Allergic reactions to atropine eye drops for retardation of progressive myopia in children

Mihir Kothari¹,², Rishika Jain³, Nitu Khadse¹, Vivek Rathod¹, Shreyans Mutha³

Purpose: To report clinical manifestations of ocular allergy to atropine eye drops used for retardation of progressive myopia in children. **Methods:** Myopic children, who developed bothersome itching that subsided promptly after cessation of atropine eye drops, were included. History of systemic or ocular allergy, preexisting ocular conditions, and clinical features of allergy were noted. **Results:** Six children, age 5–15 years, were included. Four developed allergy to 1% atropine sulfate eye drops and two to 0.01% concentration of atropine sulfate. The onset of allergy was within a month to as late as 4 years after using atropine eye drops. The severity of allergy was higher with 1% concentration. The most common symptoms of atropine allergy were itching and burning. The most common signs were lid swelling and hyperemia. The allergic manifestations promptly reversed with the stoppage of eye drops. Reintroduction was possible in three patients, either by reducing the concentration of atropine or using benzalkonium free formulation. **Conclusion:** Allergy to atropine eye drops in children may develop within a few weeks or after many years of usage. Prompt cessation followed by a reintroduction and continuation of therapy may be possible in few patients.

Key words: Allergic contact dermatitis, atropine, eye drops, itching, periocular dermatitis

Atropine eye drops are frequently used for retardation of progressive myopia in children.¹,² Incidence of allergic conjunctivitis and allergic dermatitis (with 0.1% and 0.5% atropine eye drops) is reported to be 4.1% and 1.3%, respectively.³ Contact dermatitis, allergic conjunctivitis, and interface dermatitis (ID) type reactions with 1% atropine eye drops are reported in adults.³⁴ A concentration as low as 0.0006% could cause allergy.³

To our knowledge, this is the first report that describes detailed ocular manifestations of allergy to atropine eye drops in children.

Methods

Children diagnosed with allergy to atropine drops, between April 2014 and December 2017, were included. Only one patient (patient 1) was recruited prospectively. The diagnosis of eye allergy was based on a history of bothersome itching in or around the eyes that was caused due to instillation of atropine eye drops and subsided promptly following its stoppage.

The patients had used 1%, 0.5%, or 0.01% atropine sulfate eye drops. Single drop was instilled in the lying down or reclining position in the lower cul-de-sac. No specific instructions were given with regards to the technique of the instillation or punctal occlusion or periocular care. Patients treated with 1% or 0.5% atropine eye drops were prescribed progressive addition photogray lenses.

Results

Six children age 5–15 years were included [Table 1]. The most common symptoms were itching and burning [Table 2]. The most common signs of atropine allergy were eye lid swelling and periocular redness [Figs. 1-6].

In every patient, the symptoms were reduced within 24 h after stopping atropine eye drops and disappeared within a week. To hasten the recovery, in patient 1, twice a day local application of topical steroid (Chlorocol H eye ointment; Jawa Pharmaceuticals Pvt. Ltd., Haryana, India) was used.

It was possible to reintroduce atropine eye drops and continue the atropine therapy, albeit with a different formulation (Myopin⁵) in patient 3 and patient 4 and at a reduced concentration in patient 5.

An “allergy patch test” in patient 1 [Fig. 7] was weak positive for 1% atropine sulfate (ICDRG allergy patch test classification⁷) and negative for 0.01% atropine eye drops. In spite of a negative test, she developed unacceptable itching and redness within 2 weeks of using 0.01% atropine eye drops. It was decided to discontinue atropine therapy.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

Cite this article as: Kothari M, Jain R, Khadse N, Rathod V, Mutha S. Allergic reactions to atropine eye drops for retardation of progressive myopia in children. Indian J Ophthalmol 2018;66:1446-50.
In patient 2, severe periocular hypopigmentation developed in addition to complaints of severe itching and periocular redness [Fig. 2]. An opinion from dermatologists was sought. Two senior dermatologists felt that hypopigmentation was unrelated to atropine use. An allergy patch test [Fig. 8] in him showed absence of reaction to 0.01% and 1% atropine at the end of 48 h. Continued use of 1% eye drops for further 6 months was associated with persistent itching and worsening of hypopigmented patches. 1% atropine eye drops was replaced by reconstituted 0.01% atropine eye drops. His itching and burning significantly reduced, but hypopigmented patches persisted. A therapeutic trial of twice a day topical bimatoprost 0.01% (Lumigan®; Allergan, Bengaluru, India) and tacrolimus 0.1% (Talimus®; Ajanta Pharma, Mumbai, India) was advised to him which resulted in focal areas of repigmentation [Fig. 9]. Nevertheless, he was asked to stop 0.01% atropine eye drops and continue the follow-up with the dermatologist.

Discussion

In this study, children developed allergy to atropine eye drops irrespective of their age, gender, or duration of use. The onset was insidious, and the severity was higher with 1% concentration. Reintroduction at a lower concentration, after complete resolution of symptoms, could reduce or eliminate the allergic manifestations.

Manifestations of atropine allergy could be divided into ocular and periocular [Table 3]. Clinicians can differentiate allergy to atropine eye drops from other ocular allergies by stopping the drops in one eye or identifying a lack of typical papillary response seen with other causes of allergic conjunctivitis.

Table 1: General characteristics of the patients with atropine allergy

	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Patient 6
Age in years at the time of diagnosis	12	15	5	14	8	9
Gender	Female	Male	Female	Male	Female	Male
Duration of use	7 months	4 years	4 months	1 month	5 months	4 years
Concentration of atropine used	1% and 0.01%	1%	0.01%	0.01%	1%	1% and 0.5%
Brand of atropine	Bell Pino®	Bell Pino®	Prepared by adding injection atropine sulfate (0.6 mg/mL) to 5mL Moisol® eye drops (FDC, New Delhi, India).	Prepared by diluting 1% atropine sulfate eye drops (Jawa Pharmaceuticals Pvt. Ltd., Haryana, India) with water for injection.	Bell Pino®	1% Atropine sulfate eye drops (Jawa Pharmaceuticals Pvt. Ltd., Haryana, India) and dilution with water for injection.
Frequency of use	Once at night	Once in the morning				
History of allergic disease	Nil	Chronic allergic rhinitis, chronic allergic conjunctivitis	Chronic allergic rhinitis	Nil	Acute allergic conjunctivitis	Nil
Re-introduction	Discontinued atropine eye drops	Discontinued atropine eye drops	Continued with change in formulation	Continued with change in formulation	Continued after reducing the concentration	Discontinued atropine eye drops

Table 2: Ocular manifestations of allergy to atropine eye drops

	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Patient 6
Itching	+	+	+	+	+	+
Burning	+	+	+	+	+	Doesn’t remember
Swelling of lid	+	+	+	+	–	+
Periocular redness	+	+	+	+	–	+
Conjunctival congestion	+	–	+	–	–	+
Discharge	+	+	–	–	–	+
Loss of eyelashes	–	+	–	–	–	–
Periocular skin erosions	+	+	–	–	–	–
Exaggerated under eye fold	–	–	+	–	–	–
Hypopigmentation	–	+	–	–	–	–
Increased vascularity	–	+	–	–	–	–
Follicular reaction	+	Not examined	Not examined	Not examined	+	Not examined
History of allergy was present in 50% children in this series. It is possible that patients with preexisting ocular or systemic allergy or ocular comorbidity, namely, dry eye disease, meibomian gland dysfunction, or patients using multiple eye drops may be at a higher risk of allergy. It is not known why patients develop allergy to the very drug that they have...
tolerated for many years. The ophthalmologist should advice the parents to put drops with punctal occlusion and wipe of the excess from periocular skin.

Elimination of preservatives benzalkonium and chlorbutanol was associated with successful reintroduction of atropine therapy in two patients. Allergic contact dermatitis and irritant contact dermatitis are known to occur with benzalkonium chloride, thimerosal, and alcohols, such as chlorobutanol. Changing the preservative to a stabilized oxychloro complex has resulted in significantly better tolerance of topical medication.

As such, it may not be recommended to make diluted atropine solution from injectable atropine due to chances of contamination, inaccuracy of mixing the two preparations, change in the shelf life, and introduction of BAK/chlorbutol/other excipients.

Hypopigmented patches in the periocular area following the use of topical atropine eye drops are uncommon. The ophthalmologist must immediately stop using the drops and seek dermatological opinion. The diagnostic accuracy of patch test in ocular allergy is not known and patients may continue to be symptomatic despite a negative result.

Once developed, hypopigmented patches may take very long to recover. Permanent hypopigmentation of periocular skin following chronic use of eye drops can happen.

There are two major limitations of our study. (1) The study included only patients with history of itching. We might have missed patients with irritant contact dermatitis who may present with only burning or pain with minimal or no itching. (2) Only one patient was recruited prospectively during the active phase. Hence, the data regarding the incidence of allergy to atropine eye drops were not available.

Nevertheless, the ophthalmologists should suspect an allergy to atropine eye drops in patients with bothersome itching and/or burning and promptly discontinue its use for a quick reversal of symptoms. It might be possible to reintroduce the therapy after a change in formulation or with a reduced concentration of atropine drops.

Table 3: Clinical classification of atropine eye allergy
Symptoms
Ocular
Follicular conjunctival reaction, hyperemia, reduced tear film break-up time
Periocular
Lid edema, hyperemia, papules, macules, vesicles, excoriation, madarosis, hypopigmentation, dry scaly lichenified plaques

Figure 7: Allergy patch test in patient 1. (a) Picture showing a patch containing atropine 0.01% on the right side of the back of the patient and 1% atropine on the left side. (b) Picture showing absence of reaction to 0.01% atropine and an erythematous reaction (6.2 cm × 4.2 cm) to 1% atropine

Figure 8: Photograph of patient 2 demonstrating (a) allergy patch test with control (distilled water), 0.01% atropine and 1% atropine. (b) Lack of hypersensitivity reaction after 48 h

Figure 9: Photograph of patient 2, showing serpinginous depigmentation around the left eye with areas of repigmentation (black arrow) after discontinuation of 1% atropine eye drops and 6 weeks application of topical bimatoprost and tacrolimus while continuing 0.01% atropine eye drops

Figure 10: Clinical algorithm for management of patients with allergy to atropine eye drops

Discontinuation of 1% atropine eye drops and 6 weeks application of topical bimatoprost and tacrolimus while continuing 0.01% atropine eye drops

Stop atropine in both eyes and wait for 1 week

Improvement -

Stop atropine in more affected eye for 3 days

Improvement +

Allergy confirmed

1. Let all the signs and symptoms of allergy reverse
2. Change the formulation/brand
3. Reduce the concentration from 1% to 0.01%
4. Reduce the frequency
5. Add 0.1% or 0.03% tacrolimus twice a day
6. Emphasize the lifestyle modification to control myopia
Conclusion

The ophthalmologists should follow a specific clinical algorithm [Fig. 10] to diagnose and manage the patients suspected to have allergy to atropine eye drops. One may restart the eye drops in one eye after a few days or after a patch test and watch for the response. In case of recurrence, change in formulation [Table 4], reducing the concentration, or frequency of application and a simultaneous use of immunomodulator, namely, tacrolimus may help. In some cases, where it may not be possible to reinstitute the therapy, lifestyle modifications should be emphasized to slow the progression of myopia.

Acknowledgment

Ms Anar Sanjay Kothary for providing full texts of the articles.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A, Tan D. Atropine for the treatment of childhood myopia: Safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2). Ophthalmology 2012;119:347-54.
2. Kothari M, Rathod V. Efficacy of 1% atropine eye drops in retarding progressive axial myopia in Indian eyes. Indian J Ophthalmol 2017;65:1178-81.
3. Yoshikawa K, Kawahara S. Contact allergy to atropine and other mydriatic agents. Contact Derm 1985;12:56-7.
4. Decraene T, Goossens A. Contact allergy to atropine and other mydriatic agents in eye drops. Contact Derm 2001;45:309-10.
5. Goossens A. Contact allergic reactions on the eyes and eyelids. Bull Soc Belge Ophthalmol 2004;292:11-7.
6. de Misa RF, Suárez J, Feliciano L, López B. Allergic periocular contact dermatitis due to atropine. Clin Exp Dermatol 2003;28:97-8.
7. Johansen JD, Aalto-Korte K, Agner T, Andersen KE, Bircher A, Brucé M, et al. European Society of Contact Dermatitis guideline for diagnostic patch testing – Recommendations on best practice. Contact Derm 2015;73:195-221.
8. Baudouin C, Labbé A, Liang H, Pauly A, Brignole-Baudouin F. Preservatives in eyedrops: The good, the bad and the ugly. Prog Retin Eye Res 2010;29:312-34.
9. Bagnis A, Papadia M, Scotto R, Traverso CE. Antiglaucoma drugs: The role of preservative-free formulations. Saudi J Ophthalmol 2011;25:389-94.
10. Suchi ST, Gupta A, Srinivasan R. Contact allergic dermatitis and periocular depigmentation after using olopatadine eye drops. Indian J Ophthalmol 2008;56:239-40.

Table 4: Current available market formulations of atropine eye drops

Drug	Pharmaceutical	Active ingredient	Preservative
Bell Pino	Bell Pharma	Atropine sulfate 1%	Chlorbutol
Atropine eye drops	Jawa	Atropine sulfate 1%	Chlorbutol
Myopin	Appasamy	Atropine sulfate 0.01%	Stabilized oxychloro complex
Myatro	Entod Pharma	Atropine sulfate 0.01%	Stabilized oxychloro complex
Atroped	Sunways	Atropine sulfate 0.01%	Stabilized oxychloro complex
Pinocort	Bell Pharma	Atropine 1% and hydrocortisone 0.5%	Chlorbutol

Table 4: Current available market formulations of atropine eye drops

Ferdinand von Arlt (1812-87) Possibly one of the greatest teachers in ophthalmology. His illustrious students were von Graefe, Becker, Sattler, Bergmister, Fuchs and Dimmer.