = k + 2 \cdot |E(G)|$.

For the other direction, let (A, B) be a pair of perfectly matched sets in G' such that $|E(A, B)| = k + 2 \cdot |E(G)|$. For the proof of this direction, we will modify the set A and/or B while maintaining that (A, B) remains a pair of perfectly matched sets and that $|E(A, B)|$ does not decrease. For a pair (A, B) of perfectly matched sets, we say a vertex $x \in A$ (resp. B) is matched to $y \in B$ (resp. A) if x and y are neighbors. Consider the following modifications which we will apply in the same order in which they are described, at each step, a modification is applied exhaustively.

- **M1**: If there exists a vertex $v_i' \in V' \cap A$ which is matched to a vertex $v_j' \in V' \cap B$, then remove v_j' from B and add v_i'' to B. Observe that it is safe to do so, since v_i'' is connected to only v_i' in G' and $|E(A, B)|$ remains unchanged.

- **M2**: If there exists a vertex $v_i' \in V' \cap A$ (resp. $V' \cap B$) which is matched to a vertex $e_{ij}^p \in X_e \cap B$ (resp. $X_e \cap A$) where $p \in [4]$, then remove e_{ij}^p from B (resp. A) and add v_i'' to B (resp. A). Observe that it is safe to do so, since v_i'' is connected to only v_i' in G' and $|E(A, B)|$ remains unchanged.

We apply the above modifications exhaustively and due to which, for every vertex $v_i' \in V'$, if v_i' is in $(A \cup B)$, then v_i' is matched to v_i'', and thus no two neighbors in V' can belong to opposite sets in (A, B). Further, if two distinct vertices $v_i', v_j' \in V' \cap B$ (resp. $V' \cap A$) are neighbors in G', then none of the vertices from $\{e_{ij}^1, e_{ij}^2, e_{ij}^3, e_{ij}^4\}$ can belong to A (resp. B) without violating any property of perfectly matched sets, and they can not be matched by v_i' or v_j', and hence none of them belongs to either A or B. Thus, we further modify (A, B) as follows:

- **M3**: If two distinct vertices $v_i', v_j' \in V' \cap A$ (resp $V' \cap B$) are neighbors, then we remove v_i', v_j' from A (resp. B) and remove e_{ij}^1, e_{ij}^2 from B (resp. A), we then put e_{ij}^1, e_{ij}^2 in B and e_{ij}^3, e_{ij}^4 in A. Observe that this modification maintains that (A, B) remains perfectly matched sets and $|E(A, B)|$ remains unchanged.
Exhaustive application of the above modification ensures that no two neighbors in V' belong to $A \cup B$. Recalling that $|E(A, B)| = k + 2 \cdot |E(G)|$, and that any vertex from X_e if belongs to $A \cup B$ is matched to a vertex from X_e. Since there are at most $4 \cdot |E(G)|$ vertices in X_e, they contribute at most $2 \cdot |E(G)|$ to the $|E(A, B)|$. Thus, there must be at least k vertices from V' in $A \cup B$ as V'' vertices can only be matched to vertices of V'. As discussed earlier, no two neighbors in V' belong to $A \cup B$. Thus, let $I^* = \{v_i \mid v'_i \in V' \cap (A \cup B)\}$. Recalling that v'_i and v'_j are adjacent in G' if and only if v_i and v_j are adjacent in G, this ensures I^* is an independent set in G and $|I^*| = k$. This finishes the proof.

8 Conclusions

We showed PMS to be $W[1]$-hard with respect to solution size, while obtaining FPT algorithms with respect to several structural parameters. We leave open the problem of obtaining an exponential time algorithm with time complexity significantly lower than than our bound of $O^*(1.966^n)$.

Acknowledgements. We thank anonymous reviewers for their feedback and useful suggestions.

References. We thank anonymous reviewers for their feedback and useful suggestions.

1. NR Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare. On structural parameterizations of the matching cut problem. In International Conference on Combinatorial Optimization and Applications, pages 475–482. Springer, 2017.
2. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Cross-composition: A new technique for kernelization lower bounds. In Thomas Schwentick and Christoph Dürr, editors, 28th International Symposium on Theoretical Aspects of Computer Science, STACS 2011, March 10-12, 2011, Dortmund, Germany, volume 9 of LIPIcs, pages 165–176. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011. doi:10.4230/LIPIcs.STACS.2011.165
3. Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles and disjoint paths. Theoretical Computer Science, 412(35):4570–4578, 2011. URL: https://www.sciencedirect.com/science/article/pii/S0304397511003483, doi:https://doi.org/10.1016/j.tcs.2011.04.039.
4. P.S. Bonsma. The complexity of the matching-cut problem for planar graphs and other graph classes. Journal of Graph Theory, 62(2):109–126, 2009. doi:10.1002/jgt.20390.
5. Anudhyan Boral, Marek Cygan, Tomasz Kociumaka, and Marcin Pilipczuk. A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst., 58(2):357–376, 2016. doi:10.1007/s00224-015-9631-7
6. Kathie Cameron. Induced matchings. Discret. Appl. Math., 24(1-3):97–102, 1989. doi:10.1016/0166-218X(92)80027-F.
7. Kathie Cameron. Induced matchings in intersection graphs. Discret. Math., 278(1-3):1-9, 2004. doi:10.1016/j.disc.2003.05.001.
8. Kathie Cameron, R. Sritharan, and Yingwen Tang. Finding a maximum induced matching in weakly chordal graphs. Discret. Math., 266(1-3):133–142, 2003. doi:10.1016/S0012-365X(02)00803-8.
9. Vasek Chvátal. Recognizing decomposable graphs. Journal of Graph Theory, 8(1):51–53, 1984.
10. Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2012. doi:10.1017/030780511977619.
11 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. *Theory Comput. Syst.*, 33(2):125–150, 2000. doi:10.1007/s002249910009

12 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. *Discrete Applied Mathematics*, 101(1):77–114, 2000. URL: https://www.sciencedirect.com/science/article/pii/S0166218X99001845 doi:https://doi.org/10.1016/S0166-218X(99)00184-5

13 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. *Parameterized Algorithms*. Springer, 2015. doi:10.1007/978-3-319-21275-3

14 Rodney G. Downey and Michael R. Fellows. *Fundamentals of Parameterized Complexity*. Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1

15 Rodney G. Downey, Michael R. Fellows, and Venkatesh Raman. The complexity of irredundant sets parameterized by size. *Discrete Applied Mathematics*, 100(3):155–167, 2000. doi:https://doi.org/10.1016/S0166-218X(99)00185-7

16 Rok Erman, Łukasz Kowalik, Matjaž Krnc, and Tomasz Walen. Improved induced matchings in sparse graphs. *Discret. Appl. Math.*, 158(18):1994–2003, 2010. doi:10.1016/j.dam.2010.08.026

17 Petr A. Golovach, Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Refined notions of parameterized enumeration kernels with applications to matching cut enumeration. In Markus Bläser and Benjamin Monmege, editors, *38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021*, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs, pages 37:1–37:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.37

18 Martin Charles Golumbic and Moshe Lewenstein. New results on induced matchings. *Discret. Appl. Math.*, 101(1-3):157–165, 2000. doi:10.1016/S0166-218X(99)00194-8

19 Guilherme C. M. Gomes and Ignasi Sau. Finding Cuts of Bounded Degree: Complexity, FPT and Exact Algorithms, and Kernelization. In Bart M. P. Jansen and Jan Arne Telle, editors, *14th International Symposium on Parameterized and Exact Computation (IPEC 2019)*, volume 148 of LIPIcs, pages 19:1–19:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2019/11480 doi:10.4230/LIPIcs.IPEC.2019.19

20 Ron L Graham. On primitive graphs and optimal vertex assignments. *Ann. New York Acad. Sci.*, 175:170–186, 1970.

21 Sushmita Gupta, Venkatesh Raman, and Saket Saurabh. Maximum r-regular induced subgraph problem: Fast exponential algorithms and combinatorial bounds. *SIAM J. Discret. Math.*, 26(4):1758–1780, 2012. doi:10.1137/09077850X

22 Pinar Hegeneres and Jan Arne Telle. Partitioning graphs into generalized dominating sets. *Nord. J. Comput.*, 5(2):128–142, 1998.

23 Sun-Yuan Hsieh, Hoàng-Oanh Le, Van Bang Le, and Sheng-Lung Peng. Matching cut in graphs with large minimum degree. In Ding-Zhu Du, Zhenhua Du, and Cong Tian, editors, *Computing and Combinatorics - 25th International Conference, COCOON 2019*, Xi’an, China, July 29-31, 2019, Proceedings, volume 11653 of Lecture Notes in Computer Science, pages 301–312. Springer, 2019. doi:10.1007/978-3-030-26176-4_25

24 Iyad A. Kanj, Michael J. Pelsmajer, Marcus Schaefer, and Ge Xia. On the induced matching problem. *J. Comput. Syst. Sci.*, 77(6):1058–1070, 2011. doi:10.1016/j.jcss.2010.09.001

25 Ton Kloks. *Treewidth, Computations and Approximations*, volume 842 of Lecture Notes in Computer Science. Springer, 1994. doi:10.1007/3-540-04537-5

26 C. W. Ko and F. Bruce Shepherd. Bipartite domination and simultaneous matroid covers. *SIAM J. Discret. Math.*, 16(4):517–523, 2003. doi:10.1137/S089548019828371X
Daniel Kobler and Udi Rotics. Finding maximum induced matchings in subclasses of claw-free and P 5-free graphs, and in graphs with matching and induced matching of equal maximum size. *Algorithmica*, 37(4):327–346, 2003. doi:10.1007/s00453-003-1035-4.

Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Matching cut: Kernelization, single-exponential time fpt, and exact exponential algorithms. *Discret. Appl. Math.*, 283:44–58, 2020. doi:10.1016/j.dam.2019.12.010.

Dieter Kratsch et al. Algorithms solving the matching cut problem. *Theoretical Computer Science*, 609:328–335, 2016.

Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Matching cut: Kernelization, single-exponential time fpt, and exact exponential algorithms. *Discret. Appl. Math.*, 283:44–58, 2020. doi:10.1016/j.dam.2019.12.010.

Dieter Kratsch et al. Algorithms solving the matching cut problem. *Theoretical Computer Science*, 609:328–335, 2016.

Hoàng-Oanh Le and Van Bang Le. On the complexity of matching cut in graphs of fixed diameter. In Seok-Hee Hong, editor, 27th International Symposium on Algorithms and Computation, ISAAC 2016, December 12-14, 2016, Sydney, Australia, volume 64 of LIPIcs, pages 50:1–50:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ISAAC.2016.50.

Hoàng-Oanh Le and Van Bang Le. A complexity dichotomy for matching cut in (bipartite) graphs of fixed diameter. *Theor. Comput. Sci.*, 770:69–78, 2019. doi:10.1016/j.tcs.2018.10.029.

Van Bang Le and Jan Arne Telle. The perfect matching cut problem revisited. In Łukasz Kowalik, Michal Pilipczuk, and Pawel Rzążewski, editors, *Graph-Theoretic Concepts in Computer Science - 47th International Workshop, WG 2021, Warsaw, Poland, June 23-25, 2021, Revised Selected Papers*, volume 12911 of *Lecture Notes in Computer Science*, pages 182–194. Springer, 2021. doi:10.1007/978-3-030-86838-3_14.

Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. *J. Comb. Theory, Ser. B*, 96(4):514–528, 2006. doi:10.1016/j.jctb.2005.10.006.

Neil Robertson and Paul D. Seymour. Graph minors. III. planar tree-width. *J. Comb. Theory, Ser. B*, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

Larry J. Stockmeyer and Vijay V. Vazirani. NP-completeness of some generalizations of the maximum matching problem. *Inf. Process. Lett.*, 15(1):14–19, 1982. doi:10.1016/0020-0190(82)90077-1.

Mingyu Xiao and Huan Tan. Exact algorithms for maximum induced matching. *Inf. Comput.*, 256:196–211, 2017. doi:10.1016/j.ic.2017.07.006.

Michele Zito. Induced matchings in regular graphs and trees. In Peter Widmayer, Gabriele Neyer, and Stephan J. Eidenbenz, editors, *Graph-Theoretic Concepts in Computer Science, 25th International Workshop, WG ’99, Ascona, Switzerland, June 17-19, 1999, Proceedings*, volume 1665 of *Lecture Notes in Computer Science*, pages 89–100. Springer, 1999. doi:10.1007/3-540-46784-X_10.