Is Quantum Mechanics Falsifiable? A computational perspective on the foundations of Quantum Mechanics.

Dorit Aharonov* and Umesh Vazirani†

May 1, 2014

Abstract

Quantum computation teaches us that quantum mechanics exhibits exponential complexity. We argue that the standard scientific paradigm of “predict and verify” cannot be applied to testing quantum mechanics in this limit of high complexity. We describe how QM can be tested in this regime by extending the usual scientific paradigm to include interactive experiments.

This paper is to appear in the Philosophy of Science anthology “Computability: Gödel, Turing, Church, and beyond”, Editors: Copeland, Posy, Shagrir, MIT press, 2012.

1 Overview

Saying that QM is paradoxical is an understatement: Feynman once said [10] “I think I can safely say that no one understands quantum mechanics”. Quantum mechanics has been a great source of fundamental issues and paradoxes in the philosophy of science: ranging from its statistical nature and stretching of causality to the measurement problem. A totally new kind of philosophical problem arises once we focus on computational aspects of QM.

Indeed, the seeds of this go back to the birth of the field of quantum computation, in the demonstration that quantum computers seem to violate the Extended Church-Turing thesis. This thesis asserts that any reasonable computational model can be simulated efficiently by the standard model of classical computation, namely, a probabilistic Turing machine. Bernstein and Vazirani [8] and Simon [15] showed that quantum computers are capable of exponential speedups over classical models of computing, thus demonstrating the violation of the thesis by quantum computers. That this violation has profound practical consequences became apparent shortly thereafter when Shor [14] made his seminal discovery of an efficient quantum algorithm for factoring, one that is exponentially faster than any known classical algorithm for this important computational problem. The philosophical implications of this computational view of QM are only just beginning to be understood, and this is the subject of this paper.

At the root of the extravagant computational power of QM is the fact that the state of a quantum system of n spins is a unit vector in a Hilbert space of dimension that scales exponentially in n. This means that 2^n complex numbers are required to describe the state of such a system, as compared to $O(n)$ for a comparable classical system. This number of parameters is larger than the estimated number of particles in the universe already for $n = 500$. This is certainly among the most paradoxical predictions of quantum mechanics. Is this description unnecessarily inefficient? Could there be a different succinct description? This was a question posed by Feynman in his seminal paper [11] that led to the birth of quantum computation. The theory of quantum computation provides an answer: an exponential description is necessary, as long as we believe that quantum computers provide an exponential speedup over classical computers. A different way to say this is that, as we believe today, the computational complexity exhibited by many-body Quantum systems is exponentially more powerful than that of classical systems.

*School of Computer Science, The Hebrew University of Jerusalem, Israel. doria@cs.huji.ac.il. Supported in part by ERC-2011-StG grant 280157-QHC, ISF grant 1446/09
†Department of Computer Science, UC Berkeley, California vazirani@eecs.berkeley.edu. Supported in part by NSF Grant CCF-0905626 and Templeton Foundation Grant 21674.
1By efficient, we mean that the simulation overhead is bounded by some polynomial. i.e. t steps on the computational model in question can be simulated in $poly(t)$ steps on a probabilistic Turing machine.
2These early quantum algorithms were cast in the so-called black-box computational model, which is a restricted model of computation in which such exponential separations can actually be proved; see Nielsen and Chuang [13].
One of the goals of physics research is to test the validity of a theory in various limits — e.g., in the limit of high energy, or at the Planck scale, or close to the speed of light. Ideas from quantum computation point at a new regime in which to test quantum mechanics: the limit of high (computational) complexity. The aspects of quantum mechanics that have so far been experimentally verified, to exquisite precision (with certain predictions of QED verified to within one part in 10^{12}!), can all be classified as low complexity quantum mechanics - many of them rely on little more than single particle quantum mechanics. The relevant computational complexity measure here is the effective dimension of the Hilbert space in which the state of the system lives, and in those systems, it is very small. Thus a Bose-Einstein condensate, though a macroscopic quantum state, is effectively a two-level quantum system and therefore of low complexity. Moving beyond the practical difficulties in experimentally dealing with large scale quantum systems, here we ask whether testing QM in the high complexity limit is even theoretically possible, or whether there are fundamental obstacles that prevent such testing.

At a naive level, the issue is how can an experimentalist test an exponentially more powerful system than his own computational abilities, with the view of testing that it is indeed exponentially more powerful? Slightly more accurately, we ask: how can a classical, computationally restricted experimentalist test the high complexity aspects of quantum mechanics? The scientific method would suggest setting up an experiment, and checking that the outcome is consistent with the prediction of the theory. But if the prediction of the theory requires exponential resources to compute, as we believe is the case for many-body quantum mechanics, is there a way to effectively carry out the procedure laid out in the scientific method in order to test QM? On the face of it, the answer is no, since the predictions of the experiment cannot be computed in a reasonable time (of course the predictions could be efficiently computed using a quantum computer, but the correctness of that result would rely on the exponential scaling of QM, which is what the experiment was trying to test in the first place!). Following this logic, one would deduce that the testing of quantum mechanics in the limit of high complexity is not susceptible to the scientific method.

A more formal way of understanding the issue is in terms of two ways of interpreting the extended Church-Turing thesis. The first interpretation goes back to Alan Turing’s conception of a Turing machine as an idealized model for a mathematical calculation (think of the infinite tape as an infinite supply of paper, and the Turing machine control as the mathematician, or for our purposes a mathematical physicist calculating the outcome of an experiment). By this interpretation the Turing machine, i.e. the idealized model of a mathematical calculation, can efficiently simulate any other algorithmic model of computation. This is the interpretation which a logician might take. The other interpretation of the extended Church Turing thesis reads “reasonable model of computation” as “physically realizable model of computation”. It argues via the equivalence between Turing Machines and cellular automata (which may be regarded as discrete analogs of local differential equations) that Turing Machines represent, or capture, the evolution of physical systems in the classical World; they can efficiently simulate any computational model that is reasonable from the point of view of physics implementation. Combining the two interpretations we get the following: in principle, any scientific theory for the classical World (by the second interpretation) can be formalized as a cellular automaton; this cellular automaton (by the first interpretation) can be efficiently simulated by the mathematical physicist to calculate the outcome of the desired experiment. Thus, by the extended Church Turing thesis, the outcome of the experiment of any scientific theory can be calculated efficiently by the mathematical physicist. This outcome can then be verified experimentally, following the usual scientific paradigm. The source of the problem explained above is that in a quantum World, we run into a fundamental problem, since the mathematical physicist is still classical, whereas the quantum World that he is trying to understand is exponentially more powerful. i.e. the two interpretations of the extended Church Turing thesis diverge exponentially; it no longer holds that the mathematical physicist can calculate efficiently the outcome of quantum experiments. This is the source of the fundamental problem in testing QM in the limit of high complexity.

Vazirani observed already in [16] that Shor’s quantum factoring algorithm constitutes a counter example to the above line of thought by which the exponential computational complexity of quantum mechanics seems to lend it impossible to testing in the usual scientific paradigm. The reason is that Shor’s algorithm can be interpreted as a suggestion for a layout of a physical experiment, that tests quantum mechanics in a regime which is believed to be impossible to efficiently simulate by classical computational means. Indeed, a closer examination reveals in what way this experiment lies outside the usual scientific paradigm of “predict the outcome of the experiment and verify that this is the experimental outcome.” In the case of quantum factoring, the output of the experiment consists of the prime factors of the input N. The intractability of factoring on a classical computer rules out the possibility of predicting the output of the experiment. Instead the verification is performed by checking that the product of the prime factors output by the experiment is N. Thus rather than predicting the actual outcome of the experiment, what is predicted is that the outcome passes a test specified
by a certain computational process (i.e., multiplication of the output numbers results in \(N \)). This might seem like a minor difference, between verification and comparing, and in a very special case; however as we shall soon see, it is the tip of the iceberg.

Aharonov, Ben-Or and Eban 3 suggested that this view of Shor’s algorithm as an experiment verifying quantum mechanics in complex regimes, could be greatly generalized by casting it in the framework of interactive proof systems. This is a central concept in computational complexity theory 12,13 (and see [4]). In an interactive proof system, a computationally weak (i.e., of polynomial strength) verifier, Arthur, can interact with a much more powerful (in fact unbounded) but untrusted entity, called the prover, or Merlin. By this interaction he can determine the correctness of an assertion made by Merlin. For this to be possible, Merlin has to be willing to answer a number of cleverly chosen random questions related to the original claim; the questions need to be random so that Merlin cannot prepare in advance, and thus Arthur may catch him if he is trying to cheat by revealing the inconsistencies in his claims. Arthur adaptively generates this sequence of questions based on Merlin’s answers, and checks Merlin’s answers for consistency. The remarkable property of such protocols is that Arthur can only be convinced of the original claim (with non-negligible probability over the choice of questions) if it is in fact a valid claim. Arthur’s confidence in the claim does not depend in any way on his trust in Merlin, but rather in the consistency checks that he is able to perform on Merlin’s answers (see [4] for some detailed examples of such protocols). In complexity theory Merlin is a hypothetical being, and the properties of the game between Arthur and Merlin provide deep insights into the nature and complexity of proofs. In the quantum context, [3] suggest to replace the all-powerful prover Merlin by a real entity, namely a quantum system performing quantum evolutions or quantum computations 4.

Let us understand the implications of such an interactive proof system in the context of a classical experimentalist (who is computationally “weak”, namely limited to polynomial computations), who wishes to verify that the outcome of a quantum experiment is consistent with quantum mechanics (which is a computationally powerful system). Let us place the experimentalist in the role of Arthur, and quantum systems (or all of quantum mechanics) in the role of Merlin. Using such protocols of interaction as in interactive proofs, we will derive that although the experimentalist might not be able to verify directly that the outcome of a single experiment in isolation is correct (according to the predictions of quantum mechanics), because he would not be able to predict its outcome, he still could set up a sequence of experiments and test that the outcomes of all these experiments jointly satisfied the consistency checks (mandated by the interactive proof system). If they did indeed satisfy them, he could conclude that the outcome of the original experiment was indeed correct according to the predictions of quantum mechanics. Moreover, his confidence in this conclusion would be based only on the success of the consistency tests, which he could perform efficiently. Of course, if the outcomes of the experiments did not pass the consistency tests, then the experimentalist could only conclude that at least one of the experiments failed to meet the predictions of quantum mechanics; the implication would be that something in the sequence of experiments must not fit the theory: either the system was not prepared correctly, or quantum mechanics itself is false.

This kind of an interactive proof between the experimentalist and the quantum system may be thought of as a new kind of experiment, involving a well-designed sequence of interactions (a protocol) between the experimentalist and the system. Indeed, this would provide a new paradigm for the scientific method, breaking with the “predict and test” paradigm that goes back several centuries. However, whether such an interactive proof system exists for all of quantum mechanics is currently an open question. Indeed, this is one of the currently most important computational questions about the foundations of quantum mechanics.

Is it plausible that a classical verifier could efficiently check an exponentially more powerful system such as quantum mechanics? The earlier discussion about formulating Shor’s algorithm as an interactive experiment provides an example of the possibility to test QM in complex regimes; note however that the factoring problem is special, since it is in the complexity class \(NP \cap co-NP \), believed not to contain all of quantum computation, and so this does not clearly imply anything for testing quantum mechanics in general. Turning to more general cases, interactive proof systems are known to exist for systems that are more powerful than quantum mechanics, for example, for the class \(\#P \) of all counting functions6. By these interactive proofs, the prover can prove to the weak verifier that he has computed the answer to the \(\#P \) function correctly, even though such function is extremely hard for the verifier to compute on his own. However, these interactive proofs are not useful in our context, since the prover in them is all-powerful (or at least as powerful as \(\#P \)), whereas we need the prover to

3Note that this notion of quantum interactive proofs is very different from another notion of quantum interactive proofs 17, in which Arthur is a quantum polynomial time system and Merlin is a hypothetical all-powerful entity, which is studied in the literature in the context of quantum complexity theory.

4to define \(\#P \), recall for example the satisfiability problem, which asks given a propositional formula \(f(x_1, \ldots, x_n) \) whether there is a satisfying assignment \(a_1, \ldots, a_n \) such that \(f(a_1, \ldots, a_n) = 1 \); this is a problem in \(NP \); its counting version, denoted \(\#SAT \) is the question how many such satisfying assignments are there, out of the \(2^n \) potential solutions.
be no more powerful than QM; how would a restricted prover prove the correctness of a quantum mechanical evolution? The auxiliary random questions generated by Arthur must be solvable efficiently by a quantum system to ensure that the experiments corresponding to the interactive proof are feasible. Hence, this still does not provide an answer to the above open question.

Aharonov, Ben-Or and Eban were able to prove an interesting kind of interactive proof system for quantum mechanics, which partially addresses the above question. In this system, Arthur, the experimentalist, is not purely classical, but can store and manipulate a constant number (3 to be concrete) of qubits, and can exchange qubits with Merlin, who is an arbitrary quantum system. They gave a protocol by which Arthur can verify that an arbitrary quantum experiment (modeled by an arbitrary sequence of quantum gates) has been faithfully carried out by Merlin, by exchanging a sequence of specially chosen quantum messages with Merlin, the quantum system. At all times in this protocol, Arthur holds at most 3 qubits.

One way to understand this protocol is to imagine that a company QWave claims to have experimentally realized a quantum computer, and wishes to convince a potential buyer that the computer is indeed capable of performing an arbitrary quantum experiment on up to n qubits. If the potential buyer has the capability of storing and manipulating 3 qubits, and of exchanging qubits with the quantum computer, then by following the protocol of Aharonov, Ben-Or and Eban, he can verify that the computer faithfully carried out any quantum computation of his choice. Alternatively, assume that an experimentalist trusts that QM describes his system of few qubits to extremely high precision, but does not know that that is true, or to what extent it is true, as the number of particles in the system increases. He can use the above protocol to test this, based on his already established belief that his small systems obey QM to very high precision and a relaxed assumption about the quantum nature of the physical system.

In the following we flesh out the main ingredients required to make the above line of thought rigorous; we explain how computationally weak (polynomial nearly classical verifier) can test the complex regime of quantum mechanics using interactive experiments.

2 Polynomial time and the Extended Church Turing Thesis

A fundamental principle in computational complexity theory, can be summarized as equating efficient = polynomial time: computations are considered efficient if they can be carried out in a number of steps that is bounded by a polynomial in the size of the input. Here the size of the input is measured in the number of bits required to specify it. This identification of efficient with polynomial time is to be contrasted with brute force search which takes exponential time in the size of the input. For example, the satisfiability problem (SAT) asks whether a given propositional formula $f(x_1,\ldots,x_n)$ is satisfiable. i.e. whether logical values (True and False) can be assigned to its variables in such a way that makes the formula true. There are 2^n such truth assignments, and brute force search over these possibilities is prohibitively expensive — even for $n = 500$, 2^n is larger than estimates for the number of particles in the Universe, or the age of the Universe in femto-seconds. But is this brute force search necessary? The famous P = NP? problem asks whether this problem can be solved in a number of steps bounded by some polynomial in n.

The principle of efficient computation is also closely tied to the extended Church-Turing thesis, which states that any "reasonable" model of computation can be simulated by a (probabilistic) Turing machine with at most polynomial simulation overhead, i.e. for any reasonable model of computation there is a polynomial $p(x)$ such that T steps on this model can be simulated in at most $p(T)$ steps on a Turing machine. This means that Turing machines not only capture the notion of effective computability (which is the essence of the original Church-Turing thesis) but they also capture the notion of efficient computation.

As was briefly touched upon in the introduction, there are two ways to interpret what it means for a model of computation to be "reasonable." The first may be thought of as modeling a mathematician carrying out a long calculation through a sequence of steps, each of which can be carried out using pencil and paper, and where the recipe for the sequence of steps is finitely specified. The second is to consider a physical model of computation or a digital computer. The computational model must be "reasonable" in the sense that it must be physically realizable in principle. For example, implementing infinite precision arithmetic in a single step would be considered unreasonable, since it does not account for the inevitable noise and inaccuracy in any physical realization. Informally, one may argue that classical physics is described by local differential equations, which taking into account the inevitable noise and lack of infinitely precise control, reduces as a computational model

\footnote{The assumption here is that any physical system involved, including the entire system of the prover, is describable by the general structure of quantum mechanics, namely, it can be assigned a density matrix on a tensor product space. One need not assume however that this larger system is coherent, or can be described by pure superpositions, or any other assumption that makes it "fully" quantum; for example, the larger systems could in principle be greatly decohered.}
to a cellular automaton. Since cellular automata are polynomially equivalent to Turing Machines, the extended Church-Turing thesis may be thought of as providing a constraint on what kinds of functions can be computed efficiently by Nature.

3 Interactive Proofs

Let us start with a simple example. Given two graphs \(G_1 = (V_1, E_1)\) and \(G_2 = (V_2, E_2)\) we wish to test whether the two graphs are isomorphic. i.e. is there a bijection \(f : V_1 \rightarrow V_2\) on the vertex sets, such that \({u, v}\) \(\in E_1\) iff \({f(u), f(v)}\) \(\in E_2\). i.e. edges in \(G_1\) are mapped to edges in \(G_2\) under this bijection. There is no efficient algorithm known to solve graph isomorphism in the worst case.

Suppose we had a powerful entity, Merlin, who claimed to be able to solve arbitrary instances of graph isomorphism. How could he convince Arthur about the answer to a particular instance \(G_1 = (V_1, E_1)\), \(G_2 = (V_2, E_2)\)? If the two graphs are isomorphic, then he would simply provide the bijection, and Arthur could efficiently check that this bijection maps edges to edges and non-edges to non-edges. If the number of vertices in each graph were \(n\), then Arthur would need to perform \(O(n^2)\) such checks.

Returning to the example, if the two graphs are non-isomorphic, how would Merlin convince Arthur that this was the case? On the face of it, this appears impossible, since Merlin would have to rule out all possible bijections, and there are exponentially many of those as a function of \(n\). This is where the interactive proof comes in. Arthur chooses one of the two graphs at random (according to the flip of a fair coin), and then randomly permutes the vertices and sends the resulting description to Merlin. Merlin is asked to identify which of the two graphs Arthur chose.

The point is that if the two graphs were isomorphic, then there is no way to distinguish a random permutation of one graph from a random permutation of the other (the two distributions are identical). So Merlin can succeed with probability at most 1/2. On the other hand if the graphs were not isomorphic then Merlin, who can solve the graph isomorphism problem, can easily identify which graph was sent to him, and answer accordingly. Arthur can of course easily check if Merlin answered correctly. Repeating this protocol \(k\) times independently at random would decrease Merlin’s probability of succeeding in convincing Arthur by chance in the case of isomorphic graphs to at most \(1/2^k\).

A much more sophisticated protocol works in the case that Merlin claims to be able to solve the problem \(#SAT\), defined in footnote\(^4\). In this problem, the input is a propositional formula \(f(x_1, \ldots, x_n)\) on \(n\) Boolean inputs \(x_i \in \{0, 1\}\), and the desired output is the number of distinct inputs to \(f\) on which it evaluates to 1. In the protocol Arthur queries Merlin about a number of related propositional formulae \(f_1, f_2, \ldots, f_m\) chosen based on \(f\) and on some random coins; Arthur accepts only if Merlin’s answers satisfy certain consistency checks. The protocol is fairly complicated and will not be discussed here\(^6\). The important property of this protocol however is that if Merlin lies about the answer to the initial problem, then he is forced to keep lying in order to pass the consistency tests, until eventually he lies about a simple enough assertion that even Arthur can independently verify efficiently.

4 Interactive proofs for quantum mechanics

The class of computational problems that can be solved efficiently (in polynomial time) on a quantum computer is denoted by \(\text{BQP}\). It is well known that \(\text{BQP} \subseteq \#P\), and so every computational problem that can be solved in polynomial time on a quantum computer can also be solved by a \(\#P\) solving Merlin. At first sight the interactive proof for \(#SAT\) described above, which in fact works for any problem in \(\#P\), would seem to be exactly the kind of interactive proof system we are seeking for \(\text{BQP}\). Unfortunately the computations that Merlin must perform for this protocol, namely solving \(\#P\) problems, are (believed to be) too hard to be performed efficiently by a quantum computer. So even though we end up with an interactive proof system for \(\text{BQP}\), it is not one where the prover is a \(\text{BQP}\) quantum machine. The major open question is whether every problem in \(\text{BQP}\) has an efficient interactive proof of this type, where the prover is a \(\text{BQP}\) machine and the verifier is a polynomial time classical machine. If we denote by \(\text{BPP}\) the class of problems solvable in polynomial time by a probabilistic Turing machine, this translates to the requirement that the verifier is a \(\text{BPP}\) machine, interacting with a \(\text{BQP}\) prover.

\(^4\)It can be found in [3]; in fact, its discovery was one of the stepping stones towards one of the most exciting developments in theoretical computer science over the past two decades, namely probabilistically checkable proofs [4].

5
Definition 4.1 A problem L is said to have a Quantum Prover Interactive Proof (QPIP) if there is an interactive proof system with the following properties:

- The prover is computationally restricted to BQP.
- The verifier is a (classical) BPP machine.
- For any $x \in L$, P convinces V of the fact that $x \in L$ with probability $\geq \frac{2}{3}$ after the conversation between them ended (completeness). Otherwise, when $x \notin L$ any prover (even one not following the protocol) fails to convince V with probability higher than $\frac{1}{3}$ (soundness).

Formally the open question mentioned in the introduction above can be restated as asking whether $\text{BQP} \subseteq \text{QPIP}$, i.e., whether any problem in BQP has a quantum prover interactive proof system as above; or alternatively, whether the correctness of the outcome of a polynomial time quantum evolution can be proven to a classical BPP verifier by a BQP prover. Note that the other direction trivially holds: $\text{QPIP} \subseteq \text{BQP}$, since any QPIP protocol can be simulated by a BQP machine by simulating both prover and verifier, as well as the interaction between them; hence the question can be written as whether $\text{BQP} = \text{QPIP}$.

Aharonov, Ben-Or and Eban [3] managed to show a somewhat weaker result. To this end, they defined a relaxation of QPIP: the verifier in their definition is a hybrid quantum-classical machine. Its classical part is a BPP machine as above. The quantum part is a register of c qubits (for some constant $c \leq 3$ would suffice), on which the verifier can perform arbitrary quantum operations, as well as send them to the prover, who can in its turn perform further operations on those qubits and send them back. At any given time, the verifier is not allowed to possess more than c qubits. The interaction between the quantum and classical parts is the usual one: the classical part controls which operations are to be performed on the quantum register, and outcomes of measurements of the quantum register can be used as input to the classical machine. There are two communication channels between the prover and the verifier: the quantum one in which the constant number of qubits can be sent, and the classical one in which polynomially many bits can be sent.

Aharonov, Ben-Or and Eban [3] proved that with this relaxation of QPIP, which we will denote here by QPIP^*, a BQP prover can convince the verifier of any language he can compute:

Theorem 4.1 $\text{BQP} \subseteq \text{QPIP}^*$.

where the other direction, $\text{QPIP}^* \subseteq \text{BQP}$, is again trivial.

The meaning of this result is that if the verifier trusts that his hybrid classical system with the aid of a constant number of qubits acts according to his quantum mechanical description of it with sufficient confidence, he can also be convinced with very high confidence of the results of the computation of the most general and complicated quantum computation which takes polynomial time, run on a quantum computer he has no control over.

The mathematical method that was used to prove this result is taken from the realm of cryptography and uses computer science notions such as error correction and authentication; we will attempt to sketch it in the next section.

5 How weak verifiers can test strong machines: Proof idea

As a warm-up to the $\text{QPIP}^* = \text{BQP}$ question, consider the following simple scenario: suppose the verifier wishes to store an n qubit state $|\phi\rangle$ that she is about to receive, but she has only a constant number of qubits of quantum memory. Fortunately she can use the services of a quantum memory storage company. The problem is that she does not trust the company. Does the verifier have a way of checking that the storage company eventually returns to her the same state that she sent them? We can think of this problem as the problem of trivial-computation by an untrusted prover: the verifier just wants to verify that the company, here viewed as the prover, did nothing to the state she wants to maintain, or, in other words, that the company applied to it the identity computation. The prover wishes to convince the verifier that indeed the state he returns is exactly the state sent by the verifier (regardless of whether this is indeed the case). The challenge is that the verifier cannot measure the state before storing it at the prover’s hands, since this will collapse the state; hence the protocol needs to work even if she knows nothing about the state she stores! In fact, when she receives or generates the state, she cannot even hold all its qubits in her laboratory at once.

The idea for solving this problem is in fact quite simple: Let us assume that the verifier generates the unknown quantum state $|\phi\rangle$ one qubit at a time, and transmits each qubit to the quantum storage company,
or the prover, as she generates it. Imagine just for the sake of explanation that $|\phi\rangle$ is a tensor product state $|\alpha\rangle \otimes |\beta\rangle \otimes \ldots$. Before sending the first qubit in the state $|\alpha\rangle$ to the company, the verifier encodes it into the state of, say, two qubits, in the following way. The verifier adds one auxiliary qubit in the known state $|0\rangle$, which will serve as a check qubit. The state at the verifier's hands after that is $|\alpha\rangle \otimes |0\rangle$. She then chooses a random unitary U_R uniformly from all the unitaries acting on two qubits, and applies it to her two qubits. She derives the state $U_R(|\alpha\rangle \otimes |0\rangle)$; note that this is a completely random two-qubit state. She sends this state to the company, and then receives the next qubit in the state $|\beta\rangle$, encodes it into another random state by adding an additional auxiliary qubit and applying a random (newly chosen) unitary on $|\beta\rangle \otimes |0\rangle$, sends the resulting state, and so on. By the end of this protocol, the company have received two times as many qubits as the original state.

To retrieve the quantum state from the company, the verifier asks for pairs of qubits, block by block. On each such block of two qubits, she first applies the inverse of the random unitary, U_R^{-1} she applied on that block at the time of encoding. She then applies a measurement of only the check qubit, and tests that it is indeed in the state $|0\rangle$; she need not measure the first qubit in each block, and this way she does not disturb its state.

Why does this test work with high probability? The point is that the initial state of each block, before applying the random unitary, lives inside a two-dimensional manifold M, described by all states of the form $|\gamma\rangle \otimes |0\rangle$ (for all one-qubit states $|\gamma\rangle$). The random unitary U_R takes the manifold M and maps it onto a random two-dimensional manifold M_R inside the four-dimensional space of the two qubits. Since the company has no information regarding U_R, from its point of view, the resulting manifold M_R is a completely random two-dimensional manifold inside this four-dimensional space. Therefore, if the company tries to alter the state without being caught, or if the company cheated, and in fact, it does not have a reliable quantum memory, the final state of the two qubits will be, with extremely high probability, significantly far away from that manifold, since the company knows nothing about this manifold. When the verifier performs the test of rotating the state of the two qubits back by the inverse unitary (thus rotating the two-dimensional manifold M_R back to the original one M) the state of the auxiliary qubit, which should be $|0\rangle$, will be significantly far away from it; when the verifier checks that the additional qubit is in the state $|0\rangle$, she will detect that such a change had occurred with high probability.

Notice that in the above explanation we never used our assumption that the initial state is a tensor product state; in fact, everything holds even in the presence of multi-particle entanglement between all different qubits of the original state. This idea thus already contains the seed for the solution we are looking for, because it

This notion of maintaining complicated quantum states by untrusted parties, and the ability to detect whether they were altered, was in fact invented in the context of cryptography, and is called a quantum authentication scheme (QAS) \[6\]. It turns out that the quantum authentication scheme described above is not so useful, since to realize it, we need to efficiently select a random unitary, which involves infinite accuracy issues. Moreover, the security of the above scheme is yet to be proven; technically, this is non-trivial due to the continuous nature of this scheme. \[5\] describe a slightly more involved QAS whose security is much easier to prove since it is amenable to a terminology which describes errors in the state as discrete.

To move to the language of discrete errors, recall the notion of Pauli matrices: these are the four 2×2 matrices

$$ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad (1) $$

acting on one qubit. These four matrices linearly span the continuum of changes that can happen to one qubit. It thus suffices to handle the probability that one of the non-identity operators $\sigma_x, \sigma_y, \sigma_z$ occurs to a qubit to be able to provide bounds on the probability that the state had been altered significantly while at the hands of the company.

We now modify the above described QAS as follows. The encoding is done essentially as before, by adding one qubit in the state $|0\rangle$ to each qubit in the original state, and applying a random rotation on those two qubits. However, instead of choosing the rotation randomly from all possible unitary operations on two qubits, as in the first QAS, the random unitary U_R is chosen from a finite subgroup of all two-qubit unitaries, called the Clifford group. This group is defined to be the group of unitaries C such that when C acts on a Pauli matrix P by conjugation, (namely, P is mapped to CPC^{-1}), the resulting matrix is still inside the Pauli group. In other words, the Pauli group is closed to conjugation by matrices from the Clifford group. The reason this property is advantageous is this: imagine that when at the hands of the company, the matrix E is applied to a quantum state ψ, rather than the identity. The effect on the density matrix ρ describing the state is that E
acts on it by conjugation, so ρ is mapped to $E\rho E^{-1}$. Now, if a random Clifford C is applied to the state before the state is transformed to the hands of the company, and then its reverse is applied when the state is returned, the effective overall action on ρ is $C^{-1}(E(C\rho C^{-1})E^{-1})C = (C^{-1}EC)\rho(C^{-1}E^{-1}C)$. Thus, the effect of first rotating ρ by a Clifford operator (and then rotating back), is that not E was applied, but its conjugation by a random Clifford matrix. Recall that we can span E in terms of Pauli's; it turns out that applying a random Clifford before E is applied, makes E effectively equal to the application of a random Pauli matrix to each qubit independently, and this includes the extra test qubit. At verification stage such a procedure will go undetected by the verifier's measurements only if the Pauli on the check qubit turns out to be either identity or σ_z, but if it is σ_x or σ_y it will be detected since the measured state will be $|1\rangle$. This happens with probability 0.5.

Hence, it turns out that even though the restriction to the Clifford group seems quite strong, (in particular, the Clifford group contains a finite number of elements rather than a continuum!) this choice provides enough randomization to completely randomize the action of the prover, so that any tampering of the state will be detected with high probability.

We therefore have a solution to the simple problem of maintaining a quantum state using an untrusted storage device. It might seem that this problem is far too simple, and almost irrelevant for the more general problem of verifying that a quantum circuit had been applied correctly on the state. In fact, the above idea suffices to solve the entire problem by a simple modification. Imagine now that we have a certain computation, or a specification of a quantum algorithm by a sequence of two-qubit quantum gates, $U_1, ..., U_T$. We want to make sure that with high probability, the final state the prover sends us is very close to the correct state, $U_T \cdots U_1 |0^n\rangle$. Given the QAS above we can achieve this goal as follows. The verifier starts by encoding each qubit in the input state using the Clifford based QAS above. She then sends these pairs of qubits to the prover one pair at a time. All that the prover needs to do is to perform a random unitary using an untrusted storage device! The verifier is the one to perform the gates one by one, and this is done as follows: to apply the ith gate, the verifier asks the prover to send her the two blocks of two qubits encoding the relevant qubits on which she wants to apply the gate (assuming all gates act on two qubits). Upon receiving those 4 qubits, she first decodes them, by applying the inverse of the random unitaries to each block (of course she must maintain a classical description of those unitaries in her classical memory so she can carry out these steps). After decoding she applies the gate U_i on the two decoded qubits, and encodes the two qubits again using two freshly chosen random unitaries; she then sends the two blocks to the prover. This way she had updated correctly the state at the hands of the prover; if the prover does not tamper with it, after time step i he holds an authenticated version of the correct state of the quantum circuit after i gates. After all gates have been applied this way, the prover (if honest) holds the authenticated version of the final state of the quantum circuit. At this point the verifier asks the prover to send her all pairs of qubits one by one; once she receives such a pair, she applies the decoding using the inverse of the relevant encoding unitary, and then measures the test qubit in the block to check that it is in the state $|0\rangle$; if all tests pass successfully, she is assured (with constant probability) that the state she had received is correct. Of course, her constant probability can be amplified by repeating the entire process.

The size of the quantum register which the verifier is assumed to possess in this protocol is 4 qubits, since the length of the encoding of one qubit is 2. In fact, 3 qubits suffice, since it suffices to send one register at a time and wait until the verifier decodes it before sending the second register of two qubits.

6 Further complications: Can the prover apply the gates?

The Clifford based QAS enables us to prove the main theorem, but there are several problems with this proof. First, it is not fault tolerant, namely, if the storage devices and the quantum channels between the prover and verifier are faulty and not ideally isolated from the surrounding, then the scheme will quickly fail. Fault tolerance is necessary for the scheme to be applicable in a physically realistic setting. But a more severe criticism can be made against the above scheme: it seems like cheating, as the computation is performed entirely by the verifier! In terms of making progress towards the QPIP = BQP question, it is crucial that the prover perform the non-trivial quantum computation, since eventually we want the verifier to be classical. What we want is that the prover apply the quantum gates, without learning any information about the encoded qubits that he is applying the gates to; because if he has such information, he can use it to alter the state of the qubits from the correct state, without being caught. Hence, we need some way of encoding the qubits that are delivered to the prover, so that a) he does not know the encoding b) he is capable of performing gates on the encoded state nevertheless. Though the above two requirements might seem contradictory, it is possible to achieve both at the same time.

At this point it is not known how to achieve both goals using the Clifford based QAS since it does not
seem to have sufficient structure. Aharonov et al. [3] achieve this by providing a second QPIP protocol, based on a different QAS, due to Ben-Or, Crépeau, Gottesman, Hassidim and Smith [7]. We explain this in this section. The result is thus a QPIP in which the verifier does not perform any quantum computation except for the encoding in the beginning; moreover, the interaction with the prover, after those encoded qubits are sent, is completely classical.

The idea of how such a manipulation can be carried over is inspired by the notion of error detection codes from computer science. An error detection code is a mapping of a string of, say, k bits $s \in \{0,1\}^k$ into a longer string of m bits, $w \in \{0,1\}^m$. We say this code detects t errors if whenever t bits or fewer have flipped in w this fact can be detected. This can be achieved of course only if there is sufficient redundancy in the encoding, i.e., m is sufficiently larger than k.

Quantum error detection codes are defined similarly: the encoding is a unitary embedding of the space of quantum states of k qubits into the space of quantum states of m qubits. The notion of bit-flips as errors in the classical case is replaced by non-identity Paulies applied to the qubits. More precisely, in the quantum setting we are faced with quantum errors of the following types: a bit flip, described by the Pauli σ_x (see Equation 1), a phase flip, described by the Pauli matrix σ_z, and a combination of both, described by σ_y.

One can generalize the notion of quantum error detecting codes also to qudits, namely to states of higher dimensional particles, say, each of dimension q: instead of Pauli matrices, one considers their generalizations: σ_x is generalized by the operator $X_q : |x⟩ → |x + 1 \mod q⟩$, which we refer to as a generalized bit flip; σ_z is generalized by $Z_q : |x⟩ → e^{2\pi i x/q}|x⟩$, which we refer to as a generalized phase flip, and the generalized Pauli group over F_q, applied to one qudit, is the group generated by X_q and Z_q, namely, it consists of the set of combinations of those errors, $X_q^i Z_q^j$ for $i,j \in \{0,\ldots, q-1\}$.

Why do we discuss error detection codes in our context? The requirement for error detection resembles the requirements from a QAS in which we need to be able to detect any modification induced by the prover to the string of qubits we would like him to maintain. The difference is that the task we are aiming at in the context of QAS is more difficult: in error detection codes the goal is to detect any error which tampers at most t (qu)bits, and if more than t (qu)bits have been tampered, we do not care if this goes undetected. By contrast, in QAS we make no assumption on the number of locations which can be tampered with; we have no control over how the prover can alter the state, and we would like to be able to detect any error.

It is not difficult to convince one’s self that no error detection code can achieve this ambitious goal of being able to detect any error. However, if we relax our requirements and allow the detection of errors only with high probability rather than with certainty, this becomes possible! The main idea behind the authentication scheme of [7] is to use not a fixed error detection code but one which is chosen randomly from a large set of possible codes. In this way, any error (namely, any combination of non-identity Paulies) is detected with high probability, but with high probability, any error will be detected.

This randomized encoding resembles the usage of a random unitary in the previous two QAS. The difference is that in the scheme we will now describe, due to the algebraic structure of the codes which we will use, the prover will be able to apply gates on the states without knowing which of the error detection codes is being used. We now explain how this is done.

We start with a familiar quantum error detection code, called the polynomial code [2]. We operate over the field F_q, for a large prime q. Recall that a polynomial $f = \sum_{i=0}^{d} a_i x^i$ of degree d over this field is determined by its $d+1$ coefficients a_i. Imagine now we represent this polynomial in terms not of its coefficients, but rather its values at different points of the field, say, $1 \cdots m$. In other words, we encode the polynomial by the string of values $f(j)$ for $j = 1 \cdots m$. If m is larger than $d+1$, then there is redundancy in this representation and errors can be detected. In fact, if we pick $m = 2d + 1$, then exactly all errors which contain up to d altered locations can be detected. The above scheme gives a classical code (and a very famous one - it is the Reed-Solomon code [4]).

To get a quantum detection scheme, we need to be able to detect not only classical errors (the generalization of σ_x to quantum systems of dimension q, namely X_q and its powers X_q^k) but also quantum errors, a.k.a. as generalized phase flips (the generalizations of σ_Z to quantum systems of dimension q, Z_q, and its powers Z_q^k). To achieve this, we consider superpositions of all polynomials of degree up to d. We encode each element a in the field F_q by the following state:

$$|S_a⟩ = \sum_{f,\deg(f)\leq d, f(0)=a} |f(1),\ldots, f(m)⟩.$$

Namely, by the superposition of all strings evaluating a polynomial of degree less than d at m points in the field, where the sum is only over such polynomials whose value at 0 is a. That such a superposition possesses
ability to detect classical-like errors of weight up to \(d \), namely errors of type \(X_q \) and their powers applied to at most \(d \) coordinates, follows from the fact that each string in the superposition possesses it, due to the classical properties of error detection of polynomial codes. The ability to detect \(d \) phase flips is less straightforward. It follows from changing the basis and looking at the state after the application of the Fourier transform. On one hand, \(Z_q \) is transformed in this basis to \(X_q \); so being able to correct for generalized bit flips in the new basis translates to correcting phase flips in the original basis. The point is that after applying the Fourier transform, we arrive the dual of the superposition of all polynomials, which turns out to be also a superposition of those polynomials! Hence, in this basis too we can detect bit flips, which means correcting phase flips in the original basis. Since bit flips and phase flips, and their combinations, span the entire unitary group, this means that we are able to detect any error if it did not involve too many locations. This gives us the polynomial quantum code, which can thus be shown to detect errors at up to \(d \) locations, namely applications of any combination of the non-identity generalized Paulis on at most \(d \) locations.

So far, we have defined only one error detection code, which we refer to as our basic code. We would now like to introduce a randomization process, which would result in a family of error detection codes, such that any error applied by the prover will be detected with high probability.

If we assume that the prover only applies a Pauli operator at each location, then it suffices to randomize the basic code as follows: For each location, a random sign flip \(\epsilon_i \) (plus or minus) is chosen independently. \(\epsilon = (\epsilon_1, \ldots, \epsilon_m) \) is called the sign key. The basic code is modified according to \(\epsilon \) by multiplying each location by \(\epsilon_i \), and the result is called the signed polynomial code:

\[
|S_{\epsilon}| = \sum_{f, \deg(f) \leq d, \epsilon(f) = a} |\epsilon_1 f(1), \ldots, \epsilon_m f(m)\rangle.
\]

It turns out that this randomization suffices to ensure that the verifier detects with high probability any (non-trivial) Pauli group operator applied by the prover on any number of locations. This is because in order for it not to be detected, the Pauli applied on top of the sign key has to match the values of a low degree polynomial, and this happens with small probability.

The above scheme does not suffice, however, to handle a general operator applied by the prover. To this end we use an additional random key, which they call the Pauli key; for each location, the verifier not only picks a random sign, plus or minus, but also a random element of the generalized Pauli group \(X_q^* Z_q^* \). The Pauli key is denoted \((x, z) = ((x_1, \ldots, x_m), (z_1, \ldots, z_m)) \). To encode, the verifier applies the generalized Pauli \(X_q^* Z_q^* \) on the \(i \)th coordinate of the state \(|S_{\epsilon}| \) encoded by the random signed polynomial code, for all \(i \); this derives the state \(|S_{\epsilon, x, z}| = (X_q^{x_1} Z_q^{z_1}) \otimes (X_q^{x_2} Z_q^{z_2}) \otimes \cdots \otimes (X_q^{x_m} Z_q^{z_m}) |S_{\epsilon}| \).

It is technically not too difficult to see that due to symmetry arguments, this randomization by a random Pauli key makes the general operator that the prover had applied appear effectively as though the prover applied a uniformly chosen random Pauli operator at each location; from there the argument proceeds as before, to show that this is indeed a QAS which can detect any error with high probability.

It remains to explain how the prover can apply gates on the encoded state even though he does not know the encoding, namely, he has no information regarding the Pauli and the sign keys, \((x, z) \) and \(\epsilon \). The idea is that the prover perform the gates assuming that the basic polynomial code was used, namely that \(\epsilon \) and \((x, z) \) were trivial. The verifier and prover then need to perform very simply corrections on top of that. Essentially, the verifier needs to update his Pauli and sign keys for each gate the prover applies, where for some gates, the prover needs to measure part of his state and send the classical result to the verifier, in order for the verifier to know how to update his keys. We demonstrate the details with two examples of gates, but this maneuver can be done for a universal set of quantum gates.

The first example is very simple. Imagine that the prover is required to apply the gate \(X_q : |a\rangle \mapsto |a + 1 \mod q\rangle \), on the encoded state, namely, it is required to take \(|S_{\epsilon, x, z}| \mapsto |S_{\epsilon + 1, x, z}| \). This can be achieved if the prover applies the operations \(X_q^* \) to the \(i \)th coordinate, for all \(i \); To see this, first check the case in which both \(\epsilon \) and \((x, z) \) are trivial; Indeed, in this case, the state is simply \(|S_{\epsilon}| \) and it is easy to check that applying \(X_q \) on each coordinate, namely, adding one to every coordinate of the polynomial translates to adding 1 to the value of the polynomial at 0, namely \(a \); this is the exact operation we wanted. The more general claim, that for general \(\epsilon \) applying \(X_q^* \) achieves the desired result, is not much more difficult.

However, the prover cannot apply \(X_q^* \) on the \(i \)th coordinate since he does not know \(\epsilon \). So how can the prover apply the gate? Fortunately, the prover need not do anything to apply the gate! Instead, all that needs to be done is that the verifier updates his Pauli key by decreasing \(\epsilon_i \) from \(x_i \), \(x_i \mapsto x_i - \epsilon_i \); this effectively achieves the same result.
The second example is just slightly more complicated: it is the application of the Fourier transform gate, \(F[a] \mapsto \sum_{b=0}^{q-1} e^{2\pi i ab/q} |b\rangle \). Once again, when the keys are trivial, it is easy to check that if the prover applies the gate \(F \) on each coordinate in \(|S_a\rangle\), the total effect is the desired Fourier transform gate \(|S_a\rangle \mapsto \sum_{b=0}^{q-1} e^{2\pi i ab/q} |S_b\rangle\). But we need to correct for the existence of the Pauli and sign keys. First, we observe that the sign key does not change anything in the above argument - that code too is mapped to itself (i.e., it is self-dual) by the coordinate-wise application of the Fourier transform \([7]\). As for the correction because of the Pauli key, observe that the conjugation by the Fourier transform maps \(X_q\) to \(Z_q\) and \(Z_q\) to \(X_q^{-1}\), and so \(Z_qF = FX_q\) and \(X_q^{-1}F = FZ_q\). Hence, the prover can apply the Fourier gate on each coordinate, and the verifier need only correct his Pauli key from \((x, z)\) to \((-z, x)\).

In a very similar way, the prover can perform a universal set of gates without knowing the encoding, namely the sign key or the Pauli key. We proceed just as in the previous scheme: the verifier applies the gates with the help of the prover, as above, one by one, and at the end, the verifier checks for correctness by asking the prover to send him the blocks of encoded qubits, and checking that each block lives in the code space of the correct random error correcting code.

The intriguing fact about this scheme is that the prover can be manipulated to apply the gates without knowing the encoding. This raises hope that similar methods might be applicable even when the verifier is entirely classical, and thus, that a completely classical verifier can be convinced of the correctness of a QM evolution.

Finally, we remark regarding the reasons this scheme enables fault tolerance. First, the fact that the prover can apply gates on his own, makes it possible for him to apply gates in parallel on all the qubits he maintains in his memory; in the usual noise model, in which qubits are faulty even when no gates are applied to them (this model is known as “faulty wires”), error correction must be applied constantly on a constant fraction of the qubits \([1]\). Since the quantum space of the verifier is limited in our model, the prover must be able to perform those error corrections, and thus must perform many gates in parallel. The proof that this scheme is fault tolerant relies on standard quantum fault tolerance proofs, for example, \([2]\), but some additional care is required, since the verifier can only hold a constant number of qubits at a time, while he is the only one who can authenticate qubits.

7 Summary

The standard scientific paradigm going back several hundred years — "predict and verify" — is not sufficiently powerful to test quantum mechanics in the high complexity regime. The exciting possibilities and challenges that this regime poses call for an extension of the scientific paradigm to interactive experiments. Such interactive experiments, inspired by the notion of interactive proofs from computer science, allow testing complex and powerful systems without the need to be able to predict their behavior; the example described here provides a way to do so using a classical verifier with very small scale quantum capabilities. Whether or not a completely classical verifier can test quantum evolutions is left open.

A number of issues call for further thought. A very difficult question is whether there is a reasonable straw man theory that agrees with current experimental data about QM but does not violate the extended Church Turing thesis. A theory of confirmation based on interactive experiments remains to be developed; important initial steps in this direction were taken in \([19]\). Another direction to explore is whether such a theory of interactive experiments might be useful for testing other highly complex systems besides those suggested by QM. It is intriguing to further understand the philosophical foundations of a theory of confirmation in which interaction between a weak verifier and a highly complex physical system can take place.

8 Related Work

Initiated independently, and followed by discussions with us, Jonathan Yaari has studied the notion of “interactive proofs with Nature” in his thesis in Philosophy of science \([13]\). His thesis provides an initiation of the study of a theory of confirmation based on interactive proofs.

In the context of blind quantum computation, Broadbent, Fitzsimons, and Kashefi’s \([9]\) suggest a protocol that provides a possible way of showing that BQP = QPIP* where the verifier needs only a single quantum bit. At this point it is unclear whether the security of this protocol can be rigorously established.
Acknowledgements

U.V. would like to thank Les Valiant and D.A. would like to thank Oded Goldreich, Madhu Sudan, Guy Rothblum, Gil Kalai, and the late Itamar Pitowsky for stimulating discussions related to the ideas presented here.

References

[1] Aharonov, D. and Ben-Or, M., Polynomial simulations of decohered quantum computers, In proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS ’96) (1996)

[2] Aharonov, D. and Ben-Or, M., Fault-tolerant quantum computation with constant error, Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pp. 176–188, 1997, ACM Press New York, NY, USA

[3] Aharonov, D., Ben-Or, M., and Eban E., Interactive proofs for quantum computation, Proceedings of Innovations of Computer Science (ICS 2010), China, pp. 453–469 (2010)

[4] , Arora, S. and Barak, B., “Computational Complexity: A Modern Approach”, Cambridge University Press, (2009)

[5] Laszlo Babai, Trading group theory for randomness. Proceedings of the Seventeenth Annual Symposium on the Theory of Computing, ACM. (STOC ’85), 1985

[6] , Barnum, H. and Crépeau, C. and Gottesman, D. and Smith, A. and Tapp, A., Authentication of Quantum Messages, Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS ’02), pp. 449–458.

[7] Ben-Or, M. and Crépeau, C. and Gottesman, D. and Hassidim, A. and Smith, A., Secure Multiparty Quantum Computation with (Only) a Strict Honest Majority, 47th Annual IEEE Symposium on Foundations of Computer Science, 2006. FOCS’06, pp. 249–260.

[8] Bernstein, E., and Vazirani, U. (1993) Proceedings of Symposium on the Theory of Computing, 1993. Special issue on Quantum Computation of the Siam Journal of Computing, Oct. 1997.

[9] Broadbent, A. and Fitzsimons, J. and Kashefi, E., Universal blind quantum computation, In Proceedings of the 50th Annual Symposium on Foundations of Computer Science (FOCS 2009), Pages 517527, 2009

[10] Feynman, R., The character of physical law, Ch. 6, Probability and Uncertainty Transcript of the Messenger Lectures at Cornell University, presented in November 1964.

[11] Feynman, R., Quantum Mechanical Computers, Optics News, Vol. 11, Issue 2, pp. 11-20 (1985)

[12] Goldwasser, S. and Micali, S. and Rackoff, C., The knowledge complexity of interactive proof-systems, Proceedings of the seventeenth annual ACM symposium on Theory of computing, pp. 291–304, 1985.

[13] Nielsen, M. and Chuang, I., Quantum computation and quantum information Cambridge University Press New York, NY, USA, 2000

[14] Shor, P. W., Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM journal on computing, 26,5, pp. 1484–1509 (1997)

[15] Simon D.R., ”On the power of quantum computation”, Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS ’94), pp 116123, (1994)

[16] Vazirani, U., “Computational constraints on scientific theories: insights from quantum computing” Workshop on the Computational World View and the Sciences, Caltech, (2007)

[17] Watrous J., “PSPACE has constant-round quantum interactive proof systems”. Theoretical Computer Science, 292(3): 575588, 2003.

[18] Yaari, J., Ph. D. thesis, “Interactive Proofs as a Theory of Confirmation”, The Hebrew University of Jerusalem, 2011