1. The statement. – Let \mathbf{k} be an algebraically closed field of characteristic 0. If f_1 and f_2 are two endomorphisms of a projective surface X over \mathbf{k} and f_1 is conjugate to f_2 by a birational transformation of X, then f_1 and f_2 have the same topological degree. When X is the projective plane $\mathbb{P}^2_\mathbf{k}$, f_1 (resp. f_2) is given by homogeneous formulas of the same degree d without common factor, and d is called the degree, or algebraic degree of f_1; in that case the topological degree is d^2, so, f_1 and f_2 have the same degree d if they are conjugate.

Theorem A. Let \mathbf{k} be an algebraically closed field of characteristic 0. Let f_1 and f_2 be dominant endomorphisms of $\mathbb{P}^2_\mathbf{k}$ over \mathbf{k}. Let $h : \mathbb{P}^2_\mathbf{k} \dashrightarrow \mathbb{P}^2_\mathbf{k}$ be a birational map such that $h \circ f_1 = f_2 \circ h$. If the degree d of f_1 is ≥ 2, there exists an isomorphism $h' : \mathbb{P}^2_\mathbf{k} \rightarrow \mathbb{P}^2_\mathbf{k}$ such that $h' \circ f_1 = f_2 \circ h'$.

Moreover, h itself is in $\text{Aut}(\mathbb{P}^2_\mathbf{k})$, except may be if f_1 is conjugate by an element of $\text{Aut}(\mathbb{P}^2_\mathbf{k})$ to

1. the composition of $g_d : [x : y : z] \mapsto [x^d : y^d : z^d]$ and a permutation of the coordinates,

2. or the endomorphism $(x, y) \mapsto (x^d, y^d + \sum_{j=2}^{d} a_j y^{d-j})$ of the open subset $\mathbb{A}^1_\mathbf{k} \setminus \{0\} \times \mathbb{A}^1_\mathbf{k} \subset \mathbb{P}^2_\mathbf{k}$, for some coefficients $a_j \in \mathbf{k}$.

Theorem A is proved in Sections 2 to 6. A counter-example is given in Section 7 when $\text{char}(\mathbf{k}) \neq 0$. The case $d = 1$ is covered by [11]; in particular, there are automorphisms $f_1, f_2 \in \text{Aut}(\mathbb{P}^2_\mathbf{k})$ which are conjugate by some birational transformation but not by an automorphism.

Example 1. When $f_1 = f_2$ is the composition of g_d and a permutation of the coordinates and h is the Cremona involution $[x : y : z] \mapsto [x^{-1} : y^{-1} : z^{-1}]$, we have $h \circ f_1 = f_2 \circ h$.

Example 2. When

$$f_1(x, y) = (x^d, y^d + \sum_{j=2}^{d} a_j y^{d-j}) \quad \text{and} \quad f_2(x, y) = (x^d, y^d + \sum_{j=2}^{d} a_j (B/A)^j x^j y^{d-j})$$

Date: 2019.

The last-named author is partially supported by project “Fatou” ANR-17-CE40-0002-01, the first-named author by the french academy of sciences (fondation del Duca).
with \(a_j \in \mathbb{k} \) then \(h(x, y) = (Ax, Bxy) \) conjugates \(f_1 \) to \(f_2 \) if \(A \) and \(B \) are roots of unity of order dividing \(d - 1 \), and \(\deg(h) = 2 \). On the other hand, \(h'[x : y : z] = [Az/B : y : x] \) is an automorphism of \(\mathbb{P}^2 \) that conjugates \(f_1 \) to \(f_2 \).

Acknowledgement. – Theorem A answers a question of T. Gauthier and G. Vigny in dimension 2. We thank them for sharing their ideas. We also thank D.-Q. Zhang for answering our questions on the theorem of R. V. Gurjar and D. V. Paz for pointing out a mistake in the first version of Section 7.

2. The exceptional locus

If \(h : \mathbb{P}^2 \to \mathbb{P}^2 \) is a birational map, we denote by \(\text{Ind}(h) \) its **indeterminacy locus** (a finite subset of \(\mathbb{P}^2(\mathbb{k}) \)), and by \(\text{Exc}(h) \) its **exceptional set**, i.e. the union of the curves contracted by \(h \) (a finite union of irreducible curves). Let \(U_h = \mathbb{P}^2_\mathbb{k} \setminus \text{Exc}(h) \) be the complement of \(\text{Exc}(h) \); it is a Zariski dense open subset of \(\mathbb{P}^2_\mathbb{k} \). If \(C \subset \mathbb{P}^2_\mathbb{k} \) is a curve, we denote by \(h_* (C) \) the **strict transform** of \(C \), i.e. the Zariski closure of \(h(C) \setminus \text{Ind}(f) \).

Proposition 3. If \(h \) is a birational transformation of the projective plane, then

1. \(\text{Ind}(h) \subseteq \text{Exc}(h) \),
2. \(h|_{U_h}(U_h) = U_{h^{-1}} \), and
3. \(h|_{U_h} : U_h \to U_{h^{-1}} \) is an isomorphism.

Proof. There is a smooth projective surface \(X \) and two birational morphisms \(\pi_1, \pi_2 : X \to \mathbb{P}^2 \) such that \(h = \pi_2 \circ \pi_1^{-1} \); we choose \(X \) minimal, in the sense that there is no \((-1)\)-curve \(C \) of \(X \) which is contracted by both \(\pi_1 \) and \(\pi_2 \) ([15]).

Pick a point \(p \in \text{Ind}(h) \). The divisor \(\pi_1^{-1}(p) \) is a tree of rational curves of negative self-intersections, with at least one \((-1)\)-curve. If \(p \notin \text{Exc}(h) \), any curve contracted by \(\pi_2 \) that intersects \(\pi_1^{-1}(p) \) is in fact contained in \(\pi_1^{-1}(p) \). But \(\pi_2 \) may be decomposed as a succession of contractions of \((-1)\)-curves: since it does not contract any \((-1)\)-curve in \(\pi_1^{-1}(p) \), we deduce that \(\pi_2 \) is a local isomorphism along \(\pi_1^{-1}(p) \). This contradicts the minimality of \(\mathbb{P}^2_\mathbb{k} \), hence \(\text{Ind}(h) \subset \text{Exc}(h) \). Thus \(h|_{U_h} : U_h \to \mathbb{P}^2 \) is regular. Since \(U_h \cap \text{Exc}(h) = \emptyset \), \(h|_{U_h} \) is an open immersion, \(h^{-1} \) is well defined on \(h|_{U_h}(U_h) \), and \(h^{-1} \) is an open immersion on \(h|_{U_h}(U_h) \). It follows that \(h|_{U_h}(U_h) \subseteq U_{h^{-1}} \). The same argument shows that \(h^{-1}|_{U_{h^{-1}}^{-1}} : U_{h^{-1}} \to \mathbb{P}^2 \) is well defined and its image is in \(U_h \). Since \(h^{-1}|_{U_{h^{-1}}^{-1}} \circ h|_{U_h} = \text{id} \) and \(h|_{U_h} \circ h^{-1}|_{U_{h^{-1}}} = \text{id} \); this concludes the proof. \(\square \)

Let \(f_1 \) and \(f_2 \) be dominant endomorphisms of \(\mathbb{P}^2_\mathbb{k} \). Let \(h : \mathbb{P}^2 \to \mathbb{P}^2 \) be a birational map such that \(f_1 = h^{-1} \circ f_2 \circ h \). Let \(d \) be the common (algebraic) degree of \(f_1 \) and \(f_2 \). Recall that an algebraic subset \(D \) of \(\mathbb{P}^2_\mathbb{k} \) is **totally invariant** under the action of the endomorphism \(g \) if \(g^{-1}(C) = C \) (then \(g(C) = C \), and if \(\deg(g) \geq 2 \), \(g \) ramifies along \(C \)).

Lemma 4. The exceptional set of \(h \) is totally invariant under the action of \(f_1 : f_1^{-1}(\text{Exc}(h)) = \text{Exc}(h) \).
Proof. Since \(h \circ f_1 = f_2 \circ h \), the strict transform of \(f_1^{-1}(\text{Exc}(h)) \) by \(f_2 \circ h \) is a finite set, but every dominant endomorphism of \(\mathbb{P}^2_k \) is a finite map, so the strict transform of \(f_1^{-1}(\text{Exc}(h)) \) by \(h \) is already a finite set. This means that \(f_1^{-1}(\text{Exc}(h)) \) is contained in \(\text{Exc}(h) \); this implies \(f_1(\text{Exc}(E)) \subset E \) and then \(f_1^{-1}(\text{Exc}(h)) = \text{Exc}(h) = f_1(\text{Exc}(h)) \) because \(f_1 \) is onto.

\[\square \]

Lemma 5. If \(d \geq 2 \) then \(\text{Exc}(h) \) and \(\text{Exc}(h^{-1}) \) are two isomorphic configurations of lines, and this configuration falls in the following list:

(P0) the empty set;
(P1) one line in \(\mathbb{P}^2 \);
(P2) two lines in \(\mathbb{P}^2 \);
(P3) three lines in \(\mathbb{P}^2 \) in general position.

Proof. Assume \(\text{Exc}(h) \) is not empty; then, by Lemma 4, the curve \(\text{Exc}(h) \) is totally invariant under \(f_1 \). According to [6, §4] and [4, Proposition 2], \(\text{Exc}(h) \) is one of the three curves listed in (P1) to (P3).

Changing \(h \) into \(h^{-1} \) and permuting the role of \(f_1 \) and \(f_2 \), we see that \(\text{Exc}(h^{-1}) \) is also a configuration of type (Pi) for some \(i \). Proposition 5 shows that \(U_h \simeq U_{h^{-1}} \). Since the four possibilities (Pi) correspond to pairwise non-isomorphic complements, we deduce that \(\text{Exc}(h) \) and \(\text{Exc}(h^{-1}) \) have the same type.

\[\square \]

Remark 6. One can also refer to [7] to prove this lemma. Indeed, \(f_1 \) induces a map from the set of irreducible components of \(\text{Exc}(h) \) into itself, and since \(f_1 \) is onto, this map is a permutation; the same applies to \(f_2 \). Thus, replacing \(f_1 \) and \(f_2 \) by \(f_1^m \) and \(f_2^m \) for some suitable \(m \geq 1 \), we may assume that \(f_1(C) = C \) for every irreducible component \(C \) of \(\text{Exc}(h) \). Since \(f_1 \) is finite, \(\text{Exc}(h) \) has only finitely many irreducible components, and \(f_1(\text{Exc}(h)) = \text{Exc}(h) \), we obtain \(f_1^{-1}(C) = C \) for every component. Since \(f_1 \) acts by multiplication by \(d \) on \(\text{Pic}(\mathbb{P}^2_k) \), the ramification index of \(f_1 \) along \(C \) is \(d > 1 \), and the main theorem of [7] implies that \(C \) is a line.

Remark 7. Totally invariant hypersurfaces of endomorphisms of \(\mathbb{P}^3 \) are unions of hyperplanes, at most four of them (we refer to [9] for a proof and important additional references, notably the work of J.-M. Hwang, N. Nakayama and D.-Q. Zhang). So, an analog of Lemma 5 holds in dimension 3 too; but our proof in case (P1), see § 4 below, does not apply in dimension 3, at least not directly. (Note that [2] contains an important gap, since its main result is based on a wrong lemma from [3]).

3. Normal forms. – Two configurations of the same type (Pi) are equivalent under the action of \(\text{Aut}(\mathbb{P}^2_k) = \text{PGL}_3(k) \). If we change \(h \) into \(A \circ h \circ B \) for some well chosen pair of automorphisms \((A, B) \), or equivalently if we change \(f_1 \) into
Theorem A is proved.

\(\text{(P0)} \) – \(\text{Exc}(h) = \text{Exc}(h^{-1}) = \emptyset \). – Then \(h \) is an automorphism of \(\mathbb{P}^2_k \) and Theorem A is proved.

\(\text{(P1)} \) – \(\text{Exc}(h) = \text{Exc}(h^{-1}) = \{ z = 0 \} \). – Then \(h \) induces an automorphism of \(\mathbb{A}^2_k \) and \(f_1 \) and \(f_2 \) restrict to endomorphisms of \(\mathbb{A}^2_k = \mathbb{P}^2_k \setminus \{ z = 0 \} \) (that extend to endomorphisms of \(\mathbb{P}^2_k \)).

\(\text{(P2)} \) – \(\text{Exc}(h) = \text{Exc}(h^{-1}) = \{ x = 0 \} \cup \{ z = 0 \} \). – Then, \(U_h \) and \(U_{h^{-1}} \) are both equal to the open set \(U := \{ (x,y) \in \mathbb{A}^2 \mid x \neq 0 \} \). Moreover,

\[
 h|_U(x,y) = (Ax, Bx^my + C(x))
\]

for some regular function \(C(x) \) on \(\mathbb{A}^1_k \setminus \{ 0 \} \) and \(m \in \mathbb{Z} \), and

\[
 f_i|_U(x,y) = (x^{\pm d}, F_i(x,y))
\]

for some rational functions \(F_i \in k(x)[y] \) which are regular on \((\mathbb{A}^1_k \setminus \{ 0 \}) \times \mathbb{A}^1 \) and have degree \(d \) (more precisely, \(f_i \) must define an endomorphism of \(\mathbb{P}^2 \) of degree \(d \)). Moreover, the signs of the exponent \(\pm d \) in Equation (2) are the same for \(f_1 \) and \(f_2 \).

\(\text{(P3)} \) – \(\text{Exc}(h) = \text{Exc}(h^{-1}) = \{ x = 0 \} \cup \{ y = 0 \} \cup \{ z = 0 \} \). – In this case, each \(f_i \) is equal to \(a_i \circ g_d \) where \(g_d([x : y : z]) = [x^d : y^d : z^d] \) and each \(a_i \) is an automorphism of \(\mathbb{P}^2_k \) acting by permutation of the coordinates, while \(h \) is an automorphism of \((\mathbb{A}^1 \setminus \{ 0 \}) \times (\mathbb{A}^1 \setminus \{ 0 \}) \).

4. Endomorphisms of \(\mathbb{A}^2_k \). – This section proves Theorem A in case (P1):

Proposition 8. Let \(f_1 \) and \(f_2 \) be endomorphisms of \(\mathbb{A}^2 \) that extend to endomorphisms of \(\mathbb{P}^2 \) of degree \(d \geq 2 \). If \(h \) is an automorphism of \(\mathbb{A}^2 \) that conjugates \(f_1 \) to \(f_2 \) then \(h \) is an affine automorphism i.e. \(\deg h = 1 \).

We follow the notation from [5] and denote by \(V_\infty \) the valuative tree of \(\mathbb{A}^2 = \text{Spec}(k[x,y]) \) at infinity. If \(g \) is an endomorphism of \(\mathbb{A}^2 \), we denote by \(g_\bullet \) its action on \(V_\infty \).

Set \(V_1 = \{ v \in V_\infty \mid \alpha(v) \geq 0, A(v) \leq 0 \} \), where \(\alpha \) and \(A \) are respectively the skewness and thinness function, as defined in page 216 of [5]; the set \(V_1 \) is a closed subtree of \(V_\infty \). For \(v \in V_1 \), \(v(F) \leq 0 \) for every \(F \in k[x,y] \setminus \{ 0 \} \). Then \(V_1 \) is invariant under each \((f_i)_\bullet \), and if we set

\[
 \mathcal{T}_i = \{ v \in V_1 : (f_i)_\bullet v = v \}
\]

then \(\mathcal{T}_2 = h_\bullet \mathcal{T}_1 \). Since each \(f_i \) extends to an endomorphism of \(\mathbb{P}^2_k \), the valuation \(\deg \) is an element of \(\mathcal{T}_1 \cap \mathcal{T}_2 \). Also, in the terminology of [5], \(\lambda_2(f_i) = \)
\[\lambda_1(f_i)^2 = d^2 \text{ and } \deg(f_i^n) = \lambda_i^n = d^n \text{ for all } n \geq 1 \text{ and for } i = 1 \text{ and } 2, \]

because \(f_1\) and \(f_2\) extend to regular endomorphisms of \(\mathbb{P}_k^2\) of degree \(d\). So by [5, Proposition 5.3 (a)], \(T_i\) is a single point or a closed segment.

A valuation \(v \in V_\infty\) is monomial of weight \((s,t)\) for the pair of polynomial functions \((P,Q) \in k[x,y]^2\) if

1. \(P\) and \(Q\) generate \(k[x,y]\) as a \(k\)-algebra,
2. if \(F\) is any non-zero element of \(k[x,y]\) and
 \[F = \sum_{i,j \geq 0} a_{ij}P^iQ^j\]
 is its decomposition as a polynomial function of \(P\) and \(Q\) then
 \[v(F) = -\max\{si + tj : a_{i,j} \neq 0\}.\]

We say that \(v\) is monomial for the basis \((P,Q)\) of \(k[x,y]\), if \(v\) is monomial for \((P,Q)\) and some weight \((s,t)\). In particular, \(-\deg\) is monomial for \((x,y)\), of weight \((1,1)\).

Lemma 9. If \(v \in V_1\) is monomial for \((P,Q)\) of weight \((s,t)\), then \(s,t \geq 0\), and \(\min\{s,t\} = \min\{-v(F) : F \in k[x,y] \setminus k\}\).

Proof. First, assume that \((P,Q) = (x,y)\). For an element \(v\) of \(V_1\), \(v(F) \leq 0\) for every \(F\) in \(k[x,y]\), hence \(s = -v(x)\) and \(t = -v(y)\) are non-negative; and the formula for \(\min\{s,t\}\) follows from the inequality \(-v(F) \geq \min\{s,t\}\). To get the statement for any pair \((P,Q)\), change \(v\) into \(g^{-1}v\) where \(g\) is the automorphism defined by \(g(x,y) = (P(x,y),Q(x,y))\).

Lemma 10. If \(-\deg\) is monomial for \((P,Q)\), of weight \((s,t)\), then \(s = t = 1\) and \(P\) and \(Q\) are of degree one in \(k[x,y]\).

Proof. By Lemma 9 we may assume that \(1 \leq s \leq t\); thus, after an affine change of variables, we may assume that \(P = x\). Since \(k[x,y]\) is generated by \(x\) and \(Q\), \(Q\) takes form \(Q = ay + C(x)\) where \(a \in k^*\) and \(C \in k[x]\). If \(C\) is a constant, we conclude the proof. Now we assume \(\deg(C) \geq 1\). Then \(t = \deg(Q) = \deg(C)\). Since \(y = a^{-1}(Q - C(x))\) and \(-\deg\) is monomial for \((x,Q)\) of weight \((1,t)\), we get \(1 = \deg(y) = \max\{t,\deg C\} = t\). It follows that \(t = \deg Q = 1\), which concludes the proof.

Proof of Proposition 8 By [5, Proposition 5.3 (b), (d)], there exists \(P\) and \(Q \in k[x,y]\) such that for every \(v \in T_1\), \(v\) is monomial for \((P,Q)\). Moreover, \(-\deg\) is in \(T_1 \cap T_2\). By Lemma 10 \(P = x\) and \(Q = y\) after an affine change of coordinates. Since \(T_2 = h^*T_1\), for every \(v \in T_2\), \(v\) is monomial for \((h^*x,h^*y)\). Since \(-\deg\in T_2\), Lemma 10 implies \(\deg h^*x = \deg h^*y = 1\) and this concludes the proof.

5. **Endomorphisms of** \((\mathbb{A}_k^1 \setminus \{0\}) \times \mathbb{A}_k^1\). – We now arrive at case (P2), namely \(\text{Exc}(h) = \text{Exc}(h^{-1}) = \{x = 0\} \cup \{z = 0\}\), and keep the notations from Section 4. Our first goal is to prove that,
Lemma 11. If \(h \) is not an affine automorphism of the affine plane, then after a conjugacy by an affine transformation of the plane,

- Either \(f_1 \) and \(f_2 \) are equal to \((x^d, y^d)\) and \(h(x, y) = (Ax, Bx^m y) \) with \(A \) and \(B \) two roots of unity of order dividing \(d - 1 \) and \(m \in \mathbb{Z} \setminus \{0\} \).
- Or, up to a permutation of \(f_1 \) and \(f_2 \),

\[
f_1(x, y) = (x^d, y^d + \sum_{j=2}^{d} a_j y^{d-j}) \quad \text{and} \quad f_2(x, y) = (x^d, y^d + \sum_{j=2}^{d} a_j (B/A)^j x^j y^{d-j})
\]

with \(a_j \in \mathbb{k} \), and \(h(x, y) = (Ax, Bxy) \) with \(A \) and \(B \) two roots of unity of order dividing \(d - 1 \); then \(h'(x : y : z) = [Az/B : y : x] \) is an automorphism of \(\mathbb{P}^2 \) that conjugates \(f_1 \) to \(f_2 \).

Proof. We split the proof in two steps.

Step 1. We assume that \(f_1' \mid U(x, y) = (x^d, F_1(x, y)) \), with \(d > 0 \).

Since \(f_1 \) extends to a degree \(d \) endomorphism of \(\mathbb{P}^2 \), we can write \(F_1(x, y) = a_0 y^d + \sum_{j=1}^{d} a_j(x) y^{d-j} \) where \(a_0 \in \mathbb{k}^* \) and the \(a_j \in \mathbb{k}[x] \) satisfy \(\text{deg}(a_j) \leq j \) for all \(j \). Changing the coordinates to \((x, by)\) with \(b^d = a_0 \), we assume \(a_0 = 1 \). We can also conjugate \(f_1 \) by the automorphism

\[
(x, y) \mapsto \left(x, y + \frac{1}{d} a_1(x) \right)
\]

and assume \(a_1 = 0 \). Altogether, the change of coordinates \((x, y) \mapsto (x, by + \frac{1}{d} a_1(x))\) is affine because \(\text{deg}(a_1) \leq 1 \), and conjugates \(f_1 \) to an endomorphism \((x^d, F_1(x, y))\) normalized by \(F_1(x, y) = y^d + \sum_{j=2}^{d} a_j(x) y^{d-j} \) with \(\text{deg}(a_j) \leq j \).

Similarly, we may assume that \(F_2(x, y) = y^d + \sum_{j=2}^{d} b_j(x) y^{d-j} \) for some polynomial functions \(b_j \) with \(\text{deg}(b_j) \leq j \) for all \(j \).

Now, with the notation used in Equation (1), the two terms of the conjugacy relation \(h \circ f_1 = f_2 \circ h \) are

\[
h \circ f_1 = (Ax^d, Bx^m y^d + \sum_{j=2}^{d} a_j(x) y^{d-j} + C(x^d))
\]

\[
f_2 \circ h = (A^d x^d, (Bx^m y + C(x))^d + \sum_{j=2}^{d} b_j(Ax)(Bx^m y + C(x))^{d-j}).
\]

This gives \(A^{d-1} = 1 \), and comparing the terms of degree \(d \) in \(y \) we get \(B^{d-1} = 1 \). Then, looking at the term of degree \(d - 1 \) in \(y \), we obtain \(C(x) = 0 \). Thus \(h(x, y) = (Ax, Bx^m y) \) for some roots of unity \(A \) and \(B \), the orders of which divide \(d - 1 \). Since \(h \) is not an automorphism, we have

\[
m \neq 0.
\]
Permuting the role of \(f_1 \) and \(f_2 \) (or changing \(h \) in its inverse), we suppose \(m \geq 1 \). Coming back to (6) and (7), we obtain the sequence of equalities

\[
b_j(Ax) = a_j(x)(Bx^m)^j
\]

for all indices \(j \) between 2 and \(d \). On the other hand, \(a_j \) and \(b_j \) are elements of \(k[x] \) of degree at most \(j \). Since \(m \geq 1 \), there are only two possibilities.

(a) All \(a_j \) and \(b_j \) are equal to 0; then \(f_1(x, y) = f_2(x, y) = (x^d, y^d) \), which concludes the proof.

(b) Some \(a_j \) is different from 0 and \(m = 1 \). Then all coefficients \(a_j \) are constant, and \(b_j(x) = a_j(Bx/A)^j \) for all indices \(j = 2, \ldots, d \).

In case (b), we set \(\alpha = B/A \) (a root of unity of order dividing \(d - 1 \)), and use homogeneous coordinates to write

\[
f_1[x : y : z] = [x^d : y^d + \sum_{j=2}^{d} a_j z^j y^{d-j} : z^d]
\]

(10)

\[
f_2[x : y : z] = [x^d : y^d + \sum_{j=2}^{d} a_j \alpha^j z^j y^{d-j} : z^d].
\]

(11)

The conjugacy \(h[x : y : z] = [Axz : Bxy : z^2] \) is not a linear projective automorphism of \(\mathbb{P}^2 \), but the automorphism defined by \([x : y : z] \mapsto [z/\alpha : y : x] \) conjugates \(f_1 \) to \(f_2 \).

Step 2.– The only remaining case is when \(f_i = (x^{-d}, F_i(x,y)) \), for \(i = 1, 2 \), with

\[
F_1(x,y) = \sum_{j=0}^{d} a_j(x)x^{-d}y^{d-j} \text{ and } F_2(x, y) = \sum_{j=0}^{d} b_j(x)x^{-d}y^{d-j}
\]

(12)

for some polynomial functions \(a_j, b_j \in k[x] \) that satisfy \(\deg(a_j), \deg(b_j) \leq j \) and \(a_0b_0 \neq 0 \). Writing the conjugacy equation \(h \circ f_1 = f_2 \circ h \) and looking at the term of degree \(d \) in \(y \), we get the relation

\[
Bx^{-md}a_0x^{-d}y^d = b_0(Ax)^{-d}(Bx^m y)^d.
\]

(13)

Comparing the degree in \(x \) we get \(-md - d = md - d \), hence \(m = 0 \). Moreover, \(h \) conjugates \(f_1^2 \) to \(f_2^2 \); thus, by the first step, \(h \) should be an affine automorphism since \(m = 0 \) (see Equation (8)).

\[
\square
\]

6. **Endomorphisms of \((\mathbb{A}^1_k \setminus \{0\})^2 \).** – Denote by \([x : y : z]\) the homogeneous coordinates of \(\mathbb{P}^2_k \) and by \((x, y)\) the coordinates of the open subset \(V := (\mathbb{A}^1_k \setminus \{0\})^2 \) defined by \(xy \neq 0, z = 1 \). We write \(f_i = a_i \circ g_d \), as in case (P3) of Section 3. Since \(h \) is an automorphism of \((\mathbb{A}^1_k \setminus \{0\})^2 \), it is the composition \(t_h \circ m_h \) of a
diagonal map \(t_h(x, y) = (ux, vy) \), for some pair \((u, v) \in (k^*)^2\), and a monomial map \(m_h(x, y) = (x^ay^b, x^cy^d) \), for some matrix

\[
M_h := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(z).
\] (14)

Also, note that the group \(S_3 \subset \text{Bir}(P^2_k) \) of permutations of the coordinates \([x : y : z]\) corresponds to a finite subgroup \(S_3 \) of \(\text{GL}_2(z) \).

Since \(m_h \) commutes to \(g_d \) and \(g_d \circ t_h = t_h^d \circ g_d \), the conjugacy equation is equivalent to

\[
t_h \circ (m_h \circ a_1 \circ m_h^{-1}) \circ (g_d \circ m_h) = a_2 \circ t_h^d \circ (g_d \circ m_h).
\] (15)

The automorphisms \(a_1 \) and \(a_2 \) are monomial maps, induced by elements \(A_1 \) and \(A_2 \) of \(S_3 \), and Equation (15) implies that \(M_h \) conjugates \(A_1 \) to \(A_2 \) in \(\text{GL}_2(z) \); indeed, the matrices can be recovered by looking at the action on the set of units \(wx^my^n \) in \(k(V) \) (or on the fundamental group \(\pi_1(V(C)) \) if \(k = C \)). There are two possibilities:

(a) either \(A_1 = A_2 = \text{Id} \), there is no constraint on \(m_h \);

(b) or \(A_1 \) and \(A_2 \) are non-trivial permutations, they are conjugate by an element \(P \in S_3 \), and \(M_h = \pm A_j^t \circ P \), for some \(j \in \mathbb{Z} \).

In both cases, \(u \) and \(v \) are roots of unity (there order is determined by \(d \) and the \(A_i \)). Let \(p \) be the monomial transformation associated to \(P \); it is a permutation of the coordinates, hence an element of \(\text{Aut}(\mathbb{P}^2_k) \). Then, \(h'(x, y) = t_h \circ p \) is an element of \(\text{Aut}(\mathbb{P}^2_k) \) that conjugates \(f_1 \) to \(f_2 \).

7. An example in positive characteristic. – Assume that \(q = p^s \) with \(s \geq 2 \). Set \(G := xy^p + (x - 1)y \). Then,

\[
f_1(x, y) = (x^q, y^q + G(x, y))
\]
defines an endomorphism of \(A^2 \) that extends to an endomorphism of \(\mathbb{P}^2 \).

Consider a polynomial \(P(x) \in F_q[x] \) such that \(2 \leq \deg(P) \leq \frac{q}{p} - 1 \). Observe that \(\deg(G) < \deg(G(x, y + P(x))) < q \). Then \(g(x, y) = (x, y - P(x)) \) is an automorphism of \(A^2_k \) that conjugates \(f_1 \) to

\[
f_2(x, y) := g \circ f_1 \circ g^{-1}(x, y)
\]

\[
= (x^q, y^q + P(x)^q + G(x, y + P(x)) - P(x^q))
\]

\[
= (x^q, y^q + G(x, y + P(x))).
\] (16)

As \(f_1, f_2 \) is an endomorphism of \(A^2 \) that extends to a regular endomorphism of \(\mathbb{P}^2 \) (here we use the inequality \(\deg(G(x, y + P(x))) < q \)).

Let us prove that \(f_1 \) and \(f_2 \) are not conjugate by any automorphism of \(\mathbb{P}^2 \). We assume that there exists \(h \in \text{PGL}_3(F_q) \) such that \(h \circ f_1 = f_2 \circ h \) and seek a
contradiction. Consider the pencils of lines through the point $[0 : 1 : 0]$ in \mathbb{P}^2; for $a \in \mathbb{F}_q$ we denote by L_a the line \{ $x = az$ \}, and by L_∞ the line \{ $z = 0$ \}. Then
\begin{align}
\{ L_a : a \in \mathbb{F}_q \cup \{ \infty \} \} &= \{ \text{lines } L \text{ such that } f_1^{-1}L = L \} \\
&= \{ \text{lines } L \text{ such that } f_2^{-1}L = L \};
\end{align}
in other words, the lines L_a for $a \in \mathbb{F}_q \cup \{ \infty \}$ are exactly the lines which are totally invariant under the action of f_1 (resp. of f_2). Since h conjugates f_1 to f_2, it permutes these lines. In particular, h fixes the point $[0 : 1 : 0]$, and if we identify $L_a \cap \mathbb{A}^2$ to \mathbb{A}^1 with its coordinate y by the parametrization $y \mapsto (a, y)$ then h maps L_a to another line $L_{a'}$ in an affine way: $h(a, y) = (a', \alpha y + \beta)$.

Since g conjugates f_1 to f_2 and g fixes each of the lines $L_{a'}$, we know that $f_1|_{L_a}$ is conjugated to $f_2|_{L_a}$ for every $a \in \mathbb{F}_q$; for $a = \infty$, both $f_1|_{L_\infty}$ and $f_2|_{L_\infty}$ are conjugate to $y \mapsto y^q$. Moreover
\begin{itemize}
 \item $a = \infty$ is the unique parameter such that $f_1|_{L_a}$ is conjugate to $y \mapsto y^q$ by an affine map $y \mapsto \alpha y + \beta$;
 \item $a = 0$ is the unique parameter such that $f_1|_{L_a}$ is conjugate to $y \mapsto y^q - y$ by an affine map;
 \item $a = 1$ is the unique parameter such that $f_1|_{L_a}$ is conjugate to $y \mapsto y^q + y^p$ by an affine map.
\end{itemize}
And the same properties hold for f_2. As a consequence, we obtain $h(L_\infty) = L_\infty$, $h(L_0) = L_0$ and $h(L_1) = L_1$; this means that there are coefficients $\alpha \in \mathbb{F}_q^*$ and $\beta, \gamma \in \mathbb{F}_q$ such that $h(x, y) = (x, \alpha y + \beta x + \gamma)$. Writing down the relation $h \circ f_1 = f_2 \circ h$ we obtain the relation
\begin{align}
\alpha y^q + \alpha G(x, y) + \beta x^q + \gamma &= \alpha^q y^q + \beta^q x^q + \gamma^q \\
+ G(x, \alpha y + \beta x + \gamma + P(x)).
\end{align}
We note that $1 < \deg G(x, y) < \deg G(x, \alpha y + \beta x + \gamma + P(x)) < q$. Compare the terms of degree q, we get $\alpha y^q + \beta x^q = \alpha^q y^q + \beta^q x^q$. It follows that
\begin{align}
\alpha G(x, y) + \gamma &= \gamma^q + G(x, \alpha y + \beta x + \gamma + P(x)).
\end{align}
Then $\deg G(x, y) = \deg G(x, \alpha y + \beta x + \gamma + P(x))$, which is a contradiction.

References

[1] Jérémie Blanc. Conjugacy classes of affine automorphisms of \mathbb{K}^n and linear automorphisms of \mathbb{P}^n in the Cremona groups. Manuscripta Math., 119(2):225–241, 2006.
[2] Jean-Yves Briend, Serge Cantat, and Mitsuhiro Shishikura. Linearity of the exceptional set for maps of $\mathbb{P}_n(\mathbb{C})$. Math. Ann., 330(1):39–43, 2004.
[3] Jean-Yves Briend and Julien Duval. Deux caractérisations de la mesure d’équilibre d’un endomorphisme de $\mathbb{P}^n(\mathbb{C})$. Publ. Math. Inst. Hautes Études Sci., (93):145–159, 2001.
[4] Dominique Cerveau and Alcides Lins Neto. Hypersurfaces exceptionnelles des endomorphismes de $\mathbb{C}P(n)$. Bol. Soc. Brasil. Mat. (N.S.), 31(2):155–161, 2000.
[5] Charles Favre and Mattias Jonsson. Dynamical compactifications of \(C^2 \). *Ann. of Math. (2)*, 173(1):211–248, 2011.

[6] John Erik Fornæss and Nessim Sibony. Complex dynamics in higher dimension. I. Number 222, pages 5, 201–231. 1994. Complex analytic methods in dynamical systems (Rio de Janeiro, 1992).

[7] Rajendra Vasent Gurjar. On ramification of self-maps of \(P^2 \). *J. Algebra*, 259(1):191–200, 2003.

[8] Robin Hartshorne. *Algebraic geometry*. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.

[9] Andreas Höring. Totally invariant divisors of endomorphisms of projective spaces. *Manuscripta Math.*, 153(1-2):173–182, 2017.

Serge Cantat, IRMAR, Campus de Beaulieu, Bâtiments 22-23 263 Avenue du Général Leclerc, CS 74205 35042 Rennes Cédex

E-mail address: serge.cantat@univ-rennes1.fr

Junyi Xie, IRMAR, Campus de Beaulieu, Bâtiments 22-23 263 Avenue du Général Leclerc, CS 74205 35042 Rennes Cédex

E-mail address: junyi.xie@univ-rennes1.fr