POWER CONCAVITY AND DIRICHLET HEAT FLOW

KAZUHIRO ISHIGE, PAOLO SALANI AND ASUKA TAKATSU

ABSTRACT. We show that log-concavity is the weakest power concavity preserved by the Dirichlet heat flow in N-dimensional convex domains, where $N \geq 2$ (indeed, we prove that starting with a negative power concave initial datum may result in losing immediately any reminiscence of concavity). Jointly with what we already know, i.e. that log-concavity is the strongest power concavity preserved by the Dirichlet heat flow, we see that log-concavity is indeed the only power concavity preserved by the Dirichlet heat flow.

Addresses:
K. I.: Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
E-mail: ishige@ms.u-tokyo.ac.jp

P. S.: Dipartimento di Matematica “U. Dini”, Università di Firenze, viale Morgagni 67/A, 50134 Firenze
E-mail: paolo.salani@unifi.it

A. T.: Department of Mathematical Sciences, Tokyo Metropolitan University, 1-1 Minami- osawa, Hachioji-shi, Tokyo 192-0397, Japan
E-mail: asuka@tmu.ac.jp
1. Introduction

Let Ω be a convex set in \mathbb{R}^N and $\alpha \in [-\infty, \infty]$. A nonnegative function u in Ω is said α-concave in Ω if

$$u((1 - \mu)x + \mu y) \geq \begin{cases}
\max\{u(x), u(y)\} & \text{if } \alpha = -\infty, \\
[(1 - \mu)u(x)^\alpha + \mu u(y)^\alpha]^{\frac{1}{\alpha}} & \text{if } \alpha \notin \{0, \pm\infty\}, \\
u(x)^{1-\mu}u(y)^\mu & \text{if } \alpha = 0, \\
\min\{u(x), u(y)\} & \text{if } \alpha = -\infty,
\end{cases}$$

for $\mu \in (0, 1)$ and $x, y \in S_u$, where $S_u := \{x \in \Omega : u(x) > 0\}$.

Neglecting the trivial case when $S_u = \emptyset$ (i.e. when u identically vanishes), this is equivalent to the following: S_u is a (non empty) convex set and

(i) u is a positive constant in S_u, if $\alpha = +\infty$;
(ii) $F_\alpha(u)$ is concave in S_u, if $\alpha \in \mathbb{R}$, where

$$F_\alpha(t) := \int_1^t s^{\alpha - 1} ds = \begin{cases}
t^{\alpha - 1} & \text{if } \alpha \neq 0, \\
\log t & \text{if } \alpha = 0;
\end{cases}$$

(iii) the level sets $\{x \in \Omega : u(x) > \lambda\}$ are convex for $\lambda > 0$ if $\alpha = -\infty$.

The case $\alpha = 1$ clearly corresponds to usual concavity and $\alpha = 0$ corresponds to log-concavity, while the case $-\infty$ is usually referred to as quasi-concavity and power concavity is a generic term for α-concavity with $\alpha \in [-\infty, +\infty]$. Power concavity has the following nice property:

- if u is α-concave in a convex set Ω, then u is β-concave in Ω for $\beta \leq \alpha$.

This property establishes a hierarchy among power concavities, so that quasi-concavity is the weakest one while $(+\infty)$-concavity is the strongest one.

Power concavity is a useful variation of concavity and it has been largely studied in the framework of elliptic and parabolic equations. Here we are mainly concerned with a classical result by Brascamp and Lieb \[2\]: log-concavity is preserved by the Dirichlet heat flow. More precisely, they proved the following:

- Let $e^{t\Delta \phi}$ be a bounded nonnegative solution to

\[
\begin{align*}
\partial_t u &= \Delta u & \text{in } & \Omega \times (0, \infty), \\
0 &= u & \text{on } & \partial \Omega \times (0, \infty) \text{ if } \partial \Omega \neq \emptyset, \\
\phi(x) &= u(x, 0) & \text{in } & \Omega,
\end{align*}
\]

where Ω is a convex domain in \mathbb{R}^N and ϕ is a bounded nonnegative function in Ω.

Then $e^{t\Delta \phi}$ is log-concave in Ω for $t > 0$ if ϕ is log-concave in Ω.

See also \[9\] and \[16\] for later different proofs. (See e.g. \[7, 8, 11, 12, 14, 15\] and references therein for more informations on related topics.)

The main aim of this paper is to investigate the sharpness of the results by Brascamp and Lieb, asking whether the heat transfer preserves any other power concavity, weaker or stronger than log-concavity. In \[13\] we proved that this does not happen for any α-concavity with $\alpha > 0$, then log-concavity is the strongest power concavity which the Dirichlet heat flow transmits from time 0 to any $t > 0$. Indeed in \[13\] Theorem 1.5 we proved, more generally, that log-concavity is the strongest conceivable concavity property (we mean among what we
call F-concavities, see below) which is preserved by the Dirichlet heat flow for $t > 0$. Then, what remains still open and we face in this paper is the following question:

(Q) What is the weakest power concavity preserved by the Dirichlet heat flow?

In connection to question (Q), we recall the following results.

Proposition 1.1. Let Ω be a convex domain in \mathbb{R}^N.

1. Let $N = 1$. Then $e^{t\Delta}\phi$ is quasi-concave in Ω for $t > 0$ if ϕ is quasi-concave in Ω.
2. Let $N \geq 2$ and $T > 0$. Then there exists $\phi \in C_0(\Omega)$ such that ϕ is α-concave in Ω for some $\alpha \in (-\infty, 0)$ and $e^{t\Delta}\phi$ is not quasi-concave in Ω for some $t \in (0, T)$.

See [11] and [9] for assertion (1). See [10, Theorem 4.1] for assertion (2).

By assertion (1), the answer to question (Q) in the one dimensional case is quasi-concavity. Assertion (2) gives a partial answer to question (Q) for $N \geq 2$: for every convex domain, there exists at least a negative power concavity which is not preserved by the Dirichlet heat flow; more dramatically, there exist some $\alpha < 0$ and some α-concave initial data ϕ such that $e^{t\Delta}\phi$ loses every reminiscence of concavity (even quasi-concavity) almost immediately. In this paper we show that this in fact happens for every $\alpha < 0$, giving a complete answer to question (Q) for $N \geq 2$ in the framework of power concavity. Our main result is the following.

Theorem 1.1. Let $N \geq 2$, Ω be a convex domain in \mathbb{R}^N and $\alpha < 0$. Then, for every $T > 0$, there exists an α-concave function ϕ in Ω such that $e^{t\Delta}\phi(\cdot)$ is not quasi-concave in Ω for some $t \in (0, T)$. Furthermore, ϕ can always be chosen continuous and compactly supported.

We recall that similar investigations about the disrupting of concavity along parabolic flows have been studied also in the case of the one-phase Stefan problem [3, Theorem 1.1] (where not even log-concavity is in general preserved), in the case of porous medium equation [5, Theorem 1.1] and [10, Theorem 1.1] (with sharp results in some cases) and for the Dirichlet heat flow in ring shaped domains [3, Theorem 1.1].

Finally, let us recall that the notion of power concavity can be generalized to F-concavity by substituting F_α with any strictly increasing F in (ii) above (see [13]). It is also possible to introduce an order between F-concavities and it is natural to ask whether there exists any F-concavity, different (possibly weaker) than log-concavity, which is preserved (or at least not completely destroyed) by the heat transfer. This question remains open.

2. **Proof of Theorem 1.1**

The proof of Theorem 1.1 is divided into three steps. Step 1 is crucial in the proof of Theorem 1.1 and the arguments in Steps 2 and 3 are modifications of those in the proof of [10, Theorem 4.1]. In what follows, by C we denotes generic positive constants and they may have different values also within the same line.

Let $\alpha < 0$ and set $\beta := 1/|\alpha| > 0$.

For $x = (x', x_N) \in \mathbb{R}^{N-1} \times \mathbb{R}$ and $r > 0$, set

\[B(x, r) := \{ y \in \mathbb{R}^N : |y - x| < r \}, \]

\[B'(x', r) := \{ y' \in \mathbb{R}^{N-1} : |y' - x'| < r \}. \]
Step 1: Consider the case of $\Omega = \mathbb{R}^N$. Set

$$u(x, t) := (4\pi t)^{-\frac{N}{2}} \int_{\mathbb{R}^N} e^{-\frac{|x-y|^2}{4t}} \phi(y) \, dy,$$

where

$$\phi(x', x_N) = (1 + |x'|)^{-\beta} \quad \text{if} \quad x_N \leq 0, \quad \phi(x', x_N) = 0 \quad \text{if} \quad x_N > 0.$$

Figure 1. The initial datum $\phi(\alpha = -1/2)$ and its level sets.

Then ϕ is α-concave in \mathbb{R}^N. First, we show that $u(\cdot, 1)$ is not quasi-concave in \mathbb{R}^N. For any $t > 0$, by (2.1) and (2.2) we have

- $u(x', x_N, t)$ is monotone decreasing with respect to x_N for fixed $x' \in \mathbb{R}^{N-1}$;
- $0 < u(x, t) \leq u(y, t)$ if $|x'| \geq |y'|$ and $x_N = y_N$.

Since

$$\frac{|x'|}{2} \leq |y'| \leq \frac{3|x'|}{2} \quad \text{if} \quad |y' - x'| < \frac{|x'|}{2},$$

it follows from (2.1) that

$$|\nabla_{x_N} u(x', 0, 1)|$$

$$= (4\pi)^{-\frac{N}{2}} \int_{\mathbb{R}^{N-1}} e^{-\frac{|x'-y'|^2}{4}} (1 + |y'|)^{-\beta} \, dy'$$

$$\geq (4\pi)^{-\frac{N}{2}} \int_{B'(x', |x'|/2)} e^{-\frac{|x'-y'|^2}{4}} (1 + |y'|)^{-\beta} \, dy'$$

$$\geq C^{-1}(1 + |x'|)^{-\beta} \int_{B'(x', |x'|/2)} e^{-\frac{|x'-y'|^2}{4}} \, dy' \geq C^{-1}(1 + |x'|)^{-\beta}$$

for $x' \in \mathbb{R}^{N-1}$.
Moreover we have
\[
|\nabla_{x'} u(x', 0, 1)|
\leq (4\pi)^{-\frac{N}{2}} \int_{-\infty}^{0} e^{-\frac{y^2}{4}} \, dy \int_{\mathbb{R}^{N-1}} e^{-\frac{(y')^2}{4}}(1 + |y'|)^{-\beta-1} \, dy'
\]
(2.4) \[\leq C \left(\int_{B'(x', |x'|/2)} + \int_{\mathbb{R}^{N-1}\setminus B'(x', |x'|/2)} \right) \times e^{-\frac{(y')^2}{4}}(1 + |y'|)^{-\beta-1} \, dy'
\leq C \left(1 + \frac{|x'|}{2} \right)^{-\beta-1} \int_{B'(x', |x'|/2)} e^{-\frac{(y')^2}{4}} \, dy' + Ce^{-\frac{|x'|^2}{8}} \int_{\mathbb{R}^{N-1}} e^{-\frac{|y'|^2}{8}} \, dy'
\leq C(1 + |x'|)^{-\beta-1}
\]
for \(x' \in \mathbb{R}^{N-1}\), where \(\nabla_{x'} := (\partial_{x_1}, \ldots, \partial_{x_{N-1}})\).

Assume that \(u(\cdot, 1)\) is quasi-concave in \(\mathbb{R}^{N}\). Let \(\epsilon > 0\) be small enough. Then
\[D_{\epsilon} := \{(x', x_1) \in \mathbb{R}^{N-1} \times (0, \infty) : u(x', x_1) > \epsilon\}\]
is convex for \(\epsilon > 0\). Furthermore, we find \(L_{\epsilon} > 0\) and a function \(\zeta_{\epsilon}\) in \([0, L_{\epsilon}]\) with the following properties:

- \(D_{\epsilon} = \{(x', x_1) \in B'(0, L_{\epsilon}) \times (0, \infty) : 0 < x_1 < \zeta(\epsilon|x'|)\}\);
- \(\zeta_{\epsilon}(r) > 0\) if \(0 \leq r < L_{\epsilon}\) and \(\zeta_{\epsilon}(L_{\epsilon}) = 0\);
- \(u(x', \zeta_{\epsilon}(\epsilon|x'|), 1) = \epsilon\) for \(x \in \mathbb{R}^{N-1}\) with \(|x'| \leq L_{\epsilon}\).

By (2.3) and (2.4), applying the implicit function theorem, we see that \(\zeta_{\epsilon}\) is a \(C^1\)-function in a neighborhood of \(r = L_{\epsilon}\) and
\[|\zeta_{\epsilon}'(r)| = \left| \frac{\nabla_{x'} u(x', 0, 1)}{\nabla_{x_1} u(x', 0, 1)} \right| \leq C(1 + L_{\epsilon})^{-1}\]
for small enough \(\epsilon > 0\). This together with the convexity of \(D_{\epsilon}\) implies that
(2.5) \[\zeta_{\epsilon}(0) \leq L_{\epsilon} |\zeta_{\epsilon}'(L_{\epsilon})| \leq C\]

On the other hand, it follows that
\[
u(0, x_1, 1) = (4\pi)^{-\frac{N}{2}} \int_{\mathbb{R}^{N}} e^{-\frac{|y'|^2+|x_1-y'||x_1|}{4}} \phi(y) \, dy
\]
\[= (4\pi)^{-\frac{N}{2}} \int_{\mathbb{R}^{N}} e^{-\frac{|x_1-y'||x_1|}{4}} \, dy \int_{\mathbb{R}^{N-1}} e^{-\frac{|y'|^2}{4}}(1 + |y'|)^{-\beta} \, dy
\geq Ce^{-\frac{x_1^2}{2}} \int_{\mathbb{R}^{N-1}} e^{-\frac{|y'|^2}{4}}(1 + |y'|)^{-\beta} \, dy
\]
for \(x_1 \in \mathbb{R}\). This implies that
\[Ce^{-\frac{\zeta_{\epsilon}(0)^2}{2}} \leq \epsilon,\]
that is,
\[\zeta_{\epsilon}(0) \geq \sqrt{2|\log(C\epsilon)|}\]
for small enough \(\epsilon > 0\). This contradicts (2.5) for small enough \(\epsilon > 0\). Thus \(u(\cdot, 1)\) is not quasi-concave in \(\mathbb{R}^{N}\) and we find \(X_{\epsilon}, Y_{\epsilon} \in \mathbb{R}^{N-1} \times (0, \infty)\) such that
(2.6) \[u(X_{\epsilon}, 1) > \epsilon, \quad u(Y_{\epsilon}, 1) > \epsilon, \quad u\left(\frac{X_{\epsilon} + Y_{\epsilon}}{2}, 1\right) < \epsilon.\]
To complete the proof of the first part of Theorem 1.1 in the case of $\Omega = \mathbb{R}^N$, for $\ell > \sqrt{1/T}$ let

$$\phi_\ell(x) := \phi(\ell x) \quad \text{and} \quad u_\ell(x, t) := u(\ell x, \ell^2 t).$$

Then u_ℓ solves problem (1.1) with initial datum ϕ_ℓ, which is α-concave in \mathbb{R}^N, while $u(\cdot, \ell^{-2})$ is not quasi-concave.

Step 2: We show that we can repeat Step 1 with a continuous compactly supported initial datum.

For any $n = 1, 2, \ldots$, set

$$\xi_n := -(n + n^{-1})e_N, \quad \phi_n(x) := \phi(x) \chi_{B(\xi_n, n)}(x), \quad u_n(x, t) := (e^{\ell A_n} \phi_n)(x).$$

Then

$$\lim_{n \to \infty} \sup_{x \in B(0, R)} |u_n(x, t) - u(x, t)| = 0$$

for $R > 0$ and $t > 0$. This together with (2.6) implies that

$$(2.7) \quad u_n(X_*, 1) > \epsilon, \quad u_n(Y_*, 1) > \epsilon, \quad u_n \left(\frac{X_* + Y_*}{2}, 1 \right) < \epsilon,$$

for large enough n.

Let n be a large enough integer such that (2.7) holds. For any $m = 1, 2, \ldots$, set

$$\eta_m(x) := \begin{cases} 0 & \text{if } |x - \xi_n| < n - m^{-1}, \\ (n - |x - \xi_n|)^{-1} - m & \text{if } n - m^{-1} \leq |x - \xi_n| < n. \end{cases}$$

Then $\eta_m(x)$ is a convex function in $B(\xi_n, n)$. On the other hand, since

$$\phi_n(x)^\alpha = 1 + |x'|, \quad x \in B(\xi_n, n),$$

the function $\phi_n(x)^\alpha + \eta_m(x)$ is convex in $B(\xi_n, n)$. Set

$$u_{m,n}(x, t) := (e^{\ell A_n} \phi_{m,n})(x),$$

where

$$\phi_{m,n}(x) := \begin{cases} (\phi_n(x)^\alpha + \eta_m(x))^{\frac{1}{\alpha}} & \text{if } x \in B(\xi_n, n), \\ 0 & \text{otherwise}. \end{cases}$$

Then $\phi_{m,n}(x)$ is α-concave in \mathbb{R}^N and it satisfies

$$(2.8) \quad \phi_{m,n} \in C_c(\mathbb{R}^N), \quad \sup \phi_{m,n} = B(\xi_n, n),$$

$$\lim_{m \to \infty} \sup_{x \in B(\xi_n, n)} |\phi_{m,n}(x) - \phi_n(x)| = 0.$$

This implies that

$$\lim_{m \to \infty} \sup_{|x| < R} |u_{m,n}(x, t) - u_n(x, t)| = 0$$

for $R > 0$ and $t > 0$. This together with (2.7) implies that

$$(2.9) \quad u_{m,n}(X_*, 1) > \epsilon, \quad u_{m,n}(Y_*, 1) > \epsilon, \quad u_{m,n} \left(\frac{X_* + Y_*}{2}, 1 \right) < \epsilon,$$

for large enough m. Thus $u_{m,n}(\cdot, 1)$ is not quasi-concave in \mathbb{R}^N and this settles the case $T > 1$. Then we can argue as before for the case $T \leq 1$.

Step 3: We consider the case of $\Omega \neq \mathbb{R}^N$ and complete the proof of Theorem 1.1. Without loss of generality, we can assume

$$0 \in \Omega.$$

For $\ell = 1, 2, \ldots$, set $\Omega_{\ell} := \ell \Omega$. By (2.10) and the convexity of Ω, we see that

$$\Omega_{\ell} \subset \Omega_{\ell+1}, \quad \bigcup_{\ell=1}^{\infty} \Omega_{\ell} = \mathbb{R}^N.$$

Let m be a large enough integer such that (2.9) holds. Let U_{ℓ} be the solution to the problem

$$\begin{cases}
\partial_t U = \Delta U & \text{in } \Omega_{\ell} \times (0, \infty), \\
U(x, t) = 0 & \text{on } \partial \Omega_{\ell} \times (0, \infty), \\
U(x, 0) = \phi_{m,n}(x) & \text{in } \Omega_{\ell}.
\end{cases}$$

Then we have

$$\lim_{\ell \to \infty} \sup_{B(0,R)} |u_{m,n}(x, t) - U_{\ell}(x, t)| = 0$$

for $R > 0$ and $t > 0$. By (2.8), (2.9) and (2.11) we find a large enough integer ℓ such that

$$U_{\ell}(X, 1) > \epsilon, \quad U_{\ell}(Y, 1) > \epsilon, \quad U_{\ell}\left(\frac{X+Y}{2}, 1\right) < \epsilon, \quad \phi_{m,n} \in C_c(\Omega_{\ell}).$$

Finally we set

$$u(x, t) := U_{\ell}(\ell x, \ell^2 t), \quad \phi(x) := \phi_{m,n}(\ell x) \in C_c(\Omega).$$

Then u satisfies (1.1) and ϕ is α-concave in Ω. Furthermore, it follows from (2.12) that $u(\cdot, \ell^{-2})$ is not quasi-concave in Ω. Thus Theorem 1.1 follows in the case of $\Omega \neq \mathbb{R}^N$, and the proof of Theorem 1.1 is complete.

Acknowledgements. The first and the third authors were supported in part by the Grant-in-Aid for Scientific Research (S) (No. 19H05599) from Japan Society for the Promotion of Science. The second author has been partially supported by INdAM through a GNAMPA Project. The third author was supported in part by the Grant-in-Aid for Scientific Research (C) (No. 19K03494).
References

[1] S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math. 390 (1988), 79–96.
[2] H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis 22 (1976), 366–389.
[3] A. Chau and B. Weinkove, Counterexamples to quasiconcavity for the heat equation, Int. Math. Res. Not. IMRN 22 (2020), 8564–8579.
[4] ———, The Stefan problem and concavity, Calc. Var. Partial Differential Equations 60 (2021), Paper No. 176, 13.
[5] ———, Non-preservation of α-concavity for the porous medium equation, preprint (arXiv:2011.03063).
[6] A. Greco and B. Kawohl, Log-concavity in some parabolic problems, Electron. J. Differential Equations (1999), No. 19, 12.
[7] K. Ishige, K. Nakagawa, and P. Salani, Spatial concavity of solutions to parabolic systems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20 (2020), 291–313.
[8] K. Ishige, Q. Liu, and P. Salani, Parabolic Minkowski convolutions and concavity properties of viscosity solutions to fully nonlinear equations, J. Math. Pures Appl. (9) 141 (2020), 342–370.
[9] K. Ishige and P. Salani, Is quasi-concavity preserved by heat flow?, Arch. Math. (Basel) 90 (2008), 450–460.
[10] ———, Convexity breaking of the free boundary for porous medium equations, Interfaces Free Bound. 12 (2010), 75–84.
[11] K. Ishige, P. Salani, and A. Takatsu, To logconcavity and beyond, Commun. Contemp. Math. 22 (2020), 1950009, 17.
[12] ———, Power concavity for elliptic and parabolic boundary value problems on rotationally symmetric domains, Commun. Contemp. Math., (published online 2021-11) https://doi.org/10.1142/S0219199721500978.
[13] ———, New characterizations of logconcavity via Dirichlet heat flow, Ann. Mat. Pura Appl., (published online 2021-11) https://doi.org/10.1007/s10231-021-01168-5.
[14] B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, vol. 1150, Springer-Verlag, Berlin, 1985.
[15] A. U. Kennington, Power concavity and boundary value problems, Indiana Univ. Math. J. 34 (1985), 687–704.
[16] N. J. Korevaar, Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 32 (1983), 603–614.