Liver fibrosis indices for the prediction of mortality in Korean subjects: a 16-year prospective cohort study

Tae Jung Oh M.D. 1,2, Kyuho Kim M.D. 2, Jae Hoon Moon M.D. 1,2, Sung Hee Choi M.D. 1,2, Nam H. Cho M.D. 3, Hak Chul Jang M.D. 1,2

1 Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
2 Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
3 Department of Preventive Medicine, Ajou University School of Medicine, Suwon, South Korea

Disclosure summary: The authors have nothing to disclose.

Key Words: nonalcoholic fatty liver disease, hepatic fibrosis, noninvasive index, diabetes, mortality
Correspondence should be addressed to

Nam H. Cho, MD, PhD
Department of Preventive Medicine, Ajou University School of Medicine, Suwon, Korea
206 Worldcup-ro, Yeongtong-gu, Suwon, Korea (Post code: 16499)
Phone: 82-31-219-5900, Fax: 82-31-219-5901, E-mail: chnaha@ajou.ac.kr

OR

Hak Chul Jang, MD, PhD
Department of Internal Medicine, Seoul National University Bundang Hospital and Seoul National University College of Medicine
300 Gumi-dong, Bundang-gu, Seongnam-city, Korea (Postal code: 13620)
Phone: 82-31-787-7005, Fax: 82-31-787-4052, E-mail: janghak@snu.ac.kr
ABSTRACT

Context: Nonalcoholic fatty liver disease (NAFLD) and liver fibrosis, a progressive form of NAFLD, were related to higher mortality.

Objective: We investigated whether noninvasive indices of NAFLD and liver fibrosis could predict mortality in Korean prospective cohort.

Methods: We followed 4,163 subjects from the Korean Genome and Epidemiology Study biannually over 16 years. Cox proportional hazards regression was used to calculate the hazard ratios (HRs) of NAFLD or liver fibrosis indices in the total subjects and subgroups according to body mass index (BMI), and glucose metabolism status.

Results: The mean age of the subjects was 55.7 ± 8.7 years (mean ± SD) and 39.2% were men. During a median follow-up of 15.6 years, 643 subjects (15.4%) died. The Fibrosis-4 (FIB-4), NAFLD fibrosis score (NFS), and aspartate aminotransferase to platelet ratio index were consistently higher in deceased subjects regardless of baseline glucose metabolism status. Among these factors, FIB-4 and NFS displayed acceptable discrimination power for mortality, with area under the receiver operating characteristic curve values of 0.686 and 0.666, respectively. The adjusted HRs for FIB-4 and NFS were 1.41 (95% confidence interval [CI]: 1.18–1.68) and 1.43 (95% CI: 1.21–1.68), respectively. Both FIB-4 and NFS were significantly associated with liver-specific mortality, but not cardiovascular mortality. The association between mortality with fibrosis indices were more prominent in subjects with a lower BMI (< 25 kg/m²).

Conclusions: Noninvasive indices of liver fibrosis might be a significant predictor of all-cause and liver-specific mortality in Korean subjects.
Funding: This work was supported by the Research Program funded by the Korea Centers for Disease Control and Prevention.
INTRODUCTION

The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing, consistent with the increase in obesity globally (1). The global prevalence of NAFLD was recently estimated to be 25.2% (2), and the prevalence of NAFLD in Korea, based on data from Korean health checkups, was similar to the global prevalence (3,4). Among various metabolic risk factors, diabetes is the most important risk factor for NAFLD and non-alcoholic steatohepatitis (NASH), a more severe form of NAFLD (5). The global prevalence of NAFLD and NASH in subjects with type 2 diabetes was higher than in the general population, which was 55.5% and 37.3%, respectively (6). Furthermore, diabetes is strongly associated with the risk of NASH among subjects with NAFLD (7), and the prognosis of NASH was poor in subjects with type 2 diabetes compared with those without dysglycemia (8). In fact, subjects with NAFLD exhibited an increased risk of type 2 diabetes (5). Therefore, NAFLD and type 2 diabetes might be interrelated conditions, and there is a need to assess health outcomes related to NAFLD or NASH, considering baseline glucose tolerance status.

The most common cause of death of subjects with NAFLD has been thought to be cardiovascular diseases (9). However, several Asian-based studies have revealed that liver-related mortality is a more common cause of death than cardiovascular diseases (10). The liver fibrosis stage is the most important predictor for liver-related mortality (11). Traditionally, liver biopsy has been required to identify the fibrosis stage and diagnose NASH. However, as liver biopsy is an invasive procedure, it is critical to select subjects who have a high probability of NASH. Various noninvasive indices have been developed to predict the presence of NASH, and these have been validated against liver biopsy results (12,13). The National Health and Nutrition Examination Survey revealed that these
noninvasive NAFLD fibrosis indices can predict mortality in subjects with NAFLD (14). In another prospective cohort in the United States, a higher NAFLD fibrosis score (NFS) was found to be associated with higher mortality (15).

A recent study using the Korean National Health Insurance Service database revealed that the fatty liver index was associated with all-cause mortality, and this finding was more prominent in non-obese women with diabetes (16). However, whether liver fibrosis indices can predict mortality in Korean subjects has not been investigated. Therefore, in this study, we evaluated the ability of noninvasive NAFLD and liver fibrosis indices to predict mortality in Korean subjects from a prospective community cohort by considering their glucose metabolism status and level of obesity.

METHOD

Participants

In the present study, we analyzed the Ansung data from the Korean Genome and Epidemiology Study (KoGES), which enrolled Korean adults aged 40–69 years. The baseline evaluation was conducted during 2001 and 2002. In total, 5,018 subjects were enrolled, and follow-up examinations were conducted biannually. Glucose tolerance status was assessed using a 75-g oral glucose tolerance test (OGTT) and HbA1c. We excluded subjects who consumed excessive alcohol (> 30 g/day for men and > 20 g/day for women). We also excluded subjects diagnosed with hepatitis and cancer in a baseline examination. The study protocol was approved by the Ethics Committee of the Korean Center for Disease Control
and the Institutional Review Board of Ajou University School of Medicine (IRB No. AJIRB-CRO-07-012). All participants provided written informed consent before enrollment.

Parameters and outcomes

All subjects were instructed to visit a community clinic after overnight fasting. The methods used for the anthropometric measurements and laboratory analysis were as previously published (17). Fasting plasma levels of insulin were measured by radioimmunoassay (Insulin-IRMA; BioSource, Nivelles, Belgium). We calculated the hepatic steatosis index (HSI) [(18), and NAFLD liver fat score (NLFS) (19) as an index of NALFD. Liver fibrosis scores were calculated using the Fibrosis-4 (FIB-4) index [age (years) x AST (U/L) / platelets (10^9/L) x VALT (U/L)] (20), NFS [−1.675 + 0.037 x age (years) + 0.094 x body mass index (BMI) (kg/m^2) + 1.13 x impaired fasting glucose or diabetes (yes=1, no=0) + 0.99 x AST/ALT ratio − 0.013 x platelet count (10^9/L) x − 0.66 x serum albumin (g/dL)] (12), BARD score [BMI ≥ 28 kg/m^2 = 1 point; AST/ALT ratio ≥ 0.8 = 2 points; and diabetes mellitus = 1 point] (21), and aspartate aminotransferase (AST) to platelet ratio index (APRI) [(100 x AST (U/L)/upper limit of normal)/ platelet count (10^9/L)] (22). FIB-4 index is correlated with the stage of fibrosis, and a score <1.3 and >2.61 could predict the absence of advanced fibrosis and a high positive prediction of advanced fibrosis, respectively (20). NFS also predicts the presence of advanced fibrosis according to its cutoff values of < −1.455 and > 0.676 (12). Mortality data were obtained from the death statistics of the Korean National Statistical Office. The last update of mortality was in December 2018. We analyzed the clinical and biochemical data between living and deceased subjects at baseline.
Statistical analysis

Data are presented as mean ± standard deviation (SD), or as numbers and percentages. An independent t-test was used to compare the mean values of living and deceased subjects. Categorical variables were compared using the chi-square test. An analysis of covariance was used when covariates were adjusted. A receiver operating characteristic (ROC) curve was used to determine which indices could predict mortality, and the area under the ROC curve (AUROC) was calculated to assess the predictive power. Cutoff values for each index to predict mortality were determined with maximum sum of sensitivity and specificity using Youden’s Index (23). The Cox proportional hazards model was used to estimate the hazard ratio (HR) of mortality associated with each index. Statistical analysis was performed using IBM SPSS Statistics (Window version 22.0). Two-sided P values <0.05 were considered significant.

RESULTS

Among the 5,018 subjects, 146 were not followed up, 55 lacked information about the presence of diabetes at baseline, and 749 were excluded because of alcohol history or underlying malignancy. A total of 4,163 subjects (2,893 with normal glucose tolerance [NGT], and 1,270 with abnormal glucose metabolism [AGM]) were followed up for a median of 15.6 years. The total number of deaths was 643 (15.4%), of which, 113 were from cardiovascular diseases and 34 were from liver-specific causes. Table 1 shows the clinical and biochemical characteristics of the participants at baseline for the total number of
subjects and for subjects with NGT or AGM. Men and current or ex-smokers died more frequently than did women and subjects who never smoked. Deceased subjects were older and had a BMI than did living subjects. Glucose levels during the OGTT and HbA1c levels were higher in deceased than in living subjects. In regard to NAFLD indices, the HSI was lower only in deceased subjects with NGT, and the NLFS was higher in deceased subjects. In regard to the liver fibrosis indices, FIB-4, NFS, and APRI scores were consistently higher in subjects that subsequently died than in surviving, living subjects, regardless of their baseline glucose tolerance status. Among these indices, FIB-4 displayed the highest AUROC to predict mortality (0.686, 95% confidence interval [CI]: 0.663–0.708, \(P < 0.001 \)) (Table 2). Using a cutoff value of 1.22, FIB-4 can predict mortality with 64.4% sensitivity and 64.6% specificity.

The second highest AUROC was derived for NFS (0.666, 95% CI: 0.643–0.690, \(P < 0.001 \)), with sensitivity and specificity of 70.0% and 55.3%, respectively, by adopting a cutoff value of –2.08 for NFS.

We categorized subjects according to liver fibrosis indices with each cutoff value for FIB-4 and NFS. When the HRs for mortality were analyzed using a Cox proportional hazards model, FIB-4 ≥ 1.22, or NFS ≥ –2.08 showed HRs of 2.98 (95% CI: 2.54–3.50), and 2.52 (95% CI: 2.16–2.93), respectively (Tables 3 and 4). After adjusting for confounding factors such as age, sex, smoking history, BMI, and HbA1c, FIB-4 and NFS showed a positive association with mortality in total subjects and in subjects with NGT. This association was consistent in the subgroup with a BMI < 25 kg/m\(^2\), but was diminished in the subgroup with a BMI ≥ 25 kg/m\(^2\).

Liver-specific mortality yielded a significant association with FIB-4, and with NFS after adjusting for confounding factors. FIB-4, but not NFS, showed a consistent association with liver-specific mortality, regardless of baseline glucose metabolism status. By contrast, the
significant association between cardiovascular mortality and liver fibrosis indices was diminished after adjusting for confounding factors.

DISCUSSION

In this prospective cohort study, we firstly demonstrated that liver fibrosis indices can predict all-cause and liver-specific mortality in Korean subjects. In this population, male sex, old age, low BMI, higher glucose levels, and smoking history were related to higher mortality. After adjusting for these confounding factors, FIB-4 and NFS were still associated with all-cause and liver-specific mortality, and this association was more prominent in subjects with a lower BMI (< 25 kg/m²). This result suggests that liver fibrosis indices, which has been used clinically to identify advanced fibrosis in subjects with NALFD, might be useful for identifying a higher mortality group among the Korean population.

Noninvasive indices of liver fibrosis were originally developed to identify subjects who required a liver biopsy (13). In fact, many guidelines have adopted these noninvasive indices for assessing subjects with NAFLD (24), including the Fatty Liver Research Group of the Korean Diabetes Association (25). Our study and others have demonstrated that liver fibrosis indices have clinical implications beyond predicting liver fibrosis. In health checkup data from Taiwan, these fibrosis indices were associated with a risk of chronic kidney disease (26). In addition, an advancing fibrosis score was shown to be related to a progressive increase in mortality based on the data from the National Health and Nutrition Examination Survey (14) and the Rochester Epidemiology Project (15). In the present study, we confirmed that liver fibrosis indices can predict mortality in the Korean population. Interestingly, liver fibrosis indices could predict all-cause and liver-specific mortality, but not
cardiovascular mortality after adjusting for cardiometabolic risk factors. In addition, associations between fibrosis indices and all-cause and liver-specific mortality were observed more consistently in subjects with NGT than in those with AGM, and in subjects with a lower BMI than in those with a higher BMI. Previous observational studies compared the prognosis of non-obese NAFLD with obese NAFLD (27). In general, metabolic abnormalities were more prevalent in subjects with obese NAFLD than those with non-obese NAFLD. However, the mortality and development of severe liver disease were reported higher in subjects with non-obese NAFLD than obese counterpart in some studies (28,29). Genetic predisposition or unhealthy lifestyle might involve the health outcome of NAFLD. Our study added the new insight that liver fibrosis indices might represent poor health outcome in lean population regardless of NALFD.

In contrast to hepatic steatosis, NASH is driven by a ‘second hit’, such as inflammation or oxidative stress (30), and has a graver clinical course than does simple hepatic steatosis. Therefore, the ability to detect and predict NASH is the most crucial process in subjects with NAFLD. The gold standard to diagnose NASH is liver biopsy, which is invasive, but other noninvasive tools, such as magnetic resonance elastography, are expensive (25). In this regard, these definitive diagnostic methods cannot be applied in all subjects with NAFLD. Therefore, noninvasive indices such as FIB-4 and NFS are more feasible in general practice. In this study, we were able to identify the risk of mortality successfully using these parameters.

However, this study did have several limitations. First, we did not perform a liver ultrasound examination of the subjects, which is a detection method for fatty liver disease. In the same context, no information was available about any histological abnormalities in
subjects with a high liver fibrosis index. Second, this study was conducted in a single region in Korea; therefore, the cannot be reliably generalized and compared directly with data from Western countries. Third, antidiabetic medications might have some impact on NAFLD and NASH indices, but no medication data were collected.

In conclusion, the results of this study demonstrated that high FIB-4 and NFS scores, which are indirect indices for NASH, independently predicted all-cause and liver-specific mortality, which emphasizes the clinical importance of these liver fibrosis indices.

Acknowledgments

Financial Support: This work was supported by the Research Program funded by the Korea Centers for Disease Control and Prevention(found 2001-347-6111-221, 2002-347-6111-221, 2003-347-6111-221, 2004-E71001-00, 2005-E71001-00, 2006-E71006-00, 2007-E71003-00, 2008-E71005-00, 2009-E71007-00, 2010-E71004-00, 2011-E71008-00, 2012-E71008-00, 2013-E71007-00, 2014-E71005-00, 2015-P71002-00, 2016-E71002-00, 2017-E71002-00, 2018-E7102-00). The funding source had no role in the collection of the data or in the decision to submit the manuscript for publication.

Author Contributions: T.J.O., N.H.C., and H.C.J. designed the study and wrote the report. T.J.O. conducted the data analysis and prepared tables. T.J.O., K.K., N.H.C., and H.C.J. interpreted data and critically reviewed the report. T.J.O., K.K., J.H.M., S.H.C., N.H.C., and H.C.J. reviewed the report.

Correspondence and Reprint Requests: Nam H. Cho, MD, PhD, Department of Preventive Medicine, Ajou University School of Medicine, Suwon, Korea 206 Worldcup-ro, Yeongtong-
Disclosure Summary: The authors have nothing to disclose.

Data Availability Statement: Some or all data sets generated during and/or analyzed during the present study are not publicly available but are available from the corresponding author on reasonable request.
References

1. Li Z, Xue J, Chen P, Chen L, Yan S, Liu L. Prevalence of nonalcoholic fatty liver disease in mainland of China: a meta-analysis of published studies. *J Gastroenterol Hepatol*. 2014;29(1):42-51.

2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. *Hepatology*. 2016;64(1):73-84.

3. Park SH, Jeon WK, Kim SH, Kim HJ, Park DI, Cho YK, Sung IK, Sohn CI, Keum DK, Kim BI. Prevalence and risk factors of non-alcoholic fatty liver disease among Korean adults. *J Gastroenterol Hepatol*. 2006;21(1 Pt 1):138-143.

4. Jeong EH, Jun DW, Cho YK, Choe YG, Ryu S, Lee SM, Jang EC. Regional prevalence of non-alcoholic fatty liver disease in Seoul and Gyeonggi-do, Korea. *Clin Mol Hepatol*. 2013;19(3):266-272.

5. Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. *Nat Rev Gastroenterol Hepatol*. 2017;14(1):32-42.

6. Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, Qiu Y, Burns L, Afendi A, Nader F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. *J Hepatol*. 2019;71(4):793-801.

7. Loomba R, Abraham M, Unalp A, Wilson L, Lavine J, Doo E, Bass NM, Nonalcoholic Steatohepatitis Clinical Research N. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. *Hepatology*. 2012;56(3):943-951.
8. Lee YH, Cho Y, Lee BW, Park CY, Lee DH, Cha BS, Rhee EJ. Nonalcoholic Fatty Liver Disease in Diabetes. Part I: Epidemiology and Diagnosis. *Diabetes Metab J.* 2019;43(1):31-45.

9. Lim S, Oh TJ, Koh KK. Mechanistic link between nonalcoholic fatty liver disease and cardiometabolic disorders. *Int J Cardiol.* 2015;201:408-414.

10. Li J, Zou B, Yeo YH, Feng Y, Xie X, Lee DH, Fujii H, Wu Y, Kam LY, Ji F, Li X, Chien N, Wei M, Ogawa E, Zhao C, Wu X, Stave CD, Henry L, Barnett S, Takahashi H, Furusyo N, Eguchi Y, Hsu YC, Lee TY, Ren W, Qin C, Jun DW, Toyoda H, Wong VW, Cheung R, Zhu Q, Nguyen MH. Prevalence, incidence, and outcome of nonalcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis. *Lancet Gastroenterol Hepatol.* 2019;4(5):389-398.

11. Dulai PS, Singh S, Patel J, Soni M, Prokop LJ, Younossi Z, Sebastiani G, Ekstedt M, Hagstrom H, Nasr P, Stal P, Wong VW, Kechagias S, Hultcrantz R, Loomba R. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. *Hepatology.* 2017;65(5):1557-1565.

12. Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, Enders F, Saksena S, Burt AD, Bida JP, Lindor K, Sanderson SO, Lenzi M, Adams LA, Kench J, Therneau TM, Day CP. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. *Hepatology.* 2007;45(4):846-854.

13. McPherson S, Stewart SF, Henderson E, Burt AD, Day CP. Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. *Gut.* 2010;59(9):1265-1269.

14. Kim D, Kim WR, Kim HJ, Therneau TM. Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. *Hepatology.* 2013;57(4):1357-1365.
15. Treeprasertsuk S, Bjornsson E, Enders F, Suwanwalaikorn S, Lindor KD. NAFLD fibrosis score: a prognostic predictor for mortality and liver complications among NAFLD patients. World J Gastroenterol. 2013;19(8):1219-1229.

16. Lee CH, Han KD, Kim DH, Kwak MS. The Repeatedly Elevated Fatty Liver Index Is Associated With Increased Mortality: A Population-Based Cohort Study. Front Endocrinol (Lausanne). 2021;12:638615.

17. Oh TJ, Moon JH, Choi SH, Lim S, Park KS, Cho NH, Jang HC. Body-Weight Fluctuation and Incident Diabetes Mellitus, Cardiovascular Disease, and Mortality: A 16-Year Prospective Cohort Study. J Clin Endocrinol Metab. 2019;104(3):639-646.

18. Lee JH, Kim D, Kim HJ, Lee CH, Yang Ji, Kim W, Kim YJ, Yoon JH, Cho SH, Sung MW, Lee HS. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis. 2010;42(7):503-508.

19. Kotronen A, Peltonen M, Hakkarainen A, Sevastianova K, Bergholm R, Johansson LM, Lundbom N, Rissanen A, Ridderstrale M, Groop L, Orho-Melander M, Yki-Jarvinen H. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology. 2009;137(3):865-872.

20. Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ, Nash Clinical Research N. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7(10):1104-1112.

21. Harrison SA, Oliver D, Arnold HL, Gogia S, Neuschwander-Tetri BA. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease. Gut. 2008;57(10):1441-1447.

22. Cales P, Laine F, Boursier J, Deugnier Y, Moal V, Oberti F, Hunault G, Rousselet MC, Hubert I, Laafi J, Ducluzeaux PH, Lunel F. Comparison of blood tests for liver fibrosis specific or not to NAFLD. J Hepatol. 2009;50(1):165-173.
23. Youden WJ. Index for rating diagnostic tests. *Cancer*. 1950;3(1):32-35.

24. Leoni S, Tovoli F, Napoli L, Serio I, Ferri S, Bolondi L. Current guidelines for the management of non-alcoholic fatty liver disease: A systematic review with comparative analysis. *World J Gastroenterol*. 2018;24(30):3361-3373.

25. Lee BW, Lee YH, Park CY, Rhee EJ, Lee WY, Kim NH, Choi KM, Park KG, Choi YK, Cha BS, Lee DH, Korean Diabetes Association Fatty Liver Research G. Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus: A Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association. *Diabetes Metab J*. 2020;44(3):382-401.

26. Xu HW, Hsu YC, Chang CH, Wei KL, Lin CL. High FIB-4 index as an independent risk factor of prevalent chronic kidney disease in patients with nonalcoholic fatty liver disease. *Hepatol Int*. 2016;10(2):340-346.

27. Chrysavgis L, Ztiva E, Protopapas A, Tziomalos K, Cholongitas E. Nonalcoholic fatty liver disease in lean subjects: Prognosis, outcomes and management. *World J Gastroenterol*. 2020;26(42):6514-6528.

28. Zou B, Yeo YH, Nguyen VH, Cheung R, Ingelsson E, Nguyen MH. Prevalence, characteristics and mortality outcomes of obese, nonobese and lean NAFLD in the United States, 1999-2016. *J Intern Med*. 2020;288(1):139-151.

29. Hagstrom H, Nasr P, Ekstedt M, Hammar U, Stal P, Hulcrantz R, Kechagias S. Risk for development of severe liver disease in lean patients with nonalcoholic fatty liver disease: A long-term follow-up study. *Hepatol Commun*. 2018;2(1):48-57.

30. Asaumi R, Menzel K, Lee W, Nunoya KI, Imawaka H, Kusuhara H, Sugiyama Y. Expanded Physiologically-Based Pharmacokinetic Model of Rifampicin for Predicting Interactions With Drugs and an Endogenous Biomarker via Complex Mechanisms Including Organic Anion Transporting Polypeptide 1B Induction. *CPT*
Table 1. Baseline clinical and biochemical characteristics and non-invasive markers of NAFLD and liver fibrosis in subjects with normal glucose tolerance or abnormal glucose metabolism (prediabetes and diabetes)

	Total subjects	Normal glucose tolerance	Abnormal glucose metabolism	
	Subjects alive	Subjects deceased	Subjects alive	Subjects deceased
	(n = 3520)	(n = 643)	(n = 2549)	(n = 344)
	Subjects alive	Subjects deceased	Subjects alive	Subjects deceased
	(n = 971)	(n = 299)	(n = 971)	(n = 299)

- **Men, n (%)**
 - Total subjects: 1253 (35.6)
 - Normal glucose tolerance: 969 (38.0)
 - Abnormal glucose metabolism: 284 (29.2)

- **Age (yr)**
 - Total subjects: 54.6 ± 8.6
 - Normal glucose tolerance: 53.8 ± 8.6
 - Abnormal glucose metabolism: 56.6 ± 8.1

- **BMI (kg/m²)**
 - Total subjects: 24.7 ± 3.3
 - Normal glucose tolerance: 24.4 ± 3.2
 - Abnormal glucose metabolism: 25.5 ± 3.3

- **WC (cm)**
 - Total subjects: 84.7 ± 8.9
 - Normal glucose tolerance: 83.7 ± 8.7
 - Abnormal glucose metabolism: 87.2 ± 8.7

- **SBP (mmHg)**
 - Total subjects: 121 ± 18
 - Normal glucose tolerance: 119 ± 17
 - Abnormal glucose metabolism: 127 ± 19

- **DBP (mmHg)**
 - Total subjects: 77 ± 10
 - Normal glucose tolerance: 76 ± 10
 - Abnormal glucose metabolism: 79 ± 11

- **Glucose (mg/dL)**
 - Total subjects: 86.8 ± 15.4
 - Normal glucose tolerance: 83.4 ± 9.5
 - Abnormal glucose metabolism: 97.2 ± 24.8

- **PG at 1h (mg/dL)**
 - Total subjects: 153.4 ± 53.4
 - Normal glucose tolerance: 144.5 ± 42.3
 - Abnormal glucose metabolism: 206.5 ± 55.6

- **PG at 2h (mg/dL)**
 - Total subjects: 123.4 ± 46.9
 - Normal glucose tolerance: 103.0 ± 22.1
 - Abnormal glucose metabolism: 183.2 ± 52.7

- **HbA1c (%)**
 - Total subjects: 5.8 ± 0.8
 - Normal glucose tolerance: 5.6 ± 0.4
 - Abnormal glucose metabolism: 6.4 ± 1.3

- **Cholesterol (mg/dL)**
 - Total subjects: 190 ± 35
 - Normal glucose tolerance: 187 ± 34
 - Abnormal glucose metabolism: 199 ± 37

- **Triglyceride (mg/dL)**
 - Total subjects: 157 ± 100
 - Normal glucose tolerance: 145 ± 90
 - Abnormal glucose metabolism: 188 ± 117

- **HDL-C (mg/dL)**
 - Total subjects: 46 ± 11
 - Normal glucose tolerance: 47 ± 11
 - Abnormal glucose metabolism: 45 ± 10

- **LDL-C (mg/dL)**
 - Total subjects: 116 ± 34
 - Normal glucose tolerance: 113 ± 32
 - Abnormal glucose metabolism: 122 ± 39

- **AST (IU/L)**
 - Total subjects: 26.4 ± 16.5
 - Normal glucose tolerance: 25.9 ± 17.0
 - Abnormal glucose metabolism: 27.7 ± 15.0
| Parameter | Mean ± SD | | | | | |
|---|---|---|---|---|---|---|
| ALT (IU/L) | 24.7 ± 21.7 | 26.9 ± 20.9*| 23.2 ± 18.9 | 24.4 ± 13.8 | 28.5 ± 27.5 | 29.8 ± 26.6 |
| Albumin (g/dL) | 4.3 ± 0.3 | 4.2 ± 0.4***| 4.3 ± 0.3 | 4.2 ± 0.3***| 4.3 ± 0.3 | 4.2 ± 0.4***|
| GGT (IU/L) | 28.1 ± 39.7 | 55.6 ± 131.5***| 25.3 ± 36.2 | 42.6 ± 115.1***| 35.3 ± 47.0 | 70.7 ± 146.9***|
| BUN (mg/dL) | 14.1 ± 3.7 | 14.9 ± 4.5***| 14.1 ± 3.7 | 14.8 ± 4.3***| 14.2 ± 3.8 | 15.0 ± 4.8** |
| Creatinine (mg/dL) | 0.78 ± 0.19 | 0.85 ± 0.27***| 0.79 ± 0.19 | 0.84 ± 0.19***| 0.77 ± 0.18 | 0.86 ± 0.34***|

Smoking, n (%)

Status	Never (n=300)	Ex-smoker (n=122)	Current (n=214)
	BMI (68.3)	BMI (19.2)	BMI (33.6)
	WC (47.2)	WC (10.6)	WC (33.6)
	SBP (66.5)	SBP (65)	SBP (576)
	DBP (155)	DBP (65)	DBP (118)
	PG (72.9)	PG (103)	PG (157)
	(45.9)***	(19.2)	(34.9)
	(47)***	(10.7)	(16.4)
	(145)***	(57)	(96)

Data are unadjusted means (SDs), or n (%). BMI, body mass index; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; PG, plasma glucose; HSI, hepatic steatosis index; NLFS, non-alcoholic fatty liver disease liver (NAFLD) fat score; NFS, NAFLD fibrosis score; APRI, AST to platelet ratio index. p values were determined using a Student t test and chi-square test. *: p < 0.05, **: p<0.01, ***: p<0.001.
	Total	Normal glucose tolerance	Abnormal glucose metabolism
AUROC (95% CI)			
HSI	0.476 (0.451–0.501)	0.451 (0.418–0.484)**	0.475 (0.437–0.513)
NLFS	0.557 (0.530–0.583)**	0.551 (0.518–0.584)**	0.528 (0.481–0.574)
FIB-4	0.686 (0.663–0.708)**	0.713 (0.686–0.741)**	0.655 (0.619–0.691)*****
NFS	0.666 (0.643–0.690)**	0.635 (0.603–0.667)*****	0.631 (0.594–0.668)*****
BARD	0.559 (0.534–0.583)**	0.496 (0.466–0.527)	0.579 (0.542–0.616)*****
APRI	0.599 (0.573–0.624)*	0.631 (0.599–0.663)*****	0.560 (0.520–0.601)****

AUROC, area under the ROC curve; CI, HSI, hepatic steatosis index; NLFS, non-alcoholic fatty liver disease liver (NAFLD) fat score; NFS, NAFLD fibrosis score; APRI, AST to platelet ratio index. *: p <0.05, **: p<0.01, ***: p<0.001.
Table 3. FIB-4 and all-cause mortality, liver and cardiovascular mortality

	Total	Normal glucose tolerance	Abnormal glucose metabolism			
	Unadjusted HR (95% CI)	Adjusted HR (95% CI)	Unadjusted HR (95% CI)	Adjusted HR (95% CI)	Unadjusted HR (95% CI)	Adjusted HR (95% CI)
All-cause mortality						
FIB-4 < 1.22	Reference	Reference	Reference	Reference	Reference	Reference
FIB-4 ≥ 1.22	2.98	1.41	3.53	1.56	2.44	1.27
	(2.54–3.50)***	(1.18–1.68)***	(2.81–4.43)***	(1.21–2.01)**	(1.94–3.08)***	(0.99–1.63)***
BMI < 25.0	2.98	1.48	3.30	1.48	2.38	1.40
	(2.43–3.65)***	(1.18–1.84)*	(2.52–4.32)***	(1.10–1.99)*	(1.75–3.26)***	(1.00–1.97)*
BMI ≥ 25.0	2.69	1.32	3.72	1.79	2.10	1.15
	(2.04–3.24)***	(0.98–1.77)	(2.41–5.72)***	(1.10–2.91)*	(1.56–3.03)***	(0.78–1.70)
Liver specific mortality						
FIB-4 < 1.22	Reference	Reference	Reference	Reference	Reference	Reference
FIB-4 ≥ 1.22	7.58	6.40	5.59	4.09	17.44	15.58
	(3.14–18.30)***	(2.42–16.94)***	(2.06–15.15)***	(1.33–12.58)*	(2.25–135.27)**	(1.79–135.68)*
BMI	HR	95% CI	P-value			
-----	------	-----------------	---------			
BMI < 25.0	14.25	(3.35–60.60)**	0.0017			
BMI ≥ 25.0	3.32	(0.94–11.77)	0.0735			
BMI < 25.0	13.96	(3.03–64.24)**	0.0017			
BMI ≥ 25.0	2.74	(0.64–11.71)	0.168			
BMI < 25.0	8.93	(2.02–39.58)**	0.0017			
BMI ≥ 25.0	2.95	(0.66–13.18)	0.0735			
BMI < 25.0	7.50	(1.51–37.26)**	0.0017			
BMI ≥ 25.0	1.56	(0.28–8.66)	0.168			
BMI < 25.0	70.41	(0.33–15095.08)	0.454			
BMI ≥ 25.0	4.82	(0.44–53.41)	0.168			

Cardiovascular mortality

FIB-4	HR	95% CI	P-value
FIB-4 < 1.22	2.52	(1.72–3.68)**	0.0017
FIB-4 ≥ 1.22	2.07	(1.20–3.57)**	0.0017
BMI < 25.0	1.87	(0.82–1.86)	0.168
BMI ≥ 25.0	4.00	(1.27–4.70)**	0.0017
BMI < 25.0	0.87	(0.51–1.50)	0.168
BMI ≥ 25.0	1.86	(0.51–1.50)	0.168
BMI < 25.0	2.44	(1.75–5.07)**	0.0017
BMI ≥ 25.0	4.77	(1.81–12.55)**	0.0017
BMI < 25.0	1.04	(0.51–2.34)	0.0017
BMI ≥ 25.0	1.81	(0.51–2.12)	0.0017
BMI < 25.0	1.40	(0.71–2.34)	0.0017
BMI ≥ 25.0	1.29	(0.68–5.90)	0.0017

HR, hazard ratio; BMI, body mass index. Adjusted HR was adjusted by age, sex, smoking history, body mass index, and HbA1c. *: p<0.05, **: p<0.01, ***: p<0.001.
Table 4. NAFLD fibrosis score (NFS) and all-cause mortality, liver and cardiovascular mortality

	Total	Normal glucose tolerance	Abnormal glucose metabolism			
	Unadjusted HR (95% CI)	Adjusted HR (95% CI)	Unadjusted HR (95% CI)	Adjusted HR (95% CI)	Unadjusted HR (95% CI)	Adjusted HR (95% CI)
All-cause mortality						
NFS < -2.08	Reference	Reference	Reference	Reference	Reference	Reference
	2.52 (2.16–2.93)**	1.43 (1.21–1.68)**	2.30 (1.86–2.85)**	1.29 (1.03–1.62)	2.08 (1.48–2.91)**	1.25 (0.88–1.77)
NFS ≥ -2.08	2.76 (2.26–3.37)**	1.50 (1.21–1.86)**	2.29 (1.79–2.92)**	1.25 (0.96–1.62)	2.45 (1.57–3.82)**	1.46 (0.91–2.33)
BMI < 25.0	2.75 (2.01–3.77)**	1.32 (0.94–1.86)	2.59 (1.69–3.97)**	1.41 (0.89–2.24)	1.70 (1.01–2.84)**	0.91 (0.54–1.56)
BMI ≥ 25.0						
Liver specific mortality						
NFS < -2.08	Reference	Reference	Reference	Reference	Reference	Reference
	5.03 (2.34–10.82)**	5.20 (2.29–11.82)**	4.04 (1.65–9.90)**	3.39 (1.27–9.03)	3.40 (0.44–26.33)	3.19 (0.39–26.03)
NFS ≥ -2.08	(2.34–10.82)**	(2.29–11.82)**	(1.65–9.90)**	(1.27–9.03)	(0.44–26.33)	(0.39–26.03)
BMI < 25.0

NFS	HR	95% CI			
< -2.08	Reference	Reference	Reference	Reference	Reference
-2.08	3.91	(1.55–9.85)**			
≥ -2.08	3.76	(0.80–17.71)			

BMI ≥ 25.0

NFS	HR	95% CI			
< -2.08	Reference	Reference	Reference	Reference	Reference
-2.08	3.76	(0.80–17.71)			
≥ -2.08	3.76	(0.80–17.71)			

Cardiovascular mortality

NFS	HR	95% CI			
< -2.08	Reference	Reference	Reference	Reference	Reference
-2.08	3.91	(1.55–9.85)**			
≥ -2.08	3.76	(0.80–17.71)			

HR, hazard ratio; NFS, non-alcoholic fatty liver disease liver fibrosis score; BMI, body mass index. Adjusted HR was adjusted by age, sex, smoking history, body mass index, and HbA1c. *: p < 0.05, **: p<0.01, ***: p<0.001.