Geographically-Balanced Gigaword Corpora for 50 Language Varieties

Jonathan Dunn, Benjamin Adams
University of Canterbury
Christchurch, New Zealand
{jonathan.dunn, benjamin.adams}@canterbury.ac.nz

Abstract
While text corpora have been steadily increasing in overall size, even very large corpora are not designed to represent global population demographics. For example, recent work has shown that existing English gigaword corpora over-represent inner-circle varieties from the US and the UK (Dunn, 2019b). To correct implicit geographic and demographic biases, this paper uses country-level population demographics to guide the construction of gigaword web corpora. The resulting corpora explicitly match the ground-truth geographic distribution of each language, thus equally representing language users from around the world. This is important because it ensures that speakers of under-resourced language varieties (i.e., Indian English or Algerian French) are represented, both in the corpora themselves but also in derivative resources like word embeddings.

Keywords: corpus building, geo-referenced corpus, web as corpus, language mapping, under-resourced language varieties

1. Under-Represented Populations

Where does digital language data come from and how well does it match up with the geographic distribution of human populations? This is an important question because NLP now depends on large text corpora (Baroni et al., 2009; Goldhahn et al., 2012; Majliš and Zabokrtský, 2012; Benko, 2014) that are derived from digital sources like web pages and social media. This paper raises two more cognate questions. First, are there populations that existing corpora fail to represent? Second, is there a significant difference between regional varieties of languages, so that, e.g., a model trained on American English would work poorly on Nigerian English (Davies and Fuchs, 2015; Cook and Brinton, 2017)? If the answer to both of these questions is yes, it follows that NLP needs to switch to geographically-balanced datasets. This paper derives such geographically-balanced gigaword corpora from the 423 billion word Corpus of Global Language Use (Dunn, 2020). The resulting family of corpora, GeoWAC, is evaluated against the CoNLL 2017 Shared Task data (Ginter et al., 2017) to determine the differences between otherwise comparable balanced and unbalanced corpora.

In Section 2 we review recent work showing that there are strong geographic effects present in digital language sources. Then in Section 3 we describe the collection and cleaning methods used to produce the GeoWAC corpus family. In Section 4 we develop a population-based sampling method that is used to adjust the amount of data drawn from each country. Section 5 describes the geographic distribution of the corpora that this sampling method produces. Section 6 evaluates the GeoWAC corpora against a baseline dataset that is not collected with geographic information, using both a corpus similarity evaluation and a word embedding evaluation. The primary contribution of this paper is to systematically remove the geographic biases that are present in existing gigaword corpora and to evaluate the difference between biased and unbiased datasets. These corpora are available in full under the GNU GPL license.

www.earthlings.io/geowac_map.html

2. Is Geographic Variation Significant?

An initial justification for the development of geographically-balanced gigaword corpora is based on a simple question: is there a significant difference between national varieties of languages (i.e., American English vs. Indian English or Cuban Spanish vs. Spanish)? The more linguistic variation there is across national varieties, the more important it is to provide a balanced representation when training models in NLP.

First, we know from a long tradition of small-scale linguistic studies of non-digital language use that there is significant variation across geographic varieties (Erich, 2010). Do digital data sources continue to reflect this same variation or do digital registers constitute a non-geographic context in which geography is irrelevant? Recent work has shown that there is a significant correlation between manually-collected linguistic variants from the BBC Voices project (Upton, 2013) and automatically-collected linguistic variants from geo-referenced Twitter usage in the UK (Grieve et al., 2019). Another study has shown that there are strong correlations between web corpora from Canada and traditional Canadian dialect features (Cook and Brinton, 2017). While much of this type of work is based on English in inner-circle countries, there is nevertheless a consistent link between traditional studies of geographic variation and studies based on digital language data.

Second, we know from recent work on computational dialect modeling that both lexical and syntactic representations support the identification of national varieties with a high degree of accuracy, both for English (Dunn, 2019c) and other international languages (Dunn, 2019b). Furthermore, models of English dialects often group together inner-circle varieties separately from outer-circle varieties (Dunn, 2019b; Szmrecsanyi et al., 2019). This shows that there is a hierarchical organization of geographic variation, as predicted by the World Englishes paradigm (Kachru, 1982). Finally, work on grammar induction has shown that a construction grammar trained on biased CoNLL datasets has a significantly better fit on data from inner-circle countries than data from outer-circle countries (Dunn, 2019a).
These two pieces of evidence, the correspondence between traditional and digital dialect studies as well as the ability to accurately distinguish between geographically-defined language varieties, indicate that there is a significant amount of geographic variation in digital datasets. The implication, then, is that a corpus of American English or Swiss French does not provide an adequate sample of Indian English or Algerian French. Given the technical importance of large background corpora for training models in NLP and the social importance of increasing the demographic representation of models in NLP, the goal of GeoWAC is to provide data for under-resourced language varieties.

3. Collecting Geo-Referenced Documents

The data for this paper comes from the Common Crawl\footnote{https://www.commoncrawl.org} as processed in the Corpus of Global Language Use (henceforth, CGLU). This project includes the Common Crawl data from March 2014 until June 2019, a total of 147 billion web pages. This 423 billion word dataset has previously been visualized to show the underlying geographic biases of both web data and Twitter data. The contribution of this paper is to produce and evaluate usable balanced corpora out of this much larger and imbalanced dataset.

The original corpus is sorted by language using the idNet language identification software\footnote{https://www.earthlings.io} assigning each web page to a single language. Here this dataset is further cleaned by splitting web pages by paragraph tags, deduplicating by paragraph, and checking language identification using the CLD2 and CLD3 language identification models\footnote{https://github.com/jonathandunn/idNet, https://github.com/GregBowyer/cld2-cffi, https://github.com/bsolomon1124/pyclld3}.

This method produces gigaword corpora for 48 languages (with English divided into separate inner-circle, outer-circle, and expanding-circle corpora). In order to balance the geographic distribution of the corpora, ground-truth demographic data from individual countries is used to downsample the amount of data per country until the corpus matches population demographics as closely as possible.

4. Population-based Sampling

How do we determine the proportion of each language’s corpus that should come from a specific country? This section describes a population-based sampling method that considers three pieces of information: first, UN estimates of the population of each country \cite{UnitedNations2017}; second, the number of people in each country with internet access \cite{UnitedNations2011}; and third, the percentage of digital language use from each country that belongs to a specific language \cite{Dunn2019}.

Ideally, the number of words in each corpus would be proportionate to the number of people in each country who use that language in digital contexts. In other words, if Ireland accounts for 5% of the English-speaking digital population of the world, then Irish English should account for 5% of the corpus of English.

The sampling algorithm, shown in Table\ref{tab:sampling_algorithm}, first calculates the geographic distribution of the digital population for each language. The variable \textit{Digital_Population} represents the number of internet users in each country. The variable \textit{Digital_Language_Population} is thus the relative share of the digital population that is allocated to a specific language like English or French or Russian. This is calculated against the entire CGLU corpus\footnote{https://www.commoncrawl.org} because census-based language use estimates are not available for many countries and because there is a possible disconnect between digital and non-digital language use.

Variables
\textit{Population} = The number of people living in a country (from UN estimates)
\textit{Pct_Internet_Access} = Relative internet availability in a country (by percent of population)
\textit{Digital_Population} = \textit{Population} \times \textit{Pct_Internet_Access} (The digital population of a country)
\textit{Pct_of_Country} = A specific language’s share of a country’s digital language production
\textit{Digital_Language_Population} = \textit{Digital_Population} \times \textit{Pct_of_Country} (A language’s share of the digital population)
\textit{Threshold} = Number of words desired in the corpus

Algorithm
while \(N_Words_Total < \text{Threshold}\)
for \textit{country} in corpus:
\textit{Target_Pct} = \textit{Digital_Language_Population} \div \textit{Global_Max}
\textit{Current_Pct} = \textit{N_Words_Country} \div \textit{N_Words_Total}
if \textit{Current_Pct} = \textit{Target_Pct}:
\textit{N_Word_Country} = \textit{N_Words_Country} - 1,000
otherwise:
\textit{N_Word_Country} = \max(\textit{N_Word_Country} - 1,000, \textit{N_Words_Country})

Table 1: Population-Based Sampling Algorithm.

Given the digital language population for each country, we use the global sum (i.e., the world population of Spanish users) to determine the relative proportion of the overall corpus (i.e., for Spanish) that each country should contribute. This provides the target sampling: the percentage of words from a country in the Spanish corpus should match that country’s percentage of global Spanish speakers. The only exception is that no country is down-sampled below 1 million words, allowing the corpora to maintain a broad geographic distribution.

This ideal case is not always possible because in cases like South Asia and Sub-Saharan Africa the actual population is under-represented \cite{Dunn2019}. Such imbalances are reduced, but not eliminated, by basing the sam-
Table 2: GeoWAC Corpus Family.

ISO3 Code	Language Name	Total Words	Share of Largest Country	ISO3 Code	Language Name	Total Words	Share of Largest Country
ara	Arabic	618 mil	16.56%	kaz	Kazakh	95 mil	96.85%
aze	Azerbaijani	204 mil	97.33%	kor	Korean	294 mil	88.80%
bel	Belarusan	71 mil	95.76%	lav	Latvian	282 mil	97.96%
bul	Bulgarian	906 mil	98.06%	lit	Lithuanian	787 mil	99.13%
cat	Catalan	103 mil	65.18%	mld	Moldavian	119 mil	98.06%
ces	Czech	1,117 mil	86.61%	mon	Mongolian	121 mil	99.24%
dan	Danish	1,054 mil	94.40%	nld	Dutch	1,136 mil	44.93%
deu	German	1,108 mil	18.33%	nor	Norwegian	1,191 mil	94.72%
ell	Greek	1,053 mil	98.69%	pol	Polish	1,107 mil	86.87%
eng	English (Inner)	2,042 mil	24.98%	por	Portuguese	1,779 mil	67.41%
eng	English (Outer)	1,909 mil	39.04%	rom	Romanian	1,062 mil	83.11%
eng	English (Expanding)	2,100 mil	1.48%	rus	Russian	2,128 mil	8.82%
est	Estonian	492 mil	98.67%	slk	Slovak	1,109 mil	94.89%
fas	Farsi	1,124 mil	89.65%	slv	Slovenian	481 mil	98.25%
fin	Finnish	1,100 mil	96.98%	spa	Spanish	2,051 mil	9.32%
fra	French	2,085 mil	16.92%	sqi	Albanian	126 mil	76.48%
gle	Irish	21 mil	96.96%	swe	Swedish	1,099 mil	86.45%
hbs	Serbo-Croatian	1,036 mil	50.10%	tam	Tamil	87 mil	77.45%
hin	Hindi	231 mil	94.22%	tgl	Tagalog	28 mil	81.81%
hun	Hungarian	1,100 mil	89.98%	tur	Turkish	142 mil	24.63%
ind	Indonesian	438 mil	44.01%	ukr	Ukrainian	517 mil	88.77%
isl	Icelandic	180 mil	98.89%	urd	Urdu	46 mil	77.53%
ita	Italian	1,097 mil	77.63%	uzb	Uzbek	39 mil	98.10%
jpn	Japanese	1,099 mil	25.09%	vie	Vietnamese	1,100 mil	90.31%
kat	Georgian	137 mil	99.07%	zho	Chinese	2,099 mil	54.59%

In practice, there are four classes of languages in the GeoWAC corpus family. First, some languages (like Hindi or Georgian) do not reach the billion word threshold; these languages are not down-sampled at all. Rather, each corpus reports the geographic distribution of the data that is available. While this approach does not create geographically-balanced corpora, it does move a step forward in explicitly showing the biases of the corpora.

Second, some languages (like Greek and Bulgarian) reach the billion word threshold but are mainly used in one or two countries. These languages are balanced by population, but given the geographic concentration of Bulgarian speakers, for example, the GeoWAC Bulgarian corpus is unlikely to be significantly different than a baseline Bulgarian corpus.

Third, some languages (like Chinese and French) are used by a large international community that spans many individual countries. These corpora are capped at 2 billion words each and fully balanced using the algorithm in Table 1. While population balancing is important for all languages, it is international languages like these that are most likely to be imbalanced in the first place.

Fourth, English in digital contexts is unusually prominent, even in countries that are not traditionally English-speaking. This would lead, given the population-based sampling algorithm, to an under-representation of prototypically English-speaking countries. Thus, the English corpora are divided into 2 billion word sets representing inner-circle, outer-circle, and expanding circle varieties (Kachru, 1982). This allows a balanced version with traditional countries (the US, the UK, Canada, Ireland, Australia, New Zealand) while also capturing the ever-expanding reach of English as an international language.

5. Corpus Descriptions

The fifty corpora in the GeoWAC corpus family are shown in Table 2 by language, with the number of words as well as the maximum contribution of a single country for each corpus. For example, the Vietnamese corpus is 1.1 billion words, 90% of which is from Vietnam; the Chinese corpus is 2 billion words, 54% of which is from China. This gives an initial rough estimate of the geographic distribution of each corpus: the smaller the maximum value, the more dispersed the corpus is across countries. First, as discussed above, we have smaller corpora which are unsampled because they are under a billion words in total; for these, the distribution is reported but not balanced. There are 24 of these unbalanced language corpora; 14 of these languages are drawn mainly (above 90%) from a single country. Second, the distribution is reported but not balanced. There are 24 of these unbalanced language corpora; 14 of these languages are drawn mainly (above 90%) from a single country. Four of the unbalanced corpora, however, are widely distributed: Arabic, Turkish, Indonesian, and Catalan. The point is that, even without population-based sampling, these four corpora are known to represent international populations. The full distribution of each language is also available as an external resource.7

7 https://github.com/jonathandunn/earthLings/tree/master/GeoWAC
Second, we have gigaword corpora for 18 languages. Of these, four have a wide distribution (no more than 50% from a single country): German, Dutch, Japanese, and Serbo-Croatian. A further eight of these corpora are moderately distributed, with between 70% and 90% from a single country: Italian, Romanian, Swedish, Czech, Polish, Farsi, Hungarian, and Vietnamese. Each of these languages provides a case in which population-based sampling can remove geographic biases.

Third, we have eight gigaword corpora with 2 billion words each. These are specifically for widely dispersed languages: English (in three sub-sets), French, Portuguese, Russian, Spanish, and Chinese. These corpora are the most striking case in which population-based sampling is important for reducing geographic bias. For example, the largest country in the Russian corpus contributes only 8.82% of the total and the largest country in the corpus of expanding-circle English contributes only 1.48%. This dispersion means that the corpus does not represent only a single, restricted population. For example, the Russian corpus contains at least 100 million words each from Russia, Ukraine, Kazakhstan, Belarus, Kyrgyzstan, and Latvia; and over 60 million words each from Estonia, Uzbekistan, Ecuador, Azerbaijan, Moldova, and the United States.

To what degree do geographically concentrated languages benefit from population-based sampling? A good case study is German, which has approximately 200 million words each from Germany, Austria, and Switzerland. Thus, the main contribution to the corpus is from inner-circle countries. But there are also significant amounts of data (between 28 and 48 million words) from the United States, Sweden, Luxembourg, and Palau (once a part of German New Guinea). Similarly, the Serbo-Croatian corpus (or HBS, a cover term) is made up of large chunks from Croatia, from Serbia, and from Bosnia and Herzegovina. Thus, a geo-referenced approach is also important in cases where national boundaries fail to represent language populations. A similar situation is represented by Slovak (mostly from Slovakia but also from Czechia) and Czech (mostly from Czechia but also from Slovakia), in which geographic information can be triangulated against linguistic information.

5.1. Distribution of Major Languages

The languages which benefit most from geographic-balancing are those which are used across a large number of individual countries. In this section we take a closer look at inner-circle and outer-circle English, French, and Spanish. The goal is to examine the distribution of each corpus and, focusing on Spanish, to compare the balanced and unbalanced alternatives. The full distribution for each language is available as an external resource.

The distribution for inner-circle Engishes is shown in Table 3 and for outer-circle Engishes in Table 4. In both cases the inventory of countries is pre-defined, but the relative share allocated to each country is determined by the sampling algorithm. For inner-circle Engishes, the corpus is equally divided between the four central varieties: the US, Canada, the UK, and Ireland. The representation of New Guinea). Similarly, the Serbo-Croatian corpus (or HBS, a cover term) is made up of large chunks from Croatia, from Serbia, and from Bosnia and Herzegovina. Thus, a geo-referenced approach is also important in cases where national boundaries fail to represent language populations. A similar situation is represented by Slovak (mostly from Slovakia but also from Czechia) and Czech (mostly from Czechia but also from Slovakia), in which geographic information can be triangulated against linguistic information.

Country	N. Words	Pct. Corpus
Ireland	510 mil	24.98%
Canada	510 mil	24.98%
United States	500 mil	24.48%
United Kingdom	464 mil	22.74%
New Zealand	46 mil	2.29%
Australia	10 mil	0.53%
TOTAL	2,082 mil	100.00%

Table 3: Distribution of Inner-Circle English Corpus.

For outer-circle Englishes, the corpus is almost 40% from India, reflecting that country’s high population. French, in Table 5, is not divided into pre-defined inner-circle and outer-circle varieties; although French has a similar colonial history, such a division is not as common as for English. And yet there is a natural division between highly represented inner-circle varieties (France, Canada, Belgium, Switzerland) and a mix of less-represented outer-circle (Morocco, Senegal) and expanding-circle varieties (the US). The colonial history of France is represented by both African (Morocco, Algeria, Senegal) and South Pacific varieties (Viet Nam, French Polynesia).

Country	N. Words	Pct. Corpus
France	352 mil	16.92%
Canada	352 mil	16.89%
Belgium	348 mil	16.71%
Switzerland	284 mil	13.65%
Morocco	97 mil	4.67%
Colombia	95 mil	4.58%
Luxembourg	66 mil	3.20%
United States	39 mil	1.91%
Italy	29 mil	1.40%
Senegal	24 mil	1.20%
Russia	21 mil	1.05%
Gabon	19 mil	0.91%
Algeria	18 mil	0.89%
Spain	17 mil	0.86%
Viet Nam	17 mil	0.85%
French Polynesia	17 mil	0.84%
Central African Rep.	15 mil	0.75%
Tunisia	14 mil	0.68%
TOTAL	2,085 mil	100.00%

Table 5: Distribution of French Corpus.
Figure 1: Distribution of Spanish without Population-based Sampling.

Figure 2: Distribution of Spanish with Population-based Sampling.
The distribution of the Spanish corpus is shown in Table 6. Here again the corpus is naturally segmented into major varieties (over 100 million words per country: Spain, Cuba, Chile, Colombia, Mexico, Peru) and less major varieties (under 100 million words: Ecuador, Honduras, Guatemala, Costa Rica). This reflects the size of the digital population of Spanish users in each country.

The importance of population-based sampling can be visualized by comparing the maps of the distribution of Spanish without population-based sampling (in Figure 1) and with population-based sampling (in Figure 2). In the first case, the sheer amount of data from Spain over-shadows data from all countries except Mexico and Chile. Drawn at random, a corpus would almost entirely represent Spain. In the second case, however, population-based sampling has reduced this hegemony, with substantial representations from across South America and Central America.

5.2. Country-Specific Corpora

While the overall goal of GeoWAC is to provide unbiased corpora, there are certain applications for which large single-country corpora are useful. For languages like Greek or Estonian, most of the corpus already comes from a single country. But for languages like Russian the amount of data for any given country is limited in the interest of representing many countries. In order to provide extra representation for major varieties of major languages, we also provide large country-specific corpora for languages which are widely distributed across countries in the main GeoWAC dataset: Arabic, Chinese, English, French, Portuguese, Spanish, and Russian. The summary of these country-specific corpora is shown in Table 7, with the language and country information together with the total number of words in each corpus.

This provides gigaword corpora for the central varieties of major languages: English in America, French in France, Portuguese in Portugal, Spanish in Spain, Russian in Russia. While the main family of corpora provide geographically balanced representations, these corpora provide geographically homogenous representations. As before, these corpora are available in full under the GNU GPL License.

6. Evaluation

This section evaluates the balanced GeoWAC corpora against the unbalanced but otherwise comparable CoNLL 2017 Shared Task data (Ginter et al., 2017). The question is whether it makes a difference to collect geo-referenced data and then balance the datasets using population demographics: are the corpora substantially different from corpora which are compiled without these requirements? We break this into two questions. First, are the corpora themselves significantly different from the CoNLL baselines? In other words, if we view each set of corpora as producing ranks of unigram frequencies, do the texts themselves represent different classes? Second, are the products of the corpora different when collapsed into low-dimensional representations? In other words, if we train word embeddings from each corpora, are word similarity measures consistent across both datasets?

Table 6: Distribution of Spanish Corpus.

Country	N. Words	Pct. Corpus
Spain	191 mil	9.32%
Cuba	190 mil	9.31%
Chile	190 mil	9.29%
Colombia	189 mil	9.24%
Mexico	188 mil	9.20%
Peru	188 mil	9.19%
Ecuador	70 mil	3.45%
Timor-Leste	66 mil	3.26%
Honduras	66 mil	3.24%
France	65 mil	3.19%
United States	55 mil	2.71%
Liechtenstein	42 mil	2.09%
Guatemala	34 mil	1.68%
Canada	34 mil	1.66%
Dominican Republic	32 mil	1.59%
Costa Rica	26 mil	1.28%
El Salvador	25 mil	1.22%
TOTAL	**2,051 mil**	**100.00%**

Table 7: Inventory of Country-Specific Corpora.
6.1. Comparison with CoNLL Baseline Corpora

How similar are geographically balanced corpora with the unbalanced CoNLL baseline web corpora? To answer this question, we take the 36 languages (out of 48 total) which are represented in both datasets, as shown in Table 8. First, we show the size of each corpus by number of words. In most cases the CoNLL corpora have no ceiling while the GeoWAC corpora are capped at 1 or 2 billion words.

Work on corpus similarity (Kilgarriff, 2001; Fothergill et al., 2016) has shown that the χ^2 measure, based on ranks of unigram frequencies, can accurately predict the overall similarity between two corpora in tightly-controlled experimental settings. This particular measure out-performs model-based approaches but is sensitive to mismatches in corpus size. Because the two datasets are not the same size per language, we instead use Spearman’s rank correlation, which has been shown to work best in such cases (Kilgarriff, 2001; Fothergill et al., 2016).

The first step is to align the unigrams from both corpora: here, a word must occur at least ten times in both datasets before it is included in this measure. While earlier formulations limited the number of words, it has been shown that including more vocabulary items increases the accuracy of the measure (Fothergill et al., 2016). In Table 8 the number of shared vocabulary items for each language is also shown, ranging from 26,000 (Hindi) to 1,228,000 (Hungarian).

The higher the Spearman correlation, the more similar the GeoWAC and CoNLL corpora are for a given language. In cases where the similarity is relatively high (for example, Italian with 0.82) the process of balancing the corpora has had less impact on the data itself than in cases where the similarity is relatively low (for example, Vietnamese with 0.65). Even in these cases, however, there is substantial difference between the datasets, showing that population-based sampling produces corpora that differ significantly from unbalanced alternatives.

Table 8: Similarities between CoNLL and GeoWAC corpora using Spearman’s rank correlation coefficient.

ISO3 Code	Language Name	CoNLL (Corpus Size)	GeoWAC (Corpus Size)	Shared Unigrams	Spearman’s ρ
ara	Arabic	1,083 mil	592 mil	562,897	0.79
bul	Bulgarian	277 mil	826 mil	327,559	0.76
cat	Catalan	701 mil	106 mil	114,937	0.73
ces	Czech	1,449 mil	1,091 mil	855,925	0.82
dan	Danish	1,203 mil	1,031 mil	606,384	0.74
deu	German	4,725 mil	1,093 mil	1,051,195	0.75
ell	Greek	542 mil	939 mil	522,709	0.71
eng	English (Inner)	7,272 mil	2,025 mil	428,515	0.71
eng	English (Outer)	7,272 mil	1,896 mil	463,212	0.61
eng	English (Expanding)	7,272 mil	2,263 mil	662,101	0.67
est	Estonian	234 mil	472 mil	503,558	0.72
fas	Farsi	927 mil	1,126 mil	345,194	0.76
fin	Finnish	753 mil	1,062 mil	1,177,237	0.71
fra	French	4,460 mil	2,140 mil	612,753	0.75
gle	Irish	19 mil	21 mil	37,682	0.66
hbs	Serbo-Croatian	460 mil	875 mil	510,963	0.78
hin	Hindi	132 mil	407 mil	26,936	0.62
hun	Hungarian	1,213 mil	1,095 mil	1,228,055	0.80
ind	Indonesian	4,491 mil	429 mil	244,744	0.73
ita	Italian	4,432 mil	1,098 mil	530,837	0.82
jpn	Japanese	3,850 mil	1,099 mil	550,749	0.58
kor	Korean	404 mil	293 mil	547,057	0.57
nld	Dutch	2,314 mil	1,122 mil	649,285	0.75
nor	Norwegian	997 mil	990 mil	525,370	0.69
pol	Polish	3,854 mil	1,078 mil	912,666	0.82
por	Portuguese	5,111 mil	1,754 mil	533,137	0.74
ron	Romanian	2,256 mil	1,050 mil	521,309	0.83
rus	Russian	2,287 mil	2,077 mil	1,109,541	0.76
slk	Slovak	551 mil	1,078 mil	662,990	0.79
slv	Slovenian	374 mil	473 mil	369,726	0.79
spa	Spanish	4,762 mil	2,020 mil	625,192	0.80
swe	Swedish	2,184 mil	1,086 mil	774,103	0.77
tur	Turkish	2,729 mil	142 mil	346,834	0.77
ukr	Ukrainian	355 mil	501 mil	433,176	0.72
vie	Vietnamese	3,835 mil	1,088 mil	138,960	0.65
zho	Chinese	1,304 mil	2,028 mil	193,347	0.31
In addition to being balanced by population, the English corpora is divided into inner-circle, outer-circle, and expanding-circle sub-sets. Previous work has shown that baseline datasets better represent inner-circle varieties (Dunn, 2019). We see a similar pattern here: the inner-circle sub-set is most similar to the CoNLL baseline (0.71); the outer-circle sub-set is the least similar (0.61). This provides yet another confirmation of the strong inner-circle bias of existing gigaword corpora.

The next question is whether the divergences between the two datasets are related to the relative geographic distribution of each language. First, the languages with less than 70% of the corpus coming from a single country (i.e., those with the widest geographic distribution) have the lowest average similarity with the baseline: 0.70. Second, those languages with a narrow distribution (between 70% and 90% coming from a single country) have the highest similarity: 0.75. The point is that all corpora are substantially different as a result of population-based sampling, but languages that are used across many countries are likely to be more different.

6.2. Comparison with CoNLL Embeddings

For a further evaluation of the sampling algorithm, we compare word embeddings that are trained on both sets of corpora. This provides more insight into the context of word usage in each corpus family. For a baseline we use the CoNLL 2017 shared task word embeddings of dimension 100 that were created using the word2vec model (Mikolov et al., 2013; Ginter et al., 2017). We generate similar 100-dimensional word2vec embeddings for each language using the balanced GeoWAC corpora.

In order to compare the word embeddings we adopt a technique previously developed to compare the stability of word embeddings across multiple trainings (Hellrich et al., 2019). For each language, a set of 1,000 anchor terms, \(A \), are selected from the CoNLL corpus based on the most common occurrences in that corpus. Then the \(n \) most similar words \(msw \) are calculated using cosine distance for both the CoNLL and GeoWAC word embeddings. The Jaccard coefficient \(j \) is then calculated for the two sets of most similar words:

\[
 j = \frac{1}{|A|} \sum_{a \in A} \frac{|msw_{CoNLL}(a,n) \cap msw_{GeoWAC}(a,n)|}{|msw_{CoNLL}(a,n) \cup msw_{GeoWAC}(a,n)|}
\]

The results with \(n = 10 \) are shown in Table 9. These results show that the Jaccard coefficients are quite low. Although there is an inherent instability in word2vec-like word embeddings, as shown in (Hellrich et al., 2019), these Jaccard coefficients are lower than would be expected from normal instability. This indicates that the geographically-balanced corpora represent a substantially different set of examples of word usage than the CoNLL corpora.

At the same time, it is notable that the Jaccard coefficients across most languages fall inside a rather narrow band between 0.16 and 0.22. This means that for most languages, given the top-10 most similar words for the most frequent 1,000 words, the two data sets share an average of two words. This shows that population-based sampling is likely to have significant downstream impacts on modeling tasks. Further, there is a significant correlation of 0.62 between the corpus similarity measures and the word embedding similarity measures across languages, showing that these two sets of evaluations are representing an underlying divergence between the balanced and unbalanced corpora.

ISO3 Code	Language Name	Jaccard Coefficient
ara	Arabic	0.1318
bul	Bulgarian	0.1713
cat	Catalan	0.1525
ces	Czech	0.2005
dan	Danish	0.1596
deu	German	0.2140
ell	Greek	0.1131
eng	English (Inner)	0.1873
eng	English (Outer)	0.2139
eng	English (Expanding)	0.2169
est	Estonian	0.1883
fas	Farsi	0.2092
fin	Finnish	0.2020
fra	French	0.1670
gle	Irish	0.0880
hin	Hindi	0.0285
hun	Hungarian	0.2257
ind	Indonesian	0.2252
ita	Italian	0.1726
jpn	Japanese	0.0962
kaz	Kazakh	0.1442
kor	Korean	0.0717
lav	Latvian	0.1687
nld	Dutch	0.2200
pol	Polish	0.1835
por	Portuguese	0.1876
ron	Romanian	0.1902
rus	Russian	0.1508
slk	Slovak	0.1684
slv	Slovenian	0.1602
spa	Spanish	0.1908
swe	Swedish	0.1733
tur	Turkish	0.1674
ukr	Ukranian	0.1714
vie	Vietnamese	0.0254
zho	Chinese	0.0447

Table 9: Similarity of CoNLL and GeoWAC embeddings.

7. Conclusion

This paper has described and evaluated the GeoWAC corpus family which is designed to remove geographic bias from gigaword corpora in order to better represent population demographics in down-stream NLP tasks. The paper has shown (Section 5) that population-based sampling provides corpora that are more geographically distributed than unbalanced alternatives. Further, the paper has also shown (Section 6) that the baseline corpora over-represent inner-circle varieties of English and that, across all languages, there is a substantial divergence between balanced and unbalanced corpora in terms of both corpus similarity measures and word embedding comparison measures.
8. Bibliographical References

Baroni, M., Bernardini, S., Ferraresi, A., and Zanchetta, E. (2009). The WaCky Wide Web: A Collection of Very Large Linguistically Processed Web-crawled Corpora. Language Resources and Evaluation, 43(3):209–226.

Benko, V. (2014). Aranea Yet Another Family of (Comparable) Web Corpora. In Proceedings of 17th International Conference Text, Speech and Dialogue., pages 257–264. Springer.

Cook, P. and Brinton, J. (2017). Building and Evaluating Web Corpora Representing National Varieties of English. Language Resources and Evaluation, 51(3):643–662.

Davies, M. and Fuchs, R. (2015). Expanding horizons in the study of World Englishes with the 1.9 billion word Global Web-based English Corpus (GloWbE). English World-Wide, 36(1):1–28.

Dunn, J. and Adams, B. (2019). Mapping Languages and Demographics with Georeferenced Corpora. In Proceedings of Geocomputation 2019, pages 1–16.

Dunn, J. (2019a). Frequency vs. Association for Constraint Selection in Usage-Based Construction Grammar. In Proceedings of the NAACL 2019 Workshop on Cognitive Modeling and Computational Linguistics, pages 117–128. Association for Computational Linguistics.

Dunn, J. (2019b). Global Syntactic Variation in Seven Languages: Towards a Computational Dialectology. Frontiers in Artificial Intelligence.

Dunn, J. (2019c). Modeling Global Syntactic Variation in English Using Dialect Classification. In Proceedings of NAACL 2019 Sixth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 42–53. Association for Computational Linguistics.

Dunn, J. (2020). Mapping Languages: The Corpus of Global Language Use. Language Resources and Evaluation.

Erich, S. J. (2010). Language and Space, Volume 1: Theories and Methods. De Gruyter Mouton, Berlin, Boston.

Fothergill, R., Cook, P., and Baldwin, T. (2016). Evaluating a Topic Modelling Approach to Measuring Corpus Similarity. In Proceedings of the International Conference on Language Resources and Evaluation, pages 273–279. European Language Resources Association.

Ginter, F., Hajić, J., and Luotolahti, J. (2017). CoNLL 2017 Shared Task - Automatically Annotated Raw Texts and Word Embeddings. LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics (FAL), Faculty of Mathematics and Physics, Charles University.

Goldhahn, D., Eckart, T., and Quasthoff, U. (2012). Building large monolingual dictionaries at the Leipzig Corpora Collection: From 100 to 200 languages. In Proceedings of the Eighth Conference on Language Resources and Evaluation, pages 759–765. European Language Resources Association.

Grieve, J., Montgomery, C., Nini, A., Murakami, A., and Guo, D. (2019). Mapping Lexical Dialect Variation in British English Using Twitter. Frontiers in Artificial Intelligence.